Метод Монте-Карло SSA для одномерных и многомерных временных рядов

Потешкин Егор Павлович, гр.20.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Кафедра статистического моделирования

Научный руководитель — д. ф.-м. н. Н. Э. Голяндина Рецензент — программист А. Ю. Шлемов, Майкрософт

Санкт-Петербург, 2024

Введение и постановка задачи

 $\mathsf{X} = (x_1, \dots, x_N)$ — временной ряд длины N.

Модель: X = T + H + R, где T -тренд, H -периодическая компонента и R -шум, случайная составляющая.

Проблемы:

- Как выделить неслучайные компоненты Т и Н?
- **2** Как проверить наличие сигнала S = T + H?

Методы:

- Singular spectrum analysis (SSA) [Broomhead and King, 1986], [Golyandina, Nekrutkin and Zhigljavsky, 2001].
- Monte Carlo SSA (MC-SSA) [Allen and Smith, 1996].

MSSA и MC-MSSA — обобщение SSA и MC-SSA на многомерный случай.

Задачи:

- Реализовать Toeplitz MSSA и сравнить с обычным MSSA.
- ② Сравнить модификации MC-MSSA.
- Рассмотреть MC-SSA в условиях реальных задач.

Глава 1. Метод MSSA

Метод SSA и его многомерное обобщение

Входные данные: временной ряд $X = (x_1, \dots, x_N)$.

Параметр: длина окна L, 1 < L < N.

 $\sf Pезультат: \ m$ восстановленных составляющих временного ряда.

- $oldsymbol{0}$ Вложение: $\mathbf{X} = \mathfrak{T}(\mathsf{X}) = [X_1:\ldots:X_K]$, где $X_i = (x_1,\ldots,x_{i+L-1})^\mathrm{T}$, K = N-L+1.
- $oldsymbol{2}$ Разложение: $\mathbf{X} = \sum_{i=1}^r \sigma_i P_i Q_i^{\mathrm{T}} = \mathbf{X}_1 + \ldots + \mathbf{X}_r$, rank $\mathbf{X}_i = 1$.
- $oldsymbol{\circ}$ Группировка: $\mathbf{X} = \mathbf{X}_{I_1} + \ldots + \mathbf{X}_{I_m}$, где $\mathbf{X}_{I_k} = \sum_{i \in I_k} \mathbf{X}_i$.
- $oldsymbol{eta}$ Восстановление: $oldsymbol{\mathsf{X}} = \widetilde{oldsymbol{\mathsf{X}}}_{I_1} + \ldots + \widetilde{oldsymbol{\mathsf{X}}}_{I_m}$, где $\widetilde{oldsymbol{\mathsf{X}}}_{I_k} = \mathfrak{T}^{-1} \circ \mathfrak{R}(oldsymbol{\mathsf{X}}_{I_k})$.

 $\mathsf{MSSA} \colon \mathsf{X}^{(1)}, \dots, \mathsf{X}^{(D)}$ — временные ряды.

Составим $X = \{X^{(d)}\}_{d=1}^{D} - D$ -канальный временной ряд.

Тогда на шаге вложения $\mathbf{X} = [\mathbf{X}^{(1)}:\ldots:\mathbf{X}^{(D)}]$, где $\mathbf{X}^{(i)} = \mathfrak{T}(\mathsf{X}^{(i)})$.

Модификации MSSA

Модификации MSSA отличаются только шагом разложения.

Basic MSSA: сингулярное разложение (SVD) \mathbf{X} .

Toeplitz Block MSSA [Plaut and Vautard, 1994]: Q_i — ортонормированные собственные векторы матрицы

$$\mathbf{T}_{\mathsf{Block}} = \begin{pmatrix} \mathbf{T}_{1,1}^{(K)} & \mathbf{T}_{1,2}^{(K)} & \cdots & \mathbf{T}_{1,D}^{(K)} \\ \mathbf{T}_{2,1}^{(K)} & \mathbf{T}_{2,2}^{(K)} & \cdots & \mathbf{T}_{2,D}^{(K)} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{T}_{D,1}^{(K)} & \mathbf{T}_{D,D}^{(K)} & \cdots & \mathbf{T}_{D,D}^{(K)} \end{pmatrix} \in \mathbb{R}^{DK \times DK},$$

где $\mathbf{T}_{l,k}^{(K)}$ — матрица с элементами

$$\left(\mathbf{T}_{l,k}^{(K)}\right)_{ij} = \frac{1}{N - |i - j|} \sum_{n=1}^{N - |i - j|} x_n^{(l)} x_{n+|i - j|}^{(k)}, \ 1 \leqslant i, j \leqslant K.$$

Toeplitz Sum MSSA: P_i — ортонормированные собственные векторы матрицы $\mathbf{T}_{\mathsf{Sum}} = \sum_{i=1}^{D} \mathbf{T}_{i,i}^{(L)} \in \mathbb{R}^{L \times L}$, предлагается в этой работе.

Численное исследование

Дано: $\{\mathsf{F}^{(1)},\mathsf{F}^{(2)}\}=\{\mathsf{S}^{(1)},\mathsf{S}^{(2)}\}+\{\mathsf{R}^{(1)},\mathsf{R}^{(2)}\}$, где R — независимые реализации белого гауссовского шума с $\sigma^2=25,\ N=71.$

Задача: проверить точность базового и модифицированных методов для разных значений параметра L.

Рассмотрим 3 случая:

• Косинусы с одинаковыми частотами:

$$s_n^{(1)} = 30\cos(2\pi n/12), \quad s_n^{(2)} = 20\cos(2\pi n/12), \quad n = 1, \dots, N.$$

2 Косинусы с разными частотами:

$$s_n^{(1)} = 30\cos(2\pi n/12), \quad s_n^{(2)} = 20\cos(2\pi n/8), \quad n = 1, \dots, N.$$

Полиномы первой степени (нестационарные ряды):

$$s_n^{(1)} = 1.2n, \quad s_n^{(2)} = 0.8n, \quad n = 1, \dots, N.$$

Численное исследование. Результаты

Таблица: MSE восстановления сигнала.

	L = 12	L = 24	L = 36	L = 48	L = 60
	DK = 120	DK = 96	DK = 72	DK = 48	DK = 24
Случай $1~(\omega_1=\omega_2)$					
MSSA	3.18	1.83	1.59	1.47	2.00
Toeplitz Sum MSSA	3.17	1.75	1.44	1.32	1.33
Toeplitz Block MSSA	1.39	1.26	1.25	1.33	1.97
Случай 2 $(\omega_1 eq \omega_2)$					
MSSA	6.91	3.77	3.07	2.88	3.84
Toeplitz Sum MSSA	6.88	3.65	2.64	2.37	2.27
Toeplitz Block MSSA	4.47	3.67	3.22	3.23	3.8
Случай 3 (тренд)			<u> </u>		
MSSA	3.42	1.94	1.63	1.57	2.27
Toeplitz Sum MSSA	3.32	2.24	3.04	5.91	11.95
Toeplitz Block MSSA	12.55	6.18	2.97	1.78	1.97

Трудоемкость: нахождение собственных векторов. Toeplitz Block MSSA зависит от DK, а Toeplitz Sum MSSA — от L.

Глава 2. Метод Monte Carlo (M)SSA

Статистический критерий с суррогатными выборками

Если распределение статистики T при верной H_0 неизвестно, оно оценивается с помощью G суррогатных выборок:

- lacktriangled По выборке $X=(X_1,\ldots,X_n)$ строится статистика критерия t=T(X).
- f Q Моделируется G выборок R_1,\ldots,R_G объема n при верной H_0 , и строятся статистики $t_i=T(R_i),\ i=1,\ldots,G.$
- floor Находится оценка t_lpha критического значения \hat{t}_lpha как выборочный (1-lpha)-квантиль (t_1,\ldots,t_G) .
- **3** Если $t > \hat{t}_{\alpha}$, то H_0 отвергается.

Замечание

Оценка критического значения t_{α} по квантилям выборки объема G имеет смысл при $\alpha>1/G$, так как минимальное и максимальное значения выборки соответствуют α - и $(1-\alpha)$ -квантилям при $\alpha=1/G$. Если $\alpha<1/G$, критерий с суррогатными выборками радикальнее исходного критерия.

Поправка неточных критериев

Приведем алгоритм, преобразовывающий неточный критерий (консервативный или радикальный) в асимптотически точный.

Зафиксируем H_0 , уровень значимости α^* , количество выборок M для оценки $\alpha_I(\alpha)$ и их объем N:

- lacktriangle Моделируется M выборок объема N при верной $H_0.$
- **②** По моделированным данным строится зависимость ошибки первого рода от уровня значимости $\alpha_I(\alpha)$.
- $m{\Theta}$ Рассчитывается формальный уровень значимости: $\widetilde{lpha}^* = lpha_I^{-1}(lpha^*).$ Критерий с таким уровнем значимости является асимптотически точным при $M o \infty.$

Замечание

Критерий с суррогатными выборками, к которому применяется поправка, не должен быть слишком радикальным. Для сильно радикальных критерием с очень маленьким $\widetilde{\alpha}^*$ условие $G>1/\widetilde{\alpha}^*$ приводит к очень большим вычислительным затратам и, тем самым, к практической нереализуемости.

Multiple Monte Carlo SSA

Модель: $X = S + \xi$, где S — сигнал (колебания с какой-то частотой), ξ — стационарный процесс с нулевым средним.

Задача: проверить $H_0: \mathsf{S} = 0$ — отсутствие сигнала.

Метод: Multiple Monte Carlo SSA [Golyandina, 2023]:

Входные данные: временной ряд Х.

Параметры: длина окна L, выбор векторов $W_1, \ldots, W_H \in \mathbb{R}^L$, количество суррогатных реализаций G.

- **3** Строятся статистики критерия $\widehat{p}_k = \|\mathbf{X}^{\mathrm{T}} W_k\|, \ k = 1, \dots, H.$
- ullet Оцениваются их распределения на основе G суррогатных реализаций $m{\xi}$.
- **②** Строятся предсказательные интервалы с поправкой на множественные сравнения с уровнем доверия $(1-\alpha)$.

Далее предполагаем, что ξ — красный шум, причем с известными параметрами.

Используемый варинт MC-SSA

Определение

Пусть $\mathbf{X} = \sum_i \sigma_i P_i Q_i^T$ — любое разложение \mathbf{X} в сумму матриц единичного ранга. Будем называть P_i левыми, а Q_i — правыми векторами матрицы \mathbf{X} .

В качестве векторов для проекции будем брать левые векторы матрицы ${\bf X}$. Варианты разложения траекторной матрицы: сингулярное, теплицево.

Плюс: если H_0 отверглась, можно восстановить сигнал с помощью SSA на основе значимых W_i .

Минус: этот вариант дает радикальный критерий, но Toeplitz MC-SSA менее радикален, что дает возможность использовать поправку неточных критериев [Ларин, 2022].

Численное сравнение MC-SSA с другими критериями

Подход: отбелить красный шум, т. е. сделать его белым, и затем применить статистический критерий, проверяющий гипотезу, что ряд является реализацией белого шума.

Для проверки на белый шум возьмем Q-тест Бокса-Пирса и тест с использованием вейвлетов [Nason and Savchev, 2014].

Особенность второго теста: длина ряда должна быть степенью двойки.

Пусть N=128. Сравним такой метод с MC-SSA при разных частотах в альтернативе.

Модель: X = S + ξ , где S = $\{A\cos(2\pi\omega n)\}_{n=1}^N$, ξ — красный шум с параметрами $\varphi=0.7$ и $\delta=1.$

 $H_0: A = 0, H_1: A \neq 0.$

Результат численного сравнения MC-SSA с другими критериями

Таблица: Результаты численного сравнения MC-SSA с другими критериями ($lpha^*=0.1$)

Метод	$\alpha_I(\alpha^*)$	$\beta(\widetilde{\alpha}^*)$ $A = 1.5$	$\beta(\widetilde{\alpha}^*)$ $A = 0.8$	$\beta(\widetilde{\alpha}^*)$ $A = 0.5$
		$\omega = 0.025$	$\omega = 0.125$	$\omega = 0.225$
MC-SSA $(L=10)$	0.101	0.57	0.51	0.465
MC-SSA $(L=32)$	0.163	0.566	0.678	0.668
MC-SSA $(L=64)$	0.25	0.556	0.684	0.665
$MC\text{-SSA}\;(L=96)$	0.593	0.599	0.734	0.709
MC-SSA $(L=115)$	0.668	0.668	0.791	0.753
box	0.103	0.289	0.269	0.064
wavelet	0.091	0.354	0.414	0.57

Вывод: MC-SSA намного мощнее box и wavelet, особенно при малых частотах сигнала.

MC-SSA: обобщение на многомерный случай

MC-MSSA: SSA заменяется на MSSA и красный шум генерируется с тем же количеством каналов, что и у исходного временного ряда.

Замечание

В одномерном случае левые векторы матрицы ${f X}$ становятся правыми заменой $L\mapsto N-L+1$, поэтому по-отдельности рассматривать в качестве векторов для проекции правые векторы не нужно. В многомерном случае левые и правые векторы дают **разные** критерии.

Замечание

Для рассмотрения правых векторов матрицы \mathbf{X} в качестве W_k требуется заменить в алгоритме MC-SSA \mathbf{X} на \mathbf{X}^{T} и $\mathbf{\Xi}$ на $\mathbf{\Xi}^{\mathrm{T}}$.

Численное сравнение модификаций MC-MSSA

Модель: X = S + $\pmb{\xi}$, где $\pmb{\xi}$ — красный шум с параметрами φ и $\delta=1$, а S — сигнал с

$$s_n^{(1)} = s_n^{(2)} = A\cos(2\pi n\omega), \quad n = 1, \dots, N, \quad N = 100.$$

$$H_0$$
: $A = 0$, H_1 : $A \neq 0$.

Задача: сравнить критерии Basic MC-MSSA и Toeplitz MC-MSSA в двух вариациях.

Рассмотрим следующие примеры:

- $\Phi = 0.7, \ \omega = 0.075;$
- $\varphi = 0.3, \ \omega = 0.075;$
- $\varphi = 0.7, \ \omega = 0.225.$

Результат численного сравнения модификаций MC-MSSA

Таблица: Мощность методов для оптимальных L при $lpha^*=0.1$

Метод	левые/правые	$\beta(\widetilde{\alpha}^*)$	$\beta(\widetilde{\alpha}^*)$	$\beta(\widetilde{\alpha}^*)$
Метод	векторы	(пример 1)	(пример 2)	(пример 3)
SVD	левые	0.754	0.399	0.573
SVD	правые	0.754	0.382	0.442
Block	левые	0.796	0.398	0.597
Block	правые	0.717	0.389	0.473
Sum	левые	0.806	0.421	0.625
Sum	правые	0.748	0.412	0.613

Таблица: Размеры матриц методов

Метод	левые/правые векторы	Размер матрицы (пример 1)	Размер матрицы (пример 2)	Размер матрицы (пример 3)
SVD	левые	50	10	20
SVD	правые	80	80	80
Block	левые	102	162	162
Block	правые	42	22	42
Sum	левые	80	20	80
Sum	правые	80	80	80

Глава 3. Применение метода Monte Carlo SSA на практике

Зависимость радикальности и мощности MC-SSA от параметра ${\cal L}$

Было произведено исследование зависимости мощности MC-SSA от длины окна ${\cal L}.$

Численные эксперименты показали, что длина окна L, дающая наибольшую мощность, зависит от параметров шума ξ , длины ряда N и **частоты сигнала** ω в H_1 . Также с ростом N радикальность критерия при фиксированном L едва заметно уменьшается.

На их основе были выработаны следующие рекомендации:

- Без поправки использовать MC-SSA можно только с L=10.
- Можно построить зависимость оптимальной длины окна от параметров ряда с помощью численного моделирования. Но это возможно, если есть дополнительная информация о диапазоне возможных частот в ряде.

MC-SSA с мешающим сигналом

Мешающий сигнал — это сигнал, который не нужно обнаруживать при проверки гипотезы о наличии сигнала (например, тренд, сезонность).

Подход: устранить влияние мешающего сигнала на векторы, на которые делается проекция.

Модель: $X = F + S + \xi$, где F — мешающий сигнал, S — неизвестный сигнал и ξ — красный шум.

Тогда
$$H_0: S = 0$$
 и $H_1: S \neq 0$.

Параметр: способ нахождения \hat{F} .

В данной работе рассмотрены два примера мешающего сигнала:

- Периодическая компонента.
- Экспоненциальный ряд (тренд).

MC-SSA с мешающим сигналом. Результаты

- Было реализовано два варианта MC-SSA с мешающим сигналом: один подходит для любого мешающего сигнала, другой только для периодического.
- Для каждого примера были рассмотрены три случая: когда мешающий сигнал и параметры красного шума известны точно, когда параметры шума оцениваются, и когда вместе с параметрами оценивается мешающий сигнал.
- ullet Во втором и третьем случаях мощность критерия понижается, но больше от оценки параметров шума, чем от мешающего сигнала, причем чем меньше параметр arphi, тем больше потеря в мощности.
- Если частоты мешающего и неизвестного сигнала близки, то критерий показывает очень маленькую мощность в обоих вариантах.

Анализ реального примера

Анализ реального примера

Рис.: Результат работы MC-SSA ($\alpha=0.1$)

Значимыми являются четыре компоненты, две компоненты, имеющие **период** приблизительно 6, легко интерпретируются — это замеченная **полугодовая периодичность**.

Заключение

Мои результаты:

- Был реализован метод Toeplitz MSSA в вариантах Block и Sum (на языке R) и на основе численных исследований рекомендуется использовать вариант Sum в виду численной эффективности и реализации, подходящей под пакет Rssa.
- Был выработан подход к сравнению критериев, построенных на основе радикальных, которые используют суррогатные выборки: выбирать наиболее мощный критерий среди не слишком радикальных.
- Ha основе этого подхода рекомендуется использовать модификацию Toeplitz Sum MC-MSSA.
- Проведены численные исследования по выбору оптимальной длины окна, степени искажения критерия при оценке параметров красного шума, а также случая мешающего сигнала. Однако эти проблемы оказались непростыми, поэтому требуется их дальнейшее исследование.
- Метод MC-SSA намного мощнее двух рассмотренных критериев в задаче обнаружения сигнала в красном шуме, особенно при малых частотах сигнала в альтернативе.