Predicting Media Interestingness

Deep Learning for Multimedia Processing

Outline

- Motivation
- Predicting image interestingness
- Results
- Predicting video interestingness
- Results

Motivation

What is interesting?

What is interesting?

Not interesting Interesting

Problem definition

MediaEval conclusions 2016

Features

- Image: CNN features
- Video: Multi-modal (visual + audio)

Models

- SVM mostly used
- Few end-to-end deep learning architectures
- Video: time dependencies

End-to-end deep learning approach

Dataset 2016: Data

- 52 movie trailers development
- 26 movie trailers testing

Total: 13 GB

Outline

- Motivation
- Predicting image interestingness
- Results
- Predicting video interestingness
- Results

Dataset 2016: Frames

- 52 movie trailers development
- 26 movie trailers testing

Dataset: Ground truth

- Classification: 2 classes
 - 0 not interesting
 - 1 interesting

- Confidence values
 - Between 0 and 1

Rank of the frame or segment in the video

Interesting: $1.0 \rightarrow 1$

Not Interesting: $0.026 \rightarrow 0$

Predicting image interestingness

- ResNet50
 - Transfer learning
 - Fine tuning

Adding layers

Input: (224, 224, 3)

Problem: overfitting

Data augmentation

- Image Data Generator
 - Horizontal flip
 - Shuffling

Dropout

Unbalanced classes

Class weights

Train last layers

Outline

- Motivation
- Predicting image interestingness
- Results
- Predicting video interestingness
- Results

Evaluation metric

Mean Average Precision (MAP)

$$mAP = \frac{1}{M} \sum_{m=1}^{M} AP(m)$$

For both subtasks

Results: Image interestingness

 2016
 MAP

 Baseline
 0.1655

 Top result
 0.2336

Threshold: 0.5

ld	MAP	Architecture
25	0.1392	train new layers and 2 last layers from ResNet
27	0.1728	augment just class 1 and balanced
30	0.1478	dropout of 0.5
31	0.1177	Class weights + dropout + horizontal flip
37	0.1564	Class weights + dropout + flip, shift, zoom
39	0.1402	Class weights + dropout + flip, shift, zoom + 2 ResNet layers

Threshold

Results: Image interestingness

	Static Threshold	Dynamic threshold	
Id	MAP	threshold	MAP
25	0.1392	0.1577	0.1932
27	0.1728	0.4875	0.1909
30	0.1478	0.1572	0.2243
31	0.1177	0.5066	0.2396
37	0.1564	0.5295	0.2362
39	0.1402	0.1336	0.1795

2016	MAP
Baseline	0.1655
Top result	0.2336

Outline

- Predicting image interestingness
- Results
- Predicting video interestingness
- Results

Dataset 2016: Segments

- 52 movie trailers development
- 26 movie trailers testing

Predicting video interestingness

- Extract features: C3D
- Training LSTM network

3D Convolutional network

Extract features

- Preprocess
 - Clips
- Feature extraction
 - 3D convolutional network
- Label mapping
 - Feature vector

Label mapping

$$0.8 \times 0.5 + 0.2 \times 0.6 = 0.52$$

Fine-tuning LSTM

Outline

- Predicting image interestingness
- Results
- Predicting video interestingness
- Results

Results: Video interestingness

2016	MAP
Baseline	0.1496
Top result	0.1815
Technicolor	0.1365

ld	MAP
65	0.1541

Clips

Conclusions

Predicting image interestingness	MAP
Class weights + dropout + horizontal flip	0.2396
Class weights + dropout + flip, shift, zoom	0.2362

Conclusions

Static Threshold	Dynamic threshold
MAP	MAP
0.1392	0.1932
0.1728	0.1909
0.1478	0.2243
0.1177	0.2396
0.1564	0.2362
0.1402	0.1795

Conclusions

Image

Our result: 0.2396

Top result 2016: 0.2336

Baseline: 0.1655

Video

Top result 2016: 0.1815

Our result: 0.1541

Baseline: 0.1496

Technicolor: 0.1365

https://github.com/lluccardoner/MediaInterestingness

