8. Matrizen: Inhalt

- Matrizen
- Lineare Gleichungssysteme
- Drehungen
- Diagonalisierung von Matrizen

Matrix

Definition

Eine **Matrix** *A* vom Typ $(m \times n)$ ist ein rechteckiges Schema von Zahlen a_{ii} mit m Zeilen und n Spalten.

Der erste Index kennzeichnet die Zeilen, der zweite die Spalten.

Zwei Matrizen sind gleich, wenn alle ihre Elemente übereinstimmen.

Addition zweier Matrizen A und B desselben Typs:

$$C = A + B \rightarrow c_{ij} = a_{ij} + b_{ij}$$
 (116)

Multiplikation mit einer Zahl λ :

$$\lambda A = (\lambda a_{ij}) \tag{117}$$

Matrixmultiplikation

Die Matrixmultiplikation ist nur definiert, wenn die Spaltenzahl der ersten Matrix gleich der Zeilenzahl der zweiten ist.

Sei A vom Typ $(m \times n)$ und B vom Typ $(n \times r)$, dann ist das Produkt C vom Typ $(m \times r)$:

$$C = AB \rightarrow c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$
 (118)

Jedes Element ist das Skalarprodukt eines Zeilenvektors mit einem Spaltenvektor.

Es gelten die üblichen Assoziativ- und Distributivgesetze.

Kommutator

Die Matrixmultiplikation ist im Allgemeinen nicht kommutativ.

Für nicht quadratische Matrizen ist das Produkt entweder in mindestens einer Richtung nicht definiert, oder die Produktmatrizen haben unterschiedlichen Typ.

Kommutator (nur für quadratische Matrizen)

$$[A,B] := AB - BA \tag{119}$$

A und B heißen vertauschbar, wenn AB = BA, d.h. [A, B] = 0.

Transponierte Matrix

Durch Vertauschen von Zeilen und Spalten erhält man die transponierte Matrix.

Transponierte Matrix

$$A = (a_{ij}) \rightarrow A^T := (a_{ji})$$
 (120)

A heißt symmetrisch, wenn $A^T = A$. Die Symmetrieachse ist die Diagonale der Matrix. Es gilt immer

$$(AB)^T = B^T A^T (121)$$

Man kann das Skalarprodukt zweier Vektoren schreiben als:

$$\vec{a} \cdot \vec{b} = \vec{a}^T \vec{b} \tag{122}$$

Vektoren werden normalerweise als Spaltenvektoren geschrieben. Zeilenvektoren sind transponierte Vektoren.

Determinante einer quadratischen Matrix

Explizite Definition

$$|A| = \det(A) := \sum_{p} (-1)^{p} a_{1j_{1}} a_{2j_{2}} \cdots a_{nj_{n}}$$
 (123)

Die Summe läuft über alle Permutationen der Indizes j_1, \ldots, j_n . Das Vorzeichen ist "+" für gerade Permutationen, "-" für ungerade.

Rekursive Definition

$$|A| = \sum_{j=1}^{n} (-1)^{i-j} a_{ij} |A_{ij}|$$
 (124)

 $|A_{ij}|$ ist die Determinante der Matrix, die man durch das Streichen der *i*-ten Zeile und der *j*-ten Spalte erhält. Die Zeile *i* kann beliebig gewählt werden.

Die Determinante einer (1×1) -Matrix ist das Matrixelement.

Beispiel: Determinante einer (2×2) -Matrix

Gegeben sei die quadratische (2 × 2)-Matrix $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

Explizite Definition:
$$|A| = \sum_{P} (-1)^{P} a_{1j_{1}} a_{2j_{2}}$$

 $= (-1)^{P} a_{11} a_{22} + (-1)^{P} a_{12} a_{21}.$
 $= a_{11} a_{22} - a_{12} a_{21}.$

Rekursive Definition mit
$$i = 1$$
: $|A| = \sum_{j=1}^{2} (-1)^{1-j} a_{1j} |A_{1j}|$
 $= (-1)^0 a_{11} |A_{11}| + (-1)^{-1} a_{12} |A_{12}|$
 $= a_{11} \cdot |a_{22}| - a_{12} \cdot |a_{21}|$
 $= a_{11} a_{22} - a_{12} a_{21}.$

Beispiel: Determinante einer (3×3) -Matrix

Gegeben sei die quadratische (3 × 3)-Matrix
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.

Mit Hilfe der rekursiven Definition mit i = 1 erhält man die Determinante wie folgt:

$$|A| = \sum_{j=1}^{3} (-1)^{1-j} a_{1j} |A_{1j}|$$

$$= (-1)^{0} a_{11} |A_{11}| + (-1)^{-1} a_{12} |A_{12}| + (-1)^{-2} a_{13} |A_{13}|$$

$$= a_{11} \cdot \left| \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} \right| - a_{12} \cdot \left| \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} \right| + a_{13} \cdot \left| \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} \right|$$

$$= a_{11} \cdot (a_{22} a_{33} - a_{23} a_{32}) - a_{12} \cdot (a_{21} a_{33} - a_{23} a_{31}) + a_{13} \cdot (a_{21} a_{32} - a_{23} a_{32})$$

$$= a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{23} a_{32}.$$

Das Verfahren kann mit beliebigen Zeilen oder Spalten angewendet werden.

Günstig sind Zeilen/Spalten mit vielen Nullen.

Beispiel: Berechnung der Determinante einer (4 × 4)-Matrix

$$|A| = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 0 & 1 \\ 2 & 3 & 1 & -2 \\ 1 & -1 & 4 & 3 \end{vmatrix}$$

$$= 1 \cdot \begin{vmatrix} 1 & 0 & 1 \\ 3 & 1 & -2 \\ -1 & 4 & 3 \end{vmatrix} - 2 \cdot \begin{vmatrix} 4 & 0 & 1 \\ 2 & 1 & -2 \\ 1 & 4 & 3 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 1 & 1 \\ 2 & 3 & -2 \\ 1 & -1 & 3 \end{vmatrix} - 4 \cdot \begin{vmatrix} 4 & 1 & 0 \\ 2 & 3 & 1 \\ 1 & -1 & 4 \end{vmatrix}$$

$$= 1 \left(1 \cdot \begin{vmatrix} 1 & -2 \\ 4 & 3 \end{vmatrix} + 1 \cdot \begin{vmatrix} 3 & 1 \\ -1 & 4 \end{vmatrix} \right) - 2 \left(4 \cdot \begin{vmatrix} 1 & -2 \\ 4 & 3 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 1 \\ 1 & 4 \end{vmatrix} \right)$$

$$+ 3 \left(4 \cdot \begin{vmatrix} 3 & -2 \\ -1 & 3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & -2 \\ 1 & 3 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} \right)$$

$$- 4 \left(4 \cdot \begin{vmatrix} 3 & 1 \\ -1 & 4 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 1 \\ 1 & 4 \end{vmatrix} \right)$$

$$= 1 \cdot (1 \cdot (1 \cdot 3 - (-2) \cdot 4) + 1 \cdot (3 \cdot 4 - 1 \cdot (-1))$$

$$- 2 \cdot (4 \cdot (1 \cdot 3 - (-2) \cdot 4) + (2 \cdot 4 - 1 \cdot 1))$$

$$+ 3 \cdot (4 \cdot (3 \cdot 3 - (-2) \cdot (-1)) - (2 \cdot 3 - (-2) \cdot 1) + (2 \cdot (-1) - 3 \cdot 1))$$

$$- 4 \cdot (4 \cdot (3 \cdot 4 - 1 \cdot (-1)) - (2 \cdot 4 - 1 \cdot 1))$$

$$= ((3 + 8) + (12 + 1)) - 2 \cdot (4 \cdot (3 + 8) + (8 - 1))$$

$$+ 3 \cdot (4 \cdot (9 - 2) - (6 + 2) + (-2 - 3)) - 4 \cdot (4 \cdot (12 + 1) - (8 - 1))$$

$$= (11 + 13) - 2 \cdot (44 + 7) + 3 \cdot (28 - 8 - 5) - 4 \cdot (52 - 7)$$

$$= 24 - 102 + 45 - 180$$

$$= -213. \qquad Uff!$$

124

Eigenschaften von Determinanten

- Multipliziert man eine Reihe oder eine Spalte mit einer Zahl λ , dann multipliziert sich die Determinante auch um λ .
- Die Determinante ist additiv f
 ür die Elemente einer Zeile oder Spalte.
- Oie Determinante wechselt das Vorzeichen unter Vertauschung zweier benachbarten Zeilen oder Spalten.
- Man kann die Determinante entlang jeder Zeile oder Spalte rekursiv berechnen.
- $|A^T| = |A|.$
- \odot Eine Determinante ändert sich nicht, wenn man die mit λ multiplizierten Elementen einer Zeile oder Spalte zu denen einer anderen Zeile oder Spalte addiert.
- Wenn eine Zeile oder Spalte eine lineare Kombination der anderen Zeilen oder Spalten ist, ist die Determinante Null.

Eigenschaften von Determinanten

Beispiele für die Eigenschaften von Determinanten im \mathbb{R}^3

Gegeben sei die quadratische (3 × 3)-Matrix
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.

$$\begin{vmatrix} A + \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix},$$

$$\begin{vmatrix} A + \begin{pmatrix} 0 & b_{12} & 0 \\ 0 & b_{22} & 0 \\ 0 & b_{23} & 0 \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} + b_{12} & a_{13} \\ a_{21} & a_{22} + b_{22} & a_{23} \\ a_{31} & a_{32} + b_{32} & a_{33} \end{vmatrix}, \text{ usw.}$$

Eigenschaften von Determinanten

- \bigcirc |A| nach 1. Zeile entwickelt = $|A|^T$ nach 1. Spalte entwickelt (Punkt 4).

$$\left| A + \lambda \, \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \right| \, = \, \left| \begin{array}{ccc} a_{11} + \lambda a_{11} & a_{12} + \lambda a_{12} & a_{13} + \lambda a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right| \, = \, |A|,$$

Für A mit der gleichen 2. und 3. Spalte ist die Determinante (s. Seite 122)

$$\begin{vmatrix} a_{11} & a_{12} & a_{12} \\ a_{21} & a_{22} & a_{22} \\ a_{31} & a_{32} & a_{32} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{22} \\ a_{32} & a_{32} \end{vmatrix} - a_{12} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{12} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$= a_{11} \cdot (a_{22} a_{32} - a_{22} a_{32}) + 0 = a_{11} \cdot 0 = 0.$$

Wegen Punkt 1 und 2 gilt dies ebenso für beliebige Linearkombinationen $a_{i3} = \alpha a_{i1} + \beta a_{i2}$ und für beliebige Zeilen/Spalten.

Inverse Matrix

Definition

Die **inverse Matrix** einer quadratischen Matrix A ist die Matrix A^{-1} mit

$$A^{-1} A = A A^{-1} = 1 (125)$$

Eine Matrix kann invertiert werden, wenn ihre Determinante \neq 0 ist. Die Elemente der inversen Matrix sind

$$(a^{-1})_{ij} = \frac{(-1)^{i-j} |A_{ji}|}{|A|}, (126)$$

wobei $|A_{ji}|$ wieder die Determinante der Untermatrix ist, die man durch Streichen der j-ten Zeile und i-ten Spalte erhält.

Achtung: Die Indizes von $(a^{-1})_{ij}$ und a_{ij} sind zueinander vertauscht!

Inverse Matrix

Beispiel: Bestimmung der inversen Matrix

Gegeben sei die
$$(3 \times 3)$$
-Matrix $\mathbf{A} = \begin{pmatrix} 3 & 4 & -5 \\ 1 & -2 & 1 \\ 2 & 1 & -1 \end{pmatrix}$.

Die Determinante ist (mit dem rekursiven Verfahren):

$$|A| = 3 \cdot [(-2) \cdot (-1) - 1 \cdot 1] - 4 \cdot [1 \cdot (-1) - 1 \cdot 2] + (-5) \cdot [1 \cdot 1 - (-2) \cdot 2]$$

= 3 \cdot 1 - 4 \cdot (-3) - 5 \cdot 5 = -10.

Damit erhält man für die inverse Matrix:

$$A^{-1} = -\frac{1}{10} \begin{pmatrix} (-1)^0 \begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix} & (-1)^{-1} \begin{vmatrix} 4 & -3 \\ 1 & -1 \end{vmatrix} & (-1)^{-2} \begin{vmatrix} 4 & -5 \\ -2 & 1 \end{vmatrix} \\ (-1)^1 \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} & (-1)^0 \begin{vmatrix} 3 & -5 \\ 2 & -1 \end{vmatrix} & (-1)^{-1} \begin{vmatrix} 3 & -5 \\ 1 & 1 \end{vmatrix} \\ (-1)^2 \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} & (-1)^1 \begin{vmatrix} 3 & 4 \\ 2 & 1 \end{vmatrix} & (-1)^0 \begin{vmatrix} 3 & 4 \\ 1 & -2 \end{vmatrix} \end{pmatrix}$$

Inverse Matrix

$$= -\frac{1}{10} \begin{pmatrix} (-2) \cdot (-1) - 1 \cdot 1 & -(1 \cdot (-1) - 1 \cdot 2) & 4 \cdot 1 - (-5) \cdot (-2) \\ -(1 \cdot (-1) - 1 \cdot 2) & 3 \cdot (-1) - (-5) \cdot 2 & -(3 \cdot 1 - (-5) \cdot 1) \\ 1 \cdot 1 - (-2) \cdot 2 & -(3 \cdot 1 - 4 \cdot 2) & 3 \cdot (-2) - 4 \cdot 1 \end{pmatrix}$$

$$= -\frac{1}{10} \begin{pmatrix} 1 & -1 & 6 \\ 3 & 7 & -8 \\ 5 & 5 & -10 \end{pmatrix}.$$

Überprüfung:
$$A^{-1}A = -\frac{1}{10} \begin{pmatrix} 1 & -1 & 6 \\ 3 & 7 & -8 \\ 5 & 5 & -10 \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 & -5 \\ 1 & -2 & 1 \\ 2 & 1 & -1 \end{pmatrix}$$

$$= -\frac{1}{10} \begin{pmatrix} 3 - 1 - 12 & 4 + 2 - 6 & -5 - 1 + 6 \\ 9 + 7 - 16 & 12 - 14 - 8 & -15 + 7 + 8 \\ 15 + 5 - 20 & 20 - 10 - 10 & -25 + 5 + 10 \end{pmatrix}$$

$$= -\frac{1}{10} \begin{pmatrix} -10 & 0 & 0 \\ 0 & -10 & 0 \\ 0 & 0 & -10 \end{pmatrix} = 1.$$