

Sky of Blue, Sea of Green

Exploring Environmental Factors and Host Resilience Response in Epidemic Dynamics

Dillon Max, Gabriel Kosmacher

Background

Field Data

Daphnia Dynamics Model

Host Growth (Logistic)

Death

Exposure

Immunity

$$\frac{dS}{dt} = B_t b(t) (S + \rho(E+I)) \left(1 - \frac{S+E+I}{k_t K(t)} \right) - (d + P_t p(t)) S - \beta SZ + k \Gamma_t \gamma(t) E$$

$$rac{dE}{dt} = eta SZ - \left[d + P_t p(t)
ight]E - k\Gamma_t \gamma(t)E - (1-k)lpha E$$
 Progression

$$\frac{dI}{dt} = (1 - k)\alpha E - [d + v + \theta P_t p(t)] I$$

$$\frac{dZ}{dt} = \sum_{t} \sigma(t) \left[d + v \right] I - \lambda Z - f \left[S + E + I \right] Z$$
 Release Loss Consumption

Seasonality Parameters

No Seasonality

p = 0.55, k=0.1, sigma=0.35

Too Much Recovery?

p = 0.55, k=0.1, sigma=0.35

p = 0.55, k=0.7, sigma=0.35

Impact of Fish Hunger?

p = 0.55, k=0.1, sigma=0.35

p = 0.70, k=0.1, sigma=0.35

Everyone Gets Sick

p = 0.55, k=0.1, sigma=0.35

p = 0.70, k=0.0, sigma=0.35

Too Many Spores?

p = 0.55, k=0.1, sigma=0.35

p = 0.55, k=0.1, sigma=0.85

Conclusions

• Seasonality plays a large role

- Immune response is important, but not necessarily essential
- Predation influences peak structure, and is in line with "keep the heards healthy" hypothesis
- Spore release has dramatic effect on infection prevalence

Acknowledgments & References

We Would like to Acknowledge our Advisor Dr. Zoi Rapti and our Collaborators Dr. Carla Cáceres and Dr. Tara Stewart Merrill.

- [1] M. Scheffer, S. Rinaldi, Y. A. Kuznetsov, and E. H. van Nes. Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system. Oikos, 80(3):519–532, 1997.
- [2] M. S. Shocket, A. Magnante, M. A. Duffy, C. E. C´aceres, and S. R. Hall. Can hot temperatures limit disease transmission? A test of mechanism in a zooplankton-fungus system. Functional Ecology, 33:2017–2029, 2019.
- [3] T. E. Stewart Merrill, S. R. Hall, and C. E. C´aceres. Parasite exposure and host susceptibility jointly drive the emergence of epidemics. Ecology, 102(2):e03245, 2020.
- [4] T. E. Stewart Merrill, Z. Rapti, and C. E. C´aceres. Host controls of within-host disease dynamics: insight from an invertebrate system. The American Naturalist, 198(3):317–332, 2021.