COMP2610/6261 - Information Theory Assignment in British Briti

https://eduassistpro.github.

24 September, 2018

Assignment Project Exam Help

- Interv
 - * Shhttps://eduassistpro.github.
 - The Prefix Property and Intervals

Prefix Codes as Trees (Recap)

$$C_2 = \{0, 10, 110, 111\}$$

The Source Coding Theorem for Symbol Codes

Assignment Project Exam Help
Source Coding Theorem for Symbol Codes
For any en
https://eduassistpro.github.

In particular, Shannon codes C— those wit — — have expected to e land the hin heaft the order assist_productions.

Huffman Coding: Recap

 $\mathcal{A}_X = \{a, b, c, d, e\} \text{ and } \mathcal{P}_X = \{0.25, 0.25, 0.2, 0.15, 0.15\}$

Assignment Project Exam Help

https://eduassistpro.github.
Add WeChat edu_assist_pro

From Example 5.15 of MacKay

$$C = \{00, 10, 11, 010, 011\}$$

Huffman Coding: Advantages and Disadvantages

Advantages:

A Salgamment Project Exam Help

https://eduassistpro.github.

Huffman Coding: Advantages and Disadvantages

Advantages:

• Huffman Codes are provably optimal amongst prefix codes \$\$12nment Project Exam Help

- Ass https://eduassistpro.github.
 - The extra bit in the SCT
 - $\begin{array}{c} \text{ If } H(X) \text{ is large-not a problem tedu_assist_problem.} \\ \text{ If } H(X) \text{ is small (e.g., \sim 1 bit for Englis} \end{array}$

Huffman codes are the best possible symbol code but symbol coding is not always the best type of code

This time

A different way of coding (interval coding)

Assignment Project Exam Help

Worse guarantee than Huffman codes, but will lead us to the powerful arithmeti

https://eduassistpro.github.

Assignment Project Exam Help

- Interv
 - * Shhttps://eduassistpro.github.
 - The Prefix Property and Intervals

Suppose X is an ensemble with probabilities $(p_1, \ldots, p_{|X|})$ Assignment Project Exam Help

Define the cumulative distribution function by

https://eduassistpro.github.

Suppose X is an ensemble with probabilities $(p_1, \ldots, p_{|X|})$ Assignment Project Exam Help

https://eduassistpro.github.
and the modified cumulative distribution function by

Suppose X is an ensemble with probabilities $(p_1,\ldots,p_{|X|})$ Assignment Project Exam Help

Define the cumulative distribution function by

https://eduassistpro.github.

and the modified cumulative distribution function by

We can losslessly code outcomes based on \overline{F} !

Assignment Project Exam Help https://eduassistpro.github. Add WeChat edu_assist_pr

 $\overline{F}(x)$ will uniquely determine each outcome x (lossless code)

Example

Suppose X has outcomes (a Pa2, a3, a4) and probabilities

Project Exam Help

Define th

https://eduassistpro.github.

Example

Suppose X has outcomes (a Pa2, a3, a4) and probabilities ASSISTINGTONE Suppose X has outcomes (a Pa2, a3, a4) and probabilities Help

Define th _____

https://eduassistpro.github.

Add Wae Chapt edu_assist_pr

How do we code $\overline{F}(x)$ in binary though?

Real Numbers in Binary

Real numbers are commonly expressed in decimal:

```
Assignment Project Exam Help
0.94_{10}
```

https://eduassistpro.github.

Real Numbers in Binary

Real numbers are commonly expressed in decimal:

Some real https://eduassistpro.github.

Real Numbers in Binary

Real numbers are commonly expressed in decimal:

$$\frac{1}{3} = 0$$
. https://eduassistpro.github.

Real numbers can also be similarly expressed in bin

$$1.5_{10} = 1.1_2 \rightarrow$$

$$1 \times 2 + \times$$

$$0.75_{10} = 0.11_2 \rightarrow$$

$$+1 \times 2^{-1} + 1 \times 2^{-2}$$

$$\frac{1}{3} = 0.010101..._2 = 0.\overline{01}_2$$
 and $\frac{22}{7} = 11.001001..._2 = 11.\overline{001}_2$

Converting Decimal Fractions to Binary

To convert a fraction (e.g. 3/4) to binary:

- Multiply the fraction by 2. Take the whole number part of the result;
- As this is the first be that the first part of the result, and just retain the
 - part

 Presented to the part of the part of
 - https://eduassistpro.github.
 - you detect an infinite loop

Converting Decimal Fractions to Binary

To convert a fraction (e.g. 3/4) to binary:

- Multiply the fraction by 2. Take the whole number part of the result;
- ssignimente Project Exam Help 2 Throw away the whole number part of the result, and just retain the
 - https://eduassistpro.github.
 - you detect an infinite loop

part

• 2 · 0.625 = 1.25, so first bit is 1

- $2 \cdot 0.25 = 0.5$, so second bit is 0
- $2 \cdot 0.5 = 1.0$, so third bit is 1
- decimal part is zero, so stop

Shannon-Fano-Elias Coding: To Infinity and Beyond

Assignment Project Exam Help

https://eduassistpro.github.

Shannon-Fano-Elias Coding: To Infinity and Beyond

```
A (c) will on improvement the lagroup of the lagrou
```

• e.g. i ______

https://eduassistpro.github.

Shannon-Fano-Elias Coding: To Infinity and Beyond

A (c) will on improvement the lagroup of the lagrou

• e.g. i -

Fortunat https://eduassistpro.github.

Shannon-Fano-Elias coding: code using the finite of \overline{F} (Add WeChat edu_assist_problem)

• (Almost) Constructive procedure for a Shan

Cumulative Distribution

Example

Cumulative distribution for $\mathbf{p} = (\frac{2}{9}, \frac{1}{9}, \frac{1}{3}, \frac{1}{3})$

Shannon-Fano-Elias Coding Example

Assignment Project Exam Help

https://eduassistpro.github.

Shannon-Fano-Elias Coding

Example

Assignment Project Exam Help

Add Wethat edu_assist_production as a second control of the contro

a_2	1/9	1/3	5/18	$0.01\overline{000111}_2$	5	01000
a_3	1/3	2/3	1/2	0.12	3	100
a_4	1/3	1	5/6	$0.1\overline{10}_2$	3	110

Shannon-Fano-Elias Coding

Example

Assignment Project Exam Help

A	del		e(x)	nated	U	<u>assist</u>	pr
a_1	2/9	2/9	1/9	0.00 2		_	_
a_2	1/9	1/3	5/18	$0.01\overline{000111}_{2}$	5	01000	
a_3	1/3	2/3	1/2	0.12	3	100	
a_4	1/3	1	5/6	$0.1\overline{10}_2$	3	110	

Example: Sequence $\mathbf{x} = a_3 a_3 a_1$ coded as 100 100 0001.

Remaining questions

Assignment Project Exam Help Encoding with a Shannon-Fano-Elias code is simple

But we hat the state of the sta

- is the code prefix-free?
- how do we decode a given godeword?
 Add WeChat edu_assist_pr

Assignment Project Exam Help

- Interv
 - * https://eduassistpro.github.
 - The Prefix Property and Intervals

 - ExAdd WeChat edu_assist_pr

Shannon-Fano-Elias Coding: Is it lossless?

Denote the Shannon-Fano-Elias code for an outcome x by

Assignment Project Exam Help where $\lfloor \cdot \rfloor_{\ell}$ means truncate to first ℓ bits

https://eduassistpro.github.

Shannon-Fano-Elias Coding: Is it lossless?

Denote the Shannon-Fano-Elias code for an outcome x by

Assignment Project Exam Help where $\lfloor \cdot \rfloor_{\ell}$ means truncate to first ℓ bits

https://eduassistpro.github.

Shannon-Fano-Elias Coding: Is it lossless?

Denote the Shannon-Fano-Elias code for an outcome x by

Assignment Project Exam Help where $\lfloor \cdot \rfloor_{\ell}$ means truncate to first ℓ bits

https://eduassistpro.github.

Add We'Chatedu_assist_pr

i.e. the codeword lies entirely in the interval between

- These intervals don't overlap for different outcomes
- The code is lossless!

Assignment Project Exam Help

- Interv
 - * https://eduassistpro.github.
 - The Prefix Property and Intervals

 - ExAdd WeChat edu_assist_pr

Prefixes and Binary Strings

What is the set of binary strings that begin with $\mathbf{b} = b_1 \dots b_n$?

Assignment Project Exam Help

https://eduassistpro.github.

Prefixes and Binary Strings

What is the set of binary strings that begin with $\mathbf{b} = b_1 \dots b_n$?

Assignment Project Exam Help

https://eduassistpro.github.

Prefixes and Binary Strings

What is the set of binary strings that begin with $\mathbf{b} = b_1 \dots b_n$?

Assignment Project Exam Help Basically, anything ranging from

https://eduassistpro.github.

We could equally associate $b_1 \dots b_n$ with the fraction $0.b_1 \dots b_n$

Assignment Project Exam Help

https://eduassistpro.github.

We could equally associate $b_1 \dots b_n$ with the fraction $0.b_1 \dots b_n$

```
Assignment Project Exam Help 0.b_1...b_n0, 0.b_1...b_n1, 0.b_1...b_n01, 0.b_1...b_n11,...
```

https://eduassistpro.github.

We could equally associate $b_1 \dots b_n$ with the fraction $0.b_1 \dots b_n$

```
Assignment Project Exam Help 0.b_1...b_n0, 0.b_1...b_n1, 0.b_1...b_n01, 0.b_1...b_n11,...
```

```
Basicall https://eduassistpro.github.
```

i.e.

We could equally associate $b_1 \dots b_n$ with the fraction $0.b_1 \dots b_n$

Abstis the set of bipary string that begin with Exam Help $0.b_1 \dots b_n 0, 0.b_1 \dots b_n 1, 0.b_1 \dots b_n 01, 0.b_1 \dots b_n 11, \dots$

Basicall https://eduassistpro.github.

i.e.

Add WeChatedu_assist_pr

Note that

$$0.b_1 \dots b_n \overline{1} = 0.b_1 \dots b_n + \frac{1}{2^n} = 0.b_1 \dots b_n + 0.0 \dots 1,$$

just like $0.1\overline{9}_{10} = 0.2$

Intervals: Definition

Assignment Project Exam Help It will be useful to analyse the prefix property in terms of intervals

An intervented that the smaller than the

Example Addo. We Cahat edu_assist_pr

Intervals in Binary

The set of numbers in [0,1) that start with a given sequence of bits

Assignment Project Exam Help

```
https://eduassistpro.github.

^{0.0}
^{0.0...1)}
```

• 01 Add 10WeChat edu_assisto_5pr

```
• 1101 \rightarrow [0.1101, 0.1110)
```

 $[0.8125, 0.875)_{10}$

Prefix Property and Intervals

Prefix property (tree form): Once you pick a node in the binary tree, you cannot pick any of its descendants

Arsisirs in the property of th

https://eduassistpro.github.

Why? This contains all binary strings for which

e.g. If we pick of 110, we cannot pick anything frou _assist_pr

```
 [0.0110, 0.0111) = [0.0110\overline{0}, 0.0110\overline{1}) 
 = \{0.0110, 0.01101, 0.011001, 0.011011, \dots, \}
```

Prefix Property and Intervals

```
Assign the interval of personal property of the interval property of t
```

• And if $\bf b$ has $\bf b'$ as a prefix, so does anythin $\bf Add$ $\bf WeChat\ edu_assist_pr$

Prefix Property and Intervals

```
Assignment Proise the Example Help
   e.g. \mathbf{b}' = 01 is prefix of \mathbf{b} = 0101 so [0.0101, 0.0110)
                                           [0.01, 0.10)
       https://eduassistpro.github.
```

Why? Be

And if b has b' as a prefix, so does anythin

Add WeChat edu_assist_pr

Implication: If intervals for **b**, **b**' are disjoint, o another

Shannon-Fano-Elias Coding is Prefix-Free

We already know $[\overline{F}(x)]_{\ell(x)} > F(x-1)$. We also have

Assignment Project Exam Help

https://eduassistpro.github.

and so

The intervals for each codeword are thus trivially disjoint, since we know each of the [F(x-1), F(x)) intervals is disjoint

The SFE code is prefix-free!

Two Types of Interval

The **symbol interval** for some outcome x_i is (assuming $F(x_0) = 0$)

Assignment Project Exam Help These intervals are disjoint for each outcome

https://eduassistpro.github. $|\overline{F}(x_i)|_{\ell(x_i)}, |\overline{F}(x_i)|_{\ell(x_i)} + \dots$

This is a sheddet Weembhattvaedu_assist_pr

All strings in the codeword interval start with the same prefix

• This is not true in general for the symbol interval

Assignment Project Exam Help

- Interv
 - * https://eduassistpro.github.

 - Decoding WeChat edu_assist_pr

Shannon-Fano-Elias Decoding

To decode a given bitstring:

As start with the first bit, an Pompute the corresponding binary interval As SIGNMENT Project Exam Help

- if the interval is strictly contained within that of a codeword:
 - https://eduassistpro.github.
- o repeat (1) for the rest of the bitstring else included ext bit and compliance of the assist_pl

We might be able to stop early owing to redundancies in SFE

Shannon-Fano-Elias Decoding

Let $\mathbf{p} = \{\frac{2}{9}, \frac{1}{9}, \frac{1}{3}, \frac{1}{3}\}$. Suppose we want to *decode* 01000:

Find symbol interval containing codeword interval for $01000 = [0.25, 0.28125)_{10}$

We could actually stop once we see 0100, since $[0.25, 0.3125) \subset [0.22, 0.33]$

Assignment Project Exam Help

- Interv
 - * https://eduassistpro.github.
 - The Prefix Property and Intervals

 - Experience Decoding to Decoding the Experience of the Experience

Expected Code Length of SFE Code

The extra bit for the code lengths is because we code $\frac{p_i}{2}$ and

Assignment Project Exam Help

What is the with

https://eduassistpro.github.

$$L(C,X) = p_i\ell(a_i) =$$

Add WeChat edu_assist_pr

$$= H(X) + 2$$

Similarly, $H(X) + 1 \le L(C, X)$ for the SFE codes.

Why bother?

Aes Spientente Projectan Example Projectan Examp

https://eduassistpro.github.

so why not just use Huffman codes?

SFE is a stopping to the organization of the o

Roughly, try to apply SFE to a block of outcome

Summary and Reading

Main points:

- Problems with Huffman coding symbol distribution

 Assriagming to the result of the content of th
 - Shannon-Fano-Elias Coding:
 - https://eduassistpro.github.
 - Extr

Summary and Reading

Main points:

- Problems with Huffman coding symbol distribution
- Assignment Project Exam Help
 - Shannon-Fano-Elias Coding:
 - https://eduassistpro.github.
 - Extr
 - Reading:
 - InterAcid: Wke Class edu_assist_pr

ξ

• Shannon-Fano-Elias Coding: Cover & Tho

Summary and Reading

Main points:

- Problems with Huffman coding symbol distribution

 Assragning to the result of the content of the
 - Shannon-Fano-Elias Coding:
 - https://eduassistpro.github.
 - Extr

Reading:

- Interpaded: We chate edu_assist_pr
- Shannon-Fano-Elias Coding: Cover & Tho

Next time:

Extending SFE Coding to sequences of symbols