Министерство науки и высшего образования Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

«Алтайский государственный технический университет им. И. И. Ползунова»

ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Кафедра Прикладная математ	гика
Отчет защищен с	оценкой
Преподаватель (п	А. В. Сорокин (и.о.фамилия) 2022 г.
Отчет	
по дисциплине	
ОСНОВЫ МОДЕЛИРОВА	RNHA
<u>Упражнение №4</u> ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММ И ГРАФИЧЕСКИЙ МЕТОД ЕЕ РЕ название работы	К ИНЭШС
<u>ЛР 09.03.04.05.005</u>	<u>O</u>
обозначение документа Студент группы гр. ПИ-91 ———————————————————————————————————	И.И.Шинтяпин
Преподаватель доцент, к.т.н.	А.В.Сорокин
должность, ученое звание	и.о., фамилия

Оглавление

Постановка задачи	2
Решение задачи в виде математической модели	1
Заключение	3
Список используемых источников	7

Постановка задачи

Задача линейного программирования (ЗЛП) является одной из важных экономико-математических задач оптимизации. Описывается ЗЛП математически с помощью оптимизируемой целевой функции

$$F=c1x1+c2x2+...+cnxn,$$

где c1, c2, ..., cn — набор весовых коэффициентов, обычно являющихся числами в денежном эквиваленте, x1,x2,...,xn — набор ресурсов, используемый для создания каких-то изделий. Функцию F необходимо или минимизировать, или максимизировать посредством изменения величин x1, x2, ..., xn. Записывается это так:

```
F=c1x1+c2x2+...+cnxn→min,
или
F=c1x1+c2x2+...+cnxn→max
```

Кроме целевой функции в ЗЛП имеется система ограничений вида

где b1, b2, ..., bm — набор величин, как правило положительных, являющихся объемом имеющихся ресурсов, имеющихся в наличии. Нестрогие неравенства могут быть и строгими.

Предполагается, что значения величин x1, x2, ..., xn неотрицательны $x1 \ge 0, x2 \ge 0, ..., xn \ge 0.$

Для решения ЗЛП используется известный симплекс метод, основанный на поиске решения на границе области, описываемой системой неравенств. Алгоритм, пробегая по граням и вершинам многогранника, ищет ту точку множества, которая дает оптимальное решение. Наглядным способом решения ЗЛП является графический метод. Его реализация позволяет наглядно понять суть метода поиска ЗЛП.

```
Рассмотрим ЗЛП вида
```

```
F=c1x1+c2x2+...+cnxn \rightarrow max

a11x1+a12x2+...+a1nxn \le b1,
```

Использование графического метода возможно не всегда, а лишь в частных случаях:

Рассмотрим частный случай этой задачи с заданными сі,аіј и bj, i=1,2; j=1,2,3.

```
F=x1+1.5x2 → max

4x1+2x2 \le 12,

3x1+3.5x2 \le 10.5,

2x1+6x2 \le 12,

x1 \ge 0, x2 \ge 0.
```

Задание к упражнению

- 1. Используя материал темы 3 из теории для упражнений, изучить постановку задачи линейного программирования (ЗЛП) и графический метод решения ЗЛП.
- 2. Освоить методику решения ЗЛП графическим методом с использованием программы Microsoft Excel (LibreOffice Calc).
- 3. Для своего варианта задания реализовать решение ЗЛП в программе Microsoft Excel (LibreOffice Calc).
- 4. Написать отчет о проделанной работе в текстовом редакторе Microsoft Word (LibreOffice Writer). Отчет должен содержать титульный лист по форме, содержание, Постановку задачи, решение задачи графическим методом с использованием всех инструментов, рассмотренных в данном методическом указании. В отчете можно использовать скриншоты, должны присутствовать графики.
- 5. В отчете должно быть Заключение, где рассказывается о решенной задаче и способах преодоления трудностей, возникших при решении данной задачи.
- 6. Должен быть список литературы, за основу которого можно взять список из данного методического указания или темы 3.

Вариант 28:

Решение задачи графическим методом

Построим область допустимых решений ЗЛП, в которой ищется решение. Для этого нужно ограничения-неравенства превратить в равенства:

Графики будем рисовать в программе MS Excel в прямоугольной системе координат, где будут 2 оси: X1 – обычный X и X2 – Y.

Система координат: Х10Х2

Для этого в функциях выразим X2:

- 1. X2 = 1 + X1
- 2. X2 = 1 X1
- 3. X2 = X1 2
- 4. X2 = 2X1

Далее в программе MS Excel в первую колонку A занесем возможные значения X1, с помощью функции «СЧЕТ» от 0 до 15:

Колонку «Ось X1» заполним 0, это нужно, чтобы построить ось в мастере диаграмм.

Далее запишем формулу соответствующие формулы в строку формул для других графиков и через выделение заполним колонки: C, D, E, F:

	F2	*	(f _x =2*A	2	
A	Α	В	С	D	Е	F
1	X1	Ось Х1	1+X1	1-X1	X1-2	2X1
2	0	0	1	1	-2	0
3	1	0	2	0	-1	2
4	2	0	3	-1	0	4
5	3	0	4	-2	1	6
6	4	0	5	-3	2	8
7	5	0	6	-4	3	10
8	6	0	7	-5	4	12
9	7	0	8	-6	5	14
10	8	0	9	-7	6	16
11	9	0	10	-8	7	18
12	10	0	11	-9	8	20
13	11	0	12	-10	9	22
14	12	0	13	-11	10	24
15	13	0	14	-12	11	26
16	14	0	15	-13	12	28
17	15	0	16	-14	13	30
40						

Затем, через мастер диаграмм, построим графики данных функций:

В процессе построения графика, был изменен шаг по X1 в колонке А для более крупного масштаба графиков в области точек пересечения.

Сделаем штриховку по ту сторону линии, где выполняется соответствующее неравенство:

Далее определим общую область ограничения:

Вычислим градиент целевой функции:

Grad F = [2; -1];

Проведем вектор из точки (0,0) в точку (2;-1), через изменение данных в графике и отметим вероятные точки максимума — вершины многоугольника

градинет направления					
X1 X2 gradi					
0	0	0			
2	-1	-1			

Видим оранжевым цветом градиент целевой функции Далее чтобы найти максимум функции, необходимо вычислить координаты вероятных точек максимума A, B

По графику видно что координата X1 у точки A равна 0, также видно, что точка A – это точка пересечения уравнений X2 = 1 + X1 и X2 = 1 – X1, подставим точку X1 = 0 и вычислим координату X2: X2 = 1 + 0 = 1, значит точка A(0, 1).

Также найдем точку B, как решение системы уравнений X2=1+X1 и X2=2X1 или в матричном виде:

AX=B

$$A = \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Решим систему уравнений в MS Excel с помощью функций:

МОПРЕД() – вычисление определителя, МОБР() – вычисление обратной матрицы, МУМНОЖ() – умножение двух матриц.

Решение системы:

Д	В	С	D	Е	F	G	Н	1	J
		Решение							
	A=	-1	1		B=	1		X1=	1
		2	-1			0		X2=	2
	A^(-1)=	1	1		detA=	-1			
		2	1						
	A*A^(-1)=	1	0	Единичная матрица					
		0	1						

Видим из решения системы уравнений, что координаты точки В(1, 2)

Вычислим максимум целевой функции из этих двух координат:

	Целевая с	функция:				
	F=2X1-X2> MAX			A=	0	1
F(A)=	-1			B=	1	2
F(B)=	-1					

Видим, что у данной целевой функции максимум достигается в двух точках A(0,1) и B(1,2)

Заключение

В данной работе изучалась возможность решения ЗЛП графическим методом с помощью программы MS Excel. В процессе решения были также изучены возможности программы MS Excel в построении графиков и решении систем линейных уравнений. Возникли сложности с использованием выводом графика по точкам.

Список используемых источников

- 1. Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем: учеб. пособие, 2-е изд. перераб. и доп., М.: Финансы и статистика, 2006. 432 с.: ил.
- 2. Васильев А.Н. Числовые расчеты в Excel: Учебное пособие. СПб: Изд-во «Лань», 2014, 608 с.
- 3. Гладких Б.А. Методы оптимизации и исследование операций для бакалавров информатики. Ч.1. Введение в исследование операций. Линейное программирование: Учебное пособие. Томск: Из-во НТЛ, 2009, 200 с.
- 4. Горлач Б.А. Исследование операций: Учебное пособие. СПб: Изво «Лань», 2013, 448 с.
- 5. Есипов Б.А. Методы исследование операций: Учебное пособие. СПб: Изд-во «Лань», 2013, 304 с.
- 6. Мадера А.Г. Математические модели в управлении: Компьютерное моделирование в Microsoft Excel: Лабораторные работы. М.:РГГУ, 2007. 121 с.
- 7. Новиков, А.И. Экономико-математические методы и модели: учебник /А.И. Новиков. Москва: Издательско-торговая корпорация «Дашков и К°», 2017. -532 с.: ил. (Учебные издания для бакалавров). Библиогр. в кн. ISBN 978-5-394-02615-7; То же [Электронный ресурс]. URL: http://biblioclub.ru/ index.php?page=book&id=454090 (05.12.2020).
- 8. Ржевский С.В. Исследование операций: Учебное пособие. СПб: Изд-во «Лань», 2013, 480 с.