

Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning

Quan Xiao* Pin-Yu Chen Lisha Chen*

Tianyi Chen Momin Abbas* Rensselaer Polytechnic Institute **IBM Research**

Problem Formulation and Loss Landscape

generalization than wide minima

Lemma 1 (informal): MAML has more stationary points and local minimizers than ERM (i.e., a more complex loss landscape)

Generalization and Sharpness of Solutions

Figure: A Conceptual Sketch of Flat and Sharp Minima [Keskar et al., 2017]

Sharp-MAML Algorithm

Problem (Sharp-MAML_{both}):

$$\min_{\theta} \max_{\||\epsilon|\|_2 \le \alpha_{\text{up}}} \sum_{m=1}^{M} \mathcal{L}(\theta_m^*(\theta + \epsilon); \mathcal{D}_m') \quad \text{(upper)}$$
s.t. $\theta_m^*(\theta) = \arg\min_{\theta_m} \max_{\||\epsilon_m|\|_2 \le \alpha_{\text{low}}} \mathcal{L}(\theta_m + \epsilon_m; \mathcal{D}_m) + \frac{\|\theta_m - \theta\|^2}{2\beta_{\text{low}}}, \ m = 1, ..., M. \quad \text{(lower)}$

Algorithm:

for
$$t = 1, \dots, T$$
 do

for all tasks do

Sample K examples from \mathcal{D}_m

Evaluate stochastic gradient $\nabla \mathcal{L}(\theta^t; \mathcal{D}_m)$

Compute perturbation $\epsilon_m(\theta^t) = \alpha_{\text{low}} \widetilde{\nabla} \mathcal{L}(\theta^t; \mathcal{D}_m) / ||\widetilde{\nabla} \mathcal{L}(\theta^t; \mathcal{D}_m)||_2$

Compute fine-tuned parameter $\tilde{\theta}_m^1(\theta^t) = \theta^t - \beta_{\text{low}} \nabla_{\theta^t} \mathcal{L}(\theta^t + \epsilon_m(\theta^t); \mathcal{D}_m)$

Sample data from \mathcal{D}_m' for meta-update

Compute $\nabla_{\theta^t} \sum_{m=1}^M \mathcal{L}(\tilde{\theta}_m^1(\theta^t); \mathcal{D}_m')$

Compute perturbation $\epsilon(\theta^t) = \alpha_{\text{up}} \nabla_{\theta^t} \sum_{m=1}^{m} \mathcal{L}(\tilde{\theta}_m^1(\theta^t); \mathcal{D}_m') / ||\nabla_{\theta^t} \sum_{m=1}^{m} \mathcal{L}(\tilde{\theta}_m^1(\theta^t); \mathcal{D}_m')||_2$

Compute $\tilde{\theta}_m^2(\theta^t) = \theta^t + \epsilon(\theta^t) - \beta_{\text{low}} \nabla_{\theta^t} \mathcal{L}(\theta^t + \epsilon(\theta^t) + \epsilon_m(\theta^t); \mathcal{D}_m)$

Update $\theta^{t+1} = \theta^t - \beta_{\mathrm{up}} \nabla_{\theta^t} \sum \mathcal{L}(\tilde{\theta}_m^2(\theta^t); \mathcal{D}_m')$

Optimization Analysis

Assumption (Informal): Assume $F(\theta)$ is Lipschitz continuous and smooth.

Assume we can obtain unbiased estimators of $\nabla \mathcal{L}(\theta; \mathcal{D}_m), \nabla^2 \mathcal{L}(\theta; \mathcal{D}_m), \nabla \mathcal{L}(\theta; \mathcal{D}_m')$ and their variances are bounded.

Main theorem. If we choose stepsizes and perturbation radii

$$\beta_{\text{low}}, \beta_{\text{up}}, \alpha_{\text{up}} = \mathcal{O}\left(1/\sqrt{T}\right), \alpha_{\text{low}} = \mathcal{O}(1)$$

with some proper constants, we can get that the iterates generated by Sharp-MAML_{up}, Sharp-MAML_{low} and Sharp-MAML_{both} satisfy

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\|\nabla F(\theta^t)\|^2 \right] = \mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$$

☐ Sharp-MAML matches the convergence rate of MAML

Empirical Comparison with MAML

ALGORITHMS	ACCURACY
MATCHING NETS	43.56%
MAML (REPRODUCED)	47.13%
$SHARP-MAML_{low}$	48.87%
SHARP-MAML _{up}	49.03%
$SHARP ext{-}MAML_{both}$	49.60%

- ☐ Setting: 5-way 1-shot, conv-4-64 model, miniimagenet dataset
- ☐ All Sharp-MAML variants improve the generalization performance of MAML

Sharp-MAML Improves the Landscape of MAML

☐ Sharp-MAML indeed seeks out landscapes that are smoother as compared to the landscape of original MAML

Generalization Analysis

Assumption (Informal): Assume $0 \le \mathcal{L}(\theta_m; \mathcal{D}) \le 1, \mathcal{D} \sim \mathcal{P}, |\mathcal{D}| = nM$

Define $F(\theta;\mathcal{P})=\mathbb{E}_{\mathcal{D}\sim\mathcal{P}}[F(\theta;\mathcal{D})]$. Let $\hat{ heta}$ be the stationary point of Sharp-MAML, satisfying $F(\hat{ heta}; \mathcal{P}) \leq \mathbb{E}_{\epsilon \sim \mathcal{N}(0, lpha^2\mathbf{I})} \left[F(\hat{ heta} + \epsilon; \mathcal{P}) \right]$.

Main theorem. If the lower-level algorithm used in Sharp-MAML is γ_A uniformly stable, with high probability, the risk of Sharp-MAML_{up} satisfies

$$F(\hat{ heta}; \mathcal{P}) \leq \max_{\|\epsilon\|_2 \leq lpha} F(\hat{ heta} + \epsilon; \mathcal{D}) + \gamma_{ ext{A}} + \widetilde{\mathcal{O}}igg(rac{1}{4nM}igg)$$

where $\mathcal{O}(\cdot)$ hides the polylogarithmic factor.

☐ Sharp-MAML has smaller generalization error upper bound than MAML