

Serviço Público Federal Ministério da Educação Fundação Universidade Federal de Mato Grosso do Sul

Laboratório de Física II -P03-Aula 2

Diogo de Oliveira Lima

Prof. Airton Carlos Notari

Serviço Público Federal Ministério da Educação Fundação Universidade Federal de Mato Grosso do Sul

Laboratório de Física II -P03-Aula 2

Relatório referente à disciplina de Laboratório de Física II, do curso de Bacharelado em Engenharia da Computação, da Universidade Federal de Mato Grosso do Sul.

Prof. Airton Carlos Notari

SUMÁRIO

1. INTRODUÇÃO	4
2. OBJETIVO	4
3. MATERIAIS	4
4. MÉTODOS	4
5. RESULTADOS E DISCUSSÃO	4
6. CONCLUSÃO	7

1. INTRODUÇÃO

O processo continua até ser atingido o equilíbrio térmico, em que se igualam as temperaturas dos dois sistemas. Se esses dois sistemas estão isolados termicamente, o princípio de conservação de energia requer que a energia térmica cedida por um dos sistemas seja igual a energia térmica recebida pelo outro

A capacidade térmica por unidade de massa de um corpo é denominada calor específico c (c = C/m), o qual depende apenas da natureza da substância de que é constituído o corpo. A rigor, o calor específico depende também da temperatura. Assim, para elevarmos a temperatura da água de 14,5°C para 15,5°C, precisamos fornecer $\bf 1$, $\bf 000$ $\bf cal$ para cada grama de água1 ; já para elevarmos a temperatura de $\bf 35,5$ °C para $\bf 36,5$ °C necessitamos da quantidade de calor, ligeiramente menor, de $\bf 0,998$ $\bf cal$ por grama.

2. OBJETIVO

Determinar o calor específico de metais.

3. MATERIAIS

- Simulador do AVA
- Site Geogebra

4. MÉTODOS

Inicialmente foi determinado o metal, após isso escolhido um valor de massa e ligado o Bico de Bunsen. Anotado a temperatura que o Becker estabilizou (Temperatura do metal), foi feito o mesmo com a temperatura da agua e em seguida determinado o calor especifico para se comparar com o valor da tabela.

5. RESULTADOS E DISCUSSÃO

Atividade 1: Determine o metal em teste "Alumínio";

- 1.1) A massa usada para o metal será de 100g.
- 1.2) A temperatura estabilizou em 100°C.
- 1.3) A temperatura da agua dentro do calorímetro foi estabelecido em 10°C.
- 1.4) A massa usada para a agua será de 100g.
- 1.5) Trocando o seletor de "Becker" para "calorímetro";
- 1.6) A temperatura estabilizou em 24°C.
- 1.7) Determine o calor específico C do sólido.

$$C = \frac{Q}{T} \rightarrow \frac{14}{80} \rightarrow 0.175 \text{ cal/g}^{\circ}\text{C}$$

1.8) Compare con a tabela:

Tabela 1 – Calores específicos de alguns sólidos à pressão constante de 1 atm e temperatura ambiente.

Substância	$c_p \; (cal/g^{\circ} C)$	Substância	$c_p \; (cal/g^{\circ} C)$
Alumínio	0,215	Tungstênio	0,112
Ouro	0,032	Mercúrio	0,0330
Cobre	0,0923	Prata	0,0564
Chumbo	0,0305	Ferro	0,0321

1.9) Houve uma diferença de 0,040 cal/g°C.

Atividade 2: Determine o metal em teste "Cobre";

- 2.1) A massa usada para o metal será de 100g.
- 2.2) A temperatura estabilizou em 100°C.
- 2.3) A temperatura da agua dentro do calorímetro foi estabelecido em 10°C.
- 2.4) A massa usada para a agua será de 100g.
- 2.5) Trocando o seletor de "Becker" para "calorímetro";
- 2.6) A temperatura estabilizou em 17°C.
- 2.7) Determine o calor específico C do sólido.

$$C = \frac{Q}{T} \rightarrow \frac{7}{80} \rightarrow 0.0875 \text{ cal/g}^{\circ}\text{C}$$

2.8) Comparando com a tabela, há uma diferença de 0,0048 cal/g°C.

Atividade 3: Determine o metal em teste "Ouro";

- 3.1) A massa usada para o metal será de 100g.
- 3.2) A temperatura estabilizou em 100°C.
- 3.3) A temperatura da agua dentro do calorímetro foi estabelecido em 10°C.
- 3.4) A massa usada para a agua será de 100g.
- 3.5) Trocando o seletor de "Becker" para "calorímetro";
- 3.6) A temperatura estabilizou em 13°C.
- 3.7) Determine o calor específico C do sólido.

$$C = \frac{Q}{T} \rightarrow \frac{3}{80} \rightarrow 0.0375 \text{ cal/g}^{\circ}\text{C}$$

3.8) Comparando com a tabela, houve uma diferença de 0,0055 cal/g°C.

6. CONCLUSÃO

Analisando os resultados dos Calores específico, foi possível observar que foi determinado um valor de C maior do que o da tabela, o que era esperado de acordo com a bibliografia. Uma alternativa para melhorar o resultado do experimento, é utilizar uma quantidade de temperatura no becker maior.

7. Bibliografia

Halliday, David, 1916-2010 Fundamentos de física, volume 1: mecânica / David Halliday, Robert Resnick, Jearl Walker; tradução Ronaldo Sérgio de Biasi. - 10. ed. - Rio de Janeiro: LTC, 2016.

Índice de comentários

4.1 Cadê a teoria?