

Cellular data network

AT&T "Cellular"

F164 REEIA

Scheduling at base-station

FIGURE 18

WFQ scheduling to serve non-empty queues

Transport protocol: TCP/IP

Realistic Internet traffic model

Workload model

TOP SECRET//~~REF ID: A6562~~

- Surge model
 - Request sizes, embedded references, OFF (think) time.
- File size: average - 8.2kB, median - 3kB
- User data rate: ~ 12kbps (decrease as loading increases)

WFQ scheduling with equal weights

FIGURE 3
50% MCS-8 Users, 50% MCS-6 Users

FIGURE 4

- MCS-6 users has lower rates while consuming more resources.

- MCS-8 users also suffer from MCS-6 users' poor channel quality.

Q: Whose performance to improve?

Options of the system - the scheduling axis

FIGURE 5

Fig. 6. Performance of users when 1/2 are MCS-8 users and 1/2 are MCS-6 users.

Fig. 7. User performance at exponent=-1.

a) Channel Usage of MCS-8 Users

b) Channel Usage of MCS-6 Users

Fig. 8. Channel usage of users when 1/2 are MCS-8 users
and 1/2 are MCS-6 users.

a) Effective Serving Rates of MCS-8 Users
Fig. 9. Performance of users when 2/3 are MCS-8 users and 1/3 are MCS-6 users

b) Effective Serving Rates of MCS-6 Users

a) Effective Serving Rates of MCS-8 Users
Fig. 10. Performance of users when 1/3 are MCS-8 users and 2/3 are MCS-6 users

b) Effective Serving Rates of MCS-6 Users

1052005-0104

a) Effective Serving Rates of MCS-8 Users

b) Effective Serving Rates of MCS-6 Users

c) Effective Serving Rates of MCS-4 Users

Fig. 11. Performance of users when there are equal numbers of MCS-8, MCS-6, and MCS-4 users in the system.

Type A User

Type B User

Fig. 12. Channel state transition diagram (the prob. of remaining in the same state is 0.7 for all the states).

System Flow

File Edit View Insert Tools Help

File Edit View Insert Tools Help

1210

DS2000-0104

Packet Scheduling Algorithms

FIGURE 13 B

1. Let $w_I = a * eff_I^{\wedge} power$
‘a’ can be set to any number, a is set to 1 by default in the paper.
‘power’ may be adjusted according to the system needs
2. User weighted-fair-queueing algorithm to schedule packets based on the weights calculated above.