Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Reserve 1,9622 N25+22 Marinus Westveld's

Empirical Yield Tables

for

Spruce-Fir Cut-Over Lands in the Northeast

Station Paper No. 55

Northeastern Forest Experiment Station

Upper Darby, Pennsylvania Ralph W. Marquis, Director

1953

FOR SPRUCE-FIR CUT-OVER LANDS IN THE NORTHEAST

Marinus Westveld

Principal Silviculturist
Northeastern Forest Experiment Station

Forest Service
United States Department of Agriculture

CONTENTS

]	Page
I.	DEVELOPING THE YIELD TABLES		
	Introduction		. 1
	Past studies of spruce-fir yield	• •	. 2
	Basis for this yield study	•	. 4
	Growth factors and their evaluation Site	•	. 6 . 11 . 15
	Effective age	•	. 18
	Developing the tables	•	. 22
II.	THE EMPIRICAL YIELD TABLES		
	Yield tables	•	. 26
	Alinement charts	•	. 38
III.	APPLYING THE YIELD TABLES		
	Data required		43 43 44
	An example	•	. 47
	Accuracy of the yield tables	, ,	. 51
IV.	APPENDIX		. 55

DEVELOPING THE YIELD TABLES

- DATA AND TECHNIQUES USED

INTRODUCTION

PREDICTING FUTURE TIMBER yields is an unavoidable task for the forest manager who is interested in growing timber as a long-term investment. He must predict yields as a basis for formulating management plans and policies. And he must predict yields from lands that differ greatly in productivity.

In the spruce-fir region of the Northeast the problem of predicting yields from different kinds of lands is particularly pressing. Here for years vast timberlands have been operated primarily for pulpwood. With the rapid depletion of old-growth stands, pulp mills are becoming increasingly dependent on the new stands that have become established since the clear-cutting that has been the vogue during the past half century. Some areas that were originally clear-cut have already been subjected to a second cutting; others will be ready for another harvesting within 10 or 15 years.

To manage this steadily mounting acreage of second-growth pulpwood forest intelligently, forest managers need yield tables that are applicable to these forests. The yield tables presented here were developed to fill this need. They show expected yields from stands of different compositions, ages, stocking, and site conditions.

PAST STUDIES

OF SPRUCE-FIR YIELDS

Numerous studies of growth on cut-over spruce-fir lands have been made both in the Northeastern States and in eastern Canada. Most of them made use of increment borings taken from trees over a range of diameters; the data usually were classified by forest type and age of cuttings. A few studies were based on re-measurement of permanent sample plots. Results were ordinarily expressed in percentage growth figures or volume growth per acre.

Such studies have their greatest value in showing past and estimated future growth on the specific areas studied. But no systematic effort has been made to develop ways of applying such yield data to other properties.

Efforts to meet the growth problem have also been made through use of normal yield tables. Early workers in this field were Murphy (6) and Meyer (4). They both conducted their studies in pure, even-aged conifer stands that contained mostly red spruce (Picea rubens), white spruce (P. glauca), and balsam fir (Abies balsamea).

However, spruce-fir forests of the Northeast differ notoriously from such stands. By and large they consist not of pure spruce and fir, but of mixtures of these species with varying proportions of northern hardwoods. Most of the plots Murphy and Meyer based their tables on were in pure "old-field" spruce types. Since these are among the most productive sites in the region, their tables tend to exag-

UNDERLINED NUMBERS OF PARENTHESES REFER TO LOTERATURE CITED, PAGE 53.

gerate the yields one might expect from natural forest stands. Mulloy (5), working in Canada, attempted to overcome some of the inherent weaknesses of such tables by developing a whole series of yield tables classified by forest type, composition, and density of stocking.

The heterogeneity of the northeastern spruce-fir type complicates the problem of predicting growth and yield. Hardwoods are present in varying numbers, sizes, species, and spacing. The spruce-fir component, though usually small in volume after clear-cutting, nevertheless has a wide range in both size and number of trees; and advance spruce-fir reproduction, the mainstay for the next timber crop, varies greatly in stocking.

With this situation in mind, the author $(\underline{8})$ undertook to develop a predicting method that could be applied satisfactorily to the irregular mixed spruce-hardwood stands so common to the spruce-fir region of the Northeast.

The complexity of the problem, however, necessitated the introduction of new statistical procedures. The methods Westveld used and the yield tables evolved were described in 1941 (8). But these tables, like their predecessors, were not entirely free of weaknesses. One of the most serious was a failure to take into account changes in stand density with passage of time. Fortunately a reasonably accurate measure of this increase has since been obtained through further studies and repeat measurements on approximately 28 percent of the original growth plots that were used in the yield study.

(It is appropriate to mention here the comprehensive growth study recently begun by a group of Maine timberland owners in cooperation with the Northeastern Forest Experiment Station. This study consists of a network of permanent plots set up in a distribution pattern calculated to produce reliable growth estimates for all stand conditions. However, under this continuous-inventory system at least one—and preferably two—growth periods must elapse before a sound basis for growth predictions will be available.)

The empirical yield tables presented here were designed to serve until more reliable data become available.

BASIS FOR THIS STUDY

The yield tables developed in this study are based on 365 plots established throughout the spruce-fir region of the northeastern United States (fig. 1). The plots were located in representative stands scattered from northernmost Maine to the Adirondacks of New York, including the White and Green Mountain regions of New Hampshire and Vermont.

The plots were confined to those forest sites known as lower spruce slopes and spruce and balsam flats. These are the sites that contain the bulk of the spruce-fir growing stock held by timberland owners of the region. A total of 207 plots were set up in the dominant softwood types (spruce and fir flats where spruce and fir made up 70 percent or more of the stand). The other 158 plots were in the secondary softwood types (lower spruce slopes where hardwood representation ranged from 25 to 70 percent).

A systematic scheme of plot selection was followed so as to sample the widest possible variety of cut-over land conditions and to assure that final results would express the general conditions of the region. Ages of cutting areas studied ranged from those recently cut to those cut 60 years previously (table 1). On most of these areas clear-cutting of conifer pulpwood species had been practiced; that is, spruce and fir down to 6 or 8 inches d.b.h. had been removed while the hardwoods had been left. Thus the residual stands consisted mainly of unmerchantable-size spruce-fir

Table 1 .-- Distribution of yield-study plots by site class, locality, and years since cutting (In number of plots)

Years	1	Dominar	nt soft	wood site	es		Secondary softwood sites				
since cutting	Me.	N.H.	Vt.	N.Y.	Total	Me.	N.H.	Vt.	N.Y.	Total	sites
Less than 3	10				10	8			1	9	19
3- 7	12				12		15	2		17	29
8-12	27	23			50	19	21	6	6	52	102
13-17	6	4		4	14		3	7	8	18	32
18-22	24			8	32		3	7		10	42
23-27	15			15	30		12			12	42
28-32	13			16	29			3	21	24	53
33-37	3				3		4		2	6	9
38-42	5	6			11		6	2		8	19
43-45	6				6	2				2	8
47-52	4	4			8						8
55-57											
58-62	2				2						2
Total	127	37		43	207	29	64	27	38	158	365

FIGURE 1.--The spruce-fir forests of the Northeast and the general distribution of the 365 study plots used in developing the yield tables.

plus hardwoods ranging from small trees to mature trees of large size.

Repeat measurements have been made on 91 plots (approximately 25 percent of the 365 plots). The first remeasurements were made 5 to 8 years after plot establishment (in 1924 and 1925). Re-measurements were made at 5-year

intervals after that. Since the first re-measurements, 18 plots (about 21 percent) have been abandoned for various reasons, leaving 39 plots on the dominant softwood sites and 34 on the secondary sites on which re-measurements are being continued. The re-measurement data provided a fairly reliable basis for testing the accuracy of the yield tables developed. At the same time they provided a measure of changes in composition and stand density.

GROWTH FACTORS AND THEIR EVALUATION

In stands as complex as those found in the spruce-fir region, numerous factors influence the growth and yield of the spruce-fir component. Those exerting the strongest influence were selected for analysis.

Site

The factors that make up site, or site quality, have a strong influence not only on the growth rate of spruce and balsam fir but also on the extent of their representation in the stand. The more favorable these site factors are for spruce-fir production, the greater will be (normally) the yield of these species.

In the spruce-fir region site quality and forest type are closely related. They are determined largely by the physical character of the soil, as affected by drainage. The shallow soils and the soils with poor drainage normally offer the poorest sites. Best sites occur on well-drained, aerated soils of good depth. It is on the wet, shallow soils of the bottom lands and the droughty soils of steep mountain slopes, however, that spruce and fir occur in the greatest abundance. Both species possess root systems well adapted to such sites. Pure spruce-fir stands are almost limited to them.

Hardwoods, on the other hand, require deep fertile soils that offer no serious obstacle to deep root penetration. On the best of these soils hardwoods establish themselves in large numbers and show excellent development. On

such sites the faster-growing, more aggressive hardwoods relegate spruce and fir to secondary and often minor importance. In soils of medium quality, conifers and hardwoods strive with nearly equal success for supremacy of the site.

To give recognition in a broad way to the factor of site, the data were treated on the basis of the two broad site groupings: (1) dominant softwood sites and (2) secondary softwood sites. All plots were segregated into these two classifications.

Dominant Dominant softwood sites are readily recognized softwood by the preponderance of softwood species and the general absence of sugar maple (Acer saccharophorum) and beech (Fagus grandifolia) in the hardwood component (fig. 2). Red spruce and balsam fir are the principal species; hemlock (Tsuga canadensis) and white pine (Pinus strobus) are common associates. Hardwoods are mainly yellow birch (Betula lutea), paper birch (B. papyrifera), aspen (Populus tremuloides), and red maple (Acer rubrum). In the low, wet, and swampy areas black spruce (Picea mariana) predominates. Northern white-cedar (Thuja occidentalis) and tamarack (Larix laricina) are also common.

These softwood sites occur under a wide range of topographic conditions, on steep mountain slopes from about 3,000 feet elevation to timber line as well as in the more

Table 2.--Spruce-fir site-types of the Northeast, ranked by fertility

	Type name	Site	Place in succession		
Local	Society of American Foresters	class	Place in succession		
l. Old-field	Red spruce	Dominant	Usually subclimax to red spruce-sugar maple-beech or red spruce-yellow birch		
2. Lower spruce slope	Red spruce-sugar maple beech	Secondary	Climax		
	Red spruce-yellow birch	Secondary	Possibly climax		
	Red spruce-yellow birch	Dominant	Possibly climax		
3. Spruce flat and balsam flat	Paper birch-red spruce-balsam fir	Dominant	Subclimax to red spruce or red spruce-yellow birch		
	Red spruce	Dominant	Climax		
	Balsam fir	Dominant	Subclimax to red spruce		
4. Upper spruce slope	Red spruce	Dominant	Climax		
5. Spruce swamp	Black spruce	Dominant	Climax		

FIGURE 2.--Dominant softwood sites. Most dominant softwood stands, such as A (left), contain an admixture of hardwoods, principally birch and red maple.

Stand B (above) consists mostly of red spruce, with a scattering of balsam fir and white pine.

The ground cover on these dominant softwood sites is mainly low-growing herbs, mosses, and ferns, with occasional low shrubs.

gentle topography found on bench lands that reach back from streams and lakes and on poorly drained bottom lands and swamps.

Low ground vegetation characterizes these sites. In the nearly pure conifer type feather mosses (mainly Hylocomium), ferns, and numerous herbs comprise the principal ground cover. Common herbaceous plants are bunchberry (Cornus canadensis), woodsorrel (Oxalis acetosella), Canadian mayflower (Maianthemum canadense), and red raspberry (Rubus idaeus). Occasional dwarf shrubs such as lowbush blueberry (Vaccinium angustifolium), Labrador tea (Ledum groenlandicum), and sheep laurel (Kalmia angustifolia) may be present, particularly on areas with slow drainage. With an increased representation of hardwoods, taller shrubs such as witch hobble (Viburnum alnifolium) and honeysuckle (Lonicera canadensis) replace to some extent the dwarf shrubs and herbaceous growth. Where the hardwood admixture includes some beech, scattered mountain maple (Acer spicatum) and striped maple (A. pensylvanicum) may also be found.

Secondary These sites may be recognized by the presence softwood of beech, sugar maple, and yellow birch in sites varying proportions in mixture with red spruce (fig. 3). Balsam fir is also present but usually in lesser numbers than spruce. Hemlock is another common softwood associate. Northern hardwoods comprise 25 to 70 percent of the stand. Secondary softwood sites occupy the better-drained soils of the lower mountain slopes and ridge lands of medium elevation.

Low ground vegetation on these sites is more scanty than on the dominant softwood sites, while shrub growth and hardwood reproduction assume more importance. Nevertheless, herbaceous plants also occur here, some of which—like wood sorrel and Canadian mayflower—are also common to the dominant softwood sites.

Other plants that help to identify these sites are the shiny clubmoss (Lycopodium lucidulum), clintonia (Clintonia borealis), and twisted stalk (Streptopus roseus). Prominent among the shrubs are witch hobble, ground hemlock (Taxus canadensis), and honeysuckle. Striped maple and mountain maple occur with greater frequency; and hardwood reproduction, largely sugar maple and beech, makes up a large part of the low vegetation.

Density

Density is another important factor that affects the yield from forest stands, an increase in density normally being accompanied by an increase in yield. Under the favorable growing conditions that prevail in the Northeast, old-growth spruce-fir stands as a whole contain a full stocking of reproduction prior to cutting. Yet an analysis of stand data obtained in connection with the growth-and-yield study

Table 3.—Stand table by epecise and diameter class, in number of trees per acre

DOMINANT SOFTWOOD SITES

Diametsr clase (inchss)	Rsd spruce	Baleam fir	Yellow birch	Beech	Sugar maple	Red maple	Paper birch	Miecel- lansous	Total epruce and fir	All mer- chantable hardwoods	All weed epeciee
1 2 3 4	18.9 16.4 10.4 8.3	34.7 16.2 10.0 6.5	5.7 3.5 3.3 2.8	0.6 .5 .5	0.1 _ _	5.9 2.1 1.2 1.0	9.2 2.1 1.4 1.0	2.2 1.8 2.5 1.8	53.6 32.6 20.4 14.8	23.7 10.1 8.9 7.1	0.6 1.3 •7
5 6 7 8 9	5.5 3.7 3.8 5.3 2.2	4.5 2.7 2.0 1.5	2.4 2.8 2.6 2.7 1.6	.2 .4 .3	=	1.1 .9 .8 .7	1.4 1.0 1.2 1.0	1.5 1.2 .7 .7	10.0 6.4 5.8 6.8 2.8	6.6 6.3 5.7 5.4 4.0	.1 .3
10 11 12 13 14	1.0 •7 •2 •2	.6 .3 .1 .1	3.4 1.8 1.2 1.0	.2	.1	.5 .3 .1	•7 •6 •5 •4 •3	.8 .6 .8 .3	1.6 1.0 •3 •3	5.6 3.6 2.8 1.8 1.7	=======================================
15 16 17 18	=	=	.5 .6 .5		=	.1	.1	.2	=	1.0 .9 .7	
19 20 21 Total	76.6	79.8	37.8	4.1		16.0	22.1	16.2	156.4	.1 .1 .1	3.8
Percentage	29.8	31.1	14.8	1.6	.1	6.2	8.6	6.3	60.9	37.6	1.5
				SECO	NDARY SO	OFTWOOD S	ITES				
1 2 3	13.8 9.2 6.8 5.4	5.8 7.8 6.2 3.1	11.6 8.3 3.4 4.9	5.2 3.9 1.4 2.3	4.0 2.1 .6 1.2	4.9 3.8 .4 3.6	3.6 1.3 .2	0.4 .4 .3	19.6 17.0 13.0 8.5	29.7 19.8 6.3 12.8	1.5 5.0 1.9
3 4 5 6 7 8	4.7 2.1 3.0 1.4	1.8 1.0 .6	3.0 3.3 1.6 3.3	1.6 2.6 1.0 1.8	.5 .4 .6	.4	.2	.5	6.5 3.1 3.6 1.5	5.7 8.0 4.0 6.2	.2
9 10 11 12	.5 .2 .2	.i	1.4 2.3 1.1 2.4	1.2 1.8 1.2 1.2	-4	.3 .8 .1	<u>.4</u> 	:1 -	.6	3.4 5.4 2.4 4.5	
13 14 15 16	=	=	.6 1.2 .4 1.0	.7 .7 .2 .6	.3 .6 .3				=	1.6 2.5 .9 2.3	
17 18 19 20 22		_	.6 .8 .1 .4	.1 .1 	=	.3 	=			1.0 .9 .1 .4	=
Total	47.5	26.5	52.0	27.6	12.0	17.4	6.7	2.5	74.0	118.2	9.5
Percentage	23.6	13.1	25.8	13.7	6.0	8.6	3.3	1.2	36.7	58.6	4.7

Residual stand after cutting to small diameters for spruce and balsam fir only.

FIGURE 3.—Examples of secondary softwood sites. In these stands spruce and balsam fir occur in mixture with beech, yellow birch, and sugar maple.

A (above) is an uncut stand. In B (right) the merchantable-size softwoods have been cut, leaving hardwoods to dominate the stand.

The ground vegetation on these secondary softwood sites is witch hobble and hardwood reproduction and a variety of herbaceous plants.

shows that cutting leaves these lands in greatly varying states of stocking (table 3).

Several factors prevent adequately stocked stands of reproduction from developing into fully stocked stands of pulpwood. Among them are damage to young growth through careless logging, smothering of reproduction by the accumulation of slash from clear-cutting, elimination of valuable species through competition from inferior species, and fire—which has run over extensive areas of cut-over land. In many places poor stocking can be attributed to lack of advance reproduction before logging.

Relative- Of a group of stands that have the same averdensity age diameter, the one that has the greatest concept number of trees is the best stocked-the densest-of the group. To express stand density adequately, a modification of the method developed by

Reineke (7) was used. The term "relative density", as used here, is the percentage relationship between the number of trees per acre for a specific stand and the regional average number of trees for the same average diameter.

The average number of trees per acre for different average diameters for empirically stocked stands may be considered as representing 100 percent. Then the relative density of an individual stand is its number of trees expressed as a percentage of the tabular values for the same diameter. This contrasts with Reineke's stand-density-index concept, which shows the progression of number of trees and diameters under conditions of uniform stocking.

Change As indicated earlier, some information on the in stand rate at which density changes has been obtained density since publication of the original empirical yield tables for spruce-fir. These changes are highly significant (table 4).

Table 4.--Average change in composition and density over a 15-year period

	Comp	ositio	n index	De	ensity :	index	Averag	ge age	Df	
Site-type	1005	7010	Increase		1010	Increase	of cuttings		Basis: Number	
	1925	1940	decrease	1925	1940	or decrease	1925	1940	of plots	
Dominant softwood	68	69	+1	106	131	+25	24	39	39	
Secondary softwood	53	49	-4	104	154	+50	18	33	34	

Composition changes to be significant at the 1-percent level must exceed 7 units for the dominant sites and 15 for the secondary sites; at the 5-percent level the corresponding figures are 5 and 11.

Analysis of the data showed that density increases rapidly in areas cut recently, as new reproduction comes in. As time passes, the increase in density tapers off; and, as the stand becomes mature and mortality sets in, density begins to decrease. Thus allowance must be made for density changes. Otherwise there is danger of underestimating yield from young stands and overestimating yield from old stands.

The same trend in density is manifested in degree of stocking. Rapid increase in density is associated with low

Density changes to be significant at the 1-percent level must exceed 13 units for the dominant sites and 18 for the secondary sites; at the 5-percent level the corresponding figures are 9 and 13.

initial stocking. The rate declines as the stocking increases, actual reduction in density occurring in older stands that have a high density of stocking.

Some idea of how changes in density affect growth and yield can be gained from table 5, in which a 20-year-old cut-over area (dominant site) with a composition index of 70 is used as an example. In this example, errors in yield estimates range up to 11.3 percent and those for growth up to 26.9 percent.

Table 5.—Comparison of growth and yield over a 10-year period with and without allowance for density changes

(For 20-year old spruce-fir stand on the dominan	t softwood eite with a composition index of 70.)
--	--

Density	Aesuming	no densit	y change	Allowing for density change							
at beginning	Volume a	at	Growth	Density		Volume	Growth	Error	Error		
of 10-year period	Beginning of period	End of period	for 10-year period	at end of period	Change in density	at end of period	for 10-year period	in growth estimate	in yield eetimate		
Units	Cords	Cords	Cords	Units	Units	Cords	Cords	Percent	Percent		
30	3.2	5.1	1.9	64	+34	5.7	2.5	24.0	10.5		
50	3.6	5.5	1.9	83	+33	6.2	2.6	26.9	11.3		
70	3.9	6.0	2.1	102	+32	6.6	2.7	22.2	9.1		
90	4.3	6.4	2.1	120	+30	7.0	2.7	22.2	8.6		
110	4.7	6.8	2.1	138	+28	7.4	2.7	22.2	8.1		
130	5.1	7.2	2.1	154	+24	7.8	2.7	22.2	7.7		
150	5.5	7.7	2,2	170	+20	8.1	2.6	15.4	4.9		
170	5.9	8.1	2.2	185	+15	8.4	2.5	12.0	3.6		
190	6.3	8.5	2.2	200	+10	8.7	2.4	8.3	2.3		
210	6.7	9.0	2.3	215	+ 5	9.1	2.4	4.2	1,1		

Composition

Growth and yield of spruce and fir are closely related to stand composition. As pointed out earlier, the two broad site-type groups used in the yield study contain extremely complex and variable mixtures of both hardwoods and softwoods. So the extent to which spruce and fir are in possession of an area will largely determine the final yields of these species.

Composition In view of the importance of composition, it index was necessary to evolve a scheme for measuring and classifying the wide range of stand composition encountered in the study. The simple scheme evolved is based on the relationship of the number of spruce

FIGURE 4.--Other things being equal, the greater the elapsed time since cutting, the greater the yield. Stand A (above) is in a 10-year-old cutting; young softwoods are in complete possession of the stand but only few are of pulpwood size.

Stand B (right) was cut for pulpwood 30-35 years ago, and now it supports more than 10 cords of spruce-fir per acre. Both are classed as dominant softwood stands.

initial stocking. The rate declines as the stocking increases, actual reduction in density occurring in older stands that have a high density of stocking.

Some idea of how changes in density affect growth and yield can be gained from table 5, in which a 20-year-old cut-over area (dominant site) with a composition index of 70 is used as an example. In this example, errors in yield estimates range up to 11.3 percent and those for growth up to 26.9 percent.

Table 5.—Comparison of growth and yield over a 10-year period with and without allowance for density changes

(For 20-year old spruce-fi	r stand on the dominant	eoftwood eite with a	composition index of 70.)
----------------------------	-------------------------	----------------------	---------------------------

Density	Aesuming	no densit	y change	Allowing for density change							
at beginning	Volume at		Growth	Density	Change	Volume	Growth	Error	Error		
of 10-year period	Beginning of period	End of period	for 10-year period	at end of period	in density	at end of period	for 10-year period	in growth estimate	in yield eetimate		
Unite	Cords	Cords	Cords	Units	Units	Cords	Cords	Perceht	Percent		
30	3.2	5.1	1.9	64	+34	5.7	2.5	24.0	10.5		
50	3.6	5.5	1.9	83	+33	6.2	2.6	26.9	11.3		
70	3.9	6.0	2.1	102	+32	6.6	2.7	22.2	9.1		
90	4.3	6.4	2.1	120	+30	7.0	2.7	22.2	8.6		
110	4.7	6.8	2.1	138	+28	7.4	2.7	22.2	8.1		
130	5.1	7.2	2.1	154	+24	7.8	2.7	22.2	7.7		
150	5.5	7.7	2,2	170	+20	8.1	2.6	15.4	4.9		
170	5.9	8.1	2.2	185	+15	8.4	2.5	12.0	3.6		
190	6.3	8.5	2.2	200	+10	8.7	2.4	8.3	2.3		
210	6.7	9.0	2.3	215	+ 5	9.1	2.4	4.2	1.1		

Composition

Growth and yield of spruce and fir are closely related to stand composition. As pointed out earlier, the two broad site-type groups used in the yield study contain extremely complex and variable mixtures of both hardwoods and softwoods. So the extent to which spruce and fir are in possession of an area will largely determine the final yields of these species.

Composition In view of the importance of composition, it index was necessary to evolve a scheme for measuring and classifying the wide range of stand composition encountered in the study. The simple scheme evolved is based on the relationship of the number of spruce

FIGURE 4.--Other things being equal, the greater the elapsed time since cutting, the greater the yield. Stand A (above) is in a 10-year-old cutting; young softwoods are in complete possession of the stand but only few are of pulpwood size.

Stand B (right) was cut for pulpwood 30-35 years ago, and now it supports more than 10 cords of spruce-fir per acre. Both are classed as dominant softwood stands.

and balsam fir trees to the total number of all trees in the stand.

This measure of spruce-fir representation in the stand was termed the "composition index". Thus a stand that contains spruce and fir only rates a composition index of 100; a stand with half its trees spruce and fir rates an index of 50, and so on.

Changes Because spruce-fir yields are closely corin related with changes in composition, the
composition extent of such changes was studied. Data
from re-measurements of the original growthstudy plots were used. The study showed (table 4) that
changes in composition are not significant.

Apparently under normal conditions the relationships between hardwoods and softwoods are maintained or are only slightly altered over a long period. Of course an epidemic of disease or insects could quickly disturb this balance.

Elapsed Time Since Cutting

Other things being equal, the greater the elapsed time since cutting, the greater will be the yield (fig. 4). Often maps or office records will reveal the date of cutting for the different parcels of land in an ownership block.

If such information is not available, it can be obtained during the inventory cruise. Date of cutting can usually be determined within a year or two by counting the annual growth rings on fast-growing hardwoods that spring up in skid roads and skid trails the first growing season after logging. Increment borings will often provide another clue to date of cutting: well-developed trees near stumps usually show accelerated growth as a result of the cutting.

Effective Age

However, even among stands of identical age, growing-stock volume varies greatly (table 6). For example, among plots comprising the 20-year-old cutting series the volume deviation ranges from 6.8 to 60.4 percent of mean.

This is understandable when one considers the wide range in stand conditions that result from pulpwood cutting operations. Cutting leaves some areas practically devoid of trees; even seedlings may be lacking (fig. 5). Other areas, even after clear-cutting, are left with a good stocking of reproduction and saplings up to 5 inches d.b.h. as well as a scattering of merchantable size trees skipped by the cutters. The average recently cut-over area is likely to support a stand midway between these two extremes.

Table 6.--Volume deviations from the mean: comparison of effective and chronological ages of 20-year-old cuttings on dominant softwood site

Plot number	Composition index	Density index	Actual volume per acre	Deviation from mean	Chronological age	Effective age
	Units	Units	Cu.ft.	Percent	Years	Years
28	50	82	356	~38.0	20	22
29	53	97	353	-38.5	20	20
30	50	104	256	-55.4	20	14
31	76	90	720	+25.3	20	33
32	77	85	749	+30.4	20	35
33	78	83	613	+ 6.8	20	30
34	69	111	626	+ 9.0	20	30
35	78	85	921	+60.4	20	44
Mean	66	92	574	0	20	28

By determining the "effective age" of a stand it is possible to adjust for these differences. In calculating yield, "effective age" was used rather than age of cutting. "Effective age" functions as an indirect expression of growing-stock volume.

It is obvious that after a lapse of 20 years the yield from a well-stocked cut-over area will be much greater than that from an area left devoid of trees or stocked only with seedlings. This could hardly be otherwise in view of the larger volume left as a growing base. In fact, the behavior (rate of wood production) of the well-stocked cut-over area at 20 years may be equal to that of the average 30-year-old cut-over area. If so, its "effective age" is considered to be 30 years; and this age--rather than its chronological age of 20 years--should be used in calculating yield.

FIGURE 5.--The amount of growing stock left after cutting varies greatly. Some areas are left practically devoid of trees, as in A (above). Others, even after clear-cutting, are left with a good stock of saplings, as in B (right).

After a lapse of years, the yield from the betterstocked area will obviously be greater than that from areas left devoid of trees.

Stand A is classified as dominant softwood. Stand B is secondary softwood.

On the other hand, the performance of the poorly stocked area at 20 years may resemble that of the average 10-year-old cut-over area, in which case its "effective age" is 10 years.

The inventory cruise, besides providing the data needed for computing density, composition, and years since cutting, gives the present volume of growing stock—hence the basis for determining the stand's effective age. This value 2 is obtained from the regression equation, using the

²ESTIMATING THE VALUE OF THE INDEPENDENT VARIABLE FROM A KNOWN VALUE OF THE DEPENDENT MAY RESULT IN A BIASED ESTIMATE. TESTS FOR BIAS OR OTHER FLAWS WERE MADE. SO FAR AS MEAN RESIDUALS ARE CONCERNED. NO BIAS WAS FOUND IN THE REGRESSION OF EFFECTIVE AGE OVER ACTUAL AGE FOR THE DOMINANT SOFTWOOD SITES. FOR SECONDARY SOFTWOOD SITES, b WAS FOUND TO BE SIGNIFICANTLY GREATER THAN 1. BUT THIS ONLY CASTS DOUBT ON THE ESTIMATE OF EFFECTIVE AGE. THE ESTIMATE OF GROWTH MAY BE UNBIASED.

observed values of yield or growing-stock volume, density, and composition.

As employed here, the use of effective age is only an artifice to permit an approximate adjustment for present volume. To estimate future yield (later discussed in detail) it is necessary to add the desired time interval, adjust for corresponding average change in density, and substitute these values together with observed composition in the basic equation. The result is a more accurate estimate than would be obtained from conventional use of the equation because additional information is used.

A stand's effective age usually differs from its chronological age. Note (table 6) that of the eight plots in the 20-year cutting series, chronological and effective age are on a parity in only one (plot 29). In only one (plot 30) is the effective age (14 years) below the chronological age (20 years). For the majority of the plots the effective age exceeds the chronological age by a large margin. In fact the group of plots as a whole are performing in the manner of 28-year-old cut-over areas.

Cut-over areas that rate minus effective age contain few if any merchantable-size spruce and fir stems. Even though such areas are well stocked with seedlings they will still rate a low density index, because density is based only on trees l inch d.b.h. and larger. On these seedling-stocked areas there may be no measurable density increase for a long time. Eventually, however, as restocking progresses and reproduction attains sapling and pole size, the areas will pass from a minus to a plus effective age. From this point on, the density index may rise rapidly.

DEVELOPING THE YIELD TABLES.

The most important factors that affect the growth and yield of spruce and balsam fir after clear-cutting are site, elapsed time since cutting, stand density, and stand composition. The first of these factors, site, was recognized by treating the data on the basis of two broad site groups, dominant softwood sites and secondary softwood sites. Thus elapsed time, density, and composition remained as three independent variables; and they lended themselves readily to evaluation.

To measure accurately the combined influence of these variables on yield, the standard multiple-correlation method of analysis was used. Although a straight-line regression appeared to express satisfactorily the relationships among the variables in both major site groups, evidence of some curvilinearity was found, particularly for the secondary softwoods. This curvilinearity was incorporated into the graphed equation through analysis of residuals.

Satisfactory regression curves were evolved through successive approximations. The second and final estimate for dominant softwood sites resulted in a correlation coefficient of 0.755 and a standard error of \pm 446.00. The third and final estimate for secondary softwood sites gave corresponding values of 0.721 and \pm 267.82.

The basic formula developed for expressing yield is--

$$V = b_1 T + \frac{b_2 (N_c + N_o)}{N} + \frac{b_3 N_c}{N_c + N_o} + d$$

--in which V = volume of spruce and balsam fir; T = time since cutting; $N_{\rm C}$ = number of spruce and balsam fir trees; $N_{\rm O}$ = number of other species; N = number of trees, taken from density curve; and b₁, b₂, b₃, and d = constants.

Multiple regression equations, one for each of the two major spruce-fir type groups, were evolved. For dominant softwood sites--

$$V = 27.59T + 2.71D + 6.43C - 488.06$$

and for secondary softwood sites --

$$V = 14.55T + 3.87D + 4.02C - 269.40$$

--in which V = total cubic-foot volume of spruce and fir l inch d.b.h. or larger; T = time in years since cutting; D = density index; and C = composition index.

Using as a basis the final regression curves evolved for the two broad site groups, alinement charts (pp. 38-41) were constructed for each according to the method described by Bruce (2) and Reineke (3). Basic cubic-foot yield tables were calculated directly from these charts.

However, since the equations give values for the entire spruce-fir stand (that is, for all trees of these two species in and above the l-inch diameter class), conversion factors were used to calculate merchantable yields in cubic feet and cords per acre. Behre's form-class system $(\underline{1})$ was followed in developing the yield tables.

As developed, the empirical yield tables show the merchantable contents per acre of all spruce and balsam fir trees in and above the 6-inch diameter class, with a 1-foot stump allowance and a top utilization limit of 3 inches inside bark. No allowance was made for cull.

Two sets of tables were prepared. One shows merchantable cubic-foot volume, the other volume in cords.

Cord volumes are based on 95 cubic feet of solid wood (peeled) in a stacked cord of 128 cubic feet. Studies have shown that spruce and fir pulpwood with bark averages about 12 percent more volume than peeled pulpwood. Because unpeeled wood makes looser stacks, an over-run of approximately 15 percent should be allowed in calculating the solid content in stacked cords of unpeeled wood.

II

THE YIELD TABLES

AND ALINEMENT CHARTS

EMPIRICAL YIELD TABLES

Ι

Dominant softwood sites: Total merchantable volume per acre
of all trees in 6-inch diameter class and larger

(In cubic feet)

10-YEAR-OLD CUTTINGS

Density		Composition index													
index	10	20	30	40	50	60	70	80	90	100					
10			2	24	50	7 9	110	143	179	217					
30			21	45	74	105	137	173	211	251					
50	20	26	42	69	100	133	168	205	245	286					
70	24	37	65	94	127	163	200	238	279	321					
90	33	60	90	122	156	194	232	273	315	357					
110	56	84	117	150	187	227	266	308	349	392					
130	80	111	146	182	220	260	301	343	386	427					
150	107	141	176	213	254	294	336	378	422	466					
170	135	170	207	247	288	330	371	414	459	504					
190	165	202	241	281	324	365	408	452	497	543					
210	196	235	275	316	358	401	446	490	536	583					
230	228	269	310	352	395	438	483	529	576	622					
250	263	303	344	387	432	476	523	569	616	663					
20-YEAR-OLD CUTTINGS															
10	58	87	119	153	190	229	270	310	351	395					
30	82	114	148	185	222	264	304	346	387	433					
50	107	143	179	217	255	298	339	382	425	471					
70	137	172	212	251	290	333	374	418	463	509					
90	166	204	244	285	326	367	411	455	501	547					
110	197	237	278	320	362	404	448	493	539	586					
130	229	272	313	355	397	441	485	532	578	625					
150	264	307	348	391	434	479	522	571	618	664					
170	300	342	383	427	472	517	562	610	658	704					
190	336	377	419	465	511	555	601	650	698	746					
210	371	412	457	503	549	594	640	690	739	788					
230	407	450	494	542	589	634	682	732	781	831					
~	444	490	536	582	632	675	725	775	824	876					

Dominant softwood sites, cubic-foot volume (continued).--

30-YEAR-OLD CUTTINGS

30 236 274 50 269 308 70 304 343 90 338 379 110 374 416 130 411 453 150 447 492 170 484 529 190 523 568 210 563 608 230 603 649	30 40 282 323 316 357 351 393 387 429 424 467 462 505	3 363 7 398 8 435 9 474	60 407 444 482	70 450 488	80 495	90	100
30 236 274 50 269 308 70 304 343 90 338 379 110 374 416 130 411 453 150 447 492 170 484 529 190 523 568 210 563 608 230 603 649	316 357 351 393 387 429 424 467	398 3 435 474	1,1,1,			5/.1	
30 236 274 50 269 308 70 304 343 90 338 379 110 374 416 130 411 453 150 447 492 170 484 529 190 523 568 210 563 608 230 603 649	351 393 387 429 424 467	3 435 474		488)4±	589
50 269 308 70 304 343 90 338 379 110 374 416 130 411 453 150 447 492 170 484 529 190 523 568 210 563 608 230 603 649	387 429 424 467	474	482		535	580	627
90 338 379 110 374 416 130 411 453 150 447 492 170 484 529 190 523 568 210 563 608 230 603 649	424 467			527	574	622	668
110 374 416 130 411 453 150 447 492 170 484 529 190 523 568 210 563 608 230 603 649			518	567	615	662	708
130 411 453 150 447 492 170 484 529 190 523 568 210 563 608 230 603 649	1.62 505	513	557	606	654	702	748
150 447 492 170 484 529 190 523 568 210 563 608 230 603 649	402	5 552	598	645	694	743	790
170 484 529 190 523 568 210 563 608 230 603 649	499 545	5 593	638	685	736	784	834
190 523 568 210 563 608 230 603 649	537 583	632	678	727	778	828	876
210 563 608 230 603 649	577 623	672	719	769	822	873	919
230 603 649	617 663	712	762	812	864	915	962
	657 704	753	803	855	908	958	1,004
250 643 689	698 746	797	847	899	951	1,003	1,047
	738 788	840	892	943	997	1,047	1,090
	40 - ¥	TEAR-OLD CUT	TINGS				
10 375 420	465 510) 556	602	650	698	746	795
30 412 457	502 549	595	642	690	739	788	838
50 450 495	541 587	635	682	732	781	830	882
70 488 534	580 627	676	724	774	824	874	925
90 527 573	620 668	717	766	816	867	917	970
110 566 613	660 708	757	808	859	910	961	1,015
130 606 653	700 750	800	852	902	954	1,004	1,058
150 646 693	742 792	843	894	946	999	1,049	1,102
170 686 735	784 836	885	938	989	1,042	1,094	1,147
190 727 777	827 879	928	983	1,033	1,087	1,139	1,192
210 769 821	869 922	974	1,026	1,078	1,131	1,184	1,237
230 812 864	07.1	1,018	1,069	1,123	1,177	1,231	1,285
250 856 910	914 967			,		上りたノエ	-, 20)

(Continued)

Dominant softwood sites, cubic-foot volume (continued).--

50-YEAR-OLD CUTTINGS

Density					Compositi	on index		-		
index	10	20	30	40	50	60	70	80	90	100
10	570	616	663	710	760	810	862	913	966	1,018
30	610	656	703	753	802	853	906	958	1,011	1,062
50	650	696	744	795	845	897	950	1,002	1,054	1,107
70	688	737	786	838	889	942	994	1,046	1,098	1,153
90	729	778	830	883	932	985	1,038	1,090	1,143	1,197
110	772	823	873	925	976	1,029	1,082	1,135	1,187	1,243
130	814	864	917	969	1,021	1,073	1,127	1,180	1,233	1,288
150	857	908	960	1,013	1,064	1,115	1,171	1,226	1,281	1,336
170	900	953	1,003	1,056	1,108	1,162	1,217	1,273	1,328	1,384
190	944	997	1,047	1,101	1,153	1,207	1,263	1,320	1,376	1,432
210	988	1,040	1,091	1,146	1,198	1,254	1,310	1,367	1,424	1,481
230	1,032	1,084	1,136	1,191	1,244	1,300	1,358	1,414	1,471	1,528
250	1,076	1,128	1,183	1,240	1,290	1,350	1,405	1,461	1,518	1,576
				60-YEAR-	-OLD CUTTI	NGS				
10	776	826	876	928	979	1,030	1,085	1,137	1,191	1,245
30	818	868	920	972	1,024	1,077	1,130	1,183	1,238	1,292
50	862	913	964	1,017	1.069	1,121	1,176	1,229	1,285	1,339
70	905	956	1,008	1,059	1,113	1,166	1,223	1,276	1,336	1,387
90	948	1,000	1,052	1,104	1,158	1,212	1,268	1,323	1,380	1,434
110	992	1,043	1,097	1,150	1,204	1,259	1,315	1,370	1,427	1,483
130	1,035	1,087	1,140	1,196	1,250	1,305	1,362	1,417	1,474	1,531
150	1,080	1,132	1,186	1,242	1,297	1,354	1,409	1,465	1,521	1,580
170	1,124	1,179	1,233	1,289	1,345	1,401	1,457	1,513	1,568	1,626
190	1,171	1,225	1,280	1,337	1,392	1,449	1,505	1,561	1,615	1,673
210	1,216	1,271	1,326	1,383	1,440	1,496	1,553	1,607	1,663	1,721
230	1,262	1,318	1,374	1,432	1,487	1,544	1,600	1,656	1,709	1,768
250	1,311	1,365	1,423	1,478	1,535	1,591	1,649	1,702	1,758	1,817
					,,,,,				,	

EMPIRICAL YIELD TABLES

I I

Dominant softwood sites: Total merchantable volume per acre
of all trees in 6-inch diameter class and larger

(In cords)

10-YEAR-OLD CUTTINGS

Density				Co	mpositio	n index				
index	10	20	30	40	50	60	70	80	90	100
· · · · · · · · · · · · · · · · · · ·										
10			0.02	0.3	0.5	0.8	1.2	1.5	1.9	2.3
30			.2	•5	.8	1.1	1.4	1.8	2.2	2.6
50	0.04	0.2	.4	.7	1.1	1.4	1.8	2.2	2.6	3.0
70	.2	-4	• 7	1.0	1.3	1.7	2.1	2.5	2.9	3.4
90	•3	.6	•9	1.3	1.6	2.0	2.4	2.9	3.3	3.8
110	.6	.9	1.2	1.6	2.0	2.4	2.8	3.2	3.7	4.1
130	.8	1.2	1.5	1.9	2.3	2.7	3.2	3.6	4.1	4.5
150	1.1	1.5	1.9	2.2	2.7	3.1	3.5	4.0	4.4	4.9
170	1.4	1.8	2.2	2.6	3.0	3.5	3.9	4.4	4.8	5.3
190	1.7	2.1	2.5	3.0	3.4	3.8	4.3	4.8	5.2	5.7
210	2.1	2.5	2.9	3.3	3.8	4.2	4.7	5.2	5.6	6.1
230	2.4	2.8	3.3	3.7	4.2	4.6	5.1	5.6	6.1	6.5
250	2.8	3.2	3.6	4.1	4.5	5.0	5.5	6.0	6.5	7.0
			20-	YEAR-OLI	CUTTING	s				
10	0.6	0.9	1.3	1.6	2.0	2.4	2.8	3.3	3.7	4.2
30	.9	1.2	1.6	1.9	2.3	2.8	3.2	3.6	4.1	4.6
50	1.1	1.5	1.9	2.3	2.7	3.1	3.6	4.0	4.5	5.0
70	1.4	1.8	2.2	2.6	3.1	3.5	3.9	4.4	4.9	5.4
90	1.7	2.1	2.6	3.0	3.4	3.9	4.3	4.8	5.3	5.8
110	2.1	2.5	2.9	3.4	3.8	4.3	4.7	5.2	5.7	6.2
130	2.4	2.9	3.3	3.7	4.2	4.6	5.1	5.6	6.1	6.6
150	2.8	3.2	3.7	4.1	4.6	5.0	5.5	6.0	6.5	7.0
170	3.2	3.6	4.0	4.5	5.0	5.4	5.9	6.4	6.9	7.4
190	3.5	4.0	4.4	4.9	5.4	5.8	6.3	6.8	7.3	7.9
210	3.9	4.3	4.8	5.3	5.8	6.3	6.7	7.3	7.8	8.3
000	4.3	4.7	5.2	5.7	6.2	6.7	7.2	7.7	8.2	8.7
230										

Dominant softwood sites, volume in cords (continued).--

30-YEAR-OLD CUTTINGS

Density					Composit	ion inde	x			
index	10	20	30	40	50	60	70	80	90	100
10	2.1	2.5	3.0	3.4	3.8	4.3	4.7	5.2	5.7	6.2
30	2.5	2.9	3.3	3.8	4.2	4.7	5.1	5.6	6.1	6.6
50	2.8	3.2	3.7	4.1	4.6	5.1	5.5	6.0	6.5	7.0
70	3.2	3.6	4.1	4.5	5.0	5.5	6.0	6.5	7.0	7.5
90	3.6	4.0	4.5	4.9	5.4	5.9	6.4	6.9	7.4	7.9
110	3.9	4.4	4.9	5.3	5.8	6.3	6.8	7.3	7.8	8.3
130	4.3	4.8	5.3	5.7	6.2	6.7	7.2	7.7	8.3	8.8
150	4.7	5.2	5.7	6.1	6.7	7.1	7.7	8.2	8.7	9.2
170	5.1	5.6	6.1	6.6	7.1	7.6	8.1	8.6	9.2	9.7
190	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.1	9.6	10.1
210	5.9	6.4	6.9	7.4	7.9	8.5	9.0	9.6	10.1	10.6
230	6.3	6.8	7.3	7.9	8.4	8.9	9.5	10.0	10.6	11.0
250	6.8	7.3	7.8	8.3	8.8	9.4	9.9	10.5	11.0	11.5
			40	-YEAR-O	LD CUTTI	NGS				
10	3.9	4.4	4.9	5.4	5.9	6.3	6.8	7.3	7.9	8.4
30	4.3	4.8	5.3	5.8	6.3	6.8	7.3	7.8	8.3	8.8
50	4.7	5.2	5.7	6.2	6.7	7.2	7.7	8.2	8.7	9.3
70	5.1	5.6	6.1	6.6	7.1	7.6	8.1	8.7	9.2	9.7
90	5.5	6.0	6.5	7.0	7.5	8.1	8.6	9.1	9.7	10.2
110	6.0	6.5	6.9	7.5	8.0	8.5	9.0	9.6	10.1	10.7
130	6.4	6.9	7.4	7.9	8.4	9.0	9.5	10.0	10.6	11.1
150	6.8	7.3	7.8	8.3	8.9	9.4	10.0	10.5	11.0	11.6
170	7.2	7.7	8.3	8.8	9.3	9.9	10.4	11.0	11.5	12.1
190	7.7	8.2	8.7	9.2	9.8	10.3	10.9	11.4	12.0	12.5
210	8.1	8.6	9.1	9.7	10.3	10.8	11.3	11.9	12.5	13.0
230	8.5	9.1	9.5	10.2	10.7	11.3	11.8	12.4	13.0	13.5
250	9.0	9.6	10.1	10.6	11.2	11.7	12.3	12.9	13.4	14.0

Dominant softwood sites, volume in cords (continued).--

50-YEAR-OLD CUTTINGS

	Density				Co	ompositio	on index				
	index	10	20	30	40	50	60	70	80	90	100
			, -	- 0							
	10	6.0	6.5	7.0	7.5	8.0	8.5	9.1	9.6	10.2	10.7
1	30	6.4	6.9	7.4	7.9	8.4	9.0	9.5	10.1	10.6	11.2
	50	6.8	7.3	7.8	8.4	8.9	9.4	10.0	10.5	11.1	11.7
	70	7.2	7.8	8.3	8.8	9.4	9.9	10.5	11.0	11.6	12.1
1	90	7.7	8.2	8.7	9.3	9.8	10.4	10.9	11.5	12.0	12.6
	110	8.1	8.7	9.2	9.7	10.3	10.8	11.4	11.9	12.5	13.1
	130	8.6	9.1	9.7	10.2	10.7	11.3	11.9	12.4	13.0	13.6
	150	9.0	9.6	10.1	10.7	11.2	11.7	12.3	12.9	13.5	14.1
	170	9.5	10.0	10.6	11.1	11.7	12.2	12.8	13.4	14.0	14.6
1	190	9.9	10.5	11.0	11.6	12.1	12.7	13.3	13.9	14.5	15.1
1	210	10.4	10.9	11.5	12.1	12.6	13.2	13.8	14.4	15.0	15.6
	230	10.9	11.4	12.0	12.5	13.1	13.7	14.3	14.9	15.5	16.1
	250	11.3	11.9	12.5	13.1	13.6	14.2	14.8	15.4	16.0	16.6
-				60	O-YEAR-OI	D CUTTIN	IGS				
	10	8.2	8.7	9.2	9.8	10.3	10.8	11.4	12.0	12.5	13.1
1	30	8.6	9.1	9.7	10.2	10.8	11.3	11.9	12.5	13.0	13.6
	50	9.1	9.6	10.1	10.7	11.2	11.8	12.4	12.9	13.5	14.1
l	70	9.5	10.1	10.6	11.1	11.7	12.3	12.9	13.4	14.0	14.6
	90	10.0	10.5	11.1	11.6	12.2	12.8	13.3	13.9	14.5	15.1
1	110	10.4	11.0	11.5	12.1	12.7	13.3	13.8	14.4	15.0	15.6
	130	10.9	11.4	12.0	12.6	13.2	13.7	14.3	14.9	15.5	16.1
	150	11.4	11.9	12.5	13.1	13.7	14.3	14.8	15.4	16.0	16.6
	170	11.8	12.4	13.0	13.6	14.2	14.7	15.3	15.9	16.5	17.1
	190	12.3	12.9	13.5	14.1	14.7	15.3	15.8	16.4	17.0	17.6
	210	12.8	13.4	14.0	14.6	15.2	15.7	16.3	16.9	17.5	18.1
	230	13.3	13.9	14.5	15.1	15.7	16.3	16.8	17.4	18.0	18.6
	250	13.8	14.4	15.0	15.6	16.2	16.7	17.4	17.9	18.5	19.1
L								-			

EMPIRICAL YIELD TABLES

I I I

Secondary softwood sites: Total: merchantable volume per acre of all trees in 6-inch diameter class and larger

(In cubic feet)

10-YEAR-OLD CUTTINGS

10 20 30 40 50 60 70 80	10 2 10 10 10 10 10 10 10 10 10 10 10 10 10	9 30 4 37 9 45 6 52	40 41 49 57	50 44 52 61	60 46 54	70 47 55	80 47 55	90
10 20 30 40 50 60 70 80	6 1 10 2 14 2 19 3 24 4 30 5	9 30 4 37 9 45 6 52	41 49 57	<i>1</i> ,4,52	46 54	47	47	48
20 30 40 50 60 70 80	10 2 14 2 19 3 24 4 30 5	4 37 9 45 6 52	49 57	52	54			
20 30 40 50 60 70 80	10 2 14 2 19 3 24 4 30 5	4 37 9 45 6 52	49 57	52	54			
30 40 50 60 70 80	14 2 19 3 24 4 30 5	9 45 6 5 2	57			55	55	
40 50 60 70 80	19 3 24 4 30 5	6 52		61))	56
50 60 70 80	24 4 30 5		66		63	63	64	65
60 70 80	30 5	2 61		71	73	73	74	75
70 80			76	81	83	84	84	85
80	26 -	0 70	87	93	95	96	97	98
	36 5	9 81	99	106	109	110	111	111
90	42 6	8 92	113	122	124	1.26	127	128
	51 7	8 106	131	142	145	147	149	149
100	59 9	0 122	153	170	174	177	179	181
110	68 10	2 141	185	206	211	216	219	222
120	79 11	B 169	232	271	281	294	297	300
130	90 13	6 206	309	351	363	372	376	381
140 1	04 16	1 269	389	428	435	444	449	451
150 1	19 19	5 350	458	486	493	500	502	504
		20-Y	EAR-OLD	CUTTING	s			
10	23 4	1 59	73	79	80	81	82	82
	28 4		84	90	92	93	94	94
	34 5	•	96	102	105	106	107	108
-	41 6		109	118	120	122	123	124
	49 7		127	136	139	142	144	145
ĺ	57 8			162	166	170	171	173
	66 9			195	200	205	208	211
,	76 11			248	259	269	274	277
	88 13			331	341	351	356	359
	.00 15			411	420	426	430	433
110 1	14 18			474	479	485	488	490
	.31 23			520	526	532	534	537
i	.54 30			564	569	573	575	577
-	.85 38			600	606	610	612	614
	32 45			634	639	642	644	646

Secondary softwood sites, cubic-foot volume (continued).--

30-YEAR-OLD CUTTINGS

Density				Compo	sition :	index			
index	10	20	30	40	50	60	70	80	90
10	47	73	98	122	131	134	136	137	139
20	55	84	113	142	155	159	162	164	166
30	63	96	131	169	186	192	196	198	201
40	73	110	154	206	232	241	248	252	256
50	84	126	185	269	309	321	330	334	338
60	96	146	230	350	389	402	411	415	419
70	110	176	305	424	458	466	472	475	477
80	127	215	388	484	511	515	520	523	525
30	146	286	456	530	553	558	563	565	567
1.00	176	367	509	572	591	596	600	602	604
11.0	215	459	552	608	626	631	634	637	638
120	286	496	590	642	659	663	666	668	671
130	376	542	626	673	638	691	695	697	698
140	449	582	659	701	717	720	723	725	726
150	500	618	688	729	744	746	749	751	752
			40-YEA	R-OLD C	UTTINGS				
			40 124						
10	81	122	176	246	290	301	309	314	318
20 .	94	142	217	331	374	384	391	397	401
3°	107	169	290	411	444	453	460	465	467
40	122	206	374	474	500	507	512	514	515
50	142	271	444	523	544	551	555	557	559
60	171	354	500	565	582	588	592	595	597
70	207	429	544	601	620	624	627	629	631
80	273	485	582	635	651	656	659	661	663
90	357	533	620	667	683	686	689	691	691
100	431	575	651	696	711	715	717	719	720
110	488	612	683	724	738	741	744	745	746
120	535	645	710	750	764	767	769	770	771
130	577	675	737	774	786	788	790	792	793
140	614	703	764	797	808	811	813	815	816
150	647	731	787	819	830	832	834	835	836
								/	

Secondary softwood sites, cubic-foot volume (continued).--

50-YEAR-OLD CUTTINGS

Density				Сотро	sition	index			
index	10	20	30	40	50	60	70	80	90
10	143	248	435	517	537	545	548	550	551
20	167	337	490	556	574	582	584	587	590
30	203	416	537	594	613	619	622	623	626
40	285	480	574	631	645	650	653	656	657
50	371	532	619	662	678	683	688	689	691
60	430	568	645	690	706	710	713	716	718
70	490	604	677	722	735	738	740	742	742
80	537	638	707	747	762	765	768	769	769
90	570	670	732	768	782	784	787	788	789
100	615	702	763	792	805	808	810	811	813
110	643	730	784	815	825	829	830	831	833
120	674	756	805	834	847	850	852	853	856
130	707	778	825	857	867	871	874	876	877
140	732	803	851	880	890	894	896	897	898
150	763	824	872	899	909	910	913	914	916

EMPIRICAL YIELD TABLES

I V

Secondary softwood sites: Total merchantable volume

per acre of all trees in 6-inch diameter

class and larger

(In cords)

10-YEAR-OLD CUTTINGS

Density				Compo	sition	index			
index	10	20	30	40	50	60	70	80	90
					^ ~	0.7			
10	0.1	0.2	0.3	0.4	0.5	0.5	0.5	0.5	0.5
20	.1	•3	.4	•5	.6	.6	.6	.6	.6
30	.1	.3	-5	.6	.6	•7	•7	•7	•7
40	.2	-4	• 5	•7	.8	.8	.8	.8	.8
50	-3	.4	.6	.8	•9	.9	•9	•9	• 9
60	-3	- 5	.7	•9	1.0	1.0	1.0	1.0	1.0
70	•4	.6	. 9	1.0	1.1	1.1	1.2	1.2	1.2
80	.4	-7	1.0	1.2	1.3	1.3	1.3	1.3	1.3
90	• 5	.8	1.1	1.4	1.5	1.5	1.5	1.6	1.6
100	.6	- 9	1.3	1.6	1.8	1.8	1.9	1.9	1.9
110	-7	1.1	1.5	1.9	2.2	2.2	2.3	2.3	2.3
120	.8	1.2	1.8	2.4	2.9	3.0	3.1	3.1	3.2
130	.9	1.4	2.2	3.3	3.7	3.8	3.9	4.0	4.0
140	1.1	1.7	2.8	4.1	4.5	4.6	4.7	4.7	4.7
150	1.3	2.1	3.7	4.8	5.1	5.2	5.3	5.3	5.3
			20-YEA	R-OLD C	UTTINGS				
10	0.2	0.4	0.6	0.8	0.8	0.8	0.9	0.9	0.9
20	.3	.5	•7	.9	.9	1.0	1.0	1.0	1.0
30	.4	.6	.8	1.0	1.1	1.1	1.1	1.1	1.1
_									
40	.4	-7	•9	1.1	1.2	1.3	1.3	1.3	1.3
50 60	•5	.8	1.1	1.3	1.4	1.5	1.5	1.5	1.5
	.6	.9	1.2	1.6	1.7	1.7	1.8	1.8	1.8
70	•7	1.0	1.4	1.9	2.1	2.1	2.2	2.2	2.2
80	.8	1.2	1.7	2.3	2.6	2.7	2.8	2.9	2.9
90	•9	1.4	2.1	3.0	3.5	3.6	3.7	3.7	3.8
100	1.1	1.6	2.6	3.9	4.3	4.4	4.5	4.5	4.6
110	1.2	2.0	3.5	4.7	5.0	5.0	5.1	5.1	5.2
120	1.4	2.4	4:3	5.2	5.5	5.5	5.6	5.6	5.7
130	1.6	3.2	5.0	5.7	5.9	6.0	6.0	6.1	6.1
140	1.9	4.1	5.5	6.1	6.3	6.4	6.4	6.4	6.5
150	2.4	4.8	5.9	6.5	6.7	6.7	6.8	6.8	6.8
								(Con-	tinued)

Secondary softwood sites, volume in cords (continued) .-

30-YEAR-OLD CUTTINGS

Density				Сотро	sition :	index			
index	10	20	30	40	50	60	70	80	90
10	0.5	0.8	1.0	1.3	1.4	1.4	1.4	1.4	1.5
20	.6	.9	1.2	1.5	1.6	1.7	1.7	1.7	1.7
30	.7	1.0	1.4	1.8 2.2	2.0	2.0	2.1	2.1	2.1
40	.8	1.2	1.9	2.8	2.4	2.5	2.6	2.7	2.7
50 60	.9 1.0	-				3.4	3.5	3.5	3.6
		1.5	2.4	3.7	4.1	4.2	4.3	4.4	4.4
70	1.2	1.9	3.2	4.5	4.8	4.9	5.0	5.0	5.0
80	1.3	2.3	4.1	5.1	5.4	5.4	5.5	5.5	5.5
90	1.5	3.0	4.8	5.6	5.8	5.9	5.9	5.9	6.0
100	1.9	3.9	5.4	6.0	6.2	6.3	6.3	6.3	6.4
110	2.3	4.8	5.8	6.4	6.6	6.6	6.7	6.7	6.7
120	3.0	5.2	6.2	6.8	6.9	7.0	7.0	7.0	7.1
130	4.0	5.7	6.6	7.1	7.2	7.3	7.3	7.3	7.3
140	4.7	6.1	6.9	7.4	7.5	7.6	7.6	7.6	7.6
150	5.3	6.5	7.2	7.7	7.8	7.9	7.9	7.9	7.9
			40-YEA	R-OLD C	UTTINGS				
10	0.9	1.3	1.9	2.6	3.1	3.2	3.3	3.3	3.3
20	1.0	1.5	2.3	3.5	3.9	4.0	4.1	4.2	4.2
30	1.1	1.8	3.1	4.3	4.7	4.8	4.8	4.9	4.9
40	1.3	2.2	3.9	5.0	5.3	5.3	5.4	5.4	5.4
50	1.5	2.9	4.7	5.5	5.7	5.8	5.8	5.9	5.9
60	1.8	3.7	5.3	5.9	6.1	6.2	6.2	6.3	6.3
70	2.2	4.5	5.7	6.3	6.5	6.6	*6.6	6.6	6.6
80	2.9	5.1	6.1	6.7	6.9	6.9	6.9	7.0	7.0
90	3.8	5.6	6.5	7.0	7.2	7.2	7.3	7.3	7.3
100	4.5	6.1	6.9	7.3	7.5	7.5	7.5	7.6	7.6
110	5.1	6.4	7.2	7.6	7.8	7.8	7.8	7.8	7.9
120	5.6	6.8	7.5	7.9	8.0	8.1	8.1	8.1	8.1
130	6.1	7.1	7.8	8.1	8.3	8.3	8.3	8.3	8.3
140	6.5	7.4	8.0	8.4	8.5	8.5	8.6	8.6	8.6
150	6.8	7.7	8.3	8.6	8.7	8.8	8.8	8.8	8.8

Secondary softwood sites, volume in cords (continued).--

Density				Compo	sition	index			
index	10	20	30	40	50	60	70	80	90
10	1.5	2.6	4.6	5.4	5.7	5.7	5.8	5.8	5.8
20	1.8	3.5	5.2	5.9	6.0	6.1	6.1	6.2	6.2
30	2.1	4.4	5.7	6.3	6.5	6.5	6.5	6.6	6.6
40	3.0	5.1	6.0	6.6	6.8	6.8	6.9	6.9	6.9
50	3.9	5.6	6.5	7.0	7.1	7.2	7.2	7.3	7.3
60	4.5	6.0	6.8	7.3	7.4	7.5	7.5	7.5	7.6
70	5.2	6.4	7.1	7.6	7.7	7.8	7.8	7.8	7.8
80	5.7	6.7	7.4	7.9	8.0	8.1	8.1	8.1	8.1
90	6.0	7.1	7.7	8.1	8.2	8.3	8.3	8.3	8.3
100	6.5	7.4	8.0	8.3	8.5	8.5	8.5	8.5	8.6
110	6.8	7.7	8.3	8.6	8.7	8.7	8.7	8.7	8.8
120	7.1	8.0	8.5	8.8	8.9	8.9	9.0	9.0	9.0
130	7.4	8.2	8.7	9.0	9.1	9.2	9.2	9.2	9.2
140	7.7	8.5	9.0	9.3	9.4	9.4	9.4	9.4	9.5
150	8.0	8.7	9.2	9.5	9.6	9.6	9.6	9.6	9.6

ALINEMENT CHART I

FOR DETERMINING MERCHANTABLE SPRUCE-FIR VOLUME

ON DOMINANT SOFTWOOD SITES, IN CUBIC FEET

KEY: A TO D, HOLD B; TO E, READ C

FOR DETERMINING MERCHANTABLE SPRUCE-FIR VOLUME
ON DOMINANT SOFTWOOD SITES, IN CORDS

KEY: A TO D, HOLD B; TO E, READ C

ALINEMENT CHART 3

FOR DETERMINING MERCHANTABLE SPRUCE-FIR VOLUME

ON SECONDARY SOFTWOOD SITES, IN CUBIC FEET

FOR DETERMINING MERCHANTABLE SPRUCE-FIR VOLUME
ON SECONDARY SOFTWOOD SITES, IN CORDS

III

APPLYING THE YIELD TABLES

TO A TRACT OF TIMBER

DATA REQUIRED

TO APPLY THE YIELD TABLES to any given tract it is necessary to know for each stand (1) the site-type class, (2) the elapsed time since cutting, (3) the effective age, (4) the composition index, (5) the stand-density index, (6) the expected change in stand density, and (7) the acreage by age classes.

Forest Inventory

Any of the commonly used systems of forest inventory can be used. Where no such inventory of an area exists, a new one will be necessary.

The intensity of the inventory will be determined by the degree of accuracy desired. Bear in mind that the more heterogeneous the stand conditions, the greater the number of plots or strips required to attain a given degree of accuracy. Accuracy within a 10-percent error of estimate for total volume seems to be a reasonable goal.

Supplementary Data

Certain kinds of data not ordinarily called for in a regular inventory cruise are required for effective use of the yield tables. Whatever system of survey is used—strip, line-plot, or a combination of either with aerial photography—trees of unmerchantable size (those down to and including linch d.b.h.) must be recorded along with merchantable—size trees.

This is essential because the amount of sapling growth present is an important factor in final yields. The unmerchantable-size trees, however, need be tallied only on a portion of the plot or cruise strip--for example, on a 1/50-acre subplot within the cruise plot. Such a sample is adequate for the work.

Another important part of the survey is to classify the tract by the broad site-type groups and by age of cutover area. This is important because these classes delimit
the areas for which cruise plots or strips must be grouped
and for which data must be compiled preliminary to yield
calculations. The boundaries and areas of these classes can
be determined by any of the numerous methods ordinarily used
in forest-survey work.

To simplify the calculations, cut-over areas may be grouped into age classes. In the example cited later, 5-year intervals between age classes were used; areas cut 3 to 7 years ago being classed as 5-year-old cut-overs, those cut 8 to 12 years ago as 10-year-old cut-overs, and so on. Where areas have been subjected to repeated and sporadic cutting it may be difficult or impossible to determine average age of cut-over. Under such circumstances the area need be classified only into the two major site-type classes, and the effective age of each can be determined.

The required stand data can be computed readily from stand tallies compiled for each plot or cruise strip. By combining all plots that comprise a given age-of-cutting area, the mean of the stand-data values can be calculated for each age of cutting. Once these values are known, relative density, composition index, and other essential factors can be calculated by the methods described below.

AN EXAMPLE

As an illustration, the steps involved in estimating future yields will be applied to a typical tract in the spruce-fir region. The tract selected as an example is the Spruce Pond watershed in northern Maine. Data based on a line-plot survey are available for this tract (table 7).

Table 7 .- Inventory data for Spruce Pond watershed

Cover class	Area	Cover class	Area
	Acres		Acres
Commercial forest land:		Noncommercial forest land:	
Dominant softwood:		Bog growth and flowage	90
10-year-old cuttings	750	Hard burns	130
20-year-old cuttings 30-year-old cuttings	150 600		220
40-year-old cuttings	300		
70 7001 021 011021	1,800	Other land:	
	1,800	Pasture	300
Secondary softwoods:		Cultivated land	20
10-year-old cuttings	500	Waste land	30
20-year-old cuttings 30-year-old cuttings	300 500		350
40-year-old cuttings	100	Ponds and water courses	530
	1,400	Total land area	5,000
	* '	Total land area	5,000
Northern hardwoods	400		
Cedar-tamarack	300		
Total commercial forest	3,900		

Table 8.--Stand data needed for each plot in calculating spruce-fir yields 20 years in future

(For Plot 7 in Spruce Pond watershed)

It em	Data
Siteclass	Dominant softwoods
Age of cuttingyears	10
Average stand per acre (1 inch d.b.h. and larger):	
Spruce and fir treesnumber	696
Hardwoods and othersnumber	400
All treesnumber	1,096
Basal areasquare feet	82.94
Average d.b.hinches	3.7
Measured spruce-fir volume per acrecords	2.0
Composition indexunits	64
Density index (present)units	121
Effective age (present)years	5
Density index (20 years hence)units	194
Effective elapsed time since cuttingyears	25

This area is similar to thousands of acres of cutover land throughout the spruce-fir region that have been operated for pulpwood since the turn of the century.

The 10-year-old cut-over areas in the dominant soft-wood sites of the Spruce Pond watershed are used in this example. Values that need to be determined for each plot are indicated in table 8. This shows the data for Plot 7. The tract contains 8 plots (table 9).

Computing Stand Data

Area, by site Following completion of the forest and age of cutting survey for the Spruce Pond watershed, field maps were combined into a project map. Next the acreages of the two site-type classes and the various age classes were determined (table 7).

Average Number of trees and basal area 3 per acre (table 9) were transcribed directly from and basal area the stand tables already computed. For per acre example, Plot 7 contained 1,096 trees per acre, with a total basal area of 82.94 square feet. In determining average number of trees and basal area for the entire tract, all eight plots in it were used as a basis. Two species groups, (1) spruce and fir and (2) all other species, were totalled.4

Average d.b.h. First the basal area of the average tree of the stand on each plot was determined by dividing the plot's total basal area by its total number of trees. The diameter corresponding to the basal area of the average tree is its average diameter.

Basal area in square feet =
$$\left[\frac{\tau\tau}{4(144)}\right]$$
 $\left[\begin{array}{c} \text{Sum of the square of d.b.h.} \end{array}\right]$ = $\left[\begin{array}{c} 0.005454... \end{array}\right]$ $\left[\Sigma d^2\right]$

 $^{^3\}text{A}$ simple method of computing basal area by formula is described by C. A. Bickford in Jour. Agr. Res. 51: 425-434 1935. His formula is:

WHERE ONLY SPRUCE-FIR YIELDS ARE DESTRED, A GROUP CONSISTING OF ONLY THESE SPECIES WOULD BE RECOGNIZED. IF SPRUCE-FIR-HEMLOCK YIELDS WERE SOUGHT, HEMLOCK WOULD BE ADDED TO THE SPRUCE-FIR GROUP AND CARRIED THROUGH ALL THE CAL-CULATIONS FOR SPRUCE-FIR. THIS WOULD LEAVE THE SECOND GROUP TO BE DEALT WITH, CONSISTING OF ALL THE REMAINING SPECIES --HARDWOODS, CEDAR, PINE, ETC.

For example, the total basal area per acre for Plot 7 was 82.94 square feet. Dividing this by 1,096 (total number of trees per acre) gave a basal area of 0.0757 square feet for the average tree. The table for areas of circles (table 16, in Appendix) shows the diameter of a circle of that area to be 3.7 inches. Next the average d.b.h.'s for the individual plots were totalled. This total, 30.4, divided by 8 (the number of plots in the unit) = 3.80 inches, the average d.b.h. of the stand.

Merchantable spruce-fir volume per acre To obtain a measure of merchantable spruce-fir volume per acre, the number of spruce and fir stems in each diameter class (6 inches d.b.h. and above)

were first determined. Volumes were then computed for each diameter class through the use of appropriate volume tables. For the example cited in table 9, the volume table shown in the Appendix (table 18) was used. Adding up the volumes in the various diameter classes gave the total volume for Plot 7 of 2.0 cords per acre (table 8). The volume of 3.1 cords per acre shown for the cutting area (table 10) is the mean of the eight plots in the area.

Computing Growth Factors

Composition The composition index of 64 for Plot 7 was index arrived at by dividing 696 (number of spruce and balsam fir trees) by 1,096 (total number of all trees). Thus $696 \div 1,096 = 0.64$; $0.64 \times 100 = 64$.

Table 9.--Sample work sheet for compiling data needed to determine stand-table values per acre

(Spruce Pond watershed--10-year-old cuttings on dominant softwood sites)

Plot No.	Spruce and fir	Hardwoods and others	All trees	Total basal area	D.b.h. of average tree	Measu merchai volu per a	ntable ume
	Number	Number	Number	Sq.ft.	Inches	Cu.ft.	Cords
7	696	400	1096	82.94	3.7	194	2.0
8	928	208	1136	82.36	3.6	226	2.4
23	168	72	240	49.42	6.2	511	5.4
24	176	72	248	30.13	4.7	330	3.5
25	296	40	336	20.84	3.4	234	2.5
59	592	112	704	24.60	2.5	201	2.1
60	456	24	480	19.24	2.7	252	2.6
83	480	608	1088	77.55	3.6	438	4.6

Density Since the density index of a cutting unit index equals the mean density of the plots that compresent) prise the unit, density values must be calculated for individual plots. For example, the current density index of 121 for Plot 7 was arrived at by dividing 1,096 (total number of all trees) by 910 (total number of trees indicated in the density reference table—table 13, in Appendix—for an average stand diameter of 3.7 inches. Adding up the density values of the eight plots in the unit and dividing the total (576) by 8 gave the present stand—density index of 72 for the unit (table 10).

Effective Although effective age can be determined from age the yield tables by interpolation, the aline-(present) ment charts (pp. 38 - 41) provide a quicker means of figuring effective age. Effective age can be read directly from these charts by carrying out in reverse the procedures for computing yield. The method can be illustrated by listing the steps followed in arriving at the present effective age of 13 for the 10-year-old cut-over area in the dominant softwood site (table 10):

1. Use alinement chart 2. Lay a straightedge across the graduated volume scale at 3.1 cords (the measured merchantable volume) and the density scale at 72 (the density index).

Table 10.--Work-sheet summary of stand data, showing corrections for density changes and cutting ages

(Spruce Pond watershed--10-year-old cuttings on dominant softwood sites)

		Pres	ent				20 ge	ars hence		
Plot No.	Compo- sition index	Density index	Measu volu per a	me	Effect- ive age	Effect- ive age	Compo- sition index	Density index	Predic volum per ac	e
	Units	Units	Cu.ft.	Cords	Years	Years	Units	Units	Cu.ft.	Cords
7	64	121	194	2.0	5					
8	82	123	226	2.4	3					
23	70	46	511	5.4	29					
24	71	34	330	3.5	15					
25	88	34	234	2.5	11					
59	84	59	201	2.1	7					
60	95	42	252	2.6	9					
83	44	117	438	4.6	25					
Total	598	576	2386	25.1	104					
Mean	75	72	298	3.1	13	33	75	140	790	8.3

- 2. Mark the point where the straightedge intersects the ungraduated scale.
- 3. Hold on this point and shift the straightedge to 75 (the composition index) on the composition scale.
- 4. Then read the point at which the straightedge intersects the time scale for the effective age of the stand. In this case it is 13.

The present effective age for the cutting unit is the mean of the eight plots in the unit.

Density The future density of a stand can be index determined by consulting table 14 (in (20 years hence) the Appendix), which shows the change in density index over a 10-year period for dominant softwood stands of different densities and ages of cut-over areas. (For secondary softwood sites use table 15.) Future density is calculated by successive 10-year steps, the density at the end of the first period being taken as the starting point for the second period, and so on.

For example, the cutting unit under discussion has an effective age of 13 and a present density index of 72. Ten years from now its density will be 119 (72 plus 46), a density increase of 46 over the 10-year period. After another 10 years the density index will have increased to 140 (119 plus 22).

Effective Effective elapsed time since cutting is elapsed time determined by adding to the effective age since cutting the number of years hence for which the yield prediction is desired. The effective elapsed time for the unit under discussion is the unit's effective age (13) plus 20 (the number of years hence). Thus the effective elapsed time is 33 years.

Computing Yield

After effective age, density index, and composition index have been computed for the various ages of cuttings that make up the two broad site-type groups, predictions of yield can be made. Where quick and precise values are desired, yields should be read from alinement charts 1 and 2. For the area in this example, the following are the steps:

- 1. Lay a straightedge across the time scale at 33 and the composition scale at 75.
- 2. Mark the point where the straightedge intersects the ungraduated scale.
- 3. Hold on this point and shift the straightedge to 140 on the density scale.
- 4. Then read the point at which the straightedge intersects the volume scale. In this case it is 8.3 cords or 790 cubic feet per acre.

When alinement charts are not available, reasonably accurate estimates can be obtained by interpolating in the yield tables.

To obtain the total expected yield for the cutting unit, simply multiply its acreage (750) by these per-acre volume figures. This volume totals 592,500 cubic feet or 6,225 cords (table 11). This is the predicted volume for the 10-year-old cut-over areas in the dominant softwood sites.

Table 11.--Stand data and spruce-fir yield predictions 20 years hence for Spruce Pond watershed

DOMINANT SOFTWOOD SITES

	Present				20	years he	nce		
Age	Effec-		Effec-	Compo-	Density		Predict	ed volumes	
of cutting	tive age	Area	tive age	sition index	index	Per	acre	Total	area
Years	Years	Acres	Units	Units	Units	Cu.ft.	Cords	Cu.ft.	Cords
10	13	750	33	75	135	790 -	8.3	592,500	6,225
20	18	150	38	67	141	870	9.2	130,500	1,380
30	33	600	53	80	128	1,250	13.2	750,000	7,920
40	38	300	58	83	117	1,350	14.2	405,000	4,260
Total		1,800		~~				1,869,000	19,785
			SEC	ONDARY SOF	IWOOD SITES				
10	8	500	28	58	101	580	6.1	290,000	3,050
20	22	300	42	40	126	790	8.3	237,000	2,490
30	28	. 500	48	19	105	680	7.2	340,000	3,600
40	42	100	62	24	115	860	9.0	86,000	900
Total		1,400						953,000	10,040
All cuttings		3,200						2,822,000	29,825

To determine the total predicted yield for the Spruce Pond watershed, these calculations should be repeated for all age-class units in the two site-type groups (table 11).

ACCURACY OF THE YIELD TABLES

The question quite naturally arises as to how adequate these yield tables are for forest-management purposes. For any particular holding this depends on how intensively the lands are being managed. Over the spruce-fir region at large a pioneer stage of management still prevails. Extensive holdings are being managed under the one-harvest-cut-per-rotation system. It is believed that under this type of management the yield tables will prove adequate for predicting growth and yield—especially for areas of more than 1,000 acres.

In attempting to evaluate the accuracy of the yield tables, two questions need to be answered: (1) How closely do the yield-table values approach the actual yields of the re-measured plots? and (2) How accurate are the cruise data for the tract?

Analysis of the re-measurement data over a 15-year period on 93 of the original 365 plots used in developing the yield tables helps to answer the first question. A summary of the analyses for both the dominant and secondary softwood sites appears in table 12. Note that deviation of the estimated volume from the mean actual volume averaged 109.9 cubic feet for the dominant softwood sites and 70.1 cubic feet for the secondary softwood sites.

The standard deviations of the differences of 15-year future volume in cubic feet for individual plots range from a low of 7.1 percent to a high of 31.4 percent of the yield for the dominant softwood sites. For secondary softwood sites the range is from 34.9 percent to 40.4 percent.

Although actual yields of individual 1/8-acre units differ rather widely from tabular values, the error of the mean diminishes rapidly as the number of units comprising the sample is increased. For the 59 growth plots that comprise the softwood sites, the standard error of the mean deviation from actual yield amounts to less than 4 percent.

Use of about 170 plots would reduce the error to less than 2 percent.

Table 12.—Check of actual and estimated yield per acre over

a 15-year period with corrections applied for

density changes and effective cutting ages

DOMINANT SOFTWOOD SITES

		Estima	ted volume	е	2
Age of cutting	Actual mean volume	Mean deviation from actual	Standa devia		Basis: number of plots
	Cu.ft.	Cu.ft.	Cu.ft.	Per- cent	
14	403.5	155.2	119.15	29.5	4
32	1,505.0	-258.4	472.82	31.4	12
35	991.4	49.6	246.01	24.08	14
42	2,576.6	-513.4	420.59	16.3	11
47	1,793.2	77.1	466.66	26.0	14
59	2,607.0	- 33.2	195.28	7.5	4
Mean	1,651.3	-109.9	439.63	26.6	
	SECO	NDARY SOFTWOOI	SITES		
28	707.3	- 20.1	260.48	36.8	16
29	529.5	68.0	184.77	34.9	4
46	1,431.8	-166.8	578.24	40.4	14
Mean	985.3	- 70.1	416.11	42.2	

The second question, accuracy of the inventory cruise, is important because the growth factors used in predicting yields are derived from the basic cruise data. Thus the accuracy of the yield predictions from the tables will depend on—and cannot exceed—the accuracy of the cruise data.

Accuracy of the inventory cruise can be determined from the cruise itself. Once the variability of the stand and the number of plots are determined it is a simple matter to compute the expected limits of the accuracy of the cruise. The error in sampling inventory is bound to exceed that encountered in growth prediction. This is to be expected, because the ratio of growth to growing stock is relatively small.

However, inventory cruises today are commonly undertaken with sufficient intensity to assure volume accuracies

of within 10 percent. Such accuracy normally entails the establishment of several hundred plots. This is considerably greater than the minimum of 170 plots required for a growth error of less than 2 percent. Thus an over-all accuracy for the yield tables of ± 12 percent is a reasonable expectation. Such a degree of accuracy should suffice for most situations.

Where valuable stands are at stake or where the need for heavy outlays for roads and other logging improvements are indicated, the cost of attaining greater accuracy may be justified. To attain an accuracy of $\frac{+}{-}$ 6 percent would require the use of four times as many plots as for the $\frac{+}{-}$ 12 percent accuracy cited above.

The yield tables have their limitations. They show only the volume of surviving trees; therefore they fail to show the volume that is lost through mortality. Through a shift from the one-harvest-cut-per-rotation to shorter-cycle cuttings a high proportion of this mortality could be salvaged. As expanded road systems make higher levels of forestry practice feasible, partial-cutting systems will largely supplant the long-cutting-cycle system now in vogue.

The frequent cuttings that characterize selection cutting ultimately create uneven-aged stands. It does not follow, however, that the yield tables cannot be applied with reasonable success to selectively cut stands. Residual growing stock, expressed as effective age, definitely enters into the calculation of future yield. Since greater yields are expected under selection cuttings, yield-table values will probably be on the conservative side.

LITERATURE CITED

- (1) Behre, C. E.

 1935. Factors involved in the application of form class volume tables. Jour. Agr. Res. 61:
 669-713.
- (2) Bruce, D.

 1926. A method of preparing timber-yield tables.

 Jour. Agr. Res. 38: 543-557.

- (3) Bruce, D., and Reineke, L. H.
 1931. Correlation alinement charts in forest research. U. S. Dept. Agr. Tech. Bul. 210.
 87 pp.
- (4) Meyer, W. H.
 1929. Yields of second-growth spruce and fir in the
 Northeast. U.S. Dept. Agr. Tech. Bul. 142.
 52 pp.
- (5) Mulloy, G. A.
 1945. Empirical stand density yield tables.
 Canada Forest Serv., Silv. Res. Note 73.
 22 pp.
- (6) Murphy, L. S.
 1917. The red spruce: its growth and management.
 U. S. Dept. Agr. Bul. 544. 100 pp.
- (7) Reineke, L. H.
 1933. Perfecting a stand density index for even-aged forests. Jour. Agr. Res. 46: 627-638.
- (8) Westveld, M.
 1941. Yield tables for cut-over spruce-fir stands in
 the Northeast. Northeast. Forest Expt. Sta.
 Occas. Paper 12. 18 pp.

IV

APPENDIX

Table 13.--Average number of trees per acre, for use in determining stand density in the spruce-fir region of the Northeast

(Basis: reference curve based on 365 plots)

	Tree	liameter	breast 1	nigh, in	inches a	and addit	tional 10	Oths of	inches	
Inches	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1	1,660	1,625	1,590	1,560	1,530	1,500	1,465	1,435	1,405	1,375
2	1,345	1,315	1,285	1,260	1,230	1,200	1,175	1,150	1,125	1,100
3	1,075	1,050	1,025	1,000	975	950	930	910	890	870
4	850	830	815	800	782	765	748	732	716	700
5	685	670	655	640	625	610	595	582	569	555
6	543	530	518	506	495	485	474	462	452	442
7	433	424	415	406	398	391	384	376	367	360
8	352	344	337	330	323	316	309	302	296	290
9	283	276	269	263	257	251	246	240	235	230
10	225	220	215	210	205	200	195	191	187	183

To determine the density of any given spruce-fir stand, divide its total number of trees per acre by the total number of trees indicated in the above table for the same average diameter stand.

Table 14.--Change in density index during a 10-year period for spruce-fir stands

of different densities and ages of cuttingl

(In density-index units)

DOMINANT SOFTWOOD SITES

	100	111111111111111111111111111111111111111
	95	
	90	
	85	7 0 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	80	70000000000000000000000000000000000000
	75	1
years	70	
period, in years	65	
of peri	09	
ming o	55	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
, beginning	50	1000 U U U U U U U U U U U U U U U U U U
ng ² at	45	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
cutting ²	04	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
of	35	55555555555555555555555555555555555555
Age	30	2222222222222244
	25	1 6 4 1 1 2 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	20	103373333333333333333333333333333333333
	15	1 18 15 5 5 3 3 3 8 4 6 6 1 5 5 5 5 5 6 6 6 1 1 8 1 1 8 1 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	10	1
	5	1 1 3 8 8 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6
	0	75238252885588
Density index at beginning	of period	20 20 20 20 20 20 20 20 20 20 20 20 20 2

Either actual or effective age; a stand's effective age is defined in terms of the age of cutting it most nearly resembles with respect to density. For density index at end of 10-year period add amount of change to density at beginning of period.

Table 15.--Change in density index during a 10-year period for spruce-fir stands of different densities and ages of cutting

(In density-index units)

SECONDARY SOFTWOOD SITES

28 25 23 21 20 20 20 20 20 19<									Age of	cutting ²	ng ² at	, beginning	ning o	of period,	od, in	years			,			
25 23 21 20 20 20 20 20 19<	-	0	2	10	15	20	25	30	35	07	45	50	55	09	9	70	75	80	85	90	95	100
25 23 21 19 18 18 18 17 17 17 17 25 23 20 18 17 16 <t< td=""><td></td><td>28</td><td>25</td><td>23</td><td>21</td><td>20</td><td>20</td><td>20</td><td>20</td><td>20</td><td>20</td><td>20</td><td>19</td><td>19</td><td>19</td><td>19</td><td>19</td><td>19</td><td>18</td><td>18</td><td>18</td><td>18</td></t<>		28	25	23	21	20	20	20	20	20	20	20	19	19	19	19	19	19	18	18	18	18
25 23 20 18 17 16 16 16 16 16 16 16 16 15 15 15 15 24 22 19 16 15 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 14 12 12 12 12 12 11 11 11 11 11 11 11 11		28	25	23	21	19	19	18	18	18	18	18	17	17	17	17	17	17	16	16	16	16
24 22 19 16 15 14 14 14 14 13 14 4<		28	25	23	20	18	17	16	16	16	16	16	16	16	15	15	15	15	15	14	77	7
24		27	24	22	19	16	15	77	17	17	77	7	77	13	13	13	13	13	12	12	12	77
24		27	24	22	18	77	13	12	12	12	12	12	12	7	11	1	7	7	10	10	10	10
24		27	24	22	17	12	7	10	10	6	6	6	6	∞	∞	∞	∞	∞	2	7	2	2
24		27	24	22	16	10	6	₩	∞	∞	₩	∞	€0	7	7	7	7	7	9	9	9	9
24		27	24	22	15	6	2	9	9	2	2	2	2	4	7	7	7	4	3	m	3	3
23 21 13 6 4 2 1 0 0 0 0 -1 -1 -1 -1 -1 23 21 12 4 2 0 -1 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3 22 22 20 11 2 4 2 0 -1 -2 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3 22 20 10 0 -2 -5 -5 -6 -6 -6 -6 -6 -7 -7 -7 -7 21 19 9 -2 -5 -7 -7 -7 -7 -7 21 19 8 -4 -8 -10 -11 -12 -12 -12 -12 -13 -13 -13 -13 -13 -13 -13 -14 -15 -15 -15 -15 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16		27	54	22	77	7	9	7	7	3	3	3	3	~	2	2	2	2	٦	Н	7	T
23 21 12 4 2 0 -1 -2 -2 -2 -2 -3 -3 -3 -3 -3 2 2 2 2 2 2		25	23	21	13	9	7	8	٦	0	0	0	0	- 1	- 1	- 1	- 1	- 1	- 2	- 2	- 2	- 2
22 20 11 2 0 -2 -3 -4 -4 -4 -4 -5 -5 -5 -5 -5 2 2 2 2 2 2 0 10 0 -2 -5 -5 -6 -6 -6 -6 -6 -7 -7 -7 -7 2 1 19 9 -2 -5 -7 -8 -9 -9 -9 -9 -9 -10 -10 -10 -10 2 1 19 8 -4 -8 -10 -11 -12 -12 -12 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13		25	23	21	12	7	2	0	1	- 2	- 2	7	- 2	- 3	- 3	- 3	-3	2	+ -	7 -	7 -	7 -
22 20 10 0 -2 -5 -5 -6 -6 -6 -6 -7 -7 -7 -7 -7 21 19 9 -2 -5 -7 -7 -8 -9 -9 -9 -9 -9 -10 -10 -10 -10 21 19 8 -4 -8 -10 -11 -12 -12 -12 -13 -13 -13 20 18 7 -6 -11 -15 -17 -18 -18 -18 -18 -19 -19 -19 -19 -19		24	22	20	11	~	0	- 2	8	7 -	7 -	7 -	7 -	- 5	- 5	2	- 5	- 5	9 -	9 -	9 -	9 -
21 19 9 -2 - 5 - 7 - 8 - 9 - 9 - 9 - 9 - 9 - 10 - 10 - 10 - 10		24	22	20	10	0	- 2	- 5	- 5	9 -	9	9 -	9 -	- 7	- 7	2 -	_ 7	- 7	∞	89	80	1
21 19 8 -4 -8 -10 -11 -12 -12 -12 -12 -13 -13 -13 -13 -13 20 18 7 -6 -11 -13 -14 -15 -15 -15 -15 -16 -16 -16 -16 19 19 17 6 -7 -11 -16 -17 -18 -18 -18 -18 -19 -19 -19 -19		23	21	19	6	-5	- 5	- 7	ъ П	6 -	6 -	6 -	6 -	-10	-10	-10	-10	-10	-11	-11	-11-	-11
20 18 7 -6 -11 -13 -14 -15 -15 -15 -15 -16 -16 -16 -16 -16 19 19 17 6 -7 -11 -16 -17 -18 -18 -18 -18 -19 -19 -19 -19		23	21	19	∞	7-	∞	-10	-11	-12	-12	-12	-12	-13	-13	-13	-13	-13	-14	77-	-17	-T
19 17 6 -7 -11 -16 -17 -18 -18 -18 -18 -19 -19 -19 -19 -19		22	20	18	7	9	-11	-13	-17	-15	-15	-15	-15	-16	-16	-16	-16	-16	-17	-17	-17	-17
		21	19	17	9	-7	-11	-16	-17	-18	-18	-18	-18	-19	-19	-19	-19	-19	-20	-20	-20	-20

1 For density index at end of 10-year period add amount of change to density at beginning of period.

Either actual or effective age; a stand's effective age is defined in terms of the age of cutting it most nearly resembles with respect to density.

Table 16.--Basal areas, in square feet, for trees of various diameters

		Tree diam	eter brea	st high,	in inches	and addi	tional 10	ths of in	ches	
Inches	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0 1 2 3 4 5 6 7 8 9	0.0055 .0218 .0491 .0873 .1364 .1963 .2673 .3491 .4418	0.0001 .0067 .0240 .0524 .0917 .1418 .2029 .2750 .3579 .4517	0.0002 .0079 .0264 .0559 .0963 .1474 .2096 .2828 .3668 .4617	0.0005 .0092 .0289 .0594 .1009 .1532 .2164 .2907 .3758 .4718	0.0009 .0107 .0314 .0631 .1056 .1590 .2234 .2987 .3849 .4820	0.0014 .0123 .0341 .0669 .1105 .1650 .2304 .3068 .3941 .4923	0.0020 .0140 .0369 .0707 .1154 .1710 .2376 .3151 .4034 .5027	0.0027 .0158 .0398 .0747 .1205 .1772 .2448 .3234 .4129 .5132	0.0035 .0177 .0428 .0788 .1257 .1835 .2522 .3319 .4224 .5238 .6362	0.0044 .0197 .0459 .0830 .1310 .1899 .2597 .3404 .4321 .5345 .6481
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	.6600 .7854 .9218 1.0690 1.2272 1.3963 1.5763 1.7671 1.9689 2.1817 2.4053 2.6398 2.8852 3.1416 3.4088	.6721 .7986 .9360 1.0843 1.2437 1.4138 1.5949 1.7868 1.9897 2.2036 2.4283 2.6638 2.9103 3.1679 3.4361	.6842 .8118 .9504 1.0997 1.2602 1.4314 1.6136 2.0106 2.2256 2.4514 2.6880 2.9356 3.1942 3.4636	.6965 .8252 .9648 1.1153 1.2768 1.4492 1.6324 1.8265 2.0316 2.2477 2.4745 2.7122 2.9610 3.2207 3.4911	.7089 .8387 .9794 1.1309 1.2936 1.4670 1.6513 1.8465 2.0527 2.2699 2.4978 2.7366 2.9864 3.2471 3.5188	.7214 .8523 .9941 1.1467 1.3104 1.4849 1.6703 1.8666 2.0739 2.2922 2.5212 2.7611 3.0120 3.2748 3.5465	.7340 .8660 1.0089 1.1626 1.3274 1.5030 1.6894 1.8869 2.0952 2.3146 2.5447 2.7857 3.0377 3.3006 3.5744	.7467 .8798 1.0237 1.1785 1.3444 1.5212 1.7087 1.9072 2.1167 2.3371 2.5684 2.8104 3.0635 3.3275 3.6024	.7595 .8937 1.0387 1.1946 1.3616 1.5394 1.7280 1.9277 2.1382 2.3597 2.5921 2.8352 3.0894 3.3545 3.6305	.7724 .9077 1.0538 1.2108 1.3789 1.5578 1.7475 1.9482 2.1599 2.3825 2.6159 2.8602 3.1154 3.3816 3.6587

Table 17.--Spruce-fir volume table : Total cubic-foot volume inside bark (peeled wood)

and exclusive of butt swell

(Form Class 67)

	Tr	ee diame	ter brea	ast high,	in inch	nes and a	addition	al 10ths	of inche	es
Inches	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	0.05 .22 .65 1.27 2.10 3.7 5.3 7.3 10.0 12.7 16.4 28.5 34.5 40.2 46.9 54.3 61.9 68.8 75.8 85.0	0.06 .26 .70 1.34 2.20 3.9 5.5 7.7 10.2 13.2 16.8 29.1 35.0 40.6 55.0 62.5 69.4 785.9	0.07 .30 .75 1.41 2.30 4.1 5.8 8.0 10.5 13.5 17.1 20.8 25.2 29.7 35.6 41.6 48.3 55.8 63.2 70.1 86.9	0.08 .34 .80 1.48 2.40 4.3 6.0 8.2 10.7 13.8 17.4 21.3 25.6 30.2 36.1 42.3 49.1 56.6 63.9 70.7 78.4 87.8	0.09 .38 .86 1.55 2.50 4.4 6.2 8.4 11.1 14.1 21.7 26.0 30.8 36.8 42.9 42.9 42.9 49.8 58.2 64.6 71.5 79.4 88.8	0.11 .42 .92 1.63 2.61 4.6 6.4 8.6 11.4 18.0 22.1 26.5 31.4 37.3 43.6 50.5 58.1 65.2 72.1 80.2	0.13 .46 .99 1.72 2.73 4.8 6.6 8.8 11.6 14.8 18.4 22.5 26.9 32.0 37.9 44.4 51.3 59.0 65.9 72.8 81.1 90.6	0.15 .50 1.06 1.81 2.85 4.9 6.8 9.0 11.9 15.3 18.8 22.9 27.3 32.6 38.4 45.1 52.0 59.7 66.7 73.4 82.0 91.6	0.17 .55 1.13 1.90 2.97 5.1 7.1 9.4 12.2 15.7 19.2 23.4 27.7 33.2 39.1 45.7 52.7 60.5 67.3 74.2 82.9 92.5	0.19 .60 1.20 2.00 3.10 5.3 7.3 9.7 12.6 16.1 19.6 24.0 28.1 33.9 39.6 46.5 53.4 61.3 68.0 74.9 83.9 93.4

 $¹_{\text{Based}}$ on Behre's form-class volume tables $(\underline{1})$.

Table 18.--Spruce-fir volume table : Merchantable cubic-foot volume to 3-inch top

inside bark (peeled wood) and with 1-foot stump allowance

(Form Class 67)

	7	Tree dia	meter bre	east high	, in inc	hes and	addition	nal 10th	s of inch	nes
Inches	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	0.86 1.74 3.25 4.9 6.9 9.4 12.1 15.7 19.2 23.4 27.4 33.1 38.6 45.0 52.1 59.4 66.0 72.8 81.6	0.91 1.83 3.40 5.1 7.2 9.6 12.5 16.1 19.6 23.8 27.9 33.6 39.3 45.7 52.8 60.0 66.6 73.6 82.5	0.96 1.91 3.60 5.3 7.5 9.9 12.8 16.4 20.0 24.2 28.5 34.2 39.9 46.4 53.6 60.7 67.3 74.5 83.4	1.00 2.00 3.75 5.5 7.7 10.1 13.1 16.7 20.4 24.6 29.0 34.7 40.6 47.1 54.3 61.3 67.9 75.3 84.3	1.05 2.08 3.90 5.7 7.9 10.4 13.4 17.0 20.8 25.0 29.6 35.3 41.2 47.8 55.9 62.0 68.6 76.2 85.2	1.11 2.17 4.05 5.9 8.1 10.7 17.3 21.2 25.4 30.1 35.8 41.9 48.5 55.8 62.6 69.2 77.0 86.1	1.17 2.26 4.20 6.1 8.3 10.9 14.1 17.7 21.6 25.8 30.7 36.4 42.6 49.2 56.6 63.3 69.9 77.9	1.23 2.36 4.35 6.3 8.5 11.2 14.5 18.0 22.0 26.2 31.3 36.9 43.3 49.9 57.3 64.0 70.5 78.7	1.29 2.46 4.50 6.5 8.8 11.5 14.9 18.4 22.5 26.6 31.9 37.5 43.9 50.6 58.1 64.6 71.2 79.6	1.36 2.57 4.70 6.7 9.1 11.8 15.3 18.8 23.0 27.0 32.5 38.0 44.6 51.3 58.8 65.3 71.9 80.5

 $^{^{1}}$ Based on Behre's form-class volume tables $(\underline{1})$.

Table 19.--Ratio of merchantable volume to total volume of spruce and fir on dominant softwood sites, in percent

Density				C	omposit	ion ind	ex			
index	10	20	30	40	50	60	70	80	90	100
10 30 50 70 90 110 130 150 170 190 210 230	21.5 26.0 30.8 32.1 34.8 37.0 39.4 41.2 43.0 44.8 46.5 48.0 49.6	26.5 29.5 32.8 35.2 37.7 39.8 41.5 43.4 45.0 46.9 48.2 49.9 51.1	30.4 33.1 35.8 38.0 40.1 41.9 43.6 45.3 47.0 48.6 50.0 51.3	33.4 36.0 38.3 40.4 42.2 43.9 45.7 47.2 48.9 50.3 51.5 52.5 53.6	36.5 38.8 40.8 42.6 44.3 45.9 47.7 49.2 50.5 51.7 52.7 52.8 54.8	39.2 41.1 42.9 44.7 46.3 48.0 49.5 50.8 51.9 52.9 53.9 55.0 55.9	41.5 43.2 44.9 46.6 48.2 49.7 51.0 52.1 53.1 54.1 55.1 56.0 56.9	43.6 45.1 46.9 48.5 51.2 52.3 53.2 54.3 55.3 56.2 57.1 58.0	45.5 47.2 48.9 50.2 51.4 52.5 53.4 54.5 55.5 56.4 57.2 58.9	47.5 49.1 50.5 51.7 52.7 53.6 54.7 55.6 56.5 57.4 58.2 59.0 59.8
				20-Y	EAR-OLD	CUTTIN	GS			
10 30 50 70 90 110 130 150 170 190 210 230 250	37.4 39.5 41.4 43.2 44.9 46.7 51.0 52.0 53.0 54.0 55.0	39.9 41.8 43.6 45.1 46.9 48.4 49.9 51.2 52.2 53.2 54.2 55.2	42.0 43.8 45.5 47.2 48.8 50.2 51.4 52.4 53.4 54.5 55.4 56.4 57.3	44.1 45.9 47.5 49.1 50.4 51.6 52.7 54.7 55.6 56.5 57.3 58.2	46.2 47.7 49.3 50.6 51.8 52.9 53.8 54.9 55.8 56.7 57.5 58.3 59.0	48.0 49.7 50.9 52.0 53.0 55.0 55.9 56.9 57.7 58.5 59.9	49.9 51.1 52.2 53.1 54.2 55.0 57.0 57.9 58.7 59.2 59.9 60.8	51.3 52.3 53.3 54.4 55.3 56.2 57.1 58.0 58.8 59.5 60.1 60.9	52.5 53.5 54.6 55.5 56.5 57.3 58.1 58.9 59.7 60.2 61.0 62.4	53.7 54.8 55.7 56.7 57.4 58.2 59.0 60.3 61.1 61.8 62.5 63.2
10 30 50 70 90 110 130 150 170 190 210 230 250	46.8 48.3 49.9 51.1 52.1 53.1 55.1 56.0 57.0 57.9 58.8 59.3	48.6 50.0 51.2 52.2 53.2 54.3 55.3 56.2 57.1 58.0 58.7 59.4 60.1	50.3 51.5 52.5 53.5 54.6 55.6 55.6 57.2 58.1 58.9 60.2 61.0	51.7 52.7 53.7 54.7 55.7 56.6 57.4 58.3 59.0 59.8 60.4 61.0 61.8	52.8 53.8 53.9 55.9 56.8 57.6 58.5 59.1 59.9 60.5 60.5 61.2 61.9 62.7	54.0 55.1 56.0 56.9 57.8 58.6 59.2 60.0 60.7 61.3 62.0 62.8 63.5	55.2 56.1 57.0 57.9 58.7 59.3 60.1 60.8 61.5 62.2 62.9 63.6 64.1	56.2 57.2 58.1 58.9 59.6 60.3 61.0 61.7 62.4 63.1 63.8 64.3 65.0	57.3 58.1 59.0 59.8 60.4 61.1 62.5 63.2 63.9 64.4 65.5	58.3 59.1 59.9 60.4 61.2 61.9 62.6 63.2 64.1 64.4 65.1 65.5 66.0

Table 19, continued. --

Density				Co	mposit	ion inde	x			
index	10	20	30	40	50	60	70	80	90	100
10 30 50 70 90 110 130 150 170 190 210 230 250	53.1 54.2 55.2 56.0 57.0 57.9 58.7 59.4 60.1 60.9 61.5 62.2 63.0	54.5 55.4 56.2 57.2 58.1 58.8 59.5 60.2 61.6 62.3 63.1 63.9	55.6 56.4 57.3 58.2 58.9 59.7 60.3 61.1 61.7 62.4 63.1 63.9 64.4	56.7 57.5 58.3 59.0 59.8 60.4 61.2 61.8 62.7 63.2 63.9 64.5	57.7 58.4 59.2 60.0 60.6 61.3 62.0 62.8 63.3 64.0 64.7 65.2 65.6	58.6 59.3 60.1 60.8 61.4 62.1 62.9 63.4 64.8 65.3 65.8 66.3	59.5 60.2 60.9 61.6 62.3 63.0 63.6 64.2 64.9 65.4 65.9 66.4 67.0	60.3 61.0 61.7 62.4 63.1 63.7 64.3 65.0 65.5 66.0 66.4 67.1 67.5	61.2 61.8 62.5 63.2 63.8 64.4 65.1 65.6 66.1 66.6 67.2 67.6 68.2	61.9 62.6 63.3 63.9 64.6 65.2 65.7 66.2 66.7 67.3 67.7 68.3
			50 - Y	EAR-OLI	CUTTII	VGS				
10 30 50 70 90 110 130 150 170 190 210 230 250	58.0 58.7 59.5 60.1 60.9 61.4 62.3 62.9 63.6 64.3 64.8 65.3	58.8 59.6 60.2 61.0 61.6 62.4 63.0 63.7 64.4 64.9 65.4 66.4	59.7 60.3 61.1 61.7 62.5 63.1 63.8 64.5 65.0 65.5 66.0 66.5	60.4 61.2 61.8 62.6 63.3 63.9 64.6 65.1 65.6 66.1 66.7 67.7	61.3 62.0 62.7 63.4 64.0 64.7 65.2 65.7 66.2 66.8 67.3 67.8	62.1 62.8 63.6 64.2 64.8 65.3 65.8 66.9 67.4 68.0 69.0	63.0 63.7 64.3 64.9 65.4 65.9 66.4 67.0 67.5 68.1 68.5 69.5	63.8 64.4 65.0 65.5 66.0 66.5 67.1 67.6 68.2 68.6 69.2 69.7	64.5 65.1 65.6 66.1 66.6 67.2 68.3 69.3 69.3 70.7	65.2 65.7 66.2 66.7 67.3 67.8 68.4 69.4 69.9 70.2 70.9 71.2
			60 - Y	EAR-OLI	CUTTII	NGS				
10 30 50 70 90 110 130 150 170 190 210 230 250	61.6 62.3 63.0 63.7 64.3 64.9 65.4 67.0 67.5 68.0 68.6	62.5 63.1 63.8 64.4 65.0 65.5 66.0 66.5 67.1 67.6 68.1 68.7	63.2 63.9 64.5 65.1 65.6 66.1 66.6 67.2 67.7 68.2 68.8 69.2 69.8	64.0 64.6 65.2 66.7 66.2 66.7 67.3 67.8 68.3 68.9 69.3 69.9 70.3	64.7 65.3 65.8 66.3 66.8 67.4 67.9 68.4 69.0 69.4 70.0 70.4 70.8	65.4 65.9 66.4 66.9 67.5 68.0 68.5 69.1 69.5 70.0 70.5 70.9	66.0 66.5 67.0 67.6 68.1 68.6 69.1 69.6 70.1 70.6 71.0 71.4	66.6 67.1 67.7 68.2 68.7 69.2 69.7 70.1 70.7 71.1 71.5 71.9 72.1	67.2 67.8 68.3 68.8 69.3 69.8 70.8 71.1 71.5 71.9 72.1	67.8 68.3 68.8 69.3 69.9 70.3 70.8 71.2 71.6 71.9 72.2 72.6 73.0

Table 20.--Ratio of merchantable volume to total volume of spruce and fir
on secondary softwood sites, in percent

Density	Composition index								
index	10	20	30	40	50	60	70	80	90
10 20 30 40 50 60 70 80 90 100 110 120 130 140	21.4 24.4 25.5 27.9 29.6 31.9 33.6 34.7 37.2 38.8 40.7 42.9 44.8 47.3 49.4	28.4 30.0 31.2 33.6 34.7 36.8 41.0 42.6 45.0 46.2 51.5 54.2	31.2 33.3 35.7 37.1 39.4 41.2 43.3 45.1 47.3 49.8 52.0 58.4 62.6 66.7	34.7 36.8 38.5 40.5 42.5 44.3 48.5 50.8 53.3 560.3 64.6 68.2 71.0	35.2 37.1 39.4 41.5 43.3 45.4 47.6 52.2 55.2 58.6 66.6 69.9 72.0	35.9 37.8 39.9 42.0 43.7 45.7 45.0 49.8 52.5 55.6 63.1 67.2 70.2 72.2	36.4 38.2 39.6 41.7 44.0 45.7 50.0 52.7 55.8 59.0 67.6 70.5 72.5	36.2 37.9 40.0 42.0 43.8 46.0 50.2 53.0 55.9 59.2 64.0 70.7 72.4	36.6 38.4 40.4 42.4 44.0 46.2 48.1 50.4 52.8 56.2 59.5 64.2 68.0 70.7 72.5
20-YEAR-OLD CUTTINGS									
10 20 30 40 50 60 70 80 90 100 110 120 130 140	29.5 30.8 32.7 34.7 36.8 38.5 40.5 42.2 44.7 46.5 48.5 50.8 53.5 56.6 60.3	34.7 36.8 38.5 40.5 42.5 44.4 46.3 48.3 50.6 53.3 56.7 60.1 64.5 68.2 71.0	39.1 41.0 42.6 45.0 46.2 51.3 54.4 57.4 61.0 65.8 69.1 71.5 73.0 74.4	41.7 43.8 45.9 47.8 50.4 55.8 58.9 63.6 67.5 70.4 72.3 73.7 74.9 75.9	42.9 44.8 46.6 49.2 51.3 54.4 57.4 61.2 71.6 73.0 74.4 75.4 76.2	43.0 45.3 47.3 49.4 51.7 54.8 57.8 62.0 66.2 69.7 71.7 73.3 74.5 76.4	43.3 45.4 47.3 49.6 52.0 55.2 58.2 62.6 66.7 72.0 73.5 74.6 75.7 76.5	43.6 45.6 47.6 49.8 52.4 55.4 62.8 66.9 72.0 73.5 74.7 75.7	43.4 45.4 47.8 50.0 52.5 55.4 63.0 67.0 70.1 72.1 73.6 74.7 75.8 76.6
30-YEAR-OLD CUTTINGS									
10 20 30 40 50 60 70 80 90 100 110 120 130 140	36.4 38.2 39.6 41.7 43.8 45.7 48.0 50.4 52.5 55.7 79.1 63.6 67.7 70.7	42.0 43.8 45.9 48.0 50.2 52.5 55.7 79.1 63.6 67.3 73.4 72.3 73.4 72.3 73.7	46.0 48.3 50.8 53.5 56.6 60.1 64.5 68.3 70.9 72.7 74.1 75.1 77.0 77.7	49.8 52.2 55.0 58.4 62.6 66.7 71.9 73.4 74.6 75.6 76.5 77.4 78.1 78.7	50.8 53.6 56.5 60.1 64.6 68.2 71.0 72.8 74.1 75.1 76.1 77.0 77.7 78.4 79.1	51.1 54.1 57.1 60.9 65.2 68.8 71.4 72.8 74.2 75.3 76.2 77.1 77.7 78.5	51.5 54.4 57.5 61.2 65.7 69.2 71.5 73.0 74.4 76.2 77.2 77.2 77.9 78.6 79.2	51.5 54.5 57.6 61.5 65.9 69.4 71.6 73.1 74.3 75.4 76.4 77.2 78.6 79.2	51.9 54.8 57.9 61.7 66.0 71.6 73.2 74.4 75.5 78.0 78.7 79.2
40-YEAR-OLD CUTTINGS									
10 20 30 40 50 60 70 80 90 100 110 120 130 140	43.3 45.6 47.6 49.6 52.0 55.2 58.3 67.0 70.0 72.1 73.5 74.7 75.8 76.7	49.8 52.2 55.0 58.4 62.6 66.8 70.0 72.0 73.4 74.7 76.6 77.4 78.1 78.8	55.7 59.1 63.7 67.8 70.5 72.5 73.8 74.8 76.0 76.8 77.6 78.3 78.9 79.6 80.1	61.2 65.7 69.2 71.6 73.1 75.4 76.2 77.9 78.6 79.2 79.8 80.3 80.8	63.7 67.6 70.5 72.5 73.8 74.8 76.0 76.8 77.6 80.0 80.6 81.1	64.3 68.1 70.8 72.6 74.1 75:0 76.0 76.9 77.7 78.4 79.6 80.1 80.6 81.1	64.6 68.4 71.1 72.8 74.2 75.1 76.1 77.0 77.8 78.4 79.1 79.7 80.1 80.7 81.1	64.9 68.7 71.3 72.9 74.2 76.2 77.0 77.8 78.5 79.1 79.7 80.2 80.7 81.1	65.2 68.8 71.3 72.9 74.2 75.3 76.2 77.1 77.7 78.5 79.1 79.7 80.2 80.7 81.2

