Ciência da Computação

Prof. Tiago J. Arruda

Exercícios Propostos¹

∧ Introdução aos limites

- 1. Explique com suas palavras o significado das equações abaixo e responda aos questionamentos.
 - (a) $\lim_{x \to 3} f(x) = 7$. É possível que f(3) = -4? Justifique.
 - (b) $\lim_{x\to 1^-} g(x) = 2$ e $\lim_{x\to 1^+} g(x) = 5$. É possível que $\lim_{x\to 1} g(x)$ exista? Explique.
 - (c) Se $\lim_{x\to 0} h(x) = 7$, o que podemos afirmar sobre $\lim_{x\to 0^-} h(x)$ e $\lim_{x\to 0^+} h(x)$?
- 2. Calcule diretamente os limites baseando-se nos gráficos abaixo.

- $(j) \lim_{x \to 2^+} g(x)$

- (a) $\lim_{x \to -1^{+}} f(x)$ (d) $\lim_{x \to 1^{-}} f(x)$ (g) $\lim_{x \to 1^{-}} g(x)$ (b) $\lim_{x \to 0^{-}} f(x)$ (e) $\lim_{x \to 1^{+}} f(x)$ (h) $\lim_{x \to 1^{+}} g(x)$ (c) $\lim_{x \to 0^{+}} f(x)$ (f) $\lim_{x \to 2^{-}} f(x)$ (i) $\lim_{x \to 2^{-}} g(x)$
- (k) $\lim_{x \to 3^{-}} g(x)$ (l) $\lim_{x \to 3^{+}} g(x)$

- (m) Os limites $\lim_{x\to 0} f(x)$ e $\lim_{x\to 1} f(x)$ existem? Justifique.
- (n) Os limites $\lim_{x\to 2} g(x)$ e $\lim_{x\to 3} g(x)$ existem? Justifique.

<u>∧</u> Propriedades dos limites

- 3. Calcule o valor dos limites usando as propriedades do limite.
- (a) $\lim_{x \to -3} (3x^2 4)$ (c) $\lim_{z \to 4} \sqrt{z^2 7}$ (e) $\lim_{x \to 3} \left[\cos \left(x^2 5x + 6 \right) \right]$ (b) $\lim_{t \to 6} 3(t 5)(t 7)$ (d) $\lim_{x \to 2} \frac{2x + 5}{11 x^3}$ (f) $\lim_{x \to -1} 3^{(2x^3 3x + 2)}$

- 4. Suponha $\lim_{x\to c} f(x) = 3$ e $\lim_{x\to c} g(x) = -2$. Encontre

 - (a) $\lim_{x \to c} f(x)g(x)$ (c) $\lim_{x \to c} \frac{f(x)}{f(x) g(x)}$ (e) $\lim_{x \to c} [g(x)]^3$ (b) $\lim_{x \to c} [f(x) + 3g(x)]$ (d) $\lim_{x \to c} \sqrt{|f(x)g(x)|}$ (f) $\lim_{x \to c} \frac{g(x)}{f(x) 1}$

- 5. Se $\lim_{x\to 4} \frac{3f(x)-5}{x-2} = 8$, encontre $\lim_{x\to 4} f(x)$. É possível obter f(4) sem mais informações?

¹Resolva os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. Data máxima de entrega: 29/11/2024 até 16:00 horas

↑ Eliminação das indeterminações

- **6.** Considere os itens abaixo, onde $x \in \mathbb{R}$.
 - (a) Explique o que há de errado com a seguinte equação: $\frac{x^2 + x 6}{x + 3} = x 2$.

Lista 5

- (b) Explique por que a seguinte equação está correta: $\lim_{x\to -3} \frac{x^2+x-6}{x+3} = \lim_{x\to -3} (x-2)$.
- 7. (a) Se $\lim_{x \to 1} \frac{f(x) 3}{x 1} = 5$, encontre $\lim_{x \to 1} f(x)$.
 - (b) Encontre o valor de a para que $\lim_{x\to -2} \frac{3x^2+ax+a+3}{r^2+r-2}$ exista.
- 8. Calcule os limites de quocientes indeterminados.

(a)
$$\lim_{x \to -2} \frac{-x^3 - 2x^2}{2x + 4}$$
 (d) $\lim_{x \to -3} \frac{x + 3}{x^2 + 4x + 3}$ (g) $\lim_{u \to 1} \frac{u^4 - 1}{u^3 - 1}$ (b) $\lim_{x \to 4} \frac{x - 4}{x^2 - 16}$ (e) $\lim_{t \to -1} \frac{t^2 + 3t + 2}{t^2 - t - 2}$ (h) $\lim_{t \to 1} \frac{t^{-1} - 1}{t - 1}$ (c) $\lim_{x \to 2} \frac{x^2 - 7x + 10}{x - 2}$ (f) $\lim_{x \to 2} \frac{x^3 - 5x^2 + 6x}{x^2 - 7x + 10}$ (i) $\lim_{x \to 1} \frac{x^3 - 1}{x^4 + 3x - 4}$

(d)
$$\lim_{x \to -3} \frac{x+3}{x^2+4x+3}$$

(g)
$$\lim_{u \to 1} \frac{u^4 - 1}{u^3 - 1}$$

(b)
$$\lim_{x \to 4} \frac{x-4}{x^2-16}$$

(e)
$$\lim_{t \to -1} \frac{t^2 + 3t + 2}{t^2 - t - 2}$$

(h)
$$\lim_{t \to 1} \frac{t^{-1} - 1}{t - 1}$$

(c)
$$\lim_{x\to 2} \frac{x^2 - 7x + 10}{x - 2}$$

(f)
$$\lim_{x\to 2} \frac{x^3 - 5x^2 + 6x}{x^2 - 7x + 10}$$

(i)
$$\lim_{x \to 1} \frac{x^3 - 1}{x^4 + 3x - 4}$$

9. Calcule os limites envolvendo quocientes com raízes de polinômios.

(a)
$$\lim_{x\to 9} \frac{\sqrt{x}-3}{x-9}$$

(a)
$$\lim_{x\to 9} \frac{\sqrt{x}-3}{x-9}$$
 (c) $\lim_{x\to -1} \frac{\sqrt{x^2+8}-3}{x+1}$ (e) $\lim_{x\to -3} \frac{2-\sqrt{x^2-5}}{x+3}$ (b) $\lim_{x\to 1} \frac{x-1}{\sqrt{x+3}-2}$ (d) $\lim_{x\to 0} \frac{\sqrt{x+3}-\sqrt{3}}{x}$ (f) $\lim_{x\to 4} \frac{4-x}{5-\sqrt{x^2+9}}$

(e)
$$\lim_{x \to -3} \frac{2 - \sqrt{x^2 - 5}}{x + 3}$$

(b)
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x+3}-2}$$

(d)
$$\lim_{x\to 0} \frac{\sqrt{x+3} - \sqrt{3}}{x}$$

(f)
$$\lim_{x \to 4} \frac{4-x}{5-\sqrt{x^2+9}}$$

\triangle Limites laterais

10. Encontre os limites indicados. Caso o limite não exista, explique o porquê.

(a)
$$\lim_{x \to 0^-} \frac{x}{|x|}$$

(d)
$$\lim_{x \to 2} (x+3) \frac{|x-2|}{x-2}$$
 (f) $\lim_{x \to 0} \frac{|\sin x|}{\sin x}$ (g) $\lim_{x \to 0} \frac{\cos x - 1}{|\cos x - 1|}$

(f)
$$\lim_{x \to 0} \frac{|\sin x|}{\sin x}$$

(b)
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{|x|} \right)$$

(c) $\lim_{x \to -3} |x+3|$ (e) $\lim_{x \to 3/2} \frac{2x^2 - 3x}{|2x-3|}$

(e)
$$\lim_{x \to 0} \frac{2x^2 - 3x}{|2x - 3|}$$

- 11. Para cada função f calcule o valor dos limites indicados, se existirem.

(a)
$$f(x) = \begin{cases} 7x - 2, & \text{se } x \ge 2 \\ x^2 - 2x + 1, & \text{se } x < 2 \end{cases}$$
; $\lim_{x \to 2^+} f(x)$, $\lim_{x \to 2^-} f(x)$ e $\lim_{x \to 2} f(x)$

(b)
$$f(x) = \begin{cases} x+1, & \text{se } x < 2\\ \sqrt{x^3+1}, & \text{se } x \ge 2 \end{cases}$$
; $\lim_{x \to 2^+} f(x)$, $\lim_{x \to 2^-} f(x)$ e $\lim_{x \to 2} f(x)$

Ciência da Computação

Prof. Tiago J. Arruda

(c)
$$f(x) = \begin{cases} x+1, & \text{se } x < 0 \\ 2, & \text{se } x = 0 \\ \sqrt{x+5}, & \text{se } x > 0 \end{cases}$$
; $\lim_{x \to 0^+} f(x)$, $\lim_{x \to 0^-} f(x)$ e $\lim_{x \to 0} f(x)$

- 12. Seja f uma função definida para todo número real por $f(x) = \begin{cases} x^2 4x, & \text{se } x \leq -2 \\ 4 k, & \text{se } x > -2 \end{cases}$ Determine o valor da constante k para que exista $\lim_{x \to \infty} f(x)$.
- 13. Na teoria da relatividade especial, a fórmula da contração de Lorentz, $L = L_0 \sqrt{1 v^2/c^2}$, expressa o comprimento L de um objeto como uma função de sua velocidade v em relação a um observador, onde L_0 é o comprimento do objeto em repouso e c é a velocidade da luz. Encontre $\lim L$ e interprete o resultado. Por que é necessário o limite à esquerda?

<u>∧</u> Limites no infinito

14. Calcule os limites no infinito.

(a)
$$\lim_{x \to \infty} \frac{4x + 7}{x^2 - 2}$$

(a)
$$\lim_{x \to \infty} \frac{4x + 7}{x^2 - 2}$$
 (d) $\lim_{x \to -\infty} \frac{(1 - x)(2 + x)}{(1 + 2x)(2 - 3x)}$ (g) $\lim_{x \to \infty} \frac{\sqrt{1 + 4x^2}}{4 + x}$ (b) $\lim_{t \to \infty} \frac{7t^3 + 4t}{2t^3 - t^2 + 3}$ (e) $\lim_{x \to -\infty} \left(\frac{1 - x^3}{x^2 + 7x}\right)^5$ (h) $\lim_{x \to -\infty} \frac{\sqrt{x^2 + 4x}}{4x + 1}$ (c) $\lim_{r \to \infty} \frac{r^4 - r^2 + 1}{r^5 + r^3 - r}$ (f) $\lim_{x \to -\infty} \sqrt{\frac{2x^2 + x + 1}{3x^2 + 4}}$ (i) $\lim_{x \to -\infty} \frac{7x + 2}{\sqrt{5x^2 - 3}}$

(g)
$$\lim_{x \to \infty} \frac{\sqrt{1 + 4x^2}}{4 + x}$$

(b)
$$\lim_{t \to \infty} \frac{7t^3 + 4t}{2t^3 - t^2 + 3}$$

(e)
$$\lim_{x \to -\infty} \left(\frac{1 - x^3}{x^2 + 7x} \right)^5$$

(h)
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 + 4x}}{4x + 1}$$

(c)
$$\lim_{r \to \infty} \frac{r^4 - r^2 + 1}{r^5 + r^3 - r}$$

(f)
$$\lim_{x \to -\infty} \sqrt{\frac{2x^2 + x + 1}{3x^2 + 4}}$$

(i)
$$\lim_{x \to -\infty} \frac{7x + 2}{\sqrt{5x^2 - 3}}$$

15. Encontre os limites. (Dica: multiplique e divida a expressão pelo "conjugado".)

(a)
$$\lim_{x \to \infty} (x - \sqrt{x})$$

(e)
$$\lim_{x \to -\infty} (x + \sqrt{x^2 + 2x})$$

(b)
$$\lim_{x \to -\infty} (\sqrt{x^2 + 3} + x)$$

(f)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right)$$

(c)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 3x + 1} - x \right)$$

(d) $\lim_{x \to \infty} \left(\sqrt{9x^2 + x} - 3x \right)$

(g)
$$\lim_{x \to \infty} \left(\sqrt{x^4 + x^2} + \sqrt{x^2 + 5x} - x^2 - x \right)$$

↑ Teorema do confronto

16. Use o Teorema do Confronto para calcular os limites abaixo.

(a)
$$\lim_{x \to 1} f(x)$$
, se $3x \le f(x) \le x^3 + 2$ para $0 \le x \le 2$

(b)
$$\lim_{x\to 0} x^4 \cos\left(\frac{4}{x}\right)$$

(c)
$$\lim_{x \to \infty} f(x)$$
, se $\frac{4x-1}{x} < f(x) < \frac{4x^2+3x}{x^2}$ para todo $x > 5$

(d)
$$\lim_{x \to \infty} \frac{\sin^2 x}{x^2}$$

(e)
$$\lim_{x \to 0^+} \sqrt{x} e^{\operatorname{sen}(\pi/x)}$$