Триботехника

Лекция 1. Концепции трения, износа и смазки

лектор: д-р. техн. наук, проф. кафедры мехатроники, механики и робототехники Корнаев Алексей Валерьевич

Структура курса и план лекции

Структура курса:

- лекции (12 ч.);
- практические занятия (16 ч.);
- лабораторные занятия (20 ч.);
- самостоятельная работа студентов (72 ч.).

Вид итогового контроля: экзамен.

Рекомендуемая литература (доступна в электронной библиотечной системе изд-ва «Лань»):

- 1. Пенкин Н.С. Основы трибологии и триботехники /Н.С. Пенкин, А.Н. Пенкин, В.М. Сербин// М.: Машиностроение. 2012. 202 с.
- 2. <u>Мышкин Н.К. Трен</u>ие, смазка, износ. Физические основы и технические приложения трибологии /Н.К. Мышкин, М.И Петроковец// М.: Физматлит. 2007. 368 с.

План лекции:

0

- 1. Основные определения
- 2. Концепции трения
- 3. Концепции изнашивания
- 4. Концепции смазки

1. Основные определения

Трибология (от греч. «трибо» – тереть, натирать, и «логос» – слово, мысль) и триботехника - область науки (трибология) и техники (триботехника), заключающаяся в изучении явлений при трении и изнашивании, установлении закономерностей происходящих при этом процессов, а также в использовании полученных результатов и закономерностей при проектировании, изготовлении, эксплуатации, ремонте машин и приборов для повышения их надежности.

Внешнее и внутреннее трение – явление сопротивления относительному перемещению тел (внешнее трение) или частиц внутри тела (внутреннее трение) в результате силового взаимодействия и сдвига по контактной поверхности, сопровождающееся рассеянием энергии.

Изнашивание — процесс удаления материала с контактной поверхности тела в результате трения.

Смазка – процесс, в результате которого уменьшается трение и износ за счет применения смазочного материала.

1. Основные определения

Трибология (от греч. «трибо» – тереть, натирать, и «логос» – слово, мысль) и триботехника - область науки (трибология) и техники (триботехника), заключающаяся в изучении явлений при трении и изнашивании, установлении закономерностей происходящих при этом процессов, а также в использовании полученных результатов и закономерностей при проектировании, изготовлении, эксплуатации, ремонте машин и приборов для повышения их надежности.

Внешнее и внутреннее трение – явление сопротивления относительному перемещению тел (внешнее трение) или частиц внутри тела (внутреннее трение) в результате силового взаимодействия и сдвига по контактной поверхности, сопровождающееся рассеянием энергии.

Изнашивание — процесс удаления материала с контактной поверхности тела в результате трения.

Смазка – процесс, в результате которого уменьшается трение и износ за счет применения смазочного материала.

1. Основные определения

Трибология (от греч. «трибо» – тереть, натирать, и «логос» – слово, мысль) и *техника* - область науки (трибология) и техники (триботехника), заключающаяся в изучении явлений при трении и изнашивании, установлении закономерностей происходящих при этом процессов, а также в использовании полученных результатов и закономерностей при проектировании, изготовлении эксплуатации, ремонте машин и приборов для повышения их надежности.

Внешнее и внутреннее трение – явление сопротивления относительному перемещению тел (внешнее трение) или частиц внутри тела (внутреннее трение) в результате силового взаимодействия и сдвига по контактной поверхности, сопровождающееся рассеянием энергии.

Изнашивание – процесс удаления материала с контактной поверхности тела в результате трения.

2. Концепции трения

 $G = \frac{F}{5!}$

2.1 Классификация трения

бь **ү**

По типу относительного движения:

покоя

скольжения

Трение

качения

По степени смазки:

граничное (сухое), смешанное (п/жидкостное), жидкостное

деформационное и адгезионное

2. Концепции трения

Трение

скольжения

2.1 Классификация трения

По типу относительного движения:

граничное (сухое), смешанное (п/жидкостное), жидкостное

покоя

качения

По степени смазки:

По уровню и природе взаимодействия: деформационное и адгезионное

2.2 Классические законы трения. Коэффициент трения

3. Концепции изнашивания

4. Концепции смазки

2.1 Классификация трения

По типу относительного движения:

По степени смазки:

граничное (сухое), смешанное (п/жидкостное), жидкостное

Трение

скольжения

качения

По уровню и природе взаимодействия: деформационное и адгезионное

покоя

Практикум

Задача1. Используя специализированное программное обеспечение необходимо выполнить расчет основных характеристик горизонтального движения тела массой m под действием внешней силы F и силы трения F_{mp} .

0	F	F , если $F < F^{\kappa p}$,
Закон трения:	r_{mp} – \leq	vn
		fmg , если $F \ge F^{\kappa p}$.

№ вар.	<i>т</i> , кг	<i>F</i> ^{κρ} , Η	<i>F=F(t)</i> , H	Найти
1	0.1	5	$F = \begin{cases} mgt, ecnu \ t < t_0, \\ const, ecnu \ t \ge t_0. \end{cases}$	$x(t)$, $V(t)$, $a(t)$, A_{mp}
2	0.2	7		$x(t)$, $V(t)$, $a(t)$, N_{mp}
3	0.1	6		x(t), V(t), a(t), Авнеш
4	0.3	10		x(t), V(t), a(t), Nенеш
5	0.5	3	F = mgt/2	x(t), V(t), a(t), Nенеш
6	0.2	8		$x(t)$, $V(t)$, $a(t)$, A_{mp}
7	0.4	5		$x(t)$, $V(t)$, $a(t)$, N_{mp}
8	0.6	3	$F = mg \sin(10t)$	x(t), V(t), a(t), Авнеш
9	0.7	3		x(t), V(t), a(t), Nвнеш
10	0.8	3		$x(t)$, $V(t)$, $a(t)$, A_{mp}
11	1	5		$x(t)$, $V(t)$, $a(t)$, N_{mp}