# Two-Dimensional Fully Numerical Solutions of Molecular Schrödinger Equations. II. Solution of the Poisson Equation and Results for Singlet States of H<sub>2</sub> and HeH<sup>+</sup>

LEIF LAAKSONEN, PEKKA PYYKKÖ, AND DAGE SUNDHOLM

Department of Physical Chemistry, Abo Akademi, 20500 Abo (Turku), Finland

#### **Abstract**

Two-dimensional fully numerical solutions of the Hartree-Fock problem are reported for the singlet ground states of  $H^-$ , He,  $H_2$ , and  $HeH^+$ . The  $H_2$  energy at R = 1.4 a.u. is -1.13362957 a.u.

#### 1. Introduction

The principles of a two-dimensional (2D) relaxation solution of molecular Schrödinger equations are explained in Paper I of the present series [1]. As a further test on the method, we now extend the treatment to singlet states of two-electron molecules. In this case the exchange potential vanishes. The interelectronic Coulomb potential  $V_e$  can be solved using the same relaxation subroutines, now applied on the Poisson equation

$$\nabla^2 V_e = -4\pi \rho_e,\tag{1}$$

where  $\rho_e = \psi^2$  is the electron density.

We actually find that, for the academic model problem of the  $H_2$  Hartree-Fock limit, the present method seems to be slightly more accurate than the previous ones [2,3]. As another test we considered the asymmetric HeH<sup>+</sup> [4]. The atomic systems H<sup>-</sup> [5] and He [6], treated in 2D, provide further tests.

The earlier seminumerical 2D molecular calculations by McCullough et al. [7] were summarized in Paper I.

#### 2. Method

## A. Treatment of the Poisson Equation

The expressions for  $\nabla^2$  in the transformed elliptic coordinates  $(q, \eta, \phi)$  or  $(t, \eta, \phi)$  are given in Paper I. In order to obtain suitable boundary conditions, the functions

$$Y_{\text{atom}} = r_1 V_e \tag{2}$$

$$Y_{\text{mol}} = rV_e \tag{3}$$

were introduced, r being the distance from the molecular center. Then the boundary conditions become

$$\lim_{q \to 1, \, \eta \to 1} Y_{\text{atom}}(q, \eta) = 0, \tag{4}$$

$$\lim_{q \to 0} Y(q, \eta) = z,\tag{5}$$

where z is the number of electrons, giving rise to the potential. What resulted, however, was that even with  $n_q > 250$ , our last  $Y(q, \eta)$  were too far from 1 for the numerical derivation formulas to work smoothly.

We also experimented with the combination of the variable q and a non-Coulombic potential

$$Z(q,\eta) = V_e(q,\eta) - z/r. \tag{6}$$

Although

$$\lim_{q \to 0} Z = 0,\tag{7}$$

bad accuracy for the derivatives  $\partial^2 Z/\partial q^2$  was again obtained, due to the large steps  $\Delta r$  per  $\Delta q$  near q=0.

The best results were obtained using the variables  $(t,\eta)$  in conjunction with Y. In



Figure 1. Flow scheme for solving the Hartree-Fock equations.

this case the boundary conditions near practical infinity were obtained from the multipole series

$$V_e = \sum_{l=0}^{l_{max}} Q_l r^{-l-1} P_l(\cos \theta),$$
 (8)

with the multipole moments

$$Q_l = \langle \psi | P_l(\cos\theta) r^l | \psi \rangle \tag{9}$$

evaluated from the z-electron wave function. We found it satisfactory to use this procedure for the two last values of t, with  $l_{\text{max}} = 4$ .

#### B. Iterative Procedure

An overview of the two-electron program is given in Figure 1. The potential  $V_e$  is initialized with a superposition of two Thomas-Fermi potentials. The number of sweeps n was typically 10. The same overrelaxation procedure as for  $\psi$  [Eq. (25) of Paper I] was used for  $V_e$ , with the same value of  $\omega$ , typically 1.85.

### 3. Results

Some results, obtained for H<sup>-</sup> and He using five-point formulas in Case a and seven-point formulas in case b, are given in Table I. Further results for H<sub>2</sub> at R = 1.4 a.u. and HeH<sup>+</sup> at R = 1.455 a.u. using seven-point formulas, are given in Table II.

| System | Property              | Value            | Reference                   |
|--------|-----------------------|------------------|-----------------------------|
| H-     | $E_T$                 | -0.4879294       | Present worka               |
|        |                       | -0.487929726     | Present work <sup>b</sup>   |
|        |                       | -0.487929734372  | Roothaan and Soukoup [5]    |
|        | ε                     | -0.04622228      | Present worka               |
|        |                       | -0.046222452     | Present work <sup>b</sup>   |
|        |                       | -0.046222445628  | Roothaan and Soukoup [5]    |
|        | $\langle r^2 \rangle$ | 9.41110666       | Present workb               |
| Не     | $E_T$                 | -2.8617          | McCullough [7]              |
|        |                       | -2.8616795       | Present worka               |
|        |                       | -2.86167997      | Present workb               |
|        |                       | -2.861679995624  | Roothaan and Soukoup [5]    |
|        |                       | -2.861679995612  | Szalewicz and Monkhorst [6] |
|        |                       | -2.8616799956122 | Gázquez and Silverstone [8] |
|        | $\epsilon$            | -0.9179552       | Present worka               |
|        |                       | -0.91795554      | Present work <sup>b</sup>   |
|        |                       | -0.917955562859  | Roothaan and Soukoup [5]    |
|        | $\langle r^2 \rangle$ | 1.18482848       | Present workb               |
|        | , ,                   | 1.184828         | Froese Fischer [9]          |

TABLE I. Hartree-Fock results in a.u. for the H- and He ground states.

<sup>&</sup>lt;sup>a</sup> Variable q.

<sup>&</sup>lt;sup>b</sup> Variable t. "Bond length" R = 1.4 a.u.

TABLE II. Hartree-Fock results (in a.u.) for the ground sates of  $H_2$  at R = 1.4 a.u. and  $HeH^+$  at R = 1.455 a.u.

| System         | Property                        | Value       | Reference                     |
|----------------|---------------------------------|-------------|-------------------------------|
| H <sub>2</sub> | $E_{T}$                         | -1.1336     | McCullough [7]                |
|                |                                 | -1.1336315  | Present worka                 |
|                |                                 | -1.133629   | Cade and Wahl [3]d            |
|                |                                 | -1.133630   | Kolos and Roothaan [2]d       |
|                |                                 | -1.13362957 | Present work <sup>b</sup>     |
|                | €                               | -0.59465    | Cade and Roothaan [3]         |
|                |                                 | -0.59465857 | Present work <sup>b</sup>     |
|                | $Q_2^e$                         | 0.24322     | Berns and Wormer [10]d        |
|                |                                 | 0.26483     | Berns and Wormer [10]c        |
|                |                                 | 0.243289    | Present work <sup>a</sup>     |
|                |                                 | 0.2434      | Kolos and Roothaan [2]d       |
|                |                                 | 0.2579      | Kolos and Roothaan [2]c       |
|                |                                 | 0.2432888   | Present work <sup>b</sup>     |
|                |                                 | 0.2946      | Ramsey [11] (expt.)           |
|                | $\langle r^2 \rangle$           | 2.573930    | Present worka                 |
|                |                                 | 2.5736      | Kojos [2]                     |
|                |                                 | 2.573930    | Present work <sup>b</sup>     |
|                |                                 | 2.593       | Ramsey [11] (expt.)           |
|                | $Q_4^e$                         | 0.15        | Sharma and Kern [12]          |
|                |                                 | 0.090721    | Present work <sup>b</sup>     |
|                |                                 | 0.0988      | Karl et al. [13] <sup>c</sup> |
| HeH+           | $E_T$                           | -2.9330     | McCullough [7]                |
|                |                                 | -2.933126   | Peyerimhoff [4]               |
|                |                                 | -2.933072   | Bartlett and Brändas [14]     |
|                |                                 | -2.93310325 | Present work <sup>b</sup>     |
|                | $\epsilon$                      | -1.6374     | McCullough [7]                |
|                |                                 | -1.6375     | Peyerimhoff [4]               |
|                |                                 | -1.63745062 | Present workb                 |
|                | $\langle z \rangle = Q_1^{e,f}$ | -0.4945     | McCullough [7]                |
|                |                                 | -0.49445996 | Present work <sup>b</sup>     |
|                | $Q_2^{e,f}$                     | 0.3737269   | Present work <sup>b</sup>     |
|                | $Q_2^{e,f} \ Q_3^{e,f}$         | -0.2315246  | Present work <sup>b</sup>     |
|                | $Q_4^{e,f}$                     | 0.1739662   | Present work <sup>b</sup>     |
|                | $\langle r^2 \rangle$           | 1.3408323   | Present work <sup>b</sup>     |

<sup>&</sup>lt;sup>a</sup> Variable q.

# 4. Conclusions

We have demonstrated that a fully numerical relaxation solution of the Hartree-Fock (HF) problem for the singlet states of the simplest two-electron systems can challenge the numerical accuracy of earlier approaches. The HF energy of  $H_2$  at R

<sup>&</sup>lt;sup>b</sup> Variable t.

<sup>°</sup>CI.

dHE

<sup>&</sup>lt;sup>e</sup> Contribution per electron.

f From molecular midpoint.

= 1.4 a.u. is calculated to be -1.13362957 a.u. Quadrupole and hexadecapole moments are also reported.

## Acknowledgment

We thank Professor Ad van der Avoird for pointing out an error in Table II.

# Bibliography

- [1] L.Laaksonen, P. Pyykkö, and D. Sundholm, preceding paper, Int. J. Quantum Chem. 23, 309 (1983).
- [2] W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219 (1960).
- [3] P. E. Cade and A. C. Wahl, At. Data Nucl. Data Tables 13, 339 (1974).
- [4] S. Peyerimhoff, J. Chem. Phys. 43, 998 (1965).
- [5] C. C. J. Roothaan and G. A. Soukoup, Int. J. Quantum Chem. 15, 449 (1979).
- [6] K. Szalewicz and H. J. Monkhorst, J. Chem. Phys. 75, 5785 (1981).
- [7] E. A. McCullough, Jr., J. Chem. Phys. 62, 3991 (1975).
- [8] J. L. Gázquez and H.J. Silverstone, J. Chem. Phys. 67, 1887 (1977).
- [9] C. Froese Fischer, The Hartree-Fock Method for Atoms (Wiley, New York, 1977).
- [10] R. M. Berns and P. E. S. Wormer, Mol. Phys. 44, 1215 (1981).
- [11] N. F. Ramsey, Molecular Beams (Oxford Un. P., Oxford, 1956), p. 230.
- [12] R. D. Sharma and C. W. Kern, J. Chem. Phys. 55, 1171 (1971).
- [13] G. Karl, J. D. Poll, and L. Wolniewicz, Can. J. Phys. 53, 1781 (1975).
- [14] R. J. Bartlett and E. J. Brändas, J. Chem. Phys. 56, 5467 (1972).