

Politechnika Śląska

PROJEKT INŻYNIERSKI

Analiza błędów pomiaru położenia platformy mobilnej

Daniel CHYDZIŃSKI

Nr albumu: 296781

Kierunek: Automatyka i Robotyka **Specjalność:** Automatyka Procesowa

PROWADZĄCY PRACĘ
dr Aleksander Staszulonek
KATEDRA Automatyki i Robotyki

Wydział Automatyki, Elektroniki i Informatyki

Gliwice 2023

Tytuł pracy

Analiza błędów pomiaru położenia platformy mobilnej

Streszczenie

(Streszczenie pracy – odpowiednie pole w systemie APD powinno zawierać kopię tego streszczenia.)

Słowa kluczowe

(2-5 slow (fraz) kluczowych, oddzielonych przecinkami)

Thesis title

Mobile platform position errors analysis

Abstract

(Thesis abstract – to be copied into an appropriate field during an electronic submission – in English.)

Key words

(2-5 keywords, separated by commas)

Spis treści

1	Wstęp	1			
2	Analiza tematu	3			
3	Wymagania i narzędzia	7			
4	[Właściwy dla kierunku – np. Specyfikacja zewnętrzna]	9			
5	[Właściwy dla kierunku – np. Specyfikacja wewnętrzna]	11			
6	Weryfikacja i walidacja	13			
7	Podsumowanie i wnioski	15			
Bibliografia					
Spis skrótów i symboli					
Źródła					
Li	ista dodatkowych plików, uzupełniających tekst pracy	25			
$\mathbf{S}_{\mathbf{I}}$	pis rysunków	27			
St	nis tahal	20			

Wstęp

Robotyka to obszar badawczy i techniczny poświęcony teorii, konstrukcji oraz praktycznym zastosowaniom robotów. Elementami wykonawczymi układów zrobotyzowanych są najczęściej silniki lub siłowniki, te drugie nierzadko napędzane wewnętrznie silnikami. Rodzajem maszyny zamieniającej jeden rodzaj energii — w robotyce najczęściej elektryczną — na energię mechaniczną, czego celem jest wprawienie w ruch elementów ruchomych.

W przypadku prostych układów (Definicja 1), takich jak podajnik taśmowy napędzany pojedynczym silnikiem, dokładność (Definicja 3) sterowania nie ma wysokiego priorytetu. Najważniejsze jest, by element znajdujący się na taśmie przejechał z punktu A do punktu B z pewną prędkością, a jego położeniem zajmą się inne czujniki. Jednak gdy silnik napędza ramię robota, pojazd lub drona, ważne jest, by utrzymywał stałą prędkość i/lub wykonywał określoną ilość obrotów.

Definicja 1 (Układ sterowania). Układ służący do kontroli pożądanego urządzenia przy pomocy wybranego zasobu narzędzi, w tym zamkniętej pętli z ujemnym sprzężeniem zwrotnym (Definicja 2).

Definicja 2 (Pętla). Typ struktury układu umożliwiający mu reakcję na informację zwrotną o jego stanie (sprzężenie zwrotne) pochodzącą z czujników.

Definicja 3 (Dokładność). Stopień zgodności pomiędzy rzeczywistymi wartościami a wartościami określonymi lub mierzonymi.

Z tego powodu, jednym z wyzwań, z jakimi mierzyli się pionierzy automatycy-robotycy jest dokładne sterowanie tworzonymi przez siebie układami. Jest to kwestia o tyle istotna, że gdy odpowiedź układu odbiega — nawet w niewielkim stopniu — od wartości zadanej, staje się on znacząco trudniejszy w użytkowaniu (sterowaniu), a w skrajnych przypadkach bezużyteczny. W przypadku ramienia robota, brak dokładności sterowania doprowadzi układ do osiągnięcia innej lokalizacji niż pożądana. W przypadku drona, prawdopodobnie całkowicie uniemożliwi lot z powodu nierówności sił nośnych. Zaś w przypadku po-

jazdów autonomicznych, przejechanie odległości innej niż zadana przez operatora. Jako rozwiązanie tego problemu, powstał poddział robotyki zwany odometrią (Definicja 4).

Definicja 4 (Odometria). Dział nauk technicznych na pograniczu robotyki i miernictwa, zajmujący się użyciem różnego rodzaju czujników w celu oszacowania położenia ruchomego układu względem pozycji startowej w przestrzeni fizycznej.

Współcześni automatycy-robotycy będący na początku swojej ścieżki edukacji/kariery, lub zajmujący się robotyką jedynie hobbystycznie, również mierzą się prędzej czy później z problemem dokładności sterowania układu. W obecnych czasach istnieje wiele sposobów rozwiązania go.

Celem niniejszej pracy inżynierskiej jest zaprojektowanie i wykonanie fizycznego modelu platformy mobilnej (zwanej dalej pojazdem) oraz aplikacji do jej kontroli. Następnie zastosowanie i przetestowanie eksperymentalne wybranej metody zwiększenia dokładności układu z użyciem ujemnego sprzężenia zwrotnego. Na końcu otrzymane wyniki zostaną przeanalizowane pod kątem użyteczności i skuteczności wybranej metody w warunkach rzeczywistych.

Praca podzielona została na następujące rozdziały[6]:

- Wstęp wprowadzenie do tematu, krótkie omówienie istoty problemu, zakres pracy, opis rozdziałów.
- 2. Analiza tematu omówienie tematu w kontekście aktualnego stanu wiedzy o poruszanym problemie (ang. state of art), oraz szczegółowe jego sformułowanie.
- 3. Założenia projektowe opis wymagań postawionych przy tworzeniu projektu wraz z uzasadnieniem wyboru, a także lista użytych narzędzi.
- 4. Projekt i wykonanie szczegółowe omówienie sposobu wykonania modelu pojazdu, układu elektronicznego, aplikacji, kodu mikroprocesora i narzędzi pobocznych. Każdemu elementowi odpowiada podrozdział.
- 5. Weryfikacja i walidacja zastosowane metody badawcze i wykonane eksperymenty, oraz napotkane i usunięte błędy.
- 6. Podsumowanie i wnioski skomentowanie uzyskanych wyników pod kątem osiągnięcia założonych celów, analiza i dalsze kroki.

Analiza tematu

Problem synchronizowania silników elektrycznych znany jest w dziedzinie automatyki od dziesiątek lat. Początki badania silników sięgają XIX wieku, kiedy to Michael Faraday oraz inni naukowcy eksperymentowali ze wykorzystaniem elektromagnetyzmu[1]. Pierwsze silniki elektryczne były prymitywne i nie miały zaawansowanych metod sterowania. Wczesne próby pozycjonowania opierały się głównie na prostych mechanizmach, takich jak przekładnie i sprzęgła.

W miarę postępu technologicznego, szczególnie w XX wieku, rozwijano bardziej zaawansowane metody pozycjonowania. Pojawiły się pierwsze systemy sterowania, wykorzystujące technologię zwrotną informacji, mającą na celu monitorowanie i regulację położenia wałów silników. Jednak precyzja tych rozwiązań była ograniczona, a dokładność pozycjonowania nie zawsze spełniała wymagania coraz bardziej zaawansowanych zastosowań.

Dopiero wprowadzenie enkoderów (Definicja 5) elektronicznych w latach 60. XX wieku[5] stało się przełomem.

Definicja 5 (Enkoder obrotowy). *Urządzenie, generujące sygnały elektryczne odpowiadające ruchowi obrotowemu wału silnika celem określenia jego pozycji.*

Początkowo enkodery były oparte na szczotkach stykających się z dyskiem zawierającym serię odpowiednio zakodowanych pierścieni koncentrycznych (Rysunek 2.1), wypełnionych otworami o odpowiedniej długości[4]. Są one tanie w produkcji, jednak mają swoje ograniczenia związane ze zużyciem mechanicznym elementów stykowych, niską maksymalną dozwoloną prędkością silnika i wymaganiami konserwacji. Ten typ enkoderów spotykany jest do dziś, na przykład w multimetrach cyfrowych.

Rozwój technologii przyniósł enkodery optyczne, wykorzystujące diody LED i fotodetektory. Później pojawiły się enkodery magnetyczne. To właśnie one — enkodery optyczne i magnetyczne — są do dnia dzisiejszego najczęściej spotykane i oferują najwyższą dokładność sterowania przy niskich kosztach i niewielkim stopniu skomplikowania. To właśnie na nich skupiono się w dalszej części pracy.

Enkodery można podzielić ze względu na[4]:

- Metodę używaną do odczytania pozycji: kontaktowe i bezkontaktowe.
- Rodzaj sygnału wyjściowego: pozycja absolutna lub szereg inkrementujących/dekrementujących wartości.
- Zjawisko fizyczne wykorzystane do przesłania sygnału pozycyjnego: przewodzenie elektryczne, magnetyzm, zjawiska optyczne lub pojemnościowe.

Najważniejszy jest podział ze względu na rodzaj sygnału wyjściowego. Mimo, że zarówno enkodery absolutne jak i inkrementalne posiadają dyski kodujące, różnią się one działaniem. Enkodery absolutne jako sygnał wyjściowy podają precyzyjną pozycję wału silnika, najczęściej zakodowaną w słowie bitowym. Przykładowy wygląd dysku kodującego widoczny jest na Rysunku 2.1. Istotną cechą tego rodzaju enkoderów jest możliwość określenia pozycji nawet po utracie zasilania.

Rysunek 2.1: Poglądowy schemat dysku enkodera absolutnego z 3-bitowym kodem Graya[2].

Enkodery inkrementalne u podstaw działają w ten sam sposób, tzn. opierają się na dyskach kodujących, z tą różnicą, że nie są w stanie podać dokładnej wartości położenia. Zamiast tego, podają na wyjściu odpowiedni impuls przy obrocie w danym kierunku. Następnie w oprogramowaniu impulsy te są zliczane w celu oszacowania aktualnej pozycji względem pozycji startowej. Ze względu na wyzerowanie liczby impulsów przy utracie zasilania, ten typ enkodera nie jest w stanie podać dokładnej pozycji w przypadku utraty zasilania.

Istotny jest również podział enkoderów ze względu na wykorzystywane zjawisko fizyczne. Dwa główne typy to enkodery optyczne oraz magnetyczne. Pierwszy rodzaj występuje zarówno w wariancie pojedynczym (Rysunek 2.2a) jak i podwójnym (Rysunek 2.2b).

Rysunek 2.2: Poglądowe schematy dysku enkodera [3]

Drugi zaś, ze względu na występowanie polaryzacji biegunów, jedynie w wariancie pojedynczym (Rysunek 2.2a). W przypadku enkoderów optycznych, kolorowi białemu odpowiada szczelina, zaś kolorowi czarnemu blokada. W przypadku enkoderów optycznych, kolorom odopowiadają bieguny S i N.

Wymagania i narzędzia

- wymagania funkcjonalne i niefunkcjonalne
- przypadki użycia (diagramy UML) dla prac, w których mają zastosowanie
- opis narzędzi, metod eksperymentalnych, metod modelowania itp.
- metodyka pracy nad projektowaniem i implementacją dla prac, w których ma to zastosowanie

[Właściwy dla kierunku – np. Specyfikacja zewnętrzna]

Jeśli "Specyfikacja zewnętrzna":

- wymagania sprzętowe i programowe
- sposób instalacji
- · sposób aktywacji
- kategorie użytkowników
- sposób obsługi
- administracja systemem
- kwestie bezpieczeństwa
- przykład działania
- scenariusze korzystania z systemu (ilustrowane zrzutami z ekranu lub generowanymi dokumentami)

Rysunek 4.1: Podpis rysunku po rysunkiem.

[Właściwy dla kierunku – np. Specyfikacja wewnętrzna]

Jeśli "Specyfikacja wewnętrzna":

- przedstawienie idei
- architektura systemu
- opis struktur danych (i organizacji baz danych)
- komponenty, moduły, biblioteki, przegląd ważniejszych klas (jeśli występują)
- przegląd ważniejszych algorytmów (jeśli występują)
- szczegóły implementacji wybranych fragmentów, zastosowane wzorce projektowe
- diagramy UML

Krótka wstawka kodu w linii tekstu jest możliwa, np. **int** a; (biblioteka listings). Dłuższe fragmenty lepiej jest umieszczać jako rysunek, np. kod na rys 5.1, a naprawdę długie fragmenty – w załączniku.

Rysunek 5.1: Pseudokod w listings.

Weryfikacja i walidacja

- sposób testowania w ramach pracy (np. odniesienie do modelu V)
- organizacja eksperymentów
- przypadki testowe zakres testowania (pełny/niepełny)
- wykryte i usunięte błędy
- opcjonalnie wyniki badań eksperymentalnych

Tabela 6.1: Nagłówek tabeli jest nad tabelą.

				metoda			
				alg. 3	alg. 4	$\gamma = 2$	
ζ	alg. 1	alg. 2	$\alpha = 1.5$	$\alpha = 2$	$\alpha = 3$	$\beta = 0.1$	$\beta = -0.1$
0	8.3250	1.45305	7.5791	14.8517	20.0028	1.16396	1.1365
5	0.6111	2.27126	6.9952	13.8560	18.6064	1.18659	1.1630
10	11.6126	2.69218	6.2520	12.5202	16.8278	1.23180	1.2045
15	0.5665	2.95046	5.7753	11.4588	15.4837	1.25131	1.2614
20	15.8728	3.07225	5.3071	10.3935	13.8738	1.25307	1.2217
25	0.9791	3.19034	5.4575	9.9533	13.0721	1.27104	1.2640
30	2.0228	3.27474	5.7461	9.7164	12.2637	1.33404	1.3209
35	13.4210	3.36086	6.6735	10.0442	12.0270	1.35385	1.3059
40	13.2226	3.36420	7.7248	10.4495	12.0379	1.34919	1.2768
45	12.8445	3.47436	8.5539	10.8552	12.2773	1.42303	1.4362
50	12.9245	3.58228	9.2702	11.2183	12.3990	1.40922	1.3724

Podsumowanie i wnioski

- uzyskane wyniki w świetle postawionych celów i zdefiniowanych wyżej wymagań
- kierunki ewentualnych danych prac (rozbudowa funkcjonalna ...)
- problemy napotkane w trakcie pracy

Bibliografia

- [1] Michael Faraday. "On some new Electro-Magnetical Motions, and on the Theory of Magnetism." W: The Quarterly Journal of Science, Literature and The Arts 12 (1822), s. 74–96.
- [2] jjbeard. A Rotary Encoder Disc with a 3-Bit Binary Reflected Gray Code (BRGC). URL: https://en.wikipedia.org/wiki/Rotary_encoder#/media/File:Encoder_Disc_(3-Bit).svg (term. wiz. 27.12.2023).
- [3] Piotr Mitros. Optical Encoder Project. URL: https://groups.csail.mit.edu/mac/users/pmitros/encoder/ (term. wiz. 28.12.2023).
- [4] University of Hawaii NASA Infrared Telescope Facility (IRTF) Institute for Astronomy. *Techniques For Digitizing Rotary and Linear Motion*. URL: http://irtfweb.ifa.hawaii.edu/~tcs3/tcs3/0306_conceptual_design/Docs/05_Encoders/encoder_primer.pdf (term. wiz. 27.12.2023).
- [5] C. F. Winder. "Shaft Angle Encoders". W: *Electronic Industries* 18.10 (1959), s. 76–80.
- [6] Politechnika Śląska. Wymagania do pracy inżynierskiej dla kierunku Automatyka i Robotyka. 2021. URL: https://www.polsl.pl/rau/wp-content/uploads/sites/42/2021/11/AiR_Wymagania_do_pracy_inzynierskiej.pdf (term. wiz. 27.12.2023).

Dodatki

Spis skrótów i symboli

```
DNA kwas deoksyrybonukleinowy (ang. deoxyribonucleic acid)
```

 $MVC \mod - \text{widok} - \text{kontroler (ang. } model-view-controller)$

 ${\cal N}\,$ liczebność zbioru danych

 $\mu\,$ stopnień przyleżności do zbioru

 $\mathbb E \,$ zbi
ór krawędzi grafu

 ${\cal L}\,$ transformata Laplace'a

Źródła

Jeżeli w pracy konieczne jest umieszczenie długich fragmentów kodu źródłowego, należy je przenieść w to miejsce.

Lista dodatkowych plików, uzupełniających tekst pracy

W systemie do pracy dołączono dodatkowe pliki zawierające:

- źródła programu,
- dane testowe,
- film pokazujący działanie opracowanego oprogramowania lub zaprojektowanego i wykonanego urządzenia,
- itp.

Spis rysunków

2.1	Poglądowy schemat dysku enkodera absolutnego z 3-bitowym kodem Graya[2].	4
2.2	Poglądowe schematy dysku enkodera [3]	5
4.1	Podpis rysunku po rysunkiem	10
5.1	Pseudokod w listings	12

Spis tabel

6.1	Nagłówek tabeli	jest nad	tabela.]	14