Ejemplo comparación de resultados predictores in sillico

Cambio de estudio ACADM c.382C>T (chr1:76199288 C/T, rs121434283 o NM_000016.4:c.362C>)

Exón 5 e intrones adyacentes:

Se ha descrito que este cambio causa el *skipping* del exón 5. La mutación causa la pérdida del sitio ESE y abole el motivo de unión de la proteína SF2/ASF del *spliceosome* llevando al *skipping* del exón.¹.

El cambio se encuentra en la segunda fila del exón (es la única **c** marcada en amarillo en la fila).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

The sequence: wt has the following composition:	The sequence: sequence1 has the following composition:								
Length: 701 nucleotides. 31.8% A, 13.7% C, 20.7% G, 33.8% T, 0.0% X, 34.4% G+C	Length: 701 nucleotides. 31.8% A, 13.6% C, 20.7% G, 34.0% T, 0.0% X, 34.2% G+C								
Donor splice sites, direct strand	Donor splice sites, direct strand								
pos 5'->3' phase strand confidence 5' exon intron 3 402 0 + 0.86 TTCTTTGGGG^GTAAGTGACT 513 0 + 0.81 TTACTACTAG^GTAAGGTTAG 518 2 + 0.70 ACTAGGTAAG^GTTAGTGGGT	pos 5'->3' phase strand confidence 5' exon intron 3' 402 0 + 0.83 TTCTTTGGGG^GTAAGTGACT 513 0 + 0.81 TTACTACTAG^GTAAGGTTAG 518 2 + 0.70 ACTAGGTAAG^GTTAGTGGGT								
Donor splice sites, complement strand	Donor splice sites, complement strand								
pos 3'->5' pos 5'->3' phase strand confidence 5' exon intron 3 240 462 0 - 0.34 AGAAATAAAG^GTAAACTATT	pos 3'->5' pos 5'->3' phase strand confidence 5' exon intron 3' 240 462 0 - 0.34 AGAAATAAAG^GTAAACTATT								
Acceptor splice sites, direct strand	Acceptor splice sites, direct strand								
pos 5'->3' phase strand confidence 5' intron exon 3 25 - + 0.00 TTTTCCTCAG^ACCCAGTTTT 300 1 + 0.36 GATACTGTAG^GAGGTCTTGG	pos 5'->3' phase strand confidence 5' intron exon 3' 25 - + 0.00 TTTTCCTCAG^ACCCAGTTTT 300 1 + 0.33 GATACTGTAG^GAGGTCTTGG								
Acceptor splice sites, complement strand	Acceptor splice sites, complement strand								
No acceptor site predictions above threshold.	No acceptor site predictions above threshold.								

No hay cambios entre ambos resultados, por lo que no debe estar afectando al *splicing*.

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for 85.53.81.70.20897.0:

Donor site predictions for 85.53.81.70.20908.0:

Start	End	Score	Exon Intron	Start	End	Score	Exon Intron
76	90	0.45	aatacag gt tcaaat	76	90	0.45	aatacag gt tcaaat
395	409	1.00	tttgggg gt aagtga	395	409	1.00	tttgggg gt aagtga
506	520	0.99	ctactag gt aaggtt	506	520	0.99	ctactag gt aaggtt
683	697	0.60	ttcttag gt aaagcc	683	697	0.60	ttcttag gt aaagcc

Acceptor site predictions for 85.53.81.70.20897.0:

Acceptor site predictions for 85.53.81.70.20908.0:

Start	End	Score	Intron	Exon	Start	End	Score	Intron	Exon
5	45	0.98	_	ag acccagttttagagttgaat	5	45	0.98	aaccatgattctttcctc	ag acccagttttagagttgaat
599	639	0.68	taactctggccttgtctct	ag tactcggagttctgactgtc	599	639	0.68	taactctggccttgtctct	ag tactcggagttctgactgtc

No hay cambios entre ambos resultados, por lo que no debe estar afectando al splicing.

GENSCAN \rightarrow no da resultados para este cambio

Predicted genes/exons:	Predicted genes/exons:
Gn.Ex Type S .BeginEnd .Len Fr Ph I/Ac Do/T CodRg P Tscr	Gn.Ex Type S .BeginEnd .Len Fr Ph I/Ac Do/T CodRg P Tscr
NO EXONS/GENES PREDICTED IN SEQUENCE	NO EXONS/GENES PREDICTED IN SEQUENCE

MaxEntScan

MAXENT: -15.90 MDD: -14.51 MM: -7.92 WMM: -11.71 MAXENT: -11.67 MM: -12.21 WMM: -13.14

En los resultados tanto para 5'SS (izquierda) como 3'SS (derecha), las puntuaciones son muuy bajas y negativas, por lo que no debe estar afectando al *splicing*.

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1)
tcaga(c/t)tgcta	tcagac	tcagat	26257	50%

En el análisis de la región adyacente al cambio, se obtiene una puntuación no muy elevada (50%) para el cambio C>T, por lo que puede estar afectando al *splicing*.

CRYP-SKIP

Parece que hay un sitio críptico de *splicing* dentro del propio exón, pero el cambio de interés no lo toma en consideración, por lo que no debe considerar que tenga algún efecto en el *splicing*.

Human Splicing Finder

SVM-BPfinder

	agez		t bp_seq bp_scr	y_cont ppt_off p	ppt_len ppt_scr	svm_scr				con id	2007	aa diab	bp seg bp scr	u cont out off	loo				
wt	13	454	atattatat	-3.36845953927 6	0.472160356347	10	9	25	-1.1647263	seq_id	agez 13	55_d15t	: bp_seq bp_scr atattatat	y_cont ppt_off -3.36845953927			Q	25	-1.1647263
wt	13	435	cttttaaaa	-4.70827108165 6	0.462790697674	38	18	36	-3.3622307	mut	13	435					_	36	
wt	13	434	ttttaaaac	-0.933022031474 6	0.463869463869	37	18	36	-1.8203956	mut	13	435	cttttaaaa ttttaaaac	-4.70827108165 -0.933022031474			18 18	36	-3.3622307 -1.8203956
wt	13	419	tggtcatat	-1.18676042887 6	0.463768115942	22	18	36	-0.97030407	mut	13	419					18	36	
wt	13	413	tattgaaag	-0.640165273778 6	0.463235294118	16	18	36	-0.37666839	mut mut	13	419	tggtcatat	-1.18676042887 -0.640165273778			18	36	-0.97030407 -0.37666839
wt	13	404	caattaaaa	-2.73133007294 6	0.466165413534	7	18	36	-0.62482704		13	413	tattgaaag caattaaaa				18	36	-0.37666839
wt	13	403	aattaaaat	-1.26316707816 6	0.467336683417	6	18	36	0.01370482	mut	13	404		-2.73133007294			18	36	0.01370482
wt	13	394	agtttacct	-1.35047513683 6	0.467866323907	1	14	29	0.2309713	mut	13	394	aattaaaat	-1.26316707816 -1.35047513683			14	29	0.2309713
wt	13	388	cctttattt	-3.72199497382 6	0.462140992167	1	8	18	-0.80191416		13	388	agtttacct	-3.72199497382			8	18	-0.80191416
wt	13	376	ttgtgatgt	0.83930924355 6	0.455525606469	69	9	16	-3.3410021	mut	13	376	cctttattt		0.455525606469		9	16	-0.80191410
wt	13	362	atattacaa	-2.4446613	0.450980392157	55	9	16	-3.7421233	mut	13	362	ttgtgatgt	-2.4446613	0.450980392157		9	16	-3.7421233
wt	13	351	tgttgaaac	0.0831389236426 6	0.450867052023	44	9	16	-2.0561251	mut	13	351	atattacaa				9	16	
wt	13	341	ttttgatac	-0.0765988722507	0.44940	4761905	34	9	16 -1.486159	mut	13	341	tgttgaaac	0.0831389236426 -0.076598872250		04761905		9	-2.0561251 16 -1.486159
wt	13	308	ttttgatgc	0.704167294195 6	0.445544554455	1	9	16	0.90714568	mut			ttttgatac					16	
wt	13	298	tgtttaatt	-3.49488724098 6	0.436860068259	57	6	17	-4.2751777	mut	13 13	308	ttttgatgc	0.704167294195			9		0.90714568
wt	13	297	gtttaatta	-1.34260535501 6	0.438356164384	56	6	17	-3.368676	mut		298	tgtttaatt	-3.49488724098			8	13	-3.2996679
wt	13	294	taattagtg	-2.04434706878 6	0.43598615917	53	6	17	-3.4543115	mut	13	297	gtttaatta	-1.34260535501			8	13	-2.3931662
wt	13	290	tagtgaaga	-1.44655889205 6	0.438596491228	49	6	17	-2.9662128	mut	13	294	taattagtg	-2.04434706878		37	8	13	-2.4788018
wt	13	278	ggcttatgg	-0.635933372838 6	0.43956043956	37	6	17	-1.8889235	mut	13	290	tagtgaaga	-1.44655889205			_	13	-1.9907031
wt	13	260	ggttcagac	-1.23502686949 6	0.443137254902	19	6	17	-0.9829719	mut	13	278	ggcttatgg	-0.635933372838		21	8	13	-0.91341373
wt	13	248	tattgaagg	-0.770950401191 0	0.440329218107	7	6	17	-0.042591086	mut	13	260	ggttcagat	-1.78917042579			_	13	-0.22443552
wt	13	228	gggtaagtg	-0.181176388006 6	0.448430493274	26	13	20	-0.9837708	mut		248	tattgaagg	-0.770950401191			6	17	-0.042591086
wt	13	224	aagtgactt	0.672128061455	0.452054794521	22	13	20	-0.39529793	mut	13	228	gggtaagtg	-0.181176388006			13	20	-0.9837708
wt	13	220	gacttagaa	-2.62329828485	0.446511627907	18	13	20	-1.4342101	mut	13	224	aagtgactt	0.672128061455			13	20	-0.39529793
wt	13	212	aaattaact	-2.17611658923 6	0.454106280193	10	13	20	-0.75027796	mut	13	220	gacttagaa	-2.62329828485			13	20	-1.4342101
wt	13	211	aattaacta	0.473082957256 6	0.456310679612	9	13	20	0.3510192	mut	13	212	aaattaact	-2.17611658923			13	20	-0.75027796
wt	13	203	acctaactc	2.45550232578	0.449494949495	1	13	20	1.6314153	mut	13	211	aattaacta	0.473082957256			13	20	0.3510192
wt	13	199	aactcagct	0.390877586429	0.443298969072	2	8	17	0.72977022	mut	13	203	acctaactc		0.449494949495		13	20	1.6314153
wt	13	189	ttgttaatg	-2.9115687641	0.429347826087	30	5	15	-2.3587842	mut	13	199	aactcagct	0.390877586429			8	17	0.72977022
wt	13	188	tgttaatga	0.661187190905 6	0.431693989071	29	5	15	-0.89582523	mut	13	189	ttgttaatg		0.429347826087		5	15	-2.3587842
wt	13	185	taatgagat	-1.46704142367 6	0.433333333333	26	5	15	-1.5387029	mut	13	188	tgttaatga	0.661187190905			5	15	-0.89582523
wt	13	177	tagttactc	-0.915914079556 6	0.436046511628	18	5	15	-0.81564763	mut	13	185	taatgagat	-1.46704142367			5	15	-1.5387029
wt	13	170	tcctgaaga	-0.00829085143104	4 0.42424	2424242	11	5	15 -0.02099437	mut	13	177	tagttactc	-0.915914079556			5	15	-0.81564763
wt	13	154	tttttagaa	-5.20619526297	0.422818791946	57	8	23	-4.8938755	mut	13	170	tcctgaaga	-0.008290851431		42424242		5	15 -0.02099437
wt	13	132	aagtcagtt	-2.47180394729		35	8	23	-2.4120993	mut	13	154	tttttagaa	-5.20619526297			8	23	-4.8938755
wt	13	128	cagttacta	-1.41601885939		31	8	23	-1.7457231	mut	13	132	aagtcagtt	-2.47180394729			8	23	-2.4120993
wt	13	117	aggtaaggt	-1.47940767767 6			8	23	-1.0734641	mut	13	128	cagttacta	-1.41601885939			8	23	-1.7457231
wt	13	112	aggttagtg	-3.21713479795			8	23	-1.4361351	mut	13	117	aggtaaggt	-1.47940767767			8	23	-1.0734641
wt	13	89	tctttaaag	-4,23121933574 6			10	18	-3.2160481	mut	13	112	aggttagtg	-3.21713479795			8	23	-1.4361351
wt	13	88	ctttaaaga	-1.8510429548 6			10	18	-2.2189917	mut	13	89	tctttaaag	-4.23121933574			10	18	-3.2160481
wt	13	70	gattcagca	-0.777165203275			10	18	-0.64196675	mut	13	88	ctttaaaga		0.469879518072		10	18	-2.2189917
wt	13	63	cagtgaagc	-0.111627308883			10	18	0.070963224	mut	13	70	gattcagca	-0.777165203275			10	18	-0.64196675
wt	13	48	ttctgattt	0.983324712343 6			16	27	0.15002597	mut	13	63	cagtgaagc	-0.111627308883			10	18	0.070963224
wt	13	35	gcttgataa	-0.994572237875		16	27	0.20447		mut	13	48	ttctgattt	0.983324712343			16	27	0.15002597
		32	tgataactc			1	16	27	1.3122179	mut	13	35	gcttgataa	-0.994572237875	0.6 4	16	27	0.20447	278
wt	13										13	32		1.3251495148	0.62962962963		16	27	1.3122179

El único cambio es el BP donde se encuentra el cambio. La puntuación para este fragmento pasa de -0.98 a -0.22, por lo que sería más probable que estuviera afectando al *splicing* en la secuencia mutada, pero al seguir siendo negativo, no lo podemos tener en cuenta.

IntSplice

SNV at chr1:76199288 can't be predicted by IntSplice.

Prediction shows either Abnormal or Normal.

Prediction Genomic Mutation Ensembl 64 Transcript ID and Exon No.

Variant Effect Predictor tool

Se trata de una variante que está afectando al sitio de *splicing*, por lo que va a provocar que se altere el *splicing* normal. Esto se observa porque da como resultado que es una variante NMD, por lo que tendrá que haber un mecanismo alterado en dicho *splicing* para que se active este mecanismo de degradación de los mRNA. Además, indica que es un cambio *missense*, por lo que va a tener un cambio en la proteína que puede afectar al *splicing*.

Uploaded variant	Location	Allele	Consequence	Symbol	Gene	Feature type	Feature	Biotype
ENST00000370841.4:c.362C>T	1:75733603- 75733603	T	missense_variant	ACADM	ENSG00000117054	Transcript	ENST00000370834.9	protein_coding
ENST00000370841.4:c.362C>T	1:75733603- 75733603	Т	missense_variant	ACADM	ENSG00000117054	Transcript	ENST00000370841.9	protein_coding
ENST00000370841.4:c.362C>T	1:75733603- 75733603	T	missense variant	ACADM	ENSG00000117054	Transcript	ENST00000420607.6	protein_coding
ENST00000370841.4:c.362C>T	1:75733603- 75733603	T	downstream gene variant	ACADM	ENSG00000117054	Transcript	ENST00000473018.2	retained_intron
ENST00000370841.4:c.362C>T	1:75733603- 75733603	Т	intron_variant, NMD_transcript_variant	ACADM	ENSG00000117054	Transcript	ENST00000525808.5	nonsense_mediated_decay
ENST00000370841.4:c.362C>T	1:75733603- 75733603	T	downstream gene variant	ACADM	ENSG00000117054	Transcript	ENST00000525881.5	retained_intron
ENST00000370841.4:c.362C>T	1:75733603- 75733603	T	3 prime UTR variant, NMD transcript variant	ACADM	ENSG00000117054	Transcript	ENST00000526129.5	nonsense_mediated_decay
ENST00000370841.4:c.362C>T	1:75733603- 75733603	T	3 prime UTR variant, NMD transcript variant	ACADM	ENSG00000117054	Transcript	ENST00000526196.5	nonsense_mediated_decay
ENST00000370841.4:c.362C>T	1:75733603- 75733603	Т	upstream_gene_variant	ACADM	ENSG00000117054	Transcript	ENST00000526930.1	retained_intron
ENST00000370841.4:c.362C>T	1:75733603- 75733603	Т	intron_variant, non_coding_transcript_variant	ACADM	ENSG00000117054	Transcript	ENST00000529059.5	retained_intron
ENST00000370841.4:c.362C>T	1:75733603- 75733603	Т	intron_variant, NMD_transcript_variant	ACADM	ENSG00000117054	Transcript	ENST00000530953.6	nonsense_mediated_decay
ENST00000370841.4:c.362C>T	1:75733603- 75733603	Т	3 prime UTR_variant, NMD_transcript_variant	ACADM	ENSG00000117054	Transcript	ENST00000532509.5	nonsense_mediated_decay
ENST00000370841.4:c.362C>T	1:75733603- 75733603	Т	downstream_gene_variant	ACADM	ENSG00000117054	Transcript	ENST00000534146.5	retained_intron
ENST00000370841.4:c.362C>T	1:75733603- 75733603	T	intron_variant, NMD_transcript_variant	ACADM	ENSG00000117054	Transcript	ENST00000534334.5	nonsense_mediated_decay
ENST00000370841.4:c.362C>T	1:75733603- 75733603	Т	missense_variant	ACADM	ENSG00000117054	Transcript	ENST00000541113.5	protein_coding

ESEfinder

Cuando se busca los sitios de *splicing* para la secuencia *wild type*, se obtienen dos resultados positivos con la posición de interés para las dos matrices de 3'SS: CTTATGGATGTACAGGGGTTCAGACTGCTA (puntuación 4.49 y 4.22) y AGACTGCTATTGAAGGAAATTCTTTGGGGg (1.16 y 0.75). Si se buscan los fragmentos equivalentes en las predicciones para la secuencia mutada, las puntuaciones pasan a ser 3.89640 y 3.63550 para la primera y 1.57000 y 1.13150 para la segunda. Por lo tanto, podría estar perdiendo un sitio 3'SS podría estar siendo debilitado, mientras se podría estar generando uno nuevo, aunque este segundo tiene menos probabilidad debido a que el cambio de puntuaciones es muy reducido.

Si buscamos los ESE de la secuencia, para la puntuación de interés, solo hay un fragmento con esta que tiene puntuación positiva en más de una matriz: CAGACTG (3.49605 y 3.04097). El equivalente en la secuencia mutada tiene puntuaciones más bajas en esas mismas matrices (0.97232 y 1.22918) por lo que el cambio puede tener un efecto de alteración de este sitio en el *splicing*.

EX-SKIP

Seq	PESS (count)	FAS-ESS hex2 (count)	FAS-ESS hex3 (count)	IIE (count)	IIE (sum)	NI-ESS trusted (count)	NI-ESS all (sum)	PESE (count)	RESCUE -ESE (count)	EIE (count)	EIE (sum)	NI-ESE trusted (count)	NI-ESE all (sum)	ESS (total)	ESE (total)	ESS/ESE (ratio)
wt	3	8	5	47	758.3392	20	-27.2354	6	16	32	406.7314	29	36.8626	83	83	1.00
mut	3	8	5	51	810.1529	20	-28.1653	6	16	32	412.4263	25	32.6484	87	79	1.10

Allele mut has a higher chance of exon skipping than allele wt.

HOT-SKIP

La posición de interés (en azul) no está identificada como que puede afectar al *splicing* (puntuación 0.36).

Mutation(s) E+36A>G, E+98G>T and E+36A>T have the highest probability of exon skipping.