Institut québécois d'intelligence artificielle

OMsignal Project: ECG Processing

Arsene Fansi-Tchango, PhD

Company

Make personal health and wellness central to our daily lives, through the world's most advanced biosensing apparel platform.

Technology

Operational Challenges

- Easy to collect unlabeled data
 - Huge amount of data captured under different conditions
 - running / walking / sitting / sleeping, etc...
 - different levels of signal to noise ratio
- Hard to label this data for supervised learning
 - Experts (e.g., medical doctors) are expensive
 - Time demanding
 - E.g., walk through all the samples of a signal

ECG Example (1 lead)

From http://www.onlinebiologynotes.com/electrocardiogram-ecg-working-principle-normal-ecg-wave-application-of-ecg/

ECG Characteristics

- Fiducial points: P, Q, R, S, T
- P-Wave:
 - Indicates atrial depolarization (systole)
- QRS wave:
 - Represents the ventricular depolarization (systole)
- T- wave:
 - Indicates ventricular repolarization (diastole)
- P-R interval:
 - Represents the time required for an impulse to travel through the atria
- S-T segment:
 - Represents the time when ventricular fibres are fully depolarized

Complex R STSegment PR Segment PR Interval **QT** Interval

QRS

From https://en.wikipedia.org/wiki/Electrocardiography

ECG Characteristics

OMsignal Project

- Goal: develop an unsupervised/semi-supervised representation learning approach that produces representations useful for tasks that have little labeled data:
 - Identification of the user
 - Fiducial point distributional information
 - Mean of the PR-Interval (real value)
 - Mean of the RT-Interval (real value)
 - Standard deviation of the RR-Interval (real value)

Data

OMsignal MyHeart project:

- Private data
- **32** Participants
- ECG signals are divided into windows of 30 seconds each at 125 Hz (3750 samples per window)
- Labeled data:
 - 15 windows for each participant are labeled
 - Among them, 5 windows are used as test data
 - The remaining 10 are provided as train/validation data
- Unlabeled data:
 - 657233 windows

User Identification Task

Regression Tasks

Applicable for the prediction of the fiducial point statistics: PR Mean, RT Mean, RR StdDev

Multi-source Multi-task Learning

Dealing with Unlabeled data

Goal: Efficient way to integrate knowledge from the unlabeled data

Unsupervised + Supervised Learning

- Step 1: Auto-Encoder to learn representations
- Step 2: Supervised training based on representations extracted from the trained encoder

Semi-supervised Learning

- o One step process.
- Possible approaches (combined with the supervised loss):
 - Reconstruction loss (unlabeled data) auto encoder
 - Regularization loss (unlabeled data) based on some assumptions (e.g. invariance of the output to small amounts of noise added to the input signal)

Official evaluation metrics

- Classification task
 - Macro Average Recall Score (sklearn.metrics.recall_score)
- Regression tasks
 - Kendall Correlation Score for each task (scipy.stats.kendalltau)
- Overall Score:
 - All individual scores are clipped at zero
 - Geometric mean of the scores of the 4 tasks

Informative evaluation metrics

- Cross Entropy for the classification task
- PR_Mean MSE (Mean Squared Error)
- RT_Mean MSE
- RR_StdDev MSE
- etc...

Quebec Artificial Intelligence Institute

Block 1 instructions / expected timeline

		2019/01/14 week	2019/01/21 week	2019/01/28 week	2019/02/04 week
-	Tasks / Homework	Data visualizationData augmentation	 Code the data loader for the provided dataset (optional) Implement a supervised single-task model for the identification task. 	Implement a supervised multi-task model	 Write a short report summarizing the work, and results (Peer-) Review of other teams' code
	Objectives / Deliverables	 Have a clear understanding of the data 	Data loader(optional) Single task model	• Multi-task model	 Produce documented code and report summarizing the experimental work Provide model for blind test set evaluation Complete the peer code review

Block 2 instructions / expected timeline

	2019/02/11 week	2019/02/18 week	2019/02/25 week	2019/03/11 week
Tasks / Homework	 Review code and reports from previous block TensorboardX Code Data loader for unlabeled data 	 Implement multi-task solution which leverage unlabeled data 	 Continue implementing multi-task solution which leverage unlabeled data Hyper parameter tuning 	 Write a short report summarizing the work, and results (Peer-) Review of other teams' code
Objectives/ Deliverables	 Have a clear understanding of the data they will manipulate Data loader for unlabeled data 	 Choose the design pattern for incorporating unlabeled data into the training process 	Multi-task model with unlabeled data	 Produce documented code and report summarizing the experimental work Provide model for blind test set evaluation Complete the peer code review

Block 3 instructions / expected timeline

	2019/03/18 week	2019/03/25 week	2019/04/01 week	2019/04/08 week
Tasks/	 Review code and reports from previous block New direction of improvement/ architecture of the multi-task model with unlabeled data 	Improve or Implement a new multi-task solution which leverage unlabeled data	 Continue implementing multi-task solution which leverage unlabeled data Hyper parameter tuning 	 Write a short report summarizing the work, and results (Peer-) Review of other teams' code
Objectives/	 Have a clear understanding of the data they will manipulate Have a clear understanding of the different approaches 	Choose the design pattern for incorporating unlabeled data into the training process	Multi-task model with unlabeled data	 Produce documented code and report summarizing the experimental work Provide model for blind test set evaluation Complete the peer code review

