Proyecto Individual

SISTEMAS OPERATIVOS

CERON MARTINEZ CESAR EDUARDO

INTRODUCCIÓN

El proyecto simula la gestión de procesos en un sistema operativo, implementando el algoritmo de planificación por prioridades (Priority Scheduling) para la asignación de recursos y tiempo de CPU a los procesos generados aleatoriamente.

El sistema consta de varias clases clave, incluyendo Animación, GeneradorProcesos, Proceso, y SistemaOperativo, cada una desempeñando un papel fundamental en la simulación. Este documento detalla la funcionalidad y el propósito de cada componente del sistema, proporcionando una comprensión clara de cómo interactúan estas clases para realizar la simulación.

EXPLICACIÓN DEL CÓDIGO

El proyecto se compone de cuatro clases principales, cada una con responsabilidades específicas en la simulación:

Animacion: Esta clase extiende de javax.swing.JFrame y actúa como la interfaz gráfica de usuario (GUI) del sistema. Gestiona la visualización de procesos, la interacción del usuario y la actualización de la interfaz en respuesta a los cambios en el sistema de simulación.

GeneradorProcesos: Extiende de Thread y es responsable de generar procesos aleatorios. Utiliza un objeto Random para determinar las características de cada proceso, como el tiempo de ejecución y la memoria requerida.

Proceso: Representa un proceso individual en la simulación. Cada proceso tiene un ID único, tiempo de ejecución, memoria asignada y un estado que indica su progreso actual.

SistemaOperativo: También extiende de Thread y simula la gestión de procesos de un sistema operativo. Utiliza el algoritmo de Priority Scheduling para seleccionar y ejecutar procesos basándose en su tiempo de ejecución y memoria requerida. La interacción entre estas clases permite simular un entorno donde los procesos son generados, gestionados y ejecutados, imitando el comportamiento de un sistema operativo real.

CONCLUSIÓN

Este proyecto de simulación de procesos ofrece una representación educativa y práctica de cómo un sistema operativo gestiona múltiples procesos. A través de la implementación de clases como Animación, GeneradorProcesos, Proceso , y SistemaOperativo , se logra una simulación interactiva y visual que ayuda a comprender los conceptos fundamentales de la gestión de procesos en sistemas operativos.

La utilización de Java y Swing para este proyecto demuestra la versatilidad y la capacidad de estos para crear aplicaciones educativas complejas. Este proyecto no solo sirve como una herramienta de aprendizaje para estudiantes y entusiastas de la informática, sino que también proporciona una base sólida para futuras expansiones o proyectos relacionados con la simulación de sistemas operativos y la gestión de procesos.