Foundations of Machine Learning

Module 1: Introduction

Part D: Evaluation and Cross validation

Sudeshna Sarkar IIT Kharagpur

Experimental Evaluation of Learning Algorithms

- Evaluating the performance of learning systems is important because:
 - Learning systems are usually designed to predict the class of "future" unlabeled data points.
- Typical choices for Performance Evaluation:
 - Error
 - Accuracy
 - Precision/Recall
- Typical choices for Sampling Methods:
 - Train/Test Sets
 - K-Fold Cross-validation

Evaluating predictions

- Suppose we want to make a prediction of a value for a target feature on example x:
 - y is the observed value of target feature on example x.
 - $-\hat{y}$ is the predicted value of target feature on example x.
 - How is the error measured?

Measures of error

- Absolute error: $\frac{1}{n}|f(x)-y|$
- Sum of squares error: $\frac{1}{n}\sum_{i=1}^{n}(f(x)-y)^2$
- Number of misclassifications: $\frac{1}{n}\sum_{i=1}^{n}\delta(f(x),y)$
- $\delta(f(x), y)$ is 1 if $f(x) \neq y$, and 0, otherwise.

Confusion Matrix

True class Hypothesized class	Pos	Neg
Yes	ТР	FP
No	FN	TN
	P=TP+FN	N=FP+TN

- Accuracy = (TP+TN)/(P+N)
- Precision = TP/(TP+FP)
- Recall/TP rate = TP/P
- FP Rate = FP/N

Sample Error and True Error

 The sample error of hypothesis f with respect to target function c and data sample S is:

$$error_s(f) = 1/n \sum_{x \in S} \delta(f(x), c(x))$$

The true error (denoted error_D(f)) of hypothesis f
with respect to target function c and distribution D,
is the probability that h will misclassify an instance
drawn at random according to D.

$$error_D(f) = Pr_{x \in D}[f(x) \neq c(x)]$$

Why Errors

- Errors in learning are caused by:
 - Limited representation (representation bias)
 - Limited search (search bias)
 - Limited data (variance)
 - Limited features (noise)

Difficulties in evaluating hypotheses with limited data

- Bias in the estimate: The sample error is a poor estimator of true error
 - ==> test the hypothesis on an independent test set
- We divide the examples into:
 - Training examples that are used to train the learner
 - Test examples that are used to evaluate the learner
- Variance in the estimate: The smaller the test set, the greater the expected variance.

Validation set

Validation fails to use all the available data

k-fold cross-validation

- 1. Split the data into k equal subsets
- 2. Perform k rounds of learning; on each round
 - 1/k of the data is held out as a test set and
 - the remaining examples are used as training data.
- 3. Compute the average test set score of the k rounds

K-fold cross validation

Trade-off

- In machine learning, there is always a tradeoff between
 - complex hypotheses that fit the training data well
 - simpler hypotheses that may generalise better.
- As the amount of training data increases, the generalization error decreases.