Theoretische Informatik:	\mathbf{Blatt}	1
Abgabe bis 18. September 2015		

Linus Fessler, Markus Hauptner, Philipp Schimmelfennig

Task 1

(a) Für jede Länge 1..m schauen wir die Anzahl Möglichkeiten an, ein Teilwort zu bilden. Bei Länge 1 können wir an jeder der m Positionen anfangen und ein Teilwort der Länge 1 nehmen Bei Länge 2 können wir das letzte Teilwort mit Anfang bei m-1 entnehmen, da es Länge 2 hat

Bei Länge i lassen sich Teilwörter an den Stellen $\{1, 2, ..., m-i+1\}$ mit Länge i nehmen. Es gibt also höchstens

$$\sum_{i=1}^{m} m - i + 1 = \sum_{i=1}^{m} k \tag{1}$$

verschiedene Teilwörter, falls keine von ihnen gleich sind.

- (b) Zuerst werden im Wort der Länge n drei Positionen ohne Wiederholung rausgesucht: $\binom{n}{3}$
 - Jetzt werden die 3 Buchstaben a, b, c in eindeutiger Reihenfolge auf diese Plätze gelegt: 3!
 - Anschließend werden die restlichen n-3 Zeichen des Wortes mit beliebigen Buchstaben aus η belegt: 3^{n-3}

Es gibt also $\binom{n}{3} \cdot 3! \cdot 3^{n-3}$ viele Wörter der Länge n, die a, b und c enthalten.