Correction partiel

Exercice 1.

a) On rappelle les équations de Cauchy-Riemann pour la fonction f. On pose $u = \Re e(f)$ et $v = \Im m(f)$, de sorte que f = u + iv.

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

Par définition, dire que $f(z) \in \mathbb{R}$ pour tout $z \in \mathbb{R}$ équivaut à dire que f = u, autrement dit v = 0. Comme toute fonction holomorphe respecte les équations de Cauchy-Riemann, en remplaçant v par 0 dans les équations de Cauchy-Riemann, on obtient

$$\begin{cases} \frac{\partial u}{\partial x} = 0\\ \frac{\partial u}{\partial y} = 0 \end{cases}$$

D'après l'énoncé, la fonction $u:D\to\mathbb{R}$ est donc constante : la fonction f=u est donc constante.

b) On sait que $\mathcal{O}(D)$ forme un \mathbb{C} -espace vectoriel. Si $f, \overline{f} \in \mathcal{O}(D)$, on a alors

$$\Re(f) = \frac{1}{2}(f + \overline{f}) \in \mathcal{O}(D) \text{ et } \Im(f) = \frac{1}{2i}(f - \overline{f}) \in \mathcal{O}(D)$$

Comme $\Re(f)$ et $\Im(f)$ sont des fonctions à valeurs réelles (par définition), le fait qu'elles soient holomorphes implique qu'elles soient constantes par la question précédentes. La fonction $f = \Re(f) + i\Im(f)$ est donc constante.

- c) On distingue deux cas. Premièrement, si |f| = 0, alors f = 0 est holomorphe et constante. Si $|f| \neq 0$, alors la fonction f ne s'annule pas sur D (si f(z) = 0, alors |f(z)| = |f|(z) = 0, ce qui est impossible par hypothèse). La fonction $\overline{f} = \frac{|f|^2}{f}$ est donc une fonction holomorphe sur D, comme quotient de deux fonctions holomorphes dont le dénominateur ne s'annule pas sur D. On a donc $f, \overline{f} \in \mathcal{O}(D)$ par hypothèse. La question précédente donne alors que f est constante.
- d) On calcule d'abord les dérivées partielles de u et de v :

$$\frac{\partial u}{\partial x}(x,y) = \cos(x)\sinh(y) \qquad \frac{\partial u}{\partial y}(x,y) = \sin(x)\cosh(y)$$
$$\frac{\partial v}{\partial x}(x,y) = -\sin(x)\cosh(y) \qquad \frac{\partial v}{\partial y}(x,y) = \cos(x)\sinh(y)$$

On voit directement que la fonction f = u + iv respecte les équations de Cauchy-Riemann sur \mathbb{C} . La fonction f est donc holomorphe sur \mathbb{C} .

Exercice 2.

a) Les fonctions holomorphes sont de classes \mathcal{C}^1 . Comme $f \in \mathcal{O}(D) \Rightarrow f' \in \mathcal{O}(D)$, on obtient en fait que les fonctions holomorphes sont de classe \mathcal{C}^2 (par une rapide récurrence, on voit que les fonctions holomorphes sont en fait de classes \mathcal{C}^{∞}). Soit $f \in \mathcal{O}(D)$, les fonctions $u := \Re e(f)$ et $v := \Im m(f)$ sont donc de classe \mathcal{C}^2 , on va donc pouvoir utiliser la règle de Schwarz. On rappelle les équations de Cauchy-Riemann pour f:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

On montre que la partie réelle de f est harmonique : on a

$$\frac{\partial^2}{\partial x^2}u = \frac{\partial}{\partial x}\left(\frac{\partial}{\partial x}u\right) = \frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}v\right) = \frac{\partial}{\partial y}\left(\frac{\partial}{\partial x}v\right) = \frac{\partial}{\partial y}\left(-\frac{\partial}{\partial y}u\right) = -\frac{\partial^2}{\partial y^2}u$$

la fonction u est donc harmonique. On raisonne de même pour la fonction v.

b) Supposons que f = u + iv est holomorphe sur $R_{I,J}$. Par les équations de Cauchy-Riemann, on a $\frac{\partial v}{\partial y}(x,y) = \frac{\partial u}{\partial x}(x,y)$ pour tout $(x,y) \in R_{I,J}$. En intégrant cette équation par rapport à y, on obtient

$$\forall x \in I, y \in J, \ v(x,y) = \int_{y_0}^{y} \frac{\partial u}{\partial x}(x,t)dt + v(x,y_0)$$

On pose donc $h(x) := v(x, y_0)$, qui est bien une fonction de classe \mathcal{C}^1 en x puisque v est une fonction de classe \mathcal{C}^{∞} de $R_{I,J}$ vers \mathbb{R} .

c) On utilise à nouveau les équations de Cauchy-Riemann, et la question précédente :

$$\frac{\partial u}{\partial y}(x,y) = -\frac{\partial v}{\partial x}(x,y) = -\frac{\partial}{\partial x} \int_{y_0}^y \frac{\partial u}{\partial x}(x,t) dt - \frac{\partial}{\partial x} h(x)$$

On obtient bien le résultat car $\frac{\partial}{\partial x}h = h'$ par définition. En appliquant cette équation en $y = y_0$, on trouve le résultat voulu.

d). Étant donnée la fonction $u: R_{I,J} \to \mathbb{R}$ harmonique par hypothèse. On fixe $(x_0, y_0) \in R_{I,J}$. On pose $\theta(x) = -\frac{\partial u}{\partial y}(x, y_0)$. Il s'agit d'une fonction continue car u est de classe \mathcal{C}^2 . On peut donc considérer

$$h(x) := \int_{x_0}^{x} \theta(t)dt$$

une primitive de θ . On pose alors

$$\forall x, y \in R_{I,J}, \ v(x,y) := \int_{y_0}^{y} \frac{\partial u}{\partial x}(x,t)dt + \int_{x_0}^{x} \theta(t)dt = \int_{y_0}^{y} \frac{\partial u}{\partial x}(x,t)dt - \int_{x_0}^{x} \frac{\partial u}{\partial y}(t,y_0)dt$$

Par construction, la fonction v est dérivable par rapport à y, avec

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x}(x, y)$$

Pour montrer que la fonction v est également dérivable par rapport à x, on doit montrer que

$$\int_{y_0}^{y} \frac{\partial u}{\partial x}(x,t)dt$$

est dérivable par rapport à x, ce qui découle du théorème de dérivation sous l'intégrale. On pose

$$F:(x,t)\mapsto \frac{\partial u}{\partial x}(x,t)$$

Pour x fixé, F(x, -) est continue, donc intégrable sur $[y_0; y]$ (intervalle borné). Pour t fixé, la fonction F(-, t) est dérivable par rapport à x, car u est de classe \mathcal{C}^2 , avec

$$\frac{\partial}{\partial x}F(x,t) = \frac{\partial^2}{\partial x^2}u(x,t)$$

Comme cette dernière fonction est continue, elle est bornée sur tout compact contenu dans $R_{I,J}$. Le théorème de dérivation sous l'intégrale nous apprend alors que v est dérivable en x sur tout intervalle compact inclus dans I. Comme I est la réunion des compacts qu'il contient, on obtient que v est dérivable par rapport à x sur I, avec

$$\frac{\partial v}{\partial x} = \int_{y_0}^{y} \frac{\partial^2 u}{\partial x^2}(x, t)dt - \frac{\partial u}{\partial y}(x, y_0)$$

$$= -\int_{y_0}^{y} \frac{\partial^2 u}{\partial y^2}(x, t)dt - \frac{\partial u}{\partial y}(x, y_0)$$

$$= -\frac{\partial u}{\partial y}(x, y) + \frac{\partial u}{\partial y}(x, y_0) - \frac{\partial u}{\partial y}(x, y_0)$$

$$= -\frac{\partial u}{\partial y}(x, y)$$

Autrement dit, la fonction u + iv respecte les équations de Cauchy-Riemann sur l'ouvert $R_{I,J}$. On a donc $u + iv \in \mathcal{O}(R_{I,J})$ comme souhaité.

e) Par définition, on a

$$\begin{array}{ll} \frac{\partial u}{\partial x}(x,y) = y & \frac{\partial u}{\partial x^2}(x,y) = 0 \\ \frac{\partial u}{\partial y}(x,y) = x & \frac{\partial u}{\partial y^2}(x,y) = 0 \end{array}$$

En particulier, la fonction u est harmonique sur \mathbb{C} . En utilisant la question précédente, on pose $(x_0, y_0) = (0, 0)$, et

$$\theta(x) = -x \text{ et } h(x) = \int_0^x -t dt = -\frac{x^2}{2}$$

On obtient la fonction v, définie par

$$v(x,y) = \int_0^y \frac{\partial u}{\partial x}(x,t)dt - \frac{x^2}{2} = \frac{y^2 - x^2}{2}$$

D'après la question précédente, la fonction f=u+iv est holomorphe sur $\mathbb C$. En fait on a

$$u(x,y) + iv(x,y) = -\frac{i}{2}(2iu(x,y) - 2v(x,y))$$

$$= -\frac{i}{2}(2ixy - (y^2 - x^2))$$

$$= -\frac{i}{2}(x^2 + 2ixy - y^2)$$

$$= -\frac{i}{2}(x + iy)^2 = \frac{-iz}{2}$$

Cette dernière fonction est assez clairement holomorphe : c'est un polynôme!