The 3-D Magnetic Field Integral Equation (MFIE)

Donald R. Wilton

3D MFIE Formulation

EFIE: $-\mathbf{E}_{tan}^{s} = \mathbf{E}_{tan}^{i}, \quad \mathbf{r} \in \mathcal{S}$

MFIE (two approaches):

1)
$$J = \hat{\mathbf{n}} \times \mathbf{H}^{i} + \lim_{\mathbf{r} \downarrow \mathcal{S}^{\dagger}} \hat{\mathbf{n}} \times \mathbf{H}^{s}$$
, (eq. source condition)

2)
$$\hat{\mathbf{n}} \times \mathbf{H}^{i} + \lim_{\mathbf{r} \uparrow S} \hat{\mathbf{n}} \times \mathbf{H}^{s} = \mathbf{0}$$
, (null field condition)

Since
$$J = \lim_{r \downarrow S} \hat{\mathbf{n}} \times \mathbf{H}^{s} - \lim_{r \uparrow S} \hat{\mathbf{n}} \times \mathbf{H}^{s}$$

the approaches are equivalent!

 $\mathbf{r} \downarrow \mathcal{S} \Rightarrow \mathbf{r}$ approaches \mathcal{S} from the *exterior*, $\mathbf{r} \uparrow \mathcal{S} \Rightarrow \mathbf{r}$ approaches \mathcal{S} from the *interior*

Null Field MFIE Formulation, Limiting Process

 ΔS is a *very* small, flat circular disk of radius a removed from S

MFIE:
$$\hat{\mathbf{n}} \times \mathbf{H}^{i} + \lim_{\mathbf{r} \uparrow \mathcal{S}} \hat{\mathbf{n}} \times \mathbf{H}^{s} = \mathbf{0},$$

where

$$\lim_{\mathbf{r} \uparrow \mathcal{S}} \hat{\mathbf{n}} \times \mathbf{H}^{s} = \lim_{\mathbf{r} \uparrow \mathcal{S}} \hat{\mathbf{n}} \times \frac{1}{\mu} \nabla \times \mathbf{A}$$

$$= \lim_{\mathbf{r} \uparrow \mathcal{S}} \hat{\mathbf{n}} \times \nabla \times \int_{\mathcal{S}} \mathcal{G}^{A}(\mathbf{r}, \mathbf{r}') \cdot \mathbf{J}(\mathbf{r}') d\mathcal{S}'$$

$$= \lim_{\mathbf{r} \uparrow \mathcal{S}} \hat{\mathbf{n}} \times \int_{\mathcal{S}} \nabla \times \mathcal{G}^{A}(\mathbf{r}, \mathbf{r}') \cdot \mathbf{J}(\mathbf{r}') d\mathcal{S}'$$

$$= \lim_{\mathbf{r} \uparrow \mathcal{S}} \hat{\mathbf{n}} \times \left(\int_{\Delta \mathcal{S}} + \int_{\mathcal{S} - \Delta \mathcal{S}} \right) \nabla \times \mathcal{G}^{A}(\mathbf{r}, \mathbf{r}') \cdot \mathbf{J}(\mathbf{r}') d\mathcal{S}'$$

Recall that in homogeneous media,
$$\mathcal{G}^{A}(\mathbf{r},\mathbf{r}') = G(\mathbf{r},\mathbf{r}')\mathcal{I} = \frac{e^{-jkR}}{4\pi R}\mathcal{I} \leftarrow \text{identity dyad}$$

$$\Rightarrow \hat{\boldsymbol{n}} \times \nabla \times \boldsymbol{\mathcal{G}}^{\scriptscriptstyle{A}} \big(\boldsymbol{r}, \boldsymbol{r}' \big) \cdot \boldsymbol{J} \big(\boldsymbol{r}' \big) \stackrel{\text{(layered}}{\text{media)}}$$

$$\hat{\mathbf{n}} \times \mathbf{J}(\mathbf{r}') \times \nabla G(\mathbf{r}, \mathbf{r}')$$

Evaluation of $\hat{\mathbf{n}} \times \mathbf{H}_{\Delta}^{-} \equiv \lim_{\mathbf{r} \uparrow \mathcal{S}} \hat{\mathbf{n}} \times \int_{\Delta \mathcal{S}} \nabla \times \mathcal{G}^{A}(\mathbf{r}, \mathbf{r}') \cdot \mathbf{J}(\mathbf{r}') d\mathcal{S}'$ The primary integrand behavior for small R:

Dominant integrand behavior for small R:

$$\hat{\boldsymbol{n}} \times \nabla \times \boldsymbol{\mathcal{G}}^{A} (\boldsymbol{r}, \boldsymbol{r}') \cdot \boldsymbol{J} (\boldsymbol{r}')$$

$$= \hat{\mathbf{n}} \times \nabla \times \left[G(\mathbf{r}, \mathbf{r}') \mathbf{I} \cdot \mathbf{J}(\mathbf{r}') \right] = \hat{\mathbf{n}} \times \left[\nabla G \times \mathbf{J}(\mathbf{r}') \right] = -\hat{\mathbf{n}} \times \left[(1 + jkR) \frac{e^{-jkR} (\mathbf{r} - \mathbf{r}')}{4\pi R^3} \times \mathbf{J}(\mathbf{r}') \right]$$

$$\frac{\hat{\mathbf{n}} \times \left[(\mathbf{r} - \mathbf{r}') \times \mathbf{J} (\mathbf{r}') \right]}{(\mathbf{r} - \mathbf{r}') \hat{\mathbf{n}} \cdot \mathbf{J} - \mathbf{J} \left[(\mathbf{r} - \mathbf{r}') \cdot \hat{\mathbf{n}} \right]} \frac{1}{4\pi R^3} = \mathbf{J} (\mathbf{r}') \frac{\hat{\mathbf{n}} \cdot (\mathbf{r} - \mathbf{r}')}{4\pi R^3} = \mathbf{J} (\mathbf{r}') \frac{d}{4\pi R^3}, \quad R^2 = d^2 + \rho'^2$$

Asymptotic evaluation of integral:

$$\hat{\mathbf{n}} \times \int_{\Delta S} \nabla \times \mathbf{\mathcal{G}}^{A}(\mathbf{r}, \mathbf{r}') \cdot \mathbf{J}(\mathbf{r}') dS' \xrightarrow{kR \to 0} \mathbf{J}(\mathbf{r}) \int_{0}^{2\pi} \int_{|d|}^{\sqrt{d^{2} + a^{2}}} \frac{d}{4\pi R^{3}} R dR d\phi' \qquad \begin{pmatrix} \operatorname{since} \rho' d\rho' = R dR, \\ \operatorname{and} \mathbf{J}(\mathbf{r}) \approx \mathbf{J}(\mathbf{r}') \end{pmatrix}$$

$$= \frac{\mathbf{J}(\mathbf{r})}{2} \left[\frac{-d}{R} \right]_{0}^{\sqrt{d^{2} + a^{2}}} = \frac{\mathbf{J}(\mathbf{r})}{2} \left[\frac{d}{|d|} - \frac{d}{\sqrt{d^{2} + a^{2}}} \right] \xrightarrow{d \to 0} \frac{\mathbf{J}(\mathbf{r})}{2} \operatorname{sgn}(d)$$

$$\Rightarrow \hat{\mathbf{n}} \times \mathbf{H}_{\Delta}^{-} \equiv \lim_{\mathbf{r} \uparrow \mathcal{S}} \hat{\mathbf{n}} \times \int_{A\mathcal{S}} \nabla \times \mathcal{G}^{A}(\mathbf{r}, \mathbf{r}') \cdot \mathbf{J}(\mathbf{r}') d\mathcal{S}' = \lim_{d \to 0^{-}} \frac{\mathbf{J}(\mathbf{r})}{2} \operatorname{sgn}(d) = -\frac{\mathbf{J}(\mathbf{r})}{2}$$

Integrand Approaches a Delta Function in the Limit d→0

Simple Interpretation

Current jump condition:

$$\mathbf{J} = \hat{\mathbf{n}} \times \left(\mathbf{H}_{\Delta}^{+} - \mathbf{H}_{\Delta}^{-}\right)$$

By symmetry,

$$\hat{\mathbf{n}} \times \mathbf{H}_{\Lambda}^{-} = -\hat{\mathbf{n}} \times \mathbf{H}_{\Lambda}^{+}$$

$$\Rightarrow \hat{\mathbf{n}} \times \mathbf{H}_{\Delta}^{\pm} = \frac{\pm \mathbf{J}}{2}$$

$$\hat{\mathbf{n}} \times \mathbf{H}_{\Delta}^{+}$$
 $\hat{\mathbf{n}}$
 ΔS
 $\hat{\mathbf{n}} \times \mathbf{H}_{\Delta}^{-}$
 \mathbf{J}

Hence $\lim_{\mathbf{r}\uparrow\mathcal{S}}\hat{\mathbf{n}}\times\mathbf{H}_{\Delta}^{-}=-\frac{\mathbf{J}(\mathbf{r})}{2}$ and MFIE is

After removing the singular contribution, the integral is no longer (strongly-)singular and is sometimes written

$$\text{PV}\int_{\mathcal{S}} d\mathcal{S}' \quad \text{or} \quad \oint_{\mathcal{S}} d\mathcal{S}'$$

$$\frac{\mathbf{J}(\mathbf{r})}{2} - \hat{\mathbf{n}} \times \int_{\mathcal{S}} \nabla \times \mathbf{\mathcal{G}}^{A}(\mathbf{r}, \mathbf{r}') \cdot \mathbf{J}(\mathbf{r}') d\mathcal{S}' = \hat{\mathbf{n}} \times \mathbf{H}^{i}, \quad \mathbf{r} \in \mathcal{S}$$

Recall that in homogeneous media, this reduces to

$$\frac{\mathbf{J}(\mathbf{r})}{2} + \hat{\mathbf{n}} \times \int_{\mathcal{S}} \mathbf{J}(\mathbf{r}') \times \nabla G(\mathbf{r}, \mathbf{r}') d\mathcal{S}' = \hat{\mathbf{n}} \times \mathbf{H}^{i}, \quad \mathbf{r} \in \mathcal{S}$$

$$\begin{array}{c} \hat{\mathbf{n}} \times \nabla \times \boldsymbol{\mathcal{G}}^{A} \left(\mathbf{r}, \mathbf{r}'\right) \cdot \mathbf{J} \left(\mathbf{r}'\right) & \text{(layered media)} \\ \text{homogeneous media} \\ \rightarrow & \hat{\mathbf{n}} \times \mathbf{J} \left(\mathbf{r}'\right) \times \nabla G \left(\mathbf{r}, \mathbf{r}'\right) \end{array}$$

Specialization to Flat Surfaces

If S is a flat surface, then J and ∇G are in the same plane, and $J(\mathbf{r}') \times \nabla G(\mathbf{r}, \mathbf{r}')$ is parallel to $\hat{\mathbf{n}}$; hence

•
$$\hat{\mathbf{n}} \times \int_{\mathcal{S}} \mathbf{J}(\mathbf{r}') \times \nabla G(\mathbf{r}, \mathbf{r}') d\mathcal{S}' = \mathbf{0}, \quad \mathbf{r}' \neq \mathbf{r} \in \mathcal{S}$$
, and

•
$$J(\mathbf{r}) = 2\hat{\mathbf{n}} \times \mathbf{H}^{i}$$
,

Choose Surface Divergence-Conforming Bases for Expanding the Current and Testing the MFIE

$$\frac{\mathbf{J}(\mathbf{r})}{2} - \hat{\mathbf{n}} \times \int_{\mathcal{S}} \nabla \times \mathcal{G}^{A}(\mathbf{r}, \mathbf{r}') \cdot \mathbf{J}(\mathbf{r}') d\mathcal{S}' = \hat{\mathbf{n}} \times \mathbf{H}^{i}$$

$$\Rightarrow [\beta_{mn}][I_{n}] = [I_{m}^{i}], \text{ where}$$

$$\mathbf{J}(\mathbf{r}) \approx \sum_{n=1}^{N} I_{n} \Lambda_{n}(\mathbf{r})$$

$$\beta_{mn} = \frac{1}{2} < \Lambda_{m}; \Lambda_{n} > - < \Lambda_{m}; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^{A}(\mathbf{r}, \mathbf{r}'); \Lambda_{n} >$$

$$\beta_{mn} = \frac{1}{2} < \Lambda_m; \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_n > - < \Lambda_m; \hat{\mathbf{n$$

$$I_m^i = \langle \Lambda_m; \hat{\mathbf{n}} \times \mathbf{H}^i \rangle$$

 $I_i^{ie} = \langle \Lambda_i^e; \hat{\mathbf{n}} \times \mathbf{H}^i \rangle$

with corresponding element matrix and element vector

Note other basis choices are possible, even desirable!

$$\beta_{ij}^{ef} = \begin{cases} \frac{1}{2} < \Lambda_i^e; \Lambda_j^f >, e = f \\ -< \Lambda_i^e; \hat{\mathbf{n}} \times \nabla \times \mathcal{G}^A(\mathbf{r}, \mathbf{r}'); \Lambda_j^f >, e \neq f \end{cases}$$
 (no integral contribution from flat subdomains!)

Features of the MFIE

- Applies only to closed bodies
- The contribution from the integral term *vanishes on flat* surfaces, r in the surface plane
- MFIE is usually better conditioned than the EFIE (since J appears outside the integral, it is a 2nd kind integral equation)
- It appears possible to use either div- or curl-conforming bases
- MFIE is sometimes slow to converge compared to EFIE
- The MFIE operator is important since it appears in both combined field integral equations (CFIE) and in dielectric formulations (PMCHWT)

Why Does the MFIE Apply to Closed Bodies Only?

In the limit as $\tau \to 0$, null field surfaces (dashed lines) degenerate to a single surface $\mathcal{S}^- \to \mathcal{S}^+$ with one magnetic field; effect of surface currents \mathbf{J}^\pm at \mathbf{r}' may be *added* in the surface integral for $\mathbf{r}' \neq \mathbf{r}$, however \mathbf{r} is *below* $\mathbf{J}^+(\mathbf{r})$ (as before), but *above* $\mathbf{J}^-(\mathbf{r})$ so there's a sign difference in the singular contributions:

$$\frac{\mathbf{J}^{+}(\mathbf{r})}{2} - \frac{\mathbf{J}^{-}(\mathbf{r})}{2} - \hat{\mathbf{n}} \times \int_{\mathcal{S}^{+}} \nabla \times \mathcal{G}^{A}(\mathbf{r}, \mathbf{r}') \cdot \left[\mathbf{J}^{+}(\mathbf{r}') + \mathbf{J}^{-}(\mathbf{r}') \right] d\mathcal{S}' = \hat{\mathbf{n}} \times \mathbf{H}^{i}, \quad \mathbf{r} \in \mathcal{S}^{+}$$

This identity cannot be solved alone for *two* unknowns, $J^{+}(r)$, $J^{-}(r)$.

Identity Can be Combined with EFIE to Obtain Opposite Side Currents Independently

Magnetic field identity:

$$\frac{\mathbf{J}^{+}(\mathbf{r})}{2} - \frac{\mathbf{J}^{-}(\mathbf{r})}{2} - \hat{\mathbf{n}} \times \int_{\mathcal{S}^{+}} \nabla \times \mathcal{G}^{A}(\mathbf{r}, \mathbf{r}') \cdot \left[\mathbf{J}^{+}(\mathbf{r}') + \mathbf{J}^{-}(\mathbf{r}')\right] d\mathcal{S}' = \hat{\mathbf{n}} \times \mathbf{H}^{i}, \quad \mathbf{r} \in \mathcal{S}^{+}$$

• Solve EFIE for $J = J^+ + J^-$, use result in identity to obtain J^\pm :

$$\mathbf{J}^{\pm}(\mathbf{r}) = \frac{\mathbf{J}(\mathbf{r})}{2} \pm \hat{\mathbf{n}} \times \mathbf{H}^{i} \pm \hat{\mathbf{n}} \times \int_{\mathcal{S}^{+}} \nabla \times \boldsymbol{\mathcal{G}}^{A}(\mathbf{r}, \mathbf{r}') \cdot \mathbf{J}(\mathbf{r}') d\mathcal{S}', \quad \mathbf{r} \in \mathcal{S}^{\pm}$$

• Or a) solve eqs. simultaneously or b) add and subtract them to get two equations in two unknowns, $\mathbf{J}^+(\mathbf{r}')$, $\mathbf{J}^-(\mathbf{r}')$.

Scattering by Conducting Sphere Modeled Using 552 Triangles, 828 Unknowns

The End