BITS - Pilani, Hyderabad Campus CS F469 IR Assignment - 1

Plagiarism Checker

Team Members:

Kushagra Gupta
 Parveen
 S. Sai Naga Shashank
 2018A7PS0208H
 2018A7PS0623H
 2018AAPS0347H

- Method used to find similarity between a document and a query: $\cos\theta = \overrightarrow{D}$. \overrightarrow{Q} , where \overrightarrow{D} and \overrightarrow{Q} represents normalized vectors of the document and the query, respectively, containing 'tf-idf' value of each token
- Pre-processing has been done to find \overrightarrow{D} for each doc in the corpus, beforehand.
- As a result we get a Matrix of the form:

	Doc-1	Doc-2	Doc-3	•••	Doc-N
Term-1					
Term-2					
Term-3	Each cell has 'tf-idf' value of the Term-i for Doc-j				
		ionii ioni			
Term-M					

M – total number of terms in the whole corpus, N – total no. of documents in the corpus

- But, since every doc doesn't contain every term, therefore this matrix is sparse!
- Therefore, instead of this matrix we used maps for each doc, which contains only the 'tf-idf' value of the terms present in that document only (*Memory Efficient*).

Pre-processing:

Since only 'tf-idf' values of a doc is required for similarity calculation, not the 'tf' and 'df' values, therefore -

- Global map is updated to have 'log(N/df)' value of a token
- and similarly, N maps are updated to have 'tf-idf' values of its tokens
- All (N+1) maps have been normalized to length = 1

Query-processing:

Score(q, d) = $\sum (querymap[t] * docmap[t])$ $\forall t \in (doc tokens \cap query tokens)$

- Since Query-Map only have tokens of query doc, again it is memory efficient, as we are not required a vector with all tokens of the corpus!
- But Score Calculation may be slow because of the inability of maps to exploit inbuilt faster vector dot product!

Pros & Cons of the Model:

- Since, it is a 'bag of words' model, therefore words proximity can't be handled here, and it can give False Positives as well.

 For e.g. "A B C D" and "D B C A" are same for the model
- But, as paraphrasing has been used to avoid plagiarism, therefore 'bag of words' model is successful in detecting sentence and paragraph paraphrasing.
- The model will not work if there is only 1 document in the corpus. Because in that case log(N/df) will be log(1/1) = 0 for each token. As a result, tf-idf and gradually Similarity Score will be 0 for every query!
- It will also not work if all docs in the corpus are similar. In that case also for most of the tokens 'tf-idf' will be zero and consequently the Score as well.

Runtime:

- Average Indexing time = 140 docs / second
- Average query time = 5 milliseconds / 100 docs
- Average has been calculated with up to 12800 docs in the corpus having around 150 words each.