Course in Semantics · Ling 531 / 731 McKenzie · University of Kansas

1 Abstract functions

- **1.** Complete the following applications/ β -reductions, until you run out of arguments.
 - 1. [$\lambda f \in D_{\langle e, t \rangle}$. f(x)](Q) = Q(x)
 - 2. $[\lambda g \in D_{\langle e, t \rangle}, g(x)](Q) = Q(x)$
 - 3. $[\lambda f \in D_{\langle e, t \rangle}.\lambda x \in D_e. g(x)](Q) = \lambda x \in D_e. Q(x)$
 - 4. $[\lambda f \in D_{\langle e, t \rangle}.\lambda x \in D_e. g(x)](Q)(x) = Q(x)$
 - 5. [$\lambda f \in D_{(e,t)}.\lambda x \in D_e$. g(x)](x)(Q) = (watch out!) x(Q); the function is x and the argument is Q
 - 6. $[\lambda f \in D_{(e, t)}.\lambda x \in D_e. g(f(x))](A)(b) = g(A(b))$

2 Similar but with natural language

- 1. $[\lambda f \in D_{\langle e, t \rangle}, f(y)](\lambda x \in D_e, cat(x)) = [\lambda x \in D_e, cat(x)](y) = cat(y)$
- 2. $[\lambda f \in D_{\langle e, t \rangle}. f(x)](\lambda y \in D_e. happy(y)) = [\lambda y \in D_e. happy(y)](x) = happy(x)$
- 3. $[\lambda f \in D_{\langle e, t \rangle}. f(Marie)](\lambda x \in D_e. happy(x)) = [\lambda x \in D_e. happy(x)](Marie) = happy(Marie)$
- 4. [$\lambda g \in D_{\langle e, t \rangle}$. $\lambda x \in D_e$. g(x)]([broad])(the Mississippi River) = [$\lambda x \in D_e$. broad(x)](MR) = broad(MR)
- $$\begin{split} 5. & [\ \lambda f \in D_{\langle e, \ t \rangle}. \lambda x \in D_e. \ Q(f(x))](\lambda y \in D_e. \ Greek(y))(Apollo) = \\ & [\lambda x \in D_e. \ Q([\lambda y \in D_e. \ Greek(y)](x))](Apollo) = \\ & Q([\lambda y \in D_e. \ Greek(y)](Apollo)) = \\ & Q(Greek(Apollo)) \end{split}$$