Міністерство освіти і науки України Львівський національний університет імені Івана Франка Кафедра радіофізики та комп'ютерних технологій

Звіт

про виконання

лабораторної роботи № 3

"Синтез логічних схем в САПР Quartus II"

Виконала

студентка групи ФЕІ - 41

Литвин Віра

Перевірив

доц. Рабик В.Г.

Мета роботи:

вивчення методів проектування логічних схем з допомогою заданого набору базових логічних елементів, вибір елементної бази, побудова їх принципових схем, експериментальна перевірка їх роботи на ПЛІС FPGA Cyclone III лабораторного стенду DE0.

Варіант роботи - 1.

Завдання:

1. Для логічної функції, заданої у вигляді таблиці істинності, отримати її представлення в ДДНФ. Мінімізувати логічну функцію з допомогою карт Карно (МДНФ). Перевірити роботу спроєктованого пристрою на лабораторному стенді DE0. Для цього сконфігурувати ПЛІС FPGA Cyclone III у відповідності зі схемою, отриманою для МДНФ. До входів отриманого пристрою підключити перемикачі, а до виходу - світлодіод. Входи *X3*, *X2*, *X1*, *X0* підключити відповідно до SW[3], SW[2], SW[1], SW[0]. Вихід пристрою Y підключити до світлодіоду LEDG[5].

Варіант №1

X_3	X_2	X_1	X_0	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2. Розробити схему дешифратора семисегментного індикатора на основі логічних елементів та реалізувати її в САПР Quartus II. Підключити до входів дешифратора перемикачі, а до виходу семисегментний індикатор. Перевірити роботу індикатора на лабораторному стенді. Входи дешифратора (двійковий код) підключити до наступних перемикачів – $X0 \rightarrow SW[3]$; $X1 \rightarrow SW[2]$; $X2 \rightarrow SW[1]$; $X3 \rightarrow SW[0]$, де X0 — молодший розряд доданку. Виходи дешифратора підключити до семисегментного індикатора НЕХ1. Отримати

аналітичні вирази для кожної логічної функції та мінімізувати їх з допомогою карт Карно. Логічні функції у вигляді МДНФ реалізувати з допомогою логічних елементів.

Дешифратори формують цифрові коди для семисегментного індикатора. В семисегментному індикаторі десяткових цифр кожний сегмент представляє собою окремий світлодіод. Використовується також і вивід на індикатор символів а, ..., f. Робота дешифратора семисегментного індикатора описується таблицею істинності (табл. 3.2).

Табл. 3.2. Таблиця істинності дешифратора семисегментного індикатора

№	<i>X3</i>	<i>X</i> 2	<i>X1</i>	<i>X0</i>	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
A	1	0	1	0	1	1	1	0	1	1	1
В	1	0	1	1	0	0	1	1	1	1	1
C	1	1	0	0	0	0	0	1	1	0	1
D	1	1	0	1	0	1	1	1	1	0	1
Е	1	1	1	0	1	0	0	1	1	1	1
F	1	1	1	1	1	0	0	0	1	1	1

Виконання роботи:

- 1. Створюємо теку для зберігання файлів проекту(ім'я теки бажано вводити латинськими буквами).
 - 2. Створюємо новий проект і зберігаємо його в створеній спеціально теці.
 - 3. Виконуючи завдання 1, заповнюємо випадковим чином стовпець Y.
- 4. Для логічної функції, заданої у вигляді таблиці істинності, отримуємо її представлення в ДДНФ.

$$F_{\text{ДДН}\Phi} = \neg x_3 \neg x_2 x_1 \neg x_0 + \neg x_3 \neg x_2 x_1 x_0 + \neg x_3 x_2 \neg x_1 \neg x_0 + \neg x_3 x_2 x_1 \neg x_0 + x_3 \neg x_2 \neg x_1 x_0 + x_3 \neg x_2 \neg x_1 \neg x_0 + x_3 \neg x_1 \neg x$$

5. Мінімізуємо логічний вираз за допомогою карт Карно.

	$\neg x_0 \neg x_1$	$x_0 - x_1$	x_0x_1	$-x_0x_1$
$\neg x_3 \neg x_2$		1	1	
X_3 X_2			1	1
X_3X_2	1	1	1	1
$-x_3x_2$	1	1		

6. Запишемо мінімізований вираз.

$$F_{MДH\Phi} = x_2 - x_0 + -x_3 x_0 + -x_3 - x_2 x_1.$$

7. Складаємо схему для реалізації отриманої логічної функції.

- 8. Компілюємо проект.
- 9. Проводимо під'єднання до виводів ПЛІС.

		Node Name	Direction	Location	I/O Bank	VREF Group	I/O Standard
1		XO	Input	PIN_J6	1	B1_N0	2.5 V (default)
2		X1	Input	PIN_H5	1	B1_N0	2.5 V (default)
3		X2	Input	PIN_H6	1	B1_N0	2.5 V (default)
4		X3	Input	PIN_G4	1	B1_N0	2.5 V (default)
5	•	Υ	Output	PIN_E1	1	B1_N0	2.5 V (default)
6		< <new node="">></new>					

10. Після повторної компіляції схема набуває наступного вигляду.

11. Записуємо логічні функції для семисегментного індикатора.

$$\begin{split} F_{\ ДДН\Phi}(a) &= \neg x_3 \neg x_2 \neg x_1 \neg x_0 \ + \ \neg x_3 \neg x_2 x_1 \neg x_0 \ + \ \neg x_3 \neg x_2 x_1 x_0 \ + \ \neg x_3 x_2 \neg x_1 x_0 \ + \ \neg x_3 x_2 x_1 \neg x_0 \ + \ x_3 \neg x_2 \neg x_1 \neg x_0 \ + \ x_3 \neg x$$

$$F_{ ДДН\Phi}(b) = \neg x_3 \neg x_2 \neg x_1 \neg x_0 + \neg x_3 \neg x_2 \neg x_1 x_0 + \neg x_3 \neg x_2 x_1 \neg x_0 + \neg x_3 \neg x_2 x_1 x_0 + \neg x_3 \neg x_2 \neg x_1 \neg x_0 + \neg x_1 \neg x_1 \neg x_1 - \neg x_1 \neg x_1 \neg x_1 - \neg x_1 - \neg x_1 \neg x_1 - \neg$$

$$F_{AJJH\Phi}(c) = -x_3 - x_2 - x_1 - x_0 + -x_3 - x_2 - x_1 x_0 + -x_3 - x_2 x_1 x_0 + -x_3 x_2 - x_1 - x_0 + -x_3 x_2 - x_1 x_0 + -x_3 x_2 x_1 - x_0 + -x_3 x_2 x_1 x_0 + x_3 - x_2 - x_1 - x_0 + x_3 - x_1 - x_0 - x_1 - x_1$$

$$F_{AJJH\Phi}(d) = -x_3 - x_2 - x_1 - x_0 + x_3 - x_1 - x_0 - x_1 - x_$$

$$F_{\text{ДДН}\Phi}(e) = \neg x_3 \neg x_2 \neg x_1 \neg x_0 + \neg x_3 \neg x_2 x_1 \neg x_0 + \neg x_3 x_2 x_1 \neg x_0 + x_3 \neg x_2 \neg x_1 \neg x_0 + x_3 \neg x_2 x_1 \neg x_0 + x_3 \neg x_2 x_1 \neg x_0 + x_3 x_2 \neg x_1 \neg x_0 + x_3 \neg x_2 \neg x_1 \neg x_0 + x_3 \neg$$

$$F_{A,A,A,A,C}(f) = \neg x_3 \neg x_2 \neg x_1 \neg x_0 + \neg x_3 x_2 \neg x_1 \neg x_0 + \neg x_3 x_2 \neg x_1 x_0 + \neg x_3 x_2 \neg x_1 \neg x_0 + x_3 \neg x_1 \neg x_1 \neg x_1 - x_2 \neg x_$$

$$\begin{split} F_{\ ДДН\Phi}(g) &= \neg x_3 \neg x_2 x_1 \neg x_0 \ + \ \neg x_3 \neg x_2 x_1 x_0 \ + \ \neg x_3 x_2 \neg x_1 \neg x_0 \ + \ \neg x_3 x_2 \neg x_1 \neg x_0 \ + \ x_3 \neg x_2$$

12. Проводимо мінімізацію за допомогою карт Карно.

F (a)	$-x_0-x_1$	$x_0 \neg x_1$	x_0x_1	$\neg_{\mathbf{X}_0\mathbf{X}_1}$
$\neg x_3 \neg x_2$	1		1	1
$X_3 - X_2$	1	1		1
X ₃ X ₂			1	1
$\neg x_3x_2$		1	1	

F (c)	$\neg x_0 \neg x_1$	X_0	\mathbf{x}_1	\mathbf{x}_0	\mathbf{x}_1	$-x_0x$	1
$\neg x_3 \neg x_2$	1	1		1			
$X_3 - X_2$	1	1		1		1	
X ₃ X ₂		1					
	1	1		1		1	

F (b)	\neg_{X}	$x_0 \neg x_1$	X ₀ ⁻	$-x_1$	X ₀ y	ζ1	\vdash_{X}	$_{0}X_{1}$
$\neg x_3 \neg x_2$	1		1		1		1	
X_3 $-X_2$	1		1				1	
X ₃ X ₂			1					
$-x_3x_2$			1		1			

F (d)	$\neg x_0 \neg x_1$	X_0	$-\mathbf{x}_1$	X_0X	1	-X	$_{0}X_{1}$
$\neg x_3 \neg x_2$	1			1		\forall	
X ₃ ¬X ₂	1	1		1			
X ₃ X ₂	1	1				1	
$-x_3x_2$		1				1	

F (e)	$-X_0$	$0^{-}X_1$	$x_0 \neg x_1$	x_0x_1	\neg_{X}	$_{0}$ X $_{1}$
$\neg x_3 \neg x_2$	1				1	
$X_3 - X_2$	1			1	1	
X ₃ X ₂	1		1	1	1	
$-x_3x_2$					1	

F (f)	$\neg x_0 \neg x_1$	$x_0 \neg x_1$	x_0x_1	$\neg x_0 x_1$
$\neg x_3 \neg x_2$	1			
$X_3 - X_2$	1	1	1	1
X ₃ X ₂			1	1
$-x_3x_2$	1	1		1

F (g)	$\neg x_0 \neg x_1$	x_0 x_1	x_0x_1	$\neg_{\mathbf{X}_0\mathbf{X}_1}$
$-x_3-x_2$			1	1
X_3 $\overline{}$ X_2	1	1	1	1
X ₃ X ₂	1	1	1	1
$-x_3x_2$	1	1		1

13. Запишемо мінімізовані функції.

$$\begin{split} F_{\ MДH\Phi}(b) &= \neg x_2 \neg x_1 \neg x_0 \ + \ \neg x_3 \neg x_2 \ + \neg x_1 x_0 \ + \neg x_3 x_2 x_0 \ + \neg x_2 x_1 \neg x_0 = \neg x_2 \neg x_0 \ (\neg x_1 + x_1) \\ &+ \ \neg x_3 \neg x_2 \ + \neg x_1 x_0 \ + \neg x_3 x_2 x_0 = \neg x_2 \neg x_0 + \ \neg x_3 \neg x_2 \ + \neg x_1 x_0 \ + \neg x_3 x_2 x_0 \ . \end{split}$$

 $F_{MJH\Phi}(c) = -x_2 - x_1 + -x_2 x_1 x_0 + -x_1 x_0 + x_3 \oplus x_2$

 $F_{MДH\Phi}(d) = \neg x_3 \neg x_2 \neg x_0 + \neg x_2 x_1 x_0 + x_3 \neg x_1 + x_2 (x_1 \oplus x_0).$

 $F_{MДH\Phi}(e) = -x_2 - x_1 - x_0 + x_3 x_2 + x_1 - x_0 + x_3 x_1.$

 $F_{MДH\Phi}(f) = -x_2 - x_1 - x_0 + x_3 x_2 + x_3 x_1 + x_2 x_1 x_0 + -x_3 x_2 - x_1.$

 $F_{MДH\Phi}(g) = x_2 \oplus x_1 + x_1 - x_0 + x_3.$

14. Складаємо схему відповідно до отриманих логічних функцій.

- 15. Компілюємо проект. Компіляція пройшла успішно.
- 16. Проводимо під'єднання до виводів ПЛІС.

•	O_A	Output	PIN_A13	7	B7_N1
•	O_B	Output	PIN_B13	7	B7_N1
•	0_C	Output	PIN_C13	7	B7_N1
•	O_D	Output	PIN_A14	7	B7_N1
•	0_E	Output	PIN_B14	7	B7_N1
•	0_F	Output	PIN_E14	7	B7_N1
•	O_G	Output	PIN_A15	7	B7_N1
	XO	Input	PIN_G4	1	B1_N0
	X1	Input	PIN_H6	1	B1_N0
	X2	Input	PIN_H5	1	B1_N0
<u></u>	X3	Input	PIN_J6	1	B1_N0
	< <new node="">></new>				

17. Схема після повторної компіляції виглядає наступним чином:

18. Роботу пристрою перевіряємо на лабораторному стенді.

Висновок:

Під час виконання цієї лабораторної роботи було розглянуто способи задання логічних функцій, освоєно метод мінімізації логічних функцій в диз'юнктивній нормальній формі за допомогою карт Карно, складено систему, яка моделює роботу дешифратора семисегментного індикатора.