Devoir surveillé 1.

Exercice 1

1°) Notons $(E): \sqrt{2x+5} - \sqrt{x-1} = 1.$

Le domaine de définition de (E) est $[1, +\infty[$ puisque, pour x réel :

$$\left\{ \begin{array}{ll} 2x+5\geq 0 \\ x-1\geq 0 \end{array} \right. \iff x\geq 1.$$

Soit maintenant $x \in [1, +\infty[$.

$$(E) \iff \sqrt{2x+5} = 1 + \sqrt{x-1}$$

$$\iff 2x+5 = (1+\sqrt{x-1})^2 \qquad \operatorname{car} \begin{cases} \sqrt{2x+5} \ge 0 \\ 1+\sqrt{x-1} \ge 0 \end{cases}$$

$$\iff 2x+5 = 1+2\sqrt{x-1}+x-1$$

$$\iff x+5 = 2\sqrt{x-1}$$

$$\iff (x+5)^2 = (2\sqrt{x-1})^2 \qquad \operatorname{car} \begin{cases} x+5 \ge 0 \text{ puisque } x \ge 1 \\ 2\sqrt{x-1} \ge 0 \end{cases}$$

$$\iff x^2 + 10x + 25 = 4(x-1)$$

$$\iff x^2 + 6x + 29 = 0$$

Le discriminant du trinôme réel du second degré obtenu vaut $\Delta=36-4\times29<0$. Il n'y a donc pas de racines réelles.

Donc (E) n'a pas de solution.

2°) On note (*) l'inéquation $e^{-x}(2e^{-x}-1) \leq 3$, bien définie sur \mathbb{R} . Soit $x \in \mathbb{R}$.

(*)
$$\iff 2e^{-2x} - e^{-x} - 3 \le 0$$

 $\iff 2X^2 - X - 3 \le 0$ en posant $X = e^{-x}$

Le discriminant du trinôme du second degré en X est $\Delta=1+4\times2\times3=25=5^2$.

Les racines du trinôme sont : $\frac{1+5}{4} = \frac{3}{2}$ et $\frac{1-5}{4} = -1$.

Ainsi,

$$(*) \iff X \in \left[-1, \frac{3}{2}\right] \qquad \text{car le coefficient de } X^2 \text{ est strictement positif}$$

$$\iff -1 \le e^{-x} \le \frac{3}{2}$$

$$\iff e^{-x} \le \frac{3}{2} \qquad \text{car } e^{-x} > 0$$

$$\iff -x \le \ln\left(\frac{3}{2}\right) \qquad \text{car ln est strictement croissante}$$

$$\iff x \ge \ln\left(\frac{2}{3}\right)$$

Ainsi, l'ensemble des solutions est $\left[\ln\left(\frac{2}{3}\right), +\infty\right[$

Exercice 2

 $\mathbf{1}^{\circ}) \text{ Soit } x \in \mathbb{R}_+, f_0(x) = x.$

Ainsi, C_0 est une demi-droite, incluse dans première bissectrice *i.e.* la droite d'équation y = x

 2°) On suppose $k \neq 0$. Soit x > 0.

$$\frac{f_k(x) - f_k(0)}{x - 0} = \frac{x - k\sqrt{x}}{x} = 1 - \frac{k}{\sqrt{x}} \xrightarrow[x \to 0]{} \begin{cases} -\infty & \text{si } k > 0 \\ +\infty & \text{si } k < 0 \end{cases}$$

 f_k n'est pas dérivable en 0 et C_k admet une tangente verticale en l'origine

- **3**°) Pour tout $x \in \mathbb{R}_+^*$, $f_k(x) = x \left(1 \frac{k}{\sqrt{x}}\right) \xrightarrow[x \to +\infty]{} [+\infty]$.
- **4°)** Soit k' un réel tel que k > k'. Soit $x \in \mathbb{R}_+$. $f_k(x) f_{k'}(x) = x k\sqrt{x} (x k'\sqrt{x}) = \sqrt{x}(k' k) \le 0.$ Ainsi, C_k est en-dessous de $C_{k'}$.
- $\mathbf{5}^{\circ}$) a) f_k est dérivable sur \mathbb{R}_+^* comme différence de fonctions dérivables.

Pour tout
$$x > 0$$
, $f'_k(x) = 1 - \frac{k}{2\sqrt{x}} = \frac{2\sqrt{x} - k}{2\sqrt{x}}$.

$$f'_k(x) > 0 \iff \sqrt{x} \ge \frac{k}{2}$$
 De même, $f'_k(x) = 0 \iff x = \frac{k^2}{4}$ $\iff x > \frac{k^2}{4}$ car $\begin{cases} \sqrt{x} \ge 0 \\ \frac{k}{2} \ge 0 \end{cases}$

x	$0 \qquad \frac{k^2}{4}$	$+\infty$
$f'_k(x)$	- 0 +	
f_k	$0 \qquad -\frac{k^2}{4}$	$+\infty$

Ainsi, f_k admet un minimum atteint en $a_k = \frac{k^2}{4}$

$$f_k(a_k) = f_k\left(\frac{k^2}{4}\right) = \frac{k^2}{4} - k\sqrt{\frac{k^2}{4}}$$
$$= \frac{k^2}{4} - \frac{k^2}{2} \quad \text{car } k > 0$$
$$= -\frac{k^2}{4}$$

La valeur du minimum est $-\frac{k^2}{4}$.

b) Pour tout $k > 0, A_k \left(\frac{k^2}{4}, -\frac{k^2}{4} \right)$.

On en déduit que tous les points A_k sont situés sur la droite d'équation y = -x.

2

c) C_k passe bien par l'origine. Soit x > 0.

$$f_k(x) = 0 \iff x = k\sqrt{x}$$

$$\iff x^2 = k^2 x \quad \text{car } \begin{cases} x \ge 0 \\ k\sqrt{x} \ge 0 \end{cases}$$

$$\iff x(x - k^2) = 0$$

$$\iff x = k^2 \quad \text{car } x \ne 0$$

Ainsi, en-dehors de l'origine, C_k rencontre l'axe des abscisses en un unique point B_k . Son abscisse est $b_k = k^2 = 4a_k$.

d)

$$f'_k(b_k) = f'_k(k^2) = 1 - \frac{k}{2\sqrt{k^2}}$$
$$= 1 - \frac{1}{2} \quad \text{car } k > 0$$
$$= \boxed{\frac{1}{2}}$$

Ainsi, La tangente à C_k en B_k garde une direction fixe

Elle est parallèle à la droite d'équation $y = \frac{x}{2}$.

6°) a) f_k est dérivable sur \mathbb{R}_+^* et, pour tout x > 0, $f_k'(x) = \frac{2\sqrt{x} - k}{2\sqrt{x}} > 0$ car $2\sqrt{x} \ge 0$ et -k > 0.

x	0	$+\infty$
f_k	0	+∞

b) Soit x > 0.

$$f'_k(x) = 2 \iff \frac{2\sqrt{x} - k}{2\sqrt{x}} = 2$$

$$\iff 2\sqrt{x} - k = 4\sqrt{x}$$

$$\iff 2\sqrt{x} = -k$$

$$\iff 4x = k^2 \quad \operatorname{car} \begin{cases} 2\sqrt{x} \ge 0 \\ -k \ge 0 \end{cases}$$

$$\iff x = \frac{k^2}{4}$$

De plus,

$$f_k\left(\frac{k^2}{4}\right) = \frac{k^2}{4} - k\sqrt{\frac{k^2}{4}}$$
$$= \frac{k^2}{4} + \frac{k^2}{2} \quad \text{car } k \le 0$$
$$= \frac{3k^2}{4}$$

Le point $D_k\left(\frac{k^2}{4}, \frac{3k^2}{4}\right)$ est le seul point de \mathcal{C}_k où la tangente est parallèle à la droite d'équation y=2x. Les points D_k appartiennent à la droite d'équation y=3x.

- 7°) Les points remarquables sont :

 - Les points remarquables sont : $\text{ pour } \mathcal{C}_{-1} : D_{-1}\left(\frac{1}{4}, \frac{3}{4}\right).$ $\text{ pour } \mathcal{C}_1 : A_1\left(\frac{1}{4}, -\frac{1}{4}\right) \text{ et } B_1(1, 0).$ $\text{ pour } \mathcal{C}_2 : A_2(1, -1) \text{ et } B_2(4, 0).$ La courbe \mathcal{C}_{-1} est au-dessus de \mathcal{C}_1 qui est elle-même au dessus de \mathcal{C}_2 .

Exercice 3

 1°) f est définie sur \mathbb{R}_{+}^{*} .

f est dérivable sur \mathbb{R}_+^* comme quotient de fonctions dérivables.

Et, pour tout
$$x > 0$$
, $f'(x) = \frac{1 - \ln x}{x^2}$.

$$f'(x) \ge 0 \iff \ln x \le 1$$

 $\iff x \le e \text{ car exp est strictement croissante}$
 $f'(x) = 0 \iff x = e$

De plus, $f(x) \xrightarrow[x \to 0^+]{} -\infty$ et $f(x) \xrightarrow[x \to +\infty]{} 0$ par croissance comparée.

D'où le tableau de variations :

- **2°)** a) On a $2^4 = 16$ et $4^2 = 16$, donc (2,4) est solution évidente de (*).
 - b) Soient a et b des entiers naturels non nuls.

(*)
$$\iff \ln(a^b) = \ln(b^a)$$
 car ln est bijective $\iff b \ln a = a \ln b$ $\iff \frac{\ln a}{a} = \frac{\ln b}{b}$ (*) $\iff f(a) = f(b)$

c) On suppose ici $a^b = b^a$ avec a et b entiers tels que 0 < a < b.

Alors f(a) = f(b) par la question précédente.

On veut montrer que a < e < b ie a < e et e < b.

Raisonnons par l'absurde, i.e. supposons $a \ge e$ ou $b \le e$.

★ Supposons $a \ge e$. Alors $e \le a < b$.

Comme f est strictement décroissante sur $[e, +\infty[$, on en déduit : f(a) < f(b). Exclu puisque f(a) = f(b).

***** Supposons $b \le e$. Alors $0 < a < b \le e$.

Comme f est strictement croissante sur [0, e], on a : f(a) < f(b). Exclu.

5

On en déduit alors a < e < b

- d) Raisonnons par double implication.
 - ★ Soient a et b deux entiers naturels non nuls tels que a < b et $a^b = b^a$. Alors, par 2c, a < e < b. Comme $a \in \mathbb{N}^*$, a = 1 ou a = 2.

Supposons que a=1. Alors $a^b=1^b=1$, et $b^a=b^1=b$, d'où b=1=a, ce qui est exclu. On en tire que a=2. Or on a vu que (2,4) était solution de (*) donc, par 2b, f(2)=f(4), et comme (a,b)=(2,b) est solution, on a aussi f(2)=f(b). Ainsi f(b)=f(4), et comme 4 et b sont dans $[e,+\infty[$ où f est strictement décroissante, la seule possibilité est b=4.

- ★ Réciproquement, avec a = 2, b = 4, on a bien : 0 < a < b et f(b) = f(a). Ainsi, l'unique solution du problème est le couple (2,4).
- 3°) Deuxième application Soit $n \in \mathbb{N}^*$.

$$n^{\frac{1}{n}} \leq 3^{\frac{1}{3}} \iff \ln\left(n^{\frac{1}{n}}\right) \leq \ln\left(3^{\frac{1}{3}}\right) \text{ car ln est strictement croissante}$$
 $\iff \frac{\ln n}{n} \leq \frac{\ln 3}{3}$
 $\iff f(n) \leq f(3)$

f est décroissante sur $[e, +\infty[$ donc sur $[3, +\infty[$. Ainsi, pour tout entier $n \ge 3, f(n) \le f(3)$. Traitons les cas n = 1 et n = 2.

$$f(1) = 0$$
 et $f(3) = \frac{\ln 3}{3} > 0$ donc $f(1) \le f(3)$.

$$f(2) = f(4)$$
 et $4 \ge 3$ donc $f(4) \le f(3)$ donc $f(2) \le f(3)$.

Ainsi, pour tout $n \in \mathbb{N}^*$, $n^{\frac{1}{n}} \leq 3^{\frac{1}{3}}$.

Exercice 4

$$\begin{array}{l} \mathbf{1}^{\circ}\big) \ -\frac{1}{x} \underset{x \to 0^{+}}{\longrightarrow} -\infty \ \text{et} \ e^{X} \underset{X \to -\infty}{\longrightarrow} 0. \\ \text{Par composition de limites, } e^{-\frac{1}{x}} \underset{x \to 0^{+}}{\longrightarrow} 0, \ \text{et par produit, } \boxed{f(x) \underset{x \to 0^{+}}{\longrightarrow} 0.} \\ \text{Comme } 0 = f(0), \ \text{cela signifie que } \boxed{f \ \text{est continue en } 0.} \end{array}$$

2°) Par composition et produit de fonctions dérivables là où elles sont définies, f est dérivable sur \mathbb{R}_+^* Pour tout x > 0,

$$f'(x) = e^{-\frac{1}{x}} + (x+1)\frac{1}{x^2}e^{-\frac{1}{x}} = e^{-\frac{1}{x}}\left(1 + \frac{1}{x} + \frac{1}{x^2}\right)$$

 3°) Déterminons le taux d'accroissement de f en 0: pour tout x > 0,

$$\frac{f(x) - f(0)}{x - 0} = \frac{(x+1)e^{-\frac{1}{x}}}{x} = e^{-\frac{1}{x}} + \frac{1}{x}e^{-\frac{1}{x}}$$

Comme
$$Xe^{-X} = \frac{X}{e^X} \underset{X \to +\infty}{\longrightarrow} 0$$
 et $\frac{1}{x} \underset{x \to 0^+}{\longrightarrow} +\infty$, on a $\frac{1}{x}e^{-\frac{1}{x}} \underset{x \to 0^+}{\longrightarrow} 0$.
Par ailleurs, $e^{-\frac{1}{x}} \underset{x \to 0^+}{\longrightarrow} 0$.

Ainsi,
$$\frac{f(x) - f(0)}{x - 0} \xrightarrow[x \to 0^+]{} 0$$
, ce qui signifie que $f(0) = 0$.

4°) Limite en $+\infty: -\frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 0$ et exp est continue en 0 donc $e^{-\frac{1}{x}} \underset{x \to +\infty}{\longrightarrow} \exp(0) = 1$. Par produit, $f(x) \underset{x \to +\infty}{\longrightarrow} +\infty$.

x	0 +	∞
f'(x)	0 +	
f	0	$-\infty$

 5°) a) Pour tout x > 0,

$$x\left(e^{-\frac{1}{x}}-1\right) = \frac{e^{-\frac{1}{x}}-1}{\frac{1}{x}} = -\frac{e^{-\frac{1}{x}}-1}{-\frac{1}{x}}$$

Or on sait que $-\frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 0$ et que $\frac{e^X - 1}{X} \underset{X \to 0}{\longrightarrow} 1$. D'où :

$$x\left(e^{-\frac{1}{x}}-1\right) \underset{x \to +\infty}{\longrightarrow} -1$$

b) Pour tout x > 0, $f(x) - x = (x+1)e^{-\frac{1}{x}} - x = x\left(e^{-\frac{1}{x}} - 1\right) + e^{-\frac{1}{x}}$.

On sait que $e^{-\frac{1}{x}} \xrightarrow[x \to +\infty]{} 1$. Grâce à la question précédente, on peut donc affirmer que $f(x) - x \xrightarrow[x \to +\infty]{} 0$.

Cela signifie que la droite Δ d'équation y = x est asymptote à \mathcal{C} en $+\infty$.

c) Méthode 1 : D'après le cours, pour tout $u \in \mathbb{R}$, $1+u \leq e^u$.

En multipliant cette inégalité par e^{-u} qui est bien positif, on obtient, pour tout $u \in \mathbb{R}_+$, $e^{-u}(1+u) \le 1.$

Méthode 2: Posons, pour tout $u \in \mathbb{R}_+$, $g(u) = e^{-u}(1+u)$.

Par composition et produit, g est dérivable sur \mathbb{R}^+ , et pour tout $u \in \mathbb{R}^+$:

$$g'(u) = -e^{-u}(1+u) + e^{-u} = e^{-u}(-(1+u)+1) = -ue^{-u}.$$

Comme exp est positive, pour tout $u \in \mathbb{R}^+$, $g'(u) \leq 0$, donc g est décroissante sur \mathbb{R}^+ .

Comme g(0) = 1, on a pour tout $u \in \mathbb{R}^+$, $e^{-u}(1+u) = g(u) \le 1$.

d) Pour tout x > 0,

$$f(x) - x = (1+x)e^{-\frac{1}{x}} - x$$

$$= x\left(\frac{1}{x} + 1\right)e^{-\frac{1}{x}} - x$$

$$= x\left[\left(\frac{1}{x} + 1\right)e^{-\frac{1}{x}} - 1\right]$$

$$= x\left[g\left(\frac{1}{x}\right) - 1\right]$$

Or, d'après la question précédente, comme $\frac{1}{x} \in \mathbb{R}^+$, $g\left(\frac{1}{x}\right) - 1 \le 0$, et finalement $f(x) - x \le 0$

Ainsi, \mathcal{C} est en dessous de Δ sur \mathbb{R}_+^* entier.

6°) Par produit et composition, f' est dérivable sur \mathbb{R}_+^* , ce qui signifie que f est deux fois dérivable sur \mathbb{R}_{+}^{*} .

On a, pour tout x > 0:

$$f''(x) = \frac{1}{x^2} e^{-\frac{1}{x}} \left(1 + \frac{1}{x} + \frac{1}{x^2} \right) + e^{-\frac{1}{x}} \left(-\frac{1}{x^2} - \frac{2x}{x^4} \right)$$

$$= e^{-\frac{1}{x}} \left(\frac{1}{x^2} + \frac{1}{x^3} + \frac{1}{x^4} - \frac{1}{x^2} - \frac{2}{x^3} \right)$$

$$= e^{-\frac{1}{x}} \left(\frac{1}{x^4} - \frac{1}{x^3} \right)$$

$$= e^{-\frac{1}{x}} \frac{1 - x}{x^4}$$

Le signe de f''(x) est celui de 1-x puisque $\frac{e^{-\frac{1}{x}}}{x^4} > 0$.

- 7°) L'équation de T est : y = f'(1)(x-1) + f(1) i.e. $y = 3e^{-1}(x-1) + 2e^{-1}$ i.e. $y = 3e^{-1}x e^{-1}$. Ainsi on a $a = 3e^{-1}$ et $b = -e^{-1}$.
- 8°) Posons, pour tout x > 0, $h(x) = f(x) 3e^{-1}x + e^{-1}$. Comme f est deux fois dérivable sur \mathbb{R}_+^* , h l'est aussi et, pour tout x > 0,

$$h'(x) = f'(x) - 3e^{-1}, h''(x) = f''(x) = e^{-\frac{1}{x}} \frac{1-x}{x^4}$$

On en déduit successivement le signe de h'', les variations de h', le signe de h', les variations de h puis finalement le signe de h.

On utilise les informations : h'(1) = h(1) = 0.

 $\forall x \in [0,1], \ h(x) \ge 0 \text{ i.e. } f(x) \ge ax + b \quad \text{ et } \quad \forall x \in [1,+\infty[, \ h(x) \le 0 \text{ i.e. } f(x) \le ax + b]$

On en déduit que sur [0,1], \mathcal{C} est au-dessus de T, et que sur $[1,+\infty[$, \mathcal{C} est en-dessous de T

9°) On sait 2 < e < 3 donc $\frac{1}{3} < \frac{1}{e} < \frac{1}{2}$ (on a même, $\frac{5}{2} < e$ donc $\frac{1}{e} < \frac{2}{5} = \frac{4}{10} = 0, 4$).

La tangente au point d'abscisse 1 a pour pente $3e^{-1}$ donc elle est un peu plus « pentue » que la droite d'équation y=x.

$$f(1) = 2e^{-1} < 1.$$

