Математика для Data Science. Линейная алгебра. Шпаргалка

Содержание

Третья неделя. Определитель и скалярное произведение	2
Определитель	2
Переход в другой базис и обратная матрица	3
Длина, углы и скалярное произведение	4
Ортогональные матрицы	E

Третья неделя. Определитель и скалярное произведение

Определитель

\mathbf{M} атрица $\mathbf{2} \times \mathbf{2}$

Поставим в соответствие произвольной матрице из действительных чисел $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$ параллелограмм натянутый на векторы столбцы этой матрицы. Под словом "натянутый" подразумевается, что две стороны параллелограмма образуются векорами $\begin{pmatrix} a \\ b \end{pmatrix}$ и $\begin{pmatrix} c \\ d \end{pmatrix}$, а остальные получаются из них параллельным переносом.

Площадь этого параллелограмма в общем случае равна |ad - bc|.

Базис на плоскости \vec{e}_1, \vec{e}_2 называется *правым*, если кратчайший поворот от вектора \vec{e}_1 к вектору \vec{e}_2 происходит против часовой стрелки. В противном случае базис называется *левым*.

В случае, если столбцы матрицы $\binom{a}{b}$ и $\binom{c}{d}$ задают левую пару векторов, то *ориентированная площадь* параллелограмма будет отрицательной. Если правую пару векторов — положительной.

Ориентированная площадь параллограмма натянутого на столбцы матрицы $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$ равняется ad-bc.

${f M}$ атрица ${f 3} imes {f 3}$

Рассмотрим параллелепипед, натянутый на столбцы матрицы $\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$. Его объём будет равен $\begin{vmatrix} x_{11}x_{22}x_{33} + x_{12}x_{23}x_{31} + x_{13}x_{21}x_{32} - x_{13}x_{22}x_{31} - x_{23}x_{32}x_{11} - x_{33}x_{12}x_{21} \end{vmatrix}$.

Пусть \vec{x} , \vec{y} и \vec{z} — базис в трехмерном пространстве. Представим, что мы смотрим на плоскость, в которой лежат векторы \vec{x} и \vec{y} , из конца вектора \vec{z} . Тогда ориентация трехмерного базиса совпадает с двумерной ориентацией пары векторов \vec{x} и \vec{y} .

ориентацией пары векторов x и y. Ориентированный объем параллелепипеда натянутого на столбцы матрицы $\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$ равняется $x_{11}x_{22}x_{33} + x_{12}x_{23}x_{31} + x_{13}x_{21}x_{32} - x_{13}x_{22}x_{31} - x_{23}x_{32}x_{11} - x_{33}x_{12}x_{21}.$

Mатрица $n \times n$

Пусть M — квадратная матрица действительных чисел размера $n \times n$. Ее *определитель*, то есть n-мерный ориентированный объем параллелепипеда натянутого на столбцы этой матрицы имеет следующие свойства:

- 1. Ориентированный объем единичного куба равен 1, то есть определитель единичной матрицы равен 1. Или коротко $\det E = 1$.
- 2. Если один из столбцов матрицы домножить на $\lambda \in \mathbb{R}$, то n-мерный ориентированный объем (определитель) тоже домножится на λ .
- 3. Если поменять два столбца матрицы местами, то определитель поменяет знак. Это свойство называют *кососимметричностью* по столбцам.
- 4. Объем параллелепипеда натянутого на векторы $\vec{a}_1, (\vec{b} + \vec{c}), \vec{a}_3, \dots, \vec{a}_n$ равен сумме объемов параллелограммов натянутых на векторы $\vec{a}_1, \vec{b}, \vec{a}_3, \dots, \vec{a}_n$ и векторы $\vec{a}_1, \vec{c}, \vec{a}_3, \dots, \vec{a}_n$.

Утверждения

- 1. В результате линейного преобразования A объем любой фигуры меняется в $\det A$ раз.
- 2. Для квадратных матриц одного размера выполнено $\det(BA) = \det B \cdot \det A$.

Матрица, у которой все элементы ниже главной диагонали равны нулю, называется верхнетреугольной:

$$\begin{pmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix}$$

Как считать определитель

- 1. Применяем к матрице метод Гаусса и получаем верхнетреугольную матрицу. Определитель этой верхнетреугольной матрицы равен или противоположен определителю изначальной матрицы (в зависимости от того, сколько раз мы использовали элементарные преобразования первого типа).
- 2. Если на диагонали получается 0, то определитель равен нулю. Иначе применяем преобразования второго типа, чтобы превратить верхнетреугольную матрицу в диагональную:

Вычтем из столбцов со 2-ого по n-ый первый столбец домноженный на $\frac{1}{a_{11}}$, потом вычтем из столбцов с 3-его по n-ый второй столбец домноженный на $\frac{1}{a_{22}}$ и так далее.

Определитель при этом не меняется.

3. Считаем определитель диагональной матрицы.

Переход в другой базис и обратная матрица

Квадратная матрица A называется матрицей перехода от базиса \mathbf{h} к базису \mathbf{g} в \mathbb{R}^n , если для всех векторов $\vec{v} \in \mathbb{R}^n$ выполнено следующее. Если $(v_1, v_2, \dots v_n)$ — координаты вектора в базисе h, то координаты \vec{v} в базисе

$$m{g}$$
 — это $A egin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$.

В частности, матрицей перехода от базиса f к стандартному является матрица, в которой по столбцам записаны координаты базиса f.

Для квадратной матрицы A матрица B называется обратной матрицей, если BA = E. Обозначение A^{-1} .

Свойства обратной матрицы

- 1. Для любой матрицы полного ранга существует обратная матрица.
- 2. При домножении матрицы B на A^{-1} слева или справа и результат не обязательно будет одинаковый: $A^{-1}B$ не обязательно равно BA^{-1} .
- 3. Если BA = E и AC = E то B = C. То есть любая матрица, которая является обратной слева, будет и обратной справа. И наоборот.
- 4. Обратная матрица единственна. То есть, если $B_1A = E$ и $B_2A = E$, то $B_1 = B_2$.
- 5. Для каждой матрицы полного ранга единственным образом определена обратная матрица.

Пусть f — произвольный базис в \mathbb{R}^n , F — матрица перехода от f к стандартному базису.

Если
$$(v_1^f, v_2^f, \dots, v_n^f)$$
 — координаты вектора \vec{v} в базисе f , то $\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = F \begin{pmatrix} v_1^f \\ v_2^f \\ \vdots \\ v_n^f \end{pmatrix}$ — координаты в стандартном

базисе.

С другой стороны,
$$F^{-1}$$
 — матрица перехода от стандартного базиса к f и при этом $\begin{pmatrix} v_1^f \\ v_2^f \\ \vdots \\ v_n^f \end{pmatrix} = F^{-1} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$

Приведение матрицы к единичной

- 1. Пусть дана квадратная матрица A полного ранга. С помощью первых двух элементарных преобразований приведём её к диагональному виду.
- 2. Применим третье элементарное преобразование: умножение столбца (или строки) на ненулевое число. С его помощью мы каждый элемент на диагонали матрицы сможем привести к единице, домножив i-ый столбец на $\frac{1}{a_{ij}}$.

Метод Жордана-Гаусса поиска обратной матрицы

Для всей цепочки элементарных преобразований в описанном выше алгоритме существует последовательность матриц M_1, M_2, \ldots, M_k такая, что M_1 соответствует первому примененному элементарному преобразованию, M_2 — второму и т.д. Так как $M_k M_{k-1} \ldots M_2 M_1 A = E$. Значит, $M_k M_{k-1} \ldots M_2 M_1$ — как раз и есть A^{-1}

Матрица перехода в общем случае

Если

- ullet T_f матрица перехода от $oldsymbol{f}$ к стандартному базису, то есть записанные по столбцам векторы базиса $oldsymbol{f}$
- \bullet T_g матрица перехода от ${\pmb g}$ к стандартному базису, то есть записанные по столбцам векторы базиса ${\pmb g}$

то

- $T_g^{-1}T_f$ матрица перехода от f к g
- $T_f^{-1}T_g$ матрица перехода от ${\pmb g}$ к ${\pmb f}$

Линейное преобразование записанное в другом базисе Пусть в базисе f некоторое линейное преобразование t задано при помощи матрицы A и матрица перехода от g к f это C.. Тогда матрица преобразования t в базисе g записывается как $C^{-1}AC$.

Длина, углы и скалярное произведение

Длина вектора $\vec{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ определяется так: $||\vec{x}|| = \sqrt{x_1^2 + \dots + x_n^2}$.

Свойства длины

- 1. Длина любого вектора неотрицательна.
- 2. Длина вектора равна нулю тогда и только тогда, когда вектор равен $\vec{0}$.
- 3. Длина вектора $\alpha \vec{x}$ равна $|\alpha| \cdot ||\vec{x}||$.
- 4. Неравенство треугольника: $||\vec{x}|| + ||\vec{y}|| \ge ||\vec{x} + \vec{y}||$ для любых $\vec{x}, \vec{y} \in \mathbb{R}^n$.

Теорема Пифагора. Дан треугольник со сторонами a, b, c. Угол между сторонами с длинами a и b прямой, если и только если $a^2 + b^2 = c^2$.

Векторы, угол между которыми прямой, называются *ортогональными* или *перпендикулярными*. Нулевой вектор считается одновременно ортогональным и параллельным любому вектору.

Теорема косинусов. Дан треугольник со сторонами a,b,c. Угол между сторонами с длинами a и b равен α . Тогда выполнено соотношение $a^2 + b^2 - 2ab\cos\alpha = c^2$.

$$lpha$$
. Тогда выполнено соотношение $a^2+b^2-2ab\coslpha=c^2$. В частности, $\coslpha=\frac{||ec u||^2+||ec y||^2-||ec x-ec y||^2}{2||ec x||\cdot||ec y||}$ при $||ec x||>0$ и $||ec y||>0$.

Скалярным произведением векторов $\vec{x} \in \mathbb{R}^n$ и $\vec{y} \in \mathbb{R}^n$ называется число

$$\langle \vec{x}, \vec{y} \rangle := x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i.$$

Свойства скалярного произведения

- 1. $\langle \vec{x}, \vec{x} \rangle = ||\vec{x}||^2$
- 2. $\langle \vec{x}, \vec{y} \rangle = \ \langle \vec{y}, \vec{x} \rangle,$ то есть скалярное произведение коммутативно.
- 3. $\langle c\vec{x}, \vec{y} \rangle = c \langle \vec{x}, \vec{y} \rangle$ для любого $c \in \mathbb{R}$
- 4. $\langle \vec{x} + \vec{y}, \vec{z} \rangle = \langle \vec{x}, \vec{z} \rangle + \langle \vec{y}, \vec{z} \rangle$
- 5. $||\vec{x} + \vec{y}||^2 = \langle \vec{x}, \vec{x} \rangle + 2\langle \vec{x}, \vec{y} \rangle + \langle \vec{y}, \vec{y} \rangle = ||x||^2 + 2\langle \vec{x}, \vec{y} \rangle + ||y||^2$.
- 6. $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \vec{y}$.
- 7. Для любого линейного отображения $f: \mathbb{R}^n \to \mathbb{R}$ можно найти вектор \vec{a} , такой что $f(\vec{x}) = \langle \vec{a}, \vec{x} \rangle$
- 8. $\langle \vec{x}, \vec{y} \rangle = 0$ если и только если вектора \vec{x} и \vec{y} перпендикулярны.
- 9. Все \vec{e}_i ортогональны друг другу.
- 10. $\langle \vec{x}, \vec{y} \rangle = \cos \alpha \cdot ||\vec{x}|| \cdot ||\vec{y}||$, где α это угол между векторами \vec{x} и \vec{y}

Следующие определения скалярного произведения эквивалентны:

- 1. $\langle \vec{x}, \vec{y} \rangle = \sum_{i=1}^n x_i y_i$ алгебраическое определение
- 2. $\langle \vec{x}, \vec{y} \rangle = \cos \alpha \cdot ||\vec{x}|| \cdot ||\vec{y}||$ геометрическое определение
- 3. $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \vec{y}$ определение через "строка на столбец"
- 4. $\langle \vec{x}, \vec{y} \rangle = \frac{1}{2}(||\vec{x} + \vec{y}||^2 ||\vec{x}||^2 ||\vec{y}||^2)$ определение через длины

Ортогональные матрицы

Линейное преобразование $Q: \mathbb{R}^n \to \mathbb{R}^n$, сохраняющее длины всех векторов, называется *ортогональным*. Другими словами, Q ортогонально, если $||Q\vec{x}|| = ||\vec{x}||$ для всех $\vec{x} \in \mathbb{R}^n$.

Теорема. Линейное преобразование Q сохраняет длины векторов тогда и только тогда, когда оно сохраняет скалярные произведения. То есть когда $\langle Q\vec{x},Q\vec{y}\rangle=\langle \vec{x},\vec{y}\rangle$ для любых \vec{x},\vec{y} .

Любой набор векторов в \mathbb{R}^n , удовлетворяющий свойствам

- 1. в наборе n элементов
- 2. длина каждого вектора набора равна 1
- 3. эти векторы попарно ортогональны (то есть любые два различных вектора из набора ортогональны друг другу)

называется ортонормированным базисом.

Следующие утверждения равносильны:

- 1. Q сохраняет длины векторов, то есть $||Q\vec{x}|| = ||\vec{x}||$
- 2. Q сохраняет скалярные произведения, то есть $\langle Q\vec{x},Q\vec{y}\rangle=\langle \vec{x},\vec{y}\rangle$
- 3. $Q^TQ = E$
- 4. $QQ^T = E$
- 5. $Q^T = Q^{-1}$
- 6. Q переводит базис $\vec{e}_1, \ldots, \vec{e}_n$ в ортонормированный базис

Теорема. Для любого ортогонального преобразования существует ортонормированный базис, в котором матрица преобразования выглядит так:

```
\begin{pmatrix} 1 & & & & & \\ & & 1 & & & \\ & & -1 & & & \\ & & & \cos\alpha_1 & -\sin\alpha_1 & \\ & & & & \sin\alpha_1 & -\cos\alpha_1 & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{pmatrix}
```

где все не написанные коэффициенты матрицы равны 0. То есть есть в этом базисе ортогональное преобразование

- оставляет неподвижными первые несколько элементов базиса
- следующие несколько элементов базиса заменяет на противоположные
- \bullet оставшиеся элементы базиса разбивает на пары и делает поворот в каждой из плоскостей, заданной парой элементов базиса

То есть любое ортогональное преобразование состоит из простых отображений: отражений и поворотов.