中国人民大学 2018-2019春季学期 数学分析II 期末考试

Edited by G.Cui

- (1)写出 $(1+x)^{\alpha}$ 的麦克劳林展开式, 并证明: 若 $0 , <math>\lim_{n \to \infty} [(2n+1)^p (2n)^p] = 0$.
- (2)若 $\lim_{n\to\infty} a_n = 0$, 证明: $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (a_{2n-1} + a_{2n})$ 具有相同的敛散性. (3)若 $0 , 判断 <math>\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n+1)^p + (-1)^n}$ 的敛散性. (若收敛, 写出是绝对收敛还是条件 收敛.)

(1)已知函数列 $\{f_n(x)\}, f_n(x) = \frac{nx}{1+n^2x^2}, (n=1,2,3,...).$

证明: $f_n(x)$ 在 [0,1] 上不一致收敛.

- (2)设连续函数列 $\{f_n(x)\}$ 在 [a,b] 上一致收敛于 f(x). 又有数列 $\{x_n\}$, $\lim_{n\to\infty}x_n=x_0$. 证明: $\lim_{n\to\infty} f_n(x_n) = f(x_0)$. 并举例说明当 $f_n(x)$ 在 [a,b] 上不一致收敛则结论不正确.
- 三. 证明 $\sum_{n=1}^{\infty} \frac{x^n}{n^2(x^n+1)}$ 的和函数 S(x) 在 $(1,+\infty)$ 连续可导. (即 S(x) 的导函数 $在 (1, +\infty)$ 连续.)

四.

- (1)求幂级数 $\frac{3^n+(-2)^n}{n+1}x^n$ 的收敛半径, 收敛域以及和函数.
- (2)用绝对收敛级数的柯西乘积求 $f(x) = \frac{\ln(1-x)}{1-x}$ 的麦克劳林级数.
- 五.设 $f(x) = x(x-2), x \in [0,2]$. 把 f(x) 展成周期为4的正弦级数, 并求 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^3}$.

参考思路

—.

$$(1)(1+x)^{\alpha} = f(x) = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n + \dots + (x \in \mathbb{R}).$$

$$(2n+1)^p - (2n)^p = (2n)^p[(1+\frac{1}{2n})^p - 1] = (2n)^p[\frac{p}{2n} + o(n^{-1})] = p(2n)^{p-1} + o(1)$$

$$\to 0(n \to \infty). \quad (\because 0$$

(2)记 $S_n = \sum_{k=1}^n a_k$, $T_n = \sum_{k=1}^n (a_{2k-1} + a_{2k})$. 显然有 $S_{2n} = T_n$, $S_{2n+1} = T_n + a_{2n+1}$. $\therefore a_n \to 0 (n \to \infty)$, 显然 $S_n = T_n$ 同收敛或发散.

注意到该级数符合(2)的条件,于是与 $\sum_{n=1}^{\infty} \left[\frac{1}{(2n)^p-1} - \frac{1}{(2n+1)^p+1}\right]$ 有相同的敛散性, $\mathbb{Z}\left[\frac{1}{(2n)^p-1} - \frac{1}{(2n+1)^p+1}\right] = \frac{(2n+1)^p-(2n)^p+2}{[(2n)(2n+1)]^p-(2n+1)^p+(2n)^p-1} \sim \frac{1}{n^{2p}}(::(1))$,故 $0 时发散, <math>\frac{1}{2} 时收敛.$

综上: $0 时, 级数发散; <math>\frac{1}{2} 时, 级数条件收敛.$

(1) 易知极限函数 f(x) = 0, 取 $x_n = \frac{1}{n}(n = 1, 2, ...)$, 则 $|f_n(x_n) - f(x_n)| = \frac{1}{2} \neq 0$.

(2)因为 $f_n(x)$ 在 [a,b] 一致收敛到 f(x),故 $\forall \varepsilon > 0$, $\exists N(\varepsilon) \in \mathbb{N}_+$,s.t. $n > N(\varepsilon)$, $\forall x \in [a,b]$, $|f_n(x)-f(x)| < \varepsilon$,特别地, $|f_n(x_n)-f(x_n)| < \varepsilon$.由题设条件,f(x) 连续,由 Heine 归结原理,对上述 $\varepsilon > 0$, $\exists N' \in \mathbb{N}_+$,s.t $|f(x_n)-f(x_0)| < \varepsilon$.取 $N^* = \max\{N(\varepsilon),N'\}$, $\exists n > N$ 时, $|f_n(x_n)-f(x_0)| \leq |f_n(x_n)-f(x_n)| + |f(x_n)-f(x_0)| < 2\varepsilon$.

三. $|\frac{x^n}{n^2(x^n+1)}| < \frac{1}{n^2}$,而 $\sum \frac{1}{n^2}$ 收敛,由 Weierstrass 判别法, $\sum_{n=1}^{\infty} \frac{x^n}{n^2(x^n+1)}$ 在 $(1,+\infty)$ 一致收敛.又每一项连续,且具有连续导数 $\frac{x^{n-1}}{n(x^n+1)^2}$,下面证明 $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n(x^n+1)^2}$ 的一致收敛性.

$$\forall x_0 > 1, \ |\frac{x^{n-1}}{n(x^n+1)^2}| < \frac{x^{n-1}}{nx^{2n}} < \frac{1}{nx_0^{n+1}}, \ \ \, \mbox{\it in} \ \ \overline{\lim_{n \to \infty}} \sqrt[n]{\frac{1}{nx_0^{n+1}}} = \frac{1}{x_0} < 1, \ \mbox{\it in} \ \ \sum_{n=1}^{\infty} \frac{x^{n-1}}{n(x^n+1)^2} \ \ \mbox{\it f.}$$

 $[x_0, +\infty)$ 一致收敛,又每一项连续,故由逐项微分定理 S(x) 在 $[x_0, +\infty)$ 有连续导数,再结合 x_0 的任意性,即得结论.

四.

$$(1)$$
 $\overline{\lim}_{n\to\infty} \sqrt[n]{\frac{3^n+(-2)^n}{n+1}} = 3$, 故收敛半径 $R = \frac{1}{3}$.

易知 $x = \frac{1}{3}$ 级数发散(调和级数与收敛级数的和); $x = -\frac{1}{3}$ 级数收敛(Leibniz级数与收敛级数的和), 故收敛域 $[-\frac{1}{3}, \frac{1}{3})$.

曲
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n, x \in (-1,1]$$
,得 $-\ln(1-x) - x = \sum_{n=2}^{\infty} \frac{1}{n} x^n$. 和函数
$$S(x) = \sum_{n=1}^{\infty} \frac{(3x)^n}{n+1} + \sum_{n=1}^{\infty} \frac{(-2x)^n}{n+1} = \frac{1}{3x} \sum_{n=2}^{\infty} \frac{(3x)^n}{n} + \frac{1}{-2x} \sum_{n=2}^{\infty} \frac{(-2x)^n}{n} (x \neq 0)$$

$$= \frac{1}{3x} (-\ln(1-3x) - 3x) - \frac{1}{2x} (-\ln(1+2x) + 2x) = \frac{\ln(1+2x)}{2x} - \frac{\ln(1-3x)}{3x} - 2.$$

$$x \in [-\frac{1}{3}, \frac{1}{3}) \setminus \{0\}, x = 0$$
 补充定义 $S(0) = 0$.

$$(2)\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \ x \in (-1,1).$$

$$\ln(1-x) = \sum_{n=1}^{\infty} \frac{1}{n} x^n, \ x \in (-1,1].$$

$$\text{MU} \ f(x) = \sum_{n=1}^{\infty} (1 + \frac{1}{2} + \dots + \frac{1}{n}) x^n.$$

五.由题设条件,作奇延拓.

$$f^*(x) = \begin{cases} -x(x+2) & , x \in [-2,0). \\ x(x-2) & , x \in (0,2]. \end{cases}$$

再令 $t = \frac{\pi}{2}x, x = \frac{2}{\pi}t, t \in [-\pi, \pi]$. 得

$$\varphi^*(t) = \begin{cases} -\frac{2}{\pi}t(\frac{2}{\pi}t + 2) & , t \in [-\pi, 0). \\ \frac{2}{\pi}t(\frac{2}{\pi}t - 2) & , t \in (0, \pi]. \end{cases}$$

$$\therefore f^*(x) = \varphi^*(t) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx.$$

易知
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi^*(t) \cos nt dt = 0, \ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi^*(t) \sin nt dt = \frac{-32}{n^3 \pi^3} [(-1)^n - 1].$$

由收敛判别法知
$$x(x-2) = -\frac{32}{\pi^3} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^3} \sin(\frac{\pi n}{2}x)$$
.