Maximum Flow Problem
Inout: Directed graph (flow network)
G=(V,E) Conscibles of edges C: E -> ZT
Capacities of edges $C: E \rightarrow \mathbb{Z}^{+}$ Capacities of edges $C: E \rightarrow \mathbb{Z}^{+}$ Special vertices $S = Source$ $E \rightarrow \mathbb{Z}^{+}$ Model: $E \rightarrow \mathbb{Z}^{+}$
1,000
t consumes it
Commodity needs
f(u,v) = +1000 from (apach)
Problem: What is me transfer in 11 55t3
from s tot, Othernae, V-1., can not prostuce / consume the commodity.
Flow conservation: Ithou into u = Ithou into u = Ithou into u = Ithou into u = out 1 u
$= \sum_{v \in V} f(v, v) = \sum_{v \in V} f(v, v)$

strategies for solving max flow Augmenting path approaches. - start with a 0-flow - find paths from s to t on which flow can be increased - Reach max flow * At all times, we have a feesible flow. Preflow-Push algorithms: - Flood the network with flow from 5.
- What council reach t will flow back to 5. (Idea: inspired by fluids) Feasible flow is obtained only at the end. Scoling appwach: Divide capacities and funcate (by 2) Recursively solve problem Scale up flors Adjust residual capacities.

Preflow-Push Relabel to from algorithm 1. Excess at each note u:

(in Comen's book) $e(u) = \sum_{v \in V} f(v, u) - \sum_{v \in V} f(u, v) \ge 0$ flow into u

How at $\{u \in V - \{s\}\}\$ h(u) = height du. $0 \le h(u) \le 2|V|-2$ Initially: h(s) = |V| unchangeable h(t) = 0h(u) = 0 for $u \in V - \{s, t\}$. Push flow from u to v along (u,v): $C_{f}(u,v) > 0 \qquad (u,v) \in E: f(u,v) < c(u,v)$ and h(u) = h(v) + 1Relabel (u): 1+ max {h(v)}
for all (u,v) : Ef(u,v) >0

Flow example: Preflow-push, relabel to front algorithm:

(1) Initial preflow:

(2) Increase a.h to 1. Move a to front. Push excess flow 12 into (a,c). Raise a.h to 7. Move a to front. Push 4 units back to s.

(3) Node a: no change. Raise b.h to 1. Move b to front. Push excess flow 13 into (b,d).

(4) Nodes b, a: no change. Raise c.h to 1. Move c to front. Push excess flow 12 into (c,t).

(5) Nodes c, b, a: no change. Increase d.h to 1. Move d to front. Push 4 units on (d,t). Raise d.h to 2. Push 7 units on (d,c). Push 2 units back to b.

(6) Node d: no change. Node c: push excess flow 7 on (c,t). Raise b.h to 3. Move b to front. Push 2 units to d.

(6) Same figure shown again: b is moved to front.

(7) Node b: no change. Raise d to 4. Move d to front. Push 2 units back on (b,d).

(8) Node d: no change. Raise b to 5. Move b to front. Push 2 units on (b,d).

(9) Node b: no change. Raise d to 6. Move d to front. Push 2 units back on (b,d).

(10) Node d: no change. Raise b to 7. Move b to front. Push 2 units back on (s,b).

(11) No changes. Max flow is found.

