2/2

-1/2

2/2

0/2

2/2

2/2

☐ '42,'

**×** '42' ☐ '42,4'

Raguin Mathis Note: 15/20 (score total : 15/20)



+168/1/12+

|                                                                                                                               | QCM 7                                                                               | THLR 2                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nom et prénom, lisibles :                                                                                                     |                                                                                     | Identifiant (de haut en bas) :                                                                                                                                                                                                                                                                               |
| RAGUIN Mat                                                                                                                    | 615                                                                                 |                                                                                                                                                                                                                                                                                                              |
|                                                                                                                               |                                                                                     |                                                                                                                                                                                                                                                                                                              |
|                                                                                                                               |                                                                                     |                                                                                                                                                                                                                                                                                                              |
|                                                                                                                               |                                                                                     |                                                                                                                                                                                                                                                                                                              |
|                                                                                                                               |                                                                                     |                                                                                                                                                                                                                                                                                                              |
| lus restrictive (par exemplas possible de corriger un correctes pénalisent; les b                                             | e s'il est demandé si 0 es<br>e erreur, mais vous pouve<br>lanches et réponses mult | et: les 1 entêtes sont +168/1/xx+···+168/1/xx+.                                                                                                                                                                                                                                                              |
| $\phi \equiv \phi$ .                                                                                                          |                                                                                     |                                                                                                                                                                                                                                                                                                              |
| faux                                                                                                                          | ⊠ vrai                                                                              | $ L(e) \subseteq L(f) \qquad \qquad L(e) \supseteq L(f) $                                                                                                                                                                                                                                                    |
|                                                                                                                               | _                                                                                   | $\Box L(e) = L(f) \qquad \Box L(e) \not\subseteq L(f)$                                                                                                                                                                                                                                                       |
|                                                                                                                               |                                                                                     |                                                                                                                                                                                                                                                                                                              |
| •                                                                                                                             |                                                                                     | O.8. Soit $\Sigma$ up alphabet. Pour tout $a \in \Sigma$ $I_1$ , $I_2 \subset$                                                                                                                                                                                                                               |
| on a $(e+f)(g+h) \equiv eg+fh$                                                                                                | ı.<br>                                                                              | <b>Q.8</b> Soit $\Sigma$ un alphabet. Pour tout $a \in \Sigma$ , $L_1, L_2 \subseteq \Sigma^*$ , on a $L_1^* = L_2^* \Longrightarrow L_1 = L_2$ .                                                                                                                                                            |
| _                                                                                                                             |                                                                                     | $\Sigma^*$ , on a $L_1^* = L_2^* \Longrightarrow L_1 = L_2$ .                                                                                                                                                                                                                                                |
| faux  1 a $(e+f)(g+h) \equiv eg+fh$ Faux  1 l est possible de tes                                                             | n. □ vrai ter si une expression ra-                                                 | $\Sigma^*$ , on a $L_1^* = L_2^* \Longrightarrow L_1 = L_2$ . $\square$ vrai $\blacksquare$ faux                                                                                                                                                                                                             |
| faux  faux  Il est possible de tes onnelle engendre un lange  Toujours faux                                                   | vrai  ter si une expression raage vide.  Toujours vrai                              | $\Sigma^*$ , on a $L_1^* = L_2^* \Longrightarrow L_1 = L_2$ .                                                                                                                                                                                                                                                |
| faux  1.4 Il est possible de tes onnelle engendre un lange                                                                    | vrai  ter si une expression raage vide.                                             | $\Sigma^*$ , on a $L_1^* = L_2^* \implies L_1 = L_2$ .  vrai faux  Q.9 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas :  '42+42' '-42' '42+(42*42)'                                                                                                                                |
| faux  faux  faux  faux  faux  faux  faux  Toujours faux  Souvent vrai  Four toutes expression                                 | vrai  ter si une expression raage vide.  Toujours vrai                              | $\Sigma^*$ , on a $L_1^* = L_2^* \implies L_1 = L_2$ .  vrai faux  Q.9 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas:  \[ '42+42'   '-42'   '42+(42*42)'                                                                                                                          |
| faux  faux  faux  faux  Il est possible de testonnelle engendre un langu  Toujours faux  Souvent vrai  Pour toutes expression | vrai  ter si une expression raage vide.  Toujours vrai Souvent faux                 | $\Sigma^*$ , on a $L_1^* = L_2^* \Longrightarrow L_1 = L_2$ . $\square$ vrai faux  Q.9 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas: $\square$ '42+42' $\square$ '-42' $\square$ '42+(42*42)' $\square$ '-42-42'  Q.10 $\triangle$ Soit $A, L, M$ trois langages. Parmi les pro- |
| n a $(e+f)(g+h) \equiv eg+fh$ faux  1.4 Il est possible de test  fonnelle engendre un langu  Toujours faux  Souvent vrai      | vrai  ter si une expression raage vide.  Toujours vrai Souvent faux                 | $\Sigma^*$ , on a $L_1^* = L_2^* \Longrightarrow L_1 = L_2$ .  vrai faux  Q.9 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas:  '42+42' '-42' (42*42)' (42+42')' (42-42')                                                                                                           |

Fin de l'épreuve.

'42,42'

Aucune de ces réponses n'est correcte.