Équations aux dérivées Partielles

Caractéristiques

Les EDPs comprennent des derivées par rapport à plus d'une variable indépendante

Typiquement, 1–3 dimensions spatiales plus le temps

En général, on retrouve une combinaison des problèmes aux valeurs initiales et aux valeurs aux frontières

Conditions Initiales et aux Frontières

- Conditions Initiales: point de départ pour les problèmes de propagation
- Conditions de bord: spécifiés sur les frontières afin d'alimenter la solution dans tout le domaine

$$\begin{cases} Dirichlet & u = f sur \partial \Omega \\ Neumann & \frac{\partial u}{\partial n} = f sur \partial \Omega \\ Robin & \frac{\partial u}{\partial n} + ku = f sur \partial \Omega \end{cases}$$

EDP à étudier

Afin de simplifier l'étude on se limitera à une EDP (pas au systèmes) ayant 2 variables indépendantes, soit:

- Deux variables spatiales: x et y
- Une variable spatiale x et le temps t

Classification des EDPs

Équation générale de deuxième ordre à deux variables indépendantes

$$au_{xx} + 2bu_{xy} + cu_{yy} + du_x + eu_y + fu = g$$

EDPs: a, b, c linéaires,...,g = f(x,y) seulement

$$b^2 - ac$$

- < 0 elliptique
- $b^2 ac \cdot = 0$ parabolique
 - > 0 hyperbolique

Types d' EDP

Hyperbolique

$$\frac{\partial^2 u}{\partial t^2} = v^2 \left(\frac{\partial^2 u}{\partial x^2} \right)$$

Parabolique

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial u}{\partial x} \right)$$

Elliptique

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \rho(x, y)$$

Classification des EDPs

Hyperbolique: phénomène dépendant du temps et qui ne tends pas nécessairement vers un état stationnaire (le mouvement des vagues)

Parabolique: phénomène dépendant du temps et qui évolue vers un état stationnaire (diffusion de la chaleur)

Elliptique: phénomène qui a déjà atteint l'état stationnaire (indépendant du temps)

Méthodes aux différences

On discrétise l'espace et le temps

- Le continuum devient un domaine défini par un maillage
- On remplace les dérivées par des différences finies
- La discrétisation produit un système algébrique
- La précision dépend du pas de discrétisation

Navier-Stokes (2D)

EDP non linéaires

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \mathbf{v} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + \mathbf{v} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$

Équations paraboliques

L'équation de la chaleur

Transfert de chaleur dans une barre unidimensionnelle

$$x = 0$$
$$g_1(t)$$

$$x = a$$

$$g_2(t)$$

$$\frac{\partial u}{\partial t} = c \frac{\partial^2 u}{\partial x^2}; \quad 0 < x < a, \quad 0 \le t \le T \qquad c:\text{coefficient}$$

$$u(x,0) = f(x), \qquad 0 < x < a$$

Différences Finies

Le moteur de la méthode des différences finies est le développement en séries de Taylor

En avant

$$f_{i+1} = f_i + f'_i h + \frac{f''_i h^2}{2!} + \frac{f'''_i h^3}{3!} + \dots$$

$$f_{i}' = \frac{f_{i+1} - f_{i}}{h} - \frac{f_{i}''h}{2!} - \frac{f_{i}''h}{3!} - \dots = \frac{f_{i+1} - f_{i}}{h} + Oh$$

En arrière

$$f_{i-1} = f_i - f_i'h + \frac{f_i''h^2}{2!} - \frac{f_i'''h^3}{3!} + \dots$$

$$f'_{i} = \frac{f_{i} - f_{i-1}}{h} + \frac{f''_{i}h}{2!} - \frac{f'''_{i}h}{3!} - \dots = \frac{f_{i} - f_{i-1}}{h} + Oh$$

Différence centrée

$$f_{i+1} = f_i + f_i''h + \frac{f_i''h^2}{2!} + \frac{f_i'''h^3}{3!} + \dots$$

$$f_{i-1} = f_i - f_i'h + \frac{f_i''h^2}{2!} - \frac{f_i'''h^3}{3!} + \dots$$

$$f_{i-1} = f_i - f_i'h + \frac{f_i''h^2}{2!} - \frac{f_i'''h^3}{3!} + \dots$$

La soustraction des equations donne

$$\mathbf{f'_i} = \frac{f_{i+1} - f_{i-1}}{2h} + \frac{f'''h^2}{3!} + \frac{f''''h^4}{5!} - \dots = \frac{f_{i+1} - f_{i-1}}{2h} + Oh^2$$

Différence centrée

$$f_{i+1} = f_i + f_i'h + \frac{f_i''h^2}{2!} + \frac{f_i'''h^3}{3!} + \dots$$

$$f_{i-1} = f_i - f_i'h + \frac{f_i''h^2}{2!} - \frac{f_i'''h^3}{3!} + \dots$$

$$f_{i-1} = f_i - f_i'h + \frac{f_i''h^2}{2!} - \frac{f_i'''h^3}{3!} + \dots$$

L'addition des equations donne

$$\frac{f_{i+1} + f_{i-1} - 2f_i}{h^2} + \frac{f_i^{\prime\prime\prime}h^2}{3!} + \frac{f_i^{\prime\prime\prime\prime\prime}h^4}{5!} - \dots = \frac{f_{i+1} + f_{i-1} - 2f_i}{h^2} + O(h^2)$$

Dérivée décentrée près d'une frontière

Autres développements

$$f_{i+k} = f_i + f_i kh + \frac{f_i^{"}(kh)^2}{2!} + \frac{f_i^{"}(kh)^3}{3!} + \dots$$
• $k = 2$

$$f_{i+2} = f_i + 2f_i h + 4 \frac{f_i^{"}h^2}{2!} + 8 \frac{f_i^{"}h^3}{3!} + \dots$$
• $k = -2$

$$f_{i-2} = f_i - 2f_i h + 4 \frac{f_i^{"}h^2}{2!} - 8 \frac{f_i^{"}h^3}{3!} + \dots$$
• $k = 3$

$$f_{i+3} = f_i + 3f_i h + 9 \frac{f_i^{"}h^2}{2!} + 27 \frac{f_i^{"}h^3}{3!} + \dots$$
• $k = -3$

$$f_{i-3} = f_i - 3f_i h + 9 \frac{f_i^{"}h^2}{2!} - 27 \frac{f_i^{"}h^3}{3!} + \dots$$
• $k = -3$
• $k = -3$

$$f_{i-3} = f_i - 3f_i h + 9 \frac{f_i^{"}h^2}{2!} - 27 \frac{f_i^{"}h^3}{3!} + \dots$$
• $k = -3$
• $k = -3$

Autres développements

$$f_{i+2} - 4f_{i+1} = \begin{bmatrix} f_i + 2f_i & h \\ + 4f_i & \frac{h^2}{2} \\ -4 \end{bmatrix} + 8f_i & \frac{h^3}{6} + \dots \end{bmatrix}$$

$$-4 \begin{bmatrix} f_i + f_i & h \\ + f_i & \frac{h^2}{2} \\ \end{bmatrix} + f_i & \frac{h^3}{6} + \dots \end{bmatrix}$$

$$f_{i+2} - 4f_{i+1} + 3f_i = -2hf_i + 4f_i & \frac{h^3}{6} + \dots \text{ Ordre 2}$$

$$f_i' = \frac{-f_{i+2} + 4f_{i+1} - 3f_i}{2h} + f_i''' \frac{h^2}{3} + \dots$$
M. Reggio

Discrétisation dans l'espace-temps

Méthode d'Euler Explicite

Conditions initiales: u(x,0) = f(x)

Équation de la chaleur

M. Reggio

Décentré en avant $u_t = \frac{1}{\Delta t} (u_i^{n+1} - u_i^n)$

Centré au temps n $cu_{xx} = \frac{c}{\Delta x^2} (u_{i-1,j}^n - 2u_i^n + u_{i+1}^n)$

Décentré en avant

Méthode d'Euler Explicite

$$\Delta t = T/M, t_n = n\Delta t$$

$$\frac{\partial u}{\partial t} = c \frac{\partial^2 u}{\partial x^2} \qquad \Delta x = a/N, x_i = i\Delta x$$

$$u_t = c u_{xx} \Rightarrow \frac{1}{\Delta t} (u_i^n - u_i) = \frac{c}{\Delta x^2} (u_{i-1}^n - 2u_i^n + u_{i+1}^n)$$

$$u_i^{n+1} = u_i^n + \frac{c\Delta t}{\Delta x^2} (u_{i-1}^n - 2u_i^n + u_{i+1}^n)$$

$$= r u_{i-1}^n + (1 - 2r) u_i^n + r u_{i+1}^n$$

$$r = \frac{c\Delta t}{\Delta x^2}$$

$$Stabilité \qquad 0 < r \le 0.5$$

Stable
$$u_i^{n+1} = ru_{i-1}^n + (1-2r)u_i^n + ru_{i+1}^n$$

$$r = 0.01 \implies u_i^{n+1} = 0.01 u_{i-1}^n + 0.98 u_i^n + 0.01 u_{i+1}^n$$

$$r = 0.1 \implies u_{i,j+1} = 0.1 + 0.8u_i^n + 0.1u_{i+1}^n$$

$$r = 0.4 \implies u_{i,j+1} = 0.4 u_{i-1}^n + 0.2 u_i^n + 0.4u_{i+1}^n$$

$$r = 0.5 \implies u_{i,j+1} = 0.5 u_{i-1}^n + 0.5u_{i+1}^n$$

Instable coefficients (négatifs)

$$\begin{cases} r = 1 & \Rightarrow u_i^{n+1} = u_{i-1}^n - u_i^n + u_{i+1}^n \\ r = 10 & \Rightarrow u_i^{n+1} = 10 \ u_{i-1}^n - 19 \ u_i^n + 10 \ u_{i+1}^n \end{cases}$$

$$r = 100 \Rightarrow u_i^{n+1} = 100 u_{i-1}^n - 199 \ u_i^n + 100 u_{M-Reggio}^n$$

Exemple

$$u_{t} = cu_{xx}; \ 0 \le x \le 1$$

$$\frac{\partial u}{\partial t} = c \frac{\partial^{2} u}{\partial x^{2}} \begin{cases} u(x,0) = 20 + 40x \\ u(0,t) = 20e^{-t}, \ u(1,t) = 60e^{-2t} \end{cases}$$

$$c = 0.5, h = \Delta x = 0.25, k = \Delta t = 0.05$$

$$20e^{-t}$$

$$1$$

$$20$$

$$0$$

$$1$$

$$20 + 40$$

$$20 + 40$$
M. Reggio

Exemple

$$u_i^{n+1} = ru_{i-1}^n + (1-2r)u_i^n + ru_{i+1}^n$$

$$c = 0.5, h = \Delta x = 0.25, k = \Delta t = 0.05$$

$$r = \frac{c\Delta t}{\Delta x^2} = \frac{(0.5)(0.05)}{(0.25)^2} = 0.4$$

$$u_i^{n+1} = ru_{i-1}^n + (1-2r)u_i^n + ru_{i+1}^n$$

= $0.4u_{i-1}^n + 0.2u_i^n + 0.4u_{i+1}^n$

Premier pas: t = 0.05

$$t = 0.10$$

$$\begin{cases} u_0^2 = 20e^{-0.10} = 18.09674836 \\ u_1^2 = 0.4u_0^1 + 0.2u_1^1 + 0.4u_2^1 \\ = 0.4(19.02458849) + 0.2(30) + 0.4(40) = 29.6098354 \\ u_2^2 = 0.4u_1^1 + 0.2u_2^1 + 0.4u_3^1 = 0.4(30) + 0.2(40) + 0.4(50) = 40 \\ u_3^2 = 0.4u_2^1 + 0.2u_3^1 + 0.4u_4^1 \\ = 0.4(40) + 0.2(50) + 0.4(54.2924508) = 47.71609803 \\ u_4^2 = 60e^{-0.20} = 49.12384518 \end{cases}$$

ÉCOLE POLYTECHNIQUE M.O. N. T. R. É. A. I.

Stabilité Numérique

On note qu'il y a une contrainte de stabilité

$$r \le \frac{1}{2}$$
 ou $\Delta t \le \frac{1}{2} \frac{\Delta x^2}{c}$

La méthode implicite élimine cette restriction

Décentré en arrière

Méthode d'Euler Implicite

Conditions initiales: u(x,0) = f(x)

Méthode Implicite

(i-1,n+1) (i,n+1) (i+1,n+1)(i,n)

Decentré en avant
$$u_t = \frac{1}{\Delta t} (u_i^{n+1} - u_i^n)$$
 Centré au temps n+1
$$cu_{xx} = \frac{c}{\Delta x^2} (u_{i-1}^{n+1} - 2u_i^{n+1} + u_{i+1}^{n+1})$$

Méthode Implicite

$$\frac{1}{\Delta t}(u_i^{n+1} - u_i^n) = \frac{c}{\Delta x^2}(u_{i-1}^{n+1} - 2u_i^{n+1} + u_{i+1}^{n+1})$$
$$-ru_{i-1}^{n+1} + (1+2r)u_i^{n+1} - ru_{i+1}^{n+1} = u_i^n$$

Matrice Tridiagonale

$$\begin{bmatrix} 1+2r & -r & & & \\ -r & 1+2r & -r & & \\ & -r & 1+2r & -r & \\ & & \ddots & \ddots & -r \\ & & & -r & 1+2r \end{bmatrix} \begin{cases} u_1^{n+1} \\ u_2^{n+1} \\ u_3^{n+1} \\ \vdots \\ u_{m-1}^{n+1} \end{cases} = \begin{cases} u_1^n + ru_0^{n+1} \\ u_2^n \\ u_3^n \\ \vdots \\ u_{m-1}^n + r_m^{n+1} \end{cases}$$

0

m-1

Exemple

$$u_{t} = cu_{xx}; \ 0 \le x \le 1$$

$$\begin{cases} u(x,0) = 20 + 40x \\ u(0,t) = 20e^{-t}, \ u(1,t) = 60e^{-2t} \end{cases}$$

$$c = 0.5, h = \Delta x = 0.25, k = \Delta t = 0.1$$

Exemple: Schéma implicite

 $c = 0.5, h = \Delta x = 0.25, k = \Delta t = 0.1$

$$r = \frac{c\Delta t}{\Delta x^{2}} = \frac{(0.5)(0.10)}{(0.25)^{2}} = 0.8$$

$$-ru_{i-1}^{n+1} + (1+2r)u_{i}^{n+1} - ru_{i+1}^{n+1} = u_{i}^{n}$$

$$-0.8u_{i-1}^{n+1} + 2.6u_{i}^{n+1} - 0.8u_{i+1}^{n+1} = u_{i}^{n}$$

$$\begin{bmatrix} 1+2r & -r & 0 \\ -r & 1+2r & -r \\ 0 & -r & 1+2r \end{bmatrix} \begin{Bmatrix} u_1^1 \\ u_2^1 \\ u_3^1 \end{Bmatrix} = \begin{Bmatrix} u_1^0 + ru_0^1 \\ u_2^0 \\ u_3^0 + ru_4^1 \end{Bmatrix}$$

$$\begin{bmatrix} 2.6 & -0.8 & 0 \\ -0.8 & 2.6 & -0.8 \\ 0 & -0.8 & 2.6 \end{bmatrix} \begin{bmatrix} u_1^1 \\ u_2^1 \\ u_3^1 \end{bmatrix} = \begin{bmatrix} 30 + 0.8(20e^{-0.1}) \\ 40 \\ 50 + 0.8(60e^{-0.2}) \end{bmatrix}$$

$$\Rightarrow \begin{cases} u_1^1 \\ u_2^1 \\ u_3^3 \end{cases} = \begin{cases} 28.95515793 \\ 38.50751457 \\ 46.19426454 \end{cases}$$

Méthode de Crank-Nicolson

Méthode de Crank-Nicolson

Méthode de Crank-Nicolson

$$\frac{1}{\Delta t}(u_i^{n+1} - u_i^n) = \frac{c}{2\Delta x^2}(u_{i-1}^n - 2u_i^n + u_{i+1}^n) + \frac{c}{2\Delta x^2}(u_{i-1}^{n+1} - 2u_i^{n+1} + u_{i+1}^{n+1})$$

Matrice tridiagonale

$$-\frac{r}{2}u_{i-1}^{n+1} + (1+r)u_{i}^{n+1} - \frac{r}{2}u_{i+1}^{n+1} = \frac{r}{2}u_{i-1}^{n} + (1-r)u_{i}^{n} + \frac{r}{2}u_{i+1}^{n}$$

Inconditionellement stable (stabilité neutre)

On peut retrouver des oscillations

Méthode générale à deux niveaux

Moyenne pondérée des dérivées entre les niveaux n et n+1

$$\frac{1}{\Delta t}(u_i^{n+1} - u_i^n) = \frac{c\theta}{\Delta x^2}(u_{i-1}^n - 2u_i^n + u_{i+1}^n) + \frac{c(1-\theta)}{\Delta x^2}(u_{i-1}^{n+1} - 2u_i^{n+1} + u_{i+1}^{n+1})$$

 $\begin{cases} \theta = 0: & sch\'ema \ d'Euler \ implicite \\ \theta = 1: & sch\'ema \ d' \ Euler \ explicite \\ \theta = 1/2: & sch\'ema \ de \ Crank-Nicolson \end{cases}$

Exemple: Crank-Nicolson

$$u_{t} = cu_{xx}; \ 0 \le x \le 1$$

$$\frac{\partial u}{\partial t} = c \frac{\partial^{2} u}{\partial x^{2}} \begin{cases} u(x,0) = 20 + 40x \\ u(0,t) = 20e^{-t}, \ u(1,t) = 60e^{-2t} \end{cases}$$

$$c = 0.5, h = \Delta x = 0.25, k = \Delta t = 0.1$$

$$20e^{-t}$$

$$0 = 0.5, h = \Delta x = 0.25, k = \Delta t = 0.1$$

$$r = \frac{c\Delta t}{\Delta x^2} = \frac{(0.5)(0.10)}{(0.25)^2} = 0.8$$

$$-\frac{\mathbf{r}}{2}\mathbf{u}_{i-1}^{n+1} + (1+\mathbf{r})\mathbf{u}_{i}^{n+1} - \frac{\mathbf{r}}{2}\mathbf{u}_{i+1}^{n+1} = \frac{\mathbf{r}}{2}\mathbf{u}_{i-1}^{n} + (1-\mathbf{r})\mathbf{u}_{i}^{n} + \frac{\mathbf{r}}{2}\mathbf{u}_{i+1}^{n}$$
$$-0.4\mathbf{u}_{i-1}^{n+1} + 1.8\mathbf{u}_{i}^{n+1} - 0.4\mathbf{u}_{i+1}^{n+1} = 0.4\mathbf{u}_{i-1}^{n} + 0.2\mathbf{u}_{i}^{n} + 0.4\mathbf{u}_{i+1}^{n}$$

$$\begin{bmatrix} 1+r & -\frac{r}{2} & 0 \\ -\frac{r}{2} & 1+r & -\frac{r}{2} \\ 0 & -\frac{r}{2} & 1+r \end{bmatrix} \begin{cases} u_1^1 \\ u_2^1 \\ v_3^1 \\ v_3^1 \end{cases} = \begin{cases} \frac{r}{2}u_0^0 + (1-r)u_1^0 + \frac{r}{2}u_2^0 + \frac{r}{2}u_0^1 \\ \frac{r}{2}u_1^0 + (1-r)u_2^0 + \frac{r}{2}u_3^0 \\ \frac{r}{2}u_2^0 + (1-r)u_3^0 + \frac{r}{2}u_4^0 + \frac{r}{2}u_4^1 \end{cases}$$

$$\begin{bmatrix} 1.8 & -0.4 & 0 \\ -0.4 & 1.8 & -0.4 \\ 0 & -0.4 & 1.8 \end{bmatrix} \begin{bmatrix} u_1^1 \\ u_2^1 \\ u_3^1 \end{bmatrix} = \begin{bmatrix} 0.4(20) + 0.2(30) + 0.4(40) + 0.4(20e^{-0.1}) \\ 0.4(30) + 0.2(40) + 0.4(50) \\ 0.4(40) + 0.2(50) + 0.4(60) + 0.4(60e^{-0.2}) \end{bmatrix}$$

$$= \begin{cases} 37.23869934 \\ 40 \\ 69.64953807 \end{cases}$$

$$\Rightarrow \begin{cases} u_1^1 \\ u_2^1 \\ u_3^1 \end{cases} = \begin{cases} 29.42144598 \\ 39.29975855 \\ 47.42746748 \end{cases}$$

Barre isolée aux extrémités

$$x = 0 x = a$$

$$\frac{\partial u}{\partial x}(0,t) = 0$$

$$\frac{\partial u}{\partial t} = c \frac{\partial^2 u}{\partial x^2}; \ 0 < x < a, \ 0 \le t \le T$$

$$u(x,0) = f(x), \qquad 0 < x < a$$

$$\begin{cases} u_x(0,t) = 0 \\ u_x(a,t) = 0 \end{cases}, \qquad 0 \le t \le T$$
M. Reggio

Extrémité isolée

Schéma de Richardson

$$\frac{1}{2\Delta t}(u_i^{n+1} - u_i^{n-1}) = \frac{c}{\Delta x^2}(u_{i-1}^n - 2u_i^n + u_{i+1}^n)$$

Instable!

Schéma de Dufort-Frankel

$$u_i^n = \frac{1}{2}(u_i^{n-1} + u_i^{n+1})$$

$$\frac{1}{2\Delta t}(u_i^{n+1} - u_i^{n-1}) = \frac{c}{\Delta x^2}(u_{i-1}^n - (u_i^{n-1} + u_i^{n+1}) + u_{i+1}^n)$$

Stable!, mais...

