Electronic thermal conductance of graphene via electrical noise

A DISSERTATION PRESENTED

BY

Jesse D. Crossno

то

THE JOHN A. PAULSON SCHOOL OF ENGINEERING AND APPLIED SCIENCES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN THE SUBJECT OF
APPLIED PHYSICS

Harvard University Cambridge, Massachusetts May 2017 ©2014 – Jesse D. Crossno all rights reserved.

Electronic thermal conductance of graphene via electrical noise

Abstract

abstract goes here

Contents

0	Inti	RODUCTION]		
I	Johnson noise thermometry				
	I.I	Thermal noise in resistors	3		
	1.2	Resistor networks: The Johnson noise temperature	5		
	1.3	Johnson noise in RF circuits	7		
	I.4	An autocorrelation RF noise thermometer	9		
	1.5	Uncertainty in noise measurements	14		
	1.6	Impedance matching	16		
	1.7	Effective noise temperature	23		
	1.8	Calibration	23		
	1.9	Cross-correlated noise thermometry	24		
2	Elec	CTRONIC COOLING MECHANISMS IN GRAPHENE	25		
	2.I	Wiedemann-Franz	25		
	2.2	Electron-Phonon coupling	26		
	2.3	Photon cooling	26		
	2.4	Heat transfer equations	26		
3	THERMAL CONDUCTANCE VIA ELECTRICAL NOISE 27				
	3 . I	rectangular device	27		
	3.2	Johnson noise temperature vs mean temperatures: wedge device	28		
	3.3	Arbitrary shapes: the geometric factor α	29		
	3.4	circuitry	29		
4	Нуг	DRODYNAMIC FRAMEWORK	30		
	4.I	Hydrodynamic framework	30		
	4.2	Experimental evidence	31		
5	RF CRYOSTATS AND CIRCUITRY 32				
	5. I	Janis	33		
	5.2	Oxford	33		
	5.3	Leiden	33		
	e 1	INT circuits	22		

6	Calibration of graphene devices	34
7	THERMAL CONDUCTANCE IN HIGH DENSITY GRAPHENE 7.1 Device characteristics	35 36 36 36 36
8	The Dirac fluid	37
9	Magneto-thermal transport	
Ю	Conclusions and future work	
References		

This is the dedication.

Acknowledgments

I could not have done it without, the help and support of

0

Introduction

outline the basic idea and strict requirements of measuring temperature in 2D systems. Need something non-invasive, layer distinguishing, and electron/phonon distinguishing. Radiation thermometry meets all these requirements. Johnson noise is analogous to this

In theory, theory and practice are the same thing, but in practice...

Adam Savage

1

Johnson noise thermometry

GIVEN ANY PROCESS IN WHICH AN APPLIED FORCE GENERATES HEAT, the reverse process must also exist and, as such, thermal fluctuations will be create fluctuations in that force. The idea that the same physics governing the dissipation of a object moving through some environment is responsible for the apparent random motion of that object was originally described by Einstein in the context of

pollen grains ⁴. The generalized fluctuation-dissipation theorem ⁷ quantifies this statement for linear systems ^{*} by relating the power spectral density $S_P(\omega)$ to the real part of the generalized impedance $Z(\omega)^{\text{I}}$.

$$S_P(\omega^2) \propto k_B T \Re[Z(\omega)]$$
 (1.1)

Nearly a quarter of a century later, Nyquist ⁸ related Einsteins description of Brownian motion to the electrical noise measured by Johnson ^{5,6}. Although all the key components were in place it would take until 1946 for the first noise thermometer to be built ³. The general idea is to measure the noise spectrum emitted by a device and thus determine its electronic temperature. Johnson noise thermometry (JNT) is analogous to radiation thermometry where the blackbody spectrum of an object is used to determine its temperature — in fact, both rely upon modified versions of eq 1.1

THERMAL NOISE IN RESISTORS

Johnson noise, often referred to as Johnson-Nyquist noise, was first measured in 1927⁵. Johnson found the fluctuations in the squared voltage across a resistor was linearly proportional to both the resistance and the temperature and independent of the conductor being measured. The following year, Nyquist derived the form of this noise from thermodynamic arguments; consider two identical resistors in thermal equilibrium at a temperature T connected such that any noise emitted by one is absorbed by the other, as shown in fig. 1.1. As we are in equilibrium we know the power being absorbed per unit frequency must be k_BT . If we represent the Johnson noise of the first resistor as a

^{*}Here a linear system is one where the force acting on a particle is proportional to its velocity F/v constant

Figure 1.1: Schematic of Nyquist's famous thought experiment. Two resistors in thermal equilibrium are connected end to end and allowed to transfer energy between them via thermal current fluctuations.

series voltage source we know the power dissipated in in the second resistor per unit frequency must be $f^2R = V_{JN}^2/4R$ as the total resistance of the circuit is 2R. Setting this equal to k_BT leads us to Nyquist's famous result.

$$S_V = 4Rk_B T \Delta f \tag{1.2}$$

This derivation holds regardless of the conductor, be it an electrolytic solution or a piece of graphene in a quantum Hall state. However, there is a glaring problem with extending this formula to high frequency; similar to the UV-catastrophe in black-body radiation, Nyquist's formula extends to infinite energies as it lacks a high frequency cutoff. This is fixed by quantum mechanics resulting in a cutoff in the noise spectrum centered at $\hbar\omega=k_BT$.

$$S_V = 4\hbar\omega \Re(Z) \left[\frac{1}{2} + \frac{1}{exp(\hbar\omega/k_BT) - 1} \right] \Delta f$$
 (1.3)

This high frequency cutoff was seen experimentally by Schoelkopf, et al. ¹⁰ and is only of practical import at high frequencies (> 1 *GHz*) and low temperatures (< 1 *K*).

Resistor networks: The Johnson noise temperature

As noise is a random process, adding multiple resistors together into a network is not a simple matter of adding their voltages and/or currents but instead their mean squared voltages $\langle V^2 \rangle$ and/or mean squared current $\langle I^2 \rangle$. This is a property of Gaussian distributed noise: adding together two Gaussian distributions, each with mean 0 and variance σ , with result in another Gaussian distribution with mean 0 and variance $2\sigma^{\dagger}$.

To find the noise emitted by two resistors in series with resistance R_1 and R_2 and temperature T_1 and T_2 , we add their mean squared voltages.

$$\langle V^2 \rangle = 4k_B(R_1T_1 + R_2T_2)\Delta f$$
 (1.4)

While in the case of the same two resistors in parallel we must add their mean squared currents.

$$\langle I^2 \rangle = 4k_B \left(\frac{T_1}{R_1} + \frac{T_2}{R_2} \right) \Delta f$$
 (1.5)

This process can be extended to any network of discrete, two-terminal resistors.

An effective "Johnson noise temperature" for a given resistor network can be defined as the tem-

[†]This is why mean squared error is often a useful metric. If errors are unbiased and Gaussian distributed then summing their variance is appropriate

perature, T_{JN} , such that the total noise emitted between two given terminals of the network is:

$$\langle V^2 \rangle = 4k_B R \Delta f * T_{IN} \tag{1.6}$$

where R is the two-terminal resistance. For an arbitrary network with many terminals, T_{JN} will differ depending upon which two-terminals the noise is measured between. For resistors in series we can see from eq. 1.4

$$\langle V^2 \rangle = 4k_B R \left(\frac{R_1}{R} T_1 + \frac{R_2}{R} T_2 \right) \Delta f \tag{1.7}$$

and thus we can define the Johnson noise temperature for this network as:

$$T_{JN}^{series} = \sum_{i} \frac{R_i}{R} T_i \tag{1.8}$$

Similarly from eq.1.5 we see that for resistors in parallel

$$\langle V^2 \rangle = \langle I^2 \rangle \times R^2 = 4k_B R \Delta f(\frac{R}{R_1} T_1 + \frac{R}{R_2} * T_2)$$
 (1.9)

$$T_{JN}^{parallel} = \sum_{i} \frac{R}{R_i} T_i \tag{1.10}$$

These equations are unified by considering the relationship between the power dissipated in a particular resistor \dot{Q}_i from a voltage across the two terminals of the network (or equally a current across the network) compared to the total power dissipated over the entire network \dot{Q}_0 . For the

resistors in series $\dot{Q}_i/\dot{Q}_0=R_i/R$ and for resistors in parallel $\dot{Q}_i/\dot{Q}_0=R/R_i$. Thus in both cases:

$$T_{JN} = \sum_{i} \frac{\dot{Q}_i}{\dot{Q}_0} T_i \tag{1.11}$$

In fact this is quite general and holds for any combination of resistors. It stems from the statement: The voltage created on any given two terminals of a resistor network due to the power fluctuations of a given element are exactly given by the power dissipated in that element due to a voltage on those terminals.

In the continuous limit, eq. 1.11 can be used to find the noise emitted by a device with a spatially non-uniform temperature profile $T(\vec{r})$ by solving for the spatial power dissipation profile $\dot{q}(\vec{r})$.

$$T_{JN} = \frac{\int \dot{q}(\vec{r}) * T(\vec{r}) d\vec{r}}{\int \dot{q}(\vec{r}) d\vec{r}}$$
(1.12)

where \vec{r} is over the spatial dimensions of the device. Eq. 1.12 is the main result of this section.

JOHNSON NOISE IN RF CIRCUITS

When measuring Johnson noise at high frequency, it can be useful to reformulate the problem into the language of microwave circuits. The Nyquist theorem, eq. 1.2, can be rewritten to describe the average power, $\langle P \rangle$, absorbed by an amplifier coupled to the device with reflection coefficient Γ^2 :

$$\langle P \rangle = k_B T \Delta f (1 - \Gamma^2) \tag{1.13}$$

and

$$\Gamma = \frac{Z - Z_0}{Z + Z_0} \tag{I.I4}$$

where Z is the complex impedance of the device and Z_0 is the impedance of the measurement circuit — typically 50 Ω . In this form is it quite easy to see the thermodynamic origins of the Nyquist equation; A device at temperature T radiates a power of k_BT per unit frequency, then some of that power is absorbed by the measurement circuit, and some is reflected back to the sample. All the resistance dependence of the noise power is captured by Γ^{\ddagger} . With this new formulation the importance of minimizing Γ become apparent. For effective high frequency Johnson noise thermometry we must match the impedance of the device to the measurement circuit. For devices with two-terminal resistances far from 50 Ω , it is beneficial to add impedance matching circuits to transform the device to match Z_0 — in practice resistances less than $\sim 10 \Omega$ or grater than $\sim 250 \Omega$ benefit from matching circuits. As can be seen from eq. 1.13, the larger the measurement bandwidth Δf the larger noise signal. In practice, measurement bandwidths are often limited by either the impedance matching circuitry or the amplifier bandwidth; operating at higher frequencies increases typically increases both these limiting bandwidths.

Figure 1.2: High level schematic of a typical Johnson noise thermometry measurement circuit. Noise from an impedance matched sample is amplified and a measurement bandwidth is selected using a homodyne mixer and lowpass filter. The noise power is then measured with a power diode or linear multiplier. A microwave switch acts as a chopper and the signal is measured using a lock-in amplifier.

An autocorrelation RF noise thermometer

Fig. ?? shows an example of a typical, Dicke style, radiometer used to measure the temperature of a 50 Ω sample. Radiation from the resistor is coupled into a transmission line terminated in a low noise amplifier (LNA). A typical noise spectrum directly from the output of the LNA is shown in fig. 1.3. The signal-to-noise ratio of a noise measurement is mostly determined the front-end LNA 9 so care should be taken in selecting the right amplifier. The SiGe LNA (Caltech CITLF3) used throughout the majority of this thesis has a room temperature noise figure, in the frequency range of 0.01 to 2 GHz, of about 0.64 dB, corresponding to an intrinsic noise temperature of 46 K.

Even though Johnson noise has a flat "white" spectrum, it is important to filter out unwanted 1/f low frequency fluctuations ($\lesssim 10 \ kHz$) as well as high frequency noise produced where the amplifier gain begins to roll off. This can be done using high- and low- pass filters (producing a spectrum similar shown in fig. 1.4, or with a homodyne mixer and low-pass filter combo (as shown in fig. ??.

[‡]this is also a nice proof for why Γ in any 2 port device must be symmetric, $\Gamma_{12} = \Gamma_{21}$. If this was not true, we could place the device between two resistors in thermal equilibrium and one would heat the other. Two-port devices which report asymmetric coefficients often include internal terminated third ports.

Figure 1.3: a typical spectrum directly from the output of a low noise amplifier (Miteq AU-1291 \sim 65 dB gain \sim 100 K noise temperature) with the input terminated with a 50 Ω resistor. The spectrum is flat until the amplifier gain begins to roll off above 500 MHz. The amplitude of the "white" spectrum is proportional to the resistor temperature added to the amplifier noise temperature.

Figure 1.4: a typical Johnson noise spectrum after amplification and filtering using SMA high- and low-pass filters (mini-circuits SLP and SHP series). This square band can then integrated to find the total noise power and thus the temperature of the resistor.

Once amplified and cleaned, the total noise power can be measured in a few ways: a spectrum analyzer or digital Fourier transform can read the spectrum directly, a linear multiplier can square the signal and the mean voltage can be measured, or a high frequency power diode and low pass filter combo can convert the power to a DC voltage. Each technique has its own advantages/disadvantages and in a typical experiment multiple techniques are used. When presented with a new device or noise setup a spectrum analyzer is often the first measurement to be done; it provides the most indepth look into the noise of the system and readily shows problem areas such as narrowband noise, parasitic resonances, and/or amplifier performance. After initial setup, however, spectral detail becomes less important and measurements speeds can be significantly enhanced by moving to an all analog setup.

A linear multiplier (as shown in the schematic fig. 1.2) can be combined with an RF power splitter and a DC voltmeter to directly measure $\langle V^2 \rangle$. Operating from DC to 2 GHz, the multi-plier, Analog Devices ADL5931, serves as a square law detector with 30 dB dynamic range. A JNT using a multiplier is fast and has the added capability of measuring the autocorrelation function, $\langle V(t)V(t-\tau)\rangle$, by simply adding a delay, τ , to one arm of the splitter. While more complicated to setup, once operational a multiplier is a good combination of speed and versatility.

The simplest of the three power detectors discussed here is an RF power diode/low-pass filter combo (e.g. Pasternach PE8000-50). These detectors input an RF signal and output a DC voltage as shown in fig. 1.5. The output capacitance of these detectors can be quite large so if a thermal modulation faster than a few 100 Hz is required care must be taken in choosing an appropriate model. Nevertheless, this is the detector used most commonly in the second half of this thesis due to its

Figure 1.5: Calibration curves for the Pasternach PE8000-50 power detector. A monochromatic signal of known power is supplied using a microwave source (Stanford Research Systems) and the output is measured using a Voltmeter (Keithley 2400). The detector has a flat frequency response up to 1 GHz and shows linear behavior from - 45 dBm to -25 dBm (30 dB dynamic range)

wide dynamic range (30 dB), small sample package, and ease of use.

Once the noise power is converted to a dc voltage it can be read by a common Voltmeter. To increase the sensitivity it is useful to modulate the noise power. When measuring mesoscopic samples this can be done by modulating the electron temperature via Joule heating. However, in the case of a macroscopic resistor, a microwave switch is places after amplification and acts as a chopper. The resulting signal can then be measured using a lock-in amplifier.

We can test the noise circuit shown in fig. 1.2 by attaching the sample resistor to a coldfinger and varying the temperature from 3 K to 300 K. The results are shown in fig. 1.6. As the sample temperature is lowered, the noise reduces linearly as expected from eq. 1.13. However, if we extrapolate the

Figure 1.6: Johnson noise of a 50 Ω resistor measured by the circuit shown in fig. 1.2. Inset show the lock-in amplifier output. The signal is converted to noise power by the Nyquist equation. The solid line is a linear fit with an offset of 68 K due to amplifier noise

data to zero temperature, we see residual noise; this offset is due to all the other (temperature independent) noise sources in the system — primarily the front-end amplifier. It is useful to quantify this offset in units of Kelvin and is called the "effective noise temperature". Here we find an effective noise temperature of 68 K using a room temperature amplifier. More details on this circuit can be found in ref. ²

Uncertainty in noise measurements

Even noise has noise. There are 2 main areas of uncertainty in a noise measurements: The first comes from the fact that noise is stochastic and deals with how well you know the variance of a Gaussian after measuring some amount of time. If the measurements you take are discrete and uncorrelated then we get the usual $1/\sqrt{n}$, but what to do if we are measuring a continuous signal? It turns out this is an old problem which stems back to the 1940 and measurements of noise on telephone lines? In 1944 Rice showed the effective number of uncorrelated measurements is given by the product of the measurement time τ and the effective noise bandwidth Δf . This surprising fact that the wider the measurement bandwidth the lower the uncertainty is counter to many experiments where high Q filters are desired to lower the background noise; nevertheless, it can be seen experimentally, as shown in fig.?

The second source of uncertainty comes from external noise sources such as amplifiers and boils down to the question: of the noise you measure, what amount comes from the sample? Quantitatively, this can be thought of as a constant offset to the sample temperature and is called the system noise temperature T_n . In an autocorrelated noise measurement, T_n can be estimated as the offset of a linear fit to the noise power vs sample temperature, as shown in fig. 1.6. This offset is primarily

[§]The effective noise bandwidth is defined as the width of a perfect square band that passes the same noise power as the true filter function.

[¶]It should be noted that the system noise temperature can be quite different from an amplifiers intrinsic noise temperature which often assumes a perfectly matched input impedance. See the section "effective noise temperature" for more details

Figure 1.7: 500 repeated Johnson noise measurements of a 50 Ω resistor at 50 K using two different measurement bandwidths. The high bandwidth data has smaller statistical fluctuations than the low bandwidth data.

due to noise in the front-end amplifier but also depends on the sample impedance matching and the bandwidth being measured.

Combining these two sources of error we arrive at the famous Dicke radiometer formula³:

$$\delta T = \frac{T + T_n}{\sqrt{\tau \ \Delta f}} \tag{I.15}$$

We can directly compare eq. 1.15 to experiments by repeating a measurement many times and studying hot it fluctuates about the mean. Fig. 1.8 compares two histograms, both containing 20,000 autocorrelation measurements at 50 K with 50 ms integration time but using two different bandwidths: 28 and 328 MHz. A sensitivity of 5.5 mK (110 ppm) in 1 second of integration time was achieved using 328 Mhz bandwidth on a 50 K signal

Figure 1.8: Histograms of 20,000 auto-correlation temperature measurements for 28 and 328 MHz bandwidth using 50 ms integration time. Histogram peaks are normalized to 1 for clarity. All data is taken on a 50 K resistive load.

IMPEDANCE MATCHING

Eq. 1.13 illustrates the importance of minimizing the impedance mismatch between the sample and the measurement circuitry – typically 50 Ω . The central principle is to use non-dissipative components to transform the total impedance to $Z(\omega)=50+0i\,\Omega$ at some frequency $\omega=2\pi\times f$. Impedance matching mesoscopic devices has a unique set of challenges: electrostatic gates and high magnetic fields can cause device impedances to change by multiple orders of magnitude, cryogenic temperatures require the use of only thermally stable components, and large magnetic fields restrict the use of ferrite inductors.

LC TANK CIRCUITS

A common way to achieve matching is to use a simple LC circuit. These transformation circuits, known as a tank circuits, can be arranged in several ways but the configuration most useful to these experiments is that of a low-pass filter — i.e a shunt capacitor followed by a series inductor as shown

Figure 1.9: Schematic of an LC tank circuit setup in a low-pass configuration used to transform a sample resistance R_0 to match the characteristic impedance of a measurement circuit Z_0 .

in fig.?. The impedance of such a circuit is given by:

$$Z(\omega) = \left(R_0^{-1} + i\omega C\right)^{-1} + i\omega L \tag{1.16}$$

where L and C are the series inductance and shunt capacitance values, respectively. Proper matching requires solving eq. 1.16 under the condition:

$$Z(\omega_0) = 50 + 0i\,\Omega\tag{I.17}$$

where ω_0 is the center of the measurement band. Fig. 1.10 shows a plot of the real and imaginary components of eq. 1.16 with $R_0=1$ $k\Omega$. For the right choice of C and L, the imaginary part of the complex impedance crosses 0 when the real part is 50 Ω . Combining eq. 1.16 and eq. 1.17 for a given R_0 , ω_0 and Z_0 give us the needed inductance and capacitance values.

$$L = \sqrt{\frac{R_0 Z_0}{\omega_0^2}} \tag{1.18}$$

$$C = \frac{1}{\sqrt{R_0 Z_0 \omega_0^2}} \tag{1.19}$$

Figure 1.10: The real and imaginary impedance of an LC tank circuit (eq. 1.16) with $R_0=1$ $k\Omega$, C=4.5 pF, and L=220 nH. The imaginary component cross zero as the real component is 50 Ω .

While in theory adding a precise induction and capacitance onto a device is straight forward, in practice real devices can have a not insignificant amount of stray capacitance. To account for this we can use a variable capacitor and tune the matching circuit to each device. One simple, temperature independent, magnetic field compatible capacitor that can be easily tuned is a set of twisted pair wires. Fig. 1.11 and fig. 1.12 show an example of a matching circuit using a twisted pair capacitor before and after tuning, respectively.

A vector network analyzer (VNA) is used to measure the sample reflectance $\Gamma = S_{11}^2$ to ensure the sample is properly matched. Fig. 1.13 shows how the reflectance changes for a 1 $k\Omega$ sample impedance and 220 nH series inductance as the capacitance is tuned. When properly tuned we measure a large dip in S_{11} signifying the sample is well coupled to the 50 Ω VNA.

[&]quot;stray inductance is also possible (particularly if long wire bonds are necessary) but are usually negligible for the resistance and frequency ranges in this thesis

Figure 1.11: Image of an impedance matching circuit before capacitance tuning. A long piece of twisted pair wire shunts the sample and an inductor (Coilcraft RF Air Core) is placed in series. To tune the capacitance, the twisted pair wire is cut shorter and shorter while the reflectance Γ is monitored.

Figure 1.12: Image of an impedance matching circuit after capacitance tuning. The twisted pair wire serves as a gimmick and is tuned for each sample to account for variance in stray capacitance.

Figure 1.13: Reflectance curves while tuning a matching circuit for $R_0=1\,k\Omega$ and $L=200\,nH$. The rightmost curve (green) corresponds to the lowest capacitance and the leftmost curve (blue) corresponds to the highest. Each curve is the result of cutting off a section of twisted pair wire.

After matching, the noise spectral density emitted into the measurement circuitry is no longer flat but instead shaped by Γ in accordance to eq. 1.13. This point becomes clear when looking at the noise spectra emitted by an impedance matched sample at various temperatures — as shown in Fig. 1.14; two features out prominently: first, the background noise is no longer flat but has structure and, second, the increase in noise as the sample temperature is raised is not the same at all frequencies. The result is that we are no longer free to select just any measurement bandwidth but must careful choose filters suited to the reflection profile.

In most mesoscopic measurements, the resistance of the device under test varies throughout the experiment; whether electrostatic gates modulate the carrier density, strong magnetic fields drive the system toward quantum hall, or cryogenic temperatures modify the conductivity, matching networks should operate over a wide dynamic range of input impedances. The response of a single

Figure 1.14: Amplified noise spectrum from a device, impedance matched using an LC tank circuit, at various temperatures. The background noise is no longer flat as the amplifier is not properly terminated at all frequencies. As the device temperature is raised, the spectral density increases non-uniformly as different frequencies couple differently to the circuitry as determined by eq. 1.13

Figure 1.15: Reflection coefficient $|S11|^2$ for a single stage LC matching network as a function of device resistance. The left plot shows the full data set with a maximum coupling efficiency of more than 30 dB. The right plot shows the same data with the color scale adjusted to highlight 1 dB changes up to a maximum of 10 dB (corresponding to 90% coupling efficiency). All data taken from a graphene device at low temperature using an electrostatic gate.

stage LC matching network coupled to a changing device resistance is shown in fig. 1.15. The device is optimally matched around 450 Ω but maintains more than 10 dB coupling between 200 Ω and 1 $k\Omega$. As the resistance drops, we see the appearance of the trivial solution to eq. 1.16 of $R_0=50~\Omega$ and $\omega=0$.

Multi-stage matching

If resistance will vary by multiple orders of magnitude (e.g. magneto resistance) multi-stage matching networks can be used. Multi-stage LC networks allow you to cover a wider area of the resistance-

frequency space by giving you multiple solutions of Z=50. Cell phones use many stages to capture the full range of the human voice (need source). If the resistance of the device is fixed we can use multi-stage matching to increase the bandwidth over which we are matched. Show real and imaginary components for single vs double stage matching (subtract off 50 to show how these are zeros). In this plot there are 2 solutions to Z=50. In the R-f plane this looks like (show color plot of solution) However, if instead we want to match to larger range of resistances, we can move one of these zeros to a higher resistance. This increases the dynamic range of the matching circuit at the expense of bandwidth.

Effective noise temperature

The effective noise temperature is the sum of all (unwanted) noise in your system in units of the sample noise temperature. Your signal to noise ratio is given by T/Tn. Tn is a function of gamma integrated over all frequencies. Show formula for. In practice the frequencies integrated over are determined by filters.

CALIBRATION

Since the gain and noise temperature of the circuit are a function of many complicated factors (stray, loss, gain profiles, noise profiles) it is necessary to calibrate. Furthermore its strongly dependent on the device resistance and therefore must be calibrated for every device/measurement circuit. Goal is to focus here on general calibration not graphene specifics, calibration of graphene will get its own

chapter.

Cross-correlated noise thermometry

One challenge in noise measurements is identifying the noise you wish to measure from the unwanted background noise. In the right circumstances, cross-correlation can used to average out unwanted noise leaving behind. The idea is to send the noise from the device into 2 independent channels and if the noise on each channel is uncorrelated then you win. Describe the idea in the perfect world. Show schematic (APL fig 1b). using this you can remove the offset from the amplifiers (APL fig 2). However, this does not reduce the precision of the measurement. The integration time needed to attain a given uncertainty is not reduced (APL fig 3)

MULTI-TERMINAL CROSS-CORRELATION

If cross correlation is used on multiple terminals the overlapping noise can be found similar to the Johnson noise temperature.

This is some random quote to start off the chapter.

Firstname lastname

2

Electronic cooling mechanisms in graphene

Wiedemann-Franz

basic mechanism. Electron carry heat away through conduction. Each particle carries a fixed charge and fixed heat capacity. Include equation. Discuss assumptions. Show plot of experimental agreement.

LINEARIZATION
Hot electron shot noise
Electron-Phonon coupling
general form including delta and Sigmaelph.
Linearization
Bloch-Gruneisen temperature
Acoustic phonon
Intrinsic optical phonons
Remote optical phonons
include some table keeping track of the power laws
Photon cooling
This is Johnson noise and its what you measure
Heat transfer equations
total heat transfer for the entire system Q= formulate kappa equations for general steady state
heating profile

3

Thermal conductance via electrical noise

from eq above we see we need apply some sort of known heating profile and then measuring the resulting temperature rise. Define thermal conductance as Q/TJN

RECTANGULAR DEVICE

start by just walking through joule heating a rectangular device where the JN temp is the mean temp.

ELECTRONIC CONDUCTION ONLY

in the absence of phonons the problem can be solved analytically. Derive temperature profile. Show temperature profile. The mean temperature is the JN temperature. The thermal conductance has the usual geometric factors but with an extra factor of 12. If the WF law is formulated as the 2-terminal resistance it gives you the thermal conductance but for this 12. This 12 is related to how electric R is being measured by applying a voltage difference between the terminals while the thermal conductance is via this parabolic profile.

Phonon cooling

If phonons dominate the profile is flat and we cannot effectively measure kappa. However in this limit we can measure the Sigmaelph and delta.

JOHNSON NOISE TEMPERATURE VS MEAN TEMPERATURES: WEDGE DEVICE

unlike the simple rectangle where the Johnson noise temperature was simply the mean temperature, for more complicated geometries we have to compute what effective temperature we will measure in a noise experiment given the temperature profile. The wedge can be solved analytically. If we use the definition G_{th} above we see again that in the limit of no phonons, the thermal conductance relates to kappa the same way as electrical conductance relates to sigma but with an extra factor of 12. In the phonon limit however, the temperature is no longer flat as the current density is no longer uniform

Arbitrary shapes: the geometric factor $\boldsymbol{\alpha}$

For arbitrary shapes where analytic solutions do not exist we can turn to finite element simulations.

We find this factor of 12 to be a universal property of 2-terminal devices, independent of geometry.

CIRCUITRY

Hydrodynamic framework

explain the problem of transport. Build up historically. Drude. Fermi liquid. Interaction become dominate.

Hydrodynamic framework

inspiration from Subir's old papers and andy's papers

Experimental evidence

GaAs. Other 2 papers.

RF cryostats and circuitry

Janis

Oxford

Leiden

JNT circuits

Calibration of graphene devices

Thermal conductance in high density graphene

all the data on Aria

Device characteristics

CIRCUITRY

Low temperature Wiedemann-franz

HIGH TEMPERATURE ELECTRON-PHONON

quote

Quoteauthor Lastname

8

The Dirac fluid

BLAH BLAH, testing fig. 1.5

Since the dawn of time, man hath sought to make things smaller.

Eric Bachmann

9

Magneto-thermal transport

There's something to be said for having a good opening line.

Conclusions and future work

References

- [1] Callen, H. B. & Welton, T. A. (1951). Irreversibility and Generalized Noise. *Physical Review*, 83(1), 34–40.
- [2] Crossno, J., Liu, X., Ohki, T. A., Kim, P., & Fong, K. C. (2015). Development of high frequency and wide bandwidth Johnson noise thermometry. *Applied Physics Letters*, 106(2), 023121. arXiv: 1411.4596.
- [3] Dicke, R. H. (1946). The Measurement of Thermal Radiation at Microwave Frequencies.

 *Review of Scientific Instruments, 17(7), 268–275.
- [4] Einstein, A. (2011). *Investigations on the Theory of the Brownian Movement*. Place of publication not identified: BN Publishing.
- [5] Johnson, J. B. (1927). Thermal Agitation of Electricity in Conductors: Abstract: Nature.

 Nature, 119(2984), 50–51.
- [6] Johnson, J. B. (1928). Thermal Agitation of Electricity in Conductors. *Physical Review*, 32(1), 97–109.

- [7] Kubo, R. (1966). The fluctuation-dissipation theorem. *Reports on Progress in Physics*, 29(1), 255.
- [8] Nyquist, H. (1928). Thermal Agitation of Electric Charge in Conductors. *Physical Review*, 32(1), 110–113.
- [9] Pozar, D. M. (2011). Microwave Engineering. Hoboken, NJ: Wiley, 4 edition edition.
- [10] Schoelkopf, R. J., Burke, P. J., Kozhevnikov, A. A., Prober, D. E., & Rooks, M. J. (1997). Frequency Dependence of Shot Noise in a Diffusive Mesoscopic Conductor. *Physical Review Letters*, 78(17), 3370–3373.