KU LEUVEN

Numerical Techniques in Fluid Dynamics: Session 2

Steady-state Diffusion

Frederik Aerts
Turbulent Flow Simulation and Optimization Group
AY 25-26

1 Outline

- 1 Theory
- 2 Code
- 3 Homework

1 Governing equations

Transport equation for passive scalar φ

$$\frac{\partial \varphi}{\partial t} + (\mathbf{u} \cdot \nabla)\varphi = \nabla \cdot (\kappa \nabla \varphi) + S_{\varphi}$$

1 Governing equations

Transport equation for passive scalar φ

$$\frac{\partial \varphi}{\partial t} + (\mathbf{u} \cdot \nabla)\varphi = \nabla \cdot (\kappa \nabla \varphi) + S_{\varphi}$$

Simplify

- \blacktriangleright steady state: $\frac{\partial \varphi}{\partial t} = 0$
- ▶ no advection: $(\mathbf{u} \cdot \nabla)\varphi = 0$
- ▶ uniform diffusivity κ [m² s⁻¹]

$$-\nabla \cdot (\kappa \nabla \varphi) = S_{\varphi}$$

$$-\nabla \cdot (\kappa \nabla \varphi) = S_{\varphi}$$

$$-\nabla \cdot (\kappa \nabla \varphi) = S_{\varphi}$$
$$-\int_{CV} \nabla \cdot (\kappa \nabla \varphi) d\Omega = \int_{CV} S_{\varphi} d\Omega$$

$$-\nabla \cdot (\kappa \nabla \varphi) = S_{\varphi}$$
$$-\int_{CV} \nabla \cdot (\kappa \nabla \varphi) d\Omega = \int_{CV} S_{\varphi} d\Omega$$
$$-\int_{\Gamma} \kappa \nabla \varphi \cdot \mathbf{n} ds = \int_{CV} S_{\varphi} d\Omega$$

$$-\nabla \cdot (\kappa \nabla \varphi) = S_{\varphi}$$

$$-\int_{CV} \nabla \cdot (\kappa \nabla \varphi) d\Omega = \int_{CV} S_{\varphi} d\Omega$$

$$-\int_{\Gamma} \kappa \nabla \varphi \cdot \mathbf{n} ds = \int_{CV} S_{\varphi} d\Omega$$

$$-\sum_{f=1}^{N_f} \kappa \frac{\partial \varphi}{\partial n} \Big|_f A_f = S_{\varphi} \Omega$$

$$-\nabla \cdot (\kappa \nabla \varphi) = S_{\varphi}$$

$$-\int_{CV} \nabla \cdot (\kappa \nabla \varphi) d\Omega = \int_{CV} S_{\varphi} d\Omega$$

$$-\int_{\Gamma} \kappa \nabla \varphi \cdot \mathbf{n} ds = \int_{CV} S_{\varphi} d\Omega$$

$$-\sum_{f=1}^{N_f} \kappa \frac{\partial \varphi}{\partial n} \Big|_f A_f = S_{\varphi} \Omega$$

$$-\sum_{f=1}^{N_f} \kappa \frac{\varphi_{NB1} - \varphi_{NB2}}{||\boldsymbol{\xi}_f||} A_f = S_{\varphi} \Omega$$

For orthogonal case (cfr. blackboard):

$$-\sum_{f=1}^{N_f} \kappa \frac{\varphi_{NB1} - \varphi_{NB2}}{||\boldsymbol{\xi}_f||} A_f = S_{\varphi} \Omega$$

$$-\kappa \left\{ \frac{\varphi_E - \varphi_P}{||\boldsymbol{\xi}_e||} A_e + \frac{\varphi_N - \varphi_P}{||\boldsymbol{\xi}_m||} A_n + \frac{\varphi_W - \varphi_P}{||\boldsymbol{\xi}_w||} A_w + \frac{\varphi_S - \varphi_P}{||\boldsymbol{\xi}_s||} A_s \right\} = S_{\varphi} \Omega_P$$

For orthogonal case (cfr. blackboard):

$$-\sum_{f=1}^{N_f}\kappa\frac{\varphi_{NB1}-\varphi_{NB2}}{||\boldsymbol{\xi}_f||}A_f=S_\varphi\Omega$$

$$-\kappa \left\{ \frac{\varphi_E - \varphi_P}{||\boldsymbol{\xi}_e||} A_e + \frac{\varphi_N - \varphi_P}{||\boldsymbol{\xi}_n||} A_n + \frac{\varphi_W - \varphi_P}{||\boldsymbol{\xi}_w||} A_w + \frac{\varphi_S - \varphi_P}{||\boldsymbol{\xi}_s||} A_s \right\} = S_{\varphi} \Omega_P$$

Simplified equation for cell P:

$$a_P \varphi_P + \sum_{NB} a_{NB} \varphi_{NB} = S_P \Omega_P$$

with

$$a_{NB} = -\kappa A_f / ||\boldsymbol{\xi}_f|| \qquad \qquad a_P = -\sum_{NB} a_{NB}$$

 \rightarrow Cast into linear system $A\varphi = \mathbf{b}$, solve for φ .

1 Boundary conditions

Boundary conditions should be imposed on the **faces** between physical and ghost cells

2nd order PDE: 1 BC per boundary suffices

Dirichlet	Neumann
$\varphi_f = \varphi^*$	$\left \frac{\partial \varphi}{\partial n} \right _f = \varphi'^*$
$\lambda \varphi_{PC} + (1 - \lambda)\varphi_{GC} = \varphi^*$	$\pm \frac{\varphi_{GC} - \varphi_{PC}}{ \boldsymbol{\xi}_f } = \varphi'^*$

ightarrow leads to governing equation for arphi in ghost cells.

2 Outline

- 1 Theory
- 2 Code
- 3 Homework

KU LEUVEN

2 FVMLab Matrix Storage

Matrix A from linear system $A\varphi = \mathbf{b}$ is very sparse (less than 3% non-zero entries)

- ightharpoonup diagonal elements: a_P
- off-diagonal elements: a_{nb} (internal faces)
- off-diagonal elements: a_{nb} (boundary faces)

Stored in vector 'adata' (cfr. next slide & ScalarFvEqn2)

2 FVMLab Matrix Storage

Creation sparse matrix:

```
eqn = ScalarFvEqn2(dom);
eqn.adata = [adiag; anb_internal; anb_boundary];
eqn.bdata = bdata;
[A, b] = to_msparse(eqn);
```


2 Program structure

Initialize adiag, bdata, anb_internal, anb_boundary

- Loop internal faces
 - Add diagonal coefficients: 2 × PC
 - Add off-diagonal coefficients: 2 × PC
- ► Loop boundary faces
 - Add diagonal coefficients: $1 \times PC$ (PDE) $+ 1 \times GC$ (BC)
 - Add off-diagonal coefficients: $1 \times PC \ (PDE) + 1 \times GC \ (BC)$

Tip: Use spy command to observe matrix structure!

2 Example: coefficient matrix for a 5×5 mesh

2 Boundary condition implementation

casedef structure: holds all information defining simulation case

- casedef.BC substructure: boundary conditions
 - 4 boundary conditions: casedef.BC{1}, ..., casedef.BC{4}
 - casedef.BC{i}.zoneID: name, e.g. 'Oostrand'
 - casedef.BC{i}.kind: type, 'Dirichlet' or 'Neumann'
 - casedef.BC $\{i\}$.data: value, φ^* or φ'^*
- casedef.dom substructure: domain
 - function dom.getzone(casedef.BC $\{i\}$.zoneID) \rightarrow BfaceZone type
 - elcount: #faces for this BC
 - range: starting and stopping face for this BC

2 Boundary condition implementation

casedef structure: holds all information defining simulation case

- casedef.BC substructure: boundary conditions
 - 4 boundary conditions: casedef.BC{1}, ..., casedef.BC{4}
 - casedef.BC{i}.zoneID: name, e.g. 'Oostrand'
 - casedef.BC{i}.kind: type, 'Dirichlet' or 'Neumann'
 - casedef.BC $\{i\}$.data: value, φ^* or φ'^*
- casedef.dom substructure: domain
 - function dom.getzone(casedef.BC $\{i\}$.zoneID) \rightarrow BfaceZone type
 - elcount: #faces for this BC
 - range: starting and stopping face for this BC
- \rightarrow For each BC in casedef.BC
 - 1 get the ID (name)
 - 2 get the zone
 - 3 get the range

2 Mesh generation

Command to generate one-directional mesh vector:

```
seedX =
LineSeed.lineSeedOneWayBias(originV,displV,nParts,expFac,'o');
```

- originV: 2-D position of origin point of mesh vector (e.g. [0, 0])
- displV: 2-D position of ending point defining mesh vector (e.g. [1, 0])
- ▶ nParts: number of grid cells along mesh vector (e.g. 10)
- ightharpoonup expFac: relative length of next cell to previous cell, $rac{\Delta x_{i+1}}{\Delta x_i}$ (e.g. 1.10)
- \rightarrow Allows simulation of Cartesian grids, rotated grids, stretched grids, skewed grids, ... (try it yourself!)

3 Outline

- 1 Theory
- Code
- 3 Homework

3 Homework

Finish implementation of diffusion equation for next week.

- ▶ Dirichlet + Neumann boundary conditions
- Verify implementation

Next week's topic: advection - diffusion equation with known constant advection $\ensuremath{\mathbf{u}}$

$$(\mathbf{u} \cdot \nabla)\varphi = \nabla \cdot (\kappa \nabla \varphi) + S_{\varphi}$$