From Bohren and Hufmanf, p. 121,

$$S_2(180^\circ) = -S_1(180^\circ) = \frac{1}{2} \sum_n (-1)^n (2n+1)(a_{n1} - a_{n2})$$

$$Q_b = \frac{\sigma_b}{\pi a^2} = \frac{1}{x^2} \left| \sum_n (-1)^n (2n+1)(a_{n1} - a_{n2}) \right|^2$$

Exercises

- (1) For a sphere of radius 5 μ m and real refractive index 1.59, use your code to provide graphs of Q_e , Q_s , Q_a , and Q_b as a function of size parameter for \Im m =10⁻⁶, .001 and .1 over ka=[.01, 100].
- (2) Produce graphs of Q_e , Q_s , Q_a , and Q_b for a 5 μm silicon sphere over $\lambda = [280, 2500] \mu m$.
- (3) Compare Q_b with normal incidence reflectance from the bulk material.
- (4) The absorption cross section of a sphere may be written as (ReadMie.pdf)

$$\sigma_{a} = \frac{2\pi}{|\mathbf{m}|^{2}k^{2}} \sum_{n=1}^{\infty} (2n+1) \Re i \psi'_{n}(\eta) \psi_{n}^{*}(\eta) \left(\mathbf{m} \left| c_{n1} \right|^{2} + \mathbf{m}^{*} \left| c_{n2} \right|^{2} \right),$$

where $\eta = \mathsf{m} k r\big|_{r=a}$. Rather than just looking at η , graph Q_a' as a function of kr for kr = [0, ka + 1]. Use the 5 μ m Si sphere of Ex. (2) and $\lambda = 350,400$ and 600 nm. In other words plot the function

$$\sigma_a' = \frac{2\pi}{|\mathbf{m}|^2 k^2} \sum_{n=1}^{\infty} (2n+1) \Re i \psi'_n(kr) \, \psi_n^*(kr) \left(\mathbf{m} \left| c_{n1} \right|^2 + \mathbf{m}^* \left| c_{n2} \right|^2 \right).$$

Discuss your results.