Devoir à la maison n°10

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1 ★★★

L'objet de cet exercice est de prouver les solutions entières de l'équation :

$$x^2 + y^2 = z^2 \tag{E}$$

sont (à un échange près de x et y) les triplets (x, y, z) de la forme :

$$x = d(u^2 - v^2)$$
 $y = 2duv$ $z = d(u^2 + v^2)$

où d, u, v sont des entiers.

- 1. S'assurer que les triplets proposés vérifient bien l'équation (E).
- **2.** Soit (x, y, z) un triplet d'entiers solution de l'équation (E). On suppose x, y et z premiers entre eux dans leur ensemble et strictement positifs.
 - **a.** Montrer que x, y et z sont premiers entre eux deux à deux.
 - **b.** Montrer que x et y sont de parités distinctes. En déduire la parité de z.
- **3.** On reprend les hypothèses de la question précédente et on suppose de plus (quitte à échanger x et y) que x est impair et que y est pair.
 - **a.** Montrer que le pgcd de z + x et z x est 2.
 - **b.** Il existe donc $(a, b, c) \in (\mathbb{N}^*)^3$ tel que

$$y = 2a z + x = 2b z - x = 2c$$

Montrer que b et c sont des carrés d'entiers naturels non nuls.

4. Conclure.

© Laurent Garcin MP Dumont d'Urville

Problème 1

Pour $n \in \mathbb{N}$, on note f_n et g_n les fonctions telles que pour tout $x \in \mathbb{R}$

$$f_n(x) = \cos(nx)$$
 et $g_n(x) = \cos^n(x)$

En particulier, f_0 et g_0 sont la fonction constante égale à 1. Pour tout $n \in \mathbb{N}$, on pose

$$F_n = \text{vect}(f_0, f_1, \dots, f_n)$$
 et $G_n = \text{vect}(g_0, g_1, \dots, g_n)$

 F_n et G_n sont donc des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{R}}$.

Partie I – Cas particulier

- **1.** Montrer que pour tout $k \in \{0, 1, 2\}$, $f_k \in G_2$. En déduire que $F_2 \subset G_2$.
- **2.** Montrer que la famille (f_0, f_1, f_2) est libre. Quelle est la dimension de F_2 ?
- **3.** Montrer que la famille (g_0, g_1, g_2) est libre. Quelle est la dimension de G_2 ?
- **4.** En déduire que $F_2 = G_2$.

Partie II - Une inclusion

- **1.** Montrer que pour tout $n \in \mathbb{N}$, $f_{n+2} = 2f_{n+1}f_1 f_n$.
- **2.** Montrer par récurrence double que pour tout $n \in \mathbb{N}$, $f_n \in G_n$.
- **3.** En déduire que pour tout $n \in \mathbb{N}$, $F_n \subset G_n$.

Partie III - Utilisation de la dimension

- 1. Calculer $I_{k,l} = \int_0^{2\pi} f_k(t) f_l(t) dt$ pour $(k,l) \in \mathbb{N}^2$. On distinguera plusieurs cas.
- **2.** Montrer que pour tout $n \in \mathbb{N}$, la famille $(f_0, ..., f_n)$ est libre.
- **3.** En déduire la dimension de F_n pour tout $n \in \mathbb{N}$.
- **4.** Justifier que dim $G_n \le n + 1$.
- **5.** Prouver que $F_n = G_n$ pour tout $n \in \mathbb{N}$.