Korea University - Powered by Zigui

Team Note of Powered by Zigui

@evenharder(Sangheon Lee), @SoulTch(JEONGJIN LEE), @djkim0613(kim do jae)

Compiled on November 1, 2019

Contents 0 Quotes and Prerequisites 1 Math					Heavy-Light Decomposition					
0 Quotes and Prerequisites		2		4.8	Dominator Tree					
	Math 1.1 Basic Mathematics 1.2 Number Theory 1.3 FFT 1.4 Miller-Rabin + Pollard-Rho Geometry 2.1 struct Point 2.2 Distance, Intersection 2.3 Convex Hull 2.4 Rotating Calipers 2.5 Sorting Points by Angle 2.6 Smallest Enclosing Circle 2.7 Polygon Area	2 2 3 4 4 5 5 6 6 6 6 6 6	5	Netw 5.1 7 5.2 1 5.3 1 5.4 1 5.5 1 Option 6.1 1 6.2 1 6.3 6	Tree Compress vork Flow Theorems Dinic's Algorithm MCMF with SPFA Hungarian Method Hopcroft-Karp Algorithm mization Tricks Knuth Optimization Divide and Conquer Optimization Convex Hull Trick Centroid Decomposition	9 9 10 11 11 12 12 12				
3	Strings 3.1 Aho-Corasick Algorithm 3.2 Suffix Array 3.3 Manacher's Algorithm 3.4 Manacher's Algorithm 3.5 Z Algorithm 3.6 Lexicographically Smallest String Rotation	7 7 7 8 8 8 8	7	7.1 1 7.2 1 7.3 1 7.4 1 7.5 8 7.6 1	Persistent Segment Tree Link-Cut Tree Li-Chao Tree Dynamic Convex Hull Stern-Brocot Tree Rope Policy Based Data Structure	13 14 14 15 15				
4	Graph Theory 4.1 Strongly Connected Component	8 8 9 9 9	8	8.1 1 8.2 1 8.3 1	cellaneous Misc Formulae and Algorithms	16 17				

Korea University - Powered by Zigui
Page 2 of 17

ALL BELOW HERE ARE USELESS IF YOU READ THE STATEMENT WRONG

0 Quotes and Prerequisites

```
evenharder : Mental Abuse To Humans
djkim0613 : 열심히 응원하겠습니다.
SoulTch : How much is this bus ticket?
* This template is brought from that of 'Deobureo Minkyu Party'
```

Run script

```
#!/bin/bash
g++ -fsanitize=undefined -std=c++14 -02 -o /tmp/pow $1.cpp
time /tmp/pow < $1.in
# export PATH=~:$PATH</pre>
```

Debug Code

```
#define setz(x) memset(x, 0, sizeof(x))
#define sz(x) ((int)(x).size())
#define rep(i, e) for (int i = 0, _##i = (e); i < _##i; i++)
#define repp(i, s, e) for (int i = (s), _##i = (e); i < _##i; i++)
#define repr(i, s, e) for (int i = (s)-1, _##i = (e); i \ge _{\#}i; i--)
#define repi(i, x) for (auto &i : (x))
// using namespace std;
using 11 = long long;
using pii = pair<int, int>;
using pll = pair<11, 11>;
template<typename T>
ostream &operator<<(ostream &os, const vector<T>& v) {
    cout << "[":
    for (auto p : v) cout << p << ",";</pre>
    cout << "]":
    return os;
}
#ifndef SOULTCH
#define debug(...) 0
#define endl '\n'
#define debug(...) cout << " [-] ", _dbg(#__VA_ARGS__, __VA_ARGS__)</pre>
template<class TH> void _dbg(const char *sdbg, TH h){ cout << sdbg << '=' << h <<
endl; }
template<class TH, class... TA> void _dbg(const char *sdbg, TH h, TA... a) {
    while(*sdbg != ',') cout << *sdbg++;</pre>
    cout << '=' << (h) << ',';
    _dbg(sdbg+1, a...);
}
#endif
```

Reminders

Should be added.

Figure 1: 풀다가 막힐 때는 이 그림을 봅시다. 아자아자 화이팅!

1 Math

1.1 Basic Mathematics

1.1.1 Trigonometry

- $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
- $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
- $\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$
- $\sin 2\theta = 2\sin\theta\cos\theta$
- $\bullet \ c^2 = a^2 + b^2 2ab\cos\gamma$

1.1.2 Generating Function

- $\sum_{n} (pn+q)x^{n} = \frac{p}{1-x} + \frac{q}{(1-x)^{2}}$ (Arithmetic progression)
- $\sum_{n} (rx)^n = (1 rx)^{-1}$ (Geometric progression)
- $\sum_{n} {m \choose n} x^n = (1+x)^m$ (Binomial coefficient)
- $\sum_{n} {m+n-1 \choose n} x^n = (1-x)^{-m}$ (Multiset coefficient)

1.1.3 Calculus

- $\int_a^b f(x) dx = \frac{b-a}{6} \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right]$ (Simpson's Rule, for cubic poly)
- $\int u'v \ dx = uv \int uv' \ dx$ (Integration by parts)

1.1.4 Gaussian Elimination

Should be **added**....?

Korea University - Powered by Zigui
Page 3 of 17

1.2 Number Theory

1.2.1 Lattice Points under Line

for(ll j=0;j<m;j++) {</pre>

```
// 0 \le x \le n, 0 \le y \le (a/c)x+(b/c)
11 calc(l1 a,l1 b,l1 c,l1 n){
    if(!n)return 0;
    11 tmp=a/c*n*(n-1)/2;
    tmp+=b/c*n:
    return tmp+calc(c,(a*n+b)%c,a%c,((a%c)*n+b%c)/c);
}
1.2.2 Shanks' Baby-step Giant-step
  Should be revised.
11 mexp(ll x, ll y, ll p) {
    if(!v) return 1:
    if(v & 1) return x * mexp(x*x%p, y>>1, p) % p;
    return mexp(x*x\%p, y>>1, p);
}
vector<ll> get_factor(ll n) {
    vector<ll> v;
    for(ll i=2:i*i<=n:i++) {
        if(n \% i == 0) {
            v.push_back(i);
            while(n \% i == 0) n /= i:
        }
    }
    if(n > 1) v.push_back(n);
    return v:
}
ll get_primitive(ll n) {
    11 phi = n-1; // assume n is prime
    vector<ll> fact = get_factor(phi);
    for(11 x=2;x<=n;x++) {
        int ves = 1:
        for(ll y : fact) {
            yes &= (mexp(x, phi / y, n) != 1);
        if(yes) return x;
    }
    return -1;
// find x s.t. x^k \mod n = a \rightarrow (g^k)^y \mod n = a, where x = g^y
11 bsgs(ll k, ll a, ll n) {
    11 g = get_primitive(n);
    11 phi = n-1; // assume n is prime
    if(g == -1) return -1;
    ll m = ceil(sqrt(n) + 1e-9);
    vector<pl> prec(m);
```

```
prec[j] = {mexp(g, j * k % phi, n), j};
   }
   sort(prec.begin(), prec.end());
   ll cur = a, ncur = mexp(g, (phi - m) * k % phi, n);
   for(ll i=0:i<m:i++) {
        auto it = lower_bound(prec.begin(), prec.end(), pl(cur, 0));
        if(it->first == cur) {
            ll ans = mexp(g, (i*m + it->second) \% phi, n);
            assert(mexp(ans, k, n) == a);
            return ans:
        }
        cur = cur * ncur % n;
   }
   return 0;
}
1.2.3 Extended Euclidean Algorithm
// ax + by = gcd(a,b) \Rightarrow x ? y ?
typedef long long int 11
pair<11,11> ext_gcd(11 a,11 b) {
   if(b) {
        auto tmp = ext_gcd(b, a%b);
        return {tmp.second, tmp.first - (a/b) * tmp.second};
   }
    else return {1, 0};
// ax = 1 mod M, x?
ll mod inv(ll a, ll M) {
   return (ext_gcd(a, M).first + M) % M;
1.2.4 Chinese Remainder Theorem
typedef long long int 11;
11 CRT(vector<ll> rem. vector<ll> mod. int k) {
    11 m = 1:
   for(auto i : mod) m *= i;
   11 \text{ ret} = 0:
   for(int i = 0 ; i < k ; i++) {
        11 tmp = (m / mod[i]) % mod[i];
        11 si = mod inv(tmp, mod[i]):
        ret += (rem[i] * si % m) * (m / mod[i]) % m;
        ret %= m:
   }
    return ret;
x \equiv a \pmod{m}, x \equiv b \pmod{n}일 경우 해가 존재하려면 a \equiv b \pmod{\gcd(m,n)}이여야 함.
 q = \gcd(n, m) = um + vn이라 할 때 x \equiv (avn + bum)/q \pmod{lcm(n, m)}. Should be added.
```

Korea University - Powered by Zigui
Page 4 of 17

1.2.5 Möbius Inversion Formula

```
\forall n \in \mathbb{N} \ g(n) = \sum_{d \mid n} f(d) \implies f(n) = \sum_{d \mid n} \mu(d)g(n/d)
```

1.3 FFT

```
FFT: (a_0, a_1, \dots, a_{n-1}) \mapsto (\sum_{j=0}^{n-1} a_0(\omega^0)^j, \sum_{j=0}^{n-1} a_1(\omega^1)^j, \dots, \sum_{j=0}^{n-1} a_{n-1}(\omega^{n-1})^j)
void fft(vector<base>& a, bool inv) {
    int n = a.size(), i = 0:
    vector<ll> roots(n/2);
    for(int i=1:i<n:i++) {
        int bit = (n >> 1);
        while(j >= bit) {
             j -= bit;
             bit >>= 1;
        j += bit;
        if(i < j) swap(a[i], a[j]);</pre>
    }
    double ang = 2 * acos(-1) / n * (inv ? -1 : 1);
    for(int i=0:i<n/2:i++) {
        roots[i] = base(cos(ang * i), sin(ang * i));
    }
    /* In NTT, let prr = primitive root. Then,
    int ang = mexp(prr, (mod - 1) / n);
    if(inv) ang = mexp(ang, mod - 2);
    for(int i=0; i< n/2; i++){
        roots[i] = (i ? (111 * roots[i-1] * ang % mod) : 1);
    also, make sure to apply modulus under here
    for(int i=2;i<=n;i<<=1) {</pre>
        int step = n / i:
        for(int j=0;j<n;j+=i) {</pre>
             for(int k=0; k<i/2; k++) {
                 ll u = a[i+k], v = a[i+k+i/2] * roots[step * k]:
                 a[j+k] = u+v;
                 a[j+k+i/2] = u-v;
             }
        }
    }
    if(inv) for(int i=0;i<n;i++) a[i] /= n;</pre>
void conv(vector<base>& x, vector<base>& y) {
    int n = 2; while (n < max(x.size(), y.size())) n <<= 1;
    n <<= 1:
    x.resize(n); y.resize(n);
```

```
fft(x, false); fft(y, false);
   for(int i=0;i<n;i++) x[i] *= y[i];</pre>
   fft(x, true): // access (ll)round(x[i].real())
1.4 Miller-Rabin + Pollard-Rho
//Prove By Solving - https://www.acmicpc.net/problem/4149
namespace miller_rabin{
   lint mul(lint x, lint y, lint mod){ return (__int128) x * y % mod; }
 lint ipow(lint x, lint y, lint p){
   lint ret = 1, piv = x \% p:
   while(v){
     if(v&1) ret = mul(ret, piv, p);
     piv = mul(piv, piv, p);
     y >>= 1;
   return ret;
 bool miller_rabin(lint x, lint a){
   if(x % a == 0) return 0;
   lint d = x - 1;
   while(1){
     lint tmp = ipow(a, d, x);
     if(d&1) return (tmp != 1 && tmp != x-1);
     else if(tmp == x-1) return 0;
     d >>= 1;
   }
 }
 bool isprime(lint x){
   for(auto &i : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}){
     if(x == i) return 1;
     if (x > 40 \&\& miller rabin(x, i)) return 0:
   if(x <= 40) return 0;
   return 1:
 }
namespace pollard_rho{
 lint f(lint x, lint n, lint c){
   return (c + miller_rabin::mul(x, x, n)) % n;
 void rec(lint n, vector<lint> &v){
   if(n == 1) return;
   if(n \% 2 == 0){
     v.push back(2):
     rec(n/2, v);
     return;
   }
   if(miller_rabin::isprime(n)){
```

Korea University - Powered by Zigui

Page 5 of 17

```
v.push_back(n);
      return:
    }
    lint a, b, c;
    while(1){
     a = rand() \% (n-2) + 2;
      b = a;
      c = rand() \% 20 + 1;
       a = f(a, n, c);
       b = f(f(b, n, c), n, c);
      }while(gcd(abs(a-b), n) == 1);
      if(a != b) break:
    lint x = gcd(abs(a-b), n);
    rec(x, v):
    rec(n/x, v);
  vector<lint> factorize(lint n){
    vector<lint> ret;
    rec(n. ret):
    sort(ret.begin(), ret.end());
    return ret;
 }
};
```

2 Geometry

2.1 struct Point

```
const double eps = 1e-10;
template <class T>
struct point{
    typedef point P;
   T x, y;
   point(T x=0, T y=0) : x(x), y(y) {}
    bool operator< (P a) const {return fabs(x-a.x) > eps ? x<a.x : y<a.y;}
    bool operator== (P a) const {return max(fabs(x-a.x), fabs(y-a.y)) < eps;}</pre>
   P operator+ (P a) const {return P(x+a.x, y+a.y);}
    P operator- (P a) const {return P(x-a.x, y-a.y);}
   P operator- () const {return P(-x, -y);};
    T operator* (P a) const {return x*a.x + y*a.y;} // inner prod
    T operator/ (P a) const {return x*a.y - y*a.x;} // outer prod
   T dist2() const {return x*x + y*y;}
    double dist() const {return sqrt(double(dist2()));}
   P perp() const {return P(-v, x):}: // rotate 90 deg ccw
   P mult(T t) const {return P(x*t, y*t);}
   P unit() const {return P(x/dist(), y/dist());}
   P rotate(double a){
        return P(x*cos(a)-y*sin(a), x*sin(a)+y*cos(a));
```

```
}:
int sgn(double x) {return (x > eps) - (x < -eps);}</pre>
typedef point<double> P:
     Distance, Intersection
2.2.1 Point-to-Line
double lineDist(P a, P b, P p) {
   return ((b-a)/(p-a))/(b-a).dist(); // a->b : left (+), right : (-);
2.2.2 Point-to-Segment
double segDist(P s. P e. P p) {
   if(s == e) return (p-s).dist(); // mind the eps
   double d = (e-s).dist2(), t = min(d, max(.0, (p-s)*(e-s)));
   return ((p-s).mult(d)-(e-s).mult(t)).dist() / d;
2.2.3 Line intersection
template<class P>
pair<int, P> lineInter(P a, P b, P c, P d){
   if((b-a)/(d-c) == 0) // parallel, mind the eps
       return \{-((b-a)/(c-a) == 0), a\};
   double oa = (d-c)/(a-c), ob = (d-c)/(b-c):
   return {(a.mult(ob) - b.mult(oa)).mult(1/(ob-oa))};
} // 1,0,-1(inf) : inter
2.2.4 Segment Intersection
bool onSegment(P s, P e, P p) {return segDist(s, e, p) < eps;}</pre>
template < class P > vector < P > segInter(P a, P b, P c, P d) {
   double oa = (d-c)/(a-c), ob = (d-c)/(b-c),
           oc = (b-a)/(c-a), od = (b-a)/(d-a);
   if(sgn(oa)*sgn(ob) < 0 \&\& sgn(oc)*sgn(od) < 0)
       return {(a.mult(ob) - b.mult(oa)).mult(1/(ob-oa))};
   set<P> S;
   if(onSegment(c, d, a)) S.insert(a);
   if(onSegment(c, d, b)) S.insert(b):
   if(onSegment(a, b, c)) S.insert(c);
   if(onSegment(a, b, d)) S.insert(d);
   return vector<P>(S.begin(), S.end());
```

Korea University - Powered by Zigui

Page 6 of 17

Should be added.

2.2.5 Circle-Line Intersection

2.3 Convex Hull

CV[ind2].second);

```
vector<pll> get_CV(vector<pll> V){
    sort(V.begin(), V.end());
    sort(V.begin() + 1, V.end(), [&](pll x, pll y){
        pll xx = x - V[0];
        pll yy = y - V[0];
        11 \text{ res} = xx / yy;
        if(res != 0) return res > 0;
        if(xx.first != yy.first) return xx.first < yy.first;</pre>
        return xx.second < yy.second;</pre>
    }):
    vector<pll> ret;
    for(auto val : V){
        while(ret.size() > 1){
            pll xx = ret[ret.size() - 2] - val;
            pll vv = ret[ret.size() - 1] - val:
            if(xx / yy <= 0) ret.pop_back();</pre>
            else break:
        }
        ret.push_back(val);
    }
    return ret;
}
2.4 Rotating Calipers
void rotating_calipers(vector<pll> CV){
    int pos = 0;
    for(int i = 0 ; i < CV.size() ; i++) if(CV[pos] < CV[i]) pos = i;</pre>
    int ind1 = 0, ind2 = pos:
    11 dist = (CV[ind1] - CV[ind2]) * (CV[ind1] - CV[ind2]);
    auto get_v = [\&](int x) { return CV[(x + 1) \% CV.size()] - <math>CV[x];};
    for(int i = 0 ; i < CV.size() ; i++){</pre>
        pll v = get_v(i);
        while((-v) / get_v(pos) < 0) pos = (pos + 1) % CV.size();
        11 tmp_dist = (CV[pos] - CV[i]) * (CV[pos] - CV[i]);
        if(dist < tmp_dist) {</pre>
            dist = tmp_dist;
            ind1 = i; ind2 = pos;
        }
    }
    printf("%11d %11d %11d %11d\n", CV[ind1].first, CV[ind1].second, CV[ind2].first,
```

```
2.5 Sorting Points by Angle
// credit : http://koosaga.com/97
auto angle_sort = [&] (P &a, P &b){
   if((a < point(0, 0)) ^ (b < point(0, 0))) return b < a;
   if(a / b != 0) return a / b > 0;
   return a.dist2() < b.dist2(); // norm</pre>
}; // clockwise sort
2.6 Smallest Enclosing Circle
//Prove By Solving - https://www.acmicpc.net/problem/11930
int main(){
   scanf("%d", &N);
   for(int i = 1; i \le N; i ++) scanf("%lf%lf%lf", &A[i].x, &A[i].y, &A[i].z);
   int t = 70000;
   double rate = 1.0;
   point cur = (point)\{0, 0, 0\};
   for(int i = 1 ; i \le t; i++){
       int ind = 1:
       for(int j = 1; j \le N; j++) if((A[j] - cur) * (A[j] - cur) > (A[ind] -
       cur) * (A[ind] - cur)) ind = j;
       cur = cur + (A[ind] - cur) * rate;
       rate *= 0.99;
   }
   double r = 0;
   for(int i = 1; i \le N; i + r = max(r, (A[i] - cur) * (A[i] - cur));
   cout << sart(r):</pre>
   return 0;
} // Non-deterministic, deterministic O(n lg n) requires Voronoi diagram
2.7 Polygon Area
 Should be added.
2.7.1 Polygon Area
double ans = 0; // ans : double area
for(int i=0;i<points.size();i++)</pre>
   ans += points[i] / points[(i+1 == points.size() ? 0 : i+1)];
2.7.2 Polygon Overlapping
```

Korea University - Powered by Zigui
Page 7 of 17

3 Strings

3.1 Aho-Corasick Algorithm

```
namespace aho_corasick {
    const int MAXN = 100000, MAXC = 26;
    int trans[MAXN+1][MAXC];
    int fail[MAXN+1];
   bool term[MAXN+1];
    void build(const vector<string> &v) {
       setz(trans). setz(fail). setz(term):
        int cnode = 1;
       repi(s, v) {
           int p = 0;
           repi(j, s) {
               char c = j-'a';
               if (!trans[p][c]) trans[p][c] = cnode++;
               p = trans[p][c];
           }
            term[p] = true;
       }
        queue<int> q; rep(i, MAXC) if (trans[0][i]) q.push(trans[0][i]);
        while(!a.emptv()) {
           int t = q.front(); q.pop();
           rep(i, MAXC) {
               if (trans[t][i]) {
                    int p = fail[t];
                    while(p and not trans[p][i]) p = fail[p];
                    p = trans[p][i];
                    fail[trans[t][i]] = p;
                    if (term[p]) term[trans[t][i]] = true;
                    q.push(trans[t][i]);
               }
           }
       }
   }
   bool query(string &t) {
       int p = 0;
       repi(i, t) {
           char c = i-'a':
           while(p and not trans[p][c]) p = fail[p];
           p = trans[p][c];
            if (term[p]) return true:
       }
       return false;
    }
```

```
3.2 Suffix Array
// str : abracadabra
// SA : 10 7 0 3 5 8 1 4 6 9 2
// LCP : 1 4 1 1 0 3 0 0 0 2
vector<int> make_sa(const string& s) {
    int n = s.length();
   int \lim = \max(128, n+1):
    vector<int> sa(n), g(n+1), ng(n+1), cnt(lim), ind(lim+1);
   for(int i=0:i<n:i++) {</pre>
        sa[i] = i; g[i] = s[i];
   }
    g[n] = 0;
   for(int t=1;t<s.length();t<<=1)
        auto cmp = [&] (int a, int b) {
            return g[a] != g[b] ? g[a] < g[b] : g[a+t] < g[b+t];
        }:
        for(int i=0;i<n;i++)</pre>
                                cnt[g[min(i+t, n)]]++;
        for(int i=1;i<lim;i++) cnt[i] += cnt[i-1];</pre>
        for(int i=n-1;i>=0;i--) ind[--cnt[g[min(i+t, n)]]] = i;
        for(int i=0;i<lim;i++) cnt[i] = 0;</pre>
        for(int i=0; i \le n; i++) cnt[g[i]]++; // same as cnt[g[ind[i]]]++
        for(int i=1:i<lim:i++) cnt[i] += cnt[i-1]:</pre>
        for(int i=n-1;i>=0;i--) sa[--cnt[g[ind[i]]]] = ind[i];
        ng[sa[0]] = 1;
        for(int i=1;i<n;i++) {</pre>
            ng[sa[i]] = ng[sa[i-1]] + cmp(sa[i-1], sa[i]);
        g = ng;
        fill(cnt.begin(), cnt.end(), 0);
        fill(ind.begin(), ind.end(), 0);
   }
    return sa;
vector<int> make_lcp(const string& s, const vector<int>& sa) {
    int n = s.length();
   vector<int> lcp(n-1), rank(n);
   for(int i=0;i<n;i++)</pre>
        rank[sa[i]] = i;
   int len = 0;
   for(int i=0;i<n;i++) {</pre>
        if(rank[i]) {
            int j = sa[rank[i]-1];
            int lc = n - max(i,j);
            while(len < lc && s[i+len] == s[j+len]) len++;</pre>
            lcp[rank[i]-1] = len;
```

Korea University - Powered by Zigui
Page 8 of 17

```
if(len) len--;
   }
   return lcp;
}
     Manacher's Algorithm
// 0-based
//s = #h#e#l#l#o#
// ret = 0 1 0 1 0 1 2 1 0 1 0
vector<int> manacher(const string& s) {
   int n = s.size(), r = -1, k = -1;
   vector<int> p(n);
   for (int i=0: i<n: i++) {
       if (i<=r) p[i] = min(r-i, p[2*k-i]);</pre>
       while (i-p[i]-1>=0 and i+p[i]+1< n and s[i-p[i]-1] == s[i+p[i]+1]) p[i]++;
       if (r < i+p[i]) r = i+p[i], k = i;
   }
   return p;
}
     Manacher's Algorithm
// 0-based
// s = # h # e # l # l # o #
// ret = 0 1 0 1 0 1 2 1 0 1 0
vector<int> manacher(const string& s) {
   int n = s.size(), r = -1, k = -1;
   vector<int> p(n);
   for (int i=0; i<n; i++) {
       if (i<=r) p[i] = min(r-i, p[2*k-i]);</pre>
       while (i-p[i]-1>=0 and i+p[i]+1< n and s[i-p[i]-1] == s[i+p[i]+1]) p[i]++;
       if (r < i+p[i]) r = i+p[i], k = i;
   }
    return p;
}
     Z Algorithm
// 0-based
// s = abcababca
// ret = 9 0 0 2 0 4 0 0 1
vector<int> z_algo(const string &s) {
   int 1 = 0, r = 0, N = sz(s);
   vector<int> Z(N);
   Z[0] = N:
   repp(i, 1, N) {
```

```
if (i > r) {
    l = r = i;
    while(r < N and s[r] == s[r-l]) r++;
    r--;
    Z[i] = r-l+1;
} else {
    int k = i-l;
    if (Z[k] < r-i+1) Z[i] = Z[k];
    else {
        l = i;
        while(r < N and s[r] == s[r-l]) r++;
        r--;
        Z[i] = r-l+1;
    }
}
return Z;
}</pre>
```

3.6 Lexicographically Smallest String Rotation

```
// rotate(v.begin(), v.begin()+min_rotation(v), v.end());
int min_rotation(string s) {
   int a=0, N=sz(s); s += s;
   rep(b,0,N) rep(i,0,N) {
     if (a+i == b || s[a+i] < s[b+i]) {b += max(0, i-1); break;}
     if (s[a+i] > s[b+i]) { a = b; break; }
   }
   return a;
}
```

4 Graph Theory

4.1 Strongly Connected Component

```
vector<int> adj[MAX_V];
int finished[MAX];
int dfsn[MAX_V];
int cnt = 1;
vector<vector<int>> SCC;
stack<int> s;

int dfs(int cur) {
    dfsn[cur] = cnt++;
    s.push(cur);
    int res = dfsn[cur];
    for (int n : adj[cur]) {
        if (!dfsn[n]) res = min(res, dfs(n));
        else if (!finished[n]) res = min(res, dfsn[n]);
    }
    if (res == dfsn[cur]) {
```

Korea University - Powered by Zigui
Page 9 of 17

4.2 2-SAT

Should be added.

4.3 Biconnected Component

Should be added.

4.4 Euler Tour

```
struct Edge{
    int to, cnt; // to: 인접한 정점, cnt: 남은 사용 횟수
    Edge *dual; // dual: 역방향 간선을 가리키는 포인터
    Edge(): Edge(-1, 0){}
    Edge(int to1, int cnt1): to(to1), cnt(cnt1), dual(nullptr){}
};
void Eulerian(int curr){
    for(Edge *e: adj[curr]){
       if(e\rightarrow cnt > 0){
            e->cnt--:
            e->dual->cnt--;
            Eulerian(e->to); // dfs
       }
    }
    cout << curr << '\n';
}
```

4.5 Offline Dynamic Connectivity

Should be added.

4.6 Heavy-Light Decomposition

Should be added.

4.7 Dominator Tree

Should be added.

4.8 Negative Cycle Detection

Should be added.

4.9 Tree Compress

Should be added.

5 Network Flow

5.1 Theorems

Max-flow Min-cut theorem : 정점 s에서 정점 t까지 흐를 수 있는 최대 유량(max-flow)은 정점 s와 정점 t를 분리하는 간선들의 가중치 합(min-cut)과 같다.

Vertex cover : 어떤 그래프의 정점의 집합 S에 대해 그래프의 모든 간선이 S의 원소 중 최소 하나와 연결되어 있을 때, S를 해당 그래프의 vertex cover라고 하며, minimum vertex cover는 최소 개수의 정점을 사용한 vertex cover이다.

Independent set : 어떤 그래프의 정점의 집합 S에 대해 S의 서로 다른 두 정점을 연결하는 간선이 없을 때, S를 해당 그래프의 independent set이라고 하며, maximum independent set은 최대 개수의 정점을 사용한 independent set이다.

Matching (independent edge set) : 어떤 그래프의 간선의 집합 S에 대해 S의 서로 다른 두 간선이 공통된 정점을 가지지 않을 때, S를 해당 그래프의 matching이라고 하며, maximum matching은 최대 개수의 간선을 사용한 matching이다.

König's theorem : 이분 그래프의 maximum matching의 크기는 minimum vertex cover의 것과 같다. Dinic's Algorithm : 시간 복잡도 $O(V^2E)$, unit capacity에서는 $\min(V^{2/3}E, E^{3/2})$.

Circulation Problem : 새로운 source/sink s_n , t_n 를 만들어서 다음과 같이 간선을 추가하고 $maxflow(s_n \to t_n) = \sum l_i$ 인지 확인, 이후 $s \to t$ 로 maxflow

• $s_n \to b$ (l), $a \to t_n$ (l), $a \to b$ (r-l), $t \to s$ (∞)

5.2 Dinic's Algorithm

```
const int INF = 1e9;
struct Dinic{
   int N:
   struct edge{
       int index, cap, rev;
        edge() : index(0), cap(0), rev(0) {}
        edge(int index, int cap, int rev) : index(index), cap(cap), rev(rev) {}
   }:
   vector<vector<edge>> ADJ;
   vector<int> R, W;
   Dinic() {}
   Dinic(int N) : N(N){
        ADJ.resize(N); R.resize(N);
                                       W.resize(N);
   void CE(int node1, int node2, int cap){
        ADJ[node1].push_back(edge(node2, cap, ADJ[node2].size()));
        ADJ[node2].push_back(edge(node1, 0, ADJ[node1].size() - 1));
```

Korea University - Powered by Zigui
Page 10 of 17

```
}
    bool bfs(int src, int sink){
       fill(R.begin(), R.end(), -1);
       R[src] = 0:
       queue<int> Q; Q.push(src);
        while(Q.size()){
            int here = Q.front(); Q.pop();
            for(auto e : ADJ[here]){
                if(e.cap > 0 && R[e.index] == -1)
                   R[e.index] = R[here] + 1, Q.push(e.index);
            }
       }
        return R[sink] != -1;
    }
    int dfs(int here, int sink, int f){
       if(here == sink) return f;
       for(int &i = W[here] ; i < ADJ[here].size() ; i++){</pre>
            auto &e = ADJ[here][i];
            if(e.cap > 0 && R[here] < R[e.index]){
               int res = dfs(e.index, sink, min(f, e.cap));
               if(res) {
                    e.cap -= res;
                    ADJ[e.index][e.rev].cap += res;
                    return res:
               }
            }
       }
       return 0;
    }
    int solve(int src, int sink){
       int ret = 0:
        while(bfs(src, sink)){
           fill(W.begin(), W.end(), 0);
            while((res = dfs(src, sink, INF))) ret += res;
       }
       return ret:
};
5.3 MCMF with SPFA
const int INF = 1e9;
struct MCMF {
  struct EDGE {
   int there, cap, cost, rev;
    EDGE(): there(0), cap(0), cost(0), rev(0) {}
```

```
EDGE(int there, int cap, int cost, int rev) : there(there), cap(cap),
  cost(cost). rev(rev) {}
};
int N:
vector<vector<EDGE>> ADJ;
vector<int> R, INQ, C, I;
MCMF() : N(0) {}
MCMF(int N) : N(N) { ADJ.resize(N + 1): R.resize(N + 1): INQ.resize(N + 1):
C.resize(N + 1); I.resize(N + 1); }
void connect edge(int i, int i, int cap, int cost) {
  ADJ[i].push_back(EDGE(j, cap, cost, ADJ[j].size()));
  ADJ[j].push_back(EDGE(i, 0, -cost, ADJ[i].size() - 1));
bool SPFA(int src, int sink) {
  queue<int> Q; Q.push(src);
  fill(R.begin(), R.end(), -1); R[src] = 0;
  fill(C.begin(), C.end(), -1); C[src] = 0;
  fill(INQ.begin(), INQ.end(), 0); INQ[src] = 1;
  while (Q.size()) {
    int here = Q.front(); Q.pop();
    INQ[here] = 0;
    for (int i = 0; i < ADJ[here].size(); i++) {</pre>
      auto e = ADJ[here][i]:
      if (e.cap > 0 && (C[e.there] == -1 || C[e.there] > C[here] + e.cost)) {
        C[e.there] = C[here] + e.cost; R[e.there] = here; I[e.there] = i;
        if (!INQ[e.there]) INQ[e.there] = 1, Q.push(e.there);
  }
  if (C[sink] == -1) return false;
  return true:
}
pii mcmf(int src, int sink) {
  pii ret = { 0, 0 };
  while (SPFA(src, sink)) {
    int flow = INF. cost = 0:
    for (int here = sink; here != src; here = R[here]) flow = min(flow,
    ADJ[R[here]][I[here]].cap);
    for (int here = sink; here != src; here = R[here]) {
      auto &e = ADJ[R[here]][I[here]];
      cost += e.cost * flow:
      e.cap -= flow;
      ADJ[e.there][e.rev].cap += flow;
    ret.first += flow, ret.second += cost;
```

Korea University - Powered by Zigui
Page 11 of 17

}

bool dfs(int here){

for(int there : ADJ[here]){

rev[there] = here;

used[here] = 1;

return true;

```
return ret;
}
```

5.4 Hungarian Method

```
namespace Hung {
    const int MX = 2000;
    // IMPORTANT : n <= m, 1-based
    using T = long double;
    T \max v = 1e200;
    T a[MX][MX], n, m;
    void init(int nn, int mm) { n = nn; m = mm; }
    void set_value(int x, int y, T val) { a[x][y] = val; }
    T solve(vector <int> &ans) {
        vectorT> v(m+1), u(n+1);
        vector\langle int \rangle p (m+1), way (m+1);
        for (int i=1; i<=n; ++i) {
            p[0] = i;
            int j0 = 0;
            vector<T> minv (m+1, maxv);
            vector<char> used (m+1, false);
            do {
                used[j0] = true;
                T delta = maxv;
                int i0 = p[j0], j1;
                for (int j=1; j<=m; ++j) if (!used[j]) {</pre>
                    T cur = a[i0][j]-u[i0]-v[j];
                    if (cur < minv[j]) {</pre>
                        minv[j] = cur, way[j] = j0;
                    if (minv[i] < delta) {</pre>
                        delta = minv[j], j1 = j;
                    }
                }
                for (int j=0; j<=m; ++j) {
                    if (used[i]) {
                        u[p[j]] += delta, v[j] -= delta;
                    }
                    else {
                        minv[j] -= delta;
                    }
                }
                j0 = j1;
            } while (p[j0] != 0);
            do {
                int j1 = way[j0];
                p[j0] = p[j1];
                j0 = j1;
```

```
} while (j0);
       ans.resize(n + 1);
       for(int j=1; j<=m;++j) {</pre>
           ans[p[j]] = j;
       return -v[0];
   }
5.5 Hopcroft-Karp Algorithm
struct hopcroft_karp{
   int N;
   vector<vector<int>> ADJ;
   vector<int> L, rev, used;
   hopcroft_karp() {}
   hopcroft_karp(int N) : N(N) {
       ADJ.resize(N);
       L.resize(N), rev.resize(N, -1), used.resize(N, 0);
   }
   void CE(int here, int there){
        ADJ[here].push_back(there);
   }
   void bfs(){
       queue<int> Q;
       for(int i = 0 ; i < N ; i++) {
           if(used[i]) L[i] = -1;
            else L[i] = 0, Q.push(i);
        while(Q.size()){
           int here = Q.front(); Q.pop();
           for(int there : ADJ[here]){
                if(rev[there] != -1 && L[rev[there]] == -1) {
                   L[rev[there]] = L[here] + 1;
                   Q.push(rev[there]);
           }
```

if(rev[there] == -1 || (L[here] < L[rev[there]] && dfs(rev[there]))){</pre>

Korea University - Powered by Zigui
Page 12 of 17

```
return false;
    int solve(){
        int ret = 0;
        while(1){
            bfs();
            int res = 0;
            for(int i = 0 ; i < N ; i++) {</pre>
                 if(used[i]) continue;
                 res += dfs(i);
            }
            if(res == 0) break;
            ret += res:
        }
        return ret;
    }
};
```

6 Optimization Tricks

6.1 Knuth Optimization

- Recurrence : $D[i][j] = \min_{i < k < j} (D[i][k] + D[k][j]) + C[i][j]$
- Quadrangle Inequality : $C[a][c] + C[b][d] \le C[a][d] + C[b][c], \ a \le b \le c \le d$
- Monotonicity : $C[b][c] \le C[a][d], \ a \le b \le c \le d$
- A[i][j] = (min. k s.t. D[i][j] is min.). Then $A[i][j-1] \le A[i][j] \le A[i+1][j]$
- $O(N^2)$ time complexity

```
// opt[i-1][i] = i
for(int d=2;d<=n;d++) {
   for(int i=1;i+d<=n+1;i++) {
      for(int k=opt[i][j-1], j=i+d; k<=opt[i+1][j]; k++) {
         int v = dp[i][k] + dp[k][j] + c[i][j];
         if(dp[i][j] > v) dp[i][j] = v, opt[i][j] = k;
      }
   }
}
```

6.2 Divide and Conquer Optimization

- Min index : $A[t][i] \le A[t][i+1]$ $(A[t][i] = (\min. \ k \ s.t. \ D[t][i] \text{ is min.}))$ [-] Quadrangle Inequality : $C[a][c] + C[b][d] \le C[a][d] + C[b][c], \ a \le b \le c \le d$

- Able to Divide and Conquer base on calculating D[t][i]
- $O(TN \lg N)$ time complexity

```
// range of index : [1,r]
// range of dp : [s,e]
void dnc(int t, int 1, int r, int s, int e)
{
    if(s > e) return;
    int m = (s+e)/2;
    D[t][m] = 2e9;
    for(int k=1;k<m&&k<=r;k++)
    {
        int tmp = D[t-1][k] + C[k][m];
        if(D[t][m] > tmp)
            D[t][m] = tmp, A[t][m] = k;
    }
    dnc(t, 1, A[t][m], s, D[t][m]-1);
    dnc(t, A[t][m], r, D[t][m]+1, e);
}
```

6.3 Convex Hull Trick

- Recurrence : $dp[i] = \min_{j < i} (dp[j] + a[i]b[j]), \ b[i-1] \le b[i]$
- Think as $dp[x = a[i]] = \min_{i < i} (b[i] \cdot x + dp[i])$
- Thus push lines and find minimum (by binary search)
- If $a[i] \le a[i+1]$ sweeping is possible
- Intersection of $y = a_i x + b_i$ and $y = a_{i+1} x + b_{i+1} : x = \frac{b_{i+1} b_i}{a_i a_{i+1}}$

6.4 Centroid Decomposition

```
// credit : https://gist.github.com/igorcarpanese/75162f3253bd230abd0f32f9950bf384
int dfs(int u, int p) {
    sub[u] = 1;
    for (auto v : tree[u])
        if (v != p) sub[u] += dfs(v, u);
    return sub[u] + 1;
}
int centroid(int u, int p, int r) { // r : root
    for (auto v : tree[u])
        if (v != p and sub[v] > sub[r]/2) return centroid(v, u);
    return u;
}
```

Korea University - Powered by Zigui Page 13 of 17

7 Data Structure

7.1 Persistent Segment Tree

```
const MAXN = 1e5 + 10;
struct node{
   node *1, *r;
   int cnt;
   node () {}
} pool[(1 << 17) * 17], *tree_head[MAXN];</pre>
int tcnt:
node* alloc(){
    memset(pool + tcnt, 0, sizeof(node));
    return pool + tcnt++;
}
node * init(int 1, int r){
    node *ret = alloc();
   if(1 != r) {
       int mid = (1 + r) / 2;
        ret->1 = init(1, mid);
       ret->r = init(mid + 1, r):
   }
    return ret;
}
void update(node * here, node *par, int 1, int r, int val){
    if(1 == r) {
       here->cnt = par->cnt + 1;
        return;
   }
    int mid = (1 + r) / 2:
    if(val <= mid){</pre>
       here->l = alloc():
       here->r = par->r;
        update(here->1, par->1, 1, mid, val);
    }
    else {
       here->l = par->l;
       here->r = alloc();
        update(here->r, par->r, mid + 1, r, val);
    }
    here->cnt = here->l->cnt + here->r->cnt;
}
int query(node *node1, node *node2, int 1, int r, int k){
    if(l == r) return 1;
    int ccc = node1->l->cnt - node2->l->cnt;
    int mid = (1 + r) / 2;
```

```
if (k <= ccc) return query(node1->1, node2->1, 1, mid, k);
    else return query(node1->r, node2->r, mid + 1, r, k - ccc);
7.2 Link-Cut Tree
struct node{
    node *pp, *p, *l, *r;
    int val;
   node(){p = 0, 1 = 0, r = 0;}
    node(int val) : val(val) { p = 0, 1 = 0, r = 0;}
};
void push(node *x){}
void pull(node *x){}
void rotate(node *x){
 if(!x->p) return;
 push(x->p); // if there's lazy stuff
  push(x);
  node *p = x->p;
  bool is_left = (p->1 == x);
  node *b = (is_left ? x \rightarrow r : x \rightarrow l);
  x->p = p->p;
  if(x-p \&\& x-p->1 == p) x-p->1 = x;
  if(x-p \&\& x-p-r == p) x-p-r = x;
  if(is_left){
   if(b) b \rightarrow p = p;
   p->1 = b;
   p->p = x;
    x->r = p;
 }
  else{
   if(b) b \rightarrow p = p;
   p->r = b;
    p->p = x;
   x->1 = p;
  pull(p); // if there's something to pull up
  pull(x);
  //if(!x->p) root = x; // IF YOU ARE SPLAY TREE
 if(p->pp){ // IF YOU ARE LINK CUT TREE
   x->pp = p->pp;
    p->pp = nullptr;
void splay(node *x){
 while(x->p){
   node *p = x->p;
    node *g = p \rightarrow p;
    if(g){
```

Korea University - Powered by Zigui
Page 14 of 17

return x;

```
if((p->1 == x) ^ (g->1 == p)) rotate(x);
      else rotate(p);
    }
    rotate(x);
}
void access(node *x){
  splay(x);
  push(x);
  if(x->r){
   x->r->pp = x;
   x->r->p = nullptr;
   x->r = nullptr;
  pull(x);
  while(x->pp){
   node *nxt = x->pp;
    splay(nxt);
    push(nxt);
    if(nxt->r){
     nxt->r->pp = nxt;
     nxt->r->p = nullptr;
      nxt->r = nullptr;
    }
    nxt->r = x;
    x->p = nxt;
    x->pp = nullptr;
   pull(nxt);
    splay(x);
node *root(node *x){
  access(x);
  while (x->1) {
   push(x);
   x = x -> 1;
 }
  access(x);
  return x;
node *par(node *x){
  access(x);
  if(!x->1) return nullptr;
 push(x);
 x = x->1;
  while(x->r){}
   push(x);
    x = x->r;
  access(x);
```

```
node *lca(node *s, node *t){
 access(s);
 access(t):
 splay(s);
 if(s->pp == nullptr) return s;
 return s->pp;
void link(node *par, node *son){
 access(par);
 access(son);
 //son->rev ^= 1; // remove if needed
 push(son);
 son->1 = par;
 par->p = son;
 pull(son);
void cut(node *p){
 access(p);
 push(p);
 if(p->1){
   p->1->p = nullptr;
   p->1 = nullptr;
 pull(p);
7.3 Li-Chao Tree
 Should be added....?
7.4 Dynamic Convex Hull
// https://github.com/niklasb/contest-algos/blob/master/convex_hull/dynamic.cpp
const ll is query = -(1LL << 62):
struct Line {
   11 m, b;
   mutable function<const Line*()> succ:
   bool operator<(const Line& rhs) const {</pre>
        if (rhs.b != is_query) return m < rhs.m;</pre>
        const Line* s = succ();
        if (!s) return 0:
        11 x = rhs.m:
        return b - s -> b < (s -> m - m) * x;
}:
struct HullDynamic : public multiset<Line> { // will maintain upper hull for maximum
   bool bad(iterator y) {
        auto z = next(y);
        if (v == begin()) {
```

Korea University - Powered by Zigui
Page 15 of 17

```
if (z == end()) return 0;
           return y->m == z->m && y->b <= z->b;
       }
       auto x = prev(y);
       if (z == end()) return v > m == x - m && v - b <= x - b:
       return (x-b - y-b)*(z-m - y-m) >= (y-b - z-b)*(y-m - x-m);
    }
    void insert line(ll m. ll b) {
       auto y = insert({ m, b });
       y->succ = [=] { return next(y) == end() ? 0 : &*next(y); };
       if (bad(y)) { erase(y); return; }
       while (next(y) != end() && bad(next(y))) erase(next(y));
       while (y != begin() && bad(prev(y))) erase(prev(y));
    }
   11 eval(ll x) {
       auto 1 = *lower_bound((Line) { x, is_query });
       return 1.m * x + 1.b;
    }
};
     Stern-Brocot Tree
// int128 is recommended
bool test(11 a, 11 b) { // for testing directions, vary by prob
    // return true if (true value) >= a/b
   11 n = 0, m = 1:
    rep(i, N) {
       if (n < m*A[i].fi) n = A[i].fi, m = 1;
       11 c = b*n+m*a, d = m*b;
       11 g = gcd(c, d);
       n = c/g;
       m = d/g;
       if (n > m*A[i].se) return false:
   }
    return true;
}
pair<11, 11> stern_brocot(11 M, 11 N) {
   // M : max value
   // N : max divisor
   // if result is a/b, return as {a, b}
   11 a = 0, b = 1; // 1
   11 c = 1, d = 0; // r
    int 1. r:
   bool chg = true;
    while(chg) {
       chg = false;
```

```
// to left
    1 = 0, r = (N-d-1)/b+1:
    while(l < r) {</pre>
        int mid = (1+r+1)/2:
        if (test(a*mid+c, b*mid+d)) r = mid-1;
        else 1 = mid;
    }
    c += a*1:
    d += b*1;
    chg |= (1 > 0);
    // to right
    1 = 0, r = (d?(N-b-1)/d+1:M);
    while(1 < r)  {
        int mid = (1+r+1)/2;
        if (test(a+mid*c, b+mid*d)) l = mid;
        else r = mid-1;
    }
    a += c*1;
    b += d*1;
    chg |= (1 > 0);
return {a, b}:
```

7.6 Rope

Should be added.

7.7 Policy Based Data Structure

```
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/detail/standard_policies.hpp>
using namespace std;
using namespace __gnu_pbds;

typedef tree<
int,
null_type,
less<int>,
rb_tree_tag,
tree_order_statistics_node_update >
ordered_set;
```

Korea University - Powered by Zigui
Page 16 of 17

```
// less<int> : not allow for duplicate
// less_equal<int> : allow for duplicate
// use upper_bound when you erase from set used less_equal
int N:
int main(void) {
    iostream::sync_with_stdio(false);
    cin.tie(nullptr);
    ordered_set X;
    X.insert(1);
    X.insert(2);
    X.insert(4);
    X.insert(8);
    X.insert(16);
    cout<<*X.find_by_order(1)<<endl; // 2</pre>
    cout<<*X.find_by_order(2)<<endl; // 4</pre>
    cout<<*X.find_by_order(4)<<endl; // 16</pre>
    cout<<(end(X)==X.find_by_order(6))<<endl; // true</pre>
    cout<<X.order_of_key(-5)<<endl; // 0</pre>
    cout<<X.order_of_key(1)<<endl; // 0</pre>
    cout<<X.order_of_key(3)<<endl; // 2</pre>
    cout<<X.order_of_key(4)<<endl; // 2</pre>
    cout<<X.order_of_key(400)<<endl; // 5</pre>
}
```

8 Miscellaneous

8.1 Misc Formulae and Algorithms

8.1.1 Faulhaber's Formula

$$T(n,k) = \sum_{i=1}^{n} i^{k} = \frac{(n+1)^{k+1} - 1^{k+1} - \sum_{j=0}^{k-1} {k+1 \choose j} T(n,j)}{{k+1 \choose k}}$$

Also use

$$(x+1)^d - x^d = 1 + {d \choose 1}x + {d \choose 2}x^2 + \dots + {d \choose d-1}x^{d-1}$$

to get each coef.

8.1.2 Maximum Clique

```
typedef long long 11;
11 G[40]; // 0-index
int N, M;
int cur;
```

```
void get_clique(int R = 0, ll P = (1ll<<N)-1, ll X = 0){
    if((P|X) == 0){
        cur = max(cur, R);
        return;
    }
    int u = __builtin_ctzll(P|X);
    ll c = P&~G[u];
    while(c){
        int v = __builtin_ctzll(c);
        get_clique(R + 1, P&G[v], X&G[v]);
        P ^= 1ll << v;
        X |= 1ll << v;
        c ^= 1ll << v;
    }
}</pre>
```

8.1.3 De Brujin Sequence

Should be **added**....?

8.2 Highly Composite Numbers, Large Prime

< 10^1	k nu	mber	d:	ivisors	2					11:	13	17:	19:	23:	29:	31	37
1		6			1												
2		60		12	2	1		1									
3		840		32	3	1		1	1								
4		7560		64	3	3	3	1	1								
5	8	3160		128	3	3	3	1	1	1							
6	72	0720		240	4	2	2	1	1	1	1						
7	864	8640		448	6	3	3	1	1	1	1						
8	7351	3440		768	5	3	3	1	1	1	1	1					
9	73513	4400		1344	6	3	3 :	2	1	1	1	1					
10	698377	6800		2304	5	3	3 :	2	1	1	1	1	1				
11	9777287	5200		4032	6	3	3 :	2	2	1	1	1	1				
12	96376119	8400		6720	6	4	1	2	1	1	1	1	1	1			
13	931635825	1200		10752	6	3	3	2	1	1	1	1	1	1	1		
14	9782176163	7600		17280	5	4	1	2	2	1	1	1	1	1	1		
15	86642131736	1600		26880	6	4	1	2	1	1	1	1	1	1	1	1	
16	808659896204	1600		41472	8	3	3 :	2	2	1	1	1	1	1	1	1	
17	7480104039888	4800		64512	6	3	3 :	2	2	1	1	1	1	1	1	1	1
18 8	9761248478661	7600		103680	8	4	1	2	2	1	1	1	1	1	1	1	1
< 10^1	k prime	# of	prime		<	1	0	^k	2						p	ri	me
1	7		4		10								999	999	99	99	6
2	97		25	25 11				11 999999999									7

168

1229

9592

78498

9973

99991

12

13

14

99999999989

999999999971

999999999973

99999999999989

Korea University - Powered by Zigui
Page 17 of 17

```
9999991
                         664579
                                                 99999999999937
         99999989
                        5761455
                                         17
                                               999999999999997
        99999937
                       50847534
                                         18
                                              999999999999999
NTT Prime:
  469762049 = 7 \times 2^{26} + 1. Primitive root : 3.
  998244353 = 119 \times 2^{23} + 1. Primitive root: 3.
  985661441 = 235 \times 2^{22} + 1. Primitive root: 3.
  1012924417 = 483 \times 2^{21} + 1. Primitive root: 5.
8.3 Fast Integer IO
// credit : https://github.com/koosaga/DeobureoMinkyuParty/blob/master/teamnote.tex
static char buf[1 << 19]; // size : any number geq than 1024
static int idx = 0;
static int bytes = 0;
static inline int _read() {
  if (!bvtes || idx == bvtes) {
    bytes = (int)fread(buf, sizeof(buf[0]), sizeof(buf), stdin);
    idx = 0:
  return buf[idx++];
static inline int _readInt() {
  int x = 0, s = 1:
  int c = read():
  while (c \le 32) c = read();
  if (c == '-') s = -1, c = _read();
  while (c > 32) x = 10 * x + (c - '0'), c = _read();
  if (s < 0) x = -x;
  return x:
}
8.4 C++ Tips / Environments
  Should be revised. (with random, chrono)
#include <bits/stdc++.h> // magic header
using namespace std;
                         // magic namespace
\verb|struct StupidGCCC| ant Even Compile This Simple Code \{ \\
  pair<int, int> array[1000000];
}; // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68203
// how to use rand (in 2017)
mt19937 rng(0xdeadbeef);
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
int randint(int lb. int ub){ return uniform int distribution<int>(lb. ub)(rng): }
shuffle(permutation.begin(), permutation.end(), rng);
mt19937_64 _R(chrono::steady_clock::now().time_since_epoch().count()); // _R()
// comparator overload
```

```
auto cmp = [](seg a, seg b){return a.func() < b.func(); };</pre>
set<seg, decltype(cmp)> s(cmp);
map<seg, int, decltype(cmp)> mp(cmp);
priority_queue<seg, vector<seg>, decltype(cmp)> pq(cmp); // max heap
// hash func overload
struct point{
int x, y;
bool operator==(const point &p)const{ return x == p.x && y == p.y; }
struct hasher {
size_t operator()(const point &p)const{ return p.x * 2 + p.y * 3; }
unordered_map<point, int, hasher> hsh;
// c++ setprecision example
#include <iostream>
                        // std::cout, std::fixed
#include <iomanip>
                        // std::setprecision
int main () {
 double f = 3.14159:
 std::cout << std::setprecision(5) << f << '\n'; // 3.1416
 std::cout << std::setprecision(9) << f << '\n'; // 3.14159
 std::cout << std::fixed;
 std::cout << std::setprecision(5) << f << '\n'; // 3.14159
 std::cout << std::setprecision(9) << f << '\n'; // 3.141590000
```