

Today

First two hours:

- About this Course
- Overview of a Wireless system

Second two hours:

Transmission line theory (module 1)

About this Course

The Team

Lecturers

- Dr. Sander Bronckers (me) EM, responsible lecturer. <u>L.A.Bronckers@tue.nl</u>
- Dr. Gabriele Federico EM. g.federico@tue.nl
- Dr. Ulf Johannsen EM. <u>U.Johannsen@tue.nl</u>
- Dr. Vojkan Vidojkovic IC. <u>V.Vidojkovic@tue.nl</u>
- Dr. Ing. Ad Reniers EM. <u>A.Reniers@tue.nl</u>
- Dr. ing. Rainier van Dommele IC. <u>A.R.v.Dommele@tue.nl</u>

... + lots of help from PhD students!

Some cool measurement Systems

 Metrology for Antennas and Wireless Systems

Embedding in the Curriculum

- Part of the Connected World package
- Courses:

Course code	Course name	Scheduled	
		(Quarter/Slot)	
5XTA0	Telecommunication systems	Quarter 4/ Slot B	
5XTB0	Photonics	Quarter 2/ Slot E	
<u>5XTC0</u>	Components in wireless technologies	Quarter 3/ Slot E	

Prior knowledge

- Electromagnetics I + II
- (Electronic) circuits
- Fourier transformation (Time-harmonic analysis)

Also useful:

Introduction Telecom/Telecommunication systems

What will you learn?

- The major aspects of the analog part of a wireless system:
 - Transmission lines
 - Passive microwave networks
 - Introduction to antennas
 - Introduction to microwave amplifiers
 - Wireless systems: Link-budget analysis and component specification
- All from three intertwined points of view:
 - Lectures
 - Exercise sessions
 - Labs

Modules - Overview

Modules – Content

- Modules each take a look at one particular aspect or component
- Should be followed sequentially!
- Each module contains:
 - Lecture(s)
 - Exercise class(es)
 - Hands-on lab(s): put things into practice!

Planning 2024-2025...

- STUDY GUIDE!
- Week of Mar. 3: Carnaval Break
- Mar. 13: <u>Intermediate test</u>
- For the rest: <u>see study guide</u>!
 - Always leading document
 - Adapted to the 7-week quartile

Module	Session Content		When (date, hours)	Where	Lecturer	Instructors	
Intro	Lecture:	Course overview	Feb 11, 5+6	Atlas 6.225	Bronckers	-	
Module 1: Transmission lines	Lecture:	Transmission line theory	Feb 11, 7+8	Atlas 6.225	Bronckers	-	
	Exercises:	Transmission lines	Feb 13, 1+2	Atlas -1.822	Bronckers	Akmal, Wubalem	
	Lab:	QUCS intro	Feb 13, 3+4	Atlas -1.822	Dommele, Vidojkovic		
Module 2: Passive microwave networks	Lecture:	Passives & Smith chart	Feb 18, 5+6	Atlas 6.225	Bronckers	-	
	Exercises:	Passives & Smith chart	Feb 18, 7+8	Atlas 6.225	Bronckers	Akmal, Wubalem	
	Lecture	Measurement Uncertainty	Feb 20, 1	Atlas -1.822	Reniers	-	
	Lab kit handouts during the following lab:						
	Lab:	VNA measurements of passives	Feb 20, 2-4	Atlas -1.822	Federico	Akmal, Wubalem	

Lectures

- On-campus only
- Some old recordings are available, but content might not always be the same
- Lecture assumed prior knowledge in module's exercise session(s) and lab(s)

Exercise sessions

Prepare by making sure you're familiar with the module's lecture contents

Labs

- Mixture of simulations and measurements:
 - QUCS
 - nanoVNA + antennas, passive structures, amplifier, etc.
 - Personal kit, you are responsible for it!
 - ALWAYS bring your laptop.
- Groups of max. 3 students
 - You do all your assignments yourself
 - Share all results in your group and compare are they different? Why?
 - Discuss tips/tricks!

Lab kits

- You will receive a lab kit during the Feb. 20 lab
- Form to sign
- YOUR kit is YOUR responsibility! you need to return it properly!
 - This makes your lab exam grade valid

Grading

- 50%: Final written exam
 - On-campus
 - Minimum grade to pass course is 5.0
- 30%: Lab (oral) exams next slide
- 20%: Intermediate written exam.
 - Written test about all course content <u>up to and including week 3</u>
 - On-campus, Mar. 13.

Lab exams

- 'Carousel' model
- 8 minutes with each panel member // topic, then 'rotate'
- For each topic, short presentation and discussion
- See study guide for details

Material

- Lecture slides (canvas)
- Materials and software for labs (provided)

Optional:

- Video lectures from earlier years (on canvas in YuJa)
- Books for more background material (optional):
 - A.B. Smolder et al., Modern Antennas and Microwave Circuits. Free download via https://arxiv.org/abs/1911.08484
 - D.M. Pozar, Microwave Engineering, John Wiley & Sons, Inc.
 - C.A. Balanis, Antenna Theory Analysis and Design, John Wiley & Sons, Inc.
 - W. Hayt, Engineering Electromagnetics, (Chapter 10), McGraw-Hill.
 - B. Razavi, RF Microelectronics, Prentice Hall
 - G. Gonzalez, Microwave Transistor Amplifiers, Prentice-Hall.

Canvas

- Study guide is available here
 - Leading document, also for planning
 - Please check!
 - In case there are major updates (not expected), we will notify you
- Sign up for a team (max. 3 people) <u>before Thursday 13/02!</u>
 - Under 'people'

Overview of a Wireless System

- Application Examples
- What goes into a Wireless System?

'Microwave Engineering'

- We'll be dealing with RF/Microwave components
 - Do NOT confuse with heating your food!
- What is the difference between analogue and RF/Microwave signals?
 - RF/Microwave signals are a special case of analogue signals (actually the other way around!)
 - We have to use RF/Microwave techniques whenever the considered structure is electrically large ($>\lambda/10$).

An electrically large structure...

... Another electrically large structure!

Where do we find such cases and systems?

Wireless communications

- All wireless systems! Smartphones, tablets, laptops, ...
 - WiFi
 - 1G, ... 5G (and beyond)
 - Bluetooth
 - Devices are PACKED with this technology
 - ... And this is only increasing

And of course, practically all IoT devices!

Figures: part of the wireless systems in a smartphone (https://www.ifixit.com/Teardown/iPhone+12+Pro+Max+Teardown/138640)

L-band radar

Ref: M.C. Van Beurden, A.B. Smolders, IEEE Trans. AP, 2002, pp.1266-1273

Car radar

Single-chip 60 GHz radar

TU/e + omniradar

Radio astronomy

Radio astronomy - array

Hyperthermia

Overview of a Wireless System

- Application Examples
- What goes into a Wireless System?

Back to our overview...

...In an analogue system (rather old-fashioned...)

...Or in a digital system (state-of-the-art)

This course: focus on the RF parts

Module 1: transmission lines

Module 1: transmission lines

- Just a wire? → Not if structure is electrically large!
- We need something to connect things together that:
 - Isn't very lossy
 - Doesn't radiate too much
 - Is impedance matched

Module 1: transmission lines – some examples

Examples of transmission line	Schematic view	Field mode
Parallel wires and twisted pair		TEM
Coaxial		TEM
Micro-/Strip and coplanar waveguide		Quasi-TEM
Hollow waveguides		Non-TEM

24 GHz LNA – transmission lines

Can you find more?

Module 2: passive microwave networks

Module 2: Passive microwave networks

- We need passive networks for all sorts of things: matching, filtering, ...
- Because of small wavelength, it matters where we put them and how we connect them together, how they are packaged
 - This gives us a lot of freedom!
- We can also create 'equivalent' components using transmission lines and stubs!

24 GHz LNA – passive elements

Why the 'pie shape'?

Module 3: Antennas

Module 3: Antennas

- How do we go from the 'conducted world' to wireless?
- We need something that:
 - Isn't very lossy
 - Radiates very well
 - Is impedance matched
 - ... + has a lot of other properties!

Module 3: Antennas – some examples

Reflector antenna for radio astronomy

Bond-wire antenna (Johanssen et al.)

5G base-station patch array (Biggelaar et al.)

Frequency-reconfigurable antenna (Bronckers et al., 2019)

Module 4: RF Amplifiers

Module 4: RF amplifiers

- Nothing comes for free amplification needed!
- How to make them efficient? How to make sure they don't oscillate?
 - Keep it simple! [That's already difficult enough...]
 - 'Common' aspects in module 4
- Two main pillars:
 - Module 5: Low-noise amplifiers (LNAs)
 - Module 6: Power amplifiers (PAs) and mixers

Module 5: LNAs

Module 5: LNAs

- Received power is very low
- Losses due to filtering, transmission lines etc. will make SNR even worse!
- → We need to find a way to ensure this doesn't happen
- Special amplifiers that have:
 - (Usually) low maximum input power
 - Very good noise performance
 - + a bunch of other criteria

24 GHz LNA

What's the rest for?

Module 6: PAs and Mixers

Module 6: PAs and Mixers

- We need to increase the output power of the transmitter
- Special amplifiers that have:
 - (Usually) high maximum output power
 - Noise performance not very critical
 - + a bunch of other criteria
- Can be combined with mixing
 - Frequency translation and amplification in one go

A big problem...

- Voltage and current change over position! (and time)
- ... And are difficult to use
- → What to measure?
 - S-parameters: related to reflection and transmission coefficients

Voltage on a coax, 'RF Power measurement basics,' Agilent, 2001

Labs: Get hands-on!

• Vector network analyzer: measure S-parameters

High-end VNA

VNA for 5XTC0

Antenna measurements

Some final reminders

- Register for a lab group tomorrow at the latest.
- You can find the locations of sessions in the study guide. Our main, leading document.
- Make sure to have fun with our practically oriented course!

Assignment

- Read the study guide. <u>Take special note of locations!</u>
- Install QUCS (only old versions available) or QUCS studio
- Configure a 1 GHz voltage source with coax line and voltage probe in AC simulation. Pick e.g. 1 GHz as a (constant) frequency.
- Look at the measured voltage.
- Change the length of the coax line. What happens? Why?

acfrequency	Pr1.v
1e9	1.05 / -0.00979°

Don't worry if you cannot finish!

