Case Study for COTS Chips with UCDL

For a better induction, we provide a set of tables that describe the heterogeneous features of 20 different chips in detail through UCDL, demonstrating that UCDL has the capability of extensive support for COTS chips. In those tables, we discuss the detailed features for each chip, contains information of their type, name, communication protocol, ID, and how many detailed functions we have achieved (full or basic). Then, for each chip, we listed the detailed functions, and gave the UCDL control sequence for one of the functions. The listed functions represent the specific functions provided by the chip (not including pin configuration and data converting that provided by UCDL). Finally, we give a demonstration of data conversion for each chip, and add necessary annotations. For the data conversion, LEGO supports functions written in strings bu utilizing QScriptEngine¹, and we achieve complex data computing for chip outputs. We also made comprehensive evaluations on the selected 20 chips in Section 8 of the paper manuscript.

The heterogeneity characteristics of COTS chips are presented in three tables. The first part (Table 1) is about different types of digital chips, which is controlled through different digital buses (*e.g.*, I2C, SPI, I2S); the second part (Table 2) is about different types of analog chips, which is controlled by ADC (analog-to-digital converter) and DAC (digital-to-analog converter) on LEGO device; the final part (Table 3) is the comparison of chips in the same function class. We provide the ID for each chip, based on which readers can easily find the original file in the anonymous open source link. It should be noted that there are a few differences in variable naming between the source file and the content discussed in the table, because we have made readability optimization in the table presentation. The details are as follows, where our UCDL gives a good support for all of them.

Table 1: Features comparison of COTS Chips (Part 1: Digital chips in different functions)

	Type: 3-Axis Digital Angular Rate Gyroscope	Chip: FXAS21002 ID: 0xFA	<u> </u>
	Detailed Functions ¹	Control Sequence of function 1	Example of Data Conversion
1	Read Angular Rate Register Data	1), CW(2, L), +2us;	1), DF(Y1, variable1, (Y1=X1<<8)+X2, null);
	2. From Standby Mode Change to Active Mode	2), DW(3, 1, 0x81), +10us;	2), DF(Y2, variable2, (Y2=X3<<8)+X4, null);
	3. From Ready Mode Change to Active Mode	3), DR(5, 6, X1, X2, X3, X4,	3), DF(Y3, variable3, (Y3=X5<<8)+X6, null);
	4. Change to Ready Mode	X5, X6), +60us;	4), DF(Y4, X-angular, (Y4=Y1,Y1<32768;
	5. Change to Active Mode	4), CW(2, H), +2us;	Y4=(Y1-65536),Y1>=32768), degree/s);
	6. Reset Device and Change to Standby Mode		5), DF(Y5, Y-angular, (Y5=Y2,Y2<32768;
	N-4-1. The 12-4-1 fem -42		Y5=(Y2-65536),Y2>=32768), degree/s);
	Note ¹ : The listed functions represents the		6), DF(Y6, Z-angular, (Y6=Y3,Y3<32768;
	specific functions provided by the chip.		Y6=(Y3-65536),Y3>=32768), degree/s);
			Annotation:1)"Y4, Y5, Y6" are final data of
			3-axis angular rates, respectively.
			2),"Y1 to Y3" are intermediate variables.
			3),"X1 to X6" are raw angular data read by Function 1.
	Type: Digital Microphone Chip: INMP441	ID: 0x7C60 Protocol: I2S	States: 1 Basic Function Achieved (1/2 of all functions)
2	Detailed Functions	Control Sequence of function 1	Example of Data Conversion (None ²)
	1. Get I2S Data	1), DR(2, I2S, DIRECT), +1s;	² Annotation: The I2S output data is directly send to
	1. Get 125 Data	1), DK(2, 123, DIKEC1), +13,	the gateway and decode by third-party audio software.
	Type: Digital Accelerometer Chip: ADXL		col: SPI States: 3 Basic Functions Achieved (3/5 of all)
	Detailed Functions	Control Sequence of function 1	col: SPI States: 3 Basic Functions Achieved (3/5 of all) Example of Data Conversion
	Detailed Functions 1. Read Acceleration Data	Control Sequence of function 1 1), CW(5, L),+2us;	Example of Data Conversion
3	Detailed Functions 1. Read Acceleration Data 2. Set Standby Mode	Control Sequence of function 1 1), CW(5, L),+2us; 2), DW(3,0x0B),+2us;	Example of Data Conversion 1), DF(Y1, X-axis Acceleration, (Y1=X1/64,
3	Detailed Functions 1. Read Acceleration Data	Control Sequence of function 1 1), CW(5, L),+2us; 2), DW(3,0x0B),+2us; 3), DW(3,0x08),+2us;	Example of Data Conversion 1), DF(Y1, X-axis Acceleration, (Y1=X1/64, X1<128; Y1=(X1-256)/64, X1>=128), g);
3	Detailed Functions 1. Read Acceleration Data 2. Set Standby Mode	Control Sequence of function 1 1), CW(5, L),+2us; 2), DW(3,0x0B),+2us; 3), DW(3,0x08),+2us; 4), DR(4,1,X1),+6us;	Example of Data Conversion 1), DF(Y1, X-axis Acceleration, (Y1=X1/64, X1<128; Y1=(X1-256)/64, X1>=128), g); Annotation: 1), "Y1" is the final X-axis acceleration data.
3	Detailed Functions 1. Read Acceleration Data 2. Set Standby Mode 3. Set WAKE-UP Mode	Control Sequence of function 1 1), CW(5, L),+2us; 2), DW(3,0x0B),+2us; 3), DW(3,0x08),+2us; 4), DR(4,1,X1),+6us; 5), CW(5, H),+2us;	Example of Data Conversion 1), DF(Y1, X-axis Acceleration, (Y1=X1/64, X1<128; Y1=(X1-256)/64, X1>=128), g); Annotation: 1), "Y1" is the final X-axis acceleration data. 2), "X1" is an 8bit signed raw data read by Function 1
3	Detailed Functions 1. Read Acceleration Data 2. Set Standby Mode 3. Set WAKE-UP Mode Type: 256Bytes EEPROM (Memory) Chip:	Control Sequence of function 1 1), CW(5, L),+2us; 2), DW(3,0x0B),+2us; 3), DW(3,0x08),+2us; 4), DR(4,1,X1),+6us; 5), CW(5, H),+2us; AT24C02 ID: 0x94B5 Protoc	Example of Data Conversion 1), DF(Y1, X-axis Acceleration, (Y1=X1/64, X1<128; Y1=(X1-256)/64, X1>=128), g); Annotation: 1), "Y1" is the final X-axis acceleration data. 2), "X1" is an 8bit signed raw data read by Function 1 ol: I2C States: 3 Basic Functions Achieved (3/5 of all)
	Detailed Functions 1. Read Acceleration Data 2. Set Standby Mode 3. Set WAKE-UP Mode Type: 256Bytes EEPROM (Memory) Chip: Detailed Functions	Control Sequence of function 1 1), CW(5, L),+2us; 2), DW(3,0x0B),+2us; 3), DW(3,0x08),+2us; 4), DR(4,1,X1),+6us; 5), CW(5, H),+2us; AT24C02 ID: 0x94B5 Protoc Control Sequence of function 1	Example of Data Conversion 1), DF(Y1, X-axis Acceleration, (Y1=X1/64, X1<128; Y1=(X1-256)/64, X1>=128), g); Annotation: 1), "Y1" is the final X-axis acceleration data. 2), "X1" is an 8bit signed raw data read by Function 1
3	Detailed Functions 1. Read Acceleration Data 2. Set Standby Mode 3. Set WAKE-UP Mode Type: 256Bytes EEPROM (Memory) Chip: Detailed Functions 1. Read All Data	Control Sequence of function 1 1), CW(5, L),+2us; 2), DW(3,0x0B),+2us; 3), DW(3,0x08),+2us; 4), DR(4,1,X1),+6us; 5), CW(5, H),+2us; AT24C02 ID: 0x94B5 Protoc Control Sequence of function 1 1), DR(5,0xA1,0x00,256),	Example of Data Conversion 1), DF(Y1, X-axis Acceleration, (Y1=X1/64, X1<128; Y1=(X1-256)/64, X1>=128), g); Annotation: 1), "Y1" is the final X-axis acceleration data. 2), "X1" is an 8bit signed raw data read by Function 1 ol: I2C States: 3 Basic Functions Achieved (3/5 of all) Example of Data Conversion
	Detailed Functions 1. Read Acceleration Data 2. Set Standby Mode 3. Set WAKE-UP Mode Type: 256Bytes EEPROM (Memory) Chip: Detailed Functions 1. Read All Data 2. Set Address	Control Sequence of function 1 1), CW(5, L),+2us; 2), DW(3,0x0B),+2us; 3), DW(3,0x08),+2us; 4), DR(4,1,X1),+6us; 5), CW(5, H),+2us; AT24C02 ID: 0x94B5 Protoc Control Sequence of function 1	Example of Data Conversion 1), DF(Y1, X-axis Acceleration, (Y1=X1/64, X1<128; Y1=(X1-256)/64, X1>=128), g); Annotation: 1), "Y1" is the final X-axis acceleration data. 2), "X1" is an 8bit signed raw data read by Function 1 ol: I2C States: 3 Basic Functions Achieved (3/5 of all) Example of Data Conversion Annotation: The output data of Memory is displayed directly
	Detailed Functions 1. Read Acceleration Data 2. Set Standby Mode 3. Set WAKE-UP Mode Type: 256Bytes EEPROM (Memory) Chip: Detailed Functions 1. Read All Data 2. Set Address 3. Write Data	Control Sequence of function 1 1), CW(5, L),+2us; 2), DW(3,0x0B),+2us; 3), DW(3,0x08),+2us; 4), DR(4,1,X1),+6us; 5), CW(5, H),+2us; AT24C02 ID: 0x94B5 Protoc Control Sequence of function 1 1), DR(5,0xA1,0x00,256), +100ms;	Example of Data Conversion 1), DF(Y1, X-axis Acceleration, (Y1=X1/64, X1<128; Y1=(X1-256)/64, X1>=128), g); Annotation: 1), "Y1" is the final X-axis acceleration data. 2), "X1" is an 8bit signed raw data read by Function 1 ol: I2C States: 3 Basic Functions Achieved (3/5 of all) Example of Data Conversion
	Detailed Functions 1. Read Acceleration Data 2. Set Standby Mode 3. Set WAKE-UP Mode Type: 256Bytes EEPROM (Memory) Chip: Detailed Functions 1. Read All Data 2. Set Address 3. Write Data Type: 8-bit Temperature Sensor Chip: LM9	Control Sequence of function 1 1), CW(5, L),+2us; 2), DW(3,0x0B),+2us; 3), DW(3,0x08),+2us; 4), DR(4,1,X1),+6us; 5), CW(5, H),+2us; AT24C02 ID: 0x94B5 Protoc Control Sequence of function 1 1), DR(5,0xA1,0x00,256), +100ms; Protocol: So	Example of Data Conversion 1), DF(Y1, X-axis Acceleration, (Y1=X1/64, X1<128; Y1=(X1-256)/64, X1>=128), g); Annotation: 1), "Y1" is the final X-axis acceleration data. 2), "X1" is an 8bit signed raw data read by Function 1 ol: I2C States: 3 Basic Functions Achieved (3/5 of all) Example of Data Conversion Annotation: The output data of Memory is displayed directly on the gateway. (not need to make the conversion) mBus States: 2 Basic Functions Achieved (2/3 of all)
	Detailed Functions 1. Read Acceleration Data 2. Set Standby Mode 3. Set WAKE-UP Mode Type: 256Bytes EEPROM (Memory) Chip: Detailed Functions 1. Read All Data 2. Set Address 3. Write Data Type: 8-bit Temperature Sensor Chip: LM9 Detailed Functions	Control Sequence of function 1 1), CW(5, L),+2us; 2), DW(3,0x0B),+2us; 3), DW(3,0x08),+2us; 4), DR(4,1,X1),+6us; 5), CW(5, H),+2us; AT24C02 ID: 0x94B5 Protoc Control Sequence of function 1 1), DR(5,0xA1,0x00,256), +100ms; P9 ID: 0x8169 Protocol: Solution 1 Control Sequence of function 1	Example of Data Conversion 1), DF(Y1, X-axis Acceleration, (Y1=X1/64, X1<128; Y1=(X1-256)/64, X1>=128), g); Annotation: 1), "Y1" is the final X-axis acceleration data. 2), "X1" is an 8bit signed raw data read by Function 1 ol: I2C States: 3 Basic Functions Achieved (3/5 of all) Example of Data Conversion Annotation: The output data of Memory is displayed directly on the gateway. (not need to make the conversion) mBus States: 2 Basic Functions Achieved (2/3 of all) Example of Data Conversion
4	Detailed Functions 1. Read Acceleration Data 2. Set Standby Mode 3. Set WAKE-UP Mode Type: 256Bytes EEPROM (Memory) Chip: Detailed Functions 1. Read All Data 2. Set Address 3. Write Data Type: 8-bit Temperature Sensor Chip: LM9 Detailed Functions 1. Read Local Temperature Register Data	Control Sequence of function 1 1), CW(5, L),+2us; 2), DW(3,0x0B),+2us; 3), DW(3,0x08),+2us; 4), DR(4,1,X1),+6us; 5), CW(5, H),+2us; AT24C02 ID: 0x94B5 Protoc Control Sequence of function 1 1), DR(5,0xA1,0x00,256), +100ms; Protocol: Some Control Sequence of function 1 1), DR(5,0x90,0x00,1,X1),	Example of Data Conversion 1), DF(Y1, X-axis Acceleration, (Y1=X1/64, X1<128; Y1=(X1-256)/64, X1>=128), g); Annotation: 1), "Y1" is the final X-axis acceleration data. 2), "X1" is an 8bit signed raw data read by Function 1 ol: I2C States: 3 Basic Functions Achieved (3/5 of all) Example of Data Conversion Annotation: The output data of Memory is displayed directly on the gateway. (not need to make the conversion) mBus States: 2 Basic Functions Achieved (2/3 of all) Example of Data Conversion 1), DF(Y1, Temperature, (Y1=X1,X1<128;
	Detailed Functions 1. Read Acceleration Data 2. Set Standby Mode 3. Set WAKE-UP Mode Type: 256Bytes EEPROM (Memory) Chip: Detailed Functions 1. Read All Data 2. Set Address 3. Write Data Type: 8-bit Temperature Sensor Chip: LM9 Detailed Functions	Control Sequence of function 1 1), CW(5, L),+2us; 2), DW(3,0x0B),+2us; 3), DW(3,0x08),+2us; 4), DR(4,1,X1),+6us; 5), CW(5, H),+2us; AT24C02 ID: 0x94B5 Protoc Control Sequence of function 1 1), DR(5,0xA1,0x00,256), +100ms; P9 ID: 0x8169 Protocol: Solution 1 Control Sequence of function 1	Example of Data Conversion 1), DF(Y1, X-axis Acceleration, (Y1=X1/64, X1<128; Y1=(X1-256)/64, X1>=128), g); Annotation: 1), "Y1" is the final X-axis acceleration data. 2), "X1" is an 8bit signed raw data read by Function 1 ol: I2C States: 3 Basic Functions Achieved (3/5 of all) Example of Data Conversion Annotation: The output data of Memory is displayed directly on the gateway. (not need to make the conversion) mBus States: 2 Basic Functions Achieved (2/3 of all) Example of Data Conversion 1), DF(Y1, Temperature, (Y1=X1,X1<128; Y1=X1-256,X1>=256), degree C);
4	Detailed Functions 1. Read Acceleration Data 2. Set Standby Mode 3. Set WAKE-UP Mode Type: 256Bytes EEPROM (Memory) Chip: Detailed Functions 1. Read All Data 2. Set Address 3. Write Data Type: 8-bit Temperature Sensor Chip: LM9 Detailed Functions 1. Read Local Temperature Register Data	Control Sequence of function 1 1), CW(5, L),+2us; 2), DW(3,0x0B),+2us; 3), DW(3,0x08),+2us; 4), DR(4,1,X1),+6us; 5), CW(5, H),+2us; AT24C02 ID: 0x94B5 Protoc Control Sequence of function 1 1), DR(5,0xA1,0x00,256), +100ms; Protocol: Some Control Sequence of function 1 1), DR(5,0x90,0x00,1,X1),	Example of Data Conversion 1), DF(Y1, X-axis Acceleration, (Y1=X1/64, X1<128; Y1=(X1-256)/64, X1>=128), g); Annotation: 1), "Y1" is the final X-axis acceleration data. 2), "X1" is an 8bit signed raw data read by Function 1 ol: I2C States: 3 Basic Functions Achieved (3/5 of all) Example of Data Conversion Annotation: The output data of Memory is displayed directly on the gateway. (not need to make the conversion) mBus States: 2 Basic Functions Achieved (2/3 of all) Example of Data Conversion 1), DF(Y1, Temperature, (Y1=X1,X1<128;

¹The site of QScriptEngine: https://doc.qt.io/qt-5/qscriptengine.html

 ▶ Continue with table1 (Part1: Digital chips in different functions)

	Type: Digital Baroceptor Chip:	2SMPB-02E ID: 0x010F P	Protocol: SPI States: 3 Basic Functions Achieved (3/4 of all)
	Detailed Functions	Control Sequence of function 1	Example of Data Conversion
6	Read Compensation Variables Read Temperature Register Data Read Pressure Register Data	1), CW(2, L),+2us; 2), DW(3, 1, 0xA0),+2us; 3), DR(5, 25),+26us; 4), CW(2, H),+2us;	1), DF(Y1, variable1, Y1=X29*pow(2, 16)+X30* pow(2, 8)+X31, null); 2), DF(Y2, variable2, Y2=(X19*pow(2, 12)+X20* pow(2, 4)+X25&0x0F)/16, null); 3), DF(Y3, variable3, Y3=-6.3*pow(10, -3)+4.3* pow(10, -4)*(X21*pow(2, 8)+X22)/32767, null); 4), DF(Y4, variable4, Y4=-1.9*pow(10, -11)+1.2* pow(10, -10)*(X23*pow(2, 8)+X24)/32767, null); 5), DF(Y5, coe5, Y5=Y2+Y3*Y1+Y4*pow(Y1, 2), null); 6), DF(Y6, Temperature, Y6=Y5/256, degree C);
	Note: We present some special chip contain a large amount of compens It indicates that our UCDL can sup chip outputs.	ation from different ''read'' funct port complex data computing for	hat ions. Annotation: 1),"X19, X20, X21, X22, X23, X24, X25" are compensation variables read by Function 1. 2),"Y1-Y5" are intermediate variables. 3),"X29-X31" are raw temperature data read by Function 2. 4), Y6 is the final temperature data.
	1 11 0	: SLF3S-0600F ID: 0x3938 Pr	
	Detailed Functions	Control Sequence of function 1	Example of Data Conversion
7	1. Read Flow Data	1), DW(1, 0x10, 0x36,	1), DF(Y1, Flow Velocity, Y1=X1<<8+X2, ul/min);
/	2. Soft Reset;	1, 0x08),+600us;	2), DF(Y2, CRC, Y2=X3, null);
		2), DR(1, NOADDR, 0x11, 3, X1, X2, X3),+100us;	Annotation: 1), "X1" and "X2" are the upper and lower 8-bi of the raw data for fluid velocity sensing, respectively.
	Note ³ : LFV is the abbreviation of Liquid Flow Velocity.		2), "X3" is the CRC (Cyclic redundancy Check) code of "X1 and "X2", which helps the gateway to check the correctne of the uploaded data. 3), "Y1" is the final data for liquid flow velocity sensing.

Table 2: Detailed features of COTS Chips (Part 2: Analog chips in different functions)

	Table 2. Detailed features of CO15 Chips (1 art 2. Analog Chips in different functions)			
	Type: Dual Axis Tilt Sensor Chip: AXIS		col: Analog Output States: All 1 Function Achieved	
8	Detailed Functions	Control Sequence of function 1	Example of Data Conversion	
	Read Analog Angular	1), DR(3, ADC,X1), +10us;	1), DF(Y1, X_Axis, Y1=((5/pow(2,8))*(X1)-2.5)*45, Degree);	
	(Achieved by ADC Sampling)	2), DR(4, ADC,X2), +3ms;	2), DF(Y2, Y_Axis, Y2=((5/pow(2,8))*(X2)-2.5)*45, Degree);	
			Annotation: 1), "X1, X2" are the raw data output by ADC.	
			2), "X1, X2" are the final data for tilt angle in X-axis and	
			Y-axis, respectively	
	Type: UV (ultraviolet ray) Sensor Chip:	ML8511A ID: 0x7DB9 Pro	otocol: Analog Output States: All 1 Function Achieved	
	Detailed Functions	Control Sequence of function 1	Example of Data Conversion	
9	1. Read Analog UV (Ultraviolet Ray) Value	1), DR(4, ADC,X1), +1ms;	1), DF(Y1, UV Intensity,Y1=((5/pow(2,8))*(X1)-1)*7.5,	
	(Achieved by ADC Sampling)		mW/cm2);	
			Annotation: 1), "X1" is the raw data output by ADC.	
			2), "Y1" is the final data for UV intensity sensing	
	Type: Analog Dust Sensor Chip: GP2Y1014AU ID: 0x126F Protocol: Analog Output States: All 1 Function Achieved			
	Detailed Functions	Control Sequence of function 1	Example of Data Conversion	
10	Data Reading	1), CW(3, H), +280us;	1), DF(Y1, Dust-density, Y1=0.17*X1*5/255-0.1, mg/m ³);	
	(Achieved by ADC Sampling)	2), DR(5, ADC, X1), +40us;	Annotation: 1), "X1" is the raw data output by ADC.	
		3), CW(3, L), +9680us;	2), "Y1" is the final data for dust-density sensing.	
	Type: Analog Alcohol Sensor Chip: MQ3 ID: 0x39ED Protocol: Analog Output States: All 3 Functions Achieved			
	Detailed Functions	Control Sequence of function 1	Example of Data Conversion	
11	Get Raw Data	1), DR(4, ADC, X1), +3ms;	1), DF(Y1, Y1=raw-data, X1/255*5, null);	
11	(Achieved by ADC Sampling)		2), DF(Y2, Alcohol, Y2=(Y1-1)*10*20, ppm);	
	2. MQ3 warm up		Annotation: 1), "X1" is the raw data output by ADC.	
	3. Check if alcohol exists		2), "Y1" is the analog voltage output by the chip.	
	5. Check if alcohol exists		3), "Y2" is the final data for alcohol concentration sensing	

▷ Continue with table2 (Part2: Analog chips in different functions)

	Type: Analog Gas Sensor	Chip: MQ5 ID: 0x454B	Protocol: Analog Output States: All 3 Functions Achieved
	Detailed Functions	Control Sequence of function	on 1 Example of Data Conversion
12	Get Raw Data	1,) DR(4, ADC, X1), +3m	s; 1,) DF(Y1, raw-data, Y1=X1/255*5, null);
	(Achieved by ADC Sampling)		2,) DF(Y2, gas concentration, Y2=(Y1-1)*10*20, ppm);
	2. MQ5 warm up		Annotation: 1,) "X1" is the raw data output by ADC.
	3. Check if gas exists		2,) "Y1" is the analog voltage output by the chip.
			3), "Y2" is the final data for gas concentration sensing
	Type: Analog AMR ⁴ Sensor	Chip: ADA4571 ID: 0x	C790 Protocol: Analog Output States: All 1 Function Achieved
	Detailed Functions	Control Sequence of function	on 1 Example of Data Conversion
13	Read Analog Output	1), DR(2, ADC,X1), +10u	; 1), DF(Y1, variable1, Y1=X1, null);
13	(achieved by ADC sampling)	2), (4, ADC,X2), +3ms;	2), DF(Y2, variable2, Y2=X2, null);
			DF(Y3, Angle, arc-tan(Y2/Y1)/2, Degree);
	Note ⁴ : The function of this chip is AMR (An-isotropic Magneto Resistivity) angular sensing.		Annotation: 1), "X1, X2" are raw data output by ADC,
			2), "Y1,Y2" are the intermediate variables in the data conversion.
			3), "Y3" is the final data for angle sensing.
	Type: Analog Rotary Position	Sensor Chip: AMS22S	ID: 0x1032 Protocol: Analog Output States: All 1 Function Achieved
ı	Detailed Functions	Control Sequence of function	on 1 Example of Data Conversion
14	Read Analog Angular	1), DR(2, ADC,X1), +3ms	; 1), DF(Y1, Angle, Y1=((5/pow(2,8))*(X1))/5*360, Degree);
	(Achieved by ADC Sampling)		Annotation: 1), "X1" is the raw data output by ADC.
			2), Y1 is the final data for angular position sensing

Table 3: Detailed features of COTs Chips (Part 3: COTS chips in same function classes)

	Type: Ambient Light Sensor	Chip: MAX9635 ID: 0x7B31	Protocol: I2C State	es: 2 Basic Functions Achieved (2/3 of all)	
15	Detailed Functions	Control Sequence of Function 1	Example of Data		
	Read Light Register Data in	1), DR(5, 0x95, 0x03, 2,	1), DF(Y1, varia	1), DF(Y1, variable1, Y1=(X1&0xF0)>>4, null); 2) DF(Y2, variable2, ((X1&0x0F)<<4)+(X2&0x0F), null);	
	Continuous Mode	X1, X2),+7ms;	2) DF(Y2, variab		
	2. Set Continuous Mode		null);		
			3), DF(Y3, Lux,	, pow(2, EXP)*Y2*0.045, lux);	
	Note: We have added some chips with similar functions. It indicates that COTS chips have heterogeneous characteristics even in the same function classes, and our UCDL can describe their features well.		Annotation:1), '	"X1" and "X2" are the raw data	
				tion 1	
			2), "Y1" and "Y	72" are the intermediate variable	
			in data conversion	on	
			3), "Y3" is the fi	inal data for ambient light sensing	
	Type: Ambient Light Sensor	Chip: TSL2562 ID: 0xC771	Protocol: SMBus	States: 3 Basic Functions Achieved (3/4 of all)	
	Detailed Functions	Control Sequence of function 1	Example of Data	Conversion	
	Read Register Data	1), DR(5, 0x53, 0xAC, 2, X1, X2)	1), DF(Y1, varia	able1, Y1=X1+X2<<8, null);	
16	2. Set Sensor Power down	+100us;	2), DF(Y2, intern	rmediate variable, Y2=X3+X4<<8,	
	3. Set Sensor Power up	2), DR(5, 0x53, 0xAE, 2, X3, X4)	null);		
		+400ms;	3), DF(Y3, intern	rmediate variable,Y3=Y2/Y1, null);	
			4), DF(Y4, Lux,	, (Y4=0.0315*Y1-	
			1	pow(CH10, 1.4),0 <y3<=0.52;< td=""></y3<=0.52;<>	
			Y4=0.0229*C	CH0-0.0291*Y2,0.52 <y3<=0.65;< td=""></y3<=0.65;<>	
			Y4=0.0157*Y	Y1-0.0180*Y2,0.65 <y3<=0.80;< td=""></y3<=0.80;<>	
				*Y1-0.00260*Y2,0.80 <y3<=1.3;< td=""></y3<=1.3;<>	
				.3), degree C);	
	Note: The data conversion for this chip is relatively complex, but we can disassemble the process into multiple DF statements with			"X1-X4" are 8 bit raw data read	
			by Function I		
	1	termediate variables. It proves that our UCDL can support		are intermediate variable of the	
	complex computing for chip outputs effectively.		data convertir	C-	
			3), "Y4" is the fi	inal data for ambient light sensing.	

Continue with 3 (Part3)	COTS chips in	same function classes)
-------------------------	---------------	------------------------

_	> Continue with 3 (Part3: COTS chips in same function classes)			
	Type: Relative Pressure Sensor	•	Protocol: SENT States: All 1 Function Achieved	
	Detailed Functions	Control Sequence of function 1	Example of Data Conversion	
	Get Raw Data	1), DR(2, 3, X1, X2, X3), +1ms;	1), DF(Y1, variable1, X1<<8+X2<<4+X3, null);	
17			2), DF(Y2, Pressure, (Y2=Y1/4096*3, Y1<2048;	
			Y2=(Y1-4096)/4096*3-1.5, Y1>=2048), %FSO);	
			Annotation: 1) "X1-X3" is the raw data read out by Function 1	
			2) "Y1" is the intermediate variable	
			3) "Y2" is the final data for relative pressure sensing	
	*1 8	<u> </u>	rotocol: SPI States: 4 Basic Functions Achieved (4/6 of all)	
	Detailed Functions	Control Sequence of function 1	Example of Data Conversion	
	Read Pressure Register Data	1), CW(4, L),+2us;	1), DF(Y11, variable1, Y11=C2*pow(2, 17)+(C3*dT)/128, null);	
	2. Read Temperature Register Data	2), DW(2, 1, 0x48),+9ms;	2), DF(Y12, variable2, Y12=C1*pow(2, 15)+(C3*dT)/128, null);	
18	3. Read Calibration Data	3), CW(4, H),+2us;	3), DF(Y13, Pressure, (D1*Y12/pow(2, 21)-Y11)/pow(2, 15), psi);	
	4. Reset	4), CW(4, L),+2us;	Annotation: 1), "C1, C2, C3, dT" are computation results of	
		5), DW(2, 1, 0x00),+2us;	other "DF" statements.	
		6), DR(1, 3, X13, X14, X15),+1us;	2), "Y11,Y12" are intermediate variables	
		7), CW(4, H),+2us;	3), "Y13" is the final data for air pressure sensing.	
	Type: Digital Temperature Sensor	Chip: DS18B20 ID: 0xAC1B	Protocol: 1-Wire States: 3/5 Functions Achieved	
	Detailed Functions	Control Sequence of function 1	Example of Data Conversion	
	Read Temperature	1), CW(2, L), +750us;	1), DF(Y1, Raw-data, X1+X2<<8, null);	
	2. Init SD18B20	2), CW(2, H), +15us;	2), DF(Y2, Temp, (y=Raw-data*0.0625,	
	3. Read 8 Bytes Serial Code	3), DW(2, 2, 0xCC, 0x44), +200us;	Raw-data<32768; y=(Raw-data-65536)*0.0625,	
19		4), CW(2, L), +750us;	Raw-data>=32768), degree);	
		5), CW(2, H), +15us;	Annotation: 1), "X1,X2" are the upper and lower	
		6), DW(2, 2, 0xCC, 0xBE), +200us;	8-bits raw temperature data.	
		7), DR(2, 2, X1, X2), +200us;	2), "Y1" is the 16-bit of raw temperature data.	
		composed of X1 and X2.	3), "Y2" is the final temperature data.	
	Type: Temperature and RH Sensor		Protocol: I2C States: All 10 Functions Achieved	
	Detailed Functions	Control Sequence of function 1	Example of Data Conversion	
	Read Temperature Registers	1), DW(3, 0x86, 0x22, 1, 0x01),	1), DF(Y4, TinK, Y4=(X14*pow(2, 8)	
	2. Disable Low-power Mode	+130ms;	+X15)/64, K);	
	3. Enable Low-power Mode	2), DR(3, 0x87, 0x30, 3, X13,	2), DF(Y5, TinC, Y5=Y4-273.15, C);	
	4. Temp & RH Continuous Mode,	X14, X15), +1ms;	3), DF(Y6, TinF, Y6=Y5*1.8+32.0, F);	
	5. Temperature Continuous Mode,		Annotation: 1), "X13,X14,X15" is the raw data	
20	RH Single Shot Mode		readed from function 1	
	6. Temperature Single Shot Mode,		2), "Y4 (TinK)" is the Kelvin temperature.	
	RH Continuous Mode		3), "Y5 (TinC)" is the Celsius temperature.	
	7. Temperature Single Shot Mode,		4), "Y5 (TinF)" is the Fahrenheit temperature.	
	RH Single Shot Mode	Note: RH is the abbreviation of rela	tive humidity. We add this chip with many functions to illustrate	
	8. Read PART_ID and UID	that the UCDL can support COTS chips with complex functions. In this case, we have implemented		
	9. Read RH Register Data	all ten functions.	, ,	
	10. Stop Continuous Measurement			