

Demonstration project 'De Schipjes': a zero-fossil-fuel energy concept in the historic city centre of Bruges

18/10/2021

Jelger Jansen, KU Leuven, Thermal System Simulations (The SySi)

Almshouses 'De Schipjes'

- Social housing neighborhood
- VLAIO demonstration project
- Renovate with focus on energetic and ecological aspects
- Classified as heritage

Almshouses 'De Schipjes'

- 1. Retrofit buildings → lower heat demand
- 2. District heating (DH) network

Scenario analysis

Scenario analysis

Performance indicators (PIs)

PI1: Primary energy use

PI2: Renewable energy use

PI3: Boiler fuel consumption

PI4: Heat pump electricity consumption

PI5: Solar collector heat production

PI6: Heat pump heat production

PI7: CHP fuel consumption

PI8: CHP electricity production

PI9: Storage tank heat losses

→ Scenario 4 – low-temperature DH network

District heating network – hydraulic scheme

Modelica model – heat generation + distribution

Modelica model – heat demand

Simulations – control strategy

Reference RBC

- On/off control GSHP (50°C)
- Heating curve building's heating system
- Night setback
- DHW > SH
- On/off control BHP (45/60°C)

• Alternative RBCs^{1,2,3}

- 1. Preheating DHW
- Simultaneous SH (radiators) and DHW production
- 3. FH active during night
- 4. Heating curve DH network

³ Jansen, J., Maertens, F., Boydens, W., Helsen, L. (2021). Living lab 'De Schipjes': a zero-fossil-fuel energy concept in the historic city center of Bruges. 17th Building Simulation Conference. Bruges (Belgium), 1-3 September 2021.

¹ Feyaerts, S. (2019). Impact van de regeling op de performantie van een klein thermisch net voor godshuizen, De Schipjes, te Brugge. Master's thesis, KU Leuven, Belgium, 2019. ² Boydens, W., Feyaerts, S., Vandermeulen, A., Helsen, L., Jansen, J. (2021). Control strategy assessment of a small GSHP sourced DH system with end user DHW booster heat pumps. 12th IEA Heat Pump Conference. Jeju (Korea), 26-29 April 2021.

Simulations – methodology

Simulations – control strategy

$$\sum_{buildings} \int_{t_{start}}^{t_{end}} \max(0, (T_{set}(t) - 1) - T_{zone}(t)) dt$$

	RBC	Primary energy use [GJ]	RES share [%]	COP GSHP [-]	COP BHP [-]	Thermal discomfort [Kh]
1	Reference	321.7	63.2	2.68	3.59	2687
2	Preheating DHW	321.9	63.1	2.67	3.54	2668
3	Simultaneous SH	323.7	63.3	2.69	3.62	2176
4	Continuous FH	325.6	64.5	2.67	3.59	1391
5	Heating curve	299.6	73.7	3.83	3.60	3257
6	Combination (3,4,5)	304.4	73.7	3.83	3.59	1438

Current/future research

- Implementing a model predictive controller (MPC) for 'De Schipjes'
 - TACO (Toolchain for automated control and optimisation)⁴
 - Minimise total electricity use while guaranteeing thermal/DHW comfort
 - Results for a three-day simulation (January 28-31)

	Thermal discomfort [Kh]	DHW discomfort [Kh]	Electricity use [MJ]	COP GSHP [-]	COP BHP [-]
RBC	190	0	2096	3.34	3.63
MPC	15	0	1864	3.91	3.81
Difference	-92%	/	-11%	+17%	+5%

⁴ Jorissen, F., Boydens, W., Helsen, L. (2019). TACO, an automated toolchain for model predictive control of building systems: implementation and verification. Journal of Building Performance Simulation, 12(2), 180-192.

Questions?

Jelger Jansen: jelger.jansen@kuleuven.be

