Table 5.1 Common EDMs, showing their variance function $V(\mu)$, cumulant function $\kappa(\theta)$, canonical parameter θ , dispersion parameter ϕ , unit deviance $d(y,\mu)$, support S (the permissible values of y), domain Ω for μ and domain Θ for θ . For the Tweedie distributions, the case $\xi=2$ is the gamma distribution, and $\xi=1$ with $\phi=1$ is the Poisson distribution. \mathbb{R} refers to the real line; \mathbb{N} refers to the natural numbers $1,2,\ldots$; superscript + means positive values only; superscript - means negative values only; subscript 0 means zero is included in the space (Sect. 5.3.5)

EDM	$V_{(m)}$	$\kappa(\theta)$	θ	÷	$V(u)$ $\kappa(\theta)$ θ ϕ $d(u,u)$ S Q Θ Beference	S.		Œ	Reference
W. C.	(m)	(2)21	>	<i>\</i>	(3) h)	Q	2)	
Normal	1	$\theta^2/2$	π	σ^2	$(y-\mu)^2$	出	M) 	Chaps. 2 and 3
Binomial	$\mu(1-\mu)$	$\frac{\exp\theta}{1+\exp\theta}$	$\log \frac{\mu}{1-\mu}$	$\frac{1}{m} 2 \left\{ y \right\}$	$\log\frac{\mu}{1-\mu} \frac{1}{m} 2\left\{y\log\frac{y}{\mu} + (1-y)\log\frac{1-y}{1-\mu}\right\}$	$\frac{0,1,\dots m}{m}$	$(0,1)$ \mathbb{R}		Chap. 9
Negative binomial	$\mu + \frac{\mu^2}{k}$	$-\log(1-\exp\theta)$	$\log \frac{\mu}{\mu + k}$	$1 2 \left\{ y \right\}$	$\log \frac{\mu}{\mu + k} 1 2 \left\{ y \log \frac{y}{\mu} - (y + k) \log \frac{y + k}{\mu + k} \right\}$	o Z	+	I K	Chap. 10
Poisson	ή	$\theta \mathrm{dxe}$	$\log \mu$		$2\left\{y\log\frac{y}{\mu}-(y-\mu)\right\}$	\mathbb{N}_0	+	ĸ	Chap. 10
Gamma	μ^2	$-\log(- heta)$	$\frac{1}{\mu}$	<i>⊕</i>	$2\left\{-\log\frac{y}{\mu} + \frac{y-\mu}{\mu}\right\}$	+ ≅	+	¥	Chap. 11
Inverse Gaussian	μ^3	$-\sqrt{-2 heta}$	$-\frac{1}{2\mu^2}$	<i>-</i> ⊕	$\frac{(y-\mu)^2}{\mu^2 y}$	+	+		Chap. 11
Tweedie $(\xi \le 0 \text{ or } \xi \ge 1)$	μ^{ξ}	$\frac{\{(1-\xi)\theta\}^{(2-\xi)/(1-\xi)}}{2-\xi}$	$\frac{\mu^{1-\xi}}{1-\xi}$	9	$2\left\{\frac{\max(y,0)^{2-\xi}}{(1-\xi)(2-\xi)}\right.$	$\xi < 0$: \mathbb{R}	+	+ o	Chap. 12
		for $\xi \neq 2$	for $\xi \neq 1$		$\frac{y\mu^{1-\xi}}{1-\xi} + \frac{\mu^{2-\xi}}{2-\xi} \bigg\}$	$1 < \xi < 2$: \mathbb{R}_0^+	+	l M	
					for $\xi \neq 1, 2$	$\xi > 2$: \mathbb{R}^+	+	\mathbb{R}_0^-	