literatura.md 2025-07-13

Materiały i źródła dotyczące dziedziny problemu

1. A COMPARISON OF MICROSCOPIC TRAFFIC FLOW SIMULATION SYSTEMS FOR AN URBAN AREA - porównanie wyników zastosowania systemów TRANSIMS, SUMO i VISSIM do mikroskopowej symulacji przepływu ruchu dla fragmentu sieci dróg miejskich

- podział modelu ruchu drogowego na kategorie (makro, mikro, mezo, submikro)
- opis mikroskopowych symulatorów

A comparison of the selected systems

Table 2

A comparison of the selected systems			
	TRANSIMS	SUMO	VISSIM
Space domain	discrete	continuous	continuous
Car following model	Nagel-Schreckenberg	Krauss	Wiedemann
	(cellular-automata)	(safe distance)	(psycho-physiological)
Realism level of	low	medium	high
vehicle dynamics			
Two-wheeled vehicles	no	no	yes
Trams	no	no	yes
Pedestrians	no	no	yes
Network	links & nodes	links & nodes	links & connectors
representation			
Modeling of	with limited precision (esp. for large cells)	with limited precision	very precise
roundabouts and			
complex intersections			
Simulation speed	high	medium	low
Maximum scope area	region/country	city/region	city district
Model edition	via text files	via XML files	graphical
Route generation	not included	****	****
according to	(external application	yes (JTRRouter)	yes (route decision points)
turning ratios	required)		
Visualization of simulation	off-line, 2D	on-line, 2D, low details	on-line, 2D & 3D, high details
	(external application		
	required)		
Software category	free	free	commercial

[•] a to co nas interesuje:

SUMO (Simulation for Urban Mobility) - to darmowy mikroskopijny system symulacji przepływu ruchu opracowany przez Niemieckie Centrum Lotnictwa i Kosmonautyki (DLR). Obejmuje on model Kraussa - model bezpiecznej odległości samochodu podążającego, rozszerzenie modelu Gippsa [10] oraz model zmiany pasa ruchu Krajzewicza. W przeciwieństwie do symulacji opartej na dyskretnym czasowo-przestrzennym CA, SUMO obsługuje podejście dyskretne czasowo-przestrzenne. System umożliwia symulację dla różnych typów pojazdów, różnych skrzyżowań z sygnalizacją świetlną lub bez niej, dla sieci z liczbą połączeń przekraczającą 10 000. Ponadto, SUMO obejmuje procedury dynamicznego przydzielania ruchu zaproponowane przez Gawrona oraz graficzną aplikację, która zapewnia dwuwymiarową wizualizację graficzną symulacji ruchu

• przedstawienie sieci dróg jako grafu:

literatura.md 2025-07-13

3. ROAD NETWORK

The comparison of microsimulation systems was based on a fragment of a road network of Grunwald, a south-western district of Poznan city. The considered fragment consisted of the following high traffic streets (Fig. 1) [17]:

- ul. Krzysztofa Arciszewskiego,
- ul. Głogowska,
- ul. Hetmańska,
- · ul. Macieja Palacza,
- ul. Piotra Ściegiennego.

These streets cross as 6 signalized intersections.

- opis świateł, sieci drogowej, generowania ruchu, opis warunków pogodowych, natężenia drogowego, godzin pomiarów
- oznaczenia: P samochód osobowy, L samochód ciężarowy, H samochód ciężarowy, H samochód ciężarowy z przyczepą, C autobus/autokar, M motocykl i B rower oraz manewru (L – skręt w lewo, S – jazda na wprost i R – skręt w prawo)
- rola kalibracji modelu
- problem z SUMO: niewystarczająca przepustowość sieci szczególnie skrzyżowań, sieć nie była w stanie obsłużyć ruchu o 100% objętości, w wersji SUMO 0.11.1 nie da się kalibrować uwzględniając niektóre parametry jak zmianę pasa ruchu, koniec końców udało się skalibrować i uzyskano wartości, które gwarantowały brak zatorów nawet przy 100% natężeniu, aczkolwiek nawet niewielkie zmiany drastycznie pogarszały przepustowość sieci. Kolejny wniosek: nie dało się przeprowadzić symulacji na żadnym zestawie dla zwiększonego natężenia ruchu bez zwiększania zatorów a wartości zaproponowane przez Kraussa i domyślnie stosowane w SUMO zdecydowanie różnią się od wyznaczonych parametrów
- 2. Adaptacyjny system sterowania ruchem drogowym obszerna praca doktorska, można poczytać o:
- modelowanie ruchu drogowego (str.19-40): matematyczne modele zachowań kierowców, czyli jak można wyliczać przyspieszenia kierowców, coś o modelach bezpiecznej odległości
 (proporcjonalna do prędkości pojazdu poprzedzającefo i prędkości pojazdu podążającego), modele zmiany pasa ruchu sygnalizacja, szukanie luki, modele hamowania awaryjnego,
 wyprzedzania i skręcania
- Modele mikroskopowe zajmują się analizą ruchu drogowego na bardzo szczegółowym poziomie, biorąc pod uwagę indywidualne pojazdy i ich kierowców. Wymagają dokładnych
 danych o każdym pojeździe na drodze, takich jak położenie, prędkość, przyspieszenie, preferencje kierowcy np.
 - 2. Model Inteligentnego Kierowcy (IDM Intelligent Driver Model): został zaproponowany przez Martina Treibera w 2000 roku [23]. Jest to model typu carfollowing, przeznaczony do mieszanych warunków ruchu i opisujący przyspieszenie dat va(t) jako funkcję odstępu pomiędzy pojazdami sa, prędkości pojazdu podążającego va i różnicy prędkości między pojazdem podążającym a pojazdem poprzedzającym Δνα za pomocą następującego równania [23]:

$$\frac{d}{dt}v_{\alpha}(t) = a^{(\alpha)} \left[1 - \left(\frac{v_{\alpha}}{v_0^{(\alpha)}} \right)^{\delta} - \left(\frac{s^*(v_{\alpha}, \Delta v_{\alpha})}{s_{\alpha}} \right)^2 \right]$$
(3)

gdzie:

 v_{α} jest prędkością pojazdu " $\alpha^{\prime\prime}$ (podążającego)

a jest maksymalnym przyspieszeniem

 $v_0\,$ jest prędkością jazdy swobodnej (prędkością pożądaną)

s* jest pożądanym minimalnym odstępem

 s_{α} jest odstępem rzeczywistym

literatura.md 2025-07-13

Model Kraussa opisuje zachowanie kierowców na podstawie ich reakcji na odległość do pojazdu przed nimi, prędkość pojazdu przed nimi i przyspieszenie. Model ten uwzględnia
różne style jazdy kierowców i asymetrię reakcji na przyspieszanie i hamowanie.

3. Modelowanie i symulacja zużycia paliwa i emisji spalin w ruchu miejskim

- symulator SUMO od str.32, opis modelu Kraussa
- schemat przygotowania symulacji z wykorzystaniem SUMO(str. 34):
 - 1. Przygotowanie sieci drogowej
 - 2. Przygotowanie definicji podróży
 - 3. Obliczenie tras przejazdu
 - 4. Symulacja
 - 5. Analiza
- walidacja wyników, określenie jakości (str.65)

4. Fundamentals of Traffic Simulation

- Models, Traffic Models, Simulation, and Traffic Simulation (strona 1-63)
- Traffic Simulation with SUMO Simulation of Urban Mobility (strona 269-295)
- 5. Edytor sieci drogowej na potrzeby symulacji ruchu autonomicznego tutaj problematyka tworzenia sieci drogowych na potrzeby symulacji ruchu autonomicznego
- czego nie wspiera SUMO
 - o dokładne odwzorowanie geometrii sieci drogowej za ą krzywych (niedopuszczalne jest użycie linii wiementowej)
 - o symulacja ruchu kolumny pojazdów (na potrzebysymrów pojazdów uprzywilejowanych)
 - o sterowanie ruchem na skrzyżowaniu przez policjanta
 - o symulacja i sterowanie ruchem autonomicznym w czasie rzeczywistym
 - o symulacja korytarza życia w reakcji na pojawienie się pojazdu uprzywilejowanego.
- SUMO i OSM (OpenStreetMap)
 - SUMO pozwala na wykorzystanie danych OSM (OpenStreetMap) do wygenerowania danych o ścieżkach ruchu, znakach i sygnalizacji świetlnej. Niestety dane OSM są tworzone
 przez szeroką społeczność, w związku z czym są podatne na błędy
 - o w danych OSM często brakuje informacji o rzeczywistej geometrii danego fragmentu drogi
 - o działa w uporszczony sposób; ciężko jest wygenerować złożone skrzyżowania w sposób automatyczny

Dodatkowe linki:

- SUMO
- OSM