# O1DRO1 Decision Making under Uncertainty 2017/2018

# Reinforcement Learning II.

Lecture 9

17.4.2018

## **Readings:**

- Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
   MIT Press, Cambridge MA USA, 1998
- Csaba Szepesvári. Algorithms for Reinforcement Learning. Morgan & Claypool, 2010.

#### **Reminder:**

Project report (or presentation) due today: send by email. Include source files (for implementations).

Presentations: choose time slot (20min) on DRO1 web and send me email

DRO1: 1.5, 8.5 no class (holidays).

DROS: 2 cancelled lectures (28.2 and 10.4) will be 22.5 and 23.5 (usual schedule)

Mid-term test marks and correct solutions, see DRO1 web

# Where are we?

## Recap: do we need learning in DM?

Learning is inevitable for any intelligent agent.

Learning can help to find:

- solution that cannot be found in advance. Reasons:
  - environment is too complex
  - environment is not fully known
- decision that is gradually improving
- solution that adapts to time-varying environment

## Recap: Learning in 'machine' terms

Let an agent observe a sequence of inputs:  $x_1, x_2, ..., x_n$ 

**Supervised learning:** The agent is given desired outputs  $y_1, y_2, ..., y_n$ . Goal: to *learn how to design* the correct output  $y_i$  given input  $x_i$ .

Typical example: neural network

Unsupervised learning:

Agent's goal is to *build a model* of x that can be used for other tasks (reasoning, decision making, predicting, etc.)

Typical example: find patterns in data; clustering

**Reinforcement learning:** The agent can take actions  $a_1$ ,  $a_2$ ,... which influence the environment state, and receives rewards (or punishments)  $r_1$ ,  $r_2$ ,...

Agent's goal is to learn how to act to maximise long-term reward.



## Recap: RL

#### Reinforcements used to train animals:

- Negative reinforcements (pain and hunger)
- Positive reinforcements (pleasure and food)



Reinforcement Learning 

Supervised Learning





## **Recap:** basics of RL

- Interact with a system through states and actions
- Receive rewards (reinforcement) as performance feedback



Formal RL definition: MDP with unknown transition and/or reward models:

- ⇒ agent cannot simulate interaction with environment in advance, to predict future outcomes.
- ⇒ the optimal policy is learned through **sequential interaction** and evaluative feedback.

Aim of RL: Learn an optimal policy  $\pi(s)$  while interacting with the environment

## **Recap: Types of RL**

Passive vs. Active Learning

Passive learning: the agent executes a fixed policy and tries to evaluate it Analogous to policy *evaluation* in PI

Active learning: the agent updates its policy as it learns and attempts to find an optimal (or at least good) policy

Analogous to *solving* the underlying MDP

Model-based vs. Model-free Learning

Model-based: learn transition T and reward R model (or approximated models) and use them to determine optimal policy

Model free: derive optimal policy without explicit learning the model

Note: model-free RL = indirect adaptive control; model-based RL = direct adaptive control, see Astrom, 01DR012 webpage

## Recap:

- Model-based Learning
  - Adaptive DP basically learns T and R, then perform policy evaluation based on the underlying MDP (T and R)
- Model-free Learning
  - Direct Evaluation performs policy evaluation.
  - Temporal Difference (T-D) Learning performs policy evaluation
  - Q-Learning learns optimal state-action value function Q\*

## Temporal difference TD(0) algorithm

Model-free method that performs policy evaluation. At each time:

- Collect experience s', s, a, r
- Update  $V^{\pi}(s) = V^{\pi}(s) + \alpha \Big( r(s) + \gamma V^{\pi}(s') V^{\pi}(s) \Big)$ Temporal difference

•  $\alpha$  -is learning rate, must satisfy  $\Sigma_t \alpha_t -> \infty$ ,  $\Sigma_t (\alpha_t)^2 < \infty$ 

The update is stochastic variant of DP.

If  $\alpha$  is appropriately decreased with number of times n(s) a state is visited e.g.  $\alpha(s)=1/n(s)$ , then  $V^{\pi}(s)$  converges to correct value.

$$V^{\pi}(s) = r(s) + \gamma \sum_{s'} T(s', a, s) V^{\pi}(s')$$

more reward than expected  $r(s_t) > \gamma V_{old}(s_{t+1}) - V_{old}(s_t) => \text{increase} \quad V(s_t)$  less reward than expected  $r(s_t) < \gamma V_{old}(s_{t+1}) - V_{old}(s_t) => \text{decrease} \quad V(s_t)$ 

# **Q-learning (alternative TD method)**

•  $Q^{\pi}(s,a) = E_{\pi}[r_0 + \gamma r_1 + \gamma^2 r_2 + ... | s,a]$  is called Q-function or (state-action)-value function. Q-function is a expected total reward from taking action a at state s.

expected reinforcement of a in s and subsequent optimal choosing actions

$$Q^{opt}(s,a) = r(s,a) + \gamma \sum_{s'} T(s,a,s') \max_{a'} Q(s',a'),$$

$$V^{opt}(s) = \max_{a'} Q(s',a'), \quad \pi^{opt} = \arg\max_{a'} Q^{opt}(s',a')$$

Q-learning rule:

$$Q_{new}(s,a) = (1-\alpha)Q_{old}(s,a) + \alpha \left[ r(s) + \gamma \max_{a'} Q_{old}(s',a') \right]$$

# Today..

## Reinforcement learning has many faces:

value iteration, policy iteration, linear programming, Q-learning, TD(), value function approximation, SARSA (State—action—reward—state—action) algorithm, Least Squares TD, Least Squares PI, policy gradient, inverse reinforcement learning, reward shaping, hierarchical reinforcement learning, inference-based methods, exploration vs. exploitation

## **On-policy and off-policy**

Major MC assumptions (infinite sampling and exploring all possible states) are *not* realistic. Need to continually explore

- On-policy method: update Q-values based on s' and current policy action, i.e.
   assume the current (estimation) policy will be followed
- Off-policy method: update Q-values based on s' and greedy policy action (irrespectively of the real current policy)
- Give no difference if greedy policy is used
- The policy used to generate behaviour (*behaviour* policy), may be unrelated to the policy that is evaluated and improved (*estimation* policy).
- An advantage is the estimation policy may be deterministic, while the behaviour policy can continue to sample all possible actions. Agent can use a behaviour policy that is good at exploring, then infer optimal policy from that.

# **Types of RL algorithms**

| model<br>availability | Model-based (indirect): T(s' a,s) and R(s',a,s) are known (ADP)                                                                    |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                       | Model-free (direct): T(s' a,s) and R(s',a,s) are unknown; only data (s',a,s) are at disposal (direct evaluation, TD(), Q-learning) |  |  |  |
|                       | <b>Model-learning RL:</b> estimate T(s' a,s) and R(s',a,s) from transition data                                                    |  |  |  |
| interaction<br>level  | Offline: data collected in advance (Q-iteration, PI)                                                                               |  |  |  |
|                       | Online: Policy $\pi^{\text{opt}}$ learnt by interacting with the environment (Q-learning, SARSA)                                   |  |  |  |
| optimal policy search | <b>Off-policy:</b> find $Q^{opt}$ , use it to compute $\pi^{opt}$ (Q-learning,Q-iteration)                                         |  |  |  |
|                       | On-policy: find $Q^{\pi}$ , improve $\pi$ and repeat (SARSA)                                                                       |  |  |  |

## **RL and MDP**

|                                                                | MDP with known<br>T(s' a,s) and R(s',a,s)               | Unknown MDP<br>Model- Based             | Unknown MDP<br>Model-Free |
|----------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|---------------------------|
| Compute V <sup>opt</sup> , Q <sup>opt</sup> , π <sup>opt</sup> | use<br>Value Iteration (VI) or<br>Policy Iteration (PI) | VI/PI on approximated MDP (Adaptive DP) | Q-learning                |
| Evaluate a fixed policy π <sup>opt</sup>                       | Policy<br>Evaluation (PE)                               | PE on approximated MDP                  | Value Learning            |

### What can we learn?

We have a sequence of data:

(s,a,r,s')=(state, action, immediate reward, next state)

- Model-based RL
  - learn to predict next state, i.e. estimate T(s'|s, a)
  - learn to predict immediate reward, i.e. estimate p(r|s,a)
- Model-free RL
  - learn to predict value of state V(s) or value of action state pair V(s, a)
- Direct policy search
  - performs policy evaluation

## **Learning in MDP**



## **Model-Based RL**

- Learn the model empirically via growing experience (s,a,r,s')
  - Collect outcomes (s, a) for sufficient time (so-called learning phase)
  - Fit transition model T'(s' | a,s) and estimate reward R'(s,a) for instance by using empirical observed distributions (or update some prior beliefs)

```
T'(s'|a,s)=\#(s',a,s)/\#(s,a) (discrete case)
```

 Solve the MDP with the learned approximate model (S, A, T', R') as if the learned model were correct (using standard VI with the estimated T')

Example: Adaptive/Approximate DP (learn transitions and rewards from observations then update the values of the states )

For continuous case: Least Squares Value Iteration, Stochastic Optimal Control

## **Grid example: passive ADP**





Three training sequences of (state, action, reward):

$$(1,1)_{-0.4} \rightarrow (1,2)_{-0.4} \rightarrow (1,3)_{-0.4} \rightarrow (1,2)_{-0.4} \rightarrow (1,3)_{-0.4} \rightarrow (2,3)_{-0.4} \rightarrow (3,3)_{-0.4} \rightarrow (4,3)_{+1}$$

$$(1,1)_{-0.4} \rightarrow (1,2)_{-0.4} \rightarrow (1,3)_{-0.4} \rightarrow (2,3)_{-0.4} \rightarrow (3,3)_{-0.4} \rightarrow (3,2)_{-0.4} \rightarrow (3,3)_{-0.4} \rightarrow (4,3)_{+1}$$

$$(1,1)_{-0.4} \rightarrow (2,1)_{-0.4} \rightarrow (3,1)_{-0.4} \rightarrow (3,2)_{-0.4} \rightarrow (4,2)_{-1}$$

$$p((1,2)|(1,3),r)=1/3$$

$$p((2,3)|(1,3),r)=2/3$$

Substitute in  $V^{\pi}(s) = R(s, a) + \gamma \sum_{s'} T'(s' | \pi(s), s) V^{\pi}(s')$ 

## **Adaptive Dynamic Programming**

Utilities of neighboring states are mutually constrained, Bellman equation:

$$V(s) = R(s) + \gamma \Sigma_{s'}T'(s'|a,s) V(s')$$

- Estimate T'(s'|a,s) from the frequency with which s' is reached when executing a in s.
- Can use VI: initialize utilities based on the rewards and update all values based on the above equation.
- Can be intractable given a big state space.

## **Model-free RL**

No need to learn the transition model and reward function

#### Common approaches:

- Direct evaluation
- Repeatedly execute the policy
- Value of the state s = the average sum of discounted rewards accumulated from s onwards (over all times the state s was visited)

Note: easy; corrupt info about state connections; long time to learn

- Temporal Difference Learning
   Learning from every experience, update V and/or Q any transition
- Q-Learning

## **Direct evaluation (model-free)**



- Developed in the late 1950's in the adaptive control theory.
- Rule: keep a running average of rewards for each state.

For each training sequence, compute the reward-to-go for each state in the sequence and update the utilities.

$$(1,1)_{-0.4} \rightarrow (1,2)_{-0.4} \rightarrow (1,3)_{-0.4} \rightarrow (1,2)_{-0.4} \rightarrow (1,3)_{-0.4} \rightarrow (2,3)_{-0.4} \rightarrow (3,3)_{-0.4} \rightarrow (4,3)_{+1}$$
  
0.72 0.76 0.84 0.88 0.92 0.96 1.0

$$V(1.2)=(0.76+0.84)/2=0.8$$

$$V(1.3)=(0.8+0.88)/2=0.84$$

## **Model-free RL**

No need to learn the transition model and reward function

#### Common approaches:

- Direct evaluation
- Repeatedly execute the policy
- Value of the state s = the average sum of discounted rewards accumulated from s onwards (over all times the state s was visited)

Note: easy; corrupt info about state connections; long time to learn

Q-Learning a Temporal Difference Learning
 Learning from every experience, update V and/or Q any transition

## **Model-free: Q-learning**

Given new data (s,a,r,s'), compute an average without knowing T() and R()

```
Q^{\text{new}}(s, a) = (1-\alpha) Q^{\text{old}}(s, a) + \alpha [r + \gamma \max_{a'} Q^{\text{old}}(s', a')]
= Q^{\text{old}}(s, a) + \alpha [r - Q^{\text{old}}(s, a) + \gamma \max_{a'} Q^{\text{old}}(s', a')],
```

#### Reinforcement

- more reward than expected  $r > Q^{old}(s,a) \gamma \max_{a'} Q^{old}(s',a') \Rightarrow increase Q(s,a)$
- less reward than expected  $r < Q^{old}(s,a) \gamma \max_{a'} Q^{old}(s',a') \Rightarrow decrease Q(s,a)$

#### Notes:

Q-learning is off-policy as agent estimates Q (s, a) while executing  $\pi$ 

Q-Learning is the first provably convergent direct adaptive optimal control algorithm Automatically focuses on the proper part of the state space, have to explore enough More efficient using *eligibility traces* (V may depend on sequence of states; *all* values where you've been recently are updated)

## **Grid example**





Non-deterministic actions (transition model and reward function are unknown to the agent)

Every state except of terminal states has reward -0.04; action = {left, right, up} Given policy  $\pi$ . Follow the policy for many epochs

Three training sequences of (state, action, reward):

$$(1,1)_{-0.4} \rightarrow (1,2)_{-0.4} \rightarrow (1,3)_{-0.4} \rightarrow (1,2)_{-0.4} \rightarrow (1,3)_{-0.4} \rightarrow (2,3)_{-0.4} \rightarrow (3,3)_{-0.4} \rightarrow (4,3)_{+1}$$

$$(1,1)_{-0.4} \rightarrow (1,2)_{-0.4} \rightarrow (1,3)_{-0.4} \rightarrow (2,3)_{-0.4} \rightarrow (3,3)_{-0.4} \rightarrow (3,2)_{-0.4} \rightarrow (3,3)_{-0.4} \rightarrow (4,3)_{+1}$$

$$(1,1)_{-0.4} \rightarrow (2,1)_{-0.4} \rightarrow (3,1)_{-0.4} \rightarrow (3,2)_{-0.4} \rightarrow (4,2)_{-1}$$
Oldron, lecture slides 2017/2018, T.V. Guy

## **Q-learning**

For each s and a initialise Q(s,a) (can be 0 or random). Observe current state s. Make a loop:

- select a and receive immediate reward r
- observe new state s'
- Update Q(s,a) =Q(s,a)+  $\alpha$ (r(s,a)+ $\gamma$  max<sub>a</sub>, Q(s',a') Q(s,a))
- set s=s'

In grid example (r=0 for non-terminal states)



$$Q((1,3),right) = Q((1,3),right) + \alpha(r((1,3)) + \gamma \max_{a'} Q((2,3),a') - Q((1,3),right))$$

## **Approximate RL**

Q-learning needs all to keep all Q-values => not realistic as too many states

- to experience all of them
- to store the values in memory

To avoid this problem => generalisation is used, i.e. knowledge gained on a small training data is transferred to similar situations.

- Use feature-based representation with feature function reflecting important property of the state
- Approximate  $Q(s,a) = \sum_i w_i f_i(s,a)$ , then update weights of important/active features rather than Q(s,a)

$$w_i^{\text{new}} = w_i^{\text{old}} + \alpha \left[ r - w^{\text{old}}(s, a) + \gamma \max_{a'} w_i^{\text{old}}(s', a') \right] f_i(s, a)$$

Note: Often very effective, helps RL scale up to very large MDPs, but convergence is *not* guaranteed

## **Model-free RL**

No need to learn the transition model and reward function

#### Common approaches:

- Direct evaluation
- Repeatedly execute the policy
- Value of the state s = the average sum of discounted rewards accumulated from s onwards (over all times the state s was visited)

Note: easy; corrupt info about state connections; long time to learn

Q-Learning a Temporal Difference Learning
 Learning from every experience, update V and/or Q any transition

# **Model-free: SARSA** (TD-learning of Q(s,a))

```
Given new data (s,a,r,s',a'), where a' = \pi(s')

Q^{\text{new}}(s,a) = (1-\alpha) Q^{\text{old}}(s,a) + \alpha [r(s',a,s) + \gamma Q^{\text{old}}(s',a')]

= Q^{\text{old}}(s,a) + \alpha [r(s',a,s) + \gamma Q^{\text{old}}(s',a') - Q^{\text{old}}(s,a)],
```

#### Reinforcement

- more reward than expected  $r > Q^{old}(s,a) \gamma Q^{old}(s',a') \Rightarrow increase Q(s,a)$
- less reward than expected  $r < Q^{old}(s,a) \gamma Q^{old}(s',a') \Rightarrow decrease Q(s,a)$

TD update adjusts Q estimate to agree with Bellman equation

## **Typical parameter values:**

- discount factor  $\gamma > 0.9$
- learning rate  $\alpha$  < 0.5 ( $\alpha \in (0, 1]$ ) or decrease with time
- exploration probability  $\varepsilon \approx 0.1$  or decrease with time
- decay rate for eligibility traces  $\lambda \in [0.5, 0.9]$  ( $\lambda \in [0, 1]$ )

## **Exploration-Exploitation: examples**

call a taxi service you know or try a new one





select your favourite pub/club or try a new

 play a move in a game you know as the best or play experimental (risky) move



• 'classical' example of E2 problem: multi-armed bandit



## E2: problem or dilemma?

To ensure convergence, RL methods need to sample all actions at every state sufficiently often

- Execute best estimated action, i.e action with the highest value => exploit
  - Note: the learned model can never be the real one => suboptimal results
- Try an action with lower estimated value (or random action) for which we may gather more useful knowledge => explore
  - Agent can learn the very precise model
  - It can be of use if some parts of model are never used

#### Problem:

- The best long-term strategy may involve short-term sacrices
- Gather enough information to make the best overall decisions

Balance exploitation-exploration is important.



## Multi armed bandit: example of E2

- A known set of m actions (# of arms)
- $R(r, a) = Pr(r \mid a)$  unknown probability distribution over rewards
- Agent selects action (arm)  $a_t \in A$ , bandit generates a reward  $r_t$
- Goal: maximize  $\Sigma_t r_t$
- Rewards of not chosen actions are unknown

To solve the n-armed bandit problem: you must explore a variety of actions and exploit the best actions



# Tradeoff: immediate vs. long-term profit

- Problem: choosing actions with the highest expected utility ignores their contribution to learning.
  - A random-walk agent learns faster but never uses that knowledge.
- A greedy agent learns very slowly and acts based on current, inaccurate knowledge.

Exploitation- Exploration tradeoff crucial for performance of online RL.



### Some principles solving the E2 dilemma

Naive exploration

Adding noise to greedy policy (e.g.  $\varepsilon$ -greedy: choose best  $a^* = \operatorname{argmax}_a Q(s,a)$  with probability  $1/[\varepsilon(n-1)]$ , n — is a number of trials, otherwise execute random action) or even simpler: execute random action with probability  $\varepsilon$ , and best with  $(1-\varepsilon)$ 

- Optimistic initialisation
   Assume the best until proven otherwise, e.g. initialise Q(a) to high value
- Optimism in the Face of Uncertainty
   Prefer actions with uncertain values, e.g. more uncertainty about an action value=>
   more important to explore that action
- Information State Search
   Search (ahead) incorporating value of information
- .. and many other heuristic and theoretically sound variants.

### E2 dilemma: value of info

If we know value of information, we can trade-off exploration and exploitation optimally

- Exploration gains information, but how to quantify the value of this info?
- How much reward does an agent want to give up to get that info?
- Uncertain situations imply higher information gains
- Exploring uncertain situations more is reasonable

### Optimal exploration strategy: utopia or not?

What does optimal mean? Try to formalize exploration as POMDP (policy learning is trivial for bandits)

- Use goodness measure of exploration step: measure regret of the total mistake: regret=expected reward of best action actual reward of taken action
   Keep track of average reward for each action; exploit: take a=argmin<sub>a</sub> regret(a)
   But: optimal exploration has higher regret than optimal exploitation
- Bayesian model identification (see Lecture 7) + explicitly reason about value of information (small grid problems)
- In large or infinite MDP intractable, optimal methods do not work ② Way out: solve using small-scale methods

# Other common exploration methods

■ Boltzmann exploration: execute each a with p(a) =e<sup>Q(s,a)/T</sup>/Σ<sub>a</sub>e<sup>Q(s,a)/T</sup> parameter T→∞ means all actions equally likely, T→0 means a\* will be chosen with near certainty (states with lower energy will always have a higher probability of being occupied)

 Confidence-based methods: use statistical tests to estimate a confidence bounds on estimated Q-values, then choose actions based on mean values but with an "exploration bonus" if high uncertainty (e.g., large upper confidence bound)

than the states with higher energy)

## **Exploration and Q-learning**

Q-learning converges to optimal Q-values even if the agent acting suboptimally and if

- Every state is visited infinitely often (due to exploration)
- The action selection becomes greedy as time approaches infinity
- The learning rate a is decreased fast enough but not too fast
- At early stages of learning, estimations can be unrealistic low
- In the early phase of search agent is more willing to explore.

### **Bayesian RL**

- dealing with uncertainty, where 'classic RL' does not.
- includes modelling the transition-function (value-function, policy, reward) probabilistically.

#### Bayesian RL:

- solves E2 by planning in belief space.
- is generally computationally intractable, but approximations exist
- efficiently chooses samples to learn from
- suitable when sample cost is high.

## **Bayesian Reinforcement Learning**

MDP is unknown, but can be learned based on experience

- Let MDP be parameterised as  $T(s'|s,a) = \theta_{s',a,s}$ . Then having experience  $(s_1,a_1,...,s_t,a_t)$  the posterior  $b(\theta)=p(\theta|s_1,a_1,...,s_t,a_t)$  can be estimated.
- given a posterior belief b about MDP we plan to maximise policy value in this distribution of MDPs:

$$V^{opt}(s,a) = \max_{a} \left[ R(s,a) + \gamma \sum_{s'} \int_{\theta} T(s'|,a,s,\theta) b(\theta) d\theta V^{opt}(s',b') \right]$$

details see for instance freely available: M. Ghavamzadeh et al. *Bayesian Reinforcement Learning: A Survey* Foundations and Trends in Machine Learning Vol.8, No.5-6 359–483 2015

### **Bayesian RL**

- A prior distribution over model parameters is available
- Updates distribution based on observed transitions
- Chooses actions with greatest expected long-term value
- Has no exploration-exploitation dilemma as solves it optimally
- Difficult to work with large POMDP, with high-dimensional continuous state space => tractability & efficiency

### What can RL do well now?

- To learn from human-expert training behaviour .
   drive a car
- To learn simple abilities (skills) with noisy observations (having rich experience at disposal)
   robot-manipulator



play a game





### What remains to be a challenge?

- Not clear what the reward function should be
- Not clear what the role of prediction should be
- Speed of RL is very far from humans
- Transfer learning in RL remains to be an open problem
- E2
- Generalisation over state and actions
- Partial observability
- Multiple-agents
- Non-stationary reward and transition models
- Proof of convergence, suboptimality conditions (convergence and optimality are difficult to achieve when state spaces are large)

• . . .

### **Beyond RL**

Inverse RL: learning reward function from experience
 => preference elicitation

- Transfer learning: transfer knowledge between different examples/domains
- Meta-learning: learning to learn

### **Transfer learning**

- use experience from one set (type) of problems (source domain) for faster learning and better performance in a new task (target domain)
- The more diversity we observe in source domain, the richer knowledge we transfer => randomisation
- Ensures that the differences are functionally irrelevant, it is not granted
- Tools: physical rules => models (model-based RL); policies; learning methods

### **Meta-learning**

- Closely related to multi-task learning
- Use past experience to find more efficient deep RL algorithm
- Learning to learn how to:
  - explore more efficiently
  - avoid actions that bring no reward
  - acquire the proper features more quickly

hard optimisation problem; works well in smaller tasks.

### **Problem with large MDPs:**

RL can solve large problems (e.g. backgammon 1020 states; computer Go 10170 states), but

- too many states and/or actions to store (limited memory)
- to learn the value of each state individually needs lot of timeWay out:
- generalise observed states to yet unobserved
- estimate V or Q with function approximation:
  - linear combinations of features
  - neural networks
  - nearest neighbour
  - wavelet-based, ...

### Deep RL: what is it?

RL uses neural networks to approximate:

- Policies (select next action)
- Value functions (measure goodness of states or state-action pairs)
- Models (predict next states and rewards)

## What has proven to be a challenge in Deep RL?

- Human able to learn quickly. Compare to them Deep RL is slow
- Transfer learning (use past knowledge/experience) in deep RL is not covered
- Form and importance of reward

#### Deep RL is good now (beginning 2018)

- in domains with simple and fixed rules (Go, ATARI)
- to learn from human-expert behaviour, i.e. learn from imitating (robots, driving, etc)
- to learn simple abilities from rich experience (robots)

Picture sources https://dir.indiamart.com/, http://gigabotics.com, https://github.com/