Exercise 2.1

Give all the symmetry elements of ${\rm H_2O},\,{\rm NH_3}$ and ${\rm CH_4}.$ For each molecule list the symmetry operations which commute.

Solution 2.1

https://symotter.org/gallery

- (a) H₂O belongs to the point group \mathscr{C}_{2v} , which has 4 symmetry elements, viz. E, C_2 , $\sigma_v(xz)$, $\sigma_v(yz)$.
- (b) NH₃ belongs to the point group \mathscr{C}_{3v} , which has 6 symmetry elements, viz. E, C_3 , C_3^2 , σ_{v1} , σ_{v2} , σ_{v3} .
- (c) CH₄ belongs to the point group \mathcal{T}_d , which has 24 symmetry elements, viz. E,

Exercise 2.2

On the basis of symmetry, which of the following molecules cannot have a dipole moment: CH_4 , CH_3Cl , CH_2D_2 , H_2S , SF_6 ?

Solution 2.2

- (a) CH₄ has no dipole moment.
- (b) CH₃Cl has a dipole moment.
- (c) CH_2D_2 has a dipole moment.
- (d) H_2S has a dipole moment.
- (e) SF₆ has no dipole moment.

Exercise 2.3

Which of the following molecules cannot be optically active: CHFClBr, H_2O_2 , $[Co(en)_3]^{3+}$, cis- $[Co(en)_2(NH_3)_2]^{3+}$, trans- $[Co(en)_2(NH_3)_2]^{3+}$?

Solution 2.3

- (a) CHFClBr belongs to the point group \mathcal{C}_1 , which is optically active.
- (b) H_2O_2 belongs to the point group \mathscr{C}_2 , which is optically active.
- (c) $[Co(en)_3]^{3+}$ belongs to the point group \mathcal{D}_3 , which is optically active.
- (d) cis- $[Co(en)_2(NH_3)_2]^{3+}$ belongs to the point group \mathcal{C}_2 , which is optically active.
- (e) trans- $[Co(en)_2(NH_3)_2]^{3+}$ belongs to the point group \mathcal{C}_{2h} , which is optically inactive.