Amazing Document

Amazing Location

Filippo Gambarota

2023-09-17

Table of contents

1	Qua	rto	1
	1.1	General Markup	1
		Math	
		Citations	
	1.4	Code chunks - Plots	3
		Code chunks - Tables	
	1.6	Code chunks - Tables	5
	1.7	Inline code chunks	6
	1.8	References	6

1 Quarto

1.1 General Markup

You can write standard markdown code. Using **bold**, *italic* or underlined text. You can include an external figure and also using cross reference with <code>@fig-quarto</code> that produce Figure 1

1.2 Math

You can write math using Latex code:

```
$$
y = \beta_0 + \beta_1 + \epsilon
$$
```


Figure 1: My beautiful caption

$$y = \beta_0 + \beta_1 + \epsilon$$

And also inline math using α that produce α

1.3 Citations

You can cite references from a .bib file using the syntax [@Chen2021-jb] that produce (Chen et al. 2021). We can also cite multiple authors [@Morey2011-zc; @Lakens2018-ri] (Morey and Rouder 2011; Lakens, Scheel, and Isager 2018) or suppress the author name [-@Valentine2011-yq] (2011).

A reference section will be automatically created at the end of the document (see Section 1.8).

This is the result:

```
dat <- iris
 summary(iris)
 Sepal.Length
                 Sepal.Width
                                  Petal.Length
                                                  Petal.Width
       :4.300
                        :2.000
                                        :1.000
                                                         :0.100
Min.
                Min.
                                 Min.
                                                 Min.
1st Qu.:5.100
                1st Qu.:2.800
                                 1st Qu.:1.600
                                                 1st Qu.:0.300
Median :5.800
                Median :3.000
                                Median :4.350
                                                 Median :1.300
Mean
       :5.843
                       :3.057
                                 Mean
                                        :3.758
                                                 Mean
                                                         :1.199
                Mean
3rd Qu.:6.400
                3rd Qu.:3.300
                                 3rd Qu.:5.100
                                                 3rd Qu.:1.800
Max.
       :7.900
                Max.
                       :4.400
                                 Max.
                                        :6.900
                                                 Max.
                                                         :2.500
      Species
setosa
          :50
versicolor:50
```

1.4 Code chunks - Plots

virginica:50

```
library(ggplot2)
dat |>
    ggplot(aes(x = Sepal.Length, y = Petal.Width, color = Species)) +
    geom_point() +
    geom_smooth(method = "lm", se = FALSE) +
```

theme_minimal(20)

`geom_smooth()` using formula = 'y ~ x'

`geom_smooth()` using formula = 'y ~ x'

1.5 Code chunks - Tables

You can also create already formatted tables with the statistics. Let's fit a simple linear model:

```
fit <- lm(Petal.Width ~ Sepal.Length * Species, data = dat)
summary(fit)</pre>
```

Call:

lm(formula = Petal.Width ~ Sepal.Length * Species, data = dat)

Residuals:

Min 1Q Median 3Q Max -0.56675 -0.10596 -0.02419 0.09624 0.50897

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-0.17022	0.38833	-0.438	0.66180	
Sepal.Length	0.08314	0.07739	1.074	0.28444	
Speciesversicolor	0.25348	0.49994	0.507	0.61292	
Speciesvirginica	1.39633	0.48104	2.903	0.00428	**
Sepal.Length:Speciesversicolor	0.12621	0.09371	1.347	0.18014	
Sepal.Length:Speciesvirginica	0.03827	0.08848	0.433	0.66599	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1909 on 144 degrees of freedom Multiple R-squared: 0.9394, Adjusted R-squared: 0.9372 F-statistic: 446.1 on 5 and 144 DF, p-value: < 2.2e-16

1.6 Code chunks - Tables

Let's produce the table with the broom and kableExtra packages:

library(flextable)
library(broom)

```
fit |>
  broom::tidy() |>
  flextable() |>
  autofit() |>
  theme booktabs()
```

Table 1: My caption

term	estimate	std.error	statistic	p.value
(Intercept)	-0.17022108	0.38833483	-0.4383359	0.661799706
Sepal.Length	0.08314444	0.07738610	1.0744106	0.284435724
Speciesversicolor	0.25347680	0.49993857	0.5070159	0.612919207
Speciesvirginica	1.39632946	0.48104236	2.9027162	0.004281915
Sepal.Length:Speciesversicolor	0.12621275	0.09370888	1.3468601	0.180141151
Sepal.Length:Speciesvirginica	0.03827201	0.08848065	0.4325467	0.665991191

1.7 Inline code chunks

If you want to use R code within the text to report statistics you can use the syntax `r r code`. For example:

• the average Sepal.Length for the Setosa group is `r mean(iris\$Sepal.Length[iris\$Species == 'setosa'])`

Become

• the average Sepal.Length for the Setosa group is 5.006

1.8 References

Go back to Section 1.3

Chen, Gang, Daniel S Pine, Melissa A Brotman, Ashley R Smith, Robert W Cox, and Simone P Haller. 2021. "Trial and Error: A Hierarchical Modeling Approach to Test-Retest Reliability." *NeuroImage* 245 (December): 118647. https://doi.org/10.1016/j.neuroimage .2021.118647.

Lakens, Daniël, Anne M Scheel, and Peder M Isager. 2018. "Equivalence Testing for Psychological Research: A Tutorial." *Adv. Methods Pract. Psychol. Sci.* 1 (2): 259–69. https://doi.org/10.1177/2515245918770963.

Morey, Richard D, and Jeffrey N Rouder. 2011. "Bayes Factor Approaches for Testing Interval Null Hypotheses." *Psychol. Methods* 16 (4): 406–19. https://doi.org/10.1037/a0024377. Valentine, Jeffrey C, Anthony Biglan, Robert F Boruch, Felipe González Castro, Linda M Collins, Brian R Flay, Sheppard Kellam, Eve K Mościcki, and Steven P Schinke. 2011. "Replication in Prevention Science." *Prev. Sci.* 12 (2): 103–17. https://doi.org/10.1007/s11121-011-0217-6.