Truncation and Rounding

I.Nelson
AP, ECE
SSN College of Engineering

Errors resulting from Rounding and Truncation

- Rounding and truncation introduces an error depending on the number of bits in the original number relative to the number of bits after quantization.
- The characteristics of the errors introduced through either truncation or rounding depend on the particular form of number representation.

(i) Fixed – point representation:

- Let us consider a fixed point representation in which a number x is quantized from 'b_u' bits to 'b' bits. Thus the number x = 0.11101.....01, consisting of 'b_u' bits prior to quantization is represented as, x=0.11101....1, containing 'b' bits, where $b < b_u$.
- The Quantizer truncates the value of x and the truncation error is defined as,

$$E_t = Q_t(x) - x$$

	Sign magnitude	2's Complement
Positive fixed point numbers	$-(2^{-b}-2^{-bu}) \le E_t \le 0$	$-(2^{-b}-2^{-bu}) \le E_t \le 0$
Negative fixed point numbers	$0 \le E_t \le (2^{-b} - 2^{-bu})$	$-(2^{-b}-2^{-bu}) \le E_t \le 0$
Finally	$-(2^{-b}-2^{-bu}) \le E_t \le (2^{-b}-2^{-bu})$	$-(2^{-b}-2^{-bu}) \le E_t \le 0$

Example:

	Sign magnitude	2's Complement
Positive fixed point numbers	$-(2^{-b}-2^{-bu}) \le E_t \le 0$	$-(2^{-b}-2^{-bu}) \le E_t \le 0$
0.8125	0.1101	0.1101
	After truncation,	After truncation,
	0.110 = 0.75	0.110 = 0.75
	Error = $0.75 - 0.8125 = -0.0625$	Error = $0.75 - 0.8125 = -0.0625$
	$-(2^{-b} - 2^{-bu}) = -(2^{-3} - 2^{-4}) = -0.0625$	$-(2^{-b} - 2^{-bu}) = -(2^{-3} - 2^{-4}) = -0.0625$
0.9375	0.1111	0.1111
	After truncation,	After truncation,
	0.111 = 0.875	0.111 = 0.875
	Error = $0.875 - 0.9375 = -0.0625$	Error = $0.875 - 0.9375 = -0.0625$
	$-(2^{-b}-2^{-bu}) = -(2^{-3}-2^{-4}) = -0.0625$	$-(2^{-b}-2^{-bu}) = -(2^{-3}-2^{-4}) = -0.0625$

Example:

	Sign magnitude	2's Complement
Negative fixed point numbers	$0 \le E_t \le (2^{-b} - 2^{-bu})$	$-(2^{-b}-2^{-bu}) \le E_t \le 0$
-0.8125	1.1101	1.0011
	After truncation,	After truncation,
	1.110 = -0.75	1.001 = (after 2's complement) = -0.875
	Error = (-0.75) - (-0.8125) = 0.0625	Error = (-0.875) - (-0.8125) = -0.0625
	$(2^{-b} - 2^{-bu}) = (2^{-3} - 2^{-4}) = 0.0625$	$-(2^{-b} - 2^{-bu}) = -(2^{-3} - 2^{-4}) = -0.0625$
-0.6875	1.1011	1.0101
	After truncation,	After truncation,
	1.101 = -0.625	1.010 = (after 2's complement) = -0.75
	Error = (-0.625) - (-0.6875) = 0.0625	Error = (-0.75) - (-0.6875) = -0.0625
	$(2^{-b} - 2^{-bu}) = (2^{-3} - 2^{-4}) = 0.0625$	$-(2^{-b}-2^{-bu}) = -(2^{-3}-2^{-4}) = -0.0625$

1. The truncation error for the sign – magnitude representation is symmetric about zero and falls in the range

$$-(2^{-b}-2^{-bu}) \le E_t \le (2^{-b}-2^{-bu})$$

2. The truncation error for two's complement representation is always negative and falls in the range

$$-(2^{-b}-2^{-bu}) \le E_t \le 0$$

- Next, let us consider the quantization errors due to rounding of a number.
- A number x, represented by b_u bits before quantization and b bits after quantization, includes a quantization error $E_r = Q_r(x) x$
- ➤ Since the rounding involves only on the magnitude of the number and hence it is independent of the type of fixed point representation.
- The maximum error that can be introduced through rounding is $2^{-b}/2$ and this can be either positive or negative, depending on the value of x. The round-off error is symmetric about zero and falls in the range $-(2^{-b})/2 \le E_r \le (2^{-b})/2$

Example:

	Sign magnitude	2's Complement
	$-(2^{-b})/2 \le E_r \le (2^{-b})/2$	$-(2^{-b})/2 \le E_r \le (2^{-b})/2$
0.8125	0.1101	0.1101
	After rounding,	After rounding,
	0.111 = 0.875	0.111 = 0.875
	Error = (0.875) - (0.8125) = 0.0625	Error = (0.875) - (0.8125) = 0.0625
	$(2^{-b})/2 = 0.0625$	$(2^{-b})/2 = 0.0625$
-0.6875	1.1011	1.0101
	After rounding,	After rounding,
	1.110 = -0.75	1.011 = (after 2's complement) = -0.625
	Error = (-0.75) - (-0.6875) = -0.0625	Error = (-0.625) - (-0.6875) = 0.0625
	$-(2^{-b})/2 = -0.0625$	$(2^{-b})/2 = 0.0625$

(ii) Floating Point Representation:

- Here, the mantissa is either rounded or truncated.
- Due to non-uniform resolution, the corresponding error in a floating point representation is proportional to the number being quantized.
- The quantized value is represented as,

$$Q(x) = x + e.x$$
 where 'e' is called the relative error.

$$\triangleright$$
 Now, e.x = Q(x) – x

- In the case of truncation for positive numbers, based on 2's complement representation of the mantissa, we have $-2^{E} 2^{-b} < e_{t} x < 0$
- Since $2^{E-1} \le x < 2^E$, it follows that $-2^{-b+1} < e_t \le 0$
- For negative numbers, $0 \le e_t x < 2^E 2^{-b}$
- > Since $2^E \le x < 2^{E-1}$, it follows that $0 \le e_t < 2^{-b+1}$
- In the case of rounding the mantissa, the resulting error is symmetric relative to zero and has a maximum value of $\pm 2^{-b}/2$.
- Therefore, the round off error becomes $-2^{-b}/2 \le e_r \le 2^{-b}/2$

Note:

- ➤ It is convenient to adopt a statistical approach to the characterization of quantization errors.
- The quantizer can be modeled as introducing an additive noise to the unquantized value x.
- Thus we can write, Q(x) = x + ε.

where $\varepsilon = E_r$ for rounding and $\varepsilon = E_t$ for truncation.

- The Quantization error can be modeled as Random variable, since falls within any of the levels of the quantizer.
- This random variable is assumed to be uniformly distributed over the ranges specified for the fixed-point representation.

