Grafuri

Traversari. Parcurgerea in latime. Parcurgerea in adancime. Aplicatii

Definitie

- Parcurgerea unui graf: procesul de vizitare (actualizare, verificare) a fiecarui nod din graf.
- Parcurgerile sunt clasificate dupa ordinea in care sunt vizitate varfurile din graf:
 - Parcurgere in adancime (depth-first search (DFS))
 - Parcurgere in latime (breadth-first search (BFS))

Metodologie

- Algoritmii de parcurgere a grafurilor incep cu un varf de start si incearca sa viziteze restul varfurilor incepand de la varful de start.
- Cazuri exceptionale:
 - Incepand de la un varf dat e posibil sa nu se poata ajunge la celelalte varfuri – graf ne-conex.
 - Daca exista cicluri in graf ne asiguram ca algoritmul evita intrarea intr-o bucla infinita de parcurgere.
 - Pentru a evita cazurile de mai sus se foloseste o eticheta – VIZITAT pentru a marca varfurile parcurse

Metodologie

Functia doTraversal se poate implementa folosind:

- parcurgere in adancime
- parcurgere in latime

Parcurgerea in latime

- Breadth first search (BFS)
- Functioneaza atat pe grafuri orientate cat si pe grafuri neorientate
- Parcurge toate varfurile conectate la nodul curent inainte de a trece mai departe
- Foloseste o coada pentru a mentine ordinea de parcurgere
- Verifica daca un nod a fost vizitat inainte sa il puna in coada

Parcurgere in latime - pseudocod

```
BFS(G,s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
     u.d = \infty
     u.\pi = NIL
 5 \quad s.color = GRAY
 6 s.d = 0
 7 s.\pi = NIL
 8 Q = \emptyset
   ENQUEUE(Q, s)
10
    while Q \neq \emptyset
11
        u = \text{DEQUEUE}(Q)
12
        for each v \in G.Adj[u]
            if v.color == WHITE
13
14
                 v.color = GRAY
15
                 v.d = u.d + 1
16
                 v.\pi = u
                 ENQUEUE(Q, v)
17
18
        u.color = BLACK
```

- Culori pentru a tine evidenta starii de parcurgere a nodurilor
- Calculeaza distanta de la nodul sursa la toate nodurile conectate cu el
- Produce un arbore de parcurgere in latime pentru fiecare nod sursa, s
- Expandeaza frontiera dintre nodurile descoperite si cele nedescoperite in mod uniform pe latimea ei (toate nodurile de la dist k sunt descoperite inainte de cele de la dist k+1

Parcurgere in latime

- Atributul distanta al fiecarui nod este folosit pentru a cauta cel mai scurt drum intre doua noduri din graf.
- La inceputul algoritmului distanta pentru fiecare nod este infinit – ceea ce semnifica faptul ca nodul respectiv nu a fost vizitat.
- Atributul parinte al fiecarui nod poate fi folosit pentru a accesa nodurile din drumul cel mai scurt
- Eficienta?

Parcurgerea in latime - aplicatii

- Gasirea drumurilor de lungime minima
- Graf bipartit
 - Gasirea unui ciclu de lungime impara

$$G=(V,E)$$
 – bipartit iff $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$, $\forall (u,v) \in E \Rightarrow u \in V_1$, $v \in V_2$ or $u \in V_2$, $v \in V_1$

Un graf bipartit nu poate contine un ciclu de lungime impara!!

Graf bipartit

```
Assume graph G is connected. Otherwise, we can run the algorithm for each connected
    Let g be an empty gueue
    Pick any vertex s E V and color it Red
    q.enqueue(s)
6
    while [q.empty()
      u = q.dequeue()
8
      foreach v in u.adjList:
        if v.color is nil:
10
          v.color = (u.color == Red) 2 Black : Red
11
          q.enqueue(v)
12
        elif v.color == u.color:
13
           return "Not Bipartite"
14
    return "Bipartite"
```

Se poate aplica si DFS!

Cum se modifica algoritmul pentru a detecta ciclul de lungime impara?

Aplicatii:

- teoria codurilor decodificare
- retele Petri analiza si simularea sistemelor concurente

Parcurgere in adancime

- Depth first search (DFS)
- se aplica pe grafuri orientate si neorientate
- Muchiile sunt explorate pornind din varful v cel mai recent descoperit, care mai are inca muchii neexplorate ce pleaca din el.
- Cand toate muchiile care pleaca din v au fost explorate, parcurgerea revine pe propriile urme pentru a explora muchiile care pleaca din varful din care a fost descoperit v
- Parcurgerea foloseste o structura de tip stiva pentru a stoca muchiile care pleaca din v si nu au fost explorate

Pseudocod – parcurgere in adancime

- Intrare: Un graf G si un varf v din G
- lesire: Arborele de parcurgere in adancime, care contine varfurile la care se poate ajunge pornind de la v
- Varianta iterativa:

```
procedure DFS-iterative(G, v):
let S be a stack
S.push(v)
while S is not empty
v = S.pop()
if v is not labeled as discovered:
label v as discovered
for all edges from v to w in
G.adjacentEdges(v) do
```

Pseudocod – parcurgere in adancime

- Intrare: Un graf G si un varf u din G, de pornire
- lesire: Arborele de parcurgere in adancime, care contine varfurile la care se poate ajunge pornind de la u
 - Inregistreaza momentele de timp descoperire, finalizare
- Varianta recursiva:

Parcurgerea in adancime: Exemplu

Parcurgerea in adancime: Alte exemple

DFS - iterativ:

https://drive.google.com/open?id=0B0abXFghjTINT2JoVGxuZlpUOUk

DFS - recursiv:

https://drive.google.com/open?id=0B0abXFghjTINTC14cHRBU2p6djg

Proprietati ale parcurgerii in adancime

- Cautarea in adancime ofera multe informatii despre structura unui graf.
- Structura de paranteza a timpilor de descoperire si terminare:
 - Daca reprezentam descoperirea unui varf u printr-o paranteza deschisa (u, si terminarea sa printr-o paranteza inchisa u), atunci istoria descoperirilor si a terminarilor formeaza o expresie bine formata (i.e. parantezele sunt corect imperecheate)

Teorema parantezelor

- In orice traversare DFS a unui graf G=(V,E), pentru oricare 2 varfuri – u si v, exact una din urmatoarele 3 conditii are loc:
 - Intervalele [u.d, u.f] si [v.d, v.f] sunt complet disjuncte (nici u, nici v nu este descendent al celuilalt nod in padurea de arbori de parcurgere in adancime)
 - [u.d, u.f] e inclus in [v.d, v.f] (u este descendent al lui v intr-un arbore DFS)
 - [v.d, v.f] este inclus in [u.d, u.f] (v este descendent al lui u)

Teorema parantezelor – exemplu

Proprietati ale parcurgerii in adancime

- Clasificarea muchiilor:
- Tipuri de muchii:
 - Muchii de arbore
 - Muchii inapoi
 - Muchii inainte
 - Muchii transversal
- Algoritmul DFS poate fi modificat pentru a clasifica muchiile pe masura ce le intalneste.

Clasificarea muchiilor - exemplu

Aplicatii ale parcurgerii in adancime

- Determinarea ciclurilor intr-un graf (cum?)
- Determinarea componentelor conexe/ puternic conexe ale unui graf
- Sortarea topologica
- Gasirea puntilor (bridges) dintr-un graf nedirectionat
 - Punte = muchie a carei stergere creste numarul de componente conexe ale grafului
- Testarea planaritatii
 - Graful poate fi desenat in plan fara a exista intersectii de muchii

Etc.

Sortare Topologica

- Sortare topologica a unui DAG G=(V,E):
 ordonare liniara a tuturor varfurilor, astfel
 incat daca G contine muchia (u,v) => u apare
 inainte lui v in ordonare
 - Daca graful contine cicluri, nu are sortare topo!
 - Precedenta intre evenimente

TOPOLOGICAL-SORT(G)

- 1 call DFS(G) to compute finishing times νf for each vertex ν
- 2 as each vertex is finished, insert it onto the front of a linked list
- 3 return the linked list of vertices

Sortare Topologica – exemplu

Eficienta?

Determinarea componentelor puternic conexe - Grafuri orientate

 Componenta puternic conexa: multime maximala de varfuri astfel incat oricare 2 varfuri din multime sunt conectate (u ~ v and v ~ u)

STRONGLY-CONNECTED-COMPONENTS (G)

- 1 call DFS(G) to compute finishing times u.f for each vertex u
- 2 compute G^{T}
- call DFS(G^{T}), but in the main loop of DFS, consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Componente puternic conexe - exemplu

Bibliografie

- CLR, "Introduction to Algorithms", chapter 22
 - Elementary Graph Algorithms