GWStrainPlotsSNR

August 14, 2018

1 Calculate the GW modes for each exoplanet that has the needed parameters in the dbase.

2 References

P. Amaro-Seoane et al. "Triplets of supermassive black holes: astrophysics, gravitational waves and detection," MNRAS 402 2308-2320 (2010).

P. C. Peters and J. Mathews, "Gravitational Radiation from Point Masses in a Keplerian Orbit," Phys. Rev. 131 (1963) 435-440.

Michele Maggiore, "Gravitational Waves. Volume 1: Theory and Experiments," Oxford Univ. Press, 2008.

Shane Larson, "Sensitivity Curves for ..." http://www.srl.caltech.edu/~shane/sensitivity/ Neil Cornish and Travis Robson, "The construction and use of LISA sensitivy curves," https://arxiv.org/abs/1803.01944

```
In [2]: import sys, os
    import numpy as np
    import urllib as ul
    import pandas as pd
    import gwTools as gwt
    import matplotlib.pyplot as plt
    %matplotlib inline
    import scipy as sp
    import scipy.interpolate as spint
```

3 CalTech Exop Database (from ExopDBase notebook)

3.1 Update or not from the CalTech database. Directories for the dbase and to save plots.

3.2 Search string, might want RA and DEC also.

```
In [4]: # The search URL and search string/request.
    exopURL = \
        "https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-\
        nstedAPI?";

#searchString = \
    #"table=exoplanets&select=pl_hostname,ra,dec&order=dec&format=CSV";*)

# The Below does NOT have right ascension and declination. Will likely want them for # Can add later in its own Panda dataframe and/or merge into the main one in GWStrainP # variables come from NASA Exoplanet Archive, the keywords are defined here:
    #https://exoplanetarchive.ipac.caltech.edu/docs/API_exoplanet_columns.html
    searchString = \
        "table=exoplanets&select=pl_hostname,pl_letter,pl_discmethod,pl_\
        orbper,pl_orbsmax,pl_orbeccen,pl_bmassj,st_dist,st_mass,rowupdate,st_\
        plx&order=dec&format=CSV";
```

3.3 Flags for fresh import and for saving the CSV file.

```
In [5]: # Set to True to re-read the EXop Dbase from Caltech. False to use csvFname below.
       newImport = False;
        #newImport = False;
        saveFile = True; # Future work, when we do NOT want an intermediate file here would set
        #saveFile = False;
In [6]: # csv file below was downloaded earlier with code below. newImport = False to use it.
        # created. This takes a few seconds.
        csvFileName = csvDir + 'exopP_20180518_173344.csv'
        if newImport and saveFile:
            myDateTimeStamp = gwt.dateTimeStamp() # See the gwtools.py file with this and oth
            csvFileName = csvDir + 'exopP_' + myDateTimeStamp + '.csv'
            ofile = open(csvFname, 'w')
            with ul.request.urlopen(exopURL + searchString) as response:
                for aline in response:
                    ofile.write( aline.decode('utf-8') ) # byte-string needs to be decoded. u
            ofile.close()
            print('Saved database file ' + csvFileName)
```

3.4 Read the CSV file and drop the rows/exops with NaN in the important fields. See ExopDBase.ipynb and re-run it for updating the dbase.

```
dbData = pd.read_csv(ifile) # Read in the whole file to a Panda Dataframe, handle #ifile.close() # Should close when you leave the "with."
```

Using database file /home/gabella/Documents/astro/exop/exoplanetsMath/python/../dbases/exopP_2epl_hostname,pl_letter,pl_discmethod,pl_orbper,pl_orbsmax,pl_orbeccen,pl_bmassj,st_dist,st_mass

HD 142022 A,b,Radial Velocity,1928.00000000,2.930000,0.530000,4.44000,35.87,0.90,2018-04-26,2

In [8]: dbData.head(10) # NaN's show up when the field has no data. Need both masses, eccent
and distance.

Out[8]:	pl_hostname	pl_letter	pl_discmethod		pl_orbper	pl_orbsmax	\
0	HD 142022 A	Ъ	Radial Ve	locity	1928.00000	2.93	
1	HD 39091	Ъ	Radial Ve	locity	2151.00000	3.38	
2	HD 137388 A	Ъ	Radial Ve	locity	330.00000	0.89	
3	GJ 3021	Ъ	Radial Ve	locity	133.71000	0.49	
4	HD 63454	Ъ	Radial Ve	locity	2.81805	0.04	
5	HD 212301	Ъ	Radial Ve	locity	2.24571	0.03	
6	CHXR 73	Ъ	I	maging	NaN	210.00	
7	CT Cha	Ъ	I	maging	NaN	440.00	
8	HD 196067	Ъ	Radial Ve	locity	3638.00000	5.02	
9	HD 68402	Ъ	Radial Ve	locity	1103.00000	2.18	
	pl_orbeccen	pl_bmassj	st_dist	st_mass	rowupdate	e st_plx	
0	0.5300	4.440	35.87	0.90	2018-04-26	27.88	
1	0.6405	10.270	18.21	1.10	2014-07-23	54.92	
2	0.3600	0.200	38.45	0.68	3 2018-04-26	26.01	
3	0.5110	3.370	17.62	0.90	2014-05-14	56.76	
4	0.0000	0.250	35.80	0.42	2 2018-04-26	27.93	
5	0.0000	0.510	52.72	1.55	2018-04-26	18.97	
6	NaN	12.569	NaN	0.35	2014-05-14	l NaN	
7	NaN	17.000	165.00	NaN	I 2014-05-14	l NaN	
8	0.6600	6.900	43.57	1.29	2014-05-14	22.95	
9	0.0300	3.070	78.00	1.12	2016-11-10	12.82	

- 3.5 Drop the exops/rows with NaN (missing values) in the following fields:
- 3.5.1 pl_orbeccen (eccentricity), pl_orbper (orbital period), pl_obsmax (semimajor axis), pl_bmassj (planet mass), st_dist (distance to host star), st_mass (stellar mass)

```
aData = aData.dropna(axis = 0, how = 'any', subset = ['pl_orbper'])
        print('Length with pl_orbper\t', len(aData) )
        aData = aData.dropna(axis = 0, how = 'any', subset = ['pl_orbsmax'])
        print('Length with pl orbsmax\t', len(aData) )
        aData = aData.dropna(axis = 0, how = 'any', subset = ['pl_bmassj'])
        print('Length with pl_bmassj\t', len(aData) )
        aData = aData.dropna(axis = 0, how = 'any', subset = ['st_dist'])
        print('Length with st_dist\t', len(aData) )
        aData = aData.dropna(axis = 0, how = 'any', subset = ['st_mass'])
        print('Length with st_mass\t', len(aData) )
Length all data, dbData 3726
Length with pl_orbeccen
                                1192
Length with pl_orbper
                              1192
Length with pl_orbsmax
                               1023
Length with pl_bmassj
                              941
Length with st_dist
                            853
Length with st_mass
                            846
```

- 3.6 So aData is the working exoplanet data frame after filtering, as a Panda DataFrame. Later should consider filling in missing data with Kepler or other calculations.
- 3.7 Physical Constants, made explicit here. The CalTech exop dbase has an FAQ on the units they use for each parameter. General URL https://exoplanetarchive.ipac.caltech.edu/ and the one for units under Support>Documentation>Table Column Definitions> Confirmed Planets https://exoplanetarchive.ipac.caltech.edu/applications/DocSet/index.html?doctree=/docs/docme

```
In [10]: # Some scipy.constants for comparison mostly.
    from scipy.constants import speed_of_light, gravitational_constant, c, G, pi

massSun = 1.989e30; #(*kg *)
    massJ = 1.898e27; #(* kg *)
    massE = 5.972e24; #(* kg *)
    massJe = massJ/massE; #(* Jupiter mass is 317.9 earth masses *)
    massJs = massJ/massSun; #(* relative to the sun's mass *)

pc = 30.86e15; #(* meters, parsec *)
    au = 149.6e9; #(* meters, astron unit *)

cee = 299792458.0; #(* meters/s, speed of light *)
    print('Compare my cee ', cee, ' and scipy.constants ', speed_of_light)
```