

Context and contents

Author(s): Susan E. Allen

Source: _{Vegetation History and} Archaeobotany , May 2019, Vol. 28, No. 3, Special Issue:

Plants, animals, and people across the millennia: papers in honour of Naomi F. Miller (May

2019), pp. 247-262

Published by: Springer

Stable URL: https://www.jstor.org/stable/10.2307/48704066

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

Springer and is collaborating with JSTOR to digitize, preserve and extend access to Archaeobotany

Vegetation History

Vegetation History and Archaeobotany (2019) 28:247–262 https://doi.org/10.1007/s00334-019-00728-3

ORIGINAL ARTICLE

Context andÿcontents: Distinguishing variation inÿarchaeobotanical assemblage formation processes atÿEarly Halaf Fistÿklÿ Höy

Susan E. Allen1

Received: 3 October 2018 / Accepted: 26 March 2019 / Published online: 6 April 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Meaningful interpretation of archaeobotanical assemblages in the Near East often includes determination of whether dung fuel is the source of some or all of the recovered plant remains. In the years since Miller (Economy and Environment of Malyan, a Third Millennium B.C. Urban Center in Southern Iran. Ph.D. Dissertation, Department of Anthropology, Uni-versity of Michigan, Ann Arbor, 1982; Paléorient 10:71-79, 1984) and Miller and Smart (J Ethnobiol 4:15-28, 1984) first identified archaeological plant remains from Malyan (Iran) as those of burned dung, subsequent archaeobotanical, experi-mental, and ethnographic research has been undertaken to test and expand her criteria for its recognition. A key criterion of Miller's was a high ratio of weed seeds to wood charcoal (or a low ratio of charcoal to weed seeds). When used together with other quantitative measures based on standardizing ratios, this measure can help to illuminate variability in the sources of the recovered carbonized plant remains and some of the taphonomic processes that contributed to the resulting assem-blage. Using the Late Early Halaf dataset from Fistÿklÿ Höyük, Turkey, as a case study, non-parametric statistical analysis was applied to eight such measures, including a new Fragmentation Index (FI), density measures (per litre of sediment) for charcoal, cereal grains, weed seeds, chaff, non-wood items, and cereal-type indeterminate non-wood items, and a relative density measure of charcoal to weed seeds. Each measure was calculated on the basis of 35 samples (n=8,532). The results of this analysis indicate that these measures, when used in combination with Miller's weed seed to charcoal ratio, imple-mented here as the relative density of charcoal to weed seeds, can reveal recovery context-related variations in formation processes that help to clarify both the role of dung fuel in assemblage formation and to differentiate the remains of cereal processing from those of burned fuel.

Keywords Archaeobotanyÿ· Site formation processesÿ· Dungÿ· Statistical analysisÿ· Crop processingÿ· Fragmentation Indexÿ· Standardizing ratios

Introduction

Behavioural interpretation of archaeological plant remains requires disentanglement of the physical and social processes that shape archaeobotanical assemblages. Of particular importance in this regard is determining the source of the recovered plant materials (Hillman 1981; Minnis 1981; Miller and Smart 1984; Miksicek 1987; Pearsall 1988), their mode of carbonization (Minnis 1981; Miller

Communicated by Ch. White.

- * Susan E. Allen susan.allen@uc.edu
- Department ofÿAnthropology, University ofÿCincinnati, PO Boxÿ210380, Cincinnati, OHÿ45221ÿ0380, USA

and Smart 1984; Miksicek 1987; van der Veen 2007), and the depositional processes responsible for their interment and recovery (Minnis 1981; Miksicek 1987; Lennstrom and Hastorf 1995; Gallagher 2014). While seeds on archaeologi-cal sites have most often been interpreted as the remains of plants deliberately collected for use as food, medicines, fuel, or other purposes, or alternatively, as the remains of weeds unintentionally collected with harvested crops, Miller (1982, 1984) and Miller and Smart (1984) introduced a new idea for consideration in the early 1980s. Based on ethnographic observation, she proposed an innovative interpretation of the source of carbonized archaeobotanical material recov-

ered from Malyan (Iran) as animal dung burned as fuel, and developed the first criteria used to distinguish dung-derived plant remains from those originating from other sources. Since then, dung has featured prominently in the

interpretation of archaeobotanical remains from Near East-ern sites (Miller and Smart 1984; Miller 1996; Algaze etÿal.

1986; Charles 1998; Crawford 1999; Capper 2007; Deckers 2011; Miller and Marston 2012; Graham and Smith 2013), due to widespread evidence for its use as fuel across much of the Near East. As such, for Near Eastern sites where herd animals are abundant, a particular challenge is how to dis-tinguish the residues of dung-burning from those resulting from other activities, such as crop processing (Fuller etÿal. 2014).

A key criterion of Miller's for the archaeobotanical iden-tification of dung is a low ratio of charcoal to seeds, par-ticularly small weed seeds (Miller 1984, 1996; Miller and Smart 1984). This criterion highlights Miller's emphasis on the utility of standardizing ratios in order to facilitate inter-sample comparison for samples with different volumes or for which the volume is unknown (Miller 1988). The use of standardizing ratios has since been widely applied, with van der Veen (1992, 2007; van der Veen and Jones 2006) arguing for their particular utility for evaluating assemblage forma-tion processes. Miller also advocated more rigorous atten-tion to "deposit-by-deposit reporting of context and content"

(Miller 1996, p 525) and consideration of recovery context in the interpretation of archaeobotanical assemblages.

This study builds on these three methodological empha-ses of Miller's research—the identification of animal dung as a source of plant remains, the use of standardizing ratios, and attention to context—and integrates them into a combined contextual and compositional approach in order to assess the contribution of dung to the Late Early Halaf archaeobotanical assemblage from Fistÿklÿ Höyük in southeastern Turkey (Fig.ÿ1), dated to ca. 6000–5700ÿcal bc (Bernbeck etÿal. 2003). Located on the eastern edge of the Euphra-tes floodplain, the site of Fistÿklÿ Höyük was excavated in 1999 and 2000 under the direction of Susan Pollock and

Reinhard Bernbeck as part of a salvage project (TAÇDAM), directed by Numan Tuna (Middle East Technical University in Ankara), related to construction of the Carchemish Dam.

Fistÿklÿ is a small 0.5ÿha Early Halaf settlement situated on a low terrace just south of the great bend of the Euphrates (Bernbeck etÿal. 2003).

Several lines of evidence suggest that spent dung fuel is likely to have contributed to the Fistÿklÿ Late Early Halaf archaeobotanical assemblage. Specifically, wood charcoal and cereal grains are low in abundance (Miller 1984; Miller and Smart 1984; Miller and Marston 2012), chaff dominates the assemblage (Charles 1998; Valamoti and Charles 2005), and the assemblage is heavily fragmented (Spengler etÿal.

2013). In addition, the faunal assemblage for this period is dominated by domesticated sheep and goats (Bernbeck etÿal. 2003), which would have produced a readily available sup-ply of dung. However, routine daily activities, such as crop and food processing, are also likely to have contributed to

Fig. 1ÿÿLocation of Fistÿklÿ Höyük in relation to other Halaf sites in the region. Prepared by John Wallrodt, after Bernbeck etÿal. (2003)

the assemblage (Charles 1998; Fuller etÿal. 2014). Because the Fistÿklÿ archaeobotanical assemblage is characterized by low charcoal densities, few cereal grains, and high quanti-ties of cereal chaff, it appears qualitatively to meet several criteria for recognition as dung on the one hand, and cereal processing on the other. As such, it provides an excellent case study for investigating potential quantitative methods to distinguish different sources of charred plant material, spe-cifically with reference to spent dung fuel vs. other activities, such as crop processing and food preparation.

In order to address these issues, non-parametric statistical analysis was conducted for eight standardizing ratios for data from 35 macrobotanical samples (n=8,532 non-wood items) derived from Fistÿklÿ Höyük IIIa—c deposits identified dur-ing excavation as hearth, exterior surface, interior surface, midden, and midden-pit contexts. The use of descriptive statistics to assess compositional patterning for these context groups facilitates recognition of the plant sources and site formation processes that have shaped the assemblage and points toward a low contribution of dung fuel as only a secondary or background source of plant remains at Fistÿklÿ.

The standardizing ratios examined in this analysis are den-sity values for charcoal, non-wood items, cereal grains, weed seeds, chaff, and indeterminate non-wood fragments that are consistent with cereal grain endosperm, the rela-tive density of charcoal to weed seeds, and a new measure, the Fragmentation Index (*FI*). Significantly, this approach bridges the divide between what Fuller etÿal. (2014, p 175) term "the tyranny of context" and the "power of content."

Although this study focused on variation between recovery context types, these measures can—and should—also be applied for comparison of samples within a specific context type or single deposit in order to assess variation in sample

composition and preservation within specific context types and discrete depositional contexts, as will be undertaken in a follow-up study.

Background

Archaeobotanical identification ofÿdung

Both modern and ancient use of animal dung as fuel is widely attested in the Near East and many other regions.

Since Naomi Miller's ground-breaking interpretation of the archaeobotanical assemblage from Malyan as the remains of burned dung, scholars have routinely identified it in other assemblages. Although this is particularly true for the Near East and south-eastern Europe (Miller 1984, 1996; Miller and Smart 1984; Charles 1998; Valamoti 2004; Miller and Marston 2012; Graham and Smith 2013), dung has also been identified in assemblages from Central Asia (Spengler etÿal.

2013; Spengler 2018), North America (Miller and Smart 1984), South America (Pearsall 1988), and south Asia (Reddy 1999).

The initial criteria for identifying dung-derived plant remains, as first articulated by Miller (1982, 1984; Miller and Smart 1984), are: (1) location of the site in an area lacking abundant wood; (2) the presence of dung-produc-ing animals; (3) burned dung fragments or seeds of plants potentially or likely to have been consumed by animals (i.e. those without other known economic uses); and (4) "the archaeological context of the samples suggests a primary hearth deposit or secondary dumping of hearth contents"

(Miller and Smart 1984, p 20). With respect to Miller's cri-teria 1 and 3, a high ratio of seeds to charcoal (or a low ratio of charcoal to non-wood), by weight, is often used as an indicator of the presence of dung-derived material (Miller 1984; Miller and Smart 1984; Miller and Marston 2012; Spengler etÿal. 2013).

Following closely on Miller's earliest discussions of dung, Charles (1998) developed several useful additions to these criteria, noting that Miller's first and second cri-teria are more an explanation for why dung fuel would be used, rather than direct evidence for dung fuel as a source of plant remains. Charles' (1998) additions, based on eth-noarchaeological studies of crop processing together with the biological and ecological characteristics of wild plants, were proposed in order to increase the reliability of archaeo-botanical dung identification. In particular, he emphasized the need to consider three additional attributes of assemblages: (1) seed size and weight, as correlates of different stages of crop processing (Hillman 1981; Jones 1987); (2) the seasonal availability of the recovered wild taxa relative to those of the crops themselves, as an indicator of whether or not they could have been collected as weeds of crops

(Hillman 1991); and (3) the relative frequency of crop seeds and chaff. Using discriminant analysis, Charles (1998) com-pared descriptive statistics for the stages of crop process-ing, based on seed size, weight, and plant parts, recorded for modern crop processing on Amorgos (Jones 1987) with archaeobotanical data for Abu Salabikh (Iraq) and Tel Brak (Syria). The results demonstrated that crop processing by-products were the dominant source of plant material in the Tell Brak assemblage, whereas dung contributed more to the Abu Salabikh assemblage (Charles 1998).

More recently, these criteria have been tested, revised, and expanded upon through strategies such as experimental carbonization and feeding in order to document the morpho-logical and compositional transformations that plant remains undergo during the processes of digestion and subsequent burning (Valamoti and Charles 2005; Spengler etÿal. 2013; Valamoti 2013; Wallace and Charles 2013). Results from such studies provide strong evidence for the addition of three more criteria to Miller's original list: (1) a relative absence of cereal grains, which typically do not survive digestion in identifiable form (Valamoti and Charles 2005; Valamoti 2013; Wallace and Charles 2013); (2) vertically-split glume bases (Valamoti and Charles 2005; Valamoti 2013); and (3) roughened glume base surfaces that are observable both macroscopically and with scanning electron microscopy (Valamoti 2013). In their analysis of material from Begash (Kazakhstan), Spengler etÿal. (2013) cite a high degree of fragmentation and unidentifiable non-wood fragments as an additional criterion for recognition of dung-derived plant remains, but note the challenge of quantifying the degree of fragmentation.

Other sources of ycharred plant remains

Even when it can be demonstrated that dung contributes to an archaeobotanical assemblage, it should not be assumed to be their only source (Charles 1998; Valamoti 2004; Fuller etÿal. 2014). Instead, "certain recurrent and cross-cultural practices, such as plant food processing, are likely to be the more quantitatively significant" (Fuller etÿal. 2014, p 187). Fuller etÿal. (2014) further suggest that when present, dung-derived material may "just add noise to the evidence of arable weed-chaff assemblages" (p 189). In support of this argument, they cite Reddy's (1999) ethnoarchaeological studies in Northern India, where she documented a greater contribution of food processing waste than dung in mate-rial collected from household hearths where dung-fuel was used (Fuller etÿal. 2014, p 189). Other sources of carbonized plant remains include plants used as medicines, in rituals, or as decorative elements, which may become carbonized through accidental or deliberate burning. Thus, it is essential for researchers working in areas where dung is commonly

used as fuel to be able to distinguish different contributions to archaeobotanical assemblages.

Nonÿdung fuel sources

In addition to animal dung, both wood and waste products from crop and food processing are often used as fuel. While charcoal is not abundant at Fistÿklÿ, it is notable that in arid settings, chaff and straw-in addition to dung-are highly valued in their own right as a source of fuel and an eco-nomic commodity (van der Veen 1999). Straw, represented by cereal culm fragments, is rare at Fistÿklÿ (n=8). In con-trast, glume wheat chaff (spikelet forks and glume bases) is dominant in the assemblage. Chaff elements are produced at three points in the production process: winnowing, coarse-sieving, and finally, pounding and fine-sieving to remove the tough outer glumes from the grains (Hillman 1981; Jones 1987). Glume bases often become charred as "the result of their use as a 'casual fuel" (van der Veen 2007, p 978), an ad hoc use of available crop processing by-products. How-ever, as noted above, glume bases can also become charred during the parching of glume wheats to facilitate removal of their tough outer glumes.

Cereal crop processing

Building on Hillman's (1981, 1984) foundational ethnoarchaeological documentation of the kinds of archaeobot-anical assemblages resulting from different stages in cereal crop processing, particularly with reference to the relative proportions of chaff, weed seeds, grain, and straw, other scholars have expanded on these principles. Jones (1984, 1987) considered weed seed size and weight as key vari-ables for discriminating different stages of crop processing, an approach followed by Charles (1998) and Graham and Smith (2013). For hulled wheat and barley, the only cereals present at Fistÿklÿ, the primary stages of processing (fol-lowing Stevens 2003) are: (1) threshing, which breaks up inflorescences and culms; (2) raking; (3) initial winnow-ing, which removes light chaff and weed seeds; (4) coarse sieving to separate out intact inflorescence parts in need of further threshing; (5) fine sieving to remove small chaff items such as awns and small weed seeds; (6) pounding to separate spikelet forks, lemmas, and paleas from grains; (7) re-winnowing to separate grains from chaff by weight differences; (8) medium-coarse sieving to recover spikelet forks and unbroken spikelets in need of further pounding; (9) second fine-sieving to remove small grains, weed seeds, and chaff items (glume bases and awns). Materials from these stages of processing may become charred either through their casual or regular use as fuel (van der Veen 1992, 2007), disposal into hearths as waste-products, or through

the parching of threshed spikelets to make the outer glumes easier to remove (Hillman 1984).

Foods andÿfood processing

Foods that require heat in their processing and are therefore more subject to accidental burning are those most likely to be represented in carbonized plant assemblages (Minnis 1981; Miksicek 1987; van der Veen 2007; Gallagher 2014).

These kinds of activities, such as baking, boiling, parching, and roasting, constitute a key domain of daily routine activi-ties on archaeological sites. As such, these behaviours are widely accepted as significant contributors to the charred archaeobotanical record (Dennell 1972, 1974, 1976; Hill-man 1981; van der Veen 2007; Fuller etÿal. 2014; Gallagher 2014).

Identifying sources

The interpretation of assemblages that result from targeted sampling focused on collection of samples from specific context types, such as hearths, is often based on an unwar-ranted assumption that the contents of the feature represent behaviours associated with it. However, as demonstrated by Lennstrom and Hastorf (1995) in their comparison of sam-ple composition between features and adjacent or overlying deposits, feature fills often represent post-use processes of deposition. While such an approach is possible when a spa-tially intensive sampling strategy was adopted (e.g. Hansen and Allen 2011; Allen and Forste 2019), this was not the case for Fistÿklÿ, where the excavators adopted a targeted sampling strategy. As such, samples from deposits adja-cent to the contexts selected for sampling are inconsistently available for compositional comparison, and an alternative approach is needed in order to determine whether sample composition reflects recovery context or post-depositional fill. If the deposits from different context groups have under-gone variable cultural and natural taphonomic processes related to their use (whether primary or later), rather than a palimpsest of post-depositional mixing and redeposition, they should show discernible compositional differences, as detected through the non-parametric statistical comparison of the eight quantitative indexes.

Fistikli Mound III assemblage overview

The 35 Late Early Halaf (Fistÿklÿ IIIa–c) samples used for this analysis were recovered from 10 different locations representing five different context types that were identified during excavation (Tableÿ1). These consist of interior surfaces (n=3), exterior surfaces (n=15), middens (n=8), "mid-den-pits" (pits associated with middens) (n=5) and hearths (n=4). Due to the small quantity of samples available for

Table 1ÿÿNumber of flotation samples included for analysis from each context type

35					
Context	Interior	Exterior	Midden	Pit associ-ated with	Hearth
type	surface (int surf)	surface		midden	
		(ext surf)			
				(M-Pit)	
No. of	3	15	8	5	4
samples					

For exterior surfaces, middens, and midden-pits, the quantity of sam-ples is the same as the number of observations for each group in the Mann–Whitney U analysis

interior surfaces and hearths, the results for these contexts are less meaningful than those for context types with more samples (exterior surfaces, middens, and midden-pits).

Three striking patterns are evident in the Fistÿklÿ IIIa–c (Late Early Halaf) assemblage: an overwhelming domi-nance of cereal chaff in most samples, low densities of wood charcoal, and a low frequency of weed seeds. While these patterns correspond to two commonly used criteria for the archaeobotanical recognition of dung—the regular occurrence of chaff (Miller 1984, 1996; Miller and Smart 1984; Graham and Smith 2013) and the paucity of char-coal (Miller 1984, 1996; Miller and Smart 1984), and one recently suggested criterion—marked fragmentation (Spen-gler etÿal. 2013)—the low relative frequency of weed seeds as compared with other plant remains is inconsistent with the interpretation of the recovered material as the remains of burned dung.

A narrow suite of crops, dominated by *Triticum mono-coccum* (einkorn), was identified in the IIIa—c assemblage from Fistÿklÿ. Other crops include *Hordeum vulgare* var. *distichum* (two-row barley), *T. dicoccum* (emmer), *Lens culinaris* (lentil), and *Linum usitatissimum* (flax), with the latter three occurring only rarely. Identifiable whole cereal grains are rare, while distorted and cereal grains that are not identifiable to genus and show a characteristic "spongy", or vesicular, structure, are more common. In contrast to the low frequency of cereal grains, chaff from hulled wheat (spikelet forks and glume bases) occurs in nearly all flotation sam-ples. The overwhelming majority of these are identifiable as *T. monococcum* or *T. monococcum/dicoccum-type* glume bases, with significantly fewer intact spikelet forks, all of which are *T. monococcum* or T. sp.

In addition to the recovered cultivars, several non-domes-ticated taxa were also recovered. Some of which, such as *Chenopodium* sp. and *Echium vulgare*, have also been docu-mented as regular components of dung-derived assemblages (Miller 1984, 1996; Miller and Smart 1984; Spengler etÿal.

2013; Spengler 2018). At Fistÿklÿ, however, nearly all of the recovered *Chenopodium* sp. and *E. vulgare* specimens are not carbonized, and those tested by sectioning contain

intact endosperm, indicating their modern status. As such, these were most likely deposited as intrusive modern seed rain incorporated into the deposits (Minnis 1981; Gallagher 2014), an inference supported by the shallow depth of the deposits, which was generally less than 1.5–2ÿm (Bernbeck etÿal. 2003). Although it is possible for some seeds to remain uncarbonized when incorporated into animal dung that was burned as fuel, it seems highly unlikely that one or two taxa would consistently be the only ones for which this is the case. Given the high likelihood that the recovered uncar-bonized wild seeds are modern intrusions, only carbonized specimens were considered in this analysis.

In addition to the occasional carbonized specimens of *Chenopodium* sp. and *Echium* sp., other taxa often asso-ciated with cereal cultivation were also recovered. These

include Aegilops cf. speltoides, represented by both seeds and spike bases, Hordeum murinum, H. spontaneum, Lolium sp., L. perenne, L. temulentum, Galium sp., cf. Euphorbia sp., E. helioscopia, Cerastium sp., Silene sp., Thymelaea sp., cf. Portulacca sp., cf. Astragalus sp., and Medicago sp. were also recovered. Despite their apparent taxonomic diversity, however, wild plants are infrequent in the majority of sam-ples. Given the segetal and/or ruderal status of the recovered taxa, these are considered here as potential field weeds or taxa with "weedy" growth habits that are often consumed by ruminants, and thus referred to as "weed seeds" for con-sistency with Miller's use of weed seeds as an index for the recognition of dung-derived plant remains.

Methods

Sampling and yrecovery

Archaeobotanical sampling on-site (Fig.ÿ2), coordinated by the project directors, consisted of targeted recovery of flo-tation samples from areas that appeared to be either ashy or rich in organic remains. Dry sediment volumes were recorded for each sample prior to flotation. Flotation samples were processed using a SMAP-style machine fitted with a 2ÿmm mesh for heavy fraction and a 0.15ÿmm light frac-tion mesh in order to maximize recovery of chaff material and small weed seeds. The combined light and heavy frac-tion from these samples was sent to the United States for analysis in the laboratory of the Department of Archaeology at Boston University and, subsequently, the Department of Anthropology at the University of Cincinnati.

Sorting and yidentification

Prior to sorting, geological sieves were used to screen all samples into four size fractions (>2 \ddot{y} mm, 1–2 \ddot{y} mm, 0.5–1.0 \ddot{y} mm, and <0.5 \ddot{y} mm) to facilitate sorting. In order

Fig. 2ÿÿLocation of macrobotanical samples for Fistÿklÿ Höyük IIIa-IIIc and associated structures. Prepared by John Wallrodt

to reduce size biases in preservation and provide a more accurate representation of small weed seeds and chaff ele-ments in this analysis, all fractions were completely sorted.

All recovered seeds and seed fragments from all size frac-tions were included in this analysis. Taxonomic and ana-tomical identification of non-wood remains was undertaken with the use of low-level stereomicroscopy (up to 60x) and comparison of ancient material to modern reference specimens housed in the Mediterranean Ecosystem Dynamics and Archaeology (MEDArch) Laboratory at the University of Cincinnati, standard seed atlases (e.g. Martin and Barkley 1961; Cappers etÿal. 2009; Neef etÿal. 2012) and previously published assemblages from the region (e.g. van Zeist 1980; van Zeist and Bakker-Heeres 1986; van Zeist and Waterbolkvan Rooijen 1989, 1996).

Quantitative analysis

Following Naomi Miller's advocacy for the use of stand-ardizing ratios for inter-sample (Miller 1988) comparison, expanded upon by van der Veen (1992, 1999, 2007), eight measures based on standardizing ratios were calculated for the dataset. These include both density measures for discrete combinations of various plant types and parts (e.g. wood charcoal, weed seeds, cereal chaff, cereal grains,

non-wood items, non-wood indet. cereal-type items), the relative density of charcoal to weed seeds, and a new measure, the Fragmentation Index *(FI)*, as described below (Tableÿ2).

Absolute counts

For the absolute counts of cereal grains used in the den-sity calculations and the Fragmentation Index, items were counted as "whole" on the basis of the presence of unique parts, such as the hilum for legumes and the embryo for grass caryopses, as advocated by Jones (1990). Seed parts lacking these features were characterized as fragmentary.

For density calculations only, these absolute counts based on unique anatomical features for the recognition of wholes were subsequently standardized to single grains using con-version factors of three caryopsis fragments per whole cereal grain (3:1), which accords well with the MNI results for einkorn obtained by Antolín and Buxó (2011) through the application of their novel method based on more precise characterization of fragment type. As noted by Antolín and Buxó, fragmentary remains must be taken into account when interpreting archaeobotanical assemblages. Although their method provides a more precise method for convert-ing fragments to wholes, the use of a factor of 3:1 for cereal grains provides a more rapid means of taking fragments into account when characterizing assemblage composition, and is warranted in the case of Fistikli, where einkorn is the dominant cereal.

For chaff (glume bases and spikelet forks), counts of glume bases were standardized to grains using a factor of 2 glume bases per grain (2:1). This conversion factor is justi-fied by the dominance of einkorn, for which this ratio is standard. For weed seeds, a conversion factor of three frag-ments per whole seed was used (3:1) for expediency, but could be improved by more explicit consideration of indi-vidual taxa. For each density measure, the raw (non-wood items, "non-wood, Cereal endosperm type") or converted (cereal grains, weed seeds, chaff) count acted as the numera-tor, and the sample volume as the denominator.

Density calculations

Charcoal density was calculated on the basis of the >2ÿmm charcoal weight (g/L), while other density measures were calculated on the basis of the converted absolute counts for each category of material in the sample (#/L). These include cereal grains, cereal chaff, carbonized weed seeds, charred non-wood items, and non-wood charred material that is con-sistent with cereal/grass endosperm (hereafter "non-wood, Cereal endosperm type").

Table 2ÿÿRaw counts and calculated standardizing measures for Fistÿklÿ IIIa-c

Ext Surf 8 0.57 26.33 12 61 76 Ext Surf 8 0.15 10.33 2 17 52 Ext Surf 8 0.33 59 10 62 0 Ext Surf 12 0.16 12.33 10.33 43.5 15 Ext Surf 1 0.01 2 7.66 64.5 42 Ext Surf 1 0.03 3.33 1.66 4 17 52 Ext Surf 1 0.03 3.33 1.66 4 17 52 Ext Surf 1 0.03 3.33 1.35 3.13 </th <th>Sample C</th> <th>Cntxt Grp</th> <th>Vol</th> <th>>2 ch wt</th> <th>CerGr Ct</th> <th>CWdSd</th> <th>Chaff Ct</th> <th>NWIndCT Ct</th> <th>Total</th> <th>CNW</th> <th>CNW Wh_GIBs</th> <th>Cer C Frgs D</th> <th>Ch C Dens I</th> <th>CerGr V</th> <th>WdSd Chaff Dens Dens</th> <th>3 233 35</th> <th>NW NV Dens CT</th> <th>NWInd FI CTDens</th> <th>2 2</th> <th>CerGr: CerGr: Chaff WdSd</th> <th>35255</th> <th>Charc: C WdSd N</th> <th>Charc: NWCe NWCerInd CerGr</th> <th>NWCerInd: CerGr</th> <th>: CerGr: NWIndCer</th>	Sample C	Cntxt Grp	Vol	>2 ch wt	CerGr Ct	CWdSd	Chaff Ct	NWIndCT Ct	Total	CNW	CNW Wh_GIBs	Cer C Frgs D	Ch C Dens I	CerGr V	WdSd Chaff Dens Dens	3 233 35	NW NV Dens CT	NWInd FI CTDens	2 2	CerGr: CerGr: Chaff WdSd	35255	Charc: C WdSd N	Charc: NWCe NWCerInd CerGr	NWCerInd: CerGr	: CerGr: NWIndCer
Ext Surf 5 0.15 10.33 2 17 52 Ext Surf 1 0.01 6 2 0 6 0 Ext Surf 1 0.01 6 2 4.33 1.26 142 Ext Surf 7 0.03 3.3 1.66 64.5 42 Ext Surf 7 0.3 83 2.666 134 7 Ext Surf 7 0.3 3.33 1.66 4 17 Ext Surf 5 0.03 3.33 1.66 4 17 Ext Surf 6 0.03 3.33 1.66 4 17 Ext Surf 1 0.03 3.66 1.76 1.7 2.7 Ext Surf 7 0.15 7 1.4 2.7 2.1 Ext Surf 7 0.15 3 2.66 1.5 2.2 Ext Surf 4 0.03 5.66 1.76 1.2 2.1 <td></td> <td>xt Surf</td> <td>.072</td> <td>0000000</td> <td></td> <td>12</td> <td>61</td> <td>9/</td> <td>280</td> <td>39</td> <td>127</td> <td>52 0</td> <td>0.07</td> <td>3.29</td> <td>1.5 7.63</td> <td>3 35</td> <td>5.9.5</td> <td>5 0.</td> <td>4 0.431</td> <td>31 2.193</td> <td>l</td> <td>0.047 0.</td> <td>0.007</td> <td>2.89</td> <td>0.346</td>		xt Surf	.072	0000000		12	61	9/	280	39	127	52 0	0.07	3.29	1.5 7.63	3 35	5.9.5	5 0.	4 0.431	31 2.193	l	0.047 0.	0.007	2.89	0.346
Ext Surf 8 0.33 59 10 62 0 Ext Surf 12 0.16 12.33 10.33 43.5 15 Ext Surf 4 0.04 2 7.66 64.5 4.2 Ext Surf 7 0.33 8.3 26.66 134 7 Ext Surf 3 0.02 0 2.33 1.56 4 17 Ext Surf 3 0.02 0 2.33 1.56 4 17 Ext Surf 3 0.02 0 2.33 1.56 4 17 Ext Surf 4 0.02 3.33 1.66 4 17 Ext Surf 4 0.02 3.33 1.35 1.25 1.3 Ext Surf 4 0.03 5.66 17.66 13.5 2.2 Ext Surf 4 0.03 5.66 17.66 13.5 2.2 Hearth 1 0.03 5.66 17		xt Surf	2		10.33	2	17	52	125	%	4	28 0	0.03 2	2.07 0	0.4 3.4	25		10.4 0.06	609.0 90	9 5.175	-	0.075 0.	0.003	5.02	0.199
Ext Surf 12 0.16 12.33 10.33 43.5 15 Ext Surf 4 0.04 2 7.66 64.5 4.2 Ext Surf 7 0.33 83 26.66 134 7 Ext Surf 3 0.02 0 2.33 2.5 13 Ext Surf 5 0.03 3.33 1.66 4 17 Ext Surf 5 0.03 3.33 1.66 4 17 Ext Surf 6 0.53 1.33 0.66 15 2.5 Ext Surf 7 0.15 7 14 2.7 14 Ext Surf 1 0.03 3.66 1.56 1.56 2.5 Ext Surf 1 0.01 2 2 4.7 1.0 Hearth 1 0.03 5.66 17.66 13.5 221 Hearth 1 0.03 5.66 13.5 221 Hearth		xt Surf			69	10	62	0	305	63	167	161 0	0.04	7.38	1.25 7.75		38.13 0	0.21	1 0.952	52 5.904		0.032		0.00	
Ext Surf 10 0.01 6 24.33 126 142 Ext Surf 4 0.04 2 7.66 64.5 42 Ext Surf 7 0.33 83 26.66 134 7 Ext Surf 5 0.03 3.33 1.66 4 17 Ext Surf 6 0.63 3.33 1.66 17 17 Ext Surf 1 0.23 1.33 9.66 15 25 Ext Surf 1 0.013 1.33 9.66 15 25 Ext Surf 4 0.03 5.66 17.66 13.5 221 Ext Surf 4 0.03 5.66 17.66 13.5 221 Ext Surf 4 0.03 5.66 17.66 13.5 221 Hearth 1 0.03 5.66 17.66 13.5 221 Hearth 1 0.03 5.66 2.3 4.7		axt Surf	12			10.33	43.5	15	156	20	68	28 0	0.01	1.03 0	0.86 3.63	3 13		1.25 0.13	3 0.284	84 1.198		0.012 0.	800.0	1.21	0.824
Ext Surf 4 0.04 2 7.66 64.5 42 Ext Surf 7 0.3 83 26.66 134 7 Ext Surf 5 0.02 0 2.33 2.5 13 Ext Surf 9 0.59 0 3.33 1.66 4 17 Ext Surf 1 0.24 2 13 16 0 13 Ext Surf 1 0.13 1.33 9.66 15 25 Ext Surf 4 0.03 5.66 17.66 13.5 221 Ext Surf 5 0 1.33 2.6 15 25 Ext Surf 6 0 0.03 5.66 17.66 13.5 221 Hearth 1 0 0.03 5.66 17.66 13.5 221 Hearth 1 0 0.03 1.66 2.9 0 2.9 Hearth 1 1 0.05 3 2.6 2.9 1 Hearth 1 0 0.03 1.66 <t< td=""><td></td><td>axt Surf</td><td>10</td><td>0.01</td><td>2</td><td>24.33</td><td>126</td><td>142</td><td>440</td><td>30</td><td>258</td><td>15 0</td><td>0</td><td>0.6 2</td><td>2.43 12.6</td><td>6 44</td><td></td><td>14.2 0.07</td><td>0.048</td><td>48 0.247</td><td>-</td><td>0.000 0.</td><td>0.000</td><td>23.67</td><td>0.042</td></t<>		axt Surf	10	0.01	2	24.33	126	142	440	30	258	15 0	0	0.6 2	2.43 12.6	6 44		14.2 0.07	0.048	48 0.247	-	0.000 0.	0.000	23.67	0.042
Ext Surf 7 0.3 83 26.66 134 7 Ext Surf 3 0.02 0 2.33 1.56 4 7 Ext Surf 5 0.03 3.33 1.66 4 17 Ext Surf 1 0.24 2 133 1.55 13 Ext Surf 1 0.13 1.33 9.66 1.5 25 Ext Surf 1 0.13 1.33 9.66 1.5 25 Ext Surf 4 0.03 5.66 17.66 13.5 221 Hearth 1 0.01 3 2.6 17.66 13.5 221 Hearth 1 0.03 5.66 17.66 13.5 221 Hearth 1 0.03 5.66 17.66 13.5 221 Hearth 1 0.03 1 2 2 2 Hearth 1 0.03 1 2 3 <th< td=""><td></td><td>xt Surf</td><td>4</td><td>0.04</td><td>61</td><td>99'.</td><td>64.5</td><td>42</td><td>175</td><td>27</td><td>112</td><td>0 0</td><td>0.01 0</td><td>0.5</td><td>1.92 16.</td><td>16.13 43</td><td>43.75 10</td><td>10.5 0.15</td><td>5 0.031</td><td>31 0.260</td><td></td><td>0.005 0.</td><td>0.001</td><td>21.00</td><td>0.048</td></th<>		xt Surf	4	0.04	61	99'.	64.5	42	175	27	112	0 0	0.01 0	0.5	1.92 16.	16.13 43	43.75 10	10.5 0.15	5 0.031	31 0.260		0.005 0.	0.001	21.00	0.048
Ext Surf 3 0.02 0 2.33 2.5 13 Ext Surf 5 0.03 3.33 1.66 4 17 Ext Surf 1 0.24 2 13 16 0 Ext Surf 1 0.24 2 13 16 0 Ext Surf 1 0.13 1.33 9.66 15 25 Ext Surf 4 0.03 5.66 17.66 13.5 221 Ext Surf 4 0.03 5.66 17.66 13.5 221 Hearth 10 0.06 9 2 2 43.5 10 Hearth 10 0.06 9 2 2 43.5 10 Hearth 10 0.03 1.66 2.9 6 2 Int Surf 0 0 3 2.66 13.5 2 Int Surf 0 0 3 2.66 2 9		xt Surf	7			26.66	134	7	475	92	270	189 0	0.04	11.86	3.81 19.	19.14 67	67.86 1	0.19	9 0.620	20 3.113		0.010 0.	0.040	80.0	11.860
Ext Surf 5 0.03 3.33 1.66 4 17 Ext Surf 9 0.59 0 3.33 13.5 31 Ext Surf 1 0.24 2 13 16 0 Ext Surf 1 0.13 1.33 9.66 15 25 Ext Surf 4 0.03 5.66 17.66 13.5 221 Ext Surf 4 0.03 5.66 17.66 13.5 221 Ext Surf 4 0.03 5.66 17.66 13.5 221 Hearth 10 0.06 9 22 43.5 10 Hearth 10 0.06 9 22 43.5 10 Int Surf 6 0.01 2 3 2.6 29 Int Surf 6 0.33 1.66 3 2.5 6 Int Surf 1 0 0 3 2.5 9 Midd		xt Surf	3	0.02	0	2.33	2.5	13	21	3	9	0 0	0.01 0	0	0.78 0.83	3 7	4	4.33 0.14	4 0.000	000.00		0.013 0.	0.002		0.000
Ext Surf 9 0.59 0 3.33 13.5 31 Ext Surf 14 0.24 2 13 9.66 15 25 Ext Surf 7 0.13 1.33 9.66 15 25 13 1.33 9.66 15 25 Ext Surf 7 0.15 7 14 21 207 14 21 207 Ext Surf 8 0.03 5.66 17.66 13.5 221 13.5 221 Ext Surf 10 0.06 9 22 43.5 10 13.6 25.3 22 Hearth 10 0.06 9 22 43.5 10 13.6 26.3 20 Hearth 11 0.35 18.33 25 56 20 Int Surf 6 0 3 15.66 26.33 82.5 67 47 Int Surf 6 0 3 2.66 0.5 0 13.6 8.5 320 Midden 8 1.2 10 13.66 86.5 320 14 Midden 9 2.42 14 12 0 15.6 12.5 33 Midden 6 0.21 1 11.66 12.5 33 14 Midden 7 0.18 0 2 1 11.6 12.5 33 Midden 8 1.02 3 6 5.33 28 15 Midden 9 2.42 14 11 183 30 18 Midden 8 1.02 3 6 5.33 28 15 Midden 9 2.04 14 11 183 30 10 M-Pit 6 0.1 13 183 19.5 19.5 198		xt Surf	5	0.03	3.33	1.66	4	17	32	5	4	3 0	0.01 0	0.67	0.33 0.8	6.4	4 3.4	4 0.16	6 0.838	38 2.030		0.030 0.	0.003	5.07	0.197
Ext Surf 14 0.24 2 13 16 0 Ext Surf 10 0.13 1.33 9.66 15 25 Ext Surf 1 0.13 1.33 9.66 15 25 Ext Surf 1 0.01 5.66 17.66 13.5 221 Ext Surf 4 0.03 5.66 17.66 13.5 221 Hearth 10 0.06 9 2.2 43.5 10 Int Surf 0 0.33 1.66 0.5 6 29 Int Surf 0 0 3 2.66 0.5 6 29 Midden 8 1.2 10 1.56 3 2.5 21<		xt Surf	6	0.59	0	3.33	13.5	31	89	9	21	10 0	0.07 0)	0.37 1.5		7.56 3.44	44 0.09	000.0 60	000 0000		0.189 0.	0.020		0.000
Ext Surf 10 0.13 1.33 9.66 15 25 Ext Surf 2 4.33 1.33 6.5 52 Ext Surf 4 0.03 5.66 17.66 13.5 221 Ext Surf 4 0.03 5.66 17.66 13.5 221 Hearth 10 0.06 9 2 4.35 10 Hearth 18 0.29 15.66 26.33 82.5 67 Hearth 6 0.01 2 2 4.35 10 Hearth 10 0.06 9 2 2 4.35 10 Int Surf 6 0.01 2 2 4.2 6 2 Int Surf 6 0.33 1.56 0.5 9 1.4 4.7 Midden 8 1.2 1.2 0 1.5 2.1 Midden 9 1.2 1.2 1.4 4.1 1.8<		axt Surf	14	0.24	6	13	16	0	09	Ξ	37	0 0	0.02 0	0.14 0	0.93 1.14		4.29 0	0.18	8 0.123	23 0.151		0.022		0.00	
Ext Surf 5 0.24 4.33 1.33 6.5 5.2 Ext Surf 7 0.15 7 14 21 207 Ext Surf 4 0.03 5.66 17.66 13.5 221 Hearth 10 0.06 9 2.2 43.5 10 Hearth 17 0.35 18.33 2.5 57 11 Hearth 18 0.29 15.66 26.33 82.5 67 Hearth 6 0.01 2 2 43.5 10 Int Surf 0 0 3 2.66 0.5 57 Int Surf 0 0 3 2.66 0.5 0 Midden 8 1.2 10 13.66 0.5 21 Midden 9 2.42 14 12 0 194 Midden 9 2.22 1 1 1 1 Midden		xt Surf	10	0.13		99.6	15	25	73	Ξ	34	1 0	0.01 0	0.13 0	0.97 1.5	7.3	3 2.5	5 0.15	5 0.087	87 0.134		0.010 0.	0.004	19.23	0.052
Ext Surf 7 0.15 7 14 21 207 Ext Surf 4 0.03 5.66 17.66 13.5 221 Ext Surf 4 0.03 5.66 17.66 13.5 221 Hearth 10 0.06 9 22 43.5 10 Hearth 1 0.05 15.66 26.33 82.5 57 Hearth 6 0.01 2 23 42 0 Int Surf 6 0.01 2 23 42 0 Int Surf 6 0.03 1.2 6 29 10 Midden 8 1.2 10 13.66 86.5 32 Midden 9 2.42 14 12 0 14 Midden 9 2.42 14 15 47 Midden 9 2.42 14 18 39 Midden 9 10.1		xt Surf	5		1.33	1.33	6.5	52	78	4	17	4 0	0.05 0	0.87	0.27 1.3		15.6 10	10.4 0.05	999.0 50	69 3.222		0.185 0.	0.005	11.95	0.084
Ext Surf 4 0.03 5.66 17.66 13.5 221 Ext Surf 4 0.03 5.66 17.66 13.5 221 Hearth 10 0.06 9 22 43.5 10 Hearth 11 0.03 15.66 26.33 82.5 67 Hearth 6 0.01 2 23 42 0 Int Surf 6 0 3 2.66 0.5 0 Int Surf 6 0 3 2.66 0.5 0 Midden 8 1.2 10 13.6 86.5 320 Midden 9 2.42 14 12 0 14 4 Midden 9 2.42 14 12 0 194 4 Midden 9 2.42 14 12 0 194 4 Midden 9 2.42 14 11.66 12.5 33 4 Midden 9 2.02 2 7 7 4 Mid		xt Surf	7	0.15	7	14	21	207	297	15	32	18 0	0.02	.,	3	42	42.43 29	29.57 0.05	5 0.333	33 0.500		0.010 0.	0.001	29.57	0.034
Ext Surf 4 0.03 5.66 17.66 13.5 221 Hearth 1 0.06 9 22 43.5 10 Hearth 1 0.03 18.33 25 56 57 Hearth 1 0.29 15.66 26.33 82.5 67 Hearth 6 0.01 2 23 42 0 Int Surf 6 0.03 1 6 29 1 Midden 8 1.2 10 13.66 86.5 3 0 Midden 8 1.2 10 13.66 86.5 3 0 Midden 9 2.42 14 12 0 14 14 Midden 6 0.21 1 16.6 15.5 3 Midden 8 1.02 3 6 9.5 141 Midden 9 1.02 3 2 7 7 </td <td></td> <td>xt Surf</td> <td>4</td> <td></td> <td>99.9</td> <td>17.66</td> <td>13.5</td> <td>221</td> <td>287</td> <td>16</td> <td>35</td> <td>19 0</td> <td>0.01</td> <td>1.42</td> <td>4.42 3.38</td> <td></td> <td>71.75 55</td> <td>55.25 0.06</td> <td>0.420</td> <td>20 0.321</td> <td></td> <td>0.002 0.</td> <td>0.000</td> <td>38.91</td> <td>0.026</td>		xt Surf	4		99.9	17.66	13.5	221	287	16	35	19 0	0.01	1.42	4.42 3.38		71.75 55	55.25 0.06	0.420	20 0.321		0.002 0.	0.000	38.91	0.026
Hearth 10 0.06 9 22 43.5 10 Hearth 17 0.35 18.33 25 56 57 Hearth 18 0.29 15.66 26.33 82.5 67 Hearth 6 0.01 2 3 2.66 57 Int Surf 6 0 3 2.66 0.5 9 Int Surf 6 0 3 2.66 0.5 0 Midden 8 1.2 10 13.66 86.5 320 Midden 9 2.33 0 7.5 21 Midden 9 2.42 14 12 47 Midden 9 2.42 14 12 7 44 Midden 6 0.21 1 16 9.5 141 Midden 8 1.02 3 6 9.5 141 Midden 9 0.3 6		xt Surf	4		99.9	17.66	13.5	221	287	16	35	19 0	0.01	1.42 4	4.42 3.38		71.75 55	55.25 0.06	0.420	20 0.321		0.002 0.	0.000	38.91	0.026
Hearth 17 0.35 18.33 25 56 57 Hearth 18 0.29 15.66 26.33 82.5 67 Hearth 6 0.01 2 23 42 0 Int Surf 1 0 3 2.66 0.5 9 Int Surf 4 0 3 2.66 0.5 0 Midden 8 1.2 10 13.66 86.5 320 Midden 1 0.7 2.33 0 7.5 1 Midden 9 2.42 1 7 7 Midden 9 2.24 1 7 7 Midden 6 0.21 1 16.6 12.5 3 Midden 3 0.3 6 9.5 141 Midden 3 0.3 6 9.5 141 Midden 3 0.3 6 9.5 141		learth		90.0	•	22	43.5	10	186	17	96	17 0	0.01 0	0.9	2.2 4.35		18.6 1	0.00	9 0.207	07 0.409		0.005 0.	0.010	1.11	0.900
Hearth 18 0.29 15.66 26.33 82.5 67 Hearth 6 0.01 2 23 42 0 Int Surf 6 0.33 1 6 29 Int Surf 4 0 3 2.66 0.5 0 Midden 8 1.2 10 13.66 86.5 320 Midden 8 0.93 0 9.66 15 47 Midden 9 2.42 14 12 0 194 Midden 9 2.42 14 15 3 47 Midden 9 2.42 14 15 3 4 Midden 8 1.02 3 6 9.5 141 Midden 9 1.02 3.33 28 152 M-Pit 8 2.04 41 183 30 M-Pit 6 0.41 6 10.8 <		learth	17			25	99	57	285	33	135	40 0	0.02	1.08	1.47 3.29		16.76 3.3	3.35 0.12	2 0.328	28 0.735		0.014 0.	90000	3.10	0.322
Hearth 6 0.01 2 23 42 0 Int Surf 6 0 3 2.66 0.5 9 Int Surf 4 0 3 2.66 0.5 0 Midden 8 1.2 10 13.66 8.5 320 Midden 9 0.96 15 47 Midden 1 0.7 2.33 0 194 Midden 9 2.42 14 12 0 194 Midden 6 0.21 1 11.66 12.5 3 141 Midden 7 0.18 0 2 7 74 4 Midden 8 1.02 3 6 9.5 141 41 183 930 M-Pit 8 0.3 6 5.33 28 235 88 235 M-Pit 6 0.41 6 10 8 235		learth	18			26.33	82.5	19	320	44	169	44 0	0.02 0	0.87	1.46 4.58		17.78 3.7	3.72 0.14	4 0.190	965.0 06		0.014 0.	0.005	4.28	0.234
Int Surf 12 0 0.33 1 6 29 Int Surf 6 0 3 2.66 0.5 0 Midden 8 1.2 10 13.66 8.5 320 Midden 8 1.2 10 13.66 8.5 320 Midden 1 0.7 2.33 0 7.5 21 Midden 9 2.42 14 12 0 194 Midden 6 0.21 1 11.66 12.5 53 Midden 7 0.18 0 2 7 74 Midden 8 1.02 3 6 9.5 141 Midden 3 0.3 6 9.5 141 M-Pit 8 2.04 4 183 930 M-Pit 6 0.41 6 10 8 235 M-Pit 7 0.62 2.66 1		learth	9			23	42	0	131	22	06	3 0	3	0.33 3	3.83 7	21	21.83 0	0.17	7 0.047	47 0.086		0.000		0.00	
Int Surf 6 3 2.66 0.5 0 Int Surf 4 0 3 7.5 0 Midden 8 1.2 10 13.66 86.5 320 Midden 1 0.7 2.33 0 9.66 15 47 Midden 1 0.7 2.33 0 7.5 21 Midden 9 2.42 14 11.66 12.5 53 Midden 6 0.21 1 11.66 12.5 53 Midden 8 1.02 3 6 9.5 141 Midden 3 0.3 6 5.3 28 152 M-Pit 8 2.04 14 41 183 930 M-Pit 6 0.41 6 10 8 235 M-Pit 7 0.62 2.66 11.33 19.5 198 M-Pit 7 0.62		nt Surf	12	0).33	1	9	29	48	2	51	1 0)	0.03 0	0.08 0.5	4	2.42	42 0.04	090.0	60 0.375		0.000 0.	0.000	80.67	0.012
Int Surf 4 0 3 7.5 0 Midden 8 1.2 10 13.66 86.5 320 Midden 1 0.7 2.33 0 7.5 21 Midden 9 2.42 14 12 0 194 Midden 6 0.21 1 11.66 12.5 53 Midden 7 0.18 0 2 7 74 Midden 8 1.02 3 6 9.5 141 Midden 3 0.3 6 5.33 28 152 M-Pit 8 2.04 14 41 183 930 M-Pit 6 0.41 6 10 8 235 M-Pit 7 0.62 2.66 11.33 19.5 198 M-Pit 7 0.62 2.66 11.33 19.5 198		nt Surf	9	0		5.66	0.5	0	18	3	4	0 9	0	0.5 0	0.44 0.08	8 3	0	0.17	7 6.250	50 1.136		0.000		0.00	
Midden 8 1.2 10 13.66 86.5 320 Midden 1 0.7 2.33 0 7.5 21 Midden 1 0.7 2.33 0 7.5 21 Midden 6 0.21 1 11.66 12.5 53 Midden 7 0.18 0 2 7 74 Midden 8 1.02 3 6 9.5 141 Midden 3 0.3 6 5.33 28 152 M-Pit 8 2.04 14 41 183 930 M-Pit 6 0.41 6 10 8 235 M-Pit 7 1 0.62 37.33 16.66 95 665 M-Pit 7 7 0.62 2.66 11.33 19.5 198		nt Surf	4	0	0	3	7.5	0	31	3	16	0 0)) (0.75 1.88	(2)	7.75 0	0.1	0.000	000 0000		0.000			
Midden 8 0.93 0 9.66 15 47 Midden 1 0.7 2.33 0 7.5 21 Midden 9 2.42 14 12 0 194 Midden 6 0.21 1 11.66 12.5 53 Midden 7 0.18 0 2 7 74 Midden 8 1.02 3 6 9.5 141 Midden 9 0.3 6 5.33 28 152 M-Pit 8 2.04 14 41 183 930 M-Pit 6 0.41 6 0.41 8 235 M-Pit 7 0.62 37.33 16.66 95 665 M-Pit 7 0.62 2.66 11.33 19.5 198		Aidden	∞	1.2		13.66	86.5	320	531	31	178	18 0	0.15	1.25	1.71 10.	10.81 66	66.38 40	90.0	0.116	16 0.731		0.088 0.	0.004	32.00	0.031
Midden 1 0.7 2.33 0 7.5 21 Midden 9 2.42 14 12 0 194 Midden 6 0.21 1 11.66 12.5 53 Midden 7 0.18 0 2 7 74 Midden 8 1.02 3 6 9.5 141 M-Pit 8 2.04 14 41 183 930 M-Pit 6 0.41 6 10 8 235 M-Pit 4 0.25 37.33 16.66 95 665 M-Pit 7 0.62 2.66 11.33 19.5 198		Aidden	∞	0.93	_	99.6	15	47	102	4	22	0	0.12 0		1.21 1.88		12.75 5.8	5.88 0.04	0000 40	000 0000		0.099 0.	0.020		0.000
Midden 9 2.42 14 12 0 194 Midden 6 0.21 1 11.66 12.5 53 Midden 7 0.18 0 2 7 74 Midden 8 1.02 3 6 9.5 141 Midden 3 0.3 6 5.33 28 152 M-Pit 8 2.04 14 41 183 930 M-Pit 6 0.41 6 10 8 235 M-Pit 4 0.25 37.33 16.66 95 665 M-Pit 7 0.62 2.66 11.33 19.5 198		fidden	_	0.7	2.33	0	7.5	21	36	9	7	1 0		2.33 0	7.5		5 21	0.17	7 0.311	=		0	0.033	9.01	0.111
Midden 6 0.21 1 11.66 12.5 53 Midden 7 0.18 0 2 7 74 Midden 8 1.02 3 6 9.5 141 Mrden 3 0.3 6 5.33 28 152 Mrden 8 2.04 14 41 183 930 Mrpit 6 0.41 6 10 8 235 Mrpit 7 0.62 37.33 16.66 95 665 Mrpit 7 0.62 2.66 11.33 195 198		Aidden	6	2.42	4	12	0	194	231	22	22	0 9	0.27	1.56	.33 0	25	25.67 21	21.56 0.1		1.173		0.203 0.	0.013	13.82	0.072
Midden 7 0.18 0 2 7 74 Midden 8 1.02 3 6 9.5 141 Midden 3 0.3 6 5.33 28 152 M-Pit 8 2.04 14 41 183 930 M-Pit 6 0.41 6 10 8 235 M-Pit 7 0.62 37.33 16.66 95 665 M-Pit 7 0.62 2.66 11.33 19.5 198 M-Pit 8 0.63 2.66 11.33 19.5 198		Aidden	9	0.21		11.66	12.5	53	114	15	49	0	0.04 0	0.17	.94 2.08		8.8	8.83 0.13	3 0.082	82 0.088	88 0.021		0.005	51.94	0.019
Midden 8 1.02 3 6 9.5 141 Midden 3 0.3 6 5.33 28 152 M-Pit 8 2.04 14 41 183 930 M-Pit 6 0.41 6 10 8 235 M-Pit 7 0.25 37.33 16.66 95 665 M-Pit 7 0.62 2.66 11.33 19.5 198		Aidden	7	0.18	_	2	7	74	92	4	15	0 0	0.03 0)	0.29 1	13	13.14 10	10.57 0.04	0000	000.00	:55	0.103 0.	0.003		0.000
Midden 3 0.3 6 5.33 28 152 M-Pit 8 2.04 14 41 183 930 M-Pit 6 0.41 6 10 8 235 M-Pit 4 0.25 37.33 16.66 95 665 M-Pit 7 0.62 2.66 11.33 19.5 198 M-Bit 7 0.62 2.66 11.33 19.5 198		Aidden	∞	1.02	~	9	9.5	141	179	4	23	0 6	0.13 0	0.38 0	0.75 1.19		22.38 17	17.63 0.02	0.319	19 0.507		0.173 0.	0.007	46.39	0.022
M-Pit 8 2.04 14 41 183 930 M-Pit 6 0.41 6 10 8 235 M-Pit 4 0.25 37.33 16.66 95 665 M-Pit 7 0.62 2.66 11.33 19.5 198 M-Bit 8 0.7 7.3 2.10 134		fidden	3	0.3	2	5.33	28	152	222	15	36	0 6	0.1 2	3	1.78 9.33	3 74		50.67 0.07	7 0.214	14 1.124		0.056 0.	0.002	25.34	0.039
M-Pit 6 0.41 6 10 8 235 M-Pit 4 0.25 37.33 16.66 95 665 M-Pit 7 0.62 2.66 11.33 19.5 198 M-Bit 9 0.7 73.2 10 174		A-Pit	∞	2.04	4	41	183	930	1467	117	342	9	0.26	1.75 5	5.13 22.	22.88 18	183.38 11	116.25 0.08	920.0 80	76 0.341	41 0.051		0.002	66.43	0.015
M-Pit 4 0.25 37.33 16.66 95 665 M-Pit 7 0.62 2.66 11.33 19.5 198 M B:: 0 0 7 73 2 10 174		A-Pit	9	0.41	,	10	∞	235	284	6	21	12 0	0.07	_	1.67 1.33		47.33 39	39.17 0.03	3 0.752	52 0.599		0.042 0.	0.002	39.17	0.026
M-Pit 7 0.62 2.66 11.33 19.5 198		A-Pit	4	0.25	37.33	16.66	95	999	950	53	186	79 0	0.06	9.33 4	4.17 23.	23.75 23	237.5 16	166.25 0.06	0.393	93 2.237		0.014 0.	0.000	17.82	0.056
M.Dit 0 03 733 3 10 174		A-Pit	7	0.62	99.7	11.33	19.5	198	270	8	31	5 0		0.38	.62 2.79	22.30	38.57 28	28.29 0.03	3 0.136	36 0.235			0.003	74.45	0.013
M-Pit 8 0.2 /.33 3 19 1/4	MP844 N	M-Pit	∞	0.2	7.33	3	19	174	235	33	29	19 0	0.03 0	0.92 0	0.38 2.38		29.38 21	21.75 0.14	4 0.387	87 2.421		0.079 0.	0.001	23.64	0.042

Fragmentation Index

The Fragmentation Index (*FI*) was developed for this study in order to facilitate recognition of variation in the degree of breakage within the assemblage, given that high frag-mentation has been linked with dung-derived assemblages (Spengler etÿal. 2013). Significantly, the *FI* addresses the need for a quantitative method to characterize fragmentation, as previously noted by Antolín and Buxó (2011) and by Spengler etÿal. (2013) in their discussion of plant remains from Begash (Kazakhstan). *FI* is calculated by creating a ratio with the total number of whole carbonized non-wood

(NW) items, as recognized on the basis of unique anatomical parts such as cereal embryos (Jones 1990), as the numerator and the total number of fragmentary carbonized non-wood items as the denominator (Total#NWwhole/Total#NWfrag). As such, larger values (i.e. those closer to 1) reflect a lower degree of fragmentation (i.e. a relative equivalence of complete to fragmentary remains) whereas smaller values, such as 0.01, reflect greater fragmentation (i.e. a lower propor-tion of complete to fragmentary remains). Because the *FI* is volume-independent, it allows for recognition of variable fragmentation even when sample sizes differ considerably.

Context grouping andÿstatistical analysis

In order to assess whether or not: (1) variation within the assemblage is related to contextual differences, and (2) discrete contexts represent varied depositional patterns, density and *FI* values for all samples were grouped by context for further examination with non-parametric rank-based statis-tical tests. The Kruskal–Wallis test was employed to com-pare differences in the distribution of median values for FI and all density measures across context groups, while the Mann–Whitney U test was used for pairwise comparison between context types of the distribution of values for spe-cific measures. For both tests, the significance level (alpha) was set prior to analysis at p<0.05.

Results

Whereas the assemblage appears to be relatively homogeneous when considered in terms of the relative frequency of cereal grains, charred weed seeds, and cereal chaff (Fig.ÿ3), non-parametric statistical analysis reveals greater variation in the assemblage. Specifically, the distribution of *FI* val-ues and density measures for charcoal, weed seeds, non-wood items, and especially "non-wood indeterminate, cereal endosperm type" reveal patterning which, in some cases, reflects variation in the pre- and post-depositional assem-blage formation processes specific to different contexts of recovery.

Fig. 3ÿÿTernary plot showing contextual comparison of flotation sam-ple composition for midden, hearth, and interior/exterior surface con-texts at Fistÿklÿ Höyük (IIIa/b), calculated on the basis of cereal crop seed, cereal chaff (normalized to 1-grain equivalencies), and carbon-ized weed seed densities

Kruskal-Wallis test results

Analysis of density values and FI for the five broad con-text types (ext surf, hearth, int surf, midden, and M-Pits, Figs.ÿ4, 5, 6, 7, 8) with the non-parametric Kruskal–Wallis test (Tableÿ3) revealed statistically significant differences between context types for ChDens (p<0.001), WdSdDens (p = 0.024), NWDens (p = 0.005), and NWIndCerDens (p=<0.001) values. In other words, the median values for ChDens, WdSdDens, NWDens, and NWIndCerDens show significant variation across context types when all context groups are considered. However, the Kruskal–Wallis test does not indicate which context group is stochastically domi-nant for each variable, only that statistically significant non-random variation is present.

Fragmentation Index

As shown in Figs.ÿ4, 5, 6, 7 and 8, the *FI* values for the IIIa–IIIc samples considered here are typically low, with only a few samples having *FI* values above 0.4. For all con-text types, the median *FI* ranges from 0.06 to 0.14, indicat-ing relatively high fragmentation in most samples for all context types. Samples from exterior surface and hearth con-texts show the highest medians (0.14 and 0.13, respectively), indicating lower fragmentation than other context types.

Fig. 4ÿÿBox and whisker plots for charcoal density (ChDens), weed seed density (WdSdDens), non-wood density (NWDens), non-wood indet. Cereal endosperm type (NWIndCerDens) and Fragmentation Index *(FI)*, values for exterior surface samples (n=15)

Fig. 6ÿÿBox and whisker plots for charcoal density (ChDens), weed seed density (WdSdDens), non-wood density (NWDens), non-wood indet. Cereal endosperm type (NWIndCerDens) and Fragmentation Index *(FI)*, values for interior surface samples (n=3)

Fig. 5ÿÿBox and whisker plots for charcoal density (ChDens), weed seed density (WdSdDens), non-wood density (NWDens), non-wood indet. Cereal endosperm type (NWIndCerDens) and Fragmentation Index *(FI)*, values for Hearth samples (n=4)

Fig. 7ÿÿBox and whisker plots for charcoal density (ChDens), weed seed density (WdSdDens), non-wood density (NWDens), non-wood indet. Cereal endosperm type (NWIndCerDens) and Fragmentation Index *(FI)*, values for midden samples (n=8)

However, the Kruskal–Wallis test results for *FI* (p=0.100) indicate that there is not a statistically significant difference in the median values of *FI* (significance level at p<0.05) when all context groups are considered (Tableÿ3).

Fig. 8ÿÿBox and whisker plots for charcoal density (ChDens), weed seed density (WdSdDens), non-wood density (NWDens), non-wood indet. Cereal endosperm type (NWIndCerDens) and Fragmentation Index (FI), values for midden-pit samples (n=5)

Charcoal density

Charcoal density values (Figs.ÿ4, 5, 6, 7, 8) are low for nearly all samples, with a range from 0.00 to 0.70"g/L, with higher median values and wider distributions of values for midden and midden-pit contexts as compared with other context types. Analysis of charcoal density values with the Kruskal–Wallis test (Table"g3) produced a p value of <0.001, indicating statistically significant variation among charcoal density values for samples from the different context types.

Cereal grain density

Most samples have cereal grain density values that are below three cereal grains per litre (Figs.ÿ4, 5, 6, 7, 8), with medians ranging from 0.03 (Interior Surfaces) to 1.75 (Midden-Pits). The Kruskal–Wallis test (Tableÿ3) produced a *p* value of 0.214, indicating a lack of statistically significant support for context-related variation in cereal grain density values.

Weed seed density

Weed seeds show density values (Figs.ÿ4, 5, 6, 7, 8) of fewer than five seeds per litre for all context types, with median values ranging from 0.44 (Interior Surfaces) to 1.84 (Hearths). Analysis of weed seed density values for all con-text groups with the Kruskal–Wallis test (Tableÿ3) produced a p value of 0.0024, indicating statistically significant vari-ation in the median values for the five context groups and a linkage between context type and weed seed density.

Chaff density

Chaff density values range from 0.00 to 23.75 chaff items per litre (Figs.ÿ4, 5, 6, 7, 8) and show similar medians across context types. The Kruskal–Wallis test (Tableÿ3) returned a p value of 0.084, indicating a lack of significant variation in chaff density medians for different recovery contexts.

Nonÿwood item density

Density values for non-wood items (NWDens), a category that includes seeds, chaff elements, and all unidentified non-wood items, are higher than those for other material types (Figs.ÿ4, 5, 6, 7, 8). Median values for NWDens range from 4.00 (Interior Surfaces) to 74.00 items per litre (Midden-Pits). In NWDens values are consistently high for samples from Midden-Pits, in contrast to those from other groups.

Analysis of NWDens values with the Kruskal–Wallis test (Tableÿ3) returned a *p* value of 0.005, indicating statistically significant context-related variation in NWDens values.

Nonÿwood indeterminate (cerealÿtype) density

Density values for the category "non-wood indeterminate (Cereal type) items", (NWIndCTDens, Figs.ÿ4, 5, 6, 7, 8) are highly variable. Midden-Pit (50.67) and Midden contexts (19.31) have markedly higher medians values for NWIndCT-Dens than other context types. Analysis of NWIndCTDens values with the Kruskal–Wallis test (Tableÿ3) produced a p value of <0.001, indicating a strong statistical significance for context-related variation in NWIndCTDens values.

Table 3ÿÿKruskal-Wallis test results for differences in medians for context types; significance level p<0.05; bold text indicates value below sig-nificance level

	BE	ChDens	CerGrDens	WdSdDens	ChaffDens	NWDens	NWIndCerDens
p values	0.100	<0.001	0.214	0.0024	0.084	0.005	<0.001

Relative density ratios

Four relative density ratios, Charcoal to Weed Seeds, Cereal Grains to Chaff, Cereal Grains to Weed Seeds, and Charcoal to "non-wood indet. Cereal-type", all standardized by vol-ume, were also assessed with the Kruskal-Wallis test for the three recovery context types with the most samples, exterior surfaces, middens, and midden-pits. Although these could be simplified to the ratio of charcoal weight to weed seed count, for example, it was opted to retain their relative ratio structure to emphasize that what is really being compared is the relative density of two components in a given sam-ple. Charcoal densities are based on the weight (in g) of >2ÿmm charcoal fragments. Weed seeds represent all sizes of weed seeds above the light fraction mesh size of 0.15 ymm. Of these four ratios, only Charcoal to Weed Seed Density (ChDens:WdSdDens) and Charcoal to "non-wood indet. Cereal type", (ChDens:NWIndCTDens) showed significant differences between sample medians, with a p values of 0.005 and 0.04. As such, these were the only relative density measure further examined with the Mann-Whitney U test.

Mann-Whitney U test results

Non-parametric analysis with the pairwise Mann–Whitney U test was conducted for selected context group pairs in order to further explore the utility of these nine measures

(six density measures, FI, two relative density measures) for distinguishing the sub-assemblages recovered from dif-ferent recovery context types. Given the low quantity of samples from Interior Surface (n = 3) and Hearth (n=4) contexts, pairwise analysis was restricted to comparison of Midden (n=8), Midden-Pit (n=5), and Exterior Sur-face (n=15) samples. For each pair of the selected context groups, all nine measures were analysed. The results of this analysis (Tableÿ4) revealed several statistically sig-nificant context-related differences in composition at the p < 0.05 significance level for comparisons of samples from exterior surface (Ext Surf), midden, and midden pit (M-Pit) samples for the ChDens, NWDens, NWInd-CerDens, FI, and ChDens:WdSdDens values. In contrast, no statistically significant variation was demonstrated for the other four measures (CerGrDens, WdSdDens Chaf-fDens, ChDens:NWIndCTDens) for any context type pair.

In order to test for the presence of type 1 errors in these results, a stepwise Bonferroni correction (Abdi 2010) was appliedÿ(Tableÿ5). The resulting adjusted p values con-firmed statistically significant differences among the fol-lowing comparisons (Tableÿ6): exterior surfaces vs. mid-dens for charcoal density; exterior surfaces vs. M-Pits for NWIndCT density and charcoal density; and middens vs. M-Pits for NWIndCT density and ChDens:NWIndCTDens. Although type 1 errors cannot be ruled out for the remain-ing comparisons, their low probability is suggested by the similarity of the adjusted p values to the original p values.

Table 4ÿÿMann–Whitney U test p values for comparisons of samples from exterior surface (n=16 observations), midden (n=8 observations), midden-pit (n=5 observations), and midden and midden-pit combined (n=13 observations) contexts

	ChDens CerGrDens Wo	dSdDens ChaffDen	ıs NWDens NWIı	nd CTDens ChE	ens: WdSd	Its	ChDens: NWInd CTDens	BE
Ext. surf. vs. middle 0.001	0.722	0.675	0.583	0.540	0.026	0.009	0.132	0.075
Ext. Surf. vs. M-Pit 0.011 ().512	0.222	0.485	0.045	0.005	0.057	0.304	0.066
Center vs. M-Pit	0.305 0.463	0.272	0.213	0.067	0.048	0.055	0.012	0.769

Values in bold text with shading indicate statistical significance at the p<0.05 level. Underlined values indicate statistical significance at the p<0.10 level

Table 5ÿÿResults of stepwise Bonferroni procedure to provide adjusted *p* values to test for type 1 errors

0.001 0.00625 Ext. surf. vs. midden ChDens Strong 0.005 0.007 Ext. surf. vs. M-Pit NWIndCTDens Strong 0.009 0.0083 Ext. surf. vs. midden ChDens:WdSdDens Possible 0.011 0.01 Ext. surf. vs. M-Pit ChDens Possible 0.012 0.125 Midden vs. M-Pit ChDens:NWIndCTDens Strong 0.026 0.0167 Ext. Surf. vs. Middle NWIndCTDens None 0.045 0.025 Ext. Surf. vs. M-Pit NWIndCTDens None 0.048 0.05 Middle vs. M-Pit NWIndCTDens Strong	p values in ranked order	Adjusted <i>p</i> values	Variable	Significance
0.009 0.0083 Ext. surf. vs. midden ChDens:WdSdDens Possible 0.011 0.01 Ext. surf. vs. M-Pit ChDens Possible 0.012 0.125 Midden vs. M-Pit ChDens:NWIndCTDens Strong 0.026 0.0167 Ext. Surf. vs. Middle NWIndCTDens None 0.045 0.025 Ext. Surf. vs. M-Pit NWDens None	0.001	0.00625	Ext. surf. vs. midden ChDens	Strong
0.011 0.01 Ext. surf. vs. M-Pit ChDens Possible 0.012 0.125 Midden vs. M-Pit ChDens:NWIndCTDens Strong 0.026 0.0167 Ext. Surf. vs. Middle NWIndCTDens None 0.045 0.025 Ext. Surf. vs. M-Pit NWDens None	0.005	0.007	Ext. surf. vs. M-Pit NWIndCTDens	Strong
0.012 0.125 Midden vs. M-Pit ChDens:NWIndCTDens Strong 0.026 0.0167 Ext. Surf. vs. Middle NWIndCTDens None 0.045 0.025 Ext. Surf. vs. M-Pit NWDens None	0.009	0.0083	Ext. surf. vs. midden ChDens:WdSdDens	Possible
0.026 0.0167 Ext. Surf. vs. Middle NWIndCTDens None 0.045 0.025 Ext. Surf. vs. M-Pit NWDens None	0.011	0.01	Ext. surf. vs. M-Pit ChDens	Possible
0.045 0.025 Ext. Surf. vs. M-Pit NWDens None	0.012	0.125	Midden vs. M-Pit ChDens:NWIndCTDens	Strong
ACTION AND AND AND ADDRESS OF THE ACTION ADDRESS OF THE ACTION AND ADD	0.026	0.0167	Ext. Surf. vs. Middle NWIndCTDens	None
0.048 0.05 Middle vs. M-Pit NWIndCTDens Strong	0.045	0.025	Ext. Surf. vs. M-Pit NWDens	None
	0.048	0.05	Middle vs. M-Pit NWIndCTDens	Strong

Context pair Ch	Dens	CerGrdens WdSd dens Chaff dens NWDens				NWInd CTDens	BE	ChDens: WdSd- Its	ChDens: NWIndCT
Ext. surf. vs. middle	Higher mid-den	-		-		Higher mid-den	Higher mid-den		Higher mid-den
Ext. surf. vs. M-Pit	Higher/M-pit				Higher / M-Pit	Higher M-Pit	Higher— M-Pit		
Middle vs. M-Pit	Lower in M-Pits, but not statistically significant		More than 2× higher in M-Pits, but not statistically significant		Higher— (M-Pit) Nearly 3× higher in M-Pits, but weak statistical	Higher M-Pit			Higher M-Pit

Bold text indicates variation that was significant at a significance level of p<0.005 (Mann–Whitney U); underlined text indicates variation that was only weakly significant (significance level of p<0.10) (Mann–Whitney U); italics represent qualitative observations

Discussion

This exploratory analysis sought to determine: (1) whether the recovered charred botanical remains originate from dung, non-dung sources, or both; (2) whether or not the composition of samples from specific context types shows non-random variation that might point toward different assemblage formation processes for different context types rather than a homogenized assemblage resulting from post-depositional mixing. On the basis of the eight measures discussed above and the results of statistical analysis, sig-nificant variation in composition and preservation is appar-ent in the sub-assemblages from exterior surface, midden, and midden-pit contexts. The observed patterns of recovery context-related variation, shown in Tableÿ5, may be sum-marized as follows:

- 1. Exterior surface vs. midden: Compositional patterning is greatest between the Midden and Exterior Surface groups. These groups show distinctive, highly significant differentiation in density values for charcoal (p=0.001), non-wood indet. (cereal-type) (p=0.026), and the rela-tive density of charcoal to weed seeds (p=0.009) all of which are higher for the Midden group. This group also shows a weak significance (p=0.075) with for higher fragmentation than in the Exterior Surface group.
- 2. Exterior surface vs. midden-pit: As compared with exterior surface samples, those from midden-pit depos-its show statistically significant compositional differ-ences in charcoal density (p=0.011), non-wood den-sity (p=0.045), and "non-wood indet. Cereal endosperm type" density (p=0.005), all of which are higher in midden-pit samples.

- Midden vs. midden-pit: The midden and midden-pit groups also show statistically significant composi-tional differences from one another for three vari
 - ables. These context groups are distinguished by sig-nificant differences for lower relative density values ChDens:WdSdDens and ChDens:NWIndCTDens in the midden-pit group, and higher values of NWIndCTDens in the midden-pit group. In other words, midden-pits are characterized by a statistically significant higher pres-ence of weed seeds and "non-wood indeterminate, cereal type" fragments relative to charcoal than are middens, as well as a higher presence of "non-wood indeterminate, cereal type" fragments.

Context, taphonomy, and plant sources

The non-parametric statistical analysis applied here to inves-tigate the relationship of sample composition and preserva-tion with various context types reveals several statistically significant, context-related patterns within the assemblage.

This patterning supports the inference that these sub-assem-blages reflect variation in their sources of plant remains and the formation processes that affected their composition and degree of fragmentation. Although post-depositional processes might be argued to have biased the preserva-tion of small seeds as compared with more robust cereal seeds and fragments, the fact that glume bases and small seed fragments are abundant in the assemblage, which was completely sorted down to the smallest size fraction, argues against this.

Exterior Surface samples are characterized by four sta-tistically significant differences from midden and midden-pit samples: low charcoal and non-wood indet. cereal-type

densities, and low relative densities of charcoal to weed seeds and charcoal to non-wood indet. cereal-type frag-ments. The low presence of non-wood indet. cereal-type fragments, particularly considered in association with the dominance of glume bases in these samples, is inconsist-ent with waste from daily food preparation. On the other hand, cereal grains do not reach even the 1:4 grain:chaff ratio determined experimentally for hulled barley fed to sheep and goats (Anderson and Ertug-Yaras 1998), such that the prevalence of chaff must be explained another way.

While the low charcoal densities, the dominance of sheep and goat in the faunal assemblage, and the site's location (Miller 1984; Miller and Smart 1984) could also be argued to point toward dung-fuel as a source of plant remains in these samples, the relative absence of arable weeds sug-gests that they derive from parching. Hillman's (1981) ethnographic observations of crop processing document the use of burning and pounding to aid in the removal of the tough outer glumes of hulled cereals, such as the einkorn wheat and hulled barley represented at Fistikli, resulting in the separation of spikelet forks into individ-ual glume bases. The degree of compositional similarity among Exterior Surface samples, the prevalence of chaff, and the paucity of field weeds shows a pattern similar to that documented by Graham and Smith (2013) for a stor-age deposit of cleaned emmer spikelets at Kenan Tepe that they argue represents a late stage of processing pre-cleaned spikelets that parallels stages 6-7 as listed by Fuller etÿal. (2014), parching, pounding, and second win-nowing/ medium-coarse sieving. The most likely source of the plant remains recovered in samples from exterior surfaces is thus the routine activity of late stage cereal processing, with carbonization resulting from a combination of accidental burning during parching and the casual use of chaff as fuel, as described by van der Veen (1999).

cleaning of these features, with redeposition of material as secondary or tertiary waste in middens and midden-pits.

Statistically significant differences between midden and midden-pit samples also emerged from this analysis, specifi-cally, an association of midden-pits with higher values for both the density of non-wood indet. cereal-type fragments (p=0.048) and the relative density of charcoal to non-wood indet. cereal-type fragments (p=0.012) (Tablesÿ4, 6). The higher density values for non-wood indet. cereal-type frag-ments in midden-pits, which are stratified beneath overlying Midden deposits, suggests that different formation processes affected these two depositional contexts. In terms of behav-ioural factors, midden-pits fit a pattern of dedicated use as locations for repeated disposal of food and food prepara-tion waste. Although not statistically significant, the mean density of weed seeds in midden-pit samples is nearly twice that of midden samples, and that of non-wood density for midden-pit samples is more than three-times that of mid-den samples. A possible explanation for these differences is the burning of dung fuel in food preparation activities represented by the midden-pit samples, as supported by the higher weed seed and nonwood item densities, the latter of which is statistically significant (p=0.026). Although not statistically significant, the higher degree of fragmentation in midden-pit samples (lower FI values) as compared with midden samples provides tentative support for the identifica-tion of dung fuel in midden-pits, as experimental feeding has shown increased fragmentation of plant remains in ruminant dung (Valamoti and Charles 2005). The high cereal chaff densities in midden-pit samples, argued to include burned animal dung, suggests the use of cereal processing by-products as fodder. However, despite what appears to be an identifiable contribution of burned dung fuel as one source of plant remains at Fistikli, crop processing and food prepa-ration seem to be the primary sources.

This activity seems to have been carried out regularly in the open area at the northern edge of the site (samples 10,684, 10,711, 10,784, and 10,790) and at times, also between tholoi (samples 4,298, 4,309) (Fig.ÿ2).

In contrast to samples from exterior surfaces, those from midden-pits and middens show statistically significant asso-ciations with higher values for charcoal density and non-wood indet. cereal-type fragment density, and lower degrees of fragmentation that are not statistically significant. The higher density of cereal-type endosperm fragments that char-acterizes midden and midden-pit samples is more consistent with routine food preparation activities that are typically car-ried out near fires. Although the number of hearth and inter-ior surface samples was too small for statistical analysis, the strikingly low counts of cereal-type endosperm fragments in these contexts as compared with middens and midden pits (Fig.ÿ8), despite the presence of cereal grains in nearly all hearth and interior surface samples, suggests regular

The higher FI values (representing lower fragmentation) for exterior surface samples as compared with midden and midden-pit samples, although not statistically significant, highlight the differential preservation of plant remains across these context types. The lower fragmentation of plant remains in exterior surface samples, despite their association with parching and pounding—activities that promote fragmentation—may reflect fewer late stage processing transformations, such as fine sieving, cooking, sweeping, and fewer effects from successive episodes of redepositions as compared with those recovered from midden and midden-pit contexts.

At Fistÿklÿ, for the later Early Halaf, the primary source of plant material seems likely to be crop processing, spe-cifically the dehusking of glume wheats. Carbonization of these materials would have resulted from the use of heat

for parching and the use of processing by-products as both sources of casual fuel and fodder for sheep and goats, whose

dung was later burned as fuel in certain context types. The macrobotanical assemblage attests to repeated episodes of glume wheat processing in exterior spaces adjacent to the northern edge of the site and occasionally in spaces between tholoi. While the burning of animal dung may contribute to the recovered plant materials, the primary source of plant remains for most midden and exterior surface samples is debris from crop processing and food preparation activities.

Conclusions

In summary, this analysis of contextual distribution of compositional patterns for the FHIIIa-c assemblage shows tentative evidence for dung-derived plant remains in midden-pits, but not in other depositional contexts such as middens and exterior surfaces. On the whole, the Fistikli evidence reflects a pattern noted by Charles (1998) and Fuller etval. (2014), in which dung burning adds "noise" to crop processing and food preparation waste, which are the primary contributors to the assemblage. This assemblage is most similar to those of Abu Salabikh (Charles 1998) and Kenan Tepe (Graham and Smith 2013), in that it shows evidence for both non-dung and dungderived plant remains. While Charles (1998) and Graham and Smith (2013) apply the multivariate statis-tical method of correspondence analysis (CA) to tease out such patterning in their datasets, the new method developed for this study relied upon non-parametric statistical methods to examine multiple indices. In many cases, researchers have more clear evidence from which to determine the presence or absence of burned dung. For example, at Domüztepe, Whicher-Kansa etÿal. (2009) rely on higher wood to seed weight ratios and pollen evidence for the availability of for-ested areas near the site to support their argument that dung fuel was not used. Conversely, at sites such as Kenan Tepe (Graham and Smith 2013), Jeitun (Charles and Bogaard 2011), and Abu Salabikh (Charles 1998), the presence of burned dung pellets provided a clear signal that dung fuel was a source of at least some plant remains at these sites and an opportunity to test the CA models. At Fistikli however, no dung pellets were recovered and the assemblage showed circumstantial evidence for dung fuel, namely the overall low quantities of cereal grains, prevalence of chaff, high degree of fragmentation, and low charcoal densities, many of which are also consistent with certain stages of cereal processing. The new methodology developed for analysis of this assemblage reveals contextual variation in compo-sition that reflects taphonomic processes. Although the FI

results show that fragmentation is not a significant variable for differentiating these samples, the *FI* provides a rapid quantitative index for assessing inter-sample differences. In addition to the analysis of intra-contextual patterning, to be undertaken in a second stage of this research, it would be

useful to integrate floral and faunal data on composition and preservation to assess the fit of the combined datasets with the taphonomic model proposed here.

The use of both dung and wood as fuel at Fistÿklÿ may indicate repeated use of the site at different times of the year, perhaps for planting cereals and/or birthing and milk-ing animals in the early spring (cf. Kansa etÿal. 2009), and harvesting and processing spring-sown cereals in the late summer. The abundance of neonatal and fetal sheep/goat remains reported by David Orton (unpublished report) for IIIa/IIIb midden deposits provides another line of support for this interpretation. I hope, that this discussion contributes to building on her example of attention to context, and answering the most fundamental question in palaeoethnobotany, as phrased by Miller (1989), "What mean these seeds"?

Acknowledgements I am grateful to Susan Pollock and Reinhard Bern-beck for allowing me the opportunity to study this material. I thank Chantel White, Mac Marston, and Alan Farahani for inviting me to participate in the SAA session to honour Naomi Miller as the 2017 recipient of the Fryxell Award and for their encouragement throughout the writing process, and the Charles P. Taft Research Center for a writing fellowship that enabled its completion. Thanks are also due to two anonymous reviewers who provided many helpful suggestions for the manuscript. Alan Sullivan deserves special thanks for discussion of taphonomic issues and helpful advice concerning statistical analysis.

Finally, I thank John Wallrodt for preparing the figures, and Kathleen Forste for help with preparation of an earlier version of Fig.ÿ2.

Funding Funding for archaeobotanical analysis was provided by a grant awarded to Susan M. Pollock from the Wenner-Gren Foundation for Anthropological Research. Funding for writing and editing in 2018 was provided by a Taft Center Fellowship from the Charles P. Taft Research Center at the University of Cincinnati.

References

- Abdi H (2010) Holm's Sequential Bonferroni Procedure. In: Salkind N (ed) Encyclopedia of research design. Sage, Thousand Oaks, ppÿ1–8
- Algaze G, Ataman K, Ingraham M etÿal (1986) The Chicago euphrates archaeological project, 1980–1984: an interim report. Anatolica 13:83–121
- Allen SE, Forste KM (2019) Archaeobotanical remains. In: Wright JC, Dabney MK (eds) Nemea valley archaeological project vol-umeÿIII. The Mycenaean settlement on Tsoungiza Hill. The Amer-ican School of Classical Studies at Athens, Princeton (in press)
- Anderson P, Ertug-Yaras E (1998) Fuel fodder and faeces: an ethno-graphic and botanical study of dung fuel use in central Anatolia. Environ Archaeol 1:99–109
- Antolín F, Buxó R (2011) Proposal for the systematic description and taphonomic study of carbonized cereal grain assemblages: a case study of an early Neolithic funerary context in the cave of Can Sudurní (Begues, Barcelona province, Spain). Veget Hist Archaeobot 20:53–66
- Bernbeck R, Pollock S, Allen SE et al (2003) The biography of an Early Halaf village: Fistikli Hovuk. 1999–2000. Istanbuler Mitteilungen 53:9–77

- Capper MM (2007) Urban subsistence in the Bronze and Iron ages: the palaeoethnobotany of Tell Tayinat, Turkey. Doctoral dissertation, Department of Archaeology, University of Toronto
- Cappers RTJ, Neef R, Bekker RM (2009) The digital atlas of economic plants.

 Groningen archaeological studies, vol 9. Barkhuis, Eelde
- Charles M (1998) Fodder from dung: the recognition and interpretation of dung-derived plant material from archaeological sites. Environ Archaeol 1:111–122
- Charles M, Bogaard A (2011) Charred plant macro-remains from jei-tun: implications for early cultivation and herding practices in Western Central Asia. In: Harris DR (ed) Origins of agriculture in Western Central Asia: an environmental—archaeological study.
 - University of Pennsylvania Museum of Anthropology and Archae-ology, Philadelphia, ppÿ150–165
- Crawford PL (1999) Botanical remains. In: Stone EC, Zimansky PE (eds) The Iron age settlement at 'Ain Dara, Syria: survey and soundings, BAR international series, vol 786. Archaeopress, Oxford, ppÿ113–122
- Deckers K (2011) The "dung-as-fuel" model tested at two Syrian Jezirah sites. In:

 Deckers K (ed) Holocene landscapes through time in the Fertile Crescent.

 Subartu vol 28. Brepols, Turnhout, ppÿ143–156
- Dennell RW (1972) The interpretation of plant remains: Bulgaria. In: Higgs ES (ed)
 Papers in economic prehistory. Cambridge Univer-sity Press, Cambridge,
 ppÿ149–159
- Dennell RW (1974) Botanical evidence for prehistoric crop processing activities. J Archaeol Sci 1:275–284
- Dennell RW (1976) The economic importance of plant remains repre-sented on archaeological sites. J Archaeol Sci 3:229–247
- Fuller DQ, Stevens C, McClatchie M (2014) Routine activities, ter-tiary refuse, and labor organization. In: Madella M, Lancelloti C, Savard M (eds) Ancient plants and people: contemporary trends in archaeobotany. University of Arizona Press, Tuscon, ppÿ174–217
- Gallagher DE (2014) Processes of macrobotanical record formation. In: Marston JM, d'Alpoim-Guedes J, Warinner C (eds)

 Method and theory in paleoethnobotany. University Press of Colo-rado,
 - Boulder, ppÿ19–34
- Graham PJ, Smith A (2013) A day in the life of an Ubaid household: archaeobotanical investigations at Kenan Tepe, south-eastern Tur-key. Antiquity 87:405–417
- Hansen JM, Allen SE (2011) Palaeoethnobotany. In: Pullen DM (ed)

 The Nemea valley archaeological project, volÿl. The early Bronze age village
 on Tsoungiza Hill. American School of Classical Stud-ies at Athens, Princeton,
 ppÿ805–891
- Hillman GC (1981) Crop husbandry: evidence from macroscopic remains. In: Simmons IG, Tooley MJ (eds) The Environment in British prehistory. Duckworth, London, ppÿ183–191
- Hillman GC (1984) Interpretation of archaeological plant remains: the application of ethnographic models from Turkey. In: van Zeist W, Casparie WA (eds) Plants and ancient man: studies in paleoethno-botany. Balkema, Rotterdam, ppÿ1–41
- Hillman GC (1991) Phytosociology and ancient weed floras: taking account of taphonomy and changes in cultivation methods. In: Harris DR, Thomas KD (eds) Modelling ecological change. Insti-tute of Archaeology, London, ppÿ27– 40
- Jones GEM (1984) Interpretation of archaeological plant remains: eth-nographic models from Greece. In: Harris DR, Thomas KD (eds)

 Modelling ecological change. Institute of Archaeology, London, ppÿ43–61
- Jones GEM (1987) A statistical approach to the archaeological identi-fication of crop processing. J Archaeol Sci 14:311–323
- Jones GEM (1990) The application of present-day cereal processing studies to charred archaeobotanical remains. Circaea 6:91–96
- Kansa SW, Kennedy A, Campbell S, Carter E (2009) Resource exploi-tation at Late Neolithic Domuztepe: faunal and botanical evi-dence. Curr Anthropol 50:897– 914

- Lennstrom HA, Hastorf CA (1995) Interpretation in context: sam-pling and analysis in palaeoethnobotany. Am Antiq 60:702–721
- Martin AC, Barkley WD (1961) Seed identification manual. University of California Press, Berkeley
- Miksicek CH (1987) Formation processes of the archaeological record. In: Schiffer MB (ed) Advances in archaeological method and theory, volÿ10. University of New Mexico Press, Albuquer-que, ppÿ211–247
- Miller NF (1982) Economy and Environment of Malyan, a Third Millennium B.C. Urban Center in Southern Iran. Ph.D. Disser-tation, Department of Anthropology, University of Michigan, Ann Arbor
- Miller NF (1984) The use of dung as fuel: an ethnographic example and an archaeological application. Paléorient 10:71–79
- Miller NF (1988) Ratios in paleoethnobotanical analysis. In: Hastorf CA, Popper VS (eds) Current paleoethnobotany. University of Chicago Press, Chicago, ppÿ72–85
- Miller NF (1989) What mean these seeds? A comparative approach to archaeological seed analysis. Hist Archaeol 23:50–59
- Miller NF (1996) Seed eaters of the ancient Near East: human or herbivore? Curr Anthropol 37:521–528
- Miller NF, Marston JM (2012) Archaeological fuel remains as indicators of ancient west Asia agropastoral and land-use sys-tems. J Arid Environ 86:97–103. https://doi.org/10.1016/j.jarid env.2011.11.021
- Miller NF, Smart TL (1984) Intentional burning of dung as fuel: a mechanism for the incorporation of charred seeds into the archaeological record. J Ethnobiol 4:15–28
- Minnis P (1981) Seeds in archaeological sites: sources and some interpretive problems. Am Antiq 46:143–152
- Neef R, Cappers RTJ, Bekker RM (2012) Digital atlas of economic plants in archaeology. Groningen archaeological studies, vol 17. Barkhuis, Eelde
- Pearsall D (1988) Interpreting the meaning of macro remains abun-dance: the impact of source and context. In: Hastorf CA, Popper VS (eds) Current paleoethnobotany: analytical methods and cul-tural interpretations of archaeological plant remains. University of Chicago Press, Chicago, ppÿ97–118
- Reddy SN (1999) Fueling the hearths in India: the role of dung in palaeoethnobotanical interpretation. Paléorient 24:61–69
- Spengler RN (2018) Dung burning in the archaeobotanical record of West Asia: where are we now? Veget Hist Archaeobot. https://doi.org/10.1007/200334-018-0669-8
- Spengler RN, Frachetti MD, Fritz GJ (2013) Ecotopes and herd for-aging practices in the steppe mountain ecotone of Central Asia during the Bronze and Iron ages.

 J Ethnobiol 33:125–147
- Stevens CJ (2003) An investigation of agricultural consumption and production models for prehistoric and Roman Britain. Environ Archaeol 8:61–76
- Valamoti SM (2004) Plants and people in late Neolithic and early Bronze age Northern Greece: an archaeobotanical investigation.

 Archaeopress. Oxford
- Valamoti SM (2013) Towards a distinction between digested and undigested glume bases in the archaeobotanical record from Neolithic northern Greece: a preliminary experimental investi-gation. J Environ Archaeol 18:31–42
- Valamoti SM, Charles M (2005) Distinguishing food from fodder through the study of charred plant remains: an experimen-tal approach to dung-derived chaff. Veget Hist Archaeobot 14:528–533
- Van Zeist W (1980) Plant remains from Girikihacÿyan. Turkey Anatolica 7:75–89
- Van Zeist W, Bakker-Heeres JAH (1986) Archaeobotanical studies in the Levant, 2: Neolithic and Halaf levels at Ras Shamra. Palaeohistory 26:151–170

- Van Zeist W, Waterbolk-van Rooijen W (1989) Plant remains from Tell Sabi Abyad. In: Akkermans PMMG (ed) Tell Sabi Abyad II: the pre-pottery. British Archaeological Reports, Oxford, pp 325–335
- Van Zeist W, Waterbolk-van Rooijen W (1996) The cultivated and wild plants. In:
 Akkermans PMMG (ed) Tell Sabi Abyad, the Late Neo-lithic Settlement,
 Istanbul. Nederlands-Historische-Archaeologisch Institut te Istanbul, Istanbul,
 pp 521–550
- Van der Veen M (1992) Crop husbandry regimes. An archaeobotani-cal study of farming in Northern England, 1000 bc-ad 500. JR Collis, Sheffield
- Van der Veen M (1999) The economic value of chaff and straw in arid and temperate zones. Veget Hist Archaeobot 8:211–224
- Van der Veen M (2007) Formation processes of desiccated and car-bonized plant remains—the identification of routine practice. J Archaeol Sci 34:968–990
- Van der Veen M, Jones M (2006) A re-analysis of agricultural produc-tion and consumption: implications for understanding the British Iron age. Veget Hist Archaeobot 15:217–228

- Wallace M, Charles M (2013) What goes in doesn't always come out: the impact of the ruminant digestive system of sheep on plant material, and its importance for the interpretation of dung-derived archaeobotanical assemblages. Environ
- Whicher-Kansa S, Kennedy A, Cambell S, Carter E (2009) Late Neo-lithic Domüztepe: faunal and botanical evidence. Curr Anthropol 50:897–914

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.