Problem Proposal: Flipping Bits in a String

David Altizio

October 3, 2018

1 Problem

Let n be a positive integer. Given a random n-element sequence s of zeroes and ones, we perform the following operation repeatedly: if the sequence s has exactly k ones, then the kth element of s is toggled from a 0 to a 1 or vice versa. For example, if n=3 and the original sequence is (0,1,0), then this operation results in the list of strings

$$(0,1,0) \to (1,1,0) \to (1,0,0) \to (0,0,0).$$

We see that it takes three steps for this process to reach the sequence consisting of all zeroes.

- 1. Prove that this process will eventually terminate regardless of what the initial string is. (Here we make the convention that the string of all zeroes terminates after zero steps.)
- 2. Determine, with proof, the average number of steps a random n-bit string will take for this process to stop.

2 Solution

As stated before, this solution is not 100% airtight, but I'm pretty certain it works. It also happens to be a bit clunky though, so if there's an easier solution I'd be happy to see it:)

We will solve both parts of this problem by the following observation. Consider a more substantial example, namely n = 5 and starting with the string 10111. Below is the sequence of moves, where the flipped bit after each step is in red.

101 <mark>0</mark> 1	1111 <mark>0</mark>
10001	111 <mark>0</mark> 0
1 <mark>1</mark> 001	11 <mark>0</mark> 00
11 <mark>1</mark> 01	1 <mark>0</mark> 000
111 <mark>1</mark> 1	00000

Notice that this sequence consists of three phases: a downward phase of two zeroes, an upward phase of three ones, and a downward phase of five zeroes. The key idea is, using this, to assign this binary integer the subset {2,3,5}.

Define $\Phi : \mathcal{P}([n]) \to \{0,1\}^n$ as follows. Given a subset $S = \{a_1, \ldots, a_k\} \subseteq [n]$ with $a_1 < a_2 < \cdots < a_k$, start with the binary string $00 \ldots 0$ and perform the following operations.

- Flip the bits in positions 1 through a_k to 1s;
- flip the bits in positions $a_k a_{k-1}$ through $a_k 1$ to 0s;
- flip the bits in positions $a_k a_{k-1} + 1$ through $a_k a_{k-1} + a_{k-2}$ to 1s;
- ...

This process eventually stops because our sequence is finite; call the result $\Phi(s)$.

Lemma 1. After step t we have the bit sequence that comes from the subset $\{a_{k-t+1}, \ldots, a_k\}$.

Proof. We proceed by induction on t. Our base case of t = 0 is vacuously true: at step zero our string 00...0 has zero ones, and so there is nothing to do.

For the induction step, assume the result holds true for t-1, where $t \ge 1$ is an integer. Remark that after t steps, we have precisely $S := a_k - a_{k-1} + a_{k-2} - \cdots + (-1)^{t+1} a_{k-t+1}$ ones in our string; thus, at the beginning of this process we will flip the S^{th} bit of the string. Now we perform casework.

- Suppose first that t is odd, so that on the t^{th} step we add 1s to our string. Note that by the way we defined $\Phi(s)$, the S^{th} bit of this string is a 1; thus, the algorithm will change the 1 to a 0. This decreases the number of ones in our string by 1. As a result, the algorithm will continue down the row of 1s and change each one to a zero. At the end, we have precisely the string obtained after t-1 steps, and so we may apply the inductive hypothesis to finish.
- Suppose next that t is even, so that on the tth step we add 0s to our string. Note that by the way we defined $\Phi(s)$, the Sth bit of this string is a 0; thus, the algorithm will change the 0 to a 1. This increases the number of ones in our string by 1. As a result, the algorithm will continue up the row of 0s and change each one to a 1. At the end, we have precisely the string obtained after t-1 steps, and so we may apply the inductive hypothesis to finish.

We have exhausted all possible cases, and so by induction we are done.

Lemma 2. In fact Φ is a bijection.

Proof. It suffices to prove injectivity, as then the claim follows by the fact that both sets have an equal number of members.

We'll show this by induction on the length n of the bit-string. The base case of n=1 is easy, as the sets \varnothing and $\{1\}$ yield the sequences 0 and 1 respectively. Now suppose that this transformation is injective on strings with n bits, and consider this function acting on strings with n+1 bits. Denote by A and B the subsets of $\mathcal{P}([n+1])$ consisting of all subsets without and with n+1 respectively. We know by the induction hypothesis Φ when restricted to A is bijective and, in particular, the $(n+1)^{\text{st}}$ bit of any output string is a zero. Now suppose our subset S is in B. Remark that $\Phi(S)$ necessarily contains a 1 in the $(n+1)^{\text{st}}$ bit, since after toggling all the bits to 1s on the first step we never touch the 1 again; thus, $\Phi[A] \cap \Phi[B] = \varnothing$, and so it suffices to show that the restriction of Φ to B is injective. Consider the following two operations on strings of bits on n digits:

- reversing the order of the digits, so that e.g. 1011 turns into 1101;
- flipping each bit from a 0 to a 1, so that e.g. 1101 turns into 0010.

Both of these transformations are bijective, so their composition is also bijective; denote the result of this transformation on a string s by \bar{s} . I claim that by the way we defined the transformation, if applying this process to $\{a_1, \ldots, a_{k-1}, n\}$ yields the string \bar{s} . Indeed, by reversing the order of the indexes in the process given above and swapping all zeroes for ones and vice versa, we obtain the same process as before:

- flip the bits in positions 1 through a_{k-1} to 1s;
- flip the bits in positions $a_{k-1} a_{k-2}$ through $a_{k-2} 1$ to 0s;
- ...

Thus injectivity of Φ on all subsets of [n+1] containing n+1 is equivalent to injectivity of Φ on all subsets of [n], which we know is true by the inductive hypothesis.

We can now solve both parts. Part (a) follows from surjectivity of Φ and the fact that every string in the image of Φ terminates under this algorithm. For (b) remark that the number of steps required for a string s to terminate is the sum of the elements of the set $\Phi(s)$; thus, the answer is the expected sum of elements of a random n-element subset of [n], which is $\frac{1}{2}(1+2+\cdots+n)=\left\lceil\frac{n(n+1)}{4}\right\rceil$. Yay.