MC458A - Laboratório 5: Cobertura mínima por intervalos

1 Problema

Dado um número inteiro V > 0 e n intervalos fechados $[L_i, R_i]$, $i = 1, 2, \ldots, n$, encontrar o menor subconjunto de intervalos que cubra completamente o intervalo [0, V]. Por exemplo, se V = 5, n = 3 e os intervalos são [0, 2], [0, 4] e [3, 5], a solução ótima possui 2 intervalos: [0, 4], [3, 5]. Note que [0, 2], [3, 5] não é uma solução pois o intervalo [2, 3] não é coberto.

2 Especificação de Entrada e Saída

Entrada

A primeira linha contém um inteiro V ($1 \le V \le 50000$). A segunda linha contém um inteiro n ($1 \le n \le 100000$) especificando o número de intervalos fechados $[L_i, R_i]$. As n linhas seguintes contém dois inteiros referentes aos valores L_i e R_i ($1 \le i \le n$) separados por um espaço. Você pode assumir que $R_i \ge L_i$.

Saída

A primeira linha deve conter o número mínimo t de intervalos necessários para cobrir completamente o intervalo [0, V]. As t linhas seguintes devem conter cada intervalo $[L_i, R_i]$ da solução ótima. Os intervalos devem ser impressos ordenados pelo valor L_i e os dois valores devem ser separados por um espaço. Quando não for possível cobrir o conjunto [0, V] você deve imprimir apenas uma linha com o número 0.

Quando houver mais de uma opção de intervalo para a solução ótima, você deve optar por aquela que maximiza R_i . Se mesmo assim houver mais de uma opção, você deve escolher aquela que minimiza L_i .

Exemplos

Entrada	Saída
3	1
2	-1 10
-1 10	
0 3	

Entrada	Saída
1	0
3	
-1 0	
-5 -3	
2 5	

Entrada	Saída
22	3
5	0 10
0 10	3 21
2 20	19 24
3 21	
4 21	
19 24	

3 Implementação e Submissão

- A solução deverá ser implementada em C, C++, ou Python. Só é permitido o uso de bibliotecas padrão. Não é permitido o uso de nenhuma flag/diretiva de otimização.
- É permitido o uso de rotinas prontas de ordenação, tais como: sort() do Python e C++.
- O programa deve ser submetido no SuSy, com o nome principal **t5** (por exemplo, t5.c).
- O número máximo de submissões é 20.
- A tarefa contém 10 testes abertos e 10 testes fechados. A nota será proporcional ao número de acertos nos testes fechados.

A solução pode ser submetida até o dia 08/12/22 às 23h59.