Introduction to Computer Systems Lecture 4 – Float 2022 Spring, CSE3030

Sogang University

Fractional binary numbers

• What is 1011.101₂?

Integer part

Decimal part

1011.101

Fractional Binary Numbers

- Representation
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number:

Fractional Binary Numbers: Examples

ation

5 3/4101.1122 7/810.11121 7/161.01112

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
 - Value Representation
 - 1/3 0.01010101[01]...₂
 - 1/5 0.001100110011[0011]...₂
 - 1/10 0.000110011[0011]...₂

- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Limited range of numbers

- The range of fractional binary representation is less than signed integer representation.
 - FMAX < TMAX
- How can we represent different scales of real numbers?
 - Numbers could be very small or very large.
 - Sun to Earth: 149,600,000,000 m
 - Light speed: 299,792,458 m/s
 - Time to travel 1 um in light speed: 0.0000000000000333564 sec
 - 1um = 0.000001 m = 0.00000000000000000001000... (2) m
- What representation can support arithmetic operations for a wide range of real numbers?

SE3030 S'22

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

SE3030 S'22

Floating Point Representation

https://en.wikipedia.org/wiki/Scientific_notation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand (or mantissa) M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

- Encoding
 - MSB s is sign bit s
 - exp field encodes *E* (but is not equal to E)
 - frac field encodes M (but is not equal to M)

Precision options

• Single precision: 32 bits

Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

"Normalized" Values

$$v = (-1)^s M 2^E$$

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a *biased* value: E = Exp Bias
 - Exp: unsigned value of exp field
 - $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
V = (-1)^s M 2^E

E = Exp - Bias
```

- Value: float F = 15213.0; • $15213_{10} = 11101101101101_2$ = $1.1101101101101_2 \times 2^{13}$
- Significand

```
M = 1.101101101_2
frac= 101101101101_000000000_2
```

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

Result:

0 10001100 1101101101101000000000

Denormalized Values

$$V = (-1)^{s} M 2^{E}$$
 $E = 1 - Bias$

- Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: *M* = 0.xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac \neq 000...0
 - Numbers closest to 0.0
 - Equispaced

Special Values

- Condition: **exp** = **111**...**1**
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac

- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only) v = (-1)s M 2E

	s	exp	frac	E	Value		n: E = Exp — Bias
	0	0000	000	-6	0		d: E = 1 - Bias
	0	0000	001	-6	1/8*1/64	= 1/512	closest to zero
Denormalized	0	0000	010	-6	2/8*1/64	= 2/512	Closest to Zelo
numbers							
	0	0000	110	-6	6/8*1/64	= 6/512	
	0	0000	111	-6	7/8*1/64	= 7/512	largest denorm
	0	0001	000	-6	8/8*1/64	= 8/512	
	0	0001	001	-6	9/8*1/64	= 9/512	smallest norm
	0	0110	110	-1	14/8*1/2	= 14/16	
	0	0110	111	-1	15/8*1/2	= 15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1	= 1	
numbers	0	0111	001	0	9/8*1	= 9/8	closest to 1 above
	0	0111	010	0	10/8*1	= 10/8	closest to 1 above
	0	1110	110	7	14/8*128	= 224	
	0	1110	111	7	15/8*128	= 240	largest norm
	0	1111	000	n/a	inf		

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Visualization: Floating Point Encodings

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Rounding

- For single precision, we only have 23 bits for a frac part.
- If there is number x that requires more than 23 bits for a frac part, we need to find a number x' that is close to x.
 - *Ex*) 33554431 = 1 11111111 11111111 11111111 (2) (25 bits required for frac parts)

```
$1.40 $1.60 $1.50 $2.50 -$1.50
                                         $2
                                                -$1

    Towards zero

                                  $1
                                                -$2
                                         $2
• Round down (-∞) $1
                                               -$1
                          $2
                                 $2
                                        $3
• Round up (+\infty)
                                               $2

    Nearest Even (default)

                          $1
                                  $2
                                         $2
```

Rounding

1.BBGRXXX

Guard bit: LSB of result

Round bit: 1st bit removed

Sticky bit: OR of remaining bits

- Round up conditions
 - Round = 1, Sticky = $1 \rightarrow > 0.5$
 - Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	(1) (1) (1)	5'2 X	10.000

Floating Point Addition

- $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$ •Assume E1 > E2
- Exact Result: (-1)s M 2E
 - •Sign s, significand M:
 - Result of signed align & add
 - •Exponent E: E1

Get binary points lined up

- Fixing
 - •If $M \ge 2$, shift M right, increment E
 - •if M < 1, shift M left k positions, decrement E by k
 - •Overflow if *E* out of range
 - •Round *M* to fit **frac** precision

FP Multiplication

- $(-1)^{s1}$ **M1** 2^{E1} X $(-1)^{s2}$ **M2** 2^{E2}
- Exact Result: (-1)s M 2E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - •double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int \rightarrow double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode

Ariane 5 S/W Bug

- Ariane 5 flight 501 (June 4, 1996)
 - Exploded 37 seconds after liftoff
 - Lost 4 cluster mission spacecraft worth \$370 million
- Why?
 - Computed horizontal velocity as floating point number (64bit)
 - Converted to 16-bit integer
 - Careful analysis of Ariane 4 trajectory proved 16-bit is enough
 - Reused a module from 10-year-old software
 - Overflowed for Ariane 5
 - No precise specification for the S/W

ON 4 JUNE 1996, THE MAIDEN FLIGHT OF the Ariane 5 launcher exploded about 37 seconds after liftoff. Scientists with experiments on board that had taken years to prepare were devastated. For many software engineering researchers, however, the disaster is a case study rich in lessons. To begin learning from this disaster, we need look no further than a report on it issued by an independent inquiry board set up by the French and European Space Agencies.

VARIED VIEWS. Here are some of the interpretations of the report that I have heard.

♦ What the programmers said: The disaster is clearly the result of a programming error. An incorrectly handled software exception resulted from a data conversion of a 64-bit floating point to a 16-bit signed integer value. The value of the floating point number that was converted was larger than what could be represented by a 16-bit integer, resulting in an operand error not anticipated by the Ada code. Better programming practice would have prevented this failure from occurring.

Byte-Oriented Memory Organization

- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
 - An address is like an index into that array
 - and, a pointer variable stores an address
- Note: system provides private address spaces to each " process"
 - Think of a process as a program being executed
 - So, a program can clobber its own data, but not that of others

CSE3030 S'22

26

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - 32 bit OS supports 4 GBytes (2^30 x 4 x 1 byte)
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address
- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

long int C = 15213;

int B = -15213;

Two's complement representation