7章 場合の数と数列

問1

(1)
$$a_1 = 3 \cdot 1 - 1 = 2$$

 $a_2 = 3 \cdot 2 - 1 = 5$
 $a_3 = 3 \cdot 3 - 1 = 8$
 $a_4 = 3 \cdot 4 - 1 = 11$
 $a_5 = 3 \cdot 5 - 1 = 14$
\$\text{\$\$\text{\$\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$

問2

(1)
$$a_1 = (-1)^{1-1} = (-1)^0 = 1$$

 $a_2 = (-1)^{2-1} = (-1)^1 = -1$
 $a_3 = (-1)^{3-1} = (-1)^2 = 1$
 $a_4 = (-1)^{4-1} = (-1)^3 = -1$
 $a_5 = (-1)^{5-1} = (-1)^4 = 1$
 $a_6 = (-1)^{6-1} = (-1)^5 = -1$
 $a_7 = (-1)^5$

(2)
$$b_1 = \frac{a_1+1}{2} = \frac{1+1}{2} = 1$$

 $b_2 = \frac{a_2+1}{2} = \frac{-1+1}{2} = 0$
 $b_3 = \frac{a_3+1}{2} = \frac{1+1}{2} = 1$
 $b_4 = \frac{a_4+1}{2} = \frac{-1+1}{2} = 0$
 $b_5 = \frac{a_5+1}{2} = \frac{1+1}{2} = 1$

$$b_6 = \frac{a_6 + 1}{2} = \frac{-1 + 1}{2} = 0$$

\$\frac{2}{5} \tau, 1, 0, 1, 0, 1, 0

問3

(1)公差を d とすると, 10=2+2d であるから,d=4 したがって,2 の次の項は, 2+4=6 10 の次の 2 項は, $10+4=14,\ 14+4=18$

(2)公差を d とすると, 4=-5+3d であるから,d=3 したがって,-5 の前の項は, -5-3=-8 -5 の次の 2 項は, $-5+3=-2,\quad -2+3=1$ よって,-8 , -5 、-2 , 1 , 4

問4

(1)一般項を
$$a_n$$
とすると,
$$a_n = 32 + (n-1) \cdot (-3)$$
$$= -3n + 35$$

(2)
$$a_{10} = -3 \cdot 10 + 35 = 5$$

 $(\ 3\)$ 第 n 項が -22 であるとすると, $a_n=-3n+35=-22$ -3n=-57 n=19 よって,第 19 項

(4)第n項ではじめて負の数になるとすると,

$$a_n=-3n+35<0$$
 $-3n<-35$ $n>rac{35}{3}=11rac{2}{3}$ よって,第 12 項

問 5

(1) 初項が -2 で , 公差が 3 であるから , 項数を n とする と,

$$-2 + (n-1)3 = 34$$
$$3n - 5 = 34$$
$$n = 13$$

$$\frac{13(-2+34)}{2} = \frac{13 \cdot 32}{2}$$

$$= 13 \cdot 16$$

$$= 208$$

(2)初項が 1 で、2n-1 は第 n 項であるから ,求める和は , $\frac{n\{1+(2n-1)\}}{2}=\frac{n(2n)}{2}$ $=\frac{n^2}{2}$

問6

第
$$n$$
項までの和は,

$$\frac{n\{2\cdot 5+(n-1)3\}}{2}=\frac{3n^2+7n}{2}$$
 よって, $\frac{3n^2+7n}{2}=55$ これを解くと,
$$3n^2+7n=110$$

$$3n + m = m$$

$$3n^2 + 7n - 110 = 0$$
$$(3x + 22)(x - 5) = 0$$

$$n = -\frac{22}{3}, 5$$

n は自然数で , n>0 なので、 n=5

したがって,第5項

問7

(1)公比をrとすると,

$$-40=5r^3$$
 であるから , $r=-2$ したがって , 5 の次の 2 項は , $5\times(-2)=-10$, $-10\times(-2)=20$ -40 の次の項は , $-40\times(-2)=80$ よって , 5 , -10 , 20 , -40 , 80

(2) 公比をrとすると,

18 =
$$162r^2$$
 であるから, $r=\pm\frac{1}{3}$ したがって, 162 の前の項は, $162\div\left(\pm\frac{1}{3}\right)=\pm486$ 162 の次の項は, $162 imes\left(\pm\frac{1}{3}\right)=\pm54$

18 の次の項は,

$$18 imes\left(\pmrac{1}{3}
ight)=\pm 6$$
 よって, $\boxed{\pm 486}$, 162 , $\boxed{\pm 54}$, 18 , $\boxed{\pm 6}$ (複合同順)

問8

公比を
$$r$$
 とすると,
$$a_4=-8r^{4-1}=-1\ {\tt であるから}\ ,\, r=\frac{1}{2}$$
 よって,第 $10\ {\tt IQ}$ は,
$$a_{10}=-8\cdot\left(\frac{1}{2}\right)^{10-1}$$

$$=-2^3\cdot\left(\frac{1}{2^9}\right)$$

$$=-\frac{1}{2^6}$$

$$=-\frac{1}{64}$$

問 9

(1) 初項 1, 公比 2 で , 2^7 は第 8 項であるから , 求める和は ,

$$\frac{1(2^8 - 1)}{2 - 1} = 256 - 1$$
$$= 255$$

(2) 初項 1 , 公比 $-\frac{1}{2}$ で , $-\frac{1}{2^9}$ は第 10 項であるから , 求める和は ,

$$\frac{1\left\{1 - \left(-\frac{1}{2}\right)^{10}\right\}}{1 - \left(-\frac{1}{2}\right)} = \frac{1 - \frac{1}{1024}}{\frac{3}{2}}$$
$$= \frac{1023}{1024} \times \frac{2}{3}$$
$$= \frac{341}{512}$$

(3) 初項 $\sqrt{3}$, 公比 $-\frac{1}{\sqrt{3}}$ であるから , 求める和は ,

$$\frac{\sqrt{3}\left\{1 - \left(-\frac{1}{\sqrt{3}}\right)^{10}\right\}}{1 - \left(-\frac{1}{\sqrt{3}}\right)} = \frac{\sqrt{3}\left(1 - \frac{1}{3^{5}}\right)}{1 + \frac{1}{\sqrt{3}}}$$

$$= \frac{3(3^{5} - 1)}{3^{5}(\sqrt{3} + 1)}$$

$$= \frac{242(\sqrt{3} - 1)}{81(\sqrt{3} + 1)(\sqrt{3} - 1)}$$

$$= \frac{242(\sqrt{3} - 1)}{81 \cdot 2}$$

$$= \frac{121(\sqrt{3} - 1)}{81}$$

(4) 初項 2 , 公比 3 であるから , 項数を n とすると , $2 \cdot 3^{n-1} = 486$

$$3^{n-1}=243=3^5$$
 より, $n=6$ よって,求める和は,
$$\frac{2(3^6-1)}{3-1}=\frac{2(729-1)}{2}$$
 $=$ 728

問 10

初項を a , 公差を r とすると , 初項から第 3 項までの和が 6 であるから ,

$$\frac{a(r^3-1)}{r-1}=6\cdots \bigcirc$$

初項から第6項までの和が-42であるから,

$$\frac{a(r^6 - 1)}{r - 1} = -42 \cdots ②$$

①,②より

$$\frac{\frac{a(r^6-1)}{r-1}}{\frac{a(r^3-1)}{r-1}} = \frac{-42}{6}$$

よって,
$$\frac{r^6-1}{r^3-1}=-7$$

これを解くと

$$r^{6} - 1 = -7(r^{3} - 1)$$

$$r^{6} + 7r^{3} - 8 = 0$$

$$(r^{3} + 8)(r^{3} - 1) = 0$$

$$r^{3} = -8, 1$$

$$r \neq 1$$
 なので , $r^3 \neq 1$

よって ,
$$r^3=-8$$
 であるから , $r=-2$

これを, ①に代入して,

$$\frac{a(-8-1)}{-2-1}=6$$
 $-9a=-18$ より , $a=2$

したがって,初項 2, 公差 -2

[問 11]

(1) 与式 =
$$1^2 + 2^2 + 3^2 + 4^2 + 5^2$$

= $1 + 4 + 9 + 16 + 25 = 55$

(2) 与式 =
$$(2 \cdot 1 - 1) + (2 \cdot 2 - 1)$$

+ $(2 \cdot 3 - 1) + (2 \cdot 4 - 1) + \cdots$
 $\cdots + (2 \cdot 9 - 1) + (2 \cdot 10 - 1)$
= $1 + 3 + 5 + 7 + \cdots + 17 + 19$
= $\frac{10(2 \cdot 1 + 9 \cdot 2)}{2}$
= 100

(3) 与式 =
$$3 \cdot 2^{1-1} + 3 \cdot 2^{2-1} + 3 \cdot 2^{3-1} + \cdots + 3 \cdot 2^{n-1}$$

= $\mathbf{3} + \mathbf{6} + \mathbf{12} + \cdots \cdot \mathbf{3} \cdot \mathbf{2}^{n-1}$
= $3(1 + 2 + 4 + \cdots \cdot 2^{n-1})$
= $3(2^0 + 2^1 + 2^2 + \cdots \cdot 2^{n-1})$
= $3\left\{\frac{1(2^n - 1)}{2 - 1}\right\}$
= $\mathbf{3}(\mathbf{2}^n - \mathbf{1})$

問 12

(1)初項 101 , 公差 1 の等差数列の第 k 項は ,

$$101 + (k-1)1 = k + 100$$

また ,項数を n とすると ,n+100=200 より ,n=100 であるから ,

与式
$$=\sum\limits_{k=1}^{100}(k+100)$$

(2)初項1,公比 $-rac{1}{3}$ の等比数列の第k項は,

$$1\cdot\left(-rac{1}{3}
ight)^{k-1}=\left(-rac{1}{3}
ight)^{k-1}$$
 また,項数を n とすると,

 $\left(-rac{1}{3}
ight)^{n-1} = -rac{1}{2187} = \left(-rac{1}{3}
ight)^7$ より , n=8 であ

るから

与武
$$=\sum\limits_{k=1}^{8}\left(-rac{1}{3}
ight)^{k-1}$$

問 13

(1) 与式 =
$$\sum_{k=1}^{n} (k^2 + k)$$

= $\sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k$
= $\frac{1}{6} n(n+1)(2n+1) + \frac{1}{2} n(n+1)$
= $\frac{1}{6} n(n+1)\{(2n+1)+3\}$
= $\frac{1}{6} n(n+1)(2n+4)$
= $\frac{1}{3} n(n+1)(n+2)$

(2)この数列の第k項は,k(k+2)であるから,

新 基礎数学

与式 =
$$\sum_{k=1}^{n} k(k+2)$$

= $\sum_{k=1}^{n} (k^2 + 2k)$
= $\sum_{k=1}^{n} k^2 + 2\sum_{k=1}^{n} k$
= $\frac{1}{6}n(n+1)(2n+1) + \frac{2}{2}n(n+1)$
= $\frac{1}{6}n(n+1)(2n+1) + n(n+1)$
= $\frac{1}{6}n(n+1)\{(2n+1) + 6\}$
= $\frac{1}{6}n(n+1)(2n+7)$

(3)この数列の第k項は $,(2k-1)^2$ であるから,

与式 =
$$\sum_{k=1}^{n} (2k-1)^2$$

= $\sum_{k=1}^{n} (4k^2 - 4k + 1)$
= $4\sum_{k=1}^{n} k^2 - 4\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1$
= $\frac{4}{6}n(n+1)(2n+1) - \frac{4}{2}n(n+1) + n$
= $\frac{1}{3}n\{2(n+1)(2n+1) - 6(n+1) + 3\}$
= $\frac{1}{3}n(4n^2 + 6n + 2 - 6n - 6 + 3)$
= $\frac{1}{3}n(4n^2 - 1)$
= $\frac{1}{3}n(2n+1)(2n-1)$

問 14

$$(1) a_1 = 1, a_{k+1} = 2a_k + 3 (k = 1, 2, 3, \cdots)$$

$$(2) a_1 = 0, \ a_{k+1} = (a_k + 1)^2 \ (k = 1, 2, 3, \cdots)$$

問 15

(1)
$$a_1 = 1$$

 $a_2 = a_1^2 + 2 = 1^2 + 2 = 3$
 $a_3 = a_2^2 + 2 = 3^2 + 2 = 11$
 $a_4 = a_3^2 + 2 = 11^2 + 2 = 123$
\$77, 1, 3, 11, 123

(2)
$$b_1 = 3$$

 $b_2 = b_1 + 3 \cdot 1 = 3 + 3 = 6$
 $b_3 = b_2 + 3 \cdot 2 = 6 + 6 = 12$
 $b_4 = b_3 + 3 \cdot 3 = 12 + 9 = 21$
よって、3、6、12、21

問 16

(1)
$$a_2 = 3a_1 + 2 = 2 \cdot 3 + 2$$

 $a_3 = 3a_2 + 2$
 $= 3(2 \cdot 3 + 2) + 2$
 $= 2 \cdot 3^2 + 2 \cdot 3 + 2$
 $a_4 = 3a_3 + 2$
 $= 3(2 \cdot 3^2 + 2 \cdot 3 + 2) + 2$
 $= 2 \cdot 3^3 + 2 \cdot 3^2 + 2 \cdot 3 + 2$
\$\text{\$\tex{

と表すことができるので

 $(2) b_2 = b_1 + (2 \cdot 1 - 1)$

$$b_n = 4 + \sum_{k=1}^{n-1} (2k - 1)$$

$$= 4 + 2 \sum_{k=1}^{n-1} k - \sum_{k=1}^{n-1} 1$$

$$= 4 + 2 \cdot \frac{(n-1)n}{2} - (n-1)$$

$$= 4 + n^2 - n - n + 1$$

$$= n^2 - 2n + 5$$

問 17

$$a_n=rac{n+1}{n}\cdots$$
① とする.
[1] $n=1$ のとき $a_1=rac{1+1}{1}=2$

よって,n=1 のとき,①は成り立つ.

 $\left[\begin{array}{l} 2\end{array}
ight]n=k$ のとき,①が成り立つと仮定する.

$$a_k = \frac{k+1}{k}$$

$$n=k+1$$
 のとき

漸化式より

$$\begin{aligned} a_{k+1} &= 2 - \frac{1}{a_k} \\ &= 2 - \frac{1}{\frac{k+1}{k}} \\ &= 2 - \frac{k}{k+1} \\ &= \frac{2(k+1)}{k+1} - \frac{k}{k+1} \\ &= \frac{2k+2-k}{k+1} \\ &= \frac{k+2}{k+1} \\ &= \frac{(k+1)+1}{k+1} \end{aligned}$$

よって,n=k+1 のときも①が成り立つ.

 $[\,1\,]$, $[\,2\,]$ から,すべての自然数 n について①が成り立つ.