Тема IV: Векторные пространства

§ 1. Линейная зависимость и независимость векторов

Б.М.Верников М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Определение векторного пространства

Определения

Пусть F – произвольное поле. Векторным (или линейным) пространством над полем F называется произвольное непустое множество V, на котором заданы бинарная операция сложения и для каждого элемента $t \in F$ унарная операция умножения на t, удовлетворяющие следующим аксиомами векторного пространства:

- 1) $\forall \mathbf{x}, \mathbf{y} \in V$ $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ (сложение *коммутативно*);
- 2) $\forall x, y, z \in V \quad (x + y) + z = x + (y + z)$ (сложение *ассоциативно*);
- 3) $\exists 0 \in V \ \forall x \in V \ x + 0 = x$ (существование *нуля*);
- 4) $\forall \mathbf{x} \in V \ \exists \mathbf{y} \in V \ \mathbf{x} + \mathbf{y} = \mathbf{0}$ (существование противоположного);
- 5) $\forall \mathbf{x}, \mathbf{y} \in V \ \forall t \in F \ t(\mathbf{x} + \mathbf{y}) = t\mathbf{x} + t\mathbf{y};$
- 6) $\forall \mathbf{x} \in V \ \forall t, s \in F \ (t+s)\mathbf{x} = t\mathbf{x} + s\mathbf{x};$
- 7) $\forall \mathbf{x} \in V \ \forall t, s \in F \ t(s\mathbf{x}) = (ts)\mathbf{x};$
- 8) $\forall \mathbf{x} \in V \quad 1 \cdot \mathbf{x} = \mathbf{x}$.

Элементы множества V называются ${\it векторами}$. Поле F называют ${\it основным}$ полем, а его элементы иногда называют ${\it скалярами}$.

Единственность в аксиомах 3) и 4)

Как показывают аксиомы 1)–4), относительно сложения любое векторное пространство – абелева группа. Нейтральный элемент этой группы (вектор ${\bf 0}$) называется *нулевым вектором*. Он единствен: если вектора ${\bf 0}_1$ и ${\bf 0}_2$ удовлетворяют аксиоме 3), то

$$\mathbf{0}_1 \stackrel{3)}{=} \mathbf{0}_1 + \mathbf{0}_2 \stackrel{1)}{=} \mathbf{0}_2 + \mathbf{0}_1 \stackrel{3)}{=} \mathbf{0}_2.$$

Вектор, противоположный к вектору ${f x}$, также единствен. Если вектора ${f y}$ и ${f z}$ удовлетворяют ${f x}+{f y}={f 0}={f x}+{f z}$, то

$$y \stackrel{3)}{=} y + 0 = y + (x + z) \stackrel{2)}{=} (y + x) + z \stackrel{1)}{=} z + (x + y) = z + 0 \stackrel{3)}{=} z.$$

Вектор, противоположный к вектору x, обозначается через -x.

Вычитание векторов определяется так: y - x := y + (-x).

Примеры: трехмерное пространство аналитической геометрии

Пример 1. Пусть V — множество всех обычных («геометрических») векторов трехмерного физического пространства с обычными операциями сложения векторов и умножения вектора на (действительное) число. Все аксиомы векторного пространства в этом случае выполнены; в частности, роль нулевого вектора ${\bf 0}$ играет вектор $\vec{{\bf 0}}$. Поэтому V является векторным пространством над полем ${\mathbb R}$. Векторным пространством над ${\mathbb R}$ будет также множество всех векторов (в обычном смысле этого слова), коллинеарных некоторой плоскости или некоторой прямой.

 Таким образом, свойства векторов в векторном пространстве являются обобщением свойств обычных, «геометрических» векторов.
 Именно этим и объясняется и термин «векторное пространство», и использование термина «вектор» применительно к элементам произвольного векторного пространства.

Примеры: пространство строк

Пример 2. Пусть F – произвольное поле, а n – произвольное натуральное число. Обозначим через F^n множество всевозможных упорядоченных последовательностей вида $\mathbf{x}=(x_1,x_2,\ldots,x_n)$, где $x_1,x_2,\ldots,x_n\in F$. На множестве F^n введем операции сложения и умножения на скаляр. Пусть $\mathbf{x}=(x_1,x_2,\ldots,x_n),\mathbf{y}=(y_1,y_2,\ldots,y_n)\in F^n$, а $t\in F$. Положим

$$\mathbf{x} + \mathbf{y} := (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$
 in $t\mathbf{x} := (tx_1, tx_2, \dots, tx_n)$.

Легко проверяется, что множество F^n с такими операциями является векторным пространством (роль нулевого вектора играет ${f 0}:=(0,0,\dots,0)$). Это пространство называют *пространством строк длины* n *над полем* F или просто *пространством строк*. Мы вскоре увидим, что оно играет особую роль в теории векторных пространств.

• Пространство F^1 , т.е. множество всех последовательностей вида (x_1) , где $x_1 \in F$, естественно отождествить с полем F. Итак, любое поле можно рассматривать как векторное пространство над самим собой. Нулевым вектором этого пространства является нуль поля.

Геометрическая интерпретация пространства \mathbb{R}^n при $n\leqslant 3$

При n=1,2,3 пространство \mathbb{R}^n имеет естественную геометрическую интерпретацию. Предположим, что в обычном трехмерном пространстве зафиксирован некоторый базис $(\vec{b}_1,\vec{b}_2,\vec{b}_3)$. Тогда произвольному вектору \vec{x} из этого пространства можно поставить в соответствие упорядоченную тройку чисел (x_1,x_2,x_3) — координат вектора \vec{x} в базисе $(\vec{b}_1,\vec{b}_2,\vec{b}_3)$. Эта тройка чисел является элементом пространства \mathbb{R}^3 . Отображение f из обычного трехмерного пространства в пространство \mathbb{R}^3 , заданное правилом $f(\vec{x})=(x_1,x_2,x_3)$, является изоморфизмом, т.е. оно взаимно однозначно и сохраняет операции сложения и умножения на действительное число:

$$f(\,\vec{x}+\vec{y}\,)=f(\,\vec{x}\,)+f(\,\vec{y}\,) \quad \text{if} \quad f(\,t\vec{x}\,)=tf(\,\vec{x}\,)$$

для всех векторов \vec{x}, \vec{y} и всех скаляров $t \in \mathbb{R}.$

Таким образом,

!! пространство \mathbb{R}^3 изоморфно обычному («физическому») трехмерному пространству. Аналогично, пространство \mathbb{R}^2 изоморфно плоскости, а пространство \mathbb{R}^1 – прямой в обычном трехмерном пространстве.

Пример 3. Рассмотрим множество F[x] всех многочленов от переменной x над полем F ,

$$F[x] := \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 : a_n, a_{n-1}, \dots, a_0 \in F\}.$$

Оно будет векторным пространством относительно обычных операций сложения многочленов и умножения многочлена на скаляр. Все аксиомы векторного пространства легко проверяются (роль нулевого вектора при этом играет многочлен 0). Таким образом, множество F[x] является векторным пространством. Оно называется пространством многочленов. Для всякого натурального n обозначим через $F_n[x]$ множество всех многочленов степени $\leqslant n$ над полем F. Ясно, что $F_n[x]$ также будет векторным пространством относительно сложения многочленов и умножения многочлена на скаляры из F.

Пример 4. Рассмотрим множество всех функций от одной переменной из $\mathbb R$ в $\mathbb R$. Введем операции сложения функций и умножения функции на число стандартным образом: если f и g – две функции, а $t \in \mathbb R$, то (f+g)(x):=f(x)+g(x) и $(tf)(x):=t\cdot f(x)$ для всякого $x\in \mathbb R$. Ясно, что все аксиомы векторного пространства выполняются (в качестве нулевого вектора выступает функция, значение которой при любом x равно 0). Это векторное пространство называется пространством функций.

Примеры: пространство комплексных чисел

Пример 5. Множество $\mathbb C$ комплексных чисел является векторным пространством над полем $\mathbb R$ действительных чисел относительно операций сложения комплексных чисел и умножения комплексного числа на действительное. Все аксиомы векторного пространства сразу следуют из аксиом поля.

Примеры: пространство матриц

Пусть F – поле, а k и n – натуральные числа. Матрица размера $k \times n$ над F – это прямоугольная таблица с k строками и n столбцами, заполненная элементами из F:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \end{pmatrix} := (a_{ij})_{k \times n}.$$

Такие матрицы складывают и умножают на элементы из ${\cal F}$ покомпонентно:

$$(a_{ij})_{k\times n} + (b_{ij})_{k\times n} := (a_{ij} + b_{ij})_{k\times n}, \quad t(a_{ij})_{k\times n} := (ta_{ij})_{k\times n}.$$

Пример 6. Множество $F^{k \times n}$ всех матриц размера $k \times n$ над F является векторным пространством относительно операций сложения матриц и умножения матриц на скаляры из F. Нулевым вектором этого пространства является нулевая матрица размера $k \times n$.

Отметим, что пространство строк F^n из примера 2 является специальным случаем пространства матриц $F^{k \times n}$ при k=1.

Примеры: нулевое пространство

Пример 7. Пусть V — произвольное множество, состоящее из одного элемента ${\bf a}$. Операции сложения векторов и умножения вектора на скаляр в таком множестве вводятся просто: ${\bf a}+{\bf a}={\bf a}$ и $t\cdot {\bf a}={\bf a}$ для любого t. Ясно, что все аксиомы векторного пространства выполняются. Таким образом, V можно рассматривать как векторное пространство. При этом его единственный элемент ${\bf a}$ будет нулевым вектором. Такое пространство называется *нулевым*.

Простейшие следствия аксиом

 $\nabla 1 \ t\mathbf{0} = \mathbf{0}$ для любого скаляра $t \in F$.

Доказательство. Умножив обе части равенства ${\bf 0}={\bf 0}+{\bf 0}$ на t, получим $t{\bf 0}=t({\bf 0}+{\bf 0})=t{\bf 0}+t{\bf 0}$. Добавляя $-t{\bf 0}$ к обеим частям, имеем ${\bf 0}=t{\bf 0}$.

 $abla 2\ 0\mathbf{x} = \mathbf{0}$ для любого вектора $\mathbf{x} \in V$.

Доказательство. Имеем $0\mathbf{x}+0\mathbf{x}=(0+0)\mathbf{x}=0\mathbf{x}$. Добавляя $-0\mathbf{x}$ к обеим частям, получаем $0\mathbf{x}=\mathbf{0}$.

abla 3 Если $t\mathbf{x}=\mathbf{0}$, то либо t=0, либо $\mathbf{x}=\mathbf{0}$.

 $oldsymbol{\mathcal{L}}$ оказательство. Пусть $t\mathbf{x}=\mathbf{0}$ и t
eq 0. Тогда имеем

$$\mathbf{x} = 1 \cdot \mathbf{x} = (t^{-1}t)\mathbf{x} = t^{-1}(t\mathbf{x}) = t^{-1}\mathbf{0} \stackrel{\nabla 1}{=} \mathbf{0}.$$

 $abla 4\ (-t)\mathbf{x} = -t\mathbf{x}$ для всех $t \in F$ и $\mathbf{x} \in V$. Доказательство. Имеем

$$(-t)\mathbf{x} + t\mathbf{x} = ((-t) + t)\mathbf{x} = 0\mathbf{x} \stackrel{\nabla^2}{=} \mathbf{0}.$$

Добавляя $-t\mathbf{x}$ к обеим частям, имеем $(-t)\mathbf{x} = -t\mathbf{x}$.

Следующие понятия будут играть ключевую роль.

Определения

Пусть ${\bf a}_1,{\bf a}_2,\ldots,{\bf a}_k$ — система векторов из векторного пространства V над полем F, а $t_1,t_2,\ldots,t_k\in F$. Вектор вида

$$t_1\mathbf{a}_1 + t_2\mathbf{a}_2 + \dots + t_k\mathbf{a}_k \tag{1}$$

называется линейной комбинацией векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. Линейная комбинация (1) называется тривиальной, если $t_1=t_2=\dots=t_k=0$, и нетривиальной, если хотя бы один из скаляров t_1, t_2, \dots, t_k отличен от 0. Если вектор \mathbf{b} является линейной комбинацией векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$, говорят, что \mathbf{b} линейно выражается через вектора $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$.

Вектора ${\bf a}_1, {\bf a}_2, \dots, {\bf a}_k$ линейно зависимы, если некоторая нетривиальная линейная комбинация этих векторов равна нулевому вектору, и линейно независимы в противном случае, т.е. если никакая нетривиальная линейная комбинация этих векторов не равна нулевому вектору.

Линейная зависимость в обычном пространстве

Для геометрических векторов введенное только что понятие линейной зависимости сводится к знакомым нам понятиям.

Замечание о линейной зависимости на плоскости и в пространстве

- а) Два вектора на плоскости или в трехмерном пространстве линейно зависимы тогда и только тогда, когда они коллинеарны.
- 6) Три вектора в трехмерном пространстве линейно зависимы тогда и только тогда, когда они компланарны.

Доказательство. a) Если вектора \vec{a} и \vec{b} линейно зависимы, то $p\vec{a}+q\vec{b}=\vec{0}$ для некоторых скаляров p и q, хотя бы один из которых отличен от 0. Пусть, без ограничения общности, $p\neq 0$. Тогда $\vec{a}=-\frac{a}{p}\cdot\vec{b}$, откуда $\vec{a}\parallel\vec{b}$. Предположим теперь, что вектора \vec{a} и \vec{b} коллинеарны. Если $\vec{b}=\vec{0}$, то $0\cdot\vec{a}+1\cdot\vec{b}=\vec{0}$. Если же $\vec{b}\neq\vec{0}$, то по критерию коллинеарности $\vec{a}=t\vec{b}$ для некоторого t, т.е. $1\cdot\vec{a}-t\vec{b}=\vec{0}$. В обоих случаях имеем нетривиальную линейную комбинацию, равную $\vec{0}$, что и означает, что вектора \vec{a} и \vec{b} линейно зависимы.

Линейная зависимость и независимость в обычном пространстве (2)

6) Если вектора \vec{a} , \vec{b} и \vec{c} линейно зависимы, то $p\vec{a}+q\vec{b}+r\vec{c}=\vec{0}$ для некоторых скаляров p, q и r, хотя бы один из которых отличен от 0. Пусть, без ограничения общности, $p\neq 0$. Тогда $\vec{a}=-\frac{q}{p}\cdot\vec{b}-\frac{r}{p}\cdot\vec{c}$. Это значит, что вектор \vec{a} лежит в той плоскости, которой принадлежат вектора \vec{b} и \vec{c} , и потому вектора \vec{a} , \vec{b} и \vec{c} компланарны.

Предположим теперь, что вектора \vec{a} , \vec{b} и \vec{c} компланарны. Если $\vec{c}=\vec{0}$, то $0 \cdot \vec{a} + 0 \cdot \vec{b} + 1 \cdot \vec{c} = \vec{0}$. Если $\vec{c} \neq \vec{0}$ и $\vec{b} \parallel \vec{c}$, то по критерию коллинеарности векторов $\vec{b} = t\vec{c}$ для некоторого t, и потому $0 \cdot \vec{a} + 1 \cdot \vec{b} - t\vec{c} = \vec{0}$. Наконец, если $\vec{b} \not\parallel \vec{c}$, то вектора \vec{b} и \vec{c} образуют базис той плоскости, в которой лежат вектора \vec{a} , \vec{b} и \vec{c} . По теореме о разложении вектора по базису на плоскости $\vec{a} = s\vec{b} + t\vec{c}$ для некоторых скаляров s и t, откуда $1 \cdot \vec{a} - s\vec{b} - t\vec{c} = \vec{0}$. Во всех трех случаях имеем нетривиальную линейную комбинацию, равную $\vec{0}$, что и означает, что вектора \vec{a} , \vec{b} и \vec{c} линейно зависимы.

Пример линейно независимой системы векторов в F^n

Приведем пример линейно независимой системы векторов в пространстве F^n , которая будет многократно возникать в дальнейшем.

Положим $\mathbf{e}_1 = (1, 0, \dots, 0), \mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \mathbf{e}_n = (0, \dots, 0, 1).$

1-е замечание о векторах $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$

Система векторов $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ линейно независима.

Доказательство. Предположим, что $x_1\mathbf{e}_1+x_2\mathbf{e}_2+\cdots+x_n\mathbf{e}_n=\mathbf{0}$ для некоторых $x_1,x_2,\ldots,x_n\in F.$ Очевидно, что

$$x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + \dots + x_n\mathbf{e}_n = (x_1, x_2, \dots, x_n).$$

Таким образом, $(x_1,x_2,\ldots,x_n)=\mathbf{0}$, т. е. $x_1=x_2=\cdots=x_n=0$. Мы доказали, что если какая-то линейная комбинация векторов $\mathbf{e}_1,\mathbf{e}_2,\ldots,\mathbf{e}_n$ равна нулевому вектору, то эта комбинация тривиальна.

В процессе доказательства этого замечания фактически доказано следующее полезное для дальнейшего утверждение.

2-е замечание о векторах $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$

Если $\mathbf{x} = (x_1, x_2, \dots, x_n)$ – произвольный вектор пространства F^n , то $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n$.

Примеры линейно независимых систем многочленов и функций

В пространстве многочленов F[x] для любого целого неотрицательного n многочлены $1,x,x^2,\ldots,x^n$ образуют линейно независимую систему. Действительно, из равенства $a_0\cdot 1+a_1x+a_2x^2+\cdots+a_nx^n=0$, следует, что $a_0=a_1=a_2=\cdots=a_n=0$, ведь нуль в пространстве многочленов — это многочлен, у которого все коэффициенты нулевые.

В пространстве функций из $\mathbb R$ в $\mathbb R$ линейно независимы, например, функции $\sin x$ и $\cos x$. Действительно, если $a\sin x+b\cos x=0$, то положив $x:=\frac{\pi}{2}$, получим a=0, а положив x:=0, получим b=0.

На самом деле, в пространстве функций из \mathbb{R} в \mathbb{R} для любого положительного n функции $\sin x, \cos x, \sin 2x, \cos 2x, \ldots, \sin nx, \cos nx$ образуют линейно независимую систему, но доказать это элементарными средствами трудно.

Пример линейно независимой системы матриц

В пространстве $F^{k \times n}$ всех матриц размера $k \times n$ над полем F линейно независимую систему образуют матричные единицы, т.е. матрицы, у которых ровно один элемент равен 1, а все прочие элементы равны 0:

Действительно, легко понять, что $\sum_{i,j} a_{ij} E_{ij} = (a_{ij})_{k \times n}$, и если $(a_{ij})_{k \times n}$ – нулевая $k \times n$ -матрица, то $a_{ij} = 0$ для всех $i = 1, \dots, k$ и $j = 1, \dots, n$.

Система матричных единиц, конечно, есть прямое обобщение линейно независимой системы

$$\mathbf{e}_1 = (1, 0, \dots, 0), \mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \mathbf{e}_n = (0, \dots, 0, 1)$$

в пространстве строк F^n .

В поле комплексных чисел $\mathbb C$, рассматриваемом как векторное пространство над $\mathbb R$, линейно независимы, например, числа 1 и i. А вот в нулевом пространстве линейно независимых систем нет. На самом деле, верно более общее наблюдение:

Лемма о системе векторов, содержащей нулевой вектор

Если среди векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ имеется нулевой вектор, то эти вектора линейно зависимы.

$$0 \cdot \mathbf{a}_1 + \dots + 0 \cdot \mathbf{a}_{i-1} + 1 \cdot \mathbf{a}_i + 0 \cdot \mathbf{a}_{i+1} + \dots + 0 \cdot \mathbf{a}_k = \mathbf{0}.$$

Надсистемы и подсистемы

Лемма о надсистеме линейно зависимой системы векторов

Если к линейно зависимой системе ${f a}_1, {f a}_2, \dots, {f a}_m$ добавить произвольную конечную систему векторов, то расширенная система векторов также будет линейно зависимой.

Доказательство. Пусть $t_1\mathbf{a}_1+t_2\mathbf{a}_2+\dots+t_m\mathbf{a}_m$ – нетривиальная линейная комбинация векторов $\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_m$, равная нулевому вектору. Если добавить к этим векторам вектора $\mathbf{a}_{m+1},\dots,\mathbf{a}_k$, то

$$t_1\mathbf{a}_1 + t_2\mathbf{a}_2 + \dots + t_m\mathbf{a}_m + 0 \cdot \mathbf{a}_{m+1} + \dots + 0 \cdot \mathbf{a}_k = \mathbf{0}.$$

Следовательно, вектора $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ линейно зависимы.

Следствие о подсистеме линейно независимой системы векторов

Любая подсистема линейно независимой системы векторов линейно независима.

Итак, свойство «быть линейно зависимой» наследуется «вверх», т.е. переносится на надсистемы, а свойство «быть линейно независимой» наследуется «вниз», т.е. переносится на подсистемы.

Признак линейной зависимости

Признак линейной зависимости

Вектора $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ линейно зависимы, если один из них линейно выражается через остальные.

Доказательство. Если вектор \mathbf{a}_i линейно выражается через остальные, т. е. $\mathbf{a}_i = r_1\mathbf{a}_1 + r_2\mathbf{a}_2 + \cdots + r_{i-1}\mathbf{a}_{i-1} + r_{i+1}\mathbf{a}_{i+1} + \cdots + r_k\mathbf{a}_k$ для некоторых скаляров $r_1, r_2, \ldots, r_{i-1}, r_{i+1}, \ldots, r_k$, то

$$r_1\mathbf{a}_1 + r_2\mathbf{a}_2 + \dots + r_{i-1}\mathbf{a}_{i-1} - 1 \cdot \mathbf{a}_i + r_{i+1}\mathbf{a}_{i+1} + \dots + r_k\mathbf{a}_k = \mathbf{0},$$

и потому вектора ${\bf a}_1, {\bf a}_2, \ldots, {\bf a}_k$ линейно зависимы.

Лемма о правом крайнем

Лемма о правом крайнем

Если система ненулевых векторов ${f a}_1,{f a}_2,\dots,{f a}_k$ линейно зависима, то в ней найдется вектор, который линейно выражается через предыдущие.

Доказательство. По условию существуют скаляры t_1, t_2, \dots, t_k , по крайней мере один из которых не равен 0, такие, что

$$t_1\mathbf{a}_1 + t_2\mathbf{a}_2 + \dots + t_k\mathbf{a}_k = \mathbf{0}. \tag{*}$$

Пусть j — наибольший индекс, для которого $t_j \neq 0$. Если j=1, то равенство (*) сводится к $t_1\mathbf{a}_1=\mathbf{0}$, откуда $\mathbf{a}_1=\mathbf{0}$, противоречие. Итак, j>1. Равенство (*) дает

$$t_1\mathbf{a}_1 + \dots + t_{i-1}\mathbf{a}_{i-1} + t_i\mathbf{a}_i = \mathbf{0}.$$

Перенося последнее слагаемое в другую часть и деля на $t_j \neq 0$, получаем

$$\mathbf{a}_j = -\frac{t_1}{t_i} \cdot \mathbf{a}_1 - \dots - \frac{t_{j-1}}{t_i} \cdot \mathbf{a}_{j-1}.$$