GENERAL DYNAMICS FORT WORTH TEX CONVAIR AEROSPACE DIV F/6 17/9 ENDO ATMOSPHERIC EXO ATMOSPHERIC RADAR MODELING. RADAR CROSS SE--ETC(U) JUN 76 R J HANCOCK, F H CLEVELAND F30602-73-C-0380 AD-A031 440 F30602-73-C-0380 UNCLASSIFIED RADC-TR-76-186-VOL-4-PT-2 1 OF44 AD A031440

RADC-TR-76-186, Vol IV, Pt 2 Final Technical Report June 1976

ENDO ATMOSPHERIC-EXO ATMOSPHERIC RADAR MODELING (Appendix)

General Dynamics

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

Approved for public release; distribution unlimited.

Laboratory Directors' Fund Number 01707310 with Proj. 6512 funds added.

ROME AIR DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
GRIFFISS AIR FORCE BASE, NEW YORK 13441

DDC NOV 2 1976

This report has been reviewed by the RADC Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

APPROVED: John C. Cleary JOHN C. CLEARY Project Engineer

APPROVED: Moses a. Deal

MOSES A. DIAB

Acting Technical Director Surveillance Division

OC Buff Section UNIFICATION DISTRIBUTION/AVAILABILITY CODES DIST. AVAIL. and/or Special	15		
DE MARHOUNCED USTIFICATION. BY DISTRIBUTION/AVAILABILITY CODES			D
NAKIROUNGED USTIFICATION. BY DISTRIBUTION/AVAILABILITY CODES		Bull Section	THE STATE OF
T DISTRIBUTION/AVAILABILITY CODES			-
DISTRIBUTION AVAILABILITY CODES			nnce
Diet. AVAIL and/or SPECIAL	DISTRIBUTION	AVAILABILITY C	UUES
	Diel.	AVAIL and/or SP	LCIM

FOR THE COMMANDER:

JOHN P. HUSS

Acting Chief, Plans Office

Initially funded under RADC Laboratory Directors' Funds with Proj. 6512 funds added.

Do not return this copy; retain or destroy.

1977R-76-186-Vol-4-Pt-2

UNCLASSIFIED

SECURITY CLASS'FICATION OF THIS PAGE (When Date Entered)

1. REPORT NUMBER 2. GOVT ACCESSION !	BEFORE COMPLETING FORM
RADC-TR-76-186, Vol IV, Pt 2	NO. 3 PECIO'ENT'S CATALOG NUMBER
TITLE (end Subtitle)	THE OF REPORT & PERIOD COVER
RNDO ATMOSPHERIC-EXO ATMOSPHERIC RADAR MODELING RADAR Cross Section Modeling	Final Technical Report
(Appendix L.)	/ N/A
Robert J. Hancock	F30602-73-C-0380
Fred H. Cleveland	
PERFORMING ORGANIZATION NAME AND ADDRESS General Dynamics	10. PROGRAM ELEMENT, PROJECT, TAS
Convair Aerospace Division	61101F
P 0 Box 748, Ft Worth TX 76101	LDF 01707310
1. CONTROLLING OFFICE NAME AND ADDRESS	June 1976
Rome Air Development Center (OCSA)	13. NUMBER OF PAGES
Griffiss AFB NY 13441	418 (2) 3120
4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office Same	UNCLASSIFIED
	154. DECLASSIFICATION/DOWNGRADING
Approved for public release; distribution unlim	ited.
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different	
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different Same	
7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different Same	
7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different Same	from Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: John C. Cleary (OCSA) Initially funded under RADC Laboratory Directors added.	* Funds with Proj. 6512 funds
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: John C. Cleary (OCSA) Initially funded under RADC Laboratory Directors added.	* Funds with Proj. 6512 funds
Same 8. SUPPLEMENTARY NOTES RADC Project Engineer: John C. Cleary (OCSA) Initially funded under RADC Laboratory Directors added. 9. KEY WORDS (Continue on reverse side if necessary and identify by block numbers Radar Simulation	* Funds with Proj. 6512 funds
Same 8. SUPPLEMENTARY NOTES RADC Project Engineer: John C. Cleary (OCSA) Initially funded under RADC Laboratory Directors added. 9. KEY WORDS (Continue on reverse side if necessary and identify by block numbers) Radar	* Funds with Proj. 6512 funds
Same 8. SUPPLEMENTARY NOTES RADC Project Engineer: John C. Cleary (OCSA) Initially funded under RADC Laboratory Directors added. 9. KEY WORDS (Continue on reverse side if necessary and identify by block numbers Radar Simulation	* Funds with Proj. 6512 funds
Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: John C. Cleary (OCSA) Initially funded under RADC Laboratory Directors added. 9. KEY WORDS (Continue on reverse side if necessary and identify by block numbers adder to the computer Modeling.) O. ABSTRACT (Continue on reverse side if necessary and identify by block numbers.)	from Report) Funds with Proj. 6512 funds ber)
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different Same 8. SUPPLEMENTARY NOTES RADC Project Engineer: John C. Cleary (OCSA) Initially funded under RADC Laboratory Directors added. 9. KEY WORDS (Continue on reverse side if necessary and identify by block numbers adder Simulation Computer Modeling 0. ABSTRACT (Continue on reverse side if necessary and identify by block numbers and identify by b	from Report) Funds with Proj. 6512 funds or) d implementation of a set of DC digital computer radar six 393 (01707201). The computer
Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: John C. Cleary (OCSA) Initially funded under RADC Laboratory Directors added. 9. KEY WORDS (Continue on reverse side if necessary and identify by block numbers addered) Computer Modeling 10. ABSTRACT (Continue on reverse side if necessary and identify by block numbers added) This effort is concerned with the development an gital computer programs that will augment the RA	from Report) Funds with Proj. 6512 funds for) d implementation of a set of DC digital computer radar sin 393 (01707201). The computer nes that correspond to separa propagation effects and clutters.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

bod

300

ceiver techniques. In addition, an interactive system has been designed for the simulation. Using an interactive display, an engineer would be able to understand what is happening by being able to observe results at several intermediate points in the problem. A picture is worth a thousand words. For example, an antenna pattern or waveform response to a target is more meaningful than a long table of numerical listings. Parts of the simulation were used by RADC for Deep Space Surveillance Radar (DSSR) waveform analysis, generating antenna patterns and tradeoffs involving phase shifter bit-size for the Advanced Space Defense Program (ASDP). The RADC radar simulation model is being used to support Seek Sail, Cobra Judy, Digital Coded Radar and Seek Sentry.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

This report contains a large percentage of machine-produced copy which is not of the highest printing quality but because of economical consideration, it was determined in the best interest of the government that they be used in this publication.

This report contains Vol I, Pt 1 (Sections 1-7 and 9-10) (Pages 1-1 thru 1-5, 2-1 thru 2-24, 3-1 thru 3-35, 4-1 thru 4-23, 5-1 thru 5-6, 6-1 thru 6-39, 7-1 thru 7-30, 9-1 thru 9-3 and 10-1 thru 10-2).

Vol I, Pt 2 contains Section 8 (Pages 8-1 thru 8-174).

Vol I, Pt 3 contains Section 8 (Pages 8-175 thru 8-418).

Vol II, Pt 1 contains(Sections 1-8 and 10 & 11) (Pages 1-1, 2-1 thru 2-24, 3-1 thru 3-15, 4-1 thru 4-137, 5-1 thru 5-16, 6-1 thru 6-44, 7-1, 8-1 thru 8-26, 10-1 thru 10-4 and 11-1 thru 11-2).

Vol II, Pt 2 contains Sections 9 and 10 (Pages 9-1 thru 9-234 and Pages 10-1 thru 10-4).

Vol III contains Sections 1 thru 6 (Pages 1-1 thru 1-2, 2-1 thru 2-22, 3-1 thru 3-53, 4-1 thru 4-141, 5-1 thru 5-3 and 6-1).

Vol IV, Pt 1 contains Appendices A-K and Appendix M.

Vol IV, Pt 2 contains Appendix L.

MANAGE A CHARLES

TABLE OF CONTENTS

APPENDIX			TITLE	PAGE
	LIST	OF FIG	CURES	v
L		R CROSS	S SECTION ANALYTIC MODEL	L-1
	L.1	Cylind (RADCA	ler With Spheroidal Caps T)	L-1a
			Outputs	L-1a L-3
			Restrictions Definition of Key Terms Used in Subroutine	L-4
	L.2	Hemisp	ohere Cylinder	L-9
		L.2.4		L-10 L-10 L-12 L-12 L-13
	L.3		Cylinder or Frustrum	L-24
		L.3.1 L.3.2 L.3.3 L.3.4	Inputs Outputs Restrictions	L-27 L-28 L-28 L-29 L-30
	L.4	Thin W	lire	L-50
			Restrictions Definition of Selected Terms Used in Subroutine	L-52 L-53 L-53 L-53 L-54
	1. 5	Frustr	um - Cylinder - Frustrum	L-70

APPENDIX			TITLE	PAGE
		L.5.1	Inputs	L-75
		L.5.2	Outputs	L-76
		L.5.3	Restrictions	L-76
		L.5.4	Definition of Selected Terms Used in Subroutine	L-77
		L.5.5		L-78
	L.6	Cylind	er - Frustrum Combination	L-97
		L.6.1	Inputs	L-103
		L.6.2		L-104
		L.6.3	Restrictions	L-104
		L.6.4		
			Used in Subroutine	L-105
		L.6.5	Subroutines Used	L-106
	L.7	Steppe	d Cylinder	L-126
		L.7.1	Inputs	L-131
		L.7.2		L-132
		L.7.3	Restrictions	L-132
		L.7.4	Definition of Selected Terms	
			Used in Subroutine	L-133
		L.7.5	Subroutines Used	L-134
	18	Refere	nces	L-150

and the same

LIST OF FIGURES

NUMBER	TITLE	PAGE
L.1-1	RADCAT Target Geometry	L-2
L.2-1	Hemisphere-Cylinder Target Geometry	L-11
L.3-1	Cone, Cylinder or Frustrum Scattering Geometry	L-26
L.4-1	Geometry of a Thin Wire and Ray Components of the Scattered Returns	L-51
L.5-1	Geometry of Frustrum - Cylinder - Frustrum	L-71
L.6-1	Geometry of Cylinder - Frustrum Combination	L-98
L.7-1	Geometry of Stepped - Cylinder	L-12

APPENDIX L

RADAR CROSS SECTION

ANALYTIC MODEL DESCRIPTIONS

The FORTRAN IV computer listings for each of the radar cross section models are located at the end of each of the appropriate sections L.1 through L.7. Although the programs have not been integrated into the Radar Simulation Model, they can be easily made to interface with RADSIM. In the interim they can be run as independent FORTRAN subroutines, which are stored on disc file on the RADC HIS-635 computer under USERID-CLEARY and account number 017073100380 in the following files:*

SECTION	NAME	SUB-FILE	LINES
L.1	Cylinder with Spheroidal Caps	RCSM3	10760, 11430
L.2	Hemisphere-Cylinder	RCSM3	11440, 13680
L.3	Cone, Cylinder or Frustrum	RCSM3	13690, 17460
L.4	Thin Wire	RCSM1	50, 3120
L.5	Frustrum-Cylinder-Frustrum	RCSM1	3130, 7580
L.6	Cylinder-Frustrum Combination	RCSM1	7590, 12170
L.7	Stepped Cylinder	RCSM2	50, 3710

The outputs for all programs consist of four linear arrays - EVVR, EVVI, EHHR and EHHI - which contain the real and imaginary parts of the vertically and horizontally polarized back scattered fields as a function of frequency. The fields are computed at discrete frequency increments (DF) in megahertz, between user defined limits. The low and high frequency limits are equal to (NMIN-1)*DF & (NMAX-1)*DF respectively, where NMIN and NMAX are dimensionless indices. The magnitudes of the arrays - EVVR, EVVI, EHHR and EHHI - have been scaled in order that the target cross section (in square meters) can be obtained from the sum of the squares of the corresponding real and imaginary values of the array.

^{*} A typical use of SUBROUTINE TARGET is shown in Volume I, Part 3, Section 8.24. All subroutines in this appendix can be run using this same FORTRAN program, labelled RCSSP.

L.1 CYLINDER WITH SPHEROIDAL CAPS (RADCAT)

The far-field scattering from the RADCAT vehicle, a large cylinder with spheroidal end caps, has been formulated using an expression involving a physical optics approximation of the backscattering from a cylindrical section and a geometrical optics approximation to the scattering from a spheroid (Ref 1). The resulting expression of the scattering field is the following:

$$e(\theta) = \int \sqrt{ka\sin\theta} \left\{ \frac{\sin(kl\cos\theta)}{kl\cos\theta} \right\} e^{-i(2ka\sin\theta + \pi/4)}$$

$$+ \left\{ \frac{\sqrt{\pi a^2 c}}{a^2 \sin^2 \theta + c^2 \cos^2 \theta} \right\} e^{-i2k(\frac{\ell}{2}\cos \theta + \sqrt{a^2 \sin^2 \theta + c^2 \cos^2 \theta})}$$

where the physical dimensions of the target and target geometry are shown in Figure L.1-1 and $k = wave number = 2\pi/\lambda$.

The computer program subroutine is used to compute the field backscattered from the target for the case of vertical and horizontal polarizations with respect to the target rotational plane (defined by the target axis of symmetry and the radar line of sight). It should be noted that for the case of this particular target, the formulation of the scattered field is polarized insensitive. The inputs, outputs, restrictions, and definition of key terms of this subroutine are presented in the following paragraphs.

L.1.1 Inputs

The subroutine inputs are read from cards or passed in a common block. The used inputs passed in the common block are the following:

- FC = Carrier Frequency in GHz, not necessarily the
 mid frequency
- DF = Frequency increment in MHz

Fig. L.1-1 RADCAT TARGET GEOMETRY

NMIN = Minimum frequency index, i.e. $f_{min} = DF*(NMIN-1)$

 $NMAX = Maximum frequency index, i.e. f_{max} = DF*(NMAX-1)$

The inputs which are read from a card are the following:

	MATH SYMBOL	VARIABLE	DEFINITION	COLUMNS
Card 1	а	XA	Radius of cylindri- cal section (feet)	1-6
	c	XC	Depth of Spheroidal Cap (feet)	7-12
	1	XL	Length of cylindri- section (feet)	13-18
	θ	THETA	Azimuth angle (degrees)	19-24

L.1.2 Outputs

The outputs consist of four linear arrays EVVR, EVVI, EHHR, EHHI which contain the real and imaginary parts of the vertically and horizontally polarized back scattered fields (in meters) at frequency increments of DF between DF*(NMIN-1) and DF*(NMAX-1). The bandwidth of the output then equals DF*(NMAX-NMIN).

L.1.3 Restrictions

L.1.3.1 Physical Dimensions

As high-frequency approximations were utilized, all physical target dimensions should be large with respect to the wavelength of the illuminating field. Thus, XA, XC, and XL should be larger than the wavelength of the smallest frequency at which a computation is obtained. The condition XC < XA is also implied in the formulation of the problem.*

L.1.3.2 Output

The output arrays are passed in the argument list and a value is computed only for array locations from NMIN to NMAX.

^{*}Also, $1 \le NMIN \le NMAX \le 512$.

L.1.3.3 Azimuth

The azimuth angle is restricted to the region between 0 and 90 degrees.

L.1.4 Definition of Key Terms Used in Subroutine

TERM 7 =
$$\left\{ \frac{\sqrt{\pi} a^2 c}{a^2 \sin^2 \theta + c^2 \cos^2 \theta} \right\}$$

TERM 2 =
$$l\sqrt{\text{kasin}\theta}$$

TERM 4 =
$$\frac{\sin(k \ell \cos \theta)}{k \ell \cos \theta}$$

TERM
$$5 = (2kasin\theta + \Pi/4)$$

TERM 8 =
$$2k(\frac{1}{2}\cos\theta + \sqrt{a^2\sin^2\theta + c^2\cos^2\theta})$$

```
BECAGU01, HANCOKC, 017073100380, DSTOR2
         IDENT
  4
         OPTION
                 FORTRAN
  $
                  LSTIN, KREF, MAP, DECK
         FORTY
  $
         LIMITS 05,19K,0,5K
  #
        SUBROUTINE TARGET (EVVR, EVVI, EHHR, EHHI)
        * * TARGET ST-1, RADCAT, PHYSICAL OFFICS APPROXIMATION * *
        COMMON MOVER, M. NMIN, NMAX, DF, FC, PW, TO
        NMIN = MINIMUM FREQUENCY SAMPLE
        NMAX = MAXIMUM FREQUENCY SAMPLE
             = FREQUENCY INCREMENT IN MHZ
            = CHRETER FREQUENCY IN GHZ
        DIMENSION EVVR(512), EVVI(512), EHHR(512), EHHI(512)
        * * BLL DIMENSIONS ARE IN FEET * *
   READ (5, 1000) XA, XC, XL, THETA
1000 FORMAT (456.2)
          = .9835703
        PI = 3.141593
        KC = 2.0 * FI * FC
         HET = ANGLE IN RADIANS CONVERTED FROM INPUT ANGLE IN DEGREES
        THET = THETH * C
STHT = SIN(THET)
CTHT = COSCTHET)
              = THETR * (P) / 180.0)
        SETHT = STHT * STHT
        CSTHT = CTHT * CTHT
        TERM6 = (XA * XA * SSTHT) + (XC * XC * CSTHT)
        TERM = XA + XA + XC + SORT(PI)
        TERM? = TERM / TERMS
        DO 100 I=NMIN: NMAX
        X = (I-1)
        W = 12.0 * PI * N * DF) / 1000.0
        NK0 = N / C
        TERM1 = XK0 * XR * STHT
        TERMS = ML + SORT(TERM1)
        COMPUTE K+L SIN(THET), TEST, AND COMPUTE SIN(X)/X WHERE
                 X = K+L+SIN(THET)
        TERMS = MK8 + ML + CTHI
        IF (TERM3 . LE 1 0E-9) GO TO 10
        TERM4 = (SINCTERM3)) / TERM3
        GO TO 28
     10 TERM4 = 1.8
        COMPUTE PHASE TERM FOR CYLINDER(TERMS) AND SPHEROID(TERMS)
     20 TERM5 = (2 0 * TERM1) + (PI / 4.0)
TERM8 = TERM3 + (2.0 * XK0 * SQRT(TERM6))
        COMPUTE REAL AND IMAGINARY PARTS OF CYLINDRICAL (FIRSTR, FIRSTI)
  C
                AND OBLATE SPHEROIDAL (SECNDR, SECNDI) RETURNS
        FIRSTR = TERM2 * TERM4 * COS(TERM5)
        FIRSTI = TERM2 * TERM4 * SIN(TERMS)
        SECNOR = TERM? * COS(TERM8)
        SECNDI = TERM? * SIN(TERM8)
76
     16 08
```

C

45

A TOWN

```
EVVI(I) = (FIRSTI + SECNDI) * 0 304831

EHHR(I) = EVVR(I)

100 CONTINUE

C

WRITE (6, 2000) THETA

2000 FORMAT ( ' ASPECT ANGLE = ', F6, 2, ' DEG')

C

RETURN

END
```

CHART TITLE - SUBROUTINE TARGETCEVVR, EVVI, EHHR, FHHI)

, 10 ,	 TEQM4 = 1.0		FOR CYLINDER (TRRMS) AND SPHERCID (TERMS)	- <u>-</u> -	*	TERMS = (2.0*TERM1) +	(P1/4.0)	1 ERMS = TERM3 + (2.0*x0*SQRT	#		COMPUTE REAL AND	CYLINGRICAL	(FIRSTR, FIRSTI) ADDOLATE SPHERDIDAL	RETURNS -	2	***************************************	3	(TERMS)	F1RS11 =	TERM2*TERM5.N	SFCNDR =	4 TERRA74COS (TERRE)
																#/#60 [0	1 80 1	**		(2.0*PI*X*DF)	*	
/ TARGET /	* * TARGET ST-1, RADCAT, PHYSICAL UPTICS	APPROXIMATION * +	NMIN = MINIMUM FREQUENCY SAMPLE	3	α.	FC = CARRIER FRECUENCY IN GHZ			AKE IN FEEL *	- 01	/ READ FROM DEV /	/ VIA FC	/ INTO THE LIST /	-	* * * * * * * * * *	* LIST = XA, XC, *			63	2013530. = 3	PI = 3.141543	MC = 2.6*PI*FC

AL PROPERTY

		7.			© * ·			o * - *	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	WRITE TO DEV / WRITE TO DEV / 6 1 1 1 1 2 2000 / FROM THE LIST /	* * * * * * * * * * * * * * * * * * *	+ EXIT *
FIRSTI = TERM2*TERM4*SIN (TERM5)	SECNDR = TERM74CDS(TERMA)		SECNEL = TERMT#SIN(TERM8)	SUM RETURNS AND CONVERT FROM FEET TO	EVVR(I) = (FIRSTR +	EVVI(1) = (FIRST1 + (FIRST	- 1	# 58HI(I) = EVVI(I)	130 * * 20 * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *		
W = (2.0*DI*X*DF)	71000.0	37A = 0XX	10	XKO*XA*STHT TERM1 = TERM2 = XL*SQRT(TERM1)	COMPUTE K*L*SIN(THET), TEST,	ANE COMPOTE SIN(X)/X WHERE X = K*L*SIN(THET) I		*	* * * * * TRUE * 1.0f-0 * * * * * * * * * * * * * * * * * * *	*	(SIV(15843)) /TF943	
03	PI = 3.141543	1	THET = ANGLE IN RADZANS CONVERTED FROM INPUT ANGLE IN PEGREES	THET = 04	STH1 = S	* STHI S = 1H188 *	CSTHT = CTHT*CTHT TERM6 = (XA*XA*SSTHT) +	(XC*XC*CSTHT)	TERM7 = TERM1FRM6	* * * * * * * * * * * * * * * * * * *		

04/26/70	INPUT LISTING AUTOFLOW CHART SET - FWO/SCL	SCL RAPSIM
FORTRAN MCCULS	(500,11512)	
CARD NU	\$1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
_ q	SUENDUTINE TARGET (EVV9, CVVI, EPHS, EHEI)	RCS3 001
··	J	RCS3 002
F.	C * * TARGET ST-1, RAFCAT, PHYSICAL UPTICS APPROXIMATION * *	RCS3 C03
1	U	RCS3 004
w.	CUMMEN MOVER, M. NMIN, NMAX, DF, FC, PW, TO	RCS3 005
0	C RMIN = MINIMUM FREGUENCY SAMPLE	PCS3 006
7	C NMAX = MAXIMUM FREGUENCY SAMPLE	RCS3 007
S	C CF = FREQUENCY INCREMENT IN MHZ	8653 008
,	C FC = CARRIER FRECUENCY IN GHZ	RCS3 009
01	U	RCS3 010
"	FIMENSION EVVR(512), EVVI(512), EHHR(512), EHHI(512)	RCS3 011
12	U	RCS3 012
13	C * * ALL DIMENSIONS ARE IN FFFT * *	RCS3 013
14	J	RCS3 014
15	READ (5, 1000) XA, XC, YL, THETA	RCS3 015
16	1000 FORMAT (4F6.2)	RCS3 016
71	J	RCS3 017
1.9		PCS3 018
10	PI = 7.141593	RCS3 014
26	»C = 2.0 * PI * FC	RCS3 020
21	C THET = ANGLE IN RADZANS CONVERTED FROM INPUT ANGLY IN DEGREES	EES RCS3 021
22	THET = THETA * (PT / 180.0)	RCS3 023

	92		1 = 2.0 * PI * FC	RCS3 020
	21	U	THET = ANGLE IN RADZANS CONVENTED FROM INPUT ANGLS IN DEGREES	RCS3 021
	22		THET = THETA * (P1 / 186.0)	RCS3 022
1	23		STHI = SIN(THET)	RCS3 023
2	5.5		CIHT = CUS(THFT)	8CS3 024
_	52		1H1 = STHI * STHI	RCS3 025
	26		CS1HT = CTHT * CTHT	RCS3 026
	33		TEPNG = (XA * XA * SSTHT) + (YC * XC * CSTHT)	RCS3 027
	5.8		TERM = XA * XC * SQRT(PI)	RCS3 028
	26		TELM? = TERM / TERM6	RCS3 029
	36	U		RCS3 030
	31		DE TOO I=MMIN, NMAX	RCS3 031
	35		× = (1-1)	RCS3 032
	60		0.0001 / (10 * X * Id * 0.7) = 4	RCS3 033
	7	J		RCS3 034
	36		NAO = M / C	SE0 833
	36	3		RCS3 036
	37		TOWN = XXC * XA * STET	RC53 037
	35		TEPM2 = XL * SCRT(TIEM1)	RCS3 038
	35	U	CEMPLIE K*L*SIN(THET), TEST, AND COMPUTE SIN(X)/X WHERE	RCS3 039
7300	74	U	X = K*L*SIN(TEFT)	RCS3 040
	41		THAMS = XEO * XL * CTHI	RCS3 041
	74		14 (188M3 .LE. 1.05-v) GC TC 10	RCS3 042
	43		TERM = (SIN(TERM2)) / Today	RCS3 043
15667	1,		CO TO 20	RCS3 044
	45		10 TERM4 = 1.0	RCS3 045
	24	J	COMPUTE PHASE TERM FOR CYLINGTR(TERMS) AND SPHEROID(TERMS)	RCS3 C46
	۲4		-0 1FKMS = (2.0 * 1EKM1) + (FT / 4.0)	RCS3 047
				0000

The second secon

27	18 (188M3 .LE. 1.6"-4) GU TC 10	RC53 042
43	TERM = (SIN(TERM?)) / Term?	RC53 043
1	CC 77 20	RCS3 044
4.5	10 TESMS = 1.0	900 800
24	C CEMPLIE PHASE TERM FOR CYLINGTR (TRAWS) AND SOFFECTION (TERMS)	8003 046
£4	-0 38845 = (5.0 * 1082) + (61 / 6.0)	RCS3 047
c. †	100m3 = 10KM3 + 12.0 * XNU * SCRT(105M6))	RC53 048
o,	C COMPUTE REAL AND INACTIONAY PASTS OF CYLINGRICAL OFFICETH, FIRSTON	RCS3 049
05		FCS3 050
15	FIRSTR = TERMS * TERMA * CCC(TFAMS)	RCS3 051
15	FINETI = TERNS * TIRMG * SIN(TERNS)	RCS3 052
53	SECUENCE = 19KM7 * CIS(150MS)	RCS3 053
. 75	= 16	RCS3 054
, u		PCS3 055
3	C LUN NETURNS AND CONVENT FORM FELT TO MOTERS	950 6538
2 53		RCS3 C67
55	+VVI(I) = (FIRSTI + SFCM[1] # (.3(447)	RCS3 058
3.	EHHR(1) = EVVR(1)	RC53 059
94	leh1(1) = EVVI(1)	RCS3 060
13	100 CCNTINUE	8CS2 061
62		RCS3 062
63	WKITE (6, 2000) THFTA	863 683
19	2000 FCRMAT (. ASPECT ANGLE = ", F6.2, " SEG")	RCS3 064
59	· ·	SCS3 065
90	5.E JURN	PCS3 066
67		RCS3 067
90		

11,000

L.2 HEMISPHERE - CYLINDER

The far-field scattering from a hemisphere - cylinder has been formulated using the Ruck-Ufimtsev formulation of the scattering from a cylinder and a modified expression has been utilized in describing the hemispherical returns (Ref 2). The resulting expression of the scattered field is the following:

$$e(\theta)_{\{H\}}^{V} = \pm 2\sqrt{\pi} \left\{ \frac{a}{2\sqrt{3}} e^{i2kh} \cos\theta \left[\frac{2}{3} B_{21+} \pm \left(\frac{1}{0.5 + \cos\frac{4\theta}{3}} \right) B_{01-} + Q_{+} \left\{ \frac{2}{3} B_{21-} \pm \left(\frac{1}{0.5 + \cos\frac{2(\pi - 2\theta)}{3}} \right) B_{01+} \right\} \right]$$

$$\pm \frac{a}{4} \tan\theta B_{01-} e^{-i2kh} \cos\theta$$

$$\pm Q_{-}(S) \pm Q_{+} \begin{pmatrix} CW_{V} \\ o \end{pmatrix}$$
where $B_{21\pm} = J_{2}(\zeta) \pm i J_{1}(\zeta)$

$$B_{01\pm} = J_{0}(\zeta) \pm i J_{1}(\zeta)$$

$$\zeta = 2ka \sin\theta$$

$$Q_{+} = Q(2ka(\theta - \pi/2))$$

$$Q_{-} = Q(2ka(\pi/2 - \theta))$$

$$k = 2\pi/\lambda = \text{wave number.}$$

In the primary equation, the upper and lower signs designate the vertically and horizontally polarized returns respectively. The factors S and CW are the sphere specular and spherical creeping-wave returns respectively. They are expanded as follows:

$$S = \frac{a}{2} \left\{ 1 - \frac{i}{2ka} \right\} e^{-i2k(a+h \cos \theta)}$$

$$CW_{V} = \frac{a}{2} (2.7162) K \left\{ (1 + \frac{0.54555}{K^2}) + i \frac{0.94489}{K^2} \right\} e^{-i2kh \cos \theta} \cdot \exp \left\{ -(2.20075K - \frac{0.44525}{K}) + i (\pi ka + \frac{\pi}{3} + 1.27065K + \frac{0.25707}{K}) \right\}$$

where $K = (ka)^{1/3}$ and the geometry of the problem is shown in Figure L.2-1. The inputs, outputs, restrictions, and definition of key terms in the subroutine are presented in the following paragraphs.

L.2.1 INPUTS

The subroutine inputs are read from cards or passed in a common block. The parameters passed in the common block are FC, DF, NMIN, NMAX and are described in Appendix L.1.1.

The inputs read from a card are the following:

	MATHEMATICA	AL		
	SYMBOL	VARIABLE	DEFINITION	COLUMNS
Card 1	а	A	Radius of hemis- phere (inches)	1-10
	h	Н	1/2 length of cylinder (inches)	11-20
	0	ASPECT	Azimuth angle (degrees)	21-30

L.2.2 OUTPUTS

The data base output consists of four linear arrays, EVVR, EVVI, EHHR, EHHI, which contain the real and imaginary parts of the vertically and horizontally polarized backscattered fields (in meters) at frequency increments between NMIN and NMAX.

Fig. L.2.1 HEMISPHERE-CYLINDER TARGET GEOMETRY

In addition to the data-base output, if the print option is selected, the frequency, and cross-section (in dBsm) and phase for the case of both vertical and horizontal polarization will be listed.

L.2.3 Restrictions

L.2.3.1 Physical Dimensions

All target dimensions should be large with respect to the wavelength of the illuminating field. Thus A and H should be larger than the wavelength of the smallest frequency at which a computation is obtained.

L.2.3.2 Output

The output arrays are passed in the argument list and a value is computed and stored only in locations NMIN to NMAX.

L.2.3.3 Azimuth

The azimuth angle is restricted to the region from 0 to 180 degrees. In addition, an azimuth of 90 or 180 degrees should not be used as there are numerical problems in computing the specular return. If the magnitude of the specular returns are desired, azimuths of 89.99, 90.01 or 179.99 degrees should be used.

L.2.4 Definition of Key Terms Used in Subroutine

TERM 4 =
$$\left(\frac{1}{0.5 + \cos \frac{4\theta}{3}}\right)$$

TERM 5 =
$$\left(\frac{1}{0.5 + \cos \frac{2(\pi - 2\theta)}{3}}\right)$$

PHASE
$$1 = \frac{a}{2\sqrt{3}}e^{i2kh}\cos\theta$$

TERM
$$2 = \zeta = 2ka \sin \theta$$

$$COEFF1 = B_{01+} = J_o(\zeta) + i J_1(\zeta)$$

FFVV1 =
$$\frac{a}{2\sqrt{3}}e^{i2kh}\cos\theta \left[\frac{2}{3}B_{21+} + \left(\frac{1}{0.5+\cos\frac{4\theta}{3}}\right)^{B}01-\right]$$

+ $Q_{+}\left\{\frac{2}{3}B_{21-} + \left(\frac{1}{0.5+\cos\frac{2(\pi-2\theta)}{3}}\right)B_{01+}\right\}$

 $FFVV2 = -\frac{a}{4} \tan \theta B_{01} - e^{-i2kh} \cos \theta$

ARGMNT*PHASE
$$3 = \frac{a}{2} \left\{ 1 - \frac{i}{2ka} \right\} e^{-i2k(a+h \cos \theta)}$$

PART 1 =
$$\frac{a}{2}(2.7162)$$
K exp $\left\{-(2.20075K-\frac{0.44525}{K})\right\}$

PHASE 4 =
$$\exp \left\{ +i \left(\pi ka + \frac{\pi}{3} + 1.27065K + \frac{0.25707}{K} \right) \right\} \cdot e^{-i2kh \cos \theta}$$

$$YY = \left\{ (1 + \frac{0.54555}{K^2}) + i \frac{0.94489}{K^2} \right\}$$

Q PLUS = Q+ = Q(
$$2ka(\theta - \pi/2)$$

QMINUS =
$$Q_{-} = Q(2ka(\pi/2 - \theta))$$

L.2.5 Subroutines Utilized

Subfunctions:

Q(X) computes the exponential smoothing function Q for real argument \mathbf{x}

Subroutines:

BESL (TERM 2, XJO, XJ1, XJ2) returns

- JO (TERM 2) in XJO
- J1 (TERM 2) in XJO
- J1 (TERM 2) in XJ1
- J2 (TERM 2) in XJ2

SUBROUTINE TARGE! (EVVR, EVVI, EHHR, EHHI)

```
* * TARGET ST-5, HEMISPHERE CYLINDER, UFIMTSEV TECHNIQUE * *
     COMMON MOVER, M. NMIN, NMAX, DF, FC. PW, TO
     NMIN = MINIMUM FREQUENCY SAMPLE
     NMAX = MAXIMUM FREQUENCY SAMPLE
       = FREQUENCY INCREMENT IN MHZ
= CARRIER FREQUENCY IN GHZ
     DF
     DIMENSION EVVR(512), EVVI(512), EHHR(512), EHHI(512)

    FRED(512), SIGMAV(512), SIGMAH(512), PHASEV(512), PHASEH(512)

    COMPLEX COEFF1, COEFF2, PHASE1, PHASE2, PHASE3, PHASE4, FFVV, FFHH
    1, FFVV1, FFHH1, FFVV2, FFHH2, FFVV3, FFHH3,
                                                     FFVV4, CFVV, CFHH
    1 , 44
            = RADIUS OF HEMISPHERE
           = HALF THE CYLINDER LENGTH
     ASPECT = AZIMUTH ANGLE
    M1 = PRINT OPTION
     ** DIMENSIONS ARE IN INCHES AND ANGLE IS IN DEGREES * *
     READ(5, 1000) A, H, ASPECT, M1
1000 FORMAT( 3F10.0,15)
     WRITE (6, 1111) A, H, ASPECT, M1
1111 FORMAT(1H0, ' A = ', F15.5 , 10X, ' H = ', F15.5 .//
           1H0, ' THETA = ', F15.5, 15X, ' PRINT OPTION = ', I5
     PI = 3,14159265358979
     PISORT = SORT(PI)
     PIOVR2 = PI / 2.0
     PIOVR3 = PI / 3.0
            = -(2.073.0)
     DIR
           = PI / 180.0
     THETA = ASPECT * DTR
     STHT
           = SIN(THETA)
     CTHT
            = COS(THETA)
            = (A/4 0) * (STHT/CTHT)
     COMPUTE EDGE DIFFRACTION COEFFICIENTS
     THT403 = (4.0 * THETA) / 3.0
     THT3U4 = (2.0 * PIOVR3) - THT403
     TERM1 = (A * SIN(PIOVR3)) / 3.0
     TERM4 = 1.0 / (0.5 + COS(THT403))
     TERM5 = 1.0 / (0.5 + COS(THT3U4))
     TERM6
           = S + TERM4
           = 5 - TERM4
     TERM?
     TERMS = S + TERMS
     TERM9 = S - TERM5
           = 11.80285078
     X2KCA
            = 2.0 * (0.53234454*FC)
     COMPUTE Q (SMOOTHING) FUNCTIONS
     ZF
             = X2KCA * (THETA - PIOVR2)
             = X2KCA * (PIOVR2 - THETA)
     ZM
     OPLUS
             = Q(ZP)
```

QMINUS = Q(ZM)

1,1 "

```
C
      FREQUENCY LOOP
      DO 900 I = NMIN, NMAX
             = I - 1
      XI
      W
             = (2.0 * PI * XI * DF) / 1000.0
            = XI * DF / 1000.0
      FREQ1
      XKO
             = W / C
             = (XK0 * A) ** (1.0 / 3.0)
      P2
             = P * P
      PART1
            = (R / 2.0) * 2.7162 * P * EXP((-2.20075*P) + (0.44525/P))
      TERMO
            = 2.0 * XK0 * A
            = TERMO * STHT
      TERM2
      TERM3
            = 2.0 * XK0 * H * CTHT
             = (A/2.0) * SQRT(1.0 + (1.0 /(TERMO*TERMO)))
      ARGMNT
      XJ0
            = 0.0
      XJ1
            = 0.0
          = 0.0
      XJ2
      CALL BESL (TERM2, XJ0, XJ1, XJ2)
C
      COEFF1 = CMPLX(XJ0, XJ1)
      COEFF2 = CONJG(COEFF1)
      COEFF3 = (-5) * (XJ0 + XJ2)
      FASE1R = TERM1 * COS(TERM3)
      FASE11 = TERM1 * SIN(TERM3)
      PHASE1 = CMPLX(FASE1R, FASE11)
C
     FASE2R = Z2 \times COS(TERM3)
      FASE2I = ZZ * (-SIN(TERM3))
     PHASE2 = OMPLM(PASE2R, FASE2I)
C
      ARG
           = TERM0 + TERM3 - ATAN2(-1.0, TERM0)
     FASE3R = COS(ARG)
      FASESI = -SIN(ARG)
     PHASES = CMPLX(FASESR, FASESI)
     ARG
            = PIOVRI+(1 27065*F)+(0.25707/F)+(TERMO*PIOVR2)-TERM3
     FASEAR = COS(ARA)
     FASE4I = +SIN(ARG)
      PHASE4 = CMPLX(FASE4R, FASE4I)
1
     CYLINDRICAL EDGE + SURFACE RETURN FROM BACK END
     FFVV1 = (@PLUS*(COEFF1*TERM8+COEFF3)+COEFF2*TERM5+COEFF3)*PHASE1
     FFHH1 = (@PLUS*(COEFF1*TERM9+COEFF3)+COEFF2*TERM7+COEFF3)*PHASE1
C
      CYLINDRICAL SURFACE RETURN (CYLINDER-HEMISPHERE JUNCTION)
     FFVV2 = COEFF2 * PHASE2
      FFHH2 = FFVV2
C
      HEMISPHERE SPECULAR
C
     FFVV3 = ARGMNT * PHASE3 * QMINUS
     FFHH3 = FFVV3
C
     HEMISPHERE CREEPING WAVE
     44
             = CMPLX ( (1.0 +(0.54555/P2)) , (0.94489/P2) )
     FFVV4 = QPLUS * PART1 * YY * PHASE4
                                    1-15a
0
```

THE REAL PROPERTY.

,,1.

A. ..

```
FFVV
             = 0.025406*(-2.0*PISQRT)*(FFVV1-FFVV2-FFVV3+FFVV4)
      FFHH
             = 0.025406*( 2.0*PISQRT)*(FFHH1+FFHH2+FFHH3
      CFVV
            = CONJG(FFVV)
      CFHH
            = CONJG(FFHH)
      EVVR(I)
               = REAL(CFVV)
      EVVI(I)
               = AIMAG(CFVV)
      EHHR(I)
              = REAL(CFHH)
      EHHI(I)
              = AIMAG(CFHH)
      IF (M1) 20, 20, 10
   10 CONTINUE
      DETERMINATION OF CROSS SECTION(IN DBSM) AND PHASE(IN DEGREES)
                    FOR PRINTOUT OF RESPONSE VERSUS FREQUENCY
                = (XI + DF) / 1000.0
      SIGMAV(I) = 10.0*ALOG10(EVVR(I)*EVVR(I) + EVVI(I)*EVVI(I))
      SIGNAH(I) = 10.0*ALOG10(EHHR(I)*EHHR(I) + EHHI(I)*EHHI(I))
      PHASEV(I)= 57.29578 * AYAN2 (EVVI(I), EVVR(I))
      PHASEH(I) = 57, 29578 * ATAN2 (EHHI(I), EHHR(I))
C
   20 CONTINUE
0
  906 CONTINUE
      IF (M1) 40, 40, 30
   30 CONTINUE
      WRITE (6, 1500)
0
C1500 FORMAT (1H1)
     WRITE (6, 2000)(FREQ(I), SIGMAV(I), PHASEV(I), SIGMAH(I), PHASEH(I)
                 (XAMA, NIMAX)
02000 FORMAT (1H , F10.5, 4F10.2)
   48 CONTINCE
      RETURN
      END
      SUBROUTINE BESL ( X, B0, B1, B2 )
    * BESSEL FUNCTION SUBROUTINE UTILIZING POLYNOMIAL APPROXIMATIONS
    * COMPUTES J0, J1, OR J2 FOR POSITIVE REAL ARGUMENTS
    * PEFERENCE (HNDBK MATH FUNCT BY ABRAMOWITZ AND STEGUN SECTION 9.4 )
    5 = 1.0
     IF (A LT. 0.0) S = -1.0
      X = A85 (X)
      IF ( X . GT. 1. E-6 ) GO TO 5
      80 = 1 0
      B1 = 0.0
      B2 = 0.0
      X = X * 5
      RETURN
C
    5 CONTINUE
C
    1 IF ( X . GE. 3. ) GO TO 9
                               L-15 b
      X1 = X/3
```

65

THE R. A.

```
X1 = X1 * X1
               B = 1. + X1*(-2.2499997 + X1*(1.2656208 + X1*(-3163866 + X1*(.0444479)))
             1 + X1*(-, 0039444+ X1*2, 1E-4 )))))
                GO TO 10
C
           9 X2 = 3.7X
               F0 = .79788456 +X2*(-.77E-6 +X2*(+.00552740 +X2*(-.9512E-4 +X2*
                       (.00137237 +X2*(~.72805E-3 +X2*0.14476E-3 )))) )
              T0 = X - .78539816 + X2*(-.04166397 + X2*(-.3954E-4 + X2*(.00262573))
             1 +X2*(-.00054125 +X2*(-.00029333 +X2*0.00013558 )))))
                B = F0 * COS(T0) / SORT(X)
3
       10 80 = 8
           2 IF ( X . GE. 3. ) 60 TO 19
               X1 = X/3
               X1 = X1*X1
                B = X*( .5 + X1*(-.56249985 + X1*(.21093573 + X1*(-.03954289 + X1*(-.03964289 + X1*(-.03964489 + X1*(-.03964489 + X1*(-.03964489 + X1*(-.0396489 + X1*(-.03964489 + X1*(-.0396
                                                        (.00443319 +X1*(-.31761E-3 +X1*0 1109E-4))))))
             1
                GO TO 20
C
        19 X2 = 3.7X
               F1 = .79788456 +X2*(.156E-5 +X2*(.01659667 +X2*(.00017105 +X2*
             1 (-.00249511 +X2*(.00113653 -.00020033*X2 )))))
               T1 = X - 2.35619449 + X2*(.12499612 + X2*(.565E-4 + X2*(-.00637879)
          1 +X2*(.00074348 +X2*(.00079824 -0.00029166*X2 )))))
                B = F1*COS(T1)/SORT(X)
        20 B1 = B * S
                X = X * S
                B2= (2.7X)*B1 - B0
        50 RETURN
                END
                FUNCTION Q(Z)
C
                IF ( Z. GT. 2. ) GO TO 10
                IF ( Z. LT. -2. ) GO TO 20
                AZ = ABS(Z)
                P = 1.0/(1.0 + .47047*AZ)
                Y = 1.0 - P*(.3480242 - P*(.0958798 - .7478556*P))*EXP(-AZ*AZ)
                IF (Z) 2,4,6
           2 Q = (1.0 - Y)/2.
                RETURN
           4 0 = 5
                RETURN
           6 Q = (1.0 + Y)/2.
                RETURN
        10 0 = 1.
                RETURN
        20 0 = 0.
                RETURN
                                                                               1-15c
                END
```

,,,

/ TARGET /

4 # TABCES CT-8		NOTE 15	1 23
HEMISPHERE CYLINDER	= ALTHT	N DC	FASEIR =
UFINTSEV	ASPECT*OTR	* .NIM. = 000	I TERMI*COS(TERM3)
	STHT = SIN(THETA)	* * * * * * * *	FASE11 =
	CTHT = COS(THETA)	05.13>	I LERMINSINGIERMS)
- WININIH WINN		1 16	PHASE1 =
NMAX = MAXIMUM	27 = 77 (V/4°0)	XI = I - 1	FASEII
FREGUENCY SAMPLE	*(STHT/CTHT)		•
INCREMENT IN MHZ	*	(2.0*PI*XI*DE)	
= CARRIER		/1000.0	1 24
FRECUENCY IN GHZ	- Sous atriamos	- 10363	1 EASE20 =
	DIFFRACTION	XI*DF/1000.0	ZZ*COS(TERM3)
	COEFFICIENTS	-	_
= RADIUS OF		XXC = M/C	FASE2I =
HEMICOHERE		**	22*(-SIN(TERM3))
CALINDER LENGTH	*		PHASE? =
	THT403 =	1 11	I CMPLXIFASEZR,
ANGLE	(4.0*THETA)/3.0	***************************************	FASE21)
T = PRINT CPTION	1HT2//4 =	# d X	***************************************
INCHES AND ANGLE IS	(2.0*PIDVR3) -	**(1.0/3.0)	
IN DEGREES * *	I THT403		- 25
	- 17031	p2 = p*p	A DEC - TERMO +
10	(A*SIN(PIOVP3))	PAR11 =	TERM3 -
	1 /3.0	I (A/2.0) I I	ATAN2(-1.0,TERMO)
READ FROM DEV /	**	+2.7162*p*fXp((-	10001300
VIA FORMAT		(0.4452579)	FASESK = CUSTARG)
1000	50	*	FASE31 = -
INTO THE LIST /	**		I SIN(ARG) I
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		*
	1 CONTACT	101	
NOTE 02		I TERMO = 2.C*XKO*A	1 26
*	TERMS =	-	
	1.0/(0.5 +	TERM2 =	PHASE3 =
* * * * * * *	CUS(1H1304)	T X W C # O W T	CMPLX(FASESK) FASE3I)
-	TERM6 = S + TERM4		**
	***************************************	THE TALK DACK OF CO.	

SIN(ARC)		26	PHASE3 = CMPLX(FASE3R,	FASE3I			ARG = PIOVR3 + (1.27065*P) +	(0.25707/P) + (TERMO*PIOVR2) -	TERM3	1 4	SIN(ARG)		1 28	PHASE4 = CMPLXIFASE4R,	FASE4I)		CYLINDRICAL EDGE +	SURFACE RETURN FROM PACK END		1	*	COEFF2*TERM6 + 1	COFF3)*PHASE1		1		COEF24TERM7 + COFF51 + COEF524TERM7 +	***************************************			/ 5.01
		TERMO = 2.0*XKO*A	TERMO*STHT	TERM3 =	- 1.00#XXO#I#O II		- 1	ARGMNT = (A/2.0)	*5QRT(1,0 + 11,0/(TERMO* 1 TERMO))		20	0.0 = 0LX		x32 = 0.0	**	21		I RESM	10 XJ1,XJ2) H		22	1		CONJG(COEFFI)		**				•	
1 TERM4 = 1	1.0/(0.5 + COS(THT403))	TERMS =	1.0/(0.5 +) COS(THT3U4))	TERM6 = S + TERM4		10	TERM7 = S - TERM4	TEPMS = S + TERMS	TERMS = S - TERMS	C = 11.80285078			X2KCA = X-2+CA =	+	_	COMPUTE Q (SMOOTHING)	7	12	= 47	XZKCA*(THETA -	= wZ	X2KCA*(PICVR2 - THETA)	GPLUS = G(ZP)	*******	13	DMINUS = G(ZM)			FREGUENCY LOOP		
7 1817 111 1111 7	20 1100		* * SPE		03	/ WRITS TO DEV /	VIA FORMAT	/ FROM THE LIST /			ASPECT, MI	* * * * * * * * * * * * * * * * * *	- 60	**************************************	3.14159265358479	PISGRT = SCRT(PI)	PIGVR2 = PI/2.0	PICKR3 = PI/3.0			S = - (2.0/3.0)	DTR = P1/190.0		******							

17 40

CHART 117LS - SURBGUTIVE TARGET (EVVR, EVVI, CHHR, FHHI)

* * * * * * * * * * * * * * * * * * *	* ÷ ÷ * * * * * * * * * * * * * * * * *	10 NOTE 08 * * * CONTINUE * * * * * * * * * * * * * * * * * * *	CRESS SECTION OF CRESS SECTION (IN DRSM) AND PHASE (IN DEGREES) FOR PRINTOUT OF RESPONSE VERSUS FREQUENCY	FREC(1) = (XI*DF)/1060.0
CYLINERICAL SURFACE RETURN (CYLINGER-HEMISPHERE JUNCTION)	EFVV2 = CUEFF2*PHASE2 FFHL = FFVV2	HEMISPHERE SPECULAR 02 +	AN ILI	HEMISPHERE CREEPING WAVE O3 **

1500 FORMAT (1H1) WRITE (6, 2000)(FREC(1), SIGMAV(1), PHASEV(1),		
* * * * * * * *	. 16 .	FHHI(I) = FIMEG(CENH)
30	* * * * * * * * * * * * * * * * * * *	EHHR(I) = 1 REAL(CFHH)
	- UN * * * * * * * * * * * * * * * * * *	TVVR(I) = SEAL(CFVV)
• • • • • • • • • • • • • • • • • • • •	occ * 13	20
(-/o) * W1 * *	# # # # # # # # # # # # # # # # # # #	CCV26(FFFH)
* * * 14	20 NOTE 12	CINJG(FFVV)
	11 PHASEH(1) = 57.29570*A1AN2 (EHHI(1), EHHR(1))	C.625-C6*(2.C* PISCRT)*(FFHH1 + FFHR2 + FFHH3)
	PHASEV(1) = 57.29575*ATAN2 (EVVI(1), FVVR(1))	FFVV = C.0254C6*(-2.0* P15GFT)*(FFVVI - FFVVZ - FFVV3 + FFVV4)
	S16MAH(1) = 10.0*AL©610(EHHR 11)*ENH8(1) +	70
	* 01	FFVV4 = PLUS*FARII*YY* PHASE4 **
	SIGMAV(1) = 10.0*ALGGIG(EVVR (1)*EVVR(1) + (1)*EVVR(1))	
	FREC(1) = (X1*DF)/1060.0	03

I = NM IN, NMAX)
2000 FORMAT (IH ,

1		
* * * * * * * * *		
40 NOTE 16		
F10.5, 4F10.2)		
2000 FORMAT (1H ,		
SICMAH(I), PHASEH(I)		
I SIGMAV(II), PHASEV(II),		
1 2000)(FREC(I),		
I WRITE (6,		*
1 1500 FDRMAT (1H1)	++	
WRITE (6, 1500)		
_		FIGURE COLUMN
		- (111241
-	. 10	
THE WAR WAR	- + · · · · · · · · · · · · · · · · · ·	REAL (CFRH)
****	*	EHR(1) = 1
30	- * *	-
	- *	A TWAST CENVI
_	* \$400b3 *	= (1)(\(\frac{1}{2}\)
	*	REALICEVV)
-	*	EVVR(I) =
•	4 t 13	20
		1 *
. IN	* * * * * * * * * * * * *	CUNG(FFRH)
*	*	
* *	20 NOTE 12	CERJS(FFVV)
7- 4	\(\frac{1}{2} \)	* 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
*	***************************************	6.5
	THE	
	PPASEH(T) =	*
	*******	FFILLS + FFIH31
		0.00004C6*(2.0*
	-	" +144
	x	1
		1 777733

04/26/76

AUTOFLOW CHART SET - FWO/SCL RADSIM

CHART TITLE - NON-PROCECURAL STATEMENTS

COMMON MOVER, M. NMIN, NMAX, DF, FC, PW, TO

DIMENSION EVVR(512), EVVI(512), EHHR(512), EHHI(512)

1000 FORMAT (4F6.2)

2000 FORMAT (* ASPECT ANGLE = *, F6.2, * DEG*)

1-18

CHART TITLE - SUBROUTINE BESL(X, 80,81,82)

BESL

04.21*-->*

* BESSEL FUNCTION SUBROUTINE UTILIZING POLYNOMIAL

APPROXIMATIONS

* COMPUTES JO.JI.CR
JZ FOR POSITIVE REAL
ARGUMENTS

* REFERENCE (HNDEN
MATH FUNCT SY
ABRAMPHITZ AND STEGUN
SECTION 9.4.)

12	-	
	5 = 1.0	
	_	

- Come Co

27 X = AES(X) - 1.0 TRUE 11 5 FALSE *

- 1		-		_	-	_	-	_	-	Ī	-	-	_	_	_	_	_	_	_
1		+		+	+	+	+	-		!				+	+	+	+	+	=
i		4	•	0	4	1	(1)	31		i			+	-			5		
!	×	· w	9	7	1	3	1	3		!		1	.0	34			12		
- 1	:	8	1	27	C	7.2	40	i.		1			=	6					
i	e,	00	-	5	-	"	0	9		1		×	O	9	10	0	6	CI	3
- !	11		1.						-	! -	 -		39	7					
	"	ř		3						1		. "		0					
į	CI		-		1			-		1			œ		1				0
!	×			1				0		!		! -	1	-		*		-	
0 1				*						i							*		
1		0		64	×	×	64	41		1		1		2	×	×	04	0	0
!		4		×			×	×		!		1		×			×	×	×
*			-	_	_	_	_	_	_	*		-	_	-	_	_	_	_	_

CHART TITLE - FUNCTION 6(2)

with a

59		SUBROUTINE TARGET (FVVR, EVVI, FHHR, FHHI)	RCS4 001	10
70	v		RCS4 002	02
ı,	U	* * TARGET ST-5, HFMISPHERE CYLINDER, UFIMISEV TECHNIQUE * *	RCS4 003	03
72	J		RCS4 004	70
73		COMMON MOVER, M. NMIN, NMAX, DF, FC, PW, TO	RCS4 005	90
7.4	U	NMIN = MINIMUM FREQUENCY SAMPLE	RCS4 0	900
75	U	NMAX = MAXIMUM FREQUENCY SAMPLE	RCS4 0	200
76	U	CF = FREQUENCY INCREMENT IN MHZ	RCS4 0	600
11	ပ	FC = CARRIER FREQUENCY IN GHZ	RCS4 0	600
78		DIMENSION EVVR(512), EVVI(512), EHHR(512), EHHI(512)	RCS4 0	010
75		1, FREQ(512), SIGMAV(512), SIGMAH(512), PHASEV(512), PHASEH(512)	RCS4 0	011
03		CUMPLEX CUEFFI, COFFFZ, PHASEI, PHASES, PHASES, PHASE4, FFVV, FFHHRCS4	HRCS4 0	012
19		1, FEVVI, FEHHI, FEVV2, FEHH2, FEVV3, FEHH3, FEVV4, CEVV, CFHHRCS4	HRCS4 0	013
82		1 , **	RCS4 014	14
83	U		RCS4 0	610
84	U	A = RADIUS OF HEMISPHERE	RCS4 0	910
85	O.	H = HALF THE CYLINDER LENGTH	RCS4 0	710
98	U	ASPECT = AZIMUTH ANGLE	8CS4 018	18
13	v	MI = PRINT OPTION	RCS4 0	610
90	v	** DIMENSIONS ARE IN INCHES AND ANCLE IS IN DECREES * *	RCS4 0	020
89	U		RCS4 0	021
06		KEAD(5,1000) A,H,ASPECT,M1	RCS4 0	022
41	1000	FURMAT(3F10.0,15)	9654 0	420
26		WRITE (6, 1111) A, H, ASPECT, MI	RCS4 0	025

....

	-13	1600 FURMAT(3F10.0,15)	RCS4 024
	25	WAITH (6, 1111) A, H, ASPECT, M1	RCS4 025
	93		RCS4 026
	;	1 1HC, * THETA = *, F15.5, 15X, * PRINT (PTICN = *, 15)	RCS4 027
6	56	U	RCS4 028
2	9	PI = 3.14159265358979	RCS4 029
	10	PISCR1 = SCRT(P1)	RCS4 030
	36	PICVR2 = PI / 2.0	RCS4 031
	3	P10V93 = P1 / 3.0	RCS4 032
	100	5 = -(2.0 / 3.0)	RCS4 033
	101	DIR = PI / 180.0	RCS4 034
	102	U	RCS4 035
	103	THEIA = ASPECT * DT9	RCS4 036
	104	STHT = SIN(THETA)	RCS4 037
	105	CTHT = CCS(THETA)	RCS4 038
	106	22 = (A/4.0) * (STHT/CTHT)	RCS4 039
	167	C CUMPUTE EDGE DIFFRACTION COFFFICIENTS	RCS4 040
	108	THT4U3 = (4.0 * THETA) / 3.0	RCS4 041
	109	THT3U4 = (2.0 * PICVR3) - THT403	RCS4 042
	110	TERMI = (A * SIN(PIGVR3)) / 3.0	RCS4 043
	111	1ERM4 = 1.0 / (0.5 + COS(THT463))	RCS4 044
	112	TERMS = 1.0 / (0.5 + CCS(THT3U4))	RCS4 045
	113	TERM6 = S + TERM4	RCS4 046
1-4	114	TERM7 = S - TERN4	RCS4 047
11	315	JERMS = S + TERMS	RCS4 048

* (C.53234454*FC) * A RCS4 052 UTHING) FUNCTIONS A * (THETA - 010VR2) A * (PIOVR2 - THETA) RCS4 055 RCS4 056 N, NMAX * PI * XI * DF) / 1000.0 BF / 1000.0 BF / 1000.0 RCS4 064 * A) ** (1.0 / 3.0) RCS4 065 RCS4 066 * A) ** (1.0 / 3.0) RCS4 066 * RCS4 066 * A) ** (1.0 / 3.0) RCS4 066 * A) ** (1.0 / 3.0) RCS4 066 * A) ** (1.0 / 3.0) RCS4 067 * RCS5 067 * RCS5 067 * RCS5	= 2.0 * (C.53 = 2.0 * (C.53 = X2KCA * (TF = X2KCA * (PI = X1 * DF / 10 = X1 * Z2CA * Z2
2.0 * XKO * TERMO * STHT	ı il il

The state of the s

No.

200			100 +COX
•	137	TERM3 = 2.0 * XKO * H * CTHT	RCS4 070
	138	ARGMNT = (A/2.0) * SORT(1.0 + (1.0 /(TERMO*TERMO)))	RCS4 071
,	139 C		RCS4 072
0	140	0.0 = 0.0x	RCS4 073
2	141	x = 0.0	RCS4 074
	142	xJ2 = C.C	RCS4 075
	143	CALL RESL (TERM2, XJO, XJI, XJ2)	RCS4 076
	144 C		RCS4 077
	145	COEFF1 = CMPLX(XJO, XJ1)	RCS4 078
	146	CUEFF2 = CONJG(CREFI)	RCS4 079
	147	COEFF3 = (-5) * (xJ0 + xJ2)	RCS4 080
उन्होंचे हिंद संदर्भ	148 C		RCS4 081
	140	FASEIR = TERMI * COS(TERM3)	RCS4 082
7.04	150	FASEII = TERMI * SIN(TFRM3)	RCS4 083
	151	PHASE1 = CMPLX(FASE1R, FASE11)	RCS4 084
	152 C		RCS4 085
	153	HASE2R = 22 * COS(TERM3)	RCS4 086
	154	FASF2I = ZZ * (-SIN(TERM3))	RCS4 087
TANK	155	PHASE2 = CMPLX(FASE2R, FASE2I)	RCS4 088
	156 C		RCS4 089
Sale per	157	ARC = TERMO + TERM3 - ATAN2(-1.0, TERMO)	RCS4 090
	158	FASE3R = COS(ARG)	RCS4 091
	159	FASE31 = -SIN(ARG)	RCS4 092
e to the second	160	PHASES = CMPLX(FASE3R, FASE31)	RCS4 093
	161 C		RCS4 094
	162	ARG = PIOVR3+(1.27065*P)+(0.25707/P)+(TERMO*PICVR2)-TERM3	RCS4 095
	163	FASE4R = COS(ARG)	RCS4 096
	771	FACELT = +STN[ARG]	RCS4 097

The state of the s

106	RCS4 106	FFHH2 = FFVV2		173
105	RCS4 105	FFVV2 = CDEFF2 * PHASF2		172
104	RCS4 104	CYLINDRICAL SURFACE RETURN (CYLINDER-HEMISPHERE JUNCTION)	J	171
103	RCS4 103		U	170
102	4SE1 RCS4 102	FFHH1 = (OPLUS*(COEFF1*TERM4+COEFF3)+COEFF2*TFRM7+CCEFF3)*PHASE1		169
101	ASEI RCS4	FFVV1 = (CPLUS*(COEFF1*TERMS+COEFF3)+COEFF2*TERM6+COEFF3)*PHASE1 RCS4 101		168
100	RCS4 100	CYLINDRICAL EDGE + SURFACE RETURN FROM BACK END	J	167
660	RCS4 099		U	166
860	RCS4 098	PHASE4 = CMPLX(FASE4R, FASE4I)		165
160	RCS4	FASE41 = +SIN(ARG)		164
960	RCS4	FASE4R = COS(ARG)		163
960	RCS4	ARG = PIOVR3+(1.27065*P)+(0.25707/P)+(TERMO*PICVR2)-TERM3		162
760	RCS4 094		J	161
093	RCS4 093	PHASE3 = CMPLX(FASE3R, FASE31)		160
092	RCS4	FASE31 = -SIN(ARG)		159
091	RC54	FASE3R = COS(ARG)		158
060	RCS4	ARC = TERMO + TERM3 - ATAN2(-1.0, TERMO)		157
680	RCS4		U	156
088	RCS4	PHASE2 = CMPLX(FASE2R, FASE2I)		155
190	KC34 08	115WHILLIAM - 77 - 77 - 77 - 77 - 77 - 77 - 77 -		

· Para

04/26/76	TI LINGUE	LISTING AUTOLOGY AUTOLOGY CYANT	SIT - FWLZSCL	RALSIM
CARE NE	**	CCNIENTS		***
174	U			FCS4 107
17.5	C 154]	HEVISPHERE SPECULAR		RCS4 108
176	SEVIS	VS = ARGMIT * PHESSS * CWINUS		RCS4 109
1.7.1	TEMES	HS = FFVV3		RCS4 110
321)			RCS4 1111
17.	[N 15]	HEMISPHERE CREEPING WAVE		RCS4 112
180	**	= [MPLY ((1.0 +(0.54955/P2)) , (0.44494/P2)	_	RCS4 113
151	FYV4	V4 = CPLUS * PART! * VV * CPASE4		RCS4 114
182	J			RCS4 115
163	4 F V V	V = 0.025405*(-2.0*015031)*(FFVVI-FFVV2-FFVV3+FFVV4)	FFVV4)	RCS4 116
134	14.47	4 = C.C254C6*(2.0*PISONT)*(FFHU1+FFPH)7+FFHH3	•	8684 117
165	CFVV	V = CONJG(FEVV)		RCS4 118
166	HHAD	H = CCNJG(FFHY)		8054 119
187	J			RCS4 120
160	FVVE	EVVE(I) = REAL(CEVV)		RCS4 121
184	EVVI	EVVI(I) = AIMAC(CFVV)		3054 122
190	тинк	FHHR(1) = REAL(CFHH)		RCS4 123
141	THH.	THE TOTAL TOTAL STATES (CENT)		RCS4 124
192	2			RCS4 125
193	16 (1F (M1) 20, 20, 10		PCS4 126
104	10 CCNT	CONTINUE		RCS4 127

	192	3	FCS4 125	
	193	1F (M1) 20, 20, 10	PCS4 126	
	701	10 CCNTINUE	RCS4 127	
	145		RCS4 128	
	146	C DETERMINATION OF CROSS SECTION(IN DESM) AND PHASE(IN DEGREES)	RCS4 129	
2	107	C FOR PRINTOUT OF RESPUNSE VERSUS FRECUENCY	RCS4 130	
_	198	FREC(I) = (XI * DF) / 1000.0	RCS4 131	
	3	:IGMAV(1)= 10.0*ALCG10(EVVR(I)*EVVR(I) + EVVI(I)*EVVI(I))	RCS4 132	
	200	SIGNAH(I)= 10.0*ALCC10(EBHR(I)*EHHR(I) + EHHI(I)*EHHI(I))	9054 133	
	261	PHESEV(I)= 57.29578 * ATAN2 (FVVI(I), FVVR(I))	RCS4 134	
	303	PHASEH(1)= 57.29578 * ATANZ (FHMI(1), EHHR(1))	8054 135	
	202		RCS4 136	
	204	30 CONTINUE	RCS4 137	
	325		RCS4 138	
	200	400 CUNTINUE	RCS4 134	
	267		RCS4 140	
	201	If (MI) 40, 40, 30	RCS4 141	
	502	36 CENTINUE	RCS4 142	
	210	J	RCS4 143	
	211	C XRITE (6, 1500)	RCS4 144	
	212	CISGO FCRMAT (IHI)	RCS4 145	
	213	C MAILE (6, 2000)(FREQUE), SIGMAV(I), PHASEV(I), SIGMAH(I), PHASEH(I)RCS4 146	I JRCS4 146	
	214	C 1 , I=NMIN,NMAX)	RC54 147	
	215	C2636 FURWAT (IH , F16.5, 4F10.2)	RCS4 148	
	216	4c centinue	RCS4 149	
L	717		RCS4 150	
-73	318	Fetory.	RCS4 151	
5	21%	IAL	RCS4 152	
The second second	A TANKS OF THE PARTY OF THE PAR			

Commence St.

and the second

The Contract of the Contract o

73	248	1 (.(C137237 +X2*(72805E-3 +X2*0.14476E-3 1))))	8084 1	181
	540	10 = X78539816 +X2*(04166397 +X2*(39548-4 +X2*(.00262573	RCS 4 1	182
.,	250	1 +X2*(00054125 +X2*(00024333 +X2*0.00013558)))))	RCS4 1	183
	251	B = F0*CES(T0)/SCRT(X)	RCS4 1	184
14	252		RCS4 1	185
64	253	10 bc = P	8034	186
2	254		RES4 1	187
6-1	255	2 1F (X .GE. 3.) GC TC 19	RCS4 1	188
2	256	$x_1 = x/3$.	RCS4 1	189
27	257	$x_1 = x_1 * x_1$	RCS4 1	190
	256	E = X*(.5 +X1*(56249985 +X1*(.21093573 +X1*(03954289 +X1*	8654 1	161
	952	1 (.00443319 +X1*(31761E-3 +X1*0.1104F-4))))))	RCS4 1	192
	260	CG 10 20	RCS4 1	193
,	192		RCS4 1	194
Co	292	16 X2 = 3./X	RCS4 1	195
	263	F1 = .74755456 +X2*(.156E-5 +X2*(.01659667 +X2*(.00017105 +X2*	RCS4 1	196
	597	1 (00249511 +X2*(.0011265300020033*X2)))))	RCS4 1	197
	592	11 = X - 2.35619449 +X2*(.12494612 +X2*(.5655-4 +X2*(00637879	RCS4 1	198
	266	1 + Y2 * (. 60074348 + X2 * (.00074824 -0.00029166 * X2)))))	RCS4 1	166
, ,	267	E = F1 *COS(T1)/SCRT(X)	RCS4 2	200
,	269		8CS4 2	201
2	264	10 El = 5 * 5	RCS 4 2	202
	323	S * X = X	RCS4 2	203
	271	62= (2./X)*E1 - E0	RCS4 2	504
23a	272	SC RETURN	RCS4 2	502
	273	IND	RCS4 2	206

errograms.

274		FUNCTION C(Z)	RCS4 20	07
275	c		RC\$4 20	8
276		IF (Z.GT. 2.) GO TO 10	RCS4 20	9
277		IF (Z.LT2.) GC TO 20	RCS4 21	0
278		AZ = ABS(Z)	RCS4 21	11
274		P = 1.0/(1.0 + .47047*AZ)	RCS4 21	12
280		Y = 1.0 - P*(.3480242 - P*(.0958798 -	7478556*P))*EXP(-AZ*AZ) RCS4 21	13
281		1F (Z) 2,4,6	RCS4 21	14
282	2	c = (1.0 - Y)/2.	RCS4 21	15
283		RETURN	RCS4 21	16
284	4	€ = .5	RCS4 21	17
285		SETURN	RCS4 21	8
236	6	6 = (1.0 + Y)/2.	RCS4 21	9
287		RETURN	RCS4 22	20
285	10	0 = 1.	RCS4 22	21
260		RETUPN	RC\$4 22	22
296	20	t = 0.	RCS4 22	23
241		PETURN	RCS4 22	24
292		LND L-3	-36 RCS4 22	25

The State of

04/26/76

AUTOFLOW CHART SET - FWO/SCL RADSIM

CHART FITLE - NON-PROCEDURAL STATEMENTS

COMMON MOVER, M, NMIN, NMAX, DF, FC, PW, TC

DIMENSION EVVR(512), EVVI(512), FHHR.(512), EHHI(512)

, FREQ(512), SIGMAV(512), SIGMAH(512), PHASEV(512), PHASEH(512)

COMPLEX COEFF1, COSFF2, PHASE1, PHASE2, PHASE3, PHASE4, FFVV, FFHH

, FFVV1, FFHH1, FFVV2, FFHH2, FFVV3, FFHH3, FFVV4, CFVV, CFHH

, YY

1000 FORMAT(3F10.0,15)

1111 FORMAT(1HC, 'A = ', F15.5 , 1CX, 'H = ', F15.5 //
1HO, 'THETA = ', F15.5, 15X, 'PRINT OPTION = ', I5)

L.3 CONE, CYLINDER OR FRUSTRUM

A generalized expression of the far-field scattering from a cone, cylinder, or frustrum has been formulated using the Ruck-Ufimtsev technique (Ref. 3). The resulting expression of the scattered field is the following:

$$\left\{ \sqrt{\sigma} \, e^{i\phi} \, \right\}_{\stackrel{\vee}{H}} = \overline{+}\sqrt{\pi} \quad .$$

$$\left\{ -a_1 \, \left[\, \left[\, J_2(\zeta_1) + i J_1(\zeta_1) \right] C(n_-) + \left[\, J_0(\zeta_1) - i J_1(\zeta_1) \right] B(n_-, \frac{\pi}{2} + \theta) \right] Q(1) \right.$$

$$\left. -a_1 \, \left[\, \left[\, J_2(\zeta_1) - i J_1(\zeta_1) \right] C(n_-) + \left[\, J_0(\zeta_1) + i J_1(\zeta_1) \right] B(n_-, \frac{\pi}{2} - \theta) \right] Q(4) \right.$$

$$\left. -a_2 \, \left[\, \left[\, J_2(\zeta_2) + i J_1(\zeta_2) \right] C(n_+) + \left[\, J_0(\zeta_2) - i J_1(\zeta_2) \right] B(n_+, \alpha + \theta) \right] e^{i\phi} \right.$$

$$\left. -a_2 \, \left[\, \left[\, J_2(\zeta_2) - i J_1(\zeta_2) \right] C(n_+) + \left[\, J_0(\zeta_2) + i J_1(\zeta_2) \right] B(n_+, \alpha - \theta) \right] e^{i\phi} Q(3) \right.$$

$$\left. +a_1 \, \left[\, J_0(\zeta_1) - i J_1(\zeta_1) \right] \frac{1}{2} tan(\alpha + \theta) F(\tau_1) Q(1) \right.$$

$$\left. +a_1 \, \left[\, J_0(\zeta_1) + i J_1(\zeta_1) \right] \frac{1}{2} tan(\alpha - \theta) F(\tau_4) Q(34) \right.$$

$$\left. +a_2 \, \left[\, J_0(\zeta_2) - i J_1(\zeta_2) \right] \frac{1}{2} tan(\alpha + \theta) F(\tau_2) e^{i\phi} Q(1) \right.$$

$$\left. +a_2 \, \left[\, J_0(\zeta_2) + i J_1(\zeta_2) \right] \frac{1}{2} tan(\alpha - \theta) F(\tau_3) e^{i\phi} Q(34) \right. \right\}$$

and for
$$\pi/2 \le \theta \le \pi$$
,

$$\left\{ \sqrt{\sigma} \, e^{i\phi} \, \right\}_{\begin{subarray}{c} V \\ H \end{subarray}} = \, \overline{+} \sqrt{\pi} \quad .$$

$$\left\{-a_1\left[\left[J_2(\zeta_1)+iJ_1(\zeta_1)\right]C(n_-)+\left[J_0(\zeta_1)-iJ_1(\zeta_1)\right]B(n_-,\pi-\alpha-\theta)\right]Q(1)\right\}$$

$$-a_{2}\left[\left[J_{2}(\zeta_{2})+iJ_{1}(\zeta_{2})\right]C(n_{+})+\left[J_{0}(\zeta_{2})-iJ_{1}(\zeta_{2})\right]B(n_{+},\frac{3\pi}{2}-\theta)\right]e^{i\psi}$$

$$-a_{2}\left[\left[J_{2}(\zeta_{2})-iJ_{1}(\zeta_{2})\right]C(n_{+})+\left[J_{0}(\zeta_{2})+iJ_{1}(\zeta_{2})\right]B(n_{+},\theta-\frac{\pi}{2})\right]e^{i\psi}Q(3)$$

$$\pm a_1 \left[J_0(\zeta_1) - iJ_1(\zeta_1) \right] \frac{1}{2} tan(\alpha + \theta) F(\tau_1) Q(1)$$

$$-\frac{1}{4}$$
₂ $\left[J_0(\zeta_2)-iJ_1(\zeta_2)\right]\frac{1}{2}tan(\alpha+\theta)F(\tau_2)e^{i\psi}Q(1)$

where the geometry of the problem is shown in Figure L.3-1 and

$$C(n) = \frac{1}{n} \sin \frac{\pi}{n} \left\{ \cos \frac{\pi}{n} - 1 \right\}^{-1},$$

$$B(n,\phi) = \frac{1}{n} \sin \frac{\pi}{n} \left\{ \cos \frac{\pi}{n} - \cos \frac{2\phi}{n} \right\}^{-1},$$

$${\tau \choose 2} = 2ka {1 \choose 2} \csc \alpha \cos (\alpha + \theta),$$

$$\tau_{\begin{pmatrix} 3\\4 \end{pmatrix}}^2 = 2ka \binom{2}{1} \csc \alpha \cos (\alpha - \theta),$$

$$\zeta_j = 2ka_j \sin \theta,$$

$$\psi = 2kh \cos \theta$$

$$n_{\pm} = \frac{3}{2} \pm \frac{\alpha}{\pi} ,$$

$$Q(1) = Q(2ka_1(\pi - \alpha - \theta)),$$

$$k = 2\pi/\lambda = \text{wave number},$$

Fig. L.3-1 CONE, CYLINDER, OR FRUSTRUM SCATTERING GEOMETRY

Q(3) = Q(2ka₂(
$$\alpha$$
- θ)(θ - π /2)),
Q(34) = Q(2ka₂(α - θ)),
Q(4) = Q(2ka₁($\frac{\pi}{2}$ - θ)).

The above solution to the scattering from a frustrum can simply be reduced to that of a right circular cylinder by setting $F(\tau i)=0$ (i.e., $\alpha=0$). For the case of a large right circular cone, it is important to note that numerical difficulty will be encountered if the above expressions were used to compute the scattered field near and at the conical specular aspect, $\theta=\pi/2-\alpha$. An asymptotic solution to this problem can be expressed as

$$\lim_{\Theta \to \pi/2 - \alpha} \left\{ \sqrt{\sigma} e^{i\phi} \right\}_{V} \simeq -\sqrt{\pi} a_{2} e^{i\psi}.$$

$$\left\{ - \left[J_2(\zeta_2) + iJ_1(\zeta_2) \right] C(n_+) + \left[J_0(\zeta_2) - iJ_1(\zeta_2) \right] \times \left[i\frac{2}{3} ka_2 csc\alpha sin(\alpha + \theta) \right] \right\}.$$

The inputs, outputs, restrictions, and definition of key terms in the subroutine are presented in the following paragraphs.

L.3.1 Inputs

The subroutine inputs are read from cards or passed in a common block. The parameters passed in the common block include NMIN = minimum frequency number, NMAX = maximum frequency number, DF = frequency increment (in MHz) and FC = carrier frequency (in GHz). The inputs read from a card are the following:

1	MATHEMATICAI SYMBOL	VARIABLE	DEFINITION	COLUMNS
Card 1	^a 1	A1	Smaller radius of frustrum (inches)	1-10
	a ₂	A2	Larger radius of frustrum (inches)	11-20
	h ₂	Н2	Height of frustrum (inches)	21-30
		KONFIG	=1 Frustrum =2 Cone =3 Cylinder	31-35
	θ	THETAD	Azimuth angle (degrees)	36-45

L.3.2 Outputs

The data base output consists of four linear arrays, EVVR, EVVI, EHHR, EHHI, which contain the real and imaginary parts of the vertically and horizontally polarized back scattered fields (in meters) at frequency increments spaced DF MHz from NMIN*DF to NMAX*DF.

The frequency, vertically polarized cross section, and horizontally polarized cross section are printed out if the print option KP is positive.

L.3.3 Restrictions

L.3.3.1 Physical Dimensions

All target dimensions should be large with respect to the wavelength of the illuminating field.

L.3.3.2 Output

The output arrays are passed in the Argument List and a value is computed and stored only in locations NMIN to NMAX.

L.3.3.3 Azimuth

The azimuth angle is restricted to the region from 0 to 180 degrees. In addition, although the formulation is mathematically valid at specular points, the correct computational results are not provided at these angles. Thus a small angular offset should be used at angles of 0, 180, and $(\pi/2-\alpha)$ degrees.

L.3.4 Definition of Sample Terms Used in Subroutine

$$FSTCOX = C(n) = \frac{1}{n} \sin \frac{\pi}{n} \left\{ \cos \frac{\pi}{n} - 1 \right\}^{-1}$$

Where
$$n_{\pm} = \frac{3}{2} \pm \frac{\alpha}{\pi}$$

$$FSTCON = C(n_)$$

$$FSTCOP = C(n_+)$$

TAUSQ
$$\begin{cases} 1\\2 \end{cases} = 2ka \begin{pmatrix} 1\\2 \end{pmatrix}$$
 CSC a

$$XOPX11 = J_0(\xi_1) + iJ_1(\xi_1)$$

$$XOPX12 = J_0(\xi_2) + iJ_1(\xi_2)$$

$$Q1 = Q(1) = Q(2ka_1(\pi - \alpha - \theta))$$

SECND 1 = B(n_,
$$\frac{\pi}{2}$$
 + θ)

WHERE = B(n,
$$\emptyset$$
) = $\frac{1}{n}$ sin $\frac{\pi}{n}$ $\left\{\cos \frac{\pi}{n} - \cos \frac{2\emptyset}{n}\right\}$ -1

TERM 1
$$H = -a_1 \left[\left[J_2(\zeta_1) + iJ_1(\zeta_1) \right] C(n_-) + \left[J_0(\zeta_1) - iJ_1(\zeta_1) \right] B(n_-, \frac{\pi}{2} + \theta) \right] Q(1)$$

TERM 4
$$V = -a_1 \left[\left[J_2(\zeta_1) - iJ_1(\zeta_1) \right] C(n_-) + \left[J_0(\zeta_1) + iJ_1(\zeta_1) \right] B(n_-, \frac{\pi}{2} - \theta) \right] Q(4)$$

TERM 2
$$|V| = -a_2 \left[\left[J_2(\zeta_2) + i J_1(\zeta_2) \right] C(n_+) + \left[J_0(\zeta_2) - i J_1(\zeta_2) \right] B(n_+, \alpha + \theta) \right] e^{i\psi}$$

TERM 3
$$\begin{cases} V \\ H \end{cases} = -\mathbf{a}_{2} \left[\left[J_{2}(\zeta_{2}) - \mathbf{i} J_{1}(\zeta_{2}) \right] C(n_{+}) + \left[J_{0}(\zeta_{2}) + \mathbf{i} J_{1}(\zeta_{2}) \right] \right]$$

$$B(n_{+}, \alpha - \theta) e^{\mathbf{i} \psi} Q(3)$$
TERM 5
$$\begin{cases} V \\ H \end{cases} = +\mathbf{a}_{1} \left[J_{0}(\zeta_{1}) - \mathbf{i} J_{1}(\zeta_{1}) \right] \frac{1}{2} tan(\alpha + \theta) F(\tau_{1}) Q(1)$$

WHERE = the upper sign is used for V polarization and the lower sign is used for H polarization

$$ZZ = \left[J_{0}(\zeta_{2}) - iJ_{1}(\zeta_{2})\right] \cdot \left\{\frac{1}{2}\left[i\frac{2}{3}ka_{2}csc\alpha sin(\alpha+\theta)\right]\right\}$$

$$YY = -\left[J_{2}(\zeta_{2}) + iJ_{1}(\zeta_{2})\right]C(n_{+})$$

L.3.5 Subroutines Utilized

Subfunctions:

- 1. FIRS (XN) computes c(n)
- 2. SECO (PHI, XN) computes B (n, Ø)
- 3. Q(X) computes the Q function value with argument x
- 4. F (TAU) computes the F (au) function value

Subroutines:

BESL (ARG1, XJ0, XJ1, XJ2) returns

Jo (ARG1) in XJ0 J1 (ARG1) in XJ1 J2 (ARG1) in XJ2

```
SUBROUTINE TARGET ( EVVR, EVVI, EHHR, EHHI, THETAD)
        * * GENERALIZED PROGRAM FOR A FRUSTRA, CONE, OR CYLINDER
0
                 (UFIMTSEV SOLUTION FOR CW)
                 = FRONT-END RADIUS (INCHES)
          H1
                 = BACK-END RADIUS (SHOULD, BE . GE. A1) - (INCHES)
          A2
                 = TOTAL LENGTH (INCHES)
          ALPHA = CONE OR FRUSTRA HALF ANGLE (DEGREES)
                 = CARRIER FREQUENCY (GHZ)
          FREQ
          DELTHT = ASPECT ANGLE INCREMENT (DEGREES) - (.GE.
          KONFIG = TARGET CONFIGURATION
                     1 = FRUSTRA
                     2 = CONE
                     3 = CYLINDER
   * * * ALL DIMENSIONS ARE IN INCHES AND ANGLES ARE IN DEGREES
      COMMON MOVER, M. NMIN, NMAX, DF, FC, PW, TO
      NMIN = MINIMUM FREQUENCY SAMPLE
      NMAX = MAXIMUM FREQUENCY SAMPLE
C
         = FREQUENCY INCREMENT IN MHZ
      FC = CARRIER FREQUENCY IN GHZ
      DIMENSION EVVR(512), EVVI(512), EHHR(512), EHHI(512),
                 FREQ(512), SIGMAV(512), SIGMAH(512)
0
      COMPLEX PHASE, MOPX11, MOMX11, MOPX12, MOMX12, M2PX11, M2MX11,
              X2PX12, X2MX12, TERM1V, TERM1H, TERM2V, TERM2H, TERM3V,
              TERMSH, TERM4V, TERM4H, TERM5V, TERM5H, TERM6V, TERM6H.
              TERMIN, TERMINH, TERMIN, TERMINH, FFVV, FFHH, F, FTAU1,
              FTAU2, FTAU3, FTAU4
                                       JXX, YY, ZZ
C
C
      READ(5,1000) A1, A2, H2, KONFIG, KP
 1000 FORMAT( 3F10.0,215 )
      ALP
            = A2 - A1
      ALPHA = ATAM2(ALP, H2)
             = 3.14159265358979
      FI
      ANGLE = (ALPHA * 180.0) / PI
C
      IF (KONFIG - 2) 30, 40, 50
   30 WRITE (6, 3030) H2, A1, A2, ANGLE
 3030 FORMAT (1H0///
                             FRUSTRA (UFIMTSEV SOLUTION)/77/
     1A LENGTH = ", F10. 6," INCHES" / FRONT-END RADIUS = ", F10. 6," INC
     2HES'/' BACK-END RADIUS = ',F10.6,' INCHES'/' FRUSTRA HALF-ANG
3LE = ',F10.6,' DEGREES')
      GO TO 60
   40 WRITE (6, 3040) H2, A2, ANGLE
                               CONE (UFIMTSEV SOLUTION)' //
 3040 FORMAT (1H0///
                                                                      CONE
     1 LENGTH = ', F10. 6,' INCHES'/'
                                             BASE RADIUS = ', F10. 6,' INCH
     2E5' /'
                CONE HALF-ANGLE = ', F10. 6,' DEGREES')
      GO TO 60
                                 L-31
   50 WRITE (6, 3050) H2, A2
```

```
3050 FORMAT (1H0///
                            CYLINDER (UFIMTSEV SOLUTION)'//' CYLIND
    1ER LENGTH = ', F10. 6,' INCHES'/' CYLINDER RHDIUS = ', F10. 6,' IN
     20HES()
C
   60 WRITE (6, 79) THETAD
   79 FORMAT(1H0, ' THETA = ' , E15.5 /// )
C
           ≈ 11.80285078
      DIR
           = PI / 180.0
      PISORT = SORT(PI)
      PIOVR2 = PI / 2.0
              = 2.0* A1
      A12
      A22
              = 2.0* A2
      H22 = 2.0* H2
      XNPOS = (3.0 / 2.0) + (ALPHA / PI)
      XNNEG = (3.0 / 2.0) - (ALPHA / PI)
C
      COMPUTE C(N)
      FSTCOP = FIRS(XNPOS)
      FSTCON = FIRS(XNNEG)
      THETA = THETAD * DTR
      STHT
            = SIN(THETA)
      CTHT
            = COS(THETA)
      APT
            = ALPHA + THETA
      AMT
            = ALPHA - THETA
      TANAPT = TAN(APT)
      TANAMT = TAN(AMT)
      TWOFIC
              = 2.0 * PI / C
0
      DO 200 I = NMIN, NMAX
      XI
             = I - 1
             = TWOPIC * XI * DF / 1000.0
      XK0
      X2KA1
             = A12 * XK0
      X2KA2
              = A22 * XK0
      X2KH2
              = H22 * XK0
C
      IF (KONFIG . EQ. 3) GO TO 70
      TAUSQ1 = X2KA1 / SIN(ALPHA)
      TAUSQ2 = X2KA2 / SIN(ALPHA)
   70 CONTINUE
3
           = PIOVR2 - ACOS(0.8 * COS(ALPHA) / X2KH2)
      WAPT
           = X2KA1 * STHT
      ARG1
      ARG2
           = X2KA2 * STHT
      FASE
             = X2KH2 * CTHT
      PHASE = CMPLX (COS(FASE), SIN(FASE))
      CALL BESL (ARG1, XJ01, XJ11, XJ21)
      CALL BESL (ARG2, XJ02, XJ12, XJ22)
C
      XOPX11 = CMPLX(XJO1, XJ11)
      XOMX11 = CMPLX(XJO1, -XJ11)
      X0PX12 = CMPLX(XJ02, XJ12)
      X0MX12 = CMPLX(XJ02, -XJ12)
      X2PX11 = CMPLX(XJ21, XJ11)
      X2MX11 = CMPLX(XJ21, -XJ11)
      X2PX12 = CMPLX(XJ22, XJ12)
      X2MX12 = CMPLX(XJ22, -XJ12)
```

```
= Q(X2KA1 * (PI - APT))
      01
             = Q(X2KA1 * (PIOVR2 - THETA))
      04
      03
             = Q(X2KA2 * ((THETA+THETA-PI) * (-AMI)) / (PIOVR2-ALPHA))
      03A
             = Q(X2KA2 * AMT)
C
      IF (THETA . GT. PIOVR2) GO TO 90
      DEFINE ANGLES FOR THET . LT. 90 DEGREES
             = PIOVR2 + THETA
      PHI1
      FHI4
             = PIOVR2 - THETA
            = APT
      PHI2
      GO TO 98
      DEFINE ANGLES FOR THET . GT. 90 DEGREES
   90 \text{ PHI1} = \text{PI-AFT}
      PHI4
             = 0.0
      PHI2 = (3.0 * PIOVR2) - THETA
   98 IF ( 03A .EQ. 0.0 ) GO TO 99
      PHI3 = AMT
      GO TO 100
   99 PHI3 = PIOVR2 - THETA
C
0
      COMPUTE B(N, FHI)
  100 SECND1 = SECO(PHI1, XNNEG)
      SECND4 = SECO(PHI4, XNNEG)
      SECND2 = SECO(PHI2, XNPOS)
      SECND3 = SECO(PHI3, XNPOS)
      TERM1V = 0.0
      TERM1H = 0.0
      TERM4Y = 0.0
      TERM4H = 0.0
      TERM5V = 0.0
      TERM5H = 0.0
      TERM6V = 0.0
      TERMEH = 0 0
      TERM7V = 0.0
      TERM7H = 0.0
      TERMSV = 0.0
      TERMSH = 0.0
      IF (KONFIG . EQ. 2) GO TO 120
      TERMIV = -A1 * ((X2PX11 * FSTCON) + (X0MX11 * SECND1)) * Q1
      TERM1H = -A1 * ((X2PX11 * FSTCON) - (X0MX11 * SECND1)) * Q1
      TERM4V = -81 * ((X2MX11 * FSTCON) + (X0PX11 * SECND4)) * Q4
      TERM4H = -H1 * ((X2MX11 * FSTCON) - (X0PX11 * SECND4)) * Q4
  120 TERM2V = -A2 * ((X2PX12 * FSTCOP) + (X0MX12 * SECND2)) * PHASE
      TERM2H = -A2 * ((X2PX12 * FSTCOP) - (X0MX12 * SECND2)) * PHASE
      TERMSV = -A2 * ((X2MX12 * FSTCOP) + (X0PX12 * SECNDS)) * Q3*PHASE
      TERM3H = -A2 * ((X2MX12 * FSTCOP) - (X0PX12 * SECND3)) * Q3*PHASE
      IF (KONFIG . EQ. 3) GO TO 130
      IF (KONFIG . EQ. 2) GO TO 140
      THIS SECTION NOT DONE FOR CYLINDER OR CONE
      TAU1 = TAUSQ1 * COS(APT) 1-33
```

```
= TAUSQ1 * COS(AMT)
      TAU4
      FTAU1
            = F(TAU1)
      FTAU4 = F(TAU4)
      TERM5V = A1 * TANAPT * X0MX11 * FTAU1 * 0.5 * 01
      TERMSH = -TERMSV
      TERM6V = A1 * TANAMT * X0PX11 * FTAU4 * 0.5 * 03A
      TERMEH = -TERMEY
      THIS SECTION NOT DONE FOR CYLINDER
                   DONE FOR CONE
  140 TAU2
             = TAUSQ2 * COS(APT)
             = TAUS02 * COS(AMT)
      FTAU2
            = F(TAU2)
      FTAU3
            = F(TAU3)
      TERM7V =-A2 * TANAFT * X0MX12 * FTAU2 * 0.5 * 01 * PHASE
      TERM7H = -TERM7V
      TERMSV =-A2 * TANAMT * XOPX12 * FTAU3 * 0.5 * Q3A* PHASE
      TERMSH = -TERMSV
      IF (KONFIG - 2) 130, 56, 130
   56 IF (ABS(APT-PIOVR2) GT. WAPT ) GO TO 130
      THIS SECTION USED TO COMPUTE CONE RETURN NEAR SPECULAR TO
C
                   CONIC SURFACE (THET NEAR (PI/2)-ALPHA)
              = CMPLX(0 0,1 0)
              = X0MX12 * XX * TAUSQ2 * SIN(APT) /3.0
              =-X2PX12 * FSTCOP
      44
      FFVV
              =-PISORT * A2 * PHASE * ( YY + ZZ)
      FFHH
              = PISORT * A2 * PHASE * ( YY - ZZ)
      60 TO 55
  130 FFVV
                      PISORT * (TERM1V + TERM2V + TERM3V + TERM4V +
                                TERMSV + TERM6V + TERM7V + TERM8V )
    1
      FFHH
                      PISORT * (TERM1H + TERM2H + TERM3H + TERM4H +
                                TERMSH + TERM6H + TERM7H + TERM8H )
C
   55 CONTINUE
               = FFVV * 0.02540005
      FFVV
      FFHH
               = FFHH * 0.02540005
      EVVR(I) = REAL (FFVV)
      EVVI(I) =-AIMAG(FFVV)
      EHHR(I) = REAL (FFHH)
      EHHI(I) =-AIMAG(FFHH)
      IF (KP) 77, 77, 78
   78 FREQ(I) = XI * DF / 1000.0
      SIGMAV(I) = 10.0*ALOG10(EVVR(I)*EVVR(I) + EVVI(I)*EVVI(I))
      SIGMAH(1) = 10.0*ALOG10(EHHR(1)*EHHR(1) + EHHI(1)*EHHI(1))
   77 CONTINUE
C
  200 CONTINUE
C
C
      IF (KP) 75, 75, 76
   76 WRITE (6, 74) ( FREQ(I), SIGMAV(I), SIGMAH(I), I= NMIN, NMAX )
C
   74 FORMAT (1H0, 3E15.5)
   75 CONTINUE
                                     L-34
C
```

. .

```
RETURN
      END
      FUNCTION FIRS(XN)
      FI = 3.14159265358979
           = (SIN(PI / XN)) / XN
            = 1.0 / (COS(PI / XN) - 1.0)
      FIRS = A * B
      RETURN
      END
      FUNCTION SECO(PHI, XN)
      PI
          = 3.14159265358979
            = (SIN(PI / XN)) / XN
            = COS(PI / XN) - COS((2.0 * PHI)/ XN)
      C
            = 1.0 / B
      SEC0 = A * C
      RETURN
      END
      FUNCTION Q(Z)
      Q(Z) = 0.5*(1 + ERF(Z))
    * ERF(Z) IS EVALUATED USING A RATIONAL POLYNOMIAL APPROXIMATION
C
    * REFERENCE (HANDBK MATH FUNCT BY ABRAMOWITZ AND STEGUN,
C
                 SECTION 7. 1. 26)
C
      IF ( Z. GT. 2. ) GO TO 10
     IF ( Z.LT. -2. ) GO TO 20
     AZ = ABS(Z)
      P = 1.07(1.0 + .47047*AZ)
     Y \approx 1.0 - P*(.3480242 - P*(.0958798 - .7478556*P))*EXP(-AZ*AZ)
      IF (Z) 2,4,6
    2 0 = (1.0 - Y)/2.
     RETURN
    4 0 = 5
      RETURN
    6 0 = (1.0 + Y)/2
      RETURN
   10 0 = 1.
      RETURN
   20 0 = 0.
      RETURN
      END
      SUBROUTINE BESL ( X, B0, B1, B2 )
    * BESSEL FUNCTION SUBROUTINE UTILIZING POLYNOMIAL APPROXIMATIONS
    * COMPUTES J0, J1, OR J2 FOR POSITIVE REAL ARGUMENTS
    * REFERENCE (HNDBK MATH FUNCT BY ABRAMOWITZ AND STEGUN SECTION 9.4)
      5 = 1.0
      IF (X . LT. 0.0) S = -1.0
      X = ABS (X)
      IF ( X . GT. 1. E-6 ) GO TO 5
      B0 = 1.0
     B1 = 0.0
      B2 = 0.0
      X = X * 5
      RETURN
C
                            F-32
    5 CONTINUE
```

THE WAY

```
C
               1 IF ( X . GE. 3. ) GO TO 9
                      X1 = X/3
                     X1 = X1*X1
                      B = 1. + X1*(-2.2499997 + X1*(1.2656208 + X1*(-.3163866 + X1*(.0444479)))
                   1 + X1*(-.0039444+ X1*2.1E-4 )))) )
                     GO TO 10
C
               9 X2 = 3.7X
                      F0 = .79788456 + X2*(-.77E-6 + X2*(-.00552740 + X2*(-.9512E-4 + X2*(-.9512E-
                                     (.00137237 +X2*(-.72805E-3 +X2*0.14476E-3 )))) )
                     T0 = X - . 78539816 +X2*(-. 04166397 +X2*(-. 3954E-4 +X2*(. 00262573
                                    +X2*(-,00054125 +X2*(-,00029333 +X2*0,00013558 )))))
                      B = F0*COS(T0)/SQRT(X)
C
           10 B0 = B
C
               2 IF ( X . GE. 3. ) GO TO 19
                      X1 = X/3
                      X1 = X1*X1
                       B = X*(...5 + X1*(-...56249985 + X1*(...21093573 + X1*(-...03954289 + X1*(-...03964289 + X1*(-...03964489 + X1*(-...03964489 + X1*(-...0396489 + X1*(-
                                                                               (.00443319 +X1*(-.31761E-3 +X1*0.1109E-4))))) )
                   1
                      GO TO 20
0
            19 X2 = 3.7X
                     F1 = .79788456 + X2*(.156E-5 + X2*(.01659667 + X2*(.00017105 + X2*)
                                       (-.00249511 +X2*(.00113653 -.00020033*X2 )))))
                     T1 = X - 2.35619449 + X2*(.12499612 + X2*(.565E-4 + X2*(-.00637879)
                                   +X2*(,00074348 +X2*(,00079824 -0,00029166*X2 )))))
                      B = F1*COS(T1)/SQRT(X)
C
            20 B1 = B * 5
                       X = X * S
                       B2= (2.7X)*B1 - B0
            50 RETURN
                       END
                       COMPLEX FUNCTION F(TAU)
C
3
                       COMPUTES FTAU WHERE FTAU =(EXP(-J*TAU**2)/2*TAU)*SQRT(PI/2.)*
C
                                                                                                                          (C2(TAU**2) + J*52(TAU**2))
C
                       COMPLEX B, FP
                       PI = 3.14159265358979
                       PI02 = PI/2.
                       C1 = SQRT(PI/2.)
                       02 = 1.701
                       ATAUS = ABS(TAU)
                       IF (ATAUS . LE. 0.5 )GO TO 20
C
C
                       FOR TAUS . GT. 0.5, FUNCTION COMPUTED USING POLYNOMIAL
C
                * REFERENCE (HANDBK MATH FUNCT BY ABRAMONITZ AND STEGUN,
C
                                                                 SECTIONS 7. 3. 9, 7, 3, 10, 7, 3, 32, 7, 3, 33)
                       TAUS = SQRT(ATAUS)
                       X = C2*TAUS
                       X5 = X*X
C
                       FX = (1.0+0.926*X)/(2.0+1.792*X+3.104*X5)
                      GX = 1. 0/(2. 0+4, 142*X+3. 492*X5+6. 67*X*X5) 4-36
```

```
C
      CC1XS = COS(ATAUS)
      SC1XS = SIN(ATAUS)
      CX = 0.5 + FX*SC1XS - GX*CC1XS
      SX = 0.5 - FX*CC1XS - GX*SC1XS
C
      IF (TAU .LT. 0.0) GO TO 10
      B = CMPLX(CX, SX)
      FP = CMPLX( COS(ATAUS), -SIN(ATAUS) )
      F = (C1*B*FP)/TAUS
      RETURN
C
   10 CONTINUE
      B = CMPLX(SX, CX)
      A = ATAUS-PIO2
      FP = CMPLX( COS(A), SIN(A) )
      F = (B*FP*C1)/TAUS
      RETURN
C
   20 CONTINUE
      FOR TAUS . LE. 0.5, FUNCTION IS EXPANDED IN SERIES AND FIRST FEW
C
C
                         TERMS INTEGRATED TERM BY TERM TO OBTAIN RESULT
      FP = CMPLX(COS(TAU), -SIN(TAU))
      TS = TAU*TAU
      FR = 1 - TS*(.1 - .0046296296*TS)
      FI = TAU *( .333333333 - TS*(.0238095238 - 7.57575757E-4*TS))
      B = CMPLX(FR, FI)
      F = FP*B
      RETURN
                               L-37
      END
```

CHART TITLE - SUERBUTINE TARGETIEVVR, EVVI, FHHR, SHHI, THETAL)

L-38

GENERALIZED PROGRAM FOR & FRUSTRA, CONE, OR CYLINDER * * * (UFIMTSEV SOLUTION / TARGET / FOR CWI

PADIUS (SHOULD RE GE. AL) - (INCHES) AI = FRUNT-END RADIUS (INCHES)

= TOTAL LENGTH (INCHES)

FRUSTRA HALF ANGLE ALPHE = CONE OR (DEGREES)

INCREMENT (DEGREES) -CELTHT = ASPECT ANGLE = CASRIER FREDUFACY (GHZ)

KONFIG = TARGET CONFIGURATION = FRUSTRA

(.GF. 0.1)

= CONE

3 = CYLINEER

* * * * ALL
DIMENSIONS ARE IN
INCHES AND ANGLES AVE
IN DEGREES * * *

/ WRITE TO DEV / 3040 / FROM THE LIST VIA FORMAT *<---90.60

******** ********* NOTE * LIST = H2, A2, ANGLE

... 60 .10.03.

NMIN = MINIMUM FREGUENCY SAMPLE NMAX = MAXIMUM

/ WRITE TO DEV NOTE / SCSC / SCR THE LIST / VIA FURMAT .10.03. * <----30 -... 50 10.01. KUNFIG * (0) 3 00 # ! + 4.0 / REAL FROM DEV (ALPHA*18C.0)/PI 3.14159265354479 / INTO THE LIST / ALP = A2 - A1 ATANZ (ALF, H2) / VIA FURMAT P1 =

1,000

NMIN = MINIMUM FREQUENCY SAMPLE NMAX = MAXIMUM FREQUENCY SAMPLE OF = FREQUENCY INCREMENT IN MHZ FC = CARRIER FREQUENCY IN GHZ

CHART 111LF - SURROUTINE TARGET (EVVR, EVVI, EHHR, EHHI, THETAE)

*<	CTHT = CCS(THETA)	APT = ALPHA +	THETA	AMT = ALPHA -	TANAPT = TAN(APT)	*	- 10	TANAMT = TAN(AMT)	TWOPIC = 2.0*PI/C	**		NOTE 11	* * * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * * * * * *	10>1
ļ	_	04.06>*	/ WRITE 10 DEV /	VIA FORMAT /	/ 3050 / / FROM THE LIST /		NOTE 0	* * * * L	**		1 60 (80.40	/ WRITE TO DEV /	1 / 9 / /	75 /	/ FROM THE LIST /	

17,000

```
X2KH2 = H22*XK0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         X 2KA 2 / SIN (ALPHA)
                                                                                                                   X2KA2 = A22*XKO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         X ZKA 1 / STN (ALPHA)
                                                                                             X2KA1 = A12*XKO
                                                    XK.0 = TWOPIC*XI*DF/
                                                                                                                                                                                                                                                                                                                                                                               FALSE
                                                                                                                                                                                                                                                                                                                           KUNFIG .FG.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CCNTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               TAUSOZ =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                TAUSG1 =
                                                                         10000
                               XI = 1
13.10--->
                                                                                                                                                                                                                                                                                                                 TRUE
                                                                                                                                                                                                                                                   90
                                                                                                                                                                                                                                                                                                                                                                                                 67
                                                                                                                                                                                   PISGET = SURT(PI)
                                                                                                                                        C = 11.90285078
                                                                                                                                                                                                        PICVR2 = PI/2.0
          NOTE
                                                                                                                                                              0.18 = 01/180.0
                               LIST = THETAD
                                                                                                                                                                                                                                                                                                                                      (3.0/2.0) + (ALPHA/P1)
                                                                                                                                                                                                                                                                                            A22 = 2.0*A2
                                                                                                                                                                                                                                                                                                                 HTT = 5.0*H?
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FIRS (XNPOS)
                                                                                                                                                                                                                                                                       A12 = 2.0*A1
                                                                                                                                                                                                                                                                                                                                                                                                                                (3.0/2.C) -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FSTCOP =
                                                                                                                                                                                                                                                                                                                                                                                                                       XNNEC =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CLMPUTE CINI
```

X2NA1/SIN(ALPHA) X2NA1/SIN(ALPHA) X2NA2/SIN(ALPHA) X2NA2/SIN(ALPHA) X2NA2/SIN(ALPHA) X	CLMPUTE C(N) FSTCON = FIRS(XNPG) FIRS(XNPG) FIRS(XNNEG) THETA = THETA
15	
IFALSE	
*	XNPDS = (3.072.0) + (ALPHA/PI)
*	A22 = 2.0*A2 H22 = 2.0*H2
*	A12 = 2.0*A1
7.4.7.X	11 1
**	11911803 = 13

L-39

CHART TITLE - SUERCULINE TARGET (EVVR, EVVI, EMMR, EHMI, THETAD)

	/ 66 /	16 PHI3 = PIOVR2 - THEIA		COMPUTE B(N,PHI)	100 17 *	SECOTPHII, XNNEG) SECOTPHII, XNNEG) SECOTPHII, XNNEG)	SECND2 = SECO(PHIZ, XNPOS)	18	SECND3 = SECO(PHI3, XNPOS)	*	TERMIV = 0.0	TERMIH = 0.0	TERM4H = 0.0	TERMSV = 0.0
											60	G(X2KA1*(P) - APT)	04 = 04 = 04 = 04 = 04 = 04 = 04 = 04 =	THETA!) 03 = G(X2KA2*((THETA + THETA -
L-40	16.17>*	MAPT = PICVS2 - ACOS(0.8*CC)S	APCI = X2KAI*STHT	ARC2 = X2KA2*5THT	62 	PHASE = CMPLX(COS(FASE), SIN(FASE))			EFSL H (ARG1, XJ01, H (O XJ11, XJ21) H		3	- (ARCZ,XJOZ, H O XJ12,XJ22) H		*

CHART TITLE - SUBROUTINE TARGET(EVVR, EVVI, EHHR, EHHI, THETAD)

					*^	*		* *
TRUE * * * * * * * * * * * * * * * * * * *		THIS SECTION NOT DONE FOR CYLINDER OR CONE 1 07	TAUS TAUS (APT)	TAUSO1*COS(AMT)	FTAU1 = F(TAU1)	FTAU4 = F(TAU4)	80	TERMSV =
TERMIV = - 01 AI*((X2PXII)* FSTCON) + (XCMXII*SECNDI)) #Q1 TERMIH = - AI*((X2PXII)* FSTCON) - (XCMXII*SECNDI))	0.2	TERM4V = - A1*((X2MX11* FSTCON) + (XOPX11*SECND4))	TERM4H = -	(X0PX]1*SECND4))		*	11.21> 120 03	TERM2V = -

upian.

William S

2

.

4. A. C.

... 55

.13.03.

:

CHART TITLE - SUFRCUIINE TARGET (LVVR, EVVI, EMHR, EMHI, THETAN) L-42

	10	†			- 1	†	02	1 -			-	- +			60	*	*	*	40	
		! .	+	+ +		!		!		+ +	+				_	*		*		
1		1	Mak	MY					HH	CK	MTH				NOTE	*		*		
01		1 2	2 0	Z. 0	841			1 11	Σ. 0	Y	ER	=			ž	*	NUE	*		
13		1 -			K M8		-	1	-			2.	 _			×	-	* -	 -	
	î	1 > #			انما			1	*	+ +		1		1	•	*	CONT	*	-	
1	*	1 4 4	2	34V	-			L	K C	7 H	10	-					03	*	1	
' '	12.05	3	X	XX					SOR	EE	E			-	2 50			*	i	
	•	-	WI L	11 14					– 1	u u	L				•	~			i	
	=		-						4 -		_		*	5	•	*		*	1	
	•	+			- 4	•	,	-			-	- *				*	*	*	*	

- ACTION S

10 M

AUTOFLOW CHART SET - FWO/SCL RADSIM

CHART TITLE - NON-PROCEDURAL STATEMENTS

COMMON MOVER, M., NMIN., NMAX., DF., FC., PW., TO

DIMENSION EVVR(512), EVVI(512), EMMR(512), EMM1(512),

FREQ(512), SIGMAV(512), SIGMAH(512)

COMPLEX PHASE, XOPX11, XOMX11, XOPX12, XOMX12, X2PX11, X2MX11, X2PX12, X2MX12, TERM1V, TERM1H, TERM2V, TERM2H, TERM3V, TERM3H, TERM4V, TERM4H, TERM5V, TERM5H, TERM6V, TERM6H, TERM7V, TERM7H, TERM8V, TERM8H, FFVV, FFHH, F, FTAU1, FTAU2, FTAU3, FTAU4 ,XX,YY,ZZ

1000 FURMAT(3F10.0,215)

3030 FDRMAT (1H0///* FRUSTRA (UFIMTSEV SOLUTION)*//* FRUSTR
A LENGTH = *,F10.6,* INCHES*/* FRONT-END RADIUS = *,F10.6,* INCHES*/* FRUSTRA HALF-ANG
LE = *,F10.6,* DEGREES*)

3040 FORMAT (1H0///* CONE (UFIMTSEV SCLUTION)*//* CONE

LENGTH = ",F10.6," INCHES*/* BASE KADIUS = ",F10.6," INCH

ES*/* CONE HALF-ANGLE = ",F10.6," DEGREES")

3050 FORMAT (1H0///* CYLINDER (UFIMTSEV SOLUTION)*//* CYLIND
ER LENGTH = *,F10.6,* INCHES*/* CYLINDER RADIUS = *,F10.6,* IN

79 FCRMAT (1HO, * THETA = * , E15.5 ///)

1-43

AUTUFLOW CHART SET - FWO/SCL RADSIM

CHART TITLE - FUNCTION FIRS(XN)

1-44

CHART TITLE - FUNCTION SECO(PHI, XN)

AUTOFLOW CHART SET - FWO/SCL RADSIM

1-45

1 04 * FXIT *

SHATTLE - FUNCTION GEZ.

G(Z) = 0.5*(1 + ERF(Z)) * ERF(Z) 1S EVALUATED USING A RATIONAL POLYNOMIAL APPROXIMATION * REFERENCE (HANDEK MATH FUNCT EV ABRAMOWITZ AND STEGUN, * SECTION

20

- North Carlo

CHART TITLE - SUBROUTINE BESL(X, 80,81,82)

BESL

* BESSEL FUNCTION SUBROUTINE UTILIZING POLYNOMIAL APPROXIMATIONS * COMPUTES JO.JI.OR JZ FOR POSITIVE REAL ARGUMENTS * REFERENCE (HNDBK MATH FUNCT BY ABRAMCWITZ AND STEGUN SECTION 9.4)

C. C. W.

02 60 5 = 1.0

050 04 TRUE X = ABS(X) 5 = - 1.0 x .LT. 0.0 FALSE *

	×	+ 95	+ 04	+ +-	37 +	31111			0	1	73 +	VI
-	= 3./X	97884	.77E-	9512E	01372	476E-	- -	 X =	41663	3954E	02625	14500
0	x2	7.	10	*(-,	*(.0	0.14		10	0.1	*(1	0.0	0.1
,		FO		×	×	X 2 X	-*		N	×	× 5	V

with the S

CHART TITLE - CHAPLEX FUNCTION F (TAU)

L- 48

TERMS INTEGRATED TERM **松** * * * * * * * * * * * * FCR TAUS .LF. 0.5. FUNCTION IS "XPANDED IN SERIES AND FIRST CMPLY (COS (TAU), -FR = 1 - 15*(.1 -.0046296296*15) EY TERM TO LETAIN RESULT TS = TAURTAU * * * * * COALINES CNTINUE # d4 Mod TRUE 62 COPPLIES FIRD WHERE 3.14149265355474 C1 = S&R1(P1/2.) ATAUS = 485(TAU) F112 = P1/2. FALSE C2 = 1./C1 ATAUS .LE. P.1 =

44 PM 3

					>* NOTE 15 + + + + + + + + + + + + + + + + + + +	#
00	#	* FX11 *	***	CX = 0.5 +	* * * * * * * * * * * * * * * * * * *	(c) * - 1 1 1 1 1 1 1 1 1 1
+ FALSE	FOR TAUS .GT. C.5. FUNCTION COMPUTED USING POLYNOMIAL * REFRENCE (HANDEK MATH FUNCT RY AFRAMOMITZ AND	SECTIFIES 7.3.5.7.3.10,7.3.32, 7.3.33)	SCRT(ATAUS) X = C2*TAUS * **	FX = (1.6 + 0.926*X)/(2.0 + 1.792*X + 3.104*XS) EX = 1.0/(2.0 + 1.42*X + 3.492*X + 3.492*X + 6.67*X*X)	#	*
	, 2					

SCRT (ATALS)

CHART TITLE - NUN-PRECETURAL STATEMENTS

	CLMPLEX F. FP	
sen:	SCUTINE TARGET (EVVº. EVVI, ELDE, EPFI, THETAE)	RCS5 001
u		* RCS5 002
* * * * ()	* GENERALIZED PROGRAM FOR A FRUSTRA, CONF. OR CYLINDER * *	* * * RCS5 003
Ú	(UFIMISEV SOLUTION FOR CW)	* RCS5 004
U		* RCS5 005
U	AI = FRONT-END CAPTUS (INCHES)	* RCS5 006
v	AZ = BACK-END RAFIUS (SHOULD DE .CE. AI) - (INCHES)	* RCS5 007
ر	HZ = TOTAL LENGTH (INCHES)	* RCS5 CO8
Ü	ALPHA = CL'VE LR FPUSTRA MALF ANGLE (DEGREES)	* RCS5 009
J	FREG = CARRITE FFECUTNCY (GHZ)	* RCS5 010
J	CELTHT = ASPECT ANCLF INCREMENT (DEGREES) - (.GE. 0.1)	* RCS5 011
U	KENFIG = TARGET CENFIGURATION	* RCS5 012
Ü	1 = FRUSTRA	* RCS5 013
ı.	away m c	* RCS5 014

* RCS5 015

* RCS5 016

THE WAY A WASHINGTON AND THE INTEREST AND AND LOSS TO THE TWO DESCRIPTION OF WAY DICK OLD

= CYLINDER

	* RCS5 016	ARE IN DECREES * * * RCS5 017	* RCS5 018	RCSS 019	RC55 020	RCS5 021	RCS5 022	RCS5 023	FHHI(512), RCS5 024	2) RCSS 025	RCS5 026	2, X2PX11, X2MX11, RCS5 027	2V, TERM2H, TERM3V, RCS5 028	54, TERMOV, TERMOH, RCS5 029	, FEMM, E, ETAU1, RCSS 030	RCS 5 031	* RCS5 032	* 4CS5 033	* °CSS 034	RCSS C35	950 4336	260 9508	860 3338	46.55 039	4CS3 C4C	* KCS5 041	
		DIMENSIONS ARE IN INCHES AND ANGLES		MCVER, M. NMIN, MMAX, DF, FC. PW, TO	MINIMUM FREDUFYCY SAMPLE	MAXIMUM FREQUENCY SAMPLE	FREQUENCY INCREMENT IN MHZ	CARRIER FREGUENCY IN G12	ICN EVVR(512), FVVI(512), FHHR(512), FHHI(512),	FREC(512), SIGMAV(512), SIGWAH(512)		C PHASE, XOPYII, XOYXII, XOPXIZ, XOMXIZ, X2PXII, X2MXII,	X2PX12, X2MX12, TERMIV, TERMIH, TERM2V, TERM2H, TERM3V,	TERMSH, TERMAY, TIGNAGO, TIGNEY, TIGNEY, TERMEY, TERMEH,	TERMTV, TERRITY, TERMSV, TERNSH, FEVV,	FIALS, FIAUS, FIAUS ,XX,YY,ZZ				1600) A1, A7, HP, KPACIS, KP	CDPM411 3F10.6+.15)	= 42 - 41	= 11 PN2 (ALM, WI)	= 3.14154267355474	= (ALP54 * 185.0) / 01		
	٠	Crarable	U	CLAMEN	c nmin =	C NMAX =	C (F =	= 3y 3	LIMENSICA	,	U	COMPLEX	-	.7	e)	,	()	U	U	9EAL (5,1600)	1000 CDPM411	ALF	41014	F.1	1701	U	
306	305	304	310	311	312	313	314	315	310	317	318	319	320	321	322	323	324	326	326	722	328	324	330	331	332	68.83	

1 n'

2	04/26/76	INPUT LISTING	AUTOFLEW CHART SET - FND/SCL	RADSIM
	CARE NO	**	CONTENTS	**
L-40	348	v		* RCS5 056
No	2	5C WRITE (6, 3C5U) HZ, A2		8655 057
	350	3050 SPRMAT (1H0///*	CYLINGER (UFINISEV SCLUTIGM) 1/7.	CYLINDRCSS 058
	351	15R LENGTH = ",F10.6," INCHES"/"	CYLINDER RACIUS	= ",F10.6," INRCSS 059
	352	2CHES*)		RCS5 060
	353	U		* RCS5 061
	354	6C WRITE (6, 74) THETAD		8655 062
	355	79 FORMAT(1HG, * THETA = *	, e15.5 ///)	RCS5 063
	356	U		* RCS5 064
	357	c = 11.60285078		RCS5 065
	358	ETR = PI / 180.0		RCS5 066
	359	PISERT = SURT(PI)		RCS5 067
	360	PICVR2 = PI / 2.0		RCSS C68
	361	A12 = 2.0* b1		RCS5 069
	362	A22 = 2.0* A2		RCS5 070
	363	H22 = 2.0* H2		RCS5 071
	364	XNPUS = (3.0 / 2.0) + ((ALPHA / 01)	RCS5 072
	365	XNNFG = (3.0 / 2.0) - ((ALPHA / PI)	RCS5 073
	366	C COMPUTE C(N)		RCS5 074
	367	FSTCOP = FIRS(XNPOS)		RCS5 075
	368	FSTCON = FIRS(XNNEG)		RCS5 076
	364	THETA = THETAD * DT9		RCS5 077
	026	STHT = SIN(THETA)		RCS5 078

10 mm

PCS5 077	RCSS 078	RCS5 079	RCS5 080	PCS5 081	RCS5 082	RCS5 083	RCS5 084	* RCS5 085	RCS5 086	RCS5 087	0.0 RCS5 088	RCS5 089	RCS5 090	RCS 5 041	* RCS5 092	RCS5 093	RCS5 094	RCS5 095	960 4838	* RCS5 097	COS(ALPHA) / X2KH2)	RCS5 099	RCS5 100	RCS5 101	ASE1)	* PCS5 103	
= THETAD	= SIN(THET	C1HT = COS(THETA)	API = ALPHA + THETA	AMT = ALPHA - THITA	TANAPT = TAN(APT)	TANAMT = TAN(AMT)	TWR01C = 2.0 * PI / C	C	CC 200 I = NMIN+NMAX	x1 = 1 - 1	XKO = TWOFIC * XI * DF / TUCO.	X2KA1 = A12 * XKO	X2KA2 = 422 * XKO	X2KH2 = H22 * XK0	U	1F (KONFIG .EC. 3) 60 70 70	TAUSQI = X2KAI / SIL(ALPHA)	TAUSEZ = XZKAZ / SIN(ALPHA)	TO CENTINUE		MAPT = PICVR2 - ACCSTO.P * COST	4461 = X2KAI * 5THT	4862 = X2KA2 * STHT	F15E = X2KH2 * CTHT	PHASE = CMPLX (CCS(FASE), SIN(FASE))	J	
364	310	371	372	573	374	375	376	377 C	378	379	380	1381	382	383	364	3.95	386	787	385	38.	390	341	342	24.2	****	395	

2 0 9 7	360 9	660 9	RCS5 100	RCS5 101	RCSS 102	5 103	104	RCS 105	901 9	RCSS 107	RCS5 108	RCSS 109	RCS5 110	RCS5 111	RCS5 112	8CSS 113
* RCS5 097	S(ALPHA) / X2KH2)	PCS5	RCS 5	RCS 5		* PCS5 103			* RCS5 106	RCS5	RCS5	RCSS	RCSS	RCS5	RCSS	8038
	PAPT = PICVK2 - ACCS(O.8 * COS(ALPHA) / X2KP2)	4461 = X2KA1 * 5THT	#862 = X2KA2 * STHT	F45E = X2KH2 * CTHT	PHASE = CMPLX (CCS(FASE), SIN(FASE))		CALL PESL (ARGI, YJOI, XJII, XJ21	CALL SESL (ARG2, XJC2, XJ12, XJ22)		XOPXII = CMPLX(XJ61, XJ11)	XOMX11 = CMPLX(XJC1,-XJ11)	XCPX12 = CMPLX(XJ02, XJ12)	XCMX12 = CMPLX(XJ02,-XJ12)	x2PX11 = CMPLX(XJ21, XJ11)	X2MX11 = CMPLX(XJ21,-XJ11)	x2PX12 = CMPLX(XJ22, XJ12)
.,						3			· ·							
364	390	341	305	63 63	t of	305	300	347	368	350	400	401	734	403	707	404

- FWD/SCL RADSIM	**	RCSS 114	* RCS5 115	RCS5 116	RCS5 117	CVR2-ALPHA)) RCS5 118	RCS5 119	* PCS5 120	RCS5 121	RCS5 122	* RCS5 123	RCS5 124	RCS5 125	RCS5 126	RCS5 127	RCS5 128	RCS5 129	PCS5 130	RCS5 131	* RCS5 132	RCS5 133	DCCE 127.
INPUT LISTING AUTOFLOW CHART SET - FWO/SCL	517u170)	X2MX12 = CMPLX(XJ22,-XJ12)	C	(1 = 4(X2KAI * (PI - APT))	44 = 0(X2KA1 * (PIOVR2 - THETA))	(3 = 4 (X2KA2 * ((THETA+THETA-PI) * (-AMI)) / (PICVR2-ALPHA))	63A = 6(X2KA2 * AMT)	0	IF (THETA .CT. PICVR2) GC TO 90	C DEFINE ANGLES FOR THET .LT. 90 DEGREES	•	PFII = PICVR2 + THETA	PHI4 = PICVR2 - THETA	PH12 = APT	36 01 09	C LEFINE ANGLES FOR THET .GT. 90 LEGREES	GU PHII = PI-APT	PHI4 = 0.0	PHI2 = (3.6 * PICVR2) - THETA	U	98 1F (43A .FL. 0.0) GO TC 99	DW12 - AMT
C4/26/70	CARD NE	904	467	804	404	410	411	214	413	414	415	416	417	614	419	420	421	422	423	727	425	40F

AND DECK

GENERAL DYNAMICS FORT WORTH TEX CONVAIR AEROSPACE DIV F/6 17/9 ENDO ATMOSPHERIC EXO ATMOSPHERIC RADAR MODELING. RADAR CROSS SE--ETC(U) JUN 76 R J HANCOCK, F H CLEVELAND F30602-73-C-0380 AD-A031 440 F30602-73-C-0380 UNCLASSIFIED RADC-TR-76-186-VOL-4-PT-2 2 of 4 AD 31440 15 144 146 1

+																											
RCS5 131	* RCS5 132	RCS5 133	RCS5 134	RCSS 135	RCS5 136	* RCS5 137	RCS5 138	RCS5 139	RCS5 140	RCS5 141	RCS5 142	* RCS5 143	RCS5 144	RCS5 145	RCS5 146	RCS5 147	RCS5 148	RCS5 149	RCS5 150	RCS5 151	RCS5 152	RCSS 153	RCS5 154	RCS5 155	* RCS5 156	RCS5 157	* RCS5 158
PRIS = (3.0 * PIDVR2) - THETA		48 1F (434 .FC. 0.0) 60 TC 99	PHI3 = AMT	61 10 100	99 PHI3 = PIOVK2 - THETA		COMPUTE B(N.PHI)	160 SECNDI = SECO(PHII, XNNEG)	SECNE = SECO(PHI4, XNNFG)	SECNO2 = SECO(PHIZ+ XNPOS)	SCONES = SECO(PHIS, XNPOS)		TERMIV = 0.0	TERMIH = 0.0	1E8%4V = C.0	78884H = 0.0	TERMSV = C.0	Termsh = 0.0	TERMEV = 0.6	IERM6H = C.0	150N7V = 0.6	TESM7H = 6.0	TERNEV = C.C	7FRM8H = C.O		IF (KONFIG .EQ. 2) GO TO 120	
	424 C	425	426	427	428	o24	O 067	431	432	433	434	7 587	757	437	438	434	77t	441	247	443	444	445	444	1.55	748 C	674	450 C
	+	,	,	,	/	2			W-0150		The May 19	* % \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1640.4		Was a				on our	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1800				7		•

, 3

· Charles

TENDRET = "TENDRY C C C C C C C C C																												
IF (NONFIG = -TIEMBU Set Incomple = -TIEMBU Set Incomple Set Set	RCS 5 190	RCS5	RCS5 192	RCS5 193	RCS5 194	RCS5 195			RCS5 198	RCSS 199					RCS5 204			RCSS			RCS5 210		RCS5 212	RCS5 213		RCS5 215	RCS5	RCS5 217
48 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	TERMBH = -TERMBV	J	2)		THIS	CONIC SURFACE	= CMPLX(= X0MX12 * XX * TAUS02 *	=-X2PX12	=-PISORT * A2 * PHASE * (YY +	= PISCRT * A2 * PHASE * (YY -		·	= - PISGRT # (TERMIV + TERM2V + TERM3V + TERM4V	TERMSV + TERM6V + TERM7V + TERM8V	= PISORT * (TERMIH + TERM2H + TERM3H + TERM4H	TERMSH + TERM6H + TERM7H + TERM8H			= FFVV *	# FFHH *	U	= REAL (=-AIMAG	= REAL (=-AIMAC	J	IF (KP.) 77, 77, 78
	701	483	484	485	486	487	488	587	057	107	765	443	767	4.05	964	167	697	507	200	561	205	503	504	505	909	507	503	505

CALLED Y

* RCS5 230 * RCS5 231 RCS5 232 RCS5 233	AETUSN	2
* RCS5 229	7. CUNT: 40E	523
RCS 228	C 74 FRRMAI (1HO, 3f15.5)	520
1 3655 227	C 70 WRITE (6, 74) (FREG(I), SIGMAV(I), SIGMAH(I), I= NMIN, NMAX	114
RCSS 226	C 1F (NP) 75, 75, 76	516
* RCS5 225	J	517
* RCS5 224		516
RCS5 223	250 CONTINUE	515
* RCS5 222		514
RCS5 221	77 CONTINUE	513
RCS5 220	(16MAH(I)= 16.0*ALCC10(EHM4(I)*EHM(I) + 1MHI(I)*HHHI(I))	515
RCS5 218 RCS5 219	78 FREG(I) = XI * DF / 1000.0 SIGMAV(I)= 10.0*ALCGIO(EVVR(I)*EVVE(I) + [VVI(I)*FVVI(I))	510
RCS5 217	IF (KP.) 77, 77, 78	505
* RCS5 216	J	503
RCS5 215	FHHI(I) =-AIMAG(FFHH)	507
RCS5 214	HHR(I) = REAL (FFHH)	909

with the St

		2	\$		c n	•	0		٨.	•	4	5	•	~	m	•			2		.+	2	2	~	m
	RCSS 234	RCSS 235	RCSS 236	RCSS 237	RCS5 238	RCS 239	RCS5 240	RCSS 241	RCS 5 242	RCS5 243	RCS5 244	RCS5 245	RCS5 246	RCSS 247	PCS5 248	RCS5 249	365 250	RCSS 251	RCS5 252	RCSS 253	RCS5 254	RCS5 255	RCS5 256	RCSS 257	RCSS 258
	FUNCTION FIRS(XN)	PI = 3.14159265358479	$A = \{(SIV(P) / XV) / XV\}$	8 = 1.0 / (COS(PI / XN) - 1.0)	F185 = A * E	RETURN	CND	FUNCTION SECCIPHI, XN)	PI = 3.14159265358979	A = (SIN(PI / XN)) / XN	E = COS(PI / XN) - CCS((2.0 * PHI)/ XN)	c = 1.0 / 9	SECC = A * C	RETURN	END	FUNCTION G(2)	C = L(2) = 0.5*(1 + ERF(2))	C * FRE(Z) IS EVALUATED USING A RATIONAL POLYNOMIAL APPROXIMATION	C * REFERENCE (HANDBK MATH FUNCT BY ABRAMOWITZ AND STECUN.	C * SECTION 7.1.26)		1F (2.61. 2.) GO TO 10	IF (2.LT2.) GO TO 20	42 = ABS(2)	P = 1.0/(1.0 + .47047*A2)
,	520	623	528	529	530	531	532	533	534	525	536	115	538	539	940	149	545	543	544	545	979	247	548	546	550

- reproperty

Y = 1.0 - P*(+3480242 - P*(.04587487478556*P))*tX01-A2*A2) IF (2) 2****6 2 C = (1.0 - Y)/2. RETURN 4 C = .5 RETURN 6 C = (1.0 * Y)/2. RETURN 10 Q = 1. RETURN 20 C = 0. RETURN C = 1.0 SUBACUTING BESL (X, SO, HI, E2) C = 0. RETURN C = 0. RETURN C = FESCEL FUNCTION SUBPRUTINE UTILIZING POLYMONIAL APPROXIMATIONS C * COFFUIES, JO.JI.GR JZ FOR POSITIVE REAL APUNENTS C * REFRENCE (HYDER MATH FUNCT BY APRAMOMITZ AND STEGUN SECTION 0.4 C = 1.0 JF (X .LT. 0.0) S = -1.0 JF (X .GT. 1.E-6) GC TC S

557	6 C = (1.0 + Y)/2.	RCS5 265
65.5	KITURN	RCSS 266
550	10 0 = 1.	RCS 5 267
560	KETUSM	RCS 5 268
561	20 c = 0.	RCS5 269
295	RETURN	RCS5 270
563	CNJ	RCS5 271
564	SUBACUTINE BESL (X, SO, RI, F2)	RCS5 272
595	3	RCS5 273
566	C * FESSEL FUNCTION SUFRIUTINE UTILIZING POLYMOMIAL APPROXIMATIONS	RCS5 274
295	C * COMPUTES JO. JI. CR JZ FOR POSITIVE REAL ARCUMENTS	RCS5 275
568	C * REFERENCE (HNDSK MATH FUNCT SY ASRAMOWITZ AND STEGUN SECTION 9.4	JRCS5 276
564		RCSS 277
570	S = 1.0	RCS5 278
17.5	1F (X .LT. 0.6) S = -1.0	RCS5 279
572	$X = A^{\beta} S(X)$	RCS5 280
573	2	RCS5 281
574	16 (X .6T. 1.E-6) 6C TC 5	RCS5 282
575	v.1 = 03	RCS5 283
576	51 = 0.0	RCSS 284
577	52 = C•C	RCS5 285
L-4	い*× = ×	RCS5 286
973	AT TERM	RCS5 287

The state of the s

13	04/26/76	INPUT L	LISTING AUTOFLOW CHART	SET - FWOZSCL RADSIM	WIS
	N N	** ** **			
49	580	U			RCS5 288
	581	6	5 CCNTINUE		RCS5 289
	582	U			RCS5 290
	563	1	1 IF (X .6E. 3.) GO TO 9		RCS5 291
	584		x1 = x/3.		RCS5 292
	585		XI = XI * XI		RCSS 293
	586		E = 1.+ X1*(-2.2499997+ X1*(1.2656208+ X1*(3163866+ X1*(.0444479RCS5	366+ X1*(.0444479	RCS5 294
	587		1 + X1*(0039444+ X1*2.15-4 1))))		RCS 295
	588		00 10 10		RCS5 296
	586	U			RCS5 297
	266	3	9 X2 = 3./X		RCS5 298
	165		F0 = .79788456 +X2*(77F-6 +X2*(00552740 +X2*(9512E-4 +X2*		RCS5 299
	592		1 (.00137237 +X2*(72805E-3 +X2*0.14476E-3)))))		RCS5 300
	593		T0 = X78539816 + X2*(04166397 + X2*(3954E-4 + X2*(.00262573))		RCS5 301
	594		1 +X2*(00054125 +X2*(00029333 +X2*0.00013558	111111	RCS5 302
	565		B = F0*COS(T0)/SQRT(X)		RCS5 303
	969	v			RCS5 304
	597	10	10 EC = B		RCS5 305
	865	v			RCS5 306
	666	2	2 IF (X .GE. 3.) GO TO 19		RCS5 307
	009		$x_1 = x/3$.		RCS5 308
	109		XI = XI * XI		RCS5 309

594	1 +X2*(00054125 +X2*(00029333 +X2*0.00013558 1)1))	RCS5 302
565	B = F0*COS(TO)/SGRT(X)	RCS5 303
969	J	RCS5 304
265	10 BG = B	RCS5 305
598	J	RCS5 306
266	2 IF (X .GE. 3.) GO TO 19	RCS5 307
009	$x_1 = x/3$.	RCS5 308
109	X1 = X1*X1	RCSS 309
602	6 = X*(5 + XI*(56249985 + XI*(21093573 + XI*(03954289 + XI*)	RCS5 310
603	1 (.00443319 +XI*(31761E-3 +XI*0.1109E-4))))))	RCS5 311
604	00 10 20	RCS5 312
909	J	RCS5 313
909	19 X2 = 3./X	RCS5 314
209	F1 = .79788456 +X2*(.156E-5 +X2*(.01659667 +X2*(.00017105 +X2*	RCS5 315
809	1 (00249511 +x2*(.c011365300020033*x2 1))))	RCS5 316
609	T1 = X - 2.35619449 + X2*(.12499612 + X2*(.565E-4 + X2*(00637879))	RCS5 317
610	1 +X2*(.06074348 +X2*(.00074824 -0.00029166*X2 1))))	RCS5 318
611	E = F1*COS(T1)/SGRT(X)	RCS5 319
612	U	RCS5 320
613	20 E1 = B * S	RCS5 321
614	S * X = X	RCS5 322
615	82= (2./x)*81 - 80	RCS5 323
616	50 RETURN	RCS5 324
617	ENL	RCS5 325

11, W.

### (CC(17U0**2) + Jas22(17U0*2)) ##################################	CCMPLIX FUNCTION F(TAU) CLMPLIES FIAU WHERE FIAU =(EXP(-J*1AU**2)/2*1AU)*5087(PI/2.)*	RCS5 RCS5 RCS5 RCS5 RCS5
# FP ###################################	+ (5**071)	
FYZEFZEFROTA (PIZZ.) 1 FSITAU) -LE. O.S. DON TO 20 -LE. O.S. PUNCTION COMPUTED USING POLYMONIAL (HANGER MATH FUNCT OF SESSMONITZ PAT STEGUM, SECTIONS 7.2.4,7.10,7.3.52,7.2.33) RIGHAUS) US	CLMPLEX b. FP	0 8
/2. (PI/2.) 1	5.14159261258074	P.C.
FECTIONS SECTIONS SECTIONS SECTIONS SECTIONS FIRSTAU SECTIONS FOR THE FUNCTION COMPUTED USING POLYNOWIAL CHANCER MATH FUNCTION FESTWOMIT? AND STECKIN, SECTIONS SECTIONS US US	= PI/2.	34
1 -LE. 0.5 JCO TO 20 -LE. 0.5 JCO TO 20 -GT. 0.5, FUNCTION COMBUTES USING POLYNOWIAL (HANDER MATH FUNCT VY 258740M112 AND STEGUN, SECTIONS 7.2.9,7.3.10,7.3.52,7.3.33) NTIATAUS) US	Ses1(P1/2.)	RC
*LE. O.5)CO TO 20 *LE. O.5)CO TO 20 *GT. O.5, FUNCTION COMPUTED USING POLYNOWIAL (HANGER MATH FUNCT OV PERAMOMIT? AND STEGUN, SECTIONS 7.3.9,7.2.10,7.3.32,7.2.33) RI(ALAUS) US	1./01	P.C.
.LE. O.5)CO TO 20 .GT. 0.5, FUNCTION COMPUTER USING POLYNOWIAL (HANDER MATH FUNCT OF PEROMONITZ AND STEGUN, SECTIONS 7.3.9,7.2.10,7.3.32,7.2.33) RT(ATAUS) US		RC
.GT. 0.5, FUYCTION COMPUTED USING POLYNOYIAL (HANDER MATH FUNCT OF SEGMONITZ AND STEGUN, SECTIONS 7.3.9,7.7.10,7.3.52,7.2.33) RT(ALAUS)		RC
.GT. 0.5, FUNCTION COMPUTED USING POLYNOYIAL (HANDER MATH FUNCT ON SEGAMONITZ AND STEGUN, SECTIONS 7.3.9,7.3.10,7.3.32,7.2.33) RT(ATAUS) US		RC
(HANDER MATH FUNCT 'Y 2597MCWITZ ENF STEGUN, SECTIONS 7.3.4,7.7.10,7.3.32,7.2.33) RT(ATAUS) US	TAUS .GT. 0.5, FUNCTION COMBUTES USI	
SECTICNS 7.3.4,7.2.10,7.3.32,7.2.33) RT(ATAUS) US	HEFERINGE (HANCER MATH FUNCT IN SERAMONI	
RT(ATAUS) US		
\$A	SCRT(ATAUS)	20
	C2*TAUS	RC
RCS 5	×	28
		RC

· SPORT

- FWOZSCL RADSIM	\ \ \ \ \ \	976 9503	8000 347	865 348	RCS5 349	RCS5 350	RCS5 351	8655 352	8655 353	RCS5 354	RCS5 355	RCS5 356	RCS5 357	RCS5 358	PCS5 359	8655 360	RCS5 361	RCS5 362	RCS5 363	RCS5 364	RCS5 365	Deef July
AUTCELCW CHART SCT -	CONTENTS	(1.0+0.920*X)/(2.0+1.742*X+5.104*XS)	(5x*x*29.9+5x*205.8+X*241.4+0.5					3K100*K0 - 5	5×125*x1 - 3		60 10 10		= CMPLX(CCS(ATAUS), -SIN(ATAUS))							, SIR(A))		
IMPLI LISTING	样棒林林	FX = (1.0+0.420*X)	UX = 1.0/(2.0+4.14	U	CCIXS = CUS(ATAUS)	SCIXS = SIN(ATAUS)	J	CV = 0.5 + FX*SC1X	(X = (.5 - FX*CC1X)	J	1F (TAU .L1. 0.0) 69 TO	E = CMPLX(CX+SX)	FP = CMPLX(CCS(A	F = (C1*8*FP)/TAUS	FETUKR.	U	1C CUNTINUE	B = CMPLX(SX+CX)	A = ATAUS-PIU2	FP = CMPLX(COS(A), SIN(A)	F = (E*FP*CI)/TAUS	
14/26/10	C CAKD NC	159	4634	040	641	642	643	479	6.45	979	7.50	648	240	950	.51	250	653	654	359	959	759	

· to state of

	646	$CX = C_*S - EX*CC1XS - CX*SC1XS$	RCS5 353
F = CMPLX(CX;XX) RCSS F = CMPLX(CX;XX) RCSS	,	1F (TAU -L1. 0.0) 60 19 1	
### ### ##############################		= CMPLXICX	
F = (CINEWFEDIVIAUS RCSS RCSS RCMINUS		CCS (ATAUS), -5	
### ### ##############################		= (C1*8*FP	
### ### ##############################		5.E TURN	
### CONTINUE COMPLIANCE COMPLICENCY COSTON COSTO	J		
E = CMPLX(SX,CX) A = AIAUS-P102 FP = CMPLX(CGS(A), SIT(A)) F = (E*FP*C1)/TAUS FETURA CCTITAL CCTITAL FETURA FP = CMPLX(CGS(A), SIT(A)) FP = CMPLX(CGS(A), SIT(A)) FP = CMPLX(CGS(A), SIT(A)) FFT = TAU*TAU FFT = FP*E FFT = FP			
# = #IAUS-P102 # P = CMPLX(COS(A),SIT(A))		= CMPLX(SX	
F = (E*FP*C1)/TAUS F = (CM)11MLE FUR TAUS .LE. C.5, FUNCTION IS EXPANSED IN SERIES AND FIRST FEW RCSS FUR TAUS .LE. C.5, FUNCTION IS EXPANSED IN SERIES AND FIRST FEW RCSS FUR TAUS .LE. C.5, FUNCTION IS EXPANSED IN SERIES AND FIRST FEW RCSS FUR TAUS .L0046246.246.415) F = 1AU *(.333333333 - 15*(.023f045236 - 7.574767676-4*15)) F = FP*E F =		= ATAUS-PI	
F = (E*FP*C1)/TAUS RESS LG CCNTINUE FUR TAUS .LE. C.5, FUNCTION IS EXPANSED IN SERIES AND FIRST FEW RCSS TERMS INTECRATED TERM BY TERM TO LETAIN RESULT RCSS FP = CMPLX(COS(TAU), -SIN(TAU)) IS = TAU*TAU FR = 1 - IS*(.10046246245) FR = 1 - IS*(.10046246245) FR = 1 - FP*E FR = FP*E			
######################################		= (E*FP#C]	
### RCSS ##################################		NETUCN.	
### PAUS : LE. C.5, FUNCTION IS EXPANSED IN SERIES AND FIRST FEW RCS5 FUR TAUS : LE. C.5, FUNCTION IS EXPANSED IN SERIES AND FIRST FEW RCS5 FR = CMPLX(COS(TAU), -SIN(TAU)) FR = 1 - TS*(.10046296296*TS) FR = 1 - TS*(.10046296296*TS) FR = 1 - TS*(.10046296296*TS) FR = 1 - FF*(.10046296296*TS) FR = FP*E NETURN FR = FP*E NETURN RCS5 FR = FP*E NETURN	Ü		
FUR TAUS .Lf. C.5, FUNCTION IS EXPANDED IN SERIFS AND FIRST FEW RCSS TERMS INTECRATED TERM EV TERM TO LETAIN RESULT RCSS FP = CMPLX(COS(TAU), -SIN(TAU)) TS = TAU*TAU FR = 1 - TS*(.100462@6296*TS) FI = TAU *(.33333333 - TS*(.023F095236 - 7.574747576-4*TS)) F = CMPLX(FR.FI) F = FP*E VETURN FNS FNS FNS FNS FNS FNS FNS F		בס כנאנוארנ	
FP = CMPLX(COS(TAU),-SIN(TAU)) TS = TAU*TAU FR = 1 - TS*(.10046296*TS) FI = TAU *(.33333333 - TS*(.023F095236 - 7.574747676-4*TS)) F = FP*E VETURN FNS FNS FNS FNS FNS FNS FNS F	3	FUR TAUS . LE. C.5, FUNCTION IS EXPANDED IN SERIES	RCS 5
= CMPLX(COS(TAU),-SIN(TAU)) = TAU*TAU = 1 - TS*(.10646296296*TS) = 1 - TS*(.10646296296*TS) = TAU *(.333333333 - TS*(.6236095238 - 7.574747674-4*TS))	J	TERMS INTEGRATED TERM	8038
RCS5 = 1 - 1S*(.10646296296*TS) = 1 - 1S*(.10646296296*TS) = 1AU *(.333333333 - 15*(.023Fu95238 - 7.57474757E-4*TS)) RCS5 = CMPLX(FR,FI) = FP*E TURN 10RN		= CMPLX(COS(TAU),-SIN(TAU))	
RCSS = 1 - 15*(.10646296296*15) = 1AU *(.33333333 - 15*(.023F095236 - 7.574747576-4*15)) RCSS = CMPLX(FR.FI) = FP*E TURN RCSS 11.28N		= TAU*TAU	
= 1AU *(.33333333 - 15*(.023Fu95236 - 7.57L7F7F7E-4*TS)) RCS5 = CMPLX(FR.FI) = FP*E TURN 10.00		= 1 - 15*(.10646296296*15)	
= CMPLX(FR,FI) = FP*E TURN RCS5		= 1AU *(.333333333 - TS*(.0238045238 - 7	
FP & E RCSS RCSS RCSS RCSS RCSS RCSS RCSS		= CMPLX(FR.FI)	
RCS5 RCS5		= FD % E	
8628			
		INI	

A CONTRACTOR OF

L.4 THIN WIRE

The far-field scattering from a thin wire has been programmed using the formulation of Ufimtsev (Ref. 4 and 5). The expression includes the higher order scattering terms which arise from waves which are launched from one end of the wire, traverse the wire length, and are diffracted into space and reflected along the wire upon reaching the opposite end. These scattering mechanisms and the geometry of the problem are shown in Figure L.4-1. The ray components of the scattered field are described in References 4 and 5. The expression of the scattered field, which includes only the horizontal polarization response, is the following:

$$e(\theta) = \frac{2\sqrt{\pi}}{k} \cdot \frac{2iS(\theta)}{\sin \theta \sin 2\theta \left[\ln\left(\frac{2i}{\gamma ka \sin \theta}\right)\right]^2}$$

where $\gamma = 1.781$

$$k = 2\pi/\lambda = wave number$$

$$S(\theta) = -\left\{\sin^4\left(\theta/2\right)\ln\left(\frac{i}{\gamma k a \sin^2\theta/2}\right)\right\}$$

$$+\left\{e^{i2kL\cos\theta}\cos^4\left(\theta/2\right)\ln\left(\frac{i}{\gamma k a \cos^2\theta/2}\right)\right\}$$

$$-e^{ikL(1+\cos\theta)}\cos^4\left(\theta/2\right)\ln\left(\frac{i}{\gamma k a \cos\theta/2}\right)2\Psi_+\right\}$$

$$+e^{ikL(1+\cos\theta)}\sin^4\left(\theta/2\right)\ln\left(\frac{i}{\gamma k a \sin\theta/2}\right)2\Psi_-$$

$$+e^{i2kL}\cos\theta\ln\left(i/\gamma k a\right)(\Psi_+)^2\right\}$$

$$+\left\{\left[\sum_{n=0}^{\infty}e^{i2nkL\Psi 2n}\right]\left[(\Psi)^2(\Psi_+)^2e^{i4kL}\right]$$

$$+(\Psi_-)^2e^{ikL^2(1+\cos\theta)}$$

$$-2\Psi_+\Psi_-\Psi e^{ikL(2+\cos\theta)}\right]\cos\theta\ln\left(\frac{i}{\gamma k a}\right)\right\}$$

Fig. L.4-la GEOMETRY OF A THIN WIRE

$$\Psi = \frac{i\pi - 2\ln(\gamma ka)}{\ln\left(\frac{i2kL}{\gamma k^2 a^2}\right) - E(2kL)e^{-i2kL}}$$

$$\Psi_{\pm} = \frac{i\pi - \ln(\gamma^2 q_{\pm})}{\ln\left(\frac{i2kL}{\gamma k^2 a^2}\right) - E\left(\frac{2kLq_{\pm}}{k^2 a^2}\right) \exp\left(-i2q_{\pm}\frac{kL}{k^2 a^2}\right)}$$

$$q_{\pm} = \frac{(ka)^2}{2} (1 \mp \cos\theta)$$

$$E(x) = \int_{-\pi}^{x} \frac{e^{it}}{t} dt.$$

L.4.1 Inputs

The subroutine inputs are read from cards or passed in a common block. The parameters passed in a common block include:

NMIN = minimum frequency sample number

NMAX = maximum frequency sample number

DF = frequency increment (in MHz)

FC = center frequency (in GHz).

The card inputs are the following:

	MATH SYMBOL	VARIABLE	DEFINITION	COLUMNS
Card 1	θ	THETA	Azimuth angle (degrees)	1-10
	L	XL	Wire length (inches)	11-20
	2a	DIA	Wire diameter (inches)	21-30

L.4.2 Outputs

The data base output consists of two linear arrays, ETTR, ETTI, which contain the real and imaginary parts of the horizontally polarized backscattered fields (in meters) at frequency increments spaced DF MHz from NMIN*DF to NMAX*DF.

If selected by setting KP to 1, the wire radar cross section (in dBsm) versus frequency will be printed out. In addition the real and imaginary parts of the exponential integral, computed in subroutine EXPI, will be printed out if KP \neq 0.

L.4.3 Restrictions

L.4.3.1 Physical Dimensions

The wire length should be large with respect to the largest wavelength of the illuminating field. However, the wire radius should be much smaller than the smallest wavelength of the illuminating field.

L.4.3.2 Output

The output arrays are passed in the argument list and a value is computed and stored only in location NMIN to NMAX.

L.4.3.3 Azimuth

The azimuth angle is restricted to the region from 0.5 to 89.5 degrees.

L.4.4 Definition of Selected Terms Used in Subroutine

ST1 = -
$$\left\{ \sin^4(\theta/2) \ln \left(\frac{i}{\gamma ka \sin^2 \theta/2} \right) \right\}$$

SCD1 =
$$\left\{ e^{i2kL\cos\theta}\cos^4(\theta/2)\ln\left(\frac{i}{\gamma ka\cos^2\theta}\right) \right\}$$

SCD2 =
$$-e^{ikL(1+\cos\theta)}\cos^4(\theta, 2)\ln\left(\frac{i}{\gamma ka\cos\theta, 2}\right)2\Psi_{+}$$

SCD3 =
$$+e^{ikL(1+ma)t} \sin^{4}(\theta/2) \ln \left(\frac{1}{\gamma ka \sin \theta/2}\right) 2\Psi$$

$$SCD4 = +e^{-i\epsilon L}\cos\theta \ln(i\gamma ka)(\Psi_*)^{\dagger}$$

$$D = \frac{1}{1 - \psi^2(L) e^{i2kL}} = \left[\sum_{n=0}^{\infty} e^{i2nkL\psi_{2n}}\right]$$

$$\begin{aligned} \text{SSS} &= \\ &+ \left\{ \left[\sum_{n=0}^{\infty} e^{i2nkL\Psi 2n} \right] \left[(\Psi)^2 (\Psi_+)^2 e^{ikL} \right. \right. \\ &+ (\Psi_-)^2 e^{ikL^2(1+\cos\theta)} \\ &- 2 \Psi_+ \Psi_- \Psi e^{ikL(3+\cos\theta)} \left. \right] \cos\theta \ln\left(\frac{i}{\gamma ka}\right) \right] \right\} \end{aligned}$$

PSIA =
$$\Psi = \frac{i\pi - 2\ln(\gamma ka)}{\ln\left(\frac{i2kL}{\gamma k^2a^2}\right) - E(2kL)e^{-i2kL}}$$

$$\text{PSI} \left\{ \begin{matrix} \mathbf{P} \\ \mathbf{M} \end{matrix} \right\} = \frac{\Psi_{\pm} = \frac{i\pi - \ln\left(\gamma^2 q_{\pm}\right)}{\ln\left(\frac{i2kL}{\gamma k^2 a^2}\right) - E\left(\frac{2kLq_{\pm}}{k^2 a^2}\right) \exp\left(-\mathrm{i}2q_{\pm}\frac{kL}{k^2 a^2}\right)}$$

L.4.5 Subroutines

The subroutine EXPI (ARGZ, EIXR, EIXI, KP) is used to compute the real (EIXR) and imaginary (EIXI) parts of the exponential integral:

$$E(x) = \int_{-\infty}^{x} \frac{e^{it}}{t} dt$$

where the argument X is passed as ARGZ.

```
BECAGD01, HANCOCK, 017073100380, RCSM1
       IDENT
$
       OPTION FORTRAN
       FORTY
               LSTIN, XREF, MAP, DECK
$
       LIMITS 05,39K,0,5K
      SUBROUTINE TARGET (ETTR, ETTI, XR, XI)
C
     ** THIN WIRE CW RESPONSE * 0.5 TO 89.5 DEGREES ASPECT ANGL

* SOLUTION BY UFIMTSEY, SIMPLIFIED BY HONG FOR BACKSCATTER
C
                                  * 0.5 TO 89.5 DEGREES ASPECT ANGLE**
C
    * REFERENCE - SHORT PULSE SCATTERING BY A LONG WIRE, BY S HONG
C
                   IEEE ON AP, VOL AP-16, NO. 3, MAY 1968, PP. 338-342
C
C
C
      COMMON MOVER, M., NMIN, NMAX, DF, FC, PW, TØ
C
      NMIN = MINIMUM FREQUENCY SAMPLE
      NMAX = MAXIMUM FREQUENCY SAMPLE
      DF = FREQUENCY INCREMENT IN MHZ
          = CARRIER FREQUENCY IN GHZ
C
      COMPLEX
                 55(100),
                                  ACL2C, ST1, EXA, EXQP, EXQM, EXAP, PSIA,
                ACLC, ALN1,
                           05.
              EXOPP, EXOMP, PSIP, PSIM, AC1, PC1, AC2, SCD1, BC1, QC1,
                SCD2, DC1, SCD3, RC1, EC1, SCD4, SCD, FF8, FF9, FP10,
     C
                SF1, SF2, SF3, SF, SP, SPC, SSS, BSC, EBSC
                   , PIJ, PI
L, D .SB4
                             PIJ02
              , CCGRL,
                   , EXQA, EXQM
        , RC9, QC9
      REAL FRQ(512), ETTR(512), ETTI(512), SIGMA(512), XR(512), XI(512)
      READ(5, 1000) THETA, XL, DIA, KP
      KP = 1, PRINT OUT RCS VERSUS FREQUENCY
 1000 FORMAT (3F10.3, 12)
      NRITE(6,1100) THETA, XL, DIA
 1100 FORMAT ('0 ASPECT ANGLE = '; F7. 2,' WIRE LENGTH ≈ ', F8. 3, //,
     A WIRE DIRMETER = 1, F7.4 , // , ( LENGTHS ARE IN INCHES )
     B)
      IF (THETA . LT 0.5 . OR THETA . GT. 89.5 ) GO TO 900
      RAD = DIAZ 0
      FI = 3.1415926
      PIJ = CMPLX(0, 0, PI)
      PI02= PI/2. 0
      PIJ02 = CMPLX(0, 0, PI02)
      GAM = 1.781072
      TH = THETA * (180.0 / PI)
      CT = COS(TH)
      CT02 = C0S(TH/2.0)
      CT025= CT02 * CT02
      CTO2F = CTO25 * CTO25
      ST = SIN (TH)
      STT = SIN(TH*2.0)
      ST02 = SIN(TH/2.0)
      ST025 = .ST02 * ST02
      ST02F = ST025 * ST025
      OPCT = 1. 0+ CT
      OMCT = 1.0- CT
      AKTH = 2.07(ST*STT)
      DO 800 IFW = NMIN, NMAX
      XI= IFW - 1
                                        L-55
      FREQ
             = XI * DF / 1000.0
```

THE WAY

```
FRQ( IFW) = FREQ
      XK = (.53234454 * FREQ.)
      XKL = XK* XL
      XKA = XK* RAD
GKA = GAM* XKA
      C1 = 2.07( GKA * ST)
      ACL = ALOG ( C1 )
      ACLC = CMPLX ( ACL, PIO2 )
      CS =((0.0, 1.0)/(ACLC*ACLC))*(-AKTH)
      ** DETERMINATION OF INTEGRAL AND OTHER TERMS USED IN MULTIPLE **
C
         ORDER SCATTERING
C
      CSL = ALOG( GKA)
      C6R = (2.07XKA)*(XKL/GKA)
      CERL= ALOG( CER)
      CC6RL = CMPLX(C6RL, PIO2)
      EAA = XKL+2.0
      CALL EXPI ( EAA, EXRA, EXIA, 0 )
      EXOA = CMPLX( EXRA, EXIA)
      E10= 005( EAA)
      E1S= SIN( EAA)
      RC1 = CMPLX (E1C, E1S)
           = CMPLX( E1C, -E1S )
      RC9
             = (PIJ - 2.0*C5L) / (CC6RL - EXQA*RC9)
      PSIA .
      ERPA = XKL*OMCT
      CALL EXPI (EQPA, EXR, EXI, 0 )
      EXOP = CMPLX( EXR, EXI )
      E20 =005( EQPA)
      E2S =SIN( E0PA)
      EXQPP = CMPLX(E20, -E25)
      CZP = GKA*GKA*OMCT/2.0
      C7PL = ALOG(C7P)
      PSIP = (PIJ ~ C7PL)/(CC6RL - EXQP*EXQPP)
      ERMA = XKL*OPCT
      CALL EXPI ( EQMA, EXRM, EXIM, 0 )
      EXQM = CMPLX( EXRM, EXIM)
             = 005(EQMA)
      02
      03
             = SIN(EQMA)
      QC1 = CMPLX(Q2,Q3)
      QC9 = CMPLX(Q2, -Q3)
      C7M = GKA*GKA*OPC1/2.0
      C7ML = ALOG(C7M)
      PSIM = (PIJ - C7ML) / (CC6RL - EXQM*QC9)
C
      * UTIL12ATION OF FACTORS IN SCATTERED FIELD EXPRESSION *
0
0
      ** FIRST ORDER SCATTERING
      C2 = 1.0 / (GKA * ST025)
      ACL2 = ALOG (C2)
      ACL2C = CMPLX ( ACL2, PIO2 )
      5T1 = -ST02F * ACL2C
C
          RETURN FROM TRAILING EDGE OF WIRE
0
0
           = 1.0/(GKA* CT025)
      A1
           = ALOG(A1)
      AC1 = CMPLX( A2, PIO2)
      P1 = 2.0*XKL*CT
      P2 = COS(P1)
      P3 = SIN(P1)
      PC1= CMPLX( P2, P3)
      AC2 = CMPLX(CTO2F, 0.0)
      SCD1 = AC1*PC1*AC2
                               F-20
C
```

```
81 = 1.07(GKA*CT02)
      B2 = 2.0*ALOG(B1)
      BC1 = CMPLX(B2,PI)
      SCD2 = (-(QC1*AC2*BC1*PSIP))
C
      D1 = 1.0/(GKA*ST02)
      D2 = 2.0*ALOG(D1)
      DC1= CMPLX(D2, PI)
      SB4 = CMPLX( STO2F, 0.0)
      SCD3 = SB4 *(QC1*DC1*PSIM)
      E1 = 1.0/GKA
      E2 = ALOG(E1)
      EC1= CMPLX( E2, PIO2)
      SCD4 = CT*(RC1*EC1*PSIP*PSIP)
      SCD = SCD1 + SCD2 + SCD3 + SCD4
C
      FP1 = C05(4.0*XKL)
FP2 = SIN(4.0*XKL)
      FP3 = COS(2.0*XKL*OP(T)
      FF4 = SIN(2.0 + XKL + OPCT)
      FP5 = XKL*(3, 0+CT)
      FP6 = COS(FP5)
      FP7 = SIN(FP5)
      FP8 = CMPLX( FP1, FP2)
      FP9 = CMPLX(FP3,FP4)
      FP10 = CMPLM(FP6,FP7)
      SF1 = PSIA*PSIA*PSIP*PSIP*FP8
      SF2 = PSIM*PSIM*FP9
      SF3 = -2.0*PSIP*PSIM*PSIA*FP10
      SF = (SF1+SF2+SF3)*CT*E01
      D =1.0-(PSIA*PSIA)* RC1
      AD =CABS(D)
      IF (AD .LE. 1.0E-6 ) GO TO 213
      555 = SF/D
      GO TO 221
  213 WRITE (6, 2005)
 2005 FORMAT ('0 DENOMINATOR IS ZERO . PSIA IS TOO LARGE')
      GO TO 999
     * BACKSCATTERED FIELD
                                  4-51
  221 BSC = (ST1 + SCD + SSS)* CS
```

```
CK1 = (4.0*PI)/(XK*XK)
      CK2 = SQRT(CK1)*0.02540
0
C
         EBSC = SQRT(SIGMA) WITH PHASE REFERENCED TO FRONT **
C
                       EDGE
                             OF
                                   WIRE
      EBSC =(BSC* CK2)
      ETTR(IFW) = REAL(EBSC)
       XR(IFW) = ETTR(IFW)
      ETTI(IFW) = -AIMAG(EBSC)
       XI(IFW) = ETTI(IFW)
  800 CONTINUE
C
      IF (KP NE. 1) GO TO 900
      DO 777 L = NMIN, NMAX
      SIGMA(L) = 10.0 * ALOG10(ETTR(L)*ETTR(L) + ETTI(L)*ETTI(L))
  777 CONTINUE
     MRITE(6,3000) (FRQ(J), SIGMA(J), J = NMIN, NMAX)
03000 FORMAT ( '1FREQUENCY RESPONSE OF A THIN WIRE 1977) / FREQUENCY
                         7, 77, (E12.4, E15.4) )
    1 CROSS SECTION
  900 CONTINUE
  999 CONTINUE
      RETURN
      END
      SUBROUTINE EXPI ( ARGZ, EIXR, EIXI, KP)
C
    * THIS SUBROUTINE COMPUTES THE REAL AND IMAGINARY PARTS OF THE
C
           EXPONENTIAL INTEGRAL E(X) WHERE
C
           E(X) = INTEGRAL FROM X TO INFINITY OF EXP(IT)/T*DT
C
    * REFERENCE - FUNCTIONS OF MATHEMATICAL PHYSICS BY MAGNUS AND
C
                  OBERHETTINGER, PP. 97-98
C
              0, PRINT OUT REAL AND IMAGINARY PARTS OF EXPONENTIAL
                 INTEGRAL
      COMPLEX AIX,
                         ANTG( 100),
                                                        FA.
                                                                  F
                                              EIX
      REAL AINTR(100), AINTI(100)
0
      DEL = 0.000001
      GAMMA = 0.57721566
      IF ( ARGZ . LE. 1.0E-6) GO TO 50
      ABZ = ABS(ARGZ)
      DO 5 I=1, 100
      AINTR(I)= 0.0
      AINTI(I) = 0.0
      ANTG(I) = CMPLX(0, 0, 0, 0)
    5 CONTINUE
      IF ( ABZ . GE. 15) GO TO 9
C
C
      THIS SERIES USED FOR 0. LT. ABS(X). LT 15
C
         SERIES EXPANSION INVOLVING CI(X) AND SI(X) **
C
                    + LN(Z) +SUM(((-1)**N)*Z**(2*N))/((2*N)*FACT(2*N))
C
      E(2) = GAM
C
             +J*(
                     *SUM(((-1)**N)*Z**(2*N+1))/((2*N+1)*FACT(2*N+1))-
C
             PI02 )
      INC =1
      FAC = -(ARGZ**2)/(2.0)
      AINTR(1) = FAC * 0.5
      AINTI(1) = FAC*(ARGZ/9.0) + ARGZ
   10 INC = INC + 1
                               L-58
      82 = (2* INC)
```

The state of the s

```
X2M = X2 - 1.0
      X2P15 = (2*INC + 1)**2
      FAC = -(FAC*ARGZ*ARGZ)/(X2M*X2)
      AINTR(INC) = FAC/X2 + AINTR(INC-1)
      AINTI(INC) = FAC*(ARGZ/X2P15) +AINTI(INC-1)
0.0
      ABR = ABS( AINTR(INC))
      ABRM1= ABS( AINTR(INC-1))
      HBI = ABS( AINTI(INC) )
      ABIM1 = ABS( AINTI(INC-1))
      IF ( ABS( ABR - HBRN1) .GE. DEL) GO TO 20
      IF ( ABS( ABI - ABIM1) . LE. DEL) 60 TO 40
   20 CONTINUE
C
      IF ( INC .LT. 100 ) GO TO 10
      WRITE (6, 1000)
 1000 FORMAT( 'OSERIES DID NOT CONVERGE ( )
      NI = INC
      60 TO 60
   40 NI = INC
   60 CONTINUE
      EIXR = AINTR(NI) + ALOG(ARGZ) + GAMMA
      EIXI = AINTI(NI) - 1.5707963
      60 10 75
CC
C
      ** ASYMPTOTIC SERIES EXPANSION FOR INT FROM INF TO X OF **
          (EXP(-JT)/T)*DT
0
C
    9 CONTINUE
      IF ( ABZ . GE. 150) GO TO 99
C
      SERIES EXPANSION USED WHEN 15. LE. ABS(X), LT. 150
C
    * E(X) = EXP(IX)*(1/IX + 1/(IX)**2 + 2FACT/(IX)**3+...)
      AIX = CMPLX(0, 0, ARGZ)
      FA = 1.0/AIX
      ANTG(1) = FA
      F = FA*FA
      ANTG(2) = F
                     + ANTG(1)
      INC = 2
C
  110 INC = INC + 1
      XF = INC-1
      F = F*XF*FA
      ANTG(INC) = F + ANTG(INC-1)
      AB = CABS (ANTG(INC))
      ABM1 =CABS (ANTG(INC-1))
      IF ( ABS(AB - ABM1) . LT. DEL) GO TO150
      IF ( INC . LE. 29) GO TO110
C
      WRITE ( 6, 1001 )
 1001 FORMAT ( ' SERIES DID NOT CONVERGE ')
      NN = 15
      GO TO 70
  150 NN = INC
   70 CONTINUE
C
      EIX = ANTG( NN )*CEXP(AIX)
      EIXR = REAL(EIX)
```

C. C.

```
EIXI = AIMAG(EIX)
    GO TO 75
    FUNCTION SET TO ZERO IF ARGUMENT ABS(X). GE. 150
  99 EIXR = 0.0
    EIXI = 0.0
  75 CONTINUE
    IF ( KP .EQ. 0) GO TO 90
    WRITE (6,2000) EIXR, EIXT
2000 FORMAT ( 'OREAL PART OF E(X)= 4,E15.5,//, IMAGINARY PART OF E(X)
   A: (, E15.5)
    GO TO 90
 50 CONTINUE
    WRITE (6, 3000)
3000 FORMAT ('OARGZ DID NOT TRANSFER INTO SUBROUTINE OR IS ZERO' )
  90 CONTINUE
    RETURN
                           L-60
     END
```

CHART TITLE - SUPROUTINE TARGET (ETTR, ETT), XR, XI)

/ TASGET /

EXQP =	F2C * COS(FOPA)	E2S = SIN(EQPA)	EXQPP = CMPLX(E2C, - E2S)	72	C7P = CKA*GKA*OMCT/2.0	C7PL = ALOG(C7P)	PSIP = (PIJ - C7PL)/(CC6RL - EXQP*EXQPP)	*	# EQMA = XKL*OPCT		26		. (EQMA,EXRM, H O EXIM,O) H	-	22	EXQM = CMPLX(EXRM, EXIM)	02 = COS(EQMA)
*	CMPLX(ACL,PIDZ)		#	** DETERMINATION OF INTEGRAL AND OTHER TERMS USED IN	MULTIPLE ** ORDER SCATTERING	4	(GKA)	C68 = (2.07KA) *(XKL/GKA)	C68L = ALOG(C68)	CC6RL = CMPLX(C6RL,PIG2)		1 16	FAF = XKL*2.0 **	11		(FAA+EXRA, EXIA+0)	* * * * * * *
* = 20.014	GAM = 1.781072		CT = CDS(TH)	65	CTG2 = (CPS(TH/2.0)	CT025 = CT02*CT02	02	- ST = SIN(TH) + +	0 **	STI = SIN(TH*2.0)	SIN(TH/2.0)	STG2S = STG2*STG2	ST02F = ST02S*ST02S 			OMCT = 1.0 - CT	AKTH =
** THIN WIRE CW	ANGLE** SOLUTION EY	UFINTSEV, SIMPLIFIED EV HONG FOR BACKSCATTER *	2 0	A N		NMIN = MINIMUM FREDUENCY SAMPLE	NMAX = MAXIMUM FREQUENCY SAMPLE DF = FREQUENCY	INCREMENT IN MHZ FC = CARRIER FREQUENCY IN GHZ	* 01	/ REAC FROM DEV /	/ VIA FORMAT /	/ INTO THE LIST /	NOTE 02	* ×	* * * * * * * * * * * * * * * * * * *		VERSUS FREQUENCY

THE THE PL

97	EXPI	I. I (EQMA,EXRM, H	-		7.7	EXOM = CMPLX(EXRM, EXIM)	02 = COS(EQMA)	U3 = SIN(EQMA)	QC1 = CMPLX(Q2,Q3)		-	009 = CMPLX(Q2, - 1	C7M = GKA*GKA*OPCT/2.0	CTML = ALOGICTM)		1	C7NL)/(CC6RL - EXQM*QC9)		* UTILIZATION OF	FIELD EXPRESSION *	** FIRST ORDER	SCATTERING **		/22.01		
	16	*		17	2	I (EAA, EXRA, H	-	18	EXQA = EXQA =	E1C = COS(EAA)	E1S = SIN(EAR)	RC1 =	*******	61	RC9 = (CMPLX(FIC, - E1S)	PSIA = (PIJ - 2.0*C5L)/(CC6RL -	*	20	*		2	IS EXPI H				
I SINITHZZ.0)	STC25 = STC2*STC2	ST02F = ST02S	*	0		1 1.0 1	AKTH = 2 0.1014111	*	NOTE 11	SEGIN DO LOSP 800 IFW = NMIN,	* * * * * * * * * * * * * * * * * * *	23.04>	X1 = 1FW - 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FRG(IFW) = FREQ	XK = XK (.53234454*FPEC)	XKL = XK*XL	**		CKA = CAM*XAD	C1 = 2.0/(6KA*ST)	ACL = ALCG(C1)				
/ VIA CORMAT /	/ INTO THE LIST /		20 BLON — * * * * * *	IST = THETA, XL,			VERSUS FREQUENCY	60	10 EEV	-	Carlotte Clark	NUTE C4	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *		* * *	*THETA .LT. * TRUE * C.5 .CK. *-+	#THETA .CT. # # 84.5 # #	# FALSE . 23 .	. : 3	90	RAD = DIA/2.0	PI = 3.1415926	P1J = CMPLX(0.0,P1)	PIO2 = PI/2.0	•

- William St

CHART TITLE - SUBROUTINE TARGET (FITTR, FITTI, XR, XI)

	E1 = 1.0/GKA	E2 = ALOG(F1)	CMPLX(E2,PIO2)	CT*(RCT*EC1*PSIP* PSIP)	80	SCD = SCD1 + SCD2 + SCD3 + SCD2 + SCD3 +	00	FP1 = COS(4.0*XKL)	FP? = SIN(4.0*XKL)	FP3 = COS(2.0*XKL*0PCT)	FP4 = SIN(2.0*XKL*UPCT)		10	FPS = XKL*(3.0 + CT)		FP8 = SIN(FP5)
21.30>#	C2 = 1.0/(GKA*ST025)	ACL2 = ALCC(C2)	ACL2C = ACL2C	ST1 = -		* RETURN FROM TRAILING EDGE OF WIRE *	A1 = 1	1.07(GRA=C1025) A2 = ALGG(A1)	AC1 = CMPLX(A2,PIC2)	PI = 2.0*XKL*CT	03	P2 = CCS(P1)	P3 = \$1N(P1)	PC1 = CMPLX(P2,P3)	AC2 = CMPLX(CT0ZF,0.U)	SCD1 = 1 AC1*PC1*AC2

AUTOFLOW CHART		
200		
Di.		
7		
-		
. 3		
-		
-		
~		
u.		
-		
_		
200		
-		
_		
45		
•		
	-	
	_	
	_	
	_	
	XR,XI)	
	CV.	
	-	
	×	

CHART TITLE - SUFRCUTINE TARGET (ETTR, ETTI, XR, XI)

* BACKSCATTERED FIELD * 22.16>* 221 01	ESC = (ST1 + SCD + SCD + SSS)*CS	CK2 = CK2 SURT(CK1)*0.02540 *	** EBSC = SCRT(SIGMA) WITH PHASE REFERENCED TO FRONT ** EDCF	WIRE	EBSC = (BSC*CK2) ETTR(IFW) = REAL(EBSC)	XR(IFW) = ETTR(IFW)
---	----------------------------------	-----------------------------------	---	------	--	------------------------

with the co

right and

2

L-63

GOW!

AUTOFLOW CHART SET - FWO/SCL RADSIM

04/26/76

CHART TITLE - NON-PROCEDURAL STATEMENTS

COMMON MOVER, M, NMIN, NMAX, DF, FC, PW, TO COMPLEX SS(100),

ACLC, ALN1, CS, ACL2C, ST1, EXA, EXQP, EXQM, EXAP, PSIA, EXCPP, EXCMP, PSIP, PSIM, AC1, PC1, AC2, SCD1, BC1, QC1, SCD2, DC1, SCD3, RC1, EC1, SCD4, SCD, FP8, FP9, FP10, SF1, SF2, SF3, SF, SP, SPC, SSS, ESC, EBSC

• PIJ• PIJ02

,CC6RL, D ,SB4

.EXQA,EXQM

. RC4. QC9

REAL FRQ(512), ETTR(512), ETT1(512), SIGMA(512), XR(512), XI(512)

1000 FORMAT (3F10.3, 12)

1100 FORMAT (*O ASPECT ANGLE = *, F7.2, ** WIRE LENGTH = *, F8.3, //,

* WIRE CIAMETER = *, F7.4 , // , * (LENGTHS ARE IN INCHES)*

2005 FORMAT (*O DENOMINATOR IS ZERO , PSIA IS TOO LARGE*)

CHART TITLE - SUFRCUTINE EXPIGARGZ, EIXR, EIXI, KP)

IdX

21.17*-->*

* THIS SUBRCUTING

IMAGINARY DAVIS OF THE

INTEGRAL E(X) WHERE EXPONENTIAL

INTEGRAL FROM X TO = (X) =

EXP(11)/T*DT INFINITY OF

STOR S

MATHEMATICAL PHYSICS * REFERENCE -FUNCTIONS OF

EY MAGNUS AND

DEERHETTINGER, 80-14.49

REAL AND IMAGIVARY
PARTS OF EXPONENTIAL

INTEGRAL

_	= 0.000001	GAMMA = 0.57721566	
	DEL = (6AN 0.57	
*			*

W. Carlo

L-65

EXPICARCZ, EIXR, EIXI, KP) CHART TITLE - SUERCLIINE

TRUE 01 ** SERIES EXPANSION INVOLVING CI(X) AND THIS SERIES USED FOR O.LT.ABS(X).LT.15 01 FALSE 25.06--->* SI(X) **

GAM + LN(Z) *Z**(2*N+1))/((2*N+1) (N*2))/((N*2)**2* (N**(I-))) NOS* (N##(I-))) NOS+ *FACT(2*N)) E(2) =

ABSTAINTITING ABIM1 =

07

*FAC1(2#N+1))-P102)

Con S

CHART TITLE - SUBROUTINE EXPIGARGZ, EIXR, EIXI, KP)

TOWN S

ANICILI = FA

L-6-

04/26/76

AUTOFLOW CHART SET - FWO/SCL RADSIM

CHART TITLE - NON-PROCECURAL STATEMENTS

1000

1001 3000 COMPLEX AIX, ANTG(100), FIX, FA, F

REAL AINTR(100), AINTI(100)

FORMAT(*OSERIES DID NOT CONVERGE *)

FORMAT(* SERIES DID NOT CONVERGE *)

FORMAT (*OARGZ DID NOT TRANSFER INTO SUEROUTINE OR IS ZERC *)

671	SUBROUTINE TARGET (STTR, STTI,XR,XI)	RCS6 001
672	S	RCS6 002
673	C ** 1HIN WIRE CW RESPONSE * 0.5 TO 89.5 DECREES ASPECT ANGLE**	RCS6 003
719	C * SOLUTION BY UFINISEV, SIMPLIFIED BY HONG FUR CACKSCATTER *	RCS6 004
675	C * REFERENCE - SHORT PULSE SCATTERING BY A LONG WIRE, BY S HONG	RCS6 005
676	C * IEEE CN AP, VOL AP-16,NG.3, MAY 1968,PP.338-342	RCS6 006
11.9	J	RCS6 007
819	•	RCS6 008
670	COMMCN MOVER, M, NMJN, NMAX, DF, FC, PW, TO	RCS6 009
680	C NMIN = MINIMUM FREQUENCY SAMPLE	RCS6 010
661	C NMAX = MAXIMUM FREGUENCY SAMPLE	RCS6 011
289	C DF = FREQUENCY INCREMENT IN MHZ	RCS6 012
683	C FC = CARRIER FREQUENCY IN GHZ	RCS6 013
789	U	RCS6 014
685	CCMPLEX SS(100).	RCS6 015
686	A ACLC, ALNI, CS, ACL2C, STI, EXA, EXQP, EXQM, EXAP, PSIA,	RCS6 016
687	EXGPP, EXGMP, PSIP, PSIM, ACI, PCI, ACZ, SCUI, SCI, GCI,	RCS6 017
688	C SCU2, DC1,SCD3, RC1, EC1,SCD4, SCD, FP8, FP9,FP10,	RCS6 018
689	n SF1, SF2, SF3, SF, SP, SPC, SSS, BSC, EBSC	RCS6 019
069	E , PlJ, PIJ02	RCS6 020
661	F ,CC6RL, D ,SB4	RCS6 021
269	6 FXCA, EXQM	RCS6 022
693	1 , RC., GC.	RCS6 023
769	REAL FRQ(512), ETTR(512), ETTI(512), SIGMA(512),XR(512),XI(512)	RCS6 024
569		RCS6 025

and the same

RC\$6 022 RC\$6 023	1(512) RCS6 024	RCS6 025		CL RACSIM		RCS6 026	RCS6 027	8CS6 028	RCS6 030	FE.3, //, RCS6 031	IN INCHES 1'RCS6 032	RCS6 033	4CS 6 034	RCS6 035	RCS6 036	RCS6 037	RCS6 038	RCS6 039	RCS6 040	RCS6 041	RCS6 042
	512), SIGMA(512), XR(512), XI(512)			AUTOFLOW CHART SET - FWOZSCL	CONTENTS		FREGUINCY			WIRE LENGTH = ",	(LENGTHS ARE		.CT. 89.5) GC TC 400								
600 foo	L FRQ(512), ETTR(512), ETTI(512),			9)	83	READ(5,1000) THETA, XL, UIA, NP	KP = 1, PRINT OUT PUS VERSUS FRE	FPRMAT (3F1C.3, 12)	WRITE(6,1106) THFIE, XL, FIA	1100 FORMAT ('6 ASPECT ANGLE = ',F7.2,"	. WIRE DIAMETER = ", F7.4 , //		IF (THETA .LT. 0.5 .CR. THETA .	SAC = 11A/2.0	= 3.1415926	PIJ = CMPLX(0.0,PI)	FIG2= P1/2.0	P1302 = CMPLX(0.0,P102)	= 1.751072	= THETA * (180.0 / PI)	= COS(1H)
1 ,	REAL	J		INPUT LISTING	14. ## 23. ## 44.	REA	3	1CCG FUR	N.R.1	1100 FDR	ď	(a)	15	SAC	Io	LIG	610	r1d	GAM =	H	1.2
6.63	*****	6	2	04/26/76	CARD NO	769	L09	859	609	750	701	702	703	104	202	706	707	703	502	914	1117

The state of the

0 0	= 1, PRINT OUT PCS VERSUS FREGUINCY	RC 56	027
CCO FD	FORMAT (3F1C.3, 12)	RCS6 028	28
8.8	MRITE(C,110G) THFTL, XI, CIA	RCS6	080
1100 FD	FORMAT ('G ASPECT ANGLE = ',F7.2,' MIRE LENGTH = ', F8.3, //,	8056	031
A	. WIRE DIAMFTER = ", F7.4 , // , " (LENGTMS ARE IN INCHES	1.8656	032
1		RC56	033
1	(THETA .LT. C.5 .CR. THETA .CT. 54.5) GO TO 900	9536	980
SAC	E = LIA/2.0	RCS6	035
Io	= 3.1415926	8CS6	980
Id	PIJ = CMPLX(0.0,PI)	RCS6	037
FI	PI02= PI/2.0	8CS6	038
14	PIJOZ = CMPLX(0.0,PIG2)	RCS6	039
GA	GAM = 1.781072	RCS6	040
H	= THETA * (180.0 / PI)	RCS6	041
13	= 505(14)	RCS6 042	42
13	CTC2 = COS(1H/2.0)	RCS6	643
15	CT025= CT02 * CT02	RCS6	550
15	CT02F= CT02S * CT02S	RCS6	940
5	= SIN (TH)	RCS6	646
12	S11 = S1N(TH*2.6)	RCS6	240
sT	STG2 = SIN(TH/2.0)	9528	048
12	STC2S = STC2 * STC2	RCS6 049	64
5.1	SIC2F = ST02S * ST02S	8CS6	050
do	0PCT = 1.0+ CT	RCS6	150
S	CMCT = 1.0- CT	RCS6	052
AK	AKTH = 2.0/(ST*STT)	RCS6	053
		RCS6	950

STOW S

	RCS6 056	RCS6 057	RCS6 058	RCS6 059	RCS6 060	RCS6 061	RCS6 062	RCS6 063	RCS6 064	RCS6 065	RCS6 066	RCS6 067	RCS6 068	RCS6 069	RCS6 070	RCS6 071	RCS6 072	RCS6 073	RCS6 074	RCS6 075	RCS6 076	RCS6 077	RCS6 078	RCS 6 079
IFW = NMIN.NMAX	XI= 1FW - 1	FREC = XI * DF / 1000.0	FRG(IFW) = FREC	XK = (.53234454 * FREC)	XKL = XK* XL	XKA = XK* RAE	GKA = GAM* XKA	C1 = 2.0/(6KA * ST)	ACL = ALDG (C1)	ACLC = CMPLX (ACL, PID2)	CS = ((C.0, 1.0)/(ACLC*ACLC))*(-AKTH) R(~	** DETERMINATION OF INTEGRAL AND OTHER TERMS USED IN MULTIPLE ** RO	URDER SCATTERING RI	ä	C5L = ALDG(GKA)	C6R = (2.0/XKA)*(XKL/GKA)	CERL= ALDG(C6R)	CC6RL = CMPLX(C6RL, PIG2)	EAA = XKL*2.0	CALL EXPI (EAA, EXRA, EXIA, 0)	EXWA = CMPLX(EXRA, EXIA)	E1C= C05(EAA)	STALL EAA)
												U	J	J	0									

· soft one in

	RCS6 097	C2 = COS(EGMA)	766
	RCS6 096	EXEM = CMPLX(EXRM, EXIM)	765
	RCS6 095	CALL EXPI (EQMA, EXRM, EXIM, 0)	764
	RCS6 094	EGMA = XKL*OPCT	763
	RCS6 093	U	762
	RCS6 092	PSIP = (PIJ - C7PL)/(CC6RL - EXOP*EXOPP)	761
	RCS6 091	C7PL = ALUG(C7P)	760
	RCS6 090	C7P = GKA+GKA+OMCT/2.0	759
	RCS6 089	EXUPP = CMPLX(E2C,-E2S)	75.6
	RCS6 088	128 =SIN(ECPA)	L3L
	RCS6 087	L2C =CUS(EQPA)	756
	RCS 6 086	FACE CMPLX(EXR, EXI)	755
	RCS6 085	CALL EXPI (EUPA, FXR, FXI, 0)	757
	***	****	CARD ND
	AUTOFLOW CHART SET - FWOZSCL RAPSIM	IMPUT LISTING AUTCFLOW	04/26/75
	RCS6 084	EGPA = XKL*UMCT	753
	RCS6 083	U	75.2
	RCS6 082	PSIA = (PIJ - 2.0*C5L) / (CC6RL - EXGA*RC9)	152 2
The ly	RCS6 081	AC9 = CMPLX(E1CE1S)	750
	RCS6 080	RC1 = CMPLX (E1C, E1S)	740
		EIS= SIN(EAA)	74.8
1	RCS6 078	E1C= CDS(EAA)	171

191	PSIP = (PIJ = C7PL)/(CC6RL = EXCP*EXCPP)	RCS6 092
76 2 C		RCS6 093
763	ECMA = XKL*OPCT	RCS6 094
764	CALL EXPI (EQMA, EXRM, EXIM, 0)	RCS6 095
765	EXUM = CMPLX(EXRM, EXIM)	RCS6 096
766	C2 = COSTECMA)	RCS6 097
191	63 = SIN(FOMA)	RCS6 098
768	QC1 = CMPLX(Q2, Q3)	RCS6 099
769	409 = CMPLX(42, -03)	RCS6 100
077	C7M = GKA*GKA*DPCT/2.0	RCS6 101
171	CTML = ALOG(CTM)	RCS6 102
772	PSIM = (PIJ - C7ML) / (CC6RL - EXEM*CC9)	RCS6 103
773 C		RCS6 104
774 C	* UTILIZATION OF FACTORS IN SCATTERED FIELD EXPRESSION *	RCS6 105
775 C		RCS6 106
776 C	** FIRST DRDER SCATTERING **	RCS6 107
3 m		RCS6 108
877	C2 = 1.0 / (GKA * STO2S)	RCS6 109
277	ACL2 = ALOC (C2)	RCS6 110
780	ACL2C = CMPLX (ACL2, PIG2)	RCS6 111
781	ST1 = -ST02F * ACL2C	RCS6 112

· region to

RCS6 113	RCS6 114	RCS6 115	RCS6 116	RCS6 117	RCS6 118	RCS6 119	RCS6 120	RCS6 121	8656 122	RCS6 123	RCS6 124	RCS6 125	RCS6 126	RCS6 127	RCS6 128	RCS6 129	RCS6 130	RCS6 131	RCS6 132	RCS6 133	RCS6 134	RCS6 135	RCS6 136	RCS6 137
	* RETURN FROM TRAILING FOGE OF WIRE *		A1 = 1.0/(GKA* CT025)	A2 = ALUG(A1)	AC1 = CMPLX(A2, PIO2)	P1 = 2.0*XKL*C1	P2 = CCS(P1)	p3 = SIN(P1)	PC1= CMPLX(P2, P3)	AC2 = CMPLX(CT02F,0.0)	SCD1 = AC1*PC1*AC2		E1 = 1.0/(GKA*CTC2)	B2 = 2.0*ALGG(81)	6C1 = CMPLX(B2,PI)	SCD2 =(-(CC1*AC2*BC1*PSIP))		D1 = 1.0/(GKA*ST02)	D2 = 2.0*ALCG(D1)	DC1= CMPLX(D2,PI)	\$84 = CMPLX(ST02F, 0.0)	SCD3 = SB4 *(QC1*DC1*PSIM)		E1 = 1.0/GKA
U	U	J										U					v						v	
762	783	784	785	785	787	768	789	750	191	792	743	794	745	246	197	748	799	800	801	802	603	804	808	908

· WATER OF THE

4										, 15												
RCS6 136	RCS6 137	RCS6 138	RCS6 139	RCS6 140	RCS6 141	RCS6 142	SFT - FWD/SCL RADSIM	*	RCS6 143	RCS6 144	RCS6 145	RCS6 146	RCS6 147	RCS6 148	RCS6 149	RCS6 150	RCS6 151	RCS6 152	RCS6 153	RCS6 154	RCS6 155	RCS6 156
**************************************	E1 = 1.0/6KA	E2 = ALOG(E1)	EC1= CMPLX(E2,PID2)	SCD4 = CT*(RC1*EC1*PSIP*pSIP)		SCD = SCD1 + SCD2 + SCD3 + SCD4	INPUT LISTING AUTOFLOW CHART SET	CONTENTS		FPI = COS(4.0*XKL)	FP2 = SIN(4.0*XKL)	FP3 = COS(2.0*XKL*OPCT)	FP4 = SIN(2.6*XKL*OPCT)	FP5 = XKL*(3.0+CT)	FP6 = CUS(FP5)	FP7 = SIN(FP5)	FPB = CMPLX(FP1, FP2)	FPY = CMPLX(FP3, FP4)	FPIO = CMPLX(FP6+FP7)		SF1 = PSIA*PSIA*PSIP*FP8	SF2 = PSIM*PSIM*FP9
2 508	306	807	808	206	3 018	611	04/26/76	CAPC NO *	812 C	813	314	818	316	710	913	510	0.29	123	729	923 C	324	825
	.		2	_	ment of			MSS AFO	×12,00	**			00357			See See	Marian A. C		(s) Lot			

RCS6 144		RCS6 145	RCS6 146	RC56 147	8056 148	RCS6 149	RCS6 150	RCS6 151	RCS6 152	RCS6 153	RCS6 154	RCS6 155	RCS6 156	RCS6 157	RCS6 158	RCS6 159	RCS6 160	RCS6 161	RCS6 162	RCS6 163	RCS6 164	RCS6 165	RCS 6 166	RCS6 169	RCS6 170	RCS6 171	RCS6 172
191 = COS(4.0*XKL)		FP2 = SIN(4.0*XKL)	FP3 = COS(2.0*XKL*0PCT)	FP4 = SIN(2.6*XKL*0PCT)	FP5 = XKL*(3.0+CT)	FP6 = CUS(FP5)	FP7 = SIN(FP5)	FPB = CMPLX(FP1,FP2)	FPY = CMPLX(FP3, FP4)	FPIO = CMPLX(FP6, FP7)		SFI = PSIA*PSIA*PSIP*FP8	SF2 = PSIM*PSIM*FP9	SF3 = -2.0*PSIP*PSIM*PSIA*FPIO	SF = (SF1+SF2+SF3)*C1*EC1		D =1.0-(PSIA*PSIA)* RCI	AD =CABS(D)	IF (AD .LE. 1.0E-6) GO TO 213	SSS = SF/D	60 10 221	WRITE (6, 2005)	2005 FORMAT (*O DENOMINATOR IS ZERO , PSIA IS TOO LARGE*)	666 01 09		* BACKSCATTERED FIELD *	
,			i.		F	u.	ı	u.	٠	ı	J	S	S	U:	S	J	6	4	•	U)	5	213 W	2005 F	S	u	* u	J
· (* 2	er 22	314		816	7.13	818	o to	029	120	723	923	324	22.5	950	527	828	929	330	831	832	833	934	835	836	637	838	\$33
																3											696

The same of

```
RCS6 173
            221 BSC = (ST1 + SCD + 5551 + CS
54C
                                                                                 RC56 174
                 CK1 = (4.0+ PI)/(XK*XK)
841
                                                                                 RCS6 175
                 CK2 = SQRT(CK1)*0.02540
842
                                                                                 RCS6 176
843
                 ** EBSC = SCRT(SIGMA) WITH PHASE REFERENCED TO FRONT **
                                                                                 RCS6 177
844
            C
845
                                 EDGE OF WIRE
                                                                                 RCS6 178
            C
                                                                                 RCS6 179
                  FBSC = (FSC + CK2)
846
                                                                                  RC56 180
                 ETTR (IFW) = REAL (EBSC)
547
                  XR (IFW) = ETTR(IFW)
848
                                                                                  RC$6 181
640
                  ETTI(IFW) = -AIMAG(EESC)
850
                  XI(IFW) = ETTI(IFW)
             SCC CONTINUE
851
                                                                                  RCS6 182
                                                                                  RCS6 183
€52
            C
                 IF (KP .NE. 1) GO TO 400
                                                                                  RCS6 184
853
254
                LC 777 L = NMIN. NMAX
                                                                                  RCS6 185
855
                 SIGMA(L) = 10.0 * ALCGIO(ETTR(L) *ETTR(L) + CTTI(L) *ETTI(L))
                                                                                 RCS6 186
             777 CONTINUE
856
                                                                                 RCS6 187
                WRITE(6,3000) (FRE(J), SIGMA(J), J = NMIN, NMAX)
857
                                                                                 RC56 188
           C3000 FERMAT ( "IFREQUENCY RESPONSE OF & THIN WIRE ",//, " FREQUENCY RCS6 189
858
859
           C 1 CROSS SECTION ', //, (512.4, 515.4) )
                                                                                  RCS6 190
860
             900 CONTINUE
                                                                                  RCS6 191
              999 CENTINUE
861
                                                                                  RCS6 192
862
                 RETURN
                                                                                  RCS6 193
                                                 L-69c
863
                  END
                                                                                  PCS6 194
```

C		SUERCUTINE EXPI (ARGZ, EIXR, EIXI, KP)	RCS6 195	50
SUFRCUTINE COMPUTES THE REAL AND THACINARY PARTS OF THE RCS6 EXPCNENTIAL INTEGRAL F(X) WHERE EXPCNENTIAL INTEGRAL F(X) WHERE EXPCNENTIAL INTEGRAL FOW X TO INFINITY OF FYFILTIY/T*ET COMTENTS E. O. PRINT CUT REAL AND IMAGINARY PARTS OF EXPONENTIAL EX AIX. ANTICKAL EX AIX. EX AIX. ANTICKAL EX AIX.	U			9
EVCE - FUNCTIONS OF MATHEMATICAL PHYSICS BY MAGNUS AND RCS6 EVCE - FUNCTIONS OF MATHEMATICAL PHYSICS BY MAGNUS AND RCS6 EVCE - FUNCTIONS OF MATHEMATICAL PHYSICS BY MAGNUS AND RCS6 EVCE - FUNCTIONS OF MATHEMATICAL PHYSICS BY MAGNUS AND RCS6 LOSERHEITINGER, PD.47-48 E. C. FRINT CUI RFAL AND IMAGINARY PARTS OF EXPONENTIAL RCS6 INTECKAL EX AIX, ANTG(ICC), EIX, FA, F R RCS6 ANTR(100), AIVIT(100) RCS6 ANG LE. 1.0E-6) GO TO 50 BRCS6 ANG LE. 1.0E-6) GO TO 50 BRCS6 1=1,100 RCS6	J	THIS SUFROUTINE COMPUTES THE REAL AND IMAGINARY PARTS OF	RCS6 16	7
ELY) = INTEGRAL FORW X TO INFINITY OF FXP(IT)/T*ET ROSE EYGE - FUNCTIONS OF MATHEMATICAL PRYSICS BY MAGNUS AND ROSE CONTENTS CONTENTS CONTENTS CONTENTS CONTENTS EYERPETITINGER, PP.47-48 EX AIX, ANTG(ICC), EIX, FA, F RCS6 AINTR(100), AIVIT(100) ROSE ANGEL LE. 1.0E-6) GO TO 50 BOSE ANGEL LE. 1.0E-60 GO TO 50 BOSE ANGEL LE. 1.0E-	U		RCS6 1	œ
ENCE - FUNCTIONS OF MATHEMATICAL PROSICS BY MAGNUS AND CONTENTS CONTENTS CONTENTS CONTENTS E. G. FRINT DUI REAL AND IMAGINARY PARTS OF EXPONENTIAL EX AIX, ANTOCOOL EX AIX, FA, F R RCS6 AUTOCOOL EX AIX, ANTOCOOL EX AIX, BACCOOL EX AIX	U	= (X) =	RCS6 19	0
CONTENTS CERTETINGER, PP. V7 - 48 CERTETINGER, PP. V7 - 48 E. G. FRINT CUT REAL AND IMAGINARY PARTS CF EXCONENTIAL RCS6 EX AIX, ANTG(ICC), EIX, FA, F RCS6 AINTR(100), AINTI(100) RCS6 ANG. CLE. 1.0E-6) GO TO SO RCS6 ASS(ARG2) 1=1,100	U	REPERENCE - FUNCTIONS OF MATHEMATICAL PHYSICS BY MAGNUS	RCS6 20	0
CONTENTS CERHETTINGER, PP.47-49 E. G. PRINT CUT REAL AND IMAGIVARY PARTS OF EXPONENTIAL RCS6 EX ALX. ANTG(ICC), EIX. EA. F RCS6 ANTECKAL ANTECKAL ANTECKAL ANTECKAL ANTG(ICC), EIX. FA. F RCS6 ANTG(ICC) ANTG(ICC) ANTG(ICC) ANTG(ICC) BECS6 ANTG(ICC) ANTG(ICC) ANTG(ICC) ANTG(ICC) BECS6 ANTG(ICC) ANTG(ICC) BECS6 ANTG(ICC) BECS6 I=1,100				
CONTENTS CONTEN				
CONTENTS CERHETTINGER, PP.47—98 E. C. PRINT CUT REAL AND IMAGINARY PARTS OF EXPONENTIAL RCS6 INTECKAL EX ALX, ANTG(ICC), EIX, FA, F RCS6 AUNTR(IOO), AINTI(1OO) C.CCCOI C.CCCOI C.CCCOI C.STZ1566 ABS(ARC2) 1=1,100				
# CONTENTS CONTENTS E. O. FRINT CUI RFAL AND IMAGINARY PARTS OF EXPONENTIAL RCS6 EX AIX, ANTG(ICC), EIX, FA, F RCS6 AINTR(100), AINTI(100) C.OCCOOI E O.57721566 ABS(ARC2) 1=1,100				
######################################	LavI	AUTOFLEW CHART SET	RADSIM	
* LSERHETTINGER, PPC7-48 KP. ME. G. PRINT CUI RFAL AND IMAGINARY PARTS OF EXPONENTIAL RCS6 LCMPLEX AIX, ANTG(ICC), EIX, FA, F RCS6 KEAL AINTR(100), AINTI(100) LEL = 0.0CCUOI CAMMA = 0.57721566 IF (AKGZ .LE. 1.0E-6) GO TO SO BO S 1=1,100 RCS6 BCS6 BCS7 BCS6 BCS6 BCS6 BCS6 BCS6 BCS7 BCS6 BCS6 BCS6 BCS6 BCS7 BCS6 BCS6 BCS7 BCS6 BCS6 BCS7 BCS6 BCS6 BCS7 BCS7 BCS6 BCS7 BCC7 BCC	*	CONTENTS	#	*
KP .NE. O. PRINT CUT RFAL AND IMAGINARY PARTS OF EXPONENTIAL RCS6 INTECKAL INTECKAL CCMPLEX AIX, ANTG(ICC), EIX, FA, F RCS6 KEAL AINTR(100), AINTI(100) RCS6 LEL = 0.0CCU01 RCS6 CAMMA = 0.57721566 RCS6 1F (AKGZ .LE. 1.0E-6) GO TD 50 RCS6 DU 5 1=1,100 RCS6	C.		RCS6 20	
### ##################################	U	.NE. 0. PRINT DUT RFAL AND IMAGINARY PARTS OF	RCS6 20	2
COMPLEX Alx, ANTG(ICC), EIX, FA, F RCS6 KEAL AINTR(100), AINTI(100) CEL = 0.0CCC001 CAMMA = 0.57721566 IF (ARGZ .LE. 1.0E-6) GO TO 50 ASZ = ABS(ARGZ) DO 5 1=1,100 RCS6	v	INTECRAL	RCS6 20	3
REAL AINTR(100), AINTI(100) CEL = 0.0CCC001 CEMMA = 0.57721566 IF (ARGZ .LE. 1.0E-6) GO TO 50 ABZ = ABS(ARGZ) COU 5 1=1,100 RCS6 RCS6		AIX, ANTG(100), EIX, FA,	RCS6 20	4
LEL = 0.0CCU01 CAMMA = 0.57721566 1F (ARGZ .LE. 1.0E-6) GO TO 50 ABZ = ABS(ARGZ) PCS6 PCS = ABS(ARGZ) PCS = ABS(ARGZ) PCS = ABS(ARGZ)		AINTR	RCS6 20	2
= 0.0CCC001 MA = 0.57721566 (ARGZ .LE. 1.0E-6) GO TO 50 = ABS(ARGZ) 1=1,100	O		RCS6 20	9
RCS6 (ARGZ .LE. 1.0E-6) GO TO 50 RCS6 = ABS(ARGZ) 1=1,100			RCS 6 20	7
ARGZ .LE. 1.0E-6 GO TO 50 RCS6 R		CAMMA = 0.57721566	RCS6 20	83
= ABS(ARGZ) 5 1=1,100		ARGZ .LE. 1.0E-6) GO TO	RCS6 20	6
5 1=1,10u		ABZ = ABS(ARGZ)	RCS6 2	0
		47		1

The state of the s

RCS6 202	RCS6 203	RCS6 204	RCS6 205	RCS6 206	RCS6 207	RCS6 208	RCS6 209	RCS6 210	RCS6 211	RCS6 212	RCS6 213	RCS6 214	RCS6 215	RCS6 216	RCS6 217	RCS6 218	RCS6 219	RCS6 220	RCS6 221	RCS6 222	RCS6 223	RCS6 224	RCS6 225	RCS6 226	RCS6 227	RCS6 228
C KP . ME. O. PRINT DUT RFAL AND IMAGINARY PARTS OF EXPONENTIAL	INTECRAL	COMPLEX AIX, ANTG(ICC), EIX, FA, F	REAL AINTR(100), AINTI(100)		16L = 0.000001	CAMMA = 0.57721566	1F (AKGZ .LE. 1.0E-6) GO TO 50	232 = ABS(ARGZ)	DU 5 1=1,100	AINTR(1)= 0.0	0.0 =(1)IIIIA	ANTC(1) = CMPLX(0.0,0.0)	5 CONTINUE	1F (Ab2 .6E. 15) 60 TC 4		C THIS SERIES USED FOR 0.LT.ABS(X).LT.15	C ** SERIES EXPANSION INVOLVING CI(X) AND SI(X) **		C = C(2) = GAM + LN(2) + SUM(((-1)**N)*7**(2*N))/((2*N)*FACT(2*N))	C +0*(-1)****(2***(2***1)****(2***1))****(2****1))	C PIG2)		1.4C =1	FAC = -(ARG2**2)/(2.0)	AIN(9(1) = FAC * 0.5	AINTI(1) = FAC*(ARG2/4.0) + A462
173	21.0	27.8	£7.4	.7.8	876	11.3	27.8	47.0	989	881	862	883	438	333 333	526	133	31 33 0.	633	340	168	266	643	544	568	968	101
														2											L-6	94

and the state of the

RCS6 229	RCS 230	RCS6 231	RCS6 232	RĆS6 233	RCS6 234	RCS 6 234	RCS6 235	C-1) RCS& 236	RCS6 237	RCS6 238	RCS6 239	KCS6 240	RCS6 241	20 RCS6 242	40 RCS6 243	RCS6 244	RCS6 245	RCS6 246	RCS6 247	RCS6 248	RCS6 249	RCS6 250	RCS6 251	
J	1C INC = INC + 1	X2 = (2* INC)	$x_{2M} = x_2 - 1.0$	X2P1S = (2*INC + 1)**2	FAC = - (FAC*ARGZ*ARGZ)/(X2M*X2)	FAC = - (FAC*ARGZ*ARGZ)/(X2M*X2)	AINTR(INC) = FAC/X2 + AINTR(INC-1)	AINTI(INC) = FAC*(ARGZ/X2PIS) +AINTI(INC-1)	20	ABR = ABS(AINTR(INC))	ABRMI= ABS(AINTR(INC-1))	ABI = ABS(AINTI(INC))	ABIMI= ABS(AINTI(INC-1))	IF (ABS(ABR - ABRM1) .GE. DEL) GO TO	IF (ABS(ABI - ABIMI) .LE. DEL) GO TO	2C CCNTINUE	U	IF (INC .LT. 100) GO TO 10	WRITE (6, 1000)	1000 FORMAT(*OSERIES DID NOT CONVERGE *)	NI = INC	09 01 09	40 NI = INC	SINIT THOS OF
853 L-	3 69€	230	401	902	503	803	406	506	906	106	806	506	910	911	912	913	414	919	916	917	918	919	920	100

11, 18

950	2N1 = IN 04	8756.251
		100
921	60 CONTINUE	RCS6 252
922	EIXR = AINTR(NI) + ALOG(ARGZ) + GAMMA	RCS6 253
, 923	EIXI = AINTI(NI) - 1.5707963	RCS6 254
17 424	60 TO 75	RCS5 255
7 925	23	RCS6 256
426	C ** ASYMPTOTIC SERIES EXPANSION FOR INT FROM INF TO X OF **	RCS6 257
927	C (EXP(-JT)/T)*DT	RCS6 258 RCS6 259
929	9 CONTINUE	RCS6 260
930	IF (ABZ .GE. 150) GO TO 99	RCS6 261
931	C SERIES EXPANSION USED WHEN 15.LE.ABS(X).LT.150	RCS6 262
932	C * E(X) = EXP(IX)*(I/IX + I/(IX)**2 + 2FACT/(IX)**3+)	RCS6 263
933	•	RCS6 264
934	AIX = CMPLX(0.0,ARGZ)	RCS6 265
935	FA = 1.0/AIX	RCS6 266
986	ANTG(1) = FA	RCS6 267
937	F = FA*FA	RCS6 268
938	ANTG(2) = F + ANTG(1)	RCS6 269
636	INC = 2	RCS6 270
076	. •	RCS6 271
941	110 INC = INC + 1	RCS6 272
442	XF = INC-1	RCS6 273
943	F = F*XF*FA	RCS6 274
11,0	ANTG(INC) = F + ANTG(INC-1)	RCS6 275
546	AE = CAES (ANTG(INC))	RCS6 276
946	ABM1 =CABS (ANTG(INC-1))	RCS6 277
146	IF (ABS(AB - ABMI) .LT. DFL) GO TG150	RCS6 278

enthands

7.150 RCS6 262	2FACT/(IX)**3+) RCS6 263	RCS6 264	RCS6 265	RCS6 266	RCS6 267	RCS6 268	RCS6 269	RCS6 270	RCS6 271	RCS6 272	RCS6 273	RCS6 274	RCS6 275	RCS6 276	RCS6 277	RCS6 278	RCS 6 279	RCS6 280	RCS6 281	RCS6 282	RCS6 283	RCS6 284	RCS6 285	700 7000
SERIES EXPANSION USED WHEN 15.LE.ABS(X).LT.150	E(X) = EXP(IX)*(1/IX + 1/(IX)**2 +		AIX = CMPLX(0.0, ARGZ)	FA = 1.0/AIX	ANTG(1) = FA	F = FA*FA	ANIG(2) = F + ANIG(1)	INC = 2		110 INC = INC + 1	XF = INC-1	F = F*XF*FA	ANTG(INC) = F + ANTG(INC-1)	AE = CAES (ANTG(INC))	ABM1 =CABS (ANTG(INC-1))	IF (ABS(AB - ABM1) .LT. DEL) GO TO150	IF (INC .LE. 29) GD T0110		WRITE (6, 1001)	1001 FORMAT (* SERIES DID NOT CONVERGE *)	NN = 15	60 Tn 70	150 NN = INC	
J	* U	J							, u	110								U		1001			150	i
431	432	933	934	935	936	937	938	636	074	176	442	943	****	945	946	146	846	646	950	951	952	953	954	

17000

KCS6 261

IF (ABZ .GE. 150) GO TO 99-

```
RCS6 287
956
                                                                                     RCS6 288
457
                   LIX = ANTG( NN )*CEXP(AIX)
                                                                                     RCS6 289
658
                   +1XR = REAL(EIX)
                                                                                     RCS6 290
                   EIXI = AIMAG(EIX)
                                                                                      RCS6 291
                   60 10 75
960
                                                                                     PCS6 292
961
           C
                                                                                      RCS6 293
962
                   FUNCTION SET TO ZERO IF ARGUMENT AESIX).GE.150
                                                                                      RCS6 294
463
               44 EIXR = C.C
                                                                                      RCS6 295
464
                   EIXI = 0.0
                                                                                      RCS6 296
           75 CUNTINUE
465
                                                                                      RCS6 297
466
                                                                                      RC56 298
967
             C
                   IF ( KP .EQ. 0) CO TO 90
                                                                                      RCS6 299
468
                   WRITE (6,2000) EIX9, EIXT
             CZOCC FORMAT ( *CREAL PART OF EIX)= ", E15.5,//, " IMAGINARY PART OF EIX) RCS6 300
464
                                                                                      RC$6 301
                A= 1, E15.5 1
970
                                                                                      RC56 302
971
                  60 10 90
                                                                                      RCS6 303
                50 CENTINUE
472
                                                                                      RCS6 304
                   WRITE (6, 3000)
973
                                                                                      RCS6 305
              30CC FORMAT ("CARGZ DID NOT TRANSFER INTO SUPROUTINE OR IS ZERO" )
974
                                                                                      RC56 306
475
                90 CONTINUE
                                                                                      RCS6 307
976
                   RETURN
                                                                                      RC56 308
977
                   END
```

65

The far-field scattering from a frustrum-cylinder-frustrum target configuration shown in Figure L.5-1 has been formulated using the Ruck-Ufimtsev technique (Ref. 6).

The expressions of the target frequency response are the following:

$$e(\theta)_{\{V\}} = - \sqrt{\pi} \{g(1) + g(2) + g(3) + g(4) + g(5) + g(6) + g(7) + g(8) \}$$

- where (1) the g(m) are the sum of the scattering due to the uniform and non-uniform current associated with edge m
 - (2) The upper and lower signs correspond to vertical and horizontal polarization, respectively,
 - (3) e-iwt harmonic time variation is assumed, and
 - (4) the scattering geometry is presented in Figure 5-1

For
$$0 < \theta < \pi/2$$
,
 $g(1) = a_1 e^{ip_1} \left\{ JJ_{11} - \left[C(n_1) + B(n_1, \pi/2 + \theta) \pm 0.5 \tan(a_1 + \theta) F_1 \right] - C(n_1) JJ_{21} \right\}$
 $g(2) = a_2 e^{ip_2} \left\{ JJ_{12} - \left[C(n_2) + B(n_2, a_1 + \theta) + 0.5 \tan(a_1 + \theta) F_2 \right] - C(n_2) JJ_{22} \right\}$
 $g(3) = a_2 e^{ip_3} \left\{ JJ_{12} - \left[C(n_3) + B(n_3, \theta) \pm 0.5 \tan(a_2 + \theta) F_3 \right] - C(n_3) JJ_{22} \right\}$
 $g(4) = a_4 e^{ip_4} \left\{ JJ_{14} - \left[C(n_4) + B(n_4, a_2 + \theta) + 0.5 \tan(a_2 + \theta) F_4 \right] - C(n_4) JJ_{24} \right\}$

1. 0

Fig. L.5-1 GEOMETRY OF FRUSTRUM-CYLINDER-FRUSTRUM

THE PARTY OF THE P

$$\begin{split} g(5) &= a_1 e^{ip_1} \Big\{ JJ_{11+} \left[C(n_1)Q_5 + B(n_1, \pi/2 - \theta)Q_5 \right] \\ &= 0.5 \tan(a_1 - \theta)F_5Q_6 \right] - C(n_1) JJ_{21}Q_5 \Big\} \\ g(6) &= a_2 e^{ip_2} \Big\{ JJ_{12+} \left[C(n_2) + B(n_2, a_1 - \theta) + 0.5 \tan(a_1 - \theta)F_6 \right] \\ &- C(n_2) JJ_{22} \Big\} Q_6 \\ g(7) &= \pm a_2 e^{ip_3} \Big\{ JJ_{12+} (0.5) \tan(a_2 - \theta) \left[F_7 - 1 \right] Q_8 \Big\} \\ g(8) &= a_4 e^{ip_4} \Big\{ JJ_{14+} \left[C(n_4) + B(n_4, a_2 - \theta) + 0.5 \tan(a_2 - \theta)F_3 \right] \\ &- C(n_4) JJ_{24} \Big\} Q_8 \\ &= For \pi/2 - \theta \\ g(1) &= a_1 e^{ip_1} \Big\{ JJ_{11-} \left[C(n_1) + B(n_1, \pi - \theta - a_1) + 0.5 \tan(a_1 + \theta)F_1 \right] \\ &- C(n_1) JJ_{21} \Big\} Q_1 \\ g(2) &= a_2 e^{ip_2} \Big\{ JJ_{12-} \left[C(n_2) Q_2 + B(n_2, \pi - \theta)Q_2 + 0.5 \tan(a_1 + \theta)F_2Q_1 \right] \Big\} \end{split}$$

+ 0.5 tan $\theta(Q_2-Q_3)$ - $C(n_2)$ $JJ_{22}Q_2$

$$g(3) = a_2 e^{ip_3} \left\{ JJ_{12} - \left[C(n_3) + B(n_3, \pi - a_2 - \theta) + 0.5 \tan (a_2 + \theta) F_3 \right] - C(n_3) JJ_{22} \right\} Q_3$$

$$g(4) = a_2 e^{ip_4} \left\{ JJ_{14} - \left[C(n_4) + B(n_4, \frac{3\pi}{2} - \theta) + 0.5 \tan (a_2 + \theta) F_4 Q_3 \right] - C(n_4) JJ_{24} \right\}$$

$$g(8) = a_4 e^{ip_4} \left\{ JJ_{14+} \left[C(n_4) \mp B(n_4, \theta - \pi/2) \right] - C(n_4) JJ_{24} \right\}$$

$$g(5) = g(6) = g(7) = 0$$

where the upper and lower signs in the previous expressions correspond to vertical and horizontal polarization, respectively, and

$$C(n) = \frac{\sin \frac{\pi}{n}}{n} \frac{1}{\cos \frac{\pi}{n} - 1}$$

$$B(n, \psi) = \frac{\sin \frac{\pi}{n}}{n} \frac{1}{\cos \frac{\pi}{n} - \cos \frac{2\psi}{n}}$$

$$JJ_{1m} = \left[J_0(2ka_m \sin) + i J_1(2ka_m \sin) \right]$$

$$JJ_{2m} = \left[J_o(2ka_m sin) + J_2(2ka_m sin) \right]$$

$$n_1 = 1.5 - \frac{a_1}{\pi}$$

$$n_2 = 1 + \frac{a_1}{\pi}$$

$$n_3 = 1 - \frac{a_2}{\pi}$$

$$n_4 = 1.5 + \frac{a_2}{\pi}$$

$$p_1 = -2k(h_1 + h_2) \cos \theta$$

$$p_2 = -2k h_2 \cos \theta$$

$$p_3 = 2k h_2 \cos \theta$$

$$p_4 = 2k(h_2 + h_3) \cos \theta$$

$$Q_5 = Q(2ka_1(\pi/2-\theta))$$

$${\binom{6}{8}} = {\binom{2 \times a}{2}} {\binom{2}{4}} {\binom{a}{3}} - \theta)$$

$$Q\begin{pmatrix} 1\\2\\3 \end{pmatrix} = Q(2ka\begin{pmatrix} 1\\2\\2 \end{pmatrix} \begin{pmatrix} \pi - a\\1\\3\\2 \end{pmatrix} - \theta))$$

$$\tau^2$$
 = 2ka 1 csc 1cos($\alpha_1 + \theta$)

$$\tau^{2} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = 2ka \begin{pmatrix} 2 \\ 4 \end{pmatrix}^{csc} 2^{cos(a_{2}+\theta)}$$

$$\tau^{2} \binom{5}{6} = 2ka \binom{1}{2} \csc_{1} \cos(\alpha_{1} - \theta)$$

$$\tau^{2} \begin{pmatrix} 7 \\ 8 \end{pmatrix} = 2ka \begin{pmatrix} 2 \\ 4 \end{pmatrix} \csc 2 \cos (a_{2} - \theta)$$

$$a_1 = \tan^{-1} \frac{a_2 - a_1}{h_1}$$

$$a_2 = \tan^{-1} \frac{a_4 - a_2}{h_3}$$

$$a_3 = \tan^{-1} \frac{a_4 - a_2}{2h_2 + h_3}$$

$$F_m = F(\tau_m) = \frac{e^{-i\tau_m^2}}{\tau_m} \int_0^{\tau_m} e^{it^2} dt$$

$$k = 2\pi/\lambda = \text{wave number.}$$

The preceeding equation can be used in computing the first-order scattering from the target; however, it does not include the effects of multiple reflection or diffraction. The cylindrical surface between edges 2 and 3 is partially shadowed for the case of aspect angles between 150 degrees and 170 degrees, but the magnitude of this surface reflection is small; therefore, this return is formulated using the physical boundaries of the cylindrical surface and the screening functions rather than the illuminated portion of the surface. The screening functions were also used in describing the effects of shadowing upon the returns from the target edges.

L.5.1 Inputs

The subroutine inputs are read from cards or passed in a common block. The parameters passed in the common block include:

NMIN = minimum frequency number

NMAX = maximum frequency number

DF = frequency increment (in MHz)

FC = carrier frequency (in GHz)

The card inputs are the following:

	MATH SYMBOL	VARIABLE	DEFINITION	COLUMNS
Card 1	0	Aspect	Azimuth angle (degrees)	1-7
	a ₁	A1	Smallest frustrum radius (inches)	8-14

MATH	WARTARY F	DECIMITATION	COLIDAIC
SYMBOL	VARIABLE	DEFINITION	COLUMNS
a ₂	A2	Radius of cylinder (inches)	15-21
^a 4	A4	Largest frustrum radius (inches)	22-28
h ₁	Н1	Length of first frustrum (inches)	29-35
h ₂	Н2	Half-length of cylinder (inches)	36-42
h ₃	н3	Length of second frustrum (inches)	43-49
	L.5.2	Outputs	

The data base output consists of four linear arrays, EVVR, EVVI, EHHR, EHHI, which contain the real and imaginary parts of the vertically and horizontally polarized backscattered fields (in meters) at frequency increments spaced DF MHz from NMIN*DF to NMAX*DF.

L.5.3 Restrictions

L.5.3.1 Physical Dimensions

All target dimensions should be large with respect to the wavelength of the illuminating field. In addition, the target dimensions should be selected such that the angles 1 and 2, of the frustra retain the basic target shape, i.e. the target does not degenerate into a cylinder. A restriction on these angles is the following:

$$15^{\circ} < \alpha_1 < 60^{\circ}$$

 $20^{\circ} < \alpha_2 < 60^{\circ}$.

L.5.3.2 Output

The output arrays are passed in the argument list and a value is computed and stored only in locations NMIN to NMAX.

L.5.3.3 Azimuth

The azimuth angle is restricted to the region between 0 and 180 degrees. In addition the specular azimuths of 0, 90, 180, $(90 - \alpha_1)$, and $(90 - \alpha_2)$ degrees should not be used. In order to compute the response at these angles, an angular offset of approximately 0.01 degrees should be used.

L.5.4 Definitions of Selected Terms Used in Subroutines

COFFNI =
$$C(n) = \frac{\sin \frac{\pi}{n}}{n} \frac{1}{\cos \frac{\pi}{n} - 1}$$

where
$$n = n_1 = 1.5 - \frac{a_1}{\pi}$$

$$\frac{1}{\cos \pi/n - \cos \frac{2\Psi}{n}}$$

where
$$\psi = \frac{\pi/2+\theta}{}$$
 For $\theta < \pi/2$

COEF1
$$H = C(n_1) + B(n_1, \pi/2 + \theta)$$
 For $\theta < \pi/2$

COEF1
$$_{H}^{V} = C(n_{1}) + B(n_{1}, \pi - \theta - \alpha_{1})$$
 For $\theta < \pi/2$

PHASE
$$1 = e^{ip_1}$$

where
$$p_1 = -2k(h_1 + h_2) \cos \theta$$

FF VV 02 =
$$a_2e^{ip_2} \left\{ JJ_{12} - \left[C(n_2) + B(n_2, a_1 + \theta) \right] \right\}$$
 For $\theta < \pi/2$

FF
$$_{HH}^{VV}$$
 09 = $\frac{1}{7}$ 0.5 $tan(\alpha_1^+\theta)F_2$ $a_2e^{ip_2}$ $\{JJ_{12}-\}$ For θ < $\pi/2$

FFVV17 = -
$$C(n_2)$$
 JJ_{22} $a_2e^{ip_2}$ For $\theta < \pi/2$

TERMIP =
$$JJ_{1m} = \left[J_0(2ka_m \sin) + i J_1(2ka_m \sin) \right]$$
 For $\theta < \pi/2$

where m = 1 and the + (lower) sign is used.

L.5.5 Subroutines Used

Subfunctions:

- 1. Q(X) computes the exponential smoothing function
- 2. F(TAUS) computes the special F function

Subroutines:

BESL(SI1, XJ0, XJ1, XJ2) computes and returns

 $J_0(SI1)$ in XJ0

 $J_1(SI1)$ in XJ1

 $J_2(SI1)$ in XJ2

```
SUBROUTINE TARGET (EVVR, EVVI, EHHR, EHHI)
C
C
                ST-3A -- FRUSTRA-CYLINDER-FRUSTRA (UFIMTSEV)
C
      COMMON MOVER, M. NMIN, NMAX, DF, FC, FW, TØ
C
      NMIN = MINIMUM FREQUENCY SAMPLE
      NMAX = MAXIMUM FREQUENCY SAMPLE
C
C
         = FREQUENCY INCREMENT IN MHZ
      FC
          = CARRIER FREQUENCY IN GHZ
C
      COMPLEX TERM1P, TERM1M, TERM2P, TERM2M, TERM4P, TERM4M, PHASE1,
     1 PHASE2, PHASE3, PHASE4, FFVV01, FFVV02, FFVV03, FFVV04, FFVV05,
     2 FFVV06, FFVV07, FFVV08, FFVV09, FFVV10, FFVV11, FFVV12, FFVV13,
      FFVV14, FFVV15, FFVV16, FFVV17, FFVV18, FFVV19, FFVV20, FFVV21,
     4 FFVV22, FFHH01, FFHH02, FFHH03, FFHH04, FFHH05, FFHH06, FFHH07,
     5 FFHH08, FFHH09, FFHH10, FFHH11, FFHH12, FFHH13, FFHH14, FFHH15,
     6 FFHH16, FFHH17, FFHH18, FFHH19, FFHH20, FFHH21, FFHH22, FFVV,
     7 FFHH, CFVV,
                      CFHH,
                               FTAU1,
                                       FTAU2, FTAU3,
                                                        FTAU4,
     8 FTAU6, FTAU7,
                      FTAU8
      COMPLEX F
C
      DIMENSION EVVR(512), EVVI(512), EHHR(512), EHHI(512)
C
C
 * * * ALL DIMENSIONS ARE IN INCHES AND ALL ANGLES ARE IN DEGREES
      READ(5,1000) ASPECT, A1, A2, A4, H1, H2, H3, H4, H5, M1
 1000 FORMAT(9F7, 2, 12)
      WRITE (6,1010) A1, H1, A2, H2, A4, H3
 1010 FORMAT ( 31H1 4
                      FRUSTRA-CYLINDER-FRUSTRA 1,7
                304 /
                      UFINTSEV-RUCK FORMULATION 6,7
     1
                      H1 = ,F8.3,8H
                                        H1 = .F8.3.7
                 81
     3
                      A2 = (F8.3) 8H
                                        H2 = \sqrt{F8.377}
                 SH
     4
                 81
                      A4 = , F8.3, 8H
                                        H3 = (F8, 3, 7)
C
             = 11.80285078
      PI
            = 3.14159265358979
      SPI = SQRT(PI)
      DIR
            = PI / 180.0
      RTD = 180.0/PI
      MC
            = 2.0 * PI * FC
      XK00 = WC/C
      X2K0 = XK00 + XK00
      X2K0A1 = X2K0*S1
      X2K0A2 = X2K0*A2
      X2K0A4 = X2K0*A4
C
      THETA = ASPECT * DTR
      STHT
           = SIN(THETA)
      CTHT = COS(THETA)
      TANATT = STHT / CTHT
C
      SHADOW = (A4 - A2) / (H2 + H2 + H3)
      SHADOW = ATAN(SHADOW)
      ALPHA1 = ATAN((A2-A1)/H1)
      ALPHA2 = ATAN((A4-A2)/H3)
      X1D = ALPHA1*RTD
```

```
X2D = ALPHA2*RTD
      X3D = SHADOW*RTD
      WRITE (6,2010) ASPECT, X1D, X2D, X3D
 2010 FORMAT ( 18H0 ASPECT ANGLE = , F8.3,/,
                11H ALPHA1 = ,F8.3,/, 11H ALPHA2 = ,F8.3,/,
     1
                19H SHADOW(ALPHA3) = F8.3)
C
      SA1 = SIN(ALPHA1)
      SA2 = SIN(ALPHA2)
      A1PT = ALPHA1+THETA
      HIMT = ALPHA1-THETA
      A2PT = ALPHA2+THETA
      A2MT = ALPHA2-THETA
      TANAP1 = TAN(A1PT)
      TANAP2 = TAN(A2PT)
      CA1PTS = 2. *COS(A1PT)/SA1
      CA2PTS = 2.*COS(A2PT)/SA2
0
      XN1 = 1.5 - (ALPHA1 / PI)
      XN2
            = 1.0 + (ALPHA1 / PI)
      XN3
           = 1.0 - (ALPHA2 / PI)
           = 1.5 + (ALPHA2 / PI)
      XN4
      CPON1 = COS(PI/XN1)
      CPON2 = COS(PI/XN2)
      CFON3 = COS(PI/XN3)
      CPON4 = COS(PI/XN4)
      TERM01 = (SIN(PI / XN1)) / XN1
      TERM02 = (SIN(PI / XN2)) / XN2
      TERM03 = (SIN(PI / XN3)) / XN3
      TERM04 = (SIN(PI / XN4)) / XN4
      COEFNX ARE C(NX) TERMS
      COEFN1 = TERM01/(CPON1 - 1.)
      COEFN2= TERM02/(CPON2 - 1.)
      COEFN3 = TERM03/(CFON3 - 1.)
      COEFN4= TERM04/(CPON4 - 1.)
      IF (ASPECT . GT. 90.0) GO TO 10
      DIFFRACTION TERMS ( C(N)-/+B(N, PHI) = COEFXX TERMS
           COMPUTED HERE FOR THETA LT. 90
      COEF11 = 1.0 \% (CPON1 - COS((THETA+THETA+F1)/XN1))
      COEF12 = 1.0 / ( CPON2 - COS((A1PT + A1PT) /KN2))
      COEF13 = 1.0 / ( CPON3 - COS((THETA + THETA) /XN3))
      COEF14 = 1.0 / ( CPON4 - COS((A2PT + A2PT)
                                                   ZXN4))
      COEF21 = 1.0 / ( CPON1 - COS((THETA+THETA-PI)/XN1))
      COEF22 = 1.0 / ( CPON2 - COS((A1MT + A1MT) /XN2))
      COEF24 = 1.6 / (CPON4 - COS((A2MT + A2MT))
0
      COEF1V = COEFN1 - COEF11 * TERM01
      COEF1H = COEFN1 + COEF11 * TERMO1
      COEF2V = COEFN2 - COEF12 * TERM02
      COEF2H = COEFN2 + COEF12 * TERM02
      COEF3V = COEFN3 - COEF13 * TERMO3
      COEF3H = COEFN3 + COEF13 * TERM03
      COEF4V = COEFN4 - COEF14 * TERM04
      COEF4H = COEFN4 + COEF14 * TERM04
      COEF5V = COEFN1 - COEF21 * TERM01
      COEF5H = COEFN1 + COEF21 * TERM01
```

```
COEF6V = COEFN2 + COEF22 * TERM02
     COEF6H = COEFN2 + COEF22 * TERM02
     COEF7V = COEFN4 - COEF24 * TERM04
      COEF7H = COEFN4 + COEF24 * TERM04
C.
     TANAM1 = TAN(A1MT)
     TANAM2 = TAN(A2MI)
     CA1MTS = 2. *COS(A1MT)/SA1
     CA2MTS = 2.*COS(A2MT)/SA2
     Q6=Q(X2K0A2 * A1MT
     Q8=Q(X2K0A4 * (SHADOW - THETA)
     GO TO 20
C
     DIFFRACTION TERMS ( C(N)-/+B(N, PHI) = COEFXX TERMS
0
C
          COMPUTED HERE FOR THETA GT. 90
   10 COEF31
              = 1.0 / (CPON1 - COS(2.0*(PI-A1PT)/XN1))
              = 1.0 / (CPON2 - COS(2.0*(PI-THETA)/XN2))
      COEF32
      COEFRE
              = 1.0 / (CPON3 - COS(2.0*(PI-A2PT)/XN3))
     COEF34 = 1.0 / (CPON4 - COS((2.0*THETA - 3.0*PI)/XN4))
     COEF44 = 1.0 / (CPON4 - COS((2.0*THETA - PI )/XN4))
0
     COEF1V = COEFN1 - COEF31 * TERM01
     COEF1H = COEFN1 + COEF31 * TERM01
     COEF2V = COEFN2 - COEF32 * TERM02
     COEF2H = COEFN2 + COEF32 * TERM02
     COEF3V = COEFN3 - COEF33 * TERMØ3
     COEF3H = COEFN3 + COEF33 * TERMO3
     COEF4V = COEFN4 - COEF34 * TERM04
     COEF4H = COEFN4 + COEF34 * TERMO4
     COEF5V = COEFN4 - COEF44 * TERM04
     COEF5H = COEFN4 + COEF44 * TERM04
C
     Q1 = Q(X2K0A1 * (PI-A1PT)
      02=0(X2K0A2 * (PI - SHADOW - THETA))
      Q3=Q(X2K0A2 * (PI-A2PT)
   20 CONTINUE
C
      DO 900 I = NMIN, NMAX
            = 1 - 1
             = (2. * FI * XI * DF) / 1000.0
      XKO
            = W / C
     XK02C
              = XK0 * (CTHT + CTHT)
C
      TAU1
              = XK0 * A1 * CA1PTS
      TAU2
            = XK0 * A2 * CA1PTS
      TAUS
              = XK0 * A2 * CA2PTS
      THU4
              = XK0 * A4 * CA2PTS
      FTAU1
            = F
                     (TAU1)
      FTAU2 = F
                     (TAU2)
      FTAU3
            = F
                     (TAU3)
      FTAU4 = F
                     (TAU4)
C
      511
            = 2.0 * XKO * A1 * STHT
      512
             = 2.0 * XKO * A2 * STHT
             = 2.0 * XK0 * A4 * STHT
      514
      CALL BESL (SI1 XJ0X1, XJ1X1, XJ2X1) L-8/
      CALL BESL (512, XJ0X2, XJ1X2, XJ2X2)
      CALL BESL (SI4, XJ0X4, XJ1X4, XJ2X4)
```

```
TERM1P = CMPLX(XJ0X1, XJ1X1)
      TERM1M = CONJG(TERM1P)
      TERM2P = CMPLX(XJ0X2, XJ1X2)
      TERM2M = CONJG(TERM2P)
      TERM4P = CMPLX(XJ0X4, XJ1X4)
      TERM4M = CONJG(TERM4P)
      TERM5 = XJ0X1 + XJ2X1
      TERM6 = XJ@X2 + XJ2X2
           = XJ0X4 + XJ2X4
      TERM?
      PHI1
              = XK02C * (H1+H2)
      PHI2
              = XK020 * (H2)
      PHI3
              = PHI2
              = XK020 * (H2+H3)
      PHASE1 = CMPLX(COS(PHI1),-SIN(PHI1))
      PHASE2 = CMPLX(COS(PHI2), -SIN(PHI2))
     PHASE3 = CMFLX(COS(PHI3), SIN(PHI3))
      PHASE4 = CMPLX(COS(PHI4), SIN(PHI4))
6
     IF (ASPECT . GT. 90.0) GO TO 30
     THU5
           = XK0 * A1 * CA1MTS
      TAU6
              = XK0 * A2 * CAIMTS
      THU?
              = XK0 + A2 + CA2MTS
     THUS
              = XK0 * A4 * CA2MTS
     FTAU5 = F
                    (THU5)
      FTAU6
            = F
                    (TAU6)
      FTAU7 = F
                     (TAU7)
      FTAU8 = F
                    (TAUS)
0
     FFVV01 = A1 * TERM1M * COEF1V * PHASE1
     FFHH01 = A1 * TERM1M * COEF1H * PHASE1
     FFVV02 = A2 * TERM2M * COEF2V * PHASE2
      FFHH02 = A2 * TERM2M * COEF2H * PHASE2
      FFVV03 = A2 *
                    TERM2M * COEF3V * PHASE3
      FFHH03 = A2 * TERM2M * COEF3H * PHASE3
      FFVV04 = A4 * TERM4M * COEF4V * PHASE4
      FFHH04 = A4 * TERM4M * COEF4H * PHASE4
      FFVV05 = A1 * TERM1P * COEFSV * PHASE1
      FFHH05 = A1 * TERMIP * COEFSH * PHASE1
      FFVV06 = A2 * TERM2P * COEF6V * PHASE2 * Q6
      FFHH06 = A2 * TERM2P * COEF6H * PHASE2 * 06
      FFYV07 = 64 * TERM4P * COEFTV * PHASE4 * Q8
      FFHH07 = H4 * TERM4P * COEF7H * PHASE4 * Q8
      FFVV08 = A1 * TERM1M * TANAP1 * ( 0 5) * FTAU1 * PHASE1
      FFHH08 = -FFVV08
      FFVV09 = 82 * TERM2M * TANAP1 * (-0.5) * FTAU2 * PHASE2
      FFHH09 = -FFVV09
      FFVV10 = A2 * TERM2M * TANAP2 * ( 0.5) * FTAU3 * PHASE3
      FFHH10 = -FFVV10
      FFVV11 = A4 * TERM4M * TANAP2 * (-0.5) * FTAU4 * PHASE4
      FFHH11 = -FFVV11
      FFVV12 = A1 * TERM1P * TANAM1 * ( 0.5) * FTAU5 * PHASE1 * Q6
      FFHH12 = -FFVV12
      FFVV13 = A2 * TERM2P * TANAM1 * (-0.5) * FTAU6 * PHASE2 * Q6
      FFHH13 = -FFVV13
      FFVV14 = A2 * TERM2P * TANAM2 *(-,5)*(1,-FTAU7)* PHASE3 * Q8
                              L-82
      FFHH14 = -FFVV14
```

```
FFVV15 = A4 * TERM4P * TANAM2 * (-0.5) * FTAU8 * PHASE4 * 08
     FFHH15 = -FFVV15
     FFVV16 = -A1 * COEFN1 * TERM5 * PHASE1
      FFHH16 = FFVV16
     FFVV17 = -A2 * COEFN2 * TERM6
                                     * PHASE2
     FFHH17 = FFVV17
                                     * PHASE3
     FFVV18 = -A2 * COEFN3 * TERM6
     FFHH18 = FFVV18
     FFVV19 = -A4 * COEFN4 * TERM?
                                     * PHASE4
     FFHH19 = FFVV19
     FFVV20 = -A1 * COEFN1 * TERMS
                                     * PHASE1
     FFHH20 = FFVV20
     FFVV21 = -A2 * COEFN2 * TERM6 * PHASE2 * Q6
      FFHH21 =
              FFVV21
     FFVV22 = -A4 * COEFN4 * TERM7 * PHASE4 * Q8
     FFHH22 =
              FFVV22
     FFVV
             = FFVV01 + FFVV02 + FFVV03 + FFVV04 + FFVV05 + FFVV06 +
              FFVV07 + FFVV08 + FFVV09 + FFVV10 + FFVV11 + FFVV12 +
    1
               FFVV13 + FFVV14 + FFVV15 + FFVV16 + FFVV17 + FFVV18 +
               FFVV19 + FFVV20 + FFVV21 + FFVV22
             = FFHH01 + FFHH02 + FFHH03 + FFHH04 + FFHH05 + FFHH06 +
     FFHH
               FFHH07 + FFHH08 + FFHH09 + FFHH10 + FFHH11 + FFHH12 +
               FFHH13 + FFHH14 + FFHH15 + FFHH16 + FFHH17 + FFHH18 +
               FFHH19 + FFHH20 + FFHH21 + FFHH22
0
      60 TO 40
C
   30 CONTINUE
      FFVV01 = A1 * TERM1M * COEF1V * PHASE1 * Q1
     FFHH01 = A1 * TERM1M * COEF1H * PHASE1 * 01
      FFVV02 = H2 * TERM2M * COEF2V * PHASE2 * 02
     FFHH02 = A2 * TERM2M * COEF2H * PHASE2 * 02
     FFVV03 = A2 * TERM2M * COEF3V * PHASE3 * Q3
     FFHH03 = A2 * TERM2M * COEF3H * PHASE3 * Q3
     FFVV04 = A4 * TERM4M * COEF4V * PHASE4
     FFHH04 = A4 * TERM4M * COEF4H * PHASE4
      FFVV05 = A4 * TERM4P * COEF5V * PHASE4
     FFHH05 = A4 * TERM4F * COEFSH * PHASE4
     FFVV06 = A1 * TERM1M * TANAF1 * ( 0.5) * FTAU1 * FHASE1 * 01
      FFHH06 = -FFVV06
      FFVV07 = A2 * TERM2M * TANAP1 * (-0.5) * FTAU2 * PHASE2 * Q1
      FFHH07 = -FFVV07
      FFVV08 = A2 * TERM2M * TANAP2 * ( 0.5) * FTAU3 * PHASE3 * Q3
      FFHH08 = -FFVV08
                                                     * PHASE3 *(Q2-Q3)
      FFVV09 = A2 * TERM2M * TANATT * ( 0.5)
     FFHH09 = -FFVV09
     FFVV11 = A4 * TERM4M * TANAP2 * (-0.5) * FTAU4 * PHASE4 * Q3
     FFHH11 = -FFVV11
      FFVV12 = -A1 * COEFN1 * TERM5 * PHASE1 * Q1
      FFHH12 = FFVV12
      FFVV13 = -82 * COEFN2 * TERM6
                                    * PHASE2 * 02
      FFHH13 = FFVV13
      FFVV14 = -A2 * COEFN3 * TERM6
                                     * PHASE3 * Q3
      FFHH14 = FFVV14
     FFVV15 = -A4 * COEFN4 * TERM?
                                     * PHASE4 *Q8
     FFHH15 = FFVV15
     FFVV16 = -84 * COEFN4 * TERM7 * PHASE4 L-83
```

```
FFHH16 = FFVV16
            = FFVV01 + FFVV02 + FFVV03 + FFVV04 + FFVV05 + FFVV06 +
              FFVV07 + FFVV08 + FFVV09
                                               + FFVV11 + FFVV12 +
              FFVV13 + FFVV14 + FFVV15 + FFVV16
C
            = FFHH01 + FFHH02 + FFHH03 + FFHH04 + FFHH05 + FFHH06 +
     FFHH
              FFHH07 + FFHH08 + FFHH09
                                               + FFHH11 + FFHH12 +
              FFHH13 + FFHH14 + FFHH15 + FFHH16
0
C
   40 FFVV
            = FFVV * . 02539998 * SPI
     FFHH
            = FFHH * . 02539998 * SPI
C
     CFVV
            =-CONJG(FFVV)
            = CONJG(FFHH)
     CFHH
     EVVR(I) = REAL(CFVV)
     EVVI(I) =AIMAG(CFVV)
     EHHR(I) =REAL(CFHH)
     EHHI(I) =AIMAG(CFHH)
 900 CONTINUE
     RETURN
     SUBROUTINE BESL ( X, B0, B1, B2 )
0
   * BESSEL FUNCTION SUBROUTINE UTILIZING POLYNOMIAL APPROXIMATIONS
   * COMPUTES JO, J1, OR J2 FOR POSITIVE REAL ARGUMENTS
C
   * REFERENCE (HNDBK MATH FUNCT BY ABRAMOWITZ AND STEGUN SECTION 9.4)
C
0
     5 = 1.0
     IF (X .LT. 0.0) 5=-1.0
     X = ABS(X)
     IF ( X . GT. 1. E-6 ) GO TO 5
     80 = 1.0
     B1 = 0.0
     82 = 0.0
     X = X * 5
     RETURN
C
    5 CONTINUE
C
    1 IF ( X . GE. 3.) GO TO 9
     X1 = X/3.
     X1 = X1 * X1
     B = 1. + X1*(-2.2499997 + X1*(1.2656208 + X1*(-.3163866 + X1*(.0444479)))
    1 + X1*(-.0039444+ X1*2.1E-4 ))))))
     GO TO 10
    9 X2 = 3. /X
           .79788456 +X2*(-.77E-6 +X2*(-.00552740 +X2*(-.9512E-4 +X2*
        (.00137237 +X2*(-.72805E-3 +X2*0.14476E-3 )))) )
     T0 = X - .78539816 + X2*(-.04166397 + X2*(-.3954E-4 + X2*(.00262573))
    B = F0*COS(T0)/SQRT(X)
```

```
10 B0 = B
 2 IF ( X GE. 3. ) GO TO 19
   X1 = X1 * X1
   B = X*(-5 + X)*(-.56249985 + X)*(.21093573 + X)*(-.03954289 + X)*
                   (.00443319 +X1*(~ 31761E+3 +X1*0 1109E-4)))) )
  1
  GO TO 20
19 X2 = 3.7X
  F1 = .79788456 +x2*4.156E-5 +x2*4.01659667 +x2*4.00017105 +x2*4 (-00249511 +x2*4.00113853 - 00020073*x2->>>>
  T1 = X - 2.35619449 +X2*( 12499612 +X2*( 5656-4 +X2*) - 00637879
 1 +X2*( 00074348 +X2*( 00079884 -0 08029165*X2 ))),)
  8 = F1*COS(T1)/SORT(X)
20 B1 = B * S
   X = X * 5
   B2= (2, /K)*F1 - B0
50 RETURN
   END
   COMPLEX FUNCTION F(TAU)
   COMPUTES FIAU WHERE FIAU =(EXF(~J*TAU**2)/2*TAU)*SGRT(PI/2 >*
                              - (CSKTAU**2) + J*52(TAU**2))
 COMPLEX B. FP
   FI = 0 14159265058979
   P102 = P1/2.
   51 = SART(P1/2
   1.2 = 1 /112
   ATAUS = ABS(TAU)
   IF (ATAUS LE 0.5 700 TO 28
   F R TAUS OF 0 5, FUNCTION LOMPUTED USING POLYNOMIAL APPROXIMATION
 * PEFERENCE (HANDER MAIN FUNCT BY ASRAHOWITZ AND STEBUM, * SECTIONS 7 2 3 0 7 2 22-7 3 33)
   TAUS = SORI(ATAUS)
   X = C2*TAUS
   公宝 = 岩米岩
   FX = (1.0+0 925*X)/(2.0+1.792*X+3.104*XS)
   0X = 1.0/(2.0+4.142+X+3.482+X5+6.57+X+X5)/
   CCIXS = COS(ATAUS)
   SC1XS = SIN(ATAUS)
   CX = 0.5 + FX*SC1NS - GX*CC1XS
   SX = 0 5 - FX*CC1XS - GX*SC1XS
   IF (TAU . LT. 0.0) 60 TO 10
   B = CMPLX(CX, SX)
   FP = CMPLX( COS(ATAUS), -SIN(ATAUS) )
   F = (C1*B*FP)/TAUS
   RETURN
                              L-85
```

```
10 CONTINUE
      B = CMPLX(SX, CX)
      A = ATAUS-PIO2
      FP = CMPLX( COS(A), SIN(A) )
      F = (B*FP*C1)/TAUS
      RETURN
   20 CONTINUE
C
      FOR TAUS . LE. 0.5, FUNCTION IS EXPANDED IN SERIES AND FIRST FEW
                          TERMS INTEGRATED TERM BY TERM TO OBTAIN RESULT
      FP = CMPLX(COS(TAU), -SIN(TAU))
      TS = TAU*TAU
      FR = 1 - TS*(.1 - .0046296296*TS)
      FI = TAU *( .333333333 - T5*(.0238095238 - 7.57575757E-4*T5))
      B = CMPLX(FR, FI)
      F = FF*B
      RETURN
      END
      FUNCTION Q(Z)
     Q(Z) = 0.5*(1 + ERF(Z))
C
    * ERF(Z) IS EVALUATED USING A RATIONAL POLYNOMIAL APPROXIMATION
C
    * REFERENCE (HANDBK MATH FUNCT BY ABRAMOWITZ AND STEGUN,
C
                 SECTION 7. 1. 26)
C
      IF ( 2. GT. 2.) GO TO 10
      IF ( Z. LT. -2. ) GO TO 20
      AZ = ABS(Z)
      P = 1.0/(1.0 + .47047*AZ)
      Y. = 1.0 - P*(.3480242 - P*(.0958798 - .7478556*P))*EXP(-AZ*AZ)
      IF (Z) 2,4,6
    2 0 = (1.0 - Y)/2.
      RETURN
    4 0 = .5
      RETURN
    6 0 = (1.0 + Y)/2.
      RETURN
   10 0 = 1.
      RETURN
   20 0 = 0.
      RETURN
                                    T-86
      END
```

· to the same

/ TARGET /

ST-3A FRUSTRA-CYLINDER-FRUSTRA (UFIMTSEV) * * *

FREQUENCY SAMPLE
DF = FREQUENCY
INCREMENT IN MHZ
FC = CARRIER
FRECUENCY IN GHZ VMIN = MINIMUM FREQUENCY SAMPLE NMAX = MAXIMUM

1. H.

* * * ALL DIMENSIONS
ARE IN INCHES AND ALL
ANGLES ARE IN DEGREES
* *

01 / READ FROM DEV / / INTO THE LIST / VIA FURMAT

NOTE

18

THFTA = ASPECT*6TR	XNI = 1.5 -
	XNZ = 1.0 + (ALPHAI/PI)
TANATT =	XN3 = 1.0 -
*	XN4 = 1.5 +
60	
(44	
H3)	COS(PI/XN1)
SHADOW = ATAN(SHADOW)	CDS(P1/xN2)
ALPHA1 = ATAN((A2 - A1)/H1)	COS(PI/XN3)
*	CPON4 = COS(PI/XN4)
XID = ALPHAI*RTD	TERMOI = (SIN(PI/XNI))/XNI
X2D = ALPHA2*RTD	TERMO2 = (SIN(PIXN2))/XN2

L-88

5

CHART TITLE - SUERCUTINE TARGET (LVVR, EVVI, FPHR, FHH!)

The State of the S

CHART TITLE - SURRCUTIVE TARGET (EVVR. EVVI, SHHR, SHHI)

CON S

*FTAU2*PHASE2	#FTAU3*PHASE3	FFHHI = - FFVVI	A2*TERM2P*TANAM1* (-0.5)	FTAU7)*PHASE3*Q8 FFHH14 = - FFVV14
FTAUS = F(TAUS)	A1*TEGMIM*COEFIH* PHASE1 A2*TEGMZM*COEF2V* PHASE2	A2*TERMZM*CLEF2H* PHASE2 A2*TFRMZM*CGF3V* PHASE3 A2*TFRMZM*CGF3V* PHASE3 ************************************	FFVV04 = FFVV04 = PHASE4 FFHH04 = FFHH04 = FFHH04 = PHASE4 FFVV05 = FFVV0	
TERMAP = CMPLX(XJOX4, XJ1X4) TERMAY = CGNJG(TERMAP) TERMS = XJOXI + XJ2X1 XJ2X1	1 TERMS = XJOX2 +	PHII = XK02C*(H2) PHII = XK02C*(H2) PHII = PHII PHII = PHII PHII = PHII PHII PHII = PHII PHII	PHASE1 = CMPLX(CCS(PHII),	CMPLX(CLS(PHI3),

C. Toward

CHART TITLE - SUCROUTING TARGET (EVVR, EVVI, FHHR, FHHI)

, 30 /		* * * * * * * * * * * * * * * * * * *	*	10	FFVV01 = A1*TERMIM*COEFIV*	PHASEI#01	FFHH01 =	PHASE1#01	FFVV02 = A2*TERM2M*COFF2V*	PHASE2*02		*	A A A T T R M A C D E F D H A	PHASE2*Q2	A 2 * T F R N 2 N * C F S V * C	PHASE3*Q3	FFHHO3 =	PHASE3*03	*	*	FFVVO4 = A4*TERM4M*CDEF4V*
	31.21>*	FFVV15 =	A4*TFRM4P*TANAM2* (-0.5) *FTAUS*PHASE4*C8	FFHHIS = - FFVVIS	FFVVic = -	AI*COEFNI*TERM5* PHASEI	*	03	FFHH16 = FFVV16		A2*CUEFNZ*TERM6* PHASE2	FFHHI7 = FFVVI7	***************************************	03	*	A2*COEFN3*TERM6* PHASE3	α		A4*COFFN4*TERM7* PHASE4		*

4 W

FFW10 = FFW19 FFW10 = FFW00 FFW10 = FFW00 = FFW0	A+*CDEFN4*TERM7*		*
PHASE			# FFVV04 =
NATION N	= FFVV19		PHASE4
05 PFVV20 PHASE4 PHASE	FFVV20 = - A1*COEFN1*TERM5*		FFHH04 =
05	" -		FFVV05 = A4*TERM4P*COEF5V* PHASE4
= FFVV2 = FFVV3 = FFVV3 = FFVV4 = FFVV3 = FFVV4 = FFV4 = FFVV4 = FFV4 = FFVV4 = FFVV4 = FFVV4 = FFVV4 = FFVV4 = FFV4 = FFVV4 = FFV4			13
1 = FFVV21 1 = FFVV21 5 = FFVV22 5 = FFVV22 5 = FFVV3 5 = FFVV3 6 = FFVV3 7 = FFV	A2#CUEFN2#TERM6# PHASE2#G6		FFHH05 = A4*TERM4P*COEF5H*
######################################	FFHH21 = FFVV21 FFVV22 FFVV22 = -		FFVV06 = AI*TERMIM*TANAPI*
CC	PHASE4*68		(0.5) *FTAU1*PHASE1*Q1
2 = FFVV22			FFHH06 = -
07 107 107 108 1	FHH22 = FFVV22		14
= FFVV01 + + FFVV03 + + FFVV03 + + FFVV05 + + FFVV05 + + FFVV07 + + FFVV07 + + FFVV11 + + FFVV11 + + FFVV12 + + FFVV13 + + FFVV15 + + FFVV17 + + FFVV18 + + FFVV17 + + FFVV18 + + FFVV18 + + FFVV19 + + FFVV1 + + FFVV19 + + FFVV	* * * * * * * * * * * * * * * * * * * *		# 1 A 2 * T E R W W T A N A D I * I L C C C C C C C C C C C C C C C C C C
+ FFVV03 + + FFVV03 + + FFVV07 + + FFVV07 + + FFVV07 + + FFVV11 + + FFVV11 + + FFVV13 + + FFVV13 + + FFVV13 + + FFVV15 + + FFVV15 + + FFVV17 + + FFVV18 + + FFVV18 + + FFVV18 + + FFVV19 + + FFV19 + + FFVV19 + + FFVV19 + + FFVV19 + + FFVV19 + + FFV1	- FEVVO1 +		*FTAU2*PHASE2*CI
# FFVV07 +	+ FFVV03		u
0 + FFVV11 + 1	+ FFVV07 + FFVV05		FFVV08 =
# FFVVI7 +	0 + FFVV11 2 + FFVV13		(0.5) *FTAU3*PHASE3*Q3
FFVV20 + FFVV21 +	+ FFVV15 + FFVV17	,	
FFHH	FVV18 + FFVV19 FVV20 + FFVV21		- 15
+ FFHH03 + FFHH05 + A2*TERM2N*T + FFHH07 + A2*TERM2N*T + FFHH09 + PFHH11 + FFHH09 = - + FFHH13 + FFHH09 = - + FFHH13 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH09 = - + FFHH17 + FFHH17 +	FFVV22	= FFHH01 +	1 "
+ FFHH07 + A2*TERM2N*T + FFHH09 + A2*TERM2N*T + FFHH11 + APHASE3*(Q2 + FFHH13 + FFHH09 = - + FFHH17 + FFHH09 = -		+ .	
+ FFHH09 + *PHASE3*(02 + FFHH11 + *PHASE3*(02 + FFHH13 + FFHH09 = - + FFHH15 +		+ +	A 2 * TERM 2 M * TANATT *
+ FFHH13 + FFHH09 = - + FFHH15 + *		+ +	
+ FFHH17 +		+ +	1 11
		+	

, 2

CHART TITLE - SURRIUTINE TARGET(EVVR, EVVI, EHHR, EHHI)

-*	(-0.5) *FTAU4*PHASE4*03 FFHHII = - FFVVII	FFVV12 = - A1*COEFN1*TERM5* PHASE1*Q1		FFHH12 = FFVV12	FFVV13 = - A2*CGFN2*TERM6* PHASE2*Q2	FFHH13 = FFVV13	. Eo	FFVV14 = - A2*CGEFN3*TERM6* PHASE3*Q3	FFHH14 = FFVV14	FFVV15 = -
-----	---	---	--	-----------------	--	-----------------	------	---	-----------------	------------

· no property

W. A.S.

FFVV = FFVVOI +

FFVV02 + FFVV03

L-91

:

* EXIT

04/26/76

CHART TITLE - NON-PROCEDURAL STATEMENTS

COMMON MOVER, M. NMIN, NMAX, DF, FC, PW, TO

CUMPLEX TERMIP, TERMIM, TERM2P, TERM2M, TERM4P, TERM4M, PHASE1,

PHASE2, PHASE3, PHASE4, FEVVO1, FEVVO2, FEVVO3, FEVVO4, FEVVO5,

FEVVO6, FEVVO7, FEVVO8, FEVVO9, FEVV10, FEVV11, FEVV12, FEVV13,

FEVV14, FEVV15, FEVV16, FEVV17, FEVV18, FEVV19, FEVV20, FEVV21,

FEVV22, FEHHO1, FEHHO2, FEHHO3, FEHHO4, FEHHO5, FEHHO6, FEHHO7,

FEHHO8, FEHHO9, FEHH16, FEHH11, FEHH12, FEHH13, FEHH14, FEHH15,

FEHH16, FEHH17, FEHH18, FEHH19, FEHH20, FEHH21, FEHH22, FEVV,

FEHH, CFVV, CFHH, FIAU1, FTAU2, FTAU3, FTAU4, FTAU5,

FTAU6, FTAU7, FTAU8

COMPLEX F

DIMENSION FVVR(512), FVVI(512), EHHR(512), EHHI(512)

1000 FORMAT(9F7.2,12)

1010 FORMAT (31H1 * FRUSTRA-CYLINDER-FRUSTRA *,/

30H . UFIMTSEV-RUCK FORMULATION ../

8H A1 = ,F8.3, 8H H1 = ,F8.3,/

8H A2 = ,F8.3, 8H H2 = ,F8.3,/

8H A4 = ,F8.3, 8H H3 = ,F8.3,/)

2010 FORMAT (18HO ASPECT ANGLE = , F8.3,/,

11H ALPHA1 = ,F8.3,/, 11H ALPHA2 = ,F8.3,/,

19H SHADOW(ALPHA3) = .F8.3)

4-92

TO MAN S

CHART TITLE - SUFRECTINE "FISLEX, FO, E1, FIT

/ BEST /

* RESSEL FUNCTION SUBROUTINE UTILIZING POLYNOMIAL APPROXIMATIONS * COMPUTES JO.JI.UR JZ FOR POSITIVE REAL ARGUMENTS

ARGURINIS
AREFERENCE (HNDSK
MATH FUNCT SY
ASRAMGMITZ AND STECUN
SECTION 4.4.)

* - | 01 * - | 05

X = A9S(X)

FG = .70788456 + ...

X2*(-.0552746 + ...

X2*(-.0552746 + ...

X2*(-.0137237 + ...

X2*(-.0137237 + ...

X2*(-.013537 + ...

X2*(-.00054125 + ...

X2*(-.00054333 + ...

X2*(-.00054333 + ...

X2*(-.0005333 + ...

X2*(-.000533 + ...

X2*(-.000533 + ...

X2*(-.00

¢

CHART TITLE - COMPLEX FUNCTION FITAU

CONTINUE EP = RESULT TRUE 02 /2*1AU)*SCRT (P1/2.)* COMPUTES FTAU WHERE 3.14159265358979 FOR TAUS .GT. 0.5, FUNCTION COMPUTED C1 = SQRT(P1/2.) ATAUS = ABS(TAU) PIG2 = P1/2. FALSE =(EXP(-J*TAU**2) C2 = 1./C1ATAUS .LE. (C2(TAU**2) + J*52(TAU**2))

TERMS INTEGRATED TERM BY TERM TO OBTAIN FOR TAUS .LE. 6.5, FUNCTION IS EXPANDED IN SERIES AND FIRST NOTE

FR = 1 - TS*(.1 -CMPLX(COS(TAU), SIN(TAU)) TS = TAU*TAU

.0046296296*TS1

TAU* (.33333333 -

TS*(.0238095238 - 7.57575757E-4*TS)

L-94

04/26/70

AUTOFLOW CHART SET

CHART TITLE - NON-PROCEDURAL STATEMENTS

COMPLEX B. FP

AUTOFLOW CHART SET - FWO/SCL RADSIM

TLF - NON-PROCEDURAL STATEMENTS

COMPLEX B. FP

L-95

CHART TITLE - FUNCTION 9(Z)

* ERF(2) IS EVALUATED USING A RATIONAL POLYNOMIAL APPROXIMATION * REFERENCE (HANDBK MATH FUNCT BY APRAMOWITZ AND STEGUN, SECTION 0(Z) = 0.5*(1 + FRF(Z))

7.1.261

value o

TRUE

10

EXIT

TRUE

TO W

GENERAL DYNAMICS FORT WORTH TEX CONVAIR AEROSPACE DIV F/G 17/9 ENDO ATMOSPHERIC EXO ATMOSPHERIC RADAR MODELING. RADAR CROSS SE--ETC(U) JUN 76 R J HANCOCK, F H CLEVELAND F30602-73-C-0380 AD-A031 440 RADC-TR-76-186-VOL-4-PT-2 UNCLASSIFIED NL 3 OF 44 AD 31440

RCS7 001	RCS7 002	* RCS7 003	RCS7 004	RCS7 005	RCS7 006	RCS7 007	RCS7 008	RCS7 009	RCS7 010	RCS7 011	RCS7 012	RCS7 013	RCS7 014	RCS7 015	RCS7 016	RCS7 017	RCS7 018	RCS7 019	RCS7 020	RCS7 021	RCS7 022	RCS7 023	* RCS7 024
SUBROUTINE TARGET (EVVR, EVVI, EHHR, EHHI)	U	C * * * ST-3A FRUSTRA-CYLINDER-FRUSTRA (UFIMTSEV) * *	U	COMMON MOVER, M. NMIN, NMAX, DF, FC, PW, TO	C NMIN = MINIMUM FREQUENCY SAMPLE	C NMAX = MAXIMUM FREQUENCY SAMPLE	C LF = FREQUENCY INCREMENT IN MHZ	C FC = CARRIER FREQUENCY IN GHZ	U	COMPLEX TERMIP, TERMIM, TERM2P, TERM2M, TERM4P, TERM4M, PHASEI,	1 PHASE2, PHASE3, PHASE4, FFVV01, FFVV02, FFVV03, FFVV04, FFVV05,	2 FFVV06, FFVV07, FFVV08, FFVV09, FFVV10, FFVV11, FFVV12, FFVV13,	3 FFVV14, FFVV15, FFVV16, FFVV17, FFVV18, FFVV19, FFVV20, FFVV21,	4 FFVV22,FFHH01, FFHH02, FFHH03, FFHH04, FFHH05, FFHH06, FFHH07,	5 ЕЕННОВ, ЕЕННО9, ЕЕННІО, ЕЕННІІ, ЕЕННІ2, ЕЕННІ3, ЕЕННІ4, ЕЕННІ5,	6 FFHH16, FFHH17, FFHH18, FFHH19, FFHH20, FFHH21, FFHH22, FFVV,	7 FFHH, CEVV, CFHH, FTAUI, FTAU2, FTAU3, FTAU4, FTAU5,	8 FTAU6, FTAU7, FTAU8	COMPLEX F	J	DIMENSION EVVR(512), EVVI(512), EHHR(512), EHHI(512)	U	C * * * ALL DIMENSIONS ARE IN INCHES AND ALL ANGLES ARE IN DEGREES *
978	679	086	981	285	963	484	465	486	487	988	686	066	166	266	699	466	566	955	165	855	560	1000	1001

with the contract of

	988	COMPLEX TERMIP,	TERMIM.	ERMIP, TERMIM, TERMZP, TERMZM, TERM4P, TERM4M, PHASEI,	TERM2M.	TERM4P.	TERM4M.	PHASE1.	RCS7	110
	185	1 PHASE2, PHASE3,	PHASE4.	FFVV01,	FFVV02,	FEVVO3, FFVV04,	FFVV04,	FFVV05,	RC57	012
	066	2 FFVV06,FFVV07,	FFVV08,	FFVV09, FFVVIO.		FFVVII, FFVVIZ, FFVVI3,	FFVV12.	FFVV13,	RCS7	013
	144	3 FFVVI4, FFVVI5,	FFVV16,		FFVVI7. FFVVI8.	FFVV19, FFVV20,	FFVV20.	FF VV 21,	RCS7	910
	2442	4 FEVV22, FFHH01,	FFHH02,	FFHH03, FFHH04,	FFHH04,	FFHH05, FFHH06,	FFHH06,	FFHH07.	RCS7	610
	500	5 FFHH08, FFHH09,	FFHH10,	FFHH11,	FFHH12,	FFHH13, FFHH14,	FFHH14,	FFHH15,	RCS7	910
	\$60	6 FFHH16, FFHH17,	FFHH18,	FFHH19 ,	FFHH20,	FFHH21,	FFHH22,	FFVV,	RCS7	110
	566	7 FFHH, CFVV.	сғнн.	FTAU1,	FTAU2,	FTAU3,	FTAU4,	FTAUS,	RCS7	018
	955	8 FTAUS, FTAU7,	FTAUS						RCS7	610
	265	COMPLEX F							RCS7	020
	865	J							RCS7	021
	560	DIMENSION EVVR	512), EV	EVVR(512), EVVI(512), EHHR(512), EHHI(512)	EHHR (512), EHHI(512)		RCS7	022
	1000	U							RCS7	023
	1001	C * * * ALL DIMENSION	S ARE IN	ENSIONS ARE IN INCHES AND ALL ANGLES ARE IN DEGREES	ND ALL A	NGLES AR	E IN DEG	*	RCS7	970
	1002	U							RCS7	025
	1003	READ(5,1000) ASPECT,A1,A2,A4,H1,H2,H3,H4,H5,M1	PECT, Al,	A2, A4, H1,	н2,н3,н4	, H5, M1			RCS7	920
0	1004	1000 FCRMAT (9F7.2,12)	•						RCS7	028
2	1005	WRITE (6,1010)	A1,41,A2	A1,41,A2,H2,A4,H3					RCS7	620
	1606	1010 FORMAT (31H1 .	FRUSTRA	31HI • FRUSTRA-CYLINDER-FRUSTRA	-FRUSTRA	:			RCS7	030
	1007	1 30н•		UFIMTSEV-RUCK FORMULATION	RMULATIO	·· · · · · · · · · · · · · · · · · · ·			RCS7	031
	1008	2 8Н	A1 = ,F	,F8.3, 8H	H1 = ,F	,F8.3,/			RCS7	032
	1000	8 BH	A2 = ,F	, F8.3, 8н	H2 = •F	,F8.3,/			RCS7	033
	1010	I t	A4 = +F	,F8.3, 8H	H3 = ,F	,F8.3,7)			RCS7	034
L	1011	U							RCS7	035
-96	1012	c = 11.80285078	85078						RCS7	980
a.	1013	91 = 3.1415	3.14154265358474	7.					8657	037

17 00 0

	RCS7 C38	RCS7 034	RCS7 040	RCS7 041	RCS7 042	PCS7 043	RCS7 044	RCS7 045	RCS7 046	RCS7 047	RCS7 048	RCS7 049	RCS7 050	RCS7 051	RCS7 052	RCS7 053	RCS7 054	RCS7 055	RCS7 056	RCS7 057	RCS7 058	RCS7 059	RCS7 060	RCS7 061	RCS7 062
	SPI = SCRT(PI)	UTR P1 / 180.0	81D = 180.0/PI	WC = 2.0 * PI * FC	XXOG = MC/C	X2K0 = XK00+XK00	X2KUAI = X2KC*AI	X2KCA2 = X2KO*A2	X2K0A4 = X2K0*£4	U	THETA = ASPECT * LTR	STHI = SIN(THETA)	CTHT = COS(THETA)	TANATT = STHT / CTHT		SHADOW = (A4 - A2) / (H2 + H2 + H3)	SHADOW = ATAN(SHADOW)	ALPHAI = ATAN((A2-A1)/HI)	ALPHA2 = ATAN((A4-A2)/H3)	XID = ALPHAI*RID	X2D = ALPHA2*RTD	X3D = SHADOW*RID	WRITE (6,2010) ASPECT, XID, X2D, X3D	2010 FORMAT (18HO ASPECT ANGLE = , FS.3,/,	1 11H ALPHAI = ,F8.3,/, 11H ALPHA2 = ,F8.3,/,
,	+101 7	- 96°	1016	1017	1018	1016	1020	1021	1022	1023	1024	1025	1026	1027	1028	102~	1030	1691	1632	1033	1034	1035	1636	1037	1038

Com S

RCS7 062	RCS7 063	RCS7 064	RCS7 065	RCS7 066	RCS7 067						RACSIM	* * *	RCS7 068	RCS7 069	RCS7 070	RCS7 071	RCS7 072	RCS7 073	RCS7 074	RCS7 075	RCS7 076	RCS7 077	RCS7 078	RCS7 079	RCS7 080	RCS7 081
1 11H ALPHAI = , F8.3,7, 11H ALPHA2 = , F8.3,7,	2 19H SHADOW(ALPHA3) = ,F8.3)	J	SAI = SIN(ALPHAI)	SA2 = SIN(ALPHA2)	AIPT = ALPHAI+THETA						INPUT LISTING AUTOFLOW CHART SET - FWG/SCL RA	STN-STN-STN-STN-STN-STN-STN-STN-STN-STN-	AIMT = ALPHAI-THETA	A2PT = ALPHA2+THETA	A2MT = ALPHA2-THETA	TANAP1 = TAN(A1PT)	TANAP2 = TAN(A2PT)	CA1PTS = 2.*COS(A1PT)/SA1	CA2PTS = 2.*COS(A2PT)/SA2	J	XVI = 1.5 - (ALPHAI / PI)	Xh.2 = 1.0 + (ALPHAI / PI)	XN3 = 1.0 - (ALPHA2 / PI)	XN4 = 1.5 + (ALPHA2 / PI)	CPONI = COS(PI/XNI)	CPUNZ = CUSIPIXNZ)
1038	1034	1040	1041	1042	1043						04/26/76	CARD VO	1044	1045	1046	1071	1048	1049	1050	1631	1052	1053	1054	1055	1050	1037
+	-	'	- make an	of the last		-	-	-	-	-	TOTAL CONTRACTOR	STORY STREET	(Pinese	STATE A	COLUMN TO STREET	NAME OF	POTEN	MANUFACTOR NO.	THE PERSON	100		er elleganity	*****	- Formation	******	photo:

Was the same of the St

SC0 1238	800 100	RCS7 077	RCS7 078	RCS7 079	RCS7 080	RCS7 081	RCS7 082	RCS7 083	n RCS7 084	RCS7 085	13 RCS7 086	RCS7 087	RCS7 088	RCS7 089	RCS7 090	160 2538	RCS7 092	RCS7 093	RCS7 094	360 1338
	XVI = 1.5 - (ALPHAI / PI)	XA.2 = 1.0 + (ALPMAI / PI)	XM3 = 1.0 - (ALPHA2 / PI)	XN4 = 1.5 + (ALPHA2 / PI)	CPCN1 = COS(P1/xN1)	CPUNZ = CUS(PIXNZ)	CPCN3 = COS(PI/XN3)	CPUN4 = CUS(P1/XN4)	TERMOI = (SIN(PI / XNI)) / XNI	TERMU2 = (SIN(PI / XN2)) / XN2	TERMC3 = (SIN(PI / XN3)) / XN3	TERMO4 = (SIN(P1 / XN4)) / XN4	CUEFNX ARE C(NX) TERMS	CUEFNI= TERMOI/(CPONI - 1.)	COEFN2= TERMOZ/(CPON2 - 1.)	COEFN3= TERMO3/(CPON3 - 1.)	CUEFN4= TERM04/(CPSN4 - 1.)		1F (ASPECT .6T. 40.0) 60 TO 10	
3													Ü					U		
1631	1052	1053	1054	1055	1050	1057	1058	105%	1060	1901	1062	1062	1064	1065	1065	1067	1068	106~	1070	1071

no francis

													2.00												
	RCS7 096	RCS7 097	RCS7 098	RCS7 099	RCS7 100	RCS7 101	RCS7 102	RCS7 103	RCS7 104	RCS7 105	RCS7 106	RCS7 107	RCS7 108	RCS7 109	RCS7 110	RCS7 1111	RCS7 112	RCS7 113	RCS7 114	RCS7 115	RCS7 116	RCS7 117	RCS7 118	RCS7 119	RCS7 120
	α	ď	ď	α	α	α .	œ	œ	œ	~	α	α	α .	α	α	σ.	α.	α	α.	α	α	α	α.	α	α.
	COEFXX TERMS		P11/XN11)	/XV2))	A) /XN3))	/XN4))	PI)/XVII)	/XVZ1)	((+NX/																
	TERMS (CIN)-/+E(N,PHI) = COEF	THET .LT. 40	- CCS((THETA+THETA+PI)/XN1))	- COS((A10T + A1FT)	- COSLITHETA + THETA)	- COS(1820T + A20T)	- COS((THFT1+1HFTA-PI)/XVI))	- COSTIAINT + AIMT)	- COS(1A2MT + A2MT)		# TERMC1	* TERMOI	# TERM62	* TESM62	3 * TERM03	3 # TECM03	* * TERMO4	* * 1EPM04	* TESMOI	# TERMOI	* TERMOS	* TEPM02	* TERM04	# TERMO4	
		COMPUTED HERE FOR THETA.LT. "O	= 1.0 / (CPCN1	= 1.0 / (CPCN?	= 1.0 / (CPCN3 -	= 1.0 / (CPON4	= 1.0 / (CPONI -	= 1.0 / (CMCN2 -	= 1.6 / CPCN4 -		= COEFN1 - COFF11	= CDEFN1 + CCEF11 * TFRMO1	= COEFN2 - COEF12	= CDEFN2 + COEF12	= CDEFN3 - CREF13	= COEFN3 + COEF13	= COFFN4 - COFF14	= COEFN4 + CCFF14	= CREFNI - CREF21	= COEFNI + COEF21	= CCEFN2 - CCEF22	= COEFN2 + COEF22	= CDEFN4 - CDEF24	= CUEFN4 + COFF24 * TERMO4	
	DIF FRACTION	0	C05F11	COEF12	UPEF13	COEF 14	CULFA	COS F22	COEF 24		COFFIV	ссентн	CUEFZV	COLFZH	COEF3V	COFF3H	CDEF4V	COEF4H	COEFSV	COFFSH	COEF6V	COEF 6H =	COEFTV	COEF7H	
	J	J								J															v
,	2701	1077	1074	1075	1076	1771	1073	1079	1080	1081	1082	1083	1084	1065	1086	1087	1083	1069	1090	1001	1092	1093	1004	1045	1096

1,000

- CDEFN4 - CCEF24 * TERM04	: CLEFN4 + COFF24 * TERMO4	RCS7 120	TAN(AIMT) RCS7 121	TAN (A 2MT)	2. #CDS(AIMT)/SAI	2.*CUS(A2VT)/SA2	.UA. # A1MT) RCS7 125	.UA+ * (SHADOW - THETA)) RCS7 126	RCS7 127	RCS7 128	JON TERMS (C(N)-Z+F(N,PHI) = CRFFXX TERMS	PUTED HERE FOR THETA.GT. 40	= 1.0 / (CPON1 - COS(2.0*(PI-AIPT)/XN1))	= 4.0 / (CPEN2 - COS(2.0*(PI-THETA)/XN2))	= 1.0 / (CPGN3 - COS(2.0*(PI-A2PI)/XN3))	= 1.0 / (CPGN4 - CRS((2.0*THFTA - 3.0*P1)/XN4))	= 1.0 / (CPCN/4 - COS((2.0*THETA - PI)/XN4)) RCS7 135	RCS7 136	: CC[FN] - CO5F7] * TERMO]	. COEFN1 + COSF31 * 1FRMG1	: CREFN2 - CREF32 * TERM02	: CDEFN2 + CDFF32 * TFFM32	# CCFFN3 - CDEF33 * TFFWC3	= CLEFN3 + CFEF23 * TERM03	F CUEFN4 - CELE34 * TFPMO4	= COEFN4 + COFF34 * TERM04	1
1	+	J	TANAMI = TAN(AIMT)	TANANZ = TAN(A2MT)	CAIMTS = 2. COSTAIMT	CA2MTS = 2.*CUS(A2MT	US=C (XZKGAL # AIMT	GB=C(X2KUA4 * (SMADOW	60 10 20	J	C DIFFRACTION TERMS (C COMPUTED HERE F	10 CGFF31 = 1.0 / (CP	1		1.0 /	1.0 /		1		1	+	1	+	1	+) - 4N=11) = V:100
1004	1095	10%	, 1667	10.9	201 2	1100	1011	1102	1103	1104	1105	1100	1107	1103	1105	1110	1111	nr.	1112	1114	11115	1116	71117	01118	1115	1120	1131

RCS7 128	RCS7 129	CS7 130	181 131	557 132	:57 133	557 134	287 135	557 136	781 732	257 138	257 139	057 140	141 723	257 142	257 143	RCS7 144	57 145	971 25	141 143	37 148	57 149	RCS7 150	151 75:	:57 152	:57 153
RCS	DIFFRACTION TERMS (C(N)-/+F(N,PHI) = COFFXX TERMS RCS	COMPUTED HERE FOR THETA.GT. 40	10 COFF31 = 1.0 / (CPON1 - COS(2.0*(PI-AIPT)/XN1)) RCS7	CDEF32 = 1.0 / (CPDN2 - CDS(2.0*(PI-THETA)/XN2)) RCS7	CUFF33 = 1.0 / (CPON3 - COS(2.0*(PI-A2PI)/XN3))	LOEF34 = 1.0 / (CPON4 - COS((2.0*THFTA - 3.0*P1)/XN4))	CSEF44 = 1.0 / (CPON4 - COS((2.0*THETA - PI)/XN4)) RCS7	RCS7	CUEFIV = CCLFN1 - COSE21 * TERMO1	CUEFIN = COFFNI + CUEF31 * 1FHMO1	COEFZV = COEFNZ - COEF32 * TERMOZ	COEFER = COEFN2 + COFF32 * TFRM02	CCEFTV = CCFFN3 - COEF32 * TFFVC3	COEF3H = CCEFN3 + CCEF73 * 184803	COEF4V = CUEFN4 - COLES4 * TERMO4	LUEF4H = COEFN4 + COFF34 * TERMO4	COEFSV = COFFN4 - COFF44 * TFRM04	CLEFSH = COEFN4 + COEF44 * TERMO4	RCS7	(1=((X2KOP1 * (PI-A1PT))) RCS7	C2=C(XZKCA2 * (PI - SHADOW - THETA))	(3=4(X2KGA2 * (PI-A2PT))) RCST	ZO CUNTINUE	RCS7	UC 466 1 = NMIN + NMAX RCS7
J	J 50	J 93		0.8	50	01		12	13	•	13	16	11	15	15	1120	21	22	23 C	24	25	92		28 C	56
1104	1105	1106	1107	1108	1105	1110	1111	1112	11113	11114	11115	1116	7111	1118	1115	11	11211	1122	1123	1124	1125	1126	- 1127	م 1128	1129

RCS7 154	RCS7 155	RCS7 156	RCS7 157	RCS7 158	RCS7 159	RCS7 160	RCS7 161	RCS7 162	RCS7 163	RCS7 164	RCS7 165	RCS7 166	RCS7 167	RCS7 168	RCS7 169	RCS7 170	RCS7 171	RCS7 172	RCS7 173	RCS7 174	RCS7 175	RCS7 176	RCS7 177	RCS7 178
XI = I - 1	N = (2. * PI * XI * DF) / 1000.0	XKU = 7 C	XKU2C = XKO * (CTHT + CTHT)		TAUL = XKC * AI * CAIPTS	TAU2 = XKC * A2 * CAIPTS	TAUS = XKO * AZ * CA2PTS	1AU4 = XKO * A4 * CA2PTS	FTAU1 = F (1AU1)	FTAU2 = F (TAU2)	FTAU3 = F (TAU3)	FTAU4 = F (TAU4)		SII = 2.0 * XKO * AI * STHT	512 = 2.0 * XKO * A2 * STHT	SI4 = 2.0 * XKO * A4 * STHT	CALL BESL (SII, XJCXI, XJIXI, XJ2XI)	CALL EESL (SI2, XJ0X2, XJ1X2, XJ2X2)	CALL EESL (SI4, XJOX4, XJIX4, XJ2X4)	TERMIP = CMPLX(XJOX1, XJIX!)	TERMIN = CONJG(TERMIP)	TERM2P = CMPLX(XJCX2,XJIX2)	TERM2M = CONJG (TERM2P)	TERM4P = CMPLX(XJOX4,XJ1X4)
				J									U											
1130	11111 - 9		1133	1134	1135	1136	1137	1138	1130	1140	1141	1142	1143	1144	1145	1146	1147	1143	1144	1150	1151	1152	1153	1154

Sign Com St.

	RCS7 178	RCS7 179	RCS7 180	RCS7 181	RCS7 182	RCS7 183	RADSIM	•	RCS7 184	RCS7 185	RCS7 186	RCS7 187	RCS7 188	RCS7 189	RCS7 190	RCS7 191	RCS7 192	RCS7 193	RCS7 194	RCS7 195	RCS7 196	RCS7 197	RCS7 198	RCS7 199	RCS7 200	RCS7 201
TERMEM = CONJG (TERMEP)	TERMAP = CMPLX(XJOX4,XJ1X4)	TERMAM = CONJG(TERMAP)	TERMS = XJOXI + XJ2XI	TERMS = XJOX2 + XJ2X2	TERM? = XJOX4 + XJZX4	v	INPLT LISTING AUTOFLOW CHART SET - FWD/SCL	*****	PHI1 = XK02C * (HI+H2)	Ph12 = XK02C * (42)	PH13 = PH12	PHI+ = XK62C * (P2+H3)	FHASE1 = CMPLX(COS(PHII), -SIN(PHII))	PHASE2 = CMPLX(COS(PHI2),-SIN(PHI2))	PHASE3 = CMPLX(COS(PHI3), SIN(PHI3))	PHASE4 = CMPLX(COS(PH14), SIN(PH14))	v	1F (ASPECT .GT. 90.0) GO TO 30	J	IAUS = XKO * A1 * CAIMTS	14U6 = XKU * A2 * CA1*TS	TAUT = NKC * AZ * CA2MTS	1AUE = XKG * AC * CA24TS	FTAUS = F (TAUS)	FTAU6 = F (TAU6)	FIAU? = F (TAU?)
1153	1154	1155	0 1156	2511	1158	1159	04/26/76	CARD NO	1160	1161	1162	1163	1164	1165	1166	1167	1168	4911	1170	1171	1172	1173	1174	1175	1176	1177
No.	J.		Marian per de									127						***************************************	400 m F 2 N	Se Accessory on						

RCS7 188	RCS7 189	RCS7 190	RCS7 191	RCS7 192	RCS7 193	RCS7 194	RCS7 195	RCS7 196	RCS7 197	RCS7 198	RCS7 199	RCS7 200	RCS7 201	RCS7 202	RCS7 203	RCS7 204	RCS7 205	RCS7 206	RCS7 207	RCS7 208	RCS7 209	RCS7 210	RCS7 211
FHASE1 = CMPLX(CCS(PHII),-SIN(PHII))	PHASE2 = CMPLX(COS(PHI2),-SIN(PHI2))	PHASE3 = CMPLX(COS(PHI3), SIN(PHI3))	PHASE4 = CMPLX (CCS (PH14), SIN(PH14))		1F (ASPECT .GT. 90.0) GC TO 30		IAUS = XKO * A] * CAIMTS	14U6 = XKG * A2 * CA1"TS	1AU7 = XKC * A2 * CA2MTS	TAUS = XKO * A4 * CA24TS	FTAUS = F (TAUS)	FTAUS = F (TAUS)	FTAU7 = F (TAU7)	FIAUS = F (TAUS)		FFVV01 = AI * TERMIM * CREFIV * PHASEI	FFHHO1 = A1 * TERMIM * CREFIH * PHASE1	FFVV02 = A2 * TERM2M * CDSF2V * PMASE?	FF4H02 = A2 * TERM2M * CDEF2H * PHASE2	FFVV03 = A2 * TFRM2M * CUFF3V * PHAST3	FFHH03 = A2 * TERM2M * CDFF3H * PHASE3	FFVV04 = A4 * TERM4M * CDEF4V * PHASE4	FEHHO4 = 44 * TERMAN * COFF4H * PUBSE4
				J		J									J								
1164	1165	1166	1167	1168	1165	1170	11171	1172	1173	1174	1175	1176	7711	3711	2711 5	1180	1181	1182	1183	1184	1195	1186	1187

1155	FFVV05 = AI * TERMIP * CUFFSV * PHASEI FFHH05 = AI * TERMIP * CUFFSH * PHASFI	RCS7 212 RCS7 213
1196	FFVV06 = A2 * TERM?P * CREF 6V * PHASE2 * 66	RCS7 214
1141	FFHHO6 = A2 * TERM2P * COEF6H * PHASE2 * Q6	RCS7 215
1192	FFVVO7 = A4 * TERM4P * COFF7V * PHASE4 * Q8	RCS7 216
1143	FFHHO7 = A4 * TERM4P * COEF7H * PHASE4 * C8	RCS7 217
1194	FFVVC8 = Al * TERMIM * TANAPI * (0.5) * FTAUI * PHASEI	RCS7 218
1195	FFHH08 = -FFVV08	RCS7 219
1196	FFVV09 = A2 * TERM2M * TANAPI * (-0.5) * FTAU2 * PHASF2	RCS7 220
1147	FFHH09 = -FFVVC9	RCS7 221
1148	FFVVIO = A2 * TERM2M * TANAP2 * (0.5) * FTAU3 * PHASE3	RCS7 222
1160	FFHHIO = -FFVVIO	RCS7 223
1200	FFVVII = A4 * TERM4M * TANAP2 * (-0.5) * FTAU4 * PHASE4	RCS7 224
1201	FFHH11 = -FFVV11	RCS7 225
1202	FFVVI2 = A1 * TERMIP * TANAM1 * (0.5) * FTAU5 * PHASE1 * 06	RCS7 226
1203	FFHH12 = -FFVV12	RCS7 227
1204	FFVV13 = A2 * TERM2P * TANAM1 * (-0.5) * FTAU6 * PHASE2 * 06	RCS7 228
1205	FFHH13 = -FFVV13	RCS7 229
1206	FFVV14 = A2 * TERM2P * TANAM2 *(5)*(1FTAU7)* PHASE3 * Q8	RCS7 230
1267	FFHH14 = -FFVV14	RCS7 231
1208	FFVV15 = A4 * TERM4P * TANAM2 * (-0.5) * FTAU8 * PHASE4 * 08	RCS7 232
1269	FFHH15 = -FFVV15	RCS7 233
1210	FFVV16 = -A1 * COFFN1 * TERMS * PHASE1	RCS7 234
11211	FFHH16 = FFVV16	RCS7 235
1212	FFVVI7 = -A2 * CDEFN2 * TERM6 * PHASE2	RCS7 236

· 1000 000

1											- x-100												
RCS7 234	RCS7 235	RCS7 236	RCS7 237	RCS7 238	RCS7 239	RCS7 240	RCS7 241			RADSIM		RCS7 242	RCS7 243	RCS7 244	RCS7 245	RCS7 246	RCS7 247	RCS7 248	RCS7 249	RCS7 250	RCS7 251	RCS7 252	RCS7 253
FFVV16 = -A1 * CDEFN1 * TERMS * PHASE1	FFHH16 = FFVV16	FFVVI7 = -A2 * COEFN2 * TERM6 * PHASE2	FFHHI7 = FFVVI7	FFVV18 = -A2 * CREFN3 * TERM6 * PMASE3	FFHH18 = FFVV18	FFVV19 = -A4 * COFFN4 * TERM? * PHASE4	FFFFIG = FFVVI9			INPUT LISTING AUTOFLOW CHART SET - FWO/SCL R	****	FFVV20 = -A1 * CCEFN1 * TERMS * PHASF1	FFHH20 = FFVV20	FFVV21 = -A2 * COEFV2 * TFRM6 * PHASE2 * 06	FFHH21 = FFVV21	FFVV22 = -44 * COFFN4 * TFRM7 * PHASE4 * 08	FFHH22 = FFVV22		FFVV = FFVVCI + FFVVC2 + FFVVC3 + FFVVC4 + FFVVC5 + FFVV06 +	1 FFVV67 + FFVV08 + FFVV09 + FFVV10 + FFVV11 + FFVV12 +	2 FFUVI3 + FFUVI4 + FFUVI5 + FFUVI6 + FFUVI7 + FFUVI8 +	3 FEVVI9 + FFVV20 + FFVV21 + FFVV22	FFHH = FFHH01 + FFHH02 + FFHH03 + FFHH04 + FFHH05 + FFHH06 +
1210	11211	1212	1213	1214	£ 1215	1216	1217			04/26/76 INP	CARD NO *	1218	1214	1220	1221	1222	1223	1224 C	1225	1226	1227	1228	1224

	1220	FFUV21 = -A2 * CREFN2 * TFRM6 * PHASE2 * 06	RCS7 244
	1221	FFHH21 = FFVV21	RCS7 245
	1222	FFLV22 = -44 * COFF14 * TFRM7 * PHASE4 * 08	RCS7 246
	1223	FFHH22 = FFVV22	RCS7 247
	1224		RCS7 248
	1225	FFVV = FFVVC1 + FFVVC2 + FFVVC3 + FFVVC4 + FFVVC5 + FFVV06 +	RCS7 249
	1226	1 FFVV67 + FFVV68 + FFVV09 + FFVV10 + FFVV11 + FFVV12 +	RCS7 250
	1227	2 FFVVI3 + FFVVI4 + FFVVI5 + FFVVI6 + FFVVI7 + FFVVI8 +	RCS7 251
	1228	3 FFVV19 + FFVV20 + FFVV21 + FFVV22	RCS7 252
	1224	FFHH = FFHH01 + FFHH02 + FFHH04 + FFHH05 + FFHH06 +	RCS7 253
	1230	1 FFHH07 + FFHH08 + FFHH09 + FFHH11 + FFHH12 +	RCS7 254
2	1231	PEHHIS + FFHHIS + FFHHIS + FFHHIS + FFHHIS +	RCS7 255
2	1232	3 FFH19 + FFHH20 + FFHH21 + FFHH22	RCS7 256
	1233	U	RCS7 257
	1234	07 10 40	RCS7 258
	1235		RCS7 259
	1236	30 CGNIINUE	RCS7 260
	1237	FFVV01 = A1 * TERMIM * COFFIV * PHASE1 * Q1	RCS7 261
	1238	FFHHOI = A1 * TERMIM * COEFIH * PHASE1 * Q1	RCS7 262
	1239	FFVV02 = A2 * TERM2M * COEF2V * PHASE2 * Q2	RCS7 263
	1240	FFHHU2 = A2 * TERM?M * COEF2H * PHASE2 * Q2	RCS7 264
	1241	FFVV03 = AZ * TERM2M * COEF3V * PHASE3 * Q3	RCS7 265
	1242	FFHH03 = A2 * TERM2M * CDFF3H * PHASE3 * Q3	RCS7 266
L	1243	FFVV04 = A4 * TERM4M * COFF4V * PHASE4	RCS7 267
-91	1244	FFHHO4 = A4 * TERM4M * CDEF4H * PHASE4	RCS7 268
e	1245	FFVV05 = A4 * TERM4P * CPEFSV * PHASE4	RCS7 269

	210	172 1	272	1 273	7 274	7 275	1 276	172 1	1 278	7 279	7 280	7 281	7 282	7 283	7 284	7 285	RCS7 286	7 287	RCS7 288	7 289	7 290	7 291	RCS7 292	7 293
	RLS7	PH4SE1 * 01 RCS7	RCS7	PHASE2 # 01 RCS7	RCS7	F3 # E3 # E357nd	RCS7	PHASE3 *(02-03) RCS7	RCS7	PHASE4 # 63 RCS7	RCS7	RCS7	1504	RCS7	RCS7	RCS7	RCS7	RCS7	RCS7	RCS7	RCS7	RCS7	+ FFVV06 +	11 + FFVV12 + RCS7
	FEHFUS = 44 * TERM4P * COEFSH * PHASE4	FFVVC6 = AI * TERMIM * TANAPI * (C.5) * FTAUI * PHASEI	FFRHÖ6 = -FFVVG6	FFVVO7 = A2 * TERM2M * TANAPI * (-0.5) * FTAU2 *	FFHHO7 = -FFVV07	FFVV08 = A2 * TERMOM * TANAP2 * (0.5) * FTAU2 *	FFHH08 = -FFVV08	FFVV09 = A2 * TERM2M * TANATT * (0.5) * ;	FFHHOG = -FFVVOG	HEVVII = A4 * TERMAM * TANAP2 * (-0.5) * FTAU4 *	FFHHII = -FFVVII	FFVVIZ = -A1 * COFFNI * TERMS * PHASE1 * C1	FFHH12 = FFVV12	FFVVI3 = -A2 * COEFN2 * TERM6 * PHASE2 * G2	FFHH13 = FFVV13	FFVV14 = -A2 * COEFN3 * TFRM6 * PHASE3 * C3	+FH+14 = FFVV14	FFVV15 = -A4 * COEFN4 * TERM7 * PHASE4 *08	FFHHIS = FFVVIS	FHVVI6 = -A4 * COEFN4 * TERM7 * PHASE4	FFHH16 = FFVV16		FFVV = FFVV01 + FFVV02 + FFVV03 + FFVV04 + FFVV05	1 FFVV07 + FFVV08 + FFVV09 + FFVV11
	1246	1247	1249	1240	1250	1251	1252	1253	1254	1255	1256	1257	1256	1259	1260	1261	1262	1263	1264	1265	1266	1267 C	1268	1269
1				L-9																				

and the Market Market

310	RCS7	(I) =AIMAG(CFHH)	EHHI(I)	1286
309	RCS7	(1) =REAL(CFHH)	EHHR (1)	1285
308	RCS7	(I) =AIMAG(CFVV)	(I) IAA	1284
307	RCS7 3	IVE (I) =REAL(CEVV)	LIVE	1283
306	RCS7 3		J	1282
305	RCS7 3	= CONJG(FFHH)	CFHH	1291
304	RCS7 3	=-CONJG(FFVV)	CFVV	1280
303	RCS7 3		J	1279
302	RCS7 3	= FFHH * .02534448 * SPI	HHH	1278
301	RCS7 3	= FFVV * .02534448 * SPI	40 FFVV	1227
300	RCS7 3		u	1276
*	•	CONTENTS	#. # # # # #	CARD NO
	AUTOFLOW CHART SET - FWD/SCL RADSIM		INPUT LISTING	04/26/76
566	RCS7 2		Ü	1275
299	8CS7	FFHH13 + FFHH14 + FFHH15 + FFHH16	,	1274
297	+ FFHH11 + FFHH12 + RCS7 2	FFHH07 + FFHH08 + FFHH09	-	1273
296	. RCS7	= FFHH01 + FFHH02 + FFHH04 + FFHH05 + FFHH06 +	FFH	2721
562	RCS7 295		J	11211
594	16 RCS7 294	FEVVI3 + FEVVI4 + FFVVI5 + FFVVI6	2	1270
293		FFVV07 + FFVV08 + FFVV09	-	1269
292	+ FFVV06 + 9CS7	= FFVV01 + FFVV02 + FFVV03 + FFVV04 + FFVV05	FFVV	1268
291	RCS7 291			

engine St

RCS7 315	E NE	1291
RCS7 314	RETURN	1290
RCS7 313	v	1289
8CS7 312	400 CUNTINUE	1288
RCS7 311	O The state of the	1287
RCS7 310	EHHI(I) = AIMAG(CFHH)	1286
RCS7 309	EHHR(I) =REAL(CFHH)	1285
RCS7 308	EVVI(I) = AIMAG(CFVV)	1284
RCS7 307	(VVR (I) =REAL(GEVV)	1283
RCS7 306	J	1282
RCS7 305	CFHH = CGNJG(FFHH)	1291
RCS7 304	CFVV =-CONJG(FFVV)	1280
RCS7 303		1279
RCS7 302	115 * 86665570 * HH44 = - HH44	0,21

- approximate

1292	SUBROUTINE BESL (X, RC, R1, B2)	8CS7 316
1293	3	RCS7 317
1294	C * BESSEL FUNCTION SUBROUTINE UTILIZING POLYNOMIAL APPROXIMATIONS	RCS7 318
1295	C * COMPUTES JO.JI.OR JZ FPR POSITIVE REAL ARGUMENTS	RCS7 319
1296	C * REFERENCE (HNDEK MATH FUNCT BY AFRAMOWITZ AND STECUN SECTION 9.4)RCS7 320	JRCS7 320
1297	C SE	RCS7 321
1298	S = 1.0	RCS7 322
1299	IF (X .L1, 6.0) S=-1.6	RCS7 323
1300	X = ABS(X)	RCS7 324
1301	J	RCS7 325
1302	IF (X .6T. 1.E-6) GC TO 5	RCS7 326
1303	ro = 1.0	RCS7 327
1304	b1 = 0.0	RCS7 328
1305	82 = 0.0	RCS7 329
1306	S * × = ×	RCS7 330
1307	RETURN	RCS7 331
1708	C CONTRACTOR OF MAIN AN ARCHITECTURE STATE OF THE STATE O	RCS7 332
1300	5 CONTINUE	RCS7 333
1310		RCS7 334
1311	1 1f (X .GE. 3.) GL 1f 4	RCS7 335
1312	$x_1 = x/2$.	RCS7 336
1313	$x_1 = x_1 \neq x_1$	RCS7 337
131+	= 1.+ X1*(-2.2444447+ Y1*(1.2646208+ X1*(3163866+ X1*(.0444479RCS7	9RCS7 338
1315	1 + X1*(0034444 X1*2.15-4)))))	RCS7 334

....

	•	0	_	2	m	•		9		89	•	0	-	2	•	4	5	9		
- 100	RCS7 334	RCS7 340	RCS7 341	8CS7 342	RCS7 343	RCS7.344	RCS7 345	978 1534	RCS7 347	RCS7 348	RCS7 349	RCS7 350	RCS7 351	RCS7 352	RCS7 353	RCS7 354	RCS7 355	RCS7 356	RCS7 357	
	1 + X1*(0C34444 X1*2.15-4))))))	CG 1C 10	3	9 XZ = 3./X	F0 = .79788456 +X2*(775-6 +X2*(00552740 +X2*(4512F-4 +X2* R0	1 (.00137237 +X2*(72805E-3 +X2*0.14476E-3 17))) R	10 = X78534816 +X2*(04166347 +X2*(3454E-4 +X2*(.00262573 R	1 +X2*(00054125 +X2*(00029333 +X2*0.00013558)))))	6 = F0*C0S(10)/SGRT(X) R(3	10 EC = B	S. C.	2 1F (X .GE. 3.) GO TO 19	$x_1 = x/3$.	$x_1 = x_1 + x_1$	g = X*(.5 +X1*(56249985 +X1*(.21693573 +X1*(63954289 +X1* R	1 (.00443319 +X1*(31761E-3 +X1*0.1109E-4)))))) R	60 TO 20	2	
	1315	1316	1317	1318	1316	1320	1321	1322	11271	1324	1325	1326	1327	1128	1324	1330	1331	1332	1333	
			,	8	1															

RCS7 352	RCS7 353	RCS7 354	RCS7 355	RCS7 356	RCS7 357			RADSIM	***	RCS7 358	RCS7 359	RCS7 360	RCS7 361	RCS7 362	RCS7 363	RCS7 364	RCS7 365	RCS7 366	RCS7 367	RCS7 368	RCS7 369	
x1 = x/3.	$x_1 = x_1 * x_1$	E = X*(.5 +X1*(56249985 +X1*(.21093573 +X1*(63954289 +X1*	1 (.00443319 +X1*(31761E-3 +X1*0.1109E-4))))))	60 TO 20	J			INPUT LISTING AUTOFLOW CHART SET - FWC/SCL	***** CONTENTS	14 X2 = 3./X	FI = .79788456 +X2*(.156E-5 +X2*(.01659667 +X2*(.00017105 +X2*	1 (00244511 +x2*(.0011365300020033*X2)))))	T1 = X - 2.35619449 +X2*(.12499612 +X2*(.565E-4 +X2*(00637879	1 +X2*(.00074348 +X2*(.00079824 -0.00029166*X2)))))	8 = F1*COS(T1)/SQRT(X)	3	20 E1 = B * S	S * X = X	62= (2./X)*B1 - B0	50 RETURN	O.V.	
1725	1329	1330	1331	1332	1333			04/26/76	CARD NO	1334	1335	336	1337	1338	1330	1340	1341	1342	1343	1344	1345	

16 m

1346	COMPLEX FUNCTION F(TAU)	RCS7 370
1347	v	RCS7 371
1348	C COMPUTES FIAU WHERE FIAU = (EXP(-J*TAU**2)/2*TAU)*SORT(PI/2.)*	RCS7 372
1346	(C2(11gU**2) + J*52(TAU**2))	RCS7 373
1350		RCS7 374
1351	CCMPLEX B. PP	RCS7 375
1352	PI = 3.14159265358979	RCS7 376
1353	P102 = P1/2.	RCS7 377
1354	C1 = SQRT(P1/2.)	RCS7 378
1355	(2 = 1./(1	RCS7 379
1356	ATAUS = ABS(TAU)	RCS7 380
1357	1F (ATAUS .LE. 0.5)60 TO 20	RCS7 381
1358	J	RCS7 382
1350	C FOR TAUS .GT. 0.5, FUNCTION COMPUTED USING POLYNOMIAL	RCS7 383
1360	CAPPROXIMATION	RCS7 384
1361	C * REFERENCE (HANDBK MATH FUNCT BY ABRAMOWITZ AND STEGUN,	RCS7 385
1362	C * SECTIONS 7.3.9,7.3.10,7.3.32,7.3.33)	RCS7 386
1363	TAUS = SERTIATAUS)	RCS7 387
1364	x = C2*TAUS	RCS7 388
1365	X*X = XX	RCS7 389
1366	J	RCS7 390
1367	FX = (1.0+0.926*X\/(2.0+1.792*X+3.104*XS)	RCS7 391
1368	6x = 1.0/(2.0+4.142*x+3.492*x5+6.67*x*x5)	RCS7 392
1364	5	RCS7 393
1370	CCIXS = CDS(ATAUS)	RCS7 394
1221	COUNCE CIMINITALIES	PC. 52, 305

The second of

15	RCS7 415	TERMS INTEGRATED TERM BY TERM TO OBTAIN RESULT	3	1361
14	RCS7 414	FOR TAUS . LE. 0.5, FUNCTION IS EXPANDED IN SERIES AND FIRST FEW	U	1390
413	4 1538	20 CONTINUE		1389
12	RCS7 412		U	1388
11	RCS7 411	RETURN		1387
10	RCS7 410	F 7 (8*FP*C1)/TAUS		1386
60	RCS7 409	FP = CMPLX(CUS(A), SIN(A))		1385
80	RCS7 408	A = ATAUS-P102		1384
10	RCS7 407	B = CMPLX(SX,CX)		1383
90	RCS7 406	10 CONTINUE		1382
50	RCS7 405		J	1361
70	RCS7 404	RETURN		1386
03	RCS7 403	F = (C1*E*FP)/TAUS		1379
02	RCS7 402	FP = CMPLX(CUS(ATAUS), -SIN(ATAUS))		1378
01	RCS7 401	E = CMPLX(CX,SX)		1377
00	RCS7 400	IF (TAU .LT. 0.0) GO TO 10		1376
60	RCS7 399		J	1375
86	RCS7 398	SX = 0.5 - FX*CC1XS - GX*SC1XS		137÷
16	RCS7 397	CX = 0.5 + FX*SC1XS - GX*CC1XS		1373
96	RCS7 396		J	1372
56	RCS7 395	SCIXS = SIN(ATAUS)		1371
76	RCS7 394	CCIXS = COS(ATAUS)		1370
63	RCS7 393)	1364

With the St.

408	RCS7 409	RCS7 410	411	412	413	RCS7 414	415				:		RCS7 416	RCS7 417	418	RCS7 419	RCS7 420	RCS7 421	RCS7 422	RCS7 423	
RCS7	RCST	RC S 7	RCS7	RCS7	1538	RCST	T RCS7			RADSIM			RCST	RCST	RCS7	RCST	RCS	RCST	865	RCS	
,						FEW	BY TERM TO OBTAIN RESULT														
						FIRST	STAIN			FWD/SCL						5-4#TS					
						S AND	10 08			1 135						7.57575757E-4*TS11					
						SERIE	TERM									7.575					
						ED IN	ERM B			AUTOFLOW CHART	S					238 -					
						XPAND	ATED T			AUTE	CONTENTS				15.1	238695					
	•					N 15	INTECRATED TERM				Ü		AUDD		*9529	- 15*(.0238695238					
	IN(A)					FUNCTION IS EXPANDED IN SERIES AND FIRST FEW	TERMS 1						-SIN(.0046296296*TS)						
	FP = CMPLX(COS(A),SIN(A)	LAUS				0.5. F	-						FP = CMPLX(COS(TAU),-SIN(TAU))		.1	FI = TAU *(.333333333	2				
-9102	30 1x	F = (8*FP*C1)/TAUS				.LE.							XICOS	TAU) * 5	*(.3	(FR,FI)				
A = ATAUS-	CMPL	(8*FP	SS		INDE	FOR TAUS				ږو			- CMPL	TS = TAU*T	FR = 1 - T	TAU	E = CMPLX(3*c3 = 4	IRN		
4	d.	1	RETURN		20 CONTINUE	FOR				INPUT LISTING			FP .	15 :	F.R.	H	40	ii.	RETURN	FND	
				U	2	v	o			TUPUT	* *										
1384	1385	1386	1387	1388	1389	1390	1361			176	ON a		1392	1393	1394	1395	1396	1397	1398	1360	
1	-	-	-	-	-	-	-			04/26/76	N CARE NO		-		-	-	-		-	-	
											1	1									

and the St

1400		FUNCTION Q(Z)	RCS7 424
1401	С	Q(Z) = 0.5*(1 + ERF(Z))	RCS7 425
1402	c •	ERF(Z) IS EVALUATED USING A RATIONAL POLYNOMIAL APPROXIMATION	RCS7 426
1403	c •	REFERENCE (HANDEK MATH FUNCT BY ABRAMOWITZ AND STEGUN,	RCS7 427
1404	c •	SECTION 7.1.26)	RCS7 428
1405	c		RC\$7 429
1406		IF (Z.GT. 2.) GO TO 10	RCS7 430
1407		IF (Z.LT2.) GO TO 20	RCS7 431
1408		AZ = ABS(Z)	RCS7 432
1409		P = 1.0/(1.0 + .47047*AZ)	RCS7 433
1410		Y = 1.0 - P*(.3480242 - P*(.09587987478556*P))*EXP(-AZ*AZ)	RCS7 434
1411		1F (Z) 2,4,6	RCS7 435
1412	2	Q = (1.0 - Y)/2.	RCS7 436
1413		RETURN	RCS7 437
1414	4	Q = .5	RC\$7 438
1415		RETURN	RCS7 439
1416	6	Q = (1.0 + Y)/2.	RCS7 440
1417		RETURN	RCS7 441
1418	10	0 = 1.	RCS7 442
1419		RETURN	RCS7 443
1420	20	Q = 0.	RCS7 444
1421		RETURN	RCS7 445
1422		END L-96	RCS7 446

1.4.00

L.6 CYLINDER-FRUSTRUM COMBINATION

The far-field scattering from a cylinder-frustrum combination target shown in Figure L.6.1 has been formulated using the Ruck-Ufimtsev technique (Ref. 7). The solution can be represented in the following form:

$$e(\theta) = \overline{+} \sqrt{\pi} \left\{ g(11) + g(12) + g(1) + g(2) + g(3) + g(4) + g(9) + g(5) + g(6) + g(7) + g(8) \right\}$$

where g(m) represents the sum of the fringe wave scattering and the physical optics response associated with edge m and the upper and lower signs correspond to vertical and horizontal polarization, respectively.

With the use of the diffraction coefficients at the concave edges (F #1), the expressions for the g(m) are the following:

For
$$0 < \theta < \pi/2$$

$$g(11) = a_1 e^{ip_{11}} \left\{ JJ_{11+} \left[C(n_c) + B(n_c, \frac{\pi}{2} - \theta) \right] - C(n_c) JJ_{21} \right\}$$

$$g(12) = a_1 e^{ip_{11}} \left\{ JJ_{11} - \left[C(n_c) + B(n_c, \frac{\pi}{2} + \theta) - C(n_c) JJ_{21} \right] \right\}$$

g(2) =
$$a_2 e^{ip_2} \{ JJ_{12} - [C(n_2) + B(n_2, \theta + \alpha) + 0.5 \tan (\alpha + \theta)F_2] \}$$

-
$$C(n_2)JJ_{22}$$

Fig. L.6-1 GEOMETRY OF CYLINDER-FRUSTRUM COMBINATION

$$g(4) = a_4 e^{ip_4} \left\{ JJ_{14-} \left[C(n_4) + B(n_4, \theta + \alpha) + 0.5 \tan (\alpha + \theta) F_4 \right] - C(n_4) JJ_{24} \right\}$$

$$g(9) = a_4 e^{ip_9} \left\{ JJ_{14-} \left[C(n_c) + B(n_c, \theta) \right] - C(n_c) JJ_{24} \right\}$$

$$g(1) = a_1 e^{ip_1} \left\{ JJ_{11} - \left[C(n_1) + B(n_1, \theta) + 0.5 \tan (\alpha + \theta) F_1 \right] - C(n_1) JJ_{21} \right\}$$

g(3) =
$$a_3 e^{ip_3} \{ JJ_{12} - [C(n_3) + B(n_3, 0) \pm 0.5 \tan (\alpha + 0)F_3] - C(n_3)JJ_{22} \}$$

g(5) =
$$a_1 e^{ip_1} JJ_{11+} \{ \pm 0.5 \tan (\alpha - \theta) [1 - F_5] Q_6 \}$$

g(6) =
$$a_2 e^{ip_2} \{ JJ_{12+}[C(n_2) + B(n_2, \alpha-\theta) + 0.5 \tan (\alpha-\theta)F_6]$$

- $C(n_2)JJ_{22} \}Q_6$

$$g(7) = a_2 e^{ip_3} J_{12+} \{ \mp 0.5 \tan (\alpha-\theta) [1 - F_7] \} Q_8$$

g(8) =
$$a_4 e^{ip_4} \left\{ JJ_{14+} \left[C(n_4) + B(n_4, \alpha-\theta) + 0.5 \tan (\alpha-\theta) F_8 \right] \right\}$$

For
$$\pi/2 < \theta < \pi$$
 $g(5) = g(6) = g(7) = g(8) = 0$
 $g(9) = a_4 e^{iP9} \{ JJ_{14-} [C(n_c) + B(n_c, \theta)] - C(n_c)JJ_{24} \}$
 $g(10) = a_4 e^{iP9} \{ JJ_{14+} [C(n_c) + B(n_c, \theta - \frac{\pi}{2})] - C(n_c)JJ_{24} \}$
 $g(4) = a_4 e^{iP4} \{ JJ_{14-} [C(n_4) + B(n_4, \pi - \theta) + 0.5 \tan (\alpha + \theta)F_4Q_1]$
 $- C(n_4)JJ_{24} \}$
 $g(2) = a_2 e^{iP2} \{ JJ_{12-} [C(n_2)Q_2 + B(n_2, \pi - \theta)Q_2 + 0.5 \tan (\alpha + \theta)F_2Q_1] - C(n_2)JJ_{22}Q_2 \}$
 $g(11) = a_1 e^{iP11} \{ JJ_{11-} [C(n_c) + B(n_c, \pi - \theta)] - C(n_c)JJ_{21} \} Q_{11}$
 $g(1) = a_1 e^{iP1} \{ JJ_{11-} [C(n_1) + B(n_1, \pi - \alpha - \theta) + 0.5 \tan (\alpha + \theta)F_1]Q_1$
 $- C(n_1)JJ_{21}Q_1 + 0.5 JJ_{11-} \tan Q_{11} [1-Q_1] \}$
 $g(3) = a_2 e^{iP3} \{ JJ_{12-} [C(n_3) + B(n_3, \pi - \alpha - \theta) + 0.5 \tan (\alpha + \theta)F_3]Q_3$
 $- C(n_3)JJ_{22}Q_3 + 0.5 JJ_{12-} \tan \theta Q_2 [1-Q_3] \}$

where the upper and lower signs in the previous expressions correspond to vertical and horizontal polarizations, respectively, and

$$C(n) = \frac{\sin \frac{\pi}{n}}{n} \left(\frac{1}{\cos \frac{\pi}{n} - 1} \right)$$

$$B(n,\psi) = \frac{\sin \frac{\pi}{n}}{n} \left(\frac{1}{\cos \frac{\pi}{n} - \cos \frac{2\psi}{n}} \right)$$

$$JJ_{1m+} = \left[J_o(2ka_m \sin\theta) + i J_1(2ka_m \sin\theta) \right]$$

$$JJ_{2m} = \left[J_0(2ka_m \sin\theta) + J_2(2ka_m \sin\theta) \right]$$

$$n_1 = n_3 = 1 - \frac{\alpha}{\pi}$$

$$n_2 = n_4 = 1 + \frac{\alpha}{\pi}$$

$$n_c = 3/2$$

$$p_{11} = -2k(h_1 + h_2 + h_5) \cos \theta$$

$$p_1 = -2k(h_1 + h_2) \cos \theta$$

$$p_2 = -2k h_2 \cos \theta$$

$$p_3 = 2k h_2 \cos \theta$$

$$p_4 = 2k(h_2 + h_3) \cos \theta$$

$$p_5 = 2k(h_2 + h_3 + h_4) \cos \theta$$

$$Q \begin{pmatrix} 6 \\ 8 \end{pmatrix} = Q(2ka \begin{pmatrix} 2 \\ 4 \end{pmatrix}) \begin{pmatrix} \alpha \begin{pmatrix} 4 \\ 3 \end{pmatrix} & -\Theta \end{pmatrix}$$

$$Q = Q(2ka (\pi - \alpha - \theta))$$

$$\begin{pmatrix} 1 \\ 2 \\ 11 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

$$\tau^{2} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} = 2ka \begin{pmatrix} 1 \\ 2 \\ 2 \\ 4 \end{pmatrix} \csc \alpha \cos(\alpha + \theta)$$

$$\tau^{2} \begin{pmatrix} 5 \\ 6 \\ 7 \\ 8 \end{pmatrix} = 2ka \begin{pmatrix} 1 \\ 2 \\ 2 \\ 4 \end{pmatrix} \csc \alpha \cos(\alpha - \theta)$$

$$\alpha = \tan^{-1} \frac{a_2 - a_1}{h_1} = \tan^{-1} \frac{a_4 - a_2}{h_3}$$

$$\alpha_3 = \tan^{-1} \frac{a_4 - a_2}{h_2 + h_2 + h_3}$$

$$\alpha_4 = \tan^{-1} \frac{a_2 - a_1}{h_1 + h_5}$$

$$F_{m} = F(\tau_{m}) = \frac{e^{-i\tau_{m}^{2}}}{\tau_{m}} \int_{0}^{\tau_{m}} e^{it^{2}} dt.$$

The expression of the g(m) modified for use in the second formulation (F #2) of the scattering from the concave edges (1, 3, 5, 7) are the following:

For
$$\theta < \pi/2$$

$$g(1) = \pm a_1 e^{ip_1} JJ_{11}$$
 (0.5) $[\tan (\alpha+\theta) (F_1-1) + \tan \theta]$

$$g(3) = \pm a_3 e^{ip_3} JJ_{12}$$
 (0.5) $\left[\tan (\alpha + \theta) (F_3 - 1) + \tan \theta \right]$

For
$$\theta > \pi/2$$

$$g(1) = \pm a_1 e^{ip_1} JJ_{11}$$
 (0.5) $[\tan (\alpha+\theta) (F_1-1) + \tan \theta] Q_1$

$$g(3) = \pm a_3 e^{ip_3} JJ_{12}$$
 (0.5) $[\tan (\alpha+\theta) (F_3-1) + \tan \theta] Q_1$.

The formulations of the basic scattering from Target ST-2 involved only first-order diffraction and were obtained by using the Ruck-Ufimtsev technique. Such higher order scattering as multiple diffraction among the edges, multiple reflection between the surfaces, or scattering mechanisms involving both a creep path along the surface and edge diffraction have not been modeled. However, by comparing the signatures computed from the basic formulation with wideband measurements data, the significance of the higher-order scattering mechanisms could be determined and a decision can be made concerning which is the better formulation of the basic scattering from the concaves edges.

L.6.1 Inputs

The subroutine input parameters are read from cards or passed in a common block. The parameters passed in the common block include:

NMIN = minimum frequency sample number

NMAX = maximum frequency sample number

DF = frequency increment (in MHz)

FC = carrier frequency (in GHz)

The card inputs are the following:

	MATH SYMBOL	VARIABLE	DEFINITION	COLUMNS
Card 1	θ	Aspect	Azimuth Angle (Degrees)	1-7
	^a 1	A1	Radius of smallest cylinder (Inches)	8-14
	^a 2	A2	Radius of middle cylinder (Inches)	15-21
	a ₄	A4	Radius of largest cylinder (Inches)	22-28
	h ₁	H1L	Length of smallest frustrum (Inches)	29-35
	h ₂	H2L	Half-length of middle cylinder (Inches)	36-42
	h ₃	H3L	Length of largest frustrum (Inches)	43-49
	h ₄	H4L	Length of largest cylinder (Inches)	50-56
	h ₅	H5L	Length of smallest cylinder (Inches)	57-63

L.6.2 Outputs

The data base output consists of four linear arrays, EVVR, EVVI, EHHR, EHHI, which contain the real and imaginary parts of the vertically and horizontally polarized backscattered fields (in meters) at frequency increments of DF MHz from NMIN*DF to NMAX*DF.

L.6.3 Restrictions

L.6.3.1 Physical Dimensions

All target dimensions should be large with respect to the wavelength of the illuminating field. The target is further restricted such that two frustra form the same angle

with the cylindrical surfaces, i. e.,
$$\alpha = \tan^{-1} \frac{a_2 - a_1}{h_1} = \tan^{-1} \frac{a_4 - a_2}{h_3}$$
.

In addition, the basic shape should not be distorted by choosing α too close to 90 or 0 degrees. A value of $30 < \alpha < 80$ should be maintained.

In determining the shadowing of the various surfaces and edges the target geometry was further restricted such that $\alpha_3 < \alpha_4$ where these angles are defined by the equation. This restriction applies only to the use of the Q functions in determining the amplitude weighting of the scattered field terms due to shadowing.

L.6.3.2 Output

The output arrays are passed in the argument list and a value is computed and stored only in locations NMIN to $NMAX_{\circ}$

L.6.3.3 Restrictions

The azimuth angle is restricted to the region between 0 and 180 degrees. In addition, the specular azimuths 0, 90, 180, $(90 - \alpha)$ should not be used. In order to compute the response at these angles, an angular offset of approximately 0.01 degrees should be used.

L.6.4 Definition of Selected Terms Used in Subroutine

D1 =
$$\cos \frac{\pi}{n}$$

D11 = $\frac{\sin \frac{\pi}{n}}{n}$
E1 = $\frac{1}{\cos \frac{\pi}{n-1}}$
where $n = n_1 = n_3 = 1 - \frac{\alpha}{\pi}$
 $\begin{cases} V_H \\ 1 = C(n_1) + B(n_1, \theta) \\ 0 \end{cases}$ for $\theta < \pi/2$
PS1 = $JJ_{11} = JJ_{1m} = \begin{bmatrix} J_0(2ka_m \sin \theta) + i J_1(2ka_m \sin \theta) \end{bmatrix}$

where m = 1 and the upper (-) sign is utilized

$$CC1 = C(n_1) JJ_{21}$$

CT1 = 0.5 tan
$$(\alpha + \theta)$$
 F₁

$$C\{H\}$$
1 = $a_1e^{ip}_1$ JJ_{11} $\left[C(n_1) + B(n_1, \theta) \pm 0.5 \tan (\alpha + \theta)F_1\right]$
- $C(n_1)JJ_{21}$ for $\theta < \pi/2$

$$JJ_{21} = \left[J_o(2ka_m \sin\theta) + J_2(2ka_m \sin\theta) \right]$$

where m = 1

L.6.5 Subroutines Used

Subfunctions:

 ${\bf Q}$ (X) returns the value of the exponential smoothing function

Subroutines:

 BESL (XCx, Bx0, Bx1, Bx2) computes Bessel functions of first three orders for real argument Xcx and returns

$$J_0$$
 (XCx) in Bx0

$$J_1$$
 (XCx) in Bx1

$$J_2$$
 (XCx) in Bx2

2. DIFFC (VX, HX, NX, DX, DX1, EX, PHI) computes

$${VX \atop HX} = C(N) + B(NX, PHI)$$

The inputs are NX, DX, DX1, EX, and PHI and outputs are VX, and HX.

3. FTG (TSx, FTx) computes the Special F function using TSx as argument and returns value in FTx.

```
SUBROUTINE TARGET (EVVR, EVVI, EHHR, EHHI )
           RESPONSE OF TARGET ST-2
           COMPUTED UTILIZING THE RUCK-UFIMISEV EQUATIONS **
C
C
      COMMON MOVER, M. NMIN, NMAX, DF, FC, PW, TO
      NMIN = MINIMUM FREQUENCY SAMPLE
C
      NMAX = MAXIMUM FREQUENCY SAMPLE
         = FREQUENCY INCREMENT IN MHZ
      DE
C
      FC = CARRIER FREQUENCY IN GHZ
      COMPLEX
                 PS1, PS2, PS4, PS1P, PS2P, PS4P, C1, C2,
     A C4, C3, C9, C11, FT1, FT2, FT4, FT5, FT6, FT7, FT8,
     B CT1, CT2, CT4, CT6, CT8, C1T, C3T, C2FT, C4FT
      COMPLEX
                CV1, CH1, CV2, CH2, CV3, CH3, CV4, CH4, CV5, CH5,
     A CV6, CH6, CV7, CH7, CV8, CH8, CV9, CH9.CV10, CH10, CV11, CH11,
                 CV, CH, CVA, CHA
     BCV12, CH12,
      REAL N1, N2, NC, ITM
      DIMENSION EVVR(1), EVVI(1), EHHR(1), EHHI(1)
C
C
      PROGRAM CONSTANTS
      PI = 3.14159265358979
      PI2 = PI+PI
      PI02 = PI/2
      HPI = 5*PI
      SPI = SORT(PI)
      RTD = 180.7PI
      DTR = FI/180
      SHPI = SQRT(HPI)
      SIHPI = 1. /SHPI
      ITM =0.0254
      SMIN = 1 E-4
      SMDB = -80.
      C = 11.80285078
      READ(5,5001) ASPECT, A1, A2, A4, H1L, H2L, H3L, H4L, H5L, M1
 5001 FORMAT(9F7, 2, 12)
      WRITE(6,5010) ASPECT
 5010 FORMAT ( 29H1 PROGRAM INPUT PARAMETERS ,/,
                17H ASPECT ANGLE = , F9.4 )
      WRITE (6,6001) H1L, A1, H2L, A2, H3L, A4, H4L, H5L
 6001 FORMAT( //, 7H H1 = ,F8.4 ,7H A1 = ,F8.4,7 ,7H H2 = ,F8.4 ,
       7H A2 = ,F8.4,/ ,7H H3 = ,F8.4 , 7H A4 = ,F8.4,/
     A
     B 7H H4 = ,F8.4,/ ,7H H5 = ,F8.4
E
      TH = ASPECT*DIR
      H12L = H1L + H2L
      H125L = H1L + H2L + H5L
      H23L = H2L + H3L
      H234L = H2L + H3L + H4L
      A21 = A2 - A1
      842 = 84-82
C
                                      L-107
      X1 = ATAN(A21/H1L)
```

THE RESERVE AND THE PARTY OF TH

the one

```
X2 = X1
    X3 = ATAN(A42/(H2L+H23L))
    X4 = ATAN(A21/(H1L+H5L))
    PIMX3 = PI-X3
    PIMX4 = PI-X4
     X10 = X1*RTD
     X2D = X2*RTD
    X30 = X3*RTD
     X4D = X4*RTD
     WRITE (6,6005) X1D, X2D, X3D, X4D
6005 FORMAT ( ///, 8H X1D = ,F7.3, 8H X2D = ,F7.3, / ,
                   8H X3D = , F7. 3, 8H X4D = , F7. 3 )
    A
     N1 = 1. - X1/FI
     N2 = 1. +X1/PI
     NC = 1.5
     D1 = COS(PI/N1)
     02 = 005(PI/N2)
     DC = -. 5
     D11 = 1.7(D1-1.)
     D21 = 1 /(D2-1 )
     DC1 = -2.73.
     E1 = SIN(PI/N1)/N1
     E2 = SIN(PI/N2)/N2
     EC = SIN(FI/NC)/NC
     STH = SIN(TH)
     ETH = EOS(TH)
     K0 = (2, *PI)/C
     AX0=(X0/1000.)
     XAK2 = X8*FC
     AK2A1 = XAK2 * A1
     RK282 = NAK2*A2
     AK2A4 = MAK2*A4
     XPT = X1+TH
     00 = TAN(XPT)*0.5
     TSP = COS(XPT)/SIN(X1)
     IF ( TH . GT. P102) GO TO 20
     NMT = X1-TH
     CK0 = 0 5*TAN(XMT)
     TSM = COS(XMT)/SIN(X1)
     Z6 = PK2A2*(X4-TH)
     Z8 = RK2A4*(X3-TH)
     08= 0(28)
     06= Q(Z6)
     DIFFC COMPUTES C(N)-/+B(N, PHI) TERMS RETURNED AS VX, HX
     CALL DIFFC( V12, H12, NC, DC, DC1, EC, PIO2-TH )
     CALL DIFFC ( V11, H11 , NC, DC, DC1, EC, P102+TH )
                                                 L-108
     CALL DIFFC ( V1, H1, N1, D1, D11, E1, TH )
     CALL DIFFE ( V2, H2, N2, D2, D21, F2, XPT )
```

red dies

```
CALL DIFFC ( V9, H9 , NC, DC, DC1, EC, TH )
      CALL DIFFC ( V6, H6, N2, D2, D21, E2, XMT )
      GO TO 30
   20 CONTINUE
      PIMTH = PI-TH
      Z2 = AK2A2*(PIMX3-TH)
      PIMXPT = PI-X1-TH
      Z1 = AK2A1*PIMXPI*3.
      Z11= AK2A1*(PIMX4-TH)
      011= 0(711)
      02 = 0(22)
      01 = 0(21)
C
      CALL DIFFC ( V9, H9, NC, DC, DC1, EC, TH )
      CALL DIFFC ( V10, H10, NC, DC, DC1, EC, TH-RIO2 )
      CALL DIFFC ( V4, H4 , N2, D2, D21, E2) PIMTH )
      CALL DIFFO ( V1, H1, N1, D1, D11, E1, PIMXPT)
      CALL DIFFC(V11, H11, NC, DC, DC1, EC, PIMTH )
   30 CONTINUE
      DO 50 I= NMIN NMAX
      XI = I-1
      AK = AX0*XI*DF
      AK2 = 2.0*AK
      AK2A1 = AK2*A1
      AK2A2 = AK2*A2
      AK2A4 = AK2*A4
      XC1=AK2AL*5TH
      XC2=AK2A2*STH
      XC4=AK2A4*STH
      CALL BESL XC1, B13, B11, B12)
      CALL BESL(XC2, B20, B21, B22)
      CALL BESL(XC4, B40, B41, B42)
      PHASE AND AMPLITUDE TERMS FROM BESSEL FUNCTIONS
      PS1 = CMPLM( B10, -B11)
      PS2 = CMPLX( B20, -B21)
      PS4 = CMPLX(B40, -B41)
      PSIP = CONJG(PSI)
      PS2P = CONJG(PS2)
      P54P = CONJG(PS4)
C
      PHASE TERM USING LENGTH ALONG AXIS
      PC1 = -AK2*H12L*CTH
      PC2 = -AK2*H2L*CTH
      PC4 = AK2*H23L*CTH
      PC9 = AK2*H234L*CTH
      PC11=-AK2*H125L*CTH
      01
           = CMPLX(COS(PC1), SIN(PC1))
      02
           = CMPLX(COS(PC2), SIN(PC2))
          = CMPLX(COS(PC4), SIN(PC4))
      04
      03
           = CONJG( C2)
      09
           = CMPLX(COS(PC9), SIN(PC9))
      C11 = CMPLX(COS(PC11), SIN(PC11))
                                       1-109
C
      C1 = A1*SPI*C1
```

To a second

```
03 = A2*SPI*03
02 = A2*SPI*02
C4 = A4*5PI*C4
09 = A4*SPI*C9
C11 = A1*SPI*C11
CAUSTIC CORRECTION TERMS
CC11 = EC*DC1*(B10+B12)
CC1 = E1*D11*(B10+B12)
002 = E2*D21*(B20+B22)
CC3 = E1*D11*(B20+B22)
CC4 = E2*D21*(B40+B42)
CC9 = EC*DC1*(B40+B42)
TSPP = TSP*AK2
TS1= A1*TSPF
TS2= A2*TSPP
TS4= A4*TSPP
IF ( TH . GT. PIO2 ) GO TO 450
0V12 = 011*(V12*P51P - 0011)
CH12 = C11*(H12*PS1P - CC11)
CV11 = C11*(V11*P51 - CC11)
CH11 = C11*(H11*PS1 - CC11)
CALL FTG (TS1, FT1)
CT1 = C0*FT1
CVI = C1*((V1+CT1)*PS1 - CC1)
CH1 = C1*((H1-CT1)*PS1 - CC1)
CALL FIG (TS2, FT2)
CT2 = C0*FT2
CV3 = C3*((V1+CT2)*P52 - CC3)
CH3 = C3*((H1-CT2)*PS2 - CC3)
6V2 = 62*((V2-6T2)*P52 - 602)
CH2 = C2*((H2+CT2)*P52 - CC2)
CALL FTG (TS4, FT4)
CT4 = C0*FT4
CV4 = C4*((V2-CT4)*PS4 - CC4)
CH4 = C4*((H2+CT4)*PS4 - CC4)
CV9 = C9*(V9*P54 - CC9)
CH9 = C9*(H9*FS4 - CC9)
EV = CV11+CV12+CV1+CV2+CV3+CV4+CV9
CH = CH11+CH12+CH1+CH2+CH3+CH4+CH9
IF ( Z6 . LE. -2. ) GO TO 801
TSMM = TSM*AK2
TS5 =TSMM*A1
TS6 =TSMM*A2
```

r-110

No. of the

TS8 =TSMM*A4

```
CALL FIG(TS6, FT6)
   CT6 = CK0*FT6
   CV6 = C2*((V6-CT6)*PS2P - CC2)*Q6
   CH6 = C2*((H6+CT6)*P52P - CC2)*06
   CPLL FTG(TS5, FT5)
   FT5 = CK0*(1.-FT5)*PS1F*C1*Q6
   CV5 = -FT5
   0H5 = +FT5
   FT7 = CK0*(1 - FT6)*P52P*C3*Q8
    CV7 = -FT7
   CH7 = FT7
   (ALL FTG(TS8, FT8)
   CIE = CKO*FTS
    1 \times 8 = 64*((V6+CT8)*PS4F - CC4)*08
    CH8 = C4*((h6+CT8)*PS4P - CC4)*08
   CVR = CV5 + CV6 + CV7 + CV8
    CHR = CH5 + CH6 + CH7 + CH8
    CV = CV+CVA
   CH = CH+CHA
   50 TD 801
456 CONTINUE
    THE P GREATER THAN PIZE
    CVS = C9*(V9*PS4 - CC9)
    089 = 09*(69*PS4 - 009)
    CV18 = C9*(V10*P54P - 009)
    0.18 = 09*(H18*PS4P - 009)
    1 4 = C4* ( V4*PS4 - CC4)
    TH4 = C4* ( H4*PS4 - CC4)
    CV = CV9 + CV10 +CV4
    CH = CH9 + CH10 + CH4
          72 LE. -2.) 80 TG 800
    0V11 = 011* (V11*PS1 - 0011)*011
    CH11 = C11* (H11*PS1 - CC11)*Q11
    CV2 = C2* (V4*P52 - CC2)*02
           C2* (H4*F52 - CC2)*Q2
    CH2 =
    CV = CV + CV11 + CV2
    CH = CH + CH11 + CH2
    IF ( Z1 . GT. -2.) GO TO 700
    HTTH = 0.5*(STH/CTH)
    01T = 01*HTTH*P51*Q11
    C3T = C3*HTTH*P52*02
                            L-W
    CV = CV + C1T + C3T
```

1. 1

```
CH = CH - C1T - C3T
      GO TO 800
  700 CONTINUE
C
      CALL FTG (TS1, FT1 )
      CV1 = C1*
                 ((V1+C0*FT1)*PS1 - CC1 )
      CH1 = C1*
                 ((H1-C0*FT1)*PS1 - CC1 )
      CALL FTG (TS2, FT2 )
      CV3 = C3* ((V1+C0*FT2)*FS2 - CC3)
      CH3 = C3*
                 ((H1-C0*FT2)*PS2 - CC3 )
      C2FT = C2 *C0*FT2*F52
      CALL FTG (TS4, FT4)
      C4FT = C4 *C0*FT4*FS4
      CV = CV + (CV1 + CV3 - C2FT - C4FT)*01
      CH = CH + (CH1 + CH3 + C2FT + C4FT) * 01
  888 CONTINUE
  801 CONTINUE
      CV =-CV+ITH
      CH = CH*ITM
      EVVR(I) = REAL(CV)
      EVVI(I) = -AIMAG(CV)
      EHHR(I) = REAL(CH)
      EHHI(I) = -HIMAG(CH)
   50 CONTINUE
      RETURN
      END
      SUBROUTINE DIFFC ( V. H. N. D. D1, E. PHI )
      REAL N
      D2 = 1.7(D-COS((PHI+PHI)/N))
      V = E*(D1-D2)
      H = E*(D1+D2)
      RETURN
      END
      SUBROUTINE BESL ( X, B0, B1, B2 )
    * BESSEL FUNCTION SUBROUTINE UTILIZING POLYNOMIAL APPROXIMATIONS
C
    * COMPUTES JO. J1. OR J2 FOR POSITIVE REAL ARGUMENTS
    * REFERENCE (HNDBK MATH FUNCT BY ABRAMOWITZ AND STEGUN SECTION 9.4 )
      5 = 1.0
      IF ( X.LT. 0. ) 5= -1.
      X = ABS(X)
      IF ( X . GT. 1. E-6 ) GO TO 5
      80 = 1.0
      B1 = 0.0
      B2 = 0.0
      X = X*5
      RETURN
C
    5 CONTINUE
                                T-117
```

```
C
         1 IF ( X . GE. 3. ) GO TO 9
              X1 = X/3.
             X1 = X1 * X1
             B = 1. + X1*(-2.2499997+ X1*(1.2656208+ X1*(-.3163866+ X1*(.0444479
           1 + X1*(-.0039444+ X1*2.1E-4 )))))
             GO TO 10
C
         9 X2 = 3.7X
              F0 = .79788456 + x2*(-.77E-6 + x2*(-.90552740 + x2*(-.9512E-4 + x2*(-.9512E-
                    (,00137237 +X2*(-,72805E-3 +X2*0 14476E-3 ))))))
              T0 = X - ... 78539816 + X2*(-...04166397 + X2*(-...3954E-4 + X2*(...00262573)
           1 +X2*(-.00054125 +X2*(- 00029333 +X2*0.00013558 )))))
             B = F0*COS(T0)/SORT(X)
       10 B0 = B
         2 IF ( X .GE. 3. ) 60 TO 19
X1 = X/3.
              X1 = X1*X1
              B = X*( ,5 +X1*(+,56249985 +X1*(,21093573 +X1*(+,03954289 +X1*
                                                  ( 00443319 +X1*(- 31761E-3 +X1*0 1109E-4)))))))
       19 X2 = 3.7X
F1 = .79788456 +X2*(.156E-5 +X2*(.01659667 +X2*(.00017105 +X2*
                (-.00249511 +X2*( 00113653 -.00020033*X2 )))))
              T1 = X - 2.35619449 +X2*(.12499612 +X2*(.565E-4 +X2*(-.00637879
           1 +X2*(.00074348 +X2*(.00079824 -0.00029166*X2 )))))
             B = F1*COS(T1)/SORT(X)
       20 B1 = B*5
               X = X*S
              B2= (2.7X)*B1 - B0
       50 RETURN
              END
               SUBROUTINE FIG(TAUS, F)
              COMPUTES FTAU WHERE FTAU = (EXP(-J*TAU**2)/2*TAU)*SQRT(PI/2.)*
C
                                                                              (C2(TAU**2) + J*S2(TAU**2))
C
              LOMPLEN F. FP
              PI = 3.14159265358979
               P102 = F1/2
               01 = SORT(PI/2.)
               02 = 1.701
               ATAUS = ABS(TAUS)
               IF (ATAUS . LE. 0.5 )GO TO 20
              FOR TAUS GT. 0.5, FUNCTION COMPUTED USING POLYNOMIAL
C
          * REFERENCE (HANDBK MATH FUNCT BY ABRAMOWITZ AND STEGUN)
C
                                        SECTIONS 7, 3, 9, 7, 3, 10, 7, 3, 32, 7, 3, 33)
              TAU = SORT(ATAUS)
              X = 02*TAU
              XS = X*X
C
              FX = (1.0+0.926*X)/(2.0+1.792*X+3.104*X5) L - 1/3
               GX = 1.0/(2.0+4.142*X+3.492*XS+6.67*X*XS)
```

C. Carlo

```
CC1XS = COS(ATAUS)
      SC1XS = SIN(ATAUS)
C
      CX = 0.5 + FX*SC1XS - GX*CC1XS
      SX = 0.5 - FX*CC1XS - GX*SC1XS
C
      IF (TAUS . LT. 0.) GO TO 10
      F= CMPLX( CX, SX)
      FP = CMPLX( COS(ATAUS), -SIN(ATAUS) )
      F = (C1*F*FP)/TAU
      RETURN
0
   10 CONTINUE
      F = OMPLX(SX, CX)
      A = ATAUS-PIO2
      FP = CMPLX( COS(A), SIN(A) )
      F = (F*FP*C1)/TAU
      RETURN
0
      FOR TAUS .LE. 0.5, FUNCTION IS EXPANDED IN SERIES AND FIRST FEW
                          TERMS INTEGRATED TERM BY TERM TO OBTAIN RESULT
   20 CONTINUE
      FP = CMPLX( COS(TAUS), -SIN(TAUS) )
      TS = TAUS*TAUS
      FR = 1 - T5*( .1 - .0046296296*TS)
FI = TAUS*( .333333333 - T5*(,0238095238 - 7.57575757E-4*TS))
      F = OMPLX( FR, FI )
      F = FF*F
      RETURN
      END
      FUNCTION Q(Z)
      0(2) = 0.5*(1 + ERF(2))
    * ERF(Z) IS EVALUATED USING A RATIONAL POLYNOMIAL APPROXIMATION
    * REFERENCE (HANDEK MATH FUNCT BY ABRAMOWITZ AND STEGUN,
                  SECTION 7. 1. 26)
      3F ( Z. GT. 2. ) GO TO 10
      IF ( Z. LT. -2. ) GO TO 20
      AZ = ABS(Z)
      F = 1.0/(1.0 + .47047*AZ)
      Y = 1.0 - P*(.3480242 - P*(.0958798 - .7478556*P))*EXP(-AZ*AZ)
      IF (Z) 2,4,6
    20 = (10 - Y)/2
      RETURN
    4 0 = 5
      RETURN
    60 = (1.0 + 4)/2
      RETURN
   10 0 = 1.
      RETURN
   20 0 = 0.
      RETURN
                              L-114
      END
```

CHART TITLE - SUBROUTINE TARGET (EVVR, EVVI, EHHR, EHHI)

/ VIA FORMAT / 10 1	= 1 x1/PI
= ASPECT*DTR	21 - 21 - 1:7(91 - 1:7)
12 12 121 12	= 1./(D2 -
H23L = H2L + H3L ***********************************	22 06 = 0(26)
- 42 - 41	SIN(PI/NI)/NI DIFFC COMPUTES E2 = C(N)-/+B(N,PHI) TERMS EC = C = RETURNED AS VX,HX EC = RETURNED AS VX,HX
A42 = A4 - A2	23 4 DIFFC

14 DIFFC H 14 DIFFC H 10 DC,DC1,EC, H 11 P102 - TH) H	***************************************	31	14 DIFFC H 14 (VII,HII,NC, H 10 DC,DCI,EC, H 11 PIGZ + TH) H	14 DIFFC H - (V1,H1,N1,D1, H - D11,E1,TH) H	1 33 14 DIFFC H 14 DIFFC H 10 D21,E2,XPT) H 11 H	14 DIFFC H 10 DC1, EC, TH H H H H H H H H H	35 4 DIFFC H 1 (V6,H6,N2,D2, H 10 D21,E2,XMT) H 11 H
		# CTH = COS(TH)	x0 = (2.*PI)/C Ax0 = (x0/1000.) XAK2 = X0*FC	AK2A1 = XAK2*A1	x x q z t	* 27 * TRUE	FALSE . 40
A42 = A4 - A2		17HL)	ATAN(A42/(H2L +	15 PIMX3 = PI - X3 PIMX4 = PI - X4	XID = X1*RTD X2D = X2*RTD X3D = X2*RTD X4C = X4*RTD	/ WRITE TO DEV / / VIA FORMAT / 6005 / FROM THE LIST /	# * * * * * * * * * * * * * * * * * * *
410 = 180./PI	SHP1 = 508T(HP1) STHP1 = 1.75HP1	!!!	IIM = 0.0254 SMIN = 1.E - 4 SMDB = - 80. C = 11.60285078	READ FROM DEV /	/ INTO THE LIST / * * * * * * * * * * * * * * * * * *	ITE	* * * * * * * * * * * * * * * * * * *

L-115

L-116

CHART TITLE - SUBROUTINE TARGET (EVVR, EVVI, FHMR, FHHI)

	CC4 = E2*D21*(840 + 842)	CC9 = EC+DC1+(840 + 842)	28	15PP = TSP*AK2 TS1 = A1*TSPP	TS2 = A2*TSPP	1	* * * * *	* * * * TRUE * TH .GT. PIO2 *-+	* * * * * FALSE - 41	30	CV12 * CV12 * CV12 * CV11 CC11)	C11*(H12*PS1P - 1
	PC1 = - AK2*H12L*CTH	PC2 = - AK2*H2L*CTH PC4 =	AK2*+23L*CTH PC9 = AK2*+234L*CTH	21	PC11 = - AK2*H125L*CTH	23	:	CMPLX(CCS(PC2), 1	CMPLX(COS(PC4),		C3 = CONJG(C2)	611 =
	X1 = I - 1 AK = AXO*XI*DF			12 12 12 12 14 AK244 1	r	XCI = AK2A1+STH	XC2 = AK2A2*STH XC4 = AK2A4*STH	***************************************	XC1,810,911, H		7 BESL H 17 (XC2,820,821, H	-
39.27> NOTE 01	CON11N	02 02 PIMTH = PI - TH	12 = (PIMX3 TH)		AK2A1*PIMXPT*3.	03	Z11 = AKZA1*(PIMX4 -	92 = 6(211)	01 = 0(21)	14 D1FFC H		50

Sport of

90	CV12 = CV12 =	C(11)	C11+(H12+PS1P - 1 CC11)	CV11 # C11*(V11*PS1 - CC11)			(CC11)	32	- FTG	(TSI,FTI) H	-	33	CT1 = C0#FT1	*PS1 -	CHI = CI*((HI - CTI) **PSI - CCI)	34	4 FTG H			- 3	******
		CMPLXICOS(PC9), SIN(PC9)	CMPLX (COS (PC11),	1	1 C1 = A1*SP1*C1	,,	\$	25	*	CII = AI#SPI#CII		CAUSTIC CORRECTION	3,4		EC*EC1*(F10 +	CC1 = F1*D11*(E10 + 612)	CC2 = E2*D21*(B2C + B22)	CC3 = CC3 = F1#C11#(820 +			
151	3	(xC2,F20,E21, H		-	7 RESL H		PHASE AND AMPLITUDE TERMS FROM BESSEL	FUNCTIONS	**	PS1 = CMPLX(510, - F11)	PS2 = CMPLX(520, - 821)	PS4 = CMPLX(B40, - B41)	CUNJE		#	"		-	•		
14 1 (V9,H9,NC,DC, H	DC1.EC.1H)	ď	244	23			10 D21.E2.PIMTH) H	<u> </u>	5		10 DII, EI, PIMXPT) H		3) 1	(VII,HII,NC.	11 PIMIH) H	->-	* * * * * * * * * * * * * * * * * * *	01 3TON ***	BEGIN DO LOCP 50 I = NMIN, NMAX		

CHART TITLE - SUBROUTINE TARGET (EVVR, EVVI, EHPR, FHHI)

7 - 62	INUE	THETA GREATER THAN	o #	Ce* (V4*PS4 - CC9)	(600 - 75d*6H)*00 -	50	CC+(V10+PS4P - CC+) CH10 = CH1	21	CV4 = CC4) CV4 = CC4) CV4 = CC4)	CV = CV9 + CV10 + CV4	CH = CH9 + CH10 +
	-	H F16 H F16 H H F16 H H H F16 H H H H H H H H H H		10	CV6 = C2((V6 - C76)*P52P -	CC2)*66 CH6 = C2*([H6 +	CC2)*G6	FTG (TSS,FTS)	12	F15 = CKO*(1 F15)*PS1P*C1*C6 CV5 = - F15	C45 = + FT5
40.35>*	CT2 = C0*5T2	CT2)*PS2 - CC3) CH3 = C3*((H1 - 1 CT2)*PS2 - CC3)	20	CV2 = C2*((V2 -	CH2 = C2*((h2 + CT2)*PS2 - CC2)	60	14 FTG H		CV4 = C4*(1V2 - CT4)*PS4 - CC4)	CH4 = C4*(H2 + C14) *PS4 - CC4)	50 1

CHART TITLE - SUSSCUTINE TARGETIEVVR, EVVI, EH4R, EH4I)

THE REPORT OF THE PARTY OF THE

TITII IIIII CVI = C1*((VI + C0*F11)*PSI - CC1) CH1 = C1*((H) -C0*F11)*PS1 -CC1) FTC (152,FT2) (TS1,FT1) * * * * * * CONTINUE FTC 200 41.26---> 44.00 .04 4 1

viji ne d

			*-	CV = CV*ITM $CH = CH*ITM$ $VVR(I) = VVR(I) =$	1146 (6	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
10 (152,672) H 12 H *	CV3 = C3*((V1 + C0*F12)*PS2 - CC3) CH3 = C3*((H1 - C0*F12)*PS2 - CC3)	** *	 10 (154,114) H	008 *	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH = CH + (CP1 + CH3 + CPT + C+FT *01 C+FT *01

appear of

04/26/76

CHART TITLE - NON-PROCEDURAL STATEMENTS

COMMON MOVER, M. WMIN, NMAX, DF, FC, PW, TO COMPLEX PS1, PS2, PS4, PS1P, PS2P, PS4P, C1, C2, C4, C3, C9, C11, FT1, FT2, FT4, FT5, FT6, FT7, FT8, CT1, CT2, CT4, CT6, CT8, C11, C2T, C2FT, C4FT CUMPLEX CV1, CH1, CV2, CH2, CV3, CH3, CV4, CH4, CV5, CH5, CV6, CH6, CV7, CH7, CV8, CH8, CV4, CH4, CV10, CH10, CV11, CH11, CV12, CH12, CV, CH, CVA, CHA REAL NI.NZ.NC.ITM DIMENSION EVVO(1), EVVI(1), SHES(1), SHES(1) FORMAT (9F7.2,12) 5001 FURMAT (29H1 PROGRAM INPUT PARAMETERS ./. 5610 17H ASPECT ANCLE = . F9.4) 6001 FURMAT(//, 7H H1 = ,F8.4 ,7H A1 = ,F8.4./ ,7H H2 = ,F8.4 . 7H A2 = ,F8.4./ ,7H H3 = ,F8.4 , 7H A4 = ,F8.4./ , 7H H4 = ,F8.4,/ ,7H H5 = ,F8.4 1 FORMAT 1 ///, 8H X1D = ,F7.3, 8H X2D = ,F7.3, / , €005 8H X3D = ,F7.3, 8H X4D = ,F7.3 1

04/26/76

AUTOFLOW CHART SET - FWO/SCL RADSIM

CHART TITLE - SUEROUTINE DIFFC(V,H,N,D,D1,E,PHI)

04/26/75

AUTOFLOW CHART SET - FWO/SCL RADSIM

CHART TITLE - NEW-PRECEDURAL STATEMENTS

REAL N

1-121

(5)

(4/20/70

CHART TITLE - SURREUTINE BESLIX, 80,41,62)

BFSL

* BESSEL FUNCTION SUPROUTINE UTILIZING FCLYNOMIAL APPROXIMATIONS * COMPUTES JO,JI,CR JZ FOR POSITIVE REAL ARGUMENTS

* REFERENCE (HMDFK MATH FUNCT BY ABRAMCWITZ AND STEGUN SECTION 4.4.)

5 = 1.0

The second secon

FALSE

TRUE

- 1. 11 S

0 X = ABS(X)

								-		•		1							-
		*	+	*	*	*	*	=		1		1		*	*	*	*	•	=
1		9		40	4	1	3	-		i		1	+	-	4	3	5	~	-
	3./X	S	10	4	1.	2	1	6		!		! .		2	1	5	2	33	a
	:	8	i	2	2	2	3	i		1		Ι.						0	
i	m	00	-	5	-	~	0	9		i		i×	0	0	15	0	5	61	4
- !	11	-	1	5	5	7	0	-	-	! -	 -	!	34	7	0	5	0	5	5
	"	2		00	٠.	0	7	4		1		: "	40	0	6.1	0	0	0	3
1	C		-		- 1			-		i		io	00		1				C
	×	-11	*	1	-	-	1			!		! -	~	1	-	-	1	1	0
3 1		**	2	#	-		-	4		1		:	•	*	*	2	*	*	-
1		0		01	×	×	01	CI		1		i			×			CI	0
. !		u		×			×	×		!		!		×			×	*	>
4			_	_	_	_	_	_	_	ė.		·	_	-	_	_	_	_	_

CHART TITLE - SUBROUTINE FTG(TAUS,F)

FTG

40.32*-->*

=(EXP(-J*TAU**2) /2*TAU)*SQRT(PI/2.)* (C2(TAU**2) + J*S2(TAU**2)) COMPUTES FTAU WHERE FTAU

20					•
_	PI = 3.14159265358979	PIG2 = PI/2.	C1 = SCRT(P1/2.)	C2 = 1./C1	ATAUS = ABS(TAUS)
	3,1415	P102	C1 = S	C2	ATAUS

17000

TERMS INTEGRATED TERM BY TERM TO GBTAIN RESULT FOR TAUS .LF. 0.5, FUNCTION IS EXPANDED IN SFRIES AND FIRST

NOTE CONTINUE TRUE

03

FALSE

30

du

I CMPLY (CAS (TALIS).

							*	* * * * * * CCNTINUE	* * * * * * * * * * * * * * * * * * * *	I F = CMPLX(SX+CX)	A = ATAUS - PIO2	CMPLX(COS(A), SIN(A))	F = (F*FP*C1)/TAU	* EXIT *
15*(.0238095238 - 7.575757E-4*IS)) F = CMPLX(FR, FI)	#	# EXIT #			* 1° 2 * - * * * *	* * * * TRUE * TAUS .LT. 0. *	* * * * * *	FALSE		13	F = CMPLX(CX,SX)		# CI*F*FD)/TAU
70	TAU = SCRT(ATAUS)	X = C2*TAU XS = X*X	1	FX = (1.0 + 0.926*X)/(2.0 + 1.792*X + 3.104*XS)	GX = 1.0/(2.6 + 1.142*X + 3.492*XS + 6.67*X*XS)	90	COS(ATAUS)	SCIXS = SIN(ATAUS)	*	CX = 0.5 +	6x*CC1xs	5x = 6.5 - Fx*CC1xs - 6x*SC1xs		

Carlina.

04/26/76

AUTOFLOW CHART SET - FWO/SCL RADSIM

CHART TITLE - NON-PROCEDURAL STATEMENTS

COMPLEX F.FP

L-124

CHART TITLE - FUNCTION Q(Z)

* ERF(Z) IS FVALUATED USING A RATIONAL POLYNOMIAL APPROXIMATION * REFERENCE (HANDEK MATH FUNCT EY ABRAMOWITZ AND SECTION C(Z) = 6.5*(1 + ERF(Z)) 7.1.261

* EXIT 10 TRUE 03

= 1.

TRUE

Water Co

	* EXI1 *	
	80	
	1 G = (1.0 - Y)/2.	
* EXIT *	2 07	* EXIT *
	<u> </u>	
C = (1.0 + Y)/2.		e
6 13	* * * * * * * * * * * * * * * * * * * *	01
,	(*) * * (0)	
	90 *	

	.7478556*P)] *EXD(-AZ*AZ)	
	P*(.345C242 - P*(.0958748 -	
	1 - 47047*AZ)	
* EXIT *	AZ = ABS(Z)	
112	90	
0 = 0		
20 11	FALSE	
	* * * *	
	Z .LT	
	*	

,			
1403		SUBSCUTINE TARGET (EVVR, EVVI, EHHS, HMHI)	RCSB 001
142-	c)	** KESPENSE LE TARGET ST-2	9CSB 002
145,	U	** COMPUTED LILIZING THE SUCK-UPIMISEY FOURTIOLS **	FCS8 003
1426	0		RCS8 004
1427		CCMMUN MOVER, M. NMIN. NMAX, FF. EC. PM. TO	RCS8 005
1428	J	NMIN = MINIMUM FREQUENCY SAMPLE	FCS8 006
1424	U	NMAX = MAXIMUM FREGUENCY SAMPLE	RCS8 007
1+30	0	LF = FREQUENCY INCREMENT IN MHZ	RCS8 008
1431	J	FC = CARRIER FREGUENCY IN GHZ	RCS8 009
1432		CCMPLEX PS1, PS2, PS4, PS10, PS20, PS40, C1, C2,	RCS8 010
1433		A C4, C3, C9, C11, F71, F72, F74, F75, F76, F77, F78,	RCS8 011
1434		S CT1, C12, C14, CT6, CT8, C1T, C3T, C2F1, C4FT	. RCS8 012
1435		COMPLEX CVI, CVI, CV2, CH2, CV3, CH3, CV4, CH4, CV5, CH5,	RCS8 013
1436		A CV6, CH6, CV7, CH7, CV8, CH8, CV9, CH9,CV10,CH10,CV11,CH11,	RCS8 014
1437		BCV12,CH12, CV, CH, CVA, CHA	RCS8 015
1438		REAL NIONZONCOITM	RCS8 016
1439		DIMENSION EVVR(1), EVVI(1), FHHR(1), FHHI(1)	RCS8 017
1440	J		RCS8 018
1441	J		RCS8 019
1442	J		RCS8 020
1443	J	PREGRAM CONSTANTS	RCS8 021
1444	U		RCS8 022
1445		PI = 3.14159265358979	RCS8 023
1446		p12 = p1+p1	RCS8 024
1447		PIO2 = PI/2.	RCSB 025
1448		HPI = .5*PI	RCSR 026

- 15 TO 10 10 CA

		KC38 UZ3
0 ***	P12 = P1+11	RCS8 024
1447	P102 = P1/2.	RCSB 025
1448	HPI = .5*PI	RCSB 026
1444	SPI = SORT(PI)	RCS8 027
2		
64/26/76	INPUT LISTING AUTOFLOW CHART SET - FWG/SCL	RADSIM
CARP NO	ササササ	
1450	RTG = 150.7P1	RCSB 028
1451	LTR = P1/180.	RCS8 029
1452	SHPI = SCRT(HPI)	RCS8 030
1+53	SIMPL = 1./SHPI	RCS8 031
1454	ITM =6.0254	RCS8 032
1455	SMIN = 1.E-4	RCS8 033
1456	SMDB = -8C.	PCSB 034
1457	C = 11.80255078	RCS8 035
1458		RCS8 036
1459	READ(5,5061) ASPECT, A1, A2, A4, HIL, H2L, H3L, H4L, H5L, M1	RCS8 037
1460	5601 FORMAT (9F7.2,12)	RCS8 039
1461	WRITE(6,5010) ASPECT	RCS8 040
1462	SOID FURMAT (244) PRUCKAM INPUT PARAMETERS ./.	RCSR 041
1463	1 17H ASPECT ANGLE = , F9.4)	RCS8 042
1464	WRITE (6,6001) HIL,AI,H2L,A2,H3L,A4,H4L,H5L	RCS8 C43
1445	4.01 FORMAT (2/ 21 11 - 20 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

10 m 3

RCS8 030	RCSB 031	PCS8 032	RCSE 033	PCS8 034	RCS8 035	RCS8 036	1 RCS8 037	RCSE 039	RCS8 040	RCS8 041	RCSB 042	RCSR C43	H2 = , F8.4 , RCS8 044	= ,F8.4,7 , RCS8 045	RCSB 046	RCS8 047	RCS8 048	RCSB 049	RCS8 050	RCS8 051	RCS8 052	RCS8 053	RCS8 054	RCS8 055	RCS8 056
SHPI = SCRT(HPI)	SIHP1 = 1.75HP1	ITM =6.0254	SMIN = 1.E-4	SMDE = -8C.	C = 11.80255078		READ(5,5001) ASPECT, A1, A2, A4, H1L, H3L, H4L, H5L, M1	5001 FDRM#1(9F7.2,12)	MRITE(6,5010) ASPECT	5010 FURMAT (24H) PROCKAM INPUT PARAMETERS ,/,	1 17H ASPECT ANGLE = , F5.4)	NRITE (6,6001) HIL, A1, H2L, A2, H3L, A4, H4L, H5L	6061 FORMAT(//, 7H HI = , F8.4 , 7H AI = , F8.4, / , 7H	A 7H A2 = .F8.4.7 , 7H H3 = ,F8.4 , 7H A4 = ,F	B 7H H4 = , F8.4, / , 7H H5 = , F8.4)	J	TH = ASPECT*DIR	v	H12L = H1L + H2L	HI25L = HIL + H2L + H5L	H23L = H2L + H3L	H234L = H2L + H3L + H4L	A21 = A2-A1	A42 = A4-A2	J
3571	1+53	1454	1465	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466	2 1467	1468	1469	1470	1411	1472	1473	1474	7 1475	9271 5	P 1477

· Comb

```
RCS8 080
                                                                                                                                                                                                                                                                                                                                                                                                        RCS8 081
                                                                                                                                                                                                                    RCS8 070
                                                                                                                                                                                                                                                                                                                                                                        RCS8 079
RCS8 057
                RCS8 058
                                                                                                                                   RCSB 065
                                                                                                                                                   RCSB 066
                                                                                                                                                                    RCS8 067
                                                                                                                                                                                    RCS8 068
                                                                                                                                                                                                    RCS8 069
                                                                                                                                                                                                                                     RCS 8 071
                                                                                                                                                                                                                                                     RCS8 072
                                                                                                                                                                                                                                                                                      RCS8 074
                                                                                                                                                                                                                                                                                                       RCS8 075
                                                                                                                                                                                                                                                                                                                       RCS8 076
                                                                                                                                                                                                                                                                                                                                                        RCS8 078
                                 RCS8 059
                                                  RCS8 060
                                                                  RCS8 061
                                                                                  RCS8 062
                                                                                                  RCS8 063
                                                                                                                   RCS8 064
                                                                                                                                                                                                                                                                      RCS8 073
                                                                                                                                                                                                                                                                                                                                       RCS8 077
                                                                                                                                                                                                                                     X2D = ,F7.3, / ,
                                                                                                                                                                                                                                                      X40 = ,F7.3
                                                                                                                                                                                                                                     6005 FURMAT ( ///, 8H XID = ,F7.3, 8H
                                                                                                                                                                                                                                                     X30 = ,F7.3, 8H
                                                                                                                                                                                                                    WRITE (6,6005) XID, X20, X30, X40
                                 X3 = ATAN( A42/(H2L+H23L))
                                                  X4 = ATAN( A21/(H11+451))
 XI = ATAN( AZIZHIL)
                                                                                                                                                                                                                                                      BH
                                                                                                                                                                                                                                                                                                                                                                                                                       011 = 1./(01-1.)
                                                                                                                                                                                                                                                                                                                                                       01 = COS(PI/NI)
                                                                                                                                                                                                                                                                                                                                                                        D2 = COS(PI/N2)
                                                                                   PIMX3 = P1-X3
                                                                                                    PIMX4 = PI-X4
                                                                                                                                                                                                                                                                                                       N2 = 1.+X1/PI
                                                                                                                                                                                                                                                                                      NI = 1.-X1/PI
                                                                                                                                   XID = XI*KID
                                                                                                                                                                    X3C = X3*RTD
                                                                                                                                                                                    X4D = X4*RTD
                                                                                                                                                    X2D = X2*RTE
                                                                                                                                                                                                                                                                                                                        = 1.5
                                                                                                                                                                                                                                                                                                                                                                                         = -.5
                 x2 = x1
                                                                                                                                                                                                                                                                                                                        ٧
                                                                                                                                                                                                                                                                                                                                                                                         20
                                                                                                                                                                                                                                                                      0
                                                                  v
                                                                                                                                                                                                                                                                                                                                        U
                                                                                                                                                                                                                                                                                                                                                                                                         U
                                                                                                                                                                                                                                                                                                     1496
 1478
                                                                  1482
                                                                                  1483
                                                                                                                   1485
                                                                                                                                                                                                                                                     1403
                                                                                                                                                                                                                                                                                      1445
                                                                                                                                                                                                                                                                                                                                       1498
                                                                                                                                                                                                                                                                                                                                                       1499
                                                                                                                                                                                                                                                                                                                                                                        1500
                1479
                                 1480
                                                1431
                                                                                                  1484
                                                                                                                                   1436
                                                                                                                                                   1487
                                                                                                                                                                    1488
                                                                                                                                                                                    1480
                                                                                                                                                                                                    1450
                                                                                                                                                                                                                    1401
                                                                                                                                                                                                                                     1492
                                                                                                                                                                                                                                                                     1464
                                                                                                                                                                                                                                                                                                                      1+07
                                                                                                                                                                                                                                                                                                                                                                                       1501
                                                                                                                                                                                                                                                                                                                                                                                                        1502
                                                                                                                                                                                                                                                                                                                                                                                                                       1503
                             1256
```

				N-																		
80.880		RCSB 082	RCS8 083	RCS8 084	RCS8 085	RCS8 086		D/SCL RADSIM	***	RCS8 087	RCS8 088	RCS8 089	RCS8 090	RCS8 091	RCS8 092	RCS8 093	RCS8 094	RCS8 095	RCSB 096	RCSB 097	RCSB 098	RCS8 099
								AUTOFLOW CHART SET - FWO/SCL	CONTENTS													
5 = 30	U	011 = 1.7(01-1.)	021 = 1./(02-1.)	DC1 = -2./3.	U	El = SIN(PIZNI)ZNI		INPUT LISTING	* * * * *	E2 = SIN(PIZNZ)ZNZ	FC = SIN(PINC)/NC	٥	STH = SIN(TH)	CTH = COS(TH)	v	X0 =(2.*P1)/C	AX0=(X0/100C.)	XAK2 = X0*FC	AKZAI =XAK2*A1	AKZAZ = XAK2*A2	AK2A4 =XAK2*A4	
1501	1502	1503	- 1504	S 1500	1506	1507		04/26/75	CARD NO	1508	1509	1510	11511	1512	1513	1514	1515	1516	1517	1513	1519	1630

The second second

		2/11/2 - 21 - 6V	KLS8 093
-	1515	AXO=(X0/1000.)	RCS8 094
	1516	XAK2 = X0*FC	RCSB 095
	1517	ANZAI =XAK2*AI	RCS8 096
	1513	AKZAZ = XAKZ*AZ	RCSB 097
	1514	AK2A4 = XAK2*A4	RCS8 098
	1520 C		RCS3 099
,	1521	XPT = X1+TH	RCS8 100
3	1522	C0 = TAN(XPT) *0.5	RCS8 101
	1523	TSP = COS(XPT)/SIN(XI)	RCS8 102
	1524	1F (TH .61. PIC2) GO TO 20	RCSB 103
	1525	XMT = X1-TH	RCS8 104
	1526	CKU = 0.5*TAN(XMI)	RCS8 105
	1527	TSM = COS(XMT)/SIN(XI)	RCS8 106
	1528	26 = AK2A2*(X4-TH)	RCS8 107
	1529	28 = AK2A4*(X3-TH)	RCS8 108
	1530	(8= 0(28)	RCSB 100
	1531	(6= (120)	RCS8 110
	1532 C	DIFFC COMPUTES CIN)-/+P(N+PHT) TERMS RETURNED AS VX, HX	RCSR 111
	1533	CALL DIFFC(V12, H12,NC,DC,CC1,FC, PIO2-TH)	RCS8 112
-	1534	CALL DIFFC (VII, HII , NC, DC, DCI, EC, PIO2+TH)	RCS8 113
arrest to tapacas	1535	CALL DIFFC (VI,HI, NI,DI,DII,EI,TH)	RCS8 114

and the second

,		
1536	CALL DIFFC (V2,H2, N2,D2,D21,E2, XPT)	RCS8 115
1537	CALL DIFFC (VY, HY , NC, DC, DC1, EC, TH)	RCSB 116
1538	CALL DIFFC (V5, H6, N2, D2, D21, E2, XMT)	RCS8 117
153~	GC 1C 3U	RCS8 118
1540	20 CONTINUE	RCS8 119
1541	PIMIH = PI-TH	RCSB 120
1542	22 = AK2A2*(PIMX3-TH)	RCSB 121
1543	FIMXPT = PI-X1-TH	RCS8 122
1544	21 = AK2A1*PIMXPT#3.	RCS8 123
1545	211= AK2A1*(PIMX4-TH)	RCS8 124
1546	611= C(Z11)	RCS8 125
1547	(2 = ((22)	RCS8 126
1543	(1 = 6(21))	RCS8 127
1549	J	RCS8 128
1550	CALL DIFFC (V9, H9, NC, DC, DC1, EC, TH)	RCS8 129
1551	CALL DIFFC (VIC.HIO.NC.DC.DCI.EC, TH-PIO2)	RCS8 130
1552	CALL DIFFC (V4, H4 , N2, D2, D21, F2, PIMTH)	RCS8 131
1553	CALL DIFFC (VI,HI, NI,DI,DII,EI,PIMXPT)	RCS8 132
1554	CALL DIFFC(V11, H11, NC, DC, DC1, FC, PIMTH)	RCS8 133
1555	30 CONTINUE	RCS8 134
1556	GG 50 I= NMIN, NMAX	RCS8 135
1557	1-1 = Ix	RCSB 136
1558	AK =AXU*XI*DF	RCS8 137
1559	AK2 = 2.0*AK	RCS8 138
1560	AKZAI = AKZ*AI	RCS8 139

- MEDICAL ST

-													-										
RCSB 138	RCS8 139	RCSB 140	RCSB 141	RCS8 142	RCS8 143	RCS8 144			SCL RADSIM	* * *	RCS8 145	RCS8 146	RCS8 147	RCS8 148	RCS8 149	RCS8 150	RCS8 151	RCS8 152	RCS8 153	RCS8 154	RCS8 155	RCS8 156	RCS8 157
									AUTCFLOW CHART SET - FWG/SCL	CONTENTS							ROM BESSFL FUNCTIONS						
AK2 = 2.0*AK	AKZAI = AKZ*AI	AKZAZ = AKZ*AZ	AK2A4 = AK2*A4		XC1=AK2A1*STH	XC2=AK2A2*5TH			INPUT LISTING	* * * * * * * * * * * * * * * * * * *	XC4=AK2A4*SIH)	CALL BESL(XC1, P10, B11, F12)	CALL BESL(XC2,820,821,822)	CALL 9ESL(XC4,840,841,842)	U	C PHASE AND AMPLITUDE TERMS FROM BESSFL FUNCTIONS	PS1 = CMPLX(BIO,-811)	PS2 = CMPLX(B2C,-621)	PS4 = CMPLX(840,-841)	PSIP = CONJG(PSI)	PS2P = CONJG(PS2)	054P = CONJC(PS4)
1554	1560	1561	1562	2 1563	1564	1565			14/26/76 INP	CARD VC *	1566	1567	1568	1564	1570	1571	1572 C	1573	1574	1575	1576	1577	1578

and the state of

RCSB 146	RCS8 147	RCS8 148	RCS8 149	RCS8 150	RCS8 151	RCS8 152	RCS8 153	RCS8 154	RCS8 155	RCS8 156	RCS8 157	RCS8 158	RCS8 159	RCS8 160	RCS8 161	RCS8 162	RCS8 163	RCS8 164	RCS8 165	RCS8 166	RCS8 167	RCS8 168	RCS8 169	RCS8 170	RCS8 171	RCS8 172
	CALL BESL(XC1,810,811,812)	CALL BESL(XC2, B20, B21, B22)	CALL 5ESL(XC4,840,841,842)		PHASE AND AMPLITUDE TERMS FROM BESSEL FUNCTIONS	PS1 = CMPLX(\$10,-\$11)	PS2 = CMPLX(820,-F21)	PS4 = CMPLX(840,-841)	PSIP = CONJG(PSI)	PS2P = CONJG(PS2)	p\$4P = CONJC(P\$4)		PHASE TERM USING LENGTH ALONG AXIS	PC1 = -AK2*H12L*CTH	PC2 = -AK2*H2L*CTH	PC4 = AK2*H23L*CTH	PC4 = AK2*H234L*CTF	PC11=-AK2*H125L*CTH		C1 = CMPLX(COS(PCI),SIN(PCI))	C2 = CMPLX(CDS(PC2), SIN(PC2))	C4 = CMPLX(COS(PC4), SIN(PC4))	C3 = CONJG(C2)	C9 = CMPLX(COS(PC9), SIN(PC9))	C11 = CMPLX(COS(PC)1), SIN(PC11))	
U				U	J							J	U						J							0
1567	1568	1564	1570	1571	1572	1573	1574	1575	1576	1577	1578	1574	1530	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1561		1663

	RCS8 173	RCS8 174	RCS8 175	RCS8 176	RCS8 177	RCS8 178	RCS8 179	RCS8 180	RCS8 181	RCS8 182	RCSB 183	RCSB 184	RCS8 185	RCS8 186	RCS8 187	RCSB 188	RCS8 189	RCS8 190	RCS8 191	RCS8 192	RCS8 193	RCS8 194	RCS8 195	RCSB 196	RCS8 197
	RC	20	28	S. B.	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	RC	28
	C1 = A1*SPI*C1	C3 = A2*SPI*C3	C2 = A2*SPI*C2	C+ = A4*SPI*C4	C4 = A4*SPI*C9	C11 = A1*SPI*C11		CAUSTIC CORRECTION TERMS	(C11 = EC*5C1*(810+812)	CC1 = E1*D11*(B10+912)	CC2 = E2*U21*(E20+E22)	CC3 = E1*D11*(P20+622)	(C4 = E2*b21*(840*842)	CC4 = EC*DC1*(640+642)		15PP = 15P*AK2	151= A1*TSPP	152= A2*TSPP	TS4= A4*TSPP		IF (TH .6T. PIG2) 60 TO 450			CV12 = C11*(V12*PSIP - CC11)	CH12 = C11*(H12*PSIP - CC11)
							U	U							U					u		U	U		
1	1594	7 1545	9551	P. 1507	1598	1590	1600	1091	1662	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615	1616	1617	1618

ALCON D

RCS8 230	TS8 =TSMM*A4		1651
RCSR 229	156 =TSMM*A2		1650
RCS8 228	155 =15MM*A1		1640
RCS8 227	TSMM = TSM*AK2		1646
RCS8 226		U	1647
RCSR 225	IF (Z6 .LE2.)GU TO 901		1646
RCS8 224		J	1645
49 RCSB 223	CH = CH11+CH12+CH1+CH2+CH3+CH4+CH9		1644
PCSB 222	CV = CV11+CV12+CV1+CV2+CV3+CV4+CV4		1643
RCS8 221		U	1642
RCS8 220	CH9 = C9*(H9*PS4 - CC9)		1641
RCSR 219	CV9 = C9*(V9*PS4 - CC9)		1640
RCS8 218		u	1 1639
RCSB 217	CH4 = C4*((H2+CT4)*P54 - CC4)		1638
RCS8 216	CV4 = C4*((V2-C14)*PS4 - CC4)		1637
RCSB 215	CT4 = C0*FT4		1636
RCS8 214	CALL FTG (154.F14)		1635
RCSB 213		U	1634
RCSB 212	CH2 = C2*((H2+CT2)*PS2 - CC2)		1633
RCSB 211	CV2 = C2*((V2-CT2)*PS2 - CC2)		1632
RCS8 210		J	1631
RCS8 209	CH3 = C3*((H1-CT2)*PS2 - CC3)		1630

and which

	RCSB 231	RCSB 232	RCSB 233	RCS 8 234	RCS8 235	RCSB 236	RCS8 237	RCS8 238	RCS8 239	RCS8 240	RCS8 241	RCS8 242	RCS8 243	RCS8 244	RCS8 245	RCSP 246	RCS8 247	RCS8 248	RCSB 249	RCS8 250	RCS8 251	RCSB 252	RCS8 253	RCS8 254	RCS8 255	756 8370
				CALL FTG(156,FT6)	CT6 = CK0*FT6	CV6 = C2*((V6-CT6)*PS2P - CC2)*Q6	CHS = C2*((H6+C16)*P52P - CC2)*Q6		CALL FTG(TSS,FTS)	FT5 = CKU*(1FT5)*PSIP*C1*C6	CV5 = -FT5	CH5 = +FT5		FT7 = CK0*(1F16)*PS2P*C3*Q8	CV7 = -F17	CH7 = F17		(ALL FTG(TSB,FTS)	CT8 = CK0*F18	CV8 = C4*((V6-CT8)*PS4P - CC4)*Q8	CH8 = C4*((H6+CT8)*PS4P - CC4)*Q8		CVA = CV5 + CV6 + CV7 + CV8	CHA = CH5 + CH6 + CH7 + CH8		
	U	U	U					U					U				u					U			U	
,	1652	1653	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663	1664	1665	1666	1667	1668	1669	1670	1671	1672	1673	1674	1675	1676	

CHA = CH5 + CH6 + CH7 + CH8	RCS8	RCSB 255
= CV+CVA	8CS	RCS8 256
CH = CH+CHA	RCSB	8 257
60 10 801	RCS8	8 258
	RCS8	8 259
450 CONTINUE	RC S 8	8 260
	AUTOFLOW CHART SET - FWU/SCL KAUSIM	
Ö	CONTENTS	
	RC	RCS8 261
THETA GREATER THAN PI/2	RC	RCS8 262
	RCSB	18 263
(63) - 75d*6A)*63	RC	RCSR 264
(63) - 75d*6H)*67	RC	RCS8 265
	RC	RCSR 266
CV10 = C+*(V10*PS4P - CC4)	30	PCS8 267
C9*(H10*P54P - CC9)	, Da	RCS8 268
	S C S	RCS8 269
CV4 = C4* (V4*P54 - CC4)	RC.	RCS8 270
(H4 = C4* (H4*PS4 - CC4)	RCS8	8 271
CV = CV4 + CV10 +CV4	RC5	RCS8 272
CH = CH9 + CH10 +CH4	RCSB	8 273

1. N

1685	(633 - 75dx6A)*63 = 4A3	(633 - 7	RCSR 264
1686	(H) = C4*(H)*4D24 - CC4)	7 - (00)	RCS8 265
1687	3		RCSR 266
1688	CV10 = C+*(V10*	V10*P54P - CC4)	PCS8 267
1689	CH10 = C++(H10+	H10*PS4P - CC9)	RCSS 26P
1690	J		RCS8 269
1691	() #+) = 5/3	(V4*P54 - CC4)	RCS8 270
1692	(H4 = C4* 1	1 H4*PS4 - CC4)	PCS8 271
1643	CV = CV4 + CV1C	\$\cdot +CV4	RCS8 272
1694	CH = CH9 + CH10	CH10 +CH4	RCSB 273
1695	J		RCSR 274
1696	IF (22	.LE2.) 60 TO 800	RCSB 275
1697	U		RCS8 276
1698	CV11 = C11* (V)	(V11*PS1 - CC11)*(11	RCSB 277
1690	CH11 = C11* (H	(H11*PSI - CC11)*011	RCS8 278
1700	U		RCSB 279
1071	CV2 = C2* (V	(V4*PS2 - CC2)*Q2	RCSB 280
1702	CH2 = C2* (H4	(H4*PS2 - CC2)*Q2	RCS8 281
1703	U		RCS8 282
1704	CV = CV + CVII	CV11 + CV2	RCSB 283
1705	CH = CH + CH11	н11 + СН2	RCS8 284
١٢٥6 ح	IF (21 .6T.	.612.) GG TO 700	RCSB 285
1767	HTTH = 0.5*(STH/CTH)	(H1)	RCS8 286
8021 5e	C1T = C1*HTTH*PS1*Q11	0.51 + 0.11	RCSB 287
1709	C3T = C3*HTTH*I	TH*P52*C2	RCS8 288

,			
O171 7-	cv = cv + c1T + c3T	RCS8 289	
1121	CH = CH - C11 - C3T	RCS8 290	
51715	00 TC 800	RCS8 291	
1713	J	RCSB 292	
1714	700 CONTINUE	RCSB 293	
1715	U	RCSB 294	
1716	CALL FTG (1S1,FT1)	RCS9 295	
7171	CV1 = C1* ((V1+C0*FT1)*PS1 - CC1)	RCS8 296	
1718	CH1 = C1* ((H1-C0*FT1)*PS1 - CC1)	RCS8 297	
1719	CALL FTG (TS2,FT2)	RCS8 298	
1720	CV3 = C3* ((V1+C0*F72)*PS2 - CC3)	RCSB 299	
1721	CH3 = C3* ((H1-C0*FT2)*PS2 - CC3)	RCS8 300	
1722	v	RCS8 301	
1723	C2F1 = C2 *C0*FT2*P\$2	RCS8 302	
1724	CALL FTG (TS4,FT4)	RCSB 303	
1725	C4ET = C4 *C0*FT4*P54	RCS8 304	
1726	U	RCS8 305	
1777	CV = CV + (CV1 + CV3 - C2FT - C4FT) * Q1	RCS8 306	
1728	CH = CH +(CH1 + CH3 + C2FT + C4FT) #Q1	RCS8 307	
1729	U	RCS8 308	
1730	v	RCSR 309	
1571	8CC CONTINUE	RCS8 310	
1732	J	RCS8 311	
1733	SOI CONTINUE	RCS8 312	
1734	CV =-CV*ITM	RCS8 313	

RCS8 307	RCS8 308	RCSR 309	RCS8 310	RCS8 311	RCS8 312	PCS8 313	4CS8 314	RCS8 315	RCS8 316	RCS8 317	RCS8 318	RCS8 319	RCS8 320	Brs8 321
CH = CH +(CH1 + CH3 + C2FT + C4FT) +C1	U	U	8CC CONTINUE	v	SOI CONTINUE	CV =-CV*ITM	CH = CH*ITM	EVVR(I) = REAL(CV)	EVVI(I) = -AIMAG(CV)	EHHR(I) = REAL(CH)	EHHI(I) = -AIMAG(CH)	50 CONTINUE	RETURN	END
1728	1729	1730	1231	1732	1733	1734	1735	1736	7 1737	1738	1739	1740	1741	1742

```
RCS8 322
                   SUBROUTINE DIFFC ( V,H,N,D,D1,E, PHI )
1743
                                                                                      RCS8 323
                   REAL N
1744
                                                                                      RCS8 324
1745
                                                                                      RCS8 325
                   D2 = 1./(D-COS((PHI+PHI)/4))
1746
                                                                                      RCS8 326
                    V = E*(D1-D2)
1747
                                                                                      RCS8 327
                    H = E*(D1+D2)
1748
                                                                                      RCS8 328
                    RETURN
1749
                                                                                      RC58 329
                                                    L-1254
1750
                    END
```

```
1751
                    SUBROUTINE BESL ( X, BO, B1, B2 )
                                                                                       RCS8 330
1752
              2
                                                                                       RCS8 331
1753
                  * BESSEL FUNCTION SUPROUTINE UTILIZING POLYNOMIAL APPROXIMATIONS
                                                                                       RCS8 332
1754
                  * COMPUTES JO. J1. OR J2 FOR POSITIVE REAL ARGUMENTS
                                                                                       RCS8 333
                  * REFERENCE (HNDBK MATH FUNCT BY ABRAMOWITZ AND STEGUN SECTION 9.4 )RCSS 334
1755
1756
                                                                                       RCS8 335
1757
              C
                                                                                       RCS8 336
1758
                    5 = 1.0
                                                                                       RCS8 337
1759
                    IF ( X.LT. C. ) S= -1.
                                                                                       RCS8 338
1760
                    X = ABS(X)
                                                                                       RCS8 339
1781
                    IF ( x .GT. 1.E-6 ) GO TO 5
                                                                                       RC58 340
1762
                    60 = 1.0
                                                                                       RC58 341
1763
                    81 = 0.0
                                                                                       RCS8 342
                                                                                       RCS8 343
1764
                    82 = 0.0
                                                                                       RCS8 344
1765
                    x = x*S
                    RETURN
                                                                                       RCS8 345
1766
                                               L-125h
1767
                                                                                       RC58 346
```

,			
1805		SUBROUTINE FIG(TAUS, F)	RCS8 384
1806	J		RCS8 385
1807	J	COMPUTES FIAU WHERE FIAU = (EXP(-J*TAU**2)/2*TAU)*SGRT(FI/2.)*	RCS8 386
1608	v	(C2(TAU**2) + J*S2(TAU**2))	RCS9 387
1809	U		RCS8 388
1810		COMPLEX F,FP	RCS8 389
1811		pI = 3.14159265358979	RCS8 390
1812		PIC2 = PI/2.	RCS8 391
1813		C1 = SQRT(P1/2.)	RCS8 392
1814		C2 = 1./C1	RCS8 393
1815		ATAUS = ABS(TAUS)	RCS8 394
1816		1F (ATAUS .LE. 0.5)GO TO 20	RCS8 395
1817	၁		RCS8 396
1818	U	FOR TAUS .61. 0.5, FUNCTION COMPUTED USING POLYNOMIAL	RCS8 397
1819	U	* REFERENCE (HANDBK MATH FUNCT BY ABRAMOWITZ AND STEGUN.	RCS8 398
1820	v	* SECTIONS 7.3.9,7.3.10,7.3.32,7.3.33)	RCS8 399
1821		TAU = SCRT(ATAUS)	RCS8 400
1822		X = C2*TAU	RCS8 401
1823		×*× = S×	RCS8 402
1824	J		RCS8 403
1825		FX = (1.6+6.926*X)/(2.0+1.792*X+3.104*XS)	RCS8 404
1826		GX = 1.0/(2.0+4.142*X+3.492*XS+6.67*X*XS)	RCS8 405
1827	J		RCS8 406
1828		CCIXS = COS(ATAUS)	RCS8 407
1824		SCIXS = SIN(ATAUS)	RCS8 408
1630	J		RCS8 400

007 0330	0000	RCS8 410	RCS8 411	RCS8 412	IF (TAUS .LT. 0.) GP TO 10	F= CMPLX(CX,5X)	FP = CMPLX(CUS(ATAUS), -SIN(ATAUS))	F = (C1*F*FP)/TAU	RESS 417	RCS8 418	CCVTINUE RCS8 419	F = CMPLX(SX,CX)	A = 47AUS-PI02	FP = CMPLX(CUS(A)+SIN(A))	F = (F*FP*C1)/TAU	RESS 424	RCS8 425	FOR TAUS .LE. 0.5, FUNCTION IS EXPANDED IN SFRIES AND FIRST FEW RCS8 426	TERMS INTECRATED TERM BY TERM TO OBTAIN RESULT RCS8 427	CONTINUE RCS8 428	FP = CMPLX(COS(TAUS), -SIN(TAUS))	TS = TAUS*TAUS	FR = 1 - TS*(.10046296296*15)	FI = TAUS*(.333333333 - TS*(.0238095238 - 7.5757576-4*TS)) RCS8 432	F = CMPLX(FR,FI)	F = FD#F	*** RCS8 435	END RCS8 436
		* + X* SC1XS	* FX*CC1XS		11405	CMPLX		=((1*F	RETURN		1G CENTINDE		A = ATAUS-PID2	FP = CMPLX(CUS(A)+S		KETURN	U	TAUS .LE. 0.5.		2C CONTINUE	FP = CMPLX(COS(TAUS	= TAU	TS*(.1 -	F1 = TAUS*(.3333333	= CMPLX! FR,FI	11	*******	0.41
							MA	1837	1838	1834	1840	1841	1842	1843	1344	1845	1546	1847	1848	1840	1850	1881	1852	1852	1854		7-7 7-7	7 1857

1	83	6	0		2	6	4	2	9	7	80	6	0	-	2	3	4	2	9	-	80	•	0	
RCS8 347	RCS8 348	RCS8 349	RCS8 350	RCS8 351	:58 352	RCS8 353	RCS8 354	RCS8 355	RCS8 356	RCS8 357	RCS8 358	RCS8 359	RCS8 360	RCS8 361	RCS8 362	RCS8 363	RCS8 364	RCS8 365	RCS8 366	RCS8 367	RCS8 368	RCS8 369	RCS8 370	
5 CONTINUE	S S S S S S S S S S S S S S S S S S S	1 IF (X .GE. 3.) GO TO 4	$x_1 = x/3.$	X1 = X1*X1	E = 1.+ X1*(-2.249997+ X1*(1.2656208+ X1*(3163866+ X1*(.0444479RCS8	1 + X1*(9039444+ X1*2.1E-4 1))))	CO TO 10	S S S S S S S S S S S S S S S S S S S	9 X2 = 3./X	FO = .79788456 +X2*(77E-6 +X2*(00552740 +X2*(4512E-4 +X2* RC	1 (.00137237 +X2*(72805E-3 +X2*0.14476E-3)))))) RC	TO = X78539816 +X2*(04166397 +X2*(3954E-4 +X2*(.00262573 RC	1 +X2*(00054125 +X2*(00024333 +X2*0.00013558)))))	$E = +\omega * COS(TO)/SQRT(X)$ RC	J	10 50 = 5	S	2 IF (X .6E. 3.) GD TO 19 RC	X1 = X/3.	X1 = X1*X1	E = X*(.5 +X1*(56249985 +X1*(.21093573 +X1*(03954289 +X1* RC	1 (.00443319 +X1*(31761E-3 +X1*0.1109E-4)))))) RC	GO TO 20	
1768	1769	1770	1771	1772	1773	1774	1775	1776	17771	1778	1779	1780	1781	1782	1783	1784	1785	1786	1787	1783	1789	1790	1791	
/	L	-125	5 j																					

William C

- No Carlo

1786	2 IF (X .GE. 3.) GO TO 19	RCS8 365
1787	x1 = x/3.	RCS8 366
1783	XI = XI*XI	RCSB 367
1789	E = X*(.5 +X1*(56249985 +X1*(.21093573 +X1*(03954289 +X1*	RCS8 368
1790	1 (.00443319 +X1*(-,31761E-3 +X1*0,1109E-4)))))))	RCS8 369
1791	60 10 20	RCS8 370
1792	U	RCS8 371
1793	14 X2 = 3./X	RCS8 372
1794	F1 = .79788456 +X2*(.156E-5 +X2*(.01659667 +X2*(.00017105 +X2*	RCS8 373
1795	1 (00249511 +X2*(.0011365300020033*X2)))))	RCS8 374
1796	TI = X - 2.35619449 + X2*(.12499612 + X2*(.565E-4 + X2*(06637879)	RCS8 375
1797	1 +X2*(.00674348 +X?*(.06674824 -0.66024166*X2))))	RCS8 376
1799	E = FI*CCS(TI)/SCRT(X)	RCS8 377
1799	O	RCS8 378
1800	20 tl = t*S	RCS8 379
1801	5)*X = X	RCS8 380
1802	52= (2./X)*B1 - 60	RCS8 381
1803	50 RETURN	RCS8 382
1804	and a	RCS8 383

```
FUNCTION C(Z)
                                                                                       RC58 437
1858
                    Q(Z) = 0.5*(1 + ERF(Z))
                                                                                        RC58 438
1859
                  * ERF(Z) IS EVALUATED USING A RATIONAL POLYNOMIAL APPROXIMATION
                                                                                       RC58 439
1860
                  * REFERENCE (HANDBK MATH FUNCT BY ABRAMOWITZ AND STEGUN.
1861
                                                                                        RCS8 440
                               SECTION 7.1.26)
                                                                                        RCS8 441
1862
                                                                                        RCS8 442
1863
                 IF ( Z.GT. 2.) GO TO 10
                                                                                        RC58 443
1864
1865
                    IF ( Z.LT.-2.) GO TO 20
                                                                                        RCS8 444
                                                                                        RCS8 445
1366
                    AZ = ABS(Z)
1867
                    P = 1.0/(1.0 + .47047*AZ)
                                                                                        RC58 446
                    Y = 1.0 - P*(.3480242 - P*(.0958798 - .7478556*P))*EXP(-AZ*AZ)
                                                                                        RC58 447
1868
                    1F (Z) 2,4,6
                                                                                        RCS8 448
1869
                  2 6 = (1.0 - Y)/2.
                                                                                        RCS8 449
1870
1871
                    RETURN
                                                                                        RCS8 450
                                                                                        RCS8 451
1872
                  4 4 = .5
                                                                                        RCS8 452
1873
                    RETURN
                  6 Q = (1.0 + Y)/2.
                                                                                        RCS8 453
1874
                                                                                        RCS8 454
1875
                    RETURN
1876
                 10 0 = 1.
                                                                                        RCS8 455
1877
                    RETURN
                                                                                        RCS8 456
                                                                                        RC58 457
1978
                 20 0 = 0.
1974
                    RETURN
                                                                                        RCS8 458
                                               L-125K
1880
                    FNE
                                                                                        RCS8 459
```

L.7 STEPPED - CYLINDER

The far-field scattering from a stepped-cylinder target configuration shown in Figure L.7-1 has been formulated using the basic Ruck-Ufimtsev technique and a rough approximation of the multiple reflections of the field components between the cylindrical and flat surfaces (Ref. 8).. The basic scattering formulation is the following:

$$e(\theta)_{\{H\}} = \overline{+}\sqrt{\pi} \left\{ g(11) + g(12) + g(1) + g(2) + g(3) + g(4) + g(9) + g(5) + g(6) + g(7) + g(8) + g(10) \right\}$$

where g(m) represents the sum of the fringe wave scattering and physical optics response associated with edge m.

For $0 < \theta < \pi/2$,

$$g(12) = a_1 e^{ip_{11}} \left\{ JJ_{11+} \left[C(1.5) + B(1.5, \pi/2-\theta) \right] - C(1.5)JJ_{21} \right\}$$

$$g(11) = a_1 e^{ip_{11}} \left\{ JJ_{11-} \left[C(1.5) + B(1.5, \pi/2+\theta) \right] - C(1.5)JJ_{21} \right\}$$

$$g(2) = a_2 e^{ip_2} \left\{ JJ_{12-} \left[C(1.5) + B(1.5, \pi/2+\theta) \right] - C(1.5)JJ_{22} \right\}$$

$$g(4) = a_4 e^{ip_4} \left\{ JJ_{14-} \left[C(1.5) + B(1.5, \pi/2+\theta) \right] - C(1.5)JJ_{24} \right\}$$

$$g(9) = a_4 e^{ip_9} \left\{ JJ_{14-} \left[C(1.5) + B(1.5, \theta) \right] - C(1.5)JJ_{24} \right\}$$

$$g(1) = \pm a_1 e^{ip_2} \left\{ 0.5 JJ_{11-} \left[\tan \theta + \cot \theta \right] \right\}$$

g(3) =
$$\pm a_2 e^{ip_4} \{ 0.5 JJ_{12} [tanθ + cotθ] \}$$

g(6) =
$$a_2 e^{ip_2} \{JJ_{12+} [C(1.5) + B(1.5, \pi/2-\theta)] - C(1.5)JJ_{22}\} Q_6 IQ_6$$

Fig. L.7-1 GEOMETRY OF STEPPED-CYLINDER

ALL ON SA

g(8) =
$$a_4 e^{ip_4} \left\{ JJ_{14+} \left[C(1.5) + B(1.5, \pi/2-\theta) \right] - C(1.5) JJ_{24} \right\} Q_8 IQ_8$$

$$g(5) = \pm a_{s_5} e^{ip_2} \{0.5 JJ_{1s_5} + cot\theta\} Q_6 IQ_6$$

$$g(7) = + a_{s_7} e^{ip_4} \{ 0.5 JJ_{1s_7} + cot\theta \} Q_8 IQ_8$$

For $\pi/2 < \theta < \pi$

$$g(10) = a_4 e^{ip_9} \left\{ JJ_{14+} \left[C(1.5) + B(1.5, \theta - \pi/2) \right] - C(1.5) JJ_{24} \right\}$$

g(9) =
$$a_4 e^{ip_9} \left\{ JJ_{14} - \left[C(1.5) + B(1.5, \frac{3\pi}{2} - \theta) \right] - C(1.5) JJ_{24} \right\}$$

$$g(4) = a_4 e^{ip_4} \left\{ JJ_{14} - \left[C(1.5) + B(1.5, \pi-\theta) \right] - C(1.5)JJ_{24} \right\} Q_4$$

$$g(2) = a_2 e^{ip_2} \left\{ JJ_{12} - \left[C(1.5) + B(1.5, \pi-\theta) \right] - C(1.5)JJ_{22} \right\} Q_2$$

$$g(11) = a_1 e^{ip_{11}} \{ JJ_{11} - [C(1.5) + B(1.5, \pi-\theta)] - C(1.5)JJ_{21} \} Q_{11}$$

$$g(1) = \pm a_1 e^{ip_2} \{ 0.5 JJ_{11} + tan\theta \} Q_1$$

$$g(3) = \pm a_2 e^{ip_4} \{ 0.5 JJ_{12} - tan\theta \} Q_3$$

where the upper and lower signs in the previous equations correspond to the case of vertical and horizontal polarization, respectively, and

$$C(n) = \frac{\sin \frac{\pi}{n}}{n} \left[\frac{1}{\cos \frac{\pi}{n} - 1} \right]$$

$$B(n,\emptyset) = \frac{\sin \frac{\pi}{n}}{n} \left[\frac{1}{\cos \frac{\pi}{n} - \cos \frac{2\emptyset}{n}} \right]$$

$$JJ_{1m} = J_o(2ka_m \sin\theta) + J_1(2ka_m \sin\theta)$$

$$\begin{split} & \text{JJ}_{2m} = \quad \text{J}_{0}(2ka_{m}\sin\theta) + \text{J}_{2}(2ka_{m}\sin\theta) \\ & \text{p}_{11} = -2k(h_{1} + h_{2})\cos\theta \\ & \text{p}_{2} = -2k h_{2}\cos\theta \\ & \text{p}_{4} = 2k h_{2}\cos\theta \\ & \text{p}_{5} = 2k(h_{2} + h_{3})\cos\theta \\ & \text{Q}_{\binom{6}{8}} = & \text{Q}(2ka_{\binom{2}{4}} \binom{\alpha}{3} - \theta)) ; \quad \text{Q}_{1} = & \text{Q}(2ka_{1}(\frac{\pi}{2} + 8 - \theta)) \\ & \text{Q}_{\binom{11}{2}} = & \text{Q}(2ka_{\binom{1}{2}} \binom{\pi - \alpha}{2} - \theta)) ; \quad \text{Q}_{3} = & \text{Q}(2ka_{2}(\frac{\pi}{2} + 8 - \theta)) \\ & \text{Q}_{4} = & \text{Q}(2ka_{4}(\pi - \theta)) \\ & \text{IQ}_{n} = & \begin{cases} 1 & \text{for } \text{Q}_{n} > 0.5 \\ 0 & \text{otherwise} \end{cases} \\ & \text{q}_{2} = & \tan^{-1}(\frac{a_{2} - a_{1}}{h_{1}}) \\ & \text{q}_{2} = & \tan^{-1}(\frac{a_{4} - a_{2}}{2h_{2}}) \\ & \text{q}_{3} = & \tan^{-1}(\frac{a_{4} - a_{1}}{h_{1} + 2h_{2}}) \\ & \text{Q}(z) = & 0.5 \left[1 + \text{erf}(z) \right] \\ & \text{a}_{5} = & a_{1} + h_{1} & \tan\theta \end{split}$$

 $a_1 + (2h_2 + h_1) \tan \theta$, for $\alpha_1 < \theta < \alpha_3$

 $a_{s_7} = \begin{cases} a_2 + 2h_2 \tan \theta, \text{ for } \theta < \alpha_1 \end{cases}$

Most of the equations can be obtained in a logical and straight-forward manner from the well defined procedures of the Ruck-Ufimtsev high-frequency scattering technique. Unfortunately, no first-order technique can be used to obtain an accurate formulation of the scattering from surfaces and edges which are partially shadowed or just within the shadow region. The screening functions of the Ruck-Ufimtsev technique have been used in computing the response of several aerospace targets at aspect angles in which some of the target surfaces and edges are shadowed; however, the use of these functions is a first-order approximation, and multiple diffraction and reflection must be considered in order to accurately describe scattered returns from shadowed target regions.

The formulation of the multiple scattering between the surfaces adjacent to the concave edge structures is expressed in the following equations, where the "*" is used to distinguish these expressions from the first order approximations on page L-126:

$$g(1*) = \sqrt{4k} A_1^* e^{ip\hat{1}}$$

$$g(3*) = \sqrt{4k} A_3^* e^{ip_3^*}$$

$$g(13)^{*} = \sqrt{4k} A_{13}^{*} e^{ip_{13}^{*}}$$

where
$$A_1^* = \sqrt{a_1} h_1 \sin \theta$$
 for $0 < \alpha_1$
= $\sqrt{a_1}(a_2 - a_1)\cos \theta$ $\theta \ge \alpha_1$

$$A_3^* = \sqrt{a_2} 2h_2 \sin \theta \qquad \text{for } \theta < \alpha_2$$
$$= \sqrt{a_2}(a_4 - a_2) \cos \theta \qquad \theta \ge \alpha_2$$

$$A_{13} = \sqrt{a_1} \{ h_1 \sin\theta - (a_2 - a_1) \cos\theta \} \qquad \alpha_1 \le \theta \le \alpha_3$$
$$= \sqrt{a_1} \{ (a_4 - a_2) \cos\theta - 2h_2 \sin\theta \} \qquad \alpha_3 < \theta < \alpha_2$$

and
$$p_1^* = -2k(a_1 \sin \theta + h_2 \cos \theta)$$

 $p_3^* = -2k(a_2 \sin \theta - h_2 \cos \theta)$
 $p_{13}^* = -2k(a_1 \sin \theta - h_2 \cos \theta)$

This approximate representation of the multiple reflected fields cannot be considered to be an exact or rigorous formulation of the scattering mechanisms involved. Nontheless, this preliminary analytical expression is simple, and the computed results do provide a realistic measure of the target scattering.

L.7.1 Inputs

The subroutine inputs are read from cards or passed in common blocks. The parameters passed in unlabeled common include:

NMIN = minimum frequency sample number

NMAX = maximum frequency sample number

DF = frequency increment (in MHz)

FC = carrier frequency or center frequency (in GHz)

The parameters passed in a labeled common block include:

ASPECT = azimuth angle (in degrees)

ITT = Read data option set to 1 or 2

- = 1 Read target dimensions from input card
- = 2 Use dimensions input on prior read

The card inputs are the following:

	MATH SYMBOL	VARIABLE	DEFINITION	COLUMNS
Card 1	^a 1	A1	Smallest cylinder radius (inches)	1 - 8
	a ₂	A2	Middle cylinder radius (inches)	9 - 16
	^a 4	A4	Largest cylinder radius (inches)	17 - 24
	h ₁	н1	Length of smallest cylinder (inches)	25 - 32
	h ₂	н2	Half-length of middle cylinder (inches)	33 - 40
	h ₃	н3	Length of largest cylinder (inches)	41 - 48

L.7.2 Outputs

The data base output consists of four linear arrays, EVVR, EVVI, EHHR, EHHI, which contain the real and imaginary parts of the vertically and horizontally polarized backscattered fields (in meters) at frequency increments of DF MHz from NMIN*DF to NMAX*DF.

L.7.3 Restrictions

L.7.3.1 Physical Dimensions

All target dimensions should be large with respect to the wavelength of the illuminating field. In formulating the Q functions to approximate the effects of shadowing on an edge or surface, the assumption that $\alpha_1 < \alpha_3 < \alpha_2$ was utilized, since this angle relationship was exhibited in the geometry of the target for which the formulation was developed. If this angular relationship is not present, the arguments of the Q functions must be modified.

L.7.3.2 Output

The output arrays are passed in the argument list and a value is computed and stored only in locations NMIN to NMAX.

L.7.3.3 Restrictions

The azimuth angle is restricted to the region between 0 and 180 degrees. In addition, the specular azimuth of 0, 90, and 180 should not be used.

In order to compute the response of these angles, an angular offset of approximately 0.01 degrees should be used.

L.7.4 Definitions of Selected Terms Used in Subroutine

$$SV12 = C(1.5) + B(1.5, \pi/2-0)$$
 for $0 < \pi/2$

 $PH1P = JJ_{11}+$

=
$$JJ_{1m}$$
 = $J_0(2ka_m \sin\theta) + J_1(2ka_m \sin\theta)$

where m = 1 and the lower (+) sign is used

$$BCIX = C(1.5)JJ_{21}$$

where
$$BC1 = JJ_{21}$$

=
$$JJ_{2m} = J_o(2ka_m sin\theta) + J_2(2ka_m sin\theta)$$

where m = 1

$$C11 = e^{ip}11$$

where
$$p_{11} = -2k(h_1 + h_2) \cos \theta$$

$$CV12 = a_1 e^{ip} 11 \left\{ JJ_{11+} \left[C(1.5) + B(1.5, \pi/2-9) \right] - C(1.5) JJ_{21} \right\}$$

for
$$\theta < \pi/2$$

$$CV6 = g(6) = a_2 e^{ip_2} \{ JJ_{12+} [C(1.5) + B(1.5, \pi/2-\theta)] - C(1.5)JJ_{22} \} Q_6 IQ_6$$

TO WEST

$$PSD1 \approx p_1^* = -2k(a_1 \sin \theta) + h_2 \cos \theta)$$

AD1 =
$$A_1^* = \sqrt{a_1} h_1 \sin \theta$$
 for $\theta < \alpha_1$, and

AD1 =
$$A_1^* = \sqrt{a_1}(a_2 - a_1)\cos\theta$$
 for $0 \ge \alpha_1$

L.7.5 Subroutines Used

Subfunctions:

1. Q(X) returns the value of the exponential smoothing function.

Subroutines:

- BESL(XCx, BJx0 BJx1, BJx2) computes the Bessel functions of order 1, 2, and 3 for real argument XCX and returns
 - J_0 (XCx) in BJx0
 - J_1 (XCx) in BJx1
 - J_2 (XCx) in BJx2

```
BECAGD01, HANCOCK, 017073100380
       IDENT
               FORTRAN
       OPTION
       FORTY
               LSTIN, XREF, MAP, DECK
       LIMITS 05,39K,0,5K
$
      SUBROUTINE TARGET (EVVR, EVVI, EHHR, EHHI)
          RESPONSE OF STEPPED CYLINDERS (MODEL 43)
C
         COMPUTED USING THE RUCK UFINTSEV TECHNIQUE **
      COMMON MOVER, M., NMIN, NMAX, DF, FC, PW, TØ
      NMIN = MINIMUM FREQUENCY SAMPLE
      NMAX = MAXIMUM FREQUENCY SAMPLE
           = FREQUENCY INCREMENT IN MHZ
           = CARRIER FREQUENCY IN GHZ
      COMMON /TARS / ASPECT, ITT
      ITT SET TO 1 TO READ INPUT DIMENSIONS
          SET TO 2 WHEN TARGET DIMENSIONS DO NOT CHANGE
      COMPLEX PH1, PH2, PH4, PH1P, PH2P, PH4P, C11, C2, C4, C9,
              PHSP, PH7P
      COMPLEX SV, SH
      COMPLEX CV12, CH12, CV11, CH11, CV2, CH2, CV4, CH4, CV9, CH9,
              CV10, CH10, CV1, CV3, CV6, CH6, CV8, CH8, CV5, CV7
      COMPLEX CD1, CD2, CD3, CAD
      DIMENSION EVVR(1), EVVI(1), EHHR(1), EHHI(1)
C
     60 TO ( 5,6 ), ITT
    5 CONTINUE
      PROGRAM CONSTANTS
0
      FI
                = 3.14159265358979
      FTK
                = 53234454
              = 53234454*(DF/1000.)
      FTKDF
      P102
                = PI/2
      SPI
                = SORT(PI)
      ATTM
               = 0.0254026
      SPIK = SPI*AITM
      TPI02
               = 3. *PI02
      DIR
                = PI/180.
      RID
                = 180. /PI
      DLT
             = 15. *DTR
      READ (5,5001)
                             A1, A2, A4, H1, H2, H3
 5001 FORMAT ( 7F8.0)
      WRITE (6,6001) ASPECT
 6001 FORMAT ( '1 PROGRAM INPUT PARAMETERS', //, ' THETA '=', F9.3 )
     WRITE (6,6002) A1, H1, A2, H2, A4, H3
 6002 FORMAT ( '0 A1 =', F7.4,'
                                  H1 = 1, F7. 4, 7,
                  A2 =', F7. 4,'
                                   H2 =1, F7, 4, 7,
    1
                   84 =' , F7. 4,'
                                  H3 =', F7. 4 )
C
                = H2+H2
      THE
      TH2PH1
                = TH2+H1
      A21
                = A2-A1
      H41
                = A4-A1
      842
                = A4-A2
                                   L-135
      SA1
          = 50RT(A1)
      SA2 = SQRT(A2)
      ALF1 = ATAN(A21/H1)
```

C. R

END

FILMED

```
ALF3 = ATAN(A41/TH2PH1)
C
      FIMAL2 = FI-ALF2
      PIMAL3 = PI-ALF3
C
      X1D = ALF1*RTD
      X2D = ALF2*RTD
      X3D = ALF3*RTD
      WRITE (6, 6005) X10, X20, X30
 6005 FORMAT ( ' ALF1 = ',F8.3,/,' ALF2 = ',F8.3,/,' ALF3 = ',F8.3)
C
      TKFC
            = FTK*FC*2
      XN
             = 1.5
           = XN/2
      XN02
           = SIN(PI/XN)/XN
      SOXN
      CXN = -SOXN/XN
      CPON = COS(PI/XN)
C
    6 CONTINUE
      TH = ASPECT*DTR
      STH
               = SIN(TH)
      CTH
               = COS(TH)
               = STH/CTH
      TANTH
      CK1
               = 0.5*TANTH
      CKV
               = 0.5/TANTH
      CIPCV = CK1+CKV
      IF ( TH .GT. PIO2) GO TO 20
C
      B12 = SOXN/(CPON - COS((PIO2-TH)/XNO2))
      B11 = 50XN/(CPON ~ COS((PIO2+TH)/XNO2))
B9 = 50XN/(CPON ~ COS(TH/XNO2))
      EDGE DIFFRACTION COEFFICIENTS (THETA, LT. P1/2)
      SV12 = 0XN-B12
      5H12 = CXN+B12
      SV11 = CXN-B11
      SH11 = CXN+B11
      5V9 = CXN-B9
      SH9 = CXN+B9
C
      EFFECTIVE AREA (DOUBLY REFLECTED ) TERMS(ADX)
      IF (TH-ALF1) 51,52,52
   51 AD1 = SA1*H1*STH
      GO TO 53
   52 AD1 = SA1*A21*CTH
   53 CONTINUE
C
      IF (TH-ALF2) 54,55,55
   54 AD2 = SA2*TH2*STH
      GO TO 56
   55 AD2 = SA2*A42*CTH
   56 CONTINUE
C
      IF (TH-ALF1) 57,58,58
   58 IF (TH-ALF2) 59,59,57
   59 IF (TH-ALF3) 60,61,61
```

State Stone St.

```
60 \text{ AD3} = \text{SA1}*(\text{H1}*\text{STH} - \text{A21}*\text{CTH})
   GO TO 63
61 AD3 = SA1*(A42*CTH - TH2*STH)
   GO TO 63
57 \text{ AD3} = 0
63 CONTINUE
   ASSUMED THAT ALF3 .GT. (ALF1 OR ALF2 )
   SMOOTHING FUNCTIONS AND ILLUMINATED AREA USING SLIDING SHADOW
             BOUNDARIES
   ISWA3 = 1
   IF ( TH . GT. ALF3 ) GO TO 25
   ISWA3 = 2
     Q6 = Q(TKFC*A2*(ALF1-TH))
   IF (06, LE, 0.5) 06 = 0.
     08 = 0(TKFC*A4*(ALF3-TH))
   IF (08 .LE. 0.5 ) Q8 = 0.
     AS5 = A1 + H1*TANTH
     IF ( TH , GT. ALF1 ) GO TO 14
     AS7 = A2 + TH2*TANTH
     GO TO 25
     AS7 = A1 + TH2PH1*TANTH
     GO TO 25
   THETA GT. P1/2
20 B10 = S0XN/(CPON - C0S((TH-PIO2)/XNO2))
   89 = SOXN/(CPON - COS((TP102-TH)/XN02))
   811 = SONNZ(CPON - COS((PI-TH)/XNO2))
   EDGE DIFFRACTION COEFFICIENTS (THETA. GT. P1/2)
   SV10 = CXN-B10
   5H10 = CXN+810
   5V9 = CXN-B9
   SH9 = CXN+B9
   SV11 = CXN-B11
   SH11 = CXN+B11
   XALF = PIO2+DLT-TH
   SMOOTHING FUNCTIONS
   01 = Q(TKFC*A1*XALF)
      = Q(TKFC*A2*(PIMAL2-TH))
       = Q(TKFC*A2*XALF)
   04 = 0(TKFC*A4*(P1-TH))
   011 = 0(TKFC*A1*(PIMAL3-TH))
25 CONTINUE
   FREQUENCY LOOP
   DO 30 I = NMIN, NMAX
   XI
          = I-1
          = XI*FTKDF
   AK
         = AK+AK
   AK2
   AK25
        = AK2*STH
   XC1
        = A1*AK25
   XC2
        ≈ A2*AK25
                             L-137
   XC4
        = A4*AK25
```

The Late of

65

```
CALL BESL(XC1, BJ10, BJ11, BJ12)
      CALL BESL(XC2, BJ20, BJ21, BJ22)
      CALL BESL(XC4, BJ40, BJ41, BJ42)
C
      BC1
          = BJ10+BJ12
      802 = 8J20 + 8J22
      BC4 = BJ40+BJ42
      BC1X = BC1*CXN
      BC2X = BC2*CXN
      BC4X = BC4*CXN
C
      PH1P = CMPLX(BJ10, BJ11)
      PH2P = CMPLX(BJ20,BJ21)
      PH4P = CMPLX(BJ40,BJ41)
      PH1 = CONJG(PH1P)
      PH2 = CONJG(PH2P)
      PH4 = CONJG(PH4P)
      P511 = -AK2*(H2+H1)*CTH
      PS2 = -HK2*H2*CTH
      PS9 = AK2*(H2+H3)*CTH
0
          = CMPLX(COS(PS11), SIN(PS11))
      011
          = CMPLX(COS(PS2),SIN(PS2))
      04
           = CONJGCC2
          = CMPLX(COS(PS9), SIN(PS9))
C
      IF ( TH GT PIO2 ) GO TO 35
      GENERAL REGION (THETA GT. ALF3 AND. THETA LT. PI/2)
C
C
      PHASE OF DOUBLY REFLECTED SCATTERING TERMS
      P501 = -AK2*(A1*STH + H2*CTH)
      PSD2 = -AK2*(A2*STH - H2*CTH)
      PSD3 = -AK2*(A1*STH - H2*CTH)
0
          = CMPLX(COS(PSD1),SIN(PSD1))
         = CMPLX(COS(PSD2), SIN(PSD2))
      002
      CD3 = CMPLX(COS(PSD3), SIN(PSD3))
C
      DOUBLY REFLECTED SCATTERING (TOTAL)
C
      CAD = SQRT(AK2+AK2)*(AD1*CD1 + AD2*CD2 + AD3*CD3)
0
      RUCK-UFINTSEV SCATTERING (THETA.LT.90, EDGES ILLUMINATED AT 90)
C
      CV12 = A1*C11*(SV12*PH1P-BC1X)
      CH12 = A1*C11*(SH12*PH1P-BC1X)
      CV11 = A1*C11*(SV11*PH1-BC1X)
      CH11 = A1*C11*(SH11*PH1-BC1X)
      CV2
          = A2*C2*(SV11*PH2-BC2X)
      CH2
           = A2*C2*(SH11*PH2-BC2X)
      CV4
           = A4*C4*(SV11*PH4-BC4X)
      CH4
           = A4*C4*(SH11*PH4-BC4X)
      CV9
           = A4*C9*(SV9*PH4-BC4X)
      CH9
           = A4*C9*(SH9*PH4-BC4X)
      CV1
           = A1*C2*PH1*C1PCV
      CV3
          = A2*C4*PH2*C1PCV
                                                 L-138
      SV
           = CV12+CV11+CV2+CV4+CV9 +CV1 +CV3
      SH
           = CH12+CH11+CH2+CH4+CH9 -CV1 -CV3
```

15.

```
C
      SV
          = SV + CAD/SPI
      SH
          = SH + CAD/SPI
C
      GO TO (40,34), ISWA3
   34 CONTINUE
      AZIMUTH NEAR ZERO, ADD IN FAR EDGE TERMS WHICH ARE
C
           DIRECTLY ILLUMINATED
C
      XCS5 = AS5*AK2S
      XCS7 = AS7*AK2S
      CALL BESL(XCS5, 850, 851, 852)
      CALL BESL(XC57, B70, B71, B72)
      PH5P = CMPLX(B50, B51)
      PH7P = CMPLX(B70, B71)
      CV6 = A2*C2*(PH2P*SV12-BC2X)*Q6
           = A2*C2*(PH2P*SH12-BC2X)*Q6
      CHE
           = A4*C4*(PH4F*SV12-BC4X)*Q8
      CV8
      CH8
           = A4*C4*(PH4P*SH12-BC4X)*Q8
      CV5
           =-A55*C2*PH5P*CKV*Q6
      CV7
          =-857*C4*PH7P*CKV*Q8
      SV
           = CV6 + CV8 +CV5+CV7 + SV
      SH
          = CH6 + CH8 -CV5-CV7 + SH
      GO TO 40
C
      THETA GT. PI/2
C
   35 CONTINUE
C
      RUCK-UFINTSEV SCATTERING (THETA. GT. 90)
      CV10 = A4*C9*(PH4F*SV10-BC4X)
      CH10 = A4*C9*(PH4P*SH10-BC4X)
           = A4*C9*(PH4*SV9-EC4X)
      CV9
      CH9 = A4*C9*(PH4*SH9-BC4X)
      CV4
          = A4*C4*(PH4*SV11-BC4X)*Q4
      CH4 = A4*C4*(PH4*SH11-BC4X)*Q4
      CV2 = A2*C2*(PH2*SV11-BC2X)*Q2
      CH2 = A2*C2*(PH2*SH11-BC2X)*Q2
      CV11 = A1*C11*(PH1*5V11-BC1X)*Q11
      CH11 = A1*C11*(PH1*SH11-BC1X)*Q11
      CV1 = A1*C2*PH1*CK1*Q1
      CV3 = A2*C4*PH2*CK1*Q3
      SV
           = CV10+CV9+CV4+CV2+CV11 +CV1+CV3
      SH
          = CH10+CH9+CH4+CH2+CH11 -CV1-CV3
   40 CONTINUE
C
      SV =-SV*SPIK
      SH = SH*SPIK
C
C
      REFERENCE PHASE TO FRONT OF SECOND CYLINDER
C
      SV
           = 5V*C4
      SH
         = SH*C4
C
      EVVR(I) = REAL(SV)
      EVVI(I) =-AIMAG(SV)
      EHHR(I) = REAL(SH)
      EHHI(I) =-AIMAG(SH)
   30 CONTINUE
                            L-139
      RETURN
```

A STATE OF THE STA

THE PARTY

65.

```
END
   FUNCTION Q(Z)
   Q(Z) = 0.5*(1 + ERF(Z))
 * ERF(Z) IS EVALUATED USING A RATIONAL POLYNOMIAL APPROXIMATION
 * REFERENCE (HANDBK MATH FUNCT BY ABRAMONITZ AND STEGUN,
              SECTION 7. 1. 26)
   IF ( Z. GT. 2. ) GO TO 10
   IF ( Z. LT. -2. ) GO TO 20
   AZ = ABS(Z)
   P = 1.07(1.0 + .47047*AZ)
   Y = 1.0 - P*(.3480242 - P*(.0958798 - .7478556*P))*EXP(-AZ*AZ)
   IF (Z) 2,4,6
 20 = (1.0 - Y)/2
   RETURN
 4 0 = .5
   RETURN
 6.0 = (1.0 + Y)/2
   RETURN
10 0 = 1.
   RETURN
20 0 = 0
   RETURN
   END
   SUBROUTINE BESL ( X, B0, B1, B2 )
* BESSEL FUNCTION SUBROUTINE UTILIZING POLYNOMIAL APPROXIMATIONS
* COMPUTES JO, J1, OR J2 FOR POSITIVE REAL ARGUMENTS
 * REFERENCE (HNDBK MATH FUNCT BY ABRAMONITZ AND STEGUN SECTION 9.4 )
   5 = 1.0
   IF (X .LT. 0.0) S=-1.0
   X = ABS(X)
   IF ( X . GT. 1. E-6 ) GO TO 5
   80 = 1.0
   B1 = 0.0
   82 = 0.0
   X = X * 5
   RETURN
 5 CONTINUE
 1 IF ( X . GE. 3. ) GO TO 9
   X1 = X/3
   X1 = X1*X1
   B = 1. + X1*(-2.2499997+ X1*(1.2656208+ X1*(-.3163866+ X1*(.0444479
  1 + X1*(-.0039444+ X1*2.1E-4 )))) )
   GO TO 10
 9 X2 = 3.7X
   F0 = .79788456 +X2*(-.77E-6 +X2*(-.00552740 +X2*(-.9512E-4 +X2*
       (.00137237 +X2*(-.72805E-3 +X2*0.14476E-3 )))) )
   T0 = X - .78539816 + X2*(-.04166397 + X2*(-.3954E-4 + X2*(.00262573))
     +X2*(-, 00054125 +X2*(-, 00029333 +X2*0, 00013558 )))))
   B = F0*COS(T0)/SQRT(X)
                                     L-140
18 80 = B
```

```
C
                    2 IF ( X . GE. 3. ) GO TO 19
                             X1 = X/3.
                             X1 = X1*X1
                              B = X*(.5 + X1*(-.56249985 + X1*(.21093573 + X1*(-.03954289 + X1*(-.56249985 + X1*(.21093573 + X1*(-.03954289 + X1*(.21093573 + X1*(.21093574 + X1*(.2109357
                                                                                                          (.00443319 +X1*(-.31761E-3 +X1*0.1109E-4))))) )
                              GO TO 20
C
               19 X2 = 3. /X
                              F1 = .79788456 + x2*(.156E-5 + x2*(.01659667 + x2*(.00017105 + x2*)
                                                   (-.00249511 +X2*(.00113653 -.00020033*X2 )))))
                             T1 = X - 2.35619449 +X2*(.12499612 +X2*(.565E-4 +X2*(-.00637879
                                              +X2*(.00074348 +X2*(.00079824 -0.00029166*X2 )))))
                              B = F1*COS(T1)/SQRT(X)
C
               20 B1 = B * S
                              X = X * 5
                              B2= (2. /X)*B1 - B0
               50 RETURN
                                                                                                                                                                                        L-141
                              END
```

Section 3

CHART TITLE - SUBRCUTINE TARGET (LVVP.EVVT. 111

7 145671

** RESPENSE GE STEPPED CYLINDETS (MODEL 43) ** ** CCMPUTED USING THE RUCK UFIMTSEV TECHNIQUE ** NMIN = MINIMUM
FREQUENCY SAMPLE
NMAX = MAXIMUM
FRECUENCY SAMPLE
DF = FREQUENCY
INCREMENT IN MHZ
FC = CARRIER
FREQUENCY IN GHZ
ITT SET TO 1 TO READ
INPUT DIMENSIONS
SET TO 2 WHEN TARGET
DIMENSIONS DO NOT
CHANGE

IF OUTSIDE THE RANGE

9 *	* * *	31	2*** = 1	2 * * *
	* m *	DE CONTRACTOR	* * \	*
	* H3.	TO D MAT	ASPECT ** ASPECT	TON # 1.
* *	* 52,	1 00 -1		L1 * + + + + + + + + + + + + + + + + + +
î *	11 = 1	IM OII	* * * - +	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
*	U. • *	VIA COM T	* 121 * WP VIV	× 1 * 10
*	*	, , , E	* *	\
*	* * *	` '	* * *	\ i
·				

	NOTF 12 * * * * * * * * * * * LIST = A1, H1, * * A2, H2, A4, H3 *	*	F 2	A21 = A2 - A1	A41 = A4 - A1 *	** A42 = A4 - A2		15	ATAN(A21/H1)	ALF3 = ATAN(A42/TH2) ALF3 =	- 1	_	ALF2	ALF3 + PI -	
6 51.05	IF GUTSIDE THE RANGE	#	CONTINUE * * * * *	PRUGRAM CONSTANTS	**	PI = 3.14159265358979 FTK = .53234454	FTKDF = .53234454*(DF/ 1000.)	P102 = P1/2.	*	" "	TPIU2 = 3.*PID2 *	90	11	RTD = 160./PJ OLT = 15.*DTR	*******

ALCON TO

SA1 = SCAT(A1) SA2 = SORT(A2) 15	ALF1 = ATAN(A21/H1) ALF2 = ATAN(A42/TH2) ALF3 = ATAN(A41/TH2PH1)	PIMAL2 = PI -	x10 = ALF1*4TD	/ / / / / / / / / / / / / / / / / / / /
FIKDF = 1000.1 1000.1 PIO? = PI/2.	8 6 8	**************************************	/ READ FROM DEV / 5 COI / 5 COI / 1 STOI / 1 STO	

3

· uplant

CHART TITLE - SUERCUTINE TARGET(EVVR, EVVI, EHHR, FHHI)

SO.17-->#

| NRITE TO DEV |
| VIA FORMAT |
| GOOS |
| FROM THE LIST |
| NOTE 02 |
| LIST = XID, X2D, **
| LIST = XID, X2D, **
| XND = X3D |
| XND = X3D |
| XND = XND |
| SDXN = XND |
| S

of our s

19	I		20				
	5	1	ш	*			
	*	1	NOTE	*		*	
	Y &		Z	*	UE	* * *	
_	AD2 = SA2*A42*CTH			#	CONTINUE	*	_
	S	1	ì	*	Z	*	
				*	5	*	
55	2		56	*		*	
	¥			*		*	
1		•		*	*	*	
			-	_	_	_	_
				_	-	_	_

E9 = SOXN/(CPON -

TH = ASPECTADTE

CHART TITLE - SUERCUTINE TARGET(EVVR, EVVI, EHHR, EHHI)

L-144

51.21*> 02 * * * * * * * * * * * * * * * * * * *	ASSUMED THAT ALF? GT. (ALF! OR ALF?) SMOOTHING FUNCTIONS AND ILLUMINATED AREA USING SLIDING SHADOW BCUNDARIES	1 SWA3 = 1	# # # # # # # # # # # # # # # # # # #
51.23—> AD3 = SA1*(A42*CTH - TH2*STH)			

- 147 (18 C)

7

CHART TITLS - SUBRUUTINE TARGET(EVVR, EVVI, EHHR, EHHI)

18	HZP) CMPLX(COS(PSD1), SIN(PSD1)) SIN(PSD1))	CD2 = CMPLX(COS(PSD2), SIN(PSD2))	*CTH CMPLX(COS(PSD3), SIN(PSD3))	2 + DOUBLY REFLECTED SCATTERING (TOTAL)	20 1 25	1), CAD = SQRT(AK2 + AK2)*(AD1*CD1 + AD2*CD2 + AD3*CD3)	2),	 † ⁷ †	9),	22 CH12 = CH14 = CH15 =
* - 60 *	SEGIN DO LOOP * PH2 = CONJG(PH2P) 30 I = NMIN, NMAX * PH4 = CONJG(PH4P) * * * * * * * * * PH4 = CONJG(PH4P)	1 1	AK = XI*FTKDF PS11 = - AK2 = AK + AK PS2 = -	= AK2*STH	XCI = A1*AK2S *	XC2 = A2*AK2S CMPLX(COS(PSII), XC4 = A4*AK2S SIN(PSII))	CMPLX(COS(PS2), 12 SIN(PS2), + CAPLX(COS(PS2),		CMPLX(COS(PS9),	··:
THETA .61. PI/2	51.08>*	80XN/(CPGN - COS(ITH - +	B9 = SUXN/(CPUN -	25	SOXN/(CPON - +		EDGE DIFFRACTION COEFFICIENTS (THETA.GT.PI/2)	SVIO = CXN - E10 10	SV9 = CXN - B9	40

26	CV12 = A1*C11*(SV12* PHIP - BC1X)	CH12 = 1 A1*C11*(SH12* PHIP - BC1X)	CV11 = A1*C11*(SV11*PH1 - BC1X)	27 CH11 =	A1*C11*(SH11*PH1 - BC1X) CV2 = CV2 = A2*C2*(SV11*PH2 - I	CH2 = CH2 = A2*C2*(5H11*PH2 - BC2X)	58	CV4 = A4*C4*(SVII*PH4 - BC4X)	CH4 = A4*C4*(SHII*PH4 - BC4X)	CV9 = A4*C9*(SV9*PH4 - BC4X)	29 29		CV3 = CV3 = A2*C4*PH2*C1PCV	\ \ \24.01
600000000000000000000000000000000000000	(68d)NIS		* * TRUE * TH .GT. PIG2 *	* *	SENERAL REGION (THETA	.LT. P1/2)	REFLECTED SCATTERING TERMS	23 * PSD1 = -	PSD2 = - PX2*(A2*STH + PSD2 = - PX2*(A2*STH -	H2*CTH) PSU3 =	*			
		(XC2,8320, H		RESL H		EC2 = BJ20 + BJ22 EC4 = BJ40 + BJ42	BCIX = PCI*CXN	1 BC2x = BC2*CXN	EC4X = EC4*CXN	+	PH2P = CMPLX(6,320,8,321)	CMPLX(EJ4C,8J41) PH1 = CCNJG(PH1P)		
	SH4 = CXN + P4		SHII = CXN + BII	DLT - TH	SMOCTHING FUNCTIONS	Q(TKFC*A]*XALF) Q2 = Q(TKFC*A2*	03 = (CITKFC*A2*XALF)	90	% = 04 = C(TKFC*A4*(PI - TH))	Q(TKFC*A1* (PIMAL3 - TH))	52.05*> 25	* * * * * * * * * * * * * * * * * * * *		L-145

L-146

CHART TITLE - SURROUTINE TARGET(EVVR, EVVI, EHHR, EHHI)

AZIMUTH NEÁR ZERO, ADD IN FAR FOGE TERMS WHICH ANE CIRECTLY ILLUMINATED 02 NETF 04 SV = CV12 + CV11 + CV2 + CV4 + CV4 + CV1 + I CV3 SH = CH12 + CH11 + CH2 + CH11 + CH2 + CH9 - CV1 - CV3 54.18 IF CUISIDE THE RANGE SV = SV + CAD/SPI SH = SH + CAC/SPI CUMPUTED GC TO FCR ISWA3

was now in

- 11V8+4FV11 -A4*(4*(PH4P*SV10 CH10 = A4*C9*(PH4P*SH1C - BC4X) A4*C9*(PH4*5V9 -84*C4*(PH4*SH11 44*(9*(PH4*SH9 - BC4X) = 613 CH4 = CV10 = 8C4X1 C V 4 = = 6H3

54.03--->

340

SV = - SV*SPIK SH = SHOSPIK

65

XCS7 = AST*AK2S XCS5 = AS5*AK25

CHE =

53.22--->*

I NOTE

* CONTINUE *

THETA .61. P1/2

53.29--->#

SCATTERING (THETA.6T.90)

CV2 = A2*C2*(PH2*SV11 -EC2X)*Q2

CHART TITLE - NON-PROCELURAL STATEMENTS

COMMON MOVER, M. NMIN, NMAX, DF, FC, PW, TC

COMMON /TARS / ASPECT, ITT

COMPLEX PH1, PH2, PH4, PH1P, PH2P, PH4P, C11, C2, C4, C9,

PHSP. PHTP

COMPLEX SV,SH

COMPLEX CV12, CH12, CV11, CH11, CV2, CH2, CV4, CH4, CV9, CH9,

CV10, CH10, CV1, CV3, CV6, CH6, CV8, CH8, CV5, CV7

COMPLEX COL. CC2, CC3, CAC

DIMENSION EVVR(1), EVVI(1), EHHR(1), EHFI(1)

5001 FORMAT (758.0)

SCC1 FORMAT ("1 PROGRAM INPUT PARAMETERS", //, " THETA =", F9.3)

6002 FORMAT ('O A1 = ', F7.4, ' H1 = ', F7.4,/,

. A2 = . F7.4. H2 = . F7.4./,

. A4 = . F7.4, H3 = . F7.4)

6005 FORMAT (* ALF1 = *,F8.3,/,* ALF2 = *,F8.3,/,* ALF3 = *,F8.3)

L-147

CHART TITLE - FUNCTION (12)

Q(Z) = 0.5*(1 + ERF(Z) IS * ERF(Z) IS FVALUATED USING A RATIONAL POLYNOMIAL APPROXIMATION * REFERENCE (HANDER MATH FUNCT BY ASRAMOWITZ AND STEGUN, * SECTION 7.1.26)

· William !

TRUE

60

CHART TITLE - SUBROUTINE BESL(X, 80,81,82)

BESL

* BESSEL FUNCTION SUBROUTINE UTILIZING POLYNOMIAL APPROXIMATIONS * COMPUTES JO,JI,OR JZ FOR POSITIVE RFAL ARGUMENTS * REFERENCE (HNDEK MATH FUNCT BY ABRAMOWITZ AND STEGUN SECTION 9.4.)

02 03 5 = 1.0 FALSE *

to a

.LT. 0.0

- 1.0 X = ABS(X) 11

90

= 1			-	-	_	-	-	_	-		7	-	_	-	-	-	-	-	_	-
i		+		+	+	+	+	=				•		+	+	+	+	+	=	
!				_			_	-		!		!				_		_	-	
1	×	56	9	5	1	37	7	3					•	6	1	73	25	33	8	
!	3./x	4	- 1	-	w	2	W			!		1		3	ш	5	-	3	5	
-	6	88	7.	53	12	37	9	6				×	8	99	54	62	54	29	3	
-!		-	-	4	5	-	8	-	-	!			0	-	0	2	0	0	-	-
- 1	"	19	i	00	5.	00	7	1				. "	53				00			
!	X 2	•	=		1	•		-		!		0	8			•		:	0	
1	^	**	i	Ŀ	*	*	7	0				-	۲.	7	*	*	٠	ٺ	0	
0 1		-	×			2				!		!					*		*	
1		0		×		×		×						×		~	XZ	×		
1										!		!							-	
										•	,	. –	_	_	_			_	_	

W. W.

04126/76	INPUT LISTING AUTOFLOW CHART SET - FWOZSCL	SET - FWOZSCL RADSIM
CARD NO	SING LNOD	•
1914	1P102 = 3.*P102	RCS1 034
1015	LTR = PI/180.	RCS1 035
1916	RTD = 180./PI	RCS1 036
1917	ULT = 15.*DTR	RCS1 037
1018	J	PCS1 038
1615	REAF (5,5001) AI, AZ, A4, HI, P2, H3	RCS1 039
1050	5001 FURMAT (7F8.0)	RC51 040
1421	WRITE (0,6001) ASPECT	8CS1 042
1922	GOUL FCRMAT ("1 PREGRAM INPUT PARAMETERS", //, THETA =", FO.3	\$ = 1, F 4.3) RCS1 C43
1-23	WRITE (6,6002) A1,P1,A2,H2,A4,H3	RCS1 044
1924	6662 FORMAT ("6 Al =", F7.4," HI =", F7.4, /,	940 1830
1925	1 . A2 = 0, F7.4, 0 42 = 0, F7.4, 1,	RCS1 046
1926.	2 * 44 = 0, F7.4, 0 H2 = 0, F7.4]	40 1539
1027	J	RCS1 048
1429	1H2 = H2+H2	40 1538
1626	TH2PH1 = TH2+H1	RCS1 050
1630	$\mu_{21} = \mu_{2} - \mu_{1}$	RCS1 051
1431	14-41 = 144	RCS1 052
1432	A+2 = A+-A2	RCS1 053
1933	SA1 = SCRT(A1)	RCS1 054
1434	5A2 = 5047(A2)	RCS1 055

RCS1 037	PCS1 038	RCS1 039	RCS1 040	RCS1 042	PCS1 043	RCS1 044	90 1500	RCS1 046	4651 047	RCS1 049	9C51 049	RCS1 050	PCS1 051	RCS1 052	RCS1 053	RCS1 054	RCS1 055	950 150%	RCS1 057	RCS1 058	RCS1 059	RCS1 060	PCS1 061	FCS1 062
UL1 = 15.*078	J	REAL (5,5001) AI, AZ, A4, HI, P2, H3	SOUT FURNAT (7F8.0)	MEITE (6,0001) ASPECT	GOUT FCRMAT ('I PREGRAM INPUT PARAMETERS', //, THETA =', FG.3)	WRITE (6,6002) A1, P1, A2, H2, A4, F3	6CL2 FORMAT ('G Al =', F7.4, " HI =', F7.4, ",	1 . A2 = 0, F7.40 42 = 0, F7.40/0	2 . A4 = 0, F7.4, 0 H2 = 0, F7.4)		1+2 = H2+H2	TH2PH1 = TH2+H1	, 121 = A2-A1	1-1 = A4-A1	A+2 = A4-A2	SA1 = SCRT(A1)	SA2 = SGRT(A2)	J	ALF1 = ATAN(A21/H1)	ALF2 = ATAN(A42/TH2)	ALE3 = ATAN (A+1/TH2PH1)	J	FIVAL2 = FI-ALF2	PINAL3 = PI-ALF3
1917	1016	1616	1050	1651	1922	1923	1924	1425	1926	1027	1926	1624	1630	1631	1432	1933	1434	1635	1436	7 1437	1636	78.71 19a	1540	1441

STORY OF

RCS1 063	790 1530	8CS1 065	PC51 066	400 153a	RCS1 068	ALE2 = ", F8.3,/, ALE7 = ", F8.3) RCS1 069	970 1838	RCS1 071	RCS1 072	RCS1 073	RCS1 074	RCS1 075	RCS1 076	RCS1 077	RCS1 078	RCS1 079	RCS1 080	RCS1 081	RCS1 082	RCS1 083	RCS1 084	RCS1 085	RCS1 086	RCS1 087
U	XIC = ALFI*RIC	X26 = ALF2*RT0	X3D = ALF3#RTD		MRITE (6,6005) XID,X20,X30	6065 FORMAT (* ALF1 = ", F8.3, /, "	J	TKFC = FTK*FC*2.	XN = 1.5	XV02 = XN/2.	SCX4 = SIN(PI/XN)/XN	CXI. = -SCXN/XN	CPCN = CGS(PIXXN)	U	& CONTINUE	TH = ASPECT*DTR	STH = SIN(TH)	CTH = COS(TH)	TANTH = STH/CTH	CK1 = 0.59TAVTH	CKV = 0.5/TANTH	CIPCV = CKI+CKV	•	1F (TH .6T. 9102) GU TO 20
1442	7 143	7761	961445	1946	1947	1448	1949	1650	1641	1452	1953	1954	1955	1656	1057	1058	1959	1960	1961	1962	1963	1964	1965	1466

VI WY

	1F (TH .6T. P102) GC TC 20	
1991		RCS1 088
1968	512 = SOXN/(CPON - COS((PIC2-TH)/XNC2))	RCS1 084
1060	511 = SCXN/(CPCN - CCS((PIO2+TH)/XNC2))	RCS1 090
1970	E9 = SCXN/(CPGN - COS(TH/YN02))	RCS1 091
1571	C EDGE DIFFRACTION COEFFICIENTS (THETA.L1.P1/2)	RCS1 092
04/26/70	TWPUT LISTING	- FWD/SCL RADSIM
CARLI NC	21N:1103	:
1472	$v_1 = c_1$	RCS1 093
1973	SH12 = CXN+812	RCS1 094
1074	SV11 = CXN-E11	RCS1 095
1475	SH11 = CXN+B11	RCS1 096
1076	514 = CXN-E9	RCS1 097
1677	CH9 = CXN+E4	RCS1 098
1975		RCS1 099
1670	C EFFECTIVE AREA (DOUBLY PEFLICIED) TERMS(ADX)	8651 100
1480	IF (TH-ALF1) 51,52,52	RCS1 101
1981	51 AGI = SA1*H1*STH	RCS1 102
1982	60 10 53	RCS1 103
1983	52 ACI = SAI*A21*CIH	RCS1 104

10,000

1676	C EFFECTIVE AREA (DCURLY REFLICTED) TERMS(ADX)	8021 100
1480	1F (TH-ALF1) 51,52,52	RCS1 101
1981	51 AD1 = SA1*H1*STH	RCS1 102
1982	60 10 53	RCS1 103
1483	-2 AFI = SAI*F21*C1H	RCS1 104
1684	53 CONTINUE	RCS1 105
1085	3	901 1SD8
1480	1F (TH-ALF2) 54,55,55	RCS1 107
1967	54 AD2 = SA2*TH2*STH	RCS1 108
1988	CO TC 56	RCS1 109
1484	55 AU2 = 5A2*A42*CTH	RCS1 110
1940	5.6 CUNTINUE	RCS1 111
1001		RCS1 112
Jon I	IF (IH-ALF1) 57,58,58	RC51 113
1993	58 IF (TH-ALF2) 59,59,57	PC51 114
1ccc	54 IF (TH-ALF3) 50,61,61	RCS1 115
1005	6C AD3 = SAI*(HI*STH - A2I*CTH)	911 1508
1946	GC TC 63	RCS1 117
1007	61 AD3 = SAI*(A42*CTH - TH2*STH)	RCS1 118
1.498	ψ τυ 63	RCS1 119
1000	57 AE3 = C	RCS1 120

and the same of

8051 154	RCS1 155	4CS1 156	451 1538	RCS1 158	651 1506	RCS1 160	191 1538	RCS1 162	RCS1 163	RCS1 164	4051 165	ACS1 166	4CS1 167	861 1838	6021 169	021 1500	171 171	271 172	RCS1 173	8CS1 174	9651 175	RCS1 176	771 1238	RCS1 178
C SWEETHING FUNCTIONS	(1 = ((TKFC*PI*XALE)	C2 = G(TKFC*A2*(PIMAL?-TP))	(3 = C(TKFC*A2*XALF)	24 = 0(TKFC*A4*(PI-TH))	Q11 = G(TKFC*A1*(PIMAL3-TH))	25 CONTINUE	J	C FREGUENCY LUCP	J	CC 3C I = NMIN,NMAX), = 1-1	AK = XI*FTKDF	AK2 = DK+AK	Ph25 = AN2*STH	٠	XC1 = A1*AK25	xC2 = A2*AK2S	xc4 = A4*A42S	U	CALL FEST (XC1, EUIC, FUII, FUIZ)	CALL BESL (XC2, £ J20, 5J21, 5 J22)	CALL *ESL(XC+,8J40+9J41,8J42)	•	101 = (316+6312
2033	2034	2035	2036	2037	2036	2034	2040	2041	2002	20+3	2044	2645	2046	2047	2048	204~	9992	2051	2002	2053	7 2054	5502 149	P 205 c	2057

and the St

1		
5028	BC2 = FJ20+FJ22	RCS1 179
-7 205 t	5C4 = 8J40+bJ42	RCS1 180
604	FCIX = ECI*CXV	RCS1 181
2061	102x = 102*CXN	RCS1 182
2062	1C+X = FC4*CXN	RCS1 183
2063 C		RCS1 184
2064	PHIP = CMPLX(PJIC+FJII)	RCS1 185
2005	PH2P = CMPLX(5J20,5J21)	RCS1 186
20.66	PH4P = CMPLX(EJ46+EJ41)	RCS1 187
2067	PHI = CONJG(PHIP)	RCS1 188
5005	PH2 = CONJG(PH2P)	RCS1 189
-90Z	PH4 = CONJG(PH4P)	9651 190
2076 C		RCS1 191
2071	PS11 = -AK2*(HZ+H1)*CTH	RCS1 192
2072	PS2 = -AK2*H2*CTH	RCS1 193
2073	PS9 = AK2*(P2+H3)*CTH	RCS1 194
2074 C		RCS1 195
2075	C11 = CMPLX(CCS(PS11), SIN(PS11))	RCS1 196
2076	C2 = CMPLX(COS(PS2),SIN(PS2))	RCS1 197
2077	C4 = CONJG (C2)	RCS1 198
2078	C9 = CMPLX(CUS(PS9)+SIN(PS9))	RCS1 199
2070 C		RCS1 200
2080	1F (TH .6T. PIG2) GC TO 35	RCS1 201
2081 C		RCS1 202
2062 C	GENERAL REGION (THETA .GT. ALF3 .AND. THETA .LT. P1/2)	RCS1 203

4, 40

											-0.47										
202	203	507	205	506	207	208		*	500	210	211	212	213	214	215	216	217	218	216	220	166
RCS1	P1/2) RCS1	RCS1 204	RCS1 205	RCS1	RCS1	RCS1 208	AUTOFLOW CHART SET - FWO/SCL RADSIM		RCS1	RCS1	RCS1	RCS1	RCS1 213	RCS1	3) RCS1	RCS1	MINATED AT 90) RCSI	RCS1	RCS1	RCSI	1000
	GENERAL REGIUN (THETA .GT. ALF3 .AND. THETA .LT. P1/2)		PHASE OF DOUBLY REFLECTED SCATTERING TERMS	= -AK2*(A1*STH + H2*CTH)	= -AK2*(A2*STH - H2*CTH)	= -AK2*(A1*STH - H2*CTH)		CONTENTS		= CMPLX(CCS(PSP1)+SIN(PSF1))	= CMPLX(COS(PSD2),SIN(PSD2))	= CMPLX (COS (PSC3), SIN(PSC3))		DUUSLY REFLECTED SCATTERING (TOTAL)	= S(FT(AK2+AK2)*(AD1*CF1 + AC2*CF2 + AD3*CF3)		PUCK-LEIMISEV SCATTERING (THEID.LT. "C, FEGES ILLUMINATED	= \$1*(11*(\$V12*¤HIP-5(1Y)	= Al*Cil*(S412*Pulp-(Cix)	= A1*C11*(SV11*PH-1-EC1X)	= £1*C11*(\$P11404.1_fC1X)
J	C GENER	J	C PHASE	PSD1	5023	= 8034	INPUT LISTING	* **	Ú	CC.1	500	CC3	v	Tanas n	CAI =	u	כ אחנג-	= 7100	CHIZ	0.111	11117
2081	2062	2083	- 2064	Q 2065	2086	2087	04/26/75	CARD VC	2008	2060	2002	2041	2042	2043	2004	\$632	2000	2607	2646	2005	2106

and the state of t

ī	2(4)	2		RCS1 216
	2000	J	PUCK-LEIMISEV SCATTERING (THEID.LT. "C, FLGES ILLUMINATED AT 90)	RCS1 217
	2002		CV12 = \$1*(11)*((\$V12*PH1P-EC1Y)	RCS1 218
	2000		UNIS = \$1\$U11*(SH12*pullp-FC1X)	RCS1 219
	5002		CV11 = A1*C11*(SV11*PH1-EC1X)	RCS1 220
	2100		UH1 = £1*C11*(SP11*04.1-FC1X)	8CS1 221
	2101		(V2 = A2*C2*(SV11*PHC-9C2X)	RCS1 222
7 -	2012		(F2 = A2*C2*(SH11*P47-9C2X)	RCS1 223
)	2103		CV4 = A4*C4*(SVII*PH4-BC4X)	RCS1 224
	2104		Ch4 = 24*C4*(SF11*PH4-EC4X)	RCS1 225
	2165		CV4 = A4*CV*(SV4*BH4-FC4X)	RCS1 226
	2106		CHO = A4*C4*(SF4*PH4-PC4X)	PC51 227
	2107		CV1 = A1*C2*PH1*C1PCV	RCS1 228
	2108		CV3 = A2*C4*PH2*C1PCV	RCS1 229
	210%		SV = CV12+CV11+CV2+CV4+CV9 +CV1 +CV3	RCS1 230
	2116		5H = CH12+CH11+CH2+CH4+CH4 -(V1 -CV3	RCS 1 231
actors area	unc	Ü		RCS1 232
	21112		5V = 5V + CAD/SPI	RCS1 233
	2113		Sr = Sh + CAG/SPI	RCS1 234
	2114)		RCS1 235
	2115		St. 7t. (44,34), 15WA3	9051 236

	RCS1 237	RCS1 238	RCS1 239	RCS1 240	9CS1 241	RCS1 242	RCS1 243	RCS1 244	RCS1 245	RCS1 246	4651 247	RC51 248	RC51 244	RCS1 250	RCS1 251	RCS1 252	RCS1 253	RCS1 254	RCS1 255	RCS1 256	RCS1 257	RCS1 258	RCS1 259	RCS1 260	RCS1 261
	34 CONTINUE	C AZIMUTH NEAR ZERO, ADD IN FAR EDGE TERMS WHICH ARE	C PIRECTLY ILLUMINATED	XCSS = ASS#AK2S	XCS7 = AS7*AK25	CALL BESL(XCSS,850,851,852)	CALL BESL(XCS7,870,671,872)	PHSP = CMPLX(650,851)	PH7P = (MPLX(670,671)	CV6 = A2*C2*(PH2P*SV12-BC2X)*66	CH5 = A2*C2*{PH2P*SH12-9C2X)*C6	CV8 = A4*C+*(PH4P*SV12-BC4X)*08	CHS = A4*C4*(PH4P*SH12-FC4X)*C8	CV5 =-AS5*C2*PH5P*CKV*C6	CV7 =-457*C4*PH70*CKV*PP	SV = CV6 + CV8 + CV5+CV7 + SV	SH = CH6 + CH8 -CV5-CV7 + SH	97 11 40	U	C THETA .GT. PI/2	35 CONTINUE	v	C RUCK-UFIMISEV SCATTERING (THETA.GT.90)	CV16 = A4*C9*(PH4P*SV10-EC4X)	CHIC = A4*C9*(PH4P*SHIO-PC4X)
/	2116	2117	2115	21112	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132	2133	2134	2135	2136	2137	2138	2139	2140

and the St

											te en tra	e e e e e e e e e e e e e e e e e e e	NET A TOTAL OF										
RCS1 260	RCS1 261	RCS1 262	RCS1 263	RCS1 264	RCS1 265	P.CS1 266			CL RADSIM	***	RCS1 267	PCS1 268	RCS1 269	RCS1 270	RCS1 271	RCS1 272	RCS1 273	RCS1 274	RCS1 275	RCS1 276	RCS1 277	RCS1 278	
(VIG = A4*C9*(PH4P*SV10-EC4X)	(HIG = A4*C9*(PH4P*SHI0-PC4X)	(V4 = A4+C9+(PH4+SV9-BC4X)	CH5 = A4*C6*(PH4*SH9-BC4X)	CV4 = A4*C4*(PH4*SV11-EC4X)*C4	CH4 = A4*C4*(PH4*SH11-8C4X)*C4	CV2 = A2*C2*(PH2*5V11-9C2X)*Q2			INPUT LISTING AUTOFLOW CHART SET - FWO/SCL	****	UH2 = A2*C2*(PH2*SH11-EC2X)*C2	EVII = A1*C11*(PPI*SV11-°C1X)*011	CH11 = A1*C11*(PH1*SH11-EC1X)*011	(VI = A1*C2*PH1*CK1*C1	CV3 = A2*C4*PH2*CK1*03	5V = CV10+CV9+CV4+CV2+CV11 +CV1+CV3	CH = CHIC+CH4+CH2+CH11 -CV1-CV3	40 CONTINUE	J	VIdS*AS-= AS	SH = SH*SPIK		C NEFERFACE PHACE TO FUCHT OF SECOND CYLINDED
2136	2140	2141	2712	£ 21+3	2144	2145			04/26/76	CARD NC	2146	2147	2148	2140	2150	2151	2312	2153	2154	2155	2156	2157	2158

Carried to Section 19

-

2170		FUNCTION Q(Z)	RCS1 291
2171	c	4(2) = 0.5*(1 + ERF(2))	RCS1 292
2172	С	* ERF(Z) IS EVALUATED USING A RATIONAL POLYNOMIAL APPROXIMATION	RCS1 293
2173	c	* REFERENCE (HANDBK MATH FUNCT BY ABRAMOWITZ AND STEGUN,	RCS1 294
2174	c	* SECTION 7.1.26)	RCS1 295
2175	c		RCS1 296
2176		1F (Z.GT. 2.) GO TO 10	PCS1 297
2177		IF (Z.LT2.) CO TO 20	RCS1 298
2178		AZ = ABS(Z)	RCS1 299
2179		P = 1.0/(1.0 + .47047*AZ)	RCS1 300
2190		Y = 1.0 - P*(.3480242 - P*(.09587987478556*P))*EXP(-AZ*AZ)	RCS1 301
2181		1F (Z) 2,4,6	RCS1 302
2182		2 0 = (1.0 - Y)/2.	RCS1 303
2183		RETURN	RCS1 304
2184		4 0 = .5	RCS1 305
2185		RETURN	PCS1 306
2186		6 0 = (1.0 + Y)/2.	RCS1 307
2187		RETURN	RCS1 308
2188		10 (= 1.	RC\$1 300
2189		RETURN	RCS1 310
2190		20 6 = 0.	RCS1 311
2191		RETURN	RCS1 312
2192		L-149 f	RCS1 313

14 PA 3

2162		SUBROUTINE BESL (X, GO, D1, H2)	RCS1 314
2194	O		RCS1 315
23.45	U	* BESSEL FUNCTION SUBROUTINE UTILIZING POLYNOMIAL APPROXIMATIONS	RCS1 316
2196	J	* COMPUTES JO, JI. CR. JZ FOR POSITIVE REAL ARGUMENTS	RCS1 317
2167	U	* REFERENCE (HNDBK MATH FUNCT BY APRAMOWITZ AND STEGUN SECTION 9.4)	JRCS1 318
2106	3		RCS1 319
2196		2 = 1.0	RCS1 320
2200		IF (X .LT. C.C) S=-1.0	RCS1 321
2201		X = ABS(X)	RCS1 322
2202	3		RCS1 323
2203		IF (x .6T. 1.5-6) GO TO 5	RCS1 324
2204			8CS1 325
2205		0.0 = 1 ·	RCS1 326
2266		b. = 0.0	RCS1 327
2207		υ * × " ×	RCS1 328
220F		AETURN	RCS1 329
2209	U		PCS1 330
2210		5 CONTINUE	RCS1 331
2211	J		RCS1 332
2212		1 1F (X .GE. 3.) GO TO 9	RCS1 333
2213		$x_1 = x/3$.	RCS1 334
2214		$x_1 = x_1 * x_1$	RCS1 335
2215		E = 1.+ X1*(-2.2494997+ X1*(1.2656208+ X1*(3163866+ X1*(.0444479RCS1	9RCS1 336
2216		1 + X1*(0039444+ X1*2.1F-4)))))	RCS1 337
2217		50 TO 10	RCS1 338

- CONTRACT

Kings.															1												
PCS1 334	RCS1 335	79RCS1 336	RCS1 337	RCS1 338	PCS1 339	RCS1 340	RCS1 341	RCS1 342	RCS1 343	RCS1 344	RCS1 345	RCS1 346	RCS1 347	RCS1 348	RCS1 340	RCS1 350	RCS1 351	RCS1 352	RCS1 353	RCS1 354	RCS1 355	RCS1 356	RCS1 357	RCS1 358	RCS1 359	RCS1 360	RCS1 361
XI = X/3.	$x_1 = x_1 * x_1$	E = 1.+ X1*(-2.249497+ X1*(1.2656208+ X1*(3163866+ X1*(.044479RCS1	1 + X1*(003c444+ X1*2.1F-4 1))))	01 01 00	J	9 X2 = 3./X	FC = .79788456 +X2*(77E-6 +X2*(00552740 +X2*(9512E-4 +X2*	1 (.00137237 +x2*(72805F-3 +x2*0.14476E-3 1)))))	10 = X78534816 +X2*(04166347 +X2*(34545-4 +X2*(.00262573	1 +x2*(00054125 +x2*(00029333 +x2*0.00013558)))))	B = F0 + COS(10) / SCPT(X)	ú	10 50 = b	·	2 IF (X .6E. 3.) 60 TO 19	$x_1 = x/3.$	X1 = X1*X1	8 = X*(.5 +X1*(56249465 +X1*(.21093573 +X1*(03454289 +X1*	1 (.00442319 +X1*(31761E-3 +X1*0.1109E-4)))))))	CC TC 20	J	14)2 = 3./X	F1 = .79788456 +X2*(.156F-5 +X2*(.01654667 +X2*(.00017105 +X2*	1 (06244511 +X2*(.6011365366626033*X2))))	71 = X - 2.35619449 +X2*(.12499612 +X2*(.565E-4 +X2*(00637879	1 +X2*(.CC074343 +X2*(.00074824 -0.00029166*X2 1))))	F = FI * COS(11) / SCRT(X)
2213	2214	2215	2716	2217	2218	2214	2220	2221	2222	2223	2224	2225	2226	2227	2228	2224	2230	2231	2232	2233	2234	2235	2236	2237	2238	2239	2240
-1	,	-				c	1	Table 1		the strength	ale to the second				er partie F	Table Mar		Sec. al.									-

The state of the s

RCS1 344	RCS1 345	RCS1 346	RCS1 347	RCS1 348	RCS1 340	RCS1 350	9051 351	RCS1 352	RCS1 353	RCS1 354	RCS1 355	RCS1 356	RCS1 357	RCS1 358	RCS1 359	RCS1 360	RCS1 361	RCS1 362	RCS1 363	RCS1 364	RCS1 365	RCS1 366	RCS1 367
1 +X2*(00054125 +X2*(00029333 +X2*0.00013558 11)))	E = F0*C0S(10)/S(PT(X)		10 50 = b	v	2 IF (X .6E. 3.) 60 TO 19	$x_1 = x/3.$	$x_1 = x_1 * x_1$	8 = X*(.5 +X1*(56249955 +X1*(.21097577 +X1*(03954289 +X1*	1 (.00442310 +X1*(31761E-3 +X1*0.1169E-4)))))))	CC TC 20	J	14) 2 = 3./X	F1 = .79788456 +X2*(.1566-5 +X2*(.01654667 +X2*(.00017105 +X2*	1 (06244511 +x2*(.6011365306626033*x2)))))	71 = X - 2.35619449 + X2*(.12494612 + X2*(.565E-4 + X2*(00637879))	1 +X2*(.CC074343 +X2*(.00074824 -0.00029166*X2 1))))	E = F1 * C0 (11) / SQRT(X)		20 U1 = U + S	S ★ × Ⅱ ×	62= (2./X)*81 - 80	50 RETURN	END
2223	2224	2225	2226	2227	2226	2224	2230	2231	2533	2233	2234	2235	2236	2237	2238	2239	2240	2241	2242	L 2243	7- 2244	5722 199	22.46 W

L.8 REFERENCES

- Liang, C.S. and R. W. Clay, <u>Improved Wideband Scattering Analysis</u>, RADC-TR-73-11, (Rome Air Development Center, Rome, N.Y., January, 1973) pp. 29-52 AD#758245.
- 2. Ibid, pp. 159-162
- 3. Ibid, pp. A1-B7
- 4. Ibid, pp. C1-C15
- Hong, S., S. L. Borrison, and D. P. Ford, "Short Pulse Scattering by Long Wire", <u>IEEE Trans. Ant. Prop.</u>, Vol. AP-16, No. 3, pp. 338-339
- 6. Liang, Op. Cit., pp. 81-110
- 7. Ibid, pp. 53-80
- 8. This reference was intentionally omitted.

RADC plans and conducts development programs (C3) activities, or and intelligence are communic surveille data c iop ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.

