Reporte: Ecuaciones Diferenciales Unidad 1

Agustín Alejandro Mota Hinojosa

September 28, 2023

Contents

1	Pro	oblema	
2	Solı	ución del problema	
	2.1	Usando variables separables:	
		2.1.1 Sustituyendo:	
		2.1.2 Solución de la ecuación	
	2.2	Comprobación	
3	Grá	áfico	

1 Problema

Un ingeniero, que anteriormente confiaba en ventiladores como sistema de enfriamiento para su computadora, se ha visto obligado a buscar una solución más eficiente debido a los problemas de temperatura. Por lo tanto, ha decidido implementar un sistema de refrigeración líquida. El ingeniero no colocó bien el tapón del fondo y ahora el liquido ha empezado a drenarse. Si el cilindro tiene una profundidad de \$9cm en t = 0 (en minutos) y despues de 1 minuto la profundidad del agua ha disminuido a 4cm, ¿Cuanto tiempo tardara en drenarse?

2 Solución del problema

Usando la ley de Toricelli $A\frac{dy}{dt}=-k\sqrt{y}$ donde A es una constante, según los datos del problema tenemos que y(0)=9 y y(1)=4.

2.1 Usando variables separables:

• Separar las variables.

$$A\frac{dy}{dt} = -k\sqrt{y} \to \frac{dy}{\sqrt{y}} = -\frac{k}{A}dt \tag{1}$$

$$\int \frac{dy}{\sqrt{y}} = -\int \frac{k}{A}dt \to 2\sqrt{y} = -\frac{k}{A}t + c \to \sqrt{y} = -\frac{k}{2A}t + c \tag{2}$$

2.1.1 Sustituyendo:

$$\sqrt{y} = -\frac{k}{2A}t + c$$

• Donde y(0) = 9

$$\sqrt{9} = -\frac{k}{A}(0) + c \to 3 = c$$
 (3)

• Donde y(1) = 4

$$\sqrt{4} = -\frac{k}{A}(1) + c \to 2 = -\frac{k}{A} + 3 \to \frac{k}{A} = 1 \tag{4}$$

Ahora con los valores c=3 y $\frac{k}{A}=1$, podemos obtener la solución:

$$\sqrt{y} = \frac{k}{2A}t + c \to y(t) = (3-t)^2$$
 (5)

2.1.2 Solución de la ecuación

El cilindro se vacía en y(t) = 0:

$$y(t) = (3-t)^{2}$$
$$(3-t)^{2} = 0 \to \sqrt{(3-t)^{2}} = \sqrt{0}$$
$$3-t = 0 \to -t = -3 \to \frac{-t}{-1} = \frac{-3}{-1} \to t = 3$$

Entonces el cilindro del sistema de refrigeración se drenará por completo al pasar 3 minutos causando que la computadora deje de enfriarse y la temperatura aumentará.

2.2 Comprobación

• Ecuación2:

$\int -\frac{k}{A}dt$	Q D
Solución	
$-\frac{k}{A}t + C$	
Oculta	ar pasos 🐧
Pasos de solución	Un paso a la vez
$\int -\frac{k}{A}dt$	
Integral de una constante: $\int adx = ax$	
$=\left(-rac{k}{A} ight)t$	
Simplificar	
$=-\frac{k}{A}t$	
Agregar una constante a la solución	
$=-rac{k}{A}t+C$	

• Ecuación3

• Ecuación4

solve for $A, \sqrt{4} = \frac{-k}{A}(1) + 3$

A = k

Ocultar pasos 🔥

Pasos de solución

Un paso a la vez

$$\sqrt{4} = \frac{-k}{A}(1) + 3$$

Simplificar
$$\frac{-k}{A}(1)$$
: $-\frac{k}{A}$

$$\sqrt{4} = -\frac{k}{A} + 3$$

• Ecuación5

 $\sqrt{y(A,t)} = -\frac{k}{2A}t + c, \frac{k}{2A} = 1, c = 3$

-t + 3

------ Hide Steps A

Solution steps

One step at a time

For $\sqrt{y(A,t)}$ $(A,t)=-\frac{k}{2A}t+c$ substitute $\frac{k}{2A}$ with 1,c with 3

$$= -1 \cdot t + 3$$

Find
$$-\frac{k}{2A}t + c$$
 given $\frac{k}{2A} = 1$, $c = 3$

Substitute $\frac{k}{2A} = 1$

Substitute c=3

 $= -1 \cdot t + 3$

Simplify $-1 \cdot t + 3$: -t + 3

= -t + 3

3 Gráfico

