绝密★启用前

2021年普通高等学校招生全国统一考试 文科数学

注意事项:

- 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
- 2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑.如需改动,用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.
- 3.考试结束后,将本试卷和答题卡一并交回.
- 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
- 1. 设集合 $M = \{1,3,5,7,9\}, N = \{x | 2x > 7\}$,则M I N = (
- A. $\{7,9\}$ B. $\{5,7,9\}$ C. $\{3,5,7,9\}$ D. $\{1,3,5,7,9\}$
- 2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:

根据此频率分布直方图,下面结论中不正确的是()

- B. 该地农户家庭年收入不低于 10.5 万元的农户比率估计为 10%
- C. 估计该地农户家庭年收入的平均值不超过 6.5 万元
- D. 估计该地有一半以上的农户, 其家庭年收入介于 4.5 万元至 8.5 万元之间
- 3. 已知 $(1-i)^2z = 3+2i$,则z = (
- A. $-1 \frac{3}{2}i$ B. $-1 + \frac{3}{2}i$ C. $-\frac{3}{2} + i$ D. $-\frac{3}{2} i$

4. 下列函数中是增函数的为(

- A. f(x) = -x B. $f(x) = \left(\frac{2}{3}\right)^x$ C. $f(x) = x^2$
- D.

 $f(x) = \sqrt[3]{x}$

5. 点(3,0)到双曲线 $\frac{x^2}{16} - \frac{y^2}{9} = 1$ 的一条渐近线的距离为(

A. $\frac{9}{5}$

B. $\frac{8}{5}$

6. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和 小数记录法记录视力数据,五分记录法的数据 L 和小数记录表的数据 V 的满足

 $L=5+\lg V$. 已知某同学视力的五分记录法的数据为 4.9, 则其视力的小数记录法的数据为

$$() (\sqrt[10]{10} \approx 1.259)$$

A. 1.5

B. 1.2

C. 0.8

D. 0.6

7. 在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A-EFG后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()

D.

- 8. 在 VABC 中,已知 $B=120^{\circ}$, $AC=\sqrt{19}$, AB=2,则 BC= ()

- D. 3
- 9. 记 S_n 为等比数列 $\left\{a_n\right\}$ 的前 n 项和.若 $S_2=4$, $S_4=6$,则 $S_6=$ ()
- A. 7

B. 8

- D. 10
- 10. 将3个1和2个0随机排成一行,则2个0不相邻的概率为()
- A. 0.3

B. 0.5

C. 0.6

D. 0.8

- 11. 若 $\alpha \in \left(0, \frac{\pi}{2}\right)$, $\tan 2\alpha = \frac{\cos \alpha}{2 \sin \alpha}$, 则 $\tan \alpha = ($
- A. $\frac{\sqrt{15}}{15}$
- B. $\frac{\sqrt{5}}{5}$ C. $\frac{\sqrt{5}}{3}$
- D. $\frac{\sqrt{15}}{3}$
- 12. 设 f(x) 是定义域为 **R** 的奇函数,且 f(1+x) = f(-x).若 $f(-\frac{1}{3}) = \frac{1}{3}$,则 $f(\frac{5}{3}) = \frac{1}{3}$

- A. $-\frac{5}{3}$
- B. $-\frac{1}{3}$
- C. $\frac{1}{3}$

D. $\frac{5}{3}$

- 二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分.
- 13. 若向量a,b满足 $\begin{vmatrix} 1 \\ a \end{vmatrix} = 3, \begin{vmatrix} 1 \\ a b \end{vmatrix} = 5, a \cdot b = 1$,则 $\begin{vmatrix} 1 \\ b \end{vmatrix} =$ ______.
- 14. 已知一个圆锥的底面半径为 6, 其体积为 30π 则该圆锥的侧面积为_
- 15. 已知函数 $f(x) = 2\cos(\omega x + \varphi)$ 的部分图像如图所示,则 $f\left(\frac{\pi}{2}\right) =$ ____

16. 已知 F_1 , F_2 为椭圆 C: $\frac{x^2}{16} + \frac{y^2}{4} = 1$ 的两个焦点,P, Q 为 C 上关于坐标原点对称的两

点,且 $|PQ|=|F_1F_2|$,则四边形 PF_1QF_2 的面积为_____.

三、解答题:共70分.解答应写出交字说明、证明过程程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.

17. 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了 200 件产品,产品的质量情况统计如下表:

	一级品	二级品	合计
甲机床	150	50	200
乙机床	120	80	200
合计	270	130	400

- (1) 甲机床、乙机床生产的产品中一级品的频率分别是多少?
- (2) 能否有 99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?

附:
$$K^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

$P(K^2 \ge k)$	0.050	0.010	0.001

- 18. 记 S_n 为数列 $\left\{a_n\right\}$ 的前n项和,已知 $a_n>0, a_2=3a_1$,且数列 $\left\{\sqrt{S_n}\right\}$ 是等差数列,证明: $\left\{a_n\right\}$ 是等差数列.

- (1) 求三棱锥 *F EBC* 的体积;
- (2) 已知 D 为棱 A_iB_i 上的点,证明: $BF \perp DE$.
- 20. 设函数 $f(x) = a^2x^2 + ax 3\ln x + 1$, 其中 a > 0.
- (1) 讨论 f(x) 的单调性;
- (2) 若 y = f(x) 的图象与x 轴没有公共点,求a 的取值范围.
- 21. 抛物线 C 的顶点为坐标原点 O. 焦点在 x 轴上,直线 l: x=1 交 C 于 P, Q 两点,且 $OP \perp OQ$. 已知点 M (2,0) ,且 e M 与 l 相切 .
- (1) 求 C, e M 的方程;
- (2) 设 A_1, A_2, A_3 是 C 上的三个点,直线 A_1A_2 , A_1A_3 均与 e M 相切. 判断直线 A_2A_3 与 e M 的位置关系,并说明理由.

(二)选考题: 共 10 分.请考生在第 22、23 题中任选一题作答.如果多做,则按所做的第一题计分.

[选修 4-4: 坐标系与参数方程]

- 22. 在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 $\rho=2\sqrt{2}\cos\theta$.
 - (1) 将 C 的极坐标方程化为直角坐标方程;
- (2) 设点 A 的直角坐标为 (1,0) ,M 为 C 上的动点,点 P 满足 $AP = \sqrt{2} AM$,写出 P 的轨迹 C_1 的参数方程,并判断 C 与 C_1 是否有公共点.

[选修 4-5: 不等式选讲]

23. 已知函数 f(x) = |x-2|, g(x) = |2x+3| - |2x-1|.

- (1) 画出 y = f(x)和 y = g(x)的图像;
- (2) 若 $f(x+a) \ge g(x)$, 求a的取值范围.

2021年普通高等学校招生全国统一考试 文科数学 答案解析

一、选择题:

1. B

解析:

$$N = \left(\frac{7}{2}, +\infty\right), \text{ if } M \cap N = \left\{5, 7, 9\right\},$$

故选 B.

2. C

因为频率直方图中的组距为 1, 所以各组的直方图的高度等于频率. 样本频率直方图中的频率即可作为总体的相应比率的估计值.

该地农户家庭年收入低于 4.5 万元的农户的比率估计值为 0.02 + 0.04 = 0.06 = 6%,故 A 正确:

该地农户家庭年收入不低于 10.5 万元的农户比率估计值为 $0.04+0.02\times3=0.10=10\%$,故 B 正确:

该地农户家庭年收入介于 4.5 万元至 8.5 万元之间的比例估计值为

$$0.10+0.14+0.20\times2=0.64=64\%>50\%$$
,故 D 正确;

该地农户家庭年收入的平均值的估计值为

3×0.02+4×0.04+5×0.10+6×0.14+7×0.20+8×0.20+9×0.10+10×0.10+11×0.04+12×0.02+13×0.02+14×0.02=7.68 (万元),超过 6.5 万元,故 C 错误.

综上,给出结论中不正确的是 C.

故选 C.

3. B

解析:

$$(1-i)^2 z = -2iz = 3+2i ,$$

$$z = \frac{3+2i}{-2i} = \frac{(3+2i)\cdot i}{-2i\cdot i} = \frac{-2+3i}{2} = -1 + \frac{3}{2}i.$$

故选 B.

4. D

解析:

对于 A, f(x) = -x 为 R 上的减函数, 不合题意, 舍.

对于 B, $f(x) = \left(\frac{2}{3}\right)^x$ 为 R 上的减函数, 不合题意, 舍.

对于 C, $f(x) = x^2 \pm (-\infty, 0)$ 为减函数,不合题意,舍.

对于 D, $f(x) = \sqrt[3]{x}$ 为 R 上的增函数, 符合题意,

故选 D.

5. A

解析:

由题意可知,双曲线的渐近线方程为: $\frac{x^2}{16} - \frac{y^2}{9} = 0$,即 $3x \pm 4y = 0$,

结合对称性,不妨考虑点(3,0)到直线3x+4y=0 距离: $d=\frac{9+0}{\sqrt{9+16}}=\frac{9}{5}$.

故选 A.

6. C

解析:

由 $L = 5 + \lg V$, 当L = 4.9时, $\lg V = -0.1$,

$$\operatorname{col} V = 10^{-0.1} = 10^{-\frac{1}{10}} = \frac{1}{\sqrt[10]{10}} \approx \frac{1}{1.259} \approx 0.8 \,.$$

故选 C.

7. D

解析:

由题意及正视图可得几何体的直观图, 如图所示,

所以其侧视图为

故选 D

8. D

解析:

设
$$AB = c$$
, $AC = b$, $BC = a$,

结合余弦定理: $b^2 = a^2 + c^2 - 2ac \cos B$ 可得: $19 = a^2 + 4 - 2 \times a \times \cos 120^\circ$,

即:
$$a^2 + 2a - 15 = 0$$
, 解得: $a = 3$ ($a = -5$ 舍去),

故 BC = 3.

故选 D.

9. A

解析:

 $:: S_n$ 为等比数列 $\{a_n\}$ 的前 n 项和,

$$\therefore S_2$$
, $S_4 - S_2$, $S_6 - S_4$ 成等比数列

$$S_2 = 4$$
, $S_4 - S_2 = 6 - 4 = 2$

$$\therefore S_6 - S_4 = 1,$$

$$\therefore S_6 = 1 + S_4 = 1 + 6 = 7$$
.

故选 A.

10. C

解析:

将3个1和2个0随机排成一行,可以是:

 $00111, 01011, 01101, 01110, 10011, 10101, 10110, 11001, 11010, 11100 \,,$

共10种排法,

其中2个0不相邻的排列方法为:

01011,01101,01110,10101,10110,11010,

共6种方法,

故 2 个 0 不相邻的概率为 $\frac{6}{10}$ = 0.6,

故选 C.

11. A

解析:

$$Q \tan 2\alpha = \frac{\cos \alpha}{2 - \sin \alpha}$$

$$\therefore \tan 2\alpha = \frac{\sin 2\alpha}{\cos 2\alpha} = \frac{2\sin \alpha \cos \alpha}{1 - 2\sin^2 \alpha} = \frac{\cos \alpha}{2 - \sin \alpha},$$

$$\therefore \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \frac{\sqrt{15}}{4}, \quad \therefore \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\sqrt{15}}{15}.$$

故选 A.

12. C

解析:

由题意可得:
$$f\left(\frac{5}{3}\right) = f\left(1 + \frac{2}{3}\right) = f\left(-\frac{2}{3}\right) = -f\left(\frac{2}{3}\right)$$
,

$$f\left(\frac{2}{3}\right) = f\left(1 - \frac{1}{3}\right) = f\left(\frac{1}{3}\right) = -f\left(-\frac{1}{3}\right) = -\frac{1}{3}$$

故
$$f\left(\frac{5}{3}\right) = \frac{1}{3}$$
.

故选 C.

二、填空题: 本题共4小题,每小题5分,共20分.

13.

答案: 3√2

解析:

$$\begin{vmatrix} \mathbf{a} - \mathbf{b} \end{vmatrix} = 5$$

$$\left| \frac{\mathbf{r}}{a} - \frac{\mathbf{r}}{b} \right|^{2} = \frac{\mathbf{r}}{a}^{2} + \frac{\mathbf{r}}{b}^{2} - 2\frac{\mathbf{r}}{a} \cdot \mathbf{b}^{2} = 9 + \left| \frac{\mathbf{r}}{b} \right|^{2} - 2 = 25$$

$$\begin{vmatrix} \mathbf{r} \\ b \end{vmatrix} = 3\sqrt{2} .$$

故答案为 $3\sqrt{2}$.

14.

答案: 39π

解析:

$$V = \frac{1}{3}\pi 6^2 \cdot h = 30\pi$$

$$\therefore h = \frac{5}{2}$$

$$i = \sqrt{h^2 + r^2} = \sqrt{\left(\frac{5}{2}\right)^2 + 6^2} = \frac{13}{2}$$

$$\therefore S_{(0)} = \pi r l = \pi \times 6 \times \frac{13}{2} = 39\pi.$$

故答案为 39π .

15.

答案: -√3

解析:

由题意可得:
$$\frac{3}{4}T = \frac{13\pi}{12} - \frac{\pi}{3} = \frac{3\pi}{4}$$
, $\therefore T = \pi$, $\omega = \frac{2\pi}{T} = 2$,

$$\stackrel{\text{def}}{=} x = \frac{13\pi}{12} \text{ Ind }, \quad \omega x + \varphi = 2 \times \frac{13\pi}{12} + \varphi = 2k\pi, \therefore \varphi = 2k\pi - \frac{13}{6}\pi \left(k \in Z\right),$$

$$\diamondsuit k = 1$$
 可得: $\varphi = -\frac{\pi}{6}$,

据此有:
$$f(x) = 2\cos\left(2x - \frac{\pi}{6}\right), f\left(\frac{\pi}{2}\right) = 2\cos\left(2 \times \frac{\pi}{2} - \frac{\pi}{6}\right) = 2\cos\frac{5\pi}{6} = -\sqrt{3}$$
.

故答案为 $-\sqrt{3}$.

16.

答案: 8

解析:

因为P,Q为C上关于坐标原点对称的两点,

且 $|PQ|=|F_1F_2|$, 所以四边形 PF_1QF_2 为矩形,

设
$$|PF_1|=m$$
, $|PF_2|=n$,则 $m+n=8$, $m^2+n^2=48$,

所以
$$64 = (m+n)^2 = m^2 + 2mn + n^2 = 48 + 2mn$$
,

mn = 8, 即四边形 PF_1QF_2 面积等于8.

故答案为8.

三、解答题:

(一)必考题:

17.

答案: (1) 75%; 60%;

(2) 能.

解析:

(1) 甲机床生产的产品中的一级品的频率为 $\frac{150}{200}$ =75%,

乙机床生产的产品中的一级品的频率为 $\frac{120}{200} = 60\%$.

(2)
$$K^2 = \frac{400(150 \times 80 - 120 \times 50)^2}{270 \times 130 \times 200 \times 200} = \frac{400}{39} > 10 > 6.635$$

故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.

18.

答案: 证明见解析.

解析:

:数列
$$\left\{\sqrt{S_n}\right\}$$
 等差数列,设公差为 $d=\sqrt{S_2}-\sqrt{S_1}=\sqrt{a_2+a_1}-\sqrt{a_1}=\sqrt{a_1}$

$$\therefore \sqrt{S_n} = \sqrt{a_1} + (n-1)\sqrt{a_1} = n\sqrt{a_1} , \quad (n \in \mathbf{N}^*)$$

 $\therefore S_n = a_1 n^2, \quad (n \in \mathbf{N}^*)$

∴
$$\stackrel{.}{=}$$
 $n \ge 2$ 时, $a_n = S_n - S_{n-1} = a_1 n^2 - a_1 (n-1)^2 = 2a_1 n - a_1$

当n=1时, $2a_1\times 1-a_1=a_1$,满足 $a_n=2a_1n-a_1$,

$$\therefore \{a_n\}$$
 的通项公式为 $a_n = 2a_1n - a_1$, $(n \in \mathbf{N}^*)$

$$\therefore a_n - a_{n-1} = (2a_1n - a_1) - [2a_1(n-1) - a_1] = 2a_1$$

: $\{a_n\}$ 是等差数列.

19.

答案: $(1)\frac{1}{3}$; (2)证明见解析.

解析:

(1)如图所示, 连结 AF,

由题意可得: $BF = \sqrt{BC^2 + CF^2} = \sqrt{4+1} = \sqrt{5}$,

由于 $AB \perp BB_1$, $BC \perp AB$, BB_1 I BC = B, 故 $AB \perp$ 平面 BCC_1B_1 ,

而 $BF \subset$ 平面 BCC_1B_1 , 故 $AB \perp BF$,

从而有
$$AF = \sqrt{AB^2 + BF^2} = \sqrt{4+5} = 3$$
,

从而
$$AC = \sqrt{AF^2 - CF^2} = \sqrt{9 - 1} = 2\sqrt{2}$$
,

则 $AB^2 + BC^2 = AC^2$, .: $AB \perp BC$, VABC 为等腰直角三角形,

$$S_{\triangle BCE} = \frac{1}{2} s_{\triangle ABC} = \frac{1}{2} \times \left(\frac{1}{2} \times 2 \times 2\right) = 1 \; , \quad V_{F-EBC} = \frac{1}{3} \times S_{\triangle BCE} \times CF = \frac{1}{3} \times 1 \times 1 = \frac{1}{3} \; .$$

(2)由(1) 结论可将几何体补形为一个棱长为 2 的正方体 $ABCM - A_1B_1C_1M_1$, 如图所示,

取棱 AM,BC 的中点 H,G ,连结 A_1H,HG,GB_1 ,

正方形 BCC_1B_1 中,G,F 为中点,则 $BF \perp B_1G$,

$$\mathbb{Z}BF \perp A_{1}B_{1}, A_{1}B_{1}I B_{1}G = B_{1}$$
,

故 $BF \perp$ 平面 A_1B_1GH ,而 $DE \subset$ 平面 A_1B_1GH ,

从而 $BF \perp DE$.

20.

答案: (1)
$$f(x)$$
的减区间为 $\left(0,\frac{1}{a}\right)$, 增区间为 $\left(\frac{1}{a},+\infty\right)$; (2) $a>\frac{1}{e}$.

解析:

(1) 函数的定义域为 $(0,+\infty)$,

$$\mathbb{X} f'(x) = \frac{(2ax+3)(ax-1)}{x},$$

因为a > 0, x > 0, 故2ax + 3 > 0,

所以
$$f(x)$$
 的减区间为 $\left(0,\frac{1}{a}\right)$, 增区间为 $\left(\frac{1}{a},+\infty\right)$.

(2) 因为 $f(1) = a^2 + a + 1 > 0$ 且y = f(x)的图与x轴没有公共点,

所以y = f(x)的图象在x轴的上方,

由 (1) 中函数的单调性可得
$$f(x)_{\min} = f(\frac{1}{a}) = 3 - 3\ln\frac{1}{a} = 3 + 3\ln a$$
,

故 $3+3\ln a > 0$ 即 $a > \frac{1}{e}$.

21.

答案: (1) 抛物线 $C: y^2 = x$, e M 方程为 $(x-2)^2 + y^2 = 1$; (2) 相切,理由见解析解析:

(1) 依题意设抛物线 $C: y^2 = 2px(p > 0), P(1, y_0), Q(1, -y_0)$,

Q
$$OP \perp OQ$$
, ... $OP \cdot OQ = 1 - y_0^2 = 1 - 2p = 0$, ... $2p = 1$,

所以抛物线C的方程为 $y^2 = x$,

M(0,2),e M 与 x=1 相切,所以半径为1,

所以e M的方程为 $(x-2)^2 + y^2 = 1$;

(2)
$$\forall A_1(x_1y_1), A_2(x_2, y_2), A_3(x_3, y_3)$$

若 A_1A_2 , 斜率不存在,则 A_1A_2 , 方程为 x=1 或 x=3,

若 A_1A_2 方程为 x=1 , 根据对称性不妨设 $A_1(1,1)$,

则过A,与圆M相切的另一条直线方程为y=1,

此时该直线与抛物线只有一个交点,即不存在 A_3 ,不合题意;

若 A_1A_2 方程为 x=3,根据对称性不妨设 $A_1(3,\sqrt{3}), A_2(3,-\sqrt{3}),$

则过 A_1 与圆M相切的直线 A_1A_3 为 $y-\sqrt{3}=\frac{\sqrt{3}}{3}(x-3)$,

$$X = \frac{y_1 - y_3}{x_1 - x_3} = \frac{1}{y_1 + y_3} = \frac{1}{\sqrt{3} + y_3} = \frac{\sqrt{3}}{3}, \therefore y_3 = 0$$

 $x_3 = 0, A_3(0,0)$, 此时直线 A_1A_3, A_2A_3 关于 x 轴对称,

所以直线 A_2A_3 与圆M相切;

若直线 A,A,A,A,A,A,科率均存在,

$$\log k_{{\scriptscriptstyle A_1\!A_2}} = \frac{1}{y_1 + y_2}, k_{{\scriptscriptstyle A_1\!A_3}} = \frac{1}{y_1 + y_3}, k_{{\scriptscriptstyle A_2\!A_3}} = \frac{1}{y_2 + y_3} \; ,$$

所以直线
$$A_1A_2$$
 方程为 $y-y_1 = \frac{1}{y_1 + y_2}(x-x_1)$,

整理得 $x-(y_1+y_2)y+y_1y_2=0$,

同理直线 A_1A_2 的方程为 $x-(y_1+y_2)y+y_1y_2=0$,

直线 A_2A_3 的方程为 $x-(y_2+y_3)y+y_2y_3=0$,

Q
$$A_1 A_2$$
 与圆 M 相切, $\therefore \frac{|2 + y_1 y_2|}{\sqrt{1 + (y_1 + y_2)^2}} = 1$

整理得
$$(y_1^2-1)y_2^2+2y_1y_2+3-y_1^2=0$$
,

$$A_1A_3$$
与圆 M 相切,同理 $(y_1^2-1)y_3^2+2y_1y_3+3-y_1^2=0$

所以 y_2, y_3 为方程 $(y_1^2 - 1)y^2 + 2y_1y + 3 - y_1^2 = 0$ 的两根,

$$y_2 + y_3 = -\frac{2y_1}{y_1^2 - 1}, y_2 \cdot y_3 = \frac{3 - y_1^2}{y_1^2 - 1},$$

M 到直线 A,A, 的距离为:

$$\frac{|2+y_2y_3|}{\sqrt{1+(y_2+y_3)^2}} = \frac{|2+\frac{3-y_1^2}{y_1^2-1}|}{\sqrt{1+(-\frac{2y_1}{y_1^2-1})^2}}$$

$$= \frac{|y_1^2 + 1|}{\sqrt{(y_1^2 - 1)^2 + 4y_1^2}} = \frac{y_1^2 + 1}{y_1^2 + 1} = 1,$$

所以直线 A_2A_3 与圆 M 相切;

综上若直线 A_1A_2, A_1A_3 与圆 M 相切,则直线 A_2A_3 与圆 M 相切

(二)选考题:

[选修 4-4: 坐标系与参数方程]

22.

答案: (1)
$$(x-\sqrt{2})^2 + y^2 = 2$$
; (2) P 的轨迹 C_1 的参数方程为
$$\begin{cases} x = 3 - \sqrt{2} + 2\cos\theta \\ y = 2\sin\theta \end{cases}$$
 (θ)为

参数), $C 与 C_1$ 没有公共点.

解析:

(1) 由曲线 C 的极坐标方程 $\rho = 2\sqrt{2}\cos\theta$ 可得 $\rho^2 = 2\sqrt{2}\rho\cos\theta$,

将
$$x = \rho \cos \theta$$
, $y = \rho \sin \theta$ 代入可得 $x^2 + y^2 = 2\sqrt{2}x$, 即 $(x - \sqrt{2})^2 + y^2 = 2$,

即曲线 C 的直角坐标方程为 $\left(x-\sqrt{2}\right)^2+y^2=2$;

(2) 设
$$P(x,y)$$
, 设 $M(\sqrt{2}+\sqrt{2}\cos\theta,\sqrt{2}\sin\theta)$

$$Q AP = \sqrt{2}AM$$
,

$$\therefore (x-1, y) = \sqrt{2} \left(\sqrt{2} + \sqrt{2} \cos \theta - 1, \sqrt{2} \sin \theta \right) = \left(2 + 2 \cos \theta - \sqrt{2}, 2 \sin \theta \right),$$

$$\sup_{y=2\sin\theta} \begin{cases} x-1=2+2\cos\theta-\sqrt{2} \\ y=2\sin\theta \end{cases}, \quad \sup_{y=2\sin\theta} \begin{cases} x=3-\sqrt{2}+2\cos\theta \\ y=2\sin\theta \end{cases}$$

故
$$P$$
 的轨迹 C_1 的参数方程为
$$\begin{cases} x = 3 - \sqrt{2} + 2\cos\theta \\ y = 2\sin\theta \end{cases} (\theta \text{ 为参数})$$

Q 曲线 C 的圆心为 $\left(\sqrt{2},0\right)$,半径为 $\sqrt{2}$,曲线 C_1 的圆心为 $\left(3-\sqrt{2},0\right)$,半径为 2,

则圆心距为 $3-2\sqrt{2}$, $Q3-2\sqrt{2} < 2-\sqrt{2}$, ... 两圆内含,

故曲线 $C 与 C_1$ 没有公共点.

[选修 4-5: 不等式选讲]

23.

答案: (1) 图像见解析; (2)
$$a \ge \frac{11}{2}$$

解析:

(1) 可得
$$f(x) = |x-2| = \begin{cases} 2-x, x < 2 \\ x-2, x \ge 2 \end{cases}$$
, 画出图像如下:

(2)
$$f(x+a) = |x+a-2|$$
,

如图, 同一个坐标系里画出f(x),g(x)图像,

$$y = f(x+a)$$
是 $y = f(x)$ 平移了 $|a|$ 个单位得到,

则要使 $f(x+a) \ge g(x)$, 需将 y = f(x) 向左平移, 即 a > 0,

当
$$y = f(x+a)$$
过 $A(\frac{1}{2},4)$ 时, $|\frac{1}{2}+a-2|=4$,解得 $a = \frac{11}{2}$ 或 $-\frac{5}{2}$ (舍去),

则数形结合可得需至少将 y = f(x) 向左平移 $\frac{11}{2}$ 个单位, $\therefore a \ge \frac{11}{2}$.

