Exercise 6 Answer Sheet — Axiomatic Set Theory, 80650

January 9, 2025

Question 1

Let λ be an infinite cardinal. A (λ^+, λ) -Ulam matric is a collection of sets $\langle A_{\alpha,\rho} \mid \alpha < \lambda^+, \rho < \lambda \rangle$ such that,

- 1. For every $\alpha < \beta < \lambda^+$ and $\rho < \lambda$, $A_{\alpha,\rho} \cap A_{\beta,\rho} = \emptyset$.
- 2. For every $\alpha < \lambda^+$, $|\lambda^+ \setminus (\bigcup_{\rho} A_{\alpha,\rho})| \leq \lambda$.

a

We will show that for every infinite λ , a (λ^+, λ) -Ulam matrix exists.

Proof. Let us define for each $0 < \xi < \lambda^+$ a surjection $f_{\xi} : \lambda \to \xi$ by mapping $f_{\xi}(x) = x$ if $x < \xi$ and into an arbitrary unique (as per ξ) value $< \xi$ otherwise. We define a matrix $A_{\alpha,\rho} = \{\xi < \lambda^+ \mid f_{\xi}(\rho) = \alpha\}$ and want to show that the definition of A fulfills Ulam matrix definition as depicted earlier. Let $\alpha < \beta < \lambda^+$ as well let us fix $\rho < \lambda$, therefore

$$A_{\alpha,\rho} \cap A_{\beta,\rho} = \{ \xi < \lambda^+ \mid f_{\xi}(\rho) = \alpha \} \cap \{ \xi < \lambda^+ \mid f_{\xi}(\rho) = \beta \} = \{ \xi < \lambda^+ \mid f_{\xi}(\rho) = \alpha, f_{\xi}(\rho) = \beta \} = \emptyset$$

Pay attention that the last step follows directly from the fact we fixed ρ and that f_{ξ} is a function.

Let us fix $\alpha < \lambda^+$, then

$$\left| \lambda^{+} \setminus \left(\bigcup_{\rho < \lambda} A_{\alpha, \rho} \right) \right| = \left| \lambda^{+} \setminus \left(\bigcup_{\rho < \lambda} \{ \xi < \lambda^{+} \mid f_{\xi}(\rho) = \alpha \} \right) \right| = \left| \lambda^{+} \setminus \{ \xi < \lambda^{+} \mid f_{\xi}(\lambda) \ni \alpha \} \right|$$

when $f_{\xi}(\lambda) = \operatorname{Im} f_{\xi} = \xi$ as f_{ξ} is surjective. Then

$$|\lambda^+ \setminus \{\xi < \lambda^+ \mid \alpha < \xi\}| |\lambda^+ \setminus \{\xi \mid \alpha < \xi < \lambda^+\}| \le \lambda$$

As for every choice of $\alpha < \lambda^+$ the cardinality of α is at most λ .

b

Let κ be the least cardinal such that there is a σ -additive, non-trivial, non-atomic measure μ with dom $\mu = \mathcal{P}(\kappa)$. We will prove that κ is not a successor cardinal.

Proof. Let us assume in order to prove by contradiction that κ is indeed a successor cardinal such that $\lambda^+ = \kappa$. By the last proposition, there is a (λ^+, λ) -Ulam matrix, namely A, for the specified λ . Fixing $\alpha < \lambda^+$, we will show that there is $\rho < \lambda$ such that $\mu(A_{\alpha,\rho}) > 0$.

It is known that $|\kappa \setminus \bigcup_{\rho} A_{\alpha,\rho}| \leq \lambda$, then the assumption that all these elements of A fulfilling $A_{\alpha,\rho} \leq \lambda$ would lead to contradiction as their union would be $<\kappa$. Then there is an element $A_{\alpha,\rho} > \lambda$ for every $\alpha < \kappa$. For each of these, $\mu(A_{\alpha,\rho}) > 0$, as μ is non-atomic (and the elements are big in relation to κ). Let $\gamma = \{\rho < \lambda \mid \alpha < \kappa, \mu(A_{\alpha,\rho}) > 0\}$ in order to define $B_{\alpha} = \bigcup_{\rho \in \gamma} A_{\alpha,\rho}$. From its definition, $B_{\alpha} \cap B_{\beta} = \emptyset$ for every $\alpha < \beta < \kappa$, as deducted from Ulam matrix properties, and then by σ -additivity of μ we get contradiction to $\mu(\bigcup B_{\alpha}) \leq 1$. From the contradiction it is followed that there is no such λ , meaning κ is not a successor cardinal.

Question 2

Let κ be an uncountable regular cardinal such that there is non-principle filter $\mathcal{F}\subseteq\mathcal{P}(\kappa)$ with the following properties,

- 1. For every $\langle x_{\alpha} \in \mathcal{F} \mid \alpha < \kappa \rangle$ also $\bigcap_{\alpha < \kappa} x_{\alpha} \in \mathcal{F}$.
- 2. For every collection $\{X_{\alpha} \mid \alpha < \omega_1\} \subseteq \mathcal{P}(\kappa)$ such that $\forall \alpha, \kappa \setminus X_{\alpha} \notin \mathcal{F}$, there are $\alpha < \beta$ such that $X_{\alpha} \cap X_{\beta} \neq \emptyset$.

Such an \mathcal{F} is called non-trivial σ -saturated κ -complete filter on κ .

We will show that either there is a κ -complete ultrafilter on κ or $\kappa \leq 2^{\aleph_0}$ and κ is a limit cardinal.

Proof. Let $\mathcal{F}^+ = \{X \subseteq \kappa \mid \kappa \setminus X \notin \mathcal{F}\}$, This set represents the elements of \mathcal{F} which are *non zero* in a sense, a positive subset of the filter.

Let us assume that for every $B\subseteq A$, $B\in\mathcal{F}^+$ or $A\setminus B\in\mathcal{F}^+$, this is in a sense the atomic case, in which there is a set that acts as an atom. We will show that in this case there is a κ -complete ultrafilter on κ . We will construct a sequence $\langle x_\alpha \in \mathcal{F}^+ \mid \alpha < \kappa \rangle \subseteq \mathcal{P}(\kappa)$ by taking such list of decreasing ordinals and using the defined property about inclusion in \mathcal{F}^+ . By κ -completeness of \mathcal{F} the intersection, A, of the stated sequence is in \mathcal{F} and in particular from the assumption we made $A\in\mathcal{F}^+$. We define $\mathcal{U}=\{x\in\mathcal{F}^+\mid A\subseteq x\}$, this is an principal ultrafilter which is κ -complete as required In details, we found a set which fulfills the definition of an atom, and by defining a measure using this atom, we get κ -complete ultrafilter, this property carries from \mathcal{F} κ -completeness.

Assuming the contrary of our initial assumption, it directly follows that for every $A \in \mathcal{F}^+$ there is $B \subseteq A$ such that $B, A \setminus B \in \mathcal{F}^+$ (There is also the case that $B, A \setminus B \notin \mathcal{F}^+$, which lead to contradiction to the definition of \mathcal{F} as a filter). This is case is in a sense non-atomic, as for each positive-measure set there is a split of disjoint positive-measure subsets. Let us define a left centered standard binary tree $\langle T, f \rangle$ such that $f: 2^{\omega_1} \to \mathcal{F}^+$, defined by $f(\langle \rangle) = \kappa$ and for each $t \in \text{dom } f$, if f(t) = A, from the assumption there is $B \subseteq A$ satisfying our assumption, then we define $f(t \frown \langle 0 \rangle) = B, f(t \frown \langle 1 \rangle) = A \setminus B$. From our definition, for every $t \in 2^{\omega_1}$, $f(t \frown \langle 0 \rangle) \cap f(t \frown \langle 1 \rangle) = \emptyset$ and $f(t \frown \langle 0 \rangle) \cup f(t \frown \langle 1 \rangle) = f(t)$. Let $M = \{f(t) \mid t \in 2^{\omega}\}$, then $|M| = 2^{\aleph_0}$ and by σ -saturation there are $m, m' \in M$ such that $m \cap m' \neq \emptyset$, which is a contradiction. Therefore we assume $M \cap \mathcal{F}^+ = \emptyset$ (the process to get a contradiction can be done for each branch to obtain this claim). But $\bigcup M = \kappa$, then we can conclude that $\kappa \leq 2^{\aleph_0}$ as well.

We want to show that κ is a limit cardinal, to do that we will use the conclusion of question 1. To fulfill the propositions requirements it is needed to define a measure which is σ -additive, non-trivial and non-atomic. We can use the principal measure of \mathcal{F} (Which requires extending it to ultrafilter, which in turn requires AC) to obtain such a measure.

¹Jech T. Set Theory. 2003, 1, 77.