404 : exemples d'études de la convergence de séries numériques

Exercice 1

Étudier les séries dont les termes généraux suivent :

$$\frac{1}{n^{\alpha}}\ln(1+a^n); e^{-\ln^2 n}; \sin \pi \sqrt{n^2+1}; \frac{1}{n\ln n\ln(\ln n)^2}; \frac{\sum_{k=1}^n \sin \frac{1}{k^2}}{\sum_{k=1}^n \sqrt{k}}; \frac{(-1)^n}{n^{\alpha}+(-1)^n}$$

Exercice 2

On considère la série de terme général $u_n = \frac{4^n}{n \binom{2n}{n}}$. Le but de cet exercice

est d'étudier cette série de trois façons essentiellement différentes.

- **a.** Donner une étude directe de la série $\sum u_n$ grâce à un équivalent de u_n .
- **b.** Effectuer une comparaison logarithmique de u_n avec le terme général d'une série de Riemann quelconque a priori, et conclure.
- **c.** Déterminer le développement limité à l'ordre 2 de $\ln\left(\frac{u_{n+1}}{u_{\cdot}}\right)$, et en déduire l'existence d'un réel non nul a et d'un réel α tels que $u_n \approx \frac{a}{n^{\alpha}}$. Conclure.

Exercice 3

On se donne une application σ de N dans N, strictement croissante avec $\sigma(0) = 0$. À toute série réelle $\sum u_n$, on associe la série $\sum p_n$ où l'on a posé $p_n = \sum_{k=\sigma(n)}^{\sigma(n+1)-1} u_k .$

a. En toute généralité, quel lien logique existe-t-il entre la convergence de la série $\sum u_n$ et celle de la série $\sum p_n$?

Dans quel cas particulier peut-on affirmer qu'il y a équivalence entre la convergence de ces deux séries ?

- **b.** On suppose que la suite (u_n) tend vers 0 et que la suite $(\sigma(n+1) - \sigma(n))$ est bornée. Prouver que la convergence de la série $\sum p_n$ entraîne celle de la série $\sum u_n$.
- c. Étudier la convergence des séries $\sum \frac{\cos 2n\pi/3}{\ln n}$, $\sum (\frac{1}{n})^*$ (où l'on a posé $(\frac{1}{n})^* = \frac{1}{n}$ si l'écriture de l'entier *n* en base 10 ne comporte pas de 0, et $(\frac{1}{n})^* = 0$ sinon), et $\sum \frac{(-1)^{[\sqrt{n}]}}{n}$ (le crochet désignant la partie entière).

Un passage en revue des principaux outils d'étude des séries sur des exemples simples : équivalent, majoration, développement limité, règle de d'Alembert, théorème des séries alternées, comparaison avec une intégrale.

Formule de Stirling, comparaison logarithmique (preuve sur exemple de la règle de Raabe-Duhamel), remontée de $\ln \left(\frac{u_{n+1}}{u_n} \right) \grave{a}$ u_n par sommation.

Problème du regroupement des termes.

Exercice 4

On envisage une suite (ε_n) de réels tendant vers 0, et on définit une suite (u_n) de réels par la donnée de u_0 et de u_1 ainsi que la relation de récurrence :

$$u_{n+2} = u_{n+1} + \varepsilon_n u_n .$$

a. On suppose dans cette question que la suite (ε_n) est positive, et que les réels u_0 et u_1 sont strictement positifs. Établir l'équivalence :

la suite
$$(u_n)$$
 converge \Leftrightarrow la série $\sum \varepsilon_n$ converge.

b. On étudie dans cette question le cas où $u_n = \frac{(-1)^n}{n+1} \ \forall n \in \mathbb{N}$. Tant que u_n n'est pas nul, on posera $q_n = \frac{u_{n+1}}{u_n}$.

On suppose u_0 et u_1 choisis de telle sorte que $u_3 > 0$ et $1/2 \le q_3 \le 2$. Prouver que pour tout entier $n \ge 3$, q_n existe et vérifie $1/2 \le q_n \le 2$. Étudier alors la série $\sum \ln q_n$ et en déduire la convergence de la suite (u_n) .

Prouver enfin que la suite (u_n) converge quels que soient les choix de u_0 et de u_1 .

Exercice 5

en 0.

On pose, quand c'est possible, $f(x) = \sum_{n=1}^{+\infty} \frac{\sin nx}{n^2 \ln n}$ et $g(x) = \sum_{n=1}^{+\infty} \frac{\cos nx}{n \ln n}$

- **a.** Donner le domaine de définition de f.
- **b.** Prouver que pour tout x de $\mathbf{R} 2\pi \mathbf{Z}$ et tous entiers p et q avec q > p,

on a $\left| \sum_{k=p+1}^{q} \cos kx \right| \le \frac{1}{\sin x/2}$. En déduire que la série définissant g(x) converge

pour tout x de $\mathbf{R} - 2\pi \mathbf{Z}$, et que la convergence est uniforme sur tout intervalle de la forme $[\alpha, 2\pi - \alpha]$ avec $\alpha > 0$. Qu'en conclure concernant f?

c. En écrivant $g(x) = \sum_{n=1}^{\lfloor \frac{1}{x} \rfloor} \frac{\cos nx}{n \ln n} + \sum_{n=\lfloor \frac{1}{x} \rfloor}^{+\infty} \frac{\cos nx}{n \ln n}$, déterminer la limite de g

Équivalence suite-série, utilisation des O.

Absolue convergence, critère de Cauchy, intérêt de la transformation d'Abel.