Uproszczone równania dynamiki laboratoryjnego modelu helikoptera dla ruchu w płaszczyźnie pionowej i poziomej

Ze względu na skomplikowany charakter oddziaływań skrośnych pomiędzy ruchem helikoptera w płaszczyźnie pionowej (vertical – indeks ν) i poziomej (horizontal – indeks h), zdecydowano się na rozpatrywanie dwóch oddzielnych modeli. Model pierwszy opisuje ruch układu w płaszczyźnie pionowej, przy wyłączonym silniku ogonowym oraz przy braku możliwości ruchu w płaszczyźnie poziomej. Model drugi opisuje ruch układu w płaszczyźnie poziomej, przy wyłączonym silniku głównym oraz przy braku możliwości ruchu w płaszczyźnie pionowej.

Model pierwszy opisany jest układem równań różniczkowych zwyczajnych

$$J_{\nu} \frac{d^2 \alpha_{\nu}}{dt^2} = -f_{\nu} \frac{d \alpha_{\nu}}{dt} + a \sin(\alpha_{\nu} + \alpha_{\nu 0}) + M_{\nu}, \qquad (1)$$

$$M_{v} = l_{v} F_{v}(\boldsymbol{\omega}_{v}), \tag{2}$$

$$I_{\nu} \frac{d\omega_{\nu}}{dt} = u_{\nu} - H_{\nu}^{-1}(\omega_{\nu}), \tag{3}$$

gdzie:

 α_{v} - kąt obrotu w płaszczyźnie pionowej

 J_{v} - moment bezwładności względem osi obrotu w płaszczyźnie pionowej,

 f_{v} - współczynnik tarcia lepkiego,

a - moment od sił grawitacji,

 α_{v0} - kąt zależny od geometrii układu,

 l_{v} - odległość pomiędzy wirnikiem dużego śmigła a osią obrotu w płaszczyźnie pionowej,

 $F_{\nu}(\omega_{\nu})$ - zależność siły ciągu dużego śmigła od obrotów silnika,

 I_v - moment bezwładności dużego śmigła,

 $H_{\nu}^{-1}(\omega_{\nu})$ - charakterystyka statyczna układu silnik śmigło dla silnika głównego,

 u_v - sterowanie PWM silnika głównego, $u_v \in [0,1]$.

Model drugi opisany jest układem równań różniczkowych zwyczajnych

$$J_h \frac{d^2 \alpha_h}{dt^2} = -f_h \frac{d\alpha_h}{dt} + M_h, \tag{4}$$

$$M_h = l_h F_h(\omega_h), \tag{5}$$

$$I_h \frac{d\omega_h}{dt} = u_h - H_h^{-1}(\omega_h). \tag{6}$$

gdzie:

 α_h - kąt obrotu w płaszczyźnie poziomej,

 $\boldsymbol{J}_{\boldsymbol{h}}$ - moment bezwładności względem osi obrotu w płaszczyźnie poziomej,

 f_h - współczynnik tarcia lepkiego,

 l_h - odległość pomiędzy wirnikiem dużego śmigła a osią obrotu w płaszczyźnie poziomej,

 $F_h(\omega_h)$ - zależność siły ciągu tylnego śmigła od obrotów silnika,

 I_h - moment bezwładności tylnego śmigła,

 $H_h^{-1}(\omega_h)$ - charakterystyka statyczna układu silnik śmigło dla silnika tylnego,

 u_h - sterowanie PWM silnika tylnego, $u_h \in [0,1]$.

Współczynniki równań (1-6) oraz charakterystyki $F_{\nu}(\omega_{\nu})$, $H_{\nu}^{-1}(\omega_{\nu})$, $F_{h}(\omega_{h})$, $H_{h}^{-1}(\omega_{h})$, powinny być zidentyfikowane na drodze odpowiednio zaplanowanych eksperymentów identyfikacyjnych. Zmierzone charakterystyki należy aproksymować metodą najmniejszych kwadratów za pomocą wielomianów niskiego stopnia.

Rysunek 1 przedstawia uproszczone blokowe modele ruchu helikoptera w poszczególnych płaszczyznach. Schematy te są podstawą do budowy szczegółowych modeli w Simulinku.

a)

b)

Rys. 1. Modele blokowe helikoptera a) w płaszczyźnie poziomej, b) w płaszczyźnie pionowej

Przykładowe charakterystyki H i F przedstawione są na rysunkach 2, 3, 4 i 5.

Rys. 2. Przykładowa charakterystyka Fv

Rys. 3. Przykładowa charakterystyka Hv

Rys. 4. Przykładowa charakterystyka Fh

Rys. 2. Przykładowa charakterystyka Hh