2.24: For which intervals $[a, b] \subset \mathbb{R}$ is the intersection $[a, b] \cap \mathbb{Q}$ a clopen subset of the metric space \mathbb{Q} ?

Solution: Intervals $[a, b] \subset \mathbb{R}$ where a,b are irrational satisfy the condition that $[a, b] \cap \mathbb{Q}$ is a clopen subset of the metric space \mathbb{Q} .

First suppose $[a,b] \subset \mathbb{R}$ where $a,b \notin \mathbb{Q}$. Then it follows, $[a,b] \cap \mathbb{Q} = (a,b) \cap \mathbb{Q}$. Because \mathbb{Q} inherits its topology from \mathbb{R} , and (a,b) is open in \mathbb{R} , $[a,b] \cap \mathbb{Q}$ is open in \mathbb{Q} . Moreover, $(-\infty,a) \cup (b,\infty)$ is open in \mathbb{R} , and so the intersection with \mathbb{Q} is open in \mathbb{Q} . Thus, $[a,b] \cap \mathbb{Q}$ is also closed in \mathbb{Q} .

Now suppose $[a,b] \subset \mathbb{R}$ where $a,b \in \mathbb{Q}$, and thus $[a,b] \cap \mathbb{Q}$ is closed in \mathbb{Q} . Also, from above, $(-\infty,a) \cup (b,\infty)$ is open in \mathbb{Q} , so this case doesn't give a clopen subset.

Finally suppose $[a,b] \subset \mathbb{R}$ where either a or b is rational, and the other is irrational. Without loss of generality suppose a is rational and b is irrational. Then for any r > 0 and $B_r(a)$, the ball contains points outside of $[a,b] \cap \mathbb{Q}$ in \mathbb{Q} and therefore is not open in \mathbb{Q} . Moreover, b is a limit point of [a,b] but $b \notin [a,b] \cap \mathbb{Q}$ and therefore is not closed in \mathbb{Q} .

2.26: Prove that a set $U \subset M$ is open if and only if none of its points are limits of its complement.

Solution:

- (\Rightarrow) By way of contradiction suppose $U \subset M$ is open and there exists a limit point x which is a limit of its complement. So then, $x \in U$. Moreover, there exists sequence $(x_n) \subset U^c$ where $x_n \to x$. This means for all r > 0, $B_r(x)$ contains a point in U^c by definition of $x_n \to x$. This contradicts U being open because there must be some r > 0, $B_r(x)$ containing points entirely in U. Thus, if $U \subset M$ is open, none of its points are limits of U^c .
- (\Leftarrow) Let $U \subset M$ where none of its points are limits of its complement. We'll show U is open. Let $p \in U$. From above, there exists an r > 0 such that $B_r(p) \cap U^c = \emptyset$. So then, if $B_r(p)$ contains point x, $x \in U$.
- **2.27:** If $S, T \subset M$, a metric space, and $S \subset T$, prove that:
 - (a) $\bar{S} \subset \bar{T}$.
 - (b) $int(S) \subset int(T)$.

Solution:

- (a) By way of contradiction, suppose $S \subset T$ and $\bar{S} \not\subset \bar{T}$. Thus, there exists $x \in \bar{S}$ where $x \not\in \bar{T}$. Then it follows, there is $(s_n) \subset S$ with $s_n \to x \in \bar{S}, x \not\in \bar{T}$. But, $\bar{S} = S \cup \lim$ points of S. So, for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n > N, d(x, s_n) < \epsilon$. However, each s_n is also in T because $S \subset T$, and so either x is a limit point of T, or $x \in T$, which means $x \in \bar{T}$. This is a contradiction. Therefore, $\bar{S} \subset \bar{T}$.
- (b) By way of contradiction suppose $S \subset T$ and $\operatorname{int}(S) \not\subset \operatorname{int}(T)$. Thus, there exists $x \in \operatorname{int}(S)$ where $x \not\in \operatorname{int}(T)$. Then it follows, for all $\epsilon > 0$, $B_{\epsilon}(x) \subset S$. So, for all $a \in B_{\epsilon}(x), a \in S$. So then, $a \in T$ for all a. So then, $B_{\epsilon}(x) \subset T$, but that means $x \in \operatorname{int}(T)$, which is a contradiction. Therefore, $\operatorname{int}(S) \subset \operatorname{int}(T)$.
- **2.32:** Show that every subset of \mathbb{N} is clopen. What does this tell you about every function $f: \mathbb{N} \to M$, where M is a metric space?

Solution: Let N be a subset of N. Suppose N isn't N or \emptyset , both of which are known to be clopen. So, for all $x \in \mathbb{N}$, choose $r = \frac{1}{2}$, and so $B_r(x) = \{x\}$, which is a singleton set and is contained within N. Therefore, every subset of N is open. Moreover, since every subset of N is open, its complement is also open. Therefore, the complement of N is open, which implies N is closed.

This means f is continuous. Suppose we have a closed set in M. From clopen, we know the pre-image would be closed in \mathbb{N} . Now suppose we have an open set in M. From clopen, we know the pre-image would be open in \mathbb{N} . Both cases hold.