Erweiterung der Analysis

Ksenia Fedosova, Nadine Große WS 22/23

Übungsblatt 4

Aufgabe 10 (2.5+2.5). (Volumen von Rotationskörpern)

(i) Sei $f \colon [a,b] \to \mathbb{R}_{>0}$ eine stetige Funktion. Betrachten wir im \mathbb{R}^3 in der (x,z)-Ebene den Funktionsgraphen von x=f(z) und drehen diesen um die z-Achse. Dabei entsteht eine Rotationsfläche, vgl. Abbildung.

Diese schliesst zwischen den Ebenen z=a und z=b eine Menge $\Omega\subset\mathbb{R}^3$ ein. Geben Sie Ω in der Form $\{(x,y,z)\in\mathbb{R}^3\mid\ldots\}$ an und zeigen Sie, dass

$$\operatorname{vol}\Omega = \int_{a}^{b} \pi f(z)^{2} dz$$

ist.

Aufgabe 11. Sei $Q \subset \mathbb{R}^n$ ein Quader, $f: Q \to \mathbb{R}$ beschränkt und integrierbar und $g: Q \to \mathbb{R}$ stetig. Zeigen Sie, dass dann auch $fg: Q \to \mathbb{R}$ integrierbar ist.

Hinweis: Schätzen Sie $S^k(fg) - S_k(fg)$ ab unter Verwendung, dass g automatisch gleichmäßig stetig sein muss, da Q kompakt ist.

Aufgabe 12 (2.5+2.5).

- (i) $\Omega \subset \mathbb{R}^3$ ist das Innere, was durch die Menge $\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{b^2} = 1$ beschränkt wird. Skizzieren Sie Ω und berechnen Sie das Volumen von Ω .
- (ii) Berechnen Sie $\int_{\Omega} z$ dvol für $\Omega = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1, z \ge 0\}.$

Lorenz Burg Lea Weissenrieder

(i) Sei $f:[a,b]\to\mathbb{R}_{>0}$ eine stetige Funktion. Betrachten wir im \mathbb{R}^3 in der (x,z)-Ebene den Funktionsgraphen von x=f(z) und drehen diesen um die z-Achse. Dabei entsteht eine Rotationsfläche, vgl. Abbildung.

Diese schliesst zwischen den Ebenen z=a und z=b eine Menge $\Omega\subset\mathbb{R}^3$ ein. Geben Sie Ω in der Form $\{(x,y,z)\in\mathbb{R}^3\mid\ldots\}$ an und zeigen Sie, dass

$$\operatorname{vol}\Omega = \int_{a}^{b} \pi f(z)^{2} dz$$

ist.

Blw: 1)
$$\Omega = \left\{ (x,y,z) \in \mathbb{R}^3 \middle| a \leq z \leq b \wedge x^2 + y^2 \leq f(z)^2 \right\}$$

Jede Scheibe hat den Radius f(z) und somit die Grundfläche Tr.f(z)2.

=> das Volumen der i-ten Scheibe ist gegeben durch

$$V_{i} = \frac{b-a}{k} \cdot \pi \cdot f(z_{i})^{2}$$

$$\Rightarrow \text{vol } \Omega = \sum_{i=1}^{k} V_{i} = \sum_{k=1}^{k} \frac{b-a}{k} \cdot \pi f(z_{i})^{2} = \frac{b-a}{k} \sum_{i=1}^{k} \pi f(z_{i})^{2}$$

geht $k\to\infty$ wird die Unterteilung immer feiner und wir erhalten das Integral vol $\Omega=\int_{a}^{b} \pi \cdot f(z)^2 dz$

a

Bew:

Sei der Mittelpunkt der Kugel an der Stelle Z=m

Die Funktion f ist gegeben durch
$$f(z) = \sqrt{r^2 - (z-m)^2}$$

i) Vol
$$K = \int_{m-r}^{m+r} \pi \left(\sqrt{r^2 - (z-m)^2} \right)^2 dz = \pi \int_{m-r}^{m+r} r^2 - (z-m)^2 dz = \pi \left[r^2 z - \frac{1}{3} (z-m)^3 \right]_{m-r}^{m+r}$$

$$= \pi \left(\left((m+r)r^2 - \frac{1}{3} (m+r-m)^3 \right) - \left((m-r)r^2 - \frac{1}{3} (m-r-m)^3 \right) \right)$$

$$= \pi \left(mr^2 + r^3 - \frac{1}{3}r^3 - mr^2 + r^3 - \frac{1}{3}r^3 \right) = \pi \left(2r^3 - \frac{2}{3}r^3 \right) = \pi \cdot \frac{4}{3}r^3$$

100

Lea Weissenrieder

(i) $\Omega \subset \mathbb{R}^3$ ist das Innere, was durch die Menge $\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{b^2} = 1$ beschränkt wird. Skizzieren Sie Ω und berechnen Sie das Volumen von Ω .

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{a^{2}} + \frac{z^{2}}{b^{2}} = 1 = \frac{x^{2} L y^{2}}{a^{2}} = 1 - \frac{z^{2}}{b^{2}}$$

$$\int_{\Delta} dv_{0} | = \int_{\Delta} v_{0} | u_{0} | dv_{0} |$$

(ii) Berechnen Sie $\int_{\Omega}z\mathrm{d}\mathrm{vol}$ für $\Omega=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2\leq 1, z\geq 0\}.$

Bew:

a list die obese Hälfte der Einheitskugel

$$\Rightarrow \times \int_{\Omega} z \, dvol = \int_{\Omega} z \, vol_2 \, \Omega_2 \, dz = \int_{\Omega} z \, \left(\pi \cdot f(z)^2 \right) \, dz$$

$$= \int_{\Omega} \pi \cdot \left(A - \pi^2 \right) \, dz - \pi \cdot \left(A - \pi^3 \right) \, dz$$

Es ist $\Omega_z = \Omega \cap \frac{3}{2}$ and $f(z) = x = \sqrt{1 - z^2}$

$$= \int_{0}^{1} z \cdot \pi \cdot (1 - z^{2}) dz = \pi \int_{0}^{1} z - z^{3} dz$$

$$= \pi \left[\frac{1}{2} z^{2} - \frac{1}{4} z^{4} \right]_{0}^{1} = \pi \left(\frac{1}{2} - \frac{1}{4} \right) = \frac{1}{4} \pi$$

Aufgabe 11. Sei $Q \subset \mathbb{R}^n$ ein Quader, $f \colon Q \to \mathbb{R}$ beschränkt und integrierbar und $g \colon Q \to \mathbb{R}$ stetig. Zeigen Sie, dass dann auch $fg \colon Q \to \mathbb{R}$ integrierbar ist.

Hinweis: Schätzen Sie $S^k(fg) - S_k(fg)$ ab unter Verwendung, dass g automatisch gleichmäßig stetig sein muss, da Q kompakt ist.

Lorenz Bung Lea Weissenrieder

Bew: Stetige Funktionen sind integrierbar => 9 ist integrierbar.

Betrache
$$S^{k}(f_{Q}) = \frac{\text{vol }Q}{k^{n}} \sum_{\substack{i_{1},...,i_{n}=A \\ k = 0}}^{k} \sup_{\substack{i_{1},...,i_{n}=A \\ k = 0}}^{k} \sup_{$$

$$= 7$$
 $S^{k}(f \cdot g) \leq S^{k}(f) \cdot S^{k}(g)$

analog git
$$S_k(fg) \geqslant S_k(f) \cdot S_k(g)$$

Wenn
$$f \cdot g$$
 int. bar ist muss getten $S^k(fg) - S_k(fg) \xrightarrow{k \to \infty} 0$.

Wir schätzen ab:

$$S^{k}(fg) - S_{k}(fg) \leq S^{k}(f) \cdot S^{k}(g) - S_{k}(fg) \leq S^{k}(f) \cdot S^{k}(g) - S_{k}(f) \cdot S_{k}(g)$$

$$= S^{k}(f) S^{k}(g) - S^{k}(f) S_{k}(g) + S^{k}(f) S_{k}(g) - S_{k}(f) S_{k}(g)$$

$$= S^{k}(f) \left(\underbrace{S^{k}(g) - S_{k}(g)}_{k \to \infty} \right) + S_{k}(g) \left(\underbrace{S^{k}(f) - S_{k}(f)}_{k \to \infty} \right)$$

$$da g int bar$$

da f beschränkt, ist $S^{k}(f)$ endlich, somit $S^{k}(f) \left(\underbrace{S^{k}(g) - S_{k}(g)} \right) \xrightarrow{k \to \infty} 0$

Bleibt also
$$\Xi$$
, dass $S_k(g)$ $\left(S^k(f) - S_k(f)\right) \xrightarrow{k \to \infty} 0$...
 (dafür müsste auch $S_k(g)$ endlich sein ...)