ACTIVITY 8:

Task 1: List down the layer of the OSI model

7 Layers of OSI Model

Physical Layer

- This layer deals with the physical transmission of data over the network, including the electrical, mechanical, and functional aspects of the physical medium.

Data Link Layer

- This layer provides error-free transmission of data frames between two directly connected nodes. It also handles flow control and error detection.

Network Layer

- The network layer is responsible for routing packets across different networks. It determines the best path for data transmission and handles logical addressing.

Transport Layer

 This layer ensures reliable and error-free end-to-end data delivery. It segments and reassembles data into smaller units and provides mechanisms for flow control and error recovery.

Session Layer

- The session layer establishes, manages, and terminates communication sessions between applications. It also provides synchronization and checkpointing services.

Presentation Layer

- This layer is responsible for data representation and encryption. It translates data from the application layer into a format that can be understood by the network.

Application Layer:

- Application layer interacts directly with the end-user and provides services for network applications, such as email, file transfer, and remote login.

Task 2: List down the layers of the TCP/IP model.

• Network Interface Layer

- This layer corresponds to the combination of the physical and data link layers in the OSI model. It handles the transmission of data packets over the physical network medium.

Internet Layer

 The internet layer is equivalent to the network layer in the OSI model. It is responsible for addressing, routing, and fragmenting data packets across different networks.

• Transport Layer

- This layer corresponds to the transport layer in the OSI model. It provides reliable and connection-oriented data delivery services. The most common protocols used in this layer are TCP (Transmission Control Protocol) and UDP (User Datagram Protocol).

Application Layer

- The application layer in the TCP/IP model combines the functionality of the session, presentation, and application layers in the OSI model. It provides services for various network applications, such as HTTP, FTP, DNS, and SMTP.

Task 3: What is the difference between the OSI and TCP/IP model?

- OSI Layer model has seven layers while TCP/IP model has four layers.
- OSI Layer model is no longer used while TCP/IP is still used in computer networking.
- To define the functionality of upper layers, OSI uses three separate layers (application, presentation, and session) while TCP/IP uses a single layer (application).
- Just like upper layers, OSI uses two separate layers (Physical and Data link) to define the functionality of bottom layers while TCP/IP uses a single layer (Link) for the same.
- To define the routing protocols and standards, OSI uses Network layer while TCP/IP uses Internet layer.
- In comparison of TCP/IP model, OSI model is well documented and explains standards and protocols in more details.

Task 4: Explain the encapsulation process.

In a networking model, the term encapsulation refers to a process in which protocol
information is added to the data. The term de-encapsulation refers to a process in
which information added through the encapsulation process is removed. Protocol
information can be added before and after the data.