churn bank

April 19, 2023

Contexto:

Somos un banco que dispone de una base de datos con una gran cantidad de información sobre nuestros clientes. Nuestro objetivo es ayudar a los analistas a predecir la tasa de abandono de estos clientes para así poder reducirla. La base de datos incluye información demográfica como la edad, el sexo, el estado civil y la categoría de ingresos. También contiene información sobre el tipo de tarjeta, el número de meses en cartera y los periodos inactivos. Además, dispone de datos clave sobre el comportamiento de gasto de los clientes que se acercan a su decisión de cancelación. Entre esta última información hay el saldo total renovable, el límite de crédito, la tasa media de apertura a la compra y métricas analizables como el importe total del cambio del cuarto trimestre al primero o el índice medio de utilización.

Frente a este conjunto de datos podemos capturar información actualizada que puede determinar la estabilidad de la cuenta a largo plazo o su salida inminente.

Dataset:

CLIENTNUM: Identificador único para cada cliente. (Integer) Attrition Flag: Indicador de si el cliente ha abandonado el banco o se queda (Boolean) Attrited Customer -> 0 Existing Customer -> 1 Customer Age: Edad del cliente. (Integer) Gender: Sexo del cliente. (String) Dependent count: Número de personas a cargo que tiene el cliente. (Integer) Education Level: Nivel educativo del cliente. (String) Marital Status: Marital status of customer. (String Income Category: Categoría de ingresos del cliente. (String Card Category: Tipo de tarjeta del cliente. (String Months on book: El tiempo que el cliente ha estado en los libros. (Integer Total Relationship Count: Número total de relaciones que tiene el cliente con el proveedor de la tarjeta de crédito. (Integer Months Inactive 12 mon: Número de meses que el cliente ha estado inactivo en los últimos doce meses.(Integer Contacts Count 12 mon: Número de contactos que ha tenido el cliente en los últimos doce meses. (Integer Credit Limit: Límite de crédito del cliente. (Integer Total_Revolving_Bal: Saldo renovable total del cliente. teger Avg Open To Buy: Ratio medio de apertura a la compra del cliente. tal_Amt_Chng_Q4_Q1: Importe total cambiado del trimestre 4 al trimestre 1. (Integer Total Trans Amt: Importe total de la transacción. (Integer Total Trans Ct: Recuento total de transacciones. (Integer Total Ct Chng Q4 Q1: Recuento total cambiado del trimestre 4 al trimestre 1. (Integer Avg Utilization Ratio: Ratio de utilización media del cliente. (Integer Months_Inactive_12_mon: Número de meses que el cliente ha estado inactivo en los últimos doce meses. (Integer Contacts Count 12 mon: Número de contactos que ha tenido el cliente en los últimos doce meses. (Integer Credit Limit: Límite de crédito del cliente. (Integer Total_Revolving_Bal: Saldo rotativo total del cliente. (Integer Avg_Open_To_Buy: Ratio medio de apertura a compra del cliente. (Integer) Total Amt Chng Q4 Q1: Importe total cambiado del trimestre 4 al trimestre 1. (Integer) Total Trans Amt: Importe total de la transacción. (Integer) Total_Trans_Ct: Recuento total de transacciones.. (Integer) Total_Ct_Chng_Q4_Q1: Recuento total cambiado del trimestre 4 al trimestre 1. (Integer) Avg_Utilization_Ratio: Ratio de utilización media del cliente. (Integer)

1 Libraries

```
[1]: #uncomment to install libraries in google colab
#!pip install category_encoders
#!pip install -U imbalanced-learn
```

```
[2]: import pandas as pd
     import numpy as np
     import seaborn as sns
     import matplotlib.pyplot as plt
     plt.style.use('ggplot')
     %matplotlib inline
     import math
     import pickle
     from xgboost import XGBClassifier
     from xgboost import plot_importance
     import category_encoders as ce
     from sklearn.preprocessing import StandardScaler,RobustScaler
     from imblearn.over_sampling import SMOTE
     from imblearn.under_sampling import RandomUnderSampler
     from imblearn.pipeline import Pipeline
     from sklearn.model_selection import (train_test_split,
                                           StratifiedKFold.
                                         GridSearchCV)
     from sklearn.linear model import LogisticRegression, SGDClassifier
     from sklearn.metrics import (mean_squared_error,
                                  confusion matrix, roc curve, classification report,
                                 roc_auc_score,
                                  accuracy_score,f1_score)
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.svm import SVC
     import json
```

2 Functions

```
[3]: #1 get the number of rows for the plot
def plot_template(n_cols,features):
    n_rows = math.ceil(len(features)/n_cols)
    return n_rows
```

```
[4]: #2 get the reltion between two features
     def attrited_feature(df,target,feature):
         attr = df[[target,feature]].groupby([feature]).mean().sort_values(by=target)
         return attr
[5]: #3 plot the attrition value in relation with a feature
     def plot_target_attrition(df,col):
         plt.figure(figsize=(8,5))
         sns.barplot(data=df,x=df.index,y=col)
         plt.tight_layout()
         plt.xticks(rotation=90)
         plt.title("Attrition by {}".format(df.index.name))
         plt.show()
[6]: #4 plot confusion matrix and roc
     def
      →subplots_ROC_CM(main_title, rtitle, mtitle, mod, accuracy, auc, matrix, model, Xtest, ytest, label):
         fig , axes = plt.subplots(1,2,figsize=(10,8))
         y_pred_prob1_rs = mod.predict_proba(Xtest)[:,1]
         fpr1_rs, tpr1_rs, thresholds1_rs = roc_curve(ytest, y_pred_prob1_rs)
         axes[0].plot([0, 1], [0, 1], 'k--')
         axes[0].plot(fpr1_rs, tpr1_rs, label=label)
         axes[0].legend(loc="best")
         axes[0].set_xlabel('False Positive Rate')
         axes[0].set_ylabel('True Positive Rate')
         axes[0].set_title(rtitle + "\n" +
                  "AUC: {0:.2%}".format(accuracy.get(model)))
         group_counts = ["{0:0.0f}".format(v) for v in matrix.flatten()]
         group_percentages = ["{0:.2%}".format(value)
                          for value in matrix.flatten()/np.sum(matrix)]
         labels = [f''{ant1}\n{ant2}" for ant1, ant2 in_{\square}]
      →zip(group_counts,group_percentages)]
         labels = np.asarray(labels).reshape(2,2)
         ax = sns.heatmap(matrix, annot=labels, fmt='',
                      cmap='Blues', ax=axes[1])
         axes[1].set_title(mtitle + "\n" + "Accuracy Score: {0:.2%}".format(auc.

  get(model)))
         axes[1].set_xlabel('\nPredicted Values')
         axes[1].set_ylabel('Actual Values ')
         axes[1].xaxis.set_ticklabels(['False','True'])
```

```
axes[1].yaxis.set_ticklabels(['False','True'])

plt.suptitle(main_title,size=17, weight='bold')
plt.show()
```

[7]: #5 get the item from the dict

def get_value(item):
 return item[1]

3 Load Data

```
[8]: data_train = pd.read_csv("https://storage.googleapis.com/challenges_events/\
03_2023/Pre-Selection%20J0Barcelona/Data/supply_chain_train.

ocsv",index_col="train_idx")

data_train.head(10).T
```

[8]:	train_idx	0	1	2	\
	CLIENTNUM	713071383	714246333	718206783	
	Customer_Age	54	58	45	
	Gender	F	F	F	
	Dependent_count	1	4	4	
	Education_Level	Unknown	High School	Unknown	
	Marital_Status	Single	Married	Single	
	Income_Category	Unknown	Unknown	Less than \$40K	
	Card_Category	Blue	Blue	Gold	
	Months_on_book	36	48	36	
	Total_Relationship_Count	1	1	6	
	Months_Inactive_12_mon	3	4	1	
	Contacts_Count_12_mon	3	3	3	
	Credit_Limit	3723.0	5396.0	15987.0	
	Total_Revolving_Bal	1728	1803	1648	
	Avg_Open_To_Buy	1995.0	3593.0	14339.0	
	${ t Total_Amt_Chng_Q4_Q1 t}$	0.595	0.493	0.732	
	Total_Trans_Amt	8554	2107	1436	
	Total_Trans_Ct	99	39	36	
	${ t Total_Ct_Chng_Q4_Q1 t}$	0.678	0.393	1.25	
	${\tt Avg_Utilization_Ratio}$	0.464	0.334	0.103	
	Attrition_Flag	1	0	1	
	train_idx		3	4	5 \
	CLIENTNUM	72109	6983 72002	28683 7789	42233
	Customer_Age		34	49	60
	Gender		F	F	F
	Dependent_count		2	2	0
	CLIENTNUM Customer_Age Gender	72109	34 F	49 F	60 F

Education_Level			High Sc		Docto	
Marital_Status		ngle		ried		ried
Income_Category	Less than	•	•			
Card_Category		Blue		Blue		Blue
Months_on_book		36		39		45
Total_Relationship_Count		4		5		5
Months_Inactive_12_mon		3		3		2
Contacts_Count_12_mon		4		4		4
Credit_Limit	36	25.0	27	20.0	14	38.3
Total_Revolving_Bal		2517		1926		648
Avg_Open_To_Buy	11	08.0	7	94.0	7	90.3
Total_Amt_Chng_Q4_Q1	1	.158	C	.602	0	.477
Total_Trans_Amt		2616		3806		1267
Total_Trans_Ct		46		61		27
Total_Ct_Chng_Q4_Q1		1.3	C	.794	1	.077
Avg_Utilization_Ratio	0	.694		.708		.451
Attrition_Flag	_	1	_	1	_	1
		_		_		_
train_idx	6		7		8	\
CLIENTNUM	708682908	72	0670458		719952408	`
Customer_Age	43	. –	52		30	
Gender	F		F		М	
Dependent_count	4		2		0	
Education_Level	Unknown		Unknown		Graduate	
Marital_Status	Single		Single		Married	
Income_Category	Unknown	ቀ ⊿∩ਯ	- \$60K	Logg	than \$40K	
_	Blue	φ40Λ	Blue	Less		
Card_Category					Blue	
Months_on_book	28		45		36	
Total_Relationship_Count	2		3		3	
Months_Inactive_12_mon	2		1		3	
Contacts_Count_12_mon	1		3		2	
Credit_Limit	2838.0		3476.0		2550.0	
Total_Revolving_Bal	1934		1560		1623	
Avg_Open_To_Buy	904.0		1916.0		927.0	
${ t Total_Amt_Chng_Q4_Q1 t}$	0.873		0.894		0.65	
Total_Trans_Amt	8644		3496		1870	
Total_Trans_Ct	87		58		51	
${ t Total_Ct_Chng_Q4_Q1 t}$	0.554		0.871		0.275	
${ t Avg_Utilization_Ratio}$	0.681		0.449		0.636	
${ t Attrition_Flag}$	1		1		1	
train_idx		9				
CLIENTNUM	70841					
Customer_Age		33				
Gender		F				
Dependent_count		3				
Education_Level	Grad	uate				

```
Marital_Status
                                   Single
Income_Category
                          Less than $40K
Card_Category
                                     Blue
Months_on_book
                                       36
Total_Relationship_Count
                                        5
Months_Inactive_12_mon
                                        2
Contacts_Count_12_mon
                                        3
Credit_Limit
                                   1457.0
Total_Revolving_Bal
                                        0
Avg_Open_To_Buy
                                   1457.0
Total_Amt_Chng_Q4_Q1
                                    0.677
Total_Trans_Amt
                                     2200
Total_Trans_Ct
                                       45
Total_Ct_Chng_Q4_Q1
                                    0.364
Avg_Utilization_Ratio
                                      0.0
Attrition_Flag
                                        0
```

[9]: data = data_train.copy()

[10]:		CLIENTNUM C	dustomer_Age	Gender	Dependent_cour	nt Education_Level
	test_idx					
	0	719455083	48	F		3 Uneducated
	1	773503308	59	M		1 Uneducated
	2	715452408	37	F		2 Graduate
	3	711264033	47	M		<pre>3 Doctorate</pre>
	4	718943508	42	M		3 Unknown
	•••	•••			•••	•••
	2021	814776033	34	M		2 Graduate
	2022	720444408	35	F		1 College
	2023	720503508	44	F		1 Uneducated
	2024	721217283	27	M		O Graduate
	2025	770920908	39	F		0 Unknown
		Marital_Statu	s Income_Cat	cegory (Card_Category M	fonths_on_book \
	test_idx					
	0	Singl	e Less than	1 \$40K	Blue	39
	1	Singl	e Less than	1 \$40K	Blue	53
	2	Divorce	d Less than	1 \$40K	Blue	36
	3	Divorce	d \$40K -	- \$60K	Blue	36
	4	Singl	.e \$80K -	\$120K	Blue	33

2021	Single	\$80K - \$120K		Blue	29
2022		Less than \$40K	•	Blue	25
2023	Divorced	Less than \$40K	•	Blue	37
2024	Single	\$120K +		Blue	17
2025	Single	\$40K - \$60K	: S	ilver	26
	Total_Relations	hin Count Mon	tha Troct	ive 12 mon \	
test_idx	Total_Relations	nip_count non	.uns_inacu	1ve_1z_mon (
0		4		3	
1		5		5	
2		4		3	
3		4		2	
4		3		3	
		•••		***	
2021		3		1	
2022		2		2	
2023		1		2	
2024		6		2	
2025		1		1	
	Contacts Count	12 mon Credit	Limit T	otal_Revolving_F	Bal \
test_idx			_	_ 0_	
0		4	2991.0	15	508
1		4	2192.0	15	569
2		3	1734.0	9	987
3		3	4786.0	15	516
4		2	3714.0	21	L70
 2021		3 1	3395.0	 1 <i>6</i>	578
2022			2231.0		791
2023			5594.0		235
2024			8713.0		354
2025			2054.0	11	L46
	Ava Open To Ruy	Total Amt Ch	ng N4 N1	Total_Trans_Amt	: \
test_idx	Avg_open_1o_buy	TOTAL_AMIT_ON	.118 - M M 1	TOTAL_TIANS_AME	, ,
0	1483.0		0.703	3734	1
1	623.0		0.706	4010	
2	747.0		0.879	4727	
3	3270.0		0.940	4973	3
4	1544.0		0.524	1454	1
 2021	 11717 0		1 006	 0650	1
2021 2022	11717.0 440.0		1.006 0.820	2650 2576	
2022	4359.0		0.620	5220	
2023	7359.0		0.549	2094	
2024	20908.0		0.842	8055	
2020	20300.0		0.042	0000	,

	Total_Trans_Ct	Total_Ct_Chng_Q4_Q1	${\tt Avg_Utilization_Ratio}$
${\tt test_idx}$			
0	64	0.882	0.504
1	79	0.717	0.716
2	67	0.914	0.569
3	74	0.850	0.317
4	35	0.522	0.584
•••	•••	***	•••
2021	69	0.865	0.125
2022	42	0.750	0.803
2023	75	0.829	0.221
2024	36	0.333	0.155
2025	82	0.673	0.052

[2026 rows x 20 columns]

4 Exploratory Data Analysis

[11]: data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 8101 entries, 0 to 8100
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	CLIENTNUM	8101 non-null	int64
1	Customer_Age	8101 non-null	int64
2	Gender	8101 non-null	object
3	Dependent_count	8101 non-null	int64
4	Education_Level	8101 non-null	object
5	Marital_Status	8101 non-null	object
6	Income_Category	8101 non-null	object
7	Card_Category	8101 non-null	object
8	Months_on_book	8101 non-null	int64
9	Total_Relationship_Count	8101 non-null	int64
10	Months_Inactive_12_mon	8101 non-null	int64
11	Contacts_Count_12_mon	8101 non-null	int64
12	Credit_Limit	8101 non-null	float64
13	Total_Revolving_Bal	8101 non-null	int64
14	Avg_Open_To_Buy	8101 non-null	float64
15	${ t Total_Amt_Chng_Q4_Q1 t}$	8101 non-null	float64
16	Total_Trans_Amt	8101 non-null	int64
17	Total_Trans_Ct	8101 non-null	int64
18	${ t Total_Ct_Chng_Q4_Q1 t}$	8101 non-null	float64
19	${ t Avg_Utilization_Ratio}$	8101 non-null	float64

```
20 Attrition_Flag
                                     8101 non-null
                                                     int64
     dtypes: float64(5), int64(11), object(5)
     memory usage: 1.4+ MB
[12]: columns = data.columns
      binary_cols = []
      for col in columns:
          if data[col].value_counts().shape[0] == 2:
              binary_cols.append(col)
      binary_cols
[12]: ['Gender', 'Attrition_Flag']
[13]: numeric_cols = data.select_dtypes(include=['number'])
      cat_cols = data.select_dtypes(include=[object])
[14]: mult_categories_cols = list(set(columns).difference(binary_cols,numeric_cols))
      mult_categories_cols
[14]: ['Income_Category', 'Card_Category', 'Marital_Status', 'Education_Level']
[15]: numeric_categories_cols = list(set(numeric_cols).difference(binary_cols))
      numeric_categories_cols
[15]: ['Total_Trans_Amt',
       'Customer Age',
       'Avg_Utilization_Ratio',
       'CLIENTNUM',
       'Months_Inactive_12_mon',
       'Total_Amt_Chng_Q4_Q1',
       'Total_Revolving_Bal',
       'Months_on_book',
       'Credit_Limit',
       'Total_Relationship_Count',
       'Total_Trans_Ct',
       'Dependent_count',
       'Contacts_Count_12_mon',
       'Total_Ct_Chng_Q4_Q1',
       'Avg_Open_To_Buy']
[16]: fig, axes = plt.subplots(1, 2, figsize=(10, 7), sharey=True)
      for i, col in enumerate(binary_cols):
          ax = axes.flat[i]
          sns.countplot(x= data[col],ax=ax)
      plt.suptitle("Binary Feature Value",fontweight='bold')
      plt.show()
```

Binary Feature Value

[17]: 2

```
plt.suptitle("Multi-Feature Values", y=1.05,fontsize=15,fontweight='bold')
plt.tight_layout()
plt.show()
```

Multi-Feature Values

[19]: 8

```
fig, axes = plt.subplots(n_rows,n_cols, figsize=(3.5 * 4, 3.5 *n_rows))

for i, col in enumerate(numeric_categories_cols):
    ax = axes.flat[i]
    sns.histplot(x= data[col],kde=True,ax=ax)

plt.suptitle("Numeric Values Features", y=1,fontsize=15,fontweight='bold')
    axes[-1, -1].axis('off')
    plt.tight_layout()
    plt.show()
```



```
[21]: fig, axes = plt.subplots(n_rows,n_cols, figsize=(3.5 * 4, 3.5 *n_rows))

for i, col in enumerate(numeric_categories_cols):
    ax = axes.flat[i]
    sns.boxplot(x= data[col],ax=ax)

plt.suptitle("Numeric Values Features", y=1,fontsize=15,fontweight='bold')
axes[-1, -1].axis('off')
plt.tight_layout()
plt.show()
```

Numeric Values Features

It would be interesting to see the behavior of the variables with the attrition flag.

4.1 Categorical Features

```
[22]: gender_attrition = attrited_feature(data,'Attrition_Flag','Gender')
gender_attrition
```

[22]: Attrition_Flag

Gender

F 0.823090 M 0.857928

[23]: plot_target_attrition(gender_attrition,'Attrition_Flag')


```
[24]: card_category_attrition = card_category_attrition = card_category_attrition = card_category_attrition = card_category_attrition
```

[24]: Attrition_Flag
Income_Category
Unknown 0.821147

```
Less than $40K 0.827881

$120K + 0.838435

$80K - $120K 0.843977

$40K - $60K 0.851342

$60K - $80K 0.863636
```

[25]: plot_target_attrition(card_category_attrition,'Attrition_Flag')


```
[26]: income_attrition = □

⇔attrited_feature(data, 'Attrition_Flag', mult_categories_cols[1])
income_attrition
```

Gold 0.827957
Blue 0.838693
Silver 0.862385

[27]: plot_target_attrition(income_attrition,'Attrition_Flag')


```
[28]: education_level_attrition = 

→attrited_feature(data, 'Attrition_Flag', mult_categories_cols[2])

education_level_attrition
```

 Divorced
 0.831424

 Single
 0.833333

 Unknown
 0.835924

 Married
 0.846562

[29]: plot_target_attrition(education_level_attrition, 'Attrition_Flag')


```
[30]: marital_status_attrition = 

→attrited_feature(data, 'Attrition_Flag', mult_categories_cols[3])
marital_status_attrition
```

```
[30]:
                       Attrition_Flag
      Education_Level
      Doctorate
                              0.771831
                              0.818182
      Post-Graduate
      Unknown
                              0.831535
      Graduate
                              0.842168
      Uneducated
                              0.845431
      High School
                              0.846819
      College
                              0.860294
```

```
[31]: plot_target_attrition(marital_status_attrition,'Attrition_Flag')
```


4.2 Numeric Features

```
[32]: for i in numeric_categories_cols: print(i,attrited_feature(data,'Attrition_Flag',i).describe())
```

Total_Tra	ns_Amt	Attrition_Flag
count	4462.000000	
mean	0.823347	
std	0.348259	
min	0.000000	
25%	1.000000	
50%	1.000000	
75%	1.000000	
max	1.000000	
Customer_	Age At	trition_Flag
count	44.000000	
mean	0.852584	
std	0.078781	
min	0.500000	
25%	0.832231	
50%	0.844726	

```
75%
              0.874344
              1.000000
max
Avg_Utilization_Ratio
                               Attrition_Flag
count
            943.000000
mean
              0.881510
std
              0.206084
min
              0.000000
25%
              0.833333
50%
              1.000000
75%
              1.000000
              1.000000
max
CLIENTNUM
                  Attrition_Flag
count
          8101.000000
              0.839526
mean
std
              0.367068
min
              0.000000
25%
              1.000000
50%
              1.000000
75%
              1.000000
              1.000000
Months_Inactive_12_mon
                                Attrition_Flag
count
              7.000000
mean
              0.755196
std
              0.189499
min
              0.363636
25%
              0.740961
50%
              0.798611
75%
              0.843011
              0.956180
{\tt Total\_Amt\_Chng\_Q4\_Q1}
                              Attrition_Flag
count
          1089.000000
mean
              0.813661
std
              0.266016
min
              0.000000
25%
              0.750000
50%
              0.909091
75%
              1.000000
max
              1.000000
Total_Revolving_Bal
                             Attrition_Flag
count
          1883.000000
mean
              0.887529
std
              0.260863
min
              0.000000
25%
              1.000000
50%
              1.000000
75%
              1.000000
max
              1.000000
Months_on_book
                       Attrition_Flag
```

```
count
            44.000000
             0.845314
mean
std
             0.044243
min
             0.714286
25%
             0.823432
50%
             0.848812
75%
             0.871630
max
              0.925926
Credit_Limit
                     Attrition_Flag
count
          5325.000000
             0.845085
mean
std
             0.337039
\min
             0.000000
25%
              1.000000
50%
              1.000000
75%
              1.000000
max
              1.000000
Total_Relationship_Count
                                  Attrition_Flag
count
             6.000000
mean
             0.825264
std
             0.074599
min
             0.722843
25%
             0.766316
50%
             0.851069
75%
             0.880784
             0.897849
max
Total_Trans_Ct
                       Attrition_Flag
           126.000000
count
              0.823723
mean
std
             0.242963
min
             0.000000
25%
             0.724476
50%
             0.955398
75%
              1.000000
              1.000000
max
Dependent_count
                        Attrition_Flag
count
             6.000000
mean
             0.840738
std
             0.010474
min
             0.827183
25%
             0.835099
50%
             0.839425
75%
             0.845405
             0.857338
max
Contacts_Count_12_mon
                              Attrition_Flag
count
             7.000000
mean
             0.720160
std
             0.334339
```

```
0.000000
     min
     25%
                   0.724335
     50%
                   0.793446
     75%
                   0.904311
                   0.990385
     max
     Total_Ct_Chng_Q4_Q1
                                 Attrition_Flag
                 795.000000
     count
                   0.818918
     mean
     std
                   0.282779
     min
                   0.000000
     25%
                   0.750000
     50%
                   1.000000
     75%
                   1.000000
                   1.000000
     max
     Avg_Open_To_Buy
                             Attrition_Flag
                5757.000000
     count
     mean
                   0.842429
     std
                   0.342053
     min
                   0.000000
     25%
                   1.000000
     50%
                   1.000000
     75%
                   1.000000
                   1.000000
     max
[33]: Dependent_count_attrition =
       →attrited_feature(data, 'Attrition_Flag', 'Dependent_count')
      Dependent_count_attrition
[33]:
                        Attrition_Flag
      Dependent_count
      3
                              0.827183
      4
                              0.834158
      5
                              0.837920
      2
                              0.840930
      0
                              0.846897
      1
                              0.857338
     plot_target_attrition(Dependent_count_attrition, 'Attrition_Flag')
```



```
[35]: Contacts_Count_12_mon_attrition = □

→attrited_feature(data, 'Attrition_Flag', 'Contacts_Count_12_mon')

Contacts_Count_12_mon_attrition
```

```
[35]:
                               Attrition_Flag
      Contacts_Count_12_mon
                                     0.000000
      5
                                     0.676692
                                     0.771978
      4
      3
                                     0.793446
      2
                                     0.879045
                                     0.929577
      1
      0
                                     0.990385
```

[36]: plot_target_attrition(Contacts_Count_12_mon_attrition,'Attrition_Flag')


```
[37]: Total_Trans_Ct_attrition = 

⇔attrited_feature(data, 'Attrition_Flag', 'Total_Trans_Ct')

Total_Trans_Ct_attrition
```

```
[37]:
                       Attrition_Flag
      Total_Trans_Ct
                              0.000000
      10
      12
                              0.000000
      14
                              0.000000
      17
                              0.166667
      15
                              0.200000
                              1.000000
      108
      109
                              1.000000
      110
                              1.000000
      100
                              1.000000
      139
                              1.000000
```

[126 rows x 1 columns]

```
[38]: plot_target_attrition(Total_Trans_Ct_attrition, 'Attrition_Flag')
```


[39]: Total_Relationship_Count_attrition =

→attrited_feature(data,'Attrition_Flag','Total_Relationship_Count')

Total_Relationship_Count_attrition

```
[39]:

Total_Relationship_Count
2 0.722843
1 0.746556
3 0.825594
4 0.876543
5 0.882197
6 0.897849
```

[40]: plot_target_attrition(Total_Relationship_Count_attrition, 'Attrition_Flag')


```
[41]: Months_on_book_attrition = 

→attrited_feature(data,'Attrition_Flag','Months_on_book')

Months_on_book_attrition
```

[41]:		Attrition_Flag
	Months_on_book	
	15	0.714286
	50	0.735632
	51	0.765625
	52	0.788462
	39	0.800725
	44	0.802139
	18	0.804348
	30	0.813043
	41	0.814815
	37	0.818841
	22	0.819277
	38	0.824818
	20	0.825397
	48	0.827068
	36	0.827179
	33	0.832000
	56	0.833333
	46	0.838710

```
43
                       0.839623
34
                       0.842697
45
                       0.844920
24
                       0.848000
25
                       0.849624
28
                       0.856522
49
                       0.859649
26
                       0.861111
42
                       0.861905
40
                       0.862454
32
                       0.863071
                       0.863309
47
29
                       0.869792
17
                       0.870968
35
                       0.871094
21
                       0.873239
13
                       0.877193
55
                       0.878788
31
                       0.882353
27
                       0.883721
54
                       0.883721
23
                       0.894737
16
                       0.900000
53
                       0.920635
14
                       0.923077
19
                       0.925926
```

```
[42]: plot_target_attrition(Months_on_book_attrition,'Attrition_Flag')
```



```
[43]: Months_Inactive_12_mon_attrition = 

⇔attrited_feature(data, 'Attrition_Flag', 'Months_Inactive_12_mon')

Months_Inactive_12_mon_attrition
```

```
[43]:
                                Attrition_Flag
      Months_Inactive_12_mon
      0
                                      0.363636
      4
                                      0.696532
      3
                                      0.785391
      5
                                      0.798611
      6
                                      0.836538
      2
                                      0.849483
      1
                                      0.956180
```

```
[44]: plot_target_attrition(Months_Inactive_12_mon_attrition,'Attrition_Flag')
```


[45]: Customer_Age_attrition = attrited_feature(data,'Attrition_Flag','Customer_Age') Customer_Age_attrition

[45]:		Attrition_Flag
	Customer_Age	
	68	0.500000
	59	0.735537
	54	0.779592
	61	0.794521
	62	0.800000
	55	0.811404
	41	0.814570
	43	0.816712
	48	0.817204
	30	0.830189
	56	0.830189
	49	0.832911
	47	0.833333
	57	0.833333
	52	0.833333
	44	0.836788
	58	0.838462
	51	0.840000
	46	0.841310

```
40
                     0.843333
32
                     0.844444
50
                     0.844687
39
                     0.844765
45
                     0.846154
42
                     0.846626
38
                     0.852590
53
                     0.853821
63
                     0.862069
27
                     0.863636
33
                     0.867347
37
                     0.872549
34
                     0.873016
35
                     0.874126
64
                     0.875000
31
                     0.884615
36
                     0.886905
60
                     0.888889
65
                     0.909091
26
                     0.920635
29
                     0.940000
28
                     1.000000
66
                     1.000000
67
                     1.000000
70
                     1.000000
```

```
[46]: plot_target_attrition(Customer_Age_attrition,'Attrition_Flag')
```



```
[47]: Total_Trans_Amt_attrition = 

→attrited_feature(data, 'Attrition_Flag', 'Total_Trans_Amt')

Total_Trans_Amt_attrition
```

```
[47]:
                         Attrition_Flag
      Total_Trans_Amt
      510
                                     0.0
      2430
                                     0.0
      2427
                                     0.0
      2426
                                     0.0
      2424
                                     0.0
      3693
                                     1.0
      3694
                                     1.0
      3695
                                     1.0
      3660
                                     1.0
      18484
                                     1.0
```

[4462 rows x 1 columns]

```
[48]: plot_target_attrition( Total_Trans_Amt_attrition, 'Attrition_Flag')
```



```
[49]: Total_Amt_Chng_Q4_Q1_attrition =
       →attrited_feature(data,'Attrition_Flag','Total_Amt_Chng_Q4_Q1')
      Total_Amt_Chng_Q4_Q1_attrition
[49]:
                             Attrition_Flag
      Total_Amt_Chng_Q4_Q1
      0.000
                                        0.0
      0.439
                                        0.0
      0.304
                                        0.0
      0.305
                                        0.0
      1.203
                                        0.0
      1.065
                                        1.0
      1.064
                                        1.0
      1.063
                                        1.0
      1.077
                                        1.0
      2.675
                                        1.0
      [1089 rows x 1 columns]
```

[50]: plot_target_attrition(Total_Amt_Chng_Q4_Q1_attrition,'Attrition_Flag')

5 Split the Data

6 Preprocessing Data

[55]: X_test[cat_cols.columns] = enc.transform(X_test[cat_cols.columns])

[56]: X_train.head().T

[E6].	+main ide	802	4121	3083	6160	\
[56]:	train_idx					\
	Customer_Age	45.000000	55.000000	29.000000	47.000000	
	Gender	0.855063	0.824137	0.855063	0.855063	
	Dependent_count	3.000000	1.000000	0.000000	5.000000	
	Education_Level	0.843642	0.843642	0.843642	0.859177	
	Marital_Status	0.828299	0.828299	0.846585	0.846585	
	Income_Category	0.863014	0.823635	0.863014	0.829218	
	Card_Category	0.838528	0.838528	0.838528	0.838528	
	Months_on_book	38.000000	42.000000	36.000000	34.000000	
	Total_Relationship_Count	1.000000	6.000000	3.000000	3.000000	
	Months_Inactive_12_mon	3.000000	3.000000	3.000000	1.000000	
	Contacts_Count_12_mon	1.000000	2.000000	4.000000	2.000000	
	Credit_Limit	3751.000000	2517.000000	1459.000000	17603.000000	
	Total_Revolving_Bal	1869.000000	1257.000000	590.000000	1063.000000	
	Avg_Open_To_Buy	1882.000000	1260.000000	869.000000	16540.000000	
	Total_Amt_Chng_Q4_Q1	0.926000	0.834000	1.164000	1.065000	
	Total_Trans_Amt	9497.000000	4528.000000	2229.000000	2902.000000	
	Total_Trans_Ct	106.000000	75.000000	52.000000	64.000000	
	Total_Ct_Chng_Q4_Q1	0.710000	0.786000	1.080000	0.641000	
	Avg_Utilization_Ratio	0.498000	0.499000	0.404000	0.060000	

train_idx	509
Customer_Age	41.000000
Gender	0.855063
Dependent_count	2.000000
Education_Level	0.836798
Marital_Status	0.828299
Income_Category	0.838614
Card_Category	0.838528
Months_on_book	28.000000
Total_Relationship_Count	1.000000
Months_Inactive_12_mon	2.000000
Contacts_Count_12_mon	3.000000
Credit_Limit	13679.000000
Total_Revolving_Bal	2267.000000
Avg_Open_To_Buy	11412.000000
Total_Amt_Chng_Q4_Q1	1.232000
Total_Trans_Amt	15180.000000

```
Total_Trans_Ct
                                  103.000000
      Total_Ct_Chng_Q4_Q1
                                    0.689000
      Avg_Utilization_Ratio
                                    0.166000
[57]: #scaler = StandardScaler()
      scaler = RobustScaler()
      # transform data
      X_train[X_train.columns] = scaler.fit_transform(X_train)
      X_test[X_test.columns] = scaler.transform(X_test)
[58]: n_rows = plot_template(n_cols,X_train.columns)
      n_rows
[58]: 10
[59]: fig, axes = plt.subplots(n_rows, n_cols, figsize = (3.5 * 4, 3.5 * n_rows))
      for i, col in enumerate(X_train):
          ax = axes.flat[i]
          sns.histplot(x= X_train[col],kde=True,ax=ax)
      plt.suptitle("Numeric Values Features", y=1,fontsize=15,fontweight='bold')
      axes[-1, -1].axis('off')
      plt.tight_layout()
      plt.show()
```



```
[60]: fig, axes = plt.subplots(n_rows,n_cols, figsize=(3.5 * 4, 3.5 *n_rows))

for i, col in enumerate(X_train.columns):
    ax = axes.flat[i]
    sns.boxplot(x= X_train[col],ax=ax)

plt.suptitle("Numeric Values Features", y=1,fontsize=15,fontweight='bold')
    axes[-1, -1].axis('off')
    plt.tight_layout()
    plt.show()
```



```
# Balance Data
```

```
[61]: over = SMOTE(sampling_strategy='not majority',random_state=17)
    under = RandomUnderSampler(sampling_strategy='not majority')
    steps = [('o', over), ('u', under)]
    pipeline = Pipeline(steps=steps)

    X_train_sm,y_train_sm = pipeline.fit_resample(X_train,y_train)

[62]: X_train_sm.shape[0],y_train_sm.shape[0],X_test.shape[0],y_test.shape[0]

[62]: (10872, 10872, 1621, 1621)
```

7 Feature Selection

```
[63]: features = XGBClassifier()
  features.fit(X_train_sm, y_train_sm)

plt.figure(figsize=(10,6))
  plot_importance(features,height=0.3,importance_type='gain')
  plt.tight_layout()
  plt.show()
```

<Figure size 1000x600 with 0 Axes>


```
[64]: features_importance_names = features.get_booster().

¬get_score(importance_type='gain')
      features_importance_names
[64]: {'Customer_Age': 5.369898319244385,
       'Gender': 12.305244445800781,
       'Dependent_count': 2.7322099208831787,
       'Education_Level': 2.398404359817505,
       'Marital_Status': 4.644156455993652,
       'Income_Category': 2.046273708343506,
       'Card_Category': 0.8429279923439026,
       'Months_on_book': 1.6233980655670166,
       'Total_Relationship_Count': 15.567176818847656,
       'Months_Inactive_12_mon': 7.974614143371582,
       'Contacts_Count_12_mon': 6.786797046661377,
       'Credit Limit': 2.399428129196167,
       'Total_Revolving_Bal': 15.522917747497559,
       'Avg_Open_To_Buy': 1.8516833782196045,
       'Total_Amt_Chng_Q4_Q1': 3.2221853733062744,
       'Total_Trans_Amt': 10.984789848327637,
       'Total_Trans_Ct': 51.22013854980469,
```

```
'Avg_Utilization_Ratio': 1.1399104595184326}
[65]: #use function (5) to get the tupple from the list and then sort it
      features_importance names_list = list(features_importance names.items())
      features_importance_names_list.sort(key = get_value,reverse=True)
[66]: features_importance_names_list
[66]: [('Total Trans Ct', 51.22013854980469),
       ('Total_Relationship_Count', 15.567176818847656),
       ('Total_Revolving_Bal', 15.522917747497559),
       ('Gender', 12.305244445800781),
       ('Total_Trans_Amt', 10.984789848327637),
       ('Months_Inactive_12_mon', 7.974614143371582),
       ('Total_Ct_Chng_Q4_Q1', 7.49886417388916),
       ('Contacts_Count_12_mon', 6.786797046661377),
       ('Customer_Age', 5.369898319244385),
       ('Marital_Status', 4.644156455993652),
       ('Total_Amt_Chng_Q4_Q1', 3.2221853733062744),
       ('Dependent_count', 2.7322099208831787),
       ('Credit_Limit', 2.399428129196167),
       ('Education_Level', 2.398404359817505),
       ('Income_Category', 2.046273708343506),
       ('Avg_Open_To_Buy', 1.8516833782196045),
       ('Months on book', 1.6233980655670166),
       ('Avg_Utilization_Ratio', 1.1399104595184326),
       ('Card_Category', 0.8429279923439026)]
[67]: #get only the first value of the tupple
      features_sorted_names = []
      for i in features importance names list:
          features_sorted_names.append(i[0])
      features_sorted_names
[67]: ['Total_Trans_Ct',
       'Total Relationship Count',
       'Total_Revolving_Bal',
       'Gender',
       'Total_Trans_Amt',
       'Months_Inactive_12_mon',
       'Total_Ct_Chng_Q4_Q1',
       'Contacts_Count_12_mon',
       'Customer_Age',
       'Marital_Status',
```

'Total_Ct_Chng_Q4_Q1': 7.49886417388916,

```
'Total_Amt_Chng_Q4_Q1',
       'Dependent_count',
       'Credit_Limit',
       'Education_Level',
       'Income_Category',
       'Avg_Open_To_Buy',
       'Months_on_book',
       'Avg_Utilization_Ratio',
       'Card_Category']
[74]: #define the columns with least value
      drop_cols = features_sorted_names[9:]
      drop_cols
[74]: ['Marital_Status',
       'Total_Amt_Chng_Q4_Q1',
       'Dependent_count',
       'Credit_Limit',
       'Education_Level',
       'Income_Category',
       'Avg_Open_To_Buy',
       'Months_on_book',
       'Avg_Utilization_Ratio',
       'Card_Category']
[75]: X_train_ = X_train_sm.drop(columns=drop_cols)
      y_train_ = y_train_sm
[76]: X_test_ = X_test.drop(columns=drop_cols)
      y_test_ = y_test
```

8 Model Creation

8.1 Random Forest

```
[77]: rf = RandomForestClassifier(random_state= seed)
[78]: # Hyperparameter Tuning
parameters_rf = {
        'n_estimators': [10,100, 200,500],
        'max_depth' : [2, 5, 7,10,20,25],
        'min_samples_split': [12,20,40],
        'criterion':['gini', 'entropy'],
        'bootstrap': [True, False]
}
```

```
[79]: skfold = StratifiedKFold(n_splits=6,shuffle=True,random_state=seed)
[80]: gridRf = GridSearchCV(rf, parameters_rf, cv=skfold)
[81]: y_rf_score = gridRf.fit(X_train_, y_train_)
[82]: gridRf.best_score_
[82]: 0.9734179543782192
[83]: #best parameters
      gridRf.best_params_
[83]: {'bootstrap': False,
       'criterion': 'entropy',
       'max_depth': 20,
       'min_samples_split': 12,
       'n_estimators': 500}
[84]: best_stimator_grid_rf = gridRf.best_estimator_
      best_stimator_grid_rf
[84]: RandomForestClassifier(bootstrap=False, criterion='entropy', max_depth=20,
                            min_samples_split=12, n_estimators=500, random_state=13)
[85]: y_rf_pred = gridRf.predict(X_test_)
[86]: report_rf = classification_report(y_test_, y_rf_pred,output_dict=True)
      df_report_rf = pd.DataFrame(report_rf).T
      df_report_rf
[86]:
                   precision recall f1-score
                                                      support
      0
                    0.890196 0.886719 0.888454
                                                   256.000000
      1
                    0.978770 0.979487 0.979129 1365.000000
      accuracy
                    0.964837 0.964837 0.964837
                                                     0.964837
                    0.934483 0.933103 0.933791 1621.000000
     macro avg
                    0.964782 0.964837 0.964809 1621.000000
      weighted avg
[87]: #Confusion matrix
      conf_matrix_rf = confusion_matrix(y_test_, y_rf_pred)
      #Accuracy
      acu_rf = accuracy_score(y_test_, y_rf_pred)
      #AUC
      auc_rf = roc_auc_score(y_test_, y_rf_pred)
[88]: acmod rf = {"RF y test":round(acu rf,4)}
      aucmod_rf = {"RF_y_test":round(auc_rf,4)}
```

```
[89]: #run the functiona (4)
subplots_ROC_CM("Random Forest (RF) Classification", "Receiver Operating_

→Characteristic",

"RF Confusion Matrix",

gridRf.

→best_estimator_,acmod_rf,aucmod_rf,conf_matrix_rf, "RF_y_test", X_test_,y_test_, "Random_

→Forest")
```

Random Forest (RF) Classification

8.2 Stochastic Gradient Descent (SDG)

```
[90]: sdg = SGDClassifier(random_state= seed)

[91]: # Hyperparameter Tuning
parameters_sdg = {
    'penalty':['12', '11', 'elasticnet'],
    'learning_rate': ['constant','optimal','invscaling','adaptive'],
```

```
'loss': ['log_loss', 'modified_huber'],
          'alpha': list(range(1,50,1)),
          'fit_intercept': [True,False],
          'max_iter': [5000]
      }
[92]: gridSdg = GridSearchCV(sdg, parameters_sdg, cv=skfold)
[93]: y_sdg_score = gridSdg.fit(X_train_, y_train_)
     /opt/anaconda3/lib/python3.9/site-
     packages/sklearn/model_selection/_validation.py:372: FitFailedWarning:
     12348 fits failed out of a total of 14112.
     The score on these train-test partitions for these parameters will be set to
     nan.
     If these failures are not expected, you can try to debug them by setting
     error_score='raise'.
     Below are more details about the failures:
     10584 fits failed with the following error:
     Traceback (most recent call last):
       File "/opt/anaconda3/lib/python3.9/site-
     packages/sklearn/model_selection/_validation.py", line 680, in _fit_and_score
         estimator.fit(X_train, y_train, **fit_params)
       File "/opt/anaconda3/lib/python3.9/site-
     packages/sklearn/linear_model/_stochastic_gradient.py", line 883, in fit
         return self._fit(
       File "/opt/anaconda3/lib/python3.9/site-
     packages/sklearn/linear_model/_stochastic_gradient.py", line 649, in _fit
         self._validate_params()
       File "/opt/anaconda3/lib/python3.9/site-
     packages/sklearn/linear_model/_stochastic_gradient.py", line 149, in
     _validate_params
         raise ValueError("eta0 must be > 0")
     ValueError: eta0 must be > 0
     1764 fits failed with the following error:
     Traceback (most recent call last):
       File "/opt/anaconda3/lib/python3.9/site-
     packages/sklearn/model_selection/_validation.py", line 680, in _fit_and_score
         estimator.fit(X_train, y_train, **fit_params)
       File "/opt/anaconda3/lib/python3.9/site-
     packages/sklearn/linear_model/_stochastic_gradient.py", line 883, in fit
         return self._fit(
```

```
File "/opt/anaconda3/lib/python3.9/site-
     packages/sklearn/linear_model/_stochastic_gradient.py", line 649, in _fit
         self._validate_params()
       File "/opt/anaconda3/lib/python3.9/site-
     packages/sklearn/linear_model/_stochastic_gradient.py", line 162, in
     _validate_params
         raise ValueError("The loss %s is not supported. " % self.loss)
     ValueError: The loss log_loss is not supported.
       warnings.warn(some_fits_failed_message, FitFailedWarning)
     /opt/anaconda3/lib/python3.9/site-
     packages/sklearn/model_selection/_search.py:969: UserWarning: One or more of the
     test scores are non-finite: [nan nan nan ... nan nan nan]
       warnings.warn(
[94]: gridSdg.best_score_
[94]: 0.8084988962472406
[95]: #best parameters
      gridSdg.best_params_
[95]: {'alpha': 1,
       'fit_intercept': True,
       'learning_rate': 'optimal',
       'loss': 'modified_huber',
       'max_iter': 5000,
       'penalty': '12'}
[96]: best_estimator_grid_sdg = gridSdg.best_estimator_
      best_estimator_grid_sdg
[96]: SGDClassifier(alpha=1, loss='modified huber', max_iter=5000, random_state=13)
[97]: y_sdg_pred = gridSdg.predict(X_test_)
[98]: report_sdg = classification_report(y_test_, y_sdg_pred,output_dict=True)
      df_report_sdg = pd.DataFrame(report_sdg).T
      df_report_sdg
[98]:
                    precision
                                 recall f1-score
                                                        support
      0
                     0.506143  0.804688  0.621418
                                                    256.000000
      1
                     0.958814   0.852747   0.902675   1365.000000
      accuracy
                     0.845157   0.845157   0.845157
                                                       0.845157
     macro avg
                     0.732478  0.828717  0.762047
                                                   1621.000000
      weighted avg
                     0.887325 0.845157 0.858257
                                                   1621.000000
```

Stochastic Gradient Descent (SDG) Classification

8.3 XGBoost

```
[102]: xgbc = XGBClassifier(random state= seed)
[103]: # Hyperparameter Tuning
       parameters_xgbc = {
                     'objective':['binary:logistic'],
                     'learning_rate': [0.0001,0.001,0.01,0.1],
                     'max_depth': [2,4,7,15],
                     'subsample': [0.1,0.5,0.8],
                     'colsample_bytree': [0.1,0.5,0.7],
                     'n_estimators': [100,300,500,1000],
       }
[104]: gridXgbc = GridSearchCV(xgbc, parameters_xgbc, cv=skfold)
[105]:
        y_xgbc_score = gridXgbc.fit(X_train_, y_train_)
[106]:
        gridXgbc.best_score_
[106]: 0.978476821192053
[107]: #best parameters
       gridXgbc.best_params_
[107]: {'colsample_bytree': 0.5,
        'learning_rate': 0.1,
        'max_depth': 15,
        'n_estimators': 500,
        'objective': 'binary:logistic',
        'subsample': 0.8}
[108]: best_estimator_grid_xgbc = gridXgbc.best_estimator_
       best_estimator_grid_xgbc
[108]: XGBClassifier(base_score=None, booster=None, callbacks=None,
                     colsample_bylevel=None, colsample_bynode=None,
                     colsample_bytree=0.5, early_stopping_rounds=None,
                     enable_categorical=False, eval_metric=None, feature_types=None,
                     gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
                     interaction constraints=None, learning rate=0.1, max bin=None,
                     max_cat_threshold=None, max_cat_to_onehot=None,
                     max_delta_step=None, max_depth=15, max_leaves=None,
                     min_child_weight=None, missing=nan, monotone_constraints=None,
                     n_estimators=500, n_jobs=None, num_parallel_tree=None,
```

```
predictor=None, random_state=13, ...)
```

```
[109]: y_xgbc_pred = gridXgbc.predict(X_test_)
[110]: report_xgbc = classification_report(y_test_, y_xgbc_pred,output_dict=True)
       df_report_xgbc = pd.DataFrame(report_xgbc).T
       df_report_xgbc
[110]:
                                 recall f1-score
                    precision
                                                        support
                      0.917695 0.871094 0.893788 256.000000
       1
                      0.976052 0.985348 0.980678 1365.000000
                      0.967304 0.967304 0.967304
                                                       0.967304
       accuracy
      macro avg
                      0.946874 0.928221 0.937233 1621.000000
                      0.966836  0.967304  0.966956  1621.000000
      weighted avg
[111]: #Confusion matrix
       conf_matrix_xgbc = confusion_matrix(y_test_, y_xgbc_pred)
       acu_xgbc = accuracy_score(y_test_, y_xgbc_pred)
       auc_xgbc = roc_auc_score(y_test_, y_xgbc_pred)
[112]: acmod_xgbc = {"XGBC_y_test":round(acu_xgbc,4)}
       aucmod xgbc = {"XGBC y test":round(auc xgbc,4)}
[113]: #run the functiona (9)
       subplots_ROC_CM("XGBOOST Classification", "Receiver Operating Characteristic",
                       "XGBOOST Confusion Matrix",
                       gridXgbc.
        ⇒best_estimator_,acmod_xgbc,aucmod_xgbc,conf_matrix_xgbc,"XGBC_y_test",X_test_,y_test_,"XGBO
```

XGBOOST Classification

9 Select Model

```
[139]:
                     precision
                                   recall
                                          f1-score
                                                          support
                                                       256.000000
                      0.890196
                                           0.888454
       0
                                0.886719
                                                      1365.000000
       1
                       0.978770
                                 0.979487
                                           0.979129
                      0.964837
                                 0.964837
                                           0.964837
                                                         0.964837
       accuracy
       macro avg
                       0.934483
                                 0.933103
                                           0.933791
                                                      1621.000000
       weighted avg
                      0.964782 0.964837
                                           0.964809
                                                      1621.000000
```

```
[140]: metrics_models = pd.
        →DataFrame([Accuracy, AUC, F1_score], index=["Accuracy", "AUC", "F1"]).T
       metrics_models
[140]:
             Accuracy
                            AUC
                                        F1
             0.964837
                       0.933103 0.933791
       RF
       SDG
             0.845157
                       0.828717
                                  0.762047
       XGBC
             0.967304 0.928221
                                 0.937233
[141]: fig,axes= plt.subplots(1,3,figsize=(11,8))
       for i,col in enumerate(metrics_models.columns):
           sns.lineplot(data=metrics_models[col],ax=axes[i] )
       plt.tight_layout()
```

plt.suptitle("Model Metrics", fontsize = 15, fontweight = "bold", y=1.05)

plt.show()

Model Metrics


```
false_Negative_S = pd.Series(false_Negative,name="FN",index=["RF","SDG","XGBC"])

[147]: fig = plt.figure(figsize=(8, 6))
    sns.barplot(x=false_Negative_S.index,y=false_Negative_S.values)
    plt.ylabel("Number of False Negatives")
    plt.title("False Negatives")
    plt.show()
```


The RF and XGB model have almost the same f1, with the XGB being slightly higher, but has a greater reduction of false negatives. XGB will be chosen because of its slight increase in f1 but undoubtedly the reduction in false negatives is something of great importance as it represents customers that the model classifies as satisfied with the bank's service but are really customers who are likely to cease using the bank's services.

10 Test

```
[122]: X_Test = test.copy().drop(columns='CLIENTNUM')
[123]: test_cat_cols = X_Test.select_dtypes(object).columns
    test_cat_cols
```

```
[123]: Index(['Gender', 'Education_Level', 'Marital_Status', 'Income_Category',
              'Card_Category'],
             dtype='object')
[124]: X_Test[test_cat_cols] = enc.transform(X_Test[test_cat_cols])
[125]: X Test.info()
      <class 'pandas.core.frame.DataFrame'>
      Int64Index: 2026 entries, 0 to 2025
      Data columns (total 19 columns):
           Column
                                      Non-Null Count Dtype
           _____
       0
           Customer_Age
                                      2026 non-null
                                                      int64
       1
           Gender
                                      2026 non-null
                                                      float64
       2
           Dependent_count
                                      2026 non-null
                                                      int64
       3
           Education_Level
                                      2026 non-null
                                                      float64
       4
           Marital_Status
                                      2026 non-null
                                                      float64
       5
           Income_Category
                                      2026 non-null
                                                      float64
                                      2026 non-null
       6
           Card_Category
                                                      float64
       7
           Months_on_book
                                      2026 non-null
                                                      int64
           Total_Relationship_Count 2026 non-null
       8
                                                      int64
           Months_Inactive_12_mon
                                      2026 non-null
                                                      int64
       10 Contacts_Count_12_mon
                                      2026 non-null
                                                      int64
       11 Credit_Limit
                                      2026 non-null
                                                      float64
       12 Total_Revolving_Bal
                                      2026 non-null
                                                      int64
       13 Avg_Open_To_Buy
                                                      float64
                                      2026 non-null
       14 Total_Amt_Chng_Q4_Q1
                                      2026 non-null
                                                      float64
                                      2026 non-null
       15 Total_Trans_Amt
                                                      int64
       16 Total_Trans_Ct
                                      2026 non-null
                                                      int64
          Total_Ct_Chng_Q4_Q1
                                      2026 non-null
                                                      float64
       18 Avg_Utilization_Ratio
                                      2026 non-null
                                                      float64
      dtypes: float64(10), int64(9)
      memory usage: 316.6 KB
[126]: X_Test[X_Test.columns] = scaler.transform(X_Test)
[127]: X_Test = X_Test.drop(columns=drop_cols)
[144]: final_model_prediction = gridXgbc.predict(X_Test)
[145]: #create Series with predictions
       final_prediction_series = pd.Series(data = final_model_prediction,_

¬name='target')
       final_prediction_series
```

```
[145]: 0
               1
       1
               1
       2
               1
       3
               1
       4
               1
       2021
               1
       2022
       2023
               1
       2024
               1
       2025
               1
       Name: target, Length: 2026, dtype: int64
[146]: #convert series to json file
       json_dict = {'target': final_prediction_series.to_dict()}
       with open('predictions.json', 'w') as f:
           json.dump(json_dict, f)
```