AMS 361 R01/R03

Week 11: Variable coefficients (Homogeneous, Inhomogeneous (Order reduction, Variational principle))

Junqi Huan ${f g}^1$

Department of Applied Mathematics & Statistics Stony Brook University ¹Teaching Assistant

Spring 2023

AMS 361 R01/R03

Consider the differential equation

$$A(x)y'' + B(x)y' + C(x)y = 0,$$

with a given solution $y_1(x)$.

Steps

Solve (week 2 Separable)

$$Av'' + (2A(\ln y_1)' + B)v' = 0.$$

Obtain

$$v(x) = C_1 \int \frac{e^{-\int \frac{B}{A}dx}}{y_1^2} dx + C_2.$$

The general solution is

$$y(x) = v(x)y_1(x).$$

Variable coefficients (Homogeneous)

Example

Find the GS to the following DE

$$x^2y'' - x(x-1)y' + (x-1)y = 0,$$

with one given solution $y_1(x) = x$.

AMS 361 R01/R03

Junqi Huang (Stony Brook University)

Spring 2023

$$x^{2}y'' - x(x-1)y' + (x-1)y = 0$$
 $A = x^{2}$
 $B = -x(x-1)$
 $C = x-1$
 $Y_{1}(x) = x$
 $Y_{1}'' = 0$
 $C = x^{2}y_{1}'' - x(x-1)y_{1}' + (x-1)y_{1}$
 $C = x^{2}y_{1}'' - x(x-1)y_{1}' + (x-1)y_{1}'$
 $C = x^{2}y_{1}'' - x(x-1)y_{1}' + (x-1)y_{1}' + (x-1)y_{1}'$
 C

Solve (week 2 Separable)

$$Av'' + (2A(\ln y_1)' + B)v' = 0.$$

$$Av'' + (2A(|_{N}Y_{1})' + B)v' = 0$$

 $\chi^{2}v'' + (2\chi^{2}(|_{N}\chi)' + (-\chi(\chi-1)))v' = 0$

Obtain

$$v(x) = C_1 \int \frac{e^{-\int \frac{B}{A}dx}}{y_1^2} dx + C_2.$$

$$V(x) = C_1 \int \frac{e^{-\int \frac{R}{A} dx}}{y_1^2} dx + C_2$$

$$= C_1 \int \frac{e^{-\int \frac{-\chi(x-1)}{\chi^2} dx}}{\chi^2} dx + C_2$$

$$= C_{1} \int \frac{e^{\int \frac{\pi}{x}} dx}{\chi^{2}} dx + C_{2}$$

$$= C_{1} \int \frac{e^{\chi - \ln x}}{\chi^{2}} dx + C_{2}$$

$$= C_{1} \int \frac{e^{\chi - \ln x}}{\chi^{2}} dx + C_{2}$$

$$= C_{1} \int \frac{e^{\chi} \cdot e^{\ln x^{-1}}}{\chi^{2}} dx + C_{2}$$

$$= C_{1} \int \frac{e^{\chi} \cdot e^{\ln x^{-1}}}{\chi^{3}} dx + C_{2}$$

• The general solution is

$$y(x) = v(x)y_1(x).$$

$$y = V y_{1}$$

$$= (C_{1} \int x^{-3} e^{x} dx + C_{2}) x$$

$$y(x) = C_{1} x \int x^{-3} e^{x} dx + C_{2} x$$

$$= C_{1} \delta(x) + C_{2} x$$

$$vill | earn | it | in | Laplace | Transform$$

Variable coefficients (Homogeneous)

Example (Test 2 Problem 3, Fall 2019)

Find the GS of

$$x^2y'' - 3xy' + 4y = 0.$$

Remark

Besides this method (week 11 Variable coefficients), we also have another method (week 10 Cauchy-Euler) to solve this ODE.

$$\chi^{2} y'' - 3\chi y' + 4y = 0$$
 $A = \chi^{2}$
 $B = -3\chi$
 $C = 4$

Gives:

 $A = \chi^{2}$
 $C = \chi^{2}$

• Solve (week 2 Separable)

$$Av'' + (2A(\ln y_1)' + B)v' = 0.$$

$$A v'' + (2A(|_{h}y_{1})' + B) v' = 0$$

 $\chi^{2}v'' + (2\chi^{2}(|_{h}\chi^{2})' - 3\chi) v' = 0$

Obtain

$$v(x) = C_1 \int \frac{e^{-\int \frac{B}{A}dx}}{y_1^2} dx + C_2.$$

$$V(x) = C_1 \int \frac{e^{-\int \frac{R}{A} dx}}{y_1^2} dx + C_2$$

$$= C_1 \int \frac{e^{-\int \frac{-3x}{x^2} dx}}{(x^2)^2} dx + C_2$$

$$= C_1 \int \frac{e^{3\int \frac{1}{x} dx}}{x^4} dx + C_2$$

$$= C_1 \int \frac{e^{3\ln x}}{x^4} dx + C_2$$

$$= C_{1} \int \frac{e^{\ln x^{3}}}{x^{4}} dx + C_{2}$$

$$= C_{1} \int \frac{x^{3}}{x^{4}} dx + C_{2}$$

$$= C_{1} \int \frac{1}{x} dx + C_{2}$$

$$= C_{1} \ln x + C_{2}$$

• The general solution is

$$y(x) = v(x)y_1(x).$$

$$y(x) = v(x) y, (x)$$

= $(C_1 I_n x + C_2) x^2$
 $y(x) = C_2 x^2 + C_1 x^2 I_n x$ G.S.

Consider the differential equation

$$A(x)y'' + B(x)y' + C(x)y = F(x).$$

Steps

- Method 1: Solve it directly (week 11 Order reduction).
- Method 2:
- Find the general solution $y_c = C_1y_1 + C_2y_2$ for the associated homogeneous equation (week 8,10,11 Homogeneous)

$$A(x)y'' + B(x)y' + C(x)y = 0.$$

Find a particular solution y_p for the inhomogeneous equation (week 11 Variational principle (VP or VOP))

$$A(x)y'' + B(x)y' + C(x)y = F(x).$$

• General solution is $y = y_c + y_p$.

Steps

• Get a solution $y_1(x)$ for the associated homogeneous equation (given in problem or week 8,10 Homogeneous or guess)

$$A(x)y'' + B(x)y' + C(x)y = 0.$$

• Obtain v'(x) by solving (week 3 Linear)

$$y_1(Av'' + (2A(\ln y_1)' + B)v') = F.$$

Then

$$v(x) = \int v'(x)dx + C_2.$$

The general solution is

$$y(x) = v(x)y_1(x).$$

Order reduction

Example (Final Problem 1, Fall 2016)

Find the GS of the following DE by any method of your choice:

$$x^2y'' + 5xy' + 4y = x^2 - x^{-2}$$
.

Remark

Week 10 Cauchy-Euler or week 11 Order reduction.

Spring 2023

Order reduction

Example (Final Problem 2, Fall 2016)

Use LT method and another method to find the PS (Convolutions, if any,

must be evaluated):

$$\begin{cases} x'' + x = \tan(t) \\ x(0) = x'(0) = 0 \end{cases}$$

Remark

LT method: week 14 Laplace transform;

Another method: week 9 Variational principle or week 11 Order reduction.

$$\chi'' + \chi = tant$$
 $\uparrow \qquad \uparrow \qquad \uparrow$
 $A=1$
 $B=0$
 $C=1$
 $F=tant$

• Get a solution $y_1(x)$ for the associated homogeneous equation (given in problem or week 8,10 Homogeneous or guess)

$$A(x)y'' + B(x)y' + C(x)y = 0.$$

$$\lambda^{2}+1=0$$

$$\lambda=\pm i$$

$$X_{1}=\cos t$$

$$X_{2}=\sin t$$

• Obtain v'(x) by solving (week 3 Linear)

$$y_1(Av'' + (2A(\ln y_1)' + B)v') = F.$$

$$y_{1}(Av'' + (2A(\ln y_{1})' + B)v') = F$$

$$cost(1\cdot V'' + (2\cdot | (\ln cost)' + o)v') = tant$$

$$cost(V'' + (2\frac{1}{cost}(-sint))v') = \frac{sint}{cost}$$

$$V'' - 2 tant v' = tant sect \qquad (|inear|)$$

$$f = -2 tant \qquad Q = \frac{tant}{cost}$$

$$f(t) = e^{\int P(t)dt} = e^{\int -2tant}dt = e^{-2\ln|sect|}$$

$$\int \tan x \, dx = \ln|\sec x| + C$$

$$= e^{\ln|\sec x|^{-2}} = \frac{1}{\sec^2 t} = \cos^2 t$$

$$V'(t) = \frac{1}{e} \left(\int Q P \, dt + C_1 \right)$$

$$= \frac{1}{\cos^2 t} \left(\int \frac{\tan t}{\cos t} \cos^2 t \, dt + C_1 \right)$$

$$= \frac{1}{C \cdot s^2 t} \left(\int t \text{ ont } C \cdot s t dt + C_1 \right)$$

$$= \frac{1}{C \cdot s^2 t} \left(\int S \cdot i n t dt + C_1 \right)$$

$$= \frac{1}{C \cdot s^2 t} \left(-C \cdot s t + C_1 \right)$$

$$= -\frac{1}{C \cdot s^2 t} + C_1 \frac{1}{C \cdot s^2 t}$$

Then

$$v(x) = \int v'(x)dx + C_2.$$

$$V(t) = \int V'(t) dt$$

$$= \int \left(-\frac{1}{\cos t} + C_1 \frac{1}{\cos^2 t} \right) dt + C_2$$

$$= -\int \frac{1}{\cos t} dt + C_1 \int \frac{1}{\cos^2 t} dt + C_2$$

$$= \int \sec x dx = \ln|\sec x + \tan x| + C$$

$$= \int \sec^2 x dx = \tan x + C$$

$$= -\int_0^\infty |\sec t + \tan t| + C_1 \tan t + C_2$$

The general solution is

$$y(x) = v(x)y_1(x).$$

$$\chi(t) = V(t) \chi_{1}(t)$$

$$= \left(-\left|_{n}\right| \operatorname{sect} + t_{m}t\right| + C_{1} \operatorname{tan}t + C_{2}\right) \operatorname{Cost}$$

$$\chi(t) = \left(_{2} \operatorname{cost} + C_{1} \operatorname{sint} - \operatorname{cost}\left|_{n}\right| \operatorname{sect} + t_{an}t\right) \qquad G.5.$$

Order reduction

Example (Test 3 Problem 3, Fall 2022)

Find a GS of

$$xy'' - (2x + 1)y' + (x + 1)y = x^2 e^x$$
.

Hint: The homo portion of the DE may have a solution e^{x} .

$$\chi y'' - (2\chi + 1) y' + (\chi + 1) y = \chi^2 e^{\chi}$$

A= χ
 $\beta = -(2\chi + 1)$
 $C = \chi + 1$
 $F = \chi^2 e^{\chi}$

• Get a solution $y_1(x)$ for the associated homogeneous equation (given in problem or week 8,10 Homogeneous or guess)

$$A(x)y'' + B(x)y' + C(x)y = 0.$$

Check:
$$CHS = \chi(e^{\chi})'' - (2\chi+1)(e^{\chi})' + (\chi+1)(e^{\chi})'$$

 $= \chi(e^{\chi})'' - (2\chi+1)e^{\chi} + (\chi+1)e^{\chi}$
 $= (\chi-2\chi-1+\chi+1)e^{\chi}$
 $= 0$
 $= 2HS$

• Obtain v'(x) by solving (week 3 Linear)

 $V' = \frac{1}{r} \left(\int Q \, \ell \, dx + C_i \right)$

$$y_1(Av'' + (2A(\ln y_1)' + B)v') = F.$$

$$\frac{Y_{1}(A V'' + (2A(\ln y_{1})' + B)V') = F}{e^{x}(x V'' + (2x(\ln e^{x})' - (2x+1))V') = x^{2}e^{x}}$$

$$\frac{E^{x}(x V'' + (2x(x)' - 2x-1)V') = x^{2}e^{x}}{xV'' + (2x - 2x - 1)V' = x^{2}}$$

$$\frac{XV'' - V' = x^{2}}{xV'' - x^{2}} \qquad (Linear)$$

$$V'' - \frac{1}{x}V' = x$$

$$P = e^{\int P(x)dx} = e^{\int -\frac{1}{x}dx} = e^{-\ln x} = e^{\ln x^{-1}} = \frac{1}{x}$$

$$= \chi(\int \chi \frac{1}{\chi} dx + C_1)$$

$$= \chi(\int dx + C_1)$$

$$= \chi(\chi + C_1)$$

$$= \chi^2 + C_1 \chi$$

Then

$$v(x)=\int v'(x)dx+C_2.$$

$$V = \int v' dx + C_{1}$$

$$= \int (x^{2} + C_{1}x) dx + C_{2}$$

$$= \int x^{2} dx + C_{1} \int x dx + C_{2}$$

$$= \frac{1}{3} x^{3} + \frac{1}{2} C_{1} x^{2} + C_{2}$$

The general solution is

$$y(x) = v(x)y_1(x).$$

65

Variational principle (Variable coefficients)

Steps

• The Wronskian of two solutions y_1, y_2 is

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1'.$$

Compute

$$u_1(x) = \int \frac{-y_2 \frac{f(x)}{A(x)}}{W(y_1, y_2)} dx, \quad u_2(x) = \int \frac{y_1 \frac{f(x)}{A(x)}}{W(y_1, y_2)} dx.$$

In the indefinite integrals above, it is not necessary to write an arbitrary constant C.

The particular solution is

$$y_p = u_1(x)y_1 + u_2(x)y_2.$$

AMS 361 R01/R03

Spring 2023

Variational principle

Example (Test 3 Problem 1, Spring 2020)

Find, by the method of VOP, the GS of

$$x^2y'' + xy' - \alpha^2y = x^{\alpha} + x^{-\alpha}$$

where integer lpha>0

AMS 361 R01/R03