CSE3081 Design and Analysis of Algorithms

Dept. of Computer Engineering,
Sogang University

This material contains text and figures from other lecture slides. Do not post it on the Internet.

Chapter 3. Characterizing Running Times

This material contains text and figures from other lecture slides. Do not post it on the Internet.

3.1 O-notation, Ω -notation, and Θ -notation

Asymptotic Notations

Asymptotic efficiency

- Running time of an algorithm (or a function or a program) when the input size n is large.
- How the running time of an algorithm increases with the size of the input in the limit.
- Asymptotic notation: *O*-notation
 - Characterizes an upper bound on the asymptotic behavior.
 - If running time of an algorithm as a function of input size is:

•
$$T(n) = 7n^3 + 100n^2 - 20n + 6$$

- Then we can write that it is $O(n^3)$.
- Also, it is true that the running time is $O(n^4)$ or $O(n^5)$ or $O(n^6)$.

Asymptotic Notations

- Asymptotic notation: Ω -notation
 - characterizes a lower bound on the asymptotic behavior.
 - If running time of an algorithm as a function of input size is:
 - $T(n) = 7n^3 + 100n^2 20n + 6$
 - Then we can write that it is $\Omega(n^3)$.
 - Also, it is true that the running time is $\Omega(n^2)$ or $\Omega(n)$.
- Asymptotic notation: Θ-notation
 - characterizes a tight bound on the asymptotic behavior.
 - It says that a function grows precisely at a certain rate.
 - If running time of an algorithm as a function of input size is:
 - $T(n) = 7n^3 + 100n^2 20n + 6$
 - Then we can write that it is $\Theta(n^3)$.

3.2 Asymptotic Notation: Formal Definitions

O-notation: asymptotic upper bound

- Formal definition of O-notation
 - g(n) must be asymptotically nonnegative
 - (nonnegative when n is sufficiently large)

$$O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$$
.

- $4n^2 + 100n + 500 = O(n^2)$
 - If we choose $n_0 = 10$ and c = 19,
 - $4n^2 + 100n + 500 \le cn^2$ for all $n \ge n_0$ holds

Ω -notation: asymptotic lower bound

• Formal definition of Ω -notation

$$\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$$
.

- $4n^2 + 100n + 500 = \Omega(n^2)$
 - If we choose $n_0 = 1$ and c = 4,
 - $4n^2 + 100n + 500 \ge cn^2$ for all $n \ge n_0$ holds

Θ-notation: asymptotic tight bound

• Formal definition of Ω -notation

$$\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$$
.

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Graphic examples of asymptotic notations

Asymptotic Notation and Running Times

- The worst case running time of insertion sort is $O(n^2)$, $\Omega(n^2)$, or $\Theta(n^2)$.
 - $\Theta(n^2)$ is the most precise and most preferred notation.
 - We should not say "running time of insertion sort is $\Theta(n^2)$ ", because its best case running time is $\Theta(n)$.
- The running time of merge sort is $\Theta(n \log n)$.
 - It is true for best, average, and worst case.
- People occasionally conflate O-notation with Θ -notation by mistakenly using O-notation to indicate an asymptotically tight bound.
- When we use an asymptotic notation, we typically use representative functions as g(n) in $\Theta(g(n))$.
 - 1, $\log n$, n, $n \log n$, n^2 , n^3 , 2^n

Asymptotic Notation in Equations and Inequalities

- When we say $4n^2 + 100n + 500 = O(n^2)$, we actually mean $4n^2 + 100n + 500 \in O(n^2)$.
- When we say $2n^2+3n+1=2n^2+\Theta(n)$, we mean that $2n^2+3n+1=2n^2+\Theta(n)$ where $f(n)\in\Theta(n)$.
- We write $2n^2 + \Theta(n)$, our intention is that we do not care about the details of $\Theta(n)$ part.
 - $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$

o-Notation

o-notation is used to denote an upper bound that is not asymptotically tight.

$$o(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$$
.

- Example: $2n = o(n^2)$, but $2n^2 \neq o(n^2)$.
- *O*-notation vs. *o*-notation
 - in f(n) = O(g(n)), the bound $0 \le f(n) \le cg(n)$ holds for some constant c > 0
 - in f(n) = o(g(n)), the bound $0 \le f(n) < cg(n)$ holds for all constants c > 0
 - Intuitively, in o-notation, the function f(n) becomes insignificant relative to g(n) as n gets large.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

ω -Notation

• ω -notation is used to denote a lower bound that is not asymptotically tight.

$$\omega(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$$
.

- Example: $\frac{n^2}{2} = \omega(n^2)$, but $\frac{n^2}{2} \neq \omega(n^2)$.
- The relation $f(n) = \omega(g(n))$ implies that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Comparing Functions

Transitivity

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$, $f(n) = O(g(n))$ and $g(n) = O(h(n))$ imply $f(n) = O(h(n))$, $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$, $f(n) = o(g(n))$ and $g(n) = o(h(n))$ imply $f(n) = o(h(n))$, $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$.

Reflexivity

$$f(n) = \Theta(f(n)),$$

$$f(n) = O(f(n)),$$

$$f(n) = \Omega(f(n)).$$

Symmetry

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$, $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

Comparing Functions

- Smaller, larger functions
 - f(n) is asymptotically smaller than g(n) if f(n) = o(g(n))
 - f(n) is asymptotically larger than g(n) if $f(n) = \omega(g(n))$
- Not all functions are asymptotically comparable
 - we cannot compare functions f(n) = n and $g(n) = n^{1+\sin n}$ asymptotically
 - g(n) oscillates between 0 and 2.

3.3 Standard Notations and Common Functions

Monotonicity

- A function f(n) is monotonically increasing if $m \le n$ implies $f(m) \le f(n)$.
- A function f(n) is monotonically decreasing if $m \le n$ implies $f(m) \ge f(n)$.
- A function f(n) is strictly increasing if m < n implies f(m) < f(n).
- A function f(n) is strictly decreasing if m < n implies f(m) > f(n).

Floors and Ceilings

- For any real number *x*,
 - -|x| is the greatest integer less than or equal to x.
 - [x] is the least integer greater than or equal to x.
- For all integer n, $\lfloor n \rfloor = n = \lceil n \rceil$
- For all real x, $x-1 < |x| \le x \le \lceil x \rceil < x+1$
- -[x] = [-x], -|x| = [-x]
- For any real number $x \ge 0$ and integers a, b > 0, we have

$$\left\lceil \frac{\lceil x/a \rceil}{b} \right\rceil = \left\lceil \frac{x}{ab} \right\rceil, \quad \left\lfloor \frac{\lfloor x/a \rfloor}{b} \right\rfloor = \left\lfloor \frac{x}{ab} \right\rfloor, \\ \left\lceil \frac{a}{b} \right\rceil \le \frac{a + (b-1)}{b}, \\ \left\lfloor \frac{a}{b} \right\rfloor \ge \frac{a - (b-1)}{b}$$

• For any integer n and real number x, we have

$$\lfloor n + x \rfloor = n + \lfloor x \rfloor ,
\lceil n + x \rceil = n + \lceil x \rceil .$$

Modular Arithmetic

- For any integer a and any positive integer n, the value $a \mod n$ is the remainder (or residue) of the quotient a/n.
- $a \mod n = a n\lfloor a/n \rfloor$
- $0 \le a \mod n < n$
- If $(a \bmod n) = (b \bmod n)$, we say that a is equivalent to b, modulo n.

Polynomials

• Given a nonnegative integer d, a polynomial in n of degree d is a function of p(n) of the form

$$p(n) = \sum_{i=0}^{d} a_i n^i$$

- where the constants a_0, a_1, \dots, a_d are the coefficients of the polynomial.
- $-a_d \neq 0$
- A polynomial is asymptotically positive if and only if $a_d > 0$.
- For an asymptotically positive polynomial p(n) of degree d, $p(n) = \Theta(n^d)$.
- For any real constant $a \ge 0$, the function n^a is monotonically increasing, and for any real constant $a \le 0$, the function n^a is monotonically decreasing.
- We say that function f(n) is polynomially bounded if $f(n) = O(n^k)$ for some constant k.

Exponentials

For all real a > 0, m, and n, we have the following identities.

$$a^{0} = 1$$
,
 $a^{1} = a$,
 $a^{-1} = 1/a$,
 $(a^{m})^{n} = a^{mn}$,
 $(a^{m})^{n} = (a^{n})^{m}$,
 $a^{m}a^{n} = a^{m+n}$.

- For convenience, we may assume $0^0 = 1$.
- Rates of growth of polynomials and exponentials

$$\lim_{n o \infty} rac{n^b}{a^n} = 0$$
 al constants $a > 1$ and b , we have

- from which we can conclude that $n^b = o(a^n)$
- any exponential function with a base strictly greater than 1 grows faster than any polynomial function.

Exponentials

- For all real x, $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$
 - where! denotes the factorial function.
- For all real x, we have the inequality, $1 + x \le e^x$
 - where equality holds only when x = 0.
- When $|x| \le 1$, we have the approximation

$$-1+x \le e^x \le 1+x+x^2$$

• When $x \to 0$, the approximation of e^x by 1 + x is quite good

$$-e^{x} = 1 + x + \Theta(x^{2})$$

• For all x, $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$

Logarithms

Notations for logarithms

```
\lg n = \log_2 n (binary logarithm),

\ln n = \log_e n (natural logarithm),

\lg^k n = (\lg n)^k (exponentiation),

\lg\lg n = \lg(\lg n) (composition).
```

- For any constant b > 1, the function $\log_b n$ is:
 - undefined if $n \leq 0$
 - strictly increasing if n > 0
 - negative if 0 < n < 1
 - positive if n > 1
 - 0 if n = 1

Logarithms

• For all real a > 0, b > 0, c > 0, and n, we have

$$a = b^{\log_b a},$$

$$\log_c(ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \log_b a,$$

$$\log_b a = \frac{\log_c a}{\log_c b},$$

$$\log_b (1/a) = -\log_b a,$$

$$\log_b a = \frac{1}{\log_a b},$$

$$a^{\log_b c} = c^{\log_b a},$$

Logarithms

• When |x| < 1,

$$- \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots$$

- For x > -1
 - $\frac{x}{1+x} \le \ln(1+x) \le x$
 - equality holds only for x = 0.
- f(n) is polylogarithmically bounded if $f(n) = O(\lg^k n)$ for some constant k.
- For all real constants a > 0 and b,
 - $\lg^b n = o(n^a)$
 - any positive polynomial function grows faster than any polylogarithmic function.

Factorials

• The notation ! (n factorial) is defined for integers $n \geq 0$ as

$$n! = \begin{cases} 1 & \text{if } n = 0, \\ n \cdot (n-1)! & \text{if } n > 0. \end{cases}$$

- A weak upper bound on the factorial function is $n! \leq n^n$.
- Stirling's approximation gives us a tighter upper bound.

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

• According to Stirling's appoxtimation, $lg(n!) = \Theta(n lg n)$

Functional Iteration

- We use the notation $f^{(i)}(n)$ to denote the function f(n) iteratively applied i times to an initial value n.
- Formally, let f(n) be a function over the reals. For nonnegative integers i, we recursively define

$$f^{(i)}(n) = \begin{cases} n & \text{if } i = 0, \\ f(f^{(i-1)}(n)) & \text{if } i > 0. \end{cases}$$

• If f(n) = 2n, then $f^{(i)}(n) = 2^{i}n$.

The Iterated Logarithm Function

• We use the notation $\lg^* n$ ("log star of n") to denote the iterated logarithm.

$$\lg^* n = \min \{ i \ge 0 : \lg^{(i)} n \le 1 \}$$

- logarithm function applied i times in succession, starting with argument n, until $\lg^{(i)} n$ becomes less than or equal to 1.
- The iterated logarithm is a very slowly growing function:

$$1g^{*} 2 = 1,$$

$$1g^{*} 4 = 2,$$

$$1g^{*} 16 = 3,$$

$$1g^{*} 65536 = 4,$$

$$1g^{*} (2^{65536}) = 5.$$

• Be sure to distinguish $\lg^{(i)} n$ from $\lg^i n$ (the logarithm of n raised to the ith power)!

Fibonacci Numbers

• We define the Fibonacci numbers F_i , for $i \geq 0$, as follows.

$$F_i = \begin{cases} 0 & \text{if } i = 0, \\ 1 & \text{if } i = 1, \\ F_{i-1} + F_{i-2} & \text{if } i \ge 2. \end{cases}$$

- The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
- Fibonacci numbers are related to the golden ratio ϕ and its conjugate $\hat{\phi}$, the two roots of the equation $x^2 = x + 1$.

$$\phi = \frac{1 + \sqrt{5}}{2} \qquad \hat{\phi} = \frac{1 - \sqrt{5}}{2} \qquad F_i = \frac{\phi^i - \hat{\phi}^i}{\sqrt{5}} \\
= 1.61803..., \qquad = -.61803...$$

- Since $|\hat{\phi}| < 1$, we have $\frac{|\hat{\phi}^i|}{\sqrt{5}} < \frac{1}{\sqrt{5}} < \frac{1}{2}$, which implies $F_i = \left\lfloor \frac{\phi^i}{\sqrt{5}} + \frac{1}{2} \right\rfloor$
 - *i*th Fibonacci number F_i is equal to $\frac{\phi^i}{\sqrt{5}}$ rounded to the nearest integer.
 - Thus, Fibonacci numbers grow exponentially.

Review: Efficient Algorithm Design

Efficient algorithm design: example 1

- <u>Sequential search</u> versus <u>binary search</u>
 - Problem: Determine whether x is in the sorted array S of n keys.
 - Inputs: positive integer n, sorted (non-decreasing order) arrays of keys S indexed from 1 to n, a key x.
 - Outputs: the location of x in S (0 if x is not in S).
 - Sequential search: T(n) = O(n)
 - Binary search: $T(n) = O(\log n)$

Array Size	Number of Comparisons by Sequential Search	Number of Comparisons by Binary Search
128	128	8
1,024	1,024	11
1,048,576	1,048,576	21
4,294,967,296	4,294,967,296	33

Why is the binary search more efficient?

Efficient algorithm design: example 2

- The Fibonacci Sequence
 - Problem: Determine the nth term in the Fibonacci sequence.
 - Inputs: a nonnegative integer n.
 - Outputs: the nth term of the Fibonacci sequence.

$$f_0 = 0$$
, $f_1 = 1$, $f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$

```
<recursive: divide-and-conquer>
int fib (int n) {
  if (n == 0) return 0;
  else if (n == 1) return 1;
  else return fib(n-1) + fib(n-2);
}
```

- Divide-and-Conquer: $T(n) = O(2^n)$
- Dynamic Programming: T(n) = O(n)

```
<iterative: dynamic programming>
int fib(int n) {
  index i;
  int f[0 .. n];

f[0] = 0;
  if (n > 0) {
    f[1] = 1;
    for (i = 2; i <= n; i++)
       f[i] = f[i-1] + f[i-2];
  }
  return f[n];
}</pre>
```


Time complexity: linear vs. exponential

			iterative	recursive (no data lookup
	18 1 2 EV	> Spacing		Lower Bound on
			Execution Time	Execution Time
n	n+1	$2^{n/2}$	Using Algorithm 1.7	Using Algorithm 1.6
40	41	1,048,576	41 ns*	$1048~\mu s^{\dagger}$
60	61	1.1×10^{9}	61 ns	1 s
80	81	1.1×10^{12}	81 ns	18 min
100	101	1.1×10^{15}	101 ns	13 days
120	121	1.2×10^{18}	121 ns	36 years
160	161	1.2×10^{24}	161 ns	$3.8 \times 10^7 \text{ years}$
200	201	1.3×10^{30}	201 ns	$4 \times 10^{13} \text{ years}$

Why is recursive algorithm less efficient?

Growth rates of some common complexity functions

Asymptotic Time Complexity of Programs

```
x = x + 1;
for (i = 1; i <= n; i++)
y = y + 2;
for (i = n; i >=1; i--)
for (j = n; j >= 1; j--)
z = z + 1;
```

Time complexity: $c_0 + c_1 n + c_2 n^2 = O(n^2)$

```
c = 0; // n > 0 for (i = 1; i <= n; i++) Time complexity: c(\lceil \log_2 n \rceil + 1) * n * n = O(n^2 \log n) for (k = 1; k <= n; k = k*2) c += 2;
```

```
i = 1; j = 1; m = 0; // n > 0
while (j <= n) {
   i++;
   j = j + i;
   m = m + 2;
}</pre>
```

Time complexity: ??? = $O(\sqrt{n})$

Execution times for algorithms with the given time complexities

C	$\overline{}$	n	C	+	\rightarrow	n	+
	. ,	- 1 - 1	\cdot	ι.	$\overline{}$	- 1 - 1	ι.

	logarithmic	linear	n-log-n	quadratic	cubic exp	onential factoria
n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n) = n^2$	$f(n) = n^3$	$f(n) = 2^n < n!$
10	$0.003 \mu \mathrm{s}^*$	$0.01~\mu \mathrm{s}$	$0.033 \; \mu { m s}$	$0.10~\mu \mathrm{s}$	$1.0~\mu \mathrm{s}$	$1~\mu \mathrm{s}$
20	$0.004~\mu \mathrm{s}$	$0.02~\mu\mathrm{s}$	$0.086~\mu\mathrm{s}$	$0.40~\mu\mathrm{s}$	$8.0~\mu \mathrm{s}$	$1~\mathrm{ms}^\dagger$
30	$0.005~\mu\mathrm{s}$	$0.03~\mu\mathrm{s}$	$0.147~\mu \mathrm{s}$	$0.90~\mu\mathrm{s}$	$27.0~\mu \mathrm{s}$	1 s
40	$0.005~\mu\mathrm{s}$	$0.04~\mu \mathrm{s}$	$0.213~\mu\mathrm{s}$	$1.60~\mu\mathrm{s}$	$64.0~\mu \mathrm{s}$	18.3 min
50	$0.006~\mu \mathrm{s}$	$0.05~\mu\mathrm{s}$	$0.282~\mu\mathrm{s}$	$2.50~\mu \mathrm{s}$	$125.0~\mu\mathrm{s}$	13 days
10^{2}	$0.007~\mu \mathrm{s}$	$0.10~\mu \mathrm{s}$	$0.664~\mu\mathrm{s}$	$10.00~\mu \mathrm{s}$	1.0 ms	$4 \times 10^{13} \text{ years}$
10^{3}	$0.010~\mu \mathrm{s}$	$1.00~\mu\mathrm{s}$	$9.966~\mu \mathrm{s}$	$1.00~\mathrm{ms}$	1.0 s	
10^{4}	$0.013~\mu \mathrm{s}$	$10.00~\mu \mathrm{s}$	$130.000 \; \mu \text{s}$	100.00 ms	16.7 min	7
10^{5}	$0.017~\mu \mathrm{s}$	0.10 ms	$1.670 \mathrm{\ ms}$	$10.00 \mathrm{\ s}$	11.6 days	
10^{6}	$0.020~\mu\mathrm{s}$	$1.00 \mathrm{\ ms}$	19.930 ms	$16.70 \min$	31.7 years	
10^{7}	$0.023~\mu\mathrm{s}$	$0.01 \mathrm{\ s}$	$2.660 \mathrm{\ s}$	$1.16 \mathrm{days}$	31,709 years	
10^{8}	$0.027~\mu \mathrm{s}$	$0.10 \mathrm{\ s}$	$2.660 \mathrm{\ s}$	115.70 days	3.17×10^7 years	
10^{9}	$0.030~\mu\mathrm{s}$	$1.00 \mathrm{\ s}$	29.900 s	31.70 years		
Bin	ary search		Merge sort	Bubble sort	Finding all-pairs shortest path	Many intractable combinatorial
			ding the close	st	- Jacob Paron	problems
			pair of points		Dalumanaial	•
Finding the maximum				Polynomial	Exponential	

Merging two sorted lists

Algorithms and their time complexities

Notation	Name	Example			
$\mathcal{O}\left(1\right)$	<u>constant</u>	Determining if a number is even or odd			
$\mathcal{O}(\log^* n)$	iterated logarithmic	The find algorithm of Hopcroft and Ullman on a <u>disjoint set</u>			
$\mathcal{O}\left(\log n\right)$	logarithmic	Finding an item in a sorted list with the <u>binary search</u> <u>algorithm</u>			
$\mathcal{O}\left(\left(\log n\right)^{c}\right)$	polylogarithmic	Deciding if <i>n</i> is prime with the <u>AKS primality test</u>			
$\mathcal{O}\left(n^{c}\right), 0 < c < 1$	fractional power	searching in a <u>kd-tree</u>			
$\mathcal{O}\left(n\right)$	<u>linear</u>	Finding an item in an unsorted list			
$\mathcal{O}(n \log n)$	linearithmic, loglinear, or quasilinear	Sorting a list with <u>heapsort</u> , computing a <u>FFT</u>			
$\mathcal{O}\left(n^2\right)$	quadratic	Sorting a list with <u>insertion sort</u> , computing a <u>DFT</u>			
$\mathcal{O}\left(n^{c}\right), c > 1$	polynomial, sometimes called algebraic	Finding the shortest path on a weighted digraph with the Floyd-Warshall algorithm			
$\mathcal{O}\left(c^{n}\right)$	exponential, sometimes called geometric	Finding the (exact) solution to the <u>traveling salesman</u> <u>problem</u> (under the assumption that <u>P = NP</u>)			
$\mathcal{O}\left(n!\right)$	factorial, sometimes called combinatorial	Determining if two logical statements are equivalent [1], traveling salesman problem, or any other NP Complete problem via brute-force search			
$\mathcal{O}\left(2^{c^n}\right)$	double exponential	Finding a complete set of associative-commutative unifiers [2]			

Worst-case vs. average-case time complexity

 S_n : the set of all inputs of size n

c(I): the cost of the algorithm on input I

p(I): the probability that input I occurs

Worst-case complexity

$$T_W(n) = \max\{c(I) \mid I \in S_n\}$$

Average-case complexity

$$T_A(n) = \sum_{I \in S_n} p(I) \cdot c(I)$$

What is the worst-case and average-case complexity of sequential search?

Reviews - Summation

Sums of powers

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$$

$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4} = \left[\sum_{i=1}^{n} i\right]^2$$

$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

$$\sum_{i=1}^{n} \log(i)^c \in \Theta(n \cdot \log(n)^c) \text{ for not all } i = 0$$

where B, is the kth Bernoulli number. $\sum_{s=0}^{\infty} i^{-s} = \prod_{s=0}^{\infty} \frac{1}{1 - n^{-s}} = \zeta(s)$

where $\zeta(s)$ is the Reimann zeta function.

Growth rates

$$\sum_{i=1}^n i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6} = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$$

$$\sum_{i=1}^n i^3 = \left(\frac{n(n+1)}{2}\right)^2 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4} = \left[\sum_{i=1}^n i\right]^2$$

$$\sum_{i=1}^n i^3 = \left(\frac{n(n+1)}{2}\right)^2 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4} = \left[\sum_{i=1}^n i\right]^2$$

$$\sum_{i=1}^n i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

$$\sum_{i=1}^n i^5 = \frac{(n+1)^{s+1}}{s+1} + \sum_{k=1}^s \frac{B_k}{s-k+1} \binom{s}{k} (n+1)^{s-k+1}$$

$$\sum_{i=0}^n i^5 = \frac{(n+1)^{s+1}}{s+1} + \sum_{k=1}^s \frac{B_k}{s-k+1} \binom{s}{k} (n+1)^{s-k+1}$$

$$\sum_{i=1}^n \log(i)^c \cdot i^d \in \Theta(n^{d+1} \cdot \log(n)^c) \text{ for nonnegative real } c, d$$

$$\sum_{i=1}^n \log(i)^c \cdot i^d \cdot b^i \in \Theta(n^d \cdot \log(n)^c \cdot b^n) \text{ for nonnegative real } b > 1, c, d$$

Comparing orders of growth

- How do you compare orders of growth of two functions?
 - One possible way is to compute the limit of the ratio of two functions in question.

$$x = \lim_{n \to \infty} \frac{f_1(n)}{f_2(n)}$$

- If x = 0, f_1 has a smaller order of growth than f_2 .
- If x = c, f_1 has the same order of growth as f_2 .
- If $x = \infty$, f_1 has a larger order of growth than f_2 .
- Ex. 1: $\log_2 n \text{ vs } \sqrt{n}$ $\lim_{n \to \infty} \frac{\log_2 n}{\sqrt{n}} = \lim_{n \to \infty} \frac{(\log_2 n)'}{(\sqrt{n})'} = \lim_{n \to \infty} \frac{(\log_2 e) \frac{1}{n}}{\frac{1}{2\sqrt{n}}} = ?$
- Ex. 2: n! vs 2^n

$$\lim_{n \to \infty} \frac{n!}{2^n} = \lim_{n \to \infty} \frac{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{2^n} = \lim_{n \to \infty} \sqrt{2\pi n} \frac{n^n}{2^n e^n} = ?$$

 $n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$ for large value of n: Stirling's formula

Reviews – run time analysis

```
for (i = 0; i < n; i++) O(n^2)

for (j = 0; j < n; j++)

a[i][j] = b[i][j] + c[i][j];
```

```
for (i = 1; i <= n; i++) O(n^2)

if (i % 2 == 0) a[i] = 1;

else a[i] = -1;

for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)

b[i][j] = i + j;
```

```
for (i = 1; i <= n; i++) { O(n³)
  if (i % 2) {
    for (j = 1; j <= n; j++)
        a[i][j] = i + j;
  }
  else {
    for (j = 1; j <= n; j++) {
        a[i][j] = 0;
        for (k = 1; k <= n; k++)
        a[i][j] += k;
    }
}</pre>
```

```
x = 0;
for (i = 1; i <= n; i++)
for (j = 1; j <= i; j++)
x += i + j;
```

```
x = 0;
for (i = 1; i <= n; i++)
for (j = 1; j <= i; j++)
for (k = 1; k <= j; k++)
x += i + j + k;
```

```
x = 0;
for (i = 1; i <= n; i++)
for (j = 1; j <= i*i; j++)
  if (j % i == 0)
  for (k = 1; k <= j; k++)
    x++;</pre>
```

What is the worst-case time complexity of each loop?


```
// n = 2^k for some positive
// integer k
i = n;
while (i >= 1) {
    j = i;
    while (j <= n) {
        // some O(1) computation
        j = 2*j;
    }
    i = i/2;
}</pre>
```

```
// float x[n][n+1]; O(n^3) for (i = 0; i <= n-2; i++) for (j = i+1; j <= n-1; j++) for (k = i; k <= n; k++) x[j][k] = x[j][k] - x[i][k]*x[j][i]/x[i][i];
```

Magic square

```
// n: odd integer
for (i = 0; i < n; i++)
  for (j = 0; j < n; j++)
    s[i][j] = 0;
s[0][(n-1)/2] = 1;
j = (n-1)/2;
for (key = 2; key <= n*n; key++) {
    k = (i) ? (i-1) : (n-1);
    l = (j) ? (j-1) : (n-1);
    if (s[k][l]) i = (i+1)%n;
    else {
        i = k; j = l;
    }
    s[i][j] = key;
}</pre>
```

15	8	1	24	17
16	14	7	5	23
22	20	13	6	4
3	21	19	12	10
9	2	25	18	11

What is the worst-case time complexity of each loop?

Algorithm design example

Maximum Subsequence Sum (MSS) problem

Given N (possibly negative) integers A_0, A_1, \dots, A_{N-1} , find the maximum value of $\sum_{k=i}^{j} A_k$ for $0 \le i \le j \le N-1$. (For convenience, the maximum subsequence sum is 0 if all the integers are negative.)

• Example: $(-2, 11, -4, 13, -5 -2) \rightarrow MSS = 20$

- Strategy
 - Enumerate all possibilities one at a time.
 - No efficiency is considered, resulting in a lot of unnecessary computation!

Strategy

Get rid of the inefficiency in the innermost for-loop.

- Notice that
$$\sum_{k=i}^{j} A_k = A_j + \sum_{k=i}^{j-1} A_k$$
.

```
MaxSubSequenceSum( const int A[], int N)
to pass the input array along with the let a
A moint This Sum, Max Sum, i, j;
MaxSum = 0
if( ThisSum > MaxSum )
                                                      N\!-\!1 \ N\!-\!1
                 MaxSum = ThisSum;
arly requires more effort to code than either of the two
er, stimitet ende does not always mean better odde. As
                                                       i=0 i=i
is aid; return MaxSum; and governor all governor aid
a dian the other two far all but the smallest of input big
```

- Strategy
 - Use the **Divide-and-Conquer** strategy.
 - The maximum subsequence sum can be in one of three places.

```
O(N \log N) \leftarrow \text{why?}
```

```
static interminated / Indian
       MaxSubSum( const int A[ ], int Left, int Right )
           int MaxLeftSum, MaxRightSum;
           int MaxLeftBorderSum, MaxRightBorderSum;
           int LeftBorderSum, RightBorderSum;
           int Center, i;
           if( Left == Right ) /* Base Case
/* 2*/
           if( A[ Left ] > 0 )
                   return A[ Left ];
               else
            return 0;
/* 5*/
           Center = ( Left + Right ) / 2;
           MaxLeftSum = MaxSubSum( A, Left, Center );
/* 6*/
           MaxRightSum = MaxSubSum( A, Center + 1, Right );
```

```
MaxLeftBorderSum = 0; LeftBorderSum = 0
/* 9*/ for( i = Center; i >= Left; i-- )
               LeftBorderSum += A[ i ];
               if( LeftBorderSum > MaxLeftBorderSum )
                   MaxLeftBorderSum = LeftBorderSum:
/*13*/
            MaxRightBorderSum = 0; RightBorderSum = 0;
            for( i = Center + 1; i <= Right; i++ )
       RightBorderSum += A[ i ]:
           if( RightBorderSum > MaxRightBorderSum )
       MaxRightBorderSum = RightBorderSum;
        return Max3( MaxLeftSum, MaxRightSum,
                   MaxLeftBorderSum + MaxRightBorderSum );
       MaxSubsequenceSum( const int A[], int N)
to the same quence problems for this wint has when a dweller (the
bellas and return MaxSubSum( A, O, N - 1 ); de sando estados
where An custing algorithm that requires only constant space, and runs
```


- Strategy
 - Use the **Dynamic Programming** strategy.
 - Idea

B[i]: the sum of a maximum subsequence that ends at index i

$$\longrightarrow B[i] = \max\{B[i-1] + A[i], A[i]\}$$

```
int
MaxSubsequenceSum( const int A[], int N)
          int ThisSum, MaxSum, j;
/* 1*/ ThisSum = MaxSum = 0;
/* 2*/ for( j = 0; j < N; j++ )
             ThisSum += A[j];
/* 3*/
         if( ThisSum > MaxSum )
/* 4*/
/* 5*/
/* 6*/
MaxSum = ThisSum;
else if( ThisSum < 0 )</pre>
                 MaxSum = ThisSum;
/* 5*/
/* 7*/
                 ThisSum = 0;
          return MaxSum;
/* 8*/
```

Why is complexity important?

Figure 2.2 Running times of several algorithms for maximum subsequence sum (in seconds)

Algorithm Time		1	2	3	4
		$O(N^3)$	$O(N^2)$	$O(N \log N)$	O(N)
Input	N = 10	0.00103	0.00045	0.00066	0.00034
Size	N = 100	0.47015	0.01112	0.00486	0.00063
	N = 1,000	448.77	1,1233	0.05843	0.00333
	N = 10,000	NA	111.13	0.68631	0.03042
	N = 100,000	NA	NA	8.0113	0.29832

Maximum Sum Subrectangle in a 2D array

Problem

Given an m x n array of integers, find a subrectangle with the largest sum. (In this problem, we assume that a subrectangle is any contiguous sub-array of size 1x1 or greater located within the whole array.)

Note

- What is the input size of this problem?
- How many subrectangles are there in an m x n array?
- For the case of m = n,
 - Design an O(n⁴) algorithm.
 - Design an O(n³) algorithm.

0	-2	- 7	0
9	2	-6	2
-4	1	-4	1
-1	8	0	-2

End of Class

Questions?

Instructor office: AS-1013

Email: jso1@sogang.ac.kr

