

GCE

Edexcel GCE

Core Mathematics C3 (6665)

Summer 2005

advancing learning, changing lives

Mark Scheme (Results)

June 2005 6665 Core C3 Mark Scheme

Question Number	Scheme	Ма	rks
1. (a)	Dividing by $\cos^2 \theta$: $\frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta} \equiv \frac{1}{\cos^2 \theta}$	M1	
	Completion: $1 + \tan^2 \theta = \sec^2 \theta$ (no errors seen)	A1	(2)
(b)	Use of $1 + \tan^2 \theta = \sec^2 \theta$: $2(\sec^2 \theta - 1) + \sec \theta = 1$ [$2\sec^2 \theta + \sec \theta - 3 = 0$]	M1	
	Factorising or solving: $(2 \sec \theta + 3)(\sec \theta - 1) = 0$	M1	
	$[\sec \theta = -\frac{3}{2} \text{ or } \sec \theta = 1]$		
	heta=0	B1	
	$\cos\theta = -\frac{2}{3}$; $\theta_1 = 131.8^{\circ}$	M1 A1	
	$\cos \theta = -\frac{2}{3} ; \theta_1 = 131.8^{\circ}$ $\theta_2 = 228.2^{\circ}$	A 1√	
			(6)
	[A1ft for $\theta_2 = 360^\circ - \theta_1$]		[8]

Question Number	Scheme	Marks
2. (a)	(i) $6\sin x \cos x + 2\sec 2x \tan 2x$ or $3\sin 2x + 2\sec 2x \tan 2x$ [M1 for $6\sin x$]	M1A1A1 (3)
	(ii) $3(x + \ln 2x)^2 (1 + \frac{1}{x})$ [B1 for $3(x + \ln 2x)^2$]	B1M1A1 (3)
(b)	Differentiating numerator to obtain $10x - 10$ Differentiating denominator to obtain $2(x-1)$	B1 B1
	Using quotient rule formula correctly: To obtain $\frac{dy}{dx} = \frac{(x-1)^2 (10x-10) - (5x^2 - 10x + 9)2(x-1)}{(x-1)^4}$	M1 A1
	Simplifying to form $\frac{2(x-1)[5(x-1)^2 - (5x^2 - 10x + 9)}{(x-1)^4}$	M1
	$= -\frac{8}{(x-1)^3} $ * (c.s.o.)	A1 (6) [12]
	Alternatives for (b) Either Using product rule formula correctly: Obtaining $10x - 10$ Obtaining $-2(x-1)^{-3}$ To obtain $\frac{dy}{dx} = (5x^2 - 10x + 9)\{-2(x-1)^{-3}\} + (10x - 10)(x-1)^{-2}$ Simplifying to form $\frac{10(x-1)^2 - 2(5x^2 - 10x + 9)}{(x-1)^3}$ $= -\frac{8}{(x-1)^3} * (c.s.o.)$ Or Splitting fraction to give $5 + \frac{4}{(x-1)^2}$ Then differentiating to give answer	M1 B1 B1 A1 cao M1 A1 (6) M1 B1 B1 M1 A1 A1 (6)

Question Number	Scheme	Marks	
3(a)	$\frac{5x+1}{(x+2)(x-1)} - \frac{3}{x+2}$ $= \frac{5x+1-3(x-1)}{(x+2)(x-1)}$	B1 M1	
(b)	M1 for combining fractions even if the denominator is not lowest common $= \frac{2x+4}{(x+2)(x-1)} = \frac{2(x+2)}{(x+2)(x-1)} = \frac{2}{x-1} $ M1 must have linear numerator $y = \frac{2}{x-1} \implies xy - y = 2 \implies xy = 2 + y$	M1 A1 cso M1A1	(4)
	$f^{-1}(x) = \frac{2 + x}{x} \text{o.e.}$ $fg(x) = \frac{2}{x^2 + 4} \text{(attempt)} \qquad \left[\frac{2}{"g" - 1} \right]$	A1	(3)
	Setting $\frac{2}{x^2 + 4} = \frac{1}{4}$ and finding $x^2 = \dots$; $x = \pm 2$		(3) 10]

Question Number	Scheme	Marks
4 (a)	$f'(x) = 3 e^x - \frac{1}{2x}$	M1A1A1 (3)
(b)	$3e^x - \frac{1}{2x} = 0$	M1
	$\Rightarrow 6\alpha e^{\alpha} = 1 \qquad \Rightarrow \alpha = \frac{1}{6} e^{-\alpha} \qquad (*)$	A1 cso (2)
(c)	$x_1 = 0.0613, x_2 = 0.1568, x_3 = 0.1425, x_4 = 0.1445$	M1 A1 (2)
	[M1 at least x_1 correct, A1 all correct to 4 d.p.]	
	(d) Using $f'(x) = 3 e^x - \frac{1}{2x}$ with suitable interval e.g. $f'(0.14425) = -0.0007$ f'(0.14435) = +0.002(1)	M1
	Accuracy (change of sign and correct values)	A1 (2)
		[9]

Question Number	Scheme	Marks	
5. (a)	$\cos 2A = \cos^2 A - \sin^2 A (+ \text{ use of } \cos^2 A + \sin^2 A \equiv 1)$	M1	
	$= (1 - \sin^2 A); -\sin^2 A = 1 - 2\sin^2 A \qquad (*)$	A1	(2)
(b)	$2\sin 2\theta - 3\cos 2\theta - 3\sin \theta + 3 = 4\sin \theta \cos \theta; -3(1 - 2\sin^2 \theta) - 3\sin \theta + 3$	B1; M1	
	$\equiv 4\sin\theta\cos\theta + 6\sin^2\theta - 3\sin\theta$	M1	
	$\equiv \sin\theta(4\cos\theta + 6\sin\theta - 3) \tag{*}$	A1	(4)
(c)	$4\cos\theta + 6\sin\theta = R\sin\theta\cos\alpha + R\cos\theta\sin\alpha$ Complete method for R (may be implied by correct answer) $[R^2 = 4^2 + 6^2, R\sin\alpha = 4, R\cos\alpha = 6]$ $R = \sqrt{52} \text{ or } 7.21$ Complete method for α ; $\alpha = 0.588$ (allow 33.7°)	M1 A1 M1 A1	(4)
(d)	$\sin\theta (4\cos\theta + 6\sin\theta - 3) = 0$ $\theta = 0$	M1 B1	
	$\sin(\theta + 0.588) = \frac{3}{\sqrt{52}} = 0.4160$ (24.6°)	M1	
	$\theta + 0.588 = (0.4291), \ 2.7125 \ [or \ \theta + 33.7^{\circ} = (24.6^{\circ}), \ 155.4^{\circ}]$ $\theta = 2.12 cao$	dM1 A1	(5) [15]

Question Number	Scheme]	Marks	
6. (a)	$y \ ightharpoonup $ Translation \leftarrow by 1	ı	M1	
	Intercepts correct		A1	(2)
(b)	$x \ge 0$, correct "shape" provided graph is not or graph	riginal	B1 B1√	
	Reflection in y-axis		втv В1	(3)
	Intercepts correct		D1	(3)
(c)	a = -2, b = -1	I	B1B1	(2)
(d)	Intersection of $y = 5x$ with $y = -x - 1$ Solving to give $x = -\frac{1}{6}$		M1A1 M1A1	(4)
	[Notes: (i) If both values found for $5x = -x - 1$ and $5x = x - 3$, or solved algebraically, can score 3 out of 4 for $x = -\frac{1}{6}$ and $x = -\frac{3}{4}$; required to eliminate $x = -\frac{3}{4}$ for final mark. (ii) Squaring approach: M1 correct method, $24x^2 + 22x + 3 = 0$ (correct 3 term quadratic, any form) A1 Solving M1, Final correct answer A1.]			[11]

7. (a)	S. v.i. 200 200 2800a		
	Setting $p = 300$ at $t = 0 \implies 300 = \frac{2800a}{1+a}$	M1	
	(300 = 2500a); $a = 0.12$ (c.s.o) *	dM1A	A1 (3)
(b)	$1850 = \frac{2800(0.12)e^{0.2t}}{1 + 0.12e^{0.2t}} ; \qquad e^{0.2t} = 16.2$	M1A.	1
	Correctly taking logs to $0.2 t = \ln k$ t = 14 (13.9)	M1	
		A1	(4)
(c)	Correct derivation: (Showing division of num. and den. by $e^{0.2t}$; using a)	B1	(1)
(d)	Using $t \to \infty$, $e^{-0.2t} \to 0$,	M1	
` '	$p \to \frac{336}{0.12} = 2800$	A1	(2)
	VI		[10]
		1	