

Focus for this lecture

SVM: Formulation

- Let $g(X) = W^T X + b$
- We want to maximize margin:
 - $-W^TX_i + b \le -1$ for $y_i = -1$
 - $-W^TX_i + b \ge 1$ for $y_i = 1$
 - $-\operatorname{Or} y_i(W^TX_i+b) \geq 1 \text{ for } i.$

SVM: Formulation

- Mathematically, Minimize $\frac{1}{2}W^TW$
- Subject to:
 - $-y_i(W^TX_i+b) \ge 1$ for all i.
- This is convex optimization.
- Exact solutions exist

SVMs and Kernels

Kernel as Similarity Function

"Linear" Learning techniques

Linear classifier

$$g(x_n) = sign(w^T x_n)$$

where w is an d-dim vector (learned)

- Techniques:
 - Perceptron
 - Logistic regression
 - Support vector machine (SVM)
 - Etc.

XOR: Limitation of Linear Methods

x_1	x_2	$x_1 XOR x_2$	
-1	-1	-1 (-)	
-1	1	1 (+)	
1	-1	1 (+)	
1	1	-1 (-)	

Consider a new feature x3 = x1x2

 With a "new feature", a problem that is linearly non-separable has become separable!!

A difficult problem became easy!!

X1	X2	Х3	XOR
-1	-1	1	-
-1	1	-1	+
1	-1	-1	+
-1	-1	1	-

Nonlinearity with Feature Maps

$$\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \to \left(\begin{array}{c} r \\ \theta \end{array}\right)$$

- With a "smart" feature map, a linearly non-separable problem can be converted to a separable problem.!!
- The feature mapping is often denoted by: $\phi(X)$

More General

Non-linear case

$$x_{n} = [x_{n1}, x_{n2}]$$

$$x_{n} = [x_{n1}, x_{n2}, x_{n1} * x_{n2}, x_{n1}^{2}, x_{n2}^{2}]$$

$$g(x_{n}) = sign(w^{T}x_{n})$$

Non-linear Mapping

Φ is a non-linear mapping into a possibly high-dimensional space

SVM: Primal and Dual

Minimize:
$$\emptyset(w) = \frac{1}{2}w^Tw$$

Subject to: $y_i(w^Tx_i + b) - 1 \ge 0 \ \forall i$

Subject to:
$$\alpha_i \ge 0 \ \forall_i \ and \sum_{i=1}^N \alpha_i \ y_i = 0$$

$$w_0 = \sum_{i=1}^N \propto_i y_i \ x_i$$

Kernel Strategy

$$w = \sum_{i=1}^{N} \alpha_i y_i x_i$$

What we need is only
$$w^Tx = \sum_{i=1}^{T} \alpha_i y_i x_i^Tx$$

We can do the same in a new feature space:

$$w^{T}x = \sum_{i=1}^{N} \alpha_{i}y_{i}\phi(x_{i})^{T}\phi(x)$$
 $w^{T}x = \sum_{i=1}^{N} \alpha_{i}y_{i}K(x_{i}, x)$

Kernels

• Interestingly, it is possible to do this without explicitly doing the non-linear mapping to high dimensions $K(x_i, x_i)$

• We need only a kernel function $K(s_i, x_i) = \emptyset(s_i).\emptyset(x_i)$

Non Linear SVM

Transform the data to a high dimension space

Non - Linearly Separable

Linearly Separable

Popular Kernels

Polynomial:

$$K_p(X_1, X_2) = (1 + X_1 \cdot X_2)^p$$

Radial Basis Function (RBF) or Gaussian:

$$K_r(X_1, X_2) = e^{-\frac{(\|X_1 - X_2\|)^2}{2\sigma^2}}$$

Hyperbolic Tangent:

$$K_s(X_1, X_2) = \tanh(\beta_0 X_1 \cdot X_2 + \beta_1)$$

Polynomial Mapping

- $\phi: R^2 \to R^3$
- $(X_1, X_2) \to (Z_1, Z_2, Z_3) = (X_1^2, \sqrt{(2)}X_1X_2, X_2^2)$
- $K_p(X_1, X_2) = (1 + X_1 \cdot X_2)^p$

•
$$K_r\left(\vec{x}, \vec{l}^i\right) = e^{-\frac{\left(\left\|\vec{x} - \vec{l}^i\right\|\right)^2}{2\sigma^2}}$$

- Where,
 - $-\vec{x}$: X vector (some point in our dataset)
 - $-\overline{l^i}$: I stands for landmarks (i represents the number of landmarks)
 - $-\left(\left\|\vec{x}-\vec{l^i}\right\|\right)^2$: Distance between a point and the landmark squared

Summary

- Linear SVMs generalize well, but cannot separate non-linear data
- If features can be transformed appropriately, simple linear algorithms (classification, regression) are enough.
- How do we find the feature transformation?
 - Make a reasonable guess?
 - Ans: Use some popular complex functions.
- Kernels (nonlinear) SVMs are also good at generalization and can deal with non-linear data.
- Need not be as efficient/compact.

Reference Links

https://www.youtube.com/watch?v=9 DJ4KvyYoo

Summary

Thanks!!

Questions?