ACT-11302: Cálculo Actuarial III

ITAM

Tareas (con soluciones)

Prof: Juan Carlos Martínez Ovando

5 de octubre de 2015

1. Sea X una variable aleatoria tal que condicional en $\lambda > 0$ sigue distribución $N(x|\mu,\lambda^{-1})$, y sea λ una variable aleatoria con distribución $Ga(\lambda|\alpha/2,\alpha/2)$, con μ , α y β fijas. Calcula la distribución tipo mezcla para X,

$$f_X(x|\mu,\alpha) = \int f_{X|\Lambda}(x|\lambda) f_{\Lambda}(\lambda) d\lambda$$
$$= \int N(x|\mu,\lambda^{-1}) Ga(\lambda|\alpha/2,\alpha/2) d\lambda.$$

- 2. Sea X una variable aleatoria discreta positiva, con distribución $Po(x|\lambda)$. Encuentre el valor de los parámetros α y β que corresponden a la parametrización de la distribución Poisson como caso particular de la distribución $(\alpha, \beta, 0)$.
- 3. Considerando una sucesión de variables aleatorias, $X_1, ..., X_n$ de una distribución $f_X(x|\theta)$, describe como se relacionan los estimadores máximo verosimil de θ , bajo el supuesto i.i.d., con el estimador bayesiano de θ considerando una distribución inicial $\pi(\theta)$ y el supuesto de intercambiabilidad en las X_i s.
- 4. Suponga que $X|\theta$ sigue una distribución $\operatorname{Exp}(x|\theta)$ y que a su vez θ sigue una distribución $\operatorname{Exp}(\theta|\theta_0)$, para un θ_0 dado. Calcula la distribución de la mezcla,

$$f_X(x) = \int f_{X|\Theta}(x|\theta) f_{\Theta}(\theta) d\theta$$
$$= \int \operatorname{Exp}(x|\theta) \operatorname{Exp}(\theta|\theta_0) d\theta_0.$$

- 5. Suponga que $X|\Lambda$ sigue una distribución $Po(x|\lambda)$ y que Λ sigue una distribución $Ga(\lambda|\alpha_0,\eta_0)$. Considera una muestra x_1, x_n de X. Trata de exhibir los estimadores de máxima verosimilitud de α_0 y β_0 .
- 6. Una distribución mixta es aquella que contiene una parte discreta y una parte continua. Supongamos que para una variable aleatoria X positiva, la parte discreta está caracterizada por una distribución $Po(x|\lambda)$, para algún $\lambda > 0$, y que la parte continua está caracterizada por una distribución $Ga(x|\alpha,\beta)$, para ciertos α y β escalares positivos. Si definimos la distribución de X como

$$F_X(x) = q \operatorname{Po}(x|\lambda) + (1-q)\operatorname{Ga}(x|\alpha,\beta), \tag{1}$$

con 0 < q < 1 un parámetro fijo. Demuestra que $F_X(x)$ es continua por la derecha.

Tareas 2

- 7. Respecto al inciso anterior, grafica la distribución $F_X(x)$ para diferente valores de q, λ , α y β .
- 8. Sean X_1, X_n variables aleatorias i.i.d. con función de distriución $F_X(x)$, y define $Z = X_1 + \cdots + X_n$. Deriva la distribución de $F_Z(z)$ para las siguientes especificaciones de F_X :
 - $F_X(x) = \text{Bernoulli}(x|\theta)$.
 - $F_X(x) = \operatorname{Exp}(x|\theta)$.
 - $F_X(x) = Pa(x|\alpha,\beta)$.