Universidad del Valle de Guatemala

Facultad de ingeniería

Data Science

Catedrático: Luís Furlán

Laboratorio 3: Análisis GeoEspacial y Sensores Remotos

Nelson Eduardo García Bravatti 22434 Brandon Reyes 22992

Guatemala, agosto de 2025

1. Introducción:

El departamento de Petén, en Guatemala, presenta una de las coberturas forestales más extensas del país, pero también enfrenta altas tasas de deforestación. El uso de sensores remotos, específicamente imágenes Sentinel-2, permite realizar un monitoreo eficiente y sistemático de cambios en la cobertura vegetal. Este laboratorio aplica el Índice de Vegetación de Diferencia Normalizada (NDVI) para comparar dos periodos: enero 2020 y enero 2024, con el objetivo de identificar áreas con pérdida significativa de vegetación.

2. Metodología

- a. 2.1 Área de estudio
 - i. Región: Departamento del Petén, Guatemala
 - ii. Coordenadas: Lat. 17.25°, Long. -89.9°
 - iii. Fechas analizadas: enero 2020 y enero 2024
- b. Procedimiento:
 - i. Acceso y Descarga de datos:
 - 1. Plataforma: Copernicus Data Space Ecosystem
 - 2. Criterios: Sentinel-2 L2A, cobertura de nubes ≤ 10%

3. Bandas seleccionadas: B04 (Rojo) y B08 (NIR) en formato .tiff

- Archivos descargados 1. 2020-03-05_...*B04*(Raw).tiff

2. 2020-03-05_...*B08*(Raw).tiff

3. 2024-03-09_...*B04*(Raw).tiff

4. 2024-03-09_...*B08*(Raw).tiff

iii. Preprocesamiento

- 1. Recorte de área de interés
- 2. Enmascarado de nubes (QA60 o SCL, cuando disponible)
- 3. Conversión a formato compatible para análisis (rasterio)

iv. Cálculos de NDVI

- 1. Resultados guardados como:
 - a. NDVI_2020-03-05.tif

b. NDVI_2024-03-09.tif

- 2. Detección de cambios
 - a. Imagen de diferencia: NDVI_2024 NDVI_2020
 - b. Umbral aplicado: < -0.2 para marcar pérdida significativa de vegetación
 - c. Máscara binaria resultante:
 - d. NDVI loss mask ... th-0.2.tif
- 3. Visualización
 - a. Mapas NDVI por fecha
 - b. Mascara de desforestación
 - c. Cálculo del área afectada (%)
- c. Herramientas empleadas:
 - i. Entorno: JupyterLab
 - ii. Librerias:
 - 1. Jupyterlab
 - 2. Sentinelsat
 - 3. Rasterio

- 4. numpy
- 5. Matplotlib
- 6. Geopandas
- 7. scikit-image
- 8. Earthpy
- 9. shapely
- 10. Requirements

3. Resultados Prueba 1:

- a. En la figura siguiente se presentan los resultados visuales del análisis:
 - i. Mapa NDVI 2020-03-05: Muestra alta cobertura vegetal (verde intenso) en la mayor parte del área.
 - ii. Mapa NDVI 2024-03-09: Se observa disminución de NDVI en algunas zonas, especialmente en sectores del sur y este.
 - iii. Mapa de diferencia (2024 2020): Los valores negativos (azul) indican pérdida de vegetación; los positivos (rojo) indican ganancia.
 - iv. Máscara binaria de pérdida (< -0.2): Resalta las zonas con disminución significativa de NDVI.

Figura 1. Comparativa de NDVI, diferencia y máscara de pérdida.

b. Cálculo de área deforestada – Prueba 1

 Para estimar la superficie afectada, los datos fueron reproyectados a coordenadas UTM, permitiendo calcular áreas reales en m², hectáreas y km².

Concepto	Valor aproximado
Área total analizada	~33,260 km²
Área inicial con vegetación	~32,595 km²
Área deforestada	~1,798 km²
% deforestación vs área válida	5.41%
% deforestación vs vegetación inicial	5.52%

4. Resultados Prueba 2:

a. Se observa una disminución localizada del NDVI, con focos significativos de pérdida en zonas específicas. Las áreas deforestadas aparecen concentradas y bien delimitadas tras aplicar el umbral de < -0.2.

Figura 1. Comparativa de NDVI, diferencia y máscara de pérdida.

b. Entre mayo de 2020 y enero de 2024, se detecta una reducción general de NDVI, con degradación más visible en zonas norte y noreste. La diferencia de NDVI muestra predominio de pérdida moderada (tonos rojizos), mientras que el umbral < -0.2 identifica focos dispersos de pérdida severa.

Figura 2. Comparativa NDVI 2020-05-24, NDVI 2024-01-09, diferencia y máscara de pérdida.

Concepto	Valor aproximado
Área total analizada	~34,008.673 km²
Área inicial con vegetación	~33,612.814 km²
Área deforestada	~364.051 km²
% deforestación vs área válida	1.07%
% deforestación vs vegetación inicial	1.08%

Conclusiones:

- El NDVI es una herramienta eficaz para detectar y cuantificar cambios en la cobertura vegetal, permitiendo identificar tanto degradación como pérdida severa de vegetación.
- El análisis NDVI permitió identificar pérdidas de vegetación tanto localizadas como dispersas en el Petén entre 2020 y 2024.
- La Prueba 1 mostró una deforestación más concentrada (5.41%), mientras que la Prueba 2 presentó una pérdida más baja y dispersa (1.07%).
- El monitoreo multitemporal con imágenes satelitales es una herramienta clave para la gestión y conservación ambiental..