Hemoglobinopathies

Objectives

- Define hemoglobinopathy
 - Differentiate QUALitative vs QUANTitative
- Laboratory assessment of hemoglobin variants
- Structural variant nomenclature
- Pathophysiology, clinical, and laboratory findings for:
 - Qualitative: Sickle Cell Anemia, Sickle Cell Trait,
 Hemoglobin E, Hemoglobin C, Hemoglobin D

Hemoglobin Production

Hemoglobin Production

- Disruption related to:
 - Globin genes
 - => Hemoglobinopathies

Hemoglobinopathy

- Genetic abnormality affecting structure or synthesis of HGB
 - Specifically, globin chains (heme normal)
- Worldwide, highest prevalence:
 - African blacks, ethnic groups from Mediterranean basin and Southeast Asia
- Qualitative (structural) defects [hemoglobinopathy]
- Quantitative (synthesis) defects [thalassemias]
- Combinations possible

Qualitative (Structural) Variants

- Clinical presentation depends on class of globin chain involved (α , β , δ , or γ)
 - Most mutations seen in the β -chain
- Fetal
 - HbF $(\alpha_2 \gamma_2)$
- Adult
 - $> 95\% \text{ HbA } (\alpha_2 \beta_2)$
 - < 2% HbF ($\alpha_2 \gamma_2$)
 - 1.5 3.5% HbA₂ ($\alpha_2 \delta_2$)

Qualitative (Structural) Variants

- α-chain gene (4 copies)
 - Mutation of a single gene locus leads to a small amount of abnormal HGB
- β-chain gene (2 copies)
 - Associated with clinical phenotype when mutated

Variant Identification Algorithm

Screen

- Patient demographics, history
- CBC (RBC, RDW)

Reflex

- Smear review (Morphology, Heinz bodies)
- Solubility test, heat precipitation test
- HGB A₂ and F quantitation
 - High-performance liquid chromatography (HPLC)
 - Capillary and traditional electrophoresis
 - Isoelectric focusing (IEF)

Confirmatory

Polymerase chain reaction (PCR)

Variant Identifications

- Solubility test
 - Rapid test for heterozygous and homozygous HbS
 - May be negative (severe anemia)
 - Should not be used for screening in newborns
 - False positives
 - Unstable Hgb's and rare Hgb variants
 - Elevated plasma proteins and lipids

Variant Identifications

- HGB variant carries an electrical charge (net +, net -)
 - Depends on amino acid
 sequence of globins
 - pH of medium (acid + alkaline mediums)

Variant Nomenclature

- Disease/anemia = homozygous (both β -chain genes affected)
- Trait = heterozygous (one β -chain gene affected)
- Common names
 - HgS: 1st discovered
 - Other Hgb's = successive letters
 - Except: HbA = Adult, HbF = Fetal
 - Added geographic area where Hgb's discovered
 - e.g. HbG Honolulu, HbJ Capetown, Hb Ft. Worth

Variant Nomenclature

- Scientific names
 - Mutated globin chain
 - Position of the affected amino acid
 - Helical position of the mutation
 - Amino acid substitution

- HbS: $\beta 6$ (A3) Glu \rightarrow Val
 - $-\beta$ -chain
 - Amino acid in the 6th position
 - A3 helix position
 - Valine substituted for glutamic acid

Pathophysiology

- Amino acid substitutions = symptoms
 - Mutations affect solubility
 - Nonpolar amino acid substituted for a polar
 - e.g. HgbS, HgbC
 - Mutations affect function
 - Heme-iron stability, methemoglobin (Fe⁺⁺⁺)
 - Allosteric properties, O_2 affinity (\uparrow or \downarrow)
 - Stability of hemoglobin (Heinz bodies)
 - Weakening of the binding of heme to globin

Sickle Cell Anemia (SCA)

- Most common symptomatic hemoglobinopathy
 - Tropical Africa, Mediterranean, Middle East, India, Nepal,
 North/Central/South America
- African Americans
 - 0.3–1.3% sickle cell disease (homozygous)
 - 8–10% sickle cell trait (heterozygous)

SCA – Pathophysiology

- $\beta6$ (A3) Glu \rightarrow Val
 - Homozygous: $\beta^S \beta^S$
 - Produces net decrease in negative charge
- Solubility in the deoxygenated state is markedly \
 - Polymerization of molecules forms rigid aggregates
 - Vaso-occlusive crisis
 - Deoxygenation environments
 - Hypoxia, acidosis, hypertonicity, temperatures > 37°C
- 2,3-BPG level of homozygotes is \(\gamma\) (why?)

SCA – Clinical Findings

- First clinical signs at ~ 6 months (why?)
- Vaso-occlusive crisis
 - Episodes of blocked capillaries
 - Splenomegaly in early childhood
 - Acute splenic sequestration
- Dactylitis painful symmetrical hands and feet swelling
- Slow blood flow (thrombosis, stroke)
- Acute chest syndrome
 - Most common cause of death in children

SCA – Laboratory Findings

- CBC, peripheral blood smear
 - Normocytic, normochromic anemia
 - Retic = 10-20 %
 - HGB = 6-10 g/dL
 - HCT = 18-30 %
 - ↑ RDW
 - Sickle cells, target cells, basophilic stippling, HJ bodies
- Solubility test +

SCA – Laboratory Findings

- Bone marrow
 - Erythroid hyperplasia (M:E?)
- Hgb electrophoresis (adult vs newborn?)
 - 80–95% HbS
 - 5–20% HbF
- HPLC, IEF, PCR
- Therapy
 - Hydroxyurea, blood transfusions

Sickle Cell Trait

- Heterozygous: $\beta^A \beta^S$
- No clinical symptoms
- Normal CBC, no anemia or sickle cells
- Solubility test +
- Hb electrophoresis
 - HbA 50-65%
 - HbS 35–45%
 - HbF normal

Hemoglobin E

- 2nd most common hemoglobinopathy
 - Southeast Asia
 - Trait as high as 50% in areas of Thailand
 - Homozygous HbE (HbE \geq 90%) $\beta^E\beta^E$
 - Mild asymptomatic, microcytic hypochromic anemia
 - Target cells
- Heterozygous HbE (HbE 35–45%) $\beta^A\beta^E$
 - Slight microcytosis

Hemoglobin C

- 3rd most common Hb variant
 - West African blacks (Trait = 17–28%)
 - African Americans (Trait = 2-3%; Disease = 0.02%)
- Homozygous (90% HbC) $\beta^C\beta^C$
 - Asymptomatic microcytic hypochromic anemia
 - target cells, rare HbC crystal
- Heterozygous (30–40% HbC) $\beta^A\beta^C$
 - Mild hyochromia; target cells
- HgSC ($\beta^S\beta^C$): HbA absent, %HbS > %HbC

Hemoglobin D

- Several molecular variants
 - Most common in African Americans, Indians
- Solubility =
- Homozygous (95% HbD)
 - Mild hemolytic anemia with target cells
- Heterozygous
 - Asymptomatic

Thalassemias

Objectives

- Define thalassemia (quantitative)
- General pathophysiology, clinical, and laboratory findings
- Genotypes, deomgraphics, and laboratory findings for
 - α-Thalassemias
 - β-Thalassemias
- Mention other thalassemias

Thalassemia

- One of the most common genetic disorders
- Decreased or absent synthesis of globin chain(s)
 - Produce reduced amounts of normal Hgb
- Two major types of classical thalassemia
 - α -thalassemia: impaired α -chain synthesis
 - β-thalassemia: impaired β-chain synthesis

Thalassemia - Pathophysiology

- Normal α -chain: β -chain synthesis = 1:1
- Excess α-chains
 - Highly insoluble, precipitate in the cell, bind to cell membrane causing damage
 - → RBC deformability
- Excess β-chains
 - Combine to form HbH (β 4) = high O₂ affinity
 - Unstable

Thalassemia – Clinical Findings

- Chronic hemolysis
 - Splenomegaly; functional hyposplenism
 - Gallstones large amounts of bilirubin excreted by liver
- BM expansion from \(\gamma\) erythropoiesis
 - Extramedullary erythropoiesis
- Pregnant women with thalassemia
 - Developing infants impacted more than mother

Thalassemia – Laboratory Findings

- Peripheral blood
 - Microcytic hypochromic anemia
 - RBC count normal or ↓, but ↑ relative to hemoglobin and hematocrit levels
 - Target cells, basophilic stippling, nRBCs
 - Precipitated excess chains (supravital)
 - − ↑ Retic

α-Thalassemia

- \downarrow synthesis of α -chains
- Affected individuals
 - Found primarily in people of Mediterranean, Asian, African ancestry
 - Commonly seen in blacks, Indians, Chinese, Middle Eastern people
 - Patients from African descent
 - Milder version of α-thalassemia

Hydrops fetalis

- $--/--=\alpha^0/\alpha^0$
 - Incompatible with life
 - Severe microcytic hypochromic anemia
 - Hgb = 3-10 g/dL
 - Marked anisopoikilocytosis, nRBCs
 - Hb electrophoresis
 - 80–90% Hb Bart's (γ4)
 - 10–20% Hb Portland (embryonic Hb)

HbH disease

- --/- $\alpha = \alpha^0/\alpha^+$
- Chronic, moderately severe hemolytic anemia
 - Microcytic hypochromic
 - Poikilocytosis, target cells, ↑ retics, nRBCs
 - HbH inclusions (brilliant cresyl blue), "golf ball"
- Hb electrophoresis
 - Hb Bart's (γ 4) at birth; HbH (β 4) at adult
 - \uparrow O₂ affinity

α-thalassemia minor

- --/ $\alpha \alpha = \alpha^0/\alpha = -\alpha/-\alpha = \alpha^+/\alpha^+$
- Asymptomatic to mild anemia
- Mild microcytic hypochromic anemia
 - MCV 60-70 fL
 - Few target cells
- Newborn 5–6% Hb Bart's (0% at > three months)

Silent carrier

- $\alpha / \alpha \alpha = \alpha^{+} / \alpha$
- Normal Hb synthesis
- Asymptomatic
- Borderline microcytosis
- Diagnosis requires gene analysis

β-Thalassemia

- Affected individuals
 - $-\beta^0$ most severe mutation
 - Mediterranean regions
 - Northern Italy, Greece, Algeria, Saudi Arabia and Southeast Asia
 - $-\beta^+$ two severities
 - Mediterranean region, Middle East, Indian subcontinent, Southeast Asia (more severe)
 - African descent (milder version)

β-thalassemia major

- β^0 / β^0 (no HbA) = β^+ / β^+ (some HbA)
 - $-\beta^0/\beta^+$ (double heterozygous)
- Cooley's anemia
- Infants (occur ~ 6 months of age)
 - Irritability, pallor, failure to thrive
 - Diarrhea, fever, enlarged abdomen
- Ineffective erythropoiesis
 - BM expansion, thinning of calcified bone
 - Extramedullary hematopoiesis

β-thalassemia major

- Hb can be as low as 2–3 g/dL
- MCV < 67 fL, ↓ MCH and MCHC
- Peripheral blood smear
 - Anisocytosis and poikilocytosis
 - Basophilic stippling, polychromasia
 - nRBCs
 - Normal or ↑ RDW
- BM erythroid hyperplasia

β-thalassemia intermedia

- $\beta^+ / \beta^+ = \beta^0 / \beta^+ = \beta^0 / \beta$ (some HbA)
- Severe: HbA₂ 5–10%, HbF 30–75%; milder forms
- Symptoms of intermediate clinical severity
 - Intensify with physiologic stress
- Microcytic hypochromic anemia
- Hb 7–10 g/dL
- RBC count is disproportionately higher than Hb
- Target cells, basophilic stippling, nRBCs
- BM erythroid hyperplasia

β-thalassemia minor

- $\beta^+/\beta = \beta^0/\beta = \text{(sufficient amounts of HbA)}$
- Asymptomatic, symptoms when stressed
- Hb 9–14 g/dL => RBC count \uparrow > 5 × 10¹²/L
- HbA₂ 3.5–7%
- MCV 55–70 fL, MCHC 29–33 g/dL
- Variable anisocytosis and poikilocytosis
 - Target cells, basophilic stippling
- Slightly \(\gamma\) reticulocytes

β-thalassemia minima

- $\beta^{SC} / \beta = (silent carrier)$
- Asymptomatic β-thalassemia
- No major lab abnormalities
- Mildly imbalanced α to non α -globin chain synthesis ratio

Other Thalassemias

- δβ-Thalassemia
 - Greek, African, Italian, Arabian ancestry
 - Production of β and δ -chains is affected
 - Clinically classified as thalassemia intermedia
- Hb Constant Spring
 - Common in Thailand
 - α-chains elongated, normal β -chains

Other Thalassemias

- Hereditary persistence of fetal Hb
 - Absence of δ- and β-chain synthesis
 - Compensated by $\uparrow \gamma$ -chain synthesis
 - Homozygotes (100% HbF = $\alpha_2 + \gamma_2$)
 - Asymptomatic Microcytic hypochromic RBCs
 - RBCs 6–7 x10¹²/L, Hb 14.8–18.2 g/dL
 - Kleihauer-Betke acid elution stain
 - Pancellular (Black, Greek)
 - Heterocellular (Swiss)

Hemoglobinopathies & Thalassemias

References

- American Society for Clinical Laboratory Science. (2016). Hematology and Hemostasis Medical Laboratory Scientist Entry Level Curriculum. American Society for Clinical Laboratory Science.
- American Society for Clinical Pathology. (2021). Medical Laboratory Scientist, MLS(ASCP) Examination Content Guideline. American Society for Clinical Pathology.
- Greer, J. (2014). Wintrobe's clinical hematology (Thirteenth ed.). Philadelphia, Pennsylvania: Lippincott Williams & Wilkins.
- Kaushansky, Kenneth. (2016). Williams hematology (9th ed.). New York: McGraw Hill Education. McKenzie, S. B., & Williams, J. L. (2015). Clinical laboratory hematology (3rd ed.). Boston: Pearson.
- McPherson, R., & Pincus, M. (2017). Henry's clinical diagnosis and management by laboratory methods (23rd ed., ClinicalKey). St. Louis, Mo.: Elsevier.
- Rodak, B. F., & Carr, J. H. (2015). Clinical Hematology Atlas. Elsevier Health Sciences.