

10

Photosynthesis in Higher Plants

Early Experiments

Scientist name	Discovery/Hypothesis
Joseph Priestley	Plants restore to the air whatever breathing animals and burning candles remove.
Jan Ingenhousz	Sunlight is essential to the plant process that somehow purifies the air fouled by burning candles or breathing animals.
	Only the green part of the plants could release oxygen.
Julius von Sachs	Green parts in plants is where glucose is made, and that the glucose is usually stored as starch.
T.W Engelmann	Described the first action spectrum of photosynthesis.
Cornelius van Niel	Photosynthesis is essentially a light-dependent reaction in which hydrogen from a suitable oxidisable compound reduces carbon dioxide to carbohydrates. O ₂ evolved by the green plant comes from H ₂ O, not from carbon dioxide.

Where does photosynthesis take place?

- . In the chloroplast.
- The membrane system is responsible for trapping the light energy and also for the synthesis of ATP and NADPH.
- In stroma, enzymatic reactions synthesise sugar, which in turn forms starch.

How many types of pigments are involved in photosynthesis?

- Four pigments: Chlorophyll a (bright or blue green), Chlorophyll b (yellow green), Xanthophylls (yellow), Carotenoids (yellow to yellow-orange)
- Most of the photosynthesis takes place in the blue and red regions of the spectrum.
- Chlorophyll a is the chief pigment associated with photosynthesis.
- Chlorophyll b, xanthophylls and carotenoids are called accessory pigments, which absorb light and transfer the

energy to chlorophyll a. They also protect chlorophyll a from photo-oxidation.

What is light reaction?

- * 'Photochemical' phase: include light absorption, water splitting, oxygen release, and the formation of high-energy chemical intermediates, ATP and NADPH.
- PS I and PS II contain photosynthetic pigments which absorb light.
- The single chlorophyll a molecule forms the reaction centre of each photosystem.
- * In PS I the reaction centre chlorophyll a has an absorption peak at 700 nm, hence is called P_{700} , while in PS II it has absorption maxima at 680 nm, and is called P_{680} .

The electron transport

- PS II absorbs light of 680 nm. Its e⁻ excite and are picked up by an electron acceptor which passes them to an electrons transport system made up of cytochromes, finally passed on to PS I, producing ATP as a byproduct.
- ❖ The e⁻ lost by PS II are compensated by photolysis of water, thus producing e⁻ and O₂.
- Simultaneously, PSI absorbs light of 700 nm. Its e⁻ excite and are transported by cytochromes to NADP⁺ which is reduced to NADPH + H⁺.
- * This is called **Z-scheme** of electron transport.

Cyclic and non-cyclic photophosphorylation

- * ATP synthesis using light energy is called phosphorylation.
- When the two photosystems work in a series, first PS II and then the PS I, a process called non-cyclic photo-phosphorylation occurs. Both ATP and NADPH + H⁺ are synthesised by it. Occurs in granal lamellae.
- Stromal lamellae lack PS II as well as NADP reductase enzyme, only PS I is functional, the electron is circulated within it, thus causing cyclic photo-phosphorylation.

Chemiosmotic Hypothesis

- * Explains how actually ATP is synthesised in the chloroplast.
- A proton gradient develops across the thylakoid membrane during light reaction in 3 steps:

- + Protons or hydrogen ions that are produced by the splitting of water accumulate within the lumen of the thylakoids.
- + As electrons move through the photosystems, protons are transported across the membrane by the activity of a proton carrier which also acts as a electron transporter.
- Protons are removed from stroma for reduction of NADP⁺ to NADPH + H⁺.
- Hence, within the chloroplast, protons in the stroma decrease in number, while in the lumen there is accumulation of protons.
- This proton gradient is used by ATP synthase (present in the thylakoid membrane) for synthesis of ATP.
- Chemiosmosis requires a membrane, a proton pump, a proton gradient and ATP synthase.
- ❖ ATP and NADPH + H⁺ are used in the biosynthetic phase of photosynthesis (dark reaction).

Calvin cycle

- Process of synthesis of sugar by reducing atmospheric CO₂.
- ❖ Primary acceptor of CO₂ is a 5-C sugar called RuBP.
- * Three stages: carboxylation, reduction and regeneration.
 - + Carboxylation-fixation of CO₂ to form two molecules of 3-PGA, the most crucial step of the Calvin cycle, catalysed by the enzyme RuBP carboxylase (RuBisCO).
 - Reduction-a series of reactions reduce fixed CO₂ into glucose, by utilizing 2 molecules of ATP for phosphorylation and two of NADPH for reduction per CO₂ molecule fixed.
 - + Regeneration-involves regeneration of RuBP to continue uninterrupted calvin cycle. Uses one ATP.
- ❖ For every CO₂ molecule entering the Calvin cycle, 3 molecules of ATP and 2 of NADPH are required.

C₄ pathway

- * Hatch and Slack cycle.
- First stable product of CO₂ fixation in mesophyll cells is a 4-C compound OAA.
- RuBisCO is absent in the mesophyll cells of such plants.
 - In mesophyll cells, PEPcase converts PEP into OAA by using atmospheric CO₂, and converted to malic acid or aspartic acid.

- + The C₄ acid is transported to bundle sheath cells, converted to a 3-C compound by releasing CO₂. This CO₂ is fixed by RuBisCO to synthsize glucose. The 3-C compound thus produced is transported back to the mesophyll cell and converted to PEP.
- Present in plants like Maize, sugarcane and sorghum.
- Kranz anatomy: large bundle sheath cells form several layers around the vascular bundles; have a large number of chloroplasts, thick walls impervious to gaseous exchange and no intercellular spaces.
- ❖ The photosynthetic efficiency of C₄ plants is better than C₃ plants.

Photorespiration

- In C₃ plants some O₂ binds to RuBisCO, and hence CO₂ fixation is decreased.
- Here the RuBP instead of being converted to 2 molecules of PGA binds with O₂ to form one molecule of phosphoglycerate and phosphoglycolate (2 Carbon).
- Sugar and ATP not synthesized, hence called a wasteful process.
- ❖ Absent in C₄ plants.

Factors affecting photosynthesis

- Light: rarely a limiting factor in nature. There is a linear relationship between incident light and CO₂ fixation rates at low light intensities. At higher light intensities, gradually the rate does not show further increase as other factors become limiting.
- * CO₂ concentration: Major limiting factor. C₄ plants show saturation at about 360 μlL⁻¹ while C₃ only beyond 450 μlL⁻¹.
- ❖ Temperature: The dark reactions being enzymatic are temperature controlled. The C₄ plants respond to higher temperatures and show higher rate of photosynthesis while C₃ plants have a much lower temperature optimum.
- Water: Water stress causes wilting of leaves and the stomata to close hence reducing the CO₂ availability.