INSTRUCTIONS TO USE LHT_CI.m

The file **LHT_CI.m** is the Matlab[©] program that performs the calculations.

1. Data should be in a .csv or .xlsx file with only three columns, for instance:

t	n	h
1	50	0
2	50	0
3	50	0
4	49	0
5	49	0
6	49	0
7	49	0
8	48	0
9	46	0
10	44	28
11	44	28
12	44	10
13	43	118
14	41	111

The **first column** are the units of time. The **second column** contains number of individuals alive at that unit of time. The **third column** contains offspring production in that unit of time.

2. Inside the code, modify the alpha required and change the file name:

```
alpha <- 0.05  # 1-alpha is the confidence level of CI,
fnam <- "test_data.csv"  # Change file name.
# (Put data file and Matlab program in same folder)</pre>
```

3. Run the program, an example output is:

Initial number of individuals N: 50 ----(Initial number of individuals)

Offspring size K : 2430 ----(Total offspring)

RO : 48.6 ----(RO, the basic reproductive number)

Longevity: 28.34 302.0644 23.5226 33.1574 ---- (mean variance and CI for longevity)
Generation time: 26.884 151.773 26.394 27.374 ---- (mean variance and CI for Gen. time)

r : 0.2021 0.18258 0.23115 -----(mean and CI for r)

lambda : 1.224 1.2003 1.2601 -----(mean and CI for lambda)

New data saved to: test_data_added.csv -----(Name of file with table with columns added)