

Projeto SE-2024.2

Equipe:

- Matheus Carneiro da Cunha
- Heitor Brunini
- Rafael Berg

Documentação

Estruturas Utilizadas:

- IMUData: Armazena os dados de aceleração e giroscópio obtidos do sensor.
- Quaternion: Representa os dados do quaternion calculados com base nos dados do sensor.
- EulerAngle: Contém os ângulos de Euler (roll, pitch e yaw) calculados a partir do quaternion.

imu_tools.h

Definições Iniciais

- MPU6050_ADDR: Define o endereço I2C padrão do sensor MPU6050.
- SDA_PIN e SCL_PIN: Definem os pinos GPIO usados para os sinais de dados (SDA) e clock (SCL) no barramento I2C.

Funções

imu_read_data Lê os dados do acelerômetro e giroscópio do sensor IMU, inicializando a comunicação I2C e coletando as informações necessárias.

Parâmetros:

 IMUData *data: Estrutura onde os dados lidos (aceleração e giroscópio) serão armazenados.

- Inicializa o sensor IMU com o endereço especificado (imu init).
- Lê os dados de aceleração (imu_get_acceleration_data) e giroscopio (imu_get_gyroscope_data).
- Armazena os dados nas estruturas correspondentes (data->gyro e data->accel).
- Finaliza a comunicação com o sensor (imu_deinit).

Retorno:

- ESP OK em caso de sucesso.
- ESP FAIL se algum passo falhar.

imu_calculate_quaternion Calcula o quaternion que representa a orientação do sensor a partir dos dados de aceleração e giroscópio.

Parâmetros:

- const IMUData *data: Estrutura contendo os dados do IMU.
- Quaternion *quaternion: Estrutura onde o quaternion resultante será armazenado.
- Normalização do vetor de aceleração:

Calcula a magnitude do vetor e divide cada componente (x, y, z) por essa magnitude. Isso garante que o vetor esteja no intervalo [0, 1].

- Conversão de dados do giroscópio:
 - Converte os valores do giroscópio de radianos/s para graus/s.
- Cálculo dos ângulos de orientação: Calcula o pitch (elevação), roll (inclinação) e yaw (giro).
- Cálculo do quaternion:

Usa as fórmulas baseadas em seno e cosseno para combinar os ângulos e gerar o quaternion.

Retorno:

- ESP OK em caso de sucesso.
- ESP_FAIL se algum parâmetro for inválido ou ocorrer um erro nos cálculos.

imu_calculate_euler_angles Converte um quaternion em ângulos de Euler (roll, pitch, yaw), que são mais intuitivos para descrever a orientação de um objeto.

Parâmetros:

- const Quaternion *quaternion: Estrutura contendo o quaternion a ser convertido.
- EulerAngle *euler: Estrutura onde os ângulos de Euler resultantes serão armazenados.
- Cálculo do roll (rotação ao longo do eixo X): Usa as componentes w, x, y, e z do quaternion.
- Cálculo do pitch (rotação ao longo do eixo Y): Calcula o arco seno do valor apropriado, garantindo que esteja no intervalo [-90°, 90°].

 Cálculo do yaw (rotação ao longo do eixo Z): Usa o arco tangente para calcular o ângulo de giro.

• Retorno:

- ESP OK em caso de sucesso.
- ESP_FAIL se algum parâmetro for inválido.

sensor imu.h

Funções

imu_init Inicializa o sensor MPU6050 configurando o driver I2C e verificando se o dispositivo está acessível.

Parâmetros:

- devAddr: Endereço I2C do dispositivo (normalmente 0x68 para o MPU6050).
- sda_pin: GPIO usado como linha de dados SDA.
- scl pin: GPIO usado como linha de clock SCL.

Funcionamento:

- Configura o driver I2C no modo mestre com as definições de pinos e clock.
- Envia comandos I2C para verificar o registro WHO_AM_I no dispositivo para confirmar se o MPU6050 está conectado.
- Retorna ESP_OK se o sensor for encontrado e configurado com sucesso, ou ESP ERR NOT FOUND em caso de falha.

imu get acceleration data Lê os dados de aceleração do sensor.

Parâmetros:

• data: Estrutura onde os valores de aceleração (x, y, z) serão armazenados.

Funcionamento:

- Lê 6 bytes a partir do registro ACCEL_XOUT_H (dados brutos de aceleração para os eixos X, Y e Z).
- Converte os valores brutos para a unidade padrão de aceleração (m/s²) e posteriormente para gravidade (g).
- Retorna ESP OK em caso de sucesso ou ESP FAIL se houver algum erro.

imu get gyroscope data Lê os dados do giroscópio do sensor.

Parâmetros:

• data: Estrutura onde os valores do giroscópio (x, y, z) serão armazenados.

Funcionamento:

- Lê 6 bytes a partir do registro GYRO_XOUT_H (dados brutos do giroscópio para os eixos X, Y e Z).
- Converte os valores brutos para radianos por segundo (rad/s) e, posteriormente, para graus por segundo (°/s).
- Aplica divisões extras para ajustar a escala dos valores.
- Retorna ESP OK em caso de sucesso ou ESP FAIL em caso de erro.

imu_deinit Desinicializa o driver I2C, liberando os recursos alocados.

Funcionamento:

- Desinstala o driver I2C usando a função i2c driver delete.
- Retorna ESP_OK se a operação for bem-sucedida ou ESP_FAIL em caso de falha.

Estrutura de pastas:

Diagrama de Blocos do Protótipo do Hardware

Esquemático Elétrico do Hardware

Arquitetura

Diagrama de estados

