(b) J' and K' in the table you just completed are functions of T' (the input) and Q' (present state). This is a small state machine. Write the MSOP forms for J' and K'. You may minimize to MSOP format any way you see fit.

MSOP
$$J(T, Q') = \mathcal{L}^b Q^b (m_z)$$

MSOP
$$K(T,Q') = \overline{L^6} Q^6 (m_1)$$

(c) Sketch a schematic for this state machine showing the combinational logic for inputs J', K' and also the JK FF with Q output. Draw by hand or use Logisim to sketch your circuit schematic.

3. You are provided the following state table (assume 1-bit output z; state assignments in parentheses):

1	x	
	0	1
A (00)	D/1	B/0
B (01)	D/1	C/0
C(10)	D/1	A/0
D (11)	B/1	C/0

(a) Construct a state diagram for the state table shown.

(b) What is the Boolean logic equation for the output variable z?