

Our commitment. Your advantage.

DRAFT SPECIFICATION

Description: CRGH Series High Power Thick Film Chip Resistors

Product Type: (Resistance range: $1.0\Omega \sim 10M\Omega$)

CRGH0603 XXX (CRGH0603 1/5W +/- 1% & 5% Taped) CRGH0805_XXX (CRGH0805 1/3W +/- 1% & 5% Taped) CRGH1206 XXX (CRGH1206 1/2W +/- 1% & 5% Taped) CRGH210JXXX (CRGH2010 1W +/- 1% & 5% Taped) CRGH2512JXXX (CRGH2512 2W +/- 1% & 5% Taped)

Approved by							

Parts corresponding to RoHS Compliant: 2005-Apr.-1

Issued Date: 2008/12/19

CHANGE NOTIFICATION HISTORY								
Version	Date of Version	History	Remark					
1	2008/12/19	CRGH Series						
		CRGH0805_XXX (CRGH0805 1/3W +/- 1% & 5% Taped)						
		(
		CRGH2512JXXX (CRGH2512 2W +/- 1% & 5% Tape						
		(Control of the control of the contr						

High Power Thick Film Chip Resistors

1. Scope:

This specification relates to the Tyco Electronics Thick Film Chip Resistors (Lead Free)

2. Type designation:

The type designation shall be in the following form:

Ex.

Туре	Power Rating	Resistance tolerance	Nominal Resistance	
CRGH0603	1/5W			
CRGH0805	1/3W			
CRGH1206	1/2W	F (1%) J (5%)	1K0	
CRGH2010	1 W	• (0,0)		
CRGH2512	2W			

3. Ratings:

Туре	CRGH0603	CRGH0805	CRGH1206	CRGH2010	CRGH2512		
Power Rating	0.20W	0.33W	0.50W	1.0W	2.0W		
Max. Working Voltage	50 V	150 V	200 V	200 V	250 V		
Max. Overload Voltage	100 V	300 V	400 V	400 V	500 V		
Dielectric Withstanding Voltage	300 V	500 V	500 V	500 V	500 V		
Temp(CRGH0805_XXX (CR	-55°C ~ +155°C						
Ambient Temperature	70°C						

3.1 I CRGH2512JXXX

(CRGH2512 2W +/- 1% & 5% Taped)

Resistors shall have a power rating based on continuous load operation at an ambient temperature of 70°C. For temperature in excess of 70°C, the load shall be derate as shown in figure 1.

Figure 1

3.2 Voltage Rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform curresponding to the power rating , as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = Rated DC or RMS AC continuous working voltage at commercial-line frequency and waveform (volt)

P = Power Rating (watt)

R = Nominal Resistance (ohm)

In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value.

Customer: Part No.: CRGH Series

High Power Thick Film Chip Resistors

4. Construction:

5. Power rating and dimensions

Dimension:

	Dimension (mm)									
Type	L	W	Н	€1	€2					
CRGH0603	1.60 ± 0.10	0.80 + 0.15 - 0.10	0.45 ± 0.10	0.30 ± 0.20	0.30 ± 0.20					
CRGH0805	2.00 ± 0.15	1.25 + 0.15 - 0.10	0.55 ± 0.10	0.40 ± 0.20	0.40 ± 0.20					
CRGH1206	3.10 ± 0.15	1.55 + 0.15 - 0.10	0.55 ± 0.10	0.45 ± 0.20	0.45 ± 0.20					
CRGH2010	5.00 ± 0.20	2.50 ± 0.15	0.55 ± 0.10	0.60 ± 0.20	0.50 ± 0.20					
CRGH2512	6.30 ± 0.20	3.20 ± 0.15	0.55 ± 0.10	0.60 ± 0.20	0.50 ± 0.20					

Power Rating:

Tower Katilig .		I .	1 .			
Type	Power Rating	Tolerance	Resistance	Standard Series	TCR	
Турс	at 70°C	%	Range	Standard Series	TCK	
CRGH0603	0.20W	± 1	$1\Omega \sim 10 M\Omega$	E-96	≤ 10Ω ±200PPM/°C < 10Ω ±100PPM/°C	
		± 5	$1\Omega \sim 10 M\Omega$	E-24	1022 ±10011 W/	
CRGH0805	0.33W	± 1	$1\Omega \sim 10 M\Omega$	E-96	≤ 10Ω ±200PPM/°C	
CKGH0803	0.55 W	± 5	$1\Omega \sim 10 M\Omega$	E-24	$< 10\Omega \pm 100$ PPM/°C	
CRGH1206	0.50W	± 1	$1\Omega \sim 10 M\Omega$	E-96	≤ 10Ω ±200PPM/°C	
CKGH1200	0.50 W	± 5	$1\Omega \sim 10 M\Omega$	E-24	$< 10\Omega \pm 100$ PPM/°C	
			$1\Omega \sim 9.76\Omega$		±200PPM/°C	
CRGH2010	1.00W	±1 & ± 5	$10\Omega\sim1.0M\Omega$	E-24	±100PPM/°C	
			$1.1 M\Omega \sim 10 M\Omega$		±200PPM/°C	
			$1\Omega \sim 9.76\Omega$		±200PPM/°C	
CRGH2512	2.00W	$\pm 1 \& \pm 5$	$10\Omega \sim 1.0 M\Omega$	E-24	±100PPM/°C	
			$1.1 M\Omega \sim 10 M\Omega$		±200PPM/°C	

High Power Thick Film Chip Resistors

6. Marking:

6.1 Resistors

A. \pm 5% Tolerance : the first two digits are significant figures of resistance and the third denoted number of zeros.

Ex.

	333		33ΚΩ
--	-----	--	------

B. For ohmic values below 10Ω , read alphabet "R" as decimal point.

Ex.

C. For E-96 series $[\pm 1\%$ (F) tolerance] in CRGH0603 size 3 digit system (due to space restrictions) please refer to page 4. for coding formula

Ex.

10.2KΩ

D. ±1% Tolerance CRGH0805_XXX (CRGH0805_1/3W +/- 1% & 5% Taped) resistance and the fourth digit denoted number of zeros. Letter"R" is for decimal point.

Ex.

6.2 Labels

Label shall be marked with the following item:

Label shall be marked with the following item:

- A. Nominal Resistance and Resistance Tolerance
- B. Power Rating and Size
- C. Quantity
- D. Part No.
- E. P.O.No.

F. Lot No.

Ex.

Remark: For CRGH0603 ± 1 %: Label is 332K, value is 332K Ω , marking is 51D

 \pm 5 %: Label is 330K, value is 330K Ω , marking is 334

 \pm 1 % : Label is 330K, value is 330K Ω , marking is 3303

High Power Thick Film Chip Resistors

Mutiplier Code:

Code	A	В	С	D	E	F	G	Н	X	Y	Z
	0	1	2	3	4	5	6	7	-1	-2	-3
Multiplier	10	10	10	10	10	10	10	10	10	10	10

 Coding
 Formula
 Example :
 10K2 = 102 X $10^2 = 02C$

 XX
 X
 02
 C

 Resistance Code
 Multiplier Code
 33R2 = 332 X $10^4 = 51X$

GH0805_XXX

12512JXXX

	Value	Code	Value	Code	Value	Code	Value	Code	Value	Code
	100	01	162	21	261	41	422	61	681	81
	102	02	165	22	267	42	432	62	698	82
(C	RGH0805	03	169	23	274	43	442	63	715	83
	107	04	174	24	280	44	453	64	732	84
	110	05	178	25	287	45	464	65	750	85
	(CRGI	06	182	26	294	46	475	66	768	86
	115	07	187	27	301	47	487	67	787	87
	118	08	191	28	309	48	499	68	806	88
	121	09	196	29	316	49	511	69	825	89
	124	10	200	30	324	50	523	70	845	90
	127	11	205	31	332	51	536	71	866	91
	130	12	210	32	340	52	549	72	887	92
	133	13	215	33	348	53	562	73	909	93
	137	14	221	34	357	54	576	74	931	94
	140	15	226	35	365	55	590	75	953	95
	143	16	232	36	374	56	604	76	976	96
	147	17	237	37	383	57	619	77		
	150	18	243	38	392	58	634	78		
	154	19	249	39	402	59	649	79	1	
	158	20	255	40	412	60	665	80	1	

^{*}Marking for CRGH0603 E-96 series, the resistance value that no have multiplier code indicate marking follow this:

The first two digits are significant figures of resistance and the third one denoted number of zeros and under line the marking letters.

Ex.

Customer:				Part No.: CRGH Series	
	High Power	Thick Film Chip	Resistors		
7. Performance	specification:				
Characteristics	Limits		Test Metl	hods	
Characteristics			(JIS C 520		
Dielectric	No evidence of flashover	-	n the trough of a 90°C me		
withstanding voltage	mechanical damage, arcing or		ted at ac potential respect	ively specified in	
	insulation break down		r 60-70 seconds		
			istance change per temp.	degree centigrade.	
T		$\frac{R2-R1}{R1(t2-t1)}$	$- \times 10^6$ (PPM/°C)		
Temperature Coefficient	See Page 2	` '	nce value at room temper	ntura (T1)	
			nce value at room temper.		
			e: room temp. (T1), room		
	Resistance change rate is	•	at resistance change after t	* ` ′	
Short time	$\pm 5\% (2.0\% + 0.1\Omega) \text{ Max.}$		itial of 2.5 times RCWV f		
Overload	$\pm 1\% (1.0\% + 0.1\Omega) \text{ Max.}$	•	or a potential of 2.5 times fee with 101 5 seconds.		
		Wave Solder:			
		Test temper	rature of solder:		
		245°C ±3°C	C dipping time in solder :	2-3 seconds.	
		Reflow Solder	:		
		PEAK VALUE TEMPERATURE: 245℃ - 250℃			
Solderability	95 % coverage Min.	250	230°C /	-/	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ye ye to realige crease		180°C		
		150 150°C			
		100 90±30s			
		50 20±10s			
			HOT UP TIME SOLDER	TIME	
Soldering heat	Resistance change rate is:	4.18 Dip the re	esistor into a solder bath h	aving a temperature	
Soldering near	$\pm (1\% + 0.05\Omega)$ Max.	of 260°C	\pm 3°C and hold it for 10 \pm	1 seconds.	
		4.19 Resistanc	4.19 Resistance change after continuous		
		5 cycles fo	or duty cycle specified bel	ow:	
	Resistance Change Rate Is	Step	Temperature	Time	
Temperature cycling	$\pm 5\% (1.0\% + 0.05\Omega)$ Max.	1	-55°C ± 3°C	30 mins	
	$\pm 1\% (0.5\% + 0.05\Omega)$ Max.	2	Room temp.	10 ~ 15 mins	
		3	+155°C ± 2°C	30 mins	
	Desirement in	4 24 T	Room temp.	10 ~ 15 mins	
II	Resistance change rate is	_	y resistance change after		
Humidity	$\pm 5\% (3.0\% + 0.1\Omega) \text{ Max.}$	_	in a humidity test chambe		
	$\pm 1\% (1.0\% + 0.1\Omega) \text{ Max.}$		nd 90-95% relative humic		
I and life in Humidte	Resistance change rate is		change after 1,000 hours		
Load life in Humidty	$\pm 5\% (3.0\% + 0.1\Omega) \text{ Max.}$		off") at RCWV in a humid	•	
	$\pm 1\% (1.0\% + 0.1\Omega) \text{ Max.}$		at 40° C $\pm 2^{\circ}$ C and 90 to 9	*	
Load Life	Resistance change rate is		ent resistance change afte		
Load Life	$\pm 5\% (3.0\% + 0.1\Omega) \text{ Max.}$		g at RCWV, with duty cycrs"on", 0.5 hour"off") at 7		
	$\pm 1\% (1.0\% + 0.1\Omega)$ Max.	4.33 Twist of 7	rs"on", 0.5 hour"off") at 7	U C = 2 C ambient	
Terminal Bending	Resistance change rate is				
	$\pm (1.0\% + 0.05\Omega)$ Max.	Y/X = 3/9	0 mm for 60 seconds		

Customer: Part No.: CRGH Series

High Power Thick Film Chip Resistors

6. Packing specification:

6.1 Taping Dimension (mm)

A. Paper tape

B. Plastic tape

Type	A ± 0.2	B ± 0.2	$C \pm 0.05$	ψD +0.1 - 0	E ± 0.1	F ± 0.05	$G \pm 0.1$	W ± 0.2	$T \pm 0.1$
CRGH0603	1.10	1.90	2.0	1.5	1.75	3.5	4.0	8.0	0.67
CRGH0805	1.65	2.40	2.0	1.5	1.75	3.5	4.0	8.0	0.81
CRGH1206	2.00	3.60	2.0	1.5	1.75	3.5	4.0	8.0	0.81
CRGH2010	2.80	5.50	2.0	1.5+0.25	1.75	5.5	4.0	12.0	1.2±0.0
CRGH2512	3.60	6.90	2.0	1.5+0.25	1.75	5.5	4.0	12.0	1.2±0.0

7.2 Reel Dimension (mm)

A. Paper tape

B. Plastic tape

Type	Packaging	Quantity Per Reel	A	В	С	D	M ± 2	W ± 1	T ± 1
CRGH0603	Paper	5,000 pcs.	2±0.5	13±0.5	21±0.5	60±1.0	178±2.0	10±1.0	-
CRGH0805	Paper	5,000 pcs.	2±0.5	13±0.5	21±0.5	60±1.0	178±2.0	10±1.0	-
CRGH1206	Paper	5,000 pcs.	2±0.5	13±0.5	21±0.5	60±1.0	178±2.0	10±1.0	-
CRGH2010	Plastic	4,000 pcs.	180-3.0	60+1.0	13±0.2	-	-	13.5±0.5	15.4±1.0
CRGH2512	Plastic	4,000 pcs.	180-3.0	60+1.0	13±0.2	-	-	13.5±0.5	15.4±1.0

