

Teória obvodov 2013/2014

Semestrálny projekt - Riešenie zadaných obvodov

Obsah

Príklad 1 - Zadanie F	3
Zjednodušenie obvodu:	3
Príklad 2 - Zadanie F	5
Príklad 3 - Zadanie D	7
Príklad 4 - Zadanie F	9
Príklad 5 - zadanie F	10
Príklad 6 - zadanie D	11

Príklad 1 - Zadanie F

Určte napätie UR7 a prúd IR7. Použite metódu postupného zjednodušovania obvodu.

U = 125V

 $R1 = 510\Omega$ $R5 = 300\Omega$

 $R2 = 500\Omega$ $R6 = 800\Omega$

 $R3 = 550\Omega$ $R7 = 330\Omega$

 $R4 = 250\Omega$ $R8 = 250\Omega$

Zjednodušenie obvodu:

Urobím transfiguráciu a prekreslím obvod.

$$R_A = R_1 R_2 / (R_1 + R_2 + R_3) =$$

=
$$163,4615 \Omega$$

$$R_B = R_1 R_3 / (R_1 + R_2 + R_3) =$$

= 179,8077 Ω

$$R_C = R_2 R_3 / (R_1 + R_2 + R_3)$$

= 176,2821 Ω

Po transfigurácii sa dá obvod ešte zjednodušiť ďalej.

$$R_{B4C5} = (R_B + R_4) * (R_C + R_5)/[(R_B + R_4) + (R_C + R_5)]$$

$$= (179,8077 + 250)*(176,2821+300)/(179,8077 + 250 + 176,2821+300) = 225,9265 \Omega$$
 $R_{68} = R_6 * R_8/(R_6 * R_8) = 800*250/(1050)=190,4672\Omega$

Po ďalšom zjednodušovaní obvod vyzerá nasledovne :

$$R_{AB4C5} = R_A + R_{B4C5} = 163,4615+225,9165 = 389,388$$

 $R_{678} = R_{68} * R_7/(R_{68} + R_7) =$
= 190,4672*330/(190,4672+330) = 120,7649 Ω

$$R = R_{AB4C5} + R_{678} = 389,388 + 120,7649 = 510,1565 \Omega$$

U sa rozdelí medzi U2 a U1 v pomere R₆₇₈: R_{AB4C5}.

$$U_2/U_1 = 120,7649/389,388 => U_2 = 29,5910 \Omega$$

$$U_2 = U_{R7} = 29,5910 \Omega$$

I sa rozdelí medzi I2 a I1 v opačnom pomere R₆₈: R₇.

$$I_{R7}/I_{R68} = R_{68}/R_7 => I_{R7} = 0.0899A$$

Príklad 2 - Zadanie F

Určte napätie UR5 a prúd IR5. Použite metódu Theveninovej vety. U=130V ,R1= 350 Ω ,R2= 600 Ω , R3= 195 Ω ,R4= 320 Ω ,R5= 280 Ω

Odpojím R5 pre výpočet ideálneho zdroja napätia U₀.

 $U_0 = U * R_2 * R_4 / (R1*R2+R1*R3+R1*R4+R2*R3+R2*R4)$

 $U_0 = 35,6954 \Omega$

Zdroj napätia skratujeme pre výpočet vnútorného odporu R_i.

Postupne zjednoduším obvod a dostanem R_i.

$$R_{12} = R_1 * R_2 / (R_1 + R_2) = 350*600/950 = 221,0526 \Omega$$

$$R_{123} = R_{12} + R_3 = 221,0526 + 195 = 416,0526 \Omega$$

$$Ri = R_{123} * R_4 / (R_{123} + R_4) = 416,0526*320/(416,0526+320)$$

$$= 180,8795 \Omega$$

Zo získaných parametrov vytvoríme náhradné schéma deliča napetia.

$$Uz = U0 * R5/(Ri+R5) = 35,6954 * 280/(180,8795+280) = 21,6862 V$$

 $I_{R5} = U_0/(R_i+R_5) = 35,6954/(180,8795+280) = 0,0775 A$

Príklad 3 - Zadanie D

Určte napätie UR4 a prúd IR4. Použite metódu uzlových napätí (UA, UB,UC).

U=115V,I1=60A,I2=0.9A,R1= 500 Ω , R2= 380 Ω , R3= 480 Ω , R4= 370 Ω ,R5= 285 Ω

Pre každý uhol vytvoríme rovnice podľa I. Kirchhoffovho zákona.

A:
$$I_{R1} - I_{R2} - I_{R4} = 0$$

B:
$$I_{R4} - I_{R5} - I_2 = 0$$

C:
$$I_{R5} + I_2 - I_1 - I_{R3} = 0$$

Vytvoríme rovnice prúdov v obvode.

$$\begin{split} R_1*I_{R1}+U_a-U&=0 \Longrightarrow I_{R1}=(U-U_a)/R_1\\ R_2*I_{R2}-U_a&=0 \Longrightarrow I_{R2}=U_a/R_2\\ R_3*I_{R3}-U_c&=0 \Longrightarrow I_{R3}=U_c/R_3\\ R_4*I_{R4}+U_b-U_a&=0 \Longrightarrow I_{R4}=(\ U_a-U_b)/R_4\\ R_5*I_{R5}+U_c-U_b&=0 \Longrightarrow I_{R5}=(\ U_b-U_c)/R_5 \end{split}$$

Dosadíme:

$$\begin{array}{ll} (U\text{-}U_a)/R_1\text{-}\ U_a/R_2\text{-}(\ U_a\text{-}U_b\)/R_4\text{=}0\\ (\ U_a\text{-}U_b\)/R_4\text{-}(\ U_b\text{-}U_c\)/R_5\text{-}I_2 &=0\\ (\ U_b\text{-}U_c\)/R_5\text{+}I_2\text{-}I_1\text{-}\ U_c/R_3 &=0 \end{array}$$

$$(115-U_a)/500 - U_a/380 - (U_a-U_b)/370 = 0$$

$$(U_a-U_b)/370 - (U_b-U_c)/285 - 0.9 = 0$$

$$(U_b-U_c)/285 + 0.9 - 60 - U_c/480 = 0$$

$$U_a = -4602,2 \text{ V}$$

$$U_b = \text{-}12574\ V$$

$$U_c = -18458 \ V$$

$$I_{R4} = (U_a-U_b)/R_4 = (-4602,2+12574)/370 = 21,5454 \text{ A}$$

$$U_{R4} = (U_a-U_b) = -4602,2+12574 = 7971.8 \text{ V}$$

Príklad 4 - Zadanie F

U = 75 V	$R3 = 380 \Omega$	$C1 = 310 \mu F$
$R1 = 165 \Omega$	L1 = 430 mH	$C2 = 235 \mu F$
$R2 = 150 \Omega$	L2 = 320 mH	f = 95 Hz

 $\omega = 2*\pi*95 = 596.9026 \text{ rad/s}$

$$Z1 = R1 = 165 \Omega$$

 $Z2 = R2-j1/(\omega C1) = 150-j/(596.9026*310*10^{-6}) = (150-j5,4042) \Omega$

 $Z3=R3+j\omega L2=380+j596,9026*0, 320=(270+j191.0088) \Omega$

Z4=-j/(ωC2)=-j/596.9026 *235* 10^{-6} =-j7.1290 Ω

 $Z5=j\omega L1=j*596.9026*0, 430=256.6681j\Omega$

Odstránime paralelné zapojenie.

1/Z234=1/Z2+1/Z3+1/Z4

 $1/Z234 = 1/(150 - j5,4042) + 1/(270 + j191.0088) + 1/(-j7.1290) = 0.00912638 + 0.138766 j => Z234 = 0.471909 - 7.17534 j \Omega$

$$Z = Z1 + Z234 + Z5 = 165 + (0.471909 - 7.17534j) + 256.6681j = 165.4719 + 249.4928 j \Omega$$

$$I = U/Z = 75/(165.4719 + 249.4928 j) = 0.1384662 - 0.2087745 j A$$

$$UZ234=Z234*I=(0.471909-7.17534j)*(0.1384662-0.2087745j)=-1.43268-1.09206jV$$

$$IZ2 = UZ234/Z2 = (-1.43268 - 1.09206j) / (150-j5,4042) = -0.00927686 - 0.00761463 j A$$

 $UC1 = -j*1/(\omega C1)*IZ2 = 1/[596.9026*310*10^6*(-0.00927686-0.00761463 j)] = -5.4042j*(-0.00927686-0.00761463 j) = -0.0411510 +0.0501340 j$

$$|\text{UC1}| = \sqrt{0.0411510}$$
 $^2 + 0.0501340$ $^2 = 0.0649 \text{ V}$
 $\phi\text{C1} = \arctan(\frac{0.0501340}{-0.0411510}) = -50.62^\circ$

Príklad 5 - zadanie F

Príklad 6 - zadanie D

Zostavte diferenciálnu rovnicu popisujúcu chovanie obvodu na obrázku, dalej ju upravte dosadením hodnôt parametrov. Vypočítajte analitické riešenie uc= f(t). Urobte kontrolu výpočtu dosadením do zostavenej dif. rovnice.

$$750U'c(t) + uc(t) = 0$$
 $uc(0) = 5 V$

$$750\lambda + 1 = 0$$

 $\lambda = -1/750$

$$uc(t) = c(t)*e^{\lambda t}$$

 $uc(t) = c(t) \cdot e^{(-1/750 t)}$

$$u'c = c'(t) \cdot e^{-\frac{1}{750}t} + c(t) \cdot e^{-\frac{1}{750}t} \cdot (-\frac{1}{750})$$

$$750 \cdot (c'(t) \cdot e^{-\frac{1}{750}t} + c(t) \cdot e^{-\frac{1}{750}t} \cdot (-\frac{1}{750})) + c(t) \cdot e^{-\frac{1}{750}t} = 0$$

$$750c'(t) \cdot e^{-\frac{1}{750}t} = 0$$

$$\int c(t)dt = 0 \Rightarrow \Box(\Box) = \Box$$

$$uc(t) = c(t) \cdot e^{-\frac{1}{750}t}$$

$$uc(t) = K \cdot e^{-\frac{1}{750}t}$$

$$5 = K \cdot e^{-\frac{1}{750} \cdot 0}$$

$$5 = K \cdot 1$$

$$K = 5$$

$$uc(t) = 5 \cdot e^{-\frac{1}{750}t}$$

Skúška:

$$u'c(t) = 5 \cdot e^{-\frac{1}{750}t} \cdot (-\frac{1}{750})$$

$$750 \cdot uc'(t) + uc(t) = 0$$

$$750 \cdot (5 \cdot e^{-\frac{1}{750}t} \cdot (-\frac{1}{750})) + 5 \cdot e^{-\frac{1}{750}t} = 0$$
$$-5 \cdot e^{-\frac{1}{750}t} + 5 \cdot e^{-\frac{1}{750}t} = 0$$
$$0 = 0$$