基于多特征多分类器组合的海洋浮游动物图像 分类研究

姓名 朱亚菲 导 师 郑海永

中国海洋大学 信息科学与工程学院

2016年5月22日

目录

- 1 课题背景
- ② 浮游动物图像分类基础
 - 数据集
 - 评价方法
- ③ 浮游动物图像特征提取及分类器设计
 - 特征、分类器选择
 - 实验
- 4 多特征多分类器组合
- 5 总结和展望

内容提要

- 1 课题背景
- ② 浮游动物图像分类基础
 - 数据集
 - 评价方法
- ③ 浮游动物图像特征提取及分类器设计
 - 特征、分类器选择
 - 实验
- 4 多特征多分类器组合
- 5 总结和展望

选题背景及意义

浮游动物

- 负责浮游植物与高级营养生物之间的能量传递
- 传输有机物
- 监测气候变化
- 干扰水下声纳信号 ⇒ 国防军事

国内外研究现状

人工识别

新技术

(光谱法、流式细胞术等)

数字图像处理技术

研究对象:甲藻、微藻、腰鞭毛虫、 胶州湾浮游动物等 特征:轮廓特征、纹理特征、 几何特征、数学形态学特征等 分类方法: 决策树、贝叶斯决策、 K-最近邻规则、线性判别函数、 支持向量机等

存在的问题及本文研究思路

存在的问题

- 研究对象类别少
- 采用的特征数目少, 没有对大量特征进行有效研究与分析
- 大多采用单一的分类器

存在的问题

- 研究对象类别少
- 采用的特征数目少,没有对大量特征进行有效研究与分析
- 大多采用单一的分类器

研究思路

- 搜集浮游动物图像数据集,对包含多个类别的浮游动物图像进行研 究
- 整理图像处理和计算机视觉领域一些常用的特征,进行特征选择以 挑选出对浮游动物图像分类有效的特征
- 采用分类器融合的方法提高分类准确率

课题来源

1

2

课题背景

项目类别	国家自然科学基金
课题名称	基于视觉注意结合生物形态特征的海洋
	浮游植物显微图像分析
课题编号	61301240
起止年限	$2014.01 \sim 2016.12$

项目类别	国家目然科字基金
课题名称	基于生物形态特征的中国海常见有害赤
	潮藻显微图像识别
课题编号	61271406
起止年限	$2013.01 \sim 2016.12$

内容提要

- 1 课题背景
- ② 浮游动物图像分类基础
 - 数据集
 - 评价方法
- ③ 浮游动物图像特征提取及分类器设计
 - 特征、分类器选择
 - 实验
- 4 多特征多分类器组合
- 5 总结和展望

实现浮游动物图像分类的基本流程

下一节内容

- 1 课题背景
- ② 浮游动物图像分类基础
 - 数据集
 - 评价方法
- ③ 浮游动物图像特征提取及分类器设计
 - 特征、分类器选择
 - 实验
- 4 多特征多分类器组合
- 5 总结和展望

ZooScan 数据集

	类别名称	训练集图片数目	测试集图片数目
1	Appendicularia(尾海鞘纲)	545	100
2	Bubble(气泡)	145	100
3	Chaetognatha(毛颚动物门)	349	100
4	Cladocera Penilia(尖头溞属)	925	100
5	Copepoda(桡脚类)	1474	100
6	Decapoda(十足目)	557	100
7	Doliolida(海樽目)	285	100
8	Egg (卵)	344	100
9	Fiber(纤维)	304	100
10	Gelatinous(明胶)	602	100
11	Multiple(多个生物)	635	100
12	Pteropoda(翼足目)	3078	100
13	Nonbio(非生物)	217	100
总计		9460	1300

朱亚菲 (中国海洋大学)

浮游动物图像示例

(a) Appendicularia

(d) Doliolida

(b) Chaetognatha

(e) Fiber

(c) CladoceraPenilia

(f) Gelatinous

- 课题背景
- ② 浮游动物图像分类基础
 - 数据集
 - 评价方法
- ③ 浮游动物图像特征提取及分类器设计
 - 特征、分类器选择
 - 实验
- 4 多特征多分类器组合
- 5 总结和展望

混淆矩阵

	类 1	类 2	类 3
类 1	53	5	2
类 2	2	55	3
类 3	0	1	59

• 真正类率(True Positive Rate, TPR): recall。

$$TPR = \frac{TP}{TP + FN}$$

• 伪发现率(False discovery rate, FDR): 1-precision。

$$FDR = \frac{FP}{FP + TP}$$

混淆矩阵

混淆矩阵分类

- 训练集和测试集相同
- 训练集和测试集不同(交叉 验证)

交叉验证分类■

- Holdout 验证
- 留一验证
- K 折交叉验证

内容提要

- 1 课题背景
- 2 浮游动物图像分类基础
 - 数据集
 - 评价方法
- ③ 浮游动物图像特征提取及分类器设计
 - 特征、分类器选择
 - 实验
- 4 多特征多分类器组合
- 5 总结和展望

下一节内容

- 1 课题背景
- 2 浮游动物图像分类基础
 - 数据集
 - 评价方法
- ③ 浮游动物图像特征提取及分类器设计
 - 特征、分类器选择
 - 实验
- 4 多特征多分类器组合
- 5 总结和展望

特征、分类算法选择

浮游动物图像分类的关键

- 特征
- 分类算法

特征、分类算法选择的依据

•测试数据集在由该特征和分类算法生成的分类器上的分类准确率达到60%以上

特征、分类算法整理

特征

- ① ZooScan 系统中的 67 个特征
- ② 图像处理领域常用特征
 - 矩形度
 - 体态比
 - 圆形性
 - 偏心率
 - ..
- △ 经典特征
 - SIFT
 - HOG
 - LBP
 - 形状上下文
 - <u>. . . .</u>

分类算法

- 支持向量机
- 随机森林
- 极限学习机

特征、分类器选择

特征、分类算法选择结果

- 1、从 ZooScan 系统中选择了对分类有效的 22 个特征
- ⇒ 随机森林
- 2、局部二值模式特征(Local Binary Pattern, LBP)
- ⇒ 支持向量机
- 3、内距离形状上下文特征(Inner-Distance Shape Context)
- ⇒ 极限学习机

实验

下一节内容

- 1 课题背景
- 2 浮游动物图像分类基础
 - 数据集
 - 评价方法
- ③ 浮游动物图像特征提取及分类器设计
 - 特征、分类器选择
 - 实验
- 4 多特征多分类器组合
- 5 总结和展望

对 ZooScan 系统中的 6 类特征用支持向量机和随机森林 方法进行分类的分类准确率

	支持向量机	随机森林
位置特征	15.3%	30.23%
尺寸特征	26.04%	56.95%
灰度特征	37.6%	61.3%
形状特征	37%	63.1%
生物统计特征	52.4%	69.9%
自定义特征	68.05%	69.03%

从 ZooScan 系统中挑选出的 22 个特征

生物统计特征	平均值、标准差、灰度直方图偏度、灰度直方图峰度、
	变异系数、极差偏差
形状特征	分形维数、骨架像素表面积、圆形度、水平对称性、
	竖直对称性、阈值分割后水平对称性、
	阈值分割后竖直对称性、延伸率、
	去掉目标内部空洞的圆形度、包围物体凸包的周长、
	包围物体凸包的面积
自定义特征	MeanPos, PerimAreaexc, FeretAreaexc,
	PerimFeret, CDexc

ZooScan 系统的 22 个特征采用随机森林进行分类的结果

	Appe	Bubb	Chae	Clad	Cope	Deca	Doli	Egg	Fiber	Gela	Multi	Nonb	Pter	Total	Recall	1-Pre
Appe	2106	О	166	41	10	16	О	О	57	О	152	177	О	2725	0.773	0.242
Bubb	О	624	О	О	5	О	О	14	О	О	О	82	О	725	0.861	0.023
Chae	173	О	1491	О	2	11	О	О	7	1	41	19	О	1745	0.854	0.126
Clad	4	О	О	3856	22	1	13	О	o	42	37	650	0	4625	0.834	0.176
Cope	2	О	1	15	6076	208	О	О	3	О	193	851	21	7370	0.824	0.234
Deca	6	О	О	О	453	2027	0	3	0	4	86	203	3	2785	0.728	0.237
Doli	О	О	О	1	О	О	1061	О	О	215	О	148	О	1425	0.745	0.226
Egg	0	10	О	13	2	7	0	1322	0	23	12	328	3	1720	0.769	0.127
Fiber	75	О	11	4	2	2	О	О	1081	1	55	286	3	1520	0.711	0.23
Gela	5	О	О	148	10	6	194	34	О	1810	89	714	О	3010	0.601	0.297
Multi	253	1	27	125	463	209	14	27	62	129	914	949	2	3175	0.288	0.534
Nonb	153	4	10	475	770	144	89	115	193	348	367	12646	76	15390	0.822	0.267
Pter	О	О	О	О	119	25	О	О	О	3	16	200	722	1085	0.665	0.13
Total	2777	639	1706	4678	7934	2656	1371	1515	1403	2576	1962	17253	830	47300	0.73	0.219

recall = 0.73

果題背景 浮游动物图像分类基础 **浮游动物图像特征提取及分类器设计** 多特征多分类器组合 总结和 ○○○○○○

LBP 特征采用 SVM 进行分类的结果

	Appe	Bubb	Chae	Clad	Cope	Deca	Doli	Egg	Fiber	Gela	Multi	Nonb	Pter	Total	Recall	1-Pre
Арре	1892	О	259	3	3	11	О	О	194	О	162	201	О	2725	0.694	0.399
Bubb	О	666	О	22	О	О	О	9	О	2	3	23	О	725	0.919	0.028
Chae	197	О	1462	О	О	3	О	О	37	О	41	5	О	1745	0.838	0.279
Clad	О	О	О	2962	200	9	21	2	О	53	36	1342	О	4625	0.64	0.348
Cope	27	О	5	208	5268	202	5	1	4	15	227	1354	54	7370	0.715	0.35
Deca	50	О	15	32	400	1568	О	3	2	14	262	413	26	2785	0.563	0.332
Doli	О	О	О	70	5	О	1008	О	О	100	10	232	О	1425	0.707	0.252
Egg	1	4	О	9	О	10	7	1467	2	18	1	201	О	1720	0.853	0.166
Fiber	257	О	156	1	4	1	О	5	819	О	55	222	О	1520	0.539	0.406
Gela	1	О	О	117	46	13	120	37	О	1826	84	766	О	3010	0.607	0.339
Multi	377	О	87	142	533	195	29	24	75	152	680	875	6	3175	0.214	0.662
Nonb	306	15	35	976	1446	204	156	210	238	578	426	10693	107	15390	0.695	0.357
Pter	41	О	9	3	199	130	О	1	8	4	23	297	370	1085	0.341	0.343
Total	3149	685	2028	4545	8104	2346	1346	1759	1379	2762	2010	16624	563	47300	0.64	0.328

recall = 0.64

实验

内距离形状上下文特征采用 ELM 进行分类的结果 (65 张图像作为模板)

	Appe	Bubb	Chae	Clad	Cope	Deca	Doli	Egg	Fiber	Gela	Multi	Nonb	Pter	Total	Recall	1-Pre
Appe	2268	О	40	О	4	34	О	О	73	6	79	218	3	2725	0.832	0.292
Bubb	О	202	О	7	6	О	О	364	5	1	1	139	О	725	0.279	0.423
Chae	145	О	1514	2	1	6	o	1	54	1	7	14	О	1745	0.868	0.15
Clad	О	О	О	3829	44	31	4	3	О	12	9	692	1	4625	0.828	0.213
Cope	7	О	О	56	5972	78	5	О	7	27	161	1053	4	7370	0.81	0.218
Deca	16	О	О	106	115	1865	1	3	2	22	47	606	2	2785	0.67	0.232
Doli	О	О	О	10	6	О	1011	4	О	48	23	323	О	1425	0.709	0.256
Egg	1	109	О	61	5	13	9	1136	11	24	11	340	О	1720	0.66	0.332
Fiber	140	О	158	О	9	3	1	5	902	3	101	198	О	1520	0.593	0.33
Gela	13	7	О	89	132	11	60	82	7	1652	101	847	9	3010	0.549	0.234
Multi	281	О	3	123	367	118	62	10	99	100	537	1473	2	3175	0.169	0.633
Nonb	280	32	56	581	953	261	206	93	186	246	379	12085	32	15390	0.785	0.336
Pter	51	О	10	2	20	8	О	О	2	14	6	212	760	1085	0.7	0.336
Total	3202	350	1781	4866	7634	2428	1359	1701	1348	2156	1462	18200	813	47300	0.65	0.286

recall = 0.65

内容提要

- - 数据集
 - 评价方法
- - 特征、分类器选择
 - 实验
- 4 多特征多分类器组合

多特征多分类器组合方法的基本原理

中层次特征:每幅图像被分到每个浮游动物图像类别的概率 (13×3维)向量)

实验结果对比

ZooScan integrated system

	Appe	Bubb	Chae	Clad	Cope	Deca	Doli	Egg	Fiber	Gela	Multi	Nonb	Pter	Total	Recall	1-Pre
Appe	2194	0	111	8	1	19	О	0	57	1	157	177	О	2725	0.805	0.204
Bubb	О	606	О	О	О	О	О	29	О	О	3	87	О	725	0.836	0.105
Chae	137	0	1559	О	5	2	О	О	7	1	18	14	2	1745	0.893	0.098
Clad	0	О	О	4084	22	0	7	0	0	7	19	486	o	4625	0.883	0.104
Cope	3	0	0	9	6205	145	О	О	О	1	234	745	28	7370	0.842	2.211
Deca	4	О	О	О	339	2225	О	o	О	О	87	126	4	2785	0.799	0.215
Doli	О	О	О	2	1	О	1065	О	О	156	7	194	О	1425	0.747	0.142
Egg	О	66	О	13	2	1	1	1277	О	28	3	320	9	1720	0.742	0.14
Fiber	59	О	18	О	О	О	О	О	1127	О	62	254	О	1520	0.741	0.207
Gela	6	О	О	72	10	5	93	39	О	2081	79	624	1	3010	0.691	0.204
Multi	267	О	23	51	491	202	9	23	45	91	1028	941	4	3175	0.324	0.509
Nonb	86	5	17	321	716	189	66	117	185	246	390	12937	115	15390	0.841	0.245
Pter	О	О	1	О	70	49	О	О	О	3	8	235	719	1085	0.663	0.185
Total	2756	677	1729	4560	7862	2837	1241	1485	1421	2615	2095	17140	882	47300	0.75	0.216

recall = 0.75

实验结果对比

多特征多分类器组合方法

	Appe	Bubb	Chae	Clad	Cope	Deca	Doli	Egg	Fiber	Gela	Multi	Nonb	Pter	Total	Recall	1-Pre
Appe	2253	О	106	14	4	5	0	0	35	О	165	143	0	2725	0.827	0.192
Bubb	О	658	О	О	5	О	О	О	О	О	1	61	О	725	0.908	0.005
Chae	119	О	1582	О	О	3	О	О	4	О	21	16	О	1745	0.907	0.095
Clad	О	О	О	4063	29	3	3	О	О	16	17	494	О	4625	0.878	0.135
Cope	1	О	0	14	6216	145	0	0	0	1	201	784	8	7370	0.843	0.217
Deca	8	О	1	1	367	2122	О	О	О	2	85	198	1	2785	0.762	0.186
Doli	О	О	О	6	О	О	1181	О	О	108	1	129	О	1425	0.829	0.116
Egg	О	1	О	15	6	10	1	1438	О	19	7	223	О	1720	0.836	0.076
Fiber	51	О	12	1	3	1	0	0	1137	О	66	249	0	1520	0.748	0.215
Gela	4	О	2	94	12	2	75	12	О	2066	86	657	О	3010	0.686	0.238
Multi	230	О	23	99	473	166	14	18	74	115	994	969	О	3175	0.313	0.51
Nonb	122	2	18	391	762	125	62	88	197	380	370	12813	60	15390	0.833	0.243
Pter	2	О	4	О	63	25	О	О	1	4	13	181	792	1085	0.73	0.08
Total	2790	661	1748	4698	7940	2607	1336	1556	1448	2711	2027	16917	861	47300	0.78	0.177

recall = 0.78

内容提要

- - 数据集
 - 评价方法
- - 特征、分类器选择
 - 实验
- 总结和展望

总结

- ① 以混淆矩阵中的分类准确率指标作为评价函数,进行特征、分类器的选择。
- ② 提出了一种基于多特征多分类器组合的浮游动物图像分类方法。

展望

- 针对特征融合进行研究,看看对识别效果的影响。
- 2 去除数据集偏见。

Yafei Zhu Ocean University of China 2016.05.22