Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Química Programa de Pós-Graduação em Engenharia Química

EQP 0026-OTIMIZAÇÃO DE PROCESSOS PROF: MARCELO FARENZENA

TRABALHO 1

GUILHERME BRAGANHOLO FLÔRES

PORTO ALEGRE, RS 22 DE MARÇO DE 2016

Definições importantes

f(x) = polinomio em função do vetor x

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix}$$

1 Convexidade

Analisar a convexidade das seguintes funções objetivo:

$$f_1(x) = 2x_1 + 3x_2 + 6 (1)$$

$$f_2(x) = x_1^3 (2)$$

$$f_3(x) = x_1^2 + x_1 x_2 + x_2 + 4 \tag{3}$$

Equação 1

$$f_1(x) = 2x_1 + 3x_2 + 6 (1)$$

Para a Equação Equação 1 temos que o gradiente de $f_1(x)$ é dado por:

$$\nabla f_1(x) = \begin{bmatrix} 2\\3 \end{bmatrix} \tag{4}$$

e para a hessiana temos:

$$\nabla^2 f_1(x) = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right] \tag{5}$$

Calculando os autovalores da matriz $\nabla^2 f_1(x)$ temos para $\forall x$:

- $\lambda_1 = 0$
- $\bullet \ \lambda_2 = 0$

portanto temos uma função convexa, neste caso um plano, dado que a função é linear.

Equação 2

$$f_2(x) = x_1^3 (2)$$

Para a Equação Equação 2 temos que o gradiente de $f_2(x)$ é dado por:

$$\nabla f_2(x) = \left[3x_1^2 \right] \tag{6}$$

e para a hessiana temos:

$$\nabla^2 f_2(x) = \left[6x_1 \right] \tag{7}$$

Calculando os autovalores da matriz $\nabla^2 f_2(x)$ temos:

•
$$\lambda_1 = \begin{cases} \geq 0 & \text{se } x \geq 0 \\ \leq 0 & \text{se } x \leq 0 \end{cases}$$

portanto temos uma função convexa para valores positivos de x e não convexa para valores de x menores que 0.

Figura 1: $f_2(x) = x^3$.

Equação 3

$$f_3(x) = x_1^2 + x_1 x_2 + x_2 + 4 (3)$$

Para a Equação Equação 3 temos que o gradiente de $f_3(\boldsymbol{x})$ é dado por:

$$\nabla f_3(x) = \begin{bmatrix} 2x_1 + x_2 \\ x_1 + 2 \end{bmatrix} \tag{8}$$

e para a hessiana temos:

$$\nabla^2 f_3(x) = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \tag{9}$$

Calculando os autovalores da matriz $\nabla^2 f_3(x)$ temos para $\forall x$:

- $\lambda_1 = 1 + \sqrt{2} = 2.41$
- $\lambda_2 = 1 \sqrt{2} = -0.41$

Sendo esta matriz não definida, não é uma função convexa.

2 Pontos de Mínimo e Máximo

Analisar pontos de máximo e mínimo das seguintes funções:

$$f_1(x) = |x| \tag{10}$$

$$f_2(x) = -x_1^4 + x_1^3 + 20 (11)$$

$$f_3(x) = x_1^2 + 2x_1 + 3x_2^2 + 6x_2 + 2 (12)$$

Equação 10

$$f_1(x) = |x| \tag{10}$$

Para a Equação Equação 10 temos que o gradiente de $f_1(x)$ é dado por:

$$\nabla f_1(x) = \begin{bmatrix} 1 & \text{se } x > 0 \\ -1 & \text{se } x < 0 \end{bmatrix}$$
 (13)

Aplicando em $x_1=0$ temos $f_1(x)=0$ e para \forall valores de x aplicados em $f_1(x)$ são obtidos valores maiores que 0, como podemos observar na Figura 2:

Figura 2: $f_1(x) = |x|$.

Portanto podemos concluir que temos um ponto de mínimo, apesar do gradiente de $f_1(x)$ não ser contínuo e portanto nao ser possível o calculo da hessiana de $f_1(x)$.

Equação 11

$$f_2(x) = -x_1^4 + x_1^3 + 20 (11)$$

Para a Equação Equação 11 temos que o gradiente de $f_2(x)$ é dado por:

$$\nabla f_2(x) = \left[-4x_1^3 + 3x_1^2 \right] \tag{14}$$

Para um ponto de mínimo ou máximo devemos obter $\nabla f_2(x) = 0$, o que ocorre quando:

- $x_1 = 0$
- $x_1 = \frac{3}{4}$

portanto devemos analizar o valor da hessiana nestes dois pontos, como é possível observar na Figura 3.

Figura 3: $f_2(x) = -x_1^4 + x_1^3 + 20$.

A hessiana de $f_2(x)$ é dada por:

$$\nabla^2 f_2(x) = \left[-12x_1^2 + 6x_1 \right]$$
 (15)

Aplicada em $x_1 = 0$ em $\nabla f_2(x)$ temos:

$$\nabla^2 f_2(0) = \left[\begin{array}{c} 0 \end{array} \right] \tag{16}$$

onde não podemos concluir se é um ponto de máximo ou mínimo, pois é uma matriz indefinida, o que leva a creer que seja um ponto de inflexão. Isto pode ser observando na Figura 3 onde é apresentado o comportamento da função $f_2(x)$.

Aplicada em $x_1 = \frac{3}{4}$ em $\nabla f_2(x)$ temos:

$$\nabla^2 f_2\left(\frac{3}{4}\right) = \begin{bmatrix} -2.25 \end{bmatrix} \tag{17}$$

onde podemos concluir diretamente, pelo autovalor único ($\lambda_1 = -2.25$), que se trata de um ponto de máximo, para este caso.

Equação 12

$$f_3(x) = x_1^2 + 2x_1 + 3x_2^2 + 6x_2 + 2 (12)$$

Para este último caso, temos $\nabla f_3(x)$ dado por:

$$\nabla f_3(x) = \begin{bmatrix} 2x_1 + 2\\ 6x_2 + 6 \end{bmatrix} \tag{18}$$

Para a condição necessária de máximo ou minimos devemos ter $\nabla f_3(x)=0$, isto ocorre apenas em $x=[-1,-1]^{\rm T}$. Partindo da hessiana de $f_3(x)$ que é igual à:

$$\nabla^2 f_3(x) = \begin{bmatrix} 2 & 0 \\ 0 & 6 \end{bmatrix} \tag{19}$$

e aplicando em $x=[-1,-1]^{\rm T}$ temos os uma matriz positiva definida, com os seguintes autovalores:

- $\lambda_1 = 6$
- $\lambda_2 = 2$

portanto, um ponto de mínimo.