Matrix Factorization

Hamburg Coding School

lasse.schmidt@bonprix.net

February 9, 2019

Overview

- Introduction
- 2 Non-Negative Matrix Factorization (NMF)
- Singular Value Decomposition (SVD)
- 4 Comparison between NMF and SVD

Introduction

Matrix Factorization is a technique to reduce dimensionality of the data. The basic idea is that we can rebuild a basis matrix D by the dot product of two (or more) matrices W and H with lower dimensionality.

These matrices W and H are also called "embeddings". These embeddings are supposed to represent the information from matrix D in a more compact way.

NMF is a dimensionality reduction technique tailored to clustering:

- suitable for non-negative and sparse data
- hence often used for text mining
- matrices W and H do not contain negative values
- this makes the approach highly interpretable

Formula:
$$D \approx W \cdot H^T$$
 (1)

where W is the embedding for the rows

and H is the embedding for the columns

Matrix D

	red dress	green dress	red socks	green socks	black skirt	blue jeans
customer 1	1	0	1	0	1	0
customer 2	1	0	1	0	0	0
customer 3	0	1	0	1	1	0
customer 4	0	1	0	1	0	0
customer 5	0	0	1	0	0	1
customer 6	0	0	0	1	0	1

Matrix W

	latent factor 1	latent factor 2
customer 1	0.06163281	1.00645414
customer 2	0	0.82291355
customer 3	0.92051861	0.06733389
customer 4	0.75260906	0
customer 5	0.03490373	0.57124949
customer 6	0.52232672	0.03827449

Matrix H

	red dress	green dress	red socks	green socks	black skirt	blue jeans
latent factor 1	0	0.98907004	0	1.29784367	0.53333592	0.30257195
latent factor 2	0.90452538	0	1.18697799	0	0.48769841	0.27685045

Matrix $D \approx W \cdot H^T$

	red dress	green dress	red socks	green socks	black skirt	blue jeans
customer 1	0.910	0.060	1.194	0.079	0.523	0.297
customer 2	0.744	0	0.976	0	0.401	0.227
customer 3	0.060	0.910	0.079	1.194	0.523	0.297
customer 4	0	0.744	0	0.976	0.401	0.227
customer 5	0.516	0.034	0.678	0.045	0.297	0.168
customer 6	0.034	0.516	0.045	0.677	0.297	0.168

For comparison: Matrix D

	red dress	green dress	red socks	green socks	black skirt	blue jeans
customer 1	1	0	1	0	1	0
customer 2	1	0	1	0	0	0
customer 3	0	1	0	1	1	0
customer 4	0	1	0	1	0	0
customer 5	0	0	1	0	0	1
customer 6	0	0	0	1	0	1

Interpretation of W

	latent factor 1 "green"	latent factor 2 "red"
customer 1	0.06163281	1.00645414
customer 2	0	0.82291355
customer 3	0.92051861	0.06733389
customer 4	0.75260906	0
customer 5	0.03490373	0.57124949
customer 6	0.52232672	0.03827449

each column of the costumer embedding represents how much that customer appreciates a "concept" (here: red or green clothes)

How does the NMF compute W and H?

Optimization function:

$$J = \frac{1}{2}||D - UV^{T}||^{2} \tag{2}$$

which is the squared Frobenius Norm (like the Euclidean Distance for matrices)

 \Rightarrow solving is done via Kuhn-Tucker

- closely related to PCA, but more general because it provides two sets
 of basis vectors instead of one

 for the rows and the columns of the
 data matrix (PCA does it only for the rows)
- SVD and PCA provide the same basis vectors for the rows if the mean of each attribute is 0
- SVD often applied without mean centering to sparse, non-negative data

Formula:
$$D = Q\Sigma P^T$$
 (3)

where Q are the left singular vectors ($n \times n$ for the rows)

 Σ is the diagonal matrix containing the singular values (always non-negative)

and P are the right singular values (dxd for the columns)

With this formula, we still have three (possibly) large matrices. To reduce dimensionality, we can order Σ in decreasing order (P and Q are arranged accordingly) and only use truncated dxk and nxk matrices for Q_k , Σ_k and P_k

Formula:
$$D \approx Q_k \Sigma_k P_k^T$$
 (4)

where $Q_k\Sigma_k$ correspond to W and P corresponds to H

Matrix D

	red dress	green dress	red socks	green socks	black skirt	blue jeans
customer 1	1	0	1	0	1	0
customer 2	1	0	1	0	0	0
customer 3	0	1	0	1	1	0
customer 4	0	1	0	1	0	0
customer 5	0	0	1	0	0	1
customer 6	0	0	0	1	0	1

Matrix $Q_k \Sigma_k$

latent factor 1	latent factor 2
-0.99250764	1.29205525
-0.99250746	0.85370666
0.9925074	1.29205537
0.99250787	0.8537069
-0.55734551	0.74116856
0.55734533	0.74116874
	-0.99250764 -0.99250746 0.9925074 0.99250787 -0.55734551

Matrix P

	red dress	green dress	red socks	green socks	black skirt	blue jeans
latent factor 1	-0.43	-0.435	-0.57	0.57	0	0
latent factor 2	0.34	0.34	0.49	0.49	0.44	0.25

Matrix $D \approx Q_k \Sigma_k P_k^T$

	red dress	green dress	red socks	green socks	black skirt	blue jeans
customer 1	0.902	0.038	1.186	0.08	0.566	0.325
customer 2	0.743	-0.121	0.971	-0.135	0.374	0.215
customer 3	0.039	0.902	0.080	1.186	0.566	0.325
customer 4	-0.121	0.743	-0.135	0.971	0.374	0.215
customer 5	0.512	0.027	0.674	0.052	0.325	0.186
customer 6	0.027	0.512	0.052	0.674	0.324	0.186

For comparison: Matrix D

	red dress	green dress	red socks	green socks	black skirt	blue jeans
customer 1	1	0	1	0	1	0
customer 2	1	0	1	0	0	0
customer 3	0	1	0	1	1	0
customer 4	0	1	0	1	0	0
customer 5	0	0	1	0	0	1
customer 6	0	0	0	1	0	1

Comparison between NMF and SVD

Approximation of Matrix D

Matrix Decomposition:

$$NMF: D \approx W \cdot H^T \tag{5}$$

$$SVD: D \approx Q_k \cdot \Sigma_k \cdot P_k^T \tag{6}$$

Comparison between NMF and SVD

- both minimize the squared error of the data representation
- main difference: different constraints in the corresponding optimization formula
- SVD imposes orthogonality; NMF imposes non-negativity

Comparison between NMF and SVD

- lacktriangled latent factors of NMF easily interpretable for clustering o in text domain each factor of W stands for a document cluster and how closely it is related to that document
- ② unlike SVD, the k latent factors of NMF are not orthogonal to one another. This is a disadvantage because orthogonality of the axis-system allows intuitive interpretation of data transformation as axis-rotation → distance computations between transformed data points more meaningful in SVD
- non-negativity constraint reduces quality of optimization problem \to SVD provides better rank-k approximations than NMF
- SVD harder to implement for incomplete data compared to NMF

Other Applications of NMF and SVD

- Noise reduction: while removal of smaller eigenvectors/singular vectors can lead to information loss, it can also lead to an improvement in the quality of data representation → can lead to quality benefits
- $\ensuremath{\mathbf{2}}$ Data imputation: collaborative filtering \rightarrow we can estimate values for sparse data

The End