Affine Extensions of Integer Vector Addition Systems with States

Michael Blondin¹, Christoph Haase² and Filip Mazowiecki³

¹Technische Universität München

²University of Oxford

³Université de Bordeaux

Infinity 2018

Affine Extensions of Integer Vector Addition Systems with States

Michael Blondin¹, Christoph Haase² and Filip Mazowiecki³

¹Technische Universität München

²University of Oxford

³Université de Bordeaux

Infinity 2018

Automata with counters

Automata with counters

VASS example

Automata with counters

VASS example

example run:

$$p(1,0) \to p(0,2) \to q(0,2) \to q(2,1) \to q(4,0) \to p(4,0)$$

Automata with counters

VASS example

example run:

$$p(1,0) \to p(0,2) \to q(0,2) \to q(2,1) \to q(4,0) \to p(4,0)$$

Important restriction: no negative values

Interaction between counters

Interaction between counters

Transitions updates before: $p(\boldsymbol{v}) \rightarrow q(\boldsymbol{v} + \boldsymbol{w})$

Transitions updates now: $p({m v}) o q({f A}{m v} + {m w})$

Interaction between counters

Transitions updates before: $p(\boldsymbol{v}) \rightarrow q(\boldsymbol{v} + \boldsymbol{w})$

Transitions updates now: $p(\boldsymbol{v}) \rightarrow q(\mathbf{A}\boldsymbol{v} + \boldsymbol{w})$

 $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Affine VASS example

Interaction between counters

Transitions updates before: $p(\boldsymbol{v}) \rightarrow q(\boldsymbol{v} + \boldsymbol{w})$

Transitions updates now: $p(\boldsymbol{v}) \rightarrow q(\mathbf{A}\boldsymbol{v} + \boldsymbol{w})$

 $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Affine VASS example

$$p(x,y) \to q(x,x+1)$$
 (copy)

Interaction between counters

Transitions updates before: $p({m v}) o q({m v} + {m w})$

Transitions updates now: $p(v) \rightarrow q(\mathbf{A}v + w)$

 $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Affine VASS example

$$p(x,y) \to q(x,x+1)$$
 (copy)

$$q(x,y) \to p(x+y,1)$$
 (transfer)

What matrices are allowed?

What matrices are allowed?

What matrices are allowed?

We consider mostly matrices over $\{0,1\}$

 $\bullet \quad \mathbf{A} \text{ has exactly one } 1 \text{ in each column}$ (transfer VASS)

What matrices are allowed?

- A has exactly one 1 in each column (transfer VASS)
- A has exactly one 1 in each row (copy VASS)

What matrices are allowed?

- A has exactly one 1 in each column (transfer VASS)
- A has exactly one 1 in each row (copy VASS)
- $\bullet \quad \mathbf{A} \ \text{does not contain any } 1 \ \text{outside of its diagonal}$ (reset VASS)

What matrices are allowed?

- A has exactly one 1 in each column (transfer VASS)
- A has exactly one 1 in each row (copy VASS)
- A does not contain any 1 outside of its diagonal (reset VASS)
- A has exactly one 1 in each row and each column (permutation VASS)

For affine VASS

For affine VASS

Reachability problem:

Given: an affine VASS $\mathcal V$ and $p(\boldsymbol u), q(\boldsymbol v)$

Decide: whether $p(u) \stackrel{*}{\rightarrow} q(v)$?

For affine VASS

Reachability problem:

GIVEN: an affine VASS ${\cal V}$ and $p({m u}), q({m v})$

Decide: whether $p(u) \stackrel{*}{\rightarrow} q(v)$?

Coverability problem:

GIVEN: an affine VASS $\mathcal V$ and $p({\boldsymbol u}), q({\boldsymbol v})$

DECIDE: whether exists v' s.t. $p(u) \stackrel{*}{\rightarrow} q(v')$ and $v' \geq v$?

For affine VASS

Reachability problem:

GIVEN: an affine VASS ${\cal V}$ and $p({m u}), q({m v})$

Decide: whether $p(\boldsymbol{u}) \stackrel{*}{\to} q(\boldsymbol{v})$?

Coverability problem:

GIVEN: an affine VASS $\mathcal V$ and $p(\boldsymbol u), q(\boldsymbol v)$

DECIDE: whether exists v' s.t. $p(u) \stackrel{*}{\rightarrow} q(v')$ and $v' \geq v$?

• Usually affine VASS \rightarrow some specific class

For affine VASS

Reachability problem:

Given: an affine VASS $\mathcal V$ and $p(\boldsymbol u), q(\boldsymbol v)$

Decide: whether $p(u) \stackrel{*}{\rightarrow} q(v)$?

Coverability problem:

GIVEN: an affine VASS $\mathcal V$ and $p(\boldsymbol u), q(\boldsymbol v)$

DECIDE: whether exists v' s.t. $p(u) \stackrel{*}{\rightarrow} q(v')$ and $v' \geq v$?

- Usually affine VASS \rightarrow some specific class
- In this talk mostly affine $\mathbb{Z} ext{-VASS}$

(counters can be negative)

 $\underline{\mathsf{Over}\; \mathbb{N}}$

VASS:

Over N

VASS:

- Coverability: EXPSPACE-complete
- Reachability: decidable, EXPSPACE-hard

Over N

VASS:

- Coverability: EXPSPACE-complete
- Reachability: decidable, EXPSPACE-hard

transfer/reset VASS:

Coverability: decidable, Ackermann-complete

[Schnoebelen, 2002],[Figueira, Figueira, Schmitz and Schnoebelen, 2011]

Over \mathbb{N}

VASS:

- Coverability: EXPSPACE-complete
- Reachability: decidable, EXPSPACE-hard

transfer/reset VASS:

• Coverability: decidable, Ackermann-complete

[Schnoebelen, 2002],[Figueira, Figueira, Schmitz and Schnoebelen, 2011]

Reachability: undecidable [Araki and Kasami, 1976]

Over N

VASS:

- Coverability: EXPSPACE-complete
- Reachability: decidable, EXPSPACE-hard

transfer/reset VASS:

Coverability: decidable, Ackermann-complete

[Schnoebelen, 2002], [Figueira, Figueira, Schmitz and Schnoebelen, 2011]

Reachability: undecidable [Araki and Kasami, 1976]

Over \mathbb{Z}

Reachability and Coverability are inter-reducible

Over N

VASS:

- Coverability: EXPSPACE-complete
- Reachability: decidable, EXPSPACE-hard

transfer/reset VASS:

• Coverability: decidable, Ackermann-complete

[Schnoebelen, 2002],[Figueira, Figueira, Schmitz and Schnoebelen, 2011]

Reachability: undecidable [Araki and Kasami, 1976]

Over \mathbb{Z}

- Reachability and Coverability are inter-reducible
- VASS and reset VASS NP-complete [Haase and Halfon, 2014]

This simplifies the problem (?)

This simplifies the problem (?)

Coverability for affine VASS with matrices over $\ensuremath{\mathbb{N}}$

This simplifies the problem (?)

Coverability for affine VASS with matrices over $\mathbb N$

decidable by [Figueira, Figueira, Schmitz and Schnoebelen, 2011]

This simplifies the problem (?)

Coverability for affine VASS with matrices over $\mathbb N$

• decidable by [Figueira, Figueira, Schmitz and Schnoebelen, 2011]

Reachability for affine $\underline{\mathbb{Z}\text{-VASS}}$ with matrices over $\mathbb N$

undecidable already in dimension 2 [Reichert, 2015]

This simplifies the problem (?)

Coverability for affine VASS with matrices over $\mathbb N$

• decidable by [Figueira, Figueira, Schmitz and Schnoebelen, 2011]

Reachability for affine $\underline{\mathbb{Z}\text{-VASS}}$ with matrices over $\mathbb N$

• undecidable already in dimension 2 [Reichert, 2015]

Proof: reduce from PCP over $\{0,1\}$ to a 2-VASS

This simplifies the problem (?)

Coverability for affine VASS with matrices over $\mathbb N$

• decidable by [Figueira, Figueira, Schmitz and Schnoebelen, 2011]

Reachability for affine $\underline{\mathbb{Z}\text{-VASS}}$ with matrices over $\mathbb N$

• undecidable already in dimension 2 [Reichert, 2015]

Proof: reduce from PCP over $\{0,1\}$ to a 2-VASS we build two words: w,v; counters store bin(1w) and bin(1v)

This simplifies the problem (?)

Coverability for affine VASS with matrices over $\mathbb N$

• decidable by [Figueira, Figueira, Schmitz and Schnoebelen, 2011]

Reachability for affine $\underline{\mathbb{Z}\text{-VASS}}$ with matrices over $\mathbb N$

• undecidable already in dimension 2 [Reichert, 2015]

Proof: reduce from PCP over $\{0,1\}$ to a 2-VASS we build two words: w,v; counters store bin(1w) and bin(1v) matrices used to shift (double the values in counters)

This simplifies the problem (?)

Coverability for affine VASS with matrices over $\mathbb N$

• decidable by [Figueira, Figueira, Schmitz and Schnoebelen, 2011]

Reachability for affine $\underline{\mathbb{Z}\text{-VASS}}$ with matrices over $\mathbb N$

undecidable already in dimension 2 [Reichert, 2015]

Proof: reduce from PCP over $\{0,1\}$ to a 2-VASS we build two words: w,v; counters store bin(1w) and bin(1v) matrices used to shift (double the values in counters)

But for \mathbb{Z} -VASS reachability and coverability are inter-reducible So undecidability for coverability of affine \mathbb{Z} -VASS (in dimension 4)

• Why consider relaxed variants (like \mathbb{Z} -VASS)?

• Why consider relaxed variants (like \mathbb{Z} -VASS)?

A configuration not reachable for relaxed semantics \implies not reachable

Why consider relaxed variants (like Z-VASS)?

A configuration not reachable for relaxed semantics \implies not reachable Used to prune the search space

- ullet Why consider relaxed variants (like \mathbb{Z} -VASS)? A configuration not reachable for relaxed semantics \Longrightarrow not reachable Used to prune the search space
- Transfer VASS used in reasoning about
- broadcast protocols
- multi-threaded non-recursive C programs

- Why consider relaxed variants (like \mathbb{Z} -VASS)? A configuration not reachable for relaxed semantics \Longrightarrow not reachable Used to prune the search space
- Transfer VASS used in reasoning about
- broadcast protocols
- multi-threaded non-recursive C programs
- Recent implementations of Coverability for VASS

- Why consider relaxed variants (like \mathbb{Z} -VASS)? A configuration not reachable for relaxed semantics \implies not reachable Used to prune the search space
- Transfer VASS used in reasoning about
- broadcast protocols
- multi-threaded non-recursive C programs
- \bullet Recent implementations of Coverability for VASS Used $\mathbb{Z}\text{-VASS}$ or continuous VASS

- $\hbox{ Why consider relaxed variants (like \mathbb{Z}-VASS)?} \\ A configuration not reachable for relaxed semantics } \Longrightarrow \hbox{ not reachable} \\ Used to prune the search space$
- Transfer VASS used in reasoning about
- broadcast protocols
- multi-threaded non-recursive C programs
- Recent implementations of Coverability for VASS
 Used Z-VASS or continuous VASS
 Quite successful [Esparza et al., 2014], [Blondin et al., 2016]
 [Geffroy, Leroux and Sutre, 2016]

Matrix monoid of the affine VASS $\mathcal V$

 $\mathcal{M}_{\mathcal{V}}$ – the matrix monoid generated by matrices in \mathcal{V}

Matrix monoid of the affine VASS $\mathcal V$

 $\mathcal{M}_{\mathcal{V}}$ – the matrix monoid generated by matrices in \mathcal{V}

Matrix monoid of the affine VASS ${\cal V}$

 $\mathcal{M}_{\mathcal{V}}$ – the matrix monoid generated by matrices in \mathcal{V}

d-dimension

• ${\bf A}$ has exactly one 1 in each column, $|{\cal M}_{\cal V}| \leq d^d$ (transfer VASS)

Matrix monoid of the affine VASS $\mathcal V$

 $\mathcal{M}_{\mathcal{V}}$ – the matrix monoid generated by matrices in \mathcal{V}

- ${\bf A}$ has exactly one 1 in each column, $|{\cal M}_{\cal V}| \leq d^d$ (transfer VASS)
- ${\bf A}$ has exactly one 1 in each row, $|{\cal M}_{{\cal V}}| \leq d^d$ (copy VASS)

Matrix monoid of the affine VASS ${\cal V}$

 $\mathcal{M}_{\mathcal{V}}$ – the matrix monoid generated by matrices in \mathcal{V}

- ${\bf A}$ has exactly one 1 in each column, $|{\cal M}_{\cal V}| \leq d^d$ (transfer VASS)
- ${\bf A}$ has exactly one 1 in each row, $|{\cal M}_{\cal V}| \leq d^d$ (copy VASS)
- A does not contain any 1 outside of its diagonal, $|\mathcal{M}_{\mathcal{V}}| \leq 2^d$ (reset VASS)

Matrix monoid of the affine VASS ${\cal V}$

 $\mathcal{M}_{\mathcal{V}}$ – the matrix monoid generated by matrices in \mathcal{V}

- ${\bf A}$ has exactly one 1 in each column, $|{\cal M}_{\cal V}| \leq d^d$ (transfer VASS)
- ${\bf A}$ has exactly one 1 in each row, $|{\cal M}_{\cal V}| \leq d^d$ (copy VASS)
- ${\bf A}$ does not contain any 1 outside of its diagonal, $|{\cal M}_{\cal V}| \leq 2^d$ (reset VASS)
- **A** has exactly one 1 in each row and each column, $|\mathcal{M}_{\mathcal{V}}| \leq d!$ (permutation VASS)

Consider affine $\mathbb{Z}\text{-VASS }\mathcal{V}$

Consider affine \mathbb{Z} -VASS \mathcal{V}

ullet if $\mathcal{M}_{\mathcal{V}}$ is finite

we reduce reachability in ${\mathcal V}$ to reachability in VASS ${\mathcal V}'$

Consider affine $\mathbb{Z}\text{-VASS }\mathcal{V}$

ullet if $\mathcal{M}_{\mathcal{V}}$ is finite

we reduce reachability in $\mathcal V$ to reachability in VASS $\mathcal V'$ where $|\mathcal V'|=|\mathcal V|\cdot \mathcal M_V$

Consider affine $\mathbb{Z}\text{-VASS }\mathcal{V}$

• if $\mathcal{M}_{\mathcal{V}}$ is finite

we reduce reachability in $\mathcal V$ to reachability in VASS $\mathcal V'$ where $|\mathcal V'|=|\mathcal V|\cdot\mathcal M_V$ if $\mathcal M_V$ is of exponential size reachability in PSPACE (all previous cases)

Consider affine $\mathbb{Z}\text{-VASS }\mathcal{V}$

 $\bullet \quad \text{if } \mathcal{M}_{\mathcal{V}} \text{ is finite} \\$

we reduce reachability in ${\mathcal V}$ to reachability in VASS ${\mathcal V}'$

where $|\mathcal{V}'| = |\mathcal{V}| \cdot \mathcal{M}_V$

if \mathcal{M}_V is of exponential size reachability in PSPACE

(all previous cases)

and PSPACE lower bound for permutation+reset

Consider affine \mathbb{Z} -VASS \mathcal{V}

- if $\mathcal{M}_{\mathcal{V}}$ is finite we reduce reachability in \mathcal{V} to reachability in VASS \mathcal{V}' where $|\mathcal{V}'| = |\mathcal{V}| \cdot \mathcal{M}_{\mathcal{V}}$ if $\mathcal{M}_{\mathcal{V}}$ is of exponential size reachability in PSPACE (all previous cases) and PSPACE lower bound for permutation+reset
- if $\mathcal{M}_{\mathcal{V}}$ is infinite undecidability for transfer+copy

Consider affine \mathbb{Z} -VASS \mathcal{V}

- if $\mathcal{M}_{\mathcal{V}}$ is finite we reduce reachability in \mathcal{V} to reachability in VASS \mathcal{V}' where $|\mathcal{V}'| = |\mathcal{V}| \cdot \mathcal{M}_{\mathcal{V}}$ if $\mathcal{M}_{\mathcal{V}}$ is of exponential size reachability in PSPACE (all previous cases) and PSPACE lower bound for permutation+reset
- if $\mathcal{M}_{\mathcal{V}}$ is infinite undecidability for transfer+copy (even in dimension 3)

Finite monoids

Finite monoids

 $\mathbb{Z}\text{-VASS}$ (NP)

Infinite monoids

10 / 14

States and semilinearity for affine \mathbb{Z} -VASS

Some remarks

States and semilinearity for affine $\mathbb{Z}\text{-VASS}$

Some remarks

• States make a difference for $\mathbb{Z}\text{-VASS}$ (the +3 dimensions reduction doesn't work)

States and semilinearity for affine \mathbb{Z} -VASS

Some remarks

- States make a difference for $\mathbb{Z}\text{-VASS}$ (the +3 dimensions reduction doesn't work)
- The reachability relation is semilinear for affine $\mathbb{Z}\text{-VASS}$ with finite $\mathcal{M}_{\mathcal{V}}$

States and semilinearity for affine \mathbb{Z} -VASS

Some remarks

- States make a difference for $\mathbb{Z}\text{-VASS}$ (the +3 dimensions reduction doesn't work)
- The reachability relation is semilinear for affine $\mathbb{Z}\text{-VASS}$ with finite $\mathcal{M}_{\mathcal{V}}$
- For |Q|=1 and $\mathcal{M}_{\mathcal{V}}$ with one generator: semilinearity iff $\mathcal{M}_{\mathcal{V}}$ finite [Boigelot, 1998], [Finkel and Leroux, 2002]

States and semilinearity for affine $\mathbb{Z}\text{-VASS}$

Some remarks

- States make a difference for $\mathbb{Z}\text{-VASS}$ (the +3 dimensions reduction doesn't work)
- \bullet The reachability relation is semilinear for affine $\mathbb{Z}\text{-VASS}$ with finite $\mathcal{M}_{\mathcal{V}}$
- For |Q|=1 and $\mathcal{M}_{\mathcal{V}}$ with one generator: semilinearity iff $\mathcal{M}_{\mathcal{V}}$ finite

[Boigelot, 1998], [Finkel and Leroux, 2002]

Not in our case: $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \mathbf{0}$ $\mathbf{I}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \qquad \mathbf{I}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\mathbf{I}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \mathbf{I}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Given affine $\mathbb{Z}\text{-VASS }\mathcal{V}$ construct $\mathbb{Z}\text{-VASS }\mathcal{V}'$

Given affine $\mathbb{Z}\text{-VASS }\mathcal{V}$ construct $\mathbb{Z}\text{-VASS }\mathcal{V}'$

• Just encode $\mathcal{M}_{\mathcal{V}}$ into the states

so
$$Q'=Q\times \mathcal{M}_{\mathcal{V}}$$

Given affine $\mathbb{Z}\text{-VASS }\mathcal{V}$ construct $\mathbb{Z}\text{-VASS }\mathcal{V}'$

• Just encode $\mathcal{M}_{\mathcal{V}}$ into the states

so
$$Q' = Q \times \mathcal{M}_{\mathcal{V}}$$

the matrix tells you how to update the value

Given affine \mathbb{Z} -VASS \mathcal{V} construct \mathbb{Z} -VASS \mathcal{V}'

• Just encode $\mathcal{M}_{\mathcal{V}}$ into the states

so
$$Q' = Q \times \mathcal{M}_{\mathcal{V}}$$

the matrix tells you how to update the value

Example: transfer VASS

Two counters (x,y) with occasional transfer $x \to y$

Given affine $\mathbb{Z}\text{-VASS }\mathcal{V}$ construct $\mathbb{Z}\text{-VASS }\mathcal{V}'$

• Just encode $\mathcal{M}_{\mathcal{V}}$ into the states

so
$$Q' = Q \times \mathcal{M}_{\mathcal{V}}$$

the matrix tells you how to update the value

Example: transfer VASS

Two counters (x,y) with occasional transfer $x \to y$

$$(0,0) \xrightarrow{+(5,1)} (5,1) \xrightarrow{+(-3,1)} (2,2) \xrightarrow{x \to y} (0,4)$$

Given affine $\mathbb{Z}\text{-VASS }\mathcal{V}$ construct $\mathbb{Z}\text{-VASS }\mathcal{V}'$

• Just encode $\mathcal{M}_{\mathcal{V}}$ into the states

so
$$Q' = Q \times \mathcal{M}_{\mathcal{V}}$$

the matrix tells you how to update the value

Example: transfer VASS

Two counters (x,y) with occasional transfer $x \to y$

$$(0,0) \xrightarrow{+(5,1)} (5,1) \xrightarrow{+(-3,1)} (2,2) \xrightarrow{x \to y} (0,4)$$

$$(0,0) \xrightarrow{+(0,6)} (0,6) \xrightarrow{+(0,-2)} (0,4) \xrightarrow{\mathsf{update} \ \mathbf{M}} (0,4)$$

Given affine $\mathbb{Z}\text{-VASS }\mathcal{V}$ construct $\mathbb{Z}\text{-VASS }\mathcal{V}'$

• Just encode $\mathcal{M}_{\mathcal{V}}$ into the states

so
$$Q' = Q \times \mathcal{M}_{\mathcal{V}}$$

the matrix tells you how to update the value

Example: transfer VASS

Two counters (x,y) with occasional transfer $x \to y$

$$(0,0)\xrightarrow{+(5,1)}(5,1)\xrightarrow{+(-3,1)}(2,2)\xrightarrow{x\to y}(0,4)$$

OK

$$(0,0) \xrightarrow{+(0,6)} (0,6) \xrightarrow{+(0,-2)} (0,4) \xrightarrow{\operatorname{update} \mathbf{M}} (0,4)$$

OK

Given affine $\mathbb{Z}\text{-VASS }\mathcal{V}$ construct $\mathbb{Z}\text{-VASS }\mathcal{V}'$

• Just encode $\mathcal{M}_{\mathcal{V}}$ into the states

so
$$Q' = Q \times \mathcal{M}_{\mathcal{V}}$$

the matrix tells you how to update the value

Example: transfer VASS

Two counters (x,y) with occasional transfer $x \to y$

$$(0,0) \xrightarrow{+(5,1)} (5,1) \xrightarrow{+(-6,1)} (-1,2) \xrightarrow{x \to y} (0,1)$$

$$(0,0) \xrightarrow{+(0,6)} (0,6) \xrightarrow{+(0,-5)} (0,1) \xrightarrow{\mathsf{update} \ \mathbf{M}} (0,1)$$

From affine **Z-VASS** to **Z-VASS**

Given affine \mathbb{Z} -VASS \mathcal{V} construct \mathbb{Z} -VASS \mathcal{V}'

Just encode $\mathcal{M}_{\mathcal{V}}$ into the states

so
$$Q' = Q \times \mathcal{M}_{\mathcal{V}}$$

the matrix tells you how to update the value

Example: transfer VASS

Two counters (x,y) with occasional transfer $x \to y$

$$(0,0)\xrightarrow{+(5,1)}(5,1)\xrightarrow{+(-6,1)}(-1,2)\xrightarrow{x\to y}(0,1) \qquad \text{NOT OK (in }\mathbb{N})$$

$$(0,0) \xrightarrow{+(0,6)} (0,6) \xrightarrow{+(0,-5)} (0,1) \xrightarrow{\text{update } \mathbf{M}} (0,1)$$

Given affine $\mathbb{Z}\text{-VASS }\mathcal{V}$ construct $\mathbb{Z}\text{-VASS }\mathcal{V}'$

• Just encode $\mathcal{M}_{\mathcal{V}}$ into the states

so
$$Q' = Q \times \mathcal{M}_{\mathcal{V}}$$

the matrix tells you how to update the value

Example: transfer VASS

Two counters (x,y) with occasional transfer $x \to y$

$$(0,0) \xrightarrow{+(5,1)} (5,1) \xrightarrow{+(-6,1)} (-1,2) \xrightarrow{x \to y} (0,1) \qquad \text{NOT OK (in } \mathbb{N})$$

$$(0,0) \xrightarrow{+(0,6)} (0,6) \xrightarrow{+(0,-5)} (0,1) \xrightarrow{\text{update } \mathbf{M}} (0,1) \qquad \text{OK}$$

• Using flatness results [Blondin et al., 2015] we get PSPACE if $\mathcal{M}_{\mathcal{V}}$ is exponential

Given affine $\mathbb{Z}\text{-VASS }\mathcal{V}$ construct $\mathbb{Z}\text{-VASS }\mathcal{V}'$

• Just encode $\mathcal{M}_{\mathcal{V}}$ into the states

so
$$Q' = Q \times \mathcal{M}_{\mathcal{V}}$$

the matrix tells you how to update the value

Example: transfer VASS

Two counters (x,y) with occasional transfer $x \to y$

$$(0,0) \xrightarrow{+(5,1)} (5,1) \xrightarrow{+(-6,1)} (-1,2) \xrightarrow{x \to y} (0,1) \qquad \text{NOT OK (in } \mathbb{N})$$

$$(0,0) \xrightarrow{+(0,6)} (0,6) \xrightarrow{+(0,-5)} (0,1) \xrightarrow{\text{update M}} (0,1) \qquad \text{OK}$$

• Using flatness results [Blondin et al., 2015] we get PSPACE if $\mathcal{M}_{\mathcal{V}}$ is exponential for reset VASS we get NP (already known)

Its contained in transfer VASS and copy VASS

Its contained in transfer VASS and copy VASS

Simulate a linear space machine with alphabet Γ and states P tape size n

Its contained in transfer VASS and copy VASS

Simulate a linear space machine with alphabet Γ and states P tape size \boldsymbol{n}

Define affine $\mathbb{Z}\text{-VASS}$

dimension: $d = |\Gamma| \cdot n$

Its contained in transfer VASS and copy VASS

Simulate a linear space machine with alphabet Γ and states P tape size \boldsymbol{n}

Define affine \mathbb{Z} -VASS dimension: $d=|\Gamma|\cdot n$ denote $x_{i,a}$ for $a\in\Gamma$, $1\leq i\leq n$ "in cell i letter a"

Its contained in transfer VASS and copy VASS

Simulate a linear space machine with alphabet Γ and states P tape size \boldsymbol{n}

Define affine \mathbb{Z} -VASS dimension: $d=|\Gamma|\cdot n$ denote $x_{i,a}$ for $a\in\Gamma$, $1\leq i\leq n$ "in cell i letter a"

invariant: only 0 and 1 in counters and the sum is $\leq n$

Its contained in transfer VASS and copy VASS

Simulate a linear space machine with alphabet Γ and states P tape size \boldsymbol{n}

Define affine \mathbb{Z} -VASS dimension: $d = |\Gamma| \cdot n$

denote $x_{i,a}$ for $a \in \Gamma$, $1 \le i \le n$

"in cell i letter a"

invariant: only 0 and 1 in counters and the sum is $\leq n$

Transitions: swap content of registers (permutation VASS)

Its contained in transfer VASS and copy VASS

Simulate a linear space machine with alphabet Γ and states P tape size \boldsymbol{n}

Define affine \mathbb{Z} -VASS dimension: $d = |\Gamma| \cdot n$

denote $x_{i,a}$ for $a \in \Gamma$, $1 \le i \le n$

"in cell i letter a"

invariant: only 0 and 1 in counters and the sum is $\leq n$

Transitions: swap content of registers (permutation VASS)

Checking mistakes: with resets

Its contained in transfer VASS and copy VASS

Simulate a linear space machine with alphabet Γ and states P tape size \boldsymbol{n}

Define affine \mathbb{Z} -VASS

dimension: $d = |\Gamma| \cdot n$

denote $x_{i,a}$ for $a \in \Gamma$, $1 \le i \le n$

"in cell i letter a"

invariant: only 0 and 1 in counters and the sum is $\leq n$

Transitions: swap content of registers (permutation VASS)

Checking mistakes: with resets

if there was a mistake the sum is < n

• What is the size of $\mathcal{M}_{\mathcal{V}}$? Exponential?

That would give a PSPACE-upper bound for reachability

 $\bullet \quad \text{What is the size of $\mathcal{M}_{\mathcal{V}}$? Exponential?}$ That would give a PSPACE-upper bound for reachability

(Note: I ignored the size of elements in matrices)

What is the size of M_V? Exponential?

That would give a PSPACE-upper bound for reachability

(Note: I ignored the size of elements in matrices)

TOWER upper bound is known [Mandel and Simon, 1977]

For 1 generator or for groups exponential upper bound

• What is the size of $\mathcal{M}_{\mathcal{V}}$? Exponential? That would give a PSPACE-upper bound for reachability (Note: I ignored the size of elements in matrices) TOWER upper bound is known [Mandel and Simon, 1977] For 1 generator or for groups exponential upper bound

• Is reachability undecidable for any class with infinite $\mathcal{M}_{\mathcal{V}}$? (or can we find a dichotomy)

- What is the size of $\mathcal{M}_{\mathcal{V}}$? Exponential? That would give a PSPACE-upper bound for reachability (Note: I ignored the size of elements in matrices) TOWER upper bound is known [Mandel and Simon, 1977] For 1 generator or for groups exponential upper bound
- Is reachability undecidable for any class with infinite $\mathcal{M}_{\mathcal{V}}$? (or can we find a dichotomy)
- \bullet What is the complexity of permutation $\mathbb{Z}\text{-VASS}?$ (between NP and PSPACE)

- What is the size of $\mathcal{M}_{\mathcal{V}}$? Exponential? That would give a PSPACE-upper bound for reachability (Note: I ignored the size of elements in matrices) TOWER upper bound is known [Mandel and Simon, 1977] For 1 generator or for groups exponential upper bound
- Is reachability undecidable for any class with infinite $\mathcal{M}_{\mathcal{V}}$? (or can we find a dichotomy)
- \bullet What is the complexity of permutation $\mathbb{Z}\text{-VASS?}$ (between NP and PSPACE)
- Tools for transfer VASS?