- Graph G: abstrakte Struktur, die eine Menge von Objekten, oder Knoten V, mit zwischen diesen Objekten bestehenden Verbindungen, oder Kanten E, repräsentiert.
- Notation: Graph G = (V, E) hat n Knoten und m Kanten.

- Mehrfachkanten sind möglich (z.B. U-Bahn Schienennetz)
- Gerichtete Graphen: Jede Kante hat eine Richtung
 - $u \longrightarrow v$ oder [u, v)
- Ungerichtete Graphen: Kanten verlaufen in beide Richtungen

$$u \longleftrightarrow v$$
 oder $u \longrightarrow v$ oder $\{u, v\}$

Kante in ungerichtetem Kanten entspricht Paar von ungerichteten Kanten

$$u - v$$
 entspricht $u > v$

- ► Ungerichteter Graph (V, E): Bei Kante e = {u, v} ∈ E sagt man u und v sind Nachbarn, oder u und v sind adjazent. Weiters u (und v) sind inzident zu e. Neigh(u) ist der Menge der Nachbarn von u. Der Grad von u ist deg(u) = |Neigh(u)|.
- Gerichteter Graph (V, E): $\operatorname{Out}(u) = \{v \in V \mid [u, v) \in E\} \text{ und } \operatorname{outdeg}(u) = |\operatorname{Out}(u)|.$ $\operatorname{In}(u) = \{x \in V \mid [x, u) \in E\} \text{ und } \operatorname{indeg}(u) = |\operatorname{In}(u)|.$

Repräsentation von Graphen

- Adjazenzliste: jeder Knoten u kennt eine Liste mit den Endpunkten der von u ausgehenden Kanten (also Out(u)).
 - ▶ Platzbedarf O(n + m)
 - ▶ Um Frage zu beantworten, ob Kante [u, v) existiert, benötigt man O(outdeg(u)) = O(n) Zeit.
- Adjazenzmatrix: binäre Matrix der Dimension n x n, die an Stelle [u, v⟩ genau dann eine 1 hat, wenn die Kante (u, v) in G ist
 - ▶ Platzbedarf O(n²)
 - Um Frage zu beantworten, ob Kante (u, v) existiert, benötigt man O(1) Zeit
 - Bei ungerichteten ist die Adjazenzmatrix symmetrisch (und hat reelle Eigenwerte).

- Pfad: Folge von Knoten v₁, v₂,..., v_k, bei der aufeinanderfolgende Knoten v_i und v_{i+1} durch Kanten verbunden sind.
- Weg: Pfad, bei dem sich alle Knoten voneinander unterscheiden.
- Zyklus: Pfad, bei dem sich alle Knoten voneinander unterscheiden, außer daß erster und letzter Knoten übereinstimmen.
- Graph mit Zyklus heißt zyklisch. Graph ohne Zyklen heißt azyklisch.

Gerichtete Azyklische Graphen Directed Acyclic Graphs (DAG)

Kommen in vielen Anwendungen (z.B. Studienordnung) vor

- Quelle: Knoten mit Eingangsgrad Null
- Senke: Knoten mit Ausgangsgrad Null
- Lemma: Jeder DAG hat mindestens eine Quelle und mindestens eine Senke.

Beweis: Betrachte Pfad mit maximaler Anzahl von Kanten: kann keinen Zyklus enthalten; erster Knoten auf Pfad muss Quelle sein, letzter eine Senke.

Topologische Sortierung

- Notenordnung, in der für jede gerichtete Kante [u, v) der Knoten u vor dem Knoten v in der Ordnung kommt, heißt topologische Sortierung
- ► Satz: Ein gerichteter Graph G besitzt genau dann eine topologische Sortierung, wenn G azyklisch ist.
- Algorithmus zum Finden einer topologischen Sortierung (Laufzeit O(n + m)):
 - 1. Finde eine Quelle q von G
 - 2. Füge q als nächstes Element in der Sortierung ein
 - 3. Entferne q und alle von q ausgehenden Kanten von G
 - 4. Wiederhole bis G keine Knoten mehr enthält

Laufzeit O(n+m), wenn man indeg(v) für jeden Knoten v aufrechterhält sowie die Menge aller Quellen.

Tiefensuche oder Depth First Search (DFS) Lexikographisch kleinste Wege

- Lexikographische Vergleiche: L geordnete Menge Strings $a = a_1 a_2 \cdots a_k$ und $b = b_1 b_2 \cdots b_\ell$ aus L^* $a \prec b$ (a lexikographisch kleiner als b) wenn
 - 1. k = 0 und $\ell > 0$ oder sonst
 - 2. $a_1 < b_1$ oder sonst
 - 3. $a_1 = b_1 \text{ und } a_2 \cdots a_k \prec b_2 \cdots b_\ell$
- ▶ $\mu: E \longrightarrow L$ Kantenbeschriftung in gerichtetem Graphen G = (V, E) ist *valide* wenn $\mu([u, v)) = \mu([u, w)) \Longrightarrow v = w$ also, verschiedene v verlassende Kanten haben verschiedene Beschriftungen
- Pfadbeschriftung: p sei Pfad v = v₀, v₁, · · · , v_k = w von v nach w μ(p) ist der String μ([v₀, v₁⟩)μ([v₁, v₂⟩) · · · μ([v_{k-1}, v_k⟩)
- Pfadvergleich: p und q zwei Pfade die gemeinsamen Anfange habe. p ist kleiner als q, wenn $\mu(p) \prec \mu(q)$.

Graph mit valider Kantenbeschriftung (durch Knotenordnung induziert)

Drei Pfade von a nach e:

$$p = [a, h, f, b, e]$$
 mit Beschriftung 8,6,2,5
 $q = [a, b, e]$ mit Beschriftung 2,5
 $r = [a, b, c, e]$ mit Beschriftung 2,3,5

 ${\it r}$ ist der lexikographisch kleinste dieser drei Pfade, und auch insgesamt der kleinste aller Pfade von a nach e

Notation: $lkW_s(v)$ sei der lex-kleinste-Weg von s nach v.

Präfix-Lemma: Die Knoten, die sowohl auf $lkW_s(v)$ wie auch auf $lkW_s(w)$ liegen, bilden einen gemeinsamen Präfix (Anfangsstück) dieser beiden Wege.

Beweis: Anfangsknoten *s* auf beiden Wegen. Wenn die gemeinsamen Knoten keinen gemeinsamen Präfix bilden, dann ist mindestens einer der beiden Wege kein lex-kleinster Weg.

Korrolar des Präfix-Lemmas: G = (V, E) gerichteter Graph, $s \in V$ und $V_s \subset V$ die Menge der Knoten, die von s erreichbar sind (d.h. es gibt einen Weg)

Die Menge alles lex-kleinsten Wege, die in s beginnen, also $\{lkW_s(v) \mid v \in V_s\}$ bilden bilden einen Baum mit Wurzel s, den lex-kleinsten-Wege-Baum T_s von s.

 T_s ist ein aufspannender Baum von V_s .

12

Augmentierung eines gerichteten Graphens

G=(V,E) gerichteter Graph (Quellen)-Augmentierung von G zu $G_\lozenge=(V_\lozenge,E_\lozenge)$ mit $V_\lozenge=V\cup\{\lozenge\}$ und $E_\lozenge=E\cup\{[\lozenge,v\rangle\,|\,v\in V\}$ In G_\lozenge sind alle Knoten von \lozenge erreichbar. Die lex-kleinste-Wege-Baum T_\lozenge ist ein aufspannender Baum von V_\lozenge und induziert einen aufspannenden Wald von V.

Nummerierungen von Knoten in Bäumen

T ein Baum, geordnet, in dem Sinn, dass für jeden Knoten die Kinder geordnet sind (z.B. über Kantenbeschriftung)

Präordnung: Nummeriere zuerst die Wurzel und dann rekursiv den Teilbaum jedes Kindes (entsprechend der Kinderordnung)

Postordnung: Nummeriere zuerst rekursiv die Kinder (entsprechend der Kinderordnung) und zuletzt die Wurzel

*d-f-*Nummerierung:

```
global variable z:=0
dfnum(root of T) where
dfnum(v) =
   d[v]:=++z
   foreach child w of v in order do dfnum(w) od
   f[v]:=++z
```

Nummerierungen von Knoten in Bäumen

Präordnungsnummerierur Postordnungsnummerieru

Bei einem lex-kleinster-Wege-Baum T_s ist die Präordnungszahl jedes Knoten v genau der Rang von $lkW_s(v)$ in der lexikographischen Ordnung aller lex-kleinsten Wege aus s, also $\{lkW_s(v) \mid v \in V_s\}$.

Nachkommen-Lemma: G = (V, E) gerichteter Graph, $s \in V$ und T_s lex-kleinster-Wege-Baum

Es sei $v \in V$ und es sei $w \in V$ von v erreichbar und es gelte $lkW_s(v) \prec lkW_s(w)$.

Dann ist $lkW_s(v)$ ein Präfix von $lkW_s(w)$, oder anders gesagt, w ist ein Nachkomme von v im Baum T_s .

Beweis: Nimm an, die Aussage stimmt nicht, und $s = v_0, v_1, \ldots, v_k = v$ sei $lkW_s(v)$ und $s = v_0, \cdots, v_h, w_{h+1}, \cdots, w_\ell = w$ sei $lkW_s(w)$ mit h < k.

Wenn $u(v_k, w_{h+1}) < u(v_k, v_{h+1})$ dann widerspricht das der Annahme

Wenn $\mu([v_h, w_{h+1}\rangle) < \mu([v_h, v_{h+1}\rangle)$, dann widerspricht das der Annahme $lkW_s(v) \prec lkW_s(w)$.

Wenn $\mu([v_h,w_{h+1}\rangle)>\mu([v_h,v_{h+1}\rangle)$, dann wäre der Weg von s nach w, der sich aus ${\rm lkW}_s(v)$ und dem wegen der angenommenen Erreichbarkeit existierenden Weges von v nach w ergibt, lexikographisch kleiner als ${\rm lkW}_s(w)$, also ${\rm lkW}_s(w)$ nicht richtig.

