Introduction to Audio Content Analysis

Module 6.0: Evaluation and Metrics

alexander lerch

introduction overview

corresponding textbook section

Section 6

■ lecture content

- evaluation methodology
- good practices
- metrics

■ learning objectives

- design proper evaluation setups for machine learning algorithms
- list relevant metrics for different machine learning models

corresponding textbook section

Section 6

lecture content

- evaluation methodology
- good practices
- metrics

■ learning objectives

- design proper evaluation setups for machine learning algorithms
- list relevant metrics for different machine learning models

evaluation introduction

- without proper evaluation, there is no way to say whether a system works
- typical mistakes in evaluation
 - 1 non-representative test set
 - small, too homogeneous, ...
 - 2 tuning system parameters with the test set (explicitly or implicitly)
 - 3 using misleading evaluation procedures and metrics

- evaluation **method unrelated** to the specific implementation
 - has to be task driven, not algorithm driven
 - metrics should be unrelated to loss function
- expectations clearly defined
 - worst case performance (random)
 - best case performance (oracle)
 - realistic performance ⇒ baseline system
 - Zero-R classifier
 - standard approach
- **comparability** to state-of-the-art
 - use of established datasets and identical data splits
 - running existing systems on your data
- increase reproducibility
 - automate evaluation
 - publish source code
- test for **statistical significance**

- evaluation **method unrelated** to the specific implementation
 - has to be task driven, not algorithm driven
 - metrics should be unrelated to loss function
- expectations clearly defined
 - worst case performance (random)
 - best case performance (oracle)
 - realistic performance ⇒ baseline system
 - Zero-R classifier
 - standard approach
- **comparability** to state-of-the-art
 - use of established datasets and identical data splits
 - running existing systems on your data
- increase reproducibility
 - automate evaluation
 - publish source code
- test for **statistical significance**

- evaluation **method unrelated** to the specific implementation
 - has to be task driven, not algorithm driven
 - metrics should be unrelated to loss function
- expectations clearly defined
 - worst case performance (random)
 - best case performance (oracle)
 - ullet realistic performance \Rightarrow baseline system
 - Zero-R classifier
 - standard approach
- **comparability** to state-of-the-art
 - use of established datasets and identical data splits
 - running existing systems on your data
- increase reproducibility
 - automate evaluation
 - publish source code
- test for **statistical significance**

- evaluation **method unrelated** to the specific implementation
 - has to be task driven, not algorithm driven
 - metrics should be unrelated to loss function
- expectations clearly defined
 - worst case performance (random)
 - best case performance (oracle)
 - ullet realistic performance \Rightarrow baseline system
 - Zero-R classifier
 - standard approach
- comparability to state-of-the-art
 - use of established datasets and identical data splits
 - running existing systems on your data
- increase reproducibility
 - automate evaluation
 - publish source code
- test for **statistical significance**

- evaluation **method unrelated** to the specific implementation
 - has to be task driven, not algorithm driven
 - metrics should be unrelated to loss function
- expectations clearly defined
 - worst case performance (random)
 - best case performance (oracle)
 - ullet realistic performance \Rightarrow baseline system
 - Zero-R classifier
 - standard approach
- comparability to state-of-the-art
 - use of established datasets and identical data splits
 - running existing systems on your data
- increase reproducibility
 - automate evaluation
 - publish source code
- test for **statistical significance**

- possible outcomes of two class problem (positive and negative):
 - TP: Positives correctly identified as Positives.
 - TN: Negatives correctly identified Negatives,
 - FP: Negatives incorrectly identified Positives, and
 - FN: Positives incorrectly identified Negatives.
- visualization: confusion matrix

	Pred. Pos.	Pred. Neg.	Σ
GT Pos.	True Pos. (TP)	False Neg. (FN)	# of GT Pos. (TP+FN)
GT Neg.	False Pos. (FP)	True Neg. (TN)	# of GT Neg. (FP+FN)
Σ	# of Pred. Pos.	# of Pred. Neg.	# of True Pred. (TP+TN)

classification metrics accuracy and f-measure

Georgia | Center for Music Tech || Techno<u>logy</u>

accuracy: how many predictions are accurate

$$\mathrm{Acc} = \frac{\mathit{TP} + \mathit{TN}}{\mathit{TP} + \mathit{TN} + \mathit{FP} + \mathit{FN}}$$

- macro accuracy: averaged over
- **precision**: how many predicted
- recall: how many ground truth
- **f-measure**: combines precision and

classification metrics accuracy and f-measure

Georgia de Center for Music Tech de Technology College of Design

- accuracy: how many predictions are accurate
- macro accuracy: averaged over classes (not observations)
- precision: how many predicted positives are correct
- recall: how many ground truth positives correctly predicted
- **f-measure**: combines precision and recall

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Acc_{Macro} = \frac{\frac{TP}{TP + FN} + \frac{TN}{TN + FP}}{2} = \frac{TPR + TNR}{2}$$

Georgia Center for Music Tech || Technology

classification metrics accuracy and f-measure

- **accuracy**: how many predictions are accurate
- macro accuracy: averaged over classes (not observations)
- **precision**: how many predicted positives are correct
- recall: how many ground truth
- **f-measure**: combines precision and

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Acc_{Macro} = \frac{\frac{TP}{TP + FN} + \frac{TN}{TN + FP}}{2} = \frac{TPR + TNR}{2}$$

$$P = \frac{TP}{TP + FP}$$

- **accuracy**: how many predictions are accurate
- macro accuracy: averaged over classes (not observations)
- **precision**: how many predicted positives are correct
- recall: how many ground truth positives correctly predicted
- **f-measure**: combines precision and

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

$$\frac{TP}{TP} + \frac{TN}{T} = TPP + TN$$

$$Acc_{Macro} = \frac{\frac{TP}{TP+FN} + \frac{TN}{TN+FP}}{2} = \frac{TPR + TNR}{2}$$

$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

- **accuracy**: how many predictions are accurate
- macro accuracy: averaged over classes (not observations)
- **precision**: how many predicted positives are correct
- recall: how many ground truth positives correctly predicted
- f-measure: combines precision and recall

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

$$\mathrm{Acc}_{\mathrm{Macro}} = \frac{\frac{\mathit{TP}}{\mathit{TP}+\mathit{FN}} + \frac{\mathit{TN}}{\mathit{TN}+\mathit{FP}}}{2} = \frac{\mathit{TPR} + \mathit{TNR}}{2}$$

$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

$$F = 2 \cdot \frac{P \cdot R}{P + R}$$

regression metrics mae, mse, R²

Georgia Center for Music Tech Technology

goal: measure deviation

- mean absolute error
- mean squared error
- coefficient of determination

$$extit{MAE} = rac{1}{\mathcal{R}} \sum_{orall r} |y(r) - \hat{y}(r)|$$

regression metrics mae, mse, R^2

goal: measure deviation

- mean absolute error
- mean squared error
- coefficient of determination.

$$extit{MAE} = rac{1}{\mathcal{R}} \sum_{orall r} |y(r) - \hat{y}(r)|$$

$$MSE = rac{1}{\mathcal{R}} \sum_{orall r} \left(y(r) - \hat{y}(r) \right)^2$$

regression metrics mae, mse, R^2

goal: measure deviation

- mean absolute error
- mean squared error
- coefficient of determination

$$extit{MAE} = rac{1}{\mathcal{R}} \sum_{orall r} |y(r) - \hat{y}(r)|$$

$$MSE = rac{1}{\mathcal{R}} \sum_{orall r} \left(y(r) - \hat{y}(r)
ight)^2$$

$$R^2 = 1 - rac{ extit{MSE}ig(y - \hat{y}ig)}{ extit{MSE}ig(y - \mu_yig)}$$

summary lecture content

evaluation

- system development without evaluation is meaningless
- data and method need to be carefully selected
- metrics need to reflect the sucess of the system

classification metrics

- accuracy and macro accuracy
- precision, recall, and f-measure
- AUC

■ regression metrics

- MAE and MSE
- coefficient of determination

