Gerência de Memória

Introdução

- Considerações:
 - Recurso caro e escasso;
 - Programas só executam se estiverem na memória principal;
 - Quanto mais processos residentes na memória principal, melhor será o compartilhamento do processador;
 - Necessidade de uso otimizado;
 - O S.O. não deve ocupar muita memória;
 - "É um dos fatores mais importantes em um projeto de S.O.".

Introdução

- Sistema operacional deve
 - controlar quais regiões de memória são utilizadas e por qual processo
 - decidir qual processo deve ser carregado para a memória, quando houver espaço disponível
 - alocar e desalocar espaço de memória
- Algumas funções do Gerenciador de memória:
 - Controlar quais as unidades de memória estão ou não estão em uso, para que sejam alocadas quando necessário;
 - Liberar as unidades de memória que foram desocupadas por um processo que finalizou;
 - Tratar do Swapping entre memória principal e memória secundária.
 - Transferência temporária de processos residentes na memória principal para memória secundária.

Execução de um Programa

Objeto: rotinas de

bibliotecas (em

Execução de um Programa (2)

Executável: programa em **ling de máquina**

Espaço de Endereçamento Lógico

Código absoluto:

- Endereços relativos ao início da memória (endereços reais)
- Programas exclusivos para partições específicas na memória

Código relocável

- O programa pode ser carregado em qualquer posição da memória.
- Deve haver uma **tradução** de endereços (ou relocação de endereços)

Execução de um Programa (3)

Relocação de Endereços

Estática

 O Loader (em tempo de carga) reloca os endereços das instruções relocávies (ex: JMP endx)

Dinâmica

- Em tempo de execução
- O processo pode ser movimentado dentro da memória física
- Um hardware especial deve estar disponível para que funcione (MMU)

Execução de um Programa (4)

Relocação de Endereços (cont.)

Executável: programa em linguagem de máquina

10000000: 10000004: 10000008: 10000000: 10000010: 10000014: 10000018: 10000010: 10000020: 10000024: 10000028: 10000028: 10000030: 10000034: 10000038: 10000038:	3c051000 24a50a98 3c041000 24840a98 3c1d1000 27bd3ffc aca00000 00a4182a 24a50004 1460fffc 00000000 3404e100 0c0000a4 00000000 0c00023d 00000000	lui addiu lui addiu lui addiu sw slt addiu bnez nop li jal nop jal	al,0x1000 al,al,2712 a0,0x1000 a0,a0,2712 sp,0x1000 sp,sp,16380 zero,0(al) v1,al,a0 al,al,4 v1,10000018 <_entry+0x18> a0,0xe100 10000290 <_etext> 100008f4 <app_main></app_main>

Espaço de Endereçamento Lógico

Espaço de Endereçamento Físico

 Conjunto de endereços reais

Gerência de Memória

Memória Lógica - é aquela que o processo enxerga, o processo é capaz de acessar.

Memória Física - é aquela implementada pelos circuitos integrados de memória, pela eletrônica do computador (memória real)

CPU Endereço Gerenciador Endereco Memória lógico de Memória físico

Técnicas de Gerência de Memória Real

- Alocação Contígua Simples
- Alocação Particionada
 - Partições Fixas
 - Alocação Particionada Estática;
 - Partições Variáveis
 - Alocação Particionada Dinâmica.

Alocação Contígua Simples (1)

- Alocação implementada nos primeiros sistemas e ainda usada nos monoprogramáveis;
- A Memória é dividida em duas áreas:
 - Área do Sistema Operacional
 - Área do Usuário
- Um usuário não pode usar uma área maior do que a disponível;
- Sem proteção:
 - Um usuário pode acessar a área do Sistema Operacional.

Memória principal

Sistema Operacional

Área de Programas do usuário

Alocação Contígua Simples (2)

- Registrador de proteção delimita as áreas do sistema operacional e do usuário;
- Sistema verifica acessos à memória em relação ao endereço do registrador;
- A forma de alocação era simples, mas não permitia utilização eficiente de processador e memória;

Memória principal

Sistema Operacional

Área de Programas do usuário

Alocação Contígua Simples (3)

- Programas de usuário limitados pelo tamanho da memória principal disponível.
- Solução: Overlay
 - Dividir o programa em módulos;
 - Permitir execução independente de cada módulo, usando a mesma área de memória;
- Área de Overlay
 - Área de memória comum onde módulos compartilham mesmo espaço.

Memória principal

Sistema Operacional

> Área do Módulo Principal

Área de Overlay

Alocação Particionada

- Multiprogramação.
 - Necessidade do uso da memória por vários usuários simultaneamente.
- Ocupação mais eficiente do processador;
- A memória foi dividida em pedaços de tamanho fixo chamados partições;
- O tamanho de cada partição era estabelecido na inicialização do sistema;
- Para alteração do particionamento, era necessário uma nova inicialização com uma nova configuração.

Alocação Particionada Estática (1)

- Partições fixas
 - Tamanho fixo ; número de partições fixo

Alocação Particionada Estática Absoluta:

- Compiladores gerando código absoluto;
- Programas exclusivos para partições específicas.
- Simples de gerenciar
- E se todos os processos só pudessem ser executados em uma mesma partição (mesmo endereço base?)

Alocação Particionada Estática Relocável:

- Compiladores gerando código relocável;
 - Endereços relativos ao início da partição;
- Programas podem rodar em qualquer partição.

Alocação Particionada Estática (2)

- Proteção:
 - Registradores com limites inferior e superior de memória acessível.
- Programas não ocupam totalmente o espaço das partições, gerando uma fragmentação interna.

Alocação Particionada Dinâmica (1)

- Não existe realmente o conceito de partição dinâmica.
 - O espaço utilizado por um programa é a sua partição.
- Não ocorre fragmentação interna.
 - o tamanho da memória alocada é igual ao tamanho do programa
- Ao terminarem, os programas deixam espalhados espaços pequenos de memória, provocando a fragmentação externa.
 - os fragmentos são pequenos demais para serem reaproveitados

Memória principal Sistema **Operacional Processo A Processo C** Processo F Processo E

Alocação Particionada Dinâmica (2)

Alocação Particionada Dinâmica (3)

Soluções:

- Reunião dos espaços contíguos.
- Realocar todas as partições ocupadas eliminando espaços entre elas e criando uma única área livre contígua-> Relocação Dinâmica de endereços:
 - Movimentação dos programas pela memória principal.
 - Resolve o problema da fragmentação.
 - Consome recursos do sistema
 - Processador, disco, etc.

Memória principal

Sistema Operacional

Processo A

Processo F

Processo E

Alocação Particionada Dinâmica (4)

- A multiprogramação implica em um problema
 - Ao mudar de partição o programa necessita ser relocado
- Relocação implica em correção de endereços de instruções
 - Via software (mapa de correções)
 - Via hardware (reg. base e limite)
- Proteção
 - Não correção ou correção errada implica em acesso a outra partição

Alocação Particionada Dinâmica (5)

- Definição do tamanho das partições pode ser difícil
 - Processos crescem quando em execução
 - É bom definir áreas extras para dados e pilhas
- Como gerenciar as partições alocáveis de memória
 - Mapamento de bits
 - Mapeamento da Memória com listas encadeadas

Mapa de bits

- Usado para o gerenciamento com alocação dinâmica
- Memória é dividida em unidades de alocação
 - De algumas palavras a vários kilobytes
 - Qto menor → maior o mapa de bits
 - Qto maior → desperdício na última unidade
- A cada unidade é associado um bit que descreve a disponibilidade da unidade
 - Disponível = 0
 - Ocupada = 1
- Principal problema
 - Busca de k zeros consecutivos para alocação de k unidades
 - Raramente é utilizado atualmente.
 - É muito lenta

Mapeamento da Memória com lista encadeada

- Também usado para gerenciar a alocação dinâmica.
- Lista ligada de segmentos alocados ou livres
- Um segmento é uma área de memória alocada ou livre
- Cada elemento da lista indica
 - Estado do segmento (P) Alocado por um processo ou (H) Livre
 - Unidade em que inicia
 - Tamanho em unidades
- Lista duplamente encadeada facilita de concatenação de segmenos
- Lista ordenada por endereço permite vários algoritmos de alocação

Mapeamento da Memória com lista encadeada

A escolha da partição ideal (1)

- Existem 4 maneiras de percorrer a lista de espaços livre atrás de uma lacuna de tamanho suficiente, são eles:
 - Best-fit (utiliza a lacuna que resultar a menor sobra)
 - Espaço mais próximo do tamanho do processo;
 - Tempo de busca grande;
 - Provoca fragmentação.
 - Worst-Fit (utiliza a lacuna que resultar na maior sobra):
 - Escolhe o maior espaço possível;
 - Tempo de busca grande;
 - Não apresenta bons resultados.

A escolha da partição ideal (2)

- First-Fit (primeira alocação):
 - utiliza a primeira lacuna que encontrar com tamanho suficiente
 - Melhor performance.
- Circular-fit ou Next-Fit (próxima alocação):
 - como first-fit mas inicia a procura na lacuna seguinte a última sobra
 - Performance inferior ao First-Fit.

A escolha da partição ideal (3)

- Considerações sobre Mapeamento da Memória com listas ligadas :
 - Todos melhoram em performance se existirem listas distintas para processos e espaços, embora o algoritmo fique mais complexo.
 - Listas ordenadas por tamanho de espaço melhoram a performance.