Homework Unit 12 Solutions

1. Construct a 4-bit Johnson counter using J-K flip-flops. What sequence of states does the counter go through if it is started in state 0000? State 0110?

(Hint: refer a 3-bit Johnson counter shown below)

Sol.)

4-bit Johnson counter using J-K flip-flops:

Starting in 0000: 0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001, (repeat) 0000, ...

Starting in 0110: 0110, 1011, 0101, 0010, 1001, 0100, 1010, 1101, (repeat) 0110, ...

- 2. Design a 3-bit counter using D flip-flops which counts in the sequence: 001, 100, 101, 111, 110, 010, 011, (repeat) 001, ... What will happen if the counter of is started in state 000?
 - Sol.) A transition table for this binary counter can be represented as

ABC	$A^+B^+C^+$
0 0 0	XXX
0 0 1	1 0 0
0 1 0	0 1 1
0 1 1	0 0 1
100	1 0 1
101	1 1 1
110	0 1 0
111	1 1 0

$$D_A = B' + AC;$$

$$D_B = AC + BC';$$

$$D_C = A'B + AB'$$

 \rightarrow State 000 goes to 100, because $D_AD_BD_C$ = 100

3. A sequential circuit contains a register of four flip-flops. Initially a binary number N (0000 ≤ N ≤ 1100) is stored in the flip-flops. After a single clock pulse is applied to the circuit, the register should contain N + 0011. In other words, the function of the sequential circuit is to add 3 to the contents of a 4-bit register. Design the circuit using J-K flip-flops.

Sol.) A transition table for a given sequential circuit can be expressed as

ABCD	$A^+B^+C^+D^+$	$J_{\mathtt{A}} K_{\mathtt{A}} J_{\mathtt{B}} K_{\mathtt{B}} J_{\mathtt{C}} K_{\mathtt{C}} J_{\mathtt{D}} K_{\mathtt{D}}$
0000	0 0 1 1	0 X 0 X 1 X 1 X
0001	0 1 0 0	0 X 1 X 0 X X 1
0010	0 1 0 1	0 X 1 X X 1 1 X
0 0 1 1	0 1 1 0	0 X 1 X X 0 X 1
0100	0 1 1 1	0 X X 0 1 X 1 X
0101	1 0 0 0	1 X X 1 0 X X 1
0 1 1 0	1 0 0 1	1 X X 1 X 1 1 X
0 1 1 1	1 0 1 0	1 X X 1 X 0 X 1
1000	1 0 1 1	X 0 0 X 1 X 1 X
1001	1 1 0 0	X 0 1 X 0 X X 1
1010	1 1 0 1	X 0 1 X X 1 1 X
1011	1 1 1 0	X 0 1 X X 0 X 1
1100	1 1 1 1	X 0 X 0 1 X 1 X
1101	XXXX	X X X X X X X X
1110	XXXX	X X X X X X X X
1111	XXXX	X X X X X X X X

Using Karnaugh maps:

$$J_A = A+BD+BC, K_A = 0$$

$$J_B = C+D, K_B = C+D$$

$$J_C = D', K_C = D'$$

$$J_D = 1, K_D = 1$$

4. An L-M flip-flop works as follows:

If LM = 00, the next state of the flip-flop is 1.

If LM = 01, the next state of the flip-flop is the same as the present state.

If LM = 10, the next state of the flip-flop is the complement of the present state.

If LM = 11, the next state of the flip-flop is 0.

(a) Complete the following table (use don't-cares when possible).

Sol.)

QQ^{+}	LM
0 0	0 1 1 1 }x1
0 1	0 0 1 0 }x0
1 0	1 0 1 1 }1X
1 1	${0\ 0\atop 0\ 1}$ 0x

(b) Using this table and Karnaugh maps, derive and minimize the input equations for a counter composed of three L-M flip-flops which counts in the following sequence: ABC = 000, 100, 101, 111, 011, 001, (repeat) 000, ...

Sol.)
$$L_A = B$$
, $M_A = C$; $L_B = A'$, $M_B = A' + C'$; $L_C = A'B'$, $M_C = A'$;

ABC	$A^+B^+C^+$	A ⁺				B+				C+			
000	1 0 0	ВС	A	0	1	ВС	A	0	1	ВС	A	0	1
0 0 1	0 0 0		00	1	1		00	0	0		00	0	1
0 1 0	XXX		01	0	1		01	0	1		01	0	1
0 1 1	0 0 1		-	_	_			Ť	_		٠.	Ů	1
100	1 0 1		11	0	0		11	0	1		11	1	1
1 0 1	1 1 1		10	Х	Х		10	Х	Х		10	Х	Х
1 1 0	XXX					ı							
1 1 1	0 1 1												

