Введение

Определение Γ рамма $mu\kappa a~G=<\Sigma>$

$$pos = init + delta * 60;$$

1. Лексический анализ

- 2. Синтаксический анализ (разложение в дерево)
- 3. Семантический анализ
- 4. Промежуточное представление

$$t_1 = delta * 60$$

$$t_2 = init + t_1$$

Иерархия Хомского

малые латинские буквы - терминалы

большие - нетерминалы

Вид грамматики	Правила	Распознаватель	Класс языков
Общего вида	$\alpha \to \beta$	MT	RecEn
(неограниченные)			
Контекстно-	$\alpha A\beta \to \alpha \gamma \beta$	Линейный ограниченный автомат (LBA)	КЗЯ
зависимые(КЗ)			
Контекстно-	$A \rightarrow \beta$	Недетерминированный автомат с	КСЯ
свободные(КС)		магазинной памятью (PDA)	
Праволинейные	$A \rightarrow \gamma B$	ДКА	Регулярные

Пример:

 $S \to ASB|\lambda$

 $AB \rightarrow BA$

 $A \to a$

 $B \to b$

Эквивалентная грамматика:

 $S \to aB|bA$

 $A \rightarrow aS|bAA$

 $B \to bS|aBB$

 $A \to a$

 $B \to b$

Значит исходная грамматика - праволинейная.

Регулярные \subset КСЯ \subset КЗЯ \subset RecC \subset RecEn

Определение Язык обладает св-м Р, если \exists грамматика со св-м Р, его порождающая

КСГ и КСЯ

Определение Упорядоченное дерево - дерево с заданным линейным порядком со св-ми:

- 1. если x сын y, то $x \ge y$
- 2. если x и y братья и $x \leq y$, то для всех сыновей z узла x: $z \leq y$

Определение Дерево вывода цепочки w в грамматике G - упорядоченное дерево со св-ми:

- 1. Узлы нетерминалы, корень акисиома, листья терминалы или λ , причем у листьев λ нет братьев
- 2. Если у узла x сыновья $y_1 \leq ... \leq y_n$, то существует правило вывода $X \to Y_1...Y_n$
- 3. Если все листья дерева имеют метки $a_1 \leq ... \leq a_n$, то $w = a_1...a_n$

Определение Вывод цепочки w $(S \to \alpha_1 \to ... \to \alpha_n = w)$ в G представлен деревом T, если существует набор стандартных поддеревьев $T_1...T_n$ такой, что упорядоченные листья T_i являются α_i

Определение T' - $cmandapmhoe\ noddepeso\ T,\ ecnu:$

- 1. Корни T и T' совпадают
- 2. если узел лежит в T', то он либо лист в T', либо все его сыновья лежат в T'

Одной цепочке могут соответствовать несколько деревьев.

Определение Грамматика однозначна, если любая цепочка имеет единственное дерево вывода. Язык однозначен, если существует порождающая его однозначная грамматика.

Праволинейная грамматика

$$\begin{array}{l} A \rightarrow \alpha B \\ A \rightarrow \lambda \end{array}$$

Теорема Праволинейная грамматика порождает регулярный язык.

Доказательство:

$$G = (\Sigma, \Gamma, P, S)$$

$$A = (\Sigma, \Gamma, \delta, S, F)$$

$$F = \{A \in \Gamma | (A \to \lambda) \in P\}$$

$$\delta(A, a) = B \Leftrightarrow (A \to aB) \in P$$

Преобразования грамматик

1. Приведенные грамматики.

Определение *Нетерминал* $A \in \Gamma$ - *производящий, если из него можно получить терминальную цепочку.*

Определение $Hemepmuhan\ A\in\Gamma$ - docmu emuumumumumumu, $ecnu\ S\Rightarrow \alpha A\beta$

Определение Грамматика - приведенная, если все ее нетерминалы достижимые и проиводящие.

Алгоритм нахождения Γ_r - мн-ва производящих символов: $\Gamma \leftarrow S$

$$\Gamma_1 = \Gamma \cup \{A | (B \to \alpha A \beta) \in P, B \in \Gamma\}$$

Алгоритм нахождения
$$\Gamma_p$$
 - мн-ва достижимых символов: $\Gamma = \{A | (A \to w) \in P\}$ $\Gamma_1 = \Gamma \cup \{A | (A \to \gamma) \in P, \gamma \in (\Sigma \cup \Gamma)\}$

Теорема Для любой КСГ G существует эквивалентная ей приведенная грамматика.

Доказательство:

$$G = (\Sigma, \Gamma, P, S)$$

Находим
$$\Gamma_p$$
. Если $S \notin \Gamma_p$, то $G' = (\Sigma, \emptyset, \emptyset, \emptyset)$. Иначе $\overset{\triangle}{\Gamma} = (\Sigma, \Gamma_p, p', S)$

$$\overset{\triangle}{P} = \{ (A \to \gamma) \in P | A, \gamma \in (\Sigma \cup \Gamma_n) \}$$

 $Haxodum\ (\Gamma_p)_r$. Все символы будут достижимые и производящие в G'. Порядок важен.

2. λ -сведение грамматики.

Определение $A \in \Gamma$ - аннулирующий, если $A \Rightarrow \lambda$

Алгоритм нахождения Ann(G) - мн-ва аннулирующих нетерминалов.

$$Ann(G) = \{A \in \Gamma | (A \to \lambda) \in P\} \ Ann_1(G) = \{A \in \Gamma | (A \to \gamma) \in P, \gamma \in (Ann(G)) * \}$$

Определение λ - свободная грамматика - грамматика, которая либо не содержит аннулирующих правил $(A \to \lambda)$, либо содержит единственное такое правило из S и S не встречается в правых частях правил вывода.

Теорема Любая грамматика эквивалентна некоторой λ -свободной грамматике

Доказательство:

$$G = (\Sigma, \Gamma, P, S)$$

Если $\lambda \in L(G)$, то $\Gamma' = \Gamma \cup S'$, $P' = P \cup \{(S' \to \lambda), (S' \to S)\}$. Иначе не изменяются. Построим Ann(G).

 $\beta \prec \gamma$, если β - nodnocned-mb γ и все символы $\gamma \setminus \beta$ - аннулирующие.

$$P' = \{ (A \to \beta) | (A \to \gamma) \in P, \beta \prec \gamma, \beta \neq \lambda \}$$

Проверим, что L(G) = L(G').

1.
$$w \in L(G'), S \to \alpha_1 \to \dots \to \alpha_n = w$$

Если
$$A \to_{G'} \beta$$
, то $A \to_{G} \gamma$, где $\beta \prec \gamma$

$$2. \ w \in L(G)$$

. . .