

# **Introduction to Machine Learning**

**Evaluation: ROC Analysis 2** 

Bernd Bischl, Christoph Molnar, Daniel Schalk, Fabian Scheipl

Department of Statistics - LMU Munich

#### **ROC SPACE**

- We characterize a classifier by its TPR and FPR values and plot them in a coordinate system
- We could also use 2 different ROC metrics which define a trade-off, like TPR and PPV!



#### **ROC SPACE**

- The best classifier lies on the top-left corner
- The diagonal is worst, where classifiers produce random labels (with different proportions). If each positive x will be randomly classified with 25% as "pos", TPR = 0.25. If we assign each negative x randomly to "pos", FPR = 0.25.



#### **ROC SPACE**

In practice, we should never obtain a classifier below the diagonal, as inverting the predicted labels  $-0 \rightarrow 1$  and  $1 \rightarrow 0$  – will result in a reflection at the diagonal. Because this inverting results in TPR2 = 1 - TPR1 and FPR2 = 1 - FPR1

0.75 E 0.50 0.25 0.00 0.25 0.50 0.75 1.00 FPR

#### **ROC AND LABEL DISTRIBUTION**

ROC curves are insensitive to class distributions ROC curves are insensitive to the class distribution in the sense that they are not affected by changes in the ratio  $n_+/n_-$  (at prediction).

|                | Actual Positive | Actual Negative |
|----------------|-----------------|-----------------|
| Pred. Positive | 40              | 25              |
| Pred. Negative | 10              | 25              |

Here we have we have a proportion  $n_+/n_- = 1$ . MCE = 35/100. Now we double the size of the positive class and change the proportion to  $n_+/n_- = 2$ . MCE = 45/150 = 30/100.

|                | Actual Positive | Actual Negative |
|----------------|-----------------|-----------------|
| Pred. Positive | 80              | 25              |
| Pred. Negative | 20              | 25              |

TPR = 0.8 and FPR = 0.5 do not change.

NB: If we mess around with class proportions during training, the above is not true, as estimated posterior probabilities can drastically change!

#### **SCORING CLASSIFIERS**

- A scoring classifier is a model which outputs scores or probabilities, instead of discrete labels, and nearly all modern classifiers can do that.
- Thresholding flexibly converts measured probabilities to labels. Predict 1 (positive class) if  $\hat{f}(x) > \tau$  else predict 0.
- Normally we could use  $\tau = 0.5$  to convert, but for imbalanced or cost-sensitive situations another threshold could be much better.
- After thresholding, any metric defined on labels can be used.



- Are based on thresholding classifiers
- We iterate through all possible threshold, and draw a point in the ROC space (FPR, TPR) for the resulting classifier
- The resulting plot is called an ROC curve
- Small thresholds will very liberally predict class 1, and result in a potentially higher FPR, but also higher TPR
- High thresholds will very conservatively predict class 1, and result in a lower FPR and TPR
- As we have not defined the trade-off between false postives and false negative costs, we cannot easily select the "best" threshold; but a visual inspection of all possible results seems useful

- Rank test observations on decreasing score
- Set  $\alpha = 1$ , so we start in (0,0); we predict everything as "neg"
- For each observation *x* (in the decreasing order).
  - Reduce threshold, so prediction for next observation changes
  - If x is "pos", move TPR  $1/n_+$  up, as we have one TP more
  - If x is "neg", move FPR  $1/n_-$  right, as we have one FP more



Set threshold  $\tau = 0.9$  yields TPR 0.167 and FPR 0.



Set threshold  $\tau =$  0.85 yields TPR 0.333 and FPR 0.



Set threshold  $\tau =$  0.66 yields TPR 0.5 and FPR 0.



Set threshold  $\tau = 0.6$  yields TPR 0.5 and FPR 0.167.



Set threshold  $\tau = 0.55$  yields TPR 0.667 and FPR 0.167.



Set threshold  $\tau = 0.3$  yields TPR 0.833 and FPR 0.5.

| #  | Truth | Score |
|----|-------|-------|
| 1  | Pos   | 0.95  |
| 2  | Pos   | 0.86  |
| 3  | Pos   | 0.69  |
| 4  | Neg   | 0.65  |
| 5  | Pos   | 0.59  |
| 6  | Neg   | 0.52  |
| 7  | Pos   | 0.51  |
| 8  | Neg   | 0.39  |
| 9  | Neg   | 0.28  |
| 10 | Neg   | 0.18  |
| 11 | Pos   | 0.15  |
| 12 | Neg   | 0.06  |



- The closer the curve to the top-left corner, the better
- Unfortunately, ROC curves can also cross
- Then, depending on costs and what you want, a different model can be better in different parts of the ROC space



## **AUC: AREA UNDER ROC CURVE**

- The AUC (in [0,1]) is a single metric to evaluate scoring classifiers
- AUC = 1: Perfect classifier
- AUC = 0.5: Randomly ordered
- AUC = 0: Perfect, with inverted labels



### **AUC: AREA UNDER ROC CURVE**

Interpretation: Probability that classifier ranks a random positive higher than a random negative observation



#### PARTIAL AUC

- Sometimes it can be useful to look at a specific region under the ROC curve ⇒ partial AUC (pAUC).
- Let  $0 \le c_1 < c_2 \le 1$  define a region.
- For example, one could focus on a region with low FPR  $(c_1 = 0, c_2 = 0.2)$  or a region with high TPR  $(c_1 = 0.8, c_2 = 1)$ :

