Advanced Machine Learning

Lecture 2: Robust Regression

Nora Ouzir: nora.ouzir@centralesupelec.fr

Lucca Guardiola: lucca.guardiola@centralesupelec.fr

Oct. - Nov. 2020

Content

- 1. Reminders on ML
- 2. Robust regression
- 3. Classification and supervised learning
- 4. Hierarchical clustering
- 5. Nonnegative matrix factorization
- 6. Mixture models fitting
- 7. Model order selection
- 8. Dimension reduction and data visualization

Today's Lecture

- 1. Reminders
 - 1. Linear Regression
 - 2. Regularized regression

- 2. Robust regression
 - 1. M-estimation
 - 2. The IRLS algorithm

@ Parts of these slides are borrowed from E. Chouzenoux

Today's course

- 1. Reminders
 - 1. Linear Regression
 - 2. Regularized regression

- 2. Robust regression
 - 1. M-estimation
 - 2. The IRLS algorithm

Regression: A supervised approach

- Let $\mathbf{X} = (x_1, ..., x_n)$ and $\mathbf{Y} = (y_1, ..., y_n)$ be a set of n input/ouput training samples.
- Estimate/learn a prediction function y = f(x)
- ► Y known: supervised

Regression

- $\mathbf{y} \in \mathbb{R}$ is a continuous variable
- Predict a numerical value

Applications

Stock price prediction, weather forecast, ...

Today's course

- 1. Reminders
 - 1. Linear Regression
 - 2. Regularized regression

- 2. Robust regression
 - M-estimation
 - 2. The IRLS algorithm

Linear Regression: Motivations

- Simple approach (essential to understand more sophisticated ones)
- ► Interpretable description of the relations inputs/outputs
- Can outperform nonlinear models, in the case of few training data/high noise/sparse data
- Extended applicability when combined with basis-function methods (see Lab)

Linear Regression: Applications

- Future product sales based on purchase history/client behaviour
- Economic growth of a country
- ▶ Housing market prediction: in a few months, at what price?
- Number of goals a player will score in the coming matches based on previous performance
- Hours of study needed to pass a test

Linear regression: Problem Formulation

Using the training set, learn the linear function f_{β} (parametrized by β) predicting a real value $y \in \mathbb{R}$ from an observation $\mathbf{x}_i \in \mathbb{R}^d$:

$$y_i \approx f_{\beta}(\mathbf{x}_i), \ \forall i \in \{1,..,n\}$$

Fitting model

$$f_{\beta}(\mathbf{x}_i) = \beta_0 \mathbf{1} + \beta_1 \mathbf{x}_{i,1} + \ldots + \beta_d \mathbf{x}_{i,d} = \mathbf{x'}_i^{\mathsf{T}} \boldsymbol{\beta} = [\mathbf{X}\boldsymbol{\beta}]_i$$

- ▶ $\mathbf{X} \in \mathbb{R}^{n \times d+1}$ with $\mathbf{x'}_i = [1, \mathbf{x}_{i,1}, ..., \mathbf{x}_{i,d}]$ its *i*th line
- $\triangleright \beta = [\beta_1, ..., \beta_d]$ defines a hyperplan in \mathbb{R}^d
- \triangleright β_0 can be viewed as a bias that shifts the function f perpendicularly to the hyperplan

9

Least Squares

Find $\boldsymbol{\beta}$ minimizing the sum of squared residuals $\mathbf{e} = \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}$

$$L(\beta) = \frac{1}{2} \sum_{i=1}^{n} [y_i - f(\mathbf{x}_i)]^2 = \frac{1}{2} ||\mathbf{X}\beta - \mathbf{y}||^2 = \frac{1}{2} ||\mathbf{e}||^2$$

Solution \rightarrow equate the gradient to zero

Least Squares Solution

Solve $\min_{\beta} L(\beta)$ where $L : \mathbb{R}^{d+1} \to \mathbb{R}$ is convex

$$\hat{\beta}$$
 minimizer of $L \iff \nabla L(\hat{\beta}) = 0$

where

$$[\nabla L(\boldsymbol{\beta})]_j = \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_j}, \ \forall j \in 1,..,d$$

How do we compute the solution?

$$L(\beta) = \frac{1}{2} \| \mathbf{X}\beta - \mathbf{y} \|^2 = \frac{1}{2} \mathbf{y}^T \mathbf{y} - \beta^T \mathbf{X}^T \mathbf{y} + \frac{1}{2} \beta^T \mathbf{X}^T \mathbf{X} \beta$$

If ${\bf X}$ is full column rank then ${\bf X}^T{\bf X}$ is positive definite, the solution is unique and

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Reminders

White board

Interpretation of the LS solution

We obtain the fitted values for the training inputs

$$\mathbf{y} = \mathbf{X}\beta = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{H}\mathbf{y}$$

▶ **H** is called the *hat matrix* and computes the orthogonal projection of **y** onto the vectorial subspace spanned by the columns of **X**.

Statistical properties

For uncorrelated observations \mathbf{y}_i with variance σ^2 , and deterministic \mathbf{x}_i

$$Var(\hat{\boldsymbol{\beta}}) = (\mathbf{X}^{\top}\mathbf{X})^{-1}\sigma^2$$

Unbiased estimator:

$$\hat{\sigma}^2 = \frac{1}{n - (d+1)} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Inference properties

Assume that $Y = \beta_0 + \sum_{j=1}^d X_j \beta_j + \epsilon$ with $\epsilon \sim \mathcal{N}(0, \sigma^2)$. Then $\hat{\beta}$ and $\hat{\sigma}$ are independent and

- $\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, (\mathbf{X}^{\top}\mathbf{X})^{-1}\sigma^2)$
- $(n-(d+1))\hat{\sigma}^2 \sim \sigma^2 \chi^2_{n-(d+1)}$

Today's course

- 1. Reminders
 - 1. Linear Regression
 - 2. Regularized regression

- 2. Robust regression
 - 1. M-estimation
 - 2. The IRLS algorithm

High dimensional linear regression

Some problems arise with least squares regression when **d** is large

- Accuracy: The hyperplan fits the data well but predicts/generalizes badly. (low bias / large variance)
- ► Interpretation: Identify a small subset of features important/relevant for predicting the data.

High dimensional linear regression

Some problems arise with least squares regression when **d** is large

- Accuracy: The hyperplan fits the data well but predicts/generalizes badly. (low bias / large variance)
- Interpretation: Identify a small subset of features important/relevant for predicting the data.

How can we tackle the above issues?

Use an additional regularization term $R(\beta)$

$$L(\beta) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda R(\beta)$$

Common regularization types

Ridge regression

Reduces the magnitudes of the coefficients in $oldsymbol{eta}$

$$R(\beta) = \frac{1}{2} \|\beta\|^2$$
 Explicit solution!

Shrinkage

Sparsifies the coefficients in β : most elements are zero

$$R(\beta) = \|\beta\|_1$$
 Optimization method needed!

Subset selection

Sparsifies the coefficients in $oldsymbol{eta}$: most elements are zero

$$R(\beta) = \|\beta\|_0$$
 Optimization method needed!

White board

Penalty functions

Contour plots for $\sum_{j} |\beta_{j}|^{q}$

When the columns of \mathbf{X} are orthonormal, the estimators can be deduced from the LS estimator $\hat{\boldsymbol{\beta}}$ according to:

- ► Ridge : $\hat{\beta}_j/(1+\lambda)$ weight decay
- ► Lasso: $sign(\hat{\beta}_j)(|\hat{\beta}_j| \lambda)_+$ soft tresholding
- ▶ Best subset : $\hat{eta}_{j} \cdot \delta\left(\hat{eta}_{j}^{2} \geq 2\lambda\right)$ hard tresholding

Proximal Gradient

Gradient step

$$\bar{\beta}_k = \beta_k - \theta \nabla L(\beta_k)$$

Proximal gradient step

$$eta_{k+1} = \underset{eta}{\operatorname{argmin}} \frac{1}{2} \| ar{eta}_k - eta \|^2 + \lambda heta R(eta)$$

- Guarantied convergence to a local minimum when $\theta \in]0, \frac{2}{\|\mathbf{X}^T\mathbf{X}\|}[$
- \triangleright $F(\beta_k)$ will decrease monotonically with k
- ► Global minimum with ℓ₁ norm
- ▶ Local minimum with the non-convex ℓ_0 -norm

Solutions for the proximal step

$$ightharpoonup R(\beta) = \|\beta\|_1$$

$$eta_{k+1} = sign(ar{eta}_k) imes max(|ar{eta}_k| - \lambda heta, 0)$$

 $R(\beta) = \|\beta\|_0$

$$\beta_{k+1} = \bar{\beta}_k \times \delta(\bar{\beta}_k^2 \le 2\lambda\theta)$$

Element-wise operations!

Today's course

- 1. Reminders
 - Linear Regression
 - 2. Regularized regression

- 2. Robust regression
 - 1. M-estimation
 - 2. The IRLS algorithm

Least Squares shortcomings

What happens in the presence of outliers?

Different problems can be adressed

- Outliers in the dataset
- ► Mismodelling of the data set

Robust Statistics

Goal

Design estimation methods insensitive to outliers and possibly high leverage points

Today's course

- Reminders
 - Linear Regression
 - 2. Regularized regression

- 2. Robust regression
 - 1. M-estimation
 - 2. The IRLS algorithm

Robust Statistics: M-estimation

Maximum Likelihood-type estimates

One-Parameter Case: $X_1, ..., X_n$ i.i.d. $\sim f(x; \theta), \theta \in \Theta$

- Likelihood function: $L(x_1,...,x_n;\theta) = \prod_{i=1}^n f(x_i;\theta)$
- ► Minimize the negative log-likelihood:

$$\min_{\theta} \sum_{i=1}^{n} \rho(\mathbf{x}_{i}; \theta) \text{ where } \rho(\mathbf{x}; \theta) = -\log f(\mathbf{x}; \theta).$$

► Solve the likelihood equations:

$$\sum_{i=1}^{n} \psi(\mathbf{x}_{i}; \theta) = \mathbf{0} \text{ where } \psi(\mathbf{x}_{i}; \theta) = \frac{\partial \rho(\mathbf{x}_{i}; \theta)}{\partial \theta}$$

Robust regression: Objective function approach

We can achieve robustness using M-estimation

$$L(\boldsymbol{\beta}) = \sum_{i=1}^{n} \rho(\mathbf{y}_{i} - \mathbf{x}_{i}^{\prime \top} \boldsymbol{\beta})$$

with ρ a potential function satisfying:

- ho ho(e) \geq 0 and ho(0) = 0
- $ho(e) = \rho(-e)$
- $ho(e) \ge \rho(e')$ for $|e| \ge |e'|$

Robust regression: Objective function approach

We can achieve robustness using M-estimation

$$L(\boldsymbol{\beta}) = \sum_{i=1}^{n} \rho(\mathbf{y}_{i} - \mathbf{x}_{i}^{\prime \top} \boldsymbol{\beta})$$

with ρ a potential function satisfying:

- ho ho(e) \geq 0 and ho(0) = 0
- $\rho(\mathsf{e}) = \rho(-\mathsf{e})$
- $ho(e) \ge \rho(e')$ for $|e| \ge |e'|$

Minimizer satisfies

$$\dot{\rho}(\mathbf{y}_i - \mathbf{x}_i'^{\top}\hat{\boldsymbol{\beta}})\mathbf{x}_i' = 0, \quad i = 1, \ldots, n$$

→ IRLS algorithm

Examples of functions ρ

Today's course

- Reminders
 - 1. Linear Regression
 - 2. Regularized regression

- 2. Robust regression
 - M-estimation
 - 2. The IRLS algorithm

IRLS: Iteratively Reweighted Least Squares

Key Idea: Iteratively down-weight outliers using information about the errors, i.e.,

The largest errors at step k-1 ($\mathbf{e}^k=\mathbf{X}\hat{\boldsymbol{\beta}}^k-\mathbf{y}$) are assigned low weights \mathbf{W}^k at the current step k

lacktriangle The weights are computed using a weight function (based on ho)

$$\omega(\mathbf{e}_i) = \frac{\dot{\rho}(\mathbf{e}_i)}{\mathbf{e}_i}, \ \forall i = 1, ..., n$$

ightharpoonup Recall that the minimizer $\hat{\beta}$ satisfies

$$\dot{\rho}(\mathbf{y}_i - \mathbf{x}_i'^{\top}\hat{\boldsymbol{\beta}})\mathbf{x}_i' = 0, \quad i = 1, \dots, n$$
 (1)

$$\omega(\mathbf{e}_i)\mathbf{e}_i\frac{\partial \mathbf{e}_i}{\partial \boldsymbol{\beta}_j} = \mathbf{0}, \quad j = 1, \dots, d$$
 (2)

(2) corresponds to solving: min $\sum_{i=1}^{n} \omega(\mathbf{e}_{i}^{k-1})\mathbf{e}_{i}^{2}$ (or min $\|\mathbf{W}_{k-1}^{\frac{1}{2}}(\mathbf{X}\hat{\boldsymbol{\beta}}_{k}-\mathbf{y})\|^{2}$)

IRLS algorithm: Majorization-Minimization approach

Let ρ be defined as

$$(\forall \mathbf{x} \in \mathbb{R})$$
 $\rho(\mathbf{x}) = \phi(|\mathbf{x}|)$

where

- (i) ϕ is differentiable on $]0, +\infty[$,
- (ii) $\phi(\sqrt{\cdot})$ is concave on $]0, +\infty[$,
- (iii) $(\forall x \in [0, +\infty[) \quad \dot{\phi}(x) > 0,$
- (iv) $\lim_{\substack{\mathbf{x} \to \mathbf{0} \\ \mathbf{x} > \mathbf{0}}} \left(\omega(\mathbf{x}) := \frac{\dot{\phi}(\mathbf{x})}{\mathbf{x}} \right) \in \mathbb{R}.$

Then, for all $\mathbf{y} \in \mathbb{R}$,

$$(\forall x \in \mathbb{R}) \quad \rho(x) \leq \rho(y) + \dot{\rho}(y)(x-y) + \frac{1}{2}\omega(|y|)(x-y)^2.$$

Examples of functions ρ

	$\rho(x)$	$\omega(x)$ (exercise)
Convex	$ x - \delta \log(x /\delta + 1)$	
	$\begin{cases} \mathbf{x}^2 & \text{if } \mathbf{x} < \delta \\ 2\delta \mathbf{x} - \delta^2 & \text{otherwise} \end{cases}$	
	$\int 2\delta x - \delta^2$ otherwise	
	$\log(\cosh(x))$	
	$(1+x^2/\delta^2)^{\kappa/2}-1$	
Nonconvex	$1-\exp(-x^2/(2\delta^2))$	
	$x^2/(2\delta^2+x^2)$	
	$\int 1 - (1 - x^2/(6\delta^2))^3$ if $ x \le \sqrt{6}\delta$	
	1 otherwise	
	$\tanh(x^2/(2\delta^2))$	
	$\log(1+x^2/\delta^2)$	
$(\lambda,\delta)\in]0,+\infty[^2,\kappa\in[1,2]$		

White board

IRLS algorithm

The IRLS weight matrix is

huber

$$\mathbf{W}_k = \text{Diag}(\omega(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_k))$$

and

$$(\forall k \in \mathcal{N}) \quad \beta_{k+1} = (\mathbf{X}^{\top} \mathbf{W}_k \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{W}_k \mathbf{y}.$$

IRLS algorithm: Summary

Algorithm

- ▶ Initialize β_0 (e.g., LS estimates)
- ► Then iterate between the following steps:

For
$$k = 1, ..., k_{max}$$

- 1. Compute $e^{k-1} = \mathbf{Y} \mathbf{X}^T \boldsymbol{\beta}_{k-1}$
- 2. Compute $\mathbf{W}_k = diag[\omega(\mathbf{e}_i^{k-1})]$
- 3. Update the estimate $\beta_k = (\mathbf{X}^{\top} \mathbf{W}_k \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{W}_k \mathbf{y}$