1 Preliminaries

1.1 Metric Spaces

· Definition: Metric and Metric Space

· Definition: Induced Metric

• Examples: d_1 , d_∞ , d_2 for \mathbb{R}^n and C(I)

· Definition: Convergent Sequences and Limits

· Lemma: Limit is Unique

· Definition: Cauchy Sequence

· Proposition: Convergent Sequence is Cauchy Sequence

• Remark: d_1 restricted to $\mathbb Q$ is not dense.

· Definition: Complete Metric Spaces

· Definition: Dense Subsets

· Definition: Continuity of Functions

· Proposition: Characterization of Continuity

· Definition: Isometry and Isometric Metric Spaces

Theorem: Unique Completion of Isometric Dense Metric Subspaces

 Definition: Open and Closed Ball, Open Sets, Neighborhood and Interior Points

· Definition: Set of Limit Points, Closed Sets and Closures

· Lemma: Characterization of Limit Points and Closed Sets

· Lemma: Closed Subspaces of Complete Spaces are Complete

· Remark: Characterization of Density of Subspace

Theorem: Rules for Open and Closed Sets

• Theorem: Characterization of Continuous Functions

· Theorem: Product Metric

1.2 Normed Vector Spaces

· Definition: Linear Operator

· Definition: Norm, Seminorm and Normed Spaces

Remark: Normed Spaces Induce Metric Spaces

- Example: Minkowski-Norm for \mathbb{R}^n and C(I)

· Lemma: Young's Inequality

· Theorem: Hölder's Inequalities

· Theorem: Minkowski's Inequalities

• Theorem: Second Version of Triangle Inequality

• Definition: Equivalent Norms

Remark: Finite Dimensional Norms are Equivalent, Indistinguishability

· Remark: Product Metric

• Proposition: + and · of Normed Spaces are Continuous

· Definition: Bound linear Transformations

 Lemma: Normed Space of Bounded Linear Operators and Norm Characterizations

• Theorem: Characterization of Bounded Linear Operators

· Definition: Banach Space

· Theorem: Completion of Normed Vector Spaces

• Remark: $L^p(I)$ Spaces

· Theorem: BLT-Theorem

• Remark: Lebesgue-Integral as Extension of $C_c(\mathbb{R}^n)$

· Theorem: Characterization of Completeness

2 Measure Theory

2.1 Measure Theory

- · Measurable Spaces and Measure Spaces
 - Definition: Algebra, σ -Algebra, Measurable Space, Measurable Sets
 - Example: Trivial σ -Algebras
 - Lemma: Properties of Algebras and σ -Algebras
 - Definition: Generator of σ -Algebra
 - Remark: Existence and Uniqueness of Smallest σ -Algebra
 - Definition: Borel- σ -Algebra
 - Lemma: Monotonicity of Generator
 - Example: Generators of Borel- σ -Algebra
 - Example, Proposition, Lemma, Corollary: Generator of Product Borel-σ-Algebra
 - Definition: Product σ-Algebra
 - Proposition, Example: Elementary Family Induces Algebra
 - Definition: Measure, Measure Spaces, finite and σ -finite
 - Example: Dirac Point Measure
 - Theorem: Monotonicity, Subadditivity, Continuity from Below and Above
 - Definition: Null Set, Almost Everywhere Holding Statements
 - Definition: Complete Measures
 - Theorem, Definition: Completion of Measure Space
- · Lebesgue-Measure
 - Definition: Lebesgue Outer Measure
 - Remark: Lebesgue Outer Measure is well defined
 - Theorem: Restriction of Lebesgue Outer Measure to Borel- σ -Algebra is a Measure
 - Definition: Lebesgue Measure and Lebesguemeasurable Sets
 - Theorem: Measurable Sets
 - Theorem: Characterization Lebesgue-Measurability
- Construction of Measures from Outer Measures
 - Definition: Outer Measure
 - Lemma: Construction of Outer Measure
 - Example: Lebesgue Outer Measure is Outer Measure
 - Definition, Remark: Measurable Set with Respect to Outer Measure
 - Theorem: Caratheodory, Existence of Measures
 - Lemma: Open Intervals are outer-measurable
 - Theorem: Characterization of Lebesgue-Measurability
- Uniqueness of Measures and Monotone Classes
 - Definition: Monotone Class and Generator
 - Theorem: Monotone Class Theorem
 - Theorem: Uniqueness of Measures

2.2 Integration Theory

- Integration
 - Measurable Functions
 - Lemma: Characterization, Composition, Continuity
 - Proposition: Measurable Functions on Product Spaces
 - Corollary: Coordinates, Sum and Product are Measurable
 - Theorem: sup, inf, limsup, liminf, lim are Measurable
 - Definition: Simple Functions
 - Lemma: Simple Function Formulation with Linear Combination, Characterization Measurability
 - Theorem: Monotone Convergence of Simple Functions to Measurable Functions
 - Definition: Integral of Simple Functions
 - Proposition: Measure, Linearity and Monotonicity of Positive Simple Function Integrals
 - Definition: Lebesgue Integral for Non-negative Functions
 - Remark: Properties of Lebesgue Integral
 - Theorem: Monotone Convergence Theorem by Lebesgue
 - Corollary: Linearity, Interchange of Sum and Integral
 - Theorem: Lemma by Fatou
 - Definition: Lebesgue Integral
 - Proposition, Definition: L^1 Space
 - Theorem: Dominated Convergence
 - Theorem: Parameter dependent Integrals
- · Product Measures
 - Proposition: Section Property
 - Theorem: Product Measure
 - Theorem: Fubini-Tonelli
- L^p Spaces
 - Definition: L^p Spaces
 - Lemma: L^p is a Vector Space
 - Theorem: Hölder's Inequality
 - Theorem: Minkowski's Inequality
 - Theorem: L^p-Norm Implies almost everywhere Pointwise Convergence of Subsequence
 - Corollary: Cauchy Sequence
 - Theorem: Set of Simple Functions is Dense in ${\cal L}^p$
 - Corollary: L^p has countable dense subset, $C_c(\mathbb{R}^n)$ is Dense in $L^p(\mathbb{R}^n)$
 - Definition: Essential Supremum and L^{∞}
 - Theorem: Properties of L^{∞}