

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME								
CENTRE NUMBER					CANDIDATE NUMBER			
MATHEMATICS	;						9	9709/13
Paper 1 Pure M	lathema	tics 1 (P 1)				May/Ju	ne 2017
						11	hour 45 ı	minutes
Candidates ansv	wer on t	he Questi	on Pape	r.				
Additional Mater	ials:	List of F	ormulae	(MF9)				

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

constant a.					
•••••	•••••	•••••	 		• • • • • • • • • • • • • • • • • • • •
•••••		•••••	 •••••		
		•••••	 		
•••••	•••••	•••••	 		•••••
•••••			 		
••••••	••••••	•••••••••	 •••••••	••••••••••	••••••
•••••		•••••	 		•••••
		••••	 		
•••••			 		
•••••	•••••	•••••	 •	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	 •••••		
			 	,	
•••••	•••••	•••••	 		••••••

2

(i)	Show that $S = 2 - r$.	[2
i)	Find the set of possible values that S can take.	[2

••	. •
•••	 . .
••	
••	•
••	
••	•
••	
••	•
	. .
••	•
••	
••	•
••	. •
	 . .
	_

$$\overrightarrow{OA} = \begin{pmatrix} 5\\1\\3 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 5\\4\\-3 \end{pmatrix}$.

The point *P* lies on *AB* and is such that $\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB}$.

(i)	Find the position vector of P .	[3]
(ii)	Find the distance <i>OP</i> .	[1]
(iii)	Determine whether OP is perpendicular to AB . Justify your answer.	[2]

•	$\sin \theta + \cos \theta$	tun o may be expres	ssed as $\cos^2 \theta = 2\sin^2 \theta$
		•••••	

(•• <u>)</u>	TT 1 41 41	$2\sin\theta + \cos\theta$	24 05 00 00 1000	LO.		
(11)	Hence solve the equation	$\frac{1}{\sin\theta + \cos\theta} =$	$= 2 \tan \theta$ for $0^{\circ} < \theta < 180^{\circ}$.	[3]		
		••••••				
		•••••		•••••		
		•••••	•••••	•••••		
		•••••				
				••••••		
		••••••				
		•••••••		•••••		
		••••••		•••••		
		• • • • • • • • • • • • • • • • • • • •		•••••		
		• • • • • • • • • • • • • • • • • • • •	•••••	•••••		
		•••••		•••••		
		•••••				
		•••••				

••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	•••••	•••••	••••••
••••		•••••										
••••						•••••						•••••
		•••••										
••••	•	••••••	•••••	••••••	••••••	••••••	••••••	•••••	•	•••••	••••••	•••••
••••		•••••		•••••	•••••	•••••				•••••		•••••
		•••••										
••••	••••••	•••••	•••••	•••••	••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
		•••••			•••••	•••••		•••••				•••••
		•••••										
•••••	••••••	••••••	•••••	•••••	••••••	••••••	••••••	•••••	•••••	•••••	••••••	•••••
••••		•••••	•••••									•••••
•••••	••••••	••••••	•••••	•••••	••••••	••••••	••••••	•••••	•••••	•••••	••••••	•••••
••••		•••••	•••••									
••••		••••••		•••••	•••••	•••••		•••••		•••••		•••••
		•••••										
•••••	••••••	•••••	•••••	•••••	••••••	••••••	•••••	•••••		•••••	••••••	•••••
		•••••										
••••		•••••										

7

The diagram shows two circles with centres A and B having radii 8 cm and 10 cm respectively. The two circles intersect at C and D where CAD is a straight line and AB is perpendicular to CD.

(i)	Find angle ABC in radians.	[1]
(ii)	Find the area of the shaded region.	[6]

 •••••	•••••	•••••		•••••
 ••••••	••••••	•••••	••••••	••••••
 	•••••			

	••••••
	•••••
	•
	the possible p
B(10, -1) is a third point such that $AP = AB$. Calculate the coordinates of of P .	the possible p
	the possible p
of <i>P</i> .	
of <i>P</i> .	

		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
The	function f is defined by $f(x) = 9x^2 - 6x + 6$ for $x \ge p$, where p is a constant.	
(ii)	State the smallest value of p for which f is a one-one function.	
		•••

. 	For this value of p , obtain an expression for $f^{-1}(x)$, and state the domain of f^{-1} .	[4
		•••••
		•••••
		•••••
		•••••
		•••••
(iv)	State the set of values of q for which the equation $f(x) = q$ has no solution.	[1
		•••••
		••••

10 (a)

Fig. 1

Fig. 1 shows part of the curve $y = x^2 - 1$ and the line y = h, where h is a constant.

(i)	The shaded region is rotated through 360° about the y-axis . Show that the volume of revolution, V , is given by $V = \pi(\frac{1}{2}h^2 + h)$. [3]
(ii)	Find, showing all necessary working, the area of the shaded region when $h = 3$. [4]

(b)	
	Fig. 2
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is increasing when the height of the water level is 3 cm.
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	$h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is

, 11	ind $f'(x)$.	
	$\mathbf{m}\mathbf{u} + (\lambda)$.	
		•••••
•••		••••••
•••		
		•••••
•••		•••••
		•••••
•••		•••••
•••		•••••
•••		
s no	ow given that $f''(0)$, $f'(0)$ and $f(0)$ are the first three terms respective	ely of an ari
	ssion.	•
	ind the value of $f(0)$.	
) Fi		
) Fi		
) Fi 		
) Fi 		
) Fi 		

 •••••
•••••
 •••••
•••••
•••••
•••••

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.