Caderno:

Probabilidades e Estatística E 22 de abril de 2017

1º teste (A) – Duração: 2h00

•	oleto:	Curso:			
				Assinale a resposta com uma o uma não resposta vale 0 valores.	
1. (a) A B C (b) A B C (c) A B C (d) A B C	2. D E (a) A B D E (b) A B D E (c) A B D E	3. C D E (a) A I C D E (b) A I	4. B C D E (a) C D E (b)	•	

1. O tempo de vida, em anos, de uma espécie particular de abetos é uma v.a. X com a seguinte função de distribuição:

$$F(x) = \begin{cases} 0, & \text{se } x < 0\\ 1 - e^{-0.025x}, & \text{se } x \ge 0 \end{cases}$$

(a) O valor de $P(10 \le X < 20)$ é: (1.0)

- (A) 0.148
- (B) 0.394
- (C) 0.221
- (D) 0.172
- (E) Nenhuma das outras opções

(b) A probabilidade de uma destas árvores durar mais de 50 anos, sabendo que já ultrapassou os 30 anos (1.0)

- (A) 0.287
- (B) 0.670
- (C) 0.607
- (D) 0.368
- (E) Nenhuma das outras opções

(1.0)(c) A mediana do tempo de vida, em anos, desta espécie de árvores é:

- (A) 0.5
- (B) 34.66
- (C) 27.73
- (D) 0
- (E) Nenhuma das outras opções

(d) Numa floresta com 150 abetos, a probabilidade de apenas 40 ultrapassarem os 50 anos de vida é: (1.0)

- (A) 0.063
- (B) 0.287
- (C) 0.048
- (D) 0.267
- (E) Nenhuma das outras opções

2. Considere a variável aleatória X com distribuição geométrica de parâmetro p (0 < p < 1).

(a) O valor médio da variável aleatória $Y=\frac{1-X}{2}$ é dado por: (A) $\frac{1-p}{p}$ (B) $\frac{p-1}{2p}$ (C) $\frac{2p-1}{2p}$ (D) $-\frac{1}{2p}$ (1.0)

- (E) Nenhuma das outras opções

(b) Sendo X_1 , X_2 duas variáveis aleatórias independentes e idênticamente distribuídas a X, o desvio (1.0)

(c) Considere agora que p = 0.4 é a probabilidade de um míssil terra-ar acertar num alvo e que (1.0)

X = número de mísseis terra-ar disparados até se acertar no alvo pela primeira vez.

Sabendo que foi necessário disparar mais de 2 mísseis terra-ar, para acertar num alvo, a probabilidade de ser necessário disparar entre 2 e 4 mísseis até ao primeiro acerto no alvo é:

- (A) 0.4704
- (B) 0.84
- (C) 0.3744
- (D) 0.64
- (E) Nenhuma das outras opções

Folha no

- 3. Um teste de diagnóstico tem probabilidade 0.95 de dar um resultado positivo quando aplicado a uma pessoa que sofre de uma determinada doença, e probabilidade 0.10 de dar um resultado positivo quando aplicado a uma pessoa que não sofre da mesma doença. Estima-se que 0.5% da população sofre dessa doença.
- (a) A probabilidade do resultado do teste ser positivo é: (1.0)

(A) 0.1425

(B) 0.0995

(C) 0.10425

(D) 0.00475

(E) Nenhuma das outras opções

(b) A probabilidade de, dado um resultado positivo, a pessoa sofrer da doença é: (1.0)

(A) 0.3333

(B) 0.0456

(C) 0.0003

(D) 0.0545

(E) Nenhuma das outras opções

(c) A probabilidade do teste de diagnóstico dar um resultado errado é: (1.0)

(A) 0.0998

(B) 0.0995

(C) 0.9003

(D) 0.0095

(E) Nenhuma das outras opções

(a) O acontecimento A ocorre com probabilidade 0.4 e o acontecimento B ocorre com probabilidade 0.5. (1.0) 4. Se A e B são acontecimentos disjuntos, a probabilidade de ambos não ocorrerem é:

(A) 0.1

(B) 0.3

(C) 0.7

(D) 0.9

(E) Nenhuma das outras opções

(1.0)(b) Num torneio de futebol, três equipas (designadas por A, B e C) jogam entre si uma única vez. Caso um jogo termine empatado, no final do tempo regulamentar, faz-se o desempate por grandes penalidades. Assuma que as probabilidades de A vencer B, A vencer C e B vencer C, são 0.6, 0.7 e 0.6, respetivamente. Assumindo que os resultados dos jogos são independentes, qual a probabilidade de todas as equipas ganharem um jogo no torneio?

(A) 0.24

(B) 0.252

(C) 0.22

(D) 0.168

(E) Nenhuma das outras opções

- 5. Seja X uma variável aleatória discreta tomando os valores -1 e 1, cada um com probabilidade 0.5. Seja Y outra variável aleatória, igual a 0 se X = -1 e igual a -2 ou 2, com igual probabilidade, se X = 1.
- (a) Apresente a função de probabilidade conjunta de (X, Y). (0.8)
- (b) Determine P(Y > X) e a covariância de (X, Y). (1.2)
- (c) As variáveis (X, Y) são independentes? Justifique. (1.0)
 - 6. Seja X uma variável aleatória com a seguinte função densidade de probabilidade:

$$f(x) = \begin{cases} \frac{3}{4}x^2, & 0 < x \le 1, \\ \frac{3}{4}, & 1 < x < 2, \\ 0, & \text{outros valores de } x; \end{cases}$$

- (a) Mostre que f(x) é uma função densidade de probabilidade. (1.0)
- (b) Determine a função de distribuição de X. (1.4)
- (c) Calcule P(X < 0.5 | X < 1). (1.4)
- (d) Calcule E(X) e E(Y), sendo Y = X 1. (1.2)

Formulário

Distribuição	$P\left(X=k\right)$	Suporte	Valor médio	Variância
$H\left(N,M,n\right)$	$\binom{M}{k} \binom{N-M}{n-k} / \binom{N}{n}$	$\max(0, M + n - N) \le k \le \min(M, n), \ k \in \mathbb{N}_0$	nM/N	$\frac{nM\left(N-M\right)\left(N-n\right)}{N^{2}\left(N-1\right)}$
$B\left(n,p\right)$	$\binom{n}{k} p^k \left(1 - p\right)^{n - k}$	$0 \le k \le n, \ k \in \mathbb{N}_0$	np	np(1-p)
$P(\lambda)$	$e^{-\lambda}\lambda^k/k!$	$k\in\mathbb{N}_0$	λ	λ
$G\left(p\right)$	$p\left(1-p\right)^{k-1}$	$k \in \mathbb{N}$	1/p	$(1-p)/p^2$
Distribuição	$f\left(x\right)$	Suporte	Valor médio	Variância
$U\left(a,b\right)$	$\frac{1}{b-a}$	$a < x < b, \ x \in \mathbb{R}$	(a+b)/2	$\left(b-a\right)^2/12$
$E\left(\lambda,\delta\right)$	$\frac{1}{\delta}e^{-(x-\lambda)/\delta}$	$x > \lambda, \ x \in \mathbb{R}$	$\lambda + \delta$	δ^2

PROBABILIDADES E ESTATÍSTICA E 22 de abril de 2017

1º teste (B) – Duração: 2h00

Nome completo:				
N.º aluno:	Curso:			
_		•	reta. Assinale a resposta com us ores e uma não resposta vale 0 valo	
1.	2.	3.	4.	
(a) A B C D E	(a) A B C D E	(a) A B C D E	(a) A B C D E	
(b) A B C D E	(b) A B C D E	(b) A B C D E	(b) A B C D E	
(c) A B C D E	(c) A B C D E	(c) A B C D E		
(d) A B C D E				

1. O tempo de vida, em anos, de uma espécie particular de abetos é uma v.a. X com a seguinte função de distribuição:

$$F(x) = \begin{cases} 0, & \text{se } x < 0\\ 1 - e^{-0.02x}, & \text{se } x \ge 0 \end{cases}$$

(D) 0.172

	()	()	(-)	()	()
(1.0)	(b) A probabilic é:	lade de uma desta	s árvores durar	mais de 50 anos	s, sabendo que já ultrapassou os 30 anos
	(A) 0.287	(B) 0.670	(C) 0.607	(D) 0.368	(E) Nenhuma das outras opções
(1.0)	(c) A mediana d	lo tempo de vida,	em anos, desta e	espécie de árvor	es é:
	(A) 0.5	(B) 34.66	(C) 27.73	(D) 0	(E) Nenhuma das outras opções
(1.0)	(d) Numa flores	ta com 150 abetos	s, a probabilidad	e de apenas 60	ultrapassarem os 50 anos de vida é:
	(A) 0.063	(B) 0.287	(C) 0.048	(D) 0.267	(E) Nenhuma das outras opções

(C) 0.221

- 2. Considere a variável aleatória X com distribuição geométrica de parâmetro p (0 < p < 1).
- (1.0) (a) O valor médio da variável aleatória $Y=1-\frac{X}{2}$ é dado por: (A) $\frac{1-p}{p}$ (B) $\frac{p-1}{2p}$ (C) $\frac{2p-1}{2p}$ (D) $-\frac{1}{2p}$ (E) Nenhuma das outras opções
- (1.0) (b) Sendo X_1 , X_2 duas variáveis aleatórias independentes e idênticamente distribuídas a X, a variância de $X_1 X_2$ é dada por:
 - (A) 0 (B) $\frac{p-1}{2p^2}$ (C) $\frac{\sqrt{2}\sqrt{1-p}}{p}$ (D) $\frac{2(1-p)}{p^2}$ (E) Nenhuma das outras opções
- (1.0) (c) Considere agora que p=0.6 é a probabilidade de um míssil terra-ar acertar num alvo e que

X = número de mísseis terra-ar disparados até se acertar no alvo pela primeira vez.

Sabendo que foi necessário disparar mais de 2 mísseis terra-ar, para acertar num alvo, a probabilidade de ser necessário disparar entre 2 e 4 mísseis até ao primeiro acerto no alvo é:

(A) 0.4704

(B) 0.84

(C) 0.3744

(D) 0.64

(E) Nenhuma das outras opções

(E) Nenhuma das outras opções

(a) O valor de $P(10 \le X < 20)$ é:

(B) 0.394

(A) 0.148

(1.0)

- 3. Um teste de diagnóstico tem probabilidade 0.95 de dar um resultado positivo quando aplicado a uma pessoa que sofre de uma determinada doença, e probabilidade 0.10 de dar um resultado positivo quando aplicado a uma pessoa que não sofre da mesma doença. Estima-se que 0.5% da população sofre dessa doença.
- (1.0) (a) A probabilidade do resultado do teste ser positivo é:

(A) 0.1425

(B) 0.0995

(C) 0.10425

(D) 0.00475

(E) Nenhuma das outras opções

(1.0) (b) A probabilidade de, dado um resultado positivo, a pessoa sofrer da doença é:

(A) 0.0003

(B) 0.0545

(C) 0.3333

(D) 0.0456

(E) Nenhuma das outras opções

(1.0) (c) A probabilidade do teste de diagnóstico não dar um resultado errado é:

(A) 0.0998

(B) 0.0995

(C) 0.9003

(D) 0.0095

(E) Nenhuma das outras opções

(1.0) 4. (a) O acontecimento A ocorre com probabilidade 0.2 e o acontecimento B ocorre com probabilidade 0.5. Se A e B são acontecimentos disjuntos, a probabilidade de ambos não ocorrerem é:

(A) 0.1

(B) 0.3

(C) 0.7

(D) 0.9

(E) Nenhuma das outras opções

(1.0) Num torneio de futebol, três equipas (designadas por A, B e C) jogam entre si uma única vez. Caso um jogo termine empatado, no final do tempo regulamentar, faz-se o desempate por grandes penalidades. Assuma que as probabilidades de A vencer B, A vencer C e B vencer C, são 0.6, 0.7 e 0.4, respetivamente. Assumindo que os resultados dos jogos são independentes, qual a probabilidade de todas as equipas ganharem um jogo no torneio?

(A) 0.24

(B) 0.252

(C) 0.22

(D) 0.168

(E) Nenhuma das outras opções

- 5. Seja X uma variável aleatória discreta tomando os valores -1 e 1, cada um com probabilidade 0.5. Seja Y outra variável aleatória, igual a 0 se X=-1 e igual a -2 ou 2, com igual probabilidade, se X=1.
- (0.8) (a) Apresente a função de probabilidade conjunta de (X, Y).
- (1.2) (b) Determine P(Y > X) e a covariância de (X, Y).
- (1.0) (c) As variáveis (X, Y) são independentes? Justifique.
 - 6. Seja X uma variável aleatória com a seguinte função densidade de probabilidade:

$$f(x) = \begin{cases} \frac{3}{4}x^2, & 0 < x \le 1, \\ \frac{3}{4}, & 1 < x < 2, \\ 0, & \text{outros valores de } x; \end{cases}$$

- (1.0) (a) Mostre que f(x) é uma função densidade de probabilidade.
- (1.4) (b) Determine a função de distribuição de X.
- (1.4) (c) Calcule P(X < 0.5 | X < 1).
- (1.2) (d) Calcule E(X) e E(Y), sendo Y = X 1.

Form	บไล์เ	nin
1 01 111	ula	···

Distribuição	$P\left(X=k\right)$	Suporte	Valor médio	Variância
$H\left(N,M,n\right)$	$\binom{M}{k} \binom{N-M}{n-k} / \binom{N}{n}$	$\max(0, M + n - N) \le k \le \min(M, n), \ k \in \mathbb{N}_0$	nM/N	$\frac{nM\left(N-M\right)\left(N-n\right)}{N^{2}\left(N-1\right)}$
$B\left(n,p\right)$	$\binom{n}{k} p^k \left(1 - p\right)^{n - k}$	$0 \le k \le n, \ k \in \mathbb{N}_0$	np	np(1-p)
$P(\lambda)$	$e^{-\lambda}\lambda^k/k!$	$k\in\mathbb{N}_0$	λ	λ
$G\left(p\right)$	$p\left(1-p\right)^{k-1}$	$k \in \mathbb{N}$	1/p	$(1-p)/p^2$
Distribuição	$f\left(x\right)$	Suporte	Valor médio	Variância
$U\left(a,b\right)$	$\frac{1}{b-a}$	$a < x < b, \ x \in \mathbb{R}$	(a+b)/2	$\left(b-a\right)^2/12$
$E\left(\lambda,\delta\right)$	$\frac{1}{\delta}e^{-(x-\lambda)/\delta}$	$x > \lambda, \ x \in \mathbb{R}$	$\lambda + \delta$	δ^2

Caderno:

PROBABILIDADES E ESTATÍSTICA E 24 de maio de 2017

2º teste (A) – Duração: 2h00

Nome completo:		
N.º aluno:	Curso: _	
1	•	das respostas está correta. Assinale a resposta com uma cruz no rreta desconta 0.2 valores e uma não resposta vale 0 valores.
(a) A B C D E (b) V F (c) V F (d) A B C D E	(a) A B C D E (b) A B C D E (c) A B C D E	(a) A B C D E (b) A B C D E (c) A B C D E (d) A B C D E (e) A B C D E (f) V F

1.	Admita que a intensidade da corrente elétrica num determinado componente electrónico, segue uma distribuição
	Normal. Escolheram-se aleatoriamente e de forma independente 20 componentes para os quais se observou
	uma média e desvio padrão amostrais de 10.43 e 1.98 Amperes, respectivamente.
	(a) O intervalo de confiança a 99% para a média populacional $(IC_{99\%}(\mu))$ é dado por:

- (1.5) (a) O intervalo de confiança a 99% para a média populacional $(IC_{99\%}(\mu))$ é dado por: (A) [9.66, 11.20] (B) [9.70, 11.16] (C) [9.29, 11.57] (D) [9.16, 11.70] (E) Nenhuma das outras opções
- (0.5) (b) Indique o valor lógico da seguinte proposição: Para a mesma amostra de dimensão 20, a amplitude do $IC_{90\%}(\mu)$ é maior ou igual do que a amplitude do $IC_{99\%}(\mu)$.
- (0.5) (c) Considere o intervalo com 99% de confiança para a média populacional, μ , pedido na alínea (a). Indique o valor lógico da seguinte proposição: A probabilidade da média populacional estar contida nesse intervalo de confiança é igual a 0.99.
- - 2. Considere as variáveis aleatórias $X \sim N(1,2^2)$ e $Y \sim N(2,3^2)$. Assumindo que as variáveis aleatórias X e Y são independentes, indique
- (1.2) (a) o valor de P(X > 3): (A) 0.8413 (B) 0.1587 (C) 0.3085 (D) 0.0013 (E) Nenhuma das outras opções
- $(1.2) \qquad \text{(b)} \ \ \text{o valor} \ y \ \text{tal que} \ P(Y \leq y) = 0.0228 : \\ (\text{A}) \ -4 \qquad (\text{B}) \ 4 \qquad (\text{C}) \ -1 \qquad \qquad \text{(D)} \ 1 \qquad \qquad \text{(E)} \ \text{Nenhuma das outras opções}$

3.	cime	-	sta empresa, foi		_	o feitas com atraso. De um grande forne- 100 encomendas, tendo-se apurado que 7	
(0.5)	(a)	A estimativa pontual da proporção de encomendas entregues com atraso é:					
		(A) 0.05	(B) 0.07	(C) 0.5	(D) 0.1	(E) Nenhuma das outras opções	
(0.5)	(b)	Para avaliar a $p > p_0$. O val	C	sportadora, van	nos considerar o	teste de hipóteses: $H_0: p \leq p_0 \ vs. \ H_1:$	
		(A) 0.05	(B) 0.07	(C) 0.5	(D) 0.1	(E) Nenhuma das outras opções	
(1.2)	(c)	O valor obser	vado da estatísti	ca de teste sobi	re a garantia da	empresa é:	

- (1.2) (d) Para o nível de 20% de significância, a região de rejeição do teste de hipóteses indicado na alínea (c) é (A) $]0.5793, \infty[$ (B) $]1.28, \infty[$ (C) $]-\infty, -1.28[\cup]1.28, \infty[$ (D) $]0.84, \infty[$ (E) Nenhuma das outras opções
- (1.2) (e) Com outra amostra de dimensão 36 obteve-se um valor observado da estatística de teste de -1.25. O *valor-p* do teste é: (A) 0.2112 (B) 0.8944 (C) 0.1056 (D) 0.05
- (0.5) (f) Indique o valor lógico: Se o teste de hipóteses apresentar um *valor-p* igual a 0.1336, rejeitamos a hipótese nula para o nível de significância de 14%.

[Responda nas folhas do caderno]

(E) Nenhuma das outras opções

(2.5) 4. A quantidade de energia gerada durante uma hora por um aerogerador, em Megawatt-hora (MWh), é uma variável aleatória X com valor médio $E(X)=\sqrt{\frac{\pi}{2}}$ e variância $V(X)=\frac{4-\pi}{2}$ ($\pi=3.1415$). Assuma que as quantidades de energia geradas pelo aerogerador, em horas distintas, são independentes. Determine a probabilidade aproximada do aerogerador produzir mais de 82 MWh, durante um período de 64 horas.

[Mude de folha]

5. Seja (X_1, X_2, \dots, X_n) uma amostra aleatória duma população com distribuição de Rayleight, isto é, com função densidade

$$f(x) = \frac{x}{\theta^2} e^{-\frac{1}{2}(\frac{x}{\theta})^2}, \quad x > 0,$$

sendo $\theta>0$ um parâmetro desconhecido. Sabe-se que $E(X)=\theta\sqrt{\frac{\pi}{2}}$ e $V(X)=\theta^2\left(\frac{4-\pi}{2}\right)$ $(\pi=3.1415)$.

- (1.5) (a) Determine o estimador dos momentos de θ e verifique se o estimador dos momentos é centrado e consistente.
- (1.0) (b) Verifique que a função log-verosimilhança é

$$l(\theta) = \ln L(\theta) = \sum_{i=1}^{n} \ln x_i - 2n \ln(\theta) - \frac{1}{2\theta^2} \sum_{i=1}^{n} x_i^2$$

- (1.0) (c) Determine o estimador de máxima verosimilhança de θ .
- (1.0) (d) Considere a amostra de dimensão n=6 desta população: 2.13 0.79 0.96 1.30 2.19 0.67. Determine o valor médio amostral, o desvio padrão amostral, o coeficiente de variação amostral e uma estimativa pontual do parâmetro θ .

Caderno:

Probabilidades e Estatística E 24 de maio de 2017

2º teste (B) – Duração: 2h00

Nome completo:						-					
1 0	Nas alíneas das perguntas 1–3 apenas uma das respostas está correta. Assinale a resposta com uma cruz no quadrado correspondente. Uma resposta incorreta desconta 0.2 valores e uma não resposta vale 0 valores.										
1 2.	3	•									
$(a) A B C D E \qquad (a)$	$\mathbf{a}) \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \qquad (\mathbf{a})$	ı) A I	3 C	D) E						
(b) A B C D E (l	(b) A I	3 C	D) E						
(c) A B C D E (d	c) V F (0	c) A I	3 C	D	<u>je</u>						
	d) A B C D E (d	i) A I	3 C	D	JE						
	(6	e) A I	3 C	D	JE						
	(1	f) V I	?								

1.	Considere as variáveis aleatórias $X \sim N(1, 2^2)$ e $Y \sim N(2, 3^2)$. Assumindo que as variáveis aleatórias	s X
	e Y são independentes, indique	

- (a) o valor de $P(X \le 3)$: (1.2)
 - (A) 0.8413
- (B) 0.1587
- (C) 0.3085
- (D) 0.0013
- (E) Nenhuma das outras opções

- (b) o valor y tal que $P(Y \le y) = 0.1586$: (1.2)
 - (A) -4
- (B) 4
- (C) -1
- (D) 1
- (E) Nenhuma das outras opções

- (c) a distribuição de 3X Y: (1.5)
 - (A) N(1,27) (B) N(1,45) (C) N(5,27)
- (D) N(5,45)
 - (E) Nenhuma das outras opções
- 2. Admita que a intensidade da corrente elétrica num determinado componente electrónico, segue uma distribuição Normal. Escolheram-se aleatoriamente e de forma independente 20 componentes para os quais se observou uma média e desvio padrão amostrais de 10.43 e 1.98 Amperes, respectivamente.
- (a) O intervalo de confiança a 90% para a média populacional $(IC_{90\%}(\mu))$ é dado por: (1.5)
 - (A) [9.66, 11.20]
- (B) [9.70, 11.16]
- (C) [9.29, 11.57]
- (D) [9.16, 11.70]

- (E) Nenhuma das outras opções
- (b) Indique o valor lógico da seguinte proposição: Para a mesma amostra de dimensão 20, a amplitude do (0.5) $IC_{90\%}(\mu)$ é menor ou igual do que a amplitude do $IC_{99\%}(\mu)$.
- (c) Considere o intervalo com 90% de confiança para a média populacional, μ, pedido na alínea (a). (0.5)Indique o valor lógico da seguinte proposição: A probabilidade da média populacional estar contida nesse intervalo de confiança é igual a 0.90.
- (d) O intervalo de confiança a 90% para a variância populacional é dado por: (1.5)
 - (A) [1.39, 3.30]
- (B) [1.57, 2.72]
- (C) [1.93, 10.89]
- (D) [2.47, 7.38]

(E) Nenhuma das outras opções

3.	cime	•	sta empresa, foi		•	feitas com atraso. De um grande forne- 00 encomendas, tendo-se apurado que 7
(0.5)	(a)			orção de encome	•	
		(A) 0.05	(B) 0.07	(C) 0.5	(D) 0.1	(E) Nenhuma das outras opções
(0.5)	(b)	Para avaliar a $p > p_0$. O val	C	sportadora, vamo	os considerar o t	teste de hipóteses: $H_0: p \leq p_0 \ vs. \ H_1:$
		(A) 0.05	(B) 0.07	(C) 0.5	(D) 0.1	(E) Nenhuma das outras opções
(1.2)	(c)			ca de teste sobre	•	mpresa é:

(1.2)(B) -0.7839 (C) 0.7839(D) 0.9177 (E) Nenhuma das outras opções (A) -0.9177

(d) Para o nível de 10% de significância, a região de rejeição do teste de hipóteses indicado na alínea (c) é (1.2)(A) $]0.5398, \infty[$ (C) $]-\infty, -1.28[\cup]1.28, \infty[$ (B) $]1.28, \infty[$ (D) $]0.84, \infty[$ (E) Nenhuma das outras opções

(e) Com outra amostra de dimensão 36 obteve-se um valor observado da estatística de teste de 1.25. O (1.2)valor-p do teste é:

(B) 0.8944 (C) 0.1056 (D) 0.05(A) 0.2112 (E) Nenhuma das outras opções

(f) Indique o valor lógico: Se o teste de hipóteses apresentar um valor-p igual a 0.1336, rejeitamos a (0.5)hipótese nula para o nível de significância de 10%.

[Responda nas folhas do caderno]

(2.5) 4. A quantidade de energia gerada durante uma hora por um aerogerador, em Megawatt-hora (MWh), é uma variável aleatória X com valor médio $E(X)=\sqrt{\frac{\pi}{2}}$ e variância $V(X)=\frac{4-\pi}{2}$ ($\pi=3.1415$). Assuma que as quantidades de energia geradas pelo aerogerador, em horas distintas, são independentes. Determine a probabilidade aproximada do aerogerador produzir mais de 82 MWh, durante um período de 64 horas.

[Mude de folha]

5. Seja (X_1, X_2, \dots, X_n) uma amostra aleatória duma população com distribuição de Rayleight, isto é, com função densidade

$$f(x) = \frac{x}{\theta^2} e^{-\frac{1}{2}(\frac{x}{\theta})^2}, \quad x > 0,$$

sendo $\theta > 0$ um parâmetro desconhecido. Sabe-se que $E(X) = \theta \sqrt{\frac{\pi}{2}}$ e $V(X) = \theta^2 \left(\frac{4-\pi}{2}\right)$ $(\pi = 3.1415)$.

(a) Determine o estimador dos momentos de θ e verifique se o estimador dos momentos é centrado e (1.5)consistente.

(b) Verifique que a função log-verosimilhança é (1.0)

$$l(\theta) = \ln L(\theta) = \sum_{i=1}^{n} \ln x_i - 2n \ln(\theta) - \frac{1}{2\theta^2} \sum_{i=1}^{n} x_i^2$$

(c) Determine o estimador de máxima verosimilhança de θ . (1.0)

(d) Considere a amostra de dimensão n=6 desta população: 2.13 0.79 0.96 1.30 2.19 0.67. (1.0)Determine o valor médio amostral, o desvio padrão amostral, o coeficiente de variação amostral e uma estimativa pontual do parâmetro θ .

PROBABILIDADES E ESTATÍSTICA E 7 de junho de 2017

3º teste (A) – Duração: 1h30

Nome completo:									
N.º aluno:	Curso:								
Nas alíneas das perguntas 1 e 2 apenas uma das respostas está correta. Assinale a resposta com uma cruz no quadrado correspondente. Uma resposta incorreta desconta 0.2 valores e uma não resposta vale 0 valores.									
1.	2.								
(a) A B C D									
(b) A B C D E	(b) A B C D E								
(c) A B C D E	(c) A B C D E								
(d) A B C D E	(d) A B C D E								
(e) V F	(e) A B C D E								
	(f) V F								

1. Considere o número de utilizadores ligados à internet através de um servidor, durante um período de um minuto. Na seguinte tabela apresentamos os valores registados nos primeiros n=30 minutos. Pretende-se testar a aleatoriedade usando o teste das sequências ascendentes e descendentes.

88	84	85	85	84	85	83	85	88	89	91	99	104	112	126
138	146	151	150	148	147	149	143	132	131	139	147	150	148	145

- (1.0) (a) A hipótese nula (H_0) do teste das sequências ascendentes e descendentes é:
 - (A) A amostra exibe tendência.
- (B) A amostra não é aleatória.
- (C) A amostra é aleatória.
- (D) O número de sequências é igual a $\frac{2n-1}{3}$.
- (1.0) (b) O número de sequências observadas na correspondente amostra de sinais é
 - (A) 10
- (B) 11
- (C) 12
- (D) 13
- (E) Nenhuma das outras opções
- (1.0) (c) Para um nível de significância de 2%, a região de rejeição do teste é:
 - (A) $]-\infty$; $-2.05[\cup]2.05$; $\infty[$
- (B) $]-\infty$; $-2.33[\cup]2.33$; $\infty[$
- (C) $]2.05; \infty[$

(D)]1.75; $\infty[$

- (E) Nenhuma das outras opções
- (1.5) (d) Outra amostra de igual dimensão forneceu um valor observado da estatística de teste $z_{obs} = -1.23$. O valor-p do teste das sequências ascendentes e descendentes é:
 - (A) 0.0129
- (B) 0.0258
- (C) 0.1093
- (D) 0.2186
- (E) Nenhuma das outras opções
- (1.0) (e) Indique o valor lógico da seguinte proposição: Para um valor observado da estatística de teste igual a -1.23 deve-se rejeitar a hipótese de aleatoriedade da amostra, a um nível de significância de 2%.

2. Considere a amostra do exercício anterior. Pretende-se testar a hipótese do número de utilizadores ligados à internet através de um servidor ter distribuição normal de valor médio 120 e variância 784. Os dados foram organizados nas classes apresentadas no quadro abaixo. O quadro também tem algumas frequências observadas e algumas probabilidades de X pertencer à classe i, supondo verdadeira a hipótese a testar (p_i) .

\overline{i}	Classe i	Freq. observada	$\overline{p_i}$
1	$]-\infty,95]$	11	0.1867
2]95, 115]	3	p_2
3]115, 130]	o_3	0.2120
4]130, 145]	o_4	p_4
5	$]145,\infty[$	9	0.1867

(1.5) (a) O valor de p_2 é aproximadamente igual a

(A) 0.1000

(B) 0.1727

(C) 0.2073

(D) 0.2419

(E) Nenhuma das outras opções

(0.5) (b) O valor de o_4 é igual a

(A) 1

(B) 3

(C)5

(D) 7

(B)]9.49; ∞

(E) Nenhuma das outras opções

(1.5) (c) O valor observado da estatística de teste é aproximadamente igual a

(A) 13.5

(B) 14.4

(C) 15.3

(D) 16.0

(E) Nenhuma das outras opções

(1.0) (d) Para o nível de significância de 5%, a região crítica do teste é:

(A) $[0; 0.484] \cup]11.1; \infty[$

(C) $]7.78; \infty[$

(D) $[0; 0.711] \cup [9.49; \infty]$

(E) Nenhuma das outras opções

(1.5) (e) Supondo que o valor observado da estatística de teste é $x_{obs}^2=11.1$, o valor-p é aproximadamente igual a

(A) 0.01

(B) 0.025

(C) 0.05

(D) 0.1

(E) Nenhuma das outras opções

(1.0) (f) Indique o valor lógico da seguinte proposição: Se $x_{obs}^2=11.1$, então rejeito a hipótese nula, ao nível de significância 5%.

[Responda nas folhas do caderno]

3. Pretende-se estudar a relação existente entre o rendimento de uma reacção química (y) e a temperatura do laboratório onde se realiza a experiência (x). Registaram-se os seguintes valores:

$$\sum x_i = 132 \qquad \sum x_i^2 = 2188 \qquad \sum y_i = 684 \qquad \sum y_i^2 = 58616$$

(1.5) (a) Estime os parâmetros β_0 , β_1 e σ^2 do modelo de regressão linear simples de y sobre x.

(2.5) (b) Podemos afirmar que o declive da recta de regressão é positivo? Fundamente a responda fazendo um teste de hipóteses adequado, ao nível de 10% de significância.

(2.5) (c) Deduza e calcule o intervalo de 95% de confiança para σ^2 .

(1.0) (d) Calcule o coeficiente de determinação e comente o valor obtido.

Caderno:

PROBABILIDADES E ESTATÍSTICA E 7 de junho de 2017

3º teste (B) – Duração: 1h30

Nome completo:									
N.º aluno:	Curso:								
	Nas alíneas das perguntas 1 e 2 apenas uma das respostas está correta. Assinale a resposta com uma cruz no quadrado correspondente. Uma resposta incorreta desconta 0.2 valores e uma não resposta vale 0 valores.								
1.	2.								
(a) A B C D									
(b) A B C D E	(b) A B C D E								
(c) A B C D E									
(d) A B C D E	(d) A B C D E								
(e) V F	(e) A B C D E								
	(f) V F								

1. Considere o número de utilizadores ligados à internet através de um servidor, durante um período de um minuto. Na seguinte tabela apresentamos os valores registados nos primeiros n=30 minutos. Pretende-se testar a aleatoriedade usando o teste das sequências ascendentes e descendentes.

88	84	85	85	84	85	83	85	88	89	91	99	104	112	126
138	146	151	150	148	147	149	143	132	131	139	147	150	148	151

- (1.0) (a) A hipótese nula (H_0) do teste das sequências ascendentes e descendentes é:
 - (A) A amostra exibe tendência.
- (B) A amostra é aleatória.
- (C) A amostra não é aleatória.
- (D) O número de sequências é igual a $\frac{2n-1}{3}$.
- (1.0) (b) O número de sequências observadas na correspondente amostra de sinais é
 - (A) 10
- (B) 11
- (C) 12
- (D) 13
- (E) Nenhuma das outras opções
- (1.0) (c) Para um nível de significância de 4%, a região de rejeição do teste é:
 - (A) $]-\infty$; $-2.05[\cup]2.05$; $\infty[$
- (B) $]-\infty$; $-2.33[\cup]2.33$; $\infty[$
- (C) $]2.05; \infty[$

(D)]1.75; $\infty[$

- (E) Nenhuma das outras opções
- (1.5) (d) Outra amostra de igual dimensão forneceu um valor observado da estatística de teste $z_{obs} = -2.23$. O valor-p do teste das sequências ascendentes e descendentes é:
 - (A) 0.0129
- (B) 0.0258
- (C) 0.1093
- (D) 0.2186
- (E) Nenhuma das outras opções
- (1.0) (e) Indique o valor lógico da seguinte proposição: Para um valor observado da estatística de teste igual a -2.23 deve-se rejeitar a hipótese de aleatoriedade da amostra, a um nível de significância de 4%.

2. Considere a amostra do exercício anterior. Pretende-se testar a hipótese do número de utilizadores ligados à internet através de um servidor ter distribuição normal de valor médio 120 e variância 784. Os dados foram organizados nas classes apresentadas no quadro abaixo. O quadro também tem algumas frequências observadas e algumas probabilidades de X pertencer à classe i, supondo verdadeira a hipótese a testar (p_i) .

\overline{i}	Classe i	Freq. observada	$\overline{p_i}$
1	$]-\infty,95]$	11	0.1867
2]95, 110]	2	p_2
3]110, 125]	o_3	0.2120
4]125, 145]	o_4	p_4
5	$]145,\infty[$	10	0.1867

(a) O valor de p_2 é aproximadamente igual a (1.5)

(A) 0.1000

(B) 0.1727

(C) 0.2073

(D) 0.2419

(E) Nenhuma das outras opções

(b) O valor de o_4 é igual a (0.5)

(A) 1

(B)3

(C)5

(D) 7

(E) Nenhuma das outras opções

(c) O valor observado da estatística de teste é aproximadamente igual a (1.5)

(A) 13.5

(B) 14.4

(C) 15.3

(D) 16.0

(E) Nenhuma das outras opções

(d) Para o nível de significância de 10%, a região crítica do teste é: (1.0)

(A) $[0; 0.484] \cup]11.1; \infty[$

(B)]9.49; ∞

(C)]7.78; $\infty[$

(D) $[0; 0.711] \cup]9.49; \infty[$

(E) Nenhuma das outras opções

(e) Supondo que o valor observado da estatística de teste é $x_{obs}^2 = 13.3$, o valor-p é aproximadamente (1.5)igual a

(A) 0.01

(B) 0.025

(C) 0.05

(D) 0.1

(E) Nenhuma das outras opções

(f) Indique o valor lógico da seguinte proposição: Se $x_{obs}^2=13.3$, então rejeito a hipótese nula, ao nível (1.0)de significância 10%.

[Responda nas folhas do caderno]

3. Pretende-se estudar a relação existente entre o rendimento de uma reacção química (y) e a temperatura do laboratório onde se realiza a experiência (x). Registaram-se os seguintes valores:

$$\sum x_i = 132 \qquad \sum x_i^2 = 2188 \qquad \sum y_i = 684 \qquad \sum y_i^2 = 58616$$

(a) Estime os parâmetros β_0 , β_1 e σ^2 do modelo de regressão linear simples de y sobre x. (1.5)

(b) Podemos afirmar que o declive da recta de regressão é positivo? Fundamente a responda fazendo um (2.5)teste de hipóteses adequado, ao nível de 10% de significância.

(c) Deduza e calcule o intervalo de 95% de confiança para σ^2 . (2.5)

(d) Calcule o coeficiente de determinação e comente o valor obtido. (1.0)

Caderno:

PROBABILIDADES E ESTATÍSTICA E 23 de junho de 2017

Exame (A) – Duração: 2h30

Nome completo:	Curso: _		
	•	3. (a) A B C D E (b) A B C D E	eta. Assinale a resposta com uma cruz no es e uma não resposta vale 0 valores. 4. (a) A B C D E (b) A B C D E
	(c) A B C D E (d) A B C D E	(c) A B C D E (d) A B C D E	
de um falso	positivo (resultado po	sitivo quando aplicado	em Portugal. Suponha que a probabilidade a uma pessoa que não sofre da doença) no de de um falso negativo (resultado negativo)

(1.2)	1.	(a)	de um falso po teste de sangue quando aplicad	sitivo (resultado para a gripe so o a uma pessoa	do positivo quan uína é 2% e que a a que sofre da doc	do aplicado a ur a probabilidade d ença) é 0. Se o te	Portugal. Suponha que a probabilidade na pessoa que não sofre da doença) no de um falso negativo (resultado negativo ste de sangue duma pessoa deu positivo,
			(A) 0.005	(B) 0.05	pessoa ter gripe s (C) 0.02	(D) 0.0001	(E) Nenhuma das anteriores
(1.0)		(b)	Se $A \cup B$ é o a	contecimento	certo, a probabili	dade de ocorrere	mento B ocorre com probabilidade 0.5 .
			(A) 0.2	(B) 0.3	(C) 0.35	(D) 0.4	(E) Nenhuma das anteriores
		distri	ibuição normal o	e desvio padrã	•	O aluno cronom	aculdade, é uma variável aleatória com netrou os trajetos de 10 dias, escolhidos
				43, 33,	35, 37, 39), 43, 55,	40, 37, 42

(a) Se o aluno pretender que a amplitude do intervalo com nível de confiança 95% para o tempo médio do (1.2)trajeto não exceda os 2 minutos, deverá cronometrar os tempos de trajetos em:

(A) pelo menos 139 dias

(B) pelo menos 102 dias

(C) pelo menos 97 dias

(D) pelo menos 145 dias

(E) Nenhuma das anteriores

(b) Suponha que pretende testar a hipótese de que o tempo médio do trajeto difere de 40 minutos. Con-(0.6)siderando um dos testes de hipóteses estudados nesta disciplina, indique qual a hipóteses nula (H_0) e qual a hipótese alternativa (H_1) a considerar:

(A) H_0 : $\bar{x} \neq 40$ vs. H_1 : $\bar{x} = 40$

(B) H_0 : $\bar{x} = 40$ vs. H_1 : $\bar{x} \neq 40$

(C) H_0 : $\mu \neq 40$ vs. H_1 : $\mu = 40$

(D) H_0 : $\mu = 40$ vs. H_1 : $\mu \neq 40$

(1.0)(c) Suponha que pretende testar a hipótese de que o tempo médio do trajeto difere de 40 minutos, a um nível de significância de 5%. O *valor-p* associado a este teste de hipóteses é:

(A) 0.8336

(B) 0.5832

(C) 0.4168

(D) 0.05

(E) Nenhuma das anteriores

(d) Se for desconhecida a variância do tempo do trajeto, a estimativa por intervalo de 99% de confiança (1.2)para o tempo médio do trajeto é

(A) [33.76; 47.04]

(B) [34.10; 46.70]

(C) [35.42; 45.38]

(D) [34.23; 46.57]

(E) Nenhuma das anteriores

(1.0) 3.	(a) Os clientes chegam a uma loja, de acordo com uma distribuição de Poisson de valor médio 2, a 15 minutos. A probabilidade de entrarem 5 clientes, durante 30 minutos, é										
		(A) 0.036	(B) 0.156	(C) 0.180	(D) 0.195	(E) Nenhuma das outras opções					
(1.0)	(b)	Um carro vai	fazer um percur	so com 4 semáfo	oros. Os semáfo	ros funcionam de modo independente e,					

- em cada um, a probabilidade do carro parar é 0.4. A probabilidade do carro só parar uma vez nesse percurso é:

 (A) 0.038 (B) 0.154 (C) 0.086 (D) 0.346 (E) Nenhuma das outras opções
- (1.2) (c) Seja Y uma variável aleatória discreta com suporte $D=\{-4,1,c\},\ c\in\mathbb{R}.$ Se P(Y=-4)=P(Y=c)=E(Y)=0.2, então c tem valor: (A) 2 (B) 1 (C) 0 (D) 4 (E) 3
- (1.2) (d) Seja X uma variável aleatória com distribuição normal com valor médio e variância iguais a 34 e 64, respectivamente. A probabilidade de X ser menor ou igual a 26 é (A) 0.8413 (B) 0.4503 (C) 0.5497 (D) 0.1587 (E) Nenhuma das outras opções
 - 4. Pretende-se estudar a relação existente entre o rendimento de uma reacção química (y) e a temperatura do laboratório onde se realiza a experiência (x). Registaram-se os seguintes valores:

- (1.0) (a) O coeficiente de determinação pertence ao intervalo (A) [0.8; 0.9] (B) [0.9; 0.925] (C) [0.925; 0.95] (D) [0.95; 0.975] (E) [0.975; 1]
- (1.0) (b) A estimativa pontual do declive da reta de regressão é: $(A)-10.6 \qquad (B)\ 0 \qquad (C)\ 1.033 \qquad (D)\ 3.4 \qquad (E)\ Nenhuma das outras opções$
 - 5. Considere uma população com distribuição dada pela função densidade de probabilidade,

$$f(x) = \left\{ \begin{array}{ll} \frac{1-x}{2}, & -1 < x < 1, \\ 0, & \text{outros valores de } x; \end{array} \right.$$

- (2.0) (a) Determine o valor médio e a variância de X e de Y=1-X.
- (1.5) (b) Calcule P(X < 0.5 | X > 0).
 - 6. Os dados da tabela abaixo dizem respeito ao número de dias de espera até se observar um dia de negociação positiva na bolsa de valores americana Standard & Poor's 500 (S&P500) durante os anos de 1990 2011.

NT/ 1 1'	1			- 4				
Número de dias								
Frequência	1532	760	338	194	74	33	17	(Total=2948)

- (2.5) (a) Teste, ao nível de significância de 5%, a hipótese do número de dias de espera, até à ocorrência do primeiro dia de negociação positiva seguir uma distribuição geométrica com parâmetro igual a 0.5. Admitindo válida a hipótese nula, temos: $P(X=1)=0.5000, \quad P(X=2)=0.2500, \quad P(X=3)=0.1250, \quad P(X=4)=0.0625, \quad P(X=5)=0.0312, \quad P(X=6)=0.0156, \quad P(X=7)=0.0078$
- (1.0) (b) Independentemente do resultado da alínea (a), assuma que a população tem distribuição geométrica com parâmetro p desconhecido. Verifique que o estimador da máxima verosimilhança do parâmetro p é dado por $\hat{p} = n/\sum_{i=1}^{n} X_i$.
- (0.4) (c) Utilizando os dados apresentados na tabela, estime o parâmetro p através do estimador de máxima verosimilhança.

Caderno:
Cadel 110

PROBABILIDADES E ESTATÍSTICA E 23 de junho de 2017

Exame (B) - Duração: 2h30

Nome completo: N.º aluno:			
	•	•	eta. Assinale a resposta com uma cruz no es e uma não resposta vale 0 valores.
1. (a) A B C D E (b) A B C D (c) A B C D E (d) A B C D E	2. (a) A B C D E (b) A B C D E	3. (a) A B C D E (b) A B C D E	4. (a) A B C D E (b) A B C D E (c) A B C D E (d) A B C D E

1.	O tempo que um aluno demora a fazer o trajeto de casa para a faculdade, é uma variável aleatória com
	distribuição normal e desvio padrão igual a 6 min. O aluno cronometrou os trajetos de 10 dias, escolhidos
	ao acaso, e obteve a seguinte amostra (em minutos):

43, 33, 35, 37, 39, 43, 55, 40, 37, 42

(1.2) (a) Se o aluno pretender que a amplitude do intervalo com nível de confiança 95% para o tempo médio do trajeto não exceda os 2 minutos, deverá cronometrar os tempos de trajetos em:

- (A) pelo menos 145 dias
- (B) pelo menos 102 dias
- (C) pelo menos 97 dias

- (D) pelo menos 139 dias
- (E) Nenhuma das anteriores

(0.6) Suponha que pretende testar a hipótese de que o tempo médio do trajeto difere de 40 minutos. Considerando um dos testes de hipóteses estudados nesta disciplina, indique qual a hipóteses nula (H_0) e qual a hipótese alternativa (H_1) a considerar:

- (A) H_0 : $\mu \neq 40$ vs. H_1 : $\mu = 40$
- (B) H_0 : $\mu = 40$ vs. H_1 : $\mu \neq 40$
- (C) H_0 : $\bar{x} \neq 40$ vs. H_1 : $\bar{x} = 40$
- (D) H_0 : $\bar{x} = 40$ vs. H_1 : $\bar{x} \neq 40$

(1.0) (c) Suponha que pretende testar a hipótese de que o tempo médio do trajeto difere de 40 minutos, a um nível de significância de 5%. O *valor-p* associado a este teste de hipóteses é:

- (A) 0.8336
- (B) 0.5832
- (C) 0.4168
- (D) 0.05
- (E) Nenhuma das anteriores

(1.2) (d) Se for desconhecida a variância do tempo do trajeto, a estimativa por intervalo de 99% de confiança para o tempo médio do trajeto é

- (A) [33.76; 47.04]
- (B) [35.42; 45.38]
- (C) [34.10; 46.70]

- (D) [34.23; 46.57]
- (E) Nenhuma das anteriores

(1.2) 2. (a) Sabe-se que a gripe suína afeta 1 em cada 10 000 pessoas em Portugal. Suponha que a probabilidade de um falso positivo (resultado positivo quando aplicado a uma pessoa que não sofre da doença) no teste de sangue para a gripe suína é 2% e que a probabilidade de um falso negativo (resultado negativo quando aplicado a uma pessoa que sofre da doença) é 0. Se o teste de sangue duma pessoa deu positivo, qual é a probabilidade dessa pessoa ter gripe suína?

- (A) 0.005
- (B) 0.05
- (C) 0.02
- (D) 0.0001
- (E) Nenhuma das anteriores

(1.0) (b) O acontecimento A ocorre com probabilidade 0.7 e o acontecimento B ocorre com probabilidade 0.5. Se $A \cup B$ é o acontecimento certo, a probabilidade de ocorrerem ambos os acontecimentos é:

- (A) 0.2
- (B) 0.3
- (C) 0.35
- (D) 0.4
- (E) Nenhuma das anteriores

3. Pretende-se estudar a relação existente entre o rendimento de uma reacção química (y) e a temperatura do laboratório onde se realiza a experiência (x). Registaram-se os seguintes valores:

temperatura	15	16	17	18	15	16	17	18
rendimento	42	44	48	51	41	45	46	50

(a) O coeficiente de determinação pertence ao intervalo (1.0)

(A) [0.8; 0.9]

(B) [0.9; 0.925]

(C) [0.925; 0.95]

(D) [0.95; 0.975]

(E) [0.975; 1]

(b) A estimativa pontual do declive da reta de regressão é: (1.0)

(A) -2.8

(B)0

(C) 0.801

(D) 2.95

(E) Nenhuma das outras opções

(1.0) 4. (a) Os clientes chegam a uma loja, de acordo com uma distribuição de Poisson de valor médio 2, a cada 15 minutos. A probabilidade de entrarem 3 clientes, durante 30 minutos, é

(A) 0.036

(B) 0.156

(C) 0.180

(D) 0.195

(E) Nenhuma das outras opções

(b) Um carro vai fazer um percurso com 4 semáforos. Os semáforos funcionam de modo independente e, (1.0)em cada um, a probabilidade do carro parar é 0.6. A probabilidade do carro só parar uma vez nesse percurso é:

(A) 0.038

(B) 0.154

(C) 0.086

(D) 0.346

(E) Nenhuma das outras opções

(c) Seja Y uma variável aleatória discreta com suporte $D = \{-4, 1, c\}, c \in \mathbb{R}$. Se P(Y = -4) =(1.2)P(Y=c) = 0.2 e E(Y) = 0.6, então c tem valor:

(A) 2

(B) 1

(C) 0

(D)4

(E)3

(d) Seja X uma variável aleatória com distribuição normal com valor médio e variância iguais a 34 e 64, (1.2)respectivamente. A probabilidade de X ser menor ou igual a 26 é

(A) 0.8413

(B) 0.4503

(C) 0.5497

(D) 0.1587

(E) Nenhuma das outras opções

5. Considere uma população com distribuição dada pela função densidade de probabilidade,

$$f(x) = \left\{ \begin{array}{ll} \frac{1-x}{2}, & -1 < x < 1, \\ 0, & \text{outros valores de } x; \end{array} \right.$$

- (a) Determine o valor médio e a variância de X e de Y=1(2.0)
- (b) Calcule P(X < 0.5 | X > 0). (1.5)

6. Os dados da tabela abaixo dizem respeito ao número de dias de espera até se observar um dia de negociação positiva na bolsa de valores americana Standard & Poor's 500 (S&P500) durante os anos de 1990 – 2011.

Número de dias	1	2	3	4	5	6	7	
Frequência	1532	760	338	194	74	33	17	(Total=2948)

(a) Teste, ao nível de significância de 5%, a hipótese do número de dias de espera, até à ocorrência do (2.5)primeiro dia de negociação positiva seguir uma distribuição geométrica com parâmetro igual a 0.5. Admitindo válida a hipótese nula, temos: P(X=1)=0.5000, P(X=2)=0.2500, P(X=3)=0.2500P(X=4) = 0.0625, P(X=5) = 0.0312, P(X=6) = 0.0156, P(X=7) = 0.0078

(1.0)(b) Independentemente do resultado da alínea (a), assuma que a população tem distribuição geométrica com parâmetro p desconhecido. Verifique que o estimador da máxima verosimilhança do parâmetro pé dado por $\hat{p} = n / \sum_{i=1}^{n} X_i$.

(c) Utilizando os dados apresentados na tabela, estime o parâmetro p através do estimador de máxima (0.4)verosimilhança.