LINEAR REGRESSION

Part II

Outline

> Multiple linear regression

Advertising data

➤ How can we extend our analysis of the advertising data in order to accommodate radio and newspaper?

	Coefficient	Std. error	t-statistic	<i>p</i> -value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001
	ı			
Intercept	9.312	0.563	16.54	< 0.0001
radio	0.203	0.020	9.92	< 0.0001
Intercept	12.351	0.621	19.88	< 0.0001
newspaper	0.055	0.017	3.30	0.00115

Drawbacks of fitting separate models

- ➤It is difficult to make predictions of sales given TV, radio, and newspaper
- Each of the three regressions ignores the other two media in forming coefficient estimates

Multiple linear regression

>The model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

 $> \beta_j$ represents the average effect on Y of a one unit increase in X_j , holding all other predictors fixed

> Prediction formula

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

$$\gt$$
E.g., $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{ip}$

Least squares coefficient estimation

- \triangleright Let $e_i = y_i \hat{y}_i$
- >We choose $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ to minimize the sum of squared residuals

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$

An illustrative example with p=2 predictors

	Coefficient	Std. error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the multiple linear regression of number of units sold on TV, radio, and newspaper advertising budgets.

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001
	ı			
Intercept	9.312	0.563	16.54	< 0.0001
radio	0.203	0.020	9.92	< 0.0001
Intercept	12.351	0.621	19.88	< 0.0001
newspaper	0.055	0.017	3.30	0.00115

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

TABLE 3.5. Correlation matrix for TV, radio, newspaper, and sales for the Advertising data.

Important questions

- > Is at least one of the predictors useful in predicting the response?
- > How well does the model fit the data?
- > Given a set of predictor values, what response value should we predict, and how accurate is our prediction?
- > Do all the predictors help to explain Y, or is only a subset of the predictors useful?

Is there a relationship?

> Testing

$$H_0$$
: $\beta_1 = \beta_2 = \cdots = \beta_p = 0$
versus

 H_a : at least one β_i is non-zero

>F-statistic

$$F = \frac{(TSS - RSS)/p}{RSS/(n - p - 1)}$$

➤On one hand,

$$E\left(\frac{RSS}{n-p-1}\right) = \sigma^2$$

 \triangleright On the other hand, under H_0 ,

$$E\left(\frac{TSS - RSS}{p}\right) = \sigma^2$$

Quantity	Value
Residual standard error	1.69
R^2	0.897
F-statistic	570

TABLE 3.6. More information about the least squares model for the regression of number of units sold on TV, newspaper, and radio advertising budgets in the Advertising data. Other information about this model was displayed in Table 3.4.

> Testing whether a subset of the coefficients are zero, e.g.,

$$H_0$$
: $\beta_{p-q+1} = \beta_{p-q+2} = \dots = \beta_p = 0$

>F-statistic

$$F = \frac{(RSS_0 - RSS)/q}{RSS/(n - p - 1)}$$

	Coefficient	Std. error	t-statistic	<i>p</i> -value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the multiple linear regression of number of units sold on TV, radio, and newspaper advertising budgets.

➤ Given these individual p-values for each variable, why do we need to look at the overall F-statistic?

Lack of fit

> Residual standard error

$$RSE = \sqrt{\frac{RSS}{n - p - 1}}$$

 $>R^2$ statistic

$$R^2 = 1 - \frac{RSS}{TSS}$$

Exercises

- Show that $R^2 = Corr^2(Y, \hat{Y})$, and that the least squares fit maximizes this correlation among all possible linear models
- Show that R^2 always increase when more variables are added to the model

For the Advertising data, a linear regression fit to sales using TV and radio as predictors

Predictions

> Population regression plane

$$f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

>Least squares plane

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \dots + \hat{\beta}_p X_p$$

>The trade-off

$$E\{y_0 - \hat{f}(x_0)\}^2 = Var\{\hat{f}(x_0)\} + \left[Bias\{\hat{f}(x_0)\}\right]^2 + Var(\epsilon)$$

= $Variance(x_0) + Bias^2(x_0) + Irreducible Error$

- \triangleright How close will \hat{Y} be to f(X)?
 - >Confidence intervals
- \triangleright How much will Y vary from \widehat{Y} ?
 - > Prediction intervals

Important predictors

- > Variable selection
 - >The task of determining which predictors are associated with the response
- >How do we determine which model is best?
 - \triangleright A total of 2^p models that contain subsets of p variables

Linear regression versus KNN

K-nearest neighbors regression

- Specify a positive integer K
- ② Identify the K points in the training data that are closest to x_0 , represented by \mathcal{N}_0
- 3 Estimate $f(x_0)$ by the average of the responses in \mathcal{N}_0

$$\hat{f}(x_0) = \frac{1}{K} \sum_{x_i \in \mathcal{N}_0} y_i$$

Two KNN fits on a two-dimensional data set with 64 observations. Left: K=1. Right: K=9

Comparison of linear regression with KNN

- Case 1: p = 1 and f(x) is linear
- Case 2: p = 1 and f(x) is slightly non-linear
- Case 3: p = 1 and f(x) is strongly non-linear
- Case 4: $p = \{1,2,3,4,10,20\}$ and f(x) is strongly non-linear

p = 1 and f(x) is linear

f(x) is slightly or strongly non-linear

p varies and f(x) strongly non-linear

