复变函数期中考试试卷 2023-04-26

班号	学号	姓名	成绩	_
注意事项:	1、答案必须写在 答	等题卡 上,写在 ⁵	稿纸上无效;	
	2、本卷正卷共3页	〔,卷面满分为	25 分。	
一、 判践 "×").	所题(共 10 分,每 小	>题 1 分。在每	小题后面打上合适的	均符号"√" 或
1、函数 <i>f</i> (z	z)在点 z ₀ 处解析,则	函数 $f(z)$ 在 z_0 处	可导。(✓)	
2、函数 f(z	z)在点 z ₀ 处满足柯西	黎曼方程,则函	函数 $f(z)$ 在 z_0 处解析。	(x)
3、sinz 在	复平面有界。			(x)
4、若 f(z)	= u + i v 在区域 D 内	解析,则 $\frac{\partial u}{\partial x}$ 为	D 内的调和函数。	(↓)
5、若幂级	数的收敛半径大于零	京,则其和函数以	必在收敛圆内解析。	(🗸)
$6, \frac{1}{z} = z$	关于单位圆对称。			(✓)
7、若函数	(f(z)的实部在区域	成 D 内是一个常	常数,则 f(z) 在 D ;	为是一个常数。
(×)			
$8 \cdot z_1 = z_2$	对应于黎曼球面上-	个直径的两个的	端点当且仅当 $\mathbf{z}_1 \mathbf{z}_2 = \mathbf{z}_1$	-1∘ (✓)
9、设C是	区域 D 内的光滑曲:	线, f(z)在 D 内	连续,则∫ _c f(z)dz只	依赖于C的端点
的充分必要	要条件是 f(z)在 D 内	是某个解析函数	ɪ的导数。 (✓)

10、设 C 是区域 D 内的光滑闭曲线,f(z)在 D 内解析,则 $\oint_C f(z)dz = 0$ 。(×) 二、 选择题(共5分,每空1分)

- 1、函数 $\overline{z}z^2$ 在整个复平面上(D
- (A) 处处可导 (B) 处处不可导 (C) 处处解析 (D) 处处不解析

2、积分 $\int_{|z|=1}^{\infty} \frac{e^z}{(z-1-i)^2} dz =$ (B)

- (A) $2\pi i$
- (B) 0
- (C) $2\pi i e^{1+i}$ (D) $-2\pi i$

3、设v(x,y)在区域D内为u(x,y)的共轭调和函数,则下列函数中为D内解析函数 的是(B)

(A) v(x,y) + iu(x,y)

(B) v(x, y) - iu(x, y)

(C) u(x,y)-iv(x,y)

(D) $\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x}$

4、下列命题中,不正确的是(A

- (A) 设 γ 是包含原点的闭曲线,则积分 $\int_{z}^{1} dz = 2\pi i$ 。
- (B) 有界整函数必为常数。
- (C) 设 C 是区域 D 内任一闭曲线, f(z)在 D 内连续, 如果 $\oint_{\mathbb{C}} f(z)dz = 0$, 则 f(z)在D内解析。
- (D) 若 f(z) 在区域 D 内解析,则 $\overline{f(z)}$ 在 D 内解析。
- 5、下列级数中,条件收敛的级数为(C
 - $(A) \sum_{n=1}^{\infty} \left(\frac{1+3i}{2}\right)^n$
- (B) $\sum_{n=1}^{\infty} \frac{(3+4i)^n}{n!}$

- (C) $\sum_{n=1}^{\infty} \frac{i^n}{n}$
- (D) $\sum_{n=1}^{\infty} \frac{(-1)^n + i}{\sqrt{n+1}}$

三、填空题(共10分,每空1分)

- 1、 $\sin(x+iy)$ 的实部是 ______ $\frac{(e^y+e^{-y})\sin x}{2}$ ______ \circ
- 2、 $(-1)^i$ 的值为______ $e^{2k\pi-\pi}$, $k \in \mathbb{Z}$ ______或其他等价形式_____。
- 3、Ln(3+2i)的主值是______。
- 4、对于映射 $\omega = z + \frac{1}{z}$,圆周|z| = 2的像曲线为 $\frac{u^2}{(\frac{5}{2})^2} + \frac{v^2}{(\frac{3}{2})^2} = 1$ __(写出方程).
- 5、设 $f(z) = \int_C \frac{e^{\xi}}{\xi z} d\xi$,其中 $C: |\xi| = 2$ 正向,则 $f'(1) = 2\pi ei$ _____。
- 6、设c为正向圆周|z|=3,则 $\oint_{c} \frac{z+\overline{z}}{|z|} dz = ____6\pi$ i_______。
- 7、正向圆周积分 $f(z) = \int_{|z|=1} \left| \frac{dz}{z} \right| = _____2 2\pi ____$
- 8、若 $\lim_{n\to\infty} z_n = \xi$,则 $\lim_{n\to\infty} \frac{z_1 + z_2 + \dots + z_n}{n} = \underline{\xi}$

复平面剩下的区域为 D, $f_1(z)$ 是 f(z) 在 D 内的一个解析分支且 $f_1(2)$ 取正实数,

则 $f_1(i)$ 的值是_____ $f(z) = \sqrt[6]{2}e^{\frac{7\pi}{12}i}$ ______。

1	2	3	4	5
6	7	8	9	10
二、选择题				
1	2	3	4	5
三、填空题				
1		2		3
4		5		6
7		8		_
9				