Formal Languages and Automata Theory

March 2022 By Ashenafi C.

Chapter 1

Mathematical Preliminaries and Notation

Introduction

- An **automaton** is a construct that possesses all the indispensable features of a digital computer.
 - It accepts input, produces output, may have some temporary storage, and can make decisions in transforming the input into the output.
- A **formal language** is an abstraction of the general characteristics of programming languages.
 - It consists of a set of symbols and some rules of formation by which these symbols can be combined into entities called sentences.
 - It is the set of all sentences permitted by the rules of formation.

Sets

Definition 1. A set is a group of objects. The objects in a set are called the **elements**, or **members**, of the set.

Example 1

The set of positive integers less than 100 can be denoted as {1,2,3,...,99}.

Example 2

A set can also consists of seemingly **unrelated** elements:{a,2, Fred, New Jersey}.

Definition 2. Two sets are equal if and only if they have the **same** elements.

Example 3

Set $\{1,3,3,3,5,5,5,5\}$ is the same as set $\{1,3,5\}$.

• A set can be described by using a set builder notation.

Example 3

 $O = \{x \mid x \text{ is an odd positive integer less than } 10\}$

Example 4

```
N = \{x \mid \text{natural numbers}\} = \{0,1,2,3,...\}
Z = \{x \mid \text{integers}\} = \{...,-2,-1,0,1,...\}
Z = \{x \mid \text{positive integers}\} = \{1,2,3,...\}
R = \{x \mid \text{real numbers}\}
```

• A set can be described by using a Venn diagram.

Example 5

Draw a Venn diagram that presents V, the set of vowels in English alphabet.

• The set that has no elements is called **empty set**, denoted by ϕ .

Definition 3. The set A is said to be a **subset** of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

- $A \subseteq B$ if and only if $\forall x (x \in A \rightarrow x \in B)$
- For any set P, $\phi \subseteq P$ and $P \subseteq P$.
- If $A \subseteq B$ and $B \subseteq A$, then A = B.

Example 6 $\{\phi, \{a\}, \{b\}, \{a, b\}\} = \{x/x \text{ is a subset of the set } \{a, b\}\}.$

• If a set A is a subset of set B but that $A \neq B$, A is called to be a proper subset of B, denoted as $A \subset B$.

Definition 4. The power set of a set S is the set of all subsets of S, denoted by P(S) or 2^{S} .

Example 7

What is the power set of the set $S = \{0,1,2\}$?

Solution: $P(\{0,1,2\})$ (or 2^{S}) = $\{\phi,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}\}$.

• Set Operations:

Complement $A = \{x \mid x \in U \text{ and } x \notin A\}$, where set U is called "universal' that contains all the elements we might ever consider}

Union
$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

Intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Difference $A - B = \{x \mid x \in A \text{ and } x \notin B\}$

Example 8

 $\{1,3,5\} \cup \{1,2,3\} = \{1,2,3,5\}.$

 $\{1,3,5\} \cap \{1,2,3\} = \{1,3\}.$

 $\{1,3,5\}-\{1,2,3\}=\{5\}.$

Example 9

Let $A = \{a,e,i,o,u\}$ and the universal set is the set of the letters of the English alphabet. Then $\overline{A} = \{b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,w,x,y,z\}$.

• Set Identities

Table 1 Set Identities	
Identity	Name
$A \cup \phi = A$	Identity laws
$A \cap U = A$	
$A \bigcup U = U$	Domination laws
$A \cap \phi = \phi$	Domination laws
$A \cup A = A$	Idempotent laws
$A \cap A = A$	ruempotent laws
$\overline{(\overline{A})} = A$	Complementation laws
$A \cup B = B \cup A$	Commutative laws
$A \cap B = B \cap A$	
$A \cup (B \cup C) = (A \cup B) \cup C$	Associative laws
$A \cap (B \cap C) = (A \cap B) \cap C$	
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributivo lovos
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	Do Morgan's lovy
$\overline{A \cap B} = \overline{A} \bigcup \overline{B}$	De Morgan's law

• Cartisian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a,b), where $a \in A$ and $b \in B$. Hence, $A \times B = \{(a,b) | a \in A \land b \in B\}$.

Example 10

Let
$$A = \{1,2\}$$
 and $B = \{a,b,c\}$.
 $A \times B = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)\}$
 $B \times A = \{(a,1),(a,2),(b,1),(b,2),(c,1),(c,2)\}$
 $A \times B \neq B \times A$

Functions and Relations

Definition 1. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a)=b if b is the unique element of B assigned by the function f to the element A of A. If A is a function from A to B, we write $f: A \longrightarrow B$.

Let set A={Adams, Chou, Goodfriend, Rodriguez, Stevens} and B={A,B,C,D,F}.

Let G be the function that assigns a grade to a student in our theory of computation.

Stevens

The domain of G is the set A={Adams, Chou, Goodfriend, Rodriguez, Stevens}, and the range of G is the set {A,B,C,F}.

• Considering the function whose **domain** and **range** are in the set of integers. We are often interested only in the behavior of these functions as their arguments become very large.

Definition 2

Let f(n) and g(n) be functions whose domain is a subset of the positive integers.

- (1) If there exists a positive constant c such that for all n if $|f(n)| \le c/g(n)|$, we say that f has order at most g, denoted as f(n) = O(g(n)), if $|f(n)| \ge c/g(n)|$, then f has order at least g, denoted as $f(n) = \Omega(g(n))$
- (2) If there exist constants c_1 and c_2 , such that $c_1/g(n) \le |f(n)| \le c_2 |g(n)|$, f and g have the same order of magnitude, denoted as $f(n) = \Theta(g(n))$.

Example 2

Let
$$f(n) = 2n^2 + 3n$$
, $g(n) = n^3$, $h(n) = 10n^2 + 100$
Then $f(n) = O(g(n))$, $g(n) = \Omega(h(n))$, $f(n) = \Theta(n)$

Definition 3

Let A and B be the sets. A relation R from A to B is a subset of $A \times B$.

From the definition, relation R is a set of pairs.

If $(a,b) \in R$, we say a has a relation R with b, denoted as aRb.

• Functions can be considered as relations, but relations are more general than functions.

Example 3

Let $A = \{1,2,3,4\}$. $R = \{(1,2), (2,3), (3,1), (4,4)\}$ is a relation from A to A, and it is also a function from A to A.

Example 4

 $R = \{(1,2), (2,3), (1,3), (1,4)\}$ is a relation but **not** a function.

Example 5

• Let A be the set of students in the AASTU. Let B the set of courses. The set R that consists of those pairs (a,b), where a is a student enrolled in course b, is a relation from A to B.

Definition 4

R is an equivalence relation if for any pair (x,y) of R

xRx for all x (reflexivity)

If xRy then yRx (symmetry)

If xRy and yRz, then xRz. (transitivity)

We usually use \equiv to denote equivalence relation.

Example 6

Let *I* be the integer set and let *R* be a relation from I to I,

where $(x,y) \in R$ if and only if $x \mod 3 = y \mod 3$.

Then 2R5, 12R0, and 0R36.

It is an equivalence relation, as it satisfies reflexity, symmetry, and transitivity.

Example 7

'=' on the set of integers is an equivalence relation.

Graphs and Trees

Definition1

A graph is a construct consisting of two sets, denoted as G = (V, E), where $V = \{v_1, v_2, ..., v_n\}$ is a set of vertices and $E = \{e_1, e_2, ..., e_m\}$ is a set of edges. Each edge is a pair from V.

Example 1

A directed graph (digraph)

Example 2

An undirected graph

Definition 2

- (1) A sequence of edges $(v_i, v_j), (v_j, v_k), \dots, (v_m, v_n)$ is a <u>walk.</u>
- (2) The <u>length</u> of a walk is the total number of edges traversed in going from the intial vertex to the final one.
- (3) A walk with no repeated is said to be a *path*.
- (4) A path is *simple* if no vertex is repeated.
- (5) A walk from v_i to itself with no repeated edges is called as a <u>cycle</u> with base v_i .
- (6) An edge from a vertex to itself is called a *loop*.

walk: (v1,v2), (v2,v9), (v9,v7), (v7,v2), (v2,v9)

path: (v1,v2),(v2,v9),(v9,v7),(v7,v2)

cycle:(v2,v9),(v9,v7),(v7,v2)

loop:(v3,v3)

Definition 3

A *tree* is a directed graph that has no cycles. There is a one distinct vertex in tree, called the *root*.

A Proof Technique - Mathematical Induction

Definition1

Mathematical induction is a mathod we use to prove a sequence of statements

 P_1, P_2, \dots to be true.

- (i) <u>Basis</u>: Proving that for some k = 1, P_1 is true.
- (ii) <u>Inductive Assumption</u>: Supposing for any $n \ge k$, P_n is true.
- (iii) Inductive Step: Proving that P_{n+1} is true.

Example 1

A binary tree (no parent has more than two chidren) of height n has at most 2ⁿ leaves.

 $\widehat{\text{Proof}}$) We use l(n) to denote the maximum number of leaves in a binary tree of height n.

Basis: Clealy $l(0) = 1 = 2^0$.

Inductive Assumption : $l(i) \le 2^i$, for i = 0,1,...,n.

Inductive Step: To get a binary tree of height n+1 from one of height n, we can create, at most, two leaves in place of each previous one.

Therefore, l(n+1) = 2l(n).

Using the inductive assumption, we get $l(n+1) \le 2 \times l(n) = 2^{n+1}$.

Example 2

Show that
$$S_n = \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$
.

Proof)

Basis:
$$S_1 = \sum_{i=0}^{1} i = 1 = \frac{1(1+1)}{2}$$

Inductive Assumption: Assuming that $S_n = \sum_{i=0}^n i = \frac{n(n+1)}{2}$ for all $n \ge 1$.

Inductive Step:
$$S_{n+1} = \sum_{i=0}^{n+1} i = S_n + n + 1 = \frac{n(n+1)}{2} + n + 1 = \frac{(n+1)(n+2)}{2}$$
.

- Alphabet: Finite, nonempty set of symbols
 - Examples:
 - $\Sigma = \{0, 1\}$: binary alphabet
 - $\Sigma = \{a, b, c, ..., z\}$: the set of all lower case letters
 - The set of all ASCII characters

- **String**: Finite sequence of symbols from an alphabet Σ
 - Examples:
 - 01101 where $\Sigma = \{0, 1\}$
 - abracadabra where $\Sigma = \{a, b, c, ..., z\}$

- Empty String: The string with zero occurrences of symbols from Σ and is denoted ε or λ
- Length of String: Number of symbols in the string
 - The length of a string w is usually written |w|
 - -|1010|=4
 - $|\mathbf{z}| = 0$
 - -|uv| = |u| + |v|
- Reverse : w^R
 - If w = abc, $w^R = cba$

• Concatenation: if x and y are strings, then xy is the string obtained by placing a copy of y immediately after a copy of x

$$-x = a_1 a_2 \dots a_i, y = b_1 b_2 \dots b_j$$

$$-xy = a_1 a_2 \dots a_i b_1 b_2 \dots b_j$$

- Example:
$$x = 01101$$
, $y = 110$, $xy = 01101110$

$$-x\varepsilon = \varepsilon x = x$$

- Power of an Alphabet: Σ^k = the set of strings of length k with symbols from Σ
 - Example: $\Sigma = \{0, 1\}$
 - $\square \Sigma^1 = \Sigma = \{0, 1\}$
 - $\square \Sigma^2 = \{00, 01, 10, 11\}$
 - $\square \Sigma^0 = \{\epsilon\}$
- Question: How many strings are there in Σ^3 ?
- The set of all strings over Σ is denoted Σ^*
 - $\square \Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \dots$
- Also
 - $\square \Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \dots$
 - $\square \Sigma^* = \Sigma^+ \cup \{\varepsilon\}$
 - $\square \Sigma^{+} = \Sigma^{*} \{\varepsilon\}$

- **Substring**: any string of consecutive characters in some string w
 - If w = abc
 - \square ε , a, ab, abc are substrings of w
- Prefix and suffix:
 - -ifw = vu
 - v is a prefix of w
 - u is a suffix of w
 - Example
 - If w = abc
 - a, ab, abc are prefixes of w
 - c, bc, abc are suffixes of w

- Suppose: S is the string banana
 - Prefix : ban, banana
 - Suffix : ana, banana
 - Substring: nan, ban, ana, banana

- Language: set of strings chosen from some alphabet.
- A language is a subset of Σ^*
 - Example of languages:
 - The set of valid Arabic words
 - The set of strings consisting of n **0**'s followed by n **1**'s $-\{\varepsilon, 01, 0011, 000111, ...\}$
 - The set of strings with equal number of 0's and 1's
 {ε, 01, 10, 0011, 0101, 1010, 1001, 1100, ...}
- Empty language: $\emptyset = \{ \}$
- The language $\{\epsilon\}$ consisting of the empty string.
- Note: $\emptyset \neq \{\epsilon\}$

Can concatenate languages

$$- L_1 L_2 = \{ xy \mid x \in L_1, y \in L_2 \}$$

 $-L^n = L$ concatenated with itself *n* times

$$-L^{0} = \{\epsilon\}; L^{1} = L$$

• Star-closure

$$-L^* = L^0 \cup L^1 \cup L^2 \cup ...$$

$$-L^{+}=L^{*}-L^{0}$$

• Languages can be finite or infinite

$$- L = \{a, aba, bba\}$$

$$- L = \{a^n \mid n > 0\}$$

OPERATION	DEFINITION
$union$ of L and M written L \cup M	$L \cup M = \{s \mid s \text{ is in } L \text{ or } s \text{ is in } M\}$
concatenation of L and M written LM	$LM = \{ st \mid s \text{ is in } L \text{ and } t \text{ is in } M \}$
Kleene closure of L written L*	$\mathbf{L^*} = \cup \mathbf{L^i}$, $\mathbf{i} = 0,,\infty$
	L* denotes "zero or more concatenations of " L
positive closure of L written L ⁺	$\mathbf{L}^{+} = \cup \mathbf{L}^{i}, i=1,,\infty$
	L ⁺ denotes "one or more concatenations of " L
	$\mathbf{L}^{+} = \mathbf{L}\mathbf{L}^{*}$

$$L = \{A, B, ..., Z, a, b, ...z\}$$
 $D = \{1, 2, ..., 9\}$

- $L \cup D$ = the set of letters and digits
- LD = all strings consisting of a letter followed by a digit
- L^2 = the set of all two-letter strings
- $L^4 = L^2$ L^2 = the set of all four-letter strings
- $L^* = \{ \text{ All possible strings of } L \text{ plus } \epsilon \}, L^+ = L^* \epsilon$
- D^+ = set of strings of one or more digits
- $L(L \cup D)$ = set of all strings consisting of a letter followed by a a letter or a digit
- $L(L \cup D)^* = \text{set of all strings consisting of letters and digits}$ beginning with a letter

• The language L consists of strings over {a,b} in which each string begins with a should have an even length.

- -aa, $ab \in L$
- aaaa,aaab,aaba,aabb,abaa,abab,abba,abbb ∈ L

- baa ∉ L
- $-a \notin L$

- The language L consists of strings over {a,b} in which each occurring of b is immediately preceded by an a.
 - $-\varepsilon \in L$
 - $-a \in L$
 - $-abaab \in L$

- $-bb \notin L$
- bab ∉ L
- abb ∉ L

- Let $X = \{a,b,c\}$ and $Y = \{abb, ba\}$. Then
 - $-XY = \{aabb, babb, cabb, aba, bba, cba\}$
 - $-X^0 = \{\varepsilon\}$
 - $X^1 = X = \{a,b,c\}$
 - $X^2 = XX =$
 - {aa,ab,ac,ba,bb,bc,ca,cb,cc}
 - $X^3 = XXX =$
 - {aaa,aab,aac,aba,abc,aca,acb,acc,baa,bab,bac,bba,bbb,bbc,bca,bcb,bcc,caa,cab,cac,cba,cbb,cbc,cca,ccb,ccc}

- The language $L = \{a,b\}^* \{bb\} \{a,b\}^* = \Sigma^* \{bb\} \Sigma^*$ consists of the strings over $\{a,b\}$ that contain the substring **bb**.
 - $-bb \in L$
 - $-abb \in L$
 - $-bbb \in L$
 - $aabb \in L$
 - $-bbaaa \in L$
 - bbabba $\in L$
 - abab ∉ L
 - bab ∉ L
 - $-b \notin L$

- Let L be the language that consists of all strings that begin with aa or end with bb
 - $L_1 = \{aa\}\{a,b\}^*$
 - $L_2 = \{a,b\}^* \{bb\}$
 - $-L = L_1 \cup L_2 = \{aa\}\{a,b\}^* \cup \{a,b\}^*\{bb\}$
 - $-bb \in L$
 - $-abb \in L$
 - $-bbb \in L$
 - $aabb \in L$
 - bbaaa ∉ L
 - babba ∉ L
 - abab ∉ L
 - bab ∉ L
 - ba ∉ L

- Let $L_1 = \{bb\}$ and $L_2 = \{\epsilon, bb, bbb\}$ over **b**
- The languages L_1^* and L_2^* both contain precisely the strings consisting of an even number of **b**'s.
- ϵ , with length zero, is an element of L_1^* and L_2^*

Strings and Languages ... Exercise

 What is the language of all even-length strings over {a,b}?

```
– <u>Answer</u>
```

```
\Box L = {aa, bb, ab, ba}* = (aa|bb|ab|ba)*
```

 What is the language of all odd-length strings over {a,b}?

– Answer

```
\Box L = {a,b}* - {aa, bb, ab, ba}*or
```

$$\Box$$
 L = {a,b}{aa, bb, ab, ba}* or

$$\Box$$
 L = {aa, bb, ab, ba}* {a,b}

Grammars

Let us see a grammar for English. Typically, we are told "a sentence can

Consist of a noun phrase followed by a predicate". We can write this grammar as follows: $\langle sentence \rangle$ $\rightarrow \langle noun_phrase \rangle \langle predicate \rangle$ Furthermore, we have $\langle noun_phrase \rangle \rightarrow \langle article \rangle \langle noun \rangle$, $\rightarrow \langle predicate \rangle \rightarrow \langle verb \rangle$ $\langle predicate \rangle \rightarrow \langle verb \rangle$ terminal symbols

From this grammar, we can produce the sentence like "a boy runs".

Definition1

A grammar G is defined as a quadruple

$$G = (V, T, S, P),$$

where V is a finite set of objects called <u>variables</u>,

T is a finite set of objects called terminal symbols,

 $S \in V$ is a special symbol called the start variable,

P is a finite set of productions.

We assume V and T are nonempty and disjoint

Grammars...

Production rules are the heart of a grammar. We let them be of the form $x \to y$, where $x \in (V \cup T)^+$ and $y \in (V \cup T)^*$.

From a string w = uxv and a production rule $x \to y$ we can obtain a new string z = uyv. This is said that w derives z, denoted as $w \Rightarrow z$.

If $w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow w_n$, we say that w_1 derives w_n and write as $w_1 \stackrel{*}{\Rightarrow} w_n$.

The * means that an unspecified number of steps (including zero). Therefore, $w \stackrel{*}{\Rightarrow} w$.

Definition 1.2

Let G = (V, T, S, P) be a grammer. Then the set

$$L(G) = \{ w \in T^* : S \stackrel{*}{\Longrightarrow} w \}$$

is the language generated by G.

If $w \in L(G)$, then the sequence

$$S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow w_n \Rightarrow w$$

is a derivation of the sentence w.

Example 1

Consider the grammar

$$G = (\{S\}, \{a,b\}, S, P),$$

with P given by

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$
..

We have $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$, that is $S \stackrel{*}{\Rightarrow} aabb$.

Thus, aabb is a sentence in L(G).

We can prove that $L(G) = \{a^n b^n : n \ge 0\}$.

Proof:

Whenever we generate sentences we use

 $S \to aSb$ $n (n \ge 0)$ times and then use $S \to \lambda$ once.

It means that G generates and only generates

the sentence $a^n b^n (n \ge 0)$.

Example 2

Find a grammar that generates

$$L = \{a^n b^{n+1}: n \ge 0\}.$$

Solution:

The idea of example 1 can be used here. All we need to do is generate an extra b.

This can be done by a production rule $S \to Ab$, and let A derive the language in example 1.

Therefore, we have

$$G = \{ \{S, A\}, \{a, b\}, S, P \}, \text{ where } P \text{ consists of } \}$$

$$S \rightarrow Ab$$
,

$$A \rightarrow aAb$$
,

$$A \rightarrow \lambda$$
.

A given language may have many grammars that generate it.

We say that two grammars G_1 and G_2 are equivalent if $L(G_1) = L(G_2)$.

Automata

An automaton is an abstract model of a digital computer.

- Deterministic automata: each move is uniquely determined.
 - Nondeterministic automata: the moves are not uniquely determined.
- An automata is called an accepter if its output response is limited to "yes" or "no".
- An automata is called a transducer if it is capable of producing strings of symbols as output.

Applications

- Compiler design
- Pattern matching

• Example:

The rules for variable identifiers in C are

- 1. An identifier is a sequence of letters, digits, and underscores.
- 2. An identifier must start with a letter or an underscore.
- 3. Identifiers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

```
< id> \rightarrow < letter> < rest> |< undrscr> < rest> |< < rest> \rightarrow < letter> < rest> |< digit> < rest> |< undrscr> < rest> |\lambda | \lambda | \lambda
```