

1003 Customer Transaction Prediction Team: PTID-CDS-Mar21-1096

Customer Transaction Prediction

Customer transactions could be about anything from opening a checking account to borrowing loans, purchasing a credit card etc.

These actions along with personal details of the customer, the services used, ways in which they interacted with the bank, i.e., online, phone call or a physical visit, etc. help in characterization of customers further leading to implementing targeted strategies and forms one of the bases of customer segmentation.

These information can be used to predict about whether the customer is going to use their service in the future or not.

We as a team have used several models to achieve it.

Dataset

train.head(5)

	ID_code	target	var_0	var_1	var_2	var_3	var_4	var_5	var_6	var_7	 var_190	var_191	var_192	var_193
0	train_0	0	8.9255	-6.7863	11.9081	5.0930	11.4607	-9.2834	5.1187	18.6266	4.4354	3.9642	3.1364	1.6910
1	train_1	0	11.5006	-4.1473	13.8588	5.3890	12.3622	7.0433	5.6208	16.5338	7.6421	7.7214	2.5837	10.9516
2	train_2	0	8.6093	-2.7457	12.0805	7.8928	10.5825	-9.0837	6.9427	14.6155	2.9057	9.7905	1.6704	1.6858
3	train_3	0	11.0604	-2.1518	8.9522	7.1957	12.5846	-1.8361	5.8428	14.9250	4.4666	4.7433	0.7178	1.4214
4	train_4	0	9.8369	-1.4834	12.8746	6.6375	12.2772	2.4486	5.9405	19.2514	-1.4905	9.5214	-0.1508	9.1942

5 rows × 202 columns

The dataset is anonymized so we cannot know which feature is what. There is a total of 200 features in this data set along with ID_code and target columns. The target columns contain o and 1 value where o means the customer will not do a transaction and 1 means the customer will do a transaction.

Imported Libraries:

- Pandas
- Numpy
- Seaborn
- Matplotlib
- Scipy
- Sklearn.metrics
- Sklearn.model

Tool Kit

Method Use:

- EDA
- Feature Engineering
- PCA
- Modelling

EDA (Exploratory Data Analysis)

Step 1:

Target Distribution

Step 2: Variable Distribution

Step 3: Basics Statistics Step 4: Missing Values

Step 5: Duplicate Values

Target Distribution

We can see from the above plot that around 90% of our data has o (customer did not do a transaction), and around 10% of the data has 1 (customer did do the transaction). This shows that the problem in hand is a binary classification problem and this makes the data very imbalanced.

Variable Distribution

We can see from this that the distribution is nearly Gaussian for all the variables for both the outcome 1 and for outcome o.

In [3]:

train.describe()

	target	var_0	var_1	var_2	var_3	var_4	var_5	var_6	
count	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.
mean	0.100490	10.679914	-1.627622	10.715192	6.796529	11.078333	-5.065317	5.408949	16.5458
std	0.300653	3.040051	4.050044	2.640894	2.043319	1.623150	7.863267	0.866607	3.41807
min	0.000000	0.408400	-15.043400	2.117100	-0.040200	5.074800	-32.562600	2.347300	5.34970
25%	0.000000	8.453850	-4.740025	8.722475	5.254075	9.883175	-11.200350	4.767700	13.9438
50%	0.000000	10.524750	-1.608050	10.580000	6.825000	11.108250	-4.833150	5.385100	16.4568
75%	0.000000	12.758200	1.358625	12.516700	8.324100	12.261125	0.924800	6.003000	19.1029
max	1.000000	20.315000	10.376800	19.353000	13.188300	16.671400	17.251600	8.447700	27.6918

8 rows × 201 columns

Basic Statistics

Standard deviation is relatively large

Missing & Duplicate Values

There are no missing values.

We do have some duplicate values which may be used to depict something interesting.

Mean

Skewness

Standard Deviation

Max & Min

We can see from above that the dimension of the data is very high.

Principal Component Analysis

To check Dimentionality Reduction

As we can see the data cannot be separate. The points are massively overlapped.

Kernel PCA

Since PCA hasn't been useful we decided to proceed with the existing dataset


```
# LiGHT GBM
  import lightgbm as lgb
      'bagging freq': 5.
      'bagging_fraction': 0.335,
      'boost_from_average':'false',
      'boost': 'gbdt',
      'feature fraction': 0.041,
      'learning rate': 0.0083,
      'max depth': -1,
      'metric':'auc',
      'min_data_in_leaf': 80,
      'min_sum_hessian_in_leaf': 10.0,
      'num_leaves': 13,
      'num_threads': 8,
      'tree_learner': 'serial',
      'objective': 'binary',
      'verbosity': -1
  num_folds = 11
  from sklearn.model_selection import StratifiedKFold,KFold
  from sklearn.metrics import roc_auc_score, roc_curve
  folds = StratifiedKFold(n_splits= num_folds,random_state=44000)
  oof = np.zeros(len(train))
  feature_importance_df = pd.DataFrame()
  for fold_, (trn_idx, val_idx) in enumerate(folds.split(train.values, target.values)
     X_train, y_train = train.iloc[trn_idx][features], target.iloc[trn_idx]
      X_valid, y_valid = train.iloc[val_idx][features], target.iloc[val_idx]
     print("Fold {}".format(fold ))
```

```
KNeighborsClassifier

In [35]:

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=7)

In [30]:

from sklearn.neighbors import KNeighborsClassifier

model=KNeighborsClassifier(n_neighbors=5)

model.fit(X_train,y_train)

MeighborsClassifier()

Predictions / Evaluate

In [37]:

y_predict = model.predict(X_test)
```


LogisticRegression In []: from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_state=10) In [39]: from sklearn.linear_model import LogisticRegression model= LogisticRegression(max_iter=1900) In [40]: model.fit(X_train,y_train) LogisticRegression(max_iter=1900) Predictions / Evaluate In [41]: y_predict = model.predict(X_test) y_predict array([0, 1, 0, ..., 0, 0, 0], dtype=int60)

Code Snippets

	Linear Regression	RandomForest Classifier	XGBoost	Kneighbours Classifier	Light GBM	
Why	It's the most simple modelling method and the go-to method for any data scientist.	Random forest is a flexible, easy to use machine learning algorithm that produces, even without hyperparameter tuning, a great result most of the time.	Xgboost can automatically handle missing data values and learn the best direction for missing values. The performance and execution speed is also good.	This is used for both regression as well as for classification but mostly it is used for Classification problems. Since this seemed like a Classification problem this method seemed wise to use.	Our dataset is imbalanced and thus we should not use traditional models like Logistic regression. We should assure independence of predictor variables and we almost have uncorrelated predictor variables.	
Train_ Accuracy	0.91	0.90	0.96	0.90	0.95	

THANKYOU