Algèbre 2

Algèbre linéaire

Question 1/31

Projecteur

Réponse 1/31

$$p \circ p = p$$

Question 2/31

Base de E

Réponse 2/31

Famille libre maximale de EFamille génératrice minimale de E

Question 3/31

Structure des polynomes annulateurs

Réponse 3/31

Idéal de $\mathbb{K}[X]$

Question 4/31

Caractérisation géométrique des symétries

Réponse 4/31

s est une symétrie si et seulement s'il existe deux sous-espaces F et G de E tels que $F \oplus G = E$ avec $\forall (f, g) \in F \times G$ s(f+g) = f - g $F = \ker(s - \mathrm{id}), G = \ker(s + \mathrm{id})$

 $F = \ker(s - \mathrm{id}), G = \ker(s + \mathrm{id})$ Une symétrie est une symétrie géométrique par rapport à $\ker(s - \mathrm{id})$ parallèlement à $\ker(s + \mathrm{id})$

Question 5/31

Soit E et F deux \mathbb{K} -ev $f:E\to F$ est une application linéaire

Réponse 5/31

$$\forall (\lambda, x) \in \mathbb{K} \times E, \ f(\lambda x) = \lambda f(x)$$
$$\forall (x, y) \in E^2, \ f(x + y) = f(x) + f(y)$$

Question 6/31

Automorphisme d'espaces vectoriels

Réponse 6/31

Endomorphisme d'espaces vectoriels bijectif $\operatorname{GL}(E)$

Question 7/31

Famille libre de E

Réponse 7/31

$$\forall (\lambda_i)_{i \in I}, \ \sum_{i \in I} (\lambda_i x_i) = 0 \Rightarrow \forall i \in I, \ \lambda_i = 0$$

$$\forall x \in E \; \exists ! (\lambda_i)_{i \in I}, \; x = \sum (\lambda_i x_i)$$

Question 8/31

Isomorphisme d'espaces vectoriels

Réponse 8/31

Application linéaire bijective

Question 9/31

Endomorphisme diagonalisable $(b_i)_{i \in I}$ une base de E

Réponse 9/31

$$\forall i \in I, \ \exists \lambda_i \in \mathbb{K}, \ f(b_i) = \lambda_i b_i$$

Les λ_i sont les valeurs propres
Si $x \neq 0, \ f(x) = \lambda x$ est un vecteur propre
associé à λ
 $\ker(f - \lambda \mathrm{id})$ est le sous-espace propre de f
associé à λ

Question 10/31

Endomorphisme nilpotent $u \in \mathcal{L}(E)$

Réponse 10/31

$$\exists n \in \mathbb{N}, \ u^n = 0_{\mathcal{L}(E)}$$

Question 11/31

$$Vect(X) + Vect(Y)$$

Réponse 11/31

$$Vect(X \cup Y)$$

Question 12/31

Polynome annulateur $P \in \mathbb{K}[X]$ est annulateur de $u \in \mathcal{L}(E)$

Réponse 12/31

$$P(u) = 0_{\mathcal{L}(E)}$$

Question 13/31

Soit E et F deux \mathbb{K} -ev Caractérisation des applications linéaires

Réponse 13/31

$$\forall (\lambda, x, y) \in \mathbb{K} \times E^2, \ f(\lambda x + y) = \lambda f(x) + f(y)$$

Question 14/31

Structure de $(GL(E), \circ)$

Réponse 14/31

Groupe

Question 15/31

Endomorphisme d'espaces vectoriels

Réponse 15/31

Application linéaire de E dans lui-même $\mathcal{L}(E)$

Question 16/31

Structure de $\mathcal{L}(E)$

Réponse 16/31

$$(\mathcal{L}(E), +, \cdot, \circ)$$
 est une K-algèbre

Question 17/31

Image directe et réciproque de sous-espaces vectoriels par un homomorphisme

Réponse 17/31

Si E et F sont deux groupes, et $f \in \mathcal{L}(E, F)$ une application linéaire, E' et F' deux sous-espaces vectoriels de E et Ff(E') est un sous-espace vectoriel de F $f^{-1}(F')$ est un sous-espace vectoriel de F

Question 18/31

Somme directe

Réponse 18/31

$$E \oplus F$$
 est directe si et seulement si $E \cap F = \{0\}$

Question 19/31

Famille génératrice de E

Réponse 19/31

$$\forall x \in E \ \exists (\lambda_i)_{i \in I}, \ x = \sum_{i \in I} (\lambda_i x_i)$$
$$\operatorname{Vect}((x_i)_{i \in I}) = E$$

Question 20/31

Caractérisation de l'image et diagonalisation d'un projecteur

Réponse 20/31

$$\operatorname{im}(p) = \ker(p - \operatorname{id})$$

 $E = \ker(p) \oplus \ker(p - \operatorname{id})$

Question 21/31

Caractérisation géométrique des projecteurs

Réponse 21/31

p est un projecteur si et seulement s'il existe deux sous-espaces F et G de E tels que $F \oplus G = E$ avec $\forall (f, g) \in F \times G \ p(f + g) = f$ $F = \operatorname{im}(p), G = \ker(p)$ Un projecteur est une projection géométrique sur im(p) parallèlement à ker(p)

Question 22/31

Si
$$E$$
 est un \mathbb{K} -ev et $X \subset E$

$$\operatorname{Vect}(X)$$

Réponse 22/31

Plus petit sous-espace vectoriel de E contenant X

Question 23/31

Si $(A, +, \times)$ est un anneau et \mathbb{K} un corps A est une \mathbb{K} -algèbre

Réponse 23/31

$$\forall (\lambda, x, y) \in \mathbb{K} \times A^2$$
$$\lambda \cdot (x \times y) = (\lambda \cdot x) \times y = x \times (\lambda \cdot y)$$

Question 24/31

Structure de $\mathcal{L}(E,F)$

Réponse 24/31

 $\mathbb{K}\text{-}\mathrm{ev}$

Question 25/31

Si E est un espace vectoriel et $F \subset E$ Caractérisation(s) des sous-espaces vectoriels

Réponse 25/31

$$0 \in F$$
$$\forall (x, y, \lambda) \in F^2 \times \mathbb{K}, \lambda x + y \in F$$

Question 26/31

Un ensemble E est un espace vectoriel sur \mathbb{K} E est un \mathbb{K} -ev

Réponse 26/31

$$(E,+)$$
 est un groupe abélien E est muni d'une loi de composition externe · avec $\forall (\lambda,\mu,x,y) \in \mathbb{K}^2 \times E^2$ $(\lambda \mu) x = \lambda(\mu x)$ (associativité externe ou pseudo-associativité) $1_{\mathbb{K}} x = x$ (compatibilité du neutre de (\mathbb{K},\times)) $\lambda(x+y) = \lambda x + \lambda y$ (distributivité de · sur $+_E$)

 $(\lambda + \mu)x = \lambda x + \mu x$ (distributivité de $\cdot \operatorname{sur} +_{\mathbb{K}}$)

Question 27/31

Diagonalisation d'une symétrie

Réponse 27/31

$$s = \ker(s + \mathrm{id}) \oplus \ker(s - \mathrm{id})$$

Question 28/31

Si E est un \mathbb{K} -ev Un sous-ensemble F de E est un sous-espace vectoriel de E

Réponse 28/31

F est stable par les lois + et \cdot et les lois induites définissent sur F une structure d'espace-vectoriel

Question 29/31

Symétrie

Réponse 29/31

$$s \circ s = \mathrm{id}$$

Question 30/31

Structure de
$$\ker(f)$$

 $f: E \to F$

Réponse 30/31

Sous-espace vectoriel de E

Question 31/31

$$\varphi : E \times F \to G$$
 est bilinéaire

Réponse 31/31

$$\forall (x, x', y, y', \lambda) \in E^2 \times F^2 \times \mathbb{K}$$
$$\varphi(\lambda x + x', y) = \lambda \varphi(x, y) + \varphi(x', y)$$
$$\varphi(x, \lambda y + y') = \lambda \varphi(x, y) + \varphi(x, y')$$