1 Wstęp

W tym zadaniu zostały zaimplementowane metody iteracyjne (Jacobiego i Gaussa-Seidla) oraz metoda bezpośrednia (Gaussa) w celu rozwiązania układów równań liniowych. Układ równań ma postać:

$$Ax = b$$

Gdzie A to macierz o rozmiarze $N \times N$, gdzie N=977, b to wektor o długości N, a x to wektor wynikowy. Macierz A zawiera 5 diagonali, główny o wartości $a_1=8$, 2 sąsiednie o wartości $a_2=-1$ oraz 2 zewnętrzne o wartości $a_3=-1$. Wektor b składa się z wartości danych wzorem $sin(\frac{n}{50})$. Wynikiem równania jest wektor x. Do obliczenia błędu przybliżonych wartości została użyta norma z residuum, będąca normą euklidesową wektora Ax-b. Przy osiągnięciu wartości residuum mniejszej niż 10^{-9} algorytmy zostawały zatrzymane - została ona użyta jako warunek stopu dla algorytmów iteracyjnych.

2 Wnioski

Do obliczenia powyższego układu zostały użyte 2 metody iteracyjne - Jacobiego i Gaussa-Siedla. Metoda Gaussa-Siedla okazała się być bardziej dokładna od metody Jacobiego, podawała bardziej dokładny wynik przy mniejszej ilości iteracji oraz w krótszym czasie. Dla macierzy A z powyższego przykładu metody iteracyjne były bardzo skuteczne - szybko dawały bardzo dokładne wartości przybliżone, już po 22 iteracjach druga metoda dawała wynik dla którego norma z wektora residuum ze wzoru Ax-b dawała błąd poniżej 10^{-9} . Czas działania dla obu metod był około 3,5 oraz 6 razy krótszy od metody bezpośredniej Gaussa.

	Algorytm Gaussa	Algorytm Jacobiego	Gaussa-Seidla
Liczba iteracji	1	35	22
Czas trwania	247ms	71ms	41ms

Po zmianie zmiennej $a_1=3$ okazało się, że metody iteracyjne nie dają oczekiwanych rezultatów. Metody te w tym przypadku są rozbieżne, a norma z wektora residuum wzrasta. Powyższa zależność oraz dodatkowe pomiary pozwalają zauważyć, że wartość a_1 jest kluczowa dla dokładności powyższych metod iteracyjnych - im a_1 jest większe, tym szybciej te metody dają wyniki zbieżne do rozwiązania.

Błąd residuum

Rysunek 1: Wykres przedstawiający czas wykonywania algorytmów w stosunku do liczby iteracji k. Można zauważyć, że błąd zmniejsza się w tempie logarytmicznym.

Metoda bezpośrednia Gaussa w przeciwieństwie do powyższych metod iteracyjnych od razu podaje poprawną wartość rozwiązania układu, jednak czas trwania jest o wiele dłuższy od podanych powyżej metod. Liczy ona rozwiązanie przy pomocy redukcji do macierzy schodkowej, a nie na podstawie wyliczonych poprzednich wartości jak w metodach iteracyjnych. Teoretycznie powinna zawsze zwracać dokładne rozwiązanie, jednak pojawiają się drobne błędy wynikające z faktu, że wartości zmiennoprzecinkowe nie zawsze są w stanie dokładnie przedstawić wartości obliczanych. Możemy wyznaczyć ten błąd dokładniej badając normę z wektora residuum. Dla powyższego przykładu przy użyciu typu double wynosi ona 2.8e-15. Metoda bezpośrednia okazuję się szczególnie przydatna, kiedy metody iteracyjne podają wyniki rozbieżne, po wstawieniu $a_1=3$ norma z wektora residuum wyniosła 3.6e-12, podczas gdy metody iteracyjne nie podały poprawnego wyniku.

Rysunek 2: Wykres przedstawiający błąd w zależności od numeru iteracji \boldsymbol{k}

Powyżej przedstawiony wykres przedstawia zależność czasu trwania algorytmu od ilości elementów w macierzy A. Łatwo zauważyć, że algorytmy iteracyjne mają czas trwania o wiele krótszy od metody bezpośredniej, różnica w czasie zwiększa się wraz z ilością elementów - im macierz jest większa tym bardziej opłacalne jest użycie algorytmu iteracyjnego zamiast bezpośredniego. Można wywnioskować więc, metody iteracyjne są szczególnie przydatne przy pracy z danymi o dużym rozmiarze.