CS2040S Data Structures and Algorithms

(e-learning edition)

Hashing II (Part 1)

Today

Java hashing

• Collision resolution: open addressing

• Table (re)sizing

Review: Symbol Table Abstract Data Type Which of the following is *not* typically a symbol table operation?

- 1. insert(key, data)
- 2. delete(key)
- 3. successor(key)
- 4. search(key)
- 5. None of the above.

Hashing in Java

How does your program know which hash function to use?

```
HashMap<MyFoo, Integer> hmap = new ...
MyFoo foo = new MyFoo();
hmap.put(foo, 8);
```

Java Hash Functions

Every object supports the method:

```
int hashCode()
```

Rules:

- Always returns the same value, if the object hasn't changed.
- If two objects are equal, then they return the same hashCode.

Is it legal for every object to return 32?

Hashing in Java

How does your program know which hash function to use?

```
HashMap<MyFoo, Integer> hmap = new ...
MyFoo foo = new MyFoo();
hmap.put(foo, 8);
int hash = foo.hashCode();
```

Java Object

Every class extends Object

public class	Object	
Object	clone()	creates a copy
boolean	equals(Object obj)	is obj equal to this?
void	finalize()	used by garbage collector
Class	getClass()	returns class
int	hashCode()	calculates hash code
void	notify()	wakes up a waiting thread
void	notifyAll()	wakes up all waiting threads
String	toString()	returns string representation
void	wait()	wait until notified

Java Hash Functions

Every object supports the method:

```
int hashCode()
```

Rules:

- Always returns the same value, if the object hasn't changed.
- If two objects are equal, then they return the same hashCode.

Is it legal for every object to return 32?

Java Hash Functions

Every object supports the method:

```
int hashCode()
```

Default Java implementation:

- hashCode returns the memory location of the object
- Every object hashes to a different location

Must override hashCode () for your class.

Java Library Hashcodes

Integer

Long

String

Integer

```
public int hashCode() {
  return value;
}
```

Long

```
public int hashCode() {
  return (int)(value ^ (value >>> 32));
}
```


String

```
public int hashCode() {
  int h = hash; // only calculate hash once
  if (h == 0 \&\& count > 0) { // empty = 0}
       int off = offset;
       char val[] = value;
       int len = count;
       for (int i = 0; i < len; i++) {
            h = 31*h + val[off++];
       hash = h;
  return h;
```

String

HashCode calculation:

hash =
$$s[0]*31^{(n-1)} + s[1]*31^{(n-2)} + s[2]*31^{(n-3)} + ... + s[n-2]*31 + s[n-1]$$

Why did they choose 31?

```
public class Pair {
 private int first;
 private int second;
 Pair(int a, int b) {
    first = a;
    second = b;
```

```
public void testPair() {
 HashMap<Pair, Integer> htable =
        new HashMap<Pair, Integer>();
 Pair one = new Pair (20, 20);
 htable.put(one, 7);
 Pair two = new Pair (20, 20);
 int question = htable.get(two);
```

htable.get(new Pair(20, 20)) ==?

- 1. 1
- 2. 7
- 3. 11
- ✓4. null

```
Pair one = new Pair(20, 20);
Pair two = new Pair(20, 20);
one.hashCode() != two.hashCode()
```

```
Pair one = new Pair (20, 20);
Pair two = new Pair (20, 20);
htable.put(one, "first item");
htable.get(one) - "first item"
htable.get(two) - null
```

```
public class Pair {
 private int first;
 private int second;
 Pair(int a, int b) {
    first = a;
    second = b;
 int hashCode(){
    return (first ^ second);
```

```
Pair one = new Pair (20, 20);
Pair two = new Pair (20, 20);
htable.put(one, "first item");
htable.get(one) - "first item"
htable.get(two) - null
one.equals(two) - false
```

Java Hash Functions

Every object supports the method:

```
int hashCode()
```

Rules:

- Always returns the same value, if the object hasn't changed.
- If two objects are equal, then they return the same hashCode.
- Must redefine .equals to be consistent with hashCode.

```
Pair one = new Pair (20, 20);
Pair two = new Pair (20, 20);
htable.put(one, "first item");
htable.get(one) => "first item"
htable.get(two) => null
```

Java Hash Functions

Every object supports the method:

```
boolean equals (Object o)
```

Rules:

- Reflexive: $x.equals(x) \rightarrow true$
- Symmetric: x.equals(y) == y.equals(x)
- Transitive: x.equals(y), y.equals(z) \rightarrow x.equals(z)
- Consistent: always returns the same answer
- Null is null: x.equals(null) → false

Java Hash Functions

Every object supports the method:

boolean equals (Object o)

```
boolean equals(Object p) {
  if (p == null) return false;
  if (p == this) return true;
  if (!(p instanceOf Pair)) return false;
  Pair pair = (Pair)p;
  if (pair.first != first) return false;
  if (pair.second != second) return false;
  return true;
```

Java HashMap

```
public V get(Object key) {
  if (key == null) return getForNullKey();
  int hash = hash(key.hashCode());
      (Entry<K, V> e = table[indexFor(hash, table.length)];
        e != null;
       e = e.next)
     Object k;
     if (e.hash==hash \&\&((k=e.key)==key)||key.equals(k)))
         return e.value;
  return null;
```

Java checks if the key is equal to the item in the hash table before returning it!

Java HashMap

```
// This function ensures that hashCodes that differ only
// by constant multiples at each bit position have a
// bounded number of collisions (approximately 8 at
// default load factor).

static int hash(int h) {
  h ^= (h >>> 20) ^ (h >>> 12);
  return h ^ (h >>> 7) ^ (h >>> 4);
}
```

Java HashMap

```
public V get(Object key) {
  if (key == null) return getForNullKey();
  int hash = hash(key.hashCode());
  for (Entry<K, V> e = table[indexFor(hash, table.length)];
        e != null;
       e = e.next)
     Object k;
     if (e.hash==hash \&\&((k=e.key)==key)||key.equals(k)))
         return e.value;
  return null;
```

Today

Java hashing

• Collision resolution: open addressing

• Table (re)sizing

CS2040S Data Structures and Algorithms

(e-learning edition)

Hashing II (Part 2)

Today

Java hashing

• Collision resolution: open addressing

• Table (re)sizing

Review

Hash Tables

- Store each item from the symbol table in a table.
- Use hash function to map each key to a bucket.

Resolving Collisions

- Basic problem:
 - What to do when two items hash to the same bucket?

- Solution 1: Chaining
 - Insert item into a linked list.

- Solution 2: Open Addressing
 - Find another free bucket.

Review: Chaining

Each bucket contains a linked list of items.

Review

The Simple Uniform Hashing Assumption

Every key is equally likely to map to every bucket.

Load of a Hash Table:

- # elements: n
- # buckets: m
- Define: load(hash table) = n/m
 - = average #items / bucket.
- Expected search time = 1 + n/m

Open Addressing

Advantages:

- No linked lists!
- All data directly stored in the table.
- One item per slot.

0	null
1	null
2	A
3	null
4	null
56	null
6	null
7	null
8	В
9	null

On collision:

Hash Function re-defined:

```
h(\text{key, i}): U \rightarrow \{1..m\}
```

Two parameters:

- key : the thing to map
- i : number of collisions

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$


```
hash-insert(key, data)
1. int i = 1;
                                         // Try every bucket
2. while (i \le m) {
3.
        int bucket = h(key, i);
  if (T[bucket] == null) { // Found an empty bucket
4.
5.
              T[bucket] = {key, data}; // Insert key/data
                                         // Return
6.
              return success;
7.
8. i++;
9. }
10.throw new TableFullException(); // Table full!
```

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$


```
hash-search (key)
1. int i = 1;
2. while (i \le m) {
3.
       int bucket = h(key, i);
  if (T[bucket] == null) // Empty bucket!
4.
5.
             return key-not-found;
6.
       if (T[bucket].key == key) // Full bucket.
7.
                  return T[bucket].data;
8. i++;
9. }
10.return key-not-found; // Exhausted entire table.
```

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$

Hash Function re-defined:

```
h(\text{key, i}): U \rightarrow \{1..m\}
```


- Find key to delete
- Remove it from table.
- Set bucket to null.

	0	null
	1	G
	2	A
	3	C
	4	D
7	5	NULL
	6	null
	7	null
	8	В
	9	null

What is wrong with delete?

- ✓1. Search may fail to find an element.
 - 2. The table will have gaps in it.
 - 3. Space is used inefficiently.
 - 4. If the key is inserted again, it may end up in a different bucket.

insert(key)

insert(key)

insert(key)

delete(G)

search(key)

0	null
1	NULL
2	A
234	C
	D
5	key
6	null
7	null
8	В
9	null

insert(key)

delete(G)

search(key)

Probe sequence.

3

5

	0	null
	1	NULL
	2	A
7	2 3	C
,	4	D
	5	key
	6	null
	7	null
	8	В
	9	null

insert(key)

Not found!

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$

delete(key)	
 Find key to delete 	

- Remove it from table.
- Set bucket to DELETED.

(Tombstone value.)

0	null
1	G
2	A
3	C
4	D
4 5	DELETED
6	null
7	null
8	В
9	null

insert(key)

What happens when an insert finds a DELETED cell?

- 1. Overwrite the deleted cell.
 - 2. Continue probing.
 - 3. Fail.

Two properties of a good hash function:

- 1. h(key, i) enumerates all possible buckets.
 - For every bucket *j*, there is some *i* such that:

$$h(key, i) = j$$

- The hash function is permutation of $\{1..m\}$.
- For linear probing: true!

What goes wrong if the sequence is not a permutation?

- 1. Search incorrectly returns key-not-found.
- 2. Delete fails.
- 3. Insert puts a key in the wrong place
- 4. Returns table-full even when there is still space left.

Two properties of a good hash function:

2. Simple Uniform Hashing Assumption

Every key is equally likely to be mapped to every bucket, independently of every other key.

For h(*key*, 1)?

For every h(key, i)?

Two properties of a good hash function:

2. Uniform Hashing Assumption

Every key is equally likely to be mapped to every *permutation*, independent of every other key.

n! permutations for probe sequence: e.g.,

- 1234
- 1243
- 1423
- 1432

•

Two properties of a good hash function:

2. Uniform Hashing Assumption

Every key is equally likely to be mapped to every *permutation*, independent of every other key.

n! permutations for probe sequence: e.g.,

• 1 2 3 4 Pr(1/m)

• 1243 Pr(0) NOT Linear Probing

• 1 4 2 3 Pr(0)

• 1 4 3 2 Pr(0)

•

Linear Probing

Problem with linear probing: clusters

- If there is a cluster, then there is a higher probability that the next h(k) will hit the cluster.

Linear Probing

Problem with linear probing: clusters

If the table is 1/4 full, then there will be clusters of size:

Linear probing

In practice, linear probing is very fast!

- Why? Caching!
- It is cheap to access nearby array cells.
 - Example: access T[17]
 - Cache loads: T[10..50]
 - Almost 0 cost to access T[18], T[19], T[20], ...
- If the table is 1/4 full, then there will be clusters of size: $\theta(\log n)$
 - Cache may hold entire cluster!
 - No worse than wacky probe sequence.

Properties of a good hash function:

2. Uniform Hashing Assumption

Every key is equally likely to be mapped to every *permutation*, independent of every other key.

n! permutations for probe sequence: e.g.,

- 1234
- 1243
- 1423
- 1432

•

Double Hashing

• Start with two ordinary hash functions:

$$f(k)$$
, $g(k)$

• Define new hash function:

$$h(k, i) = f(k) + i \cdot g(k) \mod m$$

- Note:
 - Since f(k) is good, f(k, 1) is "almost" random.
 - Since g(k) is good, the probe sequence is "almost" random.

Double Hashing

Hash function

$$h(k, i) = f(k) + i \cdot g(k) \mod m$$

Claim: if g(k) is relatively prime to m, then h(k, i) hits all buckets.

- Assume not: then for some distinct i, j < m:

$$f(k) + i \cdot g(k) = f(k) + j \cdot g(k) \mod m$$

- $\rightarrow i \cdot g(k) = j \cdot g(k) \mod m$
- \rightarrow $(i-j)\cdot g(k) = 0 \mod m$
- \rightarrow g(k) not relatively prime to m, since $(i,j \le m)$

Double Hashing

Hash function

$$h(k, i) = f(k) + i \cdot g(k) \mod m$$

Claim: if g(k) is relatively prime to m, then h(k, i) hits all buckets.

Example: if $(m = 2^r)$, then choose g(k) odd.

Performance of Open Addressing

If (m==n), what is the expected insert time, under uniform hashing assumption?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. $O(n^2)$
- 5. None of the above.

• Chaining:

- When (m==n), we can still add new items to the hash table.
- We can still search efficiently.

• Open addressing:

- − When (m==n), the table is full.
- We cannot insert any more items.
- We cannot search efficiently.

Define:

- Load $\alpha = n / m$
- Assume α < 1.

Average # items / bucket

Define:

- Load $\alpha = n / m$
- Assume α < 1.

Claim:

For *n* items, in a table of size *m*, assuming *uniform hashing*, the expected cost of an operation is:

Average # items / bucket

$$\leq \frac{1}{1-\alpha}$$

Example: if (α =90%), then E[# probes] = 10

Proof of Claim:

First probe: probability that
 first bucket is full is: n/m

Proof of Claim:

First probe: probability that
 first bucket is full is: n/m

- Second probe: if first bucket is full, then the probability that the second bucket is also full: (n-1)/(m-1)

Proof of Claim:

First probe: probability that
 first bucket is full is: n/m

- Second probe: if first bucket is full, then the probability that the second bucket is also full: (n-1)/(m-1)

- Third probe: probability is full: (n-2)/(m-2)

Proof of Claim:

Proof of Claim:

Proof of Claim:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\dots \right) \right) \right)$$
First probe Second probe Third probe

Proof of Claim:

– Expected cost:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\dots \right) \right) \right)$$

– Note:

$$\frac{n-i}{m-i} \le \frac{n}{m} \le \alpha$$

Proof of Claim:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\dots \right) \right) \right)$$

$$\leq 1 + \alpha (1 + \alpha (1 + \alpha (\cdots)))$$

Proof of Claim:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\dots \right) \right) \right)$$

$$\leq 1 + \alpha (1 + \alpha (1 + \alpha (\cdots)))$$

$$\leq 1 + \alpha + \alpha^2 + \alpha^3 + \cdots$$

Proof of Claim:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\dots \right) \right) \right)$$

$$\leq 1 + \alpha (1 + \alpha (1 + \alpha (\cdots)))$$

$$\leq 1 + \alpha + \alpha^2 + \alpha^3 + \cdots$$

$$\leq \frac{1}{1-\alpha}$$

Define:

- Load $\alpha = n / m$
- Assume α < 1.

Claim:

For *n* items, in a table of size *m*, assuming *uniform hashing*, the expected cost of an operation is:

Average # items / bucket

$$\leq \frac{1}{1-\alpha}$$

Example: if (α =90%), then E[# probes] = 10

Advantages...

Open addressing:

- Saves space
 - Empty slots vs. linked lists.
- Rarely allocate memory
 - No new list-node allocations.
- Better cache performance
 - Table all in one place in memory
 - Fewer accesses to bring table into cache.
 - Linked lists can wander all over the memory.

Disadvantages...

Open addressing:

- More sensitive to choice of hash functions.
 - Clustering is a common problem.
 - See issues with linear probing.
- More sensitive to load.
 - Performance degrades badly as $\alpha \rightarrow 1$.

Disadvantages...

Open addressing:

- Performance degrades badly as $\alpha \rightarrow 1$.

Today

Java hashing

• Collision resolution: open addressing

• Table (re)sizing

CS2040S Data Structures and Algorithms

(e-learning edition)

Hashing II (Part 3)

Today

Java hashing

• Collision resolution: open addressing

• Table (re)sizing

How large should the table be?

- Assume: Hashing with Chaining
- Assume: Simple Uniform Hashing
- Expected search time: O(1 + n/m)
- Optimal size: $m = \Theta(n)$
 - if (m < 2n): too many collisions.
 - if (m > 10n): too much wasted space.

- Problem: we don't know *n* in advance.

Idea:

- Start with small (constant) table size.
- Grow (and shrink) table as necessary.

Example:

- Initially, m = 10.
- After inserting 6 items, table too small! Grow...
- After deleting n-1 items, table too big! Shrink...

How to grow the table:

- 1. Choose new table size *m*.
- 2. Choose new hash function h.
 - Hash function depends on table size!
 - Remember: $h: U \rightarrow \{1..m\}$
- 3. For each item in the old hash table:
 - Compute new hash function.
 - Copy item to new bucket.

Time complexity of growing the table:

- Assume:
 - Let m_1 be the size of the old hash table.
 - Let m_2 be the size of the new hash table.
 - Let *n* be the number of elements in the hash table.
- Costs:
 - Scanning old hash table: $O(m_1)$
 - Inserting each element in new hash table: O(1)
 - Total: $O(m_1 + n)$

Time complexity of growing the table:

- Assume:
 - Size $m_1 < n$.
 - Size $m_2 > 2n$

- Costs:
 - Total: $O(m_1 + n)$. = O(n)

Time complexity of growing the table:

Wait! What is the cost of initializing the new table?

Initializing a table of size x takes x time!

– Costs:

Total: $O(m_1 + m_2 + n)$

Time complexity of growing the table:

- Assume:
 - Let m_1 be the size of the old hash table.
 - Let m_2 be the size of the new hash table.
 - Let *n* be the number of elements in the hash table.

– Costs:

- Scanning old hash table: $O(m_1)$
- Creating new hash table: $O(m_2)$
- Inserting each element in new hash table: O(1)
- Total: $O(m_1 + m_2 + n)$

Idea 1: Increment table size by 1

- if
$$(n == m)$$
: $m = m+1$

- Cost of resize:
 - Size $m_1 = n$.
 - Size $m_2 = n + 1$.
 - Total: O(n)

Initially: m = 8What is the cost of inserting n items?

- 1. O(n)
- 2. O(n log n)
- \checkmark 3. O(n²)
 - 4. $O(n^3)$
 - 5. None of the above.

Idea 1: Increment table size by 1

- When (n == m): m = m+1
- Cost of each resize: O(n)

Table size	8	8	9	10	11	12	•••	n+1
Number of items	0	7	8	9	10	11	•••	n
Number of inserts		7	1	1	1	1	•••	1
Cost		7	8	9	10	11		n

- Total cost: $(7 + 8 + 9 + 10 + 11 + ... + n) = O(n^2)$

Idea 2: Double table size

- if (n == m): m = 2m

Cost of resize:

- Size $m_1 = n$.
- Size $m_2 = 2n$.
- Total: O(n)

Idea 2: Double table size

- When (n == m): m = 2m
- Cost of each resize: O(n)

Table size	8	8	16	16	16	16	16	16	16	16	32	32	32	•••	2n
# of items	0	7	8	9	10	11	12	13	14	15	16	17	18	•••	n
# of inserts		7	1	1	1	1	1	1	1	1	1	1	1		1
Cost		7	8	1	1	1	1	1	1	1	16	1	1		n

- Total cost:
$$(7 + 15 + 31 + ... + n) = O(n)$$

Idea 2: Double table size

Cost of Resizing:

Table size	Total Resizing Cost
8	8
16	(8 + 16)
32	(8+16+32)
64	(8+16+32+64)
128	(8+16+32+64+128)
• • •	• • •
m	$<(1+2+4+8++m) \le O(m)$

Idea 2: Double table size

- if (n == m): m = 2m

- Cost of resize: O(n)
- Cost of inserting n items + resizing: O(n)

- Most insertions: O(1)
- Some insertions: linear cost (expensive)
- Average cost: O(1)

Idea 3: Square table size

- When (n == m): $m = m^2$

Table size	Total Resizing Cost
8	?
64	?
4,096	?
16,777,216	?
• • •	• • •
m	?

Assume: square table size What is the cost of inserting *n* items?

- 1. $O(\log n)$
- 2. $O(\sqrt{n})$
- 3. O(n)
- 4. $O(n \log n)$
- 5. $O(n^2)$
- 6. $O(2^n)$
- 7. None of the above.

Idea 3: Square table size

- if
$$(n == m)$$
: $m = m^2$

– Cost of resize:

- Size $m_1 = n$.
- Size $m_2 = n^2$.
- Total: $O(m_1 + m_2 + n)$ = $O(n + n^2 + n)$ = $O(n^2)$

Idea 3: Square table size

- When (n == m): $m = m^2$

# Items	Total Resizing Cost
8	64
64	(64 + 4,096)
4,096	(64 + 4,096 +)
• • •	•••
n	$> n^2$
	$= O(n^2)$

Idea 3: Square table size

- When (n == m): $m = m^2$

# Items	Resizing Cost	Insert Cost
8	64	8
64	(64 + 4,096)	64
4,096	(64 + 4,096 +)	4,096
• • •	• • •	• • •
n	$> n^2$	n
	$< O(n^2)$	O(n)

Idea 3: Square table size

- if
$$(n == m)$$
: $m = m^2$

- Cost of resize:
 - Total: $O(n^2)$

- Cost of inserts:
 - Total: O(n)

Why else is squaring the table size bad?

- 1. Resize takes too long to find items to copy.
- 2. Inefficient space usage.
- 3. Searching is more expensive in a big table.
- 4. Inserting is more expensive in big table.
- 5. Deleting is more expensive in a big table.

Basic procedure: (chained hash tables)

Delete(key)

- 1. Calculate hash of *key*.
- 2. Let *L* be the linked list in the specified bucket.
- 3. Search for item in linked list *L*.
- 4. Delete item from linked list L.

Cost:

- Total: O(1 + n/m)

What happens if too many items are deleted?

- Table is too big!
- Shrink the table...

- Try 1:
 - If (n == m), then m = 2m.
 - If (n < m/2) then m = m/2.

Rules for shrinking and growing:

- Try 1:
 - If (n == m), then m = 2m.
 - If (n < m/2) then m = m/2.

- Example problem:
 - Start: n=100, m=200
 - Delete: n=99, $m=200 \rightarrow$ shrink to m=100
 - Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
 - Repeat...

Example execution:

- Start: n=100, m=200
- cost=100 Delete: n=99, $m=200 \rightarrow$ shrink to m=100
- cost=100 Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
- cost=100 Delete: n=99, $m=200 \rightarrow$ shrink to m=100
- cost=100 Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
- cost=100 Delete: n=99, $m=200 \rightarrow$ shrink to m=100
- cost=100 Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
 - Repeat...

Rules for shrinking and growing:

- Try 2:
 - If (n == m), then m = 2m.
 - If (n < m/4), then m = m/2.

– Claim:

- Every time you double a table of size m, at least m/2 new items were added.
- Every time you shrink a table of size m, at least m/4 items were deleted.

Technique for analyzing "average" cost:

- Common in data structure analysis
- Like paying rent:
 - You don't pay rent every day!
 - Pay 900/month = 30/day.

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Example: amortized cost = 7

"amortized" is NOT "average"

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Example: amortized cost NOT 7

```
    insert: 13
    insert: 5
    insert: 7
    insert: 7
```

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Example: (Hash Tables)

- Inserting k elements into a hash table takes time O(k).
- Conclusion:

The insert operation has amortized cost O(1).

Accounting Method (paying rent)

- Imagine a bank account B.
- Each operation adds money to the bank account.
- Every step of the algorithm spends money:
 - Immediate money: to perform the operation.
 - Deferred money: from the bank account.
- Total cost execution = total money
 - Average time / operation = money / num. ops

Accounting Method Example (Hash Table)

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account, uses O(1) dollars to insert element.
- A table with k new elements since
 last resize has k dollars in bank.

Bank account \$2 dollars

null
null
(k ₁ , A)
null
(k ₂ , B)
null

Accounting Method Example (Hash Table)

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account.

- Claim:

- Resizing a table of size m takes O(m) time.
- If you resize a table of size m, then:
 - at least m/2 new elements since last resize
 - -bank account has $\Theta(m)$ dollars.

Accounting Method Example (Hash Table)

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account.
- Pay for resizing from the bank account!
- Strategy:
 - Analyze inserts ignoring cost of resizing.
 - Ensure that bank account always is big enough to pay for resizing.

Total cost: Inserting k elements costs:

- Deferred dollars: O(k) (to pay for resizing)
- Immediate dollars: O(k) for inserting elements in table
- Total (Deferred + Immediate): O(k)

Total cost: Inserting *k* elements costs:

- Deferred dollars: O(k) (to pay for resizing)
- Immediate dollars: O(k) for inserting elements in table
- Total (Deferred + Immediate): O(k)

Cost per operation:

- Deferred dollars: O(1)
- Immediate dollars: O(1)
- Total: O(1) / per operation

Counter ADT:

- increment()
- read()

Counter ADT:

- increment()
- read()

increment()

Counter ADT:

- increment()
- read()

increment(), increment()

0 0 0 0 0 0 0 0 1 0

Counter ADT:

- increment()
- read()

increment(), increment()

0 0 0 0 0 0 0 1 1

What is the worst-case cost of incrementing a counter with max-value n?

- 1. O(1)
- **✓**2. O(log n)
 - 3. O(n)
 - 4. $O(n^2)$
 - 5. I have no idea.

Counter ADT:

- increment()
- read()

Some increments are expensive...

Question: If we increment the counter to *n*, what is the amortized cost per operation?

- Easy answer: $O(\log n)$
- More careful analysis....

Observation:

During each increment, only <u>one</u> bit is changed from: $0 \rightarrow 1$

Observation:

During each increment, many bits may be changed from: $1 \rightarrow 0$

Observation:

Accounting method: each bit has a bank account. Whenever you change it from $0 \rightarrow 1$, add one dollar.

Observation:

Accounting method: each bit has a bank account. Whenever you change it from $0 \rightarrow 1$, add one dollar. Whenever you change it from $1 \rightarrow 0$, pay one dollar.

Counter ADT

Counter ADT

increment()

Counter ADT

increment(), increment()

Counter ADT

increment(), increment(), increment()

Counter ADT

increment()

Observation:

Amortized cost of increment: 2

- One operation to switch one $0 \rightarrow 1$
- One dollar (for bank account of switched bit).

(All switches from $1 \rightarrow 0$ paid for by bank account.)

Today

Java hashing

• Resolving collisions: open addressing

• Table (re)sizing