Soutenance stage technicien Méthode du second ordre pour les équations compressibles d'Euler

Timothée Schmoderer

INSA de Rouen Normandie

1^{er} septembre 2017

Equations d'Euler Schéma numérique Code Exemples numériques Maillage Non Uniforme Exemples numériques Conclusion

Introduction L'université & l'équipe

Introduction Le projet

Objectifs

- Documentation sur les méthodes numériques en mécaniques des fluides.
- Implémentation d'une méthode
- ► Test de la méthode (ordre de convergence, exemples)
- ▶ Amélioration de la méthode pour des maillages non réguliers

Équations des gaz d'Euler

Conservation des grandeurs physiques

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \rho u \\ E \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} \rho u \\ P + \rho u^2 \\ u(E + P) \end{pmatrix} = 0 \qquad \forall x \in \Omega, \ \forall t \ge 0$$

Equation d'état

$$E = \frac{P}{\gamma - 1} + \frac{\rho u^2}{2} \qquad \forall x \in \Omega, \ \forall t \ge 0$$

APP ROU

JT NATIONAL

Équations des gaz d'Euler

- ightharpoonup
 ho est la densité du fluide en tout point.
- P est la pression interne.
- u est la vitesse du fluide (positive si on va vers la droite, négative sinon).
- E L'énergie contenue dans le fluide.

Vitesse du son

$$c = \sqrt{\frac{\gamma P}{\rho}}$$
 $\forall x \in \Omega, \ \forall t \ge 0$

JT NATIONAL HENCES JUÉES ÉN

Équations des gaz d'Euler

- ightharpoonup
 ho est la densité du fluide en tout point.
- P est la pression interne.
- u est la vitesse du fluide (positive si on va vers la droite, négative sinon).
- ▶ E L'énergie contenue dans le fluide.

Vitesse du son

$$c = \sqrt{\frac{\gamma P}{\rho}} \qquad \forall x \in \Omega, \ \forall t \ge 0$$

JT NATIONAL HENCES JUÉES JEN

On choisi un domaine $\Omega = [a, b]$.

Périodique

$$\Phi(a,t) = \Phi(b,t)$$
 $\Phi = u, \ \rho \ \text{and} \ P$

Murs

$$u(a,t) = u(b,t) = 0$$

 $\frac{\partial \Phi}{\partial x}(a,t) = \frac{\partial \Phi}{\partial x}(b,t) = 0$ $\Phi = \rho$ and P

JT NATIONAL HENCES UÉES N

4 D > 4 A > 4 B > 4 B > 90

On choisi un domaine $\Omega = [a, b]$.

Périodique

$$\Phi(a,t) = \Phi(b,t)$$
 $\Phi = u, \ \rho \ \text{and} \ \ P$

Murs

$$u(a,t) = u(b,t) = 0$$

$$\frac{\partial \Phi}{\partial x}(a,t) = \frac{\partial \Phi}{\partial x}(b,t) = 0 \qquad \Phi = \rho \text{ and } P$$

JT NATIONAL HENCES UÉES N

On choisi un domaine $\Omega = [a, b]$.

Entrée

$$\Phi(x_B, t) = \Phi_{in}(t)$$
 $\Phi = u, \ \rho \ \text{and} \ \ P$

Sortie

$$\frac{\partial \Phi}{\partial x}(x_B, t) = 0$$
 $\Phi = u, \ \rho \text{ and } P$

On choisi un domaine $\Omega = [a, b]$.

► Entrée

$$\Phi(x_B, t) = \Phi_{in}(t)$$
 $\Phi = u, \rho \text{ and } P$

Sortie

$$\frac{\partial \Phi}{\partial x}(x_B,t) = 0$$
 $\Phi = u, \ \rho \text{ and } P$

Equations d'Euler Schéma numérique Code Exemples numériques Maillage Non Uniforme Exemples numériques Conclusion

Problème des ondes de chocs

Forme général pour les systèmes hyperboliques

Soient
$$U = \begin{pmatrix} \rho \\ \rho u \\ E \end{pmatrix}$$
 et $f(U) = \begin{pmatrix} \rho u \\ P + \rho u^2 \\ u(E + P) \end{pmatrix}$.

Alors notre système se réécrit sous la forme générique suivante :

$$\frac{\partial U}{\partial t} + \frac{\partial f(U)}{\partial x} = 0$$

Exemple

Par exemple, si f est l'identité : f : $u \mapsto u$, on obtient l'équation d'advection.

$$u_t + u_x = 0$$

JT NATIONAL

Le maillage de Ω

Soit $N \in \mathbb{N}^*$, on subdivise Ω en N cellules de longueur Δx constante. On note x_i le centre de la cellule j et $x_{i+1/2}$ les interfaces : $x_i \pm \frac{\Delta x}{2}$.

$$\frac{\partial U}{\partial t} + \frac{\partial f(U)}{\partial x} = 0$$

$$\implies \frac{dU_j}{dt} = -\frac{\hat{f}_{j+1/2} - \hat{f}_{j-1/2}}{\Delta x} \qquad j = 1, \dots, N$$

Nous calculons le rayon spectral, a_j , de la matrice Jacobienne de f en $x = x_j$. Un calcul analytique nous donne :

$$a_j = |u_j| + c_j$$

▶ Nous séparons la fonction de flux f en deux :

$$f(U_j)=f_j^++f_j^- \qquad f_j^\pm=rac{1}{2}\left(f(U_j)\pm a_j\,U_j
ight)$$
 institut national los solenos. Applied in the property of the

$$\frac{\partial U}{\partial t} + \frac{\partial f(U)}{\partial x} = 0$$

$$\implies \frac{dU_j}{dt} = -\frac{\hat{f}_{j+1/2} - \hat{f}_{j-1/2}}{\Delta x} \qquad j = 1, \dots, N$$

Nous calculons le rayon spectral, a_j , de la matrice Jacobienne de f en $x = x_j$. Un calcul analytique nous donne :

$$a_j = |u_j| + c_j$$

▶ Nous séparons la fonction de flux f en deux :

$$f(U_j)=f_j^++f_j^- \qquad f_j^\pm=rac{1}{2}\left(f(U_j)\pm a_j\,U_j
ight)$$
 institut national des solences applications and the solence of the solence of

$$\begin{split} &\frac{\partial U}{\partial t} + \frac{\partial f(U)}{\partial x} = 0\\ \Longrightarrow &\frac{dU_j}{dt} = -\frac{\hat{f}_{j+1/2} - \hat{f}_{j-1/2}}{\Delta x} \qquad j = 1, \dots, N \end{split}$$

Nous calculons les pentes dans chaque cellules avec la fonction minmod:

$$(f_x)_j^{\pm} = minmod\left(\theta \frac{f_j^{\pm} - f_{j-1}^{\pm}}{\Delta x}, \frac{f_{j+1}^{\pm} - f_{j-1}^{\pm}}{2\Delta x}, \theta \frac{f_{j+1}^{\pm} - f_j^{\pm}}{\Delta x}\right) \quad \theta = 1.5$$

La fonction minmod est définie par :

$$minmod(a,b,c) = \begin{cases} min(a,b,c) & \text{si } a > 0, \ b > 0 \\ max(a,b,c) & \text{si } a < 0, \ b < 0 \end{cases}$$

$$\frac{\partial U}{\partial t} + \frac{\partial f(U)}{\partial x} = 0$$

$$\implies \frac{dU_j}{dt} = -\frac{\hat{f}_{j+1/2} - \hat{f}_{j-1/2}}{\Delta x} \qquad j = 1, \dots, N$$

Nous construisons f^E et f^W :

$$f_j^E = f_j^+ + \frac{\Delta x}{2} (f_x)_j^+ \qquad f_j^W = f_j^- - \frac{\Delta x}{2} (f_x)_j^-$$

► Au final :

$$\hat{f}_{j+1/2} = f_j^E + f_{j+1}^W \quad \hat{f}_{j-1/2} = f_{j-1}^E + f_j^W$$

$$\frac{\partial U}{\partial t} + \frac{\partial f(U)}{\partial x} = 0$$

$$\implies \frac{dU_j}{dt} = -\frac{\hat{f}_{j+1/2} - \hat{f}_{j-1/2}}{\Delta x} \qquad j = 1, \dots, N$$

Nous construisons f^E et f^W :

$$f_j^E = f_j^+ + \frac{\Delta x}{2} (f_x)_j^+ \qquad f_j^W = f_j^- - \frac{\Delta x}{2} (f_x)_j^-$$

Au final :

$$\hat{f}_{j+1/2} = f_j^E + f_{j+1}^W \quad \hat{f}_{j-1/2} = f_{j-1}^E + f_j^W$$

Où appliquer la méthode?

Au milieu du domaine \Longrightarrow Aucun problèmes

Calcul de $\hat{f}_{1/2} \Longrightarrow f_0^E$

Calcul de $f_0^E \Longrightarrow f_{-1}^\pm$

Equations d'Euler Schéma numérique Code Exemples numériques Maillage Non Uniforme Exemples numériques Conclusion

Maillage Algorithme Conditions aux limites Intégration numérique

Résumé de la méthode

_	Cellule	-1	0	1	2		j		N - 1	N	N+1	N + 2	
	aj	*	*			•			•	•	*	*	
	f^\pm	*	*	•	•	•	•	•		•	*	*	
	$f_{j}^{\pm} - f_{j-1}^{\pm}$		*			•			•		*		
	$ f_{j+1}^{\pm} - f_{j-1}^{\pm} $		*						•	•	*		
	$\int_{j+1}^{\pm} -f_j^{\pm}$		*						•	•	*		
	$(f_{\times})^{\pm}$		*						•	•	*		
	f ^E		*	•	•	•			•	•	*		
	f W		*			•			•	•	*		
	$\hat{f}_{j+1/2}$					•		•					
	$\hat{f}_{j-1/2}$			•	•	•	•	•	•	•			
	$\frac{dU_j}{dt}$										INS	INSTITUT N DES SCIENI APPLIQUÉE ROUEN	ational CES S
	dt								← □ →	4 □ →	< ≣ > < ≣	▶ ≣ • ⊘	Q (~

Conditions aux bords de Ω

Conditions périodiques

On déduit facilement les conditions pour le vecteur d'état :

$$U_0 = U_N \qquad U_{-1} = U_{N-1}$$

Conditions aux bords de Ω

Conditions murs

Ces conditions s'expriment sous la forme suivante pour le vecteur d'état :

$$U_0 = \begin{pmatrix} U_1^1 \\ -U_1^2 \\ U_1^3 \end{pmatrix} \qquad U_{-1} = \begin{pmatrix} U_2^1 \\ -U_2^2 \\ U_2^3 \end{pmatrix}$$

Où l'exposant dénote la i-ème composante.

Intégration du schéma

Schéma d'Euler

$$\frac{dU_j}{dt} \approx \frac{U_j^{n+1} - U_j^n}{\Delta t}$$

La version finale du schéma :

$$U_j^{n+1} = U_j^n - \frac{\Delta t}{\Delta x} \left(\hat{f}_{j+1/2} - \hat{f}_{j-1/2} \right)$$

Conditions de Courant

$$\frac{a\Delta t}{\Delta x} \le 1$$

$$\Longrightarrow \Delta t^n = \frac{\Delta x}{a^n} \qquad \forall n > 0$$

JT NATIONAL HENCES UÉES

Intégration du schéma

Schéma SSP-RK3

$$u^{(1)} = u^n + \Delta t^n L(u^n)$$

$$u^{(2)} = \frac{3}{4}u^n + \frac{1}{4}u^{(1)} + \frac{1}{4}\Delta t^n L(u^{(1)})$$

$$u^{n+1} = \frac{1}{3}u^n + \frac{2}{3}u^{(2)} + \frac{2}{3}\Delta t^n L(u^{(2)})$$

Avec la même conditions de Courant.

Structure de données

Octave

- + Portabilité
- + Facilité de manipulation
- Lenteur

$$\begin{pmatrix} r \\ \rho u \\ E \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & \dots & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0.025 & 2500 & 2500 & 0.025 & \dots & 0.025 & 250 & 0.025 & \dots & 0.025 &$$

Exemple d'implémentation

La fonction de flux

```
function y = f(U, gamma)
  % Density
  rho = U(1.:):
  % Velocity
  v = U(2,:)./rho;
  % Energy
  E = U(3,:);
  % Pressure
  P = (gamma - 1) * (E - 0.5 * rho. * v. * v);
  % Flux
   = U.*v+[zeros(size(P));P;P.*v];
end
```

JT NATIONAL HENCES UÉES

Exemple d'implémentation

La fonction minmod

```
function y = minmod(a,b,c)
  y = zeros(size(a));
  % Index where the three numbers are positive
  iM = find(a > 0 & b > 0 & c > 0);
  y(iM) = min(min(a(iM),b(iM)),c(iM));
  % Index where the three numbers are negative
  im = find(a < 0 & b < 0 & c < 0);
  y(im) = max(max(a(im),b(im)),c(im));
end</pre>
```

Méthode des solutions fabriquées

Construction de la solution

Soit $q(x,t) \in \mathbb{R}^3$ une fonction lisse que l'on introduit dans les équations d'Euler :

$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} = \mathcal{S}$$

Problème modifié

On considère à présent le problème modifié :

$$\frac{\partial U}{\partial t} + \frac{\partial f(U)}{\partial x} = S$$

$$U(x,0) = q(x,0)$$

onditions aux bords périodiques

JT NATIONAL HENCES UÉES

Méthode des solutions fabriquées

Construction de la solution

Soit $q(x,t) \in \mathbb{R}^3$ une fonction lisse que l'on introduit dans les équations d'Euler :

$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} = \mathcal{S}$$

Problème modifié

On considère à présent le problème modifié :

$$\frac{\partial U}{\partial t} + \frac{\partial f(U)}{\partial x} = S$$
$$U(x,0) = q(x,0)$$

Conditions aux bords périodiques

JT NATIONAL HENCES UÉES

Méthode des solutions fabriquées

Cas 2

$$q = \begin{cases} \rho(x,t) &= 2 + 0.1\sin(2\pi(x-t)) \\ u(x,t) &= 1 \\ E(x,t) &= 2 + 0.1\cos(2\pi(x-t)) \end{cases}$$

Terme source:

$$\mathcal{S}(x,t) = (1-\gamma)\pi(2\rho(x,t) + E(x,t) - 6)\begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

Ordre de la méthode Expérience de Sod Double vague interaction Expérience de Shu et Oshe

Méthode des solutions fabriquées

Expérience de Sod

Le Problème

$$u(x,0) = 0 \qquad \forall x \in \Omega$$

$$\rho(x,0) = \begin{cases} 1.0 & x \in [0,0.5] \\ 0.125 & x \in [0.5,1] \end{cases}$$

$$P(x,0) = \begin{cases} 1.0 & x \in [0,0.5] \\ 0.1 & x \in [0.5,1] \end{cases}$$

Avec des conditions de type murs.

Ordre de la méthode Expérience de Sod Double vague interaction Expérience de Shu et Oshei

Expérience de Sod

JT NATIONAL :IENCES UÉES I Equations d'Euler Schéma numérique Code Exemples numériques Maillage Non Uniforme Exemples numériques Conclusion

Ordre de la méthode Expérience de Sod Double vague interaction Expérience de Shu et Oshe

Expérience de Sod

Ordre de la méthode Expérience de Sod Double vague interaction Expérience de Shu et Oshe

Expérience de Sod

JT NATIONAL JENCES UÉES

Expérience de Sod

Résultats en densité avec plusieurs maillages

JT NATIONAL :IENCES UÉES /

Double interaction

Le Problème

$$u(x,0) = 0 \qquad \forall x \in \Omega$$

$$\rho(x,0) = 1 \qquad \forall x \in \Omega$$

$$P(x,0) = \begin{cases} 1000 & x \in [0,0.1] \\ 0.01 & x \in [0.1,0.9] \\ 100 & x \in [0.9,1] \end{cases}$$

Avec des conditions de type murs.

Ordre de la méthode Expérience de Sod Double vague interaction Expérience de Shu et Oshe

Double interaction

Ordre de la méthode Expérience de Sod Double vague interaction Expérience de Shu et Oshe

Double interaction

Ordre de la méthode Expérience de Sod Double vague interaction Expérience de Shu et Oshe

Double interaction

Résultats en vitesse

Ordre de la méthode Expérience de Sod Double vague interaction Expérience de Shu et Oshe

Double interaction

Résultats en densité avec plusieurs maillages

Ordre de la méthode Expérience de Sod Double vague interaction Expérience de Shu et Osher

Expérience de Shu et Osher

Le Problème

$$u(x,0) = \begin{cases} 2.629369 & x \in [0,0.125] \\ 0 & x \in [0.125,1] \end{cases}$$

$$\rho(x,0) = \begin{cases} 3.857143 & x \in [0,0.125] \\ 1 + 0.2\sin(20\pi x) & x \in [0.125,1] \end{cases}$$

$$P(x,0) = \begin{cases} 31/3 & x \in [0,0.125] \\ 1 & x \in [0.125,1] \end{cases}$$

Avec des conditions d'entrée à gauche :

$$u(0, t) = 2.629369$$
 $\rho(0, t) = 3.857143$ $P(0, t) = 31/3$

et de sortie à droite.

r national Ences Ées

Expérience de Shu et Osher

Conditions initiales

Expérience de Shu et Osher

Expérience de Shu et Osher

Ordre de la méthode Expérience de Sod Double vague interaction Expérience de Shu et Osher

Expérience de Shu et Osher

Résultats en densité avec plusieurs maillages

Polynômes de Legendre

Définition

$$\begin{aligned} P_0(x) &= 1 & \forall x \in [-1, 1] \\ P_1(x) &= x & \forall x \in [-1, 1] \\ (n+1)P_{n+1}(x) &= (2n+1)xP_n(x) - nP_{n-1}(x) & \forall x \in [-1, 1] \end{aligned}$$

Définition

$$-1 = x_1 < x_i : P'_{n-1}(x_i) = 0 \quad i \in [2, N-1] < x_N = 1$$

Qui sont facilement transposable à [a, b] avec la formule :

$$x_i' = \frac{b-a}{2}x_i + \frac{a+b}{2}$$

Calcul des nœuds - méthode de Haylley

$$\mathbf{x}_0 = \left[-1, \left(1 - \frac{3(\mathit{N} - 1)}{8\mathit{N}^3}\right) \cos\left(\frac{4j + 1}{4\mathit{N} + 1}\pi\right), 1\right] \quad j \in [\![1, \mathit{N} - 1]\!]$$

$$x_{n+1} = x_n - 2 * \frac{P'_{n-1}(x_n)P''_{n-1}(x_n)}{2[P''_{n-1}(x_n)]^2 - P'_{n-1}(x_n)P'''_{n-1}(x_n)}$$

Calcul des nœuds - méthode de Haylley

Polynômes de Legendr Le maillage

Les noeuds

Calcul des nœuds - méthode de Haylley

Ordre de la méthode Double vague interaction Expérience de Shu & Osher

Ordre sur les maillages non réguliers

Ordre de la méthode Double vague interaction Expérience de Shu & Osher

Ordre sur les maillages non réguliers

Méthode des solutions fabriquées

Double vague interaction

Résultats en densité avec 2 blocs de 500 nœuds

Double vague interaction

Résultats en densité avec 10 blocs de 100 nœuds

Expérience de Shu & Osher

Résultats en densité avec 2 blocs de 500 nœuds

Expérience de Shu & Osher

Résultats en densité avec 10 blocs de 100 nœuds

Conclusion

Résumé

Conclusion

Apports personnels

Conclusion

Ouvertures

