Symulacje Monte Carlo w stałej temperaturze

Gaz Lennarda-Jonesa

Rozważamy N atomów, których oddziaływanie zadaje potencjał Lennarda-Jonesa

$$u(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Energia potencjalna takiego układu

$$U(\vec{r}_1,...,\vec{r}_N) = \sum_{i} \sum_{j,j>i} u(r_{ij})$$

Gaz Lennarda-Jonesa

Ciecz/gaz Lennarda Jonesa ma szereg ciekawych własności, np. współistnienie fazy gazowej i ciekłej

W temperaturze T konfiguracja $\mathbf{X}=(\mathbf{r_1},...,\mathbf{r_N})$ wystąpi z gęstością prawdopodobieństwa

$$P(\mathbf{X}) = C \exp(-U(\mathbf{X})/kT)$$

W metodzie Monte Carlo generowanie konfiguracji ${\bf X}$ z takim rozkładem realizuje się za pomocą algorytmu Metropolisa

Warunek równowagi szczegółowej

$$P(\mathbf{X}_b)W(\mathbf{X}_b \to \mathbf{X}_t) = P(\mathbf{X}_t)W(\mathbf{X}_t \to \mathbf{X}_b)$$

gdzie W jest macierzą przejścia

$$W(\mathbf{X}_b \to \mathbf{X}_t) = \Gamma(\mathbf{X}_b \to \mathbf{X}_t) R(\mathbf{X}_b \to \mathbf{X}_t)$$

Iloczyn prawd., że będąc w konfiguracji $\mathbf{X_b}$ wygenerujemy konfiguracji $\mathbf{X_t}$ i prawd. akceptacji takiego posunięcia

Metropolis wybrał **W** w postaci

$$W(\mathbf{X}_b \to \mathbf{X}_t) = \Gamma(\mathbf{X}_b \to \mathbf{X}_t) \min \left(1, \frac{P(\mathbf{X}_t)}{P(\mathbf{X}_b)}\right)$$

Uwzględniają rozkład P dostajemy słynny wzór

$$W(\mathbf{X}_b \to \mathbf{X}_t) = \Gamma(\mathbf{X}_b \to \mathbf{X}_t) \min(1, \exp(-\Delta U/kT))$$

Prawdopodobieństwo akceptacji takiego przejścia zależy od różnicy energii potencjalnej

Algorytm.

- 1. Zadać stan początkowy X_0 w chwili i=0.
- 2. Wygenerować testowy stan X_t z $X_b = X_i$ za pomocą rozkładu $\Gamma_{b,t}$.
- 3. Obliczyć $\Delta U = \mathcal{U}(X_t) \mathcal{U}(X_b)$
- 4. Jeśli $\Delta U \le 0$ lub rng() $< \exp(-\Delta U / kT)$

to
$$X_{i+1} = X_t$$
, a w przeciwnym razie $X_{i+1} = X_b$.

5. i++; go to 2.

Gaz Lennarda-Jonesa

Losowy wybór atomu

Lokalne otoczenie LO

Losowy wybór położenia w LO

$$j = N * rng()$$

$$x'_{j} = x_{j} + \Delta \cdot (rng() - 0.5)$$

$$y'_{j} = y_{j} + \Delta \cdot (rng() - 0.5)$$

Gaz Lennarda-Jonesa

Do obliczenia różnicy energii ΔU wystarczy znać energię oddziaływania wylosowanego atomu U_i i U_i z innymi atomami w kole o promieniu = zasięg potencjału.

$$\Delta \mathbf{U} = \mathbf{U_j} - \mathbf{U_j}$$

Symulacja MC korzystająca z alg. Metropolisa składa się z 3 etapów

- 1. Inicjalizacji układu w chwili t=0.
- 2. Termalizacji w czasie $t=\tau_R$.
- 3. Pomiarów od chwili τ_R co odstęp czasowy $\delta \tau$.

Czas t mierzony jest w krokach MC. 1 krok MC w układzie z N atomami odpowiada testowaniu kolejnych N konfiguracji

Termalizacja

Ewolucja wiriału T=2, ρ =0.5

Ewolucja energii T=0.1, ρ=0.5

Konfiguracje N=900, ρ =0.8

T=2 T=0.40 T=0.10

Pomiary

Po termalizacji układu wybieramy n konfiguracji \mathcal{X}_1 , \mathcal{X}_2 , ..., \mathcal{X}_n z odstępem czasowym δτ,

a średnią dowolnej wielkości A w temperaturze T szacujemy następująco

$$\langle A \rangle_T \approx \overline{A} = \frac{1}{n} \sum_{i=1}^n A(\mathcal{X}_i)$$

Pomiar ciśnienia

Ciśnienie otrzymamy mierząc wiriał sił

$$P = \rho \left[k_{\scriptscriptstyle B} T + \frac{\langle W \rangle}{3N} \right]$$

gdzie

$$\left\langle W \right\rangle = \left\langle \sum_{i,j>i} \left(\vec{r}_i - \vec{r}_j \right) \vec{F}_{ij} \right
angle$$

A dla gazu L-J

$$\langle W \rangle = \left\langle \sum_{i,j>i} 48\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \frac{1}{2} \left(\frac{\sigma}{r_{ij}} \right)^{6} \right] \right\rangle$$

Gaz Lennarda-Jonesa

Ciśnienie jako funkcja gęstości w T=2, obliczone metodami dynamiki molekularnej i Monte Carlo

W d-wymiarowym modelu Isinga spiny s_i rozmieszczone są w węzłach sieci o rozmiarze liniowym L. Liczba węzłów $N=L^d$. Każdy spin może przyjmować wartość +1 lub -1.

Hamiltonian

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} s_i s_j - \mu H \sum_i s_i$$

Sumowanie w pierwszym składniku ograniczone jest do najbliższych sąsiadów , J jest całką wymiany, a μ momentem magnetycznym spinu .

Energia wewnętrzna

$$U = \langle \mathcal{H} \rangle_T$$

gdzie

$$\langle A \rangle_T = Z^{-1} \sum_{s_1 = \pm 1, s_2 = \pm 1, \dots} A(s_1, s_2, \dots) \exp\left(-\frac{\mathcal{H}(s_1, s_2, \dots)}{k_B T}\right)$$

$$Z = \sum_{s_1 = \pm 1, s_2 = \pm 1, \dots} \exp \left(-\frac{\mathcal{H}(s_1, s_2, \dots)}{k_B T} \right)$$

Namagnesowanie M(T), na spin m

$$M(T) = \sum_{i=1}^{N} \langle S_i \rangle_{\mathrm{T}}, \quad m = \frac{M}{N}$$

Ciepło właściwe na spin

$$C_{V} = \frac{1}{N} \frac{dU}{dT} = \frac{\langle \mathcal{H}^{2} \rangle - \langle \mathcal{H} \rangle^{2}}{Nk_{B}T^{2}}$$

Podatność magnetyczna

$$\chi = \frac{N}{k_B T} \begin{cases} \left\langle m^2 \right\rangle - \left\langle |m| \right\rangle^2 & T < T_c \\ \left\langle m^2 \right\rangle - \left\langle m \right\rangle^2 & T > T_c \end{cases}$$

Własności krytyczne

W pobliżu temperatury przejścia fazowego $T_{\rm c}$ obserwuje się zachowanie krytyczne wielkości takich wielkości jak

Ciepło właściwe

$$M(T) \approx (T - T_c)^{\beta}$$

Podatność magnetyczna

$$\chi(T) \approx |T - T_c|^{-\gamma}$$

Długość korelacji

$$\xi(T) \approx \left| T - T_c \right|^{-\nu}$$

gdzie β , γ ι ν są wykładnikami krytycznymi

Długość korelacji jest nieskończona w punkcie krytycznym!

Zastosowanie do układu spinów.

Bieżąca konfiguracja spinów $\mathcal{K}_b = (s_1, s_2, ..., s_N)$ o energii E_b ,

Nową konfigurację wybierzemy spośród tych różniących się tylko jednym spinem:

- poprzez wylosowanie numeru spinu, przyjmijmy p
- •i zamianę Sp -> -Sp.

Otrzymamy zatem konfigurację \mathcal{K}_n =(s₁,s₂, ..., -s_p , ..., s_N) o energii E_n

Akceptacja nowej konfiguracji zależy od różnicy energii $\Delta E = E_n - E_b$.

Jeśli $\Delta E <= 0$ to akceptujemy \mathcal{K}_n

W przeciwnym razie ($\Delta E > 0$) akceptacja zachodzi z prawdopodobieństwem exp(- $\Delta E / kT$)

Zastosowanie do układu spinów ΔE nie wymaga obliczania energii nowej konfiguracji, gdyż przewrócenie jednego spinu w węźle p , Sp -> -Sp, powoduje zmianę oddziaływania tego spinu z jego najbliższymi sąsiadami.

$$\Delta E = 2JS_{p} \left(\sum_{po \text{ sasiadach } p} S_{j} \right)$$

Przykład kodu obliczającego zmianę energii przy przewróceniu spinu w węźle (i,j) sieci kwadratowej z uwzględnieniem periodycznych warunków brzegowych

```
const int L=128, Lm1=L-1;
int DE( int i, int j)
{int tym= S[i][(j+1)%L] + S[i][(j+Lm1)%L] + S[(i+Lm1)%L][j] + S[(i+1)%L][j];
return( 2*tym *S[i][j]);}
```

Symulacja Monte Carlo korzystająca z algorytmu Metropolisa składa się z 3 etapów

- 1. Inicjalizacji układu w chwili t=0.
- 2. Termalizacji w czasie $t=\tau_R$.
- 3. Pomiarów od chwili τ_R co odstęp czasowy $\delta \tau$.

Czas t mierzony jest w krok MC.

1 krok MC w modelu Isinga z N spinami odpowiada testowaniu kolejnych N konfiguracji spinowych.

Termalizacja

Pomiary interesującej nas wielkości A polegają na obliczeniu średniej arytmetycznej

$$\left\langle A\right\rangle_{T} = \frac{1}{n} \sum_{i=0}^{n-1} A_{i}$$

gdzie A_i jest wartością A obliczoną na konfiguracji \mathcal{K}_i w chwili $t=\tau_R+i^*\delta \tau$

Konieczność uwzględnienia odstępu czasowego $\delta \tau$ w pomiarach wynika z faktu, iż kolejne konfiguracje w łańcuchu Markowa są silnie skorelowane.

Zastosujemy teraz algorytm Metropolisa do zbadania zależności temperaturowych energii wewnętrznej U, namagnesowania m, podatności magnetycznej χ i ciepła właściwego C w dwuwymiarowym modelu Isinga na sieci kwadratowej o L=256.

Podatność i ciepło właściwe w skończonym mają maksima w pobliżu Tc nieskończonego układu (pobliżu Tc ≈2.269)

Wyniki symulacji skończonym układzie zależą w pobliżu Tc $\,$ od o rozmiaru liniowego L $\,$ ponieważ długość korelacji ξ $\,$ jest większa od L $\,$

Ważną rolę w wyznaczeniu punktu krytycznego Tc gra kumulanta Bindera

$$K_4 = 1 - \frac{\langle m^4 \rangle}{3\langle m^2 \rangle^2}$$

Wielkość ta powyżej Tc dąży do zera – fluktuacje namagnesowania są gaussowskie, a w niskich temperaturach osiąga wartość 2/3.

Binder pokazał, że $\mathrm{K_4}$ skończonego układu o rozmiarze L osiąga uniwersalną wartość $\mathrm{K_4}^*$ w T=Tc

$$K_4(T = T_c, L) = K_4^*$$

Kumulanty Bindera w pobliżu Tc dla 3 rozmiarów L=32, 64 i 128

Widoczne duże błędy statystyczne dla L=128 to efekt spowolnienia krytycznego – wada algorytmu Metropolisa. Do wyznaczenia Tc stosuje się algorytmy klastrowe (np. algorytm Wolfa) lub metodę Wanga-Landaua – wolną od spowolnienia krytycznego.

Wyznaczenie Tc z przecięcia się kumulant Bindera obliczonych metodą Wanga-Landaua.

