§3.1: Limits	
Limit of afunction: Let f be a function and let a, LER. If	
(i) As x takes values closes and closer (but not equal) to a on "both sides" of a (positive & Negative), the corresponding values of f(x) get closer and closer (and perhaps equal) to a	
(2) The value of f(x) can be made close to L as destred by taking values of X close enough to a;	(
Then L is the limit of f(x) as x approaches a, written:	
$\lim_{X \to a} f(x) = L$	
e.g. Find the limit:	
(A) $\lim_{X \to 2} g(x)$, where $g(x) = \frac{x^3 - 2x^2}{x - 2} = x^2 \cdot \frac{(x - z)}{(x - z)}$	
- Since g(2) closes not exist (thre is a hole at g(2)) we cannot directly consider g(2). However, when we cancel each factor of (x-z) we get	
g(x) = x2; x + 2. This graph to lows the reduced form of glx with a hole at x=2.	
gw. Now, we see as X -> 2 from either Side, the graph of g(x) approaches 22-4. Thus	
$\lim_{z \to z} g(x) = 2^{2} = 4$	0

Existence of Limits: The limit of f(x) as x approaches a max
(1) If f(x) loccomes \(\infty \) atge in magnitude (positive or negative) or \(\times \approaches \tapproaches \approaches \approaches \approaches \tapproaches \tapproaches \approaches \approaches \tapproaches \tapproache
Cim f(x)= 00 or lim f(x)= -00 (rep) In other case the limit Does Not EXist (still denote it as ± 00)
(2) If f(x) loccomes infinitely large in Magnifude (positive) as X approaches a from one side and only large (negative) as X approaches a from the other side, then lom f(x) bots NOT EXIST
(3) If lim f(x) = L and lim = M and LFM then
lim f(x) does NOT EXIST
Rules Fos Limits
Let A,BER, f,g are functions ST
$\lim_{x \to a} f(x) = A \qquad \lim_{x \to a} g(x) = B$
() If k is a constant (keR), then $\lim_{x \to a} k = k$
$\lim_{X \to a} \left[k \cdot f(x) \right] = k \cdot \lim_{X \to a} f(x) = k A$

Finding | 5 at Infinity: If P(x) and P(x) ore polynomials with P(x) = P(x) = P(x) then 200 f(x) and lim f(x) can be found as: 1. Divide P(x) and Q(x) by highest power of X in Q(x) 2. Use the rales for limits including the rules for limits at infinity: $\lim_{X\to+\infty} \frac{1}{x^n} = 0$ and $\lim_{X\to-\infty} \frac{1}{x^n} = 0$, 170 to find result of limit in Step 1. C.g. Find the limit (A) $l_{1}m = 8x+6 = l_{1}m = 8+6 = 8-0 = 8$ (A) $l_{1}m = 8x+6 = l_{1}m = 8+6 = 8-0 = 8$ (B) $l_{2}m = 8x+6 = l_{2}m = 8+6 = 8-0 = 8$ (B) $l_{3}m = 8x+6 = l_{3}m = 8+6 = 8-0 = 8$ (B) $\frac{1}{4}$ $\frac{3}{4}$ = $\frac{1}{4}$ $\frac{3}{4}$ = $\frac{2}{4}$ $\frac{3}{4}$ = $\frac{0+0}{4}$ = $\frac{6}{4}$ = $\frac{1}{4}$ (C) Jm $3x^2+2$ Cm 3x+4x 7 we see that factor of x (3x tom) $x \to \infty$ $4x-3 = x \to \infty$ 4-3x S will get orbitrarily large $\frac{3x^2+2}{x\rightarrow\infty} = \frac{3x^2+2}{4x-3} = \frac{3x^2+2}{4$ (b) l_{im} $5x^{2}-4x^{3}$ l_{im} 5-4/ t_{im} t_{im} t $\frac{5x^{2}-4x^{3}}{5x^{2}+2x-1} = \frac{1}{2}$

	33.2: Continuity
	Continuity at X=C
	A forction f is continuous at a point X=C if the following are satisfied:
	(D) f(c) is defined
	(2) lim f(x) exists, and
	$ \begin{array}{ccc} (3) & \lim_{X \to C} f(x) = f(c) \\ \end{array} $
	If fis Not continuous at C, it is called <u>discontinuous</u> thee
(C.g. Detomine if the function is continuous at the indicated X-value
(,	$A) f(x) = \frac{x^3 - 2x^2}{x - 2} \text{ at } x = Z$
	$= \frac{x^2(x/2)}{2} = \frac{z}{x}; x \neq z \text{ i.e. f(z) is undefined, so by}$ $z = \frac{x^2(x/2)}{2} = \frac{z}{x}; x \neq z \text{ i.e. f(z) is undefined, so by}$ $z = \frac{z^2(x/2)}{2} = \frac{z}{x}; x \neq z \text{ i.e. f(z) is undefined, so by}$
7	
	$\frac{1}{h(x)} = \frac{1}{h(x)}, \text{ if } x > 0 \qquad 1$ $\frac{1}{h(x)} = \frac{1}{h(x)}, \text{ if } x < 0$ $\frac{1}{h(x)} = \frac{1}{h(x)}, \text{ if } x < 0$ $\frac{1}{h(x)} = \frac{1}{h(x)}, \text{ if } x < 0$ $\frac{1}{h(x)} = \frac{1}{h(x)}, \text{ if } x < 0$
	Hote h(o) = -1, is defined howard
	$\lim_{x \to 0^+} h(x) = 1 + \lim_{x \to 0^-} h(x) = -1$
	So by (2) his discontinuous at X=122
	So by (1) In is discontinuous at X-12/
0	

(C) $g(x) = \begin{cases} x^2, & x \neq z \\ 1, & x = z \end{cases}$ Hore f(2)=1 risdsmed (Im g(x)=4 exists, but g(z) = 1 7 (m g(z), so discontinuous lestical Asymptotes are also points of discontinuity . Continuity on a Closed Intoval -A fundion is continuous on a closed interval [a/o] H 1) It is continuous on the open interval (a, 6) 2) It is continuous from the right at a 3) If is continuous from the left at 6 Continuous Functions Polynomial functions: continuous VXEIK Radional functions: R(x) = P(x) with P, 9 Polynomials are continuous at all values where 9 70 Radical Functions: f(x) = n/x IF nis even, fis Gortmuous at all XZO. In n Fs add + is Continuous Corrywhile Exponental Functions: g(x) = ax, a>o ore continuous at all XEIR · Logarithmic Functions: h(x) = logo(x) a >0 a 71 ase continuous +1x >0

C.g.	Find all points of descontinuity for the function
	(A) $f(x) = \frac{4x-3}{2x-7}$: Rotional -> $2x-7=0 \Rightarrow x=7/2$
	8) g(x) = 2x-3: exponential -) No discontinuities
e.g.	Find all values of x where the function is Continuous
	$f(x) = \begin{cases} x+1 & \text{if } x < 1 \\ x^2 - 3x + 4 & \text{if } x \in [1, 3] \end{cases}$ $\begin{cases} 5-x & \text{if } x > 3 \end{cases}$
(Observe fis continuous at (-0,1), (1,3), (3,00) at the very least, Since it is equal to various polynomial functions at these publics.
~	However, we must check the places whose I is "pasted together" (the endpoints)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Cim $f(x) = 0$ m $x^2 - 3x + 4 = 1^2 - 3 + 4 = 2$ x > 1 + 4 = 1 So f is indeed continuous at $x = 1$
	X=3 f(3)= 2 ² -3-3+4= 9-9+4 = 4
	$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} 5 - x = 5 - 3 = 2$
	$\lim_{X \to 3^{-}} f(x) = \lim_{X \to 3^{-}} 3^{3} - 3 + 4 = 9 - 9 + 4 = 4$
	So that f is NOT continuous at $X=3$ This continuous on $(-\infty,3)(3,\infty)$
0	TIS COSTINUOUS ON (C VI) ()

Call Find the value of
$$K$$
 st the function is continuous:

 $g(k) = \begin{cases} 2x^2 + 5 \\ x + 7 \end{cases}$, $x + 3$

We need to choose k so that three-two separate preserves $\frac{2x + 3}{k^2}$ agree (motell up) where the as posted "towall of $\frac{2x^2 + 15}{k^2} = \frac{(2x + 6)(x + 3)}{(x - 3)} = \frac{2x + 5}{(x + 3)}$
 $= 2x + 5 = 11$

Now, when $x = 3$
 $Kx - 1 = 3k - 1$

In order-for those to agree; we must set through all and solve for the $x + 3$ $x + 3$.

 $2x + 5 \mid_{x = 3} = kx - 1 \mid_{x = 3}$
 $\Rightarrow 6 \nmid_{x = 3} = 24$
 $\Rightarrow 11 = 3k - 1$
 $\Rightarrow 12 = 3k - 1$
 $\Rightarrow 13 = 3k - 1$
 $\Rightarrow 14 = 3k - 1$

	§ 3.3 = Rates of Charge
-	One of the main application of Gode is defomining your one variable changes in Clara the other
	For Imes, this is easy, the rate of charges is the slopes
	- We can approximate this for any function fox
1,	Avorage Rate of Change - the avorage rate of clarge of a first on the with respect
	fave = f(0) - f(0)
(Cop. Surpose 89.7% of households had brolling thousand 2005, while in 200 -1 is number sourced to 15.5%
	Determine the avoided at a change in the petient of landings in American households pot year over 2005-2009
	- Plug + Chug.
	$\frac{73.5 - 89.7}{2009 - 2005} = \frac{16.57}{4} = -4.05$
	Dedine (regarder) is Gughly 4.05% por year-
+	