第8次作业

- 1. 尝试以简要框架形式给出概率部分知识的总结,并指出自己掌握起来相对困难的知识点.
- 2. 给出一个抽样调查实例,试指出你认为的其可能的不当之处.
- 3. (简单随机抽样)设总体的大小为N,总体均值和方差分别为 μ , σ^2 , X_i ($i=1,\cdots,n$)为简单随机样本(无放回抽取).
 - (1) *证明: $E(X_i) = \mu$, $Var(X_i) = \sigma^2$.

(2) **证明:
$$E(\overline{X}) = \mu$$
, $Var(\overline{X}) = \frac{\sigma^2}{n} \left(\frac{N-n}{N-1} \right)$.

- 4. 设随机样本 X_i ($i=1,\dots,n$)来自二项总体B(k,p).
 - (1) 给出参数k和p的矩估计;
 - (2) 尝试讨论上述估计的不足之处.
- 5. 设随机样本 X_i ($i=1,\cdots,n$) 来自均匀分布 $U(\theta,2\theta)$,求 θ 的矩估计和极大似然估计.
- 6. 设函数 $f(x; a, \sigma) = (\sqrt{2\pi}\sigma^3)^{-1}(x-a)^2 \exp\left(-\frac{1}{2\sigma^2}(x-a)^2\right), \quad x \in \mathbb{R}$,其中 $a \in \mathbb{R}$, $\sigma > 0$ 为参数.
 - (1) 证明: $f(x;a,\sigma)$ 作为x的函数是一个概率密度.
 - (2) 设随机样本 X_i ($i=1,\dots,n$)来自此总体,求a和 σ^2 的矩估计.
 - (3) 列出 a, σ^2 的极大似然估计所满足的方程,并指出一种迭代求解的方法.
- 7. 设随机样本 X_i ($i=1,\cdots,n$)来自 Bernoulli 总体B(p),请给出参数p 的矩估计和极大似然估计.

- 8. 设总体是总数为n,单元概率分别为 p_1, \cdots, p_m ($p_1 + \cdots + p_m = 1$)的多项分布, X_i ($i = 1, \cdots, m$)分别为m个单元的观测频数($X_1 + \cdots + X_m = n$). 请给出参数 p_i ($i = 1, \cdots, m$)的极大似然估计.
- 9. 设总体 X 具有以下分布表

X取值	1	2	3
概率	$ heta^2$	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 $0<\theta<1$ 是未知参数。已取得了样本值 $x_1=1$, $x_2=2$, $x_3=1$,请据此求 θ 的矩估计值和极大似然估计值.

- 10. **设总体累积分布函数为F(x)未知,随机样本 X_i ($i=1,\cdots,n$)来自该总体, $F_n(x)$ 为经验分布函数.
 - (1) 求 $F_n(x)$ 的期望和方差
 - (2) 试证: $F_n(x)$ 依概率收敛于 F(x).

以下作为概率部分自测题目,建议测试时间不超过40分钟:

- 11. 某公司用三个当地酒店(记为 A, B, C)安排其客户住宿,根据过去经验可知分别有 20%,50%和 30%的客户被相应地分配到酒店 A, B和 C的房间.已知酒店 A, B, C的管道故障率分别为 5%,4%和 8%.
 - (1) 一个客户被分配到管道发生故障的房间的概率为多少?
 - (2) 如果一个客户被分到管道发生故障的房间,那么他是被分配到酒店 C 的 概率是多少?

- 12. 有一条公路每天有大量汽车通过,公路上有一弯道处为事故多发地,已知在某时段每辆通过此地的车辆发生事故的概率为 0.001,每天该时段大约有 1000 辆车经过此弯道.
 - (1) 利用 Poisson 近似计算明天该时段在此弯道处发生事故车辆数不小于 2 的概率.
 - (2) 求接下来 30 天里至多有 1 天该时段在此弯道处发生事故车辆数不小于 2 的概率. (不必求其具体数值结果)
- 13. 设 X 的概率密度函数为 $f(x) = \begin{cases} \frac{\theta}{x^{\theta+1}}, & x>1 \\ 0, & x \leq 1 \end{cases}$, 其中 $\theta > 1$ 是未知参数.
 - (1) 求 X 的期望.
 - (2) 当X > 1时,令 $Y = \ln X$,求Y的分布.
- 14. *假设一批灯泡的使用寿命服从 $\lambda=1$ 的指数分布. 从这批灯泡中任取两个分别标记为1号和2号,先点亮1号灯泡并开始计时,等其熄灭后立即点亮2号灯泡,两灯泡亮的总时间记为Y.
 - (1) 将 1 号灯泡的使用寿命记作 X , 求当 X = x > 0 时 Y 的分布.
 - (2) 求 X,Y 的联合分布.
 - (3) 判断 X,Y 的独立性并说明理由.
 - (4) 已知 X = a > 0 的条件下,求 Y 值在均方误差意义下的最优预测.