ACADEMIA GIOVANNINI

Tel. 2402 7227

www.giovannini.edu.uy

Eduardo Acevedo 1462

Lógica Curso 2019

Proposición 1. Sea $\Gamma \subseteq PROP$. Demostrar que $CONS(\Gamma)$ es infinito.

Demostración.

Caso 1: Γ infinito. Sabemos que $\Gamma \subseteq CONS(\Gamma)$, luego si Γ es infinito, también lo es $CONS(\Gamma)$.

Caso 2: Γ finito.

[La siguiente propuesta de demostración se basa en la demostración de infinitud de primos de Euclides.]

Supongamos por absurdo que CONS(Γ) es finito i.e. existe un $n \in \mathbb{N}$ tal que $|\text{CONS}(\Gamma)| = n > 0$; la última desigualdad se justifica ya que $p \to p \in \text{CONS}(\Gamma)$.

Como $CONS(\Gamma)$ es finito, podemos enumerar sus elementos por extensión

$$CONS(\Gamma) = \{\varphi_0, \varphi_1, \varphi_2, \dots, \varphi_{n-1}\}\$$

Elijamos $\varphi_i \in \text{CONS}(\Gamma)$. Es claro que $\xi = (\bigvee_{k=0}^{n-1} \varphi_k) \vee \neg \bot \notin \text{CONS}(\Gamma)^{-1}$, sin embargo existe una derivación $D \in \text{DER}$ con hipótesis φ_i y conclusión ξ^{-2} . Por tanto, hemos encontrado un nuevo elemento que no estaba en $\text{CONS}(\Gamma)$, esto significa que $|\text{CONS}(\Gamma)| > n$, lo cual es absurdo. Luego, es absurdo suponer que $\text{CONS}(\Gamma)$ es finito.

Conclusión. $CONS(\Gamma)$ es infinito.

²Esto significa que:

 $\varphi_i \\ \vdots \\ \xi$

¹Observar, por ejemplo, que ξ tiene más símbolos que cualquier otro elemento de CONS(Γ).