Homework 9

Math 416, Abstract linear algebra, Fall 2019 Instructor: Daesung Kim

Due date: November 15, 2019

Textbooks: In the assignment, the two texts are abbreviated as follows:

- [FIS]: Freidberg, Insel, and Spence, Linear Algebra, 4th edition, 2002.
- [Bee]: Beezer, A First Course in Linear Algebra, Version 3.5, 2015.
- 1. Let $A = \begin{pmatrix} 0.4 & 0.7 \\ 0.6 & 0.3 \end{pmatrix}$. Find $\lim_{m \to \infty} A^m$ if it exists.
- 2. Let $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ and $u = (1, 1, \dots, 1)$.
 - (a) Show that A is a transition matrix if and only if $A_{ij} \geq 0$ and uA = u.
 - (b) Show that if A and B are transition matrices then AB is also a transition matrix.
 - (c) From Part (b), deduce that if A is a transition matrix then A^m is a transition matrix for all integers m > 1.
- 3. Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of A^t .
- 4. Let V be an inner product space over F.
 - (a) Show that ||cx|| = |c|||x|| for all $x \in V$ and $c \in F$.
 - (b) Show that $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$ for all $x, y \in V$.
- 5. Let $V = \mathbb{C}^2$ and define $\langle x, y \rangle = xAy^*$ for $x, y \in V$, where

$$A = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}.$$

That is, for $x = (x_1, x_2)$ and $y = (y_1, y_2)$,

$$\langle x, y \rangle = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix} \begin{pmatrix} \overline{y_1} \\ \overline{y_2} \end{pmatrix}.$$

Show that $\langle \cdot, \cdot \rangle$ is an inner product.

- 6. Let $V = \mathbb{C}^n$ and $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. Let $\langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i}$ for $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$.
 - (a) Prove that $\langle x, Ay \rangle = \langle A^*x, y \rangle$ for all $x, y \in V$.
 - (b) Suppose that there exists $B \in \mathcal{M}_{n \times n}(\mathbb{C})$ such that $\langle x, Ay \rangle = \langle Bx, y \rangle$ for all $x, y \in V$. Show that $B = A^*$.

1