- **3.** Calculer f_0 si C = 10 nF et $R = 390 \ \Omega$.
- 4. Déterminer la condition d'amplification de l'oscillateur et calculer R2 sachant que R1 = 1 k Ω .

8 Oscillateur de type Colpitts

1. L'évolution de e(t) ainsi que son spectre en amplitude sont donnés ci-dessous :

- **1.1** Mesurer la fréquence d'oscillation f_0 de l'oscillateur.
- **1.2** Calculer le taux de distorsion du signal e(t).
- 2. L'évolution de s(t) en sortie de l'amplificateur ainsi que son spectre en amplitude est indiqué ci-dessous :

Comparer le taux de distorsion de s(t) à celui de e(t). Justifier cette différence.

9 Oscillateur à quartz

On reprend le schéma de l'oscillateur de l'exercice 8 dans lequel on remplace l'inductance L par un Quartz. Le modèle équivalent du quartz est donné ci-dessous :

Impédance du quartz

$$\underline{Z}_{Q} = jX_{Q} = \frac{j}{C_{0}\omega} \times \frac{\omega_{s}^{2} - \omega^{2}}{\omega^{2} - \omega_{p}^{2}}$$

avec
$$\omega_s = \frac{1}{\sqrt{LC}}$$
 et $\omega_p = \frac{1}{\sqrt{L\frac{CC_0}{C+C_0}}}$.

- **1.** Donner l'expression de X_0 .
- 2. La condition d'oscillations se traduit par $2 = X_Q C_1 \omega_0$. Montrer que la fréquence d'oscillation du quartz est définie par :

$$f_0 = \sqrt{\frac{f_s^2 C_1 + 2C_0 f_p^2}{2C_0 + C_1}}.$$

- **3.** On donnne $C_1=30$ pF, $C_0=10$ pF, $C=10^{-2}$ pF, L=1 H. Calculer $f_{\rm s}$, $f_{\rm p}$ et la fréquence d'oscillation $f_{\rm o}$.
- 4. Vérifier que le quartz est équivalent à une inductance à la fréquence d'oscillation.

Exercices d'entraînement

10 Oscillateur sinusoïdal utilisant un ALI

On considère l'oscillateur suivant :

Les fonctions de transfert aux différents points du montage sont :

$$\underline{A}(j\omega) = \frac{\underline{V}_1(j\omega)}{\underline{V}_e(j\omega)} = \left(1 + \frac{R_2}{R_1}\right)$$

$$\underline{T}_{1}(j\omega) = \frac{\underline{V}_{2}(j\omega)}{\underline{V}_{1}(j\omega)} = \frac{L\omega}{L\omega - jR_{3}(1 - LC\omega^{2})}$$