Mouvement d'une particule chargée dans un champ magnétique uniforme

Exercice 1 : Mouvement d'une particule chargée dans un champ magnétique uniforme

Les ions Mg^{2+} pénètrent dans une région de l'espace où règne un champ \vec{B} (perpendiculaire au plan de la figure). Avec une vitesse magnétique uniforme $V_0 = 1, 6.10^4 \cdot m.s^{-1}$

- 1. Donner les caractéristiques de la force magnétique $\vec{F_m}$.
- 2. Déterminer le sens du champs magnétique \vec{B} .
- 3. En appliquant la deuxième loi de newton dans un référentiel galiléen, montrer que le mouvement des ions Mg^{2+} est circulaire uniforme.
- 4. Calcule la masse d'ion Mg^{2+} (On donne OM = 4cm)

Exercice 2:Les isotopes

On considère les ions de deux isotopes $^{200}_{80}Hg^{2+}$ et $^{202}_{80}Hg^{2+}$ du mer-

Ils pénètrent en A, avec une vitesse V non nulle, dans une capsule où règne un champ magnétique uniforme (perpendiculaire au plan de la feuille):

- 2. Montrer que dans cette capsule les ions ont un mouvement uniforme, et exprimer les rayons Rde la trajectoire de deux isotopes en fonction de m, e, v et B.
- 3. Déterminer lequel de ces deux ions va être le plus dévié. Justifier.

Exercice 3 :Etude du mouvement d'une particule chargée dans un champ magnétique

Deux particules chargées Li^+ et X^{2+} sont introduites en un point O, avec la même vitesse initiale \vec{V} , dans un espace où règne un champ magnétique uniforme \vec{B} , perpendiculaire au vecteur \vec{V} . q_X et m_X sont respectivement la charge électrique et la masse de la particule X^{2+} . On considère que Li^+ et X^{2+} sont soumises seulement à la force de Lorentz.

Données:

- La vitesse initiale : $V = 10^5 m.s^{-1}$;
- L'intensité du champ magnétique : B = 0,5T ;
- La charge élémentaire: $e = 1, 6.10^{-19}C$;
- La masse de Li^+ : $m_Li = 6,015u$;
- $1u = 1,66.10^{-27}kq$;
- La figure 1 représente les trajectoires des deux particules dans le champ B
- On rappelle l'expression de la force de Lorentz : $\vec{F} = q\vec{v} \wedge \vec{B}$.

- 1. Déterminer la direction, le sens et l'intensité du vecteur force de Lorentz exercée sur la particule Li^+ au point O.
- 2. Préciser le sens du vecteur \vec{B} en le représentant par \odot s'il est vers l'avant ou par \bigoplus s'il est vers l'arrière.
- 3. En appliquant la deuxième loi de Newton dans un référentiel galiléen, montrer que le mouvement de l'ion Li^+ est uniforme et de trajectoire circulaire de rayon

$$R_{Li^+} = \frac{m_{Li^+}.V}{e.B}$$

- 4. En exploitant les données de la figure 1, déterminer le rapport $\frac{R_{X^{2+}}}{R_{Li^+}}$; avec $R_{X^{2+}}$ le rayon de la trajectoire de la particule X^{2+} .
- 5. Sachant que la particule X^{2+} se trouve parmi les trois ions proposés avec leurs masses dans le tableau ci-dessous, identifier X^{2+} en justifiant la réponse.

Ion	$\frac{24}{12}Mg^{2+}$	$^{16}_{12}Mg^{2+}$	$\frac{40}{20}Ca^{2+}$
Masse(u)	23,985	25,983	39,952

""Winning doesn't always mean being first. ..."