Merging with covers C: \(\left(\cdots, \left(\cdots, \left(\cdots) \) Sorted Using \(\left(\cdots, \left(\cdots) \) it interval: \(\left(\cdots, \left(\cdots) \) oth interval: \(\left(-\delta, \left(\cdots) \) nth interval: \(\left(\cdots, \delta \right) \)

- Sorted array c is a
d-cover of sorted array A
if < d elements of A
fall in any interval of c

A & B sorted arrays

C is a d-cover of A & B $C \rightarrow A$ and $C \rightarrow B$ for $x \in C$ $Y_A(x): \text{ the rank of } x \text{ in } A$ $Y_B(x): B$

Merge A&B

- |c| processors

Consider an interval [x,y) of c

Consider an interval [x,y) of c

Reservation of the server of the

- | A| processors

3 E A. [3 knows x 1s in charge

of 3

3 goes to C & obtains

VB(x) and VB(y)

Consider positions

VB(x) to VB(y)-1 in B

(1) (b) (2) (2) (9) (9)

3 goes to B, $r_B(x)$ 8 searches for $r_B(x)$ O(a). $3 \rightarrow B$ $A \rightarrow B$ O(d) time -|B| processors -O(d) time $B \rightarrow A$

Claim 1 + t > 0, St-1(u) is a

3-cover of St(u)

Claim 2

Ht > 0, h consecutive intervals of

St-1(u), Coulain at most

2ht elements of St(u)

If the u becomes full at

(lage no. (t-2) or earlier

/* 3k \lefter t-2 */

u emits every 4th, 2nd, every

after this

Myz a b c d e f g h v j ATTTTTT between any two cons. elements of the old Sample there are exactly one new element in the new sample

U be comes full at step (t-1) or later -> campling rate at 4 is 4

Take h cous. ints. of $\begin{cases} t-1 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ Say i $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$ $= \begin{cases} t-2 & (u) \\ t+1 & (u) \end{cases}$

by ind., i cons. int. of $S_{t-2}(v)$ has (2i+1) of $S_{t-1}(v)$ $i - v - S_{t-2}(w)$ has $(2j+1 - v - S_{t-1}(w))$ the 4h - v - (4-2) has (4-2) has (4-2) has (4-2) contains (4-2) has (4-2) has

(d) (b) (2) (e) (e) (g)

Case 1
$$\times$$
 4h cons. int of $(t-2)^{2}$ \times 4h cons.

Can 2
$$\frac{1}{2}$$
 $\frac{2}{3}$ $\frac{3}{4}$ $\frac{4}{1}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{4}{4}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{4}{4}$ $\frac{1}{4}$ $\frac{1}{4}$

Claim 3

$$4t>0$$
, $C_{t-1}(u)$ is a 3-cover of $S_t(v)$ and $S_t(w)$ both.

$$C_{t-1}(u) = S_{t-1}(v) \cup S_{t-1}(w)$$

$$L = S_t(v) \cup S_t(w)$$

$$S_t(v) \cup S_t(w)$$

Ct-1(u) is a 3-cover of st(v) & st(w) The old cache of the parent is a 3-cover of the new samples of the children

Stage t for u at level k

Step 1.1 $/ \times C_{t-2}(u) \rightarrow C_{t-1}(u) \times /$ Draw samples from $C_{t-1}(u)$ to $S_{t}(u)$ Step 1.2 Rank $S_{t-1}(u) \rightarrow S_{t}(u)$ $\chi \in S_{t-1}(u)$. knows $\chi \rightarrow C_{t-2}(u)$ $\chi \rightarrow C_{t-1}(u)$ $\chi \rightarrow S_{t}(u)$

0 b 8 9 - 9

Step 1.3

$$C_{t-1}(u) \rightarrow S_t(v) \text{ and } S_t(w)$$
 $C_{t-1}(u) = S_{t-1}(w) \cup S_{t-1}(w)$
 $\chi \in C_{t-1}(u) \quad \chi \in S_{t-1}(v)$
 $\chi \rightarrow S_{t-1}(v)$
 $\chi \rightarrow S_{t-1}(v)$

(1) (b) (2) (c) (g)

$$S_{t-1}(v) \rightarrow S_{t}(v)$$

 $S_{t-1}(w) \rightarrow S_{t}(w)$
 $x \rightarrow S_{t}(v)$ and $S_{t}(w)$
 $O(i)$ with one processor for x
one processor (ache of every node
 $O(i)$ time

Step 2.1

$$C_{t}(u) \leftarrow S_{t}(v) \cup S_{t}(w)$$

merging with Covers

 $C_{t-1}(u) \rightarrow S_{t}(v)$
 $S_{t}(v) \cup S_{t}(w)$
 $S_{t}(w) \cup S_{t}(w)$

$$\frac{\text{Step 2.2}}{\chi \in C_{t-1}(u)} \quad \text{Rank} \quad C_{t-1}(u) \rightarrow C_{t}(u)$$

$$\chi \mapsto S_{t}(v)$$

$$\chi \mapsto S_{t}(w)$$

$$\chi \mapsto C_{t}(u)$$

$$\chi \mapsto C_{t}(u)$$

O(1) time if we have as many processors as there are elements in Caches & samples

Live node

a node is live

if its cache nonempty &

non full

or it continues to emit

livel k

node

2k+1 3k 3k+3

Samples

samples

in any stage t

the live nodes are those at

levels k where $2k+1 \le t \le 3k+3$

live nod' & mun.

elements in the live band
is O(n)

O(n) processors each stage

runs in O(1) time

n pr. O(logn) time

n pr. O(logn) time