Package 'CRMC'

May 20, 2025

туре Раскаде	
Title C-Optimality Based Two-Stage Continual Reassessment Method (CRM)	
Version 0.1.0	
Author Alvaro Cia-Mina	
Maintainer Alvaro Cia-Mina <aciamina@unav.es></aciamina@unav.es>	
Description Simulates a two-stage CRM design for dose-finding in clinical trials, including MTD estimation and plotting.	
License MIT	
Encoding UTF-8	
LazyData true	
RoxygenNote 7.3.2	
Imports lattice	
Suggests testthat	
export_simulation_table_manual logistic_3_3 potential_3_3 run_simulation_logistic run_simulation_potential simulate_across_n_initial two_stage_crm_logistic two_stage_crm_potential	1 2 3 4 6 7 8
Index	11
export_simulation_table_manual Export Simulation Summary to LaTeX	

Description

Writes a LaTeX table with MTD and toxicity summaries using cat(), without external dependencies.

logistic_3_3

Usage

```
export_simulation_table_manual(
   df,
   file_path = "RESULTS/simulation_results.tex"
)
```

Arguments

 $\label{eq:Adata} A \ data \ frame \ with \ simulation \ summaries \ for \ one \ model \ (e.g., \ result_list\ potential)$

as returned by simulate_across_n_initial().

file_path Path to the output .tex file.

Examples

```
result_list <- simulate_across_n_initial()
export_simulation_table_manual(result_list$potential, "table_potential.tex")
export_simulation_table_manual(result_list$logistic, "table_logistic.tex")</pre>
```

logistic_3_3

3+3 Design Simulation for Logistic model with 2 parameters

Description

Simulates a single trial using a 3+3 dose-escalation method for estimating the Maximum Tolerated Dose (MTD).

Usage

```
logistic_3_3(
  theta = c(-3, 2),
  theta_0 = c(-3.1, 1.8),
  n_initial = 3,
  p_tox_init = 0.05,
  delta_dosis = 0.092,
  seed = 1234,
  show_plot = FALSE
```

Arguments

theta	True value of the vector of parameters for the dose-toxicity curve. Default is $c(-3,2)$.
theta_0	Nominal value for the vector of parameters. Default is c(-3.1,1.8).
n_initial	Number of patients per dose level. Default is 3.
p_tox_init	Initial toxicity probability for computing starting dose. Default is 0.05.
delta_dosis	Step size for dose escalation. Default is 0.05.
seed	Random seed for reproducibility. Default is 1234.
show_plot	Logical. If TRUE, plot dose level vs. patient index. Default is FALSE.

potential_3_3

Value

```
A list with:
```

```
n_toxicities Total number of toxicities observed.
```

mtd_estimated Estimated MTD (last safe dose).

- **n_patients** Total number of patients enrolled.
- x Dose levels assigned.
- y Observed toxicity outcomes (1 = toxic, 0 = non-toxic).

Examples

```
res <- logistic_3_3()
print(res$mtd_estimated)</pre>
```

potential_3_3

3+3 Design Simulation for Potential model

Description

Simulates one trial using a 3+3 dose-escalation method for estimating the Maximum Tolerated Dose (MTD).

Usage

```
potential_3_3(
   theta = 3,
   theta_0 = 2.7,
   n_initial = 3,
   p_tox_init = 0.02,
   delta_dosis = 0.05,
   seed = 1234,
   show_plot = FALSE
)
```

Arguments

theta	True value for the dose-toxicity curve. Default is 3.
theta_0	Nominal value for the dose-toxicity curve. Default is 2.7.
n_initial	Number of patients per dose level. Default is 3.
p_tox_init	Initial toxicity probability for computing starting dose. Default is 0.02.
delta_dosis	Step size for dose escalation. Default is 0.05.
seed	Random seed for reproducibility. Default is 1234.
show_plot	Logical. If TRUE, plot dose level vs. patient index. Default is FALSE.

A list with:

n_toxicities Total number of toxicities observed.

mtd_estimated Estimated MTD (last safe dose).

- **n_patients** Total number of patients enrolled.
- x Dose levels assigned.
- y Observed toxicity outcomes (1 = toxic, 0 = non-toxic).

Examples

```
res <- potential_3_3()
print(res$mtd_estimated)</pre>
```

```
run_simulation_logistic
```

Simulation Comparison of 3+3 and CRMC Designs for a Logistic Model with Two Parameters

Description

Simulates and compares MTD estimates and toxicity outcomes between the 3+3 design and a two-stage CRM design over multiple replications.

Usage

```
run_simulation_logistic(
 num_rep = 1000,
  seed = 1234,
  save_plot = FALSE,
 p0 = 0.4
  theta = c(-3, 2),
  theta_0 = c(-3.1, 1.8),
 N = 24,
 n_{initial} = 1,
 q_0 = 0.05
 q_2 = 0.4
  q_1 = 0.9
 lim_sup_prob = 0.7,
 p_{tox_init_3_3} = 0.05,
 delta_dosis_3_3 = 0.092
)
```

Arguments

num_rep Number of replications to run. Default is 1000. seed Base random seed for reproducibility. Default is 1234.

save_plot Logical. If TRUE, saves comparison plots as PDF. Default is FALSE.

p0	Target toxicity probability. Default is 0.4.
theta	True value of the vector of parameters for the dose-toxicity curve. Default is $c(-3,2)$.
theta_0	Nominal value for the vector of parameters. Default is c(-3.1,1.8).
N	Total number of patients in the CRM design. Default is 24.
n_initial	Number of patients per dose level in the CRM design (not used in 3+3). Default is 1.
q_0	Initial toxicity probability for CRM design. Default is 0.05.
q_2	Fraction of patients in CRM stage 1. Default is 0.4.
q_1	Target probability of observing at least one toxicity in CRM stage 1. Default is 0.9.
lim_sup_prob	Maximum probability of toxicity the model allows. Default is 0.7.
<pre>p_tox_init_3_3 delta_dosis_3_</pre>	Initial toxicity probability for the 3+3 model. Default is 0.05.

A data.frame with one row per method ("3+3" and "CRMC") and the following columns:

Step size for dose escalation in the 3+3 model. Default is 0.092.

method Design used ("3+3" or "CRMC")

mean_pat Mean of patients

median_pat Median of patients

mean_mtd Mean of the estimated MTDs

var_mtd Variance of the estimated MTDs

median_mtd Median of the estimated MTDs

min_mtd Minimum of the estimated MTDs

q1_mtd First quartile (Q1) of the estimated MTDs

q3_mtd Third quartile (Q3) of the estimated MTDs

max_mtd Maximum of the estimated MTDs

iqr_mtd Interquartile range of the estimated MTDs

mean_tox Mean number of toxicities

median_tox Median number of toxicities

min_tox Minimum number of toxicities

q1_tox First quartile (Q1) of the number of toxicities

q3_tox Third quartile (Q3) of the number of toxicities

max_tox Maximum number of toxicities

iqr_tox Interquartile range of the number of toxicities

Examples

```
df <- run_simulation_logistic(num_rep = 100)
head(df)</pre>
```

```
run_simulation_potential
```

 ${\it Run \, Simulation \, Comparison \, Between \, 3+3 \, and \, CRMC \, for \, the \, potential \, model}$

Description

Compares the MTD estimation and toxicity count between the potential 3+3 method and the two-stage CRM using multiple replications.

Usage

```
run_simulation_potential(
 num_rep = 1000,
 seed = 1234,
 save_plot = FALSE,
 p0 = 0.4,
 theta_0 = 2.7,
 theta = 3,
 N = 24,
 n_initial = 1,
 q_0 = 0.05,
 q_2 = 0.5,
 q_1 = 0.9
 p_{tox_i} = 0.02
 delta_dosis_3_3 = 0.055,
 fixed_optimal_dose = 0.2032
)
```

Arguments

num_rep	Number of replications to run. Default is 1000.	
seed	Base random seed for reproducibility. Default is 1234.	
save_plot	Logical. If TRUE, saves comparison plots as PDF. Default is FALSE.	
p0	Target toxicity probability. Default is 0.4.	
theta_0	Nominal value of theta used in CRM and 3+3 escalation models. Default is 2.7.	
theta	True theta used for generating the MTD reference. Default is 3.	
N	Total number of patients in the CRM design. Default is 24.	
n_initial	Number of patients per dose level in the CRM design (not used in 3+3). Default is 1.	
q_0	Initial toxicity probability for CRM design. Default is 0.05.	
q_2	Fraction of patients in CRM stage 1. Default is 0.5.	
q_1	Target probability of observing at least one toxicity in CRM stage 1. Default is 0.9 .	
p_tox_init_3_3	Initial toxicity probability for the 3+3 model. Default is 0.02.	
delta_dosis_3_3		
	Step size for dose escalation in the 3+3 model. Default is 0.055.	
fixed_optimal_dose		

Reference dose for optimal CRM design. Default is 0.2032.

```
A data. frame with one row per method ("3+3" and "CRMC") and the following columns:
```

method Design used ("3+3" or "CRMC")

mean_pat Mean of patients

median_pat Median of patients

mean_mtd Mean of the estimated MTDs

var_mtd Variance of the estimated MTDs

median mtd Median of the estimated MTDs

min mtd Minimum of the estimated MTDs

q1_mtd First quartile (Q1) of the estimated MTDs

q3_mtd Third quartile (Q3) of the estimated MTDs

max_mtd Maximum of the estimated MTDs

iqr_mtd Interquartile range of the estimated MTDs

mean_tox Mean number of toxicities

median_tox Median number of toxicities

min_tox Minimum number of toxicities

q1_tox First quartile (Q1) of the number of toxicities

q3_tox Third quartile (Q3) of the number of toxicities

max tox Maximum number of toxicities

iqr_tox Interquartile range of the number of toxicities

Examples

```
df <- run_simulation_potential(num_rep = 100)
head(df)</pre>
```

```
simulate_across_n_initial
```

Simulation Study for Different n_initial Values (Potential and Logistic Models)

Description

Runs simulations using run_simulation_potential() and run_simulation_logistic() with varying n_initial values and summarizes key results.

Usage

```
simulate_across_n_initial(num_rep = 500, seed = 1234)
```

Arguments

num_rep Number of repetitions for each simulation. Default is 500.

seed Random seed. Default is 1234.

A list of two data frames: potential and poistic, each containing results for CRMC at poistic at poistic at poistic and poistic at poistic and poistic at poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and poistic are the sum of two data frames: poistic and p

Examples

```
result_list <- simulate_across_n_initial()
head(result_list$potential)</pre>
```

```
two_stage_crm_logistic
```

C-optimal based two-stage Continual Reassessment Method (CRMC) Simulation for logistic model with 2 parameters

Description

Performs one simulation run of a two-stage CRM design for estimating the Maximum Tolerated Dose (MTD) in phase I trials.

Usage

```
two_stage_crm_logistic(
  p0 = 0.4,
  theta = c(-3, 2),
  theta_0 = c(-3.1, 1.8),
  N = 24,
  n_initial = 3,
  q_0 = 0.05,
  q_2 = 0.4,
  q_1 = 0.9,
  lim_sup_prob = 0.7,
  show_plot = FALSE,
  seed = 1234
)
```

Arguments

p0	Target toxicity probability. Default is 0.4.
theta	True value for the vector of parameters for the dose-toxicity curve. Default is $c(\mbox{-}3,\mbox{2}).$
theta_0	Nominal value of the vector of parameters. Default is c(-3.1, 1.8).
N	Total number of patients (including both stages). Default is 24.
n_initial	Number of patients per dose in stage 1. Default is 3.
q_0	Toxicity probability at first dose. Default is 0.02.
q_2	Fraction of patients in stage 1. Default is 0.5.
q_1	Target probability of observing at least one toxicity during stage 1 . Default is 0.9 .
show_plot	Logical. If TRUE, plots the dose levels for patients in the trial. Default is FALSE.
seed	Random seed for reproducibility. Default is 1234.

A list with:

n_toxicities Total number of toxicities observed.

mtd_estimated Estimated Maximum Tolerated Dose (MTD). If no toxicity is observed in the first stage, the MTD is set to the largest dose level used.

mle_theta Vector of estimated parameters $\theta = (\alpha, \beta)$ for the logistic dose-toxicity model. Set to NA if no toxicity is detected in stage 1.

- x Vector of dose levels administered.
- y Vector of toxicity outcomes (1 = toxic, 0 = non-toxic).

Note

If no toxicity is observed during the first stage of the trial (i.e., sum(y) == 0), the simulation is terminated. A warning is issued, and the MTD is conservatively estimated as the highest dose level reached. The value of mle_theta is set to NA in this case.

Examples

```
result <- two_stage_crm_logistic(show_plot = TRUE)
print(result$mtd_estimated)</pre>
```

```
two_stage_crm_potential
```

C-optimal based two-stage Continual Reassessment Method (CRMC) Simulation for potential model

Description

Performs one simulation run of a two-stage CRM design for estimating the Maximum Tolerated Dose (MTD) in phase I trials.

Usage

```
two_stage_crm_potential(
   p0 = 0.4,
   theta = 3,
   theta_0 = 2.7,
   N = 24,
   n_initial = 3,
   q_0 = 0.02,
   q_2 = 0.5,
   q_1 = 0.9,
   fixed_optimal_dose = 0.2032,
   show_plot = FALSE,
   seed = 1234
)
```

Arguments

р0	Target toxicity probability. Default is 0.4.
theta	True value for the dose-toxicity curve. Default is 3.
theta_0	Nominal value of the dose-toxicity curve parameter (initial guess). Default is 2.7.
N	Total number of patients (including both stages). Default is 24.
n_initial	Number of patients per dose in stage 1. Default is 3.
q_0	Toxicity probability at first dose. Default is 0.02.
q_2	Fraction of patients in stage 1. Default is 0.5.
q_1	Target probability of observing at least one toxicity during stage 1. Default is 0.9.
fixed_optimal_dose	
	Reference dose for optimal design estimation. Default is 0.2032.
show_plot	Logical. If TRUE, plots the dose levels for patients in the trial. Default is FALSE.
seed	Random seed for reproducibility. Default is 1234.

Value

A list with:

n_toxicities Total number of toxicities observed.

mtd_estimated Estimated Maximum Tolerated Dose (MTD). If no toxicity is observed in the first stage, the MTD is set to the largest dose level used.

mle_theta Estimated value of the dose-toxicity parameter θ . Set to NA if no toxicity is detected in stage 1.

- x Vector of dose levels administered.
- y Vector of toxicity outcomes (1 = toxic, 0 = non-toxic).

Note

If no toxicity is observed during the first stage of the trial (i.e., sum(y) == 0), the simulation is terminated. A warning is issued, and the MTD is conservatively estimated as the highest dose level reached. The value of mle_theta is set to NA in this case.

Examples

```
result <- two_stage_crm_potential(show_plot = TRUE)
print(result$mtd_estimated)</pre>
```

Index

```
export_simulation_table_manual, 1
logistic_3_3, 2
potential_3_3, 3
run_simulation_logistic, 4
run_simulation_potential, 6
simulate_across_n_initial, 7
two_stage_crm_logistic, 8
two_stage_crm_potential, 9
```