2025 年全国硕士研究生招生考试(数学一)试题

- 1. 已知函数 $f(x) = \int_0^x e^{t^2} \sin t dt$, $g(x) = \int_0^x e^{t^2} dt \cdot \sin^2 x$, 则 ()
 - (A) x = 0 是 f(x) 的极值点, 也是 g(x) 的极值点
 - (B) x = 0 是 f(x) 的极值点, (0,0) 是曲线 y = g(x) 的拐点
 - (C) x = 0 是 f(x) 的极值点, (0,0) 是曲线 y = f(x) 的拐点
 - (D) (0,0) 是曲线 y=f(x) 的拐点, 也是曲线 y=g(x) 的拐点
- 2. 已知级数: ① $\sum_{n=1}^{\infty}\sin\frac{n^3\pi}{n^2+1}$; ② $\sum_{n=1}^{\infty}(-1)^n\frac{1}{\sqrt[3]{n^2}}-\tan\frac{1}{\sqrt[3]{n^2}}$, 则 ()
 - (A) ①与②均条件收敛
 - (B) ①条件收敛, ②绝对收敛
 - (C) ①绝对收敛, ②条件收敛
 - (D) ①与②均绝对收敛
- 3. 设数 f(x) 在区间 $[0, +\infty)$ 上可导,则()
 - (A) 当 $\lim_{x\to+\infty}f(x)$ 存在时, $\lim_{x\to+\infty}f'(x)$ 存在
 - (B) 当 $\lim_{x \to +\infty} f'(x)$ 存在时, $\lim_{x \to +\infty} f(x)$ 存在
 - (C) 当 $\lim_{x \to +\infty} rac{\int_0^x f(t)dt}{x}$ 存在时, $\lim_{x \to +\infty} f(x)$ 存在
 - (D) 当 $\lim_{x \to +\infty} f(x)$ 存在时, $\lim_{x \to +\infty} \frac{\int_0^x f(t)dt}{x}$ 存在
- 4. 设函数 f(x,y) 连续, 则 $\int_{-2}^2 dx \int_{4-x^2}^4 f(x,y) dy = ($)

(A)
$$\int_0^4 \left[\int_{-2}^{-\sqrt{4-y}} f(x,y) dx + \int_{\sqrt{4-y}}^2 f(x,y) dx \right] dy$$

(B)
$$\int_0^4 \left[\int_{-2}^{\sqrt{4-y}} f(x,y) dx + \int_{\sqrt{4-y}}^2 f(x,y) dx \right] dy$$

(C)
$$\int_0^4 \left[\int_{-2}^{-\sqrt{4-y}} f(x,y) dx + \int_2^{\sqrt{4-y}} f(x,y) dx \right] dy$$

(D)
$$2\int_0^{ ilde{4}} dy \left[\int_{\sqrt{4-y}}^2 f(x,y) dx
ight]$$

- 5. 二次型 $f(x_1,x_2,x_3)=x_1^2+2x_1x_2+2x_1x_3$ 的正惯性指数为 ()
 - (A) 0
 - (B) 1
 - (C) 2
 - (D)3
- 6. 设 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 是 n 维向量, α_1,α_2 线性无关, $\alpha_1,\alpha_2,\alpha_3$ 线性相关, 且 $\alpha_1+\alpha_2+\alpha_4=0$, 在空间直角坐标系 O-xyz 中, 关于 x,y,z 的方程组 $x\alpha_1+y\alpha_2+z\alpha_3=\alpha_4$ 的几何图形是()
 - (A) 过原点的一个平面
 - (B) 过原点的一条直线
 - (C) 不过原点的一个平面
 - (D) 不过原点的一条直线
- 7. 设 n 阶矩阵 A, B, C 满足 r(A) + r(B) + r(B) = r(ABC) + 2n, 给出下列四个结论:

①
$$r(ABC) + n = r(AB) + r(C)$$
; ② $r(AB) + n = r(A) + r(B)$; ③

$$r(A) = r(B) = r(C) = n$$
; ④ $r(AB) = r(BC) = n$, 其中正确的选项是()

- (A) 12
- (B) 13
- (C) 24
- (D) 34
- 8. 设二维随机变量 (X,Y) 服从正态分布 $N(0,0;1,1;\rho)$, 其中 $\rho\in(-1,1)$, 若 a,b 为满足 $a^2+b^2=1$ 的任意实数, 则 D(aX+bY) 的最大值为 ()
 - (A) 1
 - (B) 2

- (C) $1 + |\rho|$
- (D) $1 + \rho^2$
- 9. 设 X_1, X_2, \ldots, X_{20} 是来自总体 B(1,0.1) 的简单随机样本, 令 $T = \sum_{i=1}^{20} X_i$, 利用泊松分布近 似表示二项分布的方法可得 () $P\{T < 1\} \approx$
 - (A) $\frac{1}{e^2}$

 - (B) $\frac{2}{e^2}$ (C) $\frac{3}{e^2}$ (D) $\frac{4}{e^2}$

二、填空题: 11-16题(每题5分, 共30分)

- 10. 设 x_1,x_2,\ldots,x_n 为来自正态总体 $N(\mu,2)$ 的简单随机样本, 记 $\overline{X}=rac{1}{n}\sum_{i=1}^n x_i$, Z_{lpha} 表示标准 正态分布的上侧 α 分位数, 假设检验问题: $H_0: \mu \leq 1, H_1: \mu > 1$ 的显著性水平为 α 的检验的拒
 - (A) $\left\{(x_1,x_2,\ldots,x_n)|\overline{X}>1+rac{2}{n}Z_lpha
 ight\}$ $(B) \left\{ (x_1, x_2, \dots, x_n) \middle| \overline{X} > 1 + \frac{\sqrt{2}}{n} Z_\alpha \right\}$ $(C) \left\{ (x_1, x_2, \dots, x_n) \middle| \overline{X} > 1 + \frac{2}{\sqrt{n}} Z_\alpha \right\}$ $(D) \left\{ (x_1, x_2, \dots, x_n) \middle| \overline{X} > 1 + \sqrt{\frac{2}{n}} Z_\alpha \right\}$
- 11. $\lim_{x \to 0^+} \frac{x^x 1}{\ln x \cdot \ln(1 x)} =$
- 12. 已知函数 $f(x)=egin{cases} 0,&0\leq x<rac{1}{2}\ x^2,&rac{1}{2}\leq x\leq 1 \end{cases}$ 的傅里叶级数为 $\sum_{n=1}^\infty b_n\sin n\pi x$, S(x) 为 $\sum_{n=1}^{\infty} b_n \sin n\pi x$ 的和函数,则 $S(-\frac{7}{2}) =$.
- 13. 已知函数 $U(x,y,z) = xy^2z^3$, 向量 n = (2,2,-1), 则 $\frac{\partial v}{\partial n}\Big|_{(1,1,1)} = \underline{\qquad}$.
- 14. 已知有向曲线 L 是沿抛物线 $y=1-x^2$ 从点 (1,0) 到 (-1,0) 的段, 则曲线积分 $\int_{L} (y + \cos x) dx + (2x + \cos y) dy = \underline{\hspace{1cm}}.$
- 15. 设矩阵 $A=\begin{pmatrix} 4 & 2 & -3 \\ a & 3 & -4 \\ b & 5 & -7 \end{pmatrix}$, 若方程组 $A^2x=0$ 与 Ax=0 不同解, 则 a-b= _____.
- 16. 设 A,B 为两个不同随机事件, 且相互独立, 已知 $P(A)=2P(B), P(A\cup B)=rac{5}{8}$, 则 A,B 中至 少有一个发生的条件下, A, B 中恰好有一个发生的概率为

三、解答题:17-22 小题,共 70 分

- 17. (本题满分 10 分) 计算 $\int_0^1 \frac{1}{(x+1)(x^2-2x+2)} dx$.
- 18. (本题满分 12 分) 已知函数 f(u) 在区间 $(0,+\infty)$ 内具有二阶导数,记 $g(x,y)=f\left(\frac{x}{y}\right)$,若 g(x,y) 满足 $x^2\frac{\partial^2 g}{\partial x^2}+xy\frac{\partial^2 g}{\partial x\partial y}+y^2\frac{\partial^2 g}{\partial y^2}=1$,且 g(x,x)=1, $\frac{\partial g}{\partial x}\Big|_{(x,x)}=\frac{2}{x}$,求 f(u).

19. (本题满分 12 分) 设函数
$$f(x)$$
 在区间 (a,b) 内可导, 证明: 导函数 $f'(x)$ 在 (a,b) 内严格单调增加的充分必要条件是: 对 (a,b) 内任意的 x_1,x_2,x_3 , 当 $x_1 < x_2 < x_3$ 时,
$$\frac{f(x_2)-f(x_1)}{x_2-x_1} < \frac{f(x_3)-f(x_2)}{x_3-x_2}.$$

20. (本题满分 12 分) 设
$$\Sigma$$
 是由直线 $\begin{cases} x=0 \\ y=0 \end{cases}$ 绕直线 $\begin{cases} x=t \\ y=t \ (t \ \text{为参数})$ 旋转一周得到的曲面, Σ_1 是 Σ_2 介于平面 $x+y+z=0$ 与 $x+y+z=1$ 之间部分的外侧, 计算曲面积分
$$\iint_{\Sigma_1} x dy dz + (y+1) dz dx + (z+2) dx dy.$$

21. (本题满分 12 分) 设矩阵
$$A=\begin{pmatrix} 0 & -1 & 2 \\ -1 & 0 & 2 \\ -1 & -1 & a \end{pmatrix}$$
, 已知 A 的特征多项式的重根.

- (1) 求 a 的值.
- (2) 求所有满足 $A\alpha=\alpha+\beta$, $A^2\alpha=\alpha+2\beta$ 的非零列向量 α , β .

22. (本题满分 12 分) 投保人的损失事件发生时, 保险公司赔付额
$$Y$$
 与投保人的损失额 X 的关系为
$$Y = \begin{cases} 0, X \leq 100 \\ X - 100, X > 100 \end{cases}$$
. 设损失事件发生时, 投保人的损失额 X 的概率密度为
$$f(x) = \begin{cases} \frac{2 \times 100^2}{(100 + x)^3}, x > 0 \\ 0, x \leq 0 \end{cases}$$
. (1) 求 $P\{Y > 0\}$ 及 $E(Y)$.

(2) 这种损失事件在一年内发生的次数记为 N, 保险公司在一年内就这种损失事件产生的理赔次数记为 M, 假设 N 服从参数为 8 的泊松分布, 在 $N=n(n\geq 1)$ 的条件下, M 服从二项分布 B(n,P), 其中 $P=P\{Y>0\}$, 求 M 的概率分布.