Network Simulation

Econ Research Project

Shiyu Ma

Parameter Setting

```
x=2, y = (x-c)/r=1, c=1, r=1, p_0=0.5
c/x (myopic)=1/2
c/(x+y) (single-agent) = 1/3
```

K=100: (tau_l,tau_k)=(0.00228,0.00014)

Indifference condition for core(tau_I as input):

0.0018	0.0015	0.0013	0.0011	0.0010	0.0009
0.0008	0.0007	0.0006	0.0005	0.0005	0.0004
0.0004	0.0004	0.0003	0.0003	0.0003	0.0002
0.0002	0.0002	0.0002	0.0002	0.0001	0.0001
0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
0.0001	0.0001	0.0001	0.0001	0.0000	

Indifference condition for peripheral(tau_k as input):

$$tau_k = 0:0.0001:0.004;$$

0.0024	0.0023	0.0023	0.0022	0.0022	0.0021
0.0021	0.0021	0.0020	0.0020	0.0020	0.0020
0.0019	0.0019	0.0019	0.0019	0.0019	0.0018
0.0018	0.0018				

K=10: (tau_l,tau_k)=(0.00885,0)

Indifference condition for core(tau_I as input):

 $tau_I = 0:0.0001:0.01$

tau_k=

0.0035 0.0022 0.0016 0.0013 0.0011 0.0009 0.0008 0.0007 0.0006 0.0005 0.0005 0.0004 0.0004 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 ...

Indifference condition for peripheral(tau_k as input):

tau_k= 0:0.0001:0.01

tau_l=

0.0088	0.0088	0.0087	0.0086	0.0086	
0.0085	0.0084	0.0084	0.0084	0.0083	
0.0083	0.0082	0.0082	0.0082	0.0082	
0.0081	0.0081	0.0081	0.0081	0.0081	
0.0081	0.0081	0.0080	0.0080	0.0080	

Cutoff Time with Differernt K

K	1	2	5	10	15	20	25	30	40	70	100
tau_k	0	0	0	0	0.00001	0.00002	0.00003	0.00004	0.00006	0.00010	0.00014
tau_l	0.20323	0.09393	0.02653	0.00885	0.00511	0.00404	0.00356	0.00328	0.00295	0.00250	0.00228

Graph of B_t: K=1,2,5,10

Graph of B_t: K=20,25,30,40,70,100

Graph Welfare

- K=1, 2, 5, 10,
 15, 20, 25, 30,
 40, 70, 100
- Welfare Benchmark= p_o(x+y)-c=0.5

Graph B_total vs K

V(t)+Monogamy

X(t)+Monogamy

V(t)+Pareto

Not sure how to plot V(t) for our network

so
$$x(t) = 1 - (1 - \epsilon) \exp(-t)$$

X(t)+Pareto

d=3 for Pareto.

-dvt=-3*1*t=-3t

osed-form
$$x(t) = 1 - (1 - \epsilon) \exp(-dvt)$$

V(t)+Poisson

Plot of V(t) with Poisson 0.4 Random Matching Textbook Network Our Network 0.35 0.3 0.25 € 0.2 0.15 0.1 0.05 0.1 0.2 0.3 0.7 0.8 0.9 0.4 0.5 0.6

X(t)+Poisson

Our networks:
$$\dot{v}(t) = \left(\lambda \exp\left(-\int_0^t v(t')dt'\right) - 1\right)v(t)(1-v(t))$$
 not sure V(t)=?