材料力学レポート1

J4-210447 川村朋広

2023年1月23日

課題

図のような鉄筋コンクリート梁の鉄筋量が100から $6000mm^2$ まで、変化した場合の梁の曲げ耐力Pの変化を、指定のコンクリートの強度ごとに計算する。

鉄筋量をx軸に、曲げ耐力をy軸にとりグラフを作成する。なお条件は以下の通りとする。

コンクリートの圧縮強度は以下の場合を考える

 $f_c' = 25$ MPa,35Mpa,45Mpa

	変数名	値	単位
コンクリートの終局ひずみ	ϵ'_{cu}	0.0035	
コンクリートの合力	C		MPa
鉄筋の降伏応力	f_{sy}	450	MPa
鉄筋の降伏ひずみ	ϵ_{sy}		MPa
ヤング率	E_s	200,000	MPa
鉄筋量	A_s		mm^2
鉄筋の合力	T		MPa
つり合い鉄筋比	P_b		
断面の横の長さ	b	200	mm
断面の有効高さ	d	500	mm
中立軸までの高さ	x		mm

1 つり合い鉄筋比を求める

ひずみ分布の傾きが中立軸の上下で一致することから

$$\frac{\epsilon'_{cu}}{x} = \frac{\epsilon_{sy}}{d-x}$$
$$\frac{x}{d} = \frac{\epsilon'_{cu}}{\epsilon'_{cu} + \epsilon_{sy}}$$

となる。また、鉄筋の合力とコンクリートの合力がつりあうとき

$$T = C$$

$$= A_s f_{sy}$$

$$= 0.85 f'_c \times 0.8x \times b$$

が成り立つ。さらに鉄筋の降伏ひずみは

$$\epsilon_{sy} = \frac{f_{sy}}{E_s} = 0.00225$$

以上よりつり合い鉄筋比 P_b は

$$P_b = \frac{A_s}{bd}$$

$$= \frac{1}{bd} \frac{T}{f_{sy}}$$

$$= \frac{0.85 f'_c \times 0.8x \times b}{bdf_{sy}}$$

$$= \frac{0.68 f'_c}{f_{sy}} \frac{x}{d}$$

$$= \frac{0.68 \epsilon'_{cu}}{\epsilon'_{cu} + \epsilon_{sy}} \frac{f'_c}{f_{sy}}$$

で求められる。なお、ここでの A_s は釣り合う時の鉄筋量に過ぎない。 それぞれのケースにおけるつり合い鉄筋比は以下の通りとなった。

$$f_{sy}$$
 P_b
25MPa 0.0379
35MPa 0.0530
45MPa 0.0682

2 鉄筋量 A_s と曲げ耐力Pの関係を求める

鉄筋比は

$$p = \frac{A_s}{bd} = \frac{A_s}{1.0 \times 10^5}$$

となる。

$2.1 p < P_b$ のとき

梁は曲げ引張破壊を引き起こす。この時、中立軸は

$$x = \frac{A_s f_{sy}}{0.68 \times f_c' \times b}$$

となる。したがって破壊時の曲げモーメント M_u は

$$M_u = A_s f_{sy}(d - 0.4x)$$

= $A_s f_{sy}(d - 0.4 \times \frac{f_{sy}}{0.68 \times f'_c \times b} A_s)$

となるので、破壊時荷重は梁の長さLを用いて

$$\begin{split} P &= \frac{4M_u}{L} \\ &= \frac{4f_{sy}}{L} A_s (d - 0.4 \times \frac{f_{sy}}{0.68 \times f_o' \times b} A_s) \end{split}$$

となり A_s に関する2次曲線となる。

2.2 $p > P_b$ のとき

梁は曲げ圧縮破壊を起こす。コンクリート応力と鉄筋応力の力のつり合いより

$$T = A_s E_s \epsilon_s$$
$$= 0.85 f'_c \times 0.8x \times b$$

また、ひずみ分布の傾きが中立軸の上下で一致することから

$$\epsilon_s = \frac{d-x}{x} \epsilon'_{cu}$$

これらをxについて解くと、

$$x = \frac{k}{2}(\sqrt{1 + \frac{4d}{k}} - 1)$$

となる。なお、定数kを以下のように定義した。

$$k = \frac{A_s E_s \epsilon'_{cu}}{0.68 \times f'_c \times b}$$

この時、破壊時の曲げモーメントは

$$M_u = 0.85 f_c' \times 0.8x \times b \times (d - 0.4x)$$

となるから、破壊時の荷重は、

$$\begin{split} P &= \frac{4M_u}{L} \\ &= \frac{4\times 0.85f_c'\times 0.8x\times b}{L}(d-0.4x) \end{split}$$

となる。

この関係を用いてグラフにプロットしていくと以下のようなグラフとなった。 横軸の単位 mm^2 で縦軸の単位 kNである。

