

Adjacency

Adjacency

Two vertices u and v are *adjacent* if there is an edge connecting them. This is sometimes written as $u \sim v$.

v is adjacent to b and c but not to a.

Neighbourhood

Neighbourhood

The open neighbourhood $N(v) = \{u \in V \mid u \neq v, u \sim v\}$ of a vertex v is the set of vertices adjacent to v (not including v). The closed neighbourhood $N[v] = N(v) \cup \{v\}$ includes v.

$$N(v) = \{b, c\}$$
 $N[v] = \{v, b, c\}$

Degree

Degree

The *degree* deg(v) of a vertex v is the number of incident edges.

Note that the degree is not necessarily equal to the cardinality of neighbours.

$$deg(v) = 3$$
 $deg(a) = 1$ $deg(b) = 5$ $deg(c) = 1$

$$\deg(a) = 1$$

$$\deg(b) = 5$$

$$deg(c) = 1$$

Minimum and Maximum Degree

Minimum and Maximum Degree

For a graph G=(V,E), $\delta(G)$ denotes the *ninimum* and $\Delta(G)$ denotes the *maximum degree* of G, i. e., $\delta(G):=\min\{\deg(v)\mid v\in V\}$ and $\Delta(G):=\max\{\deg(v)\mid v\in V\}$.

$$\delta(G) = 1$$
 $\Delta(G) = 3$

Isolated Vertex

Isolated Vertex

A vertex v is called *isolated*, if it has no neighbours, i. e., $N(v) = \emptyset$.

The vertex v is an isolated vertex.

Universal Vertex

Universal Vertex

A vertex v is called *universal*, if it adjacent to all other vertices in the graph, i. e., N[v] = V.

The vertex v is a universal vertex.

Pendant Vertex

Pendant Vertex

A vertex v is called *pendant*, if it adjacent to exactly one other vertex, i. e., $\left|N(v)\right|=1$.

The vertex c is a pendant vertex.

Path

Path

A set $P = \{v_0, v_1, \dots, v_k\}$ of distinct vertices is called *path* (of *length k*) if v_i is adjacent to v_{i+1} for all i with $0 \le i < k$.

 $P = \{h, e, c, b, f, g, i\}$ is a path of length 6.

Cycle

Cycle

A path $P = \{v_0, v_1, \dots, v_k\}$ is called *cycle* (of *length* k+1) if v_0 is adjacent to v_k .

 $\{h, e, c, b, f, g\}$ is a cycle of length 6.

Chord

Chord

A *chord* in a path (or cycle) is an edge connecting two non-consecutive vertices of the path (or cycle).

The edges bg, cg, and eg are chords of the cycle $\{h, e, c, b, f, g\}$.

Induced Path / Cycle

Induced Path / Cycle

A path (or cycle) is called *induced* if it has no chords. For each $k \geq 3$, an induced path of k vertices is called P_k and an induced cycle of length k is called C_k .

Distance

Distance

The *distance* d(u,v) of two vertices u and v is the length of the shortest path from u to v.

$$d(u, v) = 3$$

Eccentricity

Eccentricity

The *eccentricity* ecc(v) of a vertex v is its maximal distance to any vertex, i. e., $ecc(v) = \max_{u \in V} d(u, v)$.

$$ecc(u) = 3$$

Eccentricity

Eccentricity

The *eccentricity* ecc(v) of a vertex v is its maximal distance to any vertex, i. e., $ecc(v) = \max_{u \in V} d(u, v)$.

$$ecc(v) = 2$$

Radius and Diameter

Diameter

The $diameter\ diam(G)$ of a graph G is the maximal eccentricity of all vertices in G, i. e., $diam(G) = \max_{v \in V} ecc(v)$.

Radius

The $radius \operatorname{rad}(G)$ of a graph G is the minimal eccentricity of all vertices in G, i. e., $\operatorname{rad}(G) = \min_{v \in V} \operatorname{ecc}(v)$.

Lemma

For each graph G, $rad(G) \le diam(G) \le 2 rad(G)$

Interval

Interval

The *interval* I(u,v) of two vertices u and v is the set of vertices which are on a shortest path from u to v. Formally,

$$I(u, v) = \{ w \mid d(u, v) = d(u, w) + d(w, v) \}.$$

$$I(e, d) = \{b, c, d, e, f, g\}$$

Interval

Interval

The *interval* I(u,v) of two vertices u and v is the set of vertices which are on a shortest path from u to v. Formally,

$$I(u, v) = \{ w \mid d(u, v) = d(u, w) + d(w, v) \}.$$

$$I(h,d) = \{b,d,f,g,h\}$$

Projection

Projection

For a vertex v and a vertex set S, the *projection* $\Pr(v,S)$ is the set of vertices in S with minimal distance to v. Formally,

$$Pr(v, S) = \{ u \in S \mid d(u, v) = d(v, S) \}.$$

$$Pr(a, I(h, d)) = \{b, g, h\}$$

Complement

Complement

The *complement* $\overline{G} = (V, \overline{E})$ of a graph G = (V, E) is the graph with the edges not contained in G, i. e., $\overline{E} = \{uv \mid uv \notin E\}$.

Subgraph

Subgraph

A graph G' = (V', E') is a *subgraph* of a graph G = (V, E) if $V' \subseteq V$ and $E' \subseteq E$.

Note that $u, v \in V \cap V'$ and $uv \in E$ does *not* imply $uv \in E'$.

Induced Subgraph

Induced Subgraph

For a graph G = (V, E) and a set $U \subseteq V$, the *induced subgraph* G[U] of G is defined as G[U] = (U, E') with $E' = \{uv \mid u, v \in U; uv \in E\}$

Connected Component

Connected Component

A *connected component* of an (undirected) graph is a maximal subgraph in which any two vertices can be connected by a path.

A graph with three connected components.

Strongly Connected Component

Strongly Connected Component

A directed graph is *strongly connected* if every vertex is reachable from every other vertex. A *strongly connected component* is a maximal subgraph which is strongly connected.

A graph with three strongly connected components.

Separator

Separator

A vertex set S is called *seperator* of a graph G if removing S from G increases the number of connected components.

The set $S = \{u, v\}$ is a separator for the given graph.

Articulation Point

Articulation Point

A vertex v is an *articulation point* (also called *cut vertex*) if $\{v\}$ is a separator, i. e., removing it increases the number of connected components.

A graph with two articulation points.

Bridge

Bridge

An edge is called *bridge* if removing it from the graph (while keeping the vertices) increases the number of connected components.

A graph with a bridge.

Block

Block

A *block* (also called *2-connected component*) is a maximal subgraph without articulation points.

A graph with four blocks.