Gradiert et hyperplan d'appui

Le gradient d'une fonction convexe en un point donné fournit une information géométrique précieuse dans l'optique de minimiser alte fonction

Soit $x \in \mathcal{C}_r(f)$ (f(x)=r) et $y \in \mathcal{C}_{rr}(f)$ (y dans le lieu de Soses niveaux r de f)La conventé à l'ordre I donne : $f(y) - f(x) \ge \nabla f(x)^T (y-x)$

- $\nabla f(x)^T(y-x) \leqslant 0$ C'est la définition d'un hyperplan d'appeir en $x \in \mathcal{C}_{sr}(f)$ de verteur normal $\nabla f(x)$
- = Le gradient de f en ∞ permet de définir en hyperplan d'appui au lieu de Sous-niveau r = les valeurs plus petites que r se trouvent uniquement dans le demi espace opposé au gradient $\nabla f(x)$

 $e_{r(\beta)}$

C'est atte propriété geométrique qui est à la base des méthodes de descette de gradient

- En un point on donné, Vfron) pointe dans la direction de plus forte pente et definit un hyperplan d'appui à Cofren (9)
- The solution of the part of the demi espace positif comme tone de recherche de 50_{n+1} pour minimiser f. On part donc dans to direction apposée: $50_{n+1} = 50_n 47f(50_n)$, avec a le par de to descrite (appelé learning rate en machine learning)

Le choix de d'est aucial pour la convergence de la méthode, mais s'il est bien choisi, alors $f(x_{n+1}) < f(x_n)$ $-\infty$ On itère comme cela, en faisant éventuellement voirier $d: x_{n+1} = x_n - d_n \nabla f(x_n)$

Si f'est convexe, alte stratégie nous permet en théorie d'espèrer trouver en point optimal x^* (donc $\nabla f(x^*)=0$) On peut donc arrêter la descerte au bout d'un certain nombre d'itérations, ou Corsque $\|\nabla f(x_n)\| < \mathcal{E}$ (auquel cas $x_n \propto x^*$)

Si f n'est pas convexe, cette strategie, si elle nous permet de trouver en point critique \hat{x} to $\nabla f(\hat{x}) = 0$, ne garantit pas la nature du point critique en question. Il y a donc besoin de caractériser plus finement les points critiques

3) Développement limité à l'ordre 2

Soit $f: \mathbb{R}^n \subseteq \mathbb{R}$ me fonction differentiable en $\infty \in \mathbb{R}^n$, de differentielle $df: h \mapsto \nabla f(\infty)^T h$ On Lit que f est 2-fors différentiable en ∞ si l'application gradient de $f: \nabla f: \mathbb{R}^n \subseteq \mathbb{R}^n$ est elle même différentiable

- Commert s'éait la différentielle de Vf?

Of étant une fonction de 12° dans 12°, sa différentielle s'exprime donc via sa matrice jacobienne Jac Vfros) au point 20 considéré: dops: h La (Jacopras) x h et Jacopras) EIR non est une matrice carrée

Perisque $\nabla f(x) = \left(\frac{\partial f(x)}{\partial x}, \dots, \frac{\partial f}{\partial x}(x)\right)^{T}$, on peut éaire sa matrice jacobienne :

$$\mathcal{J}_{ac} \mathcal{F}(x) = \begin{pmatrix}
\nabla \left(\frac{\partial f}{\partial x}\right)(x)^{T} \\
\vdots \\
\nabla \left(\frac{\partial f}{\partial x}\right)(x)^{T}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}(x)\right), \dots, \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}(x)\right) \\
\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}(x)\right), \dots, \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}(x)\right)
\end{pmatrix}$$

En notant $\frac{\partial^2 f}{\partial x_i^2}(x) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i}(x) \right)$ et $\frac{\partial^2 f}{\partial x_i \partial x_j^2}(x) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j^2}(x) \right)$, on obtient $\frac{\partial}{\partial x_i^2}(x) = \frac{\partial}{\partial x_i^2} \left(\frac{\partial f}{\partial x_i}(x) \right)$ et $\frac{\partial^2 f}{\partial x_i \partial x_j^2}(x) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j^2}(x) \right)$, on obtient $\frac{\partial}{\partial x_i^2}(x) = \frac{\partial}{\partial x_i^2} \left(\frac{\partial f}{\partial x_i}(x) \right)$ et $\frac{\partial^2 f}{\partial x_i \partial x_j^2}(x) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i}(x) \right)$, on obtient $\frac{\partial}{\partial x_i}(x) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i}(x) \right)$ et $\frac{\partial^2 f}{\partial x_i \partial x_j^2}(x) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i}(x) \right)$, on obtient $\frac{\partial}{\partial x_i}(x) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i}(x) \right)$.

c'est à dire la matrice jacobierne du gradient de f.

$$H_{\mathcal{J}(x)} = Jac \, \mathcal{J}(x) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(x) & \frac{\partial^2 f}{\partial x^2}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x^2}(x) & \frac{\partial^2 f}{\partial x^2}(x) \end{pmatrix}$$

 $H_{f(x)} = Jac V_{f(x)} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_i^2}(x) & \frac{\partial^2 f}{\partial x_i \partial x_i} \\ \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial x_i \partial x_i}(x) & \frac{\partial^2 f}{\partial x_i \partial x_i} \end{pmatrix}$ $Si touter les fonctions <math>\frac{\partial^2 f}{\partial x_i \partial x_j}$ Sont continue, alors $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_i \partial x_i} \text{ (theorems de Schwarz), et la matrice}$ $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_i \partial x_i} \text{ (theorems de Schwarz), et la matrice}$ $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_i \partial x_i} \text{ (theorems de Schwarz), et la matrice}$ $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_i \partial x_i} \text{ (theorems de Schwarz), et la matrice}$ $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_i \partial x_i} \text{ (theorems de Schwarz), et la matrice}$ $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_i \partial x_i} \text{ (theorems de Schwarz), et la matrice}$

La hessienne d'une fonction f: 12 12 regroupe donc sous forme matricielle toutes les derivées secondes de f

Propriété: developpement limité à l'ordre 2

Soit f: 12? -> 12 - fois différentiable en so

Alone f(xo+h) = f(xo) + Vf(xo) Th + 1/2 hT Hp(xo) h + 0 (11h12)

_o C'est la matrice hessienne qui apparaît dans le terme quadratique du DL2

Pour f. 17 - 18: fronth) = fronth fronth + 1 h2 f"(xo) + 0. (h2)

_s La hessienne est donc la généralisation de la dérivée d'ordre 2 (tout comme le gradient généralise la derivée d'ordre 1).

4) Caractérisation des points critiques

Soit x* un point critique d'une fonction f: 12° -> 12 (donc 7frx*)=0)

Si f est convexe, x * est us minimum global

Si f n'est er revarche pas connete, x peut être un minimum CocaPou global, en maximum locaPou global, ou bier un point selle.