A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 3EE

Bookmark

Show all steps: (

ON

Problem

Prove part:

- (a) Let p a prime > 2. If $p \equiv 3 \pmod{4}$, then (p-1)/2 is odd.
- (b) Let p > 2 be a prime such that $p \equiv 3 \pmod{4}$. Then there is *no* solution to the congruence $x^2 + 1 \equiv 0 \pmod{p}$. [HINT: Raise both sides of $x^2 \equiv -1 \pmod{p}$ to the power (p-1)/2, and use Fermat's little theorem.]

Step-by-step solution

Step 1 of 4

Consider any arbitrary odd prime number p, that is, p > 2. Suppose that $p \equiv 3 \pmod{4}$.

(a)

Objective is to prove that (p-1)/2 is odd.

If $p \equiv 3 \pmod{4}$ then p will be of the form

p = 3 + 4n

for some integer n. Then

$$\frac{(p-1)}{2} = \frac{(3+4n)-1}{2}$$
$$= \frac{2+4n}{2}$$
$$= 1+2n.$$

Comment

Hence, if $p \equiv 3 \pmod{4}$, then (p-1)/2 will be odd.

Comment

Step 3 of 4

(b)

Objective is to show that there is no solution to the congruence $x^2 + 1 \equiv 0 \pmod{p}$.

Since $p \equiv 3 \pmod{4}$, so p = 3 + 4n for some integer n. Let, if possible, a be the solution of $x^2 + 1 \equiv 0 \pmod{p}$. Then

$$a^2 + 1 \equiv 0 \pmod{p}$$

Or, $a^2 \equiv -1 \pmod{p}$. By Fermat's theorem,

$$a^{p-1} \equiv 1 \pmod{p}$$

Also,

$$(a^2)^{(p-1)/2} \equiv 1 \pmod{p}$$
 or $(-1)^{(p-1)/2} \equiv 1 \pmod{p}$

Since (p-1)/2 is odd, so $(-1)^{(p-1)/2} \equiv -1 \pmod{p}$, a contradiction.

Comment

Step 4 of 4

Hence, if $p \equiv 3 \pmod{4}$ then there is no solution to the congruence $x^2 + 1 \equiv 0 \pmod{p}$.

Comment