TK1 Exercise 7

Team members:

Krishna Chaitanya	2364582
Praveen Kumar Pendyala	2919474
Ramachandra Kamath Arbettu	2792374
Yanai Avi Gonen	1107805

Task 1 : Local View

Step 1: G₁(1)

Node 1 discovers the nearby nodes

Step 2: G₂(1)

The other nodes look for the nearby nodes to them

Task 2: LOCAL Model

1. Inherently non-local Problem : A problem is inherently non-local if the output of a node v depends on the initial input of a node outside of $G_k(v)$

Example: Calculating the shortest path between two nodes in a graph is inherently non-local. Whether a path is the shortest path between 2 nodes or not depends also on the possible shorter paths that may span nodes outside $G_k(v)$.

2. **Impossibility of Symmetry Breaking** - Two nodes with equal view of the graph produce the same output.

Example: Consider a large, uniform mesh network of routers. Any two routers in this network, not close to the network boundaries, will see an identical neighbourhood. It's impossible to assign addresses in such a highly symmetric network - just like in case of the n-cycle network presented in class.

Task 3: Topology Control

Relative Neighborhood Graph (RNG) - Edge (u, v) exists if the intersection of the disks centered at u and v is free of other nodes.

The algorithm has the property, **Planarity** - required by Greedy Perimeter Stateless Routing.