MA 562 - Introduction to Differential Geometry and Topology Introduction to Smooth Manifolds by John M. Lee

Student: Ralph Razzouk

Homework 8

Problem 9-1

Suppose M is a smooth manifold, $X \in \mathfrak{X}(M)$, and γ is a maximal integral curve of X.

- (a) We say γ is periodic if there is a number T > 0 such that $\gamma(t+T) = \gamma(t)$ for all $t \in \mathbb{R}$. Show that exactly one of the following holds:
 - γ is constant.
 - γ is injective.
 - γ is periodic and non-constant.
- (b) Show that if γ is periodic and non-constant, then there exists a unique positive number T (called the period of γ) such that $\gamma(t) = \gamma(t')$ if and only if t t' = kT for some $k \in \mathbb{Z}$.
- (c) Show that the image of γ is an immersed submanifold of M, diffeomorphic to \mathbb{R}, \mathbb{S}^1 , or \mathbb{R}^0 .

Solution. (a) We will solve this by exhaustion.

- If the vector field X is zero everywhere, then, considering a specific point $p, X_p = 0 \implies \gamma'(t) = 0$. Thus, γ is constant.
- If the vector field X is non-zero, then γ is non-constant. We now have two cases:
 - If γ is injective, this is the second bullet point.
 - If γ is not injective, then at some time $t_1 > t_0$, we will have that $\gamma(t_1) = \gamma(t_0)$. Since a vector field is non-invariant with respect to its own flow, then γ is periodic.
- (b) Let $\gamma : \mathbb{R} \to \mathbb{R}$ be periodic and non-constant. Since γ is periodic, there exists a unique positive number T > 0 such that $\gamma(t+T) = \gamma(t)$. Since γ is non-constant, then $\frac{d\gamma(t)}{dt} \neq 0$, $\forall t \in \mathbb{R}$.

Let us consider all the periods T for which we will have $\gamma(t) = \gamma(t')$, from which we can form a set, say \mathcal{T} . This set is discrete since γ is non-constant. Additionally, this set is bounded from below since γ is periodic, otherwise, if a smallest positive number T does not exist, then there exists some infimum \tilde{T} of those periods and hence a Cauchy sequence that converges to it. If T_1 and T_2 are in the set, then so is their absolute difference, and since the sequence is Cauchy, the infimum \tilde{T} must be zero. Fix some time t_0 and choose a small enough period $\epsilon > 0$, then $\gamma(t_0)$ is in every neighborhood of $\gamma(t)$, $\forall t$. Pick a neighborhood of $\gamma(t)$ in M, then we can find a period p small enough such that $t_0 + kp$, for some $k \in \mathbb{Z}$ lies in $(t - \epsilon, t + \epsilon)$. This contradicts the Hausdorff property of the manifold M. Thus, there must exists a smallest positive period T.

All the other periods will be multiples of T, otherwise we can subtract T enough times to find a yet another smaller period, which is not possible since T is the smallest. We know that $\gamma(t) = \gamma(t')$ if and only if $t - t' = kT \in \mathcal{T}$. To show uniqueness, consider another period that is an integer multiple of T, then it would not divide (t + T) - t, even though $\gamma(t) = \gamma(t + T)$.

- (c) If γ is constant, then the image of γ is an immersed submanifold M diffeomorphic to \mathbb{R}^0 .
 - If γ is non-constant and injective, then the vector field is non-zero, which means that $\gamma'(t) \neq 0$. From that, we see that γ has full rank, which is one, the dimension of the domain. Thus, γ is a smooth immersion of the open interval J into M. Thus, the image γ is an immersed submanifold M diffeomorphic to \mathbb{R} due to injectivity.

• If γ is non-constant and periodic, we can image t smoothly looping on a circle with period T. To make this rigorous, we consider the smooth covering map

$$\pi: \mathbb{R} \to \mathbb{S}^1,$$
$$t \mapsto e^{2\pi i \frac{t}{T}}.$$

Since γ is constant on the fibers of π , then there must be a map $\tilde{\gamma}: \mathbb{S}^1 \to M$ such that $\tilde{\gamma} \circ \pi = \gamma$. From part (b), $\gamma(t) = \gamma(t')$ if and only if t - t' = kT, which means that $\tilde{\gamma}$ is injective. Since π is a local diffeomorphism, then $\tilde{\gamma}$ is a smooth immersion. Thus, the image of γ is an immersed submanifold of M diffeomorphic to \mathbb{S}^1 .

Problem 9-7

Let M be a connected smooth manifold. Show that the group of diffeomorphisms of M acts transitively on M: that is, for any $p, q \in M$, there is a diffeomorphism $F : M \to M$ such that F(p) = q. [Hint: first prove that if $p, q \in \mathbb{B}^n$ (the open unit ball in \mathbb{R}^n), there is a compactly supported smooth vector field on \mathbb{B}^n whose flow θ satisfies $\theta_1(p) = q$.]

Solution. We start by proving the hint. Let \mathbb{B}^n be the unit ball in \mathbb{R}^n and let $p,q\in\mathbb{B}$. Define

$$L = \{ p + t(q - p) \mid 0 \le t \le 1 \}$$

to be the line connecting p and q. Since \mathbb{B}^n is convex, then $L \subset \mathbb{B}^n$. We now define a constant vector field X on the convex set L by $X_\ell = q - p$. It is clear that X is smooth. From that, there is a smooth vector field \tilde{X} on \mathbb{B}^n such that $\tilde{X}|_L = X$ and $\operatorname{supp}(\tilde{X}) \subset \mathbb{B}^n$. Thus, \tilde{X} is a compactly supported smooth vector field on \mathbb{B}^n . We can define γ as

$$\gamma(t) = p + t(q - p)$$

to be the integral curve of \tilde{X} since $\gamma'(t) = q - p = \tilde{X}_{\gamma(t_0)}, \forall t_0 \in [0, 1]$. Therefore, if θ is the flow of \tilde{X} , then the flow satisfies $\theta_1(p) = \gamma(1) = q$.

Now, let M be a connected smooth manifold and, for a fixed $p \in M$, define U_p to be the orbit of p under the action given, giving us

$$U_p = \{ q \in M \mid \exists \text{ diffeomorphism } F : M \to M \text{ such that } F(p) = q \}.$$

- Non-empty: The identity on M is a diffeomorphism, so $p \in U_p$. Thus, U_p is non-empty.
- Open: Let $q \in U_p$. We need to show that there is a neighborhood of q contained in U_p . Since $q \in U_p$, there exists a diffeomorphism F such that F(p) = q. Since M is a smooth manifold, there exists a coordinate chart (V, φ) around q where V is open and $\varphi : V \to \mathbb{B}^n$ is a diffeomorphism onto its image. By the hint, we proved, for any point $r \in V$, there exists a compactly supported smooth vector field X on \mathbb{B}^n whose flow θ_t takes $\varphi(q)$ to $\varphi(r)$ at time 1. Pull this vector field back to V via φ to get a compactly supported vector field $Y = (\varphi^{-1})^*X$ on V. The flow ψt of Y then takes q to r at time 1. The composition $\psi_1 \circ F$ is a diffeomorphism taking p to r. Then, $V \subseteq U_p$. Thus, U_p is open.
- Closed: Let q be a limit point of U_p . We need to show $q \in U_p$. Take a coordinate chart (V, φ) around q as before. Since q is a limit point, there exists some $r \in U_p \cap V$. By using the hint, we can construct a diffeomorphism taking r to q. If G is the diffeomorphism taking p to r, then composing these diffeomorphisms gives us one taking p to q. Then, $q \in U_p$. Thus, U_p is closed.

Thus, U_p is non-empty, open, and closed. Since M is connected, then $U_p = M$, and hence, this is only one orbit. Therefore, the action is transitive.