Assignment-02 On Lifetime Data Analysis AST 405

Submitted By: Shafayet Khan Shafee FH-033-011 4th Year Submitted To:
Dr. Mahbub Latif
Professor
ISRT, DU

January 22, 2022

Contents

Answers to	Qı	u€	est	ic	n	ıs																
Question	01																					
Question	02																					
Question	03																					
Question	04																					
Question	05																					
Question	06																					
Question	07																					
Question	. 08																					

Answers to Questions

Question 01

Answer: For the continuous variables, age and bmi mean and standard deviation (SD) is obtained. And for categorical variable, arcus, behpat and chd69 frequency and proportion (in percentage) is obtained as descriptive statistics, which are shown in the following table:

Table 1: Descriptive Statistics

	level	Overall
n		3154
age (mean (SD))		46.35 (5.56)
bmi (mean (SD))		24.48 (2.55)
arcus (%)	0	2219 (70.4)
	1	934 (29.6)
behpat (%)	A1	275 (8.7)
	A2	1290 (40.9)
	В3	1236 (39.2)
	B4	353 (11.2)
$\mathrm{chd}69~(\%)$	No	2900 (91.9)
	Yes	254 (8.1)

Answer:

Effect of age and bmi To check whether each of age and bmi has significant effect on chol, we need to do correlation test (pearson).

For each correlation test of age and bmi with chol, the hypotheses are,

$$H_o: \rho = 0$$

$$H_a: \rho \neq 0$$

where ρ is the population correlation coefficient.

The appropriate test statistic for testing the hypothesis is,

$$t_o = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

where r is the sample correlation coefficient and t_o follows t_{n-2} distribution under H_o .

Here we will reject H_o if the associated p value is less then $\alpha = 0.05$, where α is the level of significance.

Now from Table: 2, we can see that both of the variables age and bmi is significantly associated with chol variable.

Table 2: Correlation Test (age, bmi) and T-test (arcus) with chol

term	estimate	statistic	p.value
age	0.081	4.550	< .001
bmi	0.060	3.385	< .001
arcus	-12.672	-7.604	< .001

Effect of arcus Now to check the effect of arcus (a categorical variable with level 0 and 1) on cho1, we can do two sample t-test, where one sample is people with arcus 0 and other sample is people with arcus 1. Therefore, is μ_o and μ_1 are the population mean of arcus 0 and arcus 1 group respectively.

Then our hypotheses are:

$$H_o: \mu_o = \mu_1$$
$$H_a: \mu_o \neq \mu_1$$

and appropriate test statistic (assuming unequal variance),

$$t_o = \frac{\bar{x_o} - \bar{x_1}}{\sqrt{\frac{s_o^2}{n_o} + \frac{s_1^2}{n_1}}}$$

where \bar{x} and s^2 denotes sample mean and sample variance with subscript 0 and 1 for arcus group 0 and 1 respectively and n_o and n_1 are the corresponding sample sizes.

Here we will reject H_o if the associated p value is less then $\alpha = 0.05$, where α is the level of significance.

Then from Table: 2, since p.value is less than 0.001 we can conclude that mean chol differs significantly for 0 and 1 group of arcus, that is, arcus has significant effect on chol.

Effect of behpat To check the effect of behpat on chol, we can do oneway ANOVA. In this case the hypotheses are:

$$H_o: \mu_1 = \mu_2$$

$$H_a: \mu_i \neq \mu_j \qquad \qquad \text{for at least on i} \neq j$$

and test statistic is $F_o = \frac{MS_{reg}}{MS_E}$. We will reject H_o if associated p.value is less than 0.05.

Table 3: One Way Analysis of Variance for chol on behpat

term	df	sumsq	meansq	statistic	p.value
behpat	3	30741.67	10247.223	5.475	< .001
Residuals	3135	5867632.50	1871.653	NA	NA

Then from Table: 3, we conclude that mean chol differs significantly over the levels of behpat.

Answer: To examine the association between behat and chd69, the hypotheses are:

 H_o : There's no association between behpat and chd69.

 H_a : There's association between behpat and chd69.

Here, the test statistics is:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Where, O_{ij} is observed frequency and E_{ij} is the expected frequency and r, c is the row and column number of contingency table 4

Here, we would reject H_o if associated p.value corresponding to test statistics is less the 0.05.

	CHD				
behpat	No	Yes			
A1	246	29			
A2	1158	132			
B3	1164	72			
B4	332	21			

statistic	p.value
20.978	< .001

Table 5: chi-square test

Table 4: Contingency table

Now from the Table 5, since p.value is less than 0.001, we can conclude that there's an significant association between behat and chd69.

Table 6: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	196.971	6.483	30.381	\$<.001\$
age	0.632	0.139	4.550	\$<.001\$

Answer: The fitted regression line is:

$$\widehat{\text{chol}} = 196.97 + 0.63(\text{age})$$
 (1)

Then, the cholesterol level is expected to increase by 0.63 units for 1-year increase of age.

Question 05

Table 7: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	228.352	1.097	208.102	\$<.001\$
${\bf dibpatType~B}$	-4.147	1.546	-2.682	0.007

Answer: The fitted regression line is:

$$\widehat{\text{chol}} = 228.35 - 4.15(\text{dibpat}_{\text{Type B}}) \tag{2}$$

So, we can say that, Mean cholesterol level of Type A dibpat subjects is 228.35. Also, mean cholesterol level of Type A dibpat subjects is -4.15 unit higher than Type B dibpat subjects.

Table 8: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	235.073	2.618	89.778	\$<.001\$
behpatA2	-8.150	2.883	-2.827	0.005
behpatB3	-10.226	2.894	-3.533	\$<.001\$
behpatB4	-13.122	3.491	-3.759	\$<.001\$

$$\widehat{\rm chol} = 235.07 - 8.15 ({\rm behpat_{A2}}) - 10.23 ({\rm behpat_{B3}}) - 13.12 ({\rm behpat_{B4}}) \tag{3}$$

Question 07

Table 9: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	207.388	7.132	29.080	\$<.001\$
age	0.582	0.140	4.172	\$<.001\$
behpatA2	-7.699	2.878	-2.675	0.008
behpatB3	-9.268	2.896	-3.200	0.001
behpatB4	-11.841	3.496	-3.387	\$<.001\$

$$\widehat{\text{chol}} = 207.39 + 0.58(\text{age}) - 7.7(\text{behpat}_{A2}) - 9.27(\text{behpat}_{B3}) - 11.84(\text{behpat}_{B4})$$
(4)

Question 08

Table 10: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	222.252	1.171	189.755	\$<.001\$
age40	0.632	0.139	4.550	\$<.001\$

$$\widehat{\text{chol}} = 222.25 + 0.63(\text{age}40)$$
 (5)

Table 11: Estimate of Model Parameters

term	estimate	std.error	statistic	p.value
(Intercept)	223.702	1.597	140.043	\$<.001\$
dibpatType B	-3.644	2.175	-1.675	0.094
smokeYes	8.728	2.189	3.988	\$<.001\$
dibpatType B:smokeYes	0.265	3.085	0.086	0.932

$$\widehat{\text{chol}} = 223.7 - 3.64(\text{dibpat}_{\text{Type B}}) + 8.73(\text{smoke}_{\text{Yes}}) + 0.27(\text{dibpat}_{\text{Type B}} \times \text{smoke}_{\text{Yes}})$$
(6)

R-code

```
knitr::opts_chunk$set(
  echo = FALSE,
 message = FALSE,
 warning = FALSE
)
## ----- package setup -----
library(dplyr)
library(purrr)
library(knitr)
library(broom)
library(tableone)
library(kableExtra)
library(equatiomatic)
## ----- data setup -----
load(here::here("data", "wcgs.Rdata"))
sid <- 011
set.seed(sid)
mydat <- sample_n(wcgs, size = n(), replace = TRUE)</pre>
## ----- utility functions -----
kab_tab <- function(tab, ...) {</pre>
 knitr::kable(tab,
              format = "latex",
              booktabs = TRUE,
              digits = 3,
              ...)
}
```

```
p_format <- function(pval) {</pre>
  ifelse(pval < .001, "$<.001$", as.character(round(pval, 3)))</pre>
}
mod tab <- function(mod, ...) {</pre>
  mod %>%
    tidy() %>%
    mutate(p.value = p format(p.value)) %>%
    kab tab(align = "lrrrr",
            caption = "Estimate of Model Parameters", ...) %>%
    kable_styling(latex_options = "HOLD_position")
}
reg_eq <- function(mod, ...) {</pre>
  extract_eq(mod,
             use coefs = TRUE,
             intercept = "beta",
             wrap = TRUE,
             ...)
}
mod params <- function(mod, param, dec = 2) {</pre>
  round(mod$coefficients[[param]], dec)
}
## ----- Code for Question-01 -----
tab <- CreateTableOne(</pre>
  data = mydat,
  vars = c("age", "bmi", "arcus", "behpat", "chd69"),
  factorVars = "arcus",
  addOverall = TRUE
)
```

```
tab_p <- print(tab, showAllLevels = TRUE, printToggle = FALSE)</pre>
kab tab(tab p, caption = "Descriptive Statistics") %>%
 kable_styling(latex_options = "HOLD_position")
## ----- Code for Question-02 ------
arcus <- t.test(chol ~ arcus, data = mydat) %>%
 tidy() %>%
 mutate(term = "arcus") %>%
  select(term, estimate, statistic, p.value)
mydat %>%
  select(age, bmi) %>%
 map(\sim cor.test(x = .x, y = mydat\$chol)) \%
 map dfr(broom::tidy, .id = "term") %>%
  select(term:p.value) %>%
 bind rows(arcus) %>%
 mutate(p.value = p format(p.value)) %>%
 kab tab(align = "lrrr",
         escape = FALSE,
          caption = "Correlation Test (age, bmi) and T-test (arcus) with chol") %>%
 kable_styling(latex_options = "HOLD_position")
anova(lm(chol ~ behpat, data = mydat)) %>%
 tidy() %>%
 mutate(p.value = p format(p.value)) %>%
 kab tab(align = "lrrrrr",
          escape = FALSE,
          caption = "One Way Analysis of Variance for chol on behpat") %>%
 kable styling(latex options = "HOLD position")
```

```
## ----- Code for Question-03 -----
df_cont <- mydat %>% janitor::tabyl(behpat, chd69)
tab cont <- df cont %>%
 kab tab() %>%
 add header above(header = c(" " = 1, "CHD" = 2))
tab chi <- df cont %>%
 janitor::chisq.test() %>%
 tidy() %>%
 select(statistic, p.value) %>%
 mutate(p.value = p_format(p.value)) %>%
 kab_tab(escape = FALSE)
tab_side <- c(
   "\\begin{table}[H]
     \\begin{minipage}{.5\\linewidth}
     \\centering",
     tab_cont,
     "\\caption{Contingency table}
     \\label{Table-04}
   \\end{minipage}%
     \\begin{minipage}{.5\\linewidth}
       \\centering",
   tab_chi,
   "\\caption{chi-square test}
   \\label{Table-05}
   \\end{minipage}
     \\end{table}"
 )
## ----- Code for Question-04 -----
```

```
m1 <- lm(chol ~ age, data = mydat)</pre>
m1 %>% mod_tab()
reg_eq(m1)
## ----- Code for Question-05 -----
m2 <- lm(chol ~ dibpat, data = mydat)</pre>
m2 %>% mod tab()
reg_eq(m2)
## ----- Code for Question-05 -----
m3 <- lm(chol ~ behpat, data = mydat)
m3 %>% mod_tab()
reg_eq(m3)
## ----- Code for Question-08 -----
m4 <- lm(chol ~ age + behpat, data = mydat)
m4 %>% mod tab()
reg_eq(m4)
## ----- Code for Question-08 -----
mydat %>%
 mutate(age40 = age - 40) \%>\%
 lm(chol \sim age40, data = .) \rightarrow m5
m5 %>% mod tab()
reg_eq(m5)
```

```
## ----- Code for Question-08 -----
m6 <- lm(chol ~ dibpat * smoke, data = mydat)
m6 %>% mod_tab()
reg_eq(m6)
```