Formal languages HW6

Кушнерюк Сергей, Б05-925

Домашнее задание 6

Задача 1

Стековый алфавит совпадает с обычным алфавитом. Рассмотрим автомат. Доказательство того, что получится автомат, распознавающий палиндромы, проведем по индукции. Действительно, слова длины длины 0 и 1, которые могут получится в этом автомате (ε , a, b) - база.

Теперь заметим, что в силу построения автомата, на петлях у 0 всегда кладется буква на стек, при переходе из 0 в 1 стек не меняется, при переходах по циклам на 1 буквы всегда снимаются. Таким образом, первая положенная буква на стек и последняя снятая совпадают. Тогда не рассматривая самый первый и самый последний переход в автомате (и, по сути не учитывая самый первый элемент в стеке) получается слово длины на 2 меньше, для которого предположение верно

Теперь докажем, что любой палиндром из букв а и b можно получить. Рассмотрим нечетный палиндром, четный будет рассматриваться аналогично, только серединный переход будет по ε

Действительно, по доказательству для предыдущего пункта заметим, что оно никак не зависело от того, какие именно буквы были добавлены в слово до серединного перехода. Будем набирать буквы до тех пор, пока не наберем все буквы кроме средней, возьмем ее, пройдя по переходу между 0 и 1 (стек при этом не изменится). Теперь на стеке у нас находятся все буквы первой части слова (кроме средней буквы), но в обратном порядке, так как каждый раз при добавлении буквы в слово она же добавлялась на стек. Таким образом теперь в слово добавим букву $w_{\frac{n-1}{2}-1}$ (0-индексация), которая равна в силу свойства слова $w_{\frac{n-1}{2}+1}$, затем $w_{\frac{n-1}{2}-2}$ и т.д. \blacktriangleright

(b) {
$$w \in \{a, b, c\}^* \mid |w|_a = |w|_b \lor |w|_b = |w|_c$$
}

Построим автомат для { $w \in \{a,b,c\}^* \mid |w|_a = |w|_b\}$, автомат для всего языка получится как объединение двух автоматов по следующей схеме

Аналогичный (без с) автомат был на семинаре, но повторим, как он выглядит

Дейсвительно, когда когда положим X, в слово попадем буква b, когда снимем - а, для Y наоборот $a:\varepsilon:Y$ \Longrightarrow количество букв а и b будет равным. Кроме того, для каждого слова, определив участки, когда его баланс $|w|_a - |w|_b$ неотрицательный или неположительный по аналогии с ПСП на этом участке $b:\varepsilon:X$ пользуясь переходами с X или с Y в зависимости от ситуации получим требуемое слово (в конце стек

будет пуст из-за того, что строим, как ПСП). Буква с же никак на баланс не влияет и потому не должна влиять на стек, а также может быть приписана в любом месте слова

(с) Будем в слове находить последний момент, когда баланс 0, после чего он становится 1

(на пунктирах имеется в виду, что на префиксах этих подслов будет баланс со указанным свойством)

Таким образом, автомат будет строит слова для двух этих частей и выглядеть будет так:

(эти блоки - самостоятельные автоматы, состояния стека до и после входа в них равны)

Последняя вещь - это $\Pi C \Pi$, которые мы строить уже умеем. Разберемся с 1 частью

Действительно, разобьем на блоки по моментам, когда баланс нулевой. Баланс неотрицательный \Longrightarrow можем эти участки выразить как ПСП, иначе баланс неположительный следовательно взяли букву b после момента с нулевым балансом

Тогда, после того, как взяли букву b есть ограниченное число случаев:

- 1. После этого взяли а баланс снова 0, блок закончен
- 2. После этого взяли b, тогда в конце блока взяли аа, иначе блок был бы меньше, ибо в конце взяли ba, а значит баланс был перед b равен 0. Значит между этими моментами единственная возможность это брать ab: аа не может быть, ибо опять противоречие с выбором блока нулевой баланс случился

раньше; начинаться на b не может, так как баланс не меньше -2

Таким образом строгий разбор случаев гарантирует еще и однозначный порядок прохождения состояний и переходов для любого слова $\{|w|_a - |w|_b = 0 \ \& \ \forall u \sqsubseteq w : \ |w|_a - |w|_b \geqslant -2\}$

Задача 2.

0	1 1	2	
		$S_1 \to AT$	
		$S_1 \to XA$	
$S \to aT$	$S \to AT$	$S \to AT$	
$S \to aSa$	$S \to ASA$	$S \to XA$	
		$X \to AS$	
$T \rightarrow bU$	$T \to BU$	$T \rightarrow BU$	
$T \to cT$	$T \to CT$	$T \to CT$	
$U \rightarrow Va$	$U \rightarrow VA$	$U \rightarrow VA$	
$U \rightarrow cU$	$U \to CU$	$U \rightarrow CU$	
$V \rightarrow a$	$V \rightarrow a$	$V \rightarrow a$	
$V \rightarrow bcVc$	$V \to BCVC$	$V \rightarrow YZ$	
		$Y \to BC$	
		$Z \to VC$	
	$A \rightarrow a$	$A \rightarrow a$	
	$B \rightarrow b$	$B \rightarrow b$	
	$C \rightarrow c$	$C \rightarrow c$	

- 0. Исходная грамматика. Бесполезных правил нет
- 1. Убрали все смешанные правила
- 2. Убрали длинные правила. ε -правил нет. S не ε -порождающий. Пропустим шаги c добавлением правил $S_1 \to S$ и затем удалением одинарных правил и сразу добавим правила $S_1 \to AT \mid XA$ Унарных правил (теперь) нет

Итого, получили грамматику в нормальной форме Хомского

Задача 3.

Алгоритм с лекции муторный, сделаем по своему

0	1	2	3	4
	$S_1 \to \mathrm{bT}$	$S_1 \to bT$	$S_1 \to \mathrm{bT}$	$S_1 \to \mathrm{bT}$
	$S_1 \to aS$	$S_1 \to aS$	$S_1 \to aS$	$S_1 \to aS$
$S \to bT$	$S \to bT$	$S \rightarrow bT$	$S \to bT$	$S \to bT$
$S \to aS$	$S \to aS$	$S \to aS$	$S \to aS$	$S \to aS$
$T \rightarrow cT$	$T \rightarrow cT$	$T \rightarrow cT$	$T \rightarrow cT$	$T \rightarrow cT$
$T \rightarrow Uc$	$T \to UC$	$T \rightarrow bVAC$	$T \rightarrow bVC$	$T \rightarrow bVC$
		$T \rightarrow cUCC$	$T \to cUQ$	$T \to cUQ$
$U \rightarrow bVa$	$U \rightarrow bVA$			
$U \to cUc$	$U \rightarrow cUC$			
$V \rightarrow Vab$	$V \rightarrow VAB$	$V \rightarrow VAB$	$V \rightarrow VBA$	$V \rightarrow bAV$
$V \rightarrow b$	$V \rightarrow b$	$V \rightarrow b$	$V \rightarrow bA$	$V \rightarrow bA$
	$A \rightarrow a$	$A \rightarrow a$	$A \rightarrow a$	$A \rightarrow a$
	$B \rightarrow b$	$B \rightarrow b$	$B \rightarrow b$	$B \rightarrow b$
	$C \rightarrow c$	$C \rightarrow c$	$C \rightarrow c$	$C \rightarrow c$
			$Q \to cC$	$Q \to cC$

0. Исходная грамматика

- 1. Исправим все смешанные правила, при этом оставляя первый символ неизменным, если это буква. Также добавим новый стартовый нетерминал аналогично тому, как он бы добавлялся в нормальной форме Хомского
- 2. Нетерминал U используется только в правилах нетерминала T, поэтому просто вставим правые части правил для U в правила для Т. Действительно, подстановка всевозможных правых частей правил для нетерминалов вместо них самих не изменит грамматику: если некоторое слово выводилось ранее с использованием этого нетерминала, то будет выводится и сейчас, так как он уже раскрытый "вшит"всеми способами в те нетерминалы, которые его использовали, верно и обратное, так как "вшитые"правила для этих нетерминалов можно вновь вытащить и вернуть этот нетерминал в грамматику
- 3. $V \to Vab, V \to b$. Т.е. $V \vdash \{b(ab)^n \mid n \in \mathbb{N} \bigcup \{0\}\}$ (легко доказыается по индукции аналогично размышлениям в 4 пункте). Заметим теперь, что V используется только в нетерминале T, поэтому его можно исправить как нам удобно, что не повлияет на выводимость других частей грамматики. Сделаем так, что V теперь выводит исходные слова, к которым в конце приписано a, т.е. $V \vdash \{(ba)^n \mid n \in \mathbb{N}\}$

Кроме этого, исправим оставшееся правило для нетерминала Т так, чтобы в конце осталось ровно два нетерминала, добавив новый нетерминал в том виду, в котором он удовлетворяет виду для НФ Грейбах. Таким образом, правила для нетерминала Т все будут в хорошей форме

4. Теперь просто приведем V в хорошую форму. Представим V как $V \to ba, V \to bAV$. Действительно, $V \vdash \{(ba)^n \mid n \in \mathbb{N}\}$, т.е. то, что раньше: по индукции, мы можем вывести только одно слово длины 2 - ba (база), а если $V \vdash (ba)^n$, то сначала применив единственно возможное теперь второе правило, затем вывод $bAV \to baV \vdash ba(ba)^n = (ba)^{n+1}$. В обратную сторону, вывод любого слова такого вида также доказывается по индукции: база очевидна, а применив аналогичные рассуждения, как в предыдущем пункте докажем требуемое