СТАТИКА КОНСТРУКЦИЈА

Модул: Хидротехника и водно инжењерство околине, Саобраћајнице, Архитектонско инжењерство
– материјал за вежбе –

2024.

Рад спољашњих сила P_m и C_i **првог** система при померањима која изазива **други** систем једнак је раду спољашњих сила \bar{P}_n и \bar{C}_i **другог** система при померањима који изазива **први** систем утицаја.

21 Maywell – opa Teonema

$$\sum P_m \, \bar{\delta}_m + \sum C_i \, \bar{c}_i = \sum \bar{P}_n \, \delta_n + \sum \bar{C}_i \, c_i$$

$$P_m \Rightarrow P_1 = 1 \qquad \Rightarrow \quad \delta_n = \delta_{21}$$

$$\bar{P}_n \Rightarrow P_2 = 1 \qquad \Rightarrow \quad \bar{\delta}_m = \delta_{12}$$

$$\sum 1 \cdot \bar{\delta}_{12} + \sum C_i \, \bar{c}_i = \sum 1 \cdot \delta_{21} + \sum \bar{C}_i \, c_i$$

$$1 \cdot \delta_{12} = 1 \cdot \delta_{21} \qquad \delta_{12} = \delta_{12}$$

Померање нападне тачке силе P_1 у правцу те силе услед силе P_2 једнако је померању нападне тачке силе P_2 у правцу силе P_2 услед силе P_1 .

22 Innsa Rayleigh – jega Teonema

$$\sum P_m \, \bar{\delta}_m + \sum C_i \, \bar{c}_i = \sum \bar{P}_n \, \delta_n + \sum \bar{C}_i \, c_i$$

$$P_m \Rightarrow P_1 = 0 \qquad c_i = c_1 = 1 \quad \Rightarrow \quad C_i = C_{12}$$

$$\bar{P}_n \Rightarrow P_2 = 0 \qquad \bar{c}_i = c_2 = 1 \quad \Rightarrow \quad \bar{C}_i = C_{21}$$

$$\sum 0 \cdot \bar{\delta}_m + \sum C_i \, \bar{c}_i = \sum 0 \cdot \delta_n + \sum \bar{C}_i \, c_i$$

$$C_{12} \cdot 1 = C_{21} \cdot 1$$

Реакција ослонца 1 услед јединичног померања ослонца 2 једнака је реакцији ослонца 2 услед јединичног померања ослонца 1.

друга Rayleigh – јева теорема

$$\sum P_{m} \, \bar{\delta}_{m} + \sum C_{i} \, \bar{c}_{i} = \sum \bar{P}_{n} \, \delta_{n} + \sum \bar{C}_{i} \, c_{i}$$

$$P_{m} \Rightarrow P = 1 \qquad c_{i} = 0 \qquad \Rightarrow C_{1P} \qquad C_{3P}$$

$$\bar{P}_{n} \Rightarrow P = 0 \qquad \bar{c}_{i} = c_{1} = 1 \qquad \Rightarrow \bar{\delta}_{P1} \qquad C_{41}$$

$$\sum 1 \cdot \bar{\delta}_{P1} + \sum C_{1P} \cdot 1 = \sum 0 \cdot \delta_{n} + \sum \bar{C}_{1P} \cdot 0 \qquad C_{31}$$

$$C_{1P} \cdot 1 = -\bar{\delta}_{P1} \cdot 1 \qquad C_{1P} = -\bar{\delta}_{P1}$$

Реакција ослонца **1** услед дејства јединичне силе **P** једнака је негативној вредности померања нападне тачке силе **P** у правцу те силе услед јединичног померања ослонца **1**.

FJC60=-EC;CI sto =to -to to tutto 8= (NEds-EQa) JUEDS = NE JOB = NEIL = 5. AL 80-8 = C/EFG 7 = FG. 60= 8 50 = C 好=ところは、しまた一か日での大=とらの人でしてた。 · Cor-Eda/ETe Ete Sc=- Ete Zai ai

agragation praver ojama ranedu durje tacke M=1,0 E M protaci toroz tac E-A

TABLICA 1

1 J. MMds	ī	- Ā	ī mik	al pl		K
i	ii	½ik	1/2 i([+k])	½ im	im ?	$\frac{1}{q}i\overline{k}$
*	½ Ki	13 KK	$\frac{1}{6}k(\bar{i}+2\bar{k})$	$\frac{1}{6}k\bar{m}(1+\alpha)$	½ km	2 KK
i	<u>1</u> ii	1 ik	$\frac{1}{6}i(2\bar{l}+\bar{k})$	1 im(1+β)	<u>-1</u> im	$\frac{2}{60}i\bar{k}$
i K	$\frac{1}{2}(i+k)\bar{i}$	1/6 (i+2k) K	$\frac{1}{6}[i(2\bar{l}+\bar{k})+\\+k(\bar{l}+2\bar{k})]$	$\frac{1}{6}[i(1+\beta)+\\+k(1+\alpha)]\vec{m}$	$\frac{1}{3}(i+k)\overline{m}$	1 (7i+8k) K
al pl	1 mi	$\frac{1}{6}$ m \tilde{k} (1+ α)	$\frac{1}{6}m[\bar{i}(1+\beta)+ \\ +\bar{K}(1+\alpha)]$	<u>1</u> mm	$\frac{1}{3}m\overline{m}(1+\alpha\beta)$	$\frac{1}{20} \overline{mk} (1 + cc) \times \frac{1}{3} - cc^2$
	2 mi	13 mk	$\frac{1}{3}m(\tilde{t}+\tilde{k})$	$\frac{1}{3}m\overline{m}(1+\alpha\beta)$	8 mm	1/5 mK
K	1/4 KI		$\frac{1}{60}k(P\bar{l}+\theta\bar{k})$	-(3-a)	1. km	8 105 kk
i	<u>‡</u> ii -	<u>₹</u> 60 ik	$\frac{1}{60}i(8\overline{l}+7\overline{k})$	$\frac{1}{20}i\overline{m}(1+\beta) \times \\ *(\frac{2}{3}-\beta^2)$	½ im	31 1k

4=010032 rad. 12. ty=250 st=30°/ 1 (0/ = 10-5/c - 30 poston St- 14 of st ds + 1004. tds 0,857 # 108t = (1 . 30.2572.6.104 - 3.0514.109) · # 16 St=-2/181.103m = 5=-2/18 mm

