Author: montserrat.filella@unige.ch

Last update: 03/12/2024

Source: Compilation COST Action 1802

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Zirconium

Equilibrium reactions	$\lg K$ at infinite dilution and $T = 298 \text{ K}$		
	Baes and Mesmer, 1976	Thoenen et al., 2014	Brown and Ekberg, 2016
$Zr^{4+} + H_2O \rightleftharpoons ZrOH^{3+} + H^+$	0.3	0.32 ± 0.22	0.12 ± 0.12
$Zr^{4+} + 2 H_2O \rightleftharpoons Zr(OH)_2^{2+} + 2 H^+$	(-1.7)*	0.98 ± 1.06*	-0.18 ± 0.17*
$Zr^{4+} + 3 H_2O \rightleftharpoons Zr(OH)_3^+ + 3 H^+$	(-5.1)		
$Zr^{4+} + 4 H_2O \rightleftharpoons Zr(OH)_4 + 4 H^+$	-9.7*	-2.19 ± 0.70*	-4.53 ± 0.37*
$Zr^{4+} + 5 H_2O \rightleftharpoons Zr(OH)_5^- + 5 H^+$	-16.0		
$Zr^{4+} + 6 H_2O \rightleftharpoons Zr(OH)_6^{2-} + 6 H^+$		-29± 0.70	-30.5 ± 0.3
$3 Zr^{4+} + 4 H_2O \rightleftharpoons Zr_3(OH)_4^{8+} + 4 H^+$	-0.6	0.4 ± 0.3	0.90 ± 0.18
$3 Zr^{4+} + 5 H_2O \rightleftharpoons Zr_3(OH)_5^{7+} + 5 H^+$	3.70		
$3 Zr^{4+} + 9 H_2O \rightleftharpoons Zr_3(OH)_9^{3+} + 9 H^+$		12.19 ± 0.20	12.19 ± 0.20
$4 Zr^{4+} + 8 H_2O \rightleftharpoons Zr_4(OH)_8^{8+} + 8 H^+$	6.0	6.52 ± 0.05	6.52 ± 0.05
$4 \text{ Zr}^{4+} + 15 \text{ H}_2\text{O} \rightleftharpoons \text{Zr}_4(\text{OH})_{15}^+ + 15 \text{ H}^+$		12.58± 0.24	
$4 \text{ Zr}^{4+} + 16 \text{ H}_2\text{O} \rightleftharpoons \text{Zr}_4(\text{OH})_{16} + 16 \text{ H}^+$		8.39± 0.80	
$ZrO_2(s) + 4 H^+ \rightleftharpoons Zr^{4+} + 2 H_2O$	-1.9*		-5.37 ± 0.42*

Contributors: Clemente Bretti, Elvira Bura Nakić, Montserrat Filella, Josep Galceran, Sofia Gama, Elżbieta Gumienna- Kontecka, Lucija Knežević, Gabriele Lando, Přemysl Lubal, Demetrio Milea, Andrzej Mular, Bartosz Orzeł, Michaela Rendošová, Matteo Savastano, Vladimir Sladkov, Kamila Stokowa-Sołtys, Yuliya Toporivska, Zuzana Vargová, Emanuele Zanda, Veronika Zinovyeva

$ZrO_2(s, baddeleyite) + 4 H^+ \rightleftharpoons Zr^{4+} + 2 H_2O$	−7 ± 1.6	
$Zr(OH)_4(am) + 4 H^+ \rightleftharpoons Zr^{4+} + 4 H_2O$	-3.24± 0.10	-2.97 ± 0.18

^{*}Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. It is strongly suggested to refer to the original papers.

- C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, pp. 158.
- P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 442–460.
- T. Thoenen, W. Hummel, U. Berner and E. Curti, The PSI/Nagra Chemical Thermodynamic Database 12/07, 2014.

Distribution diagrams

These diagrams have been computed at two Zr concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

