FISH 550 – Applied Time Series Analysis Download Rmd pdf

Eli Holmes

6 Apr 2023

Forecasting with an ARIMA model

The basic idea of forecasting with an ARIMA model to estimate the parameters and forecast forward.

For example, let's say we want to forecast with a ARIMA(2,1,0) model with drift:

$$z_t = \mu + \beta_1 z_{t-1} + \beta_2 z_{t-2} + e_t$$

where $z_t = x_t - x_{t-1}$, the first difference.

Arima() would write this model:

$$(z_t - m) = \beta_1(z_{t-1} - m) + \beta_2(z_{t-2} - m) + e_t$$

The relationship between μ and m is $\mu = m(1 - \beta_1 - \beta_2)$.

Let's estimate the β 's for this model from the anchovy data.

```
fit <- forecast::Arima(anchovyts, order=c(2,1,0), include.e
coef(fit)
```

```
##
          ar1
                   ar2
                               drift
## -0.53850433 -0.44732522 0.05367062
```

```
mu \leftarrow coef(fit)[3]*(1-coef(fit)[1]-coef(fit)[2])
```

```
drift
##
```

```
## 0.1065807
```

mu

So we will forecast with this model:

$$z_t = 0.1065807 - 0.53850433z_{t-1} - 0.44732522z_{t-2} + e_t$$

To get our forecast for 1990, we do this

$$(x_{90} - x_{89}) = 0.106 - 0.538(x_{89} - x_{88}) - 0.447(x_{88} - x_{87})$$

Thus

$$x_{90} = x_{89} + 0.106 - 0.538(x_{89} - x_{88}) - 0.447(x_{88} - x_{87})$$

Here is R code to do that:

drift

9.962083

anchovyts[26]+mu+coef(fit)[1]*(anchovyts[26]-anchovyts[25]]

coef(fit)[2]*(anchovyts[25]-anchovyts[24])

##

Forecasting with forecast()

forecast(fit, h=h) automates the forecast calculations for us and computes the upper and lower prediction intervals. Prediction intervals include uncertainty in parameter estimates plus the process error uncertainty.

```
fr <- forecast::forecast(fit, h=5)</pre>
fr
##
        Point Forecast
                          Lo 80 Hi 80
                                             Lo 95
                                                      Hi 95
## 1990
              9.962083 9.702309 10.22186 9.564793 10.35937
## 1991
              9.990922 9.704819 10.27703 9.553365 10.42848
              9.920798 9.623984 10.21761 9.466861 10.37473
## 1992
             10.052240 9.713327 10.39115 9.533917 10.57056
## 1993
## 1994
             10.119407 9.754101 10.48471 9.560719 10.67809
```

Plotting our forecasts

Forecasts from ARIMA(2,1,0) with drift

Missing values

Missing values are allowed for forecast::Arima(). We can produce forecasts with the same code.

```
anchovy.miss <- anchovyts
anchovy.miss[10:11] <- NA
anchovy.miss[20:21] <- NA
fit <- forecast::Arima(anchovy.miss, order=c(2,1,0), include fr <- forecast::forecast(fit, h=5)
fr</pre>
```

```
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 1990 9.938269 9.664479 10.21206 9.519543 10.35700
## 1991 10.014686 9.700961 10.32841 9.534885 10.49449
## 1992 9.924208 9.601147 10.24727 9.430129 10.41829
## 1993 10.029988 9.666069 10.39391 9.473421 10.58656
## 1994 10.128066 9.729066 10.52707 9.517848 10.73828
```

Forecasts from ARIMA(2,1,0) with drift

Using auto.arima()

We can let forecast to select the ARIMA model:

```
anchovy.miss <- anchovyts
anchovy.miss[10:11] <- NA
anchovy.miss[20:21] <- NA
fit <- forecast::auto.arima(anchovy.miss)</pre>
fit.
## Series: anchovy.miss
## ARIMA(0,1,1) with drift
##
## Coefficients:
            ma1 drift
##
## -0.7240 0.0548
## s.e. 0.2283 0.0125
##
## sigma^2 = 0.04355: log likelihood = 3.52
## AIC=-1.03 AICc=0.11 BIC=2.63
```

fr <- forecast::forecast(fit, h=5)
plot(fr)</pre>

Forecasts from ARIMA(0,1,1) with drift

