Ve

Vector Addition

What is a Vector

- A vector is a value that has a magnitude and direction
 - Examples
 - Force
 - Velocity
 - Displacement
- A scalar is a value that has a magnitude.
 - Examples
 - Temperature
 - Speed
 - Distance

Vector Representation

A vector (A) can be represented as an arrow.

Its magnitude is represented by the length of the arrow,

Designated by the un-bolded style of the symbol (A)

Its direction is represented by the angle that the arrow points,

Designated normally by a Greek symbol (sometimes with a subscript) (θ_A) It is normally measured from the **positive** X-axis in a Counter Clockwise Manner

The vector can be written as an ordered pair in the following form: (A, θ_{Δ})

Graphical Vector Addition

To add two vectors (A and B) together to get a resultant vector (R) all we have to do is draw the first vector (A)

We can see that the

of the last vector (B).

Vector addition – Tip to tail method

Vector addition – Commutative Law

$$\vec{B} + \vec{A} = \vec{A} + \vec{B}$$

Vector subtraction Add the negative

Vector addition Associative Law

$$\begin{array}{c} \mathbf{v}_{3} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \\ \mathbf{v}_{1} \\ \\ \mathbf{v}_{2} \\ \\ \mathbf{v}_{3} \\ \\ \mathbf{v}_{3} \\ \\ \mathbf{v}_{3} \\ \\ \mathbf{v}_{3} \\ \\ \mathbf{v}_{1} \\ \\ \mathbf{v}_{2} \\ \\ \mathbf{v}_{3} \\ \\ \mathbf{v}_{3} \\ \\ \mathbf{v}_{4} \\ \\ \mathbf{v}_{3} \\ \\ \mathbf{v}_{5} \\ \\ \mathbf{v}_{6} \\ \\ \mathbf{v}_{1} \\ \\ \mathbf{v}_{1} \\ \\ \mathbf{v}_{2} \\ \\ \mathbf{v}_{3} \\ \\ \mathbf{v}_{3} \\ \\ \mathbf{v}_{4} \\ \\ \mathbf{v}_{3} \\ \\ \mathbf{v}_{5} \\ \\ \mathbf{v}$$

$$\vec{V}_1 + (\vec{V}_2 + \vec{V}_3) = (\vec{V}_1 + \vec{V}_2) + \vec{V}_3$$

Vector addition Parallelogram method

Multiplication of a vector by a scalar

Decomposing a Vector: Part I

Earlier we saw that a vector can be written as a magnitude and an angle (A, θ_A). However many times we need it in Cartesian Coordinates ($\mathbf{A_x}$, $\mathbf{A_y}$)

The x coordinate of the vector (A_x) is the projection of the vector (A) onto the x-axis.

Similarly, the y coordinate of the vector (\mathbf{A}_y) is the projection of the vector (\mathbf{A}) onto the x-axis.

 \mathbf{A}_{y}

Finally, we can see that the x and y coordinates if added together give the original vector.

$$A_{x} + A_{y} = A$$

Decomposing a Vector: Part II

To get the algebraic values for the two components we need to use Trigonometry

By using SOHCAHTOA and knowing that we have a right triangle we know that:

$$A_x = A \cos(\theta_A)$$

$$A_v = A \sin(\theta_A)$$

Finally to fill out the list we know that:

$$A_{x}^{2} + A_{y}^{2} = A^{2}$$

And Pythagorean's theorem states that:

$$\frac{A_y}{A_x}$$
 = Tan (θ_A)

RESOLUTION OF A VECTOR

"Resolution" of a vector is breaking up a vector into components. It is kind of like using the parallelogram law in reverse.

CARTESIAN VECTOR NOTATION

- We 'resolve' vectors into components using the x and y axes system
- Each component of the vector is shown as a magnitude and a direction.
- The directions are based on the x and y axes. We use the "unit vectors" i and j to designate the x and y axes.

CARTESIAN VECTOR NOTATION

For example,

$$F = F_x i + F_y j$$
 or $F' = F'_x i + F'_y j$

The x and y axes are always perpendicular to each other. Together, they can be directed at any inclination.

Components of a vector

Using unit vectors:

$$\vec{A} = A_x \hat{i} + A_y \hat{j}$$

Vector Addition using components

$$\vec{A} + \vec{B}$$

$$\vec{A} = A_x \hat{i} + A_y \hat{j}$$
 $\vec{B} = B_x \hat{i} + B_y \hat{j}$

$$\vec{\mathbf{B}} = \mathbf{B}_{\mathbf{x}}\hat{\mathbf{i}} + \mathbf{B}_{\mathbf{y}}\hat{\mathbf{j}}$$

$$\vec{A} + \vec{B} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j}$$

ADDITION OF SEVERAL VECTORS

- Step 1 is to resolve each vector into its components
- Step 2 is to add all the x components together and add all the y components together. These two totals become the resultant vector.
- Step 3 is to find the magnitude and angle of the resultant vector.

EXAMPLE

Given: Three concurrent forces

acting on a bracket.

Find: The magnitude and

angle of the resultant

force.

Plan:

- a) Resolve the forces in their x-y components.
- b) Add the respective components to get the resultant vector.
- c) Find magnitude and angle from the resultant components.

EXAMPLE (continued)

$$F_1 = \{ 15 \sin 40^{\circ} i + 15 \cos 40^{\circ} j \} \text{ kN}$$

 $= \{ 9.642 i + 11.49 j \} \text{ kN}$
 $F_2 = \{ -(12/13)26 i + (5/13)26 j \} \text{ kN}$
 $= \{ -24 i + 10 j \} \text{ kN}$
 $F_3 = \{ 36 \cos 30^{\circ} i - 36 \sin 30^{\circ} j \} \text{ kN}$
 $= \{ 31.18 i - 18 j \} \text{ kN}$

EXAMPLE (continued)

Summing up all the i and j components respectively, we get,

$$F_R = \{ (9.642 - 24 + 31.18) i + (11.49 + 10 - 18) j \} kN$$

= $\{ 16.82 i + 3.49 j \} kN$

$$F_R = ((16.82)^2 + (3.49)^2)^{1/2} = 17.2 \text{ kN}$$

 $\phi = \tan^{-1}(3.49/16.82) = 11.7^{\circ}$

Example

Given: Three concurrent forces acting on a bracket

Find: The magnitude and angle of the resultant force.

- a) Resolve the forces in their x-y components.
- b) Add the respective components to get the resultant vector.
- c) Find magnitude and angle from the resultant components.

Example (continued)

$$F1 = \{ (4/5) 850 i - (3/5) 850 j \} N$$

= $\{ 680 i - 510 j \} N$

$$F_2 = \{ -625 \sin(30^\circ) i - 625 \cos(30^\circ) j \}$$

= $\{ -312.5 i - 541.3 j \} N$

$$F_3 = \{ -750 \sin(45^\circ) \ i + 750 \cos(45^\circ) \ j \} N$$

 $\{ -530.3 \ i + 530.3 \ j \} N$

EXAMPLE (continued)

Summing up all the i and j components respectively, we get,

$$F_R = \{ (4/5) 850 - 312.5 + 530.3) i + (-(3/5) 850 - 541.3 + 530.3) j \} N$$

= $\{ 897.8 i - 521 j \} N$

$$F_R = ((897.8)^2 + (-521)^2)^{1/2} = 1038 \text{ N}$$

 $\phi = \tan^{-1}(-521/897.8) = -30.1^\circ$

Steps for vector addition

- Select a coordinate system
- Draw the vectors

Find the x and y coordinates of all vectors

- Use the Pythagorean theorem to find the magnitude of the resulting vector
- Use a suitable trig function to find the angle with respect to the x axis

$$\left| \vec{A} \right| = \sqrt{A_x^2 + A_y^2}$$

$$\tan \theta = \frac{A_y}{A_x}$$

SCALARS AND VECTORS

Scalars

Vectors

Examples:

mass, volume Characteristics: It has a magnitude

force, velocity It has a magnitude

(positive or negative)

and direction

Addition rule:

Simple arithmetic

Parallelogram law

Special Notation:

None

Bold font, a line, an

arrow or a "carrot"

