

特 許 願

正

(2,000円)

昭和 50 年 2 月 28 日
特許庁長官 斎藤英雄 殿

1. 発明の名称

マルトースの製造法

2. 発明者

三重県三重郡楠町吉崎 123 番地

藤木聰博 (外二名)

3. 特許出願人

三重県四日市市末広町 17 番 40 号

東海糖業株式会社

代表者 川村保

4. 同代理人

東京都港区芝虎ノ門 15, 虎ノ門ビル 505 号

(6217) 久高将信

明細書

1. 発明の名称

マルトースの製造法

2. 特許請求の範囲

(1) 麦粉を糊化または部分加水分解した後、 β -アミラーゼまたは β -アミラーゼと α -アミラーゼとを用いて糖化し、更にこの糖化液を加圧状態下に膜透過処理することによつて、該糖化液中に残留するオリゴ糖および/またはデキストリンを分画除去することを特徴とする高純度のマルトースの製造方法。

3. 発明の詳細な説明

本発明は、麦粉を糊化するかまたは部分加水分解した後、これに β -アミラーゼまたは β -アミラーゼと α -アミラーゼとを添加して糖化し、更にこの糖化液を加圧状態下に膜透過処理して、糖化液中に残留するオリゴ糖および/またはデキストリンを分画除去することによつて、高純度のマ

⑯ 日本国特許庁

公開特許公報

⑯ 特開昭 51-101141

⑯ 公開日 昭51. (1976) 9. 7

⑯ 特願昭 50-24476

⑯ 出願日 昭50. (1975) 2. 28

審査請求 未請求 (全4頁)

府内整理番号

6P77 4P

6P77 4P

⑯ 日本分類

J2 B22

J2 B0

⑯ Int.Cl²

C12K 7/00

C12D 13/02

ルトースを収率良く取得するマルトースの製造法に関する。

古くから行なわれているマルトースの製造法は、麦粉を麦芽のアミラーゼで加水分解してグルコース、デキストリンと共にマルトースを生成させるものであるが、このような麦芽のみを使用する方法ではマルトースの生成量が高々固形分中約6.5%程度の糖化液しか得られない。

そこで、更に純度の高いマルトースを製造する方法として、麦粉中の α -1,6-グルコシド結合に特異的に作用する α -1,6-グルコシダーゼすなわち別名イソアミラーゼ(丸尾文治、小林恒夫: 農化誌, 23, 115, 120)またはブルランナー(H. Bender & K. Wallenfels : Biochem. Zeit, 334, 79)と β -アミラーゼとを併用する方法が報告されている(特公昭46-37849号、特公昭47-13089号各公報)。

元来、 β -アミラーゼは麦粉を構成するグルコ

特開昭51-101141(2)

作用させて得た糖化液から残留する未分解物を除去して高純度のマルトースを製造する方法について研究を行つたところ、糖化液に加圧状態下に膜透過処理を施すときは、未分解物とマルトースとが極めて効率的にしかも確実に分別されて高純度のマルトースが得られる事実を見出した。

本発明はこの知見に基づくもので、澱粉を糊化するかまたは酸あるいは酵素で軽く部分加水分解した後、 β -アミラーゼまたは α -アミラーゼと α -アミラーゼとを作用させて糖化し、更にこの糖化液を加圧状態下に膜透過処理することによつて、糖化液中に残留するデキストリン等を分画除去して高純度のマルトースを製造する方法である。

本発明における膜透過処理とは透過膜を加圧状態で使用する分子分別法であつて、通常限外済過法と逆浸透法とに大別されるが、両者に本質的な差異はなく、限外済過法が比較的大きな分子量を有する物質相互の分画を目的としているのに対し

ース鎖の非還元性末端から順次マルトースを分離させる反応を触媒する酵素で（赤堀四郎鑑修：酵素ハンドブック、456頁），これは α -1,4-グルコシド結合には作用しても α -1,6-グルコシド結合は分解できないため、グルコース鎖の分枝点付近で作用が停止し多量の未分解物を残す結果、マルトース含有量の低い糖化液しか得られない。これに対し、 α -1,6-グルコシダーゼを併用した前記二方法は、澱粉中の分枝点を切断して β -アミラーゼによる分解率を高めマルトース純度の高い糖化液を得ることを目的とした方法であるが、しかし一方、 α -1,6-グルコシダーゼを併用することなく、 β -アミラーゼのみを作用させて糖化した場合でも、糖化液中に残留するオリゴ糖またはデキストリンを効率的に除去し得るならば、高純度のマルトースを製造できることが期待される。

本発明者らはこのように β -アミラーゼのみを

て、逆浸透法は比較的小さな分子量を有する物質相互の分離に応用される分別法であつて、両者の間の境界もまた明瞭ではない。

本発明において使用する透過膜について、本発明者らは膜のマルトースと澱粉の未分解物との分画性能を各種の分画分子量値を有する膜を用いて試験した。
試験方法は、10%溶性澱粉を加熱糊化したものに大豆から抽出した β -アミラーゼを澱粉1g当たり2単位添加し、pH 5.5、温度55℃の条件下に3.5時間保持して酵素反応を行なわせた。反応終了液を一度加熱した後、済過した（固体分中マルトース含量55.9%）。一方、各種の分画分子量値を有する限外済過膜（バイオエンジニアリング研究所）を装着した限外済過器（バイオエンジニアリング研究所）を準備し、これに上記の糖化液を供給して4kg/cm²の圧力下に室温で透過させた。得られた透過液のマルトース純度を測定した結果は表1のとおりであつた。

表 1 表

膜の分画分子量値	透過液のマルトース純度
500	99.9%
1,000	99.9%
5,000	99.2%
10,000	93.7%

表1の結果から分るように、95%以上の極めて高純度のマルトースを得るには、 β -アミラーゼを用いて糖化した後、分画分子量値5,000以下の透過膜で処理するのが適当であり、この分画分子量値以上の膜で処理した場合には透過液にヨード反応が出現するようになる。このような膜処理を工業的に実施する場合には、分画分子量値の大なる膜処理で一たん粗分画した後、分画分子量値5,000以下の膜で本分画を行なえば効率的な分離が可能となる。

また、澱粉からのマルトース収量の増加を計り純度80～95%のマルトースを得る場合には、

1行
2字挿入

2字挿入

特開昭51-101141(3)
のKIを添加して遊離するI₂を0.05NのNa₂S₂O₃
で滴定し、ブランクとの差をとつた。上記の条件
で30mlの反応液中にK₃Fe(CN)₆の1mg当量に相
当する還元糖を生ずる酵素量を1単位とした。

α-アミラーゼの力価測定は、馬鈴薯澱粉100
g(無水物として)にpH 6.0 の0.1N酢酸緩衝液
100mlおよび蒸留水を加えて全容を1,000ml
とした澱粉懸濁液を用意し、これを澱粉が均一に
分散するように激しく攪拌しながら数本の試験管
に10mlずつとり、それらに各種濃度の酵素液1
mlを加えた。これらの試験管を澱粉が均一になる
ように激しく振りながら沸騰水中で加熱して糊化
させ、直ちに65℃の恒温槽に移して1.5分間保
つた後、試験管を沸騰水中に1.0分間入れて酵素
を失活させ、続いてこれを17℃の水中で3分間
冷却した後、0.1%フクシン液1mlを加えて管口部
を塞ぎ、試験管を2回転倒して内容液が盛りなく
一様に着色した試験管中最小濃度の酵素液の活性

β-アミラーゼにα-アミラーゼを併用して糖化
した後、分画分子量値5,000以下の透過膜で処理
するのが適当である。この際併用するα-アミラ
ーゼの使用量は反応条件によつて異なるが、通常
のβ-アミラーゼの作用pH 5~7、作用温度50
~70℃の範囲において、20単位/澱粉g以下であ
り、反応時間は50時間以内である。

尚上記において、β-アミラーゼの測定は次の
ように行なつた。すなわち、2%溶性澱粉液(酢
酸緩衝液pH 4.8, 0.02Mを含む)20mlに適量の水
と酵素液とを加えて30mlとし、30℃に10分
間保つた後、この反応液3mlを用い試験管中に用
意した0.05NのK₃Fe(CN)₆溶液(Na₂CO₃を0.2M
になるように加えたもの)10mlに加え、沸騰水
中で20分間加熱する。次にこれを流水で5分間
冷却した後、これにKCl 70g, ZnSO₄·7H₂O 20
gおよび冰酢酸を200mlの水にとかして全容を
1Lとした混液25mlを加え、更にこれに0.5g

を1単位とした。

次に本発明を更に実施例をもつて詳細に説明す
る。

実施例 1

10%のコーンスターーチ懸濁液1,000gを消
石灰乳でpH 6.5に調整し、これに液化酵素(大和
化成醸製)0.04gを加えて、90℃で30分間
液化した後、120℃で10分間オートクレープ
で加熱した。次に、この液化液に大豆より抽出し
たβ-アミラーゼを澱粉g当たり2単位と、α-ア
ミラーゼ(大和化成醸製)を澱粉g当たり3単位添
加して、pH 5.7、温度55℃の条件下に30時間
保持して糖化した。糖化液は一度加熱した後、沪
過した。

一方、分画分子量値1,000の限外済過膜(バ
イオエンジニアリング醸製)を装着した限外済過
器(バイオエンジニアリング醸製)を準備し、こ
れに上記糖化液を供給した後、4kg/cm²の加圧状態

下に室温で処理してオリゴ糖およびデキストリン
を分別除去した。これによつてマルトース溶液(固
形分濃度9.8%, 固形分中マルトース87.3%)
650gを得た。尚上記においてマルトースの定
量はガスクロマスコトグラフィー法によつて行
なつた(以下の実施例においても同様である)。

実施例 2

5%甘薯澱粉懸濁液1,000gを120℃で10
分間オートクレープで加熱し、これに大豆より抽
出したβ-アミラーゼを澱粉g当たり2単位添加し
て、pH 5.5、温度60℃の条件下に40時間保持
して糖化した。糖化終了液は一度加熱した後、沪
過して不溶性不純物を除去した。

一方、分画分子量値5,000の限外済過膜を装
着した限外済過器に上記糖化液を供給した後、4
kg/cm²の加圧状態下に室温で処理してデキストリン
等を分別除去した。得られた透過液にその固形
分当たり活性炭を0.1%加えて脱色沪過し、更に1

特開昭51-101141(4)

活性炭を0.1%加えて脱色済過し、更にイオン交

換樹脂IR-200、同IRA 411で順次精製した後、

-減圧濃縮した。この濃縮液を含水結晶ぶどう糖の

製造法に準じて処理して結晶マルトースを製造し

た。すなわち、アツベ型屈折計で屈折率1.47まで

-減圧濃縮して得たマルトース純度99.2%の濃

縮液750gを小型のクリスタライザーに投入し、

品温が60°Cになつた時点で種結晶を固体分に対し

て0.1%添加し、徐冷しながら50時間結晶化を行

なつた後、遠心分離して結晶マルトース260

gと固体分濃度5.7%の分離蜜460gを得た。

一方、上記で膜処理を行なうことによつて得た

オリゴ糖およびデキストリンの区分は、再度125

℃で10分間オートクレーブで加熱した後、液化

酵素を固体分当り4単位添加して、pH6.0、温

度93℃の条件下で20分間作用させて液化し、

更にこれにグルコアミラーゼ(新日本化学工業製)

を固体分当り5単位添加して、pH5.0、温

オン交換樹脂IR-200、同IRA 411(オルガノ翻
製)で順次精製した後、減圧濃縮した。これにより極めて高純度のマルトース溶液(固体分濃度50%, 固体分中マルトース99.8%)45%を得た。

実施例 3

20%のコーンスターチ懸濁液6.000gに液化酵素(大和化成翻製)を0.5g加え、pH6.5に調整し、約90℃で15分間液化した後、125℃で10分間オートクレーブで加熱して、DE0.9の液化液を得た。この液化液に大豆から抽出したβ-アミラーゼを澱粉当り2単位添加して、pH5.5、温度60℃の条件下に40時間保持して糖化した。糖化液は一度加熱した後済過した。

次にこの糖化液を固体分濃度10%に調整し、分画分子量値10000の膜で処理した後、再度実施例1で使用したと同じ膜で同様に処理してオリゴ糖およびデキストリンの分別除去を行なつた。膜を透過した高純度のマルトース液に固体分当り

度55℃の条件下に4.8時間保つて糖化した。この糖化液に活性炭を固体分当り0.5%加えて脱色し、更にイオン交換樹脂IR-200、同IRA 411で精製した後、減圧濃縮することにより、ぶどう糖溶液(固体分濃度50%, DE96.1)1.150gを得た。

5.添付書類の目録

- | | |
|----------|----|
| (1) 願書副本 | 1通 |
| (2) 明細書 | 1通 |
| (3) 委任状 | 1通 |

6.前記以外の発明者

三重県鈴鹿市磯山浜新田2580-16番地

花 谷 俊 信

三重県鈴鹿市北堀江町202-38番地

山 田 党

特許出願人 東海糖業株式会社

同代理人 久 高 将 信