ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 4.4.1 **Амплитудная дифракционная решетка**

Серебренников Даниил Группа Б02-826

Цель работы: знакомство с работой и настройкой гониометра Γ 5, определение спектральных характеристик амплитудной решетки.

В работе используются: гониометр, дифракционная решетка, ртутная лампа.

1 Теоретическая часть

Основное соотношение приближенной теории дифракционной решётки:

$$d\sin\varphi_m = m\lambda. \tag{1}$$

Угловая дисперсия D характеризует угловое расстояние между близкими спектральными линиями:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}.$$
 (2)

2 Экспериментальная установка

При работе с дифракционной решёткой основной задачей является точное измерение углов, при которых наблюдаются главные максимумы для различных длин волн. В нашей работе для измерения углов используется гониометр Γ 5. Принципиальная схема экспериментальной установки приведена на рис. 1.

Рис. 1: Схема установки.

3 Экспериментальная часть

3.1 Экспериментальные данные

Измерим угловые координаты спектральных линий ртути в ± 1 порядках, рассчитаем углы дифракции φ_m . Результаты измерений и вычислений занесем в таблицу 1.

Таблица 1

	фиолетовый	синий	голубой	зеленый	желтый	желтый	красный	красный
φ	11°40′56″	12°33′27″	14°12′11″	15°49′12″	16°47′22″	16°48′12″	17°48′15″	18°08′15″
$\sin \varphi$	0,2022	0,2171	0,2451	0,2723	0,2886	0,2888	0,3055	0,3110
λ , HM	404,7	435,8	491,6	546,1	577	579,1	623,4	690,7

Для оценки угловой дисперсии решётки определим разности угловых координат линий жёлтого дублета во всех видимых порядках ($\Delta\lambda=21~{\rm \AA}$):

Таблица 2

m	$\Delta \varphi,''$	$D \exp, 10^{-5} \text{ pag/Å}$	D teor, $10^{-5}~{ m pag/\mathring{A}}$
1	50	$1,14 \pm 0,16$	5,22
-1	239	$-5,46 \pm 0,16$	-5,22
2	588	$13, 4 \pm 0, 1$	12, 2
-2	548	$-12,5\pm0,1$	-12, 2
3	1350	$30,9 \pm 0,1$	29,9
-3	1332	$-30, 4 \pm 0, 1$	-29, 9

3.2 Обработка результатов

Построим график зависимости $\sin \varphi_m$ от длины волны λ для ± 1 порядка:

Рис. 2: Зависимость λ от $\sin \varphi_m$.

Определим по углу наклона графика период решётки d:

$$d = (2, 1 \pm 0, 2) \text{ MKM}. \tag{3}$$

Оценим разрешимый спектральный интервал $\delta\lambda$, разрешающую способность R и число эффективно работающих штрихов решётки N, а также её эффективный размер l:

$$\delta \lambda \approx \Delta \varphi / D = 2 \text{ Å};$$
 (4)

$$R \approx \frac{\lambda}{\delta \lambda} = 2885 \tag{5}$$

$$N \approx R/m = 2885 \tag{6}$$

$$l \approx Nd = 6 \text{ MM}.$$
 (7)

4 Выводы

Таким образом, мы исследовали спектральные линии ртути, определили шаг решётки, её угловую дисперсию, а также её эффективный размер. Полученные результаты близки к теоретическим вычислениям, за исключением первого порядка; возможно, это связано с неправильным измерением.