15.0 Spoken Dialogues

- **References**: 1. 11.1 11.2.1, Chapter 17 of Huang
 - 2. Sadek and De Mori, "Spoken Dialogues with Computers", Academic Press, 1998
 - 3. "Special Issue on Language Modeling and Dialogue Systems", IEEE Trans. on Speech and Audio Processing, Jan 2000
 - 4. "Conversational Interfaces: Advances and Challenges", Proceedings of the IEEE, Aug 2000

Spoken Dialogue Systems

- Almost all human-network interactions can be made by spoken dialogue
- Speech understanding, speech synthesis, dialogue management, discourse analysis
- System/user/mixed initiatives
- Reliability/efficiency, dialogue modeling/flow control
- Transaction success rate/average dialogue turns

Key Processes in A Spoken Dialogue

• A Basic Formulation

$$A_n^* = \underset{A_n}{\operatorname{arg max}} \operatorname{Prob} (A_n | X_n, S_{n-1})$$

 X_n : speech input from the user in the n-th dialogue turn

 S_n : discourse semantics (dialogue state) at the n-th dialogue turn

A_n: action (response, actions, etc.) of the system (computer, hand-held device, network server, etc.) after the n-th dialogue turn

 goal: the system takes the right actions after each dialogue turn and complete the task successfully finally

$$A_n^* \approx \underset{A_n, S_n}{\operatorname{arg max}} P(A_n | S_n) \sum_{F_n} P(S_n | F_n, S_{n-1}) P(F_n | X_n, S_{n-1})$$
by dialogue
management

by discourse
analysis

by speech recognition
and understanding

 F_n : semantic interpretation of the input speech X_n

Three Key Elements

- speech recognition and understanding: converting X_n to some semantic interpretation F_n
- discourse analysis: converting S_{n-1} to S_n , the new discourse semantics (dialogue state), given all possible F_n
- dialogue management: select the most suitable action A_n given the discourse semantics (dialogue state) S_n

Dialogue Structure

• Turns

- an uninterrupted stream of speech(one or several utterances/sentences) from one participant in a dialogue
- speaking turn: conveys new information back-channel turn: acknowledgement and so on(e.g. O. K.)

• Initiative-Response Pair

- a turn may include both a response and an initiative
- system initiative: the system always leads the interaction flow user initiative: the user decides how to proceed mixed initiative: both acceptable to some degree

• Speech Acts(Dialogue Acts)

- goal or intention carried by the speech regardless of the detailed linguistic form
- forward looking acts
 - conversation opening(e.g. May I help you?), offer(e.g. There are three flights to Taipei...), assert(e.g. I'll leave on Tuesday), reassert(e.g. No, I said Tuesday), information request(e.g. When does it depart?), etc.
- backward looking acts
 - accept(e.g. Yes), accept-part(e.g. O.K., but economy class), reject(e.g. No), signal not clear(e.g. What did you say?), etc.
- speech acts ↔ linguistic forms : a many-to-many mapping
 - e.g. "O.K." request for confirmation, confirmation
- task dependent/independent
- helpful in analysis, modeling, training, system design, etc.

• Sub-dialogues

- e.g. "asking for destination", "asking for departure time",

Language Understanding for Limited Domain

- Semantic Frames An Example for Semantic Representation
 - a semantic class defined by an entity and a number of attributes(or slots)e.g. [Flight]:

[Airline] \rightarrow (United) [Origin] \rightarrow (San Francisco) [Destination] \rightarrow (Boston) [Date] \rightarrow (May 18) [Flight No] \rightarrow (2306)

- "slot-and-filler" structure
- Sentence Parsing with Context-free Grammar (CFG) for Language Understanding

- extension to Probabilistic CFG, integration with N-gram(local relation without semantics), etc.

Robust Parsing for Speech Understanding

Problems for Sentence Parsing with CFG

- ungrammatical utterances
- speech recognition errors (substitutions, deletions, insertions)
- spontaneous speech problems: um-, cough, hesitation, repetition, repair, etc.
- unnecessary details, irrelevant words, greetings, unlimited number of linguistic forms for a given act
 - e.g. to Boston
 I'm going to Boston, I need be to at Boston Tomorrow
 um– just a minute– I wish to I wish to go to Boston

Robust Parsing as an Example Approach

- small grammars for particular items in a very limited domain, others handled as fillers
 - e.g. Destination→ Prep CityName Prep → to |for| at CityName → Boston |Los Angeles|...
- different small grammars may operate simultaneously
- keyword spotting helpful
- concept N-gram may be helpful

Prob($c_i|c_{i-1}$), c_i : concept

CityName (Boston,...) direction (to, for...)

similar to class-based N-gram

Speech Understanding

- two-stage: speech recognition (or keyword spotting) followed by semantic parsing (e.g. robust parsing)
- single-stage: integrated into a single stage

Discourse Analysis and Dialogue Management

• Discourse Analysis

- conversion from relative expressions(e.g. tomorrow, next week, he, it...) to real objects
- automatic inference: deciding on missing information based on available knowledge(e.g. "how many flights in the morning?" implies the destination/origin previously mentioned)
- inconsistency/ambiguity detection (e.g. need clarification by confirmation)
- example approach: maintaining/updating the dialogue states(or semantic slots)

• Dialogue Management

- controlling the dialogue flow, interacting with the user, generating the next action
 - e.g. asking for incomplete information, confirmation, clarify inconsistency, filling up the empty slots one-by-one towards the completion of the task, optimizing the accuracy/efficiency/user friendliness of the dialogue

- plan-based dialogue management as another example
- challenging for mixed-initiative dialogues

• Performance Measure

- internal: word error rate, slot accuracy (for understanding), etc.
- overall: average success rate (for accuracy), average number of turns (for efficiency), etc.

Client-Server Architecture

Galaxy, MIT

• Integration Platform, AT& T

- Domain Dependent/Independent Servers Shared by Different Applications/Clients
 - reducing computation requirements at user (client) by allocating most load at server
 - higher portability to different tasks