

NORTHWEST UNIVERSITY

N维欧氏空间

一内点 开集

邻域

距离

开球与闭球

设 (X,d) 是距离空间, $x_0 \in X, r > 0$. 集合

$$B(x_0, r) = \{ x \in X \mid d(x, x_0) < r \}$$

称为 x_0 为中心,r 为半径的**开球**,也称为 x_0 的球形邻域.

$$\overline{B}(x_0, r) = \{ x \in X \mid d(x, x_0) \le r \}$$

称为 x_0 为中心, r 为半径的**闭球**.

开球的例

例

- **1** 在实数空间 \mathbb{R} 中, $B(x_0,r) = (x_0 r, x_0 + r)$.
- **2** 在 \mathbb{R}^2 中, $x = (\xi, \eta), x_0 = (\xi_0, \eta_0) \in \mathbb{R}^2$,

 则 $B(x_0, r) = \{x \in \mathbb{R}^2 \mid \sqrt{(\xi \xi_0)^2 + (\eta \eta_0)^2} < r\}$.
- 3 在离散的距离空间D中, $d(x,y) = \begin{cases} 1 & x = y \\ 0 & x \neq y \end{cases}$ $B(x_0, \frac{1}{2}) = \{x_0\}, \ B(x_0, \frac{3}{2}) = D, \ B(x_0, 1) = \{x_0\}, \ \overline{B}(x_0, 1) = D.$

注 从Euclid几何中延伸而使用的"开球"概念,未必具有球体的直观.

内点的定义

开球 → 内点

设G是距离空间X中一个子集, $x_0 \in G$, 若存在r > 0, 使得 $B(x_0, r) \subset G$,

则称 x_0 为 G 的内点. G 的所有内点称为 G 的内部,记为 G^o .

 $\geq G^o \subset G.$

开集的定义

开球一点一开集

设G 是距离空间X 中一个子集. 如果 $G \subset G^o$,则称G 为**开集**. **G**约所有内息

注 G是开集 \iff $G = G^o$. 所有点、都是内点、

开球是开集

例

开球 $B(x_0,r)$ 是开集.

作意 X, EB(Xo, Y), X,是内点、

$$r_1 < r - d(x_1, x_0)$$

证

任取 $x_1 \in B(x_0, r)$,则 $d(x_1, x_0) < r$.

取 $r_1: 0 < r_1 < r - d(x_1, x_0)$. 只需证

$$B(x_1,r_1) \subset B(x_0,r)$$
. 不是内点、

对任意 $x \in B(x_1, r_1)$, 则 $d(x, x_1) < r_1$, 因而

$$d(x, x_0) \le d(x, x_1) + d(x_1, x_0) < r_1 + d(x_1, x_0) < r,$$

因而, $x \in B(x_0, r)$.

定理

设X是距离空间,X中的开集具有以下性质:

- 全空间X与空集 ∅ 是开集;
- 2) 任意多个开集的并集是开集;
- 3) 任意有限多个开集的交集是开集.

定理

设X是距离空间,X中的开集具有以下性质:

全空间 X 与空集 ∅ 是开集;

证

任取 $x \in X$, 有 $B(x,1) \subset X$, 故 $x \in X^o$. 因此, X 是开集.

由于空集 \emptyset 不含有任何元素,故 \emptyset ° 也不含任何元素,即 \emptyset ° = \emptyset .

这表明, ∅ 是开集.

定理

设X是距离空间,X中的开集具有以下性质:

2) 任意多个开集的并集是开集;

证

设 $G = \bigcup_{\alpha \in I} G_{\alpha}$, 其中对任意 $\alpha \in I$, G_{α} 是开集.

任取 $x \in G$, 存在 $\alpha_0 \in I$, 使得 $x \in G_{\alpha_0}$.

由于 G_{α_0} 是开集,存在开球 $B(x,r) \subset G_{\alpha_0}$.

从而 $B(x,r) \subset G$. 故G是开集.

定理

设X是距离空间,X中的开集具有以下性质:

3) 任意有限个开集的交集是开集.

证

设
$$G = \bigcap_{k=1}^{m} G_k$$
, 其中 G_k 是开集 $(k = 1, \dots, m)$.

任取
$$x \in G$$
, 则 $x \in G_k$ $(k = 1, \dots, m)$.

由于 G_k 是开集,存在开球 $B(x, r_k) \subset G_k$.

取
$$r = \min_{1 \le k \le m} \{r_k\}$$
,则 $B(x,r) \subset B(x,r_k) \subset G_k \ (k=1,2,\cdots,m)$,

$$\mathbb{P} B(x,r) \subset \cap_{k=1}^m G_k = G.$$

定理

设X是距离空间,X中的开集具有以下性质:

- 全空间 X 与空集 ∅ 是开集;
- 2) 任意多个开集的并集是开集;
- 3) 任意有限多个开集的交集是开集.

注 若X的子集族 $\mathcal T$ 满足以上三条性质,则称 $\mathcal T$ 为X的一个拓扑.

小结

- 开球、内点的定义
- 开集的定义
- 开集公理