Handout zur Präsentation: Cloud Computing im Gesundheitssektor

Skalierbare Infrastruktur für medizinische Anwendungen & Datenverarbeitung in der Cloud

Referent: Jonas Langbauer

Studiengang / Semester: Informatik (B.Sc.), 6. Semester **Seminarthema:** Cloud Computing im Gesundheitssektor

Betreuer: Prof. Dr. Rafael Mayoral Malmström

1. Einführung & Cloud-Modelle

Cloud Computing bezeichnet die Bereitstellung von IT-Ressourcen über das Internet.

Im Gesundheitswesen gewinnt dies zunehmend an Bedeutung. Durch skalierbare IT-Infrastrukturen, zentrale Datenverarbeitung und flexible Zugriffsmöglichkeiten können medizinische Einrichtungen effizienter, schneller und vernetzter arbeiten.

Die drei zentralen Servicemodelle sind:

Modell	Beschreibung	Beispiel im Gesundheitswesen
laaS (Infrastructure as a Service)	Bereitstellung von Rechenleistung, Speicher, Netzwerken	Speicherung radiologischer Bilddaten in AWS S3
PaaS (Platform as a Service)	Plattform für App-Entwicklung inkl. Laufzeitumgebungen	KI-Modelltraining zur Tumorerkennung mit Google Cloud AI
SaaS (Software as a Service)	Fertige Softwarelösungen, sofort nutzbar	Online-Terminverwaltung mit Doctolib

2. Vorteile für medizinische Anwendungen

- Flexible Skalierbarkeit (z. B. bei Patientendaten, Bildverarbeitung)
- Standortunabhängiger Zugriff auf Daten (Telemedizin)
- Interdisziplinäre Zusammenarbeit durch zentrale Datenplattformen
- Automatisierung und Prozessoptimierung im Klinikalltag

3. Datensicherheit & Datenschutz

- Verschlüsselung beim Speichern und Übertragen von Daten
- Rollenbasierte Zugriffskontrolle statt "Jeder sieht alles"
- **Protokollierung** aller Zugriffe für Transparenz
- **Segmentierung** von Daten z. B. Verwaltung vs. Diagnostik
- Prinzip "Zero Trust": Jeder Zugriff muss verifiziert werden

4. Herausforderungen bei der Migration

- Integration von Legacy-Systemen und inkompatiblen Formaten
- Datenschutzrechtliche Anforderungen (DSGVO, BSI-Anforderungen)
- Interne Akzeptanzprobleme & Schulungsbedarf
- Technologische Abhängigkeit von Anbietern
- Mögliche hohe Anfangskosten bei Infrastrukturumstellung

5. Marktüberblick

Globaler Markt

Anbieter	Marktanteil (geschätzt)	Typische Einsatzbereiche
AWS	ca. 32 %	Datenspeicherung, EHR, KI-Analyse,
(Amazon)		Bildverarbeitung
Microsoft	ca. 20 %	Patientenakten, Datenplattformen,
Azure		Kliniksysteme
Google Cloud	ca. 10 %	KI-Diagnostik, Forschung, Big Data
Oracle	ca. 8–10 %	Krankenhaus-ERP, elektronische
(Cerner)		Gesundheitsakten
IBM Cloud	ca. 6 %	KI, Datenanalyse, hybride Cloudlösungen

Markt in Deutschland

Anbieter /	Verbreitung / Rolle	Typischer Einsatzbereich
Plattform		
CGM	Sehr verbreitet in	Praxissoftware, ePA (IBM), Abrechnung
(CompuGroup	Praxen & MVZs	
Medical)		
Doctolib	Marktführer für	Online-Terminierung,
	Termin-/Video-	Videosprechstunde, Telemedizin
	Plattform	
Telepaxx	Etabliert in Kliniken	Bilddaten-Archivierung (MRT, CT etc.)
Orbis (Agfa	Große Kliniken,	Krankenhausinformationssysteme
HealthCare)	Übergang zu Cloud	
Google / AWS /	Eher in Forschung &	KI-Diagnostik, Datenanalyse, oft in
Azure	Pilotprojekten	Kombination mit GAIA-X

6. Effizienzsteigerung durch Cloudlösungen

- Automatisierung von Verwaltungsaufgaben (z. B. Terminierung, Abrechnung)
- Schnellere Datenanalysen & Forschungskooperationen
- Reduzierung von Wartungs- und Investitionsaufwand (keine eigenen Server)
- Unterstützung moderner Versorgungsmodelle wie Telemedizin & eHealth

7. Fazit

Cloud Computing bietet dem Gesundheitssektor neue Möglichkeiten für Skalierbarkeit, Effizienz und Innovation. Die größten Hürden sind regulatorisch, kulturell und technisch – nicht technologisch. Die Zukunft liegt in hybriden Cloud-Modellen und KI-Integration in sichere, datenschutzkonforme Umgebungen.