2.1 习题

刘泽博

2025年3月27日

第三题, 设 G_1, G_2 是开集, 且 G_1 是 G_2 的真子集, 是否一定有 $mG_1 < mG_2$?

$$:: G_1 \subsetneq G_2$$

 $\therefore \exists x_0 \in G_2$ 并且 $x_0 \notin G_1$

 $:: G_1, G_2$ 为开集

$$\therefore \exists \delta > 0, (x_0 - \delta, x_0 + \delta) \subset G_2, (x_0 - \delta, x_0 + \delta) \not\subset G_1$$

$$\therefore G_1 \cup (x_0 - \delta, x_0 + \delta) \subset G_2$$

$$\therefore mG_1 + m(x_0 - \delta, x_0 + \delta) \le mG_2$$

$$mG_1 \leq mG_2 - 2\delta$$

$$\therefore mG_1 < mG_2$$
成立

第四题, 对任意开集 G, 是否有 $mG_1 < mG_2$?

1. 证明: $G \subset G'$

:: G为开集

 $\therefore \forall x \in G$

 $\exists \delta > 0$, 使得 $(x - \delta, x + \delta) \subset G$

:. x为聚点, 而非; 孤立点

 $\therefore x \in G'$

 $\therefore G \subset G'$

2. 证明: $G' \subset G$

:: G'为G的导集

$$\therefore \forall x \in G'$$

x必为聚点

 $\therefore x \in G$

 $\therefore G' \subset G$

由上可知, 如果 G 为开集, 则 G = G'

 $\therefore G$ 无孤立点,故 $\overline{G} = G \cup G' = G$

$$\therefore m\overline{G} = mG$$

第二十题, 试作一个闭集 $F\subset [0,1]$, 使得 F 中不含任何开区间, 而 mF=1/2

思路类似构造一个 Cantor 集, 不过取得区间不一样 首先, 已知 $\sum_{n=1}^{\infty} \frac{1}{2^{n+1}} = \frac{1}{2}$ 而且, 令 G = (0,1) - F

mF = m((0,1) - G) = 1 - mG

所以, 在尝试构造 Cantor 集 F 的时候, 扣去的开区间应该符合级数 $\sum_{n=1}^{\infty} \frac{1}{2^{n+1}}$

令 $F_0 = [0,1]$, 记剩余的区间数量和为 n 对 F_0 四等分, 去除中间的 $\frac{1}{4}$

得到 $F_1, mG = \frac{1}{4}$

对 F_1 剩余的两个区间,各自去除中间的 $(\frac{1}{4})^2$

得到
$$F_2, mG = \frac{1}{4} + (\frac{1}{4})^2 \times 2$$

以此类推...

得到 F, 并且扣去的 G 有 $mG = \sum_{n=1}^{\infty} \frac{1}{2^{n+1}} = \frac{1}{2}$

因此, $mF = \frac{1}{2}$,且不含任何开区间