Corrigé 1 du mardi 20 septembre 2016

Exercice 1.

Démontrons qu'il n'existe pas de fraction (=nombre rationnel) x telle que $x^2 = 2/3$.

Commençons par une propriété élémentaire:

Soit $c \in \mathbb{N}^*$ un entier positif. Alors si c est pair (de la forme $c = 2k, k \in \mathbb{N}^*$) alors c^2 est pair. De même, si c est impair (de la forme $c = 2j + 1, j \in \mathbb{N}$) alors c^2 est impair. De façon plus générale, le produit de deux nombres impairs est impair, le produit d'un nombre pair avec n'importe quel nombre est pair.

On en déduit si c^2 est pair, alors c est pair et si c^2 est impair, alors, c est impair.

Supposons, par l'absurde, qu'il existe $p, q \in \mathbb{N}^*$ tels que $p^2/q^2 = 2/3$ et que la fraction soit irréductible (i.e. p et q n'ont pas d'autre diviseur commun que 1).

On a alors $3p^2 = 2q^2$. Par la propriété donnée au début, on a: p^2 est pair, donc p est pair, p = 2k. Il vient alors: $3 \cdot 4k^2 = 2q^2$; et donc, q est pair. Ce qui contredit notre hypothèse que la fraction p/q est irréductible. Donc il n'existe pas de fraction x telle que $x^2 = 2/3$.

Exercice 2.

Considérons l'équation $x^2 + x + 1 = 0$. Détailler soigneusement ce qui est correct et ce qui ne l'est pas dans le raisonnement suivant.

D'une part, écrivons $x = -1 - x^2$. D'autre part, si l'on divise l'équation de départ par x, on trouve x+1+1/x=0 et donc x = -1 - 1/x. En comparant les deux expressions obtenues pour x, il suit que $x^2 = 1/x$. Nous déduisons $x^3 = 1$ et donc x = 1.

On cherche une solution $x \in \mathbb{R}$ de $x^2 + x + 1 = 0$. Trivialement, cette solution ne peut pas être x = 0, puisque $1 \neq 0$.

On a alors, pour $0 \neq x \in \mathbb{R}$:

$$x^2 + x + 1 = 0$$
 \Leftrightarrow $x = -1 - x^2$

ainsi que

$$x^2 + x + 1 = 0 \Leftrightarrow x = -1 - 1/x.$$

On a aussi:

$$(x = -1 - x^2)$$
 et $(x = -1 - 1/x)$ \Rightarrow $-1 - x^2 = -1 - 1/x$.

On a ici "implique" et pas "équivalent". Source de l'erreur: Une solution de la relation de droite n'est pas nécessairement solution de la relation de gauche. Et x = 1 est bien solution de $-1 - x^2 = -1 - 1/x$, mais pas de $x^2 + x + 1 = 0$.

En effet, x = 1 satisfait $(-2)x = -1 - x^2$ et (-2)x = -1 - 1/x.

Exercice 3.

Calculer $S = 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + 4 \cdot 2^4 + \dots + 2015 \cdot 2^{2015}$.

Solution:

$$S = \sum_{n=1}^{2015} n2^n = \sum_{n=1}^{2015} ((n-1)+1) \cdot 2^n = \sum_{n=1}^{2015} (n-1)2^n + \sum_{n=1}^{2015} 2^n$$
$$= 2\sum_{n=1}^{2014} n2^n + \sum_{n=1}^{2015} 2^n = 2\sum_{n=1}^{2015} n2^n - 2 \cdot 2015 \cdot 2^{2015} - 2 + 2^{2016}.$$

On a utilisé le fait que $(1+x+x^2+\ldots+x^n)(1-x)=1-x^{n+1}.$

 ${\bf Ainsi}$

$$S = 2S - 2015 \cdot 2^{2016} - 2 + 2^{2016} = 2S - 2014 \cdot 2^{2016} - 2.$$

Donc $S = 2 + 2014 \cdot 2^{2016}$.