

Ch1.1 电压电流及电功率

杨旭强

哈尔滨工业大学电气工程及自动化学院

本章导言

本章内容包括三部分: 首先介绍常用电路变量即电流、电压的定义及电功率与能量的计算, 重点是建立参考方向的概念; 然后介绍电阻、电容、电感、独立电源和受控电源等电路元件, 重点是这些元件的端口方程。最后介绍基尔霍夫两个定律, 包括它们的基本陈述和推广。

- 1.1电压 电流与电功率
- 1.2电阻元件
- 1.3电容元件
- 1.4电感元件

- 1.5独立电源
- 1.6受控电源
- 1.7基尔霍夫定律

基本要求:熟练掌握电流、电压与电功率的定义、单位、方向表示和参考方向的概念。

1. 电流

1)定义

|荷电质点的有序运动形成电流。

设在时间段 Δt 内,通过某截面的电荷量的代数和为 Δq 则定义

$$i = \lim_{\Delta t \to 0} \frac{\Delta q}{\Delta t} = \frac{\mathrm{d}q}{\mathrm{d}t}$$
 单位:安培(A)

称为电流,其正方向规定为正电荷运动的方向。

2) 电流方向的表示方法:

参考方向: 为电路分析方便,任意假设的电流的方向

参考方向及真实方向的关系

i > 0表示参考方向真实方向与一致; i < 0 表示参考方向与真实方向相反。

- 注: 1、列写方程所用的均为参考方向;
 - 2、解题用的变量需在图中标出并指明参考方向
 - 3、参考方向标定后,直至解题完毕不能再改变

3) 电流的分类:

直流:i的量值和方向不随时间变化的电流称为直流(DC),用大写字母I表示

$$i = \frac{\mathrm{d}q}{\mathrm{d}t} = 常数$$

交流: i 随时间作周期性变化且平均值为零的电流称为交流(AC),用小写字母i 或 i(t)表示

2 电压、电位和电动势

电压定义示意图

定义:单位正电荷在电场力的作用下由a点移动到b点所做的功为a,b两点之间的电压,即

$$u = \frac{\mathrm{d}w}{\mathrm{d}q}$$
 单位:伏特(V)

电压的正方向:由高电位指向低电位电压参考方向的表示法:

2) 电位: 任选一点 p 作为参考点,电路中某点与 参考点之间的电压称为该点的电位,用 φ 表示。

电压与电位的关系:两点之间的电压等于这两点的电位之差。

例如在右图中,若选c点为参考点,则*a、b*两点的电位及其之间的电压分别为:

$$\varphi_{a} = u_{ac}$$

$$\varphi_{b} = u_{bc}$$

$$u_{ab} = \varphi_{a} - \varphi_{b}$$

3) 电动势:单位正电荷在力的作用下从低电位a点沿路线 l 移动到高电位b点,这些力所作的功称为从 a 到 b 沿路线 l 的电动势,即

简记为
$$e = \frac{\mathrm{d}w}{\mathrm{d}q}$$

电压、电位、电动势具有相同的单位: V

电动势的实际方向:从低电位指向高电位,因此它与电压的实际方向刚好相反。

- 注意: 1、电动势存在于电源或感应元件内部
 - 2、电动势是外力做功的结果。

4) 电功率[常简称功率(power)]是用以衡量电能转换或传输速率的物理量。

定义:微段时间 Δt 内所转换或传输的电能 Δw 与 Δt 之比,当后者趋于零时的极限,即:

$$p = \lim_{\Delta t \to 0} \frac{\Delta w}{\Delta t} = \frac{dw}{dt}$$

$$\mathbf{a} + \underbrace{u}_{\mathbf{b}} \mathbf{b}$$

关联参考方向下,结果为正值,则表明该电路实际上是吸收功率;若结果为负值,则是发出功率。

电荷 dq从a点移到b 点时电场力所做的 功即电路吸收的能 量

dw = udq = uidt

5) 功率与参考方向之间的关系

求吸收的功率 关联
$$p=ui$$

$$\begin{cases} p>0 \text{ 实际吸收} \\ p<0 \text{ 实际发出} \end{cases}$$

求发出的功率

非关
$$p=ui$$
 $\begin{cases} p>0 实际发出 \\ p<0 实际吸收 \end{cases}$

例1:

- 若(a)中的电压 u=-10V, i=2A, 求A 吸收的功率;
- 若(b)中的电压u=10V, i=2A, 求A吸收的功率。

解:

- (a) 中电压、电流取为关联参考方向,吸收 功率为 $p=ui=-10V\times 2A=-20W$
- (b) 中电压、电流取为非关联参考方向,吸收功率为 $p = -ui = -10V \times 2A = -20W$

6) 电能

在 t_0 到t的时间内,电路吸收(电压、电流为关联参考方向时)或发出(电压、电流为非关联参考方向时)的能量定义为

$$w(t) = \int_{t_0}^{t} p(\xi) d\xi = \int_{t_0}^{t} u(\xi) i(\xi) d\xi$$

单位: 焦耳(J)

与判断功率的吸收和发出一样,要同时依据计算结果和电流、电压的参考方向来判断一段电路实际上是发出电能还是吸收电能。

1.1 电压、电流与电功率-小结-1

本节核心要点是四个变量,两个概念

变量名	定义	符号	单位	正方向	方向表示
电流	$i = \frac{\mathrm{d}q}{\mathrm{d}t}$	i, I	A	正电荷移动方向	双下标 箭头
电压	$u = \frac{\mathrm{d}w}{\mathrm{d}q}$	u, U	V	高电位指向低电位	双下标 箭头 正负号
电功率	$p = \frac{\mathrm{d}w}{\mathrm{d}t} = ui$	p, P	W	吸收、发出	
能量 $w(t) =$	$\int_{t_0}^t p(\xi) \mathrm{d}\xi$	w E	J	消耗、提供	

1.1 电压、电流与电功率-小结-2

本节核心要点是四个变量,两个概念

- 1、参考方向;
- 2、关联参考方向。