

School of Information Technology& Engineering M.Tech Software Engineering

Subject - SWE2009 - Data Mining & Techniques

Slot: B2+TB2

CHARACTER RECOGNITION USING MACHINE LEARNING

Done By

K.KARTHIKEYAN – 16MIS0102 AKSHAY EBENEZAR.R – 17MIS0449

Faculty Incharge: Prof SUDHA M

APRIL 2019

ABSTRACT

The use of character recognition in automated data-entry applications is described. The processing of the documents on which the characters to be interpreted reside, starts with making electronic images of them. Neural networks are used to recognize the individual characters in the form images. The confidence of each recognition, which is provided by the neural network as part of the classification result, is one of the things used to customize the application to the demands of the client.

LIST OF CONTENTS:

SI.NO	TITLE	PAGE NO:
1	ABSTRACT	2
	CHAPTER – 1	
2	1.1 INTRODUCTION	4
3	1.2 OBJECTIVE OF THE WORK	4
4	1.3 SCOPE OF THE WORK	5
	CHAPTER -2	
5	2.1 INTRODUCTION	6
6	2.2 BACKGROUND	15
7	2.3 CHALLENGES	15
8	2.4 PROBLEM DEFINITION AND	16
	APPROACH	
	CHAPTER – 3	
9	3.1 MACHINE LEARNING METHODS	17
10	3.2 DESIGN FRAMEWORK	20
11	3.3 DATASET, DATA SOURCE,	21
	CHARACTERIZATION,	
10	PREPROCESSING	
12	3.4 PROCESSING TECHNIQUES	22
	CHAPTER – 4	
13	RESULTS AND DISCUSSION	24
	CHAPTER – 5	
14	SUMMARY AND DISCUSSION	42
15	REFERENCES	43

CHAPTER-1

INTRODUCTION

we are use the neural Network to Recognize the character. In this paper it is developed 0ffline strategies for the isolated handwritten English character (A TO Z) and (0 to 9). This method improves the character recognition method. Preprocessing of the Character is used binarization ,thresolding and segmentation method .The proposed method is based on the use of feed forward back propagation method to classify the characters. The ANN is trained using the Back Propagation algorithm. In the proposed system ,English numerical letter is represented by binary numbers that are used as input then they are fed to an ANN. Neural network followed by the Back Propagation Algorithm which compromises Training.

Hand Gesture is habitually used in every day life style. It is so natural way to communicate. Hand gesture recognition method is widely used in the application area of Controlling mouse and/or keyboard functionality, mechanical system, 3D World, Manipulate virtual objects, Navigate in a Virtual Environment, Human/Robot Manipulation and Instruction Communicate at a distance. This paper introduces a real time hand gesture recognition system. This system consists of three stages: image acquisition, feature extraction, and recognition. In the first stage input image of hand gestures are acquiesced by digital camera in 4

approximate frame rate. In second stage a rotation, translation, scaling and orientation invariant feature extraction method has been introduce to extract the feature of the input image based on moment feature extraction method. Finally, a neural network is used to recognize the hand gestures. The performance of the system tested on real data. Based on the experimental results, we noted that this system shows satisfactory performance in hand gesture recognition.

1.1 OBJECTIVE OF THE WORK

The recognition of handwritten characters has many applications such as automatic Postal sorting, automatic bank cheque processing etc. In the work on character recognition has been reviewed. The earlier systems known as Optical Character Recognition (OCR) systems that had been developed were confined to recognize only the printed or handwritten characters of fixed size and fonts. But, the present study aims at producing a system, which could recognize characters of any arbitrary size, shape and fonts. There are numerous approaches that address the problem and they vary in the features extracted from the graphical representation of the Characters.

1.2 SCOPE OF THE WORK:

The first phase in our character recognition process is converting the image to Binary image by thresholding the given character image. Binary images are images whose pixels have only two possible intensity values. They are normally displayed as Black and White. The converted Character image has pixel value zero for Black and one for white. Thus the color of the character is White and the background is black

LITERATURE SURVEY:-

LINK FOR SURVEY MATERIALS:- https://karthikeyank2016.wixsite.com/mysite

Topics	published	Algorithim	Advantage	Disadvantage
Neural Network based Approach for Recognition of Text Images	January 2013	Multilayer perceptron network	As neural network is used here for recognition of offline English character images and it has been seen that recognition increases	There is sometimes result variation may be due to the number of character set used for training was reasonably low.
Character Recognition Using Neural Network	April 2013	Back propagation	Neural network based method gives the accuracy 85 %.	It can cause significant degradation in the feature extraction process
Handwritten English Character Recognition Using Neural Network	December 2010	Multilayer Perceptron Network	A lot of efforts have been made to get higher accuracy but stil there are tremendous scope of improving	English character recognition is giving high recognition accuracy and minimum training time

			ma a a = :: '4'	
			recognition	
			accuracy	
HAND	2005 - 2009	Back propagation	The BPN	To illustrate
WRITTEN		Network	network	some problems
CHARACTER			designed	that often arise
RECOGNITION			proposed	when we are
USING BACK			has the	attempting to
PROPAGATION			ability	automate
NETWORK			to recognize	complex
			stimulus	pattern-
			patterns	recognition
			without	recognition
			affecting by	
			shift in	
			position not	
			by a small	
			distortion in	
			shape of	
			input	
			pattern.	
Character	September	Back propagation	The use of	Not have
Recognition	2012	network	gradient	perfect
using Back			decent back	accuracy
Propagation			propagation	-
Neural			algorithm	
Network			has	
			improved	
			the	
			performance	
			of neural	
			network.	
			network.	
A Matlah Praisat				
A Matlab Project	2000	Feed forward		Mana than an-
in Optical	2000			More than one
Character		network		same character
Recognition				cannot be
(OCR)	2014	NT 1	771	possible
TT A DUD	2014	Neural network	The result	
HAND-			which was	handwritten
WRITTEN			got was	characters
CHARCTER			correct up to	remain
RECOGNITION			more than	irregular.
			90% of the	
	I .	İ		

			cases, but it would be improved at the end	
Character Recognition Using Matlab's Neural Network Toolbox	FEBRUARY 2013	Neural network (extraction, detection algorithim)	A simplistic approach for recognition of Optical characters using artificial neural networks has been described.	chosen set of features will

A Survey on Optical	Decembe	Neural network	During the	The time and
Character	r 2016		early days,	space
Recognition System			OCR has	complexity of
			been used for	a post
			mail sorting,	processor
				should some
			bank cheque	what very high
			reading and	
			signature	
			verification	
	Febraury	Feed forward	Our	
~	2018	network	evaluation	
Literature Survey			shows that	Visual images
on Recognition and			LBP with	are also subject
Evaluation of			SVM gives	to noise and
Optical Character			optimal	therefore, there
Recognition (OCR)			results with	are issues
			accuracy of	particularly
			96.5%.	over edges.
A SURVEY ON	March	Radial base	The sliding	The existing
HANDWRITTEN	2016	function	window	HCR for
CHARACTER			scheme	handwritten
RECOGNITION			defends the	has very less
(HCR)			left to right	precision. We
TECHNIQUES 8 Page			scripting	

FOR ENGLISH ALPHABETS			nature of the article as fine as the inconsistent alphabet extent characteristic s.	require a proficient solution to resolve this difficulty so that overall performance can be amplified.
FUZZY LOGIC BASED HANDWRITTEN CHARACTER RECOGNITION	Notknown	Fuzzy logic	The paper presents a fuzzy logic based approach for the recognition of isolated handwritten characters. The normalized angle approach (using fuzzy distance) gave the best rate of 83%.	However, some characters (such as 'E' and 'F', a','e','b')
Hand written character recognition using image fusion and fuzzy logic	2016	Image fusion and fuzzy logic	Fully automated	Not correctly recognize the letter "f"
HANDWRITTEN TEXT IMAGE AUTHENTICATI ON USING BACK PROPAGATION	Septemb er 2011	Back propagation algorithim	More accuracy	While training the network using two or more similar patterns which represent the same output can avoid restriction on width and height.

Multi-Layer	2017	Multilayer	recognize	accuracy of
Perceptron	2017	perceptron	these	recognitionat
Network For		perception	characters	95%.
		network		9570.
English Character		network	with	
Recognition			hiah	
			high	
			performance	
			accuracy and	
			reduced	
			training time	
			as well as	
			minimum	
			classification	
			time.	
HANDWRITTEN		k-	the classifier	It can be seen
DIGIT	JULY	NearestNeighbo	can be	that the
RECOGNITION	2013	ur algorithm and	chosen as per	accuracy is
USING BACK		Back	the need and	above 90% for
PROPAGATION		propagation	a trade-off	
NEURAL		Algorithm.	between	trained neural
NETWORK& K-		111801111111	speed and	network. The
NEAREST			accuracy is	accuracy
NEIGHBOUR			possible	remains 88%
CLASSIFIER			depending on	on
CLASSITICA			the	an average
			application.	considering
			application.	results of all
				the digits from 0
				U
				to 9.
	APRIL	Artificial neural	drawing	Here error rate
Handwritten	2013	network	character will	is 1.089 and
	2013	lictwork	be 'X' in this	Iterations will
Character and Digit			'X' will be	Be 78 and the
Recognition Using				
Artificial Neural			recognize	time is 03 sec.
Networks			83% high	
N. C.				
Noisy Character	2017	Single large	The	noisy
Recognition	2017	Single layer		noisy characters with
		perceptron	algorithm is	
			also capable	
			of the	33.19%,
			recognition	87.66% noise

			of 82.5%	of the input
			noisy	pattern
			Characters	pattern
			having more	
			noise (100%,	
			116.17%).	
CHARACTER	Not	Neural networks	they	Accuracy rate
RECOGNITION	known	incural lictworks		is hogh
USING NEURAL	KIIOWII		are robust with respect	is nogn
NETWORKS			to input	
NETWORKS			noise, node	
			failure, can	
			adapt to input	
			stimulus	
A STUDY ON	October	K-means	We	We confirmed
JAPANESE	2010	algorithim	confirmed	to obtain quite
HISTORICAL	2010	aigoriumii	this historical	high
CHARACTER			character	recognition
RECOGNITION			recognition	accuracy of
USING			system has	95.35% for 57
MODULAR			quite high	character
NEURAL			recognition	categories,
NETWORKS			accuracy of	categories,
TIET WORKS			95.35% for	
			57 character	
			categories,	
			which	
			contain more	
			categories	
			than the	
			conventional	
			research.	
Pattern Recognition	2014	Artificial neural	With	As fault
using Artificial		networks	distortion the	
Neural Network			accuracy	HP is more
			•	than BPN so
			output is	the error
			more in new	calculating
			defined	capability is
			network as	more in HP
			compared to	
			only BPN	

Handwritten Farsi	2009	Multilayer	We have	An
Character	2009	perceptron	collected 250	experimental
Recognition using		network	samples of	result shows
Artificial Neural		network	handwritten	that
Network			Farsi	backpropagati
Network			characters	on network
			written by ten different	•
				recognition accuracy of
			1	accuracy of 85%
			each directly	03/0
			on screen. We have	
			_	
			samples as a	
			training data	
			(training set)	
			and	
			remaining	
			125 samples	
			as a test data	
OPTICAL	2016	Martilarran	(test set).	Only minted
	2016	Multilayer	Recognized	Only printed
CHARACTER		perceptron	character will	data
RECOGNITION		network	be store in	recognition is
USING			file in the	not sufficient
ARTIFICIAL			editable and	in today's
NEURAL			accessible	scenario so the
NETWORK			format.	next step of
				this proposed
				system is to
				concentrate on
				handwritten
				text
				recognition
				with high
Turining D 1	T	D1-	DD	accuracy.
Training Feed	Januaray	Back	BP	BP has its own
forward Neural	2017	propagation	Algorithm is	limitations of
Network With		network	known for its	slow
Backpropogation			mathematical	convergence
Algorithm			simplicity	rate and local
			and accuracy	minima
				problem which
12 Page				is still a big

A Review on Geometrical Analysis in Character Recognition	April 2015	Neural network	More accuracy	problem when dealing with large complex problems. Improvement can be made in the existing geometrical character recognition techniques by finding new techniques for preprocessing.
Unicode Optical Character Recognition Using Neural Networks	October 2015	Some artificial neural network	Properly adjusted	Optical character recognition using neural networks involves various stages that needs to be implemented correctly else the whole process will fall back
Neuro chain:Handwritten recogntion	Not known	Artificial neural networks	The highest performance obtained is 70%	Even 30% not get it
Online Handwritten Character Recognition Using an Optical Backpropagation Neural Network	2005	Back propagation algorithim	The experimental results show that using the OBP can speed up convergence of the training process. Although small values	To obtain fair and independent results, two different architectures were used each with various values for the learning rate.

			0 1	
			for the	
			learning rate	
			were used,	
GradientBased	1998	Multilayer feed		No accuracy
Learning Applied to		forward network		
Document				
Recognition				
Character	2006-	Convolutional	. It was	With an error
Recognition Using	2007	neural networks	shown, that	rate as low as
Convolutional			the concept	0.95%
Neural Networks			of	0.5670
1 (Carar I (Ct Works			convolutiona	
			1 neural	
			networks and	
			weight	
			sharing not	
			only reduces	
			the need for	
			computation,	
			but also	
			offers a	
			satisfying	
			degree of	
			noise	
			resistance	
			and	
			invariance to	
			various	
			forms of	
			distortion	
Survey On Optical	June	Back	artificial	it is unlikely to
Character	2017	propagation	neural	replace
Recognition Using		algorithim	networks are	existing OCR
Neural Network		ang strumm	commonly	methods,
1.301011.00110111			used to	especially for
			perform	English text
			character	Liigiisii text
			recognition	
			due to their	
			high noise	
A C	D 1	N. 1. 1	tolerance	C
A Survey on	Decembe	Multilayer	Strongly	Create
Handwritten	r 2016	perceptron	chosen	computing
Character 14 Page		Neural network	feature set	algorithm with

Recognition	using		provide	good	hundred
Multilayer			recognit	ion	percent
Perceptron	Neural		rate	and	accuracy is not
Networks			poorly		possible
			chosen	set	
			provide	poor	
			recognit	ion	
			rate.		

2.2 BACKGROUND

This project is based on Machine learning, We can provide a lot of data set as an Input to the software tool which will be recognized by the machine and similar pattern will be taken out from them.by use of some machine learning algorithm we bring out output. We can use Matlab tool for implementation .

2.3 CHALLENGES

We have faced some challenges in which the algorithm works perfectly in some epochs we take more time to identify which epoch suits better for the backprogation algorithm.

2.4 PROBLEM DEFINITION AND APPROACH:

This paper describe how handwritten English character Recognition (HCR) processed, trained and then recognized using Back propagation method. Size and fonts are different in training the data and testing the data. In the present paper, we have given a method to recognize a handwritten character using back propagation method. It is developed for isolated handwritten English Characters (A to Z). Preprocessing of Recognition is used binarization, thresolding and segmentation method. Image are first converted into gray scale then features are extracted which are in form of 0 and 1.780 hand written characters are used in database for characters then test the data and find the Recognition accuracy.

CHAPTER - 3

EXPERIMENTAL DETAILS

3.1 MACHINE LEARNING METHODS

Back propagation algorithim

The Back propagation Principle

Backpropagation is a special case of a more general technique called automatic differentiation. In the context of learning, **backpropagation** is commonly used by the gradient descent optimization algorithm to adjust the weight of neurons by calculating the gradient of the loss function.

- ► Comparing two set of datasets (A1-Z1) and (A2-Z2) first the train the network using back propagation algorithim then find error rate accordingly doing for some 100 epochs finally insert a input data set and finally the output value data set got .
- ▶ Here the for performance and to reduce error we using some function called erf function

Algorithim using matlab code

```
%3. Network Input
```

```
p=[A2(1:end);B2(1:end);C2(1:end);D2(1:end);E2(1:end);F2(1:end);G2(1:end);H2(1:end);D2(1:end);E2(1:end);D2(1:end);E2(1:end);D2(1:end);E2(1:end);E2(1:end);D2(1:end);E2(1:end);D2(1:end);E2(1:end);E2(1:end);D2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E
nd);I2(1:end);J2(1:end);K2(1:end);L2(1:end);M2(1:end);N2(1:end);O2(1:end);P2(1:e
nd);Q2(1:end);R2(1:end);S2(1:end);T2(1:end);U2(1:end);V2(1:end);W2(1:end);X2(1
:end);Y2(1:end);Z2(1:end)]';
%4. Desired Target Network
t=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26];
% pr = min max function
PR = zeros(9,9);
PR(:,2)=1;
%5. Use of Backpropagation Functions
net=newff(minmax(p),[26,1],{'logsig','purelin'});
%6. Network Training
net.trainParam.epochs=100;
net.trainParam.lr=0.5;
erf(p)
%error function
net=train(net,p,t);
%7. Experiment Input Patterns with Other Models
\% sim = testing
results=sim(net,A2(1:end)');
y=results;
results=round(y);
disp('calculated value');
disp(y)
disp(results)
if results==1'
disp('Alphabet A');
elseif results==2'
disp('Alphabet B');
elseif results==3'
disp('Alphabet C');
elseif results==4'
disp('Alphabet D');
elseif results==5'
```

```
disp('Alphabet E');
elseif results==6'
disp('Alphabet F');
elseif results==7'
disp('Alphabet G');
elseif results==8'
disp('Alphabet H');
elseif results==9'
disp('Alphabet I');
elseif results==10'
disp('Alphabet J');
elseif results==11'
disp('Alphabet K');
elseif results==12'
disp('Alphabet L');
elseif results==13'
disp('Alphabet M');
elseif results==14'
disp('Alphabet N');
elseif results==15'
disp('Alphabet O');
elseif results==16'
disp('Alphabet P');
elseif results==17'
disp('Alphabet Q');
elseif results==18'
disp('Alphabet R');
elseif results==19'
disp('Alphabet S');
elseif results==20'
disp('Alphabet T');
elseif results==21'
disp('Alphabet U');
elseif results==22'
disp('Alphabet V');
elseif results==23'
disp('Alphabet W');
elseif results==24'
disp('Alphabet X');
elseif results==25'
disp('Alphabet Y');
elseif results==26'
disp('Alphabet Z');
else
```

disp('Letter not recognized') end	
20 Page	

3.2 DESIGN FRAMEWORK

3.3 DATSET, DATASOURCE, CHARACTERIZATION, PREPROCESSING

DATASETS

```
%1. Formatting Patterns for Introduction
A1 = [0\ 0\ 0\ 1\ 0\ 0\ 0;
0001000;
0001000;
0010100;
0010100;
0100010;
0 1 1 1 1 1 0;
0 1 0 0 0 1 0;
0 1 0 0 0 1 0];
B1=[1 1 1 1 1 1 0;
1000001;
1000001;
1000001;
111110;
1000001;
1000001;
1000001;
1 1 1 0 1 1 0];
C1 = [0\ 0\ 1\ 1\ 1\ 0\ 0;
0100010;
1000001;
1000000;
1000000;
1000000;
1000001;
0100010;
0010100;
D1=[1 1 1 1 1 1 1;
1000001;
1000001:
1000001;
1000001;
1000001;
1000001;
1000001;
1 1 1 1 1 1 1];
E1=[1 1 1 1 1 1 1;
1000000;
 22 | Page
```

```
1000000;
1000000;
111111;
1000000;
1000000;
1000000;
1111111;
F1=[1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1];
1000000;
1000000;
1000000;
111111;
1000000;
1000000;
1000000;
10000001;
G1=[1 1 1 1 1 1 1;
1000000;
1000000;
1000000;
1000000;
1001111;
1000001;
1000001;
1111111;
H1=[1\ 0\ 0\ 0\ 0\ 1;
1000001;
1000001;
1000001;
111111;
1000001;
1000001;
1000001;
100001];
I1 = [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1];
0 0 0 1 0 0 0;
0001000;
0001000;
0001000;
0001000;
0001000;
0001000;
1111111;
 23 | Page
```

```
J1=[1 1 1 1 1 1 1;
1001000;
0001000;
0001000;
0001000;
0001000;
0001000;
0001000;
1 1 1 1 0 0 0];
K1 = [1 \ 0 \ 0 \ 0 \ 0 \ 0];
1000100;
1001000;
1010000;
1 1 0 0 0 0 0;
1010000;
1001000;
1000100;
1000010];
L1=[1\ 0\ 0\ 0\ 0\ 0];
1000000;
1000000;
1000000;
1000000;
1000000;
1000000;
1000000;
111111;
M1=[1\ 0\ 0\ 0\ 0\ 1;
1100011;
1010101;
1001001;
1001001;
1000001;
1000001;
1000001;
1000001];
N1=[0\ 0\ 0\ 0\ 0\ 0];
1000001;
1100001;
1010001;
1001001;
1000101;
1000011;
1000001;
 24 | Page
```

```
1000001];
O1=[0\ 1\ 1\ 1\ 1\ 1\ 0;
1000001;
1000001;
1000001;
1000001;
1000001;
1000001;
1000001;
0111110;
P1=[1 1 1 1 1 1 1;
1000001;
1000001;
1000001;
111111;
1000000;
1000000;
1000000;
1 0 0 0 0 0 0];
Q1 = [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1];
1000001;
1000001;
1000001;
1000001;
1000101;
1000101;
111111;
0000111];
R1=[1\ 1\ 1\ 1\ 1\ 1\ 1];
1000001;
1000001;
1000001;
111111;
1001000;
1000100;
1000010;
1000001];
S1=[0 1 1 1 1 1 1;
1000000;
1000000;
1000000;
111111;
0000001;
0000001;
 25 | Page
```

```
0000001;
1110110];
T1=[1 1 1 1 1 1 1;
1001001;
0001000;
0001000;
0001000;
0001000;
0001000;
0001000;
0001000;
U1=[1\ 0\ 0\ 0\ 0\ 1;
1000001;
1000001;
1000001;
1000001;
1000001;
1000001;
1000001;
0111110;
V1 = [1 \ 0 \ 0 \ 0 \ 0 \ 1];
1000001;
1000001;
0100010;
0 1 0 0 0 1 0;
0 0 1 0 1 0 0;
0010100;
0000000;
0001000;
W1=[1\ 0\ 0\ 0\ 0\ 1;
1000001;
1000001;
1001001;
1001001;
1001001;
1001001;
1010101;
0 1 0 0 0 1 0];
X1 = [1 \ 0 \ 0 \ 0 \ 0 \ 1;
0100001;
0010010;
0001100;
0001100;
0010100;
 26 | Page
```

```
0100010;
1000010;
1000001];
Y1 = [1 \ 0 \ 0 \ 0 \ 0 \ 1;
1000001;
0100010;
0010100;
0001000;
0001000;
0001000;
0001000;
0001000;
Z1=[1\ 1\ 1\ 1\ 1\ 1\ 1];
0000001;
0000010;
0000100;
0001000;
0010000;
0100000;
1000000;
1111111;
%Patterns for Experiments (Other Letter Patterns)
A2=[0\ 0\ 0\ 1\ 0\ 0\ 0;
0001000;
0001000;
0010100;
0010100;
0100010;
0 1 1 1 1 1 0;
0100010;
0100011];
B2=[1\ 1\ 1\ 1\ 1\ 1\ 0;
1000001;
1000001;
1000001;
1 1 1 1 1 1 0;
1000001;
1000001;
1000001;
1 1 1 0 1 1 0];
C2=[0\ 0\ 1\ 1\ 1\ 0\ 0;
 27 | Page
```

```
0100010;
1000001;
1000000;
1000000;
1000000;
1000001;
0100010;
0 0 1 0 1 0 0];
D2=[1 1 1 1 1 1 1;
1000001;
1000001;
1000001;
1000001;
1000001;
1000001;
1000001;
1111111;
E2=[1 1 1 1 1 1 1;
1000000;
1000000;
1000000;
111111;
1000000;
1000000;
1000000;
111111];
F2=[1 1 1 1 1 1 1;
1000000;
1000000;
1000000;
111111;
1000000;
1000000;
1000000;
1 0 0 0 0 0 0];
G2=[1\ 1\ 1\ 1\ 1\ 1\ 1];
1000000;
1000000;
1000000;
1000000;
1001111;
1000001;
1000001;
1111111;
 28 | Page
```

```
H2=[1\ 0\ 0\ 0\ 0\ 1;
1000001;
1000001;
1000001;
111111;
1000001;
1000001;
1000001;
1000001];
I2=[1 1 1 1 1 1 1;
0001000;
0001000;
0001000;
0001000;
0001000;
0001000;
0001000;
1111111;
J2=[1 1 1 1 1 1 1;
1001000;
0001000;
0001000;
0001000;
0001000;
0 0 0 1 0 0 0;
0001000;
1 1 1 1 0 0 0];
K2=[1\ 0\ 0\ 0\ 0\ 0];
1000100;
1001000;
1010000;
1100000;
1010000;
1001000;
1000100;
1000010];
L2=[1\ 0\ 0\ 0\ 0\ 0];
1000000;
1000000;
1000000;
1000000;
1000000;
1000000;
1000000;
 29 | Page
```

```
1111111;
M2=[1\ 0\ 0\ 0\ 0\ 1;
1 1 0 0 0 1 1;
1010101;
1001001;
1001001;
1000001;
1000001;
1000001;
1000001];
N2=[0\ 0\ 0\ 0\ 0\ 0];
1000001;
1 1 0 0 0 0 1;
1010001;
1001001;
1000101;
1000011;
1000001;
1000001];
O2=[0\ 1\ 1\ 1\ 1\ 1\ 0;
1000001;
1000001;
1000001;
1000001;
1000001;
1000001;
1000001;
0 1 1 1 1 1 0];
P2=[1 1 1 1 1 1 1;
1000001;
1000001;
1000001;
111111;
1000000;
1000000;
1000000:
1000000];
Q2=[1 1 1 1 1 1 1;
1000001;
1000001;
1000001;
1000001;
1000101;
1000101;
 30 | Page
```

```
111111;
0000111];
R2=[1\ 1\ 1\ 1\ 1\ 1\ 1];
1000001;
1000001;
1000001;
111111;
1001000;
1000100;
1000010;
1000001];
S2=[0 1 1 1 1 1 1;
1000000;
1000000;
1000000;
111111;
0000001;
0000001;
0000001;
1 1 1 0 1 1 0];
T2=[1\ 1\ 1\ 1\ 1\ 1\ 1];
1001001;
0001000;
0001000;
0001000;
0001000;
0001000;
0 0 0 1 0 0 0;
0001000;
U2=[1\ 0\ 0\ 0\ 0\ 1;
1000001;
1000001;
1000001;
1000001;
1000001;
1000001;
1000001;
0111110;
V2=[1\ 0\ 0\ 0\ 0\ 1;
1000001;
1000001;
0100010;
0100010;
0010100;
 31 | Page
```

```
0010100;
0000000;
0001000;
W2=[1\ 0\ 0\ 0\ 0\ 1;
1000001;
1000001;
1001001;
1001001;
1001001;
1001001;
1010101;
0 1 0 0 0 1 0];
X2=[1\ 0\ 0\ 0\ 0\ 1;
0100001;
0010010;
0001100;
0001100;
0010100;
0100010;
1000010;
1000001];
Y2=[1\ 0\ 0\ 0\ 0\ 1;
1000001;
0100010;
0 0 1 0 1 0 0;
0001000;
0001000;
0001000;
0001000;
0001000;
Z2=[1 1 1 1 1 1 1;
0000001;
0000010;
0000100;
0001000;
0010000;
0 1 0 0 0 0 0;
1000000;
111111;
```

Data Set Information:

Data set information for character recognition contains binary representation of data set.

Attribute Information:

Black =1

White =0

CHAPTER - 4

RESULT AND DISCUSSION

SOURCE CODE FOR BACK PROPAGATION ALGORITHIM:

%3. Network Input

```
p=[A2(1:end);B2(1:end);C2(1:end);D2(1:end);E2(1:end);F2(1:end);G2(1:end);H2(1:end);D2(1:end);E2(1:end);D2(1:end);E2(1:end);D2(1:end);E2(1:end);E2(1:end);D2(1:end);E2(1:end);D2(1:end);E2(1:end);E2(1:end);D2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E2(1:end);E
nd);I2(1:end);J2(1:end);K2(1:end);L2(1:end);M2(1:end);N2(1:end);O2(1:end);P2(1:e
nd);Q2(1:end);R2(1:end);S2(1:end);T2(1:end);U2(1:end);V2(1:end);W2(1:end);X2(1
:end);Y2(1:end);Z2(1:end)]';
%4. Desired Target Network
t=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26];
% pr = min max function
PR=zeros(9,9);
PR(:,2)=1;
%5. Use of Backpropagation Functions
net=newff(minmax(p),[26,1],{'logsig','purelin'});
%6. Network Training
net.trainParam.epochs=100;
net.trainParam.lr=0.5;
erf(p)
%error function
net=train(net,p,t);
%7. Experiment Input Patterns with Other Models
\% \sin = \text{testing}
results=sim(net,A2(1:end)');
y=results;
results=round(y);
disp('calculated value');
disp(y)
disp(results)
if results==1'
disp('Alphabet A');
elseif results==2'
disp('Alphabet B');
elseif results==3'
disp('Alphabet C');
elseif results==4'
```

disp('Alphabet D'); elseif results==5' disp('Alphabet E'); elseif results==6' disp('Alphabet F'); elseif results==7' disp('Alphabet G'); elseif results==8' disp('Alphabet H'); elseif results==9' disp('Alphabet I'); elseif results==10' disp('Alphabet J'); elseif results==11' disp('Alphabet K'); elseif results==12' disp('Alphabet L'); elseif results==13' disp('Alphabet M'); elseif results==14' disp('Alphabet N'); elseif results==15' disp('Alphabet O'); elseif results==16' disp('Alphabet P'); elseif results==17' disp('Alphabet Q'); elseif results==18' disp('Alphabet R'); elseif results==19' disp('Alphabet S'); elseif results==20' disp('Alphabet T'); elseif results==21' disp('Alphabet U'); elseif results==22' disp('Alphabet V'); elseif results==23' disp('Alphabet W'); elseif results==24' disp('Alphabet X'); elseif results==25' disp('Alphabet Y'); elseif results==26'

disp('Alphabet Z');
else
disp('Letter not recognized')
end

METHODOLOGY:-

Pattern Letters

Patterns using 9x7 matrix patterns. Each color element is exemplified when:

- a. Black color worth 1
- b. Colorless is 0

Create Code for Build Back Propagation Network in Command Editor

clear all;

Network

p = [A2(1:end); B2(1:end); C2(1:end); D2(1:end); E2(1:end); F2(1:end); G2(1:end); H2(1:end); I2(1:end); J2(1:end); K2(1:end); L2(1:end); M2(1:end); N2(1:end); O2(1:end); P2(1:end); Q2(1:end); R2(1:end); S2(1:end); T2(1:end); U2(1:end); V2(1:end); W2(1:end); V2(1:end); V2(

Input

```
Desired Target Network
  t=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26];
  PR=zeros(63,2);
  PR(:,2)=1;
    Use
             of
                   Backpropagation
                                         Functions
  net=newff(minmax(p),[26,1],{'logsig','purelin'});
    Network
                     Training
  net.trainParam.epochs=100;
  net.trainParam.goal=1e-25;
  net.trainParam.lr=0.5;
  erf(p)
  net=train(net,p,t);
    Experiment Input Patterns with Other Models
  results=sim(net,Z2(1:end)');
  y=results;
  results=round(y);
Test Result of Backpropagation Network on Command Window
  results=
     1.9694
  results =
     2
  Letter B
Explanation
   Formation of Letter Patterns
  Using a matrix size of 7x9 with a value of -1 and 1 as a form of representation
  (binary).
```

Network Input / Network Input

Merging examples of pattern letters A, B and C.

A1 [1: end] means 1x63 matrix size, so if combined and transposed into a 63x3 matrix.

Desired Network Target

The target uses a binary representation (0-1).

 $t = [1\ 2\ 3]$ is a 1x3 matrix. This code is used as an introduction that:

1 = Letter A

2 = Letter B

3 = Letter C

PR = zeros (63.2) is a 63x2 matrix with elements valued at '-1 'based on the number of elements of each input pattern is 63 with binary representation (0-1) which means there are 2 pieces of element.

PR (:, 2) = 1 means that the PR matrix whose previous element is worth '0 'is changed to value 1' in column 2.

Use of Backpropagation Function

net = newff (minmax (p), [3,1], {'logsig', 'purelin'})

PR: Rx2 order matrix which states the minimum and maximum values of each input unit (there are R input units).

3: number of hidden neurons with 'logsig' activation fungso

1: number of output neurons with activation function 'purelin

logsig: unipolar sigmoid activation function

purelin: a linear function has an output value equal to its input value.

Network / Network Training

net.trainParam.epochs = 3

net.trainParam.epochs = 4: This network will be trained with maximum epoch 3. net = net (train, p, t)

net (train, p, t): training function ('train') input pattern p to target on net network.

Result of Network Training

Iteration training is completed in 3 epochs. At epoch 1, performance = 0.675 (meaning there is only 1 pattern that is correctly recognized). At epoch 2, performance = 0.3 (meaning there are only 2 patterns that are correctly recognized). And at epoch 3, performance = 0 (meaning all patterns are correctly recognized).

Experiment Results result = sim (net, B2 (1: end) ');

results = round (results);

sim: a function used to calculate network output to match the target. Target A is worth (1), target B is worth (2), and target C is worth (3). If the A2 (letter A with another model with 1x63 matrix size) pattern is attempted, the backpropagation network that has been formed produces a value of (1) meaning A2 pattern

FLOW CHART:-

SOURCE CODE:

```
%Network
 \begin{array}{l} p = [A2(1:end); B2(1:end); C2(1:end); D2(1:end); E2(1:end); F2(1:end); G2(1:end); H2(1:end); I2(1:end); J2(1:end); K2(1:end); L2(1:end); M2(1:end); N2(1:end); O2(1:end); P2(1:end); Q2(1:end); R2(1:end); S2(1:end); T2(1:end); U2(1:end); V2(1:end); W2(1:end); D2(1:end); D2(1:end)
   );X2(1:end);Y2(1:end);Z2(1:end)]';
  %4. Desired Target Network t=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26];
   PR=zeros(63,2);
   PR(:,2)=1;
   %5.Use
                                                                                                                                                                                                                                                                         Functions
                                                                                      of
                                                                                                                                                     Backpropagation
  net=newff(minmax(p),[26,1],{'logsig','purelin'});
   %6.
                             Network
                                                                       Training
  net.trainParam.epochs=100;
   net.trainParam.lr=0.5;
   erf(p)
  net=train(net,p,t);
  %7. Experiment Input Patterns with Other Models
  results=sim(net,D2(1:end)');
   y=results;
   results=round(y);
  disp('calculated
                                                                       value');
   disp(y)
  disp(results) if
   results==1'
                  disp('Alphabet A');
   elseif results==2'
                  disp('Alphabet B');
   elseif results==3'
                   disp('Alphabet C');
  elseif results==4'
                  disp('Alphabet D');
  elseif results==5'
                  disp('Alphabet E');
   elseif results==6'
```

Input

```
disp('Alphabet
                      F');
elseif results==7'
    disp('Alphabet G');
elseif results==8'
    disp('Alphabet H');
elseif results==9'
    disp('Alphabet
                      I');
elseif results==10'
    disp('Alphabet
                      J');
elseif results==11'
    disp('Alphabet
                     K');
elseif results==12'
    disp('Alphabet
                     L');
elseif results==13'
    disp('Alphabet M');
elseif results==14'
    disp('Alphabet
                     N');
elseif results==15'
    disp('Alphabet
                     O');
elseif results==16'
    disp('Alphabet
                     P');
elseif results==17'
    disp('Alphabet
                     Q');
elseif results==18'
    disp('Alphabet
                     R');
elseif results==19'
    disp('Alphabet
                      S');
elseif results==20'
    disp('Alphabet
                     T');
elseif results==21'
    disp('Alphabet
                     U');
elseif results==22'
    disp('Alphabet
                     V');
elseif results==23'
    disp('Alphabet W');
elseif results==24'
    disp('Alphabet X');
elseif results==25'
    disp('Alphabet
                     Y');
elseif results==26'
    disp('Alphabet
                     Z');
else
```

disp('Letter not recognized')	
OUTPUT:	

WITHOUT SETTING PERFORMANCE GOAL:

Performance

Training state:

Regression:

AFTER SETTING PERFORMANCE GOAL AS 1e-25

The maximum performance will be set to 1e-25

We use net.trainParam.goal=1e-25; this line to set the performance

net.trainParam.goal=1e-25;

And the calculation and weight updation stopped when it reaches the maximum goal which is 1e-25

Performance:

Training state:

Regression:

CONCLUSION:-

The results of structure analysis shows that if the number of hidden nodes increases the number of epochs taken to recognize the character is also increases. As the hidden layer and epochs increases the accuracy of the result increases so we get the recognized alphabet from the result.

REFERENCES:-

[1]. Verma B.K,\Handwritten Hindi Character Recognition Using Multilayer Perceptronand Radial Basis

Function Neural Network", IEEE International Conference on Neural Network, 4, pp. 2111-2115, 1995.

- [2]. Sutha .J, Ramraj.N,\Neural Network Based Online Tamil Handwritten Character Recognition Syste, IEEE International Conference on Computational Intelligence and Multimedia Application, 2007, 2, 13-15, Dec.2007, Page(s): 446-450, 2007.
- [3]. Yuelong Li Jinping Li Li Meng,\Character Recognition Based on Hierarchical RBF Neural Networks" I ntelligent Systems Design and Applications, 2006. ISDA '06. Sixth International Conference, 1, On Page(s): 127-132, 2006.
- [4]. Y.Y. Chung, and M.T.Wong,\Handwritten Character Recognition by Fourier Descriptors and Neural
- [5]. Network", Proceeding of IEEE TENCON Speech and Image Technologies for C.
- [6]. Gonzalez, Rafael C., and Richard E.Woods. Digital Image Processing. Addison-Wesley, 1992. p. 518.