Bacharelado em Ciência da Computação Banco de Dados

Mapeamento do Modelo Entidade-Relacionamento para o Modelo Relacional

Prof. Sahudy sahudy@ufscar.br

Modelo de Dados e o Projeto de BD

Mapeamentos

- objetivos básicos
 - Obter um banco de dados que permita boa performance de instruções de consulta e alteração do banco de dados
 - diminuir o número de acessos a disco
 - Obter um banco de dados que simplifique o desenvolvimento e a manutenção de aplicações

Mapeamentos

- Princípios para obter os objetivos básicos
 - Evitar <u>junções</u> ter os dados necessários a uma consulta em uma única linha
 - 2. Diminuir o número de chaves primárias
 - 3. Evitar campos opcionais (com valores nulos)

Integridade Referencial

```
empregado (CPF_empregado, nome_empregado,
             cod_supervisor, sigla_depto, data_início)
   cod supervisor referencia empregado
  sigla depto referencia departamento
dependente (CPF_empregado, nome_dependente, sexo_dependente)
   CPF empregado referencia empregado
departamento (sigla_depto, nome_depto, gerente)
   gerente referencia empregado
projeto (nro_projeto, nome_projeto)
controla (sigla_depto, nro_projeto)
   sigla_depto referencia departamento
   nro projeto referencia projeto
desenvolve (CPF_empregado, nro_projeto, horas_trabalhadas)
   CPF_empregado referencia empregado
  nro_projeto referencia projeto
```

Mapeamentos

- Geram três tipos de relação:
 - relação entidade com a mesma informação que o tipo-entidade original
 - relação entidade com a chave estrangeira de um outro tipo-entidade
 - relação relacionamento com as chaves primárias de todos os tipos-entidade relacionados, além dos atributos do tipo-relacionamento

Mapeamento de Tipo-Entidade Forte

Passo 1: Tipo-Entidade Forte

- Modelo entidade-relacionamento
 - tipo-entidade E
 - atributos a₁, a₂, ..., a_n
- Modelo relacional
 - Relação de n colunas distintas, correspondendo aos n atributos de E

empregado (CPF_empregado, nome_empregado)

Atributos Compostos

Atributos da relação R - conjunto de atributos simples componentes

empregado (<u>CPF</u>, nome, salario, **rua**, **nro**, **cep**, **cidade**)

Mapeamento de Tipo-Entidade Fraca

Passo 2: Tipo-Entidade Fraca

- Modelo Entidade-Relacionamento
 - tipo-entidade forte E: chaves primárias b₁, b₂, ..., b_m
 - tipo-entidade fraca A: atributos a₁, a₂, ..., a_n
- Modelo relacional
 - Relação de n+m colunas distintas, correspondendo às m chaves de E e aos n atributos de A

Mapeamento de Tipo-Relacionamentos

Tabela 5.1 Alternativas para implementação de relacionamentos

Regra de implementação Tipo de relacionamento Tabela Adição Fusão própria coluna tabelas Relacionamentos 1:1 (0,1)(0,1)V <u>+</u> X (1,1)(0,1)+ V + (1,1)= + V Relacionamentos 1:n (0,1)(0,n)<u>+</u> V X (1,n)(0,1)V \pm X (1,1)(0,n)+ V X (1,1)(1,n)**=** V X Relacionamentos n:n (0,n)(0,n)V X X (1,n)(0,n)V X X (1,n)(1,n)

V

X

X

?

V: Alternativa preferida

^{±:} Pode ser usada, primeira opção

^{∓:} Pode ser usada, segunda opção

x: Não cabe como solução

Mapeamento de Tipo-Relacionamento 1:1

- Modelo Entidade-Relacionamento
 - tipo-relacionamento binário: E₁ relacionando-se com E₂
 - cardinalidade: 1:1
- Modelo relacional (3 alternativas)
 - a participação de ambos os tipo-entidades é opcional (0,1)
 - um dos tipo-entidades tem participação obrigatória (1,1), enquanto que o outro tipo-entidade tem participação opcional (0,1)
 - ambos tipo-entidades tem participação obrigatória no relacionamento (1,1)
- Lembrete: Chave estrangeira
 - chave primária de uma relação que é inserida em outra relação
 - utilizada para recuperar informações de outras relações

◆ a participação de ambos tipo-entidades é opcional (0,1)

Adição coluna

Mulher (<u>IdentM</u>,Nome,IdentH,Data,Regime)
IdentH referencia Homem
Homem (IdentH,Nome)

Mulher (IdentM,Nome) própria
Homem (IdentH,Nome)
Casamento (IdentM,IdentH,Data,Regime)
IdentM referencia Mulher
IdentH referencia Homem

• um dos tipo-entidades tem participação obrigatória (1,1), enquanto que o outro tipo-entidade tem participação opcional

Correntista (CodCorrent, Nome, CodCartão, DataExp)

Fusão tabelas

2

Correntista (<u>CodCorrent</u>,Nome)
Cartão(<u>CodCartão</u>,DataExp,**CodCorrent**)
CodCorrent referencia Correntista

Adição coluna

ambos os tipo-entidades têm participação obrigatória no relacionamento (1,1)

1

Conferência (CodConf,Nome,DataInstComOrg,EnderComOrg)

Fusão tabelas

Mapeamento de Tipo-Relacionamento 1:N

- Modelo Entidade-Relacionamento
 - tipo-relacionamento binário:
 - $\underline{\mathbf{1}}$ de E_1 relacionando-se com $\underline{\mathbf{n}}$ de E_2
 - cardinalidade: 1:n
- Modelo relacional adição de colunas
 - Repete-se a chave primária de E₁ em E₂
 - a tabela de E₁ possuirá apenas os atributos de E₁
 - a tabela de E₂ possuirá
 - os atributos de E₂
 - a chave primária de E₁ (chave estrangeira)
 - os atributos do tipo-relacionamento

E2: empregado (CPF_empregado, nome_empregado, sigla_depto)

E1: departamento (sigla_depto, nome_depto)

Adição coluna

Tradução de relacionamentos 1:n no qual a entidade com cardinalidade máxima um é opcional

Adição

coluna

Financeira (CodFin,Nome)

Venda (<u>IdVend</u>,Data,CodFin,NoParc,TxJuros)
CodFin referencia Financeira

2

Financeira (CodFin, Nome)

Tabela própria

Venda (IdVend, Data)

Fianciam (<u>IdVend</u>,CodFin,NoParc,TxJuros)
IdVend referencia Venda
CodFin referencia Financeira

Mapeamento de Atributo de Tipo-Relacionamento (1:1 ou 1:N)

Atributo de Tipo-Relacionamento (1:1 e 1:n)

empregado (<u>CPF_empregado</u>, nome_empregado, sigla_depto, data_início)

Adição departamento (sigla_depto, nome_depto)

Adição coluna

Mapeamento de Tipo-Relacionamento m:n

- Modelo Entidade-Relacionamento
 - tipo-relacionamento binário: m de E₁ relacionando-se com n de E₂
 - cardinalidade: m:n
- Modelo relacional: Tabela própria
 - a tabela de E₁ possuirá apenas os atributos de E₁
 - a tabela de E₂ possuirá apenas os atributos de E₂
 - a tabela R (relativa ao tipo-relacionamento) conterá:
 - a chave primária de E₁ (chave estrangeira)
 - a chave primária de E₂ (chave estrangeira)
 - os atributos do tipo-relacionamento
 - Chave primária de R
 - chave primária de E₁ + chave primária de E₂

E1: empregado (<u>CPF empregado</u>, nome_empregado)

E2: projeto (<u>nro_projeto</u>, nome_projeto)

R: desenvolve (<u>CPF empregado</u>, <u>nro_projeto</u>, horas_trabalhadas)

Tabela própria

Tabela 5.1 Alternativas para implementação de relacionamentos

Tipo de relacionamento	Regra de implementação		
	Tabela própria	Adição coluna	Fusão tabelas
Relacionamentos 1:1			
(0,1)	±	V	X
(0,1)	-	±	V
(1,1)	=	-	V
Relacionamentos 1:n			
(0,1) (0,n)	±	V	X
(0,1) (1,n)	<u>+</u>	٧	X
(1,1) (0,n)	-	V	Х
(1,1) (1,n)	=	٧	х
Relacionamentos n:n			
(0,n) (0,n)	V	х	х
(0,n) (1,n)	V	x	х
(1,n) (1,n)	V	Х	х

V: Alternativa preferida

^{±:} Pode ser usada, primeira opção ∓: Pode ser usada, segunda opção x: Não cabe como solução

Mapeamento de Auto-relacionamento

Tipo-relacionamento Unário (1:1)

Tipo-relacionamento Unário (1:n)

Adição

coluna

Tipo-relacionamento Unário (m:n)

E1: disciplina (<u>código disc</u>, nome_disc)

R: pré_requisito (<u>código disc</u>, <u>código pré requisito</u>)

36

Exemplo

Esquema do BD Relacional

```
empregado (CPF_empregado, nome_empregado,
             cod_supervisor, sigla_depto, data_início)
    cod supervisor referencia empregado
   sigla_depto referencia departamento
dependente (CPF_empregado, nome_dependente, sexo_dependente)
    CPF empregado referencia empregado
departamento (<u>sigla_depto</u>, nome_depto, <u>gerente</u>)
    gerente referencia empregado
projeto (<u>nro_projeto</u>, nome_projeto)
controla (sigla_depto, nro_projeto)
    sigla depto referencia departamento
    nro_projeto referencia projeto
desenvolve (CPF_empregado, nro_projeto, horas_trabalhadas)
   CPF empregado referencia empregado
   nro projeto referencia projeto
```

Bibliografia

- Heuser, Carlos Alberto. Projeto de banco de dados. 5 ed. Porto Alegre: Sagra Luzzatto, 2004, 236 p.
- Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados. 4 ed. São Paulo: Addison Wesley, 2005, 724 p. Bibliografia: p. [690]-714.
- Slides baseados em Material Didático produzido pelo professor Edson Pinheiro Pimentel.

Leitura complementar para casa

Capítulo 5 do livro: Heuser, Carlos Alberto. Projeto de banco de dados.

Capítulo 7 do livro: Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados.

Faça o mapeamento entre modelos:

Bacharelado em Ciência da Computação Banco de Dados

Mapeamento do Modelo Entidade-Relacionamento para o Modelo Relacional

Prof. Sahudy sahudy@ufscar.br

EXERCÍCIO 3 DA LISTA 4 / MER

Biblioteca

Uma biblioteca pretende substituir o velho arquivo de fichas em papel por um sistema de informação que mantém as informações dos livros do acervo, dos usuários cadastrados na biblioteca e dos empréstimos feitos pelos usuários.

Sobre os livros deseja-se armazenar o título, ISBN, autores, ano de publicação, o número de exemplares existentes na biblioteca e dados sobre a editora. Sobre as editoras sabe-se o CNPJ, nome, endereço e telefone. Cada livro pode possuir vários exemplares. Os exemplares de cada livro são identificados por um número sequencial incrementado de acordo com o número de cópias, a partir do ISBN do livro.

Sobre os usuários deseja-se armazenar o número de associado, o nome, endereço e telefone.

Além disso, deseja-se armazenar informações sobre os empréstimos realizados, ou seja, que usuário está com que exemplar de que livro, data de retirada e de devolução. Um usuário pode ter vários exemplares emprestados.

Notação diagramática

- Se o custo/desempenho da consulta for alto, criar o atributo

Notação diagramática

• Se o custo/desempenho da consulta for alto, criar o atributo

Notação diagramática

- Se o custo/desempenho da consulta for alto, criar o atributo

Modelo de Dados e o Projeto de BD

Mapeamentos

- objetivos básicos
 - Obter um banco de dados que permita boa performance de instruções de consulta e alteração do banco de dados
 - diminuir o número de acessos a disco
 - Obter um banco de dados que simplifique o desenvolvimento e a manutenção de aplicações

Mapeamentos

- Princípios para obter os objetivos básicos
 - Evitar <u>junções</u> ter os dados necessários a uma consulta em uma única linha
 - 2. Diminuir o número de chaves primárias
 - 3. Evitar campos opcionais (com valores nulos)

Mapeamento ME-R → MRel

Roteiro da aula passada

- 1. Mapear todos os tipos-entidade forte
- 2. Mapear todos os tipos-entidade fraca
- 3. Mapear todos os tipos-relacionamento 1:1
- 4. Mapear todos os tipos-relacionamento 1:n
- 5. Mapear todos os tipos-relacionamento n:m
- 6. Mapear os atributos dos tipo-relacionamentos
- 7. Mapear os tipo auto-relacionamentos 1:1, 1:n. n:m

Mapeamento ME-R → MRel

Roteiro da aula de hoje

- Mapear todos os atributos multivalorados
- Mapear todos os tipos-relacionamento de grau > 2
- Mapear os elementos do MER Estendido
 - Hierarquias
 - Agregações

Mapeamento de Atributos Multivalorados

Passo 6: Atributos Multivalorados

- Duas opções de mapeamento
- Para cada atributo multivalorado cria-se uma nova relação
- 2. Para cada valor possível do atributo multivalorado cria-se um atributo monovalorado na mesma relação

Passo 6: Atributos Multivalorados

1. Para cada atributo multivalorado cria-se uma nova relação

Passo 6: Atributos Multivalorados

2. Para cada valor possível do atributo multivalorado cria-se um atributo monovalorado na mesma relação

aluno (nro matricula, nome, grau_direito, grau_esquerdo)

Mapeamento de Tipo-Relacionamento Ternário

Lembrando: Tipo-Relacionamento Ternário

- Um tipo-relacionamento ternário em geral representa informações diferentes das dos três tipo-entidades
 - Note que DEP possui dados do DEPARTAMENTO, EMPREGADO e PROJETO

Como fazer o mapeamento?

- Modelo Entidade-Relacionamento
 - E₁ relacionando-se com E₂ e com E₃
 - cardinalidade: m:n:p
- Modelo relacional
 - a tabela de E₁ possuirá apenas os atributos de E₁
 - a tabela de E₂ possuirá apenas os atributos de E₂
 - a tabela de E₃ possuirá apenas os atributos de E₃
 - a tabela R (relativa ao tipo-relacionamento) conterá:
 - a chave primária de E₁
 - a chave primária de E₂
 - a chave primária de E₃
 - os atributos do tipo-relacionamento

- Tabela relativa ao tipo-relacionamento
 - Chave Primária em cada caso?
 - Primeiro caso:

$$x = y = z = 1$$

Segundo caso:

$$x = m; y = n; z = p$$

Terceiro caso:

$$x = 1; y = 1; z = m$$

• Quarto caso:

$$x = 1; y = m; z = n$$

AUTO-ESTUDO!

Mapeamento ME-R → MRel: Os 7 passos

Mapeamento ME-R → MRel Os 7 passos do procedimento

- 1. Mapear todos os tipos-entidade forte
- 2. Mapear todos os tipos-entidade fraca
- Mapear todos os tipos-relacionamento 1:1
- 4. Mapear todos os tipos-relacionamento 1:n
- 5. Mapear todos os tipos-relacionamento n:m
- 6. Mapear todos os atributos multivalorados
- Mapear todos os tipos-relacionamento de grau > 2

- ◆ Fazer os exercícios da lista de exercícios "Mapeamento ME-R → MRel"
 - Uma vez feitos, os exercícios das listas de MER podem ser utilizados como exercícios para realizar mapeamentos.

Exercício 1 (cont.)

No exercício da *Biblioteca*, suponha que seja necessário armazenar informações sobre o funcionário que registra cada empréstimo. Altere o M-ER da *Biblioteca* para que seja possível representar as seguintes informações:

- a) Um exemplar pode ser emprestado para vários clientes.
- b) Um usuário pode pegar emprestado um mesmo exemplar várias vezes em datas diferentes.
- c) Deseja-se saber sobre os funcionários da biblioteca: o número funcional (único para cada funcionário), número nome e data de contratação.
- d) Deseja-se saber que funcionário registrou cada empréstimo.

Resposta

6 ou 7 tabelas!

```
SETOR (nome, sigla, CRM_gerente, data_inicio)
Relacionamento 1 x 1 (participação total): chave estrangeira presente no lado "n"
Atributo de relacionamento.
PROCEDIMENTO (código, nome, custo, nome setor)
Relacionamento 1 x n (chave estrangeira presente no lado "n" )
MATERIAL (código, nome, nacionalidade)
MEDICO (CRM, CPF, nome, salário, rua, num, CEP, cidade)
 ATRIBUTOS MULTIVALORADOS
TELEFONE (CRM, fone)
RELACIONAMENTOS
♦ 1x1
GERENCIA (virou atributo no lado "participação total" )
1xn
REALIZA (virou atributo no lado "n")
♦ nxm → novas entidades com Chaves Estrangeiras e ATRIBUTOS de relacionamento
TRABALHA (nome setor, CRM, especialidade)
```

USA (cod proc, cod material, quantidade)

Mapeamento do Modelo Entidade-Relacionamento **Estendido** para o Modelo Relacional

Mapeamento MER-X → MRel Os 8 passos do procedimento

- Mapear todos os tipos-entidade forte que não são subclasses
- 2. Mapear todos os tipos-entidade fraca que não são subclasses
- 3. Mapear todos os tipos-relacionamento 1:1
- 4. Mapear todos os tipos-relacionamento 1:n
- 5. Mapear todos os tipos-relacionamento n:m
- 6. Mapear todos os atributos multivalorados
- 7. Mapear todos os tipos-relacionamento de grau > 2
- 8. Mapear todas as ocorrências de abstração de generalização/especialização

MER-X → MRel Generalização/Especialização

Generalização/Especialização EXEMPLO

Generalização/Especialização Opções de mapeamento

- A. uso de uma tabela para cada tipo-entidade
- B. uso de uma única tabela para toda hierarquia de generalização/especialização
- C. uma tabela para cada tipo-entidade especializada (tipo-entidade folha da árvore)
- D. uso de uma única tabela com atributos discriminadores

MER-X → Mrel Opção "A" (com E1)

- uso de uma tabela para cada tipo-entidade
- Modelo Entidade-Relacionamento
 - E₁: superclasse
 - E_{2, ...,} E_n: subclasses de E₁
- Modelo relacional
 - a tabela de E₁ possuirá:
 - os atributos de E₁
 - um atributo discriminador, caso necessário
 - as tabelas de E₂ a E_n possuirão:
 - os seus atributos específicos
 - a chave primária de E₁
- Chave primária das subclasses
 - chave primária de E₁

Generalização/Especialização Opção de mapeamento (8A) CPF empregado **EMPREGADO** nome empregado tipo empregado tipo empregado **SECRETÁRIO** TÉCNICO **ENGENHEIRO** idioma grau técnico tipo engenheiro empregado (CPF empregado, nome_empregado, tipo_empregado) secretário (CPF empregado, idio Se retirar o atributo permitirá sobreposição técnico (CPF empregado, grau técnico)

engenheiro (CPF empregado, tipo_engenheiro)

89

- Essa opção funciona para qualquer especialização
 - Total ou Parcial
 - Disjuntas ou Sobrepostas
- Interessante quando
 - existem poucas subclasses, cada uma com diversos atributos específicos
 - uma consulta tipicamente se concentra em uma ou poucas subclasses de cada vez

MER-X → Mrel Opção "B" (apenas com E1)

- uso de uma única tabela para toda hierarquia de generalização/especialização
- Modelo Entidade-Relacionamento
 - E₁: superclasse
 - E₂, ..., E_n: subclasses de E₁
- Modelo relacional
 - a tabela de E₁ possuirá:
 - os atributos de E₁
 - os atributos de E₂, ..., E_n
 - o atributo discriminador, caso necessário

empregado (<u>CPF_empregado</u>, nome_empregado, tipo<u>empregado</u>, idioma, grau_técnico, tipo_engenheiro)

Se retirar o atributo permitirá sobreposição

Generalização/Especialização Opções de mapeamento

- Discussão de cada tipo de implementação
- 1. Opção B uso de uma única tabela...
 - Não há necessidade de realizar junções
 - A chave primária é armazenada uma única vez
 - Há atributos opcionais
 - O controle de colunas opcionais passa a ser feito pela aplicação com base no valor da coluna TIPO
- 2. Opção A uso de uma tabela para cada...
 - a chave primária aparece tanto na tabela referente ao tipo-entidade genérica quanto na tabela referente ao especializado
 - o caso contrário...

MER-X → Mrel Opção "C" (sem E1)

- uma tabela para cada tipo-entidade especializada
- Modelo Entidade-Relacionamento
 - E₁: superclasse
 - \blacksquare $E_2, ..., E_n$: subclasses de E_1
- Modelo relacional
 - as tabelas de E₂ a E_n possuirão:
 - os seus atributos específicos
 - os atributos de E₁
 - a chave primária de E₁
- Chave primária das subclasses
 - chave primária de E₁

secretário (CPF_empregado, nome_empregado, idioma)

técnico (<u>CPF_empregado</u>, nome_empregado, grau_técnico) engenheiro (<u>CPF_empregado</u>, nome_empregado, tipo_engenheiro)

- Essa opção funciona
 - apenas para participação total
 - O empregado tem que ser de um dos 3 tipos para ser armazenado !!!
 - é mais adequada para disjunção, mas suporta sobreposição
- Interessante quando
 - é frequente o acesso a cada tipo-entidade em sua totalidade, incluindo-se seus dados genéricos e específicos
 - esta alternativa, comparada com as alternativas que mantêm uma relação para a superclasse, permite evitar uma operação de junção na consulta (pois acessa apenas "uma" tabela)

- Observação importante
 - esta alternativa não é indicada quando
 - houver necessidade frequente de acessar informações envolvendo todas as entidades genéricas
 - para especialização <u>parcial</u>, criar uma tabela que coleciona as linhas referentes aos tipo-entidades para as quais não há especialização
 - tabela EmpOutros (CPF_empregado, nome_empregado)

- Observação importante
 - elimina os problemas de colunas opcionais e chaves primárias redundantes
 - para garantir a unicidade da chave primária, a <u>aplicação</u> que faz inclusões de linhas de empregados deve verificar todas as tabelas referentes às especializações

MER-X → Mrel Opção "D" (apenas com E1)

- uso de uma única tabela com atributos discriminadores
- Modelo Entidade-Relacionamento
 - E₁: superclasse
 - E_{2, ...,} E_n: subclasses de E₁
- Modelo relacional
 - a tabela de E₁ possuirá:
 - os atributos de E₁
 - os atributos de E₂, ..., E_n
 - vários atributos discriminadores de valores booleanos, cada um referente à uma subclasse

empregado (<u>CPF empregado</u>, nome_empregado, tipo_empS, idioma, tipo_empT, grau_técnico, tipo_empE, tipo_engenheiro)

- Interessantes quando
 - existem poucos atributos específicos nas subclasses
 - houver a possibilidade de existirem especializações (sem atributos específicos)
 <u>não</u> previstas à priori
 - controle pela <u>aplicação</u> que faz inclusões de linhas de empregado

Mapeamento de AGREGAÇÃO

Exemplo de Agregação

ALUNO

- Para mapear ocorrências de Agregação
 - considerar cada um dos casos de <u>como</u> o tipoentidade resultante da agregação é identificado
 - levar em consideração as <u>chaves dos tipos-</u> <u>entidade componentes</u>, o <u>tipo-relacionamento</u> <u>gerador</u>, os <u>atributos do tipo-relacionamento</u> <u>gerador</u>, o <u>tipo-entidade agregação</u>, e os <u>atributos</u> <u>do tipo-entidade agregação</u>

Exercício:MER-X → Mrel

ALUNO

RESPOSTA

MER-X → Mrel

- Dados vistos em um nível mais baixo
 - atributos dos tipos-relacionamentos
 - chaves primárias dos tipos-entidades
- Mapeamento

pessoa (CPF_pessoa, nome_pessoa)

universidade (CNPj_univ, nome_univ)

ingressa/aluno (CPF_pessoa, CNPj_univ, data_ingresso)

professor (CPF_professor, nome_professor)

orienta (CPF_pessoa, CNPj_univ, CPF_professor)

Neste cenário, o aluno NÃO ingressa na mesma universidade várias vezes (note que DATA_INGRESSO não é atributo primário)

Parte da PK em orienta corresponde a FK "ingressa_aluno"

Mapeamento de AGREGAÇÃO

Alternativa 1

Agregação – Alternativa de mapeamento 1

- Deve ser usada
 - quando o tipo-entidade agregação é identificado por atributo próprio + chaves dos tipos-entidade que participam do tipo-relacionamento gerador
 - uma mesma instância do tipo-relacionamento gerador resulta em mais de um tipo-entidade agregado

CONSULTA

Mapeamento de AGREGAÇÃO

Alternativa 2

Agregação - Alternativa de mapeamento 2

- Deve ser usada
 - quando o tipo-entidade agregação é identificado por <u>um de</u> seus atributos
 - em geral o atributo identificador da agregação era identificador do tipo-relacionamento gerador

PROJETO

Mapeamento de AGREGAÇÃO

Alternativa 3

Agregação - Alternativa de mapeamento 3

Mistura das alternativas 1 e 2

CONSULTA


```
Paciente = {RG, Nome}

Médico = {CRM, Nome}

Consulta = {RGPa, CRMMe, Data, None}
```

Mapeamento de AGREGAÇÃO

Mais ...

Analisar os atributos do tipo-relacionamento gerador

- Sempre que uma instância do tipo-relacionamento gerador puder resultar em mais de um tipo-entidade agregado
- ◆ Quando puderem ser repassados para a agregação
 → não mapear o relacionamento

Analisar os atributos do tipo-relacionamento gerador

- Sempre que uma instância do tipo-relacionamento gerador puder resultar em mais de um tipo-entidade agregado
 - Ministra (aula) usando um livro-texto
 - Aula numa data-hora
- Quando não puderem ser repassados para a agregação então deve-se mapear também o tipo-relacionamento

Analisar os atributos do tipo-relacionamento gerador

EXERCÍCIOS

Atividade para casa

Como fazer o mapeamento de subclasses compartilhadas (na herança múltipla) ?

Exercícios

◆Fazer os exercícios da lista de exercícios "Mapeamento MER-X → MRel"

Exercício 3

◆Fazer o mapeamento MER-X → Mrel para

Exercício 3

- Várias soluções em dependência de:
 - Opção de mapeamento utilizada para os tipo-relacionamentos 1:n
 - Opção de mapeamento utilizada para a hierarquia

Mínimo: 10 tabelas!

Bibliografia

- Heuser, Carlos Alberto. Projeto de banco de dados. 5 ed. Porto Alegre: Sagra Luzzatto, 2004, 236 p.
- Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados. 4 ed. São Paulo: Addison Wesley, 2005, 724 p. Bibliografia: p. [690]-714.
- Slides baseados em Material Didático produzido pelo professor Edson Pinheiro Pimentel.

Leitura complementar para casa

Capítulo 5 do livro: Heuser, Carlos Alberto. Projeto de banco de dados.

Capítulo 7 do livro: Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados.