2024届宁德市普通高中毕业班五月份质量检查

数学试题参考答案及评分标准

说明:

1.本解答指出了每题要考察的主要知识和能力,给出一种或几种解法供参考.如果考生的解法与给出的解法不同,可根据试题的主要考察内容比照评分标准确定相应的评分细则.

2.对解答题, 当考生的解答在某一步出现错误, 但整体解决方案可行且后续步骤没有出现推理或计算错误, 则错误部分依细则扣分, 并根据对后续步骤影响的程度决定后继部分的给分, 但不得超过后续部分正确解答应给分数的一半; 如果后继部分的解答有较严重的错误, 就不再给分.

3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.

4.解答题只给整数分数,填空题不给中间分.

一、选择题: 本题考查基础知识和基本运算,每小题 5分,满分 40分.

1. B 2. D 3. D 4. B 5. B 6. C 7. C 8. A

二、**选择题**:本题共 3 小题,每小题 6 分,共 18 分.在每小题给出的选项中,有多项符合题目要求.全部 选对的得 6 分,部分选对的得部分分,有选错的得 0 分.

9. AC 10. BD 11. ABC

11.解法一: 对于选项 A, 令 x = y = 0, 得 $f(0) = f^2(0) + f(0)$, 所以 f(0) = 0 或 f(0) = -1.

令 y = 0, 得 f(0) = f(x)f(0) + f(x) + f(0), 由 f(x) 的值域为[-1,+ ∞),

所以当f(0)=0时, 得f(x)=0, 不合题意, 所以f(0)=-1. A 正确.

对于选项 B, 令 x = y = 1, 得 $f(1) = f^2(1) + 2f(1)$, 所以 f(1) = 0 或 f(1) = -1.

 \Rightarrow y=1, $\{f(x) = f(x)f(1) + f(x) + f(1), \{f(x) + 1\} = 0,$

因为f(x)的值域为 $[-1,+\infty)$,所以f(1)=0.

因为值域为[-1,+ ∞), 所以 f(-1)=0, C 正确.

对于选项C,令y=-1,得f(-x)=f(x)f(-1)+f(x)+f(-1),因为f(-1)=0,

则 f(-x) = f(x), 所以函数 f(x) 为偶函数, 图像关于 x = 0 对称, C 正确.

对于选项D,由值域 $[-1,+\infty)$ 和偶函数,D错误. 选 ABC.

解法二: 由 f(xy) = f(x)f(y) + f(x) + f(y), 则 f(xy) + 1 = f(x)f(y) + f(x) + f(y) + 1,

得 f(xy)+1=[f(x)+1][f(y)+1],

设 g(x) = f(x) + 1, 得 g(xy) = g(x) + g(y), 可设 $g(x) = x^{\alpha}$ (α 为正偶数), $f(x) = x^{\alpha} - 1$,

不妨设 $f(x) = x^2 - 1$,可判断 ABC 正确,D 错误. 选 ABC.

三、填空题: 本题考查基础知识和基本运算,每小题 5 分,满分 20 分.

12.
$$\frac{\pi}{3}$$
 13. 5 14. $(-\infty,1)$

四、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.

15. 本题主要考查正弦定理、余弦定理、三角形面积公式等基础知识,考查逻辑推理能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想等,考查直观想象、逻辑推理、数学运算等核心素养,体现基础性与综合性.满分13分.

解: (1)由 $a^2 + c^2 = 9 + 2ac \cos B$ 及余弦定理, 得 $b^2 = a^2 + c^2 - 2ac \cos B = 9$,

b=3
由 $\sin B = \sqrt{3} \sin A \sin C$ 及正弦定理,
得 $b = \sqrt{3}a\sin C$,
因为 $\triangle ABC$ 的面积 $S = \frac{1}{2}b \cdot BD = \frac{1}{2}ab\sin C$
所以 $BD = a \sin C = \frac{3}{\sqrt{3}} = \sqrt{3}$
(2)由 $\overrightarrow{BA} \cdot \overrightarrow{BC} = 3$ 得 $ac \cos \angle ABC = 3$ ①,
因为 $S_{\triangle ABC} = \frac{1}{2}ac\sin\angle ABC = \frac{1}{2}\times 3\times \sqrt{3}$,
所以 $ac \sin \angle ABC = 3\sqrt{3}$ ②,
由①②得 $\tan \angle ABC = \sqrt{3}$,
又 $\angle ABC \in (0,\pi)$,故 $\angle ABC = \frac{\pi}{3}$,
从而 $ac = 6$, $a^2 + c^2 = 9 + 2 \times 6 \times \frac{1}{2} = 15$
得 $(a+c)^2 = a^2 + c^2 + 2ac = 27$,
所以 $a+c=3\sqrt{3}$
16. 本小题主要考查空间解三角形、直线与直线、直线与平面、平面与平面的位置关系,空间角的计算等基础知识,考查空间想象能力、逻辑推理能力、运算求解能力,考查数形结合思想、化归与转化思想等,考查直观想象、逻辑推理、数学运算等核心素养,体现基础性与综合性.满分 15 分.
解: (1) 证明: 翻折前,因为四边形 $ABCD$ 为平行四边形, $\angle D=60^{\circ},\ AC=\sqrt{3},CD=1,$
在三角形 ACD 中,由正弦定理可得 $\frac{AC}{\sin \angle ADC} = \frac{CD}{\sin \angle CAD}$, $\frac{\sqrt{3}}{\sin 60^{\circ}} = \frac{1}{\sin \angle CAD}$,
$\sin \angle CAD = \frac{1}{2}$, $\nabla AC > CD$, $\dot{\nabla} \angle CAD = 30^{\circ}$
所以 $\angle ACD = 90^{\circ}$,即 $CD \perp AC$,
因为 $PD = \sqrt{5}$, $PC = 2$, $CD = 1$, 所以 $PC^2 + CD^2 = PD^2$,则有 $CD \perp PC$
$PC \cap AC = C$, AC , $PC \subset \text{平面 }APC$, 所以 $CD \perp \text{平面 }APC$,
所以平面 ADC \bot 平面 APC .
在平行四边形 $ABCD$ 中, $BA \perp AC$,即 $PA \perp AC$,
以点 C 为坐标原点, \overline{CD} 、 \overline{CA} 、 \overline{AP} 的方向分别为 x 、 y 、 z 轴的正方向建立空

设 $\overrightarrow{AM} = \lambda \overrightarrow{AD} = \lambda (1, -\sqrt{3}, 0) = (\lambda, -\sqrt{3}\lambda, 0)$, 其中 $0 \le \lambda \le 1$, $\text{III} \ \overline{CM} = \overline{CA} + \overline{AM} = \left(0, \sqrt{3}, 0\right) + \left(\lambda, -\sqrt{3}\lambda, 0\right) = \left(\lambda, \sqrt{3} - \sqrt{3}\lambda, 0\right), \quad \overline{CP} = \left(0, \sqrt{3}, 1\right), \quad ...$ 设平面 MCP 的法向量为 m = (x, y, z), 则 $\left|\cos\left\langle \boldsymbol{m},\boldsymbol{n}\right\rangle\right| = \frac{\left|\boldsymbol{m}\cdot\boldsymbol{n}\right|}{\left|\boldsymbol{m}\right|\cdot\left|\boldsymbol{n}\right|} = \frac{\left|\sqrt{3}(\lambda-1)\right|}{\sqrt{3(\lambda-1)^2+\lambda^2+3\lambda^2}} = \frac{2\sqrt{39}}{13},$ 整理可得 $15\lambda^2+2\lambda-1=0$, 17. 本小题主要考查导数及其应用、函数的零点和不等式等基础知识,考查逻辑推理能力、运算求解能力 等,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想,考查数学抽象、逻辑 推理、直观想象、数学运算等核心素养,体现基础性与综合性.满分15分. 又切线过点(-1,2), 所以 $f(x) = 2\cos x - e^{x+1}$, $f'(x) = -2\sin x - e^{x+1}$, (2) 判断 f(x) 在 $(-\frac{2\pi}{2},0)$ 零点个数,等价于判断方程 $2\cos x = e^{x+1}$ 根的个数, $\Leftrightarrow g(x) = \frac{2\cos x}{e^{x+1}}, \quad x \in (-\frac{2\pi}{3}, 0)$ 当 $x \in (-\frac{2\pi}{3}, -\frac{\pi}{4})$ 时, g'(x) > 0, g(x) 在 $(-\frac{2\pi}{3}, -\frac{\pi}{4})$ 单调递增; 数学答案 第3页(共8页)

当 $x \in (-\frac{\pi}{4}, 0)$ 时, $g'(x) < 0$, $g(x)$ 在 $(-\frac{\pi}{4}, 0)$ 单调递减
$g(-\frac{2\pi}{3}) = -\frac{1}{e^{1-\frac{2\pi}{3}}} < 0$, $g(-\frac{\pi}{3}) = \frac{e^{\frac{\pi}{3}}}{e} > 1$, $g(0) = \frac{2}{e} < 1$,
$(\mathbb{R} g(-\frac{\pi}{4}) = \sqrt{2}e^{\frac{\pi}{4}-1} > \sqrt{2}\left(\frac{\pi}{4}-1+1\right) > 1.4 \times \frac{3}{4} > 1)$
所以 $x \in (-\frac{2\pi}{3}, 0)$ 时,方程 $g(x) = 1$ 有 2 根,
所以 $f(x)$ 在 $(-\frac{2\pi}{3},0)$ 有 2 个零点
解法二: (1) $f'(x) = -a \sin x - e^{x+1}$, $f'(0) = -e$,
所以切线方程为 $y = -ex - e + 2$,
得 2 - e = a - e,所以 a = 2.
所以 $f(x) = 2\cos x - e^{x+1}$, $f'(x) = -2\sin x - e^{x+1}$,
当 $x \in [0, \pi]$ 时, $f'(x) < 0$, 所以 $f(x)$ 在 $[0, \pi]$ 上单调递减,
所以 $f(x)$ 的最小值为 $f(\pi) = -2 - e^{\pi + 1}$
(2) 由 (1) 得 $f(x) = 2\cos x - e^{x+1}$, $f'(x) = -2\sin x - e^{x+1}$,
$h'(-\frac{2\pi}{3}) = 1 - e^{1-\frac{\pi}{3}} > 0$, $h'(-\frac{\pi}{2}) = -e^{1-\frac{\pi}{2}} < 0$,
所以在 $\left(-\frac{2\pi}{3}, -\frac{\pi}{2}\right)$ 上 $h'(x)$ 必有一个零点 x_0 ,使得 $h'(x_0) = 0$,
从而 当 $x \in \left(-\frac{2\pi}{3}, x_0\right)$ 时, $h'(x) > 0$, 当 $x \in (x_0, 0)$ 时, $h'(x) < 0$,
所以 $h(x)$ 在 $\left(-\frac{2\pi}{3}, x_0\right)$ 上单调递增,在 $\left(x_0, 0\right)$ 上单调递减
所以在 $\left(-\frac{\pi}{2},0\right)$ 上 $h(x)$ 必有一个零点 x_1 ,使得 $h(x_1)=0$
当 $x \in \left(-\frac{2\pi}{3}, x_1\right)$ 时, $h(x) > 0$, 即 $f'(x) > 0$, 此时 $f(x)$ 单调递增;
当 $x \in (x,0)$ 时, $h(x) < 0$, 即 $f'(x) < 0$, 此时 $f(x)$ 单调递减

18. 本小题主要考查全概率公式、概率的分布列及期望、递推数列及等比数列等基础知识,考查数学建模能力、运算求解能力、数据处理能力、应用意识,考查或然与必然思想、化归与转化思想,考查数学抽象、逻辑推理、数学建模、数据分析和数学运算等核心素养,体现基础性、综合性与创新性.满分 17 分.

(1) 记第i次取出的球是黑球为事件 A_i , $i \in \mathbb{N}^*$,

$$P(A_2) = P(A_1) \cdot P(A_2 \mid A_1) + P(\overline{A_1}) \cdot P(A_2 \mid \overline{A_1}) \qquad \dots \qquad 2 \stackrel{?}{/}$$

$$= \frac{3}{7} \times \frac{2}{7} + \frac{4}{7} \times \frac{4}{7}$$

$$= \frac{6}{49} + \frac{16}{49} = \frac{22}{49}$$

$$4 \%$$

所以第 2 次取出黑球的概率为 $\frac{22}{49}$.

(2) (i)由题知得 X_2 的可能取值为: 1, 3, 5......5 分

$$\text{If } P(X=1) = \frac{3}{7} \times \frac{2}{7} = \frac{6}{49} \; ; \; P(X=3) = \frac{3}{7} \times \frac{5}{7} + \frac{4}{7} \times \frac{4}{7} = \frac{31}{49} \; ; \; P(X=5) = \frac{4}{7} \times \frac{3}{7} = \frac{12}{49} \; ;$$

故 X_2 的分布列为:

X_2	1	3	5
P	<u>6</u>	31	12
	49	49	49

......9分

(ii)设第n-1次完成操作后袋中黑球数为k ($k=0,1,2,\dots,7$)

$$\begin{aligned} &\text{Ind} & E(X_n) = \sum_{k=0}^{7} \left[(k-1) \cdot \frac{k}{7} + (k+1) \cdot \frac{7-k}{7} \right] \cdot P(X_{n-1} = k) \\ &= \sum_{k=0}^{7} \left(\frac{5k}{7} + 1 \right) P(X_{n-1} = k) \end{aligned}$$

$$= \sum_{k=0}^{7} \left[\frac{5k}{7} P(X_{n-1} = k) \right] + \sum_{k=0}^{7} P(X_{n-1} = k)$$

$$= \frac{5}{7} E(X_{n-1}) + 1, \qquad 13$$

(也可以按如下方法得出递推关系:

$$E(X_n) = \frac{E(X_{n-1})}{7} \times \left[E(X_{n-1}) - 1 \right] + \left[1 - \frac{E(X_{n-1})}{7} \right] \times \left[E(X_{n-1}) + 1 \right]$$
$$= \frac{5}{7} E(X_{n-1}) + 1.$$

(若通过特殊性入手得出递推关系得2分)

19. 本题主要考查两角和与差的正、余弦公式、双曲线、椭圆、直线与椭圆的位置关系等基础知识,考查逻辑推理能力、运算求解能力和创新能力,考查化归与转化思想、数形结合思想,考查数学抽象、逻辑推理、直观想象、数学运算等核心素养,体现基础性、综合性与创新性,满分17分.

(1) 证明:设P'(x', y'),由题意可知

$$x' = |OP|\cos(\theta + \alpha) = r\cos\theta\cos\alpha - r\sin\theta\sin\alpha = x\cos\alpha - y\sin\alpha,$$

 $y' = |OP|\sin(\theta + \alpha) = r\sin\theta\cos\alpha + r\cos\theta\sin\alpha = x\sin\alpha + y\cos\alpha$,

所以
$$\begin{cases} x' = x\cos\alpha - y\sin\alpha, \\ y' = x\sin\alpha + y\cos\alpha. \end{cases}$$
 2分

故当 $x = \sqrt{3}$, y = 0,且 $\alpha = \frac{\pi}{4}$ 时,

$$\begin{cases} x' = \sqrt{3}\cos\frac{\pi}{4} = \frac{\sqrt{6}}{2}, \\ y' = \sqrt{3}\sin\frac{\pi}{4} = \frac{\sqrt{6}}{2}. \end{cases}$$

$$(3.5)$$

$$(4.5)$$

(2) (i) 设曲线 C 上的任一点 P(x,y) 绕原点 O 顺时针旋转 $\frac{\pi}{6}$ 后得到的点为 P'(x',y') ,

可视为P'(x',y')绕原点O逆时针旋转 $\frac{\pi}{6}$ 后得到的点P(x,y),

所以
$$\begin{cases} x = x' \cos \frac{\pi}{6} - y' \sin \frac{\pi}{6} = \frac{\sqrt{3}}{2} x' - \frac{1}{2} y', \\ y = x' \sin \frac{\pi}{6} + y' \cos \frac{\pi}{6} = \frac{1}{2} x' + \frac{\sqrt{3}}{2} y'. \end{cases}$$

由点P(x,y)在曲线 $C: y = -\frac{\sqrt{3}}{3}x + \frac{\sqrt{3}}{2x}$ 上,所以

$$\frac{1}{2}x' + \frac{\sqrt{3}}{2}y' = -\frac{\sqrt{3}}{3} \left(\frac{\sqrt{3}}{2}x' - \frac{1}{2}y' \right) + \frac{\sqrt{3}}{2 \left(\frac{\sqrt{3}}{2}x' - \frac{1}{2}y' \right)},$$

即曲线C绕原点O顺时针旋转 $\frac{\pi}{6}$ 后得到的曲线方程为 $x^2 - \frac{y^2}{2} = 1$,

线方程,故曲线 Γ 关于直线y=x和y=-x对称,10分

设曲线 Γ 上任一点P(x,y)绕原点O顺时针旋转 $\frac{\pi}{4}$ 后得到的点为P'(x',y'),

$$\mathbb{U} \begin{cases}
 x = x' \cos \frac{\pi}{4} - y' \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} (x' - y'), \\
 y = x' \sin \frac{\pi}{4} + y' \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} (x' + y').
\end{cases}$$

由点P(x,y)在曲线 $\Gamma:5x^2+5y^2-6xy=8$ 上,所以 $2x'^2+8y'^2=8$,

由(1)可知,其为点 $\left(\frac{\sqrt{6}}{2},\frac{\sqrt{6}}{2}\right)$ 绕原点O顺时针旋转 $\frac{\pi}{4}$ 后得到的点,

故点
$$F\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}\right)$$
 为原椭圆 Γ 的右焦点.

由FM 为 ΔABF 的外角平分线,

所以
$$\sin \angle AFM = \sin \angle BFM$$
,故 $\frac{S_{\Delta FAM}}{S_{\Delta FBM}} = \left| \frac{MA}{MB} \right| = \frac{\frac{1}{2}|MF||FA|\sin \angle AFM}{\frac{1}{2}|MF||FB|\sin \angle BFM} = \left| \frac{FA}{FB} \right| \dots 13 分$

$$|FA| = \sqrt{(x_1 - \sqrt{3})^2 + {y_1}^2} = \sqrt{{x_1}^2 - 2\sqrt{3}x_1 + 1 - {\frac{{x_1}^2}{4}}} = \sqrt{\frac{3{x_1}^2}{4} - 2\sqrt{3}x_1 + 4} = 2 - {\frac{\sqrt{3}}{2}}x_1$$

设 $M(x_0, y_0)$, 显然M在线段AB的延长线或反向延长线上,