

<u>Course</u> > Week 3... > <u>Compr...</u> > Quiz 3

Quiz 3

Problem 1

1/1 point (graded)

What is the dimension of A^T , where A is the $1 \times n$ "row vector" $[1, 2, 3, \ldots, (n-1), n]$?

- \bigcirc 1 x 1
- \bigcirc 1 × n
- \circ $n \times 1$
- \bigcirc $n \times n$

Submit

Problem 2

1/1 point (graded)

True or false: $\left(\left(A^{T}\right)^{T}\right)^{T}=A^{T}$

- True
- False

Problem 3

1/1 point (graded)

Let
$$M=\begin{pmatrix}1&5\\2&2\end{pmatrix}$$
 and let $N=\begin{pmatrix}0&2\\5&5\end{pmatrix}$, what is $M+N$?

$$M + N = \begin{pmatrix} 1 & 7 \\ 7 & 7 \end{pmatrix}$$

$$\bigcirc M + N = \begin{pmatrix} 0 & 10 \\ 10 & 10 \end{pmatrix}$$

$$\bigcirc M + N = \begin{pmatrix} 3 & 10 \\ 2 & 7 \end{pmatrix}$$

$$\bigcirc M + N = \begin{pmatrix} 3 & 5 \\ 6 & 7 \end{pmatrix}$$

Submit

Problem 4

1/1 point (graded)

Give the transpose of
$$M = \begin{pmatrix} 3 & 1 & 2 \\ 2 & 1 & 8 \\ 4 & 4 & 4 \end{pmatrix}$$

$$M^T = \begin{pmatrix} 2 & 8 & 4 \\ 1 & 1 & 4 \\ 3 & 2 & 4 \end{pmatrix}$$

$$M^T = \begin{pmatrix} 4 & 4 & 4 \\ 2 & 1 & 8 \\ 3 & 1 & 2 \end{pmatrix}$$

$$M^T = \begin{pmatrix} 3 & 2 & 4 \\ 1 & 1 & 4 \\ 2 & 8 & 4 \end{pmatrix}$$

$$M^T = \begin{pmatrix} 4 & 8 & 2 \\ 4 & 1 & 1 \\ 4 & 2 & 3 \end{pmatrix}$$

Problem 5

1/1 point (graded)

Given
$$\mathbf{x} = \begin{pmatrix} 1 & 4 \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$, what is $\mathbf{x} - \mathbf{y}^{\mathrm{T}}$?

$$\bigcirc \mathbf{x} - \mathbf{y}^{\mathbf{T}} = \begin{pmatrix} 3 & -3 \end{pmatrix}$$

$$\bigcirc \mathbf{x} - \mathbf{y}^{\mathbf{T}} = (0 \quad 0)$$

Cannot s	ubtract these two vectors
✓	
•	
Submit	
Problem 6	
/1 point (graded f the dot prod apply.	d) uct of two vectors, ${f a}^{f \cdot}{f b}$, is equal to 0 , what must be true? Select all that
□ a equals	b
⊘ b`a = 0	
either a	= 0 or $b = 0$
a is orthorder a is	ogonal to ${f b}$
~	
Submit	
Problem 7	
/1 point (graded Given a vector	d) , $\mathbf{x} \in \mathbb{R}^{\mathbf{d} imes 1}$, the product $\mathbf{x} \mathbf{x}^{\mathrm{T}}$ is equal to which of the following:
(Math Pro	ocessing Error] x ²

 \bigcirc The identity matrix, I_d

 \bigcirc a $d \times d$ matrix

Submit

Problem 8

1/1 point (graded)

The following line is given by the equation $\mathbf{w} \cdot \mathbf{x} = c$, where c = 8. What are the vectors \mathbf{x} and \mathbf{w} ?

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, $\mathbf{w} = \begin{pmatrix} 8 & -8 \end{pmatrix}$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, $\mathbf{w} = \begin{pmatrix} -4 & 1 \end{pmatrix}$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, $\mathbf{w} = \begin{pmatrix} -1 & 8 \end{pmatrix}$

• $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} 2 & 1 \end{pmatrix}$

Submit

Problem 9

1/1 point (graded)

Indicate which of the following properties apply to matrix multiplication:

- ightharpoonup Associative property (that is, $ABC = (AB) \ C = A \ (BC)$)
- \Box Commutative property (that is, AB = BA)
- Existence of an identity matrix

Submit

Problem 10

1/1 point (graded)

Given two matrices, $A \in \mathbb{R}^{j \times k}$ and $B \in \mathbb{R}^{k \times l}$, what is $(AB)^T$?

 $\bigcirc AB^T$

 $\bigcirc A^T B^T$

 $\bigcirc BA^T$

\circ B^TA^T
✓
Submit
Problem 11
1/1 point (graded) True or false: Given two square matrices, $A\in\mathbb{R}^{d imes d}$ and $B\in\mathbb{R}^{d imes d}$, if $AB=BA=I_d$, then $B=A^{-1}$.
○ True
○ False
Submit Duo la la va. 12
Problem 12
1/1 point (graded) Which of the following are true about singular matrices?
☐ Singular matrices cannot also be diagonal matrices
lacksquare Singular matrices have a determinant of 0
☑ Singular matrices are not invertible
Singular matrices include the identity matrix
✓

Problem 13

1/1 point (graded)

Given the 2×2 matrix, $M = \begin{pmatrix} 1 & 5 \\ 1 & 4 \end{pmatrix}$, determine which of the following is the inverse matrix of M.

$$M^{-1} = \begin{pmatrix} -4 & 5 \\ 1 & -1 \end{pmatrix}$$

$$\bigcap M^{-1} = \begin{pmatrix} 1 & \frac{1}{5} \\ 1 & \frac{1}{4} \end{pmatrix}$$

$$Omega M^{-1} = \begin{pmatrix} 1 & -1 \\ -5 & 4 \end{pmatrix}$$

Does not have an inverse

Submit

Problem 14

1/1 point (graded)

Which of the following matrices are singular?

$$\begin{array}{ccc}
 & 1 & 0 \\
2 & 2
\end{array}$$

$$\begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{3} & 1\\ 1 & 3 \end{pmatrix}$$

Problem 15

1/1 point (graded)

Given the matrix, $M = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$, and the vector $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, what expression below is equivalent to $\mathbf{x}^T M \mathbf{x}$?

$$\bigcirc \ x_1^2 + 3x_1x_2 + 14x_2^2$$

$$x_1 + 5x_1^2x_2^2 + 7x_2$$

$$\bigcirc 3x_1 + 10x_2$$

$$x_1^2 + 5x_1x_2 + 7x_2^2$$

Submit

Problem 16

1/1 point (graded)

Suppose a Gaussian distribution has a covariance matrix that is diagonal, with the same value in each position along the diagonal. Which of the following can we conclude? Select all that apply.

- The features are uncorrelated
- ☑ The contour lines for the distribution are axis aligned
- ☑ The contour lines for the distribution are in concentric spheres
- \bigcirc Any point that is a fixed distance away from the mean μ has the same density

Submit

Problem 17

1/1 point (graded)

True or false: the only two parameters needed to define a multivariate Gaussian distribution are the mean, μ , and the covariance matrix, Σ .

Submit

Problem 18

1/1 point (graded)

For a spherical Gaussian distribution, defined by $\mu \in \mathbb{R}^d$ and $\Sigma = \sigma^2 I_d$, what is the determinant of the covariance matrix, $|\Sigma|$?

- \circ σ^2
- \circ σ^{2d}
- $\bigcirc \sigma^d$
- \circ σ

Submit

Problem 19

1/1 point (graded)

Given the following 4 data points in \mathbb{R}^3 , computer the mean, $\mu \in \mathbb{R}^3$.

Data points: $x_1 = (0, 0, 1), x_2 = (1, 4, 1), x_3 = (2, 2, 1), x_4 = (1, 2, 5).$

- $\bigcirc \mu = (1.5, 2.5, 3)$
- $\mu = (1, 2, 2)$
- $\bigcirc \mu = (1.33, 2.66, 2.66)$
- $\bigcirc \mu = (4, 8, 8)$

Submit

Problem 20

1/1 point (graded)

True or false: the covariance matrix of any data set is necessarily symmetric.

True			
○ False			
✓			
Submit			

Problem 21

1/1 point (graded)

True or false: In a binary classification setting, where each class is modeled by a multivariate Gaussian, a data point, x, will always be classified as label 1 instead of label 2 if the distance from x to μ_1 is less than the distance from x to μ_2 .

O True			
• False			
~			
Submit			

Problem 22

1/1 point (graded)

If a Gaussian generative model is used for classification, and the decision boundary for the k classes is linear, which of the following statements must be true?

There are exact	tly two classes, i.e. $k=2$
The class proba	abilities, π_i , must be equal
\bigcirc The means, μ_i ,	are equidistant from this decision boundary
• The covariance	matrices, Σ_i , must be equal
Submit	
Problem 23	
1/1 point (graded) If a test error is 0% ,	what does this indicate about the model?
O None of the da	ta in the test set was misclassified
The model will	perfectly classify every new data point
The data in the	test set is not a good representation of all classes
0% test error is	s not achievable
✓	
Submit	
Problem 24	

Problem 24

1/1 point (graded)

Suppose a generative Gaussian model is used for a binary classification problem with two classes, A and B. If the decision boundary is linear and the class probability $\pi_A > \pi_B$, would you expect the boundary to be closer to μ_A or μ_B ?

\bigcirc The boundary will be closer to μ_A
$looplus$ The boundary will be closer to μ_B
\bigcirc The boundary will be equidistant to μ_A and μ_B
This cannot be determined without the respective covariance matrices
Submit
Submit

Problem 25

1/1 point (graded)

True or false: a Gamma distribution is useful for modeling features which are constrained to a specific interval.

O True			
False			
✓			

Problem 26

1/1 point (graded)

Using the Naive Bayes classifier, which of the following are necessarily true?

Each coordinat	e of the data is modeled by the same distribution
Z Each coordinat	e of the data is taken to be independent of the others
☐ Provides a very	v inaccurate model for classification
☐ Each pairwise s	set of coordinates are modeled together
Submit	
Problem 27 1/1 point (graded) Which distribution w phone book for som	ould be useful for specifying the distribution over first names in a le random city?
O Gamma Distrib	oution
Beta Distribution	on
O Poisson Distrib	ution
Categorical Dis	tribution
✓	
Submit	

© All Rights Reserved