Gaurav Kumar

302, National Wind Tunnel Facility Building Indian Institute of Technology, Kanpur Kanpur, India, 208016

Mobile No.: +91 (876) 569 6536
Email-id: gauravkr@iitk.ac.in
Homepage: gu-ruo-fu.github.io

ACADEMIC DETAILS

Degree	Department	Institute	Year	CPI
Doctor of Philosophy	Aerospace Engineering	IIT Kanpur	2016 - Present	9.0/10.0
Master of Technology	Aerospace Engineering	IIT Kanpur	2011 - 2016	10.0/10.0
Bachelor of Technology	Aerospace Engineering	IIT Kanpur	2011 - 2016	7.7/10.0

FIELDS OF INTEREST

• Computational Fluid Dynamics, Turbulence modeling, Reduced order modeling, High speed flows

JOURNAL PUBLICATIONS

- Gaurav Kumar and Ashoke De. "Numerical study of viscous interaction between shock waves and separation region over a double wedge", submitted to Journal of Fluid Mechanics (March 10, 2020).
- Mitesh Thakor, **Gaurav Kumar**, Debopam Das, and Ashoke De. "Numerical investigation of low Reynolds number airfoil undergoing asymmetric sinusoidal pitching motion at a high reduced frequency", submitted to Physics of Fluids (March 5, 2020).
- **Gaurav Kumar** and Ashoke De. "An improved density based compressible flow solver in OpenFOAM for unsteady flow calculations", submitted to Computers and Mathematics with Applications (Dec. 29, 2019).
- Alok Mishra, **Gaurav Kumar**, and Ashoke De. "Prediction of separation induced transition on thick airfoil using non-linear URANS based turbulence model." Journal of Mechanical Science and Technology 33.5 (2019): 2169-2180.
- **Gaurav Kumar**, Ashoke De, and Harish Gopalan. "Investigation of flow structures in a turbulent separating flow using hybrid RANS-LES model." International Journal of Numerical Methods for Heat & Fluid Flow 27.7 (2017): 1430-1450.
- Kumar, G., Lakshmanan, S. K., Gopalan, H., & De, A. "Investigation of the sensitivity of turbulent closures and coupling of hybrid RANS-LES models for predicting flow fields with separation and reattachment." International Journal for Numerical Methods in Fluids 83.12 (2017): 917-939.

CONFERENCE PROCEEDINGS

- Gaurav Kumar and Ashoke De. "Self-induced oscillations of the shock structures in a hypersonic flow over double wedge", to be presented at 25th International Congress of Theoretical and Applied Mechanics (25th ICTAM), August 23 - 28, 2020.
- Gaurav Kumar, Ashoke De "Effect of turbulence in unsteady shock interaction and heat transfer mechanism
 in a hypersonic flow over double wedge", "32nd International Symposium on Shock Waves", Conference
 proceedings ISSW32. 2019.
- Gaurav Kumar, Ashoke De "A density based compressible flow solver in OpenFOAM with Mach number preconditioning and Low-diffusive Flux Splitting Scheme" 7th International and 45th National Conference on Fluid Mechanics and Fluid Power (FMFP2018), Mumbai, India. 2018.
- Gaurav Kumar, Harish Gopalan, Dominic Chandar, Vinh-Tan Nguyen, and Ashoke De. "Verification of length scale effects on solution accuracy of hybrid RANS-LES methods." ASME 2016, 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016.
- Kumar, G., Lakshmanan, S. K., Gopalan, H., & De, A. "Comparative study of hybrid RANS-LES models for separated flows." AIP Conference Proceedings. Vol. 1738. No. 1. AIP Publishing, 2016.

WORKSHOP ATTENDED

 "Immersed Boundary Methods for Turbulent Incompressible Flows" organised under "Global Initiative for Academic Networks" by IIT Kharagpur, December 18 - 22, 2017

PH.D THESIS

- Numerical Study of Viscous Interaction between Shock Waves and Separation Region over a Double Wedge (Supervisor: Prof. Ashoke De)
 - Designed and implemented a new density based compressible flow solver in an open-source CFD platform called OpenFOAM.
 - Demonstrated the improved stability and accuracy of the new solver through various test cases involving shock waves, boundary layer and separated flows.
 - Studied the hypersonic flow over double wedge configuration in detail to understand unsteady interaction between shock-waves and boundary layer/separation region.
 - Identified a window of geometric parameter which is crucial in avoiding design conditions which could result in catastrophic failures of hypersonic flights.

M.TECH THESIS

• Investigation of Turbulent Separated Flow using Hybrid RANS-LES Models

(Supervisors: Prof. Ashoke De, Dr. Harish Gopalan)

- o Introduced a non-linear blended turbulence modeling framework for computational fluid Dynamics.
- Performed a comparative study to investigate the sensitivity of hybrid RANS-LES models to the choice of RANS, LES and interface switching criteria.
- Investigated unsteady flow structures in the tubulent separated flows to examine the effectiveness of hybrid RANS-LES models in the prediction of an accurate instantaneous flow fields.
- Demonstrated that the newly developed hybrid RANS-LES model can produce improved results at a very economical cost as compared to the previous turbulence models.

INTERNSHIPS AND MAJOR PROJECTS

• Hindustan Aeronautical Limited, India (Research Assistant, Oct - Dec, 2016)

(Supervisor: Prof. Bishakh Bhattacharya, Professor, IIT Kanpur)

- o **Project Goal:** Simulation of Cabin Pressure Control System.
- Goal achieved: Developed a computer program to simulate the on and off-design performance of a
 cabin pressure control system. Identified optimal design parameters for constraining the off-design
 performance of the cabin pressurization system within the regulations of FAA.
- Institute of High Performance Computing, Singapore (Research Assistant, Jan May, 2016) (Supervisors: Dr. Harish Gopalan, Dr. Vinh-Tan Nguyen, Scientist)
 - **Project Goal:** Numerical simulation of flow past tandem square columns at high Reynolds number using hybrid RANS-LES models.
 - **Goal achieved:** Carried out the numerical simulations for flow past tandem square columns at high Reynolds number using hybrid RANS-LES models. Applied the reduced order modeling techniques to find out a simple force prediction method on such tandem column configurations.
- National Aerospace Laboratories, Bangalore, India (Research Assistant, May July, 2014)

(Supervisor: Dr. S. Venkat Iyengar, Senior Scientist, Propulsion Division)

- Project Goal: Development of endothermic fuel platform for scramjet engines and to probe Technology Readiness Levels (TRL) achieved by different countries.
- Goal achieved: Proposed a detailed roadmap to the development endothermic fuel technology and to incorporate it in hypersonic scramjet air vehicle. Recommended a set of experiments required to be conducted and facilities required to be established in order to realize a TRL of 4.

TEACHING EXPERIENCE

• **Teaching assistant:** Introduction to Finite Volume Method II (*under NPTEL initiative*), Thermodynamics, Engineering Drawing, Fluid Mechanics and Rate Processes, Technical Communication.

SKILLS

- Languages: English (Professional working proficiency), Hindi (Native mother tongue), German (Elementary proficiency), Chinese (Elementary proficiency)
- Programming & Scripting: C/C++, R, MATLAB, gnuplot, HTML/HTML5, CSS/CSS3
- Softwares & Tools: Ansys CFD Tools, OpenFOAM CFD toolbox, Tecplot, Paraview, AutoCAD, MS office

EXTRA-CURRICULAR

• Playing Tennis, running, swimming, reading and traveling.