

À RETENIR 99

Définition

Un **angle** est une portion de plan délimitée par deux demi-droites de même origine. Une unité de mesure des angles est le **degré**, noté °.

Angle \widehat{BAC}	$\stackrel{A}{\times} \stackrel{B}{\times} \stackrel{C}{\times}$	A × C	$A \leftarrow C \leftarrow$	A	B A C
Туре	Nul	Aigu	Droit	Obtus	Plat
Mesure	0°	Entre 0° et 90°	90°	Entre 90° et 180°	180°

À RETENIR 00

Définition

Soient (d_1) et (d_2) deux droites coupées par une sécante. Dire que deux angles formés par ces trois droites sont **alternes-internes** signifie qu'ils n'ont **pas le même sommet**; qu'ils sont **de part et d'autre de la sécante** et qu'ils sont à **l'intérieur de la « bande »** formée par les droites (d_1) et (d_2) .

À RETENIR **

Propriété

- Si deux angles alternes-internes sont formés par deux droites parallèles coupées par une sécante, alors ces deux angles sont égaux.
- Si deux droites coupées par une sécante forment deux angles alternes-internes égaux, alors ces deux droites sont parallèles.

EXEMPLE 9

Les angles coloriés sont alternes-internes et égaux (d'après le codage), donc (d_1) et (d_2) sont parallèles.

À RETENIR 00

Définition

Soient (d_1) et (d_2) deux droites coupées par une sécante. Dire que deux angles formés par ces trois droites sont **correspondants** signifie qu'ils n'ont **pas le même sommet**; qu'ils sont **du même côté de la sécante** (à gauche ou à droite) et que l'un est à **l'intérieur de la « bande »** formée par les droites (d_1) et (d_2) , l'autre est à **l'extérieur**.

À RETENIR 99

Propriété

- Si deux droites parallèles sont coupées par une sécante, alors elles forment des angles correspondants deux à deux égaux.
- Si deux droites coupées par une sécante forment des angles correspondants deux à deux égaux, alors elles sont parallèles.

EXEMPLE •

Dans le dessin ci-dessous, $(d_1) \parallel (d_2)$.

Comme $(d_1) \parallel (d_2)$ et que les angles marqués sont correspondants, alors ils sont égaux.

EXERCICE 1

Dans chacun des cas, dire si les angles marqués sont alternes-internes, correspondants ou ni l'un ni l'autre.

EXERCICE 2

Dans chacun des cas, dire si les droites sont parallèles. Justifier vos réponses.

EXERCICE 3

Sachant que les droites sont parallèles, en déduire la mesure de l'angle inconnu.

EXERCICE 4

Dans la figure ci-dessous, les droites (ID) et (ER) sont parallèles. On veut déterminer la mesure des angles du quadrilatère IERD. Toutes les réponses doivent être justifiées.

- **1.** Déterminer la mesure de l'angle \widehat{REY} .
- 2. En déduire la mesure de l'angle \widehat{IER} .
- **3.** En utilisant la question **1.**, déterminer la mesure de l'angle \widehat{ERY} .
- **4.** En déduire la mesure de l'angle \widehat{ERD} .
- **5.** En utilisant la question **3.** déterminer la mesure de l'angle \widehat{RDI} .
- **6.** Vérifier la conjecture suivante sur ERDI: «La somme des angles d'un quadrilatère vaut 360° . »

EXERCICE 5

Dans la figure ci-dessous, $(AB) \parallel (CD)$ et AB = CD.

Montrer que les triangles ABE et EDC sont égaux.