

## Low power JFET single operational amplifiers

### Features

- Very low power consumption: 200  $\mu$ A
- Wide common-mode (up to  $V_{CC}^+$ ) and differential voltage ranges
- Low input bias and offset currents
- Output short-circuit protection
- High input impedance JFET input stage
- Internal frequency compensation
- Latch-up free operation
- High slew rate: 3.5 V/ $\mu$ s

### Description

The TL061 is a high-speed JFET input single operational amplifier, that incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit.

The device features high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.



**N**  
**DIP8**  
(Plastic package)



**D**  
**SO-8**  
(Plastic micropackage)

### Pin connections (top view)



- 1 - Offset null 1
- 2 - Inverting input
- 3 - Non-inverting input
- 4 -  $V_{CC}^-$
- 5 - Offset null 2
- 6 - Output
- 7 -  $V_{CC}^+$
- 8 - N.C.

# 1 Schematic diagram

Figure 1. Schematic diagram



Figure 2. Input offset voltage null circuit



## 2 Absolute maximum ratings and operating conditions

**Table 1. Absolute maximum ratings**

| Symbol            | Parameter                                                                 | Value          |                |                | Unit |
|-------------------|---------------------------------------------------------------------------|----------------|----------------|----------------|------|
|                   |                                                                           | TL061M, AM, BM | TL061I, AI, BI | TL061C, AC, BC |      |
| V <sub>CC</sub>   | Supply voltage <sup>(1)</sup>                                             | $\pm 18$       |                |                | V    |
| V <sub>i</sub>    | Input voltage <sup>(2)</sup>                                              | $\pm 15$       |                |                | V    |
| V <sub>id</sub>   | Differential input voltage <sup>(3)</sup>                                 | $\pm 30$       |                |                | V    |
| P <sub>tot</sub>  | Power dissipation                                                         | 680            |                |                | mW   |
|                   | Output short-circuit duration <sup>(4)</sup>                              | Infinite       |                |                |      |
| T <sub>stg</sub>  | Storage temperature range                                                 | -65 to +150    | -65 to +150    | -65 to +150    | °C   |
| R <sub>thja</sub> | Thermal resistance junction to ambient <sup>(5) (6)</sup><br>SO-8<br>DIP8 | 125<br>85      |                |                | °C/W |
| R <sub>thjc</sub> | Thermal resistance junction to case <sup>(5) (6)</sup><br>SO-8<br>DIP8    | 40<br>41       |                |                | °C/W |
| ESD               | HBM: human body model <sup>(7)</sup>                                      | 800            |                |                | V    |
|                   | MM: machine model <sup>(8)</sup>                                          | 200            |                |                | V    |
|                   | CDM: charged device model <sup>(9)</sup>                                  | 1.5            |                |                | kV   |

1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V<sub>CC</sub><sup>+</sup> and V<sub>CC</sub><sup>-</sup>.
2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
5. Short-circuits can cause excessive heating and destructive dissipation.
6. R<sub>th</sub> are typical values.
7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

**Table 2. Operating conditions**

| Symbol            | Parameter                            | TL061M, AM, BM | TL061I, AI, BI | TL061C, AC, BC | Unit |
|-------------------|--------------------------------------|----------------|----------------|----------------|------|
| V <sub>CC</sub>   | Supply voltage range                 | 6 to 36        |                |                | V    |
| T <sub>oper</sub> | Operating free-air temperature range | -55 to +125    | -40 to +105    | 0 to +70       | °C   |

### 3 Electrical characteristics

**Table 3.**  $V_{CC} = \pm 15 \text{ V}$ ,  $T_{amb} = +25^\circ \text{ C}$  (unless otherwise specified)

| Symbol    | Parameter                                                                                                                                                | TL061M     |            |           | TL061I     |            |           | TL061C   |            |           | Unit                         |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-----------|------------|------------|-----------|----------|------------|-----------|------------------------------|
|           |                                                                                                                                                          | Min.       | Typ.       | Max.      | Min.       | Typ.       | Max.      | Min.     | Typ.       | Max.      |                              |
| $V_{io}$  | Input offset voltage ( $R_S = 50\Omega$<br>$T_{amb} = +25^\circ \text{ C}$<br>$T_{min} \leq T_{amb} \leq T_{max}$ )                                      |            | 3          | 6<br>9    |            | 3          | 6<br>9    |          | 3          | 15<br>20  | mV                           |
| $DV_{io}$ | Temperature coefficient of input offset voltage ( $R_S = 50\Omega$ )                                                                                     |            | 10         |           |            | 10         |           |          | 10         |           | $\mu\text{V}/^\circ\text{C}$ |
| $I_{io}$  | Input offset current <sup>(1)</sup><br>$T_{amb} = +25^\circ \text{ C}$<br>$T_{min} \leq T_{amb} \leq T_{max}$                                            |            | 5          | 100<br>20 |            | 5          | 100<br>10 |          | 5          | 200<br>5  | pA<br>nA                     |
| $I_{ib}$  | Input bias current <sup>(1)</sup><br>$T_{amb} = +25^\circ \text{ C}$<br>$T_{min} \leq T_{amb} \leq T_{max}$                                              |            | 30         | 200<br>20 |            | 30         | 200<br>20 |          | 30         | 400<br>10 | pA<br>nA                     |
| $V_{icm}$ | Input common mode voltage range                                                                                                                          | $\pm 11.5$ | +15<br>-12 |           | $\pm 11.5$ | +15<br>-12 |           | $\pm 11$ | +15<br>-12 |           | V                            |
| $V_{opp}$ | Output voltage swing ( $R_L = 10\text{k}\Omega$ )<br>$T_{amb} = +25^\circ \text{ C}$<br>$T_{min} \leq T_{amb} \leq T_{max}$                              | 20<br>20   | 27         |           | 20<br>20   | 27         |           | 20<br>20 | 27         |           | V                            |
| $A_{vd}$  | Large signal voltage gain<br>$R_L = 10\text{k}\Omega$ $V_o = \pm 10\text{V}$ ,<br>$T_{amb} = +25^\circ \text{ C}$<br>$T_{min} \leq T_{amb} \leq T_{max}$ | 4<br>4     | 6          |           | 4<br>4     | 6          |           | 3<br>3   | 6          |           | V/mV                         |
| GBP       | Gain bandwidth product<br>$T_{amb} = +25^\circ \text{ C}$ , $R_L = 10\text{k}\Omega$ , $C_L = 100\text{pF}$                                              |            | 1          |           |            | 1          |           |          | 1          |           | MHz                          |
| $R_i$     | Input resistance                                                                                                                                         |            | $10^{12}$  |           |            | $10^{12}$  |           |          | $10^{12}$  |           | $\Omega$                     |
| CMR       | Common mode rejection ratio<br>$R_S = 50\Omega$                                                                                                          | 80         | 86         |           | 80         | 86         |           | 70       | 76         |           | dB                           |
| SVR       | Supply voltage rejection ratio<br>$R_S = 50\Omega$                                                                                                       | 80         | 95         |           | 80         | 95         |           | 70       | 95         |           | dB                           |
| $I_{cc}$  | Supply current, no load<br>$T_{amb} = +25^\circ \text{ C}$ , no load, no signal                                                                          |            | 200        | 250       |            | 200        | 250       |          | 200        | 250       | $\mu\text{A}$                |
| $P_D$     | Total power consumption<br>$T_{amb} = +25^\circ \text{ C}$ , no load, no signal                                                                          |            | 6          | 7.5       |            | 6          | 7.5       |          | 6          | 7.5       | mW                           |
| SR        | Slew rate<br>$V_i = 10\text{V}$ , $R_L = 10\text{k}\Omega$ , $C_L = 100\text{pF}$ , $A_v = 1$                                                            | 1.5        | 3.5        |           | 1.5        | 3.5        |           | 1.5      | 3.5        |           | $\text{V}/\mu\text{s}$       |
| $t_r$     | Rise time<br>$V_i = 20\text{mV}$ , $R_L = 10\text{k}\Omega$ , $C_L = 100\text{pF}$ , $A_v = 1$                                                           |            | 0.2        |           |            | 0.2        |           |          | 0.2        |           | $\mu\text{s}$                |

**Table 3.**  $V_{CC} = \pm 15 \text{ V}$ ,  $T_{amb} = +25^\circ \text{ C}$  (unless otherwise specified) (continued)

| Symbol   | Parameter                                                                                                                        | TL061M |      |      | TL061I |      |      | TL061C |      |      | Unit                                 |
|----------|----------------------------------------------------------------------------------------------------------------------------------|--------|------|------|--------|------|------|--------|------|------|--------------------------------------|
|          |                                                                                                                                  | Min.   | Typ. | Max. | Min.   | Typ. | Max. | Min.   | Typ. | Max. |                                      |
| $K_{ov}$ | Overshoot factor (see <i>Figure 16</i> )<br>$V_i = 20\text{mV}$ , $R_L = 10\text{k}\Omega$ , $C_L = 100\text{pF}$ ,<br>$A_V = 1$ |        | 10   |      |        | 10   |      |        | 10   |      | %                                    |
| $e_n$    | Equivalent input noise voltage<br>$R_S = 100\Omega$ , $f = 1\text{kHz}$                                                          |        | 42   |      |        | 42   |      |        | 42   |      | $\frac{\text{nV}}{\sqrt{\text{Hz}}}$ |

1. The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

**Table 4.**  $V_{CC} = \pm 15 \text{ V}$ ,  $T_{amb} = +25^\circ \text{ C}$  (unless otherwise specified)

| Symbol    | Parameter                                                                                                                                               | TL061AC, AI, AM |            |          | TL061BC, BI, BM |            |          | Unit                         |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|----------|-----------------|------------|----------|------------------------------|
|           |                                                                                                                                                         | Min.            | Typ.       | Max.     | Min.            | Typ.       | Max.     |                              |
| $V_{io}$  | Input offset voltage ( $R_S = 50\Omega$ )<br>$T_{amb} = +25^\circ\text{C}$<br>$T_{min} \leq T_{amb} \leq T_{max}$                                       |                 | 3          | 6<br>7.5 |                 | 2          | 3<br>5   | mV                           |
| $DV_{io}$ | Temperature coefficient of input offset voltage<br>( $R_S = 50\Omega$ )                                                                                 |                 | 10         |          |                 | 10         |          | $\mu\text{V}/^\circ\text{C}$ |
| $I_{io}$  | Input offset current <sup>(1)</sup><br>$T_{amb} = +25^\circ\text{C}$<br>$T_{min} \leq T_{amb} \leq T_{max}$                                             |                 | 5          | 100<br>3 |                 | 5          | 100<br>3 | pA<br>nA                     |
| $I_{ib}$  | Input bias current <sup>(1)</sup><br>$T_{amb} = +25^\circ\text{C}$<br>$T_{min} \leq T_{amb} \leq T_{max}$                                               |                 | 30         | 200<br>7 |                 | 30         | 200<br>7 | pA<br>nA                     |
| $V_{icm}$ | Input common mode voltage range                                                                                                                         | $\pm 11.5$      | +15<br>-12 |          | $\pm 11$        | +15<br>-12 |          | V                            |
| $V_{opp}$ | Output voltage swing ( $R_L = 10\text{k}\Omega$ )<br>$T_{amb} = +25^\circ\text{C}$<br>$T_{min} \leq T_{amb} \leq T_{max}$                               | 20<br>20        | 27         |          | 20<br>20        | 27         |          | V                            |
| $A_{vd}$  | Large signal voltage gain ( $R_L = 10\text{k}\Omega$ , $V_o = \pm 10\text{V}$ )<br>$T_{amb} = +25^\circ\text{C}$<br>$T_{min} \leq T_{amb} \leq T_{max}$ | 4<br>4          | 6          |          | 4<br>4          | 6          |          | $\text{V/mV}$                |
| GBP       | Gain bandwidth product<br>$T_{amb} = +25^\circ\text{C}$ , $R_L = 10\text{k}\Omega$ , $C_L = 100\text{pF}$                                               |                 | 1          |          |                 | 1          |          | MHz                          |
| $R_i$     | Input resistance                                                                                                                                        |                 | $10^{12}$  |          |                 | $10^{12}$  |          | $\Omega$                     |
| CMR       | Common mode rejection ratio ( $R_S = 50\Omega$ )                                                                                                        | 80              | 86         |          | 80              | 86         |          | dB                           |
| SVR       | Supply voltage rejection ratio ( $R_S = 50\Omega$ )                                                                                                     | 80              | 95         |          | 80              | 95         |          | dB                           |
| $I_{cc}$  | Supply current, no load<br>$T_{amb} = +25^\circ\text{C}$ , no load, no signal                                                                           |                 | 200        | 250      |                 | 200        | 250      | $\mu\text{A}$                |
| $P_D$     | Total power consumption<br>$T_{amb} = +25^\circ\text{C}$ , no load, no signal                                                                           |                 | 6          | 7.5      |                 | 6          | 7.5      | mW                           |

**Table 4.**  $V_{CC} = \pm 15$  V,  $T_{amb} = +25^\circ$  C (unless otherwise specified) (continued)

| Symbol   | Parameter                                                                                                | TL061AC, AI, AM |      |      | TL061BC, BI, BM |      |      | Unit                   |
|----------|----------------------------------------------------------------------------------------------------------|-----------------|------|------|-----------------|------|------|------------------------|
|          |                                                                                                          | Min.            | Typ. | Max. | Min.            | Typ. | Max. |                        |
| SR       | Slew rate<br>$V_i = 10V$ , $R_L = 10k\Omega$ , $C_L = 100pF$ , $A_v = 1$                                 | 1.5             | 3.5  |      | 1.5             | 3.5  |      | V/ $\mu$ s             |
| $t_r$    | Rise time<br>$V_i = 20mV$ , $R_L = 10k\Omega$ , $C_L = 100pF$ , $A_v = 1$                                |                 | 0.2  |      |                 | 0.2  |      | $\mu$ s                |
| $K_{ov}$ | Overshoot factor (see <i>Figure 16</i> )<br>$V_i = 20mV$ , $R_L = 10k\Omega$ , $C_L = 100pF$ , $A_v = 1$ |                 | 10   |      |                 | 10   |      | %                      |
| $e_n$    | Equivalent input noise voltage<br>$R_S = 100\Omega$ , $f = 1KHz$                                         |                 | 42   |      |                 | 42   |      | $\frac{nV}{\sqrt{Hz}}$ |

1. The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible

**Figure 3. Maximum peak-to-peak output voltage versus supply voltage**



**Figure 4. Maximum peak-to-peak output voltage versus free air temperature**



**Figure 5. Maximum peak-to-peak output voltage versus load resistance**



**Figure 6. Maximum peak-to-peak output voltage versus frequency**



**Figure 7. Differential voltage amplification versus free air temperature**



**Figure 8. Large signal differential voltage amplification and phase shift versus frequency**



**Figure 9. Supply current per amplifier versus supply voltage**



**Figure 10. Supply current per amplifier versus free air temperature**



**Figure 11. Total power dissipated versus free air temperature**



**Figure 12. Common mode rejection ratio versus free air temperature**



**Figure 13. Normalized unity gain bandwidth slew rate, and phase shift versus temperature**



**Figure 14. Input bias current versus free air temperature**



**Figure 15. Voltage follower large signal pulse response**



**Figure 17. Equivalent input noise voltage versus frequency**



## 4 Parameter measurement information

Figure 18. Voltage follower



Figure 19. Gain-of-10 inverting amplifier



## 5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: [www.st.com](http://www.st.com).  
ECOPACK® is an ST trademark.

## 5.1 DIP8 package information

Figure 20. DIP8 package mechanical drawing



Table 5. DIP8 package mechanical data

| Ref. | Dimensions  |      |       |        |       |       |
|------|-------------|------|-------|--------|-------|-------|
|      | Millimeters |      |       | Inches |       |       |
|      | Min.        | Typ. | Max.  | Min.   | Typ.  | Max.  |
| A    |             |      | 5.33  |        |       | 0.210 |
| A1   | 0.38        |      |       | 0.015  |       |       |
| A2   | 2.92        | 3.30 | 4.95  | 0.115  | 0.130 | 0.195 |
| b    | 0.36        | 0.46 | 0.56  | 0.014  | 0.018 | 0.022 |
| b2   | 1.14        | 1.52 | 1.78  | 0.045  | 0.060 | 0.070 |
| c    | 0.20        | 0.25 | 0.36  | 0.008  | 0.010 | 0.014 |
| D    | 9.02        | 9.27 | 10.16 | 0.355  | 0.365 | 0.400 |
| E    | 7.62        | 7.87 | 8.26  | 0.300  | 0.310 | 0.325 |
| E1   | 6.10        | 6.35 | 7.11  | 0.240  | 0.250 | 0.280 |
| e    |             | 2.54 |       |        | 0.100 |       |
| eA   |             | 7.62 |       |        | 0.300 |       |
| eB   |             |      | 10.92 |        |       | 0.430 |
| L    | 2.92        | 3.30 | 3.81  | 0.115  | 0.130 | 0.150 |

## 5.2 SO-8 package information

Figure 21. SO-8 package mechanical drawing



Table 6. SO-8 package mechanical data

| Ref. | Dimensions  |      |      |        |       |       |
|------|-------------|------|------|--------|-------|-------|
|      | Millimeters |      |      | Inches |       |       |
|      | Min.        | Typ. | Max. | Min.   | Typ.  | Max.  |
| A    |             |      | 1.75 |        |       | 0.069 |
| A1   | 0.10        |      | 0.25 | 0.004  |       | 0.010 |
| A2   | 1.25        |      |      | 0.049  |       |       |
| b    | 0.28        |      | 0.48 | 0.011  |       | 0.019 |
| c    | 0.17        |      | 0.23 | 0.007  |       | 0.010 |
| D    | 4.80        | 4.90 | 5.00 | 0.189  | 0.193 | 0.197 |
| E    | 5.80        | 6.00 | 6.20 | 0.228  | 0.236 | 0.244 |
| E1   | 3.80        | 3.90 | 4.00 | 0.150  | 0.154 | 0.157 |
| e    |             | 1.27 |      |        | 0.050 |       |
| h    | 0.25        |      | 0.50 | 0.010  |       | 0.020 |
| L    | 0.40        |      | 1.27 | 0.016  |       | 0.050 |
| L1   |             | 1.04 |      |        | 0.040 |       |
| k    | 0           |      | 8°   | 1°     |       | 8°    |
| ccc  |             |      | 0.10 |        |       | 0.004 |

## 6 Ordering information

**Table 7. Order codes**

| Part number                                   | Temperature range | Package | Packing             | Marking                         |
|-----------------------------------------------|-------------------|---------|---------------------|---------------------------------|
| TL061MN<br>TL061AMN<br>TL061BMN               | -55°C, +125°C     | DIP8    | Tube                | TL061MN<br>TL061AMN<br>TL061BMN |
| TL061MD/MDT<br>TL061AMD/MDT<br>TL061BMD/BMDT  |                   | SO-8    | Tube or tape & reel | 061M<br>061AM<br>061BM          |
| TL061IN<br>TL061AIN<br>TL061BIN               | -40°C, +105°C     | DIP8    | Tube                | TL061IN<br>TL061AIN<br>TL061BIN |
| TL061ID/IDT<br>TL061AID/AIDT<br>TL061BID/BIDT |                   | SO-8    | Tube or tape & reel | 061I<br>061AI<br>061BI          |
| TL061CN<br>TL061ACN<br>TL061BCN               | 0°C, +70°C        | DIP8    | Tube                | TL061CN<br>TL061ACN<br>TL061BCN |
| TL061CD/CDT<br>TL061ACD/ACDT<br>TL061BCD/BCDT |                   | SO-8    | Tube or tape & reel | 061C<br>061AC<br>061BC          |

## 7 Revision history

**Table 8. Document revision history**

| Date        | Revision | Changes                                                                                                                                                                       |
|-------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13-Nov-2001 | 1        | Initial release.                                                                                                                                                              |
| 27-Jul-2007 | 2        | Added values for $R_{thja}$ and $R_{thjc}$ in <a href="#">Table 1: Absolute maximum ratings</a> .<br>Added <a href="#">Table 2: Operating conditions</a> .<br>Updated format. |
| 05-Mar-2009 | 3        | Updated package mechanical drawings and data in <a href="#">Chapter 5: Package information</a> .                                                                              |

**Please Read Carefully:**

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

**UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.**

**UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.**

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

[www.st.com](http://www.st.com)