

BEST AVAILABLE COPY

WO 2005/024182

PCT/GB2004/003597

CLAIMS

1. An acoustic telemetry apparatus for communicating digital data from a down-hole location through a borehole to
5 the surface or between locations within the borehole, said apparatus comprising a receiver and a transmitter separated by an acoustic channel wherein the acoustic channel has a cross-sectional area of 58 cm² or less and the transmitter comprises an electro-active transducer generating a
10 modulated continuous waveform.

2. The acoustic telemetry apparatus of claim 1 wherein the waveform is modulated to transmit the data.

15 3. The acoustic telemetry apparatus of claim 1 the waveform is modulated to transmit encoded data comprising the results of more than one or two different types of measurements.

20 4. The acoustic telemetry apparatus of claim 1 wherein the cross-sectional diameter of the acoustic channel is 25 cm² or less.

25 5. The acoustic telemetry apparatus of claim 1 wherein the acoustic channel is a column of liquid extending from the surface to a down-hole location.

30 6. The acoustic telemetry apparatus of claim 5 wherein the acoustic channel is a continuous liquid-filled tubing string temporarily suspended in the borehole.

7. The apparatus of claim 5 wherein the acoustic

BEST AVAILABLE COPY

PCT/GB2004/003597

WO 2005/024182

channel is a tubular control line permanently or quasi-permanently installed in the borehole.

8. The apparatus of claim 7 wherein the acoustic
5 channel is a tubular control line permanently or quasi-permanently installed in the well bore providing simultaneously hydraulic control to a down-hole installation.

10 9. The acoustic telemetry apparatus of claim 5 wherein the column of liquid has a viscosity of less than 3×10^{-3} NS/m².

10. The acoustic telemetry apparatus of claim 1 further
15 comprising an acoustic source installed at the surface and a receiver installed at the down-hole location to enable two-way communication through the acoustic channel.

11. The acoustic telemetry apparatus of claim 1 further
20 comprising a signal processing device adapted to filter the reflected wave signals or other noise from the upwards traveling modulated wave signals.

12. The acoustic telemetry apparatus of claim 1 wherein
25 the waveform has narrow-band of less than +/- 10 percent half-width deviation from a nominal frequency.

13. The acoustic telemetry apparatus of claim 1 wherein
the waveform is preferable a sinusoidal wave.

30 14. The acoustic telemetry apparatus of claim 1 wherein
the transducer comprises piezo-electric material.

BEST AVAILABLE COPY

WO 2005/024182

PCT/GB2004/003597

15. Use of the apparatus of claim 1 in a well stimulation operation.

16. A method of communicating digital data from a
5 down-hole location through a borehole to the surface comprising the steps of:

establishing a column of liquid as acoustic channel through said borehole, said column having a cross-sectional area of 58 cm² or less;

10 generating at the down-hole location an acoustic wave carrier signal within said acoustic channel using an electro-active transducer;

modulating amplitude and/or phase of said carrier wave in response to a digital signal; and

15 detecting at the surface the modulated acoustic waves traveling within said acoustic channel.

17. The method of claim 16 further comprising the steps of performing measurements of down-hole parameters, encoding
20 said measurements into a bitstream; and controlling the transducer in response to said encoded bitstream.

18. The method of claim 16 further comprising the step of selecting the frequency of the carrier wave in the range
25 of 0.1 to 100Hz.

19. A method of stimulating a wellbore comprising the steps of

30 performing operations designed to improve the production of said wellbore while simultaneously establishing from the surface to a down-hole location a column of liquid as acoustic channel through said borehole;

BEST AVAILABLE COPY

WO 2005/024182

PCT/GB2004/003597

generating at the down-hole location an acoustic wave carrier signal within said acoustic channel using an electro-active transducer;

modulating amplitude and/or phase of said carrier
5 wave in response to a digital signal; and

detecting at the surface the modulated acoustic waves traveling within said acoustic channel..

20. The method of claim 19 wherein the step of
10 establishing from the surface to a down-hole location a column of liquid as acoustic channel comprises the step of lowering a small-diameter coiled tubing string into the borehole

15 21. An acoustic telemetry apparatus for digitally communicating from the surface to a down-hole location through a borehole or between locations within the borehole, said apparatus comprising an acoustic source installed at the surface separated by an acoustic channel from a receiver
20 installed at the down-hole location, wherein the acoustic channel has a cross-sectional area of 58 cm² or less and the acoustic source comprises an electro-active transducer generating a modulated continuous waveform.

25 22. The acoustic telemetry apparatus of claim 21, wherein the acoustic source provides operational commands to the down-hole receiver.

23. The acoustic telemetry apparatus of claim 21
30 wherein the cross-sectional diameter of the acoustic channel is 25 cm² or less.

BEST AVAILABLE COPY

WO 2005/024182

PCT/GB2004/003597

24. The acoustic telemetry apparatus of claim 21
wherein the acoustic channel is a column of liquid extending
from the surface to a down-hole location.

5 25. The acoustic telemetry apparatus of claim 24,
wherein the acoustic channel is a continuous liquid-filled
tubing string temporarily suspended in the borehole.

10 26. The acoustic telemetry apparatus of claim 24
wherein the acoustic channel is a tubular control line
permanently or quasi-permanently installed in the borehole.

15 27. The acoustic telemetry apparatus of claim 26
wherein the acoustic channel is a tubular control line
permanently or quasi-permanently installed in the well bore
providing simultaneously hydraulic control to a down-hole
installation.

20 28. The acoustic telemetry apparatus of claim 24
wherein the column of liquid has a viscosity of less than
 3×10^{-3} NS/M²

25 29. The acoustic telemetry apparatus of claim 21,
further comprising a down-hole transmitter and a surface
receiver separated by the acoustic channel, wherein the
down-hole transmitter is adapted for digital communication
with the surface receiver.

BEST AVAILABLE COPY

PCT/GB2004/003597

WO 2005/024182

30. The acoustic telemetry apparatus of claim 29,
wherein the acoustic source installed at the surface
communicates with the down-hole receiver in a frequency band
that is outside the frequency band of the communication from
the down-hole transmitter with the surface receiver.
- 5