Lecture 19 – Conditional Probability, Combinatorics

DSC 40A, Fall 2022 @ UC San Diego Mahdi Soleymani, with help from many others

Agenda

- Finish conditional probability examples.
- Sequences, permutations, and combinations.
- ► Practice problems.

In a set of dominoes, each tile has two sides with a number of dots on each side: <u>zero</u>, <u>one</u>, <u>two</u>, <u>three</u>, <u>four</u>, <u>five</u>, <u>or six</u>. There are 28 total tiles, with each number of dots appearing alongside each other number (including itself) on a single tile.

Question 1: What is the probability of drawing a "double" from a set of dominoes — that is, a tile with the same number on both sides?

$$S = \{A11 \text{ possible Dominos}\}$$

$$|S1 = 28$$

$$A = \{00011, 229 \dots 966\}$$

$$|A1 = 7 \qquad P(A) = \frac{7}{28} = \frac{1}{4}$$

Question 2: Now your friend picks a random tile from the set and tells you that at least one of the sides is a 6. What is the probability that your friend's tile is a double, with 6 on both

probability that your friend's tile is a double, with 6 on both sides?

$$S = \begin{cases} All & possible & tiles \\ B = \begin{cases} 169 & 26 - - \end{cases} \end{cases}$$

$$B = \begin{cases} 169 & 26 - - \end{cases} \end{cases}$$

$$A = \begin{cases} 66 \end{cases}$$

$$A = \begin{cases}$$

Question 3: Now you pick a random tile from the set and uncover only one side, revealing that it has six dots. What is the probability that this tile is a double, with six on both sides?

T₁,... > T₂8 > 1

$$S_2$$
 > 1
 $A = \{ (T_7, S_1) , (T_7, S_2) \}$ All half tiles
 $S = \{ (T_1, S_1) , (T_2, S_2) \}$ $|S| = 2 \times 2 = 56$
 $B = \{ (T_1, S_1) , (T_2, S_1) , (T_3, S_1) , (T_7, S_1) \}$ $|A \cap B| = 2$
 $|A \cap B| = 3$
 $|A \cap B| = 3$

Simpson's Paradox (source: nih.gov)

	Treatment A	Treatment B
Small kidney stones	81 successes / 87 (93%)	234 successes / 270 (87%)
Large kidney stones	192 successes / 263 (73%)	55 successes / 80 (69%)
Combined	273 successes / 350 (78%)	289 successes / 350 (83%)

Discussion Question

Which treatment is better?

- A) Treatment A for all cases.
- B) Treatment B for all cases.
- C) Treatment A for small stones and B for large stones.
- D) Treatment A for large stones and B for small stones.

To answer, go to menti.com and enter 4771 9448.

Simpson's Paradox (source: nih.gov)

	Treatment A	Treatment B
Small kidney stones	81 successes / 87 (93%)	234 successes / 270 (87%)
Large kidney stones	192 successes / 263 (73%)	55 successes / 80 (69%)
Combined	273 successes / 350 (78%)	289 successes / 350 (83%)

Simpson's Paradox occurs when an association between two variables exists when the data is divided into subgroups, but reverses or disappears when the groups are combined.

See more in DSC 80.

Sequences, permutations, and combinations

Motivation

- Many problems in probability involve counting.
 - Suppose I flip a fair coin 100 times. What's the probability I see 34 heads?
 - Suppose I draw 3 cards from a 52 card deck. What's the probability they all are all from the same suit?
- In order to solve such problems, we first need to learn how to count.
- The area of math that deals with counting is called **combinatorics**.

Selecting elements (i.e. sampling)

- Many experiments involve choosing k elements randomly from a group of n possible elements. This group is called a population.
 - ► If drawing cards from a deck, the population is the deck of all cards.
 - If selecting people from DSC 40A, the population is everyone in DSC 40A.
- Two decisions:
 - Do we select elements with or without replacement?
 - Does the order in which things are selected matter?

Sequences

Coin 5 times TTHHT + HHTTT

- A sequence of length k is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.
- **Example:** Draw a card (from a standard 52-card deck), put it back in the deck, and repeat 4 times.

$$52525252 = 52^{4}$$
 # possiblites

Example: A UCSD PID starts with "A" then has 8 digits. How many UCSD PIDs are possible?

$$A = 10 = 10 = 10 = 10 = 10 = 10$$

Sequences

In general, the number of ways to select k elements from a group of n possible elements such that **repetition is allowed** and **order matters** is n^k .

(Note: We mentioned this fact in the first lecture on clustering!)

Permutations

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- **Example:** How many ways are there to select a president, vice president, and secretary from a group of 8 people?

Permutations

In general, the number of ways to select k elements from a group of n possible elements such that repetition is not allowed and order matters is

$$P(n,k) = (n)(n-1)...(n-k+1)$$

► To simplify: recall that the definition of *n*! is

$$n! = (n)(n - 1)...(2)(1)$$

Given this, we can write

$$P(n,k) = \frac{n!}{(n-k)!}$$

Discussion Question

UCSD has 7 colleges. How many ways can I rank my top 3 choices?

E) None of the above

P(n,k) = P(7,3)

To answer, go to menti.com and enter 4771 9448.

$$7! = 7.6.5 4! = 210$$

Special case of permutations

Suppose we have n people. The total number of ways I can rearrange these n people in a line is

$$\frac{n}{n-1} \frac{n-2}{n-2} = n!$$

► This is consistent with the formula

$$P(n,n) = \frac{n!}{(n-n)!} = \frac{n!}{0!} = \frac{n!}{1} = n!$$
 $k = N$

Combinations

- A combination is a set of k items selected from a group of n possible elements without replacement, such that order does not matter.
- **Example:** There are 24 ice cream flavors. How many ways can you pick two flavors?

can you pick two flavors?

Strawberry & Vamila

$$24 \quad 23 = 24 \times 23$$

Vamila & strawbary

ouble - count 24×23

double count ways =
$$\frac{24 \times 23}{2}$$
 =

From permutations to combinations

- There is a close connection between:
 - the number of permutations of k elements selected from a group of n, and
- the number of combinations of k elements selected from a group of n3 flavors out of 24

 # combinations = # permutations

 # orderings of k items = 3
 - Since # permutations = $\frac{n!}{(n-k)!}$ and # orderings of k items = k!, we have

$$C(n,k) = \binom{n}{k} = \frac{n!}{(n-k)!k!}$$

Combinations

In general, the number of ways to select *k* elements from a group of *n* elements such that **repetition is not allowed** and **order does not matter** is

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

The symbol $\binom{n}{k}$ is pronounced "*n* choose *k*", and is also known as the **binomial coefficient**.

Example: committees

How many ways are there to select a president, vice president, and secretary from a group of 8 people?

How many ways are there to select a committee of 3 people from a group of 8 people?

$$\binom{n}{k} = \binom{8}{3}$$

If you're ever confused about the difference between permutations and combinations, come back to this example.

Discussion Question

A domino consists of two faces, each with anywhere between 0 and 6 dots. A set of dominoes consists of every possible combination of dots on each face.

How many dominoes are in the set of dominoes?

A)
$$\binom{7}{2}$$
 $\frac{7 \times 6}{2}$ = 2

B)
$$\binom{7}{1} + \binom{7}{2}$$

C)
$$P(7,2)$$

D)
$$\frac{P(7,2)}{P(7,1)}$$
7!

To answer, go to menti.com and enter 4771 9448.

$$(\frac{7}{2}) + (\frac{7}{7}) = 21 + 7 = 28$$

More examples

Counting and probability

- If S is a sample space consisting of equally-likely outcomes, and A is an event, then $P(A) = \frac{|A|}{|S|}$.
- ► In many examples, this will boil down to using permutations and/or combinations to count |A| and |S|.
- ► **Tip:** Before starting a probability problem, always think about what the sample space *S* is!

Selecting students — overview

We're going to start by answering the same question using several different techniques.

Selecting students (Method 1: using permutations)

Selecting students (Method 2: using permutations and the complement)

Question 1, Part 1 (Denominator): If you draw a sample of size 5 at random without replacement from a population of size 20, how many different **sets** of individuals could you draw?

Question 1, Part 2 (Numerator): If you draw a sample of size 5 at random without replacement from a population of size 20, how many different **sets** of individuals include Billy?

Selecting students (Method 4: "the easy way")

With vs. without replacement

Discussion Question

We've determined that a probability that a random sample of 5 students from a class of 20 without replacement contains Billy (one student in particular) is $\frac{1}{4}$.

Suppose we instead sampled with replacement. Would the resulting probability be equal to, greater than, or less than $\frac{1}{4}$?

- A) Equal to
- B) Greater than
- C) Less than

To answer, go to menti.com and enter 3779 0977.

Summary

Summary

- A **sequence** is obtained by selecting *k* elements from a group of *n* possible elements with replacement, such that order matters.
 - Number of sequences: n^k .
- A **permutation** is obtained by selecting *k* elements from a group of *n* possible elements without replacement, such that order matters.
 - Number of permutations: $P(n, k) = \frac{n!}{(n-k)!}$.
- A **combination** is obtained by selecting *k* elements from a group of *n* possible elements without replacement, such that order does not matter.
 - Number of combinations: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$.