равна $m_1 = \rho dS$. Предположим далее, что масса космолета $m = m_1 = m_K = m_1(1 + m_K/m_1) = \alpha m_1$, где m_K - масса конструкций без учета паруса, $\alpha = 1 + m_K/m_1$ - конструкционный параметр парусного космолета. С учетом введенных параметров предельная скорость космолета, которую он приобретет за счет светового давления, будет равна

$$v = \sqrt{\frac{2P_0Sr_0}{\alpha m_1}} = \sqrt{\frac{2P_0r_0}{\alpha \rho d}}$$

Из этой формулы следует, что предельная скорость солнечного парусника, приобретенная за счет давления света, не зависит от площади паруса. Зато она зависит от его толщины, плотности материала паруса и конструкционного параметра α . В таблице приведены результаты расчетов предельной скорости v для различных толщин, плотностей и параметров α . Плотность $\rho=2,7\cdot10^3\,\mathrm{kr/m}^3$ отвечает алюминию, плотность $\rho=1,6\cdot10^3\,\mathrm{kr/m}^3$ - некоему гипотетическому материалу с высокой прочностью тонких пленок.

$\mathcal{N}_{ar{0}}$	d,мкм	$ ho, kg/m^3$	α	υ,км/с
1	1,0	2700,0	1	31,2
2	1,0	1600,0	1	40,6
3	1,0	2700,0	2	17,5
4	1,0	1600,0	2	28,7
5	0,1	2700,0	1	99,0
6	0,1	1600,0	1	128,5
7	0,1	2700,0	1,5	80,8
8	0,1	1600,0	1,5	105,0
9	0,1	2700,0	2	55,2
10	0,1	1600,0	2	92,0

Как видно из приведенной таблицы, только в случае использования парусов из сверхтонких пленок толщиной 100 нм с плотностью порядка $1600,0\,\mathrm{kr/m}^3$ солнечный парусник может достичь скорости, близкой к $105,0\,\mathrm{km/c}$ для конструкционного параметра, равного 1,5. Найдем для такого парусника площадь поверхности, необходимую для разгона космолета массой 1,0 т. С учетом $\alpha=1,5$ площадь паруса космолета будет равна

$$S = \frac{10^3}{1, 5 \cdot 1, 6 \cdot 10^3 \cdot 10^{-7}} \,\mathrm{m}^2 \approx 4, 2 \cdot 10^6 \,\mathrm{m}^2 = 4, 2 \,\mathrm{km}^2$$

Это достаточно большой парус. Создать для него прочную конструкцию будет непросто из-за больших размеров и очень малой толщины материала.

На рисунке представлена возможная конструкция паруса с использованием тросов в качестве креплений солнечного паруса к корпусу космолета. Прочные тросы могут сделать конструкцию паруса жесткой и одновременно легкой. Подобная конструкция может быть использована и для создания космолетов на солнечной тяге для полетов с людьми. Правда, в этом случае придется собирать в космосе солнечные паруса площадью в сотни квадратных километров. С позиций современной космонавтики это исключительно сложная инженерно-техническая задача. Для ее решения понадобится разработать новые пленочные материалы для солнечных парусов с рекордными характеристиками по толщине, прочности и плотности. Все это отодвигает время появление солнечных парусников в отдаленное будущее. Подведем теперь небольшой итог изложенному материалу. Приведенные расчеты показывают, что использование давления сол-