Föreläsning 5 - Neurala Nätverk

Josef Wilzen

2020-09-02

Outline

- Neurala nätverk
- 2 Feature learning
- Optimering av neurala nätverk
- 4 Hyperparameterar

Denna föreläsning utgår ifrån att ni har:

- Sett dessa videor: länk
- Läst kaptiel 25 Neural Networks i DMML

- Neuroner
- Axoner
- Dendriter
- Synapser

Terminologi

Feed-forward nätverk: Inlager - Gömda lager - Utlager

Terminologi

- Feed-forward nätverk
 - Noder i ett lager är bara kopplade till noder i nästa lager
- Återkopplande nätverk:
 - Noder i ett lager kan vara kopplade till noder i samma, föregående eller nästa lager

- Finns många olika sorters nätverk! Se här för en sammaställning.
- De används för många olika saker
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning
 - ► Generativa modeller

- Supervised learning
 - Feed-forward/mult-layer peceptron (MLP)
 - Radial basis networks
 - ► Faltade (Convolutional) nätverk: bilder, videor, tidserier.

- Unsupervised learning
 - Dolda representationer: Autoencoders
 - Clustering: Self Organizing Map (SOM)
- Generativa modeller:
 - Används för att lära sig komplexa sannolikhetsfördelningar: sampla bilder, text, mm
 - GAN

Linjär regression

$$y = X\beta + \varepsilon$$
 $E[\varepsilon] = 0$ $V[\varepsilon] = \sigma^2$

Linjär regression:

- Givet $X = (x_1, x_2, ..., x_p)$, $y: y = X\beta$
- Vi kan transformera variablerna i X
- Polynomregression: $X = (x, x^2, x^3, ..., x^p)$
- Andra exempel: log(x), \sqrt{x} , cos(x), exp(x), interaktioner, stegfunktioner, diskretisering, dummy-kodning
- Kallas i maskininlärning för "feature engineering"
 - Svårt att veta vilken transformation vi ska göra för ett givet problem!
 - Svårt med komplexa datastrukturer: text, bilder mm

- Vi har $X = (x_1, x_2, ..., x_p)$
- Transformationer är funktiner av $(x_1, x_2, ..., x_p)$
 - Ex: h(x) = log(x), $h(x_1, x_2) = log(x_1) + sin(x_2)$
- Anta en x variabel, vi kan låta h(x) vara en viktad summa av andra funktioner:

$$z = h(x) = \sum_{i=1}^{M} w_i h_i(x)$$

där $h_i(x)$ är godtyckliga funktioner

Om vi har många x variabler:

$$z = h(x_1, x_2, ..., x_p) = \sum_{i=1}^{M} w_i h_i(x_1, x_2, ..., x_p)$$

• Hur ska vi välja $h_i(x)$?

ullet Linjär transformation: bestäm värden på W och V

$$\underset{n\times m}{Z} = \underset{n\times p}{X} \cdot \underset{p\times m}{W} \qquad \underset{n\times g}{Z} = \underset{n\times p}{X} \cdot \underset{p\times m}{W} \cdot \underset{m\times g}{V}$$

- Neurala nätverk: Vill kunna modellera icke-linjära funktioner
 - Sätt samman många "enkla" icke-linjära funktioner för att göra en komplex funktion!

Neurala nätverk:

Låt $\sigma()$ vara en enkel icke-linjär funktion, och låt $h_i(x_1, x_2, ..., x_p)$ vara en linjär funktion: $h_i(x_1, x_2, ..., x_p) = \beta_{0i} + \beta_i^T \mathbf{x}$

$$z = \sigma(h_i(x_1, x_2, \dots, x_p)) = \sigma(\beta_{0i} + \beta_i^T \mathbf{x})$$

Nästla sedan många sådana funktioner för bygga upp en godtyckligt komplicerad icke-linjär funktion.

För MLP brukar det skrivas som

$$\underset{k\times 1}{a^{(p+1)}} = \sigma\left(\underset{k\times n}{W} \cdot \underset{n\times 1}{a^{(p)}} + b^{(p)}\right)$$

- $Wa^{(0)} + b$ ger en vektor som är $n \times 1$
- \circ $\sigma()$ opererar elementvis på inputvektorn
- ullet Historiskt, $\sigma(x)$ har valts till sigmoid eller hyperbolic tangent
 - Dessa nätverken visade sig vara svåra att skatta
- Nu används ofta Rectified Linear (ReLu) eller varianter
 - $\sigma(x) = max(0,x)$
 - Funkar bättre med SGD
 - Kan skatta djupa modeller!

Vi kan se neurala nätverk som att vi

- Automatiskt lär oss en lämplig transformation av de förklarande variablerna
- Gör linjär (logistik) regression på transformationen = sista lagret

Notera!

- Komplexa funktioner kräver mycket data att lära sig!
- Neurala nätverk kan lätt överanpassa träningsdata!
- Funkar när vi har stort antal förklarande variablerna
- Om vi låter de gömda lagren ha mindre dim än förklarande variablerna: icke-linjär variabelreduktion innan vi når sista lagret (output)

Universal approximation theorem

Universal approximation theorem \approx

En MLP med ett lager och en icke-linjär aktiveringsfunktion kan approximera godtycklig kontinuerlig eller diskret funktion med ett godtyckligt litet fel givet tillräckligt många gömda neuroner.

Optimering av neurala nätverk

Svårt problem!

- Lokala minima
 - Kan ha hög kostnad eller låg
 - Model identifiability problem
 - ★ Weight space symmetry
 - ★ Scaling between layers
 - Kan leda till oräkneligt antal lokala minima

Optimering av neurala nätverk

Platåer och sadelpunkter

- Ställen där gradienten är noll (eller nästan noll), fast vi inte är på ett lokalt min/max
- Sadelpunkter:
 - ► Ta tvärsnitt längs några dimensioner och då har vi lokalt minima i sadelpunkten
 - ► Ta tvärsnitt längs några andra dimensioner då har vi lokalt maxima i sadelpunkten
- Antalet sadelpunkter tenderar att öka med antalet dimensioner!
- Stora områden som är platta
- Platåer och sadelpunkter: gör optimeringen med gradient decent svårare

Sadelpunkt

Optimering av neurala nätverk

Gradient descent: hitta minimum på en funktion

$$a_{n+1} = a_n - \gamma \cdot \nabla f(a_n)$$

- Vi behöver gradienter (partiella derivator)
- Backpropagation: kedjeregeln f
 ör derivator på neurala n
 ätverk
- Gradient descent: dyrt när vi har många obs!

Stochastic gradient descent (SGD)

SGD:

- ▶ Dyrt att beräkna $\nabla f(a_n)$ för alla datapunkter
- ▶ Gör en väntevärdesriktig skattning av $\nabla \hat{f}(a_n)$ genom att ta ett slumpmässigt sample från data (mini-batch)
- ▶ Det finns varians i $\nabla \hat{f}(a_n)$, större batch ger mindre varians men blir dyrare att beräkna.
- Kräver många iterationer och liten learning rate (γ)
- ▶ Kräver att vi har oberoende observationer i likelihoodfunktionen.
- ► Funkar bra för neurala nätverk!

Stochastic gradient descent (SGD)

Require: Learning rate, Initial parameter a

- $k \leftarrow 1$
- while stopping criterion not met do
 - Sample a minibatch of m examples from the training set $(x^{(1)},...,x^{(m)})$, with corresponding y values.
 - ► Compute gradient estimate:

$$\hat{g} \leftarrow \frac{1}{m} \nabla \sum_{i} L\left(f\left(x^{(i)}, a\right), y^{(i)}\right)$$

Apply update:

$$a \leftarrow a - \gamma \cdot \hat{g}$$

- $k \leftarrow k+1$
- end while

Hyperparameterar

Det finns många hyperparameterar för neurala nätverk!

- Arkitektur:
 - Antal gömda lager
 - Antal neuroner i varje lager
 - Aktiveringsfunktioner
 - (Specialla typer av neuroner/lager)
- Optimeringen:
 - Mini-batchstorlek
 - Learning rate
 - Antal epoker (antalet gånger som hela träningsmängden används i SGD)

Hyperparameterar

- Hur ska vi bestämma deras värden?
- Svår fråga!
- Mycket trail and error!
- Valideringsdata
- För stora problem/data kan det kan lång tid att hitta bra hyperparameterar

Avslut

- Frågor? Kommentarer?
- Kurshemsidan
- Labben
 - Demokod