AI Lab for Wireless Communications

Week5 – Mini project

System model

Encoding part

- (15,11) Hamming code
- Relationship: $c = mG, rH^T = 0$,
- Parity check matrix

$$G = \begin{bmatrix} I_{11} & P \end{bmatrix}$$

Modulation & AWGN channel

- When transmit, we map coded bits to baseband signal
- Binary phase shift keying (BPSK)

$$x_i = \sqrt{P}(2c_i - 1), \qquad x = [x_1, ..., x_n]$$

• Additive white Gaussian noise (AWGN) channel

$$y_i = x_i + w_i, \ w_i \sim N(o, \frac{N_0}{2}), \ \mathbf{y} = [y_1, ..., y_n]$$

Noise in Communication System

- How to simulate the noisy channel?
 - >Set a target signal to noise ratio (SNR)
 - ➤ Calculate the related signal power and noise power
 - ➤ Generate the noise sequence and add it to the signal

$$SNR = 10 \log_{10} \frac{\sigma_s^2}{\sigma_w^2} \Rightarrow \sigma_s^2 = \sigma_w^2 \times 10^{-\frac{SNR}{10}}$$

 σ_s^2 : signal power (variance) σ_w^2 : noise power (variance)

• For complex signal, the noise is also complex. The calculated variance has to be divided by two for the generation of real or imaginary signal/noise

Decoding part

- Formulate decoding problem as a classification problem
- Design your own model

- Bonus Directly decode by a DNN model
 - Input: received codeword
 - Output: recovered message

Lab for Today

- Implement the whole communication system
- Apply a DNN model for the decoder
- Demo
 - Part 1 (SNR=0~6) Show the curve
 - Part 2 (SNR=6) BLER competition

Top 1/3:	100
Top 2/3:	95
$BLER \le 6 \times 10^{-4}$	90

- Model requirement
 - Epoch ≥ 5
 - # of layers ≥ 3

Module 1 - Report Assignment

- Hand in a lab report including
 - ➤ Description and final results of mini project
 - ➤ Description and discussion of all decoding method in Module 1
 - ➤ Simulation results (BLER of all decoding method) is necessary!
- Deadline 3/31