PERCOBAAN 11. CODE CONVERTER DAN COMPARATOR

TUJUAN:

Setelah menyelesaikan percobaan ini mahasiswa diharapkan mampu

- Memahami prinsip kerja rangkaian *Code Converter* dan *Comparator*
- Mendisain beberapa jenis rangkaian Code Converter dan Comparator

PERALATAN:

- 1. Logic Circuit Trainer ITF-02 / DL-02
- 2. Oscilloscope

TEORI:

1. CODE CONVERTER

Code Converter adalah rangkaian yang berfungsi untuk mengkonversikan dari satu bentuk kode ke bentuk kode yang lain. Salah satu bentuk *Code Converter* adalah *BCD* (8421) to Excess-3 Code.

BCD (*Binary Coded Decimal*) telah dijelaskan pada materi Elektronika Digital 1 pada bagian Rangkaian Aritmetika, merupakan bentuk kode decimal yang di-biner kan dalam 4 bit. *Excess-3 Code* yaitu kode BCD yang ditambah 3. *Code Converter BCD* (8421) to *Execess-3* dapat digambarkan dalam blok seperti gambar 11-1.

Gambar 11-1. Blok Diagram Code Converter BCD (8421) to Excess-3

Tabel Kebenaran yang menunjukkan proses konversi dari kode BCD (8421) menjadi kode Excess-3 ditunjukkan pada Tabel 11-1.

Digit Desimal		Input	BCD		Output Excess-3			
	Α	В	С	D	W	Χ	Υ	Z
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

Tabel 11-1. Tabel Konversi BCD (8421) to Excess-3 Code

Dari Tabel di atas, selanjutnya dengan menggunakan K-Map didapatkan persamaan untuk masing-masing outputnya sebagai berikut :

$$W = A + BC + BD = A + B(C + D)$$

$$X = \overline{B}C + \overline{B}D + B\overline{C}\overline{D} = \overline{B}(C + D) + B\overline{C}\overline{D}$$

$$Y = CD + \overline{C}\overline{D} = \overline{C} \oplus \overline{D}$$

$$Z = \overline{D}$$

Berdasarkan persamaan yang didapat di atas, akan dihasilkan rangkaian seperti pada gambar 11-2.

Gambar 11-2. Rangkaian Code Converter BCD (8421) to Excess-3

2. COMPARATOR

Sebuah rangkaian *Comparator* berfungsi membandingkan dua buah bilangan input. Jika digunakan untuk membandingkan dua input dan kemudian menyatakan apakah kedua input tersebut sama, lebih besar atau lebih kecil, maka rangkaian tersebut dinamakan *Magnitude Comparator*.

Blok Diagram sebuah rangkaian Comparator dapat ditunjukkan pada gambar 11-3.

Gambar 11-3. Blok Diagram Rangkaian Comparator

Tabel 11-2. menunjukkan hubungan antara dua input yang dibandingkan (masing-masing 2 bit biner), dengan output-outputnya.

	INP	UT		OUTPUT			
(A)		(B)		(A <b)< td=""><td>(A=B)</td><td>(A>B)</td></b)<>	(A=B)	(A>B)	
A 1	A2	B1	B2	L	Е	G	
0	0	0	0	0	1	0	
0	0	0	1	1	0	0	
0	0	1	0	1	0	0	
0	0	1	1	1	0	0	
0	1	0	0	0	0	1	
0	1	0	1	0	1	0	
0	1	1	0	1	0	0	
0	1	1	1	1	0	0	
1	0	0	0	0	0	1	
1	0	0	1	0	0	1	
1	0	1	0	0	1	0	
1	0	1	1	1	0	0	
1	1	0	0	0	0	1	
1	1	0	1	0	0	1	
1	1	1	0	0	0	1	
1	1	1	1	0	1	0	

Dengan mengacu pada Tabel Kebenaran di atas, dan dengan bantuan K-Map akan didapatkan persamaan untuk masing-masing outputnya sebagai berikut :

PERCOBAAN 11. CODE CONVERTER DAN COMPARATOR

$$L = \overline{AC} + \overline{ABD} + \overline{BCD}$$

$$G = A\overline{C} + AB\overline{D} + B\overline{CD}$$

$$E = \overline{ABCD} + \overline{ABCD} + A\overline{BCD} + ABCD$$

Dari persamaan di atas, dapat dibuat rangkaian seperti gambar 11-4.

Gambar 11-4. Rangkaian Comparator

PROSEDUR:

1. PERCOBAAN CODE CONVERTER

- 1. Dengan menggunakan Trainer ITF-02 atau DL-02, buat rangkaian *Code Converter BCD* (8421) to Excess-3 seperti gambar 11-2.
- 2. Setelah menyusun rangkaian, buatlah Tabel hasil pengamatan.
- 3. Bandingkan antara Tabel hasil pengamatan dengan Tabel 11-1.
- 4. Buat Tabel Kebenaran untuk Code Converter Binary to 2's Complement.

- 5. Buat K-Map dan dapatkan persamaan logikanya. Dari persamaan logika yang didapatkan, gambarkan rangkaiannya.
- Rangkailah gambar rangkaian yang sudah dibuat pada Trainer ITF-02 atau DL-02.
 Dapatkan Tabel Kebenarannya. Bandingkan hasilnya dengan Tabel Kebenaran awal (langkah 4).

2. PERCOBAAN COMPARATOR

- Buat Tabel Kebenaran untuk rangkaian *Comparator* yang membandingkan 2 buah inputnya (masing-masing 2 bit biner), dengan aturan : Jika A < B maka outputnya 01. Jika A = B maka outputnya 00. Jika A > B maka outputnya 10.
- 2. Buat K-Map dan dapatkan persamaan logikanya.
- 3. Dari persamaan logika yang didapatkan, gambarkan rangkaiannya.
- 4. Rangkailah gambar rangkaian yang sudah dibuat pada Trainer ITF-02 atau DL-02. Dapatkan kebenarannya. Bandingkan hasilnya dengan Tabel Kebenaran awal (langkah 1)

TUGAS:

- Buat sebuah rangkaian kombinasional dengan dua input dan empat output, dimana nilai decimal outputnya adalah pangkat dua dari nilai decimal inputnya. Dapatkan Tabel Kebenarannya.
- 2. Buat rangkaian *Binary to Gray Code*. Lengkapi dengan Tabel Kebenaran dan persamaannya.

PERCOBAAN 11. CODE CONVERTER DAN COMPARATOR