The twisted nature of polyominoes

Alex Vlasiuk

August 5, 2019

Poly-o-mino

Poly-o-mino

polyomino [pɒlɪˈɒmɪnəʊ] noun. Pl. -oes. M20.

ORIGIN: from poly- + domino.

A planar shape formed by joining a number of identical squares by their edges.

from The Shorter Oxford English Dictionary

Poly-o-mino

Dominoes

Dominoes

Ralph Gomory's barriers

Trominoes

Theorem (S.Golomb)

For any integer $N \geq 0$, if we remove a single square from a chess board of size $2^N \times 2^N$, the remaining board can entirely be tiled by basic trominos.

Theorem (S.Golomb)

For any integer $N \ge 0$, if we remove a single square from a chess board of size $2^N \times 2^N$, the remaining board can entirely be tiled by basic trominos.

Theorem (S.Golomb)

For any integer $N \geq 0$, if we remove a single square from a chess board of size $2^N \times 2^N$, the remaining board can entirely be tiled by basic trominos.

Tetrominoes

Tetrominous

The Origin of Evil

► Alexey Pajitnov, June 1984

- ► Alexey Pajitnov, June 1984
- initially intended for pentominoes

- ► Alexey Pajitnov, June 1984
- initially intended for pentominoes
- → 'tetris'='tetrominoes'+'tennis'

- ► Alexey Pajitnov, June 1984
- initially intended for pentominoes
- 'tetris'='tetrominoes'+'tennis'
- popularized by Nintendo with Game Boy

- ► Alexey Pajitnov, June 1984
- initially intended for pentominoes
- 'tetris'='tetrominoes'+'tennis'
- popularized by Nintendo with Game Boy
- ► Pajitnov said, Nintendo version is the best!

Pentominoes

Pentominoes

Grouping Pentominoes

Grouping Pentominoes

Grouping Pentominoes

Golomb's Problem

[...] the readers are asked to use nine complete sets of pentominoes to construct a set of models of the pentominoes three times as long and as wide. [...] the nine pieces used to construct each model must not contain duplicates, and must not contain the piece corresponding to the model.

Golomb's Problem: F

Golomb's Problem: I

Counting One-sided Polyominoes

n	One-sided polyominoes	n One-sided polyominoes	
			, ,
1	1	16	26152418
2	1	17	100203194
3	2	18	385221143
4	7	19	1485200848
5	18	20	5741256764
6	60	21	22245940545
7	196	22	86383382827
8	704	23	336093325058
9	2500	24	1309998125640
10	9189	25	5114451441106
11	33896	26	19998172734786
12	126759	27	78306011677182
13	476270	28	307022182222506
14	1802312	29	1205243866707468
15	6849777	30	4736694001644862

OEIS: A000988

Counting Free Polyominoes

n	Number of free polyominoes
1	1
2	1
3	2
4	5
5	12
6	35
7	108
8	369
9	1285
10	4655
11	17073
12	63600
13	238591
14	901971

ioes				
	n	Number of free polyominoes		
	15	3426576		
	16	13079255		
	17	50107909		
	18	192622052		
	19	742624232		
	20	2870671950		
	21	11123060678		
	22	43191857688		
	23	168047007728		
	24	654999700403		
	25	2557227044764		
	26	9999088822075		
	27	39153010938487		

153511100594603

OEIS: A000105

28

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A000105

Number of free polyominoes (or square animals) with n cells. (Formerly M1425 N0561)

92

1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, 13079255, 50107909, 192622052, 742624232, 2870671950, 11123060678, 43191857688, 168047007728, 654999700403, 2557227044764, 9999088822075, 39153010938487, 153511100594603 (list; graph; refs; listen; history; text; internal format)

OFFSET

0,4

COMMENTS

a(n) + A030228(n) = A000988(n) because the number of free polyominoes plus the number of polyominoes lacking bilateral symmetry equals the number of one-sided polyominoes. - Graeme McRae. Jan 05 2006

The possible symmetry groups of a (nonempty) polyomino are the 10 subgroups of the dihedral group D 8 of order 8: D_8, 1, Z_2 (five times), Z_4, $(Z\ 2)^2$ (twice). - Benoît Jubin, Dec 30 2008

Free Tetrominoes

Free Tetrominoes

Free Pentominoes

Free Pentominoes

Free Hexominoes I

Free Hexominoes I

Free Hexominoes II

F-tiling

F-tiling

X-tiling

X-tiling

T-tiling

T-tiling

N-tiling

N-tiling

Pentominoes in the Square

Pentominoes in the Square

Rep-tiles

Rep-tiles

Rep-tiles: P

Rep-tiles: L-tromino

Huge Examples

Huge Examples

Figure: The 369 octominoes in a pattern of maximum symmetry. Solid internal corners. No crossroads.

Huge Examples II

Huge Examples II

Figure: The 369 octominoes.

Huge Examples III

Huge Examples III

Figure: The 1285 enneominoes in a truncated 109×109 square.

Blokus

Thanks!

- ▶ Wikimedia Commons
- ► OEIS
- ► Golomb, Solomon W. *Polyominoes: puzzles, patterns, problems, and packings.*Princeton University Press, 1996.
- Rangel-Mondragón, J. Polyominoes and related families. Mathematica 9(3), pp.609-640, 2004.