

Cloud Computing Architecture

(Mastering Cloud Computing: Chapter#4)

Rashmi Kansakar

Layered View

Categories

- ➤ laaS Infrastructure as a Service (AWS)
 - laaS(M) Only management layer
- PaaS Platform as a Service (AppEngine) Use APIs provided to build
 - Pure PaaS Only middleware, bring hardware
- SaaS Software as a Service (Gmail)
 - Adaptively scaling to demand

laaS (HaaS)

laaS (HaaS)...

- Customers are provided with virtualized hardware and storage on top of which they can build their infrastructure
 - Ex: Amazon EC2 & S3
 - DataPipe
 - Microsoft Azure VMs
 - Samsung Joyent, etc.... (many)

- ➤ laaS(M) manage cloud infrastructure
 - Ex: Enomaly
 - Eucalyptus
 - OpenNebula
 - OpenStack
 - CloudStack

PaaS

PaaS...

- Application Management!
 - No ability/need to manage infrastructure
- ➤ Support Java, .NET, Python, Ruby, etc..
 - Some restrictions for scalability (no write fs)
- > Some provide a local dev environment
- ➤ Subcategories:
 - PaaS-I: Rapid prototyping Web 2.0 dev Ex: Force.com, Longjump
 - PaaS-II: Runtime environment for web upload code, use their
 APIs Ex: Google AppEngine, AppScale, Heroku, Engine Yard

PaaS...

- Subcategories (cont)
 - PaaS III General purpose apps Ex: MS Windows Azure (hw as well), Aneka, Apprenda SaaSGrid, Cloud IQ

- Characteristics of PaaS:
 - Runtime Framework software stack
 - Abstraction manage software, not HW
 - Automation Auto scale resources
 - Cloud Services API Ex: Storage, identity management, computation

PaaS...

- ➤ Issues....
 - Vendor lock-in
 - Runtime environment: Force.com
 - AppEngine: standard, Python, PHP, Java...
 - APIs may be proprietary
- > Cost benefit
 - Reduces management costs for consumer
 - Vendor does hardware/software updates -> saves them money
- Fueling startup culture!
 - Don't need to be an infrastructure expert

SaaS

- > Access to software from web browser
 - No software to install, no upfront costs
- Good for 'one size fits all' systems little customization needed
- ➤ Good fits:
 - Customer relationship management (CRM)
 - Enterprise resource planning (ERP)
- ➤ Pay-as-you-go (PAYG) pricing

SaaS...

- Multi-tenancy multiple customers same system
 - Optimized resources
 - Continuous upgrades
 - Distribute costs
 - Developers know how to run the best
 - Significant cost savings no distribution, little support needed
 - Rapid implementation

SaaS...

- ➤ Very successful delivery model!
- ➤ SaaS 2.0 Integrate reliable services
 - Use SLAs
 - Adds another dimension & options
 - Could promote open market
- Plugins becoming popular extend
 - Facebook, LinkedIn
- > Office automation
 - Google Documents, Zoho Office, etc

Types of Clouds (review)

- > Public
 - EC2
- > Private
 - Customer information protection
 - Infrastructure ensuring SLA
 - Compliance w/ procedures and operations
- > Hybrid or heterogeneous
 - Cloudbusting using public cloud for spikes
- ➤ Community example
 - Media Industry, Healthcare, Energy, Scientific

Cloud Economics

- ➤ Why Cloud Computing?
 - Reduce capital IT costs
 - Eliminate depreciation
 - Replace software license with subscription
 - Reduce maintenance & admin costs of IT

Open Challenges

- ➤ Defining Cloud Computing!!!!
- Cloud Interoperability
- > Standards
- Scalability & Fault Tolerance
- Security, trust, privacy
- Changing role of IT in a business
 - O What does a 'new' IT dept do?
 - o Compliance?
 - Loss of control of data?

Summary

- > Service models: SaaS, PaaS, laaS
- ➤ Deployment models: Public, Private, Hybrid, Community
- ➤ Driving force behind cloud --> \$\$\$\$
- ➤ Issues & Challenges