Algorithmique Avancée

TD Problèmes de Satisfaction de Contraintes (CSP)

Elana Courtines courtines.e@gmail.com https://github.com/irinacake

Séance 1 - 17 octobre 2022 Séance 2 - 06 novembre 2022

Jerome Mengin - jerome.mengin@univ-tlse3.fr

1 Algorithmiques de résolution

Exercice 1

Note 1 : les arbres de l'exercice 1 se lisent "de haut en bas", puis "de gauche à droite", pour indiquer dans quel ordre les assignations ont été tentées.

Note 2 : sauf indication contraire dans l'énoncé, on s'arrête au premier succès trouvé.

Question 1.1:

Question 1.2:

Règle sur le choix de l'ordonnancement des variables, du plus prioritaire ou moins prioritaire :

- 1. variable x tq. $|D_x = 1|$ (variable dont le domaine de définition vaut 1);
- 2. variable la plus constrainte (\Rightarrow celle qui a le plus de voisin);
- 3. variable qui a le domaine le plus petit.

Règle sur le choix de l'ordonnancement des valeurs des variables :

• prioriser celle qui bloque le moins de valeur dans les voisins.

On définit donc l'ordre suivant :

$$D \to C \to A \to B \to E$$

Et pour chaque variable, l'ordre de valeurs suivant :

- D:4
- $C:4 \rightarrow 2$
- A: $3 \to 4 / 2$
- $B: 1 \to 2$
- $E: 1 / 3 \rightarrow 2$

Ce qui donne le parcours ci-contre \rightarrow

Question 1.3 : Propagation de Contraintes

Construction du tableau de la propagation de contraintes et méthode d'itération :

- commencer par remplir la première ligne avec les domaines pour chaque variable, et remplir la file d'attente (Q) avec toutes les contraintes présentes (il doit il y en avoir une pour chaque arête du graphe). Par exemple $\{A,C\}$ signifie que x_A ne peut pas valoir la même valeur que x_C ;
- à chaque itération, on prend la première contrainte de la file, et on vérifie si celle-ci engendre une réduction du domaine de l'une des variables. Par exemple :
 - pour $\{A,C\}$ (2^e ligne du tableau), aucun des domaines n'est réduit, donc on ne fait que retirer $\{A,C\}$ de la file ;
 - pour $\{A,D\}$ (3^e ligne du tableau), on remarque de A ne peut jamais valoir 4, donc on retire la valeur 4 au domaine et x_A , et on rajoute dans la file toutes les contraintes dans lesquelles A est impliqué : $\{A,C\}$, $\{A,D\}$ et $\{A,E\}$ (note : la contrainte $\{A,E\}$ étant déjà présente dans la file, on ne l'ajoute pas une deuxième fois) ;
- l'algorithmique se termine lorsque la file d'attente Q est vide.

À la fin de la propagation de contraintes, on n'a pas la garantie que tous les domaines seront réduits à une seule valeur. En fait il est même possible qu'aucun des domaines de soit réduit.

Note : les lignes n'ayant aucun impact sur les domaines ont été simplifiées, à l'exception des lignes 2 et 4 ($\{A,C\}$ et $\{A,E\}$ respectivement) qui servent surtout d'exemples.

Contrainte propagée	D_A	D_B	D_C	D_D	D_E	Q (file d'attente contraintes)
$d\acute{e}but$	2,3,4	1,2	2,4	4	1,2,3	${A,C},{A,D},{A,E}, {B,C},{B,E},{C,D}$
{A,C} 2 3 4 2 4	2,3,4	1,2	2,4	4	1,2,3	{A,D},{A,E}, {B,C},{B,E},{C,D}
{A,D} 2 • 4 4 •	2,3	1,2	2,4	4	1,2,3	{A,E},{B,C},{B,E}, {C,D},{A,C},{A,D}
{A,E} 2 3 1 2 3	2,3	1,2	2,4	4	1,2,3	{B,C},{B,E}, {C,D},{A,C},{A,D}
{B,C}	2,3	1,2	2,4	4	1,2,3	$\{B,E\},\{C,D\},\{A,C\},\{A,D\}$
{B,E}	2,3	1,2	2,4	4	1,2,3	$\{C,D\},\{A,C\},\{A,D\}$
{C,D} 2 • 4	2,3	1,2	2	4	1,2,3	{A,C},{A,D}, {B,C},{C,D}
{A,C} 2 3 • 2	3	1,2	2	4	1,2,3	${A,D},{B,C},{C,D}, {A,C},{A,E}$
$\overline{\{A,D\}}$	3	1,2	2	4	1,2,3	$\{B,C\},\{C,D\},\{A,C\},\{A,E\}$
{B,C} 1 • 2	3	1	2	4	1,2,3	$\{C,D\},\{A,C\},\{A,E\},\\ \{B,C\},\{B,E\}$
$\{C,D\}$	3	1	2	4	1,2,3	${A,C},{A,E},{B,C},{B,E}$
$\{A,C\}$	3	1	2	4	1,2,3	${A,E},{B,C},{B,E}$
{A,E} 3 • 1 2 • 3	3	1	2	4	1,2	{B,C},{B,E}, <mark>{A,E}</mark>
{B,C}	3	1	2	4	1,2	${B,E},{A,E}$
$ \{B,E\} $ $ 1 \underbrace{\begin{array}{c} \bullet \\ 1 \\ 2 \end{array}} $	3	1	2	4	2	${A,E},{B,E}$
$\{A,E\}$	3	1	2	4	2	{B,E}
{B,E}	3	1	2	4	2	Ø

La propagation de contrainte est terminé, et celle-ci donne des affectations uniques pour chaque variable (c'est le cas ici, mais ça ne l'est pas toujours, auquel cas il faut refaire un arbre).

On a donc : $x_A = 3$, $x_B = 1$, $x_C = 2$, $x_D = 4$, $x_E = 2$.

Question 1.4:

A
$/$ $x_A = 2$
$\left(\begin{array}{c} B \end{array}\right)$
$x_B = 1$
$\begin{pmatrix} C \end{pmatrix} x_C = 4$
$D_D = \emptyset$
$x_B = 2$ $x_C = 4$
$D_D = \emptyset$
(B)
$x_A = 3$ $x_B = 1$
$\left(\begin{array}{c} \mathbf{C} \end{array}\right)$
$x_C = 2$
$\left(\begin{array}{c} \mathrm{D} \end{array}\right)$
$x_D = 4$
$\left(egin{array}{c} \mathrm{E} \end{array} ight)$
$x_E = 2$
✓ succès

Affectation	D_A	D_B	D_C	D_D	D_E	
	2,3,4	1,2	2,4	4	1,2,3	
$\mathbf{A} \leftarrow 2$	2	1,2	4	4	1,3	
$B \leftarrow 1$	2	1	4	4	3	
$ ext{C} \leftarrow 4$	2	1	4	Ø	-	échec
$B \leftarrow 2$	2	2	4	4	1,3	
$ ext{C} \leftarrow 4$	2	2	4	Ø	-	échec
$\mathbf{A} \leftarrow 3$	3	1,2	2,4	4	1,2	
$B \leftarrow 1$	3	1	2,4	4	2	
$\mathbf{C} \leftarrow 2$	3	1	2	4	2	
$\mathrm{D} \leftarrow 4$	3	1	2	4	2	
$\mathbf{E} \leftarrow 2$	3	1	2	4	2	succès

Exercice 2 (les N-Reines)

Question 2.1:

On va représenter les contraintes sous forme de "tableaux" qui se lit comme suit :

- le nom du tableau indique de quelles reines on parle : C_{12} = tableau des contraintes entre les reines 1 et 2 ;
- chaque case du tableau indique si oui ou non la combinaison est possible :
 - ac dans le tableau C_{12} indique que la combinaison "reine 1 sur colonne a" et "reine 2 sur la colone c" est possible ;
 - ab dans le tableau C_{12} indique que la combinaison "reine 1 sur colonne a" et "reine 2 sur la colone b" est impossible ;

Contraintes pour n = 3:

Contraintes pour n = 4:

Question 2.2:

Contrainte propagée	R_1	R_2	R_3	Q (file d'attente contraintes)
$d\acute{e}but$	a,b,c	a,b,c	a,b,c	C_{12}, C_{13}, C_{23}
C_{12} a b c b c c	a,c	a,c	a,b,c	$C_{13}, C_{23}, \frac{C_{12}}{}$
C_{13} a a b c c c	a,c	a,c	b	$C_{23}, C_{12}, \frac{C_{13}}{C_{13}}$
C_{23} a $ullet$ b c $ullet$	a,c	Ø	Ø	échec

Contrainte propagée	R_1	R_2	R_3	R_4	Q (file d'attente contraintes)
$d\acute{e}but$	a,b,c,d	a,b,c,d	a,b,c,d	a,b,c,d	$C_{12}, C_{13}, C_{14} \\ C_{23}, C_{24}, C_{34}$
$\begin{array}{c} C_{12} \\ a \\ b \\ c \\ d \end{array} \qquad \begin{array}{c} a \\ b \\ c \\ d \end{array}$	a,b,c,d	a,b,c,d	a,b,c,d	a,b,c,d	$C_{13}, C_{14}, \\ C_{23}, C_{24}, C_{34}$
$\begin{array}{c} C_{13} \\ a \\ b \\ c \\ d \end{array} \qquad \begin{array}{c} a \\ b \\ c \\ d \end{array}$	a,b,c,d	a,b,c,d	a,b,c,d	a,b,c,d	$C_{14}, C_{23}, C_{24}, C_{34}$
$\begin{array}{c} C_{14} \\ a \\ b \\ c \\ d \end{array} \qquad \begin{array}{c} a \\ b \\ c \\ d \end{array}$	a,b,c,d	a,b,c,d	a,b,c,d	a,b,c,d	C_{23}, C_{24}, C_{34}
$\begin{array}{c} C_{23} \\ a \\ b \\ c \\ d \end{array} \qquad \begin{array}{c} a \\ b \\ c \\ d \end{array}$	a,b,c,d	a,b,c,d	a,b,c,d	a,b,c,d	C_{24}, C_{34}
$\begin{array}{c c} C_{24} \\ a \\ b \\ c \\ d \end{array} \qquad \begin{array}{c} a \\ b \\ c \\ d \end{array}$	a,b,c,d	a,b,c,d	a,b,c,d	a,b,c,d	C_{34}
C_{34} $\begin{array}{c} a \\ b \\ c \\ d \end{array}$ $\begin{array}{c} a \\ b \\ c \\ d \end{array}$	a,b,c,d	a,b,c,d	a,b,c,d	a,b,c,d	Ø

2 Modélisation

Exercice 3

Question 3.1: Modélisation

 $Variables: x_i \text{ temps du début de } t_i$

Domaines: $D_i = [0, 1, 2, 3, 4, 5, 6]$

Contraintes:

- t_2 et t_3 pas en parallèle : $\rightarrow x_2 \ge x_3 + 3$ ou $x_3 \ge x_2 + 1$
- t_4 après t_3 $\rightarrow x_4 \ge x_3 + 3$

Question 3.2 : Propagation de contraintes

- $\bullet \ t_2$ et t_3 pas en parallèle : n'a aucun impact ;
- $x_4 \ge x_3 + 3$:

- on a
$$x_3 \ge 0 \Rightarrow x_4 \ge 3$$
 $\rightarrow D_4 = [3, 4, 5, 6]$

- on a
$$x_4 \le 6 \Rightarrow x_3 \le 3$$
 $\to D_3 = [0, 1, 2, 3]$

Question 3.3 : Exemple de solution

Proposition:

$$x_1 = x_3 = 0$$

$$x_2 = x_4 = 3$$

 t_1

 t_3

 t_4

Exercice 4

Question 3.1: Modélisation

Variables et Domaines :

Contraintes:

•
$$p, D_p = [1, 2, 3]$$

•
$$p, \ D_p = [1, 2, 3]$$
 • $p \neq 1 \text{ ou } d \neq 3$
• $m, \ D_m = [1, 2, 3, 4]$ • $m \geq p$

•
$$d, D_d = [1, 2, 3]$$

•
$$m \ge p$$

La suite n'a pas été traitée en TD.

$$\bullet \ p=m=2 \Rightarrow d=2$$

•
$$cout(p) + cout(m) + cout(d) \le C$$