$\begin{array}{c} {\rm CSM} \ 61C \\ {\rm Spring} \ 2020 \end{array}$

Floating Point

Exam Question Compilation

This document is a PDF version of old exam questions by topic, ordered from least difficulty to greatest difficulty.

Questions:

- \bullet Fall 2019 Midterm Q1
- $\bullet\,$ Spring 2018 Final Q9
- Summer 2019 Midterm 2 Q1
- Summer 2018 Final Q4
- \bullet Summer 2019 Final Q1.7-Q1.11
- $\bullet\,$ Fall 2018 Final M2 Part 1
- Fall 2017 Final Q9
- \bullet Summer 2018 Midterm 1 Q1

Fall 2019 Midterm

Q1) Float, float on... (7 pts = 2 + 3 + 2)

You notice that floats can generally represent much larger numbers than integers, and decide to make a modified RISC instruction format in which all immediates for jump instructions are treated as 12-bit floating point numbers with a mantissa of 7 bits and with a standard exponent bias of 7. *Hint: Refer to reference sheet for the floating point formula if you've forgotten it...the same ideas hold even though this is only a 12-bit float...*

a) To jump the farthest, you set the float to be the most positive (not ∞) integer representable. What are those 12 bits (in hex)?	b) What is the <i>value</i> of that float (in decimal)?	c) Between 0 and (b)'s answer (inclusive), how many integers are not representable?	
0x			

IEEI that This	m 9 [F-1] Floating Point E 754-2008 introduces half precision, which is a binary floating-point regulates 16 bits: 1 sign bit, 5 exponent bits (with a bias of 15) and 11 signs format uses the same rules for special numbers that IEEE754 uses. half-precision floating point format, answer the following questions:	nificand bits
	For 16-bit half-precision floating point, how many different valid repare there for NaN?	presentations
(b)	What is the smallest non-infinite number it can represent? You can answer as an expression.	n leave you
(c)	What is the largest non-infinite number it can represent? You can le swer as an expression.	ave your an
(d)	How many floating point numbers are in the interval $[1, 2)$ (including 1 ing 2)?	l but exclud

Question 1: Floating *Points to your Cheat Sheets - 10 pts

For all of the following questions we are using the IEEE 754 single precision floating point from le	cture.
If you do not remember the details, some can be found on the back side of the green sheet.	

decimal.
1

Summer 2019 Midterm 2 (cont'd)

For the remaining questions we are going to consider 2 possible changes:

- Option 1: Adding a bit to signficand and removing a bit from the exponent
- Option 2: Adding a bit to the exponent and removing a bit from the significand

For each of the following questions select whether **option 1**, **option 2**, **neither**, or **both** will accomplish the presented task. Assume that the bias also shifts to be **2**^{exp_bits - 1} - **1**.

4.	Represent pi mo	re accurately than or	ur IEEE 754 single p	recision floating point.
A	Option 1	® Option 2	© Neither	① Both
5.	Represent small	er positive numbers	than IEEE 754 single	e precision floating point.
A	Option 1	® Option 2	© Neither	① Both
6.	Represent more	numbers in the rang	e [1, 2) than IEEE 75	54 single precision floating point.
A	Option 1	® Option 2	© Neither	① Both
7.	Represent more	numbers than IEEE	754 single precision	floating point.
A	Option 1	® Option 2	© Neither	① Both

SID:					
to interpret 32 lowever, there s as an unsig r	is no in	nplicit 1.			
Significand	Value				
Zero	±Infinit	ty			
Nonzero	NaN				
ificand of 0b00011 = 3 Significand: 3 = 0x000003 oint and your new scheme					
	1	(F)			
	1	Ē			
	1	(F)			
cannot repres		nu mav			
cannot repres	ont 10	ou may			

Question 4: **loating Point** (9 pts)

Being the feisty floating point fanatic you are, you devise a new scheme keep the breakdown of the Sign/Exponent/Significand fields the same. H or 0. before the significand bits; also, you evaluate the 23 significand bits which you then multiply with $2^{Exp \cdot Bias}$ and $(-1)^{Sign}$ as you normally would.

 $(-1)^{Sign} \times Significand_{unsigned} \times 2^{Exp-Bias}$

where Bias = 127.

There are no denormalized numbers.

Exponent	Significand	Value
Largest	Zero	±Infinity
Largest	Nonzero	NaN

We walk through one way of representing 3 in this scheme, using a Sign $(-1)^0 \times 3 \times 2^{127 - Bias} = 1 \times 3 \times 2^0 = 3$ **Sign**: 0. **Exponent**: 127 = 0x7F.

Answer the following questions comparing the standard IEEE Floating P (let's call it Bloating Point).

- 1) Bloating Point represents a larger amount of unique numeric values than Floating Point.
- 2) 0x3D80001E is a valid representation of 1.875 in Bloating Point. (Hint: 1.875 = 15/8
- 3) There exists a 32-bit number whose Floating Point value and Bloating Point value are the same.
- 4) How many Bloating Point numbers evaluate to +2-124?

5) What is the smallest positive number divisible by 5 that Bloating Point leave all or part of your answer as a power of 2.

Summer 2019 Final

You propose a new 16 bit floating point number. It has:

	• 1 sign bit
	11 exponent bits
	4 significand bits
	• A bias of 1023
	All other rules consistent with IEEE 754 floating point.
7.	Represent 4.75 in our new floating point scheme
٥.	
Si	gn:0b
Ex	kponent: 0b
Si	gnificand:0b
8.	How many numbers does our floating point scheme represent in the range [0, 1) (the range 0 to 1, where 0 is included and 1 is not)? For this question assume -0 is not in this interval. You may leave your answer unsimplified.

Summer 2019 Final (cont'd)

Now let's compare to a 16 bit two's complement number.				
9. Which can represent a larger number (ignore infinities)?				
(A) Our Floating Point Scheme	® Two's Complement			
10. Which scheme represents more numbers in the range [1, 6	54)?			
(A) Our Floating Point Scheme	® Two's Complement			
11. Which scheme represents more numbers in the range [64, 128)?				
(A) Our Floating Point Scheme	B Two's Complement			

Fall 2018 Final

<u>M2) Floating down the C [this is a 2-page question] to points = 1,1,2,1,1,1,20 minutes]</u>
Consider an 8-bit "minifloat" SEEEMMMM (1 sign bit, 3 exponent bits, 4 mantissa bits). All other properties of IEEE754 apply (bias, denormalized numbers, ∞, NaNs, etc). The bias is -3.
a) How many minifloats are there in the range [1, 4)? (i.e., 1 ≤ f < 4)
b) What is the number line distance between 1 and the smallest minifloat bigger than 1?
c) Write times2 in one line using integer operations. Assume the leftmost "E" bit of f (bolded above) is minifloat times2(minifloat f) { return f * 2.0; }
times2: a0, a0, ## Assume f is in the lowest byte of the register
ret

Q9: Floating Point

Some of the 61C TAs get tired of having to convert floating-point values into 32 bits. As a result they propose the following smaller floating-point representation.

It consists of a total of 12 bits as shown below:

Si	ign (1)		Exponent (4)	significand (7 bits)
1.5	0	1	4	5 11

- The largest exp remains reserved as in traditional floating point
- The smallest exp follows the same denormalized formula as traditional floating point
- Numbers are rounded to the closest representable value. Any numbers that have 2 equidistant representations are rounded down towards zero.

All of the parts of this question refer to this floating-point scheme.

1. What is the smallest nonzero positive value that can be represented? Write your answer as a numerical expression in the answer packet.

2. Consider some **positive normalized** floating-point number p where p is described as p = $2^y * 1$.significand. What is the distance (i.e. the difference) between p and the next-largest number after p that can be represented? Write your answer as a numerical expression.

3. Now instead let p be a positive denormalized number described as $p = 2^y * 0$.significand. What is the distance between p and the next-largest number after p that can be represented?

SID:			

	the following bit string 0	b1111 1100, answer the	e following questions:	
1)	What is this bitstring's	value if it was interprete	d as an unsigned number	?
2)	What is this bitstring's	value if it was interprete	d in two's complement ?	
3)		•	-	owing the dot (.) represent the tring 0b1111.1100 represent?
4)	Now let's devise a scheme for interpreting fixed point numbers as positive or negative values. Complete the following sentence: Given an 8-bit fixed point bitstring 0bXXXX.XXXX with a value of Y, in order to compute -Y, we must flip all the bits of Y and add:			
5)	What is the value of 0t above?	o1111.1100 given the tw	o's complement fixed po	int representation described
·	above? You are given the follo the same rules as sta Sign: 1 bit	wing field breakdown ar		floating point, which follows
·	You are given the follothe same rules as sta	wing field breakdown an ndard 32-bit IEEE floats	nd specifications of an 8-bit , except with different field	floating point, which follows lengths:

7) We now modify the floating point description in part 6 so that the exponent field is now in two's complement instead of in bias notation. Compute the floating point value of 0b1111 1100.