# **Combinational Circuit Design**

Design the following circuits using Verilog and create a testbench (directed or randomized) for each design to check its functionality.

1) Design a 4-bit priority encoder using 2 implementations, the following truth table is provided where x is 4-bit input and y is a 2-bit output. The first implementation should use the casex construct. The second implementation should use if-else construct. Testbench should instantiation the 2 designs. Treat the casex design as the DUT and the if-else design as the reference(golden) model. Generate randomized stimulus and make it a self-checking testbench.

| x3 | x2 | <b>x1</b> | x0 | y1 | y0 |
|----|----|-----------|----|----|----|
| 1  | Х  | Х         | Х  | 1  | 1  |
| 0  | 1  | Χ         | Χ  | 1  | 0  |
| 0  | 0  | 1         | X  | 0  | 0  |
| 0  | 0  | 0         | X  | 0  | 0  |

2) Design a decimal to BCD "Binary Coded Decimal" encoder has 10 input lines D0 to D9 and 4 output lines Y0 to Y3. Below is the truth table for a decimal to BCD encoder. Output should be held LOW if none of the following input patterns is observed.

| Input          |                |                |       |       |                |       |       | Output |       |                |                |                |    |
|----------------|----------------|----------------|-------|-------|----------------|-------|-------|--------|-------|----------------|----------------|----------------|----|
| D <sub>9</sub> | D <sub>8</sub> | D <sub>7</sub> | $D_6$ | $D_5$ | D <sub>4</sub> | $D_3$ | $D_2$ | $D_1$  | $D_0$ | Y <sub>3</sub> | Y <sub>2</sub> | Y <sub>1</sub> | Yo |
| 0              | 0              | 0              | 0     | 0     | 0              | 0     | 0     | 0      | 1     | 0              | 0              | 0              | 0  |
| 0              | 0              | 0              | 0     | 0     | 0              | 0     | 0     | 1      | 0     | 0              | 0              | 0              | 1  |
| 0              | 0              | 0              | 0     | 0     | 0              | 0     | 1     | 0      | 0     | 0              | 0              | 1              | 0  |
| 0              | 0              | 0              | 0     | 0     | 0              | 1     | 0     | 0      | 0     | 0              | 0              | 1              | 1  |
| 0              | 0              | 0              | 0     | 0     | 1              | 0     | 0     | 0      | 0     | 0              | 1              | 0              | 0  |
| 0              | 0              | 0              | 0     | 1     | 0              | 0     | 0     | 0      | 0     | 0              | 1              | 0              | 1  |
| 0              | 0              | 0              | 1     | 0     | 0              | 0     | 0     | 0      | 0     | 0              | 1              | 1              | 0  |
| 0              | 0              | 1              | 0     | 0     | 0              | 0     | 0     | 0      | 0     | 0              | 1              | 1              | 1  |
| 0              | 1              | 0              | 0     | 0     | 0              | 0     | 0     | 0      | 0     | 1              | 0              | 0              | 0  |
| 1              | 0              | 0              | 0     | 0     | 0              | 0     | 0     | 0      | 0     | 1              | 0              | 0              | 1  |

FACEBOOK GRP: DIGITAL ELECTRONICS COURSES (VERILOG) MOBILE NO.: 01009279775

### 3) Design N-bit ALU that perform the following operations

- The design has 3 inputs and 1 output
- For the subtraction, subtract B from A "A B"
- Parameter N has default value = 4.

| Inputs |   | Outputs     |  |  |  |
|--------|---|-------------|--|--|--|
| opcode |   | Operation   |  |  |  |
| 0      | 0 | Addition    |  |  |  |
| 1      | 0 | Subtraction |  |  |  |
| 0      | 1 | OR          |  |  |  |
| 1      | 1 | XOR         |  |  |  |



## 4) Implement 4-bit ALU display on 7 Segment LED Display

- The design has 4 inputs: A, B, opcode, enable.
- The design has 7 outputs (a-g)
- Instantiate the N-bit ALU designed in the previous design with parameter N = 4
- ALU should execute the operation on A and B depending on the input opcode
- ALU output should be considered as the digit to be displayed on the 7 segment LED display
- Below the truth table of the 7-segment decoder

|       | Input  |   |   |   | Output |   |   |   |
|-------|--------|---|---|---|--------|---|---|---|
| Digit | enable | а | b | С | D      | e | f | g |
| 0     | 1      | 1 | 1 | 1 | 1      | 1 | 1 | 0 |
| 1     | 1      | 0 | 1 | 1 | 0      | 0 | 0 | 0 |
| 2     | 1      | 1 | 1 | 0 | 1      | 1 | 0 | 1 |
| 3     | 1      | 1 | 1 | 1 | 1      | 0 | 0 | 1 |
| 4     | 1      | 0 | 1 | 1 | 0      | 0 | 1 | 1 |
| 5     | 1      | 1 | 0 | 1 | 1      | 0 | 1 | 1 |
| 6     | 1      | 1 | 0 | 1 | 1      | 1 | 1 | 1 |
| 7     | 1      | 1 | 1 | 1 | 0      | 0 | 0 | 0 |
| 8     | 1      | 1 | 1 | 1 | 1      | 1 | 1 | 1 |
| 9     | 1      | 1 | 1 | 1 | 1      | 0 | 1 | 1 |
| A     | 1      | 1 | 1 | 1 | 0      | 1 | 1 | 1 |
| В     | 1      | 0 | 0 | 1 | 1      | 1 | 1 | 1 |
| С     | 1      | 1 | 0 | 0 | 1      | 1 | 1 | 0 |
| D     | 1      | 0 | 1 | 1 | 1      | 1 | 0 | 1 |



FACEBOOK GRP: DIGITAL ELECTRONICS COURSES (VERILOG) MOBILE NO.: 01009279775

2



5) Implement D-Type Flip-Flop with active high Enable. **DO not write a testbench for this** sequential design (We have not learnt how to verify a sequential design yet)



| Input     | Output |  |  |
|-----------|--------|--|--|
| D, E, CLK | Q      |  |  |

## Truth Table

| E | CLK        | D | Q <sub>n+1</sub> |
|---|------------|---|------------------|
| 0 | X          | X | Q <sub>n</sub>   |
| 1 | not Rising | X | Q <sub>n</sub>   |
| 1 | <b>↑</b>   | D | D                |

**Opcode** [1:0]

#### Deliverables:

- 1) The assignment should be submitted as a PDF file with this format <your\_name>\_Assignment2 for example Kareem\_Waseem\_Assignment2
- 2) Snippets from the waveforms captured from QuestaSim for each design with inputs assigned values and output values visible

Note that your document should be organized as 5 sections corresponding to each design above, and in each section, I am expecting the Verilog code for the design, testbench and the waveforms snippets