5MCACC3: CLOUD COMPUTING

Total No. of Hours: 52 Hours/Week: 04

<u>Course Objective:</u> To explore massive parallel architecture and distributed computing that enable cloud technology.

<u>Course Outcome:</u> Students will be able to CO1: Learn basics of Cloud computing

CO2: Understand the importance of virtualization CO3: Knowledge of various cloud computing services

CO4: Understand the key concepts of Cloud Deployment using AWS as case studies

TT *. T	Distributed System Models and Enabling Technologies: Scalable Computing	10.1
Unit I	Service over the Internet: The Age of Internet Computing, scalable computing	12 hrs
	Trends and New Paradigms, Internet of Things and Cyber-Physical Systems.	
	System Models for Distributed and Cloud Computing: Clusters of Cooperative	
	Computers, Grid Computing Infrastructures, Peer-to-Peer Network Families,	
	Cloud Computing over the Internet. Software Environments for Distributed	
	Systems and Clouds: Service-Oriented Architecture (SOA), Trends towards	
	Distributed Operating Systems, Parallel and Distributed Programming Models.	
	Performance, Security, and Energy-Efficiency: Performance Metrics and	
	Scalability Analysis, Fault-Tolerance and System Availability, Network Threats	
	and Data Integrity, Energy-Efficiency in Distributed Computing.	
	Computer Clusters and Virtualization of clusters and data centers: Clustering	
Unit II	for massive parallelism: Cluster Development Trends, Design Objective of	10 hrs
	Computer Clusters, Fundamental Cluster Design issues. Virtual machines and	
	Virtualization of clusters and Data centers: Implementation levels	
	of virtualization: levels of virtualization. Implementation, VMM Design	
	requirements and providers, Virtualization support at the OS level, Middleware	
	Support for Virtualization. Virtualization Structure, CPU, Memory, I/O	
	Devices and Data Center Automation.	
	Computing clouds and Service Oriented Architecture: Cloud computing and	
Unit III	Service Models: Public, Private, and Hybrid Clouds, Cloud Ecosystem and	10 hrs
	Enabling Technologies, Infrastructure-as- a- Service (IaaS), Platform- and	
	Software-as-a-Service (PaaS, SaaS). Data Center Design, Interconnection of	
	Modular Data Centers, Management issues. Generic Cloud architecture Design,	
	Layered Cloud Architectural development, Virtualization Support and Disaster	
	Recovery, Architectural Design Challenges	
	Intercloud Resource Management, Cloud Programming and Environment:	
Unit IV	Extended Cloud Computing Services, Platform deployment, global exchange of	10 hrs
	cloud Resources, Cloud Security and Trust Management, Programming support of	10 1115
	Google App Engines, Case Study: Amazon Open Source Cloud Software	
	Environment. Case Study: Nimbus	
	Ubiquitous Clouds and the Internet of Things: Performance of Distributed	
Unit V	Systems and the Cloud Data-intensive Scalable Computing(DISC), Quality of	10 hrs
Omt v	Service in Cloud computing, Benchmarking MPI, Azure, EC2, MapReduce, and	101113
	Hadoop. Online social and Professional Networking: Online Social Network	
	Characteristics, Graph-Theoretic Analysis of Social networks, Communities and	
	Applications of Social Networks, Facebook: The World's Largest Content-	
	Sharing Network, Twitter for Micro blogging, News and Alert Services.	
	Sharing Network, I whiter for where blogging, News and Alert Services.	

REFERENCE BOOKS

- [1] Kai Hwang, Jack Dungaree, and Geoffrey Fox, "Distributed and Cloud Computing", MK Publishers, 2012.
- [2] Michael Miller, "Cloud Computing-Web-Based Applications that change the Way you work and collaborate Online", Pearson Publication, 2012.
- [3] Anthony T. Volte, Toby J. Volte, Robert Elsenpeter, "Cloud Computing, A Practical Approach", McGraw Hill, 2010.