1 Définition et premières propriétés

1) a) Soit $f: I \longrightarrow \mathbb{R}$. Soient x et y deux points de I tels que x < y. La fonction affine passant par les points de coordonnées (x, f(x)) et (y, f(y)) est la fonction $u \mapsto \Delta_f(x, y)(u - x) + f(x)$.

Donc f est convexe

$$\iff \forall t \in [0,1]^2, \forall (x,y) \in I^2, x < y \left(\frac{f(y) - f(x)}{y - x}\right) (tx + (1-t)y - x) + f(x) \ge f(tx + (1-t)y)$$

$$\iff \forall t \in [0,1]^2, \forall (x,y) \in I^2, tf(x) + (1-t)f(y) \ge f(tx + (1-t)y)) \text{ (Il y a toujours égalité si } x = y).$$

Si f est concave alors on a : $\forall t \in [0,1]^2, \forall (x,y) \in I^2, t(-f)(x) + (1-t)(-f)(y) \ge (-f)(tx + (1-t)y)$ Donc $\forall t \in [0,1]^2, \forall (x,y) \in I^2, f(tx+(1-t)y) \ge tf(x)+(1-t)f(y).$

- b) Si f est convexe et concave alors pour tout $(x,y) \in I^2$, la courbe représentative de f est confondue avec la corde reliant les points M_x et M_y . On en déduit donc que la fonction f est affine.
- 2) Pour tout $(x,y) \in \mathbb{R}^2$ et $t \in [0,1]$:

$$(tx + (1-t)y)^2 - (tx^2 + (1-t)y^2) = -t(1-t)(x-y)^2 < 0.$$

Donc $(tx + (1-t)y)^2 < (tx^2 + (1-t)y^2)$. Donc $x \mapsto x^2$ est convexe sur \mathbb{R} .

a) Montrons que exp est convexe sur \mathbb{R} . Soit $y \in \mathbb{R}$. Soit $t \in]0,1[$.

Notons $\varphi : x \mapsto te^x + (1-t)e^y - e^{tx + (1-t)y}$.

La fonction φ est de classe \mathcal{C}^{∞} sur \mathbb{R} et $\varphi': x \mapsto t\left(e^x - e^{tx + (1-t)y}\right)$. Donc $\varphi'(x) \geq 0 \iff e^x \geq e^{tx + (1-t)y} \iff$ $x \ge tx + (1-t)y \iff x \ge y.$

Donc la fonction φ est minimale lorsque x=y, et $\varphi(y)=0$. On en déduit donc que $\forall x\in\mathbb{R}, \varphi(x)\geq 0$, c'est-àdire :

$$\forall (x,y) \in \mathbb{R}^2, \forall t \in]0,1[,e^{tx+(1-t)y} \le te^x + (1-t)e^y.$$

L'inégalité étant évidente pour $t \in \{0\}$ 1, on en déduit que

exp est convexe.

Si $(X,Y) \in (\mathbb{R}^+_*)^2$, on peut appliquer le résultat procédent à $x = \ln(X)$ et $y = \ln(Y)$, on en déduit que :

$$\forall (X,Y) \in \left(\mathbb{R}_*^+\right)^2, \forall t \in [0,1]^2, e^{t \ln(X) + (1-t) \ln(Y)} \leq t e^{\ln(X)} + (1-t) e^{\ln(Y)} = tX + (1-t)Y.$$

Donc par croissance de la fonction ln :

$$\forall (X,Y) \in (\mathbb{R}_*^+)^2, \forall t \in [0,1]^2, \ln(tX + (1-t)Y) \le tX + (1-t)Y.$$

Donc la fonction ln est concave sur \mathbb{R}_*^+ .

3) Soit f une fonction convexe sur I.

Soient x_1 , x_2 et x_3 trois points de I tels que $x_1 < x_2 < x_3$. Posons $t = \frac{x_2 - x_3}{x_1 - x_2}$ de sorte que $t \in [0,1]$ et $x_2 = tx_1 + (1-t)x_3$. La convexité de f donne :

$$f(x_2) \le tf(x_1) + (1-t)f(x_3).$$

D'où:

$$f(x_2) \le \frac{x_2 - x_3}{x_1 - x_2} f(x_1) + \frac{x_1 - x_2}{x_1 - x_2} f(x_3).$$

D'où:

$$f(x_2) - f(x_1) \le \frac{x_2 - x_1}{x_2 - x_1} (f(x_3) - f(x_1)).$$

C'est-à-dire puisque $x_2 - x_1 > 0$: $\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1}$. On a donc $\boxed{\Delta_f(x_1, x_2) \le \Delta_f(x_1, x_3)}$.

On prouve de manière analogue que : $\Delta_f(x_1, x_3) \leq \Delta_f(x_2, x_3)$.

4) Première implication:

Soit f une fonction convexe définie sur I. Soit $a \in I$. Montrons que $p_a : x \in I \setminus \{a\} \mapsto \Delta_f(x,a)$ est croissante. Soient x et y deux éléments de I différents de a tels que x < y.

- Si x < y < a, alors en posant $x_1 = x$, $x_2 = y$ et $x_3 = a$, dans l'inégalité de la question précédente, on a $p_a(x) < p_a(y)$.
- Si a < x < y, alors par question précédente avec $x_1 = a$, $x_2 = a$ et $x_3 = y$, on a $p_a(x) \le p_a(y)$.
- Si x < a < y, alors par question précédente avec $x_1 = x$, $x_2 = a$ et $x_3 = y$, on a $p_a(x) \le p_a(y)$.

Donc dans tous les cas $p_a(x) \leq p_a(y)$. On en déduit donc que l'application p_a est croissante.

Implication réciproque:

On suppose maintenant que pour tout $a \in I$, la fonction p_a est croissante. Montrons que f est convexe sur I. Il suffit de prouver que pour tout $(x,y) \in I^2$, tel que x < y et $t \in]0,1[:f(tx+(1-t)y) \le tf(x)+(1-t)f(y)$. Soit $(x,y) \in I^2$, tel que x < y et $t \in]0,1[$. Posons a=tx+(1-t)y, alors $a \in I$, car I est un intervalle, la croissance de p_a donne alors $p_a(x) \le p_a(y)$, donc : $\frac{f(a)-f(x)}{a-x} \le \frac{f(a)-f(y)}{a-y}$ donc $\frac{f(a)-f(x)}{(1-t)(y-x)} \le \frac{f(a)-f(y)}{t(x-y)}$. Donc puisque y > x, on a $f(a) \le tf(x)+(1-t)f(y)$. Donc f est convexe.

Donc f est convexe ssi $\forall a \in I$, l'application p_a est croissante.

5) Lemme des pentes amélioré

Soit f une fonction convexe sur I et $(a, b, x, y) \in I^4$ tels que a < b et x < y. Le lemme des trois pentes donne alors : $\Delta_f(a, x) \leq \Delta_f(a, y)$ et $\Delta_f(a, y) \leq \Delta_f(b, y)$. Cela implique par transitivité de \leq :

$$\Delta_f(a,x) \le \Delta_f(b,y).$$

2 Fonctions convexes et régularité

- 6) a) Soit a un point de l'intérieur de I. La fonction p_a est croissante, elle admet donc une limite finie à droite et à gauche en tout point de $I \setminus \{\sup(I), \inf(I)\}$. En particulier, elle admet une limite à droite et une limite à gauche en a.
 - b) On prouve facilement que $x \mapsto |x|$ est convexe. Mais elle n'est pas dérivable en 0. Les fonctions convexes ne sont donc pas nécessairement dérivables en tout point de l'intérieur de leur domaine de définition.
- 7) a) La dérivabilité à droite (resp. à gauche) implique la continuité à droite (resp. à gauche) en tout point de l'intérieur de I. Donc une fonction convexe est nécessairement continue sur l'intérieur de son domaine de définition.
 - b) L'exemple de la fonction $x \mapsto \begin{vmatrix} 0 & \text{si} & x \in]0,1[\\ 1 & \text{si} & x \in \{0,1\} \end{vmatrix}$, prouve que f n'est pas forcément continue sur I.
- 8) Soit I un intervalle ouvert de \mathbb{R} . On suppose que f est convexe bijective de I vers J.
 - a) Alors, f est continue et bijective sur I, elle est donc strictement monotone sur I.
 - b) Par convexité de f, on a pour tout $(X,Y) \in J^2$, et tout $t \in [0,1]$:

$$f(tf^{-1}(X) + (1-t)f^{-1}(Y)) \le tf(f^{-1}(X)) + (1-t)f(f^{-1}(Y)).$$

C'est-à-dire:

$$f(tf^{-1}(X) + (1-t)f^{-1}(Y)) \le tX + (1-t)Y.$$

(-) Si f est une bijection croissante, cela implique que :

$$tf^{-1}(X) + (1-t)f^{-1}(Y) \le f^{-1}(tX + (1-t)Y).$$

La fonction f^{-1} est donc concave.

- (-) Si f est une bijection décroissante, on en déduit de manière analogue que la fonction f^{-1} est convexe.
- c) La fonction exp est une bijection croissante convexe dont la réciproque ln est une bijection décroissante concave.

La fonction $x \mapsto \exp(-x)$ est une bijection décroissante convexe dont la réciproque $-\ln$ est une bijection croissante convexe.

- 9) Soit f une fonction dérivable sur I.
- (-) Supposons que f est convexe.

Montrons que f' est croissante.

Soient a et b deux éléments de I tels que a < b. Pour tout $h \neq 0$, tel que $a + h \in I$ et $b + h \in I$, on a $a + h \leq b + h$. Donc d'après le lemme des pentes amélioré, $\Delta_f(a, a + h) \leq \Delta_f(b, b + h)$. En passant à la limite $h \mapsto 0$, on en déduit que : f'(a) < f'(b).

On a donc prouvé $\forall (a, b) \in I^2, a < b \Longrightarrow f'(a) \leq f'(b)$.

Donc f' est croissante.

Supposons maintenant que f' est croissante sur I.

Montrons que f est convexe.

Soient $(x, y) \in I^2$ et $t \in]0, 1[$ tels que x < y.

On note a = tx + (1 - t)y dans la suite. Puisque f est dérivable sur I, d'après l'égalité des accroissements finis,

$$\exists \alpha \in]x, a[, f'(\alpha) = \underbrace{f(a) - f(x)}_{a - x}, \text{ et } :$$

 $\exists \alpha \in]x, a[, f'(\alpha) = \frac{x + y + y}{a - x}, \text{ et } :$ $\exists \beta \in]a, y[, f'(\beta) = \frac{f(a) - f(y)}{a - y}. \text{ On a donc } \alpha \leq \beta, \text{ donc par croissance de } f', \text{ on a } f'(\alpha) \leq f'(\beta). \text{ On en déduit }$ alors que :

$$\frac{f(a) - f(x)}{a - x} \le \frac{f(a) - f(y)}{a - y}.$$

Ce qui donne:

$$f(a) \le tf(x) + (1 - y)f(y).$$

La fonction f est donc convexe. On a donc prouvé l'équivalence recherchée :

(Si f est dérivable sur I, la fonction f' est croissante ssi f est convexe.

10) a) Si f est deux fois dérivable.

Alors
$$f$$
 convexe \iff f' est croissante \iff $f'' \ge 0$.

b) La fonction exp est évidemment deux fois dérivable, et $\exp'' = \exp \ge 0$. Donc exp est convexe.

$\mathbf{3}$ Comportement au voisinage de $+\infty$ des fonctions convexes positives.

11) a) Soit $f_1: x \mapsto x - \tanh(x)$.

i) On vérifie facilement par une petite étude de fonctions que $\forall x \in \mathbb{R}_+, f_1(x) \geq 0$. On a $f_1(0) = 0$. De plus, $f_1 \in \mathcal{C}^2(\mathbb{R}_+, \mathbb{R}_+).$

$$\forall x \in \mathbb{R}_+, f_1'(x) = \tanh^2(x) \ge 0 \quad \text{et} \quad f_1''(x) = 2(1 - \tanh^2(x)) \tanh(x) \ge 0.$$

Donc $f_1 \in \mathcal{E}$ et de plus f_1 est croissante sur \mathbb{R}_+ .

ii) Puisque $\lim_{x\to +\infty} \tanh(x) = 1^-$, on a $\lim_{x\to +\infty} f_1(x) - (x-1) = 0^+$. Donc la droite d'équation y=x-1 est asymptote oblique à \mathcal{C}_{f_1} au voisinage de $+\infty$ et au voisinage de $+\infty$ la courbe \mathcal{C}_{f_1} est au-dessous de

iii)

La fonction f_2 est de classe C^2 sur \mathbb{R}_+ comme somme et composée de telles fonctions. On a $f_2(0) = 0$. De plus, $f'_2: x \mapsto \arctan(x)$, donc $\forall x \in \mathbb{R}_+, f'_2(x) \ge 0$.

Donc $f_2 \in \mathcal{C}^2(\mathbb{R}_+, \mathbb{R}_+)$. Et $\forall x \in \mathbb{R}_+, f_2''(x) = \frac{1}{1+x^2} \geq 0$. Donc f_2 est une fonction de \mathcal{E} qui est de plus croissante.

On a
$$f_2(x) = x \left(\frac{\pi}{2} - \arctan\left(\frac{1}{x}\right)\right) - \frac{\ln(1+x^2)}{2} = x\frac{\pi}{2} - o_{+\infty}(1) - \ln(x) + o_{+\infty}(1),$$

 $(\operatorname{car} \forall x \in \mathbb{R}_*^+, \ln(x^2+1) = 2\ln(x) + \ln\left(1 + \frac{1}{x^2}\right))$. Donc $f_2(x) = \frac{\pi x}{2} - \ln(x) + o_{+\infty}(1)$. La courbe représentative de f_2 admet donc une branche parabolique d'équation $y = \frac{\pi x}{2}$.

b) la fonction $x \mapsto e^x - 1$ appartient à \mathcal{E} et vérifie $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$.

Dans toute la suite de cette partie f désigne une fonction de \mathcal{E} . (Elle est donc convexe, car sa dérivée seconde est positive).

- 12) a) La fonction $x \mapsto xf'(x) f(x)$ est dérivable de dérivée $x \mapsto f''(x)$, comme $f \in \mathcal{E}$, elle est donc croissante. Elle s'annule en 0, car f(0) = 0, donc $\forall x \in \mathbb{R}_+, f(x) \leq x f'(x)$.
 - b) La fonction f est convexe, donc d'après la première partie, on en déduit que $p_0(f)$ est croissante.
- 13) Soit $y \in \mathbb{R}_+$. Soit $\varphi_y : x \mapsto f(x+y) f(x) f(y)$. La fonction φ_y est dérivable sur \mathbb{R}^p et :

$$\forall x \in \mathbb{R}_+, \varphi_y'(x) = f'(x+y) - f'(x) \ge 0.$$

car f' est croissante. Donc $\forall x \in \mathbb{R}_+, \varphi_y(x) \ge \varphi_y(0) = f(0) = 0$, car $f \in \mathcal{E}$.

Donc
$$\forall x \in \mathbb{R}_+, f(x) + f(y) \le f(x+y).$$

14) a) Supposons que $\lim_{x\to +\infty} p_0(x) = +\infty$, dans ce cas d'après 13)a), et par théorème de comparaison $\lim_{x\to +\infty} f'(x) = -\infty$ $+\infty$.

b)

i) Soit x > 0. La positivité de $f\left(\frac{x}{2}\right)$ donne $f(x) - f\left(\frac{x}{2}\right) \le f(x)$.

De plus, d'après l'inégalité des accroissements finis, $\exists c_x \in]x, x/2[$ tel que $\frac{f(x) - f(x/2)}{\frac{x}{2}} = f'(c_x)$. La crois-

sance de f' donne alors :

$$\frac{f(x) - f(x/2)}{\frac{x}{2}} \ge f'\left(\frac{x}{2}\right).$$

On a donc pour tout $x>0, \frac{x}{2}f'\left(\frac{x}{2}\right)\leq f(x)-f\left(\frac{x}{2}\right)\leq f(x).$ ii) Si l'on suppose de plus que $\lim_{x\to+\infty}f'(x)=+\infty$, puisque par question précédente :

$$\frac{1}{2}f'\left(\frac{x}{2}\right) \le p_0(f)(x),$$

on obtient donc $\lim_{x \to +\infty} p_0(f)(x) = +\infty$.

- 15) On suppose maintenant que f n'est pas constante et que $p_0(f)$ ne tend pas vers $+\infty$ en $+\infty$.
 - a) Puisque $p_0(f)$ est croissante, elle admet $+\infty$ ou un réel $a \in \mathbb{R}_+$ comme limite en $+\infty$. Par supposition, le cas $\lim_{x\to +\infty} p_0(f)(x) = +\infty$ est exclu. Donc $\exists a\in \mathbb{R}_+, \lim_{x\to +\infty} p_0(f)(x) = a$. Le réel a ne peut être nul, sinon par croissance de $p_0(f)$, on obtiendrait $\forall x \in \mathbb{R}_+, 0 \leq \frac{f(x)}{x} \leq 0$, donc f serait l'application nulle, ce qui est exclu.

Donc
$$\exists a \in \mathbb{R}^+_*, f(x) \underset{+\infty}{\sim} ax$$
.

b) D'après la question précédente, la fonction f' ne tend pas vers $+\infty$ en $+\infty$ mais elle est croissante, donc par théorème de la limite monotone, $\exists \ell \in \mathbb{R}, \lim_{x \to +\infty} f'(x) = \ell.$

On a donc $f'(x) = \ell + o(1)$ et $f(x) = ax + o_{+\infty}(x)$.

De plus par question précédente :

$$xf'(x/2) \le f(x) - f(x/2) \le f(x)$$
.

Donc
$$\frac{x\ell}{2} + o(x) \le ax - a\frac{x}{2} + o(x) \le ax + o(x)$$
.
Donc $\frac{x\ell}{2} + o(x) \le \frac{ax}{2} + o(x)$. Donc $\ell \le a$.

Par ailleurs, $\forall x \in \mathbb{R}^+_*, \frac{f(x)}{r} \leq f'(x)$. Donc, par passage à la limite $a \leq \ell$.

Donc
$$a = \ell$$
.

- c) La fonction $x \mapsto f(x) ax$ admet $x \mapsto f'(x) a$ pour dérivée. Comme la fonction f'' est positive, on en déduit que $\forall x \in \mathbb{R}_+, f'(x) \leq a$. La fonction $x \mapsto f(x) - ax$ est donc décroissante et donc par théorème de la limite monotone, la fonction $x \mapsto f(x) - ax$ admet une limite $b \in \mathbb{R}_+ \cup \{-\infty\}$.
- d) Si $b \in \mathbb{R}$, on a une asymptote oblique d'équation y = ax + b. Si $b = -\infty$, on a une branche parabolique de direction asymptotique y = ax.

4 Fonctions movement convexes

16) Soit f une fonction continue et moyennement convexe sur I.

Montrons que f est convexe.

Soient a et b deux points de I, montrons que sur [a,b], le graphe de f est en dessous de la corde reliant les points (a, f(a)) et (b, f(b)).

On considère la fonction $g: x \mapsto f(x) - \left(\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right)$, qui est la différence entre la corde et la fonction f, et l'on a g(a) = g(b) = 0. Cette fonction g est encore moyennement convexe. Il suffit de prouver que $\forall x \in [a, b], g(x) \leq 0$, pour prouver que sur [a, b] le graphe de f est au-dessus de la corde.

Par l'absurde. Supposons qu'il existe $c \in]a, b[$ tel que g(c) > 0.

- $(-) \text{ Soit } \mathcal{D} = \bigg\{x \in [a,c] \ \bigg| \ g(x) \leq 0 \bigg\}, \text{ cet ensemble est major\'e par } c, \text{ non vide car il contient } a. \text{ Il admet donc une borne sup\'erieure que l'on note } d. \text{ Puisque } g(c) > 0 \text{ et comme } g \text{ est continue, en utilisant la définition de la limite avec } \varepsilon = \frac{g(c)}{2} > 0, \text{ il existe un r\'eel } \eta > 0 \text{ tel que } \forall x \in [c \eta, c + \eta], g(x) \geq g(c) \frac{g(c)}{2} > 0. \text{ Donc } d \leq c \eta < c.$ De plus, $g(d) \leq 0$, en effet, il existe par caractérisation séquentielle du sup, une suite $(x_n)_{n \in \mathbb{N}}$ d'éléments de \mathcal{D} qui converge vers d. On a donc $\forall n \in \mathbb{N}, g(x_n) \leq 0$, donc par continuité de f en d, en passant à la limite $g(d) \leq 0$.
- (-) On construit de manière analogue $d' = \inf \left\{ x \in [c, b] \mid g(x) \le 0 \right\}$ qui vérifie c < d' et $g(d') \le 0$.
- (-) Par moyenne convexité, on a donc $g\left(\frac{d+d'}{2}\right) \leq \frac{g(d)+g(d')}{2} \leq 0$. Pourtant par construction de d et d', on a $\forall x \in]d, d'[, g(x) > 0$, donc $g\left(\frac{d+d'}{2}\right) > 0$. Contradiction!

Donc $\forall x \in]a, b[, g(x) \le 0.$

Donc f est convexe.

5 Inégalité de Jensen

Soit f une fonction convexe sur I.

17) a) Soit $n \in \mathbb{N}^*$. Soit $n \in \mathbb{N}^*$. Soit $(x_1, \dots, x_n, x_{n+1}) \in I^{n+1}$. Soient $\lambda_1, \dots, \lambda_n, \lambda_{n+1}$ une liste de n+1 réels positifs de somme égale à 1, tels que $\lambda_{n+1} \neq 1$, on a par convexité :

$$\forall t \in [0,1], \forall (X,Y) \in I^2, f(tX + (1-t)Y) \le tf(X) + (1-t)f(Y).$$

On applique ce résultat à $t=\lambda_{n+1}$, et $X=x_{n+1}\in I$ et $Y=\frac{\displaystyle\sum_{i=1}\lambda_ix_i}{1-\lambda_{n+1}}$. (C'est possible car $Y\in I$, car I est un intervalle, il est donc convexe et Y est un barycentre à coefficients positifs de points de I, donc $Y\in I$). On obtient donc :

$$f\left((1-\lambda_{n+1})\left(\sum_{i=1}^{n}\frac{\lambda_{i}x_{i}}{(1-\lambda_{n+1})}\right)+\lambda_{n+1}x_{n+1}\right) \leq (1-\lambda_{n+1})f\left(\sum_{i=1}^{n}\frac{\lambda_{i}x_{i}}{(1-\lambda_{n+1})}\right)+\lambda_{n+1}f(x_{n+1}).$$

b) Soit f une fonction convexe sur I. Notons pour tout $n \in \mathbb{N}^*$, la propriété H_n :

$$\forall (x_1, \dots, x_n) \in I^n, \forall (\lambda_1, \dots, \lambda_n) \in (\mathbb{R}_+)^n, \text{ tel que} \sum_{i=1}^n \lambda_i = 1, f\left(\sum_{i=1}^n \lambda_i x_i\right) \leq \sum_{i=1}^n \lambda_i f(x_i).$$

- (-) La propriété H_1 est immédiatement vraie.
- (-) Soit $n \in \mathbb{N}^*$. Supposons que la propriété H_n est vraie. Montrons que H_{n+1} est vraie.

Soient
$$(x_1, \ldots, x_{n+1}) \in I^{n+1}$$
, $(\lambda_1, \ldots, \lambda_{n+1}) \in (\mathbb{R}_+)^{n+1}$ tels que $\sum_{i=1}^{n+1} \lambda_i = 1$.

Si $\lambda_{n+1} = 1$, alors $\forall i \in [1, n]$, $\lambda_i = 0$. Donc l'inégalité est triviale. Si $\lambda_{n+1} < 1$. Alors on peut appliquer la question précédente et :

$$f\left((1-\lambda_{n+1})\left(\sum_{i=1}^{n}\frac{\lambda_{i}x_{i}}{(1-\lambda_{n+1})}\right)+\lambda_{n+1}x_{n+1}\right) \leq (1-\lambda_{n+1})f\left(\sum_{i=1}^{n}\frac{\lambda_{i}x_{i}}{(1-\lambda_{n+1})}\right)+\lambda_{n+1}f(x_{n+1}). \quad (*)$$

On remarque alors que $\sum_{i=1}^{n} \frac{\lambda_i}{1-\lambda_{n+1}} = 1$, on peut donc appliquer l'hypothèse de récurrence H_n , avec $\frac{\lambda_i}{1-\lambda_{n+1}}$

$$f\left(\sum_{i=1}^{n} \frac{\lambda_i x_i}{1 - \lambda_{n+1}}\right) \le \sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} f(x_i).$$

En remplaçant dans (*), on obtient :

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) \leq \sum_{i=1}^{n+1} \lambda_i f(x_i). \text{ Donc } H_{n+1} \text{ est vraie.}$$
(-) Donc pour tout $n \in \mathbb{N}^*$, la propriété H_n est vraie. Ce qui démontre l'inégalité de Jensen.

- c) La fonction exp est convexe. En utilisant $\forall i \in [1, n], \lambda_i = \frac{1}{n}$, alors $\sum_{i=1}^n \lambda_i = 1$, on a donc

$$\forall (a_1, \dots, a_n) \in \mathbb{R}, \exp\left(\sum_{i=1}^n \frac{a_i}{n}\right) \le \sum_{i=1}^n \frac{e^{a_i}}{n}.$$

Donc:

$$\exp\left(\frac{\sum_{i=1}^{n} a_i}{n}\right) \le \frac{1}{n} \sum_{i=1}^{n} a_i.$$

Soient maintenant x_1,\ldots,x_n des réels positifs. Si l'un de ces réels est nul, il est clair que $\sqrt[n]{x_1\ldots x_n}=0$

Sinon, on peut poser $\forall i \in [1, n], a_i = \ln(x_i)$, dans l'inégalité précédente, et l'on obtient :

$$\sqrt[n]{x_1 \dots x_n} \le \frac{1}{n} \sum_{i=1}^n x_i.$$

18) Soient a, b, c et d quatre réels de]0,1[. En notant s=a+b+s+d. Quitte à remplacer a, b, c et d par $\frac{a}{s}, \frac{b}{s}, \frac{b}{s}$ $\frac{c}{s}, \frac{d}{s}$, on peut supposer sans perte de généralité que a+b+c+d=1.

$$\frac{4}{3} \le \frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} + \frac{d}{1-d}$$

Posons $f:]0,1[\longrightarrow \mathbb{R}, \ x \longmapsto \frac{x}{1-x}$. La fonction f est de classe \mathcal{C}^2 sur]0,1[, sa dérivée est $f': x \mapsto \frac{1}{(1-x)^2}$, sa dérivée seconde est $f'': x \mapsto \frac{2}{(1-x)^3}$. Donc $\forall x \in \mathbb{R}_+, f''(x) \geq 0$. Donc f est convexe, donc d'après l'inégalité de Jensen:

$$f\left(\frac{a+b+c+d}{4}\right) \le \frac{f(a)+f(b)+f(c)+f(d)}{4}.$$

c'est-à-dire:

$$f\left(\frac{1}{4}\right) \le \frac{f(a) + f(b) + f(c) + f(d)}{4}.$$

C'est-à-dire:

$$\frac{1}{3} \le \frac{f(a) + f(b) + f(c) + f(d)}{4}.$$

Donc
$$\frac{4}{3} \le \frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} + \frac{d}{1-d}$$
.

Inégalités usuelles 6

Notons tout d'abord ce résultat essentiel :

Si f est convexe sur I et dérivable en $a \in I$, alors sa courbe représentative est au-dessus de tangente au point d'abscisse I.

preuve:

Supposons que $a \neq \sup(I)$. Soit h un réel strictement positif et $x \in I$ tel que a < x. Pour $h \in]0, x-a[$, on a a < a+h < x, donc d'après le lemme des trois pentes, puisque f et convexe, pour $\forall h \in]0, x-a[$, $\frac{f(a+h)-f(a)}{h} \leq \frac{f(x)-f(a)}{x-a}$. On a donc en passant à la limite $h \mapsto 0$:

$$f'_d(a) \le \frac{f(x) - f(a)}{x - a}.$$

Donc:

$$f'_d(a)(x-a) + f(a) \le \frac{f(x) - f(a)}{x-a}(x-a) + f(a).$$

C'est-à-dire:

$$f'_d(a)(x-a) + f(a) \le f(x).$$

Ce qui prouve que sur le $[a, \infty] \cap I$, la courbe représentative de f est au-dessus de la demi-tangente à droite à C_f en a.

On procède de même pour les demi-tangentes à gauche de a. On en déduit donc que si f est convexe et dérivable en a alors la courbe représentative de f est au-dessus de celle de la tangente à C_f en a.

19) a) La fonction $x \mapsto \ln(1+x)$ est concave car sa dérivée seconde est négative. D'après le résultat exposé ci-dessus, on en déduit donc que sa courbe représentative et en-dessous de celle de sa tangente en 0.

Donc
$$\forall x \in]-1, +\infty[, \ln(1+x) \le x.$$

- b) La fonction exp est convexe, sa courbe est donc au-dessus de sa tangente au point d'abscisse 0, donc $\forall x \in \mathbb{R}, e^x \geq x + 1$.
- c) La fonction sin de dérivée seconde sin, est concave sur l'intervalle $\left[0, \frac{\pi}{2}\right]$, donc elle est au-dessus de la corde reliant les points d'abscisse (0,0) et $\left(\frac{\pi}{2},1\right)$.

Donc
$$\forall x \in \left[0, \frac{\pi}{2}\right], \sin(x) \ge \frac{2x}{\pi}.$$