习题课时间、11月30日
主窑内房、治沙龙法则.
- Colors, space / A viii
1. 没f∈C~(-∞,+∞),且f(六)=0, ∀n∈IN+.
$\overline{\mathcal{X}}$; $f^{(n)}(0) = 0$, $\forall n \in \mathbb{N}$.
$\overline{\Sigma}$: 更一般地,没 $f \in C^{\infty}(a,b)$, $\chi_{\infty} \in (a,b)$, $\chi_{\infty} \subseteq C^{\infty}(a,b)$
(a,b) \ \ x x , 且 lim xn = xo. 某 f (xn)=0, Y n ∈ (N+)
My f(n) (x) =0, ANEN.
事身上、分的一点了以一口、且由归的法及。
- (k=D) flm f(x+R)-f(x)-f(x) (k=D) fk-1
$\Rightarrow f(k)(x) = k! \lim_{x \to \infty} f(x_n) - f(x_0) - f(x_0)(x_n - x_0) - \dots - \frac{f(x_n)!}{f(x_n - x_0)}(x_n - x_0)$
$(x_n - x_0)^k$
Frz f(b)(x) = 0, YREN.
一排制地,为一口,加二十一即为原题。
2. 计算规题:
lim lnx + Sinx
$X \rightarrow 0^{+} \frac{\left(\frac{\ln(1-x)}{\ln x}\right) - \sin \frac{1}{x}}{1 + \sin \frac{1}{x}}$
B: DF lim lnx =-0, lim ln(tn(1-x)) =-0.
高 Sin文有界 极只需求:
Pro lnx
$x \rightarrow 0^{+}$ $l_{n}(\frac{l_{n}(1-x)}{l_{n}x})$

$=\lim_{x\to 0^+}\frac{\ln x}{\ln \left(-\ln \ln x\right)-\ln \left(-\ln x\right)}$ (the	注重,页号)
x >0+ ln(-ln(-x))ln(-lnx) (+	To worth Rotte
$=\lim_{X\to 0^+} \frac{1}{(-X)\ln(1-X)} - \frac{1}{X\ln X}$ $=\lim_{X\to 0^+} \frac{(1-X)\ln(1-X)}{(1-X)\ln X} = \lim_{X\to 0^+} \frac{1}{(1-X)\ln X}$	海、大江
= lim- x>ot x lnx + (1-x)-ln (1-x)	
$= \lim_{X \to 0^+} \frac{\chi \ln x}{\chi \ln x + (I-X) \ln (I-X)} $	-× → 1 Culi-x1 ~-x)
$\frac{\partial f}{\partial x} = \lim_{x \to 0^+} \frac{(1-x) \ln (1-x)}{x \ln x} = \lim_{x \to 0^+} \frac{-x}{x \ln x}$	=0
$\Rightarrow \lim_{X\to 0^+} \frac{\chi \ln x}{\chi \ln x + (1-x) \ln (1-x)} = 1$	0. 6.
$X \rightarrow 0^+$ $X \ln X + (1-X) \ln (1-X)$	
即渝水和西步 1	П
	1 53 75 41
3. 波宁在如处有n的导致, 沉柳,	
$f(n)(x_0) = \lim_{k \to 0} \frac{\sum_{k=0}^{n} (-1)^{n-k} C_k f}{\sum_{k=0}^{n} (-1)^{n-k} C_k f}$	1x+kh)
12 : lim 5 (-1)-k (k f (x + kh) = f (x) k	$\frac{1}{n-k}$
$= (1-1)^n f(x) = 0$	
极场海峡还戏叫(0)到),得	k
大立= 型(-1)n+Ck·kf(xo+kh)	101

。 第一章 大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大
$= \sum_{k=0}^{n} (-1)^{n-k} \binom{k}{n} k^2 f''(x_0 + kh) = \frac{n^2 h^{n-2}}{n^2 h^{n-2}}$
= k= (1) rk (n-1) (x+kh)
n! h
其中的一步成立的新旗息。
$\frac{\sum_{k=0}^{n} (-1)^{n-k} \binom{k}{n} k^{2} = 0, l=0,1,\dots,n-1}{k}$
(每一步和复合型).
是水有.
n n n n n n n n n n n n n n n n n n n
$\frac{\sum_{k=0}^{\infty}(-1)^{k}C_{k}^{n}R_{k}=n!}{\sum_{k=0}^{\infty}(-1)^{k}C_{k}^{n}R_{k}}$
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The state of the s
h >0 n/h
$=\lim_{h\to 0}\frac{1}{h!}\sum_{k=0}^{n}(-1)\frac{n}{n}\left(\frac{1}{2^{(n-1)}}(x+k+1)-\frac{1}{2^{(n-1)}}(x)}\right)$
(n! k=0 (+) n+c k n) f(n) (x) (等级文义)
$=\frac{n!}{n!}f_{(n)}(x)=f_{(n)}(x).$
道·不能操证于在为对还有的许多(更不一定连痛),

河水最后一方不能用治体还有的广东中央里海)

4 3/2 fix 6 00 (m +m) 0 fix 5 th 1 th
4. 没f(x) ∈ C [∞] (-∞,+∞), 且f(0)=0, 卷克火必,数
$g(x) = \begin{cases} \frac{1}{2}(x) & x \neq 0 \\ \frac{1}{2}(x) & x \neq 0 \end{cases}$
VIM: gixi E Co (-0, +0).
立上: 显然gIXI ∈ Com (IR \ Foz).
1月かる正M: g1xx e Cn (-0,+0), 見g(n)(0)= f(m+)(0)
ヤneIN. (n=1 显然成立)
(殿) & g1x) ∈ C"(-a, +a), 原证g1x) ∈ C"+(-a, +a),
R第记 lim g(n+1)(x) 存在并有限 (Lagrange 中值多理)
100 00 14 20 17 1/20]. n+1-k (n+1)! (k) k (n+1)=0
$\lim_{x \to 0} g(n+1) = \lim_{x \to 0} \frac{\int_{-\infty}^{\infty} \frac{1}{ x ^2} \int_{-\infty}^{\infty} \frac$
$\frac{\times}{\times}$
= 1 m k=0 (-1) n+1-k (n+1)! f(k+1) (x) xk + \frac{\text{k=1}}{\text{k=1}} (-1) n+1-k (n+1)! f(k) (x) xk-1
$\chi \rightarrow 0$ $(n+2)\chi \gamma \gamma$
1= f(n+2)(x) x(n+1) f(n+2)(0) to the temp
$= \chi_{\text{in}} = \frac{1}{(n+2)} \chi_$
$= \lim_{X \to 0} \frac{f^{(n+2)}(x) \chi^{n+1}}{(n+2) \chi^{n+1}} = \frac{f^{(n+2)}(0)}{n+2} \frac{f^{(n+2)}(0)}{f^{(n+2)}(0)}$ $\lim_{X \to 0} \frac{f^{(n+2)}(x) \chi^{n+1}}{(n+2) \chi^{n+1}} = \frac{f^{(n+2)}(0)}{n+2} \frac{f^{(n+2)}(0)}{n+2}$ $\lim_{X \to 0} \frac{f^{(n+2)}(x) \chi^{n+1}}{(n+2) \chi^{n+1}} = \frac{f^{(n+2)}(0)}{n+2} \frac{f^{(n+2)}(0)}{n+2}$ $\lim_{X \to 0} \frac{f^{(n+2)}(x) \chi^{n+1}}{(n+2) \chi^{n+1}} = \frac{f^{(n+2)}(0)}{n+2} \frac{f^{(n+2)}(0)}{n+2}$ $\lim_{X \to 0} \frac{f^{(n+2)}(x) \chi^{n+1}}{(n+2) \chi^{n+1}} = \frac{f^{(n+2)}(0)}{n+2} \frac{f^{(n+2)}(0)}{(n+2) \chi^{n+1}} = \frac{f^{(n+2)}(0)}{n+2} \frac{f^{(n+2)}(0)}{(n+2) \chi^{n+1}}$ $\lim_{X \to 0} \frac{f^{(n+2)}(x) \chi^{n+1}}{(n+2) \chi^{n+1}} = \frac{f^{(n+2)}(0)}{n+2} \frac{f^{(n+2)}(0)}{(n+2) \chi^{n+1}} = f$
$\frac{1}{2} \left(\frac{1}{2} \right) \left(1$
10x) EC (10, (10), 120 (1)
5. 波f(x) E C [∞] (-10,+10) to 偏函数,即3g(x) E C [∞] (0,+10)
$\frac{1}{\sqrt{2}} \frac{f(x)}{f(x)} = \frac{g(x^2)}{f(x)}$
$\frac{\sqrt{1}}{\sqrt{1}} \cdot \frac{\sqrt{1}}{\sqrt{1}} \cdot \frac{\sqrt{1}}{\sqrt{1}} = \frac{1}{\sqrt{1}} \cdot \frac{\sqrt{1}}{\sqrt{1}} \cdot$

假废g(x) ∈ $C''[0,+M)$, 同样只带证: $\lim_{X\to 0^+} g^{(n+1)}(x) = \frac{(n+1)!}{(2n+2)!} f^{(2n+2)}(0)$
渔鬼到。
$\beta_{(u+i)}(x) = \left(\left(\frac{1}{2}(1x)\right)\right)_{(u)}$
$= \frac{1}{1} \left(\frac{1}{1} f'(x) \right)^{(n)} \qquad (\times > 0)$
记人以=年(10)10=年(6)
又f'(x) E C^(-A, +A), 切塞4 数, 每2 R(x) E C^(-A, +A)
又于为偶函数可知于以为青函数,从而是以流为佛函数、
从而在归的假设中,用个代替上有
$\lim_{X\to 0^+} \left(\mathcal{K}(I\overline{X}) \right)^{(n)} = \frac{n!}{(2n)!} \mathcal{K}^{(2n)}(0)$
$\frac{n!}{(2n)!} \frac{f^{(2n+2)}(0)}{2n+1} \vee $
$= 2 \cdot \frac{(n+1)!}{(2n+2)!} \cdot \frac{f^{(2n+2)}(0)}{(0)}$
Bp: lim g(n+n)(x) = (n+1)! p(2n+2)(a).
肾上, 10数学用物次, 滑机 g/xx ∈ C∞ F 0 + m

(且 g(n)(o) = n! f(2n)(o) = 2n(2n-1)(1) f(2n)(o). [

担证 D. 老 fix) ∈ C∞(-0, +0) 且如新函数, 则
$\exists g(x) \in C^{\infty}[0,+\infty), ($
\bigcirc
3 4 f(x) e c^ (-m,+m), 3 g, J2 e c^ [0,+m),
17 fix = g, (x2) + x g2(x2).
拉. (为R Lars Hörmander or The Analysis of Linear
Partial Differential Operators I >> Exercise 1-1)
0.91x = f(x), x>0, RI
$\frac{g(n)(x) = \frac{2^{1-2n}}{(n-1)!} \int_{0}^{1} (1-t^{2})^{n-1} f(x) dx}{(t-t^{2})^{n-1} f(x)} dx$
$\Rightarrow g \in C^{\infty}[0, +\infty)$
②. 75年中岛理 1.2.6 (或Borel's Lemma), 天下 习 go E C ~ (-20,
+∞), 位
$g_{(n)}^{o}(o) = \frac{(2n)!}{(2n)!} f_{(2n)}(o), \forall n \in \mathbb{N}.$
121 f, (x):= f(x) - go(x2) ∈ C∞(-∞,+∞), A f(m)(0)=0, ∀
NEN. 只需没明于(IX)ECO[O,+O), RIT 191X)=
$f(\sqrt{x}) \in C^{\infty}[0,+\infty)$
$(f_1^{(N)}(0)=0 \Rightarrow f_1(x)=o(x^N), \ x\to 0, \ \forall \ N\in \mathbb{N}_+$
$\Rightarrow f_1(\sqrt{x}) = o(x^N), x \Rightarrow o, \forall N \in \mathbb{N}_+$
⇒ f ₁ (√x) = 0(xN), x → 0, ∀ N ∈ N+ 15 € Bruno 公刘 13 mb (或直挂旧加) 即得).
$\Rightarrow f_1(\sqrt{x}) = o(x^N), x \Rightarrow o, \forall N \in \mathbb{N}_+$

不好限设 Borel's lemma 成立 取回中 go, fi(x):= fix-go(x2) = fin(0)=0. 4n [m] 定g,(x):=f,(反), x>0, 有: $f(x) = o(x^N), \quad x \rightarrow 0^+, \quad \forall N \in \mathbb{N}$ $\Rightarrow g_1(x) = o(x^N)$, $x \rightarrow o^+$, $\forall N \in \mathbb{N}$ 同样,用于户代替于厂厅和 $f_{i}^{(k)}(x) = o(x^{N})$, $x \rightarrow 0^{+}$, $\forall N \in \mathbb{N}$ at YREN成立、而由Bruno12式: $D^{n}(f_{1} \circ g)(x) = \sum_{\substack{k_{1}+2k_{2}+\cdots+nk_{n}=n}} \frac{n!}{(p^{k}f_{1})(g(x))} (\frac{g(x)}{(p^{k}f_{1})}) \frac{(p^{k}f_{1})(g(x))}{(p^{k}f_{1})(g(x))} \frac{k_{1}}{(p^{k}f_{1})(g(x))} \frac{(p^{k}f_{1})(g(x))}{(p^{k}f_{1})(g(x))} \frac{k_{1}}{(p^{k}f_{1})(g(x))} \frac{(p^{k}f_{1})(g(x))}{(p^{k}f_{1})(g(x))} \frac{k_{1}}{(p^{k}f_{1})(g(x))} \frac{(p^{k}f_{1})(g(x))}{(p^{k}f_{1})(g(x))} \frac{k_{1}}{(p^{k}f_{1})(g(x))} \frac{(p^{k}f_{1})(g(x))}{(p^{k}f_{1})(g(x))} \frac{k_{1}}{(p^{k}f_{1})(g(x))} \frac{(p^{k}f_{1})(g(x))}{(p^{k}f_{1})(g(x))} \frac{(p^{k}f_{1})(g(x))}{(p^{k}f_{1$ 少后四本图《次 坂中 k= k,+··+kn, gx = Jx, f, box 如我们知道: $\left(\sum_{k}f_{k}\right)\left(g_{1\times k}\right)=f_{k}(1\times)=o\left(x_{N}\right),\ N\rightarrow 0^{+},\ N\rightarrow 0^{+}$ N面等 $D^{n}(f_{1}\circ g)(x) = o(x^{N}), x \rightarrow o^{+}, \forall N. (\forall n)$ $-\frac{\partial (n)}{\partial (n)}(x) = o(x^{N}), \quad x \to 0^{+}, \quad \forall N. \quad (\forall n)$ 時制 to, lim g(n)(x)=0, 从n 切此得 g,(x) E Co Lo,+x). 1/20 g(x) = f(Ix) = g(x) + go(x) ∈ Co (Lo, +a) (XXO) \$P得证. 一如来取 9。是上述 g、的前充分多顶数的多项封, 网后面名种···=01xM,"YN成立"放为"产的大N成立 (NPB n范取, AN>n), 图 nM 不必使用 Borrels lomma)

