Zusammenfassung_0

Friday, 10 April 2020

1 Umkelustkt.

Hat die Fkt. y=f(x) die Eigenschaft, dass jeder Wert $y \in W(f)$ an genau einer Stelle $x \in D(f)$ angenommen wird (Fkt. dann bijektiv), dann existiest die Umkehrfht. f on f. $f_{-1}: M(t) \rightarrow D(b)$

Kniterium für Existenz einer reellen Umkehrfut.

f streng monoton steigend und stetig - f 1 streng mono ton steigend + stetig f streng monoton fallend a. Stetig => f-1 streng monoton fallend tstetig

Die lunkelisfunktionen der Eigonometrischen Funktionen

Problem: lunkelistht. wicht injektiv: Bg. sm-Fht

= DTrick: auf ein Intertalleinschrän ken

Fht. f(x) Um keturfut. f -1 (x)

sin: [-\frac{1}{2}, \frac{1}{2}, y \rightarrow arcsin(y) = x

 $cos: [0, \pi] \rightarrow [-1, 1], x \mapsto cos(x) \quad arc cos: [-1, 1] \rightarrow [0, \pi], y \mapsto as(cos(y) = x)$

tan: [-11 11 -> (-s, s) x+> tan(x) curctan: (-s, s) -> (-11 11), p +> arctan(y) = x

 $cot: (0, 17) \rightarrow (-\infty, \infty), x \mapsto cot(x) \quad arccot: (-\infty, \infty) \rightarrow (0, 11), y \mapsto arccot(y) = x \quad (0 \leftarrow cot(x) = y)$

2 Die Regeln von de l'Hospital

Zweck: Entwicklung vom Flot-Giranzwerten der Form, 0/0"
oder "00/00"

Sind f.g differenzierbare Funktionen, dann können zur Bestim- mung von Grenzwerten des Typs g(x), welche auf un bestimmte Ausdrucke der Form "o" oder "a/o" führen
die l'Hospitalschen Regeln herangezogen werden.
1. L'Hospitalsche Regel: $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g(x)}$
2. L'Hospitalsche Regel: $\lim_{x \to x_0} g(x) = 0$ $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$
=> manchmal müssen die L'Hospitalischen Regeln mehrfach angewendet werden!
=1> Zaly reiche Grenzwerte, die auf unbestimmte Ausdriche
des Typs 0.00,0°, 0°, 1°, 00-00 fahren konnen 30 mm ge formt werden, dass die euts prochenden Grenz-
werte mit den l'Hospitalschen Regeln bestimmt werden können.

Typ des Ausdrucks	Form des Ausdrucks	Um forming $(f(x) - g(x)) \qquad f(x) + g(x)$
O•(±∞)	fw.gw	<u>f(x)</u> 2g(x)
0°,1~,0~,~	f(x) ^{g(x)}	$f(x)^{g(x)} = e^{g(x)} \ln (f(x))$ $L_p e - Fl.t. sleng : \lim_{x \to x_0} F(x) = F(\lim_{x \to x_0} x)$

3 Extremwerte

 $f'(x_0) = f''(x_0) = \dots = f(n-1)(x_0) = 0 \text{ and } f(n) \neq 0$:

- 1 n ungrad zaldig D kein Extremum
- ② n gradzahlig -p f(m)(x0) <0?

isa new rel. Max rel. Min