

GO:0006433	prolyl-tRNA aminoacylation	0.052 %	-1.3710	0.62	0.60
GO:0006434	seryl-tRNA aminoacylation	0.053 %	-2.3846	0.62	0.60
GO:0006436	tryptophanyl-tRNA aminoacylation	0.054 %	-1.3710	0.62	0.60
GO:0007409	axonogenesis	0.118 %	-1.6990	0.66	0.61
GO:0021873	forebrain neuroblast division	0.002 %	-1.5440	0.80	0.63
GO:0006094	gluconeogenesis	0.262 %	-2.1770	0.75	0.65
GO:0007018	microtubule-based movement	0.287 %	-1.8687	0.69	0.70
GO:0006099	tricarboxylic acid cycle	0.469 %	-4.6799	0.68	0.73
GO:0051653	spindle localization	0.020 %	-1.3710	0.73	0.74
GO:0006418	tRNA aminoacylation for protein translation	1.099 %	-2.3232	0.56	0.75
GO:0007051	spindle organization	0.083 %	-1.6142	0.58	0.77
GO:0006890	retrograde vesicle-mediated transport, Golgi to ER	0.047 %	-2.3401	0.88	0.77
GO:0006098	pentose-phosphate shunt	0.287 %	-1.9078	0.66	0.80

Run Cytoscape in Java web start	Download Cytoscape XGMML file for offline use		

Frequent keywords within your set of GO terms:

metabolism anabolic linked modifications Single-organism oxoacid g2 ribose cooh coo- 3 - hydroxyl modification ribonucleoside transform h3-k27 compound diadenosine g2/m glycolysis individual reactions repetition metabolic organic biopolymer carried rna-protein aminoacylation commits morphological nucleoside keto rco-sugar coenzymes h3k27 chemical k27 self-propelled cx(h2o)y disaggregate architecture mp level beta-d-ribofuranose purine biochemical alteration acetylation nucleobase low condition esterified Self-renewing phases substances monosaccharides carbohydrates microtubule-based tricarboxylic successive macromolecule nucleobase-containing those pathways proceed process cellular macromolecules peptidyl-lysine

Keywords that correlate with the value you provided alongside GO terms:

respiration 2-oxoglutarate carbohydrate nad(p isocitrate amount krebs triphosphate flagellum power confined reduction processes citrate effectively acetyl-coenzyme animals ends succinyl-coa pairs eukaryotes begins embdenmeyerhof-parnas again enter citric embryonic anaerobic ethanol undergoes concomitant fad motility beating embden-meyerhof carboxylic enzymatic nad(p)h generate glycolytic coenzyme plants nad completely mitochondria indirectly modification fumarate atp histones self-propelled universal various acetyl-coa successive products electrons coenzymes completing glycolysis thus muscle oxaloacetate nearly provides stored modifed cilium skeletal produced see interconversion transformations aerobic fadh2 phosphorylation energy succinate combines

Did you find REVIGO useful in your work? Feel free to share it with your colleagues.

