$$[F:\varphi]<\infty$$
, F_{∞}/F any \mathbb{Z}_{μ} -exctension, $\Gamma=Gal(F_{\infty}/F)$.

Fact. If a place v of Framifies in Fo, then v/p.

obefor. $M_{\infty} = masc$, abelian p-esctension of F_{∞} unramified outside p.

Mos is Galois over F by maximality $0 \longrightarrow X(F_{\infty}) \longrightarrow Gal(M/F) \longrightarrow \Gamma \longrightarrow 0$ $\stackrel{\mathcal{H}}{\longrightarrow} \stackrel{\mathcal{H}}{\longrightarrow} \stackrel{\mathcal{H}$

Pacts on X(F_∞): T≈=70c7-1

Question. What is $\times (F_{\infty})_{\Gamma_n}$?

 $X(F_{\infty})_{\Gamma_m} = Gal(M_m/F_{\infty}).$

Here Mm = mase. abelian exclension of Fn in Moo.

Lemma. $M_m = masc.$ abelian p-extension of F_m unram. outside p.

Because only primes dividing to tramify in Fo/F.

By global classfield theory:

 \mathbb{Z}_{h} -rank of $Gal(M_{n}/F_{n})=T_{a,n}+1+S_{F_{n}}h$ where $T_{a,n}=$ number of complexe primes of F_{n} .

But $\overline{z}_{,n} = \overline{z} h^n$ (even for h = 2).

(X (Fa)) has Zy-rank To h"+8 Frish because Gal (For/Fn) has Zz,-rank 1.

Proposition. X(Foo) has M(1)-rank > 7.

X(Foo) has M(F)-rank equal to To

SFn, p are bounded as n-200.

Remark 5 =0 => 5 Fat are bounded as n - jos.

Theorem (Iwasawa). assume For/F
is the cyclotomic Zp-extension. Then

SFn, p are bounded as n >00.

Idea Use multiplicative Kummer theory.

assume. MCFift>2, MCFift=2.

Hence Foo = F(Mpo).

Kummer theory. Fab masc. abelian presentension of Fas.

 $<,>: Gal(Fab/Fa) \times (Fab/Fa) \times (Fab/Fa) \times (Fab/Fa) \times (Fab/Fa) \times (Fab/Fa) \times (Fab/Fa) \rightarrow \mu_{hoo}$ $<\sigma, \alpha \otimes fab = \alpha$ $<\sigma, \alpha \otimes fab = \alpha$

Gal (Foo/Foo) & Hom (For Op/Zn/40).

Natural actions of 1 are preserved

Gal (Moo/Foo) = Hom (806, 4,00).

What is 80000 C Fox 60 Pp/Zp.

Fact. Guly finitely many primes of Foo above each prime of v, and these are discrete when v/p.

I = free abelian group on prince of For which do not lie above p.

defor has (d) E Io.

Lemma. Mos consists of all dop mod Z, in For B P/Z, with (d)' E I to.

Defn. E_{00} is set of all α in F_{00} with $(\alpha)'=1$.

iso:
$$E_{\infty} \otimes P_{\uparrow}/Z_{\uparrow} \rightarrow \partial G_{\infty}$$
 $J_{\infty} : \partial G_{\infty} \rightarrow A_{\infty}'$
 $A_{\infty}' = f_{-} f_{\alpha} f_$

0 -> E00 0 /Z -> Moo >0

is escapt.

We can use this to define No by $N_{\infty} = F_{\infty}(1^n \sqrt{\epsilon} : \text{all } \epsilon \text{ in } F_{\infty} \text{ and all } n \gg 1).$

N.

7.

Mas Gal $(N_{\infty}/F_{\infty}) = Hom(E_{\infty}P_{1}/Z_{1}, \mu_{1})$ N_{∞} $Gal(M_{\infty}/N_{\infty}) = Hom(P_{\infty}, \mu_{1})$ F_{∞}

Proof now breaks up into two parts:-

Theorem A. For every \mathbb{Z}_{μ} -exclansion F_{∞}/F Hom $(A_{\infty}, \mathcal{O}_{\mu}/\mathbb{Z}_{\mu})$ is a f.g. torsion $\Lambda(\Gamma)$ -module.

Note: And = lim An for an arbitrary Zyrentenne Note Hom (An, By/Zy) torsion as a N(1) -module - 11

is $\Lambda(\Gamma)$ -torsion when $E \supset \mu$

Theo	nom B	(Iwas	awa).	ass	wme ful as	CF.
Then	L Gal	2 (N"/F	مه (م	af.	g. 1/s	1)-module
of	V(L)	-rank	77 =	TF: 0	∏√a.	
4 5			84	L 7.		

In fact, we will see Iwasawa's proof even determines the $\Lambda(\Gamma)$ -torsion submodule of Gal (No/Fo) 6 more.

We need some elementary properties of En's Eo.

Wn = group of roots of unity in Fn (04n 400)

-Doln. E. = E./W., E. = E. / Whoo.

on = number of firemes of Fn above fr.

Dirichlet-Chevalley: En is free of rank

でかっし、

Gbrious Ex is a torsion free abelian group, but not obvious that

Lemma. En is a free abelian group and En is a direct summand for all n >> 0.

Proof. (E) = E, , H'(F, W)=(W) = 0.

 \Rightarrow $(\mathcal{E}_{\infty}^{\prime})^{r_{m}} = \mathcal{E}_{m}^{\prime}$ for all n > 0.

E's is union of all Em (n >0).

Key remark. En / En is torsion free.

u ∈ E with uke E'n

JETM (Ju/u) = 1 => Ju=u

since Es is torsion free => u E En.

Em/En torsion free for all m7/n