Komutativna algebra - 1. domača naloga

Benjamin Benčina, 27192018

21. marec 2020

Nal. 1: Element $e \in R$ je idempotent, če je $e^2 = e$, ideal I pa je idempotenten, če je $I^2 = I$.

(a) Dokažimo, da je glavni ideal idempotenten natanko tedaj, ko je generiran z idempotentom. Za implikacijo v desno preprosto uporabimo dejstvo, da je produkt idealov generiran s produkti generatorjev. Če je I = (e), kjer je $e^2 = e$, imamo

$$I^2 = I \cdot I = (e \cdot e) = (e^2) = (e) = I.$$

Za implikacijo v levo privzemimo $I^2 = I$ in označimo I = (a). Iz idempotentnosti ideala I sledi enačba $(a^2) = (a)$, iz katere dobimo $a = ra^2$ za neki $r \in R$. Sedaj moramo dokazati naslednje:

• (a) = (ra): Iz $ra \in (a)$ sledi $(ra) \subseteq (a)$. Za nasprotno inkluzijo uporabimo zgoraj dobljeno enačbo.

$$a = ra^2 \implies a = a(ra) \implies a \in (ra) \implies (a) \subseteq (ra).$$

• ra je idempotent: Zopet uporabimo zgoraj dobljeno enačbo.

$$(ra)^2 = r(ra^2) = ra$$

Iz zgornjega sledi, da je I=(ra) generiran z idempotentom.

- (b) Dokažimo še, da je ideal, generiran s končno idempotenti, glavni in idempotente. Po točki (a) moramo pokazati, da je tak ideal glavni ter da je generiran z idempotentom. Dokazujemo z indukcijo na število generatorjev n:
 - n = 1: Sledi direktno iz točke (a).
 - n = 2: Naj bo I = (e, f) generiran z dvema nilpotentoma. Pokažimo najprej, da je element e + f ef tudi nilpotent. Res,

$$(e+f-ef)^2 = e^2 + ef - e^2f + fe + f^2 - ef^2 - e^2f - ef^2 + e^2f^2$$

= $e + ef - ef + ef + f - ef - ef - ef + ef$
= $e + f - ef$.

Domnevamo, da je I=(e,f)=(e+f-ef). Dovolj je izraziti le generatorja:

$$e := e(e + f - ef) = e^2 + ef - ef = e,$$

 $f := f(e + f - ef) = fe + f^2 - ef = f.$

• $n \to n+1$: Naj bo $I=(e_1,\ldots,e_n,e_{n+1})$. Uporabimo indukcijsko predpostavko, da zreduciramo prvih n generatorjev v generator e_0 , torej $I=(e_0,e_{n+1})$. Po primeru n=2 željeno sledi.

1

<u>Nal. 2:</u> Naj bo ideal \sqrt{I} končno generiran. Pokažimo, da obstaja število n_0 , za katerefa je $\sqrt{I}^{n_0} \subset I$. Konkretno označimo $\sqrt{I} = (x_1, \dots, x_N)$, kjer naj velja $x_i^{n_i} \in I$ za neka naravna števila n_i in $i = 1, \dots, N$. Poljuben element $a \in \sqrt{I}$ lahko zapišemo kot

$$a = \sum_{i=1}^{N} a_i x_i.$$

Po multinomski formuli sedaj sledi $a^{n_1+\cdots+n_N} \in I$. Res, označimo $n_0 = n_1 + \cdots + n_N$ in si oglejmo

$$a^{n_0} = \sum_{k_1 + \dots k_N = n_0} m_{1,\dots,N} \prod_{i=1}^N x^{k_i},$$

kjer je $m_{1,\dots,N}$ primeren multinomski koeficient. Opazimo, da v primeru $k_i < n_i$ za neki $i \in \{1,\dots,N\}$ mora obstajati $j \in \{1,\dots,N\}$, da je $k_j >= n_j$, saj je vsota potenc $\{k_i\}_{i=1}^N$ konstantna. Od tod sledi, da so vsi členi zgornje vsote vsebovani v I in posledično tudi a^{n_0} vsota. Zato vzamemo $n_0 = n_1 + \cdots n_N$, saj je \sqrt{I}^{n_0} generiran s produkti elementov iz \sqrt{I} .

Zakaj je potrebno, da je \sqrt{I} končno generiran?

Vzemimo kolobar $\mathbb R$ in si nad njim oglejmo kolobar polinomov s števno spremenljivkami (in seveda še vedno le s končno členi) $\mathbb R[x_1,x_2,\dots]$. Naj bo $\{n_i\}_{i\in\mathbb N}$ poljubno strogo naraščujoče zaporedje naravnih števil. Oglejmo si ideal $I=(\{x_i^{n_i};\ i\in\mathbb N\})$. Za vsako naravno število n_0 obstaja tak indeks $i\in\mathbb N$, da je $n_i>n_0$, iz česar sledi, da \sqrt{I}^{n_0} ni podmnožica I, saj $x_i\in\sqrt{I}$ in $x_i^{n_0}\notin I$.

Nal. 3:

- Množica $X_1 = \{(t^3, t^4, t^5); \ t \in K\} \subset \mathbb{A}^3_K$ je očitno definirana s polinomskima enačbama $y^3 x^4 = 0$ in $z^3 x^5 = 0$ iz K[x, y, z], zato je $X_1 = V(y^3 x^4, z^3 x^5)$.
- Množica $X_2=\{(\cos x,\sin x),x\in\mathbb{R}\}\subset\mathbb{A}^2_{\mathbb{R}}$ je enaka \mathbb{S}^1 in zato $X_2=V(x^2+y^2-1).$
- Množica $X_3 = \{(\cos x, x), x \in \mathbb{R}\} \subset \mathbb{A}^2_{\mathbb{R}}$ ni algebraična množica. Res, privzemimo, da je X_3 algebraična množica, in vzemimo poljuben polinom $f \in I(X_3)$, torej z ničlami v X_3 . Upoštevajmo 2π -periodičnost:

$$f(\cos(x+2\pi k), x+2\pi k) = f(\cos x, x+2\pi k) = 0$$

za vsako celo število k. Za vsak $x \in [0, 2\pi)$ (ali celo \mathbb{R}) ima torej polinom $f(\cos x, t) \in \mathbb{R}[t]$ neskončno mnogo ničel in je zato po osnovnem izreku algebre ničelni polinom. Od tod sledi $f \equiv 0$. Ker je $f \in I(X_3)$ poljubno izbrana funkcija, nas to vodi v protislovje, saj $X_3 \neq \mathbb{R}^2$.

• Množica $X_4 = \{(e^x, x), x \in \mathbb{C}\} \subset \mathbb{A}^2_{\mathbb{C}}$ ni algebraična množica po enakem argumentu kot v prejšnji točki. Upoštevamo le $2\pi i$ -periodičnost kompleksne eksponentne funkcije, preostanek argumenta je identičen. Protislovje tukaj dobimo zaradi dejstva, da $X_4 \neq \mathbb{C}^2$, saj eksponentna funkcija izpusti kompleksno število 0.