Particle spectrograph

Wave operator and propagator

Source constraints				
SO(3) irreps	Fundamental fields	Multiplicities		
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1		
$\tau_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\ \alpha}$	1		
$\tau_{1^{-}}^{\#2\alpha} + 2 i k \sigma_{1^{-}}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3		
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3		
$\tau_{1^{+}}^{\#1\alpha\beta} + ik\sigma_{1^{+}}^{\#2\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3		
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$			
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$			
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$			
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5		
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta}-$			
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$			
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$			
	$4 i k^{X} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$			
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$			
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$			
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$			
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$			
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$			
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ -			
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon} \partial_{\delta} = 0$			
Total constraints/gauge generators: 16				

					1 =		
$ au_1^{\#2}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	$\frac{6k^2(2r_3+r_5)+t_1}{2(k+2k^3)^2(2r_3+r_5)t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2} (k^2 + 2k^4) (2r_3 + r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	0	0	0	0
	$_{1}^{\#1}+^{\alpha\beta}$	$_{1}^{\#2}$ $+^{\alpha\beta}$	$\frac{1}{1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#_1} + \alpha$	$\tau_1^{\#2} +^{\alpha}$

$(2r_3+r_5)t_1$ $(1+2k^2)^2(2r_3+r_5)t_1$	-	$\dagger^{lphaeta}$	$\sigma_{2}^{\#1}\alpha\beta$ $\frac{2}{(1+2k^{2})^{2}t}$ $\frac{2i\sqrt{2}k}{(1+2k^{2})^{2}t}$ 0	1 - 1	$ \begin{array}{c} t_{2}^{\#1} \\ 2^{+} \alpha \beta \\ 2 i \sqrt{2} k \\ +2 k^{2})^{2} t_{1} \\ 4 k^{2} \\ -2 k^{2})^{2} t_{1} \end{array} $	$\sigma_{2}^{\#1} \circ 0$ 0 $\frac{2}{t_1}$	ιβχ	$\sigma_{0}^{\#1}$ $\tau_{0}^{\#1}$ $\tau_{0}^{\#2}$ $\sigma_{0}^{\#1}$	$\sigma_{0}^{\#1}$ † $\frac{1}{6k^2r_3}$ 0 0 0	$t_{0}^{\#1} + \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$	$\tau_{0}^{#2} + \boxed{0 \ 0 \ 0 \ 0}$	$\sigma_{0}^{\#1} \dagger \left \begin{array}{c c} 0 & 0 & 0 & \frac{1}{k^2 r_2 \cdot t_1} \end{array} \right $	$\omega_{0}^{\#1}$ $f_{0}^{\#1}$ $f_{0}^{\#2}$ $\omega_{0}^{\#1}$	
$\sqrt{2} k(1+2k^2)^2 (2r_3+r_5)t_1$			θ θ θ										α $f_1^{#2}$	
k(1+2k ⁻)(2r ₃ +r ₅)			$\frac{1}{6}t_1(2\omega^{\alpha\prime}_{\alpha}\omega^{\theta}_{,\theta}-4\omega^{\theta}_{\alpha\theta}\partial_{\rho}f^{\alpha\prime}+4\omega^{\theta}_{,\theta}\partial^{\rho}f^{\alpha}_{\alpha}-2\partial_{\rho}f^{\theta}_{\theta}$ $\partial^{\rho}f^{\alpha}-2\partial_{\rho}f^{\alpha\prime}\partial_{\rho}f^{\theta}+4\partial^{\rho}f^{\alpha}\partial_{\rho}f^{\theta}-6\partial_{\rho}f_{\alpha}\partial^{\theta}f^{\alpha\prime}-6\partial_{\rho}f_{\alpha}\partial^{\theta}f^{\alpha\prime}-6\partial_{\rho}f_{\alpha}\partial^{\theta}f^{\alpha\prime}$	$3\partial_{\alpha}f_{\theta_{I}}\partial^{\theta}f^{\alpha I} + 3\partial_{i}f_{\alpha\theta}\partial^{\theta}f^{\alpha I} + 3\partial_{\theta}f_{\alpha I}\partial^{\theta}f^{\alpha I} +$	$\omega_{\alpha\theta_I} (\omega^{\alpha_I\theta} + 2 \partial^{\theta} f^{\alpha_I})) +$	ιθα σισαβθ ι -	$2 r_3 (\partial_{\beta} \omega_{\beta}^{\theta} \partial_{\alpha} \omega^{\alpha \beta} + \partial_{\beta} \omega_{\beta}^{\theta} \partial_{\alpha} \omega^{\alpha \beta} + \partial_{\alpha} \omega^{\alpha \beta} \partial_{\theta} \omega_{\beta}^{\theta} -$	$\partial_{\theta}\omega_{\beta}^{\theta}$	$^{\prime}_{\alpha}\partial^{\theta}\omega^{lphaeta'})+$	$r_{5}\left(\partial_{l}\omega_{\beta}^{k}{}_{\kappa}^{}\partial^{\theta}\omega^{\alpha_{l}}{}_{\kappa}^{}-\partial_{\theta}\omega_{l}^{k}{}_{\kappa}^{}\partial^{\theta}\omega^{\alpha_{l}}{}_{\kappa}^{}-\left(\partial_{\alpha}\omega^{\alpha_{l}\theta}-2\partial^{\theta}\omega^{\alpha_{l}}{}_{\kappa}^{}\right)$	$(\partial_{\kappa}\omega_{\kappa}^{\kappa} - \partial_{\kappa}\omega_{\kappa}^{\kappa}))[t, x, y, z] dz dy dx dt$		$\omega_1^{\#2} \qquad f_1^{\#1}$	I
			$^{\theta}_{\theta}$ -4 $\omega_{\alpha \theta}^{\theta}$ $\partial_{i}f^{\alpha i}$ $2 \partial_{i}f^{\alpha i} \partial_{\alpha}f^{\theta} + 4$	$^{\theta}f^{\alpha\prime} + 3 \partial_{i} f_{\alpha\theta} \partial^{\theta} f_{\alpha}$	$^{\theta}f^{\alpha\prime} + 6 \omega_{\alpha\theta\prime} (\omega_{\alpha\theta\prime})$	$_3$, z (+0 β s $_{\alpha 1\theta}$ = 0 β s $_{\alpha \theta}$ = 0 $_{\alpha \theta}$ $_{\alpha 1\theta}$ = 0 $_{\alpha 1\theta}$ $_{\alpha 1\theta}$ = 0 $_{\alpha 1\theta}$ $_{\alpha 1\theta}$ = 0 $_{\alpha 1\theta}$ $_{\alpha 1$	$\alpha \beta_{\alpha} + \partial_{\alpha} \omega_{\alpha}^{\theta} \partial_{\alpha} \omega$	$2\partial'\omega^{\alpha\beta}$, $\partial_{\theta}\omega^{\beta}$, $+\partial_{\alpha}\omega^{\alpha\beta}$, $\partial_{\theta}\omega^{\beta}$.	$2 \partial' \omega^{\alpha \beta}_{\alpha} \partial_{\theta} \omega'_{\beta}^{\theta} + 2 \partial_{\beta} \omega_{\beta \alpha}^{\theta} \partial^{\theta} \omega^{\alpha \beta}) +$	$\omega^{\kappa} = \partial_{\theta} \omega^{\kappa} \partial^{\theta} \omega^{\alpha l}$	$\int_{\Omega} d^{k} \omega_{\alpha}^{(k)}(t) dt$		$^{\cdot}_{lphaeta}$ $\omega_{1^{-}lpha}^{*1}$	
	action	$_{3}+\omega ^{lphaeta\chi}$ $\sigma _{lphaeta\chi}+$	$\frac{1}{6}t_1 (2 \omega^{\alpha\prime}_{\alpha} \omega_{\gamma})$	$3\partial_{\alpha}f_{ heta_{1}}\partial_{\alpha}$	$3 \partial_{\theta} f_{\alpha} \partial^{\theta} f^{\alpha \prime} + 6$	$\frac{1}{3}$, $\frac{1}{2}$ (1.40) $\frac{1}{3}$ $\frac{1}{3$	$2 r_3 (\partial_{\mathcal{B}} \omega_{,\theta}^{$	$2 \partial' \omega^{\alpha \beta}$	$2 \partial' \omega^{\alpha \beta}_{\alpha}$	$r_5 \left(\partial_i \omega_{\beta}^{\ \ \ K} \partial^{\theta} \omega^{\alpha} \right)$	$(\partial_{\kappa}\omega_{\kappa}^{\prime})$		$\omega_{1}^{\#2}$ $\beta_{1}^{\#1}$	I
-	Quadratic (free) action	$S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} +$											$\omega_{1}^{\#1}_{\alpha\beta}$	

 $\frac{1}{3}\,\bar{l}\,\sqrt{2}\,\,kt_1$

 $\frac{t_1}{3\sqrt{2}}$

 $\omega_1^{\#2} +^{\alpha}$

 $f_{1}^{\#1} \dagger^{lpha}$

*ikt*1

 $\frac{t_1}{3\sqrt{2}}$

 $k^2 (2 r_3 + r_5) + \frac{t_1}{6}$

 $\omega_{1}^{\#_{1}} +^{\alpha}$

 $\omega_{0}^{#1} + f_{0}^{#1} + f_{0}^{#1} + f_{0}^{#2} + f_{$

 $\frac{t_1}{\sqrt{2}}$ $\frac{kt_1}{\sqrt{2}}$

 $f_1^{\#1} + \alpha \beta$

 $\omega_1^{\#_2} + \alpha^{\beta}$

 $\omega_{1+}^{\#1} +^{\alpha\beta} \left[k^2 \left(2 \, r_3 + r_5 \right) - \frac{t_1}{2} \right]$

 $6\,k^2\,r_3$

Massive and massless spectra

Massive particle			
Pole residue:	$-\frac{1}{r_2} > 0$		
Polarisations:	1		
Square mass:	$\frac{t_1}{r_2} > 0$		
Spin:	0		
Parity:	Odd		

?	?
$\frac{k}{\sqrt{k}}$	$\stackrel{\mu}{\Rightarrow}$
	?
?	
	?

Quadratic pole			
Pole residue:	$-\frac{1}{(2r_3+r_5)t_1^2} > 0$		
Polarisations:	2		

Unitarity conditions

 $r_2 < 0 \&\& r_5 < -2 r_3 \&\& t_1 < 0$