창의적공학설계 ② 공학설계 개념

성결대학교 컴퓨터공학과 강 영 명

학습 목표

- ■공학이 무엇인지 이해할 수 있다.
- ■창의성이 무엇인지 이해할 수 있다.
- ■공학자가 해결해야 할 공학 문제가 무엇인지 이해할 수 있다.

공학 (Engineering)

■공학이란?

- ✓문제해결의 학문
- ✔인간의 삶의 질을 향상시키기 위한 실용적인 학문
- ✓인간의 삶을 물질적으로 더 풍요롭게 하는 환경적으로 더 안전하고 쾌적하게 만들기 위한 지식과 활동을 모두 포함

공학자의 기본 소양

- 공학자란?
 - ✓ 공학분야에 종사하는 사람
- 과학자와 공학자 비교
 - ✓ 과학자 : 아는 것
 - ✓공학자 : 하는 것
 - ✓ 과학자는 물리계의 실증적이고 체계화된 지식에 새로운 지식을 추가하고, 공학자는 이런 지식을 실용적인 문제에 적용해서 문제를 해결해야 함
 - ✓ 20C 산업사회 공학자의 기본 소양
 - 수학, 물리, 화학 등 기초 학문에 대한 이해 및 활용 능력
 - ✓ 21C 지식기반사회 공학자의 기본 소양
 - 수학이나 기초 과학에 기초한 분석적 사고력 외에 판단력, 창의력, 예측 능력, 팀워크 능력이나 평생학습 능력 등

공학자의 기본 소양

■ ABEEK 공학교육인증 기준의 10가지 학습 성과

번호	학습 성과	세부내용
1	기초 자식 응용	수학, 기초과학, 공학의 지식과 정보기술을 공학 문제 해결에 응용할 수 있는 능력
2	분석 및 실험	데이터를 분석하고 주어진 사실이나 가설을 실험을 통하여 확인할 수 있는 능력
3	문제 인식 및 정의	공학 문제를 정의하고 공식화할 수 있는 능력
4	문제 해결	공학 문제를 해결하기 위해 최신 정보, 연구 결과, 적절한 도 구를 활용할 수 있는 능력
5	설계 및 실무	현실적 제한조건을 고려하여 시스템, 요소, 공정 등을 설계할 수 있는 능력
6	팀워크	공학 문제를 해결하는 프로젝트팀의 구성원으로서 팀 성과에 기여할 수 있는 능력
7	의사소통 및 국제화	다양한 환경에서 효과적으로 의사소통할 수 있는 능력
8	영향 평가	공학적 해결방안이 보건, 안전, 경제, 환경, 지속가능성 등에 미치는 영향을 이해할 수 있는 능력
9	직업윤리 및 책임감	공학인으로서의 직업윤리와 사회적 책임을 이해할 수 있는 능력
10	자기계발 및 자기주도적 학습	기술 환경 변화에 따른 자기계발의 필요성을 인식하고 지속적이고 자기주도적으로 학습할 수 있는 능력

공학 문제와 공학자의 임무

- ■공학 문제 (Engineering Problem)
 - ✓인간의 삶의 질을 향상시키기 위해 편의성이나 안전성, 효율성, 경제성 등을 개선시키는 것과 관련된 모든 문제
- ■공학자의 임무
 - ✓공학 문제를 해결하는 것

핵심포인트

- 21세기 공학자에게 가장 필요한 능력은? 남들보다 먼저 새로운 문제를 발견하고 창안하는 문제 인식 능력이 필요하다.
- 21세기 공학자의 임무란? 잠재된 공학 문제를 인식하고 해결하는 것이다.

창의성

- 창의성 (Creativity) 정의

 ✓심리학 문헌에만 60가지 이상의 서로 다른 다양한 정의가 존재함
- 미국의 심리학자 J. P. Guilford 박사의 정의 (20C 중반)

"창의성은 유연성, 유창성, 독창성, 정교성을 의미한다."

- **1.fluency** (the ability to produce great number of ideas or problem solutions in a short period of time)
- **2.flexibility** (the ability to simultaneously propose a variety of approaches to a specific problem)
- **3.originality** (the ability to produce new, original ideas)
- **4.elaboration** (the ability to systematize and organize the details of an idea in a head and carry it out)

창의성의 어원

- 영어 단어 creativity 어원
 - ✓성장하는 것 (to have grown)이란 의미를 가진 라틴어 creatus
 - → 모르는 것을 알아내기 위해, 이미 알고 있는 기존 지식을 재구성 함으로써 성장하는 것을 의미함

- 한자 창의(創意)의 어원
 - ✔자신이 가진 기존 생각을 파괴해서 이전에 없던 새로운 생각을 만드는 것, 즉 고정관념의 탈피 또는 발상의 전환을 의미함

倉(곳집 창) + 刀(칼 도) 音(소리 음) + 心(마음 심)

창의성이란?

■ 고정관념을 탈피

마르셀 뒤샹의 <샘>

창의성은 전혀 새로운 것을 찾아내는 것이 아니라, 일상을 새로운 눈으로 보는 것이다!

공학에서의 창의성

창의 실용

창의적 발상과 방법을 통해 실용적인 결과를 얻는 것

창의적 문제 해결의 주요 속성

창의성에 대한 오해

- 창의성은 기발한 아이디어를 도출하는 것이다.
 - → 허황된 아이디어가 창의적인 것으로 둔갑되어, 문제 해결 방해
- 창의성은 주어진 조건과 현실을 무시해도 된다.
 - → 주어진 조건과 현실을 무시하고 도출된 아이디어는 실용성이 없음
- 창의성은 정답을 찾는 것이 아니다.
 - → 비판적 사고와 의사 결정 능력 저하

창의성에 대한 올바른 이해

- ■창의성은 문제 인식 능력이다.
- ■창의성은 문제 정의 능력이다.
- ■창의성은 문제 점검 능력이다.
- ■창의성은 참신성을 내포한다.
- ■창의성은 실용성을 내포한다.
- ■창의성은 창의적 발상 도구를 활용해서 증폭된다.
- ■창의성은 목적 지향적이다.
- ■창의성은 문제 해결 능력이다.

공학자와 창의성

- 공학자에게 요구되는 창의성 ✓실용적인 결과를 도출해 낼 수 있는 창의성
- **21**세기 공학자의 주된 고민
 - **√Why**
 - **√What**
 - **√How**

핵심 인재 = 혁신적인 아이디어 + 실행 (전문 지식과 창의성) (추진력과 인내심)

공학자에게 요구되는 창의성

창의성의 속성	공학자에게 요구되는 능력
문제 인식	새로운 문제를 남들보다 빨리 발견하고 창안하는 능력
문제 정의	인식된 문제의 근본 원인을 분석하여 진짜 문제를 정의하는 능력
문제 점검	정의된 문제가 해결할 만한 가치가 있는 문제인지, 주어진 제약 조건에서 해결 가능한 문제인지 판단할 수 있는 능력
아이디어 도출	문제 해결을 위한 창의적 아이디어를 도출하여 개념적 설계를 할 수 있는 능력
아이디어 실현	상세 설계를 통해 개념적 아이디어를 구체화시킬 수 있는 능력
창의적 발상 도구	문제의 특성에 맞는 창의적 발상 도구를 선택하여 활용할 수 있는 능력
목적 지향적	문제 해결이라는 목적을 달성할 수 있는 추진력과 몰입 능력

창의성 발휘의 3대 요소

■ 토랜스 (미국 교육심리학자, 창의성 대가)의 창의성 모델

창의성 계발 원칙

- ✓ 원칙 1 : 창의성은 관심과 호기심으로 자란다.
- ✓ 원칙 2: 창의성은 유연하고 열린 사고에서 나온다.
- ✓ 원칙 3 : 창의성은 긍정적이고 적극적인 태도에서 나온다.
- ✓ 원칙 4 : 창의성은 칭찬과 보상으로 증폭된다.
- ✓ 원칙 5 : 창의성은 팀워크를 통해서 증폭된다.
- ✓ 원칙 6: 창의성은 창의적 발상 도구에 의해 증폭된다.

창의적 발상 도구

■ 대표적 창의적 발상 도구들

발상 도구	특징
브레인스토밍(brainstorming)	비판 금지, 자유분방, 질보다 양, 결합과 개선
브레인라이팅(brainwriting)	아이디어 고안 시에 글로 써서 제안
역 브레인스토밍(reverse brainstorming)	비판 장려
고든법(gorden method)	문제 추상화를 통한 폭넓은 정보 탐색
마인드맵(mindmap)	주요 개념을 상호 연결해서 지도 그리듯 표현
스캠퍼(SCAMPER)	9가지 변형적 아이디어 연결법
퓨처링(futuring)	문제가 해결된 미래의 어느 순간을 상상하면서 해결
시네틱스(synetics)	관련 없는 요소 간의 아이디어 연결
수평적 사고(lateral thinking)	비전통적이고 비논리적인 방법으로 해결 모색
수렴적/발산적 연쇄 질문	문제 범위를 점점 좁히거나 넓혀가며 문제의 배경을 찾는 방법, 전자는 원인 전개, 후자는 목적 전개
KJ ¹ 분석법	구별짓기(distinction) 기법 사용
트리즈(TRIZ)	매우 구조적인 창의적 문제 해결 이론

창의성 방해 요인

방해 요인	특징
심리적 타성 (psychological inertia)	관습적인 사고로 인해 혁신적인 접근이 방해된다.자신의 지식과 경험 안에서만 해결안을 찾게 된다.
잘못된 문제 정의 (wrong problem definition)	 문제의 본질과 무관한 목표를 설정한다. 다양한 관점에서 문제를 검토하지 않는다. 표면에 쉽게 드러난 문제만을 공략한다.
다학제적 지식의 부족 (lack of interdisciplinary knowledge)	 많은 문제가 여러 분야의 다학제적 지식을 요구한다. 방대한 양의 전문 지식을 제대로 활용하지 못한다.
모순 회피 (avoiding contradiction)	 문제에 숨겨진 모순을 찾지 못한다. 모순 직면 시 모순을 회피하는 경향이 있다. 타협안이나 절충안으로 해결하려는 경향이 있다.

Moonshot thinking (문샷 씽킹)

MOONSHOT THINKING

Instead of a mere 10% gain, a moonshot aims for a 10x improvement over what currently exists. It address a huge problem, proposes a radical solution, and uses breakthrough technology to make it happen.

© NORMAN HIOB

문샷 씽킹으로 개선할 수 있는 문제 찾아보기

■세상을 바꿀 수 있는 문제 하나를 생각해서 정리해보세요.