CS 310-0

Homework Assignment No. 4

Due Tue 2/6/2001

- 1. Let $f, g : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be the functions defined by f(x, y) = x + y and g(x, y) = x y. Find $f^{-1}(\{2,3\}) \cap g^{-1}(\{-1,0,1\})$ (intersection of preimages).
- 2. Let A_1, A_2, B_1, B_2 be non-empty sets such that $A = A_1 \cap A_2 = \emptyset$ and $B_1 \cap B_2 = \emptyset$. Let $f_1: A_1 \to B_1, f_2: A_2 \to B_2$ two given functions. Define a function $f: A_1 \cup A_2 \to B_1 \cup B_2$ by cases in the following way:

$$f(x) = \begin{cases} f_1(x) & \text{if } x \in A_1\\ f_2(x) & \text{if } x \in A_2 \end{cases}$$

Prove:

- (a) f is one-to-one if and only if f_1 and f_2 are one-to-one.
- (b) f is onto if and only if f_1 and f_2 are onto.
- (c) f is a one-to-one correspondence if and only if f_1 and f_2 are one-to-one correspondences. In this case, find f^{-1} in terms of f_1^{-1} and f_2^{-1} .
- 3. For each one of the following functions, determine if it is one-to-one (but not onto), onto (but not one-to-one), or a one-to-one correspondence. If it is a one-to-one correspondence, find its inverse.
 - (a) $f : \mathbb{N} \to \mathbb{N}, f(x) = 2x^2 + 1.$
 - (b) $f: \mathbb{N} \to \mathbb{N}$, $f(x) = \lfloor (x+2)/3 \rfloor$, where $\lfloor x \rfloor$ = "greatest integer less than or equal to x" (floor function.)
 - (c) $f: \mathbb{Z} \to \mathbb{Z}$, defined by cases in the following way:

$$f(x) = \begin{cases} x - 3 & \text{if } x \text{ is even} \\ x + 1 & \text{if } x \text{ is odd} \end{cases}$$

- 4. Find the properties (commutative, associative, existence of identity element, existence of inverse) verified by the following operations:
 - (a) $x \circ y = x + y a$ on \mathbb{Z} , where a is a fix integer.
 - (b) x * y = x + y xy on \mathbb{Z} .

Is there any value of a for which the operations * and \circ defined above verify that * is distributive respect to \circ ?

- 5. Let $\mathbb{Q}[\sqrt{2}]$ be the set $\mathbb{Q}[\sqrt{2}] = \{x + y\sqrt{2} \mid x, y \in \mathbb{Q}\}.$
 - (a) Prove that $(\mathbb{Q}[\sqrt{2}], +)$ is a commutative group.
 - (b) Prove that $(\mathbb{Q}[\sqrt{2}], +, \cdot)$ is a commutative ring with unity.
 - (c) Is $(\mathbb{Q}[\sqrt{2}], +, \cdot)$ a field? Prove it or disprove it.
 - (d) Prove that the function $f: (\mathbb{Q}[\sqrt{2}], +, \cdot) \to (\mathbb{Q}[\sqrt{2}], +, \cdot)$ defined

$$f(x+y\sqrt{2}) = x - y\sqrt{2}$$

is a ring-homomorphism.