Grafuri Orientate

Adicenta.Incidenta.Grad

- Numim **graf orientat**, o pereche ordonată de mulţimi G=(X,U), unde:
 - X este o mulţime finită și nevidă numită mulţimea nodurilor (vârfurilor);
 - U este o mulţime formată din perechi ordonate de elemente ale lui X, numită mulţimea arcelor.

Exemplu:

ightharpoonup În graful G=(X,U) de mai jos avem: X={1, 2, 3, 4, 5}, U={(5,3), (5,3), (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (4,5), (3,3)}.

Nodul 4 este succesor al nodului 2.

Nodul 2 este predecesor al nodului 4.

Nodurile 2 și 4 sunt adiacente.

Arcul (2,4) și nodul 2 se numesc incidente.

La fel arcul (2,4) și nodul 4.

Observaţi că avem **bucla** (3,3)

Există două arce (5,3), adică G este 2-graf

Succesor/Predecesor

Dacă (x,y) este un arc, nodul y se numește **succesor** al lui x, iar nodul x se numește **predecesor** al lui y.

Adiacente/Incidente

Pentru un arc de forma u=(x,y) nodurile x și y se numesc **adiacente**, iar arcul u și nodul x sunt **incidente**.

Bucla

Un arc de forma (x,x), care iese din nodul x și intră tot în x, se numește **buclă**.

P-Graf

Se numește **p-graf**, un graf orientat în care numărul arcelor identice este mai mic sau egal cu o valoare dată p.

 $d^{+}(2)=3$

 $d^{-}(2)=1$

 $\Gamma^{+}(2) = \{3,4,5\}$

 $\Gamma^{-}(2) = \{1\}$

 $\omega^{+}(2) = \{(2,5), (2,3), (2,4)\}$

 $\omega^{-}(2) = \{(1,2)\}$

Gradul exterior

Gradul exterior al unui vârf x, notat d+(x), reprezintă numărul arcelor care ies din nodul x, adică numărul arcelor de forma $(x,y) \in U$.

Grad interior

Gradul interior al unui vârf x, notat d-(x), reprezintă numărul arcelor care intră în nodul x, adică numărul arcelor de forma $(y,x) \in U$.

Multimea Succesorilor

 $\Gamma^{+}(x) = \{ y \in X / (x, y) \in U \}$ reprezintă multimea nodurilor ce constituie extremități finale ale arcelor care pleacă din nodul x. Pe scurt, mulţimea succesorilor lui x.

Multimea predecesorilor

 $\Gamma^{-}(x) = \{ y \in X / (y, x) \in U \}$ reprezintă multimea nodurilor ce constituie extremități inițiale ale arcelor care intră în nodul x. Pe scurt, mulțimea predecesorilor lui x.

Multimea arcelor care ies din nod

 $\omega^+(x) = \{u = (x, y)/u \in U\}$ reprezintă mulţimea arcelor care ies din nodul x.

Multimea arcelor care intra din nod

 $\omega^{-}(x) = \{u = (y, x) / u \in U\}$ reprezintă mulțimea arcelor care intră în nodul x.

- d+(3)=2
- Corect!
- d⁻(5)= 2
- Corect!
- $\Gamma^+(1) = \{ 2 \}$
- Corect!
- $\Gamma^{-}(3) = \{ 2 \}$
- Corect!

- $\omega^+(5) = \{(5,6),(5,3)\}$
- Corect!
- $\omega^{-}(4) = \{([3], [4])\}$
- Corect!

► Desenați graful orientat definit de: X={1,2,3,4,5,6} și U={(1,2), (1,5), (3,2), (5,6), (3,6), (6,1), (4,2), (4,3)}

al nodului x se notează cu

e) Mulţimea de **succesori** ai lui x se notează cu

Graf Partial.Subgraf

d) Gradul interior

Definitie

Se consideră graful G de mai jos în care $X=\{1, 2, 3, 4, 5, 6\}$ şi $U=\{(2,1), (1,3), (3,2), (4,3), (3,5), (6,4), (5,6)\}$. Construim **graful parțial** $G_1=(X,V)$, unde $X=\{1, 2, 3, 4, 5, 6\}$ şi $V=\{(2,1), (3,2), (4,3), (6,4), (5,6)\}$, adică din graful G au fost eliminate arcele (1,3) şi (3,5).

d'(x)

Γ†(x)

Fie graful G=(X,U). Un **graf parțial** al lui G, este un graf $G_1=(X,V)$, cu $V\subseteq U$. Altfel spus, un graf parțial G_1 al lui G, este chiar G, sau se obține din G păstrând toate vârfurile şi suprimând niște arce.

Graful G=(X,U)

Graful $G_1=(X,V)$

Se consideră graful G de mai jos în care $X=\{1, 2, 3, 4, 5, 6\}$ şi $U=\{(2,1), (1,3), (3,2), (4,3), (3,5), (6,4), (5,6)\}$. Construim **subgraful** $G_2=(Y,V)$, unde $Y=\{3, 4, 5, 6\}$ şi $V=\{(4,3), (3,5), (6,4), (5,6)\}$ adică din graful G au fost eliminate nodurile 1 şi 2 şi arcele incidente acestora.

Fie graful G=(X,U). Un **subgraf** al lui G, este un graf $G_1=(Y,V)$, unde $Y \subseteq X$, iar V va conţine toate arcele din U care au ambele extremităţi în Y. Altfel spus, un subgraf al unui graf se obţine eliminând nişte noduri şi toate arcele incidente acestor noduri.

Graful G=(X,U)

Graful $G_1=(Y,V)$

Construiți graful parțial obținut prin eliminarea arcelor ce trec prin nodurile 2 și 8 din graful de mai jos.

Construiți subgraful generat de mulțimea de noduri Y={1, 2, 4, 5}

Matrice de adiacenta

Definitie

► Matricea de adiacență este o matrice a cu n linii și n coloane, în care elementele a[i,j] se definesc astfel:

$$a[i,j] = \begin{cases} 1 \text{, dacă} \, \exists \, \text{arcul (i,j) in mulţimea U} \\ 0 \text{, in caz contrar} \end{cases}$$

Matricea de adiacență

	1	2	3	4	5
1	0	1	1	1	1
2	0	0	1	1	1
3	0	1	1	1	1
4	0	0	0	0	1
5	0	0	0	0	0

Desenați un graf și urmăriți cum se modifică matricea de adiacență.

Matricea de adiacență

	1	2	3	4	5
1	0	0	0	0	1
2	0	0	1	0	0
3	1	1	0	0	0
4	0	0	0	0	1
5	0	0	0	1	0

Desenaţi graful corespunzător matricei de adiacenţă date. Folosiţi butonul Generare matrice pentru a genera o altă matrice.

Corect!

	1	2	3	4	5
1	0	0	0	1	1
2	1	0	0	0	1
3	0	0	0	1	1
4	1	0	0	0	1
5	1	1	0	0	0

Completați frazele de mai jos cu unul din cuvintele disponibile.

a) Numărul de **arce** ale unui graf orientat este egal cu **sun** valorilor 1 din matricea de adiacență.

b) Suma elementelor din linia i reprezintă gradul exterior al nodului i.

c) Suma elementelor din coloana i reprezintă gradul *interior* al nodului i.

eade 🧹

d) Un nod *izolat* are în linia și coloana corespunzătoare în matricea de adiacență doar zerouri.

Determinarea gradului exterior și a gradului interior ale unui nod oarecare x.

```
int d_plus (int x)
/*returnează gradul exterior d+ pentru un nod x;
acesta este numărul valorilor de 1 de pe linia x a
matricei de adiacență*/
    int nr, j;
    nr=0;
   for (j=1; j<=n; j++)
        if (a[x][j]==1) nr++;
int d_minus (int x)
/*returnează gradul interior d- pentru un nod x; acesta
este numărul valorilor de 1 de pe coloana x a matricei
de adiacenţă*/
   int nr, i;
    nr=0;
    for (i=1;i<=n;i++)
        if (a[i][x]==1) nr++; nod oa
    return nr;
}
```

Matricea varfuri-arce

Definitie

- ► Matricea vârfuri-arce este o matrice B cu n=|X| linii și m=|U| coloane, în care fiecare element b[i,j] este:
 - 1, dacă nodul i este o extremitate iniţială a arcului u_i;
 - -1, dacă nodul i este o extremitate finală a arcului uj;
 - 0, dacă nodul i nu este o extremitate a arcului uj.

Teorie

- Pe fiecare coloană j (aferentă arcului u_j), avem exact două elemente nenule: un 1 (linia i pe care se află reprezintă extremitatea iniţială a arcului u_j) și un -1 (linia i pe care se află reprezintă extremitatea finală a arcului u_j).
- Numărul valorilor de 1 de pe linia i reprezintă gradul exterior al nodului i, iar numărul valorilor de -1 de pe linia i reprezintă gradul interior al nodului i.

Matricea vârfuri-arce

$$\mathbf{B} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 & 0 & -1 & 1 & 1 & 1 \\ 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 & 0 & 0 & -1 & 0 \end{pmatrix}$$

Matricea vârfuri-arce

	1		3				7
1	1	-1	1	0	0	0	-1
2	0	0	0	0	1	1	0
3	-1	1	0	-1	0	0	0
4	0	0	-1	1	-1	0	0
5	0	0	0	0	0	-1	1

Corect!

Matricea vârfuri-arce

$$\left(\begin{array}{cccccccc}
1 & 0 & 0 & -1 & 0 \\
-1 & -1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & -1 & 1 & 1
\end{array}\right)$$

Lista Vecinilor

Lista Succesorilor

Mulţimea Γ^+ (x) , numită **lista succesorilor lui x** conţine nodurile ce sunt extremităţi finale ale arcelor care ies din nodul **x**. Matematic, Γ^+ (x) poate fi definit astfel:

$$\Gamma^+(x) = \{y \mid y \in X \text{ si } (x,y) \in U\}$$

Lista Predecesorilor

Mulţimea $\Gamma^*(x)$, numită **lista predecesorilor lui** x conţine nodurile ce sunt extremități iniţiale ale arcelor care intră în nodul x. Matematic, $\Gamma^*(x)$ poate fi definit astfel:

$$\Gamma^{-}(x)=\{y|\ y\in X\ si\ (y,x)\in U\}$$

Grad exterior/interior

Numărul de elemente din lista succesorilor lui x reprezintă gradul exterior al nodului x, iar numărul de elemente din lista predecesorilor lui x reprezintă gradul interior al nodului x.

Listele vecinilor

nodul	$\Gamma^{+}(x)$	$\Gamma^{-}(x)$
1	2,3,4,5	
2	3,5	1,3
3	2,4,5	1,2
4		1,3
5		1,2,3

▶ Desenați un graf și urmăriți cum se actualizează **lista succesorilor** și **lista predecesorilor** pentru fiecare nod în parte.

Listele vecinilor

nodul	$\Gamma^+(x)$	$\Gamma^{-}(x)$
1	4235	
2	3	1 5
3	4	1 2
4	5	1 3
5	2	1 4

Corect!

Listele vecinilor

nodul	$\Gamma^+(x)$	Γ (x)
1	4 6	24567
2	134	4567
3	4567	2 4 7
4	12356	123
5	1267	3 4
6	1 2	13457
7	1236	3 5

Vectorul de arce

- Fiecare arc al grafului poate fi privit ca o înregistrare cu două componente și anume cele două noduri care constituie extremitățile arcului:
 - x nodul din care iese arcul ("nodul de început" al arcului);
 - y- nodul în care intră arcul ("nodul de sfârșit" al arcului).

Putem defini tipul de dată ARC, astfel:

Astfel că putem reprezenta graful și ca un "vector de muchii ", adică un vector cu elemente de tipul ARC:

ARC v[25];

Vectorul de arce

 $U=\{(1,2), (1,3), (1,4), (1,5), (2,3), (2,5), (3,2), (3,4), (3,5)\}$

Vectorul de arce

 $U = \{(1,5),\,(1,3),\,(1,2),\,(4,5),\,(4,2),\,(4,3),\,(2,5),\,(5,3),\,(2,4),\,(3,1),\,(3,5)\}$

Corect!

Numărul de noduri: 6

Vectorul de arce

 $\begin{array}{l} U \! = \! \{ (1,3), \, (1,6), \, (2,3), \, (2,4), \, (2,6), \, (3,4), \, (3,6), \, (5,2), \\ (5,3), \, (5,4), \, (6,2), \, (6,3), \, (6,5) \} \end{array}$

Generare vector

Lant.Drum.Circuit

Definitie

Se numește **lanț** într-un graf orientat, un șir de arce $L=[u_1,u_2,...,u_k]$ cu proprietatea că oricare două arce vecine au o extremitate comună.

În definirea unui lanţ nu se ţine cont de orientarea arcelor.

Dacă lanţul nu trece de mai multe ori printr-un nod, atunci se numeşte **elementar**, altfel se numeşte **neelementar**.

Desenați un lanț elementar de la nodul 1 la nodul 2.

Desenați un lanț neelementar de la nodul 1 la nodul 5 și trece prin cel mult 6 noduri.

L={1,4,3,2,1,5}

Definitie

Se numește **drum** în graful G, un șir de noduri $D=\{x_1,x_2,...,x_k\}$ din X, cu proprietatea că oricare două noduri consecutive sunt adiacente, adică există arcele $[x_1,x_2]$, $[x_2,x_3],...$ $[x_{k-1},x_k] \in U$.

Dacă nodurile $z_1, z_2, ..., z_k$ sunt distincte două câte două, drumul se numește **elementar**. În caz contrar, drumul este **ne-elementar**.

Desenați un drum elementar de la nodul 6 la nodul 1.

 $D=\{6,2,5,1\}$

➤ Desenați un drum neelementar de la nodul 2 la nodul 5.

D={2,3,4,1,2,5}

Definitie

Se numește **circuit** într-un graf, un drum în care primul și ultimul nod coincid, iar arcele care-l compun sunt distincte două câte două. Dacă toate nodurile cu excepția primului și a ultimului sunt distincte două câte două, atunci circuitul se numește **elementar**. În caz contrar, el este **ne-elementar**.

Desenați un circuit elementar pornind de la nodul 2.

C={2,3,4,6,2}

Desenați un circuit neelementar pornind de la nodul 7.

C={7,5,6,4,3,2,5,1,7}

Matricea Drumurilor

Definitie

Matricea drumurilor este o matrice D cu n linii și n coloane, în care: $d[i,j] = \begin{cases} 1, \text{ dacă există drum de la i la j} \\ 0, în caz contrar \end{cases}$

Pentru graful de mai jos urmăriți cum arată matricea de adiacență și matricea drumurilor.

Matricea de adiacență

	1	2	3	4	5	6
1	0	1	1	1	1	0
2	0	0	1	0	1	0
3	0	1	0	1	1	1
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	1	0	0

Matricea drumurilor

	_	_	_	_	_	_
	1	2	3	4	5	6
1	0	1	1	1	1	1
2	0	1	1	1	1	1
3	0	1	1	1	1	1
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	1	0	0

Teorie

Determină **matricea drumurilor** pornind de la matricea de adiacență. Astfel, un element a[i,j] care este 0 devine 1 dacă există un nod k astfel încât a[i,k]=1 şi a[k,j]=1.

Matricea de adiacență

1	2	3	4	5
0	1	0	0	1
0	0	1	0	0

2 0 0 1 0 0 3 0 0 0 1 0 4 0 0 0 0 1 5 0 0 0 0 0

Matricea drumurilor

	1	2	3	4	5
1	0	1	1	1	1
2	0	0	1	1	1
3	0	0	0	1	1
4	0	0	0	0	1
5	0	0	0	0	0

Pentru graful de mai jos determinaţi:

- d[1,6]= 1 Corect!
- d[5,2]= 0 Corect!

Matricea de adiacență

	1	2	3	4	5	6
1	0	1	1	1	1	0
2	0	0	1	0	1	0
3	0	1	0	0	1	1
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	1	0	0

Matricea drumurilor

	1	2	3	4	5	6
1	0	1	1	1	1	1
2	0	1	1	1	1	1
3	0	1	1	1	1	1
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	1	0	0