```
In [1]: import pandas as pd
In [2]:
          df= pd.read csv('EV.csv')
          df.head()
Out[2]:
                                                                                                           Clean
                                                                                                      Alternative
                                                                                             Electric
                                                                                                                           Base Legislative
                                                       Postal Model
                                                                                                            Fuel
                                                                                                                  Electric
                                                                                                                                                    D
                 VIN (1-10)
                              County
                                           City State
                                                                             Make
                                                                                              Vehicle
                                                                                      Model
                                                                                                         Vehicle
(CAFV)
                                                                                                                                      District Vehicle
                                                                                                                   Range MSRP
                                                        Code
                                                                 Year
                                                                                                Туре
                                                                                                        Eligibility
                                                                                              Plug-in
                                                                                                           Clean
                                                                                               Hybrid
                                                                                                       Alternative
                                                                                      RAV4
                                            Key
          0 JTMEB3FV6N
                                                   FL 33040
                                                                2022
                                                                          TOYOTA
                                                                                              Electric
Vehicle
                                                                                                                       42
                                                                                                                                0
                                                                                                                                         NaN 1989682
                              Monroe
                                                                                                            Fuel
                                          West
                                                                                     PRIME
                                                                                                          Vehicle
                                                                                              (PHEV)
                                                                                                          Eligible
                                                                                              Plug-in
                                                                                                           Clean
                                                                                              Hybrid
Electric
                                                                                                       Alternative
          1 1G1RD6E45D
                                                       89029
                                                                2013 CHEVROLET
                                                                                      VOLT
                                                                                                                                0
                                                                                                                                                 52044
                                Clark Laughlin
                                                   NV
                                                                                                            Fuel
                                                                                                                       38
                                                                                                                                         NaN
                                                                                              Vehicle
                                                                                                          Vehicle
                                                                                              (PHEV)
                                                                                                          Eligible
                                                                                                           Clean
                                                                                              Battery
                                                                                                       Alternative
                                                                                              Electric
          2 JN1AZ0CP8B
                               Yakima
                                        Yakima
                                                  WA
                                                       98901
                                                                2011
                                                                           NISSAN
                                                                                      LEAF
                                                                                                            Fuel
                                                                                                                       73
                                                                                                                                0
                                                                                                                                         15.0 2189725
                                                                                              Vehicle
(BEV)
                                                                                                          Vehicle
                                                                                                          Eligible
                                                                                                           Clean
                                                                                              Battery
                                                                                                       Alternative
                                                                                      BOLT
                                                                                              Electric
          3 1G1FW6S08H
                                Skagit Concrete
                                                  WA 98237
                                                                2017 CHEVROLET
                                                                                                            Fuel
                                                                                                                      238
                                                                                                                                         39.0 1867504
                                                                                         ΕV
                                                                                              Vehicle
                                                                                                          Vehicle
                                                                                               (BEV)
                                                                                                          Eligible
                                                                                              Plug-in
                                                                                                       Not eligible
                                                                                               Hybrid
                                                                                                       due to low
          4 3FA6P0SU1K Snohomish
                                        Everett
                                                  WA 98201
                                                                2019
                                                                             FORD FUSION
                                                                                              Electric
                                                                                                                       26
                                                                                                                                0
                                                                                                                                         38.0
                                                                                                                                                 20067
                                                                                                          battery
                                                                                              Vehicle
                                                                                                           range
                                                                                              (PHEV)
```

4

In [3]: df

		VIN (1-10)	County	City	State	Postal Code	Model Year	Make	Model	Electric Vehicle Type	Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range	Base MSRP	Legislative District
111	0	JTMEB3FV6N	Monroe	Key West	FL	33040	2022	ТОУОТА	RAV4 PRIME	Plug-in Hybrid Electric Vehicle (PHEV)	Clean Alternative Fuel Vehicle Eligible	42	0	NaN
	1	1G1RD6E45D	Clark	Laughlin	NV	89029	2013	CHEVROLET	VOLT	Plug-in Hybrid Electric Vehicle (PHEV)	Clean Alternative Fuel Vehicle Eligible	38	0	NaN
	2	JN1AZ0CP8B	Yakima	Yakima	WA	98901	2011	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	73	0	15.0
	3	1G1FW6S08H	Skagit	Concrete	WA	98237	2017	CHEVROLET	BOLT EV	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	238	0	39.0
	4	3FA6P0SU1K	Snohomish	Everett	WA	98201	2019	FORD	FUSION	Plug-in Hybrid Electric Vehicle (PHEV)	Not eligible due to low battery range	26	0	38.0
	112629	7SAYGDEF2N	King	Duvall	WA	98019	2022	TESLA	MODEL Y	Battery Electric Vehicle (BEV)	Eligibility unknown as battery range has not b	0	0	45.0
	112630	1N4BZ1CP7K	San Juan	Friday Harbor	WA	98250	2019	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	150	0	40.0
	112631	1FMCU0KZ4N	King	Vashon	WA	98070	2022	FORD	ESCAPE	Plug-in Hybrid Electric Vehicle (PHEV)	Clean Alternative Fuel Vehicle Eligible	38	0	34.0
	112632	KNDCD3LD4J	King	Covington	WA	98042	2018	KIA	NIRO	Plug-in Hybrid Electric Vehicle (PHEV)	Not eligible due to low battery range	26	0	47.0
	112633	YV4BR0CL8N	King	Covington	WA	98042	2022	VOLVO	XC90	Plug-in Hybrid Electric Vehicle (PHEV)	Not eligible due to low battery range	18	0	47.0

Clean

112634 rows × 17 columns

```
<class 'pandas.core.frame.DataFrame'>
          RangeIndex: 112634 entries, 0 to 112633
          Data columns (total 17 columns):
          # Column
                                                                     Non-Null Count Dtype
                                                                      ------
              VIN (1-10)
                                                                     112634 non-null object
          0
               County
                                                                     112634 non-null object
                                                                     112634 non-null object
112634 non-null object
           2
               Citv
           3
               State
                                                                     112634 non-null int64
112634 non-null int64
112634 non-null object
           4
               Postal Code
           5
               Model Year
           6
               Make
           7
               Model
                                                                     112614 non-null object
               Electric Vehicle Type 112634 non-null object Clean Alternative Fuel Vehicle (CAFV) Eligibility 112634 non-null object
           8
           9
                                                                     112634 non-null int64
112634 non-null int64
           10 Electric Range
           11 Base MSRP
           12 Legislative District
                                                                     112348 non-null float64
                                                                     112634 non-null int64
           13 DOL Vehicle ID
           14 Vehicle Location
                                                                     112610 non-null object
           15 Electric Utility
                                                                     112191 non-null object
          16 2020 Census Tract
                                                                     112634 non-null int64
          dtypes: float64(1), int64(6), object(10)
          memory usage: 14.6+ MB
 In [7]: df.columns = df.columns.str.replace(' ', '_')
          df.columns
 Out[7]: Index(['VIN_(1-10)', 'County', 'City', 'State', 'Postal_Code', 'Model_Year',
                 'Make', 'Model', 'Electric_Vehicle_Type',
                 'Clean_Alternative_Fuel_Vehicle_(CAFV)_Eligibility', 'Electric_Range', 'Base_MSRP', 'Legislative_District', 'DOL_Vehicle_ID',
                 'Vehicle Location', 'Electric Utility', '2020 Census Tract'],
                dtype='object')
 In [8]: df.rename(columns={'Clean_Alternative_Fuel_Vehicle_(CAFV)_Eligibility':'CAFV_Eligibility'}, inplace=True)
          df.columns
         dtype='object')
 In [9]: df.isnull().sum()
Out[9]: VIN_(1-10)
         County
                                      0
          City
                                      0
          State
                                      0
          Postal Code
          Model_Year
                                      0
          Make
                                      0
          Model
                                     20
          Electric_Vehicle_Type
                                      0
          CAFV Eligibility
                                      0
          Electric_Range
          Base MSRP
                                      0
          Legislative District
                                    286
          DOL Vehicle ID
                                      0
          Vehicle Location
                                     24
          Electric Utility
                                    443
          2020_Census_Tract
          dtype: int64
In [10]: df_dropna = df.dropna()
          df dropna.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 112152 entries, 2 to 112633
Data columns (total 17 columns):
# Column
                         Non-Null Count Dtype
                            -----
                         112152 non-null object
0
   VIN_(1-10)
                          112152 non-null object
    County
                          112152 non-null object
2
    Citv
3
    State
                          112152 non-null object
4
    Postal Code
                          112152 non-null int64
5
    Model Year
                           112152 non-null int64
                          112152 non-null object
6
    Make
7
    Model
                           112152 non-null object
    Electric_Vehicle_Type 112152 non-null object CAFV_Eligibility 112152 non-null object
8
9
10 Electric_Range
                          112152 non-null int64
11 Base MSRP
                           112152 non-null
12 Legislative District 112152 non-null float64
13
    DOL_Vehicle_ID 112152 non-null int64
14
    Vehicle_Location
                           112152 non-null object
                        112152 non-null object
15 Electric Utility
16 2020_Census_Tract
                           112152 non-null int64
dtypes: float64(1), int64(6), object(10)
memory usage: 15.4+ MB
```

Univariate Analysis

```
In [11]: discrete_df = df.select_dtypes(include=['object'])
         numerical df = df.select dtypes(include=['int64', 'float64'])
In [12]:
         def discrete univariate analysis(discrete data):
             for col_name in discrete_data:
    print("*"*10, col_name, "*"*10)
                 print(discrete data[col name].agg(['count', 'nunique', 'unique']))
                 print('Value Counts: \n', discrete_data[col_name].value_counts())
                 print()
In [13]: discrete_univariate_analysis(discrete_df)
         ******* VIN (1-10) *******
         count
                                                                 112634
         nunique
                    [JTMEB3FV6N, 1G1RD6E45D, JN1AZ0CP8B, 1G1FW6S08...
         unique
         Name: VIN_(1-10), dtype: object
         Value Counts:
          5YJYGDEE9M
                         472
         5YJYGDFF0M
                       465
         5YJYGDEE8M
                       448
         5YJYGDEE7M
                       448
         5YJYGDEE2M
                       437
         WA1LAAGE9M
         5UXKT0C50H
         5Y1YGAFD3M
                         1
         WDC0G5DBXL
                         1
         YV4ED3GM0P
         Name: VIN_(1-10), Length: 7548, dtype: int64
         ****** County ******
                                                                 112634
         count
         nunique
                                                                    165
                    [Monroe, Clark, Yakima, Skagit, Snohomish, Isl...
         Name: County, dtype: object
         Value Counts:
          King
                        59000
         Snohomish
                       12434
         Pierce
                        8535
                        6689
         Clark
         Thurston
                        4126
                        . . .
         Pinal
                            1
         Elmore
                           1
         Portsmouth
         Kings
                           1
         Kootenai
         Name: County, Length: 165, dtype: int64
         ****** City ******
                                                                 112634
         count
         nunique
                    [Key West, Laughlin, Yakima, Concrete, Everett...
         unique
         Name: City, dtype: object
         Value Counts:
```

```
5921
Bellevue
Redmond
                  4201
Vancouver
                  4013
Kirkland
                  3598
Hartline
Gaithersburg
                      1
El Paso
Klickitat
                      1
Worley
Name: City, Length: 629, dtype: int64
******* State ******
                                                           112634
count
nunique
           [FL, NV, WA, IL, NY, VA, OK, KS, CA, NE, MD, C...
Name: State, dtype: object
Value Counts:
       112348
WA
           76
۷A
           36
MD
           26
\mathsf{TX}
           14
C0
            9
NV
            8
GA
            7
NC
CT
            6
DC
            6
FL
            6
ΑZ
IL
            6
            5
SC
0R
NE
            5
            4
ΗI
\mathsf{U}\mathsf{T}
            4
\mathsf{AR}
            4
NY
            4
            3
TN
            3
KS
MO
            3
PΑ
            3
            3
MA
LA
NJ
            3
            2
NH
0H
WY
            2
ID
            2
ΚY
            1
RΙ
            1
MF
            1
MN
            1
\mathsf{SD}
WI
            1
NM
            1
\mathsf{AK}
            1
MS
AL
            1
            1
DF
0K
ND
           1
Name: State, dtype: int64
******* Make *******
count
                                                           112634
nunique
           [TOYOTA, CHEVROLET, NISSAN, FORD, TESLA, KIA, ...
Name: Make, dtype: object
Value Counts:
                     52078
 TESLA
NISSAN
                    12880
CHEVROLET
                   10182
F0RD
                     5819
{\tt BMW}
                     4680
KIA
                     4483
T0Y0TA
                     4405
VOLKSWAGEN
                     2514
AUDI
                     2332
V0LV0
                     2288
CHRYSLER
                     1794
HYUNDAI
                     1412
JEEP
                     1152
RIVIAN
                      885
FIAT
                      822
PORSCHE
                      818
HONDA
                      792
```

Seattle

20305

```
MITSUBISHI
                    588
POLESTAR
                    558
MERCEDES-BENZ
                    506
SMART
                    273
JAGUAR
                    219
LINCOLN
CADILLAC
                    108
LUCID MOTORS
                     65
SUBARU
                     59
LAND ROVER
                     38
LEXUS
                     33
FISKER
                     20
GENESIS
                     18
AZURE DYNAMICS
THINK
                      3
BENTLEY
                      3
Name: Make, dtype: int64
****** Model *****
                                                      112614
count
                                                         114
nunique
           [RAV4 PRIME, VOLT, LEAF, BOLT EV, FUSION, MODE...
unique
Name: Model, dtype: object
Value Counts:
MODEL 3
                23135
MODEL Y
               17142
LEAF
               12880
MODEL S
                7377
                4910
BOLT EV
745LE
S-10 PICKUP
                   1
SOLTERRA
                   1
918
FLYING SPUR
Name: Model, Length: 114, dtype: int64
****** Electric Vehicle Type *******
                                                      112634
nunique
unique
           [Plug-in Hybrid Electric Vehicle (PHEV), Batte...
Name: Electric_Vehicle_Type, dtype: object
Value Counts:
Battery Electric Vehicle (BEV)
                                           86044
Plug-in Hybrid Electric Vehicle (PHEV)
Name: Electric_Vehicle_Type, dtype: int64
****** CAFV Eligibility *******
                                                      112634
count
nunique
           [Clean Alternative Fuel Vehicle Eligible, Not ...
Name: CAFV_Eligibility, dtype: object
Value Counts:
Clean Alternative Fuel Vehicle Eligible
                                                                 58639
Eligibility unknown as battery range has not been researched
                                                                 39236
Not eligible due to low battery range
                                                                14759
Name: CAFV_Eligibility, dtype: int64
****** Vehicle Location *******
                                                      112610
count
nunique
           [POINT (-81.80023 24.5545), POINT (-114.57245 ...
Name: Vehicle_Location, dtype: object
Value Counts:
 POINT (-122.13158 47.67858)
                                2916
                               2059
POINT (-122.2066 47.67887)
POINT (-122.1872 47.61001)
                               2001
                               1880
POINT (-122.31765 47.70013)
POINT (-122.12096 47.55584)
                               1852
POINT (-124.33152 48.05431)
POINT (-77.41203 39.41574)
                                  1
POINT (-123.61022 46.35588)
POINT (-112.04165 40.68741)
                                  1
POINT (-116.91895 47.40077)
Name: Vehicle_Location, Length: 758, dtype: int64
****** Electric Utility *******
count
                                                      112191
nunique
           [nan, PACIFICORP, PUGET SOUND ENERGY INC, PUD ...
Name: Electric_Utility, dtype: object
Value Counts:
PUGET SOUND ENERGY INC||CITY OF TACOMA - (WA)
                                                                                              40247
PUGET SOUND ENERGY INC
                                                                                             22172
CITY OF SEATTLE - (WA) | CITY OF TACOMA - (WA)
                                                                                             21447
BONNEVILLE POWER ADMINISTRATION | PUD NO 1 OF CLARK COUNTY - (WA)
                                                                                              6522
BONNEVILLE POWER ADMINISTRATION | CITY OF TACOMA - (WA) | PENINSULA LIGHT COMPANY
                                                                                              5053
```

MINI

632

```
BONNEVILLE POWER ADMINISTRATION | | PENINSULA LIGHT COMPANY
                                                                                                         1
         BONNEVILLE POWER ADMINISTRATION | PUD NO 1 OF ASOTIN COUNTY
         CITY OF SEATTLE - (WA)
                                                                                                         1
         BONNEVILLE POWER ADMINISTRATION | | NESPELEM VALLEY ELEC COOP, INC
                                                                                                         1
         BONNEVILLE POWER ADMINISTRATION | PUD NO 1 OF CLALLAM COUNTY | PUD NO 1 OF JEFFERSON COUNTY
         Name: Electric_Utility, Length: 73, dtype: int64
In [14]:
         def numerical univariate analysis(numerical data):
             for col_name in numerical_data:
    print("*"*10, col_name, "*"*10)
                 print(numerical_data[col_name].agg(['min', 'max', 'mean', 'median', 'std']))
                 print()
In [15]: numerical univariate analysis(numerical df)
         ****** Postal Code ******
                   1730.0\overline{0}0000
                   99701.000000
         max
         mean
                   98156.226850
         median 98119.000000
         std
                   2648.733064
         Name: Postal_Code, dtype: float64
         ****** Model_Year *******
                   1997.000000
         min
                   2023.000000
                   2019.003365
         mean
                  2020.000000
         median
         std
                      2.892364
         Name: Model_Year, dtype: float64
         ****** Electric Range *******
                    0.000000
         min
                   337.000000
         mean
                   87.812987
                    32.000000
         median
         std
                  102.334216
         Name: Electric_Range, dtype: float64
         ****** Base_MSRP ******
                       0.000000
                   845000.000000
         max
                   1793.439681
         mean
         median
                      0.000000
                   10783.753486
         Name: Base_MSRP, dtype: float64
         ****** Legislative_District *******
         min
                    1.000000
                   49.000000
         max
         mean
                   29.805604
         median
                   34.000000
                   14.700545
         std
         Name: Legislative_District, dtype: float64
         ****** DOL Vehicle ID *******
                  4.777000e+03
         min
         max
                  4.792548e+08
                  1.994567e+08
                  1.923896e+08
         median
         std
                   9.398427e+07
         Name: DOL Vehicle ID, dtype: float64
         ****** 2020_Census_Tract *******
         min
                  1.101001e+09
                   5.603300e+10
         max
                   5.296650e+10
         mean
         median
                   5.303303e+10
         std
                   1.699104e+09
         Name: 2020_Census_Tract, dtype: float64
```

Univariate - Visual Analysis

```
In [16]: df.plot(kind='hist', subplots=True, layout=(4, 2), figsize=(10, 10))
```



```
In [17]: df.plot(kind='box', subplots=True, layout=(4, 2), figsize=(10, 10))
         Postal_Code
                                     AxesSubplot(0.125,0.712609;0.352273x0.167391)
Out[17]:
         Model_Year
                                 AxesSubplot(0.547727,0.712609;0.352273x0.167391)
         Electric_Range
                                    AxesSubplot(0.125,0.511739;0.352273x0.167391)
         Base MSRP
                                 AxesSubplot(0.547727,0.511739;0.352273x0.167391)
         Legislative_District
                                      AxesSubplot(0.125,0.31087;0.352273x0.167391)
         DOL_Vehicle_ID
                                   AxesSubplot(0.547727,0.31087;0.352273x0.167391)
         2020_Census_Tract
                                         AxesSubplot(0.125,0.11;0.352273x0.167391)
```

dtype: object

Bivariate Analysis a. Continuous vs Continuous Numerical Data

```
Postal_Code Model_Year Electric_Range Base_MSRP Legislative_District DOL_Vehicle_ID 2020_Census_Tract
Out[18]:
                  Postal_Code
                                    1.000000
                                                 -0.004485
                                                                 0.000385
                                                                               0.001151
                                                                                                  -0.433405
                                                                                                                   0.003365
                                                                                                                                        0.501170
                   Model_Year
                                    -0.004485
                                                 1.000000
                                                                 -0.288433
                                                                              -0.229130
                                                                                                  0.010439
                                                                                                                   -0.068295
                                                                                                                                        0.000714
                                    0.000385
                                                 -0.288433
                                                                 1.000000
                                                                              0.085025
                                                                                                  0.024387
                                                                                                                   0.009682
                                                                                                                                        0.000722
                Electric_Range
                   Base_MSRP
                                    0.001151
                                                 -0.229130
                                                                 0.085025
                                                                               1.000000
                                                                                                  0.012426
                                                                                                                   0.000504
                                                                                                                                        0.000979
                                                                                                  1.000000
                                                                                                                                        -0.111991
            Legislative_District
                                    -0.433405
                                                 0.010439
                                                                 0.024387
                                                                               0.012426
                                                                                                                   -0.001671
               DOL_Vehicle_ID
                                                 -0.068295
                                                                                                  -0.001671
                                                                                                                                        0.002754
                                    0.003365
                                                                 0.009682
                                                                              0.000504
                                                                                                                    1.000000
            2020_Census_Tract
                                    0.501170
                                                 0.000714
                                                                 0.000722
                                                                               0.000979
                                                                                                  -0.111991
                                                                                                                   0.002754
                                                                                                                                        1.000000
```

```
In [19]: df.plot(kind='scatter', x='Model_Year',y='Electric_Range')
```

Out[19]: <AxesSubplot:xlabel='Model_Year', ylabel='Electric_Range'>


```
In [20]: df.plot(kind='scatter', x='Model_Year',y='Base_MSRP')
```

Out[20]: <AxesSubplot:xlabel='Model_Year', ylabel='Base_MSRP'>


```
In [21]: f = df.loc[(df['Base_MSRP'] < 80000)]
    df.plot(kind='scatter', x='Model_Year',y='Base_MSRP')</pre>
```

Out[21]: <AxesSubplot:xlabel='Model_Year', ylabel='Base_MSRP'>

In [22]: pd.crosstab(df['Electric_Utility'],df['Electric_Vehicle_Type'])

Out[22]:	Electric_Vehicle_Type	Battery Electric Vehicle (BEV)	Plug-in Hybrid Electric Vehicle (PHEV)
	Electric_Utility		
	AVISTA CORP	151	84
	BONNEVILLE POWER ADMINISTRATION AVISTA CORP BIG BEND ELECTRIC COOP, INC	21	11
	BONNEVILLE POWER ADMINISTRATION AVISTA CORP INLAND POWER & LIGHT COMPANY	1151	528
	BONNEVILLE POWER ADMINISTRATION AVISTA CORP PUD NO 1 OF ASOTIN COUNTY	28	17
	BONNEVILLE POWER ADMINISTRATION BENTON RURAL ELECTRIC ASSN	0	3
	PUD NO 1 OF WHATCOM COUNTY	22	13
	PUD NO 2 OF GRANT COUNTY	227	108
	PUGET SOUND ENERGY INC	16701	5471
	PUGET SOUND ENERGY INC CITY OF TACOMA - (WA)	32594	7653
	PUGET SOUND ENERGY INC PUD NO 1 OF WHATCOM COUNTY	1936	735

73 rows × 2 columns

In [23]: pd.crosstab(df['Model_Year'],df['Electric_Vehicle_Type'])

Out[23]:		Battery Electric Vehicle (BEV)	Plug-in Hybrid Electric Vehicle (PHEV)
	Model_Year		
	1997	1	0
	1998	1	0
	1999	3	0
	2000	10	0
	2002	2	0
	2008	23	0
	2010	24	0
	2011	769	71
	2012	814	891
	2013	3018	1673
	2014	1864	1821
	2015	3625	1315
	2016	3938	1797
	2017	4498	4146
	2018	9902	4344
	2019	8440	1826
	2020	9444	1594
	2021	14873	3491
	2022	22960	3570
	2023	1835	51

In [24]: pd.crosstab(df['CAFV_Eligibility'],df['Electric_Vehicle_Type'])

Out [24]: Electric_Vehicle_Type Battery Electric Vehicle (BEV) Plug-in Hybrid Electric Vehicle (PHEV)

CAFV_Eligibility

Clean Alternative Fuel Vehicle Eligible	46799	11840
Eligibility unknown as battery range has not been researched	39236	0
Not eligible due to low battery range	9	14750

In [25]: pd.crosstab(df['Model_Year'],df['CAFV_Eligibility'])

CAFV_Eligibility	Clean Alternative Fuel Vehicle Eligible	Eligibility unknown as battery range has not been researched	Not eligible due to low battery range
Model_Year			
1997	1	0	0
1998	1	0	0
1999	3	0	0
2000	10	0	0
2002	2	0	0
2008	23	0	0
2010	24	0	0
2011	840	0	0
2012	1330	0	375
2013	3836	0	855
2014	2896	0	789
2015	4262	0	678
2016	4330	0	1405
2017	6348	0	2296
2018	11921	0	2325
2019	8844	2	1420
2020	9784	53	1201
2021	2099	14386	1879
2022	2042	22960	1528
2023	43	1835	8

```
In [26]: tab = pd.crosstab(df['CAFV_Eligibility'], df['Electric_Vehicle_Type'], normalize='index')
    tab.plot(kind='bar')
Out[26]: <AxesSubplot:xlabel='CAFV_Eligibility'>
```



```
In [27]: tab = pd.crosstab(df['Model_Year'],df['CAFV_Eligibility'], normalize= True)
  tab.plot(kind='bar')
```

<AxesSubplot:xlabel='Model_Year'>

Continuous Numerical vs Discrete Data

```
group = df.groupby('Electric_Vehicle_Type')
group['Electric_Range'].agg(['min', 'max', 'mean', 'median'])
In [28]:
Out[28]:
                                               min max
                                                               mean median
                          Electric Vehicle Type
                   Battery Electric Vehicle (BEV)
                                                     337
                                                          105.369671
                                                                        76.0
           Plug-in Hybrid Electric Vehicle (PHEV)
                                                           31.000376
In [29]:
           group = df.groupby('CAFV_Eligibility')
           group['Electric_Range'].agg(['min', 'max', 'mean', 'median'])
                                                                                   mean median
Out[29]:
                                                                   min max
                                                   CAFV_Eligibility
                                Clean Alternative Fuel Vehicle Eligible
                                                                     30
                                                                         337
                                                                              163.797558
                                                                                            208.0
           Eligibility unknown as battery range has not been researched
                                                                                0.000000
                                                                                              0.0
                                                                           0
                                  Not eligible due to low battery range
                                                                               19.364659
                                                                                             19.0
          df.boxplot(by="Electric_Vehicle_Type",column=['Electric_Range'])
In [30]:
           <AxesSubplot:title={'center':'Electric_Range'}, xlabel='Electric_Vehicle_Type'>
Out[30]:
```

Boxplot grouped by Electric_Vehicle_Type Electric_Range


```
import pandas as pd
import matplotlib.pyplot as plt

# Assuming 'df' is your DataFrame
df.boxplot(by="CAFV_Eligibility", column=['Electric_Range'])

# Rotate x-axis labels by 90 degrees
plt.xticks(rotation=90)

# Show the plot
plt.show()
```


Task 2: Create a Choropleth using plotly.express to display the number of EV vehicles based on location

Out[34]:		State	Number_of_EV_Vehicles
	0	AK	1
	1	AL	1
	2	AR	4
	3	AZ	6
	4	CA	76
	5	CO	9
	6	CT	6
	7	DC	6
	8	DE	1
	9	FL	6
	10	GA 	7
	11	HI	4
	12	ID 	2
	13	IL	6
	14	KS	3
	15	KY	1
	16	LA	3
	17	MA	3
	18	MD	26
	19	ME MN	1
	20		
	21	MO MS	3
	22	NC	
	23 24	ND	7
	25	NE	5
	26	NH	2
	27	NJ	3
	28	NM	1
	29	NV	8
	30	NY	4
	31	ОН	2
	32	OK	1
	33	OR	5
	34	PA	3
	35	RI	1
	36	SC	5
	37	SD	1
	38	TN	3
	39	TX	14
	40	UT	4
	41	VA	36
	42	WA	112348
	43	WI	1

WY

TASK 3

fig.update layout(

yaxis_title='EV Makes',
xaxis_title='Number of EV Vehicles',

```
In [50]: ev make by year = df.groupby(['Make', 'Model Year']).size().reset index(name='Number of Vehicles')
          # Display the resulting DataFrame for verification
          print(ev make by year)
                 Make Model Year Number_of_Vehicles
          0
                 AUDI
                               2016
                                                        214
                 AUDI
                               2017
                                                        187
          1
                 AUDT
                                                        174
          2
                               2018
          3
                 AUDI
                               2019
                                                       392
                 AUDI
                               2020
                                                       224
          204 V0LV0
                               2019
                                                       190
          205 V0LV0
                               2020
                                                       162
          206
                V0LV0
                               2021
                                                        580
          207
                VOI VO
                                                       882
                               2022
          208 V0LV0
                               2023
                                                        21
          [209 rows x 3 columns]
In [53]: import plotly.express as px
          # Check your DataFrame structure
          print(ev make by year.head())
          print(ev_make_by_year.columns)
           # Create the animated racing bar plot with annotations
           fig = px.bar(ev_make_by_year,
                         y='Make', # Place Make on y-axis
                         x='Number_of_Vehicles', # Place the count of EV vehicles on the x-axis color='Make', # Color each make differently
                          animation_frame='Model Year', # Corrected animation frame to match DataFrame
                          orientation='h', # Horizontal bar chart
                          title='EV Makes and their Count Over the Years',
                          labels={'Number_of_Vehicles': 'Number of EV Vehicles'},
                          range_x=[0, 3000]
           # Update traces for displaying values
           \label{linear_supdate_traces} fig. update\_traces(texttemplate='%\{x\}', \ \#\ \textit{Display the actual x-axis values (Number\_of\_Vehicles)} \\ \text{textposition='outside'}, \ \#\ \textit{Place the text outside the bars}
                               textfont size=16) # Adjust the font size for better readability
```

Adjust the layout for improved visibility and emphasis on movement

showlegend=False, # Hide legend as it's not necessary for this chart

xaxis=dict(showgrid=True, gridcolor='LightGray'), # Show grid for better visibility

```
title_x=0.5, # Center title
   title_font=dict(size=20), # Increase title font size
   margin=dict(l=50, r=50, b=50), # Adjust margins
   width=800, # Set a fixed width
   height=600 # Set a fixed height
)

# Show the plot
fig.show()
```

```
Make Model Year Number_of_Vehicles
0 AUDI
              2016
2017
                                    214
                                    187
1 AUDI
2 AUDI
              2018
                                    174
3 AUDI
              2019
                                    392
4 AUDI
              2020
                                   224
Index(['Make', 'Model Year', 'Number_of_Vehicles'], dtype='object')
```