COMPSCI 3331

Turing Machines: Outline

- Motivation.
- ► Formal Definitions.
- Examples.

- Both regular languages and CFLs can't define some languages.
- Turing machines (TMs): a formal model capable of accepting more languages.
- TMs represent our notion of what is computable.

- Basic concept is the same: finite control, input is read sequentially (from a "tape").
- However, now the input tape is read/write.
 - For DFAs, NFAs, PDAs, the input tape was read-only.
- A TM can move either way on the input tape.
 - For DFAs, NFAs, PDAs, could only move to right (or stay in the same place).

Alan Turing (1912–1954)

"[Any person] provided with paper, pencil, and [eraser], and subject to strict discipline, is in effect a universal Turing Machine." (1948)

Image copyright National Portrait Gallery. Used under academic license.

A Turing Machine is a seven-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ where

- Q is the finite set of states,
- \triangleright Σ,Γ are the input and tape alphabets (Σ ⊆ Γ),
- ▶ $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ is the transition function .
- ▶ $q_0 \in Q$ is the start state; $F \subseteq Q$ is the set of final states.
- ▶ $B \in \Gamma \Sigma$ is the blank symbol.

Transition Function

$$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$$

- $\delta(q,\alpha) = (q',\beta,D).$
- ► If we are in state *q* and currently see tape symbol $\alpha \in \Gamma$ on the tape, we
 - (a) go to state $q' \in Q$.
 - (b) rewrite α by β in the current cell of the tape.
 - (c) move the input head in direction *D* on the tape: *L* (left), *R* (right) or *S* (stationary).

Representing TMs

We can represent the transition $\delta(q, \alpha) = (q', \beta, D)$ as an arc:

Computation of a Turing Machine

How does a TM compute?

- The input word x is initially written on the tape, and we start in state q_0 . We point at the left-most symbol of x.
- Based on the current symbol on the tape and the current state, we make the move based on the transition function.
- We keep making moves as long as possible.
- ► We **can** move off the region occupied by *x* on the tape (these cells contain the blank symbol by default).
- If the TM enters and final state, the word is accepted.
- Otherwise, the string is not accepted.

Example of a TM

Instantaneous Description of a TM

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ be a TM. An instantaneous description (ID) of M is a word from $\Gamma^* Q \Gamma^*$.

Let $x_1x_2\cdots x_{i-1}qx_ix_{i+1}\cdots x_n\in \Gamma^*Q\Gamma^*$. This means that

- ► The non-blank symbols on the input tape from left-to-right are $x_1 x_2 x_3 \cdots x_n$.
 - ▶ (Symbols may be a blank if i = 1 or i = n.)
- ▶ The TM M's head is currently pointing at x_i .
- ► The TM *M* is currently in state *q*.

Moves of a TM

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ be a TM. We denote by \vdash_M the relation between IDs given by the transition function. $\delta(q, x_i) = (q', \beta, L)$. Then we have the following cases:

▶ If i > 1, then

$$x_1x_2\cdots x_{i-1}qx_ix_{i+1}\cdots x_n\vdash_M x_1x_2\cdots x_{i-2}q'x_{i-1}\beta x_{i+1}\cdots x_n.$$

If *i* = 1, then

Moves of a TM

(1)

 $\delta(q, x_i) = (q', \beta, R)$, we have two cases:

▶ If i < n, then

$$x_1x_2\cdots x_{i-1}qx_ix_{i+1}\cdots x_n\vdash_M x_1x_2\cdots x_{i-1}\beta q'x_{i+1}\cdots x_n.$$

▶ If i = n, then

$$x_1x_2\cdots qx_n\vdash_M x_1x_2\cdots\beta qB$$
.

Moves of a TM

$$\int \delta(q,x_i)=(q',\beta,\mathcal{S}),$$

$$x_1x_2\cdots x_{i-1}qx_ix_{i+1}\cdots x_n\vdash_M x_1x_2\cdots x_{i-1}q'\beta x_{i+1}\cdots x_n.$$

We denote by \vdash_M^* the fact that two IDs are related by zero or more applications of \vdash .

Language Acceptance

The language **accepted** by a TM $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ is defined as follows:

$$L(M) = \{ w \in \Sigma^* \ : \ \exists x_1, x_2 \in \Gamma^*, q_f \in F, q_0 w \vdash_M^* x_1 q_f x_2 \}.$$

Examples:

- ► $L = \{a^n b^{n^2} : n \ge 0\}.$
- ► $L = \{a^n b^n c^n : n \ge 0\}.$

GGGG HUMBLECCE ARAR BBBB CECE ARAR BBBB CECE ARAR BBBB CECE ARAR BBB CECE

Halting and Crashing

- We say that a TM halts if it enters a state and has no next move.
- Informally, we say that a TM crashes if it enters a state that is not final and then has no next move (i.e., halts and rejects).
- For any TM, we can assume that when it enters a final state, it halts.
- ► That is, for every final state $q_f \in F$, $\delta(q_f, \alpha)$ is undefined for all $\alpha \in \Gamma$.

Some questions...

- What kinds of languages can TMs accept?
- What kinds of languages can't be accepted by a TM?
- Can every CFL be accepted by a TM?
- What about nondeterminism for TMs?