

Xyba Project

PDP dan Syarat Batas Rangkuman UTS

- 1. This document is version: 0.8.8

 Version should be at least 0.9 if you want to share this document to other people
- 2. You may not share this document if version is less than 1.0 unless you have my permission to do so
- 3. This document is created by Xyba, Student of Mathematics University of Indonesia Batch 2016
- 4. Should there be any mistakes or feedbacks you'd like to give, please contact me
- 5. Last Updated: 26/03/2019

Thank you for your cooperation >v<

A. Notasi

Misal z = z(x, y) dimana x, y adalah variabel bebas dan z adalah variabel tidak bebas. Untuk mempermudah penulisan, digunakan simbol-simbol sebagai berikut.

$$p = \frac{\partial z}{\partial x}$$
, $q = \frac{\partial z}{\partial y}$, $r = \frac{\partial^2 z}{\partial x^2}$, $s = \frac{\partial^2 z}{\partial x \partial y}$, $t = \frac{\partial^2 z}{\partial y^2}$

B. Pembentukan Persamaan Differensial Parsial

B.1. Eliminasi konstanta sembarang

Misal diberikan fungsi implisit F(x, y, z, a, b) = 0 dengan z = z(x, y) dan a, b konstanta. Misal diinginkan konstanta a, b hilang, ini dapat dicapai dengan turunan parsial.

• Turunan Parsial *F* terhadap *x*

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial x} = 0 \Leftrightarrow \frac{\partial F}{\partial x} + p \frac{\partial F}{\partial z} = 0$$

• Turunan Parsial *F* terhadap *y*

$$\frac{\partial \dot{F}}{\partial y} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial y} = 0 \Leftrightarrow \frac{\partial F}{\partial y} + q \frac{\partial F}{\partial z} = 0$$

Setelah menyelesaikan kedua persamaan tersebut untuk memperoleh a dan b kemudian disubstitusikan, akan diperoleh PDP untuk F(x, y, z, a, b) = 0.

B.2. Eliminasi fungsi sembarang

Misal diberikan relasi implisit $\phi(u, v) = 0$ dengan u = u(x, y, z), v = v(x, y, z), dan z = z(x, y). Misal diinginkan ϕ hilang, ini dapat dicapai dengan turunan parsial.

• Turunan Parsial ϕ terhadap x

Sehingga:
$$\frac{\partial \phi}{\partial u} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial z} \cdot \frac{\partial z}{\partial x} \right) + \frac{\partial \phi}{\partial v} \left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial z} \cdot \frac{\partial z}{\partial x} \right) = 0$$

$$\Leftrightarrow \frac{\partial \phi}{\partial u} \left(\frac{\partial u}{\partial x} + p \frac{\partial u}{\partial z} \right) + \frac{\partial \phi}{\partial v} \left(\frac{\partial v}{\partial x} + p \frac{\partial v}{\partial z} \right) = 0$$

$$\text{Sehingga: } \frac{\frac{\partial \phi}{\partial u}}{\frac{\partial u}{\partial v}} = \frac{\partial v}{\partial u} = \frac{-\left(\frac{\partial v}{\partial x} + p \frac{\partial v}{\partial z}\right)}{\frac{\partial u}{\partial x} + p \frac{\partial u}{\partial z}} = \frac{A}{B}$$

• Turunan Parsial ϕ terhadap y

$$\frac{\partial \phi}{\partial u} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} \cdot \frac{\partial z}{\partial y} \right) + \frac{\partial \phi}{\partial v} \left(\frac{\partial v}{\partial y} + \frac{\partial v}{\partial z} \cdot \frac{\partial z}{\partial y} \right) = 0$$

$$\Leftrightarrow \frac{\partial \phi}{\partial u} \left(\frac{\partial u}{\partial y} + q \frac{\partial u}{\partial z} \right) + \frac{\partial \phi}{\partial v} \left(\frac{\partial v}{\partial y} + q \frac{\partial v}{\partial z} \right) = 0$$
Sehingga:
$$\frac{\frac{\partial \phi}{\partial u}}{\frac{\partial u}{\partial v}} = \frac{\partial v}{\partial u} = \frac{-\left(\frac{\partial v}{\partial y} + q \frac{\partial v}{\partial z} \right)}{\frac{\partial u}{\partial y} + q \frac{\partial u}{\partial z}} = \frac{C}{D}$$

Substitusi

$$\frac{\partial v}{\partial u} = \frac{\partial v}{\partial u} \Leftrightarrow \frac{A}{B} = \frac{C}{D} \Leftrightarrow AD = BC$$

1

Dari persamaan tersebut diperoleh:

$$\left(\frac{\partial u}{\partial y} + q \frac{\partial u}{\partial z}\right) \left(\frac{\partial v}{\partial x} + p \frac{\partial v}{\partial z}\right) = \left(\frac{\partial u}{\partial x} + p \frac{\partial u}{\partial z}\right) \left(\frac{\partial v}{\partial y} + q \frac{\partial v}{\partial z}\right)$$

Ini merupakan PDP untuk $\phi(u, v) = 0$.

Dapat ditunjukkan bahwa PDP tersebut dapat dirumuskan sebagai Pp + Qq = R dengan:

P =
$$\frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial z} - \frac{\partial u}{\partial z} \cdot \frac{\partial v}{\partial y}$$

$$Q = \frac{\partial u}{\partial z} \cdot \frac{\partial v}{\partial x} - \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial z}$$

$$R = \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial x}$$

C. PDP Linier Orde 1 dan Persamaan Lagrange

Suatu PDP disebut linier orde 1 jika turunan tertingginya untuk semua variabel bebasnya adalah turunan pertama dengan derajatnya adalah derajat satu.

e.g.: $xp + yq = z^2$ adalah PDP orde 1, derajat 1, dan linier.

Bentuk umum dari PDP Linier Orde 1 adalah:

$$Pp + Qq = R$$

dimana P, Q, R adalah fungsi-fungsi dalam x, y, z.

Teorema

Jika $u(x, y, z) = c_1$ dan $v(x, y, z) = c_2$ adalah dua solusi dari Lagrange Auxiliary:

$$\frac{dx}{P} = \frac{dy}{O} = \frac{dz}{R}$$

dimana P, Q, R adalah fungsi-fungsi dalam x, y, z dengan z = z(x, y), maka $\phi(u, v) = 0$ adalah solusi umum dari PDP berbentuk umum Pp + Qq = R dengan P, Q, R yang telah didefinisikan di atas.

Dengan memanfaatkan Teorema tersebut, dapat ditentukan solusi umum untuk berbagai PDP Linier Orde 1. Cara ini biasa disebut Metode Lagrange.

C.1. <u>Metode Lagrange Tipe 1</u>

Jika salahsatu variabel tidak muncul atau dapat dihilangkan dari sembarang dua pecahan dalam Lagrange Auxiliary, maka keduanya dapat langsung diintegralkan untuk mencari solusi umum $\phi(u, v) = 0$.

C.2. Metode Lagrange Tipe 2

Jika solusi pertama sudah diperoleh dari pengambilan dua pecahan pertama dalam Lagrange Auxiliary namun solusi kedua tidak dapat atau sulit diperoleh, maka solusi kedua dapat menggunakan solusi pertama sebagai bantuan.

C.3. Metode Lagrange Tipe 3

Setiap pecahan dalam Lagrange Auxiliary dapat diubah menjadi:

$$\frac{P_1 dx + Q_1 dy + R_1 dz}{P_1 P + Q_1 Q + R_1 R}$$

dimana P_1 adalah fungsi dari x, Q_1 adalah fungsi dari y, dan R_1 adalah fungsi dari z. Jika $P_1P + Q_1Q + R_1R = 0$, maka $P_1dx + Q_1dy + R_1dz = 0$, sehingga dapat diintegralkan hingga mendapatkan solusi PDPnya.

C.4. Metode Lagrange Tipe 4

Dengan pengubahan yang sama dengan Tipe 3, yaitu:

$$\frac{P_1 dx + Q_1 dy + R_1 dz}{P_1 P + Q_1 Q + R_1 R}$$

namun dengan
$$P_1P + Q_1Q + R_1R \neq 0$$
, maka diperlukan pembanding baru:
$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} \Leftrightarrow \frac{P_1dx + Q_1dy + R_1dz}{P_1P + Q_1Q + R_1R} = \frac{P_2dx + Q_2dy + R_2dz}{P_2P + Q_2Q + R_2R}$$

Dengan pemilihan fungsi-fungsi yang tepat, dari sini dapat dibentuk sejenis Lagrange Auxilarity yang dapat diselesaikan dengan metode Lagrange tipe lain.

e.g.: (Berikut contoh-contoh yang berturut-turut adalah contoh tipe 1, 2, 3, dan 4) Carilah solusi dari:

$$1. \quad \left(\frac{y^2z}{x}\right)p + (xz)q = y^2$$

2.
$$p-2q = 3x^2 \sin(y+2x)$$

3.
$$\left(\frac{b-c}{a}\right)yzp + \left(\frac{c-a}{b}\right)xzq = \left(\frac{a-b}{c}\right)xy$$

4.
$$(y+z)p + (x+z)q = x + y$$

Iwb:

1. Karena memiliki bentuk Pp + Qq = R dengan:

$$P = \frac{y^2 z}{x}, \qquad Q = xz, \qquad R = y^2$$

maka Lagrange Auxiliary nya adalah:

maka Lagrange Auxiliary nya adalah:
$$\frac{dx}{\left(\frac{y^2z}{x}\right)} = \frac{dy}{xz} = \frac{dz}{y^2}$$
Dari (1) dan (2):
$$xz \, dx = \frac{y^2z}{x} \, dy$$

$$\Leftrightarrow \int x^2 \, dx = \int y^2 \, dy$$

$$\Leftrightarrow \int x \, dx = \int z \, dz$$

$$\Leftrightarrow x^3 - y^3 = C_1$$
Dari (1) dan (3):
$$\Rightarrow \int x \, dx = \int z \, dz$$

$$\Leftrightarrow x^2 - z^2 = C_2$$

Sehingga solusinya adalah $\phi(x^3 - y^3, x^2 - z^2) = 0$

2. Karena memiliki bentuk Pp + Qq = R dengan:

$$P = 1$$
, $Q = -2$, $R = 3x^2 \sin(y + 2x)$

maka Lagrange Auxiliary nya adalah:

$$\frac{dx}{1} = \frac{dy}{-2} = \underbrace{\frac{dz}{3x^2 \sin(y + 2x)}}$$
Dari (1) dan (2):
$$\int_{0}^{1} -2 dx = \int_{0}^{1} dy$$

$$\Leftrightarrow y + 2x = C_1$$

$$\Leftrightarrow \int_{0}^{1} 3x^2 \sin(y + 2x) dx = dz$$

$$\Leftrightarrow \int_{0}^{1} 3x^2 \sin(C_1) dx = \int_{0}^{1} dz$$

Sehingga solusinya adalah $\phi(y + 2x, x^3 \sin(y + 2x) - z) = 0$.

3. Karena memiliki bentuk Pp + Qq = R dengan:

$$P = \left(\frac{b-c}{a}\right)yz, \qquad Q = \left(\frac{c-a}{b}\right)xz, \qquad R = \left(\frac{a-b}{c}\right)xy$$

maka Lagrange Auxiliary nya adalah:

$$\frac{dx}{\left(\frac{b-c}{a}\right)yz} = \frac{dy}{\left(\frac{c-a}{b}\right)xz} = \frac{dz}{\left(\frac{a-b}{c}\right)xy} \Leftrightarrow \frac{a\,dx}{(b-c)yz} = \frac{b\,dy}{(c-a)xz} = \frac{c\,dz}{(a-b)xy}$$

Kalikan dengan $(P_1(x), Q_1(y), R_1(z)) = (x, y, z)$

Lagrange Auxiliary nya menjadi:

$$\frac{ax dx}{(b-c)xyz} = \frac{by dy}{(c-a)xyz} = \frac{cz dz}{(a-b)xyz}$$

Ubah Lagrange Auxiliary tersebut menjadi:

$$\frac{P_1 dx + Q_1 dy + R_1 dz}{P_1 P + Q_1 Q + R_1 R} = \frac{ax \ dx + by \ dy + cz \ dz}{(b - c + c - a + a - b)xyz} = \frac{ax \ dx + by \ dy + cz \ dz}{0}$$

Perhatikan bahwa $P_1P + Q_1Q + R_1R = 0$, sehingga:

$$\int P_1 dx + Q_1 dy + R_1 dz = 0 \Leftrightarrow \int ax dx + by dy + cz dz = 0$$

$$\Leftrightarrow ax^2 + by^2 + cz^2 = C_1$$

Kalikan dengan $(P_1(x), Q_1(y), R_1(z)) = (ax, by, cz)$ Lagrange Auxiliary nya menjadi:

$$\frac{a^2x\,dx}{a(b-c)xyz} = \frac{b^2y\,dy}{b(c-a)xyz} = \frac{c^2z\,dz}{c(a-b)xyz}$$

Ubah Lagrange Auxiliary tersebut menjadi:

$$\frac{P_1 dx + Q_1 dy + R_1 dz}{P_1 P + Q_1 Q + R_1 R} = \frac{a^2 x dx + b^2 y dy + c^2 z dz}{(ab - ac + bc - ab + ac - bc)xyz} = \frac{a^2 x dx + b^2 y dy + c^2 z dz}{0}$$

Perhatikan bahwa $P_1P + Q_1Q + R_1R = 0$, sehingga:

$$\int P_1 dx + Q_1 dy + R_1 dz = 0 \Leftrightarrow \int a^2 x \, dx + b^2 y \, dy + c^2 z \, dz = 0$$

$$\Leftrightarrow \qquad \qquad a^2 x^2 + b^2 y^2 + c^2 z^2 = C_2$$
 Sehingga solusinya adalah $\phi(ax^2 + by^2 + cz^2, a^2x^2 + b^2y^2 + c^2z^2) = 0$.

4. Karena memiliki bentuk Pp + Qq = R dengan:

$$P = y + z$$
, $Q = x + z$, $R = x + y$

maka Lagrange Auxiliary nya adalah:

$$\frac{dx}{y+z} = \frac{dy}{x+z} = \frac{dz}{x+y}$$

• Kalikan dengan (1, -1, 0)

$$\frac{dx}{y+z} = \frac{-dy}{-(x+z)} = 0 \Rightarrow \frac{dx - dy}{y+z-x-z} = \frac{d(x-y)}{y-x} = -\frac{d(x-y)}{x-y}$$

• Kalikan dengan (0, -1, 1)

$$0 = \frac{-dy}{-(x+z)} = \frac{dz}{x+y} \Rightarrow \frac{-dy+dz}{-x-z+x+y} = \frac{d(z-y)}{y-z} = -\frac{d(z-y)}{z-y}$$

• Kalikan dengan (1,0,-1)

$$\frac{dx}{y+z} = 0 = \frac{-dz}{-(x+y)} \Rightarrow \frac{dx-dz}{y+z-x-y} = \frac{d(x-z)}{z-x} = -\frac{d(x-z)}{x-z}$$

Sehingga,

$$\underbrace{-\frac{d(x-y)}{x-y}}_{(1)} = \underbrace{-\frac{d(z-y)}{z-y}}_{(2)} = \underbrace{-\frac{d(x-z)}{x-z}}_{(3)}$$

Dari (1) dan (2):

$$\int -\frac{d(x-y)}{x-y} = \int -\frac{d(z-y)}{z-y}$$

$$\Leftrightarrow -\ln|x-y| = -\ln|z-y| - \ln|C_1|$$

$$\Leftrightarrow \ln\left|\frac{x-y}{z-y}\right| = \ln|C_1|$$

$$\Leftrightarrow \frac{x-y}{z-y} = C_1$$
Dari (1) dan (3):

$$\int -\frac{d(x-y)}{x-y} = \int -\frac{d(x-z)}{x-z}$$

$$\Leftrightarrow -\ln|x-y| = -\ln|x-z| - \ln|C_2|$$

$$\Leftrightarrow \ln\left|\frac{x-y}{x-z}\right| = \ln|C_2|$$

$$\Leftrightarrow \frac{x-y}{x-z} = C_2$$

Sehingga solusinya adalah $\phi\left(\frac{x-y}{z-y}, \frac{x-y}{x-z}\right) = 0.$

C.5. Solusi PDP Linier Orde 1 yang melewati suatu kurva

• Misal diberikan PDP Linier Orde 1 yang berbentuk Pp + Qq = R dengan Lagrange Auxiliry:

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$$

dengan solusinya $u(x, y, z) = c_1 \operatorname{dan} v(x, y, z) = c_2$. (*)

• Misal kurva C adalah kurva dari persamaan parametrik x = x(t), y = y(t), dan z = z(t) dengan t adalah parameter. Maka solusi khusus dari (*) yang melewati kurva C:

$$\begin{cases} u(x(t), y(t), z(t)) = c_1 \\ v(x(t), y(t), z(t)) = c_2 \end{cases}$$

Dengan mengeliminasi parameter t, akan diperoleh $F(c_1, c_2) = 0$.

• Sehingga solusinya adalah F(u, v) = 0.

D. PDP Nonlinier Orde 1 dan Metode Charpit

Masih dengan kesepakatan notasi awal, misal diberikan fungsi implisit f(x, y, z, p, q) = 0 dengan z = z(x, y). PDP berbentuk ini disebut nonlinier jika bentuk ini tidak linier dalam p atau q. Notasikan:

$$f_m = \frac{\partial f}{\partial m}, \forall m \in \{x, y, z, p, q\}$$

Persamaan Charpit dari f(x, y, z, p, q) = 0 diberikan oleh:

$$\frac{dp}{f_x + pf_z} = \frac{dq}{f_y + qf_z} = \frac{dz}{-pf_p - qf_q} = \frac{dx}{-f_p} = \frac{fy}{-f_q}$$

Dari Persamaan Charpit, hubungan dz = p dx + q dy dapat digunakan untuk mendapat solusi atau integral untuk f(x, y, z, p, q) = 0.

Misal solusi atau integral untuk f(x, y, z, p, q) = 0 adalah suatu fungsi ϕ . Terdapat 4 jenis solusi yang dapat terbentuk, yaitu:

- 1) Solusi Lengkap Jika solusi atau integral adalah $\phi(x, y, z, a, b) = 0$ dengan $a, b \in \mathbb{R}$.
- 2) Solusi Umum Jika solusi atau integral adalah $\phi(x, y, z, a, g(a)) = 0$ dengan $a \in \mathbb{R}$.
- 3) Solusi Khusus Jika solusi atau integral adalah $\phi(x, y, z, a, b) = 0$ dan diketahui beberapa nilai awal sedemikian sehingga a, b dapat ditentukan dengan $a, b \in \mathbb{R}$.
- 4) Solusi Singular Jika solusi atau integral adalah $\phi(x,y,z,a,b)=0$ dengan a,b dianggap variabel lalu dieliminasi dari sistem persamaan $\phi=0,\phi_a=0,\phi_b=0$, maka akan didapatkan solusi $\lambda(x,y,z)=0$. Alternatifnya adalah dengan menggunakan sistem persamaan $f=0,f_p=0,f_q=0$.

Dengan memanfaatkan Persamaan Charpit, dapat ditentukan solusi untuk berbagai PDP Linier maupun Nonlinier Orde 1. Cara ini biasa disebut Metode Charpit.

D.1. Metode Charpit Tipe 1

Misal f(p,q) = 0. Maka Persamaan Charpit menjadi:

$$\frac{dp}{0} = \frac{dq}{0} = \frac{dz}{-pf_p - qf_q} = \frac{dx}{-f_p} = \frac{fy}{-f_q}$$

Dengan p = a, substitusikan kembali ke masalah, maka akan diperoleh:

$$f(a,q) = 0 \Leftrightarrow q = f^{-1}(a) = Q(a)$$

Maka, dz = p dx + q dy = a dx + Q(a) dy.

Sehingga bentuk umum solusi untuk f(p,q) = 0 adalah:

$$z = ax + Q(a)y + C$$

D.2. Metode Charpit Tipe 2

Misal f(z, p, q) = 0. Maka Persamaan Charpit menjadi:

$$\frac{dp}{pf_z} = \frac{dq}{qf_z} = \frac{dz}{-pf_p - qf_q} = \frac{dx}{-f_p} = \frac{fy}{-f_q}$$

Dengan p = aq, substitusikan kembali ke masalah, maka akan diperoleh:

$$f(z,aq,q) = 0 \Leftrightarrow q = Q(a,z)$$

Maka, dz = p dx + q dy = aQ(a, z) dx + Q(a, z) dy

$$\Leftrightarrow \int \frac{dz}{Q(a,z)} = \int a \, dx + \int dy$$

Sehingga bentuk umum solusi untuk f(z, p, q) = 0 adalah:

$$\int \frac{dz}{Q(a,z)} = ax + y + C$$

D.3. Metode Charpit Tipe 3

Misal
$$f_1(x,p) = f_2(y,q) \Leftrightarrow f_1(x,p) - f_2(y,q) = 0$$
. Maka Persamaan Charpit menjadi:
$$\frac{dp}{f_{1x}} = \frac{dq}{-f_{2x}} = \frac{dz}{-pf_{1p} + qf_{2q}} = \frac{dx}{-f_{1p}} = \frac{fy}{f_{2p}}$$

Dari pecahan pecahakn pertama dan keempat, akan diperoleh $f_1(x, p) = f_2(y, q) = a$.

Sehingga akan diperoleh: $p = f_1^{-1}(x, a) = g_1(x, a)$ dan $q = f_2^{-1}(y, a) = g_2(y, a)$

$$q = f_2^{-1}(y, a) = g_2(y, a)$$

Maka, $dz = p dx + q dy = g_1(x, a) dx + g_2(y, a) dy$.

Sehingga bentuk umum solusi untuk f(x, y, p, q) = 0 adalah:

$$z = \int g_1(x, a) dx + \int g_2(y, a) dy + C$$

D.4. Metode Charpit Tipe 4 (Persamaan Clairut)

Misal
$$z = px + qy + f(p,q)$$
. Maka Persamaan Charpit menjadi:
$$\frac{dp}{0} = \frac{dq}{0} = \frac{dz}{px + qy + pf_p + qf_q} = \frac{dx}{x + f_p} = \frac{fy}{y + f_q}$$

Dari pecahan pertama dan kedua, dz = p dx + q dy = a dx + b dy.

Sehingga bentuk umum solusinya adalah z = ax + by + f(a, b).

e.g.: (Berikut contoh-contoh yang berturut-turut adalah contoh tipe 1, 2, 3, dan 4) Tentukan integral lengkap dari:

- 1. pq = 1
- $2. \quad p(z+p) = -q$
- 3. x(1+y)p y(1+x)q = 0
- $4. \quad z = px + qy + pq$

1. Tulis ulang fungsi tersebut sebagai pq - 1 = 0. Misal f(p,q) = pq - 1 = 0. Pilih p = adengan $a \in \mathbb{R}$, maka $aq - 1 = 0 \Leftrightarrow q = \frac{1}{a}$ sehingga solusinya adalah $z = ax + \frac{1}{a}y + C$.

2. Tulis ulang fungsi tersebut sebagai $pz + p^2 + q = 0$. Misal $f(z, p, q) = pz + p^2 + q = 0$. Pilih $p = \frac{q}{a}$ dengan $a \in \mathbb{R} \setminus \{0\}$, maka:

$$\frac{q}{a}z + \frac{q^2}{a^2} + q = 0 \Leftrightarrow \frac{z}{a} + \frac{q}{a^2} + 1 = 0 \Leftrightarrow q = -\frac{\frac{z}{a} + 1}{\frac{1}{a^2}}$$

Sehingga solusinya adalah:

$$-\frac{1}{a^2} \int \frac{dz}{\frac{z}{a} + 1} = \frac{x}{a} + y \Leftrightarrow -\frac{1}{a^2} \int \frac{1}{\frac{z}{a} + 1} \frac{d\left(\frac{z}{a} + 1\right)}{\frac{1}{a}} = \frac{x}{a} + y$$

$$\Leftrightarrow \qquad -\frac{1}{a} \ln\left|\frac{z}{a} + 1\right| = \frac{x}{a} + y - \frac{1}{a} \ln\left|\frac{C}{a}\right|$$

$$\Leftrightarrow \qquad \ln\left|\frac{z}{a} + 1\right| = -x - ay + \ln\left|\frac{C}{a}\right|$$

$$\Leftrightarrow \qquad \frac{z}{a} + 1 = \frac{C}{a} e^{-x - ay}$$

$$\Leftrightarrow \qquad z = C e^{-x - ay} - a$$

3. Tulis ulang fungsi tersebut sebagai $x(1+y)p - y(1+x)q = 0 \Leftrightarrow \frac{xp}{1+x} = \frac{yq}{1+y}$. Misal:

$$f_1(x,p) = \frac{xp}{1+x}, \qquad f_2(y,q) = \frac{yq}{1+y}$$

Pilih $f_1(x, p) = f_2(y, q) = a$, maka:

$$\frac{xp}{1+x} = a \Leftrightarrow p = a\left(\frac{1+x}{x}\right) = a\left(\frac{1}{x}+1\right)$$
$$\frac{yq}{1+y} = a \Leftrightarrow q = a\left(\frac{1+y}{y}\right) = a\left(\frac{1}{y}+1\right)$$

Sehingga solusinya adalah:

$$z = a \int \left(\frac{1}{x} + 1\right) dx + a \int \left(\frac{1}{y} + 1\right) dy = a \ln|x| + ax + a \ln|y| + ay + C$$

= $a \ln|xy| + ax + ay + C$

4. Misal f(p,q) = pq. Bentuk solusinya adalah z = ax + by + f(a,b).

$$0 = \frac{dz}{da} = x + b \Leftrightarrow b = -x$$
$$0 = \frac{dz}{db} = y + a \Leftrightarrow a = -y$$

Sehingga solusinya adalah z = xy - xy - xy = -xy.

E. PDP Linier Orde-n Koefisien Konstan

Untuk bahasan ini, $n \geq 2$ dan $n \in \mathbb{N}$. Notasikan operator-operator PDP sebagai berikut:

$$\frac{\partial}{\partial x} = D_x = D, \qquad \frac{\partial}{\partial y} = D_y = D'$$

E.1. PDP Linier Orde-n Homogen, Koefisien Konstan, Homogen

Bentuk umum: $f(D_x, D_y)z = 0$.

Bentuk umum untuk n = 2:

$$A\frac{\partial^2 z}{\partial x^2} + B\frac{\partial^2 z}{\partial x \partial y} + C\frac{\partial^2 z}{\partial y^2} = 0$$

Dengan operator PDP, diperoleh:

$$\left[A(D_x)^2 + B(D_x)(D_y) + C(D_y)^2\right]z = 0$$

Karena $z \neq 0$ (z = 0 menghasilkan solusi trivial), maka:

$$A(D_x)^2 + B(D_x)(D_y) + C(D_y)^2 = 0 \Leftrightarrow A\left(\frac{D_x}{D_y}\right)^2 + B\left(\frac{D_x}{D_y}\right) + C = 0$$

Misal $m=\frac{D_x}{D_y}$, maka $Am^2+Bm+C=0$. Persamaan ini adalah persamaan karakteristik

<u>Kasus 1</u>: $m_1 \neq m_2$ dengan $m_1, m_2 \in \mathbb{R}$

$$m_1 = \frac{D_x}{D_y} \Leftrightarrow \frac{\partial z}{\partial x} = m_1 \frac{\partial z}{\partial y} \Leftrightarrow p - m_1 q = 0 \stackrel{L.A.}{\Leftrightarrow} \frac{dx}{1} = \frac{dy}{-m_1} = \frac{dz}{0}$$

Dari (1) dan (2) akan diperoleh $y + m_1 x = C_1$.

Dari (1) dan (3) akan diperoleh $z = C_2$.

Maka solusi dari $\frac{Dx}{Dy}z=m_1$ adalah $\varphi(z,y+m_1x)=0 \Leftrightarrow z=\varphi_1(y+m_1x).$

<u>Kasus 2</u>: $m_1 = m_2 = m$ dengan $m \in \mathbb{R}$

Dengan cara yang serupa, akan diperoleh $z = \varphi_1(y + mx) + x\varphi_2(y + mx)$.

<u>Kasus 3</u>: $m_{1,2} = a \pm bi$ dengan $a, b \in \mathbb{R}$

Dengan cara yang serupa, akan diperoleh:

$$z = [\varphi_1(y + (a + bi)x) + \varphi_1(y + (a - bi)x)] + i[\varphi_2(y + (a + bi)x) + \varphi_2(y + (a - bi)x)]$$

<u>e.g.</u>:

Selesaikan
$$D^3 - 4D^2D' + 4DD'^2 = 0$$
.

<u>Jwb</u>:

Persamaan karakteristik PDP tersebut adalah $m^3 - 4m^2 + 4m = 0 \Leftrightarrow m(m-2)^2 = 0$. Maka akar-akar karakteristiknya yaitu $m_1 = 0$ dan $m_2 = m_3 = 2$. Sehingga solusinya: $z = \varphi_1(y) + \varphi_2(y+2x) + x\varphi_3(y+2x)$

E.2. PDP Linier Orde-n Homogen, Koefisien Konstan, Non-Homogen

Bentuk umum: $f(D_x, D_y)z = F(x, y)$.

Solusinya adalah $z=z_h+z_p$ dimana z_h solusi homogen dan z_p solusi khusus.

Misal solusi homogennya adalah $z_h = \varphi_1(y + m_1 x) + \varphi_2(y + m_2 x)$. Maka solusi khususnya dapat ditentukan melalui:

$$z(D_x - m_1 Dy)(D_x - m_2 y) = F(x, y) \Leftrightarrow z = \frac{F(x, y)}{\left(D_x - m_1 D_y\right)\left(D_x - m_2 D_y\right)}$$

Solusi-solusi khususnya yaitu:

$$z_p^{(1)} = \frac{F(x, y)}{D_x - m_1 D_y}, \qquad z_p^{(2)} = \frac{F(x, y)}{D_x - m_2 D_y}$$

Secara umum, misal solusi homogennya adalah $z_h = \sum_{i=1}^{n} \varphi_i(y + m_i x)$,

maka solusi-solusi khususnya yaitu:

$$z_p^{(1)} = \frac{F(x,y)}{D_x - m_1 D_y}, \qquad z_p^{(2)} = \frac{F(x,y)}{D_x - m_2 D_y}, \qquad \dots, \qquad z_p^{(n)} = \frac{F(x,y)}{D_x - m_n D_y}$$

<u>e.g.</u>:

Selesaikan $(D_x^2 - D_x D_y - 6D_y^2)z = x + y$.

- Solusi Homogen (z_h) $D_x^2 - D_x D_y^2 - 6D_y^2 = 0 \Leftrightarrow m^2 - m - 6 = 0 \Leftrightarrow (m - 3)(m + 2) = 0$ $z_h = \varphi_1(y + 3x) + \varphi_2(y - 2x).$ • Solusi Khusus (z_p)

$$z = \frac{x+y}{(D_x - 3D_y)(D_x + 2D_y)}$$

•
$$z_p^{(1)}$$

$$z = \frac{x+y}{D_x - 3D_y} \Leftrightarrow (D_x - 3D_y)z = x+y \Leftrightarrow p - 3q = x+y$$
L. A.: $\frac{dx}{1} = \frac{dy}{-3} = \frac{dz}{x+y}$

Dari (1) dan (2) akan diperoleh $y + 3x = C_1$. Dari (1) dan (3) akan diperoleh $z = C_1x - x^2 + C_2$.

Sehingga, $z_p^{(1)} = (y + 3x)x - x^2 = xy + 3x^2 - x^2 = xy + 2x^2$.

Dengan cara yang sama, akan diperoleh:

$$z_p^{(2)} = \frac{x^2y}{2} + \frac{x^3}{3}$$

Sehingga, solusi dari PDP tersebut adalah:

$$z = z_h + z_p^{(1)} + z_p^{(2)} = \varphi_1(y + 3x) + \varphi_2(y - 2x) + xy + 2x^2 + \frac{x^2y}{2} + \frac{x^3}{3}$$