Why Information Gain? Entropy

- Entropy: What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution?
- The entropy of X: $H(X) = -\sum_{j=1}^{m} p_j \log p_j$
 - "High Entropy": X is from a uniform (boring) distribution
 - A histogram of the frequency distribution of values of X is flat
 - "Low Entropy": X is from varied (peaks and valleys) distribution
 - A histogram of the frequency distribution of values of X would have many lows and one or two highs

Why Information Gain? Entropy

- Suppose I want to predict Y and I have input X
 - X = College Major
 - Y = Likes "Gladiator"

X	Υ	
Math	Yes	
History	No	
CS	Yes	
Math	No	
Math	No	
CS	Yes	
Math	Yes	
History	No	

From this data we estimate

- P(Y = Yes) = 0.5
- P(X = Math & Y = No) = 0.25
- P(X = Math) = 0.5
- P(Y = Yes | X = History) = 0

Note:

- $H(Y) = -\frac{1}{2} \log_2(\frac{1}{2}) \frac{1}{2} \log_2(\frac{1}{2}) = 1$
- H(X) = 1.5

Why Information Gain? Entropy

- Suppose I want to predict Y and I have input X
 - X = College Major
 - Y = Likes "Gladiator"

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
Math	Yes
History	No

Def: Specific Conditional Entropy

H(Y | X=v) = The entropy of Y among only those records in which X has value v

Example:

- H(Y|X=Math) = 1
- H(Y|X=History) = 0
- H(Y|X=CS) = 0

Why Information Gain?

- Suppose I want to predict Y and I have input X
 - X = College Major
 - Y = Likes "Gladiator"

X	Y	
Math	Yes	
History	No	
CS	Yes	
Math	No	
Math	No	
CS	Yes	
Math	Yes	
History	No	

Def: Conditional Entropy

- H(Y | X) = The average specific conditional entropy of Y
 - = if you choose a record at random what will be the conditional entropy of Y, conditioned on that row's value of X
 - = Expected number of bits to transmit Y if both sides will know the value of X

$$= \sum_{i} P(X = v) H(Y|X = v)$$

Why Information Gain?

Suppose I want to predict Y and I have input X

H(Y | X) = The average specific conditional entropy of Y

X	Υ	
Math	Yes	
History	No	
CS	Yes	
Math	No	
Math	No	
CS	Yes	
Math	Yes	
History	No	

$$=\sum_{j}P(X=v)H(Y|X=v)$$

Example:

V_{j}	P(X=v _j)	$H(Y X=v_j)$
Math	0.5	1
History	0.25	0
CS	0.25	0

So: H(Y|X)=0.5*1+0.25*0+0.25*0=0.5, A. Rajaraman, J. Ullman (Stanford University) Mining of Massive Datasets

Why Information Gain?

Suppose I want to predict Y and I have input X

- Def: Information Gain
 - IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew X?

$$IG(Y|X) = H(Y) - H(Y|X)$$

- Example:
 - H(Y) = 1
 - H(Y|X) = 0.5
 - Thus IG(Y|X) = 1 0.5 = 0.5

What is Information Gain used for?

- Suppose you are trying to predict whether someone is going live past 80 years
- From historical data you might find:
 - IG(LongLife | HairColor) = 0.01
 - IG(LongLife | Smoker) = 0.2
 - IG(LongLife | Gender) = 0.25
 - IG(LongLife | LastDigitOfSSN) = 0.00001
- IG tells us how much information about Y is contained in X
 - So attribute X that has high IG(Y|X) is a good split!