Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subiectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție LISP

(DEFUN F(L)

(COND

((NULL L) NIL)

(> (F (CAR L)) 0) (CONS (F (CAR L)) (F (CDR L)))))

(T (F (CAR L)))

)
```

Rescrieți această definiție pentru a evita apelul recursiv repetat (**F (CAR L))**. Nu redefiniți funcția. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

В.	Dându-se o listă liniară formată din numere, se cere un program SWI-PROLOG care să furnizeze lista în care fiecare număr care este mai mic decât succesorul său din listă este înmulțit cu 2. Repetați această operație până când nu mai sunt posibile modificări în listă. De exemplu , pentru lista [1, 2, 3] rezultatul va fi [8, 16, 3].

C. Să se scrie un program PROLOG care generează lista aranjamentelor de **k** elemente dintr-o listă de numere întregi, având o sumă **S** dată. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista [6, 5, 3, 4], $k=2 \text{ şi } S=9 \Rightarrow [[6,3],[3,6],[5,4],[4,5]]$ (nu neapărat în această ordine)

D. Se dă o listă neliniară și se cere înlocuirea valorilor numerice impare situate pe un nivel par, cu numărul natural succesor. Nivelul superficial se consideră 1. **Se va folosi o funcție MAP.**

Exemplu pentru lista (1 s 4 (3 f (7))) va rezulta (1 s 4 (4 f (7))).