Algoritmos y Estructuras de Datos II

Práctica 2 – Demostración de propiedades

Notas preliminares

- En las demostraciones por inducción estructural, justifique **todos** los pasos: por qué axioma, por qué lema, por qué puede aplicarse la hipótesis inductiva, etc. Es importante escribir el **esquema de inducción**, planteando claramente el caso base (o los casos base) y el paso inductivo, e identificando la hipótesis inductiva y la tesis inductiva.
- El alcance de todos los cuantificadores que se utilicen debe estar claramente definido (no omitir paréntesis).
- Demuestre todas las propiedades auxiliares (lemas) que utilice.
- Los ejercicios marcados con el símbolo ★ constituyen un subconjunto mínimo de ejercitación.
 Sin embargo, aconsejamos fuertemente hacer todos los ejercicios.

Resolver los ejercicios de esta práctica considerando las siguientes definiciones:

```
\operatorname{Long} \; : \; \operatorname{secu}(\alpha) \; \; \longrightarrow \; \operatorname{nat}
                                                             \equiv 0
               Long(<>)
     l_1)
                                                             \equiv \operatorname{Long}(s) + 1
     l_2)
               Long(a \bullet s)
Duplicar : secu(\alpha) \longrightarrow secu(\alpha)
               Duplicar(<>)
     d_1
                                                             ≡ <>
     d_2
               Duplicar(a \bullet s)
                                                             \equiv a • a • Duplicar(s)
\bullet \circ \bullet : \sec(\alpha) \times \alpha \longrightarrow \sec(\alpha)
     \circ_1)
               <> \circ b

    b • <>

               (a \bullet s) \circ b
                                                             \equiv \mathbf{a} \bullet (s \circ b)
     \circ_2)
\bullet \ \& \ \bullet \ : \ \operatorname{secu}(\alpha) \times \operatorname{secu}(\alpha) \ \longrightarrow \ \operatorname{secu}(\alpha)
              <> \& t
     \&_1)
                                                             \equiv \mathbf{a} \bullet (s \& t)
     \&_2)
               (a \bullet s) \& t
Reverso : secu(\alpha) \longrightarrow secu(\alpha)
     r_1
               Reverso(<>)
                                                             ≡ <>
               Reverso(a • s)
                                                            \equiv \text{Reverso}(s) \circ a
     r_2)
\bullet \, [\, \bullet \, ] \; : \; \mathrm{secu}(\alpha) \; s \, \times \, \mathrm{nat} \; i \; \longrightarrow \; \alpha
                                                                                                                                              \{1 \le i \le \text{Longitud}(s)\}
                                                             \equiv if i=1 then a else s[i-1] fi
               (a \bullet s)[i]
Tomar : secu(\alpha) \times nat \longrightarrow secu(\alpha)
     t_1
               Tomar(<>, n)
                                                             ≡ <>
               Tomar(a \bullet s, n)
                                                             \equiv if n=0 then \ll else a \bullet Tomar(s, n-1) fi
     t_2
\operatorname{Sacar} : \operatorname{secu}(\alpha) \times \operatorname{nat} \longrightarrow \operatorname{secu}(\alpha)
               Sacar(<>, n)
     s_1)
                                                            ≡ <>
                                                            \equiv if n=0 then a • s else Sacar(s, n-1) fi
               Sacar(a \bullet s, n)
     s_2
Está<br/>Ordenada? : secu(\alpha) \longrightarrow bool
     E_1)
               EstáOrdenada?(<>)
                                                            \equiv true
     E_2
               EstáOrdenada?(a • s)
                                                      \equiv (a \leq s) \land \text{EstáOrdenada}(s)
InsertarOrdenado : \alpha \times \text{secu}(\alpha) \longrightarrow \text{secu}(\alpha)
                                                                                                  \{\alpha \text{ tiene orden total a través de la operación } \leq_{\alpha}\}
     O_1) InsertarOrdenado(e, <>) \equiv e \cdot <>
```

```
InsertarOrdenado(e, a \bullet s) \equiv \mathbf{if} \ e \leq_{\alpha} a \ \mathbf{then} \ e \bullet a \bullet s \ \mathbf{else} \ a \bullet \mathbf{InsertarOrdenado}(e, s) \ \mathbf{fi}
\bullet \leq \bullet : \alpha \times \operatorname{secu}(\alpha) \longrightarrow \operatorname{bool}
                                                                                                \{\alpha \text{ tiene orden total a través de la operación } \leq_{\alpha}\}
     \leq_1) b \leq <>
                                                           \equiv true
     \leq_2) b \leq a \bullet s
                                                           \equiv b \leq_{\alpha} a \land b \leq s
\bullet < \bullet : \alpha \times \operatorname{secu}(\alpha) \longrightarrow \operatorname{bool}
                                                                                                \{\alpha \text{ tiene orden total a través de la operación } <_{\alpha}\}
                                                           \equiv true
     <_1) b < <>
                                                           \equiv b <_{\alpha} a \land b < s
     \langle 2 \rangle b \langle a \bullet s \rangle
\bullet \leq \bullet : \sec(\alpha) \times \sec(\alpha) \longrightarrow bool
                                                                                                  \{\alpha \text{ tiene orden total a través de la operación } <_{\alpha}\}
                                                                                                  y tiene igualdad a través de la operación =_{\alpha}
     \leq s_1) <> \leq t
                                                           \equiv true
                                                           \equiv \neg \operatorname{vacia}(t) \land (a <_{\alpha} \operatorname{prim}(t) \lor (a =_{\alpha} \operatorname{prim}(t) \land s \leq \operatorname{fin}(t)))
     \leq s_2) a \bullet s \leq t
h : ab(\alpha) \longrightarrow nat
     h_1) h(nil)
             h(bin(i, e, d))
                                                           \equiv \max(h(i), h(d)) + 1
     h_2
\# Nodos : ab(\alpha) \longrightarrow nat
                                                           \equiv 0
     \#n_1) \#Nodos(nil)
     \#n_2) \#Nodos(bin(i, e, d))
                                                           \equiv \# \text{Nodos}(i) + \# \text{Nodos}(d) + 1
\# \operatorname{Hojas} : \operatorname{ab}(\alpha) \longrightarrow \operatorname{nat}
     \#h_1) \#Hojas(nil)
                                                           \equiv 0
     \#h_2) \#Hojas(bin(i, e, d))
                                                           \equiv if nil?(i) \wedge nil?(d) then 1 else \#\text{Hojas}(i) + \#\text{Hojas}(d) fi
\# Internos : ab(\alpha) \longrightarrow nat
     \#i_1) \#Internos(nil)
                                                           \equiv 0
     \#i_2) \#Internos(bin(i, e, d))
                                                           \equiv if nil?(i) \wedge nil?(d) then
                                                                else
                                                                      \#Internos(i) + \#Internos(d) + 1
def? : clave \times dicc(clave, sign) \longrightarrow bool
     def_1) def?(c, vacio)
                                                         \equiv false
                                                           \equiv (c =_{\text{clave}} k) \vee \text{def}?(c, d)
     def_2) def?(c, definir(k, s, d))
borrar : dicc(clave, sign) d \times clave c \longrightarrow dicc(clave, sign)
                                                                                                                                                            \{\operatorname{def}?(d,c)\}
              borrar(k, definir(c, s, d))
                                                           \equiv if c =_{\text{clave}} k then
     b_1)
                                                                      if def?(k,d) then borrar(k,d) else d fi
                                                                      definir(c, s, borrar(k, d))
                                                                fi
```

Ejercicio 1

Demuestre que " $(\forall s : secu(\alpha))$ (Long(Duplicar(s)) $\equiv 2 * Long(s)$)".

Eiercicio 2

Demuestre que " $(\forall s : secu(\alpha))$ (Long(Reverso(s)) \equiv Long(s))".

Ejercicio 3

Demuestre que " $(\forall s, t : secu(\alpha))$ (Long $(s \& t) \equiv Long(s) + Long(t)$)".

Ejercicio 4 ★

Demuestre que " $(\forall s, t : \text{secu}(\alpha))$ (Reverso $(s \& t) \equiv \text{Reverso}(t) \& \text{Reverso}(s)$)".

Ejercicio 5 ★

Demuestre que " $(\forall r, s, t : \text{secu}(\alpha))$ $((s \le t \equiv \text{true}) \Rightarrow (((r \& s) \le (r \& t)) \equiv \text{true}))$ ".

Puede utilizar, sin necesidad de demostrar, la siguiente propiedad

```
"(\forall s, t : \text{secu}(\alpha)) \ (s \le t \equiv \text{true} \Rightarrow (\forall a : \alpha) \ (a \bullet s \le a \bullet t \equiv \text{true})".
```

Ejercicio 6 ★

```
Demuestre que "(\forall s, t : \sec(\alpha)) (\forall i : \text{nat}) ((1 \le i \le \text{Long}(s) + \text{Long}(t) \equiv \text{true}) \Rightarrow ((s \& t)[i] \equiv \text{if } (1 \le i \le \text{Long}(s)) \text{ then } s[i] \text{ else } t[i - \text{Long}(s)] \text{ fi}))".
```

Ejercicio 7 ★

```
Demuestre que "(\forall s : \text{secu}(\alpha)) \ (\forall i : \text{nat}) 
 ((1 \le i \le \text{Long}(s) \equiv \text{true}) \Rightarrow (\text{Reverso}(s)[i] \equiv s[\text{Long}(s) - i + 1]))".
```

Ejercicio 8 ★

Demuestre que " $(\forall s : \text{secu}(\alpha))$ $(\forall n : \text{nat})$ $(\text{Tomar}(s, n) \& \text{Sacar}(s, n) \equiv s)$ " de dos maneras. La primera por inducción en s y la segunda por inducción en n.

Ejercicio 9 ★

Demuestre que InsertarOrdenado es correcto con respecto a EstáOrdenada?, es decir, que " $(\forall s : \text{secu}(\alpha))$ $(\forall c : \alpha)$ ((EstáOrdenada?(s) $\equiv \text{true}$) \Rightarrow (EstáOrdenada?(InsertarOrdenado(c, s)) $\equiv \text{true}$)".

Ayuda: Demuestre primero las siguientes propiedades:

- 1. " $(\forall s : \text{secu}(\alpha)) \ (\forall a, b : \alpha) \ ((a \leq_{\alpha} b \land b \leq s) \equiv \text{true} \Rightarrow (a \leq s) \equiv \text{true})$ ".
- 2. " $(\forall s : \text{secu}(\alpha)) \ (\forall a, b : \alpha)$ (EstáOrdenada? $(s) \equiv \text{true} \Rightarrow (a \leq \text{InsertarOrdenado}(b, s) \equiv (a \leq_{\alpha} b) \land (a \leq s))$)".

Ejercicio 10 ★

Demuestre que " $(\forall a : ab(nat))$ (#Nodos $(a) \le 2^{h(a)} - 1 \equiv true$)".

Ayuda: Puede asumir la propiedad " $(\forall x, y : \text{nat})$ $(2^x + 2^y < 2^{\max(x,y)+1} \equiv \text{true})$ " sin necesidad de probarla.

Ejercicio 11 ★

Demuestre que " $(\forall a : ab(\alpha))$ (#Hojas $(a) \le \#Internos(a) + 1 \equiv true$)".

Ejercicio 12 ★

Demuestre que

```
"(\forall a: ab(\alpha)) (Inorder(a) \equiv Reverso(Inorder(Espejo(a))))",
```

donde

Inorder: $ab(\alpha) \longrightarrow secu(\alpha)$

 i_1) Inorder(nil) $\equiv <>$

 i_2) Inorder(bin(i, e, d)) \equiv Inorder(i) & e • Inorder(d)

Espejo : $ab(\alpha) \longrightarrow ab(\alpha)$

 e_1) Espejo(nil) \equiv nil

 e_2) Espejo(bin(i, e, d)) \equiv bin(Espejo(d), e,Espejo(i))

Ejercicio 13

Dada la siguiente especificación de relaciones binarias entre naturales, demuestre que " $(\forall R : \text{relbin}) \ (\forall x, y : \text{nat}) \ (\text{rel}?(x, R, y) \equiv y \in \text{relacionadosXDer}(x, R))$ ".

```
TAD RELBIN
                             relbin, rel?, Ø, rel, relacionadosXDer
       exporta
                             NAT, BOOL, CONJ(nat, =_{nat})
       usa
                             relbin
       géneros
       igualdad observacional
                             (\forall r_1, r_2 : \text{relbin}) (r_1 =_{\text{obs}} r_2 \iff ((\forall n_1, n_2 : \text{nat}) (\text{rel}?(n_1, r_1, n_2) =_{\text{obs}} \text{rel}?(n_1, r_2, n_2))))
       observadores básicos
           rel?
                                      : \text{ nat} \times \text{relbin} \times \text{nat} \longrightarrow \text{bool}
       generadores
           Ø
                                                                           \rightarrow relbin
           rel
                                       : \operatorname{nat} \times \operatorname{relbin} \times \operatorname{nat} \longrightarrow \operatorname{relbin}
       otras operaciones
           {\it relacionados} {\it XDer} \; : \; {\it nat} \; \times \; {\it relbin}
                                                                          \longrightarrow conj(nat)
       axiomas
                             (\forall x, y, n, m : nat) (\forall R : relbin)
           rel?(x, \emptyset, y)
                                                                  \equiv false
           rel?(x, rel(n, R, m), y)
                                                                  \equiv ((x=n) \land (y=m)) \lor \text{rel}?(x,R,y)
           relacionadosXDer(x, \emptyset)
                                                                  \equiv \emptyset
           relacionados XDer(x, rel(n, R, m))
                                                                  \equiv if (x=n) then
                                                                             \operatorname{ag}(m,\,\operatorname{relacionadosXDer}(x,R))
                                                                       else
                                                                             relacionadosXDer(x, R)
Fin TAD
```

Ejercicio 14

Indique si las siguientes propiedades sobre conjuntos son verdaderas o falsas. Si son verdaderas, realice una demostración. Si son falsas, presente un contraejemplo y pruebe, mediante la aplicación de los axiomas, que la propiedad no se cumple en ese caso.

```
a) "(\forall A, B : \operatorname{conj}(\alpha)) (\forall n : \alpha) (n \in A \cup B \equiv n \in A \lor n \in B)"
b) "(\forall A, B : \operatorname{conj}(\alpha)) (\#(A \cup B) = \#(A) + \#(B) \equiv \operatorname{true})"
c) "(\forall C : \operatorname{conj}(\alpha)) (\forall n : \alpha) (n \notin C \Rightarrow (C - \{n\} \equiv C))"
d) "(\forall C : \operatorname{conj}(\alpha)) (\forall n : \alpha) (\#(\operatorname{Ag}(n, C)) \equiv 1 + \#(C))"
e) "(\forall C : \operatorname{conj}(\alpha)) (\forall n : \alpha) (n \in C - \{n\} \equiv \operatorname{false})"
```

Ejercicio 15

```
Demuestre la siguiente propiedad sobre diccionarios: "(\forall D : \text{dicc}(\text{clave}, \text{sign})) (\forall c : \text{clave}) ((\text{def}?(c, D) \equiv \text{true}) \Rightarrow (\text{def}?(c, \text{borrar}(c, D)) \equiv \text{false}))"
```

Ejercicio 16 ★

Se extiende el tipo Polinomio de la práctica 1 con la siguiente operación (el resto queda igual):

```
TAD POLINOMIO EXTENDIDO

extiende POLINOMIO

...

otras operaciones

derivado : polinomio \longrightarrow polinomio

axiomas (\forall p, q : \text{polinomio}) (\forall n : \text{nat})

derivado(\text{cte}(n)) \equiv \text{cte}(0)

derivado(X) \equiv \text{cte}(1)
```

Demuestre que

```
"(\forall p : \text{polinomio}) (((evaluar(p, 0) = 0?) \equiv \text{true}) \Rightarrow (evaluar(p, 1) \leq \text{evaluar}(\text{derivado}(p), 1) \equiv \text{true})".
```

Ayuda: Puede utilizar las siguientes propiedades:

- 1. " $(\forall x, y : \text{nat}) (((x + y = 0?) \equiv \text{true}) \Rightarrow ((x = 0?) \equiv \text{true} \land (y = 0?) \equiv \text{true})$ ".
- 2. " $(\forall x, y : \text{nat}) (((x \times y = 0?) \equiv \text{true}) \Rightarrow ((x = 0?) \equiv \text{true} \lor (y = 0?) \equiv \text{true})$ ".
- 3. " $(\forall x, y : \text{nat}) ((x \le y \equiv \text{true}) \Rightarrow (\forall z : \text{nat}) ((x + z \le y + z) \equiv \text{true}))$ ".

Pruebe al menos una de ellas.

Ejercicio 17

Dado el siguiente tipo abstracto de datos:

```
TAD ÁRBOL TERNARIO(\alpha)
        géneros
                                  at(\alpha)
                                 . . .
        observadores básicos
            nil?
                          : at(\alpha)
                                                                                      \rightarrow bool
                                                                                                                                                                                   \{(\neg \operatorname{nil}?(a))\}
            raíz
                           : at(\alpha) a
                                                                                      \rightarrow \alpha
                                                                                                                                                                                    \{(\neg \operatorname{nil}?(a))\}
            izq
                           : at(\alpha) a
                                                                                       \rightarrow \operatorname{at}(\alpha)
                                                                                                                                                                                    \{(\neg \operatorname{nil}?(a))\}
                           : at(\alpha) a
            med
                                                                                      \rightarrow \operatorname{at}(\alpha)
                           : at(\alpha) a
                                                                                                                                                                                   \{(\neg \operatorname{nil}?(a))\}
                                                                                    \longrightarrow at(\alpha)
            \operatorname{der}
        generadores
            _{\mathrm{nil}}
                                                                                    \longrightarrow \operatorname{at}(\alpha)
                           : \alpha \times \operatorname{at}(\alpha) \times \operatorname{at}(\alpha) \times \operatorname{at}(\alpha) \longrightarrow \operatorname{at}(\alpha)
             tern
        otras operaciones
            tam : at(\alpha)
                                                                                    \longrightarrow nat
            h
                           : at(\alpha)
                                                                                    \longrightarrow nat
                                 (\forall e : \alpha) (\forall t_1, t_2, t_3 : at(\alpha))
        axiomas
             tam(tern(e, t_1, t_2, t_3)) \equiv 1 + tam(t_1) + tam(t_2) + tam(t_3)
            h(nil)
                                                       \equiv 0
            h(tern(e, t_1, t_2, t_3)) \equiv 1 + máx_3(h(t_1), h(t_2), h(t_3))
Fin TAD
```

```
Demuestre que "(\forall t : tern(\alpha)) (tam(t) \leq \frac{3^{h(t)}-1}{2} \equiv true)".
```

Ayuda: Puede asumir la propiedad " $(\forall x, y, z : \text{nat}) (3^x + 3^y + 3^z \le 3^{\max(x,y,z)+1} \equiv \text{true})$ ".

Nota: Sólo se presentan los axiomas más relevantes a efectos del ejercicio.

Ejercicio 18

Dado el siguiente TAD de los procesos secuenciales con *branching*, demuestre que " $(\forall p : \text{proc})$ (trazas $(p) \equiv \text{seguir}(<>, p)$)".

```
\mathbf{TAD} Proc
       géneros
                               proc
       generadores
                                                                              \rightarrow proc
                      : accion \times proc
                                                                             \rightarrow proc
            \bullet + \bullet : \operatorname{proc} \times \operatorname{proc}
                                                                             \rightarrow proc
       observadores básicos
                                                                          \longrightarrow conj(secu(accion))
           trazas : proc
       otras operaciones
                                                                          \longrightarrow conj(secu(accion))
           seguir : secu(accion) \times proc
                     : accion \times conj(secu(accion)) \longrightarrow conj(secu(accion))
           pref
                               (\forall \ a: accion) \ (\forall \ p,q: proc) \ (\forall \ w: secu(accion)) \ (\forall \ C: conj(secu(accion)))
       axiomas
                                         \equiv \operatorname{Ag}(<>,\emptyset)
           trazas(0)
                                         \equiv \operatorname{pref}(a,\operatorname{trazas}(\mathbf{p}))
           trazas(a \bullet p)
           trazas(p+q)
                                         \equiv \operatorname{trazas}(p) \cup \operatorname{trazas}(q)
                                         \equiv \operatorname{Ag}(w,\emptyset)
           \operatorname{seguir}(w,0)
                                         \equiv \operatorname{seguir}(w \circ a, p)
           \operatorname{seguir}(w, a \bullet p)
                                         \equiv \operatorname{seguir}(w, p) \cup \operatorname{seguir}(w, q)
           \operatorname{seguir}(w, p+q)
                                         \equiv if vacio?(c) then \emptyset else Ag(a \bullet dameUno(c), pref(a, sinUno(c))) fi
           \operatorname{pref}(a,c)
Fin TAD
TAD ACCIÓN es STRING
```

Debe demostrar todo lema auxiliar que utilice e involucre al tipo proc.

Puede asumir, sin demostración, el siguiente lema:

```
"(\forall a : accion) (\forall c, d : conj(secu(accion))) (pref(a, c \cup d) \equiv pref(a, c) \cup pref(a, d))"
```

Ejercicio 19 ★

Demuestre por inducción estructural que:

```
(\forall s : secu(\alpha))(Reverso(Reverso(s)) =_{obs} s)
```

Plantee claramente los lemas necesarios y demostrarlos antes de usarlos en la demostración principal.

Ejercicio 20

Escriba los esquemas de inducción para todos los TADs del apunte de TADs básicos que tengan al menos un generador base y uno recursivo.