Metric shares A metric (or a distance) don a nonembry set X is a find: X x X -> R oatisfying three proposhes: a) $d(x,y) > 0 + x, y \in X$ and $d(x,y)=0 \Leftrightarrow x=y;$ b) d(x,y) = d(y,z) + x,y ∈ X; c) $d(x,y) \leq d(x,z) + d(z,y) + x,y,z \in X$. The pair (X,d) is called a metric space.

In a metric share (X,d) the inequality $|d(x,3)-d(x,3)| \leq d(x,y)$ holds for all |20| into |20|

Examples:

a) The net of real now. R equipped with the distance $d(x_1y) = |x-y| + x_1y \in \mathbb{R}$.

the distance $d(x_1y) = |x-y| + x_1y \in \mathbb{R}$.

b) Euclidean space \mathbb{R}^n equipped with the distance $d(x_1y) = \left(\sum_{i \neq 1}^n (x_i - y_i)^2\right)^{n/2}$.

for $x = (x_1x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ in \mathbb{R}^n . This distance is called the Euclidean distance.

If Y is a subsert of a metric space (X,d), then Y equipped with the distance of also becomes a metoic space.

Fix a metric space (X,d). If $x \in X$, then the open ball at x with radius r>0 is the set $B(x,y) = \{ y \in X : d(x,y) < ry \}$. The open submete A subset A of X is called open if for every $x \in A$, \exists some y > 0 s.t. $B(x,y) \subseteq A$.

Every open ball B(x,r) is an open met. It y \(B(x,r), then the open ball B(y,r,), where $\gamma_1 = \gamma - d(x_1 y) > 0$ partifies $B(y, \gamma_1) \subseteq B(x, \gamma)$. Because, $z \in B(y, \gamma_1)$ implies $d(x_1 z) \le d(x_1 y) + d(y_1 z) < d(x_1 y) + \gamma_1 = \gamma$, and so ZEB(xgr).

Thm. For a metric space (X,d) the following statement holds:

i) X and p are open nets.
ii) Arbitrary union of open nets are spen pets.
iii) Finite intersections of open nets are open nets.

A point α is called an interior point of a subset A if \exists an open ball: B(x, r) such that $B(x, r) \subseteq A$. Set of all interior points of A is denoted by A^0 and is called the interior of A; clearly, $A^0 \subseteq A$. A^0 is the largest open subset δX included in A. Also, note that A is open iff $A = A^0$.

Metric space (\mathbb{R}^2, d_p) $d_2((x_1y_1), (x_2y_2)) = \sqrt{(x_2-x_1)^2 + (y_2-y_2)^2}$ $d_1((x_1y_1), (x_2y_2)) = |x_2-x_1| + |y_2-y_1|$ $d_{\infty}((x_1y_1), (x_2y_2)) = \max\{|x_2-x_1|, |y_2-y_1|\}.$ $d_{\infty}(,) \leq d_2(,,) \leq d_1(,,) \leq 2d_{\infty}(,,).$

A subset A of a metric space (X,d) is called closed if its complement $A^{c} (= X \setminus A)$ is an open not. Thm. For a metric office (X,d). i) X and of one closed met.

ii) Arbitrary intermedians of closed net are closed sets

closed sets

iii) Finite unions of closed nets are closed nets. Note that a net A is open iff A' is closed; and a net A is closed iff A' is open.

A set which is not necessarily closed.

A set which is not closed is not necessarily open, and vice versa. A point $x \in X$ is called a closure point of a subset A of X if every ofren ball at x contains (at least) one element of A; i.e., B(x, r) A + \$ + r> D. The ret of all closure points of A is denoted as A, and is called the donore of A; clearly, $A \subseteq A$. The for every subset A of a metric stace, A is the smallest closed set that includes A.

An immediate consequence of the previous A rel A is closed iff A=A. Every over of the form A: {x ∈ X: d(x,a) ≤ x }, called the closed ball at a with radius x, is a closed set. Assume d(a,2)>r, but $r_1 = d(x,a)-r>0$. If $d(y,z) < r_1$, then d(a,y)>,d(a,z)-d(y,z)>d(a,z)-n=7, which shows that A is often, henre, A is closed. Notice that an a discrete metric reace,

B(ar) may be a prefer subset of $\{x \in X; d(x,a) \leq r'\}$.

However, in the Euclidean space \mathbb{R}^n , the closure of every span ball of radius r is the closed ball of radius r.

(Why? Think about it.) bomma. If A is subsect of a moderic obacce, then $A^o = (A^c)^c$.

Lemma. If A is a subset of a metric of are, then $A^\circ = (A^\circ)^\circ$. REA° () Fr>0 with B(xx) CA () Fr>0 with B(xx) NA° = \$\phi\$ Proof: () 2 f Ac () 2 6 (Ac)c. A point & is called an accumulation point Sq a net A if every open ball $B(x_m)$ contains an element S_1 A distinct from x_i ; i.e., $B(x_m) \cap (A \mid \{x_i\}) = \phi$ for each x > 0. Notice that 2 need not be an element of A. Every accumulation point of a net is automatically a closure point of that net. The net of accumulation points of A is called the derived net of A, and in denoted by A'. A=AUA'. A ret is closed iff it contains its accumulation A requence $\{x_n\}$ of a metric offence (X,d) is said to be convergent to $x \in X$ ($\lim x_n = x$) if $\lim d(x_n,x) = 0$.