2011 School Year

Graduate School Entrance Examination Problem Booklet

Mathematics

Examination Time:

10:00 to 12:30

Instructions

- 1. Do not open this problem booklet until the start of the examination is announced.
- 2. If you find missing, misplaced, and/or unclearly printed pages in the problem booklet, ask the examiner.
- Answer all of three problems appearing in this booklet, in Japanese or English.
- 4. You are given three answer sheets. You must use a separate answer sheet for each problem. You may continue to write your answer on the back of the answer sheet if you cannot conclude it on the front.
- 5. Fill the designated blanks at the top of each answer sheet with your examinee's number and the problem number you are to answer.
- 6. The blank pages are provided for rough work. Do not detach them from this problem booklet.
- An answer sheet is regarded as invalid if you write marks and/or symbols and/or words unrelated to the answer on it.
- 8. Do not take the answer sheets and the problem booklet out of the examination room.

Examinee's number	No.

Fill this box with your examinee's number.

(blank page for rough work)

Problem 1

Define matrix A, matrix B and function f(n) as follows:

$$A = \left(\begin{array}{ccc} a & b & b \\ b & a & b \\ b & b & a \end{array}\right)$$

$$B = \begin{pmatrix} 0 & 0 & 0 & a & b & b \\ 0 & 0 & 0 & b & a & b \\ 0 & 0 & 0 & b & b & a \\ a & b & b & 0 & 0 & 0 \\ b & a & b & 0 & 0 & 0 \\ b & b & a & 0 & 0 & 0 \end{pmatrix}$$

$$f(n) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} B^n \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

where a and b are real numbers such that a > 0, b > 0 and $a \neq b$, and n is a positive integer. Answer the following questions.

- (1) Find all eigenvalues of matrix A and show three linearly independent eigenvectors of matrix A.
- (2) Find all eigenvalues of matrix B and show six linearly independent eigenvectors of matrix B.
- (3) Find f(1), f(2) and f(3).
- (4) Find f(n) when a = 3 and b = 2.

Problem 2

Consider the following differential equation defined for x > 0:

$$x\frac{d^2y}{dx^2} + (x+4)\frac{dy}{dx} + 3y = 4x + 4.$$

Answer the following questions.

(1) Find the value of r such that $v = x^r$ is a solution of

$$x\frac{d^2v}{dx^2} + (x+4)\frac{dv}{dx} + 3v = 0.$$

- (2) For the value of r obtained in question (1), we set $y = x^r u$. Derive the differential equation that u satisfies. Then, show that $u = x^4$ is a solution of the obtained differential equation.
- (3) Find the general expression of $\frac{du}{dx}$ that satisfies the differential equation obtained in question (2).
- (4) Find the general solution y.

Problem 3

Let B_i (i: natural number) be a random variable which takes 1 with probability p and takes -1 with probability 1-p where $0 . Assume that <math>B_i$ and B_j are independent if $i \neq j$. Let $S_N = \sum_{i=1}^N B_i$ (N: natural number) and $E[\cdot]$ denote expectation. Answer the following questions.

- (1) Find all possible values that S_4 can take, together with their probabilities.
- (2) Find the conditional probability that $B_1 = 1$ under $S_4 = 2$.
- (3) Show that $E[B_i{}^mB_j{}^n] = E[B_i{}^m]E[B_j{}^n]$ for any natural numbers m and n if $i \neq j$.
- (4) Find the mean μ and the variance σ^2 of S_N when $p = \frac{1}{2}$.
- (5) Find $E[S_2^4]$ when $p = \frac{1}{2}$.
- (6) Find $K_N = \frac{E[S_N^4]}{E[S_N^2]^2}$ and $\lim_{N \to \infty} K_N$ when $p = \frac{1}{2}$.

(blank page for rough work)

(blank page for rough work)