BCW: Buffer-Controlled Writes to HDDs for SSD-HDD Hybrid Storage Server

Shucheng Wang¹, Ziyi Lu¹, Qiang Cao¹, Hong Jiang², Jie Yao¹, Yuanyuan Dong³ and Puyuan Yang³

¹Huazhong University of Science and Technology,

²University of Texas at Arlington, ³Alibaba Group

Background

- > SSD
 - High-speed performance & Low latency
 - Expensive & DWPD (Drive Writes Per Day) limitation
- > HDD
 - Large capacity & Low cost & No writes limitation
 - Low-speed performance & High latency
- **➤ SSD-HDD Hybrid Storage**
 - Cost-effectiveness
 - High-speed & low-latency

Write-intensive Workload

➤ Workload characteristics

Workload Types	Α	В	С	D
Business	Cloud Computing	Cloud Storage	Structured Storage	Structured Storage
SSD Writes (GB)	14.7	61.2	7.2	7.5
SSD Write Requests (millions)	0.43	4.4	4.8	4.7
Note	Lowest IO intensity	Most written data		Peak: 11KRPS

Write-intensive Workload

- >SSD performs badly under heavy write workload
 - Peak write requests per second > 10KRPS
 - Daily write per day > 3TB → Reach limited DWPD of SSD

- ➤ Large queue length
 - Large writes (e.g., 1MB)
 - Frequent GC caused by high write intensity

Write-intensive Workload

- >SSD performs badly under heavy write workload
 - Peak write requests per second > 10KRPS
 - Daily write per day > 3TB → Reach limited DWPD of SSD

- ➤ Long tail latency
 - 99th percentile latency is *10ms*
 - 99.9th percentile latency is *50ms*

HDD Underutilization

- > HDD is underutilized
 - **1/5 1/2** of SSD utilizations
 - 90% 95% of times are in idle state (less than 10% utilization)

Motivation

- > SSD suffers from heavy-write pressure
 - Long tail latency encountered
 - Large queue length
- > HDD is underutilized (less than 10%)
- > Can we utilize HDD properly and maintain acceptable latency?

Average Latency of HDD < **Tail** Latency of SSD √

HDD Write Behaviors

10TB West Digital HDD

- HDD can achieve μs-level write latency
 - 66μs for 16KB writes
- > ms-level latency spikes
- Fixed periodic write pattern
 - Fast (low latency)
 - Mid (mid latency)
 - Slow (high latency spikes)

HDD Built-in Buffer

- > Built-in buffer causes this write behaviors
 - Part of buffer can be used to buffer incoming write IOs (16MB in this tested WD 10TB HDD)
 - Remaining capacity is used by HDD itself

HDD Buffered-Write Model

- ➤ Three types of HDD buffered write
 - Fast write (low-latency)
 - Mid write (mid-latency)
 - Slow write (high-latency spike)
- ➤ Buffered write sequence
 - Start with Fast write
 - Followed by Slow-and-Mid write pair
 - After sync()

Predict Write State

- ➤ Three types of HDD buffered write
 - Fast write (low-latency)
 - Mid write (mid-latency)
 - Slow write (high-latency spike)

- Prefer to predict Slow write
 - Avoid penalty from misprediction

Buffer-Controlled Writes (BCW)

- > Actively pad non-user data to HDD when there are no user requests to keep predictor consistent
 - PF: padding for F and M stage (4KB)
 - PS: padding for S stage (64KB)

• Profiling process is performed to determine the key parameters for predictor

Mixed IO scheduler (MIOS)

- ➤ Monitor the request queue length of SSD and HDD
 - Redirect writes to HDD when latency in SSD is larger than F or M states in HDD
 - Log file in append-manner in HDD

No redirectionto HDD when inS stage

Mixed IO scheduler runs atop of file system level

Strategies in MIOS

> Enable or disable BCW when the queue length is lower than the threshold

```
MIOS_D X
```

• MIOS_E ✓

MIOS_E

Experimental Setup

➤ Datasets:

- Real workload trace (A, B, C, D)
- A: Lowest IO intensity
- B: Most written data (61.2GB)

> Comparison:

- Baseline: Pangu workload replay (writing all data into SSDs)
- MIOS_D
- MIOS_E

System	Linux version 4.15.0- 52-generic		
CPU	Intel Xeon E5-2696 v4 (2.20 GHz, 22 CPUs)		
Memory	128 GB		
	West Digital 10TB (default)		
HDDs	West Digital 4TB		
	Seagate 4TB		
SSDs	Samsung 960EVO 256GB(NVMe, 2000MB/s)		

Write Performance

- For average, 99th and 99.9th-pencentile latency
 - 65%, 85%, 95% latency reduction for workload B (most intensive)
 - 2%, 3.5%, 30% reduction for A (less intensive and less queue blocking)

Queue Length Elimination

Note: The CDF of SSD queue length

- > MIOS_D significantly shortens queue lengths compared to Baseline
 - B has 95% reduction since B is the most intensive workload
 - A has only 15% reduction since MIOS_D is only triggered when the queue length is high

SSD Written Data Reduction

Note: Data reduction normalized to baseline

- >SSD written data saving benefits from MIOS_E significantly
 - More changes to actively redirect requests to HDD with MIOS_E in A
 (>90%)

MIOS_D vs MIOS_E

- ➤ MIOS_E has worse latency compared with MIOS_D
- >87% of SSD write data redirection compared with MIOS_D

HDD Utilization

Node Type	Duration(s)	Baseline	Net Util. MIOS_D	Net Util. MIOS_E	Gross Util. MIOS_E
Α	2700	7.6%	7.9%	11.9%	27.9%
В	1800	9.8%	18.2%	26.8%	56.9%
С	1800	4.1%	10.7%	16.2%	35.8%
D	1560	4.8%	12.3%	17.3%	39.5%

Note: Net utilization is only about redirected data write to HDD

➤ B with MIOS_E has the highest net utilization improvement over Baseline, by 2.7x, while 1.8x under MIOS_D

Conclusion

- **➤** Motivation
 - SSD suffers from heavy write pressure
 - HDD is underutilized
- ➤ Buffer-Controlled Write (BCW)
 - Use **BCW** model to predict the future write stage
 - Actively prefer S stage
- ➤ Mixed IO scheduler (MIOS)
 - Redirect write requests by monitoring the queue length