What-If Tool Challenge Lab

In this notebook, you will use mortgage data from NY in 2017 to create two binary classifiers to determine if a mortgage applicant will be granted a loan.

You will train classifiers on two datasets. One will be trained on the complete dataset, and the other will be trained on a subset of the dataset, where 90% of the female applicants that were granted a loan were removed from the training data (so the dataset has 90% less females that were granted loans).

You will then compare and examine the two models using the What-If Tool.

In this notebook, you will be exepcted to:

- Understand how the data is processed
- · Write TensorFlow code to build and train two models
- · Write code to deploy the the models to AI Platform
- · Examine the models in the What-If Tool

Download and import the data

Here, you'll import some modules and download some data from the Consumer Finance public <u>datasets</u> (https://www.consumerfinance.gov/data-research/hmda/historic-data/?geo=ny&records=all-records&field_descriptions=labels).

In [1]:

```
import pandas as pd
import numpy as np
import collections
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.utils import shuffle
from witwidget.notebook.visualization import WitWidget, WitConfigBuilder
```

In [2]:

```
!wget https://files.consumerfinance.gov/hmda-historic-loan-data/hmda 2017 ny all-r
ecords labels.zip
!unzip hmda_2017_ny_all-records_labels.zip
--2020-11-03 18:24:42-- https://files.consumerfinance.gov/hmda-histor
ic-loan-data/hmda 2017 ny all-records labels.zip
Resolving files.consumerfinance.gov (files.consumerfinance.gov)... 13.
224.11.76, 13.224.11.24, 13.224.11.72, ...
Connecting to files.consumerfinance.gov (files.consumerfinance.gov) | 1
3.224.11.76|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 17466285 (17M) [application/zip]
Saving to: 'hmda 2017 ny all-records labels.zip'
hmda 2017 ny all-re 100%[==========] 16.66M --.-KB/s
                                                                    in
0.1s
2020-11-03 18:24:42 (168 MB/s) - 'hmda_2017_ny_all-records_labels.zip'
saved [17466285/17466285]
Archive:
          hmda 2017 ny all-records labels.zip
  inflating: hmda 2017 ny all-records labels.csv
```

Process the Data

In this section, you **don't need to write any code**. We suggest you read through the cells to understand how the dataset is processed.

Here, we start by importing the dataset into a Pandas dataframe. Then we process the data to exclude incomplete information and make a simple binary classification of loan approvals. We then create two datasets, one complete and one where 90% of female applicants are removed.

In [3]:

```
# Set column dtypes for Pandas
column names = collections.OrderedDict({
  'as_of_year': np.int16,
  'agency_abbr': 'category',
  'loan type': 'category',
  'property_type': 'category',
  'loan_purpose': 'category',
  'owner occupancy': np.int8,
  'loan_amt_000s': np.float64,
  'preapproval': 'category',
  'county code': np.float64,
  'applicant_income_00s': np.float64,
  'purchaser_type': 'category',
  'hoepa_status': 'category',
  'lien status': 'category',
  'population': np.float64,
  'ffiec median fam income': np.float64,
  'tract to msamd income': np.float64,
  'num_of_owner_occupied_units': np.float64,
  'number of 1 to 4 family units': np.float64,
  'approved': np.int8,
  'applicant_race_name_3': 'category',
  'applicant_race_name_4': 'category',
'applicant_race_name_5': 'category',
  'co applicant race name 3': 'category',
  'co_applicant_race_name_4': 'category',
  'co applicant race name 5': 'category'
})
# Import the CSV into a dataframe
data = pd.read_csv('hmda_2017_ny_all-records_labels.csv', dtype=column_names)
data = shuffle(data, random state=2)
```

Extract columns and create dummy dataframes

We first specify which columns to keep then drop the columns that don't have loan originated or loan denied, to make this a simple binary classification.

We then create two dataframes binary_df and bad_binary_df. The first will include all the data, and the second will have 90% of female applicants removed, respectively. We then convert them into "dummy" dataframes to turn categorical string features into simple 0/1 features and normalize all the columns.

In [4]:

```
# Only use a subset of the columns for these models
text_columns_to_keep = [
             'agency name',
             'loan type name',
             'property type name',
             'loan purpose name',
             'owner_occupancy_name',
             'applicant ethnicity name',
             'applicant race name 1',
             'applicant sex name',
numeric columns to keep = [
             'loan amount 000s',
             'applicant_income_000s',
             'population',
             'minority population',
             'hud median family income'
1
columns to keep = text columns to keep + numeric columns to keep + ['action taken
name'l
# Drop columns with incomplete information and drop columns that don't have loan o
rignated or denied, to make this a simple binary classification
df = data[columns to keep].dropna()
binary df = df[df.action taken name.isin(['Loan originated', 'Application denied b
v financial institution'])].copy()
binary df.loc[:,'loan granted'] = np.where(binary df['action taken name'] == 'Loan
originated', 1, 0)
binary df = binary df.drop(columns=['action taken name'])
# Drop 90% of loaned female applicants for a "bad training data" version
loaned females = (binary df['applicant sex name'] == 'Female') & (binary df['loan
granted'] == 1)
bad binary df = binary df.drop(binary df[loaned females].sample(frac=.9).index)
```

In [5]:

```
# Now lets' see the distribution of approved / denied classes (0: denied, 1: appro
ved)
print(binary_df['loan_granted'].value_counts())
1 223026
```

0 63001 Name: loan_granted, dtype: int64

In [6]:

```
# Turn categorical string features into simple 0/1 features (like turning "sex" in
to "sex_male" and "sex_female")
dummies_df = pd.get_dummies(binary_df, columns=text_columns_to_keep)
dummies_df = dummies_df.sample(frac=1).reset_index(drop=True)

bad_dummies_df = pd.get_dummies(bad_binary_df, columns=text_columns_to_keep)
bad_dummies_df = bad_dummies_df.sample(frac=1).reset_index(drop=True)
```

In [7]:

```
# Normalize the numeric columns so that they all have the same scale to simplify m
odeling/training
def normalize():
  min max scaler = preprocessing.MinMaxScaler()
  column names to normalize = ['loan amount 000s', 'applicant income 000s', 'minor
ity population', 'hud median family income', 'population']
  x = dummies df[column names to normalize].values
  x scaled = min max scaler.fit_transform(x)
  df temp = pd.DataFrame(x scaled, columns=column names to normalize, index = dumm
ies df.index)
  dummies df[column names to normalize] = df temp
  x = bad dummies df[column names to normalize].values
  x scaled = min max scaler.fit transform(x)
  bad df temp = pd.DataFrame(x scaled, columns=column names to normalize, index =
bad dummies df.index)
  bad dummies df[column names to normalize] = bad df temp
normalize()
```

Get the Train & Test Data

Now, let's get the train and test data for our models.

For the first model, you'll use train_data and train_labels.

For the **second** model, you'll use limited train data and limited train labels.

In [8]:

```
# Get the training data & labels
test data with labels = dummies df
train data = dummies df
train labels = train data['loan granted']
train data = train data.drop(columns=['loan granted'])
# Get the bad (limited) training data and labels
limited train data = bad dummies df
limited train labels = limited train data['loan granted']
limited train data = bad dummies df.drop(columns=['loan granted'])
# Split the data into train / test sets for Model 1
x,y = train data, train labels
train data, test data, train labels, test labels = train test split(x,y)
# Split the bad data into train / test sets for Model 2
lim x,lim y=limited train data,limited train labels
limited_train_data,limited_test_data,limited_train_labels,limited_test_labels = tr
ain test split(lim x,lim y)
```

Create and train your TensorFlow models

In this section, you will write code to train two TensorFlow Keras models.

Train your first model on the complete dataset.

- **Important**: your first model should be named **model**.
- The data will come from train data and train labels.

If you get stuck, you can view the documentation here

(https://www.tensorflow.org/api_docs/python/tf/keras/Sequential).

In [9]:

```
# import TF modules
from tensorflow.keras import layers
from tensorflow.keras import initializers
from tensorflow.keras import optimizers
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
```

In [10]:

```
# This is the size of the array you'll be feeding into our model for each example
input size = len(train data.iloc[0])
# Train the first model on the complete dataset. Use `train data` for your data an
d `train labels` for you labels.
# ---- TODO -----
# create the model = Sequential()
# model.add (your layers)
# model.compile
# model.fit
model = Sequential()
model.add(layers.Dense(8, input dim=input size))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer='sqd', loss='mse')
model.fit(train data, train labels, batch size=32, epochs=10)
Epoch 1/10
16
Epoch 2/10
58
Epoch 3/10
Epoch 4/10
Epoch 5/10
45
Epoch 6/10
44
Epoch 7/10
42
Epoch 8/10
42
Epoch 9/10
Epoch 10/10
41
Out[10]:
```

<tensorflow.python.keras.callbacks.History at 0x7fee65de5410>

In [11]:

```
limited_model = Sequential()
limited_model.add(layers.Dense(8, input_dim=input_size))
limited_model.add(layers.Dense(1, activation='sigmoid'))
limited_model.compile(optimizer='sgd', loss='mse')
limited_model.fit(limited_train_data, limited_train_labels, batch_size=32, epochs=
10)
Fnoch 1/10
```

```
Epoch 1/10
93
Epoch 2/10
Epoch 3/10
Epoch 4/10
59
Epoch 5/10
58
Epoch 6/10
57
Epoch 7/10
57
Epoch 8/10
Epoch 9/10
56
Epoch 10/10
56
```

Out[11]:

<tensorflow.python.keras.callbacks.History at 0x7fee40502e90>

In [12]:

```
# Save your model
!mkdir -p saved_model
model.save('saved_model/my_model')
```

WARNING:tensorflow:From /opt/conda/lib/python3.7/site-packages/tensorflow/python/training/tracking/tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.

Instructions for updating:

This property should not be used in TensorFlow 2.0, as updates are applied automatically.

WARNING:tensorflow:From /opt/conda/lib/python3.7/site-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.

Instructions for updating:

This property should not be used in TensorFlow 2.0, as updates are applied automatically.

INFO:tensorflow:Assets written to: saved_model/my_model/assets

In [13]:

```
# Get predictions on the test set and print the accuracy score (Model 1)
y_pred = model.predict(test_data)
acc = accuracy_score(test_labels, y_pred.round())
print("Model 1 Accuracy: %.2f%%" % (acc * 100.0))
```

Model 1 Accuracy: 78.41%

Train your second model on the limited datset.

- Important: your second model should be named limited_model.
- The data will come from limited train data and limited train labels.

If you get stuck, you can view the documentation here

(https://www.tensorflow.org/api_docs/python/tf/keras/Sequential).

In [14]:

```
# Train your second model on the limited dataset. Use `limited_train_data` for you
r data and `limited_train_labels` for your labels.
# Use the same input_size for the limited_model

# ---- TODO ------
# create the limited_model = Sequential()
# limited_model.add (your layers)
# limited_model.compile
# limited_model.fit
```

In [15]:

```
# Save your model
!mkdir -p saved_limited_model
limited_model.save('saved_limited_model/my_limited_model')
```

INFO:tensorflow:Assets written to: saved_limited_model/my_limited_mode
l/assets

In [16]:

```
# Get predictions on the test set and print the accuracy score (Model 2)
limited_y_pred = limited_model.predict(limited_test_data)
acc = accuracy_score(limited_test_labels, limited_y_pred.round())
print("Model 2 Accuracy: %.2f%%" % (acc * 100.0))
```

Model 2 Accuracy: 78.37%

Deploy your models to the AI Platform

In this section, you will first need to create a Cloud Storage bucket to store your models, then you will use gcloud commands to copy them over.

You will then create two AI Platform model resources and their associated versions.

In [17]:

```
# ---- TODO -----
# Fill out this information:

GCP_PROJECT = 'qwiklabs-gcp-00-2ec9eb5193dd'
MODEL_BUCKET = 'gs://qwiklabs-gcp-00-2ec9eb5193dd'
MODEL_NAME = 'complete_model' #do not modify
LIM_MODEL_NAME = 'limited_model' #do not modify
VERSION_NAME = 'v1'
REGION = 'us-west1'
```

In [18]:

```
# Copy your model files to Cloud Storage (these file paths are your 'origin' for t
he AI Platform Model)
!gsutil cp -r ./saved model $MODEL BUCKET
!gsutil cp -r ./saved limited model $MODEL BUCKET
Copying file://./saved model/my model/saved model.pb [Content-Type=app
lication/octet-stream]...
Copying file://./saved model/my model/variables/variables.data-00000-o
f-00001 [Content-Type=application/octet-stream]...
Copying file://./saved model/my model/variables/variables.index [Conte
nt-Type=application/octet-stream]...
- [3 files][ 54.9 KiB/ 54.9 KiB]
Operation completed over 3 objects/54.9 KiB.
Copying file://./saved limited model/my limited model/saved model.pb
[Content-Type=application/octet-stream]...
Copying file://./saved limited model/my limited model/variables/variab
les.data-00000-of-00001 [Content-Type=application/octet-stream]...
Copying file://./saved_limited_model/my_limited_model/variables/variab
les.index [Content-Type=application/octet-stream]...
 [3 files][ 55.4 KiB/ 55.4 KiB]
Operation completed over 3 objects/55.4 KiB.
In [19]:
# Configure gcloud to use your project
```

Updated property [core/project].

!gcloud config set project \$GCP PROJECT

Create your first AI Platform model: complete_model

Here's what you will need to create your AI Platform model:

- Version (VERSION NAME)
- Model (MODEL NAME = complete model)
- Framework (TensorFlow)
- Runtime version (2.1)
- Origin (directory path to your model in the Cloud Storage bucket)
- Staging-bucket (MODEL_BUCKET)
- Python version (3.7)

- 1. You will first need to create a model resource with the name \$MODEL NAME and region \$REGION.
- 2. Then you will create a version for your model with the information specified above.

Be sure to name your first model **complete_model**.

If you get stuck, you can always find the documentation for this https://cloud.google.com/ai-platform/prediction/docs/deploying-models#gcloud).

To use bash in the code cells, you can put a ! before the command (as seen in cells above) and use a \$ in front of your environment variables.

In [21]:

```
# 1. Create an AI Platform model resource for your COMPLETE model
# ---- TODO -----
!gcloud ai-platform models create $MODEL_NAME --regions us-central1
```

Using endpoint [https://ml.googleapis.com/] Created ml engine model [projects/qwiklabs-gcp-00-2ec9eb5193dd/models/complete model].

In [22]:

```
# 2. Now create a version. This will take a couple of minutes to deploy.

# ---- TODO -----
!gcloud ai-platform versions create $VERSION_NAME \\
--model=\$MODEL_NAME \\
--framework='TensorFlow' \\
--runtime-version=2.1 \\
--origin=\$MODEL_BUCKET/saved_model/my_model \\
--staging-bucket=\$MODEL_BUCKET \\
--python-version=3.7 \\
--project=\$GCP_PROJECT
```

```
Using endpoint [https://ml.googleapis.com/]
Creating version (this might take a few minutes).....done.
```

Create your second AI Platform model: limited_model

Here's what you will need to create your AI Platform model:

```
    Version (VERSION NAME)
```

- Model (LIM MODEL NAME)
- Framework (TensorFlow)
- Runtime version (2.1)
- Origin (directory path to your second model in the Cloud Storage bucket)
- Staging-bucket (MODEL_BUCKET)
- Python version (3.7)
- 1. You will first need to create a model resource with the name \$LIM_MODEL_NAME and region \$REGION.
- 2. Then you will create a version for your model with the information specified above.

Be sure to name your second model limited_model.

If you get stuck, you can always find the documentation for this https://cloud.google.com/ai-platform/prediction/docs/deploying-models#gcloud_1).

To use bash in the code cells, you can put a ! before the command (as seen in cells above) and use a \$ in front of your environment variables.

In [23]:

```
# 1. Create an AI Platform model resource for your LIMITED model
# ---- TODO ------
!gcloud ai-platform models create $LIM_MODEL_NAME --regions us-central1
```

Using endpoint [https://ml.googleapis.com/]
Created ml engine model [projects/qwiklabs-gcp-00-2ec9eb5193dd/models/limited model].

In [24]:

```
# 2. Now create a version. This will take a couple of minutes to deploy.

# ---- TODO ------!
!gcloud ai-platform versions create $VERSION_NAME \[ \]
--model=\$LIM_MODEL_NAME \\ --framework='TensorFlow' \\ --runtime-version=2.1 \\ --origin=\$MODEL_BUCKET/saved_limited_model/my_limited_model \\ --staging-bucket=\$MODEL_BUCKET \\ --python-version=3.7 \\ --project=\$GCP_PROJECT
```

```
Using endpoint [https://ml.googleapis.com/]
Creating version (this might take a few minutes).....done.
```

Using the What-if Tool to interpret your model

Once your models have deployed, you're now ready to connect them to the What-if Tool using the WitWidget.

We've provided the Config Builder code and a couple of functions to get the class predictions from the models, which are necessary inputs for the WIT. If you've successfully deployed and saved your models, **you won't need to modify any code in this cell**.

In []:

```
#@title Show model results in WIT
num datapoints = 1000 #@param {type: "number"}
# Column indices to strip out from data from WIT before passing it to the model.
columns not for model input = [
    test data with labels.columns.get loc('loan granted'),
1
# Return model predictions.
def custom predict(examples to infer):
  # Delete columns not used by model
 model inputs = np.delete(
      np.array(examples to infer), columns not for model input, axis=1).tolist()
  # Get the class predictions from the model.
  preds = model.predict(model inputs)
  preds = [[1 - pred[0], pred[0]] for pred in preds]
  return preds
# Return 'limited' model predictions.
def limited custom predict(examples to infer):
  # Delete columns not used by model
 model inputs = np.delete(
      np.array(examples to infer), columns not for model input, axis=1).tolist()
  # Get the class predictions from the model.
  preds = limited model.predict(model inputs)
  preds = [[1 - pred[0], pred[0]]  for pred  in preds]
  return preds
examples for wit = test data with labels.values.tolist()
column names = test data with labels.columns.tolist()
config builder = (WitConfigBuilder(
    examples for wit[:num datapoints], feature names=column names)
    .set custom predict fn(limited custom predict)
    .set target feature('loan granted')
    .set label vocab(['denied', 'accepted'])
    .set compare custom predict fn(custom predict)
    .set model name('limited')
    .set compare model name('complete'))
WitWidget(config builder, height=800)
```