MATH381 Assignment 1

Ben Vickers - 300607049

Due Thursday 25 July at 23:55pm

Question 1

Note: AOL is an abbreviation for Algebra Of Limits

(i)
$$\lim_{n \to \infty} \frac{n^3 + n\sqrt{n} + i\left(2 - \frac{1}{n^3}\right)}{2n^3 - 3n^2}$$

We rewrite the sequence by taking the "dominant" n^3 out \Longrightarrow

$$\begin{split} & \lim_{n \to \infty} \frac{\left(n^3 + n\sqrt{n} + i\left(2 - \frac{1}{n^3}\right)\right) \cdot \frac{1}{n^3}}{(2n^3 - 3n^2) \cdot \frac{1}{n^3}} \\ & = \lim_{n \to \infty} \frac{1 + \frac{1}{n^{3/2}} + i\left(2 - \frac{1}{n^3}\right)}{2 - \frac{3}{n}} \end{split}$$

By AOL, limit of quotient = quotient of limits \Longrightarrow

$$\frac{\lim_{n \to \infty} \left(1 + \frac{1}{n^{3/2}} + i\left(2 - \frac{1}{n^3}\right)\right)}{\lim_{n \to \infty} \left(2 - \frac{3}{n}\right)}$$

By AOL, limit of sum = sum of limits \implies

$$\frac{\lim\limits_{n\to\infty}1+\lim\limits_{n\to\infty}\frac{1}{n^{3/2}}+\lim\limits_{n\to\infty}i\left(2-\frac{1}{n^3}\right)}{\lim\limits_{n\to\infty}2-\lim\limits_{n\to\infty}\frac{3}{n}}$$

By AOL, limit of constant = constant. Also, for p > 0, $\lim_{n \to \infty} \frac{1}{n^p} = 0$, \Longrightarrow

$$\frac{1+0+i\cdot\lim_{n\to\infty}\left(2-\frac{1}{n^3}\right)}{2-0}$$

By AOL, limit of difference = difference of limits \implies

$$\frac{1 + i \cdot \left(\lim_{n \to \infty} 2 - \lim_{n \to \infty} \frac{1}{n^3}\right)}{2}$$

By AOL, limit of constant = constant and for $p>0, \lim_{n\to\infty}\frac{1}{n^p}=0, \implies$

$$\frac{1+i\cdot(2-0)}{2} = \frac{1+2i}{2} = \frac{1}{2}+i \quad \Box$$

(ii)
$$\lim_{n \to \infty} \frac{3^n + 2^n + i\left(3^n - \sin(n^2)\right)}{3^{n+2} - 3^{\frac{n}{2}}}$$

We rewrite the sequence by taking the "dominant" 3^n out \Longrightarrow

$$\lim_{n \to \infty} \frac{\left(3^n + 2^n + i\left(3^n - \sin(n^2)\right)\right) \cdot \frac{1}{n^3}}{\left(3^{n+2} - 3^{\frac{n}{2}}\right) \cdot \frac{1}{n^3}}$$

$$= \lim_{n \to \infty} \frac{1 + \left(\frac{2}{3}\right)^n + i\left(1 - \frac{\sin(n^2)}{3^n}\right)}{3^2 - \left(\frac{1}{\sqrt{3}}\right)^n}$$

By AOL, limit of quotient = quotient of limits \Longrightarrow

$$\frac{\lim_{n \to \infty} \left(1 + \left(\frac{2}{3}\right)^n + i\left(1 - \frac{\sin(n^2)}{3^n}\right) \right)}{\lim_{n \to \infty} \left(3^2 - \left(\frac{1}{\sqrt{3}}\right)^n \right)}$$

By AOL, limit (or difference) of sum = sum (or difference) of limits \implies

$$\frac{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \left(\frac{2}{3}\right)^n + \lim_{n \to \infty} i \left(1 - \frac{\sin(n^2)}{3^n}\right)}{\lim_{n \to \infty} 3^2 - \lim_{n \to \infty} \left(\frac{1}{\sqrt{3}}\right)^n}$$

By AOL, limit of constant = constant, For |p| < 1, $\lim_{n \to \infty} p^n = 0 \implies$

$$\frac{1 + i \cdot \lim_{n \to \infty} \left(1 - \frac{\sin(n^2)}{3^n} \right)}{9}$$

By AOL, limit of difference = difference of limits \Longrightarrow

$$\frac{1+i\cdot\left(\lim_{n\to\infty}1-\lim_{n\to\infty}\frac{\sin(n^2)}{3^n}\right)}{9}$$

By AOL, limit of constant \Longrightarrow

$$\frac{1+i\cdot\left(1-\lim_{n\to\infty}\frac{\sin(n^2)}{3^n}\right)}{9}$$

We now apply the squeeze theorem.

Squeeze Theorem: Suppose that there exists N such that $x_n \leq y_n \leq z_n$ for all $n \geq N$, and that $x_n \to x$ and $z_n \to x$ as $n \to \infty$. Then $y_n \to x$ as $n \to \infty$.

Notice that $sin(n) \in [-1, 1] \implies sin(n^2) \in [-1, 1]$ also.

$$\implies \frac{\sin(n^2)}{3^n} \in \left[\frac{-1}{3^n}, \frac{1}{3^n}\right] \implies \frac{-1}{3^n} \le \frac{\sin(n^2)}{3^n} \le \frac{1}{3^n}$$

$$\lim_{n \to \infty} \left(\frac{-1}{3} \right)^n = 0 \text{ as } \left| \frac{-1}{3} \right| < 1$$

$$\lim_{n \to \infty} \left(\frac{1}{3}\right)^n = 0 \text{ as } \left|\frac{1}{3}\right| < 1$$

So, by the squeeze theorem, $\lim_{n\to\infty} \frac{\sin(n^2)}{3^n} = 0$

Which by AOL now gives us: $\frac{1+i\cdot(1-0)}{9} = \frac{1+i}{9} = \frac{1}{9} + \frac{i}{9}$

Question 2

Let
$$z_n = \frac{n^2 + 2 + 3in}{2n^2 - n}$$
 for $n \in \mathbb{N}$

Prove from the definition that $z_n \to \frac{1}{2}$ as $n \to \infty$

Given
$$\epsilon > 0$$
, take $N \in \mathbb{N}$ such that $N > \frac{\epsilon + 8}{2\epsilon}$

$$\implies \forall n \geq N, \text{we have: } n > \frac{\epsilon + 8}{2\epsilon}$$

$$\implies 2n\epsilon > \epsilon + 8$$

$$\implies 2n\epsilon - \epsilon > 8$$

$$\implies \epsilon (2n-1) > 8$$

$$\implies \epsilon > \frac{8}{2n-1} \quad (\text{As } 2n-1 > 0 \text{ for } n \ge 1)$$

$$\implies \epsilon > \frac{16n}{4n^2 - 2n}$$

$$\implies \epsilon > \frac{\sqrt{37n^2 + 8n + 16}}{4n^2 - 2n} \quad (\text{For } n \ge 1)$$

The proof of the last step is omitted, however, can easily be verified by solving the quadratic $(16n)^2 = 37n^2 + 8n + 16$, which has positive solution, $n \approx 0.289$. Then, as $y = 256n^2 - 37n^2 - 8n - 16$ is an increasing parabola, $16n > \sqrt{37n^2 + 8nx + 16}$ for n > 0.289. As $n \ge N \ge 1$, this equality holds for each n in our sequence.

We continue by factorising the denominator \implies

$$\epsilon > \frac{\sqrt{37n^2 + 8n + 16}}{2n(2n - 1)}$$

$$= \sqrt{\frac{37n^2 + 8n + 16}{4n^2(2n - 1)^2}}$$

$$= \sqrt{\frac{(n + 4)^2 + 36n^2}{4n^2(2n - 1)^2}}$$

$$= \sqrt{\left(\frac{n + 4}{2n(2n - 1)}\right)^2 + \left(\frac{3}{2n - 1}\right)^2}$$

$$= \left| \left(\frac{n + 4}{2n(2n - 1)}\right)^2 + \left(\frac{3}{2n - 1}\right) \right|$$

$$= \left| \left(\frac{n + 4}{2n(2n - 1)}\right) + i \cdot \left(\frac{3}{2n - 1}\right) \right|$$

$$= \left| \left(\frac{n^2}{2n(2n - 1)}\right) + i \cdot \left(\frac{3}{2n - 1}\right) \right|$$

$$= \left| \left(\frac{n^2}{n(2n - 1)}\right) + \left(\frac{2}{n(2n - 1)}\right) - \left(\frac{n(2n - 1)}{2n(2n - 1)}\right) + i \cdot \left(\frac{3}{2n - 1}\right) \right|$$

$$= \left| \left(\frac{n^2}{n(2n - 1)}\right) + \left(\frac{2}{n(2n - 1)}\right) - \frac{1}{2} + i \cdot \left(\frac{3}{2n - 1}\right) \right|$$

$$= \left| \left(\frac{n^2 + 2}{n(2n - 1)} + i \cdot \left(\frac{3n}{n(2n - 1)}\right)\right) - \frac{1}{2} \right|$$

$$= \left| \left(\frac{n^2 + 2 + 3in}{n(2n - 1)}\right) - \frac{1}{2} \right|$$

$$= \left| z_n - \frac{1}{2} \right|$$

$$\Rightarrow \left| z_n - \frac{1}{2} \right| < \epsilon$$

So, given $\epsilon > 0$, if we choose an integer, $N > \frac{\epsilon + 8}{2\epsilon}$

Then if $n \geq N$, we have:

$$|z_n - \frac{1}{2}| < \frac{8}{2n-1} \le \frac{8}{2N-1} < \epsilon$$

Therefore, by definition of the convergence of a sequence, we obtain that $(z_n)_{n=1}^{\infty}$ is convergent with limit $\frac{1}{2}$. \Box

Question 3

Let $(z_n)_{n=1}^{\infty}$ and $(w_n)_{n=1}^{\infty}$ be sequences of complex numbers. Suppose that $z_n \to z$ and $w_n \to w$ in \mathbb{C} . Prove from the definition that $z_n + w_n \to z + w$ as $n \to \infty$.

We know $z_n \to z \implies \forall \epsilon > 0, \exists N_Z \text{ such that } |z_n - z| < \frac{\epsilon}{2} \text{ for all } n \geq N_Z.$

Likewise, $w_n \to w \implies \forall \epsilon > 0, \exists N_W \text{ such that } |w_n - w| < \frac{\epsilon}{2} \text{ for all } n \geq N_W.$

 $\Rightarrow \forall \epsilon > 0, \exists N_Z, N_W$ such that $\forall n \geq N = \max\{N_Z, N_W\}$, we have:

$$|z_n - z| < \frac{\epsilon}{2}$$
 and $|w_n - w| < \frac{\epsilon}{2}$.

By the triangle inequality, $|(z_n+w_n)-(z+w)| \leq |z_n-z|+|w_n-w| < \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.

 $\Rightarrow \forall \epsilon > 0, \exists N \text{ such that } |(z_n + w_n) - (z + w)| < \epsilon \text{ for all } n \geq N.$

So, by definition: $z_n + w_n \to z + w$ as $n \to \infty$ \square

Question 4

Let $f: S \to \mathbb{C}$, and let $a \in S \subseteq \mathbb{C}$. Suppose that, for every sequence $(z_n)_{n=1}^{\infty}$ in S, if $z_n \to a$ then $f(z_n) \to f(a)$. Prove that the function f is continuous at a.

We use proof by contradiction to show f is continuous at a.

Assume by contradiction that f is not continuous at a.

 $\Rightarrow \exists \epsilon > 0 \text{ such that } \forall \delta > 0, \exists z \in S \text{ with } 0 \leq |z - a| < \delta \text{ but } |f(z) - f(a)| \geq \epsilon.$

 $\implies \forall n \in \mathbb{N} \text{ we can define } \delta := \frac{1}{n}, \text{ which gives } z_n \in S \text{ such that:}$

$$0 \le |z_n - a| < \frac{1}{n} \qquad (4.1)$$

and

$$|f(z_n) - f(a)| \ge \epsilon \tag{4.2}$$

By (4.1), we can apply the squeeze theorem and since $\frac{1}{n} \to 0$ as $n \to \infty \Rightarrow |z_n - a| \to 0$ We now have $z_n \to a$ as $n \to \infty$.

What's more, because we have $z_n \in S$ and $z_n \to a \implies f(z_n) \to f(a)$. (as per Q4)

Since for this given $\epsilon > 0$ we have $f(z_n) \to f(a)$,

$$\implies \exists N \in \mathbb{N} \text{ such that } \forall n \geq N, \ |f(z_n) - f(a)| < \epsilon$$

However, this contradicts (4.2)

We have therefore shown that the assumption that f is not continuous at a is false

 \implies The function f is continuous at a

1_

This was my first time using Latex so any feed-back on the formatting, layout, notation etc. would be greatly appreciated. (After feedback on my actual working of course!)