Quantum Chemistry by Levine

LuMg

Sep 2023

Chapter 12 Molecular Symmetry 1

12.1

- (a) False
- (b) False
- (c) True

12.2

- (a) H_2S : C2, σ
- (b) NH_3 : C3, σ
- (c) CHF_3 : C3, σ
- (d) HOCl: σ
- (e) $C3, \sigma, S3$
- (f) $C2, \sigma$
- (g) no symmetry element

12.3

- (a) $E, \sigma_a, \sigma_b, C_2$
- (b) $E, C_3, C_3^2, \sigma_a, \sigma_b, \sigma_c$ (c) $E, C_3, C_3^2, \sigma_a, \sigma_b, \sigma_c$
- (d) E, σ
- (e) $E, C_3, S_3 \dots$
- (f) $E, C_2, \sigma_a, \sigma_b$
- (g) E

12.4

No, the structure is changed

12.5

(a) E

- (b) σ
- (c) C_2
- (d) C_2 (e) C_2 (f) S_2
- (g) C_4
- (h) i

12.6

 $C_2(x)C_4(z)! = C_4(z)C_2(x)$

12.7

- (a) T
- (b) F (c) T
- (d) T
- (e) T

12.8

- (a) T
- (b) T
- (c) T
- (d) T
- (e) F
- (f) T
- (g) T

12.9

- (a) False, o o is rotating
- (b) not optically active

$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}
 (e) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}
 (f) \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

12.11

$$C_2(x) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\sigma_{xy} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\sigma_{xz} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$${\bf 12.12} \\ {\rm (a)} \hat{O}_{C4}^4 = E$$

So eigenvalue 1, -1, i, -i

(b) its eigenvalue is imaginary, so not Hermitian

12.13

(a)
$$\hat{O}_{C2}^2 = E$$

(a) $\hat{O}_{C2}^2 = E$ so the eigenvalue is 1, -1

it is Hermitian

12.14

- $(a)2p_z$
- $(b)2p_x$

12.16

- (a)T
- (b)F
- (c)T

12.17

True

12.18

True