Note that details of the tested benchmarks and PWAS/PWASp parameters can be found in file "other_benchmakrs.py"

2-D benchmarks with box constraints (NLP)

benchmark = "PWA_example" (two continuous variables)
PWAS

<mark>PWASp</mark>

PWAS

<mark>PWASp</mark>

<mark>PWAS</mark>

PWASp

2-D benchmarks with box and linear constraints (NLP)

Benchmark = 'camelsixhumps-linearconstr' # camelsixhumps with 5 known linear constraints, optimal is at intersection

PWAS_P

<mark>PWAS</mark>

High dimension benchmarks with box and linear constraints (NLP)

Benchmark = "Bunnag6" # 10-D, 11 linear inequality constraints, excessive number of vertices (1036)

PWAS PWASP

MIP from MIP library

benchmark = "gen-ip054_2" # 30 integer variables, treat integer variable as categorical variable

PWAS_p

