

Correction to Prediction of Reliable Metal—PH₃ Bond Energies for Ni, Pd, and Pt in the 0 and +2 Oxidation States [*Inorganic Chemistry* 2010, 49, 5546–5553 DOI: 10.1021/ic1004853]. Raluca Craciun, Andrew J. Vincent, Kevin H. Shaughnessy, and David A. Dixon* Department of Chemistry, The University of Alabama, Shelby Hall, Box 870336, Tuscaloosa, Alabama 35487-0336, United States

Page 5553. The values for the density functional theory (DFT) bond dissociation energies in Table S7 for PdCl₂—PH₃ in the Supporting Information have been changed. The previous DFT values were for ¹PdCl₂ rather than for the ground state ³PdCl₂. The DFT bond dissociation energies to the ground state ³PdCl₂ are now provided.

■ ASSOCIATED CONTENT

Supporting Information. Figure of general catalytic cycle, T₁ diagnostics, M-PH₃ binding energies as a function of basis set, singlet—triplet energy splittings, metal—phosphine bond dissociation energies calculated with various exchange-correlation functionals, and the aD-PP basis sets and deviations from the CCSD(T)/CBS calculated BDEs and optimized MPH₃, M(PH₃)₂, MPH₃Cl₂, M(PH₃)₂Cl₂, and MCl₂ XYZ coordinates at the B3LYP/aD-PP level. This material is available free of charge via the Internet at http://pubs.acs.org.

DOI: 10.1021/ic200849s Published on Web 05/05/2011

