

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Департамент математического и компьютерного моделирования
Пространственные деревья

ДОКЛАД

по образовательной программе подготовки бакалавров по направлению 09.03.03 «Прикладная информатика»

	Студент группы № Б	Студент группы № Б9121-09.03.03 ПИКД	
Работа защищена с оценкой	(подпись) «»	Пикалов А. П. 2022г.	
Регистрационный номер	Руководитель	должность, ученое звание)	
«»2022	(подпись) «	_(ФИО) 2022г.	

Оглавление

Список литературы:	3
R-дерево	
Где применяется	
Структура	
Типы деревьев	
Алгоритмы	
Поиск	6
Вставка	
СечениеОшибка! Закладка не	е определена.
Vлапение	- 6

Список литературы:

- 1. «Исследование и развитие метода декомпозиции для анализа больших пространственных данных», Золотов В.А., Семенов В.А.
- 2. «R-TREES. A DYNAMIC INDEX STRUCTURE FOR SPATIAL SEARCHING», Antomn Guttman University of Cahforma Berkeley, URL: http://www-db.deis.unibo.it/courses/SI-LS/papers/Gut84.pdf
- 3. «R-Trees: Theory and Applications», Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Papadopoulos, Yannis Theodoridis. URL: https://books.google.ru/books?id=1mu099DN9UwC&pg=PR5&redir_esc=y#v = onepage&q&f=false
- 4. https://www2.cs.sfu.ca/CourseCentral/454/jpei/slides/R-Tree.pdf
- 5. http://iipo.tu-bryansk.ru/fileadmin/user_upload/trubakov/book/3_2_1_R_Tree.pdf
- 6. https://ru.wikibrief.org/wiki/R-tree
- 7. Видеоурок по R-деревьям, "R-tree" от автора Vlan Ag \\ URL: https://youtu.be/Jd8F2hVnGtQ
- 8. «Глобальные алгоритмы построения R-деревьев», А.В. Скворцов
- 9. Курсовая работа «Параллельное пакетное построение R-деревьев», И.А. Шкуратов
- 10. «Разделение узла при индексировании интервалов», А.Е.Коротков
- 11.URL: https://bartoszsypytkowski.com/r-tree/
- 12.URL: https://www.geeksforgeeks.org/introduction-to-r-tree/
- 13.URL: https://iq.opengenus.org/r-tree/
- 14.URL: https://hpi.de/rabl/teaching/winter-term-2019-20/foundations-of-database-systems/the-r-tree-a-dynamic-index-structure-for-spatial-searching.html
- 15. "R-Tree Indexing video" от автора Ami \\ URL: https://youtu.be/ZxfR_94zuno
- 16. "The R-Tree Index. A segment from Using Data Indexes to Boost Performance and Minimize Footprint" от автора McObject \\ URL: https://youtu.be/l-sU9lwtHUc

R-дерево

Стремительный рост объемов информации, а также необходимость ее анализа приводят к развитию новых подходов к управлению данными и, в частности, методов пространственного индексирования, без которых невозможен быстрый поиск и обработка в геоинформационных базах данных, системах логистического обеспечения, системах автоматизации проектирования, системах управления проектами. Как правило, популярные универсальные и специализированные СУБД предусматривают для этих целей средства пространственного индексирования и поиска. Подобные средства успешно справляются с обработкой статической информации, однако часто не приспособлены для данных, подлежащих перманентным изменениям. Проблемы эффективного поиска и анализа еще более усложняются, когда информация представляет собой не просто массивы точек, а сложно-структурированные наборы данных, например, множества объектов с протяженными пространственными границами. Класс подобных приложений чрезвычайно широк и охватывает не только перечисленные выше прикладные области, но и многочисленные системы компьютерной графики, визуализации и анимации. Эти факторы определяют актуальность темы и огромный интерес, как со стороны научного сообщества, так и производителей системного и прикладного программного обеспечения.

Где применяется

Применение R-деревьев:

- Навигаторы
- СБМИ¹
- Отпечаток пальца
- Face-ID
- EOSDIS²

Структура

R-дерево — это структура, которая используется для хранения пространственных данных, таких как координаты объектов на карте. Каждый узел R-дерева состоит из n-мерного прямоугольника, ограничивающего определённую область данных на координатной плоскости, и массива ссылок на дочерние узлы.

Структура узла:

• Прямоугольник

¹ сверхбольшая масштабная интеграция – процесс (технология) создания сверхбольших интегральных схем и сама схема, содержащая от 100000 до 1000000 компонентов.

² EOSDIS – система данных и информации системы наблюдения Земли.

• Указатель на дочерний узел

Прямоугольник задаётся при помощи двумерного массива, содержащего координаты двух противоположных вершин прям-ка [[1,2], [5,7]]. Минимальное число ключей в узле — m, максимальное — m, где $m \in [2; M/2]$. Чаще всего выбирают m = 2.

Типы деревьев

Существует несколько типов R-деревьев:

- Стандартное R-дерево
- R*-дерево
- R+-дерево

R*-дерево пытается минимизировать перекрытие страниц, а повторные вставки дополнительно оптимизировали дерево. Стратегия разделения предпочитает квадратные страницы, что обеспечивает лучшую производительность для общих картографических приложений.

 R^+ -деревья отличаются от R-деревьев тем, что: не гарантируется, что узлы будут наполнены хотя бы наполовину, ключи любого внутреннего узла не перекрываются, а идентификатор объекта может храниться более чем в одном конечном узле.

Алгоритмы

Поиск

Поиск в дереве довольно тривиален, надо лишь учитывать тот факт, что каждая точка пространства может быть покрыта несколькими вершинами. Сложность: O(log N) в среднем, O(N) в худшем случае.

Вставка

Построение R-дерева происходит, как правило, с помощью многократного вызова операции вставки элемента в дерево. Идея вставки похожа на вставку в B-дерево: если добавление элемента в очередную вершину приводит к переполнению, то вершина разделяется. Сложность: O(MlogN)

Удаление

Состоит из следующих этапов: Поиск узла, его удаление, проверка на правильность дерева, проверка корня дерева (если у корня осталась одна запись – сделать её корнем).