MCMC Package Example (Version 0.8)

Charles J. Geyer

June 22, 2010

1 The Problem

This is an example of using the mcmc package in R. The problem comes from a take-home question on a (take-home) PhD qualifying exam (School of Statistics, University of Minnesota).

Simulated data for the problem are in the dataset logit. There are five variables in the data set, the response y and four predictors, x1, x2, x3, and x4.

A frequentist analysis for the problem is done by the following R statements

```
> library(mcmc)
> data(logit)
> out <- glm(y \sim x1 + x2 + x3 + x4, data = logit,
      family = binomial(), x = TRUE)
> summary(out)
glm(formula = y ~ x1 + x2 + x3 + x4, family = binomial(), data = logit,
   x = TRUE)
Deviance Residuals:
   Min
              10
                                30
                   Median
                                        Max
-1.7461 -0.6907
                   0.1540
                            0.7041
                                     2.1943
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)
              0.6328
                         0.3007
                                  2.104 0.03536 *
              0.7390
                         0.3616
                                  2.043 0.04100 *
x1
x2
              1.1137
                         0.3627
                                  3.071
                                         0.00213 **
xЗ
              0.4781
                         0.3538
                                  1.351 0.17663
x4
              0.6944
                         0.3989
                                  1.741 0.08172 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

(Dispersion parameter for binomial family taken to be 1)

```
Null deviance: 137.628 on 99 degrees of freedom Residual deviance: 87.668 on 95 degrees of freedom AIC: 97.668
```

Number of Fisher Scoring iterations: 6

But this problem isn't about that frequentist analysis, we want a Bayesian analysis. For our Bayesian analysis we assume the same data model as the frequentist, and we assume the prior distribution of the five parameters (the regression coefficients) makes them independent and identically normally distributed with mean 0 and standard deviation 2.

The log unnormalized posterior (log likelihood plus log prior) density for this model is calculated by the following R function (given the preceding data definitions)

The tricky calculation of the log likelihood avoids overflow and catastrophic cancellation in calculation of $\log(p)$ and $\log(q)$ where

$$p = \frac{\exp(\eta)}{1 + \exp(\eta)} = \frac{1}{1 + \exp(-\eta)}$$
$$q = \frac{1}{1 + \exp(\eta)} = \frac{\exp(-\eta)}{1 + \exp(-\eta)}$$

so taking logs gives

$$\log(p) = \eta - \log(1 + \exp(\eta)) = -\log(1 + \exp(-\eta))$$
$$\log(q) = -\log(1 + \exp(\eta)) = -\eta - \log(1 + \exp(-\eta))$$

To avoid overflow, we always chose the case where the argument of exp is negative. We have also avoided catastrophic cancellation when $|\eta|$ is large. If η is large and positive, then

$$\begin{aligned} p &\approx 1 \\ q &\approx 0 \\ \log(p) &\approx -\exp(-\eta) \\ \log(q) &\approx -\eta - \exp(-\eta) \end{aligned}$$

and our use of the R function log1p, which calculates the function $x \mapsto \log(1+x)$ correctly for small x avoids all problems. The case where η is large and negative is similar.

2 Beginning MCMC

With those definitions in place, the following code runs the Metropolis algorithm to simulate the posterior.

```
> set.seed(42)
> beta.init <- as.numeric(coefficients(out))</pre>
> out \leftarrow metrop(lupost, beta.init, 1000, x = x,
      y = y
> names(out)
 [1] "accept"
                     "batch"
                                      "initial"
 [4] "final"
                     "initial.seed" "final.seed"
                     "lud"
 [7] "time"
                                      "nbatch"
[10] "blen"
                     "nspac"
                                      "scale"
[13] "debug"
> out$accept
[1] 0.008
```

The arguments to the metrop function used here (there are others we don't use) are

- an R function (here lupost) that evaluates the log unnormalized density of the desired stationary distribution of the Markov chain (here a posterior distribution). Note that (although this example does not exhibit the phenomenon) that the unnormalized density may be zero, in which case the log unnormalized density is -Inf.
- an initial state (here beta.init) of the Markov chain.
- a number of batches (here 1e3) for the Markov chain. This combines with batch length and spacing (both 1 by default) to determine the number of iterations done.
- additional arguments (here x and y) supplied to provided functions (here lupost).
- there is no "burn-in" argument, although burn-in is easily accomplished, if desired (more on this below).

The output is in the component out\$batch returned by the metrop function. We'll look at it presently, but first we need to adjust the proposal to get a higher acceptance rate (out\$accept). It is generally accepted (Gelman, Roberts, and

Gilks, 1996) that an acceptance rate of about 20% is right, although this recommendation is based on the asymptotic analysis of a toy problem (simulating a multivariate normal distribution) for which one would never use MCMC and is very unrepresentative of difficult MCMC applications.

Geyer and Thompson (1995) came to a similar conclusion, that a 20% acceptance rate is about right, in a very different situation. But they also warned that a 20% acceptance rate could be very wrong and produced an example where a 20% acceptance rate was impossible and attempting to reduce the acceptance rate below 70% would keep the sampler from ever visiting part of the state space. So the 20% magic number must be considered like other rules of thumb we teach in intro courses (like n > 30 means means normal approximation is valid). We know these rules of thumb can fail. There are examples in the literature where they do fail. We keep repeating them because we want something simple to tell beginners, and they are all right for some problems.

Be that as it may, we try for 20%.

```
> out <- metrop(out, scale = 0.1, x = x, y = y)
> out$accept

[1] 0.739
> out <- metrop(out, scale = 0.3, x = x, y = y)
> out$accept

[1] 0.371
> out <- metrop(out, scale = 0.5, x = x, y = y)
> out$accept

[1] 0.148
> out <- metrop(out, scale = 0.4, x = x, y = y)
> out$accept

[1] 0.209
```

Here the first argument to each instance of the metrop function is the output of a previous invocation. The Markov chain continues where the previous run stopped, doing just what it would have done if it had kept going, the initial state and random seed being the final state and random seed of the previous invocation. Everything stays the same except for the arguments supplied (here scale).

• The argument scale controls the size of the Metropolis "normal random walk" proposal. The default is scale = 1. Big steps give lower acceptance rates. Small steps give higher. We want something about 20%. It is also possible to make scale a vector or a matrix. See help(metrop).

Because each run starts where the last one stopped (when the first argument to metrop is the output of the previous invocation), each run serves as "burn-in" for its successor (assuming that any part of that run was worth anything at all).

ts(out\$batch)

Figure 1: Time series plot of MCMC output.

3 Diagnostics

O. K. That does it for the acceptance rate. So let's do a longer run and look at the results.

```
> out <- metrop(out, nbatch = 10000, x = x, y = y)
> out$accept
[1] 0.2345
> out$time
    user system elapsed
    1.836    0.000    1.837
```

Figure 1 (page 5) shows the time series plot made by the R statement

> plot(ts(out\$batch))

Another way to look at the output is an autocorrelation plot. Figure 2 (page 6) shows the time series plot made by the R statement

Figure 2: Autocorrelation plot of MCMC output.

> acf(out\$batch)

As with any multiplot plot, these are a bit hard to read. Readers are invited to make the separate plots to get a better picture. As with all "diagnostic" plots in MCMC, these don't "diagnose" subtle problems. As

http://www.stat.umn.edu/~charlie/mcmc/diag.html says

The purpose of regression diagnostics is to find obvious, gross, embarrassing problems that jump out of simple plots.

The time series plots will show *obvious* nonstationarity. They will not show *nonobvious* nonstationarity. They provide no guarantee whatsoever that your Markov chain is sampling anything remotely resembling the correct stationary distribution (with log unnormalized density lupost). In this very easy problem, we do not expect any convergence difficulties and so believe what the diagnostics seem to show, but one is a fool to trust such diagnostics in difficult problems.

The autocorrelation plots seem to show that the the autocorrelations are negligible after about lag 25. This diagnostic inference is reliable if the sampler is actually working (has nearly reached equilibrium) and worthless otherwise. Thus batches of length 25 should be sufficient, but let's use length 100 to be safe.

4 Monte Carlo Estimates and Standard Errors

```
> out <- metrop(out, nbatch = 100, blen = 100, outfun = function(z,
+ ...) c(z, z^2), x = x, y = y)
> out$accept
[1] 0.2332
> out$time
    user system elapsed
    1.916    0.000    1.916
```

We have added an argument outfun that gives the "functional" of the state we want to average. For this problem we are interested in both posterior mean and variance. Mean is easy, just average the variables in question. But variance is a little tricky. We need to use the identity

$$var(X) = E(X^2) - E(X)^2$$

to write variance as a function of two things that can be estimated by simple averages. Hence we want to average the state itself and the squares of each component. Hence our outfun returns $c(z, z^2)$ for an argument (the state vector) z.

The \dots argument to outfun is required, since the function is also passed the other arguments (here x and y) to metrop.

4.1 Simple Means

The grand means (means of batch means) are

- > apply(out\$batch, 2, mean)
- [1] 0.6531950 0.7920342 1.1701075 0.5077331 0.7488265
- [6] 0.5145751 0.7560775 1.4973807 0.3913837 0.7244162

The first 5 numbers are the Monte Carlo estimates of the posterior means. The second 5 numbers are the Monte Carlo estimates of the posterior ordinary second moments. We get the posterior variances by

```
> foo <- apply(out$batch, 2, mean)
> mu <- foo[1:5]
> sigmasq <- foo[6:10] - mu^2
> mu
```

[1] 0.6531950 0.7920342 1.1701075 0.5077331 0.7488265

> sigmasq

[1] 0.08791134 0.12875924 0.12822924 0.13359081 0.16367507

Monte Carlo standard errors (MCSE) are calculated from the batch means. This is simplest for the means.

```
> mu.mcse <- apply(out$batch[, 1:5], 2, sd)/sqrt(out$nbatch)
> mu.mcse
```

[1] 0.01224260 0.01417916 0.01793129 0.01468594 0.01582040

The extra factor sqrt(out\$nbatch) arises because the batch means have variance σ^2/b where b is the batch length, which is out\$blen, whereas the overall means mu have variance σ^2/n where n is the total number of iterations, which is out\$blen * out\$nbatch.

4.2 Functions of Means

To get the MCSE for the posterior variances we apply the delta method. Let u_i denote the sequence of batch means of the first kind for one parameter and \bar{u} the grand mean (the estimate of the posterior mean of that parameter), let v_i denote the sequence of batch means of the second kind for the same parameter and \bar{v} the grand mean (the estimate of the posterior second absolute moment of that parameter), and let $\mu = E(\bar{u})$ and $\nu = E(\bar{v})$. Then the delta method linearizes the nonlinear function

$$g(\mu, \nu) = \nu - \mu^2$$

as

$$\Delta g(\mu, \nu) = \Delta \nu - 2\mu \Delta \mu$$

saying that

$$g(\bar{u}, \bar{v}) - g(\mu, \nu)$$

has the same asymptotic normal distribution as

$$(\bar{v} - \nu) - 2\mu(\bar{u} - \mu)$$

which, of course, has variance 1 / nbatch times that of

$$(v_i - \nu) - 2\mu(u_i - \mu)$$

and this variance is estimated by

$$\frac{1}{n_{\text{batch}}} \sum_{i=1}^{n_{\text{batch}}} \left[(v_i - \bar{v}) - 2\bar{u}(u_i - \bar{u}) \right]^2$$

So

```
> u <- out$batch[, 1:5]
> v <- out$batch[, 6:10]
> ubar <- apply(u, 2, mean)
> vbar <- apply(v, 2, mean)
> deltau <- sweep(u, 2, ubar)
> deltav <- sweep(v, 2, vbar)
> foo <- sweep(deltau, 2, ubar, "*")
> sigmasq.mcse <- sqrt(apply((deltav - 2 * foo)^2, + 2, mean)/out$nbatch)
> sigmasq.mcse
```

- [1] 0.004241637 0.007292224 0.007271390 0.007374833
- [5] 0.008175832

does the MCSE for the posterior variance.

Let's just check that this complicated sweep and apply stuff does do the right thing.

```
> sqrt(mean(((v[, 2] - vbar[2]) - 2 * ubar[2] * 
+ (u[, 2] - ubar[2]))^2)/out$nbatch)
```

[1] 0.007292224

Comment Through version 0.5 of this vignette it contained an incorrect procedure for calculating this MCSE, justified by a handwave (which was incorrect). Essentially, it said to use the standard deviation of the batch means called v here, which appears to be very conservative.

4.3 Functions of Functions of Means

If we are also interested in the posterior standard deviation (a natural question, although not asked on the exam problem), the delta method gives its standard error in terms of that for the variance

```
> sigma <- sqrt(sigmasq)
> sigma.mcse <- sigmasq.mcse/(2 * sigma)
> sigma

[1] 0.2964985 0.3588304 0.3580911 0.3655008 0.4045678
> sigma.mcse

[1] 0.007152882 0.010161102 0.010152989 0.010088669
[5] 0.010104403
```

5 A Final Run

So that's it. The only thing left to do is a little more precision (the exam problem directed "use a long enough run of your Markov chain sampler so that the MCSE are less than 0.01")

```
> out <- metrop(out, nbatch = 500, blen = 400, x = x,
      y = y
> out$accept
[1] 0.235155
> out$time
   user system elapsed
 37.695
         0.000 37.692
> foo <- apply(out$batch, 2, mean)
> mu <- foo[1:5]
> sigmasq <- foo[6:10] - mu^2</pre>
[1] 0.6624650 0.7941013 1.1712710 0.5066326 0.7261414
> sigmasq
[1] 0.09189246 0.13323054 0.13230811 0.12871293 0.15978638
> mu.mcse <- apply(out$batch[, 1:5], 2, sd)/sqrt(out$nbatch)</pre>
> mu.mcse
[1] 0.002960128 0.003647420 0.003787855 0.003632080
[5] 0.004273624
```

```
> u <- out$batch[, 1:5]
> v <- out$batch[, 6:10]
> ubar <- apply(u, 2, mean)
> vbar <- apply(v, 2, mean)
> deltau <- sweep(u, 2, ubar)</pre>
> deltav <- sweep(v, 2, vbar)</pre>
> foo <- sweep(deltau, 2, ubar, "*")</pre>
> sigmasq.mcse <- sqrt(apply((deltav - 2 * foo)^2,
      2, mean)/out$nbatch)
> sigmasq.mcse
[1] 0.001044801 0.001725900 0.001518322 0.001553468
[5] 0.002010717
> sigma <- sqrt(sigmasq)</pre>
> sigma.mcse <- sigmasq.mcse/(2 * sigma)</pre>
> sigma
[1] 0.3031377 0.3650076 0.3637418 0.3587658 0.3997329
> sigma.mcse
[1] 0.001723311 0.002364198 0.002087087 0.002165017
[5] 0.002515076
```

and some nicer output, which is presented in three tables constructed from the R variables defined above using the R xtable command in the xtable library. First the posterior means, then the posterior variances (table on page 11),

Table 1: Posterior Means

	constant	x_1	x_2	x_3	x_4
estimate	0.6625	0.7941	1.1713	0.5066	0.7261
MCSE	0.0030	0.0036	0.0038	0.0036	0.0043

and finally the posterior standard deviations (table on page 12).

Table 2: Posterior Variances

	constant	x_1	x_2	x_3	x_4
estimate	0.0919	0.1332	0.1323	0.1287	0.1598
MCSE	0.0010	0.0017	0.0015	0.0016	0.0020

Note for the record that the all the results presented in the tables are from "one long run" where long here took only 37.695 seconds (on whatever computer it was run on).

Table 3: Posterior Standard Deviations

	constant	x_1	x_2	x_3	x_4
estimate	0.3031	0.3650	0.3637	0.3588	0.3997
MCSE	0.0017	0.0024	0.0021	0.0022	0.0025

6 New Variance Estimation Functions

A new function initseq estimates variances in the Markov chain central limit theorem (CLT) following the methodology introduced by Geyer (1992, Section 3.3). These methods only apply to scalar-valued functionals of reversible Markov chains, but the Markov chains produced by the metrop function satisfy this condition, even, as we shall see below, when batching is used.

Rather than redo the Markov chains in the preceding material, we just look at a toy problem, an AR(1) time series, which can be simulated in one line of R. This is the example on the help page for initseq.

> n <- 20000

> rho <- 0.99

 $> x \leftarrow arima.sim(model = list(ar = rho), n = n)$

The time series ${\tt x}$ is a reversible Markov chain and trivially a scalar-valued functional of a Markov chain.

Define

$$\gamma_k = \text{cov}(X_i, X_{i+k}) \tag{1}$$

where the covariances refer to the stationary Markov chain having the same transition probabilities as **x**. Then the variance in the CLT is

$$\sigma^2 = \gamma_0 + 2\sum_{k=1}^{\infty} \gamma_k$$

(Geyer, 1992, Theorem 2.1), that is,

$$\bar{x}_n \approx \text{Normal}\left(\mu, \frac{\sigma^2}{n}\right),$$

where $\mu = E(X_i)$ is the quantity being estimated by MCMC (in this toy problem we know $\mu = 0$).

Naive estimates of σ^2 obtained by plugging in empirical estimates of the gammas do not provide consistent estimation (Geyer, 1992, Section 3.1). Thus the scheme implemented by the R function initseq. Define

$$\Gamma_k = \gamma_{2k} + \gamma_{2k+1} \tag{2}$$

Geyer (1992, Theorem 3.1) says that Γ_k considered as a function of k is strictly positive, strictly decreasing, and strictly convex (provided we are, as stated

Figure 3: Plot "Big Gamma" defined by (1) and (2). Solid line, initial positive sequence estimator. Dotted line, initial monotone sequence estimator. Dashed line, initial convex sequence estimator.

above, working with a reversible Markov chain). Thus it makes sense to use estimators that use these properties. The estimators implemented by the R function initseq and described by Geyer (1992, Section 3.3) are conservative-consistent in the sense of Theorem 3.2 of that section.

Figure 3 (page 13) shows the time series plot made by the R statement

One can use whichever curve one chooses, but now that the initseq function makes the computation trivial, it makes sense to use the initial convex sequence.

Of course, one is not interested in Figure 3, except perhaps when explaining

the methodology. What is actually important is the estimate of σ^2 , which is given by

```
> out$var.con
[1] 14386.32
> (1 + rho)/(1 - rho) * 1/(1 - rho^2)
[1] 10000
```

where for comparison we have given the exact theoretical value of σ^2 , which, of course, is never available in a non-toy problem.

These initial sequence estimators seem, at first sight to be a competitor for the method of batch means. However, appearances can be deceiving. The two methods are complementary. The sequence of batch means is itself a scalar-valued functional of a reversible Markov chain. Hence the initial sequence estimators can be applied to it.

```
> blen <- 5
> x.batch <- apply(matrix(x, nrow = blen), 2, mean)
> bout <- initseq(x.batch)</pre>
```

Because the batch length is too short, the variance of the batch means does not estimate σ^2 . We must account for the autocorrelation of the batches, shown in Figure 4.

```
> plot(seq(along = bout$Gamma.con) - 1, bout$Gamma.con,
+ xlab = "k", ylab = expression(Gamma[k]), type = "l")
```

Because the the variance is proportional to one over the batch length, we need to multiply by the batch length to estimate the σ^2 for the original series.

```
> out$var.con
[1] 14386.32
> bout$var.con * blen
[1] 14466.75
```

Another way to look at this is that the MCMC estimator of μ is either mean(x) or mean(x.batch). And the variance must be divided by the sample size to give standard errors. So either

```
> mean(x) + c(-1, 1) * qnorm(0.975) * sqrt(out$var.con/length(x))
[1] -0.5078635  2.8167249
> mean(x.batch) + c(-1, 1) * qnorm(0.975) * sqrt(bout$var.con/length(x.batch))
[1] -0.5125039  2.8213653
```

is an asymptotic 95% confidence interval for μ . Just divide by the relevant sample size.

Figure 4: Plot "Big Gamma" defined by (1) and (2) for the sequence of batch means (batch length 5). Only initial convex sequence estimator is shown.

References

- Gelman, A., G. O. Roberts, and W. R. Gilks (1996). Efficient Metropolis jumping rules. In *Bayesian Statistics*, 5 (Alicante, 1994), pp. 599–607. Oxford University Press.
- Geyer, C. J. (1992). Practical Markov chain Monte Carlo (with discussion). Statistical Science, 7, 473–511.
- Geyer, C. J. and E. A. Thompson (1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. *Journal of the American Statistical Association*, 90, 909–920.