Total	No.	of	Questions	:	9]
-------	-----	----	-----------	---	----

PB3620

SEAT No.:			
[Total	No. of Pages	:	5

[Max. Marks: 70

[6261]-25

S.E. (Electronics/E&TC)/(Electronics & Computer Engineering) ENGINEERING MATHEMATICS-III

(2019 Pattern) (Semester-III) (207005)

Instructions to the cardidates.

Time : 2½ *Hours*]

- 1) Q.1 is compulsory.
- 2) Attempt Q2 or Q3, Q4 or Q5, Q6 or Q7, Q8 or Q9.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use of electronic pocket calculator is allowed.
- 6) Assume suitable data, if necessary.
- 7) Write numerical calculations correct voto four decimal places.
- Q1) Write the correct options for the following multiple choice questions. [2]
 - a) For $f(x) = x^2$, h=2, second forward difference $\Delta^2 f(x)$ is given by
 - i) 6

ii) 12

iii) 4

- iv) 8
- b) Unit vector in the direction normal to the surface $x^2 + y^2 + z^2 = 9$ at (1,2,2) is _____
 - i) $\frac{1}{3}(\overline{i} + 2\overline{j} + 2\overline{k})$
- ii) $\frac{1}{3}(\overline{i}-2\overline{j}-2\overline{k})$

iii) $\frac{1}{3}(\overline{i} + \overline{j} + \overline{k})$

- iv) $\frac{1}{9}(\overline{i} + 2\overline{j} + 2\overline{k})$
- c) The value of $\oint_C \frac{4z^2 + z}{(z-1)} dz$ where C is |z| = 2 [2]
 - i) 5πi

ii) 10πi

iii) –10πi

iv) –5**π**i

- For $\overline{F} = x^2 \overline{i} + xy \overline{j}$ the value of $\oint \overline{F} dr$ for the curve $y^2 = x$ joining the d) points (0,0) and (1,1) is [2]
 - i)
- The Cauchy integral formula for analytic function f(z) is [1] e)
- Given equation is $\frac{dy}{dx} = f(x, y)$ with initial condition $x = x_0$, $y = y_0$ and h is f) step size. Euler's formula to calculate y_1 at $x = x_0 + h$, is given by [1]

 - i) $y_1 = y_0 + h f(x_0, y_0)$ iii) $y_1 = y_1 + h f(x_0, y_0)$
- Find value of y for x=0.5 using newton's forward difference formula for **Q2**) a) [5] following data

X	0	1	2%	3	4		
y	1	5	25	100	250		

By using simpson's $\left(\frac{3}{8}\right)^{th}$ rule, find the value of $\int_{1}^{7} f(t)dt$ for following data [5]

t	1	2	3	4	5	6	7
f(t)	81	75	80	83	78	70	60

	c)	Given $\frac{dy}{dx} = x^2 + y$, $y(0) = 1$. Determine $y(0.02)$ by using modified Eul	ler's
	,	dx method, take h=0.02	
		metriod, take n=0.02	[5]
<i>Q3</i>)	a)	Find longrange's interpolation polynomial for following data.	[5]
2-7	,	$\begin{bmatrix} x & 0 & 1 & 2 \end{bmatrix}$	[-]
		y 7 1 -7	
	b)	By trapezoidal Rule, find the value of $\int_{0}^{1} \frac{1}{1+x^2} dx$ by taking h=0.25	[5]
	c)	Use Runge-Kutta method of fourth order to solve $\frac{dy}{dx} = x^2 + y^2$, $y(1) = x^2 + y^2$	=1.5
		in the interval (1,1.5) with h=0.1	[5]
		9.1	
Q4)	a)	Find the directional derivative of the function $\phi = x^2y + xyz + z^3$ at (1,2)	,-1)
		in the direction $-8\overline{i} - 8\overline{j} + 4\overline{k}$	[5]
	b)	Show that	
		$\overline{F} = (2xz^3 + 6y)\overline{i} + (6x - 2yz)\overline{j} + (3x^2z^2 - y^2)\overline{k}$ is irrotational. F	Find
		scalar potential ϕ such that $\vec{F} = \nabla \phi$.	[5]
	a)	If $\overline{r} \times \frac{d\overline{r}}{dt} = 0$, them show that \overline{r} has a constant direction.))))
	c)	$\frac{1}{dt}$	[S]
		OR OR	

Find the directional derivative of the function $\phi = 4xz^3 + 3x^2y^2z$ at (2,-1,2) in the direction $2\overline{i} - 3\overline{j} + 6\overline{k}$ [5]

Prove that $\overline{F} = \frac{x\overline{i} + y\overline{j}}{x^2 + y^2}$ is solenoidal

[5]

Prove that $\nabla o \left[r \nabla \left(\frac{1}{r^n} \right) \right] = \frac{n(n-2)}{r^{n+1}}$ [5] **Q5**) a)

b) Prove that
$$\overline{F} = \frac{x\overline{i} + y\overline{j}}{x^2 + y^2}$$
 is solenoidal [5]

c) Prove that
$$\nabla o \left[r \nabla \left(\frac{1}{r^n} \right) \right] = \frac{n(n-2)}{r^{n+1}}$$
 [5]

Q6) a) Find the work done in moving a particle once round the ellipse $x=5\cos\theta, y=4\sin\theta, z=0$ under the field of force.

$$\overline{F} = (2x - y + z)i + (x + y - z)j + (3x^2 - 2y^2 + z^2)K$$
 [5]

- b) Evaluate $\iint_{s} \overline{r} \cdot \hat{n} \, ds$ over the surface of a sphere of radius 4 with centre at origin. [5]
- Apply stoke's theorem to evaluate $\int_{C} (yi + zj + xk).d\overline{r}$ where C is the circle given by $x^2 + y^2 + z^2 = 4$, x + z = 2 [5]
- **Q7**) a) Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$ for

 $\overline{F} = 3x^2i + (2xz - y)j + zk$ along the straight line joining O(0,0,0) and A (1,1,1). [5]

- b) Apply stoke's theorem to evaluate $\int 4ydx + 2zdy + 6ydz$ where C is the circle $x^2 + y^2 + z^2 6z = 0$, x z + 3 = 0 [5]
- Use divergence theorem to evaluate $\iint_{S} (xi + yj + z^{2}k).d\overline{s}$ where S is the surface of the cylinder $x^{2} + y^{2} = 4$ bounded by the planes z = 0 and z = 2[5]
- **Q8**) a) If f(z) is analytic function of z, and f(z) = u + iv prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left| \operatorname{Re} f(z) \right|^2 = 2 |f'(z)|^2$$
[5]

- b) Evaluate $\oint \log z \, dz$ where C is the circle |Z|=1 [5]
- c) Find the bilinear transformation which maps the points 0,-1, i of the z-plane onto the points $2, \infty, \frac{1}{2}(5+i)$ of w plane [5]

- Determine K such that the function $f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1} \left(\frac{ky}{x}\right)$ is analytic. [5]

 Evaluate $\oint_C \cot z \, dz$ where G is circle |z| = 4 by residue theorem. [5]

 Show that under transformation $w = \frac{i z}{i + z}$, x-axis in z-plane is mapped on to the circle |w| = 1 [5] **Q9**) a)
 - b)
 - c) And the state of t