Формула Грина.

1. Вывод формулы.

І случай. $\Omega \subset \mathscr{E}$ элементарная область относительно Oy,

$$y = \varphi(x), y = \psi(x), \psi(x) \leqslant \varphi(x) \, \forall x \in [a,b]$$

$$\omega = P(x,y), \omega = \frac{\partial P}{\partial y}(x,y) \text{ непрерывна в } \overline{\Omega}$$

$$\psi, \varphi - \text{ непрерывны на } [a,b]$$

$$\iint_{\Omega} \frac{\partial P}{\partial y}(x,y) dx dy = \int_{a}^{b} dx \int_{\psi}^{\varphi} \frac{\partial P}{\partial y}(x,y) dy = \int_{a}^{b} P(x,\varphi(x)) dx - \int_{a}^{b} P(x,\psi(x)) dx = \int_{BC} P(x,y) dx - \int_{AB} P(x,y) dx = -\int_{CB} P(x,y) dx - \int_{ADCBA} P(x,y) dx = -\int_{ADCBA} P(x,y) dx = -\int_{ADCBA} P(x,y) dx$$

$$\int\limits_{BA}P(x,y)dx=\int\limits_{DC}P(x,y)dx=0\Rightarrow \int\limits_{\Omega}\frac{\partial P}{\partial y}(x,y)dxdy=-\oint\limits_{d\Omega}P(x,y)dx$$

II случай. $\Omega \subset \mathscr{E}$ элементарная область относительно Ox,

$$x=\varphi(y), x=\psi(y), \psi(y)\leqslant \varphi(y) \forall y\in [c,d]$$

$$\omega=Q(x,y), \omega=\frac{\partial Q}{\partial x}(x,y) \text{ непрерывна в }\overline{\Omega}$$

$$\psi,\varphi-\text{ непрерывны на }[c,d]$$

$$\iint_{\Omega}\frac{\partial Q}{\partial x}(x,y)dxdy=\int\limits_{c}^{d}dy\int\limits_{\psi(y)}^{\varphi(y)}\frac{\partial Q}{\partial x}(x,y)dx=\int\limits_{c}^{d}Q(\varphi(y),y)dy-\int\limits_{C}^{d}Q(\psi(y),y)dy=\int\limits_{C}Q(x,y)dy+\int\limits_{BA}Q(x,y)dy=\int\limits_{ADCBA}Q(x,y)dy$$

Выше мы воспользовались тем, что $\int\limits_{AD}Q(x,y)dy=\int\limits_{CB}Q(x,y)dy=0$

Теорема 1. Пусть область Ω представляет собой объединение конечного числа измеримых областей элементарных относительно Oy. $\overline{\Omega} = \bigcup_{j=1}^k \overline{\Omega_i'}, \overline{\Omega_i''}, i = \overline{1,k}, j = \overline{1,k}.$

Функции $P,Q,\frac{\partial P}{\partial u},\frac{\partial Q}{\partial x}$ непрерывны в $\overline{\Omega}$, тогда справедлива формула Грина:

$$\iint_{\Omega} \left[\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right] dxdy = \int_{\partial \Omega} P(x,y)dx + Q(x,y)dy$$

Теорема 1'. Если граница $\partial\Omega$ ограниченной области $\Omega\subset\mathscr{E}^2$ состоит из конечного числа кусочно гладких контуров и эти функции непрерывны, то имеет место формула Грина:

$$\iint_{\Omega} \left[\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right] dxdy = \int_{\partial \Omega} P(x,y)dx + Q(x,y)dy$$

2. Некоторые приложения формулы Грина.

А. Вычисление плоских измеримых областей.

Предложение. Если граница $\partial\Omega$ ограниченной области $\Omega\subset\mathscr{E}^2$ состоит из конечного числа кусочно гладких контуров, то ее $m(\Omega)$ определяется из формулы:

$$m(\Omega) = 1/2 \int_{\partial \Omega} [xdy - ydx]$$

Доказательство. По формуле Грина $\int\limits_{\partial\Omega}\left[xdy-ydx\right]=2\iint\limits_{\Omega}dxdy=2m(\Omega)$

В. Условия, при которых дифференциальное выражение (дифф. форма) Pdx + Qdy является дифференциалом некоторой функции f = f(x,y)

Теорема 2. Пусть область $\Omega \subset \mathscr{E}^2$ — произвольная область и функции P и Q непрерывны на $\overline{\Omega}$, тогда следующие условия эквивалентны:

- 1. $\oint_{\Gamma} P(x,y) dx + Q(x,y) dy$, где Γ произвольная замкнутая кусочно гладкая кривая, причем $\Gamma \subset \Omega$
- 2. z'=(x',y'), z''=(x'',y'') т. области $\Omega,\ \Gamma\subset\Omega$ кусочно гладкая кривая, соединяющая точки z' и z'', то $\int\limits_{\Gamma}Pdx+Qdy$ не зависит от кривой $\Gamma,$ а только от т. z' и z''.
- 3. Существует функция w=f(x,y) такая, что df=Pdx+Qdy, при этом если $z',z''\in\Omega$ и $\Gamma\subset\Omega$ кусочно гладкая кривая, соединяющая точки z' и z'', то

$$\int_{\Gamma} Pdx + Qdy = f(z'') - f(z') \tag{1}$$

Схема доказательства: $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$

 $\boxed{1\Rightarrow 2}\quad z',z''\in\Omega,\Gamma',\Gamma''$ — кусочно гладкие кривые соединяющие точки z' и z'' $\Gamma=\Gamma'\cup(\Gamma'')^-$ — замкнутуая кусочно гладкая кривая $0\stackrel{1}{=}\int\limits_{\Gamma}Pdx+Qdy=\int\limits_{\Gamma'}Pdx+Qdy-\int\limits_{\Gamma''}Pdx+Qdy\Rightarrow\int\limits_{\Gamma'}Pdx+Qdy=\int\limits_{\Gamma''}Pdx+Qdy$

 $\boxed{2\Rightarrow 3}\quad z^0=(x_0,y_0)\in\Omega;\; \Gamma_z\subset\Omega$ — кусочно гладкая кривая, соединяющая т. z_0 и z=(x,y)

$$f(z) = f(x,y) = \int_{\Gamma_z} Pdx + Qdy.$$

$$z = (x,y), z' = (x + \Delta x, y), z' \in \Omega \text{ if } [z,z'] \subset \Omega$$

$$\Delta f(z, \Delta x) = f(x + \Delta x, y) - f(x, y) = \int_{\Gamma\{z, z'\}} Pdx + Qdy = \int_{x}^{x + \Delta x} P(t, y)dt =$$
$$= P(x + \theta \Delta x, y) \Delta x, 0 < \theta < 1$$

$$\frac{f(x+\Delta x,y)-f(x,y)}{\Delta x}=P(x+\theta\Delta x,y)\Rightarrow\frac{\partial f}{\partial x}(x,y)=P(x,y)\text{ аналогично }\frac{\partial f}{\partial y}(x,y)=Q(x,y)$$

$$\Gamma=\{(x,y),x=\varphi(t),y=\psi(t),\alpha\leqslant t\leqslant\beta\},\ z'=(\varphi(\alpha),\psi(\alpha)),\ z''=(\varphi(\beta),\psi(\beta))$$

$$\int\limits_{\Gamma}Pdx+Qdy=\int\limits_{\alpha}^{\beta}[P(\varphi(t),\psi(t))\cdot\varphi'(t)+Q(\varphi(t),\psi(t))\cdot\psi'(t)]dt=\int\limits_{\alpha}^{\beta}\left[\frac{\partial f}{\partial x}x'+\frac{\partial f}{\partial y}y'\right]dt=$$

$$=\int\limits_{\alpha}^{\beta}\frac{d}{dt}[f(\phi(t),\psi(t))]dt=f(\varphi(\beta),\psi(\beta))-f(\varphi(\alpha),\psi(\alpha))=f(z'')-f(z')$$

$$\boxed{3\Rightarrow 1}$$
 $\Gamma\subset\Omega$ — кусочно гладкая замкнутая кривая, т.е. z' и $z''\Rightarrow(1)\Rightarrow\int\limits_{\Gamma}Pdx+Qdy=0$

Теорема 3. Если в условии теоремы 2 $\Omega \subset \mathscr{E}^2$ — односвязная область и функция $P,Q,\frac{\partial P}{\partial y},\frac{\partial Q}{\partial x}$ непрерывны в $\overline{\Omega}$, то по условиям 1–3 теорема 2 эквивалентна следующему условию:

4.
$$\frac{\partial P}{\partial y}(x,y) = \frac{\partial Q}{\partial x}(x,y) \ \forall (x,y) \subset \Omega$$

Доказательство. $3\Rightarrow 4$ $\frac{\partial P}{\partial y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial Q}{\partial x}$ $4\Rightarrow 1$ $\Gamma\subset\Omega$ простая кусочно гладкая замкнутая кривая $\Gamma=\partial\Omega^*,\Omega^*\subset\Omega$. $\int\limits_{\Gamma}Pdx+Qdy=\int\limits_{\Omega^*}\left[\frac{\partial Q}{\partial y}-\frac{\partial P}{\partial x}\right]dxdy=0$

Легко доказать, если Γ имеет конечное число точек самопересечения. Для произвольной кусочно гладкой замкнутой кривой все остальное справедливо.