差分放大

有源

作业示例 17.1

推挽放大器

図 俩 BJT: $\beta = 100$, $r_b = 1$ KΩ, $r_e = 100$ Ω.

☑ 请估算和分析:

- a) $V_S=0$ 时,电路的静态功耗?
- b) 放大器的 A_V, R_i, R_o?
- c) 输出到 R_I 的线性动态范围是多少?

a)静态功耗?

 $r_e = 100\Omega$

 \rightarrow $I_{CO1} \approx I_{CO2} \approx 26 \text{mV/r}_{e} = 0.26 \text{mA}$

 $V_{R1} = 10-0.7V$ $\rightarrow I_{R1} \approx I_{R2} \approx 9.3V/93K\Omega = 0.1mA$

静态功耗 ≈ (10+10)V * (0.26+0.1)mA ≈ 7.2mW

b) A_V , R_i , R_o ?

正半周: (二极管动态电阻 r_{D1} ≈r_{D2} ≈ 26mV/I_{D10} = 260Ω

T1 基极向内的电阻 $R_{Bi} = r_b + (1+\beta)(r_e + R_I) \approx \beta R_I = 10^6 \text{ k}\Omega$

故: $R_{i+} = (r_{D2} + R_2) / [r_{D1} + (R_1 / / R_{Bi})] \approx 93 K / / 93 K \approx 46.5 K \Omega$

 T_1 基极向左的电阻 $R_B = R_1//[r_{D1} + (r_{D2} + R_2)//r_s] \approx 93K//[260 + (260 + 93K)//1K] \approx 1.2K$

故: $R_{0+} = r_{e1} + (r_{b1} + R_B)/(1+\beta) \approx 100 + 2.2 \text{K}/100 \approx 120\Omega$

 \overline{m} : $A_{V+} = R_{i+}/(R_{i+}+r_s) * (R_1//R_{Bi})/(r_{D1}+R_1//R_{Bi}) * (1/R_{Bi}) * \beta * R_L * 0.98$

负半周: 与正半周相同(虽然一般会略有不同,但本题的理想假设下,确实相同)。

c) 线性动态范围? 看似只要 $V_{R1} > 0$,即可确保 T_1 在线性区。

但正半周 V_{RL} 增加时,需有一定的 I_{C1} 和 I_{B1} ,而 $I_{R1} \ge I_{B1}$ (D_1 电流不可能向上)

可令 $I_{D1} = 0$ 作为临界条件,此时: $10 = I_{R1}*R_1 + 0.7 + (1+β)R_1 \rightarrow I_{R1} = 8.5uA$

于是此时: V_{R1} = 790mV, 故 V_{omax} ≈ 10-0.79-0.7 = 8.5V

利用对称性可知,线性动态范围为: [-8.5V, 8.5V]

差分放大

有

源

偏

运放

作业示例 17.2

差分放大器

☑ 右图中,两个BJT的 β =100, r_b ≈1KΩ。 R_c =10KΩ, R_L =10KΩ。 C = 10uF V_{CC} =15V, V_{EE} =-15V, R_E =14.3KΩ。 信号源 V_1 和 V_2 是纯正弦电压源。

$V_{cc} + 15V$ R_{c} R_{c}

请完成下列计算:

- a) T_1 和 T_2 的的静态工作点 和 T_e
- b) 当 $V_2 = 0$ 时,从 V_1 到 V_{RL} 的电压增益: $A_{V1} = V_{RL} / V_1 |_{V_2 = 0}$
- c) 当 $V_1 = 0$ 时,从 V_2 到 V_{RL} 的电压增益: $A_{V2} = V_{RL} / V_2 |_{V_1 = 0}$
- d) 差模增益 A_{VD} = V_{RL} / (V₁-V₂)
- e) 共模增益 A_{VC} = V_{RL} / [(V₁+V₂)/2]
- f) 共模抑制比 K_{CMR} = A_{VD}/A_{VC}
-) 电路的 f_L是多少?

- a) $V_{BQ} = 0$; $V_{EQ} = -0.7V$ $I_{EQ} = (-0.7 V_{EE})/R_E/2 = 0.5 \text{mA} \approx I_{CQ}$ \rightarrow $I_{BQ} = 5 \text{uA}$; $V_{CQ} \approx V_{CC} V_{RC} = 10 \text{V}$ $r_{e1} = r_{e2} = 26 \text{mV}/I_{EQ} = 52 \Omega$, (此时: $r_{be} = r_b + (1 + \beta)r_e \approx 6.2 \text{K}\Omega$)
- b) 注意此时 T_1 为 CE 组态,发射极外电阻是 $R_E || r_{eb2} \approx r_{eb2} = 62\Omega$ $A_{v_1} = V_{RL}/V_1 |_{V_2=0} = -\beta (R_c || R_L)/[r_{b1} + (1+\beta)(r_{e1} + R_E || r_{eb2})] \approx -40$
- c) 此时T1、T2为级联放大器: T_1 为 CB 组态, T_2 为 CC 组态 $A_{V2} = V_{RL}/V_2 |_{V_1=0} = V_2/[r_{be2} + (1+\beta)(R_E||r_{eb1})] * (1+\beta) * (R_E||r_{eb1}) / r_{eb1} * \beta/(1+\beta) (R_c||R_L) / V_2 \approx 40$
- d) 差模输入时, R_E 上端为动态地(交流电压为零),将电路裂开: $A_{VD}=-\beta(R_c||R_L)/2r_{be}=-40$
- e) 共模输入时,将 R_E 看为两个 $2R_E$ 电阻的并联,然后再根据对称性将电路裂开: $A_{VC} \approx -\beta(R_c||R_L)/[r_b+(1+β)(r_e+2R_E)] = -0.175$
- f) Kcmr= $|AvD/Avc| \approx 230$
- g) 电路中只有一个耦合电容C, 它决定了电路的低半功率点。 计算其时间常数可知: τ = RC = (R_C+R_L)*10uF = 0.2 → f_L ≈ 1/(2 π τ) ≈ 0.8Hz

