Apphan h

Cau 1:

Nang lường của electron thu được khi chuyển từ muc NI cao ve muc NI thap hon:

$$\frac{hc}{\lambda} = W_n - W_{n'} = -\frac{Rh}{n^2} + \frac{Rh}{n'^2}$$

$$\Rightarrow \lambda = \frac{C}{R\left(\frac{1}{n^2} - \frac{1}{n^2}\right)}$$

+) Day Balmer:

Busc song lon nhất của day Balmer trong quang phố hidro: $\lambda_{\text{max}} \rightleftharpoons \left(\frac{1}{n^2} - \frac{1}{n^2}\right) \text{ min} \Leftrightarrow n = 3$

$$\lambda_{\text{max}} = \frac{C}{R\left(\frac{1}{2^2} - \frac{1}{3^2}\right)} = \frac{3.10^8}{3,27.10^{15} \left(\frac{1}{2^2} - \frac{1}{3^2}\right)} \approx 6,61.10^{-7} \, (\text{m})$$

Busc song nhỏ nhất của dãy Balmer trong quang phố tt:

+) Day liman:

Day liman:

Buốc song thứ 1 của day Liman:
$$n'=1$$
, $n=2$

$$\lambda_{1L} = \frac{C}{R(1-\frac{1}{2^2})} = \frac{3.10^8}{3,27.10^{15} (1-\frac{1}{2^2})} \sim 1,22.10^{-\frac{1}{2}} (m)$$

Buck song this 2 của dãy Liman: n'= 1, n=3

$$\lambda_{2L} = \frac{C}{R\left(1 - \frac{1}{3^2}\right)} = \frac{3.10^8}{3,27.10^{15}\left(1 - \frac{1}{3^2}\right)} = \frac{1,03.10^{-7} \text{ (m)}}{1,03.10^{-7} \text{ (m)}}$$

+) Day Pashen:

$$\lambda_{1P} = \frac{C}{R\left(\frac{1}{3^2} + \frac{1}{4^2}\right)} = \frac{3.10^8}{3,27.10^{15} \left(\frac{1}{3^2} + \frac{1}{4^2}\right)}$$

 $\approx 1,89.10^{-6} (m)$

Bure song this 2 của day Pashen: n'= 3, n=5

$$\lambda_{2p} = \frac{C}{P\left(\frac{1}{3^2} - \frac{1}{5^2}\right)} = \frac{3.10^8}{3,27.10^{15} \left(\frac{1}{3^2} - \frac{1}{5^2}\right)}$$

 $\approx 1.29.10^{-6}$ (m)


```
Cau 3:
                   Phô tôn làm bất electron ra khỏi nguyên tử hiđro đang
                    3 trang thai co ban (n=1)
                         => Exo = (W00 - W1) + Wd
                         => Wt = Exo + W,
                        => 1 mv2 = Exo + - Rh
eV)
                        => v2 = [2(Ex0 - Rh)
                                = \sqrt{2(16,5.1,6.10^{-19}-3,27.10^{15},6,625.10^{-34})}
9.1.10^{-31}
                               ~ 1,02,106 (m/s)
           Cau 4:
                    +) Tai trang thái x: L=2
                       Do lon momen doing lading orbital:
                             L=tv1(1+1) = V12 tr = 3,653, 10-34 (kgm/s)
                       Hinh chieu momen stong wong:
                            l=3 \Rightarrow m=0,\pm 1,\pm 2,\pm 3
                            m=0 \Rightarrow L_2=0
                            m=1 = 1 = 1,055,10-34 (kgm/s)
                            m = -1 => Lz = - th = -1,055,10-34 (kgm/s)
                            m = 2 \Rightarrow L_z = 2h \approx 2,109.10^{-34} (kgm/s)
                            m = -2 \Rightarrow L_7 = -2h \approx -2,109.40^{-34} (kg m/s)
                            m=3 => 12 = 3th = 3,164.10-34 (kgm/s)
                            m = -3 \Rightarrow L_z = -3h \approx -3,164.10^{-34} (kgm/s)
                    +) Tai trangthai d: l=2 => m=0, ±1, ±2
                      Do Von momen dong larg:
                           L - tr VI(1+1) = V6t = 2,503.10-34 (kgm/s)
                      Hinh chiếu mômen đóng lường:
                            m=0 => Lz = 0 (kgm/s)
                            m = \pm 1 \Rightarrow L_2 = \pm t_1 = \pm 1,055,10^{-34} (kg m/s)
                            m=+2 => Lz=+2t= +2t= +2,109.10-34 (kgm/s)
```

Caus: Khi e nhân năng lường kich thích 12eV thì e số di chuyển từ trang thái năng lường W, đến Wn sao cho: W- Wn-W1 = - Rh + Rh \Rightarrow $12 = -\frac{13,5}{12} + 13,5$ ⇒ L= {0,1,2} Momen đóng lương: La=tivI(1+1) +) (=0 => L = 0 (kgm/s) +) L=1 = L = V2t = 1,491.10-34 (kgm/s) +) l=2 => L - V6th = 2,583. 10-34 (kgm/s) Câu 6: Do lon của mômen động lường ở trang thái d: L= to V((1+1) = V6th Hình chiếu của mômen 17=2h động lương ở trang thai d: $L_7 = 0, \pm th, \pm 2th$ 24 $\cos \alpha = \frac{Lz}{L}$ 2 min (Lz max = 2th

$$2 \text{min} \Leftrightarrow L_z \text{max} = 2t$$

$$\Rightarrow \cos \alpha = \frac{2t_1}{\sqrt{6}t_1}$$

Cau 8: Nang lièn giên kết của electron hoá trị ở 35: Wilk = Was - Was = 0 Rh = 0 - W35 > 5,14 = 13,5 - W35 => W3c =-5,14 (eV) The kich thich đối với trang thai thứ nhất, tức thể nang đườa 35 - 3p W = W3p - W3s = -0,893

Cau 9: Bucc song giới han của day chính xmin = 2858 A°: $\frac{hc}{\lambda_{min}} = W_{\infty} - W_{4s} = \frac{Rh}{(4 + \Delta_s)^2}$ $\Rightarrow 4 + \Delta_s = \sqrt{\frac{R\lambda_{min}}{c}}$ $\Rightarrow \Delta_s = \sqrt{R \lambda_{min}} - 4$ $= \sqrt{\frac{3124.10^{15}.2858.10^{-10}}{3.10^8}} - 4$ ≈ -2,235 $W_{4S} = \frac{Rh}{(4+\Delta_S)^2} = \frac{3,27.10^{15}.6,625.10^{-34}}{(4-2,235)^2}$ $(4-2,235)^2$ $\approx 6,954.10^{-19}(T)$ Bure song của vach công hưởng >max = 7665 A°: hc = W40 - W45 =) $W_{4p} = \frac{hc}{\lambda_{max}} = \frac{6,625.10^{-34}.3.10^8}{7665.10^{-10}} = 6,954.10^{-19}$ $\sim -4,361.10^{-19}$ (T) $W_{4p} = \frac{Rh}{(4+\Delta_p)^2}$ $\Rightarrow \Delta p = \sqrt{-Rh} - 4 = \sqrt{-3,27.10^{15}.6,625.10^{-34}} - 4$ $-4,361.10^{-19} - 4$ =-1,771