EDA

Introduction

Smoker epigenetic dataset

A CpG island or CpG site is a part of the DNA where the GC content is greater than 50%. In this dataset methylation values of certain CpG sites are displayed with also the age, gender and smoking status for 671 people.

Research Question

Is it possible to identify a person's gender, age or status of smoking given their CpG values?

EDA

Codebook

```
myData <- read.csv("data/Smoker_Epigenetic_df.csv")
myData <- myData %>% drop_na()

columns = colnames(myData[1:4])
columns <- append(columns, "Columns 5-24")
names <- c("Sample Accessions numbers", "Smoking status", "Gender", "Age", "CG Island")
type <- c("chr", "chr", "chr", "int", "num")
unit <- c(NA, "current/never", "f/m", NA, NA)
descriptions = c("GSM identifier testsubject", "Wether the person is smoking or not", "Gender", "Age",
codebook <- data.frame(columns, names, type, descriptions)
write.csv(codebook, "Codebook.csv", row.names = FALSE)
knitr::kable(codebook)</pre>
```

columns	names	type	descriptions
GSM	Sample Accessions numbers	chr	GSM identifier testsubject
Smoking.Status	Smoking status	chr	Wether the person is smoking or not
Gender	Gender	chr	Gender
Age	Age	int	Age
Columns 5-24	CG Island	num	Methylation Rate of CG Island

Data exploration

Visualization

```
subsetdata <- head(myData)
dataset <- subsetdata[1:7]
knitr::kable(dataset) %>%
  row_spec(0, bold = TRUE) %>%
  column_spec(1, bold = TRUE)
```

GSM	Smoking.Status	Gender	Age	cg00050873	cg00212031	cg00213748
GSM1051525	current	f	67	0.6075634	0.4228427	0.3724549
GSM1051526	current	f	49	0.3450542	0.5686615	0.5005995
GSM1051527	current	f	53	0.3213497	0.3609091	0.3527315
GSM1051528	current	f	62	0.2772675	0.3044371	0.4752352
GSM1051529	never	f	33	0.4135991	0.1312511	0.3675446
GSM1051530	current	f	59	0.6228599	0.5016849	0.2632270

```
dataset <- subsetdata[c(1, 8:13)]
knitr::kable(dataset) %>%
  row_spec(0, bold = TRUE) %>%
  column_spec(1, bold = TRUE)
```

GSM	cg00214611	cg00455876	cg01707559	cg02004872	cg02011394	cg02050847
GSM1051525	0.6215619	0.2907773	0.2671431	0.1791439	0.4802517	0.3276078
GSM1051526	0.4986067	0.3745909	0.1902743	0.1559775	0.4180809	0.3464627
GSM1051527	0.3738240	0.2306740	0.3147052	0.1057448	0.6151030	0.2375392
GSM1051528	0.4862581	0.2951815	0.2957931	0.1112862	0.3010196	0.3045353
GSM1051529	0.7611667	0.2357703	0.2505265	0.1691084	0.3929746	0.3062257
GSM1051530	0.4157459	0.4751891	0.2539041	0.2607587	0.5097921	0.4052457

```
dataset <- subsetdata[c(1, 14:19)]
knitr::kable(dataset) %>%
  row_spec(0, bold = TRUE) %>%
  column_spec(1, bold = TRUE)
```

\mathbf{GSM}	cg02233190	cg02494853	cg02839557	cg02842889	cg03052502	m cg03155755
GSM1051525	0.2411204	0.0670696	0.2469934	0.4692396	0.4002466	0.4150313
GSM1051526	0.1754907	0.0469389	0.2367423	0.3074666	0.3770313	0.3973715
GSM1051527	0.2464092	0.0382371	0.2446117	0.3577526	0.3050442	0.5212775
GSM1051528	0.1770279	0.0267163	0.0016414	0.4457390	0.2714746	0.4344920
GSM1051529	0.3017014	0.0370164	0.3343197	0.3950396	0.3265530	0.4300966
GSM1051530	0.3852716	0.0258346	0.3092102	0.3218573	0.5333670	0.5715522

```
dataset <- subsetdata[c(1, 20:24)]
knitr::kable(dataset) %>%
  row_spec(0, bold = TRUE) %>%
  column_spec(1, bold = TRUE)
```

GSM	cg03244189	cg03443143	cg03683899	cg03695421	cg03706273
GSM1051525	0.2214331	0.4758258	0.2077242	0.2091974	0.1299826
GSM1051526	0.2171221	0.5444690	0.1844462	0.1937732	0.0985327
GSM1051527	0.1850495	0.5370600	0.3931231	0.2680030	0.0402481
GSM1051528	0.1654187	0.5079167	0.2812089	0.2178572	0.1015163
GSM1051529	0.1811352	0.4054791	0.3107944	0.2800708	0.0778571
GSM1051530	0.2109749	0.3778239	0.4693609	0.3433317	0.0457791

##	GSM	Smoking.Status	Gender	Age
##	Length:621	Length:621	. 0	Min. :18.00
##	Class :character	Class :character	r Class :charact	ter 1st Qu.:46.00
##	Mode :character	Mode :character	r Mode :charact	ter Median:54.00
##				Mean :52.59
##				3rd Qu.:61.00
##				Max. :70.00
##	cg00050873	cg00212031	cg00213748	cg00214611
##	Min. :0.1186	Min. :0.006949	Min. :0.0000	Min. :0.01247
##	1st Qu.:0.4131	1st Qu.:0.063172	1st Qu.:0.3635	1st Qu.:0.06946
##	Median :0.5052	Median :0.365545	Median :0.4713	Median :0.41575
##	Mean :0.5600	Mean :0.309601	Mean :0.5191	Mean :0.34106
##	3rd Qu.:0.8144	3rd Qu.:0.459813	3rd Qu.:0.7278	3rd Qu.:0.49745
##	Max. :0.8989	Max. :0.709992	Max. :0.9236	Max. :0.80606
##	cg00455876	cg01707559	cg02004872	cg02011394
##	Min. :0.05917	Min. :0.04333	Min. :0.002616	S Min. :0.0000
##	1st Qu.:0.29300	1st Qu.:0.11080	1st Qu.:0.042835	1st Qu.:0.4261
##	Median :0.37968	Median :0.23873	Median :0.149332	Median :0.5157
##	Mean :0.44718	Mean :0.21435	Mean :0.155417	Mean :0.6058
##	3rd Qu.:0.66283	3rd Qu.:0.28061	3rd Qu.:0.242627	7 3rd Qu.:0.9412
##	Max. :0.85443	Max. :0.46999	Max. :0.473844	Max. :0.9792
##	cg02050847	cg02233190	cg02494853	cg02839557
##	Min. :0.05234	Min. :0.008632	Min. :0.01162	2 Min. :0.00000
##	1st Qu.:0.33963	1st Qu.:0.088375	1st Qu.:0.02865	1st Qu.:0.06384
##	Median :0.42754	Median :0.259817	Median :0.03695	Median :0.35042
##	Mean :0.54369	Mean :0.232498	Mean :0.04077	
##	3rd Qu.:0.95558	3rd Qu.:0.337023	3rd Qu.:0.04677	7 3rd Qu.:0.45786
##	Max. :0.98320	Max. :0.511730	Max. :0.28947	Max. :0.82739
##	cg02842889	cg03052502	cg03155755	cg03244189
##	Min. :0.01346	Min. :0.0000	Min. :0.2020	Min. :0.02972
##	1st Qu.:0.05483	1st Qu.:0.4025	1st Qu.:0.4245	1st Qu.:0.11976
##	Median :0.39757	Median :0.4940	Median :0.4962	Median :0.20397
##	Mean :0.32362	Mean :0.5907	Mean :0.5895	Mean :0.19552
##	3rd Qu.:0.47385	3rd Qu.:0.9631	3rd Qu.:0.8988	3rd Qu.:0.24921
##	Max. :0.85625	Max. :0.9902	Max. :0.9696	Max. :0.54074
##	cg03443143	cg03683899	cg03695421	cg03706273
##	Min. :0.06496	Min. :0.00788	Min. :0.0949	Min. :0.01120
##	1st Qu.:0.40963	1st Qu.:0.06159	1st Qu.:0.2566	1st Qu.:0.03413
##	Median :0.48314	Median :0.34422	Median :0.3208	Median :0.04961
##	Mean :0.56841	Mean :0.28442	Mean :0.3978	Mean :0.05769
##	3rd Qu.:0.85436	3rd Qu.:0.41866	3rd Qu.:0.5965	3rd Qu.:0.06916
##	Max. :0.93589	Max. :0.65925	Max. :0.8433	Max. :0.34380

Below there are some histograms which visualizes the distribution of smoking status, age and gender.

```
ggplot(myData, aes(x=Smoking.Status)) +
  geom_histogram(stat="count", fill = c("pink", "lightblue"), col = "black") +
  ylim(0, 600) +
  labs(caption = "Figure 1: Number of people who are smoking") +
  theme(plot.caption = element_text(size=16)) +
  theme(plot.caption = element_text(size=16, face="italic")) +
  theme(axis.text = element_text(size = 20)) +
  theme(axis.title = element_text(size = 20, face="bold"))
```


Figure 1: Number of people who are smoking

```
ggplot(myData, aes(x=Gender)) +
  geom_histogram(stat="count", fill = c("pink", "lightblue"), col = "black") +
  ylim(0, 600) +
  labs(caption = "Figure 2: Gender distribution") +
  theme(plot.caption = element_text(size=16)) +
  theme(plot.caption = element_text(size=16, face="italic")) +
  theme(axis.text = element_text(size = 20)) +
  theme(axis.title = element_text(size = 20, face="bold"))
```


Figure 2: Gender distribution

```
ggplot(myData, aes(x=Age)) +
  geom_histogram(fill = "lightgrey", col = "black") +
  labs(caption = "Figure 3: Age distribution") +
  theme(plot.caption = element_text(size=16, face="italic")) +
  theme(axis.text = element_text(size = 20)) +
  theme(axis.title = element_text(size = 20, face="bold"))
```


Figure 3: Age distribution

Plotting the data

These are all the CpG sites plotted against age, with smokin status as color groups and gender as shape groups. A few of the CpG islands have been removed, becaused they looked very similar. What stands out here is that you see two groups in almost every graph, one of men and one of women, so apparently the cg methylation rate is different between men and women.

```
plotfunction <- function(cg){
    ggplot(data = myData, mapping = aes_string(x = "Age", y = cg)) +
        geom_point(aes(shape = factor(Gender), color = factor(Smoking.Status))) +
        labs(caption = paste(cg, ": Scatterplot visualizing the methylation rate on this CpG island of diff
        theme(plot.caption = element_text(size=14, face="italic")) +
        theme(axis.text = element_text(size = 20)) +
        theme(axis.title = element_text(size = 20, face="bold")) +
        theme(legend.text = element_text(size = 16)) +
        theme(legend.title = element_text(size=16)) +
        ylab(paste("CpG Island: ", cg))
}
lapply(names(myData[c(5, 6, 7, 9, 10, 15, 20)]), plotfunction)</pre>
```


cg00050873 : Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

cg00212031: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

cg00213748: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

cg00455876: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

cg01707559: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

cg02494853 : Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

cg03244189: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

With the age distribution in mind, let's try to plot 2 methylation rates with the age factored as groups.

cg00050873: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

```
ggplot(data = myData, mapping = aes(x = ClassAge, y = cg03706273, fill = Smoking.Status)) +
    geom_boxplot() +
    labs(caption = paste("cg03706273: Scatterplot visualizing the methylation rate on this CpG island on
```

```
theme(plot.caption = element_text(size=14, face="italic")) +
theme(axis.text = element_text(size = 20)) +
theme(axis.title = element_text(size = 20, face="bold")) +
theme(legend.text = element_text(size = 16)) +
theme(legend.title = element_text(size=16)) +
ylab(paste("CpG Island: cg03706273")) +
xlab("Age")
```


cg03706273: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

```
## Importance of components:
##
                             PC1
                                     PC2
                                             PC3
                                                     PC4
                                                              PC5
                                                                      PC6
                                                                              PC7
                          0.7601 0.14718 0.10089 0.09257 0.09146 0.08919 0.08813
## Standard deviation
## Proportion of Variance 0.8360 0.03135 0.01473 0.01240 0.01210 0.01151 0.01124
## Cumulative Proportion 0.8360 0.86739 0.88212 0.89452 0.90662 0.91813 0.92937
##
                              PC8
                                      PC9
                                             PC10
                                                     PC11
                                                              PC12
                                                                      PC13
## Standard deviation
                          0.08618 0.08128 0.07387 0.07271 0.07201 0.06779 0.06360
## Proportion of Variance 0.01075 0.00956 0.00790 0.00765 0.00750 0.00665 0.00585
## Cumulative Proportion 0.94012 0.94968 0.95758 0.96523 0.97273 0.97938 0.98524
##
                             PC15
                                     PC16
                                             PC17
                                                     PC18
                                                             PC19
                                                                      PC20
## Standard deviation
                          0.05677 0.04934 0.04035 0.03801 0.03522 0.01522
## Proportion of Variance 0.00466 0.00352 0.00236 0.00209 0.00179 0.00034
## Cumulative Proportion 0.98990 0.99342 0.99578 0.99787 0.99966 1.00000
```


Figure 4: PCA graph displaying smoking status as different groups

Figure 5: PCA graph displaying gender as different groups