

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
27 May 2004 (27.05.2004)

PCT

(10) International Publication Number
WO 2004/043162 A2

(51) International Patent Classification⁷: A23L

(21) International Application Number:
PCT/US2003/035933

(22) International Filing Date:
12 November 2003 (12.11.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/425,679 12 November 2002 (12.11.2002) US

(71) Applicant (for all designated States except US): SAFE FOODS CORPORATION [US/US]; 4801 North Shore Drive, North Little Rock, AR 72118 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): NOLEN, Gary

[US/US]; 2885 N. Brookbury Crossing, Fayetteville, AR 72703 (US). BEERS, Kelly [US/US]; 1388 Briarcliff St., Fayetteville, AR 72703 (US). RHEINGANS, Joe [US/US]; 401 Buttry Road, Rogers, AR 72756 (US).

(74) Agent: ROGERS, Mark; Speed & Rogers, P.A., 1701 Centerview, Suite 125, Little Rock, AR 72211 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

[Continued on next page]

(54) Title: APPLICATION SYSTEM WITH RECYCLE AND RELATED USE OF ANTIMICROBIAL QUATERNARY AMMONIUM COMPOUND

(57) Abstract: An antimicrobial application system is disclosed, comprising an antimicrobial application unit and a recycle unit. An initial, dilute antimicrobial composition is prepared. The composition is provided to the antimicrobial application unit and applied to workpieces, such as raw poultry. After application to the workpieces, the composition is returned to the recycle tank. The concentration of the antimicrobial in the recycle tank is monitored, and additional antimicrobial is automatically added if the concentration of the antimicrobial in the composition falls below a desired amount. The composition is periodically diverted to a capture tank, and the antimicrobial is selectively removed from the composition. The removed antimicrobial and remaining composition are then disposed of in appropriate manners. The antimicrobial is preferably a quaternary ammonium compound, is more preferably an alkylpyridinium chloride, and is most preferably cetylpyridinium chloride.

WO 2004/043162 A2

ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

- *without international search report and to be republished upon receipt of that report*

Application System With Recycle and Related Use of Antimicrobial Quaternary Ammonium Compound

This application claims the benefit of U.S. Provisional Application Ser. No. 5 60/425,679, filed on November 12, 2002, the disclosure of which is incorporated herein by reference.

Background of the Invention

This invention relates to an antimicrobial application system, and more particularly to an antimicrobial application system with recycle features for use in connection with food products and surfaces and other items associated with food processing. 10

Antimicrobial application systems, including spray cabinets are known in the art. U.S. Patent Application Serial Number 10/001,896, filed on November 19, 2002 by Gary Nolen, discusses a number of such systems and highlights a number of the advantages and disadvantages of these systems. The disclosure of U.S. Patent Application Serial Number 15 10/001,896 (Nolen) is incorporated herein by reference. The spray application systems disclosed in that application offer a number of advantages over earlier systems, as discussed in more detail in that application. Still, the present inventors have further refined and built upon those systems to offer alternate embodiments offering additional flexibility. For example, it may be desirable to recycle the antimicrobial that is applied to the workpieces. 20 Adding equipment and steps to allow for recycling adds to the cost and complexity of a system, so it will not always be preferred. Still, using recycling reduces consumption of the antimicrobial and water and reduces the amount of waste material in need of disposal. This may be desirable for any number of reasons such as environmental concerns, raw material costs, raw material storage limitations, disposal costs, and regulatory issues involving 25 disposal of wastewater and some antimicrobials. Accordingly, under many circumstances, it will be desirable to recycle the antimicrobial for multiple applications to workpieces to be treated.

Recycling of liquids applied to some types of workpieces in a process line is generally known in the art. Still, recycling liquids in connection with food processing and items 30 associated with food processing presents a number of special issues and concerns, particularly concerning adulteration, contamination, and cross-contamination. These concerns typically argue against recycling or lead to the use of slow, cumbersome, undesirable extra steps and extra equipment that add to the cost and complexity of a system.

One such complex system is disclosed in U.S. Patent No. 6,348,227, issued to Caracciolo, Jr. in 2002, the disclosure of which is incorporated herein by reference.

Summary of the Invention

It is therefore an object of the present invention to provide an antimicrobial application system that provides for the safe, effective, and cost efficient recycling of antimicrobial in connection with food processing and items associated with food processing.

5 It is a further object of the present invention to provide a system of the above type that reduces raw material consumption without sacrificing safety.

It is a still further object of the present invention to provide a system of the above type
10 that provides for periodic, batch style separation and disposal of spent antimicrobial.

It is a still further object of the present invention to provide a system of the above type which automatically monitors and maintains a desired composition of the antimicrobial composition to be recycled.

15 It is a still further object of the present invention to provide a system of the above type which provides for improved recapture and return of an antimicrobial composition applied to workpieces.

It is a still further object of the present invention to provide a system of the above type which automatically compensates for additional liquids passing from wetted workpieces to the recycled antimicrobial composition.

20 It is a still further object of the present invention to provide a system of the above type which is capable of providing continuous, real-time monitoring and control of the composition of an antimicrobial composition.

It is a still further object of the present invention to provide a system of the above type which reduces waste leaving the system and waste disposal costs associated therewith.

25 It is a still further object of the present invention to provide a system of the above type which provides a safe waste stream that may be safely drained into a wastewater system.

It is a still further object of the present invention to provide a system of the above type that increases the flexibility and advantages of the spray application systems and spray cabinets disclosed in U.S. Patent Application Serial Number 10/001,896 (Nolen).

30 It is a still further object of the present invention to provide a system of the above type that provides a simple, reliable method of monitoring and controlling the composition of a composition to be recycled.

Toward the fulfillment of these and other objects and advantages, the antimicrobial application system of the present invention comprises an antimicrobial application unit and a recycle unit. An initial, dilute antimicrobial composition is prepared with automatically controlled concentration composition of the antimicrobial solution. The composition is provided to the antimicrobial application unit and applied to workpieces, such as raw poultry.

After application to the workpieces, the composition is returned to the recycle tank of the recycle unit. The concentration of the antimicrobial in the recycle tank is monitored, and additional antimicrobial is automatically added if the concentration of the antimicrobial in the composition falls below a desired amount. The composition is periodically diverted to a capture tank, and the antimicrobial is selectively removed from the composition. The removed antimicrobial and remaining composition are then disposed of in appropriate manners. The antimicrobial is preferably a quaternary ammonium compound, is more preferably an alkylpyridinium chloride, and is most preferably cetylpyridinium chloride.

Brief Description of the Drawing

The above brief description, as well as further objects, features and advantages of the present invention will be more fully appreciated by reference to the following detailed description of the presently preferred but nonetheless illustrative embodiments in accordance with the present invention when taken in conjunction with the accompanying drawing, wherein:

FIG. 1 is a schematic view of an antimicrobial application system of the present invention;

FIG. 2 is a side elevation view of a portion of a recycle unit of the present invention; and

FIG. 3 is a schematic view of an alternate embodiment of an antimicrobial application system of the present invention.

Detailed Description of the Preferred Embodiment

Referring to Fig. 1, the reference numeral 10 refers in general to an antimicrobial application system of the present invention. The antimicrobial application system 10 of the present invention generally comprises an antimicrobial application unit 12 and a recycle unit 14, and may include a capture unit 15.

The antimicrobial application unit 12 may take any number of configurations. In the preferred embodiment, the antimicrobial application unit 12 takes the general form of one of

the embodiments of a spray application system as disclosed in U.S. Patent Application Serial Number 10/001,896 (Nolen). One possible exception is that the liquid barriers described in U.S. Patent Application Serial Number 10/001,896 are not used in the preferred embodiment of the present invention. A conveyor 16 passes through a housing 18 for moving workpieces 20, such as raw poultry, through the housing 18. As described in more detail below, a drip tray or pan 22 extends downstream of the housing 18, disposed below the conveyor 16 and the workpieces 20 carried thereby. Examples of spray application systems that might be used in connection with the present invention are discussed in detail in U.S. Patent Application Serial Number 10/001,896 (Nolen) and will not be discussed in more detail here. It is of course understood that the antimicrobial application unit 12 is not limited to those embodiments or to spray application systems in general. The antimicrobial application unit 12 may apply a composition such as an antimicrobial composition to any number of different kinds and types of workpieces 20 in any number of different ways. Methods of application used by such an application unit 12 may include but are not limited to spraying, misting, fogging, immersing, pouring, dripping, and combinations thereof. It is understood that the system 10 may be used to treat a wide variety of different workpieces 20, including but not limited to meat, poultry, fish, fresh and salt water seafood, fruits, vegetables, other foodstuffs, animals, food packaging, and items and surfaces related to food or food processing. It is also understood that the workpieces 20 may be live, dead, raw, hide-on, carcass, pieces, cooked, prepared, processed, partially processed, ready to eat, or ready to cook. It is further understood that the system 10 may be used to treat workpieces 20 completely unrelated to food or food processing items.

A rigid member 24, such as stainless steel tubing, is affixed to the housing 18, preferably at a downstream end of the housing 18. As best seen in Fig. 3, the rigid member 24 has parallel arms 26 that are aligned on opposite sides of the conveyor line 16. A series of matching openings 28 are provided in each arm 26 for housing counters or sensors. Protective lenses 30 provide watertight seals, preferably NEMA 4 seals, to protect the counters from damage that might otherwise occur under the harsh washdown conditions to which the systems 10 are routinely subjected. Three counters are preferably provided in series. As best seen in Fig. 1, the arms 26 are disposed so that the counters are aligned to detect the presence or absence of workpieces 20. The use of three counters provides redundancy and increases accuracy. In that regard, the counters are operably connected to a

controller such as a central control unit 32 or 164, and the counts taken by the three counters are continuously compared. If one counter provides a reading or count that differs from that provided by the other two, the central control unit 32 or 164 will typically be programmed to disregard the reading of the inconsistent counter and rely instead upon the readings of the 5 other two counters. The logic and interpretation of the different readings may of course be modified in any number of ways.

The recycle unit 14 dilutes a concentrated antimicrobial composition or solution to obtain a dilute antimicrobial composition or solution and provides the dilute antimicrobial solution to the antimicrobial application unit 12. An antimicrobial source, such as a supply 10 tank 34, is connected to the housing 18 via antimicrobial supply line or conduit 36. A chemical feed pump 38 is disposed in antimicrobial supply line 36. The pump 38 is operably connected to a controller 40 for reasons to be described below. The antimicrobial preferably comprises a quaternary ammonium compound, more preferably comprises an alkylpyridinium chloride, and most preferably comprises cetylpyridinium chloride. More 15 particularly, the concentrated antimicrobial solution preferably comprises a concentrated solution of a quaternary ammonium compound as described in U.S. Patent Application Serial Number 09/494,374, filed on January 31, 2000 by Compadre et al. The disclosure of U.S. Patent Application Serial Number 09/494,374 (Compadre et al.) is incorporated herein by reference. The concentrated solution preferably comprises an antimicrobial and a solubility 20 enhancing agent, and the solubility enhancing agent preferably comprises propylene glycol. The quaternary ammonium compound is preferably present in the concentrated solution in a weight percent of approximately 40%, and the solubility enhancing agent is preferably present in the concentrated solution in a weight percent of approximately 60%. It is of course understood that any number of different antimicrobials and solubility enhancing agents may 25 be used, and the concentrated and dilute solutions may have any number of different components and compositions, including but not limited to the components and compositions of the concentrated and dilute solutions disclosed in U.S. Patent Application Serial Number 09/494,374 (Compadre et al.). Concerns of adulteration, contamination, or cross-contamination are eliminated or alleviated because of the broad-spectrum efficacy of the 30 preferred antimicrobial solutions and because of the filtration and automatic concentration measures.

One or more recycle tanks 42 are provided. A return line or conduit 44 extends

between the housing 18 and the recycle tank 42 for passing liquid from the housing 18 to the tank 42. Multiple return lines 44 may be used to connect multiple antimicrobial application units 12 to the recycle tanks 42. A filter 46 is disposed in the housing 18 or in the return line 44. The filter 46 is preferably a wire mesh filter, such as a 100 mesh filter, sized to capture visible particulate matter in the effluent from the antimicrobial application unit 12. Visible particulate matter in the effluent will typically be minimal because of upstream washing that will typically be performed on the workpieces 20. First and second filters 48 and 50 are associated with each tank 42 and are disposed between the tank 42 and a system pump 52 to provide for parallel flow between the tank 42 and the system pump 52. Valves 54 or other means are provided for selectively directing liquid passing from the tank 42 to the system pump 52 through either the first filter 48 or the second filter 50. This allows the system 10 to continue operating while one of the filters 48 or 50 is being cleaned, replaced, or repaired. A three-way valve 56 is disposed in conduit 58 for reasons to be discussed below. A purge or capture line 60 passes from the valve 56 to the capture tank 62. A capture pump 64 is disposed in capture line 60. Although the recycle tank 42 may include an impeller or some other stirring or agitation means, no such stirring or agitation means is used in the preferred embodiment. A feed line 66 passes from the system pump 52 to the housing 18 and is connected to one or more sprayers 68. Multiple feed lines 66 may be used, or the feed line 66 may be branched or divided, if desired, to connect the recycle tank 42 to multiple antimicrobial application units 12. A bypass conduit 70 having a relief valve 72 is disposed in the feed line 66. A diverting line 74 is also disposed in the feed line 66. The diverting line 74 is connected to a dilution pump 78 and has a pressure regulator 80 disposed therein.

A source of potable water 82, such as tap water, is connected to the recycle tank 42 via water supply line or conduit 84. A diverting line 86 is also disposed in water supply line 84. The diverting line 86 is connected to a dilution pump 88 and has a pressure regulator 90 disposed therein. The pressure regulators 80 and 90 preferably regulate the pressure in lines 74 and 86 to a pressure lower than the pressures in lines 66 and 84 and preferably regulate the pressure in lines 74 and 86 down to approximately 15 psig. The dilution pumps 78 and 88 are electrically interlocked to provide for matched, stroke for stroke pumping action. The dilution pumps 78 and 88 are also sized to provide for a desired, fixed dilution ratio. The dilution ratio is preferably less than or equal to approximately 1 part dilute composition to 1 part water, is more preferably less than or equal to approximately 1 part dilute composition to

30 parts water, and is most preferably less than or equal to approximately 1 part dilute composition to 60 parts water. Conduits 92 and 94 exit the dilution pumps 78 and 88 and are disposed to route liquids from the dilution pumps 78 and 88 to a static mixer 96. The static mixer is preferably an inline, auger style static mixer.

5 A sensor 98 is disposed at the discharge end of the static mixer 96. In the preferred embodiment, the sensor 98 is an ultraviolet light spectrophotometer or UV spec sensor. Of course it is understood that any number of different types of sensors 98 may be used, including but not limited to infrared, visible light, or ultraviolet sensors. The sensor 98 is capable of detecting the concentration of the antimicrobial in the solution exiting the static 10 mixer 96. The controller 40 operably connects the sensor 98 to the chemical feed pump 38. The controller 40 is capable of receiving a signal from the sensor 98 and sending a corresponding on/off signal to the chemical feed pump 38. A discharge line 100 passes from the sensor 98 to the capture or purge tank 62.

A siphon 102 is disposed in the capture tank 62 and is connected to a drain line 104. 15 The drain line 104 passes from the capture tank 62 to an antimicrobial separation unit 106. The antimicrobial separation unit 106 preferably comprises one or more filters 108, such as disposable carbon filters, that selectively remove the antimicrobial from the composition. A disposal line 110 exits the antimicrobial separation unit 106 for disposing of water and any other components remaining after the antimicrobial is selectively removed. It is understood 20 that a separation unit 106 may or may not be used and that any number of different separation methods may be used. It is also understood that filters 108 may be disposable or reusable. The central control unit 32 is used to control the entire system 10.

In operation, a dilute antimicrobial solution will typically be prepared and used for 5 one spray cycle that will typically last for one day. The dilute antimicrobial solution will then be discarded, disposed of, or removed from the system 10 for further processing. It is of course understood that the spray cycle may be of any number of different durations. It is also understood that the system 10 may be operated in batch mode, in steady-state mode, or in any 0 number of different types or combinations of modes of operation. A new spray cycle will typically begin each morning with an empty and clean recycle tank 42 and an empty and clean capture tank 62. Before the antimicrobial application unit 12 is activated, and before the system pump 52 is turned on, the dilute antimicrobial solution is prepared. In that regard, a desired amount of tap water is fed to the recycle tank 42. The recycle tank 42 is preferably

filled to approximately one third to approximately one half of its capacity with potable water.

The concentration pump 38 is activated to feed the concentrated antimicrobial composition to the housing 18, where it drains through return conduit 44, and to the recycle tank 42, until a predetermined amount of the concentrate composition is provided. The concentrate

5 composition combines with the water in the recycle tank 42 to form a dilute solution of the desired concentration. The desired ranges of the concentration of antimicrobial in dilute solution include but are not limited to the concentration ranges of the antimicrobial in the dilute solutions disclosed in U.S. Patent Application Serial Number 09/494,374 (Compadre et al.).

10 Once the desired concentration is obtained in the recycle tank 42, the system pump 52 is activated, and the dilute solution is supplied to the antimicrobial application unit 12. The dilute solution provided to the antimicrobial application unit 12 is not potable. Still, contamination or cross-contamination of the workpieces 20 is not a concern because of the safety and broad spectrum efficacy of the dilute antimicrobial solution used. The recycle unit
14 supplies the dilute antimicrobial solution to the antimicrobial application unit or units 12 at any number of different flow rates and pressures. These flow rates and pressures may include, but are not limited to, the flow rates and pressures discussed in U.S. Patent Application Serial Number 10/001,896 (Nolen). The bypass conduit 70 and relief valve 72 route a portion of the dilute composition to a lower portion of the housing 18 so that it does
0 not pass through the sprayers 68 and is not applied to the workpieces 20. The ratio of dilute composition passing through the bypass conduit 70 versus passing to the sprayers 68 will typically be greater than or equal to approximately 1:1 and will more typically be greater than or equal to approximately 2:1. The dilute composition passing through the bypass conduit 70 provides for improved mixing of the captured composition and any concentrate composition
5 that might be added. The use of the bypass conduit 70 and relief valve 72 provides greater flexibility in providing dilute composition to sprayers 68 at or within desired pressure ranges. The use of the bypass conduit 70 and relief valve 72 also makes it easier to continue to provide dilute composition to the sprayers 68 at consistent pressure as additional spray application units 12 are brought online or taken offline and regardless of the number of spray
) application units 12 that are online.

Once the recycle unit 14 is supplying the dilute antimicrobial solution to the antimicrobial application unit 12, the workpieces 20 to be processed, such as raw poultry, are

5 moved by the conveyor 16, through the housing 18, and the dilute antimicrobial solution is applied to the workpieces 20, such as by spraying. The portion of the dilute antimicrobial solution that does not adhere to the workpieces 20 collects in a drain and is returned via return line 44, through filter 46, and to the recycling tank 42 for reuse. The length of the drip tray 22 is selected so that it will catch drops from workpieces 20 exiting the housing 18 for approximately 1 minute after the workpieces 20 exit the housing 18. This enhances the recovery of the dilute antimicrobial solution and reduces downstream losses. Although not preferred, liquid barriers such as water spray curtains may be used in the housing 18. Also, the workpieces 20 may be wet from upstream washing, so additional water may enter the recycle tank 42, decreasing the concentration of the antimicrobial in the dilute solution.

10 It is desirable to avoid concentration spikes in the dilute composition, particularly in the dilute composition exiting the sprayers 68 and passing through the diverting line 74 for routing to sensor 98. Accordingly, steps are taken to insure thorough mixing of the dilute composition being recycled between the recycle unit 14 and the antimicrobial application unit 15 12. This is one reason why the concentrate supply line 36 routes the concentrated antimicrobial solution to the housing 18 rather than directly to the recycle tank 42. By the time the concentrate composition mixes with dilute compositions from the sprayers 68 and from the bypass line 70, passes through return line 44, filter 44, recycle tank 42, filter 48 or 20 50, and system pump 52, the resultant liquid is thoroughly mixed and has a relatively uniform composition.

25 A preferred sensor 98, such as a spectrophotometer, is typically used to measure very low concentrations of a component in a composition. It is therefore important to provide a liquid that has not only has a relatively uniform composition but also a very low concentration of the antimicrobial or component to be measured. Often, it will not be practical or feasible to obtain accurate, reliable readings for the antimicrobial at the concentration ranges typically found in the recycle tank 42. Diluting the composition before taking a concentration reading will offer greater flexibility in the selection of a sensor 98 for monitoring the concentration of the antimicrobial. Samples of the composition exiting the recycle tank 42 are therefore taken and further diluted, to yield further diluted compositions 30 in which the antimicrobial is present within a concentration range that is readily and accurately measured by the sensor 98. The dilution ratio of the dilution pumps 78 and 88 is selected to provide the desired degree of dilution, such as within the ranges discussed above.

The pumps 78 and 88 are set on a timer to take samples at a set interval, each sample being taken for a set duration of time. It is understood that the concentration may be monitored at any number of different intervals and for any number of different durations and that the concentration may be continuously monitored. The electrically interlocked pumps 78 and 88

5 provide the dilute composition and water in the desired fixed ratio to further dilute the dilute composition. Using electrically interlocked pumps at a desired, fixed dilution ratio simplifies controls needed to operate the system 10. It is of course understood that the pumps need not be interlocked, the dilution ratio need not be fixed, and any number of different methods may be used to select, control, and adjust the dilution ratio as desired.

10 The dilute composition and water are combined and passed through the static mixer 96 to provide for thorough mixing, further reducing the risk of concentration spikes as the liquid passes the spectrophotometer 98. The spectrophotometer 98 senses the concentration of the antimicrobial in the passing liquid. The sensor 98 is operably connected to the controller 40. Accordingly, if the sensor 98 detects that the concentration of antimicrobial 15 falls below a desired amount, the controller 40 activates the chemical feed pump 38 to add more of the concentrated antimicrobial solution into the housing 18 and to bring the concentration of the antimicrobial in the dilute antimicrobial solution back up to the desired level. The system 10 can be configured to allow the potable water to be controlled in this fashion as well, but it is unlikely that there will be a need to add make-up water.

10 It is undesirable to route the highly diluted liquid that passes the sensor 98 back into the recycle tank 42, so it is routed to the capture tank 62. The siphon 102 in the capture tank 62 allows the liquid to collect in the capture tank 62, until the liquid reaches a desired level. When the liquid in the capture tank 62 reaches the desired level, the siphon 102 empties the capture tank 62, passing the liquid through conduit 104 and to the disposable carbon filters 5 108 of the antimicrobial separation unit 106. The disposable filters 108 capture the antimicrobial to selectively remove the antimicrobial from the solution. Using the siphon 102 reduces or eliminates channeling problems that might otherwise arise if the liquid were allowed to continuously drip from the capture tank 62 onto the carbon filters 108.

At the end of the spray cycle, such as at the end of a shift or a day or other chosen period of time, the valve 56 is actuated to divert the dilute antimicrobial solution received from the recycle tank 42 to the capture pump 64. The capture pump 64 empties the recycle tank 42 and passes the dilute antimicrobial solution to the capture tank 62. When the liquid

reaches a desired level in the capture tank 62, the siphon 102 routes the liquid through conduit 104 and to the disposable carbon filters 108 of the antimicrobial separation unit 106. The disposable filters 108 capture the antimicrobial to selectively remove the antimicrobial from the solution. When the antimicrobial impregnated disposable filters 108 are spent, they 5 are then disposed of in an appropriate manner, such as by incineration or disposal at an approved landfill. The remaining, relatively antimicrobial-free liquid is then disposed of in an appropriate manner, such as by being drained into a wastewater system of a plant. The frequency with which the system 10 will need to be purged will depend upon any number of factors, such as the number of workpieces 20 to be processed by the antimicrobial application 10 unit 12 and the volume of the dilute antimicrobial solution required to charge the system 10 at the beginning of a spray cycle. A periodic purge of the system 10 will typically be used.

An alternate embodiment of the antimicrobial application system 10 is disclosed in Fig. 3. The antimicrobial application system 10 of the alternate embodiment also generally comprises an antimicrobial application unit 112 and a recycle unit 114 and will typically include a capture unit 115.

The antimicrobial application unit 112 may take any number of configurations. For example, the antimicrobial application unit 112 may take the general form of one of the embodiments of a spray application system as disclosed in U.S. Patent Application Serial Number 10/001,896 (Nolen). In the preferred embodiment, spray containment barriers are 20 not used. A conveyor 116 passes through a housing 118 for moving workpieces 120, such as raw poultry, through the housing 118. As described in more detail below, a drip tray or pan 122 extends downstream of the housing 118, disposed below the conveyor 116 and the workpieces 120 carried thereby. The spray application systems are discussed in detail in U.S. Patent Application Serial Number 10/001,896 (Nolen) and will not be discussed in more 15 detail here. It is of course understood that the antimicrobial application unit 112 is not limited to those embodiments or to spray application systems in general. The antimicrobial application unit 112 may apply an antimicrobial to any number of different types of workpieces 120 in any number of different conventional ways. Methods of application used by such an antimicrobial application unit 112 may include but are not limited to spraying, 0 misting, fogging, immersing, pouring, dripping, and combinations thereof. It is understood that the system 10 may be used to treat a wide variety of different workpieces 120, including but not limited to meat, poultry, fish, fruits, vegetables, other foodstuffs, animals, food

packaging, and items and surfaces related to food or food processing. It is also understood that the workpieces 120 may be live, dead, raw, cooked, prepared, processed, partially processed, or ready to eat. It is also understood that the system 10 may be used to treat workpieces 120 completely unrelated to food or food processing items.

5 The recycle unit 114 dilutes a concentrated antimicrobial composition to obtain a dilute antimicrobial composition and provides the dilute antimicrobial composition to the antimicrobial application unit 112. A recycle tank 124 is provided. The recycle tank 124 may include an impeller or some other stirring or agitation means. A source of potable water 126, such as tap water, is connected to the recycle tank 124 via water supply line 128.

10 Similarly, an antimicrobial source, such as a supply tank 130, is connected to the recycle tank 124 via antimicrobial supply line 132. The antimicrobial preferably comprises a quaternary ammonium compound, more preferably comprises an alkylpyridinium chloride, and most preferably comprises cetylpyridinium chloride. More particularly, the concentrated antimicrobial composition preferably comprises a concentrated composition of a quaternary ammonium compound as described in U.S. Patent Application Serial Number 09/494,374, filed on January 31, 2000 by Compadre et al. The disclosure of U.S. Patent Application Serial Number 09/494,374 (Compadre et al.) is incorporated herein by reference. The concentrated composition preferably comprises an antimicrobial and a solubility enhancing agent, and the solubility enhancing agent preferably comprises propylene glycol. The quaternary ammonium compound is preferably present in the concentrated composition in a weight percent of approximately 40%, and the solubility enhancing agent is preferably present in the concentrated composition in a weight percent of approximately 60%. It is of course understood that any number of different antimicrobials and solubility enhancing agents may be used, and the concentrated and dilute compositions may have any number of different components and compositions, including but not limited to the components and compositions of the concentrated and dilute compositions disclosed in U.S. Patent Application Serial Number 09/494,374 (Compadre et al.). Concerns of contamination or cross-contamination are eliminated or alleviated because of the broad spectrum efficacy of the preferred antimicrobial compositions.

15 A chemical feed pump 134 is disposed in antimicrobial supply line 132. A sensor 136 is connected to the recycle tank 124 via lines 138 and 140. In the preferred embodiment, the sensor is an ultraviolet light photospectrometer or UV spec sensor. It is of course understood

that any number of different sensors and any number of different light sensors may be used. For example, the light sensor may use light having wavelengths that fall in any number of different ranges, including but not limited to ultraviolet light, visible light, infrared light, and combinations thereof. Of course it is understood that any number of different types of sensors 136 may be used, including but not limited to infrared, visible light, or ultraviolet sensors. The sensor 136 is capable of detecting the concentration of the antimicrobial in the composition in the recycle tank 124. A controller 142 operably connects the sensor 136 to the chemical feed pump 134. The controller 142 is capable of receiving a signal from the sensor 136 and sending a corresponding on/off signal to the chemical feed pump 134. A feed line 144 exits the recycle tank 124, passes through the system pump 146, through a valve 148, and connects to the antimicrobial application unit 112. Multiple feed lines may be used, or the feed line 144 may be branched or divided, if desired, to connect the recycle tank 124 to multiple antimicrobial application units. The valve 148 is preferably a three-way valve. A return line 150 exits the antimicrobial application unit 112, passes through a filter 152, and connects to the recycle tank 124. Multiple return lines may be used to connect multiple antimicrobial application units to the recycle tank 124. The filter 152 is preferably a wire mesh filter sized to capture visible particulates in the effluent from the antimicrobial application unit 112. Visible particulates in the effluent will typically be minimal because of upstream washing that will typically be performed on the workpieces 120. A capture line 154 passes from the valve 148 to a capture tank 156. A drain line 158 passes from the capture tank 156 to an antimicrobial separation unit 160. The antimicrobial separation unit 160 preferably comprises one or more disposable filters selected to separate the antimicrobial from water. A disposal line 162 exits the antimicrobial separation unit 160 for disposing of water after the antimicrobial is removed. A central control unit 164 is used to control the entire system 10.

In operation, a dilute antimicrobial composition will typically be prepared and used for one spray cycle that will typically last for one day. The dilute antimicrobial composition will then discarded, disposed of, or removed from the system 10 for further processing.

Accordingly, each spray cycle, typically beginning each morning, begins with an empty and clean recycle tank 124 and an empty and clean purge or capture tank 156. Before the antimicrobial application unit 112 is activated, and before the system pump 146 is turned on, the dilute antimicrobial composition is prepared. In that regard, a desired amount of tap

water is fed to the recycle tank 124. The recycle tank 124 is preferably filled to approximately one third to approximately one half of its capacity with potable water. The central control unit 164 activates the sensor 136 so that liquid from the recycle tank 124 passes through the sensor 136. The sensor 136 initially detects the absence of antimicrobial 5 (no absorbance at 260 nm), so the controller 142 activates the chemical feed pump 134 to begin metering the concentrated antimicrobial composition into the recycle tank 124. When the concentration of the antimicrobial in the dilute composition in the recycle tank 124 reaches a desired level, the sensor 136 and, in turn, the controller 142 turn off the chemical feed pump 134. The desired ranges of the concentration of antimicrobial in dilute 10 composition include but are not limited to the concentration ranges of the antimicrobial in the dilute compositions disclosed in U.S. Patent Application Serial Number 09/494,374 (Compadre et al.). Once the desired concentration is obtained in the recycle tank 124, the system pump 146 is activated, and the dilute composition is supplied to the antimicrobial application unit 112. The dilute composition provided to the antimicrobial application unit 15 112 is not potable. Still, contamination or cross-contamination of the workpieces 120 is not a concern because of the safety and broad spectrum efficacy of the dilute antimicrobial composition used. The recycle unit 114 supplies the dilute antimicrobial composition to the antimicrobial application unit or units 112 at any number of different flow rates and pressures. These flow rates and pressures may include, but are not limited to, the flow rates 20 and pressures discussed in U.S. Patent Application Serial Number 10/001,896 (Nolen).

Once the recycle unit 114 is supplying the dilute antimicrobial composition to the antimicrobial application unit 112, the workpieces 120 to be processed, such as raw poultry, are moved by the conveyor 116, through the housing 118, and the dilute antimicrobial composition is applied to the workpieces 120, such as by spraying. The portion of the dilute 15 antimicrobial composition that does not adhere to the workpieces 120 collects in a drain and is returned via return line 150, through filter 152, and to the recycling tank for reuse. The length of the drip tray 122 is selected so that it will catch drops from workpieces 120 exiting the housing 118 for approximately 1 minute after the workpieces 120 exit the housing 118. This enhances the recovery of the dilute antimicrobial composition and reduces downstream 0 losses. Water spray curtains may be used in the application chamber, and the workpieces 120 may be wet from upstream washing, so additional water will typically enter the recycle tank 124.

The sensor 136 continuously monitors the concentration of the antimicrobial in composition in the recycling tank. If the concentration falls below a desired amount, the sensor 136 activates the chemical feed pump 134 to add more of the concentrated antimicrobial composition and to bring the concentration of the antimicrobial in the dilute antimicrobial composition back up to the desired level. The system 10 can be configured to allow the tap water to be controlled in this fashion as well, but it is unlikely that there will be a need to add water. The dilute antimicrobial composition is thereby used repeatedly to treat any number of units of the workpieces 120 being processed.

At the end of the spray cycle, such as at the end of a shift or a day or other chosen period of time, the valve 148 is actuated to divert the dilute antimicrobial composition received from the system pump 146 through capture line 154 to the purge tank 156. The liquid in the purge tank 156 is gravity fed through the drain line 158 to the disposable filters of the antimicrobial separation unit 160. The disposable filters capture the antimicrobial to separate the antimicrobial from the composition. The antimicrobial impregnated filters are then disposed of in an appropriate manner, such as by incineration or disposal at an approved landfill. The remaining, relatively antimicrobial-free liquid is then disposed of in an appropriate manner, such as by being drained into a wastewater system of a plant. The frequency with which the system 10 will need to be purged will depend upon any number of factors, such as the number of workpieces 120 to be processed by the antimicrobial application unit 112 and the volume of the dilute antimicrobial composition required to charge the system 10 at the beginning of a spray cycle. A periodic purge of the system 10 will be used.

Other modifications, changes and substitutions are intended in the foregoing, and in some instances, some features of the invention will be employed without a corresponding use of other features. For example, the different features of the alternate embodiments may be merged or combined in any number of different combinations. Also, the antimicrobial application unit 12 may take any number of forms, shapes, and sizes and need not be one of the spray cabinet embodiments disclosed in U.S. Patent Application Serial No. 10/001,896 (Nolen). Similarly, any number of different compositions may be used in any number of different concentrations, and the compositions may or may not include one or more antimicrobials. Further, any number of different separation techniques may be used in the antimicrobial separation unit 106, and the antimicrobial separation unit 106 may be used with

or without a corresponding use of a capture tank 62 . Further still, additional pumps, filters, and similar components may be incorporated into the system 10. Also, any number of different methods may be used to monitor the composition of the composition in the recycle tank 24. Similarly, the composition may be monitored constantly or at desired intervals.

5 Further still, the drip tray 22 may not be used and may be any number of different lengths. Of course, quantitative information is included by way of example only and is not intended as a limitation as to the scope of the invention. Accordingly, it is appropriate that the invention be construed broadly and in a manner consistent with the scope of the invention disclosed.

What is claimed is:

1. A method, comprising:

- (1) providing a composition, said composition comprising a first component and a second component;
- 5 (2) applying said composition to a first workpiece;
- (3) after step (2), diverting a portion of said composition;
- (4) diluting said diverted composition;
- (5) determining a concentration of said first component in said diluted composition; and
- (6) introducing an additional amount of said first component into said composition if said 10 concentration falls below a desired value.

2. The method of claim 1, further comprising, after step (2), reapplying said composition to a second workpiece.

3. The method of claim 1, wherein said first composition comprises an antimicrobial.

4. The method of claim 3, wherein said first workpiece comprises a raw, hide-on, carcass, 15 cooked, prepared, processed, partially processed, ready to eat, or ready to cook food.

5. The method of claim 1, wherein:

step (2) comprises applying said composition to said first workpiece in a housing; and
step (6) comprises introducing said additional amount of said first component into said 20 housing for mixing with said composition if said concentration falls below said desired value.

6. The method of claim 1, further comprising:

after step (5), passing said diluted composition to a first tank; and
passing at least a portion of contents of said first tank through a separator to selectively remove at least a portion of said first component from said diluted composition.

5 7. The method of claim 6, further comprising, after step (2), passing at least a portion of said composition to said first tank.

8. A combination, comprising:

a housing;

a sprayer disposed within said housing;

0 a first tank;

a first composition disposed in said first tank, said first composition comprising a first component in a first concentration;

a first conduit extending between said first tank and said housing;
a second tank;

a second composition disposed in said second tank, said second composition comprising
said first component in a second concentration, said second concentration being less than
5 said first concentration;

a second conduit extending between said second tank and said sprayer; and
means for passing said first composition from said first tank into said housing in response
to a decrease in said second concentration.

9. The combination of claim 8, further comprising a third conduit extending between said
10 second tank and said housing.

10. The combination of claim 8 wherein said means for passing said first composition from
said first tank into said housing in response to said decrease in said second concentration
comprises:
means for detecting a decrease in said second concentration;
15 a pump operably connected to said first conduit; and
a controller operably connected to said means for detecting said decrease in said second
concentration and to said pump.

11. The combination of claim 10, wherein said means for detecting said decrease in said
second concentration comprises:
20 means for diluting said second concentration to a third concentration; and
means for detecting a change in said third concentration.

12. The combination of claim 11, wherein said means for detecting said change in said third
concentration comprises a spectrophotometer.

13. A combination, comprising:
25 a housing;
a tank;
an antimicrobial disposed in said tank, said tank being connected to said housing for
receiving said antimicrobial as said antimicrobial passes from said housing;
a pump;

0 first and second filters operably connecting said tank and said pump, said first and second
filters being disposed to provide for parallel flow between said tank and said pump;
means for selectively directing said antimicrobial passing from said tank to said pump

through said first filter or said second filter; and
a conduit extending from said pump to said housing.

14. The combination of claim 13, further comprising:

a conveyor, said conveyor being disposed to pass workpieces through said housing; and
5 a sprayer, said sprayer being operably connected to said conduit and at least a portion of
said sprayer being disposed within said housing.

15. The combination of claim 14, wherein said workpieces comprise raw, hide-on, carcass,
cooked, prepared, processed, partially processed, ready to eat, or ready to cook food.

16. A method, comprising:

- 10 (1) providing a conveyor for moving a plurality of workpieces;
- (2) providing a first composition, said first composition comprising an antimicrobial and water;
- (3) applying said first composition to one of said plurality of workpieces;
- (4) after step (3), capturing said first composition;
- 15 (5) applying said captured first composition to another of said plurality of workpieces;
and
- (6) after step (5), selectively removing said antimicrobial from said first composition.

17. The method of 16, wherein step (6) comprises, after step (5), passing said first
composition through a carbon filter for selectively removing said antimicrobial from said
30 first composition.

18. The method of claim 16, wherein step (6) comprises:

after step (5), passing said first composition to a tank; and
when said first composition reaches a desired level in said tank, passing said first
composition from said tank through a filter for selectively removing said antimicrobial
5 from said first composition.

19. The method of claim 16, wherein said plurality of workpieces comprises meat, poultry,
fish, fresh or salt water seafood, fruits, vegetables, other foodstuffs, animals, food
packaging, or items or surfaces related to food or food processing, or combinations
thereof.

0 20. The method of claim 16, further comprising:

between step (4) and step (5), monitoring said first composition for a decrease in
concentration of said antimicrobial in said first composition; and

introducing an additional amount of said antimicrobial into said first composition if a predetermined decrease in concentration is detected.

21. A combination, comprising:

a housing;

5 a sprayer disposed within said housing;
a conveyor, said conveyor being disposed to pass workpieces through said housing, said workpieces comprising a raw, hide-on, carcass, cooked, prepared, processed, partially processed, ready to eat, or ready to cook food;
10 a rigid member affixed to a downstream end of said housing, said rigid member having first and second portions extending on opposite sides of said conveyor and having a plurality of openings in said first portion and in said second portion;
sensors disposed within each of said openings;
a plurality of lenses secured to said rigid member to provide a water resistant seal over each said plurality of openings.

15 22. The combination of claim 21, wherein said sensors comprise:

a first sensor component disposed in one of said plurality of openings in said first portion;
a matching second sensor component disposed in one of said plurality of openings in said second portion, said first and second sensor components being disposed and aligned so that workpieces being carried by said conveyor block a line of sight between said first and
20 second sensor component as said workpieces pass between said first and second sensor components.

23. The combination of claim 22, wherein said sensors further comprise:

a third sensor component disposed in another of said plurality of openings in said first portion;
5 a matching fourth sensor component disposed in another of said plurality of openings in said second portion, said third and fourth sensor components being disposed and aligned so that workpieces being carried by said conveyor block a line of sight between said third and fourth sensor component as said workpieces pass between said third and fourth sensor components, said third and fourth sensor components being disposed downstream
0 of said first and second sensor components.

24. A method, comprising:

(1) providing a conveyor for moving a plurality of workpieces, said workpieces

comprising raw, hide-on, carcass, cooked, prepared, processed, partially processed, ready to eat, or ready to cook food;

(2) providing a first composition, said first composition comprising a quaternary ammonium compound and water;

5 (3) applying said first composition to said plurality of workpieces;

(4) simultaneously with step (3), monitoring a concentration of said quaternary ammonium compound in said first composition; and

(5) adding an additional amount of said quaternary ammonium compound to said first composition if said concentration falls below a desired level.

10 25. The method of claim 24, wherein step (2) comprises providing said first composition, said first composition comprising an alkylpyridinium chloride and water.

26. The method of claim 24, wherein step (2) comprises providing said first composition, said first composition comprising a cetylpyridinium chloride and water.

27. The method of claim 24, wherein step (2) comprises providing said first composition, said first composition comprising a cetylpyridinium chloride, a solubility enhancing agent, and water.

15 28. The method of claim 24, wherein step (2) comprises providing said first composition, said first composition comprising a cetylpyridinium chloride, propylene glycol, and water.

29. The method of claim 24, wherein said step of monitoring said concentration of said

20 quaternary ammonium compound in said first composition comprises:

diverting a portion of said first composition;

diluting said diverted composition; and

determining a concentration of said quaternary ammonium compound in said diluted composition.

5 30. The method of claim 24, further comprising:

after step (3), capturing said first composition; and

applying said captured first composition to another of said plurality of workpieces.

31. The method of claim 24, further comprising:

after step (3), selectively removing said quaternary ammonium compound from said first composition.

1/3

FIG.1

SUBSTITUTE SHEET (RULE 26)

2/3

FIG.2

BEST AVAILABLE COPY

3/3

FIG.3

BEST AVAILABLE COPY

SUBSTITUTE SHEET (RULE 26)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 May 2004 (27.05.2004)

PCT

(10) International Publication Number
WO 2004/043162 A3

(51) International Patent Classification⁷: A23B 4/14, 4/20

[US/US]; 2885 N. Brookbury Crossing, Fayetteville, AR 72703 (US). BEERS, Kelly [US/US]; 1388 Briarcliff St., Fayetteville, AR 72703 (US). RHEINGANS, Joe [US/US]; 401 Buttry Road, Rogers, AR 72756 (US).

(21) International Application Number:

PCT/US2003/035933

(22) International Filing Date:

12 November 2003 (12.11.2003)

(74) Agent: ROGERS, Mark; Speed & Rogers, P.A., 1701 Centerview, Suite 125, Little Rock, AR 72211 (US).

(25) Filing Language:

English

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(26) Publication Language:

English

(84) Designated States (*regional*): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

(30) Priority Data:

60/425,679 12 November 2002 (12.11.2002) US

(71) Applicant (*for all designated States except US*): SAFE FOODS CORPORATION [US/US]; 4801 North Shore Drive, North Little Rock, AR 72118 (US).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): NOLEN, Gary

[Continued on next page]

(54) Title: APPLICATION SYSTEM WITH RECYCLE AND RELATED USE OF ANTIMICROBIAL QUATERNARY AMMONIUM COMPOUND.

(57) Abstract: An antimicrobial application system is disclosed, comprising an antimicrobial application unit and a recycle unit. An initial, dilute antimicrobial composition is prepared. The composition is provided to the antimicrobial application unit and applied to workpieces, such as raw poultry. After application to the workpieces, the composition is returned to the recycle tank. The concentration of the antimicrobial in the recycle tank is monitored, and additional antimicrobial is automatically added if the concentration of the antimicrobial in the composition falls below a desired amount. The composition is periodically diverted to a capture tank, and the antimicrobial is selectively removed from the composition. The removed antimicrobial and remaining composition are then disposed of in appropriate manners. The antimicrobial is preferably a quaternary ammonium compound, is more preferably an alkylpyridinium chloride, and is most preferably cetylpyridinium chloride.

WO 2004/043162 A3

ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(88) Date of publication of the international search report:
15 July 2004

Published:

- *with international search report*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

INTERNATIONAL SEARCH REPORT

International application No:

PCT/US03/35933

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : A23B 4/14; A23B 4/20
US CL : 426/335, 615, 641, 643

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 426/335, 615, 641, 643

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Please See Continuation Sheet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y, P	US 2003/0047087 A1 (PHEBUS et al.) 13 March 2003, abstract and page 3, paragraphs 0029, 0030-0037.	1-31
Y	US 4,996,070 A (NAFISI-MOVAGHAR) 26 February 1991, abstract and col. 10, lines 24-39, col. 12, lines 20-30.	5, 6
Y	US 5,421,883 A (BOWDEN) 06 June 1995, abstract and col. 7, lines 55-64, col. 8, 1-11.	7-11
Y, P	US 2003/0198716 A1 (HANKINSON et al.) 23 October 2003, abstract and page 5, paragraph 0044, 0045, 0046.	16-17
Y, P	US 2003/0148727 A1 (HILGREN et al.) 07 August 03 2003, paragraphs 0014, 0048, 0064, 0132, 0134.	16, 19, 24
Y, E	US 2004/0009271 A1 (DAVIDSON et al.) 15 January 2004, abstract and paragraphs 0016, 0054, 0065.	24-31
Y	US 6,126,810 A (FRICKER et al.) 03 October 2000, abstract and col. 4, lines 33-55.	30, 31
Y	US 2002/0064585 A1 (CHRISTIANSON et al.) 30 May 2002, abstract and page 14, claim 20 and 21.	25, 26

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

30 April 2004 (30.04.2004)

Date of mailing of the international search report

17 MAY 2004

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703) 305-3230

Authorized officer

Helen F. Pratt

Telephone No. 571-272-1201

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/35933

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claim Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claim Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claim Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
Please See Continuation Sheet

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

PCT/US03/35933

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claim(s) 1-7, drawn to a method of applying a composition to a workpiece.

Group II, claim(s) 8-15, drawn to an apparatus that contains various apparatus for applying a composition to a product.

Group III, claim(s) 16-20, drawn to a method of conveying a plurality of workpieces.

Group IV, claim(s) 21-23, drawn to an apparatus which requires a rigid member with a plurality of openings.

Group V, claim(s) 24-31, drawn to a method which requires particular antimicrobial compounds.

The inventions listed as Groups I-V do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Group I, claims 1-7 are to applying a composition to a workpiece, diverting a portion of the composition and diluting the diverted composition, determining a concentration of the first component and adding an additional amount of the first component.

Group II, claims 8-15 are to a combination that contains various apparatus for applying a composition to a product. The method of Group II does not require the same technical features because they are to particular apparatus such as a sprayers and conduits and spectrophotometers which are not required for the first method.

Group III, claims 16-20 is to a method of conveying which lacks the same or corresponding special technical feature of the method of group I which requires no conveying, or the particular apparatus of Group II which requires an apparatus.

Group IV, claims 21-23 is to an apparatus further requiring a rigid member with a plurality of openings which is not the same technical feature required for the previous groups.

Group V, claims 24-31 further requires particular antimicrobial compounds not required by the previous groups and therefore the previous groupings lack the same corresponding technical feature.

Continuation of B. FIELDS SEARCHED Item 3:

PCT/US03/35933

INTERNATIONAL SEARCH REPORT

West and East search terms: antimicrobial, antibacterial, apply, remove, recycle, conveyor, filter, lenses, sensors, sprayer concentration