

Preliminary and Primary Wastewater Treatment SC-1 SC-2 SC-3 CE412A

Preliminary and Primary Wastewater Treatment

Primary Sedimentation for Wastewater/Sewage Treatment Exactly same as secondary sedimentation for water treatment in most respects

However.

- 1. Particles removed in this case are mostly organic particles of density 1200 kg/m³
- 2. SOR = 32 $m^3/m^2/d$, organic particles: 60 μ m, inorganic particles: 20 μm
- 3. SOR = 48 m³/m²/d, organic particles: 75 μm , inorganic particles: 25 μm
- 4. Type II settling, hence smaller particles are also removed
- 5. SS removal: 50 70 %; BOD₅ removal: 25 – 40 %

CE412A ment and Waste Disposal Systems Dr Vinod Tare

Preliminary and Primary Wastewater Treatment

Biological Wastewater Treatment

Secondary Treatment: Aerobic Biological Treatment Sewage: After Primary Sedimentation

CE412A
Design of Water Treatment and Waste Disposal Systems Dr Vinod Tare

Biological Wastewater Treatment

Microbial Consumption of Biodegradable Organic Carbon

Microbial Growth Curve

Biological Wastewater Treatment

Biological Wastewater Treatment

Biological Wastewater Treatment

Microbial Growth: Definitions and Relations

Microbial Growth: Definitions and Relations

Microbial Growth: Definitions and Relations

 $\left[\frac{dX}{dt}\right]_C$ = Net Biomass Growth Rate, mg/L/d

$$\left[\frac{dX}{dt}\right]_G = Y_{obs}. \left[\frac{dS}{dt}\right]$$

 $\left[\frac{dX}{dt}\right]_G/X = \mu$ = Specific Net Biomass Growth Rate, /d

Y_{obs} = Observed Yield Coefficient

 $\left[\frac{dX}{dt}\right]_F$ = Biomass Decay Rate, mg/L/d

$$\left[\frac{dX}{dt}\right]_{G}/X = Y_{obs} \cdot \left[\frac{dS}{dt}\right]/X$$

 $\left[\frac{dX}{dt}\right]_{E}/X = k_{d}$ = Specific Biomass Decay Rate, /d (- ve)

$$\mu = Y_{obs}. q$$

$$Y_{obs} = Y_T - \frac{K_d}{q}$$

Dr Vinod Tare

Dr Vinod Tare

Microbial Growth Curve

Slope of X vs t curve is
$$\left[\frac{dX}{dt}\right]_{0}$$

Slope of S vs t curve is $\left[\frac{dS}{dt}\right]$

Lag Phase: X is low, S is high;

$$\left| \frac{dX}{dt} \right|$$
 is low; $\left| \frac{dS}{dt} \right|$ is low;

$$\left[\frac{dX}{dt}\right]_{C}$$
 is high; $\left[\frac{dS}{dt}\right]$ is high;

Declining Growth phase: X is high, S is low, μ is decreasing;

$$\left[\frac{dX}{dt}\right]_{C}$$
 is lower; $\left[\frac{dS}{dt}\right]$ is lower;

Monod's Kinetics Michaelis-Menten Equation

Microbial Growth Simulation: Solution of the Differential Equations

Sewage with BOD₅ of 300 mg/L (S) and 1 mg/L biomass (X) are put in a container and aerated. Assume oxygen and nutrients are not limiting. The BOD₅ is fully consumed in ~3 days and the biomass concentration increases to ~150 mg/L. Beyond that the biomass concentration decreases.

CE412A
Design of Water Treatment and Waste Disposal Syst

Dr Vinod Tare

Microbial Growth Simulation:

Microbial Growth Simulation:

CE412A
Design of Water Treatment and Waste Disposal Systems Dr Vinod Tare

Process dynamics of a continuous flow bioreactor.......

Process dynamics of a continuous flow bioreactor......

Determination of Bio-Kinetic Constants

	θ	v	Q	Q
	day	Liters	Liters/day	mL/min
R1	3	10	3.33	2.31
R2	2	10	5.00	3.47
R3	1	10	10.00	6.94

Hydraulic Retention Time (q) $= V/Q \mu = Y_T \cdot q - k_d$ $q = \frac{q_{\text{max}}}{K_S + S}$

Substrate Mass Balance: $Q.S_o = Q.S + \left[\frac{dS}{dt}\right].V$ $Q.\frac{(S_o - S)}{dt} = q.X$ Biomass Mass Balance:

 $Q.X_{o} + \left[\frac{dX}{dt}\right]_{G}.V = Q.X$ $\mu.X.V = Q.X; \quad \mu = Q/V$ $= 1/\theta$

	θ, days	S, m	z/L	X, mg	/L
R1	3	10		120)
R2	2	17		115	;
R3	1	45		110)
q	μ	1/S	1/q	Yobs	
q / da	μ y / day	1/S L/mg	1/q	Yobs	

Influent BOD $(S_0) = 250 \text{ mg/L}$

The reactor is operated under three conditions as above and the reactor performance is

shown in the table to the left

 $\mu = Q/V = 1/\theta$

Determination of Bio-Kinetic Constants....continued

Determination of Bio-Kinetic Constants....continued

Example Problem....Biodegradation of Domestic Sewage

Example Problem....Biodegradation of Domestic Sewage

Example Problem

Q = 1 MLD; $V = 1000 \text{ m}^3$; $S_o = 300 \text{ mg/L}$ q = V/Q = 1 day;

 $\mu = 1/q = 1/d$

$$q = \frac{\mu + k_d}{Y_r} = \frac{1 + 0.05}{0.5} = 2.1 \, \text{/d} \qquad Y_{obs} = \frac{\mu}{q} = \frac{1.0}{2.1} = 0.476 \, \text{g biomass/g BOD}_{\text{S}}$$

$$S = \frac{q \cdot K_{\rm S}}{(q_{\rm max} \frac{(2.1) \cdot (25)}{(4-2.1)} \ {\rm mg/L}} \qquad \qquad X = \frac{(S_o - S)}{\theta \cdot q} = \frac{(300-27.63)}{1 \cdot (2.1)} = 129.7 \ {\rm mg/L}$$

Lecture 1

CE412A

Dr Vinod Tare

Activated Sludge Process > Wastewater/Sewage Aerated in Presence of Microbes and then Separated

Suspended Solids (SS) in Mixed Liquor (ML) are referred as MLSS

CE412A

Lecture 1 Design of Water Treatment and Waste Disposal Systems Dr Vinod Tare

Activated Sludge Process Wastewater/Sewage Aerated in Presence of Microbes and then Separated (Q-Q_w), X_w, S

Information Required: Q; S_o; S_e; Y_T; k_d; k or q_m & Ks; O₂ Transfer

Capacity & Mixing Power Choices to make: θ; θc; X; X,; R

Design → Specifications: Aeration Tank (AT); Secondary Clarifier (SC); Recirculation System & Sludge Wasting Line

Lecture 1

CE412A
Design of Water Treatment and Waste Disposal Sys

Dr Vinod Tare

Activated Sludge Process

re 1 Design of Water Treatment and Waste Disposal Systems

Dr Vinod Tare

Dr Vinod Tare

Microbial Kinetics in a Reactor with Recycle

CE412A
Design of Water Treatment and Waste Disposal Systems

Oxygen Requirement

Organic carbon compounds consumed by microorganisms and converted to carbon dioxide (catabolism) and biomass (anabolism). Part of this biomass is oxidized by microorganisms to carbon dioxide (endogenous respiration). Energy produced through oxidation of organic carbon to carbon dioxide is the driving force for sustenance of the microorganisms and production of new biomass. Oxygen is required as the terminal electron acceptor for this process.

Lecture 1 CE412A

Design of Water Treatment and Waste Disposal Systems

Oxygen Requirement

Amount of Oxygen Required:

Biomass formula (dry basis): C₅H₇O₂N; Formula weight = 113

Respiration Equation:

$$C_5H_7O_2N + 5O_2 + H^+ \rightarrow 5CO_2 + 2H_2O + NH_4^+ + energy$$

This, if 1 g of biomass is produced, $\{(32 * 5)/113\}$ 1.42 g of oxygen requirement is saved.

[Oxygen Required in Aeration Tank, kg/d] = [BOD_u Removed, in kg/d] -1.42.[Sludge Wasted, kg/d]

Where, $BOD_u \sim 1.5.BOD_5$; So, O_2 Reqd, kg/d = 1.5.Q ($S_o - S_e$) $- 1.42.[\Delta X]$

Dr Vinod Tare

$Henry's \ \text{Law:} \ P_{O_2} = H. \, [O_2]_L^S$ Theory of Aeration: $P_{O_2} \xrightarrow{\stackrel{i_1}{\longleftarrow}} [O_2]_l$ $[O_2]_l$ in moles/L P_{O_2} in atm. H is the Henry's Constant in atm-L/mole P_{O_2} Rate of oxygen input to liquid phase = $V.\frac{d[O_2]_l}{}$ = Rate of Oxygen Absorption – Rate of Oxygen Stripping = $(O_2)_1 = (O_2)_1^*; \quad k_1.P_{O_2} = k_2.(O_2)_1^*; \quad k_1.P_{O_2} - k_2$ At equilibrium: $k_1.\,P_{O_2}-k_2.\,[O_2]_l$ $[0_{2}]_{l}$ $P_{O_2} = {k_2 \choose k_1} . [O_2]_1^s; \quad k_2 = k_1.H$ k₁ in moles/atm.-s $V.\frac{d[O_2]_l}{dt} = k_1.(H.[O_2]_l^s) - k_1.H.[O_2]_l$ k₂ in L/s $[0_{2}]_{l}^{s}$ at $= k_1 \cdot H \cdot ([O_2]_l^s - [O_2]_l);$ $k_1 \cdot H = (k_a \cdot H) \cdot A = k_L \cdot A$ $V.\frac{d[O_2]_l}{dt} = k_L.A.([O_2]_l^s - [O_2]_l);$ $[0_2]_i$ $V \cdot \frac{dt}{dt} = k_L \cdot A \cdot ([U_2]_{i}^2 - [U_2]_{i})$ $k_L = \text{Mass transfer coefficient};$ Time = contact area between liquid-gas pha The oxygen transfer rate from the gas $\frac{d[O_2]_l}{dt} = k_L \cdot \left(\frac{A}{V}\right) \cdot ([O_2]_l^s - [O_2]_l)$ to the liquid phase can be increased by increasing the value of 'a'. The value of 'a' may be increased by

using mechanical aerators

 $= k_L. a. ([O_2]_l^{s} - [O_2]_l)$ a = Specific Surface Area (m²/m³)

Two types of aerators are commonly used: 1) Surface Aerators & 2) Diffused Aerators

1) Surface Aerators

1) Surface Aerators

Standard O₂ transfer efficiency (SOT) is given by the manufacturer as, kg O₂ transferred per hour per KW under <u>standard conditions</u>

Aerator Rating: 10, 25, 50 KW; Area of Influence: 6m x 6m x 4m (depth)

Standard Conditions: T = 20°C;

Aerator Rating: 1, 2, 5 KW;

 $[O_2]_1 = 0.0$; In tap water

Area of Influence: 5m x 5m x 3m (depth)

Surface Aerator: Design Procedure

CE412A
Design of Water Treatment and Waste Disposal Systems

Dr Vinod Tare

SOT calculation: (Generally specified by the manufacturer)

Fill up a 5x5x3 m or 6x6x4 m tank (depending on aerator size) with tap water

Aerate overnight. Measure DO in the morning. This is $[\mathit{O}_2]_l^s$. Measure temp.

Add sodium sulfite to de-aerate water, i.e., $[O_2]_1 = 0.0$

Aerate from t = 0 to t = t. Measure $[O_2]_1$ at various times during aeration.

Surface Aerator: Design Procedure (Continued)

$$\begin{aligned} \frac{d[O_2]_i}{dt} &= K_L.a\left\{[O_2]_i^s - [O_2]_i\right\} \\ &\text{Integrating,} \\ &\int\limits_{[O_2]_i^s}^0 \frac{d[O_2]_i}{\left\{[O_2]_i^s - [O_2]_i\right\}} &= \int\limits_i^o K_L.a.dt \\ &\ln \frac{[O_2]_i^s}{\left\{[O_2]_i^s - [O_2]_i\right\}} &= K_L.a.t \end{aligned} \end{aligned}$$

$$\ln \left\{ \frac{[O_2]_1^s}{[O_2]_1^s - [O_2]_1} \right\} = K_L.a.t$$

$$\frac{d[O_2]_l}{dt} = k_L. a. ([O_2]_l^s - [O_2]_l)$$

$$V.\frac{d[O_2]_l}{dt} = k_L.a.([O_2]_l^s - [O_2]_l).V$$

$$SOT = (K_L.a)_{20}.[O_2]_l^{s_{20}}.(V)$$

- -

CE412A

Lecture 1

CE412A gn of Water Treatment and Waste Disposal Systems Dr Vinod Tare

Energy requirements for maintaining completely mixed conditions in the aeration tank

For an aeration tank of volume V, the P/V ratio for maintaining completely mixed conditions is $15-20\ W/m^3$

Hence in actual design power requirement in an aeration tank must be calculated both from $\rm O_2$ requirement and mixing perspectives, and the larger value adopted.

In many cases, the mixing requirement becomes the controlling factor for provision of power to the aeration tank

Example Problem: Aerator Design

Given the oxygen requirement of 8400 kg/d, design the aeration system for an ASP using turbine aerators. Assume that two aeration tanks will be provided in parallel and depth of the tanks will be 4 m. Total volume of aeration tanks is 4320 m³. No nitrification occurs in the aeration tank. Turbine Aerators are available with power rating 10, 25, 50 KW with area of influence being 36 m². Manufacturers specify that the oxygen transfer capacity of these aerators is 2.0 kg O_2 /kW-h under standard conditions. Based on this information, design an adequate aerator arrangement for each aeration tank. The operating temperature of the aeration tank is expected to be 30°C. Saturation concentration of oxygen in water at 20°C is 9.1 mg/L and at 30°C is 7.5 mg/L.

$$\alpha = \frac{\left(K_L.a\right)_L^N}{\left(K_L.a\right)_T^F} = 0.8 \qquad \beta = \frac{C_s \left(wastewater\right)}{C_s \left(tapwater\right)} = 0.9 \qquad \left(K_L.a\right)_T^F = \left(K_L.a\right)_{20}^F, \gamma, \qquad \gamma = 1.02^{(T-20)}$$

Lecture 1

CE412A
Design of Water Treatment and Waste Disposal Syste

Dr Vinod Tare

CE412A
Lecture 1 Design of Water Treatment and V

Dr Vinod Tare

Given SOT: To Find the Actual Oxygen Transfer Efficiency (AOT)

both K_L a and $[O_2]_I^S$ depend on temperature

$$\alpha = \frac{(K_L, \alpha)_T^W}{(K_L, \alpha)_T^F} = 0.8; \quad \beta = \frac{[O_Z^W]_1^S}{[O_Z^F]_1^S} = 0.9$$
 Impact of wastewate
$$(K_L, \alpha)_{20} = \frac{(K_L, \alpha)_T}{(1.02)^{T-20}}; \quad T \text{ in celcius}$$

 $[O_2]_l^s$ decreases with tempearture, obtained from tables

$$[O_2]_l = 1 \text{ mg/L or } 3 \text{ mg/L (in case of nitrification)}$$

$$SOT = (K_L \cdot a)_{20}^F \cdot [O_2^F]_I^{S_{20}} \cdot (V)$$
 Generally 1.5 – 2.0 kg O_2 / h/KW

$$AOT = (K_L.a)_T^W. \big\{ [O_2^W]_l^{s_T} - [O_2]_l \big\}. (V)$$

$$AOT = (K_L.a)_{20}^F.(\alpha.[1.02]^{T-20}) \{\beta.[O_2^F]_l^{S_T} - [O_2]_l\}.(V)$$

ture 1 CE412A

Design of Water Treatment and Waste Disposal Systems

Dr Vinod Tare

Solution

c/s area of each tank = $4320/4/2 = 540 \text{ m}^2$

Area of influence of each aerator = 36 m²

Let length of each tank be 30 m and breadth be 18 m. Hence aerators are provided in a 5x3 grid

SOT = 2.0 kg O₂/h/KW; Find AOT at 30°C

$$[O_2^F]_l^{s_{20}} = 9.1 \text{ mg/L}$$
 $[O_2^F]_l^{s_{30}} = 7.5 \text{ mg/L}$

$$SOT = (K_L, a)_{20}^F, [O_2^F]_l^{s_{20}}, (V)$$
 $2 = (K_L, a)_{20}^F, (V). 9.1$

$$AOT = (K_L. a)_{20}^F. ([0.8]. [1.02]^{30-20}) \{ [0.9]. [7.5] - 1 \}. (V)$$

$$AOT = (K_L.a)_{20}^F.(V).(5.607) = \frac{2}{9.1}.(5.607)$$

= 1.232 kg O₂/h/KW

ture 1 CE412A

Design of Water Treatment and Waste Disposal Systems

ns Dr Vinod Tare

 $[O_2]_l = 1.0 \,\mathrm{mg/L}$

Solution continued

 $AOT = (K_L.a)_{20}^F.(V).(5.607) = \frac{2}{9.1}.(5.607) = 1.232 \text{ kg } 0_2/h/KW$

Oxygen transfer per aerator = 4200/15/24 = 11.67 kg/hr;

Hence, Power Reqd. = 11.67/1.232 = 9.56 KW; Provide 15 no. aerators@10KW/tank

Power Reqd. for mixing/tank = 540.(4).(20)/1000 = 43.2 KW

Power provided for aeration/tank = 15.(10) = 150 KW. Hence, completely mixed conditions will prevail.

CE412A
Design of Water Treatment and Waste Disposal System:

Dr Vinod Tare

Nutrient (N and P) Requirement:

Nitrogen in wastewater is generally expressed as TKN (mg/L as N). TKN (as N, mg/L) = Organic-N (as N, mg/L) + Ammonia-N (as N, mg/L)

Phosphorus in wastewater is generally expressed as total – P (mg/L as P) Total P (as P, mg/L) = Org-P (as P, mg/L) + Condensed P (as P, mg/L) + Ortho-P (as P, mg/L)

The BOD₅ (in mg/L): TKN (in mg/L as N): Total-P (in mg/L as P) ratio in domestic wastewater is $^{\sim}$ 100 : 5 : 1

During BOD degradation: Organic -N is converted to Ammonia-N Organic-P and Condensed-P are converted to Ortho-P

CE412A
Design of Water Treatment and Waste Disposal Systems

Dr Vinod Tare

Nutrient (N and P) Requirement:

In addition to organic carbon and oxygen, all microorganisms require N and P to grow.

Wastewater generally contains sufficient nutrients (in fact excess) from microorganism growth.

Biomass formula (dry basis): C₆₀H₈₇O₂₃N₁₂P; Formula Weight: 1382 For the growth of 1382 g biomass, 168 g N and 31 g P is required

Nutrient Requirement: 0.121 g N and 0.022 g P per g biomass produced (or

Hence the N and P concentration will decrease by this amount in the aeration tank

$$\Delta N (kg/d) = 0.122 \Delta X (kg/d) = Q (m^3/d) * TKN (kg/m^3)$$

 $\Delta P (kg/d) = 0.022 \Delta X (kg/d) = Q (m^3/d) * TP (kg/m^3)$

CE412A
Design of Water Treatment and Waste Disposal Systems

Dr Vinod Tare

Settleability of Activated Sludge Solids

One of the factors essential to the performance of the activated sludge process is effective flocculation of the sludge, with subsequent rapid settling and compaction. Two types of bacteria are found in ASP sludge: 1) flocforming, and 2) filamentous bacteria

Normal flocs: A balance between floc-forming and filamentous bacteria results in strong flocs that keep their integrity in the aeration basin and settle well in the sedimentation tank (High BSRT).

Pin-point flocs: In these flocs, filamentous bacteria are absent or occur in low numbers. This results insmall flocs that do not settle well (Low BSRT).

Filamentous bulking: Filamentous bulking is caused by the predominance of filamentous organisms. The filaments interfere with sludge compaction. (very high BSRT)

CE412A
Design of Water Treatment and Waste Disposal Systems

Dr Vinod Tare

Activated Sludge: High Growth, Standard and Extended Aeration process

CE412A
Design of Water Treatment and Waste Disposal Systems

Dr Vinod Tare

High-growth (Aerated Lagoon) versus Low-growth (Extended Aeration)

What are the characteristics of a high-growth ASP system ??

In such a system, q_{c} is low. Hence μ and q are high, S is relatively high, hence O2 requirement is low, but nutrient requirement is high. Chance of forming pin-point flocs with poor settling characteristics.

What are the characteristics of an extended growth ASP system??

In such a system, q_c is high. Hence μ and q are low, S is relatively low. ΔX is low, hence O₂ requirement is high, but nutrient requirement is low. The inert matter concentration (C) in the aeration tank may be high. Chance of forming filamentous bulking sludge with poor settling characteristics.

CE412A
Design of Water Treatment and Waste Disposal Systems

Dr Vinod Tare

Settling of Activated Sludge

Settling of Activated Sludge

Sludge Volume Index (SVI):

Sludge settleability is determined by measuring the sludge volume index (SVI), which is given by:

SVI (mL/g) =
$$\frac{\text{SV} \times 1000}{\text{MLSS}}$$
 $(X_r)_{max} = \frac{10^6}{\text{SVI}}$

where SV = volume of settled sludge after 30 min (mL/L);

and MLSS = mixed liquor suspended solids (mg/L).

Low SVI (< 100) means good sludge settleability High SVI (> 150) means bad settleability

Type III / Hindered / Zone Settling

Type III / Hindered / Zone Settling

Interfacial Velocities of Sludge Solids

Solids (C+X) mg/L	u, m/hr	-h
2000	3.60	$u = g c^{-h}$
2500	1.86	
3000	1.09	
3500	0.69	Interfacial settling velocity u (in m/hr)
4500	0.33	to 1017 to 101 to 112 0521
5000	0.24	= $[2x10^{10}]$. $[(X + C) in mg/L]^{-2.9521}$
6000	0.14	
6500	0.11	
8000	0.06	
10000	0.03	
12000	0.02	
Lecture 1		CE412A

Concept of Solid Flux

SST or SC Design

Area and Depth Choice:

- 1. Clarification Criteria
- 2. Solids Concentration in Under Flow
- 3. Retention Time < 2.5 to 3 h

CE412A

Lecture 1 Design of Water Treatment and Waste Disposal Systems Dr Vinod Tare