

Cálculo I - REAVALIAÇÃO 13/12/2023 (7:00 - 8:40)

Nome:
Todas as questões devem ser justificadas através de cálculos e/ou argumentação.
Utilize resultados estudados na disciplina em todas as questões. BOA PROVA!!!
Questão 01 (5,0): Uma população de insetos desenvolve-se segundo o modelo dado pela função
$P(t) = P_0 \cdot e^{0.05t}$ onde a variável t indica o tempo dado em dias.
a) Calcule a população inicial, sabendo que após dois meses a população é de, aproximadamente, 200000 indivíduos.
b) Escreva uma expressão que forneça o tempo t necessário para que a população atinja certa
quantidade N de indivíduos.

definida em (-∞,+∞), são feitas algumas afirmações. Classifique cada uma delas como VERDADEIRA ou FALSA. a) Não existem valores de α e b para os quais (1,3) seja um ponto de inflexão do gráfico de f. b) O gráfico de f tem pelo menos uma assíntota vertical. c) O gráfico de f tem pelo menos uma assíntota horizontal.	Questão 02 (6,0): Uma Sejam a e b constantes reais não nulas. Sobre a função $f(x) = ax^3 + bx^2$,
 a) Não existem valores de a e b para os quais (1,3) seja um ponto de inflexão do gráfico de f. b) O gráfico de f tem pelo menos uma assíntota vertical. 	definida em $(-\infty, +\infty)$, são feitas algumas afirmações. Classifique cada uma delas como
b) O gráfico de f tem pelo menos uma assíntota vertical.	VERDADEIRA ou FALSA.
b) O gráfico de f tem pelo menos uma assíntota vertical.	a) Não existem valores de a e b para os quais (1.3) seia um ponto de inflexão do gráfico de f .
c) O granco de y tem pelo menos uma assimilota nonzontal.	
	c) O granco de f tem pelo menos uma assintota nonzontar.

Questão 03 (5,0): Determine a que é paralela à reta de equa angular e (ii) ponto de tangêno	ação $y = 12x + 3$. Le		

Questão 04 (5,0): Suponha que um balão esteja sendo inflado, produzindo uma esfera perfeita cuja					
área de superfície é dada por $S=4\pi r^2$. Calcule a taxa com que a área da superfície desse balão está					
variando em relação ao raio, quando $r=3\ cm$					
Questão 05 (4,0): Se $f(x) = lnx$ e $g(x) = e^x$, calcule a derivada da função composta $f(g(2x))$.					