Support Vector Machines

Based on the book titled Machine Learning & Pattern Recognition authored by C. Bishop and the slides prepared by A. Zisserman

Lecture outline

- Linear classification
 - a. Binary classifiers
 - b. Perceptron
- 2. SVM
 - a. SVM derivation
 - b. SVM optimization
 - c. Primal & dual formulation
 - d. Hard margin & soft margin
- SVM and kernels Nonlinear SVM
 - a. Linearly non-separable cases
 - b. Kernels
- Multiclass SVM
- 5. Advantages and disadvantages of SVM

Linear classification

Binary classification

Given training data (x_i, y_i) , for i=1,2,...,N, with

$$x_i \in \mathbb{R}^d$$
 and $y_i \in \{-1,1\}$,

Learn a classifier f(x) such that

$$f(\mathbf{x}_i) \left\{ \begin{array}{ll} \geq 0 & y_i = +1 \\ < 0 & y_i = -1 \end{array} \right.$$

 $=> y_i f(x_i) > 0$ for a correct classification

Linear Separability

Linearly separable

Not linearly separable

Linear classifiers

A linear classifier has the following form:

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$

- The 2D discriminant is a line
- w is the normal to the line.
 - It's called the weight vector
- b is the bias
- Both w and b are learned from the training data
 - To classify new data, we only need w and b

Linear classifiers (2)

A linear classifier has the following form:

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$

- In 3D, the discriminant is a plane
- In **4D** and above, the discriminant is a **hyperplane**

Perceptron classifier

The Perceptron algorithms is one way of finding the separating line/hyperplane $f(\mathbf{x}) = \mathbf{w}^{ op} \mathbf{x} + b$

Perceptron algorithm

- Initialize $\mathbf{w} = 0$
- Cycle through the data points {x_i,y_i}
 - If x_i is misclassified then, $w \leftarrow w + \alpha sign(f(x_i))x_i$
- Until all data points are correctly classified

Perceptron classifier (2)

Example in 2D

- Initialize $\mathbf{w} = 0$
- Cycle through the data points {x_i,y_i}
 - If xi is misclassified then, $w \leftarrow w + \alpha sign(f(x_i))x_i$
- Until all data points are correctly classified

Perceptron classifier (3)

- If the data is linearly separable, then the algorithm will converge
- Convergence can be slow
- Separating line can be very close to training data
- For better generalizability, we would prefer a bigger margin between training data and the separating line

What is the best "w"? The maximum margin solution

Maximum margin solution: most suitable under perturbations of the inputs

Support Vector Machine

A maximum margin classifier

SVM

 Find the separating hyperplane that maximizes the margin between the two classes

SVM

Find the separating hyperplane that maximizes the margin between the two classes

Margin = width of the boundary before hitting any data points

SVM

Find the separating hyperplane that maximizes the margin between the two classes

Margin = width of the boundary before hitting any data points Only the support vectors (points on the boundary) matter when learning the separating hyperplane

SVM: The separating hyperplane

SVM: The separating hyperplane

SVM: The separating hyperplane

SVM Decision Rule

- If we set labels y_i of two classes as +1 and -1
- We have

$$\begin{cases} \mathbf{w} \cdot \mathbf{x_i} + b \ge 1, & \text{if } y_i = 1 \\ \mathbf{w} \cdot \mathbf{x_i} + b \le -1, & \text{if } y_i = -1 \end{cases}$$

which is equivalent to

$$y_i(\mathbf{w} \cdot \mathbf{x_i} + b) \ge 1$$

 This is the constraint the separating hyperplane needs to satisfy

Maximize the margin

$$ar{w}\cdotar{x}_++b=1 \ ar{w}\cdotar{x}_-+b=-1$$

$$width = \underbrace{(ar{x}_+ - ar{x}_-)}_{rac{2}{ar{w}}} \cdot rac{ar{w}}{\|w\|} = rac{2}{\|w\|}$$

SVM: Optimization problem to find the separating hyperplane

- Margin is $\frac{2}{\|w\|}$
- SVM: maximize the margin, so that it becomes the optimization below

Minimize

$$\Phi(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

s.t.

$$y_i(\mathbf{w} \cdot \mathbf{x_i} + b) \ge 1 \text{ for all } i$$

Lagrangian constrained optimization

$$\min \quad f(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$

Lagrangian function:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

Solution: Lagrange method of optimization

Minimize
$$\Phi(\boldsymbol{w}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}$$
 s.t.
$$y_i(\boldsymbol{w} \cdot \boldsymbol{x_i} + b) \ge 1 \ for \ all \ i$$

· Lagrange Method

Minimize
$$L_p(b, \mathbf{w}, a_i) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n a_i \{ y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1 \}$$
 where $a_i \ge 0$

Solution: Lagrangian dual formulation

Primal variables

$$\frac{\partial L_P}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^l a_i y_i \mathbf{x}_i = 0$$
$$\frac{\partial L_P}{\partial b} = \sum_{i=1}^l a_i y_i = 0$$

Dual variables

$$\mathbf{w} = \sum_{i=1}^{l} a_i y_i \mathbf{x}_i, \quad \sum_{i=1}^{l} a_i y_i = 0$$

Solution: Lagrangian dual formulation (2)

- Substitute w and b in the original equation
- Dual problem: find a to maximize:

$$L_D(a_i) = \sum_{i=1}^{n} a_i - \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} a_i a_j y_i y_j x_i x_j$$

$$s.t. \quad \sum_{i=1}^n a_i y_i = \mathbf{0} \quad \text{and} \quad a_i \ge 0$$

This derivation won't be tested in the exams

Solution

Final solution

$$\mathbf{w} = \sum_{i=1}^{n} a_i y_i \mathbf{x_i}$$

a_i are non-zero only when x_i are support vectors!

$$\mathbf{w} = \sum_{\mathbf{x}_i \in SV} a_i y_i \mathbf{x}_i$$

• For a new observation x, we can classify it by the sign of

$$f(\mathbf{x}) = \sum_{\mathbf{x_i} \in SV} a_i y_i \mathbf{x_i} \, \mathbf{x} + b$$

Soft margin classifier

Hard margin vs soft margin

- So far we focus on the case where a separating hyperplane can be found to separate two classes correctly (Hard Margin Problem)
- What if there is no such a hyperplane that can separate two classes completely correct? (Soft Margin Problem?)

Soft margin classifier with "slack variables"

• Introduce slack variables ξ_i to describe additional offsets

• Introduce slack variables ξ_i to describe additional offsets

- Low c -> low training error, but can overfit.
- High c -> high training error but more generalizability
- C affects the number of support vectors chosen

Minimize

$$L_p(b, \mathbf{w}, a_i) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n a_i \{ y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1 \} + C \sum_{i=1}^n \xi_i$$

where

$$a_i \ge 0$$
 and $\xi_i \ge 0$

$$\xi_i \geq 0$$

 $C \geq 0$ is the regularization parameter

Linear SVM with hinge loss

$$\min_{w,b} rac{1}{2} w^T w + C \sum_{i=1} \max(0, 1 - y_i (w^T \phi(x_i) + b))$$

- The hinge loss term is applicable only to the Primal Formulation of the linear soft margin SVM. Not the Lagrangian Dual Formulation (up next!)
- Incorporates a margin or distance from the classification boundary into the cost calculation.
- Even if new observations are classified correctly, they can incur a penalty if the margin from the decision boundary is not large enough. The hinge loss increases linearly.

Soft margin: Solution

find a's to maximize

$$L_D(a_i) = \sum_{i=1}^n a_i - \frac{1}{2} \sum_{j=1}^n \sum_{i=1}^n a_i a_j y_i y_j x_i x_j$$

$$s.t. \quad \sum_{i=1}^n a_i y_i = \mathbf{0} \quad \text{and} \quad C \ge a_i \ge 0$$

The format of the solution is the same

$$\mathbf{w} = \sum_{\mathbf{x}_i \in SV} a_i y_i \mathbf{x}_i$$

Nonlinear SVM

Not linearly separable case

1-D example

$$\phi(x) = (x^2, x)$$

Solution: map the data to a higher dimensional space

Not linearly separable case

General idea: transfer the data x, typically to a higher dimensional space $\phi(x)$ where they are linearly separable

Nonlinear SVM

- General idea: transfer the data $\phi(x)$, typically to a higher dimensional space where they are linearly separable
- Major issue: Calculating $\phi(x)$ is often computationally expensive and time consuming.
- Do we really need to explicitly know $\phi(x)$?

$$L_D(a_i) = \sum_{i=1}^n a_i - \frac{1}{2} \sum_{j=1}^n \sum_{i=1}^n a_i a_j y_i y_j x_i x_j$$

Spoiler alert: No

Nonlinear SVM

$$L_D(a_i) = \sum_{i=1}^n a_i - \frac{1}{2} \sum_{j=1}^n \sum_{i=1}^n a_i a_j y_i y_j x_i x_j$$

- Do we really need explicitly know $\phi(x)$?
- If we have a kernel function

$$K(x_i,x_j)=\phi(x_i)\cdot\phi(x_j)$$

Then we don't actually need to know $\phi(x)$

This is the basis of the **Kernel Trick**

Kernel Trick

Now we maximize

$$L_D(a_i) = \sum_{i=1}^n a_i - \frac{1}{2} \sum_{j=1}^n \sum_{i=1}^n a_i a_j y_i y_j K(x_i, x_j)$$

- · Examples of Kernels
 - o Polynomial Kernel $K(oldsymbol{x_i},oldsymbol{x_j}) = ig(1+oldsymbol{x_i}\cdotoldsymbol{x_j}ig)^p$

o Gaussian (RBF) Kernel
$$K(x_i, x_j) = exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)^p$$
 $\gamma = \frac{1}{2\sigma^2}$ Decides the curvature allowed for the decision boundary

o Sigmoid $K(x_i, x_j) = tanh(\beta_0 x_i \cdot x_j + \beta_1)$

Every positive semi-definite symmetric function is a kernel!

Definition. Let X be a \mathbf{R} -vector space. A bilinear map $K: X \times X \to \mathbf{R}$ is called *positive semi-definite*, iff we have $K(x,x) \geq 0$ for all $x \in X$. If moreover $K(x,x) = 0 \iff x = 0$, K is called *positive definite*.

SVM for more than 2 classes

- SVM doesn't support multiclass classification natively. It supports binary classification
- For multiple classes, we have to break down the problem into multiple binary classification problems
- There are two approaches:
 - a. One-to-one approach
 - b. One-to-rest approach

SVM for more than 2 classes (2)

- One-to-one approach: breaks down the multiclass problem into multiple binary classification problems. A binary classifier per each pair of classes.
 Multiple classification results are combined using a majority vote
 - One vs One (OvO)
- One-to-rest approach: N number of classifiers for N number of classes. The
 classifier for class i is a binary classifier for class i vs the rest. The classifier
 which gives the most confident result (furthest from the decision boundary) is
 taken as the correct one.
 - One vs All (OvA)

SVM summary and recommended reading

- Flexibility in choosing a similarity function (kernel)
- Sparseness of solution when dealing with large data sets
 - only support vectors are used to specify the separating hyperplane
- Ability to handle large feature spaces
 - o complexity does not depend on the dimensionality of the feature space
- Overfitting can be controlled by soft margin approach
- Nice math property
 - o a simple convex optimization problem which is guaranteed to converge to a single global solution
- Recommended video with python demo
- Online <u>demo1</u>, <u>demo2</u>, <u>demo3</u>
- Tutorial: Multi-class classification (refer next slide for an example)
- SVM with Scikit learn
- RBF SVM parameters (includes the tuning of c and γ)

Demo: Multiclass classification - One vs One (OvO)

- 3 classes A, B, C.
- Consider all the binary classifiers among them:
- For N classes the number of such binary classifiers will be:

$$_{n}\mathrm{C}_{2} \,=\, {n \choose 2} \,=\, rac{n\cdot(n-1)}{2}$$

A vs B, B vs C and A vs C. (3 classifiers)

AvB	BvC	CvA	Majority vote
60% A	51% B	42% C	A
45% B	55 % B	50% C	В