Iterative Constraint Reasoning - Dynamic Constraint Reasoning in Time Space

Brown-Bag Session October 25th, 2022

Lothar Hotz

Rainer Herzog

Stephanie von Riegen

Hamburger Informatik Technologie-Center

Universität Hamburg, Germany

Sudoku as we know it

		4	6		9			2
9								
	3			5		6	4	
2					5	7		4
	5						2	
3		9	2					1
	4	2		8			1	
								7
6			3		7	2		

L	\mathbf{o}	0	4	0	ı	9	S		
	9	2	6	4	7	3	1	8	5
	1	3	7	8	5	2	6	4	9
	2	6	8	1	9	5	7	3	4
	4	5	1	7	3	8	9	2	6
	3	7	9	2	6	4	8	5	1
	7	4	2	9	8	6	5	1	3
	8	9	3	5	2	1	4	6	7
	6	1	5	3	4	7	2	9	8

Each field a variable with domain {1...9}. Sudoku rules as constraints. Given numbers as requirements.

Constraints

- Constraints represent relations between variables
- Constraint-Net
- Constraints are multi-directional
- Holy Grail of programming:
 - the user states the problem, the computer solves

Sudoku as we know it

		4	6		9			2
9								
	3			5		6	4	
2					5	7		4
	5						2	
3		9	2					1
	4	2		8			1	
								7
6			3		7	2		

L	\mathbf{o}	0	4	0	ı	9	S		
	9	2	6	4	7	3	1	8	5
	1	3	7	8	5	2	6	4	9
	2	6	8	1	9	5	7	3	4
	4	5	1	7	3	8	9	2	6
	3	7	9	2	6	4	8	5	1
	7	4	2	9	8	6	5	1	3
	8	9	3	5	2	1	4	6	7
	6	1	5	3	4	7	2	9	8

Each field a variable with domain {1...9}. Sudoku rules as constraints. Given numbers as requirements.

Iterative Sudoku

Give numbers not all together but over time

 t_2

(4 0.3) (7 0.4) (9 0.3)

		6		4 7 9			2
			5		6	4 7 9	
				5			
		2 5 7 8					1
						1	
6							

 $\mathsf{t_4}$

Provide confidence values

		6					2
			5		6	4 7 9	
				5			
		2 5 7 8					1
						1	
6							

 t_3

Give sets of numbers

© Lothar Hotz, Universität Hamburg, HITeC e.V.

Why?

Number detector

Role detector

Object detector

Object tracking

Action detector

Etc.

Automated capture and evaluation of a complete soccer match based on video footage

Hybrid Al Architecture

Sensor input (image, video, radar, etc.)

Data —

ML detector

ML detector

ML detector

ML detector

Detections over time

Knowledge-based system for composing and contextualization

ML: Machine Learning

Iterative Constraint Reasoning

- Huge number of variables and constraints, too many for solving in one step
 - For soccer: each frame contains up to 25 actors and a huge number of positions on the field
 - Future video frames not known, i.e., requirements appear over time
 - Provide in between (non-optimal) solutions
- Iterative Sudoku as an example, perhaps a benchmark, for:
 - Combining uncertain information
 - Handling dynamically given information/data
 - Problem scaling via Sudoku puzzle size (not only 9x9)
 - Iterative constraint reasoning

How this is done?

One of 11 solutions

6

9 7

3

6 9

2

5 **7**

1	8	3	6	4	9	5	7	2
9	6	5	8	7	2	1	4	3
2	4	7	1	5	3	6	9	8
8	2	1	9	3	5	7	6	4
4	5	6	7	1	8	3	2	9
3	7	9	2	6	4	8	5	1
5	3	2	4	8	6	9	1	7
7	9	8	5	2	1	4	3	6
6	1	4	3	တ	7	2	8	5

One of 72 solutions

0 solutions

• • •

- variables and constraints.
- E.g., related to rows or columns or in a region around the given number.
- The constraint model is generated,
- solved and
- each solution triggers new requirements(!)

- Give futher requirements (m)
- Create further variables and constraints

- Time span for collecting data/detections/numbers
- Define partial (!) constraint problems with collected data
- Solving provides number of solutions
- Each solution is a further state
- Include new data/detections into the successor states, i.e., into the new constraint problems, as requirements
- Evaluate states through confidence values of detections
- Select number of successors according to resources (e.g. with Beam Search)

- Give futher requirements (m)
- Create further variables and constraints

Characteristics of Iterative Constraint Reasoning

- A (configuration or constraint) problem is **too large** for solving in one step.
- The requirements are unknown in the beginning.
- A "Task giver" provides requirements in discrete time steps.
- A time span with a certain size defines a partial constraint problem.
- Globally solving it delivers multiple solutions.
- Each solution is a **start of a next problem** ("let's take the assumption that the solution holds").
- A state space search organizes partial constraint solving.
- Constraints between time steps can be included (variables might not change, make hypotheses about the future).
- Evaluation of states through confidence values.

Parameters of Iterative Sudoku

- Size of field
- Time span: How long should one wait before solving a problem?
- Which constraints shall be generated?
- How many solutions and which should be followed?
- What are **time dependent** variables?
- Handling resources (e.g., computation time)

Summary

- Iterative Sudoku as example for combining iterative constraint reasoning in a state space search
- Useable for hybrid AI architectures
- Notion of iterative constraint reasoning
- Template for a configuration process
- In the paper you find:
 - Definitions for iterative constraint reasoning
 - Comparision to other constraint approaches
- Next steps: experiments

Thank you for listening!

Paper: https://dl.acm.org/doi/abs/10.1145/3503229.3547051

Contact: lothar.hotz@uni-hamburg.de