

CAP 11. APLICAÇÕES BASEADAS EM SERVIDOR DE STREAMING

INE5431 Sistemas Multimídia

Prof. Roberto Willrich (INE/UFSC)

roberto.willrich@ufsc.br

https://moodle.ufsc.br

Aplicações Baseadas em Servidores Multimídia

UFSC

- Duas formas de transmissão
 - Transmissão assíncrona (download)
 - informação é primeiro transferida, então armazenada no receptor, e apresentada
 - mais simples de implementar
 - Síncrona ou tempo-real (streaming)
 - parte ou toda a informação é transferida em tempo-real sobre a rede e apresentada continuamente no receptor

Aplicações Baseadas em Servidores Multimídia

- Transmissão assíncrona
 - Em multimídia é usado para pequenas sequências
 - facilmente armazenadas no receptor
 - atrasos de 3 a 4 seg. no início da apresentação são toleráveis
 - em boas condições pode dar a impressão de reação tempo real

Transmissão Síncrona (Streaming de mídia)

UFSC

- Definição de streaming de mídia (fluxo de mídia)
 - Forma de transmissão onde a mídia é recebida e apresentada no usuário final (não aguarda o final da transmissão para a apresentação)
- Player de Mídia
 - Cliente precisa usar um player que apresente a mídia antes da carga total

Aplicações Baseadas em Servidores Multimídia

- Transmissão síncrona

- Necessário para:
 - sequências muito grandes,
 - redes muito lentas, ou
 - pouca capacidade de armazenamento

Transmissão Síncrona (Streaming de mídia)

- -/Impactos
 - Impactou na redução de uso de DVDs de vídeos
 - Reduziu a indústria de DVD em prol da disponibilização online
 - Impactou na redução da audiência da TV
 - Com possibilidade de assistir vídeos sob demanda

Problemas na Transmissão Síncrona

- Variações de atraso muito grande
 - Podem gerar atrasos consideráveis devido à necessidade de aumento do tempo de buferização
 - Descarte de pacotes no buffer que chegam além do tempo de apresentação
 - Descontinuidade na apresentação dos vídeos (Perda de sincronismo intra-mídia)
 - Perda de sincronismo intermídia se transmitidos em pacotes separados

Problemas na Transmissão Síncrona

- Perdas de pacotes
 - Gera perda de qualidade de som e imagem

- Tipos
 - Download progressivo (pseudo streamig)
 - Streaming de mídia

- Streaming de mídia

 Utiliza servidores de streaming que adotam protocolos de streaming, como o RTP

Download progressivo (pseudo streamig)

- Transferência da mídia do servidor ao cliente usando o protocolo HTTP
 - sendo que o cliente inicia a apresentação da mídia antes do download ser completado
- Possível graças a transmissão primeiro dos metadados (descritores)
- Se a taxa de transmissão é menor que a da mídia
 - há uma interrupção da apresentação, se a taxa é maior existe um uso maior de recursos
- Servidores: Apache, lighttpd, nginx, nible streamer
- Protocolos:
 - Dynamic Adaptive Streaming over HTTP (DASH), ou MPEG-DASH, uma técnica de streaming adaptativo que permite realizar streaming através de servidores Web HTTP convencionais
 - HTTP Live Streaming (HLS): protocolo de streaming baseado no HTTP criado pela Apple, usando um servidor Web convencional

- Download progressivo (pseudo streamig)
 - MPEG-DASH

- Produtos a serem usados:
 - Software de codificação de streaming de mídia: para converter o vídeo em uma codificação compatível com streaming
 - Servidor de Streaming de Mídia
 - Streaming media player, para o usuário visualizar a mídia

Sistema de Streaming de mídia

Nome	Primeira Versão	Última versão estável	Mídia	
Adobe Media Server	2002-07-9	2020-2-15	Video	
atmosph3re	2005-08-15	3.0.7 (2015-10-31)	Audio	
Cameleon	2014-04-01	1.0.7 (2016-11-11)	Audio/Video	
Darwin Streaming Server	1999-03-16	6.0.3 (2007-05-10)	Audio/Video	
Feng	2007-05-31	2009-10-14	Audio/Video	
<u>Firefly</u>	?	0.2.4.2 (2008-04-19)	Audio	
Helix DNA Server	2003-01-22	11.1 (2006-06-10)	Audio/Video	
Helix Universal Server	1994-01-01	15.2.1 (2014-09-16)	Audio/Video	
<u>lcecast</u>	1998-12	2.4.2 (2015-06-27)	S-27) Audio	
IIS Media Services	2008-11-07	4.1 (2011-11-09)	Audio/Video/Data	
Logitech Media Server	?	2014-11-28	Audio	
Nimble Streamer	2013	2020-10-27	Audio/Video	
<u>OpenBroadcaster</u>	2003	2020-10-06	Audio/Video	
Open Broadcaster Software	2012-9-01	0.657 (2015-11-24)	-11-24) Audio/Video	
Plex (software)	2008-07-08	1.15.6.1079 (2019-05-15)	Audio/Video	
Red5 (open source)	2003-09-22	1.0.9 (2017-06-11)	Audio/Video/Data	
SHOUTcast	1998-12	2.4.7 (Build 256) (2015-03-31)	Audio	
Unified Streaming Platform	2012	1.7.18 (2016-04-11)	Audio/Video	
Unreal Media Server	2003-09-15	2020-04-14	Audio/Video	
VLC media player	?	2020-06-15	Audio/Video	
Windows Media Services	1996-12-10	9.6 (2010-04-05) Audio/Video		
Wowza Streaming Engine	2007-02-17	2020-06-17	Audio/Video/Data	

RTSP (Real-Time Streaming Protocol)

UFSC

Origem

- Proposta de padrão IETF para controle de fluxo de mídia sobre redes IP
 - Comandos: Describe, setup, play, pause, record, teardown
- Submetido em 1996 pela RealNetworks e Netscape Communications Corporation e com o suporte de 40 companhias
- Recomendação IETF em Abril/98 (RFC 2326)

Implementações:

- Wowza Streaming Engine
- Nimble Streamer
- VideoLAN (open source)
- QuickTime Streaming Server (Apple Mac OS X Server)
- Darwin Streaming Server (Open Source do primeiro)
- Helix DNA Server (RealNetwork Open Source)
- Windows Media Services (Microsoft)
- Youtube

Servidores de Streaming

- reprodutor multimídia livre, de código aberto, multi-plataforma, e um arcabouço que reproduz a maioria dos arquivos de mídia, bem como DVD, CD de áudio, VCD e vários protocolos de fluxo de rede
- Características (http://www.videolan.org/vlc/features.html)
 - Entrada: UDP/RTP Unicast, UDP/RTP Multicast, HTTP / FTP, MMS, TCP/RTP Unicast, DCCP/RTP Unicast, File, DVD Video, Video CD / VCD, SVCD, Audio CD (no DTS-CD), DVB (Satellite, Digital TV, Cable TV), MPEG encoder, Video acquisition
 - codecs: MPEG (ES,PS,TS,PVA,MP3), AVI, ASF / WMV / WMA, MP4 / MOV / 3GP, OGG / OGM / Annodex, Matroska (MKV), Real, WAV (including DTS), Raw Audio: DTS, AAC, AC3/A52, Raw DV, FLAC, FLV (Flash), MXF, Nut, Standard MIDI / SMF, Creative™ Voice.
 - Vários S.O.: MacOS X, Windows, Linux , BeOS
 - Fontes disponíveis

Modelo de Servidor Multimídia

- Principais componentes
 - Dispositivos de armazenamento
 - Escalonador
 - determina qual fluxo é o próximo a ser servido
 - caso existam vários fluxos sendo transmitidos simultaneamente
 - Buffer de suavização

Dispositivos de armazenamento

Buffers de suavização

Escalonador

Escalonador

Modelo de Servidor Multimídia

UFSC

Principais componentes

- Buffer de suavização
 - leitura de dados dos dispositivos de armazenamento é realizada em rajada para fluxos individuais
 - buffers de suavização são usados para transmitir fluxos de mídias contínuas para aplicações ou para um sistema de transporte
 - dado será transmitido para a rede na mesma taxa que ele deve ser apresentado no cliente

Modelo de Servidor Multimídia

UFSC

- Meta do servidor

 Servir simultaneamente tantos fluxos quanto possível satisfazendo os requisitos de continuidade dos fluxos e guardando os requisitos de bufferização ao mínimo

Para obter isto:

 dispositivos de armazenamento apropriados, posicionamento dos dados nestes dispositivos e técnicas de escalonamento devem ser usados

Dispositivos de armazenamento

Dispositivos de armazenamento

- Discos magnéticos são melhores para multimídia
 - Permitem acesso randômico rápido e tem altas taxas de transferência
- Discos óticos
 - O tempo de acesso é grande e a taxa de transferência é baixa
- Tapes tem acesso sequencial
 - Tapes têm a mais alta capacidade de armazenamento
 - mas não podem ser acessados randomicamente
 - taxa de transferência é baixa

Posicionamento de dados no disco

- Posicionamento de dados no disco
 - Um arquivo é quebrado em um conjunto de blocos de armazenamento
 - Existem dois métodos gerais para posicionar estes blocos:
 - colocados continuamente em um disco
 - espalhados ao redor do disco
 - Variações destes dois métodos foram propostos para streaming
 - para aumentar o desempenho

Algoritmos de escalonamento de disco tradicionais

- UFSC
- Algoritmos de escalonamento de disco mais comuns
 - FCFS (First-Come-First-Served)
 - pedidos são servidos de acordo com sua ordem de chegada
 - ignora o movimento e a localização do cabeçote do disco
 - tempo médio de busca é alto

S	equ	ıên	cia	1 :
8	_			
6				
20	O			
14	1			
26	6			
10)			

Algoritmos de escalonamento de disco tradicionais

- UFSC
- Algoritmos de escalonamento de disco mais comuns
 - SSTF (Shortest Seek Time First)
 - tenta minimizar o tempo de busca servindo o pedido cujo dado está mais próximo da localização atual do cabeçote
 - favorece o pedido no meio de um disco
 - quando o servidor é muito carregado a transferência de dados nas trilhas mais internas e mais externas não são servidos

Algoritmos de escalonamento de disco tradicionais

- Algoritmos de escalonamento de disco mais comuns

Scan

- tenta minimizar o tempo de busca servindo pedidos na ordem do movimento dos cabeçotes do disco
- ele serve primeiro todos os pedidos em uma direção até que todos os pedidos sejam servidos nesta direção
- movimento dos cabeçotes é invertido e serve os pedidos nesta direção

Algoritmos de escalonamento de disco

- -/Algoritmos de escalonamento de disco comuns
 - Não levam em consideração a temporização de cada fluxo
 - eles não podem ser diretamente utilizados para escalonamento de servidores multimídia
 - a não ser que seja limitado o número de pedidos

Algoritmos de escalonamento de disco

- Algoritmos mais adaptados para tempo-real
 - Algoritmo EDF (Earliest Deadline First)
 - escalona para primeiro o bloco de mídia com deadline mais próximo
 - não leva em consideração a posição do cabeçote
 - Scan-EDF
 - Combina Scan e EDF para reduzir tempo de busca médio do EDF
 - Mais adequados para servidores multimídia
 - Algoritmo Round-Robin
 - Escalonamento GSS (Group Sweeping Scheduling)

Vídeo/Filme sob demanda (VOD)

UFSC

Q que é VOD

- Serviços de vídeo/filme sob demanda quebram a limitação da TV e fornecer outras funcionalidades
 - Uma grande coleção de vídeos são armazenados em servidores de vídeo
 - Usuários ou clientes acessam estes vídeos através de uma rede.
- As principais vantagens de VOD são:
 - Não temos que sair de casa para assistir nosso filme favorito
 - televisor seria conectado ao servidor de vídeo através de uma rede
 - necessitaríamos apenas selecionar o vídeo através de um menu na TV
 - Oferecimento de uma grande coleção de vídeos, atualizada e sempre disponível
 - Podemos assistir nosso filme predileto a qualquer instante que desejarmos
 - Podemos interromper, avançar e voltar à traz, ou mesmo pular para uma determinada cena
 - Temos alta qualidade, pois vídeos são armazenados digitalmente.

Vídeo sob-demanda (VOD)

- Qualidade necessária e taxa de bits associada
 - Netflix recomenda banda mínima de 1,5 Mbps, DVD (480p) 3Mbps, HD (1080p) 5Mbps, 3D streaming 12Mbps, 4k 25Mbps.
- Verdadeiros VOD
 - 1 streaming para cada usuário
 - São extremamente custosos
 - Em termos de poder para acessar e ler o dispositivo de armazenamento, poder de processamento nos servidores e consumo de tamanho de banda na rede
 - Em hora de pico vários pedidos de um vídeo popular pode existir:
 - centenas de fluxos distintos com distâncias de poucos segundos (comutação de fase)

Vídeo sob-demanda (VOD)

- Near video on demand (NVOD)
 - Vídeo é transmitido em diversos canais.
 - Cada canal transmite o vídeo com diferença de 10 a 20 minutos
 - Reduz o número de comutação de fase e reduz a carga do servidor
 - Utiliza técnicas multicast para reduzir o tamanho de banda necessário

Vídeo sob-demanda (VOD)

- Push video on demand
 - Técnica usada por algumas empresas que não tem interatividade para prover verdadeiro VoD
 - Simula o VoD Verdadeiro
 - Um sistema de gravação (Personal Video Recorder) automaticamente registra uma seleção de programação
 - Normalmente transmitido a noite
 - Usuário assiste a hora que quiser

Vídeo sob-demanda (VOD): Arquitetura

UFSC

- Arquitetura para sistemas servidores de vídeo
 - Sistema servidor de vídeo consiste de clientes, servidores e meta-servidores conectados a uma rede de alta velocidade
 - Servidores armazenam os vídeos em dispositivos de armazenamento de alta capacidade
 - Clientes acessam o vídeo de um ou mais servidores
 - Permitindo interações de controle do fluxo

Vídeo sob-demanda (VOD): Arquitetura

UFSC

Meta-servidores

- Fornecer informações para o cliente
 - cliente pode perguntar ao meta-servidor os nomes e endereços dos servidores necessários para obter o fluxo de vídeo
 - fornece informações como tamanho de arquivos, taxa de quadros, esquema de compressão ou descrição do conteúdo do vídeo
 - dependendo da informação recebida do meta-servidor
 - cliente seleciona um servidor de vídeo apropriado

Vídeo sob-demanda (VOD): Arquitetura

- Meta-servidores

- Fornecer funções de configuração dos servidores e gerenciamento do sistema de armazenamento
 - Estatísticas de acesso colecionadas pelo meta-servidor pode ser usada para otimizar o desempenho do sistema global
 - exemplo: vídeos populares poderiam ser distribuídos para um número maior de servidores que vídeos não populares
- Fornecer funções de controle de admissão e coleta de dados necessários para faturamento
 - como o número e a duração de acesso a vídeos

VoD: Requisitos de Servidores Multimídia

UFSC

- Capacidade de armazenamento e a taxa de transferência
 - Deve ser suficientemente alta para suportar vários clientes simultaneamente afim de tornar o sistema econômico

Escalabilidade

 Arquitetura e técnica usada em um servidor deveria ser escalável e capaz de suportar uma grande população de usuários

Suportar interatividade

- Servidor deveria ser capaz de suportar vários tipos de interações com o usuário tal como pausa, avanço e retrocesso rápidos.
- Servidor deveria fornecer capacidades de busca
 - Facilita a navegação, tornando o acesso a informação mais rápido

Deveriam fornecer garantias de QoS

 Servidor deveria implementar controle de admissão e escalonamento tempo-real

VoD: Requisitos de Servidores Multimídia

Distribuição de servidores de streaming

Pontos Importantes

Capítulo 11

 Conhecer os princípios gerais apresentados