Композиции алгоритмов

Виктор Китов

v.v.kitov@yandex.ru

Содержание

- 1 Разложение на смещение и разброс
- 2 Композиции алгоритмов
- Фиксированная агрегирующая функция (против переобучения)
- 4 Стэкинг
- Композиции на разных обучающих подвыборках (против переобучения)

Средние потери в зависимости от сложности модели

Комментарии:

- ожидаемые потери на тестовой выборке выше потерь на обучающей.
- слева от А: модель слишком простая, недообучение.
- справа от А: модель слишком сложная, переобучение

Дальнейшее усложнение модели

- Некоторые эмпирические наблюдения свидетельствуют, что для слишком сложных моделей (многослойные нейросети) качество выше ожиданий.
- Феномен double descent risk curve¹.

¹Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-learning practice and the classical bias-variance trade-off.

Разложение на смещение и разброс

- ullet Распределение реальных данных y = f(x) + arepsilon
 - ullet шум не зависит от x и старых наблюдений
 - \bullet хотим оценить f(x)
- Зависимость оценивается по $(X, Y) = \{(x_n, y_n), n = 1, 2...N\}.$
- Восстановленная зависимость $\widehat{f}(x)$.
- х фикс. объект для прогноза.
- ullet Шум arepsilon не зависит от X,Y, $\mathbb{E}arepsilon=0$

Разложение на смещение и разброс (bias-variance decomposition)

$$\mathbb{E}_{X,Y,\varepsilon}\{[\widehat{f}(x) - y(x)]^2\} = \left(\mathbb{E}_{X,Y}\{\widehat{f}(x)\} - f(x)\right)^2 + \mathbb{E}_{X,Y}\left\{[\widehat{f}(x) - \mathbb{E}_{X,Y}\widehat{f}(x)]^2\right\} + \mathbb{E}\varepsilon^2$$

Интуиция разложения

$$\mathbb{E}_{X,Y,\varepsilon}\{[\widehat{f}(x) - y(x)]^2\} = \left(\mathbb{E}_{X,Y}\{\widehat{f}(x)\} - f(x)\right)^2 + \mathbb{E}_{X,Y}\left\{[\widehat{f}(x) - \mathbb{E}_{X,Y}\widehat{f}(x)]^2\right\} + \mathbb{E}\varepsilon^2$$

Средние потери в зависимости от сложности модели

Доказательство разложения

Обозначим для краткости $f=f(x),\,\widehat{f}=\widehat{f}(x),\,\mathbb{E}=\mathbb{E}_{X,Y,arepsilon}$

Доказательство разложения

Обозначим для краткости $f = f(x), \ \widehat{f} = \widehat{f}(x), \ \mathbb{E} = \mathbb{E}_{X,Y,\varepsilon}.$

$$\mathbb{E}\left(\widehat{f} - f\right)^{2} = \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f} + \mathbb{E}\widehat{f} - f\right)^{2} = \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f}\right)^{2} + \left(\mathbb{E}\widehat{f} - f\right)^{2} + 2\mathbb{E}\left[\left(\widehat{f} - \mathbb{E}\widehat{f}\right)(\mathbb{E}\widehat{f} - f)\right]$$
$$= \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f}\right)^{2} + \left(\mathbb{E}\widehat{f} - f\right)^{2}$$

т.к.
$$(\mathbb{E}\widehat{f} - f)$$
 - константа относительно $X, Y,$ $\mathbb{E}\left[(\widehat{f} - \mathbb{E}\widehat{f})(\mathbb{E}\widehat{f} - f)\right] = (\mathbb{E}\widehat{f} - f)\mathbb{E}(\widehat{f} - \mathbb{E}\widehat{f}) = 0.$

$$\begin{split} \mathbb{E}\left(\widehat{f} - y\right)^2 &= \mathbb{E}\left(\widehat{f} - f - \varepsilon\right)^2 = \mathbb{E}\left(\widehat{f} - f\right)^2 + \mathbb{E}\varepsilon^2 - 2\mathbb{E}\left[(\widehat{f} - f)\varepsilon\right] \\ &= \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f}\right)^2 + \left(\mathbb{E}\widehat{f} - f\right)^2 + \mathbb{E}\varepsilon^2 \end{split}$$

$$\mathbb{E}\left[(\widehat{f}-f)arepsilon
ight]=\mathbb{E}\left[(\widehat{f}-f)
ight]\mathbb{E}arepsilon=0$$
, поскольку $arepsilon$ не зависит от $X,Y.$

Содержание

- 1 Разложение на смещение и разброс
- 2 Композиции алгоритмов
 - Примеры использования композиций
- Фиксированная агрегирующая функция (против переобучения)
- 4 Стэкинг
- 5 Композиции на разных обучающих подвыборках (против переобучения)

Композиции алгоритмов

• Композиция алгоритмов (ансамбль моделей, ensemble learning):

$$\widehat{y}(x) = G(f_1(x), ... f_M(x))$$

- $f_1(x), ... f_M(x)$ базовые модели=признаки для $G(\cdot)$
- ullet $G(\cdot)$ агрегирующая модель, мета-модель
- Используется в
 - обучении с учителем (регрессия, классификация)
 - без учителя (кластеризация)

Мотивация композиций

Мотивация:

- борьба с переобучением $f_1(x), ... f_M(x)$: простая $G(\cdot)$
- ullet борьба с недообучением $f_1(x), ... f_M(x)$: сложная $G(\cdot)$
- каждая $f_1(x), ... f_M(x)$ отвечает за свою область признакового пространства (mixture of experts)
 - $G(\cdot)$ назначает одного из экспертов
- построение $\widehat{y}(x)$ декомпозируется на решение подзадач $f_1(x),...f_M(x)$
- ускорение обучения
 - например, усреднение ядерных SVM на подвыборках

- Композиции алгоритмов
 - Примеры использования композиций

Многоклассовая классификация

Многоклассовая классификация бинарными классификаторами (один против всех, один против одного, коды, исправляющие ошибки):

Последовательное решение, признаки разной природы

Последовательное решение

- Разделим классы: 1,2,"3+4"
 - если "3+4", применим модель, разделяющую 3 от 4.
- Прогнозирование стоимости квартир:
 - определяем тип покупки: для жилья/для инвестиций
 - для жилья: комфорт, индивидуальные вкусы и т.д.
 - для инвестиций: обменные курсы, процент по вкладам, рост рынка акций и т.д.
- Определение людей по фото:
 - определяем ракурс: фас/профиль
 - одна модель определяет людей по фото в фас
 - другая определяет людей по фото в профиль

Признаки разной природы

• Идентификация человека по разнородной информации: по голосу, по лицу, по поведению, и т.д.

Борьба с переобучением

- Предположим $f_1(x), ... f_M(x)$ слишком простые модели.
- Можем повысить сложность, применяя сложную мета-модель:

$$\widehat{y}(x) = G(f_1(x), ...f_M(x))$$

Выборка

Классификатор 1

Классификатор 2

(Классификатор 1) AND (классификатор 2)

Борьба с переобучением

- \bullet $f_1(x),...f_M(x)$ слишком сложные (переобученные модели)
 - решающие деревья большой глубины на разных подвыборках
 - глубокие нейросети
 - обученные из разных начальных приближений
 - разной архитектуры
- Регрессия: сделаем устойчивый прогноз за счет усреднения

$$\widehat{y}(x) = \frac{1}{M} \sum_{m=1}^{M} f_m(x)$$

• Классификация: прогноз=самый частый класс из $\{f_1(x),...f_M(x)\}.$

Целевая зависимость

Модель 1.

Модель 2.

Среднее модели 1 и 2 дает более точный прогноз.

Голосование большинства (против переобучения)

- Рассмотрим M бинарных классификаторов $f_1(x), ... f_M(x)$.
- Пусть $p(f_m(x) \neq y) = p < 0.5 \, \forall m$
- Пусть модели ошибаются независимо друг от друга.
- Пусть G(x) выбор самого частого класса.
- ullet Тогда p(G(x)
 eq y) o 0 при $M o \infty^2$

 $^{^{2}}$ Докажите это утверждение.

Взвешенное усреднение (против переобучения)

• Разложение неоднозначности (ambiguity decomposition): пусть (x, y) прогнозируется с помощью регрессии $G(x) = \sum_{m=1}^{M} w_m f_m(x), \ w_m \geq 0, \ \sum_m w_m = 1.$ Тогда

$$\underbrace{\left(G(x)-y\right)^{2}}_{\text{ensemble error}} = \underbrace{\sum_{m} w_{m} \left(f_{m}(x)-y\right)^{2}}_{\text{base learner error}} - \underbrace{\sum_{m} w_{m} \left(f_{m}(x)-G(x)\right)^{2}}_{\text{ambiguity}}$$

- Композиция дает точные прогнозы когда:
 - $f_m(x)$ достаточно точны
 - индивидуальные прогнозы $\{f_m(x)\}_m$ сильно различаются
 - поэтому полезно усреднять по разным моделям

Доказательство разложения неоднозначности

Доказательство:

$$\sum_{m} w_{m} (f_{m}(x) - G(x))^{2} = \sum_{m} w_{m} (f_{m}(x) - y + y - G(x))^{2}$$

$$= \sum_{m} w_{m} (f_{m}(x) - y)^{2} + \sum_{m} w_{m} (y - G(x))^{2} + 2 \sum_{m} w_{m} (f_{m}(x) - y) (y - G(x))$$

$$= \sum_{m} w_{m} (f_{m}(x) - y)^{2} + (G(x) - y)^{2} + 2 (y - G(x)) \sum_{m} w_{m} (f_{m}(x) - y)$$

$$= \sum_{m} w_{m} (f_{m}(x) - y)^{2} + (G(x) - y)^{2} + 2 (y - G(x)) (G(x) - y)$$

$$= \sum_{m} w_{m} (f_{m}(x) - y)^{2} + (G(x) - y)^{2} - 2 (G(x) - y)^{2}$$

$$= \sum_{m} w_{m} (f_{m}(x) - y)^{2} - (G(x) - y)^{2}$$

Выпуклые потери

Выпуклые потери поощряют использование взвешенных прогнозов вместо индивидуальных.

- Рассмотрим регрессию с выпуклой ф-цией потерь $\mathcal{L}(\widehat{y}-y)$.
- Учитываем $f_1(x),...f_M(x)$ с весами $w_1,...w_M$.
- Для фикс. х рассмотрим 2 стратегии прогнозирования:
- **①** сэмплировать $m \sim Categorical(w_1, ... w_M)$, $\widehat{y}(x) = f_m(x)$.
- ② усреднять $\hat{y}(x) = \sum_{m=1}^{M} w_m f_m(x)$

Какая стратегия в среднем по m будет давать меньшие ожидаемые потери?

Содержание

- Разложение на смещение и разброс
- Композиции алгоритмов
- Фиксированная агрегирующая функция (против переобучения)

Регрессия

$$\widehat{y}(x) = \frac{1}{M} \sum_{m=1}^{M} f_m(x)$$

$$\widehat{y}(x) = \frac{1}{\sum_{m=1}^{M} w_m} \sum_{m=1}^{M} w_m f_m(x)$$

- Взвешенное усреднение лучше, если модели сильно отличаются по точности.
- Веса $w_1 \ge 0, ... w_M \ge 0$ нужно настраивать на отдельной выборке (не той, на которой обучали $f_1(x), ... f_M(x)$)
- Альтернатива: медиана/взвешенная медиана

Классификаторы выдают вероятности

- Пусть $p_y^m(x)$ вероятность класса y по мнению классификатора m.
- Равномерная агрегация:

$$p_{y}(x) = \frac{1}{M} \sum_{m=1}^{M} p_{y}^{m}(x)$$

• Взвешенная агрегация:

$$p_{y}(x) = \frac{1}{\sum_{m=1}^{M} w_{m}} \sum_{m=1}^{M} w_{m} p_{y}^{m}(x)$$

- Взвешенное усреднение лучше, если модели сильно отличаются по точности.
- Веса $w_1 \ge 0, ... w_M \ge 0$ нужно настраивать на отдельной выборке (не той, на которой обучали $f_1(x), ... f_M(x)$)

Классификаторы выдают метки классов

- Голосование по большинству (majority vote)
 - возможен взвешенный учет классификаторов
- Бинарная классификация: $\hat{y} = +1 <=>$
 - $\geq k$ классификаторов выдают +1 (k-out-of-N)
 - возможен взвешенный учет классификаторов
 - \bullet все классификаторы выдают +1 (AND, N-out-of-N)
 - хотя бы один выдает +1 (OR, 1-out-of-N)

Классификаторы выдают рейтинги

- Пусть $g_y^m(x)$ рейтинг класса y в модели m.
- Проблема: рейтинги несравнимы для разных моделей.
- Решение (Brier scores):
 - Отандартизованный рейтинг #классов ниже по рейтингу:

$$s_y^m(x) = \sum_{i \neq y} \mathbb{I}[g_y^m(x) > g_i^m(x)]$$

 $s_y^m(x) \in \{1, 2, ... C - 1\}$

Предскажем класс с максимальным усредненным по моделям рейтингом:

$$\widehat{y}(x) = \arg\max_{y} \frac{1}{M} \sum_{m=1}^{M} s_{y}^{m}(x)$$

Содержание

- 1 Разложение на смещение и разброс
- 2 Композиции алгоритмов
- Фиксированная агрегирующая функция (против переобучения)
- 4 Стэкинг
- Композиции на разных обучающих подвыборках (против переобучения)

Алгоритм стэкинга

• Рассмотрим обучающую выборку , базовые модели $f_1(x), ... f_M(x)$ и $G(\cdot)$.

Алгоритм стэкинга

- Рассмотрим обучающую выборку , базовые модели $f_1(x), ... f_M(x)$ и $G(\cdot)$.
- Обучение $f_1(x),...f_M(x)$ и $G(\cdot)$ на одинаковой выборке вызывает переобучение.

Алгоритм стэкинга:

- **①** Инициализируем обучающую выборки $G(\cdot)$: $T' = \{\}$
- **②** Разобьем обучающую выборку $T = \{(x_n, y_n)\}_{n=1}^N$ на K блоков: $T_1, T_2, ... T_K$.
- lacktriangledown для k=1,2,...K: обучим $f_1(x),...f_M(x)$ на $T \setminus T_k$ для каждого $(x,y) \in T_k$: дополним T' объектом $([f_1(x),...f_M(x)],y)$
- $oldsymbol{0}$ Обучим $G(\cdot)$ на T'.
- **5** Перенастроим $f_1(x), ... f_M(x)$ на всей T.

Расширения стэкинга

Кроме прогнозов $f_1(x),...f_M(x)$ агрегирующая функция может зависеть от:

- исходных признаков х
 - в разных частях признакового пространства-разная агрегация
- внутренних представлений f_m (дискриминантных функций, вероятностей).

Линейный стэкинг (блендинг)

Линейный стэкинг (блендинг, blending) :

$$f(x) = \sum_{m=1}^{M} w_m f_m(x)$$

$$\sum_{n=1}^{N} \left(\sum_{m=1}^{M} w_m f_m(x_n) - y_n \right)^2 \to \min_{\mathbf{w}}$$

- $f_1(x), ... f_M(x)$ зависимы (предсказывают один и тот же y) => нестабильная оценка.
- Более устойчивая оценка:

$$\begin{cases} \sum_{n=1}^{N} \left(\sum_{m=1}^{M} w_m f_m(x_n) - y_n \right)^2 + \lambda \sum_{m=1}^{M} \left(w_m - \frac{1}{M} \right)^2 \to \min_{\mathbf{w}} \\ w_1 \ge 0, \dots w_M \ge 0 \end{cases}$$

Содержание

- 1 Разложение на смещение и разброс
- 2 Композиции алгоритмов
- Фиксированная агрегирующая функция (против переобучения)
- 4 Стэкинг
- Композиции на разных обучающих подвыборках (против переобучения)

Усреднение по выборкам

Усреднение по выборкам

Усреднение по выборкам

Усреднение по выборкам: если модель переобучается на выборке (X,Y) можно усреднять множество моделей, обученных на разных реализациях обучающих выборок $(X_k,Y_k),\ k=1,2,...M.$

$$bias_{X,Y} \left[\frac{1}{M} \sum_{k=1}^{M} f(x, X_k, Y_k) \right] = y(x) - \mathbb{E}_{X,Y} \left[\frac{1}{M} \sum_{k=1}^{M} f(x, X_k, Y_k) \right]$$

$$= y(x) - \frac{1}{M} \sum_{k=1}^{M} \mathbb{E}_{X,Y} f(x, X_k, Y_k) = y(x) - \frac{1}{M} \sum_{k=1}^{M} \mathbb{E}_{X,Y} f(x, X, Y)$$

$$= y(x) - \mathbb{E}_{X,Y} f(x, X, Y)$$

т.е. смещение=смещению 1-го алгоритма.

Усреднение по выборкам: дисперсия

$$\begin{aligned} \text{Var}_{X,Y} \left[\frac{1}{M} \sum_{k=1}^{M} f(x, X_k, Y_k) \right] &= \mathbb{E}_{X,Y} \left[\frac{1}{M} \sum_{k=1}^{M} f(x, X_k, Y_k) - \mathbb{E}_{X,Y} \left[\frac{1}{M} \sum_{k=1}^{M} f(x, X_k, Y_k) \right] \right]^2 \\ &= \mathbb{E}_{X,Y} \left[\frac{1}{M} \sum_{k=1}^{M} (f(x, X_k, Y_k) - \mathbb{E}_{X,Y} f(x, X_k, Y_k)) \right]^2 = \\ &= \frac{1}{M^2} \mathbb{E}_{X,Y} \left[\sum_{k=1}^{M} (f(x, X_k, Y_k) - \mathbb{E}_{X,Y} f(x, X_k, Y_k)) \right]^2 = \\ &= \frac{1}{M^2} \sum_{k=1}^{M} \mathbb{E}_{X,Y} \left[f(x, X_k, Y_k) - \mathbb{E}_{X,Y} f(x, X_k, Y_k) \right]^2 + \\ &+ \frac{1}{M^2} \sum_{k_1 \neq k_2} \mathbb{E}_{X,Y} \left[(f(x, X_{k_1}, Y_{k_1}) - \mathbb{E}_{X,Y} f(x, X_{k_1}, Y_{k_1})) \left(f(x, X_{k_2}, Y_{k_2}) - \mathbb{E}_{X,Y} f(x, X_{k_2}, Y_{k_2}) \right) \right] \\ &= \frac{1}{M^2} \sum_{k=1}^{M} \mathbb{Var}_{X,Y} \left[f(x, X_k, Y_k) \right] + \frac{1}{M^2} \sum_{k_1 \neq k_2} \text{cov} \left[f(x, X_{k_1}, Y_{k_1}), f(x, X_{k_2}, Y_{k_2}) \right] \end{aligned}$$

Усреднение по выборкам: дисперсия

При нескоррелированных $f(x, X_k, Y_k)$:

$$\begin{split} \frac{1}{M^2} \sum_{k=1}^{K} \mathsf{Var}_{X,Y} \left[f(x, X_k, Y_k) \right] + \\ + \frac{1}{M^2} \sum_{k_1 \neq k_2} \mathsf{cov} \left[f(x, X_{k_1}, Y_{k_1}), f(x, X_{k_2}, Y_{k_2}) \right] = \\ = \frac{1}{M} \mathsf{Var}_{X,Y} \left[f(x, X_k, Y_k) \right] \end{split}$$

Дисперсия в M раз меньше.

Усреднение по выборкам: дисперсия

При частичной скоррелированности, дисперсия тоже уменьшается (используем $\text{cov}(x,y) \leq \sqrt{\text{Var}(x)} \sqrt{\text{Var}(y)}$):

$$\begin{split} \frac{1}{M^2} \sum_{k=1}^{K} \mathsf{Var}_{X,Y} \left[f(x, X_k, Y_k) \right] + \\ + \frac{1}{M^2} \sum_{k_1 \neq k_2} \mathsf{cov} \left[f(x, X_{k_1}, Y_{k_1}), f(x, X_{k_2}, Y_{k_2}) \right] = \\ = \frac{1}{M^2} \sum_{k_1 = 1}^{M} \sum_{k_2 = 1}^{M} \mathsf{cov} \left[f(x, X_{k_1}, Y_{k_1}), f(x, X_{k_2}, Y_{k_2}) \right] \leq \\ \leq \frac{1}{M^2} \sum_{k_1 = 1}^{M} \sum_{k_2 = 1}^{M} \sqrt{\mathsf{Var}_{X,Y} \left[f(x, X_{k_1}, Y_{k_1}) \right]} \sqrt{\mathsf{Var}_{X,Y} \left[f(x, X_{k_2}, Y_{k_2}) \right]} \leq \\ \leq \mathsf{Var}_{X,Y} \left[f(x, X, Y) \right] \end{split}$$

Бэггинг & метод случайных подпространств

На практике дана единственная (X, Y). Как генерировать $(X_1, Y_1), ...(X_M, Y_M)$?

 $^{^3}$ Какова вероятность того, что некоторый объект не попадет в подвыборку? Чему равен предел этой вероятности при $N o \infty$? $^{38/45}$

Бэггинг & метод случайных подпространств

На практике дана единственная (X, Y). Как генерировать $(X_1, Y_1), ...(X_M, Y_M)$?

- Бэггинг (bagging):
 - \bullet случайный выбор N объектов (с возвращением) 3
- Метод случайных подпространств (random subspaces):
 - ullet случайный выбор K признаков (без возвращения, K < N)
- Можно применять комбинацию методов.

 $^{^3}$ Какова вероятность того, что некоторый объект не попадет в подвыборку? Чему равен предел этой вероятности при $N o \infty$?

Бэггинг деревьев

Регрессия: одно дерево и бэггинг над деревьями

Бэггинг деревьев

Настройка решающего правила в узле CART:

$$\widehat{f}, \widehat{h} = \underset{f,h \in P(t)}{\operatorname{arg max}} \Delta \phi(t)$$

P(t) для стандартных решающих деревьев:

$$P = \{\}$$
for each f in $\{1,...,D\}$
for each h in unique $\{x_n^f\}_{n:x_n \in t}$

$$P := P \cup (f,h)$$

Бэггинг над решающими деревьями успешно борется с их переобучением.

Случайный лес, особо случайные деревья

P(t) для случайного леса (random forest, RF):

```
P=\{\}, K=\alpha D sample d_1,...d_K randomly from \{1,...,D\} # без возвращения for each f in d_1,...d_K for each h in unique \left\{x_n^f\right\}_{n:x_{n\in t}} P:=P\cup (f,h)
```

S(t) для особо случайных деревьев (extra random trees, ERT):

```
S = \{\}, K = \alpha D sample d_1, ..., d_K randomly from \{1, ..., D\} # с возвращением for each f in d_1, ..., d_K sample h randomly from \mathit{unique}\left\{x_n^f\right\}_{n:x_{n\in t}} P := P \cup (f,h)
```

Вневыборочная оценка

Оценка по обучающей выборке - оптимистическая оценка сверху:

$$L = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L} \left(\frac{1}{M} \sum_{m=1}^{M} f_m(x_n), y_n \right)$$

Вневыборочная оценка

Оценка по обучающей выборке - оптимистическая оценка сверху:

$$L = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L} \left(\frac{1}{M} \sum_{m=1}^{M} f_m(x_n), y_n \right)$$

Вневыборочная оценка (out-of-bag estimate) - если с бэггингом

$$L_{OOB} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L} \left(\frac{1}{|I_n|} \sum_{m \in I_n} f_m(x_n), y_n \right)$$

- $I_n \subset \{1,2,...M\}$ набор моделей, не использовавших (x_n,y_n) для обучения.
- Не требуется дополнительная валидационная выборка.
- Немного пессимистическая оценка потерь снизу.

Комментарии

- Бэггинг, случайный лес, особо случайные деревья:
 - легко распараллеливаются
 - базовые модели не учатся исправлять ошибки друг друга
- Деревья случайный лес, особо случайные деревья могут строиться на одинаковой обучающей выборке
 - bootstrap=False в sklearn
 - за счет случайности P(t) модели все равно будут получаться разные

Число базовых моделей в ансамбле

- Пусть M=#базовых моделей.
- Типичная зависимость потерь от M:

- Нет переобучения с $\uparrow M$: просто избыточное усреднение по однотипным моделям.
- Настройка: подбор всех параметров с малым M, затем $\uparrow M$.

омпозиции на разных обучающих подвыборках (против переобучения

Заключение

- Разложение на смещение и разброс:
 - простые модели: высокое смещение
 - сложные модели: высокая дисперсия
- Разложение неопределенности:
 - выгодно усреднять разнородные модели
- Композиции:
 - простая агрегирующая модель: борьба с переобучением
 - сложная агрегирующая модель: борьба с недообучением
- Стэкинг: агрегирующая модель и базовые должны обучаться на разных выборках
- Борьба с переобучением: бэггинг, метод случайных подпространств, случайный лет, особо случайные деревья.