Fast Processing of SPARQL Queries on RDF Quadruples

Vasil Slavov, Anas Katib, Praveen Rao, Srivenu Paturi, Dinesh Barenkala University of Missouri-Kansas City

WebDB 2014

<u>Acknowledgements</u>
National Science Foundation (IIS-1115871)

Semantic Web

Quads

```
1 foaf:me foaf:name "Alice" <http://ex.org/alice/foaf.rdf> .
2 foaf:me foaf:name "Bob" <http://ex.org/bob/foaf.rdf> .
```

Differentiate b/w identical statements

```
1 foaf:alice foaf:knows foaf:bob <http://ex.org/graphs/john> .
2 foaf:alice foaf:knows foaf:bob <http://ex.org/graphs/james> .
```

GRAPH query

```
1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 2 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
  PREFIX movie: <http://data.linkedmdb.org/resource/movie/>
   SELECT ?g ?producer ?name ?label ?page ?film WHERE {
       GRAPH ?q {
 6
          ?producer movie:producer name ?name .
          ?producer rdfs:label ?label .
          ?film movie:producer ?producer .
10
11 }
                                              movie:producer name
                                  ?producer
                                                                    ?name
                movie:producer
                                       rdfs:label
                    ?film
                                                     ?label
                                4
```

Related work

What's missing in them?

- 1. No support for quads
- 2. No large BGP queries (over 8 triple patterns)
- 3. No complex BGP queries (undirected cycles):

```
1 SELECT * WHERE {
2     ?a p ?b .
3     ?b q ?c .
4     ?a r ?c .
5 }
```


Why not use triple stores for quads?

INCORRECT RESULTS

Triple vs. Quad

```
<a>>
1 < a > < b > < c > < g1 > .
2 < a > < b > < e > < q2 > .
                                  Triple store results
                          Data |
                        Query | Quad store results
  SELECT ?x WHERE {
    GRAPH ?g {
      2x < b < c > .
                                             <empty>
      2x < b < e > .
5
                        <C>
               <b>
          ?x
```


<e>

State-of-the-art technologies are... fast

State-of-the-art technologies are... slow

State-of-the-art technologies are... really slow

Comparison

	quads	max triples/ quads	max triple patterns
RIQ	yes	1.38B	22
RDF-3X	no	845M	13
BitMat	no	1.33B	8
Jena TDB	yes	333M	6
DB2RDF	no	333M	6
TripleBit	no	2.95B	12

Query processing

(traditional)

Query processing

(our 'decrease-and-conquer' approach)

Pattern Vectors (PVs)

 $\mathbb{H}: B \to \mathbb{Z}^*$

 $\mathbb{P} = \{SPO, SP?, S?O, ?PO, S??, ?P?, ??O\}$

Filter Index construction

Steps:

1. Create groups of similar PVs

Locality Sensitive Hashing

2. Compactly store Filter Index

Bloom Filters and Counting Bloom Filters

Grouping PVs

$$sim(PV_a, PV_b) = \max_{r \in \mathbb{P}} \frac{|PV_{a,r} \cap PV_{b,r}|}{|PV_{a,r} \cup PV_{b,r}|}$$

 $\mathbb{P} = \{SPO, SP?, S?O, ?PO, S??, ?P?, ??O\}$

Filter Index

Query execution

Initial performance evaluation

- Datasets
 - Synthetic: LUBM [Web Semantics '05], 1.38 billion triples
 - Real: BTC-2012 [http://challenge.semanticweb.org],
 1.36 billion quads
- Queries with single BGP
 - Large: up to 22 patterns
 - Small: up to 8 patterns

(LUBM, cold cache)

(LUBM, warm cache)

(BTC-2012, cold cache)

(BTC-2012, warm cache)

Small BGPs

(LUBM)

	Cold cache			Warm cache		
Query	RIQ	RDF-3X	Jena TDB	RIQ	RDF-3X	Jena TDB
L4	229.95	1986.21	698.08	27.46	1899.1	664.75
L5	576.96	995.26	1130.43	567.2	948.53	1127.37
L6	506.93	888.84	1119.31	489.36	847.59	1144.11
L7	892.7	1215.53	aborted	871.12	1153.31	aborted
L8	507.43	805.41	1346.17	497.69	70.35	1395.48
L9	538.99	979.79	1137.38	519.22	947.07	1142.73
L10	18.72	11.11	7.15	0.51	6.39	3.19
L11	12.19	1.98	5.79	0.41	0.25	1.13
L12	103.14	22.33	725.93	26.76	19.83	703.26
Geo. mean	193.85	210.97	282.57	59.68	115.7	207.72

Small BGPs

(BTC-2012)

	Cold cache			Warm cache		
Query	RIQ	RDF-3X	Jena TDB	RIQ	RDF-3X	Jena TDB
B3	41.01	56.42	373.59	1.83	0.82	20.13
В4	42.17	48.55	321.56	3.59	2.37	35.99
B5	70.15	74.86	3541.99	32.38	28.64	3540.28
В6	20.39	> 40,140	14.89	0.64	> 40,140	12.83
B7	221.86	210.37	1925.27	184.86	118.84	1817.85
Geo. mean	55.96	280.34	414.25	7.59	48.4	143.01

Queries with multiple BGPs

- Keywords like UNION, EXISTS, OPTIONAL, etc.
- See paper for more details

Q&A

Acknowledgements:

• National Science Foundation (IIS-1115871)