Sorting Algorithms

- A sorting algorithm is comparison-based if the only operation we can perform on keys is to compare two keys.
- A sorting algorithm is in place if only a constant number of elements of the input array are ever stored outside the array.

Running Time of Comparison-Based Sorting Algorithms

	worst-case	average-case	best-case	in place
Insertion Sort				
Merge Sort				
Quick Sort				
Heap Sort				

Heaps

• The *(binary) heap* data structure is an array object that can be viewed as a nearly complete binary tree.

Binary Heap

- A heap data structure created using a binary tree.
- It can be seen as a binary tree with two additional constraints:
 - The shape property: the tree is an almost complete binary tree; that is, all levels of the tree, except possibly the last one (deepest) are fully filled.
 - The *heap property*: each node is greater than or equal to each of its children according to some comparison predicate which is fixed for the entire data structure.

Binary tree: an array implementation

- root is A[1]
- for element A[i]
 - left child is in position A[2i]
 - right child is in position A[2i + 1]
 - parent is in A[Li/2]
- Example: i = 5
- heap as an array implementation
 - store heap as a logical binary tree in array
 - heapsize is number of elements in heap
 - length is number of elements in array

Binary tree: an array implementation

- root is A[1]
- for element A[i]
 - left child is in position A[2i]
 - right child is in position A[2i + 1]
 - parent is in A[Li/2]
- Example: i = 5
- Parent(i) return (Li/2_)
- LeftChild(i) return (2i)
- RightChild(i) return(2i+1)

Max-heap property

In the array representation of a max-heap, the root of the tree is in A[1], and given the index i of a node,

Min-heap property

Min-heaps are commonly used for priority queues in event-driven simulators.

Min-heap property: $A[Parent(i)] \le A[i]$

Heap Sort

Input: An *n*-element array A (unsorted).

Output: An *n*-element array A in sorted order, smallest to largest.

HeapSort(A)

- 1. Build-Max-Heap(A) /* put all elements in heap */
- 2. for $i \leftarrow length(A)$ downto 2
- **3. do** swap $A[1] \leftrightarrow A[i]/*$ puts max in *i*-th array position*/
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. Max-Heapify(A,1) /* restore heap property */