Übungen zur Algebra I

Wintersemester 2020/21

Universität Heidelberg Mathematisches Institut Prof. Dr. A. Schmidt Dr. M. Leonhardt

Blatt 04

Abgabetermin: Freitag, 04.12.2020, 9:15 Uhr

Aufgabe 1. (Minimalpolynome) (6 Punkte) Bestimmen Sie die Minimalpolynome über \mathbb{Q} der komplexen Zahlen $\sqrt[5]{3}$, $\sqrt{2} + \sqrt{3}$, $\sin(2\pi/5)$ und $e^{\pi i/6} - \sqrt{3}$.

Aufgabe 2. (Beispiel einer Körpererweiterung) (6 Punkte; je 1,5 Punkte) Es sei $L := \mathbb{Q}(\sqrt[4]{2}, i) \subset \mathbb{C}$ und $K := \mathbb{Q}(\sqrt[4]{2}) \subset \mathbb{R}$.

- (a) Bestimmen Sie das Minimalpolynom von $\sqrt[4]{2}$ über \mathbb{Q} und damit $[K:\mathbb{Q}]$.
- (b) Bestimmen Sie das Minimalpolynom von i über K und damit [L:K] sowie $[L:\mathbb{Q}]$.
- (c) Zeigen Sie $\sqrt{2} \in L$ und berechnen Sie $[\mathbb{Q}(\sqrt{2},i):\mathbb{Q}]$.
- (d) Bestimmen Sie das Minimalpolynom von $\sqrt{2}+i$ über $\mathbb{Q}(\sqrt{2})$ und folgern Sie $\mathbb{Q}(\sqrt{2}+i)=\mathbb{Q}(\sqrt{2},i)$.

Aufgabe 3. (Körpergrad) (6 Punkte; je 2 Punkte) Es sei L/K eine endliche Körpererweiterung. Zeigen Sie:

- (a) Ist [L:K] = p eine Primzahl, so gibt es ein $\alpha \in L$ mit $L = K(\alpha)$.
- (b) Ist $[L:K] = 2^k$ und $f \in K[X]$ ein Polynom vom Grad 3, welches in L eine Nullstelle hat, so hat f auch eine Nullstelle in K.
- (c) Ist [L:K] ungerade und $L=K(\alpha)$ für ein $\alpha \in L$, so gilt $L=K(\alpha^2)$.

(Hinweis: Betrachten Sie jeweils geeignete Zwischenkörper K' von L/K und argumentieren Sie mit Hilfe des Gradsatzes.)

Aufgabe 4. (Algebraischer Abschluss) (6 Punkte) Es sei K ein Körper und \overline{K} ein algebraischer Abschluss von K.

- (a) (2 Punkte) Zeigen Sie: \overline{K} ist unendlich.
- (b) (2 Punkte) Zeigen Sie: Ist K abzählbar, so auch \overline{K} .
- (c) (1 Punkt) Es sei $\overline{\mathbb{Q}}$ der algebraische Abschluss von \mathbb{Q} in \mathbb{C} . Gibt es komplexe Zahlen, die transzendent über $\overline{\mathbb{Q}}(\pi)$ sind?
- (d) (1 Punkt) Ist der Funktionenkörper $\overline{K}(X) := Q(\overline{K}[X])$ algebraisch abgeschlossen?

Bonusaufgabe 5. (Versagen des Reduktionskriteriums) (6 Bonuspunkte; je 1,5 Punkte) Wir wollen zeigen, dass bei dem Polynom $X^4+1\in\mathbb{Q}[X]$ das Reduktionskriterium für alle Primzahlen p versagt. Zeigen Sie dazu:

- (a) Es sei K ein endlicher Körper mit $\operatorname{char}(K) \neq 2$. Wir betrachten die Quadrierungsabbildung $\varphi: K^{\times} \to K^{\times}$ gegeben durch $\varphi(a) := a^2$. Zeigen Sie, dass $(K^{\times})^2 := \operatorname{Bild}(\varphi)$ eine Untergruppe vom Index 2 in K^{\times} ist.
- (b) In jedem endlichen Körper K ist mindestens eine der Zahlen -1, -2, 2 ein Quadrat.
- (c) Für jede Primzahl p lässt sich $X^4 + 1 \in \mathbb{F}_p[X]$ als Produkt zweier quadratischer Polynome schreiben. (Hinweis: Benutzen Sie $X^4 + 1 = X^4 - (-1) = (X^2 + 1)^2 - 2X^2 = (X^2 - 1)^2 - (-2)X^2$.)
- (d) In $\mathbb{Q}[X]$ ist $X^4 + 1$ irreduzibel.