

(c) 条件数

基于控制顶点和权交替优化的高质量平面NURBS参数化。

纪野a,b,于滢滢a,b,王梦云a,b, 朱春钢^{a, b}

a大连理工大学 数学科学学院, 辽宁 大连 116024

b 大连理工大学 辽宁省计算数学与数据智能重点实验室, 辽宁 大连 116024

背景

- > 等几何分析[1](Isogeometric analysis, IGA)是一种新兴的 具有精确几何表示能力的物 理仿真方法, 该方法为计算 机辅助设计和计算机辅助工 程无缝融合提供了新思路.
- 由样条边界表示构造适合分 析的计算域参数化是等几何 分析中的关键步骤.

简介

- >提出了一般平面NURBS参 数化的几个单值性条件并给 出了一个实用的单值性检验 算法;
- > 交替更新控制顶点和权因子, 提出构造高质量NURBS参 数化的高效鲁棒算法.

参数化算法流程

步骤0:输入

假定:

- ✓ 计算域是单连通的;
- ✓ 边界由四条正则的NURBS曲线表示; ✓ 对边具有相同的次数和节点向量;
- ✓ 节点向量满足clamped.

- ✓ 内部权因子置为1; ✓ 求解无约束二次规划问题
- $\underset{\mathbf{P}_{ij}}{\operatorname{argmin}} \quad \int_{\mathcal{P}} \left\| \Delta f \right\|^2 d\mathcal{P}$

其中 Δ 是Laplace算子, P_{ij} 是待求内 部控制顶点.

✓ 求解其对应的线性方程组.

步骤2: 消除折叠

✓ 求解无约束优化问题

 $\underset{\mathbf{P}_{ii}}{\operatorname{argmin}} \int_{\mathcal{P}} ReLU(\delta - det\mathbf{J})^{2} d\mathcal{P} \qquad (2)$

其中 δ 是用户指定值,det]是参数化 的雅克比行列式, ReLU表示线性整 流函数(Rectified Linear Unit), 即

步骤3: 交替迭代

- ✓ 子步3.1: 固定权, 调整控制顶点 argmin $E(f; \mathbf{P}_{ij}, \omega_{ij})$;
- ✓ 子步3.2: 固定控制顶点, 调整权
- argmin $E(f; \mathbf{P}_{ij}, \boldsymbol{\omega_{ij}});$ (3.2)

部分参数化结果

部分参数化结果和参数化质量指标

(b) 比例雅克比

注:比例雅克比是刻画参数化正交性的指标,该值越接近于1,代表参数化具有良好的正交性; 条件数是刻画参数化扭曲程度的指标,该值越小,代表参数化具有更小的扭曲.

与现有方法比较

(c) T-Map^[4] (d) LRQC^[5] (e) 本文方法 飞机. 不同方法得到的参数化结果.

(a) NCO^[2] (b) LRQC^[5] 飞机.参数化质量的进一步比较.

Model	p, q, n, m	Method	Scaled Jacobian		Condition number	
			Average	min	Average	max
		NCO	0.8819	0.1160	3.1831	32.2954
		VH	0.7192	-1.0000	13.1134	4.7522e+05
Duck	2,2,8,10	T-map	0.8709	-1.0000	5.9432	2.5475e+05
		LRQC	0.8850	0.2064	2.9704	16.3875
		Fixed weights	0.9212	0.4122	2.8992	6.8609
		Ours	0.9214	0.4306	2.8992	6.9994
		NCO	_	_	_	_
		VH	0.4037	-1.0000	21.2539	5.3966e+05
Dog	3,3,30,30	T-map	_	_	_	_
		LRQC	0.8256	-0.9995	3.4932	2.5641e+03
		Fixed weights	0.8331	0.1720	3.6472	17.7726
		Ours	0.8488	0.2930	3.2310	8.0818
		NCO	_	_	_	_
		VH	0.5091	-1.0000	11.9690	2.4950e+05
Penguin	3,3,30,30	T-map	_	_	_	_
		LRQC	0.8252	-1.0000	4.9784	2.8099e+05
		Fixed weights	0.8491	0.1430	2.7048	14.6129
		Ours	0.8491	0.1515	2.7050	13.2554

(c) 本文方法

(a) LRQC^[5]

(b) 本文方法 狗.与LRQC(低秩拟共形)方法的进一步比较.

(a) LRQC^[5]

企鹅.与LRQC(低秩拟共形)方法的进一步比较.

算法效率

Method	Duck	Butterfly	Rabbit	Plane	Dolphin	Dog	Penguin
NCO	220.27	3567.72	4281.32	304.47	1092.63	_	_
LRQC	1.43	2.99	3.06	1.44	1.77	_	-
Ours	0.41	0.87	1.20	0.43	0.85	101.16	45.75

结论和展望

▶同时考虑控制顶点和权,本文给出了构造 高质量平面NURBS参数化的鲁棒、高效算法。

- ▶数值实例表明了算法的有效性和优越性。
- ▶将提出的方法推广到3D体和具有多片(块) 结构的高亏格计算域参数化中是值得考虑 的问题。

致谢

作者感谢中国科学技术大学陈 发来教授、年先顺博士和南京航 空航天大学潘茂东教授有关参数 化方法的前期讨论并提供其文章 的源代码. 作者感谢中国科学技 术大学傅孝明教授在其主页上共 享模型数据. 本项目由国家自然 科学基金项目(Nos. 12071057, 11671068) 资助.

联系我们

参考文献

[1] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg. 194 (39-41) (2005) 4135-4195.

[2] G. Xu, B. Mourrain, R. Duvigneau, A. Galligo, Parameterization of computational domain in isogeometric analysis: methods and comparison, Comput. Methods Appl. Mech. Engrg. 200 (23–24) (2011) 2021–2031.

[3] G. Xu, B. Mourrain, R. Duvigneau, A. Galligo, Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method, J. Comput. Phys. 252 (2013) 275-289.

[4] X.S. Nian, F.L. Chen, Planar domain parameterization for isogeometric analysis based on Teichmüller mapping, Comput. Methods Appl. Mech. Engrg. 311 (2016) 41–55. [5] M.D. Pan, F.L. Chen, W.H. Tong, Low-rank parameterization of planar domains for isogeometric analysis, Comput. Aided Geom. Design 63 (2018) 1–16.

纪野 E-mail: jiye@mail.dlut.edu.cn 获取全文:

