System on Chip Design

Project Report

ANIK BARUA

UTU Student ID: 511580

Shift Register:

```
VHDL Code:
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY ShiftReg IS
PORT(clk, n_clr, s0, s1, sr_ser, sl_ser : IN std_logic;
abcd: IN std_logic_vector(3 DOWNTO 0);
q: OUT std_logic_vector(3 DOWNTO 0));
END ShiftReg:
ARCHITECTURE behav OF ShiftReg IS
SIGNAL temp: std_logic_vector(3 DOWNTO 0);
BEGIN
PROCESS(clk, n_clr)
BEGIN
If n_clr = '0' THEN -- asynchronous clear
temp <= "0000";
ELSIF clk'EVENT AND clk = '1' THEN
IF s0 = '1' AND s1 = '1' THEN -- synch load
temp <= abcd;
ELSIF s0 = '1' AND s1 = '0' THEN -- shift right
temp <= sr_ser & temp(3 DOWNTO 1);
ELSIF s0 = '0' AND s1 = '1' THEN -- shift left;
temp <= temp(2 DOWNTO 0) & sl_ser;
ELSE -- inhibit mode
temp <= temp;
END IF;
END IF;
END PROCESS;
q \le temp;
END behav;
```

```
VHDL Test bench:
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY test bench IS
END test_bench;
ARCHITECTURE test_fixture OF test_bench IS
COMPONENT ShiftReg
PORT(clk, n_clr, s0, s1, sr_ser, sl_ser : IN std_logic;
abcd: IN std_logic_vector(3 DOWNTO 0);
q: OUT std_logic_vector(3 DOWNTO 0));
END COMPONENT;
FOR all: ShiftReg USE ENTITY work.ShiftReg; -- configuration
-- define internal signals for connecting ShiftReg to driver
SIGNAL clk, s0, s1, n_clr, sr_ser, sl_ser: std_logic := '0';
SIGNAL abcd, q: std_logic_vector(3 DOWNTO 0);
BEGIN
-- instantiate ShiftReg shift register component
shift_reg:
ShiftReg PORT MAP(clk, n_clr, s0, s1, sr_ser, sl_ser, abcd, q);
clk <= NOT clk AFTER 50 ns; -- create system clock
PROCESS
BEGIN
WAIT FOR 10 ns;
ASSERT q = "0000"
REPORT "ERROR: clear failed"
SEVERITY error:
WAIT FOR 20 ns:
n clr <= '1';
-- check synchronous load
```

```
s0 <= '1';
s1 <= '1';
abcd <= "0010";
WAIT UNTII clk = '0'; -- first falling edge
ASSERT q = "0010"
REPORT "ERROR: load failed"
SEVERITY error;
-- now check shift left
s0 <= '0';
WAIT UNTIL clk = '0'; -- next falling clock edge
ASSERT q = "0011"
REPORT "ERROR: shift left failed"
SEVERITY error;
FOR i IN 0 TO 2 LOOP -- three more shift lefts
IF i = 1 THEN
sl_ser <= '1';
ELSE
sl_ser <= '0';
END IF;
WAIT UNTIL clk = '0';
END LOOP;
ASSERT q = "1010"
REPORT "ERROR: serial shift left failed"
SEVERITY error;
WAIT; -- suspend
END PROCESS;
END test_fixture;
```

Simulation of the Design:

Synthesize - The extracted netlist:

(n 2));

// Generated by Cadence Encounter(R) RTL Compiler RC9.1.203 - v09.10-s242 1 module ShiftReg(clk, n clr, s0, s1, sr ser, sl ser, abcd, g); input clk, n_clr, s0, s1, sr_ser, sl_ser; input [3:0] abcd; output [3:0] q; wire clk, n_clr, s0, s1, sr_ser, sl_ser; wire [3:0] abcd; wire [3:0] q; wire n_0, n_1, n_2, n_3, n_4, n_5, n_6, n_7; wire n_8, n_9, n_10, n_11, n_12, n_13, n_14, n_15; QDFFRBX1 \temp_reg[0] (.RB (n_clr), .CK (clk), .D (n_13), .Q (q[0])); QDFFRBX1 \temp_reg[1] (.RB (n_clr), .CK (clk), .D (n_12), .Q (q[1])); QDFFRBX1 \temp_reg[2] (.RB (n_clr), .CK (clk), .D (n_14), .Q (q[2])); QDFFRBX1 \temp_reg[3] (.RB (n_clr), .CK (clk), .D (n_15), .Q (q[3])); ND2XLP g348(.I1 (n_11), .I2 (n_1), .O (n_15)); ND2XLP g347(.l1 (n_2), .l2 (n_6), .O (n_14)); ND2XLP g349(.I1 (n_5), .I2 (n_10), .O (n_13)); ND2XLP g350(.l1 (n_0), .l2 (n_9), .O (n_12)); AOI22XLP g357(.A1 (n_4), .A2 (q[3]), .B1 (n_3), .B2 (abcd[3]), .O (n_11) ; AOI22XLP g352(.A1 (n_7), .A2 (q[1]), .B1 (n_8), .B2 (sl_ser), .O $(n_10);$ AOI22XLP g358(.A1 (n_8), .A2 (q[0]), .B1 (n_7), .B2 (q[2]), .O (n_9)); AOI22XLP g353(.A1 (n_8), .A2 (q[1]), .B1 (n_7), .B2 (q[3]), .O (n_6)); AOI22XLP g354(.A1 (n_4), .A2 (q[0]), .B1 (n_3), .B2 (abcd[0]), .O $(n_5);$ AOI22XLP g355(.A1 (n_4), .A2 (q[2]), .B1 (n_3), .B2 (abcd[2]), .O

```
AOI22XLP g356(.A1 (n_8), .A2 (q[2]), .B1 (n_7), .B2 (sr_ser), .O (n_1));

AOI22XLP g351(.A1 (n_4), .A2 (q[1]), .B1 (n_3), .B2 (abcd[1]), .O (n_0));

AN2B1XLP g359(.I1 (s1), .B1 (s0), .O (n_8));

AN2B1XLP g360(.I1 (s0), .B1 (s1), .O (n_7));

NR2XLP g361(.I1 (s0), .I2 (s1), .O (n_4));

AN2XLP g362(.I1 (s1), .I2 (s0), .O (n_3));

endmodule
```

Post Synthesis Simulation waveform:

Area of the design:

Global mapping status						
Operation		Worst Neg Slack	Worst Path			
global_map	163	0	N/A			
Global incremen						
Cost Group 'default' target slack: Unconstrained						
Global incremental optimization status						
Operation						
global_inc Operation	163		N/A			
init_iopt						
Incremental optimization status						
Operation	Area	Neg Slack	DRC Max Trans	Max	Max	
init_delay init_drc init_area	163 163 163	0 0 0	0 0 0	0 0 0	0 0 0	
Incremental optimization status						
Operation		Worst Neg	Max		Max	
init_delay init_drc init_area	163 163 163	0 0 0		0 0 0	0 0 0	
Done mapping ShiftReg Synthesis succeeded. rc:/> write_hdl > netlist_syn.v rc:/> write_sdc > syn.sdc						

Place and Route:

Post Synthesis Simulation:

Power Report using UMC 90 nm technology and 1.2v:

```
Information: Updating design information... (UID-85)
Information: Propagating switching activity (low effort zero delay
simulation). (PWR-6)
Warning: Design has unannotated primary inputs. (PWR-414)
Warning: Design has unannotated sequential cell outputs. (PWR-415)
********
Report : power
    -analysis effort low
Design : LS194
Version: Y-2006.06
Date : Thu Nov 3 17:27:45 2016
********
Library(s) Used:
   fsd0a a generic core 1d2vtc (File:
/tech/umc/faraday/Core/fsd0a a/2007Q1v1.7/GENERIC CORE 1D2V/FrontEnd/s
ynopsys/fsd0a a generic core 1d2vtc.db)
Operating Conditions: TCCOM Library: fsd0a a generic core 1d2vtc
Wire Load Model Mode: enclosed
Design Wire Load Model
                                    Library
                    enG5K
LS194
                                    fsd0a a generic core 1d2vtc
Global Operating Voltage = 1.2
Power-specific unit information:
   Voltage Units = 1V
   Capacitance Units = 1.000000pf
   Time Units = 1ns
   Dynamic Power Units = 1mW (derived from V,C,T units)
   Leakage Power Units = 1pW
 Cell Internal Power = 1.0964 uW (75%)
 Net Switching Power = 367.8801 nW (25%)
Total Dynamic Power = 1.4643 uW (100%)
Cell Leakage Power = 321.4691 nW
```

Area Report:

Report : area Design : LS194

Version: Y-2006.06

Date : Thu Nov 3 17:28:52 2016

Library(s) Used:

fsd0a a generic core 1d2vtc (File: /tech/umc/faraday/Core/fsd0a a/2007Q1v1.7/GENERIC CORE 1D2V/Fron tEnd/synopsys/fsd0a a generic core 1d2vtc.db)

Number of ports: 14 23 Number of nets: Number of cells: 13 Number of references: 5

Combinational area: 70.000000 Noncombinational area: 100.000000
Net Interconnect area: undefined

undefined (Wire load has zero net

area)

Total cell area: 170.000000 Total area: undefined