

DMT(22CS306)-MODULE BANK

Department of CSE

1) Weather Station Data Analysis

Station	Temp (°C)	Humidity (%)	Wind Speed (km/h)	AQI
S1	32	45	20	100
S2	30	50	18	90
S3	34	40	24	120
S4	28	55	16	80
S5	31	48	22	110
S6	33	42	20	105
S7	29	60	15	95
S8	35	38	26	130
S9	30	52	17	92
S10	27	65	12	85

- **a)** Define and classify each attribute into nominal, ordinal, interval, or ratio types. For example, the station name is nominal, temperature and AQI are ratios, and so on. Explain how understanding the attribute types guides preprocessing decisions such as normalization, encoding, or discretization techniques.
- **b**) Describe how central tendency metrics like mean and median help summarize the dataset. Similarly, explain how dispersion metrics such as standard deviation and range can highlight variability in the data. Illustrate how AQI values can be interpreted using these metrics to identify air quality patterns across stations.
- c)Manually calculate the mean temperature and AQI across all the stations. Interpret whether the average values fall within acceptable environmental standards or indicate pollution risks. Provide insights on what this means for public health or climate conditions.
- **d**)Use the dataset to examine if a pattern exists between temperature and AQI do higher temperatures lead to higher AQI? Frame a hypothesis, such as "Increasing temperatures are correlated with declining air quality." Discuss how this hypothesis could be tested using correlation or regression.

2) Student Performance and Behaviour Analysis

Dataset:

ID	Study Hours	Attendance (%)	Social Media (hrs/day)	Score
S 1	5	92	1.5	88
S2	3	85	4.0	70
S 3	6	95	1.0	90
S4	2	80	3.5	65
S5	7	98	1.2	92
S 6	4	75	2.5	72
S 7	5	88	2.0	84
S 8	6	90	1.0	89
S 9	3	78	4.2	68
S10	2	70	5.0	55

- a) Identify all attributes and classify them based on their types (e.g., ratio, nominal). Explain why recognizing numerical vs. categorical features matters for tasks like normalization or encoding. Highlight how different model types handle these attributes during training.
- **b**) Discuss how social media hours may negatively or positively correlate with academic performance. Support your reasoning with examples from the dataset or hypothetical scenarios. Suggest how statistical techniques or visualizations can confirm this relationship.
- c)Demonstrate min-max normalization for "Score" and "Study Hours" for three students. Clearly show the transformation formula and calculations. Explain the purpose of scaling in ML pipelines, especially for distance-based algorithms.
- **d**)Compare the importance of features such as study hours, attendance, and social media use in predicting scores. Argue whether a linear model would suffice or if a non-linear tree-based model could capture more complex interactions. Justify your choice based on interpretability and accuracy.

3) Customer Spending Patterns

ID	Electronics	Groceries	Clothing	Home Decor	Total Bill (\$)
C1	120	75	80	45	320
C2	200	60	100	80	440
C3	50	90	70	20	230
C4	150	40	60	30	280
C5	180	85	110	90	465
C6	130	70	90	60	350

ID	Electronics	Groceries	Clothing	Home Decor	Total Bill (\$)
C7	160	50	95	35	340
C8	90	95	60	55	300
C9	170	45	100	40	355
C10	60	85	55	25	225

- a) List and describe numeric attributes like Electronics, Groceries, etc., and how they represent spending behaviour. Explain how these metrics assist in building customer profiles. Discuss the potential role of each attribute in segmenting and targeting.
- **b**) Analyze how differing amounts spent in categories reflect customer preferences or lifestyle. For instance, a customer spending more on groceries may represent a budget-conscious household. Discuss how segmentation helps in tailoring personalized marketing campaigns.
- c)Perform a correlation analysis between Electronics and Total Bill attributes. Interpret whether there is a strong, weak, or no correlation. Discuss the implication for bundling or recommending electronics to high-spending customers.
- **d**)Explain how clustering techniques like k-means can group customers with similar spending habits. Describe the benefits of customer segmentation for designing targeted offers. Mention possible challenges such as feature scaling or number of clusters.

4) Online Course Completion Analysis

User	Videos Watched (%)	Quizzes Taken	Time Spent (hrs)	Completed
U1	90	10	15	Yes
U2	40	3	6	No
U3	75	8	10	Yes
U4	35	2	5	No
U5	95	9	18	Yes
U6	20	1	4	No
U7	80	7	13	Yes
U8	60	5	9	Yes
U9	45	3	7	No
U10	100	10	20	Yes

- **a)** Identify predictors like videos watched, quizzes taken, time spent, and the target variable (completion status). Explain how each feature contributes to predicting completion likelihood. Discuss the importance of binary classification in e-learning systems.
- **b**) Describe how decision trees split data based on features like quizzes and videos to predict outcomes. Explain how the tree learns from data using entropy or Gini index. Emphasize its interpretability and relevance in educational analytics.

- c)Create a sample rule such as: "If quizzes taken ≥ 5 and videos watched $\geq 70\%$, then the student is likely to complete the course." Justify the logic using the dataset. Discuss how such rules aid instructors in identifying at-risk students.
- **d**)Discuss the role of "time spent" in measuring student engagement. Analyze if it could be misleading e.g., idle tab time might inflate time but not reflect learning. Provide recommendations on how to accurately capture engagement.

5) Loan Risk Categorization

ID	Age	Income (k)	Credit Score	Loan Amount (k)	Defaulted
L1	25	30	680	10	No
L2	45	60	720	20	No
L3	35	50	650	15	Yes
L4	29	40	630	12	Yes
L5	50	80	700	25	No
L6	42	55	610	18	Yes
L7	33	52	640	14	Yes
L8	28	45	670	13	No
L9	47	70	690	22	No
L10	38	48	600	15	Yes

- **a)** List the attributes and identify which are predictors (e.g., age, income) and which is the target (defaulted). Explain why this classification is important for supervised learning tasks. Describe how these attributes influence model training.
- **b**) Describe how feature selection eliminates redundant or irrelevant attributes to improve model performance. Emphasize its role in reducing overfitting and speeding up training. Give examples of filters like variance threshold or mutual information.
- c)Suggest a strategy to discretize income into bins: e.g., Low (<45k), Medium (45–65k), High (>65k). Explain how discretization helps algorithms that work better with categorical inputs. Discuss trade-offs such as loss of granularity.
- **d**)Analyze which features (like credit score or loan amount) have a strong impact on defaulting. Use correlation reasoning or domain knowledge to support your claims. Justify why certain features are prioritized in credit risk models.

6) Weekly Sales Record for Categories

Dataset:

ID	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Category
P1	50	40	30	35	60	70	90	Electronics
P2	80	70	65	60	75	85	100	Groceries
P3	40	30	25	35	55	65	80	Home Goods
P4	100	90	85	80	95	110	120	Electronics
P5	30	25	20	22	35	50	70	Stationery
P6	90	80	70	75	85	95	110	Electronics
P7	60	50	45	48	60	75	95	Groceries
P8	20	15	10	12	18	25	30	Stationery
P9	55	45	40	42	50	60	75	Home Goods
P10	70	60	55	58	65	80	90	Groceries

- **a)** List daily sales as time-series features and explain their importance in sales trend analysis. Discuss how variations across the week indicate consumer habits. Emphasize the need for time-based features in forecasting.
- **b**) Explain how plotting weekly trends for each product helps identify high-performing days or dips. Use example products like Electronics to show pattern recognition. Suggest visualizations like line plots or heatmaps.
- c)Apply z-score normalization on Monday sales data. Demonstrate the formula and calculations. Explain how standardization allows comparisons across different sales categories.
- **d**)Discuss how low sales over the week can indicate underperforming categories. Suggest a ranking approach based on total weekly sales or average daily sales. Explain how such analysis guides promotional planning.

7) Hospital Patient Records – Data Cleaning & Integration

Patient ID	Name	Age	Gender	BP (mmHg)	Email
P1	Rakesh	35	M	120/80	rakesh@abc.com
P2	Anjali		F	130/90	anjali@abc.com
P3	Pradeep	28	M	115/75	pradeep123
P4	Rekha	43	F		rekha@abc.com
P5	Sameer	37	M	122/84	sameer@abc.com
P6		30	M	125/80	unknown
P7	Harsha	29		118/78	harsha@abc.com
P8	Anita	31	F	135/95	anita@abc.com

Patient ID	Name	Age	Gender	BP (mmHg)	Email
P9	Sunil	41	M	120/85	sunil@abc.com
P10	Lavanya	26	F	112/70	lavanya@abc.com

- a) Define common issues like missing values (e.g., Age), inconsistent entries (e.g., Email), and noise (e.g., wrong formats). Identify examples from the dataset. Discuss how these issues hinder accurate analysis and lead to faulty models.
- **b**) Describe data cleaning methods like mean imputation for missing Age, regex correction for email, or mode filling for gender. Emphasize that high-quality health records are critical for diagnosis, reporting, and analytics. Highlight the risk of erroneous decisions due to unclean data.
- c)Apply cleaning steps for five records: fill missing ages, format incorrect emails, and resolve unknown genders. Provide a before-and-after table. Explain how these cleaned records now enable valid model training.
- **d**)Explain how classification tasks like identifying high-BP patients fail when data is missing or incorrect. Discuss how model accuracy improves after cleaning. Support with reasoning on interpretability and decision confidence.

8) Fitness Tracker Dataset – Transformation and Discretization

User ID	Daily Steps	Calories Burned	Sleep Hours	Active Minutes
U1	9500	320	7.5	40
U2	4800	200	6.0	25
U3	11000	380	8.0	50
U4	7500	290	7.0	35
U5	3000	150	5.5	20
U6	8200	310	6.5	38
U7	4200	190	5.0	22
U8	9800	340	7.2	42
U9	5600	240	6.0	30
U10	10300	360	7.8	45

- **a)** Define normalization (rescaling values) and discretization (converting numerical into categories). Explain why these steps are vital for clustering and classification. Mention that inconsistent scales can mislead distance-based models.
- **b)** Discuss how z-score keeps mean zero and unit variance, while min-max scales to [0,1]. Compare how "Daily Steps" with high range differs from "Sleep Hours" with low range. Show why uniform scaling ensures fair weightage.

- c)Perform min-max normalization for "Daily Steps" and bin "Sleep Hours" into three categories: Low (\leq 6), Medium (6–7.5), High (>7.5). Justify how discretization helps simplify and interpret user behavior. Use at least three samples.
- **d**)Explain how transformation helps detect outliers, e.g., unusually high steps. Discuss how binning simplifies downstream analysis like clustering health groups. Mention the trade-off between interpretability and precision.

9) Sales Dataset – Attribute Selection

Dataset:

Product ID	Price	Discount (%)	Stock	Views	Sales Count
P1	500	10	120	800	90
P2	750	15	100	1200	130
P3	300	5	80	600	50
P4	650	20	70	1000	110
P5	400	0	90	700	65
P6	850	25	60	1500	140
P7	700	15	110	1100	125
P8	450	8	100	850	80
P9	600	12	95	900	100
P10	520	10	105	950	95

- a) Define attribute selection as choosing the most relevant features from a dataset. Explain how removing low-impact features improves model efficiency and prevents overfitting. Provide examples of irrelevant vs. high-value attributes.
- **b**) Differentiate filter methods (e.g., correlation), wrapper (model-based selection), and embedded (e.g., Lasso). Recommend which suits a retail dataset where attributes are numeric and interpretable. Justify with pros and cons.
- c)Calculate the correlation between "Views" and "Sales Count," and between "Discount" and "Sales Count." Compare correlation coefficients to determine the stronger predictor. Interpret how these results impact pricing strategies.
- **d**)Discuss how including all features can over fit the model to noise or rare patterns. Highlight the importance of balancing model accuracy and simplicity. Describe real-time system challenges like latency and model interpretability.

10) Supermarket Transactions – Association Rule Mining

Dataset (Transactions):

TID	Items Bought
1	Milk, Bread, Eggs

TID	Items Bought
2	Milk, Butter, Eggs
3	Bread, Butter
4	Milk, Bread, Eggs, Butter
5	Eggs, Coke
6	Bread, Coke
7	Milk, Eggs, Coke
8	Bread, Butter, Eggs
9	Milk, Bread
10	Milk, Butter

- **a**)Define support (frequency), confidence (accuracy), and lift (strength) for association rules. Explain their significance in evaluating rule usefulness. Provide examples from the dataset to illustrate their computation.
- **b**)Explain how Apriori generates 1-itemsets, then builds larger itemsets by joining and pruning. Use a dataset transaction to walk through the generation. Emphasize how pruning improves efficiency by removing unlikely combinations.
- c)Generate all frequent 2-itemsets with minimum support of 0.3 (i.e., in at least 3 out of 10 transactions). Then compute confidence and lift for rule $\{Milk\} \rightarrow \{Eggs\}$. Interpret the results and their meaning for retail.
- **d**)Identify the strongest rule from the dataset and discuss its business impact. For example, a strong lift in {Bread, Butter} may indicate bundling opportunity. Suggest how the store can optimize product placement and promotions.

.