第二讲:补充材料2 开放性答案的自动评价策略

基于字符相似度的机器翻译自动评价技术

杨沐昀 语言技术研究中心 计算学部

Motivation

- Why automatic evaluation for MT?
 - Manual evaluation is expensive, inconsistent and time consuming.
 - MT development need instant feedback on his efforts
 - Whether my algorithm, my model, new weight help?
 - Large scale, objective evaluation is of substantial significance for any research.

How?

- Do we need to study how people recognize good translation?

 - A long history of translation argues what is good translation!
- In most cases, "whether better" matters more than "how better"!
- Can we accomplish this by a simple way?

Observations!

The closer a (machine) translation is to a professional human translation, the better it is!

A corpus of good quality human reference translations

A numerical translation closeness metric!!!

Examples

- Example 1: Which may be better, intuitively?
- Candidate 1: It is a guide to action which ensures that the military always obeys the commands of the party
- Candidate 2: It is to insure the troops forever hearing the activity guidebook that party direct
- Reference 1: It is a guide to action that ensures that the military will forever heed party commands
- Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the party
- Reference 3: It is the practical guide for the army always to heed the directions of the party

Counting Word-match?

- Ranking the candidates
 - Simply comparing the candidate translation and the reference translations and counts the number of matched-word.
- Assumption 1: simple counting method (by unigram word)
 - Counting the number of candidate translation words which occur in any reference translation and then divides by the total number of words in the candidate translation

Exhausted Counting

Example 2:

- Candidate: the the the the the the
- * Reference1: the cat is on the mat.
- * Reference2: there is a cat on the mat.
 - Simple standard unigram count is 7/7;
 - Each word should be modified as exhausted after the match identified;
 - Thus, the modified unigram precision is 2/7; i.e. $Count_{clip}(n-gram)=2$

Modified Bigram Precision

Example 1:

- Candidate 1: It is a guide to action which ensures that the military always obeys the commands of the party
- Candidate 2: It is to insure the troops forever hearing the activity guidebook that party direct
- Reference 1: It is a guide to action that ensures that the military will forever heed party commands
- Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the party
- Reference 3: It is the practical guide for the army to heed the directions of the party
 - ■candidate 1 achieves a modified bi-gram precision of 10/17
 - whereas the candidate 2 achieves a modified precision of 1/13.

Are We Reasonable

- This sort of modified n-gram precision scoring captures two aspects of translation quality
 - □ Unigram tends to satisfy adequacy (忠实度)

Modified n-gram Precision

$$Pn = \frac{\sum_{C \in \{candidates\}} \sum_{n-gram \in C} Count_{clip}(n-gram)}{\sum_{C \in \{candidates\}} \sum_{n-gram \in C} Count(n-gram)}$$

Compare One Human Translator and One Translation System

Compare More Human Translators and MT Systems

Q1: How to Deal with $P_1...P_n$

- ❖ Shall we choose a best P_i or combine them?
- How to combine: average?
- Note the modified n-gram precision decays roughly exponentially with n:
 - □ Unigram > Bi-gram > trigram
- ❖ How to take account of this?
 Smooth the sharp difference!

Q2: Sentence Length Issue

Considering Recall

Candidate1:of the

Reference1: It is a guide to action that ensures that the military will forever heed party commands

Reference2: It is the guiding principle which guarantees the military forces always being under the command of the party

Reference3: It is the practical guide for the army to heed the directions of the party

❖ Bad recall but: the modified unigram precision is 2/2, and the modified bigram precision is 1/1!

Q2: Sentence Length Issue

- Recall varies in reverse ratio to precision
 - Candidate1: I always invariably perpetually do.
 - Candidate2: I always do.
 - Reference1: I always do.
 - Reference2: I invariably do.
 - Reference3: I perpetually do.
- Note: The recall rate of candidate1 is better than candidate2, but the translation quality is poorer

Solution from Mathematics

- Precision may balance long sentences;
- We may penalize the short ones with a brevity penalty;
- Average logarithm against arithmetic average and geometric mean?

BLEU Metric

$$BLEU = BP \bullet \exp\left(\sum_{1}^{N} w_n \log p_n\right)$$

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{cases}$$

$$N = 4, w_n = 1/N$$

BLEU: An Example

- Candidate 1: the book is on the desk
- Ref1: there is a book on the desk
- Ref2: the book is on the table

unigram:	bigram:	trigram:
	$C ount_{clip}(the,book) = 1$	$C ount_{clip}(the,book,is) = 1$
	$C ount_{clip}(book, is) = 1$	$C ount_{clip}(book, is, on) = 1$
	$C ount_{clip}(is, on) = 1$	$C ount_{clip}(is, on, the) = 1$
	$C ount_{clip}(on, the) = 1$	$C ount_{clip}(on, the, desk) = 1$
	$C ount_{clip}(the, desk) = 1$	
$\sum_{unigram \in C} Count(unigram) = 6$	$\sum_{b \mid a \mid ram \in C} Count(big ram) = 5$	$\sum_{\text{triangre}} Count(trigram) = 4$
$p_1 = 1$	$p_2 = 1$	$p_3 = 1$

$$BLEU = BP \bullet \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
$$= \exp\left[\frac{1}{3}(\log 1 + \log 1 + \log 1)\right] = 1$$

Evaluation BLEU: Consistency

Pearson Correlation Coefficient: 0.99

Adopted by NIST for TIDES Project

Corpus used to evaluate N-gram Scoring

Corpus	Source language	#of documents	#of human translations	#MT syste ms
DARPA 1994 French-English	French	100	2	5
DARPA 1994 Japanese-English	Japanese	100	2	4
DARPA 1994 Spanish-English	Spanish	100	2	4
DARPA 2001 Chinese-English	Chinese	80	11	6

Correlation between BLEU Score and Human Assessment

Corpus	Systems	Adequacy (%)	Fluency (%)	Informatics (%)
DARPA 1994 French-English	5 MT systems	95.7	99.7	91.4
DARPA 1994 Japanese-English	4 MT systems	97.8	85.6	98.3
DARPA 1994 Spanish-English	4 MT systems	97.5	97.2	94.3
DARPA 2001 Chinese-English	6 Commercial systems	95.2	97.1	-

Pearson Correlation Coefficient

Outline

- Summary
 - How to processing language by simple method;
 - Mow to frame your intuition into good formula;
 - Simple->reliable->beautiful

References

- The website for NIST MT Evalution: http://www.nist.gov/speech/tests/mt/index.htm
- BIEU: a method for automatic evaluation of machine translation, Kishore Papieni, Salim Roukos, Todd Ward, Wei-Jing Zhu, ACL 2002.

