Praktikum DV-Anwendungen in der Technik

Fakultät für Informatik

Bachelorarbeit

Studienrichtung

Technische Informatik

Gruppe X

Max Mustermann

Projektnummer: X

Projekttitel: Projekt Genesis

Prüfer: Prof. Dr. Helge Schneider

Abgabedatum: 24.12.2014

Hochschule für angewandte Wissenschaften Augsburg

An der Hochschule 1 D-86161 Augsburg

Telefon +49 821 55 86-0 Fax +49 821 55 86-3222 www.hs-augsburg.de info(at)hs-augsburg-de

Fakultät für Informatik Telefon +49 821 55 86-3450 Fax +49 821 55 86-3499

Verfasser der Diplomarbeit Max Mustermann Beispielstraße 31 86150 Augsburg Telefon +49 821 55 86-3450 max@hs-augsburg.de

Inhaltsverzeichnis

1	Beis	spiele	1			
	1.1	Zitieren	1			
	1.2	Bild einfügen	1			
		1.2.1 Ein Bild skaliert	1			
		1.2.2 Zwei Bilder nebeneinander oder untereinander	1			
	1.3	Tabellen	1			
2 Analyse						
	2.1	Abschnitt 1	5			
	2.2	Abschnitt 2	5			
		2.2.1 Unterabschnitt	5			
3	3 Pinout					
\mathbf{Li}	terat	urverzeichnis	9			

1. Beispiele

Bla fasel...

Beispiele

1.1 Zitieren

Quellen [LYVCQ00, Jack91, LPCD $^+04,$ Cisc08, CNRS98] nicht vergessen. Dazu verwendet ihr bibtex.

1.2 Bild einfügen

1.2.1 Ein Bild skaliert

Abbildung 1.1: Beschriftungstext

1.2.2 Zwei Bilder nebeneinander oder untereinander

1.3 Tabellen

1. Beispiele

(a) Beschriftung Bild links

(b) Beschriftung Bild rechts

Abbildung 1.2: Beschriftung beide Bilder

Firma	Produkte /	WEB		
	Lösungen			
Concentrix (Soitec)	Module mit	http://www.soitec.com		
	Konzentratoren			
	(Fresnel-Linsen)			
Isofoton	Module mit	http://www.isofoton.com		
	Konzentratoren			
	(Fresnel-Linsen)			
Semprius	Module mit	http://www.semprius.com		
	Konzentratoren			
	(Fresnel-Linsen)			
Azur Space	Mehrfach Junction	http://www.azurspace.com		
	Zellenhersteller			
Cyrium Technologies	Mehrfach Junction	http://www.cyriumtechnologies.com		
	Zellenhersteller			
Emcore	Mehrfach Junction	http://www.emcore.com		
	Zellenhersteller			

Tabelle 1.1: Hersteller von CPV-Produkten

1.3. Tabellen 3

Tabelle 1.2: Single-hop Scenario - Traffic Pattern

Pattern	Parameter		Range/Values
Burst	Burst IAT	uniform	[9.9; 10.1] s
	Packets per Burst	constant	100
	Packet IAT	constant	$0.02 \mathrm{\ s}$
	Packet Size	constant	1024 bit
	# Sources	-	2
	Offset	uniform	[0; 1] s
Single	Packet IAT	uniform	[0.9; 1.1] s
	Packet Size	constant	1024 bit
	# Sources	-	[10;20;30;40;50;
			60;70;80;90;100]
	Offset	uniform	[0; 1] s

1. Beispiele

2. Analyse

Bla fasel...

2.1 Abschnitt 1

Bla fasel...

2.2 Abschnitt 2

Bla fasel...

2.2.1 Unterabschnitt

Bla fasel...

2.2.1.1 Unter-Unterabschnitt

6 2. Analyse

3. Pinout

3. Pinout

Tabelle 3.1: My caption

ice40	WiringP	Name		sical	Name	WiringPi	ice40
		3.3V	1	2	5V		
	8	SDA.1	3	4	5V		
	9	SCL.1	5	6	GND		
	7	1-Wire	7	8	TxD	15	
		GND	9	10	RxD	16	
	0	GPIO. 0	11	12	GPIO.1	1	
	2	GPIO. 2	13	14	GND		
	3	GPIO. 3	15	16	GPIO. 4	4	
		3.3V	17	18	GPIO. 5	5	
	12	MOSI	19	20	GND		
	13	MISO	21	22	GPIO. 6	6	
	14	SCLK	23	24	CE0	10	
		GND	25	26	CE1	11	
	30	SDA.0	27	28	SCL.0	31	
	21	GPIO.21	29	30	GND		
	22	GPIO.22	31	32	GPIO.26	26	
	23	GPIO.23	33	34	GND		
	24	GPIO.24	35	36	GPIO.27	27	
	25	GPIO.25	37	38	GPIO.28	28	
		GND	39	40	GPIO.29	29	

Literaturverzeichnis

- [Cisc08] Cisco Systems, Inc. Introduction to Cisco IOS NetFlow A Technical Overview. http://www.cisco.com/go/netflow, September 2008.
- [CNRS98] E. Crawley, R. Nair, B. Rajagopalan und H. Sandick. A Framework for QoS-based Routing in the Internet. RFC 2386 (Informational), IETF, August 1998.
- [Jack91] J. Edward Jackson. A User's Guide to Principal Components. Wiley-Interscience. 1991.
- [LPCD+04] Anukool Lakhina, Konstantina Papagiannaki, Mark Crovella, Christiphe Diot, Eric D. Kolaczyk und Nina Taft. Structural Analysis of Network Traffic Flows. In Proc. of International Conference on Measurements and Modeling of Computer Systems (SIGMETRICS) 2004, New York, NY, USA, Juni 2004.
- [LYVCQ00] Weihua Li, H. Henry Yue, Sergio Valle-Cervantes und S. Joe Qin. Recursive PCA for adaptive process monitoring. *Journal of Process Control* 10(5), 2000, S. 471–486.