Stages in a measurement system

0.1 Amplifiers

The voltage output from a transducer tends to be weak and this needs to be amplified. Operational amplifiers are normally around 1cm in size.

Where A_v is the gain and $(V_p - V_n)$ can be from a Wheatstone bridge. Operational amplifiers are quite an old technology (since WW2) and are still used because they are cheap and convenient.

Pin-out for a 8-pin op-amp

0.1.1 Equivalent op-amp circuit and conditions of an ideal op-amp

Terminology:

- Differential input voltage: $V_i = V_p - V_n$

• Input resistance: r_{in}

 \bullet Output resistance: r_{out}

 \bullet Open-circuit output voltage: V_{out}

- Differential voltage gain: A_v

Conditions of an ideal op-amp	In reality
No current into input terminals: $I_p = I_n = 0$	
Infinite input resistance: $r_{in} \to \infty$	$r_{in} > 200 \mathrm{k}\Omega$
Zero Output resistance $r_{out} = 0$	$r_{out} < 1 \mathrm{k}\Omega$
Infinite differential (or open-loop) gain $A_v \to \infty$	$A_v > 100,000$
Zero common-mode voltage gain $A_{cm} = 0$	A_v also frequency dependant