# Capstone Project - The Battle of the Neighborhoods (Week 2) Applied Data Science Capstone by IBM/Coursera Report on public schools in Chicago

Maciej Rybczyński

## **Introduction: Business Problem**

The aim of this project is to find a public schools in Chicago, US placed in a suitable location equipped witha proper commercial establishments. In particular this report will be targeted to people moving from other cities/states/countries to Chicago and interested in sending their children to the right school in Chicago.

## **Data description**

Based on definition of the problem, the following factors that will influence our decission are:

- ✓ finding the geographical location of the schools in Chicago,
- ✓ finding the most common venues surrounding a particular school.

We will be using the geographical coordinates of Chicago and geographical location of the schools to plot school location, and finally cluster our schools and present our findings.

Following data sources will be needed to extract/generate the required information:

- ✓ Part 1: Using a real world data set from City of Chicago containing information on Chicago public schools in 2011-2012 school year, updated in 2018. A dataset consisting of location of the school, its type and other optional parameters describing a school.
- ✓ Part2: Foursquare API Data
- ✓ Part 3: Creating a new consolidated dataset of the schools, the most common venues and the respective Community Areas along with co-ordinates.: This data will be fetched using Four Square API to explore the venues around schools and to apply machine learning algorithm to cluster the schools and present the findings by plotting it on maps using Folium.

**Part 1**: Using a real world data set from City of Chicago containing information on Chicago public schools in 2011-2012 school year, updated in 2018.

Chicago Public Schools - Progress Report Cards (2011-2012)

This is a very detailed dataset containing many useful information about each public school in Chicago Some properties of dataset include:

- ✓ Name of School
- ✓ Type of School (Elementary, Middle, or High School)
- ✓ Street Address
- ✓ ZIP Code
- ✓ Phone Number
- ✓ Website URL
- ✓ Safety Score
- ✓ Family Involvement Score
- ✓ Environment Score
- ✓ Leaders Score
- √ Teachers Score
- ✓ Latitude
- ✓ Longitude
- ✓ Community Area Name

#### Data set URL:

https://data.cityofchicago.org/Education/Chicago-Public-Schools-Progress-Report-Cards-2011-/9xs2-f89t

#### Part 2: Foursquare API Data

We will need data about different venues surrounding schools. In order to gain that information we will use Foursquare locational information. *Foursquare* is a location data provider with information about all manner of venues and events within an area of interest. Such information includes venue names, locations, menus and even photos. As such, the foursquare location platform will be used as the sole data source since all the stated required information can be obtained through the API.

After finding the list of schools, we then connect to the Foursquare API to gather information about venues around every considered school. For each school surrounding, we have chosen the radius to be 100 meters.

The data retrieved from Foursquare contained information of venues within a specified distance of the longitude and latitude of the school location. The information obtained per venue as follows:

✓ Name of School,

- ✓ School Latitude,
- ✓ School Longitude,
- ✓ Name of Venue,
- ✓ Venue Latitude,
- ✓ Venue Longitude,
- ✓ Venue Category.

Based on all the above described information we have collected a sufficient data to build our model. We cluster the schools together based on similar venue categories. We then present our observations and findings. Using this data, our stakeholders can take the necessary decision.

# Methodology

We will be creating our model with the help of Python so we start off by importing all the required packages.

#### Importing libraries:

```
import pandas as pd
!pip install geopy
from geopy.geocoders import Nominatim # convert an address into latitude and longitude values
!pip install folium

#Importing folium to visualise Maps and plot based on Lat and Lng
import folium

#Requests to request web pages by making get requests to FourSquare REST Client
import requests

#To normalise data returned by FourSquare API
from pandas.io.json import json_normalize

#Importing KMeans from SciKit library to Classify neighborhoods into clusters
from sklearn.cluster import KMeans
```

#### Package breakdown:

- ✓ pandas: To collect and manipulate data in JSON and HTMl and then data analysis,
- ✓ Nominatim: To convert an address into latitude and longitude values,
- √ folium: Generating maps Chicago,
- ✓ requests: Handle http requests,
- √ json\_normalize: To normalise data returned by FourSquare API,
- ✓ sklearn: To import Kmeans which is the machine learning model that we are using.

The approach taken here is to explore each surrounding of the considered school, plot the map to show the schools being considered and then build our model by clustering all of the

similar school surroundings together and finally plot the new map with the clustered schools. We draw insights and then compare and discuss our findings.

## **Data Collection**

Data downloaded from the website of City of Chicago were stored in an csv file:

Reading from dataset:

chicago\_schools\_df = pd.read\_csv('Chicago\_Public\_Schools\_2011-2012\_updated.csv', index\_col=None, error\_bad\_lines=False)
chicago\_schools\_df.head()

|      | School<br>ID | Name of<br>School                                     | Elementary,<br>Middle, or<br>High<br>School | Street<br>Address           | City    | State | ZIP<br>Code | Phone<br>Number       | Link                                           | Network<br>Manager                                | <br>RCDT\$ Code                             |
|------|--------------|-------------------------------------------------------|---------------------------------------------|-----------------------------|---------|-------|-------------|-----------------------|------------------------------------------------|---------------------------------------------------|---------------------------------------------|
| 0    | 609966       | Charles G<br>Hammond<br>Elementary<br>School          | ES                                          | 2819 W<br>21st PI           | Chicago | IL    | 60623       | (773)<br>535-<br>4580 | http://schoolreports.cps.edu/SchoolProgressRep | Pilsen-Little<br>Village<br>Elementary<br>Network | <br>15000000000000000                       |
| 1    | 610539       | Marvin<br>Camras<br>Elementary<br>School              | ES                                          | 3000 N<br>Mango<br>Ave      | Chicago | IL    | 60634       | (773)<br>534-<br>2960 | http://schoolreports.cps.edu/SchoolProgressRep | Fullerton<br>Elementary<br>Network                | <br>15000000000000000                       |
| 2    | 609852       | Eliza<br>Chappell<br>Elementary<br>School             | ES                                          | 2135 W<br>Foster<br>Ave     | Chicago | IL    | 60625       | (773)<br>534-<br>2390 | http://schoolreports.cps.edu/SchoolProgressRep | Ravenswood-<br>Ridge<br>Elementary<br>Network     | <br>15000000000000000                       |
| 3    | 609835       | Daniel R<br>Cameron<br>Elementary<br>School           | ES                                          | 1234 N<br>Monticello<br>Ave | Chicago | IL    | 60651       | (773)<br>534-<br>4290 | http://schoolreports.cps.edu/SchoolProgressRep | Garfield-<br>Humboldt<br>Elementary<br>Network    | <br>15000000000000000                       |
| 4    | 610521       | Sir Miles<br>Davis<br>Magnet<br>Elementary<br>Academy | ES                                          | 6730 S<br>Paulina St        | Chicago | IL    | 60636       | (773)<br>535-<br>9120 | http://schoolreports.cps.edu/SchoolProgressRep | Englewood-<br>Gresham<br>Elementary<br>Network    | <br>150000000000000000000000000000000000000 |
| 5 rc | ws × 79      | columns                                               |                                             |                             |         |       |             |                       |                                                |                                                   |                                             |
| 4    |              |                                                       |                                             |                             |         |       |             |                       |                                                |                                                   | <b>+</b>                                    |

This is a very detailed dataset and we extracted the information which is the most useful to us:

|   | Name of School                               | Street Address           | City    | ZIP<br>Code | Elementary, Middle, or High<br>School | Safety<br>Score | Latitude  | Longitude  | Community Area<br>Name |
|---|----------------------------------------------|--------------------------|---------|-------------|---------------------------------------|-----------------|-----------|------------|------------------------|
| 0 | Charles G Hammond Elementary<br>School       | 2819 W 21st PI           | Chicago | 60623       | ES                                    | 40.0            | 41.852691 | -87.696278 | SOUTH<br>LAWNDALE      |
| 1 | Marvin Camras Elementary School              | 3000 N Mango Ave         | Chicago | 60634       | ES                                    | 54.0            | 41.934966 | -87.770165 | BELMONT<br>CRAGIN      |
| 2 | Eliza Chappell Elementary School             | 2135 W Foster Ave        | Chicago | 60625       | ES                                    | 70.0            | 41.975867 | -87.683254 | LINCOLN<br>SQUARE      |
| 3 | Daniel R Cameron Elementary School           | 1234 N Monticello<br>Ave | Chicago | 60651       | ES                                    | 42.0            | 41.903785 | -87.717963 | HUMBOLDT<br>PARK       |
| 4 | Sir Miles Davis Magnet Elementary<br>Academy | 6730 S Paulina St        | Chicago | 60636       | ES                                    | 35.0            | 41.771222 | -87.666567 | WEST<br>ENGLEWOOD      |

## **Data exploration**

We start data exploration by finding how many schools exists in each Community Area of Chicago.

How many schools in each Chicago Community Area:

```
chicago_schools_sel['Community Area Name'].value_counts()
AUSTIN
                   23
                   22
SOUTH LAWNDALE
WEST TOWN
                   20
                   17
ENGLEWOOD
NEAR WEST SIDE
                   16
BURNSIDE
                    1
                    1
MONTCLARE
LOOP
                    1
OAKLAND
                    1
OHARE
                    1
Name: Community Area Name, Length: 77, dtype: int64
```

There are three types of public schools in Chicago: Elementary (ES), Middle (MS) and High (HS) schools:

How many public schools of a particular type are in Chicago:

```
seriesObjE = chicago_schools_sel.apply(lambda x: True if x['Elementary, Middle, or High School'] == 'ES' else False , axis=1)
# Count number of True in series
numOfRowsE = len(seriesObjE[seriesObjE == True].index)
print('Number of elementary schools : ', numOfRowsE)

seriesObjM = chicago_schools_sel.apply(lambda x: True if x['Elementary, Middle, or High School'] == 'MS' else False , axis=1)
numOfRowsM = len(seriesObjM[seriesObjM == True].index)
print('Number of middle schools : ', numOfRowsM)

seriesObjH = chicago_schools_sel.apply(lambda x: True if x['Elementary, Middle, or High School'] == 'HS' else False , axis=1)
numOfRowsH = len(seriesObjH[seriesObjH == True].index)
print('Number of high schools : ', numOfRowsH)

Number of elementary schools : 462
Number of elementary schools : 11
Number of high schools : 93
```

Pivoting table to show a type of a particular school (ES - elementary school, MS - middle school, HS - high school)

City

| Elementary, Middle, or High School                              | ES  | HS | MS | AII |
|-----------------------------------------------------------------|-----|----|----|-----|
| Name of School                                                  |     |    |    |     |
| A.N. Pritzker School                                            | 1   | 0  | 0  | 1   |
| Abraham Lincoln Elementary School                               | 1   | 0  | 0  | 1   |
| Adam Clayton Powell Paideia Community Academy Elementary School | 1   | 0  | 0  | 1   |
| Adlai E Stevenson Elementary School                             | 1   | 0  | 0  | 1   |
| Agustin Lara Elementary Academy                                 | 1   | 0  | 0  | 1   |
|                                                                 |     |    |    |     |
| Wilma Rudolph Elementary Learning Center                        | 1   | 0  | 0  | 1   |
| Wolfgang A Mozart Elementary School                             | 1   | 0  | 0  | 1   |
| Woodlawn Community Elementary School                            | 1   | 0  | 0  | 1   |
| World Language Academy High School                              | 0   | 1  | 0  | 1   |
| All                                                             | 462 | 93 | 11 | 566 |

567 rows x 4 columns

Next we use *Nomatim geolocator* to find geographical coordinates of Chicago, what will be needed to plot map of Chicago.

Using geopy Nominatim geolocator to fing geographical coordinates of Chicago:

```
address = "Chicago, IL"

geolocator = Nominatim(user_agent="chicago_explorer")
location = geolocator.geocode(address)
latitude = location.latitude
longitude = location.longitude
print('The geograpical coordinates of Chicago are {}, {}.'.format(latitude, longitude))
```

The geograpical coordinates of Chicago are 41.8755616, -87.6244212.

Plotting map of Chicago using Folium:



Next, we can overly the schools locations on the map of Chicago:



Due to substantial number of public schools in Chicago, focusing on high schools only.

Due to substantial number of public schools in Chicago, focusing on high schools only:

chicago\_high\_schools = chicago\_schools\_sel[chicago\_schools\_sel['Elementary, Middle, or High School'] == 'HS']
chicago\_high\_schools

|     | Name of School                                      | Street Address          | City    | ZIP<br>Code | Elementary, Middle, or High<br>School | Safety<br>Score | Latitude  | Longitude  | Community<br>Area Name   |
|-----|-----------------------------------------------------|-------------------------|---------|-------------|---------------------------------------|-----------------|-----------|------------|--------------------------|
| 8   | Walter Payton College Preparatory High School       | 1034 N Wells St         | Chicago | 60610       | HS                                    | 98.0            | 41.901552 | -87.634537 | NEAR NORTH<br>SIDE       |
| 15  | Manley Career Academy High School                   | 2935 W Polk St          | Chicago | 60612       | нѕ                                    | 41.0            | 41.870912 | -87.699887 | EAST<br>GARFIELD<br>PARK |
| 17  | Northside College Preparatory High School           | 5501 N Kedzie<br>Ave    | Chicago | 60625       | HS                                    | 99.0            | 41.981352 | -87.708672 | NORTH PARK               |
| 28  | Michele Clark Academic Prep Magnet High<br>School   | 5101 W Harrison<br>St   | Chicago | 60644       | HS                                    | NaN             | 41.872857 | -87.753355 | AUSTIN                   |
| 30  | Uplift Community High School                        | 900 W Wilson Ave        | Chicago | 60640       | HS                                    | 50.0            | 41.965574 | -87.652522 | UPTOWN                   |
|     |                                                     |                         |         |             |                                       |                 |           |            |                          |
| 554 | Chicago High School for Agricultural Sciences       | 3857 W 111th St         | Chicago | 60655       | HS                                    | 87.0            | 41.691194 | -87.717739 | MOUNT<br>GREENWOOD       |
| 559 | Stephen T Mather High School                        | 5835 N Lincoln<br>Ave   | Chicago | 60659       | HS                                    | 58.0            | 41.987595 | -87.702449 | WEST RIDGE               |
| 560 | High School of Leadership at South Shore            | 7627 S Constance<br>Ave | Chicago | 60649       | HS                                    | NaN             | 41.756194 | -87.579607 | SOUTH<br>SHORE           |
| 561 | TEAM Englewood Community Academy<br>High School     | 6201 S Stewart<br>Ave   | Chicago | 60621       | HS                                    | 45.0            | 41.781493 | -87.634942 | ENGLEWOOD                |
| 564 | Infinity Math Science and Technology High<br>School | 3120 S Kostner<br>Ave   | Chicago | 60623       | HS                                    | 58.0            | 41.836020 | -87.734195 | SOUTH<br>LAWNDALE        |

93 rows × 9 columns

**Part 3**: Creating a new consolidated dataset of the schools, and the most common venues and the respective Community Areas along with co-ordinates.:

This data will be fetched using Four Square API to explore the venues and to apply machine learning algorithm to cluster the schools and present the findings by plotting it on maps using Folium.

We start with setting up Foursquare credentials.

Setting Up Foursquare Credentials (to be removed from github version of notebook):

```
#Four Square Credentials

CLIENT_ID = ''
CLIENT_SECRET = ''
VERSION = '20210516'
LIMIT = 10

print('Your credentails:')
print('CLIENT_ID: ' + CLIENT_ID)
print('CLIENT_SECRET:' + CLIENT_SECRET)

Your credentails:
CLIENT_ID:
CLIENT_SECRET:
```

Next, we prepare a function to fetch venues around a given location and use it.

A function to fetch venues around a given location:

```
def getNearbyVenues(names, latitudes, longitudes, radius=100):
              venues_list=[]
for name, lat, lng in zip(names, latitudes, longitudes):
    print(name)
                             # create the API request URL
                            url = 'https://api.foursquare.com/v2/venues/explore?\&client_id={}\&client_secret={}\&v={}\&ll={},{}\&radius={}\&limit={}'.formular of the property of the proper
                                          CLIENT_ID,
                                           CLIENT SECRET,
                                           VERSION,
                                           lat,
                                         lng,
                                          radius.
                                          LIMIT)
                            # make the GET request
                           results = requests.get(url).json()["response"]['groups'][0]['items']
                              # return only relevant information for each nearby venue
                            venues_list.append([(
                                         name,
                                           lat,
                                          lng,
                                         v['venue']['name'],
v['venue']['categories'][0]['name']) for v in results])
              nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list])
             'School Longitude',
                                                                'Venue',
'Venue Category']
             return(nearby_venues)
```

Fetching venues around public high schools:

```
chicago school venues = getNearbyVenues(names=chicago high schools['Name of School'],
                                   latitudes=chicago_high_schools['Latitude'],
                                   longitudes=chicago_high_schools['Longitude']
Walter Payton College Preparatory High School
Manley Career Academy High School
Northside College Preparatory High School
Michele Clark Academic Prep Magnet High School
Uplift Community High School
Morgan Park High School
Bronzeville Scholastic Academy High School
William J Bogan High School
Emil G Hirsch Metropolitan High School
Austin Polytechnical Academy High School
World Language Academy High School
Multicultural Academy of Scholarship
Mason High School
Marie Sklodowska Curie Metropolitan High School
George Washington High School
Robert Lindblom Math & Science Academy High School
Benito Juarez Community Academy High School
Hyde Park Academy High School
John Marshall Metropolitan High School
Friedrich W von Steuben Metropolitan Science High School
Southside Occupational Academy High School
Chicago Military Academy High School
Eric Solorio Academy High School
Neal F Simeon Career Academy High School
John Hancock College Preparatory High School
Roald Amundsen High School
Edwin G Foreman High School
Paul Laurence Dunbar Career Academy High School
Charles P Steinmetz Academic Centre High School
Gurdon S Hubbard High School
Albert G Lane Technical High School
Carl Schurz High School
Dyett High School
Phoenix Military Academy High School
Chicago Vocational Career Academy High School
```

The collected data we put into a new data frame and then we group them with respect to school location.

Data frame containing venues aroung each public high school in Chicago:

```
print(chicago_school_venues.shape)
chicago_school_venues.head()

(69, 5)
```

|   | Name of School                                 | School Latitude | School Longitude | Venue                        | Venue Category       |
|---|------------------------------------------------|-----------------|------------------|------------------------------|----------------------|
| 0 | Northside College Preparatory High School      | 41.981352       | -87.708672       | Lake Shore Symphony Rehersal | Music Venue          |
| 1 | Michele Clark Academic Prep Magnet High School | 41.872857       | -87.753355       | YWCA of Metropolitan Chicago | Gym / Fitness Center |
| 2 | Uplift Community High School                   | 41.965574       | -87.652522       | Citizen Skate Cafe           | Café                 |
| 3 | Uplift Community High School                   | 41.965574       | -87.652522       | CVS pharmacy                 | Pharmacy             |
| 4 | William J Bogan High School                    | 41.749348       | -87.721097       | Dollar Tree                  | Discount Store       |

```
chicago_school_venues.groupby('Name of School').count().drop(['School Latitude','School Longitude','Venue Category'], axis = 1)
```

|                                                          | Venue |
|----------------------------------------------------------|-------|
| Name of School                                           |       |
| Alcott High School for the Humanities                    | 2     |
| Benito Juarez Community Academy High School              | 1     |
| Carl Schurz High School                                  | 4     |
| Chicago High School for Agricultural Sciences            | 2     |
| Chicago Military Academy High School                     | 8     |
| DeVry University Advantage Academy High School           | 2     |
| Friedrich W von Steuben Metropolitan Science High School | 2     |
| Gage Park High School                                    | 1     |
| George H Corliss High School                             | 1     |
| Gwendolyn Brooks College Preparatory Academy High School | 1     |
| Hyman G Rickover Naval Academy High School               | 1     |
| Jacqueline B Vaughn Occupational High School             | 3     |
| Lake View High School                                    | 8     |
| Lincoln Park High School                                 | 5     |
| Marie Sklodowska Curie Metropolitan High School          | 1     |
| Michele Clark Academic Prep Magnet High School           | 1     |
| New Millennium High School of Health at Bowen            | 1     |
| Nicholas Senn High School                                | 1     |
| Northside College Preparatory High School                | 1     |
| Orr Academy High School                                  | 1     |
| Roald Amundsen High School                               | 2     |
| Roberto Clemente Community Academy High School           | 3     |
| Spry Community Links High School                         | 1     |
| Stephen T Mather High School                             | 1     |
| Thomas Kelly High School                                 | 1     |
| Uplift Community High School                             | 2     |
| Wells Community Academy High School                      | 4     |
| William J Bogan High School                              | 3     |
| William Jones College Preparatory High School            | 5     |

```
print('There are {} uniques categories.'.format(len(chicago_school_venues['Venue Category'].unique())))
There are 47 uniques categories.
```

# **One Hot Encoding**

Since we are trying to find out what are the different kinds of venue categories present in each high school surrounding and then calculate the top 5 common venues to base our similarity on, we use the One Hot Encoding to work with our categorical datatype of the venue categories. This helps to convert the categorical data into numeric data.

One Hot Encoding to analyze each high school surrounding:

```
# one hot encoding
chicago_school_onehot = pd.get_dummies(chicago_school_venues[['Venue Category']], prefix="", prefix_sep="")

# add neighborhood column back to dataframe
chicago_school_onehot['Name of School'] = chicago_school_venues['Name of School']

# move neighborhood column to the first column
fixed_columns = [chicago_school_onehot.columns[-1]] + list(chicago_school_onehot.columns[:-1])
chicago_school_onehot = chicago_school_onehot[fixed_columns]
chicago_school_onehot.head()
```

|     | Name of<br>School                                                | American<br>Restaurant | Art<br>Gallery | Asian<br>Restaurant |   | Basketball<br>Court | Breakfast<br>Spot |   | Bus<br>Station | Café | <br>Pool | Record<br>Shop | Restaurant | River | Salon /<br>Barbershop | Sandwic<br>Plac |
|-----|------------------------------------------------------------------|------------------------|----------------|---------------------|---|---------------------|-------------------|---|----------------|------|----------|----------------|------------|-------|-----------------------|-----------------|
| 0 F | Northside<br>College<br>Preparatory<br>High<br>School            | 0                      | 0              | 0                   | 0 | 0                   | 0                 | 0 | 0              | 0    | <br>0    | 0              | 0          | 0     | 0                     |                 |
| 1   | Michele<br>Clark<br>Academic<br>Prep<br>Magnet<br>High<br>School | 0                      | 0              | 0                   | 0 | 0                   | 0                 | 0 | 0              | 0    | <br>0    | 0              | 0          | 0     | 0                     |                 |
| 2   | Uplift<br>Community<br>High<br>School                            | 0                      | 0              | 0                   | 0 | 0                   | 0                 | 0 | 0              | 1    | <br>0    | 0              | 0          | 0     | 0                     |                 |
| 3   | Uplift<br>Community<br>High<br>School                            | 0                      | 0              | 0                   | 0 | 0                   | 0                 | 0 | 0              | 0    | <br>0    | 0              | 0          | 0     | 0                     |                 |
| 4 E | William J<br>Bogan High<br>School                                | 0                      | 0              | 0                   | 0 | 0                   | 0                 | 0 | 0              | 0    | <br>0    | 0              | 0          | 0     | 0                     |                 |

5 rows × 48 columns

chicago\_school\_onehot.shape

(69, 48)

Top 5 most common venues around high school:

```
num_top_venues = 5
for school in chicago_school_grouped['Name of School']:
    print("----"+school+"----")
    temp = chicago_school_grouped[chicago_school_grouped['Name of School'] == school].T.reset_index()
      temp.columns = ['venue','freq']
     temp = temp.iloc[1:]
     temp['freq'] = temp['freq'].astype(float)
temp = temp.round({'freq': 2})
     print(temp.sort_values('freq', ascending=False).reset_index(drop=True).head(num_top_venues))
     print('\n')
 ----Alcott High School for the Humanities----
                       venue freq
0 Dog Run 0.5
1 Park 0.5
2 American Restaurant 0.0
      Hookah Bar 0.0
Korean Restaurant 0.0
3
4
----Benito Juarez Community Academy High School----
                       venue freq
Mexican Restaurant 1.0
American Restaurant 0.0
Pizza Place 0.0
Korean Restaurant 0.0
Market 0.0
----Carl Schurz High School----
```

Building a new dataframe and display the top 5 venues around each high school:

for ind in np.arange(chicago\_school\_grouped.shape[0]):

chicago\_school\_venues\_sorted.head()

```
def return_most_common_venues(row, num_top_venues):
    row_categories = row.iloc[1:]
    row_categories_sorted = row_categories.sort_values(ascending=False)

    return row_categories_sorted.index.values[0:num_top_venues]

num_top_venues = 5

indicators = ['st', 'nd', 'rd']

# create columns according to number of top venues
columns = ['Name of School']
for ind in np.arange(num_top_venues):
    try:
        columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind]))
    except:
        columns.append('{}th Most Common Venue'.format(ind+1))

# create a new dataframe
chicago_school_venues_sorted = pd.DataFrame(columns=columns)
chicago_school_venues_sorted['Name of School'] = chicago_school_grouped['Name of School']
```

|   | Name of School                                   | 1st Most Common<br>Venue | 2nd Most Common<br>Venue | 3rd Most Common<br>Venue | 4th Most Common<br>Venue | 5th Most Common<br>Venue |
|---|--------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 0 | Alcott High School for the Humanities            | Dog Run                  | Park                     | Women's Store            | Historic Site            | Furniture / Home Store   |
| 1 | Benito Juarez Community Academy High<br>School   | Mexican Restaurant       | Women's Store            | Historic Site            | Furniture / Home Store   | Fried Chicken Joint      |
| 2 | Carl Schurz High School                          | Thai Restaurant          | Asian Restaurant         | Martial Arts School      | Convenience Store        | Women's Store            |
| 3 | Chicago High School for Agricultural<br>Sciences | BBQ Joint                | Dive Bar                 | Women's Store            | Coffee Shop              | Furniture / Home Store   |
| 4 | Chicago Military Academy High School             | History Museum           | Pizza Place              | Historic Site            | Wings Joint              | Cosmetics Shop           |

chicago\_school\_venues\_sorted.iloc[ind, 1:] = return\_most\_common\_venues(chicago\_school\_grouped.iloc[ind, :], num\_top\_venues)

# **Model Building - KMeans**

We will be using KMeans Clustering Machine learning algorithm to cluster similar school's surroundings together. We will be going with the number of clusters as 5.

#### Clustering Chicago high schools:

```
# set number of clusters
kclusters = 5
chicago_school_grouped_clustering = chicago_school_grouped.drop('Name of School', 1)
# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(chicago_school_grouped_clustering)
# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]
array([1, 0, 0, 0, 0, 0, 0, 0, 2, 1])
# add clustering labels
chicago\_school\_venues\_sorted.insert(\emptyset, \ 'Cluster \ Labels', \ kmeans.labels\_)
chicago_merged = chicago_schools_sel
chicago_merged = chicago_merged.join(chicago_school_venues_sorted.set_index('Name of School'), on='Name of School')
chicago_merged
                                       Elementary,
                                                                                                              2nd
                                                                                                  1st Most
                                                                                                                   3rd Most
                                                                                                                            4th Most
                                                                                                                                     5th M
                                   7IP
                                                                                                             Most
       Name of
                  Street
                                         Middle, or
                                                  Safety
                                                                               Community Cluster
                           City Code
                                                                                                                   Common
Venue
                                                          Latitude Longitude
                                                                                                 Common
                                                                                                                            Common
                                                                                                                                     Comm
                                           High
School
                                                                               Area Name
                                                                                                   Venue
   Charles G
```

```
# create map
map_clusters = folium.Map(location=[latitude, longitude], zoom_start=12)
# set color scheme for the clusters
x = np.arange(kclusters)
ys = [i + x + (i*x)**2 for i in range(kclusters)]
colors_array = cm.rainbow(np.linspace(0, 1, len(ys)))
rainbow = [colors.rgb2hex(i) for i in colors_array]
 # add markers to the map
# dum markers to the map
markers_colors = []
for lat, lon, poi, cluster in zip(chicago_merged['Latitude'], chicago_merged['Longitude'], chicago_merged['Name of School'], chic
label = folium.Popup(str(poi) + 'Cluster' + str(cluster), parse_html=True)
               [lat, lon],
               radius=5,
popup=label,
color=rainbow[cluster-1],
               fill=True,
fill_color=rainbow[cluster-1],
fill_opacity=0.7).add_to(map_clusters)
map_clusters
     +
     _
                                              Park
 Park Austin
                                   West Garfield
                                                                                                             Clicago
                                                                                 University Village/
 23A 23B 23B
```

# **Clusters Analysis**

## Examining the resulting Clusters:

Cluster 1:

chicago\_merged.loc[chicago\_merged['Cluster Labels'] == 0, chicago\_merged.columns[[1] + list(range(5, chicago\_merged.shape[1]))]]

|     | Street<br>Address       | Safety<br>Score | Latitude  | Longitude  | Community<br>Area Name | Cluster<br>Labels | 1st Most<br>Common<br>Venue | 2nd Most<br>Common<br>Venue | 3rd Most<br>Common<br>Venue | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue |
|-----|-------------------------|-----------------|-----------|------------|------------------------|-------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| 17  | 5501 N Kedzie<br>Ave    | 99.0            | 41.981352 | -87.708672 | NORTH PARK             | 0                 | Music Venue                 | Women's Store               | Historic Site               | Furniture /<br>Home Store   | Fried Chicken<br>Joint      |
| 28  | 5101 W<br>Harrison St   | NaN             | 41.872857 | -87.753355 | AUSTIN                 | 0                 | Gym / Fitness<br>Center     | Coffee Shop                 | Furniture /<br>Home Store   | Fried Chicken<br>Joint      | Football<br>Stadium         |
| 30  | 900 W Wilson<br>Ave     | 50.0            | 41.965574 | -87.652522 | UPTOWN                 | 0                 | Pharmacy                    | Café                        | Coffee Shop                 | Furniture /<br>Home Store   | Fried Chicken<br>Joint      |
| 38  | 3939 W 79th<br>St       | 20.0            | 41.749348 | -87.721097 | ASHBURN                | 0                 | Furniture /<br>Home Store   | Fast Food<br>Restaurant     | Discount Store              | Women's Store               | Coffee Shop                 |
| 77  | 2150 S Laflin<br>St     | 46.0            | 41.852673 | -87.663769 | LOWER WEST<br>SIDE     | 0                 | Mexican<br>Restaurant       | Women's Store               | Historic Site               | Furniture /<br>Home Store   | Fried Chicken<br>Joint      |
| 95  | 5039 N<br>Kimball Ave   | 70.0            | 41.973193 | -87.713350 | NORTH PARK             | 0                 | River                       | Bus Station                 | Women's Store               | Coffee Shop                 | Furniture /<br>Home Store   |
| 107 | 3519 S Giles<br>Ave     | 32.0            | 41.830538 | -87.619178 | DOUGLAS                | 0                 | History Museum              | Pizza Place                 | Historic Site               | Wings Joint                 | Cosmetics Shop              |
| 116 | 5110 N Damen<br>Ave     | 51.0            | 41.975079 | -87.679521 | LINCOLN<br>SQUARE      | 0                 | Basketball<br>Court         | Pool                        | Women's Store               | Coffee Shop                 | Furniture /<br>Home Store   |
| 139 | 3601 N<br>Milwaukee Ave | 48.0            | 41.946408 | -87.735625 | IRVING PARK            | 0                 | Thai Restaurant             | Asian<br>Restaurant         | Martial Arts<br>School      | Convenience<br>Store        | Women's Store               |
| 190 | 4015 N<br>Ashland Ave   | 64.0            | 41.954784 | -87.668916 | LAKE VIEW              | 0                 | Chinese<br>Restaurant       | Coffee Shop                 | Thai Restaurant             | Fried Chicken<br>Joint      | Breakfast Spot              |
| 238 | 3300 N<br>Campbell      | NaN             | 41.941426 | -87.690799 | NORTH<br>CENTER        | 0                 | Furniture /<br>Home Store   | Salon /<br>Barbershop       | Women's Store               | Coffee Shop                 | Fried Chicken<br>Joint      |
| 264 | 5630 S<br>Rockwell St   | 14.0            | 41.791014 | -87.688991 | GAGE PARK              | 0                 | Clothing Store              | Coffee Shop                 | Furniture /<br>Home Store   | Fried Chicken<br>Joint      | Football<br>Stadium         |
| 298 | 2001 N<br>Orchard St    | 65.0            | 41.918304 | -87.645974 | LINCOLN<br>PARK        | 0                 | Women's Store               | Art Gallery                 | BBQ Joint                   | Burger Joint                | Mediterranean<br>Restaurant |
| 311 | 730 N Pulaski<br>Rd     | NaN             | 41.894448 | -87.726203 | HUMBOLDT<br>PARK       | 0                 | Fast Food<br>Restaurant     | Women's Store               | Coffee Shop                 | Furniture /<br>Home Store   | Fried Chicken<br>Joint      |
|     |                         |                 |           |            |                        |                   |                             |                             |                             |                             |                             |

### Cluster 2:

chicago\_merged.loc[chicago\_merged['Cluster Labels'] == 1, chicago\_merged.columns[[1] + list(range(5, chicago\_merged.shape[1]))]]

|     | Street<br>Address        | Safety<br>Score | Latitude  | Longitude  | Community<br>Area Name | Cluster<br>Labels | 1st Most<br>Common<br>Venue | 2nd Most<br>Common Venue | 3rd Most<br>Common<br>Venue | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue |
|-----|--------------------------|-----------------|-----------|------------|------------------------|-------------------|-----------------------------|--------------------------|-----------------------------|-----------------------------|-----------------------------|
| 244 | 4136 S<br>California Ave | 36.0            | 41.818711 | -87.694675 | BRIGHTON<br>PARK       | 1                 | Park                        | Women's Store            | Historic Site               | Furniture /<br>Home Store   | Fried Chicken<br>Joint      |
| 463 | 2957 N<br>Hoyne Ave      | 70.0            | 41.935761 | -87.680524 | NORTH<br>CENTER        | 1                 | Dog Run                     | Park                     | Women's Store               | Historic Site               | Furniture /<br>Home Store   |
| 473 | 250 E 111th<br>St        | 64.0            | 41.692790 | -87.616381 | ROSELAND               | 1                 | Park                        | Women's Store            | Historic Site               | Furniture /<br>Home Store   | Fried Chicken<br>Joint      |

Cluster 3:

chicago\_merged.loc[chicago\_merged['Cluster Labels'] == 2, chicago\_merged.columns[[1] + list(range(5, chicago\_merged.shape[1]))]]

|     | Street<br>Address | Safety<br>Score | Latitude  | Longitude  | Community<br>Area Name | Cluster<br>Labels | 1st Most<br>Common Venue | 2nd Most<br>Common Venue | 3rd Most<br>Common Venue | 4th Most<br>Common Venue  | 5th Most<br>Common Venue |
|-----|-------------------|-----------------|-----------|------------|------------------------|-------------------|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|
| 198 | 821 E<br>103rd St | 33.0            | 41.707391 | -87.603078 | PULLMAN                | 2                 | Football Stadium         | Women's Store            | Coffee Shop              | Furniture / Home<br>Store | Fried Chicken<br>Joint   |

Cluster 4:

chicago\_merged.loc[chicago\_merged['Cluster Labels'] == 3, chicago\_merged.columns[[1] + list(range(5, chicago\_merged.shape[1]))]]

|   |     | Street<br>Address      | Safety<br>Score | Latitude  | Longitude  | Community<br>Area Name | Cluster<br>Labels | 1st Most<br>Common<br>Venue | 2nd Most<br>Common Venue | 3rd Most<br>Common<br>Venue | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue |
|---|-----|------------------------|-----------------|-----------|------------|------------------------|-------------------|-----------------------------|--------------------------|-----------------------------|-----------------------------|-----------------------------|
| Ī | 68  | 4959 S Archer<br>Ave   | 43.0            | 41.803046 | -87.722007 | ARCHER<br>HEIGHTS      | 3                 | Hotel                       | Women's Store            | Historic Site               | Furniture /<br>Home Store   | Fried Chicken<br>Joint      |
|   | 176 | 5900 N<br>Glenwood Ave | 64.0            | 41.989051 | -87.665262 | EDGEWATER              | 3                 | Hotel                       | Women's Store            | Historic Site               | Furniture /<br>Home Store   | Fried Chicken<br>Joint      |
|   | 274 | 5900 N<br>Glenwood Ave | 48.0            | 41.989051 | -87.665262 | EDGEWATER              | 3                 | Hotel                       | Women's Store            | Historic Site               | Furniture /<br>Home Store   | Fried Chicken<br>Joint      |

#### Cluster 5:

 $chicago\_merged.loc[chicago\_merged['Cluster\ Labels'] == 4,\ chicago\_merged.columns[[1]\ +\ list(range(5,\ chicago\_merged.shape[1]))]]$ 

|    | Street<br>Address | Safety<br>Score | Latitude  | Longitude  | Community<br>Area Name | Cluster<br>Labels | 1st Most<br>Common Venue | 2nd Most<br>Common Venue | 3rd Most<br>Common Venue  | 4th Most<br>Common Venue | 5th Most<br>Common Venue |
|----|-------------------|-----------------|-----------|------------|------------------------|-------------------|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------|
| 52 | 2710 E<br>89th St | 17.0            | 41.733761 | -87.557753 | SOUTH<br>CHICAGO       | 4                 | American<br>Restaurant   | Coffee Shop              | Furniture / Home<br>Store | Fried Chicken<br>Joint   | Football Stadium         |

#### **Results and Discussion**

The object of the business problem was to help Chicago migrants to identify suitable public school to their children, located in area surrounded with the appropriate venues. This has been achieved by first making use of Chicago Public Schools data to identify a proper place with considerable number of venues. Due to substantial number of public schools in Chicago focus was made on the public high schools only. Next, groupping of the high schools into clusters was done to assist the migrants by providing them with relevant data about venues and safety of a given school surrounding.

## **Conclusion**

We have explored the Chicago Public Schools data to understand different types of public schools in all Community Areas of Chicago and later categorized them into different types. This helped us group the schools. We further shortlist the high schools based on the common venues, to choose clusters of schools which best suits the business problem.