### **Principal Component Analysis**

# Principal Component Analysis (PCA)

- High dimensional datasets contain correlations between the dimensions, so a portion of the data is redundant.
- Linear transformation on data that reduces data to a few dimensions.

# **Mean and Principal Components**



# **Reconstruction from Principal Components**



# **PCA Applications: Face Image Analysis**







http://mikedusenberry.com/on-eigenfaces/

Projection of face images onto a feature space that spans the significant variations among known face images

Turk & Pentland, 1991



#### **Correlations between dimensions:**



scripts/corr\_data.m

```
\begin{array}{l} n{=}500 \\ a(:,1) = normrnd(0,1,n,1); \\ a(:,2) = normrnd(0,1,n,1); \\ b(:,1) = normrnd(0,1,n,1); \\ b(:,2) = b(:,1){*.}5 + .5 * normrnd(0,1,n,1); \end{array}
```

# **Probability Theory Reminder**

# **Univariate Sample Mean:**

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

# : Univariate Sample Variance:

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

# Multivariate Sample Mean:

$$X = [\mathbf{x}_1, \cdots, \mathbf{x}_p]$$

$$\bar{x_j} = \frac{1}{n} \sum_{i=1}^n x_{ij}$$

# **Multivariate Sample Covariance:**

$$\Sigma_{jk}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k)$$

Covariance expresses the extent to which two rvs vary together. If two variables are independent, cov(x,y) tends to zero. Matlab cov function is the sample covariance

#### **Multivariate Gaussian**

$$p(X) = \frac{1}{\sqrt{(2\pi)^n |\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2}(X - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (X - \boldsymbol{\mu})\right)$$

Change of basis:

$$Y = Q(X - \mu)$$

Q are the eigenvectors of  $\Sigma$ 

$$p(Y) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left(-\frac{1}{2}Y^T D^{-1}Y\right)$$

In general, covariance can only be estimated. Idea behind PCA: orthogonal linear transformation of the data using eigenvectors of the sample covariance. Note that PCA can be applied to non-Gaussian data.

# **Principal Component Analysis Algorithm**

Coordinate Transformation

- PCA can be viewed as a coordinate transformation
- Original data is plotted on horizontal and vertical axes
- PCA rotates the axes so that the new horizontal axis lies along the direction of maximum variation.



# **Principal Component Analysis Algorithm**

**Coordinate Transformation** 

 The new axes are the obtained by a change of basis consisting of the eigenvectors of the covariance matrix.

```
scripts/pca eigen.m
sigma = cov(b)
[V, D] = eig(sigma)
%returns
V = 0.5387 - 0.8425
  -0.8425 - 0.5387
D = 0.20480
         0 1.3341
plot(b(:,1),b(:,2),'b.'); hold on
plot(3*[-V(1,1) V(1,1)],3*[-V(1,2) V(1,2)],'k')
plot(3*[-V(2,1) V(2,1)],3*[-V(2,2) V(2,2)],'k')
plot(b*V,'b.');
```

# **Principal Component Analysis Algorithm**

Coordinate Transformation



# **How much Variation is Captured?**

 The fraction of variation captured by each PC is the ratio of its eigenvalue to the sum of all the eigenvalues:

$$\frac{\lambda_i}{\sum_j \lambda_j}$$

# **Principal Component Analysis Algorithm in MATLAB**

[coeff,score,latent] = pca(b)

- · coeff are the eigenvectors
- score is the transformed data ordered from largest to smallest PC
- latent are the eigenvalues



- Extracellular recordings of spike waveforms.
- Raw data per recording has 48 points
- There seems to be two different traces. Can we tease them apart?

#### Load data

```
scripts/load_spike_Waveform.m
load Chap19_SpikeSorting.mat
wf=session(2).wf;
plot(wf(1:1000,:)','b');
```

#### Run PCA

```
scripts/pca_spike_Waveform.m
[coeff,score, latent] = pca(double(wf(1:1000,:)))
```

#### Plot First 2 components

```
scripts/pca_spike_Waveform_plot.m
scatter(score(:,1),score(:,2))
```

Viewing the first two PCs





# Reconstructing the data from PCs

$$\mathbf{x} = \mathbf{s} Q^{\top} + \boldsymbol{\mu}$$

where  $\mu$  is average (here the average waveform) and s is the vector of PCs





 Data compression: Each waveform is stored using 2 variables instead of 48

# **Linear Discriminant Analysis**

 Can we systematically discriminate the two groups/classes?





Linear Classification with Dimensionality Reduction

# **Classification through projections**

# Projection of data to 1 dimension

$$y = \mathbf{w}^{\top} \mathbf{x}$$

- Place a threshold on y and classify  $y \le -w_0$  as class  $C_1$ , otherwise class  $C_2$
- But the projection to 1 dimension throws away a lot of information.



 By adjusting w, we can select a projection that maximizes the class separation

# **Linear Discriminant Analysis**

- N<sub>1</sub> points in class C<sub>1</sub>
- N<sub>2</sub> points in class C<sub>2</sub>
- Mean vectors of the two classes are:

$$\bar{\mathbf{x}}_1 = \frac{1}{N_1} \sum_{i \in C_1} \mathbf{x}_i$$

$$\bar{\mathbf{x}}_2 = \frac{1}{N_2} \sum_{i \in C_2} \mathbf{x}_i$$

We could choose w such that

$$m_2 - m_1 = \mathbf{w}^{\top} (\bar{\mathbf{x}}_2 - \bar{\mathbf{x}}_1)$$

is maximum. This doesn't work well when the data has correlated features

# **Linear Discriminant Analysis**

**Solution:** Maximize a function that will give a large separation between projected class means while giving a small variance within each class

#### **Fisher Criterion**

$$J = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$

where  $s_1$  and  $s_2$  are within class variances

$$s_1^2 = \frac{1}{N_1} \sum_{n \in C_1} (\mathbf{w}^\top \mathbf{x}_1 - \mathbf{w}^\top \bar{\mathbf{x}}_1)^2$$

$$s_2^2 = \frac{1}{N_2} \sum_{\mathbf{r} \in C_2} (\mathbf{w}^\top \mathbf{x}_2 - \mathbf{w}^\top \bar{\mathbf{x}}_2)^2$$

#### **Fisher's Linear Discriminant**

#### Solution that maximizes the Fisher Criterion

$$w = S_W^{-1}(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)$$

Where  $S_W$  is the total within class covariance matrix:

$$S_W = \sum_{n \in C_1} (\mathbf{x}_i - \bar{\mathbf{x}}_1) (\mathbf{x}_i - \bar{\mathbf{x}}_1)^\top + \sum_{i \in C_2} (\mathbf{x}_i - \bar{\mathbf{x}}_2) (\mathbf{x}_i - \bar{\mathbf{x}}_2)^\top$$

Fisher's linear discriminant provides a specific projection w to one dimension for classification

# **Example: Mixture of Gaussians**





#### scripts/gaussian\_mixture.m

```
\begin{aligned} &mu1 = [1 - 1]; Sigma1 = [.9 .3; .3 .3]; \\ &x1 = mvnrnd(mu1, Sigma1, 500); \\ &mu2 = [0  0]; Sigma2 = [.9 .3; .3 .9]; \\ &x2 = mvnrnd(mu2, Sigma2, 500); \\ &figure(); hold on; \\ &scatter(x1(:,1),x1(:,2),'k') \\ &scatter(x2(:,1),x2(:,2),'k') \end{aligned}
```

# **Example: Mixture of Gaussians**





#### scripts/lda\_analysis.m

```
%Fisher's LDA

m1 = mean(x1,1);

m2 = mean(x2,1);

invSw = inv(cov(x1)+cov(x2));

w = invSw*(m2-m1)';

%Project

y_lda = [x1;x2]*w

figure();

hist(y | lda,50);
```

# **Example: Mixture of Gaussians**





#### scripts/lda\_classify.m

```
\label{eq:figure} \begin{split} &\text{figure();hist(y\_lda,50);} \\ &\text{line([-1.5,-1.5],[-1.5,100]);} \\ &\text{classes\_true} = [\text{zeros}(500,1);\text{ones}(500,1)];} \\ &\text{class1} = y\_lda>&-1.5; \\ &\text{class2} = y\_lda<&-1.5; \\ &\text{figure();hold on;} \\ &\text{scatter(x(class1,1),x(class1,2),'r');} \\ &\text{scatter(x(class2,1),x(class2,2),'b');} \end{split}
```