Неделя № 10. Бинарные отношения и их графы. Отношения эквивалентности

Талашкевич Даниил Александрович 15 ноября 2020 г.

Problems:

- 1. Ответьте на следующие вопросы для бинарного отношения $R \subseteq \{1,2,3\} \times \{1,2,3\}$. Является ли R рефлексивным? симметричным? транзитивным? отношением эквивалентности? Для каждого отношения R нарисуйте соответствующий граф. Используйте неориентированный граф для симметричных бинарных отношений, в случае нерефлексивных бинарных отношений используйте петли.
 - a) $R = \{(1,1), (2,2), (3,3), (1,2), (1,3), (3,2)\}.$
 - **6)** $R = \{(1,1), (1,2), (2,1), (2,2)\}$

Решение:

a)
$$R = \{(1,1), (2,2), (3,3), (1,2), (1,3), (3,2)\};$$

Так как $R \subseteq (1,2,) \times (1,2,3)$, то R является рефлексивным благодаря первым трем парам. Так же не является симметричным хотя бы потому, что нет пары (2,1) для пары (1,2). И так же является транзитивным. Значит отношением эквивалентности не является.

6)
$$R = \{(1,1), (1,2), (2,1), (2,2)\}$$

Не рефлексивно, потому что нет пары (3,3). Симметрично и транзитивно , значит это отношение эквивалентности.

Ответ: а) отношение эквивалентности. б) нет.

2. Выразите отношение «племянник(-ца)» через отношения «отец» и «мать» и операции над отношениями.

Решение:

 $\exists C, D: A$ племянник $B \Leftrightarrow ((B \text{ брат } C) \vee (B \text{ сестра } C)) \wedge ((C \text{ отец } A) \vee (C \text{ мать } A)) \Leftrightarrow \exists C, D: (((D \text{ отец } B) \wedge (D \text{ отец } C)) \vee ((D \text{ мать } B) \wedge (D \text{ мать } C))) \wedge ((C \text{ отец } A) \vee (C \text{ мать } A)).$

Ответ:
$$\exists C, D : (((D \text{ отец } B) \land (D \text{ отец } C)) \lor ((D \text{ мать } B) \land (D \text{ мать } C))) \land ((C \text{ отец } A) \lor (C \text{ мать } A)).$$

3. Пусть бинарные отношения $P_1, P_2 \subseteq A \times A$ транзитивны. Будут ли $\overline{P_1}, P_1 \cap P_2, P_1 \cup P_2, P_1 \circ P_2$ обладать теми же свойствами.

Решение:

1) $\overline{P_1}$. Приведем контрпример, когда P_1 транзитивно, а $\overline{P_1}$ нет:

Транзитивность можно изобразить как граф-треугольник K_3 и изолированная вершина. Транзитивность будет выполнятся если есть путь длины 1 между вершинами a, b, а с b до другой вершины c существует путь длины 1, то тогда должен существовать путь длины 1 между вершинами a, c. В свою очередь дополнение этого графа будет не транзитивно, потому что найдутся в этом дополнении две вершины, между которыми на будет прямого пути.

Отсюда ответ: $\overline{P_1}$ не обладает транзитивностью

- 2) $P_1 \cap P_2$. Рассмотрим x,y,z: если (x;y) и (y;z) входит и в P_1 и в P_2 (мы рассматриваем числа, которые принадлежат $P_1 \cap P_2$), то по транзитивности следует, что (x;z) входит. Но тогда будет справедливо, что и (x;z) входит и в P_1 и в P_2 (по транзитивность), тогда и (x;z) входит в $P_1 \cap P_2$.
 - $P_1 \cap P_2$ обладает транзитивностью, если P_1 и P_2 обладают.
- 3) $P_1 \cup P_2$. контрпример: возьмем P_1, P_2 такие же, как и в пункте 1, которые пересекаются в одной вершине, тогда получаем: $(1;2) \wedge (2;3) \rightarrow (1;3)$. Но для $P_1 \cup P_2$ транзитивность не выполняется, потому что нет пути длины 1 между вершинами (1,3).
- 4) $P_1 \circ P_2$. Приведем контрпример. $P_1 = \{(1,2),(3,4)\}$ транзитивность выполняется, $P_2 = \{(2,3),(4,5)\}$ транзитивность так же выполнятся. Рассчитаем тогда их композицию $P_1 \circ P_2 = \{(1,3),(3,5)\}$ транзитивность не выполняется, т.к. нет пары ((1,5)). Приведен контрпример , значит транзитивность не выполняется.

Ответ: ответы в решении.

4. Бинарное отношение на множестве из 6 элементов содержит 33 пары. Может ли оно быть **a)** симметричным; **б)** транзитивным?

Решение:

- а) В частном случае да, могут. Всего пар $6^2=36$, из них вида (a,a), где $a\in A$ всего 6 по условию, тогда остается 30 пар. Если мы всех их используем, то получается, то будет выполнятся симметричность для 30 пар. А в качестве остальных 3 можем взять любых 3 пары вида (a,a).
- б) Аналогичный пример как и в пункте **a**). Берем все пары, кроме 3 вида (a, a).

Ответ: а,б) да.

- **5.** Какие из следующих бинарных отношений на множестве $\mathbb{N}-$ отношения эквивалентности?
- а) xPy: у чисел x и y одинакова последняя цифра (здесь и далее в десятичной записи).
 - **б)** xQy: числа x и y отличаются в ровно одной цифре.
- в) xRy: разница между суммой цифр S_x и S_y четна. Формально: пусть $\overline{x_nx_{n-1}...x_1x_0}$ десятичная запись числа x; тогда $S_x=\sum\limits_{k=0}^n x_k$.

Решение:

а) рефлексивность: так как у одинаковых чисел одинаковые числа на конце \Rightarrow выполняяется рефлексивность. Симметричность : если a и b имею одинаковые числа на конце, то очевидно, что выполняется симметричность. Транзитивность: если a,b имеют одинаковое числа на конце,пусть это число x, тогда, если выполняется, что у числа c на конце x, то,очевидно, что \Rightarrow выполняется транзитивность.

Получаем, что это отношение эквивалентно.

- **б)** рефлективность: у двух одинаковых чисел не могут быть разные числа на конце \Rightarrow рефлективность не выполняется \Rightarrow это отношение не эквивалетно.
- в) Рефлективность, очевидно, выполняется, так как $(S_x S_y = 0)$ четное число. Симметричность: Если $(S_x S_y)$ четное, то, очевидно, что и $(S_y S_x)$ четное, так как оба числа x и -x могут быть четными. Транзитивность: если $(S_y S_x)$ четное и пусть равняется $2k, k \in \mathbb{N}$ и $S_z S_x$ четное и пусть равно $2p \Rightarrow 2p 2k = 2(p k)$ что, очевидно, четное число \Rightarrow выполняется транзитивность, а значит это отношение эквивалентно.

Ответ: а),б) – эти отношения эквиваленты; в) нет.

6. Найдите число отношений эквивалентности на множестве $\{1, 2, 3, 4\}$.

Решение:

Общее количество отношений эквивалентности на $\{1,2,3,4\}$ – количество разделов набора $\{1,2,3,4\}$ на классы эквивалентности (непустые подмножества) такие, что их пересечение пусто и их объединение дает $\{1,2,3,4\}$.

Количество возможных перегородок в комплекте A = Номер Белла, $B_n = \sum_{k=0}^n \binom{n}{k}$ — Сумма чисел Стирлинга второго рода. Тогда получаем ответ для n=4 число отношений эквивалентности на множестве $\{1,2,3,4\}=15$.

7. Об отображениях (всюду определенных функциях) f, g из множества A в себя известно, что $f \circ g \circ f = id_A$. Верно ли, что f – биекция? (Множество A не обязательно конечное.)

Решение:

От противного: пусть f – не биекция, тогда так как функция всюду определенная, то она сюръекция, а значит существеют такие x_1, x_2 , что выполняется $f(x_1) = f(x_2)$. Тогда из первого условия композиции имеем:

$$x_1 = id_A(x_1) = (f \circ g \circ f)(x_1) = f(g(f(x_1))) = f(g(f(x_2))) =$$
$$= (f \circ g \circ f)(x_2) = id_A(x_2) = x_2.$$

Значит функция инъективна. Получено противоречие $\Rightarrow f$ биекция.

Ответ: верно.

8. Пусть R – отношение эквивалентности на множестве A. Докажите, что существуют такие множество B и отображение $f:A\to B$, что каждый класс эквивалентности C представим в виде $C=f^{-1}(b)$ для некоторого элемента $b\in B$.

Решение:

Разобьем A на части, где каждая часть – это класс эквивалентности. Возьмем множество B такое, что каждому классу соответствует ровно один элемент b. Тогда для каждого класса эквивалентности верно, что $C = f^{-1}(b)$, для некоторого элемента $b \in B$.

Ответ: доказано.

9. Множество A состоит из семи элементов. Найдите количество отображений $f: A \to A$, таких что $f \circ f = id_A$.

Решение:

Обозначим элемент x подвижным, если f(x) = x, при этом всегда f(f(x)) = x действует на x тождественно по условию. Пусть f(x) = y, где y не равно x. Тогда f(y) = x, то есть остальные элементы разбиваются на пары переходящих друг в друга элементов, а пары всегда являются чётным количеством элементов.

Не неподвижных элементов всегда чётное число, значит неподвижных — нечётное. Могут быть 1 неподвижное число, 3, 5 и 7, так как всего есть 7 элементов. В последнем случае отображение одно (все 7 элементов неподвижны) Во третьем случае выбираем 2 подвижных элемента из семи, которые будут переходить друг в друга, при этом из 2 подвижных элементов можно составить только одну пару. Это $C_7^2=21$ способ. При 3 неподвижных, выбираем их $C_7^3=35$ способами, при этом остаётся 4 подвижных элемента, которые 3 способами разбиваются на пары. Итого 105 вариантов. Наконец, для первого случая есть 7 способов выбрать неподвижный элемент. Остаётся 6 элементов, которые разбиваются на пары 15 способами (для первого элемента есть 5 способов выбрать какой-то элемент, с учётом этого для второго элемента есть 4 способа, для третьего 3 способа и т. д., значит 1+2+3+4+5=15). Итого 105 способов, как и в прошлом случае.

B ответе будет 1 + 21 + 105 + 105 = 232 отображения.

Ответ: 232.

10. Пусть f отображение из \mathbb{Z}^2 в \mathbb{Z} такое, что

$$f(a,b) = a - b.$$

Инъективно ли f? Сюръективно ли f? Верно ли, что прообраз числа 5 содержит три элемента из \mathbb{Z}^2 ?

Решение:

- 1)Инъективно? Если f инъективно, то каждому c = f(a, b) соответствует не более, чем один набор из a, b. Приведем контрпример:
- $a=b=1\Rightarrow f(a,b)=0$ и $a=b=2\Rightarrow f(a,b)=0.$ Значит получаем, что f не инъекция.
- 2) Сюръективно? Если f сюъективно, то $\forall c \; \exists a,b : f(a,b) = c$. Рассмотрим данную ситуацию:

Чтобы получить c должно выполняться, что a-b=c. Так как $A\in\mathbb{Z}$, то возьмем a=2, тогда по принципу Архимеда найдется b такое, что b=2-c. Значит f — сюръективно.

- 3) Рассмотрим как можно получить число 5 в этом случае:
- 5 = 1 + 4 = 2 + 3 = 0 + 5 = 6 + (-1)... Получаем, что прообраз числа 5 содержит элементы : 0, 1, 2, 3, 4, 5

Значит прообраз числа 5 не содержит ровно 3 элемента из \mathbb{Z}^2 .

Ответ: ответы в решении.