Mini Task 2: Different Types of Blockchain By Ankan Dutta (Group-C)

Mail id: ankanudl18@gmail.com

1. Comparison table between different types of Blockchain

Blockchain Name	Ethereum	Hyperledger fabric	Quorum
Туре	Public	Private	Consortium
Consensus	Proof of	Raft consensus	Raft, Istanbul
Mechanism	Stake(PoS)	protocol, Kafka	BFT, Quorum-
Used			Chain
Permission	Open	Permissioned	Permissioned
Model			
Transaction	15-30	20000	150+
Speed (in TPS)			
Smart Contract	Yes (Solidity,	Yes (Go,	Yes (Solidity,
Support	Vyper)	JavaScript, Java)	with privacy
			enhancements)
Token Support	Native(ETH) +	No Native token	No Native token
	ERC-20, ERC-		
	721		
Typical Use	DeFi, NFTs,	Enterprise B2B (Interbank
Case	dAPPs	Supply chain,	Settlements,
		healthcare)	Private Financial
			Transactions
Notable	EVM	Channels for	Privacy via
Technical	compatibility,	private data	Tessera (private
Feature	large developer	segregation	transactions)
	ecosystem		

2. Technical Capabilities Comparison

Ethereum, Hyperledger Fabric, and Quorum differ significantly in their technical capabilities. Ethereum is a public, permissionless blockchain focused on decentralized applications and smart contracts, known for its robust smart contract engine and extensive ecosystem. Hyperledger Fabric is a permissioned, modular blockchain designed for enterprise applications, emphasizing privacy and scalability through fine-grained access control and customizable consensus mechanisms. Quorum, built upon Ethereum's infrastructure, offers private

transactions and smart contracts within a consortium network, balancing the flexibility of Ethereum with the privacy and control of Fabric.

Ethereum:

Public and Permissionless: Open to anyone, allowing for a decentralized ecosystem.

Strong Smart Contract Engine: Solidity programming language and extensive tools for building decentralized applications (DApps).

Decentralized Applications (DApps): Well-suited for innovative financial solutions like DeFi, NFTs, and tokenization.

Scalability Issues: Struggles with high transaction speeds and network congestion in the public network.

Hyperledger Fabric:

Permissioned and Modular: Suitable for enterprise use cases where privacy and control are crucial.

Fine-grained Access Control: Allows for controlled access to the network and data, enhancing privacy.

High Transaction Throughput: Can handle faster transactions due to its permissioned nature and customized consensus mechanisms.

Modular Architecture: Offers flexibility and customization, allowing for tailored solutions for specific business needs.

Quorum:

Semi-Private Blockchain: Consortium-based, allowing for collaboration within a controlled user group.

Private Transactions and Smart Contracts: Enables private data exchange and secure agreements.

Higher Performance: Offers faster transaction speeds and higher throughput compared to public Ethereum.

Consensus Mechanisms: Offers alternative consensus mechanisms beyond Proof-of-Work/Stake, suitable for consortium chains.

Platform Recommendations:

Decentralized App (dApp) → **Ethereum**

Why? EVM compatibility, open access, and token support (ERC-20) are critical for DeFi/NFTs. Layer-2 solutions (e.g., Arbitrum) can mitigate scalability issues.

Supply Chain Network → Hyperledger Fabric

Why? Channels enable selective data sharing among partners, while high TPS suits logistics tracking. No need for public tokenization.

Inter-Bank Financial Application → **Quorum**

Why? Combines Ethereum's smart contracts with transaction privacy (Tessera) and finality (Istanbul BFT), ensuring compliance and auditability.