

Self-Tuning Spectral Clustering

Sam Bowyer

Statistical Methods 2

24th February 2023

Table of Contents

- 1. Recap: Spectral Clustering
- 2. Self-Tuning Spectral Algorithm Selecting σ Selecting K Algorithm
- 3. Experiments

To cluster n data points $\{x_i\}_{i=1}^n$ into K clusters:

1. Form the affinity/similarity matrix $W \in \mathbb{R}^{n \times n}$ where $W_{ij} = \exp\left(-\frac{d^2(\mathbf{x}_i, \mathbf{x}_j)}{\sigma^2}\right)$ for $i \neq j$ and $W_{ii} = 0$.

[Ng et al., 2001]

To cluster n data points $\{x_i\}_{i=1}^n$ into K clusters:

- 1. Form the affinity/similarity matrix $W \in \mathbb{R}^{n \times n}$ where $W_{ij} = \exp\left(-\frac{d^2(\mathbf{x}_i, \mathbf{x}_j)}{\sigma^2}\right)$ for $i \neq j$ and $W_{ii} = 0$.
- 2. Let G be the diagonal matrix with $G_{ii} = \sum_{j=1}^{n} W_{ij}$ (the degree of x_i). Let $\tilde{L} := G^{-1/2}WG^{-1/2}$ be the symmetric normalized Laplacian.

To cluster n data points $\{x_i\}_{i=1}^n$ into K clusters:

- 1. Form the affinity/similarity matrix $W \in \mathbb{R}^{n \times n}$ where $W_{ij} = \exp\left(-\frac{d^2(\mathbf{x}_i, \mathbf{x}_j)}{\sigma^2}\right)$ for $i \neq j$ and $W_{ii} = 0$.
- 2. Let G be the diagonal matrix with $G_{ii} = \sum_{j=1}^{n} W_{ij}$ (the degree of x_i). Let $\tilde{L} := G^{-1/2}WG^{-1/2}$ be the symmetric normalized Laplacian.
- 3. Form the matrix $Z \in \mathbb{R}^{n \times K}$ by stacking the eigenvectors corresponding to the K largest eigenvalues of \tilde{L} .

[Ng et al., 2001]

To cluster n data points $\{x_i\}_{i=1}^n$ into K clusters:

- 1. Form the affinity/similarity matrix $W \in \mathbb{R}^{n \times n}$ where $W_{ij} = \exp\left(-\frac{d^2(\mathbf{x}_i, \mathbf{x}_j)}{\sigma^2}\right)$ for $i \neq j$ and $W_{ii} = 0$.
- 2. Let G be the diagonal matrix with $G_{ii} = \sum_{j=1}^{n} W_{ij}$ (the degree of x_i). Let $\tilde{L} := G^{-1/2}WG^{-1/2}$ be the symmetric normalized Laplacian.
- 3. Form the matrix $Z \in \mathbb{R}^{n \times K}$ by stacking the eigenvectors corresponding to the K largest eigenvalues of \tilde{L} .
- 4. Cluster the rows of Z using K-means: assign x_i to cluster $k \in [K] := \{1, ..., K\}$ if and only if row i of Z was assigned to cluster k.

[Ng et al., 2001]

Parameters To Tune

Problem: we have to choose K and σ .

Parameters To Tune

Problem: we have to choose K and σ .

Self-Tuning Spectral Clustering [Zelnik-Manor and Perona, 2004] contributions:

- (i) Selection of the appropriate scale to analyse the data.
- (ii) Clustering data distributed at different scales.
- (iii) Clustering with irregular background clutter.
- (iv) Estimating the number of clusters.

Parameters To Tune

Problem: we have to choose K and σ .

Self-Tuning Spectral Clustering [Zelnik-Manor and Perona, 2004] contributions:

- (i) Selection of the appropriate scale to analyse the data.
- (ii) Clustering data distributed at different scales.
- (iii) Clustering with irregular background clutter.
- (iv) Estimating the number of clusters.

Selecting a suitable σ will resolve (i)–(iii), whilst (iv) is just choosing K.

Selecting σ

Note that σ can be very sensitive.

Figure: Fig. 1 from [Zelnik-Manor and Perona, 2004].

Furthermore, different bandwidths σ may be needed for different clusters which are distributed at different scales. So we introduce local scaling:

Furthermore, different bandwidths σ may be needed for different clusters which are distributed at different scales. So we introduce local scaling:

1. For each data point x_i , define $\sigma_i = d(x_i, x_P)$, i.e. the distance from x_i to its Pth nearest neighbour, x_P . (P = 7 suggested.)

Furthermore, different bandwidths σ may be needed for different clusters which are distributed at different scales. So we introduce local scaling:

- 1. For each data point x_i , define $\sigma_i = d(x_i, x_P)$, i.e. the distance from x_i to its Pth nearest neighbour, x_P . (P = 7 suggested.)
- 2. The *locally scaled* affinity matrix's non-diagonal entries are given by $\hat{W}_{ij} = \exp\left(-\frac{d^2(x_i,x_j)}{\sigma_i\sigma_i}\right)$.

Furthermore, different bandwidths σ may be needed for different clusters which are distributed at different scales. So we introduce local scaling:

- 1. For each data point x_i , define $\sigma_i = d(x_i, x_P)$, i.e. the distance from x_i to its Pth nearest neighbour, x_P . (P = 7 suggested.)
- 2. The *locally scaled* affinity matrix's non-diagonal entries are given by $\hat{W}_{ij} = \exp\left(-\frac{d^2(x_i,x_j)}{\sigma_i\sigma_i}\right)$.

Figure: Fig. 2 from [Zelnik-Manor and Perona, 2004]: (a) Input data; (b) unscaled affinity; (c) locally-scaled affinity (edge thickness represents weight).

Selecting K

In the ideal case that there are some K completely disconnected clusters (i.e. $\hat{W}_{ij} > 0$ if and only if x_i and x_j are in the same cluster), then the eigenvalues of \tilde{L} , given by $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$, will be such that:

$$1 = \lambda_1 = \cdots = \lambda_K > \lambda_{K+1} \geqslant \cdots \geqslant \lambda_n \geqslant 0.$$

This leads to the "eigengap heuristic" for choosing K: choose K to be the smallest integer such that $\lambda_{K+1} - \lambda_K$ is large.

Selecting K

In the ideal case that there are some K completely disconnected clusters (i.e. $\hat{W}_{ij} > 0$ if and only if x_i and x_j are in the same cluster), then the eigenvalues of \tilde{L} , given by $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$, will be such that:

$$1 = \lambda_1 = \cdots = \lambda_K > \lambda_{K+1} \geqslant \cdots \geqslant \lambda_n \geqslant 0.$$

This leads to the "eigengap heuristic" for choosing K: choose K to be the smallest integer such that $\lambda_{K+1} - \lambda_K$ is large.

However, with real, noisy data, the above may not hold ("lacks a theoretical justification" [Zelnik-Manor and Perona, 2004])—so instead of looking at the eigenvalues, we'll look further into the structure of \tilde{L} 's eigenvectors.

In our ideal case (i.e. with K completely disconnected clusters), \tilde{L} is block diagonal, with each block $\tilde{L}^{(k)}$ corresponding to a cluster $k \in [K]$.

In our ideal case (i.e. with K completely disconnected clusters), \tilde{L} is block diagonal, with each block $\tilde{L}^{(k)}$ corresponding to a cluster $k \in [K]$. Therefore when we construct $Z \in \mathbb{R}^{n \times K}$ by stacking the eigenvectors of \tilde{L} corresponding to the K largest eigenvalues of \tilde{L} , we obtain

$$Z = egin{bmatrix} \mathbf{v}^{(1)} & \overrightarrow{0} & \overrightarrow{0} \ \overrightarrow{0} & \dots & \overrightarrow{0} \ \overrightarrow{0} & \overrightarrow{0} & \mathbf{v}^{(K)} \end{bmatrix} \in \mathbb{R}^{n imes K}$$

where $\mathbf{v}^{(k)}$ is the eigenvector corresponding to the largest eigenvalue (i.e. 1) of the submatrix $\tilde{L}^{(k)}$.

$$Z = egin{bmatrix} \mathtt{v}^{(1)} & \overline{0} & \overline{0}' \ \overline{0} & \ldots & \overline{0}' \ \overline{0} & \overline{0}' & \mathtt{v}^{(K)} \end{bmatrix} \in \mathbb{R}^{n imes K}$$

1. Each row i of Z has only one nonzero entry, lying in the column j corresponding to x_i 's cluster—making the remaining task of cluster allocation trivial.

$$Z = egin{bmatrix} \mathbf{v}^{(1)} & \overrightarrow{0} & \overrightarrow{0} \ \overrightarrow{0} & \dots & \overrightarrow{0} \ \overrightarrow{0} & \overrightarrow{0} & \mathbf{v}^{(K)} \end{bmatrix} \in \mathbb{R}^{n imes K}$$

- 1. Each row i of Z has only one nonzero entry, lying in the column j corresponding to x_i 's cluster—making the remaining task of cluster allocation trivial.
- 2. Taking more than K eigenvectors would result in more than one nonzero entry in some rows of Z, whilst taking fewer would result in some rows of Z having no nonzero entries.

$$Z = egin{bmatrix} \mathtt{v}^{(1)} & \overrightarrow{0} & \overrightarrow{0} \ \overrightarrow{0} & \dots & \overrightarrow{0} \ \overrightarrow{0} & \overrightarrow{0} & \mathtt{v}^{(K)} \end{bmatrix} \in \mathbb{R}^{n imes K}$$

- 1. Each row i of Z has only one nonzero entry, lying in the column j corresponding to x_i 's cluster—making the remaining task of cluster allocation trivial.
- 2. Taking more than K eigenvectors would result in more than one nonzero entry in some rows of Z, whilst taking fewer would result in some rows of Z having no nonzero entries.

With noisy, non-ideal data the rows of ${\it Z}$ may have more than one nonzero entry, but there should hopefully be one entry significantly larger than the others.

Assign x_i to the cluster $k = \operatorname{argmax}_j Z_{ij}^2$.

A Problem With Z

Problem: The eigensolver we use may not return the K eigenvectors of \tilde{L} in the standard basis—it could return any set of orthonormal vectors spanning the same space as Z's columns.

A Problem With Z

Problem: The eigensolver we use may not return the K eigenvectors of \tilde{L} in the standard basis—it could return any set of orthonormal vectors spanning the same space as Z's columns.

Solution: Find the rotation matrix $R \in \mathbb{R}^{K \times K}$ that minimises the cost function

$$J_K = \sum_{i=1}^n \sum_{j=1}^K rac{\hat{Z}_{ij}^2}{\mathsf{max}_l(\hat{Z}_{il}^2)}$$

where $\hat{Z} = ZR$ is the rotated matrix of eigenvectors.

A Problem With Z

Problem: The eigensolver we use may not return the K eigenvectors of \tilde{L} in the standard basis—it could return any set of orthonormal vectors spanning the same space as Z's columns.

Solution: Find the rotation matrix $R \in \mathbb{R}^{K \times K}$ that minimises the cost function

$$J_K = \sum_{i=1}^n \sum_{j=1}^K rac{\hat{Z}_{ij}^2}{\mathsf{max}_l(\hat{Z}_{il}^2)}$$

where $\hat{Z} = ZR$ is the rotated matrix of eigenvectors.

Minimising this attempts to make the rows of \hat{Z} as close to the standard basis as possible (i.e. with only one nonzero entry) and can be done via gradient descent (see [Zelnik-Manor and Perona, 2004] for details).

Choosing some large K' we can calculate the value of J_K for all $K \in [K']$ efficiently as follows:

1. Let $Z \in \mathbb{R}^{n \times 2}$ be the matrix of eigenvectors of \tilde{L} corresponding to the two largest eigenvalues of \tilde{L} .

- 1. Let $Z \in \mathbb{R}^{n \times 2}$ be the matrix of eigenvectors of \tilde{L} corresponding to the two largest eigenvalues of \tilde{L} .
- **2.** Find the rotation R that minimises J_K on $Z \in \mathbb{R}^{n \times 2}$ to obtain \hat{Z} .

- 1. Let $Z \in \mathbb{R}^{n \times 2}$ be the matrix of eigenvectors of \tilde{L} corresponding to the two largest eigenvalues of \tilde{L} .
- **2.** Find the rotation R that minimises J_K on $Z \in \mathbb{R}^{n \times 2}$ to obtain \hat{Z} .
- 3. Add the eigenvector corresponding to the next largest eigenvalue of \tilde{L} as a column to \hat{Z} and find the rotation R that minimises J_K for K=3.

- 1. Let $Z \in \mathbb{R}^{n \times 2}$ be the matrix of eigenvectors of \tilde{L} corresponding to the two largest eigenvalues of \tilde{L} .
- **2.** Find the rotation R that minimises J_K on $Z \in \mathbb{R}^{n \times 2}$ to obtain \hat{Z} .
- 3. Add the eigenvector corresponding to the next largest eigenvalue of \tilde{L} as a column to \hat{Z} and find the rotation R that minimises J_K for K=3.
- 4. Repeat until we've found $J_{K'}$.

Choosing some large K' we can calculate the value of J_K for all $K \in [K']$ efficiently as follows:

- 1. Let $Z \in \mathbb{R}^{n \times 2}$ be the matrix of eigenvectors of \tilde{L} corresponding to the two largest eigenvalues of \tilde{L} .
- **2.** Find the rotation R that minimises J_K on $Z \in \mathbb{R}^{n \times 2}$ to obtain \hat{Z} .
- 3. Add the eigenvector corresponding to the next largest eigenvalue of \tilde{L} as a column to \hat{Z} and find the rotation R that minimises J_K for K=3.
- 4. Repeat until we've found $J_{K'}$.

Finally, we choose $K_{\text{best}} = \operatorname{argmin}_{K \in [K']} J_K$. (Although, if several Ks have very similar costs—e.g. within 0.01% of each other—then choose the largest of these Ks.)

Cluster Allocation

Now that we have K_{best} , using the rotated matrix $\hat{Z} \in \mathbb{R}^{n \times K_{\text{best}}}$ we can allocate each data point x_i to a cluster k in one of two ways:

Cluster Allocation

Now that we have K_{best} , using the rotated matrix $\hat{Z} \in \mathbb{R}^{n \times K_{\text{best}}}$ we can allocate each data point x_i to a cluster k in one of two ways:

1. Assign x_i to the cluster $k = \operatorname{argmax}_j \hat{Z}_{ij}^2$.

Cluster Allocation

Now that we have K_{best} , using the rotated matrix $\hat{Z} \in \mathbb{R}^{n \times K_{\text{best}}}$ we can allocate each data point x_i to a cluster k in one of two ways:

- 1. Assign x_i to the cluster $k = \operatorname{argmax}_j \hat{Z}_{ii}^2$.
- 2. As in the old algorithm, perform K-means on the rows of \hat{Z} to find the clusters (this should converge fairly quickly since \hat{Z} is likely to be a good initialisation). This is particularly useful for very noisy data.

1. Compute the local scale σ_i for each data point x_i .

- 1. Compute the local scale σ_i for each data point x_i .
- 2. Form the locally scaled affinity matrix $\hat{W} \in \mathbb{R}^{n \times n}$ where $\hat{W}_{ij} = \exp\left(-\frac{d^2(\mathbf{x}_i, \mathbf{x}_j)}{\sigma_i \sigma_j}\right)$ for $i \neq j$ and $\hat{W}_{ii} = 0$.

- 1. Compute the local scale σ_i for each data point x_i .
- 2. Form the locally scaled affinity matrix $\hat{W} \in \mathbb{R}^{n \times n}$ where $\hat{W}_{ij} = \exp\left(-\frac{d^2(\mathbf{x}_i, \mathbf{x}_j)}{\sigma_i \sigma_j}\right)$ for $i \neq j$ and $\hat{W}_{ii} = 0$.
- 3. Let G be the diagonal matrix with $G_{ii} = \sum_{j=1}^{n} \hat{W}_{ij}$ (the degree of x_i) and $\tilde{L} := G^{-1/2} \hat{W} G^{-1/2}$ be the symmetric normalized Laplacian.

- 1. Compute the local scale σ_i for each data point x_i .
- 2. Form the locally scaled affinity matrix $\hat{W} \in \mathbb{R}^{n \times n}$ where $\hat{W}_{ij} = \exp\left(-\frac{d^2(\mathbf{x}_i, \mathbf{x}_j)}{\sigma_i \sigma_j}\right)$ for $i \neq j$ and $\hat{W}_{ii} = 0$.
- 3. Let G be the diagonal matrix with $G_{ii} = \sum_{j=1}^{n} \hat{W}_{ij}$ (the degree of x_i) and $\tilde{L} := G^{-1/2} \hat{W} G^{-1/2}$ be the symmetric normalized Laplacian.
- 4. For some large K', form the matrix $Z \in \mathbb{R}^{n \times K'}$ by stacking the eigenvectors corresponding to the K' largest eigenvalues of \tilde{L} and use gradient descent to find the rotation matrix $R \in \mathbb{R}^{K' \times K'}$ that minimizes $J_{K'} = \sum_{i=1}^n \sum_{j=1}^{K'} (Z_{ij}^2 / \max_l Z_{il}^2)$.

- 1. Compute the local scale σ_i for each data point x_i .
- 2. Form the locally scaled affinity matrix $\hat{W} \in \mathbb{R}^{n \times n}$ where $\hat{W}_{ij} = \exp\left(-\frac{d^2(\mathbf{x}_i, \mathbf{x}_j)}{\sigma_i \sigma_j}\right)$ for $i \neq j$ and $\hat{W}_{ii} = 0$.
- 3. Let G be the diagonal matrix with $G_{ii} = \sum_{j=1}^{n} \hat{W}_{ij}$ (the degree of x_i) and $\tilde{L} := G^{-1/2} \hat{W} G^{-1/2}$ be the symmetric normalized Laplacian.
- 4. For some large K', form the matrix $Z \in \mathbb{R}^{n \times K'}$ by stacking the eigenvectors corresponding to the K' largest eigenvalues of \tilde{L} and use gradient descent to find the rotation matrix $R \in \mathbb{R}^{K' \times K'}$ that minimizes $J_{K'} = \sum_{i=1}^n \sum_{j=1}^{K'} (Z_{ij}^2 / \max_l Z_{il}^2)$.
- 5. Choose $K_{\text{best}} = \operatorname{argmin}_K J_K$ (or largest such K if several give very similar costs).

[Zelnik-Manor and Perona, 2004]

- 1. Compute the local scale σ_i for each data point x_i .
- 2. Form the locally scaled affinity matrix $\hat{W} \in \mathbb{R}^{n \times n}$ where $\hat{W}_{ij} = \exp\left(-\frac{d^2(\mathbf{x}_i, \mathbf{x}_j)}{\sigma_i \sigma_j}\right)$ for $i \neq j$ and $\hat{W}_{ii} = 0$.
- 3. Let G be the diagonal matrix with $G_{ii} = \sum_{j=1}^{n} \hat{W}_{ij}$ (the degree of x_i) and $\tilde{L} := G^{-1/2} \hat{W} G^{-1/2}$ be the symmetric normalized Laplacian.
- 4. For some large K', form the matrix $Z \in \mathbb{R}^{n \times K'}$ by stacking the eigenvectors corresponding to the K' largest eigenvalues of \tilde{L} and use gradient descent to find the rotation matrix $R \in \mathbb{R}^{K' \times K'}$ that minimizes $J_{K'} = \sum_{i=1}^n \sum_{j=1}^{K'} (Z_{ij}^2 / \max_l Z_{il}^2)$.
- 5. Choose $K_{\text{best}} = \operatorname{argmin}_K J_K$ (or largest such K if several give very similar costs).
- 6. Assign x_i to cluster k if and only if $\max_j Z_{ij}^2 = Z_{ik}^2$. (Or, for very noisy data, use K-means to cluster the rows of Z as in the standard algorithm.)

[Zelnik-Manor and Perona, 2004]

Conclusion

- We do have to choose P and K', but these are much simpler to tune (and we can usually just set K' to be 'big enough' in some sense).
- \blacktriangleright The local scaling implemented to deal with σ also allows us to perform clustering noisy, multi-scale data.

References

Zelnik-Manor, L. and Perona, P. (2004). Self-Tuning Spectral Clustering.

Thank you

Any questions?