Derivation of Formula for Dot Product Expressed in Terms of Coordinates

By definition dot product is: $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha$ Where: α is the angle between vectors \vec{a} and \vec{b}

We need to prove that:

$$|\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha = x_1 \cdot y_1 + x_2 \cdot y_2$$

Where:

- x_1 and y_1 are the coordinates of \vec{a}
- x_2 and y_2 are the coordinates of b

Figure 1

Proof # 1

If \vec{a} and \vec{b} are not colinear (Figure 1), then using cosine law:

$$AB^2 = OA^2 + OB^2 - 2OA \cdot OB \cdot \cos \alpha \tag{1}$$

Since $\vec{AB} = \vec{b} - \vec{a}$, where $\vec{OA} = \vec{a}$, $\vec{OB} = \vec{b}$, (1) can be written as:

$$|\vec{b} - \vec{a}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b}$$

From here we get:

$$\vec{a} \cdot \vec{b} = \frac{1}{2} (|\vec{a}|^2 + |\vec{b}|^2 - |\vec{b} - \vec{a}|^2) \tag{2}$$

Vectors \vec{a} , \vec{b} , and $\vec{b} - \vec{a}$ have coordinates of: $\{x_1; y_1\}, \{x_2; y_2\}$ and $\{x_2 - x_1; y_2 - y_1\}$.

$$\begin{aligned} |\vec{a}|^2 &= x_1^2 + y_1^2 \\ |\vec{b}|^2 &= x_2^2 + y_2^2 \\ |\vec{b} - \vec{a}|^2 &= (x_2 - x_1)^2 + (y_2 - y_1)^2 \end{aligned}$$

Substituting this into (2) get:

$$\vec{a} \cdot \vec{b} = \frac{1}{2}(x_1^2 + y_1^2 + x_2^2 + y_2^2 - (x_2 - x_1)^2 - (y_2 - y_1)^2)$$

$$\vec{a} \cdot \vec{b} = \frac{1}{2}(x_1^2 + y_1^2 + x_2^2 + y_2^2 - x_2^2 + 2x_1 \cdot x_2 - x_1^2 - y_2^2 + 2y_1 \cdot y_2 - y_1^2)$$

$$\vec{a} \cdot \vec{b} = \frac{1}{2}(2x_1 \cdot x_2 + 2y_1 \cdot y_2)$$

$$\vec{a} \cdot \vec{b} = x_1 \cdot x_2 + y_1 \cdot y_2$$

$$\therefore QED$$

You can verify that cosine law would still be applicable if \vec{a} and \vec{b} are colinear ($\alpha = 0^{\circ}$ or $\alpha = 180^{\circ}$)

Proof # 2

Let α be the angle between \vec{a} and \vec{b} . Let β be the angle between \vec{b} and the x axis. Let c be the angle between \vec{a} and the x axis. x_1, y_1 and x_2, y_2 are the points \vec{a} and \vec{b} respectively.

First we need to express as much as we can in terms of coordinate points:

Then:

Recall the identity:

$$\tan^2 \alpha + 1 = \frac{1}{\cos^2 \alpha}$$
$$\cos \alpha = \sqrt{\frac{1}{\tan^2 \alpha + 1}}$$

Substitute (5) into the line above:

$$= \sqrt{\frac{\frac{1}{(\frac{y_1 \cdot x_2 - y_2 \cdot x_1}{x_1 \cdot x_2 + y_1 \cdot y_2})^2 + 1}}$$

$$= \frac{x_1 \cdot x_2 + y_1 \cdot y_2}{\sqrt{y_1^2 \cdot x_2^2 + y_2^2 \cdot x_1^2 + x_1^2 \cdot x_2^2 + y_1^2 \cdot y_2^2}}$$

Figure 2

$$= \frac{x_1 \cdot x_2 + y_1 \cdot y_2}{\sqrt{y_1^2 \cdot (x_2^2 + y_2^2) + x_1^2 \cdot (x_2^2 + y_2^2)}}$$
$$= \frac{x_1 \cdot x_2 + y_1 \cdot y_2}{\sqrt{(x_1^2 + y_1^2) \cdot (x_2^2 + y_2^2)}}$$

Substitute line above, (3) and (4) into the definition of dot product.

$$\vec{a} \cdot \vec{b} = \sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2} \cdot \frac{x_1 \cdot x_2 + y_1 \cdot y_2}{\sqrt{(x_1^2 + y_1^2) \cdot (x_2^2 + y_2^2)}}$$
$$= x_1 \cdot x_2 + y_1 \cdot y_2$$

 $\therefore QED$