UNIVERSIDAD CATÓLICA BOLIVIANA "SAN PABLO" UNIDAD ACADÉMICA REGIONAL COCHABAMBA

Departamento de Ciencias Exactas e Ingeniería de Sistemas

REPORTE TÉCNICO

Bustamante Quiroz Isabel
Lozada Peralta Jose Carlos
Montaño Torrico Jorge Adrian
Mounzon Baspineiro Adriel David

Cochabamba-Bolivia Mayo-2024

1. Preprocesamiento de datos

1.1. Enlistar y explicar brevemente las técnicas de preprocesamiento e ingeniería de features que se aplicaron a las diferentes soluciones.

Todas las técnicas y funciones de preprocesamiento pueden ser encontradas en el archivo "preprocessing_module.py" encontrado en el repositorio de GitHub: "https://github.com/MrJamt/proyecto-final-sis-int".

1.1.1. Cargar datos:

Función: cargar_datos(ruta_csv)

Haciendo uso de esta funcion es qué se consigue cargar los datos desde el archivo CSV enviado cómo parámetro, utilizando la librería pandas.

1.1.2. Eliminación de Columnas:

Función: eliminar columnas(data, columnas)

Esta función fue diseñada exclusivamente para eliminar columnas innecesarias. En este caso, se elimina la columna "id"

1.1.3. Manejo de Valores Faltantes:

Función: manejar valores faltantes(data, columna, valor)

Utilizada para llenar los valores faltantes en la columna 'Arrival Delay in Minutes' la cual es llenada con valores en 0.

1.1.4. Separación de Características Numéricas y Categóricas:

Función: separar_caracteristicas(data, caracteristicas_numericas, caracteristicas categoricas)

Utilizado para separar las características en dos conjuntos:

- Características numéricas
- Características categóricas

Ingeniería de Features

1.1.5. Normalización de Datos Numéricos:

Función: normalizar datos(numeric data)

Utilizado para normalizar las características numéricas haciendo uso de la librería "StandardScaler"

1.1.6. Codificación de Datos Categóricos:

Función: codificar datos(categorical data)

Encargado de transformar las características categóricas en valores numéricos utilizando "LabelEncoder"

1.1.7. Codificación de la Variable Objetivo:

Función: codificar objetivo(data, columna objetivo)

Convierte la variable satisfacción, que es el objetivo, en valores binarios. Donde:

- satisfied = 1
- neutral/unsatisfied = 0.

2. Arquitecturas de la red neuronal, para cada solución:

2.1. Nombres de la arquitectura

N	Nombre	Nombre de la Arquitectura			
1	A	3 capas			
2	В	4 Capas y mayor complejidad de la red			
3	С	Capas y menor complejidad en la red			
4	D	Menor complejidad			
5	Е	Modelo con Capas más Profundas y regularización hasta la 3era capa			

2.2. Técnicas de preprocesamiento e ingeniería de features aplicadas a esta solución.

Se utilizaron las mismas técnicas de preprocesamiento e ingeniería de features redactadas en el punto 1 del presente reporte, para las cuatro arquitecturas, puesto qué todas utilizan los mismos DataSet, tanto "train.csv" cómo "test.csv", los cuales pueden ser encontrados en el mismo repositorio.

2.3. Gráfica de ilustración

Las gráficas se realizaron con la librería networkx y matplotlib.pyplot dentro de un archivo "graphic_module.py" que se encuentra en el repositorio de

GitHub anteriormente mencionado:

"https://github.com/MrJamt/proyecto-final-sis-int".

Gráfica 1: Red neuronal A: 3 capas **Fuente:** Elaboración Propia

B)

Gráfica 2: Red neuronal B: 4 Capas y mayor complejidad de la red **Fuente:** Elaboración Propia

Neural Network Diagram

Gráfica 3: Red neuronal C: 5 Capas y menor complejidad en la red **Fuente:** Elaboración Propia

Gráfica 4: Red neuronal D: Menor complejidad **Fuente:** Elaboración Propia

E)

Neural Network Diagram

Gráfica 5: Red neuronal E: Modelo con Capas más Profundas y regularización hasta la 3era capa

Fuente: Elaboración Propia

2.4. Descripción textual de la red neuronal (número de capas, tipo de capas, número de neuronas, funciones de activación)

A)

Número Capas	Tipo	Número de Neuronas	Función de Activación
Capa 1	Capa de Entrada	22	-
Capa 2	Capa Oculta 1	64	ReLU (Rectified Linear Unit)
Сара 3	Capa Oculta 1	32	ReLU (Rectified Linear Unit)
Capa 4	Capa de Salida	1	Sigmoid

B)

Número Capas	Tipo	Número de Neuronas	Función de Activación
Capa 1	Capa de Entrada	22	-
Capa 2	Capa Oculta 1	128	ReLU (Rectified Linear Unit)
Capa 3	Capa Oculta 2	64	ReLU (Rectified Linear Unit)
Capa 4	Capa Oculta 3	32	ReLU (Rectified Linear Unit)
Capa 5	Capa de Salida	1	Sigmoid

C)

Número Capas	Tipo	Número de Neuronas	Función de Activación
Capa 1	Capa de Entrada	22	-
Сара 2	Capa Oculta 1	64	ReLU (Rectified Linear Unit)

Сара 3	Capa Oculta 2	32	ReLU (Rectified Linear Unit)
Capa 4	Capa Oculta 3	16	ReLU (Rectified Linear Unit)
Capa 5	Capa Oculta 4	8	ReLU (Rectified Linear Unit)
Capa 6	Capa de Salida	1	Sigmoid

D)

Número Capas	Tipo	Número de Neuronas	Función de Activación
Сара 1	Capa de Entrada	22	-
Capa 2	Capa Oculta 1	32	ReLU (Rectified Linear Unit)
Capa 3	Capa Oculta 2	16	ReLU (Rectified Linear Unit)
Capa 4	Capa de Salida	1	Sigmoid

E)

Número Capas	Tipo	Número de Neuronas	Función de Activación
Capa 1	Capa de Entrada	22	-
Capa 2	Capa Oculta 1	256	ReLU (Rectified Linear Unit)
Сара 3	Capa Oculta 2	128	ReLU (Rectified Linear Unit)
Capa 4	Capa Oculta 3	64	ReLU (Rectified Linear Unit)
Capa 5	Capa Oculta 4	32	ReLU (Rectified Linear Unit)
Capa 6	Capa de Salida	1	Sigmoid

Aclaraciones de cada capa y los parámetros utilizados en cada modelo de Red Neuronal:

- La capa de entrada que recibe datos con la forma de (X_train.shape[1],).
- El parámetro de "**Dropout**" previene el sobreajuste, de manera que el 30% de las neuronas se apagan aleatoriamente durante el entrenamiento.
- La **capa de salida** genera un valor único de probabilidad, para realizar la clasificación binaria entre "Satisfecho" o "Neutral/Insatisfecho"
- La **función de pérdida** "binary_crossentropy" (usado en problemas de clasificación binaria).
- La **métrica** utilizada es accuracy (precisión).
- La división de validación es de 20%, por lo tanto el otro 80% está destinado a entrenamiento.
- El **verbose** es 1, es el que muestra la barra de progreso durante el entrenamiento.
- Las **predicciones** generan probabilidades en el conjunto de prueba y se convierten a etiquetas binarias utilizando un **umbral** de **0.5**.
- La matriz de confusión es la encargada de evaluar el rendimiento del modelo.
- La **especificidad** es la proporción de verdaderos negativos entre todos los negativos predichos.

3. Tabla comparativa de entrenamiento

	Arquitectura	Nombre de la arquitectura	Tasa de aprendizaje	Optimizador	Tamaño de lote	Número de épocas	Tiempo aproximado de entrenamiento (seg)	Costo final después del entrenamiento
L	A	3 capas	0.001	Adam	32	20	72	0.105
	В	4 Capas y mayor complejidad de la red	0.001	Adam	32	20	122	0.0949
	C	5 Capas y menor complejidad en la red	0.001	Adam	32	20	113	0.1245
	D	Menor complejidad	0.001	Adam	32	20	85	0.1301
	Е	Modelo con Capas más Profundas y regularización hasta la 3era capa	0.001	Adam	32	20	160	0.0886

4. Tabla comparativa de evaluación

Arquitectura	Nombre de la arquitectura	Clase	Precisión	Recall	Especificidad	F1-Score
A	2 canas	neutral/unsatisfied	0.95	0.98	0.98	0.97
A	3 capas	satisfied	0.97	0.94		0.95
В	4 Capas y mayor complejidad de la red	neutral/unsatisfied	0.95	0.99	0.99	0.97
ь	4 Capas y mayor complejidad de la fed	satisfied	0.98	0.93		0.95
С	5 Camas v. manan aammiaiidad an la mad	neutral/unsatisfied	0.95	0.98	0.00	0.97
	5 Capas y menor complejidad en la red	satisfied	0.97	0.94	0.98	0.96
Ъ	Manage 1-111-1	neutral/unsatisfied	0.94	0.98	0.08	0.96
D	Menor complejidad	satisfied	0.97	0.92	0.98	0.95
Е	Modelo con Capas más Profundas y	neutral/unsatisfied	0.96	0.98	0.00	0.97
	regularización hasta la 3era capa	satisfied	0.97	0.95	0.98	0.96