UNSUPERVISED REPRESENTATION

LEARNING WITH DEEP

CONVOLUTIONAL GENERATIVE

ADVERSARIAL NETWORKS

Name • Maab Elrashid Ahmed Mohamed

Outline

- 1. Core idea of the paper.
- 2. Novel model architecture.
- 3. Implementation approach.
- 4. Personal experiments.
- 5. Comparison between the original and personal results.
- 6. Challenges and future work.

---Idea

Unsupervised Learning

- We have data without labels, to learn the hidden structure of the data.
- E.g. clustering, dimensionality reduction, feature learning, etc.

GANs

DCGANs

- This paper introduces a version of GAN called Deep Convolutional Generative Adversarial Networks (**DCGAN**), which are stable to train in most settings.
- This by removing the fully connected layers that in GANs and replacing any pooling layers with strided convolutions. It is illustrated in the next section.

Architecture of DCGANs

Generator Network

Methodology

- To prevent mode collapse, Batch Normalization has been used.
- The **generator** uses **ReLU** activations for all layers except the output, which uses **Tanh**.
- The discriminator uses LeakyReLU activations for all layers. the last layer is flattened and then fed into a single sigmoid output.
- Dropout was used to decrease the likelihood of memorization.

Experiments

Paper Experiment Settings

- Datasets: Large Scale Scene
 Understanding (LSUN), Imagenet-1K,
 and assembled Faces dataset.
- Minibatch size of 128.
- LeakyRelu slope of 0.2.
- Using Adam optimizer, with learning rate of 0.0002, and a momentum term of 0.5.

Personal Experiment Settings

- Dataset: celebA, which contains faces of celebrities.
- Using the same experimental settings mentioned in the paper, to preserve the stability of the model.
- Implementation: available <u>here</u>.

Results

Paper Results

Personal Results

Fake Images

Interpolation

Vector Math

Vector Math

Future work

Extending this framework to other domains, such as videos and audio.

Thank you..