- Q.1 what is graph? Enplain its characteristics:
- Ans> Graph is a collection of Edges and Vertices graph is denoted by G(E,V).
 - Edge is a line blu tuo points. Verten can be rejus to the points.

characteristics of graph:

- 1) Vertices (Nades):-
 - Think of there as points or dots in a graph. Each point represent something, like a person, city, an
- 2) | Edges (links):-These are the lines connecting the points. They show relationships on connection between the points.
 - Directed 1s. undirected:
 - Directed: The connection has a direction, like a one-way street.
 - undirected: The connection goes both mays, like a tus - way street.
 - Weighted Vs. unweighted:
 - Weighted: The connection have values. Like distance or
 - unweighted: all connections are treated the same, with no special values.

(12) Enploin cut edges, cut vortices and degree of vertices with Enamples.

cut- Edges: - Let 'G1' be a connected graph.

An Edge 'e' E G1 is called cut Edge if

'G1-e' result in a disconnected graph.

If removing an edge in a graph results in to two or more graphs, then that edge is called a cut edge.

Enample:

In the following graph, The cut edges is [(c,e)]

By remaining the edge (c,e) from the graph, it becomes a disconnected graph.

In the about graph, removing the Edges ((,e) break the graph into two which is nothing but a disconneted graph.

Cut - ventices: let 'a' be a connected graph.

A vector VE Gr is called a cut vertices of Gr, if Gr-V' (Delete V' from Gr) result in a disconnected graph. Removing a cut verten from a graph breaks it in to two as more graph.

Note: Removing a cut verker, may render a graph disconnected

Encumple:

In the fallowing graph, vertices 'e' and 'c' are the cut vertices.

By removing (e' ar (c), the graph will become a disconnected graph.

without 'g' there is no path between vertices 'c' and Verten 'h' and many other. Hence it is a disconnected graph with cut verten as 'e' similarly, 'c' is also a act verten for the above graph.

93. Define Adjacency and Incidence Matrices?

Adjacency matrices: A Adjacency matrin is a Square matrix that represent a graph using its and 0s to indicate whether vertices are adjacent to Each other

A graph G (V, E) where

V= {0,1,--- n-1} can be represent using 2D array

size = hxh int adj[20][20]

suppose adj [i][j]= 1 indicate the of Edges.

& graph is represented with Square matrix

undirected graph

No. of Edges=7 Verkn=5

Directed graph

#

Incidence Matrices: In the incidence matrix rous represent vertices and coloumn represent Edges. This matrix filled with value either 0,1,-1, here 0 represent row Edge is not connected to column, 1 > row Edge is connected by outgoing Edges to coloum vertex.

-1 > now Edge is connected to incoming Edge to colour versex.

	ϵ_1	E2	E3	Ey	Es	E6	67	E8
Α	1	1	-1	0	0	0	Õ	0
В	-1	0	0	1	0	1	O	٥
С	0	-1	0	6	1	0	Ó	Ö
D	0	٥				0		
E	\circ	٥						
-	U	U	U	\circ	0	-1	-1	0

(9.4) Define the path, walk and cycles with Enamples.

Ans > Path: A path is a type of open walk where heigher Edges non vertices are allowed to repeat. There is a possibility that only the starting Verten and ending verten are the same In a path. In an open walk, the length of the walk must be mare than O.

> so for a path, the following two points are imp., which are described as follows:-

Edges cannot be repeated Verten cannot be superated

walk: - A walk can be defined as a sequence of Edges and vertices of greek. When we have a graph and traverse it; then that traverse will be known as a walk.

11

Edges can be repeated Verien can be repeated

In this Enample, we have a graph, which is described as follows:

In the about graph, there can be many walks, but some of them are described as follows:

A, B, C, E, D (Number of length =4)

DI E, A, C, E, D, C (Number of length =7)

E, C, B, A, C, E, D (Number of length = 6)

cycles: A closed path in the graph theory is also known as a cycle. A cycle is a type of clased walk where neither edges nor vertices are allowed to repeat.

1>

2)

37

There is possibility that only the starting verlen and Ending verlen one the same in a eyele. So far a cycle, the following two points one important, which one described as follows:

Edges cannot be repeated Verten cannot be repeated

gr)

Enploin De-Crujin cycle Algorithm & chaph with Enample.

In:

Given an integer n and a set of characters A of Size K, find a String & such that known possible String on A of length n appears Enactly once as a substring in s. Such a String is called de-bruizn sequence

Grame -> AAABBBBBA

S mers -> AAA, AAB, ABB, BBB, BBB, BBA

2 mers -> AA, AA AA, AB AB, BB BB, BB BB, BA

1 mers -> AA AB AB BB BA

