

Aprendizado de Máquina

Aprendizado Supervisionado Regressão

Prof. Dr^a. Andreza Sartori <u>asartori@furb.br</u>

Documentos Consultados/Recomendados

- RUSSEL, Stuart; NORVIG, Peter. Inteligência artificial. Rio de Janeiro: GEN LTC, 2013. 1 recurso online. Disponível em: https://integrada.minhabiblioteca.com.br/books/9788595156104. Acesso em: 26 jul. 2021.
- NG, Andrew; Guestrin, Carlos; Charikar, Moses. Machine Learning. Stanford University. Disponível em: http://cs229.stanford.edu/materials.html
- MALIK, Jitendra. Computer Vision. UC Berkeley. Disponível em: https://www-inst.eecs.berkeley.edu//~cs280/sp15/index.html
- IA Expert Academy. Plataforma de Cursos sobre Inteligência Artificial. Disponível em: https://www.youtube.com/channel/UCaGrlWpwjWXT6OlQh9W4Riw
- Louppe, Gilles. Deep Learning, ULiège, 2022. Disponível em: https://github.com/glouppe/info8010-deep-learning

Conteúdo Programático:

Unidade 1: Fundamentos de Aprendizado de Máquina

Unidade 2: Aprendizado Supervisionado

Unidade 3: Aprendizado Não Supervisionado

Unidade 4: Redes Neurais Artificiais

Unidade 5: Aplicações de Aprendizado de Máquina

Conteúdo Programático:

Unidade 1: Fundamentos de Aprendizado de Máquina

Unidade 2: Aprendizado Supervisionado

Unidade 3: Aprendizado Não Supervisionado

Unidade 4: Redes Neurais Artificiais

Unidade 5: Aplicações de Aprendizado de Máquina

Conteúdo Programático:

Unidade 1: Fundamentos de Aprendizado de Máquina

Unidade 2: Aprendizado Supervisionado

2.1 Regressão

- 2.1.1 Regressão linear (simples e múltipla)
- 2.1.2 Regressão polinomial
- 2.1.4 Regressão com Vetores de Suporte (SVR)

2.2 Classificação

- 2.2.1 Aprendizagem Bayesiana (Naive Bayes)
- 2.2.2 Árvores de decisão
- 2.2.3 k-Nearest Neighbour (kNN)
- 2.2.4 Regressão logística
- 2.2.5 Support Vector Machine (SVM)

Recapitulando...

Como funciona o processo de aprendizagem?

Teoria da Aprendizagem

Dado um conjunto de treinamento de N pares de exemplos de entrada e saída

$$(x1, y1), (x2, y2), \dots (xn, yn),$$

onde cada valor de y pode ser encontrado por uma função desconhecida:

$$y = f(x),$$

o objetivo da aprendizagem é descobrir uma função **h (hipótese)** que se aproxime da função verdadeira f

Teoria da Aprendizagem

O objetivo da aprendizagem é descobrir uma função h (hipótese) que se aproxime da função verdadeira f

$$y = f(x)$$

Fonte: Data Science Academy

Nesta aula

UNSUPERVISED MACHINE LEARNING

SUPERVISED MACHINE LEARNING

PROOFFREADERSWHIMSY.BLOGSPOT.CA

Aprendizado Supervisionado

- Damos ao sistema a "resposta correta" durante o processo de treinamento.
- Dado um conjunto de entradas de treinamento e saídas correspondentes, produz os resultados "corretos" para novas entradas.
- É eficiente pois o sistema pode trabalhar diretamente com informações corretas.

Abordagens do Aprendizado Supervisionado

Classificação:

- Responde se uma determinada "entrada" pertence a uma certa classe.
- Dada a imagem de uma fruta: informa que fruta é (dentre um número finito de classes).

Regressão:

- Faz uma predição a partir de exemplos.
- Prever o valor dos imóveis, dados os valores por metro quadrado.

Abordagens do Aprendizado Supervisionado

Classificação:

- Responde se uma determinada "entrada" pertence a uma certa classe.
- Dada a imagem de uma fruta: informa que fruta é (dentre um número finito de classes).

Regressão:

- Faz uma predição a partir de exemplos.
- Prever o valor dos imóveis, dados os valores por metro quadrado.

Aprendizado Supervisionado

Aprendizado Supervisionado: Classificação

Prever se tumor na mama é Maligno ou Benigno.

Qual é a probabilidade / chance de um tumor ser maligno ou benigno?

Pode ter mais de dois valores para valores possíveis de saída (multiclasse).

Exemplo: 0 (benígno), 1 (câncer tipo 1), 2 (câncer tipo 2), 3,n

Aprendizado Supervisionado: Classificação

Prever se tumor na mama é Maligno ou Benigno.

Mais de uma característica (feature)

- Espessura
- Uniformidade do tamanho da célula
- Uniformidade da forma celular
- ...(número infinito de características SVM)

Abordagens do Aprendizado Supervisionado

Classificação:

- Responde se uma determinada "entrada" pertence a uma certa classe.
- Dada a imagem de uma fruta: que fruta é (dentre um número finito).

Regressão:

- Faz uma predição a partir de exemplos.
- Prever o valor dos imóveis, dados os valores por metro quadrado.

Prever o Preço de Imóveis

Prever o Preço de Imóveis

Tamanho em metro²

Prever o Preço de Imóveis

Tamanho em metro²

Prever o Preço de Imóveis

Prever o Preço de Imóveis

<u>Aprendizado Supervisionado</u> "respostas certas" são dadas Regressão: Prevê valores de saída(output) contínuo - preço

Abordagens do Aprendizado Supervisionado

Classificação:

- Responde se uma determinada "entrada" pertence a uma certa classe.
- Dada a imagem de uma fruta: que fruta é (dentre um número finito).

Regressão:

- Faz uma predição a partir de exemplos.
- Prever o valor dos imóveis, dados os valores por metro quadrado.
 - Regressão Linear Simples
 - Regressão Linear Múltipla
 - Regressão Não Linear/Polinomial (Simples e Múltipla)
 - Regressão com Vetores de Suporte (SVR)

• ...

Regressão Linear

Regressão Linear Simples Múltipla

Duas variáveis estão relacionadas se a mudança de uma provoca a mudança na outra.

Exemplo: Tamanho em m² x Preço da Casa

Tamanho em m ²	Preço (R\$) em 1000's
50	164
75	246
90	310
100	328
130	426
160	580
180	590
200	700
220	721
250	820
280	918
300	930

Duas variáveis estão relacionadas se a mudança de uma provoca a mudança na outra.

Exemplo: Tamanho em m² x Preço da Casa

Correlação:

 É utilizada para medir o quanto uma variável está associada a outra.

Gráfico (Diagrama) de Dispersão: usado para mostrar a relação entre duas variáveis quantitativas, medidas sobre os mesmos indivíduos.

Relação Linear

Relação Curvilinear

Duas variáveis estão relacionadas se a mudança de uma provoca a mudança na outra.

Exemplo: Tamanho em m² x Preço da Casa

Correlação:

- É utilizada para medir o quanto uma variável está associada a outra.
- Quando a alteração no valor de uma variável (independente (x) – Tamanho em m²) provoca alterações no valor da outra variável (dependente (y) -Preço da Casa)

- Eixo x Tamanho: variável independente
- Eixo y Preço: variável dependente (muda de acordo com as mudanças na variável x)

Exemplos de Gráfico de Dispersão

Exemplos de Gráfico de Dispersão

Nenhuma Relação

Alguns problemas da análise gráfica

- Nem sempre conseguimos ver exatamente a intensidade de uma relação linear.
- Gráfico ao lado: mesmos dados, porém em uma escala diversa.
- Para este problema utilizamos uma medida numérica: Coeficiente de Correlação

Fonte: Prof. Marcos Portnoi

Coeficiente de Correlação

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\left[\sum (x - \overline{x})^2\right]\left[\sum (y - \overline{y})^2\right]}}$$

r = mede o grau de relacionamento linear entre valores x e
y , isto é, o Coeficiente de Correlação.

Mede a intensidade e a direção da relação linear entre duas variáveis quantitativas.

x = variável independente

y = variável dependente

Coeficiente de Correlação

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{[\sum (x - \bar{x})^2][\sum (y - \bar{y})^2]}}$$

Soma ((x – média de x) * (y – média de y))

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{[\sum (x - \bar{x})^2][\sum (y - \bar{y})^2]}}$$

Tamanho (m2)	Preço	$x-\bar{x}$	$y-ar{y}$	$(x-\bar{x})(y-\bar{y})$
30	57.000			
39	69.000			
49	77.000			
60	90.000			
44,5 (média) 12,92 (desvio padrão)	73.350 (média) 13.865,42 (dp)			

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{[\sum (x - \bar{x})^2][\sum (y - \bar{y})^2]}}$$

Tamanho (m2)	Preço	$x-\bar{x}$	$y-ar{y}$	$(x-\bar{x})(y-\bar{y})$
30	57.000	-14,5		
39	69.000	-5,5		
49	77.000	4,5		
60	90.000	15,5		
44,5 (média) 12,92 (desvio padrão)	73.350 (média) 13.865,42 (dp)			

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{[\sum (x - \bar{x})^2][\sum (y - \bar{y})^2]}}$$

Tamanho (m2)	Preço	$x-ar{x}$	$y-ar{y}$	$(x-\bar{x})(y-\bar{y})$
30	57.000	-14,5	-16.250	
39	69.000	-5,5	-4.250	
49	77.000	4,5	3.750	
60	90.000	15,5	16.750	
44,5 (média) 12,92 (desvio padrão)	73.350 (média) 13.865,42 (dp)			

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{[\sum (x - \bar{x})^2][\sum (y - \bar{y})^2]}}$$

Tamanho (m2)	Preço	$x-\bar{x}$	$y-ar{y}$	$(x-\bar{x})(y-\bar{y})$
30	57.000	-14,5	-16.250	235.625
39	69.000	-5,5	-4.250	23.375
49	77.000	4,5	3.750	16.875
60	90.000	15,5	16.750	259.625
44,5 (média) 12,92 (desvio padrão)	73.350 (média) 13.865,42 (dp)			535.500 (soma)

Regressão Linear e Análise de Correlação

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\left[\sum (x - \overline{x})^2\right]\left[\sum (y - \overline{y})^2\right]}}$$

Soma ((x – média de x) * (y – média de y))

- Dividido -

Raiz quadrada ((soma de $(x - média de x)^2$) * (soma de $(y - média de y)^2$))

Análise de Correlação

'r' será um valor entre -1 e 1

- Quanto mais próximo de –1: maior correlação negativa
- Quanto mais próximo de 1: maior correlação positiva
- Quanto mais próximo de 0: menor a correlação linear

Fonte: Prof. Marcos Portnoi

Análise de Correlação: Gráfico de Dispersão

Análise de Correlação

Correlação	Interpretação
0,00 a 0,19 ou 0,00 a -0,19	Correlação bem fraca
0,20 a 0,39 ou -0,20 a -0,39	Correlação fraca
0,40 a 0,69 ou -0,40 a -0,69	Correlação moderada
0,70 a 0,89 ou -0,70 a -0,89	Correlação forte
0,90 a 1,00 ou -0,90 a -1,00	Correlação muito forte

Correlação Não é Causa

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

2. Regressão Linear

2. Regressão Linear e Análise de Correlação

Correlação e regressão estão intimamente relacionados.

- A Correlação resume as relações entre 2 variáveis.
- A Regressão é utilizada para prever os valores de uma variável dados os valores da outra.
 - Prever o valor de uma variável dependente com base no valor de, pelo menos, uma variável independente.
 - Explicar o impacto das mudanças em uma variável independente (x) sobre a variável dependente (y).

2. Regressão Linear e Análise de Correlação

Prever o Preço de Imóveis

2. Regressão Linear

Onde,

$$\beta_0 = \bar{y} - \beta_1 \bar{x}$$

$$\beta_1 = \frac{\Sigma(x - \bar{x})(y - \bar{y})}{\Sigma(x - \bar{x})^2}$$

Modelo de Regressão Linear

