Data Analytics and Machine Learning Group Department of Informatics Technical University of Munich

Eexam

Place student sticker here

Note:

- · During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- · This number is printed both next to the code and to the signature field in the attendance check list.

Machine Learning for Graphs and Sequential Data

Exam: IN2323 / Endterm **Date:** Wednesday 5th August, 2020

Examiner: Prof. Dr. Stephan Günnemann **Time:** 11:30 – 12:45

Working instructions

- This exam consists of 14 pages with a total of 10 problems.
 Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 43 credits.
- Detaching pages from the exam is prohibited.
- · Allowed resources:
 - all materials that you will use on your own (lecture slides, calculator etc.)
 - not allowed are any forms of collaboration between examinees and plagiarism
- · You have to sign the code of conduct.
- Make sure that the **QR codes are visible** on every uploaded page. Otherwise, we cannot grade your exam.
- · Only write on the provided sheets, submitting your own additional sheets is not possible.
- · Last two pages can be used as scratch paper.
- All sheets (including scratch paper) have to be submitted to the upload queue. Missing pages will be considered empty.
- · Only use a black or blue color (no red or green)!
- Write your answers only in the provided solution boxes or the scratch paper.
- For problems that say "Justify your answer" you only get points if you provide a valid explanation.
- For problems that say "Prove" you only get points if you provide a valid mathematical proof.
- If a problem does not say "Justify your answer" or "Prove" it's sufficient to only provide the correct answer.
- Exam duration 75 minutes.

Left room from	to	/	Early submission at
		,	Larry caprillocion at

We consider two transformations $f_1(\mathbf{z}) = \begin{bmatrix} z_1 \\ z_2^{1/3} \end{bmatrix}$ and $f_2(\mathbf{z}) = \begin{bmatrix} z_1(|z_2|+1) \\ z_2 \end{bmatrix}$ from \mathbb{R}^2 to \mathbb{R}^2 .

The respective inverse transformation are $f_1^{-1}(\mathbf{x}) = \begin{bmatrix} x_1 \\ x_2^3 \end{bmatrix}$ and $f_2^{-1}(\mathbf{x}) = \begin{bmatrix} \frac{x_1}{|x_2|+1} \\ x_2 \end{bmatrix}$.

The respective Jacobians are

$$J_{f_1} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{3}z_2^{-\frac{2}{3}} \end{bmatrix} \qquad J_{f_2} = \begin{bmatrix} |z_2| + 1 & \text{sign}(z_2)z_1 \\ 0 & 1 \end{bmatrix}$$

$$J_{f_1^{-1}} = \begin{bmatrix} 1 & 0 \\ 0 & 3x_2^2 \end{bmatrix} \qquad J_{f_2^{-1}} = \begin{bmatrix} \frac{1}{|x_2|+1} & \frac{-\text{sign}(x_2)x_1}{(|x_2|+1)^2} \\ 0 & 1 \end{bmatrix}$$

We assume a Gaussian base distribution $p_1(z) = \mathcal{N}(0, I)$. We observed one point $x_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

We propose to stack the transformations f_1 , f_2 to transform the base distribution p_1 in the distribution p_2 with normalizing flows. Compute the likelihood for \mathbf{x} under the transformed distribution p_2 if the order of transformations is f_1 followed by f_2 .

Hint: You might use the density of the unit variate Gaussian $p = \mathcal{N}(0,1)$ at the following points: p(1/2) = 0.3521, p(1/3) = 0.3774, p(1/9) = 0.3965, $p(5) = 1.4867e^{-06}$, $p(8) = 5.0523e^{-15}$, $p(10) = 7.6946e^{-23}$

Problem 2	Variational Inference	(5 credits)
-----------	-----------------------	-------------

distributions $Q_1 = \{ \mathcal{N}(z \phi, 1) : \phi \in \mathbb{R} \}.$ a) Assume that the variational distribution $q \in Q_1$ is fixed, and we are trying to maximize the ELBO w.r.t	t. θ using
gradient ascent. Is it necessary to use the reparametrization trick in this case? If yes, explain how to do family of distributions Q_1 ; if not, provide a justification.	
Tarmy of distributions \mathfrak{S}_1 , if not, provide a justification.	——┐ ┗
Consider another family of distributions $Q_2 = \{ \mathcal{N}(z 0, s^2) : s \in (0, \infty) \}$. Which of the following statements Justify your answer.	s is true?
1. $\max_{\theta,q\in\mathcal{Q}_1}ELBO(\theta,q)<\max_{\theta,q\in\mathcal{Q}_2}ELBO(\theta,q)$	L
2. $\max_{\theta, q \in \mathcal{Q}_1} ELBO(\theta, q) = \max_{\theta, q \in \mathcal{Q}_2} ELBO(\theta, q)$	
3. $\max_{\theta, q \in \mathcal{Q}_1} ELBO(\theta, q) > \max_{\theta, q \in \mathcal{Q}_2} ELBO(\theta, q)$	
4. It's impossible to tell without additional information.	

Problem 3 Robustness of Machine Learning Models (6 credits)

Suppose we have trained a binary classifier $f: \mathbb{R}^d \to \{0,1\}$ and want to certify its robustness via randomized smoothing. Therefore, the *smoothed classifier* $g_{\sigma^2}(\mathbf{x}) = \mathbb{E}\left[\mathbb{E}\left[f(\mathbf{x} + \varepsilon) = 1\right]\right]$, where $\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$.

Fact: $\Phi^{-1}(g_{\sigma^2}(\mathbf{x}))$ is $^1/\sigma$ -**Lipschitz** w.r.t. \mathbf{x} and the L_2 norm, where $\Phi(z)$ denotes the cumulative distribution function (CDF) of the standard normal distribution.

a) Using the above fact about the Lipschitz-continuity of $\Phi^{-1}(g_{\sigma^2}(\mathbf{x}))$, show that the largest certifiable L_2 radius r around a sample \mathbf{x} is identical to the result shown in the lecture. More precisely, show that

$$r = \sigma \Phi^{-1}(g_{\sigma^2}(\boldsymbol{x})).$$

Hint: You may assume we can evaluate $g_{\sigma^2}(\mathbf{x})$ in closed form and you may use the following results: $\lim_{z\to 0} \Phi^{-1}(z) = -\infty$, $\Phi^{-1}(0.5) = 0$, $\lim_{z\to 1} \Phi^{-1}(z) = \infty$.

Why or why not?			

Problem 4 Markov Property (3 credits)

We consider the following sequences of random variables U_0, U_1, \dots, U_t .

a) $U_t = \begin{bmatrix} X_t \\ Z_t \end{bmatrix}$ where X_t are observed variables and Z_t are latent variables of an Hidden Markov Model. Does the	F
sequence of variables U_t fulfill the Markov property i.e. $P(U_t U_{t-1}) = P(U_t U_{t-1},,U_0)$? Justify your answer.	_
b) We consider an AR(p) process X_t . Under what condition on p and k does the sequence of variables $U_t = [X_{t-1},, X_{t-k}]$ fulfill the Markov property i.e. $P(U_t U_{t-1}) = P(U_t U_{t-1},, U_0)$? Justify your answer.	E
c) We consider a recurrent neural network which produces X_t . Does the sequence of variables $U_t = X_t$ fulfill the Markov property i.e. $P(U_t U_{t-1}) = P(U_t U_{t-1},,U_0)$? Justify your answer.	E

Problem 5 Markov Chain (3 credits)

Compute the likelihood of the sequence under the parameters π , \mathbf{A} i.e. $P_{\pi,\mathbf{A}}(S_k)$. What happens to this quayou increase the discretization parameter from k to $k'>k$ but keep the same model parameter π , \mathbf{A} ?	k times	$\underbrace{v_1, \dots, v_1}_{k \text{ times}}, \dots, \underbrace{v_T}_{k}$ on parameter o	times		od A timos.	The param	iotor in our c	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
								uantity

Problem 6 Temporal Point Process (6 credits)

Consider an inhomogeneous Poisson process (IPP) on the interval [0, 4] with the intensity function

$$\lambda(t) = \begin{cases} a & \text{if } t \in [0,3] \\ b & \text{if } t \in (3,4] \end{cases}$$

where a > 0, b > 0 are some positive parameters.

	1 and $b = 5$. What	is the expected n	umber of events ger	nerated by the IPP	in this case?
sume that a =					
sume that a =					
sume that a =					
sume that a =					
sume that a =					
sume that a =					
sume that a =					
sume that a =					
sume that a =					

Problem 7 Clustering with the Planted Partition Model (4 credits)

The following graph has been generated from a planted partition model with in-community edge probability p and between-community edge probability q.

Assuming p < q, find the maximum likelihood community assignments under a PPM. Give your solution as two sets of node labels making up the two discovered communities. Justify your answer.

Problem 8 PageRank in a Wheel (6 credits)

Figure 8.1: Example of a directed wheel graph with n + 1 = 9 nodes

Consider a directed graph of size n + 1 with a cycle of n nodes and an additional central node that every other node connects to (see figure). So we have a graph with node set $\mathcal{V} = \{0, 1, ..., n\}$ and edge set

$$\mathcal{E} = \{(i, i+1) \mid i \in \{1, \dots, n-1\}\} \cup \{(n, 1)\} \cup \{(i, 0) \mid i \in \{1, \dots, n\}\}.$$

We want to compute the PageRank scores with a link-follow probability of β (a teleport probability of $1-\beta$) and some arbitrary teleport vector π , $\sum_{i=0}^{n} \pi_i = 1$. Note that we index π from 0 to n.

We define the predecessor function pa as the index of the predecessor of a node in the directed cycle, i.e.

$$pa(1) = n$$
 and $pa(i) = i - 1 \ \forall i \in \{2, ..., n\}$.

You can write $pa^k(i)$ for the k-th predecessor of node i, i.e. $pa^3(i) = pa(pa(pa(i)))$ and $pa^0(i) = i$.

iy is triis grapri p	TODIEMALIC IOI Pa	genank witho	ит гапоот тегер	ortation ($\beta = 1$)?	

c) Show that the PageRank for node $i \in \{1, ..., n\}$ in the outer cycle is given by

$$r_i = \frac{(1-\beta)}{1-\left(\frac{\beta}{2}\right)^n} \sum_{j=0}^{n-1} \left(\frac{\beta}{2}\right)^j \pi_{pa^j(i)}.$$

Problem 9 Label Propagation (4 credits)

Consider the following graph

The nodes labeled 0 and 1 are observed and from class 0 and 1, respectively. One edge has a fixed weight, the other two have a variable edge weight of $a \ge 0$. The two center nodes are unobserved and we call their labels x and y.

We want to predict classes for the two center nodes that minimize the Label Propagation objective exactly,

$$\frac{1}{2}\sum_{ij}W_{ij}\left(y_{i}-y_{j}\right)^{2}$$

where W is the weighted adjacency matrix and y_i , y_j are the labels of the nodes.

Find the set of all possible edge weights a that guarantee that node x is assigned to class 0. Justify your answer.

Problem 10 Adversarial Attacks on Graph Neural Networks (2 credits)

Suppose you are given the following two-layer graph neural network.

$$f(\mathbf{A}, \mathbf{X}) = \mathbf{Z} = \text{Softmax} (\hat{\mathbf{A}} \text{ReLU} (\hat{\mathbf{A}} \mathbf{X} \mathbf{W}_1) \mathbf{W}_2)$$

 $\mathbf{X} \in \mathbb{R}^{N \times D}$ are the node features, \mathbf{Z} are the node predictions, \mathbf{W}_x are weight matrices of appropriate dimensions and $\hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}}$ is the propagation matrix as defined for GCNs. Here, $\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$, where \mathbf{A} is the adjacency matrix and \mathbf{I} is the identity matrix, and $\tilde{\mathbf{D}}$ is a diagonal matrix of node degrees $\tilde{\mathbf{D}}_{ii} = \sum_{i} \tilde{\mathbf{A}}_{ij}$.

The model was trained for the task of semi-supervised node classification, and we want to predict a class c for node 6 in the following graph A:

- a) An adversary with complete knowledge about the graph **A** and the trained model f(A, X) may delete one edge to perturb the prediction for node 6. Deleting which of the following edges would lead to a greater change to the prediction for node 6? Justify your answer.
 - 1. The edge connecting node 5 and 7
 - 2. The edge connecting node 3 and 5
 - 3. There is not enough information to determine which deletion leads to a greater change.

L) A	and and the same December 1	d Decrease the set Ma	orl Destiniers (DDND)	del Centre de d
	nstead have a Personalize low does this affect your ch			odel instead of

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

