Linear Models - Regression

Ananthan Ambikairajah

27 February, 2020

Common statistical tests are linear models

See worked examples and more details at the accompanying notebook: https://lindeloey.github.io/tests-as-linear

	Common name	Built-in function in R	Equivalent linear model in R	Exact?	The linear model in words	Icon						
(x +	y is independent of x P: One-sample t-test N: Wilcoxon signed-rank	Ltest(y) wilcox.test(y)	Im(y ~ 1) Im(signed_rank(y) ~ 1)	√ for N >14	One number (intercept, i.e., the mean) predicts y. - (Same, but it predicts the signed rank of y.)) }						
: Im(y ~ 1	P: Paired-sample t-test N: Wilcoxon matched pairs	t.test(y ₁ , y ₂ , paired=TRUE) wilcox.test(y ₁ , y ₂ , paired=TRUE)	$\begin{array}{l} Im(y_2-y_1\sim 1)\\ Im(signed_rank(y_2-y_1)\sim 1) \end{array}$	f <u>or N ≥14</u>	One intercept predicts the pairwise $\mathbf{y}_{\mathbf{z}^{\mathbf{y}_{1}}}$ differences. - (Same, but it predicts the signed rank of $\mathbf{y}_{\mathbf{z}^{\mathbf{y}_{1}}}$)	Z →						
Simple regression:	y ~ continuous x P: Pearson correlation N: Spearman correlation	cor.test(x, y, method='Pearson') cor.test(x, y, method='Spearman')	Im(y ~ 1 + x) Im(rank(y) ~ 1 + rank(x))	for N >10	One intercept plus x multiplied by a number (slope) predicts y . - (Same, but with ranked x and y)	نعليسر						
	y ~ discrete x P: Two-sample t-test P: Welch's t-test N: Mann-Whitney U	Ltest(y ₁ , y ₂ , var.equal=TRUE) Ltest(y ₁ , y ₂ , var.equal=FALSE) wilcox.test(y ₁ , y ₂)	$Im(y\sim 1+G_2)^4$ gls(y ~ 1+G ₂ , weights= ⁸) ^A Im(signed_rank(y) ~ 1+G ₂) ⁴	√ for.N.≥11	An intercept for group 1 (plus a difference if group 2) predicts y. - (Same, but with one variance per group instead of one common.) - (Same, but it predicts the signed rank of y.)	*						
Multiple regression: Im(y ~ 1 + x ₁ + x ₂ +)	P: One-way ANOVA N: Kruskal-Wallis	aov(y ~ group) kruskal.test(y ~ group)	$\begin{split} & Im(y \sim 1 + G_2 + G_3 + + G_N)^A \\ & Im(rank(y) \sim 1 + G_2 + G_3 + + G_N)^A \end{split}$	for N ≥11	An intercept for group 1 (plus a difference if group × 1) predicts y . - (Same, but it predicts the <i>rank</i> of y .)	i , t i						
	P: One-way ANCOVA	aov(y ~ group + x)	$Im(y \sim 1 + G_2 + G_3 + + G_N + x)^A$	~	(Same, but plus a slope on x.) Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x.	-						
	P: Two-way ANOVA	aov(y ~ group * sex)	$\begin{aligned} & Im(y-1+G_2+G_3++G_N+\\ & S_2+S_3*+S_K+\\ & G_2*S_2+G_3*S_3++G_N*S_K) \end{aligned}$	*	Interaction term: changing sex changes the y – group parameters. Note: Gh _x = is an <u>indicate.</u> (D _x = I) for each non-intercept levels of the group variable. Similarly for Si _x = for sex. The first line (with G) is man effect of group, the escond (with S) for sex and the third is the group × sex interaction. For the levels (e.g. mainfermals), line 2 would per to S' _x and the 3 would be S', multipled with each S.	[Coming]						
	Counts ~ discrete x N: Chi-square test	chisq.test(groupXsex_table)	Equivalent log-linear model glm(y ~ 1 + G ₂ + G ₃ + + G _N + S ₂ + S ₃ + + S _N + G ₂ *S ₂ +G ₃ *S ₃ ++G _N *S _N , family=) ⁴	*	Interaction term: (Same as Two-wey ANOVA.) Note: Run girn using the following arguments: size isodal., seatly-polizeon()) As finese-model, the Chi-square test is logi(y) = logi(y) = logi(q) = logi(g) + logi(q), where a and β, are proportions. See more into in the accompanying notebook.	Same as Two-way ANOVA						
M	N: Goodness of fit	chisq.test(y)	glm(y ~ 1 + G ₂ + G ₃ ++ G _N , family=) ^A	·	(Same as One-way ANOVA and see Chi-Square note.)	1W-ANOVA						

List of common parametric (P) non-parametric (N) tests and equivalent linear models. The notation y - 1 + x is R shorthand for y = 1 b + a x which most of us learned in school. Models in similar colors are highly similar, but really, notice how similar they all are across colors if zo non-parametric models, he linear models are reasonable approximations for non-small sample sizes (see "Exact Coultim and click linis to see simulations). Other less accurate approximations exist, e.g., Wilcono for the signitest and Goodness-off-fit for the binnel set. The significant function is sizegate - activated in sizegate - activated in sizegate - activated -

A See the note to the two-way ANOVA for explanation of the notation.

Same model, but with one variance per group; als (value - 1 + 6), weights = varident (form = -1(group), method="ML").

The Mean - A Very Simple Statistical Model

The Method of Least Squares

Linear Regression

▶ total error = sum of deviances = $\sum (x_i - \bar{x})$

- ▶ total error = sum of deviances = $\sum (x_i \bar{x})$
- sum of squared errors (SS) = $\sum (x_i \bar{x})(x_i \bar{x})$

- ▶ total error = sum of deviances = $\sum (x_i \bar{x})$
- sum of squared errors (SS) = $\sum (x_i \bar{x})(x_i \bar{x})$
- variance $(s^2) = \frac{SS}{N-1} = \frac{\sum_{i=1}^{N-1} (x_i \bar{x}_i)^2}{N-1}$

- ▶ total error = sum of deviances = $\sum (x_i \bar{x})$
- sum of squared errors (SS) = $\sum (x_i \bar{x})(x_i \bar{x})$
- $\triangleright \text{ variance } (s^2) = \frac{SS}{N-1} = \frac{\sum (x_i \bar{x})^2}{N-1}$
- standard deviation $(s) = \sqrt{\frac{\sum (x_i \bar{x})^2}{N-1}}$

Concept Check - Standard Error

$$\sigma_{\bar{X}} = \frac{s}{\sqrt{N}}$$

Constructing Simple Regressions in R

```
album data <- read.delim("Album Sales 1.dat", header = TRUE)
album_lm_1 <- lm(sales ~ 1 + adverts, data = album data)</pre>
summary(album lm 1)
##
## Call:
## lm(formula = sales ~ 1 + adverts, data = album_data)
##
## Residuals:
##
       Min
               1Q Median 3Q
                                          Max
## -152.949 -43.796 -0.393 37.040 211.866
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 ***
## adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 65.99 on 198 degrees of freedom
## Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
## F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
```

Exercise 1 - Simple Regression

The Theory - Regression Output

```
##
## Call:
## lm(formula = sales ~ 1 + adverts, data = album data)
##
## Residuals:
##
       Min
              10 Median 30
                                        Max
## -152.949 -43.796 -0.393 37.040 211.866
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 ***
## adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 65.99 on 198 degrees of freedom
## Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
## F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
```

The Model - Assessing Goodness of Fit (R^2)

The Model - Assessing Goodness of Fit (R^2)

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N - 1}}$$

$$R^2 = \frac{SS_M}{SS_T}$$

$$1-(1-R^2)\frac{n-1}{n-p-1}$$

$$F = \frac{MS_M}{MS_R}$$

$$r = \sqrt{R^2}$$

SS_T uses the differences between the observed data and the mean value of Y

SS_R uses the differences between the observed data and the regression line

SS_M uses the differences between the mean value of Y and the regression line

The Theory - Regression Output

```
##
## Call:
## lm(formula = sales ~ 1 + adverts, data = album data)
##
## Residuals:
##
       Min
              10 Median 30
                                        Max
## -152.949 -43.796 -0.393 37.040 211.866
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 ***
## adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 65.99 on 198 degrees of freedom
## Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
## F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
```

The Theory - The Predictors

A.2 Critical values of the *t*-distribution

		Two-Tailed Test		One-Tailed Test	
	df	0.05	0.01	0.05	0.01
	1	12.71	63.66	6.31	31.82
	2	4.30	9.92	2.92	6.96
	3	3.18	5.84	2.35	4.54
	4	2.78	4.60	2.13	3.75
L. L.	5	2.57	4.03	2.02	3.36
$t = \frac{b_{observed} - b_{expected}}{SE_b}$	6	2.45	3.71	1.94	3.14
=	7	2.36	3.50	1.89	3.00
SE_b	8	2.31	3.36	1.86	2.90
	9	2.26	3.25	1.83	2.82
	10	2.23	3.17	1.81	2.76
	11	2.20	3.11	1.80	2.72
I.	12	2.18	3.05	1.78	2.68
$t = \frac{b_{observed}}{SE_{b}}$	13	2.16	3.01	1.77	2.65
$t = \frac{C}{C}$	14	2.14	2.98	1.76	2.62
SE_b	15	2.13	2.95	1.75	2.60
	16	2.12	2.92	1.75	2.58
	17	2.11	2.90	1.74	2.57
	18	2.10	2.88	1.73	2.55
	19	2.09	2.86	1.73	2.54
df = N - p - 1	20	2.09	2.85	1.72	2.53
ar = rv - p - 1	21	2.08	2.83	1.72	2.52
	22	2.07	2.82	1.72	2.51
	23	2.07	2.81	1.71	2.50
	24	2.06	2.80	1.71	2.49
	25	2.06	2.79	1.71	2.49
	26	2.06	2.78	1.71	2.48
	27	2.05	2.77	1.70	2.47
	28	2.05	2.76	1.70	2.47

2.05

2.76

1.70

2.46

29

Exercise 2 - Derive and Interpret the Output

```
##
## Call:
## lm(formula = sales ~ 1 + adverts, data = album data)
##
## Residuals:
##
       Min
               10 Median 30
                                         Max
## -152.949 -43.796 -0.393 37.040 211.866
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 ***
## adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 65.99 on 198 degrees of freedom
## Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
## F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
```

Exercise 3 - Anscombe's Quartet

Thank You

