A Book of Abstract Algebra: Solutions to Chapter 5

Tushar Tyagi

May 23, 2016

Notes

A subgroup S is called a subgroup of a group G, if:

- 1. It is closed on the given operation, i.e. the operation (\cdot) of two elements produces an element $\in S$.
- 2. It is closed under inverse, i.e. the inverse of each element of S is in S.

Also, each subgroup is a group as well, and therefore follows the three group laws:

- 1. Associativity
- 2. Identity
- 3. Inverse

The *identity*, e of the group is shared by the subgroup.

Trivial & Proper Subgroups

- 1. The one-element subset $\{e\}$ and the entire group G are the smallest and the largest subgroups of G and are called *trivial subgroups*.
- 2. All the other subgroups of G are called *proper subgroups*.

Cyclic Groups and Subgroups

If a group (or a subgroup) is generated by a single element, we call that group Cyclic and it is written as $\langle a \rangle$, where a is called the *generator* and is the single element which, along with the identity and a^{-1} , can define the entire group.

Defining Equations

A set of equations, involving only the generators and their inverses, is called a set of *defining equations*. These equations can completely define the operation table of the group.

Solutions

Set A

1.
$$G = \langle R, + \rangle, H = \{loga : a \in \mathbb{Q}, a > 0\}$$

• Addition:

Let
$$a, b \in \mathbb{Q}$$

 $\log a + \log b = \log ab$
 $\therefore a, b \in \mathbb{Q},$
 $\therefore ab \in \mathbb{Q}, ab > 0,$
 $\Rightarrow \log ab \in H$

• Identity:

The identity element would not change the value of $log\ a$ under addition. $log\ 1$ or 0 is the identity element, since:

If
$$log \ a + log \ b = log \ a$$
, then $log \ b = 0$, and $b = 1$.

• Inverse:

$$\log a + \log a^{-1} = e$$

$$\Rightarrow \log a \qquad = -\log a^{-1}$$

$$\Rightarrow \log a \qquad = \log(\frac{1}{a^{-1}})$$

$$\Rightarrow a \qquad = \frac{1}{a^{-1}}$$

Since $a \in \mathbb{Q}$, $\frac{1}{a^{-1}} \in \mathbb{Q}$, $\therefore log \ a^{-1} \in H$