Intro to Machine Learning

Fraida Fund

Contents

In this lecture
What is machine learning?
Solving problems: example (1)
Solving problems: example (2)
Solving problems: example (3)
Solving problems: example (4)
Solving problems: example (3)
Solving problems: example (4)
Rule-based vs. data driven problem solving
"Rule-based" problem solving
Problem solving with machine learning
Machine learning problems
Handwritten digits (1)
Good candidate for ML or not?
Problems that are not well suited to ML
Problems that are good candidates for ML
Why now?
Machine learning terminology
Machine learning paradigms (1)
Machine learning paradigms (2)
Machine learning paradigms (3)
Simple example, revisited
The basic supervised learning problem
A supervised machine learning "recipe"
Your role in the ML process
ML system via XKCD
The machine learning process
Challenges in ML design
Model gap, metric gap, algorithm gap
The model
The metric
The algorithm

In this lecture

- What is machine learning?
 Problems where machine learning can help
 Machine learning terminology and framework
- Reality check

What is machine learning?

- To answer this question, I'm going to describe some computer systems that solve a problem.
- You're going to let me know whether you think I've described a machine learning solution or not.

Solving problems: example (1)

Generally speaking, to solve problems using computer systems, we program them to

- · get some input from the "real world"
- produce some output which is "actionable information" for the real world.

Figure 1: A system that interacts with the world.

Suppose we want a system to help students decide whether to enroll in this course or not.

- · Input: grades on previous coursework
- · Actionable info: predicted ML course grade

Solving problems: example (2)

Let

- x_1 = grade on previous probability coursework
- x_2 = grade on previous linear algebra coursework
- x_3^2 = grade on previous programming coursework

and \hat{y} is predicted ML course grade.

The "hat" indicates that this is an estimated value.

Solving problems: example (3)

Suppose we predict your grade as

$$\hat{y} = min(x_1, x_2, x_3)$$

Is this ML?

Solving problems: example (4)

Suppose we predict your grade as

$$\hat{y} = w_1 x_1 + w_2 x_2 + w_3 x_3$$

Figure 2: A system that predicts ML course grade.

Figure 3: A system that predicts ML course grade as minimum grade from prerequisite coursework. This is a *rule-based* system.

where
$$w_1=\frac{1}{4}, w_2=\frac{1}{4}, w_3=\frac{1}{2}.$$
 Is this ML?

Figure 4: A system that predicts ML course grade as weighted sum of grades from prerequisite coursework, where the weights are fixed. This is a *rule-based* system.

Solving problems: example (3)

Suppose we predict your grade as the mean of last semester's grades:

$$\hat{y} = w_0$$

where
$$w_0 = \frac{1}{N} \sum_{i=1}^N y_i$$
.

Is this ML?

x1 = probability grade x1 = linear algebra grade x3 = programming grade

Figure 5: A system that predicts ML course grade as mean grade of previous students. This is a *data-driven* system.

Solving problems: example (4)

Suppose we predict your grade using this algorithm:

If S is the set of 3 students from last semester with a profile most similar to yours, predict your grade as the median of their grades:

$$\hat{y} = \underset{y_i \in S}{\operatorname{median}}(y_i)$$

Is this ML?

Figure 6: A system that predicts ML course grade as median of three most similar previous students. This is a *data-driven* system.

Rule-based vs. data driven problem solving

- The first two were examples of *rule-based* problem solving. I used my domain knowledge and expertise to establish rules for solving the problem.
- The second two were examples of *data-driven* problem solving. I still used some of my own expertise to establish rules for example, the structure of the solution but I used *data* (and not just data from the current input) to produce the output.

"Rule-based" problem solving

- 1. An algorithm is developed that will produce the desired result for a given input.
- 2. The algorithm is implemented in code.
- 3. Input parameters are fed to the implemented algorithm, which outputs a result.

Problem solving with machine learning

- 1. Collect and prepare data.
- 2. Build and train a model using the prepared data.
- 3. Use the model on new inputs to produce a result as output.

Machine learning problems

Now that we understand the difference between rule-based problem solving and ML-based problem solving, which is data driven, we can think about what types of problems are best solved with each approach.

Handwritten digits (1)

Figure 7: Handwritten digits in MNIST dataset

Let's take a classic example: recognizing handwritten digits. Early solutions to this problem date back to the 1960s.

Figure 8: Face detection

Faces

Good candidate for ML or not?

- Predict volcanic eruptions
- Recommend new products to customers based on past purchases
- · Identify spam email
- Grade students' multiple choice quiz answers on NYU Classes
- · Grade students' project-based homework

Score candidate's performance in a job interview (1) Is it a good candidate for ML?

- Use video recording as input to ML system
- Train using videos of past interviews + human assessment on key personality features

Score candidate's performance in a job interview (2)

Source: Bayerischer Rundfunk (German Public Broadcasting)

What characteristics of a problem make it well-suited to ML or not well-suited to ML?

Problems that are not well suited to ML

- There is an accurate and simple algorithm that will produce the desired output.
- There is no "good" data available on which to train a model.

Problems that are good candidates for ML

- Human expertise does not exist or is insufficient (for example, complex medical process that is not fully understood)
- Humans cannot easily explain their expertise (for example, handwritten digit recognition)
- The solution is very specific to particular cases (for example, recommendation systems)

Why now?

- · Statistical foundations have been around for decades
- · What's new:
 - Storage
 - Connectivity
 - Computational power

Machine learning terminology

Machine learning paradigms (1)

Supervised learning: learn from labeled data, make predictions

Continuous target variable: regression
Categorical target variable: classification

Machine learning paradigms (2)

Unsupervised learning: learn from unlabeled data, find structure

- · Group similar instances: clustering
- Compress data while retaining relevant information: dimensionality reduction

Machine learning paradigms (3)

Reinforcement learning: learn from how the environment responds to your actions, solve interactive problems

Simple example, revisited

Earlier, we described four systems to predict a student's grade in the course.

The basic supervised learning problem

Given a sample with a vector of features

$$\mathbf{x} = (x_1, x_2, ...)$$

There is some (unknown) relationship between ${f x}$ and a **target** variable, y, whose value is unknown.

We want to find \hat{y} , our **prediction** for the value of y.

A supervised machine learning "recipe"

- Get data in some usable representation
- For supervised learning, we need **labeled** examples: $(\mathbf{x_i}, y_i), i = 1, 2, \dots, N$
- Select a **model** $f: \hat{y} \approx f(x)$
- Select a loss function that will measure how good the model is
- If your model has **parameters**, find the parameter values that minimize the loss function (use a **training algorithm**)
- Use model to **predict** \hat{y} for new, unlabeled samples (**inference**)

Your role in the ML process

ML system via XKCD

Figure 9: Image via XKCD

The machine learning process

Figure 10: Image based on https://developers.google.com/machine-learning/

Challenges in ML design

- · Acquiring and preparing data
- · Choosing an appropriate model, and "hyperparameters"
- Designing a system that will generalize (not only to "test" data, but also in production)

Model gap, metric gap, algorithm gap

The model

The metric

• Example: how would you train an ML system to develop new recipes?

The algorithm