Signaled Bandits

Carlos Gonzalez

University of Oxford - Department of Economics

 ${\bf Econometrics\ Lunch\ Seminar}$

June 10th, 2025

	Arm 1	Arm 2	
Signaled Bandit	$\mu_1 N(\mu_1, \sigma_r^2), N(\mu_2, \sigma_s^2)$	$\mu_2 N(\mu_1, \sigma_s^2), N(\mu_2, \sigma_r^2)$	
Bandit	$\mu_1 N(\mu_1, \sigma^2), N(\mu_2, \infty)$	μ_2 $N(\mu_1,\infty), N(\mu_2,\sigma^2)$	
Experts Problem	μ_1 $N(\mu_1, \sigma^2), N(\mu_2, \sigma^2)$	$\mu_2 N(\mu_1, \sigma^2), N(\mu_2, \sigma^2)$	
Reversed Bandit	$\mu_1 N(\mu_1, \infty), N(\mu_2, \sigma^2)$	$\mu_2 N(\mu_1, \sigma^2), N(\mu_2, \infty)$	

	Arm 1	Arm 2	
Signaled Bandit	$\mu_1 N(\mu_1, \sigma_r^2), N(\mu_2, \sigma_s^2)$	$\mu_2 = N(\mu_1, \sigma_s^2), N(\mu_2, \sigma_r^2)$	
Bandit	$\mu_1 N(\mu_1, \sigma^2), N(\mu_2, \infty)$	μ_2 $N(\mu_1,\infty),N(\mu_2,\sigma^2)$	
Experts Problem	$\mu_1 N(\mu_1, \sigma^2), N(\mu_2, \sigma^2)$	μ_2 $N(\mu_1, \sigma^2), N(\mu_2, \sigma^2)$	
Reversed Bandit	$\mu_1 N(\mu_1, \infty), N(\mu_2, \sigma^2)$	$\mu_2 N(\mu_1, \sigma^2), N(\mu_2, \infty)$	

- ▶ I was asked to provide a motivation for this model
- ▶ Reinterpret the problem
 - ▶ Learner gets for **free** a **low quality signal** with noise σ_s^2 for all arms in every period
 - ▶ When selecting arm k (i) learner gets the **returns** of arm k, and (ii) she **improves the signal quality** from $\sigma_s^2 \to \sigma_r^2$
- ▶ I will now discuss two general application frameworks through specific toy examples

- \triangleright A bus company owns a fleet of n buses
- ▶ According to its license it must operate at least \bar{n} buses in each of the G routes, such that $n > G\bar{n}$
- ▶ There are CRS, i.e. each coach in route g gives the same expected return μ_g

- ▶ It must decide between a grid of batch allocations, i.e. $\{n G\bar{n}, \bar{n}, \bar{n}, \dots, \}, \{\bar{n}, n G\bar{n}, \bar{n}, \dots\}, \{n/G, n/G, \dots\}$
- ▶ Because the learner does not optimize (learning nor reward wise) over \bar{n} buses in each route, she can take these buses as the free low quality signal

- \blacktriangleright When selecting batch k
 - ▶ The bus company obtains an (expected) return of $\mu_k = \sum_q^G n_k^g \mu_g$
 - ▶ It observes n_k^g realizations of each route reward Y_i^g
 - These realizations are enough to recover μ_k for all k (as they are enough to recover μ_g)
 - ▶ BUT, selecting route k remains most informative about μ_k and no other route is more informative about μ_k than k, i.e. $\sigma_r^2 \leq \sigma_s^2$
- ▶ Both sources of information can be combined à la GLS and my results apply

- \blacktriangleright When selecting batch k
 - ▶ The bus company obtains an (expected) return of $\mu_k = \sum_g^G n_k^g \mu_g$
 - ▶ It observes n_k^g realizations of each route reward Y_i^g
 - ▶ These realizations are enough to recover μ_k for all k
 - ▶ BUT, selecting route k remains most informative about μ_k and no other route is more informative about μ_k than k, i.e. $\sigma_r^2 \leq \sigma_s^2$
- ▶ Both sources of information can be combined à la GLS and my results apply

- ightharpoonup There are 2 hospitals h with nursing teams of equal quality. The health officer is trying to assign a single cardiologist to one of them
- ▶ Relevant variable is heart-attack risk $Y_i^h \sim \text{Log}(\mu_h, s)$ with unkown μ_h
- ➤ The cardiologist holds an advantage wrt nursing teams in two dimensions
 - ightharpoonup nurses can only detect if health risk $Y_i^h \geq \bar{y}$ while cardiologist can observe Y_i^h
 - ightharpoonup cardiologist can treat severely ill patients better, so, you want to have him in the hospital with highest μ_h

- ▶ Under parametric (logistic) assumptions, μ_h is identified from the low quality signal $\mathbb{P}(Y_i^h \geq \bar{y})$ (via MLE for instance)
- ▶ But $Var(\hat{\mu}_h^{MLE}) > Var(\hat{\mu}_h)$ (as it uses less information)
- ▶ Both estimators can be combined à la GLS and our results apply (approximately)

- ▶ The proof for an upper bound on the GLS-enchanced versions of UCB/LCB was missing
- ▶ I show that GUCB
 - ▶ Achieves a regret $\leq \sqrt{24\sigma_r^2 N \ln N \frac{\sigma_s^2}{\sigma_s^2 + \sigma_r^2}}$ in the **general signaled bandit game**
 - ▶ When $\sigma_s^2 = \infty$, it matches the upper bound of UCB in the bandit setting
 - ▶ When $\sigma_s^2 = \sigma_r^2$, it saves a factor of $\sqrt{2}$

- ▶ Having the interpolating mechanism as a function of (σ_s^2/σ_r^2) was very inconvenient (non-symmetric)
- ▶ Instead, more natural to have it as a function of $R = (\sigma_s^2 \sigma_r^2) / \max{\{\sigma_r^2, \sigma_s^2\}}$

Problem	R	Algorithm	α
Bandit $(\sigma_s^2 = \infty)$	1	UCB: $\hat{\mu} + B$	1
Expert $(\sigma_s^2 = \sigma_r^2)$	0	FtL: $\hat{\mu}$	0
Rev Bandit $(\sigma_r^2 = \infty)$	-1	LCB: $\hat{\mu}-B$	-1

- ▶ Having the interpolating mechanism as a function of (σ_s^2/σ_r^2) was very inconvenient (non-symmetric and difficult to interpret)
- ▶ Instead, more natural to have it as a function of $R = (\sigma_s^2 \sigma_r^2) / \max{\{\sigma_r^2, \sigma_s^2\}}$

Problem	R	Algorithm	α
Bandit $(\sigma_s^2 = \infty)$	1	UCB: $\hat{\mu} + B$	1
Expert $(\sigma_s^2 = \sigma_r^2)$	0	FtL: $\hat{\mu}$	0
Rev Bandit $(\sigma_r^2 = \infty)$	-1	LCB: $\hat{\mu}-B$	-1

- Natural candidate to interpolate a function which goes through these three points is R^z ,
 - \blacktriangleright but how to select the optimal z? (the convexity/concavity of the function)
 - ► I can't use insights from the proof yet (because I don't have it)
 - ▶ But I have an interesting heuristic! (and very strong simulation evidence)

$$\blacktriangleright \ \mathcal{R}(\texttt{FtGL}) \leq \sqrt{8N(\sigma_r^2 + \sigma_s^2)} \qquad \qquad \mathcal{R}(\texttt{GUCB}) \leq \sqrt{24\sigma_r^2 N \ln N \frac{\sigma_s^2}{\sigma_s^2 + \sigma_r^2}}$$

▶ Let \tilde{R} be the R which matches the upper bounds on regret, i.e. Upper(FtGL) = Upper(GUCB)

- Natural candidate to interpolate a function which goes through these three points is R^z ,
 - \triangleright but how to select the optimal z? (the convexity/concavity of the function)
 - ightharpoonup I haven't proved a sharp upper bound on regret for the interpolating algorithm yet, so I can't use the insights from the proof to motivate z
 - ▶ I have an interesting heuristic! (and very strong simulation evidence)

$$\blacktriangleright \ \mathcal{R}(\texttt{FtGL}) \leq \sqrt{8N(\sigma_r^2 + \sigma_s^2)} \qquad \qquad \mathcal{R}(\texttt{GUCB}) \leq \sqrt{24\sigma_r^2N\ln N\frac{\sigma_s^2}{\sigma_s^2 + \sigma_r^2}}$$

▶ Let \tilde{R} be the R which matches the upper bounds on regret, i.e. Upper(FtGL) = Upper(GUCB)

- ▶ Impose $f(\tilde{R}) = 1/2$
- ▶ Select z^* such that $\tilde{R}^{z*} \approx 1/2$, i.e. $z^* = \log(1/2)/\log(\tilde{R})$

$$N=200,z^*\approx 8.83$$

- ▶ Simulation wise this selection does very well, but
 - ▶ slightly bigger z > z* seems to do even better
 - ▶ it does not really outperform FtGL in cases with $\sigma_s^2 \approx \sigma_r^2$ (I might now why this is the case)

- ► Crack proof for Inter-CB
- ► Find real world applications. Shouldn't be very difficult (?!) Any suggestions are welcome
- ► Reconcile existing literature
- ightharpoonup Technical stuff (K arms, mixed variance, adversarial feedback, etc.)