CUADRATURA GAUSSIANA

Este método de basa en muestrear el integrando de la función cuya integral se desea encontrar, a valores que representan raíces de *polinomios ortogonales*. Los más populares de éstos son los *polinomios de Legendre*.

En general un conjunto de funciones $\phi_0(x), \phi_1(x), \dots, \phi_n(x)$ se conocen como **ortogonales** en un intervalo $a \le x \le b$, si

$$\int_{a}^{b} w(x) \phi_{m}(x) \phi_{n}(x) dx = 0, \quad m \neq n$$
(1)

Donde w(x) es una función de ponderación no negativa en $\begin{bmatrix} a & b \end{bmatrix}$.

Si las funciones $\phi_m(x)$ son polinomios, estos se designan como **polinomios ortogonales**.

POLINOMIOS DE LEGENDRE.

Los primeros cinco polinomios de Legendre son:

$$P_{0}(x) = 1$$

$$P_{1}(x) = x$$

$$P_{2}(x) = \frac{1}{2}(3x^{2} - 1)$$

$$P_{3}(x) = \frac{1}{2}(5x^{3} - 3x)$$

$$P_{4}(x) = \frac{1}{8}(35x^{4} - 30x^{2} + 3)$$
(2)

El polinomio de Legendre de grado n se puede obtener por medio d la fórmula de Rodrigues

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

O bien a partir de la fórmula recursiva:

$$(n+1) \cdot P_{n+1}(x) - (2n+1) \cdot x \cdot P_n(x) + n \cdot P_{n-1}(x) = 0$$

Las relaciones de ortogonalidad y normalización, con las funciones de ponderación (peso) igual a 1, son:

$$\int_{-1}^{1} P_n(x) P_m(x) dx = \begin{cases} 0 & m \neq n \\ \frac{2}{2n+1} & m = n \end{cases}$$
(3)

Todas las raíces de cada $P_n(x) = 0$ son reales y distintas, además están contenidas en el intervalo $\begin{bmatrix} -1 & 1 \end{bmatrix}$.

<u>CUADRATURA GAUSSIANA</u>.

El propósito es discutir la fórmula de integración Gaussiana que aproxima

$$\int_{-1}^{1} f(x) dx \tag{4}$$

y mostrar que con un simple cambio de variable se pueden extender los límites de integración a valores distintos a $\begin{bmatrix} -1 & 1 \end{bmatrix}$.

La aproximación d la integral definida se puede definir como

$$\int_{-1}^{1} f(x) = w_0 \ f(x_0) + w_1 \ f(x_1) + w_2 \ f(x_2) + \dots + w_n \ f(x_n) = \sum_{k=0}^{n} w_k \ f(x_k)$$
 (5)

 W_0, W_1, \cdots, W_n son los coeficientes ponderados ó pesos.

El problema consiste en encontrar las (2n+2) constantes $(w_i, f(x_i))$. Para encontrar las mencionadas constantes, partimos de la suposición básica de que la fórmula (2) representa sin aproximación, es decir, exactamente un polinomio de orden 2n+1 ó menor.

Primero mostramos que los puntos x_k $(k=0,\cdots,n)$, son iguales a las raíces del polinomio de Legendre $P_{n+1}(x)$.

Tomemos un polinomio arbitrario $g_n(x)$ de grado n. En términos de polinomios de Legendre $g_n(x)$ puede expresarse como

$$g_n(x) = \beta_0 P_0(x) + \beta_1 P_1(x) + \dots + \beta_n P_n(x)$$
Como ejemplo supongamos
$$(x) = \beta_0 P_0(x) + \beta_1 P_1(x) + \dots + \beta_n P_n(x)$$
(6)

$$g_2(x) = 1 + 2x + x^2$$
.

De la ecuación (6) y (2) obtendremos:

$$g_2(x) = \beta_0 + \beta_1 x + \frac{\beta_2}{2} (3x^2 - 1) = \left(\beta_0 - \frac{\beta_2}{2}\right) + \beta_1 x + \frac{3}{2} \beta_2 x^2$$

Comparando esta última expresión con la $g_2(x)$ inicial obtenemos:

$$\beta_0 - \frac{\beta_2}{2} = 1$$
, $\beta_1 = 2$, $\frac{3}{2}\beta_2 = 1$,

De donde obtenemos finalmente: $\beta_0 = \frac{4}{3}$, $\beta_1 = 2$, $\beta_2 = \frac{2}{3}$. Sustituyendo esto en (6), obtenemos

$$g_2(x) = \frac{4}{3}P_0(x) + 2P_1(x) + \frac{2}{3}P_2(x)$$
.

Este simple ejemplo muestra que cualquier polinomio $g_n(x)$ se puede escribir en términos de polinomios de Legendre.

A partir de la definición de ortogonalidad expresada en (3):

$$\int_{-1}^{1} g_{n}(x) P_{n+1}(x) dx =$$

$$\int_{-1}^{1} \beta_{0} P_{0}(x) P_{n+1}(x) + \int_{-1}^{1} \beta_{1} P_{1}(x) P_{n+1}(x) + \dots + \int_{-1}^{1} \beta_{n} P_{n}(x) P_{n+1}(x) = 0$$

$$(7)$$

Observamos que $g_n(x)P_{n+1}(x)$, es un polinomio de grado 2n+1, y por tanto representa *exactamente* polinomios de grado 2n+1 ó menos, lo cual constituye el requisito básico mencionado antes, en la definición de la ecuación (5), para la selección de w_k y x_k $(k=0,\cdots,n)$.

Comparando (7) con (5) obtenemos:

 $w_0g_n(x_0)P_{n+1}(x_0) + w_1g_n(x_1)P_{n+1}(x_1) + \cdots + w_ng_n(x_n)P_{n+1}(x_n) = 0$ (8) Como $g_n(x)$ es un polinomio arbitrario, $g_n(x_k)$ $(k = 0, \dots, n)$ no es cero en general. Así mismo las n+1 funciones de ponderación ó pesos w_k $(k = 0, \dots, n)$ no pueden ser todos cero, de lo contrario la ecuación (5) será igual a cero, lo cual constituye el caso trivial.

Dado lo anterior la única condición para la ecuación (8) será:

$$P_{n+1}(x_0) = 0$$

$$P_{n+1}(x_1) = 0$$

•

 $P_{n+1}(x_n) = 0$

Lo anterior implica que x_0, x_1, \dots, x_n son las raíces del polinomio de Legendre $P_{n+1}(x) = 0$.

Para $P_{n+1}(x) \in [-1 + 1]$ existen n+1 raíces distintas.

Como ejemplo, para n=1,

$$P_{n+1}(x) = P_2(x) = \frac{1}{2}(3x^2 - 1) = 0$$

por lo que las raíces son $x = \pm 1/\sqrt{3}$.

Mientras que para el caso n=2,

$$P_3(x) = \frac{1}{2} (5x^3 - 3x) = \frac{1}{2} x (5x^2 - 3x) = 0$$

por lo que las raíces son x = 0, $x = \pm \sqrt{\frac{3}{5}}$.

Para la determinación de los coeficientes w_k $(k=0,\cdots,n)$ de nuevo tomamos en consideración el requisito establecido en (5), esto es, que si el integrando f(x) es un polinomio de grado n+1 ó menos, dicha ecuación no involucra una aproximación. Por definición, el polinomio de Lagrange para aproximar cualquier polinomio $h_n(x)$ de grado n, que pasa por n+1 puntos x_k $(k=0,\cdots,n)$ se puede expresar como

$$h_n(x) = \sum_{k=0}^n h(x_k) L_k(x)$$

Por lo que

$$\int_{-1}^{+1} h_n(x) dx = \int_{-1}^{+1} \sum_{k=0}^{n} h(x_k) L_k(x).$$

Dado que $h(x_k)$ es una constante

$$\int_{-1}^{+1} h_n(x) dx = \sum_{k=0}^{n} h(x_k) \int_{-1}^{+1} L_k(x)$$
(9)

Comparando (5) con (9) tenemos

$$w_k = \int_{-1}^{+1} L_k(x)$$
 $k = 0, \dots, n$ (10).

Es común encontrar la definición de L_k y por tanto de w_k en términos de polinomios de Legendre. Esto se obtiene como sigue.

El polinomio $\frac{P_{n+1}(x)}{x-x_k}$ es igual a cero para todo $x=x_j$, $j=0,\cdots,n$, pero $j\neq k$.

De acuerdo a la regla de L'Hopital

$$\lim_{x \to x_k} \frac{P_{n+1}(x)}{x - x_k} = \left[\frac{\frac{dP_{k+1}(x)}{dx}}{\frac{d(x - x_k)}{dx}} \right]_{x = x_k} = \frac{dP_{k+1}(x_k)}{dx} = P'_{n+1}(x_k)$$

(Dado que la derivada del denominador es igual a 1), donde x_k es una de las raíces del polinomio de Legendre $P_{n+1}(x) = 0$.

Dado lo anterior, el polinomio de Lagrange puede expresarse como

$$L_{k} = \frac{1}{P_{n+1}(x_{k})} \frac{P_{n+1}(x)}{(x - x_{k})}$$

por tanto las funciones de ponderación (pesos) se definen alternativamente como

$$w_{k} = \frac{1}{P_{n+1}(x_{k})} \int_{-1}^{+1} \frac{P_{n+1}(x)}{(x - x_{k})} dx$$
 (11).

Para ejemplificar consideremos n=1, $P_{n+1}(x)=P_2(x)=\frac{1}{2}\left(3x^2-1\right)$ cuyas raíces son $x_0=1/\sqrt{3}$, $x_1=-1/\sqrt{3}$ y su derivada $P_2(x)=\frac{1}{2}\left(6x\right)=3x$. De aquí entonces

$$w_0 = \frac{1}{3\left(\frac{1}{\sqrt{3}}\right)} \int_{-1}^{+1} \frac{\frac{1}{2}\left(3x^2 - 1\right)}{x + \frac{1}{\sqrt{3}}} dx$$

$$w_1 = \frac{1}{3\left(-\frac{1}{\sqrt{3}}\right)} \int_{-1}^{+1} \frac{\frac{1}{2}\left(3x^2 - 1\right)}{x + \frac{1}{\sqrt{3}}} dx$$

Para n=2, $P_{n+1}(x)=P_3(x)=\frac{1}{2}\left(5x^3-3x\right)$. Las raíces de $P_3(x)$ se determinaron previamente y resultaron $x_0=-\sqrt{\frac{3}{5}}$, $x_1=0$, $x_2=\sqrt{\frac{3}{5}}$ y la derivada de $P_3(x)$, $P_3(x)=\frac{3}{2}\left(5x^2-1\right)$, por lo que obtenemos

$$w_0 = \frac{1}{\frac{3}{2} \left(5 \cdot \frac{3}{5} - 1 \right)^{\frac{1}{2}} \left(\frac{5x^3 - 3x}{x} \right) dx = \frac{2}{3(3 - 1)} \int_{-1}^{\frac{1}{2}} \left(x^2 - \sqrt{\frac{3}{5}}x \right) dx = \frac{5}{9}$$

$$w_1 = \frac{1}{\frac{3}{2}(5 \cdot 0 - 1)} \int_{-1}^{+1} \frac{\frac{1}{2}(5x^3 - 3x)}{x - 0} dx = \frac{8}{9}$$

$$w_2 = \frac{1}{\frac{3}{2} \left(5 \cdot \frac{3}{5} - 1 \right)^{\frac{1}{2}} \frac{\frac{1}{2} \left(5x^3 - 3x \right)}{x - \sqrt{\frac{3}{5}}} dx = \frac{2}{3(3 - 1)} \int_{-1}^{\frac{1}{2}} \frac{1}{2} \left(x^2 + \sqrt{\frac{3}{5}}x \right) dx = \frac{5}{9}$$

El procedimiento descrito arriba puede extenderse para diferentes valores de n, es decir, para tres puntos, cuatro puntos, cinco puntos, etcétera. La siguiente tabla muestra algunos de estos casos, y en [1] se pueden encontrar una lista más grande.

Raíces de los polinomios de Legendre $P_{n+1}(z)$ y sus factores de ponderación para la cuadratura de Gauss-Legendre.

Raíces (z _i)	$\int_{-1}^{+1} F(z) dz = \sum_{i=0}^{n} w_i F(z_i)$	Factores de ponderación (peso)
±0.57735 02691 89626	n = 1	1.00000 00000 00000
	fórmula de dos puntos	
0.00000 000000	n=2	0.88888 88888 88889
±0.77459 66692 41483	fórmula de tres puntos	
±0.33998 10435 84856	n = 3	0.65214 51548 62546
±0.86113 63115 94053	fórmula de cuatro puntos	0.34785 48451 37454
0.00000 00000 000000	n = 4	0.56888 88888 88889
±0.53846 93101 05683		0.47862 86704 99366
±0.90617 98459 38664	fórmula de cinco puntos	0.23692 68850 56189

Límites de Integración. Dado que los límites de integración asociados con es te desarrollo son -1 y +1, en un problema de aplicación habrá que ajustar el procedimiento de la cuadratura Gaussiana a los límites de la aplicación particular. Lo anterior se logra mediante un simple cambio de variable.

Definimos una relación lineal con la nueva variable

$$x = \frac{(b-a)t + (b+a)}{2} \qquad dx = \frac{b-a}{2}dt$$

En este caso $\int_a^b f(x) dx$ se convertirá en

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} \int_{-1}^{+1} f\left(\frac{(b-a)t_{k} + (b+a)}{2}\right) dt$$

Dado que la cuadratura de Gauss-Legendre se define

$$\int_{-1}^{+1} f(x) \, dx = \sum_{k=0}^{n} w_k \, f(x_k)$$

La integral anterior se puede aproximar como

$$\int_{a}^{b} f(x) dx = \frac{(b-a)}{2} \sum_{k=0}^{n} w_{k} f\left(\frac{(b-a)t_{k} + (b+a)}{2}\right)$$

Esta formulación es la apropiada para usarse en la programación de este método en computadora, en lugar de usar una transformación simbólica de f(x). En este caso los puntos base t_k se transforman y los factores de ponderación w_k se modifican al multiplicarse por la constante $\left(\frac{b-a}{2}\right)$.

Por ejemplo, usamos la fórmula de cuadratura de Gauss-Legendre de dos puntos para calcular

$$\int_{2}^{4} \left(x^{2} - 2x + 1 \right) dx = \frac{26}{3}$$

La fórmula de cuadratura Gauss-Legendre será (para el método de dos puntos)

$$\int_{2}^{4} \left(x^2 - 2x + 1 \right) dx =$$

$$=\frac{(4-2)}{2}\left[(1.0)*f\left(\frac{-0.577350269189626*(4-2)+4+2}{2}\right)+(1.0)*f\left(\frac{0.577350269189626*(4-2)+4+2}{2}\right)\right]$$

$$= 2.0239322565749 + 6.6427344100918$$

= 8.666666666667