Lecture 15: Hypothesis Testing Part II

Chapter 4.3

1/16

Goals for Today

- ► Define significance level
- ► Tie-in p-Values with sampling distributions
- Example

Type I Errors: US Criminal Justice System

Defendants must be "guilty beyond a reasonable doubt": better to let a guilty person go free, than put an innocent person in jail.

- ► H₀: the defendant is innocent
- ► H_A: the defendant is guilty

thus "rejecting H_0 " is a guilty verdict \Rightarrow putting them in jail

In this case:

- ► Type I error = jailing an innocent person (worse)
- Type II error = letting a guilty person go free.

Type II Errors: Airport Screening

An example of where Type II errors are more serious: airport screening.

H₀: passenger X does not have a weapon

 H_A : passenger X has a weapon

Failing to reject H_0 when H_A is true is not "patting down" passenger X when they have a weapon.

Hence the long lines at airport security.

Say you flip a coin you think is fair 1000 times. Say you observe

- ▶ 501 heads? Do you think the coin is biased?
- ▶ 525 heads? Do you think the coin is biased?
- ▶ 900 heads? Do you think the coin is biased?

Thought experiment: p-Values	
	7/16
	1/10
p-Values	

Thought experiment: Coin Flips

9/16

Sampling Distribution of \widehat{p}

Under H_0 the sampling distribution of \hat{p} when n = 1000 is:

$$\widehat{p} = \frac{501}{1000}$$

11/16

Say we observe...

$$\widehat{p} = \frac{525}{1000}$$

12 / 16

$$\hat{p} = \frac{900}{1000}$$

13 / 16

Example about Sleep Habits

A US-wide poll found that college students sleep about 7 hours a night. You suspect that Midd Kids sleep more and investigate this claim at a pre-specified $\alpha=0.01$ level.

You sample n=110 Midd Kids and find that $\overline{x}=7.42$ and s=1.75 with a histogram that looks like:

Example about Sleep Habits

15 / 16

Example about Sleep Habits

Conclusion: we reject at the $\alpha=0.01$ significance level the hypothesis that the average # of hours Midd Kids sleep is 7, in favor of the hypothesis that they sleep more.

Correct interpretation of the p-value: If the null hypothesis is true $(\mu=7)$, the probability of observing a sample mean $\overline{x}=7.42$ or greater is 0.007 (small).

Incorrect interpretation of the p-value: The probability that the null hypothesis ($\mu = 7$) is true is 0.007.