MATHEMATICAL INDUCTION

Proving Inequalities

Example: Use mathematical induction to prove that $n < 2^n$ for all positive integers n.

Solution: Let P(n) be the proposition that $n < 2^n$.

- BASIS STEP: P(1) is true since $1 < 2^1 = 2$.
- INDUCTIVE STEP: Assume P(k) holds, i.e., $k < 2^k$, for an arbitrary positive integer k.
- Must show that P(k + 1) holds. Since by the inductive hypothesis, $k < 2^k$, it follows that:

$$k + 1 < 2^k + 1 \le 2^k + 2^k = 2^k (1+1) = 2 \cdot 2^k = 2^{k+1}$$

Therefore $n < 2^n$ holds for all positive integers n.

Proving Inequalities

Example: Use mathematical induction to prove that $2^n < n!$, for every integer $n \ge 4$.

Solution: Let P(n) be the proposition that $2^n < n!$.

- BASIS STEP: P(4) is true since $2^4 = 16 < 4! = 24$.
- INDUCTIVE STEP: Assume P(k) holds, i.e., $2^k < k!$ for an arbitrary integer $k \ge 4$. To show that P(k + 1) holds:

$$2^{k+1} = 2 \cdot 2^k$$

 $< 2 \cdot k!$ (by the inductive hypothesis)
 $< (k + 1)k!$
 $= (k + 1)!$

Therefore, $2^n < n!$ holds, for every integer $n \ge 4$.

Note that here the basis step is P(4), since P(0), P(1), P(2), and P(3) are all false.

5.2

Strong Induction

Strong Induction

- Strong Induction: To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, complete two steps:
 - Basis Step: Verify that the proposition P(1) is true.
 - Inductive Step: Show the conditional statement $[P(1) \land P(2) \land \cdots \land P(k)] \rightarrow P(k+1)$ holds for all positive integers k.

Strong Induction is sometimes called the second principle of mathematical induction or complete induction.

Strong Induction and the Infinite Ladder

Strong induction tells us that we can reach all rungs if:

I. We can reach the first rung of the ladder.

2. For every integer k, if we can reach the first k rungs, then we can reach the (k + 1)st rung.

To conclude that we can reach every rung by strong induction:

- BASIS STEP: P(1) holds
- INDUCTIVE STEP: Assume $P(1) \land P(2) \land \cdots \land P(k)$ holds for an arbitrary integer k, and show that P(k+1) must also hold.

We will have then shown by strong induction that for every positive integer n, P(n) holds, i.e., we can reach the nth rung of the ladder.

Strong Induction

Theorem: If n is an integer greater than 1, then n can be written as the product of primes.

Proof: Let P(n) be the proposition that n can be written as a product of primes.

- BASIS STEP: P(2) is true since 2 itself is prime.
- INDUCTIVE STEP: The inductive hypothesis is P(j) is true for all integers j with $2 \le j \le k$. To show that P(k + 1) must be true under this assumption, two cases need to be considered:
 - If k + 1 is prime, then P(k + 1) is true.
 - Otherwise, k + 1 is composite and can be written as the product of two positive integers a and b with $2 \le a \le b < k + 1$. By the inductive hypothesis a and b can be written as the product of primes and therefore k + 1 can also be written as the product of those primes.

Hence, it has been shown that every integer greater than 1 can be written as the product of primes.

(uniqueness proved in Section 4.3)

Proof using Strong Induction

Example: Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.

Solution: Let P(n) be the proposition that postage of n cents can be formed using 4-cent and 5-cent stamps.

- BASIS STEP: P(12), P(13), P(14), and P(15) hold.
 - P(12) uses three 4-cent stamps.
 - P(13) uses two 4-cent stamps and one 5-cent stamp.
 - P(14) uses one 4-cent stamp and two 5-cent stamps.
 - *P*(15) uses three 5-cent stamps.
- INDUCTIVE STEP: The inductive hypothesis states that P(j) holds for $12 \le j \le k$, where $k \ge 15$. Assuming the inductive hypothesis, it can be shown that P(k + 1) holds.
- Using the inductive hypothesis, P(k-3) holds since $k-3 \ge 12$. To form postage of k+1 cents, add a 4-cent stamp to the postage for k-3 cents.

Hence, P(n) holds for all $n \ge 12$.

Proof of the Same Example using Mathematical Induction

Example: Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.

Solution: Let P(n) be the proposition that postage of n cents can be formed using 4-cent and 5-cent stamps.

- BASIS STEP: Postage of 12 cents can be formed using three 4-cent stamps.
- INDUCTIVE STEP: The inductive hypothesis P(k) for any positive integer k is that postage of k cents can be formed using 4-cent and 5-cent stamps. To show P(k+1) where $k \ge 12$, we consider two cases:
 - If at least one 4-cent stamp has been used, then a 4-cent stamp can be replaced with a 5-cent stamp to yield a total of k + 1 cents.
 - Otherwise, no 4-cent stamp have been used and at least three 5-cent stamps were used. Three 5-cent stamps can be replaced by four 4-cent stamps to yield a total of k + 1 cents.

Hence, P(n) holds for all $n \ge 12$.