

Informe N° 4

Ensayo de un grupo electrógeno

Laboratorio de Máquinas (ICM 557)

Segundo Semestre 2020

Profesores: Cristóbal Galleguillos

Tomas Herrera

Ayudante: Ignacio Ramos

Paralelo: 3

Nombre: Gustavo Sáez

Índice

1	•	Intro	oducción	. 3
2	•	Obje	etivos	. 3
3	•	Met	odología / Procedimientos	. 4
	3.	1	Esquema de la instalación.	. 4
	3.	2	Datos a calcular	. 5
	3.	3	Procedimiento de trabajo	. 5
4		Resu	ultados	. 6
	4.	1	Tabla de Valores Medidos	. 6
	4.	2	Relación entre R.P.M y frecuencia	. 6
	4.	3	Curvas de Utilidad	. 7
	4.	4	Punto de funcionamiento óptimo	. 8
	4.	5	Comparación Costo de kWh en punto óptimo con respecto a la mejor tarifa de CHILQUINTA	. 8
5		Con	clusiones	.9
6		Refe	erencias	.9

1. Introducción

El propósito de este informe es realizar un análisis de cómo se comporta un motor de combustión interna aplicado a un grupo electrógeno. Se tabularán datos medidos en laboratorio, y luego se procederá a calcular otros datos, trazando gráficos y curvas para hacer un estudio del comportamiento.

2. Objetivos

Los objetivos a realizar en este informe son los siguientes:

- a) Determinar el costo Kwh generado.
- b) Determinar el punto de funcionamiento óptimo. ¿A qué RPM?

3. Metodología / Procedimientos

3.1 Esquema de la instalación.

La obtención de potencia del motor se realiza de acuerdo al esquema presentado en la siguiente ilustración:

Figura 3.1 Detalle de la instalación. Fuente (Giangrandi, 2011)

El diagrama del generador se presenta en:

Figura 3.2 Esquema de generador tipo. Fuente (Giangrandi, 2011)

3.2 Datos a calcular.

Para el análisis de comportamiento, se realizará el cálculo de los siguientes parámetros:

• Caudal Volumétrico de Combustible:
$$\dot{Q} = \frac{V}{t_{cons}} [\frac{m^3}{hr}]$$
 (Ecuación 1)

• Potencia eléctrica en los bornes del alternador:
$$P_{el} = cos\phi * V_m * I_m [kW]$$
 (Ecuación 2)

• Consumo específico en los bornes del alternador:
$$b_{el} = \rho_c * \frac{Q_{cb}}{P_{el}} \left[\frac{kg}{kWh}\right]$$
 (Ecuación 3)

• Costo del kWh generado:
$$C_{kWh} = \frac{\mathbb{Q}_{cb}*c}{P_{el}} \left[\frac{\$}{kWh}\right]$$
 (Ecuación 4)

• Corriente media:
$$I_m = \frac{\mathrm{I}_1 + \mathrm{I}_2 + \mathrm{I}_3}{3} [A]$$
 (Ecuación 5)

• Tensión media:
$$V_m = \frac{V_1 + V_2 + V_3}{3} [V]$$
 (Ecuación 6)

• Potencia Efectiva:
$$P_e = 1.63 * 0.745 * P_{el} [kW]$$
 (Ecuación 7)

• Consumo específico del motor:
$$b_e = 0.62*0.745*b_{el} \left[\frac{kg}{kWh}\right]$$
 (Ecuación 8)

3.3 Procedimiento de trabajo.

Previo a la realización del experimento, es de utilidad contar con los siguientes datos:

- Determinar el volumen de la bureta a ensayar (en este caso $375 cm^3$).
- Densidad del combustible Diésel [ρ_c].
- Costo del combustible [c].
- Al ser un motor trifásico, consideraremos un ángulo $\varphi = 120^{\circ}$.

4. Resultados

4.1 Tabla de Valores Medidos

Valores medidos / obtenidos por software / etc.											
#	I1 [A]	12 [A]	13 [A]	V2 [V]	V2 [V]	V3 [V]	f [Hz]	Vol [cm3]	t [s]		
1	26	26	27	404	404	404	51.5	375	150		
2	28	29	29	402	402	402	51	375	146		
3	39	39	37	400	400	400	50.5	375	132		
4	42.5	42.6	40.9	400	400	400	50	375	125		
5	46.4	46.5	44.6	399.9	399.9	399.9	50	375	120		

Tabla 4.1 – Tabla de Valores Medidos en Laboratorio.

Si consideramos el costo del petróleo Diésel como \$780/Lt, obtenemos los siguientes parámetros:

Valores Calculados									
Q [m3/h]	Pel [kW]	bel [kg/kWh]	CkWh [\$/kWh]	Im [A]	Vm [V]	Pe [kW]	be [kg/kWh]		
0.0090	8.6618	0.8832	800.0647	26.33	404	10.5185	0.4079		
0.0092	9.3826	0.8377	758.8352	28.67	402	11.3938	0.3869		
0.0102	12.4841	0.6963	630.8020	38.33	400	15.1601	0.3216		
0.0108	13.6782	0.6711	607.9729	42.00	400	16.6102	0.3100		
0.0113	14.9229	0.6408	580.4829	45.83	399.9	18.1216	0.2960		

Tabla 4.2 – Tabla de Valores Calculados utilizando los Valores de Laboratorio.

4.2 Relación entre R.P.M y frecuencia

El término R.P.M significa Revoluciones Por Minuto, esto quiere decir, el número de ciclos que es capaz de completar un cuerpo en 1 minuto de tiempo.

La frecuencia se define como la cantidad de ciclos que un cuerpo es capaz de realizar por segundo.

Por lo tanto, considerando ambos términos, llegamos a la relación:

$$1 R.P.M = \frac{1 Ciclo}{60 Segundos}$$

Por lo tanto:

Frecuencia (Hz) =
$$\frac{Velocidad R.P.M}{60 Segundos}$$

4.3 Curvas de Utilidad

1. Consumo Específico del Motor en Función de la Carga

Figura 4.1 – Gráfica de consumo específico del motor en función de la carga.

2. Consumo Específico en los bornes, en función de la Carga

Figura 4.2 – Gráfica de consumo específico en los bornes en función de la carga.

3. Costo del kWh generado en función de la carga

Figura 4.3 – Gráfica de costo del kWh en función de la carga.

4.4 Punto de funcionamiento óptimo

Analizando las gráficas previamente entregadas además de los valores calculados y tabulados, se puede apreciar que la potencia efectiva más alta (18.1216 [kW]) se da a una intensidad de 45.83 [A], y coincidentemente es en este punto en que el costo del kWh es el más bajo, y el consumo específico también. Por lo tanto, podemos determinar que el punto de funcionamiento óptimo es este.

4.5 Comparación Costo de kWh en punto óptimo con respecto a la mejor tarifa de CHILQUINTA

El promedio de la tarifa de CHILQUINTA mensual es de \$143.89 [\$/kWh], comparado al costo en el punto de funcionamiento óptimo de nuestro experimento, que es de \$580.48 [\$/kWh]. Esto los indica que el ensayo realizado en nuestro experimento no es rentable comparado a la tarifa de mercado.

Si se utilizara un grupo electrógeno de última generación (más eficientes en comparación al utilizado en la escuela) se podrían lograr mejores tarifas, debido a la disminución del consumo de combustible que esto significaría.

5. Conclusiones

La realización de un ensayo de grupo electrógeno (en este caso con petróleo Diésel) se puede observar el comportamiento de este sometido a distintas intensidades. Tomando en cuenta el combustible utilizado, y realizando iteraciones, se pudo apreciar que el consumo específico tanto del motor como de los bornes iba disminuyendo a medida que la intensidad iba en aumento, esto quiere decir que dichos parámetros son inversamente proporcionales.

Además, pudimos verificar que el punto óptimo se produjo a una intensidad de 45.83 [A], donde el costo por consumo de combustible se acercaba a los 580.48 [\$/kWh] y la potencia generada fue de 18.12 [kW].

6. Referencias

- http://www.chilquinta.cl
- Material proporcionado en aula virtual
- Mediciones de laboratorio tabuladas en Excel de aula virtual
- Cengel Termodinámica 6ta Edición