

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ

ЕССЫ УПРАВЛЕНИЯ N 4, 2010

Электронный журнал, рег. Эл. NФС77-39410 om 15.04.2010 ISSN 1817-2172

http://www.math.spbu.ru/diffjournal/e-mail: jodiff@mail.ru

Теория обыкновенных дифференциальных уравнений

О ПЕРИОДИЧЕСКИХ РЕШЕНИЯХ ЛИНЕЙНЫХ СИСТЕМ, ПЕРИОД КОТОРЫХ НЕСОИЗМЕРИМ С ПЕРИОДОМ СИСТЕМЫ 1

Ю. А. Ильин

В теории нелинейных колебаний представляет интерес следующий вопрос. Пусть нам дана ω -периодическая по t система

$$\dot{x} = X(t, x),\tag{1}$$

где $x \in \mathbb{R}^n$, функция $X : \mathbb{R}^{n+1} \mapsto \mathbb{R}^n$ непрерывна по своим аргументам и удовлетворяет какому-либо условию, обеспечивающему единственность решения задачи Коши. Пусть $\varphi(t)$ есть периодическое решение системы (1). Всегда ли период этого решения должен быть равен или кратен ω ?

С обсуждения этого вопроса традиционно начинается чтение специального курса "Теория нелинейных колебаний" для студентов Математико-механического факультета.

Уже самые простые примеры (см. [1, 4] и пример 1 ниже) показывают, что это не так: ω -периодическая по t система может иметь решения с каким угодно периодом! Однако если период этого решения сильно отличается от ω , а именно, будет рационально несоизмерим с ним (это означает, что их отношение есть иррациональное число), то как показали в своих статьях Массера [5] и Курцвейль [3], правые части системы (1) вдоль этого решения перестают зависеть от t. Система становится автономной, а это влечет за собой целый

¹ Работа выполнена при частичной финансовой поддержке Совета по грантам Президента Российской Федерации по поддержке ведущих научных школ (НШ-954.2008.1), РФФИ (08-01-00346).

ряд довольно необычных свойств. В этой статье мы рассмотрим примеры систем, которые как могут, так и не могут иметь решений с несоизмеримым периодом. Для случая линейной системы будет проведен, по-видимому, исчерпывающий анализ.

Мы начнем с точной формулировки теоремы Массера-Курцвейля (доказательство ее см. в [4]).

Теорема 1. Пусть система (1) имеет Ω -периодическое решение $\varphi(t)$, и Ω/ω — иррациональное число. Тогда $X(t, \varphi(t_0)) = X(t_0, \varphi(t_0))$ для всех $t \in \mathbb{R}$.

Из теоремы следует, что $\dot{\varphi}(t)=X(t,\varphi(t))=X(t_0,\varphi(t)),$ и, таким образом, справедливо

Следствие 1. Решение $\varphi(t)$ является решением любой автономной системы $\dot{x} = X(t_0, x)$, где $t_0 - n$ роизвольное.

Из следствия 1 и основного свойства автономных систем вытекает

Следствие 2. Если $\varphi(t)$ — решение с несоизмеримым периодом Ω , то для любого $\tau \in \mathbb{R}$ функция $\varphi(t+\tau)$ также будет Ω -периодическим решением системы (1).

Рис. 1.

Графики двух решений $\varphi(t)$ и $\varphi(t+\tau)$ получаются один из другого параллельным переносом вдоль оси Ot. Если менять τ от $-\infty$ до $+\infty$, то эти графики заметут цилиндрическую поверхность (см. рис. 1). Проекцию L_{φ} этой

поверхности на \mathbb{R}^n_x по аналогии с автономными системами назовем *траекторией* решения $\varphi(t)$. Так как $\varphi(t)$ периодическое решение, то L_{φ} будет *циклом* — замкнутой кривой, диффеоморфной окружности \mathbb{S}^1 .

Для цикла L_{φ} выполняется такое же свойство единственности, как и для траекторий настоящих автономных систем. А именно, если проекция L_{ψ} интегральной кривой какого-то решения $\psi(t)$ пересекается с циклом L_{φ} , то она совпадает с ним: $L_{\psi} = L_{\varphi}$. В самом деле, поверхность $\mathbb{R}_t \times L_{\varphi}$ целиком заполнена интегральными кривыми семейства $\{\varphi(t+\tau)\}_{\tau \in \mathbb{R}}$. Если проекция интегральной кривой решения ψ пересекается с L_{φ} , то сама интегральная кривая пересекается с поверхностью $\mathbb{R}_t \times L_{\varphi}$, и, стало быть, она пересекается с какой-то интегральной кривой на этой поверхности. Но тогда в силу единственности она должна совпадать с этой интегральной кривой. Следовательно, $\psi(t) \equiv \varphi(t+\tau)$ для некоторого τ , и поэтому $L_{\psi} = L_{\varphi}$.

Перед дальнейшим изложением сделаем следующее замечание. Чтобы избежать неоднозначности, договоримся считать, что фраза, что функция является ω -периодической, подразумевает, что ω — ее $\mathit{главный}$ (т.е. наименьший положительный) период. С этой точки зрения постоянная функция ω -периодической не является, и мы будем ее рассматривать как некое вырождение периодического случая. Возможность такого вырождения мы стараемся специально оговаривать в формулировках.

Перейдем к рассмотрению примеров различных систем, которые как могут, так и не могут иметь решений с несоизмеримым периодом.

Начнем с одномерного случая. Оказывается, что для скалярного уравнения все обстоит очень просто.

Предложение 1. Если $x \in \mathbb{R}^1$, то уравнение (1) не может иметь периодических решений с несоизмеримым периодом.

Доказательство. Утверждение вытекает из следствия 1 и того факта, что скалярное автономное уравнение не может иметь периодических решений, отличных от постоянных (это известная задача из общего курса дифференциальных уравнений). \square

Пусть теперь $x \in \mathbb{R}^2$. Справедливо следующее

Предложение 2. Если двумерная система (1) имеет решение с несоизмеримым периодом, то она имеет хотя бы одно ω -периодическое решение (которое может выродиться в постоянное).

Доказательство. Пусть $\varphi(t)$ есть решение с несоизмеримым периодом и L_{φ} — его цикл. Пусть D это множество, которое он ограничивает на плоскости. Хорошо известно, что D гомеоморфно кругу. Так как поверхность $\mathbb{R}_t \times L_{\varphi}$ является интегральной, то любая интегральная кривая, начинающаяся внутри этой поверхности, должна и впредь оставаться внутри нее (при этом ее максимальный промежуток существования автоматически будет равен \mathbb{R}). Таким образом, внутри цилиндра $\mathbb{R}_t \times L_{\varphi}$ корректно определено отображение Пуанкаре P сдвига вдоль решений на период ω , т.е. $P(x_0) \stackrel{\text{def}}{=} x(\omega, 0, x_0)$, где $x(t,t_0,x_0)$ стандартно обозначает решение системы (1) с начальным условием $x(t_0)=x_0$. Хорошо известно, что решение будет ω -периодическим тогда и только тогда, когда его начальное данное есть неподвижная точка отображения P. Но отображение P переводит сечение t=0 внутренности цилиндра в сечение $t=\omega$, каждое из которых совпадает с D. Т.е. отображение P переводит топологический круг в себя, и по теореме Боля–Брауэра оно обязано иметь хотя бы одну неподвижную точку. \square

Понятно, что для трехмерных систем приведенные выше рассуждения уже не работают. Двумерная цилиндрическая поверхность $\mathbb{R}_t \times L_{\varphi}$ не разбивает \mathbb{R}^4 на "внешнее" и "внутреннее" инвариантные множества. Следующий пример показывает, что трехмерная система действительно может иметь решения с несоизмеримым периодом, но не иметь при этом ω -периодических решений. Пусть

$$\dot{x} = -ay, \quad \dot{y} = ax, \quad \dot{z} = (x^2 + y^2 - 1)(\cos t + 1).$$
 (2)

Период системы ω равен 2π . Все решения задаются формулами

$$x = x_0 \cos at - y_0 \sin at$$
, $y = x_0 \sin at + y_0 \cos at$,
 $z = (x_0^2 + y_0^2 - 1)(\sin t + t) + z_0$,

где x_0, y_0, z_0 — начальные данные. Первые две координаты являются $2\pi/a$ -периодическими функциями. Если $x_0^2 + y_0^2 - 1 = 0$, то $z = z_0$. Эти решения будут $2\pi/a$ -периодическими. При a иррациональном их период несоизмерим с ω . Если же $x_0^2 + y_0^2 - 1 \neq 0$, то z будет неограниченной функцией, и такие решения не могут быть периодическими. Таким образом, система имеет $2\pi/a$ -периодические решения и не имеет 2π -периодических.

Пусть по-прежнему $x \in \mathbb{R}^2$. Известный критерий отсутствия циклов у двумерных автономных систем может быть переделан в критерий отсутствия решений с несоизмеримым периодом у (1).

Предложение 3. Пусть $x \in \mathbb{R}^2$. И пусть существует t_1 такое, что система $\dot{x} = X(t_1, x)$ не имеет точек покоя. Тогда система (1) не имеет решений с несоизмеримым периодом.

Доказательство. Если $\varphi(t)$ решение с несоизмеримым периодом, то по следствию 1 L_{φ} будет циклом для любой автономной системы вида $\dot{x}=X(t_0,x)$, в том числе и при $t_0=t_1$. Но внутри цикла плоской автономной системы должна быть точка покоя. Получили противоречие. \square

Для произвольной размерности отсутствие решений с несоизмеримым периодом может быть установлено следующим образом. Если $\varphi(t)$ решение с несоизмеримым периодом, то согласно теореме 1, для любого $x_0 \in L_{\varphi}$ должно выполняться соотношение

$$X(t, x_0) \equiv const \quad \forall t \in \mathbb{R}.$$
 (3)

Поэтому если для какой-то системы удается показать, что равенство (3) невозможно ни при каких $x_0 \in \mathbb{R}^n$, то такая система не может иметь решений с несоизмеримым периодом. С помощью этого признака доказывается, например, следующее

Предложение 4. [5] Система $\dot{x} = X(x) + f(t)$, где f(t) есть ω -периодическая вектор-функция, не имеет решений с несоизмеримым периодом.

Если $X(t,x) \in \mathbf{C}^1_t$, то доказать невозможность соотношения (3) можно, показав, что уравнение

$$X_t'(t, x_0) \equiv 0 \tag{3'}$$

не имеет решений.

Пример 1. Рассмотрим следующую систему [?]

$$\dot{x} = -ay + (x^2 + y^2 - 1)\cos t, \quad \dot{y} = ax.$$

Условие (3') дает $x^2 + y^2 - 1 = 0$. Если периодическое решение с несоизмеримым периодом существует, то это множество есть его цикл. Параметризация $x = \cos at, y = \sin at$ дает нам действительно решение исходной системы. Если a — иррационально, то период этого решения $2\pi/a$ будет несоизмерим с периодом системы, который равен 2π .

Пример 2. Рассмотрим теперь систему

$$\dot{x} = -ay + (x^2 + 2y^2 - 1)\cos t, \quad \dot{y} = ax,$$

и покажем, что она не может иметь решений с несоизмеримым периодом. Условие (3') дает $x^2+2y^2-1=0$, но теперь это множество не может задавать цикл (не может быть инвариантным, состоять целиком из решений), так как производная в силу системы от функции x^2+2y^2-1 не равна тождественно нулю:

$$\frac{d}{dt}\Big|_{x^2+2y^2-1=0}(x^2+2y^2-1) = 2x\dot{x}+4y\dot{y} = 2ax^2 \not\equiv 0.$$

Далее мы будем рассматривать линейные системы

$$\dot{x} = P(t)x,\tag{4}$$

где $P(t+\omega) \equiv P(t)$.

Начнем со случая $x \in \mathbb{R}^2$. Н.П.Еругин доказал [2] следующее

Предложение 5. Двумерная линейная однородная система, коэффициенты которой не вырождаются в постоянные, не может иметь решений с несоизмеримым периодом.

Доказательство. Это утверждение является частным случаем теоремы 2, доказываемой ниже. Тем не менее, мы приведем простое доказательство, отличное от рассуждений Н.П.Еругина, опирающееся на геометрические свойства решений с несоизмеримым периодом. Пусть $\varphi(t)$ есть решение с несоизмеримым периодом и L_{φ} его цикл. Так как для любого $C \in \mathbb{R}$ функция $C\varphi(t)$ тоже будет решением линейной системы (3), то $L_{C\varphi}$ — тоже цикл. Этот цикл получается из L_{φ} растяжением (гомотетией) в С раз (центр гомотетии в начале координат). Эти циклы согласно свойству единственности не должны пересекаться $\forall C$. Это возможно, если только они окружают начало координат, и поэтому вся плоскость заполнена циклами решений с несоизмеримыми периодами, наподобие концентрических кругов. Стало быть любое решение имеет вид $C\varphi(t)$ и, за исключением x=0, будет периодическим с несоизмеримым периодом. Но тогда по теореме 1 для любого $x_0 \in \mathbb{R}^2$ имеем $P(t)x_0 \equiv const$. Выбирая $x_0 = e_1 = (1,0)^{\top}$ и $x_0 = e_2 = (0,1)^{\top}$, получим

$$P(t)e_1 = \begin{pmatrix} p_{11}(t) \\ p_{12}(t) \end{pmatrix} = const, \quad P(t)e_2 = \begin{pmatrix} p_{21}(t) \\ p_{22}(t) \end{pmatrix} = const,$$

т.е. коэффициенты матрицы P(t) суть постоянные, что невозможно. \square

Аналогично предложению 2, здесь главная причина — размерность. Трехмерная линейная система уже может иметь решения с несоизмеримым периодом. В качестве примера надо модифицировать систему (2), превратив ее в линейную:

$$\dot{x} = -ay, \quad \dot{y} = ax, \quad \dot{z} = \cos t \cdot z.$$

Требуемые решения имеют вид

$$x = x_0 \cos at - y_0 \sin at$$
, $y = x_0 \sin at + y_0 \cos at$, $z = 0$.

Утверждение, аналогичное предложению 5, справедливо и для линейных неоднородных систем.

Предложение 6. Двумерная линейная неоднородная система

$$\dot{x} = P(t)x + f(t)$$

с непостоянной матрицей не может иметь решений с несоизмеримым периодом.

Доказательство. Пусть $\varphi(t)$ есть периодическое решение с несоизмеримым периодом. Тогда $\varphi(t+\tau)$ тоже будут решениями с тем же самым периодом, и поэтому таких решений бесконечно много. Сделаем в неоднородной системе замену $y=x-\varphi(t)$. Мы получим линейную однородную систему $\dot{x}=P(t)x$, имеющую периодические решения с несоизмеримым периодом $y=\varphi(t+\tau)-\varphi(t)$, что невозможно по предложению 5. \square

Займемся изучением общего n-мерного случая. Пусть $\varphi(t)$ есть периодическое решение системы (4) с несоизмеримым периодом Ω . Пусть $\mathcal{L} \subset \mathbb{R}^n$ — минимальное линейное подпространство, в котором лежит цикл L_{φ} . Подпространство \mathcal{L} можно описать следующим образом. Пусть $\{t_1, t_2, \ldots, t_k\}$ максимальный набор чисел таких, что вектора $\varphi(t_1), \varphi(t_2), \ldots, \varphi(t_k)$ линейно независимы. Он существует, так как $\varphi(t) \in \mathbb{R}^n$, и поэтому $k \leqslant n$. Тогда \mathcal{L} это линейная оболочка, натянутая на вектора $\varphi(t_1), \varphi(t_2), \ldots, \varphi(t_k)$. Ясно, что при этом $\varphi(t) \in \mathcal{L} \ \forall t \in \mathbb{R}$.

Предложение 7. Справедливы следующие утверждения:

1) Подпространство \mathcal{L} инвариантно, т.е. если $x_0 \in \mathcal{L}$, то для решения $\psi(t)$ с начальным условием $\psi(t_0) = x_0$ выполняется $\psi(t) \in \mathcal{L}$ для всех $t \in \mathbb{R}$:

- 2) все решения, принадлежащие \mathcal{L} (за исключением тривиального), периодические, с тем же периодом Ω , что и $\varphi(t)$;
- 3) $k = \dim \mathcal{L} \textit{четное число.}$

Доказательство. Начнем со следующих замечаний. Так как $\varphi(t) \in \mathcal{L}$ для всех t, то для любого τ сдвиг $\varphi(t+\tau) \in \mathcal{L}$, причем в силу следствия 2 это тоже будет Ω -периодическим решением. Если ψ_1, ψ_2 два решения линейной системы (4), то их линейная комбинация $C_1\psi_1 + C_2\psi_2$ тоже будет решением, причем если $\psi_{1,2}(t) \in \mathcal{L}$, то поскольку \mathcal{L} линейное пространство, $C_1\psi_1(t) + C_2\psi_2(t) \in \mathcal{L}$ для всех t.

Пусть $I = \{\varphi(t_1), \varphi(t_2), \ldots, \varphi(t_k)\}$ базисный набор векторов в \mathcal{L} . Рассмотрим функции $\psi_1(t) \stackrel{\mathrm{def}}{=} \varphi(t+t_1-t_0), \ldots, \psi_k(t) \stackrel{\mathrm{def}}{=} \varphi(t+t_k-t_0)$. Покажем, что они образуют базис решений на \mathcal{L} . Во-первых, все они лежат в \mathcal{L} , и любая их линейная комбинация лежит в \mathcal{L} . Во-2х, они линейно независимы, так как при $t=t_0$ вектора $\{\psi_1(t_0),\psi_2(t_0),\ldots,\psi_k(t_0)\}=\{\varphi(t_1),\varphi(t_2),\ldots,\varphi(t_k)\}$ — линейно независимы. Наконец покажем, что любое решение, начинающееся на \mathcal{L} , есть линейная комбинация решений $\psi_j(t)$. Пусть $x_0 \in \mathcal{L}$, и пусть $\psi(t)$ — решение задачи Коши $\psi(t_0)=x_0$. Разложим x_0 по базисному набору I: $x_0=\sum_{j=1}^{j=k}C_j\varphi(t_j)=\sum_{j=1}^{j=k}C_j\psi_j(t_0)$. Образуем решение $\tilde{\psi}(t)=\sum_{j=1}^{j=k}C_j\psi_j(t)$. Решения $\tilde{\psi}(t)$ и $\psi(t)$ удовлетворяют одинаковым начальным условиям при $t=t_0$, и поэтому совпадают, т.е.

$$\psi(t) = \sum_{j=1}^{j=k} C_j \psi_j(t).$$

Из этого сразу же следуют утверждения 1 и 2 предложения 6: $\psi(t)$ лежит в \mathcal{L} и Ω -периодично, так как каждое $\psi_i(t)$ лежит в \mathcal{L} и Ω -периодично.

Докажем третье утверждение. Рассмотрим сужение системы (4) на подпространство \mathcal{L} . Это будет линейная система размерности k. Все ее решения — периодические, поэтому нулевое решение будет устойчиво по Ляпунову как при $t \to +\infty$, так и при $t \to -\infty$. Из этого следует, что все мультипликаторы этой системы удовлетворяют соотношению $|\mu_j|=1$, причем им соответствуют только простые клетки Жордана (в жордановой форме матрицы монодромии суженной системы). Равенство $\mu=1$ невозможно, так как тогда на \mathcal{L} должно было бы существовать ω -периодическое решение. Также невозможно равенство $\mu=-1$, ему соответствовало бы 2ω -периодическое решение. Поэтому все мультипликаторы суть комплексные числа, а так как

они входят комплексно сопряженными парами, то их число — четное. Стало быть $k=\dim \mathcal{L}$ — четное число. \square

Дополним базис I на \mathcal{L} какими-рибудь векторами v_{k+1},\ldots,v_n до базиса на всем \mathbb{R}^n . Составим из этих векторов матрицу

$$S = (\varphi(t_1), \dots, \varphi(t_k), v_{k+1}, \dots, v_n),$$

и сделаем в системе (4) замену переменных x = Sy. Подпространство \mathcal{L} перейдет при этом в подпространство \mathcal{L}' , натянутое на координатные вектора

$$e_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_{k} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}.$$

Обозначим новую систему как

$$\dot{y} = P_1(t)y. \tag{5}$$

Разобьем вектор y на две части $(u,v)^{\top}$, где $\dim u = k$, $\dim v = n - k$. Из инвариантности \mathcal{L}' вытекает, что любое решение на нем имеет вид $u = \eta(t), v = 0$. Разобьем матрицу $P_1(t)$ на блоки

$$P_1(t) = \begin{pmatrix} A_{k \times k}(t) & B_{k \times (n-k)}(t) \\ C_{(n-k) \times k}(t) & D_{(n-k) \times (n-k)}(t) \end{pmatrix},$$

и подставим это решение:

$$\begin{pmatrix} \dot{\eta}(t) \\ 0 \end{pmatrix} = \begin{pmatrix} A_{k \times k}(t) & B_{k \times (n-k)}(t) \\ C_{(n-k) \times k}(t) & D_{(n-k) \times (n-k)}(t) \end{pmatrix} \begin{pmatrix} \eta(t) \\ 0 \end{pmatrix}.$$

Отсюда следует, что

$$\dot{\eta}(t) = A_{k \times k}(t)\eta(t), \quad 0 = C_{(n-k) \times k}(t)\eta(t).$$

Поскольку $(\eta(t),0)^{\top}$ решение с несоизмеримым периодом, то по теореме Массера-Курцвейля должно выполняться

$$A_{k\times k}(t)\eta(t_0) = const, \quad 0 = C_{(n-k)\times k}(t)\eta(t_0),$$

причем $\eta(t_0)$ может принимать любое значение из \mathbb{R}^k (подпространство \mathcal{L}' целиком заполнено решениями с несоизмеримыми периодами). Поэтому

$$A_{k \times k}(t) \equiv A, \quad C_{(n-k) \times k}(t) \equiv \mathbb{O}.$$

Тем самым мы показали, что линейной заменой переменных с nocmosunoù матрицей, система (4) сводится к системе (5), имеющей вид

$$\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} A & B(t) \\ \mathbb{O} & D(t) \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}. \tag{6}$$

Сужением системы (6) на \mathcal{L}' является система $\dot{u}=Au$. Как было установлено выше, все ее мультипликаторы суть комплексные и удовлетворяют условию $|\mu_j|=1$, причем им должны соответствовать только простые клетки Жордана. Из этого следует, что жорданова форма матрицы A должна иметь вид

$$J_{A} = \begin{pmatrix} \beta_{1} \mathbf{I} & \mathbb{O} & \dots & \mathbb{O} \\ \mathbb{O} & \beta_{2} \mathbf{I} & \dots & \mathbb{O} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & \mathbb{O} & \dots & \beta_{m} \mathbf{I} \end{pmatrix}, \quad \text{где} \quad \mathbf{I} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$
 (7)

Пусть $u = S_1 u_1$ — замена, осуществляющая переход от A к ее жордановой форме. Тогда суперпозиция двух замен

$$x = S \begin{pmatrix} S_1 & \mathbb{O} \\ \mathbb{O} & \mathbf{E} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

будет сразу приводить систему (4) к блочно-треугольной системе (6), в которой постоянный блок A имеет вид (7).

Все решения системы $\dot{u}=Au$ должны быть Ω -периодическими; с другой стороны они образованы линейными комбинациями функций $\cos\beta_j t$ и $\sin\beta_j t$, имеющих период $2\pi/\beta_j$. Таким образом, должно выполняться $\Omega=k_j2\pi/\beta_j$, где $k_j\in\mathbb{N}$.

Мы рассмотрели случай, когда подпространство \mathcal{L} порождается одним периодическим решением с несоизмеримым периодом Ω . Однако может случиться, что система (4) имеет несколько периодических решений с разными несоизмеримыми периодами. Тогда для каждого из них можно будет выделить свои постоянные блоки, устроенные по типу (7). В этом случае уже не надо требовать рациональной соизмеримости между β_j из разных блоков, и остается только одно требование несоизмеримости с ω , которое имеет вид

$$\frac{\omega\beta_j}{2\pi} \notin \mathbb{Q}. \tag{8}$$

Сформулируем сказанное выше в виде итоговой теоремы.

Теорема 2. Если линейная периодическая система (4) имеет периодические решения с несоизмеримыми периодами, то линейной заменой переменных с постоянной матрицей она приводится к блочно-треугольной системе вида (6), в которой четномерная подсистема $\dot{u} = Au$ является сужением исходной системы на подпространство, содержащее решения с несоизмеримыми периодами, матрица A имеет вид (7), а β_j удовлетворяют соотношению (8).

Литература

- 1. Еругин Н.П. О периодических решениях дифференциальных уравнений. // ПММ. 1956. Т.ХХ, № 1. С.148–152.
- 2. Еругин Н.П. О периодических решениях линейной однородной системы дифференциальных уравнений. // ДАН БССР. 1962. № 6.
- 3. Курцвейль Я., Вейвода О. Периодические решения систем дифференциальных уравнений. // Чехосл. матем. журн. 1955. Т. 5, № 3.
- 4. Плисс В.А. Нелокальные проблемы теории колебаний. М.-Л.: Наука. 1964.
- 5. Massera J. Observsciones sobre las soluciones periodicas de ecuaciones differenciales. // Bul. de la Facultad de Ing. 1950. V. 4, N 1.