3) E is a vertex of the right isosceles triangle CBE with Show that $\frac{z_E - z_R}{z_C - z_R} = -i$ and deduce the affix of E. $\left(\overline{BC},\overline{BE}\right) = -\frac{\pi}{2}(2\pi)$

4) Calculate the affix of point F if CDF is right isosceles at D

with $(\overrightarrow{DC}; \overrightarrow{DF}) = \frac{\pi}{2}(2\pi)$. 5) Show that: $\frac{z_F - z_A}{z_E - z_A} = i$. Deduce the nature of triangle AEF

(0; u, v) is an orthonormal system of a complex plane. A is a point of affix $a = 5 - i\sqrt{3}$, and B is a point such that triangle *OAB* is equilateral, with $(\overrightarrow{OA}, \overrightarrow{OB}) = \frac{\pi}{3}(2\pi)$, let Q be the midpoint of [OB].

- the midpoint of $[0b]^{i}$.

 1) a- Show that the affix of B is $b = 4 + 2i\sqrt{3}$ and deduce the affix
 - b. Determine the affix z_K of point K where ABQK is a parallelogram.
 - c- Show that: $\frac{z_K a}{z}$ is pure imaginary and deduce the nature of triangle OKA, and that of quadrilateral OQAK. Locate the points A, B, Q and K in the same plane.
- 2) Let C be a point of affix $c = \frac{2a}{3}$. Calculate $\frac{z_K b}{z_K c}$ and deduce the position of points B, C and K.

- a- Prove that z(z'-1) = 2
- b- Deduce that, as M'describes circle (C), M describes a circle

Given the complex number $z = \frac{\sqrt{3}+1}{4} - i \frac{\sqrt{3}-1}{4}$

- 1) Calculate z^2 and write z^2 in trigonometric form.
- 2) a- Determine the modulus of z and verify that $-\frac{\pi}{12}$ is an argument of z.
 - b- Deduce $\cos \frac{\pi}{12}$ and $\sin \frac{\pi}{12}$.

Consider in the complex plane referred to an orthonormal system $(O; \vec{u}, \vec{v})$, the points A, B and C of respective affixes:

$$z_A = 4 + \frac{5}{2}i$$
; $z_B = 4 - \frac{5}{2}i$ and $z_C = 2 + \frac{3}{2}i$.

- 1) Locate the points A, B and C in the plane.
- 2) a- Write down the expression: $\frac{z_B z_C}{z_A z_C}$ in the exponential form.
 - b- Deduce the nature of triangle ABC.
- 3) Let (E) be the set of points M of affix z verifying the relation $|z-4|=\frac{5}{2}$.
 - a- Do the points A, B and C belong to (E)? Why?
 - Determine the nature of the set (E).
 - c- Find the points of (E) having real affixes.

(0; u, v) is an orthonormal system of a complex plane.

-) Locate the points A, B and D of respective affixes $z_A = -2 2i$; $z_{R} = 2$ and $z_{D} = -2 + 2i$.
- Calculate the affix of point C when ABCD is a parallelogram and locate C.

3) Show that if M belongs to circle (C) of center O and $r_{adh_{ba}}$ (S) S is also on (C) time of equation y = 1.

then M' is also on (C) the of equation y=1.

4) Let (D) be the straight line of (D) then is then M' is and the straight line of equ.

Let (D) be the straight line of (D) then its affix verifies the Show that if M' belongs to (D) then its affix z' of point $A_{Z'}$ is and also the affix z' of point $A_{Z'}$.

Show that if M belongs and also the affix z' of point M relation: |z-2i|=|z| and |z-i|=1. verifies the relation |z'-t'| (D) then, point M' belongs to Deduce that if M moves on (D) then, point M' belongs to be determined. Deduce that if M move and radius are to be determined, eircle whose center and radius

Pre b- De

(T

Given th

2) a-

Calc

b-

Cons syste

ZA =

1)

2)

3)

In the complex plane referred to an orthonormal system $(O; \vec{u}, \vec{v})$, and G of respective affixes: In the complex plane referred G of respective affixes:

 $z_E = i$, $z_F = 2$ and $Z_G = \left(1 + \frac{\sqrt{3}}{2}\right) + i\left(\frac{1}{2} + \sqrt{3}\right)$. 1) Express, in algebraic form, the complex number $z' = \frac{z_G - z_E}{z_F - z_E}$

and verify that $z' = e^{i\frac{\pi}{3}}$. 2) Prove that triangle EFG is equilateral.

2) Prove that triangle EPG 18 of affix z, determine the set (T)

3) Let M be a variable point of affix z, determine the set (T) Let M be a variable F of points M such that $|z-z_E| = \sqrt{5}$ and verify that F belongs

to (T).

In the complex plane referred to an orthonormal system $(O; \vec{u}, \vec{v})$,

consider the points A and B such that $z_A = 1$ and $z_B = \frac{3}{2} + i \frac{\sqrt{3}}{2}$.

Let (C) be the circle of center A and radius 1.

1) a- Write $z_B - z_A$ in exponential form.

b- Determine a measure of the angle $(u; \overrightarrow{AB})$.

c- Show that the point B belongs to circle (C).

2) For all points M of affix z, $z \neq 0$, we associate the point M' of affix z' such that $z' = \frac{z+2}{z}$.

e- Calculate c 2005

In the complex plane referred to an orthonormal system (O, u, v), designate by A the point of affix 1, by B the point of affix 1, by designate by M' of affix $z \neq 1$ and consider the point M' of affix z' such

- Prove that |z| = 1 and that (z-1)(1-z) is real.
- Show that $\frac{z'-1}{z-1}$ is real and deduce that the points M, A and M' are collinear
- 3) a- Prove that $\frac{z'+1}{z-1}$ is pure imaginary.
 - b- Deduce that the two straight lines (BM') and (AM) are perpendicular.

N 14.

In the complex plane referred to an orthonormal system $(O; \vec{u}, \vec{v})$, consider the points A(1+i) and B(2).

Let M be a point of affix $z \neq 2$ and let M' be the point of affix z' such that $z' = \frac{z - (1+i)}{z - 2}$

Show that if M moves on the perpendicular bisector of [AB] then M' moves on a circle to be determined.

Nº 15.

In the complex plane referred to a direct orthonormal system $(0; \vec{u}, \vec{v})$, consider the points A and B of respective affixes i and 2-i. Let M be a point of affix z, $(z \neq 0)$, and M' a point of affix z' such that: $z' = \frac{-2}{z}$.

- Express OM' in terms of OM.
- a- Express $(u; \overrightarrow{OM'})$ in terms of $(u; \overrightarrow{OM})$.
 - b- What can you say about [OM) and [OM')?

Solved Problems

In the table below, only one among the proposed answers to each question is correct. Write down the number of each question and give, with justification the with justification, the answer corresponding to it.

	-	ma justiciation, the answer correspond		12		
	N	Questions	Answers			
	100	Questions .	a	<i>b</i>	2π	
	1	*	T	π	3	
	7	If $z = 1 - e^{-z^{\frac{\pi}{3}}}$ then $\arg(z) = 1$	75	3	n is	2
+	2		n is even	n is odd	H IS	iple of
	2	If $z = (1+i)^n$ and n is a	n is even			ipic
1		natural number, then z is a			8	
		real positive number if:				
-		real positive number it .		W	5π	
	3	If an argument of z is $\frac{\pi}{6}$	$-2\times\frac{6}{\pi}$	$-\frac{\pi}{6}$	6	
		if an argument of z is $\frac{1}{6}$	π	6		
		2		E- B	9 1	
		then an argument of $-\frac{2}{3}$ is:				
-		2		F	2t	
4		If $z = \frac{1+it}{1-it}$ where t is real	1	\sqrt{t}		
1		$11 z = \frac{1}{1 - it}$ where t is real				
1		41	100000000000000000000000000000000000000		E 1 55	
1		then $ z =$		I Can V		$e^{i\left(\frac{3\pi}{2}-\theta\right)}$
5		The exponential form of the	$2e^{i\theta}$	$2e^{i\left(\frac{\pi}{2}+\theta\right)}$	12	e(2)
1		complex number		2e		
1	1					
1	1	$z = -2(\sin\theta + i\cos\theta)$ is:				
6	1	If z is a complex number				
0						
	13	such that $ z = \sqrt{2}$, then	- 5	2		$\sqrt{2}$
			$2\sqrt{2}$			
		$ \overline{z} + i\overline{z} =$				
					ππ	π
7		If $z = e^{i\frac{\pi}{2}} + e^{-i\frac{\pi}{6}}$ then:	arg(7) =	$\frac{\pi}{2}$ arg(z) =	= -+ -	$arg(z) = \frac{\pi}{6}$
	1	16 = 2 10 6 then	ar B(Z)	2	2 6	0
	1 .	11 Z=6-+c men.				
	1			-		orthogona
8			equal	colline	ar	ormogona
0	114	$\int \frac{z_i}{z_i}$ is a real number then	Barrie I			Aveal and
	1		1	100		1
	1	Z_{g}	ALCOHOLD BY	4 4 8 4 5 5 6		The state of the s
	th	he two vectors \vec{t} and \vec{s} are:				
-	1					

The complex plane is referred to an orthonormal system $(O; \vec{u}, \vec{v})$.

Let M be a point of affix z. Let $Z = \frac{z-i}{z-1}$ where $z \neq 1$.

Answer by true of false and justify:

1) The set of points M, such that Z is real is a straight line deprived

- The set of points M, such that |Z| = 1 is a circle.
- The set of points M, such that $arg(Z) = o(2\pi)$ is a circle.
- 4) The set of points M, such that $Z + \overline{Z} = 0$ is a straight line.

Consider in the complex plane of an orthonormal system $(O; \vec{u}, \vec{v})$

Determine the set of points M in each of the following cases:

1)
$$|z-1+2i|=2$$
.

2)
$$|z-2i| = |z+4|$$

$$3) \quad z + \overline{z} = |z|$$

$$4) \quad z - i = \frac{4}{z + i}$$

5)
$$|z+5-i| = |z-4i|$$

3)
$$z+\bar{z}=|z|$$
 4) $z+i$
5) $|z+5-i|=|z-4i|$ 6) $|z+1+i| \times |z+1-i| = 4$

- 7) zz + 2z 4iz 4 + 2i is pure imaginary.
- 8) The points M(z), $N(z^2)$ and $P(z^3)$ are collinear. $(z \neq 1 \text{ and } z \neq 0)$.

Given the complex numbers $z_1 = 2\sqrt{3} + 2i$ and

$$z_2 = (1+\sqrt{3})+i(1-\sqrt{3})$$
 and let $z = \frac{z_1}{z_2}$.

- 1) Write z_1 in exponential form.
- 2) Find the algebraic form of z then deduce the modulus and an argument of z.
- 3) Deduce the modulus and an argument z_2 , then find the exact

value of $\cos \frac{\pi}{12}$ and $\sin \frac{\pi}{12}$.

Given the complex numbers: $z_1 = 1 + i\sqrt{3}$, $z_2 = 1 + i$ and $Z = z_1 z_2$

- 1) a- Write z_1 and z_2 in exponential form.
 - b- Deduce the exponential form of Z.
- 2) a- Write the algebraic form of Z.
 - b- Deduce the exact value of $\cos \frac{7\pi}{12}$ and $\sin \frac{7\pi}{12}$.
- 3) Determine the possible values of the natural number n such that z_1^n is real.
- Determine the possible values of the natural number p such that z_2^p is pure imaginary.

The complex plane is referred to an orthonormal system (O; u, v). For all points M of affix z we associate the point M' of affix z'such that $z' = \frac{z+2}{z-i}$.

- 1) a- Find the algebraic form of z' when $z = -\frac{3}{5} + \frac{1}{5}i$.
 - b- Show that in this case, $(z')^{40}$ is a real positive number.
- 2) Let z = x + iy and z' = x' + iy'.
 - a- Express x' and y' in terms of x and y.
 - b- Deduce the set of points M when z' is pure imaginary
- 3) a- Show that for any z, we have $|z-i| \times |z'-1| = \sqrt{5}$.
 - b- Suppose that M describes the circle (C) of center A of affix i and radius R = 1, determine the set of points M'.

Consider in the complex plane reffered to an orthonormal system (O; u, v) the point A of affix $z_A = -2i$.

For each point M, distinct from A, we associate the point M' of affix z' such that z' = -2z + 2i, θ is an argument of z+2i.

1) Show that (z+2i)(z'+2i) is a real non zero negative number.

2) Deduce an argument of z'+2i in terms of θ . 2) Deduce an argument of
 3) What can we say about the two semi straight lines [AM] and

2)

th

Given the complex number $z = 1 + \sqrt{3} + i(\sqrt{3} - 1)$.

- 2) Deduce the modulus and an argument of z. 3) Deduce the exact values of $\cos \frac{\pi}{12}$ and $\sin \frac{\pi}{12}$.

Consider in the complex plane of an orthonormal system $(O; \vec{u}, \vec{v})$

the points $A\left(-\frac{1}{2}\right)$, M(z), N(1+3z) and P(1+z) where $z \neq 0$.

Determine the set of points M when the triangle MNP is isoceles of principal vertex M.

The complex plane is referred to an orthonormal system $(O; \vec{u}, \vec{v})$. Consider the points A, B, M and M' of respective affixes 1, 5, z and z' such that $z' = \frac{z-5}{z-1}$ where $z \neq 1$.

- 1) Show that if z' is pure imaginary then $z\bar{z}-3(z+\bar{z})+5=0$ and show, in this case, that M varies on a circle to be determined.
- 2) Interpret, geometrically |z-5|, |z-1|, |z'| and arg(z').
- 3) Deduce:
- a- The set of points M such that z' is pure imaginary.
 - b- The set of points M such that z' is real.

Consider the complex number $z = 1 + \cos \theta + i \sin \theta$ where $\pi < \theta < 2\pi$.

- 1) a- Expand $e^{i\frac{\theta}{2}} \left(e^{i\frac{\theta}{2}} + e^{-i\frac{\theta}{2}} \right)$.
 - b- Determine the modulus and an argument of z in terms of $\frac{\theta}{2}$.

2) Deduce an argument of the complex number $z = 1 - \frac{\sqrt{3}}{2} - \frac{1}{2}i$.

Consider in the complex plane of an orthonormal system $(O; \vec{u}, \vec{v})$ the points $M_1(z_1)$, $M_2(z_2)$ and $M_3(z_3)$ such that $(1-i)z_1 + iz_2 - z_3 = 0.$

- 1) Show that $\frac{z_3 z_1}{z_2 z_1} = i$ and deduce the nature of the triangle $M_1M_2M_3$.
- 2) Given the two points A and B of affixes $z_A = -1 + 2i$ and $z_8 = 2 + i.$

Determine the affixes of the two points E and F such that the two triangles ABE and AFB are both right direct isosceles of the same principal vertex A.

In the complex plane referred to a direct orthonormal system $(0; \vec{u}, \vec{v})$, consider the points A and B of respective affixes a = 2 + 2i and $b = 1 - \sqrt{3} + i(1 + \sqrt{3})$.

- 1) a- Write a in trigonometric form.
 - b- Calculate the modulus of b and deduce that OA = OB.
- 2) a- Let z = b a, calculate |z| and deduce that triangle OAB is equilateral.
 - b- Using the figure calculate an argument of b, and deduce the exact values of $\cos\left(\frac{7\pi}{12}\right)$ and $\sin\left(\frac{7\pi}{12}\right)$.

Nº 14.

Given the complex number $z = \cos \varphi + i \sin \varphi = e^{i\varphi}$.

- Write z in trigonometric and exponential form.
- Show that $\cos \varphi = \frac{1}{2} \left(e^{i\varphi} + e^{-i\varphi} \right)$ and $\sin \varphi = \frac{1}{2i} \left(e^{i\varphi} e^{-i\varphi} \right)$.
- Using the relations obtained in part 2) linearize $\cos^2 x \sin^4 x$ and

cos x sin x.

4) θ and θ' are two real numbers, show that $a = \frac{e^{i\theta} + e^{i\theta}}{1 + e^{i\theta}e^{i\theta}}$ is real

(0;1

ZA

1)

2)

3

Let (0,u,v) be a direct orthonormal system of a complex plane, and let z_1 and z_2 be any two complex numbers. 1) Show that $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$.

1) Show that p_1 be two points of respective affixes 1+i and 2 Let M_1 and M_2 be two points of respective affixes 1+i and

 $1-i\sqrt{3}$.

a- Calculate the affix of point M such that OM_1MM_2 is a

b- Calculate: OM₁, OM₂, OM and M₁M₂.

Verify that: $M_1 M_2^2 + OM^2 = 2(OM_1^2 + OM_2^2)$.

In the complex plane $(0; \vec{u}, \vec{v})$ consider the complex number $j = e^{2i\vec{k}}$

1) Show that $j^3 = 1$, $1 + j + j^2 = 0$ and $e^{i\frac{\pi}{3}} + j^2 = 0$.

2) ABC is an equilateral triangle such that $(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{3}(2\pi)$, where a,b and c are the respective affixes of A,B and C.

a- Show that $\frac{c-a}{b-a} = e^{i\frac{\pi}{3}}$.

b- Deduce that: $a+bj+cj^2=0$.

3) For any complex number $z \neq 1$, we associate the points R, Mand M' of respective affixes 1, z and z.

a- Find the values of z when M and M' are distinct points.

b- Suppose that the triangle RMM' is equilateral such that $(\overrightarrow{RM}; \overrightarrow{RM'}) = \frac{\pi}{2}(2\pi)$.

Show that M varies on a straight line (Δ) to be determined.

N 17

In the complex plane referred to a direct orthonormal system $(O; \vec{u}, \vec{v})$, consider the points A, B, C and D of respective affixes $z_A = -1 + 2i$, $z_B = 7 - 2i$, $z_C = 6 + i$ and $z_D = 2 + 3i$.

- 1) Write $\frac{z_R z_A}{z_C z_D}$ in exponential form and deduce that the two lines (AB) and (CD) are parallel.
- 2) Write $\frac{z_C z_B}{z_A z_D}$ in exponential form and deduce that ABCD is an isosceles trapezoid.
- 3) The two lines (BC) and (AD) intersect in a point E.
 - a- Interpret, geometrically $\left| \frac{z_B z_E}{z_A z_E} \right|$ and $\arg \left(\frac{z_B z_E}{z_A z_E} \right)$
 - b- Deduce the affix of point E.
- 4) Let M be a variable point of affix z.
 - a- Determine the set (T) of points M if $|z-5-4i| = \sqrt{10}$
 - b- Precise the position of C with respect to (T).

N° 18.

In the complex plane referred to a direct orthonormal system $(O; \vec{u}, \vec{v})$, consider the points A(-2), M(z) and M'(z') such that $z' = \frac{4-2z}{z}$, $z \neq 0$.

- 1) Write z' in algebraic form when $z = \sqrt{2}e^{i\frac{\pi}{4}}$.
- 2) a- Verify that $(z'+2)\overline{z} = 4$.
 - b- Deduce that $AM' \times OM = 4$ and the vectors $\overline{AM'}$ and \overline{OM} are parallel with same sense.
 - c- Determine the set (T) of points M' when M moves on the circle (C) with center O and radius 1.

 $[N \ 19]$ Let A(i) and B(-i) be two points in a complex plane referred to Let A(i) and B(-i) be two P(0; u, v). (C) is a circle of center Q(0; u, v) a direct orthonormal system Q(0; u, v). a direct orthonormal system point of the plane of affix z and radius R=1, M is a variable point of the plane of affix z. 1) Suppose that $z=re^{i\theta}$ where $\frac{\pi}{2} < \theta < \pi$.

 M_1 is a point of affix $z_1 = (z + \overline{z})z$. M_1 is a point of Z_1 in terms of θ and deduce that Calculate an argument of Z_1 in terms of θ the point O belongs to $z \neq -i$, associate a point M' of affix $z \neq -i$, associate a point M' of affix $z \neq -i$

(0)

M' 1)

2)

z' such that $z' = i \frac{z-i}{z+i}$ a- Show that: $OM' = \frac{AM}{BM}$ and $arg(z') = \frac{\pi}{2} + (\overline{BM}; \overline{AM})(2\pi)$

b- Deduce that if M moves on the circle (C), then M' varies on the x-axis.

Consider in the complex plane, the points A, B and C of respective affixes $z_A = -1$, $z_B = 3i$ and $z_C = 2-i$. Let M be a point of affix z and M' a point of affix z' such that $z' = \frac{iz+3}{z+1}$, where $z \neq -1$.

- Calculate $\frac{z_B z_A}{z_C z_A}$ and deduce the nature of the triangle ABC.
- 2) a- Verify that $z' = i \frac{z 3i}{z + 1}$.
 - b- Show that:

Show that.

$$OM' = \frac{BM}{AM}$$
 and $(\overrightarrow{u}; \overrightarrow{OM'}) = \frac{\pi}{2} + (\overrightarrow{AM}; \overrightarrow{BM}) \pmod{2\pi}$.

- c- Deduce:
 - The set of M when M' moves on a circle of center O and radius 1.
 - The set of points M when z' is real.

N 21

In the complex plane referred to a direct orthonormal system (O; u, v), consider a point M, distinct from O of affix z and a point

M' of affix z' such that z'z=1, $z\neq 0$.

1) Determine the algebraic form of z' in each of the following cases:

 $z = 2e^{-6}$; $z = \sqrt{2}e^{-(-4)}$. 2) a- Show that $OM \times OM' = 1$.

b- Compare $(\vec{u}; \overrightarrow{OM})$ and $(\vec{u}; \overrightarrow{OM})$.

Deduce that the points O, M and M' are collinear.

3) Show that O, E(z) and $F(\frac{1}{z})$ are collinear.

4) Prove that $z'-1 = -1 + \frac{1}{z}$.

- 5) Suppose now that M moves on a circle of center E(1;0) and radius R=1, M is distinct from O.
 - a- Verify that |z-1|=1.
 - b- Prove that |z'-1| = |z'|.
 - c- Deduce the set of points M'.

N 22. For the students of the G.S. section

In the complex plane referred to a direct orthonormal system (O; u, v),

consider the points A and B of affixes $z_A = 2$ and $z_B = -2$. Let (C) be a variable circle passing through

A and B and M a variable point on (C)

of affix $z = re^{i\theta}$.

(OM) recuts (C) in N, designate by P

the symmetric of N with respect to y'Oy.

1) Determine the affixes z_N and z_P of the points N and P in terms of r and θ .

2) Let Q be the point defined by $\overrightarrow{OQ} = \overrightarrow{OM} + \overrightarrow{OP}$.

- a- Show that $x_0 = \left(r + \frac{4}{r}\right)\cos\theta$ and $y_0 = \left(r \frac{4}{r}\right)\sin\theta$
- b- Suppose that r = 4, show that when M varies on (C) then Q moves on the ellipse of equation $\frac{x^2}{25} + \frac{y^2}{9} \approx 1$

For the students of the G.S. section. For the students of the G.S. In the complex plane consider the mapping f that associates for every in the complex plane consider M' of affix z' such that $z' = z^2 - 4z$ In the complex plane consider M' of affix z' such that $z' = z^2 - 4z$, point M of affix z the point M' of affix z' such that $z' = z^2 - 4z$. Part A.

1) Let A and B be the points of affixes $z_A = 1 - i$ and $z_B = 3 + i$.

- a- Show that the two points A and B have the same image by f.

 b. Two points have the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either these beautiful the same image by f, show that either the same image by f, show the same image by f.
 - Two points have the same they are symmetric to each other two points are confounded or they are symmetric to each other with respect to a point to be determined.
- a- Show that OMIM' is a parallelogram if and only if 2) Let 1 be a point of affix -3.
 - b- Solve the equation $z^2 3z + 3 = 0$. $z^2 - 3z + 3 = 0.$
- 3) a- Express z'+4 in terms of z-2. Deduce the relation between |z'+4| and |z-2| and also for arg(z'+4) and arg(z-2).
 - b- Consider the points J and K of affixes $z_J = 2$ and $z_K = -4$. Let (C) be the circle with center J and radius 2. Show that any point M on (C) has an image M' on a circle (C').
 - c- Let E be the point of affix $z_E = -4 3i$. Write the exponential form of $z_E + 4$.

Partie B.

Let z = x + iy and z' = x' + iy'.

- 1) Express x and y in terms of x' and y'.
- 2) a- Show that when z' is pure imaginary then M describes a hyperbole (H).
 - b- Determine the vertices, the asymptotes of (H) and draw(H).

(x'

Det

in the

ZB=

Part 1) [

2)

3) Suppose that M moves on the straight line of equation y = x - 3Show that M' moves on the parabola (P) of equation $(x'+4)^2 = 2(y'+\frac{1}{2}).$

Determine the vertex, the focus of (P) and draw (P).

In the complex plane consider the points A and B of affixes $z_A = 2$ and

- Part A .
- 1) Designate by M_1 and M_2 the points of respective affixes $z_1 = 2 + i\sqrt{2}$ and $z_2 = 2 - i\sqrt{2}$.
 - a- Determine the algebraic form of the complex number $\frac{z_1-3}{z_2}$.
 - b- Deduce that the triangle OBM₁ is right angled.
- 2) Prove geometrically that the points O, B, M_1 and M_2 belong to the same circle (T) to be determined.

Let f be the mapping that associates for every point M of affix z the point M' of affix z' such that $z' = z^2 - 4z + 6$.

Let (Γ) be the circle of center A and radius $\sqrt{2}$.

M is a point on (Γ) such that $(\vec{u}; \overrightarrow{AM}) = \theta$ where $-\pi < \theta \le \pi$.

- 1) Verify that the affix of M is $z = 2 + \sqrt{2}e^{i\theta}$.
- Verify that $z' = 2 + 2e^{i\theta}$ and M' that belongs to a circle (Γ') .
- Let D be the point of affix $d = 2 + \frac{\sqrt{2} + i\sqrt{6}}{2}$ and let D' be the image of D by f.
 - a- Write in exponential form the complex number d-2and deduce that D belongs to (Γ) .
 - b- Give the measure of the angle $(\vec{u}; \overrightarrow{AD'})$ and show that the triangle OAD' is equilateral.

Supplementary Problems

In the table below, only one among the proposed answers to each question and the table below, only one among the number of each question and the table below. table below, only one among the proposed answers to each table below, only one among the proposed answers to each question and give, while the second the second to it. the answer corresponding to it.

(F)

arg

An 1) 2)

3)

Questions An argument of The axis of ordinates An argument of The Axis a point of affix $z \neq 0$ Such that $z = \frac{4}{z} = 0$, Then M moves on: Then M moves on: The axis of the state of the sta	0	mestion is tion, the are	-	b	
Questions An argument of $\frac{\pi}{3}$ An argument of $\frac{\pi}{3}$ $\frac{5\pi}{6}$ $\frac{-5\pi}{6}$ An argument of $\frac{\pi}{3}$ $\frac{5\pi}{6}$ $\frac{-5\pi}{6}$ $\frac{\pi}{6}$	- 11	with justification	-	0	C
An argument of $z = -4e^{-3}is$ $z = -4e^{-3}is$ An argument of $z = -2i\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$ $z = -2i\left(\cos\frac{\pi}{3$		vions	"	π	2π
An argument of $z = -4e^{-3}is$ $z = -4e^{-3}is$ An argument of $z = -2i\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$ $z = -2i\left(\cos\frac{\pi}{3$		Questa	-		-
An argument of $z = 4e^{-3}is$ $z = -2i\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$ $z = -2i\left(\cos\frac{\pi}{3$		V	1	3	3
An argument of $z = 4e^{-3}is$ $z = -2i\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$ $z = -2i\left(\cos\frac{\pi}{3$		301	3		
2 An argument of $z = -2i\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$ $z = -2i\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$ $3 \text{Given } z' = \frac{z-1}{z-1} \text{ where}$ $(z \neq 1) \text{ then } z' = i$ $4 \text{If } z = \sin\frac{\pi}{3} + i\cos\frac{\pi}{3} \text{ then}$ $z^{15} = \frac{1}{3} \text{The axis}$ $\text{of center } O$ and radius $\text{such that } z - \frac{4}{z} = 0,$ $\text{such that } z - \frac{4}{z} = 0,$ $\text{Then } M \text{ moves on } :$ $\frac{\pi}{3} = \frac{\pi}{3} \text{of abscissas}$ $\frac{\pi}{3} = \frac{\pi}{3} \text{ordinates}$	Jane	An argument		-5π	TT
2 An argument of $z = -2i\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$ is: $z = -2i\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$ is: $(z \neq 1) \text{ then } z = $ $(z \neq 1) \text{ then } z = $ if $z = \sin\frac{\pi}{3} + i\cos\frac{\pi}{3}$ then $z^{15} = $ 5 M is a point of affix $z \neq 0$ of abscissas of ordinates $such \text{ that } z - \frac{4}{z} = 0,$ $such \text{ that } z - \frac{4}{z} = 0,$ $Then M moves on:$ $z = -2i\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$ $i = -i$	13	1	511		6
An angle $z = -2i\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$ is: $ z $ 1 $ z $ 3 Given $z' = \frac{z-1}{z-1}$ where $ z = \frac{1}{(z \neq 1) \text{ then }} z' = \frac{1}{(z \neq 1) $		40 18	1-	6	0
An angle $z = -2i\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$ is: $ z $ 1 $ z $ 3 Given $z' = \frac{z-1}{z-1}$ where $ z = \frac{1}{(z \neq 1) \text{ then }} z' = \frac{1}{(z \neq 1) $	1	2 ment of	6		
$ z = -2i \left(\cos \frac{\pi}{3}\right)$ is: $ z $	3	An argume			
3 Given $z' = \frac{z-1}{z-1}$ where ($z \neq 1$) then $ z' = i$ 4 If $z = \sin \frac{\pi}{3} + i \cos \frac{\pi}{3}$ then $z^{15} = \frac{1}{3}$ The circle of center $z = 0$ of abscissas and radius abscissas Then $z = 0$, abscissas $z = 0$ ordinates Then $z = 0$, abscissas $z = 0$ ordinates	-				
3 Given $z' = \frac{z-1}{z-1}$ where ($z \neq 1$) then $ z' = i$ 4 If $z = \sin \frac{\pi}{3} + i \cos \frac{\pi}{3}$ then $z^{15} = \frac{1}{3}$ The circle of center $z = 0$ of abscissas and radius abscissas Then $z = 0$, abscissas $z = 0$ ordinates Then $z = 0$, abscissas $z = 0$ ordinates	1	==-21 000 3			211
3 Given $z' = \frac{z-1}{z-1}$ where ($z \neq 1$) then $ z' = i$ 4 If $z = \sin \frac{\pi}{3} + i \cos \frac{\pi}{3}$ then $z^{15} = \frac{1}{3}$ The circle of center $z = 0$ of abscissas and radius abscissas Then $z = 0$, abscissas $z = 0$ ordinates Then $z = 0$, abscissas $z = 0$ ordinates			1-1		42
4 If $z = \sin \frac{\pi}{3} + i \cos \frac{\pi}{3}$ then $z^{15} = \frac{1}{5} = \frac{1}$			1-1		
4 If $z = \sin \frac{\pi}{3} + i \cos \frac{\pi}{3}$ then $z^{15} = \frac{1}{5} = \frac{1}$	-	18. z-1 where			F-1973 (178)
4 If $z = \sin \frac{\pi}{3} + i \cos \frac{\pi}{3}$ then $z^{15} = \frac{1}{5} = \frac{1}$	3	wince			
4 If $z = \sin \frac{\pi}{3} + i \cos \frac{\pi}{3}$ then $z^{15} = \frac{1}{5} = \frac{1}$	10	Given - z-1	1000000		
If $z = \sin \frac{\pi}{3} + i\cos \frac{\pi}{3}$ then $z^{15} = \frac{1}{5} = \frac{1}{3} = \frac{1}{3}$		1 =	-		-i
If $z = \sin \frac{\pi}{3} + i\cos \frac{\pi}{3}$ then $z^{15} = \frac{1}{5} = \frac{1}{3} = \frac{1}{3}$		(z = 1) then -	1		
The axis of of center O ordinates such that $z - \frac{4}{z} = 0$, abscissas and radius $\frac{\pi}{z}$. Then M moves on:		T then			
The axis of of center O ordinates such that $z - \frac{4}{z} = 0$, abscissas and radius $\frac{\pi}{z}$. Then M moves on:	4	nin + 1 cos = then	Salar Charles		
The axis of of center O ordinates such that $z - \frac{4}{z} = 0$, abscissas and radius $\frac{\pi}{z}$. Then M moves on:	1	If $z = \sin 3$			
Then M moves on: The axis of center O and radius abscissas Then M moves on: The axis of center O and radius and radius abscissas and radius and radius abscissas are approximately and radius and radius and radius abscissas are approximately approximat			-	The circle	The axis of
M is a point of arrix 2 of abscissas and radius 2 and radius 2 Then M moves on: $\frac{1}{z}$ Then M moves on: $\frac{1}{z}$ $\frac{1}{z}$ $\frac{1}{z}$ $\frac{1}{z}$	L.	=15 =	The axis		ordin d
such that $z - \frac{7}{z} = 0$, abscissas and $\frac{\pi}{2}$. Then M moves on: $\frac{\pi}{z} = \frac{\pi}{z}$	1	a point of affix 2 +0			ordinates
such that $z - \frac{7}{z} = 0$, abscissas and $\frac{\pi}{2}$. Then M moves on: $\frac{\pi}{z} = \frac{\pi}{z}$	15	M is a pour		and radius	
Then M moves on: $i^{\frac{m}{2}}$ $i^{\frac{m}{2}}$		$1 - \frac{4}{100} = 0$.	abscissas		
Then M moves on: $i^{\frac{m}{2}}$ $i^{\frac{m}{2}}$		such that 2		2	
Then M moves on : $ \frac{i^{\frac{\pi}{6}}}{6} = i \text{ then } z = e^{-i\frac{\pi}{6}} = e^{i\frac{\pi}{6}} = e^{i\frac{\pi}{3}} $					
$\frac{1}{6} = \frac{1}{6} = \frac{1}$		Then M moves on :	П	17	in the second
6 i then $z = e$		THOUSE	-1-6	06	03
	6	1 : then 7 =	e		
$\prod_{i=1}^{n} z = e^{-it} \text{ ind} z$	1	If $z = e^{\circ} - l$ then z			

The complex plane is referred to an orthonormal system $(O; \vec{u}, \vec{v})$.

Consider the points A and B of respective affixes 1 and 2i Designate by:

(E) the set of points M of affix z such that |z-2i|=|z-1|.

(F) the set of points M, distinct from A and B, of affix z such that $\arg\left(\frac{z-2i}{z-1}\right) = \frac{\pi}{2}\left(2\pi\right).$

Answer by true or false and justify:

- 1) (E) is a circle.
- The points M of (F) move on a semi-circle deprived of two
- The point C of affix $-\frac{1}{2} + \frac{1}{2}i$ belongs to (E) and to (F).
- 4) (F) is the set of points M such that the complex number $Z = \frac{z-2i}{z-1}$ is pure imaginary.

Consider in the complex plane of an orthonormal system $(O; \vec{u}, \vec{v})$ the variable point M of affix z.

Determine the set of points M in each of the following cases:

1)
$$\left| \frac{2z - 4 - 2i}{z - i} \right| = 2$$
 2) $z + \overline{z} = |z|^2$

2)
$$z + \bar{z} = |z|^2$$

3)
$$\left| \overline{z} + i \right| = 2$$

4)
$$z = \sqrt{3}e^{i\theta}$$
 where $0 \le \theta \le \frac{\pi}{2}$.

5) The points A(i), M(z) and M'(iz) are collinear.

Given the complex number $z = (1 + i\sqrt{3})e^{i\theta}$.

- Write z in exponential form and in algebraic form.
- Deduce the expression of $\cos\left(\frac{\pi}{3} + \theta\right)$ and that of $\sin\left(\frac{\pi}{3} + \theta\right)$ in terms of $\cos \theta$ and $\sin \theta$.
- Deduce the exact values of cos15° and sin105°.

Consider in the complex plane of an orthonormal system $(O_{iii,ij})$ The points M(z), N(2z), I(1) and J(i). The points M(z), N(2z), I(1) and the two straight lines (IM) and Determine the set of points M when the two straight lines (IM)

D

2)

3)

43

The complex plane is referred to an orthonormal system $(O; \vec{u}, \vec{\nu})$ Consider the points A and E of affixes $z_A = 2$ and $z_E = \sqrt{3} + i$.

1) Write z_A and z_S in exponential form. 2) Let C be the point defined by $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OE}$. a- What is the nature of quadrilateral OACE ?

b-Calculate OC then write z_C in exponential form. e- Deduce the exact values of sin 15° and cos 15°.

The complex plane is referred to an orthonormal system $(O; \vec{u}, \vec{v})$.

1) Determine the set of points M of affix z such that

2) Determine the set of points M of affix $z \neq 0$ such that the distinct points of affixes 1, z^2 and $\frac{1}{z^2}$ are collinear.

Consider in the complex plane of an orthonormal system $(O; \vec{u}, \vec{v})$ the complex number a = 2 + 2i and let M be a variable point of affix z such that arg(z+a) = arg z + arg a.

Find set of points M.

The complex plane is referred to an orthonormal system (O; u, v). Let A be the point of affix -2i. For any point M of affix z we associate the point M' of affix z' such that z' = -2z + 2i.

1) Let B be the point of affix b = 3 - 2i.

Determine the algebraic form of the affixes a' and b' of the points Determine the A and B associated to points A and B respectively and place A' and B' on a figure. the points A' and B' on a figure.

Show that if M belongs to the straight line (d) of equation y = -2 then M' belongs to (d).

3) Show that for any point M of affix z, |z'+2i| = 2|z+2i|. Interpret geometrically this equality,

Interpret 8
4) For any point M distinct from A, designate by θ an argument of

a- Prove that (z+2i)(z'+2i) is a non zero real negative number.

b- Deduce an argument of z'+2i in terms of θ .

c- What can we say about the two semi straight lines [AM] and [AM')?

Nº 10.

In the complex plane referred to an orthonormal system (O, \vec{u}, \vec{v}) , designate by I the point of affix 1 and by (C) the circle of diameter [OI] and of center Ω .

Part A:

Suppose $a_0 = \frac{1}{2} + \frac{1}{2}i$ and denote by A_0 its image.

1) Show that A_0 belongs to (C).

2) Let B be the point of affix b = -1 + 2i and B' the point of affix b' such that $b' = a_0 b$.

a- Calculate b'.

b- Prove that triangle OBB' is right at B'.

Part B:

Let a be a non-zero complex number different from 1 and let A be its image in the complex plane.

For all points M of affix z, $z \neq 0$, we associate the point M' of affix z' such that z'=az.

1) a- Interpret, geometrically, $\arg\left(\frac{a-1}{a}\right)$.

b- Show that
$$(\overrightarrow{M'O}, \overrightarrow{M'M}) = \arg\left(\frac{a-1}{a}\right) + 2k\pi$$
 where $k \in \mathbb{Z}$.

- c- Show that if A belongs to circle (C) deprived of O and I.
- then triangle OMM' is right at M' then triangle OMM' is right as a point of the axis of abscious 2) In this question, suppose that M is a point of C dies.
- different from O and denote by x its affix. different from O and denote by is a point of (C) different from Choose x in such a way that AI and O.

 Show that the point M' belongs to the straight line (OA). Show that the point M' belong M' belong M' on this straight Deduce that M' is the orthogonal projection of M on this straight

des M

thu

In the complex plane referred to a direct orthonormal system (O, \vec{u}, \vec{v}) , and C of respective affixes a = -1. In the complex plane referred C of respective affixes a = -1, consider the points A, B and C of respective affixes a = -1, b=2i and c=-1. For all points M, of affix z, $z \neq -1$, we associate the point M. of affix $z' = \frac{-iz-2}{z+1}$

- 1) Determine the affix c' of point C' associated to C, and write c'
- in exponential form. 2) a- Show that $|z+1| \times |z'+i| = \sqrt{5}$.
 - b- Deduce that if the point M belongs to circle (C) of center A and radius 2, then M' belongs to a circle whose center and radius are to be determined.

The complex plane is referred to a direct orthonormal system $(0; \vec{u}, \vec{v})$. Consider the points A, B and C of respective affixes a = 3 + i, b = 2i and c = 2 - 2i.

- 1) Calculate $\frac{c-a}{b-a}$ and deduce the nature of triangle ABC.
- 2) Let M be a point of affix z and M' a point of affix z' such that $\overrightarrow{MM'} = \overrightarrow{AC}$.
 - a- Express z' in terms of z.
 - b- Calculate the affix of point D so that ABDC is a rhombus.
- 3) a- Write c in the exponential form.
 - b- For what values of the natural integer n, is c^n real? For what values of the natural integer n, is c^n pure imaginary?