

Please amend the claims as follows:

1. (Twice Amended) A process for forming over a metal surface an adherent solid coating that imparts to the metal surface after coating at least one of the following changes: (i) protecting the surface as treated, without any additional coating, from corrosion more effectively than does the absence of any coating; (ii) improving the adhesion of a subsequently applied coating, compared to the adhesion that would be achieved between the same subsequently applied coating and the uncoated metallic surface; and (iii) allowing the treated metallic surface to be satisfactorily cold-worked without the need for any liquid organic lubricant under conditions where the metal surface if not coated can not be satisfactorily cold-worked without use of an organic liquid lubricant, said process comprising operations of: (I) coating said metal surface with a layer of an aqueous liquid composition comprising water and:
- (A) a concentration of a component of dissolved phosphorus-containing anions;
 - (B) a concentration of a dissolved component selected from the group consisting of simple and complex anions containing fluorine atoms;
 - (C) a concentration of a component consisting of dissolved, dispersed, or both dissolved and dispersed materials (α) and (β), wherein:
 - (α) consists of polymer molecules each of which has at least one unit conforming to the immediately following general formula (II):

wherein:

C1

- each of R² through R⁴ is selected, independently of each other and independently from one molecule of the component to another and from one to another unit conforming to this formula when there is more than one such unit in a single polymer molecule, from the group consisting of a hydrogen moiety, an alkyl moiety with from 1 to 5 carbon atoms, and an aryl moiety with from 6 to 18 carbon atoms;
- each of Y¹ through Y⁴ is selected, independently, except as noted further below, of each other and independently from one molecule of the component to another and from one to another unit of any polymer molecule conforming to this formula when there is more than one such unit in a single polymer molecule from the group consisting of: a hydrogen moiety; a -CH₂Cl moiety; an alkyl moiety with from 1 to 18 carbon atoms; an aryl moiety with from 6 to 18 carbon atoms; a moiety conforming to the general formula -CR¹²R¹³OR¹⁴, where each of R¹² through R¹⁴ is selected from the group consisting of a hydrogen moiety, an alkyl moiety, an aryl moiety, a hydroxalkyl moiety, an aminoalkyl moiety, a mercaptoalkyl moiety, and a phosphoalkyl moiety; and a moiety Z that conforms to one of the two immediately following general formulas:

where each of R⁵ through R⁸ is selected, independently of each other and independently from one molecule of the component to another and from one to another unit conforming to this formula when there is more than one such unit in a single polymer molecule, from the group consisting of a hydrogen moiety, an alkyl moiety, an aryl moiety, a hydroxalkyl moiety, an aminoalkyl moiety, a mercaptoalkyl moiety, and a phosphoalkyl moiety and R⁹ is selected from the group consisting of a hydrogen moiety, an alkyl moiety, an aryl moiety, a hydroxy or polyhydroxy alkyl moiety, an amino or polyamino alkyl moiety, a mercapto or polymercapto alkyl moiety, a phospho or polyphospho alkyl moiety, an -O⁻ moiety, and an -OH moiety,

at least one of Y¹ through Y⁴ in at least one unit of each selected polymer molecule being a moiety Z as above defined; and

- W¹ is selected, independently from one molecule of the component to another and from one to another unit conforming to this formula when there is more than one such unit in a single polymer molecule, from the group consisting of a hydrogen moiety, an acyl moiety, an acetyl moiety, a benzoyl moiety; a 3-allyloxy-2-hydroxypropyl moiety; a 3-benzyloxy-2-hydroxypropyl moiety; a 3-butoxy-2-hydroxypropyl moiety; a 3-alkyloxy-2-hydroxypropyl moiety; a 2-hydroxyoctyl moiety; a 2-hydroxyalkyl moiety; a 2-hydroxy-2-phenylethyl moiety; a 2-hydroxy-2-alkylphenylethyl moiety; a benzyl, methyl, ethyl, propyl, unsubstituted alkyl, or unsubstituted allyl, unsubstituted alkylbenzyl moiety; a halo or polyhalo alkyl, or halo or polyhalo alkenyl moiety; a moiety derived from a condensation polymerization product of ethylene oxide, propylene oxide or a mixture thereof by deleting one hydrogen atom therefrom; and a sodium, potassium, lithium, ammonium or substituted ammonium, or phosphonium or substituted phosphonium cation moiety; and

(β) consists of polymer molecules each of which does not include a unit conforming to general formula (II) as given above but does include at least one unit corresponding to the immediately following general formula (III):

wherein:

- each of R¹⁰ and R¹¹ is selected, independently of each other and independently from one molecule of the component to another and from one to another unit conforming to this formula when there is more than one such unit in a single polymer molecule, from the group consisting of a hydrogen moiety, an alkyl moiety with from 1 to 5 carbon atoms, and an aryl moiety with from 6 to 18 carbon atoms;
- each of Y⁴ through Y⁶ is selected, independently of each other and independently from one molecule of the component to another and from one to another unit of any polymer molecule conforming to this formula when there is more than one such unit in a single polymer molecule, except as noted further below, from the group consisting of: a hydrogen moiety; a -CH₂Cl moiety; an alkyl moiety with from 1 to 18 carbon atoms; an aryl moiety with from 6 to 18 carbon atoms; a moiety conforming to the general formula -CR¹²R¹³OR¹⁴, where each of R¹² through R¹⁴ is selected from the group consisting of a hydrogen moiety, an alkyl moiety, an aryl moiety, a hydroxalkyl moiety, an aminoalkyl moiety, a mercaptoalkyl moiety, and a phosphoalkyl moiety; and a moiety Z as defined for material (α) above, at least one of Y¹ through Y⁴ in at least one unit of each selected polymer molecule being a moiety Z as above defined; and
- W² is selected, independently from one molecule of the component to another and from one to another unit of any polymer molecule conforming to this formula when there is more than one such unit in a single polymer molecule, from the group consisting of a hydrogen moiety, an acyl moiety, an acetyl moiety, a benzoyl moiety; a 3-allyloxy-2-hydroxypropyl moiety; a 3-benzyloxy-2-hydroxypropyl moiety; a 3-butoxy-2-hydroxypropyl moiety; a 3-alkyloxy-2-hydroxypropyl moiety; a 2-hydroxyoctyl moiety; a 2-hydroxyalkyl moiety; a 2-hydroxy-2-phenylethyl moiety; a 2-hydroxy-2-alkylphenylethyl moiety; a benzyl, methyl, ethyl, propyl, unsubstituted alkyl, unsubstituted allyl, or unsubstituted alkylbenzyl moiety; a halo or polyhalo alkyl, or halo or polyhalo alkenyl, moiety; a moiety derived from a condensation polymerization product of ethylene oxide, propylene oxide or a mixture thereof by deleting one hydrogen atom therefrom; and a sodium, potassium, lithium, ammonium or substituted ammonium, or phosphonium or substituted phosphonium cation moiety;

the phrase "polymer molecule" in the above definitions of materials (α) and (β) including any electrically neutral molecule with a molecular weight of at least 300 daltons; and

- (D) a concentration of a component of dissolved, stably dispersed, or both dissolved and stably dispersed film-forming molecules, said molecules not being part of any of immediately previously recited components (A) through (C);
(E) a volume of a stable dispersed solid material, that in isolated form has a coefficient of static friction, measured between two pieces of the solid material itself or between the solid material and cold rolled steel, that is not greater than 0.35, the solid material not being part of any components (A) through (D);

and (II) drying into place over the metal surface the non-volatile contents of the liquid layer formed in operation (I), so as to form said solid coating.

C1
6. (Twice Amended) A process for forming over a metal surface an adherent solid coating that imparts to the metal surface after coating at least one of the following changes: (i) protecting the surface as treated, without any additional coating, from corrosion more effectively than does the absence of any coating; (ii) improving the adhesion of a subsequently applied coating, compared to the adhesion that would be achieved between the same subsequently applied coating and the uncoated metallic surface; and (iii) allowing the treated metallic surface to be satisfactorily cold-worked without the need for any liquid organic lubricant under conditions where the metal surface if not coated can not be satisfactorily cold-worked without use of an organic liquid lubricant, said process comprising operations of: (I) coating said metal surface with a layer of an aqueous liquid composition that has been made by mixing a first mass of water and:

- (A) a second mass of a water soluble source of phosphorus-containing anions;
(B) a third mass of a source of water soluble anions selected from the group consisting of simple and complex anions containing fluorine atoms;
(C) a fourth mass of a component consisting of materials (α), (β), or both (α) and (β) wherein:
(α) consists of polymer molecules each of which has at least one unit conforming to the immediately following general formula (II):

wherein:

- C2
- each of R² through R⁴ is selected, independently of each other and independently from one molecule of the component to another and from one to another unit conforming to this formula when there is more than one such unit in a single polymer molecule, from the group consisting of a hydrogen moiety, an alkyl moiety with from 1 to 5 carbon atoms, and an aryl moiety with from 6 to 18 carbon atoms;
 - each of Y¹ through Y⁴ is selected, independently, except as noted further below, of each other and independently from one molecule of the component to another and from one to another unit of any polymer molecule conforming to this formula when there is more than one such unit in a single polymer molecule from the group consisting of: a hydrogen moiety; a -CH₂Cl moiety; an alkyl moiety with from 1 to 18 carbon atoms; an aryl moiety with from 6 to 18 carbon atoms; a moiety conforming to the general formula -CR¹²R¹³OR¹⁴, where each of R¹² through R¹⁴ is selected from the group consisting of a hydrogen moiety, an alkyl moiety, an aryl moiety, a hydroxylalkyl moiety, an aminoalkyl moiety, a mercaptoalkyl moiety, and a phosphoalkyl moiety; and a moiety Z that conforms to one of the two immediately following general formulas:

where each of R⁵ through R⁸ is selected, independently of each other and independently from one molecule of the component to another and from one to another unit conforming to this formula when there is more than one such unit in a single polymer molecule, from the group consisting of a hydrogen moiety, an alkyl moiety, an aryl moiety, a hydroxyalkyl moiety, an aminoalkyl moiety, a mercaptoalkyl moiety, and a phosphoalkyl moiety and R⁹ is selected from the group consisting of a hydrogen moiety, an alkyl moiety, an aryl moiety, a hydroxy or polyhydroxy alkyl moiety, an amino or polyamino alkyl moiety, a mercapto or polymercapto alkyl moiety, a phospho or polyphospho alkyl moiety, an -O⁻ moiety, and an -OH moiety, at least one of Y¹ through Y⁴ in at least one unit of each selected polymer molecule being a moiety Z as above defined; and

CJ

- W^1 is selected, independently from one molecule of the component to another and from one to another unit conforming to this formula when there is more than one such unit in a single polymer molecule, from the group consisting of a hydrogen moiety, an acyl moiety, an acetyl moiety, a benzoyl moiety; a 3-allyloxy-2-hydroxypropyl moiety; a 3-benzyloxy-2-hydroxypropyl moiety; a 3-butoxy-2-hydroxypropyl moiety; a 3-alkyloxy-2-hydroxypropyl moiety; a 2-hydroxyoctyl moiety; a 2-hydroxyalkyl moiety; a 2-hydroxy-2-phenylethyl moiety; a 2-hydroxy-2-alkylphenylethyl moiety; a benzyl, methyl, ethyl, propyl, unsubstituted alkyl, unsubstituted allyl, or unsubstituted alkylbenzyl moiety; a halo or polyhalo alkyl, or halo or polyhalo alkenyl moiety; a moiety derived from a condensation polymerization product of ethylene oxide, propylene oxide or a mixture thereof by deleting one hydrogen atom therefrom; and a sodium, potassium, lithium, ammonium or substituted ammonium, or phosphonium or substituted phosphonium cation moiety; and

(β) consists of polymer molecules each of which does not include a unit conforming to general formula (II) as given above but does include at least one unit corresponding to the immediately following general formula (III):

wherein:

- each of R^{10} and R^{11} is selected, independently of each other and independently from one molecule of the component to another and from one to another unit conforming to this formula when there is more than one such unit in a single polymer molecule, from the group consisting of a hydrogen moiety, an alkyl moiety with from 1 to 5 carbon atoms, and an aryl moiety with from 6 to 18 carbon atoms;
- each of Y^4 through Y^6 is selected, independently of each other and independently

from one molecule of the component to another and from one to another unit of any polymer molecule conforming to this formula when there is more than one such unit in a single polymer molecule, except as noted further below, from the group consisting of: a hydrogen moiety; a -CH₂Cl moiety; an alkyl moiety with from 1 to 18 carbon atoms; an aryl moiety with from 6 to 18 carbon atoms; a moiety conforming to the general formula -CR¹²R¹³OR¹⁴, where each of R¹² through R¹⁴ is selected from the group consisting of a hydrogen moiety, an alkyl moiety, an aryl moiety, a hydroxalkyl moiety, an aminoalkyl moiety, a mercaptoalkyl moiety, and a phosphoalkyl moiety; and a moiety Z as defined for material (α) above, at least one of Y¹ through Y⁴ in at least one unit of each selected polymer molecule being a moiety Z as above defined; and

W² is selected, independently from one molecule of the component to another and from one to another unit of any polymer molecule conforming to this formula when there is more than one such unit in a single polymer molecule, from the group consisting of a hydrogen moiety, an acyl moiety, an acetyl moiety, a benzoyl moiety; a 3-allyloxy-2-hydroxypropyl moiety; a 3-benzyloxy-2-hydroxypropyl moiety; a 3-butoxy-2-hydroxypropyl moiety; a 3-alkyloxy-2-hydroxypropyl moiety; a 2-hydroxyoctyl moiety; a 2-hydroxyalkyl moiety; a 2-hydroxy-2-phenylethyl moiety; a 2-hydroxy-2-alkylphenylethyl moiety; a benzyl, methyl, ethyl, propyl, unsubstituted alkyl, unsubstituted allyl, or unsubstituted alkylbenzyl moiety; a halo or polyhalo alkyl, or halo or polyhalo alkenyl, moiety; a moiety derived from a condensation polymerization product of ethylene oxide, propylene oxide or a mixture thereof by deleting one hydrogen atom therefrom; and a sodium, potassium, lithium, ammonium or substituted ammonium, or phosphonium or substituted phosphonium cation moiety; and

- (D) a fifth mass of a source of dissolved, stably dispersed, or both dissolved and stably dispersed film-forming molecules, said fifth mass having a glass transition temperature that is not more than 75 °C, said molecules not being part of any of immediately previously recited substances (A) through (C);
- (E) a volume of a stable dispersed solid material, that in isolated form has a coefficient of static friction, measured between two pieces of the solid material itself or between the solid material and cold rolled steel, that is not greater than 0.35, the solid material not being part of any components (A) through (D);

and (II) drying into place over the metal surface the non-volatile contents of the liquid layer formed in operation (I), so as to form said solid coating.

10. (Twice Amended) A process according to claim 9, wherein:
- the solid layer formed in operation (II) has a mass per unit area of the metal surface coated that is from about 1.5 to about 2.5 g/m²;
- component (B) is hexafluorotitanic acid, and said third mass contains a number of moles of titanium that has a ratio to the number of moles of phosphorus atoms that is stoichiometrically equivalent to the stoichiometric equivalent as H₃PO₄ of said second mass that is from about 0.21:1.0 to about 0.35:1.0;

- component (C) is selected from polymers of 4-vinyl phenol to which have been grafted Z moieties from reaction of formaldehyde and N-methyl glucamine, and
- said fourth mass has a ratio to the stoichiometric equivalent as H₃PO₄ of said second mass that is from about 0.14:1.0 to about 0.35:1.0;
- C3
said fourth mass has a ratio to the stoichiometric equivalent as H₃PO₄ of said second mass that is from about 1.5:1.0 to about 2.9:1.0; and
- component (E) is high density polyethylene and said sixth mass has a ratio to said fifth mass that is from about 0.042:1.0 to about 0.10:1.0.
-

Please add the following new claims:

C4
21. (New) A process for forming over a metal surface an adherent solid coating that imparts to the metal surface after coating at least one of the following changes: (i) protecting the surface as treated, without any additional coating, from corrosion more effectively than does the absence of any coating; (ii) improving the adhesion of a subsequently applied coating, compared to the adhesion that would be achieved between the same subsequently applied coating and the uncoated metallic surface; and (iii) allowing the treated metallic surface to be satisfactorily cold-worked without the need for any liquid organic lubricant under conditions where the metal surface if not coated can not be satisfactorily cold-worked without use of an organic liquid lubricant, said process comprising operations of: (I) coating said metal surface with a layer of a substantially hexavalent chromium-free, aqueous liquid composition comprising water and:

- (A) a concentration of a component of dissolved phosphorus-containing anions;
- (B) a concentration of a dissolved component selected from the group consisting of simple and complex anions containing fluorine atoms;
- (C) a concentration of a component consisting of dissolved, dispersed, or both dissolved and dispersed materials (α), (β), or both (α) and (β), wherein:
- (α) consists of polymer molecules each of which has at least one unit conforming to the immediately following general formula (II):

wherein:

- C4
- each of R² through R⁴ is selected, independently of each other and independently from one molecule of the component to another and from one to another unit conforming to this formula when there is more than one such unit in a single polymer molecule, from the group consisting of a hydrogen moiety, an alkyl moiety with from 1 to 5 carbon atoms, and an aryl moiety with from 6 to 18 carbon atoms;
 - each of Y¹ through Y⁴ is selected, independently, except as noted further below, of each other and independently from one molecule of the component to another and from one to another unit of any polymer molecule conforming to this formula when there is more than one such unit in a single polymer molecule from the group consisting of: a hydrogen moiety; a -CH₂Cl moiety; an alkyl moiety with from 1 to 18 carbon atoms; an aryl moiety with from 6 to 18 carbon atoms; a moiety conforming to the general formula -CR¹²R¹³OR¹⁴, where each of R¹² through R¹⁴ is selected from the group consisting of a hydrogen moiety, an alkyl moiety, an aryl moiety, a hydroxylalkyl moiety, an aminoalkyl moiety, a mercaptoalkyl moiety, and a phosphoalkyl moiety; and a moiety Z that conforms to one of the two immediately following general formulas:

C4

where each of R⁵ through R⁸ is selected, independently of each other and independently from one molecule of the component to another and from one to another unit conforming to this formula when there is more than one such unit in a single polymer molecule, from the group consisting of a hydrogen moiety, an alkyl moiety, an aryl moiety, a hydroxyalkyl moiety, an aminoalkyl moiety, a mercaptoalkyl moiety, and a phosphoalkyl moiety and R⁹ is selected from the group consisting of a hydrogen moiety, an alkyl moiety, an aryl moiety, a hydroxy or polyhydroxy alkyl moiety, an amino or polyamino alkyl moiety, a mercapto or polymercapto alkyl moiety, a phospho or polyphospho alkyl moiety, an -O⁻ moiety, and an -OH moiety,

at least one of Y¹ through Y⁴ in at least one unit of each selected polymer molecule being a moiety Z as above defined; and

- W¹ is selected, independently from one molecule of the component to another and from one to another unit conforming to this formula when there is more than one such unit in a single polymer molecule, from the group consisting of a hydrogen moiety, an acyl moiety, an acetyl moiety, a benzoyl moiety; a 3-allyloxy-2-hydroxypropyl moiety; a 3-benzyloxy-2-hydroxypropyl moiety; a 3-butoxy-2-hydroxypropyl moiety; a 3-alkyloxy-2-hydroxypropyl moiety; a 2-hydroxyoctyl moiety; a 2-hydroxyalkyl moiety; a 2-hydroxy-2-phenylethyl moiety; a 2-hydroxy-2-alkylphenylethyl moiety; a benzyl, methyl, ethyl, propyl, unsubstituted alkyl, or unsubstituted allyl, unsubstituted alkylbenzyl moiety; a halo or polyhalo alkyl, or halo or polyhalo alkenyl moiety; a moiety derived from a condensation polymerization product of ethylene oxide, propylene oxide or a mixture thereof by deleting one hydrogen atom therefrom; and a sodium, potassium, lithium, ammonium or substituted ammonium, or phosphonium or substituted phosphonium cation moiety; and

(β) consists of polymer molecules each of which does not include a unit conforming to general formula (II) as given above but does include at least one unit corresponding to the immediately following general formula (III):

wherein:

- each of R¹⁰ and R¹¹ is selected, independently of each other and independently from one molecule of the component to another and from one to another unit conforming to this formula when there is more than one such unit in a single polymer molecule, from the group consisting of a hydrogen moiety, an alkyl moiety with from 1 to 5 carbon atoms, and an aryl moiety with from 6 to 18 carbon atoms;
- each of Y⁴ through Y⁶ is selected, independently of each other and independently from one molecule of the component to another and from one to another unit of any polymer molecule conforming to this formula when there is more than one such unit in a single polymer molecule, except as noted further below, from the group consisting of: a hydrogen moiety; a -CH₂Cl moiety; an alkyl moiety with from 1 to 18 carbon atoms; an aryl moiety with from 6 to 18 carbon atoms; a moiety conforming to the general formula -CR¹²R¹³OR¹⁴, where each of R¹² through R¹⁴ is selected from the group consisting of a hydrogen moiety, an alkyl moiety, an aryl moiety, a hydroxalkyl moiety, an aminoalkyl moiety, a mercaptoalkyl moiety, and a phosphoalkyl moiety; and a moiety Z as defined for material (α) above, at least one of Y¹ through Y⁴ in at least one unit of each selected polymer molecule being a moiety Z as above defined; and
- W² is selected, independently from one molecule of the component to another and from one to another unit of any polymer molecule conforming to this formula when there is more than one such unit in a single polymer molecule, from the group consisting of a hydrogen moiety, an acyl moiety, an acetyl moiety, a benzoyl moiety; a 3-allyloxy-2-hydroxypropyl moiety; a 3-benzyloxy-2-hydroxypropyl moiety; a 3-butoxy-2-hydroxypropyl moiety; a 3-alkyloxy-2-hydroxypropyl moiety; a 2-hydroxyoctyl moiety; a 2-hydroxyalkyl moiety; a 2-hydroxy-2-phenylethyl moiety; a 2-hydroxy-2-alkylphenylethyl moiety; a benzyl, methyl, ethyl, propyl, unsubstituted alkyl, unsubstituted allyl, or unsubstituted alkylbenzyl moiety; a halo or polyhalo alkyl, or halo or polyhalo alkenyl, moiety; a moiety derived from a condensation polymerization product of ethylene oxide, propylene oxide or a mixture thereof by deleting one hydrogen atom therefrom; and a sodium, potassium, lithium, ammonium or substituted ammonium, or phosphonium or substituted phosphonium cation moiety;

the phrase "polymer molecule" in the above definitions of materials (α) and (β) including any electrically neutral molecule with a molecular weight of at least 300 daltons; and

- (D) a concentration of a component of dissolved, stably dispersed, or both dissolved and stably dispersed film-forming molecules, said molecules not being part of any of immediately previously recited components (A) through (C);

and (II) drying into place over the metal surface the non-volatile contents of the liquid layer formed in operation (I), so as to form said solid coating.

C4
