4. Komplex számok

4.1. Oldjuk meg az alábbi egyenleteket a komplex számok halmazán! Ábrázoljuk a megoldásokat a komplex számsíkon!

(a)
$$x^2 + 4 = 0$$
,

(c)
$$x^2 - x + 1 = 0$$
,

(b)
$$x^2 + 2x + 2 = 0$$
,

(d)
$$x^3 - 6x^2 + 13x = 0$$

4.2. Írjuk fel az alábbi komplex számok algebrai alakját!

(a)
$$(3+i)(2+3i)$$
, $(-2+3i)(5-2i)$, $i(1+2i)$, $(-1+i)(1-2i)(1+2i)$,

(b)
$$\overline{5-2i}$$
, $\overline{(3+4i)}(2+i)$,

(c)
$$(2-i)^3$$
, $i^6 + 3i^5 - 2i^3 + i^2 - 1$, i^{2017} , i^{100} ,

(d)
$$\frac{5+3i}{i}$$
, $\frac{1-i}{2+i}$, $\frac{1-2i}{1-3i}$, $\frac{2-i}{(3-2i)(2+5i)}$.

4.3. Mely z komplex számokra igazak a következő feltételek?

(a)
$$\bar{z} = z$$

(b)
$$\bar{z} = iz$$

(c)
$$\bar{z} = \frac{1}{z}$$

4.4. Oldjuk meg az alábbi egyenleteket a komplex számok halmazán!

(a)
$$\overline{z} + 2z = 9 + 2i$$
,

(d)
$$z^2 + |z|^2 = 2 - 6i$$
,

(b)
$$\overline{z} + |z|^2 = 31 - i$$
,

(e)
$$\overline{z} \cdot z^2 = 8i$$
,

(c)
$$i^3 \cdot \overline{z} = -3 - 2i$$
,

(f)
$$z^2 = i$$
.

4.5. Ábrázoljuk a komplex számsíkon az alábbi halmazokat!

(a)
$$A = \{ z \in \mathbb{C} : \text{Im}(z) = 0 \},$$

(d)
$$D = \{z \in \mathbb{C} : \operatorname{Re}(z) \ge 2\},\$$

(b)
$$B = \{ z \in \mathbb{C} : \text{Re}(z) = 0 \},$$

(e)
$$E = \{ z \in \mathbb{C} : |z| \le 1 \},$$

(c)
$$C = \{ z \in \mathbb{C} : \text{Im}(z) \le 0 \},$$

(f)
$$F = \{z \in \mathbb{C} : \operatorname{Re}(z) = \operatorname{Im}(z)\}.$$

4.6. Adjuk meg az alábbi komplex számok trigonometrikus alakját!

(a)
$$2$$
,

(c)
$$-i$$
,

(e)
$$1+i$$
,

(g)
$$-3 - 3\sqrt{3}i$$
,

(d)
$$1 - i$$

(d)
$$1 - i$$
, (f) $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$,

(h)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$$
.

4.7. Legyen $x = 3\left(\cos\frac{\pi}{9} + i\sin\frac{\pi}{9}\right)$ és $y = 2\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$. Határozzuk meg az alábbi kifejezések értékét!

(a)
$$x \cdot y$$
,

(b)
$$\frac{x}{y}$$
,

(c)
$$x^3$$
,

(d)
$$y^5$$
,

(e)
$$\frac{1}{x}$$

(a)
$$x \cdot y$$
, (b) $\frac{x}{y}$, (c) x^3 , (d) y^5 , (e) $\frac{1}{x}$, (f) x^2y .

- 4.8. A trigonometrikus alak segítségével határozzuk meg az alábbi kifejezések értékét!
 - (a) \sqrt{i} ,

(c) $(1+i)^{2008}$,

(b) $\sqrt[3]{i}$,

- (d) $(1+\sqrt{3}i)^{301}$.
- **4.9.** Számítsuk ki a $z=81\left(\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\right)$ komplex szám második, harmadik, negyedik gyökeit! Ábrázoljuk a gyököket a komplex számsíkon!
- $\underline{4.10}.$ Írjuk fel és ábrázoljuk a komplex számsíkon a harmadik, negyedik, ötödik és hatodik egységgyököket!
- 4.11. Az alábbi komplex számok közül melyek egységgyökök?

$$1+i, \quad \frac{1}{4} + \frac{3}{4}i, \quad \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, \quad 2\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right), \quad \cos\frac{\pi}{2} + i\sin\frac{\pi}{2},$$
$$\cos\frac{5\pi}{8} + i\sin\frac{5\pi}{8}, \quad \frac{1}{2} + \frac{\sqrt{3}}{2}i, \quad -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \quad -1, \quad i.$$

- 4.12. Legyen $\varepsilon=\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}$. Mutassuk meg, hogy $k=1,\ldots,8$ esetén ε^k előállítja az összes nyolcadik egységgyököt!
- 4.13. Oldjuk meg az alábbi egyenleteket a komplex számok halmazán!
 - (a) $z^2 3iz + 4 = 0$,

(d) $z^2 + (2+4i)z - 3 + 3i = 0$,

(b) $z^3 + z^2 + z = 0$,

(e) $2iz^2 + (4+5i)z + 5 = 0$,

(c) $z^5 - z = 0$,

(f) $iz^2 + 2iz + 1 = 0$.