RWTH AACHEN UNIVERSITY AACHENER VERFAHRENSTECHNIK

Übung 7

Student: Joshua Feld, 406718

Kurs: Material- und Stoffkunde – Professor: Prof. Dr. Gebhardt

Aufgabe 1. (Arrhenius-Modell)

Der Diffusionskoeffizient eines einatomigen, idealen Gases wurde bei verschiedenen Temperaturen gemessen. Die Messwerte sind der folgenden Tabelle zu entnehmen.

Temperatur T	Diffusionskoeffizient D
300 K	$\begin{array}{c} 1.8 \cdot 10^{-5} \frac{\text{m}^2}{\text{s}} \\ 3.2 \cdot 10^{-5} \frac{\text{m}^2}{\text{s}} \\ 5 \cdot 10^{-5} \frac{\text{m}^2}{\text{s}} \end{array}$
$350\mathrm{K}$	$3.2 \cdot 10^{-5} \frac{\text{m}^2}{\text{s}}$
$400\mathrm{K}$	$5 \cdot 10^{-5} \frac{\text{m}^2}{\text{s}}$
$450\mathrm{K}$	$7 \cdot 10^{-5} \frac{\text{s}^2}{\text{s}}$

a) Verifizieren Sie rechnerisch, dass die Messdaten durch das Arrhenius-Modell

$$D = D_0 \exp\left(-\frac{E_a}{k_B T}\right)$$

angenähert werden können. Bestimmen Sie dazu die Parameter D_0 und E_a . Zeigen Sie anschließend, dass die Messwerte mit den errechneten Parametern hinreichend genau reproduziert werden können.

- b) Bestimmen Sie rechnerisch die Wärmemenge, die einem Mol des Gases bei 300 K zugeführt werden muss, um einen Diffusionskoeffizienten von $D=1.5\cdot 10^{-4}\,\frac{\mathrm{m}^2}{\mathrm{s}}$ zu erreichen.
- c) Lösen Sie die obigen Aufgabenteile graphisch durch eine geeignete Auftragung der Messwerte.

Lösung.

Aufgabe 2. (Kohlensäure)

Cola wird bei der Herstellung mit einer Massenkonzentration $\gamma=7\,{\rm \frac{g}{L}}$ an Kohlensäure (CO₂) angereichert. Durch die PET-Hülle der Flasche entweicht das gelöste CO₂ durch Diffusion. Die Löslichkeit von CO₂ in PET ist abhängig von der Konzentration von CO₂ in der Flüssigkeit. Sie kann mit Hilfe eines Löslichkeitskoeffizienten H berechnet werden:

$$\gamma_{\mathrm{CO}_2,\mathrm{PET}} = H \cdot \gamma_{\mathrm{CO}_2,\mathrm{Cola}}.$$

- a) Bestimmen Sie die anfängliche CO₂-Konzentration in der Flaschenwand an der Stelle höchster Konzentration. Auf der Außenseite wird CO₂ vollständig abtransportiert, sodass die CO₂-Konzentration dort zu jeder Zeit Null ist.
- b) Berechnen Sie den anfänglichen Massenstrom an CO₂, der über die Oberfläche verloren geht. Nehmen Sie dazu an, dass sich bereits ein lineares Konzentrationsgefälle über der Dicke des PET-Mantels eingestellt hat.
- c) (Achtung: Schwierig!) Bestimmen Sie die Zeit nach der 5% des gelösten CO_2 die Flasche durch Diffusion verlassen hat. Stellen Sie dazu zunächst eine Gleichung für die zeitliche Massenänderung auf.

Treffen Sie zur Berechnung die folgenden Annahmen:

- ullet Die Löslichkeit H ist konstant.
- Das Konzentrationsprofil über der Manteldicke ist linear.
- Das Volumen der Flüssigkeit bleibt konstant.
- Die Diffusion im Inneren der Flasche ist viel schneller als die Diffusion durch den PET-Mantel, sodass das Innere als ideal durchgemischt angenommen werden kann, d.h. es gibt kein CO₂-Konzentrationsgefälle in der Flüssigkeit.

Gegeben:

Diffusionskoeffizient Oberfläche der Flasche	$D = 2 \cdot 10^{-13} \frac{\text{m}^2}{\text{s}}$ $A = 0.07 \text{m}^2$
Dicke des PET-Mantels	$d = 0.27 \mathrm{mm}$
Flüssigkeitsvolumen	$V = 1.5 \mathrm{L}$
Löslichkeitskoeffizient	H = 1.43

Lösung.