

Sumário

- 1. Segmentos Construtíveis
- 2. Exercícios
- 3. A Duplicação do Cubo
- 4. Resolvendo com uma folha de papel

Segmentos Construtíveis

Há mais de 2000 anos, a palavra **número** significava número natural. Além deles, as frações não eram consideradas números, eram apenas razões entre números (naturais).

- Não havia números negativos.
- A ideia de números reais estava a séculos de distância.

Entretanto, os gregos tiveram a engenhosa ideia de representar uma grandeza qualquer por um segmento de reta.

real $\sqrt{13}$ ao construir um triângulo retângulo cujos catetos medem 2 e 3 unidades:

Representação do Segmento Unitário

O segmento em rosa é a visualização do número real $\sqrt{13}$, pois, pelo Teorema de Pitágoras, a medida da hipotenusa desse triângulo é

$$\sqrt{2^2 + 3^2} = \sqrt{13}.$$

Dessa forma, o calcular de hoje é sinônimo do construir de antigamente.

Figura 1: Construção do segmento de medida $\sqrt{13}$

Definição 1

Os segmentos que podem ser obtidos, a partir de segmentos dados, por meio de construções com régua e compasso, são chamados **segmentos construtíveis**.

Exercício 1

Do que vimos até agora, podemos dizer que o número $\sqrt{13}$ é construtível?

Exercícios

Números Construtíveis

- 1. Construa segmentos com as medidas dadas a seguir:
 - 1.1 $\sqrt{2}$.
 - 1.2 $\sqrt{3}$.
 - 1.3 \sqrt{p} , onde p é primo.

Números Construtíveis

- 2. Construa o segmento $a\sqrt{n}$, onde n é um número natural, sendo dado o segmento a.
- 3. Dado o segmento de medida b, construa o segmento de medida $c = \sqrt{b}$. **Dica:** use a relação métrica no triângulo retângulo nº 2.

A Duplicação do Cubo

Definição 2

Dizemos que um número real x é **algébrico** se ele satisfaz uma equação do tipo

$$a_0 + a_1 x + ... + a_n x^n = 0$$

com $a_0, a_1, ..., a_n$ inteiros. Caso contrário, ele é dito **transcendente**.

Segundo Euler, os números transcendentes têm tal nome por transcenderem o poder das operações algébricas.

- Podemos observar que números racionais são algébricos, pois, tomando um número racional p/q, p, $q \in \mathbb{Z}$, $q \neq 0$, ele satisfaz a equação qx p = 0.
- ▶ Dessa maneira, é fácil concluir que se o número não é algébrico, então com certeza ele é irracional.
- Entretanto, existem irracionais algébricos? Pense num exemplo.
- ► Então, temos uma pergunta importante: existem números não algébricos? Como já sabemos que se o número é não algébrico ele é irracional, podemos perguntar: existem irracionais não algébricos?

Sobre os números transcendentes:

- ► Foi primeiro problematizado em meados do século XVIII, talvez por Leonhard Euler (1707-1783), apontando a existência de números não-algébricos.
- Primeiro exemplo demonstrando a existência de tais números: Joseph Liouville (1809-1882), em 1844 (um século depois!).
- ► Em 1874 Georg Cantor (1845-1918) demonstrou a enumerabilidade do conjunto dos números algébricos, e isto tem como consequência: a não enumerabilidade do conjunto dos números transcendentes.

- Portanto, o conjunto dos números transcendentes tem cardinalidade maior que o conjunto dos números algébricos.
- Mesmo que o conjunto dos números transcendentes seja "tão grande", levou-se muito tempo para se provar a existência desses números, e isso mostra como que, na matemática, perguntas "simples" podem se mostrar extremamente difíceis.
- Exemplos de números transcedentes tradicionais, são e (Charles Hermite, 1873) e π (Ferdinand von Lindemann, quase uma década depois).
- Vale notar que, apesar disso, ainda hoje não sabemos se $\pi + e$ e $e\pi$ são transcendentes, nem que são irracionais.

Números Construtíveis com Régua e Compasso

► Em 1837, Pierre Wantzel demonstrou que um número real é construtível com régua e compasso se, e somente se, ele é um número algébrico, solução de uma equação algébrica com grau na forma 2ⁿ.

Exercício 2

Os números \sqrt{p} , com p primo, e $\sqrt[3]{2}$ são algébricos.

- a) Encontre as equações que demonstram isso.
- b) Quais deles são construtíveis com régua e compasso?

Duplicação de um quadrado: dado um quadrado *ABCD*, encontrar outro quadrado com o dobro da área do quadrado original.

Duplicação de um quadrado: dado um quadrado *ABCD*, encontrar outro quadrado com o dobro da área do quadrado original.

Algebricamente: seja *a* o comprimento do lado do quadrado original. A medida da sua diagonal *d* pode ser calculada pelo Teorema de Pitágoras:

$$d^2 = a^2 + a^2 = 2a^2 \Leftrightarrow d = \sqrt{2}a.$$

- A área do quadrado original: $a * a = a^2$.
- A área do quadrado gerado pela diagonal: $d * d = d^2 = 2a^2$.

Portanto a área do novo quadrado é o dobro da área original.

Assim, para duplicar o quadrado, só precisamos construir a diagonal de comprimento $a\sqrt{2}$, que vimos ser possível.

A Duplicação do Cubo [4]

Duplicação de um cubo: dado um cubo, encontrar outro cubo com o dobro do volume do cubo original.

A Duplicação do Cubo [4]

Duplicação de um cubo: dado um cubo, encontrar outro cubo com o dobro do volume do cubo original.

▶ Lenda (aprox. 400 a.C.): diz que um grupo, preocupado com a peste que se espalhava, procurou o oráculo de Apolo (o deus do sol), na cidade de Delos, para encontrar alguma forma de acabar com a peste. O oráculo informou que para resolver essa questão e acabar com o mal era necessário que alguém conseguisse dobrar o volume do cubo que sustentava a estátua do deus Apolo. Os atenienses resolveram então obedecer e dobraram as dimensões do altar, mas isso não foi o suficiente para acabar com a peste, uma vez que dobrando as dimensões do cubo não se obtem um cubo com o dobro do volume.

A Duplicação do Cubo [4]

Com efeito, ao dobrar o comprimento *l* das arestas do cubo, o volume do novo cubo (de arestas 2*l*) é dado por:

$$V = (2l)^3 = 8l^3 = 8v$$
,

ou seja, o volume é multiplicado por 8 e não por 2.

- Segundo Platão (427 a.C.-347 a.C), a verdadeira intenção do deus Apolo era a de envergonhar os gregos por seu total desprezo com a matemática e com a geometria em particular.
- O problema foi resolvido mais de 2200 anos depois: era impossível fazê-lo utilizando apenas régua e compasso.

A Duplicação do Cubo [3]

Algebricamente: seja V o volume do cubo maior e v o volume do cubo menor. Se o comprimento das arestas do cubo menor é l, seu volume é

$$v=l^3$$
.

Queremos descobrir o comprimento da aresta L do cubo maior, de modo que

$$V = L^3 = 2v = 2l^3$$
.

Ou seja, devemos ter

$$L=\sqrt[3]{2}I$$
.

A Duplicação do Cubo [3]

- ► A duplicação do cubo encontra uma barreira na impossibilidade da construção do número √2 com régua e compasso.
- Mas há outras maneiras de resolver! Além das fontes citadas anteriormente, veja [4] para uma resolução utilizando o origami.

Passo a Passo

Obs: Os passos descritos a seguir foram retirados de [4].

- 1. Partimos de uma folha quadrada de papel, de dimensão arbitrária.
- 2. Dividimos a folha em três partes iguais, com os passos dados a seguir.

(1) Marcar o ponto médio na borda direita.

(2) Dobrar e abrir.

(3) Dobrar e abrir.

(4) Dobrar horizontalmente, de forma que a borda superior toque a intersecção das linhas de dobrado anteriores, e abrir.

(5) Dobrar horizontalmente, de forma que a borda inferior toque a linha de dobrado anterior, e abrir.

(6) As linhas de dobrado horizontais dividem a folha em três partes iguais.

A seguir, estão os passos que determinam $\sqrt[3]{2}$.

(7) Dobrar de forma que o ponto A fique sobre a borda direita, e o ponto B sobre a linha horizontal indicada.

(8) Resultado final.

Demonstração dos passos

Para ter acesso à demonstração dos passos, ver [4]. Isto será discutido em sala de aula.

Referencias I

Eduardo Wagner.

Construções geométricas.

SBM, 2007.

Bruno Cecilio; Gabriel Hadad Lasco; Maria Luiza Rocha Bueno; Matheus Siquelli Nalli. Números algébricos e transcendentes.

https://edisciplinas.usp.br/pluginfile.php/5873847/mod_folder/content/0/Numeros-algebricos-e-transcendentes.pdf?forcedownload=1.

Referencias II

Alex Gomes da Silva.

Construções geométricas com régua e compasso.

https://www.repositorio.ufal.br/bitstream/riufal/2432/1/Constru%C3% A7%C3%B5es%20geom%C3%A9tricas%20com%20r%C3%A9gua%20e%20compasso.pdf.

Harlley Borlin.

Resolução do problema da duplicação do volume do cubo utilizando origami.

https://repositorio.ufsc.br/handle/123456789/96619.