

日本国特許庁 JAPAN PATENT OFFICE

06.12.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年12月 2日

出 願 番 号 Application Number:

人

特願2003-402457

[ST. 10/C]:

[JP2003-402457]

出 願
Applicant(s):

株式会社神戸製鋼所

2005年 1月20日

17

BEST AVAILABLE COPY

ページ: 1/E

【書類名】 特許願 【整理番号】 31202040

【提出日】平成15年12月 2日【あて先】特許庁長官殿【国際特許分類】F28C 3/00

【発明者】

【住所又は居所】 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神

戸総合技術研究所内

【氏名】 高橋 和雄

【発明者】

【住所又は居所】 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神

戸総合技術研究所内

【氏名】 東 康夫

【発明者】

【住所又は居所】 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神

戸総合技術研究所内

【氏名】 三宅 俊也

【特許出願人】

【識別番号】 000001199

【氏名又は名称】 株式会社神戸製鋼所

【代理人】

【識別番号】 100089196

【弁理士】

【氏名又は名称】 梶 良之

【選任した代理人】

【識別番号】 100104226

【弁理士】

【氏名又は名称】 須原 誠

【手数料の表示】

【予納台帳番号】 014731 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【包括委任状番号】 0103969 【包括委任状番号】 0000795

【請求項1】

固体と液体との状態変化により蓄熱する蓄熱体と、前記蓄熱体に直接接触することにより熱交換し、前記蓄熱体よりも比重が小さく、前記蓄熱体と混合しない熱交換媒体とを収容する貯蔵容器と、

少なくとも前記貯蔵容器に収容された前記蓄熱体内を通り、前記熱交換媒体を前記貯蔵 容器内に供給する供給管と、

前記貯蔵容器に収容された前記熱交換媒体を前記貯蔵容器の外部に排出する排出管とを備えており、

前記供給管は、

前記貯蔵容器に収容された前記熱交換媒体と前記蓄熱体との境界面を横切り、供給された前記熱交換媒体を排出する排出孔を複数有し、

前記排出孔の少なくとも1つが前記熱交換媒体内に位置する

ことを特徴とする可搬式熱貯蔵ユニット。

【請求項2】

前記供給管が、

前記境界面に対して垂直に横切っている

ことを特徴とする請求項1に記載の貯蔵容器。

【請求項3】

前記供給管が、前記排出孔を有する部分の外周に同軸状に配設され、前記排出孔から排出された前記熱交換媒体を鉛直方向に上昇させる循環管を有している ことを特徴とする請求項2に記載の貯蔵容器。

【請求項4】

固体と液体との状態変化により蓄熱する蓄熱体と、前記蓄熱体に直接接触することにより熱交換し、前記蓄熱体よりも比重が小さく、前記蓄熱体と混合しない熱交換媒体とを収容する貯蔵容器と、

少なくとも前記貯蔵容器に収容された前記蓄熱体内を通り、前記熱交換媒体を前記貯蔵 容器内に供給する供給管と、

前記貯蔵容器に収容された前記熱交換媒体を前記貯蔵容器の外部に排出する排出管とを備えており、

前記供給管は、

供給された前記熱交換媒体を前記蓄熱体内に排出する排出孔を有する第1の供給管と、 前記貯蔵容器に収容された前記熱交換媒体と前記蓄熱体との境界面を横切り、該熱交換 媒体内に供給された前記熱交換媒体を排出する出口を有する第2の供給管と、 を備えていることを特徴とする可搬式熱貯蔵ユニット。

【請求項5】

前記蓄熱体内において、

前記第2の供給管が、前記第1の供給管の前記排出孔を含む少なくとも一部を囲繞し、 前記排出孔を前記熱交換媒体に導く連通部を有している

ことを特徴とする請求項4に記載の可搬式熱貯蔵ユニット。

【請求項6】

前記蓄熱体の状態に応じて、前記第1及び第2の供給管に対して前記熱交換媒体の供給 と遮断とを切替える切替弁がそれぞれに設けられていることを特徴とする請求項4又は5 に記載の可搬式貯蔵ユニット。

【請求項7】

前記供給管又は前記第1の供給管の少なくとも一部が水平方向に延在する場合において

該水平方向に延在する部分に、鉛直下方向に開口するように前記排出孔が設けられていることを特徴とする請求項1~6のいずれか1項に記載の可搬式熱貯蔵ユニット。

【請求項8】

前記供給管又は前記第1の供給管が、末広がり形状で、かつ、底面に前記排出孔が設けられた拡形部を有していることを特徴とする請求項1~7のいずれか1項に記載の可搬式 熱貯蔵ユニット。

【請求項9】

前記供給管の接続口が、前記排出管の接続口よりも上方に位置していることを特徴とする請求項1~7のいずれか1項に記載の可搬式熱貯蔵ユニット。

【請求項10】

前記蓄熱体と前記熱交換媒体との境界面に沿って、前記境界面と垂直に平行配置され、 前記境界面における攪拌を防止する消波プレートを

有していることを特徴とする請求項1~9のいずれか1項に記載の可搬式熱貯蔵ユニット

【請求項11】

前記排出管が、

前記蓄熱体と前記熱交換媒体とを分離する分離機構を

備えていることを特徴とする請求項1~10のいずれか1項に記載の熱貯蔵ユニット。

【発明の名称】可搬式熱貯蔵ユニット

【技術分野】

[0001]

本発明は、発生した熱を蓄え、離れた場所に熱を輸送することができる可搬式熱貯蔵ユ ニットに関するものである。

【背景技術】

[0002]

工場、例えば、製鉄所、ゴミ処理場等において発生する熱は工場付近の様々な施設に利 用されている。また、工場で発生した熱を一時的に蓄熱体等に蓄え、その蓄熱体を輸送す ることで、工場から離れた場所においても熱を利用することができる。熱を貯蔵する装置 としては、熱供給された油等の媒体と金属水和物とを直接接触することにより熱交換をし 、金属水和物に熱を蓄えていく装置などがある。

[0003]

例えば特許文献1の貯蔵容器には、酢酸ナトリウム等の蓄熱体と蓄熱体よりも比重が小 さい油とが収容されている。油の比重の方が小さく、油と蓄熱体とは混合しないため、上 下に分離して収容される。そして、油内と蓄熱体内とにパイプが配設され、夫々熱交換器 に接続されている。一方のパイプから油を熱交換機に取込み、熱供給し、その熱供給され た油をもう一方のパイプから蓄熱体内に排出している。排出された油は比重が小さいため 、上部の油まで上昇する。上昇する間に、蓄熱体と油との直接接触により、熱交換される 。以上の動作を繰り返すことで、蓄熱体に蓄熱されるようになっている。そして、特許文 献1のパイプは、パイプ内や熱交換器内に不純物が混入するのを防ぐために二重管構造と なっている。

[0004]

【特許文献1】国際公開番号 WO 03/019099(図1)

【発明の開示】

【発明が解決しようとする課題】

[0005]

熱を蓄える酢酸ナトリウム等の蓄熱体は、融解潜熱を利用するものであり、熱を加えて いくことで、蓄熱体が固体から液体へと状態変化を起こし、蓄熱されるようになっている 。このため、特許文献1において、熱の供給開始時は、蓄熱体は固体であるため、熱供給 された油を蓄熱体内に配置されたパイプから排出しようとしても、排出孔が固体の蓄熱体 に塞がれてしまい、蓄熱体が熱を加えられて液体にとなるまで、油を排出できなくなり、 蓄熱体に熱供給することができない。これにより、蓄熱に多大な時間を費やしてしまう。

[0006]

そこで、本発明の目的は、短時間で効率よく蓄熱することができる可搬式熱貯蔵ユニッ トを提供することである。

【課題を解決するための手段及び効果】

[0007]

本発明は、固体と液体との状態変化により蓄熱する蓄熱体と、蓄熱体に直接接触するこ とにより熱交換し、蓄熱体よりも比重が小さく、蓄熱体と混合しない熱交換媒体とを収容 する貯蔵容器と、少なくとも貯蔵容器に収容された蓄熱体内を通り、熱交換媒体を貯蔵容 器内に供給する供給管と、貯蔵容器に収容された熱交換媒体を貯蔵容器の外部に排出する 排出管とを備えており、供給管は、貯蔵容器に収容された熱交換媒体と蓄熱体との境界面 を横切り、供給された熱交換媒体を排出する排出孔を複数有し、排出孔は、少なくとも1 つが前記熱交換媒体内に位置する。

[0008]

この構成によれば、熱交換媒体側に排出孔が設けられていることで、蓄熱体の状態に関 わらず、熱交換媒体を供給管から排出することができる。蓄熱体は、平時は固体であり、 蓄熱していくことで液体へと変化する。このため、蓄熱開始時は、蓄熱体内に配置した供

[0009]

本発明の供給管が、境界面に対して垂直に横切っていることが好ましい。これによると 、供給管が垂直に境界面を横切ることで、供給管に沿って熱交換媒体を排出することがで き、供給管近傍の蓄熱体から蓄熱することができる。これにより、熱交換媒体による蓄熱 体への熱交換を効率よく行うことができる。

この場合、供給管が、排出孔を有する部分の外周に同軸状に配設され、排出孔から排出 された熱交換媒体を鉛直方向に上昇させる循環管を有していることが好ましい。この構成 によると、供給された熱交換媒体を循環管に沿って鉛直方向に排出させることで、循環管 の周囲には、温度変化に伴う循環流が発生するようになる。これにより、効率よく熱を蓄 熱体に伝導させることができ、蓄熱時間を短縮させることができる。

[0011]

別の観点において、本発明は、固体と液体との状態変化により蓄熱する蓄熱体と、蓄熱 体に直接接触することにより熱交換し、蓄熱体よりも比重が小さく、蓄熱体と混合しない 熱交換媒体とを収容する貯蔵容器と、少なくとも貯蔵容器に収容された蓄熱体内を通り、 熱交換媒体を貯蔵容器内に供給する供給管と、貯蔵容器に収容された熱交換媒体を貯蔵容 器の外部に排出する排出管とを備えており、供給管は、供給された熱交換媒体を蓄熱体内 に排出する排出孔を有する第1の供給管と、貯蔵容器に収容された熱交換媒体と蓄熱体と の境界面を横切り、熱交換媒体内に出口を有する第2の供給管とを備えている。

[0012]

この構成によると、第1及び第2の流通管を用いることで、蓄熱時間を短縮させること ができる。蓄熱体は、固体から液体に状態変化することで、蓄熱することができる。この ため、蓄熱開始時において、蓄熱体は固体となっているので、第1の供給管に設けられた 排出孔が蓄熱体により塞がれ、供給された熱交換媒体を排出することができない。一方、 第2の供給管は、熱交換媒体内に出口を有しているため、常に供給された熱交換媒体を排 出することができる。このため、第2の供給管を流通する熱交換媒体の間接接触により蓄 熱体に熱伝導し、蓄熱体を固体から液体にすることができる。そして、蓄熱体が液体にな ることで、第1の供給管の排出孔から熱交換媒体を排出することができる。このように2 つの供給管を切替えて蓄熱体に蓄熱することで、蓄熱時間を短縮することができる。

本発明は、蓄熱体内において、第2の供給管が、第1の供給管の排出孔を含む少なくと も一部を囲繞し、排出孔を熱交換媒体に導く連通部を有していることが好ましい。これに よると、第2の供給管が第1の供給管に囲繞されることで、第2の供給管を流通する熱交 換媒体によって、第2の供給管の周囲及び第1の供給管の熱交換媒体排出孔の周囲を加熱 することが可能となる。これらの部分を早期に加熱し、固体の蓄熱体を融解させることに よって、早期に第1の供給管から熱交換媒体の排出をし、蓄熱体に熱交換媒体を直接接触 させることにより、蓄熱時間を短縮することができる。

[0014]

本発明は、蓄熱体の状態に応じて、第1及び第2の供給管に対して熱交換媒体の供給と 遮断とを切替える切替弁がそれぞれに設けられていることが好ましい。この構成によると 、蓄熱体の状態に応じて、供給管を切替えるタイミングをかえることができ、より効果的 に蓄熱することができる。例えば、蓄熱開始時には、第1の供給管と第2の供給管との両

[0015]

本発明は、供給管又は第1の供給管の少なくとも一部が水平方向に延在する場合において、水平方向に延在する部分に、鉛直下方向に開口するように排出孔が設けられていてもよい。これによると、熱交換媒体の比重が蓄熱体よりも小さいため、排出孔が下方に向くことで、蓄熱体が排出孔から供給管内部に浸入するおそれがなくなる。

[0016]

本発明は、蓄熱体内において、供給管又は第1の供給管が、末広がり形状で、かつ、底面に前記排出孔が設けられた拡形部を有していることが好ましい。この構成によると、熱交換媒体の比重が蓄熱体よりも小さいため、排出孔が下方に向くことで、蓄熱体が排出孔から供給管内部に浸入するおそれがなくなる。さらに、末広がり形状にすることで、より多くの熱交換媒体を排出することができ、蓄熱時間を短縮することができる。

[0017]

本発明の供給管の接続口が、排出管の接続口よりも上方に位置していることが好ましい。この構成によると、供給管の接続口を排出管の接続口よりも高く位置させることで、蓄熱体又は熱交換媒体が逆流した場合、先に排出管から熱交換媒体を逆流させることができ、、蓄熱されている蓄熱体が逆流するという危険を回避することができる。

[0018]

本発明は、蓄熱体と熱交換媒体との境界面に沿って、境界面と垂直に平行配置され、境 界面における攪拌を防止する消波プレートを有していることが好ましい。この構成による と、蓄熱状態での輸送中に伴う震動による境界面における攪拌を防止することができる。

[0019]

本発明の排出管が、蓄熱体と熱交換媒体とを分離する分離機構を備えていることが好ましい。この構成によると、貯蔵容器の外部に排出する熱交換媒体に、蓄熱体が混じっている場合、取除くことができる。

【発明を実施するための最良の形態】

[0020]

以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。

[0021]

(第1の実施形態)

本発明の第1の実施の形態に係る熱貯蔵ユニット1は、図1に示すように、熱を発生する工場60とその熱を利用する施設70とが互いにはなれている場合に、熱を輸送する熱輸送システムに好適に適用される。熱貯蔵ユニット1は、熱貯蔵ユニット1に対し蓄熱・放熱をする熱交換器5a・5bの接続口51・52に対して着脱可能となっており、トラック等の輸送機50により、工場60と施設70との間を輸送されるようになっている。工場60は、ごみ焼却場や発電所や製鉄所等であり、そこで発生する熱が熱交換器5aを介して熱貯蔵ユニット1に蓄えられる。また、施設70は、温水プールや病院等の施設であり、熱貯蔵ユニット1に蓄えられた熱が熱交換器5bを介して施設70内の温調設備等に適用される。以下の説明において、工場60側における熱交換について説明する。

[0022]

熱貯蔵ユニット1は、油2(熱交換媒体)と酢酸ナトリウム三水和塩3(蓄熱体)(以下、酢酸ナトリウム3と称する)とが収容された熱貯蔵容器1a(貯蔵容器)と、供給管4と、排出管6とを備えている。油2と酢酸ナトリウム3とは互いに混合せず、油2が酢酸ナトリウム3よりも比重が小さいため、熱貯蔵容器1a内では、上層に油2、下層に酢酸ナトリウム3と互いに分離して収容されるようになっている。油2と酢酸ナトリウム3とが互いに混合しないため、油2と酢酸ナトリウム3との間には夫々を分離するための部材等は介在しておらず、油2と酢酸ナトリウム3とは直接接触している。

[0023]

油2は、酢酸ナトリウム3との直接接触により、酢酸ナトリウム3との間で熱交換する

。油2は、後述する排出管6から熱交換器5aに取込まれ、熱交換器5a内で熱供給され ると(以下の説明で、熱交換器 5 a で熱供給された油 2 を油 2 a と称す)、供給管 4 を介 して酢酸ナトリウム3内に排出される。排出された油2aは、比重が酢酸ナトリウム3よ りも小さいため、上層の油2まで上昇し、油2に取込まれる。この上昇中に、酢酸ナトリ ウム3との直接接触により、油2aに供給された熱が酢酸ナトリウム3に伝導されるよう になっている。

[0024]

酢酸ナトリウム3は、上述した油2aから伝導された熱を蓄える。酢酸ナトリウム3の 融点は約58度であり、平時(室温状態)では固体となっている。そして、油2aから直 接接触により熱が伝導されることにより、固体から液体に状態変化し、液体状態のときに 蓄熱されるようになっている。

[0025]

供給管4は、収容された油2が位置する熱貯蔵容器1aの上層部分に貫設されており、 さらに、接続口41が熱交換器5aの接続口51に着脱可能に接続されている。熱貯蔵容 器1aに貫設された供給管4は、油2と酢酸ナトリウム3との境界面を垂直に横切って酢 酸ナトリウム3内に進入し、さらに、L字型に折れ曲がり水平に延びている。供給管4は 内部空間を有しており、熱交換器 5 a に熱供給された油 2 a が内部空間を流通するように なっている。

[0026]

また、供給管4は、内部を流通する油2aを排出する排出孔4a・4bをその軸方向に 沿って複数有している。排出孔4aは、油2と酢酸ナトリウム3との境界面を境に、境界 面よりも上方、つまり油2側にある供給管4に複数設けられている。また、排出孔4 b は 、境界面よりも下方、つまり酢酸ナトリウム3側ある供給管4に1個以上設けられている 。尚、供給管4のL字型に折れ曲がり水平に延在している部分に設けられた排出孔4bは 、鉛直下方向に開口するように設けられている。これにより、酢酸ナトリウム 3 は油 2 a よりも比重が大きいため、排出孔4 b から排出される油2 a を押しのけて、酢酸ナトリウ ム3が供給管4内に浸入することがなく、供給管4の内部で酢酸ナトリウム3が固まって 詰まるなどを防止することができるようになっている。

[0027]

排出管6は、収容された油2が位置する熱貯蔵容器1 aの上層部分に貫設されている。 そして、排出管6の接続口61が、熱交換器5aの接続口52に着脱可能に接続されてお り、熱貯蔵容器1 a内の油2を熱交換器5 aに取込むようになっている。このとき、排出 管6の接続口61が供給管4の接続口41よりも下方となる、つまり、排出管6が供給管 4の下方となるように熱貯蔵容器1 a に配設されている。間違えた手順で供給管4及び排 出管6を熱交換器5 aから取外した場合、外部と熱貯蔵容器1 a内部との圧力の相異によ り、油2又は酢酸ナトリウム3が逆流する場合がある。このため、排出管6を供給管4よ りも下方に配置することで、排出管6から先に熱を帯びていない油2が逆流するようにし ている。これにより、外部との圧力差がなくなり、蓄熱されている酢酸ナトリウム3が供 給管 4 から逆流する危険を抑えることができる。

[0028]

熱交換器 5 a は、工場 6 0 で発生した熱を熱貯蔵容器 1 a に蓄熱する。上述したように 、熱交換器5aには着脱可能に供給管4及び排出管6が接続されている。そして、熱交換 器5a内で供給管4と排出管6とが連通している。さらに、熱交換器5aには、工場60 で発生した熱を蒸気として取込む図示しないパイプと、熱を取除いた蒸気を排出する同じ く図示しないパイプがそれぞれ接続されており、これらのパイプは熱交換器5a内で、供 給管4と排出管6との連通部分を囲繞するように配置されたパイプを介して連通している 。また、熱交換器5aの接続口51には、図示しないポンプが配設されており、熱交換器 5 a を油 2 取り込み、取込んだ油 2 を熱貯蔵容器 1 a に送り込んでいる。

[0029]

熱交換器 5 a は、排出管 6 を介して熱貯蔵容器 1 a 内の油 2 をポンプにより取込み、一

[0030]

次に、熱貯蔵ユニット1への蓄熱方法について説明する。

[0031]

工場60で発生した蒸気が熱交換器5aに取込まれる。一方で、熱貯蔵容器1a内の油2が排出管6を介して熱交換器5aに取込まれる。そして、熱交換器5a内において、蒸気の熱が取込まれた油2に伝導される。熱供給された油2aが供給管4を介して熱貯蔵容器1aに戻される。

[0032]

油2aは、供給管4内を流通し、排出孔4a・4bから排出される。蓄熱開始時の酢酸ナトリウム3は固体であり、排出孔4bは酢酸ナトリウム3側に設けられているため、排出孔4bが固体の酢酸ナトリウム3により塞がれる状態となっている。このため、蓄熱開始時において、排出孔4bからは油2aが排出されない。

[0033]

一方、排出孔4 a は、油2側に設けられているため、排出孔4 a が塞がれることなく油2 a を排出することができる。そして、排出孔4 a から排出された油2 a は、油2と酢酸ナトリウム3との境界面付近で、酢酸ナトリウム3に熱を伝導する。これにより、酢酸ナトリウム3は、上部から徐々に固体から液体へと状態変化していき、排出孔4 b からも油2 a が排出されるようになる。排出された油2 a との直接接触により、酢酸ナトリウム3 に熱が蓄えられる。また、供給管4を流通する油2 a は、供給管4を介して間接接触により、酢酸ナトリウム3 に熱を伝導する。これにより、より早く酢酸ナトリウム3 を固体から液体へと変化させることができ、蓄熱時間を短縮することができる。

[0034]

酢酸ナトリウム3が液体状態となり、酢酸ナトリウム3内に油2aが排出されると、油2aの比重は酢酸ナトリウム3よりも小さいため、上層の油2まで上昇し取込まれる。油2aは、上昇しながら酢酸ナトリウム3に熱を伝導している。以上の動作を繰り返すことにより、酢酸ナトリウム3に蓄熱することができる。

[0035]

なお、これまでは、工場60側における熱交換について説明してきたが、施設70側における熱交換についても同様である。即ち、酢酸ナトリウム3は、蓄熱された状態では液体となっており、この液体から、蓄えられた熱を取出すことが可能となる。熱貯蔵ユニット1の供給管4と排出管6とは、熱貯蔵ユニット1に蓄えられた熱を取出す熱交換器5bに着脱可能に接続され、さらに、熱交換器5bには、気体又は液体を取込むパイプと、加熱された気体又は液体に供給し、施設70の温調設備に供給するパイプとが接続されている。

[0036]

熱交換器 5 b は、供給管 4 を介して蓄熱されている酢酸ナトリウム 3 内に油 2 を排出する。排出された油 2 は、上昇しながら直接接触により酢酸ナトリウム 3 から熱が伝導される。これにより、上層の油 2 に熱が供給され、排出管 6 から熱交換器 5 b に取込まれる。一方で、熱交換器 5 b には気体又は水などの液体が取込まれる。そして、熱を帯びた油 2 から気体又は液体に熱伝導される。熱伝導された気体又は液体は、パイプを通り施設 7 0 内の温調設備に供給される。以上の動作と繰り返すことにより酢酸ナトリウム 3 に蓄えられた熱を取出すことができる。

[0037]

次に、第1の実施の形態に係る熱貯蔵ユニット1を用いた熱輸送システムについて説明

[0038]

以上説明したように、本実施の形態において、供給管4の油2側に排出孔4aが設けられていることで、蓄熱開始時において酢酸ナトリウム3が固体であっても、油2aを排出孔4aから排出することで、固体の酢酸ナトリウム3をより短い時間で液体に変えることができる。これにより、酢酸ナトリウム3に対する蓄熱時間を短縮することができる。

[0039]

また、供給管4を油2と酢酸ナトリウム3との境界面を垂直に横切ることにより、排出孔4aから排出される油2aにより、供給管4のより近傍の酢酸ナトリウム3を固体から液体状態にすることができ、より早く排出孔4bから油2aを排出することができる。従って、蓄熱時間をより短縮することができる。

[0040]

尚、本実施の形態の変形例として、図3に示すように、循環管4cを設けるようにしてもよい。循環管4cは、油2と酢酸ナトリウム3との境界面を垂直に横切る供給管4の外周を取り囲むように設けられており、酢酸ナトリウム3が液体に状態変化した後、排出孔4bから排出される油2aを鉛直方向に上昇させるガイドの役割を果たしている。排出孔4bにより排出される熱供給された油2aが循環管4cに沿って上昇することで、温度の低い液体の酢酸ナトリウム3が循環管4cの下部に移動し、図中矢印のように、循環管4cの周囲には循環流が発生するようになる。これにより、熱を循環させることができ、熱を酢酸ナトリウム3内に効率よく蓄えることにより、蓄熱時間を短縮するという効果を奏する。

[0041]

また、本実施の形態の別の変形例として、図4に示すように、複数のプレート11 (消波プレート)を油2と酢酸ナトリウム3との境界面を垂直に横切るように設けるようにしてもよい。プレート11を設けることにより、熱貯蔵ユニット1の輸送時に、油2と酢酸ナトリウム3とが振動することにより波が発生し、境界面における攪拌を防止することができるようになっている。攪拌を防止することで、酢酸ナトリウム3に蓄えられた熱を維持しておくことができる。

[0042]

さらに、別の変形例として、排出管6と熱交換器5との間に、図5に示すように分離装置12(分離機構)を設けるようにしてもよい。分離装置12は、取込んだ油2中に酢酸ナトリウム3が混合していた場合に、油2と酢酸ナトリウム3とを分離する遠心分離器である。取込んだ油2を、分離装置12内をらせん状に回転させながら、分離装置12の上部から取出すようになっている。酢酸ナトリウム3は油2よりも比重が大きいため、遠心力により分離装置12の側壁面に当たると、側壁面に沿って酢酸ナトリウム3が分離装置12の下部にある出口から排出され、熱交換器5aには油2のみが取込まれるようになっている。これにより、熱交換器5a内に酢酸ナトリウム3が浸入して起こる故障等のおそれがなくなる。また、油2と酢酸ナトリウム3とを分離する分離装置12は、上述の構成に限定されない。

[0043]

高、上述の本実施の形態では、供給管4は、油2と酢酸ナトリウム3との境界面を垂直に横切っているが、垂直でなく、斜めに横切るようにしてもよい。また、供給管4がL字型に折れ曲がり、水平方向に延在しているが、水平方向に延在していなくてもよい。酢酸ナトリウム3内に油2aを排出できる形状であればよい。さらに、図6に示すように、側面が末広がり形状であってもよいし、供給管4の途中に末広がり形状の供給部13(拡形部)を設けるようにしてもよい。この場合、円錐形状であってもよいし、半球状であって

もよい。また、この場合、底面部分に排出孔13aを設けるようにすることで、内部に酢酸ナトリウム3が浸入するおそれがなくなる。

[0044]

また、本実施の形態では、酢酸ナトリウム3内において水平に延在する供給管4の部分に設けられている排出孔4bは、供給管4の下方に設けられているが、上方であってもよい。さらに、本実施の形態では、蓄熱するための物質として酢酸ナトリウム、熱伝導するための物質として油を用いているが、これに限定されることはない。

[0045]

(第2の実施形態)

次に、本発明の第2の実施の形態に係る熱貯蔵ユニットについて説明する。本実施の形態に係る熱貯蔵ユニットは、供給管を2つ備えている点に関して、第1の実施の形態と相違する。以下、その相違点についてのみ説明する。尚、第1の実施の形態と同一の部材には同一の符号を付記してその説明を省略する。

[0046]

図7に示すように、本実施の形態に係る熱貯蔵ユニット1には、第1供給管7(第1の供給管)と第2供給管8(第2の供給管)とを備えている。第1供給管7及び第2供給管8は、収容された油2が位置する熱貯蔵容器1aの上層部分に貫設されており、さらに、熱交換器5aに着脱可能に接続されている。具体的には、1本の供給管11の接続口が熱交換器5aの接続口51と着脱可能に接続されており、供給管11から、第1供給管7及び第2供給管8に枝分かれしている。熱貯蔵容器1aに貫設された第1供給管7及び第2供給管8は、油2と酢酸ナトリウム3との境界面を垂直に横切って酢酸ナトリウム3内に進入し、さらに、L字型に折れ曲がり水平に延びている。さらに、第2供給管8は、水平に延びている部分の端部から、油2と酢酸ナトリウム3との境界面を垂直に横切っている。第1供給管7及び第2供給管8は、内部空間を有しており、熱交換器5aにより熱供給された油2aが流通するようになっている。

[0047]

第1供給管7は、供給された油2aを酢酸ナトリウム3内に排出する複数の排出孔7aを軸方向に沿って有している。また、第2供給管8は、供給された油2aを油2内に排出する出口8aを有している。出口8aは、第2供給管8の終端部に設けられており、熱交換器5aから供給された油2aが第2供給管8を流通し、出口7aから油2内に排出するようになっている。第1供給管7の水平方向に延在している部分に設けられた排出孔4bは、鉛直下方向に設けられている。尚、第1供給管7は、第1の実施の形態と同様に、油2側に排出孔を有していてもよい。

[0048]

上述したように、供給管11は、熱交換器5aに着脱可能に接続されており、第1供給管7と第2供給管8とに分離している。そして、第1供給管7及び第2供給管8には、それぞれバルブ9a・9b(切替弁)が配設されている。バルブ9a・9bを開閉することで、それぞれ第1供給管7、第2供給管8に対して油2aの供給と遮断とを切替られるようになっている。

[0049]

バルブ9 a・9 bは、酢酸ナトリウム3の状態に応じて開閉する。具体的には、酢酸ナトリウム3が固体のときには、第1供給管7のみに油2 aが供給されるように、バルブ9 bを締めて第2供給管8に油2 aが供給されないようにしている。また、酢酸ナトリウム3が液体のときには、バルブ9 aを締め、バルブ9 bを開放し、第2供給管8にのみ油2 aが供給されるようになっている。バルブ9 a・9 bは、作業者による手動で開閉してもよいし、コントローラを接続して自動で開閉してもよい。尚、他の部材に関しては第1の実施の形態と同様であるため説明は省略する。

[0050]

次に、熱貯蔵ユニット1への蓄熱方法について説明する。

[0051]

工場60から蒸気がパイプを通って熱交換器5aに取込まれる。一方で、熱貯蔵容器1a内の油2が排出管6を介して熱交換器5aに取込まれる。そして、熱交換器5a内において、蒸気の熱が取込まれた油2に熱伝導により供給される。蓄熱開始時においては、バルブ9bのみを開放し、第2供給管8にのみ油2aが供給され、熱供給された油2aが第2供給管8内を流通する。油2aは、第2供給管8を流通し、出口8aから油2内に排出される。第2供給管8を流通する油2aが、第2供給管8を介して間接接触により酢酸ナトリウム3に熱を伝導することにより、固体である酢酸ナトリウム3が液体へと変化する

[0052]

酢酸ナトリウム3が略液体になると、バルブ9bを閉じ、バルブ9aを開放することで、第2供給管8が遮断され、第1供給管7に油2aが供給されるようになる。第1供給管7に供給された油2aは、第1供給管7を流通し、排出孔7aから酢酸ナトリウム3内に排出される。油2aが排出されると、上層の油2まで上昇し取込まれる。その上昇中に酢酸ナトリウム3との直接接触により、酢酸ナトリウム3に熱が伝導される。これにより、酢酸ナトリウム3に蓄熱することができる。

[0053]

以上の説明のように、本実施の形態において、熱供給された油2aを供給する供給管を第1供給管7と第2供給管8との2本用いて、酢酸ナトリウム3の状態に応じて切替えることで、効率よく酢酸ナトリウム3に蓄熱することができる。蓄熱開始時は、酢酸ナトリウム3は固体であるため、酢酸ナトリウム3内に設けられた排出孔からは油2aが排出されなくなっている。このため、酢酸ナトリウム3が固体のときには、第2供給管8に油2aを供給し、間接接触により酢酸ナトリウム3に熱伝導させ、酢酸ナトリウム3が液体となると、第1供給管7に油2aを供給して排出し、直接接触により酢酸ナトリウム3に熱伝導させることで、効率よく酢酸ナトリウム3に蓄熱することができる。

[0054]

また、蓄熱開始時は、排出孔7aから供給された油2aが排出されないことにより、第 1供給管7が破裂する場合がある。このため、第1供給管7と第2供給管8とを切替える ことで、第1供給管7の破裂などを防ぐことができ、安全に熱貯蔵ユニット1を使用する ことができる。

[0055]

尚、本実施の形態において、酢酸ナトリウム3の状態に応じて第1供給管7と第2供給管8とのいずれか一方にのみ油2を供給するようにしているが、これに限定されない。例えば、蓄熱開始時に、第2供給管8にのみ油2aを供給し、その後、第1供給管7と第2供給管8との両方に油2aを供給するようにしてもよい。また、上述の実施の形態では、第1供給管7aは排出孔を有していないが、排出孔を有していてもよい。さらには、バルブ9a・9bを有していなくてもよい。

[0056]

(第3の実施形態)

次に、本発明の第3の実施の形態に係る熱貯蔵ユニットについて説明する。本実施の形態に係る熱貯蔵ユニットは、供給管を2つ備えている点で、第2の実施の形態と同じであるが、一方の供給管が他方の供給管を囲繞しているという点で相違している。以下、その相違点についてのみ説明する。尚、第1、第2の実施の形態と同一の部材については同一の符号を付記してその説明を省略する。

[0057]

図8に示すように、本実施の形態に係る熱貯蔵ユニット1は、2つの第1供給管7及び第2供給管10を有している。第1供給管7及び第2供給管10は、収容された油2が位置する熱貯蔵容器1aの上層部分に貫設されており、さらに、熱交換器5aに着脱可能に接続されている。具体的には、1本の供給管11の接続口が熱交換器5aの接続口51に着脱可能に接続されており、供給管11から、第1供給管7及び第2供給管10に枝分かれしている。そして、熱貯蔵容器1a内において、第1供給管7が、第2供給管10を囲

繞するように配置されている。第1供給管7及び第2供給管10は、油2と酢酸ナトリウ ム3との境界面を垂直に横切って酢酸ナトリウム3内に進入し、さらに、L字型に折れ曲 がり水平に延びている。第1供給管7及び第2供給管10は、内部空間を有しており、熱 交換器5 a により熱供給された油2 a が流通するようになっている。上述したように、こ の第2供給管10の内部空間に第1供給管7が配置されている。

第2供給管10の水平に延びている部分には、さらに、油2と酢酸ナトリウム3との境 界面を垂直に横切る複数の供給筒10aが配設されている。供給筒10aは、油2側に出 口10bを有しており、図9に示すように、第2供給管10を流通する油2aが供給筒1 Oaを通り、出口10bから油2内に排出されるようになっている。また、図10に示す ように、第2供給管10には、囲繞する第1供給管7の排出孔7aと重合する位置に、第 1供給管7を流通する油2aを酢酸ナトリウム3内に排出するための連通部10cが設け られている。尚、他の部材に関しては第1の実施の形態と同様であるため説明は省略する

[0059]

次に、熱貯蔵ユニット1への蓄熱方法について説明する。

[0060]

工場60から蒸気がパイプを通って熱交換器5 a に取込まれる。一方で、熱貯蔵容器1 a内の油2が排出管6を介して熱交換器5aに取込まれる。そして、熱交換器5a内にお いて、蒸気の熱が取込まれた油2に供給される。蓄熱開始時においては、バルブ9bのみ を開放し、第2供給管10にのみ油2aが供給されるようになっている。従って、熱供給 された油2aが第2供給管10内を流通し、さらに、供給筒10aを通り、出口10bか ら油2内に排出される。

[0061]

熱供給された油2aが、第2供給管10及び供給筒10aを流通する際に、油2aは、 第2供給管10及び供給筒10aを介して間接接触により、酢酸ナトリウム3に熱を伝導 する。これにより、酢酸ナトリウム3は固体から液体へと徐々に変化する。酢酸ナトリウ ム3が液体となると、バルブ9bを閉じ、バルブ9aを開放する。これにより、油2aは 第1供給管7に供給されるようになる。酢酸ナトリウム3が液体となることで、排出孔7 a及び連通部10cが塞がれることがなく、排出孔7a及び連通部10cから油2aを排 出できるようになる。また、第1供給管7を油2aが流通する際に、囲繞している第2供 給管10を流通する油2aから熱が伝導される。これにより、さらに温度が上昇し、酢酸 ナトリウム3に蓄熱する時間をさらに短縮することができる。

[0062]

以上説明したように、本実施の形態において、第2の実施の形態の効果に加え、第2供 給管10により第1供給管7が囲繞されることで第1供給管7を流通する油2bが、第2 供給管10によりさらに熱が供給され、その油2aを酢酸ナトリウム3に排出することで 、より早く蓄熱することができる。さらに、酢酸ナトリウム3内に配置される第1供給管 7及び第2供給管10の領域を少なくすることができる。

[0063]

尚、本実施の形態では、第2供給管10は、酢酸ナトリウム3内において、第1供給管 7の略全てを囲繞しているが、第1供給管7の一部のみを囲繞するものであってもよい。 また、第2の実施の形態と同様に、酢酸ナトリウム3が液体に変化した後、第1供給管7 と第2供給管10との両方に油2aを供給するようにしてもよい。さらに、バルブ9a・ 9 b を有していなくてもよい。

[0064]

本発明は、上記の好適な実施形態に記載されているが、本発明はそれだけに制限されな い。本発明の精神と範囲から逸脱することのない様々な実施形態が他になされることは理 解されよう。さらに、本実施形態において、本発明の構成による作用および効果を述べて いるが、これら作用および効果は、一例であり、本発明を限定するものではない。

- [0065]
 - 【図1】本発明の熱輸送システムの全体概略図。
 - 【図2】本発明の第1の実施の形態に係る熱貯蔵ユニットの断面図。
 - 【図3】第1の実施の形態に係る熱貯蔵ユニットの変形例。
 - 【図4】第1の実施の形態に係る熱貯蔵ユニットの別の変形例。
 - 【図5】第1の実施の形態に係る熱貯蔵ユニットの別の変形例。
 - 【図6】第1の実施の形態に係る熱貯蔵ユニットの別の変形例。
 - 【図7】本発明の第2の実施の形態に係る熱貯蔵ユニットの断面図。
 - 【図8】本発明の第3の実施の形態に係る熱貯蔵ユニットの断面図。
 - 【図9】図8のIX-IX線における断面図。
 - 【図10】図8のX-X線における断面図。

【符号の説明】

- [0066]
- 1 熱貯蔵ユニット
- 1 a 熱貯蔵容器
 - 2 油
- 2 a (熱供給された)油
 - 3 酢酸ナトリウム
 - 4 供給管
- 4 a · 4 b 排出孔
- 5 a 、5 b 熱交換器
 - 6 排出管

【図2】

【図3】

出証特2004-3123005

【図5】

【図6】

【図7】

【図8】

【図10】

【要約】

【課題】 短い時間で効率よく蓄熱する。

【解決手段】 固体と液体との状態変化により蓄熱する酢酸ナトリウム3と、酢酸ナトリウム3に直接接触することにより熱交換し、酢酸ナトリウム3よりも比重が小さく混合しない油2とを収容する熱貯蔵容器1aを備えている。さらに、少なくとも熱貯蔵容器1aに収容された酢酸ナトリウム3内を通り、油2を熱貯蔵容器1a内に供給する供給管4と、熱貯蔵容器1aに収容された油2を熱貯蔵容器1aの外部に排出する排出管6とを備えている。そして、供給管4は、熱貯蔵容器1aに収容された油2と酢酸ナトリウム3との境界面を横切り、供給された油2aを排出する排出孔を複数有し、排出孔6の少なくとも1つが油2内に位置している。

【選択図】 図2

特願2003-402457

出願人履歴情報

識別番号

[000001199]

1. 変更年月日

2002年 3月 6日

[変更理由]

住所変更

住所

兵庫県神戸市中央区脇浜町二丁目10番26号

氏 名

株式会社神戸製鋼所

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/017834

International filing date:

01 December 2004 (01.12.2004)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2003-402457

Filing date:

02 December 2003 (02.12.2003)

Date of receipt at the International Bureau: 04 February 2005 (04.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.