Concurrent GARTH (Genetic AlgoRiTHms) using C++11

A Concurrent Framework for Genetic Algorithms

J. Caleb Wherry
Virginia Tech
Department of Engineering Science & Mechanics

Outline

- I. Introduction & Motivations
- II. Application Area
- III. Genetic Algorithms & Framework
- IV. Concurrent Methods & Implementation (Timing)
- V. Results
- VI. Future Work

Intro & Motivations

- Problem Statement:
 - Create a cross-platform Genetic Algorithm framework using native C++11 features
- ➤ Goals:
 - Integrate concurrent principles wherever possible
 - Apply framework to real world problem
 - Test cross-compiler / cross-platform C++11 standard support
 - Specifically new native thread support
 - Performance benchmark of framework against sequential GAs
- Software Engineering Notes:
 - Open Source (MIT License)
 - http://github.com/calebwherry/Concurrent-GARTH
 - Cmake build system
 - Cross-compiler/cross-platform development
 - Python wrapper for cross-platform testing
 - Library Unit Tests (Google Test)
 - Travis-Cl (Continuous Integration)

Application Area

Thomson Problem

Minimize Electrostatic Energy Between All Charged Particles

GA nomenclature: Fitness Function

$$U = \frac{q^2}{4\pi\epsilon_0} \sum_{i>i=1}^{n_c} \frac{1}{|\vec{r}_i - \vec{r}_j|}$$

Genetic Algorithms

- Based on principles from Darwin's Origin of Species
 - Natural Selection
- Very powerful for non-linear optimization problems
 - Selection & Mutation drive exploration of search space
 - Larger population = better searching of space

Genetic Algorithm Framework

std::unique_ptr<Zoo> ("Galapagos")

Results

Cross-Compiler / Cross-Platform Results

	Windows 7	Mac OS 10.8	Linux - Ubuntu 12.04 LTE
GNU GCC 4.8	-	✓	✓
Clang 3.4	\checkmark	✓	-
MinGW 4.8	✓	-	- 1
MSVC 18.0	✓	-	- 6
Intel 14.0	✓	-	

Results

Mini-Benchmark Performance Results

Intel[®] Core[™] i5-2500K CPU @ 3.30GHz (4 core)

- > Results averaged over 5 runs
- ➤ No speedup, wat?!
 - Not using ThreadPool?
 - Overhead of OOP?
 - Bad Design?
 - Simple organism fitness?

Number Particles	T = 1	T = 2	T = 3	T = 4
N=4	0.76831	0.78415	0.80762	0.80893
N=6	1.12857	1.13520	1.13676	1.13939
N=8	2.20581	2.21002	2.20900	2.20811
-				
N=12	3.39890	3.39945	3.39669	3.39931
N=20	10.10100	10.10144	10.10119	10.10109

Future Work

- > Deeper scalability testing on hardware with many cores
 - Xeon Phi (57+ cores)
- > Fully Implement ThreadPool and Barrier
 - Reason why mini-performance results are not good.
 - Not native to C++11, might be in C++14 or C++17?
- > Scalability testing using HPC Systems
 - MPI (not done for this project since not natively supported)
- Memory Testing
 - Does OOP design effect anything? Probably
 - Does overhead of std::shared_ptr<T>, etc effect anything?
- ➤ Parallelize other parts of GA
 - Mutation, selection, sorting, etc.

References

- [1] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann Publishers, 2012.
- [2] M. K'ppen and E. Dimitriadou. Concurrent Application of Genetic Algorithm in Pattern Recognition, pages 868–877. IOS Press, Amsterdam, The Netherlands, The Netherlands, 2003.
- [3] T. Pang. Introduction to Computational Physics. Cambridge University Press, Cambridge, 2006.
- [4] A. Williams. C++ Concurrency In Action: Practical Multithreading. Manning Publications, 2012.
- [5] http://tracer.lcc.uma.es/problems/thomson/img/electr.gif
- [6]

https://www.maths.unsw.edu.au/sites/default/files/imagecache/default_content/me

Questions

Questions & Comments?

N = 12, ~10,000 generations

