Homework No. 2 – Electrostatics Engineering Electromagnetics

- 1. The z=0 plane contains a concentric circular line charge density of 10^{-5} C/m with a radius of 1 m. Determine the electric field at $\vec{E}(0,0,z)$.
- 2. Consider the two-dimensional electrostatic deflection system shown below. The upper deflection plate is located at x = d/2, $0 \le z \le l$, while the lower plate is located at x = -d/2, $0 \le z \le l$. Assume the electric field is uniform and is given by $\vec{E} = -\hat{a}_x E_0$ only in the region between the two plates. An electron is accelerated by a cathode-accelerating grid arrangement (not shown) and enters the deflection system at the origin with a velocity of $\vec{u} = \hat{a}_z u_0$. Find x_l at z = l and x_a at $z = l_a$.

- 3. Find the work required to transport an electron from (1,1,1) to (2,2,2) in the field of
 - (a) A point charge of $Q = 10^{-9}$ C at the origin.
 - (b) An infinite line charge density $\rho_l = 10^{-9}$ C/m on the z axis.
 - (c) An infinite surface charge density $\rho_s=10^{-9}~{\rm C/m^2}$ in the z=0 plane.
- 4. Derive the electrostatic potential for a point charge that is not located at the origin.
- 5. Derive an expression for $\nabla \frac{1}{|\vec{r}-\vec{r''}|}$ in terms of \hat{a}_R and R.