10

20

25

CLAIMS

- 1. A radioactive microsphere comprising not less than 99% by weight of an oxide crystal containing 47% by weight or more of radioactive yttrium, and the balance of inevitable impurities.
 - 2. The radioactive microsphere according to claim 1, wherein the oxide crystal consists essentially of Y_2O_3 .
- 3. The radioactive microsphere according to claim 1, wherein the oxide crystal consists essentially of $\underline{YPO_4}$, or a mixture of $\underline{Y_2O_3}$ and $\underline{YPO_4}$.
- 4. The radioactive microsphere according to claim 1, wherein the microsphere has a diameter of 1 to 100 $\mu\,m$
 - 5. The radioactive microsphere according to claim 1, wherein the microsphere has a diameter of 20 to 30 $\mu\,m$.
 - 6. The radioactive microsphere according to any one of claims 1 to 5, wherein the microsphere is coated with a film comprising at least one of the compounds selected from silica (SiO₂), titania (TiO₂), alumina (Al₂O₃), iron (III) oxide (Fe₂O₃), silicon nitride (Si₂N₃, SiN, Si₃N₄), aluminum

nitride (AlN), titanium nitride (TiN), iron nitride (Fe₂N,

 $Fe_4N)$, silicon carbide (SiC) and titanium carbide (TiC).

7. The radioactive microsphere according to claim 6, wherein the film has a thickness of 0.01 to 5 $\mu_{m}\,.$

5

8. A method of producing a radioactive microsphere, the method comprising preparing a microsphere comprising not less than 99% by weight of an oxide crystal containing 47% by weight or more of non-radioactive yttrium, and the balance of inevitable impurities through melting of a starting material, followed by irradiating with an effective dosage of slow neutrons to turn non-radioactive yttrium into a radioactive element.

) 2 1

15

20

9. A method of producing a radioactive microsphere, the method comprising preparing a microsphere comprising not less than 99% by weight of an oxide crystal containing 47% by weight or more of non-radioactive yttrium and an amount of phosphrous, and the balance of inevitable impurities through melting of a starting material, followed by heating the microsphere in an oxidizing atmosphere and then irradiating with an effective dosage of slow neutrons to turn non-radioactive yttrium into a radioactive element.

25

W

10. The method according to claim 8 or 9, further comprising coating the microsphere with a film after preparing the

M

5

microsphere or heating in the oxidizing atmosphere and before irradiating with an effective dosage of slow neutrons, the film comprising at least one of the compounds selected from silica (SiO_2), titania (TiO_2), alumina (Al_2O_3), iron (III) oxide (Fe_2O_3), silicon nitride (Si_2N_3 , SiN, Si_3N_4), aluminum nitride (AlN), titanium nitride (TiN), iron nitride (Fe_2N , Fe_4N), silicon carbide (SiC) and titanium carbide (TiC).

Gray

Calles