Laboratorium 3. Stemming, lematyzacja, worek słów, taka klasyfikacja

Poprzednie zajęcia pozwoliły poznać narzędzia do gromadzenia danych. Mając dane oznaczone etykietami, można wykonać prosty eksperyment klasyfikacji. Jednakże, surowy tekst napisany w języku naturalnym nie nadaje się do trenowania modeli. Aby było to możliwe konieczna jest wektoryzacja danych. Rozwiązanie tego laboratorium pozwoli poznać przykładowy sposób transformacji surowych danych tekstowych z etykietami do prostego modelu zdolnego do klasyfikacji.

Zadanie 3.1. Przygotowanie danych

Wczytaj dane z katalogów positive oraz negative oraz dla każdego dokumentu:

- 1. Zamień w tekście wszystkie duże litery na małe
- 2. Dokonaj tokenizacji z użyciem TreebankWordTokenizer
- 3. Usuń z tokenów stopwords¹ (możesz też usunąć inne tokeny, które nie mają znaczenia np. "
br />")
- 4. Wykonaj stemming na tokenach z poprzedniego punktu z użyciem PorterStemmer
- 5. Wykonaj lematyzację na tokenach z punktu 3. z użyciem WordNetLemmatizer
- 6. Zapisz do tablic cztery zestawy tokenów:
 - Tokeny
 - · Bez stop words
 - · Po stemmingu
 - Po lematyzacji

Dokumentacja

- TreebankWordTokenizer²
- PorterStemmer³
- WordNetLemmatizer4

Zadanie 3.2. Worek słów

Wykonaj wektoryzację dla każdego z czterech zestawów tokenów z zadania 3.1, zgodnie z podejściem "Bag of Words"

- · Początkowo zapisz dane do zwykłej listy
- Wykorzystaj funkcję Counter w celu wyznaczenia występowania słów rozszerzając listę
- Zamień listę na macierz DataFrame wykorzystując funkcję from_records
- Zamień wartości "Nan" na zera oraz przekonwertuj na macierz typu ndarray⁵

Dokumentacja

- Counter⁶
- from records⁷
- fillna⁸

Zadanie 3.3. Klasyfikacja

- 1. Utwórz tablicę etykiet (300 zer oraz 300 jedynek) typu ndarray
- 2. Podziel dane na treningowe (70%) oraz testowe (30%) z użyciem train_test_split)
- 3. Wytrenuj model z użyciem klasyfikatora MultinomialNB na danych treningowych (funkcja fit())
- 4. Dokonaj predykcji modelu na danych testowych i zapisz wynik (funkcja predict ())
- 5. Wyświetl dokładności wyrażoną za pomocą metryki accuracy score

Dokumentacja

- train_test_split9
- MultinomialNB¹⁰
- accuracy_score¹¹

```
1<https://www.nltk.org/book/ch02.html>
2<https://www.nltk.org/api/nltk.tokenize.treebank.html>
3<https://www.nltk.org/api/nltk.stem.porter.html#module-nltk.stem.porter>
4<https://www.nltk.org/api/nltk.stem.wordnet.html>
5<https://www.nray.org/doc/stable/reference/generated/numpy.array.html>
```

- 5<https://numpy.org/doc/stable/reference/generated/numpy.array.html>
- 6<https://docs.python.org/3/library/collections.html#collections.Counter>
- 7 httml?highlight=from_records
- 8<https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.fillna.html>
- 9999999991111111111<a href="https://scikit-learn.org/stable/modules/generated/sklearn.org/sklearn.org/sklearn.org/sklearn.or
- 10<https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html>
- 11https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html