BERT

Measuring Performance

Learning goals

- Task-specific metrics
- Metrics for text output
- How to evaluate retrieval
- Subtle aspects of evaluation

TASK-SPECIFIC EVALUATION: CLASSIFICATION

(Binary) Document-level Classification

- Accuracy
- Recall / Precision
- F1-Score
- ROC-Curve / AUC
- ...

(Multi-Class) Document-level classification

- Micro- / Macro-averaged F1
- Class-specific accuracies
- ...

TASK-SPECIFIC EVALUATION: RANKING (1)

Ranking:

- Use Cases:
 - Retrieval systems output a ranking of relevant documents
 - Search engines return top k results
 - ...
- Ranking evaluation metrics
 - Mean average precision (MAP)
 - Mean reciprocal rank (MRR)
 - Precision@k / Recall@k
 - **.**...

TASK-SPECIFIC EVALUATION: RANKING (2)

MAP:

$$AP@k = \frac{1}{r} \sum_{i=1}^{k} precision@i \cdot R_i$$

r = number of relevant items

$$R_i = \begin{cases} 1, & \text{if document } i \text{ is relevant} \\ 0, & \text{if document } i \text{ is not relevant} \end{cases}$$

► Source: towardsdatascience

TASK-SPECIFIC EVALUATION: RANKING (3)

Example MAP:

TASK-SPECIFIC EVALUATION: RANKING (4)

Example MAP:

6

Retrieved documents for query Q1

AP@5 =
$$\frac{1}{3} \left(\frac{1}{1} + \frac{2}{3} + \frac{3}{4} \right) = 0.81$$

k	precision@k
1	1
2	1 2
3	2 3
4	3 4
5	<u>3</u> 5

➤ Source: towardsdatascience

TASK-SPECIFIC EVALUATION: RANKING (5)

Example MAP:

Retrieved documents for query Q2

AP@5 =
$$\frac{1}{3} \left(\frac{1}{2} + \frac{2}{4} + \frac{3}{5} \right) = 0.53$$

k	precision@k
1	0
2	1 2
3	1 3
4	2 4
5	3

Source: towardsdatascience

TASK-SPECIFIC EVALUATION: RANKING (6)

MAP:

$$MAP = \frac{1}{|Q|} \sum_{q \in Q} Ap_q@k$$
, with $Q = \text{set of queries}$

TASK-SPECIFIC EVALUATION: RANKING (7)

MRR:

$$RR = rac{1}{ ext{rank of first relevant item}}$$
 $MRR = rac{1}{|Q|} \sum_{q \in Q} RR_q, \ \textit{with } Q = ext{set of queries}$

ARLMS

• Question: How can we measure "performance" on this task?

ARLM PERPLEXITY (1)

- Natural choice for evaluating generated text
- Well-defined for ARLMs; trickier for MLMs
- Intuitively: Amount of the model's surprisal when confronted with a sequence (higher value means higher "surprisal")
- More technically: Measure of uncertainty of a probabilistic model
- Example: Perplexity of a fair k-sided die (uniform distribution) is k

(C)

ARLM PERPLEXITY (2)

Autoregressive factorization of the sequence:

► Source: huggingface

- Log-probability of i-th token given context: $\log(p_{\theta}(w_i|w_{< i}))$ more "certain" model \rightarrow higher log-probability
- Aggregate¹ over the whole sequence:

$$PPL = \exp\left(\frac{1}{t}\sum_{i=1}^{t}\log(p_{\theta}(w_i|w_{< i}))\right)$$

¹The choice of the log's base is basically arbitrary.

ARLM PERPLEXITY (3)

- Lower bound is 1, i.e. the model predicts every token correctly (with a certainty of 100%)
- Question: Is this really desirable?
- Upper bound is |V|, i.e. the model only provides a random guess for every token with a probability of $\frac{1}{|V|}$
- Selection of state-of-the-art perplexities:
 - 1B Word Benchmark Chelba et al., 2013 (|V| = 800k) PPL = 21,8 • Dai et al., 2019

 - Penn Treebank Marcus et al., 1994 (|V| = 10k)PPL = 20,5 • Brown et al., 2020

ARLM PERPLEXITY (4)

• Problem: Fixed context size of models (e.g. 1024 for GPT-2)

► Source: huggingface

- Possible solution: Sliding window strategy
- Close approximation to "true" autoregressive decomposition
- Drawback: Computationally expensive (individual forward pass for each token)

ARLM PERPLEXITY (5)

Question:

Is a language model with lower perplexity always a "better" model?

Some (Dis)Advantages of perplexity:

- Pro: Straight-forward applicable
- Pro: Does not depend on "external" labels
- Con: Not clear what value can be considered "good"
- Con: Corpus-/language-specific measure

EVALUATING GENERATED TEXT (1)

- Question: How else can we evaluate the quality of generated text?
- Use cases:
 - Machine translation
 - Question answering (extractive or abstractive)
 - Dialogue generation
 - Text summarization
 - Image Captioning
 - Code generation

(C)

EVALUATING GENERATED TEXT (2)

Machine Translation

- Metrics based on N-gram-overlap
 - BLEU (cf. Chap. 3.1) ▶ Papineni et al., 2002
 - ROUGE ► Lin, 2004
 - METEOR → Banerjee and Lavie, 2005
- Metrics based pre-trained (neural) models
 - BertScore ► Zhang et al., 2019
 - BLEURT ► Sellam et al., 2020
 - COMET ► Rei et al., 2020

EVALUATING GENERATED TEXT (3)

- BLEU, ROUGE, METEOR:
 - "Bilingual evaluation understudy", originally for machine translation
 - Measures overlap of words, and longer word sequences of different sizes
 - BLEU: unreliable per-example, but correlates with human judgments on an aggregate level Reiter, 2018

EVALUATING GENERATED TEXT (3)

- BERTScore
 - Based on pre-trained BERT model
 - Also able to consider contextual similarities
 - Correlates better with human judgements
- BLEURT
 - Better per-example quality estimation by fine-tuning on examples with judgements
 - But: potential bias if tested systems are very different than training examples

EVALUATING GENERATED TEXT (4)

Question Answering / Summarization / Dialogues

- Aspects to consider
 - Factual correctness
 - Fluency
 - Stylistic aspects
 - Engagement
 - ...
- Human evaluation?! (cf. next slide)

HUMAN EVALUATOIN

Pros

- Possible where simply using metrics fails (esp. generated texts)
- Probably gold standard (given trained human evaluator)
- Strong learning signal for models (cf. RLHF, chapter 9)
- ...

Pros

- Manual, tedious work
- Costs and working conditions
- Subjectiveness
- Ambiguity
- ..