北京航空航天大学

2011 ~ 2012 学年 第 一 学期

《数字电路与系统》期末考试试卷 (A卷)

(2012年01月09日)

班级:; 学号:			;姓名:			; 成绩:		
注意事项:			- · · · · · · · ·		分可以直接	在试卷上作往	吟 ,其它	ː 部分请
计分栏:								
一 (10分)	二 (10分)	三 (15分)	四 (15分)	五. (15分)	六 (20分)	七 (15分)	合计	-
- , (10 :	分,每小是	厦2分)判	断各题正	误,正确的	的在括号内	可记"√",	错误的	 有在
括号	内记"×'	, °						
(1) 对于	十进制纯小	、数,求它的	り二进制表	示可以采	用"除2取	余"法。	()
(2) TTL i]电路在高	i电平输入I	时,其输 <i>)</i>	、电流很小	(74 系列	每个输入站	岩的输)	(电
流约	为 40 µ A)。					()
(3) 三态门	门输出为高	5阻时,其5	输出线上的	的电压为高	i电平。		()
(4) 单稳范	态触发器的	的暂稳态维	持时间的	长短取决于	一外界触发	脉冲的频率	ጆ和幅	
度。.							()
(5) 当时月	字逻辑 电路	各存在无效	循环时,该	亥电路不能	自启动。.		()
二、(10分	分,每小是	页5分)						
(1) 设逻	望辑函数	为 $f(A,B,$	(C,D) = A((B+C)+B	$\cdot \overline{D}(\overline{A} + C)$,则它的	的反 函	数
$\overline{f(A,B,C)}$	(,D) =					(写成	:"与或	戈"
表达式的	形式,可以	以不用化简	5); 则 f(A	,B,C,D)的	对偶式为			
$f^{\mathrm{D}}(A,B,$	(C,D) =				(可以	从不用化简)。	
(2) 加图	2-1. 门由	路 Gr Gr 均	TTI 工艺	: 当输λ	信号』为	低电平 /		

B 为高电平 V_{III} 的情况下,图中 T 点为_______ 电平(填写"高"或"低"),如果采用正逻辑(即:高电平代表逻辑"1",低电平代表逻辑"0"),请写出输出 Y 关于 A,B,C 的逻辑函数 Y(A,B,C)=

图 2-1

三、(15分)如图 3-1 所示的电路,其中 74151 是"8选1"数据选择器;试进行如下的组合逻辑电路分析。

- (1) 写出该电路的逻辑表达式 Y(A,B,C,D);
- (2) 将该逻辑表达式化简为最简"与或"表达式 Y₁(A,B,C,D);
- (3) 设:根据应用的情况,还存在着无关项集合 $d(A,B,C,D)=\{m_0,m_5,m_6,m_7\}$,利用这些无关项对逻辑函数进行化简,请以"与非——与非"形式写出化简后的结果 $Y_2(A,B,C,D)$ 。

四、 $(15\, \mathcal{H})$ 已知电路原理图如图 4-1 所示, CP_1 、 CP_2 的波形如图 4-2 所示,设触发器的初始状态均为"0",请在图 4-2 中画出输出端 B 和 C 的波形。

图 4-2

五、(15分)分析如图 5-1 所示的时序逻辑电路,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,其中 *X* 为输入的逻辑变量。

六、 $(20\, \%)$ 设计一个彩灯控制的时序逻辑电路,要求红(R)、黄(Y)、绿(G) 三种颜色的灯在时钟信号 CP 的作用下按表 6-1 规定的顺序转换状态。表中"1"表示"亮","0"表示"灭"。 要求电路能够自启动。

可供选用的器件为:上升沿触发的 JK 触发器、与非门、反相器。请简要说明设计过程,并绘制电路图。

表 6-1

CP顺序	红 (R)	黄 (Y)	绿 (G)
0	0	0	1
1	0	1	0
2	1	0	1
3	0	1	1 循环
4	1	1	1
5	1	1	0
6	1	0	0i

- 七、(15分)综合分析图 7-1 所示的电路。其中,芯片 74160 为同步十进制加法 计数器,其操作特性如表 7-1 所示; PROM 的 16 个地址单元中的数据在表 7-2 种列出,设初始时刻计数器状态为 0000,要求:
 - (1) 请说明 555 定时器构成什么类型的电路;
 - (2) 请说明在图 7-1 中, 芯片 74160 被配置为多少进制的计数器:
 - (3) 芯片 CB7520 为 10 位 D/A 转换器,输出表达式为: $v_0 = -\frac{V_{\text{REF}}}{2^{10}} \sum_{i=0}^{9} d_i \times 2^i$,请在图 7-2 中画出 D/A 转换器输出电压 v_0 的波形图。

表 7-1

时钟	清零	预置	使	能		
CLK	$\overline{R_D}$	\overline{LD}	EP	ET	工作模式	
×	0	×	×	X	异步清零	
†	1	0	×	×	同步预置数	
×	1	1	0	1	保持	
×	1	1	×	0	保持 (但 C=0)	
	1	1	1	1	加法计数	

第5页共6页

表 7-2 PROM 的 16 个地址单元中的数据

地址输入							数据	输出			
A ₇	A_6	A_5	A_4	A ₃	A_2	A_1	A_0	O_3	O_2	O_1	O_0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	0	0	1	1	0	1	0	0
0	0	0	0	0	1	0	0	0	1	1	1
0	0	0	0	0	1	0	1	0	1	0	0
0	0	0	0	0	1	1	0	0	0	1	0
0	0	0	0	0	1	1	1	0	0	0	1
0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	1	0	0	1	1	1	0	0
0	0	0	0	1	0	1	0	0	0	0	1
0	0	0	0	1	0	1	1	0	0	1	0
0	0	0	0	1	1	0	0	0	0	0	1
0	0	0	0	1	1	0	1	0	1	0	0
0	0	0	0	1	1	1	0	0	1	1	1
0	0	0	0	1	1	1	1	0	0	0	0

