1 Review on Tree Method

Figure 1: The meaning of different parts inside a complexity equation

Figure 2: Representation of given T(n) by Akshay Singhal

1) Continue on last lecture, for this problem, what is the size at depth i?

$$\frac{n}{4^i} \tag{1}$$

2)At the bottom of the tree, $n/4^i$ is equal to 1, then we are able to solve for the depth of the tree.

$$4^i = n$$

 $i = log base 4(n)$

So the depth of the tree is log_4n .

As we known, the number of nodes at each level is 3^i and the cost at depth i for each nodes is $C * [instancesize]^2$.

3) How to derive the cost of each node at depth i?

We first look at the instance size of depth i.

$$n, \frac{n}{4}, \frac{n}{4^2}, \frac{n}{4^3}, \frac{n}{4^4}...$$
 (2)

So, for this problem cost of each node at depth i is

$$C * (\frac{n}{4^i}) \tag{3}$$

Then we combine these to each other,

The cost of each node at level i is equal to:

$$number of nodes*cost of each node = 3^{i}*C*(\frac{n}{4^{i}}) = 3^{i}*C(\frac{n^{2}}{4^{2i}}) = \frac{(3^{i}*Cn^{2})}{4^{2i}} = (\frac{3}{16})^{i}Cn^{2}$$
 (4)

As we already calculated the cost of each node at level i, to calculate the total cost, we need to know the number of nodes

The depth at the last level is log_4n .

Therefore the number of nodes on it is 3^{log_4n} , which is equivalent to n^{log_43} .

Therefore the total cost at the last level is

$$n^{\log_4 3}*(T) \in \Theta(n^{\log_4 3}) \ which \ T \ is \ a \ constant. \tag{5}$$

The time complexity

$$T(n) = \sum_{i=0}^{\log_4(n-1)} (\frac{3}{16})^i C n^2 + \Theta(n^{\log_4 3})$$

$$< \sum_{i=0}^{\infty} (\frac{3}{16})^i C n^2 + \Theta(n^{\log_4 3}) >>>> The upper bound$$

$$= \frac{1}{1} (1 - \frac{3}{16}) C n^2 + \Theta(n^{\log_4 3})$$

$$= \frac{16}{13} C n^2 + \Theta(n^{\log_4 3})$$

$$\in O(n^2)$$

$$(6)$$

2 Master Method (Theorem)

$$T(n) = aT(n/b) + f(n) >>>> General Divide and Conque Recurrence$$

If $f(n) \in \Theta(n^d)$:

$$T(n) \in \Theta(n^d) >>>> if \ a < b^d$$

$$T(n) \in \Theta(n^d log_n) >>>> if \ a = b^d$$

$$T(n) \in \Theta(n^{log_b a}) >>>> if \ a > b^d$$

$$(7)$$

Example 1
$$T(n) = 2T(\frac{n}{3}) + n^2 + 7$$

According to the Master Theorem,

 $T(n) \in \Theta(n^d)$

 $T(n) \in \Theta(n^2)$

Example2 $T(n) = 2T(\frac{n}{2}) + n$

According to the Master Theorem,

 $T(n) \in \Theta(n^d log n)$

 $T(n) \in \Theta(nlogn)$

3 Example of Binary Search

- 1) Divide smaller instance, size = $\frac{n}{2}$
- 2) Conquer find the key X in the smaller instance
- 3) Combine not needed here

Worst case Time complexity of Binary Search:

1)Divide and Conquer Method:

basic operation: comparison of key and L[mid]

input size: n = the number of the list elements

We assume n is a power of 2

Worst case occur when key < L[0] or > L[len-1];

To say it clearly it happens in two situation: the key is greater than all list elements or the key is less than all list elements.

If key > all list elements:

$$W(n) = W(n/2) + 1$$

Then we list initial terms:

$$W(1) = 1$$

$$W(2) = W(2/2) + 1 = W(1) + 1 = 2$$

$$W(4) = W(4/2) + 1 = W(2) + 1 = 3$$

$$W(8) = W(8/2) + 1 = W(4) + 1 = 4$$

Therefore, we can guess $W(n) = \lg(n) + 1$, and conform this guess with a proof by induction.

2) Master Method

$$W(n) = W(n/2) + 1$$

In this formula, we can observe that a = 1, b = 2,

Since f(n)=1, which is n^0 , therefore d=0,

So
$$b^d = 1 = a$$
,

According to the Master Theorem,

$$W(n) \in \Theta lg(n)$$