VECTORES EN EL ESPACIO

1.- Dados los vectores $\vec{u} = (4,3,-2), \vec{v} = (-8,6,2) \text{ y } \vec{w} = (2,-3,4), \text{ calcula}$

i) los productos escalares \vec{u} . \vec{v} ; \vec{u} . \vec{w} ; \vec{v} . \vec{w}

ii) los módulos $|\vec{u}|$; $|\vec{v}|$ y $|\vec{w}|$ $(-18, -9, -26, [\sqrt{29}, 2\sqrt{26}, \sqrt{29}])$

7.3-4.(-8)+6.3+(-2).2=-18

Q = -9

J.W - - 76

 $|\vec{R}| = |\vec{R} \cdot \vec{R}| = |\vec{R} \cdot \vec{R}| = |\vec{R} \cdot \vec{R}|$

|F|=2\\\26

 $|\widetilde{w}| = \sqrt{29}$

2.-Calcula el producto escalar de los vectores \vec{u} y \vec{v} sabiendo que $|\vec{u}| = 3$ y $|\vec{v}| = 5$ y que forman un ángulo de 60°.

$$\vec{u} \cdot \vec{r} = |\vec{u}| \cdot |\vec{r}| \cos 60 = \frac{3.5}{2} = 7.5$$

3.- Las componentes de \vec{u} y \vec{v} en una base ortonormal son (2,2,1) y (-3,-4,0). Calcula:

ii)
$$|\vec{u}|$$

iii)
$$|\vec{v}|$$

iv)
$$\cos\left(\vec{u},\vec{v}\right)$$

ii)
$$|\vec{\mathbf{u}}|$$
 iii) $|\vec{\mathbf{v}}|$ iv) $\cos(\vec{\mathbf{u}}, \vec{\mathbf{v}})$ $\left(-14, 3, 5, -\frac{14}{15}, 158.960530218683\right)$

$$W$$
 W

$$|\vec{w}| |\vec{v}| = 5$$
 $|\vec{w}| (\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} = \frac{14}{3.5} = \frac{14}{15} = 4 \cos(-\frac{14}{15}) \approx 158,96$

4.- Halla un vector ortogonal a $\vec{u} = (2,-2,-1)$ y de módulo 1.

$$\begin{array}{l} \widehat{\mathcal{X}} = (2, -2, -1) \\ (a, b, c) \Rightarrow (-b, a, 0) \perp (a, b, c) \text{ ya que } -ba + ab + 6c = 0 \\ \text{un vector orderal es } \widehat{\mathcal{V}} = (2, 2, 0) \\ |\widehat{\mathcal{V}}| = \sqrt{1 + 4} = \sqrt{8} = 2\sqrt{2} \Rightarrow \widehat{\mathcal{W}} = \frac{1}{2\sqrt{2}} \widehat{\mathcal{V}} = 0 \\ \Rightarrow \widehat{\mathcal{W}} = \left(\frac{1}{2}\sqrt{\frac{1}{2}}/0\right) = \left(\frac{\sqrt{2}}{2}\sqrt{\frac{2}{2}}/0\right) \end{array}$$

6.- Las componentes de \vec{u} , \vec{v} y \vec{w} en una base ortonormal son $\vec{u}=(1,-1-7)$, $\vec{v}=(-2,0,5)$.y $\vec{w}=(3,-3,2)$. Calcula:

i)
$$2.\vec{\mathbf{u}}.(\vec{\mathbf{v}} + \vec{\mathbf{w}})$$

ii)
$$\vec{v} \cdot (\vec{w} - \vec{u})$$

ii)
$$\vec{v} \cdot (\vec{w} - \vec{u})$$
 iii) $(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{w})$ iv) $(\vec{u} - \vec{v}) \cdot (\vec{u} + \vec{v})$

iv)
$$(\vec{\mathbf{u}} - \vec{\mathbf{v}}) \cdot (\vec{\mathbf{u}} + \vec{\mathbf{v}})$$