Exerciții de seminar

1 Programare imperativă

1.1 Semantica operațională

Fie $X, Y, Z \in L$, distincte două câte două. Să se descrie formal execuția următoarelor programe IMP din stările inițiale indicate, folosind semanticile operaționale big-step și small-step:

- 1. if $X \leq 7$ then Z := X else Z := Y, dintr-o stare initială σ cu $\sigma(X) = 0$, $\sigma(Y) = 1$, $\sigma(Z) = 7$;
- 2. while $4 \le X$ do X := X Y, dintr-o stare inițială σ cu $\sigma(X) = 6$, $\sigma(Y) = 3$;
- 3. while $\neg (Y=0)$ do (Y:=Y-1;X:=2*X), dintr-o stare inițială σ cu $\sigma(X)=1$, $\sigma(Y)=3$;
- 4. while $\neg(X = Y)$ do (if $X \le Y$ then Y := Y X else X := X Y), dintr-o stare inițială σ cu $\sigma(X) = 9$, $\sigma(Y) = 12$.

1.2 Semantica axiomatică

Fie $X,\,Y,\,M,\,N,\,C,\,P\in L$, distincte două câte două, și $n,\,m\in\mathbb{N}$. Să se arate că următoarele enunțuri Hoare sunt demonstrabile:

- 1. ${X = n \land Y = m}(X := X + Y; Y := X Y); X := X Y{X = m \land Y = n};$
- 2. $\{1 \le N\}(P := 0; C := 1)$; while $C \le N$ do $\{P := P + M; C := C + 1\}\{P = M * N\}$.

2 Programare logică

2.1 Unificare

 ${\bf Consider \breve{a}m}$

- x, y, z, u, v, w variabile,
- a, b, c constante,
- h, g simboluri de funcție de aritate 1,
- f simbol de funcție de aritate 2,
- p simbol de funcție de aritate 3.

Aplicați algoritmul de unificare din curs pentru a găsi un unificator pentru termenii:

- 1. f(x,y), f(h(x),x) şi f(x,b)
- 2. f(x, f(x, g(y))), f(u, z) și f(g(y), y)
- 3. f(f(x,y),x), f(g(y),z) şi f(u,h(z))

```
    f(f(x,y),x), f(v,u) şi f(u,h(z))
    f(f(x,y),x), f(v,u) şi f(u,z)
    f(f(g(x),h(y)),h(z)), f(f(u,h(h(x))),h(y)) şi f(v,w)
    p(x,x,z), p(f(a,a),y,y) şi p(f(x,a),b,z)
    p(x,x,z), p(f(a,a),y,y) şi p(x,b,z)
    p(x,x,z), p(f(a,a),y,y) şi p(x,f(a,a),z)
    p(f(x,a),g(y),z), p(f(a,a),z,u) şi p(v,u,z)
```

2.2 Rezoluție

Găsiți o SLD-respingere pentru următoarele programe Prolog și ținte:

```
?- w.
     r :- p,q.
                              t.
     s :- p,q.
                              q.
     v :- t,u.
                              u.
     w :- v,s.
2.
     q(X,Y) := q(Y,X), q(Y,f(f(Y))). ?- q(f(Z),a).
     q(a,f(f(X))).
3.
     p(\texttt{X}) \; :- \; q(\texttt{X}, \texttt{f}(\texttt{Y})) \,, \; r(\texttt{a}) \,. \qquad r(\texttt{X}) \; :- \; q(\texttt{X}, \texttt{Y}) \,. \qquad ?- \; p(\texttt{X}) \,, \; q(\texttt{Y}, \texttt{Z}) \,.
     p(X) := r(X).
                                                      r(f(b)).
     q(X,Y) := p(Y).
```

3 Programare functională

3.1 Lambda-calcul fără tipuri

Reduceți următorii termeni până la o formă normală:

```
1. ((\lambda z.z)(\lambda q.(qq)))(\lambda s.(sa));

2. ((\lambda z.z)(\lambda z.(zz)))(\lambda z.(zq));

3. ((\lambda s.\lambda q.(sqq))(\lambda a.a))b;

4. ((\lambda s.\lambda q.(sqq))(\lambda q.q))q;

5. ((\lambda s.(ss))(\lambda q.q))(\lambda q.q).
```

3.2 Lambda-calcul cu tipuri

Considerăm următorii termeni:

```
1. \lambda xyz.(x(yz));
2. \lambda xy.(xy(\lambda z.y));
3. (\lambda xyz.zxy)(\lambda xyz.y)(\lambda xy.y).
```

Pentru fiecare dintre ei, aplicați algoritmul de inferență a tipurilor și prezentați o deducție în sistemul de deducție corespunzător care să arate că termenului i se poate aloca tipul obținut prin algoritm.