

SIC MOSFET

CoolSiC™ MOSFET 650 V G2

Built on Infineon's robust 2nd generation Silicon Carbide trench technology, the 650 V CoolSiC™ MOSFET delivers unparalleled performance, superior reliability, and great ease of use. It enables cost effective, highly efficient, and simplified designs to fulfill the ever-growing system and market needs.

O-DPAK

Features

- Ultra-low switching losses
- Benchmark gate threshold voltage, $V_{GS(th)} = 4.5 \text{ V}$
- Robust against parasitic turn-on even with 0 V turn-off gate voltage
- Flexible driving voltage and compatible with bipolar driving scheme
- Robust body diode operation under hard commutation events
- .XT interconnection technology for best-in-class thermal performance

Benefits

- · Enables high efficiency and high power density designs
- Facilitates great ease of use and integration
- Provides the best price performance ratio compared to Industry's most ambitious roadmaps
- · Reduces the size, weight and bill of materials of the systems
- Enhances system robustness and reliability

Potential applications

- SMPS
- Solar PV inverters
- · Energy storage and battery formation
- UPS
- EV charging infrastructure
- Motor drives

Product validation

Fully qualified according to JEDEC for Industrial Applications

Please note: The source and driver source pins are not exchangeable. Their exchange might lead to malfunction.

Parameter	Value	Unit
$V_{\rm DSS}$ over full $T_{\rm j,range}$	650	V
$R_{\mathrm{DS(on),typ}}$	10.0	mΩ
R _{DS(on),max}	13.1	mΩ
$Q_{G,typ}$	113	nC
I _{D,pulse}	567	А
Q _{oss} @ 400 V	212	nC
E _{oss} @ 400 V	28.8	μЈ

Part number	Package	Marking	Related links
IMDQ65R010M2H	PG-HDSOP-22	65R010M2	see Appendix A

Drain

Pin 12-22. Tab

Source Pin 3-11

Gate

Pin 1

Drive Source

Pin 2

*1: Internal body diode

Public

CoolSiC™ MOSFET 650 V G2 IMDQ65R010M2H

Table of contents

Description	
Maximum ratings	
Thermal characteristics	
Operating range	
Electrical characteristics	6
Electrical characteristics diagrams	
Test circuits	
Package outlines	
Appendix A	
Revision history	
Trademarks	
Disclaimer	18

1 Maximum ratings

at $T_i = 25$ °C, unless otherwise specified.

Note: for optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of the maximum ratings stated in this datasheet.

Table 2 Maximum ratings

Davamakav	Symbol	Values			Linit	Note / Test condition	
Parameter	Symbol	Min.	Тур.	Max.	Onic	Note / Test condition	
Continuous DC drain current 1)	I _{DDC}	-	-	154 123	А	$T_c = 25$ °C $T_c = 100$ °C	
Peak drain current ²⁾	I _{DM}	-	-	567	А	$T_{\rm c}$ = 25°C, $V_{\rm GS}$ = 18 V	
Avalanche energy, single pulse	E_{AS}	-	-	534	mJ	/ = 20 A // = 50 // see table 11	
Avalanche energy, repetitive	E_{AR}	-	-	2.67	mJ	$I_{\rm D}$ = 20 A, $V_{\rm DD}$ = 50 V; see table 11	
Avalanche current, single pulse	I _{AS}	-	-	20.0	А	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	200	V/ns	V _{DS} = 0400 V	
Gate source voltage (static) 3)	V_{GS}	-7	-	23	V	-	
Gate source voltage (transient)	$V_{\rm GS}$	-10	-	25	V	t _p ≤ 500 ns, duty cycle ≤ 1%	
Power dissipation	P_{tot}	-	-	651	W	T _c = 25°C	
Storage temperature	$T_{\rm stg}$	-55	-	150	°C		
Operating junction temperature	$T_{\rm j}$	-55	-	175	°C	-	
Mounting torque	-	-	-	n.a.	Ncm		
Continuous reverse drain current 1)	I _{SDC}	-	-	154 117	А	$V_{GS} = 18 \text{ V}, T_c = 25^{\circ}\text{C}$ $V_{GS} = 0 \text{ V}, T_c = 25^{\circ}\text{C}$	
Peak reverse drain current ²⁾	I _{SM}	-	-	567 173	А	$T_c = 25$ °C, $t_p \le 250$ ns $T_c = 25$ °C	
Insulation withstand voltage	V _{ISO}	-	-	n.a.	V	$V_{\rm rms}$, $T_{\rm c} = 25$ °C, $t = 1$ min	

¹⁾ Limited by $T_{j,max}$.

Pulse width t_{pulse} limited by $T_{\text{j,max}}$.

³⁾ The maximum gate-source voltage in the application design should be in accordance to IPC-9592B.

2 Thermal characteristics

Table 3 Thermal characteristics

Darameter	Symbol		Values		11	Note / Test condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	
Thermal resistance, junction - case	$R_{th(j-c)}$	-	-	0.23		Not subject to production test. Parameter verified by design/characterization according to JESD51-14.
Soldering temperature, reflow soldering allowed	$T_{\rm sold}$	-	-	260	°C	reflow MSL3

3 Operating range

Table 4 Operating range

Parameter	Symbol		Values		Unit	Note / Test condition
Parameter	Syllibol	Min.	Тур.	Max.	Oille	Note / Test condition
Recommended turn-on voltage	$V_{\rm GS(on)}$	-	18	-	V	
Recommended turn-off voltage	$V_{\rm GS(off)}$	-	0	-	V	-

4 Electrical characteristics

at $T_i = 25$ °C, unless otherwise specified

Table 5 Static characteristics

Parameter	Symbol	Values			Unit	Note / Test condition
raiailletei	Syllibor	Min.	Тур.	Max.		Note / Test condition
Drain-source voltage	$V_{\rm DSS}$	650	-	-	V	$V_{\rm GS} = 0 \text{ V}, I_{\rm D} = 1.87 \text{ mA}$
Gate threshold voltage $^{4)}$ $V_{\rm GS(th)}$		3.5	4.5	5.6	V	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 18.7 \mathrm{mA}$
Zero gate voltage drain current	I _{DSS}	-	1 10	75 -	μΑ	$V_{\rm DS}$ = 650 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 25°C $V_{\rm DS}$ = 650 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 175°C
Gate-source leakage current	I _{GSS}	-	-	100	nA	$V_{\rm GS} = 20 \text{ V}, V_{\rm DS} = 0 \text{ V}$
Drain-source on-state resistance	$R_{ m DS(on)}$	-	13.0 10.0 9.1 16	- 13.1 - -	mΩ	$V_{GS} = 15 \text{ V}, I_D = 92.1 \text{ A}, T_j = 25^{\circ}\text{C}$ $V_{GS} = 18 \text{ V}, I_D = 92.1 \text{ A}, T_j = 25^{\circ}\text{C}$ $V_{GS} = 20 \text{ V}, I_D = 92.1 \text{ A}, T_j = 25^{\circ}\text{C}$ $V_{GS} = 18 \text{ V}, I_D = 92.1 \text{ A}, T_j = 175^{\circ}\text{C}$
Internal gate resistance	$R_{\rm G,int}$	-	1.7	-	Ω	f= 1 MHz

Tested after 1 ms pulse at V_{GS} = +20 V. "Linear mode" operation is not recommended. For assessment of potential "linear mode" operation, please contact Infineon sales office.

Table 6 Dynamic characteristics

External parasitic elements (PCB layout) influence switching behavior significantly. Stray inductances and coupling capacitances must be minimized. For layout recommendations please use provided application notes or contact Infineon sales office.

Darameter	Symbol		Values			Nieto / Test condition	
Parameter	Symbol	Min.	Тур.	Max.	Onit	Note / Test condition	
Input capacitance	C _{iss}	-	4002	-	pF		
Reverse transfer capacitance	$C_{\rm rss}$	-	22	-	pF	$V_{GS} = 0 \text{ V}, V_{DS} = 400 \text{ V}, f = 250 \text{ kHz}$	
Output capacitance 5)	C _{oss}	-	297	386	pF		
Output charge ⁵⁾	$Q_{\rm oss}$	-	212	276	nC	calculation based on C _{oss}	
Effective output capacitance, energy related ⁶⁾	$C_{ m o(er)}$	-	359	-	pF	$V_{GS} = 0 \text{ V},$ $V_{DS} = 0400 \text{ V}$	
Effective output capacitance, time related ⁷⁾	$C_{\rm o(tr)}$	-	531	-	pF	$I_{\rm D}$ = constant, $V_{\rm GS}$ = 0 V, $V_{\rm DS}$ = 0 400 V	
Turn-on delay time	$t_{\rm d(on)}$	-	16	-	ns		
Rise time	t _r	-	24	-	ns	$V_{\rm DD} = 400 \text{V}, \ V_{\rm GS} = 0/18 \text{V}, \ I_{\rm D} = 92.1 \text{A}, \ R_{\rm G,ext} = 3.3 \Omega; \ \text{see table } 10$	
Turn-off delay time	$t_{\sf d(off)}$	-	30	-	ns		
Fall time	$t_{\rm f}$	-	9.4	-	ns	See tuble 10	

Table 6 Dynamic characteristics

External parasitic elements (PCB layout) influence switching behavior significantly. Stray inductances and coupling capacitances must be minimized. For layout recommendations please use provided application notes or contact Infineon sales office.

Parameter	Symbol	Values			Linit	Note / Test condition	
raiailletei	Syllibot	Min.	Тур.	Max.	Oilit	Note / Test condition	
Turn-ON switching losses ⁸⁾	E _{on}	-	216	-	μJ		
Turn-OFF switching losses ⁸⁾	E _{off}	-	371	-	μJ	$V_{\rm DD} = 400 \text{ V}, V_{\rm GS} = 0/18 \text{ V},$ $I_{\rm D} = 92.1 \text{ A}, R_{\rm G,ext} = 3.3 \Omega$	
Total switching losses ⁸⁾	E _{tot}	-	587	-	μJ	1-10 S = 1-2 - 17 - 13 - 12 - 12 - 12 - 12 - 12 - 12 - 12	

⁵⁾ Maximum specification is defined by calculated six sigma upper confidence bound.

Table 7 Gate charge characteristics

Darameter	Symbol		Values		Linit	Note / Test condition	
Parameter	Symbol	Min.	Тур.	Max.	Oilit	Note / Test condition	
Plateau gate to source charge	$Q_{GS(pl)}$	-	29	-	nC		
Gate to drain charge	Q_{GD}	-	21	-		$V_{DD} = 400 \text{ V}, I_{D} = 92.1 \text{ A},$ $V_{GS} = 0 \text{ to } 18 \text{ V}$	
Total gate charge	Q_{G}	-	113	-	nC	VGS 0 to 10 v	

Table 8 Reverse diode characteristics

Parameter	Symbol		Values			Nicke / Test condition
Parameter	Symbol	Min.	Тур.	Max.	Jonit	Note / Test condition
Drain-source reverse voltage	$V_{\rm SD}$	-	4.3	-	V	$V_{GS} = 0 \text{ V}, I_S = 92.1 \text{ A}, T_j = 25^{\circ}\text{C}$
MOSFET forward recovery time	t _{fr}	-	25 19	-	ns	$V_{DD} = 400 \text{ V}, I_{S} = 92.1 \text{ A},$ $di_{S}/dt = 1000 \text{ A/}\mu\text{s}; \text{ see table 9}$ $V_{DD} = 400 \text{ V}, I_{S} = 92.1 \text{ A},$ $di_{S}/dt = 4000 \text{ A/}\mu\text{s}; \text{ see table 9}$
MOSFET forward recovery charge ⁹⁾	Q_{fr}	-	224 376	-	nC	$V_{\rm DD} = 400 \text{V}, I_{\rm S} = 92.1 \text{A},$ $di_{\rm S}/dt = 1000 \text{A/\mu s}; \text{see table 9}$ $V_{\rm DD} = 400 \text{V}, I_{\rm S} = 92.1 \text{A},$ $di_{\rm S}/dt = 4000 \text{A/\mu s}; \text{see table 9}$
MOSFET peak forward recovery current	I _{frm}	-	18 40	-	А	$V_{\rm DD} = 400 \text{V}, I_{\rm S} = 92.1 \text{A},$ $di_{\rm S}/dt = 1000 \text{A/\mu s}; \text{see table 9}$ $V_{\rm DD} = 400 \text{V}, I_{\rm S} = 92.1 \text{A},$ $di_{\rm S}/dt = 4000 \text{A/\mu s}; \text{see table 9}$

⁹⁾ Q_{fr} includes Q_{oss} .

 $C_{o(er)}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400 V.

⁷⁾ $C_{o(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400 V.

⁸⁾ Values for 4-pin configuration based on TO-263-7 measurements; MOSFET used in half-bridge configuration without external diode.

5 Electrical characteristics diagrams

6 Test circuits

Table 9 Body diode characteristics

Table 10 Switching times

Table 11 Unclamped inductive load

7 Package outlines

Figure 1 Outline PG-HDSOP-22, dimensions in mm

Figure 2 Footprint drawing PG-HDSOP-22, dimensions in mm

All dimensions are in units mm
The drawing is in compliance with ISO 128-30, Projection Method 1 [-□□□]

Figure 3 Packaging variant PG-HDSOP-22, dimensions in mm

8 Appendix A

Table 12 Related links

- IFX CoolSiC CoolSiC™ MOSFET 650 V G2 Webpage
- IFX CoolSiC CoolSiC™ MOSFET 650 V G2 Application Note
- IFX CoolSiC CoolSiC™ MOSFET 650 V G2 Simulation Model
- IFX Design tools

Revision history

IMDQ65R010M2H

Revision 2025-01-16, Rev. 2.1

Previous revisions

Revision	Date	Subjects (major changes since last revision)
2.0	2024-11-06	Release of final
2.1	2025-01-16	updated continuous reverse drain current

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2025 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www. infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.