Estudo de estruturas de dados eficientes para abordar o problema de otimização U-Curve

Gustavo Estrela. Marcelo Reis

Universidade de São Paulo e Instituto Butantan

8 de Setembro de 2016

Objetivo

- Estudo do Algoritmo U-Curve Search (UCS) [1]
- Estudo de diagramas de decisão binária reduzidas e ordenadas (ROBDDs)
- Implementação de um novo algoritmo para solucionar o problema U-Curve que use ROBDDs para controlar o espaço de busca.

UCS

- Resumo da dinâmica:
 - Escolha uma direção para percorrer o reticulado booleano;
 - ► Escolhe um elemento *X* minimal (ou maximal) do espaço de busca;
 - Percorre elementos a partir X como um DFS.
- Tem como vantagem computar poucas vezes a função de custo
- Seu problema de escalabilidade se deve em grande parte a utilização de listas duplamente encadeadas para armazenar restrições ao espaço de busca.

ROBDDs

- Pode responder rapidamente se um elemento está ou não no espaço de busca.
- Operações de atualização podem ser caras.
- O seu tamanho depende da ordem das variáveis.

ROBDDs

Figura 1: exemplo do uso de ROBDDs para representar o espaço de busca corrente durante a execução do algoritmo UCS.

UCSR2 e UCSR3

- Ambos algoritmos possuem dinâmicas semelhantes ao UCS.
- Acham mais facilmente um elemento minimal ou maximal do espaço de busca
- ▶ Possuem consumo de tempo maior do que o UCS por conta das operações de atualização da ROBDD.

UCSR4, UCSR5 e UCSR6

- ▶ Esses algoritmos surgem da simplificação da DFS presente no UCS. Realiza-se agora um passeio tal que, dado X do espaço de busca, avalia-se todo Y adjacente e:
 - i. se Y é adjacente superior (inferior) e tem custo menor que X, restringimos o intervalo $[\emptyset, X]$ ([X, S]) e passamos a avaliar Y;
 - ii. se Y é adjacente superior (inferior) e tem custo maior que X, podemos restringir, ou não, como será discutido na próxima sessão, o intervalo [Y, S] ($[\emptyset, Y]$);
 - iii. se Y é adjacente superior (inferior) e tem custo igual a X não fazemos nada;
 - iv. paramos quando não houverem mais elementos adjacentes a X.
- Existe um trade-off entre os algoritmos UCSR5 e UCSR6.

Primeiros Resultados

Instância		Tempo (segundos)						
S	2 5	UCSR6	UCSR5	UCSR4	UCSR3	UCSR2	UCS	ES
1	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	16	0.01	0.01	0.01	0.01	0.01	0.01	0.00
5	32	0.01	0.01	0.01	0.01	0.01	0.01	0.01
6	64	0.01	0.01	0.01	0.01	0.01	0.01	0.01
7	128	0.01	0.01	0.01	0.01	0.02	0.02	0.01
8	256	0.02	0.02	0.02	0.02	0.03	0.03	0.02
9	512	0.04	0.05	0.04	0.04	0.06	0.07	0.04
10	1024	0.08	0.09	0.08	0.08	0.13	0.13	0.09
11	2048	0.14	0.15	0.14	0.16	0.27	0.27	0.18
12	4096	0.44	0.47	0.44	0.61	0.99	0.71	0.36
13	8192	0.70	0.74	0.75	1.25	2.03	1.44	0.73
14	16384	2.42	2.37	2.47	4.60	6.90	4.82	1.52
15	32768	3.27	3.23	3.17	6.94	11.07	7.06	3.11
16	65536	27.11	25.75	26.73	57.83	83.44	44.56	6.46
17	131072	61.17	56.54	56.64	142.34	174.26	108.07	13.49
18	262144	293.86	262.42	273.24	699.01	740.60	366.96	27.93
19	524288	645.57	578.95	589.50	1335.98	1632.08	907.94	58.80

Primeiros Resultados

Ir	stância		Número de chamadas da função custo						
5	2 5	UCSR6	UCSR5	UCSR4	UCSR3	UCSR2	UCS	ES	
1	2	2.00	2.00	2.00	2.00	2.00	2.00	2	
2	4	3.80	4.00	4.20	3.80	3.80	3.90	4	
3	8	6.50	7.30	7.30	6.50	6.45	6.50	8	
4	16	12.85	13.70	14.05	12.80	12.60	12.85	16	
5	32	19.95	21.30	21.40	21.00	19.75	19.20	32	
6	64	31.25	33.40	33.35	32.50	31.25	36.40	64	
7	128	50.70	58.15	62.15	53.90	50.85	56.00	128	
8	256	86.50	94.85	101.70	92.90	89.60	94.45	256	
9	512	170.60	191.00	203.60	179.75	171.25	174.50	512	
10	1024	273.75	322.25	336.75	286.10	272.70	280.05	1024	
11	2048	425.15	500.40	532.10	440.80	430.90	441.20	2048	
12	4096	1119.00	1271.80	1362.35	1121.55	1096.65	1077.45	4096	
13	8192	1437.10	1637.35	1692.30	1524.75	1437.00	1412.90	8192	
14	16384	2710.20	3203.10	3317.95	2874.50	2791.55	2702.25	16384	
15	32768	3181.60	3522.90	3764.50	3251.45	3147.50	3088.65	32768	
16	65536	9637.20	11544.65	11603.25	9923.35	9613.25	9380.85	65536	
17	131072	10327.90	12122.05	12301.70	10680.95	10370.95	9962.50	131072	
18	262144	21838.55	25847.15	26551.45	22676.30	21562.70	20920.90	262144	
19	524288	27931.55	32460.70	34011.60	28795.00	27823.70	27099.90	524288	

Reordenação do ROBDD

- Achar a ordenação ótima é NP-difícil [3].
- Implementação de um algoritmo genético que procura por uma ordenação sub-ótima, o UCSR7.

Instância		Tempo d	Tempo de execução em segundos					
5	$2^{ S }$	UCSR7	UCSR6	UCSR5	ES			
1	2	0.00	0.00	0.00	0.00			
2	4	0.00	0.00	0.00	0.00			
3	8	0.01	0.00	0.00	0.00			
4	16	0.03	0.00	0.00	0.00			
5	32	0.11	0.01	0.01	0.00			
6	64	0.29	0.01	0.01	0.01			
7	128	1.12	0.01	0.01	0.01			
8	256	1.87	0.02	0.02	0.02			
9	512	10.51	0.04	0.05	0.04			
10	1024	14.49	0.06	0.06	0.08			

Atividades Futuras

- Estudar o momento em que devemos reordenar o ROBDD.
- Estudar como achar uma ordenação sub-ótima do ROBDD de maneira mais eficiente.
- Testar os algoritmos elaborados em instâncias reais.

Referências

- Reis, Marcelo S. "Minimization of decomposable in U-shaped curves functions defined on poset chains—algorithms and applications." PhD thesis, Institute of Mathematics and Statistics, University of São Paulo, Brazil, (2012).
- Bryant, Randal E. "Graph-based algorithms for boolean function manipulation." IEEE Transactions on Computers, 100.8 (1986): 677-691.
- Bollig, Beate and Wegener, Ingo. "Improving the variable ordering of OBDDs is NP-complete." IEEE Transactions on Computers, 45.9 (1996): 993–1002.