Областная олимпиада по математике, 2001 год, 11 класс

- **1.** Дана последовательность чисел $\{a_n\}$, удовлетворяющих условиям $a_{125} \neq 0$, $a_i \cdot a_j = a_{i+j} \cdot (a_i + a_j)$, для любых натуральных i, j. Чему равно a_{2000} , если $a_{2001} = 2000$?
- **2.** Решить в натуральных числах уравнение $a^4 + a^3 + a^2 + a + 1 = b^2$.
- **3.** В остроугольном треугольнике ABC на стороне BC выбрана точка D. Пусть E и F основания перпендикуляров, опущенных из точки D на стороны AB и AC соответственно. Докажите, что если $DE^2 + DF^2$ принимает минимальное из всех возможных значений, то угол между AD и биссектрисой угла A равен углу между биссектрисой и медианой, опущенных из вершины A.
- **4.** Докажите, что любое целое число представимо в виде $x^2 + y^2 + z^3$, где x, y и z целые числа.
- **5.** Клетчатая доска 2001×2001 разбита на фигурки трех видов Докажите, что фигурок первого вида не меньше чем 4003.
- **6.** Докажите неравенство $(1+a_1)(1+a_2)$... $(1+a_n) \leq 1+s+\frac{s^2}{2!}+\cdots+\frac{s^n}{n!}$, где $a_i>0$, $i=1,\,2,\,...,\,n$ и $s=a_1+a_2+\cdots+a_n$.
- 7. Дан четырехугольник ABCD и точка F внутри него. Известно, что ABCF параллелограмм. Докажите, что

$$S_{ABC} \cdot S_{ACD} + S_{AFD} \cdot S_{FCD} = S_{ABD} \cdot S_{BCD}.$$

8. Даны натуральные числа q, n и $r, 0 < r \le n$. Докажите, что число $(q^n-1)(q^n-q)\dots(q^n-q^{r-1})$ делится на r!.