2.3. Các khâu động học cơ bản

1. Khâu quán tính bậc nhât

+ Phương trình vi phân:

$$T\frac{dy}{dt} + y = kx$$

+ Hàm truyền đạt:

$$G(s) = \frac{k}{1+Ts}$$
; Trong đó

k : hệ số khuếch đại

T: hằng số thời gian

+ Hàm quá độ:
$$h(t) = \mathcal{L}^{-1} \left\{ \frac{G(s)}{s} \right\} = k(1 - e^{-\frac{1}{T}t})$$

Bài toán ngược: Biết hàm quá độ h(t), xác định k,T

- Hoành độ của đường tiệm cận với h(t) khi t→∞ là giá trị k
- Kẻ đường tiếp tuyến với h(t) tại t=0

- Hoành độ của điểm A trên đường tiếp tuyến mà tại đó tung độ bằng k sẽ chính là tham số T cần tìm.

Ngoài ra cũng tại thời điểm T ta còn có h(t=T) = k(1-e⁻¹) = 0,632k nên có thể tìm T bằng cách xác định điểm trên h(t) =0,632k

1.Khâu quán tính bậc nhât

Đặc tính tần biên pha:

$$\tilde{G}(j\omega) = \frac{k}{1+j\omega T} = \frac{k(1-j\omega T)}{(1+j\omega T)(1-j\omega T)} = \frac{k}{1+T^2\omega^2} - j\frac{kT\omega}{1+T^2\omega^2}$$

• Đồ thị bode:

Biên độ: L(
$$\omega$$
) = 20 lg $|\tilde{G}(j\omega)|$ = 20lg $\left(\sqrt{\left(\frac{k}{1+T^2\omega^2}\right)^2 + \left(\frac{kT\omega}{1+T^2\omega^2}\right)^2}\right)^2$ = 20lg $\left(\frac{k^2}{1+T^2\omega^2}\right)^{\frac{1}{2}}$

Khi
$$\omega$$
<<1/T L(ω) = 20lgk ω >>1/T L(ω) = 20lgk-20lgT ω

Pha:
$$\varphi(\omega) = -\arctan(T\omega)$$

Khi $\omega = 0$ thì $\varphi(\omega) = 0$
 $\omega = 1/T \varphi(\omega) = -\pi/4$
 $\omega = \infty \varphi(\omega) = -\pi$

Ví dụ:

2.Khâu tích phân - quán tính bậc nhât

+ Hàm truyền đạt:

$$G(s) = \frac{k}{s(1+Ts)}$$
; Trong đó k: hệ số khuếch đại T: hằng số thời gian

+ Hàm quá độ: h(t) =
$$\mathcal{L}^{-1}\left\{\frac{G(s)}{s}\right\} = \mathcal{L}^{-1}\left\{\frac{k}{s^2(1+Ts)}\right\} = \mathcal{L}^{-1}\left\{\frac{1}{s^2} - \frac{T}{s} + \frac{T}{s+\frac{1}{T}}\right\}$$

Suy ra h(t) = $k\left[t - T(1 - e^{-\frac{1}{T}t})\right]$

- + Bài toán ngược: Xác định k, T từ hàm quá độ:
- Kẻ đường tiệm cận h_{tc}(t) với h(t) tại t = ∞
- Xác định T là giao điểm của h_{tc}(t) với trục hoành
- Xác định góc nghiêng φ của $h_{tc}(t)$ với trục hoành rồi tính k = tan φ

2. Khâu tích phân - quán tính bậc nhât

+ Đặc tính tần biên pha:

$$\tilde{G}(j\omega) = \frac{k}{j\omega(1+jT\omega)} = -\frac{kT}{1+T^2\omega^2} - j\frac{k}{\omega(1+T^2\omega^2)}$$

$\begin{array}{c|cccc} \mathbf{\omega} & & \mathbf{Re} & & \mathbf{Im} \\ \hline 0 & & -\mathbf{kT} & & -\infty \\ \hline 1/T & & -\mathbf{kT/2} & & -\mathbf{k/2T} \\ \hline \infty & & 0 & & 0 \\ \hline \end{array}$

+ Đồ thị Bode

Biên độ:
$$L(\omega) = 20lg \left[\sqrt{\left(-\frac{kT}{1+T^2\omega^2}\right)^2 + \left(-\frac{k}{\omega(1+T^2\omega^2)}\right)^2} \right]$$

=20lgk - 20lg
$$\omega$$
 - 20lg $\sqrt{(T\omega)^2 + 1}$

Khi
$$\omega$$
<<1/T L(ω) = 20lgk - 20lg ω

$$\omega > 1/T L(\omega) = 20 lgk - 20 lgT - 40 lg\omega$$

Pha:
$$\varphi(\omega) = \varphi(\omega) + \varphi(\omega) = -\pi/2 - \arctan(T\omega)$$

Khi
$$\omega$$
=0 thì $\varphi(\omega) = -\pi/2$

$$\omega$$
=1/T $\varphi(\omega)$ = -3 π /4

$$\omega = \infty \ \phi(\omega) = -\pi$$

3. Khâu tích phân - quán tính bậc n

Hàm truyền đạt:

$$G(s) = \frac{k}{s(1+Ts)^n}$$
; Trong đó k: hệ số khuếch đại T: hằng số thời gian

Hàm quá độ: h(t) =
$$\mathcal{L}^{-1}\left\{\frac{G(s)}{s}\right\} = \mathcal{L}^{-1}\left\{\frac{k}{s^2(1+Ts)^n}\right\}$$

= $\mathcal{L}^{-1}\left\{k\left[\frac{1}{s^2} - \frac{nT}{s} + \sum_{i=1}^n \frac{(n+1-i)T^2}{(1+Ts)^i}\right]\right\}$
Suy ra h(t) = $k\left[t - nT + \sum_{i=1}^n \frac{(n+1-i)t^{i-1}e^{-\frac{1}{T}t}}{T^{i-2}(i-1)!}\right]$

Bài toán ngược: Xác định các tham số k,T và n từ hàm quá độ

- Kẻ đường tiệm cận h_{tc}(t) với h(t) tại t = ∞
- Xác định góc nghiêng φ của $h_{tc}(t)$ với trục hoành rồi tính k = tan φ
- Xác định T_{tc} là giao điểm của $h_{tc}(t)$ với trục hoành và tính $T = \frac{T_{tc}}{n}$

Trường hợp chưa biết bậc của n có thể tra bảng sau:

n	1	2	3	4	5	6	7	8	9	10
φ	0,3679	0,2707	0,224	0,1954	0,1755	0,1606	0,149	0,1396	0,1318	0,1144

4. Khâu quán tính bậc hai

+ Hàm truyền đạt:

G(s) =
$$\frac{k}{(1+T_1s)(1+T_2s)}$$
; Trong đó $T_1 > T_2$

k : hệ số khuếch đại

 T_1, T_2 : hằng số thời gian

+ Hàm quá độ: h(t) =
$$\mathcal{L}^{-1}\left\{\frac{G(s)}{s}\right\}$$
 = k(1 - $\frac{T_1e^{-\frac{1}{T_1}t}-T_2e^{-\frac{1}{T_2}t}}{T_1-T_2}$)

+ Đặc tính tần biên pha:

$$\tilde{G}(j\omega) = \frac{k(1-T_1T_2\omega^2)}{(1+T_1^2\omega^2)(1+T_2^2\omega^2)} - j\frac{k\omega(T_1+T_2)}{(1+T_1^2\omega^2)(1+T_2^2\omega^2)}$$

ω	Re	lm
0	k	0
$1/\sqrt{T_1T_2}$	0	$-\frac{k\sqrt{T_{1}T_{2}}}{T_{1}+T_{2}}$
∞	0	0

4. Khâu quán tính bậc hai

Bài toán ngược: Biết hàm quá độ h(t), xác định k,T_1,T_2 Tìm hằng số k theo $k=h(\infty)$

Kẻ đường tiếp tuyến h_{tt}(t) với h(t) tại điểm uốn. Sau đó xác định hai tham số a là hoành độ giao điểm của đường tiếp tuyến với trục thời gian và b là khoảng thời gian để đường tiếp tuyến đó đi được từ 0 đến k.

Lập tỷ số a/b. Nếu $\frac{a}{b} > 0,103648$ thì bỏ qua.

Tìm x thỏa mãn 0 < x < 1 từ $\frac{a}{b}$ (tra bảng)

Tìm T_1 theo công thức $T_1 = b / f_1(x)$ với $f_1(x) = x^{\frac{x}{x-1}}$ Tính $T_2 = xT_1$.

a/b	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09	0,1
х	0,012	0,0275	0,0467	0,707	0,1008	0,1393	0,1904	0,2622	0,374	0,6113

5. Khâu quán tính bậc n

Hệ thống có đường thực nghiệm h(t) tuy cũng có dạng hình chữ S nhưng không thỏa mãn điều kiện $0 < \frac{a}{b} < 0,103648$.

+ Hàm truyền đạt:

$$G(s) = \frac{k}{(1+Ts)^n}$$

Như vậy hàm quá độ h(t) của khâu PTn có ảnh Laplace

$$H(s) = \frac{k}{s(1+Ts)^n}$$

+ Hàm quá độ là:

h(t) = k(1-
$$e^{-\frac{1}{T}t}\sum_{i=1}^{n}\frac{A_{i}t^{i-1}}{(i-1)!}$$
) Với $A_{i}=\frac{k}{T^{i-1}}$

Đồ thị bode được biểu diễn trên hình vẽ với tần số gẫy $\omega_{\rm G}$ = 1/T Trước tần số gẫy $\omega_{\rm G}$, L(ω) có dạng song song với trục hoành ứng với thành phần khuếch đại k, sau tần số gẫy thì L(ω) giảm về 0 với vận tốc là 20n dB/dec

5. Khâu quán tính bậc n

Bài toán ngược: tìm k, T và n từ đường đặc tính

- Tìm hằng số k theo $k = h_{\infty} = \lim_{t \to \infty} h(t)$
- Kẻ đường tiếp tuyến $h_{tt}(t)$ với h(t) tại điểm uốn. Sau đó xác định hai tham số a là hoành độ giao điểm của đường tiếp tuyến $h_{tt}(t)$ với trục thời gian và b là khoảng thời gian để đường tiếp tuyến đó đi từ 0 tới h_{∞} .
- Lập tỷ số $\frac{a}{b}$. Nếu $0 < \frac{a}{b} < 0.103648$ thì dừng thuật toán với kết luận rằng đối tượng phải được mô tả bằng mô hình quán tính bậc hai
- Tìm n bằng cách tra bảng

n	2	3	4	5	6	7	8	9	10	11
a b	0,1036	0,218	0,3194	0,4103	0,4933	0,57	0,6417	0,7092	0,7732	0,8341

Tìm T từ n và b theo công thức:

$$T = \frac{b(n-1)^{n-2}}{e^{n-1}(n-2)!}$$

6. Khâu Lead/Lag

Khâu Lead và khâu Lag đều là những hệ có chung hàm truyền đạt:

$$G(s) = \frac{1 + T_t s}{1 + T_m s}$$

Trong đó:

Nếu T_t>T_m thì ta nói đó là khâu Lead (dẫn trước)

Nếu T_t<T_m thì ta nói đó là khâu Lag (cắt bớt)

Cả hai khâu đều có tần số gẫy là $\omega_{\rm G1}$ = T_t^{-1} $_{và}$ $\omega_{\rm G2}$ = T_m^{-1} .

Nếu $T_t > T_m$ thì những thành phầncó tần số cao trong tín hiệu đầu vào sẽ được ưu tiên cho đi qua (dẫn tần số cao), ngược lại khi $T_t < T_m$ thì khâu ưu tiên những thành phần có tần số thấp (cắt bớt tần số cao)

6. Khâu Lead/Lag

Từ hàm truyền đạt ta có ảnh Laplace của hàm quá độ

$$H(s) = \frac{1+T_t s}{s(1+T_m s)} = \frac{1}{s} - \frac{T_m - T_t}{1+T_m s}$$

Hàm quá độ h(t) =
$$(1 - \frac{(T_m - T_t)e^{-\frac{1}{T_m}t}}{T_m})1(t)$$

Xác định tham số của mô hình Lead/Lag từ đồ thị hàm quá độ h(t) của nó như sau:

- \Box Kẻ đường tiệm cận h_{∞} với h(t) tại t= ∞ rồi xác định k theo .
- \Box Kẻ đường tiếp tuyến $h_{tt}(t)$ với h(t) tại điểm t=0, sau đó xác định T_m là hoành độ của giao điểm giữa đường tiếp tuyến $h_{tt}(t)$ với đường tiệm cận h_{∞} .
- Xác định T_t theo $T_t = \frac{h(0)T_m}{k}$

6. Khâu Lead/Lag

- \square Kẻ đường tiệm cận h_{∞} với h(t) tại $\ r$ ồi xác định k theo .
- \Box Lấy một điểm A bất kỳ trên h(t) và kẻ đường tiếp tuyến $h_{tt}(t)$ với h(t) tại A, sau đó xác định B là giao điểm giữa đường tiếp tuyến $h_{tt}(t)$ với đường tiệm cận h_{∞} .
- \Box Chiếu đoạn lên trục thời gian (trục hoành) để có T_m .
- Xác định T_t từ T_m và k theo $T_t = \frac{h(0)T_m}{k}$

7. Khâu dao động bậc hai

Khâu dao động bậc hai là khâu có hàm truyền:

$$G(s) = \frac{k}{1 + 2DTs + T^2s^2} = \frac{k}{(Ts + D)^2 + 1 - D^2}, \ 0 < D < 1$$

Hàm quá độ (xem ví dụ 2.10):

$$h(t) = k \left[1 - \frac{e^{-\frac{Dt}{T}}}{\sqrt{1 - D^2}} \sin \left(\frac{\sqrt{1 - D^2} t}{T} + \arccos D \right) \right]$$

Bài toán ngược: xác định các tham số k, T, D

- Tim $k = h(\infty)$.
- Tìm $\Delta h = h_{max} h_{(\infty)}$ và tính

• Tính
$$T = \frac{T_1\sqrt{1-D^2}}{\pi}$$

$$D = \frac{1}{\sqrt{1 + \frac{\pi^2}{\ln^2 \left| \frac{\Delta h}{k} \right|}}}$$

8. Khâu chậm trễ (khâu trễ)

• Khâu trễ là một hệ động học cơ bản có quan hệ giữa tín hiệu vào u(t) và ra y(t) là $y(t) = u(t - \tau)$

auđược gọi là thời gian trễ

- Khâu trễ có hàm truyền $G(s) = e^{-s\tau}$
- và hàm đặc tính tần : $G(j\omega) = e^{-j\omega\tau} = \cos(\omega\tau) j\cdot\sin(\omega\tau)$
- Cách 1:

$$G(s) = e^{-\tau s} \approx \frac{1}{(1+Ts)^n}$$

Cách 2: công thức xấp xỉ Pade

$$G(s) = e^{-\tau s} \approx \frac{1 + b_1 s + \cdots + b_m s^m}{1 + a_1 s + \cdots + a_n s^n}$$