

Podstawy Programowania Graficznego 1 Laboratorium

Laboratorium 3: Złożone typy danych

1.	Zakres tematyczny	1
	Tablice	
	Auto-Indexing	
	Klastry	
	• Polimorfizm	
	Definicje Typów	
	E-learning	1
Lab	bVIEW Core 1 (v2015):	
	Moduł 5: Creating and Leveraging Data Structures	
3.	Ćwiczenia	2
4.	Zadania Podsumowujace	33

Ćwiczenie 1 Operacje na tablicach

Zadanie

Naucz się operować na tablicach, używając funkcji LabVIEW.

Opis

Popraw działanie VI, który otrzymałeś. Panel tego VI jest ukończony. Twoim zadaniem jest ukończenie diagramu, by wyćwiczyć kilka różnych technik operacji na tablicach.

Realizacja

- 1. Otwórz projekt Manipulating Arrays.lvproj z folderu <Exercises>\LabVIEW Core 1\Manipulating Arrays.
- 2. Otwórz VI **Array Manipulation** z okna **Project Explorer**. Panel, pokazany na rysunku 5-1, został już stworzony dla Ciebie.

Rysunek 5-1. Panel VI Array Manipulation

3. Otwórz diagram i ukończ każdy ze stanów, które odpowiadają zakładkom na panelu, jak pokazano na rysunkach od 5-2 do 5-8.

Rysunek 5-2. VI Array Manipulation—stan Concatenate Channels

- 1 Build Array—rozszerz ten węzeł, aby przyjmował dwa wejścia, po czym kliknij na niego prawym przyciskiem myszy i wybierz z menu Concatenate inputs.
- 2 Podłącz wyjścia sygnału sinusoidalnego i prostokątnego do funkcji Build Array, by utworzyć jednowymiarową tablicę z dwoma przebiegami.
- 4. Przejdź na panel i przetestuj stan Concatenate Channels.
 - □ Na panelu, przejdź na zakładkę Concatenate Channels.
 - □ Uruchom VI i zauważ, że sygnał sinusoidalny został połączony z prostokątnym.
- 5. Zatrzymaj działanie VI.
- 6. Przełącz się na diagram i wybierz stan Add/Subtract Channels.

7. Ukończ stan Add/Subtract Channels, jak pokazano na rysunkach 5-3 i 5-4.

Extract the waveform from the Waveform data type ◀ "Add/Subtract Channels" T. a True ▼► Add or Subtract Data [DBL] Generate 1000 data points for Add or Subtract Data Array each array Subtract? TF Tab Control 0 10-Stop Button i

Rysunek 5-3. VI Array Manipulation—stan Add/Subtract Channels True

- 1 Subtract?—podłącz ten terminal do terminala case selector, aby właściwy stan został wykonany, gdy klikniesz przycisk Subtract? na panelu.
- 2 Struktura Case—umieść funkcję Subtract w stanie True, tak że VI będzie odejmować elementy tablicy, gdy na panelu będzie wciśnięty przycisk Subtract?

Rysunek 5-4. VI Array Manipulation—stan Add/Subtract Channels False

1 Gdy kontrolka Subtract? ma wartość False, elementy tablicy są dodawane.

1		Notatka	Ten stan demonstruje polimorfizm przez dodawanie i odejmowanie elementow tablicy.
8.	Prz	zejdź na pa	nel i przetestuj stan Add/Subtract Channels.
		Na panelu	ı, przejdź na zakładkę Add/Subtract Channels .
		Uruchom	VI.
		Kliknij prz	ycisk Subtract? i zaobserwuj odejmowanie sygnału prostokątnego od sinusoidalengo.
9.	Za	trzymaj dzi	ałanie VI.

11. Ukończ stan Select a Channel tak, jak zostało to pokazane na rysunku 5-5.

Rysunek 5-5. VI Array Manipulation—stan Select a Channel

- 1 Build Array—łączy sygnały sinusoidalny i prostokątny w jedną tablicę dwuwymiarową.
- 2 Index Array—wybiera wiersz 0 lub 1 z tablicy dwuwymiarowej. Wyjściem tej funkcji jest tablica jednowymiarowa i jest ona przebiegiem wybranym w kontrolce Select Channel. Przebieg jest wyświetlany na wskaźniku Single Channel of Data typu Waveform Graph i na wskaźniku Single Channel of Data Array.
- 3 Select Channel—podłącz do wejścia row funkcji Index Array.
- 4 Array Size—ponieważ używasz tablicy jednowymiarowej, ta funkcja zwraca wartość skalarną.

Notatka Stan Select a Channel używa węzła własności Property Node, by zmieniać kolor wykresu. Dowiesz się więcej o węzłach Property Node w podręczniku *LabVIEW Core 2*.

- 12. Przejdź na panel i przetestuj stan Select a Channel.
 - □ Na panelu, przejdź na zakładkę **Select a Channel**.
 - □ Uruchom VI.
 - □ Przełączaj się między wartościami Channel 0 i Channel 1 i zauważ różne wartości pojawiające się we wskaźniku **Single Channel of Data Array**.

- 13. Zatrzymaj działanie VI.
- 14. Przełącz się na diagram i wybierz stan Waveform Data.
- 15. Ukończ stan Waveform Data tak, jak zostało to pokazane na rysunku 5-6.

Typ danych waveform jest specjalnym rodzajem klastra, który zawiera dodatkowe informacje o przebiegu czasowym sygnału.

Rysunek 5-6. VI Array Manipulation—stan Waveform Data

1 Add—używa wartości z kontrolki Offset, by zmieniać wartość sygnału w typie danych waveform. Zauważ, że wartość kontrolki Offset musi być przekonwertowana, by mogła być używana z danymi typu waveform.

Notatka Polimorfizm jest zdolnością VI i funkcji do automatycznego dostosowywania się do różnych danych wejściowych, włączając w to tablice, wartości skalarne i dane typu waveform. VI i funkcje mogą być polimorficzne w różnym stopniu.

- 16. Przejdź na panel i przetestuj stan Waveform Data.
 - □ Na panelu, przejdź na zakładkę **Waveform Data**.
 - □ Uruchom VI.
 - □ Zmień wartość kontrolki **Offset** i zauważ, że sygnał prostokątny na wskaźniku **Waveform Data** zostaje przesunięty.

- 17. Zatrzymaj działanie VI.
- 18. Przełącz się na diagram i wybierz stan All Data Channel.
- 19. Ukończ stan All Data Channel tak, jak zostało to pokazane na rysunku 5-7.

Rysunek 5-7. VI Array Manipulation—stan All Data Channel

- 1 Add—modyfikuje dane w tablicy przez dodanie wartości Channel 1 Offset do każdego elementu tablicy.
- 2 **Pętla For**—uzyskuje każdy element tablicy używając funkcji autoindeksowania, tak że funkcja Add w pętli For może dodawać wartości skalarne.
- 3 **Build Array**—tworzy z dwóch tablic jednowymiarowych jedną tablicę dwuwymiarową. Każda tablica jednowymiarowa staje się wierszem w tablicy dwuwymiarowej.
- 4 **Array Size**—zwraca tablicę jednowymiarową, w której każdy element reprezentuje rozmiar danego wymiaru. W tym ćwiczeniu otrzymasz 2 elementy, które reprezentują liczbę wierszy i kolumn.
- 5 Wskaźniki All Data Channel i Data Channel Array będą wyświetlać te same dane.

. —	
1=1	
1/-	١
1=	

Notatka Polimorfizm funkcji LabVIEW pozwala na dokonanie tej samej operacji na każdym z elementów bez wyciągania pojedynczych elementów tablicy, jak to robisz z dwoma funkcjami Add i w stanie All Data Channel.

- 20. Przejdź na panel i przetestuj stan All Data Channel.
 - □ Na panelu, przejdź na zakładkę **All Data Channel**.
 - □ Uruchom VI.
 - ☐ Zmień wartość kontrolki **Channel 1 Offset** i zobacz rezultaty.
- 21. Zatrzymaj działanie VI.
- 22. Przełącz się na diagram i wybierz stan Waveform Subset.

23. Ukończ stan Waveform Subset tak, jak zostało to pokazane na rysunku 5-8.

Rysunek 5-8. VI Array Manipulation—stan Waveform Subset

- 1 **Array Subset**—pobiera podzbiór z istniejącej tablicy. W tym ćwiczeniu użyjesz tej funkcji, by powiększyć na wykresie konkretny fragment wygenerowanego sygnału.
- 2 Stała Numeric—te stałe decydują o tym, że funkcja pobierze z tablicy dwa pierwsze wiersze, zaczynając od elementu 0.
- 3 Start Value—wybiera początkowy element. Wartością domyślną jest element o indeksie 0.
- 4 **Length**—ustawia liczbę elementów do pobrania. Wartością domyślną jest zwrócenie 1000 elementów.
- 24. Przejdź na panel i przetestuj stan Waveform Subset.
 - □ Na panelu, przejdź na zakładkę **Waveform Subset**.
 - Uruchom VI.
 - Zmień wartość suwaków Start Value i Length i zauważ, że oś x wykresu Subset Data zaczyna się w zerze i kończy na liczbie elementów w nowej tablicy. Oś x zaczyna się od zera, ponieważ VI tworzy zupełnie nową tablicę, a do wykresu nie jest przekazywana informacja, gdzie dane były zlokalizowane w pierwotnej tablicy.

25. Zatrzymaj działanie VI.

Znajdź więcej informacji o tablicach używając NI Example Finder

Używając NI Example Finder, możesz wyszukać przykłady zainstalowane na Twoim komputerze lub zamieszczone w NI Developer Zone pod adresem ni.com/zone. Przykładowe VI pokażą Ci, jak używać konkretnych funkcji i oraz koncepcji programistycznych, takich jak tablice i polimorfizm.

Wykonaj następujące kroki, by użyć NI Example Finder do znalezienia przykładowych VI, które demonstrują różne sposoby operacji na tablicach.

- 1. Otwórz NI Example Finder. W tym celu wybierz opcję Help»Find Examples.
- 2. Kliknij zakładkę **Search** i wpisz słowo kluczowe array.
- 3. Kliknij przycisk **Search**, by znaleźć VI związane z tym słowem kluczowym.
- 4. Kliknij jeden z przykładowych VI w wynikach wyszukiwania i przeczytaj jego opis.
- 5. Kliknij dwa razy przykładowy VI, by go otworzyć.
- 6. Przeczytaj komentarze na panelu i diagramie, by dowiedzieć się więcej o działaniu danego VI.
- 7. Uruchom przykładowy VI, przetestuj go, a następnie kliknij przycisk **Stop**.
- 8. Kiedy skończysz, zamknij pliki VI i NI Example Finder.

Koniec ćwiczenia 1

Ćwiczenie 2 Klastry

Zadanie

Stwórz klaster zawierający dane, które mają być przekazywane w aplikacji, przez co otrzymasz skalowalny, czytelny kod.

Opis

Stworzysz klaster zawierający dane używane przez VI Temperature Warnings, który stworzyłeś w Lekcji 3. Zmodyfikujesz VI Temperature Warnings, by przyjmował i zwracał dane w formie tego samego klastra, jak pokazano na rysunku 5-9. Zmodyfikowany VI będzie się bardziej wpisywać w modułową strukturę całej aplikacji.

Rysunek 5-9. Panel VI Temperature Warnings z klastrami

- 1. Otwórz projekt Weather Warnings.lvproj z folderu <Exercises>\LabVIEW Core 1\Weather Warnings.
- 2. Otwórz VI Temperature Warnings z okna Project Explorer.
- 3. Umieść istniejące kontrolki i wskaźniki w klastrze Weather Data, jak pokazano na rysunku 5-10.

Rysunek 5-10. Tworzenie klastra

- 1 Cluster—użyj kontrolki Cluster z palety Silver i zmień jej etykietę na Weather Data.
- 2 Wybierz kontrolki i wskaźniki, które klaster będzie zawierać. Klikaj z wciśniętym klawiszem <Shift>, by zaznaczyć wiele elementów.
- 3 Przeciągnij kontrolki i wskaźniki do klastra Weather Data.

4. Zmień rozmiar klastra tak, aby wszystkie elementy były widoczne i ułożone pionowo, jak pokazano na rysunku 5-11.

¹ Autosize cluster—LabVIEW potrafi automatycznie dopasować rozmiar klastra. Kliknij prawym przyciskiem ramkę klastra **Weather Data** i wybierz **AutoSizing» Arrange Vertically**.

5. Zmień kolejność elementów w klastrze, jak pokazano na rysunku 5-12

Rysunek 5-12. Zmiana kolejności elementów w klastrze

- 1 Kliknij prawym przyciskiem myszy ramkę klastra i wybierz Reorder Controls in Cluster.
- 2 Klikaj czarne numery, by zmieniać kolejność elementów w klastrze.
- 3 Kliknij przycisk **Confirm**, by zapisać zmiany.

6. Zmodyfikuj VI tak, by otrzymywał i zwracał dane w klastrze.

Rysunek 5-13. Temperature Warnings—klastry Weather Data In i Weather Data Out

- 1 Weather Data—trzymając klawisz < Ctrl>, przeciągnij klaster Weather Data, by utworzyć jego kopię. Zmień nazwę kopii na Weather Data In.
- 2 Weather Data—kliknij prawym przyciskiem myszy oryginalny klaster i wybierz Change to Indicator. Zmień nazwę wskaźnika na Weather Data Out.
- 3 Uzupełnij panel połączeniowy—połącz kontrolkę Weather Data In z terminalem w lewym górnym rogu panelu połączeniowego. Połącz Weather Data Out z terminalem w prawym górnym rogu panelu.

- 7. Zmodyfikuj diagram jak pokazano na rysunku 5-14, by pobrać dane z klastra wejściowego.
 - Przesuń klaster Weather Data In na lewą stronę, poza struktury Case.
 - □ Przesuń klaster **Weather Data Out** na prawą stronę, poza struktury Case.

Rysunek 5-14. Diagram VI Temperature Warnings z klastrami

- 1 **Unbundle By Name**—podłącz kontrolkę **Weather Data In** i rozszerz funkcję Unbundle By Name, by wyświetlała trzy elementy. Podłącz wyjścia funkcji Unbundle By Name do przerwanych kabli w pokazanej kolejności. Ponieważ przeniosłeś pojedyncze kontrolki i wskaźniki do wspólnego klastra, musisz używać funkcji Unbundle By Name, by dostać się do zawartych w nim elementów.
- 2 **Bundle By Name**—omijając strukturę Case, podłącz klaster **Weather Data In** do górnego wejścia funkcji Bundle By Name. Wyświetl dwa elementy i używając narzędzia Operating, wybierz elementy **Warning Text**. Podłącz przerwane kable do wejść funkcji Bundle By Name, jak pokazano na rysunku.

Notatka Jeśli kolejność elementów w funkcjach Unbundle By Name i Bundle By Name jest inna od pożądanej, możesz użyć narzędzia Operating, by zmienić ich kolejność.

8. Zapisz, a następnie zamknij VI Temperature Warnings.

Test

- 1. Użyj SubVI Tester, by przetestować zmodyfikowany VI Temperature Warnings jako subVI.
 - □ Usuń z diagramu wskaźniki **Thermometer**, **Warning Text** oraz wszystkie przerwane kable. Naciśnij <Ctrl-B>, by usunąć wszystkie przerwane kable.
 - □ Zmodyfikuj SubVI Tester, by działał z VI Temperature Warnings, który teraz używa klastrów, jak pokazano na rysunku 5-15.

Rysunek 5-15. Diagram zmodyfikowanego SubVI Tester

- 1 Weather Data—kliknij prawym przyciskiem myszy wyjście Weather Data Out VI Temperature Warnings i wybierz Create»Indicator. Podłącz wyjście do krawędzi pętli While, kliknij tunel prawym przyciskiem myszy, po czym wybierz z menu Replace with Shift Register. Rejestr przesuwny przekazuje dane w klastrze z jednej iteracji do następnej.
- 2 Stała—kliknij prawym przyciskiem myszy lewy rejestr przesuwny i wybierz **Create constant**, by zainicjalizować rejestr. Zmień nazwę stałej na Initialize Weather.
- 3 **Bundle By Name**—podłącz rejestr przesuwny ze stałej **Initialize Weather** do klastra wejściowego funkcji Bundle By Name. Rozwiń funkcję Bundle By Name tak, aby wyświetlała trzy elementy.

□ Ustaw elementy na panelu tak, jak zostało to pokazane na rysunku 5-16.

Rysunek 5-16. Zmodyfikowany panel SubVI Tester z klastrami

- □ Wprowadź wartości do kontrolek **Max Temperature** i **Min Temperature**.
- □ Uruchom VI i upewnij się, że wskaźnik **Weather Data** wyświetla poprawne wartości.
- 2. Zapisz, a następnie zamknij VI.

Koniec ćwiczenia 2

Ćwiczenie 3 Definicja typu

Zadanie

Zwiększ skalowalność Twojej aplikacji, używając definicji typu dla stworzonych przez Ciebie kontrolek, wskaźników i stałych konkretnego typu danych.

Scenariusz

Jako programista LabVIEW możesz napotkać sytuacje, gdy będziesz potrzebował zdefiniować Twóje własne typy danych w formie klastrów i typów wyliczeniowych enum. Używanie własnych typów danych może być problematyczne, gdy będziesz musiał je zmieniać w trakcie rozwijania programu. Ponadto może zajść konieczność ich zmiany już po tym, jak zostały użyte w różnych VI. Na przykład, tworzysz kopie własnego typu danych i używasz ich jako kontrolek, wskaźników lub stałych w jednym lub kilku VI. Dopiero wtedy orientujesz się, że należy w tym typie danych wprowadzić zmiany. Musisz dodać, usunąć lub zmienić elementy w klastrze lub enum.

Jako programista musisz odpowiedzieć na następujące pytania:

- Co powinno się stać z kopiami własnego typu danych używanymi w już zapisanych VI?
- Czy kopie powinny pozostać bez zmian, czy raczej powinny zmienić się jak oryginał?

Zazwyczaj wolisz, żeby wszystkie kopie własnego typu danych były identyczne z oryginałem. By osiągnąć ten efekt, kopie własnego typu danych muszą być powiązane z definicją typu, którą można opisać w następujący sposób:

Definicja typu—kopia nadrzędna własnego typu danych, którego może używać wiele VI.

Realizacja

W tym ćwiczeniu zmodyfikujesz VI Temperature Warnings z Ćwiczenia 5-2 w taki sposób, że zmiany własnego typu danych **Weather Data** będą propagowane przez całą aplikację.

Gdy skończysz, aplikacja stacji meteorologicznej będzie monitorować dane o temperaturze i nasileniu wiatru. To ćwiczenie modyfikuje VI Temperature Warnings. W ćwiczeniu *Wyzwanie* zmodyfikujesz VI Windspeed Warnings.

- $1. \begin{tabular}{l} Otw\'orz\ projekt\ Weather\ Warnings.lvproj\ z\ folderu\ < \verb|Exercises>| LabVIEW\ Core\ 1| Weather\ Warnings.lvproj\ z\ folderu\ < \verb|Exercises>| LabVIEW\ Core\ 1| Weather\ Warnings.lvproj\ z\ folderu\ < \verb|Exercises>| LabVIEW\ Core\ 1| Weather\ Warnings.lvproj\ z\ folderu\ < \verb|Exercises>| LabVIEW\ Core\ 1| Weather\ Warnings.lvproj\ z\ folderu\ < \verb|Exercises>| LabVIEW\ Core\ 1| Weather\ Warnings.lvproj\ z\ folderu\ < \verb|Exercises>| LabVIEW\ Core\ 1| Weather\ Warnings.lvproj\ z\ folderu\ < \verb|Exercises>| LabVIEW\ Core\ 1| Weather\ Warnings.lvproj\ z\ folderu\ < \verb|Exercises>| LabVIEW\ Core\ 1| Weather\ Warnings.lvproj\ z\ folderu\ < \verb|Exercises>| LabVIEW\ Core\ 1| Weather\ Warnings.lvproj\ z\ folderu\ < \verb|Exercises>| LabVIEW\ Core\ 1| Weather\ Warnings.lvproj\ z\ folderu\ < \verb|Exercises>| LabVIEW\ Core\ 1| Weather\ Warnings.lvproj\ z\ folderu\ < \verb|Exercises>| LabVIEW\ Core\ 1| Weather\ Warnings.lvproj\ z\ folderu\ < \verb|Exercises>| LabVIEW\ Core\ 1| Weather\ Warnings.lvproj\ z\ folderu\ < \verb|Exercises>| LabVIEW\ Core\ 2| Weather\ Warnings.lvproj\ z\ folderu\ | LabVIEW\ Core\ 3| Weather\ Warnings.lvproj\ z\ folderu\ | LabVIEW\ Core\ 3| Weather\ Core\ 3| Weather\ Core\ 4| Weather\ 4| Weat$
- 2. Otwórz VI **Temperature Warnings** z okna **Project Explorer**.

3.	Ро	eksperymentuj ze zmienianiem istniejącego klastra.
		Umieść File Path Control (Silver) w klastrze Weather Data In.
		Zauważ, że VI Temperature Warnings nie da się teraz uruchomić. Dzieje się tak, ponieważ klastry Weather Data In i Weather Data Out nie są już tego samego typu.
		Otwórz diagram i zauważ, że kabel podłączony do terminala Weather Data Out jest przerwany.
		Naciśnij <ctrl-z>, by cofnąć dodanie kontrolki File Path.</ctrl-z>
4.	Utv	wórz definicję typu.
		Kliknij prawym przyciskiem myszy ramkę kontrolki Weather Data In i wybierz Make Type Def.
		Terminal Weather Data In na diagramie ma teraz w rogu czarny trójkąt, który oznacza połączenie z definicją typu.

□ Kliknij prawym przyciskiem myszy ramkę kontrolki **Weather Data In** i wybierz **Open Type Def**, by wyświetlić okno **Custom Control Editor**, jak pokazano na rysunku 5-17.

Okno wygląda jak panel VI, ale nie posiada diagramu.

Rysunek 5-17. Okno Custom Control Editor

- 1 Kontrolka jest typu Type Def, który utrzymuje połączenie pomiędzy tym plikiem i kopiami tej kontrolki używanymi w VI.
 - □ Zapisz kontrolkę jako Weather Data.ctl w folderze <Exercises>\LabVIEW Core 1\Weather Warnings i zamknij okno edycji kontrolki.
 - □ Na diagramie VI Temperature Warnings, zauważ znacznik konwersji na terminalu wskaźnika **Weather Data Out**. To oznacza, że ten wskaźnik nie jest powiązany z definicją typu.

5.	Po	łącz wskaźnik Weather Data Out z definicją typu.
		Kliknij prawym przyciskiem myszy ramkę wskaźnika Weather Data Out na panelu i wybierz z menu Replace»Select a Control.
		Znajdź plik Weather Data.ctl, który przed chwilą utworzyłeś.
X		Notatka Od tej pory nie możesz dodawać ani usuwać elementów z kontrolek i wskaźników klastra na panelu. Musisz otworzyć definicję typu i tam dodać lub usunąć element z okna edycji kontrolki.
		Zapisz VI Temperature Warnings.

- 6. Zmodyfikuj definicję typu Weather Data, by dodać informacje o jednostkach temperatury.
 - □ Kliknij prawym przyciskiem myszy ramkę kontrolki **Weather Data In** i wybierz **Open Type Def**.
 - ☐ Zmodyfikuj panel tak, jak zostało to pokazane na rysunku 5-18.

Rysunek 5-18. Definicja typu Weather Data z jednostkami temperatury

¹ **Enum (Silver)**—umieść w klastrze enum i nazwij go Units. Kliknij kontrolkę prawym klawiszem myszy i wybierz opcję **Edit Items**. Dodaj elementy Celsius i Fahrenheit.

[□] Zapisz definicję typu Weather Data i zamknij okno edycji kontrolki.

□ Zauważ, że kontrolka **Weather Data In** i wskaźnik **Weather Data Out** w VI Temperature Warnings zostały zaktualizowane według zmian, których dokonałeś w definicji typu Weather Data. Ustaw elementy panelu VI, jak pokazano na rysunku 5-19.

Rysunek 5-19. VI Temperature Warnings z kontrolkami i wskaźnikami powiązanymi z definicją typu

7. Zapisz VI Temperature Warnings.

Test

- 1. Użyj SubVI Tester, by przetestować zmodyfikowany VI Temperature Warnings jako subVI.
 - ☐ Otwórz SubVI Tester z okna **Project Explorer**.
 - □ Na panelu, kliknij prawym przyciskiem myszy klaster **Weather Data Out** i wybierz z menu **Replace»Select a Control**.
 - □ Znajdź plik Weather Data.ctl w folderze <Exercises>\LabVIEW Core 1\Weather Warnings i wybierz go.
 - □ Otwórz diagram SubVI Tester, a następnie usuń następujące elementy:
 - Stałą Initialize Weather podpiętą do lewego rejestru przesuwnego
 - Wszystkie przerwane kable. Naciśnij <Ctrl-B>, by usunąć wszystkie przerwane kable.

□ Zmodyfikuj SubVI Tester, by działał z VI Temperature Warnings, który teraz używa definicji typu, jak pokazano na rysunku 5-20.

Rysunek 5-20. Diagram SubVI Tester zmodyfikowany, by przetestować subVI Temperature Warnings

¹ Zainicjalizuj rejestr przesuwny—kliknij prawym przyciskiem myszy lewy rejestr przesuwny i wybierz **Create»Constant**, by go zainicjalizować. Kliknij klaster prawym klawiszem myszy i wybierz **View Cluster As Icon**.

- 2 Bundle By Name—rozciągnij funkcję, żeby wyświetlała cztery elementy. Użyj narzędzia Operating, by wybrać Units.
- 3 Podłącz stałą Units (0:Celsius) do elementu Units funkcji Bundle By Name.

☐ Ustaw elementy na panelu tak, jak zostało to pokazane na rysunku 5-21.

Rysunek 5-21. Zmodyfikowany panel SubVI Tester z definicjami typu

- □ Wprowadź wartości do kontrolek **Max Temperature** i **Min Temperature**.
- 2. Uruchom VI i upewnij się, że wskaźnik Weather Data Out wyświetla właściwe wartości.
- 3. Zapisz, a następnie zamknij VI.

Wyzwanie

W tym wyzwaniu zmodyfikujesz VI Windspeed Warnings, by ulepszyć aplikację stacji meteorologicznej. Następnie przetestujesz VI Windspeed Warnings jako subVI.

- 1. Dodaj VI Windspeed Warning do projektu Weather Station.
 - □ W oknie Project Explorer kliknij prawym przyciskiem myszy **My Computer** i wybierz z menu **Add»File**.
 - □ Przejdź do <Exercises>\LabVIEW Core 1\Weather Warnings\Support VIs i wybierz Windspeed Warnings.vi.

- 2. Otwórz VI Windspeed Warnings.
- 3. Skopiuj klaster Weather Data In z VI Temperature Warnings do VI Windspeed Warnings.
- 4. Kliknij prawym przyciskiem myszy klaster Weather Data In i wybierz Open Type Def.
- 5. Dodaj do definicji typu Weather Data kontrolki prędkości wiatru, jak pokazano na rysunku 5-22.

Rysunek 5-22. Definicja typu dla kontrolek i wskaźników VI Windspeed Warnings

6. Zmodyfikuj diagram VI Windspeed Warnings, by używał nowej definicji typu Weather Data, jak pokazano na rysunku 5-23.

Windspeed Warning

Windspeed Warning

Windspeed Warning

Windspeed Warning

Windspeed Warning?

Rysunek 5-23. VI Windspeed Warnings używający definicji typów

7. Zmodyfikuj SubVI Tester, by działał z VI Windspeed Warnings, jak pokazano na rysunku 5-24.

Rysunek 5-24. Diagram SubVI Tester zmodyfikowany, by przetestować subVI Windspeed Warnings

- 8. Uruchom VI i upewnij się, że wskaźnik Weather Data Out wyświetla właściwe wartości.
- 9. Zapisz i zamknij VI oraz projekt.

Koniec ćwiczenia 3

4. Zadania Podsumowujące

- 1. Stwórz VI generujący n elementową tablicę zawierającą losowe wartości. Wykorzystaj Auto-indeksowanie.
- 2. Porównaj czas wykonania kodu z punktu 1, z kodem z punktu 1 drugiego laboratorium. Z czego wynika różnica?
- 3. Podziel tablicę wygenerowaną w punkcie 1 na dwie. W pierwszej mają się znaleźć elementy mniejsze od x, a w drugiej większe lub równe.
- 4. Zbuduj klaster opisujący strukturę danych właściwą do opisu typowego samochodu osobowego. Zdefiniuj definicję typu.
- 5. (Dodatkowe) Napisz funkcję, która dzieli dowolny łańcuch tekstowy na pojedyncze słowa. Następnie wyszukuje w tak zbudowanej tablicy słowo klucz. Funkcja ma zwracać położenie wybranego klucza. Możesz założyć, że w tekście wejściowym używane są tylko pojedyncze spacje i nie ma spacji na początku ani końcu tekstu.