LÝ THUYẾT ĐỒ THỊ

Nội dung

- Đồ thị Euler
- Đồ thị Hamilton

7 cầu ở Konigsberg

Mô hình đồ thị

Đường đi, chu trình

- ✓ Chu trình Euler là chu trình đơn chứa mọi cạnh của G
- ✓ Đường đi Euler là đường đi đơn chứa mọi cạnh của G

Đồ thị Euler

- G đồ thị Euler:
 - ✓ G liên thông,
 - ✓ G có chu trình Euler.
- G- đồ thị nữa Euler:
 - ✓ G liên thông,
 - ✓ G có đường Euler

Tính chất

G = (V, E) - liên thông

- ☐ G là đồ thị Euler
- $\Leftrightarrow \forall v \in V \text{ dều có bậc chẳn}$ (khác không)

Tính chất

G = (V, E) - liên thông

- ☐ G là đồ thị nữa Euler
- ⇔ trong G tồn tại duy nhất 2 đỉnh bậc lẽ

Thuật toán

- ☐ Input: G đồ thị liên thông có các đỉnh là đỉnh bậc chẳn
- ☐ Output: chu trình Euler

Thuật toán

- C = chọn 1 chu trình bất kỳ
- H = G đã xóa đị cạnh của C
- While(H còn cạnh) do
 - C' = chu trình trong H nhưng có đi qua đỉnh trong C
 - H = H đã xóa đi cạnh của C' và đỉnh treo;
 - C = C cộng thêm C' được chèn phù hợp

Ví dụ

Ví dụ

□ VD

Đồ thị sau có các đường đi Euler là:

d1: 1 2 3 4 2 5 4 1 5

d2: 1 2 4 3 2 5 1 4 5

Thuật toán

✓ Thuật toán FLEURY

Đồ thi Hamilton

Đường đi, chu trình

$$G = (V, E)$$

- Chu trình (có hướng) Hamilton là chu trình sơ cấp(có hướng) chứa tất cả các đỉnh của G
- Đường đi Hamilton G là đường sơ cấp chứ tất cả các đỉnh của G

Đồ thị Hamilton

- Đồ thị Hamilton là đồ thị có chu trình Hamilton.
- Đồ thi nữa Hamiltonr là đồ thị có đường Hamilton

Đồ thi Hamilton

Ví dụ

Ví dụ

Đồ thị không nửa Euler

Đồ thị Halmilton

Đồ thi Hamilton

ĐĽ1

• G – đơn đồ thị, $|V| \ge 3$, $\forall v \in V$, $\deg(v) \ge |V|/2$, thì G đồ thị Hamilton

ĐL2

• G – đơn đồ thị, $|V| \ge 3, \forall v \in V$, $\deg(v) \ge (n-1)/2$, thì G đồ thị nữa Hamilton

ĐL3

• G – đồ thị đầy đủ, thì G đồ thị nữa Hamilton

Đồ thị siêu khối

Mã Gray

 Dãy 2ⁿ chuổi của n bit khác nhau:

$$S_1S_2...S_2^n$$

Gọi là mã Gray nếu:

- ✓ $S_i \neq S_{i+1}$ khác nhau đúng 1 bít, $i = 1, ..., 2^n$ -1
- ✓ $S_1 \neq S 2^n$ khác nhau đúng 1 bít,

Siêu khối

Siêu khối cấp n là đồ thị có 2ⁿ đỉnh được gán nhán từ 0,1,..., 2ⁿ -1, trong đó hai đỉnh kề nhau nếu biểu diễn nhị phân n bít của chúng chỉ khác nhau đúng 1 bít

What NEXT?

Cây