

AGENDA

- 1. Acerca de Pyspark
- 2. Instalación Pyspark en Google colab
- 3. Importando archive de datos y adaptando a format Spark
- 4. Data Wrangling / Manipulación de datos con Pyspark
 - Lectura, Formato
 - Agrupamiento
 - EDA / Analisis exploratorio de datos
 - Identificación de valores Nulos
 - Tratamiento de Outliers
- 5. RDD vs DataFrame en Spark. Paralelizacion de operaciones
- Etapas de modelamiento de datos en Colab con Pyspark

ACERCA DE PYSPARK

PROCESAMIENTO DE COMPUTO PARALALELO FRENTE A BIG DATA

Lenguajes transaccionales como SQL responden a tareas en secuencia

 Spark responde a procesamiento en paralelo de operaciones distribuyendo tareas y respondiendo rápidamente a operaciones frente a grandes volúmenes de datos

ACERCA DE SPARK

- Spark es un plataforma de entorno de trabajo distribuida que trabaja con nodos maestros y nodos trabajadores donde se almacenan los datos
- Spark utiliza diferentes estructuras de data como RDD o Dataframe

- Spark SQL: Busca optimizar el procesamiento de datos. Considerado SQL query distribuido
- Spark Streaming: Procesa en tiempo real los datos con micro procesos batch
- Spark Mlib: Machine Learning distribuido
- Spark Graph: Utilizado para comprender relaciones y visualizar insight

ACERCA DE PYSPARK

- Plataforma computacional diseñada para la rapidez, propósito general y uso sencillo.
- Proposito general ejecuta procesos: batch, iterativas y streaming
- Sistema de alta integración con API´s: Scala, Python, Java, R y SQL

- Es el entorno de trabajo más utilizado para resolver problemas reales de Machine Learning de manera rápida y distribuida
- A diferencia de Python esta Pyspark esta preparado para procesar los algoritmos de manera distribuida

INSTALACION DE PYSPARK

GOOGLE COLAB

INSTALACION INICIALES


```
Paso1 BIC_Manipulacion_de_datos_Pyspark_.ipynb 🌣
```

Archivo Editar Ver Insertar Entorno de ejecución Herramientas Ayuda <u>Se han guardado todos los cambios</u>

```
+ Código + Texto
```

```
[1] !apt-get install openjdk-8-jdk-headless -qq > /dev/null
!wget -q https://www-us.apache.org/dist/spark/spark-2.3.4/spark-2.3.4-bin-hadoop2.7.tgz
!tar xf spark-2.3.4-bin-hadoop2.7.tgz

!wget -q https://www-us.apache.org/dist/spark/spark-2.4.4/spark-2.4.4-bin-hadoop2.7.tgz
!tar xf spark-2.4.4-bin-hadoop2.7.tgz
```

- [2] !pip install -q findspark
- [3] import os
 os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
 os.environ["SPARK_HOME"] = "/content/spark-2.4.4-bin-hadoop2.7"
- [4] !pip install pyspark

```
[5] from pyspark.sql import SparkSession
    from pyspark import SparkContext
    spark = SparkSession.builder.master("local").getOrCreate()
    sc = SparkContext.getOrCreate()
```


IMPORTANDO ARCHIVOS DE **DATOS Y FORMATO** SPARK

IMPORTANDO ARCHIVOS DE DATOS DESDE CSV HASTA DRIVE

< ●	Mis reuniones GoToM x 🙆 PySpark Machine Learn x 🚾 Paso1 BIC_Manipulacio x 🕞 Inicia sesión: Cuentas d x 🔌 Import data into Googl x	+		-	0
QLUXS81	1JDoHvMbROO1rTn7SFBn11Kqq#scrollTo=7zPCb9l3vOXF ☆	f	<u>L</u>	En p	ausa 🛕
	Volver a coned	ctar	•	E	ditar
· 1.	Lectura de datos				
[]	<pre>from google.colab import files uploaded = files.upload()</pre>				
C→	Elegir archivos 0. DS_Seguros_Salud.csv • 0. DS_Seguros_Salud.csv(application/vnd.ms-excel) - 2690973 bytes, last modified: 10/10/2019 - 100% done Saving 0. DS_Seguros_Salud.csv to 0. DS_Seguros_Salud.csv				
[]	<pre>from google.colab import drive drive.mount('/content/drive')</pre>				
C→	Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491	<u>lhc0b</u>	rc4i	.apps.	<u>googleu</u>
	Enter your authorization code: Mounted at /content/drive				
	4)
[]	!ls '/content/drive/My Drive/PySpark Machine Learning en plataforma Big Data/ML Sesion 3 Training R ML en Casos de Neg	gocio	s/2_	caso r	egocic
C →	'0. Caso negocio endeudamiento creditio.pptx' 2_DS_creditos.csv '1_Diccionario credito.xls'				
[]	ls				
₽	'0. DS_Seguros_Salud.csv' spark-2.3.4-bin-hadoop2.7.tgz drive/ spark-2.4.4-bin-hadoop2.7/ sample_data/ spark-2.3.4-bin-hadoop2.7/ spark-2.3.4-bin-hadoop2.7/				

IMPORTANDO ARCHIVOS DE DATOS DESDE CSV HASTA DRIVE


```
DS_Salud = spark.read.csv('0. DS_Seguros_Salud.csv'
, sep=';', header=True, inferSchema=True)
# 2.1 Revision de formatos
DS_Salud.printSchema()
```



```
DS_cred = spark.read.csv('/content/drive/My Drive/P
ySpark Machine Learning en plataforma Big Data/ML S
esion 3 Training R ML en Casos de Negocios/2_caso n
egocio 2 riesgo crediticio/2_DS_creditos.csv', sep=
',', header=True, inferSchema=True)

# 2.1 Revision de formatos
DS_cred.printSchema()
```


Data Pre-processing & Data Wrangling in Machine learning & Deep Learning

DATA WRANGLING

EXPLORACION DATAFRAME

4.1 EXPLORACION DE DATAFRAME

Explora el format de las variables

```
→
```

```
[In]: df.printSchema()
[Out]: root
    |-- MES_T0: integer (nullable = true)
```

```
[In]: df.columns
[Out]: ['ratings', 'age', 'experience', 'family', 'mobile']
```

```
[In]: len(df.columns)
[Out]: 5
```

```
[In]: df.count
[Out]: ['ratings', 'age', 'experience', 'family', 'mobile']
```


Revision de filas de una tabla

```
[In]: print((df.count),(len(df.columns))
```

[Out]: (33,5)

[In]: df.show(3)

[Out]:

[In]:	<pre>df.select('age', 'mobile').s</pre>	show(5)
[Out]	:	

++	++
age	mobile
++	++
32	Vivo
27	Apple
22	Samsung
37	Apple
27	MI
++	++

4.1 EXPLORACION DE DATAFRAME


```
[In]: df.describe().show()
```

[Out]:

+	+		+	+	+
summary	ratings	age	experience	family	mobile
+	+		+		+
count	33	33	33	33	33
mean	3.5757575757575757	30.484848484848484	10.30303030303030303	1.8181818181818181	null
stddev	1.1188806636071336	6.18527087180309	6.770731351213326	1.8448330794164254	null
min	1	22	2.5	0	Apple
max	5	42	23.0	5	Vivo
+	+		+	+	+

PRE-PROCESAMIENTO DE DATOS

4.2 AGREGANDO UNA COLUMNA

```
ratings | age | experience | family | mobile | age_after_10_yrs
            9.0
                               Vivo
        32
                                        42
            13.0
                               Apple
                                        37
            2.5
                                Samsung 32
        37 | 16.5
                               Apple
                                        47
        27 9.0
                                MI
                                        37
        27 9.0
                                Oppo
                                        37
        37 23.0
                                        47
                                Vivo
        37 23.0
                                Samsung 47
            2.5
                                        32
                                Apple
                                        37
        27
            6.0
                                MI
```

only showing top 10 rows

Transformación WOE

<u>Paciente</u> <17 Hemog	Trans Mean enode 20.1%	<u>Trans WOE</u> -0.77%
>63 Hemog	3.5%	1.17

lib Scorecardpy