Übungsblatt 5

Aufgabe 1 (Transportprotokolle)

- 1. Erklären Sie die Unterschiede zwischen TCP und UDP.
- 2. Beschreiben Sie **zwei Beispiele**, wo es sinnvoll ist, das Transportprotokoll TCP zu verwenden.
- 3. Beschreiben Sie **zwei Beispiele**, wo es sinnvoll ist, das Transportprotokoll UDP zu verwenden.
- 4. Beschreiben Sie was ein **Socket** ist?
- 5. Erklären Sie was die **Seq-Nummer** in einem TCP-Segment angibt.
- 6. Erklären Sie was die Ack-Nummer in einem TCP-Segment angibt.
- 7. Beschreiben Sie das Silly Window Syndrom und seine Auswirkungen.
- 8. Erklären Sie wie Silly Window Syndrom Avoidance funktioniert.
- 9. Nennen Sie zwei mögliche Ursachen für das Entstehen von Überlastung.
- 10. Erklären Sie warum der Sender bei TCP **zwei Fenster** und nicht nur ein einziges verwaltet.
- 11. Erklären Sie was die Phase Slow Start ist.
- 12. Erklären Sie was die Phase **Congestion Avoidance** ist.
- 13. Markieren Sie in der Abbildung die beiden Phasen Slow Start und Congestion Avoidance.

Inhalt: Themen aus Foliensatz 9 + 10

- 14. Beschreiben Sie was Fast Retransmit ist.
- 15. Beschreiben Sie was **Fast Recovery** ist.
- 16. Das Konzept der Überlastkontrolle bei TCP heißt **AIMD** (= Additive Increase / Multiplicative Decrease). **Beschreiben Sie den Grund** für die aggressive Senkung und konservative Erhöhung des Überlastungsfensters.
- 17. Beschreiben Sie den Ablauf einer Denial of Service-Attacke via SYN-Flood.

Aufgabe 2 (Header und Nutzdaten)

Eine Anwendung erzeugt 40 Bytes Nutzdaten, die zuerst in einem einzigen TCP-Segment verpackt werden und danach in einem einzigen IP-Paket verpackt werden. Bestimmen Sie den Prozentsatz der Header-Daten im IP-Paket und den Prozentsatz der von der Anwendung erzeugten Nutzdaten.

IP-Paket aus der Vermittlungsschicht

|--|

TCP-Segment aus der Transportschicht

Aufgabe 3 (Transmission Control Protocol)

1. Die Abbildung zeigt den Aufbau einer TCP-Verbindung. Ergänzen Sie in der Tabelle die Angaben zu den TCP-Nachrichten 2 und 3 entsprechend der TCP-Nachricht 1.

Nachricht	ACK	SYN	FIN	Länge Nutzdaten	Seq-Nummer	Ack-Nummer
1	0	1	0	0	500	
2					1000	
3						

2. Die Abbildung zeigt einen Ausschnitt der Übermittlungsphase einer TCP-Verbindung. Ergänzen Sie in der Tabelle die fehlenden Angaben.

Nachricht	ACK	SYN	FIN	Länge Nutzdaten	Seq-Nummer	Ack-Nummer
4	0			50	501	1001
5	1			0		
6	0			100		
7	1			0		

3. Die Abbildung zeigt den Abbau einer TCP-Verbindung. Ergänzen Sie in der Tabelle die fehlenden Angaben.

Nachricht	ACK	SYN	FIN	Länge Nutzdaten	Seq-Nummer	Ack-Nummer
8	0	0	1	0	2000	3000
9				0		
10				0		
11				0		

Aufgabe 4 (Geräte in Computernetzen)

- 1. Nennen Sie die Netzwerkgeräte, die in diesem Vorlesungsmodul im laufenden Semester behandelt wurden.
- 2. Weisen Sie die Geräte den Schichten des Hybrid-Referenzmodells zu.

Aufgabe 5 (Geräte in Computernetzen)

Geben Sie an, welches Netzwerkgerät bzw. welche Netzwerkgeräte in Computernetzen...

- 1. Netzwerke mit unterschiedlichen logischen Adressbereichen verbinden.
- 2. Signale über weite Strecken übertragen, indem sie diese auf eine Trägerfrequenz im Hochfrequenzbereich aufmodulieren.
- 3. physische Netzwerke verbinden.
- 4. die Reichweite von LANs erweitern.
- 5. drahtlose Netzwerkgeräte im Infrastruktur-Modus verbinden.

6. Kommunikation zwischen Netzen ermöglichen, die auf unterschiedlichen Protokollen basieren.

Aufgabe 6 (Referenzmodelle)

Markieren Sie für jede Zeile der Tabelle die zugehörige Schicht im **hybriden Referenzmodell**.

Die 1 ist stellvertretend für die unterste Schicht und die 5 ist stellvertretend für die oberste Schicht des hybriden Referenzmodells. Wenn mehr als eine Schicht als Antwort korrekt sind, genügt es, wenn Sie eine korrekte Schicht angeben.

Inhalt: Themen aus Foliensatz 9 + 10 Seite 5 von 8

	lavel		chicht i		1.11
	1	oriden 2	Refere	4	1en 5
4B5B		_			
Address Resolution Protocol (ARP)					
Alternate Mark Inversion (AMI)					
Autonome Systeme					
Border Gateway Protocol (BGP)					
Bridge					
Überlastkontrolle					
CSMA/CA					
CSMA/CD					
Zyklische Redundanzprüfung – Cyclic Redundan-					
cy Check (CRC)					
Distanzvektor-Routing-Protokolle					
Dynamic Host Configuration Protocol (DHCP)					
Ethernet					
File Transfer Protocol (FTP)					
Flusskontrolle					
Gateway					
Hub					
Hypertext Transfer Protocol (HTTP)					
ICMP					
Internet Protocol (IP)					
Link-State-Routing-Protokolle					
Logische Adressen					
Manchester-Code					
Medienzugriffsverfahren					
Modem					
Multilevel Transmission Encoding - 3 Levels					
Multiport Bridge					
Non-Return to Zero					
Open Shortest Path First (OSPF)					

	Hybrid reference model la				layer
	1	2	3	4	5
Physische Adressen					
Port-Nummern					
Zuverlässige Ende-to-Ende-Datenverbindungen					
Repeater					
Router					
Routing Information Protocol (RIP)					
Sicherheit					
Spanning Tree Protocol (STP)					
Switch					
Telnet					
Transmission Control Protocol (TCP)					
User Datagram Protocol (UDP)					
Wireless LAN					

Aufgabe 7 (Protokolle in Computernetzen)

Nennen Sie ein Protokoll...

- 1. das Überlastkontrolle (Congestion Control) und Flusskontrolle (Flow Control) bietet.
- 2. zur Auflösung logischer Adressen in physische Adressen.
- 3. das Kollisionen in physischen Netzen <u>vermeidet</u> (avoid).
- 4. zum Routing innerhalb autonomer Systeme via Bellman-Ford-Algorithmus.
- 5. zur <u>verschlüsselten</u> Fernsteuerung von Computern.
- 6. zum Routing innerhalb autonomer Systeme via Dijkstra-Algorithmus.
- 7. zur Zuweisung der Netzwerkkonfiguration an Netzwerkgeräte.
- 8. zur unverschlüsselten Fernsteuerung von Computern.
- 9. zur verbindungslosen Interprozesskommunikation.
- 10. zur Auflösung von Domainnamen in logische Adressen.
- 11. das Kollisionen in physischen Netzen erkennt (detect).
- 12. zum unverschlüsselten Download und Upload von Dateien.
- 13. zum Austauschen (Ausliefern) von Emails.
- 14. zum Austausch von Diagnose- und Fehlermeldungen.

Inhalt: Themen aus Foliensatz 9 + 10 Seite 7 von 8

15. das die logische Topologie eines Computernetzes zu einem kreisfreien Baum reduziert.

Inhalt: Themen aus Foliensatz 9 + 10 Seite 8 von 8