Implication of the D^0 Width Difference On CP-Violation in D^0 - \bar{D}^0 Mixing

Patricia Ball*

IPPP, Department of Physics, University of Durham, Durham DH1 3LE, UK

Abstract

Both BaBar and Belle have found evidence for a non-zero width difference in the D^0 - \bar{D}^0 system. Although there is no direct experimental evidence for CP-violation in D mixing (yet), we show that the measured values of the width difference $y \sim \Delta\Gamma$ already imply constraints on the CP-odd phase in D mixing, which, if significantly different from zero, would be an unambiguous signal of new physics.

^{*}Patricia.Ball@durham.ac.uk

The highlight of this year's Moriond conference on electroweak interactions and unified theories arguably was the announcement by BaBar and Belle of experimental evidence for D^0 - \bar{D}^0 mixing [1, 2, 3], which was quickly followed by a number of theoretical analyses [4, 5, 6, 7, 8, 9]. While Refs. [4, 7, 8, 9] focused on the constraints posed, by the experimental results, on various new-physics models, Ref. [5] presented a first analysis of the implications of these results for the fundamental parameters describing D mixing. The purpose of this letter is to show that the present experimental results already imply constraints on a sizeable CP-odd phase in D mixing, which could only be due to new physics (NP).

To start with, let us shortly review the theoretical formalism of D mixing and the experimental results, see Refs. [10, 11] for more detailed reviews. In complete analogy to B mixing, D mixing in the SM is due to box diagrams with internal quarks and W bosons. In contrast to B, though, the internal quarks are down-type. Also in contrast to B mixing, the GIM mechanism is much more effective, as the contribution of the heaviest down-type quark, the b, comes with a relative enhancement factor $(m_b^2 - m_{s,d}^2)/(m_s^2 - m_d^2)$, but also a large CKM-suppression factor $|V_{ub}V_{cb}^*|^2/|V_{us}V_{cs}^*|^2 \sim \lambda^8$, which renders its contribution to D mixing $\sim 1\%$ and hence negligible. As a consequence, D mixing is very sensitive to the potential intervention of NP. On the other hand, it is also rather difficult to calculate the SM "background" to D mixing, as the loop-diagrams are dominated by s and d quarks and hence sensitive to the intervention of resonances and non-perturbative QCD. The quasi-decoupling of the 3rd quark generation also implies that CP violation in D mixing is extremely small in the SM, and hence any observation of CP violation will be an unambiguous signal of new physics, independently of hadronic uncertainties.

The theoretical parameters describing D mixing can be defined in complete analogy to those for B mixing: the time evolution of the D^0 system is described by the Schrödinger equation

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0(t) \\ \bar{D}^0(t) \end{pmatrix} = \left(M - i\frac{\Gamma}{2} \right) \begin{pmatrix} D^0(t) \\ \bar{D}^0(t) \end{pmatrix} \tag{1}$$

with Hermitian matrices M and Γ . The off-diagonal elements of these matrices, M_{12} and Γ_{12} , describe, respectively, the dispersive and absorptive parts of D mixing. The flavour-eigenstates $D^0 = (c\bar{u})$, $\bar{D}^0 = (u\bar{c})$ are related to the mass-eigenstates $D_{1,2}$ by

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle \tag{2}$$

with

$$\left(\frac{q}{p}\right)^2 = \frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}};\tag{3}$$

 $|p|^2 + |q|^2 = 1$ by definition.

The basic observables in D mixing are the mass and lifetime difference of $D_{1,2}$, which are usually normalised to the average lifetime $\Gamma = (\Gamma_1 + \Gamma_2)/2$:

$$x \equiv \frac{\Delta M}{\Gamma} = \frac{M_2 - M_1}{\Gamma}, \quad y \equiv \frac{\Delta \Gamma}{2\Gamma} = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}.$$
 (4)

In this letter we follow the sign convention of Ref. [5], according to which x is positive by definition. The sign of y then has to be determined from experiment. In addition, if there is CP-violation in the D system, one also has

$$\left|\frac{q}{p}\right| \neq 1, \quad \phi \equiv \arg(M_{12}/\Gamma_{12}) \neq 0.$$
 (5)

While previously only bounds on x and y were known, both BaBar and Belle have now found evidence for non-vanishing mixing in the D system. BaBar has obtained this evidence from the measurement of the doubly Cabibbo-suppressed decay $D^0 \to K^+\pi^-$ (and its CP conjugate), yielding

$$y' = (0.97 \pm 0.44(\text{stat}) \pm 0.31(\text{syst})) \times 10^{-2},$$

$$x'^2 = (-0.022 \pm 0.030(\text{stat}) \pm 0.021(\text{syst})) \times 10^{-2},$$
 (6)

while Belle obtains

$$y_{\rm CP} = (1.31 \pm 0.32(\text{stat}) \pm 0.25(\text{syst})) \times 10^{-2}$$
 (7)

from $D^0 \to K^+K^-, \pi^+\pi^-$ and

$$x = (0.80 \pm 0.29(\text{stat}) \pm 0.17(\text{syst})) \times 10^{-2}, \quad y = (0.33 \pm 0.24(\text{stat}) \pm 0.15(\text{syst})) \times 10^{-2}$$
 (8)

from a Dalitz-plot analysis of $D^0 \to K_S^0 \pi^+ \pi^-$. Here $y_{\rm CP} \to y$ in the limit of no CP violation in D mixing, while the primed quantities x', y' are related to x, y by a rotation by a strong phase $\delta_{K\pi}$:

$$y' = \cos \delta_{K\pi} - x \sin \delta_{K\pi}, \quad x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}. \tag{9}$$

Limited experimental information on this phase has been obtainted at CLEO-c [12]:

$$\cos \delta_{K\pi} = 1.09 \pm 0.66 \,, \tag{10}$$

which can be translated into $\delta_{K\pi}=(0\pm65)^\circ$. An analysis with a larger data-set is underway at CLEO-c, with an expected uncertainty of $\Delta\cos\delta_{K\pi}\approx0.1$ in the next couple of years [13]; BES-III is expected to reach $\Delta\cos\delta_{K\pi}\approx0.04$ after 4 years of running [14]. The experimental result (10) agrees with theoretical expectations, $\delta_{K\pi}=0$ in the SU(3)-limit and $|\delta_{K\pi}|\lesssim15^\circ$ from a calculation of the amplitudes in QCD factorisation [15]. Based on these experimental results, a preliminary HFAG-average was presented at the 2007 CERN workshop "Flavour in the Era of the LHC" [13]:

$$x = (8.5^{+3.2}_{-3.1}) \times 10^{-3}, \quad y = (7.1^{+2.0}_{-2.3}) \times 10^{-3}.$$
 (11)

Adding errors in quadrature, this implies

$$\frac{x}{y} = 1.2 \pm 0.6. \tag{12}$$

The exact relations between ΔM , $\Delta \Gamma$, M_{12} and Γ_{12} are given by

$$(\Delta M)^{2} - \frac{1}{4} (\Delta \Gamma)^{2} = 4|M_{12}|^{2} - |\Gamma_{12}|^{2},$$

$$(\Delta M)(\Delta \Gamma) = 4\operatorname{Re}(M_{12}^{*}\Gamma_{12}) = 4|M_{12}||\Gamma_{12}|\cos\phi.$$
(13)

Eq. (13) implies x/y > 0 for $|\phi| < \pi/2$ and x/y < 0 for $\pi/2 < |\phi| < 3\pi/2$. In view of the above experimental results, we assume $|\phi| < \pi/2$ from now on.

As for the CP-violating observables, $|q/p| \neq 1$ characterises CP-violation in mixing and can be measured for instance in flavour-specific decays $D^0 \to f$, where $\bar{D}^0 \to f$ is possible only via mixing. The prime example is semileptonic decays with

$$A_{\rm SL} = \frac{\Gamma(D^0 \to \ell^- X) - \Gamma(\bar{D}^0 \to \ell^+ X)}{\Gamma(D^0 \to \ell^- X) + \Gamma(\bar{D}^0 \to \ell^+ X)} = \frac{|q/p|^2 - |p/q|^2}{|q/p|^2 + |p/q|^2}.$$
 (14)

Although the B factories may have some sensitivity to this asymmetry, its measurement is severely impaired by the fact that D mixing proceeds only very slowly, resulting in a large suppression factor of the mixed vs. the unmixed rate:

$$\frac{\Gamma(D^0 \to \ell^- X)}{\Gamma(D^0 \to \ell^+ X)} = \frac{x^2 + y^2}{2 + x^2 + y^2} \approx 6 \times 10^{-5}.$$
 (15)

Both in the K and the B system the quantity

$$A_M \equiv \left| \frac{q}{p} \right| - 1 \tag{16}$$

is very small, which however need not necessarily be the case for D's. From (3) one derives the general expression

$$\left| \frac{q}{p} \right|^2 = \left(\frac{4 + r^2 + 4r \sin \phi}{4 + r^2 - 4r \sin \phi} \right)^{1/2} \tag{17}$$

with $r = |\Gamma_{12}/M_{12}|$ and the weak phase ϕ defined in (5). In the B system, one has $r \ll 1$ (the current up-to-date numbers are $r \approx 7 \times 10^{-3}$ for B_d and $r \approx 5 \times 10^{-3}$ for B_s [16]), so that upon expansion in r

$$\left|\frac{q}{p}\right|_{B_{d,s}}^2 = 1 + \left|\frac{\Gamma_{12}}{M_{12}}\right| \sin\phi + O(r^2).$$
 (18)

Note that this formula refers to the definition $\phi = \arg(M_{12}/\Gamma_{12})$, which differs by $+\pi$ from the one used in Ref. [16], $\phi = \arg(-M_{12}/\Gamma_{12})$. For the K system, one finds $r \approx |\Delta\Gamma/\Delta M| \approx 2$ from experiment, but now the phase ϕ turns out to be small, so that

$$\left| \frac{q}{p} \right|_{K}^{2} = 1 + \frac{4r}{4 + r^{2}} \phi + O(\phi^{2}) \approx 1 + \phi.$$
 (19)

In both cases, $|q/p| \approx 1$ to a very good approximation. In the *D* system, however, there is no natural hierarchy $r \ll 1$, and of course one hopes that NP-effects induce $|\phi| \gg 0$. In

Figure 1: $|q/p|^2$, Eq. (20), as a function of the CP-odd phase ϕ for the central experimental value $\tilde{r} = 7.1/8.5$. Solid line: full expression, dashed line: first order expansion around $\phi = 0$.

this case, and because x and y have been measured, while $|M_{12}|$ and $|\Gamma_{12}|$ are difficult to calculate, it is convenient to express $|q/p|_D$ in terms of x, y, ϕ , using the exact relations (13). From (3), and defining $\tilde{r} = y/x$, we then obtain

$$\left| \frac{q}{p} \right|^2 = \frac{1}{\sqrt{2}(1+\tilde{r}^2)} \left\{ 2(1+\tilde{r}^2)^2 + 16\tilde{r}^2 \tan^2 \phi + 8\tilde{r} \tan \phi \sec \phi \sqrt{(1+\tilde{r}^2)^2 - (1-\tilde{r}^2)^2 \sin^2 \phi} \right\}^{1/2}.$$
 (20)

Note that for finite xy and $\phi = \pm \pi/2$, |q/p| diverges because $xy \to 0$ for $\phi \to \pm \pi/2$ from (13). In Fig. 1 we plot $|q/p|^2$ as function of ϕ , for the central experimental value from HFAG, $\tilde{r} = 7.1/8.5$, Eq. (11). It is obvious that even for moderate values of ϕ the small- ϕ expansion is not really reliable.

What is the currently available experimental information on CP-violating in D mixing, i.e. |q/p| and ϕ ? As already mentioned, the semileptonic CP-asymmetry (14) has not been measured yet. What has been measured, though, is the effect of CP-violation on the time-dependent rates of $D^0 \to K^+\pi^-$ and $\bar{D}^0 \to K^-\pi^+$. The BaBar collaboration has parametrised these rates as

$$\Gamma(D^{0}(t) \to K^{+}\pi^{-}) \propto e^{-\Gamma t} \left[R_{D} + \sqrt{R_{D}} y'_{+} \Gamma t + \frac{x'_{+}^{2} + y'_{+}^{2}}{4} (\Gamma t)^{2} \right],$$

$$\Gamma(\bar{D}^{0}(t) \to K^{-}\pi^{+}) \propto e^{-\Gamma t} \left[R_{D} + \sqrt{R_{D}} y'_{-} \Gamma t + \frac{x'_{-}^{2} + y'_{-}^{2}}{4} (\Gamma t)^{2} \right]$$
(21)

and fit the D^0 and \bar{D}^0 samples separately. They find [2]

$$y'_{+} = (9.8 \pm 6.4(\text{stat}) \pm 4.5(\text{syst})) \times 10^{-3},$$

 $y'_{-} = (9.6 \pm 6.1(\text{stat}) \pm 4.3(\text{syst})) \times 10^{-3}.$ (22)

Adding errors in quadrature, this means $y'_{+}/y'_{-} = 1.0 \pm 1.1$. BaBar also obtains values for x'_{\pm}^{2} which we do not quote here, because the sensitivity to the quadratic term in (21) is

Figure 2: Left: y'_+/y'_- as function of ϕ for x/y = 1.2 (solid line) and $x/y = \{0.6, 1.8\}$ (dashed lines), from Eq. (11). $\delta_{K\pi} = 0$. Right: y'_+/y'_- as function of ϕ for x/y = 1.2 for $\delta_{K\pi} = 0$ (solid line) and $\delta_{K\pi} = \pm 65^{\circ}$ (dashed lines).

less than that to the linear term in y'_{\pm} . $R_D^{1/2}$ is the ratio of the doubly Cabbibo-suppressed to the Cabibbo-favoured amplitude, $R_D^{1/2} = |A(D^0 \to K^+\pi^-)/A(D^0 \to K^-\pi^+)|$. $\delta_{K\pi}$ is the relative strong phase in the Cabibbo-favoured and suppressed amplitudes:

$$\frac{A(D^0 \to K^+ \pi^-)}{A(\bar{D}^0 \to K^+ \pi^-)} = -\sqrt{R_D} e^{-i\delta_{K\pi}}; \tag{23}$$

the minus-sign comes from the relative sign between the CKM matrix elements V_{cd} and V_{us} . In the limit of no CP-violation in the decay amplitude, one has $|A(D^0 \to K^-\pi^+)| = |A(\bar{D}^0 \to K^+\pi^-)|$, which is expected to be a very good approximation, in view of the fact that the decay is solely due to a tree-level amplitude. Then the relation of y'_{\pm} to x, y and ϕ is given by

$$y'_{+} = \left| \frac{q}{p} \right| \left\{ (y \cos \delta_{K\pi} - x \sin \delta_{K\pi}) \cos \phi + (x \cos \delta_{K\pi} + y \sin \delta_{K\pi}) \sin \phi \right\},$$

$$y'_{-} = \left| \frac{p}{q} \right| \left\{ (y \cos \delta_{K\pi} - x \sin \delta_{K\pi}) \cos \phi - (x \cos \delta_{K\pi} + y \sin \delta_{K\pi}) \sin \phi \right\}. \tag{24}$$

Presently, the experimental result for y'_+/y'_- is compatible with 1, although with considerable uncertainties. Any significant deviation from 1 would be a sign for new physics. In Fig. 2 we plot y'_+/y'_- as function of ϕ , for different values of x/y and $\delta_{K\pi}$. The figures clearly show that the value of y'_+/y'_- is very sensitive to the phase ϕ , at least if $\delta_{K\pi}$ is not too close to -65° , which corresponds to the nearly constant dashed line in Fig. 2b. The reason for this dependence on $\delta_{K\pi}$ becomes clearer if y'_+/y'_- is expanded to first order in ϕ :

$$\frac{y'_{+}}{y_{-}} = 1 - 2\phi \frac{x(x^2 + 2y^2)\cos\delta_{K\pi} + y^3\sin\delta_{K\pi}}{(x^2 + y^2)(x\sin\delta_{K\pi} - y\cos\delta_{K\pi})} + O(\phi^2).$$
 (25)

For the central values of x and y, Eq. (11), this amounts to $1+3.4\phi$ for $\delta_{K\pi}=0$, $1-3.3\phi$ for $\delta_{K\pi}=+65^{\circ}$ and $1+0.45\phi$ for $\delta_{K\pi}=-65^{\circ}$, which explains the shape of the curves in Fig. 2b. Evidently it is important to reduce the uncertainty of $\delta_{K\pi}$, which, as mentioned

Figure 3: Plot of $|\Delta\Gamma/\Delta\Gamma^{\rm SM}|$, Eq. (26), as a function of $x/y_{\rm SM}$ and ϕ .

earlier, will be achieved within the next few years. On the other hand, as shown in Fig. 2a, y'_+/y'_- , which depends only on the ratio x/y, but not x and y separately, is not very sensitive to the precise value of that ratio, but very much so to ϕ . The conclusion is that, even if x/y itself cannot be determined very precisely, y'_+/y'_- will nonetheless be a powerful tool to constrain ϕ , at least once $\delta_{K\pi}$ will be known more precisely. Already now very large values $\phi \sim \pi/2$ are excluded.

Another, more theory-dependent constraint on ϕ can be derived from the value of y. This argument centers around the fact that (a) the experimental result (11) is at the top end of theoretical predictions $y_{\rm SM} \sim 1\%$ [17] and (b) new physics indicated by a non-zero value of ϕ always reduces the lifetime difference, independently of the value of x. This observation is similar to what was found, some time ago, for the B_s system [18]. In order to derive it, we assume that new physics does not affect Γ_{12} , so that $\Gamma_{12} = \Gamma_{12}^{\rm SM}$. We then have $2|\Gamma_{12}| = \Delta\Gamma^{\rm SM}$ and hence $|y_{\rm SM}| = |\Gamma_{12}|/\Gamma$. Using the relations (13), we can then express the ratio $|\Delta\Gamma/\Delta\Gamma^{\rm SM}|$ in terms of $y_{\rm SM}$, x and ϕ :

$$\left| \frac{y}{y_{\rm SM}} \right| = \left| \frac{\Delta \Gamma}{\Delta \Gamma^{\rm SM}} \right| = \left(\frac{y_{\rm SM}^2 + x^2}{y_{\rm SM}^2 + x^2/\cos^2 \phi} \right)^{1/2}. \tag{26}$$

This implies that new physics always reduces the lifetime difference, independently of the value of x (and any new physics in the mass difference). In particular one has y=0 for $\phi=\pm\pi/2$ and $x\neq 0$, which follows from the 2nd relation (13). Eq. (26) is the manifestation of the fact that one does not need to observe CP-violation in order to constrain it. A famous example for this is the unitarity triangle in B physics, whose sides are determined from CP-conserving quantities only, but nonetheless allow a precise measurement of the size of CP-violation in the SM, via the angles and the area of the triangle. In Fig. 3, we plot $|\Delta\Gamma/\Delta\Gamma^{\rm SM}|$ as a function of $r=x/y_{\rm SM}$. The zero at $\phi=\pm\pi/2$ is clearly visible. The experimental value $|y/y_{\rm SM}|=O(1)$ then excludes phases ϕ close to $\pm\pi/2$. In order to make more quantitative statements, apparently a more precise calculation of $y_{\rm SM}$ is needed.

See, however, Ref. [19] for a discussion of the effect of tiny NP admixtures to Γ_{12} .

Figure 4: Left: $y_{\rm CP}/y$ as function of ϕ , for x/y = 1.2 (solid line) and $x/y = \{0.6, 1.8\}$ (dashed lines), see Eq. (12). Right: $A_{\Gamma}/y_{\rm CP}$ as function of ϕ .

Two more CP-sensitive observables related to $D^0 \to K^+K^-$ have been measured by the Belle collaboration [3]:

$$y_{\text{CP}} = \frac{1}{2\Gamma} \left[\Gamma(D^0 \to K^+ K^-) + \Gamma(\bar{D}^0 \to K^+ K^-) \right] - 1$$

$$= \frac{1}{2} \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) y \cos \phi + \frac{1}{2} \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) x \sin \phi, \tag{27}$$

$$A_{\Gamma} = \frac{1}{2\Gamma} \left[\Gamma(D^0 \to K^+ K^-) - \Gamma(\bar{D}^0 \to K^+ K^-) \right] - 1$$

$$= \frac{1}{2} \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi + \frac{1}{2} \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi. \tag{28}$$

The present experimental value of $y_{\rm CP}$ is given in (7), that for A_{Γ} is $(0.01 \pm 0.30({\rm stat}) \pm 0.15({\rm syst})) \times 10^{-2}$. Again, we can study the dependence of these observables on ϕ . In Fig. 4a we plot the ratio $y_{\rm CP}/y$, which is a function of x/y and ϕ , in dependence on ϕ . As it turns out, this quantity is far less sensitive to ϕ than y'_{+}/y'_{-} , the reason being that its deviation from 1 is only a second-order effect in ϕ :

$$y_{\rm CP} = y \left\{ 1 + \phi^2 \frac{x^4 + x^2 y^2 - y^4}{2(x^2 + y^2)^2} + O(\phi^4) \right\}.$$
 (29)

Hence, unless the experimental accuracy is dramatically increased, and because the results on y'_+/y'_- and $y/y_{\rm SM}$ already exclude a large CP-odd phase $\phi \approx \pm \pi/2$, it is safe to interpret $y_{\rm CP}$ as measurement of y. In Fig. 4b we plot the quantity $A_{\Gamma}/y_{\rm CP}$. Also here there is a distinctive dependence on ϕ , with $A_{\Gamma}/y \propto \phi$ for small ϕ , but the effect is less dramatic than that in y'_+/y'_- .

In conclusion, we find that the experimental results on D mixing reported by BaBar and Belle already exclude extreme values of the CP-odd phase ϕ close to $\pm \pi/2$. This follows from the result for y, which is close to the top end of theoretical predictions and can only be reduced by new physics, and from $y'_+/y'_- \sim 1$. While $y'_+/y'_- - 1$ vanishes in the limit of no CP-violation, $y \sim \Delta\Gamma$ is a CP-conserving observable, which demonstrates

the usefulness of such quantities in constraining CP-odd phases. Also y_{CP} , A_{Γ} and the ratio A_{Γ}/y_{CP} can be useful in constraining ϕ . As long as there is no major breakthrough in theoretical predictions for D mixing, which are held back by the fact that the D meson is at the same time too heavy and too light for current theoretical tools to get a proper grip on the problem, the long-distance SM contributions to x will completely obscure any NP contributions and their detection. The observation of CP violation, however, presents a theoretically clean way for NP to manifest itself and it is to be hoped that in the near future, i.e. at the B factories or the LHC, at least one of the plentiful opportunities for NP to show up in CP violation [20] will be realised.

Acknowledgments

This work was supported in part by the EU networks contract Nos. MRTN-CT-2006-035482, FLAVIANET, and MRTN-CT-2006-035505, Heptools.

References

- [1] M. Staric (Belle), talk given at 42nd Rencontres de Moriond, Electroweak Interactions and Unified Theories, La Thuile, Italy, March 2007;
 K. Flood (BaBar), talk given at the same conference.
- [2] B. Aubert et al. [BABAR Collaboration], arXiv:hep-ex/0703020.
- [3] K. Abe [Belle Collaboration], arXiv:hep-ex/0703036.
- [4] M. Ciuchini et~al., arXiv:hep-ph/0703204.
- [5] Y. Nir, arXiv:hep-ph/0703235.
- [6] P. Ball, arXiv:hep-ph/0703245.
- [7] M. Blanke et~al., arXiv:hep-ph/0703254.
- $[8]\,$ X. G. He and G. Valencia, arXiv:hep-ph/0703270.
- [9] C. H. Chen, C. Q. Geng and T. C. Yuan, arXiv:0704.0601.
- [10] G. Burdman and I. Shipsey, Ann. Rev. Nucl. Part. Sci. **53**, 431 (2003) [arXiv:hep-ph/0310076].
- [11] D. Asner, review on D mixing in W. M. Yao et al. [Particle Data Group], J. Phys. G 33 (2006) 1;
 - I. Shipsey, Int. J. Mod. Phys. A 21 (2006) 5381 [arXiv:hep-ex/0607070];
 - A. A. Petrov, Int. J. Mod. Phys. A **21** (2006) 5686 [arXiv:hep-ph/0611361].

- [12] W. M. Sun [CLEO Collaboration], AIP Conf. Proc. 842 (2006) 693 [arXiv:hep-ex/0603031];
 D. Asner et al. [CLEO Collaboration], Int. J. Mod. Phys. A 21 (2006) 5456 [arXiv:hep-ex/0607078].
- [13] D. Asner, talk given at workshop Flavour Physics in the Era of the LHC, CERN, March 07, http://mlm.home.cern.ch/mlm/FlavLHC.html.
- [14] X. D. Cheng et al., arXiv:arXiv:0704.0120.
- [15] D. N. Gao, Phys. Lett. B **645** (2007) 59 [arXiv:hep-ph/0610389].
- [16] A. Lenz and U. Nierste, arXiv:hep-ph/0612167.
- [17] H. Georgi, Phys. Lett. B 297, 353 (1992) [arXiv:hep-ph/9209291];
 T. Ohl, G. Ricciardi and E. H. Simmons, Nucl. Phys. B 403, 605 (1993) [arXiv:hep-ph/9301212];
 I. I. Y. Bigi and N. G. Uraltsev, Nucl. Phys. B 592, 92 (2001) [arXiv:hep-ph/0005089];
 A. F. Falk, Y. Grossman, Z. Ligeti and A. A. Petrov, Phys. Rev. D 65, 054034 (2002) [arXiv:hep-ph/0110317];
 - A. F. Falk *et al.*, Phys. Rev. D **69**, 114021 (2004) [arXiv:hep-ph/0402204].
- [18] Y. Grossman, Phys. Lett. B **380** (1996) 99 [arXiv:hep-ph/9603244].
- [19] E. Golowich, S. Pakvasa and A. A. Petrov, arXiv:hep-ph/0610039.
- [20] P. Ball, J. M. Frere and J. Matias, Nucl. Phys. B **572** (2000) 3 [arXiv:hep-ph/9910211];
 - P. Ball and R. Zwicky, JHEP **0604** (2006) 046 [arXiv:hep-ph/0603232];
 - P. Ball and R. Fleischer, Eur. Phys. J. C 48, 413 (2006) [arXiv:hep-ph/0604249];
 - P. Ball and R. Zwicky, Phys. Lett. B **642** (2006) 478 [arXiv:hep-ph/0609037];
 - P. Ball, G. W. Jones and R. Zwicky, Phys. Rev. D **75** (2007) 054004 [arXiv:hep-ph/0612081].