28. a.	Obtain the Huffman code for the word "COMMITTEE".		7	3	3.
b.	(OR) Explain wavelet coding in detail.	10	4	3	3
29. a.	Derive the discrete wiener HOPF equation and the frequency response of IIR linear minimum mean square error filters.	10	3	4	3
b.	(OR) Explain deformable motion, photometric image formation and geometric image formation with neat diagrams.	10	3	4	3
30. a.	Explain block matching method for motion estimation in detail.	10	3	5	3
b.	(OR) Explain motion estimation and the optical flow with neat diagram. Also differentiate 2D motion and apparent motion in video coding.	10	3	5	3

Reg. No.

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022

Sixth and Seventh Semester

18ECE243J – DIGITAL IMAGE AND VIDEO PROCESSING

Mate		(For the candidates admitted from	n tne a	cademic year 2018-2019 to 2019-2	120)				
Note:	Par	t - A should be answered in OMR s	sheet w	vithin first 40 minutes and OMR sl	neet she	ould	be	han	ded
(i)	ove	r to hall invigilator at the end of 40 th	minute	e.					
(ii)		t - B should be answered in answer b							
()			12				_		
Time: 2	2½ Ho	ours			Ma	ax. N	Maı	íks:	75
		$PART - A (25 \times 1)$	= 25 I	Marks)	Mar	ks I	BŁ	СО	PO
		Answer ALL C							
1	. Bar	tlane system were capable of c			ict 1		1	1	3
		levels.							
	(A)		(B)	10					
	• ′	15	(D)	20					
					. 1		1	1	3
2	. The	process that assigns labels to an	objec	et based on descriptors are terme	ed 1		1	1	3
	as		(72)						
	(A)	•	(B)	-					
	(C)	Image segmentation	(D)	Image recognition					
3	Dio	itization of spatial coordinates is	called	l as	1		1	1	3
3		Image sampling		Image smoothing					
	(C)	Gray level quantization	. ,	Image processing					
	(-)	1			W				
4	. Con	e vision is also called as			1		2	1	3
	(A)	Photopic vision	(B)	Scotopic vision					
	(C)	Photographic vision	(D)	Magnetic vision					
	Trl	manian in the matine where there	ia no r	recentors is called as	1		2	1	3
3		region in the retina where there		Cone					
		Rod Dlind and	(D)	Fovea					
	(C)	Blind spot	(D)	Tovea					
6		transformation, maps a n	arrow	range of low intensity values	of 1		1	2	3
Ü		input into a wider range of outpu	t level	ls.					
		Linear		Inverse log					
	. ,	Log		Pixel					
	` '		-					2	2
7	. The	filter is an order s			1		1	2	3
	(A)	Averaging	` /	Weighted averaging					
	(C)	Median	(D)	Low pass					
_		1 0 1 11 01		£14au	1		1	2	3 .
8		shape of a homomorphic filter is		filter.	•			_	-
		Low pass		High pass					
	(C)	Band passs	(D)	Band stop		m.c.o			42 T
Page 1 of	4				24N	F6&7	-18I	1CE24	+5J

24NF6&7-18ECE243J

9.	If $F(X,Y)$ is an image function of two		ariables, the first order derivative		~	~	,
	of one dimensional function $F(X)$ is						
	(A) $F(X+1)-F(X)$	(B)	F(X)-F(X+1)				
	(C) $F(X-1)-F(X+1)$	(D)	F(X)+F(X+1)				
10.	The method used to generate a pr	oces	sed image that has a specified	1	2	2	3
	histogram is called as	(T))	***				
	(A) Histogram equalization		_				
	(C) Normalized histogram	(D)	Unnormalized histogram				
11.	transforms $f(x,y)$ into	a fo	ormat designed to reduce spatial	1	2	3	3
	and temporal redundancy.	~					
	. , 11	` '	Quantizer				
	(C) Symbol coder	(D)	Symbol decoder				
12.	coding does not generate	_		1	2	3	3
			Run length				
	(C) Arithmetic	(D)	Huffman				
13.	The mask used for diagonal edge dete	ction	is	1	1	3	3
	` '		2D mask				
	(C) 3D mask	(D)	4D mask				
14.	is used to extract the	most	appropriate location of an edge	1	1	3	3
	when there is a gradual change in inte						
			Laplacian operator				
	(C) Prewitt operation	(D)	Gaussian operator			,	
15.	What does the total number of pixel in	n the	region defines?	1	1	3	3
	(A) Area	(B)	Intensity				
	(C) Brightness	(D)	Contrast			•	
16.		ire st	arts at the top left corner of the	1	1	4	3
	receiving CRT.						
		. ,	Sync pulse				
	(C) Aspect ratio	(D)	Bandwidth				
17.	Which projection gives a realistic view	w?		1	1	4	3
		(B)	Orthographic projection				
	(C) Oblique projection	(D)	Isotropic projection				
18.	In perspective projection, all lines of s	sight	start at apoint.	1	2	4	3
	(A) Multiple	(B)	Three				
	(C) Two	(D)	Single				
19.	The 3D displacement of a rigid obje	ect in	the Cartesian coordinates with	1	2	4	3
	rotation matrix R and translation matri						
	(A) $X' = TX + R$	(B)	X' = RX + T				
			X' = RX - T				
		-					

	20.	In photometric image formation, the surfaces vector component are termed as (A) Lambertian surfaces (B) Reflecta (C) Refractance surfaces (D) Incident	ance surfaces	1	1	4	3
	21.	2D motion is also called asmotion.		1	1	5	3
		(A) Projected (B) Translate					
		(C) Spatial (D) Linear					
	22.	In hierarchical block matching, low pass filtering n	nay be performed by	1	1	5	3
		(A) Box filter (B) Butterw					
		(C) Chebyshev filter (D) Tempor	al filter				
						-	2
	23.	problem is a special case of the c	1 1	1	1	5	3
		where the two frames are globally shifted with resp					
		(A) Displacement (B) Registra					
		(C) Acceleration (D) Occlusion	OII		,		
	24.	aims to describe the orthographic pr	rojection of a 3D motion	1	2	5	3
	21,	of a surface in to the image plane.	ojoonon or a 3D monon				
		(A) Non parametric model (B) Parameter	tric model				
		(C) Recursive model (D) Non rec					
	25.	criterion requires a threshold $log_2(N_1 \times N_2)$ counter.	comparator and a	1	2	5	3
			osolute difference				
		• ,	m mean square error				
		(C) Watering per count (D) Williams	ini mean square error				
		$PART - B (5 \times 10 = 50 Marks)$		Marks	BL	co	PO
		Answer ALL Questions					
					- 5		
26	5. a.	Describe the image formation in human eye. Also	o explain the brightness	10	3	1	3
		adaptation and discrimination.					
		(OD)					
	1	(OR)	9	10	3	1	3
	D.	Explain DFT and the properties of 2D-DFT.			-	-	
2"	7 a	Explain homomorphic filtering in detail.		10	3	2	3
	/ a.	Explain homomorphic intering in dean.					
(OR)							
	b.	Perform histogram equalization on a 3-bit image of	f size 32×32 pixels. The	10	3	2	3
		intensity distribution of the image is given below.	•				
		$r_k \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7$					
		n _k 110 374 210 150 100 50 20 10					

Page 2 of 4