Linear programming

CS 381

[Diet Problem]. An athlete wants to maximize her daily protein

consumption according to the next constraints:

- At most 5 units of fat per day
- Spending at most \$6 per day.
- Ingredients:
 - Steak: cost \$4 per pound; 2 units of protein and 1 unit of fat per pound.
 - Peanut butter: cost \$1 per pound; 1 unit of protein and 2 units of fat per pound

Exercise: Write as a linear program (LP).

Let $\mathbf{x_1}$ = number of pounds of steak; $\mathbf{x_2}$ = number of pounds of peanut butter per day.

Linear Program (LP1):

subject to $2x_1 + x_2$ $4x_1 + x_2 \le 6$ $x_1 + 2x_2 \le 5$ $x_1, x_2 > 0$

Objective function: $2x_1 + x_2$

Feasible set: the set of feasible vectors that satisfy the constraints. In this example, this is the set of vectors (x_1, x_2) such that $4x_1 + x_2 \le 6$ and $x_1 + 2x_2 \le 5$.

Let x_1 = number of pounds of steak; x_2 = number of pounds of peanut butter per day.

In the following graphs, the purple region shows the feasible set for LP1.

The largest c for which the line $2 \cdot x_1 + x_2 = c$ intersects the feasible set is c = 4. The red arrow from the origin to the right is perpendicular to the lines $2x_1 + x_2 = k$ for all k

Let x_1 = number of pounds of steak; x_2 = number of pounds of peanut butter per day.

In the following graphs, the purple region shows the feasible set for LP1.

Which point in the feasible set maximizes the objective $2x_1 + x_2$?

For LP1, this point is $(x_1, x_2) = (1,2)$; the value of the objective is $2x_1 + x_2 = 4$.

Linear Program (LP1):

subject to
$$2x_1 + x_2$$
$$4x_1 + x_2 \le 6$$
$$x_1 + 2x_2 \le 5$$
$$x_1, x_2 \ge 0$$

- The first constraint of LP1 ensures the objective is upper bounded by 6.
- The second constraint (multiplied by 2) gives an upper bound of 10.

Multiply the first constraint by $y_1 \ge 0$ and the second constraint by $y_2 \ge 0$. We get:

$$y_1(4x_1 + x_2) + y_2(x_1 + 2x_2) \le 6y_1 + 5y_2$$
 (*)

The LHS of (*) is greater than the objective of LP1 whenever:

$$4y_1 + y_2 \ge 2$$

 $y_1 + 2y_2 \ge 1$
 $y_1, y_2 \ge 0$.

Linear Program (LP1):

subject to $4x_1 + x_2 \le 5$ $4y_1 + y_2 \ge 2$ $y_1 + 2y_2 \ge 1$ $y_1, y_2 \ge 0$.

 $x_1, x_2 \ge 0$

Then for any (y_1, y_2) that is feasible for (**), we get: $2x_1 + x_2 \le 6y_1 + 5y_2$ for all feasible (x_1, x_2) .

Constraints on y (**)

The best upper bound we can obtain this way on the optimal value of LP1 is given by the solution to the linear program:

$$\min 6y_1 + 5y_2$$

Linear Program (LP2): subject to
$$4y_1+y_2\geq 2$$

$$y_1+2y_2\geq 1$$

$$y_1,y_2\geq 0\,.$$

In general, a maximization LP in standard form is written as:

where $A \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{c} \in \mathbb{R}^n$, and $\mathbf{b} \in \mathbb{R}^m$

(P) is known as the primal LP. This linear program is feasible if the feasible set is non-empty:

$$\mathcal{F}(P) := \{ \mathbf{x} \mid A\mathbf{x} \le \mathbf{b}, \ \mathbf{x} \ge 0 \}$$

As discussed before, if a vector $y \ge 0 \in R^m$ satisfies the inequality $y^T A \ge c^T$, then:

$$\forall \mathbf{x} \in \mathcal{F}(P), \ \mathbf{y}^T \mathbf{b} \ge \mathbf{y}^T A \mathbf{x} \ge \mathbf{c}^T \mathbf{x}.$$

This motivates introducing the following linear program, known as the dual LP:

where $y \ge 0 \in \mathbb{R}^m$.

Exercise: Check that the dual of the dual LP is the primal LP.