Lab Lesson 3

Consider $\Omega =]0,1[\times]0,1[$ and the boundary value problem

$$\begin{cases}
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} & \text{in } \Omega \\
u(x,0) = u_0(x) & x \in [0,1] \\
u(a,t) = u_a(t) & t \in]0,1] \\
u(b,t) = u_b(t) & t \in]0,1],
\end{cases} (41)$$

where u_0 , u_a and u_b shall be determined in such a way that the solution of the problem (42) is $u(x,t) = \sin(\pi x)e^{-\pi^2 t}$.

- ① Write a Matlab routine that receives the value of N_x and N_t , the number of sub-intervals in space and time, resp. and calculates the numerical solution of the problem by using the explicit method.
- ② Test the routine by taking several choices of N_x and N_t , keeping the ratio $\frac{h_t}{h_x^2}$ constant and estimate the order of convergence.
- Write a Matlab routine that solves the problem using the implicit method.