

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based

Inversion
Sort-based

Inversion

Multiway Merging In-place

Merging

Comparison of

Inversion Methods

Processamento e Recuperação de Informação Efficient Index Construction

Departamento de Engenharia Informática Instituto Superior Técnico

1^o Semestre 2018/2019

Outline

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based

Sort-based

Multiway Merging

In-place Merging

Comparison of Inversion
Methods

Basic Concepts

2 Index Construction

Memory-Based Inversion

4 Sort-based Inversion

Multiway Merging

6 In-place Merging

Comparison of Inversion Methods

Bibliography

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based

Inversion Multiway

Merging In-place Merging

Comparison of Inversion
Methods

Managing Gigabytes: Compressing and Indexing Documents and Images - 2nd edition Ian H. Witten, Alistair Moffat, Timothy C. Bell Morgan Kaufmann 2000

Outline

Processamento e Recuperação de Informação

Basic Concepts

Basic Index

Construction Memory-Based

Inversion Sort-based Inversion

Multiway Merging In-place

Merging Comparison of Inversion Methods

Text Indexes

Processamento e Recuperação de Informação

Basic Concep

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion
Methods

- An index is a mechanism to locate a given term in the document collection
- Index types:
 - inverted files
 - signature files
 - bitmaps

Definitions

Processamento e Recuperação de Informação

Basic Concep

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

- A document collection is a set of separate documents
- Documents are composed of terms
- Indexes provide efficient access to the documents given one or more terms
- Indexes can have different granularities:
 - ullet set of documents o document $o \cdots o$ paragraph o word

A Document Collection

Processamento e Recuperação de Informação

Basic Concep

Index Construction

Memory-Based

Inversion
Sort-based
Inversion

Multiway

Merging In-place

Merging

Comparison of Inversion

Methods

Doc. Text

- 1 That government is best which governs least
- 2 That government is best which governs not at all
- The mass of men serve the state not as men, but as machines
- 4 Wooden men can be manufactured that will serve the purpose as well
- 5 Government is at best but an expedient
- 6 But most governments are usually inexpedient

An Inverted File

13

14

Processamento e Recuperação de Informação

Basic Concept

Index Construction

Memory-Based

Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

Lexicon				
	Num.	Term		
	1	best		
	2	expedient		
	3	government		
	4	governs		
	5	inexpedient		
	6	least		
	7	machines		
	8	manufactured		
	9	mass		
	10	men		
	11	purpose		
	12	serve		

state

wooden

nverted file					
	Num.	Inverted list			
	1	$\langle 3; 1, 2, 5 \rangle$			
	2	$\langle 1; 5 \rangle$			
	3	$\langle 4; 1, 2, 5, 6 \rangle$			
	4	$\langle 2; 1, 2 \rangle$			
	5	$\langle 1; 6 \rangle$			
	6	$\langle 1; 1 \rangle$			
	7	$\langle 1; 3 \rangle$			
	8	$\langle 1; 4 \rangle$			
	9	$\langle 1; 3 \rangle$			
	10	$\langle 2; 3, 4 \rangle$			
	11	$\langle 1; 4 \rangle$			
	12	$\langle 2; 3, 4 \rangle$			
	13	$\langle 1; 3 \rangle$			
	14	$\langle 1; 4 \rangle$			

Inverted file with word granularity

Processamento e Recuperação de Informação

Basic Concept

Index Construction

Memory-Based

Inversion
Sort-based
Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

Inverted File		
	Num.	Inverted list
•	1	$\langle 3; (1;4), (2;4), (5;4) \rangle$
	2	$\langle 1; (5;7) \rangle$
	3	$\langle 4; (1;2), (2;2), (5;1), (6;3) \rangle$
	4	(2;(1;6),(2;6))
	5	$\langle 1; (6;6) \rangle$
	6	$\langle 1; (1;7) \rangle$
	7	$\langle 1; (3; 13) \rangle$
	8	$\langle 1; (4;5) \rangle$
	9	$\langle 1; (3;2) \rangle$
	10	$\langle 3; (3;4), (3;10), (4;2) \rangle$
	11	$\langle 1; (4; 10) \rangle$
	12	(2; (3; 5), (4; 8))
	13	$\langle 1; (3;7) \rangle$
	14	$\langle 1; (4;1) \rangle$

Processamento e Recuperação de Informação

Basic Concep

Index Construction

Memory-Based

Inversion
Sort-based

Inversion Multiway

Merging In-place Merging

Comparison of Inversion Methods

Processamento e Recuperação de Informação

Basic Concep

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

- Query processing involves searching the index and manipulating the inverted lists
- For instance:

Processamento e Recuperação de Informação

Basic Concep

Index Construction

Memory-

Based Inversion

Sort-based Inversion

Multiway Merging In-place

Merging

Comparison of Inversion

Methods

- For instance:
 - Query "government and men"

Processamento e Recuperação de Informação

Basic Concep

Index Construction

Memory-

Based Inversion

Sort-based Inversion

Multiway Merging In-place

Merging

Comparison of Inversion

Methods

- For instance:
 - Query "government and men" ⇒ intersection between inverted lists 3 and 10 (= ∅);

Processamento e Recuperação de Informação

Basic Concep

Index Construction

Memory-

Based Inversion

Sort-based Inversion

Multiway Merging In-place

Merging

Comparison of Inversion

Methods

- For instance:
 - Query "government and men" \Rightarrow intersection between inverted lists 3 and 10 (= \emptyset);
 - Query "men or machines"

Processamento e Recuperação de Informação

Basic Concep

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging In-place

Merging

Comparison of Inversion

Methods

- For instance:
 - Query "government and men" ⇒ intersection between inverted lists 3 and 10 (= ∅);
 - Query "men or machines" \Rightarrow union between inverted lists 10 and 7 (= $\{3,4\}$);

Processamento e Recuperação de Informação

Basic Concep

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging In-place

Merging

Comparison of Inversion

Methods

- For instance:
 - Query "government and men" ⇒ intersection between inverted lists 3 and 10 (= ∅);
 - Query "men or machines" \Rightarrow union between inverted lists 10 and 7 (= {3,4});
 - Query "men and not machines"

Processamento e Recuperação de Informação

Basic Concep

Index Construction

Memory-

Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion
Methods

- Query processing involves searching the index and manipulating the inverted lists
- For instance:
 - Query "government and men" ⇒ intersection between inverted lists 3 and 10 (= ∅);
 - Query "men or machines" \Rightarrow union between inverted lists 10 and 7 (= $\{3,4\}$);
 - Query "men and not machines" ⇒ inverted list 10 except inverted list 7 (= {4});

Processamento e Recuperação de Informação

Basic Concep

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods Query processing involves searching the index and manipulating the inverted lists

- For instance:
 - Query "government and men" ⇒ intersection between inverted lists 3 and 10 (= ∅);
 - Query "men or machines" \Rightarrow union between inverted lists 10 and 7 (= {3,4});
 - Query "men and not machines" ⇒ inverted list 10 except inverted list 7 (= {4});

More on this later...

Outline

Processamento e Recuperação de Informação

Basic Concepts Index

2 Index Construction

Construction Memory-

Based Inversion

Sort-based Inversion Multiway Merging

In-place Merging Comparison of Inversion

Methods

An example collection

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based

Inversion
Sort-based
Inversion

Multiway

Merging In-place Merging

Comparison of Inversion Methods

Text size	В	5×10^9 bytes
N. of Documents	Ν	$5 imes10^6$
N. of distinct terms	n	$1 imes10^6$
Total n. of terms	F	$800 imes 10^6$
N. of index pointers	f	$400 imes 10^6$
Size of compressed inverted file	1	400×10^6 bytes
Size of lexicon	L	3×10^6 bytes
Disk seek time	t_s	$10 imes 10^{-3}~\text{sec}$
Disk transfer time per byte	t_r	$0.5 imes 10^{-6}~\text{sec}$
Coding time per byte	t_d	$5 imes 10^{-6}~\text{sec}$
Time to compare and swap 10 byte records	t_c	$10^{-6}~{ m sec}$
Time to parse, stem, look up one term	t_p	$20 imes 10^{-6}~\text{sec}$
Amount of main memory available	M	40×10^6 bytes

A naive solution

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based

Inversion
Sort-based

Inversion Multiway

Merging In-place Merging

Comparison of Inversion Methods Oreate a document x term frequency matrix

doc term	1	2	3	4	
1	2	1	-	-	
2	-	-	-	2	
3	1	1	-	3	
4	6	1	-	-	

2 Write matrix to disk one column at a time

A naive solution

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

• Create a document×term frequency matrix

doc term	1	2	3	4	
1	2	1	-	-	
2	-	-	-	2	
3	1	1	-	3	
4	6	1	-	-	

Write matrix to disk one column at a time

Memory requirements (using 4 bytes/entry):

$$4 \times 1000000 \times 5000000 = 18$$
 Tbytes

Outline

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Memory-Based Inversion

Sort-based Inversion Multiway Merging

Merging Comparison of Inversion

In-place

Methods

Memory-Based Inversion

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-

Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

Memory-Based Inversion

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based

Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

Time requirements

$$T = Bt_r + Ft_p + I(t_d + t_r)$$
 \uparrow
parse text write file
 $\approx 6h$

B = text size

F= n. terms

 $t_r = \text{transfer rate}$ $t_D = \text{parse time}$

 $I_p = \text{parse time}$ I = file size

 $t_d = \text{coding time}$

Memory-Based Inversion

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based

Inversion Multiway

Merging

In-place Merging

Comparison of Inversion Methods

Time requirements

$$T = Bt_r + Ft_p + I(t_d + t_r)$$
 \uparrow

parse text write file

 $\approx 6h$

Space requirements

$$S = (4+4+2) \times 4000000000$$
 $\uparrow \qquad \uparrow$
pointer size n. of pointers
 $\approx 4Gb$

Outline

Processamento e Recuperação de Informação

Basic Concepts Index

Construction Memory-Based

Inversion Sort-based Inversion

Sort-based Inversion

Multiway Merging In-place

Merging Comparison of Inversion Methods

Sort-based Inversion

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based

Multiway Merging

In-place Merging

Comparison of Inversion Methods

- If virtual memory was used, the dictionary-based algorithm would take about 6 weeks to index the 5 Gbyte collection
- Mainly due to disk seek time
- Solution: allow only sequential disk access

Sort-based Inversion Algorithm (I)

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods Create an empty dictionary structure S;
 Create an empty temporary file T on disk;

- For each document D_d $(1 \le d \le N)$:
 - Read and parse D_d ;
 - **2** For each triple $\langle t, d, f_{d,t} \rangle$
 - Store t in S;
 - Store $\langle t, d, f_{d,t} \rangle$ in T:

Sort-based Inversion Algorithm (II)

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods Second the second tension is a second to the second that fit in memory

- Read k records from T;
- Sort according to t and d;
- Write the sorted run into T:
- Repeat until all runs are sorted;
- Pairwise merge the sorted runs;

Sort-based Inversion Algorithm (II)

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods Second the second tension is a second to the second that fit in memory

- \bullet Read k records from T;
- Sort according to t and d;
- Write the sorted run into T;
- Repeat until all runs are sorted;
- Pairwise merge the sorted runs;

Sort-based Inversion Algorithm (III)

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods • For each term t $(1 \le t \le n)$:

- Start a new inverted file entry;
- **②** Read all triples $\langle t, d, f_{d,t} \rangle$ from T and form the inverted list of t;
- Compress the inverted list;
- Append the list to the inverted file.

T $\langle 1, 1, 1 \rangle$			
$ \langle 2,1,1\rangle $		t	Inverted list
$\langle 2,2,1 \rangle$	_	1	$\langle 1; (1;1) \rangle$
$\langle 3,1,1 \rangle$		2	$\langle 2; (1;1), (2;1) \rangle$
$\langle 3, 2, 1 \rangle$		3	$\langle 2; (1;1), (2;1) \rangle$
$\langle 4,1,1 \rangle$	′	4	$\langle 2; (1;1), (2;1) \rangle$
$\langle 4, 2, 1 \rangle$		5	$\langle 2; (1;1), (3;1) \rangle$
$\langle 5,1,1 \rangle$		6	$\langle 1; (3; 2) \rangle$
$\langle 5, 3, 1 \rangle$			
$\langle 6, 3, 2 \rangle$			

. . .

Sort-based Inversion Requirements

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

Time requirements

$$\begin{array}{lll} \textit{T} = & \textit{Bt}_r + \textit{Ft}_p + 10\textit{ft}_r & \leftarrow & \text{read,parse,write} \\ & + 20\textit{ft}_r + \textit{R}(1.2\textit{k}\log\textit{k})\textit{t}_c & \leftarrow & \text{sort runs} \\ & + \lceil \log\textit{R} \rceil (20\textit{ft}_r + \textit{ft}_c) & \leftarrow & \text{merge runs} \\ & + 10\textit{ft}_r + \textit{I}(\textit{t}_d + \textit{t}_r) & \leftarrow & \text{write inverted file} \\ \end{array}$$

 $\approx 20h$

B = text size $t_r = \text{transfer rate}$

F = total n. terms

F = total n. terms

 $t_p = parse time$ f = n, index pointers

R = n. runs

k = size of run

 $t_c = \text{compare} + \text{swap}$

I = file size

 $t_d = \text{coding time}$

Sort-based Inversion Requirements

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

Time requirements

$$T = Bt_r + Ft_p + 10ft_r \leftarrow \text{read,parse,write} \\ +20ft_r + R(1.2k \log k)t_c \leftarrow \text{sort runs} \\ +\lceil \log R \rceil (20ft_r + ft_c) \leftarrow \text{merge runs} \\ +10ft_r + I(t_d + t_r) \leftarrow \text{write inverted file} \\ pprox 20h$$

Space requirements

$$S = 10 \times 400\,000\,000 \times 2$$
 \uparrow

temp. file size plus one copy

 $\approx 8Gb$

Compression of the Temporary File

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based

Multiway Merging

In-place Merging

Comparison of Inversion Methods

- The $\langle t, d, f_{d,t} \rangle$ triples can be compressed
 - For $\langle d, f_{d,t} \rangle$ we can use methods appropriate for index compression (which is another subject altogether)
 - \bullet E.g., Elias- δ and unary coding

Compression of the Temporary File

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion
Methods

- The $\langle t, d, f_{d,t} \rangle$ triples can be compressed
 - For $\langle d, f_{d,t} \rangle$ we can use methods appropriate for index compression (which is another subject altogether)
 - \bullet E.g., Elias- δ and unary coding
- How to code *t*?

Using Gaps

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based

Multiway Merging In-place

Merging

Comparison of Inversion

Methods

 Term numbers can be coded as sequences of t-gaps within each sorted run

$$\begin{array}{c|c} \dots & & & \dots \\ \langle 2,2,1\rangle & & & \langle 2,2,1\rangle \\ \langle 4,1,1\rangle & & & \langle 3,1,1\rangle \\ \langle 5,1,1\rangle & & & \dots \\ \end{array}$$

- A t-gap x is encoded as value x + 1, using unary coding
- The same can be applied for d, within the term triples

Compression Requirements

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

Time requirements

- Runs must be sorted before writing to disk
- \bullet Must share space with dictionary \Rightarrow shorter initial runs \Rightarrow more runs to merge
- Requirements:

$$T = Bt_r + Ft_p \qquad \leftarrow \quad \text{read,parse} \\ + R(1.2k \log k)t_c + l'(t_r + t_d) \qquad \leftarrow \quad \text{sort,compress,write} \\ \lceil \log R \rceil (2l'(t_r + t_d) + ft_c) \qquad \leftarrow \quad \text{merge runs} \\ (l' + l)(t_r + t_d) \qquad \leftarrow \quad \text{recompress} \\ \approx 26h$$

_

B = text size $t_r = \text{transfer rate}$

F = total n. terms

 $t_D = \text{parse time}$

 $\dot{R} = n$. runs k = size of run

 $t_c = \text{compare} + \text{swap}$

I' = temp. file size $t_d = \text{coding time}$

 $t_d = \text{coding time}$ f = n. index pointers

I = file size

Compression Requirements

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-

Based Inversion Sort-based

Inversion Multiway Merging

In-place Merging

Comparison of Inversion Methods

Time requirements

- Runs must be sorted before writing to disk
- Must share space with dictionary \Rightarrow shorter initial runs \Rightarrow more runs to merge
- Requirements:

Te
$$Bt_r + Ft_p$$
 \leftarrow read,parse $+R(1.2k\log k)t_c + l'(t_r + t_d)$ \leftarrow sort,compress,write $\lceil \log R \rceil (2l'(t_r + t_d) + ft_c)$ \leftarrow merge runs $(l' + l)(t_r + t_d)$ \leftarrow recompress $\approx 26h$

Space requirements

$$S =$$
 (1.1 Mb

$$\begin{array}{ccc}
(1.1Mb & + & 0.25Mb) \\
\uparrow & & \uparrow \\
10^6 \langle d, f_{d,t} \rangle \text{ pairs} & k+n \text{ bits}
\end{array}$$

$$\uparrow$$
 k+n bits for t-gaps

X

$$\uparrow$$
runs
(4× more)

400

 $\approx 1 Gh$

 $\times 2$

Outline

Processamento e Recuperação de Informação

Basic Concepts

Basic Concepts

2 Index Construction

Index Construction Memory-

Memory-Based Inversion

Inversion
Sort-based
Inversion

Based

4 Sort-based Inversion

Multiway Merging

Multiway Merging

In-place Merging Comparison of

6 In-place Merging

Inversion Methods

Comparison of Inversion Methods

Multiway Merging

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based

Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion
Methods

- The merging process can be improved
- Instead of a 2-way merge, use an *R*-way merge
 - $\bullet \ \, \mathsf{One} \,\, \mathsf{pass} \Rightarrow \mathsf{pointers} \,\, \mathsf{coded/decoded} \,\, \mathsf{only} \,\, \mathsf{once} \,\,$
 - Increased seek time (+1m, approximately)

Multiway Merging

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway

Merging
In-place
Merging

Comparison of Inversion Methods

Time Requirements

 $\approx 11h$

```
\begin{array}{lll} B = \mathsf{text} \; \mathsf{size} & t_r = \mathsf{transfer} \; \mathsf{rate} \\ F = \mathsf{total} \; \mathsf{n}. \; \; \mathsf{terms} & t_p = \mathsf{parse} \; \mathsf{time} \\ R = \mathsf{n}. \; \mathsf{runs} & k = \mathsf{size} \; \mathsf{of} \; \mathsf{run} \\ t_c = \mathsf{compare+swap} & l' = \mathsf{temp}. \; \mathsf{file} \; \mathsf{size} \\ t_d = \mathsf{coding} \; \mathsf{time} & f = \mathsf{n}. \; \mathsf{index} \; \mathsf{pointers} \\ t_s = \mathsf{seek} \; \mathsf{time} & b \leq M/R = \mathsf{input} \; \mathsf{buffer} \\ l = \mathsf{file} \; \mathsf{size} & l = \mathsf{file} \; \mathsf{size} \\ \end{array}
```


Multiway Merging

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

Time Requirements

$$\begin{array}{llll} \textit{T} = & \textit{Bt}_r + \textit{Ft}_p & \leftarrow & \text{read,parse} \\ & + \textit{R}(1.2\textit{k}\log\textit{k})\textit{t}_c + \textit{l}'(\textit{t}_r + \textit{t}_d) & \leftarrow & \text{sort,compress,write} \\ & \textit{f} \lceil \log\textit{R} \rceil \textit{t}_c + \textit{l}'(\textit{t}_s/\textit{b} + \textit{t}_r + \textit{t}_d) & \leftarrow & \text{merge runs} \\ & \textit{l}(\textit{t}_r + \textit{t}_d) & \leftarrow & \text{recompress} \\ \approx 11\textit{h} \end{array}$$

Space requirements

One copy of the temporary file: 540Mb

Outline

Processamento e Recuperação de Informação

Basic Concepts

Index Construction Memory-

Based Inversion Sort-based Inversion

Multiway Merging In-place

Merging

Comparison of Inversion Methods

6 In-place Merging

In-place Multiway Merging

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging In-place Merging

Comparison of Inversion Methods

- Assume that runs are split into blocks of b bytes (with added padding, if necessary)
- R blocks can be read into memory and overwritten by output blocks of b bytes
 - The output blocks contain the inverted lists
 - During the process all values can be recoded using the most efficient code
- If a block overruns the vacant space, it can be appended to the end of the file
- At the end of the merge, blocks must be sorted
 - Block-sorting can be done in linear time, using two b-byte buffers

In-place Multiway Merging

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Constructio

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

Block-sorting algorithm

Processamento e Recuperação de Informação

Basic Concept

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging In-place

Merging

Comparison of Inversion

Methods

For $i \leftarrow 1$ to *nblocks*, if $i \neq blockTable[i]$ then:

- Read block i into memory
- $② Set holding \leftarrow blockTable[i]$
- **③** Set *vacant* \leftarrow *i*
- While holding \neq vacant do
 - Find j such that blockTable[j] = vacant
 - Copy block j to vacant
 - $\textbf{§ Set } \textit{blockTable[vacant]} \leftarrow \textit{vacant}$
 - Set vacant ← j
- Write block in memory to vacant
- $\textbf{ § Set } \textit{blockTable[vacant]} \leftarrow \textit{holding}$

Multiway Merging Algorithm (I)

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion
Methods

Initialization:

Create an empty dictionary structure S; Create an empty temporary file T on disk;

Set $L \leftarrow |S|$

Set $k \leftarrow (M-L)/w$, where w is the number of bytes required to store one $\langle t, d, f_{d,t} \rangle$ record

Set $b \leftarrow 50Kb$

Set $R \leftarrow 0$

Multiway Merging Algorithm (II)

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging In-place

Merging

Comparison of Inversion

Methods

② For each document D_d , $1 \le d \le N$:

- Read and parse D_d
- **2** For each term $t \in D_d$
 - Search S for t
 - ② If t is not in S insert it set $L \leftarrow |S|$ set $k \leftarrow (M L)$
 - set $k \leftarrow (M L)/w$ Add a record $\langle t, d, f_{d,t} \rangle$ to the array of triples
- \odot If, at any stage, the array of triples contains k items
 - Sort the array (using quicksort)
 - ② Write the array coding t-gaps in unary, d-gaps with δ and $f_{d,t}$ values in unary
 - 3 Add padding to complete a block of b bytes

 - **3** $If <math>(b \times (R+1) > M, \text{ set } b \leftarrow b/2$

Multiway Merging Algorithm (III)

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based

Inversion
Sort-based

Inversion Multiway

Merging In-place Merging

Comparison of Inversion Methods Merging:

- Read the first block from each run and add each block number to the free list
- **Q** Build heap with R candidates (one from each run)
- While the heap is non-empty
 - Remove the root
 - Add it to the output block, recoding
 - Replace it by the next candidate from the same run
- Each time the output block is full
 - Use the free list to find a vacant space; if there is none, append it to the end of the file
 - Write the output block
 - Opdate the free list and block table
- 6 Each time an input block is empty
 - Read the next block from this run
 - Update the free list
- Reorder the blocks
- Truncate the inverted file

Algorithm Requirements

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

Time Requirements

$$T = Bt_r + Ft_p \leftarrow \text{read,parse} \\ + R(1.2k \log k)t_c + I'(t_r + t_d) \leftarrow \text{sort,compress,writ} \\ f\lceil \log R \rceil t_c + (I' + I)(t_s/b + t_r + t_d) \leftarrow \text{merge,recode} \\ 2I'(t_s/b + t_r) \leftarrow \text{permute} \\ \approx 11h$$

I = file size

B = text size $t_r = transfer rate$ F = total n. terms t_p = parse time

R = n. runs $\dot{k} = \text{size of run}$

 $t_c = compare + swap$ I' = temp. file size $t_d = coding time$

f = n. index pointers t_s = seek time

b < M/R = input buffer

Algorithm Requirements

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

Time Requirements

Space Requirements

Inverted file and temporary file occupy the same space: 150 Mb

Outline

Processamento e Recuperação de Informação

Basic Concepts

Based

Index Construction Memory-

Inversion Sort-based Inversion

Multiway Merging In-place

Merging Comparison of Inversion Methods

Comparison of Inversion Methods

Comparison of Inversion Methods

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

Method	Memory (Mb)	Disk (Mb)	Time (h)
Dictionary-based (mem.)	4 000	0	6
Dictionary-based (disk)	30	4 000	1 100
Sort-based	40	8 000	20
Sort-based compressed	40	1 080	26
Multiway merge	40	540	11
In-place multiway merge	40	150	11

Alternative Inversion Methods

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

Memory-based inversion methods

- Using minimal perfect hashing to eliminate the lexicon from memory
- Using in-memory compression
- Partitioning the inversion process
 - Lexicon-based partition
 - Text-based partition
- All these imply several passes through the text

Processamento e Recuperação de Informação

Basic Concepts

Index Construction

Memory-Based Inversion

Sort-based Inversion

Multiway Merging

In-place Merging

Comparison of Inversion Methods

Questions?