What is claimed is:

1. A compound of formula (1):

$$R^{1}-(A^{1}-Z^{1})_{m}-(A^{2}-Z^{2})_{n}-(A^{3}-Z^{3})_{q}-A^{4}-Z^{4}$$

$$R^{5}$$

$$R^{3}$$
(1)

wherein R1 represents hydrogen, halogen, -CN, -CF3, -CF2H, - CFH_2 , $-OCF_3$, $-OCF_2H$, -N=C=O, -N=C=S, or alkyl having from 1 to 20 carbon atoms, and any -CH₂- of the alkyl may be substituted with -O-, -S-, -CO-, -COO-, -OCO-, -CH=CH-, -CF=CF- or -C≡C-, and any hydrogen thereof may be substituted with halogen or -CN; R^2 , R^3 and R^5 each independently represent hydrogen or alkyl having from 1 to 3 carbon atoms; A^1 , A^2 , A^3 and A^4 each 10 1,4-cyclohexylene, 1,4independently represent cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, fluorene-2,7-diyl, tetrahydronaphthalene-2,6-diyl, bicyclo[2.2.2]octane-1,4-diyl or bicyclo[3.1.0]hexane-3,6diyl, and in these rings, any $-CH_2-$ may be substituted with -O-, 15 and any -CH= may be substituted with -N=, and in these rings, any hydrogen may be substituted with halogen or alkyl having from 1 to 5 carbon atoms; Z^1 , Z^2 and Z^3 each independently represent a single bond, $-(CH_2)_a-$, $-O(CH_2)_a-$, $-(CH_2)_aO-$, - $O(CH_2)_aO-$, -CH=CH-, $-C\equiv C-$, -COO-, $-(CF_2)_2-$, $-C\equiv C-COO-$, 20 -OCO-C≡C-, -CH=CH-(CH₂)₂-, -(CH₂)₂-CH=CH-, -CF=CF-, -C≡C-HC=CH-, -CH=CH-C \equiv C-, -OCF₂-, or -CF₂O-, and a indicates an integer of from 1 to 20; Z^4 represents a single bond or α , ω -alkylene having from 1 to 4 carbon atoms, and any $-CH_2$ of the alkylene may be substituted with -O-, -S-, -COO- or -OCO-; m, n and q each 25 independently indicate 0, 1 or 2.

- A compound as claimed in claim 1, in which R⁵ in formula
 is hydrogen.
- 3. A compound as claimed in claim 2, in which R^2 and R^3 in formula (1) in claim 1 are hydrogen.
- 4. A compound as claimed in claim 3, in which A¹, A², A³ and A⁴ in formula (1) in claim 1 are independently any of 1,4-cyclohexylene or 1,4-phenylene, and any hydrogen in these rings may be substituted with halogen.
- 5. A compound as claimed in claim 3, in which A^1 , A^2 , A^3 and A^4 in formula (1) in claim 1 are independently any of 1,4-cyclohexylene or 1,4-phenylene, and any hydrogen in these rings may be substituted with halogen; and Z^1 , Z^2 and Z^3 are independently any of a single bond, $-(CH_2)_a-$, $-O(CH_2)_a-$, $-(CH_2)_aO-$, $-O(CH_2)_aO-$, -CH=CH-, $-C\equiv C-$, -COO-, -OCO-, $-OCF_2-$ or $-CF_2O-$.
- 6. A compound as claimed in claim 5, in which Z⁴ in formula
 (1) in claim 1 is a single bond.
 - 7. Any one compound of formulae (a) to (d):

$$R^{1}-A^{1}-Z^{1}-A^{4}-Z^{4}-$$
 (a)

$$R^{1}-A^{1}-Z^{1}-A^{2}-Z^{2}-A^{4}-Z^{4}$$
 (b)

$$R^{1}-A^{1}-Z^{1}-A^{2}-Z^{2}-A^{3}-Z^{3}-A^{4}-Z^{4}$$
 (c)

$$R^{1} - (A^{1} - Z^{1})_{2} A^{2} - Z^{2} - A^{3} - Z^{3} - A^{4} - Z^{4} - (d)$$

wherein R1 represents hydrogen, halogen, -CN, -CF3, -CF2H, -CFH2, -OCF3, -OCF2H, -N=C=O, -N=C=S, or alkyl having from 1 to 20 carbon atoms, and any $-CH_2-$ of the alkyl may be substituted with -O-, -S-, -CO-, -COO-, -CH=CH-, -CF=CF- or -C≡C-, and any hydrogen thereof may be substituted with halogen or -CN; 5 A^1 , A^2 , A^3 and A^4 each independently represent 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, fluorene-2,7-diyl, tetrahydronaphthalene-2,6-diyl, bicyclo[2.2.2]octane-1,4-diyl or bicyclo[3.1.0]hexane-3,6diyl, and in these rings, any -CH2- may be substituted with -O-, 10 and any -CH= may be substituted with -N=, and in these rings, any hydrogen may be substituted with halogen or alkyl having from 1 to 5 carbon atoms; Z^1 , Z^2 and Z^3 each independently represent a single bond, $-(CH_2)_a-$, $-O(CH_2)_a-$, $-(CH_2)_aO-$, - $O(CH_2)_2O_{-}$, $-CH=CH_{-}$, $-C\equiv C_{-}$, $-COO_{-}$, $-OCO_{-}$, $-(CF_2)_2-$, $-C\equiv C_{-}COO_{-}$, 15 $-OCO-C \equiv C-$, -CH=CH-(CH₂)₂-, -(CH₂)₂-CH=CH-, -CF=CF-, $-C \equiv C-HC=CH-$, -CH=CH-C≡C-, -OCF₂- or -CF₂O-, and a indicates an integer of from 1 to 20; Z^4 represents a single bond or α , ω -alkylene having from 1 to 4 carbon atoms, and any $-CH_2-$ of the alkylene may be 20 substituted with -O-, -S-, -COO- or -OCO-.

8. A compound as claimed in claim 7, in which R^1 in formulae (a) to (d) is hydrogen, halogen, -CN, $-CF_3$, $-CF_2H$, $-CFH_2$, $-OCF_3$, $-OCF_2H$, alkyl having from 1 to 10 carbon atoms, alkoxy having from 1 to 10 carbon atoms, alkoxyalkyl having from 2 to 10 carbon atoms, or alkenyl having from 2 to 10 carbon atoms; A^1 , A^2 , A^3 and A^4 are independently any of 1,4-cyclohexylene or 1,4-phenylene, and in these rings, any hydrogen may be substituted with halogen; Z^1 , Z^2 and Z^3 are independently any of a single

25

bond, $-(CH_2)_2-$, $-(CH_2)_4-$, $-OCH_2-$, $-O(CH_2)_3-$, $-CH_2O-$, $-(CH_2)_3O-$, $-O(CH_2)_2O-$, -CH=CH-, $-C\equiv C-$, -COO-, -OCO-, $-(CF_2)_2-$, -CF=CF-, $-OCF_2-$ or $-CF_2O-$; Z^4 is a single bond.

9. A liquid-crystal composition containing at least two polymerizable compounds, in which at least one polymerizable compound is the compound of any one of claims 1 to 8.

5

20

25

- 10. A liquid-crystal composition as claimed in claim 9, in which all the polymerizable compounds are the compounds of any one of claims 1 to 8.
- 11. A liquid-crystal composition as claimed in claim 9, which contains at least one compound of any one of claims 1 to 8 and at least one polymerizable compound except the compound.
 - 12. A liquid-crystal composition as claimed in claim 9, which additionally contains an optically-active compound.
- 13. A polymer having a constitutional unit of formula (2):

$$R^{1} - \left(A^{1} - Z^{1}\right)_{m} \left(A^{2} - Z^{2}\right)_{n} \left(A^{3} - Z^{3}\right)_{q} A^{4} - Z^{4} = \begin{pmatrix} 0 \\ R^{5} \end{pmatrix} \qquad (2)$$

wherein R^1 represents hydrogen, halogen, -CN, $-CF_3$, $-CF_2H$, $-CFH_2$, $-OCF_3$, $-OCF_2H$, -N=C=O, -N=C=S, or alkyl having from 1 to 20 carbon atoms, and any $-CH_2-$ of the alkyl may be substituted with -O-, -S-, -CO-, -COO-, -OCO-, -CH=CH-, -CF=CF- or $-C\equiv C-$, and any hydrogen thereof may be substituted with halogen or -CN; R^2 , R^3 and R^5 each independently represent hydrogen or an alkyl having from 1 to 3 carbon atoms; A^1 , A^2 , A^3 and A^4 each independently represent 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl,

bicyclo[2.2.2]octane-1,4-diyl or bicyclo[3.1.0]hexane-3,6-diyl, and in these rings, any -CH₂- may be substituted with -O-, and any -CH= may be substituted with -N=, and in these rings, any hydrogen may be substituted with halogen or alkyl having from 1 to 5 carbon atoms; Z^1 , Z^2 and Z^3 each independently represent a single bond, $-(CH_2)_a-$, $-O(CH_2)_a-$, $-(CH_2)_aO-$, -O(CH₂)_aO-, -CH=CH-, -CEC-, -COO-, -OCO-, -(CF₂)₂-, -CEC-COO-, -OCO-CEC-, -CH=CH-(CH₂)₂-, -(CH₂)₂-CH=CH-, -CF=CF-, -CEC-HC=CH-, -CH=CH-CEC-, -OCF₂-, or -CF₂O-, and a indicates an integer of from 1 to 20; Z^4 represents a single bond or α , ω -alkylene having from 1 to 4 carbon atoms, and any -CH₂- of the alkylene may be substituted with -O-, -S-, -COO- or -OCO-; and m, n and q each independently indicate 0, 1 or 2.

- 14. A polymer as claimed in claim 13, in which R^5 in formula 15 (2) is hydrogen.
 - 15. A polymer as claimed in claim 14, in which R^2 and R^3 in formula (2) in claim 13 are hydrogen.
 - 16. A polymer as claimed in claim 15, in which A^1 , A^2 , A^3 and A^4 in formula (2) in claim 13 are independently any of 1,4-cyclohexylene or 1,4-phenylene, and any hydrogen in these rings may be substituted with halogen.

20

25

- 17. A polymer as claimed in claim 15, in which A^1 , A^2 , A^3 and A^4 in formula (2) in claim 13 are independently any of 1,4-cyclohexylene or 1,4-phenylene, and any hydrogen in these rings may be substituted with halogen; and Z^1 , Z^2 and Z^3 are independently any of a single bond, $-(CH_2)_a-$, $-O(CH_2)_a-$, $-(CH_2)_aO-$, $-O(CH_2)_aO-$, -CH=CH-, $-C\equiv C-$, -COO-, -OCO-, $-OCF_2-$, or $-CF_2O-$.
 - 18. A polymer as claimed in claim 17, in which Z4 in formula

(2) in claim 13 is a single bond.

.5

10

15

- 19. A polymer as claimed in claim 13, in which R^1 in formula (2) is hydrogen, halogen, -CN, $-CF_3$, $-CF_2H$, $-CFH_2$, $-OCF_3$, $-OCF_2H$, alkyl having from 1 to 10 carbon atoms, alkoxy having from 1 to 10 carbon atoms, alkoxyalkyl having from 2 to 10 carbon atoms, or alkenyl having from 2 to 10 carbon atoms; R^2 , R^3 and R^5 are hydrogen; A^1 , A^2 , A^3 and A^4 are independently any of 1,4-cyclohexylene or 1,4-phenylene, and in these rings, any hydrogen may be substituted with halogen; Z^1 , Z^2 and Z^3 are independently any of a single bond, $-(CH_2)_2-$, $-(CH_2)_4-$, $-OCH_2-$, $-O(CH_2)_3-$, $-CH_2O-$, $-(CH_2)_3O-$, $-O(CH_2)_2O-$, -CH=CH-, $-C\equiv C-$, -COO-, $-(CF_2)_2-$, -CF=CF-, $-OCF_2-$ or $-CF_2O-$; Z^4 is a single bond.
- 20. A polymer as claimed in claim 13, which is obtained through homopolymerization of one compound of any one of claims 1 to 8.
 - 21. A polymer as claimed in claim 13, which is obtained from the liquid-crystal composition of any one of claims 9 to 12.
- 22. An optically-anisotropic material of the polymer of any one of claims 13 to 21.
 - 23. A liquid-crystal display device, which contains the polymer of any one of claims 13 to 21.
 - 24. A liquid-crystal display device, which contains the optically-anisotropic material of claim 22.
- 25. A method for producing a vinyl ketone compound of formula (1b), which comprises reacting one molar equivalent of a compound of formula (1a) with from 1 to 10 molar equivalents of a Lewis acid at -70°C to 200°C, followed by

dehydrohalogenating the resulting compound:

$$R^{4} - \left(A^{1} - Z^{1}\right)_{m} \left(A^{2} - Z^{2}\right)_{n} \left(A^{3} - Z^{3}\right)_{q} A^{4} - Z^{4} - \left(A^{3} - Z^{4}\right)_{q} R^{3}$$
 (1a)

$$R^{4} - \left(A^{1} - Z^{1}\right)_{m} \left(A^{2} - Z^{2}\right)_{n} \left(A^{3} - Z^{3}\right)_{q} A^{4} - Z^{4} - \left(A^{3} - Z^{4}\right)_{q} A^{2} - \left(A^{3} - Z^{4}\right)_{q} A^{4} - \left(A^$$

wherein R4 represents hydrogen, halogen, -OH, -CN, -CF3, -CF2H, $-CFH_2$, $-OCF_3$, $-OCF_2H$, -N=C=O, -N=C=S, or alkyl having from 1 to 20 carbon atoms, and any $-CH_2-$ of the alkyl may be substituted 5 with -O-, -S-, -CO-, -COO-, -CCO-, -CH=CH-, -CF=CF- or $-C\equiv C-$, and any hydrogen thereof may be substituted with halogen or -CN; R², R³ and R⁵ each independently represent hydrogen or an alkyl having from 1 to 3 carbon atoms; A^1 , A^2 , A^3 and A^4 each 10 independently represent 1,4-cyclohexylene, cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo[2.2.2]octane-1,4-diyl or bicyclo[3.1.0]hexane-3,6diyl, and in these rings, any $-CH_2$ - may be substituted with -O-, 15 and any -CH= may be substituted with -N=, and in these rings, any hydrogen may be substituted with halogen or alkyl having from 1 to 5 carbon atoms; Z^1 , Z^2 and Z^3 each independently represent a single bond, $-(CH_2)_a-$, $-O(CH_2)_a-$, $-(CH_2)_aO-$, - $O(CH_2)_3O-$, -CH=CH-, $-C\equiv C-$, -COO-, -OCO-, $-(CF_2)_2-$, $-C\equiv C-COO-$, 20 $-OCO-C\equiv C-$, -CH=CH-(CH₂)₂-, -(CH₂)₂-CH=CH-, -CF=CF-, $-C\equiv C-HC=CH-$, -CH=CH-C \equiv C-, -OCF₂- or -CF₂O-, and a indicates an integer of from 1 to 20; Z^4 represents a single bond or α, ω -alkylene having

from 1 to 4 carbon atoms, and any $-CH_2-$ of the alkylene may be substituted with -O-, -S-, -COO- or -OCO-; m, n and q each independently indicate 0, 1 or 2; Hal represents chlorine, bromine or iodine.