Лабораторная работа №3

Структуры. Объединения. Перечисления.

Выполнил:

Студент 1-го курса

Группы ИВТ-1.1

Шардт Максим Александрович

Оглавление

Комплект 1: Структуры	4
Задание 1.1	4
Задание 1.2	5
Задание 1.3	7
Задание 1.4	9
Задание 1.5	10
Комплект 2: Объединения и перечисления	12
Задание 2.1	12
Задание 2.2	13
Задание 2.3	14
Задание 2.4	15

1. Комплект 1: Структуры

1.1. Создать некоторую структуру с указателем на некоторую функцию в качестве поля. Вызвать эту функцию через имя переменной этой структуры и поле указателя на функцию.

Математическая модель

Создается структура foo с полем, в котором хранится указатель на некую функцию bar. Функция вызывается через имя переменной этой структуры.

Список идентификаторов

Имя переменной	Тип данных	Смысловое значение
ptr	Структура foo	Экземпляр структуры foo
result	Integer	Результат вызова функции bar

```
#include <stdio.h>
1
2
3 struct foo
4
      int (*bar)();
5
   };
6
   int func(int x)
7
8
9
      return x + 2;
10
   int main(void)
11
12
      struct foo ptr = {&func};
13
      int result = ptr.bar(2);
14
      printf("result: %d\n", result);
15
16
17
      return 0;
18
   }
```

Листинг 1: Lab3 - 1-1.с

result: 4

Выводится значение 4, так как к изначальному значению 2 функция прибавляет 2.

- 1.2. Создать структуру для вектора в 3-х мерном пространстве. Реализовать и использховать в своей программе следующие операции над векторами:
 - скалярное умножение векторов;
 - векторное произведение;
 - модуль вектора;
 - распечатка вектора в консоли.

В структуре вектора указать имя вектора в качестве отдельного поля этой структуры.

Математическая модель

Формула скалярного произведения векторов:

$$a \cdot b = x_1 x_2 + y_1 y_2 + z_1 z_2$$

Формула векторного произведения векторов:

$$a \times b = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$a \times b = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)$$

Нахождение модуля вектора:

$$|a| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

Список идентификаторов

Имя переменной	Тип данных	Смысловое значение
a	Vector	Вектор А
b	Vector	Вектор В
a_length	Double	Модуль вектора А

dot_product	Integer	Скалярное умножение векторов A и B
cross_product	Vector	Векторное умножение векторов А и В

```
1 #include <math.h>
 2 #include <stdio.h>
 3
 4 struct vector
 5
 6
      int x;
 7
      int y;
 8
      int z;
 9
      char name[20];
   };
10
11
  int main(void)
12
13
      struct vector a = {-1, 2, -3, "first"};
14
      struct vector b = {0, -4, 1, "second"};
15
      // Модуль вектора
16
      double a_length = sqrt(a.x * a.x + a.y * a.y + a.z * a.z);
17
      // Скалярное умножение
18
19
      int dot_product = a.x * b.x + a.y * b.y + a.z * b.z;
20
      // Векторное умножение
21
      struct vector cross_product;
22
      cross_product.x = a.y * b.z - a.z * b.y;
      cross_product.y = a.x * b.z - a.z * b.x;
23
      cross product.z = a.x * b.y - a.y * b.x;
24
25
      // Вывод вектора
      printf("%s {%d, %d, %d}\n", a.name, a.x, a.y, a.z);
26
      printf("%s {%d, %d, %d}\n", b.name, b.x, b.y, b.z);
27
28
      printf("Dot product: %d\n", dot_product);
29
      printf("Cross product: {%d, %d, %d}\n", b.x, b.y, b.z);
30
31
32
      return 0;
33 }
```

Листинг 2: Lab3 - 1-2.c

```
first {-1, 2, -3}
second {0, -4, 1}
Dot product: -11
Cross product: {0, -4, 1}
```

Выводятся два изначальных вектора и результаты их скалярное и векторного умножения.

1.3. Вычислить, используя структуру комплексного числа, комплексную экспоненту $\exp(z)$ некоторого $z \in C$

Математическая модель

$$exp(z) = 1 + z + \frac{1}{2!}z^2 + \frac{1}{3!}z^3 + \ldots + \frac{1}{n!}z^n$$
.

Для возведения в степень комплексного числа используется формула:

$$z^n=r^n\cdot\cos n\,\phi\ +\ r^n\cdot i\sin n\,\phi$$
 , где $r=\sqrt{a^2\cdot b^2},\ \phi=arctgrac{b}{a}$

Структура комплексного числа состоит из двух элементов: вещественной и мнимой.

Список идентификаторов

Имя переменной	Тип данных	Смысловое значение
cNumber	complex	Изначальное комплексное число
n	Integer	Максимальная степень
exp	comlex	Экспоненциальная функция
fact	Integer	Факториал
arctgAB	Double	arctg(b / a)
r	Double	Модуль комплексного числа

```
1 #include <stdio.h>
 2 #include <math.h>
 3
   struct complex
 4
 5 {
      double real;
 6
 7
      double imag;
 8
   };
 9
   int main(void)
10
11
   {
12
      int n = 12;
13
      int fact = 1;
      struct complex cNumber = \{1.0, 2.0\}; // 1 + 2i
14
      struct complex exp = {cNumber.real + 1, cNumber.imag}; // 1 + z
15
16
      for (int i = 2; i <= n; i++)
17
18
      {
          fact *= i;
19
20
           double arctgAB = atan(cNumber.imag / cNumber.real);
21
           double r = pow(sqrt(cNumber.real * cNumber.real + cNumber.imag *
   cNumber.imag), i);
           struct complex result = {r * cos(arctgAB * i), r * sin(arctgAB *
22
   i)};
23
24
          exp.real += 1.0 / fact * result.real;
25
          exp.imag += 1.0 / fact * result.imag;
26
      }
27
28
      printf("exp(\%.21f + \%.21fi) = \%.51f + \%.51fi\n", cNumber.real,
29
   cNumber.imag, exp.real, exp.imag);
30
31
32
      return 0;
33 }
```

Листинг 3: Lab3 - 1-3.с

exp(1.00 + 2.00i) = -1.13120 + 2.47172i

Экспонента числа 1 + 2і равна -1.13 + 2.47і

1.4. Используя так называемые "битовые" поля в структуре С, создать экономную структуру в оперативной памяти для заполнения даты некоторого события, например даты рождения человека.

Математическая модель

Для записи дня требуется 5 бит (до 32), месяца 4 бита (до 16), а года 12 бит (до 4096).

Список идентификаторов

Имя переменной	Тип данных	Смысловое значение
date1	date	Первая дата
date2	date	Вторая дата
date3	date	Третья дата

```
#include <stdio.h>
1
 2
 3 struct date
4
5
      unsigned int day : 5;
      unsigned int month : 4;
6
      unsigned int year : 12;
7
   };
8
9
   int main(void)
10
11
      struct date date1 = {02, 02, 2002};
12
      struct date date2 = {31, 11, 1999};
13
      struct date date3 = {14, 02, 2011};
14
      printf("date: %d.%d.%d\n", date1.day, date1.month, date1year);
15
      return 0;
16
17
```

Листинг 4: Lab3 - 1-4.c

date: 2.2.2002 Выводится дата 02.02.2002.

1.5. Реализовать в виде структур двунаправленный связный список и совершить отдельно его обход в прямом и обратном направлениях с распечаткой значений каждого элемента списка.

Математическая модель

Графическое представление двунаправленного связного списка:

Список идентификаторов

Имя переменной	Тип данных	Смысловое значение
head	ListNode	Указатель на первый элемент связного списка
tail	ListNode	Указатель на последний элемент связного списка
new_node	ListNode	Новый элемент
node	ListNode	Указатель на элементы списка для их последующего вывода

```
#include <stdlib.h>
2 #include <stdio.h>
3
4
   struct ListNode
5
   {
      struct ListNode *pre;
6
      struct ListNode *next;
7
      int value;
8
9
   };
10
   int main(void)
11
12
   {
```

```
13
      // Начало списка
14
      struct ListNode *head = (struct ListNode *)malloc(sizeof(struct
   ListNode));
      // Конец списка
15
      struct ListNode *tail = head;
16
17
      // Заполняем список значениями от 1 до 10
18
19
      for (int i = 0; i < 10; i++)
20
      {
           struct ListNode *new_node = (struct ListNode
21
   *)malloc(sizeof(struct ListNode));
          // Новое значение
22
           new node->value = i;
23
          // Указываем предыдущий элемент
24
25
           new node->pre = tail;
          // Т.к. этот элемент последний, сл. элемент равен нулю
26
           new node->next = NULL;
27
          // Обновляем указатель предыдущего элемента
28
29
          tail->next = new node;
          // Обновляем конец списка
30
31
          tail = new node;
32
      }
33
      // Выводим значения списка
      struct ListNode *node = head;
34
      while (node != NULL)
35
36
      {
           printf("%d -> ", node->value);
37
          node = node->next;
38
39
      }
      printf("NULL\n");
40
      // Выводим значения списка в обратном порядке
41
      node = tail;
42
      while (node != NULL)
43
44
           printf("%d -> ", node->value);
45
          node = node->pre;
46
47
48
      printf("NULL\n");
49
      return 0;
50
51 }
```

Листинг 5: Lab3 - 1-5.с

Выводятся элементы списка в прямом и обратном порядке

- 2. Комплект 2: Объединения и перечисления
- 2.1. Напишите программу, которая использует указатель на некоторое объединение union.

Математическая модель

Список идентификаторов

Имя переменной	Тип данных	Смысловое значение
decimalNumber	Integer	Целое число в myUnion
floatNumber	Float	Вещественно число в myUnion
a	myUnion	
b	myUnion	Указатель на а

```
#include <stdio.h>

union myUnion

int decimalNumber;

float floatNumber;

};
```

```
int main(void)
 9
10
       union myUnion a;
11
       union myUnion *b = &a;
12
13
       a.decimalNumber = 10;
14
       printf("before: %d, %f\n", a.decimalNumber, a.floatNumber);
15
16
       b->floatNumber = 11.1;
17
       printf("after: %d, %f\n", b->decimalNumber, b->floatNumber);
18
19
20
       return 0;
21
   }
                              Листинг 6: Lab3 - 2-1.c
```

Результат выполненной работы

```
before: 10, 0.000000
after: 1093769626, 11.100000
```

2.2. Напишите программу, которая использует union для побайтовой распечатки типа unsigned long.

Список идентификаторов

Имя переменной	Тип данных	Смысловое значение
value	char	Значение внутри Byte
number	unsigned long	Изначальное число
byte	Byte	Юнион байт

```
#include <stdio.h>

union Byte

{
    char value;
};

int main(void)
```

```
{
 9
10
       unsigned long number = 1234567890123456789;
11
       union Byte byte;
12
       for (char *p = (char *)&number; p < (char *)&number + sizeof(unsigned</pre>
13
   long); p++)
14
       {
15
           byte.value = *p;
           printf("%hhx ", byte.value);
16
17
       printf("\n");
18
       return 0;
19
20
   }
```

Листинг 7: Lab3 - 2-2.с

15 81 e9 7d f4 10 22 11

Создайте перечислимый тип данных (enum) для семи дней недели и 2.3. распечатайте на экране его значения, как целые числа

Математическая модель

Семь дней недели будут отображаться числами от 0 до 6.

Список идентификаторов

Имя переменной	Тип данных	Смысловое значение
day	enum	Дни недели

```
1
  #include <stdio.h>
2
3 int main(void)
4
  {
5
      enum weekDays
6
      {
7
          MONDAY,
8
          TUESDAY,
9
          WEDNESDAY,
```

```
10
           THURSDAY,
11
           FRIDAY,
12
           SATURDAY,
           SUNDAY
13
14
       } day = MONDAY;
15
       for (int i = 0; i <= 6; i++)
16
           printf("%d ", day + i);
17
18
       printf("\n");
19
20
       return 0;
21
   }
```

Листинг 8: Lab3 - 2-3.c

0 1 2 3 4 5 6

2.4. Создайте так называемое размеченное объединение union, которое заключено в виде поля структуры struct вместе с ещё одним полем, которое является перечислением епит и служит индикатором того, что именно на текущий момент хранится в таком вложенном объединении. Создать и заполнить динамический массив таких структур с объединениями внутри, заполняя вспомогательное поле перечисления епит для сохранения информации о хранимом в каждом размеченном объединении типе данных. Реализовать распечатку данных массива таких структур в консоль.

Математическая модель

В структуре содержится два элемента: union и enum. В первом содержится либо целое число, либо вещественное, во втором тип первого. Элементы массива заполняются случайными значениями. И, в зависимости от случайного числа, имеют либо целый, либо вещественный тип.

Список идентификаторов

Имя переменной	Тип данных	Смысловое значение
size	Integer	Размер массива
array	myStruct	Массив структур

```
#include <stdlib.h>
 2 #include <time.h>
   #include <stdio.h>
 3
 4
 5
   struct myStruct
 6
 7
       union myUnion
 8
       {
 9
           int decimal;
10
           float floating;
       } value;
11
12
       enum
13
       {
14
           DECIMAL,
15
           FLOATING
16
       } type;
17
   };
18
19
   int main(void)
20
21
       srandom(time(NULL));
22
       const int size = 5;
       struct myStruct *array = (struct myStruct *)malloc(sizeof(struct
23
   myStruct) * size);
24
25
       for (int i = 0; i < size; i++)</pre>
26
       {
27
           if (random() > RAND MAX / 2)
           {
28
29
               array[i].type = DECIMAL;
30
               array[i].value.decimal = random();
31
           }
           else
32
33
           {
               array[i].type = FLOATING;
34
               array[i].value.floating = (float)RAND_MAX / (float)random();
35
           }
36
37
       for (int i = 0; i < size; i++)</pre>
38
39
           if (array[i].type == DECIMAL)
40
```

Результат выполненной работы

```
[0]: 2.993201 [0]: 127887490 [1]: 3.766881 [1]: 1.456174 [2]: 8123010 [2]: 1.827014 [3]: 1.277884 [3]: 2.270920 [4]: 1.252753
```