FATTI DI EGA

NOTAZIONI ED INTRODUZIONE

Il corso da cui sono tratti gli enunciati è diviso in alcune parti: nella prima si cerca di dare un'introduzione più concreta alla geometria algebrica attraverso anche esempi di curve in \mathbb{P}^2 , nella seconda si parlerà di varietà quasi-proiettive, e di varietà affini e proiettive, nella terza ci sarà un po' di teoria della dimensione.

PRIMA PARTE

STUDIO DELL'IRRIDUCIBILITÀ DEI POLINOMI "QUADRATICI"

 $p(x,y)=y^2-f(x)\in \mathbb{K}[x][y]$. Se nella fattorizzazione di $f(x)=c\cdot p_1^{\alpha_1}\dots p_k^{\alpha_k}$ con p_i irriducibili e distinti, $\alpha_i>0$ esiste un i tale che α_i è dispari allora si ha p(x,y) irriducibile. Inoltre se \mathbb{K} è algebricamente chiuso questa condizione è anche necessaria.

STUDIO LOCALE DELLE IPERSUPERFICI AFFINI

 $f \in \mathbb{K}[x_1, \dots, x_n], p \in V(f) \subseteq \mathbb{A}^n$. Sia l retta di \mathbb{A}^n passante per p, ovvero $l = \{p+tv \mid t \in \mathbb{K}\}$ con $v \in \mathbb{K}^n \setminus \{0\}$.

Consideriamo il polinomio $g(t) := f(p + tv) \in \mathbb{K}[t]$ e distinguiamo due casi:

- $g \equiv 0$: Significa che la retta l è contenuta in V(f) e quindi diciamo che l interseca \mathcal{I}_f in p con molteplicità infinita.
- $g \not\equiv 0$, ma g(0) = 0 perché $p \in V(f)$. Quindi in t = 0 ha una radice con una certa molteplicità $g(t) = t^m h(t)$ con $h(0) \neq 0$. Allora dico che l interseca \mathcal{I}_f in p con molteplicità m.

Se m > 1 diciamo che l è tangente a \mathcal{I}_f in p.

Invece diciamo che p è un punto liscio o non singolare di \mathcal{I}_f se esiste almeno una retta l che passa per p e non è tangente.

Fissato un punto p vengono chiamate tangenti principali le rette tangenti che intersecano \mathcal{I}_f con molteplicità massima.

In generale, a meno di una traslazione possiamo supporre p=(0,0) e $p\in V(f)$. Allora considero una retta per l'origine $l=\{tv\mid t\in\mathbb{K}\}$ e g(t):=f(tv), con $v=(v_1,\ldots,v_n)\in\mathbb{K}^n\setminus\{0\}$. Allora l è tangente a f in $p\Leftrightarrow g'(0)=0$. $g'(t)\mid_{t=0}=\sum_{i=1}^n\frac{\partial f}{\partial x_i}(tv)\cdot v_i\mid_{t=0}=\sum_{i=1}^n\frac{\partial f}{\partial x_i}(p)\cdot v_i$ quindi $g'(0)=0\Leftrightarrow \sum_{i=1}^n\frac{\partial f}{\partial x_i}(p)\cdot v_i=0$ e distinguiamo dunque due casi:

- $\frac{\partial f}{\partial x_i}(p) = 0 \quad \forall i \text{ allora } p \text{ è un punto singolare}$
- $\exists i$ t.c. $\frac{\partial f}{\partial x_i}(p) \neq 0$ allora p è liscio e l'insieme delle direazioni in \mathbb{K}^n tangenti a \mathcal{I}_f in p è un iperpiano di equazione $\sum_i \frac{\partial f}{\partial x_i}(p) \cdot v_i = 0$

Inoltre, se scriviamo $f(x_1,\ldots,x_n)=f_m(\boldsymbol{x})+h(\boldsymbol{x})$ dove f_m è omogeneo di grado $m\geq 1$ e tutti i monomi di h hanno grado maggiore di m allora abbiamo \mathcal{I}_f è liscia in $p\Leftrightarrow m=1$ e inoltre sappiamo che ogni retta interseca \mathcal{I}_f in p con molteplicità $\geq m$. E se il campo è infinito, per il principio di identità dei polinomi ho che m è il minimo della molteplicità d'intersezione di l con \mathcal{I}_f in p al variare di l tra le rette in p. Essa viene chiamata molteplicità del punto. Una retta si dice trasversale se molt (l)=1.

Si chiama cono tangente a \mathcal{I}_f in p l'insieme delle rette che intersecano \mathcal{I}_f in p con molteplicità maggiore del minimo m. è dato dall'equazione $f_m = 0$.

Inoltre la molteplicità di p per \mathcal{I}_f è uguale a $m \Leftrightarrow$ tutte le derivate parziali di f di ordine minore di m si annullano in p e c'è almeno una derivata parziale m-esima che non è nulla.

Diciamo che un punto è un nodo se è singolare di molteplicità due.

OMOGENIZZAZIONE E DISOMOGENEIZZAZIONE

 $D: \mathbb{K}[x_0,\ldots,x_n] \to \mathbb{K}[x_1,\ldots,x_n]$ tale che $F(x_0,\ldots,x_n) \mapsto F(1,x_1,\ldots,x_n)$ che è ovviamente un omomorfismo di \mathbb{K} -algebre.

 $H: \mathbb{K}[x_1,\ldots,x_n] \to \mathbb{K}[x_0,\ldots,x_n]$ che omogeneizza i polinomi, ovvero dato $f \neq 0$, $f \in \mathbb{K}[x_1,\ldots,x_n]$ sia $d=\deg f$. Allora $H(f):=x_0^d\cdot f(\frac{x_1}{x_0},\frac{x_2}{x_0},\ldots,\frac{x_n}{x_0})$. Notiamo che H NON è un omomorfismo però è moltiplicativo.

Allora valgono:

- H è moltiplicativo: H(fg) = H(f)H(g)
- $D \circ H = id$
- $H \circ D \mid_{\text{Polinomi Omogenei}} (F) = F_1 \text{ con } F \in \mathbb{K}[x_0, \dots, x_n]_d$ e vale $F = x_0^m F_1$ e $x_0 \nmid F_1$. Ovvero se $x_0 \mid F$ perdiamo le potenze di x_0 nel polinomio, altrimenti otteniamo la stessa cosa.
- $f \in \mathbb{K}[x_1, \dots, x_n]$ irriducibile $\implies F = H(f)$ irriducibile.
- $F \in \mathbb{K}[x_0, \dots, x_n]$ irriducibile $\mathbf{e} \neq x_0 \implies f = D(F)$ irriducibile.

FATTORIZZAZIONE DEI POLINOMI OMOGENEI

Sia F omogeneo, allora scrivo $F=x_0^mG$, con G omogeneo e $x_0 \nmid G$. Considero allora $g:=D(G)=D(F) \in \mathbb{K}[x_1,\ldots,x_n]$ e $g=c\cdot p_1^{\alpha_1}\ldots p_k^{\alpha_k}$ con i p_i irriducibili distinti e $\alpha_i>0$, $c\in \mathbb{K}^*$. Allora $P_i:=H(p_i)$ che è ancora irriducibile e $F=x_0^mG=x_0^mH(g)=cx_0^mP_1^{\alpha_1}\ldots P_k^{\alpha_k}$. Quindi la fattorizzazione dei polinomi omogenei avviene in una variabile in meno ed i fattori di un polinomio omogeneo sono omogenei.

Se ho K algebricamente chiuso e $F(x_0,x_1)$ omogeneo di grado d, allora $F(x_0,x_1)=x_0^mG(x_0,x_1)$ con G omogeneo e $x_0 \nmid G$. Allora $D(G)=g(x_1)=c\cdot\prod_{i=1}^k(a_ix_1+b_i)^{\alpha_i}$ e allora $F(x_0,x_1)=c\cdot x_0^m\cdot H(g)=c\cdot x_0^m\cdot\prod_{i=1}^k(a_ix_1+b_ix_0)^{\alpha_i}$ e quindi se considero $[a_i,b_i]\in\mathbb{P}^1$ per $i=1,\ldots,k$ sono distinti e sono i punti in cui F si annulla (oltre a [0,1] se m>0) con molteplicità α_i

Punti singolari di $y^2 - p(x) = 0 \subseteq \mathbb{A}^2$

Sia p un polinomio di deg $p=d\geq 3$ e $f(x,y)=y^2-p(x)$. Troviamo i punti singolari del sottoinsieme di \mathbb{A}^2

dato da f(x,y)=0. Serve necessariamente che (devono annullarsi tutte le derivate parziali) $\begin{cases} y^2=p(x)\\ y=0\\ p'(x)=0 \end{cases}$

e quindi $\begin{cases} y=0\\ p(x)=0 \text{ ovvero se e solo se } p \text{ ha radici multiple. Quindi i punti singolari sono quelli del tipo}\\ p'(x)=0 \end{cases}$

(0, a) con a radice multipla del polinomio p.

Studiamo ora cosa avviene nei punti singolari: $f(x,y) = y^2 - (x-a)^{\alpha}q(x)$ con $\alpha \ge 2, q(\alpha) \ne 0$. Eseguiamo allora il cambio di coordinate affini u := x - a, v := y. $f(u,v) = v^2 - u^{\alpha}q_1(u)$ con $q_1(0) \ne 0$. La molteplicità allora è 2. Inoltre se $\alpha = 2$ abbiamo un nodo, mentre se $\alpha > 2$, v = 0 è l'unica tangente principale ed abbiamo quindi una cuspide.

La chiusura proiettiva della curva è $F(x,y,z)=y^2z^{d-2}-P(x,z)=0$. Vediamo i punti in cui z=0 (cioè dove intersechiamo la retta all'infinito). $F(x,y,0)=-P(x,0)=-a_dx^d=0$ e quindi l'unico punto improprio è x=0,z=0,y=1. Uso ora la carta affine $y\neq 0$ ed ottengo $z^{d-2}-P(x,z)$ e quindi se d=3 ho un punto liscio, se d>3 ho un punto singolare di molteplicità d-2 e l'unica tangente principale è z=0, se d=3 allora la molteplicità d'intersezione tra z=0 e il punto è z=00. Per la retta tangente interseca z=01 in z=02 con molteplicità d'intersezione tra z=03 ci punto è z=04.

STUDIO LOCALE DELLE IPERSUPERFICI PROIETTIVE

Lo facciamo passando alle carte affini: supponiamo di avere [f] di \mathbb{A}^n e ci associamo [F] ipersuperficie proiettiva (detta chiusura proiettiva) F = H(f) e inoltre data [F] di \mathbb{P}^n associamo [D(F)] chiamato parte affine.

TEOREMA DI EULERO PER LE FUNZIONI OMOGENEE

 $F \in K[x_0, \dots, x_n]$ omogeneo di grado d. Allora vale che $d \cdot F(x) = \sum_{i=0}^n x_i \cdot \frac{\partial F}{\partial x_i}(x)$

PUNTI SINGOLARI DI IPERSUPERFICI PROIETTIVE

(Supponiamo Char K=0, anche se non sono sicuro che serva) Sia $p\in V(F)\subseteq \mathbb{P}^n$. $p=[1,a_1,\ldots,a_n]=[1,a]$. Sia f=D(F)=F(1,x) allora p è singolare per $F\Leftrightarrow \left\{\begin{array}{c} f(a)=0\\ \frac{\partial f}{\partial x_i}(a)=0 & i=1,\ldots,n \end{array}\right.$ \Leftrightarrow $\left\{\begin{array}{c} F(1,a)=0\\ \frac{\partial F}{\partial x_i}(1,a)=0 & i=1,\ldots,n \end{array}\right.$ quindi mettere $x_0=1$ prima o dopo aver derivato non fa nessuna differenza. Allora usando il teorema di Eulero si ha $\Leftrightarrow \frac{\partial F}{\partial x_i}(p)=0 \quad i=0,\ldots,n$

SPAZIO TANGENTE A F IN a (APPLICATO)

 $\begin{array}{l} \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) \cdot (x_i - a_i) = 0 \text{ è come fare } \sum_{i=1}^n \frac{\partial F}{\partial x_i}(p) \cdot x_i - \sum_{i=1}^n \frac{\partial F}{\partial x_i}(p) \cdot a_i \text{ e, supponendo che } p \in V(F) \text{ si ha (eulero)} = \frac{\partial F}{\partial x_0}(p) + \sum_{i=1}^n \frac{\partial F}{\partial x_i}(p) \cdot x_i \text{ ovvero siccome la chiusura proiettiva si ottiene omogeneizzando con } x_0 \text{ lo spazio tangente proiettivo è } \sum_{i=0}^n x_i \cdot \frac{\partial F}{\partial x_i}(p) = 0 \end{array}$

TEORIA DEL RISULTANTE

A dominio d'integrità commutativo unitario. $F, G \in A[y], F = a_0 + a_1y + a_2y^2 + \ldots + a_my^m, G = b_0 + b_1y + \ldots + b_ny^n$ dove $a_i, b_i \in A$ allora

Teorema di Bèzout

 $\mathcal{C} = [F], \mathcal{D} = [G], \text{ con } m = \deg \mathcal{C}, n = \deg \mathcal{D}, K \text{ infinito. Allora si ha}$

- 1. Se il numero di intersezioni tra $\mathcal C$ e $\mathcal D$ è >mn allora $\mathcal C$ e $\mathcal D$ hanno una componente in comune
- 2. Se K è algebricamente chiuso e \mathcal{C} e \mathcal{D} non hanno componenti in comune, allora $\mathcal{C} \cap \mathcal{D}$ consta di esattamente mn punti se contati con molteplicità

COROLLARI DEL TEOREMA DI BÈZOUT

- (K algebricamente chiuso) $\mathcal{F} \subseteq \mathbb{P}^n$ con $n \geq 2$ è un'ipersuperficie riducibile allora \mathcal{F} è singolare.
- (K algebricamente chiuso) $\mathcal{C} \subseteq \mathbb{P}^2$ una curva ridotta (ovvero nella fattorizzazione non compaiono componenti multiple) allora \mathcal{C} ha un numero finito di punti singolari.
- Siano $p_1, \ldots, p_5 \in \mathbb{P}^2$ cinque punti distinti. Quante coniche passano per p_1, \ldots, p_5 ?
- $p_1, \ldots, p_5 \in \mathcal{Q}$ conica. Allora p_1, \ldots, p_5 sono in posizione generale $\Leftrightarrow \mathcal{Q}$ è liscia.

DEFINIZIONE ASSIOMATICA DI MOLTEPLICITÀ D'INTERSEZIONE TRA DUE CURVE PIANE

 $C = [f], \mathcal{D} = [g] \subseteq \mathbb{A}^2, p \in \mathbb{A}^2$. Vorremmo definire la molteplicità dell'intersezione di f e g in p $I(f \cap g, p)$ in modo che valgano:

- 1. $I(f \cap g, p) = +\infty \Leftrightarrow f, g$ hanno una componente in comune a cui p appartiene
- 2. $I(f\cap g,p)\in\mathbb{N}$ e $I(f\cap g,p)=0\Leftrightarrow p\not\in V(f)\cap V(g)$
- 3. $I(f \cap g, p) = I(g \cap f, p)$
- 4. f, g rette distinte e $p \in V(f) \cap V(g)$ allora $I(g \cap f, p) = 1$
- 5. $I(f \cap g, p)$ è invariante per affinità
- 6. Dato $a \in K[x,y]$ si ha $I(f \cap g,p) = I(f \cap (g+af),p)$
- 7. Se $f = \prod_i f_i$ e $g = \prod_i g_i$ allora deve valere che $I(f \cap g, p) = \sum_{i,j} I(f_i \cap g_j, p)$

Queste proprietà determinano univocamente i numeri di intersezione. L'idea è, data una curva in x e y di abbassare il grado in x, supponendo che fino al grado n-1 i numeri di intersezione siano ben definiti e dimostrare che lo sono anche per n.

Prima definizione di molteplicità d'intersezione

p=(a,b) e si scompongano $f=f_1a_1$, $g=g_1b_1$ tali che $a_1(p)\neq 0$, $b_1(p)\neq 0$. Allora si ha $I(f\cap g,p):=$ molteplicità di x=a come radice del risultante Ris $_y(f_1,g_1)$ in un sistema di coordinate generico

SECONDA DEFINIZIONE DI MOLTEPLICITÀ D'INTERSEZIONE

p=(a,b), $\mathcal{M}_p=(x-a,y-b)\subseteq K[x,y]$. \mathcal{M}_p è il nucleo della $V_p:K[x,y]\to K$ definita da $f\mapsto f(p)$ mappa di valutazione. \mathcal{M}_p è un ideale massimale. Allora localizziamo $\mathcal{O}_p:=K[x,y]_{\mathcal{M}_p}$. Ora presi $f,g\in K[x,y]$ consideriamo la K-algebra $\frac{\mathcal{O}_p}{(f,g)}$. Definiamo la molteplicità dell'intersezione come $I(f\cap g,p)=\dim_K \frac{\mathcal{O}_p}{(f,g)}$

Ouadriche di \mathbb{P}^n

Ci chiediamo quando siano singolari (Char $K \neq 2$). Sia $x \in K^{n+1}$ e sia $Q(x) = {}^t x A x = \sum A_{ij} x_i x_j$ con A matrice $(n+1) \times (n+1)$ simmetrica e sia $p = [v] \in \mathbb{P}^n$. Allora notiamo che $\frac{\partial Q}{\partial x_i}(v) = \sum a_{ij} v_j = (Av)_i$ e quindi v è singolare per la quadrica $\Leftrightarrow \frac{\partial Q}{\partial x_i}(v) = 0 \quad \forall i \Leftrightarrow Av = 0$. Quindi Sing $Q = \mathbb{P}(\text{Ker }A)$ la cui dimensione è $n - \text{rk } A_i$ ovvero Q è liscia se e solo se ha rango massimo.

PUNTI DI FLESSO SU CURVE PROIETTIVE

(Char $K \neq 2$) Sia F curva di \mathbb{P}^2 e sia f la sua parte affine. $(0,0) = p \in V(f)$. Vogliamo cercare una condizione affinchè p sia un flesso. Supponiamo prima che p sia un punto liscio. Scrivendo f come "Somma di Taylor" si vede che i termini di grado 1 e 2 sono una conica affine e quindi vorremmo che la conica fosse riducibile per avere un punto di flesso. Quindi p è di flesso \Leftrightarrow il determinante dell'hessiano formale di F è uguale a 0. Siccome deg det H(F) = 3d(d-2) i flessi sono abbastanza (per Bèzout). (E l'hessiano è identicamente nullo se e solo se F è unione di rette)

CUBICA LISCIA IN FORMA DI WEIERSTRASS

 $\mathcal{C}=[F]$ cubica liscia, Char $K\neq 2,3$ e sia $O\in\mathcal{C}$ flesso. Allora \exists un sistema di coordinate omogenee [z,x,y] su \mathbb{P}^2 tale che O=[0,0,1] e \mathcal{C} ha equazione affine $y^2=x^3+ax+b$ con $\Delta=4a^3+27b^2\neq 0$ (Non stiamo supponendo K algebricamente chiuso)

CUBICA LISCIA IN FORMA DI LEGENDRE

Se $p(x)=x^3+ax+b$ in forma di Weierstrass ha tutte le radici in K, allora $\mathcal C$ può essere messa in forma di Legendre: $y^2=x(x-1)(x-\lambda)$ con $\lambda\neq 0,1$

FLESSI DI UNA CUBICA LISCIA SU UN CAMPO ALGEBRICAMENTE CHIUSO

 $\mathcal C$ cubica liscia e K algebricamente chiuso. Scegliamo un flesso $\mathcal C$ e mettiamo $\mathcal C$ in forma di Weierstrass $y^2 = x^3 + ax + b = p(x)$ rispetto ad O. Cerco i punti di \mathbb{A}^2 in cui \mathcal{C} interseca $H(\mathcal{C})$: otteniamo 9 flessi che sono tali che se $p_1, p_2 \in \mathcal{C}$ sono flessi, allora la retta che passa per p_1, p_2 interseca \mathcal{C} in un terzo flesso. Inoltre il gruppo delle proiettività g di \mathbb{P}^2 tali che $g\mathcal{C} = \mathcal{C}$ agiscono transitivamente sui punti di flesso. Abbiamo inoltre 12 rette che passano per i punti di flesso e ogni retta passa per 3 punti di flesso. I 9 flessi e le 12 rette che li congiungono formano una configurazione isomorfa al piano affine su \mathbb{F}_3 .

BIRAPPORTO, PROIETTIVITÀ E J-INVARIANTE

Ci chiediamo quando esiste una proiettività di \mathbb{P}^1 che porta una quaterna ordinata di punti in un'altra. Risposta: solo se hanno lo stesso birapporto. Siano $p_1, p_2, p_3, p_4 \in \mathbb{P}^1$ punti distinti e le $z_i = \frac{x_1}{x_0}$ le loro coordinate affini $\in K \cup \{+\infty\}$. Dico che il birapporto è la coordinata affine di z_4 nel sistema di coordinate su \mathbb{P}^1 in cui $z_1=0, z_2=+\infty, z_3=1$. Quindi Bir $(p_1,\ldots,p_4)=\frac{z_4-z_1}{z_4-z_2}\cdot\frac{z_3-z_2}{z_3-z_1}$ Vogliamo ora la condizione per quaterne non ordinate, quindi notiamo che permutando i punti si ottengono

sei valori collegati del birapporto: $\{\beta, \frac{1}{\beta}, 1-\beta, \frac{1}{1-\beta}, \frac{\beta}{1-\beta}, \frac{\beta-1}{\beta}\}$ ovvero se e solo se hanno uguale j-invariante. $j: K\setminus\{0,1\}\to K$ definita da $j(t)=\frac{(t^2-t+1)^3}{t^2(t-1)^2}$, dove il j-invariante viene calcolato sul birapporto delle

quaterne.

In realtà si può calcolare il birapporto anche sulle rette.

DUE CUBICHE LISCIE SU UN CAMPO ALGEBRICAMENTE CHIUSO SONO PROIETTIVAMENTE EQUIVALENTI SE E SOLO SE HANNO LO STESSO j-INVARIANTE

Curve piane liscie su $\mathbb{A}^2_{\mathbb{C}}$

SISTEMA LINEARE DI CURVE

Fissato $d \ge 1$ il grado consideriamo $K[x_0, x_1, x_2]_d = \{\text{polinomi omogenei di grado } d\} \cup \{0\}$ che è uno spazio vettoriale su K di dimensione $\binom{d+2}{2}$ e sia $V_d:=\mathbb{P}(K[x_0,x_1,x_2]_d)$, chiamato sistema lineare completo delle curve di grado d, che è uno spazio proiettivo i cui punti sono le curve piane di grado d. Un sistema lineare di curve di grado d è un sottospazio proiettivo $W \subseteq V_d$. Se dim W = 1, W si dice fascio.

IMPOSIZIONE DEL PASSAGGIO PER UN PUNTO

 $p=[a,b,c]\in\mathbb{P}^2$. $V_d(p):=\{[F]\in V_d\mid F(p)=0\}$ è un iperpiano, sottospazio di V_d definito da una equazione lineare. In generale posso fissare un po' di punti $p_1, \ldots, p_k \in \mathbb{P}^2$ ed ottenere $V_d(p_1, \ldots, p_k) := \bigcap_{i=1}^k V_d(p_i)$ che è un sistema lineare di dimensione che dipende da come sono disposti i punti ma ha codimensione al più k.

CONDIZIONI INDIPENDENTI PER LE CUBICHE

(K infinito) Siano $p_1, \ldots, p_8 \in \mathbb{P}^2$ (anche coincidenti) tali che

- Non esiste una retta che contiene quattro dei p_i
- Non esiste una conica che passa per sette dei p_i

Allora p_1, \ldots, p_8 impongono condizioni indipendenti alle cubiche, cioè dim $V_3(p_1, \ldots, p_8) = 1$ Corollario: se ho due cubiche C_1, C_2 senza componenti comuni che si intersecano in 9 punti distinti p_1, \ldots, p_9 . Se \mathcal{C} è una cubica che passa per p_1, \ldots, p_8 allora \mathcal{C} passa anche per p_9 .

SECONDA PARTE: VARIETÀ

Topologia di Zariski su \mathbb{A}^n

Topologia di Zariski su \mathbb{P}^n

IRRIDUCIBILITÀ

- $X \subseteq \mathbb{A}^n$ chiuso. Allora X è irriducibile $\Leftrightarrow I(X) \subseteq K[x_1, \dots, x_n]$ è un ideale primo \Leftrightarrow dati $U, V \subseteq X$ aperti non vuoti di X si ha $U \cap V \neq \emptyset$
- X irriducibile \Leftrightarrow dati $U, V \subseteq X$ aperti non vuoti si ha che $U \cap V \neq \emptyset$. In particolare se X è irriducibile ogni aperto è denso.
- $Y \subseteq X$. Y irriducibile $\Leftrightarrow \bar{Y}$ irriducibile
- $Y \subseteq \mathbb{P}^n$ chiuso. Allora Y è irriducibile $\Leftrightarrow \mathcal{C}Y$ (il cono) è irriducibile in \mathbb{A}^{n+1}

TEOREMA DI FATTORIZZAZIONE IN IRRIDUCIBILI

Dato $Y\subseteq X$ chiuso una decomposizione in irriducibili di Y è $Y=Z_1\cup\ldots\cup Z_k$ con Z_i chiusi irriducibili. La decomposizione si dice irridondante o minimale se $\forall i\neq j\quad Z_i\not\subseteq Z_j$.

Negli spazi topologici Noetheriani (X, τ) ogni chiuso $Y \subseteq X$ ammette una decomposizione in irriducibili e, se minimale, essa è unica a meno di permutazioni degli irriducibili.

CHIUSI DI \mathbb{A}^1 E DI \mathbb{A}^2

I chiusi di \mathbb{A}^1 sono \mathbb{A}^1 , \emptyset e gli insiemi finiti di punti, ovvero La topologia di Zariski su \mathbb{A}^1 coincide con la cofinita.

I chiusi di \mathbb{A}^2 sono unioni finite di punti e di ipersuperfici.

IPERSUPERFICI

Con K algebricamente chiuso intederemo ora per ipersuperficie il luogo di zeri di un'equazione e non più l'equazione stessa. Infatti se X=V(f) ipersuperficie (J=(f)) allora se $f=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$ con p_i irriducibili e distinti, $\alpha_i\geq 0$, si ha $I(X)=\sqrt{(f)}=(p_1\cdot\ldots\cdot p_k)$ e $V(f)=V(p_1)\cup\ldots\cup V(p_k)$ e, a meno di fattori multipli, il supporto le identifica univocamente.

CHIUSURA PROIETTIVA DI CHIUSI ALGEBRICI

 $X\subseteq \mathbb{A}^n$ chiuso. Allora la chiusura proiettiva è la chiusura di X secondo Zariski nello spazio proiettivo \mathbb{P}^n nel quale \mathbb{A}^n è naturalmente immerso. Non basta omogeneizzare i generatori dell'ideale (vedi cubica gobba), serve prendere ogni elemento dell'ideale, omogeneizzaarlo e poi prendere l'ideale omogeneo generato. $I(\bar{X})=(H(f),f\in I(X))$, ma se X è un'ipersuperficie, allora ovviamente basta omogeneizzare la singola equazione (tanto le altre sono tutte sue multipli).

NULLSTELLENSATZ

Se K è un campo algebricamente chiuso, $J\subseteq K[x_1,\ldots,x_n]$ ideale. Allora le seguenti condizioni sono equivalenti:

- $V(J) = \emptyset \implies 1 \in J$
- J massimale $\implies \exists p \in \mathbb{A}^n \text{ t.c. } I(p) = J$
- $I(V(J)) = \sqrt{J}$

Quindi nel caso di K algebricamente chiuso abbiamo una corrispondenza biunivoca tra gli ideali radicali ed i chiusi di Zariski. Inoltre abbiamo anche le sottocorrispondenze 1:1 tra ideali primi e chiusi irriducibili e tra ideali massimali e punti di \mathbb{A}^n

VARIETÀ QUASI-PROIETTIVE

Seguono le varie definizioni:

- (Varietà Quasi-proiettiva) É un localmente chiuso in uno spazio proiettivo, ovvero è intersezione di un chiuso e di un aperto. $Z \cap U \subseteq \mathbb{P}^n$ dove Z è chiuso e U è aperto.
- (Funzioni Regolari su VQP) Data $X \subseteq \mathbb{P}^n$ VQP sia $f: X \to K$. Allora f si dice funzione regolare se $\forall p \in X \quad \exists U_p \subseteq X$ aperto tale che $\exists A, B \in K[x_0, \dots, x_n]$ t.c. A, B sono omogenei dello stesso grado con $B(q) \neq 0 \quad \forall q \in U_p$ e $f(q) = \frac{A(q)}{B(q)} \quad \forall q \in U_p$. (Notiamo che questo tipo di funzioni sono ben definite su \mathbb{P}^n , ovvero sono costanti sulle classi di equivalenza) La K-algebra delle funzioni regolari su X si indica con $\mathcal{O}_X(X)$
- (Morfismi di VQP) Siano X,Y due VQP e supponiamo di avere $f:X\to Y$. Allora f si dice morfismo se
 - 1. *f* è continua (Che è una richiesta piuttosto debole)
 - 2. $\forall V \subseteq Y$ aperto e $\phi: V \to K$ regolare allora $\phi \circ f: f^{-1}(V) \to K$ è regolare (che è una condizione di natura locale)

Notiamo che l'identità è un morfismo e che i morfismi sono stabili per composizione. Diciamo che un morfismo di VQP è un isomorfismo se è biggettivo e la sua inversa insiemistica è anch'essa un morfismo di VQP

Varietà Affini

Sia $X\subseteq \mathbb{A}^n$ chiuso affine. Allora $X=\bar{X}\cap \mathbb{A}^n$ è una VQP attraverso l'identificazione di \mathbb{A}^n con un sottoinsieme di \mathbb{P}^n . Notiamo che ora le funzioni regolari su X diventano rapporti di polinomi non necessariamente omogenei, né dello stesso grado, ovvero $f:X\to K$ allora f è regolare se $\forall p\in X\quad \exists U_p\subseteq X$ intorno aperto e $a,b\in K[x_1,\ldots,x_n]$ tale che $b(q)\neq 0\quad \forall q\in U_p$ e $f(q)=\frac{a(q)}{b(q)}\quad \forall q\in U_p$.

Nel caso speciale in cui b=1 e U=X f viene detta funzione polinomiale. Attraverso $r_X:K[x_1,\ldots,x_n]\to \mathcal{O}_X(X)$ definita da $f\mapsto f\mid_X$ (che è un omomorfismo di K-algebre) notiamo che Ker $r_X=I(X)$ e usando il primo teorema di isomorfismo abbiamo $K[X]:=\frac{K[x_1,\ldots,x_n]}{I(X)}\hookrightarrow \mathcal{O}_X(X)$ che viene detto anello delle coordinate di X o algebra affine di X, molto importante per i chiusi affini su un campo algebricamente chiuso, poiché come vedremo caratterizza completamente i chiusi affini.

Abbiamo una forma "Relativa" del Nullstellensatz, come corrispodenza 1:1 tra gli ideali radicali di K[X] e i sottoinsiemi chiusi $Y\subseteq X$.

SU K ALGEBRICAMENTE CHIUSO r_X È UN ISOMORFISMO DI K-ALGEBRE

K algebricamente chiuso, allora $r_X: \frac{K[x_1,\dots,x_n]}{I(X)} = K[X] \to \mathcal{O}_X(X)$ definita da $f \mapsto f \mid_X$ è un'isomorfismo di K-algebre. Ovviamente è un morfismo di K-algebre ed è iniettivo per come lo abbiamo costruito (quozientando sul ker).

Sia allora $\phi \in \mathcal{O}_X(X)$ e $J := \{f \in K[X] \mid f\phi \in K[X]\} \subseteq K[X]$ ideale. Allora dico che $V(J) = \emptyset$ (da cui seguirebbe per NSS che $1 \in J$ e quindi $1 = \sum^{\text{Finita}} a_i(x) f_i(x)$ con $a_i \in K[X]$ e $f_i \in J$. Allora avrei $\phi = \sum_i a_i(f_i\phi)$ e sappiamo che $f_i\phi \in K[X]$ per definizione delle f_i).

Fissiamo allora $p \in X$ e mostriamo che $p \notin V(J)$. Decomponiamo per prima cosa X in irriducibili e li separiamo in base a se contengono p oppure no:

$$X = (X_1 \cup \ldots \cup X_k)$$
 che contengono $p \cup (X_{k+1} \cup \ldots \cup X_s)$ che non contengono p

Allora $\exists U_p$ aperto di X tale che $p \in U_p$ e $a,b \in K[X]$ tali che $\phi \mid_{U_p} \equiv \frac{a}{b}$. Consideriamo la funzione $b\phi - a = 0$ su U_p ma $U_p \cap X_i \neq \emptyset \quad \forall i = 1, \ldots, k$ e quindi U_p è denso in $X_1 \cup \ldots \cup X_k$, da cui segue $b\phi - a = 0$ su $X_1 \cup \ldots \cup X_k$ perchè il luogo di zeri di una funzione regolare è un chiuso.

Inoltre, siccome $p \notin X_{k+1} \cup \ldots \cup X_s$ allora (per definizione di chiusi di Zariski) $\exists c \in K[X], c \in I(X_{k+1} \cup \ldots \cup X_s)$ t.c. $c(p) \neq 0$ allora $c(b\phi - a) \equiv 0$ su tutto X ma allora $ca \in K[X]$ e si ha $ac = (cb)\phi$ e quindi $cb \in J$ ma allora $(cb)(p) \neq 0$

Morfismi da una VQP in \mathbb{A}^m

Data $X \subseteq \mathbb{P}^n$ VQP vorrei descrivere i morfismi $X \xrightarrow{f} \mathbb{A}^m$. Vale che $f: X \to \mathbb{A}^m$ è un morfismo di VQP se e solo se le componenti di f sono funzioni regolari.

Varietà Affini

X VQP si dice varietà affine se X è isomorfo ad un chiuso di uno spazio affine.

ATTENZIONE: Sia $X \subseteq \mathbb{A}^n$ chiuso e scegliamo $f \in K[X] \setminus 0$ e diciamo $X_f := \{x \in X \mid f(x) \neq 0\}$ è un aperto principale. Avevamo già osservato che gli aperti principali formano una base della topologia di Zariski di X. Mostriamo ora che X_f è una varietà affine. (Basta "mandare gli zeri all'infinito", come nel Rabinowitsch trick) e quindi otteniamo il risultato che ogni VQP ha una base di aperti affini.

DUALITÀ ALGEBRO-GEOMETRICA

 $f: X \to Y$ morfismo di VQP. Allora $\exists f^*: \mathcal{O}_Y(Y) \to \mathcal{O}_X(X)$ chiamato pullback definito da $\phi \mapsto \phi \circ f$ ed è un morfismo di K-algebre.

Inoltre se f è un isomorfismo di VQP allora f^* è un isomorfismo di K-algebre.

Notiamo che se X è un chiuso affine allora K[X] è una K-algebra finitamente generata e ridotta, ovvero senza nilpotenti.

Ciò ci permette di determinare $K[X_f]$ per X_f un aperto principale. (Usare l'isomorfismo dato dal fatto che gli aperti principali sono affini e passando alla star localizzare ad f)

Funzioni Regolari su tutto \mathbb{P}^n

K algebricamente chiuso, allora ogni funzione regolare su tutto \mathbb{P}^n è costante. (Piuttosto agile, ad esempio su \mathbb{P}^1 considerare i due aperti principali con le loro equazioni $f = p(t) = q(\frac{1}{4})$)

K algebricamente chiuso, $\mathbb{A}^2 \setminus \{(0,0)\}$ non è una VQP

K algebricamente chiuso. Se copriamo $X=\mathbb{A}^2\setminus\{(0,0)\}$ con due aperti $U=\{x\neq 0\}$ e $V=\{y\neq 0\}$ che sono affini, si ha $K[U]=K[\mathbb{A}^2]_x=K[x,y]_x$ e $K[V]=K[x,y]_y$. Allora $\alpha:X\to\mathbb{A}^2$ l'immersione mi da l'applicazione di pullback α^* . Mostrando ora che è iniettiva e surgettiva vediamo che X non è una VQP perché abbiamo un ideale fantasma (M=(x,y) che è massimale, ma $V_X(M)=\emptyset$) e quindi fallisce il Nullstellensatz relativo.

LEMMI E DEFINIZIONI UN PO' CASUALI

- Un morfismo $X \xrightarrow{f} Y$ di VQP si dice dominante se la sua immagine è densa.
- Nel caso affine (se X e Y sono affini), f è dominante se e solo se f^* è iniettiva.
- In generale i morfismi non sono né aperti né chiusi.
- Diciamo che un insieme è costruibile se è un'unione finita di localmente chiusi. (Non lo dimostreremo, ma l'immagine di ogni morfismo è un costruibile)
- $\mathbb{Z} \subseteq \mathbb{C}$ è denso con la topologia di Zariski.
- $K[\mathbb{A}^n] \cong K[x_1, \dots, x_n]$
- $X \subseteq \mathbb{A}^n, Y \subseteq \mathbb{A}^m$ chiusi. Allora $f: X \to Y$ morfismo si dice immersione chiusa se Z = f(X) è chiuso e $X \xrightarrow{f} Z$ è un isomorfismo.

Vale che f è un'immersione chiusa $\Leftrightarrow f^*$ è surgettiva.

- X,Y affini. Allora $\phi:K[Y]\to K[X]$ omomorfismo di K-algebre $\implies \exists!f:X\to Y$ morfismo tale che $\phi=f^*$
- X,Y affini, $f:X\to Y$ morfismo. Allora f è isomorfismo se e solo se f^* lo è (insomma abbiamo il viceversa se le varietà sono affini)

MAPPA DI VERONESE

 $\mathcal{V}_{1,2}: \mathbb{P}^1 \to \mathbb{P}^2$ definita da $[x_0,x_1] \mapsto [x_0^2,x_0x_1,x_1^2]$ è ben definita, continua, ed è un morfismo che ha come immagine Im $\mathcal{V}_{1,2}=\{y_0y_2-y_1^2=0\}$, viene detta mappa di Veronese.

 $\mathcal{V}_{a,b}: \mathbb{P}^k \to \mathbb{P}^N$ è la mappa di Veronese, dove a è la dimensione dello spazio di partenza e b è il grado dei monomi in arrivo e quindi $N = \binom{n+k}{k} - 1$ e su \mathbb{P}^N abbiamo le coordinate z_I dove I è un multiindice di lunghezza k e di grado n. La mappa di veronese è quindi definita da $\mathcal{V}_{a,b}([x_0,\ldots,x_k]) = [x^I]_I$ al variare di tutti i multiindici I ed è un morfismo.

Il fatto che gli x^I commutino tra di loro ci dice quali sono le condizioni sulle coordinate immagine. Sia $\Sigma_{k,N}:=\{z_Iz_J=z_{I'}z_{J'}\mid \forall I,J,I',J' \text{ t.c. } I+J=I'+J'\}$ che è quindi definito da una collezione di quadriche. È chiaro che Im $\mathcal{V}_{k,N}\subseteq\Sigma_{k,N}$ e definiamo l'inversa $g:\Sigma_{k,N}\to\mathbb{P}^k$ mostrando che ci sono alcune coordinate che non si annullano mai e prendendo stringhe di queste...

Tutta questa trafila serve per dimostrare che il complementare in \mathbb{P}^n di un'ipersuperficie proiettiva è un chiuso affine, infatti la mappa di Veronese ci da un isomorfismo con l'immagine e il complementare di ipersuperfici nel proiettivo attraverso la mappa diventa un chiuso proiettivo tolto un piano (linearizza il polinomio) che è quindi un chiuso affine.

VQP PRODOTTO

Vogliamo costruire il prodotto (in senso categorico) di due VQP X e Y. Un prodotto di X e Y è una VQP Z tale che $\exists p_1:Z\to X, p_2:Z\to Y$ morfismi tali che $\forall f:W\to X, g:W\to Y$ morfismi $\exists!\phi:W\to Z$ tale che il seguente diagramma commuti:

Basta dimostrare l'esistenza di Z perché l'unicità è ovvia a meno di unico isomorfismo. Supponiamo infatti di avere due prodotti $(Z_1, p_1, p_2), (Z_2, q_1, q_2)$. Allora presi i due unici morfismi ϕ, ψ dati dall'essere prodotti si ha:

E siccome anche l'identità fa commutare il diagramma si ha per unicità che $\psi \circ \phi = \mathrm{id}$.

Nel caso di varietà affini si ha $\mathbb{A}^n \times \mathbb{A}^m \cong \mathbb{A}^{m+n}$. Infatti prese le proiezioni naturali sulle componenti si verifica la proprietà universale sapendo che una mappa a valori in uno spazio affine è un morfismo se e solo se le sue componenti sono funzioni regolari.

ATTENZIONE: \mathbb{A}^{m+n} NON ha la topologia prodotto, ne ha una più fine (quella di Zariski su \mathbb{A}^{m+n}) Nel caso di varietà affini si verifica agilmente che se $X\subseteq \mathbb{A}^n, Y\subseteq \mathbb{A}^m$ sono due chiusi allora $X\times Y\subseteq \mathbb{A}^n\times \mathbb{A}^m$ è un chiuso ed è il prodotto di X e di Y.

L'anello delle coordinate del prodotto è $K[X \times Y] = K[X] \otimes_K K[Y]$ Il prodotto di due spazi proiettivi si fa immergendoli in un proiettivo più grosso attraverso la mappa di Segre e si mostra che il morfismo così ottenuto è in realtà una biggezione con l'immagine.

ottenuto è in realtà una biggezione con l'immagine. La mappa di Segre è: $S_{n,m}:\mathbb{P}^n\times\mathbb{P}^m\to\mathbb{P}^{(n+1)(m+1)-1}$ definita da $([x_i],[y_j])\mapsto [x_iy_j]$. e definito $\Sigma_{n,m}=\{[z_{i,j}]\mid \mathrm{rk}\ [z_{i,j}]\leq 1\}$ che si nota essere un chiuso in quanto intersezione di quadriche si hanno le due proiezioni / morfismi su \mathbb{P}^n e su \mathbb{P}^m dati da righe e colonne della matrice.

Una base di chiusi del prodotto di due spazi proiettivi è data dal luogo di zeri di un polinomio biomogeneo (anche di gradi diversi). In particolare, anche in questo caso la topologia del prodotto è più fine della topologia prodotto.

Il caso generale del prodotto di VQP segue in maniera semplice: siano X,Y VQP. Allora $X=U\cap Z\subseteq \mathbb{P}^n$ e $Y=V\cap W\subseteq \mathbb{P}^m$ con U,V aperti e Z,W chiusi. Considero allora $X\times Y$ come sottoinsieme di $\mathbb{P}^n\times \mathbb{P}^m$ dato da $(U\times V)\cap (Z\times W)$ e si nota che $U\times V$ e $Z\times W$ sono rispettivamente aperto e chiuso in $\mathbb{P}^n\times \mathbb{P}^m$. Quindi $X\times Y$ è una VQP. Inoltre si vede anche che se X,Y sono proiettive allora anche $X\times Y$ è una varietà proiettiva e che se X,Y sono affini allora anche $X\times Y$ è affine.

Quasi-T2 e proprietà del prodotto

Faremo un po' di striccheggi che in topologia generale si fanno se lo spazio è T2, ma qui ci riusciamo anche senza!

- (Diagonale chiusa nel prodotto) $\Delta_X = \{(x, x) \mid x \in X\} \subseteq X \times X$ è un chiuso
- (Due morfismi coincidono su un chiuso) Siano $f, g: X \to Y$ due morfismi. Allora $Z = \{x \mid f(x) = g(x)\}$ è chiuso in X. (e quindi in particolare se due morfismi coincidono su un denso allora f = g)

Inoltre X,Y irriducibili come VQP $\implies X \times Y$ è irriducibile (cosa che non è ovvia poiché la topologia del prodotto è molto fine)

Cose Casuali

- 1. Diciamo che G è un gruppo algebrico se
 - Gè una VQP
 - Gè un gruppo
 - Le funzioni di inverso e di moltiplicazione sono morfismi
- 2. Se X è una varietà proiettiva allora $P_2: X \times Y \to Y$ (la proiezione) è una mappa chiusa $\forall Y$ VQP (Si dice che X è universalmente chiusa)
- 3. X proiettiva. $f: X \to Y$ morfismo. Allora f è una mappa chiusa
- 4. Se X è proiettiva e connessa, $f: X \to K$ è regolare allora f è costante.

Terza Parte: Geometria Birazionale

FUNZIONI RAZIONALI (PARZIALI)

X VQP. Una funzione razionale $f:X\to \operatorname{dash} K$ è una coppia (U,ϕ) con $U\neq\emptyset$ aperto di X e $\phi:U\to K$ regolare.

Se X è irriducibile, allora $K(X) = \{$ funzioni razionali su $X \}$ è un campo che estende K. Inoltre se X è affine ed irriducibile allora K(X) coincide con il campo delle frazioni di K[X]

Varie ed Eventuali

LA CUBICA GOBBA

Fonte inesauribile di patologie e di controesempi. $C = \{y - x^2 = z - xy = 0\} \subseteq \mathbb{A}^3$ che è anche il grafico di $f : \mathbb{A}^1 \to \mathbb{A}^2$ definita da $x \mapsto (x^2, x^3)$.