MÉTODOS NUMÉRICOS y SIMULACIÓN PRÁCTICAS. Introducción a FORTRAN. Errores numéricos.

Curso 2018/2019. 1° B.

PROGRAMACIÓN FORTRAN

- 1. Escribe un programa que muestre por pantalla los números enteros pares del 0 al 100.
- 2. Escribe la tabla de multiplicar de un número que lea como dato.
- 3. Escribe un programa que calcule la media aritmética, la media geométrica y la desviación estándar de un número arbitrario de datos introducidos por el usuario. Recuerda que la media geométrica viene dada por $\left(\prod_{i=1}^N x_i\right)^{1/N}$ y la desviación estándar por $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^N (x_i \mu)^2}$.
- 4. Escribe un programa que lea N números e imprima cual es el mayor y cual el menor.
- 5. Haz un programa que dé como salida la tabla x, f(n;x) para $x \in [-5,7]$ y n = 5 y representa el resultado utilizando gnuplot. f(x) viene dada por

$$f(n;x) = \begin{cases} \cos(nx) & x \in (-\infty, -\pi] \\ (-1)^n + x(x+\pi) & x \in (-\pi, 0] \\ \sum_{k=0}^n \frac{1}{k!} x^k & x \in (0, 2] \\ \prod_{k=0}^n (k^2 + 1) x^{-k} & x \in (2, \infty) \end{cases},$$

donde $n \in \mathbb{N} \setminus \{0\}$ es un parámetro de la función. Utiliza para ello una función externa (FUNCTION). Elige el paso de la tabla de tal manera que la representación gráfica sea satisfactoria.

- 6. Escribe un programa que pida al usuario dos vectores de dimensión arbitraria y calcule su producto escalar. Utiliza para ello una función externa.
- 7. Escribe un programa que pida al usuario los elementos de dos matrices y calcule su producto. Utiliza para ello una subrutina (SUBROUTINE). La subrutina debe asegurarse de que es es posible calcular el producto de las matrices.

ERRORES NUMÉRICOS

1. Escribe un programa que calcule:

$$\sum_{j=1}^{n} \frac{1}{j} \tag{1}$$

para un valor arbitrario de n, valor que nos pide el programa por pantalla. Haz la suma de dos formas: términos de mayor a menor y viceversa. Calcula esta suma en simple precisión y en doble precisión. Compara los resultados de las cuatro estimaciones de esta suma que has hecho.

2. Repite los cálculos anteriores para encontrar el valor de la constante de Euler-Macheroni,

$$\gamma = \lim_{n \to \infty} \left[\sum_{j=1}^{n} \frac{1}{j} - \ln(n) \right]$$
 (2)

¿Cuál es el número máximo de términos que se pueden emplear para llegar a un valor estable de γ ? Utilizar simple y doble precisión. (El valor numérico de la constante de Euler es $\gamma=0.57721566490153286060651209008240...$).

- 3. Programa y ejecuta $f(x) = \exp(-x)$ para $x \in [0, 10]$ usando el desarrollo en serie de Taylor alrededor del punto x = 0. La condición para truncar el desarrollo será que el último término que se calcula sea menor que $\epsilon = 10^{-7}$. Representa gráficamente el error cometido y el número de términos necesarios en cada punto.
- 4. Estudia la inestablidad numérica en la sucesión de números reales siguiente, definida inductivamente:

$$x_0 = 1$$
, $x_1 = \frac{1}{3}$, $x_{n+1} = \frac{13}{3}x_n - \frac{4}{3}x_{n-1}$ $(n \ge 1)$

- 5. Para generar un error de *overflow*, escribe un programa que multiplique repetidas veces un número X > 1 y escribe por pantalla el resultado de las sucesivas operaciones hasta que el programa se pare al haber excedido el máximo número capaz de almacenar en coma flotante. Hazlo en simple y en doble precisión.
- 6. Para conocer la precisión de la representación en coma flotante de un determinado ordenador, se suele utilizar lo que se conoce como u unit round (unidad de redondeo), que es el número positivo más pequeño, u, representable tal que 1+u>1 para la aritmética de la máquina en cuestión. Haz un programa para encontrar dicho número. Determina su valor en simple y doble precisión.