CS314 Spring 2023 Homework 2

Due Tuesday, February 14, 11:59pm submission: pdf file through canvas

1 Problem — Finite State Automaton (FSA) - 20 pts

- 1. Specify the state transition graph of (1) a NFA (which is not a DFA as well) without ϵ transitions and (2) a DFA that recognizes the following language: "All strings of 0's and 1's that end with 11"
- 2. In addition to the state transition graphs (diagram), give the state transition table and the formal specification of an automaton as the quadrupel <S, s, F, T> for both, your NFA and DFA. Do not include "error" states.

2 Problem — Regular and Context-Free Languages - 20 pts

Are the following languages context-free or not? If yes, specify a context-free grammar in BNF notation that generates the language. If not, give an informal argument.

- 1. { $a^n b^m c^o \mid m > 0, n \ge 0, o > 0$ }, with alphabet $\Sigma = \{a, b, c\}$
- 2. { $a^nb^nc^n \mid {\bf n}>0\}$, with alphabet $\Sigma=\{{\bf a},\,{\bf b},\,{\bf c}\}$
- 3. { $0^{2n}1^{4n} \mid n \geq 0$ }, with alphabet $\Sigma = \{0, 1\}$
- 4. { $wcw^R \mid w \in \Sigma^*$ and w^R is w in reverse }, with alphabet $\Sigma = \{a, b, c\}$
- 5. { $a^nb^mc^md^n \mid n \geq 0, m \geq 0$ }, with alphabet $\Sigma = \{a, b, c, d\}$
- 6. { $a^nb^mc^nd^m$ | n \geq 0, m \geq 0 }, with alphabet Σ = {a, b, c, d}
- 7. { $a^na^nb^nb^n$ | $n\geq 0$ }, with alphabet $\Sigma=\{a,\,b\}$
- 8. { w | w has more than 3 symbols}, with alphabet $\Sigma = \{a, b\}$

Which of the languages are also regular languages, i.e., can be expressed by a regular expression? Prove it by giving the regular expression that specifies the language.

3 Problem — Derivation, Parse Tree, Ambiguity, Precedence & Associativity - 60 pts

A language that is a subset of the language of propositional logic may be defined as follows:

- 1. Give a leftmost and a rightmost derivation for the sentence
 - $a \wedge true \wedge b \leftrightarrow false \vee true$.
- 2. Give the corresponding parse trees for the derivations.
- 3. Give the corresponding abstract syntax tree (AST).
- 4. Show that the above grammar is ambiguous.
- 5. Give an unambiguous grammar for the same language that enforces the following precedence and associativity:
 - \wedge has highest precedence (binds strongest), followed by \vee , and then \leftrightarrow
 - \wedge is left associative, and \leftrightarrow and \vee are right associative
- 6. Give the parse tree and AST for your new, unambiguous grammar for the sentence
 - a \lor true \land b \leftrightarrow false .