т 1		
н	1stor	V

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	G. Gürdal and F. G. Kondev	NDS 113, 1315 (2012)	1-Aug-2011

 $Q(\beta^-)=2758\ 20;\ S(n)=7406\ 13;\ S(p)=13079\ 13;\ Q(\alpha)=-6355\ 13$ 2012Wa38

Note: Current evaluation has used the following Q record.

 $Q(\beta^-)=2774\ 20;\ S(n)=7406\ 12;\ S(p)=13079\ 13;\ Q(\alpha)=-6350\ 13$ 2011AuZZ

¹¹⁰Ru Levels

Cross Reference (XREF) Flags

Α	110 Tc β^- decay	D	²⁵⁴ Cf SF decay
В	²⁵² Cf SF decay	E	238 U(α ,F γ)
C	²⁴⁸ Cm SF decay		

			С	²⁴⁸ Cm SF decay
E(level) [†]	Jπ‡	$T_{1/2}$	XREF	Comments
0.0#	0+	12.04 s <i>17</i>	ABCDE	$\%\beta^-$ =100 $T_{1/2}$: Unweighted average of 11.6 s 6 (using β-112γ(t) in 1991Jo11), 12.2 s <i>I</i> (using 96γ(t) in 1986KaZS), 11.98 s 4 (using 112γ(t) in 1986KaZS), 11.8 s 2 (using 374γ(t) in 1986KaZS) and 12.6 s 5 (using 374γ(t) in 1978Fr16). Others: 17.0 s <i>I</i> (using 374γ(t) in 1975Fe12), 14.7 s <i>I3</i> (using 112γ(t) in 1976MaYL) and 15.9 s 5 (using 374γ(t) in 1969WiZX).
240.73 [#] 8	2+	0.32 ns 2	ABCDE	J ^π : 240.7 γ E2 to 0 ⁺ . T _{1/2} : Unweighted average of 0.34 ns 4 from ²⁵² Cf decay (1974JaYY) and 0.30 ns 2 from ²⁵⁴ Cf decay (1980ChZM). Others: 0.50 ns 8 in 1995Sc24, 0.23 ns in 1972Wi15 and 1970Ch11, and<0.5 ns in 1970Wa05. μ: +0.88 <i>14</i> , from g-factor = +0.44 7 measured using time-integral perturbed angular correlation technique in 2005Sm08 and in 2004Sm04 (T _{1/2} = 0.30 ns 2 was used). Q: -0.74 9 from lifetime measurements using Doppler-profile method in 1999SmZX.
612.86 [@] 8	(2+)	0.16 ns 8	ABC E	J^{π} : 372.1 γ M1+E2 to 2 ⁺ and 612.9 γ to 0 ⁺ . Branching ratio favors 2 ⁺ . $T_{1/2}$: From 372.1 γ (t) (centroid-shift) in 1995Sc24. Others: 0.01 ns <i>16</i> from 612.9 γ (t) (centroid-shift) in 1995Sc24.
663.35# 9	4+	15.4 ps <i>17</i>	ABC E	J ^π : 422.6γ E2 to 2 ⁺ ; member of the g.s. band. T _{1/2} : From 2001Kr13, using differential recoil distance method. Others: 13.4 ps 10 (1986Ma22). However, this is a combined value for ¹⁰⁸ Ru and ¹¹⁰ Ru since the 4 ⁺ to 2 ⁺ transitions in those isotopes can not be resolved.
859.96 <mark>&</mark> 9	(3 ⁺)		ABC E	J^{π} : 619.2 γ to 2 ⁺ and 196.6 γ to 4 ⁺ ; member of the one-phonon γ -vibrational band.
1084.37 [@] 11	(4 ⁺)		ABC E	J^{π} : 224.5 γ to (3 ⁺) and 471.5 γ to (2 ⁺); member of the one-phonon γ -vibrational band.
1137.33 10	(0^+)		AB	J^{π} : 896.7 γ to 2 ⁺ . No transition to the ground state nor feeding to or from the levels with J>2 were observed.
1239.1 [#] 3	6+	2.4 ps 10	BC E	J^{π} : 575.7 γ E2 to 4 ⁺ ; member of the g.s. band. $T_{1/2}$: From 2001Kr13, using differential recoil distance method.
1375.41 ^{&} 23	(5 ⁺)		BC E	J^{π} : 291.0 γ to (4 ⁺) and 515.5 γ to (3 ⁺); member of the one-phonon γ -vibrational band.
1396.42 8	2+		AB	J^{π} : 1396.4 γ to 0 ⁺ and 733.1 γ to 4 ⁺ .
1618.37 ^a 21	(4 ⁺)		В	J^{π} : 534.0 γ to (4 ⁺) and 1005.7 γ to (2 ⁺); member of the two-phonon γ -vibrational band.
1655.85 10	$(2,3,4^+)$		AB	J^{π} : 1415.1 γ to 2 ⁺ ; direct population in ¹¹⁰ Tc β - decay (J π =2,3 ⁺).

¹¹⁰Ru Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
1684.27 [@] 25	(6 ⁺)	BC E	J^{π} : 599.8 γ to (4 ⁺) and 308.7 γ to (5 ⁺); member of the one-phonon γ -vibrational band.
1799.5 3	$(2,3,4^+)$	A	J^{π} : 1186.6 γ to (2 ⁺); direct population in ¹¹⁰ Tc β - decay (J π =2,3 ⁺).
1820.49 <i>10</i>	$(2,3,4^+)$	AB	J^{π} : 424.2γ to 2 ⁺ ,960.5γ to (3 ⁺); direct population in ¹¹⁰ Tc β- decay (J_{π} =2,3 ⁺).
1860.8 ^a 3	(5 ⁺)	В	J^{π} : 1000.9 γ to (3 ⁺) and 242.4 γ to (5 ⁺); member of the two-phonon γ -vibrational band.
1883.34 22	$(2,3,4^+)$	Α	J^{π} : 1642.6 γ to 2 ⁺ ; direct population in ¹¹⁰ Tc β - decay (J π =2,3 ⁺).
1944.5 [#] <i>4</i>	8+	BC E	J^{π} : 705.3 γ to 6 ⁺ ; member of the g.s. band.
1978.21 <i>19</i>	$(2^+,3,4^+)$	A	J^{π} : 1314.7 γ to 4 ⁺ and 1737.8 γ to 2 ⁺ ; direct population in ¹¹⁰ Tc β - decay ($J\pi$ =2,3 ⁺).
2003.57 22	$(2,3,4^+)$	Α	J^{π} : 1390.7 γ to (2 ⁺); direct population in ¹¹⁰ Tc β - decay (J π =2,3 ⁺).
2016.27 ^f 24	(4^{-})	В	J^{π} : 931.8 γ to (4 ⁺) and 1156.4 γ to (3 ⁺); band assignment; 226.5 γ from (6 ⁻).
2020.9 <mark>&</mark> 4	(7^+)	BC E	J^{π} : 645.5 γ to (5 ⁺); member of the one-phonon γ -vibrational band.
2042.39 14	(2,3,4)	AB	J^{π} : direct population in ¹¹⁰ Tc β - decay ($J\pi$ =2,3 ⁺).
2047.03 23	$(1,2^+)$	A	J^{π} : 2046.8 γ to 0 ⁺ and 1806.4 γ to 2 ⁺ ; direct population in ¹¹⁰ Tc β - decay ($J\pi$ =2,3 ⁺).
2085.27 13	$(2,3,4^+)$	Α	J^{π} : 1844.5 γ to 2 ⁺ ; direct population in ¹¹⁰ Tc β - decay (J π =2,3 ⁺).
2110.8 ^a 4	(6 ⁺)	В	J^{π} : 492.4 γ to (4 ⁺) and 735.4 γ to (5 ⁺); member of two-phonon γ -vibrational band.
2143.1 3	$(1^+,2,3,4^+)$	A	J^{π} : 1902.4 γ to 2 ⁺ ; direct population in ¹¹⁰ Tc β - decay ($J\pi$ =2,3 ⁺).
2145.3 ^e 3	(5 ⁻)	В	J^{π} : 1481.9 γ to 4 ⁺ ; band assignment.
2152.69 18	$(2,3,4^+)$	A	J^{π} : 1539.5 γ to 2 ⁺ , 1292.9 γ to (3 ⁺); direct population in ¹¹⁰ Tc β - decay (J π =2,3 ⁺).
2204.6 4	$(2,3,4^+)$	A	J^{π} : 1963.9 γ to 2 ⁺ , direct population in ¹¹⁰ Tc β - decay ($J\pi$ =2,3 ⁺).
2242.8 ^d 4	(6 ⁻)	В	J^{π} : 867.5 γ D to (5 ⁺); band assignment.
2266.3 <i>4</i>	$(2,3,4^+)$	A	J^{π} : 2025.6 γ to 2 ⁺ ; direct population in ¹¹⁰ Tc β - decay (J_{π} =2,3 ⁺).
2328.0^{f} 3	(6 ⁻)	В	J^{π} : 312.0 γ to (4 ⁻), 182.8 γ to (5 ⁻) and 1088.8 γ to 6 ⁺ ; band assignment.
2337.9 4	$(2^+,3,4^+)$	A	J^{π} : 2096.8 to 2 ⁺ , 1674.6y to 4 ⁺ ; direct population in ¹¹⁰ Tc β- decay (Jπ=2,3 ⁺).
2367.0 5	$(2,3,4^+)$	A	J^{π} : 2126.2 γ to 2 ⁺ ; direct population in ¹¹⁰ Tc β - decay (J_{π} =2,3 ⁺).
2397.0 [@] 4 2413.03 25	(8 ⁺)	BC E	J^{π} : 712.7 γ to (6 ⁺); member of the one-phonon γ -vibrational band.
2413.03 <i>23</i> 2419.6 <i>4</i>	$(1,2^+)$	A A	J^{π} : 1282.3 γ to (0 ⁺); direct population in ¹¹⁰ Tc β - decay (J π =2,3 ⁺).
2419.0 4 2426.5 ^c 4	(7^{-})	В	J^{π} : 1187.2 γ D to 6 ⁺ ; band assignment.
2491.4 6	$(2,3,4^+)$	A	J^{π} : 2250.6 γ to 2^{+} ; direct population in 110 Tc β - decay (J π =2,3 $^{+}$).
2516.6 ^e 4	(7^{-})	В	J^{π} : 371.4 γ to (5 ⁻) and 832.3 γ to (6 ⁺); band assignment.
2552.04 23	$(1,2^+)$	Α	J^{π} : 1414.7 γ to (0 ⁺); direct population in ¹¹⁰ Tc β - decay (J π =2,3 ⁺).
2573.8 7	$(2,3,4^+)$	Α	J^{π} : 2333.0 γ to 2^{+} ; direct population in ¹¹⁰ Tc β - decay ($J_{\pi}=2,3^{+}$).
2637.4 ^d 4	(8-)	В	J^{π} : 210.9 γ to (7 ⁻) and 394.5 γ to (6 ⁻); band assignment.
2759.5 [#] 4	10 ⁺	BC E	J^{π} : 815 γ to 8 ⁺ ; member of the g.s. band.
2764.6 ^f 4	(8-)	В	J^{π} : 436.7 γ to (6 ⁻), 247.9 γ to (7 ⁻) and 820.2 γ to 8 ⁺ ; band assignment.
2776.9 <mark>&</mark> 5	(9 ⁺)	BC E	J^{π} : 756.0 γ to (7 ⁺); member of the one-phonon γ -vibrational band.
2892.7° 4	(9-)	В	J^{π} : 466.3 γ to (7 ⁻), 255.4 γ to (8 ⁻) and 948.2 γ to 8 ⁺ ; band assignment.
2942.8 <i>4</i>	(3-)	A	J^{π} : 2082.8 γ to (3 ⁺); nonobservation of γ to 2 ⁺ and 0 ⁺ ; direct population in ¹¹⁰ Tc β -
			decay $(J\pi=2,3^{+})$.
3006.06 <i>23</i>	$(1,2^+)$	Α	J^{π} : 1868.6γ to (0 ⁺) and 2393.0γ to (2 ⁺); direct population in ¹¹⁰ Tc β- decay (Jπ=2,3 ⁺).
3019.5 8	$(2,3,4^+)$	A	J^{π} : 2406.6 γ to (2 ⁺); direct population in ¹¹⁰ Tc β - decay (J π =2,3 ⁺).
3041.3 ^e 4	(9-)	В	J^{π} : 524.7 γ to (7 ⁻) 276.8 γ to (8 ⁻) and 1096.8 γ to 8 ⁺ ; band assignment.
3072.2 3	$(2,3,4^+)$	A	J^{π} : 2459.4 γ to 2 ⁺ ; direct population in ¹¹⁰ Tc β - decay (J π =2,3 ⁺).
3091.39 <i>14</i>	(0.10 ⁺)	A	I^{π} . 716 Oc. to (9^{+})
3113.0 <i>7</i> 3175.3 ^{<i>d</i>} <i>5</i>	$(9,10^+)$	В	J^{π} : 716.0 γ to (8 ⁺).
31/5.3 ^b 3	(10^{-})	В	J^{π} : 537.9 γ to (8 ⁻) and 282.6 γ to (9 ⁻); band assignment.
	$(9,10^+)$	В	J^{π} : 416.4 γ to (9 ⁺) and 796.3 γ to (8 ⁺); band assignment.
3254.2 [@] 6	(10^{+})	B E	J^{π} : 857.3 γ to (8 ⁺); member of the one-phonon γ -vibrational band.
3337.1^{f} 5	(10^{-})	В	J^{π} : 572.4 γ to (8 ⁻) and 295.9 γ to (9 ⁻); band assignment.
3485.3 ^c 5	(11-)	В	J^{π} : 592.6 γ to (9 ⁻) and 309.9 γ to (10 ⁻); band assignment.
3627.1 ^{&} 7	(11^{+})	ВЕ	J^{π} : 850.2 γ to (9 ⁺); member of the one-phonon γ -vibrational band.

¹¹⁰Ru Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3647.1 [#] 6	12+	ВЕ	J^{π} : 887.6 γ to 10 ⁺ ; member of the g.s. band.
3689.8 <mark>e</mark> 5	(11^{-})	В	J^{π} : 648.5 γ to (9 ⁻), 352.8 γ to (10 ⁻) and 930.3 γ to 10 ⁺ ; band assignment.
3700.1 6	(12^{+})	В	J^{π} : 940.5 γ to 10 ⁺ .
3719.0 ^b 5	(12^{+})	В	J^{π} : 959.5 γ to 10 ⁺ .
3818.6 ^d 5	(12^{-})	В	J^{π} : 643.2 γ to (10 ⁻) and 333.3 γ to (11 ⁻); band assignment.
3956.9 8	(12^{+})	В	J^{π} : 843.9 γ to 10 ⁺ .
4038.7^{f} 6	(12^{-})	В	J^{π} : 701.7 γ to (10 ⁻) and 348.8 γ to (11 ⁻); band assignment.
4153.8 [@] 8	(12^{+})	B E	J^{π} : 899.6 γ to (10 ⁺); member of the one-phonon γ -vibrational band.
4195.5 ^c 6	(13^{-})	В	J^{π} : 710.2 γ to (11 ⁻) and 376.8 γ to (12 ⁻); band assignment.
4351.0 [#] 7	14+	B E	J^{π} : 705 γ to 12 ⁺ ; member of the g.s. band.
4370.5 ^b 6	(14^{+})	В	J^{π} : 651.5 γ to (12 ⁺); band assignment.
4446.3 ^e 7	(13^{-})	В	J^{π} : 756.4 γ to (11 ⁻); band assignment.
4556.1 ^{&} 9	(13^{+})	B E	J^{π} : 929 γ to (11 ⁺); member of the one-phonon γ -vibrational band.
4566.4 ^d 7	(14^{-})	В	J^{π} : 747.9 γ to (12 ⁻) and 370.9 γ to (11 ⁻); band assignment.
4874.0 ^f 8	(14^{-})	В	J^{π} : 835.3 γ to (12 ⁻); band assignment.
5010.8 ^c 8	(15^{-})	В	J^{π} : 815.3 γ to (13 ⁻); band assignment.
5124.8 [@] 13	(14^{+})	E	J^{π} : 971 γ to (12 ⁺); member of the one-phonon γ -vibrational band.
5143.0 ^b 8	(16^{+})	В	J^{π} : 772.5 γ to (14 ⁺); band assignment.
5150.7 [#] 8	16 ⁺	B E	J^{π} : 799.7 γ to 14 ⁺ ; member of the g.s. band.
5302.5 ^e 9	(15^{-})	В	J^{π} : 856.2 γ to (13 ⁻); band assignment.
5412.7 ^d 8	(16^{-})	В	J^{π} : 846.3 γ to (14 ⁻); band assignment.
5544.1 ^{&} <i>14</i>	(15^{+})	E	J^{π} : 988 γ to (13 ⁺); member of the one-phonon γ -vibrational band.
6017.4 <mark>b</mark> 9	(18^{+})	В	J^{π} : 874.4 γ to (16 ⁺); band assignment.
6050.8 [#] <i>10</i>	18 ⁺	В Е	J^{π} : 900.1 γ to 16 ⁺ ; member of the g.s. band.
7053.8 [#] <i>14</i>	(20^+)	E	J^{π} : 1003 γ to 18 ⁺ ; member of the g.s. band.
8159.8 [#] <i>17</i>	(22^{+})	Е	J^{π} : 1106 γ to (20 ⁺); member of the g.s. band.
	\ - /	_	

[†] From a least-square fit to E_{γ} .

 $^{^{\}ddagger}$ Based on measured transition multipolarities, systematics of low-lying collective states in Ru isotopes, γ -ray decay pattern and the observed band structures.

[#] Band(A): g.s. band.

[@] Band(B): One-phonon γ -vibrational band, α =0.

[&]amp; Band(C): One-phonon γ -vibrational band, α =1.

^a Band(D): Two-phonon γ -vibrational band. The J π assignment is tentative, based on the decay of this band mainly to one-phonon γ -vibrational band.

^b Band(E): Band based on 3193.3 keV (2009Zh24). J π assignments are tentative. This band could have negative parities and odd spins one unit less. Assigned as four-quasiparticle band in 2003Ji03, but the authors stated that more experimental data needed for assigning a definitive configuration.

 $[^]c$ Band(F): Band based on (7 $^-$) at 2426.5 keV. d Band(G): Band based on (6 $^-$) at 2242.8 keV.

^e Band(H): Band based on (5⁻) at 2145.3 keV.

^f Band(I): Band based on (4⁻) at 2016.27 keV.

γ (110Ru)

E_i (level)	\mathtt{J}_{i}^{π}	E_{γ}^{\ddagger}	${\rm I}_{\gamma}{}^{\ddagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	α ^{†@}	Comments
240.73	2+	240.7 [§] 1	100\$	0.0 0+	E2	0.0569	$\alpha(K)$ =0.0485 7; $\alpha(L)$ =0.00686 10; $\alpha(M)$ =0.001267 18; $\alpha(N+)$ =0.000206 3 $\alpha(N)$ =0.000198 3; $\alpha(O)$ =7.97×10 ⁻⁶ 12 B(E2)(W.u.)=66 5 Mult.: A ₂ =0.229 101, A ₄ =0.195 153 from $\gamma(\theta)$ in 1972WI15. $\alpha(K)$ exp/ $\alpha(L)$ exp≈4.0 in 1970Wa05, $\alpha(K)$ exp measurements in 1990Ay02, but the value was not given by the authors.
612.86	(2+)	372.1 [§] <i>1</i>		240.73 2+	(M1+E2)	0.0114 <i>19</i>	$\alpha(K)$ =0.0099 <i>16</i> ; $\alpha(L)$ =0.0012 <i>3</i> ; $\alpha(M)$ =0.00023 <i>5</i> ; $\alpha(N+)$ =3.8×10 ⁻⁵ <i>8</i> $\alpha(N)$ =3.6×10 ⁻⁵ <i>7</i> ; $\alpha(O)$ =1.74×10 ⁻⁶ 22 Mult.: From ¹¹⁰ Tc β ⁻ decay (1990Ay02), based on conversion electron measurements, but the value was not given by the authors.
		612.9 [§] <i>1</i>		0.0 0+	[E2]	0.00300 5	$\alpha(K)$ =0.00262 4; $\alpha(L)$ =0.000315 5; $\alpha(M)$ =5.78×10 ⁻⁵ 8; $\alpha(N+)$ =9.73×10 ⁻⁶ 14 $\alpha(N)$ =9.27×10 ⁻⁶ 13; $\alpha(O)$ =4.60×10 ⁻⁷ 7 B(E2)(W.u.)=0.6 3 Mult.: From ¹¹⁰ Tc β ⁻ decay (1990Ay02), based on conversion electron measurements, but the value was not given by the authors.
663.35	4+	422.6 [§] 1	100 [§]	240.73 2+	E2	0.00887 13	$\alpha(K)$ =0.00769 11; $\alpha(L)$ =0.000971 14; $\alpha(M)$ =0.000178 3; $\alpha(N+)$ =2.97×10 ⁻⁵ 5 $\alpha(N)$ =2.84×10 ⁻⁵ 4; $\alpha(O)$ =1.325×10 ⁻⁶ 19 B(E2)(W.u.)=86 10 Mult.: From ¹¹⁰ Tc β ⁻ decay (1990Ay02), based on conversion electron measurements, but the value was not given by the authors and the band structure.
859.96	(3 ⁺)	196.6 [§] <i>I</i> 247.1 [§] <i>I</i> 619.2 [§] <i>I</i>	1.53 [§] 20 20.7 [§] 20 100 [§] 3	663.35 4 ⁺ 612.86 (2 ⁺) 240.73 2 ⁺			
1084.37	(4 ⁺)	224.5\\$ 5 421.0\\$ 5 471.5\\$ 1 843.6\\$ 2	2.70 [§] 16 50.6 [§] 14 100 [§] 13 62 [§] 8	859.96 (3 ⁺) 663.35 4 ⁺ 612.86 (2 ⁺) 240.73 2 ⁺			I _y : 15.9 10 in ²⁵² Cf SF decay; 15.7 in
1137.33 1239.1	(0 ⁺) 6 ⁺	896.7 [§] 1 575.7 5	100 [§] 100	240.73 2 ⁺ 663.35 4 ⁺	E2	0.00356 5	α =0.00356 5; α (K)=0.00311 5; α (L)=0.000377 6; α (M)=6.92×10 ⁻⁵ 10; α (N+)=1.163×10 ⁻⁵ 17 α (N)=1.108×10 ⁻⁵ 16; α (O)=5.45×10 ⁻⁷ 8 B(E2)(W.u.)=1.2×10 ² 5 Mult.: From ²⁴⁸ Cm SF decay (1994Sh26), based on $\gamma\gamma(\theta)$ but A ₂ and A ₄ values were not given by the authors.

γ ⁽¹¹⁰Ru) (continued)</sup>

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}{}^{\ddagger}$	\mathbf{E}_f	\mathtt{J}_f^{π}
1375.41	(5 ⁺)	291.0 5	3.60 20	1084.37	(4 ⁺)
	, ,	515.5 5	100	859.96	(3^{+})
		711.9 5	20.3 6	663.35	4+
1396.42	2+	259.2 [§] 1	3.04 [§] 14	1137.33	(0^{+})
		536.3 [§] 1	3.5 [§] 7	859.96	(3^{+})
		733.1 [§] 1	12.0 [§] 9	663.35	4+
		783.6 [§] 1	9.7 [§] <i>13</i>	612.86	(2^{+})
		1155.8 [§] <i>1</i>	100 <mark>\$</mark> 6	240.73	2+
		1396.4 [§] 2	29 <mark>\$</mark> 3	0.0	0_{+}
1618.37	(4^{+})	534.0 5	26.7 21	1084.37	(4^+)
		758.5 5	67 <i>4</i> 100	859.96	(3 ⁺)
		1005.7 <i>5</i> 1377.6 <i>5</i>	13.3 8	612.86 240.73	(2^+) 2^+
1655.85	$(2,3,4^+)$	796.1 [§] 2	37 [§] 3	859.96	(3 ⁺)
1055.05	(2,3,4)	1043.6 5	25.0 [§] 20	612.86	(2^+)
		1415.1 [§] <i>I</i>	100 [§] 7	240.73	2+
1684.27	(6 ⁺)	308.7 5	7.7 4	1375.41	(5 ⁺)
1001.27	(0)	445.2 5	11.1 7	1239.1	6+
		599.8 <i>5</i>	100	1084.37	(4 ⁺)
		1021.0 5	23 4	663.35	4+
1799.5	$(2,3,4^+)$	1186.6 [§] <i>3</i>	100 <mark>§</mark>	612.86	(2^{+})
1820.49	$(2,3,4^+)$	164.7 [§] <i>1</i>	50 [§] 9	1655.85	$(2,3,4^+)$
		424.2 [§] 1	100 <mark>\$</mark> 16	1396.42	2+
		960.5 [§] 1	20.5 [§] 23	859.96	(3^{+})
		1579.0 [§] 2	43 [§] 5	240.73	2+
1860.8	(5^+)	242.4 5	100	1618.37	(4^{+})
		776.4 5	12.5 8	1084.37	(4+)
		1000.9 5	12.5 11	859.96	(3^{+})
1883.34	$(2,3,4^+)$	1642.6 [§] 2	100 [§]	240.73	2+
1944.5	8+	705.3 5	100	1239.1	6+
1978.21	$(2^+,3,4^+)$	1314.7 [§] 2	100 [§] 15	663.35	4+
		1737.8 [§] 3	62 [§] 8	240.73	2+
2003.57	$(2,3,4^+)$	1390.7 [§] 2	100 <mark>\$</mark>	612.86	(2^{+})
2016.27	(4^{-})	398.0 5	<22.5	1618.37	(4 ⁺)
		931.8 <i>5</i> 1156.4 <i>5</i>	27 <i>4</i> 100	1084.37	(4^+)
		1353.0 5	29 3	859.96 663.35	(3 ⁺) 4 ⁺
2020.9	(7^+)	645.5 5	100	1375.41	(5^+)
		781.7 <i>5</i>	7.4 7	1239.1	6+
2042.39	(2,3,4)	221.9 [§] 1	100 <mark>§</mark>	1820.49	$(2,3,4^+)$
2047.03	$(1,2^+)$	1806.4 [§] 3	100 [§] 8	240.73	2+
		2046.8 [§] 4	100 [§] 18	0.0	0^{+}
2085.27	$(2,3,4^+)$	1225.3 [§] <i>I</i>	100 <mark>\$</mark> 10	859.96	(3^{+})
	()- / /	1844.5 [§] 3	23 [§] 3	240.73	2+
2110.8	(6^+)	492.4 5	43 5	1618.37	(4^{+})
	· ·	735.4 5	4.8 6	1375.41	(5^{+})
		1026.4 5	100	1084.37	(4^{+})
2143.1	$(1^+, 2, 3, 4^+)$	1902.4 [§] 3	100 [§]	240.73	2+
2145.3	(5^{-})	129.1 [#]		2016.27	(4^{-})

γ (110Ru) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$oxed{\mathrm{E}_f} oxed{\mathrm{J}_f^\pi}$	Mult.	Comments
2145.3	(5 ⁻)	527.1 <i>5</i> 1060.8 <i>5</i> 1481.9 <i>5</i>	33 <i>4</i> 40 <i>4</i> 100	1618.37 (4 ⁺) 1084.37 (4 ⁺) 663.35 4 ⁺		
2152.69	$(2,3,4^+)$	1292.9 [§] 2 1539.5 [§] 3	16.7 [§] 24 100 [§] 12	859.96 (3 ⁺) 612.86 (2 ⁺)		
2204.6 2242.8	$(2,3,4^+)$ (6^-)	1963.9 [§] 4 226.5 5	100 [§] 21.5 <i>11</i>	240.73 2 ⁺ 2016.27 (4 ⁻)		
		867.5 5	100	1375.41 (5+)	D	Mult.: From 2009Lu18:(867.5 γ)(515.5 γ)(θ): A_2 =-0.052 14, A_4 =-0.002 21. In 2009Lu01, A_4 = +0.002 21 is quoted. The theoretical values for a pure dipole transition are: A_2 =-0.071, A_4 =0; and for a pure quadrupole transition are A_2 =-0.112 and A_4 =-0.054. (867.5 γ)(394.5 γ)(θ): A_2 =-0.079 14, A_4 =+0.023 20. The theoretical values for a pure dipole transition are: A_2 =-0.071, A_4 =0; and for a pure quadrupole transition are A_2 =-0.007 and A_4 =-0.023.
2266.3 2328.0	(2,3,4 ⁺) (6 ⁻)	2025.6\\$ 4 182.8 5 312.0 5 643.6 5 952.5 5 1088.8 5	100 [§] 3.7 3 12.7 6 13.5 18 100 41 13	240.73 2 ⁺ 2145.3 (5 ⁻) 2016.27 (4 ⁻) 1684.27 (6 ⁺) 1375.41 (5 ⁺) 1239.1 6 ⁺		
2337.9	(2+,3,4+)	1674.6 [§] 4 2096.8 [§] 7	86 [§] 17 100 [§] 26	663.35 4 ⁺ 240.73 2 ⁺		
2367.0 2397.0	$(2,3,4^+)$ (8^+)	2126.2 [§] 5 452.5 5 712.7 5	100 [§] 12.9 <i>19</i> 100	240.73 2 ⁺ 1944.5 8 ⁺ 1684.27 (6 ⁺)		
2413.03		366.0 [§] 1	100 [§]	2047.03 (1,2+)		
2419.6 2426.5	$(1,2^+)$ (7^-)	1282.3 [§] 3 183.6 5 742.3 5	100 [§] 6.0 20 20 3	1137.33 (0 ⁺) 2242.8 (6 ⁻) 1684.27 (6 ⁺)		
		1187.2 5	100	1239.1 6+	D	Mult.: From 2009Lu18: $(1187.2\gamma)(575.5\gamma)(\theta)$: $A_2=-0.086$ 11, $A_4=+0.010$ 17. The theoretical values for a pure dipole transition are: $A_2=-0.071$, $A_4=0$; and for a pure quadrupole transition are: $A_2=-0.102$ and $A_4=-0.051$.
2491.4	$(2,3,4^+)$	2250.6 [§] 6	100 <mark>§</mark>	240.73 2+		-
2516.6	(7-)	188.7 [#] 371.4 5 832.3 5 1277.5 5	0.2 6.8 <i>13</i> 6.1 <i>25</i> 100	2328.0 (6 ⁻) 2145.3 (5 ⁻) 1684.27 (6 ⁺) 1239.1 6 ⁺		
2552.04	$(1,2^+)$	1414.7 [§] 2	100 [§]	1137.33 (0 ⁺)		
2573.8 2637.4	(2,3,4 ⁺) (8 ⁻)	2333.0 [§] 7 210.9 5 309.3 5 394.5 5	100 [§] 42.5 <i>11</i> 15.1 <i>7</i> 100 38.1 <i>13</i>	240.73 2 ⁺ 2426.5 (7 ⁻) 2328.0 (6 ⁻) 2242.8 (6 ⁻) 2020.9 (7 ⁺)		
2759.5 2764.6	10 ⁺ (8 ⁻)	616.5 5 815.0 5 247.9 5 436.7 5 820.2 5	100 34 3 100 12.5 21	1944.5 8 ⁺ 2516.6 (7 ⁻) 2328.0 (6 ⁻) 1944.5 8 ⁺		

$\gamma(^{110}\text{Ru})$ (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	J_f^π
2776.9	(9 ⁺)	756.0 5	100	2020.9	(7 ⁺)
2892.7	(9-)	255.4 5	15.2 11	2637.4	(8-)
20,2.,	(>)	466.3 5	47.1 18	2426.5	(7^{-})
		948.2 5	100	1944.5	8+
2942.8	(3 ⁻)	2082.8 [§] 4	100 [§]	859.96	(3^+)
3006.06	$(1,2^+)$	853.4 [§] 2	18 [§] 3	2152.69	$(2,3,4^+)$
		1868.6 [§] 5	27 <mark>§</mark> 4	1137.33	(0^{+})
		2393.0 [§] 7	100 [§] 14	612.86	(2^{+})
3019.5	$(2,3,4^+)$	2406.6 [§] 8	100 [§]	612.86	(2^{+})
3041.3	(9^{-})	276.8 5	5.8 13	2764.6	(8^{-})
		524.7 <i>5</i>	41 4	2516.6	(7^{-})
		1096.8 5	100	1944.5	8+
3072.2	$(2,3,4^+)$	1025.2 [§] 3	58 <mark>§</mark> 11	2047.03	$(1,2^+)$
		2212.2 [§] 5	42 [§] 5	859.96	(3^{+})
		2459.4 [§] 8	100 11	612.86	(2^{+})
3091.39		1270.9 [§] <i>1</i>	100 [§]	1820.49	$(2,3,4^+)$
3113.0	$(9,10^+)$	716.0 5	100	2397.0	(8^{+})
3175.3	(10^{-})	282.6 5	14.5 7	2892.7	(9-)
		537.9 5	100	2637.4	(8-)
3193.3	$(9,10^+)$	416.4 5	100	2776.9	(9^+)
		796.3 5	24 5	2397.0	(8+)
22542	(10±)	1249.0 5	51 5	1944.5	8+
3254.2	(10^{+})	857.3 5	100	2397.0	(8 ⁺)
3337.1	(10^{-})	295.9 5	21 5	3041.3	(9-)
		572.4 <i>5</i> 577.7 [#]	100	2764.6	(8 ⁻) 10 ⁺
3485.3	(11=)	309.9 5	0.1 19 <i>3</i>	2759.5 3175.3	(10^{-})
3483.3	(11^{-})	592.6 <i>5</i>	19 3	2892.7	(10) (9 ⁻)
		725.9 5	87 9	2759.5	10+
3627.1	(11^{+})	850.2 5	100	2776.9	(9^+)
3647.1	12+	887.6 <i>5</i>	100	2759.5	10+
3689.8	(11^{-})	352.8 <i>5</i>	8.6 23	3337.1	(10^{-})
	()	648.5 5	100	3041.3	(9-)
		930.3 5	37 9	2759.5	10+
3700.1	(12^{+})	940.5 5	100	2759.5	10 ⁺
3719.0	(12^{+})	464.9 5	≤2.9	3254.2	(10^{+})
		525.7 5	100	3193.3	$(9,10^+)$
		959.5 <i>5</i>	7.1 12	2759.5	10+
3818.6	(12^{-})	333.3 5	9.9 10	3485.3	(11^{-})
		643.2 5	100	3175.3	(10^{-})
3956.9	(12^{+})	843.9 5	100	3113.0	$(9,10^+)$
4038.7	(12^{-})	348.8 <i>5</i> 701.7 <i>5</i>	15 <i>4</i> 100	3689.8 3337.1	(11 ⁻) (10 ⁻)
4153.8	(12^+)	899.6 <i>5</i>	100	3254.2	(10^{+})
4195.5	(12^{-}) (13^{-})	376.8 5	≤22.5	3818.6	(10^{-}) (12^{-})
11/3,3	(10)	710.2 5	100	3485.3	(12^{-}) (11^{-})
4351.0	14 ⁺	650.9 <i>5</i>	14.0 4	3700.1	(12^{+})
		703.9 5	100	3647.1	12+
4370.5	(14^{+})	651.5 5	100	3719.0	(12^{+})
	` /	670.4 5	≤1.8	3700.1	(12^{+})
4446.3	(13^{-})	756.4 <i>5</i>	100	3689.8	(11^{-})
4556.1	(13^{+})	929.0 5	100	3627.1	(11^{+})

$\gamma(^{110}\text{Ru})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	$E_i(level)$	J_i^{π}	Ε _γ ‡	I_{γ}^{\ddagger}	E_f J_f^{π}
4566.4	$\overline{(14^{-})}$	370.9 5	10.5 23	4195.5 (13 ⁻)	5302.5	(15^{-})	856.2 5	100	4446.3 (13 ⁻)
		747.9 5	100	3818.6 (12 ⁻)	5412.7	(16^{-})	846.3 5	100	4566.4 (14-)
4874.0	(14^{-})	835.3 5	100	4038.7 (12-)	5544.1	(15^{+})	988.0 <mark>&</mark> <i>10</i>	100 <mark>&</mark>	4556.1 (13 ⁺)
5010.8	(15^{-})	815.3 5	100	4195.5 (13 ⁻)	6017.4	(18^{+})	874.4 5	100	5143.0 (16 ⁺)
5124.8	(14^{+})	971.0 <mark>&</mark> <i>10</i>	100 &	4153.8 (12 ⁺)	6050.8	18+	900.1 5	100	5150.7 16 ⁺
5143.0	(16^{+})	772.5 5	100	4370.5 (14 ⁺)	7053.8	(20^+)	1003.0 ^{&} 10	100 <mark>&</mark>	6050.8 18 ⁺
5150.7	16 ⁺	799.7 5	100	4351.0 14+	8159.8	(22^{+})	1106.0 <mark>&</mark> <i>10</i>	100 <mark>&</mark>	$7053.8 (20^+)$

[†] Additional information 1. [‡] From 252 Cf SF Decay (2009Zh24,2009Lu18), unless otherwise stated. Δ E γ = 0.5 keV was estimated by the evaluators.

[§] From 110 Tc β^- decay.

[&]amp; From $^{238}U(\alpha,F\gamma)$.

[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Placement of transition in the level scheme is uncertain.

Level Scheme (continued)

Intensities: Type not specified

Legend

 $\frac{\frac{(2,3,4^+)}{(5^-)}}{\frac{(1^+,2,3,4^+)}{(1^+,2,3,4^+)}}$

(6⁺) $\frac{(3,3,4^+)}{(1,2^+)}$

(4-)

(4+)

(5⁺)

 (4^{+})

(3⁺)

859.96

