REPORT

An LIF Neuron

Simulating an LIF Neuron in Matlab

A Nengo LIF neuron using actual parameter values

Phase portrait of a pool of 100 Nengo Neurons

Activity of all neurons in a Nengo pool

Firing rates of all neurons in a Nengo Pool

3X3 Matrix Multiplication through Nengo

Matrix A

A= Input Matrix

Order: 3 X 3

0.5	0	1
0	1	0.4
0.5	0.5	0

Matrix B

B=Input Matrix

Order: 3X3

0.4	1	0
0	0.4	1
0.5	0	0

Matrix R: Stores result

R = A * B

Order: 3 X 3

0.7	0.5	0
0.2	0.4	1
0.4	0.7	0.5

These are the expected values after multiplication.

PARAMETER VALUES USED:

TauPSC: 100 ms

TauRef= 2 ms

TauRC= 20 ms

Number of neurons in each pool: 100

Filter = 0.02

Simulation for: 0 to 1 sec, timestep: 0.001

OBTAINED OUTPUT OF MULTIPLICATION

ANALYSING AFFECT OF VARIOUS PARAMETERS ON OUTPUT VALUES

1. Number of neurons

2. TauPSC: POST SYNAPTIC TIME CONSTANT

3. TauRC

4. TauRef

R13

CONNECTION MATRICES IN A NETWORK MULTIPLYING TWO VARIABLES

Connection Matrix

Neurons in Pool B

Connection Matrix

Neurons in Pool A

Other operations:

Matrix X Vector

0.5	0	1		0		0.5
0	1	0.4	Х	0.4	=	0.6
0.5	0.5	0		0.5		0.2

Neurons in Pool C

Vector X Matrix

	0.4	ΛΕ	1 —	0.5	0	1				
١٠	0.4	0.5	X					0.25	0.65	0.16
<u> </u>		<u> </u>] ——	0	1	0.4	=			
				0.5	0.5	0				

Vector X Vector

0 0.4	0.5	X	0.4	=	0.9
			0.5		

Vector X Matrix X Matrix X Vector

	0.5	0	1		0.5	0	1		0	
0 0.4 0.5 X	0	1	0.4	Х	0	1	0.4	Х	0.4	= 0.547
	0.5	0.5	0		0.5	0.5	0		0.5	