

					Pri	ntec	l Pa	ge: 1	of 3
				Sub	ject	Cod	le: K	KOE	075
Roll No:									

BTECH (SEM VII) THEORY EXAMINATION 2023-24 OPERATIONS RESEARCH

TIME: 3 HRS **M.MARKS: 100**

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt <i>all</i> questions in brief.

A	ttempt <i>all</i> questions in brief.	x 10 = 2
Q no.	Question	Marks
a.	What is the Simplex method in Linear Programming?	2
b.	Define a Two Variable Linear Programming model.	2
c.	In what industries are transportation problems commonly encountered?	2
d.	Define the objective of mathematical models in transportation problems.	2
e.	What is the primary goal of the shortest path model in network	2
	techniques?	
f.	Define the minimum spanning tree problem.	2
g.	What is a rectangular game in the context of game theory?	2
h.	What is the Minimax theorem, and what does it ensure in game theory?	2
i.	How does the EOQ model balance ordering costs and holding costs?	2
j.	Define Reorder Point (ROP) and its significance in inventory	2
	management.	

SECTION B

2. Attempt any three of the following:

	- 1/	_	
10	2	_	30
		_	711

	ttempt any unee of the following.	$\sigma x \sigma = 0$
a.	Define Operations Research and provide a numerical example	10
	illustrating a real-world problem that could be addressed using OR	
	techniques.	
b.	Define Transportation Problems and distinguish between balanced and	10
	unbalanced transportation problems.	
c.	Explain the concept of the Shortest Path Model in network analysis.	10
d.	Discuss the Minimax Theorem and its significance in game theory.	10
	Provide a step-by-step explanation of how the minimax strategy is	
	determined for a player in a given game.	
e.	Define and explain the Economic Order Quantity (EOQ) model. Discuss	10
	the assumptions and limitations of the EOQ model.	

SECTION C

3. Attempt any one part of the following:

10	T	•	_	10
		•	_	

a.	Consider the following linear programming problem: Maximize $Z=3x_1+2x_2$ Subjected to:	10
	$2x_1+x_2\leq 10$	
	$4x_1-5x_2\geq -20$	
	$x_1,x_2\geq 0$	
	Apply the Simplex Method to find the optimal solution.	
b.	Consider the following linear programming problem:	10

solution.

					Pri	ntec	ı Pa	ge: 2	013	í
				Sub	ject	Cod	le: ŀ	KOF	2075)
Roll No:										

BTECH (SEM VII) THEORY EXAMINATION 2023-24 OPERATIONS RESEARCH

TIME: 3 HRS M.MARKS: 100

Maximize $Z=4x_1+3x_2$ Subjected to: $3x_1+2x_2\leq 12$ $2x_1-x_2\geq 2$ $x_1,x_2\geq 0$ Apply the Dual Simplex Method to find the optimal solution.

a.	Consider an ass				owing cost ma	atrix:	10
		Job 1	Job 2	Job 3			
	Machine 1	8	6	10			
	Machine 2	9	7	4)		
	Maghina	3	2	5			
	Machine 3		-				
b.	Solve the assign Consider the fo	nment probl llowing tran	em using	the Hung n problen	1:		10
b.	Solve the assign	nment probl	em using	the Hung		nm.	10
b.	Solve the assign	nment probl llowing tran	em using	the Hung n problen	1:		10
b.	Solve the assign Consider the fo	nment probl llowing tran	em using	the Hung n problen	1: Warehouse 3	Supply	10
b.	Solve the assign Consider the fo	nment probl llowing tran Warehouse 1	em using asportation Wareh	the Hung n problen	Warehouse 3	Supply 90	10

5	At	ttempt any <i>one</i> part of the following:	$0 \times 1 = 10$
	a.	Find the critical path and calculate the slack time for the following network	10
		2 4 6 1	
		1 2 3 5 7 4 8 3 9	
		1 8 5	
	b.	A project has the following times schedule	10

					Pri	intec	l Pa	ge: 3	3 of 3	i
				Sub	ject	Cod	le: ŀ	KOE	2075	,
Roll No:										

BTECH (SEM VII) THEORY EXAMINATION 2023-24 **OPERATIONS RESEARCH**

TIME: 3 HRS **M.MARKS: 100**

Activity	Times in weeks	Activity	Times in weeks
(1-2)	4	(5 7)	9
(1-3)	1	(5 – 7)	8
(2-4)	1	(6-8)	1
(3-4)	1	(7 - 8)	2
(3-4) $(3-5)$	6	(8 - 9)	1
	6	(8-10)	8
(4-9)	5	(9-10)	7
(5-6)	4	()	

the network and compute 1. T_E (Head event) and T_T (Tail event)for each event 2. Float for each activity 3. Critical path and its duration

·	At	tempt any	one	part of	the fol	lowin	g: 10	0 x 1 =	10
8	ι.	Find the range of values of p and q which will render the entry (2,2) a							0
		saddle po		13V					
		Player B							1
		Player .	A	B_1	B_2	B ₃		OX	•
			A_1	2	4	5		J.V	
			A_2	10	7	q	. V , S		
			A_3	4	p	6			
ŀ).	In a self s	ervic	e store v	with one	cash	er, 8 customers arrive on an average	10	
		of every							
		and service time are exponentially distributed, then determine							
		a) Average number of customer waiting in the queue for average.							
		b) Expected waiting time in the queue							
		c) What is the probability of having more than 6 customers In the system							

Attempt any *one* part of the following:

a. Ouestion: A company sells 5.000 units of a product annually with a 10

 $10 \times 1 = 10$

a.	Question. A company sens 3,000 units of a product annually with a	10					
	holding cost per unit of Rupees 2 and ordering cost of Rupees 100 pe						
	order. Calculate the Economic Order Quantity						
b.	A retailer faces a demand of 200 units per week with a standard	10					
	deviation of 20 units. The lead time is 2 weeks. Calculate the Reorder						
	Point (ROP) for a desired service level of 95%.						