Package 'RLumCarlo'

February 25, 2019

2 calc_RLumCarlo

Index 11

RLumCarlo-package Modelling luminescence signals in feldspar

Description

Details

Package: RLumCarlo
Type: Package
Version: 0.0.2
Date: 2018-08-28
License: GPL-3

Author(s)

Johannes Friedrich (University of Bayreuth, Germany), Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS-Université Bordeaux Montaigne (France)

calc_RLumCarlo

Plot results from Monte-Carlo simulations with RLumCarlo

Description

Plot results from Monte-Carlo simulations with RLumCarlo

Usage

```
calc_RLumCarlo(results)
```

Arguments

results array:

Value

This function returns a data.frame

Function version

0.0.1 [2017-01-27]

Author(s)

Johannes Friedrich, University of Bayreuth (Germany)

plot_RLumCarlo 3

Description

Plot results from Monte-Carlo simulations with RLumCarlo

Usage

```
plot_RLumCarlo(results, times = NULL, norm = FALSE, legend = FALSE,
   add = FALSE, ...)
```

Arguments

results	data.frame (required)
times	numeric (optinal): Optional vector for the x-axis
norm	logical (with default): Normalise curve to the highest intensity
legend	logical (with default): Enable/disable legend
add	logical (with default): allow overplotting of results
	further arguments that can be passed to control the plot output. Currently supported are: xlab, xlim, ylim, main, lwd, type

Value

This function returns a graphical output

Function version

0.1.0

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, Université Bordeaux Montaigne (France)

```
run_MC_CW_IRSL Run Monte-Carlo simulation for CW-IRSL
```

Description

Run Monte-Carlo simulation for CW-IRSL

Usage

```
run_MC_CW_IRSL(A, rho, times, clusters = 10, r = NULL, N_e = 200,
  method = "seq", output = "signal", ...)
```

4 run_MC_CW_IRSL

Arguments

Α numeric rho numeric vector (with default) times clusters numeric (with default): numeric (with default) numeric (with default): N_e method character (with default): character (with default): output further arguments

Value

This function returns a list.

Function version

```
0.0.2 [2017-01-31]
```

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, Université Bordeaux Montaigne (France)

References

Pagonis 2017

Examples

run_MC_ISO 5

run_MC_ISO

Run Monte-Carlo simulation for isothermal measurements

Description

Run Monte-Carlo simulation for isothermal measurements

Usage

```
run_MC_ISO(A, rho, times, clusters = 10, r = NULL, N_e = 200,
  method = "par", output = "signal", ...)
```

Arguments

A	numeric
rho	numeric
times	vector (with default)
clusters	<pre>numeric (with default):</pre>
r	<pre>numeric (with default)</pre>
N_e	<pre>numeric (with default):</pre>
method	character (with default):
output	character (with default):
	further arguments

Value

This function returns a list.

Function version

```
0.0.1 [2017-01-27]
```

Author(s)

Johannes Friedrich, University of Bayreuth (Germany)

References

Pagonis 2017

Examples

6 run_MC_LM_OSL

```
times = times) %>%
calc_RLumCarlo() %>%
  plot_RLumCarlo(legend = T)
## End(Not run)
```

run_MC_LM_OSL

Run Monte-Carlo simulation for LM-OSL

Description

Run Monte-Carlo simulation for LM-OSL

Usage

```
run_MC_LM_OSL(A, rho, times, clusters = 10, r = NULL, delta.r = 0.1,
   N_e = 200, method = "par", output = "signal", ...)
```

Arguments

```
Α
                  numeric
rho
                  numeric
                  vector (with default)
times
                  numeric (with default):
clusters
r
                  numeric (with default):
delta.r
                  numeric (with default):
                  numeric (with default):
N_e
                  character (with default):
method
                  character (with default):
output
                  further arguments
```

Value

This function returns a list.

Function version

```
0.0.1 [2017-01-27]
```

Author(s)

Johannes Friedrich, University of Bayreuth (Germany)

References

Pagonis 2017

run_MC_TL 7

Examples

```
##TODO: Primary example, should be verified
run_MC_LM_OSL(A = 10000, rho = 0.0001, times = 1:100, clusters = 10, r = NULL,
delta.r = 0.1,
N_e = 200, method = "par", output = "signal") %>%
calc_RLumCarlo() %>%
plot_RLumCarlo(norm = T)
## End(Not run)
```

run_MC_TL

Run Monte-Carlo simulation for TL

Description

Run Monte-Carlo simulation for TL

Usage

```
run_MC_TL(s, E, rho, r_c, times, clusters = 10, N_e = 200,
  delta.r = 0.1, method = "par", output = "signal", ...)
```

Arguments s

```
Ε
                  numeric
rho
                  numeric
                  numeric (with default)
r_c
times
                  vector (with default)
                  numeric (with default):
clusters
                  numeric (with default):
N_e
delta.r
                  numeric (with default):
method
                  character (with default):
output
                  character (with default):
                  further arguments
. . .
```

list

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

```
0.0.1 [2017-01-27]
```

Author(s)

Johannes Friedrich, University of Bayreuth (Germany)

References

Pagonis 2017

Examples

run_MC_TL_DELOC

Run Monte-Carlo simulation for TL for GOT model

Description

##TODO

Usage

```
run_MC_TL_DELOC(s, E, times, clusters = 10, N_e = 200,
   n_filled = N_e, R, method = "par", output = "signal", ...)
```

Arguments

```
numeric (required)
s
Ε
                   numeric (required)
times
                   numeric (with default)
clusters
                   numeric (with default):
N_e
                   integer (with default)
n_filled
                   integer (with default)
                   numeric (with default):
                   character (with default):
method
                   character (with default):
output
                   further arguments
. . .
```

run_MC_TL_LOC 9

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1-R)))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

Examples

```
##=========##
## Example 1: Simulate TL
##==========##
## Not run:
run_MC_TL_DELOC(
    s = 3.5e12,
    E = 1.45,
    R = 1,
    times = 100:450) %>%
        calc_RLumCarlo() %>%
        plot_RLumCarlo(legend = T)
## End(Not run)
```

 $run_MC_TL_LOC$

Run Monte-Carlo simulation for TL for localised transition

Description

##TODO

Usage

```
run_MC_TL_LOC(s, E, times, clusters = 10, n_filled = 100, r,
  method = "par", output = "signal", ...)
```

10 run_MC_TL_LOC

Arguments

```
s
                   numeric (required)
Ε
                   numeric (required)
times
                   numeric (with default)
clusters
                   numeric (with default):
n_filled
                   integer (with default)
                   numeric (with default):
method
                   character (with default):
output
                   character (with default):
                   further arguments
. . .
```

Details

$$I_{LOC}(t) = -dn/dt = p(t) * (n^2/(r+n))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

Examples

Index

```
array, 2, 7, 9, 10
calc_RLumCarlo, 2
character, 4–8, 10
data.frame, 2, 3
integer, 8, 10
list, 7
logical, 3
numeric, 3–8, 10
plot_RLumCarlo, 3
RLumCarlo-package, 2
run_MC_CW_IRSL, 3
run_MC_ISO, 5
run_MC_LM_OSL, 6
run\_MC\_TL, 7
run_MC_TL_DELOC, 8
run_MC_TL_LOC, 9
vector, 4–7
```