Departamento de Matemática, Universidade de Aveiro Matemática Discreta 2022/23

Folha Semana 11 (8 de Maio de 2023 - 11 de Maio de 2023)

1. a) Seja $\mathcal{A} = \sum_{n=0}^{\infty} a_n x^n$ uma série formal de potências. Encontre uma série formal de potências $\sum_{n=0}^{\infty} b_n x^n \text{ tal que}$

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} (n-i)a_i\right) x^n.$$

b) Seja $(a_n)_{n\in\mathbb{N}}$ a sucessão definida por

$$a_0 = 0,$$
 $a_n = 1 + \sum_{i=1}^{n-1} (n-i)a_i = 1 + \sum_{i=0}^{n} (n-i)a_i \quad (n \ge 1).$

Escreve a série/função geradora ordinária desta sucessão como um quociente de polinómios.

2. Mostre que, para cada $n \in \mathbb{N}$,

$$\binom{-1}{n} = (-1)^n.$$

3. Considere a série formal de potências

$$\mathcal{A} = \sum_{n=0}^{\infty} a_n x^n$$

e seja $c_n=na_n$ para cada $n\in\mathbb{N}.$ Mostre que a série geradora ordinária de $(c_n)_{n\in\mathbb{N}}$ é dada por

$$C = x A'$$
.

O que se pode dizer sobre a série geradora ordinária de $(n^2a_n)_{n\in\mathbb{N}}$?