Nelson Siegel Svensson Model (1994)

Andrea Cavalli

NSS model is used to model the yield curve. NSS Model is an extension of Nelson Siegel (NS) Model.

1 Why was NSS Model Developed

NS Model could only capture **single** 'hump' in the yield curve, it was failing when we had more than one 'hump' (or 'dip') to model. NSS could capture as more than one 'humps', it struggled to capture **complex shape** of the yield curve (during economic stress, unconventional monetary policy, Covid19 period,...).

2 Mathematical framework

NSS formula is similar to NS+Term₃:

$$s_{m} = \beta_{0} + \beta_{1} \left(\frac{1 - e^{-\lambda_{1}m}}{\lambda_{1}m} \right) + \beta_{2} \left(\frac{1 - e^{-\lambda_{1}m}}{\lambda_{1}m} - e^{-\lambda_{1}m} \right) + \beta_{3} \left(\frac{1 - e^{-\lambda_{2}m}}{\lambda_{2}m} - e^{-\lambda_{2}m} \right);$$

$$(1)$$

where $\beta_0, \beta_1, \beta_2$ represent the same things as the NS model, the difference is β_3 . β_3 captures a second hump or dip in the yield curve. So, the first hump is captures by β_2 and the second hump is captures by β_3 . In the same way as NS Model, λ_1, λ_2 represent the decay factors:

- $\lambda_1 = \text{control how quickly the curvature effect } (\beta_2)$ will fade along the yield curve:
- λ_2 = control how quickly the second curvature effect (β_3) will fade along the yield curve;

finally, we have:

- $\beta_0 = \text{long term level};$
- $\beta_1 = \text{slope}$ (steepness of short term maturity);
- $\beta_2 = \text{first curvature};$
- $\beta_3 = \text{second curvature};$

3 Limitation of NSS Model

- Overfitting: in the NSS Model we include β_2 and $\lambda_2 \Rightarrow$ increase the risk of overfitting;
- Parameter estimation: in the NSS Model we have six parameters ⇒ high computational demanding.

Feature	NS Model	${f Nss\ Model}$
Parameter	$4 (\beta_0, \beta_1, \beta_2, \lambda_1)$	$6 (\beta_0, \beta_1, \beta_2, \lambda_1, \lambda_2)$
Flexibility		can capture more complex shape
Use case	Typical yield curve	stressed market

Table 1: Caption

4 Calibration NSS Model with Market data using OLS

maturity (m)	Annualized yield	Modeled yield (NSS)	Error	Square Error
1 month	4.0%	4.15%	0.15%	0.0225%
2 month	4.1%	4.2%	0.1%	0.1 %
•••				•••
30 year	10%	12.0%	2.0%	4.0%
				Sum

We have to calculate $\beta_0, \beta_1, \beta_2, \beta_3, \lambda_1, \lambda_2$ minimizing the sum of the square error, this method is called **OLS**,

- Error between actual yield and the model yield;
- Square the error;
- Sum the square error;
- Run optimization in such a way that sum of square error minimizes by changing $\beta_0, \beta_1, \beta_2, \beta_3, \lambda_1, \lambda_2$.