Limits

Class Notes 1.2

Investigating Limits. Numerical Evaluation of Limits

Example 1: Evaluate function at the given points accurately to 5 decimal places.

x	$y(x) = \left(1 + \frac{1}{x}\right)^x$
1	2.00000
10	
100	
1000	
1000000	
1500000	
1550000	

https://www.geogebra.org/m/Gc6YrBng

Symbolically, this can be expressed as $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$

The Limit of a Function in a Point of Continuity

Example 2

Investigate numerically and graphically the behavior of the function f defined by $f(x) = x^2 - x + 1$ for values of x near 2 (finite input). The following tables A and B give values of f(x) when x is close to 2 but not equal to 2.

Х	f(x)
1.8	2.44000
1.9	2.71000
1.95	2.85250
1.99	2.97010
1.995	2.98503
1.999	2.99700

	x
)	2.2
)	2.1
)	2.05
)	2.01
3	2.005
)	2.001
)	2.05 2.01 2.005

Table A

Table B

$$\lim_{x \to 2^{-}} f(x) = 3$$

$$\lim_{x \to 2^{+}} f(x) = 3$$
or in words "as x approaches 2, the function $f(x)$ approaches 3.

From the tables and from the graph we can see that when x is close to 2 (on either side of 2), f(x) is close to 3. In fact, we can make the values of f(x) as close as we like to 3 by taking x sufficiently close to 2. This fact is expressed as:

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} f(x^2 - x + 1) = 3$$

The Method of Direct Substitution

Observe, that the evaluation of the limit can be done by the "method of direct substitution": $\lim_{x\to 2} (x^2-x+1) = f(2) = 2^2-2+1=3$. "Direct substitution" works for values at which the function is continuous.

Try it: Find
$$\lim_{x \to 5} f(x) = \lim_{x \to 5} (x^2 - x + 1) =$$

Definition and Denotations:

The limit of f(x), as x approaches a, equals L if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a, but not equal to a.

$$\lim_{x \to a} f(x) = L$$

3

Note. $x \neq a$ in the definition of limit. This means that in finding the limit of f(x) as x approaches a, we never consider x = a. In fact, f(x) need not even be defined when x = a. The only thing that matters is how f is defined **near** a but not in a.

Example 3. For the function f graphed in the accompanying figure, find each quantity, if it exists. If it doesn't exist, explain why.

a)

(i) $\lim_{x \to 6^{-}} f(x) =$ (ii) $\lim_{x \to 6^{+}} f(x) =$

 $(iii) \lim_{x \to 6} f(x) =$

(iv) f(6) =

(v) f is ______ at x = 6

(continuous/discontinuous)

b)

(i) $\lim_{x \to 4^{-}} f(x) =$ (ii) $\lim_{x \to 4^{+}} f(x) =$

(iii) $\lim_{x \to 4} f(x) =$

(iv) f(4) =

(v) *f* is at x = 4

(continuous/discontinuous)

c)

(i)
$$\lim_{x \to 2^{-}} f(x) =$$

(i)
$$\lim_{x \to 2^{-}} f(x) =$$
 (ii) $\lim_{x \to 2^{+}} f(x) =$

(iii)
$$\lim_{x\to 2} f(x) =$$

(iv)
$$f(2) =$$

(v)
$$f$$
 is _____ at $x = 2$

One-Sided Limits more formally

One-sided limits are helpful in describing what may happen with a function at a point.

$$\lim_{x\to a^+} f(x) = L$$
 is the right-hand limit

$$\lim_{x \to a^+} f(x) = L$$
 is the right-hand limit $\lim_{x \to a^-} f(x) = L$ is the left- hand limit

The symbol " $x \to a^+$ " means that we consider only x > a, the symbol " $x \to a^-$ " means that we consider only x < a.

The following is true.

$$\lim_{x \to a} f(x) = L, \text{ if and only if } \lim_{x \to a^{+}} f(x) = L = \lim_{x \to a^{-}} f(x)$$

Example 4. For the function h graphed in the accompanying figure, find each quantity, if it exists. If it doesn't exist, explain why.

a)
$$\lim_{x \to 3^{-}} h(x) =$$

$$\lim_{x\to 3^+} h(x) =$$

$$b) \lim_{x \to 6^-} h(x) =$$

$$\lim_{x\to 6^+} h(x) =$$

$$\lim_{x\to 3}h(x)=$$

$$\lim_{x\to 6} h(x) =$$

c)
$$h(3) =$$
;

$$: h(6) = :$$

- d) Complete the following statements by choosing the correct term.
 - (i) Function h is <u>continuous/discontinuous</u> at x = 3.
 - (ii) Function h is <u>defined/not defined</u> at x = 3
 - (iii) Function h is <u>continuous/discontinuous</u> at x = 6.
 - (iv) Function h is <u>defined/not defined</u> at x = 6

Limits Involving Infinity

Example 5. Evaluating limits graphically.

b)
$$\lim_{x \to 0^+} \frac{1}{x} =$$

c)
$$\lim_{x\to 0}\frac{1}{x} =$$

d)
$$\lim_{x \to -\infty} \frac{1}{x} =$$

e)
$$\lim_{x \to +\infty} \frac{1}{x} =$$

- f) the equation of the vertical asymptote: _____.
- g) the equation of the horizontal asymptote: _____.

Try it yourself. For the function $y = \frac{1}{x+3}$ graphed in the accompanying figure, find

- a) $\lim_{x \to -3^-} \frac{1}{x+3} =$
- b) $\lim_{x \to -3^+} \frac{1}{x+3} =$
- c) $\lim_{x \to -3} \frac{1}{x+3} =$
- d) $\lim_{x \to -\infty} \frac{1}{x+3} =$
- e) $\lim_{x \to +\infty} \frac{1}{x+3} =$
- f) the equation of the vertical asymptote: ______.
- g) the equation of the horizontal asymptote: _____.

Example 6

- a) $\lim_{x\to 1^-}g(x)=$

- $d) \quad \lim_{x \to 3^+} g(x) =$
- $\lim_{x\to 3}g(x)=$
- $\lim_{x\to -\infty}g(x)=$
- $\lim_{x\to +\infty}g(x)=$
- h)
- i) the equation of the vertical asymptote(s): _____.
- j) the equation of the horizontal asymptote: _____.

Vertical and Horizontal Asymptotes

The line x = a is called a **vertical asymptote** of the curve y = f(x) if

$$\lim_{x \to a} f(x) = \infty$$

Any variation of the statement applies, including one-sided limits. Some of the cases are illustrated below.

The line y = L is called a **horizontal asymptote** if either

$$\lim_{x \to \infty} f(x) = L \text{ or } \lim_{x \to -\infty} f(x) = L$$

Note: A function can have up to two different horizontal asymptotes, one corresponding to the limit at $+\infty$, and the other corresponding to the limit at $-\infty$.

Examples of Limits Than Do Not Exist (DNE)

a. $\lim_{x\to\infty} \sin x$

b. $\lim_{x\to 0} \sin \frac{\pi}{x}$

c. Prove that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

Absolute value function

$$|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$$

or another useful representation:

$$|x| = \sqrt{x^2}$$

Since, LHS limit \neq RHS limit, the limit at a point DNE: $\lim_{x\to 0} \frac{|x|}{x} = \text{DNE}$