

Linguagem SQL - DDL

Fundamentos de Base de Dados - 2025/26
Carlos Costa

Linguagem SQL

- Structured Query Language (SQL)
 - SEQUEL
- Linguagem para definir, manipular e questionar uma Base de Dados Relacional.
 - É uma linguagem orientada ao processamento de conjuntos
- 2 sublinguagens principais
 - DDL Data Definition Language
 - DML Data Manipulation Language
- 1 sublinguagem de controlo BD
 - DCL Data Control Language

SQL - Versões

- 1986 (SQL-86 e SQL-87)
 - Publicado pela ANSI e ratificado pela ISO.
- 1989 (SQL-89)
- 1992 (SQL-92)
 - conhecido como SQL2.
- 1999 (SQL:1999)
 - conhecido como SQL 3.
 - inclui expressões regulares, queries recursivas, triggers, tipos não escalares, procedimentos, funcionalidades orientadas a objectos, etc.
- 2003 (SQL:2003)
 - Inclui suporte a XML e colunas com numeração automática.
- 2006 (SQL:2006)
 - Define formas de interacção SQL-XML: como importar e armazenar XML em BD SQL, XQuery, etc.
- 2008
- 2011

SQL - SQL Server

 Vamos utilizar, como ferramenta de trabalho, a versão SQL Server (>=2016)

Transact-SQL

"Microsoft SQL Server team has extended the ANSI definition with several enhancements and new commands, and has left out a few commands because SQL Server implemented them differently. The result is Transact-SQL, or T-SQL — the dialect of SQL understood by SQL Server"

"Missing from T-SQL are very few ANSI SQL commands, primarily because Microsoft implemented the functionality in other ways."

SQL - Hierarquia de Objetos

Mas há mais elementos como, por exemplo, triggers, vistas, índices, stored procedures, funções, etc.

SQL - catalog, schema e database

O significado destes termos varia de acordo com SGBD SQL Server: database_name . schema_name . table_name

SQL - Notas introdutórias

SQL utiliza...

```
tabela, linha e coluna (table, row and column) ... para designar os termos formais: relação, tuplo e atributo do modelo relacional
```

- Cada instrução SQL termina com um ponto e vírgula (";")
- Comentar um linha "--"
- Comentar um bloco de instruções /* ... */

SQL - Data Definition Language (DDL)

- Permite definir várias entidades da BD
- Utilizada para especificar a informação acerca de cada relação:
 - O esquema de cada relação
 - O domínio de valores associados com cada atributo
 - Restrições de integridade (entidade e referencial)
 - O conjunto de índices a manter para cada relação
 - •
- Notas importantes:
 - Há comandos não disponíveis em alguns SGBD...
 - Devemos consultar o manual do SGBD para uma sintaxe mais completa dos comandos.

Criar e Eliminar uma Base de Dados

Criar uma base de dados

```
CREATE DATABASE dbname;
dbname - nome da base de dados a criar
CREATE DATABASE COMPANY;
```

Eliminar uma base de dados

```
DROP DATABASE dbname;

dbname - nome da base de dados a eliminar

DROP DATABASE COMPANY;
```


Schema

- Schema é um "namespace" que agrupa tabelas e outros elementos pertencentes à mesma aplicação.
- Criar um Schema

CREATE SCHEMA schemaname [AUTHORIZATION username_owner];

CREATE SCHEMA COMPANY AUTHORIZATION 'CCosta';

• Eliminar um Schema

DROP SCHEMA COMPANY;

SQL - Tipo de Dados

- Tipos de dados básicos:
 - Numbers
 - Characters, strings
 - Date e time
 - Binary objects
- Os tipos de dados podem variar de acordo com o SGDB!
- Recomendação: Utilizar, na medida do possível, tipos de dados compatíveis com o standard.
 - Aumenta a portabilidade da solução...

SQL - Tipos de dados (SQL:1999)

Numeric

- NUMERIC(p,s)
- DECIMAL(p,s)
- INTEGER (alias: INT) e.g. 32767
- SMALLINT small integers
- FLOAT(p)

e.g. -1E+03

Precision = 10

654321.1234

Scale = 4

 REAL (for short floats) DOUBLE (for long floats)

String

- CHARACTER(n) (fixed length)
- CHARACTER (variable lenght)
- CHARACTER VARYING(n) (alias: VARCHAR(n))
- CLOB (Character Large Object, e.g., for large text)

Date

- DATE e.g. '1993-01-02'
- TIME e.g. '13:14:15'
- TIMESTAMP e.g. '1993-01-02 13:14:15.000001'

Binary

- BIT[(n)] e.g. B'01000100'
- BLOB[(n)] e.g. X'49FE' (Binary Large Objects, e.g., for multimedia)

Boolean

Boolean

Listagem não exaustiva...

SQL - Tipo de Dados

Alguns mais utilizados...

- char(n)
 - cadeia de caracteres de tamanho fixo n
- varchar(n)
 - cadeia de caracteres com tamanho máximo n
- int
 - números inteiros (4 bytes)
- numeric(precisão, escala)
 - números reais "sem limite" de tamanho
- date e time
 - data e hora
- boolean*
 - valores booleanos

SQL Server - Tipos de Dados

Numeric Data Types

Data Type	Description	Length
int	Stores integer values ranging from -2,147,483,648 to 2,147,483,647	4 bytes
tinyint	Stores integer values ranging from 0 to 255	1 byte
smallint	Stores integer values ranging from -32,768 to 32,767	2 bytes
bigint	Stores integer values ranging from -253 to 253-1	8 bytes
money	Stores monetary values ranging from -922,337,203,685,477.5808 to 922,337,203,685,477.5807	8 bytes
smallmoney	Stores monetary values ranging from -214,748.3648 to 214,748.3647	4 bytes
decimal(p,s)	Stores decimal values of precision p and scale s. The maximum precision is 38 digits	5–17 bytes
numeric(p,s)	Functionally equivalent to decimal	5–17 bytes
float(n)	Stores floating point values with precision of 7 digits (when n =24) or 15 digits (when n =53)	4 bytes (when n=24) or 8 bytes (when n=53)
real	Functionally equivalent to float(24)	4 bytes

SQL Server- Tipos de Dados (cont.)

Character String Data Types

Data Type	Description	Length
char(n)	Stores n characters	n bytes (where n is in the range of 1–8,000)
nchar(n)	Stores n Unicode characters	2n bytes (where n is in the range of 1–4,000)
varchar(n)	Stores approximately n characters	Actual string length +2 bytes (where n is in the range of 1–8,000)
varchar(max)	Stores up to 231–1 characters	Actual string length +2 bytes
nvarchar(n)	Stores approximately n characters	2n(actual string length) +2 bytes (where n is in the range of 1–4,000)
nvarchar(max)	Stores up to ((231–1)/2)– 2 characters	2n(actual string length) +2 bytes

Binary Data Types

Data Type	Description	Length
bit	Stores a single bit of data	1 byte per 8 bit columns in a table
binary(n)	Stores n bytes of binary data	n bytes (where n is in the range of 1–8,000)
varbinary(n)	Stores approximately <i>n</i> bytes of binary data	Actual length +2 bytes (where n is in the range of 1–8,000)
varbinary(max)	Stores up to 231–1 bytes of binary data	Actual length +2 bytes

SQL Server- Tipos de Dados (cont.)

Date and Time Data Types

Data Type	Description	Length	Example
date	Stores dates between January 1, 0001, and December 31, 9999	3 bytes	2008-01-15
datetime	Stores dates and times between January 1, 1753, and December 31, 9999, with an accuracy of 3.33 milliseconds	8 bytes	2008-01-15 09:42:16.142
datetime2	Stores date and times between January 1, 0001, and December 31, 9999, with an accuracy of 100 nanoseconds	6–8 bytes	2008-01-15 09:42:16.1420221
datetimeoffset	Stores date and times with the same precision as datetime2 and also includes an offset from Universal Time Coordinated (UTC) (also known as Greenwich Mean Time)	8-10 bytes	2008-01-15 09:42:16.1420221 +05:00
smalldatetime	Stores dates and times between January 1, 1900, and June 6, 2079, with an accuracy of 1 minute (the seconds are always listed as ":00")	4 bytes	2008-01-15 09:42:00
time	Stores times with an accuracy of 100 nanoseconds	3–5 bytes	09:42:16.1420221

SQL - Definição de Domínio

- O comando create domain permite definir novos tipos de dados.
- Um domain pode conter um valor de defeito (default) e restrições do tipo not null e check.

```
Criação...

CREATE DOMAIN compsalary INTEGER

NOT NULL CHECK (compsalary > 750);

Utilização...

CREATE TABLE EMPLOYEE (
...

Salary

...);
```


SQL - Definição de Novo Tipo

 Como alternativa ao domain, podemos criar só um novo tipo (alias) com o comando create type.

```
Criação...
CREATE TYPE SSN FROM varchar(9) NOT NULL;

Utilização...
CREATE TABLE EMPLOYEE (
...
Ssn SSN,
...);
```

• Nota: Em geral, é mais limitado que o create domain.

DDL - Criar uma Tabela

```
CREATE TABLE tbname ( A1 D1, A2 D2, ..., An Dn,
                     (integrity-constraint1),
                     (integrity-constraintK) );
tbname - nome da relação (tabela)
CREATE TABLE COMPANY. EMPLOYEE (...)
CREATE TABLE EMPLOYEE (...)
COMPANY - nome do schema
A1 D1, A2 D2, ..., An Dn
A1...An - Atributos da relação
D1...Dn - Domínio dos atributos
Restrições de Integridade
integrity-constraint1,
integrity-constraintN
```


Criar uma Tabela (exemplo)

```
CREATE TABLE...
definindo atributos e respectivo domínio.
CREATE TABLE EMPLOYEE (
                        VARCHAR(15),
   Fname
   Minit
                        CHAR,
   Lname
                        VARCHAR(15),
                        CHAR(9),
   Ssn
   Bdate
                        DATE,
                        VARCHAR(30),
   Address
   Sex
                        CHAR,
                        DECIMAL(10,2),
   Salary
                        CHAR(9),
   Super_ssn
                        INT);
   Dno
```


Atributos - Valores por Omissão

- Podem ser definidos valores por omissão para cada coluna
 - utilizando o termo "default"

```
CREATE Com default ...

CREATE TABLE EMPLOYEE (
Fname VARCHAR(15),
...
Salary DECIMAL(10,2) DEFAULT 0,
...
Dno INT);
```


Restrições de Integridade

- **check** (*P*)
 - impor uma regra a um atributo
- not null
 - atributo n\u00e3o pode ser null
- primary key (A1, ..., An)
 - definir chave primária
- unique (*A*1, ..., *An*)
 - chaves candidatas não primárias
- foreign key
 - definir chave estrangeira

As restrições podem ser de:

- coluna referem-se a apenas uma coluna e são descritas em frente à coluna
- tabela referem-se a mais do que a uma coluna e ficam separadas da definição das colunas

Restrição CHECK

```
Restrição CHECK na coluna...

CREATE TABLE EMPLOYEE (
...
Salary
DECIMAL(10,2)
CHECK (Salary > 12),
...);
```

Restrição aplicada a cada atributo referenciado sempre que um tuplo é introduzido ou modificado.

Restrição PRIMARY KEY

- Só podemos definir uma chave primária na tabela.
 - Por definição, a chave primária não pode conter valores repetidos ou nulos.

```
Restrição PRIMARY KEY na coluna...

CREATE TABLE EMPLOYEE (
Ssn CHAR(9) PRIMARY KEY,
...);
```

```
Restrição PRIMARY KEY na tabela...

(obrigatório se PK for composta por mais do que um atributo)

CREATE TABLE EMPLOYEE (
...
Ssn CHAR(9),
...
PRIMARY KEY (Ssn));
```


Restrição UNIQUE

- Utilizada para as chaves candidatas alternativas.
 - Não pode conter valores repetidos mas pode ter valores null.

Restrição FOREIGN KEY

- Utilizada para declarar chaves estrangeiras.
- Uma chave estrangeira deve referenciar uma chave primária ou única.

```
Restrição FOREIGN KEY na coluna...

CREATE TABLE EMPLOYEE (
...

Super_ssn CHAR(9) REFERENCES EMPLOYEE(Ssn),
Dno INT REFERENCES DEPARTMENT(Dnumber) NOT NULL,
...);
```

```
Restrição FOREIGN KEY na tabela...

CREATE TABLE EMPLOYEE (
...
Ssn CHAR(9),
Dno INT NOT NULL,
...
FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn),
FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber) );
```


Restrição FOREIGN KEY

Integridade Referencial

- Pode haver uma violação quando são inseridos ou eliminados tuplos ou quando os atributos chave estrangeira ou primária são modificados, resultando numa rejeição da operação.
- Podemos definir as seguintes ações alternativas: "on delete" e "on update", com as seguintes opções:
 - restrict não deixa efetuar a operação
 - cascade apaga os registos associados (delete) ou altera a chave estrangeira (update)
 - set null a chave estrangeira passa a null.
 - set default a chave estrangeira passa a ter o valor por 27 omissão.

Restrição FOREIGN KEY

Integridade Referencial

```
CREATE TABLE EMPLOYEE (
...
Ssn CHAR(9),
Dno INT NOT NULL,
...
FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
ON DELETE SET NULL ON UPDATE CASCADE,
FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber)
ON DELETE SET DEFAULT ON UPDATE CASCADE);
```

Se o tuplo do supervisor é eliminado, a coluna Super_ssn dos supervisionados passa automaticamente a Null.

Se o Ssn do supervisor é atualizado, a coluna Super_ssn dos supervisionados é atualizada em cascata.

Restrições - atribuição de nome

- Imaginando que queremos alterar uma restrição de uma tabela... Como referenciá-la?
- Nestas situações temos de "baptizar" a restrição com um nome próprio.

```
Restrições com nome...

CREATE TABLE EMPLOYEE (
...

CONSTRAINT EMPPK
PRIMARY KEY (Ssn),
CONSTRAINT EMPSUPERFK
FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
ON DELETE SET NULL ON UPDATE CASCADE,
CONSTRAINT EMPDEPTFK
FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber)
ON DELETE SET DEFAULT ON UPDATE CASCADE);
```


Tabela - Drop

 O comando drop table remove da base de dados toda a informação sobre a tabela e os dados (tuplos).

```
Eliminar a tabela EMPLOYEE

DROP TABLE EMPLOYEE;
```

- Caso haja violação de restrições de integridade referencial, a operação é rejeitada.
- No entanto, a opção CASCADE* permite eliminar a tabela e os elementos referenciados na restrição.

```
Eliminar a tabela EMPLOYEE com opção CASCADE

DROP TABLE EMPLOYEE CASCADE;
```

^{*} Não está disponível em SQL Server. Solução: eliminar primeiro o constraint.

Tabela - Alter

- O comando alter table é utilizado para modificar o esquema da tabela ou restrições existentes.
- Adicionar atributos à tabela:

ALTER TABLE tablename ADD Attribute Domain

ALTER TABLE EMPLOYEE ADD nofiscal INT;

- Todos os tuplos existentes ficam com valor null no novo atributo.
- Adicionar restrições à tabela:

ALTER TABLE tablename ADD CONSTRAINT name theconstraint

ALTER TABLE EMPLOYEE ADD CONSTRAINT salarymin CHECK (Salary >475);

Tabela - Alter

Eliminar atributos da tabela:

ALTER TABLE tablename DROP COLUMN attributename

ALTER TABLE EMPLOYEE DROP COLUMN nofiscal;

• Eliminar restrições da tabela:

ALTER TABLE tablename DROP CONSTRAINT name

ALTER TABLE EMPLOYEE DROP CONSTRAINT salarymin;

Alterar um atributo de uma tabela:

ALTER TABLE tablename ALTER Attribute Domain

ALTER TABLE EMPLOYEE ALTER COLUMN noFiscal CHAR(9);

SQL DDL - Caso de Estudo

Empresa

Esquema Relacional da BD da Empresa

EMPLOYEE

Empresa - Criação da Relação EMPLOYEE

EMPLOYEE

Dependent name

Empresa - Criação da Relação DEPARTMENT

Empresa - Criação da Relação DEP_LOCATIONS

Empresa - Criação da Relação PROJECT

Empresa - Criação da Relação WORKS_ON

Empresa - Criação da Relação DEPENDENT

Empresa DDL - Considerações Práticas

```
EXEMPLO: Employee, Department and Foreign Keys
CREATE TABLE EMPLOYEE (
  Ssn
                      CHAR(9)
                                              NOT NULL,
   Super ssn
                      CHAR(9),
                      INT
                                              NOT NULL,
   Dno
   PRIMARY KEY (Ssn),
   FOREIGN KEY (Super ssn) REFERENCES EMPLOYEE(Ssn));
CREATE TABLE DEPARTMENT(
   Dnumber
                                           NOT NULL,
                   INT
   PRIMARY KEY (Dnumber),
   ...):
ALTER TABLE EMPLOYEE
          ADD CONSTRAINT EMPDEPTFK FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber);
ALTER TABLE DEPARTMENT
          ADD CONSTRAINT DEPTMGRFK FOREIGN KEY (Mgr ssn) REFERENCES EMPLOYEE(Ssn);
```

- Na prática só podemos criar restrições de integridade referencial, com recurso a chaves estrangeiras, quando temos as duas relações criadas.
- Assim, devemos começar por criar cada umas das relações (tabelas) e só depois definir as restrições.
 - Ou pelo menos uma delas...

SQL Server - Database Diagram

A Seguir?

Data Operations – Relational Algebra

r		
A	В	
α	1	
α	2	
β	1	

В
2
3

r∪s	
A	В
α	1
α	2
β	1
β	3

NOT NULL,

NOT NULL,

NOT NULL,

Query syntax

SELECT <desired attributes>

FROM <one or more tables>

WHEREpredicate holds for selected tuple>

GROUP BY <key columns, aggregations>
HAVING predicate holds for selected group>

ORDER BY < columns to sort>

SQL – Describe Database Schema

CREATE TABLE DEPARTMENT

(Dname VARCHAR(15)
Dnumber INT

Mgr_ssn CHAR(9)

Mgr_start_date DATE,

PRIMARY KEY (Dnumber),

UNIQUE (Dname),

FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn));

The E/R Model (Conceptual Model)

The Relational Schema

Part (Name,Description,Part#)

Supplier (Name, Addr)

Customer (Name, Addr)

Supplies (Name, Part#, Date)

Orders (Name, Part#)

Resumo

- Introdução ao SQL
- SQL DDL
 - Definição de dados (relações)
 - Definição de tipos de dados
 - Definição de restrições de integridade
- Caso de Estudo