IOE 516 Stochastic Processes II

Winter Term, 2024

Prof. Xiuli Chao

Email: xchao@umich.edu

Recap

- Last week we discussed three fundamental limit theorems: WLLN, SLLN, and CLT.
- These results are useful. For example, CLT can help estimate tail probabilities.

Tail approximation of sum

- One application of CLT is in computing tail probabilities of sum of random variables. Let Φ be the cdf of standard normal.
- Let X_1, X_2, \ldots be i.i.d. with mean μ and variance σ^2 , and $S_n = \sum_{i=1}^n X_i$. By CLT, $(S_n n\mu)/(\sigma\sqrt{n})$ is approximately standard normal when n is large. Thus, we can estimate the probability for $S_n > x$ as follows:

$$P(S_n > x) = P\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} > \frac{x - n\mu}{\sigma\sqrt{n}}\right)$$

$$\approx 1 - \Phi\left(\frac{x - n\mu}{\sigma\sqrt{n}}\right)$$

Example

- A car insurance firm has 10,000 customers. The annual premium is \$800. The claim for each customer over the year is random and historical data show that the mean is \$700 and standard deviation is \$500. What is the probability that the firm makes a profit of \$1 MM from these customers?
- Let X_i denote the net contribution of customer i which is the premium minus claim, then it has mean $\mu = 100$ and standard deviation \$500.
- The total profit is $S = \sum_{i=1}^{10000} X_i$. By the result from previous page,

$$P(S > 1,000,000) = 1 - \Phi\left(\frac{x - n\mu}{\sigma\sqrt{n}}\right)$$
$$= 1 - \Phi\left(\frac{1,000,000 - 10,000 \times 100}{500 \times 100}\right) = 0.5.$$

Ordinary deviation

• CLT implies that, for large n we can estimate $P(S_n - n\mu > \sqrt{n}a)$ as follows:

$$P(S_n - n\mu > \sqrt{n}a) \approx P(Z > a/\sigma) = 1 - \Phi(a/\sigma).$$

- Deviations of S_n from its mean by the order of \sqrt{n} is known as **ordinary deviation**.
- Thus, the probability for ordinary deviation is can be easily estimated.

However,

Ordinary deviation is useful, but not enough for operations applications.

 Today we discuss more deviation results, known as concentration inequalities.

• First we discuss Large Deviation. Since Large Deviation is based MGF, let us elaborate further on MGF.

Some property of MGF

- We need some property of GMF $M_X(\theta)$. We focus on $\theta \ge 0$. Recall that $M_X(0) = 1$ for any X.
- We already know that, for some r.v.'s (e.g., lognormal), their MGF $M_X(\theta)$ is infinity for any $\theta > 0$.
- It can be argued that, if there exists $\theta_0 > 0$ such that $M_X(\theta_0)$ if finite, then $M_X(\theta) < \infty$ for all $0 \le \theta < \theta_0$. This shows that the range of parameter θ such that $M_X(\theta) < \infty$ is an interval containing 0.

Large deviation theory

- Recall that $S_n = \sum_{i=1}^n X_i$. Large deviation is concerned with the event that S_n deviates from its mean by the order of n.
- That is, what is $P(S_n n\mu > na)$ for a > 0.
- This probability should be small for moderate or large n, but how small and how to evaluate that?
- There is an entire subject area in probability, known as **Large De**-viation Theory. There are several good books are on this subject.

First, some preliminaries

- To present large deviation theory, we need some preparation. The first one is Chernoff bound.
- Let X_1, X_2, \ldots i.i.d. with mean μ and variance σ^2 .
- MGF $M(\theta) = E[e^{\theta X_1}]$, assuming finite near 0.
- Properties of $M(\theta)$: (i) M(0) = 1, and (ii) $M'(0) = \mu$.

Chernoff bound

• Let $s = \mu + a$. For $\theta > 0$, we have

$$P(S_n \ge ns) = P\left(e^{\theta S_n} > e^{\theta ns}\right) \le \frac{E[e^{\theta S_n}]}{e^{\theta na}}$$
$$= e^{-\theta ns} \left(E[e^{\theta X_1}]\right)^n = e^{-n(\theta s - \log M(\theta))}$$

• $\theta s - \log M(\theta)$ is 0 when $\theta = 0$. Assuming finite on $[0, \theta_0)$, then

$$(\theta s - \log M(\theta))'|_{\theta} - = s - \frac{M'(0)}{M(0)} = s - \mu > 0.$$

• This confirms that there exists $\theta > 0$ such that $\theta s - \log M(\theta) > 0$. Thus, $P(S_n \ge na)$ goes to zero exponentially fast!

Remark

- $P(S_n \ge na)$ goes to zero at exponential rate $\theta s \log M(\theta)$ when it is greater than 0.
- What is the fastest rate? It is clearly the largest $\theta s \log M(\theta)$.
- That is, we need to identify that θ that maximizes $\theta s \log M(\theta)$.

Fenchel-Legendre transform

• The Legendre transform of a r.v. is defined as

$$\Lambda^*(s) = \sup_{\theta > 0} \left(\theta s - \log M(\theta) \right) > 0$$

- Properties of $\Lambda(\theta) = \log M(\theta)$:
 - (i) $\Lambda(0) = 0$,
 - (ii) $\Lambda'(0) = \mu$, and
 - (iii) $\Lambda(\theta)$ is convex.
- Thus, $\theta s \Lambda(\theta)$ is a concave function. Let its maximizer be θ^* .

Cramer-Chernoff Theorem

• By Chernoff bound,

$$P(S_n \ge sn) \le e^{-\Lambda^*(s)n}$$
.

• This implies

$$\frac{1}{n} \cdot \log P(S_n \ge sn) \le -\Lambda^*(s).$$

• Large deviation theory, known as Cramer-Chernoff Theorem, shows that the upper bound is actually tight. That is

$$\frac{1}{n} \cdot \log P(S_n \ge sn) \to -\Lambda^*(s) \text{ as } n \to \infty.$$

Example

- ullet We use Poisson with parameter λ to illustrate.
- GMF is

$$E[e^{\theta X}] = \sum_{n=0}^{\infty} e^{\theta n} e^{-\lambda} \frac{\lambda^n}{n!} = e^{\lambda(e^{\theta} - 1)}$$

- $\Lambda^*(s) = \sup_{\theta \ge 0} \{\theta s \lambda(e^{\theta} 1)\} = s \log(s/\lambda) s + \lambda \text{ with } \theta^* = \log(s/\lambda).$
- By LDT, $P(S_n > sn) \approx e^{-(s \log(s/\lambda) s + \lambda)n}$. The LHS is

$$P(S_n > ns) = \sum_{k > sn} e^{-\lambda n} \frac{(\lambda n)^k}{k!}.$$

This decay rate is hard to assess but LDT has provided the solution.

Remark

- How strong is "MGF is finite near 0"?
- It is basically those random variables whose tail function decays at least exponentially fast.
- This shows that, large deviation result is quite natural and expected.
- Let us argue it using non-negative random variables.

Exponential decay

• Claim. MGF is finite near 0 iff its tail is exponentially bounded, i.e., there exist $\mu > 0, \lambda > 0$, such that

$$P(X > t) \le \mu e^{-\lambda t}.$$

• Why? If there exists $\theta_0>0$ such that $E[e^{\theta_0X}]=\mu$ is finite, then by Markov inequality,

$$P(X > t) = P(e^{\theta_0 X} > e^{\theta_0 t}) \le \frac{E[e^{\theta_0}]}{e^{\theta_0 t}} = \mu e^{-\theta_0 t}.$$

• On the other hand, if $P(X>t) \leq \mu e^{-\lambda t}$, then for any $\theta_0 < \lambda$, we have

$$E[e^{\theta_0 X}] = -\int_0^\infty e^{\theta_0 t} d\bar{F}(t) = -e^{\theta_0 t} \bar{F}(t)|_0^\infty + \theta_0 \int_0^\infty \bar{F}(t) e^{\theta_0 t} dt = \cdots$$

Medium deviation

- LDT considers the probability that S_n deviates from its mean by an. How about deviating by λ_n , say $\lambda_n = n^{2/3}, \sqrt{n \log n}, \sqrt{n \log n}$, etc.? These are particularly important for studying algorithms of operations problems.
- When λ_n lies in between n (large deviation) and \sqrt{n} (ordinary deviation), it is called **medium deviation**.
- In the following we assume the mean μ of X_i is zero. If not, the formula should replace S_n by $S_n n\mu$.

Medium deviation theory

• If λ_n grows faster than slower than $n^{2/3}$ but faster than $n^{1/2}$, then under the condition of finite MGF near 0, we have

$$P(S_n > \lambda_n) \approx \frac{\sigma}{\lambda_n} \sqrt{\frac{n}{2\pi}} \cdot e^{-\frac{\lambda_n^2}{2\sigma^2 n}}.$$

Important cases

• Of particular importance is the special case that $\lambda_n = c\sqrt{\sigma n \log n}$:

$$P(S_n > c\sqrt{\sigma n \log n}) \approx \frac{1}{c\sqrt{2\pi \log n}} \cdot n^{-c^2/2}.$$

• Examples. For $c = \sqrt{2}$ and 2, we obtain

$$P(S_n > \sqrt{2\sigma n \log n}) \approx \frac{1}{2\sqrt{\pi \log n}} \cdot \frac{1}{n},$$

 $P(S_n > 2\sqrt{\sigma n \log n}) \approx \frac{1}{2\sqrt{2\pi \log n}} \cdot \frac{1}{n^2}.$

A very useful result

ullet In general, we have for any $\alpha > 0$,

$$P(S_n > \sqrt{2\alpha\sigma n \log n}) \approx \frac{1}{2\sqrt{\alpha\pi \log n}} \cdot \frac{1}{n^{\alpha}}.$$

• **Remark.** The result above does not require MGF be finite near zero. A sufficient condition is $E[|X_1|^{2(\alpha+1)+\delta}] < \infty$ for small $\delta > 0$. This condition is much weaker than those imposed in the operations literature.

Concentration inequalities

- A random variable concentrates its mass around the mean. How fast does it spread out, especially when the random variable is sum of random variables?
- Ordinary deviation, medium deviation, and large deviation are all concentration inequalities. But there are many more.
- Together, they play a central role in analyzing learning and approximation algorithms in the operations literature.

Discussion

Concentration inequalties take the form

$$P(|X - E[X]| \ge \epsilon)$$

for any given $\epsilon > 0$. It usually suffices to study $P(X - E[X] > \epsilon)$, and it is WLOG to assume E[X] = 0.

 Chebshev inequality is the simplest general result on concentration inequality.

Discussion

- Hot to get the result for $P(|X E[X]| > \epsilon)$ from $P(X E[X] > \epsilon)$?
- In all our results, the upper bounds for $P(|X E[X]| > \epsilon)$ is twice of $P(X E[X] > \epsilon)$.

Example: Normal

• X is normal N(0,1). Find upper bound for $P(X > \epsilon)$ for $\epsilon > 0$. What do you get if you apply Chebshev inequality?

• Sharper result. $P(X > \epsilon) \le \frac{e^{-\epsilon^2/2}}{\epsilon}$

• Why? Here is the argument:

$$P(X > \epsilon) = \int_{\epsilon}^{\infty} \phi(s) ds \le \frac{1}{\epsilon} \int_{\epsilon}^{\infty} s \phi(s) ds = \frac{e^{-\epsilon^2/2}}{\sqrt{2\pi}\epsilon}$$

Example: Sample mean of normal

• X_i is normal N(0,1) and $S_n = \sum_{i=1}^n X_i$. Find upper bound for $P(S_n > \epsilon)$ for $\epsilon > 0$. What do you get if you apply Chebshev inequality?

• Sharpger result. $P(S_n > \epsilon) \le \frac{\sqrt{n}}{\sqrt{2\pi}\epsilon} e^{-\epsilon^2/(2n)}$

• Why?

Comparisons with large and medium deviations theory

- How do you compare the results with large and medium deviation theory results?
- **Homework**: Substitute ϵ by an and $c\sqrt{2n\log n}$, respectively, and compare the results with LDT and MDT.

Hoeffding inequality

- The most classic concentration inequality is Hoeffding inequality for bounded random variables. Given the role it played in the development, we discuss it in detail.
- Hoeffding inequality. Suppose $X_1, X_2, ...$ are i.i.d. on a bounded support [a, b] and $E[X_1] = \mu$. Then, for $\epsilon > 0$,

$$P(S_n - n\mu > \epsilon) \le e^{\frac{-2\epsilon^2}{n(b-a)^2}}.$$

ullet Important special case: **Bernoulli** with mean p, then

$$P(S_n - np > \epsilon) \le e^{-2\epsilon^2/n}$$
.

Remark

• Substituting ϵ by an and $\sqrt{\alpha n \log n}$ leads to similar result of Large deviation and medium deviation.

Why?

• WLOG we assume $\mu = 0$. By Chernoff bound: For any $\theta > 0$,

$$P(S_n > \epsilon) = P(e^{\theta S_n} > e^{\theta \epsilon}) \le e^{-\theta \epsilon} (E[e^{\theta X_1}])^n = e^{-\theta + n \log E[e^{\theta X_1}]}. \quad (1)$$

• Now, since X_1 has support on [a,b], we can say more about $E[e^{\theta X_1}]$. We can show the following:

$$E[e^{\theta X_1}] \le e^{\theta^2(b-a)^2/8}.$$

• How to prove? First, note that, by $X \in [a, b]$,

$$X = \frac{b - X}{b - a}a + \frac{X - a}{b - a}b,$$

ullet Since $e^{ heta X}$ is convex in X, we have

$$e^{\theta X} \le \frac{b - X}{b - a} e^{\theta a} + \frac{X - a}{b - a} e^{\theta b}$$

• Thus

$$E[e^{\theta X}] \leq \frac{b}{b-a}e^{\theta a} - \frac{a}{b-a}e^{\theta b}$$

$$= e^{\theta a} \left(\frac{b}{b-a} - \frac{a}{b-a}e^{\theta(b-a)}\right)$$

$$= e^{\theta a + \log\left(1 + \frac{a}{b-a} - \frac{a}{b-a}e^{\theta(b-a)}\right)}$$

$$= e^{g(u)},$$

where

$$g(u) = -\gamma u + \log(1 - \gamma + \gamma e^{u}),$$

$$\gamma = -\frac{a}{b-a},$$

$$u = \theta(b-a).$$

• It is an exercise for you to show that g(0) = g'(0) = 0 and $g''(x) \le 1/4$ for all $x \ge 0$. By Taylor's theorem,

$$g(u) = g(0) + g'(0)u + g''(\xi)\frac{u^2}{2} \le u^2/8 = (b-a)^2\theta^2/8.$$

• Substituting to (1) yields

$$P(S_n \ge \epsilon) \le \inf_{\theta} e^{n(b-a)^2 \theta^2/8 - \epsilon \theta}$$

• The RHS is minimized when $\theta = 4\epsilon/n(b-a)^2$, to obtain

$$P(S_n \ge \epsilon) \le e^{-\frac{2\epsilon^2}{n(b-a)^2}}.$$