Chapitre 3

APPLICATIONS

Contenus

- Égalité de deux applications;
- Image et image réciproque d'une partie par une application;
- Application injective, application surjective; application bijective; application réciproque d'une bijection;
- Composée de deux applications;
- Restriction et prolongement d'une application.

Capacités attendues

- Déterminer l'image et l'image réciproque d'un ensemble par une application;
- Déterminer la bijection et la bijection réciproque d'une application et son utilisation dans la résolution de problèmes;
- Déterminer la composée de deux applications et la décomposition d'une application en deux applications en vue d'explorer ses propriétés.

Définitions

Définir une application f , c'est associer à tout élément x d'un ensemble E un unique élément, noté f(x), d'un ensemble F et on écrit :

$$f: E \to F$$

$$x \to y = f(x)$$

- ⊛ *E* est appelé l'ensemble de définition (ou l'ensemble de départ) de *f* .
- ⊛ *F* est l'ensemble d'arrivée de *f* .
- \circledast pour tout $x \in E$, f(x) est l'image de x par l'application f.
- \circledast pour tout $y \in F$, les solutions de l'équation y = f(x) d'inconnue x forment l'ensemble des antécédents de y par f. Cet ensemble peut-être vide, ou contenir un, plusieurs, voire une infinité d'éléments.

D'une autre façon :

f est une application de E dans $F \Leftrightarrow ((\forall x \in E)(\exists ! y \in F), f(x) = y).$

Remarques

Si certains x de E n'ont pas d'image y dans F, on parle alors parfois de fonction et non pas d'application : dans ce cas le domaine de définition de la fonction est le sous ensemble de E formé des x qui ont réellement une image.

Voici deux applications importantes :

- L'application définie sur *E* et qui prend une même valeur *a* pour tout élément de *E* est dite application constante de valeur a.
- L'application de E dans E qui fait correspondre à tout élément x de E cet élément lui même, est appelée **application Identique** de E (ou Identité de E) et se note Id_E .

Exemples

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \to f(x) = x^2$
 $f \text{ est une application}$

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \to f(x) = x^2$
 $f \text{ est une application}$ $g: \mathbb{Z} \to \mathbb{N}$
 $x \to g(x) = x + 2$
 $g \text{ n'est pas une application car } -5 \text{ n'a pas d'image par } f$

$$x \rightarrow h(x) = \frac{2}{x-1}$$

h n'est pas une application car 1 n'a pas d'image par f

On a schématisé ci-contre une application f définie sur l'ensemble $E = \{1; 2; 3; 4\}$ et à valeurs dans $F = \{a; b; c; d\}$.

- L'image de 3 par *f* est *d*.
- L'ensemble des antécédents de *c* par *f* est {2;4}.
- L'ensemble des antécédents de b par f est vide : \emptyset .

Egalité de deux applications

Définition Soient $f: E \to F$ et $g: E' \to F'$ deux applications. On a :

$$f = g \Leftrightarrow (E = E' \land F = F' \land (\forall x \in E, f(x) = g(x)))$$

Exemple

Soient
$$f: \mathbb{R} \to \mathbb{R}$$
 et $g: \mathbb{R} \to \mathbb{R}$ $x \to \sqrt{4x^2 - 4x + 1} + \sqrt{4x^2 - 12x + 9}$ $x \to 2\left(|x - \frac{1}{2}| + |x - \frac{3}{2}|\right)$

On montre facilement que : $(\forall x \in \mathbb{R})$: g(x) = f(x). Puisque f et g ont le même ensemble départ et même ensemble d'arrivée et $(\forall x \in \mathbb{R})$: g(x) = f(x), alors f = g.

Image directe et image réciproque d'une partie d'un ensemble

Définition 1 Soit $A \subset E$. On appelle image directe de la partie A, le sous-ensemble de F noté f(A), et défini par : $f(A) = \{y \in F/\exists x \in A, y = f(x)\}$ ce qu'on écrit plus rapidement

$$f(A) = \{f(x), x \in A\}$$

Ainsi, on a : $(\forall y \in F); y \in f(A) \Leftrightarrow ((\exists x \in A); y = f(x)).$

Définition 2 Soit $B \subset F$. On appelle image réciproque de la partie B, le sous-ensemble de E noté $f^{-1}(B)$, et défini par : $f^{-1}(B) = \{x \in E/f(x) \in B\}$ Ainsi, pour tout x de E, on a : $x \in f^{-1}(B) \Leftrightarrow f(x) \in B$

Exemples

Considérons l'application :
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \to f(x) = x^2$

- $f^{-1}(\{1\}) = \{-1, 1\} \text{ car } (\forall x \in \mathbb{R}), f(x) = 1 \Leftrightarrow x^2 = 1 \Leftrightarrow (x = 1 \lor x = -1).$
- $f^{-1}(\mathbb{R}^+) = \mathbb{R} \operatorname{car} (\forall x \in \mathbb{R}), f(x) \in \mathbb{R}^+ \Leftrightarrow x^2 \ge 0 \Leftrightarrow x \in \mathbb{R}.$
- $f^{-1}(\mathbb{R}_{-}^{*}) = \emptyset$ car l'inéquation f(x) < 0 n'a pas de solution dans \mathbb{R} .
- De même, on a $f^{-1}(\mathbb{R}^-) = \{0\}$, $f^{-1}(\mathbb{R}) = \mathbb{R}$ et $f^{-1}([0,2]) = [-\sqrt{2}, \sqrt{2}]$.

Prolongement et restriction d'une application

Définition 1 Soit $f: E \to F$ une application, et A une partie de E.

On appelle restriction de f à la partie A, l'application notée $f_{|A}$ définie par :

$$f_{|A}: A \rightarrow F$$
 $x \rightarrow f(x)$

(L'ensemble de départ de $f_{|A}$ est A).

Exemple 1

Soit
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \to |x|$
On a $f_{|\mathbb{R}^-}: \mathbb{R}^- \to \mathbb{R}$ et $f_{|\mathbb{R}^+}: \mathbb{R}^+ \to \mathbb{R}$
 $x \to -x$

sont respectivement une restriction de f à \mathbb{R}^- et une restriction de f à \mathbb{R}^+ .

Définition 2 Soit $f: E \to F$ une application, et X un ensemble tel que $E \subset X$. On dit que l'application $g: X \to F$ est un prolongement de f si $g_{|E}$ est l'application f.

Exemple 2

Soit
$$f: \mathbb{R}^+ \to \mathbb{R}$$

 $x \to \sqrt{x}$

L'application : $g: \mathbb{R} \to \mathbb{R}$ est un prolongement de f.

$$x \to \sqrt{|x|}$$

L'application : $h: \mathbb{R} \to \mathbb{R}$ est aussi un prolongement de f.

$$x \rightarrow \sqrt{x}$$
; si $x \ge 0$
 $x \rightarrow -1$; si $x < 0$

Injection - Surjection - Bijection

Définition 1 Soit $f: E \to F$ une application. On dit que f est injective (ou une injection) si tout élément de F a au plus un antécédent (par f), ce qui s'énonce de la manière suivante : $(\forall (x, x') \in E^2), f(x) = f(x') \Rightarrow x = x'$

ou de manière équivalente, par contraposée : $(\forall (x, x') \in E^2)$, $x \neq x' \Rightarrow f(x) \neq f(x')$

Définition 2 Soit $f: E \to F$ une application. On dit que f est surjective (ou une surjection) si tout élément de F a au moins un antécédent (par f), ce qui s'énonce de la manière suivante : $(\forall y \in F)(\exists x \in E), y = f(x)$

Définition 3 Soit $f: E \to F$ une application. On dit que f est bijective (ou une bijection) si tout élément de F a un et un seul antécédent (par f), ce qui s'énonce de la manière suivante :

$$(\forall y \in F) (\exists ! x \in E), y = f(x)$$

Remarques

- La propriété de surjectivité traduit l'existence d'un antécédent par f de tout élément y de F.
- La propriété d'injectivité traduit l'unicité d'un éventuel antécédent de y.
- La propriété de bijectivité traduit donc l'existence et l'unicité d'un tel antécédent.
- On commence souvent l'étude par la surjectivité, la résolution de y = f(x) dans la recherche d'antécédent permettant parfois de prouver l'unicité du même coup.

 $f: E \to F$ est surjective si et seulement si f(E) = F. Propriété

Exemple 1 f est une application définie par : $x \rightarrow \frac{x(1-x)^2}{(1+x^2)^2}$

- **1** On vérifie facilement que : $(\forall x \in \mathbb{R}^*)$: $f\left(\frac{1}{x}\right) = f(x)$
- 2 On a: $2 \in \mathbb{R}^*$ et $\frac{1}{2} \in \mathbb{R}^*$, donc d'après (1), on a: $f(2) = f\left(\frac{1}{2}\right)$ et $2 \neq \frac{1}{2}$ D'où f n'est pas injective.
- **3** On peut montrer facilement que : $(\forall x \in \mathbb{R}) : f(x) \leq \frac{1}{4}$ On a : $(\forall x \in \mathbb{R})$: $f(x) \le \frac{1}{4}$ alors, $(\forall x \in \mathbb{R})$: $f(x) \ne 1$. Donc 1 n'a pas d'antécédent par f et par conséquent : f n'est pas surjective.

Exemple 2

Soit $f: \mathbb{N} \to \mathbb{Q}$ définie par : $f(x) = \frac{1}{1+x}$, montrons que f est injective, par contre fn'est pas surjective.

En effet, soient
$$(x_1, x_2) \in \mathbb{N}^2$$
 On a:
 $f(x_1) = f(x_2) \to \frac{1}{1 + x_1} = \frac{1}{1 + x_2} \to 1 + x_1 = 1 + x_2 \to x_1 = x_2$

On a : $(\forall x \in \mathbb{N})$; f(x) < 1, alors par exemple 2 n'a pas d'antécédent dans \mathbb{N} .

Conclusion, f n'est pas surjective, alors que f n'est pas bijective.

Application réciproque d'une bijection

Définition

Dans le cas où $f: E \to F$ est une application bijective, pour tout $y \in F$, on note $f^{-1}(y)$ l'unique antécédent de y par f.

L'application réciproque ou inverse de f est l'application définie par :

$$f^{-1}: F \to E$$
$$y \to f^{-1}(y)$$

Et on a : $(\forall (x, y) \in ExF)$, $(y = f(x) \Leftrightarrow x = f^{-1}(y))$.

Remarque

Attention à ne pas confondre image réciproque d'une partie par l'application f (celle-ci existe toujours) et application réciproque f^{-1} (qui n'existe que si f est bijective). Dans l'exemple du paragraphe III, f n'admet pas d'application réciproque sur \mathbb{R} , mais \mathbb{R} a une image réciproque par f(il s'agit de \mathbb{R}).

Composée de deux applications

Si $f: E \to F$ et $g: F \to G$ sont deux applications, alors on définit la composée de fsuivie de g par : $g \circ f$: $E \rightarrow G$ $x \rightarrow g[f(x)]$

Remarque

la composition n'est pas commutative : $g \circ f \neq f \circ g$ en général. Par définition, $f^{-1} \circ f = Id_E$ et $f \circ f^{-1} = Id_F$.

Exemple

Soient $f:]0,+\infty[\rightarrow]0,+\infty[$ $x \rightarrow \frac{1}{x}$ Alors, $g \circ f:]0,+\infty[\rightarrow \mathbb{R} \text{ v\'erifie}:$

 $(\forall x \in]0, +\infty[) : gof(x) = g(f(x)) = g\left(\frac{1}{x}\right) = \frac{\frac{1}{x} - 1}{\frac{1}{x} + 1} = \frac{1 - x}{x + 1} = -g(x)$

Propriété

Si $f: E \to F$ et $g: F \to G$ sont des applications bijectives, alors $g \circ f$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$