Захаркин Артур (гр.932103)

- 3. Обходы графа. Эйлеровы и гамильтоновы цепи и циклы.
- 3.1 Эйлерова цепь или цикл Алгоритм Хирхольцера

Выберем начальную вершину s=1.

C: C= [1] S: S= [1];

 $\{1,2\}$ – не пройденное ребро. S=[1,2];

 ${2,3}$ – не пройденное ребро S=[1,2,3];

 ${3,1}$ – не пройденное ребро S = [1,2,3,1]

Т.к. 1=1, то в списке C заменяем [1] на список S C=[1,2,3,1], а S=[];

В списке С вершина 2, инцидентна не пройденным ребрам.

 $s=2, S=[2]; \{2,4\}$ – не пройденное ребро,S=[2,4];

 ${4,5}$ – не пройденное ребро, S=[2,4,5];

 ${5,2}$ – не пройденное ребро,S=[2,4,5,2]

T.к 2=2, то в списке C заменяем [2] на список S: C=[1,2,4,5,2,3,1], а S=[];

В списке С вершина 3, инцидентна не пройденным ребрам.

 $s=3,S=[3];{3,5}$ – не пройденное ребро, S=[3,5];

 ${5,6}$ – не пройденное ребро, S=[3,5,6];

 $\{6,3\}$ – не пройденное ребро, S=[3,5,6,3]

Т.к 3=3, то в списке С заменяем [3] на список S: C=[1,2,4,5,2,3,5,6,3,1], S=[]

В списке С больше нет вершин, инцидентных не пройденным рёбрам.

Эйлеров цикл: 1=>2=>4=>5=>2=>3=>5=>6=>3=>1.

Алгоритм 2(Липский):

X	Гх			
1	2	4	8	9
2	1	3		
3	2	4		
4	1	3		
2 3 4 8 9	1	9		
9	1	8		

Выберем начальную вершину 1 и занесем ее в S:S=[1].

Выделим цикл: S: S [1,2,3,4,1]. Удаляем ребра (1,2), (2,3), (3,4), (4,1) и очищаем списки смежности.

4

Т.к список смежности вершины [1] ещё не пусты, то продолжим заполнять стек S (стек C=[]). После выделение второго цикла стек S:S=[1,2,3,4,1,8,9,1]/ Удаляем ребра (1,8), (8,9), (9,1) и очищаем списки смежности.

	_	
(2)
•	_	•

X	Гх		
1			
2			
3			
4			
8			
9			

3

Теперь списки смежности вершин пусты, заполняем стек С из стека S.

C=[1,9,8,1,4,3,2,1], S=[];

Эйлеров цикл: 1=>9=>8=>1=>4=>3=>2=>1

2) Гамильтонова цепь/цикл

Найдем для графа гамильтоновы цепи/циклы поиском в ширину.

 $G=(V, R), V=\{1,2,3,4,5\};$

 $R = \{12, 23, 34, 35, 43, 41, 54, 51\}$

R^2={123,234,235, 354,435,412, 512,541,543}

Циклы 343,434,414 вычеркнуты, т.к. их длина меньше 5

R^3={1234,1235, 2341,2354,2351,3541, 4351, 4123, 5123, 5412, 5435} Маршруты 2343, 4354, 5434 вычеркнуты, т.к. содержат циклы длины меньшей 5.

Циклы 3543, 5435 вычеркнуты, т.к. их длина меньше 5.

R^4={ 12354, 23541, 35412, 43512, 41235, 51234, 54123}

Циклы 12341, 12351 23412, 23512, 41234, 51235 вычеркнуты, т.к. их длина меньше 5.

Маршруты: 12343, 23543, 54351, 54354 вычеркнуты, т.к. содержат циклы длины меньшей 5.

Гамильтоновы цепи: 12354, 23541, 35412, 43512, 41235, 51234, 54123.

R^5={123541, 235412, 354123, 412354, 541235}

Гамильтоновы циклы: 123541, 235412, 354123, 412354, 541235

-