Développements limités

QCOP DL.1

• Déterminer un développement limité à l'ordre 5 en 0 de $x \mapsto \frac{1}{4+x^2}$.

(a) Rappeler les développements limités à l'ordre 3 en 0 de cos et sin.

(b) Déterminer un développement limite à l'ordre 3 de tan.

QCOP DL.2

Soit $n \in \mathbb{N}$.

 \blacksquare Rappeler la formule de Taylor-Young pour une fonction $f \in \mathscr{C}^n(\mathbb{C})$.

Soit $z \in \mathbb{C}$. Déterminer un développement limité à l'ordre n en 0 de $x \mapsto \exp(zx)$.

 \aleph En déduire les développements à l'ordre n en 0 de cosh, sinh, cos et sin.

QCOP DL.3

Expliquer comment « primitiver » un développement limité.

Soit I un intervalle de $\mathbb R$ contenant 0. Soient $f,g:I\longrightarrow \mathbb R$ continues sur I. On note F et G leur primitive s'annulant en 0. Montrer que

$$f(t) = \underset{t \to 0}{\circ} (g(t)) \implies F(t) = \underset{t \to 0}{\circ} (G(t)).$$

lpha Soit $n \in \mathbb{N}^*$. Déterminer un développement limité à l'ordre n en 0 de

$$x \longmapsto \ln(1+x)$$
 et $x \longmapsto \arctan(x)$.

QCOP DL.4

Énoncer et démontrer la formule de Taylor-Young.

% Soit $f \in \mathscr{C}^2(\mathbb{R}, \mathbb{R})$. Soit $a \in \mathbb{R}$. Déterminer

$$\lim_{h\to 0}\frac{f(a+h)-2f(a)+f(a-h)}{h^2}.$$