AD A 0 62948

PERFORMANCE OF COMMERCIALLY AVAILABLE

FLAME ARRESTORS FOR BUTANE/AIR

AND GASOLINE/ AIR MIXTURES

R. P. WILSON, JR. AND D. P. CROWLEY

FINAL REPORT SEPTEMBER 1978

Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
United States Coast Guard
Office of Research and Development
Washington, D.C. 20590

79 01 05 015

MOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this import do not resonantly reflect the official view or policy of the Coast Guard; and they do not constitute a standard, specification, or regulation.

This report, or portions thereof may not be used for advertising or sales promotion purposes. Citation of trade names and manufacturers does not constitute endorsament or approval of such products.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPRODUCED FROM BEST AVAILABLE COPY

(14) (17)		- Technical Report Documents
1. Report No.	2. Government Accession No	3. Recipient's Catalog No.
CG.D-12-	78	(11)
Title and Subtitle		3 Amory Dure
Performance of Comm	ercially Available Flame	Arrestors September 978
for Butane/Air and	Gasoline/Air Mixtures	6. Performing Organization Code
makan and damaga ing ing mga kapan tapin ing ing at ing ing the same of the sa	L. C. And Address Co.	
7. Authorioty	mark area a language and a second of the	8 Performing Organization Report N
R. P./Wilson, Jr.	md D. P./Crowley /	(1-)91, /
9. Performing Organization Name Arthur D. Little, I	and Address	10. Wark Unit No. (TRAIS)
20 Acorn Park	ne.	3304.01.03.2
	02140	1 5 Pom co (10 257
		15 DOT-CG-42,357-A
12. Sponsoring Agency Name and A		13. Type of Report and Period Cover
Department of Tran		G Final Report
U. S. Coast Guard (
Washington, D. C.	20590	14. Sponsoring Agency Code G-DSA-1/TP44
15. Supplementery Notes		G-D3R-1/1F44
16. Abstract		
empirical basis for intended to be used maintenance of carg	evaluating gasoline/air as background informatio o tank venting systems.	on for design, inspection, and Several commerically available
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun	evaluating gasoline/air as background informatio o tank venting systems. d to be effective in quer	flame arrestors. The study was on for design, inspection, and
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun 200 ft/sec flame sp.	evaluating gasoline/air as background informatio o tank venting systems. d to be effective in quer	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun 200 ft/sec flame sp.	evaluating gasoline/air as background informatio o tank venting systems. d to be effective in quer	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun 200 ft/sec flame sp.	evaluating gasoline/air as background informatio o tank venting systems. d to be effective in quer	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun 200 ft/sec flame sp.	evaluating gasoline/air as background informatio o tank venting systems. d to be effective in quer	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun 200 ft/sec flame sp.	evaluating gasoline/air as background informatio o tank venting systems. d to be effective in quer	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun 200 ft/sec flame sp.	evaluating gasoline/air as background informatio o tank venting systems. d to be effective in quer	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun 200 ft/sec flame sp.	evaluating gasoline/air as background informatio o tank venting systems. d to be effective in quer	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun 200 ft/sec flame sp.	evaluating gasoline/air as background informatio o tank venting systems. d to be effective in quer	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun 200 ft/sec flame sp.	evaluating gasoline/air as background informatio o tank venting systems. d to be effective in quer	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun 200 ft/sec flame sp.	evaluating gasoline/air as background informatio o tank venting systems. d to be effective in quer	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun 200 ft/sec flame spspeed.	evaluating gasoline/air as background information tank venting systems. It is to be effective in quered and gasoline vapor/ai	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun 200 ft/sec flame speed. 7. Key Words Flame Arrestor	evaluating gasoline/air as background information tank venting systems. In the detective in quered and gasoline vapor/air systems.	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to ir flames up to 125 ft/sec flame ir flames up to 125 ft/sec flame stribution Statement cument is available to the public
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun 200 ft/sec flame speed. 7. Key Words Flame Arrestor Flame arrester	evaluating gasoline/air as background information tank venting systems. In the detective in quere and gasoline vapor/air and gasoline vapor/air and gasoline vapor/air and gasoline and gasoline and gasoline and gasoline as a large gasoline as a la	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to ir flames up to 125 ft/sec flame ir flames up to 125 ft/sec flame arribution Statement cument is available to the public rough the National Technical Info
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun 200 ft/sec flame speed. 7. Key Words Flame Arrestor Flame arrester Arrestor	evaluating gasoline/air as background information tank venting systems. In the detective in quere and gasoline vapor/air and gasoline vapor/air and gasoline vapor/air and gasoline and gasoline and gasoline and gasoline as a large gasoline as a la	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to ir flames up to 125 ft/sec flame ir flames up to 125 ft/sec flame stribution Statement cument is available to the public
Tests were under empirical basis for intended to be used maintenance of carg arrestors were foun 200 ft/sec flame speed. 7. Key Words Flame Arrestor Flame arrester	evaluating gasoline/air as background information tank venting systems. In the detective in quere and gasoline vapor/air and gasoline vapor/air and gasoline vapor/air and gasoline and gasoline and gasoline and gasoline as a large gasoline as a la	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to ir flames up to 125 ft/sec flame ir flames up to 125 ft/sec flame arribution Statement cument is available to the public rough the National Technical Info
Tests were under empirical basis for intended to be used maintenance of carg arrestors were found 200 ft/sec flame speed. 7. Key Words Flame Arrestor Flame arrester Arrestor Arrestor 9. Security Classif. (of this report)	evaluating gasoline/air as background informatic tank venting systems. It is a part of the tank of the effective in quere ed and gasoline vapor/air ed and gasoline vapor/air ed and gasoline the sutane time.	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to ar flames up to 125 ft/sec flame are flames up to 125 ft/sec flames up to 125 ft/sec flame are flames up to 125 ft/sec flame are flames up to 125 ft/sec flames up
Tests were under empirical basis for intended to be used maintenance of carg arrestors were found 200 ft/sec flame speed. 7. Key Words Flame Arrestor Flame arrestor Arrestor	evaluating gasoline/air as background informatic tank venting systems. It is a specific to be effective in quered and gasoline vapor/air specific tank vapor/air specific tank venting systems. Flame Control Gasoline Butane ti	flame arrestors. The study was on for design, inspection, and Several commerically available aching butane/air flames up to ar flames up to 125 ft/sec flame are flames up to 125 ft/sec flames up to 125 ft/sec flame are flames up to 125 ft/sec flame are flames up to 125 ft/sec flames up

ROY OF WAD

METRIC CONVERSION FACTORS

e Messares	1		į	A Sancta	į		Special and an artist		1			-	-	short tons		first payor	Samt's	1	, di	2000	Cubic yards			=1	Fabrumbe it			08 08	
rsions from Metri	Mattight by	10.0	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5)	5	AREA	6.16	7 :			MASS (weight)	9 .036	2	2	VOLUME	Ş		8	×	×				TEMPERATURE (eract)	9/5 then	121	***	02 02	- 1
Approximate Convertions from Matric Measures	When You Know	= limeters	Continuetiers Partiers	methors.			square continuedars	Salaria Mariani	hecteres (10,000 m²)		*	ne de	kilograms	towars (1000 kg)			() ()	itters		Cuibec amplers	Cubec meters				Celsius	tengarature	2	0 + 1 × 1	
	Sympton	ı	ħ e	e J	i	,	%	. "!	1			01	9	-		ī	i -	_	_	."G	~ <u>.</u>				ູບ			•	
cz :		OZ					و الألالا	n H1111			E1 1	er Inlisi	11) 		•	•					•		• 	•			111	u 2
' ' '		•	dá,	7	. 	יויןיוי	' ' 6	'1'	' ' i	` ' '	 	l' '	'¦'	l' ' '	'''	' ' 	' '	' 3	'	'l''	' '	' '	1	'l' 2	'! ' '	' '	' ' ' 	inch	111
	1		Ę	5 5	e 5					`s 2	!	d	. 2	٠.		ī	Ē	Ē	i -		-	-	æ	æ		۶	,	.pr. 296.	
. Measures	7. 18.		A DESCRIPTION OF THE PERSON OF	Centimeters	metaes kulometaes		School centimeters	Square meters	Salem meters	square intometers hectares		i i	kuloorams	locnes			multipliers	mali litera		liers	liters	litters	cubic meters	cubic meters		Seleme	temperature	1 tables, see NBS Misc. P.	í
Approximate Conversions to Metric Messures	Maltiply by	LENGTH	•2.5	ង	6.9 4.1	AREA	5.9	80.0	8.0	2.6 9.4	MASS (weight)	*	0.45	6.0	VOLUME	•	n y	; F	3 6	2.90	8	3,6	0.03		ERATURE (exect)	6.9 tohan	subtracting 32)	ershars and more detailed	
Approximate Can	When Yee Know		5	1	yards miles		section extres	Square feet	spare vards	square miles acres		Onuces	spunod	short tons [2000 15]			Supoderen	fluid current	***************************************	QUATS	- C-	gellons smolleg	Cubic feet	cubic yards	TEMPE	Fahracher	Semperature	1 n. 7. 2.54 [east19]. For other exact conversions and more detailed tables, see NBS Misc. Publ. 286, 1955, others and Massive S. Publ. 296, 1955, other statements of the Charles and Massive S. Publ. 296, 1955, other statements of the Charles and Massive S. Publ. 296, 1955, other statements of the Charles and Massive S. Publ. 296, 1955, other statements of the Charles and Massive S. Publ. 296, 1955, other statements of the Charles and Massive S. Publ. 296, 1955, other statements of the Charles and Massive Statements of t	
	Symple		•	; #	r z		2	" ±	`፞፞፞፞ହ'	Ē		ð					3 A	a a	!	. 15	. 6	3.	J.	T _P		ļu.		1 in ± 2.54	

"ኔች"<u>ነ</u>

erright

Acknowledgement

Lieutenant Michael Flessner of the Marine Safety Branch, Division of Applied Technology, Office of Research and Development, United States Coast Guard contributed substantially in both the planning and interpretation of the experiments reported herein.

		TABLE OF CONTENTS	PAGE
ı.	BAC	KGROUND AND SUMMARY OF FINDINGS	1
	A.	Background	1
	В.	Summary of Findings	2
	C.	Vapor Recovery Systems and Applicability of Results	4
II.	EXP	ERIMENTAL METHODS	7
	Α.	Test Facility Description	7
	В.		25
	C.	Data Acquisition	26
		Gas Mixtures Tested	28
	E.	Flame Arrestors Tested	28
III.		ECT OF MIXTURE SPEED AND IGNITER LOCATION ON RRESTOR PERFORMANCE	44
	Α.	Purpose of Tests	44
	В.	Effect of Mixture Speed (Downstream Ignition)	44
	c.	Critical Mixture Velocity Which Allows Upstream Flame Propagation	47
	D.	Effect of Upstream Ignition	48
	E.	Marginal Arrestor Dimensions (Critical L & D) for Quenching Butane & Methane Flames	48
	F.	Compatibility of the Test Apparatus with	53
		Pressures Generated During Tests	53
	G.	Selection of "Worst Case" Condition	23
IV.	PER	FORMANCE OF OFF-THE-SHELF ARRESTORS	55
	Α.	Purpose of the Tests	55
		Approach	55
		Results	57
		Discussion and Conclusions	57
			J ,
APPE	NDIX	A - TABULATION OF TEST DATA ON THE EFFECT OF MIXTURE SPEED AND IGNITOR LOCATION	62
APPE	NDIX	B - TABULATION OF TEST DATA ON OFF-THE-SHELF	78

E Serlies ... &

3300 M.G. 344 A. 33 SID

I. BACKGROUND AND SUMMARY OF FINDINGS

A. Background

Tests were undertaken in order to provide the U.S. Coast Guard with an empirical basis for evaluating gasoline/air flame arrestors. The need to specify flame arrestors for gasoline vapor/six mixtures stems from recent EPA efforts to control hydromethon emissions during loading and unloading of gasoline. The Environmental Protection Agency (EPA) has issued a regulation requiring the recovery of vapor emitted during loading and unloading of gasoline from ships and barges in the Houston-Galveston Interstate Air Quality Control Region. Several U.S. Vessel loading terminals are scheduled to install Vapor Recovery Systems (VRS) to reduce the amount of hydrocarbons released to the atmosphere and to improve the ambient air quality. The U.S. Coast Guard, under the Ports and Waterways Safety Act (PL 92-340), is responsible for the safety of the VRS, as part of their responsibility for the safety of vessels and U.S. ports from the inherent hazard of handling petroleum products. The Coast Guard must insure that tank vessels are adequately protected from fires and explosions that may be generated in VRS.

A primary concern in the installation of a VRS for gasoline vapor is the inclusion of an effective flame control device to prevent the passage of any flame into the tank. Recent tests by Amoco Oil Company have demonstrated the inability of specific flame arrestors to quench a flame which detonates through a 3" pipe filled with butane/air. The 44 ft flame run-up distance used in these tests corresponded to a pipe L/d = 176, which is much larger than would be used in a VRS system and which caused detonation in the Amoco tests. The question addressed in this report is whether, under less severe conditions which do not produce detonations (pipe L/d ~ 10, 5.5 ft run-up distance), there are any off-the-shelf devices which will function properly.

Broshchka, G.L., and Will, G.R. A Study of Flame Arrestors in Piping Systems, Project 3721, Amoco Oil Company, Naperville, Illinois, December, 1975.

The test program for VRS flame arrestors was undertaken by Arthur D. Little, Inc. as part of Contract No. DOT-CG-42357A to the U.S. Coast Guard. This ongoing study of vent systems has developed design criteria for flame control devices. The arrestor facility was modified and tests conducted to answer the question of the adequacy of commercial flame-control devices in VRS. This study is intended to be used as background information for design, inspection, and maintenance of cargo tank venting systems.

B. Summary of Findings

The following USCG-approved, commercially available arrestors were found effective in quenching butane/air flames up to 200/ft/sec flame speed and gasoline vapor/air flames up to 125 ft/sec flame speed (5.5 ft run-up length, 16 ft/sec mixture speed, upstream ignition):

Shand and Jurs

Model 94305-16-11

Varec

Model 50SG

In addition, three non-listed arrestors were also found to be effective:

Ama1

Model 188/905/75/24/CN (.024" crimp height)

Ama1

Model 188/905/15/45/CN (.045" crimp height)

Retimet

No 30 Metal Foam

Finally, the Protectoseal Model 4956 was found to work for these gasoline/air flames but not consistently for butane/air.

These arrestors will be effective when used in gasoline VRS systems, provided flames are produced with approach speeds less than 125 ft/sec. For flames exceeding 125 ft/sec approach speed, the performance of these arrestors is not determined. Such flame speeds are likely if the VRS design has excessive mixture speed (greater than 20 ft/sec), run-up length greater than 10 diameters from an open exit, or some other flame-accelerating condition.

For low-speed flames (i.e., below 50 ft/sec) two additional devices were also effective. The Protectoseal Model 4956 and the Press Vac Model PL6 were effective for butane/air flames (conducted at 20-50 ft/sec) and gasoline/air flames (conducted at 3 ft/sec), had not been found to be effective at flame speeds greater than 50 ft/sec and 3 ft/sec for butane/air and gasoline/air, respectively. These devices

would be suitable for installation at pipe exits to protect against flame entry; in such installations there is no run-up length to accelerate the flame. All of the devices listed above for high-speed flames are expected to also be effective for low-speed flames. The single screen of 30 mesh x .011" diameter wire failed to quench butane/air or gasoline/air flames at velocities as low as 3 ft/sec.

The "worst case" flame condition which can be produced with the ADL facility (as currently arranged) was determined to be as follows:

- 16 ft/sec mixture speed;
- Ignition upstream of the arrestor;
- 5.5 ft run-up distance; and
- Gas expansion constricted by mixing tee and blow out pipe.

This condition, for both butane and methane, produced rapid flame acceleration with flame speeds up to 200 ft/sec approaching the arrestor, and gave rise to pressures up to 40 psi. For methane/air, the flame speed is apparently not a strong function of mixture speed, and achieves a level of 140 + 15 ft/sec for downstream ignition and about 200 ft/sec for upstream ignition. For butane/air, upstream ignition produces flame speeds from 160 to 280 ft/sec (highest for 16 ft/sec mixture speed), whereas downstream ignition produces flame speeds from 30 + 20 to 125 + 50 ft/sec (highest for 2 ft/sec mixture speed).

In line with the findings of Broshchka and Will (1975), it was found that flame propagation from outside a pipe can be prevented, if vent speeds are maintained in excess of 10 ft/sec, for both butane and methane. This holds provided the ignition source is no more than 2 ft inside the end of an open-ended 6" pipe.

Tests on parallel plate and crimped ribbon arrestors, varying both gap and length, show that the design criteria for flame arrestors are that (a) effective length L must exceed 1.00" and (b) the hydraulic diameter of the gap must be less than .016". These criteria are applicable to hydrocarbons other than acetylene for flames up to 200 ft/sec approach speed.

C. Vapor Recovery Systems and Applicability of Results

Before presenting the experimental methods and test results, it is appropriate to review the conditions for flame propagation in Vapor Recovery Systems, in order to establish how these conditions were simulated using the ADL test facility.

A schematic diagram of a vapor recovery system for a loading terminal is shown in Figure 1. As gasoline is loaded into the cargo tank, vapor is generated and mixes with air in the ullage space. The venting system is designed to discharge the displaced gas mixture to prevent pressurization of the cargo tank. A flame control device is normally fitted on the vent system near the outlet in order to prevent flame propagation from the deck area into the confined tank; the major focus of the subject contract to date has been the design of this flame control system.

The installation of a vapor recovery system raises the potential for two additional flame propagation scenarios:

- (a) the deck fire may spread into the coupling of the vent system to the vapor return line (particularly if a vacuum-assist design is selected),
- (b) any ignition source on shore near the condensing system may be spread into the vapor return line.

These ignition sites are marked with stars (*) on the figure.

The flame conditions cited in Figure 1 were simulated in the existing facility, with three limitations:

On truck loading systems, the mixture is often rendered non-combustible by propane "spiking". Inerting with combustion products (CO₂, N₂) is also practiced. These techniques are relatively expensive options for tankers and barges.

FIGURE 1: SCHEMATIC OF FLAME HAZARDS IN VAPOR RECOVERY SYSTEMS (LOADING TERMINAL)

• 50 – 200 Ft. Length (Minimum Run-Up Due to Arrestor Placement, However)

6" – 18" Pipe Diameter

10 – 20 Ft/Sec

• 30 – 120° F

(a) Diameter: The present facility at 6" diameter is at the lower extreme of piping systems used on terminal VRS.

- (b) Mixture: The present facility at 20 ft/sec is comparable speeds to the normal VRS mixture speeds, but may be below that of some special high-speed designs.
- (c) Run-up : The existing facility has a 5.5 ft run-up length length which produces flame speeds up to 300 ft/sec at the arrestor. The test data reported herein are applicable only for arrestors placed within 5.5 ft of an ignition source.

 In particular, the findings are not applicable to VRS designs which could produce detonations.

II. EXPERIMENTAL METHODS

A. Test Facility Pescription

1. General

The flame arrestor apparatus consists of a 6"-diameter cylindrical test section, controls and instrumentation. A controlled flow of a specified flammable gas mixture is allowed to pass through the test section (containing the flame arrestor) and is ignited at the start of the test by a spark discharge. The resulting combustion wave accelerates toward the arrestor. The performance of the arrestor is automatically recorded. A photograph and schematic of the apparatus are given in Figures 2 and 3, respectively.

2. Test Section

Referring to Figure 3, the test section consist of 6-inch diameter vertical pipe (schedule 40), 17-feet high, with a flame arrestor housing located midway up the pipe. Provisions for both mixture preparation and pressure relief are at the base of the pipe which is connected to a 6-inch "Tee". A 6-inch diameter by 6-feet long pipe extends horizontally from the Tee and is capped with an airtight 3-mil polyethylene blow-out membrane. Its purpose is to relieve the pressure rise during combustion. The remaining leg of the Tee is connected to an air supply blower (Hauck* Model TBA16-3-0-3, 465 SCFM, 16 oz. capacity) by way of a 4-inch diameter by 4-feet long pipe which incorporates a Meriam Model 50MY15-4 Laminar Flow Element (LFE) flowmeter, a Hauck 4"-diameter butterfly throttling valve, and a thermocouple for sensing air temperature.

Mention of specific manufacturers and models is made solely for clarification and should not be interpreted as a recommendation or endorsement by Arthur D. Little, Inc.

Figure 2: Facility for flame control testing

FIGURE 3 FEAML ARRESTOR TEST APPARATUS

The actual flame arrestor device is located midway up the vertical pipe section, 7.75 feet up from the top of the Tec. Commercially available arrestor housings were attached to the test pipe using standard 6-inch flanges. To permit testing of special arrestor designs fabricated at ADL, a special universal mount was fabricated using a Varec 50SG arrestor housing. (See Figure 4.)

The flame run-up distance could be controlled by adjusting the ignitor location using pipe sections of various lengths above the flame arrestor. In standard configuration, the ignitor was placed 56" above the arrestor housing flange near the top of a 64" section of pipe. This arrangement put the ignitor 66-68" from the arrestor, depending on arrestor thickness. An orifice plate was attached 8-inches above the ignitor in order to control the expansion of burned gas and thereby control flame acceleration. For example, a 3"-diameter orifice was used to generate high-speed flames (50-500 ft/sec), whereas an open pipe was used for low-speed flames (below 50 ft/sec). An 18" long pipe extension was installed above the orifice plate. An 18-inch diameter exhaust duct (3000-CFM capacity) was located 12-inches above the end of the pipe extension.

Fuel gas was supplied to the test section through a perforated one-inch diameter capped tube located in the center of the Tee. The nozzle shown in Figure 5 was designed to achieve rapid mixing with the air. Tests of concentration decay showed that complete mixing was achieved 89" above the nozzle, at the downstream spark location. Radial concentration variations at the upstream spark location (36" above the nozzle) were observed to be ± 8% or less, depending on mixture speed. Plumbing from the nozzle extended through the wall of the Tee and was connected to the fuel supply tank. The one-inch copper line

FIGURE 4 HOUSING FOR EXPERIMENTAL FLAME ARRESTORS

FIGURE 5 FUEL NOZZLE ARRANGEMENT

between the fuel nozzle and fuel supply tank incorporated a Meriam Model 50W20 IF LFE flowmeter, a Jenkins manual throttling valve, a manual shut-off cock, an ASCO 8210B54 solenoid operated valve, and an inline heater element.

Butane, methane, and gasoline vapor were used during the program discussed below. One-inch copper piping was selected to minimize resistance to butane gas flow. The butane supply tanks were wrapped with 2 Briskeat heating tapes (Type BIH-61) for controlled heating to approximately 100°F in order to raise the supply gas pressure to a level sufficient to ensure the flow rates required for the tests, i.e., up to 7 CFM. The inline heater was used to further raise the gas temperature to approximately 120°F to avoid condensation of the butane gas as it expanded through the throttling valve.

Gasoline vapor was generated in a converter described below. The gasoline vapor flow rate was controlled through a combination of N_2 carrier gas flow rate, N_2 temperature (controlled to $120^{\circ} F$), liquid gasoline temperature (controlled to $110^{\circ} F$), and liquid gasoline circulation rate (controlled to 275 ml/min). In line heaters, operating at a total of 1500 watts, were used to maintain the vapor/ N_2 mixture at approximately $110^{\circ} F$ to avoid condensing the vapors before blending with air.

3. Controls and Instrumentation

A summary of the instrumentation is given in Table 1.

Air flow rate was controlled by way of the Hauck butterfly throttling valve. An LFE flowmeter served to determine the flow rate; a Meriam Model A-844 manometer used to measure the pressure drop. Air temperature was measured using a Grounded sheath type thermocouple (Omega Type CAIN-116G024) located at the center of the blower exit. The thermocouple was connected via a selector switch to a digital voltmeter (DVM, Dana Model 4470). A crushed ice bath was used to give a reference temperature for all thermocouples.

Fuel flow rate was controlled by way of the throttling valve. An Ellison Model-IN manometer was used to measure the pressure drop across the LFE flowmeter from which the flow rate was determined. Fuel gas temperature was measured using an Omega CAIN-116G-24 thermocouple installed in the fuel line between the LFE meter and fuel nozzle. The thermocouple was connected to the DVM via the selector switch.

The butane supply tank heaters and the inline gas heater (595 watt, Briskeat-BIH-61 tapes wrapped over an electrically insulated layer) were controlled using Variac autotransformers.

Ignition of the flammable gas mixtures was accomplished using either of two spark ignitor systems, one located 56" above the upper flange of the arrestor housing (8" down from the orifice plate flange), the other located in the lower test pipe section (56" down from the lower errestor housing flange). Each spark ignitor was an Auburn Model 1-33 with a 23" long center electrode. A side wire was welded to each ignitor so that the actual spark was located at the center

Table 1
Summary of Instrumentation

Variables Measured	Measuring Instrument	Accuracy
Air flow rate	Meriam 50 MY 15-4 Flowmeter with Meriam A844 Manometer	± 0.5%
Air temperature Gas flow rate	Omega CAIN-116G-24 Thermocouple Meriam 50W201F flowmeter with Ellison IN Manageter	± 1°F ± 0.5%
Gas tempermedure	Omega CAIN-116G-24 Thermocouple with Dana 4470 Digital Voltmeter	<u>+</u> 1°F
Flame speed	ADL fabricated photodetector system with EG&G HUV 1000 B sensors - 3 units	+ 5% of the value
Flame-through event	ADL fabricated photodetector system with EG&G HUV 1000 B sensor - 1 unit	Positive detection
Test chamber pressure	Kulite XTS-190-200 pressure transducer & ADL fabricated operational circuitry	± 0.5 ps1
Spark ignition event Gas Solenoid valve shut off event Photodetector event signals Pressure transducer signals	CEC 5-125 Oscillograph Recorder, 8 channel	Unspecified
Barometric pressure	National weather service - local area	Unspecified
Arrestor Temperatures	Chromel/Alumel thermocouples	<u>+</u> 10°F

THE REPORT OF THE PROPERTY OF

line of the test pipe. The spark gap at the center point was approximately .06". Power to each ignitor was provided by a high-voltage ignition transformer (Jefferson Electric Model 638-171, 110 vac-250 ma primary, 10,000 V-23 ma secondary). Both transformers were connected via a selector switch to an ignition switch. Thus, either ignition system could be readily used.

Four optical detector systems assembled by ADL were used to detect flame passage through the test pipe. The electronic circuitry for the detectors was that specified by the manufacture of the detector (EG&G Model HUV-1000B with amplifier). The detectors were housed in a light-tight aluminum box 3" x 4" x 5" with a 7/8" dia x 3-inch long extension tube (see Figure 6). The extension tube, whose purpose is to remove the photo-detector circuit from the heat of the test pipe, was slip fitted over an Auburn Type P-50 observation window, machined to accommodate it, that was thresded into the test pipe (1/2" NPT) in a direction normal to the pipe axis. A horizontal viewing slit in the window restricted the angle of view of the detector element in order to achieve more precise measurements of the passing flame front.

The system was arranged so that the optical detector locations could be readily interchanged depending on whether ignition took place in the upper or lower test pipe sections. Figure 3 shows the location of the various ports for the detectors. When ignition occurred in the upper test pipe, ports 2, 3, and 4 were used for detecting flame passage while port 3 was used for detection of flame-through at the arrestor. The optical detector in port 3'was also connected via a power amplifier to the fuel solenoid valve. In the event of flame-through, the fuel solenoid would automatically shut off. For ignition in the lower pipe section, ports 1, 2, and 3'were used for flame-passage detection and port 3 was used for flame-through and automatic shut-off.

FIGURE 6 PHOTODETECTOR ARRANGEMENT

The test assembly was also provided with means of measuring the instantaneous pressure levels generated in the test pipe by the combustion of the gases. For this, a Kulite Model XTS-190-200 pressure transducer and appropriate circuitry (recommended by the manufacturer) was used. Like the optical detectors, the location of the pressure transducer could be readily changed according to the test circumstance. The transducer was mounted in 1/4-inch NPT elbow fitting and the elbow fitting was threaded into the test pipe (see Figure 7). In this way the transducer was located out of the path of direct radiation from the flames. (In early tests direct radiation appeared to have an effect on the transducer signals.) The transducer was located 44" from the arrestor, at the same station as optical port No.2.*

An eight channel recorder (CEC Model 5-124) was used to record signals from the instrumentation. The three optical detectors and the pressure detectors were connected directly to the recorder. The signal from the flame-through detector was, as mentioned above, connected to a power amplifier to shut off the fuel solenoid. This signal was also connected to the recorder so that the flame-through event could be recorded. A signal from the ignition switch was also connected to the recorder to record the existence and duration of the spark discharge.

4. Gasoline Vapor Converter

A system was set up to produce steady state vaporization of gasoline liquid for supplying gasoline vapor to the flame arrestor test apparatus. The system, shown schematically in Figure 8, consisted of a heated packed column containing approximately 1.6 liters of liquid gasoline, a 10-gallon reservoir, a circulation system, and a heated nitrogen gas supply. The system was designed to saturate a 3.5 CFM flow of nitrogen with gasoline vapor, producing a vapor mole fraction of about 0.4 depending on nitrogen temperature.

In Figure 3 the pressure transducer is shown opposite optical port No. 3; this was not the standard position.

FIGURE 7 DETAIL OF PRESSURE TRANSDUCER MOUNTING

FIGURE 6 GASOLINE VAPOR CONVERTER

The packed column consists of a 3-3/4" I.D. x 30" long closed stainless steel tube having a 20" long sight tube approximately centered along side of the tube. The tube is filled to approximately 20" with glass beads packed on top of a perforated plate that is positioned 1/2" up from the bottom of the tube. A regulated flow of nitrogen gas (measured using a Fisher Model FS 1/2-27 G-10/80 flowrator) is passed vertically upward through a heated 1/2" copper tube 28 inches long. The tube contains an integrally wrapped 500 watt heater that is automatically temperature controlled using a solid state temperature controller (RFL Model 72-115) and a thermistor mounted directly on the heater. A thermometer located approximately 12 inches downstream of the heated portion of the tubing is used to monitor No gas temperature. The No gas then passes vertically down a 31-inch long section of 1/2" pipe to a point where it enters the bottom of the vapor converter. A gasoline drain cock is also located at the bottom of the converter.

A 10-gallon reservoir is connected to the packed column via a variable speed pump supply line and an overflow return line. This arrangement provides for a continuous circulation of heated gasoline (circulation rate 270 ml/minute). The reservoir is located on a sensitive scale (precision ± 2 gm) to permit a continuous monitor of the reservoir gasoline weight throughout the testing period.

A 575 watt Briskeat heating tape (Model BlH-16) is also wrapped around the converter tube body. Its temperature is automatically controlled using a temperature controller (RFL Model 72-115) and a thermistor mounted directly on the tube body. The converter body and all the associated plumbing are insulated with fiberglass insulation and aluminum foil. The temperature of the converter body and the interior of the ullage space above the liquid are measured using thermocouples whose output is read on the Dana DVM. The fuel line from the converter to the fuel valves is electrically heated using

three (Briskeat) heating tapes to prevent recondensation of the gasoline.

Figure 9 illustrates the vaporization characteristics of the system. After each period of operation, the average vaporization rate was determined by weighing the system after refilling the column to a fixed level. In determining vaporization rate, the pump was allowed to circulate gasoline through the heated packed column for a period of approximately 30 minutes. During this time no nitrogen gas was allowed to bubble through the column. When the packed column temperature had reached steady state (circulation rate was constant), the reservoir weight was determined with the packed column full. Then heated nitrogen gas was bubbled through the column at a rate of 3.5 CFM for a period of one-minute. At the end of one-minute the nitrogen gas was shut off and the pump allowed to continue circulating the gasoline for a period of approximately five minutes. The original level of gasoline in the column was restored to an accuracy of + 10 ml and the reservoir weight was then measured to an accuracy of 2 gm. The resulting net weight loss of the system was used to determine the average vaporization rate for the one-minute period of bubbling. The circulating, weighing, bubbling, and reweighing processes were repeated to determine subsequent vaporization rates as the supply of gasoline diminished.

Starting with fresh gasoline, (5-gallon supply) the vaporization rate dropped from approximately 175 gm/min (1.5 CFM) to approximately 125 gm/min (1.1 CFM) in the first five minutes. After five minutes the decrease in vaporization rate was more gradual, decreasing to approximately 115 gm/min (1.0 CFM) in the next five minute period.

Based on the vaporization rates shown in Figure 9, and 3% gasoline vapor in fuel/air mixtures, the test mixture velocities were adjusted from approximately 4.3 ft/sec to 2.8 ft/sec. Velocities were determined using the mass conservation equation, as follows:

FIGURE 9 CALIBRATION OF GASOLINE VAPOR CONVERTER

$$v = 3.67 \times 10^{-5} \frac{\dot{m}_{v}}{\rho_{v} \text{ A F}}$$

where

v = mixture velocity in the test pipe, ft/sec

m = vaporization rate, gm/min

 $\rho_{\rm v}$ = gasoline vapor density (0.255 lb/ft³ at 70°F)

A = cross-sectional area of test pipe (.196 ft²)

F =fuel fraction (.03) at stoichiometric

 3.67×10^{-5} constant accounting for weight and time conversions.

B. Operating Procedure

In conducting a test, the following sequential procedure was followed:

- (1) The arrestor element was installed in the housing (after it had previously been prepared for testing) and the housing cover was secured.
- (2) A safety check of the test site was made which included:
 - Access to fire extinguishers
 - Wearing of hard hats, glasses and ear protection
 - Locating danger warnings and restricted area barriers
 - Turning on flashing red lights in critical area of the test site.
- (3) A check of the optical detector and pressure detector battery condition was made.
- (4) The main Power Switch was turned on.
- (5) The recorder power and optical, pressure detector power, switches were turned on ignition power and DVM power.
- (6) The selection of upper or lower ignition source was made.
- (7) Fuel supply and inline heaters were activated and allowed to come to equilibrium temperature, approximately 100°F and 120°F, respectively. For tests with gasoline vapor, the converter was heated to equilibrium temperature without N₂ flow. Then nitrogen was passed through the generator for one-minute.
- (8) The air blower was turned on and adjusted to achieve the appropriate flow rate--corrections to the flow rate for barometric pressure and air temperature were made, based on the manufacturer's operating instructions.

- (9) Fuel tank valve, fuel shut off cock and solenoid valve were opened. This was followed by an adjustment of the throttling valve until the appropriate fuel flow rate was achieved. Corrections for barometric pressure and fuel gas temperature were also made.
- (10) A pneumatic horn signal was given 10 seconds before ignition.
- (11) In rapid sequence:
 - The recorder chart was turned on (generally to 16-inch/sec speed for adequate trace resolution).
 - The ignitor energized--followed immediately by combustion.
 - The recorder was turned off (after approximately 1-second).
- (12) The fuel solenoid valve was switched to the closed position (if it had not been shut by the photodetector automatically), within one-second on upstream tests and within 5-seconds on downstream ignition tests. For gasoline vapor tests, the nitrogen carrier flow was shut off. Otherwise a standing flame could damage the arrestor or the instrumentation.
- (13) The manual fuel flow throttling valve was then shut off within 5-seconds of spark discharge.
- (14) The air blower was shut off.
- (15) The recorder trace was examined for evidence of flame through, flame speed, and combustion pressure (see Section II C below).

C. Data Acquisition

Figure 10 is an illustration of the typical data obtained from the recorder. The explanation of the trace is as follows:

- Trace A: The length of the 60-cycle trace indicated the time interval that the ignition source was energized.
- Trace B: The 60-cycle portion indicates that the fuel solenoid valve is open, the steady portion of the right of the 60-cycle trace indicates automatic solenoid shut off or flame-through.

FIGURE 10 TYPICAL TEST DATA RECORDING

Traces C, Flame passage traces from optical detectors 4, 3, and 2 respectively (Typical). The distances between detectors is known and thus flame velocity between these points are determined (also flame acceleration).

Traces F: Instantaneous pressure trace - for the subject tests, the peak value of the trace was converted to peak pressure by a calibration.

D. Gas Mixtures Tested

Gas mixtures tested during Tasks IA and I were as follows:

- Methane C.P., 99.0% minimum purity, Matheson size 1A 300 ft³ tank, specific volume 23.7 ft³/1b, cylinder pressure 2265 psig @ 70°F.
- n-Butane, C.P., 99.0% minimum purity, Matheson size 1F,
 136 lb/tank, specific volume 6.9 ft³/lb, cylinder pressure
 21.4 psig @ 70°F.
- Gasoline vapor, Exxon and Mobil Regular, evaporated @ 110°F through 3-3/4 inch dia x 22 inch high packed column using 120°F N₂ gas as carrier medium. Approximate vaporization rate was 2.8 to 4.3 ft³/min.

E. Flame Arrestors Tested

Descriptions of the flame arrestors that were tested during Tasks IA and I are given in Table 2.

A special fixture was fabricated to enable the parallel plate and crimped ribbon arrestors to be positioned inside the Varec 50SG housing for testing. The fixture consisted of a reinforced base plate and a hold-down frame. In practice the parallel plate arrestor was positioned on the base plate and the hold-down frame placed over the arrestor was bolted to the base plate. All remaining gaps in the assembly were taped to prevent flame by-pass. An exploded view of the

Table 2

Summary of Flame Arrestor. Tested

Remarks	Extra supports were required to maintain plate parallelity	Same as above				
H _Q /1	34	11.1	14.3	10.7	; 1	87
D (H)	.031	.045	.035	.035	.022	.077
L (ii)	1.06	.50	.50	375	1	5,75
Dimensions	11-1/2" x 11-1/2" x 1.06", .048" steel plates with .022" gap	11-1/2" x 11-1/2" x .5", .048" steel plates with .032" gap	9" dia x .5" high, half hex crimp .002" foil x .031" hex height, stain- less steel	9" dia x 0.375" high, .375 .035 half hex crimp, .002" foil x .031" hex height, stain-less steel	11-1/2" x 11-1/2" 30 mesh x .011" wfre dia, steel	13-1/2" x 13-1/2" x 6-1/2", Model 50 SG series, cast iron frame, aluminum bank assembly, 6" size, 150 lb ASARE flanges
Source	Artinur D. Little, Inc. Experimental design.	Arthur D. Little, Inc. Experimental design.	Arthur D. Little, Inc. Experimental design.	Arthur D. Little, Inc. Experimental design.	M.S. Tyler, Inc.	Varec Inc.
Figure	11(a)	11(b)	23	12	13	14
Туре	Parallel Plate	Parallel Plate	Crimped Ribbon	Crimped Ribbon	Single layer screen	Corrugated channel
Task	4	IA	IA	IA	н	r .

Table 2 (continued)

35.7	39.5	133	32	1	9.3
.021	.038	.045	.043	.04	.030
.75	1.5	6.0	1.38	ı	0.28
9-1/2" dia x .75" high, Model 188/ 905/75/24/CN, tri- angle crimp .024" high	9-1/2" dia x 1.5" high, Model 188/ 905/15/45/CN, trf- angle crimp .045" high	Model 94305-16-11, 6" size, aluminum, 13" dia x 6" high	Model 4956-36, aluminum plates - 8-3/4" 0.D. x 6" I.D. x .093" thick with .031" gap	Model PL-6, 2 screens 8-1/2" dia, .6" apart. Screens 20 mesh x .01" wire	Grade 30, .28" thick, 33 pores per inch
15 Amal Ltd	16 Amal Ltd	17 Shand & Jurs Co.	18 Protectoseal Co.	19 Press-Vac Eng. Ltd.	20 Retimet
					2
d ribbon	d ribbon	d ribbon	el plate	scree	foaш
Crimped	Crimped	Crimped	Parallel	Double screen	Metal foam
+ 4	H	H	p-4	p-J	I

Arthor Director ha

Figure 11a: Parallel plate airestor (.027" gap, 1.06" depth)

Arthur Dlaute Inc

Figure 2: Parallel plate a restor $C0.32^{\rm th}$ gap, $0.5^{\rm th}$ depth/

Arthur Dlattle Inc

Figure 8: Crimped ribbon arrestor (.031" hex height)

Figure 13: Single layer screen arrestor (30 mesh x .011" wire dia.)

Figure 14: Corrugated parallel plate arrestor (Varec Model 503G)

Arthur Dlattle Inc

Figure 15: Crimped ribbon arrestor (Amal Ltd., .024" crimp)

Arthur D. Little, Inc

Figure 16: Crimped ribbon arrestor (Amal Ltd., .045" crimp)

Figure 17: Crimped ribbon arrestor (Shand & Jurs)

Figure 18: Parallel plate arrestor, radial flow (Protectoseal, .031" gap)

Figure 19: Double screen arrestor (Press-Vac, 20 mesh)

Arthur D.Little.Inc

0 1 2 3 4 5 | 1 | 1 | 1 | 1 | 1 | | Centimeter Scale

Figure 20: Retimet grade 3 arrestor

fixture is shown arranged to accommodate the Amal arrestor in Figure 21. The base plate assembly was used to test the following arrestors:

- Experimental crimped ribbon
- Experimental parallel plate
- Single screen

(1) 10 mm (1) 1

- Amal crimped ribbon
- Retimet metal foam

In preparing the 9" diameter crimped ribbon arrestors for tests, a 11-1/2 inch square piece of 6-mesh screen was first placed onto the base plate. Then the arrestor was placed on top of the hole in its center (6 lb density loCon insulation) was packed around the arrestor to fill the open volume between the periphery of the arrestor and the base plate. An 8-1/2" diameter piece or mesh screen was placed on top of the arrestor and a sheet metal plate 11-1/2 inch square housing a 8-1/2" diameter hole in its center was placed over the arrestor. The hold-down frame was then placed on top of the assembly and bolted to the base plate. All other openings were sealed to prevent flame by-pass.

Tests on the single screen and the Amal crimped ribbon arrestors were performed using the Varec arrestor housing adapted to permit the installation of various arrestor elements. During their respective tests, both screen and Amal were mounted in the universal base-plate assembly and installed into the Varec housing. Figure 4 illustrates the arrangement in which the arrestor elements were installed in the Varec arrestor housing. The figure shows the arrestor arranged for upstream ignition tests (flame propagating up from below).

Figure 21: Base-plate assembly arranged for Amal arrestor

III. EFFECT OF MIXTURE SPEED AND IGNITER LOCATION ON ARRESTOR PERFORMANCE

A. Purpose of Tests

The purpose of Task IA was to conduct a systematic investigation of the effects of gas/air mixture speed and ignition-source location on the flame speed and arrestor performance. The data was used to determine a set of worse case conditions for testing commercial arrestors in the ADL apparatus.

B. Effect of Mixture Speed (Downstream Ignition)

The effect that mixture velocity has on flame speed was investigated using both butane and methane gas/air mixtures. The investigation consisted of a series of flashback tests at various mixture velocities ranging from approximately 2 ft/sec to 16 ft/sec. A 3" diameter orifice was used behind the ignitor to accelerate the flame in all tests (see Figure 3). Ignition of the gas mixture took place 67" downstream of the arrestor. The flame propagated upstream. The flame speed, approaching the arrestor, was determined from the output signals of three photo-detectors located in the upper test pipe (2", 17" and 41" from the arrestor base-plate). For these tests, a parallel plate arrestor of dimensions L = 1.0" and $D_{\rm H}$ = .031" (see Figure 11) was used to quench the flames. Fuel/air mixtures were adjusted at each velocity to an equivalence ratio of ϕ = 1.1 which has been shown to give the maximum flame speed.

For butane/air mixtures, flame velocity relative to the arrestor decreased from approximately 125 + 75 ft/sec to 30 + 20 ft/sec as mixture velocity increased from 2 ft/sec to 18 ft/sec. Above 18 ft/sec mixture velocity, flames failed in most cases to propagate upstream. The effect is shown in Figure 22. Complete test results are tabulated in Table A-1 of Appendix A.

Tests using methane/air mixtures indicated that the approach flame speed is constant at 140 ± 15 ft/sec regardless of mixture speed over the range 2 to 19 ft/sec.* The effect is illustrated in Figure 23. Velocities based on photodetectors 3-4 were consistently higher than

^{*}On certain tests (e.g., 012177-8) the photodetector trace was irregular; however on the majority of runs the flame speed was approximately 140 ± 15 ft/sec.

FIGURE 22 EFFECT OF MIXTURE SPEED ON FLAME SPEED

FIGURE 23 EFFECT OF MIXTURE SPEED ON FLAME SPEED

those for detectors 2-3 and therefore indicate a consistent acceleration of the flames using methane. The acceleration of the butane flames was not clearly defined because of the wide scattering in the measured flame speed. The source of this scatter is believed due to the irreproducible ignition process with butane/air flames; i.e., each ignition produces a different flame shape.

In summary, our findings on the effect of mixture speed, for the conditions of downstream ignition (upstream propagation) and a 3" orifice in the line, are as follows:

- For butane/air, the highest flame speeds (125 ± 75 ft/sec) are achieved with mixture velocities near 2 ft/sec.
- For methane/air, approach flame speeds are 140 ± 15 ft/sec,
 apparently independent of mixture speed.
- For butane, mixture velocities somewhat above 18 ft/sec are sufficient to prevent upstream propagation of flames (for this particular ignition geometry which incorporates a 3" diameter orifice and an 18" long extension tube).

C. Critical Mixture Velocity Which Allows Upstream Flame Propagation

Tests with both methane/air and butane/air mixtures were performed to determine the highest mixture velocity that will allow upstream flame propagation. It is recognized that whether a flame can propagate upstream depends on the ignition conditions (location of ignitor with respect to pipe exit, constriction at the pipe exit, etc.). In these tests, the 3" diameter orifice was removed to minimize back pressures. Ignition of the gas mixtures took place 26" from the pipe exit and, in a second test series, 46" from the pipe exit.

In the tests, failure to propagate upstream was noted by either
(a) a "torch effect" in which flames issued from the top of the pipe in
a steady state fashion rather than propagating down the test pipe, or
(b) a failure to ignite at all.

The results of the tests disclosed that with ignition taking place 26 inches from the exit, the critical mixture velocity to prevent upstream propagation of methane/air mixtures is between 7 and 7.5 ft/sec;

for butane the critical mixture velocity is between 8.2 and 8.6 ft/sec. With ignition occurring 46 inches from the pipe exit, the critical mixture velocity for methane is beyond 19 ft/sec. The above results are summarized below in Table 3. Detailed test data are tabulated in Table Λ -2 of Appendix Λ .

D. Effect of Upstream Ignition

As a further investigation to determine worse case conditions for testing arrestors, tests were performed in which gas mixtures were ignited upstream of the arrestor and permitted to propagate downstream. For these tests, the photodetectors, pressure transducer, and ignitor were installed in the lower test pipe in positions approximately similar to their counterpart locations in the upper pipe section. In order to maintain similarity of the testing geometry, the flame arrestor holder (which was specifically made to accommodate various experimental arrestors inside the Varec Model-50SG arrestor housing), was modified so that the arrestors could be installed in an inverted position (see Figure 4). Thus, the geometry of the housing from the test pipe to the arrestor was the same for upstream ignition as for downstream ignition. The 3" diameter orifice remained in position for the upstream ignition tests, 64" downstream of the arrestor housing flanges.

The results of the tests indicated that for butane/air mixtures, flame velocities propagating downstream, taken with respect to the arrestor, increased from 140 ± 30 ft/sec to 200 ± 60 ft/sec as mixture velocity increased from 4 ft/sec to 16 ft/sec. The effect is illustrated in Figure 24. The scatter in those results (± 60 ft/sec) is attributed to the mixture inhomogeneities reported above (see page 10). A cross check using methane indicated that flame speed was not a strong function of mixture velocity, with an average flame velocity of approximately 200 ft/sec over the range 4 ft/sec to 16 ft/sec. Table 4 summarizes the response of flame speed to mixture speed and spark location. Detailed results are tabulated in Table A-3 of Appendix A.

E. Marginal Arrestor Dimensions (Critical L & D) for Quenching Butane & Methane Flames

If the worst case flame conditions (ignitor location and mixture speed) were selected on the basis of highest flame speed, then the

	Critical	Mixture Velocity
Spark Location	Methane/Air	Butane/Air
26" inside pipe exit	7 - 7.5 ft/sec	8.2 - 8.6 ft/sec
46" inside pipe exit	> 19 ft/sec	

All tests run at $\phi = 1.1$, open ended 6" pipe.

FIGURE 24 EFFECT OF IGNITION LOCATION ON FLAME SPEED

TABLE 4

Effect of Mixture Speed and Spark
Location on Flame Speed

Mixture	Upstream Ignition (5.5 ft Run-up; Gas Expansion Restricted by Mixing Tee and Blow-out Pipe)	Downstream Ignition (5.5 ft Run-up; Gas Expansion Restricted by 3" Orifice and 18" Long Extension)
Methane/Air φ = 1.1	Flame speed Constant at 200 ft/sec for all mixture speeds from 4 to 16 ft/sec.	Flame speed constant at 140 ± 15 ft/sec for all mixture speeds from 2 to 19 ft/sec.
Butane/Air	Flame speed increases from 140 ± 30 to 220 ± 60 ft/sec as mixture speed increases from 4 to 16 ft/sec.	Flame speed decreases from 125 ± 75 to 30 ± 20 ft/sec as mixture speed increases from 2 to 18 ft/sec.

results reported above in Section B and D would be sufficient. The highest flame speed for both methane and butane is about 200 ft/sec and occurs with upstream ignition and 16 ft/sec mixture speed.

In order to check that this was indeed the worst case, we tested a "marginal" arrestor under various conditions and observed which conditions would most readily make it fail.

First, we attempted to identify "marginal" arrestor dimensions. A series of tests were performed in which selected arrestorn, parallel plate and crimped ribbon types, were tested to determine the combination of hydraulic diameter, D_H, and arrestor length, L, that would successfully quench low speed flames but will fail to quench high speed flames. Methane and butane were used as fuels.

After installing the arrestors, the tests were performed by iteration of the mixture speed: First tests were run at low mixture speed, e.g., 2-4 ft/sec, and it was observed whether quenching took place. If quenching occurred, high-speed mixtures (e.g., 16-15 ft/sec) were ignited and observed for quenching. If quenching occurred at the high mixture velocity, the arrestor was replaced by another whose dimensions were expected to be more marginal, and the above tests repeated. If (with the initial arrestor) quenching did not occur for high-speed mixtures, tests were performed at lower mixture speeds (e.g., 8-10 ft/sec) and the process of testing alternatively at higher and lower mixture speeds was repeated until a mixture speed was arrived at where the arrestor performance was marginal.

Two experimental parallel-plate arrestors, fabricated by ADL from .048" thick steel plates, 11-1/2 inches square were used: One having dimensions L = 1.0" and D $_{\rm H}$ = .031" (Figure 11a), the other having L = 0.5" and D $_{\rm H}$ = .045" (Figure 11b). In addition, two crimped ribbon arrestors fabricated from materials supplied by Ferrotherm Corporation were used, one having L = 0.5" and D $_{\rm H}$ = .035"; the other having L = 0.375" and D $_{\rm H}$ = .035" (Figure 12).

The critical dimensions just sufficient to quench flames of moderate speed propagating in methane/air and butane/air mixtures were found

to be L = 0.5" and D $_{\rm H}$ = .045" for parallel plates and L = 0.375" and D $_{\rm H}$ = .035" for crimped ribbon.

F. Compatibility of the Test Apparatus with Pressures Generated During Tests

During most of the flame arrestor tests, pressure excursions in the pipe interior were recorded. The peak pressures, often an isolated spike, varied from approximately a minimum of 5 psig to near 50 psi maximum as test conditions varied. An average of peak pressures was noted to increase approximately as flame speed increased, e.g., 20 psig @ 25 ft/sec to 40 psig @ 350 ft/sec. Since no damaging effects have been observed as a result of pressure rises, the system is considered to be safe.

G. Selection of "Worst Case" Condition

On the basis of flame speed alone (See Table 4), the "worst case" set of test conditions is <u>upstream ignition</u> at a mixture velocity of <u>16 ft/sec</u> for both butane and methane gas/air mixtures, adjusted to an equivalence ratio $\phi = 1.1$.

This choice was validated by tests on the "marginal" arrestors identified in Section E. As shown in Table 5, using both parallel plate and crimped ribbon arrestors (L=0.375", $D_{\rm H}=.035$ "), quenching occurs over a wider range of conditions for downstream ignition. Therefore, the upstream ignition is more severe.

 $\underline{\textbf{Table 5}}$ Marginal Arrestor Dimensions -- Critical 1, & \textbf{D}_{H}

				Approximate thre mixture velocity	
Mixture	Arrestor Type	L (in)	D _H (in)	Downstream Ignition	Upstream Ignition
Methane/air	Parallel plate	0.5	.045	Does not quench below 4 ft/sec	Does not reliably quench at any speed
Butane/air	Parallel plate	0.5	.045	Does not quench below 8 ft/sec	Does not quench at any speed (2-16 ft/sec)
Butane/air φ = 1.1	Crimped Ribbon	0.375	.035	Does not quench below 11 ft/sec	

IV. PERFORMANCE OF OFF-THE-SHELF ARRESTORS

A. Purpose of the Tests

The purpose of Task I was to determine the effectiveness of offthe-shelf arrestors in controlling flames for butane/air and gasoline/ air mixtures.

B. Approach

The butane/air tests of commercial arrestors were conducted under the most demanding conditions which could be produced using the ADL apparatus (upstream ignition, 5.5 ft run-up distance, constricted pipe exit, and ϕ = 1.1). This configuration produced flame speeds of 110-125 ft/sec and 150-250 ft/sec for gasoline/air and butane/air, respectively. In addition, single screen and double-screen arrestors were tested under low flame-speed conditions (20-50 ft/sec for butane and 3 ft/sec for gasoline), since the application of these devices is for preventing an exterior flame (presumably traveling at low-speed) from entering the vent system. Their usual location is at the exit end of vent pipes where there is presumably no run-up length sufficient to develop high flame speeds.

The arrestors that were tested are listed in Table 2 (see Chapter II, page 28), and are summarized below in Table 6.

The single layer screen arrestor was prepared for testing by mounting it on the special fixture (see Figure 21) and positioning it in the Varec arrestor housing. The mounting shown in Figure 21 was also used for the Amal and Retimet arrestor elements, and also for the single screen (using a special fixture). An axial housing was fabricated for the Protectoseal arrestor. Standard commercial housings were used for all other arrestors.

Table 6
Off-the-Shelf Arrestors Tested

Туре	Source	L (in)	D (1n)	L/D _H
Single screen	Tyler	-	.022	
Double screen	Press Vac	-	.040	
Crimped ribbon	Amal (.024" crimp height)	0.75	.021	35.7
Crimped ribbon	Amal (.045" crimp height)	1.50	.038	39.5
Crimped ribbon	Shand and Jurs	6.00	.045	133,3
Corrugated crimped ribbon	Varec	5.75	.066	87.0
Parallel plate	Protectoseal	1.38	.043	32.0
Metal foam	Retimet No. 30	0.28	.030	9.3

C. Results

Test results are given in Tables 7 and 8 for butane/air and in Tables 9 and 10 for gasoline/air flames, respectively.

Data from the individual tests on off-the-shelf arrestors are listed in Table B-1 of Appendix B.

D. Discussions and Conclusions

1. High-Speed Flames

The Varec Model 50SG, the Shand and Jurs Model 94305-16-11, both the Amal arrestor, and the Retimet foam arrestor successfully controlled high-speed butane/air and gasoline/air flames. The Protectoseal 4956 did not consistently control high-speed butane/air flames, but did control high-speed gasoline/air flames. The marginal performance of the Protectoseal arrestor may be attributed to the .031" gap between plates. Tests reported in Section III.E indicated that above .032" gap, a parallel plate arrestor would allow flame passage.

2. Low-Speed Flames

The results indicate that the single screen of 30 mesh \times .011" wire (D_{H} = .022") can control neither butane/air flames having approach velocities in the 20-50 ft/sec range, nor low speed gasoline/air flames. The Press Vac double screen (20 mesh) arrestor successfully controlled gasoline vapor flames having approach speeds of approximately 3 ft/sec, but exhibited one failure in three runs with the 20-50 ft/sec butane/air flames.

Table 7

Summary of Off-the-Shelf Arrestor Performance (High speed flames, Butane/air)*

			Number of T				
Arrestor Type	Source	Mode1	Quench	No quench			
Crimped ribbon	Amal, Ltd.	188/905/75/24/CN (.024" crimp height)	8	0			
Crimped ribbon	Amal, Ltd.	188/905/15/45/CN (.045" crimp height)	5	0			
Crimped ribbon	Shand and Jurs	9430516-11	5	0			
Corrugated channel	Varec, Inc.	5 0SG	5	0			
Parallel plate	Protectoseal Co.	4956	7	9			
Metal foam	Retimet	No. 30	5	0			

^{*}Flame conditions for all tests: ϕ = 1.1, 16 ft/sec mixture, upstream ignition, 5.5 ft run-up distance, approach speed of flame 1.50-250 ft/sec.

Table 8

Summary of Off-the-Shelf Arrestor Performance (Low speed flames, Butane/air)*

Arrestor Type	Source	Model		of Tests No Quench
Single screen	M.S. Tyler	30 mesh x .011" wire	4	6
Double screen	Press-Vac	PL6	2	1
Crimped ribbon	Amal Ltd.	188/905/15/45/Cn (.045" crimp height)	5	0
Parallel plate	Protectosea1	4956	5	. 0

^{*}Conditions for all tests: $\phi = 1.1$, 4 ft/sec mixture, downstream ignition, 5.5 ft run-up distance, open pipe, approach speed of flame 20-50 ft/sec.

Table 9

Summary of Off-the Shelf Arrestor Performance (High Speed Flames, Gasoline Vapor/Air)*

Arrestor Type	Source	Model	Number Quench	of Tests No Quench
Double Screen	Press-Vac	PL6	1	2**
Crimped Ribbon	Amal	188/905/75/24/CM	3	0
Crimped Ribbon	Ama1	188/905/15/45/CM	4	1*
Crimped Ribbon	Shand and Jurs	94305-6-11	3	O
Corrugated Parallel Plate	Varec	50SG	5	0
Parallel Plate	Protectoseal	4956	3	0
Metal Foam	Retimet	No. 30	3	0

^{*}Flame conditions for all tests: 3 ft/sec mixture speed, upstream ignition, 5.5 ft run-up distance, approach speed of flame approximately 110-125 ft/sec.

^{**} Abnormally low flame speed (50 ft/sec).

 $^{^{\}dagger}$ Abnormally high flame speed (* 150 ft/sec).

Table 10

Summary of Off-the-Shelf Arrestor Performance (Low-Speed Flames, Gasoline Vapor/Air)*

			Number (of Tests
Arrestor Type	Source	Mode1	Quench	No quench
Single Screen	M.S. Tyler	30 mesh x .011"	0	3
Double Screen	Press-Vac	PL6	3	0

^{*} Flame conditions: 3 ft/sec mixture speed, downstream ignition, open pipe, 5.5 ft run-up istance, approach speed of flames 3 ft/sec.

APPENDIX A

TABULATION OF TEST DATA ON THE REFECT OF MIXTURE SPEED AND IGNITOR LOCATION

Data obtained from individual tests performed during the program are listed in Tables A-1 through 4 according to the following key:

Effect of mixture speed on flame velocity	A-1
Critical mixture velocity for upstream flame propagation	A-2
Effect of upstream ignition	A-3
Critical L & D, for quenching butane/ air and methane/air flames	A-4

Table A-1

Data on Effect of Mixture Speed on Flame Velocity

Tes	ARRES	ARRESTOR CHARACTERISTI	TERIST	 S		MIXTURE	38	ICNI	IGNITION		RE	RESULTS		REMARKS
Number	Type	Opening	ت	دا	L/DH	CHARACT	CHARACTERISTICS	Run-up	Run-up Orifice	ď	V*3		Quench	
		-	_	(in)	- ···· /	Fue! 4	Mix		dia.	j.) <u>+</u>	\$ ‡		
	••••						speed (ft/sec)	(in)	(in)	down- stream	()	([[)	≱.	
012477-5	Parallel	.022" gap	.031	1.06	34	Butane 1.2		89	m	E	73	113	>	
``	" Plate		=	=	=	=	19	=	=	2	56	104	`>	
	. .	=	=	=	:	<u>=</u>	2	:	=		7.5	7.2		Abnormal
8	. E.	=	=	=	=	=	10	E	=	:	19	139	· ***	flame speed
011777-1	, . = _	=	=	=	=	1.2	2 2	** **	:		29	125	r. oza	
-2	=	=	=	=	=		11	=	=	=	111	1.04	>	
012177-7	=	=	=	=	=	Methane "	11	=	=		59	139	, . a.a.	,
φ	=	Ξ	¥	=	=	=	11	=	:	=	143	78	`^	Abnormal flame Signal trace
6-	=	=	Ħ.	=	=	=	91	=	=		19	139	``	i i
-11	<u> </u>	=	Ę.	=	=	:	7	=	:	-	2.4	1.2	>	Abnormal flame speed
012577-1	=	=	=	=	E	=	2	=	=		42	20	`	
-2	<u> </u>	=	5	F		= =	7	=	=	:	77	29	`	
-	<u>-</u> -	ine en	E	=	=		7	=	=	=	27	35	`	
013177-1	_=_	=	=	z	=	Butane "	2	:	=	=	95	74	``	
-2	Ξ	Ξ	=	E	:	E .	2	=	=		29	26	`	
4-	=	=	 =	E	=	=	2	E	=	=	500	420	\ \ \	Abnormal
5-	=	=	z	=	=	=	7	=	=		1000	78	>\	flame speed
9-	=	=	Ξ	=	:	=	2	=	=	=	800	114	- ' - ' - ' - ' - ' - ' - ' - ' - ' - '	
1	Ξ	r	=	=	:		7	=	=		182	178	`	
φ 		:	=	=	=	=	2	=	=	=	182	625	` `	
*														

 v_{23} is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Table A-1 (continued)

					prop	- <u>ing</u>					 .	··· —						4	, 	
REMARKS		_		No ignition	No upstream prop	Varied \$ during	test				.				Loud report	No ignition				
•	Quench		Y N	-	1 1	ı	*>	*	*	``	`	`*	``	,	`*	1	**	` ,	1	*
RESULTS	, 34	.	(<u>++</u>)	ı	1	ı	125	73	86	170	62	54	192	96	59	1	125	139	114	139
治 *	V23	<u>.</u>	(<u>++</u>)	!	4	ı	57	74	6 4	64	91	80	26	67	125	ı	57	133	167	67
	n I	or -	down-	Du	-	:	= ===		:	====	====	:	=======================================		====	===	=		=	F
		dia.		3	=	=	=		=	=	=		z	=	=	=		=	<u>.</u>	z
IGNITION	Run-up Orifice	_	(1n)		-	-		-	}	-	_	-	-			-	-		-	-
	Rur			89	Ξ	=	=	=	=	=	=	:	=	=	:	=	=	=	=	:
1	LICS	Mix	speed (ft/sec)	18	18	18	14	5	5	5	11	11	11	2	2	5	5	\$	2	'n
MXTUBE	ERIS	•	••	0.8	8.0	varied	1.2	1.1	1.1	=	=	=	=	-	=	=	E	=	=	=
Ë	CHARA	Fuel		Butane	:	٥	=	=	=	=	=	=	:	=	=	=	=	=	=	±
	L/DH	:		34	=	=	=	-	=	=	=	=	:	=	 E	Ξ	=	=	=	
		(1n)		1.06	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=
FERISTI	o H	_		.031	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=
ARRESTOR CHARACTERISTICS	Open Ing			.022" gap	E	Ξ	r	=	=	=	z.	E	=	=	E	Ξ	=	=	=	Ė
ARRES	Type				-14 " Plate	Ξ	=	t	=	=	=	=	=	2	z.	=	=	=	=	=
Test	Number			020377-13 Parallel	-14	-15!"	020477-1	-5	7-	5-	9-	-7	6-	020877-1	-2	020977-1	-2	۳	7-	5-

 v_{23} is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Lible 3-1 (continued)

的是不是在这种,这种是这种,是不是一个人,是这种人,是是一个人的人,也是是一个人的人,也是是一个人的人,也是是一个人的人,也是一个人的人,也是一个人的人,也是一个

REMARKS			rom		Use of heated	Butane hereafter	-	. * **	No upstream prop		- : -	Delayed pro-	pagation		No ignition		No upstream	"prop-"	=	11	No ignition	No upstream	", prop
	Quench i		z	-	`*	. *	`>	٠,	\	`,	,	,	***		1	`_	i	1	1	1	1 1	1	i i
	V23 V34	, t	sec)	179	38	59	96	59	0	O	93	16	ı		ı	2.8	i	ı		i	1	i	ı
		, fr	sec (=)	154	80	43	99	71	0	0	51	17	ì		ı	9.4	ł	Ì		ı	ı	1	I
	Lp	or,	down- stream	ם	:	: .	=	=	=	- · · · ·	.			=		:						- ···	2
	rifice		(in	3	=	=	E	=	=	=	=	=	=	=	:	=	:	=	=	<u>.</u>	:		=
I GN LT I ON	Run-up Orifice		(fn)	68																			
1	ACTERISTICS	·• -	ec)	9	<u>:</u>										=	- =		=	=				
MEXTURE		Mix	speed (ft/sec)	2	18	11	11	11	18	18	2	18	18	18	18	18	18	18	18	18	78	18	18
		↔		1.1	=	:	=		=	=	=	=	=	=	œ.	1.3	1.1	1.1	1.1	1.2	∞.	1.1	a,
F.	CHAR	Fuel		Butane	<u>=</u>		Ξ	Ξ		Æ.	_==	===	<u> =</u>	11	11	Ē	=	2		=	=	=	2
	L/DH			34	=	=	=	=	=	=	=	=	=	2	=	:	=	=	11	=	=	2	:
		(fn)		1.06	E	=	=	=	=	=	=	=	=	2	2	=	2	=	=	=	E	=	z
ERIST	D T			.031	=	=	=	=	=	=	=	=	=	=	=	:	=	ŧ	=	=	E	=	:
ARRESTOR CHARACTERISTICS	Open ing	~		.022" gap	=	5	=	=	1	=	Z	=	2	 = 	=	2	ŧ	£	 	=	=	=	ε
ARRES	Type				,, Plate	Ę			11		2	2	_=	=	=	. :	=	_ E		=		=	
Test	Number	-		013177-9	020177-1	2	ຕົ	*	5-	9-	8-	020377-1	-2	-3	5 -	ئ.	9	2-	87	6	-10	-11 "	-12 "

 v_{23} is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Table 4-1 (continued)

PEMARKS Onench	· · ·	Z		·	No upstream prop	Delay in propag.				ಪಚಾಗಿ						Pres = 21 psi	No ignition	/ Pres = 26 ps1	Pres = 33 psi	/ Pres = 10 psi	Pres = 6 psi
1.	5	₩	*	'n		` >		`	***	*	`*	`~	>	`*	`*	`*			`		`~ *
RESULTS		$(\frac{11}{sec})$	69	10.5	١	ις: ·at	139	104	125	139	132	156	78	125	ı	125	1	114	208	147	100
**	,23	Sec.	133	13.7	١	4.1	56	61	29	19	62	59	54	83	91	143	1	142	285	167	100
G.1		down- stream	E	= = = = = =					=	- · ·			=	=	i dn	·	-			:	:
							i		_								i				
ICNITION	up on		3	=	=	=	¥		=	=	=	11	=	=	=	=	=		=	=	=
B.m.	- III 	(fn)	89	. E	=	=		=	#	=	= _	:	=	=	889	=	=	<u>=</u>	E	<i>5</i>	=
	Mix Mix	speed (ft/sec)	r.	11	18	18	11	2	19	11	19	11	2	18	7	7	7	10	16	4	4
HIXTURE ARACTERIS	Fuel & Mix	·	1.10	1.12	1.11	1.10	1.11	1.01	1.11	1.11	1.11	1.11	1.11	1.11	1.10	1.1	1.11	1.10	1.07	1.14	1.2
THE	Fuel	4))	Butane	E	=	=	Methane		E	2	=	ш		=	Butane	=			=	=	
1 47 1	i E		34	=======================================	:	====		===	==-	= =	=			F	10.7	 =	=	:	=======================================	=	=
	(in)	Ì	1.06	=	=	=		<u>=</u>	=	=	=		=	=	. 375	=	11	=	=	=	E
ERISTI	E.		.031	=		=	=	=	=	=	=	=		z	.035	=	=		=	=	=
1031	Opening (1	;	.022" gap	=	=	=	#	g.	=	=	=	=	E	z	.031 Height	Ξ	E	#	=	=	=
THE	Type	. 	١	Plate	:	:	E	5	=	=	2	=	=	=		Ribbon		=	<u>:</u>	=	=
Test			021177-1	-2	-3	4-	021777-1	-5		5-	9-	φ ₁	9,	-10	040677-1	040777-1	-2	-3	7-	9	040877-1

 V_{23} is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly V_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Table 1-1 (continued)

· γ ₁		psi	psi	psi		psi	isd	psi	psi			~ ****		 	***************************************	na germalik filoso	
REMARKS		Pres = 28	Pres = 21	Pres = 11		Pres = 17	Pres = 7	Pres = 17	Pres = 12								
Quench	N Y	 	erime Na	**	7 PP	•	.uria	.: (gr);: ****	<u> </u>	20 2 3 23 9							•
RESULTS V V	$\frac{ft}{sec}$	147	114	156	scord	250	250	208	250								
*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(ft sec	153	160	222	No record	286	69	222	118	75 - April pi 150 augusti		- married and the		 			_
ď	or down- stream	ďn	=	:		=	=							 			-
TION Orifice	dia. (in)	m	:	=	:	=	:	=	=								
Run-up Orifice	(in)	£89	=	=		=	=	=	=								
SJ1	Mix speed (ft/sec)	 	7	16	16	16	4	14	14					 			_
MIXTURE ARACTERIST	Fuel \$ Mix speed	1.08	1.11	1.11	ı	1.07	1.13	1.11	1.14		i						
CHARA	Fue1	10.7Butane	=		=	11	Methane 1.13		=								
L/D.	I	10.7	:		 E	=	=	<u>:</u>	=					 			•••
	<u> </u>	.375	2	=	=			E	=								
RISTI	^	.035	=	=	=	ı		=	=								
ARRESTOR CHARACTERISTICS	H (11)	Height	=	=	:			=	=								
ARREST) 	Crimped .031	Ribbon "	:	= .	=	=	2	=				a de la companya de l				
Test Number		040877-2	-3	7-	۱ <u>۲</u>	9	89	6-	-10								

 v_{23} is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Table A-2

Data on Critical Mixture Velocity for Upstream Flame Propagation

REMARKS				•		rlame-through			######################################	No upstream	dold a	: :	/ Flame-through	after 3-sec	No upstream	of of	1	no upstream				Flame through	after5 sec
	Quench		Z X	•	· >	`~`	•	-	•					`.			>		•	*	`.	>	
RESULTS	734	_	,sec	380	99	250	61	ı	ı	1	1	١	1	5.4	ı	ı	1.7	1	7.6	5.4	5.5	6.5	,
- X	V ₂ 3		sec	450	16	133	105	-	l 	1	1	l 	1	6.7	1	1	9.9	1	12.3	5.4	5.5	6.1	, ,
	dn	or down-	stream	Ē	 :		 E	=	=	:	=		=	=	•	 E	2	=	=	=	=	:	
FION	rifice	dia.	(1111)	٣	=	=	=	None	=	=	£	=	11	· =	=	=	£	=	=	=	=	=	:
ICALTION	Run-up Orifice	(42)	(ur)	28	2	<u>.</u>	=	N N	=	=		=	11	 	=	<u>:</u>	=	=	48	=		=	:
		·	(ft/sec)			<i>-</i>																	_
	CHARACTERISTICS	Mix	Spec (ft/	77 +	×	9 9	2 7	, 7	80	4 10	5	80	8	9 (6 1	2 8	80	2 7	7	1 7	8 1	1 10	,
MIXTURE	ACTER	↔		1.14	1.14	1.15	1.15	1.14	1.14	1.14	1.12	1.11	1.11	e 1.10	1.11	1.12	1.08	1.12	1.11	1.11	1.11	1.11	
M	CHAR	Fuel		Butane	.=	<u>=</u>	=		 =	=	5	=	=	Methane 1.10	Ξ	=	=	ı.	ı	=_	=	=	:
	L/2,	:		34	:	=	=	=	=	=	z	*	Ų.	=	=	=	=	=	ı	£	=	=	:
CS	د.	tn)		1.06	=	=	=	=	=	=	=	=	=	=	=	=	=	=	ε	=	=	=	:
RISTI	Q ²) (L		.031	=	=	=	=	=	=	=	=	:	=	=	=	=	=	<u> </u>	=	=	=	:
ARRESTOR CHARACTERISTI	Opening	~		.022" gap	Ε	=	=	E	=	=	=	F	=	=	E	E	=	E	=	E	=	E	:
ARRESTO	Type	i.		l	וו	z		=	=	=	±	E	z	=	=	=	=	E	=	Ξ	=	n	
Test	Number	-	-	021177-5	9-	-7	- 8 - 8	021477-1	-2	-3	4-	-5	9-	021577-1	-5	-3	7-	ŗſ	021677-1	-5	<u> </u>	7-	

 v_{23} is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Table A-2 (continued)

and the second of the second o

REMARKS					No ignition Flame-through	after 5-sec		Flame through after 5-sec	No ignition					a aguna mberi	
,	Quench	z			·· `	1	/) 						
NI.	V 34 Q	ft) sec Y	5.9	4.2	1	4.8	16.7	3.9	ı						
* RESI	v23 v	$\left(\frac{\mathrm{ft}}{\mathrm{sec}}\right)\left(\frac{\mathrm{ft}}{\mathrm{sec}}\right)$	5.9	6.1	1	5.9	23.5	3.9	i						
	da l	down-	ם	=====		=	_=	=	=======================================	u marin (m	 	Photo And di			
ICKITION	Run-up Orifice	dia. (in)	None	=	=	:	=	 =	=						
IGNI	Run-up	(1n)	48	=	ε	=	<u>:</u>	=							
† 	10S	M1X speed	16.9	19	3.1	50	7	3	2.1		 -			-	
HIXTURE	ERIS	£ 0 5 ⊕	1.12	1.12	1.11	1.11	1.11	1.1	1.10						
1		ruel	Methane	=	. =	r		=	E						
	L/DH		34	=	=	:	=	=	=		<u>-</u>				
١.		(in)	1.06		E	=	E	=	=						
ERISTI	H.	_	.031	r	=	=	=	=	£						
ARRESTOR CHARACTERISTICS	Opening	٠	.022" gap	=	=	=	=	=	=						
ARRES	Type		Paralle1	Plate	=	E	:	=	Ξ						
Test	Number		021677-6		- φ	6 1	2	-11	-12						

 $^{\star}_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly $^{\vee}_{34}$ is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Table A-3

Data on Effect of Upstream Ignition

est	APRE	APRESTOR CHARACTERISTICS	CTERIS			MIXTURE	UPE		ICHI	ICHITION		. A	RESULTS		REMARKS
Number	Type	Open Ing	الم الم	_	L/D_{H}	CHARAC	CHARACTERISTICS	TICS	Run-up	Run-up Orifice	Up	V23	V 34	Quench	**************************************
			(11:)	(111)		Tan J		speed (ft/sec)	(1n)	(in)	down- stream	$\left(\frac{fL}{sec}\right)$	$(\frac{\mathrm{ft}}{\mathrm{sec}})$	Y N	
C32177-5	Crimped	.031"	.035	.375	10.7	Butane	1.10	11	583	3	Z Z	99	68	` ^	Pres = 12 psi
9-	Ki bbon	neigni	E	=	=	Ξ	1.11	10	=	=	=	285	417	`~	Pres = 47 psf
-7	=	=	=	=	=	=_	1.11	11	=	=	:	100	61	`*	Pres = 10 psi
032277-1	=	=	=	=	=	=	1.10	11	=	=	:	31	19	`	Pres = 9 psi
-2	=	11	11	=	=	11	1.10	11	=	=	=	19	96	,	Pres = 4 psi
7-	=	r	=	 =	=	=	1.11	Lï	:	=		36	99	>	Pres = 10 psi
'n	:	=	=	=	=	=	1.11	11	=		2	62	105	`	Pres = 25 psi
ï	-	=	=	E	=	=	1.15	11		=	=	ı —–	ı	`>	No Recording
%	:	E	=	=	=	=	1.15	11	=	=	.	133	83	*	Pres = 17 psi
6-		=		:	=	=	1.16	14	=	=	=	65	125		Pres = 47 psi
040677-1		=	=	=	:	<u>.</u>	1.10	7	E	=	ďn	16	ı	*	
040777-1	<u> </u>	E	=	=	=	=	1.1	4	=	=	:	143	125	`	Pres = 21 psi
-2	=	=	=	=	=	=	1.11	7	z.	p	<u>.</u>		ı		No ignition
-13	=	=	=	=	*	E	1.10	10	=	:	:	142	119	`	Pres = 26 psi
7-		11	=	=	=	11	1.07	16	=	=		285	208	>	Pres = 33 psi
9-	=	E	=	=	=	=	1.14	7	=	:	:	167	147	`	Pres = 10 psi
040877-1	=	5	r	F	=	=	1.2	4	=	=	:	100	100	`~	Pres = 6 psi
-2	=	=	=	=	=		1.08	4	:	=	=	153	147	`	Pres = 28 psi
۳	=	=	=	=	=	=	1.11	4	=	=	2	160	147	`	Pres = 21 psi
7-		ш	=	=	=	=	111	16	=	2	=	222	156	`^	Pres = 11 psi

 v_{23} is the average flame speed between points 2 and 3 located 41" and i7" from the base-plate of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Table 4-3 (continued)

Test Number	Ty pe	ARRESTOR CHARACTERISTICS Type Opening D _H L (in) (in)	CTERIST DH (1n)	_	H _{Q/T}	CHARACTERISTICS Fuel & Mix	STICS	IGN1 Run-up	IGNITION Run-up Orifice	Up	VŽ3	RESULTS V 34	Quench	REMARKS
				·			speed (ft/sec)	(in)	(in)	down- stream	$\left(\frac{f L}{sec}\right)$	(<u>ff</u> sec	Y N	
040877-5 Crimped Ribbon	Crimped Ribbon	.031"	.035	.075	10.7	10.7 Butane	16	£89	ť	ďn	No record	ord	*	i Familia
9	=	11.97	ä	=	=	1.07	16	:	E	:	268	250	`^	Pres = 17 psi
8	=	=	=	=	=	Methane 1.13	4	<u>:</u>	=	-	69	250	>	Pres = 7 psi
5-	•	=	= 1	=			16	=	z		222	208	``	= 17
-10	=	=	=	=	=	1.14	}	=	=	=		250	,	Pres = 12 psi
	regard to the control of the control		ļ											Tana va s s and
														¥-2.5
														·
	············													
						,					· 			
	···													
		-								-				
							·							
*			:		1									

 $^{v}_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Table A-4

Data on Critical L & D for Quenching Butane/Air & Methane/Air Flames

REMARKS	gwa .					No ignition			No ignition	Conclude this	arrestor is	not marginal							Conclude this	arrestor is	not marginal
	Quench	z	_	`	,	1	`*	,	1	`	*	,	`*	,	`,	`_	1	`	`*	`*	,
RESULTS	34	$\left(\frac{ft}{\sec}\right)$	139	104	125	ı	139	132	f	156	28	125	114	125	139	125	139	42	125	20	125
, H.	V23	(ft sec	56	19	67	1	61	62	1	58	54	83	54	59	56	69	61	57	62	51	167
	da	or down- stream	Б	:		:=:		*	=			=	žo O	:		-	=		:	5	
LION	Orifice	dia. (in)	3	=	=	Ľ	=	=	=	:	:	=	m	=	=		<u>_</u>	÷	=		
ICNITION	Run-up Orifice	(In)	89	=	=	=	=		2	=	=	=	<i>₹</i> 89	=	=	=	11	=	=		
	SSI	mix speed (ft/sec)	11.6	~ ~~	19.2	7	11.5	19	5	11.5	2.0	18	2.1	2.1	19.0	19.0	18	2	18	2	7
MIXTURE	ACTERIS	ruel o A	Methane 1.11	1.01	1.11	1.10	1.11	1.11	1.10	1.11	1.11	1.11	Methane 1.10	1.10	1.05	1.06	1.10	1.10	1.11	1.10	1.11
	L/D _H		34 IM	_= <u>=</u>	:	=======================================		=	=	<u> </u>	- - -	=	14.3 H	:	- <u>-</u> -	=	:	- -	=	<u> </u>	=
ICS	7	(H)	1.06	:	=	=	=	=	=	=	=	=	0.5	=	=	=	=	=	=	=	=
TERIST	o ^H	(1n)	gap .031	=	=	=	= {	=	=	=	=	2	.035	=	=	=] =	=	=	5	=
ARRESTOR CHARACTERIST	Opening		.022" gap	:	:	Ξ	=	:	=	=	=	11	.031" height) =	=	=	i i	=	=	=	z
ARRES	Type		Paraliei	rrace	=	=	5	=	=	E	=	E		=	=	=	=	=	=	5	=
Test	Number		021777-1	-2	-3	7	Ţ	9	-7	φ	6-	-10	0322377-1 Crimped	-2	-3	7-	022577-1	-2	£.	7-	-5

 v_{23} is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Table A-4 (continued)

REMARKS				The part of the pa											Arrestor	may have been	damaged	or these		critical mix d discernable
	(ruen ch	Y N	`	`	`	`	1,2	`	`	`*	`*		``	``	`*	*	1	*	`	ie: No cr speed
PESIILTS	V 34)(ft sec	78	178	139	139	156	139	125	125	125	139	139	1	125	119	156	125	139	Conclude: No sp
<u>a</u>	, v*	(ft) sec	65	57	. 56	57	59	57	64	1 67	61	56	. 67	1	! 67	190	65	. 61	19	
	d d	down- stream	B	=	=	=	=		=	=	=	=	=		=	11	=	= ==	=	
TION	Rum-up Orifice	(in)	ю	:	:	=	=	=	r	=	=	=	=	=	2			=	E	
IGNITION	Run-up	(In)	68%	٤	2	=	=	=	=	=	=		=	=	=			=		
1	TICS	speed (ft/sec)	2	18	6	13	16	14	15	16	16	16	15	14.5	15.8	15.8	8.41	14.7	12.6	
MEXTURE	ACTERIS	.	e 1.10	1.11	1.10	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.09	1.12	1.11	1.12	1.12	1.12	
=	CHAR		10.7 Methane	E	.	<u>.</u>	=	_=_	Ξ.	_= _	_=	_	= .	=_	=	=	1	=_	<u> </u>	
	$L/D_{ m H}$			=	=	=	=	=	=	=	=	=	=	=	E	=	=	E	=	
TICS	1- (£) 	.375	=	=	=	=	=	=	=	E	=	:	=	=	=	ш	=	=	
CTERIS	DH C	(111)	.035	=	:	=	=	2	=	=	=	=	=	=	=	=	=	=	=	
TOR CHARA	oe Opening D _H L		.031"	וופיזאוור		=	=	=	=	=	=		=	<u>:</u>	=	:	11	=	Ε	
ARRES	Type		Crimped	no care	=	-	=	=	=	F	=	=	E	=	=	:	=	=	=	
Test	Number		022577-6	-1	φ	6	-10	-11	-12	-13	-17	-15	-16	-17	030177-1	-2	-3	7-	5-	

It is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, v_{23} is the average flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Test	ARRES	ARRESTOR CHARACTERISTICS	TERIS	LICS		HUNTURE		ICKITION	NOL		RE	RESULTS		REMARKS
Number	Туре	Opening	O.H	. ت	T/DH	CHARACTERISTICS	ISTICS	Run-up Orifice	rtfice	dn	V*	34	Quench	
			(tii)	(In)	=	Fuel ¢	Mix		dia.	b .	, , , ,	, tt		
1							speed (ft/sec)	(1n)	(in)	down-	sec)	sec)	Y N	
030177-6	Parallel	.032" gap	.045	ı.	11.1	Methane 1.11	1.3	68%	Э	E	1	ι	· **	
	Lighe	=	=	E	=	1.11	1 7.3	=	=	-	57	125	`	
	=	=	=	=	=	- 1.11	1 5.2	2	=	-	61	114	**	
, P.	<u>.</u>	=	=	=	=	1.11	1 2.1	=	2		57	99	`*	
10		=	=	=	=	" 1.11	1 2.1	=	=	=	77	38	,	
030377-1	=	=	=	=	=	1.11	1 4.1	:			19	138	`	
्ध.	=	2	z	=	z	" 1.12.	6.2	2	=		64	139	`*	
η,	=	=	=	=	E	" 1.12	2 5.2	:	=	====	56	132	*	
**	=	=	=	=	=	1.11	1 4.2	=	=	=	54	147	`	* ************************************
5.	н	=	=	=	=	1.11	1 3.1	=	11		51	43	,	
9	: -	=	=	=	=	1.11	1 4.1	=	=		57	96	`~	
. 17.	ŧ	=	=	E	=	1.11	1 4.1	=	:	=	99	125	`	
. 	=	=	=	=	r	T.T	4.1	=	2	:	54	1.25	`	
- Ph	=	=	=	=	=	1.1	4.1	=	=		26	98	`	
-10	=	ı,			=	1.1	4.1	11	=	:	76	54	,	
П	11	ı		=	=	1.1	4.1	=	*		133	9/	`*	Conclude: Does
-12	=	=	=	•	2	1.1	6.2	=	=		6 4	83	`	4 ft/sec mix
13	=	=	=	=		Butane 1.1	3.9	=		-	65	96	`*	Speed
031077-1	z	=	=	=	=	F.:	4.0	:	=	:	250	625	`^	
-2	=	2	=	=	=	1.1	10	=	=	=	53	89	,	

 v_2 is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Table A-4 (continued)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Test	ARRE	ARRESTOR CHARACTERISTICS	TERIS	TICS		MIX	MIXTUPE		IGNITION	TION		+ ER	RESULTS		REMARKS
The control of the	Number	Type	Opening	O.H.	 	L/DH	CHARA	CTERIS	TICS	Run-up	Orifice	ďn	V23	V 34	Quench	
Parallel .036" gap .045 .5 11.1 Butane 1.1 5 685 3 Dn 6250 7/ Plate				(1n)	(fn)		Fue!	-	Mix speed	(1n)	dia. (in)	down-	$(\frac{ft}{sec})$	(ft)		200
Plate									(ft/sec)			stream				
Thate II I I I I I I I I I I I I I I I I I	031077-3	1		. 045	٦.	11.1	Butane	1.1	Ŋ	€89	m	됨	250	250	``	
1	4-		=	=	=	=	. = -	1.1	∞	E	E	=	53	109	`*	
			=	=	E	=	.=.	1.1	6	=	=		19	100	`	7.2.5
	9-		Ē.	=	=	=	==	1.1	7	=	=	=	19	119	`	
11	-7		=	=	=	=	=	1.1	9	=	£	=	148	63	<i>></i>	2 44
	87		=	=	=	=	.=.	1.1	7.1	1	ı.	=	111	114	***	e a a
1. 1. 1. 1. 1. 1. 1. 1.	<u>۴</u>		s.	Ξ	=	=	. = .	H. H	φ	=	=	=	121	83	`~	- 1 -11
1. 1. 1. 1. 1. 1. 1. 1.	031177-1	<u>.</u>	=	=	r	=	.=_	1.1	1.9	٤	z		19	139	`^	er er e
	-2	:	£	=	z	=		1.1	6.1	=	=	:	105	139	`	
	۲,٬		11	11				1.1	6.1	=	=		133	104	*	
	4-4	=	=	=	=	=		1.1	7.2	=	=	=	57	83	`*	
	9		=	=	=	E		1.1	7.2	=	=	=	99	194	`	,
	-7	E.	=	=	=	=		1.1	8.1	=	=	=	53	63	`	Conclude: Does
Crimped .031" .035 .375 10.7 Butane 1.11 4 " " " 82 60 v mix Ribbon height " " " 1.10 16 " " " 48 46 v " " " 1.10 17 " " " 1.11 1	φ 	:	=	=	=	=	. .	1.1	8.1	:	2	:	54	96	` *	below 8 ft/sec
Crimped .031" .035 .375 10.7 Butane 1.11 4 " " " 105 Ribbon height " " " " 1.10 " " " " 48 " " " 1.10 10 " " 43 " " " 1.11 7 " " 61	6-				=	¥	11	1.1	8.1	=	=	=	82	09	`*	mix speed
Ribbon height " " " " " " 48 " " " 1.10 16 " " " 43 " " 1.11 7 " " " 61	031877-1	Crimped	.031"	.035	.375		Butane	1.11	•4	=	=	=	105	54	>	and a state of
" " " " 1.10 10 " " 43 43 " " " 61 61 10 " " " 61 61 10 " " " " " 61 61 10 " " " " " 61 61 10 10 " " " " " 61 61 10 10 10 10 10 10 10 10 10 10 10 10 10	-2		height "	=	.	E		1.10	16		=	=	48	70	`*	
1.11 7 61	-3		z.	=	=	Ľ	=	1.10	10	=	=	:	43	39	`>	
	- 4		Ľ	¥	Ε	=	=	1.11	7	=	:	=	61	62	>	

 v_{23} is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Table 4-4 (continued)

المستند فليقيضونها أخطأه وميارات فالمتابي

A.R.R.	ARRESTOR CHARACTERISTICS	CTERIS'	LICS		XIK	MIXTUPE		MOLLINDI	LIGN		24	RESULTS		REMARKS
Type	Open ing	a ^H		1/D	CHARA	CHARACTERISTICS	IICS	Run-up	Run-up Orifice	Сp	V23	34	Gnench	
		(in)	(tr)	:	Fuel	4+	ix.		dia.	01	4.	•		
						v, —	speed (ft/sec)	(In)	(in)	down- stream	(文:) (文:) (文:)	Sec)	Y N	
Crimped	.031"	.035	.375	10.7	10.7 Butane	1.11	6	589	۳	E	330	250	>	
Ribbon	height													
£		:	ı	2		1.12	10	=		=	, 64	54	~	
c	to 19	=	=	:		1.12	10	=	:	=	148	147		
E	=	.	F	=	=	1.12	10	=	=	=	181	83	>	
=	11	:	11		=	1.11	10	=	=	=	19	114	`^	
=	5	=	=	E	_ =	1.11	10	=	=	=	59	125	>	دست.
,	=	=	E	=	=	1.12	11	=	=	=	57	125	·~x	
Į.	=	=	E		=	1.11	11	=	2	=	59	104	,	
:	=	=	=	=	_=	1.10	11	=	=	=	59	83	`	Pres = 2 psi
2	11		:	2		1.11	10	=			285	417	- 'A	Pres = 47 psi
ä	; ;	=	Ξ	.	-	1.11	11	r	=	=	100	61	`	Pres = 10 psi
	F	£	=	=	E	1.10	11	=	=	=	3.	19	· >	Pres = 9 psi
=	=	t	±	=	=	1.10	ដ	=	z	<u>=</u>	19	96	`*	Pres = 4 psi
-	=		=	:	=	1.11	11	=	=	=	36	99	`*	Pres = 10 psi
11		=	=	=		1.11	11	22	=	z	32	105	,	Pres = 25 psi
<u>.</u>	=	=	2	=======================================	<u>.</u>	1.15	11	1	z	E	1	ı	`*	No recording
=	Ξ	Ξ	*	=	.	1.15	11		=	=	133	83	`	Fres = I7 psi
2	:	:	z	=	. =	1.16	14	=	=	:	55	125	*	Pres = 47 psi
												8	Conclude:	Does not quench
											•			below li ft/sec

 * is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Table A-4 (continued)

Number T	Tune		2011 2011 2011 2011			HILLIONE	ان د		RCMITION	NOL		RESULTS		REMARKS
vo ν	٠. ۲	Opening D	J H		. Hq/1	CHARACTERISTICS	rer is	TICS	Run-up Orifice)rifice	r. dı	V23 V34	Quench	
*		.	n) (fn)		:	Fuel	•	Mix	(1n)	dia. (in)	or down-	$\stackrel{\sim}{\sim}$	×	
	Parallel	.036" gap	.045	2	11.11	11.1 Methane	1:1	(117/sec)	68%	3	Up			
	Plate				-								. r.	
	=	=	=	=	=	=	=	=	=	Ξ				
	=	=	:	=	=	=	=	=	:	Ξ	:		~ <u>.</u>	
062777-1	=	=	:	=	- =	Butane	E	:	=	=	.:		7.4.4 15.4	
-5 -	.		=	=	= ;	:	÷	=	:	Ľ,			, ·	
~	 :	=	:	=	=	=	=	=	=	=	:		= ` •	
	=	=	:	:	= = -	ı	:	. 6	:	z	:		73 ·	
- - : - : - :	=	z	:		=	=	=	7	-	:	:		·	
- φ	=	=	=	=	=	=	=	٠	z	:			. t *	
7	=	=		:	=	11	ı	3	11				, / J	
89	=	=	:	=		=	=	ĸ	=	=	:		**************************************	
062877-1	=	Ξ	:	=	:	Methane	=	16	Ξ	=	:		``*	
-5-	=	z	=	=	=	:	=	4	r	=	: ::I		` <u>`</u>	
۳		=	:	=	 :	=	=	2	=				`>	
-4		п			:		11	2	u				1	
										İ				
- · -														
-													,	

 v_2 is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

e de la company de la comp La company de la compa

APPENDIX B

TABULATION OF TEST DATA ON OFF-THE-SHELF ARRESTORS

Data obtained from individual tests of off-the-shelf arrestors are listed in Table B-1.

Table B-1

Data from Tests on Off-the-Shelf Arrestors

Test	ARE	ARRESTOR CHARACTERISTICS	CTERIS	TICS		HIX	MIXTUPE		ICM	ICHITION	-	R	RESULTS		REMARKS
Number	Type	Opening	o [±]	<u> </u>	L/DH	CHARA	CHARACTERISTICS	STICS	Run-up	Run-up Orifice	Up	V23	V 34	(ruench	
			(1m)	(1n)	:	Fuel	•	Mix speed (ft/sec)	(1n)	dia. (in)	or down- stream	(ft)	\sim	×	
051877-6		1	.022	1		Butanc	1.2	7	69	None	셤	1.2	13	1	
-7	screen	x.0il" wire	e .	ı	ı	_=.	:	=	E	=	•	56	45	`	
∞		=	=	ı	t	Ξ	=	:	=	=		20	10	`	
6-		=	:	i	1	=	<u>.</u>	=	=	=	=	22	11	`*	
-10	-:-	:	=	ı	ı	<u>.</u>	:		=	=	11	25	99	1	
051977-1	=	=	=		1	<u>=</u>	 =	=	=	=		22	17	**	New screen
-5	=	=	=	ı	1	<u>.</u>	=	=	=	=	=	26	31	`^	nseq
	<u>:</u>	=	=	1	ı	<u> </u>	=	=	=	:	:	15	15	`*	T. 272
7-	_=_	=	=	ı	1	_=_	=	=	=	=	=	22	11	`~	
rJ.		=	Ħ	ŀ	ı	.	=	=	=	r	=	13	17	>	
041977-1	Varec .	.047" gap	990.	5.75	87		1.14	16	64	3	ПP	250	1	•	Pres. = 6 psi
-2	=	=	=	=	=	=	1.15	=	5	:	:	250	i	`	Pres = 4 psi
-3		:	=	=	=	Ε.	1.14	=	2	=	=	250	1	`	Pres = 4 psi
4-	<u>.</u>	Ξ.	=	=	=	=	1.14	=	=	=	:	143	ı	`^	Pres = 4 psi
	==	=	=	=	=	<u></u>	1.14	=	=	=	=	268	ı	`>	Pres = 4 psi
042277-1	Amal .0	.024" height	.021	.75	35.7		1.08	=	89	=	=			,	No record taker
-2	.	ŗ	=	=	=	=	1.13	=	=	:		200	250	`^	Pres = 7 psi
E)	=	=	ï	E	=		1.09		=	=	:	200	179	**	Pres = 13 psi
642577-1	:	=	Ξ	=	=	=	1.12	-	=	=	=	250	156	`^	Pres = 7 psi
-2	=	= .	=	:	=	:	1.11		-	=	:	182	208	**	Pres = 7 psi
*			:												

 v_{23} is the average fiame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor. respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Table R-1 (rontinued)

Test	ARRES	ARRESTOR CHARACTERISTICS	TERIST	S21.		EXIN	MIXTURE		IONI	ICALTION		RE	RESULTS		REMARKS
Number	Type	Open ing	Ω "	L	T/DH	CHARAC	CHARACTERISTICS	ICS	Run-up	Run-up Orifice	dn	V23	V 34	Quench	
			(ii)	(in)	:	Fuel	Σ ↔	×	;	dia.	or	ft	ft		
							ς <u>·</u>	speed (ft/sec)	(1n)	(in)	gown- Stream	sec	sec	Y N	5 25.05
042577-3	Amal .024" height	height	.021	.75	35.7	35.7 Butane	1.12	16	89	3	ηb	400	125	•	Pres = 12 psi
4-	=		=	=	=	<u>.=</u> _	1.07		=	=		143	125	`*	Pres = 7 psi
S-			:	=	=	_=	1.07	=	=	=	=	1167	139	`	Pres = 7 psi
91			=	=	:	=	1.09	:	=	:	=	118	139	`*	Pres = 15 psi
050277-1	=		=	=	=	=	1.21	4	:	None	뎐	4.8	ł	,	
2	=		=	 -	 :	=	1.11	=		=	:	2.8	1		
-3	====		E	=	:	=	1.25	.	=	=		3.6	ı	`~	
7-	=======================================		=	=	=		1.22	=	:	=	:	3.2	ı	`	
5	:		=	=	:	¥	1.11	===	=	=	=	2.9	ı	``	
9	=		2	=	=	r	1.10	=	=	=	:	3.6	i	*	
-7			=	=	=	=	1.11	=	=	Ξ	 د	2.2	1		
ရ	:		=	=	=	.	1.23	:	=	:	=	4.6	ı	*	
050477-1	=		=	=	:	<u>-</u>	1.26	E	=	=	:	3.2	3.2	` <u>`</u>	W- 1828.2
-2			=	=	:	E	1.22	=		=		6.4	3.5	,	
-3	=		=	E	:	r	1.21	<u> </u>	=	=	=	4.3	5.2	ν'	
7	=		-	=	=	=	1.22	r.		=	=	4.3	2.9	Ą	
<u>5</u> -	=		=	=	:	Ξ.	1.21			=	=	3.2	2.3	`*	
051077-1	Amal 045"	045" height	.038 1.5	1.5	39	=	1.1	16	675		đn	ı	88	>	Faulty data
-2	=		=	=	:	=	1.1	:	z.	=	=	125	139	***	=
-3	=		=	=	:	E	1.1	=	=	=	:	167	139	,	:

 V_{23} is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly V_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Repeat ** These runs with the Amai .045" crimp arrestor were faulty because a gap was noticed in the mounting assembly. tests conducted after repairing the gap showed no failure.

Table B-1 (continued)

iest Number	Type	ARRESTOR CHARACTERISTICS Opening D. L	CTERIE	TICS	L/D.	CHAR	CHARACTERISTICS	LLCS	Run-up	Run-up Orifice	Up	*. *. !	KES JLIS V	Ouench	 REM	REMARKS
			(in)	(1n)	x :	Fuel	Ф	Mix speed	(1n)	dia. (in)		7 E()8	$\frac{34}{\text{Sec}}$	2	•	
1051177-1	AE21	OAS" heicht	038	1	95	Futano	-	(ft/sec)	¥.	Mono	Stream	182	214		Faulty	data
		=	=		:	=	: : =	. =	· =			222	88	``		
051377-1	. =	=	τ	=	ī		=	*		=	=	200	139	`	1	ŗ
051677-1		=	=	=	=		E	:	=	m	·	167	139	`	.	:
-2	. .	=	=	=	¥		=	5	:	=	= =	200	156	`*	5	=
-3		-	=	:	=	=	1	=	=	i=	=	222	179	,	-	=
7-	_=	=	r	=	=		=	=	:	=		200	139	*	F	=
5		5	Ξ	=	Ε	=_=	:			:	:	167	139	`*	.	=
051777-3	_ E	z	=	=	=	=	F	=	:	=	:	154	125	`*	= :::	÷
7-		=	=	=	£	Ξ	=	=	:	:	=	111	114	`*		E
υ	E.	1	=	=	=	=	=	=	=	-	=	143	156	,	=	-
9		=	Ξ	=	=	=	=	=	=	=	=	135	125	`>		=
-7	<u>.</u>	=	=	=	=	=	Ξ	=	=	=	:	154	139	`^	:	=
φ	<u>.</u> .	=	Ξ	=	=	=	=	=	:	=	=	235	208	`>	:	=
051877-1	=	=	£	=	=	:	1.2	4	=	None	g G	56	34	`	=	=
2	=	=	<u> </u>	=		<u></u>	=	=	=	=	=	14	26	,		
- -	=	=	=	Ξ	=	=	=	=	=	=	:	25	33	`~		
7-	=	Ξ	=	=		=	=	=	=		=	14	25	``*		
-5	=	.	=	=	=	=	=	=	E	=	:	1.5	24	,	Arrestor O.K.	r 0.K

 v_{23} is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

** These runs with the Amal ,045" crimp arrestor were faulty because a gap was noticed in the mounting assembly. Repeat tests conducted after repairing the gap showed no failure.

Table B-1 (continued)

t · - · · -	· ·7					1					1								
REMARKS		Velocities to	De getermined	=	=	11	:	=	=	E	=	=	=		# #	=	:		
		Ę,	e	• •	-		- 	- rasa	-	· Automa		-		-	_	_	-	-	
Quench	Y N	`*	**	`	`*	,*	`	`_	`_	`	1	>	,	`	¥	*	`*		
RESULTS V		167	80	143	222	167	222	286	250	200	167	167	200	182	167	143	200		
ν*, γ		97	121	88	111	80	103	109	, 117	95	92	06	109	73	88	73	83		
ďn	or down- stream	dn	;	:		=	=	====	:	=	=	:	*		=		:		
Run-up Orifice	dia. (in)	e a	=	=	=	=	E	=	=	=	=	:	=	=	:	E	:		
Run -up	(1n)	62		=	=	=	=	=	:	=	=	=	:		=	Ξ	ë		
TICS	Mix speed (ft/sec)	16	=	=	:	=	=	<u> </u>	<u>.</u>	r	=	=	=	=	=	=	=		
MIXTUBE	•	1.1	*	=	=	_	.	=	=	:	=	=	F .	=	=	=	=		
CHAR	Fuel	Butane	=	2	5		r	r	=	2		=		=	=	=			
L/D,	r	133	=	=			32	=	<i>=</i>	:	=	r	=	=	:	=	=		
1103	(1u)	9	=	=	=	=	1.38	£	5	:	=	£	ï	F	=	=	=		
D.	(in)	.045	<u>.</u> =		z	=	.043	=	=	:	=	=	=	=	=	=	=		
ARRESTOR CHARACTERISTICS De Opening D, L		.05 height .045	x .14 width "	=	=		.Jul" gap	=	=	=	-	E	=	=	£	=	=		
Type		Shand &	Jurs	E	, =	=	Protecto001"	; ;	_=_	r	=	. : _	<u> </u>	=	=		=		
Test		052677-1	-2	-3	7-	יֹר	052777-1	-2	-3	7	-5	φ	053177-1	-5	۳ آ	4-	-5		

 $v_{2,1}$ is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

ender den state de de la company de la compa

able B-1 (outinued)

	اد	CALSE				2 6 6 6 6 6	0	NOTITION IN	17.00		*:	NE STATE	 مورد مورد	KEMAKKS
	Opening		լ (դյ	 H	Erre 1	CHARACTER. STICS	S X	Kum-up Urifice	Jrifice dia	: d	>	34	upranh	
			į		•	1	speed (ft/sec)	(1n)		down- stream	(<u>it</u>)(sec)	z	
l ii	Protectoseal .031"	.043	1.38	32	Butane	1.1	7	62	<u>ب</u>	ď	167	I		
	් සි	=	=	:	=	:	:	=	=		154	ı	>	and in the control of
	z	=	=	:	=	2	E	=	=	•	154	+	>	
	=	=	E	=	:			=	=	<u>.</u> .	143	1	**************************************	
1	11	=	=		=	=	<u> </u>	١	E .	-	200	ı	•	
	=	Ξ	=	=	E	E		5	None	<u>-</u>	œ	t	:::	Purpose: To
	*	=	Ξ	:	;	=		=	=	_= :	80	ı	<u> </u>	determine low
	£	=	=	=	2	=		=	=		œ	ı	`	quench proper-
	£	F	z	=	E	E	=	:	Ľ	=	သ	ł	,	ties.
	=	=	=	=	=	=	=	=	=	===	80			
	.045" height	.035	1.5	39.5	39.5 Butane	1.1	16	29	۳,	ď	Į	100	` <u>`</u>	
) =	=	=	====	=	E	;	ε	=		1	125	`	
	5	=	E	=	#	=	=	=	=	=	i	73	`	
	=	=	=	=		=	=	=	E	=	105	96		
	=	=	Ξ	 E	=	=	:	=			133	114	`	
Press-Vac	Db1 Screen.035	n. 035	ı	ı	Butane	1.1	4	89	None	8	7	2	`	
	30 mesh "	=	=	=	=	=	= ==	=	=	==-	Ŋ	ıΩ	`>	
	z	=	:	=	=	=	=	=	=	=	5	9	`^	

 $^{\star}_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly $^{\vee}_{34}$ is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

Table B-1 (continued)

Test	ARRES	ARRESTOR CHARACTERISTICS	"ERIST	SOI		HITTUBE	PE	<u> </u>	IGNITION	LION		· 원	RESULIS	5 - 4 · 4	REMARKS	
Number	Type	Open ing	U _H		L/DH	CHARACTERISTICS	ERIST	ICS	Run-up Orifice	Tiffce	dn		V 34	Quench		
			(ti)	(1n)	1	Fuel Fuel fraction	ion s	Mix speed	(In)	dia. (in)	down-	(ft)	(ft)	x *		
						2	l	(17.7 sec)	,		35.15	1		,		Ţ
062077-6	Amal	,045" Hgt .038	.038	7.5	39.5	39.5g Gasoline 4.0	7. 0	·n	/9	٥	9	104	74	•		
-7	<u>-</u>	=	=	E	=	2	3.9	=	=	=		111	103			
8-	:	Ξ	=	=	=	=	3.2	=	=	:	2	125	114	`		
6-	:	Ε	2	=	=	=	3.0	:	=	=		118	114	>		
062177-1	Verec	.047" Gap .066	990.	5.75	87	=	3.0	:	99	=		1	-	/]
-2	=	=	=	=	=	=	1.7	:	E	Ε	=	125	1	` <u>`</u>		
062277-1	=	=	=	=	:	£	2.1	: :	2	=	=	74	i	>		
-2	=	=	=	=		=	2.3	=	z	ŗ	:	111	i	`		
<u>ب</u>	=	:	=	E	=	=	2.7		E	=	•	111	ı	~ ·		•
7-	Ama1	.024" Hgt	.021	.75	35.7	:	2.7		89	=	E	100	69	,		
49	::	==	= }	= =	= =		9.00	2 2 2	= 5	s : :	===	111	883	**		
7	Recimen	Grade 30	.030	. 28	a, :		2.5 	: :) 0 2 2 3 3 3			7 6	D) 0	× -		
φ i	2	:	:	:	:	: :	2.3	:	: :	: ;		noT :	80	* * *		
6	E	-	E	=	F	=	2.5		:	:		50	83	`>		
062477-1	Screen 30 mesh x) mesh x	.044		1	Gasoline	2.5	m	69	2	E	m	4	,		
	F	.11 dia wire														
-2	<u>.</u>	=	=	ı	 I	2	4.1		E	=	=	18	22	``		
7	<u>.</u>	=	=	ı	1	£	3.4	E	=	:	=	4	4	>		
											 	, ·				

 v_{23} is the average flame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.

[able B-1 (continued)

(in) (in) (Protectoseal .031" .043					Run-Lp (Run-Lp Orifice	ď	V, V	7	Quench :	
.043	(Ju)	æ i	Fuel Fuel Fraction (%)	Fuel Fuel Mix Fraction speed (%) (ft/sec)	(fn)	dia. (in)	or down- stream		34 ft sec		
_	1.38	32.1	32.1 Gasoline 2.6	ì	62		đ,	62	į.	**************************************	
=	=	=	" 2.5		=	ŧ	=	20	,		
=	=	:	" 2.8	<u> </u>	ï	E	*	24	ı	~	
.05" .045 x .14 wide	9	133	# 3.3	=	i i	=	=	29	l,		
E	E	=	" 3.5	E	=	=	=	7.1	ı	`>	
=	=		" 3.3	<u>.</u>	£	=		28	ŧ		
=	=	=	" 2.9	: :	E	:	=	87	ı		
=	=	-	3.5	=	:	12	=	67	1		
E	=	=	" 3.9	:	2	=		92	ı	* 5. E.	
=	Ε	=	11 2.9	:	2	:		83	1	`>	
.038	ı		3.6	7	89	2	ď	m 	1	12.700 se	
mesh screen											
=	1	,	3.7	=	1	=	=	8			
=	1	1	" 3.5	=	Ξ	:	=======================================	m	1	`;.	
=	1	1	" 3.5	=	=	1		34	ı	100 tampin	
=	1	J	4.5	.	=	=		77	ı	`>	
=	1	1	n 2.2	=	Ħ	=	=	51	ı	`~	

 $v_{23}^{\rm v}$ is the average fiame speed between points 2 and 3 located 41" and 17" from the base-plate of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite site of the arrestor.