We will show here how to construct the vectors \vec{v}_g with an example. Recall the ciphertext given in the slide 19 of sec2.4.pdf (slide number is listed on the bottom right corner of the slide):

Recall the ciphered text:

DBMOKWWODJPAOPEPHGQAHWVUJNXDZA IAQMRPNEMHGPERZOVKRVLWUGAEOPXE HMXDVBXDDVKOYQHJJBLWKXIJDVUQDB IPCMAWTBLATKSIZJEYFBSIZBSZVG

We noticed by computing the index of coincidences for m = 1, 2, 3, 4, 5 on the slides 20-23 of sec2.4.pdf that the key word length m = 4 is the correct guess. So we divide the given ciphertext into 4 substrings as follows:

Substring (y_1) :

DKDOHHJZQNGZRUOHVDYJKDDCTTZFZV

Substring (\mathbf{y}_2) :

BWJPGWNAMEPOVGPMBVQBXVBMBKJBBG

Substring (\mathbf{y}_3) :

MWPEQVXIRMEVLAXXXKHLIUIALSESS

Substring (\mathbf{y}_4) :

OOAPAUDAPHRKWEEDDOJWJQPWAIYIZ

Substring (\mathbf{y}_1) contains every fourth letter of the ciphertext starting with first letter, that is, it has 1st letter, 5th letter, 9th letter and so on.

Similarly substring (\mathbf{y}_2) contains every fourth letter of the ciphertext starting with second letter, that is, it has 2nd letter, 6th letter, 10th letter and so on.

Substring (y_3) contains every fourth letter of the ciphertext starting with third letter, that is, it has 3rd letter, 7th letter, 11th letter and so on.

Substring (\mathbf{y}_4) contains every fourth letter of the ciphertext starting with fourth letter, that is, it has 4th letter, 8th letter, 12th letter and so on.

Now let us compute the vectors \vec{v}_g where $0 \le g \le 25$ for the substring (\mathbf{y}_1) :

First notice that there are 30 characters in the substring (\mathbf{y}_1) and so the length of this substring N = 30.

By counting each alphabet in this substring, we get the following frequency table:

	Α	В	С	D	Е	F	G	Н	I	J	K	L	M
ĺ	0	0	1	5	0	1	1	3	0	2	2	0	0
_													

			_						W			
1	2	0	1	1	0	2	1	2	0	0	1	4

Therefore,

$$\vec{v}_0 = \frac{1}{30}(0, 0, 1, 5, 0, 1, 1, 3, 0, 2, 2, 0, 0, 1, 2, 0, 1, 1, 0, 2, 1, 2, 0, 0, 1, 4)$$

Once we have \vec{v}_0 , then \vec{v}_1 can be obtained by recycling the components. To obtain \vec{v}_1 , simply move the first component to the last. So

$$\vec{v}_1 = \frac{1}{30}(0, 1, 5, 0, 1, 1, 3, 0, 2, 2, 0, 0, 1, 2, 0, 1, 1, 0, 2, 1, 2, 0, 0, 1, 4, 0)$$

To obtain \vec{v}_2 from \vec{v}_1 , move again the first component of \vec{v}_1 to the last. So

$$\vec{v}_2 = \frac{1}{30}(1, 5, 0, 1, 1, 3, 0, 2, 2, 0, 0, 1, 2, 0, 1, 1, 0, 2, 1, 2, 0, 0, 1, 4, 0, 0)$$

By repeating this process, one gets \vec{v}_g for $0 \le g \le 25$ as listed in the next page. Notice that if we continue this process, we will get $\vec{v}_{26} = \vec{v}_0$.

Now for the substring (y_1) , we will have:

$$\vec{v}_0 = \frac{1}{30}(0, 0, 1, 5, 0, 1, 1, 3, 0, 2, 2, 0, 0, 1, 2, 0, 1, 1, 0, 2, 1, 2, 0, 0, 1, 4)$$

$$\vec{v}_1 = \frac{1}{30}(0, 1, 5, 0, 1, 1, 3, 0, 2, 2, 0, 0, 1, 2, 0, 1, 1, 0, 2, 1, 2, 0, 0, 1, 4, 0)$$

$$\vec{v}_2 = \frac{1}{30}(1, 5, 0, 1, 1, 3, 0, 2, 2, 0, 0, 1, 2, 0, 1, 1, 0, 2, 1, 2, 0, 0, 1, 4, 0, 0)$$

$$\vec{v}_3 = \frac{1}{30}(5, 0, 1, 1, 3, 0, 2, 2, 0, 0, 1, 2, 0, 1, 1, 0, 2, 1, 2, 0, 0, 1, 4, 0, 0, 1)$$

$$\vec{v}_4 = \frac{1}{30}(0, 1, 1, 3, 0, 2, 2, 0, 0, 1, 2, 0, 1, 1, 0, 2, 1, 2, 0, 0, 1, 4, 0, 0, 1, 5)$$

$$\vec{v}_5 = \frac{1}{30}(1, 1, 3, 0, 2, 2, 0, 0, 1, 2, 0, 1, 1, 0, 2, 1, 2, 0, 0, 1, 4, 0, 0, 1, 5, 0, 1)$$

$$\vec{v}_6 = \frac{1}{30}(1, 3, 0, 2, 2, 0, 0, 1, 2, 0, 1, 1, 0, 2, 1, 2, 0, 0, 1, 4, 0, 0, 1, 5, 0, 1, 1)$$

$$\vec{v}_7 = \frac{1}{30}(3, 0, 2, 2, 0, 0, 1, 2, 0, 1, 1, 0, 2, 1, 2, 0, 0, 1, 4, 0, 0, 1, 5, 0, 1, 1)$$

$$\vec{v}_8 = \frac{1}{30}(0, 2, 2, 0, 0, 1, 2, 0, 1, 1, 0, 2, 1, 2, 0, 0, 1, 4, 0, 0, 1, 5, 0, 1, 1, 3)$$

and so on.

Recall that

$$\vec{p} = (p_0, p_1, \dots, p_{25}) = (0.082, 0.015, 0.028, 0.043, \dots, 0.001) \in \mathbb{R}^{26}$$

where p_i 's are as given in the frequency table shown in alphabetfrequency.pdf.

Now if we compute the dot product

$$M_0 = \vec{p} \cdot \vec{v_0} = \frac{1}{30} \left[0.082 \times 0 + 0.015 \times 0 + 0.028 \times 1 + 0.044 \times 5 + \cdots \right]$$

which is approximately 0.0341. I multiplied it by 100 to make it look nicer and entered as the top entry of the column 1 in the table given in the slide 26 of sec2.4.pdf.

Similarly we can compute the dot product $M_1 = \vec{p} \cdot \vec{v}_1$ to get the next entry of column 1 and so on.

More generally one computes the dot product $M_g = \vec{p} \cdot \vec{v}_g$ for $0 \le g \le 25$ to get all 26 entries in the column 1.

Now repeat this whole process with the substring (y_2) to get all the entries in column 2 and so on.

One needs to be careful that the length N is not necessarily constant for all the substrings. For the substrings given in our example, N=30 for the first three substrings where as for the fourth substring we have N=28.