Faster than an FFT, the audio-oriented QRST (spectral transform)

Richard Fobes

Author of The Creative Problem Solver's Toolbox

Presentation to Westside Proggers

2011-January-27

Quick Rolling Spectral Transform™ (QRST)

Richard Fobes

Author of **The Creative Problem Solver's Toolbox**

Quick Rolling Spectral Transform™

- * Spectral Transform: Like human ear, converts vibrations into wavelength/amplitude info
- * Rolling: Does a few calculations as each waveform sample becomes available
- * Quick: Faster than an FFT; low latency/delay for streaming

Quick Rolling Spectral Transform™

- * Still in development (interested in helping?)
- * Will put on GitHub as open-source software
- * Perl Artistic license
- Name trademarked —
 to prevent the name from being co-opted

Transform of audio sample through QRST algorithm

Fast playback

- * No change in pitch
- * No dropout
- * Important for voice playback (people listen faster than can speak)

Slow playback

- * No change in pitch
- * No glitchy transitions
- * Useful for writing down phone numbers, etc.

Equalization-adjusted playback

- * Just requires a few lines of code
- * Noise reduction

QRST graphic output of changing-wavelength sine wave

Bottom spectrum is earliest time, top is latest time

Applications for Quick Rolling Spectral Transform™

- * Voice-to-visual technology for deaf
- * Voice messaging big gap in digital technology
- * Improvements in voice recognition
- * Streaming, efficient, voice/audio compression

Voice-to-visual methods long overdue for deaf

- * Ideally involves designing a "Fully Phonetic Sign Language" (FPSL)
- * (FPSL also useful for non-deaf to communicate underwater, through window, in quiet hall, at noisy party)
- * This is the project for which I originally designed the QRST algorithm

Missing: Voice messaging

- * Voice-based version of text/instant messaging
- * Sort of like email, but **talking** instead of typing, and **listening** instead of reading
- * Microphone better than keyboard, especially on mobile devices
- * Not a replacement for: text/instant messaging, voice-mail, or telephone
- * Requires speeded-up playback because we listen faster than we speak
- * This is a **very big gap** in digital technology
- * Open-source **opportunity** (using email infrastructure)?

Voice-recognition software not yet robust

- * Dragon Naturally Speaking quite good, but other proprietary voice-recognition software (e.g. IBM & Microsoft) not robust
- * Use FFT & "Hidden Markov models" (primitive)
- * Try QRST & identify independent dimensions of vocal sounds (including singing)
- * No usable open-source voice-recognition software
- * (Database of written words and their pronunciation already open-source available)

Opinion: Current audio compression methods are inefficient

- * Wasted bandwidth and storage, especially on mobile devices
- * Video compression better than audio compression (which is half of "video")
- * Fast, low-latency voice compression needed for non-entertainment uses
- * (Music compression OK as-is?)

QRST compression

- * Raw audio file: 110 KB
- * QRST compressed file: 16 KB (?)
- * MP3 compressed file: 21 KB
- * Ogg/Vorbis compressed file: 19 KB

Seduced by cleverness of Fast Fourier Transform (FFT)

- * Fourier transform not a good match for **streaming** and **real-time** applications (e.g. iPhone)
- * Resource hog, especially for mobile devices
- * Computes wrong information for real-time voice applications
- * Input samples **overlap** when attempt to increase time resolution
- * FFT actually slow, because Fourier transform is slow

Features & benefits of Quick Rolling Spectral Transform ™

QRST Features	QRST Benefits
Fast!	Suitable for real-time applications
Only simple calculations (e.g. divide by power of 2) on relatively few integers	Can implement in hardware (e.g. FPGAs and IP cores) and mobile devices
Low latency/delay	Good for streaming applications
Small size of QRST compressed data	Consumes less bandwidth , less storage
Variable-speed without disruptions	Needed for listening quickly

Historical perspective

- * Writing text arose because **ink** on **paper** was the only practical "storage device" for people's words
- * Eventually, all documents will be accessible using **fully phonetic writing systems** not yet invented
- * ("International Phonetic Alphabet" is not fully phonetic)
- * In future, each person will **view words** in whatever writing system they grew up learning

How does the QRST algorithm work?

- Low-pass filtered by octave
- 2. High-pass filtered by octave
- 3. Peaks and troughs identified within each octave
- Wavelength measurements from peak-to-peak distances
- 5. Amplitude is sum of up-and-down movements
- Higher-frequency results produced more often and sooner — than low-frequency results

One sine wave per octave

- * Currently tracks just one wave within each octave
- * Might need to double that number (interlaced) for better quality

Voice waveform

* When view waveform of voice, don't see lots of frequencies as Fourier transform would suggest

Two sine waves with similar wavelengths

* When two sine waves within same octave, result is single sine wave that changes (smoothly pulses) in amplitude

Two sine waves in different octaves

* When two sine waves in different octaves, result is higher-frequency sine wave moves up and down at lower frequency

QRST 4-byte compression format

- * Time delay (8 bits) (255 indicates time extension...)
- * Channel (4 bits)
- * Octave (4 bits) (15 is always highest octave)
- * Wavelength within octave (8 bits)(256 notes per octave, compares to 12 on piano)
- * Amplitude (8 bits)
 (256 volume settings, not analog levels)

Is it patentable?

- * No (for small business) and yes (for unethical corporation)
- Most software patents not really patentable, but cheaper to pay for license than fight rich corporation in court
- * Patent system is dysfunctional; small business cannot defend patent from infringement
- * Long-term solution: "open patent" for sharing instead of monopolizing
- * Short-term solution: put on GitHub as open-source software

What's Richard's motivation?

- * Attention for **The Creative Problem Solver's Toolbox**, which teaches what should be taught in schools
- * Invigorate economy with useful new things to buy
- * (Soapbox: Government should reduce taxes on businesses that **create** what has **value** and previously did not exist, and slightly increase taxes on businesses such as banking, insurance, lawyers, etc. that primarily shift what already exists)
- * Credibility/attention for VoteFair ranking and NegotiationTool.com and Dashrep language

What is the opportunity for you?

- * Contribute to development of open-source QRST on GitHub (tests, improvements, to-do's, etc.)
- * Get experience with vocal processing, which is ripe for increased business opportunities
- * Possibly implement refined QRST in hardware as business opportunity (talk to me)
- * Pioneer a new digital frontier

QRST removes barriers to overdue applications

- * Voice messaging
- * Robust voice-recognition software
- Microphones instead of tiny keyboards for mobile devices
- * Dictating notes, editing notes, and other **new voice-based** applications
- * Better audio compression (for download speed and storage size), and for videos
- * Deaf can "see" voices in meaningful ways
- * And probably much more

Thank you

Richard Fobes

www.Fovationz.com
Westside Proggers Google group
prog@SolutionsCreative.com

Presentation: © Copyright 2011 by Richard Fobes at www.SolutionsCreative.com