Cointegration and Common Trends

Module 9.3: Time Series Analysis Fall Term 2022

Week 7:

Cointegration

Outline in Weeks

- Introduction; Descriptive Modelling
- Returns; Autocorrelation; Stationarity
- ARMA Models
- Unit Roots; Regressions between Time Series
- Volatility Modelling
- Value at Risk
- Cointegration

Outline

- Cointegration and Common Trends
- 2 Error Correction Models and the Engle-Granger Procedure
- Johansen's Procedure
- 4 Epilogue

Cointegration and Common Trends

Cointegration and Common Trends

Suppose we have two time series Y_t and X_t , which are both I(1), and we analyze a regression model of the form

$$Y_t = \beta_1 + \beta_2 X_t + U_t.$$

Here U_t has mean zero but may display autocorrelation. Two cases:

- $U_t \sim I(1)$: if U_t displays no mean-reversion, then Y_t does not revert to the explained part $\beta_1 + \beta_2 X_t$. Even if $\beta_2 = 0$, its t-statistic and R^2 will often seem significant (*spurious regressions*). To avoid this, one should estimate a model in differences, i.e., $\Delta Y_t = a_1 + a_2 \Delta X_t + \Delta U_t$.
- $U_t \sim I(0)$: now Y_t and X_t have a *common* stochastic trend, such that the linear combination $Y_t \beta_2 X_t$ does not have a trend. This is called *cointegration*.

Example

Cointegration and Common Trends

Consider the model

$$Y_t = \beta_1 + \beta_2 X_t + U_{1,t}$$

 $X_t = X_{t-1} + U_{2,t}$

where $\beta_2 \neq 0$, $U_{1,t}$, $U_{2,t} \stackrel{\text{iid}}{\sim} (0, \sigma^2)$ independently of each other.

• X_t is a random walk and thus nonstationary. Y_t contains X_t and is thus also nonstationary. But

$$Y_t - \beta_2 X_t = \beta_1 + U_{1,t}$$

is stationary: the RHS is white noise plus a constant.

• $(1, -\beta_2)$ is called the *cointegrating vector*.

Cointegration and Common Trends, contd.

• The concept is easily extended to more than two series: if X_{2t}, \ldots, X_{kt} are all I(1) variables, and

$$Y_t = \beta_1 + \beta_2 X_{2t} + \ldots + \beta_k X_{kt} + U_t,$$

then this is a spurious regression if $U_t \sim I(1)$ (and $\beta_i = 0$), and a cointegrating relation if U_t is stationary.

- In other words, cointegration between k integrated series means that there exists a linear combination¹ of them which is stationary.
- Examples of possibly cointegrated time series:
 - exchange rates and relative prices (purchasing power parity);
 - spot and futures prices of assets or exchange rates;
 - short- and long-term interest rates (term structure models);
 - stock prices and dividends (present value relations).

Cointegration and Common Trends

¹i.e., a weighted sum

Outline

- Cointegration and Common Trends
- Error Correction Models and the Engle-Granger Procedure
- Johansen's Procedure
- 4 Epilogue

Testing for Cointegration

- For cointegrated series, one should exploit the long-run equilibrium relationship between variables for estimation rather than differencing. Differencing would *remove* that structure.
- Engle and Granger proposed the following procedure:
 - Conduct individual unit root tests to ensure all series are *I*(1).
 - Estimate the regression model

$$Y_t = \beta_1 + \beta_2 X_{2t} + \ldots + \beta_k X_{kt} + U_t$$

by ordinary least-squares. Estimates are (super)consistent, but standard errors are wrong because series are *I*(1).

- Apply an ADF unit root test (with constant) to the residuals \hat{u}_t from this regression. This yields a test for $H_0: U_t \sim I(1)$ (spurious regression) against $H_1: U_t \sim I(0)$ (cointegration). The critical values depend on k. E.g., for k=2 (X_{2t} and an intercept), the 5% c.v. is -3.41.
- If H_0 is rejected, estimate an *error correction model*.

Engle-Granger critical values

Cointegration and Common Trends

Number of series (w/o constant) Critical value -3.41 -3.80 -4.16 -4.49 -4.74

Error Correction Models

- Cointegration between Y_t and X_t implies that deviations $(Y_{t-1} \beta_1 \beta_2 X_{t-1})$ from the equilibrium level should be (partially) corrected in the next period, by Y_t , X_t , or both.
- This leads to a vector error correction model (VECM), which in the simplest form is

$$\Delta Y_t = c_1 + \alpha_1 (Y_{t-1} - \beta_1 - \beta_2 X_{t-1}) + e_{1t},$$

$$\Delta X_t = c_2 + \alpha_2 (Y_{t-1} - \beta_1 - \beta_2 X_{t-1}) + e_{2t},$$

where e_{1t} and e_{2t} are two white noise errors (possibly correlated), and where we expect $\alpha_1 < 0$ and/or $\alpha_2 \beta_2 > 0$.

- We might need to add lags of ΔY_t and/or ΔX_t on RHS to combat autocorrelation.
- The Granger representation theorem states that cointegration implies an error correction model (possibly with more lags), and vice versa; see exercises.

Engle-Granger Procedure

The VFCM

Cointegration and Common Trends

$$\Delta Y_t = c_1 + \alpha_1 (Y_{t-1} - \beta_1 - \beta_2 X_{t-1}) + e_{1t},$$

$$\Delta X_t = c_2 + \alpha_2 (Y_{t-1} - \beta_1 - \beta_2 X_{t-1}) + e_{2t}.$$

is estimated by replacing $Y_{t-1} - \beta_1 - \beta_2 X_{t-1}$ by OLS residual $\hat{u}_{t-1} = Y_{t-1} - \hat{\beta}_1 - \hat{\beta}_2 X_{t-1}$, and estimating α_1 and α_2 by OLS.

- Note that \hat{u} is stationary, so this is a valid regression!
- If $\alpha_2 = 0$, then all correction is done by Y_t , and not by X_t . In that case it makes sense to treat X_t as exogenous and Y_t as endogenous, and consider the "single-equation" error correction model

$$\Delta Y_t = c + \alpha_1 (Y_{t-1} - \beta_1 - \beta_2 X_{t-1}) + e_t.$$

• In general, both Y_t and X_t are endogenous.

Outline

- Cointegration and Common Trends
- 2 Error Correction Models and the Engle-Granger Procedure
- Johansen's Procedure
- 4 Epilogue

Example

- Until 1971, as part of the Bretton-Woods system of fixed exchange rates, the US dollar
 was convertible to gold, i.e., it was possible for foreign central banks to redeem US
 dollars for gold at a fixed rate of 35\$ per troy ounce, so that the price of gold was fixed.
- In 1971, US president Nixon unilaterally cancelled the direct convertibility, ultimately ending the Bretton-Woods agreement.
- Gold became a floating asset, and its price increased sharply; in other words, the US\$
 was massively devalued.

- We want to analyze the hypothesis that the increasing price (in US\$) of oil is not a
 consequence of an increased demand for (or a reduced supply of) oil, but rather of a
 continued devaluation of the US\$.
- We have at our disposal monthly data from April 1968 to January 2017 (586 observations) on the following variables:
 - gold_t, the spot price of one troy ounce of gold in US\$;
 - oil_t, the spot price of one barrel of WTI crude oil in US\$.
- Idea: if the relative price of oil expressed in units of $\operatorname{gold}_t/\operatorname{gold}_t$ is stationary, then this implies that $\operatorname{log}(\operatorname{oil}_t) \operatorname{log}(\operatorname{gold}_t)$ is stationary, so that $\operatorname{log}(\operatorname{oil}_t)$ and $\operatorname{log}(\operatorname{gold}_t)$ must be cointegrated if the individual series are integrated.

Cointegration and Common Trends

Step 0 Take logs: genr lgold = log(gold), genr loil = log(oil).

Step 1 Test that the variables are integrated (ADF test with constant and trend)

Null Hypothesis: LOIL has a unit root Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=18)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	-2.552422	0.3027
Test critical values:	1% level	-3.973847	
	5% level	-3.417533	
	10% level	-3.131184	

^{*}MacKinnon (1996) one-sided p-values.

Null Hypothesis: LGOLD has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=18)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-1.820648	0.6937
Test critical values:	1% level	-3.973820	
	5% level	-3.417519	
	10% level	-3.131176	

^{*}MacKinnon (1996) one-sided p-values.

Neither test rejects, so the series are I(1).

Cointegration and Common Trends

Step 2 Estimate long-run relationship

$$loil_t = \beta_1 + \beta_2 lgold_t + U_t$$

and save the residuals (Proc→Make Residual Series→Ordinary) as u.

Dependent Variable: LOIL Method: Least Squares Date: 11/30/20 Time: 16:50 Sample: 1968M04 2017M01 Included observations: 586

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-2.258963	0.086329	-26.16698	0.0000
LGOLD	0.926232	0.014618	63.36354	0.0000
R-squared	0.873014	Mean depend	dent var	3.141848
Adjusted R-squared	0.872797	S.D. depende	ent var	0.929639
S.E. of regression	0.331561	Akaike info cr	iterion	0.633398
Sum squared resid	64.20072	Schwarz crite	rion	0.648324
Log likelihood	-183.5855	Hannan-Quir	ın criter.	0.639214
F-statistic	4014.938	Durbin-Watso	on stat	0.074317
Prob(F-statistic)	0.000000			

The cointegrating vector is $(1, -\beta_2) = (1, -0.926)$ (if the Engle-Granger test rejects). Careful: standard errors are wrong, because variables are I(1).

Residuals (=equilibrium error) \hat{u}_t U 1.00 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 -1.00

Step 3 Apply ADF test (with intercept) to ${\tt u.}$

Null Hypothesis: U has a unit root Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=18)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ller test statistic	-3.724771	0.0040
Test critical values:	1% level	-3.441318	
	5% level	-2.866270	
	10% level	-2.569348	

^{*}MacKinnon (1996) one-sided p-values.

Careful: we need to use Engle-Granger 5% critical value of -3.41, not the ones given by EViews. Conclusion: test rejects the null of "no cointegration".

Step 4 Estimate VECM. Note: I threw in a lag of the dependent variable in the equation for d(loil), as there was autocorrelation without it (cf. selected lag length in ADF test).

Dependent Variable: D(LOIL) Method: Least Squares Date: 11/30/20 Time: 17:09 Sample (adjusted): 1968M06 2017M01 Included observations: 584 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.003641	0.003278	1.110606	0.2672
U(-1)	-0.034971	0.009942	-3.517509	0.0005
D(LOIL(-1))	0.256547	0.040092	6.399038	0.0000
R-squared	0.077666	Mean depend	lent var	0.004862
Adjusted R-squared	0.074491	S.D. depende	nt var	0.082210
S.E. of regression	0.079089	Akaike info cr	iterion	-2.231362
Sum squared resid	3.634195	Schwarz crite	rion	-2.208914
Log likelihood	654.5578	Hannan-Quin	in criter.	-2.222613
F-statistic	24.46179	Durbin-Watso	on stat	2.006622
Prob(F-statistic)	0.000000			

Dependent Variable: D(LGOLD)
Method: Least Squares
Date: 11/30/20 Time: 17:17
Sample (adjusted): 1968M05 2017M01
Included observations: 585 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.005866	0.002342	2.504458	0.0125
U(-1)	0.008997	0.007077	1.271298	0.2041
R-squared	0.002765	Mean depend	ent var	0.005871
Adjusted R-squared	0.001054	S.D. depende	nt var	0.056676
S.E. of regression	0.056646	Akaike info cri	terion	-2.900562
Sum squared resid	1.870743	Schwarz criter	rion	-2.885616
Log likelihood	850.4143	Hannan-Quin	n criter.	-2.894737
F-statistic	1.616198	Durbin-Watso	ın stat	1.932704
Prob(F-statistic)	0.204130			

The adjustment coefficient α_2 in the equation for d(lgold) is insignificant. So all the adjustment is done by loil \rightarrow single-equation ECM.

Cointegration and Common Trends

The final model is the single-equation ECM

$$\Delta loil_t = 0.0036 - 0.035(loil_{t-1} - 0.926lgold_{t-1} + 2.26) + 0.25\Delta loil_{t-1} + e_{1t}$$

In our earlier notation.

$$\Delta Y_t = c + \alpha_1 (Y_{t-1} - \beta_1 - \beta_2 X_{t-1}) + \gamma \Delta Y_{t-1} + e_{1t},$$

with c = 0.0036, $\alpha_1 = -0.035 < 0$ as desired, $\beta_1 = -2.26$, $\beta_2 = 0.926$, and $\gamma = 0.25$.

 Interpretation: there is an equilibrium relationship between loil and Igold. In case of a disequilibrium. loil adjusts towards the equilibrium. The adjustment amounts to 3.5% per period.

Outline

- Cointegration and Common Trends
- 2 Error Correction Models and the Engle-Granger Procedure
- Johansen's Procedure
- 4 Epilogue

Limitations of Engle-Granger Procedure:

- Choice of the dependent variable Y_t in Engle-Granger test is arbitrary. Selecting another X_{it} as dependent variable should not matter asymptotically (as number of observations $T \to \infty$), but will make a difference in practice.
- Method can only be used if there is only a single unique cointegrating relation, which involves Y_t . So (X_{2t}, \ldots, X_{kt}) are not allowed to be cointegrated without Y_t .
- Although the OLS estimators $\hat{\beta}_i$ are consistent under cointegration, they do not have an asymptotic normal distribution, so standard inference (*t*-tests) fails.

Johansen Procedure

- An alternative is to use Johansen's procedure.
- Johansen has derived the MLE of the general VECM with normally distributed errors \mathbf{u}_t and k variables.
- This facilitates likelihood ratio tests for H_{0r} : "r or fewer cointegrating relationships" against the alternative "more than r"
- The test is known as the *Johansen trace test*. The test statistics $\lambda_{trace}(r)$ can be expressed in terms of particular eigenvalues $\hat{\lambda}_i$. Their asymptotic distribution under the null is a multivariate version of the Dickey-Fuller distribution.
- We reject for large positive values of the test statistic; critical values and p-values are built into EViews and similar programs.

Johansen's cointegration test

These tests may be used to estimate the cointegrating rank r in the following way:

- Start with r = 0;
- **2** Test H_{0r} with $\lambda_{trace}(r)$;
- If H_{0r} is not rejected, then $\hat{r} = r$; if it is rejected, replace r by r + 1 and go back to step 2;
- If H_{0r} is rejected for all r = 0, 1, ..., k 1, then conclude $\hat{r} = k$ (this corresponds to a stationary system).

Treatment of constant and linear trend

Just like with the Dickey-Fuller test, we have to allow for a constant and possibly a linear trend in the VECM. Eviews distinguishes five cases:

- 1 No constant, no trend. This implies that the variables have mean zero. Rarely applicable.
- 2 Constant in the cointegrating relations, no trend. Applicable when the data have no trend (interest rates, inflation, real exchange rates).
- 3 Constant in the VECM equation. This leads to a drift, so applicable for trending series (real gdp, stock prices). This is the default, for good reasons.
- 4 Constant in VECM, trend in cointegration relations. Similar to 3, but hard to interpret.
- 5 Trend in the VECM equation. Leads to a quadratic trend. Rarely applicable.

Outline

- Cointegration and Common Trends
- Error Correction Models and the Engle-Granger Procedure
- Johansen's Procedure
- 4 Epilogue

Step 1 Apply Johansen integration test.

Choose Option 3 (unrestricted constant) and one lagged Δ on RHS (lag specification 1 1), because that's what we found in the Engle-Granger approach.

 H_{00} : "No Cointegration" is rejected. H_{01} : "One cointegrating relationship" is not. Conclusion: there is one cointegrating (=equilibrium) relationship.

Step 2 Estimate VECM. Choose "1 cointegrating relationship", and lag specification $1\ 1$.

Vector Error Correction Estimates
Date: 11/30/20 Time: 17:32
Sample (adjusted): 1968M06 2017M01
Included observations: 584 after adjustments
Standard errors in () & t-statistics in []

andard errors in () & t-statistics in []			
Cointegrating Eq:	CointEq1		
LOIL(-1)	1.000000		
LGOLD(-1)	-0.914126		
	(0.09263)		
	[-9.86821]		
С	2.187722		
Error Correction:	D(LOIL)	D(LGOLD)	
CointEq1	-0.034498	0.007463	
	(0.00997)	(0.00713)	
	[-3.46000]	[1.04641]	
D(LOIL(-1))	0.250758	0.048515	
	(0.04063)	(0.02906)	
	[6.17135]	[1.66924]	
D(LGOLD(-1))	0.050704	0.019596	
	(0.05870)	(0.04199)	
	[0.86374]	[0.46668]	
С	0.003354	0.005412	
	(0.00329)	(0.00236)	
	[1.01839]	[2.29777]	

Final model is

$$\Delta \text{loil}_t = 0.0034 - 0.034 (\text{loil}_{t-1} - 0.914 \text{lgold}_{t-1} + 2.19) + 0.25\Delta \text{loil}_{t-1} + 0.05\Delta \text{lgold}_{t-1} + e_{1t}$$

$$\Delta \text{lgold}_t = 0.0054 - 0.007 (\text{loil}_{t-1} - 0.914 \text{lgold}_{t-1} + 2.19) + 0.049\Delta \text{loil}_{t-1} + 0.019\Delta \text{lgold}_{t-1} + e_{2t}$$

- Note how similar the first equation is to what we found with Engle-Granger! Here, too, $\alpha_2 = -0.007$ is insignificant, so we could ignore the 2nd equation.
- The cointegrating vector is (1, -0.914).
- Interpretation: there is an equilibrium relationship between loil and lgold. In case of a
 disequilibrium, loil adjusts towards the equilibrium. The adjustment amounts to 3.4%
 per period.

Outline

- Cointegration and Common Trends
- 2 Error Correction Models and the Engle-Granger Procedure
- Johansen's Procedure
- Epilogue

Epilogue

Learning Goals

Students

- Understand the concept of cointegration,
- are able to test for cointegration using both the Engle-Granger procedure and the Johansen test,
- and are able to estimate an error correction model.

Epilogue

Homework

- Exercise 7
- Problem 6 from Chapter 8 of Brooks (2019)