Connected Vehicle Platformにおける北米技術動向と、 と、 日本の大学生・若手技術者への期待

8/24/2017@SWEST19

DENSO International America, INC.
NAREC(North America Research Center)
ePF 課長 佐藤洋介

関係する北米拠点

佐藤洋介の経歴

学生時代(UML, Design Pattern, Java Virtual Machine, Slackware Linux)

期間	所属	役職	担当業務	その他	
2002年 ~ 2003年	電子機器事業Gr 特定開発室SSC	担当	ソフトPF先行技術調査 →UML, Product Line, Java/CORBA, AUTOSAR 【役割】ソフト先行技術調査とソフトPFへの適用検討	SWEST5より実行委員会へ参加 情報処理学会 組込みシステムWG研究員	
2004年 ~ 2008年	電子PF開発部 ソフトPF開発室	担当	ソフトPF製品開発 【役割】CAN通信層ソフト部品量産開発	1	
2009年 ~ 2010年	電子PF開発部 先行技術開発室	担当係長	JASPAR BSW仕様開発 【役割】JASPARソフト構造仕様取りまとめ・評価リーダ	SWEST10,11,12プログラム委員長 AUTOSAR参画	
2011年 ~ 2013年	情報通信技術4部	担当係長	欧州OEM殿向けエアコンパネルECUソフト開発 →Vector MICROSAR, Renesas MCAL 【役割】BSW開発Project Leader	日科技連SQUBOK参画 【役割】組込み技術リーダ 知識体系が作 - Guldot Guide V2 Books Rate Pool Annual Po	
2014年 ~ 2016年	DIAM	担当課長	北米OEM殿向けメータECUソフト開発 →Cyber-security, OTA, QNX 【役割】BSW開発Project Manager	DHS※ SOTA標準化活動参画 ※Department of Homeland Security	
2017年 ~ 現在	DIAM (TC出向)	担当課長	Connected PFシステム開発 【役割】System Architect		

本日の趣旨

- 現在、自動車業界ではデジタルトランスフォーメーション(Digital transformation)の 真っ只中におり、IoT(Internet of Things)関連技術やビッグデータ分析基盤関連技術 のブレークスルーが、車両制御や車両サービスに対して、イノベーションの波を起こ しつつあります。
- 「ビッグデータ分析基盤を核としたクラウドからサービスの提供を受ける、ネットワークインフラに常時接続されたコネクテッド・カー」という構図は、ドライバ行動予測による 燃費向上や、機械学習による自動運転支援といった新たなサービス生み出しつつあり、我々は自動車の世界が変革する重要な変化点にいると言えます。
- 本講演では、北米でのコネクテッド・カー関連の技術、具体的にはCyber-security, Over-The-Air, Connected Vehicle Platformといった今後の10年を支える自動車関連 技術を紹介し、北米から見た日本の大学生・若手技術者への期待についてお話しします。
- また、そこから私自身のSWESTとの関わりや海外赴任経験といったキャリアパスを紹介することで、講演を聴いてくださった方々にインスパイアいただけると嬉しいです。

コネクテッド・カーを取り巻く環境変化と、基盤技術

個々の技術だけの話を聞くとチグハグに聞こえるが、近未来で実現したい姿は「Connected Cars」

1) Over-the-Air

OTAシステムアーキテクチャ

System Architecture for Secure OTA

	Characteristics / Challenges	Activity		
Scope1	 Connectivity How to reduce communication costs by delta flash algorism Security the authenticity and integrity of software updates 	DHS SOTA(Uptane) Explain DHS SOTA		
Scope2	 Reliability/Cost-effectiveness A/B storage, enough additional space to keep a delta 	Lead by OEMs/Tire 1/Micro vendors		

What's DHS SOTA(Uptane)

Overview

- This work is sponsored by DHS(Department of Homeland Security) Cybersecurity Division
- 2 year project(Oct. 2015 Sept. 2017)
- UMTRI, SwRI are leading this work

Basic principle

Collaborative area: Security mechanism

- Develop an open standard for secure over-the-air (SOTA) automotive software updates
- Create a proof-of-concept secure reference implementation
- Focus on automotive platform, usability, security, and the supply chain

Task #	Task	Task Start	Task Due	Milestones	Milestone Due
		Date	Date		Date
1	Requirements	Month 1	Month 6	Initial Requirements	Month 3
				Workshop	Month 3
				Final Requirements	Month 6
2	Design	Month 1	Month 12	Initial Design	Month 6
				Workshop	Month 9
				Final Design	Month 12
3	Implementation	Month 1	Month 18	Prototype Implementation	Month 12
	& Integration			Final Vehicle-Integrated Implementation	Month 18
4	Testing and	Month 1	Month 24	Test & Evaluation Plan	Month 6
	Evaluation			Workshop (combined with Task 2 workshop)	Month 9
				Refined Test & Evaluation Plan	Month 10
				Test & Evaluate Prototype Implementation	Month 18
				Test & Evaluate Final Vehicle-Integrated	Month 24
				Implementation	

DHS SOTA(Uptane) Overview 1/2

Use cases

- A vehicle must be able to verify the authenticity, integrity, and timeliness of a bundle of software updates an OEM wishes to install on its ECUs.
- A vehicle should be able to install this bundle of updates on some (ideally all, if there are no failures)
 ECUs.

Failure model

- An ECU may run out of power while installing a software update.
- A software update may be interrupted during download.
- An ECU may suffer permanent network loss.
- An ECU may run out of storage for update.
- _ ...

Threat model

- Endless data attack
- Partial bundle installation attack
- Freeze attack
- **...**

DHS SOTA(Uptane) Overview 2/3

- The Update Framework
 - Separation of duties (roles, keys, metadata).
 - Multi-trust signatures.
 - Explicit and implicit revocation of keys.

- Logical Architecture
 - Primary ECU
 - downloads, verifies, distributes metadata
 + images to secondaries.
 - Secondaries ECU
 - verify* metadata + image distributed by primary, and installs image.

boot

loader

current

timestamp

release

root

targets

director

• UPTANE design features

- Additional storage to recover from endless data attacks
 - A/B storage the simplest implementation.
 - Optimization: add just enough space to store delta from old to new image.

Boot- loader	Previous metadata	Latest downloaded metadata	Previous image	Latest downloaded image (possibly a delta)
loadel	metadata	metadata	illage	image (possibly a delta)

- Vehicle version manifest to detect partial bundle installation attacks
 - Primary must send the director the vehicle version manifest (what every ECU has installed) whenever it contacts for the latest updates.
 - If director detects mismatch between last updates and manifest, then OEM can be alerted for follow-up.
- Time server to limit freeze attacks
 - ECUs continually update time from a time server

今後10年を支える技術としての考察

• ECUへのインパクト

- ECUの役割としてFlashの対象となるSecondaryとその面倒を見るPrimaryが定義されている。CGWなどに代表されるPrimaryは、SecondaryのFlashイメージを保持する必要があることから、相当のストレージスペースが必要になるのに加え、Flashイメージへッダの照合も全Secondary分処理するため、相当のCPUパワーが必要な見込み
- 今後は、頭脳ECUと手足ECUの再配置がより加速すると思われる。特に頭脳系 ECUの計算機アーキテクチャやOSの検討がより進む見込み。

• リファレンス情報として

- セキュリティや想定される異常系は、各々Threat modelとFailure modelという形になっているため、我々の要件定義やテストケース構築の有用な情報ソースとなりそう。
- Threat modelは時代の進展とともに刻々と変化する。Uptaneのようなオープンな場でアンテナを張ることは重要。

2) Cyber-security

Recent Security Trends

今回は北米セキュリティ標準化動向にフォーカス

Security Standardization in N.A.

What's SAE J3061

- This recommended practice establishes a set of high-level guiding principles for cybersecurity as it relates to automotive cyber-physical systems to be utilized in series production.
- Motivation
 - Cybersecurity was relatively new to automotive, and most existing information did not address unique aspects of embedded controllers
 - Cybersecurity principles, process and terminology are needed that can be commonly understood between OEMs, Tier 1 suppliers & key stakeholders
 - A defined and structured process helps ensure that cybersecurity is built into the design throughout product development
 - Based on ISO 26262 Functional Safety process framework

【事例】デンソーCACC (Cooperative Adaptive Cruise Control)

▶ Definition of security requirement from hazards

SHE: Secure Hardware Extension MAC: Message Authentication Code

Safety & Security両方の対策で車を守る

セキュリティ・アーキテクチャの考え方

▶ IT業界の一般的なセキュリティコンセプト「多層防御」を車に適用。

▶ 2020年目線の車を守るための、アーキテクチャを定義の上、必要となる対策技術を適用

Connected Vehicle PlatformのSecurity機能

考え方:膨大な車両情報を侵入検知へ活用する

- 侵入検知アルゴリズム
 - Signatureベース
 - Signatureベースは古くからある手法で、攻撃による<mark>異常パターン</mark>を予めプロファイルとして 定義しておいて、そのパターンにマッチしたかどうかを判定。
 - 利点:検知に計算機パワーがそれほど必要ない。
 - 欠点:パターンにマッチしない未知の攻撃には一切効果を発揮しない。

- Anomalyベース

- 正常パターンからの<mark>逸脱で異常を判断する</mark>技術で、予め学習期間を置いて通常動作の負荷状況やシグナルパターンを学習し、それを仮の正常パターンとする。正常パターンの特徴は時間とともに変化するため、継続的な学習が必要。
- 利点:未知の攻撃に対しても効果を発揮する。
- 欠点:正常と異常の閾値定義が難しいため、誤検出が多い。また、誤検出の原因が特定しづらい。

- Stateful Protocolベース

- セッションを監視し、それと状態モデルを照らし合わせることにより侵入を検知する技術。ただ、そもそもこの状態モデルの定義が難しく、例えば標準仕様をベースとしていても実装製品により取りうる状態が異なったり、車種ごとに微妙に差異がある。
- 利点:未知の攻撃に対しても効果を発揮する上、他2つよりも効果的に侵入を検知できる。
- 欠点:1つ1つのセッションに対して状態を管理する必要があるため、膨大な計算機パワーが必要。また、状態モデル定義がそもそも難しい。

今後10年を支える技術としての考察

• 北米Security標準化活動

- 標準化については、各社独自で対策を考えるのではなく、協調領域として、車両 全体の開発を通した技術、基準作りを進めている。特に北米で検討中のガイドラ インSAE J3061は、人命に関わるISO26262との一貫性も考慮しており注目である

プロセス面

- Safety & Securityプロセスで二重苦・三重苦にならない工夫が必要
- 車両全体は機能安全で定義されたシステムセーフティで守る。セキュリティ要因はリスクを踏まえたセーフティまたはセキュリティで対応する。
- 車は人命、プライバシ、財産と保護対象が多岐に渡るため、脅威とSecurity Controlとの適正バランス・相場作りが課題。今後はリスクマネージメントに関するOEMを跨いだ議論が加速する見込み。

技術面

Connected Vehicle Platformから収集される膨大な車両情報を侵入検知に利用する検討が盛んになりつつある。ただし、開発した手法の良し悪しを図る評価フレームの定義が手薄。

3) Connected Vehicle Platform

BMW Series7

Connected Vehicle Platformを取り巻く現状

出展:IEEE.org

AWS IoT Overview

Microsoft Azure IoT Reference Architecture

Microsoft殿が定義したIoT PFのリファレンスアーキテクチャ

Connected Vehicle Platform実現への技術要件

③機器認証含むセキュリティ (セキュリティに関しては説明済み)

④並列プログラミングモデルへの対応 (本日は対象外)

①Vehicle To Cloud通信におけるQoS制御

- 1)適切なプロトコルの見極め(リアルタイム性、優先度制御、消費電力)
- 2)通信が不安定な状態での、各制御系の自律制御

②車両からの大量センサ情報のリアルタイム処理

How does Spark execute a job

ビッグデータのリアルタイム処理には Slaveノードの規模特定がポイント

②車両からの大量センサ情報のリアルタイム処理

- サーバの仮想化事例。
- サーバ規模拡張はVM単位で追加していくので、コスト試算はVM単位となる。

関連する北米標準化動向

QNX Microsoft Android Linux Tizen ...and more

iOS Android Windows Phone Blackberry Bada ...and others

Version 1.0

Automotive Grade Linux Requirements Specification

May 28, 2015

全体まとめ

- IoT(Internet of Things)関連技術やビッグデータ分析基盤関連技術のブレークスルーが、車両制御や車両サービスに対して、イノベーションの波を起こしつつある
 - 「常時接続」「所有から利用へ」「自動化・知能化」「User Experience」がポイント
- 「ビッグデータ分析基盤を核としたクラウドからサービスの提供を受ける、ネットワークインフラに常時接続されたコネクテッド・カー」という構図は、ドライバ行動予測による燃費向上や、機械学習による自動運転支援といった新たなサービスを生み出しつつある
 - これら新たなサービスの受け皿としてのソフトウェアプラットフォームを総称して、 Connected Vehicle Platformと呼称
- 今後10年を支えるConnected Vehicle Platformの要件
 - Flexibility & Openness
 - OTA, 各種標準化活動(SDL, AGL等)によるエコシステムの構築
 - Security & Compliance
 - Cyber-security, SAE J3061
 - Global Scale & Reliability
 - AWSやAzure等のITインフラとの融合

おわりに ~日本の大学生・若手技術者への期待~

- SWESTで鍛えられたこと
 - SWESTに参加することで、様々なバックグランド・年齢層を持つ技術者との議論の中において、自分の考えを表明する・立ち位置を確認する
 - SWESTセッションを企画運営することで、参加者の発言を即したり、議論の流れを整理したり、参加者の合意形成をサポートしたりといった、ファシリテーション技術
 - SWEST実行委員会に参加することで、社外人脈を構築することができた
- 今後のキャリアパスを意識して取り組んでいただきたいこと
 - 英語力向上
 - まずは単語力、次はリエゾンと多読
 - 設計力・抽象化能力向上
 - [設計力]数多ある解決策の中かから最適解を探る
 - 技術的な最適解を選定する上で、実装力を失わない
 - ドキュメンテーション
 - [抽象化] 本質的な情報を引き出し、それ以外を捨てる判断力
 - 各種形式手法言語、LISP、Smalltalk、UMLメタモデルなど、いろいろな言語に触れるとよい