





















## ADS AD VIDEO COSOUN





www.aduni.edu.pe









### Razonamiento Matemático

Áreas y perímetros de regiones planas

ADUNI



















#### **OBJETIVO**

- Recordar las diferentes fórmulas para determinar perímetros y áreas de regiones planas.
- Aplicar adecuadamente las propiedades para determinar perímetros y áreas de regiones sombreadas.

















# ÁREAS Y PERÍMETROS DE REGIONES PLANAS

Perímetro de regiones planas

Áreas de regiones planas





#### Perímetro de regiones planas

El perímetro de una región es la medida de la longitud de la línea que conforma el borde o contorno de una región.

#### PERÍMETRO DE LAS PRINCIPALES FIGURAS PLANAS

#### **CUADRADO**



Perimetro = 4a

#### **RECTÁNGULO**



Perimetro = 2(a + b)

#### TRIÁNGULO



Perimetro = a + b + c

#### **CÍRCULO**



 $Perimetro = 2\pi r$ 

#### **SECTOR CIRCULAR**



 $m\widehat{AB} = 2\pi r \left(\frac{\alpha^{\circ}}{360^{\circ}}\right)$ 





#### **OBSERVACIÓN:**

Si  $\overline{AB}$  y  $\overline{BC}$  son diámetros de las semicircunferencias se cumple que:



 $\begin{array}{cc} \text{Longitud del} \\ \text{arco AB + arco BC} \end{array} = \left(\frac{L}{2}\right)\pi$ 



Perímetro de la región sombreada  $= \left(\frac{L}{2}\right)\pi + L$ 





#### Aplicación 1

Calcule el perímetro de la región sombreada, <u>si las curvas son semicircunferencias</u>.



- A)  $6 + 2\pi$  cm
- B) 24 cm
- C)  $14 + 10\pi$  cm
- $D = 14 + 5\pi \text{ cm}$

#### Resolución:

Nos piden el perímetro de la región sombreada.



Perímetro = 
$$6 + 8 + 5\pi = 14 + 5\pi$$

∴ El perímetro de la región sombreada es  $14 + 5\pi$  cm.





#### Aplicación 2

En la figura OA = 6 cm y la circunferencia de radio 2 cm esta inscrita en el sector circular AOB. Si M, N y T son puntos de tangencia, calcule el perímetro de la región sombreada.



- $12 + 6\pi$  cm
- B) 18 cm
- C)  $12 + 10\pi$  cm
- D)  $12 + 5\pi$  cm

#### Resolución:

Nos piden el perímetro de la región sombreada.

De los datos:



Perímetro = 
$$6 + 6 + 2\pi + 4\pi = 12 + 6\pi$$

∴ El perímetro de la región sombreada es  $12 + 6\pi$  cm.





#### Área de regiones planas

El área es la medida de la extensión de una superficie, expresada en unidades cuadradas.

#### **ÁREA DE LAS PRINCIPALES FIGURAS PLANAS**

#### CUADRADO



#### **RECTÁNGULO**





#### **TRIÁNGULO**



$$Area = \frac{b \times h}{2}$$

#### **CÍRCULO**



#### **ROMBO**



$$Area = \frac{a \times b}{2}$$

#### **SECTOR CIRCULAR**



$$\left( \hat{A}rea = \pi r^2 \left( rac{lpha^{\circ}}{360^{\circ}} 
ight) \right)$$

#### **TRAPECIO**



$$\text{Area} = \left(\frac{a+b}{2}\right) \times h$$





#### **Aplicación 3**

Si ABCD es un cuadrado de 12 cm de lado, calcule el área de la región sombreada.



- A)  $72 cm^2$
- B)  $64\pi \ cm^2$
- C)  $36\pi \ cm^2$
- D) 18 $\pi cm^2$

#### Resolución:

Nos piden el área de la región sombreada.

De los datos:



Se observa que el área de la región sombreada es la mitad del círculo cuyo radio es 6 cm.

$$\frac{\text{Área de la región}}{\text{sombreada}} = \frac{\pi \times 6^2}{2} = 18\pi$$

∴ El área de la región sombreada es  $18\pi$  cm<sup>2</sup>.





#### Aplicación 4

Si el lado del cuadrado ABCD mide 4m y que M y N son puntos medios, halle el área de la región sombreada.



- A)  $(6 \pi)$  m<sup>2</sup>
- $(8 \pi) m^2$
- $(7-2\pi)$  m<sup>2</sup>
- D)  $(9 3\pi) \text{ m}^2$

#### Resolución:

Nos piden el área de la región sombreada.

De los datos:



Calcularemos la región sombreada por diferencia de áreas.

Del gráfico:

Del gráfico:
$$= \begin{bmatrix} -2 \\ -2 \end{bmatrix} - \begin{bmatrix} \pi \times 2^{2} \\ -2 \end{bmatrix}$$

$$= 4^{2} - 2 \left(\frac{2 \times 4}{2}\right) - \frac{\pi \times 2^{2}}{4}$$

$$= 16 - 8 - \pi$$

$$= 8 - \pi$$

∴ El área de la región sombreada es  $(8 - \pi)$   $m^2$ .





#### RELACIÓN DE ÁREAS EN REGIONES TRIANGULARES



$$S_1 = S_2$$





$$\frac{S_1}{S_2} = \frac{m}{n}$$





$$\frac{S_1}{S_2} = \frac{m}{n}$$

Para dos triángulos semejantes, se tiene:





$$\frac{S_1}{S_2} = \frac{m^2}{n^2}$$





#### Aplicación 5

Halle el área de le región sombreada, si el área del triángulo ABC es 120 m<sup>2</sup>.



- $32 \text{ m}^2$
- $33 \text{ m}^2$
- $34 \text{ m}^2$
- $36 m^2$

#### Resolución:

Nos piden el área de la región sombreada.













Luego:

$$20S = 120$$

$$S = 6$$

El área de la región sombreada = 6S = 6(6) = 36

 $\therefore$  El área de la región sombreada es 36 m<sup>2</sup>.





#### RELACIÓN DE ÁREAS EN REGIONES CUADRANGULARES

En todo paralelogramo, rectángulo o cuadrado se cumple:



$$S = \frac{\text{Á}rea\ total}{2}$$



$$S = \frac{\text{Á}rea\ total}{2}$$



$$S = \frac{\text{Á}rea\ total}{4}$$



$$S = \frac{\text{Área total}}{4}$$



$$S = \frac{\text{Á}rea\ total}{12}$$



Para trapecios se cumple:



$$S = \frac{\text{Á}rea total}{2}$$

$$S = S_1 + S_2$$



$$S_1 = S_2$$





#### Aplicación 5

El lado del cuadrado ABCD mide 6m, halle el área de la región sombreada.



- A) 6 m<sup>2</sup>
- C)  $7 \text{ m}^2$
- D)  $9 \text{ m}^2$

#### Resolución:

Nos piden el área de la región sombreada. Del dato:

Área Total = 
$$6^2 = 36 m^2$$



Área de la región sombreada = 3 + 3 = 6

 $\therefore$  El área de la región sombreada es 6  $m^2$ .

#### **RECORDAR:**



$$S = \frac{\text{Área total}}{12}$$



$$S_1 = S_2$$





#### Aplicación 6

El lado del cuadrado ABCD mide 12 m, halle el área de la región sombreada.



- A) 30 m
- B) 28 m<sup>2</sup>
- C)  $36 \text{ m}^2$
- D)  $33 \text{ m}^2$

#### Resolución:

Nos piden el área de la región sombreada.

Del dato:

Área Total = 
$$12^2 = 144 \, m^2$$



#### **RECORDAR:**









$$S = \frac{\text{Á}rea\ total}{2}$$

Área de la región sombreada = 
$$72 - 12 - 12 - 18 = 30$$

 $\therefore$  El área de la región sombreada es 30  $m^2$ .





www.aduni.edu.pe





