Прикладная статистика. Теория оценивания II

Леонид Иосипой

Программа «Математика для анализа данных» Центр непрерывного образования, ВШЭ

17 ноября 2020

- Повторение
- Метод Монте-Карло

• Оценка среднего

• Оценка дисперсии

Повторение

Повторение

Теория оценивания. Постановка задачи.

- ▶ В общем случае задается семейство функций распределения $\{F_{\theta}(x), \theta \in \Theta\}$, где Θ множество возможных значений параметра.
- ▶ Данные x_1, \ldots, x_n рассматриваются как реализация выборки X_1, \ldots, X_n , элементы которой имеют функцию распределения $F_{\theta_0}(x)$ при некотором неизвестном значении $\theta_0 \in \Theta$.
- ▶ Задача состоит в том, чтобы оценить (восстановить) θ_0 по выборке x_1, \ldots, x_n , по возможности, наиболее точно.

Повторение

Оценивание θ_0 происходит при помощи некоторых функций $\hat{\theta}$ от n переменных x_1, \ldots, x_n , которые называются оценками или статистиками.

Подставляя в оценку $\widehat{\theta}$ реализацию выборки x_1, \dots, x_n , мы получим число — оценку неизвестного параметра θ_0 .

Повторение

Оценка $\widehat{\theta}(x_1,\ldots,x_n)$ параметра θ называется несмещенной, если

 $\mathbb{E}_{ heta}\left[\widehat{ heta}(X_1,\ldots,X_n)
ight]= heta$ для всех $heta\in\Theta$.

Здесь индекс θ у математического ожидания \mathbb{E}_{θ} означает, что имеется в виду математическое ожидание случайной величины $\widehat{\theta}(X_1,\ldots,X_n)$, где X_i распределены с функцией распределения $F_{\theta}(x)$.

Несмещенность означает, что при многократном вычислении оценки для разных данных среднее арифметическое полученных оценок будет стремится к истинному значению параметра θ .

Повторение

Оценка $\widehat{\theta}(x_1,\ldots,x_n)$ параметра θ называется состоятельной, если для всех $\theta \in \Theta$

$$\widehat{\theta}(X_1,\ldots,X_n)\stackrel{\mathbb{P}_{\theta}}{ o} \theta$$
 при $n o\infty$.

Здесь $\stackrel{\mathbb{P}_{\theta}}{\to}$ обозначает «сходимость по вероятности»:

для любого
$$\varepsilon>0$$
 $\mathbb{P}_{ heta}ig(ig|\widehat{ heta}_n- hetaig|>arepsilonig) o 0$ при $n o\infty.$

Состоятельность оценки означает концентрацию оценки около истинного значения параметра с ростом размера выборки n (что устремив $n \to \infty$, оценка сойдется к истинному значению параметра θ).

Повторение

Основная идея методов построения оценок:

чтобы оценить d неизвестных параметров модели, нам необходимо составить d уравнений на них.

Повторение

Метод моментов: d уравнений на неизвестные параметры получаются приравниваем первых d теоретических моментов κ их эмпирическим аналогам.

(Теоретическим) моментом k-го порядка случайной величины X называется величина

$$A_k = \mathbb{E}X^k$$
.

Выборочным моментом k-го порядка случайной величины X называется величина

$$a_k = \frac{1}{n} \sum_{i=1}^n x_i^k.$$

Повторение

Метод максимального правдоподобия: чтобы оценить d неизвестных параметров модели, нам необходимо найти максимум функции правдоподобия (то есть найти частные производные по d параметрам и приравнять их к нулю).

Введем величину:

$$f(u,\theta) = egin{cases} \mathbb{P}_{ heta}(X=u) & ext{в дискретном случае,} \ f_{ heta}(u) & ext{в непрерывном случае} \ (f_{ heta} - ext{плотность}). \end{cases}$$

Тогда функцией правдоподобия называется величина:

$$L(\theta) = f(x_1, \theta) \cdot \ldots \cdot f(x_n, \theta).$$

Метод Монте-Карло

Пусть дана реализация выборки x_1, \ldots, x_n из некоторого распределения X с неизвестным параметром θ .

Иногда интерес представляет получение оценки не для самого параметра θ , а для математического ожидания $\mathbb{E}_{\theta}[g(X)]$, где $g: \mathbb{R} \to \mathbb{R}$ — некоторая (известная) функция.

Как можно оценить $\mathbb{E}_{\theta}[g(X)]$ напрямую?

Это можно сделать с помощью оценки Монте-Карло:

$$\frac{1}{n}\sum_{i=1}^n g(x_i)$$

Оценка Монте-Карло является несмещенной и состоятельной.

1. Несмещенность:

$$\mathbb{E}_{\theta}\left[\frac{1}{n}\sum_{i=1}^{n}g(X_{i})\right]=\frac{1}{n}\Big(\mathbb{E}_{\theta}[g(X_{1})]+\ldots\mathbb{E}_{\theta}[g(X_{n})]\Big)=\mathbb{E}_{\theta}[g(X)].$$

2. Состоятельность: согласно закону больших чисел

$$\frac{1}{n}\sum_{i=1}^n g(x_i) \xrightarrow{\mathbb{P}_{\theta}} \mathbb{E}_{\theta}[g(X)].$$

Примеры:

1. Математическое ожидание:

$$\mathbb{E}_{\theta}[X] \approx \frac{1}{n} \sum_{i=1}^{n} x_i.$$

2. Моменты большего порядка: для k > 1

$$\mathbb{E}_{\theta}[X^k] \approx \frac{1}{n} \sum_{i=1}^n x_i^k.$$

Более сложные функции. Например:

$$\mathbb{E}_{\theta}[X^3 \sin(X) \log(X)] \approx \frac{1}{n} \sum_{i=1}^n x_i^3 \sin(x_i) \log(x_i).$$

Метод Монте-Карло

Оценки Монте-Карло могут быть полезны не только в контексте задачи теории оценивания.

Например, их можно использовать и тогда, когда нам известно распределение, но явное вычисление математического ожидания является затратным, а выборку из распределения получить легко.

Метод Монте-Карло

Пример

Пусть дана некоторая функция g(x), у которой первообразную посчитать нельзя. Как вычислить приближенно интеграл?

$$I = \int_0^1 g(x) dx$$

1. Численное интегрирование.

Простейший способ — метод прямоугольников. Он состоит в оценке / интегральной суммой

$$I_n = \frac{1}{n} \sum_{i=1}^n g(x_i),$$

где $x_i = \frac{i-1/2}{n}$ — это *«узлы» равномерной сетки*, то есть середины интервалов разбиения отрезка [0,1] на n равных частей.

Метод Монте-Карло

2. Метод Монте-Карло.

В данном случае в качестве оценки / можно взять

$$\widehat{I}_n = \frac{1}{n} \sum_{i=1}^n g(x_i),$$

где x_1, \ldots, x_n — выборка из равномерного распределения на отрезке [0,1].

Данная оценка будет оценивать то, что нужно:

$$\mathbb{E}\left[\widehat{I}_n\right] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[g(X_i)] = \int_0^1 g(u) \cdot 1 \, du = I,$$

Метод Монте-Карло

Метод Монте-Карло отличается от метода прямоугольников тем, что в качестве «узлов» используются случайные числа x_1, \ldots, x_n из равномерного распределения на [0,1].

Какой из методов лучше?

1. При условии, что g(x) дважды непрерывно дифференцируема, можно показать, что погрешность метода прямоугольников оцениваться сверху так:

$$|I - I_n| \le \frac{M}{24} \cdot \frac{1}{n^2}$$
, где $M = \max_{x \in [0,1]} |g''(x)|$.

2. Чтобы оценить погрешность метода Монте-Карло, воспользуемся центральной предельной теоремой.

$$\mathbb{E}\left[\widehat{I}_n\right] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[g(X_i)] = \int_0^1 g(u) du = I,$$

$$\operatorname{Var}\left(\widehat{I}_n\right) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}[g(X_i)] = \frac{\sigma^2}{n},$$

где $\sigma^2 = \text{Var}[g(X)]$ по определению.

По центральной предельной теореме: для произвольных a < b

$$\mathbb{P}\left(a \leq \frac{\sqrt{n}(\widehat{I}_n - I)}{\sigma} \leq b\right) \approx \mathbb{P}(a \leq Z \leq b),$$

где $Z \sim \mathcal{N}(0,1)$.

Если положить a=-3 и b=3, то мы получим $P(-3 \le Z \le 3) \approx 0.997$. В результате:

$$\left|\widehat{I}_n - I\right| \leq 3\sigma \cdot \frac{1}{\sqrt{n}}$$
 с вероятностью близкой к 1.

Метод Монте-Карло

Вывод: Неразумно использовать метод Монте-Карло для вычисления одномерных интегралов — для этого существуют квадратурные формулы, простейшая из которых — рассмотренная выше формула метода прямоугольников.

Метод Монте-Карло

Тем не менее, метод Монте-Карло (или его модификации) часто оказывается единственным численным методом, позволяющим решить задачу вычисления интеграла большой кратности.

Дело в том, что число «узлов» сетки возрастает как n^d , где d — кратность интеграла (так называемое «проклятие размерности»).

Можно записать, что в многомерном случае:

1. Для метода прямоугольников:

$$\left|I_n-I\right|\leq O\left(\frac{1}{n^{2/d}}\right).$$

2. Для метода Монте-Карло:

$$\left|\widehat{I}_n-I\right|\leq O\left(\frac{1}{n^{1/2}}\right).$$

Эта запись не совсем корректна, но отражает суть вещей.

Вывод: пусть нам необходимо найти $\mathbb{E}[g(X)]$, где

- ▶ X случайный вектор в \mathbb{R}^d с плотностью f(u),
- $ightharpoonup g: \mathbb{R}^d
 ightarrow \mathbb{R}$ некоторая функция.

Если размерность d является большой и/или функция g является сложной, то единственным доступным методом решения задачи является метод Монте-Карло

$$\mathbb{E}[g(X)] = \int_{\mathbb{R}^d} g(u)f(u)du \approx \frac{1}{n} \sum_{i=1}^n g(x_i).$$

где x_1, \ldots, x_n — (реализация) выборка из распределения X.

Оценка среднего

Эксперимент. В некоторой точке пространства с неизвестными координатами (a, b, c) находится источник γ -излучения.

Регистрируются координаты (x_i, y_i) точек пересечения траекторий γ -квантов с поверхностью плоскости z=0.

Требуется оценить координаты a и b источника излучения, предполагая, что направления траекторий γ -квантов равномерно распределены.

Оценка среднего

▶ Первое, что приходит в голову, — это усреднить (x_i, y_i) .

Ясно, что точки пересечения траекторий с плоскостью z=0 располагаются гуще непосредственно под источником излучения. В подобных случаях прибегают к усреднению данных, чтобы устранить разброс измерений (предполагается, что при этом происходит взаимная компенсация отклонений в разные стороны).

 Однако, в данном случае усреднение совершенно бесполезно.

Оценка среднего

Для объяснения, почему это так, рассмотрим одномерный аналог эксперимента.

- ▶ Из точки (0, 1) выходит случайный луч, направление которого равномерно распределено на нижней полуокружности с центром (0, 1).
- ▶ Пусть случайная величина X координата пересечения этого луча с осью абсцисс.
- ▶ Какой будет плотность f(u) у этой величины?

Оценка среднего

Решение. Понятно, что плотность — четная функция. Вычислим ее для u > 0.

Найдем сначала функцию распределения $F(u) = \mathbb{P}(X \leq u)$:

$$F(x) = \mathbb{P}(X \le 0) + \mathbb{P}(0 < X \le u) = \frac{1}{2} + \frac{\alpha_u}{\pi} = \frac{1}{2} + \frac{1}{\pi} \arctan(u).$$

Отсюда

$$f(u) = F'(u) = \frac{1}{\pi(1+u^2)}.$$

Leonid Iosipoi

Оценка среднего

- ▶ Плотностью, которую мы получили, плотность Коши.
- ▶ На первый взгляд она похожа на плотность стандартного нормального закона $\mathcal{N}(0,1)$.

- ▶ Однако, они различаются по скорости убывания к нулю при $u \to \infty$ вероятностей $\mathbb{P}(X \le -u)$ и $\mathbb{P}(X \ge u)$ (так называемых «хвостов распределения»).
- ▶ У закона Коши «хвосты» намного «тяжелее».

Оценка среднего

Чем опасны «тяжелые хвосты»?

- ▶ Тем, что случайная величина с таким распределением с довольно существенной вероятностью может принимать большие по абсолютной величине значения.
- Поэтому в реализации выборки большого размера из такого закона обязательно появятся одно или несколько наблюдений, которые сильно отличаются от остальных (их называют «выбросами»).
- ▶ В этом случае при оценивании «центра» распределения при помощи выборочного среднего *X* произойдет резкое смещение оценки в сторону наибольшего «выброса».

Оценка среднего

- ► Из-за слишком «тяжелых хвостов» у закона Коши не существует даже математического ожидания.
- ▶ Если бы оно существовало, то по закону больших чисел среднее арифметическое сходилось бы к $\mathbb{E}[X]$ при $n \to \infty$.
- А что происходит со средним арифметическим для распределения Коши?

Ответ такой: при любом n среднее арифметическое будет иметь распределение Коши!

Поэтому оно будет отклоняться от 0 ничуть не меньше значений самих x_i .

Оценка среднего

Поэтому у случайных величин существует несколько характеристик, которые принято называть «средними».

Оценка среднего

Теоретическое среднее	Выборочное среднее
Математическое ожидание:	Выборочное среднее:
$\mathbb{E}[X]$	$\frac{1}{n}\sum_{i=1}^{n}x_{i}$

Оценка среднего

Теоретическое среднее

Теоретическая медиана:

$$X_{1/2}$$
,

которая определяется как решение уравнения

$$F(x)=1/2,$$

где F(x) — функция распределения.

Для непрерывной функции F(x) решение всегда существует, но может быть не единственным.

Выборочное среднее

Выборочная медиана:

MED =
$$\begin{cases} x_{(k+1)}, & n = 2k+1, \\ (x_{(k)} + x_{(k+1)})/2, & n = 2k. \end{cases}$$

Здесь

$$x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$$

это так называемый вариационный ряд, состоящий из упорядоченных по возрастанию элементов реализации выборки (x_1, \ldots, x_n) .

Оценка среднего

Теоретическое среднее

Теоретическая мода:

- В дискретном случае значение, которое принимаются с наибольшей вероятностью.
- В непрерывном случае точка максимума функции плотности.

Выборочное среднее

Выборочная мода:

- В дискретном случае самое распространенное значение реализации выборки.
- ▶ В непрерывном случае нет.

Оценка среднего

Оценка среднего

Leonid Iosipoi

Оценка среднего

Возвращаясь к оценке среднего для распределения Коши: в данной задаче необходимо было использовать медиану. Она будет и несмещенной, и состоятельной оценкой.

Оценка дисперсии

Пусть нам дана реализация выборки x_1, \ldots, x_n из некоторого распределения X.

Как на основе этих данных оценить дисперсию Var(X)?

Оценка дисперсии

Если бы математическое ожидание $\mathbb{E}[X]$ было бы известным, можно было бы воспользоваться оценкой Монте-Карло:

$$\frac{1}{n}\sum_{i=1}^{n}(x_i-\mathbb{E}[X])^2 \approx \operatorname{Var}(X).$$

Но что делать, если $\mathbb{E}[X]$ неизвестно?

Оценка дисперсии

Plug-in principle: если оценка неизвестного параметра требует знания каких-то других неизвестных параметров, то можно попробовать подставить в эту оценку вместо неизвестных параметров их оценки.

При этом, естественно, нет никаких гарантий, что полученная оценка будет хорошей.

Оценка дисперсии

Обозначим оценку для математического ожидания через \overline{x} ,

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Подставим ее в оценку для дисперсии, которую мы приводили выше:

$$S^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2.$$

Данная оценка будет состоятельной, но смещенной.

Оценка дисперсии

Действительно, применяя свойства математического ожидания, получаем:

$$\mathbb{E}S^{2} = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} - \frac{1}{n^{2}}\sum_{i,j=1}^{n}X_{i}X_{j}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}X_{i}^{2} - \frac{1}{n^{2}}\sum_{i=1}^{n}\mathbb{E}X_{i}^{2} - \frac{1}{n^{2}}\sum_{i\neq j}^{n}\mathbb{E}X_{i}\mathbb{E}X_{j}$$

$$= \mathbb{E}X^{2} - \frac{1}{n}\mathbb{E}X^{2} - \frac{n-1}{n}(\mathbb{E}X)^{2}$$

$$= \frac{n-1}{n}\text{ Var }X.$$

Оценка дисперсии

Чтобы устранить смещение у S^2 , достаточно домножить ее на n/(n-1):

$$S_{unbiased}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2.$$

Данная оценка будет и несмещенной, и состоятельной.

Оценка дисперсии

Среднеквадратическое отклонение (или стандартное отклонение) — это квадратный корень из дисперсии случайной величины:

$$\sigma = \sqrt{\operatorname{Var}(X)}.$$

Оценка дисперсии

Оценка стандартного отклонения на основании смещённой оценки дисперсии:

$$\widehat{\sigma} = \sqrt{S^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}.$$

Оценка стандартного отклонения на основании несмещённой оценки дисперсии:

$$\widehat{\sigma}_{unbiased} = \sqrt{S_{unbiased}^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}.$$

Оценка дисперсии

Обе оценки являются смещёнными, то есть извлечение квадратного корня «портит» несмещённость. При этом, обе оценки являются состоятельными.

Термины «среднеквадратическое отклонение» и «стандартное отклонение» обычно применяют к квадратному корню из дисперсии случайной величины, но иногда и к различным вариантам оценки этой величины на основании выборки.

Спасибо за внимание!