FIT3158 Note - W6 Degeneracy in Transportation Problem (MODI)

▼ More exercises

<u>Transportation Problem | Set 7 (Degeneracy in Transportation Problem) - GeeksforGeeks</u>

▼ <u>Degeneracy: Transportation Problem (universalteacherpublications.com)</u>

▼ <u>Degeneracy in Transportation Problem (With Examples) | Operations Research (engineeringenotes.com)</u>

<u>DEGENERACY IN TRANSPORTATION PROBLEMS in Quantitative Techniques for management Tutorial 27</u> (This example is weird!)

Example from (<u>Here</u>) YouTube illustrates how to solve degeneracy in transportation problem.

▼ Its explanation in pdf is here:

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/95414ef1-70b0-4509-a4f6-5d1e89095 345/TP-Degeneracy-LeastCost-MODI.pdf

Destination (Retail Agency)					
		A1	A2	А3	Availability
Source (Factory)	F1	8	7	³ 60	60
	F2	³ 50	8	⁹ 20	70
	F3	11	³ 80	5	80
Demand		50	80	80	210

Suppose we used least cost / vogel to get this feasible solution. Now our task is to find the optimal one using MODI method.

When will we know the solution has degeneracy?

Step 1 of MODI: Check if there is a degeneracy.

Now, we know there is a degeneracy. We want to find independent cells on which it can solve the problem.

What is independent cell?

Step 2 of MODI: Given there is a degeneracy, find independent cells on to solve the problem.

2 conditions:

- 1. Unallocated cells that cannot form a closed loop
- 2. Has the lowest value (e.g., cost)

Step 3 of MODI: After confirming the independent cell, the degenerate issues is solved.

Step 4 we continue doing the MODI, until the optimality is reached.

Here is the solution:

Queuing, Probability and Simulation

Service and waiting times for a single server queue, Poisson arrivals, Exponential service:

 λ = the average number of arrivals per time period (arrival rate)

 $\frac{1}{\lambda}$ = the average time between arrivals

 μ = the average number of services per time period (service rate)

 $\frac{1}{..}$ = the average time taken for each service

 $P_0 = 1 - \frac{\lambda}{\mu}$ the probability that no units are in the system

 $L_q = \frac{\lambda^2}{\mu(\mu - \lambda)}$ the average number of units in the waiting line

 $L = L_q + \frac{\lambda}{\mu}$ the average number of units in the system

 $W_q = \frac{L_q}{\lambda}$ the average time a unit spends in the waiting line

 $W = W_q + \frac{1}{\mu}$ the average time a unit spends in the system

 $P_{\rm w} = \frac{\lambda}{\mu}$ the probability that an arriving unit has to wait for service

 $P_n = \left(\frac{\lambda}{u}\right)^n P_0$ the probability of *n* units in the system

The Poisson distribution $f(x) = \frac{\theta^* e^{-\theta}}{x!} \text{ for a distribution having mean } \theta_*(e=2.71828...)$

 $f(x) = \frac{1}{\theta} e^{-x/\theta}$ for a distribution having mean θ , (e = 2.71828...)

 $P(x \le x_0) = 1 - e^{-x_0/\theta}$

 $P(x \ge x_0) = e^{-x_0/\theta}$ for a given value of x_0

Let X_0 be an integer chosen at random (the random seed) then uniformly distributed integers are generated as $X_{n+1} = AX_n \mod B$ where A and B are large co-prime integers. Random numbers between 0 and 1 are calculated as $r_n = \frac{X_n - 1}{B - 2}$.

Generation of Exponentially distributed random variables

Exponential variates with mean b are generated from uniform [0,1] random numbers, r_e , by the transformation $t_n = -b \log_x(r_e)$.

Service and waiting times for an M/M/S queue:

$$P_{0} = \sqrt{\left[\frac{5-1}{n_{0}} \frac{(\lambda / \mu)^{n}}{n!} + \frac{(\lambda / \mu)^{2}}{S!} \left(\frac{1}{1-\lambda / S\mu}\right)\right]} \qquad L = L_{e} + \frac{\lambda}{\mu}$$

$$P_{n} = \left[\frac{(\lambda / \mu)^{n}}{n!} P_{0} \quad \text{if } 0 \le n \le S \qquad W_{q} = \frac{L_{q}}{\lambda}$$

$$\frac{(\lambda / \mu)^{n}}{S!S^{n-2}} P_{0} \quad \text{if } n \ge S \qquad W = W_{q} + \frac{\lambda}{\mu}$$

$$L_{q} = \frac{(\lambda / \mu)^{2} (\lambda / S\mu)}{S!(1-\lambda / S\mu)^{2}} P_{0} \qquad \rho = \frac{\lambda}{S\mu}$$