

Paired Samples t-test

Fikile Nkwanyana
Discipline of Public Health Medicine
25 July 2025

Statistical tests for continuous data

Number of groups	Dependent / Independent	Statistical test
One	N/A	One- Sample test
Two	Dependent	Paired samples t-test
Two	Independent	Independent samples t-test
Three	Independent	One-way Analysis of Variance

Assume normal distribution

Steps in Hypothesis Testing

- \checkmark Establish H_0 and H_a
- ✓ Set the significance level α (usually 0.05)
- ✓ Choose the appropriate statistical test
- ✓ Calculate the appropriate test statistic
- ✓ Read the relevant critical value from a stats table

✓ Compare the calculated statistics and the critical value.

Steps in Hypothesis Testing (cont)

- ✓ Make a decision regarding $H_{0:}$ If the calculated value is greater that the critical value, we reject H_0 . If not we fail to reject the H_0 .
- ✓ When the null hypothesis is rejected, the outcome is said to be <u>"statistically significant"</u>; when the null hypothesis is not rejected then the outcome is said be "not statistically significant."
- ✓ Draw a conclusion regarding your original research hypothesis based on your decision above.

Learning outcomes

When to use paired samples t-test

Assumptions

Null and alternative hypotheses

Calculate relevant statistics

Interpret results

When to use Paired samples t-test

Appropriate for comparing difference in means of **two** related groups.

✓ Useful in matched studies

✓ Useful in paired designs

Related groups also known as dependent groups or paired groups.

One person CAN be in both groups.

In matched studies – selection of participants in one group is influenced by characteristics of participants on the other group

1. The observations (differences between two sets of values) are independent of one another

2. The observations are continuous

3. The observations are normally distributed

- Independence
 - Cannot be tested
 - Is assumed if the data collection process is random

• Normal distribution of a observations (differences between two sets of values)

$$mean = median = mode$$

Testing for Normality

• Shapiro-Wilks test and Kolmogorov-Smirnov test (significant p-values imply that the data is NOT normally distributed)

If data are not normally distributed

• Transform data

• Use a non-parametric equivalent test - Wilcoxon signed rank test

(not for HMA exercises)

Null hypothesis

 Null hypothesis is a hypothesis of no difference, no association or no effect

Null hypothesis: the population mean difference is equal to zero

$$H_0: \delta = 0$$

Alternative hypothesis

oAlternative hypothesis is a hypothesis of difference, association or effect

Alternative hypothesis : the population mean difference not equal to zero

$$H_a$$
: $\delta \neq 0$

Relevant statistics

t-test

$$t_{n-1} = \frac{d - \delta}{s_d / \sqrt{n}}$$

• A study was conducted to assess the effect of oral contraception on systolic blood pressure.

Ten women were enrolled in the study.

• For each woman, systolic blood pressure was measured before taking the pill and after taking the pill.

Statistical Tests - Examples

✓ Establish H_o and H_a

$$H_0$$
: $\delta = 0$

$$H_a$$
: $\delta \neq 0$

✓ Set the significance level α (usually 0.05)

Statistical Tests - Examples

✓ Choose the appropriate statistical test

Type of variable (systolic BP) – continuous Distribution of systolic BP– normal Number of groups – two Independent or dependent – dependent

Appropriate test statistic: Paired samples t test

Statistical Tests - Examples

Calculate the appropriate test statistic

$$t = \frac{\bar{d} - \delta}{s_d / \sqrt{n}}$$

before	after
115	128
112	115
107	106
119	128
115	122
138	145
126	132
105	109
104	102
115	117

before	after	difference
115	128	13
112	115	3
107	106	-1
119	128	9
115	122	7
138	145	7
126	132	6
105	109	4
104	102	-2
115	117	2

• $mean_{before} = 115,6 mmHg$

• $mean_{after} = 120,4 mmHg$

• $\bar{d} = 4.8$

• $s_d = 4,56$

$$t = \frac{\bar{d} - \delta}{s_d / \sqrt{n}}$$

$$t = \frac{4,8 - 0}{4,56/\sqrt{10}}$$

$$t = \frac{4,8}{4,56/3,16}$$

$$=\frac{4,8}{1.44}$$
=3,33

• Check the critical value associated with the test statistics in the table

Read critical value of t from the stats tables for t-statistics.

TABLE 3—Percentage Points of Student's t Distribution

Level of Significance for a One-Tailed Test										
Degrees of Freedom	.25	.20	.15	.10	.05	.025	.01	.005	.0005	
(n-1)	75.00	900	Level	of Signific	ance for a	Two-Taile	d Test	06394	1003	
and the second	.50	.40	.30	.20	.10	.05	.02	.01	.001	
1	1,000	1.376	1.963	3.078	6.314	12 06	31.821	63.657	636.619	
2	.816	1.061	1.386	1.886	2.920	4 03	6.965	9.925	31.598	
3	.765	.978	1.250	1.638	2.353	3 82	4.541	5.841	12.924	
4	.741	.941	1.190	1.533	2.132	2 76	3.747	4.604	8.610	
5	.727	.920	1.156	1.476	2.015	2 71	3.365	4.032	6.869	
6	.718	.906	1.134	1.440	1.943	2 147	3.143	3.707	5.959	
7	.711	.896	1.119	1.415	1.895	2 65	2.998	3,499	5.408	
8	.706	.889	1.108	1.397	1.860	2 106	2.896	3.355	5.041	
9		35,67	11100	1.0271	1,000	2.262	2.821	3.250	4,781	
10	.700	.879	1.093	1.372	1.812	2.226	2.764	3.169	4.587	
111	.697	.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437	
12	.695	.873	1.083	1.356	1.782	2.179	2.681	3.055	4.318	
13	,694	.870	1.079	1.350	1.771	2.160	2.650	3.012	4.221	
14	.692	.868	1.076	1.345	1.761	2.145	2.624	2.977	4.140	
15	.691	.866	1.074	1.341	1.753	2.131	2.602	2.947	4.073	
16	.690	.865	1.071	1.337	1.746	2.120	2.583	2.921	4.015	
17	.689	.863	1.069	1.333	1.740	2.110	2.567	2.898	3.965	
18	.688	.862	1.067	1.330	1.734	2.101	2.552	2.878	3.922	
19	.688	.861	1.066	1.328	1.729	2.093	2.539	2.861	3.883	
20	.687	.860	1.064	1.325	1.725	2.086	2.528	2.845	3.850	
21.1	606	0.00	1.002		1.031	2 000	2.510	2.021	2.010	
21 22	.686	.859	1.063	1.323	1.721	2.080	2.518	2.831	3.819	
23	.686	.858	1.061	1.321	1.717	2.074	2.508	2.819	3.792	
24	.685	.858	1.060	1.319	1.714	2.069	2.500	2.807	3.767	
	.685	.857	1.059	1.318	1.711	2.064	2.492	2.797	3.745	
25	.684	.856	1.058	1316	1.708	2.060	2.485	2.787	3,725	
26	.684	.856	1.058	1.315	1.706	2.056	2.479	2.779	3.70	
27	.684	.855	1.057	1.314	1.703	2.052	2.473	2.771	3.690	
28	.683	.855	1.056	1.313	1.701	2.048	2.467	2.763	3.674	
29	.683	.854	1.055	1.311	1.699	2.045	2.462	2.756	3.659	
30	.683	.854	1.055	1.310	1.697	2.042	2.457	2.750	3.646	
40	.681	.851	1.050	1.303	1.684	2.021	2.423	2.704	3.551	
60	.679	.848	1.046	1.296	1.671	2.000	2.390	2.660	3.460	
120	.677	.845	1.041	1.289	1.658	1.980	2.358	2.617	3.373	
00	.674	.842	1.036	1.282	1.645	1.960	2.326	2.576	3.291	

$$t_{9;0,05} = 2,26$$

Since $t_{calc} = 3.33$ is greater than 2,26;

Reject the null hypothesis (the mean difference of systolic blood pressure before and after taking a contraceptive pill is equal to zero) if the calculated value of t is greater that the critical value of t.

Conclusion

• The mean difference of systolic blood pressure before and after taking a contraceptive pill is not equal to zero

Therefore, systolic blood pressure changes after taking a contraceptive pill.

Estimate range of a p-value

• Check where the calculated value of t lie at the relevant degrees of freedom and level of significance

$$t_{calc} = 3,33$$

• Check where 3,33 lie at 9 degrees of freedom

TABLE 3—Percentage Points of Student's t Distribution

	20	20		Level of Significance for a One-Tailed Test				200		
Degrees of Freedom	,25	.20	.15	.10	.05	.025	.01	.005	.0005	
(n-1)	75.00	9000	Level	of Signific	ance for a	Two-Taile	d Test	00094	5-5-05	
attack.	.50	.40	.30	.20	.10	.05	.02	.01	.001	
1	1,000	1.376	1,963	3.078	6.314	12.706	31.821	63,657	636.619	
2	.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.598	
2 3	.765	.978	1.250	1.638	2.353	3.182	4.541	5.841	12.924	
4	.741	.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610	
5	.727	.920	1.156	1.476	2.015	2.571	3.365	4.032	6.869	
6	.718	.906	1.134	1.440	1.943	2.447	3.143	3.707	5.959	
7	.711	.896	1.119	1.415	1.895	2.365	2.998	3,499	5.408	
8	.706	.889	1.108	1.397	1.860	2.306	2.896	3.355	5.041	
9	.703	.883	1.100	1.383	1.833	2.262	2.821	3.250	4,781	
10	.700	.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587	
n1	.697	.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437	
12	.695	.873	1.083	1.356	1.782	2.179	2.681	3.055	4.318	
13	.694	.870	1.079	1.350	1.771	2.160	2.650	3.012	4.221	
14	.692	.868	1.076	1.345	1.761	2.145	2.624	2.977	4.140	
15	.691	.866	1.074	1.341	1.753	2.131	2.602	2.947	4.073	
16	,690	.865	1.071	1.337	1.746	2.120	2.583	2.921	4.015	
17	,689	.863	1.069	1.333	1.740	2.110	2.567	2.898	3.965	
18	.688	.862	1.067	1.330	1.734	2.101	2.552	2.878	3.922	
19	.688	.861	1.066	1.328	1.729	2.093	2.539	2.861	3.883	
20	.687	.860	1.064	1.325	1.725	2.086	2.528	2.845	3.850	
21	.686	.859	1.063	1.323	1.721	2.080	2.518	2.831	3.819	
22	.686	.858	1.061	1.321	1.717	2.074	2.508	2.819	3.792	
23	.685	.858	1.060	1.319	1.714	2.069	2.500	2.807	3.767	
24	.685	.857	1.059	1.318	1.711	2.064	2,492	2.797	3.745	
25	.684	.856	1.058	1.316	1.708	2.060	2.485	2.787	3,725	
26	.684	.856	1.058	1.315	1.706	2.056	2.479	2.779	3.70	
27	.684	.855	1.057	1.314	1.703	2.052	2.473	2.771	3.690	
28	.683	.855	1.056	1.313	1.701	2.048	2.467	2.763	3.674	
29	.683	.854	1.055	1.311	1.699	2.045	2.462	2.756	3.659	
30	.683	.854	1.055	1.310	1.697	2.042	2.457	2.750	3.646	
40	.681	.851	1.050	1.303	1.684	2.021	2.423	2.704	3.551	
60	,679	.848	1.046	1.296	1.671	2.000	2.390	2.660	3.460	
120	.677	.845	1.041	1.289	1.658	1.980	2.358	2.617	3.373	
00	.674	.842	1.036	1.282	1.645	1.960	2.326	2.576	3.291	
22.0	100	1774	1,000	1.202	1.000	1.500	2.520	2010		

• At 9 degrees of freedom; 3,33 lie between 0,01 and 0,001.

Questions?