Übungen zur Einführung in die Geometrie und Topologie - Blatt 9

Uni Bonn, SS 2023

Aufgabe 33. Sei $p: \overline{X} \to X$ eine Überlagerung. Beweise oder widerlege:

- (a) p ist ein lokaler Homöomorphismus, d.h zu jedem Element $\overline{x} \in \overline{X}$ gibt es eine offene Umgebung U derart, dass $p(U) \subseteq X$ offen und $p|_U \colon U \to p(U)$ ein Homöomorphismus ist.
- (b) p ist eine Identifizierung.
- (c) Jeder lokale Homöomorphismus ist eine Überlagerung.

Aufgabe 34. Sei $p \colon \overline{X} \to X$ eine Überlagerung und $f \colon Y \to X$ eine Abbildung. Betrachte das Pullback

$$\overline{Y} \xrightarrow{\overline{f}} \overline{X} \\
\downarrow p \\
Y \xrightarrow{f} X$$

Beweise oder widerlege, dass $\overline{p} \colon \overline{Y} \to Y$ eine Überlagerung ist.

Aufgabe 35. Konstruiere ein explizites Model für die universelle Überlagerung von $S^1 \times \mathbb{RP}^2 \times S^2$. (Begründe die Antwort.)

Aufgabe 36. Sei $p: \overline{X} \to X$ eine Überlagerung von wegweise zusammenhängenden Räumen. Sei $\pi_1(X)$ eine endlich erzeugte freie abelsche Gruppe.

Beweise oder widerlege, dass dann auch $\pi_1(\overline{X})$ eine endlich erzeugte freie abelsche Gruppe ist.