JOB SEQUENCING WITH DEADLINES

The problem is stated as below.

- There are n jobs to be processed on a machine.
- Each Job_i has a deadline $d_i \ge 1$ and profit $p_i \ge 1$.
- Pi is earned iff the job is completed by its deadline.
- The job is completed if it is processed on a machine for unit time.
- Only one machine is available for processing jobs.
- Only one job is processed at a time on the machine.

JOB SEQUENCING WITH DEADLINES (Contd..)

- A feasible solution is a subset of jobs J such that each job is completed by its deadline.
- An optimal solution is a feasible solution with maximum profit value.

Example: Let n = 4, $(p_1, p_2, p_3, p_4) = (100, 10, 15, 27)$, $(d_1, d_2, d_3, d_4) = (2, 1, 2, 1)$

JOB SEQUENCING WITH DEADLINES (Contd..)

Sr.No.	Feasible	Processing	Profit value
	Solution	Sequence	
(i)	(1,2)	(2,1)	110
(ii)	(1,3)	(1,3) or $(3,1)$	115
(iii)	(1,4)	(4,1)	127 _↑ is the optimal one
(iv)	(2,3)	(2,3)	25
(v)	(3,4)	(4,3)	42
(vi)	(1)	(1)	100
(vii)	(2)	(2)	10
(viii)	(3)	(3)	15
(ix)	(4)	(4)	27

GREEDY ALGORITHM TO OBTAIN AN OPTIMAL SOLUTION

- Consider the jobs in the non increasing order of profits subject to the constraint that the resulting job sequence J is a feasible solution.
- In the example considered before, the nonincreasing profit vector is

```
(100 	 27 	 15 	 10) 	 (2 	 1 	 2 	 1)
p_1 	 p_4 	 p_3 	 p_2 	 d_1 	 d_4 	 d_3 	 d_2
```

GREEDY ALGORITHM TO OBTAIN AN OPTIMAL SOLUTION (Contd..)

```
J = \{ 1 \} \text{ is a feasible one}
J = \{ 1, 4 \} \text{ is a feasible one with processing sequence (4,1)}
J = \{ 1, 3, 4 \} \text{ is not feasible}
J = \{ 1, 2, 4 \} \text{ is not feasible}
J = \{ 1, 4 \} \text{ is optimal}
```

Job	Profit	Deadline	
J1	10	2	
J2	30	3	
J3	60	1	
J4	40	3	

According to Job order on profits in non increasing order is J_3 , J_4 , J_2 , J_1

Job	Deadline	Operation	Slot	Total Profit
Initialization			[0, 0, 0]	0
J_3	1	Assign J ₃ to Slot ₁	$[J_3, 0, 0]$	60
J_4	3	Assign J ₄ to Slot ₃ .	$[J_3, 0, J_4]$	100
\mathbf{J}_2	3	Assign J ₂ to Slot ₂ bcoz Slot ₃ is not empty.	$[J_3, J_2, J_4]$	130
J_1	2	Reject J ₁ bcoz no empty Slots before deadline.	$[J_3, J_2, J_4]$	130

Job	Profit	Deadline
J_1	15	7
J_2	20	2
J_3	30	5
J_4	18	3
J_5	18	4
J_6	10	5
J_7	23	2
J_8	16	7
J_9	25	3

```
Algorithm JobSequencing (J,p,d,n,slot)
//n is the number of jobs J[1:n], p[1:n], d[1:n]
//contains Job numbers, profits, deadlines
//slot[1:n] is the solution list.
      profit=0;
       for i=1 to n do slot[i]=0;
       for i=1 to n do
             j=d[i];
             while(j>0) do
                    if (slot[j] == 0) then
                           slot[j] = J[i]
                           profit = profit + p[i]
                           break;
                    j=j-1
      print slot & profit;
```