

On Exploring Undetermined Relationships for Visual Relationship Detection

Yibing Zhan¹, Jun Yu¹, Ting Yu¹, Dacheng Tao²

¹ Hangzhou Dianzi University

² UBTECH Sydney AI Centre, SIT, FEIT, University of Sydney

Outline

- > 1. Visual Relationship Detection
 - ✓ Definition, Challenge, and Solution

- ➤ 2. Multi-modal Feature Based Undetermined Relationship Learning Network
 - ✓ Undetermined Relationship Generator
 - ✓ Undetermined Relationship Learning Network

- > 3. Conclusions
 - ✓ Conclusion and Future work

> Definition:

- ✓ Detect pairs of correlated objects and predict the object pairs' relationships.
- ✓ Fine-grained image understanding task.

Objects

Relationships

Commonly Strategy:

✓ Relationship detection: Object detection and Predicate detection.

Object Detection

P(s) and P(o)

Predicate Detection

P(p)

Person – Wear – Hat

R: Relationship

s: Subject

p: Predicate

o: Object

> Challenge:

✓ Hungry for Data: N object categories and M predicate categories result in N^2M possible relationship category.

VRD Training Dataset:

100 object categories

70 predicate categories

37,993 relationships

Zero-shot data:

1169 zero-shot relationships

> Challenge:

✓ **Determinate Detection**: does all detected object pairs contain determinate relationships? K detected objects lead to nearly K^2 potential relationships.

(a): Person-Wear-Hat

Determinate relationships

(b): Person-On-Street

Less significant relationships

(c): Bike-Car

Irrelevant Objects

(d): Monitor-Lamp

Falsely Detected Objects

> Solution:

- ✓ Undetermined relationships: unlabeled data; unknown predicate; less noticeable relationships.
- ✓ **Determinate relationships:** positive data; determinate predicate; noticeable relationships.

> MF-URLN:

✓ Relationship detection: Object detection, **Predicate** detection, and Determinate detection. **Predicate Detection**

Person – Wear – Hat

Determinate

Undetermined

P(d)

P(p)

Determinate Detection

P(R) = P(s)P(o)P(p)P(d)

p: Predicate

R: Relationship

o: Object

s: Subject

d: determinate confidence

Object Detection P(s) and P(o)

> Framework:

- (a): An object detector to detect objects
- (b): An undetermined relationship generator to generate undetermined relationships
- (c): An undetermined relationship learning network to predict predicates and decides the determinate confidence scores

Undetermined relationship Generator:

✓ Detected object pairs are automatically classified into determinate relationships and undetermined relationships.

Person - Wear - Hat

Person - Sit on - Bench

Undetermined: no human-notated relationships

Determinate: have human-notated relationships

> Undetermined Relationship Learning Network:

✓ Three types of features from visual, spatial, and linguistic modalities are extracted and fused.

Visual features: V_s , V_o , V_u

Spatial features: S

Linguistic features: L_{exs} , L_{exo} , L_{in}

Undetermined Relationship Learning Network:

√ Two subnetworks are proposed to predict predicates and produce determinate confidence scores.

Determinate Confidence Subnetwork produces determinate confidence scores

Relationship Detection Subnetwork predicts predicates

Experimental Results:

✓ Performance Comparison

VG and VRD using Recall

Table 1. Performance comparison of visual relationship detection methods on the VRD dataset. Pre., Phr., and Rel. represent predication detection, phrase detection, and relation detection, respectively. "-" denotes that the result is unavailable.

	Pre.	Phr.		Rel.	
	$R_{50/100}$	R_{50}	R_{100}	R_{50}	R_{100}
VRD-Full [23]	47.9	16.2	17.0	13.9	14.7
VTransE [37]	44.8	19.4	22.4	14.1	15.2
VIP-CNN [20]	-	22.8	27.9	17.3	20.0
Weak-S [26]	52.6	17.9	19.5	15.8	17.1
PPRFCN [38]	47.4	19.6	23.2	14.4	15.7
LKD:S [34]	47.5	19.2	20.0	16.6	17.7
LKD:T [34]	54.1	22.5	23.6	18.6	20.6
LKD:S+T [34]	55.2	23.1	24.0	19.2	21.3
DVSRL [22]	-	21.4	22.6	18.2	20.8
TFR [15]	52.3	17.4	19.1	15.2	16.8
DSL [41]	-	22.7	24.0	17.4	18.3
STA [32]	48.0	-	-	-	-
Zoom-Net [33]	50.7	24.8	28.1	18.9	21.4
CAI+SCA-M [33]	56.0	25.2	28.9	19.5	22.4
VSA [12]	49.2	19.1	21.7	16.0	17.7
MF-URLN	58.2	31.5	36.1	23.9	26.8

Table 2. Performance comparison of six methods on the VG dataset. "-" denotes that the result is unavailable.

	Pre.		Phr.		Rel.	
	R_{50}	R_{100}	R_{50}	R_{100}	R_{50}	R_{100}
VTransE [37]	62.6	62.9	9.5	10.5	5.5	6.0
PPRFCN [38]	64.2	64.9	10.6	11.1	6.0	6.9
DSL [41]	-	-	13.1	15.6	6.8	8.0
STA [32]	62.7	62.9	-	-	-	-
VSA [12]	64.4	64.5	9.7	10.0	6.0	6.3
MF-URLN	71.9	72.2	26.6	32.1	14.4	16.5

Table 3. Performance comparison on the zero-shot set of the VRD dataset. "-" denotes that the result is unavailable.

	Pre.	P	hr.	Re	el.
	$R_{50/100}$	R_{50}	R_{100}	R_{50}	R_{100}
VRD-Full [23]	12.3	5.1	5.7	4.8	5.4
VTransE [37]	-	2.7	3.5	1.7	2.1
Weak-S [26]	21.6	6.8	7.8	6.4	7.4
LKD:S [34]	17.0	10.4	10.9	8.9	9.1
LKD:T [34]	8.8	6.5	6.7	6.1	6.4
DVSRL [22]	-	9.2	10.3	7.9	8.5
TFR [15]	17.3	5.8	7.1	5.3	6.5
STA [32]	20.6	-	-	-	-
MF-URLN	26.9	5.9	7.9	4.3	5.5
MF-URLN-IM	27.2	6.2	9.2	4.5	6.4

> Experimental Results:

√ Ablation Analysis

> Experimental Results:

✓ Qualitative Performance of relationship detection

Top-5 Relationships of MF-URLN without using undetermined relationships

Top-5 Relationships of MF-URLN using undetermined relationships

ı	× Sky	_	Above	_	Bus
l	× Sky	_	Above	_	Person
l	≭ Sky	_	Above	_	Car
ı	✓ Bus		On	_	Street
	× Sky	-	Above	-	Train
7					

> Experimental Results:

✓ Qualitative Performance of determinate detection

The top-6 object pairs of MF-URLN without using undetermined relationships.

The top-6 object pairs of MF-URLN using undetermined relationships.

> Experimental Results:

✓ Qualitative Performance of determinate detection

The top-6 object pairs of MF-URLN without using undetermined relationships.

The top-6 object pairs of MF-URLN using undetermined relationships.

Conclusions

> Conclusions:

- ✓ We use undetermined relationships to improve the visual relationship detection.
- ✓ We propose a novel visual relationship detection method, the MF-URLN, by using multi-modal features based on determinate and undetermined relationships.

> Future work:

➤ Better generation and utilization of undetermined relationships.

Thanks for your attention!

Our Paper:

✓On Exploring Undetermined Relationships for Visual Relationship Detection, CVPR 2019.

> Our Code:

➤ Will be released soon. https://github.com/Atmegal/On-Exploring-Indeterminate-Relationships-for-Visual-Relationship-Detection.