

American International University- Bangladesh (AIUB) Faculty of Engineering

Course Name:	Introduction to Electrical Circuits	Course Code:	COE 2101
Semester:	Fall 2021-22	Total Marks:	10
Faculty:	Prof. Dr. Mohammad Abdul Mannan	Term	Mid

ASSIGNMENT 02 [MID-TERM]

Submission Date: October 16, 2021

Instruction Related to Used Variables Based on Student ID:

Note that this assignment uses the variables m_1 , m_2 , m_3 , m_4 , and m_5 , which are the five digits of middle of your student ID. For example, if your student ID is: 09-15985-3, then you must consider:

 $m_1=1$;

 $m_2=5$;

 $m_3=9$;

 $m_4=8$;

 $m_5 = 5$

Write in the following Table the variables value according to your ID:

m_1	m_2	m_3	m_4	<i>m</i> ₅

General Instruction:

- 1. Solve the problem to white sheets by your handwritten.
- 2. Write your Name, Student ID, Section, Page Number and value of m_5 on the top of first page.
- 3. In top of other pages write the Page Number.
- **4.** Take picture of your solution for each page individually.
- 5. Insert the picture in a word file.
- **6.** Make word file into PDF format file.
- 7. Submit it in VUES.
- 8. For each day delay 1 marks will be reduced.
- 9. Picture format file submission will not be considered

Problem 01: For the network of Figure 01:

- (a) Find the Thévenin equivalent circuit for the network external to the load resistor R_L .
- (**b**) Find the value of R_L for maximum power to R_L .
- (*c*) Determine the maximum power to R_L for each network.

Hints: According to your ID, write $m_5 =$ _____ then calculate:

$$E = 20(1+0.25m_5) =$$
_____V

$$I_1 = 4(1+0.25m_5) =$$
 A

$$I_2 = 2(1+0.25m_5) =$$
_____A

Figure 01: Problem 01

[2.5 Marks]

[2.5 Marks]

Problem 02: For the *R-C* circuit in Figure 02, composed of standard values:

- (a) Find the mathematical expression for the voltage across the capacitor (v_C) and the current (i_C) after the switch is thrown into position 1.
- (b) Determine the mathematical expression for the voltage (v_C) and the current (i_C) for the discharge phase if switch is thrown into position 2 at six time constant.
- (c) Plot the waveforms of (v_C) and (i_C) for a period of time extending from 0 to twelve time constant from when the switch was thrown into position 1.

Hints: According to your ID, write $m_4 =$ _____ then calculate:

$$E = 40(1+0.5m_4) =$$
_____V

Figure 02: Problem 02

Problem 03: For the *R-C* circuit in Figure 03, composed of standard values:

- (a) Determine the mathematical expressions for the current (i_L) and the voltage (v_L) when the switch is closed.
- (b) Repeat part (a) if the switch is opened after a period of five time constants has passed.
- (c) Sketch the waveforms of parts (a) and (b) on the same set of axes.

Figure 03: Problem 03

Good Luck