Terrain Visualization

Mike Bailey

mjb@cs.oregonstate.edu

Oregon State University

Reminder: Color Scale Transfer Functions

The biggest rule here is to design something that is *intuitive*. The "snapshot rule" definitely applies!

Sometimes elevation is represented by a color transfer function, like one of these. Sometimes elevation is represented by the color of what exists at that elevation (sand, dirt, grass, trees, snow, etc.) Remember Tufte's *Do No Harm* admonition.

A Possible Color Scale Transfer Function for Oregon

Height Exaggeration

Most terrain visualization applications require height exaggeration to see any elevation changes. Why? Consider Oregon for example. Oregon is about 360 x 260 miles horizontally, and has an elevation range of about 2.5 miles vertically. This makes the elevation range less than 1% of the horizontal dimensions – hardly noticeable. However, be careful of going overboard.

Height Exaggeration = 1.0

Height Exaggeration = 3.0

Height Exaggeration = 2.0

Height Exaggeration = 10.0

Different Contour Lines

 $S^* = 0$ miles $S^* = 0.17$ miles

S* = 2.00 milesmjb -- February 7, 2011

Multiple Contour Lines

Lighting

To do effective lighting of terrain surfaces, you need a surface normal for each triangle. You can get this with the cross product and unitizing:

$$\hat{n} = \frac{AB \times AC}{\|AB \times AC\|}$$

Oregon State University Computer Graphics

You can use this unitized normal directly in the OpenGL glNormal3f() call to do dynamic OpenGL lighting.

You can also do pseudo-lighting, where you assume that the sun is in a fixed direction from the scene. The diffuse portion of the lighting model is then:

$$I_d = \hat{n} \cdot \hat{L}$$

If you assume that the sun is directly overhead, then this reduces to just the vertical component of the unit surface normal.

Lighting Height Exaggeration

At times it is helpful to exaggerate the height for the lighting computations, but not for the height display.

Lighting Height Exaggeration = 1.0

Oreg Lighting Height Exaggeration = 10.0

Lighting Height Exaggeration = 5.0

Lighting Height Exaggeration = 20.0

Computing (s,t) Texture Coordinates

 $x=x_{min}$

s = 1.0

y=y_{min}

$$\frac{s-0.}{1.-0.} = \frac{x - x_{\min}}{x_{\max} - x_{\min}} \qquad \frac{t-0.}{1.-0.} = \frac{y - y_{\min}}{y_{\max} - y_{\min}}$$

$$\frac{t - 0.}{1. - 0.} = \frac{y - y_{\min}}{y_{\max} - y_{\min}}$$

$$s = \frac{x - x_{\min}}{x_{\max} - x_{\min}} \qquad t = \frac{y - y_{\min}}{y_{\max} - y_{\min}}$$

$$t = \frac{y - y_{\min}}{y_{\max} - y_{\min}}$$

Computing (s,t) Texture Coordinates: What if the Texture doesn't occupy the entire Image?

s = 1.0

y=y_{min}

$$\frac{s-0.}{1.-0.} = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

$$\frac{s - 0.}{1. - 0.} = \frac{x - x_{\min}}{x_{\max} - x_{\min}} \qquad \frac{t - 0.}{t_{\max} - 0.} = \frac{y - y_{\min}}{y_{\max} - y_{\min}}$$

$$s = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

$$s = \frac{x - x_{\min}}{x_{\max} - x_{\min}} \qquad t = \frac{t_{\max}(y - y_{\min})}{y_{\max} - y_{\min}}$$

s = 0.0

OpenGL Texture Environments

USGS National Elevation Database Program

Continental US Data available free at 10m resolution.

Terrain Height Bump-mapping: Exaggerating the Height

No Exaggeration

Oregon State University Computer Graphics

Terrain Height Bump-mapping: Coloring by Height

Terrain Height Bump-mapping: Coloring by Height

No Exaggeration

Terrain Height Bump-mapping: Zooming In

Terrain Height Bump-mapping: Zooming In

Mercator

Transverse Mercator

http://egsc.usgs.gov/isb/pubs/MapProjections/projections.html

Miller Cylindrical

Robinson

Sinusoidal Equal Area

Orthographic

http://egsc.usgs.gov/isb/pubs/MapProjections/projections.html

Gnomonic

Albers Equal Area Conic

