Caron-Lasne Maxence Note: 8/20 (score total: 8/20)

+293/1/8+

QCM THLR 4

Nom et prénom, lisibles :	Identifiant (de haut en bas) :
CARON-LASNE	
Maxence	
	□0 □1 □2 圓3 □4 □5 □6 □7 □8 □9
plutôt que cocher. Renseigner les champs d'identi sieurs réponses justes. Toutes les autres n'en ont q plus restrictive (par exemple s'il est demandé si 0 pas possible de corriger une erreur, mais vous pou incorrectes pénalisent; les blanches et réponses m	ni dans les éventuels cadres grisés « 🏖 ». Noircir les cases ité. Les questions marquées par « 🗶 » peuvent avoir pluqu'une; si plusieurs réponses sont valides, sélectionner la est nul, non nul, positif, ou négatif, cocher nul). Il n'est uvez utiliser un crayon. Les réponses justes créditent; les nultiples valent 0.
Q.2 Le langage $\{ (\mathbb{S}^n \otimes \mathbb{N}) \mid \forall n \in \mathbb{N} \}$ est	
non reconnaissable par automate fini	i 🗌 rationnel 🔲 vide 🔲 fini
Q.3 Le langage $\{ \stackrel{\bullet}{=}^n \stackrel{\bullet}{\cong}^n \mid \forall n \in \mathbb{N} \}$ est	
🗌 vide 📳 non reconnaissable p	par automate
 Q.4 Un langage quelconque □ peut avoir une intersection non vide avec s □ est toujours inclus (⊆) dans un langage rati □ n'est pas nécessairement dénombrable □ peut n'être inclus dans aucun langage déno Q.5 Un automate fini qui a des transitions spon 	oté par une expression rationnelle
\blacksquare n'est pas déterministe \Box accepte ε	est déterministe \square n'accepte pas ε
Q.6 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:	
\boxtimes L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ \square L_1	L_2 est rationnel $ \Box \ L_1, L_2$ sont rationnels est rationnel
Q.7 Combien d'états au moins a un automate dont la n -ième lettre avant la fin est un a (i.e., $(a +$	déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ - b)* $a(a+b)^{n-1}$):
$ \boxtimes 2^n \qquad \qquad \boxed{\frac{n(n+1)}{2}} $	\square Il n'existe pas. \square $n+1$
Q.8 Combien d'états au moins a un automate dé dont la n -ième lettre avant la fin est un a (i.e., (a +	éterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ - $b + c + d$)* $a(a + b + c + d)^{n-1}$):
\square Il n'existe pas. \boxtimes 2^n	$\Box 4^n \qquad \Box \frac{n(n+1)(n+2)(n+3)}{4}$
Q.9 Déterminiser cet automate. a, b	

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

2/2

Fin de l'épreuve.