STUDENT CODE: 202200009

The first exercise

H.W

Suppose that type I items cost \$1 each, type II items cost \$2 each, and type III items cost \$3 each. Also, suppose that the accompanying table describes the number of items of each type purchased during the first four months of the year.

- (a) Express the previous table in matrix form manually and using Python
- (b) What information is represented by the following product?

[3 5 2 1	4	3	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
5	6	0	1
2	9	4	2
_1	1	7	

	Type I	Type II	Type III
Jan.	3	4	3
Feb.	5	6	0
Mar.	2	9	4
Apr.	1	1	7

r. Marika Abd-Allal

a)

[3]])

This information represents the total costs of products 20, 17, 32, and 24 in January, February, March, and April, respectively.

The second exercise


```
In [39]: J= np.array([[30,33,40],[21,23,25],[9,12,11],[8,10,9]])
Out[39]: array([[30, 33, 40],
                [21, 23, 25],
                [ 9, 12, 11],
                [8, 10, 9]])
         a)
In [40]: | totalSalesInMayAndJune = M + J
         totalSalesInMayAndJune
Out[40]: array([[ 75,
                       93, 115],
                [ 51,
                       53, 65],
                [ 21, 77, 56],
                [ 23, 50, 44]])
         b)
In [41]: maySalesSubtractionJuneSales= M - J
         maySalesSubtractionJuneSales
Out[41]: array([[15, 27, 35],
                [ 9, 7, 15],
                [ 3, 53, 34],
                [7, 30, 26]])
In [42]: #c)
         x = np . array ([[1], [1], [1]])
         Х
Out[42]: array([[1],
                [1],
                [1]])
In [43]: Mx = np.dot(M,x)
Out[43]: array([[180],
                [100],
                [122],
                [ 90]])
```

This information represents the total sales in May 180, 100, 122, and 90 of shirts, jeans, suits, and raincoats, respectively.

d)

```
In [44]: y = np.array([[1,1,1,1]])
In [45]: yM = np.dot(y,M)
yM
Out[45]: array([[102, 195, 195]])
```

This information represents the total sales in May 102, 195, and 195 of small, medium, and large, respectively.

e)

```
In [46]: yMx= np.dot(yM,x)
yMx

Out[46]: array([[492]])
```

This information represents the total sales in May is 492.

Best regards to you