高等数学、工科数学分析基础、微积分2019级下学期期末试卷

1、(4分) 设函数 f(x, y) 在点 (0, 0) 处连续,且 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{\sin(x^2+y^2)} = 1$,则(

- (A) 点(0,0)不是 f(x,y) 极值点.
- (B) 点(0,0)是 f(x,y)极大值点.
- (C) 点 (0, 0) 是 f(x, y) 极小值点.
- (D) 由条件不能确定(0,0)是否为极值点.

(正确答案: C)

2、(4分) 设函数 z = z(x, y) 由方程 $x - 2019z = \varphi(y - 2020z)$ 确定,其中 φ 为可微

函数,则
$$2019\frac{\partial z}{\partial x} + 2020\frac{\partial z}{\partial y} =$$
 ()

- (A) 0.
- (B) 1.
- (C) 2.
- (D) 3.

(正确答案: B)

- 3、(4分) 曲面 $2z = x^2 + y^2$ 在点(1,1,1) 处的切平面方程是()
 - (A) x + y z = 1.
 - (B) x + y z = 3.
 - (C) x + y + z = 1.
 - (D) x + y + z = 3.

(正确答案: A)

- 4、(4分) 曲面 $2z = x^2 + y^2$ 在点(1,1,1) 处的法线方程是()
 - (A) x = y = z.
 - (B) $\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z-1}{1}$.

(C)
$$\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z-1}{-1}$$
.

(D)
$$\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{-1}$$
.

(正确答案: D)

5、(4 分) 曲线 $x = e^t \cos t$, $y = e^t \sin t$, $z = 2e^t$ 在点(1,0,2) 处的切线方程

是()

(A)
$$\frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{-2}$$
.

(B)
$$\frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{2}$$
.

(C)
$$\frac{x-1}{1} = \frac{y}{-1} = \frac{z-2}{2}$$
.

(D)
$$\frac{x-1}{1} = \frac{y}{-1} = \frac{z-2}{-2}$$
.

(正确答案: B)

6、(4 分) 曲线 $x = e^t \cos t$, $y = e^t \sin t$, $z = 2e^t$ 在点(1,0,2)处的法平面方程是(

- (A) x + y + 2z = 5.
- (B) x + y 2z = 5.
- (C) x + y + 2z = 3.
- (D) x + y 2z = 3.

(正确答案: A)

7、(4分) 设函数 $z = x^2 + y^2$,则函数 z 在点 A(1,2) 处,沿从点 A 到点 $B(2,2+\sqrt{3})$ 方向的方向导数是 (

- (A) $1+2\sqrt{3}$.
- (B) $2+4\sqrt{3}$.
- (C) $1+\sqrt{3}$.
- (D) $1+3\sqrt{3}$.

(正确答案: A)

8,(4	4分)设	设函数 $z = f(x+y, x-y)$,其中 f 具有二阶连续偏导数,	则 $\frac{\partial^2 z}{\partial x \partial y} = ($)
	(A)	$f_{11}'' + f_{22}''$.		
	(B)	$-f_{11}''-f_{22}''$.		
	(C)	$f_{11}'' - f_{22}''$.		
	(D)	$f_{22}'' - f_{11}''$.		
			(正确答案:	C)
9、((4分)	在以下级数中,发散的是(
	(A)	$\sum_{n=2}^{\infty} \frac{\ln n}{n^2} .$		
	(B)	$\sum_{n=2}^{\infty} \frac{1}{n \ln n}.$		
	(C)	$\sum_{n=1}^{\infty} \frac{2n^2 + 2}{n^4 + 3n}.$		
	(D)	$\sum_{n=1}^{\infty} \frac{n!}{n^n} .$		
			(正确答案:	B)
10、	(4分))设 $f(x)$ 是周期为 2π 的周期函数, $f(x)$ 在 $[-\pi,\pi)$ 上[的表达式为	
f(x)	$=\begin{cases}0,\\x,\end{cases}$	$-\pi \le x < 0$, $f(x)$ 的 Fourier (傅里叶) 级数 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n)$	$\cos nx + b_n \sin n$	nx)
的和	函数是	是 $S(x)$,则 $S(3\pi)=$ (
	(A)	$\frac{\pi}{2}$.		
	(B)	π .		
	(C)	0.		
	(D)	3π .		
11.	(4分)) 在以下四式中,正确的县 <i>(</i>)	(正确答案:	A)

(A)
$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n}}{(2n)!} = -1.$$

(B)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\pi^{2n+1}}{(2n+1)!} = 0.$$

(C)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n+1)!} = \frac{\sin x}{x} \quad (x \in (-\infty, +\infty)).$$

(D)
$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n} \quad (-1 < x \le 1)$$
.

(正确答案: A)

12、(2分) 判断题 幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的收敛域是 [-1,1). ()

- (A) 正确.
- (B) 错误.

(正确答案: A)

13、(4分) 幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n+1}$ 的和函数是 ()

(A)
$$\begin{cases} \frac{-\ln(1-x)}{x} - 1, x \in [-1,0) \cup (0,1) \\ 0, x = 0 \end{cases}$$
.

(B)
$$\begin{cases} \frac{-\ln(1-x)}{x} - 1, x \in (-1,0) \cup (0,1) \\ 0, x = 0 \end{cases}$$
.

(C)
$$\frac{-\ln(1-x)}{x} - 1, x \in (-1,1)$$
.

(D)
$$\frac{-\ln(1-x)}{x} - 1, x \in [-1,1)$$
.

(正确答案: A)

14、 (4 分)
$$\lim_{n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n^2}{(n^2+i^2)(n^2+j^2)} =$$
 (

- (A) $\frac{\pi}{2}$.
- (B) $\frac{\pi}{4}$.

- (C) $\frac{\pi^2}{4}$.
- (D) $\frac{\pi^2}{16}$.

(正确答案: D)

15、(4 分) $\int_0^1 dy \int_v^1 e^{x^2} dx = ($

- (A) $\frac{e-1}{2}$.
- (B) $\frac{1-e}{2}$.
- (C) e-1.
- (D) 1-e.

(正确答案: A)

16、(4分)设积分域 $D = \{(x,y)||x|+|y| \le 1\}$,则二重积分 $\iint_D (2|x|-y) dxdy = (2|x|-y) dxdy = (2|x|-y) dxdy$

- (A) 2.
- (B) 4.
- (C) $\frac{2}{3}$.
- (D) $\frac{4}{3}$.

(正确答案: D)

17、(4 分) 设积分域 $D = \{(x,y) | (x-1)^2 + y^2 \le 1\}$, 则二重积分 $\iint_D (x+y) \, dx dy = 1$

()

- (A) $\frac{\pi}{4}$.
- (B) $\frac{\pi}{3}$. (C) $\frac{\pi}{2}$.
- (D) π .

(正确答案: D)

18、(4 分) 设积分域 $D = \{(x,y) | x^2 + y^2 \le 1\}$, 二重积分 $I_1 = \iint_D (x^2 + y^2) dxdy$,

 $I_2 = \iint_D \sin(x^2 + y^2) \, dxdy$, $I_3 = \iint_D \tan(x^2 + y^2) \, dxdy$, \mathbb{Q} (

- (A) $I_1 < I_2 < I_3$.
- (B) $I_2 < I_1 < I_3$.
- (C) $I_3 < I_2 < I_1$.
- (D) $I_2 < I_3 < I_1$.

(正确答案: B)

19、(4 分) 设V 是由曲面 $z=x^2+y^2$ 与平面 z=4 所围成的闭区域,则三重积分 $\iiint_{\mathbb{Z}}z\,\mathrm{d}V=$)

- (A) $\frac{64\pi}{3}$.
- (B) $\frac{32\pi}{3}$.
- (C) $\frac{16\pi}{3}$.
- (D) $\frac{8\pi}{3}$.

(正确答案: A)

20、(4分) 设积分域 $V = \{(x, y, z) | x^2 + y^2 + z^2 \le 1, z \ge 0 \}$,则三重积分

$$\iiint_{V} (x^2 + y^2 + z^2) \, \mathrm{d}V =$$
 (

- (A) $\frac{\pi}{5}$.
- (B) $\frac{2\pi}{5}$.
- (C) $\frac{\pi}{4}$.
- (D) $\frac{\pi}{3}$.

(正确答案: B)

21、(4分) 设V 是由曲面 $z=\sqrt{x^2+y^2}$ 与平面 z=1 所围成的闭区域,则三重积分 $\iiint_V z(x^2+y^2) \mathrm{d}V = \ (\)$

(A) $\frac{\pi}{3}$.

/D)	π		
(B)	$\frac{-}{6}$.		

(C)
$$\frac{\pi}{9}$$
.

(D)
$$\frac{\pi}{12}$$
.

(正确答案: D)

22、(4分) 设曲线 $L: y = x^2 \ (0 \le x \le \sqrt{2})$,则第一型曲线积分 $\int_{x} x \, ds = (0 \le x \le \sqrt{2})$

- (A) $\frac{7}{6}$.
- (B) $\frac{13}{6}$. (C) $\frac{7}{3}$.
- (D) $\frac{13}{3}$.

(正确答案: B)

23、(4分)设 $S = \{(x, y, z) | x^2 + y^2 + z^2 = 1\}$,则第一型曲面积分 $\bigoplus_{s} z^2 dS = ($

- (A) $\frac{\pi}{3}$.
- (B) $\frac{2\pi}{3}$.
- (C) π .
- (D) $\frac{4\pi}{3}$.

(正确答案: D)

24、(4分) 设L为曲线 $y = \sqrt{1-x^2}$ 上从点 A(0,1) 到点 B(1,0) 的有向弧段,则第二

型曲线积分 $\int_{L} \frac{y \, dx - x \, dy}{\sqrt{x^2 + y^2}} =$ (

- (A) 0.
- (B) $\frac{\pi}{2}$.
- (C) π .
- (D) $\frac{\pi}{3}$.

(正确答案: B)

25、(4 分) 设 S 是锥面 $z = \sqrt{x^2 + y^2}$ (0 $\leq z \leq$ 1) 的下侧,则第二型曲面积分 $\iint_{S} (x^3 - xy) \, \mathrm{d}y \, \mathrm{d}z + (y^3 - yz \sin x) \, \mathrm{d}z \, \mathrm{d}x - 3z (x^2 + y^2) \, \mathrm{d}x \, \mathrm{d}y =$ ()

- (A) $\frac{3\pi}{2}$.
- (B) $-\frac{3\pi}{2}$.
- (C) 2π .
- (D) -2π .

(正确答案: A)

26、(2 分)判断题 若 $\lim_{x \to x_0} f_x'(x, y_0) = f_x'(x_0, y_0)$, $\lim_{y \to y_0} f_y'(x_0, y) = f_y'(x_0, y_0)$,则函

数 f(x,y) 在点 (x_0,y_0) 处可微. (

- (A) 正确.
- (B) 错误.

(正确答案: B)