

Analisi Matematica II

Appunti di Davide Gaetano Barberi, Corso di Intelligenza Artificiale and Data Analytics, A.A 2022/23.

Integrali Generalizzati (o Impropri)

Funzione Localmente Integrabile

Continua/Monotona, allora Localmente Integrabile

Localmente Integrabile, allora Continua

Funzioni Integrabili in Senso Generalizzato

Esempi Pratici

Integrabilità in Senso Generalizzato delle Funzioni Campione

Teorema: J Limitato.

Teorema (Aut - aut per l'Integrale Generalizzato)

Integrali Generalizzati (o Impropri)

Funzione Localmente Integrabile

Sia J un intervallo qualunque.

Sia $f:J o\mathbb{R}$.

f si dice localmente integrabile su J se f è integrabile su ogni intervallo compatto $K\subseteq J$.

Analisi Matematica II

Continua/Monotona, allora Localmente Integrabile

Se $f: J \to \mathbb{R}$ è continua o monotona, allora f è localmente integrabile su J.

Localmente Integrabile, allora Continua

Sia $f:J o\mathbb{R}$ localmente integrabile.

Sia $c \in J$.

La funzione integrale:

$$F(x) = \int_{c}^{x} f(t) dt$$

con $x \in J$, è continua in J.

Inoltre, $\forall d \in J$,

$$\lim_{x o d}F(x)=F(d)$$

Funzioni Integrabili in Senso Generalizzato

1. Sia J=[a,b[con $b\in\mathbb{R}\cup\{+\infty\}$ e sia $f:J\to\mathbb{R}$ localmente integrabile su J.

f si dice integrabile in senso generalizzato su J se esiste finito il limite:

$$\lim_{x o b}\int_a^x f(t)dt=:\int_a^b f(t)dt$$

2. Sia J=]a,b] con $a\in\mathbb{R}\cup\{-\infty\}$ e sia $f:J o\mathbb{R}$ localmente integrabile.

f si dice integrabile in senso generalizzato su J se esiste finito il limite:

$$\lim_{x o a}\int_x^bf(t)dt:=\int_a^bf(t)dt$$

3. Sia J=]a,b[con $a\in\mathbb{R}\cup\{-\infty\}$ e $b\in\mathbb{R}\cup\{+\infty\}$ e sia $f:J\to\mathbb{R}$ localmente integrabile su J.

f si dice integrabile in senso generalizzato su J se esiste $c \in J$ tale che f è integrabile in senso generalizzato su]a,c] e [c,b] e si pone:

Esempi Pratici

$$\int_{0}^{\Lambda} \frac{\Lambda}{\sqrt{\Lambda-2}} dz$$

$$\lim_{t \to 1} \int_{0}^{t} \frac{1}{\sqrt{\Lambda-2}} dz = \lim_{t \to 1} \left(-2\sqrt{\Lambda-2}\right)\Big|_{0}^{t} = \lim_{t \to 1} -2\left(\sqrt{\Lambda-2} - \sqrt{\Lambda}\right) = 2$$

$$\lim_{t \to 1} \int_{0}^{\Lambda} \frac{1}{\sqrt{\Lambda-2}} dz = \lim_{t \to 1} \left(-2\sqrt{\Lambda-2}\right)\Big|_{0}^{t} = \lim_{t \to 1} \left(-2$$

2)
$$\int_{-\infty}^{\infty} e^{2} dz = \lim_{k \to -\infty} \int_{k}^{\infty} e^{2} dz = \lim_{k \to -\infty} e^{x} \Big|_{k}^{\infty} = \lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$= \lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

$$\lim_{k \to -\infty} \left[1 - e^{k} \right] = 1$$

Integrabilità in Senso Generalizzato delle Funzioni Campione

Teorema: J Illimitato.

- 1. Sia $J=[a,+\infty[$ con a>0 . Si ha che $\int_a^{+\infty} \frac{1}{x^\alpha} dx$ esiste finito $\iff \alpha>1$.
- 2. Sia $J=]-\infty,b]$ con b<0. Si ha che $\int_{-\infty}^b \frac{1}{|x|^\alpha} dx$ esiste finito $\iff \alpha>1$.

2. In maniera analoga.

Dimostrazione:

dim: 1. Si he she
$$\begin{cases}
\left[\frac{1}{1-\alpha} z^{1-\alpha}\right]^{\frac{1}{\alpha}} = \frac{1}{1-\alpha} \left(\frac{1}{1-\alpha} z^{1-\alpha}\right) \alpha \neq 1
\end{cases}$$

$$\int_{\alpha}^{\frac{1}{\alpha}} \frac{1}{1-\alpha} dz = \begin{cases}
\left[\log(z)\right]_{\alpha}^{\frac{1}{\alpha}} = \log z - \log \alpha \qquad \text{if } \alpha = 1
\end{cases}$$

Analisi Matematica II

Teorema: J Limitato.

- 1. Sia J=[a,b[con $0< a< b\in \mathbb{R}$. Si ha che $\int_a^b \frac{1}{(b-x)^{lpha}} dx$ esiste finito $\iff lpha < 1$.
- 2. Sia J=]a,b] con $0 < a < b \in \mathbb{R}$. Si ha che $\int_a^b \frac{1}{(x-\alpha)^\alpha} dx$ esiste finito $\iff \alpha < 1$.

Dimostrazione:

dim: 1.
$$\int_{a}^{2} \frac{1}{(b-2)^{\alpha}} dt = \begin{cases}
 \begin{bmatrix} -\frac{1}{1-\alpha} (b-2)^{2} & \frac{1}{1-\alpha} (b-2)$$

Non si legge molto bene, ma la prima condizione è; lpha
eq 1 .

Teorema (Aut - aut per l'Integrale Generalizzato)

Sia $f:[a,b[o\mathbb{R}\ {
m con}\ b\in\mathbb{R}\cup\{+\infty\}$ localmente integrabile. Sia $f\geq 0$ in J=[a,b[, allora **esiste finito a** $+\infty$ **il limite**:

$$\lim_{x o b}\int_a^x f(t)dt = sup_{x\in J}\int_a^x f(t)dt$$

Dimostrazione:

dim:
$$F(z) = \int_{0}^{2} f(z) dz$$
 & cressente, dunque per in le teoreme sue cimite delle funzioni monotone de cimite esiste finito o too $f(z) = \int_{0}^{2} f(z) dz$

Osservazione:

 $f(t)=\cos(t)$ allora il limite $\lim_{x o +\infty}\int_0^x\cos(t)dt=\lim_{x o +\infty}\sin(x)$ NON ESISTE.

Analisi Matematica II 6