A számításelmélet alapjai I. (Első gyakorlat)

Dr. Lázár Katalin Anna

Eötvös Loránd Tudományegyetem, Informatikai Kar 1117 Budapest, Pázmány Péter sétány 1/C. e-mail: lazarkati@elte.hu

2024. február 13.

Tematika

- Ábécé, szavak (sztringek), üres szó, alapvető műveletek szavakon (konkatenáció, a szó i-dik hatványa), szó hossza, szavak egyenlősége (azonossága), szavak (valódi) részszavai, szavak prefixuma (kezdőszelete), szuffixuma (utótagja), tükörképe (fordítottja).
- Nyelv, üres nyelv, véges, végtelen nyelv.
- Nyelvekre vonatkozó műveletek: unió, metszet, különbség, komplemens, konkatenáció, i-dik iteráció, iteratív lezárt (lezárt vagy Kleene-lezárt), tükörkép (megfordítás), prefixum (prefixnyelv), szuffixum (szuffixnyelv), homomorfizmus, izomorfizmus.

Műveletek szavakon

Példa 1

Legyen $V = \{a, b, c\}$ és legyen $u_1 = cab$, $u_2 = aabc$ egy-egy V feletti szó.

- Soroljuk fel u_1 és u_2 valódi részszavait!
- 2 Adjuk meg u_1 és u_2 hosszát!
- 3 Határozzuk meg u_1 és u_2 konkatenáltját! Igaz-e, hogy $u_1u_2=u_2u_1$?
- 4 Határozzuk meg u_1 és u_2 tükörképét (fordítottját), valamint $u_2^R u_1$ -et!
- \odot Igaz-e, hogy ab prefixuma (kezdőszelete) u_1 -nek, bc szuffixuma (utótagja) u_2 -nek?
- Határozzuk meg u_1 és u_2 j-dik hatványait (vagyis u_1^j -t és u_2^j -t), ahol j=0,1,2,3!

Műveletek szavakon

- u₁ valódi részszavai: c, a, b, ca, ab. u₂ valódi részszavai: a, b, c, aa, ab, bc, aab, abc.
- ② u_1 hossza: $|u_1| = 3$, u_2 hossza: $|u_2| = 4$.
- 3 u_1 és u_2 konkatenáltja: $u_1u_2 = cabaabc$. $u_1u_2 = cabaabc \neq u_2u_1 = aabccab$.
- **1 u**₁ tükörképe: $u_1^R = bac$, u_2 tükörképe: $u_2^R = cbaa$. $u_2^R u_1 = cbaacab$.
- **5** HAMIS (ab NEM prefixuma u_1 -nek). IGAZ (bc szuffixuma u_2 -nek).

Véges és végtelen nyelvek

Példa 2

Legyen $V = \{c, d\}$. Végesek vagy végtelenek az alábbi nyelvek? Végtelen nyelvek esetén soroljuk fel a nyelv néhány szavát!

- **1** $L_1 = \emptyset$.
- $2 L_2 = \{\varepsilon\}.$

- **5** $L_5 = \{c^p d^q \mid p, q \text{ prím}, q = p + 2\} \ (L_5 = \{c^p d^q \mid p, q \text{ ikerprím}\}).$
- $L_6 = \{u \in V^* \mid |u|_c = |u|_d\}$, ahol $|u|_c$, $|u|_d$ c és d u-beli előfordulásainak számát jelöli.

Véges és végtelen nyelvek

- $L_1 = \emptyset$ véges nyelv.
- ② $L_2 = \{\varepsilon\}$ véges nyelv.
- 3 $L_3 = \{c, cd, ccdc, ccddd\}$ véges nyelv.
- **4** $L_4 = \{c^i d^{i+1} \mid i \ge 0\}$ végtelen nyelv. Példa L_4 szavaira: $d, cd^2, c^2 d^3,$ stb.
- **3** $L_5 = \{c^p d^q \mid p, q \text{ prím}, q = p + 2\}$ $(L_5 = \{c^p d^q \mid p, q \text{ ikerprím}\})$ végtelen nyelv (végtelen sok ikerprím létezik). Példa L_5 szavaira: $c^3 d^5, c^5 d^7, c^{11} d^{13}, c^{17} d^{19}, c^{29} d^{31}$, stb.
- $L_6 = \{u \in V^* \mid |u|_c = |u|_d\}$ végtelen nyelv. Példa L_6 szavaira: $\varepsilon, cd, ccdd, cdcd, cdcdd$, stb.
- $L_7 = \{uu^R \mid u \in V^+\}$ végtelen nyelv. Példa L_7 szavaira: cc, dd, cddc, cddddc, stb.

Példa 3

Legyen $V = \{a, b\}$ ábécé és legyenek $L_1 = \{a, b\}$, $L_2 = \{a, bb\}$ nyelvek. Határozzuk meg az $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 - L_2$, $L_2 - L_1$, $L_1 L_2$, L_1^* , $L_1^* L_2^*$, $(L_1 \cup L_2)^*$, $\bar{L_1}$ és L_1^R nyelveket!

- $L_1 \cup L_2 = \{a, b, bb\}$,
- $L_1 \cap L_2 = \{a\},\$
- $L_1 L_2 = \{b\},\$
- $L_2 L_1 = \{bb\},\$
- $L_1L_2 = \{aa, abb, ba, bbb\},\$
- $L_1^* = V^*$ (minden $\{a, b\}$ feletti szó),
- $L_1^*L_2^* = V^*$,
- $(L_1 \cup L_2)^* = V^*$,
- $\bar{L_1} = \{u \in V^* \mid |u| \ge 2 \text{ vagy } u = \varepsilon\}$ és
- $L_1^R = \{a, b\} (= L_1)$

Példa 4

Legyen $V=\{a,b\}$ ábécé és legyenek $L_1=\{a^{3n}b^{3n}\mid n\geq 1\}$, $L_2=\{a^{3n}b^{2n}\mid n\geq 0\}$ nyelvek V felett! Adjuk meg az $\bar{L_1}$ és az L_2^R nyelveket!

•
$$\bar{L}_1 = V^* - \{a^{3n}b^{3n} \mid n \geq 1\}.$$

•
$$L_2^R = \{b^{2n}a^{3n} \mid n \ge 0\}.$$

Példa 5

Legyen $V = \{a, b\}$ ábécé és legyenek $L_1 = \{ab, bb\}$ és $L_2 = \{\varepsilon, a, baa\}$. Határozzuk meg L_1L_2 -t!

Példa 5

 $L_1L_2 = \{ab, bb, aba, bba, abbaa, bbbaa\}.$

Példa 6

Legyen $V = \{a, b\}$ ábécé és legyen $L = \{a, bb\}$. Határozzuk meg L^i -t, ahol i = 0, 1, 2, 3!

- $L^0 = \{ \varepsilon \}$,
- $L^1 = \{a, bb\},\$
- $L^2 = \{aa, abb, bba, bbbb\}$ és
- $L^3 = \{aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb\}$.

Példa 7

Legyen $V = \{a, b\}$ ábécé és legyen $L = \{a^{3n+1}b \mid n \ge 0\}$. Határozzuk meg Pre(L)-t és Suf(L)-t!

Példa 7

Definíció 1

- Egy $L \subseteq V^*$ nyelv prefixnyelvén a $Pre(L) = \{u \mid u \in V^*, uv \in L \text{ valamely } v \in V^*\text{-ra}\}$ nyelvet értjük.
- Egy $L \subseteq V^*$ nyelv szuffixnyelvén a $Suf(L) = \{u \mid u \in V^*, vu \in L \text{ valamely } v \in V^*\text{-ra}\}$ nyelvet értjük.

Megjegyzés

 $L \subseteq Pre(L), L \subseteq Suf(L).$

- $Pre(L) = \{a^{3n+1}b \mid n \ge 0\} \cup \{a^n \mid n \ge 0\}.$
- Suf(L) = { $a^nb \mid n \geq 0$ } \cup { ε }.

Példa 8

Mely összefüggések igazak az alábbi nyelvekre? ($L_1\subseteq L_2$, $L_1\supseteq L_2$,

$$L_1 = L_2$$
, egyik sem)

- $L_1 = \{a^{3n} \mid n > 0\}$ és $L_2 = (aaa)^*$.
- $L_1 = \{a^n b^n c^n \mid n \ge 0\}$ és $L_2 = a^* b^* c^*$.

- $L_1 = \{a^{3n} \mid n > 0\} \subseteq L_2 = (aaa)^*$.
- $L_1 = \{a^n b^n c^n \mid n \ge 0\} \subseteq L_2 = a^* b^* c^*$.

Példa 9

Legyen $L_1 = \{a^nb^n \mid n \ge 0\}$, $L_2 = \{a^{2n+1}b \mid n \ge 0\}$. Igazak-e a következő állítások?

- $\bullet \ \{a^nb^na^nb\mid n\geq 0\}\subseteq L_1L_2.$
- $\{a^nb^na^{2n+1}b \mid n \geq 0\} \subseteq L_1L_2$.
- $\bullet \ \{(a^nb^n)^n \mid n \geq 0\} \subseteq L_1^*.$
- $\{(ab)^n \mid n \geq 0\} \subseteq L_2^+$.

- $\{a^nb^na^nb \mid n \geq 0\} \subseteq L_1L_2 \text{ NEM IGAZ}.$
- $\{a^nb^na^{2n+1}b\mid n\geq 0\}\subseteq L_1L_2$ IGAZ.
- $\{(a^nb^n)^n \mid n \geq 0\} \subseteq L_1^* \text{ IGAZ}.$
- $\{(ab)^n \mid n \ge 0\} \subseteq L_2^+$ NEM IGAZ.

Példa 10

Mely összefüggések igazak az alábbi nyelvekre? Húzzunk alá minden igaz választ!

1
$$L_1 = \{a^{4n} \mid n > 0\} \cup \{\varepsilon\} \text{ és } L_2 = (aaaa)^*.$$

$$L_1 \subseteq L_2$$
 $L_2 \subseteq L_1$ egyenlők egyik sem

②
$$L_1 = \{a^n b^n \mid n \ge 0\}$$
 és $L_2 = a^* b^*$.

$$L_1 \subseteq L_2$$
 $L_2 \subseteq L_1$ egyenlők egyik sem

3
$$L_1 = \{u \mid u \in \{a, b\}^+\} \text{ és } L_2 = aa^*bb^*.$$

$$L_1 \subseteq L_2$$
 $L_2 \subseteq L_1$ egyenlők egyik sem

Példa 10

1
$$L_1 = \{a^{4n} \mid n > 0\} \cup \{\varepsilon\} \text{ és } L_2 = (aaaa)^*.$$

$$L_1 \subseteq L_2$$
 $L_2 \subseteq L_1$

egyenlők egyik sem

2
$$L_1 = \{a^n b^n \mid n \ge 0\}$$
 és $L_2 = a^* b^*$.

$$L_1 \subseteq L_2$$
 $L_2 \subseteq L_1$

egyenlők

egyik sem

3
$$L_1 = \{u \mid u \in \{a, b\}^+\} \text{ és } L_2 = aa^*bb^*.$$

$$L_1 \subseteq L_2$$
 $L_2 \subseteq L_1$

egyenlők

egyik sem

Példa 11

Legyen $V = \{a\}$ ábécé és legyen $L_3 = \{a^{3^n} \mid n \ge 1\}$. Melyik nyelv üres az alábbi nyelvek közül: $\emptyset L_3^*$, $\emptyset L_3^+$, $L_3 L_3$, L_3 , L_3 , L_3 0?

- $\emptyset L_3^*$, $\emptyset L_3^+$ és $\overline{L}_3 \emptyset$ üres (ugyanis $\forall L$ nyelvre: $L\emptyset = \emptyset L = \emptyset$).
- L_3L_3 és \bar{L}_3 nem üres.

Példa 12

Mely állítások igazak az alábbi, nyelvekre vonatkozó állítások közül?

- $\bullet \ \emptyset^* = \{\varepsilon\}.$
- $\{\varepsilon\}^* = \varepsilon$.
- $\bullet \ \{\varepsilon\}^+ = \varepsilon.$
- $\bullet \ \emptyset^+ = \emptyset.$
- $(L^*)^+ = (L^+)^*.$

- $L \subseteq L^*, (L^*)^* \subseteq L^*$.
- ha $L_1 \subseteq L_2$, akkor $L_1^* \subseteq L_2^*$.
- $L \subseteq L^+, (L^+)^+ \subseteq L^+$.
- ha $L_1 \subseteq L_2$, akkor $L_1^+ \subseteq L_2^+$.
- \bullet $\emptyset L = L$.
- $\bullet \ \{\varepsilon\}L = \{\varepsilon\}.$
- $L_1 \cup L_2 = L_2 \cup L_1$.
- $L^* \{\varepsilon\} = L^+$.
- $(L^R)^R = L$.

- $\emptyset^* = \{\varepsilon\}$ IGAZ.
- $\{\varepsilon\}^* = \varepsilon \text{ IGAZ}.$
- $\{\varepsilon\}^+ = \varepsilon \text{ IGAZ}.$
- $\emptyset^+ = \emptyset$ IGAZ.
- $(L^*)^+ = (L^+)^* \text{ IGAZ}.$

- $L \subseteq L^*, (L^*)^* \subseteq L^*$ IGAZ.
- ha $L_1 \subseteq L_2$, akkor $L_1^* \subseteq L_2^*$ IGAZ.
- $L \subseteq L^+, (L^+)^+ \subseteq L^+$ IGAZ.
- ha $L_1 \subseteq L_2$, akkor $L_1^+ \subseteq L_2^+$ IGAZ.
- $\emptyset L = L$ HAMIS (ugyanis $\forall L : \emptyset L = L\emptyset = \emptyset$).
- $\{\varepsilon\}L = \{\varepsilon\}$ HAMIS (ugyanis $\forall L : \{\varepsilon\}L = L\{\varepsilon\} = L$).
- $L_1 \cup L_2 = L_2 \cup L_1$ IGAZ.
- $L^* \{\varepsilon\} = L^+$ HAMIS (ugyanis $L^* = L^+$, ha $\varepsilon \in L$ és $L^* \{\varepsilon\} = L^+$ ha $\varepsilon \notin L$).
- $(L^R)^R = L \text{ IGAZ}.$

Példa 13

Jelöljenek L, L_1 , és L_2 egy V ábécé feletti nyelveket.

- Mikor üres L^* , $L_1 \cup L_2$, L_1L_2 ?
- Mikor véges L^* , $L_1 \cup L_2$, L_1L_2 ?

- $L^* \ni \varepsilon$, tehát sosem üres. $L_1 \cup L_2$ pontosan akkor üres, ha $L_1 = L_2 = \emptyset$. Végül, L_1L_2 pontosan akkor üres, ha $L_1 = \emptyset$ vagy $L_2 = \emptyset$.
- L^* pontosan akkor véges, ha $L=\emptyset$ vagy $L=\{\varepsilon\}$. $L_1\cup L_2$ pontosan akkor véges, ha L_1 és L_2 is véges. Végül, L_1L_2 pontosan véges, ha L_1 és L_2 is véges, vagy ha $L_1=\emptyset$ vagy ha $L_2=\emptyset$.

Példa 14

Jelöljön L egy V ábécé feletti tetszőleges nyelvet. Mikor teljesülnek a következő egyenlőségek?

$$\bullet$$
 $L^+ = L^+ \cup L^0$,

$$\bullet \ \bar{L} \cap L = \{\varepsilon\}, \dots$$

- **1** $L^+ = L^+ \cup L^0$, vagyis $L^+ = L^*$, ha $\varepsilon \in L$.
- $2 L^+ \cap \{\varepsilon\} = \emptyset$, ha $\varepsilon \notin L$.
- **3** $L^0\{\varepsilon\} = \{\varepsilon\}$, mindig (ugyanis $L^0 = \varepsilon$).

Példa 15

lgazoljuk, hogy tetszőleges L nyelvre $L^* = L^*L^*!$

Példa 15

Mivel $\varepsilon \in L^*$, ezért a $L^* \subseteq L^*L^*$ nyilván fennáll. A másik irányú tartalmazás igazolásához tekintsük $w \in L^*L^*$ szót. Ekkor w felírható w = uv alakban úgy, hogy $u \in L^*$ és $v \in L^*$. Emiatt $u = u_1 \dots u_k$ és $v = v_1 \dots v_l$ alakban felírható, ahol $u_i, v_j \in L$, $0 \le i \le k, 0 \le j \le l$, ami azt jelenti, hogy u és v konkatenációja L^* -beli.

Példa 16

lgazoljuk, hogy tetszőleges L nyelvre $(L^*)^* = L^*!$

Példa 16

Egyrészt $L^* = (L^*)^1 \subseteq (L^*)^*$. A másik irányú tartalmazás igazolásához tekintsük $u \in (L^*)^*$ -t. Ekkor u felírható $u = u_1 \dots u_k$ alakban úgy, hogy $u_i \in L^*$, $0 \le i \le k$. $u_i \in L^*$, $0 \le i \le k$ miatt u_i felírható $u = u_{i_1} \dots u_{i_{m_i}}$ alakban, ahol $u_{i_1}, \dots, u_{i_{m_i}} \in L$, azaz $u \sum_{i=1}^k m_i$ darab L-beli szó konkatenációja, azaz L^* -beli.