Devoir surveillé n°12

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – Centrale MP 2015 Maths2 – Autour des sommes d'Euler

Dans tout le problème, on note pour tout entier $n \ge 1$, $H_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n}$.

On note ζ la fonction définie pour x > 1 par $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$.

Le but du problème est d'étudier des séries faisant intervenir la suite (H_n) et notamment d'obtenir une relation due à Euler qui exprime, pour r entier naturel supérieur ou égal à 2, $\sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^r}$ à l'aide de la valeur de la fonction ζ en certains points entiers.

I Représentation intégrale de sommes de séries

- **1.a** Justifier que la série de terme général $a_n = \frac{1}{n} \int_{n-1}^n \frac{\mathrm{d}t}{t}$ converge.
 - **1.b** Montrer qu'il existe une constante réelle A telle que $H_n = \ln n + A + o(1)$. En déduire que $H_n \sim \ln n$.
- Soit r un entier naturel. Pour quelles valeurs de r la série $\sum_{n\geq 1} \frac{H_n}{(n+1)^r}$ est-elle convergente?

Dans toute la suite on notera $S_r = \sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^r}$ lorsque la série converge.

- 3.a Donner sans démonstration les développements en série entière des fonctions $t \mapsto \ln(1-t)$ et $t \mapsto \frac{1}{1-t}$ ainsi que leur rayon de convergence.
 - **3.b** En déduire que la fonction

$$t \mapsto -\frac{\ln(1-t)}{1-t}$$

est développable en série entière sur]-1,1[et préciser son développement en série entière à l'aide des réels H_n .

4 Pour tout couple d'entiers naturels (p, q) et pour tout ε ∈]0, 1[, on note :

$$I_{p,q} = \int_0^1 t^p (\ln t)^q dt \quad \text{et} \quad I_{p,q}^{\varepsilon} = \int_{\varepsilon}^1 t^p (\ln t)^q dt$$

1

4.a Montrer que l'intégrale $I_{p,q}$ existe pour tout couple d'entiers naturels (p,q).

4.b Montrer que :

$$\forall p \in \mathbb{N}, \ \forall q \in \mathbb{N}^*, \ \forall \epsilon \in]0,1[, \ \mathrm{I}_{p,q}^{\epsilon} = -\frac{q}{p+1} \mathrm{I}_{p,q-1}^{\epsilon} - \frac{\epsilon^{p+1} (\ln \epsilon)^q}{p+1}$$

4.c En déduire que l'on a :

$$\forall p \in \mathbb{N}, \ \forall q \in \mathbb{N}^*, \ \mathbf{I}_{p,q} = -\frac{q}{p+1} \mathbf{I}_{p,q-1}$$

- **4.d** En déduire une expression de $I_{p,q}$ en fonction des entiers p et q.
- Soit r un entier naturel non nul et f une fonction développable en série entière sur]-1,1[.

On suppose que pour tout $x \in]-1,1[,f(x)=\sum_{n=0}^{+\infty}a_nx^n]$ et que $\sum_{n\geq 0}\frac{a_n}{(n+1)^r}$ converge absolument.

Montrer que:

$$\int_0^1 (\ln t)^{r-1} f(t) \, dt = (-1)^{r-1} (r-1)! \sum_{n=0}^{+\infty} \frac{a_n}{(n+1)^r}$$

6. 6.a Déduire des questions précédentes que pour tout entier $r \ge 2$:

$$S_r = \sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^r} = \frac{(-1)^r}{(r-1)!} \int_0^1 (\ln t)^{r-1} \frac{\ln(1-t)}{1-t} dt$$

- **6.b** Etablir que l'on a alors $S_r = \frac{(-1)^r}{2(r-2)!} \int_0^1 \frac{(\ln t)^{r-2}(\ln(1-t))^2}{t} dt$.
- **6.c** En déduire que $S_2 = \frac{1}{2} \int_0^1 \frac{(\ln t)^2}{1-t} dt$ puis trouver la valeur de S_2 en fonction de $\zeta(3)$.

II La fonction β

7 La fonction Γ

7.a Soit x > 0. Montrer que $t \mapsto t^{x-1}e^{-t}$ est intégrable sur $]0, +\infty[$.

Dans toute la suite, on notera Γ la fonction définie sur \mathbb{R}_+^* par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

On admettra que Γ est de classe \mathcal{C}^{∞} sur son ensemble de définition, à valeurs strictement positives et qu'elle vérifie, pour tout réel x > 0, la relation $\Gamma(x+1) = x\Gamma(x)$.

- 7.b Soient x et α deux réels strictement positifs. Justifier l'existence de $\int_0^{+\infty} t^{x-1}e^{-\alpha t} dt$ et donner sa valeur en fonction de $\Gamma(x)$ et α^x .
- **8** La fonction β et son équation fonctionnelle

Pour
$$(x, y) \in (\mathbb{R}_+^*)^2$$
, on définit $\beta(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$.

- **8.a** Justifier l'existence de $\beta(x, y)$ pour x > 0 et y > 0.
- **8.b** Montrer que pour tous réels x > 0 et y > 0, $\beta(x, y) = \beta(y, x)$.
- **8.c** Soient x > 0 et y > 0. Etablir que $\beta(x + 1, y) = \frac{x}{x + y}\beta(x, y)$.
- **8.d** En déduire que pour x > 0 et y > 0, $\beta(x + 1, y + 1) = \frac{xy}{(x + y)(x + y + 1)}\beta(x, y)$.

© Laurent Garcin MP Dumont d'Urville

9 Relation entre la fonction β et la fonction Γ

On veut montrer que pour x > 0 et y > 0, $\beta(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$, relation qui sera notée (\mathcal{R}) .

9.a Expliquer pourquoi il suffit de montrer la relation (\mathcal{R}) pour x > 1 et y > 1. Dans toute la suite de cette question, on supposera que x > 1 et y > 1.

9.b Montrer que
$$\beta(x, y) = \int_0^{+\infty} \frac{u^{x-1}}{(1+u)^{x+y}} du$$
.

On pourra utiliser le changement de variable $t = \frac{u}{1+u}$.

9.c On note $F_{x,y}$ la primitive sur \mathbb{R}_+ de $t\mapsto e^{-t}t^{x+y-1}$ qui s'annule en 0. Montrer que :

$$\forall t \in \mathbb{R}_+, \ F_{x,y}(t) \le \Gamma(x+y).$$

9.d Soit
$$G(a) = \int_0^{+\infty} \frac{u^{x-1}}{(1+u)^{x+y}} F_{x,y}((1+u)a) du$$
.

Montrer que G est définie et continue sur \mathbb{R}_+

- **9.e** Montrer que $\lim_{a \to +\infty} G(a) = \Gamma(x+y)\beta(x,y)$.
- **9.f** Montrer que G est de classe \mathcal{C}^1 sur tout segment [c,d] inclus dans \mathbb{R}_+^* , puis que G est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .
- **9.g** Exprimer pour a > 0, G'(a) en fonction de $\Gamma(x)$, e^{-a} et a^{y-1} .
- **9.h** Déduire de ce qui précède la relation (\mathcal{R}) .

III La fonction digamma

On définit la fonction ψ (appelée fonction digamma) sur \mathbb{R}_+^* comme étant la dérivée de $x \mapsto \ln(\Gamma(x))$. Pour tout réel x > 0, $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$.

- 10 Montrer que pour tout réel x > 0, $\psi(x+1) \psi(x) = \frac{1}{x}$
- 11 Sens de variation de ψ
 - **11.a** A partir de la relation (\mathcal{R}) , justifier que $\frac{\partial \beta}{\partial y}$ est définie sur $(\mathbb{R}_+^*)^2$. Etablir que pour tous réels x > 0 et y > 0, $\frac{\partial \beta}{\partial y}(x, y) = \beta(x, y) (\psi(y) \psi(x + y))$.
 - **11.b** Soit x > 0 fixé. Quel est le sens de variations sur \mathbb{R}_+^* de la fonction $y \mapsto \beta(x, y)$?
 - **11.c** Montrer que la fonction ψ est croissante sur \mathbb{R}_+^* .
- 12 Une expression de ψ comme somme d'une série de fonctions
 - **12.a** Montrer que pour tout réel x > -1 et pour tout entier $n \ge 1$:

$$\psi(1+x) - \psi(1) = \psi(n+x+1) - \psi(n+1) + \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+x}\right)$$

12.b Soit n un entier ≥ 2 et x un réel > -1. On pose p = E(x) + 1, où E(x) désigne la partie entière de x. Prouver que :

$$0 \le \psi(n+x+1) - \psi(n) \le H_{n+p} - H_{n-1} \le \frac{p+1}{n}$$

© Laurent Garcin MP Dumont d'Urville

12.c En déduire que, pour tout réel x > -1,

$$\psi(1+x) = \psi(1) + \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x} \right)$$

13 Un développement en série entière

On note g la fonction définie sur $[-1, +\infty[$ par :

$$g(x) = \sum_{n=2}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x} \right)$$

- **13.a** Montrer que g est de classe \mathcal{C}^{∞} sur $[-1, +\infty[$. Préciser notamment la valeur de $g^{(k)}(0)$ en fonction de $\zeta(k+1)$ pour tout entier $k \geq 1$.
- **13.b** Montrer que pour tout entier n et pour tout $x \in]-1,1[$,

$$\left| g(x) - \sum_{k=0}^{n} \frac{g^{(k)}(0)}{k!} x^{k} \right| \le \zeta(2) |x|^{n+1}$$

Montrer que g est développable en série entière sur]-1,1[.

13.c Prouver que pour tout x dans]-1,1[,

$$\psi(1+x) = \psi(1) + \sum_{n=1}^{+\infty} (-1)^{n+1} \zeta(n+1) x^n$$

IV Une expression de S_r en fonction de valeurs entières de ζ

Dans cette partie, on note B la fonction définie sur \mathbb{R}_+^* par $\mathrm{B}(x) = \frac{\partial^2 \beta}{\partial v^2}(x,1)$.

| 14 | Une relation entre B et ψ

Justifier que B est définie sur \mathbb{R}_{+}^{*} .

A l'aide de la relation trouvée au 11, établir que pour tout réel x > 0:

$$xB(x) = (\psi(1+x) - \psi(1))^2 + (\psi'(1) - \psi'(1+x))$$

En déduire que B est \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} .

15 | Expression de S_r à l'aide de la fonction B

- **15.a** Montrer que pour tout réel x > 0, $B(x) = \int_0^1 (\ln(1-t))^2 t^{x-1} dt$.
- **15.b** Donner sans justification une expression, à l'aide d'une intégrale, de $B^{(p)}(x)$, pour tout entier naturel p et tout réel x > 0.
- **15.c** En déduire que pour tout entier $r \ge 2$, $S_r = \frac{(-1)^r}{2(r-2)!} \lim_{x \to 0^+} B^{(r-2)}(x)$.
- **15.d** Retrouver alors la valeur de S₂ déjà calculée au **6.c**.
- **16** Soit φ la fonction définie sur $]-1, +\infty[$ par $\varphi(x) = (\psi(1+x) \psi(1))^2 + (\psi'(1) \psi'(1+x)).$
 - **16.a** Monter que φ est \mathcal{C}^{∞} sur son ensemble de définition et donner pour tout entier naturel $n \geq 2$ la valeur de $\varphi^{(n)}(0)$ en fonction des dérivées successives de ψ au point 1.
 - **16.b** Conclure que, pour tout entier $r \ge 3$,

$$2S_r = r\zeta(r+1) - \sum_{k=1}^{r-2} \zeta(k+1)\zeta(r-k)$$