Нейронные сети

Кашницкий Ю., Игнатов Д.

Национальный исследовательский университет Высшая школа экономики Департамент анализа данных и искусственного интеллекта

25 апреля 2016

(HиУ BШЭ) ML&DM 25.04.2016 1 / 24

План лекции

- Модель нейронной сети
 - Модель нейрона
 - Представление простых булевых блоков перцептронами
 - Решение XOR-проблемы с помощью нейронной сети
 - Модель нейронной сети
- 2 Аглоритм обратного распространения ошибки
 - Этапы вычисления градиента функции ошибки
 - Прямое распространение ошибки
 - Обратное распространение ошибки

План лекции

- Модель нейронной сети
 - Модель нейрона
 - Представление простых булевых блоков перцептронами
 - Решение XOR-проблемы с помощью нейронной сети
 - Модель нейронной сети
- 2 Аглоритм обратного распространения ошибки
 - Этапы вычисления градиента функции ошибки
 - Прямое распространение ошибки
 - Обратное распространение ошибки

3 / 24

Модель нейрона

Рис. 1: Схема нейрона

В мозгу человека примерно 100 млрд. нейронов. Каждый нейрон - передатчик нервного импульса (возбуждения).

Дендрит - отросток, передающий возбуждение к телу нейрона («вход»).

Аксон - обычно длинный отросток нейрона, приспособленный для проведения возбуждения от тела нейрона («выход»)

(НИУ ВШЭ) ML&DM 25.04.2016

Модель перцептрона с линейной функцией активации

- ullet Вход: $\vec{x} = [1, x_1, x_2, x_3]^T$
- Параметры: $\vec{\beta} = [\beta_0, \beta_1, \beta_2, \beta_3]^T$
- ullet Выход: $h_{\vec{eta}}(\vec{x}) = \vec{eta}^T \vec{x}$

Линейность функции активации означает, что нейрон (перцептрон) «возбуждается» при $\vec{\beta}^T \vec{x} \ge 0$, то есть в данном случае при $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 \ge -\beta_0$.

Рис. 2: Модель перцептрона

4 D > 4 D > 4 E > 4 E > E 990

(HUV BIII $^{\circ}$) ML&DM 25.04.2016 5 / 24

Модель перцептрона с логистической функцией активации

- Вход: $\vec{\mathbf{x}} = [1, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3]^{\mathrm{T}}$
- Параметры:

$$\vec{\beta} = [\beta_0, \beta_1, \beta_2, \beta_3]^{\mathrm{T}}$$

• Выход: $h_{\vec{\beta}}(\vec{x}) =$

$$\sigma(\vec{\beta}^{\mathrm{T}}\vec{\mathbf{x}}) = \frac{1}{1 + e^{-\vec{\beta}^{\mathrm{T}}\vec{\mathbf{x}}}}$$

Рис. 3: Модель перцептрона

У сигмоид-фунцкии «удобная» производная:

$$\frac{\mathrm{d}}{\mathrm{dy}}\sigma(y) = \sigma(y)(1 - \sigma(y))$$

ML&DM 25.04.2016

Блок AND в виде перцептрона

- Вход: $x_0 = 1, x_1, x_2 \in \{0, 1\}$
- Параметры: $\beta_0 = -50 \ \beta_1 = 3$

$$\beta_0 = -50, \beta_1 = 30, \beta_2 = 30$$

• Выход: $h_{\vec{\beta}}(\vec{x}) = \sigma(-50 + 30x_1 + 30x_2),$ где $\sigma(x) = \frac{1}{1 + e^{-\vec{\beta}^T \vec{x}}}$

x_1	x_2	x_1 AND x_2
0	0	0
0	1	0
1	0	0
1	1	1

\mathbf{x}_1	x_2	$h_{\vec{eta}}(\vec{x})$
0	0	$\sigma(-50) \approx 0$
0	1	$\sigma(-20) \approx 0$
1	0	$\sigma(-20) \approx 0$
1	1	$\sigma(10) \approx 1$

$$h_{\vec{\beta}}(\vec{x}) \approx x_1 \text{ AND } x_2$$

(HUV BIII9) ML&DM 25.04.2016 7 / 24

Блок OR в виде перцептрона

•	Вход:	Xο	= 1	X 1	X2	← .	(0)	1)	Ļ
•	ълод.	$\Lambda()$	_ 1	, 1	$\Delta \gamma$	_	ıv,	(

• Параметры:
$$\beta_0 = -30, \beta_1 = 40, \beta_2 = 40$$

• Выход:
$$h_{\vec{\beta}}(\vec{x}) = \sigma(-30 + 40x_1 + 40x_2),$$
 где $\sigma(x) = \frac{1}{1+e^{-\vec{\beta}^T\vec{x}}}$

\mathbf{x}_1	x ₂	x ₁ OR x ₂
0	0	0
0	1	1
1	0	1
1	1	1

\mathbf{x}_1	x_2	$h_{\vec{eta}}(\vec{x})$
0	0	$\sigma(-30) \approx 0$
0	1	$\sigma(10) \approx 1$
1	0	$\sigma(10) \approx 1$
1	1	$\sigma(50) \approx 1$

$$h_{\vec{\beta}}(\vec{x}) \approx x_1 \text{ OR } x_2$$

◆ロ > ◆昼 > ◆ 差 > ・ 差 ・ 夕 Q (^)

8 / 24

(HUV BШЭ) ML&DM 25.04.2016

Блок NOT в виде нейрона

- Вход: $x_0 = 1, x_1 \in \{0, 1\}$
- Параметры: $\beta_0 = 10, \beta_1 = -20$

• Выход: $h_{\vec{\beta}}(\vec{x}) = \sigma(10 - 20x_1),$ где $\sigma(\vec{x}) = \frac{1}{1 + e^{-\vec{\beta}^T \vec{x}}}$

x ₁	NOT x ₁
0	1
1	0

\mathbf{x}_1	$h_{ec{eta}}(ec{x})$
0	$\sigma(10) \approx 1$
1	$\sigma(-10) \approx 0$

$$h_{\vec{\beta}}(\vec{x}) \approx NOT x_1$$

(НИУ ВШЭ) ML&DM 25.04.2016 9 / 24

Линейная разделимость классов

Если посмотреть на прошлые примеры как на задачу бинарной классификации, видно, что классы линейно разделимы. В случае AND классы можно разделить прямой $-50 + 30x_1 + 30x_2 = 0$.

В случае OR классы можно разделить прямой $-30 + 40x_1 + 40x_2 = 0$.

(HИУ ВШЭ) ML&DM 25.04.2016 10 / 24

Проблема нелинейного разделения

Однако, уже в простейшем случае известной проблемы «исключающего ИЛИ» (the XOR problem) классы нельзя разделить одной прямой. Разделяющая граница будет нелинейной, и она уже не может быть представлена одним перцептроном.

x ₁	x_2	$x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	0

(НИУ ВШЭ) ML&DM 25.04.2016 11 / 24

Представление функции XOR

Для решения XOR-проблемы приходится уже комбинировать простые логические блоки, представленные перцептронами. $x_1 \text{ XOR } x_2 = ((\text{NOT } x_1) \text{ AND } x_2) \text{ OR}$ $(x_1 \text{ AND (NOT } x_2)).$

x_1	x_2	$a_1 = (NOT x_1) AND x_2$
0	0	0
0	1	1
1	0	0
1	1	0

x_1	x_2	$a_2 = x_1 \text{ AND (NOT } x_2)$
0	0	0
0	1	0
1	0	1
1	1	0

\mathbf{x}_1	x_2	$x_1 \text{ XOR } x_2$	a ₁ OR a ₂
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

Составные блоки сети, решающей XOR-проблему

$$h_{\vec{\beta_1}}(\vec{x}) \approx (NOT x_1) AND x_2$$

x_1	x_2	$h_{\vec{eta}}(ec{x})$
0	0	$\sigma(-10) \approx 0$
0	1	$\sigma(10) \approx 1$
1	0	$\sigma(-30) \approx 0$
1	1	$\sigma(-10) \approx 0$

$$h_{\vec{\beta_2}}(\vec{x}) \approx x_1 \text{ AND (NOT } x_2)$$

\mathbf{x}_1	x_2	$h_{\vec{eta}}(\vec{x})$
0	0	$\sigma(-10) \approx 0$
0	1	$\sigma(-30) \approx 0$
1	0	$\sigma(10) \approx 1$
1	. 1	$\sigma(-10) \approx 0$

(HUV BШЭ) ML&DM 25.04.2016 13 / 24

Нейронная сеть для решения XOR-проблемы

(НИУ ВШЭ) ML&DM 25.04.2016 14 / 24

Возможности нейронных сетей по представлению функций

Утверждения^а

^aMachine Learning, Глава 4, Т. Mitchell, McGraw Hill, 1997

- Любая булева функция представима в виде нейронной сети глубины 2 с нелинейной функцией активации нейрона (но может потребоваться экспоненциально много нейронов в скрытом слое).
- Любая непрерывная и ограниченная функция может быть сколь угодно точно аппроксимирована нейронной сетью с одним скрытым слоем с нелинейной функцией активации нейрона.
- Любая функция может быть сколь угодно точно аппроксимирована нейронной сетью с двумя скрытыми слоями с нелинейной функцией активации нейрона.

(HUY BШЭ) ML&DM 25.04.2016 15 / 24

Модель нейронной сети

Классификация на K классов. Вход: m примеров $\{(x_i, y_i)\}, x_i \in R^n, y_i \in R^K$

L - число слоев, n - число признаков примера.

(НИУ ВШЭ) ML&DM 25.04.2016 16 / 24

Функция ошибки для нейронной сети

Логистическая регрессия (с регуляризацией):

$$Cost(\beta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} log(h_{\beta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\beta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{i=1}^{n} \beta_{j}^{2}.$$

Именно такая функция ошибки выпуклая и может быть минимизирована алгоритмами типа градиентного спуска.

(А квадратичная функция ошибки
$$\mathrm{Cost}(\beta) = \frac{1}{m} \sum_{i=1}^{m} (h_{\beta}(x^{(i)}) - y^{(i)})^2$$
 не

будет выпуклой при нелинейной $h_{\vec{\beta}}(\vec{x}) = \sigma(\vec{\beta}^T\vec{x})$).

Нейронная сеть:

$$Cost(\beta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} [y_k^{(i)} log(h_{\beta}(x^{(i)})_k) + (1 - y_k^{(i)}) log(1 - h_{\beta}(x^{(i)})_k)] + \lambda \sum_{k=1}^{L-1} \sum_{k=1}^{s_{\ell}} (\rho(\ell))^2$$

$$\textstyle \frac{\lambda}{2m} \sum_{\ell=1}^{L-1} \sum_{i=1}^{s_\ell} \sum_{j=1}^{s_{l+1}} \big(\beta_{ij}^{(\ell)}\big)^2.$$

Здесь s_ℓ - число нейронов в слое ℓ , $h_\beta(x^{(i)})_k$ - выход нейрона k, $\beta_{ij}^{(\ell)}$ - параметр («вес») на входе нейрона i в слое ℓ , «пришедший» от нейрона j предшествующего слоя.

(HUY BIII) ML&DM 25.04.2016 17 / 2-

Градиентный спуск

На примере задачи минимизации функции $F(x_1, x_2)$

 α - коэф-т обучения, случайно выбираются начальные значения $\mathbf{x}_1^{(0)}$ и $\mathbf{x}_2^{(0)}$. Повторяется до сходимости:

•
$$x_1^{(t+1)} = x_1^{(t)} - \alpha \frac{\partial}{\partial x_1} F(x_1^{(t)}, x_2^{(t)})$$

•
$$x_2^{(t)} = x_2^{(t+1)} - \alpha \frac{\partial}{\partial x_2} F(x_1^{(t)}, x_2^{(t)})$$

Чтобы найти минимум фунцкии оппибки min(Cost(β)) методом градиентного спуска, надо найти ее производные по параметрам: $\frac{\partial}{\partial \beta^{(\ell)}} \text{Cost}(\beta).$

(НИУ ВШЭ) ML&DM 25.04.2016 18

План лекции

- Модель нейронной сети
 - Модель нейрона
 - Представление простых булевых блоков перцептронами
 - Решение XOR-проблемы с помощью нейронной сети
 - Модель нейронной сети
- 2 Аглоритм обратного распространения ошибки
 - Этапы вычисления градиента функции ошибки
 - Прямое распространение ошибки
 - Обратное распространение ошибки

Этапы вычисления градиента функции ошибки

В случае итерационного обучения сети (входные объекты обрабатываются один за одним) градиенты функции ошибки для каждого нейрона вычисляются в два этапа:

- Прямое распространение ошибки (forward propagation)
- Обратное распространение ошибки (back propagation)

20 / 24

(НИУ ВШЭ) ML&DM

Прямое распространение ошибки

Рассмотрим пример нейронной сети из 4 слоев (L=4) для задачи классификации с 3 классами (K=3). В скрытых слоях по 4 нейрона ($s_2=s_3=4$).

$$\mathbf{B}^{(\ell)} = \begin{pmatrix} \beta_{11}^{(\ell)} & \dots & \beta_{1(s_{\ell+1})}^{(\ell)} \\ \vdots & \ddots & \ddots \\ \beta_{s_{\ell+1}}^{(\ell)} & \dots & \beta_{s_{\ell+1}(s_{\ell+1})}^{(\ell)} \end{pmatrix}$$
 Для одного входного объекта (\mathbf{x},\mathbf{y}) : $\vec{\mathbf{a}}^{(1)} = \vec{\mathbf{x}} = [1; \ \mathbf{x}_1; \ \mathbf{x}_2]$ $\vec{\mathbf{a}}^{(2)} = [1; \ \sigma(\mathbf{B}^{(1)}\vec{\mathbf{a}}^{(1)})] \ (\text{доб-ся } \mathbf{a}_0^{(2)})$ $\vec{\mathbf{a}}^{(3)} = [1; \ \sigma(\mathbf{B}^{(2)}\vec{\mathbf{a}}^{(2)})] \ (\text{доб-ся } \mathbf{a}_0^{(3)})$ $\vec{\mathbf{a}}^{(4)} = \sigma(\mathbf{B}^{(3)}\vec{\mathbf{a}}^{(3)}) = \mathbf{h}_{\vec{\beta}}(\vec{\mathbf{x}})$ Накопилась «ошибка предсказания» $\vec{\delta}^{(4)} = \vec{\mathbf{y}} - \vec{\mathbf{a}}^{(4)}$. Будем обозначать $\vec{\delta}_j^{(\ell)}$ - эту «накопленную ошибку» нейрона \mathbf{j} в слое ℓ .

(HUV BIII) ML&DM 25.04.2016 21 / 24

Обратное распространение ошибки

Обучающая выборка $\{(\vec{\mathbf{x}}^{(1)}, \vec{\mathbf{y}}^{(1)}), ..., (\vec{\mathbf{x}}^{(m)}, \vec{\mathbf{y}}^{(m)})\}.$

Коэффициенты β_{ij}^ℓ инициализируются малыми случайными числами.

Коэфф-ты ошибок в каждом слое инициалицируются нулями: $\Delta_{ij}^{(\ell)}=0$. В цикле по всем объектам i=1...m:

- На вход подаются аттрибуты $\vec{x}^{(i)}$: $\vec{a}^{(1)} = \vec{x}^{(i)}$. С помощью прямого распространения ошибки считаются активации $\vec{a}^{(\ell)}$ в каждом слое.
- ullet Ошибка в последнем слое: $ec{\delta}^{(L)} = ec{y}^{(i)} ec{a}^{(L)}$
- Последовательно от предпоследнего слоя ко второму вычисляются ошибки $\vec{\delta}^{(\ell)}$ в каждом слое: $\vec{\delta}^{(L-1)} = (B^{(L-1)})^T \vec{\delta}^{(L)} \vec{a}^{(L-1)} (\vec{1} \vec{a}^{(L-1)}), ..., \vec{\delta}^{(2)} = (B^{(2)})^T \vec{\delta}^{(3)} \vec{a}^{(2)} (\vec{1} \vec{a}^{(2)})$

$$\delta^{(L-1)} = (B^{(L-1)}) \ \delta^{(L)} a^{(L-1)} (1 - a^{(L-1)}), \dots, \delta^{(2)} = (B^{(2)}) \ \delta^{(3)} a^{(2)} (1 - a^{(2)})$$

ullet Ошибки в каждом слое обновляются: $\Delta^{(\ell)} = \Delta^{(\ell)} + \vec{\delta}^{(\ell+1)} (\vec{\mathbf{a}}^{(\ell)})^{\mathrm{T}}$

$$\frac{\partial}{\partial \beta_{ij}^{(\ell)}} \mathrm{Cost}(\vec{\beta}) = \frac{1}{m} \Delta_{ij}^{(\ell)} + \left\{ \begin{array}{ll} \lambda \beta_{ij} & \text{если } j \neq 0 \\ 0 & \text{если } j = 0 \end{array} \right.$$

Вывод в общем случае, но для квадратичной функции ошибки:

^аВывод для сети с одним скрытым слоем: http://goo.gl/dTJr17,

Алгоритм обучения

Обучающая выборка $\{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}.$

- ullet Коэффициенты $eta_{ ext{ii}}^\ell$ инициализируются малыми случайными числами
- С помощью прямого распространения ошибки считаются выходы $\mathbf{h}_{\vec{\beta}}(\vec{\mathbf{x}}^{(i)})$ для каждого примера $\vec{\mathbf{x}}^{(i)}$
- Вычисляется функция ошибки $\operatorname{Cost}(\vec{\beta})$
- С помощью обратного распространения ошибки вычисляются производные $\frac{\partial}{\partial \beta_{\cdot}^{(\ell)}} \operatorname{Cost}(\vec{\beta})$
- Функция ошибки $\operatorname{Cost}(\vec{\beta})$ минимизируется с помощью алгоритма градиентного спуска или других более совершенных алгоритмов оптимизации (например, сопряженный градиентный спуск, BFGS или L-BFGS). Для этого нужны вычисленные ранее производные функции ошибки по параметрам $\vec{\beta}$.

(НИУ ВШЭ) ML&DM

Замечания

- Из-за нелинейности функции ошибки возможно, что результатом оптимизации будет локальный минимум, а не глобальный (но на практике результаты хороши). Можно осуществлять оптимизацию несколько раз с разными начальными параметрами.
- Для увеличения вероятности нахождения глобального минимума функции ошибки можно регулировать скорость обучения (сначала быстро, потом медленней) или использовать метод стохастического градиентного спуска.
- У нейронной сети обычно много параметров, поэтому роль регуляризации в борьбе с переобучением очень высока.
- Обучение сети может быть долгим, зато потом использование обученной сети быстрое.

4□ > 4回 > 4 = > 4 = > = 9 < ○</p>

25 04 2016