

1

Digital Signatures

OVERVIEW

Apr-24

Digital signatures

The problem

- Alice and Bob share a secret key k
- Alice receives and decrypts a message which makes semantic sense
- Then, Alice concludes that the message comes from Bob
- Message origin authetication → message integrity
 - Beware, we know that ciphers are malleable!
- MDC / MAC does not change the reasoning

Apr-24 Digital signatures

3

The problem

- The reasoning above works under the assumption of mutual trust
 - If a dispute arise, Alice cannot prove to a third party that Bob generated the message
- There are practical cases in which Alice and Bob wish to securely communicate but they don't trust each other
 - E.g., e-commerce: customer and merchant have conflicting interests

Apr-24 Digital signatures 4

The problem

- Provability/verifiability requirement
 - If a dispute arises an unbiased third party must be able to solve the dispute equitably, without requiring access to the signer's secret
- Symmetric cryptography is of little help
 - Alice and Bob have the same knowledge and capabilities
- Public-key cryptography is the solution
 - Make it possible to distinguish the actions performed by who knows the private key

Apr-24 Digital signatures

5

Digital signature scheme

- A signature scheme is defined by three algorithms
- · Key generation algorithm G
 - takes as input 1ⁿ and outputs (pubk, privk)
- Signature generation algorithm S
 - takes as input a private key privk and a message x and outputs a signature σ = S(privk, x)
- Signature verification algorithm V
 - takes as input a public key pubk, a signature σ and (optionally) a message x and outputs True or False

Apr-24 Digital signatures 6

7

Properties

- Consistency Property
 - For all x and (pubk, privk), V(pubk, [x] S(privk, x)) = TRUE
- Security property (informal)
 - Even after observing signatures on multiple messages, an attacker should be unable to forge a valid signature on a new message

Apr-24

Digital signatures

8

Threat model

- Adaptive chosen-message attack
 - The attacker is able to induce the sender to sign messages of the attacker's choice
 - The attacker knows the public key
- Existential unforgeability (security goal/req)
 - Attacker should be *unable* to forge valid signature on *any* message not signed by the sender

Apr-24 Digital signatures

9

Security property implies...

- Integrity
- Verifiability
- Non-repudiation
- No confidentiality
 - Use a cipher (AES, 3DES,...) if confidentiality is a requirement

Apr-24

Digital signatures

10

Algorithm families

- Integer factorization
 - RSA
- Discrete logarithm
 - ElGamal, DSA
- Elliptic curves
 - ECDSA

Apr-24

Digital signatures

11

11

Digital signatures

NON-REPUDIATION VS AUTHENTICATION

Apr-24

Digital signatures

12

Non-repudiation

 Non-repudiation prevents a signer from signing a document and subsequently being able to successfully deny having done so.

Apr-24 Digital signatures

13

Non-repudiation vs authentication

- Authentication
 - Based on symmetric cryptography
 - Allows a party to convince itself or a mutually trusted party of the integrity/authenticity of a given message at a given time $t_{\rm o}$
- Non-repudiation
 - based on public-key cryptography
 - allows a party to convince others at any time $t_1 \ge t_0$ of the integrity/authenticity of a given message at time t_0

Apr-24 Digital signatures 14

Dig sig vs non-repudiation

- Data origin authentication as provided by a digital signature is valid only while the secrecy of the signer's private key is maintained
- A threat that must be addressed is a signer who intentionally discloses his private key, and thereafter claims that a previously valid signature was forged
- This threat may be addressed by
 - Prevent direct access to the key
 - Use of a trusted timestamp agent
 - Use of a trusted notary agent

Apr-24 Digital signatures

15

Trusted Notary Service

- Trent certifies that a certain statement on the digital signature s is true at a certain time t0
 - TNS generalize the TTS
 - Examples of statements
 - Signature s exists at time t0
 - · Signature s is valid at time t0
- Trent may certify the existence of a certain document
 - t = H(document), σ = S(privKT, t || timestamp)
 - Document remains secret
- Trent is trusted to verify the statement before issuing it Apr-24

Digital signatures

17

Digital Signatures

COMPARISON TO MAC

Apr-24

Digital signatures

18

Digital signatures

- Provide integrity in the public-key setting
- Analogous to message authentication codes (MACs) but some key differences...

Apr-24 Digital signatures

19

21

Comparison to MACs

- · Single shared key k
 - A client may forge the tag
 - Unfeasible if clients are not trusted
- Point-to-point keys k_i
 - Computing and network overhead
 - Prohibitive key management overhead
 - Unmanageable!

Apr-24

Digital signatures

23

Comparison to MACs

- Public verifiability
 - Dig Sig: anyone can verify the signature
 - MAC: Only a holder of the key can verify a MAC tag
- Transferability
 - Dig Sig can forward a signature to someone else
 - MAC cannot

%

Apr-24

Digital signatures

24

Comparison to MACs

- · Non-repudiability
 - Signer cannot (easily) deny issuing a signature
 - · Crucial for legal application
 - Judge can verify signature using a copy of pK
 - MACs cannot provide this functionality
 - Without access to the key, no way to verify a tag
 - Even if receiver leaks key to judge, how can the judge verify the key is correct?
 - Even if the key is correct, receiver could have generated the tag!

Apr-24 Digital signatures 2

25

Digital signatures

THE RSA SIGNATURE SCHEME

Digital signatures

26

Apr-24

Plain RSA

- Key generation
 - (e, n) public key; (d, n) private key
- Signing operation
 - $-\sigma = x^d \mod n$
- Verification operation
 - Return (x == $\sigma^e \mod n$)

Apr-24

Digital signatures

27

Properties

- Computational aspects
 - The same considerations as PKE
- Security
 - Algorithmic attacks
 - Factoring
 - Existential forgery
 - Malleability

Apr-24

Digital signatures

28

Existential forgery

- Given public key (n, e), generate a valid signature for a random message x
 - Choose a signature σ
 - Compute $x = \sigma^e \mod n$
 - Output (x, σ)
 - It turns out that σ is positively verified as the digital signature of x
 - Message x is random and may have no application meaning.
 - However, this property is highly undesirable

Apr-24 Digital signatures

29

Malleability

- Combine two signatures to obtain a third (existential forgery)
 - Exploit the homomorphic property of RSA
- The attack
 - Given $\sigma_1 = x_1^d \mod n$
 - Given $\sigma_2 = x_2^d \mod n$
 - Output σ_3 ≡ ($\sigma_1 \cdot \sigma_2$) mod n that is a valid signature of x_3 ≡ ($x_1 \cdot x_2$) mod n
 - PROOF. $x_3 = \sigma_3^e \equiv (\sigma_1 \bullet \sigma_2)^e \equiv \sigma_1^e \bullet \sigma_2^e \equiv x_1^{de} \bullet x_2^{ed} \equiv x_1 \bullet x_2 \mod n$

Apr-24 Digital signatures 30

RSA Padding

- Plain RSA is never used
 - Because of existential forgery and malleability,
- Padding
 - Padding allows only certain message formats
 - It must be difficult to choose a signature whose corresponding message has that format
 - Probabilistic Signature Scheme in PKCS#1
 - Encoding Method for Signature with Appendix (EMSA)

Apr-24 Digital signatures 31

31

Digital Signatures

DIGITAL SIGNATURES VS HASH FUNCTIONS

Apr-24 Digital signatures

33

Signing long messages

- · Consider RSA digsig
 - Message $0 \le x < n$
 - E.g., n = 1024-3072 bits (128-384 bytes)
 - What if x > n?
 - An ECB-like approach is not recommended
 - 1. High-computational load (performance)
 - 2. Message overhead (performance)
 - 3. Block reordering and substitution (security)
- We would like to have a short signature for messages on any length
- The solution of this problem is hash functions

Apr-24 Digital signatures

34

Dig sig vs hash properties

- Hash functions properties
 - Pre-image resistance
 - Second pre-image resistance
 - Collision resistance
- These properties are crucial for digital signatures security

Apr-24

Digital signatures

35

35

Dig sig vs hash properties

- Pre-image Resistance
 - Digital signature scheme based on (school-book) RSA
 - (n, d) is Alice's private key;
 - (n, e) is Alice's public key
 - Tag t = H(x), s = t^d (mod n)
 - If H is not pre-image resistant, then existential forgery is possible
 - Select z < n
 - Compute y = ze mod n
 - Find x' such that H(x') = y (←)
 - Claim that z is the digital signature of m' Q.E.D

Apr-24

Digital signatures

36

Dig sig vs hash properties

- 2nd preimage resistance
 - The protocol
 - Bob → Alice: x
 - Alice \rightarrow Bob: x, s = S(privK_A, t) with t = H(x)
 - If H is not 2nd-preimage resistant, the following attack is possible
 - An adversary (e.g., Alice herself) can determine a 2nd-preimage x'
 of x and then (←)
 - Then claim that Alice has signed x' instead of x Q.E.D

Apr-24 Digital signatures 3

37

Dig sig vs hash properties

- Collision-resistance
 - If H is not collision resistant, the following attack is possible

Q.E.D

- Alice chooses x and x' s.t. H(x) = H(x')
- computes s = S(privK_A, H(x))
- Sends (x, s) to Bob
- later claims that she actually sent (x', s)

Apr-24 Digital signatures 38

Hash-and-Sign paradigm

- Given a signature scheme Σ = (G, S, V) for "short" messages of length n-bit
- Given a Hash function H: {0, 1}* → {0, 1}ⁿ
- Construct a signature scheme $\Sigma' = (G, S', V')$ for messages of any length
 - $-\sigma = S'(privK, m) = S(privk, H(m))$
 - $V'(m, pubK, \sigma) = V(H(m), pubK, \sigma)$

Apr-24 Digital signatures 3

39

Hash-and-sign paradigm

- THM. If Σ is secure and H is collision-resistant, then Σ' is secure
 - PROOF by contradiction
 - 1) Assume that the sender authenticates m₁, m₂,...
 - 2) Assume the sender manages to forge (m', σ'), m' \neq m_i, for all i
 - 3) Let $h_i = H(mi)$. Then, we have two cases
 - 1) If $H(m') = h_i$ for some i, then collision in H (contradiction)
 - 2) If $H(m') \neq h_i$, for all i, then forgery in Σ (contradiction)

Apr-24 Digital signatures 40

Digital signatures

RSA-BASED BLIND SIGNATURES

Apr-24 Digital signatures 4

41

Blind signatures

- Intuition
 - In a blind signature scheme, the signer can't see what it is signing
- Unlinkabiliy
 - The signer is not able to link the signature to the act of signing

Apr-24

Digital signatures

42

43

Blind signatures

- The protocol
 - 3. Alice
 - a) Receive s'
 - b) Compute s, the digital signature of x, $s \equiv s' \cdot b^{-1} \pmod{n}$
- Proof

$$\begin{split} &-s'\cdot b^{\text{-}1}\equiv (x')^d\cdot b^{\text{-}1}\equiv (x\cdot b^e)^d\cdot b^{\text{-}1}\equiv x^d\cdot b^{\text{ed}}\cdot b^{\text{-}1}\equiv \\ &\equiv x^d\cdot b\cdot b^{\text{-}1}\equiv x^d\equiv s \text{ mod } n \end{split}$$
 QED

Apr-24

Digital signatures

45

45

Applications

- Privacy related applications
 - Digital cash
 - Chaum, David (1983). "Blind Signatures for Untraceable Payments." Advances in Cryptology.
 - Electronic voting

Apr-24

Digital signatures

46

47

Double spending

- The protocol does not prevent double spending
 - the customer can spend the digital coin multiple times
 - The merchant can deposit the digital coin multiple times
- · Partial countermeasure
 - The issuer maintains the list of spent digital coins
 - · Protect the bank from frauds
 - · Don't allow issuer to identify the fraudster

Apr-24 Digital signatures

49

Double spending

- Purely criptographic solutions based on
 - Secret splitting
 - Bit commitment
 - Cut-and-choose
 - Inefficient but great impulse to cryptography
- · Hardware solutions
 - The Mondex smart card e-cash system
 - 90's technology; never left the experimental phase
- Bitcoin and blockchain

Apr-24 Digital signatures 50

Secret splitting [→]

- Each piece alone gives no information on the message
- Both pieces make it possible to reconstruct the message

Apr-24

Digital signatures

51

51

Secret splitting

- EXAMPLE
- Creating L and R
 - Message M
 - $-R \leftarrow random()$
 - $-L=M\oplus R$
- Message reconstruction
 - $-M=L\oplus R$

Apr-24

Digital signatures

52

Bit commitment $[\rightarrow]$

- Alice thinks of a number and Bob has to guess it.
- Alice thinks about the number but doesn't want to reveal it.

 Bob guesses the number but wants to be sure Alice doesn't change it

Apr-24

Digital signatures

53

53

Bit Commitment $[\rightarrow]$

- Perfectly binding
 - It is theoretically impossible for Alice to alter her commitment after she makes it
- Perfectly concealing
 - It is theoretically impossible for Bob to find commitment without Alice revealing it
- THM There exists no commitment scheme which is both perfectly binding and perfectly hiding

Apr-24

Digital signatures

54

Bit Commitment: toy example • Example (Perfectly binding) - Parameters • p: large prime • g: a generator - Commitment phase • Alice randomly selects b in [0, p − 1] • Alice computes commitment c = g^b mod p • Alice publishes c - Reveal Phase • Alice publishes p • Bob checks whether c == g^b mod p - Not perfectly concealing as ≤_p DLP.

55

On solving double spending

- Coin = [coin, identity string, h(coin, identity string)d]
- Uniqueness bit string: coin ← random()
- · Identity bit strings
 - $-I_i \rightarrow \langle I_{iL}, I_{iR} \rangle$
 - $-(C1_L, C_{1R}), (C_{2L}, C_{2R}), ..., (C_{100L}, C_{100R})$
 - Pairs are different from each other
- Setup (money order)
 - Alice prepares 100 blank coin

Apr-24

Digital signatures

57

57

On solving double spending: cutand-choose

At the end of the protocol, the bank is 99% convinced that the undisclosed commitment contains Alice's identity

Apr-24

Digital signatures

58

59

On solving double spending: bank's controls

- 1. The bank verifies the digital signature
- 2. If the coin has not yet been spent
 - the bank credits an amount equal to the denomination to Bob
- 3. Otherwise (double spending)
 - 1. if the identity strings are the same
 - 1. then the fraudster is the merchant Bob;
 - 2. otherwise
 - the fraudster is Alice

Apr-24

Digital signatures

61

61

On solving double spending: fraudster detection

- In case the coin has already been spent
- If the identity strings are the same, then the fraudster is Bob, otherwise
- If the identity strings are different, then the fraudster is Alice
 - The bank finds a position in the identity string where Alice has revealed the right and left pieces of her identity with probability $1 (\%)^{100}$
 - From the two pieces the bank determines Alice's identity

Apr-24

Digital signatures

62

Digital signatures

THE ELGAMAL SIGNATURE SCHEME

Apr-24 Digital signatures

64

Elgamal in a nutshell

- Invented in 1985
- Based on difficulty of discrete logarithm
- Digital signature operations are different from the cipher operations

Apr-24

Digital signatures

65

Key generation

- Choose a large prime p
- Choose a primitive element α of (a subgroup of) \mathbb{Z}_n^*
- Choose a random number $d \in \{2, 3,...,p-2\}$
- Compute $\beta = \alpha^d \mod p$
- pubK = (p, α, β)
- privK = d

Apr-24

Digital signatures

66

66

Signature generation

- Input message x
- Choose an ephemeral key k_E in $\{0, 1, 2, p-2\}$ such that $gcd(k_F, p-1) = 1$
- Compute the signature parameters
 - $r \equiv \alpha^{kE} \mod p$
 - $s \equiv (x d \cdot r)k_{F}^{-1} \mod p 1$
 - (r, s) is the digital signature
- Output (x, (r, s))

Apr-24

Digital signatures

67

Signature verification

- Let
 - (p, α , β) be the public key;
 - x be the message and
 - (r, s) be the digital signatire
- Compute $t \equiv \beta^r \cdot r^s \mod p$
- If (t ≡ α^x mod p) → valid signature;
 otherwise → invalid signature

Apr-24

Digital signatures

68

68

Proof

- 1. Let $t \equiv \beta^r \cdot r^s \equiv (\alpha^d)^r (\alpha^{kE})^s \equiv \alpha^{d \cdot r + kE \cdot s} \mod p$
- 2. If $\beta^r \cdot r^s \equiv \alpha^x \mod p$ then $\alpha^x \equiv \alpha^{d \cdot r + kE \cdot s} \mod p$ [Eq. a]
- 3. According to Fermat's Little Theorem Eq.a holds if $x \equiv d \cdot r + k_F \cdot s \mod p 1$
- 4. from which the construction of parameter $s = (x d \cdot r)k_F^{-1} \mod p 1$

Apr-24

Digital signatures

69

Computational aspects

- Key generation
 - Generation of a large prime (1024 bits)
 - True random generator for the private key
 - Exponentiation by square-and-multiply
- Signature generation
 - |s| = |r| = |p| thus |x, (r, s)| = 3 |x| (dig sig expansion)
 - One exponentiation by square-and-multiply
 - One inverse k_F-1 mod p by EEA (pre-computation)
- · Signature verification
 - Two exponentiations by square-and-multiply
 - One multiplication

Apr-24

Digital signatures

70

70

Security aspects

- The verifier must have the correct public key
- · The DLP must be intractable
- Ephemeral key K_F cannot be reused (\rightarrow)
 - If K_E is reused the adversary can compute the private key d and impersonate the signer
- Existential forgery for a random message x unless it is hashed (→)

Apr-24

Digital signatures

71

Reuse of ephemeral key

- If the ephemeral key k_E is reused, an attacker can easily compute the private key d
 - Proof
 - Message x₁ and x₂ and the reused ephemeral key k_E

Apr-24 Digital signatures 7

72

Existential Forgery Attack [→]

The attack Alice **Adversary** privK = d, pubK = (p, α, β) < -----(p, α, β)------1. select i, j, s.t. gcd(j, p - 1) = 12. compute the signature $r \equiv \alpha^i \cdot \beta^j \mod p$ $s \equiv -r \cdot j^{-1} \mod p - 1$ 3. compute the message $x \equiv s \cdot i \mod p - 1$ verification <-----(x, (r, s))---- $t \equiv \beta^r \cdot r^s \mod p$ since $t \equiv \alpha^x \mod p$ valid signature! Apr-24 73 Digital signatures

Existential forgery attack

Proof

$$\begin{split} \mathbf{t} &\equiv \beta^{\mathbf{r}} \cdot \mathbf{r}^{\mathbf{s}} \equiv (\alpha^{\mathbf{d}})^{\mathbf{r}} \cdot (\alpha^{\mathbf{i}} \cdot \beta^{\mathbf{j}})^{\mathbf{s}} \equiv (\alpha^{\mathbf{d}})^{\mathbf{r}} \cdot (\alpha^{\mathbf{i}} \cdot \alpha^{\mathbf{d} \cdot \mathbf{j}})^{\mathbf{s}} \equiv \alpha^{\mathbf{d} \cdot \mathbf{r}} \cdot (\alpha^{\mathbf{i} + \mathbf{d} \cdot \mathbf{j}})^{\mathbf{s}} \\ &\equiv \alpha^{\mathbf{d} \cdot \mathbf{r}} \cdot (\alpha^{\mathbf{i} + \mathbf{d} \cdot \mathbf{j}})^{\mathbf{s}} \equiv \alpha^{\mathbf{d} \cdot \mathbf{r}} \cdot \alpha^{-\mathbf{i} \cdot \mathbf{j} - \mathbf{i}} \equiv \alpha^{\mathbf{s} \cdot \mathbf{i}} \mod p \text{ [Eqn. a]} \end{split}$$

- As the message was constructed as $x \equiv s \cdot i \mod p$ then Equation a $\alpha^{s \cdot i} \equiv \alpha^x \mod p$ which is the condition to accept the signature as valid
- In Step 3, the adversay computes message x whose semantics (s)he cannot control
- The attack is not feasible if the message is hashed $-s \equiv (H(x) d \cdot r)k_F^{-1} \mod p 1$

Apr-24

Digital signatures

74

74

Digital Signatures

DIGITAL SIGNATURE ALGORITHM (DSA)

Apr-24

Digital signatures

75

Introduction

- The Elgamal scheme is rarely used in practice
- DSA is a more popular variant
 - It's a federal US government standard for digital signatures (DSS)
 - It was proposed by NIST
- Advantages of DSA w.r.t. Elgamal
 - Signature is only 320 bits
 - Some attacks against Elgamal are not applicable to DSA

Apr-24 Digital signatures 7

76

Key Generation

- 1. Generate a prime p with $2^{1023} .$
- 2. Find a prime divisor q of p-1 with $2^{159} < q < 2^{160}$.
- 3. Find an element α with ord(α) = q, i.e., α generates the subgroup with q elements.
- 4. Choose a random integer d with 0 < d < q.
- 5. Compute $\beta \equiv \alpha^d \mod p$.
- 6. The keys are now:
 - 1. pubK = (p,q,α,β)
 - 2. privK = (d)

Apr-24 Digital signatures 77

Central idea

- DSA uses two cyclic groups
 - $-\mathbb{Z}_p^*$, the order of which has bit lenght 2014 bit
 - H_{α}, a 160-bit subgroup of \mathbb{Z}_p^*
 - This setup yields shorter signatures
- Other combinations are possible

_	р	q	signature
_	1024	160	320
_	2048	224	448
_	3072	256	512

Apr-24 Digital signatures

78

Signature Generation

- 1. Choose an integer as random ephemeral key k_E with $0 < k_F < q$.
- 2. Compute $r \equiv (\alpha^{kE} \mod p) \mod q$.
- 3. Compute $s \equiv (SHA(x) + d \cdot r)k_E^{-1} \mod q$.
 - SHA-1(⋅) produces a 160-bit value
- 4. Digital signature is the pair (r, s)
 - 160 + 160 = 320 bit long

Digital signatures 79

79

Apr-24

Signature Verification

- 1. Compute auxiliary value $w \equiv s^{-1} \mod q$.
- 2. Compute auxiliary value $u_1 \equiv w \cdot SHA(x) \mod q$.
- 3. Compute auxiliary value $u_2 \equiv w \cdot r \mod q$.
- 4. Compute $v \equiv (\alpha^{u1} \cdot \beta^{u2} \mod p) \mod q$.
- 5. The verification follows from:
 - 1. If $v \equiv r \mod q \rightarrow valid signature$
 - 2. Otherwise → invalid signature

Apr-24 Digital signatures

80

Proof $[\rightarrow]$

- We show that a signature (r, s) satisfies the verification condition v ≡ r mod q.
 - s ≡ (SHA(x)+d r) k_E^{-1} mod q which is equivalent to $k_E \equiv s^{-1}$ SHA(x)+d s^{-1} r mod q.
 - The right-hand side can be expressed in terms of the auxiliary values u1 and u2: $k_E \equiv u_1+du_2 \mod q$.
 - We can raise α to either side of the equation if we reduce modulo p: α^{kE} mod p ≡ α^{u1+d} u² mod p

 $[\rightarrow]$

Apr-24 Digital signatures 81

Proof

- Since the public key value β was computed as $β ≡ α^d \mod p$, we can write: $α^{kE} ≡ α^{u1} β^{u2} \mod p$.
- We now reduce both sides of the equation modulo q: $(\alpha^{kE} \mod p) \mod q \equiv (\alpha^{u1}\beta^{u2} \mod p) \mod q.$
- Since r was constructed as r ≡(α^{kE} mod p) mod q and v≡($\alpha^{u1}\beta^{u2}$ mod p) mod q,
- this expression is identical to the condition for verifying a signature as valid: r ≡ v mod q.

Apr-24 Digital signatures 8

82

Computational aspects $[\rightarrow]$

- Key Generation
 - The most challenging phase
 - Find a \mathbb{Z}_p^* with 1024-bit prime p and a subgroup in the range of 2^{160}
 - This condition is fulfilled if $\|\mathbb{Z}_p^*\| = \|\mathbf{p} \mathbf{1}\|$ has a prime factor q of 160 bit
 - General approch:
 - · To find q first and then p

Apr-24 Digital signatures 83

Computational aspects [→]

- Signing
 - Computing r requires exponentiation
 - Operands are on 1024 bit
 - Exponent q is on 160 bit
 - On average 160 + 80 = 240 SQs and MULTs
 - · Result is reduced mod q
 - Does not depend on message x so can be precomputed
 - Computing s
 - Involve 160-bit operands
 - The most costly operation is inverse

Apr-24

Digital signatures

84

84

Computational aspects

- Verification
 - Computing the auxiliary parameters w, u₁ and u₂ involves 160-bit operands
 - This is relatively fast

Apr-24

Digital signatures

85

Security

- We have to protect from two different DLPs
 - 1. $d = \log_{\alpha} \beta \mod p$.
 - Index calcolus attack
 - Prime p must be on 1024 bits for 80-bit security level
 - 2. α generates a subgroup of order q
 - Index calculus attack cannot be applied
 - Only generic DLP attacks can be used
 - Square-root attacks: Baby-step giant-step, Pollard's rho
 - Running time: $\sqrt{q} = \sqrt{2^{160}} = 80$
- Vulerable to k_E reuse
 - Analalogue to ElGamal

Apr-24 Digital signatures

86

Apr-24 Digital signatures 87

88

