Computer Science 112 Data Structures

Lecture 21:

Graphs:

Depth First Search
Topsort

Review: Graphs

Generalization of trees

- Digraph (Directed Graph)
 - Like a tree but any vertex can point to any other

- E.g., Twitter follows relationship

Graphs

Generalization of trees

- Graph
 - like digraph but arcs have no direction

- E.g., Facebook friends relationship

Graphs

- Weighted Graph
 - Positive integer weights on each edge

Applications

• Lots

Notation

• Arcs are named by the vertices they connect

- Neighbors of a vertex: vertices that it shares an arc with
 - Neighbors of A are B and C
- Degree of a vertex: number of neighbors
 - Degree of A is 2, degree of B is 3

- In degree (in a digraph): number of vertices that have arcs to this vertex
 - In degree of B is 1
- Out degree (in a digraph): number of vertices that have arcs from this vertex
 - Out degree of B is 2

CS112: Slides for Prof. Steinberg's lecture

'121-dfs-topsort.odp

- (Simple) Path
 - Sequence of arcs(A,B),(B,C)
 - May not revisit a vertex (B,A),(A,C),(C,B),(B,D)
 - Except last vertex may =
 first
 (B,A),(A,C),(C,B)
- Vertex A is reachable from B if there is a path from B to A

Path

On digraph must follow arc directions

(A,B),(B,D)

(A,C),(C,B)

- A cycle is a path from a node back to itself
 (A, B)(B, D)(D, A)
- A graph with no cycles is called acyclic

Connected Graph
 For any two vertices X and Y
 there is a path from X to Y.

not connected

- Connected Graph
 For any two vertices X and Y
 there is a path from X to Y.
- Connected Component
 A subset of vertices that is connected

two connected components

Strongly Connected Digraph

For any two vertices X and Y there is a path from X to Y. (Paths must follow arc directions)

Weakly Connected Digraph
 Corresponding graph is
 connected (i.e., ignoring arc
 direction)

• Weighted graph: each arc has a numerical weight

Sparse vs Dense Graphs

Sparse

Dense

- Adjacency matrix
 - n x n boolean matrix: is there an arc?

- Adjacency matrix
 - n x n boolean matrix: is there an arc?

p. 18

- Adjacency matrix
 - n x n boolean matrix: is there an arc?

p. 19

- Adjacency list
 - -for each node, a linked list of edges that touch it

p. 20

- Adjacency list
 - -for each node, a linked list of edges that touch it
 - -Space cost:

undirected v + 2 * 2 * e directed v + 2 * e

Costs, Worst case

	Space	Time: Is there and edge from i to j	Time: List the neighbors of i
Adjacency matrix	O(v ²)	O(1)	O(v)
Adjacency list	O(v + e)	O(d)	O(d)

d is degree (i.e., number of neighbors) of i d<v

- Need to mark vertices as we see them to prevent infinite loops
- Need driver in case not connected
- Otherwise like tree traversals

```
    Depth first
        dfsG(v):
        if (marked(v)) return;
        visit v;
        mark v;
        for each vn in neighbors(v)
             dfsG(vn)
```


$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

Driver

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

dfsG

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn = \langle C \rangle$$

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

Driver

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

dfsG

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn = \langle C \rangle$$

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn =$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

dfsG

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn =$$

$$\mathbf{v} = \langle \mathbf{D} \rangle$$

$$\mathbf{v} = \langle \mathbf{B} \rangle$$

$$\mathbf{v} = \langle \mathbf{B} \rangle$$

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

$$\mathbf{v} = \langle \mathbf{D} \rangle$$

$$\mathbf{v} = \langle \mathbf{D} \rangle$$

- Time:
 - Visit each vertex
 - inspect each edge

O(n + e) n vertices, e edges

Uses of DFS Traversal

- Connected Components
 - See GraphCC.java
- Topsort
 - See GraphTS.java

New: Topological Sort

- Acyclic Digraph <=> partial order
- Topsort: find total order consistent with partial order

$$1 \quad a=1;$$

$$3$$
 c=a*b;

$$4 \quad d=a+4$$

$$c=c+d$$

Topological Sort

Acyclic Digraph <=> partial order

Topsort: find total order consistent with

Topsort Algorithms

- Most work by assigning numbers to vertices
 - vertex order = numerical order
- Depth first
- Breadth First

DFS Topsort Algorithm

- Algorithm:
 - Do DFS
 - Number vertices as you leave them
- Problem: leave vertex *after* leave reachable vertices, but needs number *smaller* than reachable vertices
 - Solution: number with decreasing numbers
- · See GraphTS.java