Physical Chemistry (II) Examination Paper

2. Statistical Mechanics of Independent Particle Systems

I	Choice (1 point for each, totally 30 points)			
1.	For the ideal liquid mixture, it is			
	A: independent non-localized-particle system;			
	B: dependent localized-particle system;			
	C: independent localized-particle system.			
2.	The particles such as atoms, molecules, and ions in a crystal is			
	A: independent non-localized-particle system;			
	B: dependent localized-particle system;			
	C: localized-particle system.			
3.	Which of the following is an independent non-localized-particle system?			
	A: a crystal at 0 K; B: ideal liquid mixture; C: ideal gas mixture			
4.	The lowest energy level of the translational kinetic energy is			
	A: $\varepsilon_{t} = \frac{3h^{2}}{mV^{2/3}}$; B: 0; $\varepsilon_{t} = \frac{3h^{2}}{8mV^{2/3}}$			
5.	For a translational level, its energy is $\varepsilon_{\rm t} = \frac{7h^2}{4mV^{2/3}}$, the degeneracy of the level			
	$g_{\mathfrak{t},i}$ is			
	A: 6; B: 5; C: 4			
6.	The ratio of the degree of the degeneracy of NO molecules at the first excited vibration level to its ground state is			
	A: 1; B: 2; C: 3			
7.	The vibrational energy of CO molecule in the k^{th} energy level is higher than that in k - I^{th} energy level by			
	A: $0.2 hv$; B: $0.5 hv$; C: hv			
8.	Among different energy levels, which one is related to system volume ? A.vibrational energy level; B. rotational energy level; C.translational energy level			
9.	Among different energy levels, which one has the equal energy level space ?			
	A.vibrational energy level; B. rotational energy level; C.translational energy level			

10. For N ₂ at room temperature, which of the following has the larg space ?			ng has the largest energy level	
	A.vibrational energy leve	el; B. rotational energy lev	rel; C.translational energy level	
11.	At the same volume, the energy level space.	large the mass of particles	s,the translational	
	A: unchanged;	B: the larger;	C: the smaller	
12.	The larger the volume,	the translational of	energy level space.	
	A: unchanged;	B: the larger;	C: the smaller	
13.	The larger the rotational space.	moment of inertia,	the rotational energy level	
	A: unchanged;	B: the larger;	C: the smaller	
14.		l frequency, the B: the larger;	vibrational energy level space. C: the smaller	
15.	15. 7 distinguishable particles are distributed in 3 energy levels with the degenerac of 1, 3, 2; the energy of ε_0 , ε_1 , ε_2 , and the particle distribution of 3, 3, 1, the number of the microscopic states is			
	A: 6560;	B: 7560;	C: 8560	
16.	For a system composed of	of a large number of partic	les, when $\omega_{ ext{max}}/\Omega$ is small,	
	$\ln \omega_{\rm max} / \ln \Omega$ is closed to	·		
	A: 0;	B: 1;	C: 2	
17.		the ratio of the number of ton the ground state N_0 , N	of particles distributed on any V/N_0 is	
	A: <1;	B: =1;	C: >1	
	•		of particles distributed on any Nv_{-1} , Nv/Nv_{-1} is C: >1	
10	For distance malacular	ot magne tamen anotyma with	the impresses of the emoney level	
19.	For diatomic molecules at room temperature, with the increase of the energy level J , the number of particles distributed in the J level, N_J .			
	A: decreases;	B: increases;		
		decreases, with a maximum	n value.	
20	T	CAT 1 1 1	, , ,	
20.		_	n two energy levels, the energy	
			, then, the molecular partition	
	function q is	<u>.</u>		

	A: $g_1 + g_2 \exp(-\varepsilon / kT)$	$; B: g_1 + g_2 \exp(\varepsilon / kT)$; C: $g_1g_2 \exp(-\varepsilon/kT)$			
21.	21. When $T \rightarrow \infty$, the ratio of N ₂ molecules distributed in the rotational energy levels					
of $J=1$ and $J=0, N_1/N_0 =$						
	A: 2;	B: 3;	C: 4			
22.	It is known that the grou	und level are non-degene	erate. At 400 K, for a diatomic			
	molecular AB, $q_0 = 1.02$, the ratio of the number of particles distributed on the					
	ground level N_0 and the to A: 0.98;	otal number of particles <i>N</i> B: 1;	C: 1.02			
23.	Among the following cor	nclusions, the correct one	is			
	A: $\left(\frac{\partial q_{t}}{\partial V}\right)_{T} \neq 0$;	B: $\left(\frac{\partial q_{r}}{\partial V}\right)_{T} \neq 0$;	C: $\left(\frac{\partial q_{v}}{\partial V}\right)_{T} \neq 0$			
24.	=		th of the following gas has etion as N_2 C: NO			
25.	25. The mass ratio of A and B is $M_A/M_B = 4$, at the same temperature and volume, the ratio of the translational partition function q_{tA}/q_{tB} is					
	A: 4;	B: 8;	C: 12			
26.	At 298.15k and 101.325P. A: H ₂ ;	a, has the larg	est molar translational entropy. C: CO ₂			
27.	The rotational temperatur	re Θ_r of N_2 and CO are Ω_r	2.89K and 2.78K, respectively.			
	The ratio of the rotational partition function $q_{\rm r,N_2}$ / $q_{\rm r,CO}$ =					
	A: 0.381;	B: 0.481;	C: 0.581			
28.	8. At 298.15k and 101.325Pa, the molar translational entropy of is approximately equal to N_2					
29.	A: CO; For a non-localized-parti	B: CH ₄ cle system, the total nu	C: CO ₂ mber of microscopic states is			
	$\Omega = e^L$, the entropy S of the system is					
30.	A: 0.5R B: The mass and the mo		5R diatomic molecule CO are			
	approximately equal to those of diatomic molecule N ₂ , At 25°C, S_{m,N_2}° $S_{m,CC}^{\circ}$					
	Suppose the vibration has A: > B:	little contributions to the				

II (5 points for each, totally 10 points)

- 1. A system is composed of large amount of particles freely in three-dimensional translational movement. The relation among volumes V, particle mass m and temperature T is $h^2/(8mV^{2/3}) = 0.100 \ kT$. Calculate the ratio of the particle number distributed in the energy level of $14h^2/(8mV^{2/3})$ and $3h^2/(8mV^{2/3})$.
- 2. X molecules are distributed in two energy levels with $\varepsilon_1 = 6.1 \times 10^{-21} \,\text{J}$, $\varepsilon_2 = 8.4 \times 10^{-21} \,\text{J}$, the corresponding degeneracy are $g_1 = 3$, $g_2 = 5$. Suppose it is an independent-particle system, calculate the ratio of the particle number between these two levels when the temperature is 300K and 3000K, respectively.

III (10 points)

Given that, the molar mass of H_2 is M=2.0g.mol⁻¹, the rotational temperature $\Theta_r = 85.4 \, \mathrm{K}$, the vibrational temperature $\Theta_v = 6100 \, \mathrm{K}$, when the temperature is 298.15K, calculate:

- 1. The molecule translational partition function of H_2 in a cube of 1 m^3 .
- 2. The molecule rotational partition function of H₂.
- 3. The molecule vibrational partition function of H_2 , q_{0v} .
- 4. The ratio of the particle number between the first excited vibrational level and vibrational ground level.

IV (10 points)

- 1. Suppose a molecular vibrational energy level spacing is $\Delta \varepsilon_{\rm V} = 5.942 \times 10^{-20} \, {\rm J}$. At 298 K, what is the ratio of number of molecule between two neighboring energy levels?
- 2. Suppose vibrational energy level spacing is $\Delta \varepsilon_{\rm v} = 0.43 \times 10^{-20} \, \rm J$. At 298 K, what is the ratio of number of molecule between two neighboring energy levels?.
- 3. What can you conclude from the comparison of the above two calculation results?

V (10 points)

For a independent non-localized-particle system, the relation between entropy and molecular function is $S = Nk \ln(q/N) + U/T + Nk$. Prove that

$$A = -NkT \ln(q/N) - NkT$$
, $G = -NkT \ln(q/N) - NkT + NkT(\partial \ln q/\partial \ln V)_{T,N}$.

VI (10 points)

Given that the relation between the entropy and the molecular partition function of a independent non-localized-particle system is $S = Nk \ln(q/N) + U/T + Nk$.

1. Prove that the entropy of ideal monoatomic gas molecules is given by

$$S = \frac{5}{2} Nk + Nk \ln \left[\left(2\pi mkT \right)^{3/2} Vh^{-3} N^{-1} \right].$$

2. Calculate the molar entropy of Ar at its normal boiling point. Given that the normal boiling point of Ar is 87.3 K and its molar mass is 39.95 g·mol⁻¹.

VII (10 points)

For a localized-particle system with N particles, it is given that $\ln \Omega = N \ln q + U/kT$. Prove that $H = NkT \Big[\big(\partial \ln q / \partial \ln T \big)_V + \big(\partial \ln q / \partial \ln V \big)_T \Big]$, $U = NkT^2 \big(\partial \ln q / \partial T \big)_V$ and $G = -NkT \Big[\ln q - \big(\partial \ln q / \partial \ln V \big)_T \Big]$.

VIII (10 points)

For 1 mol ideal monoatomic molecular gas, try to prove by statistical mechanics that when the temperature changes from T_1 to T_2 , the entropy change at constant pressure is as 5/3 times large as that at constant temperature.