1	7.5	_	110		·
T	Лабораторная	работа	Элементы	теории	погрешностей"

1.1 Краткий теоретический материал

Приближенным числом a называется число, незначительно отличающееся от точного значения A и заменяющее его в вычислениях.

Предельной абсолюшной погрешностью приближенного числа a называется величина Δ , такая что $|a-A| \leq \Delta$.

Предельной отпосительной погрешностью приближенного числа a называется величина δ , такая что $\left|\frac{a-A}{a}\right| \leq \delta$.

Из определений следует, что $a-\Delta \leq A \leq a+\Delta$. Для краткости пользуются записью $A=a\pm\Delta$.

Всякое положительное число a может быть представлено в виде конечной или бесконечной десятичной дроби

$$a = \alpha_m 10^m + \alpha_{m-1} 10^{m-1} + \dots + \alpha_{m-n+1} 10^{m-n+1} + \dots$$

где α_i – цифры числа a . ($\alpha_i = 0, 1, \ldots, 9$). На практике мы преимущественно имеем дело с приближенными числами, представляющие собой конечные десятичные дроби.

$$a = \alpha_m 10^m + \alpha_{m-1} 10^{m-1} + \dots + \alpha_{m-n+1} 10^{m-n+1}, \quad \alpha_m \neq 0.$$

Значащей цифрой приближенного числа называется всякая цифра в его изображении, кроме нуля, и нуль, если он находится между значащимим цифрами или является представителем сохраненного разряда.

Значащая цифра называется верной, если абсолютная погрешность числа не превышает половины единицы разряда, соответствующей этой цифре.

Действия над приближенными числами

Пусть имеются два числа $A=a\pm\Delta a$, $B=b\pm\Delta b$.

Погрешность суммы чисел A и B (обозначается $\Delta(A+B)$) равна сумме погрешностей чисел A и B , или

$$\Delta(A+B) = \Delta A + \Delta B.$$

Имеют место следующие формулы

$$\Delta(A - B) = \Delta A + \Delta B,$$

$$\Delta(A \cdot B) = |B|\Delta A + |A|\Delta B,$$

$$\Delta\left(\frac{A}{B}\right) = \frac{|B|\Delta A + |A|\Delta B}{B^2},$$

$$\Delta(f(A)) = |f'(A)|\Delta A,$$

где f – некоторая дифференцируемая функция.

Вычисление значений многочлена по схеме Горнера

При решении практических задач часто необходимо вычислять значения многочленов в некоторой точке x. Если коэффициенты многочлена или точка x заданы с погрешностью, то при вычислении степеней x погрешность

2. Даны числа $x=1.2\pm0.1$. $y=2.3\pm0.3$ Найти x+y . x-y . xy . $\frac{y}{x}$. x^3 . $\cos y$.

Решение.

Найдем погрешности указанных действий

$$\Delta(x + y) = \Delta x + \Delta y = 0.1 + 0.3 = 0.4.$$

Тогда $x + y = (1.2 + 2.3) \pm 0.4 = 3.5 \pm 0.4$.

$$\Delta(x - y) = \Delta x + \Delta y = 0.4. \quad (x - y) = (1.2 - 2.3) \pm 0.4 = -1.1 \pm 0.4.$$

$$\Delta(x \cdot y) = |x| \Delta y + |y| \Delta x = 1.2 \cdot 0.3 + 2.3 \cdot 0.1 = 0.59.$$

$$xy = (1.2 \cdot 2.3) \pm 0.59 = 2.76 \pm 0.59.$$

$$\Delta\left(\frac{y}{x}\right) = \frac{|y| \Delta x + |x| \Delta y}{x^2} = \frac{2.3 \cdot 0.1 + 1.2 \cdot 0.3}{1.2^2} = 0.41,$$

$$\frac{y}{x} = \frac{2.3}{1.2} \pm 0.41 = 1.98 \pm 0.41,$$

$$\Delta(x^3) = |3x^2| \Delta x = 3 \cdot 1.2^2 \cdot 0.1 = 0.43,$$

$$x^3 = 1.2^3 \pm 0.43 = 1.728 \pm 0.43,$$

$$\Delta(\cos y) = |-\sin y| \Delta y = |\sin 2.3| \cdot 0.3 = 0.224,$$

$$\cos y = \cos 2.3 \pm 0.224 = -0.667 \pm 0.224.$$

3. Найти значение многочлена $y = 3x^3 + 2x + 2$ в точке 5 по схеме Горнера.

Решение.

Воспользуемся формулой (1)

$$P_0 = 3$$
, $P_1 = 3 \cdot 5 + 0 = 15$, $P_2 = 15 \cdot 5 + 2 = 77$, $P_3 = 77 \cdot 5 + 2 = 387$.

Значит P(5) = 387.

4. Найти многочлен, получающийся при делении многочлена

$$P(x) = 4x^4 + 5x^3 - 3x^2 + 9$$

 $\mu a x - 2$.

Воспользуемя схемой Горпера

$$P_0 = 4$$
, $P_1 = 4 \cdot 2 + 5 = 13$, $P_2 = 13 \cdot 2 - 3 = 23$, $P_3 = 23 \cdot 2 + 0 = 46$.

Имеем

$$\frac{P(x)}{x-2} = 4x^3 + 13x^2 + 23x + 46.$$

может сильно накапливаться. В этих случаях для уменьшения вычислительной погрешности применяют алгоритм вычисления значений многочлена по схеме Горнера.

Рассмотрим

$$P(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n =$$

$$= (\dots (((a_0 x + a_1) x + a_2) x + a_3) x + \dots) x + a_n$$

Из последнего представления многочлена видно, что возможен следующий алгоритм счета

$$P_0 = a_0, \quad P_k = P_{k-1}x + a_k, \quad k = 1, 2, \dots, n$$
 (1)

Тогда $P_n=P(x)$ — значение многочлена в точке x , а

$$f(y) = P_0 y^{n-1} + P_1 y^{n-2} + \dots + P_{n-2} y + P_{n-1}$$

- является многочленом, полученным при делении многочлена P(y) на (y-x).

Рассмотрим, как накапливается погрешность при применении схемы Горпера.

$$\Delta P_0 = \Delta a_0, \quad \Delta P_1 = \Delta P_0 |x| + |P_0| \Delta a_0, \text{ и т.д.}$$
 (2)

Таким образом, при такой схеме учитывается только погрешность сложения и погрешность умножения.

1.2 Примеры

1. Найти верные и значащие цифры числа $A=1203.456\pm0.37$ Решение.

Все цифры являются значащими, так как единственный ноль, который имеется в десятичном представлении числа A, заключен между значащими цифрами 2 и 3.

Проверим, какие цифры являются верными. Проверку начнем с последней цифры в записи числа (6). 6 соотвествует разряд 10^{-3} . $0.37 > \frac{1}{2}10^{-3}$, значит, по определению, цифра 6 не является значащей. Цифре 5 соответствует разряд 10^{-2} . $0.37 > \frac{1}{2}10^{-2}$, Аналогично имеем $0.37 > \frac{1}{2}10^{-1}$, значит, цифра 4 не является верной. $0.37 < \frac{1}{2}10^{0}$, значит, цифра 3, (следовательно и все предыдущие цифры) являются верными.

Ответ: значащие цифры 1 2 0 3 4 5 6, верные цифры 1 2 0 3.

1.3 Вопросы и задачи для самостоятельной работы

- 1. Округляя следующие числа до трех значащих цифр, определить абсолютную и относительные погрешности полученных приближенных чисел.
 - а) 0.34567 б) 34.6754 в) 0.0009 г) 0.98723 д) -1.674523 е) -10.6734
- 2. Определить абсолютную погрешность следующих приближенных чисел по их относительным погрешностям
- a) a=1345 , $\delta=0.1\%$ 6) a=0.6785 , $\delta=5\%$, B) a=13.45 , $\delta=10\%$. F) a=-232.78 , $\delta=13\%$.
- 3. Определить количество верных знаков в числе a, если известна его относительная погрешность a) a=1345, $\delta=0.1\%$ б) a=0.6785, $\delta=5\%$. в) a=13.45, $\delta=10\%$. г) a=-232,78. $\delta=13\%$.
- Доказать, что относительная погрешность суммы нескольких чисел одного и того же знака заключена между наименьшей и наибольшей погрешностями слагаемых.
- Доказать, что относительная погрешность разности двух положительных чисел больше относительных погрешностей этих чисел.
- 6. Высота h и раднус R основания цилиндра измерены с точностью до 0.5%. Какова предельная относительная погрешность вычисления объема цилиндра?
- 7. С какой точностью следует определить радиус основания R и высоту h цилиндра, чтобы его объем можно было измерить с точностью 1%?

1.4 Задание к лабораторной работе

Найти значение многочлена

$$P(x) = a_0 x^5 + 0.387 x^4 + 1.4789 x^3 + 1.0098 x^2 + 1.222 x + a_5$$

в точке $x=x_0$, используя схему Горнера. Известно, что $a_0=1.234\pm0.001$, $a_5=-2.345\pm N\cdot 10^{-4}$, $x=0.234N\pm 3\cdot 10^{-3}$. (N – количество букв в вашем ФИО).

Рассчитать погрешность полученного значения. Найти верные и значащие цифры результата. Рассчитать, какой бы была погрешность, если бы вычисления велись без применения схемы Горнера, и сравнить с погрешностью, полученной при применении схемы Горнера.

Найти коэффициенты многочлена, полученного при делении многочлена P(x) на x-c , где $c=0.987\pm N\cdot 10^{-4}$.