CSE 2202 Design and Analysis of Algorithms – I Lecture 9 Algorithm Types Divide and Conquer

ALGORITHM STRATEGIES

General Concepts

- Algorithm strategy
 - Approach to solving a problem
 - May combine several approaches
- Algorithm structure
 - Iterative⇒ execute action in loop
 - Recursive ⇒ reapply action to subproblem(s)
- Problem type
 - Decision ⇒ find Yes/No answer
 - Satisfying ⇒ find any satisfactory solution
 - Optimization ⇒ find best solutions (vs. cost metric)

Some Algorithm Strategies

- Divide and conquer algorithms
- Dynamic programming algorithms
- Greedy algorithms
- Backtracking algorithms
- Branch and bound algorithms
- Heuristic algorithms

Divide and Conquer

- Based on dividing problem into subproblems
- Approach
 - 1. Divide problem into smaller subproblems
 - Subproblems must be of same type
 - Subproblems do not need to overlap
 - 2. Solve each subproblem recursively
 - 3. Combine solutions to solve original problem
- Usually contains two or more recursive calls

Divide and Conquer – Examples

- Binary Search
- Quicksort
 - Partition array into two parts around pivot
 - Recursively quicksort each part of array
 - Concatenate solutions
- Mergesort
 - Partition array into two parts
 - Recursively mergesort each half
 - Merge two sorted arrays into single sorted array
- Counting Inversion

Dynamic Programming Algorithm

- Based on remembering past results
- Approach
 - 1. Divide problem into smaller subproblems
 - Subproblems must be of same type
 - Subproblems must overlap
 - 2. Solve each subproblem recursively
 - May simply look up solution
 - 3. Combine solutions into to solve original problem
 - 4. Store solution to problem
- Generally applied to optimization problems

Fibonacci Algorithm

Fibonacci numbers

- fibonacci(0) = 1
- fibonacci(1) = 1
- fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
- Recursive algorithm to calculate fibonacci(n)
 - If n is 0 or 1, return 1
 - Else compute fibonacci(n-1) and fibonacci(n-2)
 - Return their sum
- Simple algorithm ⇒ exponential time O(2ⁿ)

Dynamic Programming – Example

- Dynamic programming version of fibonacci(n)
 - If n is 0 or 1, return 1
 - Else solve fibonacci(n-1) and fibonacci(n-2)
 - Look up value if previously computed
 - Else recursively compute
 - Find their sum and store
 - Return result
- Dynamic programming algorithm ⇒ O(n) time
 - Since solving fibonacci(n-2) is just looking up value

Dynamic Programming - Example

- 0-1 Knapsack
- Longest Common Subsequence
- Longest Increasing Sequence
- Sum of Subset
- Warshall's All pairs shortest path
- Bellman Ford's Single Source Shortest Path
- Matrix Chain Multiplication

Greedy Algorithm

- Based on trying best current (local) choice
- Approach
 - At each step of algorithm choose best local solution
- Avoid backtracking, exponential time O(2ⁿ)
- Hope local optimum lead to global optimum

Greedy Algorithm – Example

Kruskal's Minimal Spanning Tree Algorithm

```
sort edges by weight (from least to most)

tree = Ø

for each edge (X,Y) in order

if it does not create a cycle

add (X,Y) to tree

stop when tree has N–1 edges
```

Picks best local solution at each step

Greedy Algorithm - Example

- Dijkstra's Single Source Shortest Path
- Minimum Spanning Tree Prim & Kruskal
- Fractional Knapsack Problem
- Huffman Coding

Backtracking Algorithm

- Based on depth-first recursive search
- Approach
 - 1. Tests whether solution has been found
 - 2. If found solution, return it
 - 3. Else for each choice that can be made
 - a) Make that choice
 - b) Recur
 - c) If recursion returns a solution, return it
 - 4. If no choices remain, return failure

Backtracking Algorithm – Example

- Find path through maze
 - Start at beginning of maze
 - If at exit, return true
 - Else for each step from current location
 - Recursively find path
 - Return with first successful step
 - Return false if all steps fail

Backtracking Algorithm – Example

- Color a map with no more than four colors
 - If all countries have been colored return success
 - Else for each color c of four colors and country n
 - If country n is not adjacent to a country that has been colored
 - Color country n with color c
 - Recursively color country n+1
 - If successful, return success
 - Return failure

Backtracking - Example

- 8 Queen Problem
- Graph Coloring
- Sum of Subset
- Hamiltonian Cycle
- Travelling Salesman Problem (TSP)
- Permutation & Combination Generation

Branch and Bound Algorithm

- Based on limiting search using current solution
- Approach
 - Track best current solution found
 - Eliminate partial solutions that can not improve upon best current solution
 - Reduces amount of backtracking
- Not guaranteed to avoid exponential time O(2ⁿ)

Branch and Bound – Example

- Branch and bound algorithm for TSP
 - Find possible paths using recursive backtracking
 - Track cost of best current solution found
 - Stop searching path if cost > best current solution
 - Return lowest cost path
- If good solution found early, can reduce search
- May still require exponential time O(2ⁿ)

Heuristic Algorithm

- Based on trying to guide search for solution
- Heuristic ⇒ "rule of thumb"
- Approach
 - Generate and evaluate possible solutions
 - Using "rule of thumb"
 - Stop if satisfactory solution is found
- Can reduce complexity
- Not guaranteed to yield best solution

Heuristic Algorithm – Example

- Heuristic algorithm for TSP
 - Find possible paths using recursive backtracking
 - Search 2 lowest cost edges at each node first
 - Calculate cost of each path
 - Return lowest cost path from first 100 solutions
- Not guaranteed to find best solution
- Heuristics used frequently in real applications

DIVIDE & CONQUER

Divide and Conquer Algorithms

- Example
 - Binary Search
 - Merge Sort
 - Quick Sort
 - Counting
 - Closest Pair of Points

Divide and Conquer

Divide the problem into a number of subproblems

There must be base case (to stop recursion).

Conquer (solve) each subproblem recursively

Combine (merge) solutions to subproblems into a solution to the original problem

Divide and Conquer

Divide

Dividing the problem into smaller sub-problems

Conquer

Solving each sub-problems recursively

Combine

Combining sub-problem solutions to build the original problem solution

Divide-and-Conquer

Most common usage.

- Break up problem of size n into two equal parts of size ½n.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n².
- Divide-and-conquer: n log n.

Mergesort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$

Solution. $T(n) = O(n \log_2 n)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with =.

Proof by Recursion Tree

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

Pf. For
$$n > 1$$
:

$$\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1$$

$$= \frac{T(n/2)}{n/2} + 1$$

$$= \frac{T(n/4)}{n/4} + 1 + 1$$

$$\vdots$$

$$= \frac{T(n/n)}{n/n} + \underbrace{1 + \dots + 1}_{\log_2 n}$$

$$= \log_2 n$$

Proof by Induction

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

Pf. (by induction on n)

- Base case: n = 1.
- Inductive hypothesis: $T(n) = n \log_2 n$.
- Goal: show that $T(2n) = 2n \log_2 (2n)$.

$$T(2n) = 2T(n) + 2n$$

= $2n \log_2 n + 2n$
= $2n(\log_2(2n)-1) + 2n$
= $2n \log_2(2n)$

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

38

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Merge.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

auxiliary array

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

Counting Inversions

https://www.topcoder.com/thrive/articles/count-inversions-in-an-array

Counting Inversions

Inversion Count: arr[i] > arr[j] such that i < j

Total Inversions Count: 3 + 2 + 1 + 0 = 6

Count Inversions in an array ——————

Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: $a_1, a_2, ..., a_n$.
- Songs i and j inverted if i <= j, but a_i > a_j.

Inversions

3-2, 4-2

Brute force: check all $\Theta(n^2)$ pairs i and j.

Divide-and-conquer.

Divide-and-conquer.

Divide: separate list into two pieces.

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

5 blue-blue inversions

8 green-green inversions

5-4, 5-2, 4-2, 8-2, 10-2

6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

9 blue-green inversions

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total =
$$5 + 8 + 9 = 22$$
.

Combine: ???

How can we combine the results in O(n) time?

!!!Try Yourself!!!

!!!Try Yourself!!! – Algorithm to find Second MAX from an array

Derive an Divide & Conquer algorithm to find the Second MAX from an array of N elements and find the complexity of your algorithm.

3.4 (due Sep 28, 2006) We are given two arrays of integers A[1..n] and B[1..n], and a number X. Design an algorithm which decides whether there exist $i, j \in \{1, ..., n\}$ such that A[i] + B[j] = X. Your algorithm should run in time $O(n \log n)$.

!!!Try Yourself !!! - Two Dimensional Search

You are given an $m \times n$ matrix of numbers A, sorted in increasing order within rows and within columns. Assume m = O(n). Design an algorithm that finds the location of an arbitrary value x, in the matrix or report that the item is not present. Is your algorithm optimal?