ARTICLE IN PRESS

YNIMG-12876; No. of pages: 12; 4C: 4, 5, 8, 9

NeuroImage xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

The activation of interactive attentional networks

Bin Xuan ^{a,b,*}, Melissa-Ann Mackie ^{b,c}, Alfredo Spagna ^{b,e}, Tingting Wu ^b, Yanghua Tian ^d, Patrick R. Hof ^{e,f,g}, Jin Fan ^{b,c,e,f,g,**}

- ^a Department of Psychology, Anhui Normal University, Wuhu 241000, China
- ^b Department of Psychology, Queens College, The City University of New York, Queens, NY 11367, USA
- ^c The Graduate Center, The City University of New York, New York, NY 10016, USA
- d Department of Neurology, the First Hospital of Anhui Medical University, Hefei, Anhui Province, China
 - ^e Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
 - f Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
 - ^g Department of Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

2 ARTICLE INFO

3 Article history:

11

16

17

40

43

44 45

46

47

48 49

50

51 52

53

54 55

56

- 14 Received 10 September 2015
- 15 Accepted 8 January 2016
 - Available online xxxx

Keywords:

- 34 Attentional networks
- 35 Alerting
- 36 Orienting
- 37 Executive control
- 38 fMRI

ABSTRACT

Attention can be conceptualized as comprising the functions of alerting, orienting, and executive control. Although the independence of these functions has been demonstrated, the neural mechanisms underlying their interactions remain unclear. Using the revised attention network test and functional magnetic resonance imaging, 20 we examined cortical and subcortical activity related to these attentional functions and their interactions. Results 21 showed that areas in the extended frontoparietal network (FPN), including dorsolateral prefrontal cortex, frontal 32 eye fields (FEF), areas near and along the intraparietal sulcus, anterior cingulate and anterior insular cortices, 23 basal ganglia, and thalamus were activated across multiple attentional functions. Specifically, the alerting function was associated with activation in the locus coeruleus (LC) in addition to regions in the FPN. The orienting 25 functions were associated with activation in the superior colliculus (SC) and the FEF. The executive control function was mainly associated with activation of the FPN and cerebellum. The interaction effect of alerting by exective control was also associated with activation of the FPN, while the interaction effect of validity by executive 28 control was mainly associated with the activation in the pulvinar. The current findings demonstrate that cortical 29 and specific subcortical areas play a pivotal role in the implementation of attentional functions and underlie their 30 dynamic interactions.

© 2016 Published by Elsevier Inc. 32

Introduction

Attention refers to the activity of a set of brain networks that influence the priority of information processing for access to conscious awareness (Mackie et al., 2013; Posner and Fan, 2008). It can be conceptualized in specific functional and anatomical terms, with three separable networks of alerting, orienting, and executive control (Petersen and Posner, 2012; Posner and Fan, 2008; Posner and Petersen, 1990). The alerting network is responsible to achieve and maintain phasic and tonic states of readiness in order to process non-specific impending inputs and is associated with activation in the thalamus and a set of frontal and parietal regions, such as dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC) and anterior insular cortex (AI), and areas near or along the intraparietal sulcus (thereafter referred to as IPS) (Fan et al., 2005; Kinomura et al., 1996; Perin et al., 2010), which are part of

E-mail addresses: xuanbin@mail.ahnu.edu.cn (B. Xuan), jin.fan@qc.cuny.edu (J. Fan).

the extended frontoparietal network (FPN) (Fan, 2014). The orienting 57 network shifts the focus of attention to specific inputs within or 58 among different sensory modalities, and is associated with activation 59 in the frontal eye fields (FEF) and IPS (Corbetta et al., 2002; Corbetta 60 and Shulman, 1998; Fan et al., 2005; Thompson et al., 2005). The executive control network detects and resolves conflict between competing 62 mental processes (Fan et al., 2002, 2009) and is associated with activation in the ACC (Botvinick et al., 2001; Bush et al., 2000; Fan et al., 2005; 64 MacDonald et al., 2000; Matsumoto and Tanaka, 2004), and other areas 65 of the FPN (Fan, 2014). The synergy of the three attentional functions is 66 needed to achieve cognitive control (Mackie et al., 2013), however, the 67 neural substrates underlying the interactions of the attentional networks remains to be clarified.

Although the three attentional networks have been shown to act independently (Fan et al., 2002) and to be associated with distinct neural resubstrates (Fan et al., 2005), evidence suggests that the attentional networks also interact to influence performance (Callejas et al., 2004; Fan rate al., 2009; Wen et al., 2013). Alerting has been shown to interact with executive control, resulting in an increase of the conflict effect (Fan et al., 2009). Orienting enhances the efficiency of executive control (Callejas et al., 2004; Fan et al., 2009; Spagna et al., 2015), and alerting 77

03

http://dx.doi.org/10.1016/j.neuroimage.2016.01.017 1053-8119/© 2016 Published by Elsevier Inc.

Correspondence to: Department of Psychology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China.

 $^{^{**}}$ Correspondence to: Department of Psychology, Queens College, The City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA.

has been shown to influence the behavioral effects of orienting (Callejas et al., 2004; Fuentes and Campoy, 2008; Spagna et al., 2014). However, neuroimaging studies have not yet systematically investigated brain regions and networks that support the interactions of attentional functions.

Much of the neuroimaging literature has focused on the cortical activity associated with the attentional functions. However, animal and human studies have also shown substantial evidence that subcortical regions play a critical role in attention (e.g., Fan et al., 2005; Karnath et al., 2002; Petersen et al., 1987; Rafal and Posner, 1987; Shipp, 2004). Alerting is influenced by the cortical distribution of the noradrenergic (NAergic) system that arises from the locus coeruleus (LC) (Beane and Marrocco, 2004; Marrocco and Davidson, 1998; Moruzzi and Magoun, 1949), a nucleus located in the dorsorostral pons which receives strong descending afferents from prefrontal brain regions such as the ACC (Aston-Jones and Cohen, 2005b). The presentation of a warning signal is often accompanied by activity in the LC (Petersen and Posner, 2012; Posner and Petersen, 1990). Orienting is modulated by cholinergic systems arising in the basal forebrain (Marrocco and Davidson, 1998). Subcortical activity related to the orienting function has been shown in the superior colliculus (SC) in the midbrain, as well as pulvinar and reticular nucleus in the thalamus (Ignashchenkova et al., 2004; Lee and Keller, 2006; Petersen et al., 1987; Salzmann, 1995; Shipp, 2004). Executive control relies on regions associated with the dopaminergic system (Marrocco and Davidson, 1998). The ventral tegmental area (VTA) projects to ACC and lateral prefrontal cortex, areas of the executive control network (Botvinick et al., 2004; Kerns et al., 2004; Raz and Buhle, 2006). Although subcortical regions have been shown to play a critical role in attention, the activation of these areas in attentional networks and their interactions remains to be thoroughly examined.

In this study, we used the revised attention network test (ANT-R) (Fan et al., 2009, 2012) together with functional magnetic resonance imaging (fMRI) to examine the neural substrates underlying the attentional functions and the interactions among them. We focused on identifying the activation of subcortical structures associated with the 113 attentional networks and their interactions. We predicted that there 114 would be substantial involvement of cortical and subcortical regions, 115 such as LC, SC, VTA, and thalamus in the attentional functions and 116 their interactions.

118

119

127

Materials and methods

Participants

Twenty-four adult volunteers (11 females and 13 males; mean 120 age = 26.3 years; range = 18-49 years) participated in this study. All 121 participants were right-handed and had normal or corrected-to-normal 122 vision with an average estimated intelligence quotient of 115 \pm 17. The 123 Institutional Review Board of Icahn School of Medicine at Mount Sinai 124 approved the consent procedure, and written informed consent was ob- 125 tained from each participant prior to the experimental procedures. 126

The revised attention network test

The ANT-R (Fan et al., 2009) was designed to magnify the interactions among the three attentional functions based upon the original 129 task (Fan et al., 2002) by manipulating the validity of spatial cues in 130 order to measure the orienting operations of disengaging and 131 moving + engaging. The details of the ANT-R are illustrated in Fig. 1. 132 A central fixation cross and two boxes subtending 4.69° of the visual 133 angle to the left and right of fixation remain visible on the screen 134 throughout the duration of the task. In each trial, depending on the condition, either a transient cue (brightening of the box) is presented for 136 100 ms (the cued conditions) or the screen remains unchanged (the 137 no cue condition). Three types of cues were used: (1) no cue (no brightening prior to target onset); (2) double cue (brightening of both boxes); 139 and (3) spatial cue (one box brightening prior to target onset). The difference between the double cue and no cue conditions is that the former 141 provides temporal information about the impending target, while in the 142

Fig. 1. Schematic of revised Attention Network Test (ANT-R). In each trial, depending on the cue condition (none, double, and valid or invalid cues), a cue box flashes for 100 ms. After a variable duration (0, 400, or 800 ms), the target (the center arrow) and two flanker arrows on both the left and right sides (congruent or incongruent) are presented for 500 ms. Participants must indicate the target's direction. Before the target appears, a cue in the form of a box flashing on one or both sides is displayed. The cue can be valid, which predicts the target position correctly, or invalid, which predicts the opposite position. There is also a double cue condition, in which both boxes flash, to provide temporal but not spatial information, while in the no cue condition no cue is presented. The post-target fixation period varies between 2000 and 12,000 ms. Note: The location congruency manipulation was not treated as a manipulation in data analysis in this study.

B. Xuan et al. / NeuroImage xxx (2016) xxx-xxx

Table 1Operational definition of the attentional network effects and interactions for behavior performance

t1.1

t1.2

t1.3

t1.17

t1.18

t1.19

t1.20

143

144

145

146

147

148

149

150

 $151 \\ 152$

153

154

155

156

157

158

159

160

161 162

163

t1.4		Testing condition	Minus	Reference condition
t1.5	Network effects			
t1.6	Alerting	No cue		Double cue
t1.7	Disengaging	Invalid cue		Double cue
t1.8	Moving + engaging ^a	Double cue		Valid cue
t1.9	Validity ^b	Invalid cue		Valid cue
t1.10	Conflict	Incongruent		Congruent
t1.11 t1.12	Interactions			
t1.13	Alerting by Flanker	No cue, incongruent		Double cue, incongruent
t1.14	conflict	minus no cue,		minus double cue,
		congruent		congruent
t1.15	Validity by Flanker	Invalid cue, incongruent		Valid cue, incongruent
t1.16	conflict	minus invalid cue,		minus valid cue,
		congruent		congruent

^a The "moving + engaging" is equivalent to the "orienting" effect originally defined in (Fan et al., 2009). However, here we defined the orienting effect with the disengaging component included, which is the validity effect.

latter condition no temporal information is provided because no cue is presented. The contrast between these two conditions gives a measure of how temporal information regarding the upcoming target benefits participants' performance (the alerting effect). The spatial cue provides both temporal and spatial information about the target, and may be valid, indicating the exact position where the target will appear, or invalid, cueing the position opposite to where the target will appear. The contrast between these two conditions gives a measure of how valid spatial information about the upcoming target benefits participant's performance, compared to a performance cost by invalid spatial information (validity effect). Within the validity effect, two components can be separated: disengaging (invalid cue minus double cue) and moving + engaging (double cue minus valid cue). After a variable duration (either 0, 400, or 800 ms, mean = 400 ms), the central target arrow and two flanker arrows on each side are presented at one of the two possible locations and remain visible for 500 ms. A single arrow subtends 0.58° of visual angle and the contours of adjacent arrows are separated by 0.06° of visual angle, so that the target + flanker array subtends a total of 3.27° of visual angle. Participants are instructed to respond to the direction of the central arrow as quickly and accurately as possible by pressing the left or right response buttons using the left or right index fingers respectively. There are two flanker conditions: the 164 congruent condition with the target and the flankers pointing toward 165 the same direction, and the incongruent condition with the target and 166 the flankers pointing in opposite directions. The contrast between 167 these two conditions (incongruent *minus* congruent) gives a measure 168 of the cost of distracting stimuli on participants' performance (the conflict effect). The duration between the offset of the target and the onset 170 of the next trial is jittered systematically, approximating an exponential 171 distribution ranging from 2000 to 12,000 ms, with a mean of 4000 ms. 172 The mean trial duration is 5000 ms. There are 12 trials for no cue, 12 trials for double cue, and 48 trials for spatial cue (75% valid and 25% invalid) conditions in each run, with 72 trials in each run. The run duration is 175 420 s. There are 4 runs in total. The total time to complete this task is approximately 30 min.

Behavioral data analysis

The three attentional networks and their interaction effects were op- erationally defined (see Table 1) as differences in performance between 180 experimental conditions (Fan et al., 2009). Mean reaction time (RT) for 181 each condition was calculated. Error trials (incorrect and missing responses) were excluded from the mean RT calculation. RT outliers, designed as responses beyond 1700 ms (due to either omission error or 184 long RT), were excluded by the task program. The significance of the effects was tested using one-sample t-tests (one-tailed).

All MRI scans were acquired on a 3 T Siemens Allegra MRI system at 188 the Icahn School of Medicine at Mount Sinai. Each scan run started with 189 two dummy volumes before the onset of the task to allow for equilibration of T1 saturation effects, followed by 168 image volumes. All image 191 volumes were acquired along axial planes parallel to the anterior commissure—posterior commissure (AC-PC) line. A high-resolution T2- 193 weighted anatomical image volume of the whole brain was acquired 194 on an axial plane parallel to the AC-PC line with a turbo spin-echo 195 pulse sequence with the following parameters: 40 axial slices 4-mm 196 thick, skip = 0 mm, repetition time (TR) = 4050 ms, echo time 197 (TE) = 99 ms, flip angle = 170° , field of view (FOV) = 240 mm, matrix 198 size = 448×512 , and voxel size = $0.47 \times 0.47 \times 4$ mm. Four runs of 199 T2*-weighted image volumes were acquired with a gradient echoplanar imaging sequence using the following parameters: 40 axial slices, 201 4-mm thick and skip = 0 mm, TR = 2500 ms, TE = 27 ms, flip angle = 202

Fig. 2. Attentional effects and interactions in terms of (A) reaction time (RT in ms), and (B) error rate (%). Error bars represent the standard error of the mean.

b The validity effect = disengaging + (moving + engaging).

B. Xuan et al. / NeuroImage xxx (2016) xxx-xxx

Fig. 3. Brain regions showing increased activation associated with the alerting effect.

82°, FOV = 240 mm, matrix size = 64×64 , and in-plane resolution = $3.75 \times 3.75 \times 4$ mm.

Image analysis

203

204

205

206

207

208

209 210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234 235

236

237

238

239

240

241

242

243

244

Functional MRI preprocessing and the statistical modeling were conducted using the statistical parametric mapping package (SPM8, Wellcome Trust Centre for Neuroimaging, London, UK). Image preprocessing was performed first for each participant; each image volume was realigned to the first volume, slice timing corrected, co-registered to the T2 image, and spatially normalized to the Montreal Neurological Institute (MNI) ICBM152 space based on normalization parameters of the T2 image, resampled to a voxel size of $2 \times 2 \times 2$ mm³. To test the experimental effect on brainstem regions (such as LC, SC, and VTA) and thalamus, we also generated another set of normalized images using a 2-stage Automated Brainstem Co-registration (Napadow et al., 2006) to improve brainstem co-registration to the MNI ICBM 152 template. We created a mask of the MNI-152 brainstem (also including surrounding cerebral-spinal fluid voxels) across axial section from z = 13 to z = -57. Voxels inside this mask were set to 1, while other voxels were set to 0. The first stage involved global co-registration of the EPI images to MNI ICBM 152 space based on normalization parameters of the mean EPI image, also resampled to a voxel size of $2 \times 2 \times 2$ mm³. The seconded stage involved co-registration of the normalized EPI images to both MNI ICBM 152 EPI template and the EPI template weighted by the brainstem mask. Finally all normalized images were spatially smoothed with an $8 \times 8 \times 8$ mm full-width-at-half-maximum Gaussian kernel. To optimize the detection of the subcortical activation, we tested different kernel sizes of 2, 4, and 8 mm. The 8-mm kernel yielded the best power and therefore all results reported below include smoothing with the 8-mm kernel. This is possibly because the large variation in localization of subcortical regions due to individual indifference similar to cortical regions. This suggests that high-resolution scanning may not be the best solution to improve functional imaging of subcortical areas. Other studies have also used a similar kernel size for the detection of subcortical brain activation (Minzenberg et al., 2008; Riva et al., 2011; Tomasi and Volkow, 2014). For the activation in the cortical regions (and surface views in the figures), we reported results based on the whole-brain normalization method, while for the activation in the subcortical regions (and section views in the figures) results are based on the two-stage normalization method described above.

General linear modeling (GLM) was conducted for the functional scans from each participant by regressing the observed event-related blood oxygenation level-dependent (BOLD) signals on task-related regressors to identify the brain regions which show the hemodynamic 245 response as a function of task events (Friston et al., 1994). The regres- 246 sors were created by convolving a train of delta functions representing 247

t2.1

t2.2

Table 2 Activation associated with the alerting effect.

Region	L/R	BA	Х	У	Z	T	Z	K
Anterior cingulate cortex	L	24	0	-6	52	11.81	6.64	41,914
Inferior occipital gyrus	L	19	-40	-66	-6	9.21	5.90	
Precentral gyrus	L	6	-58	4	32	9.09	5.87	
Mid temporal gyrus ^a	R	37	56	-58	10	8.61	5.70	
Fusiform gyrus	R	37	34	-52	-16	8.50	5.66	
Superior occipital gyrus	L	18	-22	-70	28	8.11	5.52	
Superior frontal gyrus ^b	L	6	-26	-8	62	8.04	5.49	
Precentral gyrus	R	6	54	6	34	7.99	5.47	
Inferior parietal lobule	L	7	-26	-50	54	7.69	5.36	
Precentral gyrus ^c	R	6	30	-8	54	7.63	5.34	
Superior occipital gyrus	R	19	26	-74	26	7.39	5.24	
Superior parietal lobule	R	7	24	-58	52	7.31	5.20	
Anterior cingulate cortex	L	32	-8	12	38	7.27	5.19	
Supramarginal gyrus	L	40	-38	-38	36	7.14	5.13	
Mid occipital gyrus	R	19	34	-82	2	6.91	5.03	
Postcentral gyrus	L	3	-56	-22	48	6.84	5.00	
Postcentral gyrus	R	3	46	-26	46	6.55	4.87	
Cerebellum	L		-24	-50	-28	6.40	4.80	
Cerebellum	L		-6	-68	-22	6.33	4.77	
Thalamus	R		12	-10	6	6.31	4.76	
Thalamus	L		-14	-18	8	6.23	4.72	
Anterior insula	R		34	12	0	5.51	4.35	
Precuneus	R	17	20	-54	6	5.47	4.33	
Mid occipital gyrus	L	18	-26	-92	0	5.39	4.29	
Precuneus	L	18	-14	-56	4	5.26	4.22	
Calcarine cortex	R	17	6	-82	2	5.00	4.07	
Pons	R		10	-20	-44	5.00	4.07	
Putamen	L		-18	10	-10	4.92	3.97	
Supramarginal gyrus ^d	R	40	56	-38	26	4.25	3.61	
Rolandic operculum	R	43	56	-14	20	4.18	3.57	
Cerebellum	R		8	-58	-42	4.01	3.45	
Putamen	R		22	12	2	4.00	3.45	
Cerebellum	R		26	-34	-40	3.80	3.31	
Mid frontal gyrus	R		24	36	24	3.62	3.18	
Precentral gyrus	L	4	-2	-38	54	3.16	2.85	
Anterior insula	L		-30	14	8	5.70	4.45	581
Locus coeruleus			2	-34	-20	2.81	2.58	14

Note: Structures listed below the cluster with a k value were within the same cluster with different local maxima.

.39 .40 t2.41 t2.42 Extends to the temporal parietal junction. t2.43 Close to left frontal eye field. t2.44 Close to right frontal eye field. t2.45 Temporal parietal junction. t2.46

the sequence of individual events with the SPM basis function of hemodynamic response (HRF). The regressors included five cue-related hemodynamic responses: double cue, left valid cue, right valid cue, left invalid cue, and right invalid cue. Regressors also included 16 target-related hemodynamic responses: four cue conditions (no cue, double cue, valid cue, invalid cue) \times two flanker conditions (congruent and incongruent) \times two target locations (left and right) (Fan et al., 2012). The six parameters generated during motion correction were entered

as covariates. In addition, hemodynamic responses related to error response events for each condition were modeled separately to partial 257 out the error related activity. The effects of the attentional functions 258 were tested by applying linear contrasts to the regressors. The target responses under different cue-by-target conditions were equally weighted for the contrast between congruent and incongruent conditions. As 261 in our previous study (Fan et al., 2012), the attentional network effects 262 were defined differently from the behavioral effects for the contrasts. 263

Fig. 4. Brain regions showing increased activation associated with the (A) disengaging, (B) moving + engaging, and (C) validity effects of orienting.

 $\frac{266}{267}$

268

269

270

271272

273

274

275

276 277

278

279

280

281

282

283

284

285 286

287

292

293

 $\frac{294}{295}$

296

297

298 299

300

301

302 303

304

305

306

307 308

309

310

311

312 313

314

315

316

317 318

319

320

321

322

323

For the alerting effect, the contrast was defined as double cue compared to baseline. Moving + engaging was defined as valid cue minus double cue. The interaction of alerting by flanker conflict was defined as (double cue, flanker incongruent-double cue, flanker congruent)-(no cue, flanker incongruent-no cue, flanker congruent). The interaction of validity by flanker conflict was defined as (invalid cue, flanker incongruent-invalid cue, flanker congruent)-(valid cue, flanker incongruent-valid cue, flanker congruent).

The contrast images from all participants were entered into a second-level group analysis with random-effects statistical models. For multiple comparison correction, AlphaSim (http://afini.nimh.nih. gov/pub/dist/doc/manual/AphaSim.pdf) was used to determine the extent threshold for a given height threshold with a corrected p value of 0.05. An uncorrected *p* value of 0.01 for the height (intensity) threshold of each activated voxel and a threshold of extent cluster size k > 191 of $2 \times 2 \times 2$ mm voxels were applied. This threshold is relatively liberal given that this study is more hypothesis-driven and based on a priori knowledge (rather than exploratory) regarding the brain regions involved in the attentional functions. Therefore, we believe this is a good balance in terms of minimizing Type I error, and having sufficient power to detect brain activity and connectivity. For the hypothesisdriven subcortical regions (such as LC and SC), which are much smaller than cortical regions (DuBois and Cohen, 2000; Keren et al., 2009), we used a more liberal height threshold of p < 0.01 uncorrected (without extent threshold) because the extent threshold estimated by AlphaSim was much larger than the volumes of these structures. The localization of the LC, SC, and VTA was referenced to previous MRI studies (D'Ardenne et al., 2008; Katyal et al., 2010; Keren et al., 2009; Minzenberg et al., 2008; Murphy et al., 2014). The conjunctions of the activation for the different attentional effects were also examined to reveal shared brain regions/networks between different attentional functions. An uncorrected p value of 0.01 for the conjunction was used with the same extent threshold as mentioned above.

Region of interest analysis

Based on the second-level analyses, three subcortical regions identified in the activation maps were chosen as the regions of interest (ROI): LC (2, -34, -20) for the alerting effect and SC for disengaging ([-8, -20])-24, -4] for left SC and [8, -24, -4] for right SC) effects of orienting. The coordinates were close to the local maxima, with adjustments based on the references of previous studies. However, in the tables we listed the coordinates of local maxima of the clusters. The first eigenvariate of voxels in corresponding contrast images, which passed the height threshold inside the cluster and also inside the sphere around the activation peak, was extracted for each participant. That is, voxels included in the ROI satisfied two conditions in that they were: (1) located inside the sphere; and (2) nearby the activation peak of a specific brain structure. This method balances the Type I error with achieving sufficient power to detect activation in subcortical structures. The radiuses was 4-mm for the LC and 3-mm for the left and right SC, because left and right LC clusters were too close to be separated into two ROIs under current resolution. There were 14 voxels in the LC ROI for the alerting effect and 33 voxels in the SC ROI for the disengaging effect. Pearson's correlation analyses were conducted to examine the relationship between behavioral effects and brain activation in the corresponding ROI.

Results

Behavioral results

The overall mean RT was 710 ms (SD = 115 ms) and the overall error rate of the task performance was 4.41% (SD = 3.94%). Fig. 2 shows the attentional network effects in RT and error rate. The alerting effect was significant for both RT ($M \pm SD = 53 \pm 35$ ms, t(23) = 7.39,

p < 0.01) and error rate $(2.60 \pm 6.03\%)$, t(23) = 2.12, p < .05. The 325 disengaging effect was significant for both RT $(57 \pm 30 \text{ ms}, t(23) = 326 + 2.12)$, p < 0.01) and error rate $(2.43 \pm 4.11\%, t(23) = 2.90, p < 0.01)$. 327 The moving + engaging effect was significant for RT $(58 \pm 27 \text{ ms}, 328 + 2.23) = 10.62$, p < 0.01) but not for error rate $(-0.55 \pm 3.50\%, 329 + 2.23) = -0.77$, n.s.). The validity effect was significant for both RT 330 $(115 \pm 38 \text{ ms}, t(23) = 14.73, p < 0.01)$ and error rate $(1.88 \pm 3.08\%, 331 + 2.29)$, p < 0.01). The flanker conflict effect was significant for 332 both RT $(138 \pm 40 \text{ ms}, t(23) = 17.00, p < 0.01)$, and error rate 333 $(4.89 \pm 5.30\%, t(23) = 4.52, p < 0.01)$. The alerting by flanker conflict 334 interaction effect was significant for RT $(21 \pm 56 \text{ ms}, t(23) = 1.81, 335 + 2.005)$ and error rate $(4.17 \pm 10.78\%, t(23) = 1.89, p < 0.05)$. The validity by flanker conflict interaction was significant for both RT $(64 \pm 337 + 2.23) = 6.53, p < 0.01)$ and error rate $(5.03 \pm 5.32\%, t(23) = 338 + 2.64, p < 0.01)$.

fMRI results 340

341

t3.1

t3.48

t3.49

Activation associated with the alerting effect

Fig. 3 shows bilateral activation related to the alerting effect in ACC, 342 AI, FEF, temporoparietal junction (TPJ), IPS, precentral and postcentral 343 gyri, and other occipital regions. Activation of subcortical regions was 344 also found in thalamus, putamen, LC, and cerebellum (see Table 2). 345

Table 3Activation associated with the orienting effects.

Region	L/R	BA	х	у	Z	T	Z	K
Disengaging								
Parahippocampal gyrus	R	27	14	-38	-4	6.10	4.66	209
Superior colliculus	L		-10	-20	-2	6.02	4.62	1541
Thalamus ^a	L		-14	-20	10	5.40	4.29	
Superior colliculus	R		12	-16	-4	5.30	4.24	
Pulvinar	R		16	-20	8	4.90	4.01	
Caudate nucleus	L		-10	8	6	4.37	3.69	
Thalamus	R		10	-22	4	3.98	3.44	
Precentral gyrus	L	6	-26	-26	64	5.05	4.10	295
Anterior cingulate cortex	L	24	-6	2	38	4.77	3.94	715
Precentral gyrus	R	6	34	-2	46	4.08	3.50	
Mid frontal gyrus ^b	L	6	-30	-2	54	3.90	3.38	
Superior frontal gyrus	R	6	18	-12	64	4.67	3.88	541
Postcentral gyrus	R	3	40	-32	48	4.33	3.66	
Cuneus	L	18	-8	-90	14	4.17	3.56	275
Precuneus	R	31	4	-72	28	2.91	2.66	
Calcarine cortex	R	18	16	-76	18	3.94	3.41	320
Moving + engaging								
Red nucleus			-2	-24	-12	6.00	4.61	284
Validity								
Calcarine cortex	L	17	-8	-86	0	6.97	5.06	5048
Parahippocampal gyrus	R	27	14	-38	-8	6.36	4.78	
Calcarine cortex	R	17	22	-58	8	5.10	4.13	
Parahippocampal gyrus	L	27	-10	-42	0	5.08	4.12	
Thalamus	R		14	-18	10	4.58	3.82	
Thalamus	L		-10	-16	4	4.28	3.64	
Fusiform gyrus	R	37	32	-58	-14	4.22	3.59	
Cuneus	R	19	12	-84	22	3.71	3.25	
Caudate nucleus	L		-10	-6	20	3.77	3.29	
Putamen	L		-20	8	10	3.31	2.97	
Putamen	R		28	18	8	2.90	2.65	
Lingual gyrus	R	18	18	-80	-10	2.66	2.46	
Postcentral gyrus	L	3	-26	-30	70	4.62	3.85	1290
Supplementary motor area	R	6	8	-8	68	4.15	3.55	
Precentral gyrus	L	6	-26	-14	52	3.14	2.84	
Inferior occipital gyrus	L	19	-40	-72	2	4.60	3.83	341
Precentral gyrus	R	4	52	-2	38	4.46	3.75	916
Postcentral gyrus	R	3	36	-32	50	3.99	3.44	
Precentral gyrus	R	4	20	-30	68	3.44	3.06	
Precentral gyrus	R	6	30	-8	60	3.44	3.05	

Note: Structures listed below the cluster with a k value were within the same cluster with t3.46 different local maxima.

- a Extends to the pulvinar.
- b Close to frontal eye field.

t5.1

t5.2

t5.3

The correlation between LC activation and the behavioral alerting effect was not significant (r=-0.24, p=0.18, one-tailed). For fMRI of subcortical structures in attentional functions, caution is warranted due to the limitations in localizing these structures in fMRI. For example, the LC cluster we localized is more medial than the actual structure. Due to fMRI data acquisition distortion and signal loss, and most importantly individual differences in terms of localization, it is difficult to localize the activated voxels in the small anatomically defined ROIs.

Activation associated with the orienting effects

346

347

348 349

350

351

352

353

354

355

356

357 358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

374

375

376

377

378

379

t4.29 t4.30

t4.31

t4.32

t4.33

04

Fig. 4A-C, and Table 3, show activation related to the disengaging, moving + engaging, and validity effects, respectively. The activation for disengaging was found in FEF bilaterally, left ACC, right superior frontal gyrus, left precentral gyrus, right precentral and postcentral gyri, right parahippocampal gyrus, left cuneus, right precuneus, right calcarine cortex, and subcortically in bilateral thalamus extending to SC and left caudate nucleus. Moving + engaging was only associated with left red nucleus. The validity effect was associated with activation in parahippocampal gyrus bilaterally, right lingual gyrus, right fusiform gyrus, and other frontal and parietal brain regions including both FEF, in addition to the thalamus bilaterally, right putamen, and left caudate nucleus. The correlation between SC activation and the behavioral disengaging effect was not significant (r = 0.05, p = 0.41, one-tailed). The localization of SC, as shown in the figure, is more toward the pretectal nuclei rather than the tectal nuclei. This may be due to inaccurate co-registration of some subjects resulting in cutting the activation in the tectal nuclei. It is also possible that the activation is in the pretectal nuclei that are related to gaze-shift and eye movement. (See Table 4.)

Activation associated with the flanker conflict effect

Fig. 5 shows FPN activation related to the executive control function, including ACC (peaked at right), AI, FEF, IPS, precentral gyrus bilaterally, and right middle and left inferior occipital cortex. Activation was also found in subcortical regions including bilateral thalamus (including pulvinar and extending to SC) and caudate nucleus, and regions in

t4.1 **Table 4** t4.2 Activation associated with the flanker conflict effect.

-									
	Region	L/R	BA	х	у	Z	T	Z	K
	Superior frontal gyrus ^a	L	6	-14	-4	58	7.27	5.19	19,137
	Supplementary motor area	R	6	8	6	62	7.15	5.14	
	Anterior cingulate cortex	R	32	10	20	40	6.81	4.99	
	Superior parietal lobule	L	40	-32	-42	48	6.12	4.67	
	Thalamus ^b	L		-18	-20	8	6.45	4.82	
	Thalamus ^c	R		16	-4	10	6.26	4.74	
	Superior colliculus			4	-24	-6	5.81	4.51	
	Precentral gyrus	R	6	50	6	40	5.43	4.31	
	Anterior insula	R		42	18	-6	5.35	4.27	
	Mid frontal gyrus	R	45	38	46	16	5.21	4.19	
	Anterior insula	L		-30	16	8	4.80	3.95	
	Precentral gyrus	R	6	32	-4	58	4.61	3.84	
	Inferior parietal lobule	R	40	-44	-28	30	4.59	3.83	
	Anterior cingulate cortex	R	24	4	36	20	3.96	3.42	
	Precentral gyrus	L	6	-52	6	16	3.37	3.01	
	Mid frontal gyrus	R	47	40	48	-10	3.19	2.87	
	Cerebellum	L		-22	-60	-28	6.89	5.03	4446
	Cerebellum	R		26	-52	-28	6.08	4.65	
	Vermis			0	-54	-20	3.93	3.40	
	Supramarginal gyrus	R	40	44	-36	50	6.36	4.78	4424
	Superior parietal lobule	R	7	26	-54	54	5.68	4.44	
	Middle occipital gyrus	R	19	30	-68	32	4.84	3.98	
	Supramarginal gyrus	R	40	64	-42	36	4.00	3.45	
	Precentral gyrus	L	6	-50	-2	48	4.25	3.61	203
	Inferior occipital gyrus	L	37	-44	-66	-2	4.20	3.58	212

Note: Structures listed below the cluster with a k value were within the same cluster with different local maxima

- ^a Close to left frontal eye field.
- ^b Includes left thalamus and caudate nucleus.
- ^c Includes right thalamus and caudate nucleus.

Table 5Activation associated with the interaction alerting and flanker conflict effects and the conjunction of the alerting and flanker conflict effects.

Region	L/R	BA	х	у	Z	T	Z	K
nteraction								
nferior frontal gyrus	L	45	-40	28	10	5.81	4.51	707
Mid frontal gyrus	L	9	-44	24	34	3.39	3.02	
Putamen	R		30	2	-8	5.64	4.42	1058
Superior parietal lobule	R	40	38	-52	54	5.31	4.24	4304
Precuneus	R	7	8	-54	54	5.20	4.19	
Superior parietal lobule	L	40	-40	-48	58	4.07	3.50	
nferior parietal lobule	R	40	58	-44	40	4.03	3.47	
Supramarginal gyrus	L	40	-48	-42	30	3.65	3.21	
Mid occipital gyrus	R	19	38	-72	32	3.54	3.13	
Superior parietal lobule	L	7	-20	-66	52	3.22	2.89	
Mid frontal gyrus ^a	R	6	34	0	48	4.93	4.03	1966
Mid frontal gyrus	R	9	38	26	36	4.64	3.86	
nferior frontal gyrus	R	45	44	36	12	3.87	3.36	
nferior frontal gyrus	R	44	52	12	14	3.67	3.22	
Superior frontal gyrus	R	8	18	16	58	3.16	2.85	
Cerebellum	L		-16	-42	-46	4.40	3.71	886
Cerebellum	L		-36	-70	-26	3.75	3.28	
Lateral orbital gyrus	R	47	38	46	-8	4.37	3.69	267
Cerebellum	R		28	-70	-24	4.25	3.61	191
Cerebellum	R		36	-48	-26	4.11	3.52	211
Conjunction								
Superior parietal lobule	L	40	-36	-44	56	33.60	5.35	4016
Anterior cingulate cortex	Ī.	32	2	10	48	28.50	4.95	1010
Superior frontal gyrus ^b	Ī.	6	-20	-6	58	25.48	4.69	
Superior frontal gyrus	R	6	12	0	70	12.32	3.24	
Superior parietal lobule	L	19	-26	-70	30	11.79	3.16	
Anterior cingulate cortex	R	32	10	22	26	10.94	3.04	
Superior parietal lobule ^c	R	40	40	-38	48	32.23	5.25	2214
Superior parietal lobule ^d	R	7	28	-58	54	24.43	4.59	
Thalamus	L		-14	-16	4	23.97	4.55	248
Precentral gyrus	R	44	52	12	30	22.11	4.37	2380
Thalamus	R		18	-18	10	22.09	4.37	
Mid frontal gyrus ^e	R	6	30	0	56	21.49	4.31	
nsula	R		34	16	0	21.47	4.31	
Cerebellum	L		-26	-56	-28	21.57	4.32	968
/ermis	L		0	-54	-18	12.69	3.29	
Cerebellum	L		-6	-72	-34	11.05	3.05	
Cerebellum	R		32	-46	-28	16.49	3.77	288

Note: Structures listed below the cluster with a k value were within the same cluster with $\,$ to 5.45 different local maxima.

cerebellum including somatomotor regions of the cerebellum and the 380 vermis (see the right bottom panel of Fig. 5). We did not find activation 381 specifically within the VTA, but in other nearby midbrain structures (see 382 the enlarged section of the axial slice of Fig. 5).

Activation associated with the interaction and conjunction of alerting and 384 flanker conflict effect 385

Fig. 6 and Table 5 show activity associated with the interaction and 386 conjunction of the alerting and flanker conflict effects. The interaction 387

Table 6 Interaction and conjunction of validity and flanker conflict effects.

Region	L/R	BA	X	у	Z	F	Z	K
Interaction								
Pulvinar	L		-12	-30	6	6.25	4.73	685
Posterior cingulate cortex		23	0	-26	42	5.24	4.21	268
Pulvinar	R		18	-28	4	5.03	4.09	342
Anterior insula	R		32	22	6	4.95	4.04	499
Superior frontal gyrus ^a	R	6	18	0	60	4.52	3.79	294
Postcentral gyrus	R	3	48	-26	46	3.74	3.27	312
Conjunction								
Thalamus ^b	L		-16	-20	6	17.94	3.94	248

^a Includes frontal eye fields.

t6.15

t6.14

t5 47

t5.48

t6.1

t6.2

a,b,e Includes frontal eve fields.

c,d Areas near or along the intraparietal sulcus.

b Extends to pulvinar.

390

B. Xuan et al. / NeuroImage xxx (2016) xxx-xxx

Fig. 5. Brain regions showing increased activation associated with the flanker conflict effect.

of alerting by flanker conflict was related to the activation of bilateral inferior and middle frontal gyri, IPS bilaterally, right insula, and subcortical regions of right putamen and regions of the cerebellum (Fig. 6A).

Conjunction analysis revealed that alerting and flanker conflict shared 391 activation in bilateral ACC, bilateral thalamus, right AI, bilateral FEF, bi- 392 lateral IPS, and regions of the cerebellum (Fig. 6B). 393

Fig. 6. Brain regions showing increased activation associated with (A) the alerting by flanker conflict interaction effect, and (B) the conjunction of alerting and flanker conflict effects.

Activation associated with the interaction and conjunction of validity and flanker conflict effect

The interaction of validity by flanker conflict was related to the activation of the right AI, right superior frontal gyrus, right postcentral gyrus, and bilateral pulvinar (see Fig. 7A and Table 6). The validity and flanker conflict conjunction was related to the activation of left thalamus (extending to pulvinar) (Fig. 7B and Table 6).

Discussion

394 395

396 397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416 417

 $418 \\ 419$

In this study, beyond associating cortical activation with the independent alerting, orienting, and executive control functions as in our previous study (Fan et al., 2005), we identified cortical and subcortical regions supporting the attentional functions and the interactions among them. These results expand upon previous knowledge about the brain networks involved in implementing attentional functions, and show that the recruitment of areas of the FPN together with subcortical brain regions underlies dynamic interactions of attentional functions to achieve cognitive/attentional control.

Cortical and subcortical contributions to the attentional functions

The alerting function

Consistent with previous theoretical (Petersen and Posner, 2012) and empirical work (Clerkin et al., 2009; Rajkowski et al., 2004; Ramos and Arnsten, 2007), we found that activation of the LC was related to the alerting effect (Aston-Jones and Cohen, 2005a; Petersen and Posner, 2012). Activation of the LC-noradrenergic system is thought to serve as a temporal "attentional filter" to facilitate goal-relevant information processing and response by modulating the responsiveness of

cortical regions responsible for task performance (Aston-Jones and 420 Cohen, 2005b; Aston-Jones et al., 2000; Morrison and Magistretti, 421 1983; Sara, 2009; Sara and Bouret, 2012). This increases the signal-to- 422 noise ratio and consequently signals detection (Servan-Schreiber et al., 423 1990).

In addition to areas previously identified for the alerting network 425 (Fan et al., 2005), such as thalamus and TPJ, activation was also observed 426 in the ACC, AI, IPS, and other frontal and parietal sites of the FPN. The in-427 fluence of ACC on alerting to modulate behavioral responsiveness has 428 been previously suggested (Aston-Jones and Cohen, 2005b). These re- 429 gions of the FPN are involved in attentional/cognitive control of infor- 430 mation processing and are related to response anticipation (Fan, 2014; 431 Fan et al., 2007a). The alerting cue carries the temporal information 432 about the target onset, triggering the activation of FPN and other sub- 433 cortical regions for the preparation of response. The AI, in addition to 434 ACC, has a distinct functional role in monitoring baseline uncertainty 435 (Fan et al., 2014). Also, in a recent study we found that TPJ is a necessary 436 region in the interaction between bottom-up and top-down attentional 437 control (Wu et al., 2015). Therefore, the alerting function is not only re- 438 lated to the arousal function of thalamus, but is implemented by a large 439 brain network that supports timing, response preparation, and other 440 functions of warning signals. 441

The orienting functions

Activation of the SC was associated with the disengaging component 443 of orienting functions, consistent with its previously identified role as a 444 critical structure in orienting of attention (Gitelman et al., 2002) and 445 saccadic eye movements (Wurtz et al., 1982). The orienting functions 446 are modulated by acetylcholine (Petersen and Posner, 2012; Posner 447 and Petersen, 1990), and the SC is highly innervated by cholinergic 448

Fig. 7. Brain regions showing increased activation associated with (A) the validity by flanker conflict interaction effect, and (B) the conjunction of validity and flanker conflict effects.

450

451 452

453

454

455

456 457

458

459

460

461 462

463

464

465

466

467

468

469 470

471

472

473

476

477

478 479

480

481

482

483

484 485

486

487

488

489

490

491

492 493

494

495

496

497 498

499

500

501

502 503

504

505

506

507

508

509

510

511 512 inputs (Hall et al., 1989; Harting et al., 1991). SC activity can typically be modulated by gaze or covert visual shifts of attention (Krauzlis et al., 2013; Ngan et al., 2015). In this study, we were able to differentiate the activation associated with the orienting components by refining the operational definitions to include the disengaging and moving + engaging components of orienting. The SC has also been implicated in the disengaging component of orienting, most recently demonstrated at the neuronal level (Ngan et al., 2015). In addition to the ACC, the FEF was also involved in the disengaging component of orienting. For the moving + engaging component of orienting, we only found activation in the left red nucleus. Its role in orienting of attention is not clear, but may be related to the voluntary movement of attention toward the cued location and/or engaging to the cued location. For the validity effect, which is a combination of the two components of orienting, we also found the FEF involvement in addition to early visual areas and subcortical structures of thalamus and basal ganglia.

The executive control function

The dopaminergic system has been associated with the executive control of attention (Fan et al., 2003). The VTA is one of the two major dopamine sources in the brain, with wide projections to cortical and subcortical regions (Amalric and Koob, 1993; Chudasama and Robbins, 2004; Smith and Kieval, 2000; Tzschentke, 2001). However, we did not find activation in the VTA, possibly due to the scanner parameters that were not optimum to image such a small structure. Overall, our result is in line with our information theory account of cognitive control (Fan, 2014), which proposes that areas within the FPN, such as ACC, FEF, and IPS, dynamically interact to incorporate the functions of cogni-

Activation in the lobule VI bilaterally, and anterior and posterior lobules of the cerebellum were also associated with the flanker conflict effect, which is consistent with the previous studies showing cerebellar contribution to the inhibition of prepotent responses (Bellebaum and Daum, 2007) and in attention (Fan et al., 2003). Resting state functional connectivity has revealed that in addition to brain networks associated with motor function, the frontoparietal, ventral, and dorsal attention systems (among others) are also functionally connected to discrete cerebellar regions (Buckner et al., 2011). The task-related activation of the cerebellum for the executive control function found in this study confirms the involvement of cerebellum in attentional functions.

The involvement of thalamus and basal ganglia in attentional functions

While the recruitment of subcortical structures has been described in the context of individual attentional functions, this study identified the thalamus as a common structure that was involved in each of the attentional functions. The involvement of the intralaminar thalamic region and reticular nucleus for the alerting (Morrison and Magistretti, 1983), dorsal pulvinar, oculomotor thalamus and caudal intralaminar nuclei for the orienting (Murphy et al., 2014; Rafal and Posner, 1987), and more broadly of the thalamus for the executive control functions (Fan et al., 2005; Perin et al., 2010; Yanaka et al., 2010) has been previously demonstrated. The majority of input to cortical areas is routed through the thalamus (Scholey, 2002), which has also been increasingly appreciated as a critical structure in cognition, beyond its earlier simplified definition as a 'relay' structure, with a role in attention posited several decades ago as the basis of the attentional 'searchlight' (Crick,

The involvement of the basal ganglia in the orienting functions was demonstrated in the present study and is consistent with previous resting state connectivity evidence that the putamen is associated with the ventral attention system, while the caudate nucleus is associated with the FPN (Choi et al., 2012). These structures receive input from almost every brain region, and have been demonstrated to play an attentional role in both the enhancement of task-relevant information processing and the inhibition of task-irrelevant processing (van Schouwenburg et al., 2015).

Interactions of attentional networks

One of the important findings of this study is the involvement of FPN 514 in attentional functions of alerting and executive control, although this 515 is not surprising. Here the FPN is defined more broadly than in 516 Petersen and Posner (2012) and includes the ACC, AI, and thalamus of 517 the cingulo-opercular network (Dosenbach et al., 2008). Within the 518 FPN, ACC and AI are involved in baseline uncertainty processing (Fan 519 et al., 2014). The involvement of FPN in the alerting and executive con- 520 trol functions is supported by the identified brain regions of FPN (frontal 521 and parietal regions), as well as occipital regions and putamen and cer- 522 ebellum, associated with the interaction effect between these attention- 523 al functions. It is further supported by activation in bilateral thalamus, 524 bilateral ACC, right insula, and parts of FPN found for the conjunction 525 of alerting and flanker conflict effects, indicating a partial overlap in 526 the neural substrate supporting these two functions.

513

568

We previously observed that behaviorally, alerting interacts with 528 the executive control function indicated by an increase in conflict effect 529 (Fan et al., 2009; Spagna et al., 2015). This may be explained by shared 530 neural resources in FPN for these two functions. Both alerting and exec- 531 utive control functions are associated with an increase in information 532 (warning cue vs. baseline for alerting and incongruent flankers vs. con- 533 gruent flankers for executive control), supporting the case for involve- 534 ment of the FPN in alerting. Therefore, the FPN is phasically activated 535 for the general purpose of cognitive control in a task state with in- 536 creased uncertainty. In our previous studies, we have argued that cogni- 537 tive control is implemented by attentional functions (Mackie et al., 538 2013), and demonstrated that the activation of the regions of FPN is a 539 linear function of cognitive control load, estimated in units of informa- 540 tion entropy (Fan et al., 2014).

The validity by flanker conflict interaction effect was associated with 542 activation in pulvinar bilaterally, right AI, right FEF and PCC. The 543 pulvinar is an association thalamus nucleus that receives its major in- 544 puts from the visual cortex, and ascending SC projections relay through 545 dorsal and ventral pulvinar to the FEF and other frontal areas (Guillery, 546 1995; Shipp, 2004). It is often activated in studies of the orienting network (LaBerge and Buchsbaum, 1990; Petersen et al., 1987). The 548 pulvinar has been proposed to be involved in synchronizing information 549 transfer according to the allocation of spatial attention (Saalmann et al., 550 2012) and in response anticipation (Fan et al., 2007b). Lesion studies 551 showed that the pulvinar plays a key role in modulating attentional se- 552 lection mechanisms by integrating frontoparietal attentional control 553 signals within visual processing areas (Snow et al., 2009). The increased 554 involvement of the pulvinar in the validity by flanker conflict interaction 555 may suggest this structure is recruited when there is a need to disengage attention from one location and move and engage to another loca- 557 tion during conflict processing.

In summary, this study revealed that attentional control is imple- 559 mented via complex corticosubcortical relationships underlying 560 alerting, orienting, and executive control and their interactions. Atten- 561 tion is a dynamic mental operation that is implemented by distinct yet 562 interactive brain networks. Each function is associated with cortical 563 and subcortical regions to produce the attentional effects, and some 564 specific brain regions are activated for multiple attentional functions, 565 depending on functional requirements. Not only do the attentional 566 functions interact to achieve cognitive control, but also involve common 567 and functionally specific regions.

Funding 569

This work was supported by the National Institute of Mental Health 570 of the National Institutes of Health (NIH) under Award R01 MH094305 571 and by NIH Grant M01 RR000071 from the National Center for Research 572 Resources (NCRR). The content is solely the responsibility of the authors 573 and does not necessarily represent the official views of the NIH or NCRR, 574 The funders had no role in study design, data collection and analysis, 575

657

659

669

693

696

704

705

706

708

713

717

718

720

722

725

727

734

decision to publish, or preparation of the manuscript, B, X, is supported 576 by the grant from National Natural Science Foundation of China 577 578 31171076

Acknowledgments

We thank Dr. Michael I. Posner for comments on the study design and the manuscript.

References

580

581

582

586

587 588

589

590

591

592

593

594

595 596

598

599

600

601

602

604 605

606

607

608

609

610

611

612

613

614 615

616

617

618

619 620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

- 583 Amalric, M., Koob, G.F., 1993. Functionally selective neurochemical afferents and efferents of the mesocorticolimbic and nigrostriatal dopamine system. Prog. Brain Res. 99, 584 209-226. 585
 - Aston-Jones, G., Cohen, J.D., 2005a. Adaptive gain and the role of the locus coeruleusnorepinephrine system in optimal performance. J. Comp. Neurol. 493, 99-110.
 - Aston-Jones, G., Cohen, J.D., 2005b. An integrative theory of locus coeruleusnorepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403-450.
 - Aston-Jones, G., Rajkowski, J., Cohen, J., 2000. Locus coeruleus and regulation of behavioral flexibility and attention, Prog. Brain Res. 126, 165-182.
 - Beane, M., Marrocco, R.T., 2004. Norepinephrine and acetylcholine mediation of the components of reflexive attention: implications for attention deficit disorders. Prog. Neurobiol. 74, 167-181.
 - Bellebaum, C., Daum, I., 2007, Cerebellar involvement in executive control, Cerebellum 6. 184-192.
 - Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S., Cohen, J.D., 2001. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652.
 - Botvinick, M.M., Cohen, J.D., Carter, C.S., 2004. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 8, 539-546.
 - Buckner, R.L., Krienen, F.M., Castellanos, A., Diaz, J.C., Yeo, B.T., 2011. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106,
 - Bush, G., Luu, P., Posner, M.I., 2000. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215-222.
 - Callejas, A., Lupianez, J., Tudela, P., 2004. The three attentional networks: on their independence and interactions. Brain Cogn. 54, 225-227.
 - Choi, E.Y., Yeo, B.T., Buckner, R.L., 2012. The organization of the human striatum estimated by intrinsic functional connectivity. J. Neurophysiol. 108, 2242-2263.
 - Chudasama, Y., Robbins, T.W., 2004. Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology 29, 1628-1636.
 - Clerkin, S.M., Schulz, K.P., Halperin, J.M., Newcorn, J.H., Ivanov, I., Tang, C.Y., Fan, J., 2009. Guanfacine potentiates the activation of prefrontal cortex evoked by warning signals. Biol. Psychiatry 66, 307-312.
 - Corbetta, M., Kincade, J.M., Shulman, G.L., 2002. Neural systems for visual orienting and their relationships to spatial working memory, J. Cogn. Neurosci, 14, 508-523.
 - Corbetta, M., Shulman, G.L., 1998. Human cortical mechanisms of visual attention during orienting and search, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 353, 1353-1362.
 - Crick, F., 1984, Function of the thalamic reticular complex: the searchlight hypothesis. Proc. Natl. Acad. Sci. U. S. A. 81, 4586-4590.
 - D'Ardenne, K., McClure, S.M., Nystrom, L.E., Cohen, J.D., 2008. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area, Science 319, 1264–1267,
 - Dosenbach, N.U., Fair, D.A., Cohen, A.L., Schlaggar, B.L., Petersen, S.E., 2008, A dualnetworks architecture of top-down control, Trends Cogn. Sci. 12, 99-105
 - DuBois, R.M., Cohen, M.S., 2000. Spatiotopic organization in human superior colliculus observed with fMRI, NeuroImage 12, 63-70,
 - Fan, J., 2014. An information theory account of cognitive control. Front. Hum. Neurosci. 8, 680.
 - Fan, I., Bernardi, S., Van Dam, N.T., Anagnostou, E., Gu, X., Martin, L., Park, Y., Liu, X., Kolevzon, A., Soorya, L., Grodberg, D., Hollander, E., Hof, P.R., 2012. Functional deficits of the attentional networks in autism. Brain Behav. 2, 647-660,
 - Fan, J., Byrne, J., Worden, M.S., Guise, K.G., McCandliss, B.D., Fossella, J., Posner, M.I., 2007a. The relation of brain oscillations to attentional networks. J. Neurosci, 27, 6197-6206.
 - Fan, J., Fossella, J., Sommer, T., Wu, Y., Posner, M.I., 2003. Mapping the genetic variation of executive attention onto brain activity. Proc. Natl. Acad. Sci. U. S. A. 100, 7406-7411.
 - Fan, J., Gu, X.S., Guise, K.G., Liu, X., Fossella, J., Wang, H.B., Posner, M.I., 2009. Testing the behavioral interaction and integration of attentional networks. Brain Cogn. 70. 209-220
 - Fan, J., Kolster, R., Ghajar, J., Suh, M., Knight, R.T., Sarkar, R., McCandliss, B.D., 2007b. Response anticipation and response conflict; an event-related potential and functional magnetic resonance imaging study. J. Neurosci. 27, 2272-2282.
 - Fan, J., McCandliss, B.D., Fossella, J., Flombaum, J.I., Posner, M.I., 2005. The activation of attentional networks. NeuroImage 26, 471-479.
 - Fan, J., McCandliss, B.D., Sommer, T., Raz, A., Posner, M.I., 2002. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 14, 340-347.
 - Fan, J., Van Dam, N.T., Gu, X.S., Liu, X., Wang, H.B., Tang, C.Y., Hof, P.R., 2014. Quantitative characterization of functional anatomical contributions to cognitive control under uncertainty. J. Cogn. Neurosci. 26, 1490-1506.
 - Friston, K., Holmes, A., Worsley, K.J., Poline, J., Frackowiak, R.S., 1994. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189-210.

- Fuentes, L.J., Campoy, G., 2008. The time course of alerting effect over orienting in the attention network test, Exp. Brain Res. 185, 667-672.
- Gitelman, D.R., Parrish, T.B., Friston, K.L. Mesulam, M.M., 2002, Functional anatomy of vi- 655 sual search; regional segregations within the frontal eve fields and effective connectivity of the superior colliculus. NeuroImage 15, 970-982.
- Guillery, R.W., 1995. Anatomical evidence concerning the role of the thalamus in 658 corticocortical communication: a brief review. J. Anat. 187, 583-592.
- Hall, W.C., Fitzpatrick, D., Klatt, L.L., Raczkowski, D., 1989. Cholinergic innervation of the 660 superior colliculus in the cat. J. Comp. Neurol. 287, 495-514. 661
- Harting, I.K., Huerta, M.F., Hashikawa, T., van Lieshout, D.P., 1991, Projection of the mam- 662 malian superior colliculus upon the dorsal lateral geniculate nucleus; organization of 663 tectogeniculate pathways in nineteen species. J. Comp. Neurol. 304, 275-306. 664
- Ignashchenkova, A., Dicke, P.W., Haarmeier, T., Thier, P., 2004. Neuron-specific contribu- 665 tion of the superior colliculus to overt and covert shifts of attention, Nat. Neurosci. 666 7 56-64 667
- Karnath, H.O., Himmelbach, M., Rorden, C., 2002. The subcortical anatomy of human spa-668 tial neglect: putamen, caudate nucleus and pulvinar. Brain 125, 350-360.
- Katyal, S., Zughni, S., Greene, C., Ress, D., 2010. Topography of covert visual attention in 670 human superior colliculus. J. Neurophysiol. 104, 3074-3083. 671
- Keren, N.I., Lozar, C.T., Harris, K.C., Morgan, P.S., Eckert, M.A., 2009. In vivo mapping of the 672 human locus coeruleus. NeuroImage 47, 1261-1267. 673
- Kerns, J.G., Cohen, J.D., MacDonald III, A.W., Cho, R.Y., Stenger, V.A., Carter, C.S., 2004. An-674 terior cingulate conflict monitoring and adjustments in control. Science 303, 675 1023-1026. 676
- Kinomura, S., Larsson, J., Gulyas, B., Roland, P.E., 1996. Activation by attention of the 677 human reticular formation and thalamic intralaminar nuclei. Science 271, 512–515. 678 Krauzlis, R.J., Lovejoy, L.P., Zenon, A., 2013. Superior colliculus and visual spatial attention. 679
- Annu. Rev. Neurosci. 36, 165-182. 680 LaBerge, D., Buchsbaum, M.S., 1990. Positron emission tomographic measurements of 681
- pulvinar activity during an attention task. J. Neurosci. 10, 613-619 682 Lee, K.M., Keller, E.L., 2006. Symbolic cue-driven activity in superior colliculus neurons in 683 a peripheral visual choice task. J. Neurophysiol. 95, 3585–3595. 684
- MacDonald III, A.W., Cohen, J.D., Stenger, V.A., Carter, C.S., 2000. Dissociating the role of 685 the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 686 288, 1835-1838. 687
- Mackie, M.A., Van Dam, N.T., Fan, J., 2013. Cognitive control and attentional functions. 688 Brain Cogn. 82, 301-312. 689
- Marrocco, R.T., Davidson, M.C., 1998. Neurochemistry of attention. In: Parasuraman, R. 690 (Ed.), The Attentive Brain. The MIT Press, Cambridge, MA, US, pp. 35-50.
- Matsumoto, K., Tanaka, K., 2004. Neuroscience. Conflict and cognitive control. Science 692 303, 969-970.
- Minzenberg, M.J., Watrous, A.J., Yoon, J.H., Ursu, S., Carter, C.S., 2008. Modafinil shifts 694 human locus coeruleus to low-tonic, high-phasic activity during functional MRI. Sci- 695 ence 322, 1700-1702.
- Morrison, J.H., Magistretti, P.J., 1983. Monoamines and peptides in cerebral cortex con- 697 trasting principles of cortical organization. Trends Neurosci. 6, 146-151. 698
- Moruzzi, G., Magoun, H.W., 1949. Brain stem reticular formation and activation of the 699 EEG. Electroencephalogr. Clin. Neurophysiol. 1, 455-473. 700
- Murphy, P.R., O'Connell, R.G., O'Sullivan, M., Robertson, I.H., Balsters, J.H., 2014. Pupil di-701 ameter covaries with BOLD activity in human locus coeruleus. Hum. Brain Mapp. 702 35, 4140-4154. 703
- Napadow, V., Dhond, R., Kennedy, D., Hui, K.K., Makris, N., 2006, Automated brainstem coregistration (ABC) for MRI. NeuroImage 32, 1113-1119.
- Ngan, N.H., Matsumoto, J., Takamura, Y., Tran, A.H., Ono, T., Nishijo, H., 2015. Neuronal correlates of attention and its disengagement in the superior colliculus of rat. Front. 707 Integr. Neurosci. 9, 9.
- Perin, B., Godefroy, O., Fall, S., de Marco, G., 2010. Alertness in young healthy subjects: an 709 fMRI study of brain region interactivity enhanced by a warning signal. Brain Cogn. 72, 710 271-281. 712
- Petersen, S.E., Posner, M.I., 2012. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35, 73-89.
- Petersen, S.E., Robinson, D.L., Morris, J.D., 1987. Contributions of the pulvinar to visual spa-714 tial attention. Neuropsychologia 25, 97-105. 715716
- Posner, M., Fan, J., 2008. Attention as an organ system. In: Pomerantz, J.R. (Ed.), Topics in Integrative Neuroscience: From Cells to Cognition. Cambridge University Press, pp. 31-61.
- Posner, M., Petersen, S.E., 1990. The attention system of the human brain. Annu. Rev. 719 Neurosci. 13, 25-42. 721
- Rafal, R.D., Posner, M.I., 1987. Deficits in human visual spatial attention following thalamic lesions, Proc. Natl. Acad. Sci. U. S. A. 84, 7349-7353.
- Rajkowski, J., Majczynski, H., Clayton, E., Aston-Jones, G., 2004. Activation of monkey locus 723 coeruleus neurons varies with difficulty and performance in a target detection task. 724 J. Neurophysiol. 92, 361-371. 726
- Ramos, B.P., Arnsten, A.F., 2007. Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol. Ther. 113, 523-536.
- Raz, A., Buhle, I., 2006. Typologies of attentional networks, Nat. Rev. Neurosci. 7, 367–379. 728 Riva, D., Bulgheroni, S., Aquino, D., Di Salle, F., Savoiardo, M., Erbetta, A., 2011, Basal fore-729 brain involvement in low-functioning autistic children; a voxel-based morphometry 730 study, Am. I. Neuroradiol, 32, 1430-1435. 731
- Saalmann, Y.B., Pinsk, M.A., Wang, L., Li, X., Kastner, S., 2012. The pulvinar regulates infor-732 733 mation transmission between cortical areas based on attention demands. Science 337, 753-756.
- Salzmann, E., 1995. Attention and memory trials during neuronal recording from the primate pulvinar and posterior parietal cortex (area PG). Behav. Brain Res. 67, 241–253. 736
- Sara, S.J., 2009. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. 737 Neurosci, 10, 211-223. 738

ARTICLE IN PRESS

B. Xuan et al. / NeuroImage xxx (2016) xxx-xxx

 $739 \\ 740$

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757 758

776

Sara, S.J., Bouret, S., 2012. Orienting and reorienting: the locus coeruleus mediates cogni
tion through arousal Neuron 76, 130–141

Scholey, A., 2002. Attention. In: Perry, E.K., Ashton, H., Young, A.H. (Eds.), Neurochemistry of Consciousness: Neurotransmitters in Mind. John Benjamins Publishing Company, pp. 43–64.

Servan-Schreiber, D., Printz, H., Cohen, J.D., 1990. A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 249, 892–895.

Shipp, S., 2004. The brain circuitry of attention. Trends Cogn. Sci. 8, 223–230.

Smith, Y., Kieval, J.Z., 2000. Anatomy of the dopamine system in the basal ganglia. Trends Neurosci. 23, S28–S33.

Snow, J.C., Allen, H.A., Rafal, R.D., Humphreys, G.W., 2009. Impaired attentional selection following lesions to human pulvinar: evidence for homology between human and monkey. Proc. Natl. Acad. Sci. U. S. A. 106, 4054–4059.

Spagna, A., Mackie, M.A., Fan, J., 2015. Supramodal executive control of attention. Front. Psychol. 6, 65.

Spagna, A., Martella, D., Sebastiani, M., Maccari, L., Marotta, A., Casagrande, M., 2014. Efficiency and interactions of alerting, orienting and executive networks: the impact of imperative stimulus type. Acta Psychol. 148, 209–215.

Thompson, K.G., Biscoe, K.L., Sato, T.R., 2005. Neuronal basis of covert spatial attention in the frontal eye field. J. Neurosci. 25, 9479–9487.

Tomasi, D., Volkow, N.D., 2014. Functional connectivity of substantia nigra and ventral	759
tegmental area: maturation during adolescence and effects of ADHD. Cereb. Cortex	760
24, 935–944.	761
Transporting TM 2001 Pharmanalogy and habaying harmanalogy of the mass continu	700

Tzschentke, T.M., 2001. Pharmacology and behavioral pharmacology of the mesocortical 762 dopamine system. Prog. Neurobiol. 63, 241–320. 763 van Schouwenburg, M.R., Den Ouden, H.E., Cools, R., 2015. Selective attentional enhance-

ment and inhibition of fronto-posterior connectivity by the basal ganglia during attention switching. Cereb. Cortex 25, 1527–1534.

Wen, X., Liu, Y., Yao, L., Ding, M., 2013. Top-down regulation of default mode activity in spatial visual attention. J. Neurosci. 33, 6444–6453.

Wu, Q., Chang, C.F., Xi, S., Huang, I.W., Liu, Z., Juan, C.H., Wu, Y., Fan, J., 2015. A critical role 769 of temporoparietal junction in the integration of top-down and bottom-up attention- al control. Hum. Brain Mapp. 36, 4317–4333.

Wurtz, R.H., Goldberg, M.E., Robinson, D.L., 1982. Brain mechanisms of visual attention. 772 Sci. Am. 246, 124–135. 773

Yanaka, H.T., Saito, D.N., Uchiyama, Y., Sadato, N., 2010. Neural substrates of phasic alertness: a functional magnetic resonance imaging study. Neurosci. Res. 68, 51–58.