1- Semestre 1:

Unité d'Ensaignement	VHS	,	V.H hebd	omadaire)	Coeff	Crédits	Mode d'évaluation	
Unité d'Enseignement	14-16 sem	С	TD	TP	Autres.	Coen	Credits	Continu	Examen
UE fondamentales									
UEF1(O/P) : matières Obligatoires									
Statistique Inférentielle Avancée	90h00	3h	1h30	1h30		4	8		x
Processus Stochastiques Avancés	67h30	3h	1h30			4	7		X
UEF2(O/P) : matières Obligatoires									
Mesure et Intégration	45h	1h30	1h30			2	4		X
UE méthodologie									
UEM1(O/P)									
Méthodes Mathématiques pour la Statistique	45h	1h30	1h30			2	4		X
Simulation Stochastique	45h	2h30				2	3		Х
UEM2(O/P)									
UE découverte									
UED1(O/P): 1 matière au choix									
Economie	22h30		1h30			1	1		X
Finance	22h30		1h30			1	1		X
UED2(O/P)									
UE transversales									
UET1(O/P) : matière Obligatoire									
Programmation <i>R</i>	22h30			1h30		1	1		X
UET2(O/P)									
Anglais	22h30		1h30			1	1		X
Total Semestre 1	360h	10h30	10h30	4h30		17	30		

2- Semestre 2:

Unité d'Ensaignement	VHS	,	V.H hebd	omadaire	;	Coeff	Crédits	Mode d'évaluation	
Unité d'Enseignement	14-16 sem	С	TD	TP	Autres	Coen	Credits	Continu	Examen
UE fondamentales									
UEF1(O/P) : matières Obligatoires									
Séries Chronologiques	67h30	1h30	1h30	1h30		3	6		Х
Statistique 2	45h	1h30	1h30			2	4		X
Analyse de Données et Classification	45h	1h30	1h30			3	5		x
UEF2(O/P) : matières Obligatoires									
Statistique non Paramétrique	45h	1h30	1h30			2	4		X
UE méthodologie									
UEM1(O/P)									
Files d'Attente	45h	1h30	1h30			2	4		X
Calcul Stochastique	45h	1h30	1h30			2	4		Х
UE découverte									
UED1(O/P)									
Théorie de l'Information	22h30	1h30				1	1		X
UED2(O/P)									
UE transversales									
UET1(O/P)									
Programmation 2	45h			3h00		2	2	_	X
UET2(O/P)									
Total Semestre 2	360h00	10h30	9h	4h30		17	30		

3- Semestre 3:

Etablissement :USTHB Intitulé du master : « Statistique et Probabilités Appliquées» Année universitaire : 2017/2018

Unité d'Encoignement	VHS	7	V.H hebdo	madaire		Coeff	Crédits	Mode d'évaluation	
Unité d'Enseignement	14-16 sem	С	TD	TP	Autres	Coen	Credits	Continu	Examen
UE fondamentales				·					
UEF1(O/P) : matières Obligatoires									
Inférence Bayésienne	67h30	1h30	1h30	1h30		3	6		X
Estimation non Paramétrique	67h30	1h30	1h30	1h30		3	5		X
UEF2(O/P) : matières Obligatoires									
Plans d'Expériences	45h	1h30	1h30			2	4		X
Séries chronologiques 2	45h	1h30	1h30			2	4		X
UE méthodologie									
UEM1(O/P)									
Enquêtes et Sondages	45h00	1h30	1h30			2	4		X
UEM2(O/P) 1 matière au choix									
Statistique des Valeurs	45h00	1h30	1h30			2	4		X
Extrêmes	431100						4		
Biostatistique	45h00	1h30	1h30			2	4		X
UE découverte									
UED1(O/P)									
UED2(O/P)									
UE transversales									
UET1(O/P)									
Data Mining	22h30			1h30		1	2		X
Ethique et déontologie	22h30	1h30				1	1		X
UET2(O/P)									
Total Semestre 3	360h	10h30	9h	4h30		16	30		

Etablissement :USTHB Intitulé du master : « Statistique et Probabilités Appliquées» Année universitaire : 2017/2018

4- Semestre 4:

Domaine: Mathématiques & Informatique

Filière: Mathématiques

Spécialité : Master « Statistique et Probabilités Appliquées»

Stage en entreprise ou sujet interne sanctionné par un mémoire et une soutenance.

	VHS	Coeff	Crédits
Travail Personnel	450	6	12
Stage en entreprise	200	6	12
Séminaires	14	1	2
Autre (préciser) :	16	2	4
Anglais			
Total Semestre 4	680	15	30

5- Récapitulatif global de la formation : (indiquer le VH global séparé en cours, TD, pour les 04 semestres d'enseignement, pour les différents types d'UE)

UE VH	UEF	UEM	UED	UET	Total
Cours	296h30	157h 30	22h30	22h30	499 h
TD	247 h 30	135h	22h30	22h30	427 h
TP	90 h	0 h	0	90h	180 h
Travail personnel	450 h				450 h
Autre (préciser) : Anglais Stage en entreprise Séminaires	230 h	0	0	0	16 h 200 h 14 h
Total	1314				1780 h
Crédits	87	24	2	7	120
% en crédits pour chaque UE	72.5	20,00	1.67	5.83	100

Page 18 Année universitaire : 2016/2017 Page 18

IV - Programme détaillé par matière (1 fiche détaillée par matière)

Etablissement :USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 01

Matière 1 : Statistique Inférentielle Avancée

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

Donner à l'étudiant les outils fondamentaux de statistique inférentielle, quel que soit son parcours précédent, afin qu' il puisse aborder l'étude des techniques statistiques plus avancées. L'étude théorique sera accompagnée d'applications sous forme de TP avec le logiciel R

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Algèbre et analyse de 1^{ère} année universitaire ainsi qu'un bagage de base en probabilités et statistiques élémentaires acquis en général dans toutes les licences de type mathématique, informatique ou recherche opérationnelle.

Contenu de la matière :

Rappels de Théorie des probabilités (lois usuelles, vecteurs gaussiens, fonctions génératrices, théorèmes limites).

Inférence statistique. Exhaustivité, complétion, information de Fischer.

Estimation ponctuelle. Présentation des différentes méthodes d'estimation. Méthode du maximum de vraisemblance, propriétés. Estimation sans biais, efficacité.

Tests d'hypothèses, Lemne de Neyman-Pearson. Tests UMP. Cas gaussien. Estimation ensembliste, fonctions pivotales. Régions de confiance asymptotiques.

Tests du rapport de vraisemblance généralisé.

Tests d'adéquation de Kolmogorov-Smirnov. Tests du Chi-deux.

Références (Livres et polycopiés, sites internet, etc).

G.Casella, R.L.Berger : Statistical inférence. 2ème édition. Duxburry Advanced Séries. 2002.

R.V. Hogg, J.W. McKean, A.T. Craig. Introduction to mathematical statistics, 7ème édition. Pearson,(2012)

G.Saporta: Probabilités, Analyse des données et Statistique, Technip 2006.

et pour les applications avec le logiciel R :

J. Verzani, Using R for Introductory Statistics. CHAPMAN & HALL/CRC, 2005.

Etablissement: USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 01

Matière 2 : Processus Stochastiques Avancés

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

Parcourir les principaux éléments de la modélisation stochastique par les processus Markovien, Processus de Poisson et de renouvellement et applications en Biology, dynamique des population, fiabilité,..etc.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Avoir une connaissance en Probabilités et statistiques ainsi qu'un bagage de base en Algèbre et Analyse acquis généralement en licence.

Contenu de la matière :

- *Introduction et Rappels* : Définition d'un processus stochastique. Théorème d'existence de Kolmogorov. Formule de Wald. Espérance conditionnelle (sachant une v.a). Fonction génératrice.
- *Marche Aléatoire* : Probabilité de retour à l'origine ; Probabilité de passage ; problème de ruine du joueur.
- *Processus de Branchement* : Processus de Galton-Watson ; Probabilité d'extinction ; Processus de branchement multi-type
- *Processus de Poisson* : Processus de Poisson homogène ; processus de Poisson composé ; mélange de Processus de Poisson ; processus de Poisson non homogène
- *Processus de Renouvellement*: Théorie du renouvellement; Fonction de renouvellement; Variable temps résiduel; Processus renouvellement-récompense (Renewal-Reward); Théorèmes limites pour processus régénératif; Equation de renouvellement
- *Chaînes de Markov à temps discret* : Caractérisation des états récurrents et transitoire, Chaîne de Markov réversible, Théorèmes ergodiques
- Chaînes de Markov à temps continu : Théorèmes ergodiques; Processus de naissance et de mort.

Mode d'évalu	uation:Examen
Références	(Livres et polycopiés, sites internet, etc).

- **Lefebvre Mario**, *Processus Stochastiques Appliqués*. Presses Internationales Polytechnique, 2005.
- **Allen Lynda**, *An Introduction to Stochastic Processes with Applications to Biology*. 2nd Edition, CRC Press, 2011.
- Foata Dominique et Fuchs Aimé, *Processus Stochastiques*. Dunod, 2004.
- **Pinsky M. A. et Karlin S.**, *An Introduction to Stochastic Modeling*. 4th ed. Academic Press, 2011.

Etablissement :USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 01

Matière 2 : Mesure et Intégration

Enseignant responsable de la matière .

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

A la fin de ce cours l'étudiant doit être capable de maitriser les théorèmes fondamentaux d'intégration dans leur contexte abstrait, déterminer conditions pour la convergence des intégrales et établir les propriétés de base pour les mesures, les fonctions mesurables et les intégrales.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes). Eléments d'analyse mathématique, Notions de mesure et intégration (licence).

Contenu de la matière :

- 1- Rappels (Mesures, fonctions mesurables, l'intégrale, fonctions intégrables, mesure produit, théorème de Fubini, produit de convolution)
- 2- Théorèmes de convergence
- 3- Les espaces L^p (Inégalité de Minkowski et de Holder, Complétude , Analyse hilbertienne et espace L^p , Dualité dans les espaces L^p , \mathbb{D} Convergence dans L^p , théorème Radon-Nikodym)
- 4- Transformation de Fourier (Transformation de Fourier dans L¹ , Transformation de Fourier dans L² , Fonction caractéristique d'une variable aléatoire)

Mode d'évalu	uation :	Ex	amen		
D444	// :	-41 :	-::	4 -4-1	

Références (Livres et polycopiés, sites internet, etc).

- 1- P. Billingsley, Probability and Measure (1995) Jhon Wiley & Sons.
- 2- D. revuz, Mesure et Intégration (1994) Hermann-méthodes
- 3- G.L. Shorak, Probability for Statisticians, (Ed-2000) Springer
- 4- KH. Vo Khac , Mesure, Intégration , Convolution et Analyse de Fourier (1984) Ellipses

5-https://www-fourier.ujf-grenoble.fr/~edumas/integration.pdf

Etablissement: USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 1

Matière 1 : Méthodes Mathématiques pour la Statistique

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

Se familiariser avec des outils mathématiques (compléments d'algèbre, d'analyse) importants en Probabilités et Statistique en faisant le lien, autant que possible, avec les notions correspondantes de ces deux dernières disciplines.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Algèbre, analyse, probabilités et statistiques de 1^{ère,} 2^{ième} et 3^{ième} année universitaire.

Contenu de la matière :

Matrices orthogonales, matrices symétriques, matrices définies positives, valeurs propres, vecteurs propres.

Espace d'Hilbert, orthogonalité, projection,

Applications aux approximations et à l'espérance conditionnelle.

Formes quadratiques. Décomposition.

Application: théorème de Cochran.

Mode d'évaluation : .	Examen

Références (Livres et polycopiés, sites Internet,...etc.).

-**G.Saporta** : Probabilités, Analyse des données et Statistique, Technip 2006.

Etablissement: USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 01

Matière 2 : Simulation Stochastique

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

Parcourir les principaux éléments de la simulation stochastique et les techniques de générations de nombres aléatoires.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Avoir une connaissance en Probabilités et statistiques ainsi qu'un bagage de base en Algèbre et Analyse acquis généralement en licence.

Introduction générale à la simulation, simulation de la loi uniforme, nombres pseudoaléatoires, simulation de lois non uniformes, par des méthodes générales, simulation de vecteurs aléatoires, simulation de processus aléatoires.

Mode d'évaluation :	Examen
---------------------	--------

Références (Livres et polycopiés, sites internet, etc).

- -Alain Ruegg : Processus stochastiques avec applications aux phénomènes d'attente et de fiabilité.
- -Amar Aissani : Modélisation et simulation.
- -Klen Rock: Queueing systems Vol 1 & 2 Wiley New York 1976.

Byron J., Morgan: Elements of simulation.

Etablissement :USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 01

Matière 1 : Economie

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Contenu de la matière :

Introduire les éléments fondamentaux de l'économie de marché et ses règles de fonctionnement Concepts économiques de base L'économie financière

Mode d'évaluation : Examen	
-----------------------------------	--

Références

C.F. Huang et R.H. Litzenberg. Foundations for financial Economics,. North-Holland, New-York edition, 1988.

A. DE SERVIGNY, I. ZELENKO Economie financière. Dunod 1999

Etablissement :USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 01

Matière 2 : Finance

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes). Se familiariser avec les concepts et le vocabulaire financier

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Contenu de la matière :

Concepts financiers

Gestion de portefeuille (Décisons dans l'incertain, Fonction d'utilité, Critère Moyenne-Variance,

CAPIT (ou MEDAF), Modèles APT Construction de portefeuilles optimaux, les modèles APT.

Mesure de performance d'un portfeuille).

Principes de techniques bancaires

Risque actuariel en finance

Mode d'évaluation :	Examen	

Références

Daniel Justens-Michael Schyns. Théorie stochastique de la décision d'investissement, DeBoeck

Université édition, 1997.

C. Broquet, R. Cobbaut, R.Gillet, Avd BERG . Gestion de portefeuille., DeBoeck Université édition,

1997.

Etablissement :USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 01

Matière 1 : Programmation R

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

Maitrise des bases du langage de programmation R, dans le but d'utilisation du logiciel R pour mener des analyses statistiques.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Eléments de programmation, Probabilités et statistiques de 1ère année

Contenu de la matière :

Présentation de R : Caractéristiques et organisation.

Objets de R : vecteurs, matrices, facteurs, data-f<u>rames</u> (tableaux de données), listes.

Graphes en R : fonctions de niveau supérieur, fonctions de niveau inférieur, paramètres graphiques.

Programmation en R : Création de fonctions, boucles, instructions conditionnelles

Analyses statistiques. Simulation.

(Ces deux derniers points en fonction des notions étudiées durant ce semestre).

Mode d'évaluation ·	Examen de TP

Références (Livres et polycopiés, sites Internet,...etc.).

- -Venables, William N., David M. Smith, and R Development Core Team. An introduction to R. 2004. (https://cran.r-project.org/).
- -De Micheaux, P.L., Drouilhet, R., et Liquet, B. Le logiciel R : Maitriser le langage-Effectuer des analyses statistiques. Springer Science Business Media. 2011.
- -E. Paradis. R pour les débutants. 2002. (https://cran.r-project.org/).

Etablissement :USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 1

Matière 1 : Anglais

Enseignant responsable de la matière:

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

Se familiariser avec l'anglais scientifique

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Apprendre à lire l'anglais scientifique

Contenu de la matière :

Mode d'évaluation :Examen
Quelques textes choisis pour couvrir les thèmes de statiques à l'étude

Références (Livres et polycopiés, sites internet, etc).

- Méthodes du « CIEL »

Etablissement :USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 2

Matière 1 : Séries Chronologiques

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

L'enseignement de la Matière "Série chronologiques" a pour objet l'analyse statistique, la modélisation et la prévision des séries chronologiques via les processus ARMA ainsi que les processus Arch. Une introduction à la modélisation VAR y est aussi proposée a. Il consiste en 4.5 heures hebdomadaires pour un semestre, réparties en 2 séances de Cours (3 heures) plus une séance de TD & TP. Le Langage R (gratuit et téléchargeable sur site) est fortement conseillé comme logiciel de travail.

On préconise une bibliographie "classique" en langue anglaise dont des ouvrages fondamentaux tels ceux d'Anderson (cf [6]), de Box & Jenkins ([1]), de Brocwell & Davies ([3] et [2]) pour ne citer que les plus populaires ainsi que des références moins classiques qui abordent les thèmes non linéaires tels par exemple Fan et Yao dans [4] et Kitagawa dans [5] ou bien ceux très intéressants-qui utilisent la programmation en langage R tel, entre autres, l'ouvrage de Gentleman et al.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes). Statistique inférentielle avancée, Processus Stochastiques Avancées

Contenu de la matière :

- 1. Rappels et compléments
- (a) Rappels et compléments de Probabilités (Covergences stochastiques ...)
- (b) Rappels et compléments de Statistiques (Histogrammes, Skewness et Kurtosis, Régression, Tests statistiques et P-Value ...)
- 2. Introduction
- (a) Econométrie et séries chronologiques
- (b) Aspects généraux
- (c) Approche traditionnelle et approche dynamique
- (d) L'analyse préliminaire
- 3. L'analyse traditionnelle des séries chronologiques
- (a) Modèles (schémas) de décomposition classiques tendance/saisonnalité
- (b) Modèles prédictifs (Holt, Winters, ...)
- 4. Processus stochastiques: notions fondamentales
- (a) Processus : généralités
- (b) Processus du 2 ième ordre

Premières notions. L'espace de Hilbert L2 ($\Omega; \mathfrak{I}; P$)

- Le problème de prédiction
- Note : le processus gaussien centré
- (c) Présentation des processus stationnaires du 2i eme ordre
- Premières notions. Exemples usités de processus stationnaires
- Théorème de Herglotz. L'aspect fréquentiel des processus stationnaires
- Théorème de Wold
- Causalité et Inversibilité des processus ARMA
- (d) Deux processus non-stationnaires : les processus TS et les processus DS
- 5. Estimation non-paramétrique au 2i_eme ordre d'un processus stationnaire

Etablissement: USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

- (a) Estimation de l'espérance mathématique et de la fonction de covariance
- (b) Le périodogramme. Sur l'estimation de la densité spectrale
- 6. Estimation du processus ARMA(p,q)
- (a) Estimation d'un processus AR(p) par la méthode de Yule-Walker
- (b) Estimation du processus ARMA(p,q) par la méthode du MV
- 7. Modélisation ARMA et prédiction
- (a) La construction de modèle selon Box & Jenkins
- (b) Identification du modèle
- (c) Estimation du processus ARMA. Tests sur les paramètres estimés
- (d) Adéquation : Tests of randomness
- _ Tests sur le bruit blanc
- _ Choix par critères d'information
- (e) Prédiction d'un processus ARMA(p,q)
- 8. La modélisation ARCH
- 9. Etude de cas concrets
- 10. Sur la modélisation VAR

Mode d'évaluation :Examen			
Références	(Livres et polycopiés, sites internet, etc).		

- [1] George EP Box, Gwilym M Jenkins, and Gregory C Reinsel. Time series analysis: forecasting and control, volume 734. Wiley, 2011.
- [2] P Brockwell and R Davies. Time series: theory and methods. Springer Verlag, 1987.
- [3] Peter J Brockwell and Richard A Davis. Introduction to time series and forecasting. Springer, 2002.
- [4] Jianqing Fan and Qiwei Yao. Nonlinear time series: nonparametric and parametric methods. Springer Verlag, 2003.
- [5] Genshiro Kitagawa. Introduction to time series modeling, volume 114. Chapman & Hall/CRC, 2009.
- [6] Statistical Analysis of Time series. Anderson, T, W. Wiley, 1970.

Etablissement :USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 02

Matière 2 : Statistique 2

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

Ce cours présente une partie des notions sur les modèles linéaires ainsi que des applications afin de pouvoir modéliser des problèmes par la suite.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Algebre linéaire et les outils de base de statistiques.

Contenu de la matière :

Introduction générale – le modèle linéaire général, la regression simple, la regression multiple, résolution de problèmes de multicolinéarité ; régression RCP, Ridge, PLS.

Mode	d'évaluation ·	Examen
WIOGE	u Evaluation	

Références (Livres et polycopiés, sites internet, etc).

- G.Saporta : Probabilités , Analyse des données et Statistique, Technip 2006.
- P.Dagnelie :Statistique théorique et appliquée

Etablissement :USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 2

Matière 3 : Analyse de Données et Classification

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

L'étudiant serait capable de maîtriser les techniques de résolution approchées pour des problèmes concrets de décision.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Algèbre et analyse de 1^{ère} année universitaire ainsi qu'un bagage de base en probabilités et statistique ainsi que les méthodes ACP et AFC enseignées en licence.

Contenu de la matière :

Introduction Générale – Notion de Projection - Dérivation Matricielle – Rappels sur l'Analyse en Composantes Principales – Rappels sur l'Analyse Factorielle des Correspondances - Analyse Factorielle des Correspondances Multiples – Analyse Discriminante - Classification Automatique.

Mode d'évaluation ·	Examen	
WOUE U EVAIUAUUII	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

Références (Livres et polycopiés, sites Internet, etc).

- G. Saporta : Probabilités, Analyse des données et Statistique, Technip 2006.
- P. Dagnelie : Statistique théorique et appliquée

Etablissement: USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 2

Matière 1 : Statistique non Paramétrique

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

L'étudiant sera capable de modéliser la distribution des observations, de tester le modèle à l'aide d'un test adéquat et de comparer deux populations.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Probabilités, Estimation, Tests Statistiques

Contenu de la matière :

- 1- Fonction de répartition empirique (définition, propriétés de convergence, loi du log-itéré, théorème de Glivenko-Cantelli)
- 2-Tests non paramétrique sur une population (test de Kolmogorov Smirnov, test du Chi2,
- 3-Tests non-paramétrique sur deux populations

Tests de comparaison (ou homogénéité) de deux populations (test de Wilcoxon, test de Mann-Witney).

Tests de corrélation sur variables appariées (test de Kendall, test de Spirman)

Mode d'évaluation :	Examen
---------------------	--------

Références (Livres et polycopiés, sites internet, etc).

- 1- Monfort, A., Cours de statistique mathematique, Economica.
- 2- Saporta, G., Probabilités, analyse des données et statistiques. Technip
- 3- Wasserman. All of nonparametric statistics. Springer Texts in Statistics. Springer-Verlag,

Etablissement :USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 2

Matière 1 : Files d'Attente

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

Parcourir les principaux éléments de la théorie des files d'attente et de la modélisation des phénomènes d'attente et de congestion.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes). Théorie des probabilités, processus stochastiques avancés (S1)

Contenu de la matière :

- *Introduction* : Description d'une file d'attente et notation de Kendall. Formule de Little. Propriété PASTA
- *Files d'attente Markoviennes simples :* M/M/1, M/M/C, méthodes du choix du nombre de serveurs, M/M/C/K, analyse transitoire, période d'occupation (Busy-Period Analysis)
- Modèles Markovien avancés: M^X/M/1; M/M^Y/1, Modèles avec distribution d'Erlang.
- *Distribution de service générale* : M/G/1, formule de Pollaczek-Khintchine, Théorie ergodique, Temps d'attente, période d'activité, M/G/1/K, M/G/C, GI/M/1.
- Modèles avec priorités, impatience, multi-classes
- *Optimisation et Problèmes de design des files d'attente* : fonction de Perte (cost analysis)
- Inférence pour files d'attente
- *Réseaux de files d'Attente* : réseau de Jackson ouvert, réseau de Jackson fermé, réseau téléphonique, réseau de Kelly

Mode d'évaluation :Examen		
Références	(Livres et polycopiés, sites internet, etc).	

- **Pinsky M. A. et Karlin S.**, *An Introduction to Stochastic Modeling*. 4th ed. Academic Press, 2011.
- **Gross D.**, **Shortle J.F, Thompson J.M.**, **Harris C.M.** *Fundamentals of Queueing Theory.* 4th ed. Wiley 2008.
- **Ycart B.**, *Notions de fiabilité*, *Files d'attente*. Centre de Publication Universitaire, Tunis, 2004.

Etablissement: USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 2

Matière 2 : Calcul Stochastique

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

Résolution d'équations différentielles stochastiques et applications en Biologie, Finance,...

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Processus stochastique avancés (S1), théorie de la mesure et de l'intégration (S1)

Contenu de la matière :

- *Introduction et Rappels* : Théorèmes de convergence monotone et dominée. Sigma algèbre engendrée par une v.a. Lemme de Fatou, Intégrale par rapport à une mesure, Théorème de Radon-Nikodym
- *Espérance conditionnelle sachant une sigma algèbre :* Espérance conditionnelle sachant un évènement, Espérance conditionnelle sachant une sigma algèbre. Propriétés de l'espérance conditionnelle, Inégalité de Jensen
- *Martingales* : Filtration, temps d'arrêt, Martingale à temps discret, sous-martingale et surmartingale, théorème d'arrêt, Inégalités maximales, Martingales à temps continu
- *Mouvement Brownien* : Densité de transition, propriétés, caractérisation par les martingales, caractérisation les accroissements, Inégalité maximale
- *Intégrale Stochastique* : Processus élémentaires, Intégrale d'Itô, Propriétés de l'intégrale stochastique
- formule d'Itô et résolution d'équations différentielles stochastiques

Mode d'évalı	uation:Examen
Références	(Livres et polycopiés, sites internet, etc).

- **Damien Lamberton et Bernard Lapeyre**, *Introduction au Calcul Stochastique Appliqué à la Finance*. Ellipses 2012.
- **Bernt Oksendal**, *Stochastic Differential Equations*. Springer, 2000.

Etablissement :USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 2

Matière 1 : Théorie de l'information

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

Parcourir les principaux éléments de la théorie de l'information comme étant une discipline des probabilités et statistiques avec applications en communication, biologie, économie,..etc.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Avoir une connaissance en Probabilités et statistiques ainsi qu'un bagage de base en Algèbre et Analyse acquis généralement en licence.

Contenu de la matière :

- **Définition de l'information**: Entropie, information divergence, mutual information
- -Propriété de l'information: convexité, invariance, divergence.
- *Inégalités de la théorie de l'information* : minimum de l'information de discrimination ; efficience
- Propriétés limites

Mode d'évaluation :	Examen	
IVIOUE U EVAIUALIOII .		

Références (Livres et polycopiés, sites internet, etc).

- **T. M., and Thomas J. A.,** Elements of Information Theory, John Wiley and Sons, New York, 1991.
- Jones, D. S., Elementary information theory, Clarendon Press, Oxford, 1979
- **Kullback S.,** Information Theory and Statistics, Dover Publications, 1997.

Etablissement: USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 2

Matière 1 : Programmation 2

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

Faire les analyses statistiques avancées avec le logiciel R

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Eléments de programmation R.

Contenu de la matière :

Modèles linéaires : régression linéaire simple, régression linéaire multiple, diagnostics de validation.

Analyse de variance : analyse de variance à un facteur, analyse de variance à deux facteurs, Analyse de variance sur plans d'expériences.

Modèles linéaires généralisés.

Analyse des données : ACP etc..

Séries chronologiques avec R.

Mode d'évaluation : Examen de TP.....

Références (Livres et polycopiés, sites Internet,...etc.).

- -Venables, William N., David M. Smith, and R Development Core Team. An introduction to R. 2004. (https://cran.r-project.org/).
- -De Micheaux, P.L., Drouilhet, R., et Liquet, B. Le logiciel R : Maitriser le langage-Effectuer des analyses statistiques. Springer Science Business Media. 2011..

Etablissement: USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 03

Matière 1 : Inférence Bayésienne

Enseignant responsable de la matière:

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

C. Robert. *Le choix bayésien: Principes et pratique*. Springer Science & Business Media, 2006.

C. Robert, et G. Casella. *Méthodes de Monte-Carlo avec R*. Springer Science & Business Media, 2011.

Ce module vise à introduire les étudiants et à leur faire acquérir une maitrise des techniques de l'approche bayésienne de l'inférence statistique, en complément de l'approche classique étudiée en S1 et S2. Cet approche a pris ces dernières années une grande importance en liaison avec le développement de l'informatique.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Algèbre et analyse de 1^{ère} année universitaire. Des connaissances fondamentales en probabilités, statistique et simulation acquises en S1 et S2.

Contenu de la matière :

Problème de décision statistique. Fonction perte. Risque. Point de vue bayésien sur l'inférence statistique. Lois a priori informatives et non informatives. Lois conjuguées. Lois a posteriori. Lois prédictives.

Estimation ponctuelle bayésienne. Cas des fonctions pertes usuelles.

Estimation ensembliste bayésienne.

Tests bayésiens.

Applications : inférence bayésienne dans les modèles de régression, dans les processus stochastiques.

Calcul numérique des estimateurs bayésiens : méthodes MCMC, Gibbs sampling

Mode d'évaluation :	Examen
---------------------	--------

Références (Livres et polycopiés, sites internet, etc).

C. Robert. *Le choix bayésien: Principes et pratique*. Springer Science & Business Media, 2006.

C. Robert, et G. Casella. *Méthodes de Monte-Carlo avec R*. Springer Science & Business Media, 2011.

Etablissement: USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 03

Matière 2 : Estimation non Paramétrique

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

L'étudiant sera capable de répondre au problème de l'estimation, à partir de données, une fonction inconnue, élément d'une certaine classe fonctionnelle assez vaste.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Probabilités, Estimation, Convergences, Tests Statistiques.

Contenu de la matière :

- 1- Estimateur par histogramme (construction et risque quadratique, choix de la partition par validation croisée)
- 2- Estimateur à noyau (vitesse de convergence, choix de la fenêtre)
- 3- Estimateur à noyau des k plus proches voisins
- 4- Cas des densités multivariées (Généralisation des estimateurs précédents)
- 5- Estimation non-paramétrique en modèles de durées de vie (estimateur de Kaplan-Meir, estimateur de Lynden-Bell)

Mode d'évalu	lation:Examen
Références	(Livres et polycopiés, sites internet, etc).

- 1- Marshall A. W. and Olkin I., life distribution, structure of nonparametric, semiparametric and parametric families (2007). Springer Series in Statistics.
- 2- Silverman B.W., density estimation for statistics and data analysis (1998) Chapman & HALL
- 3- Tsybakov A.B., Introduction à l'estimation non-paramétrique (2003). Springer

Etablissement :USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 3

Matière 1: Plans d'Expériences

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

Cette matière permet aux étudiants de maîtriser cette technique de planification des expériances et d'analyse de la variance

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes). Enseignements de la première année de la formation.

Contenu de la matière :

Introduction générale à la planification des expériences ; anova à un seul facteur contrôlé ; plan d'expériences à deux facteurs ;plans à trois facteurs ;plans en blocs incomplets ; plans factoriels à deux niveaux.

Mode d'évaluation :	.Examen

Références (Livres et polycopiés, sites internet, etc).

-Anderson,V.L and MacLean R.A :Design of experiments :A realistic approach.NY,Marcel(1974)

Cochran, W.G; and G.M.Cox: Experimental design. Second Edition. NY; Wiley (1957).

Mead,R!Rhe design of experiments.Statistical principles for practical applications.Cambridge;Cambridge University Press.(1988,1991)

Etablissement: USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 3

Matière 1 : Enquêtes et Sondages

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

Maîtriser les différentes techniques de conduite d'une enquête et d'un sondage.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Algèbre et analyse de 1^{ère} année universitaire ainsi qu'un bagage de base en probabilités et statistiques acquis généralement en licence.

Contenu de la matière :

Introduction et considérations générales –Echantillon simple sans remise-Estimateur ratio et estimateur de régression-échantillon stratifiés-sondages par grappe-Autres plans de sondages-

Mode d'évaluation ·	Examen	

Références (Livres et polycopiés, sites internet, etc).

-Traitement d'enquêtes :Lebart et all (Ecole Modulad) 1998.

Etablissement :USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 3

Matière 1 (au choix): Statistique des Valeurs Extrêmes

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes). Utiliser les techniques de la theorie des valeurs extrêmes en environnement et Finance.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes). Statistique Inférentielle Avancée, Statistique non Paramétrique

Contenu de la matière :

- 1- Distributions limites des extrêmes et domaines d'attraction
- 2- Statistiques d'ordre et extrêmes
- 3- Estimation et test pour distributions des valeurs extrêmes
- 4- Quantiles extrêmes

Références (Livres et polycopiés, sites internet, etc).

- **Laurens de Haan, Ana Ferreira,** *Extreme value Theory: An Introduction.* Springer, 2006.
- Coles, S., An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag, 2001.

Etablissement :USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 3

Matière 2 (au choix): Biostatistique

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

L'étudiant sera capable de modéliser la distribution des observations, de tester le modèle à l'aide d'un test adéquat et de comparer deux populations.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Probabilités, Estimation, Tests Statistiques

Contenu de la matière :

- 1- Tests statistiques utilisés en médecine et en biologie
- 2- Analyse de corrélation (Corrélation de Pearson, Corrélation versus causalité)
- 3- Modèles de régression
- 4- Régression avec prédicteurs binaires (Comparaison de deux groupes, Comparaison de deux groupes dans une étude, Comparaison de deux groupes dans un essai clinique, Analyse de variance, Analyse de covariance)
- 5- Régression logistique (Odds et odds-ratio, Étude cas-témoins, Régression logistique simple, Régression logistique multiple, Comparaison de deux groupes dans un essai clinique, Sensibilité, spécificité et courbe ROC)
- 6- Analyse de survie

Mode d'évalı	uation :	Examer	า		
D	// :			N	

Références (Livres et polycopiés, sites internet, etc).

- 1- Frontier S, Davoult D, Gentilhomme V & Lagadeuc, Statistique pour les sciences de la vie et de l'environnement. Cours et exercices corrigés. Y. (2007) Dunod.
- 2- Scherrer B. 2008-2009. Biostatistiques volumes 1 et 2. (2008-2009) Gaëtan Morin
- 3- Triola MM & Triola MF. Biostatistics for the Biological and Health Science(2006). Pearson.

Etablissement: USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»

Semestre: 3

Matière 1 : Data Mining

Enseignant responsable de la matière :

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

Le but du Data Mining est de découvrir des structures dans de vastes ensembles de données.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes). Analyse de Données et Classification (S2)

Contenu de la matière :

- 1- Introduction to Data Mining
- 2- Data Warehouse and OLAP
- 3- Data preprocessing
- 4- Data mining knowledge representation
- 5- Attribute-oriented analysis
- 6- Data mining algorithms: Association rules
- 7- Data mining algorithms: Classification
- 8- Data mining algorithms: Prediction
- 9- Mining real data
- 10- Clustering
- 11- Data Mining software and applications

Mode d'évaluation :	Examen
---------------------	--------

Références (Livres et polycopiés, sites internet, etc).

- Des données à la connaissance, une introduction au data-mining. Daniel T-Larose. Vuibert, Paris, 2005. Traduction de An introduction to data-mining, New-York, 2005. Inclus: une version d'évalution de Clémentine (SPSS).
 - Data mining et statistique décisionnelle. Stéphane Tuffery. Editions Technip, Août 2005.
- Introduction au Data Mining, Analyse intelligente des données. Michel Jambu. Eyrolles, 1999.

Etablissement: USTHB

Intitulé du master : « Statistique et Probabilités Appliquées»