A Crash Course in Linear Programming

Monday, April 10, 2017 9:45 PM

A CRASH-COURSE IN LINEAR PROGRAMMING

A general LP: min CTx: Ax>b

X E IR": variables

A E IRMXN: Constaint-, (usually m 7, n)

matrix

C: obj-function, CERN

 $c^{T} \times = c \cdot \times = \langle c, \times \rangle = \sum_{i=1}^{n} c_i \times i$.

Picture when n=2:

min x,+3x2

 $3 \times_{1} + 2 \times_{2} >_{1} 6$ $\times_{1} - \times_{2} >_{1}$ $\times_{1} >_{0}$ X2 >, 0

Linear Algebra Preliminaries

· Giren A, {a,,..., am} SR me the m-rows {A,,..., An} ⊆ Rm __n - n- sols.

- Span (ν, , ..., ν_k) := { Σλίνι : λ; ∈R}
 - This is an example of a Vector Space.
 - · if N∈ V =) ane V · n, n ∈ V =) n+n ∈ V
- Lin. Ind: A set $\{v_1, \ldots, v_k\}$ of rectors are lin. independent iff $\{v_i, v_i = \vec{0} \iff \vec{0}\} = \vec{0} \times \vec{0} = \vec{0} \times \vec{0}$
 - eg: $N_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $N_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $N_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- FACT: Any maximal collection of lin. ind. sets in a vector space has the same cardinality.

 The size of this "basis" is Try to prove this.

 the dim (v).

 ERMIN

 Given a matrix A, two important V-spaces

- - O Row-Space = Span {a,,..., am} = Rh
 - ② Col-Space = Span {A,,...,An } ⊆ Rm
 - row-rank = dim (R); col-rank = dim (R)

 max # of lin-ind max # of lin-ind

 rows

 Cols

- · AMAZING FACT: vow-rank (A) = col-rank (A) = rank (A)
- · Ways to think of $A \times = \sum_{j=1}^{n} A_j \times_j$ ie.

 a linear Comb of cols.
 - Proof:

 Ax & C, JA & R

 AxeR

 AyeR

 Proof:

In IR (which is an inner-prod-space, ie, it has an inner product defect on it)

any V-space CR, has a "perpendicular" V-space

V-1 also V-1 = {u, v7 = 0 + nev}

Fact: $dim(V) + dim(V^{\perp}) = n$

RI = {x": (yTA)x = 0, 4 y ∈ Rm}

 $= \left\{ \chi : A\chi = 0 \right\}$

Let $\{r_1, \ldots, r_d\}$ be a basis of \mathbb{R}^1 $\subseteq \mathbb{R}^n$ note d = n - row - rank(A)

This can be completed to a basis of Rh

$$B = \{r_1, \dots r_d, s_{d+1}, \dots, s_n\}$$

$$\therefore \forall N \in \mathbb{R}^n, \quad V = \{\sum_{i=1}^n x_i, r_i + \sum_{i=d+1}^n s_i \}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i + | \lambda_i, \dots, \lambda_d, \beta_{d+1}, \dots, \beta_n\}$$

$$= \{A(\sum_{i=1}^n x_i, r_i$$

· A matrix A is said to have full row-rank if row-rank (A) = n.

$$\Rightarrow R^{\perp} \equiv \{\vec{0}\}$$

Coming back to LP's

F:= {x | Ax > b} is called the feasible region

· Henceforth we assume A has full row-rank.

Also called an EXTREME POINT SOLN or a VERTEX polition.

All bases of \iff Basic Feasible $\{a_1, \ldots, a_m\}$ Solutions.

Thm: Any LP has an Optimum Solution @ a basic feasible soln.

Pf:- If α is an opt-soln & $B(x) \neq full-row-mk$, Then $\exists v \in \mathbb{R}^n$ at $v^Ta_{i}=0 \forall a_{i} \in B(x)$

Consider x + 8v - · · · finish the proof

- Fact: For any basis B (of any V-space, VieB,

Fact: For any basis B (of any V-space, VieB,

B-i+i' is also a

• cost (B) := $C^T \times_B = C^T B^T b_B$

· Let B* be the 'local-opt' basis. i.e. \(\text{i} \in \text{B*}, \text{y} \neq \text{B*} \) if $B_i = B^* - i + j$ is a basis, Then $cost(B_i) \ge cost(B^*)$

Thm: - XB* is a Global OPT.

 $Pf: \mathcal{H}: \mathcal{H}:= \mathcal{H}$ $\mathcal{H}:= \mathcal{$

it has the ith coor >0

and rest all 0 $A(x_i - \hat{x}) = 8 \cdot e \cdot \text{ for some}$ $8^* = 8 \cdot e \cdot \text{ for some}$ i=1-n $(x_i-x)'S Span row-span(A)=TR^n$ Why? Again multiply by A and restrict ath tob $0 \leq A(x-\tilde{\chi})|_{S^*} = \sum_{x \in X} \chi_{x}(x)$ x, 20 => d; > 0

x, 20 => d; > 0

any lefs xk Picture: Now we are done. If & is LOCAL OPT, Then, $C^{T}(\chi_{i}-\chi) > 0$

if
$$x^*$$
 is GLOBAL OPT

$$C^T(x^*-\hat{x}) = C^T(\sum d_i(x_i-\hat{x}))$$

$$0 > C^T(x^*-\hat{x}) = C^T(x^*-\hat{x})$$

$$0 > C^T(x^*-\hat{x}) = C^T(\sum d_i(x_i-\hat{x}))$$

$$0 > C^T(x^*-\hat{x}) = C^T(x^*-\hat{x})$$

$$0 > C^T(x^*-\hat{x})$$