CS & IT ENGINEERING

Computer Network

Switching & Routing

Lecture No. - 03

Recap of Previous Lecture

Packet Switching Topic

Virtual Circuit Switching Topic

Topic Routing

Topics to be Covered

Routing **Topic**

Link State Routing Topic

Distance Vector Routing Topic

ABOUT ME

Hello, I'm Abhishek

- GATE CS AIR 96
- M.Tech (CS) IIT Kharagpur
- 12 years of GATE CS teaching experience

Telegram Link: https://t.me/abhisheksirCS_PW

- → Identify optimal (best) path between Source and Destination.
- → Types of Routing :
 - 1. Static Routing
 - → Non-adaptive Routing
 - 2. Dynamic Routing
 - → Adaptive Routing
 - → Load sensitive or Load insensitive

By

- → Metric to compare link :
 - 1. Distance (Hop Count)
 - 2. Delay
 - 3. Bandwidth

- → Non-adaptive Routing
- → Types of Static Routing :
 - 1. Shortest Path Algorithm
 - 2. Flooding

-> Broadrast

> Input (R) Source

(R) Source

- → Adaptive Routing
- → Types of Routing Algorithm:
 - 1. Dijkstra's Link State Routing Algorithm
 - 2. Bellman Ford Distance Vector Routing Algorithm

Two categories:

- 1. Interior Gateway Protocol (IGP) [With in ISP(A.S.)]
 - 1.1 Routing Information Protocol (RIP)
 - → Distance Vector Routing (RIP-)V)
 - 1.2 Open Shortest Path First (OSPF)
 - → Link State Routing [OSPF-LS]
- 2. Exterior Gateway Protocol (EGP) [Between IsPs (A.S.)]
 - 2.1 Border Gateway Protocol (BGP)
 - → Path Vector Routing

#Q. Which one of the following is TRUE about interior Gateway routing protocols -Routing Information Protocol (RIP) and Open Shortest Path First (OSPF)?

OSPF-LS

[GATE-2014, Set-2, 1-Mark]

- RIP uses distance vector routing and OSPF uses link state routing
 - (B) OSPF uses distance vector routing and RIP uses link state routing
 - (C) Both RIP and OSPF use link state routing
- (D) Both RIP and OSPF use distance vector routing

- Routing Algorithm Classification:
 - 1. <u>Decentralized Routing</u>: [Distributed Routing]

 2. <u>Global Routing</u>: [Contralized Routing]

Topic: Decentralized Routing

- → Distributed Routing Algorithm
- → Iterative process of computation
- → Exchange of information with neighbors
- → Routers initially only know link costs to attached neighbors
- → "Distance Vector" Routing Algorithm

- → Centralized Routing Algorithm
- → All routers have complete topology link cost information
- → "Link State" Routing Algorithm

- → Centralized Routing Algorithm
- → Link State Routing is divided into three steps:
 - 1. Maintain Link State information
 - 2. Link State broadcast
 - 3. Share updated Link State information? -> make algo, adaptive

- 1. Maintain Link State information
 - → Every router maintain separate "Link State" information
 - → Maintain information about adjacent link only [Adjacent (neighbor) routers only]

OSPF protocol in every Router OSPF- IP

i) Link state info construct

ii) Pass this LS info to IP

Source IP Add. = Own IP Add.

Rest. IP Add. = Class DSpecial IPANd. Broadcast

2. Link State broadcast

- → Every router flood (broadcast) its "Link State" information [To all other routers in the network]
- → Every router have "Link State" information of all other routers [Complete information about the network topology]
- → Every router construct "Adjacency Matrix" or "Adjacency List"
- → Every router execute "Dijkstra's Algorithm" locally [To find optimal distance and path to all other routers]

- 3. Share updated Link State information
 - → Whenever changes occur in the network topology, [Relevant routers update their "Link State" information accordingly]
 - → Only those routers broadcast their updated "Link State" information [To all other routers in the network]
 - → Whenever a router receive any updated "Link State" information, it construct new "Adjacency Matrix / List" accordingly and re-execute "Dijkstra's Algorithm" locally

R _s Link S	tate Info
R ₄	2

R _D Link State Info	
R₃	3

R₁ Link State Info	
Rs	2
R₂	4
R ₄	6

R₂ Link State Info	
R ₁	4
R₃	7
R ₄	8

R₃ Link State Info	
R₀	3
R₂	7
R₄	5

R₄ Link State Info	
R₁	6
R₂	8
R₃	5

Topic: Dijkstra's Algorithm

- → Single Source Shortest Path Algorithm
- → Dijkstra's Algorithm is divided into two steps :
 - 1. Initialization
 - 2. Iterative distance calculation

Topic: Dijkstra's Algorithm

Shortest path to all other nodes

Forwarding Table Dest. Wext Hop

Sowrce=R,			
Dest.	Cost	Next Hop	
RO	0	RI	
177			
Rs			
RD			

Topic: Dijkstra's Algorithm

Dijkstra's Algorithm time complexity

- \rightarrow Number of nodes = n
- → Total n iteration
- \rightarrow Total number of comparisons = $O(n^2)$

per node/nowter

Message Complexity:

- → Number of nodes = n
- → Each router must broadcast its Link State information to all other router
- → Each router's message crosses O(n) links
- \rightarrow Overall message complexity = $O(n^2)$

- \rightarrow High number of packets per network \Diamond
- → Adapt network topology very fast

Topic: Distance Vector Routing

- → Based on Bellman-Ford equation [Dynamic programming]
- → Bellman-Ford equation

Let $D_x(Y)$: Cost of the least-cost path from X to Y

 $D_{x}(y) = \min_{V} \{ C(X, V) + D_{V}(Y) \}$

 \rightarrow Minimum taken over all neighbors V of X

C(X, V): Direct cost of link from X to V

D_V(Y): V's estimated least-cost path cost to Y

Topic: Distance Vector Routing

- → Each router maintain separate "Distance Vector" estimate [Best known minimum distance to all other routers]
- → Each router sends their own "Distance Vector" estimate to their neighbor routers only
- → When a router receives new "Distance Vector" estimate from any neighbor, It update its own "Distance Vector" using Bellman-Ford equation

2 mins Summary

THANK - YOU