Review of Vectors

The cardinal rule of vector spaces is that they are pointless: vectors have no pre-ordained position. They just have magnitude and direction.

- 1. If a vector \mathbf{v} in 3-D has components a, b and c in the three axes that is, $\mathbf{v} = (a, b, c)$ compute $|\mathbf{v}|$ the length of \mathbf{v} .
- 2. What is the vector \mathbf{w} that has the same direction as \mathbf{v} but is of unit-length; that is $|\mathbf{w}| = 1$. This new vector is called the normalized version of \mathbf{v} .
- 3. Use the *algebraic* definition of dot product to show that $\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2$ and so show that if \mathbf{w} is unit-length then $\mathbf{w} \cdot \mathbf{w} = 1$
- 4. The trigonometric definition of dot product is

$$\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos \theta$$

where θ is the angle between the two vectors. Use this to show that if two vectors are perpendicular then their dot product is 0.

- 5. What is the vector way of expressing a plane in 3-D?
- 6. Use the dot product operator to determine what is the perpendicular projection of a point p onto a plane?
- 7. One important use of the dot product operator in computer graphics / games is to tell if a polygon (that is part of the wire frame that defines an object) is visible to the camera; the ones at the back of the object won't be!

This idea relies on every polygon having a normal defined for it and that points in the direction of the outside world. If we are looking towards the object with a viewing direction given by a vector \mathbf{v} what is the relationship that \mathbf{v} must have with the polygon normal \mathbf{n} for the face to be visible?