Digital Image Processing

Chapter 4 Morphological Image Processing B

Ming-Han Tsai

Department of Information Engineering and Computer Science,
Feng Chia University

Grayscale Morphology

Morphological Operation

Morphological Dilation: take the maximum under the kernel Morphological Erosion: take the minimum under the kernel

Kernel, Mask, Structuring element

Example – grayscale image

$$dilate(x, y) = \max_{\substack{(x', y') \in \text{kemel}}} \operatorname{src}(x + x', y + y') \qquad \begin{array}{c} 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

Example – grayscale image

$$\operatorname{erode}(x, y) = \min_{\substack{(x', y') \in \text{kemel}}} \operatorname{src}(x + x', y + y') \qquad \begin{array}{c} 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{array}$$

Morphological Opening

• open(src) = dilate(erode(src)) : erode → dilate

(Erode: min, Dilate: max)

Figure 5-10. Morphological opening operation: the upward outliers are eliminated as a result

Open: 斷開

Morphological Closing

• close(src) = erode(dilate(src)) : dilate → erode

(Dilate: max, Erode: min)

Figure 5-12. Morphological closing operation: the downward outliers are eliminated as a result

Close: 閉合

Morphological Filter

- (a) Source Image
- (b)~(d) Opening + Closing using 1x1,3x3, 5x5 S.E
- (a)天鵝座環超新星的
 566×566影像。(b)~(d)分別
 以半徑1、3、5的結構原素
 對原始影像作
 opening+closing的結果。
- 中央亮區為感興趣的物件, 較小的則為雜訊。
- 透過morphological operation, 雜訊逐漸被濾除。
- 因雜訊密度的關係,影像 下方的雜訊無法完全濾除。

Morphological Gradient

- gradient(src) = dilate(src)erode(src)
- Dilate: enlarge the area
- Erode: reduce the area

The operator has its highest values where grayscale image is changing most rapidly.

Image gradient

• The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

• The image is divided into 8x8 cells and a histogram of gradients is calculated for each 8x8 cell.

2	3	4	4	3	4	2	2
5	11	17	13	7	9	3	4
11	21	23	27	22	17	4	6
23	99	165	135	85	32	26	2
91	155	133	136	144	152	57	28
98	196	76	38	26	60	170	51
165	60	60	27	77	85	43	136
71	13	34	23	108	27	48	110

Gradient Magnitude

80	36	5	10	0	64	90	73
5355	-770	3000	100000		ASAM	169	
		6.00		200	Maria de	152	
57550						125	
120	70	14	150	145	144	145	143
58	86	119	98	100	101	133	113
30	65	157	75	78	165	145	124
11	170	91	4	110	17	133	110

Gradient Direction

- The histogram is essentially a vector (or an array) of 9 bins (numbers) corresponding to angles 0, 20, 40, 60 ... 160.
- The gradient at the pixel encircled using red has an angle of 10 degrees and magnitude of 4. Since 10 degrees is half way between 0 and 20, the vote by the pixel splits evenly into the two bins.

- If the angle is greater than 160 degrees, it is between 160 and 180, and we know the angle wraps around making 0 and 180 equivalent.
- So in the example below, the pixel with angle 165 degrees contributes proportionally to the 0 degree bin and the 160 degree bin.

- The contributions of all the pixels in the 8x8 cells are added up to create the 9-bin histogram. For the patch above, it looks like this.
- In our representation, the y-axis is 0 degrees.
- You can see the histogram has a lot of weight near 0 and 180 degrees, which is just another way of saying that in the patch gradients are pointing either up or down.

Color histogram

Color histogram

Color histogram

Morphological gradient

- gradient(src) = dilate(src)-erode(src)
- (a) 頭部的CT掃描
- (b) 膨脹
- (c) 侵蝕
- (d) 差異形成梯度

Morphological gradient

• gradient(src) = dilate(src)-erode(src)

Morphological Top Hat

• TopHat(src) = src - Open(src)

→bright local peaks are isolated

Morphological Black Hat

• BlackHat(src) = Close(src) - src $\rightarrow dark$ holes are isolated

Morphological Operation -- Summary

- morphologyEx (src, dst, op, kernel, iterations, borderType, borderValue)
- **MORPH_OPEN** an opening operation **MORPH_CLOSE** - a closing operation **MORPH_GRADIENT** - a morphological gradient **MORPH TOPHAT** - "top hat"

MORPH_BLACKHAT - "black hat"

Image I

Erosion I⊕B

Dialation I⊕B

TopHat(I)= I - (I Θ B)

Opening IoB= (IΘB)⊕B

BlackHat(I)= (I Θ B) -1

Example – Shading correlation

- (a) Rice Image: 600×600, darker in the lower-right area •
- (b) Thresholding on source image
- (c) Opening operation with 40x40 S.E. Extract the background •
- (d) Top-hat Transform: (a) (c)
- (e) Thresholding on (d)

Example – Granulometry (粗糙度)

- 估算一張影像中粒子顆粒大小
- 假設粒子有規律的形狀且比背景亮,我們可用逐漸增大的SE作斷開(opening)。
- →某一特定大小的opening對大小相近的粒子輸入影像最有效。
- 對每一次作opening後的影像,計算所有像素值的和(稱 surface area),此值會隨SE尺寸的增大而減少。

Example – Granulometry (粗糙度)

- (a) Wine corks image (531x675)
- (b) Smooth image with circle S.E radius=5
- (c) \sim (f) opening on (b) with circle S.E radius = 10,20,25,30

小塞子的強度貢獻大都已被消除

已變暗,因其較小。 →偵測瑕疵品

Example – Granulometry (粗糙度)

- Calculate the difference of the surface area before/after
- The two peaks in right image means that there are two types of wine corks in the image.

Example – Textural Segmentation

- (a) 兩種暗斑點,在帶有 雜訊的亮背景上。
- (b) 先以大於小斑點的SE作closing,小斑點會被移除。(SE:130,小斑:25)
- (c) 再對(b)以大於斑點 間距的SE作opening, 則斑點間亮的間隙將 被移除。(SE: 60)
- (d) 以3×3的SE對(c)作梯 度計算,則可產生兩 區域間的邊界。

• Q&A