Soluzione degli esercizi del capitolo 9

Esercizio 9.1 (paq. 120)

Sia
$$H=\left\{\left[\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right] \mid a\in\mathbb{R}\right\}$$
. Verificare che H è un sottogruppo di $GL_2(\mathbb{R})$. H è commutativo?

Soluzione

Per verificare che H è un sottogruppo, basta verificare, utilizzando la precedente

proposizione 9.4, che
$$\forall h_1, h_2 \in H$$
 si ha che $h_1h_2^{-1} \in H$.

Siano $h_1 = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ e $h_2 = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \in H$. Poiché $h_2^{-1} = \begin{bmatrix} 1 & b^{-1} \\ 0 & 1 \end{bmatrix}$, il prodotto $h_1h_2^{-1} = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & b^{-1} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & b^{-1} + a \\ 0 & 1 \end{bmatrix} \in H$.

Inoltre
$$H$$
 è commutativo: infatti per ogni h_1 . $h_2 \in H$ si ha:
$$\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & b+a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a+b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}.$$

Esercizio 9.2 (paq. 120)

Dato un gruppo abeliano G e un intero $n \geq 1$, si consideri il sottoinsieme $K = \{a \in G \mid a^n = 1_G\}$ e si mostri che K è un sottogruppo di G.

Come nell'esercizio precedente, verifichiamo che K è un sottogruppo mostrando che $\forall a, b \in K$ anche $ab^{-1} \in K$.

Per ipotesi si ha che $a^n = b^n = b^{-n}$. Poiché G è commutativo segue che $(ab^{-1})^n = a^nb^{-n} = 1_G$ e quindi $ab^{-1} \in K$, che quindi risulta essere sottogruppo.

Esercizio 9.3 (pag. 47)

Determinare le sostituzioni pari di S_4 .

Soluzione

Le sostituzioni pari di S_4 (che sono gli elementi di A_4), sono tutte e sole le sostituzioni che si possono scrivere come prodotto di un numero pari di scambi (cfr. Def 9.10, pag. 122 del testo). Saranno quindi:

¹vedi Esempio 9.3, 4 pag. 117

Esercizio 9.4 (pag. 123)

Si consideri l'insieme $X=\{1,2,3,4,5,6,7\}$ e la permutazione α su X così definita:

$$\alpha = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 1 & 2 & 6 & 7 & 5 \end{array}\right).$$

- 1. Si decomponga α in prodotto di cicli disgiunti;
- **2.** Si dica se α è una sostituzione pari oppure dispari;
- 3. Si indichi l'immagine di 6 tramite la permutazione α .

Soluzione

- 1. $\alpha = (13)(24)(567)$;
- **2.** Decomponiamo α in prodotto di scambi. Si ottiene $\alpha = (13)(24)(57)(56)$ e quindi si deduce che α è una sostituzione pari;
- **3.** $\alpha(6) = 7$.

Esercizio 9.5 (pag. 123) Considerate le seguenti permutazioni di S_5 :

$$\beta = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 1 & 4 \end{array}\right) \ e \ \gamma = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{array}\right)$$

si dica se le seguenti affermazioni sono vere oppure false:

- 1. β ha periodo 5;
- **2.** $\gamma^{-1} = \gamma$;
- **3.** $\beta \cdot \gamma = \gamma \cdot \beta$;
- **4.** $\beta^2 = (1 \ 2 \ 4 \ 3 \ 5).$

Soluzione

Scriviamo β e γ come prodotto di cicli disgiunti. Otteniamo: $\beta = (13254), \ \gamma = (12)(45).$

- 1. (VERO) β è un ciclo di lunghezza 5, quindi ha periodo 5;
- **2.** (VERO) γ ha periodo 2 quindi coincide con la sua inversa γ^{-1} ;
- **3.** (FALSO) $\beta \cdot \gamma = (15)(32)(4)$, $\gamma \cdot \beta = (13)(24)$; quindi $\beta \cdot \gamma \neq \gamma \cdot \beta$;
- **4.** (VERO) $\beta^2 = (1\ 2\ 4\ 3\ 5)(1\ 2\ 4\ 3\ 5) = (1\ 2\ 4\ 3\ 5).$

Esercizio 9.6 (pag. 127)

Dati i sottogruppi $H = \{2h \mid h \in \mathbb{Z}\}$ e $K = \{3k \mid k \in \mathbb{Z}\}$ di \mathbb{Z} , determinare i sottogruppi $H \cup K$ e $H \cap K$.

Soluzione

Verifichiamo che $H \cup K = \langle H, K \rangle = H + K = \{n \in \mathbb{Z} \mid n = 2h + 3k\} = \mathbb{Z}$. Infatti è sempre vero che $H + K \subseteq \mathbb{Z}$, essendo H e K sottoinsiemi di \mathbb{Z} .

Mostriamo ora che ogni intero $t \in \mathbb{Z}$ si può scrivere come combinazione lineare di 2 e di 3.

Dalla definizione di numeri relativamente primi (Definizione 3.5 pag. 25 del testo) si ha che esistono due interi, diciamoli x e $y \in \mathbb{Z}$, tali che 1 = 2x + 3y.

Allora, moltiplicando entrambi i membri per t, si ottiene

$$t = 2tx + 3ty \Rightarrow t \in H + K.$$

Avendo dimostrato la doppia inclusione segue l'uguaglianza dei due insiemi e quindi la tesi.

$$H \cap K = \{n \in \mathbb{Z} \mid \exists h, k \in \mathbb{Z} \text{ per cui } n = 2h = 3k\} = \{n \in \mathbb{Z} \mid n = 6m\}.$$
 Osserviamo che il risultato dipende ancora dal fatto che $M.C.D.(2,3) = 1$, e quindi che $2h = 3k$ implica che h sia multiplo di 3 e quindi n multiplo di 6 .

Esercizio 9.7 (*pag.130*)

1. Determinare i generatori del gruppo $(\mathbb{Z}_{12}, +)$.

Soluzione

I generatori sono tutte e sole le classi che hanno rappresentante primo con 12 e quindi $[1]_{12}$, $[5]_{12}$, $[7]_{12}$, $[11]_{12}$ (Cfr. Es. 9.5, pag 107).

2. Determinare i generatori del gruppo $(\mathbb{Z}_{16,+})$.

Soluzione

I generatori sono tutte e sole le classi che hanno rappresentante primo con 16 e quindi $[1]_{16}$, $[3]_{16}$, $[5]_{16}$, $[7]_{16}$, $[9]_{16}$, $[11]_{16}$, $[13]_{16}$, $[15]_{16}$ (Cfr. Es. 9.5, pag 107).

3. Determinare il periodo degli elementi di $(\mathbb{Z}_8, +)$.

Soluzione

Il periodo di un elemento di un gruppo ciclico finito di ordine n è individuato dalla formula indicata nell'esercizio 9.4 (pag. 106).

Quindi
$$\begin{vmatrix} |[1]_8| &= 8; & |[2]_8| &= 4; \\ |[3]_8| &= 8; & |[4]_8| &= 2; \\ |[5]_8| &= 8; & |[6]_8| &= 4; \\ |[7]_8| &= 8; & |[0]_8| &= 1. \end{vmatrix}$$

4. Determinare il periodo degli elementi di $(\mathbb{Z}_{10},+)$.

Soluzione

$$\begin{array}{llll} |[0]_{10}| & = 1, & |[1]_{10}| & = 10, \\ |[2]_{10}| & = 5, & |[3]_{10}| & = 10, \\ |[4]_{10}| & = 5, & |[5]_{10}| & = 2, \\ |[6]_{10}| & = 5, & |[7]_{10}| & = 10, \\ |[8]_{10}| & = 5, & |[9]_{10}| & = 10. \end{array}$$