CMSC422

Project3 Writeup

Qpca2

We have to include 81 eigenvectors to account for 90% of the variance and 135 eigenvectors to account for 95%.

Qpca3

Most of these don't look like digits, but a few of them seem to resemble digits. This result is expected, because the top eigenvectors account for most of the variance in the data, so we extract information that is only a partial description of the data. Therefore, the images don't look like digits.

Qsr1

$$(1)\sum_{i} P[y=i] = \frac{e^{w1*x} + e^{w2*x} + e^{w3*x} + \dots + e^{wn*x}}{\sum_{j} e^{wj*x}} = \frac{\sum_{i} e^{wi*x}}{\sum_{j} e^{wj*x}} = 1$$

(2) The dimension of W is the number of classes (rows) by the number of features of x (columns). The dimension of X is the number of features of x (rows) by the number of samples (columns). The dimension of WX is number of classes (rows) by the number of samples (columns).

Qsr3

(1) Assume the maximum one in W_X is called WM, in the formula, exp(WM) would be divided by both numerator and denominator, which can be cancelled out in the calculation. As a result, the process of subtracting WM would not influence the probabilities.

$$P'[y=i] = \frac{e^{wi*x-WM}}{\sum_{j} e^{wj*x-WM}} = \frac{e^{wi*x}/e^{WM}}{\sum_{j} e^{wj*x}/e^{WM}} = \frac{e^{wi*x}}{\sum_{j} e^{wj*x}} = P[y=i]$$

(2) When calculating exponentials, the value of exponentials grows very fast, which is called "blow up of exponentials". By subtracting the maximum of W_X, the indices are limited no greater than 0, and all the exponentials are no greater than 1, which guarantees that no "blow up of exponentials" could happen.

Qsr4

Blue: trainAcc

Yellow: testAcc

There is an overfitting at the beginning since the training accuracy is greater than the test accuracy. When the data size increases, the difference between training accuracy and test accuracy gets smaller.

Qnn1.3

activation: Relu

loss function: SquaredLoss

final accuracy: dev_acc:0.96150

Qnn1.4

When all the weights are initialized to 0, every hidden unit will get 0 signal, no matter what the actual input is. During forward propagation each unit in hidden layer gets signal:

$$a_i = \sum_{i=1}^{N} W_{i,j} \cdot x_i$$

If all the weights are the same, the units in hidden layer will be the same too. As a solution, initializing the weights with small random numbers can solve this problem.

```
Qnn2
(3)

def update(self, grad_Ws, grad_bs, learning_rate):

# Update the weights and biases

num_layers = len(grad_Ws)

ws = self.weights

bs = self.biases

for idx in range(num_layers):

ws[idx] -= (grad_Ws[idx] * learning_rate/(idx+1))

bs[idx] -= (grad_bs[idx] * learning_rate/(idx+1))

self.weights = ws

self.biases = bs

return
```

No, this new method has no obvious advantage comparing with the given one. For different layers, I tried to change the learning rate by taking the index into consideration, so that the deeper the layer, the less the values would change. I thought in this way the performance would be better, but the result doesn't show any significant advantage.

Original function's result:

activation:Relu

loss function:SquaredLoss

Layer 1 w:(256, 784)		b:(256, 1)	
Layer 2 w:(256, 256)		b:(256, 1)	
Layer 3 w:(10, 25	56)	b:(10, 1)	
Epoch 1/20	loss:1.20	831	dev_acc:0.92460
Epoch 2/20	loss:0.63	683	dev_acc:0.93970
Epoch 3/20	loss:0.66	635	dev_acc:0.94450
Epoch 4/20	loss:0.57	863	dev_acc:0.95140
Epoch 5/20	loss:0.50	285	dev_acc:0.95400
Epoch 6/20	loss:0.58	866	dev_acc:0.95710
Epoch 7/20	loss:0.66	927	dev_acc:0.96090
Epoch 8/20	loss:0.39	660	dev_acc:0.96290
Epoch 9/20	loss:0.46	738	dev_acc:0.96360
Epoch 10/20	loss:0.43	955	dev_acc:0.96490
Epoch 11/20	loss:0.36	301	dev_acc:0.96600
Epoch 12/20	loss:0.35	435	dev_acc:0.96640
Epoch 13/20	loss:0.24	128	dev_acc:0.96680
Epoch 14/20	loss:0.47	372	dev_acc:0.96920
Epoch 15/20	loss:0.37	755	dev_acc:0.97010
Epoch 16/20	loss:0.34	421	dev_acc:0.96940
Epoch 17/20	loss:0.34	435	dev_acc:0.97050
Epoch 18/20	loss:0.26	925	dev_acc:0.97070
Epoch 19/20	loss:0.30	662	dev_acc:0.97110
Epoch 20/20	loss:0.43	017	dev_acc:0.97180

My function's result:

activation:Relu

loss function:SquaredLoss

Layer 1 w:(256, 784) b:(256, 1)

Layer 2 w:(256, 256) b:(256, 1)

Layer 3 w:(10, 256) b:(10, 1)

Epoch 1/20 loss:1.07321 dev_acc:0.92860

Epoch	2/20	loss:0.90858	dev_acc:0.94470
Epoch	3/20	loss:0.74531	dev_acc:0.95260
Epoch	4/20	loss:0.71737	dev_acc:0.95730
Epoch	5/20	loss:0.51703	dev_acc:0.95800
Epoch	6/20	loss:0.51655	dev_acc:0.96020
Epoch	7/20	loss:0.60157	dev_acc:0.96290
Epoch	8/20	loss:0.66921	dev_acc:0.96480
Epoch	9/20	loss:0.40088	dev_acc:0.96490
Epoch	10/20	loss:0.50334	dev_acc:0.96710
Epoch	11/20	loss:0.50731	dev_acc:0.96690
Epoch	12/20	loss:0.58830	dev_acc:0.96840
Epoch	13/20	loss:0.36116	dev_acc:0.96980
Epoch	14/20	loss:0.40988	dev_acc:0.96970
Epoch	15/20	loss:0.41188	dev_acc:0.97100
Epoch	16/20	loss:0.57620	dev_acc:0.97050
Epoch	17/20	loss:0.34612	dev_acc:0.97110
Epoch	18/20	loss:0.43331	dev_acc:0.97160
Epoch	19/20	loss:0.49971	dev_acc:0.97210
Epoch	20/20	loss:0.33779	dev_acc:0.97200