

Special Topics in Applications (AIL861) Artificial Intelligence for Earth Observation Lecture 3

Instructor: Sudipan Saha

1

Temporal considerations

Temporal resolution

✔ Abrupt changes.

✔ Gradual changes.

Sensor temporal resolution.

Challenges

✓ Challenge 10: both abrupt and gradual change detection.

Improving temporal resolution using multiple sensors

Time axis

Challenges

✔ Challenge 11: multi-sensor problem in time-series analysis.

Multi-domain data

Domain differences

Concept	In-domain	Target domain
Sensor	Sentinel-2	Worldview-2, Sentinel-1,
Season	Summer	Winter, Autumn, Fall
Geography	Munich	HonaKona. New York

Challenges

✓ Challenge 12: adapting to domains unseen during training.

Uncertainty

Out-of-distribution

Concept In-domain OOD

Sensor Sentinel-2 Worldview-2, Sentinel-1,

. . .

Season Summer Winter, Autumn, Fall

Geography Munich HongKong, New York, ...

Open set Water, forest Building

Challenges

✓ Challenge 13: understanding when the model may fail with unseen data.

Different Learning Paradigms

Supervised Learning: 4 components

- Training data
- ✓ Learner
- ✓ Learning algorithm
- ✔ Performance

Supervised Learning: 4 components

- ✓ Training data: features, target/feedback
- ✓ **Learner**: parameters θ
- ✓ Learning algorithm: changes the parameters and improves performance
- ✔ Performance: cost function
- ✔ Predict Score Learn ...

Supervised Learning: various issues

- ✓ Dependence on training data
- ✓ Less training data and less constraint think of NN regression
- ✓ Apply constraint to make learning more meaningful linear regression
- ✔ Overfitting and complexity (complex models overfit)

Dataset	Size
UC Merced	2100
AID	10000
Optimal-31	1860
RSSCN7	2800
Cifar-10	60000
Cifar-100	60000

Data Split

✓ Training

✓ Validation

✓ Test

Supervised Learning in Data-Efficient Manner: Active Learning

Different Learning Paradigms

- ✓ Supervised learning
- ✓ Semi-Supervised learning
- Unsupervised learning
- ✓ Self-supervised learning

Different Learning Paradigms

- Supervised learning learning with labeled data
 - Approach: collect a large dataset, manually label the data, train a model, deploy
 - Learned feature representations on large datasets can be transferred via pre-trained models to smaller domain-specific datasets
- Unsupervised learning learning with unlabeled data
 - Approach: discover patterns in data either via clustering similar instances, or density estimation, or dimensionality reduction ...
- Self-supervised learning representation learning with unlabeled data
 - Learn useful feature representations from unlabeled data through pretext tasks
 - The term "self-supervised" refers to creating its own supervision (i.e., without supervision, without labels)
 - Self-supervised learning is one category of unsupervised learning

Using Models Trained in Supervised Fashion For Some Other Task

We have 3 choices

• Just use as feature extractor

Just use the features extracted from particular layer(s) without any tuning

• Fine tuning on target data

• Further train particular layers of the network

Unsupervised domain adaptation

Adapt the network with unlabeled target data

Just use as a feature extractor

✓ Just use the features extracted from particular layer(s) without any tuning.

Challenges

✓ Which layer(s)?

✓ Do we have a validation dataset?

✔ Hypercolumn

Can features from a particular layer be ranked?

Fine-tuning on target data

Further train particular layers of the network

Few-Shot Filtering for Change Detection

