# 청년 AI 아카데미 28기 알고리즘 실습

# 그리디기법 & 동적계획법





# **Today**

- 그리디 기법
  - 세금 징수
- 다이나믹 프로그래밍
  - 피보나치 수열 2 (1차원 DP)
  - 세계암기대회 (2차원 DP)



## **Greedy Method?**

Greedy의 기본: 현재 상황만 보고 가장 이득을 취할 수 있는 방향으로 움직인다!

- 특정 상황에서 최적의 값을 찾는다.

PAI인공지능연구원

- 알고리즘이 단순하고 빠르기 때문에 근사 알고리즘을 설계할 때 자주 채택한다.



## **Greedy Method?**

Greedy의 기본: 현재 상황만 보고 가장 이득을 취할 수 있는 방향으로 움직인다!

- 특정 상황에서 최적의 값을 찾는다.
- 알고리즘이 단순하고 빠르기 때문에 근사 알고리즘을 설계할 때 자주 채택한다.



# 01. 세금 징수

특정 금액이 주어졌을 때, 해당 금액을 만드는 동전(지폐)의 최소 개수를 구합니다.

동전 단위: 50000, 10000, 5000, 1000, 500, 100

예시: 74100





VS



× 741



### 01. 세금 징수

특정 금액이 주어졌을 때, 해당 금액을 만드는 동전(지폐)의 최소 개수를 구합니다.

Greedy: 작은 단위에서부터? 큰 단위에서부터?

\*Hint: 하나씩 빼기보다는 나누기와 나머지를 활용!

$$9 = 5 + 1 + 1 + 1 + 1$$



### 01. 세금 징수

#### 주의!!

그리디 기법이 최적값을 항상 도출하는지 생각해야한다.

PAI인공지능연구원

Ex1: 사용 가능한 동전 [100,500]

800원을 지불하는 방법->800=500+100x3 (4개)

Ex2: 사용 가능한 동전 [100,400,500]

800원을 지불하는 방법->800=400\*2 (2개)



### **Dynamic Programming?**



작은 부분 문제를 풀고, 그것들을 이용해 큰 전체 문제를 해결!

- Bottom Up 방식
- 분할한 문제 간의 <del>연관성</del> O

c.f. Divide & Conquer

- Top Down 방식
- 분할한 문제 간의 연관성 X



# **Dynamic Programming?**

- 1. 부분 문제를 명확하게 정의합니다.
  - 원래 문제에서 보통 데이터의 크기만 줄이는 경우로 생각
  - 예외적인 케이스도 존재 → 기존 부분 문제 + 제한 조건을 추가
- 2. 원래 답의 위치를 파악합니다.
  - 부분 문제가 곧 답의 힌트!
  - 부분 문제의 해답을 모아둘 **배열** 등을 생성 가능
  - 부분 문제가 틀림을 알아내는 데에도 주요한 포인트

사람이 해결해야 함!



- 3. 재귀 식(점화 식)을 부분 문제의 정의와 수학적 논리에 따라 잘 세웁니다.
  - 부분 문제를 해결하기 위해선, 더 작은 부분 문제들의 답을 이용
  - Backward Analysis: 이 문제의 답이 어디서 올 수 있었는가를 분석
  - 식에 나오게 되는 변수들을 통해 반복 문을 어떻게 해야 할지 분석
  - 식이 제대로 세워지지 않는다면, 1번으로 돌아감
- 4. 기저 조건(초기값)을 세웁니다.
  - 문제 조건으로 주어진 초기 값
  - 3번 식에서는 값을 구할 수 없는 예외적인 경우





### 02. 피보나치 수열 2

n번째 피보나치 수를 계산합니다.

Dynamic Programming의 핵심은 대부분 펜과 노트에서 완성됩니다.

```
FIB[1] = 1

FIB[2] = 1

FIB[3] = 2

....

FIB[n] = FIB[n-1] + FIB[n-2]
```

10

### 02. 피보나치 수열 2

- 1. 부분 문제를 명확하게 정의
  - FIB[i]: i번째 피보나치 수
- 2. 원래 답의 위치
  - FIB[n]
- 3. 재귀 식(점화 식)
  - FIB[i] = FIB[i-1] + FIB[i-2]
- 4. 기저 조건(초기값)
  - i=1일 때, FIB[i] = 1
  - i=2일 때, FIB[i] = 1

PAI인공지능연구원



# 03. 세계 암기대회

태훈이가 오른쪽 아래로 가면서 잃을 수 있는 가장 적은 점수를 계산해주세요!

| 1- | <b>-</b> 0 | 1 | 0 | 1 |
|----|------------|---|---|---|
| Ŏ  | 1          | 1 | 1 | 0 |
| 0  | 1          | 0 | 1 | 1 |

# 03. 세계 암기대회

각 칸으로 가면서 잃을 수 있는 최저 점수를 저장한다면?

| 1 | 0 | 1 | 0 | 1 |  |
|---|---|---|---|---|--|
| 0 | 1 | 1 | 1 | 0 |  |
| 0 | 1 | 0 | 1 | 1 |  |

| 1 | 1 | 2  | 2  | 3  |
|---|---|----|----|----|
| 1 | 2 | 2  | ~• | ?  |
| 1 | 2 | ~- | ?  | ?? |

### 03. 세계 암기대회

mp(i,j): (i,j)까지 가면서 잃는 최소 점수 p(i,j): (i,j)에 있는 점수

```
mp(i,j)
      p(i,j)
                                                                           if i = 0, j = 0
= \begin{cases} mp(i,j-1) + p(i,j) \\ mp(i-1,j) + p(i,j) \end{cases}
                                                                         elif i = 0, j > 0
                                                                         elif i > 0, j = 0
   min(mp(i-1,j), mp(i,j-1), mp(i-1,j-1)) + p(i,j) elif i > 0, j > 0
```