Counting Prime Numbers (5)

Euler's Totient Function

$$\phi$$
 (N) = # of 1 \leq K \leq N such that
K and N are relatively prime
(i.e. GCD(K,N)=1)

1 2 **3** 4 5 6 **7** 8 **9** 10

$$\Rightarrow \phi(10) = 4$$

Leonhard Euler (1707-1783)

Counting Prime Numbers (6)

Euler's Totient Function $\phi(N)$

Theorem The sum of $\phi(K)$, where K divides N, is equal to N.

Example (N=10)
$$\phi(1)+\phi(2)+\phi(5)+\phi(10) = 1+1+4+4 = 10$$

Counting Prime Numbers (7)

Theorem The sum of $\phi(K)$, where K divides N, is equal to N.

$$\phi(1) + \phi(2) + \phi(5) + \phi(10) = 1 + 1 + 4 + 4 = 10$$

$$\frac{1}{10} \quad \frac{2}{10} \quad \frac{3}{10} \quad \frac{4}{10} \quad \frac{5}{10} \quad \frac{6}{10} \quad \frac{7}{10} \quad \frac{8}{10} \quad \frac{9}{10} \quad \frac{10}{10}$$

$$\frac{1}{10} \quad \frac{1}{5} \quad \frac{3}{10} \quad \frac{2}{5} \quad \frac{1}{2} \quad \frac{3}{5} \quad \frac{7}{10} \quad \frac{4}{5} \quad \frac{9}{10} \quad \frac{1}{1}$$