<u>Литература:</u> 1) В.И. Лобач, В.П. Кирлица, В.И. Малюгин, С.Н. Сталевская "Имитационное и статистическое моделирование. Практикум". – Минск: БГУ, 2004. – 189 с.

2) Харин Ю.С., Степанова М.Д. Практикум на ЭВМ по математической статистике. – Мн.: изд-во «Университетское», 1987. – 304 с.

Лабораторная работа №1. Моделирование БСВ. (Срок сдачи дополнительных заданий до 23.09.2022) Основные задания (4 балла)

Обозначения приведены согласно [1].

- а) Осуществить моделирование n=1000 реализаций БСВ с помощью мультипликативного конгруэнтного метода (МКМ) с параметрами $a_0=a_{01}$, $\beta=\max\{c_1,M-c_1\}$, $M=2^{31}$ и вывести 1000-ый элемент сгенерированной последовательности.
- **б**) Осуществить моделирование n=1000 реализаций БСВ с помощью метода Макларена-Марсальи, используя в качестве простейших датчиков БСВ датчики D_1 датчик из первого задания, D_2 датчик по методу МКМ с параметрами $a_0=a_{02}$, $\beta=\max\{c_2,M-c_2\}$, $M=2^{31}$, K объем вспомогательной таблицы и вывести 1000-ый элемент сгенерированной последовательности.

Основное задание будет засчитываться, если 1000-ый элементы сгенерированных последовательностей будут совпадать с эталонными. Некоторые первые значения для каждого варианта и каждого из генераторов приведены в таблице ниже.

Параметры (номер варианта – номер по порядку в списке вашей подгруппы, можно посмотреть в гугл-таблице):

Вариант	a_{01}	c_1	a_{02}	c_2	K
1	445423	90474281	275803775	42062397	160
2	134168531	636304951	190406421	49098763	96
3	174549961	111437935	102312981	108500169	128
4	296454621	48840859	302711857	37330745	64
5	146051657	218599011	351742397	183050801	192
6	14726181	187541225	392177641	327684489	224
7	24149775	19581355	179029053	457816087	128
8	144813299	31684781	121921633	49294183	128
9	26094681	196808461	109243693	100464893	160
10	848771989	487906901	358235167	35201247	96
11	261463909	474379977	234289925	3097871	192
12	564853681	790941697	10449689	176234371	64
13	315257319	223235361	39565801	123534789	192
14	55360495	98167543	399880125	427192983	192
15	18154591	432144333	95831023	122596613	96
16	80202397	264561431	289809159	90281719	128

Дополнительные задания.

Для каждого из построенных генераторов:

- **1**) (**1 балл**) Проверить точность моделирования с помощью теста «совпадения моментов» с уровнем значимости $\varepsilon = 0.05$. Тест необходимо реализовать самостоятельно.
- **2**) (**2 балла**) Проверить точность моделирования с помощью теста «ковариация» с уровнем значимости $\varepsilon = 0.05$. В качестве параметра t выбрать значение 30. Вывести все такие значения лага, при котором тест не проходит. Тест необходимо реализовать самостоятельно.
- **3**) (**1 балл**) Вычислить выборочные коэффициенты корреляции $\mathbf{r}_{\tau} = \text{corr}\{a_{t}, a_{t+\tau}\}, \tau=1, ..., 30$. Как можно проинтерпретировать полученные значения?
- 4) (1 балл) Для выходных данных построить гистограмму с числом столбцов = 10. Сделать выводы.
- **5**) (2 **балла**) Проверить точность моделирования с помощью теста «равномерность двумерного распределения» с уровнем значимости $\varepsilon = 0.05$. Параметр k выбирать самостоятельно.
- 6) (2 балла) Проверить точность моделирования БСВ с помощью любого другого известного Вам теста согласия. Тест необходимо реализовать самостоятельно.

- 7) (1 балл) Определить длину периода выходной последовательности для генератора МКМ двумя способами: теоретически и практически.
- **8***) (**4 балла**) Определить длину периода выходной последовательности для генератора, по методу Макларена-Марсальи. Засчитывается только первому сдавшему!
- 9) (2 балла) Описать, как устроен генератор БСВ в конкретном языке программирования, пакете, компиляторе и т.д. (не менее 4 языков/пакетов). Засчитывается первый сдавший. Обязательно указывать источник информации. Сдавать могут несколько человек, но языки (пакеты) должны различаться.
- **10)** (**1 балл**) Что произойдет, если в условиях данной лабораторной работы в задании а) параметр c выбрать четным? Засчитывается первый сдавший.

Для самоконтроля и проверки привожу несколько элементов для каждого из генераторов.

Значения выходных последовательностей для проверки

D	M	KM	Макларена-Марсальи	
Вариант	1-ый элемент	15-ый элемент	1-ый элемент	15-ый элемент
1	0.164133	0.02726	0.84103	0.205677
2	0.760656	0.943668	0.77795	0.011847
3	0.426593	0.417337	0.042928	0.894963
4	0.426003	0.810096	0.059353	0.900636
5	0.531492	0.371777	0.425447	0.377473
6	0.477876	0.113855	0.646219	0.341329
7	0.61433	0.792078	0.008959	0.61433
8	0.150001	0.604267	0.064796	0.571313
9	0.743516	0.769172	0.29126	0.638433
10	0.042786	0.322452	0.934522	0.378448
11	0.331521	0.157287	0.749091	0.531769
12	0.108923	0.308466	0.183184	0.933467
13	0.50204	0.392259	0.276018	0.067461
14	0.410865	0.441799	0.133356	0.271357
15	0.251522	0.994069	0.029776	0.347685
16	0.173327	0.622233	0.769225	0.847227