The mdframed package

Examples for framemethod=TikZ

Marco Daniel v1.3 2012/02/04

In this document I collect various examples for framemethod=TikZ. Some presented examples are more or less exorbitant.

Contents

1	Loading	1	Example 3 – Gimmick	3
2	Examples	1	Example $4 - \text{complex example}$ with TikZ	4
	Example $1 - \text{hidden line} + \text{frame title}$	2	Example 5 – Theorem environments	6
	Example 2 – framed picture which is centered	3		

1 Loading

In the preamble only the package mdframed width the option framemethod=TikZ is loaded. All other modifications will be done by \mdfdefinestyle or \mdfsetup.

Note

Every \global inside the examples is necessary to work with the package showexpl.

2 Examples

All examples have the following settings:

An inhomogeneous linear differential equation has the form

$$L[v] = f, (1)$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone. round corner

```
\global \mdfdefinestyle { exampledefault } { % outerlinewidth = 5pt, innerlinewidth = 0pt, outerlinecolor = red, roundcorner = 5pt } 
   \begin { mdframed } [ style = exampledefault ] 
   \ExampleText 
   \end { mdframed }
```

An inhomogeneous linear differential equation has the form

$$L[v] = f, (2)$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.

Example 1 - hidden line + frame title

Inhomogeneous linear

An inhomogeneous linear differential equation has the form

$$L[v] = f, (3)$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.

Example 2 – framed picture which is centered

Example 3 – Gimmick

```
An inhomogeneous linear differential equation has the form L[v] = f, \tag{4} where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.
```

Example 4 – complex example with TikZ

```
\tikzstyle{titregris} =
         | draw=gray, thick, fill=white, shading = exersice|title, %
         text=gray, rectangle, rounded corners,
         right, minimum height = .7cm
\pgfdeclarehorizontalshading{exersicebackground}{100bp}
\{ color (0bp) = (green ! 40) ;
color (100 bp)=(black!5)}
\pgfdeclarehorizontalshading{exersicetitle}{100bp}
\{ color (0bp) = (red ! 40) ;
color (100 bp)=(black!5)}
\newcounter { exercise }
\renewcommand \theexercise { Exercise ~n \arabic { exercise }}
\ makeatletter
\def \def \def \end{f@@exercisepoints} 
\define@key \{mdf\}\{exercisepoints\}\{\%
   \renewrobustcmd \mdfcreateextratikz {%
     \node[titregris, xshift=1cm] at (P-|O) \%
         \ifdefempty { \mdf@@exercisepoints }%
     {}%
     \{ \setminus node [ titregris , left , xshift = -1cm ] at (P) \% \}
       \ makeatother
\mdfdefinestyle { exercisestyle }{%
 outerlinewidth=1pt,
 innerlinewidth=0pt,
 roundcorner=2pt,
 linecolor=gray,
 tikzsetting={shading = exersicebackground},
 innertopmargin = 1.2 \setminus baselineskip,
 skipabove = \{ dimexpr 0.5 \setminus baselineskip +  topskip \setminus relax \},
 needspace=3\baselineskip,
 frametitlefont = \sffamily \bfseries,
 settings = { \ global \ stepcounter { exercise } },
\begin { mdframed } [ style = exercisestyle , ]
Example Text
\end{mdframed}
\ExampleText
\end{mdframed}
```

Exercise n1

An inhomogeneous linear differential equation has the form

$$L[v] = f, (5)$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.

Exercise n2 10points

An inhomogeneous linear differential equation has the form

$$L[v] = f, (6)$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.

Example 5 – Theorem environments

Definition 1: Inhomogeneous linear

An inhomogeneous linear differential equation has the form

$$L[v] = f, (7)$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.

Definition: Inhomogeneous linear

An inhomogeneous linear differential equation has the form

$$L[v] = f, (8)$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.