Linear Algebra in space. It is represented [6] (column of the form of Magnitude | a | It is represented by IVI and also called length or norm. $|\vec{v}| = \int (3)^2 + (4)^2 = \int 9 + 16 = \int 25$ Unit Vector Normal Vector vector whose norm is always 1 is called unit ve ctor. It tells us about the direction

- Harris Anna Maria Maria
of a vector. It is represented by v.
30 is nopreserved
V - V
$ \vec{V} = \vec{V} $
$\hat{V} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$
5
$\vec{V} = \frac{1}{5} \begin{bmatrix} 3\\4 \end{bmatrix}$
Continuous in the second
$V = \begin{bmatrix} 315 \\ 415 \end{bmatrix}$
Vector Additions
vector addition is possible
if both vectors have same
y both vectors have same
dinensions.
dimensions. $\vec{q} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{p} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \vec{n} \begin{bmatrix} 5 \\ 6 \end{bmatrix}$
dimensions. $\vec{q} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{p} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \vec{n} \begin{bmatrix} 5 \\ 6 \end{bmatrix}$
dimensions. $\vec{q} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{p} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \vec{n} \begin{bmatrix} 5 \\ 6 \end{bmatrix}$
dinensions.
dimensions. $\vec{q}_{1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{p}_{2} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \vec{r}_{3} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$ Vector addition of \vec{p}_{1} and \vec{q}_{2} is possible while with \vec{r}_{3} it is not possible.
dimensions. $\vec{q} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{p} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \vec{n} \begin{bmatrix} 5 \\ 6 \end{bmatrix}$

Scalar Multiplication: Multiplication of a vector with a scalar quanti	An
vector with a scalar quanti	ty. a
$a=3$, $\tilde{\lambda}=\begin{bmatrix}1\\2\\3\end{bmatrix}$	Do
$\alpha \times \vec{h} = 3 \times \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$	
Linear Combination: It has only two	
operations. Vector Addition	
Scalar Multiplication	
$a = 5 \vec{\lambda} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \vec{n} = \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix}$	•
$\alpha(\vec{\lambda}+\vec{n}) = 5\left(\begin{bmatrix}\frac{1}{3}\\\frac{1}{2}\end{bmatrix}+\begin{bmatrix}\frac{3}{5}\\\frac{1}{7}\end{bmatrix}\right) = 5\left(\begin{bmatrix}\frac{4}{8}\\\frac{9}{4}\end{bmatrix}\right)$	
$a(\vec{k} \times \vec{n}) = \begin{bmatrix} 20 \\ 40 \\ 45 \end{bmatrix}$	
In vectors, linear combination is very important.	n

Any vector in a plane is represented in the form of a vector combinationslinear Dot product (Inner product) $\vec{V} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad \vec{U} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 7t = [1 -1] = [1-1] = [0] Orthogonal: Two vectors are said to be orthogonal to each other is equal to zero.

-	$\frac{1}{v} = \begin{bmatrix} -2 & 2 \end{bmatrix}, \vec{v} = \int (-2)^{2} + (2)^{2} = \int 4 + 4$
	$\overrightarrow{V} = \sqrt{8} = 2\sqrt{2}$ $\overrightarrow{V} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} -4/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$ $2\sqrt{2}$
	$\hat{U} \cdot \hat{V} = \begin{bmatrix} \frac{1}{152} \\ \frac{1}{152} \end{bmatrix} \cdot \begin{bmatrix} -\frac{1}{152} \\ \frac{1}{152} \end{bmatrix}$
	$\hat{\mathbf{U}}^{\dagger} \cdot \hat{\mathbf{V}} = \begin{bmatrix} 2/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$
The state of the s	$= \begin{bmatrix} -\frac{1}{2} + \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$
3	Hence proved that I and I are
- 10	orthonormal to each other.
	Matrices :
	Matrices are a sort of
	They transform vectors.
	dinension:
	The dimension of a matrix is represented by mxn
	where is no. of rows

and n is no of columns.
and n o its o
$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 5 \end{bmatrix}$
dimension = 2 x 3
Square Matrix:
A matrix of dimense mxm is called square matrix
$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ dimension = 2x2
Transpose of a matrin:
Converting rows into
columns or columns into ro
1 1 4 1 at [1 3]
$A = \begin{bmatrix} 1 & 4 \\ 3 & 5 \end{bmatrix}$, $A^{t} = \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$
Symmetric matrix: By At = A then matrix A is called symmetric matrix
By At = A then matri
A is called symmetric matrix
$A = \begin{bmatrix} 12 & 7 \\ 7 & 12 \end{bmatrix}, A^{t} = \begin{bmatrix} 12 & 7 \\ 7 & 12 \end{bmatrix}$
$A = A^{\dagger}$

2 1 3	3 4 2 5 3 1		7 4 9		
- Matrix -	Matrix	nultiplie	cation:	. 2 2	7
-	2 3		B =	2 4 7	
A =	1 2	5	D	7 2 5	
	3 3				
	2+6+28	6+12	2+8	4+21+20	
A · B =	1+4+35	3+8	+ 10	2+14+25	
	3+6+7	9+12	+ 2	6 +21 + 5	
	[-/	26	45		
AB =	36	26	41		
710 =	16		32		
Determ	rinants	1			. 1
		2			
-	1 = 2	3			-
	LJ	7			
IAI	= (2)(4) - (1)	(3)		•
		3 - 3 =			

Singular Matrix	
Singular Matrix. A matrix whose determinant is equal to zero is called singular matrix.	4
$A = \begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix}$	
1A1 = 3(2) - 1(6) $= 6 - 6$	
· Inverse of a singular matrix does not exist.	
· Columns are linearly dependent. Ranko	
Number of linearly independent columns is called rank of a matrix. At Cannot be zero.	linear dependent columns mean that two or more columns are adding together to make other
. [2 3 4] Rank is 3 A = [1 2 5] [3 3 1]	columns

$B = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 4 & 1 & 5 \end{bmatrix}$
As one column is dependent on other two so the rank of this matrix is 2.
Inverse of a matrix: Inverse of a 2x2 matrix is defined as:
$A^{-1} = Adj A$ $1A1$ $A = \begin{bmatrix} a & c \end{bmatrix}$
where Adj A = [d -c] -b a
Let: $A = \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix}$
1AI = 3(5) - 2(1) $= 15 - 2 = 13$

