

CONTENTS

ALgal Nutrient Limitation and the Nutrition of Aquatic Herbivores, <i>Robert W. Sterner and Dag O. Hessen</i>	1
Genetic Architecture, Genetic Behavior, and Character Evolution, <i>Gabriel Moreno</i>	31
Molecular Approaches to Population Biology, <i>Jeffry B. Mitton</i>	45
Unisexual Fish: Model Systems for Studying Ecology and Evolution, <i>Robert C. Vrijenhoek</i>	71
Cooperation and Conflict in the Evolution of Signal Interactions, <i>Michael D. Greenfield</i>	97
Evolutionary Biology of Human Immunodeficiency Virus, <i>Andrew J. Leigh Brown and Edward C. Holmes</i>	127
Metapopulation Dynamics and Genetics, <i>Alan Hastings and Susan Harrison</i>	167
Community Structure: Larval Trematodes in Snail Hosts, <i>Armand M. Kuris and Kevin D. Lafferty</i>	189
The Evolutionary Interaction Among Species: Selection, Escalation, and Coevolution, <i>Geerat J. Vermeij</i>	219
The Systematics of Coral Genus <i>Acropora</i> : Implications of New Biological Findings for Species Concepts, <i>C. C. Wallace and B. L. Willis</i>	237
A Day in the Life of a Seed: Movements and Fates of Seeds and Their Implications For Natural and Managed Systems, <i>Jeanne C. Chambers and James A. MacMahon</i>	263
The Evolution of Vocalization in Frogs and Toads, <i>H. Carl Gerhardt</i>	293
Phylogeny of the Legume Family: An Approach to Understanding the Origins of Nodulation, <i>Jeff J. Doyle</i>	325

viii CONTENTS (*continued*)

USING DNA SEQUENCES TO UNRAVEL THE CAMBRIAN RADIATION OF THE ANIMAL PHyla, <i>Rudolf A. Raff, Charles R. Marshall, and James M. Turbeville</i>	351
GENETICS AND ECOLOGY OF WHALES AND DOLPHINS, <i>A. Rus Hoelzel</i>	377
FISHERIES ECOLOGY IN THE CONTEXT OF ECOLOGICAL AND EVOLUTIONARY THEORY, <i>Kenneth T. Frank and William C. Leggett</i>	401
ECOLOGY AND EVOLUTION OF REPRODUCTION IN MILKWEEDS, <i>Robert Wyatt and Steven B. Broyles</i>	423
THE NATURE AND CONSEQUENCES OF INDIRECT EFFECTS IN ECOLOGICAL COMMUNITIES, <i>J. Timothy Wootton</i>	443
INTEGRATIVE APPROACHES TO EVOLUTIONARY ECOLOGY: <i>Anolis Lizards as Model Systems, Jonathan B. Losos</i>	467
THE ECOLOGICAL CONSEQUENCES OF SHARED NATURAL ENEMIES, <i>R. D. Holt and J. H. Lawton</i>	495
DIVERSIFICATION IN AN ARID WORLD: The Mesembryanthemaceae, <i>H.-D. Ihlenfeldt</i>	521
GENETIC DIVERGENCE, REPRODUCTIVE ISOLATION, AND MARINE SPECIATION, <i>Stephen R. Palumbi</i>	547
ADAPTATION AND CONSTRAINT IN COMPLEX LIFE CYCLES OF ANIMALS, <i>Nancy A. Moran</i>	573
MALE PARENTAL BEHAVIOR IN BIRDS, <i>Ellen D. Ketterson and Val Nolan, Jr.</i>	601
RELATIONSHIPS AMONG MAXIMUM STOMATAL CONDUCTANCE, ECOSYSTEM SURFACE CONDUCTANCE, CARBON ASSIMILATION RATE, AND PLANT NITROGEN NUTRITION: A Global Ecology Scaling Exercise, <i>E.-Detlef Schulze, Francis M. Kelliher, Christian Körner, Jon Lloyd and Ray Leuning</i>	629
INDEXES	
Subject Index	661
Cumulative Index of Contributing Authors, Volumes 21–25	681
Cumulative Index of Chapter Titles, Volumes 21–25	683

SUBJECT INDEX

A

Abiotic factor
fish populations and, 411
seasonal plankton production cycle and, 404
seed dispersal and, 263, 267, 268–71
seed loss and, 277
seed/microsite interactions and, 274–75
Abrams, P. A., 227–28, 229, 230
Acacia albida, 646
Acanthaster planci, 240
Acanthina angelica, 450
Acanthodiatomus
specific P content, 10
Acanthocephalan, 360–62
Acartia tonsa
growth rate, 13–14
Acid rain, 647
Acoelomate, 359
Acorn barnacle, 450
Acoustic insect
graded aggressive signals, 118
inhibitory resetting, 105
synchrony and alternation, 108–9
Acoustic signaling
aggression and, 117
“beacon” effect, 111
sexual advertisement and, 98
Acoustic spree, 119
Acquired immunodeficiency syndrome (AIDS), 128, 143, 154–56
Acquisition, 4
Acriid grasshopper
call timing, 106, 118
dawn and dusk choruses, 99
rhythmic alternation, 112
Acris
geographic variation in calls, 299–300
Acris crepitans
clinal variation in call frequency, 316
dominant vocalization frequency, 298
Acris grylli
clinal variation in call frequency, 316
Acropora, 237–56
biogeographic consistency, 250
biogeographic diversity, 250–51

breeding compatibilities, 244–46
gene flow, 247–49
mating incompatibilities, 243–44
patterns of distribution, 251–52
phylogenetic studies, 253–54
species boundaries, 241–47
Acropora brueggemannii, 251
Acropora cuneata, 240
taxonomic distinctiveness, 248
Acropora donei, 254
Acropora formosa, 248
Acropora millepora
fertilization in reciprocal crosses, 242
natural hybrids, 243
Acropora nasuta, 249
Acropora nobilis, 248
Acropora palifera, 240
taxonomic distinctiveness, 248
Acropora pulchra
natural hybrids, 243
Acropora pulchra/millepora cross karyotypic analysis, 247
Acropora selago, 251
Acropora tenuis, 254
Adaptation, 32
complex life cycles and, 580–82
cost-benefit approach, 227–29
enemy-related, 220
Adaptive decoupling, 573, 588
Adaptive radiation, 527
interspecific competition and, 470, 477–81
Adelina triboli, 503
Adoutte, A., 358
Advertisement call, 293
acoustic properties
female selectivity and, 303
maximum broadcast area, 296
African green monkey
immunodeficiency virus, 131
Aggression
acoustic signaling and, 117
Ahlgren, G., 9
AIDS
See Acquired immunodeficiency syndrome
Aizoaceae, 523
Alberch, P., 591–92
Alecto rufa, 506
Alfalfa
leghemoglobins, 340
Algae
biochemical and elemental composition, 4

C:N:P ratios
in situ patterns, 7–8
toxicity, 14
Algal biomass
biomolecules, 3
Algal cell
nutrient content, 5
Algal-herbivore interface, 1–23
Algal nutrient limitation, 5–9
Allocasuarina dicansiana, 646
Allometric speciation, 548
Allopolyploidy, 316
Allozyme electrophoresis, 248
Allozyme heterozygosity
fitness and, 57–58
Allozyme polymorphism, 52
Allozyme variation, 53
population size and, 48
Alpheid shrimp, 558
Alternation
competitive, 116–17
as epiphénoménon, 108–9
mechanism, 107–8
phase delay, 105–7
rhythmic, 112–14
signal interactions and, 99
Amazon molly, 71–72
Ambystoma
multiple hybrid events, 75
Ambystoma tigrinum
growth rate
allozyme genotype and, 57
Amino acids
herbivore growth and, 8
pelagic herbivore diet and, 3
replacement substitutions, 149
Amos, W., 380
Amphibian
complex life cycles, 577, 588–89
male parental care, 602
unisexual, 72
Amphipod, 558
osmoregulatory differences, 566
Anargus epos, 507
Anax junius, 498
Andersen, T., 17
Anderson, D. T., 365–66
Andrewartha, H. G., 168
Andricus quercusalicis, 507
Anemone, 449
Angiosperm
chloroplast DNA inheritance, 47
Animal phyla
Cambrian radiation
DNA sequencing and, 351–71

Animals
 complex life cycles, 573–96
 diploblastic, 357–58
 radiations
 coelomate, 356
 seed dispersal and, 263, 267,
 271–73
 seed/microsite interactions
 and, 275
 Annelid, 360, 363–64
 Annett, C. A., 605–6, 608
Anolis, 223, 455, 469–70
 evolutionary ecology, 467–88
 interspecific interactions, 470–
 84
Anolis aeneus, 481
Anolis allisoni, 473
Anolis bahorucoensis, 481
Anolis bimaculatus, 475, 483
Anolis carolinensis, 476
Anolis cristatellus, 483
Anolis evermanni, 483
Anolis gingivinus, 475, 483
Anolis gundlachi, 483
Anolis leachii, 476
Anolis porcatus, 473
Anolis sagrei, 476
Anolis wattsi pogus, 475, 483
Ant
 seed dispersal and, 272, 282
Antigenic diversity, 154
Antigenic drift, 149
 Antonovics, J. P., 172
Anuran
 adaptive variation in tadpole
 traits, 588
 auditory organs, 304
 auditory tuning
 temperature-dependent
 shifts, 307
 compartmentalization and,
 592
 inhibitory resetting, 105
 polyploid speciation, 316
 rhythmic signaling, 99
 sensory exploitation, 312–13
 signal interactions, 99
 size-assortative mating, 310
 synchrony and alternation,
 108–9
 vocalization
 mating success and, 294
Aphidoidea, 577
Aphid, 576
 complex life cycles, 577–78
Apis mellifera
 protein polymorphism, 49
Apodemus sylvaticus, 503
Apparent competition, 443, 449–
 50, 495, 496–97
 protist assemblages and, 509–
 10
Apparent mutualism, 499
Apparent predation, 499
Aquatic herbivore
 absolute dietary requirements, 3
 competition and community
 composition, 17–19
 dietary imbalance, 16–17
 feeding, 12–13
 growth, 13–16
 nutrient cycling and regenera-
 tion, 21–22
 secondary production limita-
 tion, 19–21
Arabidopsis, 326
 anther-specific proteins, 338
Arak, A., 312
Archoelia, 241
Arctic fox, 501
Arctic hare, 511
Argyroderma congregatum, 531
Argyroderma crateriforme, 531
Argyroderma delatii, 531
Argyroderma fissum, 531
Argyroderma pearsonii, 531
Arid habitat
 diversification and, 521–43
Arisida longiseta, 274
Arrow worm, 368–69
Artropod, 356, 360, 364–68
 molecular systematics, 367
 monophyly vs polyphyly, 364–
 67
 rhythmic signaling, 99
Articulata, 367
Aschelminth, 360
Ascidian, 370
Asclepiadaceae, 423–25
Asclepias, 424–25
 floral morphology and anat-
 omy, 425–27
 self-incompatibility systems,
 427–28
Asclepias amplexicaulis
 flower morphology, 426
Asclepias curassavica, 427
 nectar production, 429
Asclepias exaltata
 fruit-set, 428
 germination, 429–30
 nectar production, 429
 pollen dispersal, 431–33
Asclepias fruiticosa, 427
Asclepias incarnata, 427
 interspecific hybridization and,
 434
Asclepias perennis, 427
 hybrid sterility, 434
Asclepias purpurascens
 hybrids, 434
Asclepias quadrifolia
 fruit-set, 428
 interspecific hybridization and,
 434
 nectar production, 429
Asclepias speciosa
 interspecific hybridization and,
 434
Asclepias subulata, 427
Asclepias syriaca, 426–27
 fruit-set, 428
 germination, 429–30
 interspecific hybridization and,
 433–34
 nectar production, 429
 pollen dispersal, 432
 self-pollination, 430–31
Asclepias texana, 427
 hybrid sterility, 434
Asclepias tuberosa, 427
 fruit-set, 428
 self-pollination, 430
Asclepias verticillata, 427
 fruit-set, 428
 interspecific hybridization and,
 433–34
 nectar production, 429
Asexual species
 evolutionary dead ends, 86–87
Assimilation, 4
Assimilation efficiency, 2
Associative overdominance, 57
Asteraceae, 523
Asterias forbesi, 560
Asterias vulgaris, 560
Astigmatid mite
 adaptive evolution of immature
 stages, 590
Astragalus, 332
Athene cunicularia, 498
Atmosphere
 water vapor transfer between
 terrestrial ecosystems and,
 632–34
Australian burrowing frog
 calling sites, 298
Austrobiharzia, 205
Austrobiharzia terrigalensis,
 192, 205
Autopolyploidy, 317
Autotroph
 cellular composition, 4
 consumption in pelagic envi-
 ronments, 3
Avena barbata
 allozyme genotype viability,
 57
Avise, J. C., 553
Ayre, D. J., 248
Azidothymidine (AZT), 146
 long-term efficacy, 128
AZT
 See Azidothymidine
B
Bacillus rossius-grandis
 hybridogenesis, 73

Bacteria
 exopolysaccharides
 nitrogen-fixing symbiosis
 and, 334
 herbivore diets and, 3
 as source of minerals for zooplankton, 7–8
 symbionts, 335
Baier, M., 152
Bailey, V. A., 167, 177
Baker, C. S., 384, 393
Balaena mysticetus, 378
Balaenoptera acutorostrata, 384
Balaenoptera borealis, 388
Balaenoptera edeni, 384, 387
Balaenoptera musculus, 378
Balaenoptera physalus, 387
Balaenopterid, 378
Balene whale, 378, 382, 388, 393
Balfe, P., 140, 150
Barking treefrog
 chorus sounds, 299
 phototaxis and, 297
 sexual selection and, 315
Bark weevil
 mitochondrial DNA, 47
Barley
 allozyme genotype viability, 57
 composite crosses
 selection, 51
Barn owl, 498
Bart, J., 611–12
Barton, N. J., 555
Beetle
 twilight flashing, 99
Beluga whale, 388
Benguela Current, 522, 528
Bentham, G., 343
Benthic worm
 feeding
 food quality and, 13
Bergerud, A. T., 511
Berula lenta, 270–71
Beverton, R. J. H., 410
Biased gene conversion, 89, 556
Bigg, M. A., 381
Bilateria radiation, 358–60
Billick, I., 446
Bindin, 564
Biogeochemistry, 3
Biogeography, 249–54
Biological control
 shared predation and, 511–12
 trematode communities and, 208
Bioluminescence, 563
Bioluminescent signaling
 “beacon” effect, 111
 rhythm preservation hypothesis and, 111
 sexual advertisement and, 98
Biomass
 algal
 biomolecules, 3
Biomolecules
 pelagic herbivore diet and, 3
Biomonitoring
 trematode communities and, 208
Biomphalaria glabrata, 192, 203
Biotic factor
 seed dispersal and, 263, 267–
 68, 271–73
 seed loss and, 277–78
 seed/microsite interactions
 and, 275
Biotype, 72
Birch, L. C., 168
Bird
 dawn and dusk choruses, 99
 graded aggressive signals, 118
 male parental behavior, 601–24
 seed dispersal and, 282
Birkhead, T. R., 613, 614, 615
Bishop pine
 geographic variation, 54–55
 mitochondrial DNA, 49
Bisseling, N., 335
Bittrich, V., 527
BIV
 See *Bovine immunodeficiency virus*
Bivalve, 559
Blackman function, 656
Blastocoele, 360
Bluegill sunfish, 453
Blue mussel
 allozyme genotype viability, 57
 mitochondrial DNA, 47
Blue whale, 378
Bogart, J. P., 317
Bosmina
 specific P content, 10
Bosmina longispina
 excess C and, 17
Bottle experiment, 509–10
Bottlenose dolphin, 379, 381–82,
 385, 391
Bovine immunodeficiency virus
 (BIV), 130
Bowhead whale, 378
Brabrand, A., 22
Brachiodipod, 363
Bradyrhizobium, 335
Branchionus, 561
Branchionus plicatilis, 557
Brassica
 anther-specific proteins, 338
Brent goose, 502
Brevoortia patronus
 mitochondrial DNA variability, 49
Brevoortia tyrannus
 mitochondrial DNA variability, 49
Bromus tectorum, 269, 274–75
Brongniartiaeae, 331
Brown, J. G., 388
Brown, N. E., 527
Brown, W. M., 391
Broyles, S. B., 423–38
Bryant, E. H., 40, 584
Byrd's whale, 384, 387–88, 394
Bryozoan, 363
Buck, J., 119
Bufo americanus, 498
Bufo calamita
 call amplitude and, 307
Bullfrog
 advertisement calls, 296
Burns, D. P., 152
Burrowing owl, 498
Burton, R. S., 552
Buss, L. W., 560
Butterfly fish, 558, 561
C
Cactaceae, 523
Cactoblastis cactorum, 511
Cactus, 511
Caenogenesis, 588
Caenorhabditis elegans, 360
Caesalpinoideae, 327–28, 330
 infection threads, 335
 nodules, 339
 nodulins, 343
CAEV
 See *Caprine arthritis-encephalitis virus*
California sardine, 403
Calocedrus decurrens
 organellar genome inheritance,
 48
Cambrian radiation
 DNA sequencing and, 351–71
Campbell, M. L., 208
Canopy conductance, 629–57
 carbon assimilation rate and,
 631–32
 leaf area index and, 634–36
Canopy photosynthesis
 nitrogen concentration and,
 655–57
Capri Floral Kingdom, 523
Capitella, 558
Caprine arthritis-encephalitis virus (CAEV), 130
Capsid protein p24, 129
Carbohydrate
 in algal biomass, 3
Carbon assimilation rate
 conductances, 636–42
 leaf and canopy conductance
 and, 631–32
 photosynthetic, 655
Carbon balance
 plant, 646–47
Carbon dioxide assimilation rate
 global distribution, 644–46

Caribou, 511
Carnivore
 assimilation efficiency, 2
Caryotophora, 526
 Case, T. J., 446
Cassieae, 330
CBP
 See Conspecific brood parasitism
 Cell quota, 5
Cell tropism
 HIV-1 and, 154–56
Cellular automata
 metapopulations and, 178–79
Centrolenella fleischmanni
 calling sites, 298
Centrolenella granulosa
 rhythmic alternation, 112
 Cephalochordate, 368
Cephalophyllum, 524
 Cephalopod evolution, 229
Cerastium fontanum, 271
Cercaria lebouri, 205
 Cercidae, 329–30
Cerithidea, 195, 205
Cerithidea californica, 193, 204
Cerithidea scalariformis, 204
 Cesalpineae, 330
Cetacean
 genetic analysis of kinship, 379–83
 genetic ecology, 377–96
 geographic isolation, 391–95
 intrapopulation diversity, 383–84
 migration and genetic diversity, 388–91
 sympathy and habitat division, 385–88
Chaetodon, 554, 558
 Chaetognathes, 368–69
Chama, 510
Chamaecrista, 333
 infection threads, 335
 predominant nodule type, 334
 Chambers, J. C., 263–86
 Chaplin, S. J., 428
 Chappill, J. A., 329–31
 Character conflict, 352
 Character evolution, 31–42
 Charlesworth, B., 555
 Chelicerate, 365–66
Chimonas, 509
Chlamydomonas reinhardtii
 digestibility to grazers, 9
Chloroplast
 circular genomes
 restriction sites, 46
Chloroplast DNA
 inheritance, 47
 population size and, 52
 variability, 49–50
 variation, 50–52
Chloroplast marker, 59
Choanocyte, 357
Choanoflagellate, 357
Chordate, 356, 369–70
Chithamalus anisopoma, 450
Chuckwalla
 mitochondrial DNA variability, 49
Cicada
 dawn and dusk choruses, 99
 synchronous chorusing, 109
Cichutek, K., 150
Cimino, M. C., 75
Clades
 adaptive transformations, 223
Cladistic biogeography, 251
Cladocera, 3
 C:N:P ratios, 10
 lipid stores, 12
Clapham, P. J., 391
Classical polyandry, 605
Clayton, J. W., 388
CLC
 See Complex life cycle
Closed-cone pine
 geographic variation, 52, 54
Clutton-Brock, T. H., 612
Cnemidophorus
 molecular phylogenies, 75–77
 multiple hybrid events, 75
Cnemidophorus sonorae
 dietary breadth, 85
Cnemidophorus tesselatus
 heteroplasmacy, 47
Cnemidophorus tesselatus complex
 multiple hybrid events, 75
Cnemidophorus tigris
 dietary breadth, 85
 heteroplasmacy, 47
Cnidarian, 362
C:N:P ratio
 in situ patterns, 7–8
Co-accommodation, 205
Coast redwood
 organellar genome inheritance, 47–48
Cockburn, A., 468
Coelomate animal radiation, 356
Coelomate protostome, 356, 363
Coevolution, 219
 metapopulation structure and, 172
 models, 224–31
 selection and, 231–33
Coffin, J. M., 147
Cole, L. C., 413
Coleoptera
 wing retention in males, 579
Colias eriphyle
 allozyme genotype viability, 57
Colobocentrotus atratus, 560
Color discrimination
 mate choice and, 558
Commensalism, 450–51
Common bean, 326
Common dolphin, 385
Community structure
 evolution
 interspecific interactions and, 470–84
 predation and, 507–9
 trematode, 189–212
Compartmentalization
 complex life cycles and, 591–92
Competition
 apparent, 443, 449–50, 495, 496–97
 protist assemblages and, 509–10
 exploitative, 443, 447–48
 interspecific, 189, 468, 496–97
 adaptive radiation and, 470, 477–81
 community structure and, 190
 predation and, 481–83
 resource partitioning and, 473
 prey and, 508–9
 trematode community and, 205–7
Competition theory
 metapopulations and, 176–77
Competitive signaling, 114–20
Competitive synchrony, 114
Complex life cycle (CLC), 573–96
 compartmentalization and, 591–92
 defining, 575–76
 evolution, 579–94
 heterochrony, 592–93
 levels of selection and, 578–79
 molecular genetics, 592
 multiple-generation, 576, 593–94
 single-generation, 576, 590
 ubiquity, 577–78
Concerted evolution, 557
Concholepas concholepas, 449
Cone snail, 553–54
Conifer
 chloroplast DNA
 inheritance, 47
 geographic variation, 54
Coniferous forest
 seed dispersal, 281
 surface conductance and, 646
Connell, J. H., 497
Conocarpus erectus, 455
Conophytum, 524, 527, 531
Conservation
 shared predation and, 512

Conservation biology, 89–91
 Conspecific brood parasitism (CBP), 604
 Consumer biomass production, 2
 Contingent theory, 496
 Contramensalism, 499
Conus chaldaeus, 554
Conus kahiko, 554
 Convergent evolution, 146
 Coot clam
 growth rate
 allozyme genotype and, 57
 Copepod, 3
 particle selection, 13
 phospholipids, 11–12
 RNA, 11
 specific P content, 10
 Coral, 559
 biogeography, 249–54
 centers of diversity, 252
 mass-spawning
 breeding trials, 243–46
 mating systems, 241–43
 phylogeny, 249–54
 Corallivore, 240
 Coral reef fish, 559
 Coral taxonomy
 hypothesis-testing, 239–40
 Corby, H. D. L., 334
Corisca expleta, 503
 Corona, 425
 Cort, W. W., 191–92, 208
 Co-speciation, 205
 Cost-benefit analysis
 predator-prey coevolution and, 227
 Cotyledon
 n-uricase in, 342
 Courtship
 signal interactions and, 118–19
 Coyne, J. A., 560, 562
 cpDNA
 See Chloroplast DNA
Crassostrea virginica, 553
 allozyme frequencies, 53–54
 allozyme genotype viability, 57
 Crassulaceae, 523
 Crawley, M. J., 277
 Cricket frog
 clinal variation in call frequency, 316
 dominant vocalization frequency, 298
 Cronin, T. W., 554
 Cronquist, A., 328, 333
 Cross-fertilization, 560
 Crustacean, 3, 365–66, 558
 courtship process, 563
 larvae, 552
 Cryoturbation
 seed dispersal and, 268–69

Cryptocotyle lingua, 205
 Cuellar, O., 75
 Curtis, L. A., 193, 195
 Cushing, D. H., 404, 410
 Cyanobacteria
 Gunnera symbiosis, 333
 peptidoglycan cell wall, 9
 toxic compounds, 14
 Cynipid wasp, 576

D

Dadour, I. R., 118
 Dahl, K., 403
 Dahl, O., 22
 Dalbergiidae, 331
 Dale, J., 615
 Dall's porpoise, 391–92
Dama dama, 502
 Danielsdottir, A. K., 390, 393–94
Daphnia
 coexistence, 171
 energetics, 4–5
 feeding
 food quality and, 13
 food abundance and, 17–19
 growth rate, 14
 orthophosphate uptake, 3
 particle selection, 13
 RNA, 11
 secondary production limitation, 20
 specific P content, 10
 storage lipids, 17
Daphnia longispina
 excess C and, 17
Daphnia magna, 9
Daphnia obtusa
 growth, 14–15
Daphnia pulex, 9
 Daphnid, 576
 Dark-eyed junco, 602
 Darwin, C., 220, 454, 548, 574, 586
 Davies, N. B., 615
 Dawkins, R., 227
 DeAngelis, D. L., 230
 DeBeer, G., 588
 Deciduous forest
 seed dispersal, 281–82
 Deer mice
 geographic variation, 52
 mitochondrial DNA, 48
 Delassus, S., 154
Delphinapterus leucas, 388
Delphinus delphis, 385
 Den Boer, P. J., 168
Dendromecon rigida, 272
 Desert
 seed dispersal, 279–80
Desmodieae, 331
 Desrosiers, R. C., 152

Detritivore
 assimilation efficiency, 2
 Detritus
 herbivore diets and, 3
 Deuterostome, 368–70
 relationships among major taxa, 369–70

Developmental constraint
 complex life cycles and, 585–86

Diadema savignyi, 559
Diadema setosum, 559
Diaphanosoma
 specific P content, 10
Diaptomus
 food abundance and, 17–19
 Diaspore
 See Seed
Dicrocaulon, 536, 539, 541, 543
 Diekmann, O., 173–74, 177
 Diet
 balanced
 composition of consuming organism and, 2
 Dinoflagellate
 toxic compounds, 14
 Diploblastic animal, 357–58
 Diploid speciation, 241
Diplosoma, 524, 536, 541
Dipodomys merriami, 502
Dipodomys panamintinus
 geographic variation, 50
 Diptera
 wing retention in males, 579
 Direct effect, 444
 Dizon, A. E., 387
 DNA
 See Chloroplast DNA; Mitochondrial DNA
 DNA fingerprint, 49, 380
 DNA marker, 46–50
 modes of inheritance, 47–48
 mutation rates and, 48
 variability, 48–50
 DNA polymerase I
 HIV replication and, 129
 DNA sequencing
 Cambrian radiation and, 351–71
 Dobzhansky, T. H., 548, 563
 Docosahexaenoic acid
 zooplankton growth and, 9
 Dolphin
 genetic analysis of kinship, 379–83
 genetics and ecology, 377–96
 geographic isolation, 391–95
 intrapopulation diversity, 383–84
 migration and genetic diversity, 388–91
 sympatry and habitat division, 385–88

Dong, J., 56
 Donoghue, M. J., 237
 Doolittle, F., 556
Dorotheanthinae, 527
Dorotheanthus, 524
Dorotheanthus booyensei, 526
 Douglas fir
 seed zones, 54
 Dover, G. A., 395, 556
 Dowling, T. E., 391
 Doyle, J. J., 325–44
 Droop, M. R., 5
Drosophila
 complex life cycles, 592
 mate signaling, 563
 mitochondrial genome variation, 51
 mutation rates, 48
 phenotypic changes, 33–36
Drosophila mauritiana
 heteroplasm, 47
 mitochondrial DNA
 haplotypes, 51
Drosophila melanogaster, 556
 additive genetic variance, 40
 developmental genetics, 31–32
 heteroplasm, 47
 mitochondrial DNA
 haplotypes, 51
 sternopleural bristle number, 35–36
Drosophila pseudoobscura
 mitochondrial DNA
 haplotypes, 51
Drosophila subobscura
 mitochondrial DNA
 haplotypes, 51
 Dubois, G., 191
 Duffy, A. M., Jr., 619
 Dunn, P. O., 611–12

■

Earthworm
 seed dispersal and, 271–72
 Ebenman, B., 582–83, 585
 Echinoderm, 356, 368, 369–70
 lability of larval stages, 589
 Echinoid
 lability of larval stages, 589
Echinometra, 554, 560
 Ecological community
 indirect effects and, 443–62
 Ecological production
 stoichiometry and, 2
 Ecological release, 475
 Ecological theory
 fisheries ecology and, 402,
 407–15
 Ecological weed, 79–80
 Ecology
 nutritional, 3
 Ecomorph, 239, 469–70

Ecophysiology, 634
 Ecosystem surface conductance
 global distribution, 644–46
 leaf area index and, 634–36
 Edson, J. L., 578
 Edwards, J. L., 332
 Eernisse, D. J., 361, 363
 Ehrlich, P. R., 220
 ELAV
 See Equine infectious anemia virus
 Eicosapentaenoic acid
 zooplankton growth and, 9
 Eigen, M., 138
 Eiriksson, T., 118
 Elendt, B.-P., 17
Eleutherodactylus coqui
 call timing, 106–7
 Elser, M. M., 22
 Elson, P. F., 414
Enallagma, 499–500
 Encephalopathy
 AIDS and, 156
 Endler, J. A., 312
 Enemy-free space, 497
 Energetics, 4
Enhydra lutris, 448
 Enquist, M., 312
env gene, 140, 148–49
 Environmental stochasticity
 indirect effects and, 455–56
 EPF
 See Extra-pair fertilization
 Epistasis, 31–32, 39–40
 phenotypic
 fitness and, 40–41
 EPP
 See Extra-pair paternity
 Epstein, L. G., 156
 Equine infectious anemia virus
 (ELAV), 130
Eridaea boryana, 449
Erodium moschatum, 276
Erythrina
 floral evolution, 332
Erythroneura elegantula, 450,
 507
Erythroneura variabilis, 450, 507
 Escalation, 219–20
 hypothesis, 221–22
 models, 224–31
 selection and, 231–33
 Esch, G. W., 193, 195, 202, 206
Escherichia coli, 510
Eschrichtius robustus, 378
 ESS
 See Evolutionarily stable strategy
 Euarthropod, 365
Eubalaena, 378
Eubalaena australis, 378
Eubalaena glacialis, 378
 Eucoelom, 362–64

Eumetazoan, 357
Euploea, 509
 European frog
 hybridogenesis, 73
 sexual selection and, 314
 Evaporation
 conductances, 636–42
 Evolutionarily stable strategy (ESS), 225
 Evolutionary ecology, 467–88
 integrative approaches, 484–86
 interspecific interactions and,
 470–84
 Evolutionary interaction, 219–33
 Evolutionary parsimony, 354,
 356, 367
 Evolutionary theory, 32–33
 fisheries ecology and, 402,
 407–15
 Evolutionary trend
 recognition and interpretation,
 223–24
 Exclusion
 shared predation and, 500
 Exopolysaccharide
 nitrogen-fixing symbiosis and,
 334
 Exploitative competition, 443,
 447–48
 Extinction, 169–70
 founder effect and, 172
 primary productivity and, 222
 Extracellular matrix
 metazoan, 357
 Extra-pair fertilization (EPF), 611
 Extra-pair paternity (EPP), 604,
 606, 615

F

Facilitation, 205
 Fallow deer, 502
 Faroese pilot whale, 380
 Fatty acid
 herbivore growth and, 8–9
 pelagic herbivore diet and, 3

Favia, 241
Favites, 241
 Feedback system
 victim exclusion and, 503–5
 Feeding
 aqueous herbivore, 12–13
 Feldman, M. W., 552
 Feline immunodeficiency virus (FIV), 130
 sequence variation, 153
 Female philopatry, 381
 Female preference
 evolution, 309–14
 variability, 311
Fenestraria, 524
 Fernandez, J., 193, 195, 206
 Ferris, S. D., 59

Fertilization
extra-pair, 611
reproductive isolation and, 559–61

Fiddler crab, 557

Field, C. B., 636, 639

Field, K. G., 356

Fieldfare, 451

Finland
HIV infection and, 139

Fin whale, 387, 393

Fish
density-dependent factors and, 408–10
density-independent factors and, 410–11
distribution and abundance, 550
hybridogenetic
mutational accumulation hypothesis and, 87
male parental care, 602
mate choice, 558
migration, 407
unisexual, 71–91
ecological niche, 79–83
evolution, 74–78
genotypic variance, 83–84
nonrecombinant reproductive modes, 72–74
phenotypic plasticity, 84

Fisher, N. S., 16

Fisher, R. A., 180

Fisheries ecology, 401–15
life history traits and, 413–15
population dispersal and, 411–13
population regulation and, 408–11

Fitch-Margoliash distance
method, 356

Fitness
complex life cycles and, 583–85
founder events and, 90–91
frequency-dependent, 86
heterosis and, 80–81
heterozygosity and, 57–58
male parental care and, 611
phenotypic epistasis and, 40–41
variable
quasispecies theory and, 146

FIV
See Feline immunodeficiency virus

Flatworm, 358–59

Flavonoid
nitrogen-fixing symbiosis and, 334

Floristic model of succession, 284

Foltz, 57

Food chain
mathematical theories, 448

Food quality
herbivore feeding rates and, 12–13

Food web
aggregated terrestrial
verbal theory, 448
shared predation and, 500–1

Foraging behavior
seed dispersal and, 272

Fortier, L., 409

Founder effect
genetic differentiation and, 172

Founder event, 554
fitness loss and, 90–91
genetic diversity and, 383–84

Frank, K. T., 401–15

Frankia
dicots nodulating, 333

Freshwater system
indirect mutualisms and commensalism, 450–51
trophic cascades, 449

Frog
acoustically orienting predators, 301
vocalization
evolution, 293–317
female mate choice and, 301–9

Frozen niche-variation
unisexuality and, 81–82

Frugivory
seed dispersal and, 267

Fundulus heteroclitus, 449, 552

Fungicide
seed loss and, 278

G

Gabriel, W., 87

gag gene, 148

p17 coding region
neighbor-joining tree, 141

Galaxea fascicularis
pseudogynodioecy, 240

Galegeae, 330

Gall wasp, 507

Gamete recognition protein, 547

Gamete recognition system, 564

Gammaurus, 559

Gammaurus zaddachi, 552

Gardner, S. L., 208

Gastrophryne carolinensis
call structure, 316

Gastropod, 559

Gastrorhynchidae, 360–61

Gene-character interaction, 31–42

Gene conversion, 89, 556–57

Gene erosion, 534

Gene flow, 53–54, 172, 530, 550
molecular evidence, 247–49

Gene interaction
nonadditive, 31–32

Genetic architecture, 31–42

Genetic behavior, 31–42

Genetic cohesion, 241

Genetic decay
persistence of clones and, 87

Genetic differentiation
marine speciation and, 554–57

Genetic divergence, 547
mechanisms, 555–57

Genetic diversity
fitness consequences, 90

Genetic drift, 172, 521, 530, 554–55

Genetic marker
molecular
hybridization and, 58–60

Genetic revolution, 554

Genetic transience, 554

Genetic variation
geographic patterns, 551
habitat fragmentation and, 173
HIV-1 and, 154–56
population size and, 48
protein electrophoresis and, 45

Genotypic variance
life history traits and, 83–84

Geographic variation
discordant patterns, 52–56
vocalization and, 314–16

Georges Bank haddock, 403

Geospiza, 455

Gerhardt, H. C., 293–317

Germination
milkweed, 429–30

Ghislain, M. T., 85

Gillespie, J. H., 157

Glass frog
calling sites, 298

Global ecology, 630–31

Globicephala macrorhynchus, 392

Globicephala melas, 380

Glutamine synthase (GS)
expression patterns in legumes, 341–42

Glycine, 326, 332, 335
glutamine synthase, 341–42
leghemoglobins, 340–41
nodule-specific uricase genes, 342

Gnathostomulid, 359–60

Gojobori, T., 147

Goldman, J. C., 22

Goldschmidt, R., 33

Goniastrea aspera, 240

Goniastrea favulus, 240

Goniopora, 248

Goodnight, C. J., 40, 172–73

Goose barnacle, 450

Gould, S. J., 220, 365

Gowaty, P. A., 611

Grant, J. W. A., 409

Grant, P. R., 455

Grasshopper
call timing, 106, 118
dawn and dusk choruses, 99
rhythmic alteration, 112

Grassland
seed dispersal, 281
surface conductance and, 646

Grass shrimp, 449

Gravity
seed dispersal and, 267–68

Gray treefrog
preferences for long calls, 306–7
vocalization, 295–96

Gray whale, 378

Greater Cape Flora, 523

Greenfield, M. D., 97–120

Green treefrog
call properties
temperature effects, 307–8
female selectivity
male call frequency and, 304
sexual selection and, 314

Grell, K., 358

Grey partridge, 507

Groeger, A. W., 14

Growth rate
maximum, 5
relative, 5

Gryllid
rhythmic synchrony, 110

Gryllus firmus
heteroplasmy, 47, 51

Gryllus pennsylvanicus
heteroplasmy, 47, 51

GS
See Glutamine synthase

Gubernick, D. J., 619

Güde, H., 22

Gull, 448

Gulland, J. A., 407–8

Gunnera
symbiosis with cyanobacteria, 333

Guppy
allozyme genotype viability, 57

Gyllenberg, M., 175

Gynogen
morphological variance, 85
synthesis, 75

Gynogenesis, 72–73

H

Habitat fragmentation
genetic variation and, 173
population isolation and, 170

Habitat partitioning
predation and, 510–11

Habitat specialization
reproductive isolation and, 558–59

Haddon, A. C., 238

Haeckel, E., 586

Haefner, J. W., 578

Haematoopus bachmani, 448

Hairston, N. G., 448

Hall, C. A. S., 405

Halle, S., 503

Hammer, S., 527

Hannon, S. J., 611–12

Hanski, J., 175–76, 181

Harbor porpoise, 383

Hardy-Weinberg equilibrium, 392

Harris, H., 45

Harris, R. P., 409

Harrison, S., 167–81

Hartmann, H., 526

Hastings, A., 167–81

Hawkinson, C. A., 557, 561

Hecatesia thyridion, 314

Hecht, M. K., 332

Heckey, R. E., 20

Heiser, C. B., 59

Helecioporus
calling sites, 298

Helianthus annuus ssp. *texanus*
hybrid origin, 59

Heliocidaris erythrogramma, 593

Helisoma anceps, 195, 202

Hemagglutinin protein gene, 137

Hemicordate, 368, 369–70

Hemidactylus
multiple hybrid events, 75

Hemophilia
HIV infection and, 140

Hempel, G., 408

Herbivore
aquatic
absolute dietary requirements, 3
competition and community composition, 17–19
dietary imbalance, 16–17
feeding, 12–13
growth, 13–16
nutrient cycling and regeneration, 21–22
secondary production limitation, 19–21
assimilation efficiency, 2

excess C and, 16–17
growth
essential substances, 8–9
pelagic
energy storage, 14
taxonomic diversity, 3

Herbivore-algal interface, 1–23

Herbivore nutrient balance, 10–17

Hermit crab, 559

Hernstein, R. J., 313

Hessen, D. O., 1–23

Heterochrony, 573
complex life cycles and, 592–93

Heterocoope
specific P content, 10

Heterogeneity
trematode community and, 202–5

Heteronotia binoei
biased gene conversion and, 89

Heterophyid, 205

Heteroplasmy, 47, 51

Heterosis
unisexual, 80–81

Heterotroph
cellular composition, 4

Heterozygosity
fitness and, 57–58, 90
natural populations and, 173

Hews, D. K., 622

Heyneman, D. H., 192, 203

Hillis, D. M., 556

Himasthla, 205

HIV
See Human immunodeficiency virus

Hjort, J., 403–4, 406

Hoelzel, A. R., 377–96

Holland, P. W. H., 370

Holmes, E. C., 127–57

Holometabola, 577, 583, 590, 592

Holopedium
specific P content, 10

Holopedium gibberum
excess C and, 17

Holothuria, 559

Holt, R. D., 495–513

Holt, S. J., 410

Homeostasis
herbivore, 21–22

Homeotic gene, 521, 542–43

Homoplasy, 354

Homozigosity
inbreeding and, 57

Honeybee
DNA fingerprints, 49
protein polymorphism, 49

Hordeum vulgare
allozyme genotype viability, 57
composite crosses
selection, 51

Hormones
male parental care and, 619–20

Horseshoe crab
allozyme variation, 53
geographic variation, 52

Houde, E. D., 408

Howarth, F. G., 511

Howell, R. M., 152

Hubbard, K. M., 193, 195

Hubbs, C., 71

Hubbs, L., 71

Hubby, J. L., 45

Huffaker, C. B., 170–71, 177

Hughes, A. L., 563

Human immunodeficiency virus
 (HIV)
 evolutionary biology, 127–57
 evolution within a community, 139–42
 evolution within an individual, 144–56
 forensics, 142–44
 immunodominant neutralizing epitope, 145
 life cycle, 129
 origin, 128–36
 pandemic, 128
 sequential studies, 147–54

Human immunodeficiency virus-1 (HIV-1)
 genetic variation, cell tropism, pathogenesis, 154–56
 global variation, 136–39
 molecular epidemiology, 136–44
 origin, 132–33
 subtypes, 137

Human T cell leukemia virus, 129

Humpback whale, 378, 382, 392–93

Hutchinson, G. E., 170

Hybrid dysgenesis, 556–57

Hybridization
 interspecific
 milkweeds and, 433–34
 nonrecombinant reproductive modes and, 72
 sterility and, 74
 mass-spawning corals and, 241–43
 molecular genetic markers and, 58–60

Hybridogen
 morphological variance, 85
 synthesis, 74

Hybridogenesis, 73–74

Hybrid unisexual
 ecological niche, 79–83

Hydractinia, 560

Hyla chrysoscelis
 preferences for long calls, 306–7

Hyla cinerea
 introgression and, 60
 sexual selection and, 314

Hyla gratiosa
 chorus sounds, 299
 introgression and, 60
 phototaxis and, 297

Hyla japonica, 317

Hyla microcephala
 advertisement calls, 297
 bout calling, 120

Hyla regilla
 chorusing, 120

Hyla versicolor
 preferences for long calls, 306–7

Hyman, L. H., 363

Hymenoptera
 milkweed pollen dispersal and, 431
 wing retention in males, 579

Hypermutation, 144–45

Hyperolius marmoratus
 female selectivity
 male call frequency and, 304

Hypoplectrus, 558

Hypothesis-testing
 coral taxonomy and, 239–40

I

Ihlenfeldt, H.-D., 521–43

Ihlenfeldtia-Vanheerde-Tanquana complex, 527

Ikeya, N., 554

Ilyanassa obsoleta, 195, 204–5

Immunodeficiency virus
 evolution of virulence, 135–36
 primate, 130–32
 phylogenetic tree, 131
 sequential studies, 152–53
 See also specific virus

Inbreeding, 38–39, 58, 173
 homozygosity and, 57

Incense-cedar
 organellar genome inheritance, 48

Incidental predation, 501

India
 HIV infection and, 139

Indigoferae, 331

Indirect antagonism, 499

Indirect effect, 443–62
 demonstrations in nature, 447–54
 detection, 446–47
 evolutionary consequences, 454–55
 mechanisms preventing, 455–56
 path analysis, 457–59
 terminology, 444–46
 theoretical explorations, 456–57

Indirect mutualism, 443, 450–51

Indoplanoorbis exustus, 192

Inflorescence size
 evolution, 435–37
 sexual selection theory and, 435

Influenza virus
 antigenic drift, 149

Inheritance
 gynogenetic, 72–73
 hybridogenetic, 73–74
 Mendelian, 556
 randomly amplified polymorphic DNA, 46, 49

Inhibitory resetting, 105

Insect
 complex life cycles, 577, 590
 ultrasonic sensitivity, 313

Interaction chain, 445

Interaction modification, 443, 446, 451–52

Interactive algorithm, 100–10

Interactive display
 formats, 98–100

International Whaling Commission, 394

Interspecific competition, 189, 468, 496–97
 adaptive radiation and, 470, 477–81
 community structure and, 190
 predation and, 481–83
 resource partitioning and, 473

Interspecific hybridization
 milkweeds and, 433–34
 nonrecombinant reproductive modes and, 72
 sterility and, 74

Interspecific interaction
 evolutionary ecology and, 486

Intraguild predation, 192

Introgession, 59–60, 241, 434, 529, 532

Iris brevicaulis
 hybrid zone, 60

Iris fulva
 hybrid zone, 60
 pollen flow in hybridization, 59

Iris hexagona
 hybrid zone, 60
 pollen flow in hybridization, 59

Isopod, 558

Istock, C. A., 574, 578, 580–83

J

Jablonski, D., 579

Jack pine
 geographic variation, 55
 introgression and, 59

Jackson, J. B. C., 559

Jæra, 558–59

Jarosz, A. M., 172

Jeffries, M. J., 497

Jeffries, R. P. S., 369

Johnson, F. M., 45

Johnston, A. W. B., 335

Jones, L. L., 391

Juncos, 613

Juncos hyemalis, 602

Jürgens, K., 22

Jürgens, N., 523

K

Kahn, A. P., 427

Kangaroo rat, 502

Karban, R., 172

Karl, S. A., 553
 Keddy-Hector, A., 313
 Keim, P., 60
 Kelley, P. H., 230
 Kelliher, F. M., 629–57
 Kephart, S. R., 427
 Ketterson, E. D., 601–24
 Keystone species, 508
 Kikkawa, J., 413, 415
 Kilham, P., 8
 Kilham, S. S., 8
 Killer whale, 378, 381, 383, 385, 388
 Killifish, 449, 552
 Kimura, M., 354, 554–55
 Kinorhynch, 360–361
 Kinship
 genetic analysis, 379–83
 Kiorboe, T., 13
 Kirkpatrick, M., 310
 Kitchell, J. A., 228, 230
 Knobcone pine
 geographic variation, 54–55
 mitochondrial DNA, 49
 Knowlton, N., 559
 Körner, C., 629–57
 Krebs, J. R., 227
 Kuiken, C. L., 142
 Kurihara, Y., 510
 Kuris, A. M., 189–212

L

Lack, D., 605, 616
 Ladle, R., 86
 Lafferty, K. D., 189–212
Lagopus lagopus, 507
 Lake, J. A., 353–54, 356
 Lampert, W., 17
 Lampyrid
 rhythmic flash synchrony, 109
 twilight flashing, 99
 Lande, R., 173
 Landscape effect
 shared predation and, 512
Lapidaria, 542
Larix, 634
Larix occidentalis
 seed zones, 54
 Larkin, P. A., 408
Larus glaucescens, 448
 Lasker, R., 410
 Lavin, M., 331
 Lawler, S. P., 509–10
 Lawton, J. H., 495–513
 Leaf area index, 634–36
 cumulative, 655
 Leaf conductance
 carbon assimilation rate and, 631–32
 Leafhopper, 450, 507
 Leaf nitrogen content
 global distribution, 644–46

Leaf photosynthesis
 nitrogen concentration and, 632
 Leaf photosynthetic rate, 655
 Lecithotrophic larvae, 551
 Leggett, W. C., 401–15
 Leghemoglobin, 339–41
 Legume chloroplast genome
 structure, 332
 Legume phylogeny, 325–44
 Legume-rhizobium relationship, 335
 Leguminosae, 325, 326–28
 affinities, 328
 pollination systems, 331–32
 relationships, 329–31
 symbiotic nitrogen fixation
 origin and evolution, 333–42
 Leigh Brown, A. J., 127–57
Leipoldtia, 527
 Lemcke, H. W., 17
Lens
 linkage map, 332
Lentivirus, 130, 134
 adaptation to host species, 135
 Leopard frog
 brainstem oscillators, 295
 Lepidoptera
 milkweed pollen dispersal and, 431
 wing retention in males, 579
Leponis gibbosus, 453
Leponis macrochirius, 453
Leptodactylus albilabris
 call timing, 106
Leptodora
 specific P content, 10
 Leuning, R., 629–57
 Levin, S. A., 177
 Levins, R., 167–69, 174, 176, 178–80
 Lewontin, R. C., 45, 56
 Li, Y., 156
 Lie, K. J., 191–92
 Life cycle, 573–96
 Life-dinner principle, 227–29
 Life history trait
 fisheries ecology and, 413–15
 genotypic variance, 83–84
Liguroides planum
 call timing, 106
 rhythmic alternation, 112
 Limber pine
 genetic variation, 55–56
 geographic variation, 52
 Limpet, 446–47, 449–50, 455
Linum polyphenum
 allozyme variation, 53
 Linkage disequilibrium, 58
 Lipid
 algal biomass and, 3
 energy storage in pelagic herbivores and, 14
Lithops, 524, 526, 529, 542

Litoria ewingi complex
 call structure, 316
 Littlejohn, M. J., 314
Littorina, 205, 223
 Littorine, 204
 Lizard
 parthenogenetic
 parasite loads, 86
 unisexual, 72, 75
 Lloyd, J., 629–57
 Loblolly pine
 nuclear RFLPs, 49
 Lodgepole pine
 gene flow, 55
 geographic variation, 52
 introgression and, 59
 mitochondrial DNA, 49
 seed zones, 54
Lolium multiflorum
 allozyme genotype viability, 57
 Lophophorate, 363–64
 Lorenzen, S., 361
 Loriciferan, 360
 Losos, J. B., 467–88
 Lotka-Volterra model, 456, 507
Lottia digitalis, 446
Lottia strongiana, 450
 Louping-ill virus, 507
 Louwagie, J., 137
 Lowe, C. H., 79
Luciola pupilla
 perfect synchrony, 109
 Luckow, M., 331
 Ludwig, D., 406
Lupinus texensis
 chloroplast DNA, 49
Lymnaea emarginata
 multiple species infections
 and, 191
Lymnaea rubiginosa, 192, 195
 Lynch, M., 80, 87
 Lynx, 511
 Lysin, 564

M

Macaca mulatta
 immunodeficiency virus, 130
 MacMahon, J. A., 263–86
Macoma balthica
 allozyme genotype viability, 57
 Macroelement
 aquatic herbivore diet and, 3
 Macrophage
 HIV and, 149
 Macrophage tropism
 HIV infection and, 156
Magicicada, 502
Magicicada cassini
 synchronous chorusing, 109
 Magnuson, J. J., 402
 Maize, 326
 Male dispersal, 381

Male parental behavior
in birds, 601–24

Male parental care
comparative approach, 605–10
developmental approach, 622–23
functional approach, 610–18
mechanistic approach, 618–22
paternity and, 615–16
prolactin and, 622
testosterone and, 620–22

Mammal
graded aggressive signals, 118
male parental care, 602, 619
seed dispersal and, 271, 282

Mandibulate, 365

Mandrill
immunodeficiency virus, 131

MANOVA
See Multivariate analysis of variance

Manton, S. M., 365–66

Marbled newt
larval limb morphology, 588

Margulis, L., 220, 226

Marine invertebrate
complex life cycles, 577, 589–90

Marine speciation, 547–67
genetic differentiation and, 554–57
population subdivision and, 549–54
reproductive isolation and, 557–66

Marine system
indirect mutualisms and commensalism, 450
selection and, 552–53
trophic cascades, 448–49

Marquez, R., 310

Marshall, C. R., 351–71

Martof, B. S., 303

Masking interference
vocalization and, 300–1

Mate preference, 557–58

Mating
rare clone advantage and, 79

Mating success
vocalization and, 294

Matrix protein p17, 129

Maximum parsimony method, 370

Maximum sustained yield (MSY), 405

May, R. M., 153, 190

Maynard Smith, J., 77, 225–26, 310, 610–13, 617–18

Mayr, E., 255, 548, 563

McKay, F. E., 78–79

McKittrick, M. C., 608–9

McMillan, J., 253

McNearney, T., 154

Measles virus
geographic diversity, 137

Medicago
glutamine synthase gene, 342

Medicago sativa
leghemoglobins, 340

Megaptera novaengliae, 378

Melitaea cinxia, 181

Mendelian inheritance, 556

Menge, B. A., 452, 454

Menhaden
mitochondrial DNA variability, 49

Menidia clarkhubbsi, 74
multiple hybrid events, 75

Menippe mercenaria, 553

Mephitis mephitis, 501

Mesembryanthemaceae, 521–43
dispersal system, 529–30
environment, 528
evolutionary processes on genus level, 534–41
evolutionary processes on population-species level, 530–34
pollination and breeding systems, 528–29
taxonomic structure and patterns of distribution, 526–28

Mesembryanthemum, 524

Mesembryanthemum L., 527

Mesopredator release, 508, 512

Metabolic nodulin, 341–42

Metamorphosis, 577–78, 582, 584, 587, 592
evolutionary origins, 592

Metapopulation, 167–81
cellular automata, 178–79
competition models, 176–77
ecological evidence, 169–71
ecological models, 175–79
genetic evidence, 171–73
genetic models, 179–80
i-state, *p*-state model, 173–75
predator-prey models, 177
reaction-diffusion models, 177–78
single species models, 175–76
species interactions, 170–71

Metazoan
complex life cycles, 577
extracellular matrix, 357
molecular phylogenies, 351–71
first results, 356–57
methodological issues, 352–55
plesiomorphy, 357
tree, 357–58

Metz, J. A. J., 173, 177

Meyerhans, A., 154

Meyerophytum, 536, 539, 541, 543

Microtus arvalis, 503

Migration
cetacean, 388–91
fish, 407

Milich, L., 155

Milkweed, 423–38
floral morphology and anatomy, 425–27
inflorescence size, 435–37
interspecific hybridization, 433–34
low fruit-set, 428
as model system, 424–25
nectar production, 428–29
pollen dispersal, 431–33
pollen viability and germination, 429–30
self-incompatibility systems, 427–28
self-pollination, 430–31

Millettiaeae, 331

Mimosa pigra, 278

Mimosoideae, 325, 327–28, 330
nodules, 334, 339
nodulins, 343
symbioses with rhizobia, 333

Mineral
zooplankton growth in nature and, 9

Minke whale, 384, 387, 389–90, 395

Mirbeliaeae, 331–32

Mishler, B. D., 237

Mitchell, S. F., 14

Mitochondria
circular genomes
restriction sites, 46

Mitochondrial DNA, 46
diversity
population size and, 48
haplotype analysis, 382
inheritance, 47
mutation rates, 48
population size and, 52
unisexuality and, 75
variation, 50–52

Mitrophyllinae, 534, 537, 540, 543

Mitrophyllum, 527–28, 536–37, 540, 543

Mitrophyllum roseum, 543

Miton, J. B., 45–61

Mixocoel, 365

Molecular drive, 556–57

Molecular genetic marker
hybridization and, 58–60

Molecular genetics
complex life cycles and, 592

Molecular phylogeny
alignment, 353
consistency, 353–54
metazoan, 351–71
first results, 356–57

methodological issues, 352–55
robustness, 355
significantly supported nodes, 354–55
tree recovery algorithms, 353–54

Molecular population biology, 45–61
DNA markers, 46–50
Molecular systematics, 351–52
Moller, A. P., 613–15
Mollusc, 359–60, 363
Monilaria, 524, 527, 536, 539, 541
Monilaria chrysoleuca, 532–33
Monilaria moniliformis, 532–33
Monilaria obconica, 533–34
Monilaria pisiformis, 533–34
Monilaria scutata, 532
Monochrysis lutheri
nutrient limitation and, 5
Monogamy
male parental care and, 603
Montastrea, 559
Montastrea annularis, 248
Monterey pine
geographic variation, 54–55
mitochondrial DNA, 49
Montipora, 241–42
Montipora digitata, 255
Mooney, H. A., 630, 636, 639
Moore, R. J., 427
Moore, W. S., 78–80
Moran, N. A., 573–96
Moreno, G., 31–42
Morse, D. H., 427, 429, 432
Morula marginalba, 448
Mouse, 503
MSY
See Maximum sustained yield
mtDNA
See Mitochondrial DNA
Mulinia lateralis
growth rate
allozyme genotype and, 57
Muller, H. J., 87
Mullerianella
gynogen synthesis, 75
Mullins, J. I., 153
Multivariate analysis of variance (MANOVA), 447
Murray, K. G., 267
Mus domesticus
mitochondrial DNA in *Mus musculus*, 60
Mussel, 552
Mutation
RNA viruses and, 144–47
Mutational accumulation hypothesis, 87
Mutualism, 232
apparent, 499
indirect, 443, 450–51
Myers, G., 136
Mygalopsis marki
call timing, 118
Myriapod, 366
Mysticete, 378
genetic analysis of kinship, 382–83
geographic isolation, 392–95
intrapopulation diversity, 383–84
migration and genetic diversity, 388–91
sympatry and habitat division, 387–88
Mytilus edulis, 552
allozyme genotype viability, 57
heteroplasm, 47
mitochondrial DNA inheritance, 47
Mytilus galloprovincialis
heteroplasm, 47
mitochondrial DNA inheritance, 47
Mytilus trossulus
heteroplasm, 47
mitochondrial DNA inheritance, 47

N

Naganuma, K. H., 481
Nakajima, T., 510
Nap, J.-P., 335
Nectar
milkweed, 423–25, 428–29
nef gene, 130
Nei, M., 74, 87, 563
Nematode, 360–61
Nematomorph, 360–61
Nematostella victensis, 449
Nemertine, 359, 363
Nemoria arizanaria, 590
Neoconocephalus
call timing, 118
Neoconocephalus nebrascensis
overlapped calling, 118
Neoconocephalus spiza
competitive signaling
precedence effect and, 115
Nereis, 558
Nereis acuminata, 558
Neural oscillator model, 100–2
Nevirapine, 146
Ng, G., 430
Niche differentiation
shared predation and, 498
Nicholson, A. J., 167, 177
Nieselt-Struwe, K., 138
Nitrogen
leaf content
global distribution, 644–46
leaf photosynthesis and, 632
Nitrogen concentration, 649–52
canopy photosynthesis and, 655–57
Nitrogen fixation
symbiotic
origin and evolution, 333–42
Noble, I. R., 285
Nodulation, 325
Nodule, 326
development and morphology, 334–35
Nodulin, 325
metabolic, 341–42
origins and evolution at homology criteria, 343
Nodulin gene, 335–42
Nolan, V., Jr., 601–24
Nonfeedback system
victim exclusion and, 503–5
Northern cod, 403
Northern right whale, 378
North Sea herring, 403
Norwegian herring, 403
Nothofagus, 634, 636
Notochord, 370
Notophthalmus viridescens, 498
Nowak, M. A., 153–54
Nucella, 223
Nucleocapsid proteins p6/p7, 129
Numachi, K. I., 393–94
Nutrient balance
herbivore, 10–17
Nutrient content
interspecific differences, 10–12
physiology, 5–7
Nutrient cycling
pelagic
mineral-limited herbivores and, 21–22
Nutrient limitation
algal, 5–9
Nutritional ecology, 3

O

Odocoileus virginianus
growth rate
allozyme genotype and, 57
Odontocete, 378
genetic analysis of kinship, 380–82
geographic isolation, 391–92
intrapopulation diversity, 383–84
migration and genetic diversity, 388–89
sympatry and habitat division, 385–87
Odontophrynus americanus, 317
Oecanthus fultoni
rhythmic synchrony, 110
synchronizer, 105
Olsen, Y., 21
Onocrotalus viridulus
call timing, 118

Onychophoran, 365–68
Oophyllum, 524, 526, 536, 541
Opuntia spinosissima, 511
Opuntia stricta, 511
Orchidaceae, 423
Orcinus orca, 378
Orr, H. A., 560, 563
Orthophosphate
 direct uptake in *Daphnia*, 3
Orthopteran
 signal interactions, 99
Ostracod, 563
Otte, D., 119
Ovarian self-incompatibility, 427
Overdominance, 57
 associative, 57
Oyster, 553
 allozyme frequencies, 53–54
 allozyme genotype viability, 57
 geographic variation, 52
Oystercatcher, 448

P

Palaeomonetes pugio, 449
Palaeotropis, 523
Paroude
 allozyme genotype viability, 57
Palsbøll, P. J., 389, 391
Palumbi, S. R., 547–67
Panamint kangaroo rat
 geographic variation, 50
Papilionoidea, 325, 327–28, 330
 infection threads, 335
 predominant nodule type, 334
 symbioses with rhizobia, 333
Paralytic shellfish poisoning, 452
Paraphyly, 328
Paraphysomonas imperforata, 22
Parasite
 vocalization and, 301
Parasitism
 community structure and, 483–84
 conspecific brood, 604
Parapsopis
 nodulation, 333
 rhizobial nodules, 334, 338–39
Parental behavior
 male
 in birds, 601–24
Parenting
 extra-pair, 606, 615
Park, T., 503
Parorchis acanthus, 205
Parsimony, 352–54, 356
 evolutionary, 354, 356, 367
Parthenogenesis, 241
Passerine
 parental behavior, 606
Paternity
 extra-pair, 604
 male paternal care and, 615–16

Paterson, H. E. H., 315
Path analysis, 444, 455–59
Paulus, H. F., 366
Pavona cactus, 239
PHM
 See Peribacteroid membrane
PCR
 See Polymerase chain reaction
Pea, 326
Pearson, N. L., 426–27
Pelagic environment
 consumption of autotrophs, 3
Pelagic herbivore
 energy storage
 lipids and, 14
Pelagic nutrient cycling
 mineral-limited herbivores
 and, 21–22
Penman-Monteith equation, 632–33
Pentastomid, 367–68
Peociliopsis monacha-oc-
 cidentalis
 multiple hybrid events, 75
Perdix perdix, 507
Perfect synchrony, 109
Peribacteroid membrane (PBM),
 335
Peribacteroid membrane protein,
 339
Periodical cicada, 502
 synchronous chorusing,
 109
Peromyscus leucopus
 mitochondrial DNA se-
 quences, 48
Peromyscus maniculatus
 genetic variation
 discordant patterns, 53
 mitochondrial DNA
 haplotypes, 48
 mitochondrial DNA se-
 quences, 48
Peromyscus polionotus
 mitochondrial DNA se-
 quences, 48
Perunytilus purpuratus, 449
Peters, R. H., 405–6
Petersen, C. G. J., 406
Phase delay alternation, 105–7
Phase delay synchrony, 103
Phaeoleac, 330, 332, 339, 342
Phaeolus, 326, 332
 nodule-specific uricase genes,
 342
Pheidole xerophila, 273
Phenotypic epistasis
 fitness and, 40–41
Phenotypic evolution
 population bottlenecks, 32
Phenotypic evolutionary genet-
 ics, 33
Phenotypic plasticity, 84

Pheromone
 mating behavior and, 563
Philippe, H., 358
Phocoena phocoena, 383
Phocoenoides dalli, 391–92
Phonotaxis, 294
 selective, 301–3
Phoronid, 363
Phospholipid
 copepod, 11–12
Photinus
 rhythmic flash synchrony, 109
Photoperiod
 signal interactions and, 99
Photosynthesis
 nitrogen concentration and,
 632, 655–57
 stomatal conductance and, 636
Phyllobius, 524
Phylogenetic reconstruction, 354
Phylogeny, 249–54
Phylogeography, 46–47
Physa gyrina, 202
Physalaemus coloradorum
 sensory exploitation, 312–13
Physalaemus pustulosus
 call frequency
 female preferences and, 305
 sensory exploitation, 312–13
Phrynetes catodon, 378, 382
Physiological partitioning, 4
Pianka, E. R., 468
Pierotti, R., 605–6, 608
Pignut hickory
 germination rates, 275
Pilot whale, 380–81, 383, 392
Pimephales promelas, 91
Pinus attenuata
 geographic variation, 54
 mitochondrial DNA, 49
Pinus banksiana
 introgression and, 59
Pinus contorta, 271
 introgression and, 59
 mitochondrial DNA, 49
 seed zones, 54
Pinus flexilis
 genetic variation, 55–56
Pinus jeffreyi, 271
Pinus muricata
 geographic variation, 54
 mitochondrial DNA, 49
Pinus ponderosa, 271
 seed zones, 54
Pinus radiata, 646
 geographic variation, 54
 mitochondrial DNA, 49
Pinus taeda
 nuclear RFLPs, 49

Pipid
 underwater acoustic communica-
 tion, 295
Pisaster, 508

Pisoides mitochondrial DNA inheritance, 47

Pisum, 326, 332

leghemoglobins, 340–41

Placopeltis magellanicus growth heterozygosity and, 58 mitochondrial DNA inheritance, 47

Placozoa, 358

Planktivorous fish, 450

Plankton seasonal production cycle abiotic factors and, 404

Planktonic dispersal, 550

Planktotrophic larvae, 551

Plant-animal interface biochemical discontinuity, 3

Plant carbon and water balance, 646–47

Plant nutrition conductances, 636–42

Plant species nitrogen concentrations and specific leaf areas, 649–52

Platycleis intermedia acoustic synchrony, 108

Platygyra, 240–41

Platygyra daedalea hybrid offspring, 247

Platygyra lamellina hybrid offspring, 247

Platyhelminth, 358–59

Pleasants, J. M., 430, 432

Plume seed dispersal and, 267

Poecilia formosa, 71–72 evolutionary genetics, 89 multiple hybrid events, 75

Poecilia latipinna, 79

Poecilia reticulata allozyme genotype viability, 57

Poeciliopsis coexistence frequency-dependent model, 78 gynogenetic clones morphological variance, 85 molecular phylogenies, 75–77 mutational decay in sheltered genomes, 88 sexual progenitors, 77 subtypes, 72

Poeciliopsis monacha food diversity, 85 protein polymorphism, 90

Poeciliopsis monacha-latidens, 74

Poeciliopsis monacha-lucida, 74 multiple hybrid events, 75 sexual mimicry, 78–79

synthetic variance in fitness, 81 thermal tolerance, 80

Poeciliopsis monacha-occidentalis, 74 monophyletic lineage, 77

Poeciliopsis occidentalis endangered populations, 89–90

Pogonomyrmex occidentalis, 273

Pogonomyrmex rugosus, 273

Pogonophoran, 360, 363

Pogson, 58

Polar bear, 502

pol gene, 129, 143

Poliomyelitis type 1, 137–38

Polis, W. J., 192

Pollen milkweed, 429–30

Pollen donation hypothesis, 435–36

Pollipes polymerus, 450

Pollinaria, 425

Pollination Mesembryanthemaceae, 528–29 milkweed, 425–26

Pollinia, 423–25, 429–31

Polyandry, 605

Polychaete, 558, 560

Polygyny male parental care and, 603 testosterone and, 616

Polygyny threshold model, 603

Polymerase chain reaction (PCR), 46, 50, 356, 382

Polyphemus specific P content, 10

Polyphyly, 328

Polyplid speciation vocalization and, 316–17

Polyplody, 72, 241, 247

Ponderosa pine seed zones, 54

Population sympatric species boundaries, 241–47

Population biology molecular, 45–61 DNA markers, 46–50

Population bottleneck, 32, 38–40

Population dispersal fisheries ecology and, 411–13

Population dynamics predator-prey coevolution and, 227

Population genetics theory, 146 genetic variation and, 48

Population regulation fisheries ecology and, 408–11

Populus angustifolia hybridization zone, 60

Populus fremontii hybridization zone, 60

Populus tremuloides growth rate allozyme genotype and, 57

Porcellio laevis, 450

Porcellio scaber, 450

Poriferan, 362

Porites, 248

Potts, D. C., 256

Potts, G. R., 507

Precedence effect, 114–16

Precipitation seed dispersal and, 268–69

Predation apparent, 499 community structure and, 507–9 habitat partitioning and, 510–11 incidental, 501 interspecific competition and, 481–83 intraguild, 192 prey exclusion and, 505–7 ratio-dependent, 505 role in communities, 496 shared, 497–503 applied implications, 511–12 victim exclusion and, 503–5

Predator vocalization and, 301

Predator-prey interaction indirect effects and, 445

Predator-prey theory metapopulations and, 177

Prey dispersal metapopulations and, 177

Prey exclusion feedback and nonfeedback systems and, 503–5 high attack rate and, 506 high predator abundance and, 506–7 low prey *r* and, 505–6

Prey species coexistence and exclusion, 496

Priapulid, 360–61

Primate immunodeficiency virus, 130–32 phylogenetic tree, 131

Probability theory multiple species infection and, 191, 205

Production efficiency, 2

Prolactin male parental care and, 622

Protein algal biomass and, 3

Protein electrophoresis genetic variation and, 45

Protein polymorphism, 90, 382 fitness and, 58

Proteobacteria, 335

P
Protist assemblage
 apparent competition and, 509–10
Protozoal, 368
Protogonyaulax, 452
Protozoan, 3
 herbivore diets and, 3
Pseudacris crucifer
 advertisement calls, 297
Pseudacris streckeri
 call timing, 107
Pseudacris triseriata feriarum
 call structure, 316
Pseudocoelomate, 360–62
Pseudogamy paradox, 78–79
Pseudogynodioecy, 240
Pseudotsuga menziesii
 seed zones, 54
Psilocaulon, 524
Psychophysics
 competitive signaling and, 114–16
Pterophylla camellifolia
 call timing, 106
Pteroptix cribellata
 phase delay synchrony, 103
Pteroptix malaccae
 perfect synchrony, 109
Pteroptix tener
 perfect synchrony, 109
 Pumpkinseed sunfish, 453

Q

Quaking aspen
 growth rate
 allozyme genotype and, 57
Quantitative variation, 36–37
 nature, 38–40
 potential for strong effects, 37–38
Quasispecies theory
 HIV and, 145–47
 Quinn, J. F., 176

R

Raff, R. A., 351–71
Rainbow trout
 oxygen consumption
 allozyme heterozygosity and, 57
Rain forest
 seed dispersal, 282–83
Rana catesbeiana
 advertisement calls, 296
Rana esculenta
 call pulse rates, 316
 hemimolar genomes
 deleterious recessive mutations, 89
 hybridogenesis, 73
 hypoxic stress and, 80

multiple hybrid events, 75
 sexual selection and, 314
Rana palustris, 498
Rana pipiens
 brainstem oscillators, 295
 Rand, A. S., 315
 Randomly amplified polymorphic DNA inheritance, 46, 49
 Rare clone advantage, 79
 Raven, P. H., 220
Reaction-diffusion theory
 metapopulations and, 177–78
 Reader, R. J., 497
Recognition
 reproductive isolation and, 562–65
 Recolonization, 169–70
 founder effect and, 172
 Recruitment, 403
 Redfield ratio, 4, 6
 Red fox, 511
 Red grouse, 507
 Red-legged partridge, 506
 Red Queen hypothesis, 86, 220, 224–27
 Red tide, 452
 Red-winged blackbird
 parental care, 618
 Reeb, C. A., 553
 Reeve, E. C. R., 40
 Refeld, A. C., 4
 Reinfelder, J. R., 16
 Release call, 294–95
 Rendel, J. M., 33
Renicola roscoffiana, 205
 Renicolid, 205
Reproduction
 nonrecombinant, 72–74
 parthenogenetic, 576
 sexual, 576
 unisexual
 sperm limitation and, 78
Reproductive ecology
 milkweed, 423–38
Reproductive isolation, 547, 557–62
 genetics, 562–66
 mechanisms, 557–61
Reptile
 squamate, 72
Resource heterogeneity model
 unisexuality and, 85–86
Resource partitioning
 evolutionary ecology and, 486–87
 interspecific competition and, 473
Resource utilization
 complex life cycles and, 582
Restriction fragment length polymorphism (RFLP), 46, 48–49, 54, 382, 387, 391

Retrovirus
 animal, 130
 genes, 129
 oncogenic, 129
 replication, 144
Reverse transcriptase
 hypermutation and, 145
Reverse transcription, 129
REV protein, 129
REV response element (RRE), 129
RFLP
 See **Restriction fragment length polymorphism**
 Rhee, G.-Y., 6
Rhesus macaque
 immunodeficiency virus, 130–32
Rhizobia
 phylogeny, 335
Rhizobium, 335
Rhynocoel, 359
Rhythm generation
 signal interactions and, 100–10
Rhythmic alternation, 112–14
Rhythmic synchrony, 110–12
Rhythm preservation hypothesis, 110–11
 Richards, D. G., 299
 Richmond, A., 611
 Rickert, W. E., 404
 Rico-Hesse, R., 137–38
 Rieseberg, L. H., 59
 Rigby, M., 153
 Right whale, 378
 Rinderpest, 449
RNA polymerase II
 HIV replication and, 129
RNA sequencing, 356
RNA virus
 mutation and, 144–47
 Robertson, F. W., 40
 Robiniae, 331
 Robson, E. M., 193
Rocky intertidal community
 path analysis and, 458
 Rodent
 seed dispersal and, 273, 282
 Roff, D. A., 414
 Rose, K. A., 414
 Rose, M. R., 556
 Rosel, P. E., 383, 385
 Rosenzweig, M. L., 225, 227
 Rotifer, 3, 360–62, 557, 560, 576
 chemosensory systems, 566
 mating behavior, 563
 Roughgarden, J., 475, 481, 487
RRE
 See **REV response element**
 Rubisco, 632
Ruditapes decussatus
 allozyme genotype viability, 57
 Rummel, J. D., 487

Ruschia, 524
Ryan, M. J., 112, 299–300, 310,
 312–13, 315
Ryegrass
 allozyme genotype viability, 57

S

Salamander
 alternative larval morphs, 588
 compartmentalization and,
 592
Salmo gairdneri
 oxygen consumption
 allozyme heterozygosity
 and, 57
Samara
 seed dispersal and, 267
Sapindaceae, 328
Satoh, N., 370
Sauromalus obesus
 mitochondrial DNA variability, 49
Saxidomus giganteus, 452
Scallop
 growth
 heterozygosity and, 58
Scarlati, 148
Scenedesmus
 cellular N:P ratio, 5–6
Scenedesmus subspicatus
 digestibility to grazers, 9
Schaffter, W. M., 414
Schall, J. J., 483
Scheltema, A. H., 360
Schistosoma bovis, 204
Schmalhausen, I. I., 33
Schnitt, O. J., 510–11
Schoener, T. W., 454, 482
Schoopf, T. J. M., 550
Schram, F. R., 361, 363
Schuitemaker, H., 155
Schultz, R. J., 72, 74–75, 80, 83
Schulze, E.-D., 629–57
Schupp, E. W., 272
Schwabl, H., 622
Schwantes, G., 542
Schwartz, J. J., 113
Scleratinia, 241
Sea cucumber, 559
Sea otter, 448
Sea star, 560
Sea urchin, 448, 551, 554, 559,
 561, 593
 fertilization mechanism, 564–
 65
Seed
 banks, 266, 274–77
 dispersal
 in coniferous forest, 281
 in deciduous forest, 281–82
 in desert, 279–80
 in grasslands, 281
 in rain forest, 282–83
 in tundra, 280
germinable
 dispersal, 264–66
germination
 failed, 279
 morphology and, 275–77
 loss, 277–79
 microsite interactions, 274–77
 movements and fates, 263–86
 phase I dispersal, 266–68
 phase II dispersal, 268–73
 restoration and conservation,
 283–85
Sei whale, 388, 393–94
Selection, 38
 artificial, 40
 coevolution and, 231–33
 competition-related, 221
 complex life cycles and, 578–
 79
 direct, 310
 directional, 39, 149–50, 308,
 476
 escalation and, 231–33
 frequency-dependent, 152
 interdemic, 173
 marine systems and, 552–53
 natural, 555, 583
 escalation and, 219
 heritable variation and, 83
 HIV evolution and, 145
 reproductive isolation and,
 561–62
 RNA viruses and, 144–47
 sexual, 114, 294, 435, 579,
 583, 601, 604, 606
 vocalization and, 314–16
Selective phonotaxis, 301–3
Selenastrum capricornutum
 digestibility to grazers, 9
Self-incompatibility
 milkweed and, 427–28
 ovarian, 427
Self-pollination
 Mesebryanthemaceae and,
 529
 milkweed and, 430–31
Self-sterility
 Mesebryanthemaceae and,
 529
Semibalanus cariosus, 450
Senescence
 seed loss and, 278–79
Sensory exploitation hypothesis,
 311–14
Sequoia sempervirens
 organellar genome inheritance,
 48
Seroconversion, 147, 149
Sesbaniae, 331
Seston, 3, 7
 C:N:P ratio, 13
Sewell, S., 191
Sex
 maintenance, 84–89
Sexual behavior
 acoustically mediated, 294
Sexual dimorphism, 603–6
Sexual mimicry
 evolution, 78–79
Sexual monomorphism, 603–6
Sexual selection theory, 114, 435
Shannon, T. R., 429
Shapiro, J. A., 556
Shared enemy
 ecological consequences, 495–
 513
Shared predation, 497–503
 applied implications, 511–12
Sheldon, P. H., 608
Shifting balance theory, 168
Shpaer, E. G., 153
Signal interaction
 competitive, 114–20
 cooperative functions, 110–
 114
 courtship disruption and, 118–
 19
 detection evasion and, 118
 evolution, 97–120
 female activity periods and,
 119–20
 formats, 98–100
 free-running oscillator varia-
 tion, 109
 homeopisodic vs preepisodic
 mechanisms, 102–3
 interactive algorithms, 100–10
 mutual assessment and, 117–18
 neural oscillators, 100–2
 phase advance mechanisms,
 109–10
 phase delay mechanisms, 103–
 9
 rhythm generation, 100–10
 signal jamming and, 114–17
Sih, A., 512
Silver, R., 605–6, 608
Silverin, B., 620
Simian immunodeficiency virus
 (SIV), 130
 diversity, 133
 sequential studies, 152–53
Simmonds, P., 150
Sinclair, M., 412, 415
Sipunculid, 363
Sismondo, E., 108
SIV
 See Simian immunodeficiency
 virus
Slatkin, M., 180
Smiley, J., 119
Smilisca sila
 synchronous calling, 112
Smith, T. M., 646

Snail
oxygen consumption
allozyme heterozygosity
and, 57

Snail host
larval trematodes and, 189–212

Snell, T. W., 557, 561

Snow
seed dispersal and, 270–71

Snowshoe hare, 511

Snowy tree cricket
synchronizer, 105

Snyder, R. J., 414

Snyder, S. D., 193

Soil
seed dispersal and, 269–70

Soltis, D. E., 59

Soltis, P. S., 59

Sommer, U., 22

Sooty mangabey
immunodeficiency virus, 130–32

Sophoreae, 330

Soule, M. E., 508

Sound frequency
communication distance and,
298

Sousa, W. P., 192–93, 202, 206–7

Southern right whale, 378

Southwick, E. E., 429

Soybean, 326
leghemoglobins, 340
n-uricase expressed, 342
peribacteroid membrane protein, 339

Spadefoot toad
larval feeding morphologies,
588

Sparrow, F. K., 426, 427

Spatial scale
shared predation and, 501–3

Spawning synchrony
reproductive isolation and, 559

Speciation
allopatric, 548
diploid, 241
evolutionary ecology and, 487–88
marine, 547–67
genetic differentiation and,
554–57
population subdivision and,
549–54
reproductive isolation and,
557–66
polyploid
vocalization and, 316–17
population bottlenecks, 32

Species boundary
conflicts in delimiting, 249
morphological evidence, 248–49

Species flock, 82–83

Species interaction
spatial structure and, 170–71

Species recognition
vocalization and, 314–16

Sperm limitation
unisexual reproduction and, 78

Sperm whale, 378, 382

Sphenostylis, 332

Spickett, S. G., 40

Spinner dolphin, 387

Spiny lobster, 551

Spirobranchus, 560

Spolsky, C. M., 77

Sponge, 357, 559

Spotted dolphin, 385

Spree, 119

Sprent, J. I., 335

Springer, V., 550

Stenella attenuata, 385

Stenella longirostris, 387

Stenseth, N. C., 225

Steppe-boreal forest community
path analysis and, 458

Sterility
interspecific hybridization and,
74

Sternier, R. W., 1–23

Steuler, H., 156

Stick insect
hybridogenesis, 73

Stitt, M., 639

Stock-recruitment theory
fisheries ecology and, 404–6

Stoichiometry, 16, 18
ecological production dynam-
ics and, 2

Stomatal conductance
leaf area index and, 634–36
maximum
global distribution, 644–46
photosynthetic capacity and,
636
water vapor, 632

Stomatopod, 558

Strathmann, R. R., 584, 593

Strepsiptera
wing retention in males, 579

Striped skunk, 501

Strong, D. R., 449

Strongylocentrotus, 448

Strongylocentrotus droebacheini, 551, 560

Strongylocentrotus pallidus, 551

Stylophora pistillata, 240

Succession
floristic model, 284
indirect mutualisms and com-
mensalism and, 451

Succulent Karoo Region, 521–
23, 526, 528, 536

Sucrase synthase, 342

Sulfur butterfly
allozyme genotype viability, 57

Sullivan, B. K., 300

Swartzieae, 330

Sykes monkey
immunodeficiency virus, 131

Sympatric population
species boundaries, 241–47

Sympatry, 385–88

Synchrony
competitive, 114
as epiphomenon, 108–9
mechanism, 107–8
perfect, 109
phase delay, 103
rhythmic, 110–12
signal interactions and, 99
spawning, 559

Synonymization, 250

T

Taigen, T. L., 297

***tat* gene**, 155

***tat* protein**, 129

Teleogryllus oceanicus, 313
rhythmic synchrony, 110

Teloblast, 364

Temperature
call properties and, 307–8
seed longevity and, 278

Terrestrial system
indirect mutualisms and com-
mensalism, 451
water vapor transfer between
atmosphere and, 632–34

Testosterone
male parental care and, 620–22
mating and parental care and,
602
parental behavior and, 604
polygyny and, 616

Terahymena, 509

Terahymena thermophila, 510

Tettigoniid
call timing, 118

Thailand
HIV infection and, 138–39

Thaum hemostomata
oxygen consumption
allozyme heterozygosity
and, 57

Thalassiosira weissflogii, 14

Thoday, J. M., 40

Thompson, E. F., 303

Thompson, J. N., 172

Thoreau, H. D., 264

Thorne, R. F., 328

Tiegs, O. W., 365

Tiger salamander
growth rate
allozyme genotype and, 57

Tigriopus californicus, 552

Time scale
shared predation and, 498–500

Tinbergen, N., 602

Toad

- acoustically orienting predators, 301
- vocalization

 - evolution of, 293–317
 - female mate choice and, 301–9

Tornes, A., 611–12

Trace element

- aquatic herbivore diet and, 3

Tragopogon dubius, 59

Tragopogon mirus

- hybrid origins, 59

Tragopogon miscellus

- hybrid origins, 59

Tragopogon porifolius, 59

Transposable element, 555–56

Treefrog

- introgression and, 60

Tree recovery algorithm, 353–54

Trematode

- larval

 - snail hosts and, 189–212

Tribolium castaneum, 503–4

Tribolium confusum, 503–4

Trichoplax adherens, 358

Trilobite, 366

Triplid origin, 76

Tritura marmorata, 588

Trivers, R. L., 621

Trophic cascade, 443, 448–49

Tuacngra frog

- call frequency
- female preferences and, 305

Tucker, S. C., 332

Tundra

- seed dispersal, 280

Tundra vegetation

- gas exchange, 644

Turbeville, J. M., 351–71

Turbinaria mesenterina, 239

Turdus pilaris, 451

Turner, B. J., 75, 89

Tursiops truncatus, 379

Tuttle, M. D., 112

Tyto alba, 498

U

Uca, 557

Umathevy, T., 203–4

Unirame, 365–66

Unisexuality, 71–91

- hybrid

 - ecological niche, 79–83
 - origins, 74–75

- molecular phylogenies, 75–77
- pseudogamy paradox, 78–79

Unison bout singing, 99, 120

Urabe, J., 22

Uricase gene, 342

Urochordate, 368, 370

V

Vall, G. F., 622

Vanni, M. J., 22

Van Valen, L., 220, 224–25

Van Wyk, B. E., 331

Variable number of tandem repeats (VNTRs), 46

Vegetation

- nitrogen concentrations and
- specific leaf areas, 649–52

Vermeij, G. J., 219–33

Veron, J. E. N., 246, 253

Vertebrate, 368

Vicia

- leghemoglobins, 341

Vicieae, 332

Vickery, P. D., 501

Victim exclusion

- feedback and nonfeedback systems and, 503–5

Vigna, 332

Viral evolution

- phases, 147–54

Visna virus, 130

Vitamin

- herbivore growth and, 8
- pelagic herbivore diet and, 3

VNTRs

- See Variable number of tandem repeats

Vocalization

- communication distance and, 296–301
- evolution, 293–317
- female mate choice and, 301–9
- neuroendocrine mechanisms, 295–96
- polyploid speciation and, 316–17

Vogt, S. P., 483

Vole, 503

Vom Saal, F. S., 622

Von Willert, D. J., 526

Vrijenhoek, R. C., 71–91

W

Waage, J. K., 316

Wada, H., 370

Wada, S., 389, 392–94

Waddington, C. H., 33

Wade, M. J., 172–73

Wagner, D. B., 56

Wahlund effect, 392

Wainwright, P. O., 357

Walker, J. L., 428

Wallace, C. C., 237–56

Walters, C. J., 405

Wasserman, A. O., 317

Wassersug, R. J., 581

Water balance

- plant, 646–47

Water boatman, 503

Water mite, 503

Water vapor

- stomatal conductance, 632
- transfer between terrestrial ecosystems and atmosphere, 632–34

Webster, M. S., 612

Weinberg, J. R., 558

Weiss, P. W., 285

Welch, D. W., 405

Wells, J. W., 240

Wells, K. D., 297

Werner, E. E., 578, 582–83, 585

Western larch

- seed zones, 54

West Greenland cod, 403

Weygoldt, P., 365–66

Whale

- genetic analysis of kinship, 379–83
- genetics and ecology, 377–96
- geographic isolation, 391–95
- intrapopulation diversity, 383–84
- migration and genetic diversity, 388–91
- sympatry and habitat division, 385–88

Wheeler, W. C., 367

Whelk, 448

White oak

- germination rates, 275
- hybridization, 60

White-tailed deer, 511

- growth rate
- allozyme genotype and, 57

Wilbur, H. M., 581

Wildlife disease epidemiology

- shared predation and, 511

Wild oat

- allozyme genotype viability, 57

Wiley, R. H., 299

Williams, E. E., 468

Williams, I. C., 193

Williamson, M. H., 497

Willis, B. L., 237–56

Willmer, P., 365

Wilson, D. S., 459

Winan, G. A., 391

Wind

- seed dispersal and, 267, 268–69

Winemiller, K. O., 414

Wingfield, J. C., 616, 619–20

Winkler, D. W., 608

Wolf, L., 611–12

Wolfs, T. F. W., 148, 150–51

Wolinsky, S. M., 148

Woodson, R. E., 426–27, 434

Woodward, F., 646

Wootton, J. T., 443–62

Wright, J. W., 79

Wright, S., 32, 168, 171, 175, 179

Wyatt, R., 423-38
Wynne-Edwards, V. C., 117, 412

X

Xenopus
allopolyploidy, 316
Xenopus laevis, 295

Y

Young, J. P. W., 335
Yund, P. O., 560

Z

Zhang, L. Q., 147-48
Zhu, T., 148

Zooplankton, 450-51
bacteria as source of minerals,
7-8
bioenergetics, 4
C:N:P ratios, 11
distribution and abundance, 550
feeding
food quality and, 13
Zouros, 57-58