The LUA-PHYSICAL library

$Version\ 0.1$

Thomas Jenni

September 9, 2018

Abstract

lua-physical is a pure Lua library which provides functions and object for doing computation with physical quantities. This package provides a standard set of units of the SI and the imperial system. It is possible to give a number a mesurement uncertainty.

is also integrated and is calculated by gaussian error propagation. The package includes some $\,$

Contents

1	Introduction	2
2	Basic usage	2
3	Supported Units	4
4	Lua Documentation 4.1 physical Quantity	9

1 Introduction

The author of this package is a teacher at the Kantonsschule Zug, Switzerland, a high-school. The main use of this package is to write physics problem sets and integrate the calculation directly into the luatex-file. The package is now in use for more than two years and a lot of bugs have been found and crushed. Nevertheless it could be possible that some bugs are still there, living uncovered. Therefore I recommend not to use this library productively in industry or science. If one does so, it's the responsability of the user to check results for plausability. If the user finds some bugs, please report them on github.com or directly to the author.

E-Mail: thomas.jenni(at)ksz.ch

2 Basic usage

Since this package is pure lua library one has to require it explicitly by calling require("physical"). For printing results the siunitx package is used. It's recommended to define a shortcut like \q or \Qty to convert the lua quantity object to a siunitx expression. An example preamble is shown in the following.

```
Listing 2.1: basic preamble
      \usepackage{siunitx}
2
3
      % configure siunitx
4
      \sisetup{
5
        output-decimal-marker = {.},
6
        per-mode = symbol,
        separate-uncertainty = false,
8
        add-decimal-zero = true,
9
        exponent-product = \cdot,
10
        round-mode = off
11
12
13
      % load lua-physical
14
      \begin{luacode*}
15
        physical = require("physical")
      \end{luacode*}
16
17
      % shortcut for printing physical quantities
18
19
      \newcommand{\q}[1]{\%}
        \directlua{tex.print(physical.Quantity.tosiunitx(#1,"
20
              scientific-notation=fixed,exponent-to-prefix=false"))}%
21
      }
```

Given the preamble one can use now units in lua code and insert results in the latex code.

Listing 2.2: basic example

A car travels 10 m in 2 s. calculate its velocity.

$$v = \frac{s}{t} = \frac{10\,\mathrm{m}}{2\,\mathrm{s}} = 5\,\mathrm{m/s} = 18\,\mathrm{km/h}$$

3 Supported Units

There are a few units with dimension 1. The unit Bel is only available with prefix decibel, because _B is the unit byte.

Unit	Symbol	Definition
number	_1	The number one.
percent %	_percent	1e-2*_1
permille $\%$	_permille	1e-3*_1
parts-per-million	_ppm	1e-6*_1
parts-per-billion	_ppb	1e-9*_1
parts-per-trillion	_ppt	1e-12*_1
parts-per-quadrillion	_ppq	1e-15*_1
decibel	_dB	_1

Table 1: Dimensionless units

Quantity	Unit	Symbol	Dim.	Definition	
length	meter	_m	L	The distance light travels in vacuum during $1/299792458$ second.	
mass	kilogram	_kg	М	The mass of the international protoype of the kilogram.	
time	second	_s	Т	Is 9 192 631 770 times the period of the radiation from the transition between the two hyperfine levels of the ground state of caesium-133.	
electric current	ampere	_A	I	The constant current which, if maintained in two straight parallel conductors of infinte length, of negligible circular crosss-section, and placed 1 m apart in vacuum, would produce between these conductors a force equal to $2 \cdot 10^{-7}$ N/m.	
thermody- namic temperature	kelvin	_K	Θ	Is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.	
amount of substance	mole	_mol	N	Amount of substance that contains as many particles as there are atoms in 0.012 kg of carbon-12.	
luminous intensity	candela	_cd	J	the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequenc $540\cdot 10^{12}\mathrm{Hz}$ and has a radiant intensity in that direction of $(1/683)\mathrm{W/sr}$	

Table 2: Base units of the International System of Units (SI) $\,$

Quantity	Unit	Symbol	Dimension	Definition
plane angle	radian	_rad	1	\1
solid angle	steradian	_sr	1	_rad^2
frequency	hertz	_Hz	T^{-1}	1/_s
force	newton	_N	$ m MLT^{-2}$	_kg*_m/_s^2
pressure	pascal	_Pa	${ m M}{ m L}^{-1}{ m T}^{-2}$	_N/_m^2
energy	joule	_J	$\mathrm{M}\mathrm{L}^2\mathrm{T}^{-2}$	_N*_m
power	watt	_W	${ m M}{ m L}^2{ m T}^{-3}$	_J/_s
electric charge	coulomb	_C	ΤΙ	_A*_s
electric potential difference	volt	_V	${ m M}{ m L}^2{ m T}^{-3}{ m I}^{-1}$	_J/_C
capacitance	farad	_F	$L^{-2} M^{-1} T^4 I^2$	_C/_V
electric resistance	ohm	_Ohm	$L^2 M T^{-3} I^{-2}$	_V/_A
electric conductance	siemens	_\$	$L^{-2} M^{-1} T^3 I^2$	_A/_V
magnetic flux	weber	_Wb	$L^2 \mathrm{M} \mathrm{T}^{-2} \mathrm{I}^{-1}$	_V*_s
magnetic flux density	tesla	_T	$ m M T^{-2} I^{-1}$	_V*_s
inductance	henry	_H	$L^2 \mathrm{M} \mathrm{T}^{-2} \mathrm{I}^{-2}$	_Wb/_A
Celsius temperature	degree Celsius	_degC	Θ	_K
luminous flux	lumen	_lm	J	_cd*_sr
illuminance	lux	_lux	$\mathrm{L}^{-2}\mathrm{J}$	_lm/_m^2
activity	becquerel	_Bq	T^{-1}	1/_s
absorbed dose	gray	_Gy	$\mathrm{L}^2\mathrm{T}^{-2}$	_J/_kg
dose equivalent	sievert	_Sv	$L^2 T^{-2}$	_J/_kg
catalytic activity	katal	_kat	$\mathrm{T}^{-1}\mathrm{N}$	_mol/_s

Table 3: Derived units of the International System of Units (SI)

Quantity Unit		Symbol	Dim.	Definition	
plane angle	gle degreedeg		1	(Pi/180)*_rad	
	arc minute	_arcmin	1	_deg/60	
	arc second	_arcsec	1	_arcmin/60	
	gradian	_gon	1	(Pi/200)*_rad	
	turn	_tr	1	2*Pi*_rad	
solid angle	spat	_sp	1	4*Pi*_sr	
length	astronomical unit	_au	L	149597870700*_m	
	lightyear	_ly	L	_c*_a	
	parsec	_pc	L	(648000/Pi)*_au	
	angstrom	_angstrom	L	1e-10*_m	
	fermi	_fermi	L	1e-15*_m	
area	are	_ar	L^2	1e2*_m^2	
	hectare	_hectare	L^2	1e4*_m^2	
	barn	_barn	L^2	1e-28*_m^2	
volume	liter	_L	L^3	0.001*_m^3	
	metric teaspoon	_tsp	L^3	0.005*_L	
	metric tablespoon	_Tbsp	L^3	3*_tsp	
time	minute	_min	Т	_60*_s	
	hour	_h	Т	_60*_min	
	day	_d	Т	_24*_h	
	week	_wk	Т	_7*_d	
	year	_a	Т	365.25*_d	
	svedberg	_svedberg	Т	1e-13*_s	
mass	tonne	_t	M	1000*_kg	

Table 4: Units outside of the International System of Units (SI)

Quantity	Unit	Symbol	Dim.	Definition
length	inch	_in	L	0.0254*_m
	thou	_th	L	0.001*_in
	pica	_pica	L	_in/6
	point	_pt	L	_in/72
	hand	_hh	L	4*_in
	foot	_ft	L	12*_in
	yard	_yd	L	3*_ft
	rod	_rd	L	5.5*_yd
	chain	_ch	L	4*_rd
	furlong	_fur	L	10*_ch
	mile	_mi	L	8*_fur
	league	_lea	L	3*_mi

Table 5: Imperial units

4 Lua Documentation

In the following chapter, these shortcuts will be used.

```
Listing 4.1:

1 local D = physical.Dimension
2 local Q = physical.Quantity
```

4.1 physical.Quantity

Quantity.new(q=nil)

The constuctor of the Quantity class. It takes an optional quantity or number as argument q. If it is given, the new quantity is a copy of q. If no argument ist given, a quantity _1 is created.

```
Listing 4.2: Create some quantities.

1 myNumber = Q(42)
2 myLength = Q(73*_m)
```

Quantity.defineBase(symbol,name,dimension)

All unit systems need some base units. This function is used to define the base units, or base quantities of the unit system.

```
symbol : string, Symbol of the base quantity
name : string, Name of the base quantity
dimension : physical.Dimension, Object which represents the base
    Dimension of the base Quantity
returns a physical.Quantity object.
```

```
Listing 4.3: Define some base quantities.

1 Q.defineBase("m", "meter", L)
2 Q.defineBase("kg", "kilogram", M)
```

Quantity.define(symbol, name, o, tobase=nil, frombase=nil)

Creates a new unit from an expression of other units.

symbol: string, Symbol of the base quantity

name: string, Name of the base quantity

o: physical.Quantity, Definition of the unit.

 ${\tt tobase}$: function, optional function to convert a quantity to base units.

frombase: function, optional function to convert a quantity from the base units.

returns a physical.Quantity object.

Listing 4.4: Create new quantities from others.

```
1  Q.define("L", "liter", _dm^3)
2  Q.define("Pa", "pascal", _N/_m^2)
3  Q.define("C", "coulomb", _A*_s)
5
6 Q.define(
      "degC",
     "celsius",
8
9
      _K,
10
     function(q)
       q.value = q.value + 273.15
11
12
        return q
13
    end,
14
    function(q)
       q.value = q.value - 273.15
15
16
         return q
17
       end
18 )
```

Quantity.definePrefix(symbol,name,factor)

Defines a new prefix.

symbol: string, Symbol of the base quantity

name: string, Name of the base quantity

factor: number, the factor which corresponds to the prefix

```
Listing 4.5: Define a new prefix

Q.definePrefix("c", "centi", 1e-2)
Q.definePrefix("a", "atto", 1e-18)
```

Quantity.addPrefix(prefixes, units)

Create units with prefixes from a given unit.

prefixes : list, of given units
units : list, of given units

Listing 4.6: Add prefixes to some quantites.

1 Q.addPrefix({"n","u","m","k","M","G"},{_m,_s,_A})

```
By this
.addPrefix(prefixes, units)
.\min(o1,o2)
.\max(o1,o2)
.abs(q)
.sqrt(q)
.\log(q, base)
.\exp(q)
.sin(q)
.\cos(q)
.\tan(q)
.asin(q)
.acos(q)
atan(q)
.sinh(q)
.\cosh(q)
.tanh(q)
.asinh(q)
.acosh(q)
\operatorname{atanh}(q)
:to(o, usefunction)
:tosiunitx(param)
: to siunitx si(param) \\
:tosiunitxnum(param)
:isclose(o, r)
```