

Gegeben sind $g: \vec{x} = \vec{p} + r\vec{u}$ und $h: \vec{x} = \vec{q} + t\vec{v}$

Wie untersuchen Sie die gegenseitige Lage dieser Geraden?

g und h ...

+ ... haben genau einen Schnittpunkt, wenn die Vektorgleichung bzw. das dazugehörige Gleichungssystem $\vec{p} + r\vec{u} = \vec{q} + t\vec{v}$ eine Lösung besitzt.

 $+ \ldots$ sind gleich, wenn die Vektorgleichung bzw. das dazugehörige Gleichungssystem $\vec{p} + r\vec{u} =$ $\vec{q} + t \vec{v}$ unendlich viele Lösungen besitzt.

+ ... haben keinen Schnittpunkt, wenn die Vektorgleichung bzw. das dazugehörige Gleichungssystem $\vec{p} + r\vec{u} = \vec{q} + t\vec{v}$ keine Lösungen besitzt.

Sind ferner die Richtungsvektoren \vec{u} und \vec{v} ...

 \circ_1 ... linear abhängig, so sind g und h parallel

 \circ_2 ... linear unabhängig, so sind g und h zueinander windschief

Leitfrage

$$g: \vec{x} = \vec{p} + r\vec{u}$$

$$E_1: \vec{x} = \vec{q_1} + s\vec{v_1} + t\vec{w_1}$$

$$E_1: \vec{x} = \vec{q_1} + s\vec{v_1} + t\vec{w_1}$$
 $E_2: \vec{x} = \vec{q_2} + a\vec{v_2} + b\vec{w_2}$

Gerade - Ebene		
Gerade - Ebelle		
Ebene - Ebene		