Codes from points in projective space

George McNinch

2024-03-04

Codes and vectors

From the usual perspective, an $[n,k]_q$ -code C is given as a subspace $C \subset \mathbb{F}_q^n$. Rather than give the embedding, we are going to explain how the "additional coordinates" can instead be understood using points in \mathbb{P}^{k-1} .

So, let C be an $[n, k]_q$ -code and let the $k \times n$ matrix G be a generator matrix for C.

Let us view the *columns of* G as a multi-set S of vectors in \mathbb{F}_q^k .

Proposition The following are equivalent for the natural number d:

- a. d is the minimal distance of C
- b. each hyperplane of \mathbb{F}_q^k contains at most n-d vectors of S, and some hyperplane of \mathbb{F}_q^k contains exactly n-d vectors of S.

Proof/sketch Recall that the map $v\mapsto vG$ gives an isomorphism $\mathbb{F}_q^k\to C$.

Write $\langle \cdot, \cdot \rangle$ for the standard inner product on \mathbb{F}_q^k . For a vector $\mathbf{u} \in \mathbb{F}_q^k$, write $\pi_{\mathbf{u}}$ for the hyperplane defined by

$$\pi_{\mathbf{u}} = \{ \mathbf{v} \in \mathbb{F}_q^k \mid \langle \mathbf{v}, \mathbf{u} \rangle = 0 \}.$$

Notice that $\pi_{\mathbf{u}} = \pi_{\lambda \mathbf{u}}$ for any $0 \neq \lambda \in \mathbb{F}_q^k$. The $\pi_{\mathbf{u}}$ for $\mathbf{u} \neq 0$ are precisely the hyperplanes of \mathbb{F}_q^k .

Now, label the coordinates of vG by the points in S; for $s \in S$ the s-coordinate of vG is thus $\langle v, s \rangle$.

Now the proposition follows from the observation that for $v \in \mathbb{F}_q^k$, we have:

$$\langle v, s \rangle = 0 \iff s \in \pi_n$$
.

Points in projective space

We can reformulate the above discussion using the projective space \mathbb{P}^{k-1} determined by \mathbb{F}_q^k .

Assume that the generator matrix has no 0-columns. Let S be the set of points $[x] \in \mathbb{P}^{k-1}$ where x is a column of the matrix G.

Now observe that each hyperplane $\Pi_{\mathbf{u}}$ in \mathbb{P}^{k-1} has the form

$$\Pi_{\mathbf{u}} = \{[v] \in \mathbb{P}^{k-1} \mid \langle \mathbf{v}, \mathbf{u} \rangle = 0\}.$$

Repeating the proof given above we obtain:

Proposition (*Reformulation*) The following are equivalent for the natural number d:

- a. d is the minimal distance of C
- b. each hyperplane of \mathbb{P}^{k-1} contains at most n-d vectors of S, and some hyperplane of \mathbb{P}^{k-1} contains exactly n-d vectors of S.

Conversely, given a subset $S \subset \mathbb{P}^{k-1}$, we construct a code C(S) with generator matrix G, where the columns of G are vector representatives for the points in S.

Polynomials on \mathbb{P}^1

Let $g(X,Y) \in k[X,Y]_d$ be a homogeneous polynomial of degree d. Thus g(X,Y) is a k-linear combination of monomials of the form X^iY^{d-i} , say

$$(*) \quad g(X,Y) = \sum_{i=0}^d a_i X^{d-i} Y^i, \quad a_i \in \mathbb{F}_q.$$

Note that we can "evaluate" g(X,Y) at a point $P=(x:y)\in\mathbb{P}^1$; we write

$$g(P) = g(x, y).$$

Note that since g is homogeneous, for a non-zero $\lambda \in \mathbb{F}_q$ we have $g(\lambda x, \lambda y) = \lambda^d g(x, y)$. Thus, the value of g at P is not well-defined, but the condition g(P) = 0 is independent of the choice of representative (x : y) for P.

If g(P) = 0 for a point $P \in \mathbb{P}^1$ we say that P is a *root* of g(X, Y).

Proposition If $g(X,Y) \neq 0$ then are $\leq d$ roots of g(X,Y) in \mathbb{P}^1 .

Proof Recall that $\mathbb{P}^1 = \{(0:1)\} \cup \{(1:t) \mid t \in \mathbb{F}_a\}.$

Let's proceed by induction on $d \ge 1$.

If d=1, then g(X,Y)=aX+bY, and there is exactly one solution in \mathbb{P}^1 , namely the point (-b:a).

Now suppose that $d \geq 2$ and that every polynomial of degree d-1 is know to have no more than d-1 roots in \mathbb{P}^1 . Let g(X,Y) have degree d.

First suppose that g(0,1) = 0 – i.e. that (0:1) is a root of g(X,Y). Then

$$g(0,1) = a_d = 0$$

so that

$$g(X,Y) = \sum_{i=0}^{d-1} a_i X^{d-i} Y^i = X \left(\sum_{i=0}^{d-1} a_i X^{d-i-1} Y^i \right) = X \cdot h(X,Y)$$

where

$$h(X,Y) = \sum_{i=0}^{d-1} a_i X^{d-i-1} Y^i$$

is homogeneous of degree d-1. Now, by induction h(X,Y) has no more than d-1 roots in \mathbb{P}^1 , and if (1:t) is a root of g(X,Y) then it is also a root of h(X,Y). This proves that g(X,Y) has no more than (d-1)+1=d roots in \mathbb{P}^1 in this case.

Finally, suppose that $g(0,1) \neq 0$. Thus $a_d \neq 0$. In this case, for points of the form P = (1:t) we see that

$$g(1,t) = \sum_{i=0}^d a_i t^i,$$

so P is a root of g(X,Y) just in case t is a root of the polynomial $\sum_{i=0}^d a_i T^i \in \mathbb{F}_q[T]$. Since this polynomial has degree d, there are no more than d such roots $t \in \mathbb{F}_q$.

Construction We give an example of a construction of a code by specifying points in projective space.

More precisely, let

$$\phi=\phi(T_0,T_1,T_2)\in\mathbb{F}_q[T_0,T_1,T_2]_m$$

be irreducible homogeneous of degree m and let

$$S = \{ P \in \mathbb{P}^2 \mid \phi(P) = 0 \}.$$

Now, a line L in \mathbb{P}^2 is determined by a non-zero linear function $\psi = aT_0 + bT_1 + cT_2$. Note that L may be identified with \mathbb{P}^1 . Since ϕ is irreducible, $\psi \nmid \phi$; thus ϕ defines by restriction a non-zero homogeneous polynomial of degree m on L. According to the previous Proposition, ϕ has no more than m roots in L.

The code C(S) determined by S has parameters

$$[|S|, 3, d]_q$$

where $d \geq |S| - \deg \phi$. Indeed, the preceding discussion shows that $|S \cap L| \leq \deg \phi$.

Example Let $\phi = T_0^2 - T_1 T_2$ so that ϕ has degree 2. Then |S| = q + 1. Indeed,

- $(1:y:z) \in S \iff yz=1$ so there are q-1 solutions of this form.
- $(0:1:z) \in S \iff z=0$ so there is 1 solution of this form.
- $(0:0:1) \in S$ gives another solution.

In this case, note that that the line Y=Z has two roots of ϕ , namely (1:1:1) and (1:-1:-1). Since each line has no more than 2 roots of ϕ , it follows that the code C(S) has minimal distance d=q+1-2=q-1 so that C(S) has parameters

$$[q+1, 3, q-2]_q$$
.

An "elliptic quadric"

Let f be a irreducible homogeneous polynomial of degree 2 in two variables.

Example If $\alpha \in \mathbb{F}_q^{\times}$ is not a square, so that $T^2 - \alpha$ is irreducible, we could take $f(T,S) = T^2 - \alpha S^2$.

Now form $F(T_0,T_1,T_2,T_3) = T_0T_1 - f(T_2,T_3) \in k[T_0,T_1,T_2,T_3]_2$ and let

$$Q = \{ P \in \mathbb{P}^3 \mid F(P) = 0 \}.$$

Proposition If L is a line in \mathbb{P}^3 , then Q contains no more than 2 points on L.

Proof Let L be a line in \mathbb{P}^3 . Of course, L is determined by a 2 dimensional subspace W of \mathbb{F}_q^4 . Thus there are $\phi, \psi \in (\mathbb{F}_q^k)^*$ for which $W = \ker \phi \cap \ker \psi$; i.e.

$$L = \{P \mid \phi(P) = \psi(P) = 0\}.$$

Let's write

$$\begin{split} \phi = & aX_0 + bX_1 + cX_2 + dX_3 \\ \psi = & a'X_0 + b'X_1 + c'X_2 + d'X_3 \end{split}$$

for scalars $a,b,c,a',b',c'\in\mathbb{F}_q$.

Of course, ϕ and ψ are linearly independent.

Let us first consider the case where $\det \begin{bmatrix} a & b \\ a' & b' \end{bmatrix} \neq 0$. Under this assumption, after replacing ϕ and ψ by suitable linear combinations $\alpha \phi + \beta \psi$, we may suppose that

$$\begin{split} \phi = & X_0 - \alpha X_2 - \beta X_3 \\ \psi = & X_1 - \gamma X_2 - \delta X_3 \end{split}$$

for scalars $\alpha, \beta, \gamma, \delta \in \mathbb{F}_q$.

Thus on L we have $X_0=\alpha X_2+\beta X_3$ and $X_1=\gamma X_2+\delta X_3$. For a point $P=(x_0:x_1:x_2:x_3)\in Q\cap L$ we have

$$Q(P)=(\alpha x_2+\beta x_3)(\gamma x_2+\delta x_3)-f(x_2,x_3).$$

¹To be more precise, one knows that ϕ doesn't vanish on the points of L in any extension field. Note that if $m \ge q+1$, it is possible that $\phi(P)=0$ for every point P in L, though there will be some field extension \mathbb{F}_{q^r} and a point Q in "L over \mathbb{F}_{q^r} " with $\phi(Q) \ne 0$. But in any event, it is still true that ϕ can have no more than m roots in L.

i.e. $(x_2:x_3)$ is a root of the 2-variable homogeneous polynomial

$$h(X_2, X_3) = (\alpha X_2 + \beta X_3)(\gamma X_2 + \delta X_3) - f(X_2, X_3).$$

Since f is *irreducible*, the polynomial h is *non-zero*, and h thus has no more than 2 solutions in \mathbb{P}^1 so that ϕ has no more than 2 roots in L.

Next we suppose that $\det \begin{bmatrix} a & b \\ a' & b' \end{bmatrix} = 0$. Since one row is a multiple of the other, we may suppose - after replacing ψ by $\phi - \lambda \psi$ for suitable $\lambda \in \mathbb{F}_q$ - that we have

$$\phi = aX_0 + bX_1 + cX_2 + dX_3$$

$$\psi = c'X_2 + d'X_3$$

If a=b=0, then after replacing ϕ and ψ by suitable linear combinations of ϕ and ψ we may suppose that $\phi=X_2$ and $\psi=X_3$. Then any point $(x_0:x_1:x_2:x_3)\in Q\cap L$ has $x_2=x_3=0$. Now applying ϕ we find

$$x_0 x_1 = f(x_2, x_3) = f(0, 0) = 0$$

so that one of x_0, x_1 must be zero. This leads to the two solutions (1:0:0:0) and (0:1:0:0).

If one of a, b is non-zero, we may suppose WLOG that $a \neq 0$ and even that a = 1. Now, at least one of c', d' is non-zero and WLOG we suppose that $c' \neq 0$ and even that c' = 1.

So we have

$$\begin{split} \phi = & X_0 + b X_1 + \\ \psi = & X_2 + d X_3 \\ X_2 + d' X_3 \end{split}$$

Replacing ϕ by a suitable $\phi + t\psi$ we can arrange

$$\begin{split} \phi = & X_0 + b X_1 + \\ \psi = & X_2 + d' X_3 \end{split}$$

For a point

$$\mathbf{x} = (x_0 : x_1 : x_2 : x_3) \in Q \cap L$$

we have

$$\begin{split} x_2 &= -d'x_3 \\ x_0 &= -bx_1 - dx_3 \end{split}$$

Applying ϕ we find that

$$(-bx_1+-dx_3)x_1-f(-d'x_3,x_3)=0.$$

Observe that the polyonomial $f(-d'X_3, X_3)$ is just a multiple of X_3^2 ; say $f(-d'X_3, X_3) = \alpha X_3^2$. Now, \mathbf{x} is a root of the degree 2 homogeneous polynomial

$$H(X_1,X_3) = (-bX_1 - dX_3)X_1 - f(-d'X_3,X_3) = -bX_1^2 + -dX_1X_3 - \alpha X_3^2 \in \mathbb{F}_q[X_1,X_3].$$

If either b or d is non-zero, then H is non-zero. If b=d=0, the irreducibility of f shows that $f(0,X_3)$ is a non-zero multiple of X_3 – i.e. $\alpha \neq 0$. So in all cases, $H \neq 0$. Thus, H has no more than 2 roots in \mathbb{P}^1 . This shows that ϕ has no more than 2 roots in the line L determined by ϕ, ψ .

This completes the proof.

The points in Q are easy to describe; they are as follows:

$$Q = \{(1:f(x,y):x:y) \mid x,y \in \mathbb{F}_a\} \cup \{(0:1:0:0)\}.$$

In particular, this shows that $|Q| = q^2 + 1$.

Now form the $4 \times (q^2 + 1)$ matrix H whose columns are vector representatives for the points in Q.

The previous Proposition immediately implies:

Corollary Any 3 columns of H are linearly independent.

Proof Indeed, if $P_1, P_2, P_3 \in Q$ are distinct points, the proposition shows that they are not co-linear. Hence if the vectors v_1, v_2, v_3 are representatives of the P_i , the span $\mathbb{F}_q v_1 + \mathbb{F}_q v_2 + \mathbb{F}_q v_3$ must have dimension 3.

On the other hand, H has 4 linearly dependent columns, at least if $q \ge 3$. For this it is enough to see that there is a plane in \mathbb{P}^3 containing 4 points of Q. In fact, any three points P_1 , P_2 , P_3 in Q determine a unique plane H in \mathbb{P}^3 , and there are q+1 points of Q contained in H.

We write C^{\perp} of the code generated by the rows of H – i.e. $C^{\perp} = C(Q)$. Thus C^{\perp} is a $[q^2 + 1, 4]_q$ -code.

Now, the code C dual to C^{\perp} has *check matrix* H. The corollary shows that the minimal distance d of C satisfies d=4 so that C is a $[q^2+1,q^2-3,4]_q$ -code.

In fact, one can describe the weight-enumerator polynomial of C^{\perp} geometrically, and then use the McWilliams identity to get the weight-enumerator polynomial for C; see (Ball 2020, sec. 4.6, page 62)

Bibliography

Bibliography

Ball, Simeon. 2020. *A Course in Algebraic Error-Correcting Codes*. Compact Textbooks in Mathematics. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-41153-4.