

Prof. Dr. Ádamo Santana adamo@ufpa.br

Principais Tópicos

- Computação Evolutiva
- Algoritmos Genéticos
 - Codificação
 - Função de aptidão
 - Operadores Genéticos
 - Reprodução
 - Aplicações

Algoritmos Genéticos (AGs)

- Algoritmos Genéticos empregam um processo adaptativo e paralelo de busca de soluções em problemas complexos.
 - Baseados na genética e teoria da seleção natural
 - Depois de várias gerações populações naturais evoluem de acordo com os princípios de seleção natural e sobrevivência dos mais aptos (*Charles Darwin, A Origem das Espécies*)

- Desenvolvido por John Holland e sua equipe (popularizado por David Goldberg)
- Objetivos:
 - Abstrair e explicar rigorosamente os processos adaptativos dos sistemas naturais
 - Desenvolver sistemas artificiais que conservam mecanismos importantes dos sistemas naturais

- Utilizam uma população de soluções candidatas (indivíduos)
- Otimização ocorre em várias gerações
 - A cada geração
 - Mecanismos de seleção selecionam os indivíduos mais aptos
 - Operadores de reprodução geram novos indivíduos

- Cada indivíduo representa uma possível solução para um dado problema
- A cada indivíduo é associado um escore de aptidão, que mede o quão boa é a solução que ele representa
- Indivíduos mais aptos têm mais oportunidades de serem reproduzidos
 - Produzindo descendentes cada vez mais aptos

- Podem "evoluir" soluções para problemas do mundo real
 - Problemas devem ser adequadamente codificados
 - Deve haver uma forma de avaliar as soluções apresentadas

Princípios básicos

- Indivíduo
- Codificação
- Função de aptidão
- Reprodução
- Convergência

Indivíduo

- Possível solução para um dado problema
 - Também chamado de cromossomo ou string
- Codificado como vetor de características
- A cada indivíduo é associado um valor de aptidão
 - Mede qualidade da solução que ele representa
- Conjunto de indivíduos forma uma população

Codificação

- Cada indivíduo é codificado por um conjunto de parâmetros (genes)
 - Genes podem assumir valores:
 - Binários
 - Inteiros
 - Reais
- Parâmetros são combinados para formar strings ou vetores (cromossomos)

Codificação

- Tradicionalmente, os indivíduos são representados por vetores binários
 - 1 = presença
 - 0 = ausência
 - Esta representação é independente do problema
 - Permite a utilização dos operadores de reprodução padrão

Codificação

- Genes também podem assumir valores inteiros, reais ou de tipos abstratos
- Representações em níveis abstratos mais altos
 - Facilitam sua utilização em determinados domínios mais complexos
 - Necessitam de operadores específicos

Função de aptidão

- Mede o grau de aptidão de um indivíduo
 - Retorna um valor (índice) de aptidão numérico
 - Proporcional a utilidade ou habilidade do indivíduo
 - Aptidão = probabilidade do indivíduo sobreviver para a próxima geração
 - Cada aplicação tem sua própria função de aptidão

- Escolhe preferencialmente indivíduos com maiores notas de aptidão
 - Embora não exclusivamente
 - Procura de manter a diversidade da população
- Indivíduos mais aptos têm mais oportunidades de gerar descendentes
 - Que serão cada vez mais aptos

Seleção

- Seleciona uma população intermediária
 - Onde serão aplicados os operadores de reprodução
- Existem vários método de seleção
 - Por roleta
 - Por torneio
 - Amostragem Universal Estocástica

Seleção pela roleta

- Método mais simples e utilizado
- Escolhe indivíduos para fazer parte da próxima geração por meio de um sorteio
- Cada indivíduo da população é representado na roleta por uma fatia proporcional ao seu índice de aptidão
 - Quanto maior o desempenho, maior é a chance de ser selecionado para a próxima geração

Seleção pela roleta

Método da Roleta baseado em Aptidão Relativa

Indivíduo	Aptidão	Aptidão
(S _i)	f(S _i)	Relativa S ₅ S ₁
S ₁ 10110	2.23	0.14
S ₂ 11000	7.27	0.47
S ₃ 11110	1.05	0.07
S ₄ 01001	3.35	0.21
S ₅ 00110	1.69	0.11

Seleção por torneio

- Escolhe n indivíduos da população aleatoriamente, com a mesma probabilidade
 - Geralmente n=3
- Cromossomo com maior aptidão dentre estes n cromossomos é selecionado para a população intermediária
- Processo se repete até que a população intermediária seja preenchida

Seleção por torneio

Método da Torneio baseado em Aptidão Relativa

Indivíduo	Aptidão	Aptidão	Supondo
S _i	$f(S_i)$	Relativa	Candidat
S ₁ 10110	2.23	0.14	S_1, S_2, S
S ₂ 11000	7.27	0.47	S_2, S_2
S ₃ 11110	1.05	0.07	S ₅
S ₄ 01001	3.35	0.21	
S ₅ 00110	1.69	0.11	

n = 3

tos ⇒ vencedor

$$S_1, S_2, S_5 \Rightarrow S_2$$

$$S_2$$
, S_4 , $S_5 \Rightarrow S_2$

$$S_5, S_1, S_3 \Rightarrow S_1$$

$$S_4$$
, S_5 , $S_3 \Rightarrow S_4$

$$S_3, S_1, S_5 \Rightarrow S_1$$

Seleção por torneio

- Possui um parâmetro que permite definir explicitamente a pressão seletiva durante a evolução
 - Tamanho do torneio
 - Quanto maior o número de indivíduos que participam do torneio, maior a pressão seletiva
 - Indivíduo tem que ser melhor que uma quantidade maior de competidores

Pressão Seletiva

- Grau com que os melhores indivíduos são favorecidos
 - Influencia taxa de convergência do AG
 - Pressão muito baixa
 - Taxa de convergência lenta
 - Demora para encontrar boa solução
 - Pressão muito elevada
 - Convergência prematura

Diversidade

- Deve haver equilíbrio entre pressão seletiva e diversidade
- Formas de prevenir convergência prematura
 - Controlar número de oportunidades de reprodução de cada indivíduo
- Formas de promover diversidade
 - Aumento do tamanho da população
 - Aumento da taxa de mutação

Seleção por Amostragem Universal Estocástica

- Conhecido como SUS (do inglês, Stochastic Universal Sampling)
- Variação do método da roleta
 - Utiliza n agulhas igualmente espaçadas ao invés de 1
 - Onde n é o número de indivíduos a serem selecionados para a próxima geração
 - Ao invés de n vezes, a roleta é girada uma única vez
 - Exibe menos variância que as repetidas chamadas do método da roleta

Operadores Genéticos

- Permitem obtenção de novos indivíduos
 - Cada geração possui, geralmente, indivíduos mais aptos
 - Principais operadores genéticos
 - Crossover (cruzamento ou recombinação)
 - Mutação
 - Elitismo

Crossover

- Filhos herdam partes das características dos pais durante a reprodução
 - Permite que as próximas gerações herdem estas características
- Funcionamento
 - Escolhe dois indivíduos e troca trechos entre eles

Crossover

- É o operador genético predominante
 - A taxa de crossover deve ser maior que a taxa de mutação
 - Taxa de *crossover*: $0.6 < P_c < 1.0$
 - Caso crossover não seja aplicado, descendentes são iguais aos pais
- É a operação mais importante para exploração rápida do espaço de busca

Crossover

- Diversas variações
 - Um ponto
 - Mais comum
 - Dois pontos
 - Multi-pontos

Crossover 1 ponto

Crossover de 2 pontos

- Permite introdução e manutenção da diversidade genética
 - Aplicado a cada indivíduo após crossover
- Funcionamento
 - Altera aleatoriamente um ou mais componentes de uma estrutura escolhida

Mutação

- Busca assegurar que a probabilidade de atingir qualquer ponto do espaço de busca nunca será zero
 - Reduz chance de parada em Mínimos Locais
- Operador genético secundário
 - Taxa de mutação pequena $P_m \cong 0.001$

Mutação

Antes da mutação

 $\left[\begin{array}{c|c} \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} \end{array}\right] \mathbf{1}$

Após a mutação

 $\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$

- Indivíduo de maior desempenho é automaticamente selecionado
- Evita modificações deste indivíduo pelos operadores genéticos
 - Utilizado para que os melhores indivíduos não desapareçam da população

Observações

- Se o AG estiver corretamente implementado, a população geralmente evolui em gerações sucessivas
 - Até estabilizar
- Aptidões do melhor indivíduo e do indivíduo médio aumentam em direção a um ótimo global

Critério de Parada

- Tempo de execução
- Número de gerações
- Valor de aptidão mínimo, médio e/ou máximo
- Convergência
 - Nas últimas k iterações não houver melhora nas aptidões

Convergência

- Convergência é a progressão em direção à uma uniformidade crescente
 - Um gene converge quando 95% da população compartilha o mesmo valor
 - A população converge quando todos os genes tiverem convergido
 - Perda de diversidade

Um Algoritmo Genético

- 1. Escolher população inicial de cromossomos
- 2. Avaliar cada cromossomo da população
- 3. Enquanto critério de parada não for atingido
 - 3.1 Selecionar indivíduos mais aptos
 - 3.2 Criar novos cromossomos aplicando operadores genéticos
 - 3.3 Avaliar cada cromossomo da população

Aplicações

- Otimização de função numérica
- Otimização combinatorial
 - Problema do caixeiro viajante
 - Problema de empacotamento
 - Alocação de recursos (job shop schedulling)
- Projetos
 - Projeto de pontes, antenas, cargas, etc...
- Aprendizado de Máquina
 - Jogos

Dúvidas???