		Prism ID:		
Name:	Kishore	GTID#: 9		

Problem	Points	Lost	Gained	Running Total	TA
TTODICH		1050	dariica	naming rocar	111
1	1				
2	20				
3	9				
4	10				
5	10				
6	10				
7	10				
8	10				
9	10				
10	10				
Total	100				

- You may ask for clarification but you are ultimately responsible for the answer you write on the paper.
- Illegible answers are wrong answers.
- Please do not discuss this test by any means (until 5 pm today)
- Please look through the entire test before starting. WE MEAN IT!!!

Illegible answers are wrong answers.

Good luck!

1.(1 point, 0 min) (circle one)
Your favorite spring break destination

a)	Orlando	b) Daytona beach	c)	Cornfields	of	Illinois
d)	Seoul	e) Bangalore	f)	CCB 16 !	! 🙆	
g)	Write in your own _			·		•

		Prism ID:		
Name:	Kishore	GTID#: 9		

Pipelining

2. (20 points, 10 min)

(a) (4 points)

Each entry in the register file in a pipelined processor with register forwarding has two distinguished bits "B" (busy) and "RP" (read pending).

Given:

I1: R1
$$\leftarrow$$
 R2 + R3
I2: R4 \leftarrow R1 + R5

And the state of the pipeline:

Assuming no other instructions are in flight, fill in the state of the B and RP bits in the register file.

	В	RP
R0	0	0
R1	1	1
R2	0	0
R3 R4	0	0
R4	1	0
R5	0	0
R6	0	0
R7	0	0

		Prism ID:	
Name:	Kishore	GTID#: 9	

(b) Give	(8 poin n:	ts)						
I1: 	R1 ←	R2 +	R3		105	for	eath	covect
 12:	R4 ←	R1 +	R5		+ 0.5	10.		entry

Fill in the table below:

Number of unrelated instructions between I1 and I2	Number of bubbles without register forwarding	Number of bubbles with register forwarding
0	3	0
1	2	0
2	1	0
3 or more	0	0

```
Given:
```

```
I1: R1 ← Memory[R2+offset]; load R1 with contents of memory at R2+offset
....
I2: R4 ← R1 + R5
```

Fill in the table below:

Number of unrelated	Number of bubbles	Number of bubbles with
instructions between I1	without register	register forwarding
and I2	forwarding	
0	3	1
1	2	0
2	1	0
3 or more	0	0

(c) (8 points)

One conservative way of handling branches is to stop new instructions from entering the pipeline when the decode stage encounters a branch instruction. Once the branch is resolved, normal pipeline execution can resume, either along the sequential path of control or along the target of the branch. Recall that for a BEQ instruction, the outcome of the branch is known only at the end of the EX cycle.

Given the following sequence of instructions:

BEQ L1

ADD

LW

....

L1 NAND

SW

Using conservative approach and **assuming branch is taken**, what is the observed CPI for the 3 instructions (BEQ, NAND, SW)?

-3 if ripeling concept not understood -2 for conceptual errors (missiplesotra NOPS)

		Prism ID:		
Name:	Kishore	GTID#: 9		

You may use the following table to chart out the passage of instructions through the pipeline

Cycle number	IF	ID/RR	EX	MEM	WB
1	BEQ				
2	ADD	BEQ			
3	ADD+	NOP	BEQ		
4	NAND	NOP	NOP	BEQ	
5	SW	NAND	NOP	NOP	BEQ
6		SW	NAND	NOP	NOP
7			SW	NAND	NOP
8				SW	NAND
9					SW
10					

+: ADD instruction is stuck in IF stage until BEQ is resolved

Total number of cycles taken = 9

Observed CPI = 9/3 = 3

Process Scheduling

- 3. (9 points, 5 min)
- (a) (3 points) (Select one correct choice)

A program in execution has

- 1. Exactly one active entity called a process
- 2. Multiple active entities called threads
- 3. Two active entities, one a thread and the other a process
- 4. Three active entities, one a task, the second a thread, and third a process
- 5. Four active entities, one a job, the second a task, the third a thread, and the fourth a process
- (b) (3 points) (Select one correct choice)

One of the following is NOT part of the state of a running program

- 1. General Purpose Registers that are visible to the instruction set
- 2. Program counter and the register that represents the stack pointer
- 3. Layout of the program in memory
- 4. Priority information
- 5. Internal registers in the datapath of the processor
- (c) (3 points) (Select one correct choice)

To implement a preemptive scheduling algorithm we need

- 1. A trap instruction
- 2. An external interrupt
- 3. The currently running process to terminate
- 4. The currently running process to make an I/O request

Prism ID:______
Name:_____Kishore______ GTID#: 9______

4. (10 points, 5 min)

Consider the following three processes in the scheduling queue. Each process does one CPU burst, followed by one I/O burst, and completes its execution with one more CPU burst. The processes arrive in the order P1, P2, P3. P3 has the highest static priority, followed by P2, and P1 has the lowest priority.

Given the following schedule:

- (a) (4 points) (Select one of the following) The above schedule represents
- 1. FCFS

2. SJF

- 3. SJF with preemption
- 4. FCFS with preemption
- 5. Static Priority
- 6. Static Priority with preemption
- (b) (3 points) (Select one of the following)

The throughput of the system is

- 1. 1/11 processes/unit-time
- 2. 3/24 processes/unit-time
- 3. 3/34 processes/unit-time

(c) (3 points)

What is the waiting time experienced by each for P1, P2, and P3?

00 2200		Prism ID:
Name:	Kishore	GTID#: 9
5. (10 min, 5 mi (a) (5 points) Consider a fixed		management scheme implemented for a
• 3 partiti	ions of 1 Kbytes ons of 3 Kbytes on of 5 Kbytes	
What is the large		tion that can occur with this
Maximum interna	l fragmentation possibl	e = 5 Kbytes - 1 = 5120 - 1 = 5119
	(Select one correct cho ize partition memory ma	ice) nagement scheme there can be
 No external No internal No fragmenta Both interna 	fragmentation	ation
In a byte-addre possible intern 1) 8192 byte 2) 1 byte 3) 8191 byte	al fragmentation is s	gesize is 8192 bytes, the maximum
6. (10 points, 5 (a) (3 points) Virtual address the page table?	is 32 bits; pagesize 4	Kbytes; How many entries are there in
Bits for page o Bits for VPN =	ffset = log_2 (pagsize) = $32-12 = 20$	12 +1 for each line

Number of PTEs = 2^{20}

+3 for 220

(b) (3 points)

For the same memory system as in (b), the physical address is 28 bits. How many physical page frames does the memory system have?

PFN	Page offset
-----	-------------

Bits in page offset = 12 Bits in PFN = 28-12 = 16Number of physical page frames = 2^{16} +1 for each line

		Prism ID:			
Name:	Kishore	GTID#: 9			
physical addre	with the above memory s	system (32-bit virtual address; 28 bit currently 8 processes are executing.			
Number of page	e tables = degree of mul	tiprogramming = 8			
(d) (2 points What function		se Register (PTBR) serve in the CPU?			
Points to the process.	starting address of the	e page table for the currently executing			
	, Working set, page repl	acement, TLB			
7. (10 points,	5 min)				
<pre>paged memory (a) (2 points)</pre>	manager	of these data structures used by a demand cal frames in memory			
(b) (2 points) Frametable:	Given a PFN, returns <pi< td=""><td>ID, VPN></td></pi<>	ID, VPN>			
(c)(2 points) Disk Map: Gi	ven a <pid, vpn=""> returns</pid,>	s the disk location for the page			
(d) (2 points) Page table:	Given a VPN, returns the	e PFN for a given process			
(e) (2 points)					

Process Control Block: One entry in the PCB, PTBR contains the base address of the page table for this process, loaded into the PTBR register of the CPU

Page 7 of 10

when this process is scheduled to run.

Name:	Kishore	GTID#: 9	
8. (10 points	, 5 min)		
The reference is implemented. 1. One bit 2. One bit 3. One bit 4. One bit 5. One bit)(Select one correct choice bit for supporting an appred by associating per page table entry per memory location per physical page frame per process for the entire page table	roximate LRU page replacement	scheme
The size of I 1. 3 2. Equal t 3. Equal t) (Select one correct choic LRU stack for a TRUE LRU school to the number of virtual page to the number of physical for to the size of the virtual a	neme is ges <mark>cames</mark>	
	e time interval t1 - t2, th For the processes P1 and P2	e following virtual page acce	esses are
	1, 2, 22, 2, 0, 0, 1, 1, 2 10, 1, 2, 0, 1, 12, 20	, 0	
	What is the working set for (), 1, 2, 22}	or P1 in this time interval?	
	What is the working set for (), 1, 2, 10, 12, 20}	or P2 in this time interval?	
(2 points)	What is the total memory p	pressure on the system during	this
Total mer	mory pressure = WSSp1 + WSSp	2 = 4+6 = 10	
Spatial local	nts) (Select one correct cho lity suggests that rought into the cache, we sl	oice) nould keep the data around as	long as

2. On a miss, we should bring in adjacent memory locations into the cache 3. The memory location being brought in due to a miss is not likely to be

Prism ID:

Page 8 of 10

referenced in the future

Prism ID:		
Kishore	GTID#: 9	
cache to-one mapping between memory location to be led because there is a	choice) n a memory location and a cache location en-cached wherever there is space in the directory associated with the contents y other type of cache organization	
associative cache with tag four t-bit tag compare eight t-bit tag compare 64 t-bit tag comparat 1K t-bit tag comparat 125 t-bit tag compara	h 64 Kbytes of data, 64 bytes per block ators rators ors ors	
average each instruct 0.5%. The miss penal	CPI of 1.1 not considering memory ion has an I-cache miss of 0.5%, and a ty is 100 cycles. What is the effective?	
	sses miss rate) * miss penalty } +1 for each line fects + Average memory stalls } +1	
	(Select one correct cache cache company location to be demoned because there is a che cache much smaller than any (Select one correct associative cache with tag company four t-bit tag company 64 t-bit tag company 125 t-b	

		Prism ID:	
Name:	Kishore	GTID#: 9	

10. (10 points, 5 min)

Consider a 4-way set-associative cache for byte addressed processor.

- Data size of cache = 64KB.
- CPU address = 32 bits
- Memory word = 4 bytes.
- Cache block size = 64 bytes.
- Write policy is Write-back at the granularity of individual words.
- Cache replacement policy = LRU

a) (5 points)

The memory address is interpreted as follows:

Cache Tag		Cache Index	Block Offset
31	<u>14</u>	13 6	<u>5</u> 0

Fill in the blanks above to indicate how the memory address is interpreted for looking up the cache.

b) (5 points)

Show one cache line clearly indicating the size of the metadata (valid, dirty, and tag bits) and the size of the data fields.

There are four parallel caches. One row of each cache has the following structure:

Meta data				-1 tax sam	
		Datablock	Lucius as ky		
V	D1-D16	Tag	data	wrong entry	
1 bit	16 bits	18 bits	64 bytes		

An entire cache line is cumulatively the data and meta data in a given row of the four parallel caches.

* Note: We don't count off if you do not show LRU meta data. An approximate LRU can be implemented with 2-bits for each cache line. A true LRU will require 5 bits per cache line and a state machine to remember the access order for each cache line.