Utilizing Big Data Tools for Agoda's Customer Booking Behavior Analysis and Dynamic Pricing Optimization

WQD7007 Occ1 - Group 2 & 8

LECTURER: TS. DR. MOHD SHAHRUL NIZAM BIN MOHD DANURI

Name	Student ID	Tools
Nur Hidayah binti Ahmad Shafii (Leader)	22120931	MapReduce
Diva Alifta Chandra	23069683	MapReduce
Yong Ting Kang	23083416	Hive
Zeng Yan Ting	S2168467	Spark
Boaz Chung Yi Heng	23059592	Spark
Then Dao Qing	23057608	Hbase + PowerBI
Choon Yue Hua	17152027	HDFS + PowerBI
Loh Bi Jia	23078886	Apache Pig + Python

INTRODUCTION

Agoda was founded in 2005 by Michael Kenny and Robert Rosenstein in Phuket, Thailand.

Diverse customer purchasing behaviors and determining accurate pricing remains a challenge. Risk of losing competitive edge, revenue opportunities, and customer satisfaction without effective solutions.

OBJECTIVES

This study aims to evaluate the effectiveness of Hadoop in improving Agoda's ability to achieve the following objectives:

- To analyse booking behaviours based on demographic and booking history
- 2. To identify patterns that can inform dynamic pricing strategies

TOOLS/TECHNOLOGIES

Apache Pig/Apache Hive/ MapReduce/ Spark/HDFS/ Hbase/ PowerBI/ Python

01

Data Preprocessing: Apache Pig and Python

Apache Pig Storing the Joining Feature Selection Datasets Result PigStorage 'DISTINCT; and Split date into 'FILTER' day/month/year • csv file · 'JOIN' Remove •STORE_INTO_ remove duplicates unnecessary common keys: and missing columns 'userCode' and values 'travelCode' Loading Data **Data Cleaning Data Splitting**

Python is used to enrich the datatset.

The day of the week for the flight and hotel dates is done through Python.

9312 Time taken: 58.415 seconds,

19702

Pie chart shows a relatively balanced proportion of customers among the three gender categories. Agoda should cater marketing strategies to a diverse range of customers.

Bar chart displays the average spending analysis across different age groups which the average range of RM 535-RM 538. The highest average spending is observed in the 41-50 age group at RM 537.80, followed by age group of 21-30 and 31-40. This pattern suggests similar purchasing behavior among these demographics.

Bar chart illustrates the age group of 31-40 is the most active demographic which followed by age group of 41-50 and 21-30. Agoda can target on middle-aged and young adults groups to tailor the travel packages and services.

Based on the bar charts, economic class showed the most costeffective option with average price of RM 660.90. However, majority of customers prefer with first class (34,608), premium class (23,312) and economic class (23,184). This pattern reflects customer prefer with exclusivity and superior service on flight selection.

Customer Behavior

MapReduce	Apadhe Hive				
<pre>vboxuser@ubuntu1:-\$ cat /home/vboxuser/clear</pre>	Total MapReduce CPU Time Spent: 12 seconds 620 m				
female Florianopolis (SC) 5816 female Aracaju (SE) 3760	gender destination total_visits				
Female Campo Grande (MS) 3302	female				
none Rio de Janeiro (RI) 1636 none Salvador (BH) 1602 vboxuser@ubuntu1:-\$	none				

The geomap highlights Florianopolis (SC) as one of the most popular destinations among visitors. Specifically, female visitors accounted for 5,816 total visits. This indicates a significant preference among female travelers compared to other destinations.

Customers with Highest Revenue

Full Name	Total Revenue ▼		
Helen Warner	81,999.72		
Wallace Gallardo	78,809.28		
Ray Johnson	78,376.22		
Andrew Anderson	78,130.92		
John Micciche	78,004.30		
Kevin Paul	77,977.16		
Linda Ellis	76,823.52		
Juanita Palmer	76,493.84		
Kenneth Jump	75,607.94		

Top customer: Helen Warner (\$81,999.72) Top 8 Customers contribute to total revenue

Price increases with greater distances due to higher fuel/operational costs

Customer Behavior

October and November generate the highest monthly revenue, highlighting a peak season for customer activity

Salvador: Highest average flight cost (RM1,179.23) & hotel prices (RM263.41).
Sao Paulo: Lowest flight costs (RM826.55) & affordable hotel prices

(RM139.10).

■ Average Flight Price ■ Average Hotel Price

(RM 1,186.13)

Competitive Flight Pricing: Rainbow (RM 922.96) & CloudFy (RM 917.02).

Stable Hotel Prices: Minimal differences across agencies (RM 534.99–RM 539.72).

Highest Flight Prices: FlyingDrops

January to August (lowest: 5420 flights).
Peak travel in October (8663 flights) followed by December and November, driven by holiday demand.

Flight numbers declined from

Price Optimization

Short Travel (≤300 km):

- Economic: Most cost-effective (RM 629.54, 4,628 flights).
- Premium: 35.2% pricier than Economic

Medium Travel (301–800 km):

Most in-demand for all classes

Long Travel (>800 km):

Reduced demand across all classes.

Comparison Performance between Hive and MapReduce Tools

		•	
Tools	Hive	MapReduce	
Stages/Jobs	2 Stages	2 Jobs	
Mappers	1 mapper per stage	Job 1: 2 mappers; Job 2: 2 mappers	
Reducers	1 reducer per stage	1 reducer per job	
Cumulative CPU Time	Stage-1: 9.13 sec; Stage-2: 5.77 sec	Job 1: 7.06 sec; Job 2: 14.90 sec	
HDFS Read	Stage-1: 13,467,419 bytes; Stage-2: 8,296 bytes	13,451,526 bytes	
HDFS Write	Stage-1: 529 bytes; Stage-2: 458 bytes	263 bytes	
Input Records	Not explicitly mentioned	Job 1: 81,105	
Output Records	Not explicitly mentioned	Job 1: 81,104; Job 2: 9	
Memory Usage (Peak)	Not explicitly mentioned	Map: ~291 MB; Reduce: ~182 MB	
Execution Time	Stage-1: ~18 sec; Stage-2: ~16 sec	Job 1: ~27 sec; Job 2: ~33 sec	

Performance Insights:

- Hive is ideal for analysis-focused tasks with smaller to medium datasets.
- MapReduce excels in handling large datasets and custom processing.

Recommendation:

- Use Hive for this project due to simplicity, speed, and practicality.
- Consider MapReduce for scalability if the dataset grows.

Hive vs. MapReduce:

- Hive: User-friendly, SQL-like interface; faster execution (~14.9 seconds), efficient memory management, and lower disk usage.
- MapReduce: Offers detailed control; slower execution (~27–33 seconds), higher data transfer, and manual memory configuration (~291 MB map, ~182 MB reduce).

HDFS - Data Storage and Integration

Centralized	Data
Storage	

Data Partitioning and Replication

Seamless Integration with Processing Tools

Acts as the main repository for raw, intermediate, and processed data.

Automatically divides datasets into smaller blocks.

Supports efficient data processing.

Replicates data across nodes for high availability and fault tolerance.

Pig: Preprocessing raw data.

Hive: Querying processed data.

MapReduce: Advanced analysis for

insights.

Spark: Model training and

evaluation.

04

K-Means Clustering: Apache Spark

Cluster Center Coordinates

Optimal

k=4

% Difference from average position

cluster	total_ mileage	total_ flight_ price	total_ flights	total_ days_ hotel	total_ hotel_ price	total_ hotels	total_ price	avg_ flight_ distance	avg_ flight_ time	avg_ flight_ price	avg_ hotel_ price_ daily	age
0	23.9%	36.8%	47.4%	47.6%	53.2%	47.6%	38.0%	-15.8%	-15.8%	-7.1%	4.3%	1.9%
1	-55.3%	-50.4%	-46.0%	-47.1%	-45.7%	-47.2%	-50.1%	-17.2%	-17.2%	-8.3%	3.4%	0.6%
2	72.7%	59.4%	48.1%	50.7%	45.4%	50.7%	58.4%	16.8%	16.7%	7.7%	-3.2%	-1.8%
3	-41.3%	-45.8%	-49.4%	-51.2%	-53.0%	-51.1%	-46.3%	16.2%	16.2%	7.7%	-4.5%	-0.7%

Frequency of travel

Distance

Visualization of Clusters

Modeling Training & Evaluation

Regression Modeling

The goal of this stage is to adjust the hotel price (hotel_price) to optimise revenue based on the prediction results of the best regression model. This study aims to dynamically adjust the hotel price to maximise revenue based on the prediction results of the best regression model.

Regression Model Evaluation

Model Name	RMSE	MAE	R-squared
Random Forest Regression	20.2	12.31	0.931
Gradient Boosting Regression	20.49	14.02	0.929
Decision Tree			
Regression	28.3	8.15	0.865

06 Visualization

Extract and Prepare

- HBase data extraction
- Aggregate booking metrics (counts, price)
- Transform for visualization

Implement and Design

- Model data relationships in Power BI
- Create intuitive visualizations

Validate and Deploy

- Test dashboard performance
- Verify data accuracy

CONCLUSION & RECOMMENDATION

Empowering Targeted Marketing:

- Focus on middle-aged travelers (31–50 years).
- Design campaigns tailored for peak seasons (October, December) and off-peak opportunities (August).

Optimizing Pricing Strategies:

- Use dynamic pricing to balance peak demand and off-peak promotions.
- Introduce premium packages for high-end destinations like Salvador and Natal.

Promoting Personalized Offers:

 Use K-Means clustering insights for targeted promotions based on travel frequency and distance.

Enhancing Technological Capabilities:

- Utilize Hive for efficiency (use MapReduce if the datasets grow)
- Explore advanced machine learning for real-time insights and dynamic decision-making.

