

Internet das Coisas

1. Quais áreas estão na base da loT (Internet das Coisas)?

A Internet das Coisas (do inglês Internet of Things (IoT))
 emergiu dos avanços de várias áreas como sistemas
 embarcados, microeletrônica, comunicação e
 sensoriamento.

2. O que é Internet das Coisas?

- A Internet das Coisas, em poucas palavras, nada mais é do que uma extensão da Internet atual, ...
 - que proporciona aos objetos do dia-a-dia (quaisquer que sejam), mas com capacidade computacional e de comunicação, se conectarem à Internet
- A conexão com a rede mundial de computadores viabilizará, primeiro, controlar remotamente os objetos e, ...
 - segundo, permitir que os próprios objetos sejam acessados como provedores de serviços
- Estas novas habilidades, dos objetos comuns, geram um grande número de oportunidades tanto no âmbito acadêmico quanto no industrial
- Todavia, estas possibilidades apresentam riscos e acarretam amplos desafios técnicos e sociais

3. Dê exemplos de aplicações de loT.

- Concomitantemente à IoT, uma gama de novas possibilidades de aplicações surgem (ex: cidades inteligentes (Smart Cities), saúde (Healthcare), casas inteligentes (Smart Home)) ...
 - e desafios emergem (regulamentações, segurança, padronizações)

4. O que são objetos inteligentes?

- Na IoT, eventualmente, a unidade básica de hardware apresentará ao menos uma das seguintes características [Ruiz et al. 2004, Loureiro et al. 2003]:
 - i) unidade(s) de processamento;
 - ii) unidade(s) de memória;
 - iii) unidade(s) de comunicação e;
 - iv) unidade(s) de sensor(es) ou atuador(es)
- Aos dispositivos com essas qualidades é dado o nome de objetos inteligentes (*Smart Objects*)
- Os objetos, ao estabelecerem comunicação com outros dispositivos, manifestam o conceito de estarem em rede, como discutido anteriormente

5. Liste os blocos básicos de construção da loT.

- Identificação
- Sensores/Atuadores
- Comunicação
- Computação
- Serviços: classes de serviços providos
- Semântica: habilidade de extração de conhecimento dos objetos na IoT

5. Liste os blocos básicos de construção da loT.

Contextualização

 https://olhardigital.com.br/noticia/pagando-parabeber-cafe-da-sua-propria-cafeteira/107814

6. Descreva a unidade de processamento/memória de um objeto inteligente.

- Composta de uma memória interna para armazenamento de dados e programas, um microcontrolador e um conversor analógico-digital para receber sinais dos sensores
- As CPUs utilizadas nesses dispositivos são, em geral, as mesmas utilizadas em sistemas embarcados e comumente não apresentam alto poder computacional
- Frequentemente existe uma memória externa do tipo flash, que serve como memória secundária, por exemplo, para manter um "log" de dados
- As características desejáveis para estas unidades são consumo reduzido de energia e ocupar o menor espaço possível

7. Descreva a unidade de comunicação de um objeto inteligente.

- Consiste de, pelo menos, um canal de comunicação com ou sem fio, sendo mais comum o meio sem fio
- Neste último caso, a maioria das plataformas usam rádio de baixo custo e baixa potência
- Como consequência, a comunicação é de curto alcance e apresentam perdas frequentes

8. Descreva a unidade de fonte de energia de um objeto inteligente.

- Responsável por fornecer energia aos componentes do objeto inteligente
- Normalmente, a fonte de energia consiste de uma bateria (recarregável ou não) e um conversor AC-DC e tem a função de alimentar os componentes
- Entretanto, existem outras fontes de alimentação como energia elétrica, solar e mesmo a captura de energia do ambiente através de técnicas de conversão

9. Descreva a unidade de sensores/atuadores de um objeto inteligente.

- Realizam o monitoramento do ambiente no qual o objeto se encontra
- Os sensores capturam valores de grandezas físicas como temperatura, umidade, pressão e presença
- Atualmente, existem literalmente centenas de sensores diferentes que são capazes de capturar essas grandezas
- Atuadores, como o nome indica, são dispositivos que produzem alguma ação, atendendo a comandos que podem ser manuais, elétricos ou mecânicos

10. Liste as principais tecnologias de comunicação utilizadas em loT.

- Ethernet
- Wi-Fi
- ZigBee
- Bluetooth Low Energy
- 3G/4G
- LoRaWan
- Sigfox

11. Quais são as fontes de alimentação mais empregadas nos dispositivos loT e o que é a técnica de *Energy Harvesting* ?

- Atualmente, os objetos inteligentes são alimentados, em geral, por baterias, muitas vezes não recarregáveis
- Uma possível estratégia para mitigar o problema da energia é fazer uso da técnica de colheita de energia (do inglês Energy Harvesting) [Ramos et al. 2012]
- A estratégia consiste em transformar energia de fontes externas ao dispositivo como, por exemplo, solar, térmica, eólica e cinética em energia elétrica e armazená-la em uma bateria recarregável

Contextualização

- Há poucos anos atrás, era possível apontar o fator custo como limitante para adoção e desenvolvimento de objetos inteligentes
- Entretanto, hoje é possível encontrar soluções de IoT disponíveis no mercado de baixo custo
- Para esse segmento, é possível afirmar que o custo do hardware já é acessível, se analisarmos o preço de produtos como o <u>Raspberry PI</u>, Arduino e similares que permitem desde a prototipagem até a produção final de soluções de IoT a baixo custo
 - Por exemplo, é possível encontrar o Raspberry Pi ao custo de US\$ 35

12. Quais os dois grupos criados pela Internet Engineering Task Force (IETF) para gerenciar, padronizar e levantar os requisitos para as redes de baixa potência (Low-Power and Lossy Networks (LLN))?

- 6LoWPAN: o IPv6 in Low-Power Wireless Personal Area Networks Working Group ficou responsável por padronizar o Internet Protocol version 6 (IPv6) para redes que fazem uso de rádios sobre o padrão IEEE 802.15.4
- RoLL: o Routing over Low-Power and Lossy Links Working Group ficou responsável por padronizar o protocolo de roteamento que utilizará o IPv6 em dispositivos com limitações de recursos
 - O grupo já definiu o protocolo: IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL)
 - Esse protocolo representa o estado-da-arte em roteamento para IoT, o qual constrói uma topologia robusta para comunicação na Internet das Coisas

13. Quais são as três camadas do modelo básico de arquitetura para loT?

- O modelo básico de arquitetura apresenta três camadas
- A primeira camada é a de objetos inteligentes ou camada de percepção
 - Esta camada representa os objetos físicos, os quais utilizam sensores para coletarem e processarem informações
- Na camada de rede, as abstrações das tecnologias de comunicação, serviços de gerenciamento, roteamento e identificação devem ser realizados
- Logo acima, encontra-se a camada de aplicação, a qual é responsável por prover serviços para os clientes
 - Por exemplo, uma aplicação solicita medições de temperatura e umidade para clientes que requisitam estas informações

13. Quais são as três camadas do modelo básico de arquitetura para loT?

14. O IPv4 é escalável o suficiente para atender a demanda da IoT ?

- O protocolo IPv4 foi o padrão utilizado para endereçar os dispositivos em rede e criar a "cola" da Internet, i.e., para estar conectado à Internet era necessário ter o protocolo IP
- No entanto, não se imaginou que a Internet cresceria e poderia ter dezenas de milhares de pontos finais em uma única sub-rede, tal como agora é previsto para a loT
- O crescimento da rede mundial de computadores levou ao esgotamento de endereços IPv4 disponíveis
- Isto mostrou que o IPv4 não era escalável o suficiente para atender a demanda da IoT

15. Qual foi a motivação para a criação do 6LoWPAN e o que é o 6LoWPAN ?

- O IPv6 tem um tamanho de pacote maior que o tamanho do quadro dos protocolos usados pelos dispositivos na IoT (o pacote IPv6 é transmitido dentro da área de dados do quadro do protocolo de acesso ao meio)
- Por exemplo, o padrão IEEE 802.15.4, usado para acesso ao meio físico de comunicação, limita os pacotes a 128 bytes
- Para resolver esse problema, a IETF criou o 6LoWPAN [Kushalnagar et al. 2007]
- 6LoWPAN é uma camada de adaptação primariamente desenvolvida para o padrão IEEE 802.15.4
- A principal ideia é realizar a compressão de pacotes IPv6, permitindo a dispositivos com baixo poder computacional o uso do IPv6

16. Liste os modelos de conectividade em redes de objetos inteligentes.

- Rede autônoma de objetos inteligentes
- Internet estendida
- Internet das Coisas

16. Liste os modelos de conectividade em redes de objetos inteligentes.

Figura 1.6. Modelos de conectividade dos objetos inteligentes. (I) Rede autônoma em que objetos inteligentes não possuem conexão com a Internet pública; (II) Rede de objetos inteligentes limitada, pois o acesso aos dispositivos é restrito; (III) IoT "autêntica" em que os objetos estão conetados à Internet pública.²⁶

17. Liste os paradigmas de comunicação para objetos inteligentes.

- Muitos-para-Um (Many-to-One)
- Um-para-Muitos (*One-to-Many*)
- Um-para-Muitos e vice-versa (One-to-Many and Many-to-One)
- Um-para-um (Any-to-Any)

18. O que é o RPL?

- É o Routing Protocol for Low-Power and Lossy Networks
- É um protocolo de roteamento para LLNs, projetado e padronizado pelo ROLL Working Group da IETF, sendo o protocolo padrão que utiliza IPv6 para LLNs.
- O protocolo RPL é flexível o suficiente para permitir rotas um-para-um, além de possibilitar que elementos de rede com diferentes capacidades sejam
 empregados para otimizar o armazenamento das rotas
- Ainda existe um modo de operação em que o RPL, opera sob o paradigma muitos-para-um, sendo portanto, um protocolo flexível no que tange as suas opções de operação

19. Quais são os protocolos de camada de aplicação para loT e qual foi a motivação para o seu desenvolvimento?

- O protocolo HTTP é usado na Internet para acessar informações seguindo a estratégia requisição/resposta no paradigma cliente/servidor
- O HTTP foi desenvolvido para redes com computadores tipo PC
- Diferentemente dos PCs, os dispositivos usados na IoT possuem poder computacional restrito, o que limita a utilização do protocolo HTTP nesses elementos
- Para resolver esse problema, foram desenvolvidos dois protocolos da camada de aplicação especificamente para recuperar informações de dispositivos com baixo poder computacional: CoAP e MQTT

20. Liste os sistemas operacionais utilizados em objetos inteligentes.

- Contiki
- TinyOS
- Android
- Linux: RIOT, Ubuntu Core ou Snappy e Raspbian (Raspberry PI OS)

21. Liste os principais simuladores e emuladores que possuem suporte para loT.

- Simulações e emulações são muito úteis durante a fase de avaliação de arquiteturas e protocolos para redes em geral
- Esses ambientes de desenvolvimento permitem modelar uma rede de computadores arbitrária, especificando o comportamento dos elementos da rede, bem como os enlaces de comunicação
- Cooja, ns-2/ns-3, Tossim, OMNet++/Castalia, Sinalgo

22. O que é um *testbed* e quais são os principais ?

- Testbed é uma plataforma para implantar aplicações em um contexto real, ou seja, utilizando hardware real em larga escala, apropriada para a gestão de experimentação
- WHY-NET, ORBIT, MiNT, IoT-LAB, Indriya

23. Para que serve um *gateway* ?

- Na IoT, é comum que os dispositivos apresentem tecnologias de comunicação heterogêneas, por exemplo BLE, ZigBee, e outros
- Para conectar esses dispositivos à Internet, é preciso que um elemento de rede realize a tradução entre os diversas tecnologias utilizadas
- Este elemento é chamado de gateway.

24. Disserte sobre segurança em loT.

- Para que um sistema IoT seja seguro é preciso estabelecer quais são os objetivos de segurança desejáveis
- Existem pelo menos três grupos de objetivos desejáveis para segurança em IoT: confidencialidade, integridade e disponibilidade

Referências

 Internet das Coisas: da Teoria à Prática. Livro texto minicursos SBRC 2016

