Tutorial 102: FPGA Fabric Netlist Generation

OpenFPGA Tutorial

Tutorial 102: FPGA Fabric Netlist Generation

ORGANIZERS

Objective

Generate **verilog netlist** of the **customized FPGA architect** using OpenFPGA (Note: This is a Verilog netlist of the FPGA fabric itself)

Tutorial 102: FPGA Fabric Netlist Generation

FPGA Fabric Netlist Generation

Tutorial 102: FPGA Fabric Netlist Generation

Create OpenFPGA Task

> create-task lab2 template_tasks/fabric_netlist_gen_template
Creating task lab2
Template project template_tasks/fabric_netlist_gen_template

Run Task

> run-task lab2

- task.conf file contains only one architecture and benchmark
- *.openfpga contains an additional command to map the openfpga.xml architecture file, and commands generate Verilog netlist

Tutorial 102: FPGA Fabric Netlist Generation

Task Complete

Tutorial 102: FPGA Fabric Netlist Generation

Location of Results

Netlist located: lab2/latest/<architecture>/<benchmark>/<chan_width>/SRC

Tutorial 102: FPGA Fabric Netlist Generation

Updates in VPR file

- Add physical mode
- Notice disable_packing="true" property

Tutorial 102: FPGA Fabric Netlist Generation

Physical mode of pb_type

CLB Physical Mode

Tutorial 102: FPGA Fabric Netlist Generation

Circuit Models (Physical implementation)

This model defines a physical implementation of the primiticomponents

Tutorial 102: FPGA Fabric Netlist Generation

OpenFPGA Architecture File

Tutorial 102: FPGA Fabric Netlist Generation

OpenFPGA Shell Script

Tutorial 102: FPGA Fabric Netlist Generation

Homogeneous FPGA Tiles

4 Corner + 4 Sides CB + 4 Sides SB + 4 tile

Tutorial 102: FPGA Fabric Netlist Generation

FPGA Tiles (in this tutorial)

Tutorial 102: FPGA Fabric Netlist Generation

Source Directory Structure

Tutorial 102: FPGA Fabric Netlist Generation

fpga_top.v Content

```
2 fpga top:
     - grid io top:
     - grid_io_right
     - grid io botto
     - grid io left
     - grid clb:
     - sb 0 0:
     - sb 0 1 :
10
     - sb 1 0 :
11
     - sb 1 1:
     - cbx 1 0:
13
     - cbx 1 1:
14
     - cby 0 1:
15
     - cby 1 1:
16
```

fpga-top netlist

fpga-top hierarchy

Tutorial 102: FPGA Fabric Netlist Generation

Switch box hierarchy

```
- sb_1__1:
- mux_2level_tapbuf_size4:
- mux_2level_tapbuf_size4_mem:
- mux_2level_tapbuf_size3:
- mux_2level_tapbuf_size3_mem:
```

grid-clb hierarchy

```
- grid_clb:
    - logical_tile_clb_mode_clb_:
    - logical_tile_clb_mode_default__fle:
    - logical_tile_clb_mode_default__fle_mode_physical__ble6:
    - logical_tile_clb_mode_default__fle_mode_physical__ble6_mode_default__
    - logical_tile_clb_mode_default__fle_mode_physical__ble6_mode_default__
    - mux_llevel_tapbuf_size2:
    - mux_llevel_tapbuf_size2_mem:
    - mux_2level_size50:
    - mux_2level_size50_mem:
```

Tutorial 102: FPGA Fabric Netlist Generation

Exercise

- Identify the number of global signals and their connection with top-level instance
- 2. Generate an FPGA netlist for **4×4 homogeneous FPGA Fak** and identify a unique number of modules