University of Engineering and Technology (UET), Peshawar, Pakistan

Lecture 3

CSE-304: Computer Organization and Architecture

BY:

Dr. Muhammad Athar Javed Sethi

Connecting

- All the units must be connected
- Different type of connection for different type of unit
 - —Memory
 - —Input/Output
 - —CPU

Computer Modules

Memory Connection

- Receives and sends data
- Receives addresses (of locations)
- Receives control signals
 - —Read
 - -Write

Input/Output Connection(1)

- Similar to memory from computer's viewpoint
 - —Receive data from computer
 - Receive data from peripheral
 - —Send data to peripheral
 - —Send data to computer

Input/Output Connection(2)

- Receive control signals from computer
- Send control signals to peripherals
- Receive addresses from computer
 —e.g. port number to identify peripheral
- Send interrupt signals (control)

CPU Connection

- Reads instruction and data
- Writes out data (after processing)
- Sends control signals to other units
- Receives (& acts on) interrupts

Buses

- There are a number of possible interconnection systems
- Single and multiple BUS structures are most common
- e.g. Control/Address/Data bus
- e.g. Unibus

What is a Bus?

- A communication pathway connecting two or more devices
- Usually broadcast (all components see signal)
- Often grouped
 - —A number of channels in one bus
 - —e.g. 32 bit data bus is 32 separate single bit channels

Bus Interconnection Scheme

Data Bus

- Carries data
 - —Remember that there is no difference between "data" and "instruction" at this level
- Width is a key determinant of performance
 - -8, 16, 32, 64 bit

Address bus

- Identify the source or destination of data
- e.g. CPU needs to read an instruction (data) from a given location in memory
- Bus width determines maximum memory capacity of system
 - —e.g. 8080 has 16 bit address bus giving 64k address space

Control Bus

- Control and timing information
 - —Memory read/write signal
 - —Interrupt request
 - —Clock signals

Single Bus Problems

- Lots of devices on one bus leads to:
 - —Propagation delays
 - Long data paths mean that co-ordination of bus use can adversely affect performance
- Most systems use multiple buses to overcome these problems

Bus Types

- Dedicated
 - —Separate data & address lines
- Multiplexed
 - —Shared lines
 - —Address valid or data valid control line
 - —Advantage fewer lines
 - —Disadvantages
 - More complex control

Bus Arbitration

- More than one module controlling the bus
- Only one module may control bus at one time
- Arbitration may be centralised or distributed

Centralised Arbitration

- Single hardware device controlling bus access
 - —Bus Controller
 - —Arbiter

Distributed Arbitration

- Each module may claim the bus
- Control logic on all modules

Timing

- Co-ordination of events on bus
- Synchronous
 - —Events determined by clock signals
 - —Control Bus includes clock line
 - —A single 1-0 is a bus cycle
 - —All devices can read clock line
 - —Usually sync on leading edge
 - —Usually a single cycle for an event

Synchronous Timing Diagram

Asynchronous Timing – Read Diagram

Asynchronous Timing – Write Diagram

