MICROCONTROLLER AND MICROPROCESSOR LAB <u>EXPERIMENT 3</u>

<u>AIM</u>: To understand the operation of the overflow flag during addition, and subtraction operations in 8051.

SOFTWARE USED: Keil uVision5

Question-1: Write an assembly language program to add two signed 8-bit numbers and observe the overflow flag.

Code:

ORG 0000H MOV A,30H MOV B,31H ADD A, B MOV 40H, A END

Algorithm:

- 1. Set the memory location ORG 0000H.
- 2. Load the hexadecimal value 30H into register A.
- 3. Load the hexadecimal value 31H into register B.
- 4. Add the content of register B to register A.
- 5. Store the result of the addition into memory location 40H.
- 6. End the program.

Result:

Case 1: Both numbers are positive.

Case 2: One number is positive and the other is negative. (Overflow Flag is 0)

psw	0x04
т р	0
F1	0
ov	1
·····rs	0
FO	0
·····ac	0
су	0

Case 3: One number is positive and the other is negative. (Overflow Flag is 1)

psw	0x85
р	1
F1	0
······ov	1
rs	0
f0	0
·····ac	0
су	1
_	

Case 4: Both numbers are negative.

Conclusion:

The assembly language program adds two signed 8-bit numbers, observing the overflow flag in different scenarios. Cases include adding positive numbers (no overflow expected), positive and negative numbers (overflow flag may remain 0 or set to 1), and negative numbers (similar to positive numbers case).