Step 1 目标函数

在本问中,我们的目标是通过设计无人机 FY1 与其投放的 3 枚烟幕干扰弹相关参数,使得 3 枚烟幕干扰弹对导弹 M1 的有效遮蔽总时间尽可能长, 因此目标函数为:

$$\max_{\alpha, t_1, v_{FY1}, t_2, i} \Delta t_{13} \tag{1}$$

Step 2 决策变量

- **无人机** FY1 **的方向**: 设 α 为无人机 FY1 与 x 轴正方向的夹角,范围为 $[0, 2\pi]$,从而确定了无人机 FY1 的飞行方向。
- 烟幕干扰弹投放点: 设无人机 FY1 在受领任务 $t_{FY1,i1}$ s 后投放第 i 枚烟幕干扰弹 (i=1,2,3)。
- 无人机 FY1 的飞行速度: 设无人机的飞行速度为 v_{FY1} ,无人机受领任务后,保持等高度匀速直线运动。由问题一求得的(??)可知 t 时刻无人机 FY1 的位置坐标为:

$$\begin{cases} x_{FY1,t} = x_{FY1,0} + v_{FY1}t\cos\alpha \\ y_{FY1,t} = y_{FY1,0} + v_{FY1}t\sin\alpha \\ z_{FY1,t} = z_{FY1,0} \end{cases}$$
 (2)

• 烟幕干扰弹起爆点: 设无人机 FY1 投放的第 i 枚烟幕干扰弹在无人机受领任务 $t_{FY1,i2}$ s 后起爆,根据问题 1 中的(??)得到投放的第 i 枚烟雾干扰弹在 $t_{FY1,i2}$ 时刻即其起爆时的位置坐标:

$$\begin{cases} x_{FY1i,t_{FY1,i2}} = x_{FY1,t_{FY1,i1}} + v_{FY1} (t_{FY1,i2} - t_{FY1,i1}) \cos \alpha \\ y_{FY1i,t_{FY1,i2}} = y_{FY1,t_{FY1,i1}} + v_{FY1} (t_{FY1,i2} - t_{FY1,i1}) \sin \alpha \\ z_{FY1i,t_{FY1,i2}} = z_{FY1,t_{FY1,i1}} - \frac{g(t_{FY1,i2} - t_{FY1,i1})^2}{2} \end{cases}$$
(3)

通过问题 1 中的($\ref{1}$),得到 t 时刻无人机 FY1 投放的第 i 枚烟幕干扰弹形成的烟幕云团是否对目标进行遮挡的判断条件 $\Delta_{FY1i}(x_l,y_l,z_s)$ 。并将其代入($\ref{4}$)中即

$$\begin{cases} \Delta < 0 \quad 未形成有效遮挡 \\ \Delta \geq 0 \begin{cases} \min \{d_1, d_2\} > |\overrightarrow{N1M1}| & \text{未形成有效遮挡} \\ \min \{d_1, d_2\} \leq |\overrightarrow{N1M1}| & \text{有效遮挡} \end{cases} \end{cases} \tag{4}$$

判断 t 时刻下无人机 FY1 释放的第 i 枚烟幕干扰弹形成的烟幕云团是否对真目标进

行遮挡。又因为每个烟幕干扰弹形成的云团都将在 $\Delta t_0 = 20$ 秒后消散, 所以规定:

$$\Delta_{FY1i}(x_l, y_l, z_s) = \begin{cases} -1, & t \ge t_{FY1, i2} + \Delta t_0 \\ -1, & t \ge t_{FY1, i2} + \Delta t_0 \end{cases}$$
 (5)

Step 3 约束条件

• 无人机的飞行速度:由于无人机受领任务后,可根据需要瞬时调整飞行方向,然后以 70-140m/s 的速度等高度匀速直线飞行。因此:

$$70 \le v_{FY1} \le 140$$
 (6)

• 无人机投放的烟幕干扰弹的时间:由于题目要求每架无人机投放两枚烟幕干扰弹至少间隔 1s,且据试验数据知,云团中心 10m 范围内的烟幕浓度在起爆 20s 内可为目标提供有效遮蔽。因此:

$$\begin{cases}
t_{FY1,11} \in \left[0, \frac{x_{m1,0}}{v_0}\right] \\
t_{FY1,12} \in \left[t_{FY1,11}, \frac{d_{m1,0}}{v_0}\right] \\
t_{FY1,21} \in \left[t_{FY1,11} + 1, \frac{dx_{m1,0}}{v_0}\right] \\
t_{FY1,22} \in \left[t_{FY1,21}, \frac{d_{m1,0}}{v_0}\right] \\
t_{FY1,31} \in \left[t_{FY1,21} + 1, \frac{d_{m1,0}}{v_0}\right] \\
t_{FY1,32} \in \left[t_{FY1,21}, \frac{d_{m1,0}}{v_0}\right]
\end{cases}$$
(7)

Step 4 优化模型

综上所述, 无人机 FY1 释放的 3 枚烟幕干扰弹有效遮蔽时间单目标优化模型为:

$$\max_{\alpha,t_1,v_{FY1},t_2,i} \Delta t_{13}$$

t时刻无人机的位置坐标:

$$x_{FY1,t} = x_{FY1,0} + v_{FY1}t \cos \alpha$$

$$y_{FY1,t} = y_{FY1,0} + v_{FY1}t \sin \alpha$$

$$z_{FY1,t} = z_{FY1,0}$$

$$0 \le \alpha < 2\pi$$

第 i 枚烟雾干扰弹起爆时的位置坐标:

第
$$i$$
 枚烟雾干扰弹起爆时的位置坐标:
$$\begin{cases}
x_{FY1i,t_{FY1,i2}} = x_{FY1,t_{FY1,i1}} + v_{FY1} (t_{FY1,i2} - t_{FY1,i1}) \cos \alpha \\
y_{FY1i,t_{FY1,i2}} = y_{FY1,t_{FY1,i1}} + v_{FY1} (t_{FY1,i2} - t_{FY1,i1}) \sin \alpha \\
z_{FY1i,t_{FY1,i2}} = z_{FY1,t_{FY1,i1}} - \frac{g (t_{FY1,i2} - t_{FY1,i1})^2}{2} \\
\begin{cases}
t_{FY1,11} \in \left[0, \frac{x_{m1,0}}{v_0}\right] \\
t_{FY1,12} \in \left[t_{FY1,11}, \frac{d_{m1,0}}{v_0}\right] \\
t_{FY1,22} \in \left[t_{FY1,21}, \frac{d_{m1,0}}{v_0}\right] \\
t_{FY1,32} \in \left[t_{FY1,21}, \frac{d_{m1,0}}{v_0}\right] \\
t_{FY1,32} \in \left[t_{FY1,21}, \frac{d_{m1,0}}{v_0}\right]
\end{cases}$$