Ejercicio 1-29. Cálculo de las frecuencias de vibración para una barra de acero y sección cuadrada.

Francisco Javier Fernández Caro

12 de febrero de 2024

1. Introducción

En este ejercicio nos disponemos a calcular las 3 primeras frecuencias de vibración de los modos de flexión de una barra de longitud L con sus extremos libres. Para ello utilizaremos la expresión teórica de Euler-Bernoulli:

$$f_n^{flexi\acute{o}n} = \frac{\mu_n^2 \pi \kappa c_s}{8L^2}$$

donde c_s es la velocidad del sonido en el material con que está fabricada la barra y

$$\kappa = \sqrt{\frac{1}{A} \int r^2 \, dA}$$

es el radio de giro correspondiente a la sección transversal A de la barra. Para una barra de sección cuadrada, de lado D, sabemos que $\kappa=\frac{D}{\sqrt{12}}$

Los valores de μ_n son las soluciones de la ecuación:

$$\cosh\left(\frac{\mu_n \pi}{2}\right) \cos\left(\frac{\mu_n \pi}{2}\right) = 1$$

Las características de la barra son las siguientes: L = 1 m, D = 1 cm y c_s = 5130 m/s.

2. Planteamiento del problema

Vamos a expresar la ecuación $\cosh\left(\frac{\mu_n\pi}{2}\right)\cos\left(\frac{\mu_n\pi}{2}\right)=1$ de forma que nos sea más sencillo identificar los ceros de la función. Para ello vamos a pasar el $\cosh\left(\frac{\mu_n\pi}{2}\right)$ dividiendo, teniendo la siguiente igualdad:

$$\cos\left(\frac{\mu_n\pi}{2}\right) = \frac{1}{\cosh\left(\frac{\mu_n\pi}{2}\right)}$$

A continuación, para tener una primera aproximación a simple vista de dónde se encuentran los ceros, nos disponemos a graficar éstas dos funciones y veremos dónde se cruzan.

Figura 1: Representación de las funciones coseno e inversa de coseno hiperbólico.

La Figura 1 muestra mejor los ceros que queremos hallar de nuestra función original, al ver la intersección de ambas funciones.

Podemos ver que, obviando el 0 trivial, nuestro primer cero está alrededor de x=3, nuestro segundo cero está al rededor de x=5 y nuestro 3er cero está alrededor de x=7. Estamos obviando las raíces con x negativas, ya que al ser una función par, encontramos las raíces negativas de manera automática al encontrar las raíces positivas.

Ésta primera aproximación nos va a ayudar a elegir mejor nuestras condiciones iniciales para que nuestro programa encuentre más fácilmente los ceros de nuestra función.

3. Método de resolución

Una vez hecha la aproximación de nuestros ceros viendo con gnuplot las gráficas, vamos a utilizar el método de la bisección para resolverlo computacionalmente. Así pues, haremos un bucle para buscar los 3 ceros de una sola vez. Para ello doy la cota izquierda de cada cero, que sirve de cota derecha del cero precedente xleft(i+1)=xright(i) así, con 4 valores de xleft(i) podemos obtener los 3 ceros. Para mi programa he utilizado los valores:

xleft(1)=2.0 xleft(2)=4.0 xleft(3)=6.0xleft(4)=8.0

De ésta manera encerramos el primer cero entre xleft(1) y xleft(2)=xright(1), el segundo cero entre xleft(2) y xleft(3)=xright(2) y por último el tercer cero, que está entre xleft(3) y xleft(4)=xright(3) encontrando los (i-1) ceros de nuestra función (ya que podríamos buscar más de 3).

Para éste método he utilizado la subrutina ofrecida por el profesor "bisecc-r8-rgm.f" la cual permite trabajar en doble precisión para buscar ceros con el método de la bisección.

Definimos nuestra función en nuestro programa como:

$$f(x) = \cosh\left(\frac{\mu_n \pi}{2}\right) \cos\left(\frac{\mu_n \pi}{2}\right) - 1$$

Una vez definidos los parámetros necesarios, llamamos a la subrutina y nos devuelve los ceros de nuestra función.

4. Resultados

Como habíamos predicho, los ceros están tan próximos a los resultados aproximados como la tolerancia lo permite. Siendo $\mu_1=3{,}009$, $\mu_2=4{,}996$ y $\mu_3=7{,}003$

Una vez obtenidos éstos resultados, sólo nos queda sustituir en la fórmula teórica:

$$f_n^{flexi\acute{o}n} = \frac{\mu_n^2 \pi \kappa c_s}{8L^2}$$

Obteniendo los siguientes resultados:

$$f_1^{flexi\acute{o}n} = 52,680Hz$$

$$f_2^{flexi\'on}=145{,}160Hz$$

$$f_3^{\mathit{flexi\'on}} = 285,\!277 Hz$$