

Ejercicio N°1

Nombre: Edrian Cobian Lufin Profesor: Nelson Morales O.

Fecha: 1 de abril de 2021

Santiago, Chile

Introducción

Las lineas de alta tensión en Chile son estructuras eléctricas que permiten la transmisión de la energía eléctrica entre las otras fases del sistema eléctrico a nivel nacional como lo son la generación y la distribución, razón por la cual se busca desarrollar un gran numero de estudios para que se encuentre bajo el marco regulatorio y las normas técnicas definidas.

En el presente documento se implementará un método numérico para el cálculo de potencial, campos electromagnéticos de una linea de alta tensión 2x220 kV que presentan la particularidad que la secuencia de las fases es vertical e invertida, el objetivo principal es tener en cuenta los posibles efectos sobre una comunidad para definir correctamente los factores de diseño de la linea.

El método que se implementará es el "método de elementos finitos.ª través de la aplicación *Quick-field* que permite utilizarlo definiendo una serie de condiciones de borde para representar las características físicas del objeto, así finalmente saber si existen o no efectos fisiológicos que afecten a las comunidades cercanas.

Desarrollo

En esta sección se aborda la implementación del método de elementos finitos o *variacional* utilizando la herramienta **Quickfield** y posteriormente calcular el potencial, campos eléctricos y magnéticos.

Implementación

Inicialmente se define la estructura de estudio utilizando las las medidas correspondientes y las características físicas que se usarán para establecer las condiciones de borde necesarias en la estructura construida en el programa, como se ve en la Fig. 1, esta estructura posee las medidas detalladas en la Fig.6 que se encuentra en el anexo.

Figura 1: Estructura de la linea de transmisión junto a los conductores

La estructura formada a partir de estas medidas se observa en la Fig. 1 a continuación, esta agrega las medidas de los conductores, cable de guardia que se encuentran en la descripción y detalle del ejercicio $^{\rm 1}$

Tabla 1: Condiciones de borde impuestas al problema

	Conductores [Aluminio]	Aire
Permitividad Eléctrica μ_r	3.4	1
Permeabilidad Magnetica ϵ_r	1	1
Conductividad Eléctrica $[\mathrm{S/m}]$	37e6	3e-15

A esta estructura se le agregan las condiciones de borde provenientes de una investigación previa resumida en la tabla 1 que esta basada en las características físicas tanto del aire circundante como de sus conductores, así se procede a utilizar el método de elementos finitos cuyo resultado se observa a continuación.

Figura 2: Enmallado del método de elementos finitos

Resultados

A partir del enmallado obtenido como resultado, se utiliza un contorno definido como una recta para determinar el potencial y el campo eléctrico. Este abarca 30 m hacia la izquierda y 30 hacia la derecha ubicándose en el punto donde se encuentra la flecha máxima

¹ Ejercicio 1-2021, Ingeniería de Alta tensión EL6010

Potencial

El calculo del potencial como de los campos eléctricos y magnéticos se encuentran acotados a las características físicas de los conductores, cable de guardia y entorno que presentan limitantes en su comportamiento, esto se debe a las suposiciones que se realizaron, como no tomar en cuenta el efecto de los aisladores sobre el campo o la presencia de la torre.

Figura 3: Potencial de la linea en su corte transversal

Se observa como en los ejes donde se encuentran los conductores el potencial es mucho mayor, así también en el eje se observa como el potencia disminuye por efecto del cable de guardia y el comportamiento físico del entorno .

Campo eléctrico

El campo eléctrico obtenido se observa en la siguiente figura.

Figura 4: Campo Eléctrico con respecto al eje

Tal y como se observa este campo eléctrico se va atenuando a medida que la distancia con respecto al eje va aumentando permitiendo que las zonas que esten fuera de la franja de seguridad (20 mt) no se vean afectadas ya que el campo se reduce considerablemente a los 15 mt.

Campo magnético

Para el campo magnético presenta una regularidad en su distribución siendo mas predominante en el eje y atenuándose a medida que la distancia con respecto a este aumenta, sin observar picos en el eje de los conductores.

Figura 5: Campo magnético de la torre con respecto al eje

Para el campo magnético se observa que la atenuación no es suficiente para hacer de esta linea una zona segura ya que el campo magnético a pesar de que se atenúa de manera significativa fuera de la franja de medición (30 mt) este sigue siendo [300mT] que esta por sobre el limite máximo permitido (10 mT).

Conclusiones

A partir de la implementación realizada del método de elementos finitos es posible mencionar que no es de gran dificultad relacionarse con el programa por lo que su uso y utilización se ven favorecidos por este hecho. Por lo tanto es posible considerarlo como una ventaja frente al método de simulación de cargas ya que la interfaz gráfica agiliza los cálculos y la definición misma del problema.

Con respecto a los resultados, ya que la franja de seguridad de la torre posee un radio de 20 mt, se concluye que al observar los campos eléctricos y magnéticos que se encuentran a una distancia mayor a 15 mt no son dañinos para las comunidades vecinas ya que la atenuación que presenta es pronunciada pasado este tramo. Para el campo eléctrico se observa que la atenuación llega hasta los $1000 \, \left(\frac{V}{M} \right)$ mas no el campo magnético que posee valores cercanos a los [300mT].

El campo magnético es uno de los factores que mas se debe tomar en cuenta dentro del diseño de la linea, es por esta razón que el resultado aquí expuesto es discutible ya que pudo ocurrir que las variables que se despreciaron o las suposiciones hechas generan un resultado alterado que se aleja de la realidad.

Anexo

Figura 6: Medidas principales de la linea de transmisión