第1章凸集合

SMaLL

¹ 中国石油大学(华东) SMaLL 课题组

small.sem.upc.edu.cn

liangxijunsd@163.com

部分课件参考自 S. Boyd

 $\rm https://stanford.edu/{\sim}boyd/cvxbook/$

2023

直线: 对两个点 x₁, x₂:

$$x = \theta x_1 + (1 - \theta) x_2 \quad (\theta \in \mathbb{R})$$
 (1)

直线: 对两个点 x₁, x₂:

$$x = \theta x_1 + (1 - \theta) x_2 \quad (\theta \in \mathbb{R})$$
 (1)

仿射集: 包含通过集合中任意两个不同点的线

直线: 对两个点 x₁, x₂:

$$x = \theta x_1 + (1 - \theta) x_2 \quad (\theta \in \mathbb{R})$$
 (1)

仿射集: 包含通过集合中任意两个不同点的线

例如: 线性方程的解集 $\{x \mid Ax = b\}$

Q. 每个仿射集都可以表示为线性方程组的解集吗?

直线: 对两个点 x₁, x₂:

$$x = \theta x_1 + (1 - \theta) x_2 \quad (\theta \in \mathbb{R})$$
 (1)

仿射集: 包含通过集合中任意两个不同点的线

例如: 线性方程的解集 $\{x \mid Ax = b\}$

Q. 每个仿射集都可以表示为线性方程组的解集吗?

Q.
$$x = \theta x_1 + (1 - \theta) x_2$$
 $(\theta \in [0, 1])$, 是什么样的集合?

凸集

• **线段**: 在 x₁ 和 x₂ 之间: 所有点

$$x = \theta x_1 + (1 - \theta)x_2 \tag{2}$$

其中 $0 \le \theta \le 1$

凸集

• **线段:** 在 x₁ 和 x₂ 之间: 所有点

$$x = \theta x_1 + (1 - \theta)x_2 \tag{2}$$

其中 $0 < \theta < 1$

• 凸集: 包含集合中任意两点之间的线段

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta) x_2 \in C$$
 (3)

凸集

• **线段:** 在 *x*₁ 和 *x*₂ 之间: 所有点

$$x = \theta x_1 + (1 - \theta)x_2 \tag{2}$$

其中 $0 < \theta < 1$

• 凸集: 包含集合中任意两点之间的线段

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta) x_2 \in C$$
 (3)

• 例如: (一个凸集, 两个非凸集)

凸组合和凸包

• **凸组合:** *x*₁, · · · , *x*_k 的凸组合:

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k \tag{4}$$

其中 $\theta_1 + \dots + \theta_k = 1, \theta_i > 0$

• 凸包 conv S:

S中所有凸组合的集合

凸锥

• x_1 **和** x_2 **的锥组合(非负线性组合)**: 对于点 x_1 和 x_2

$$x = \theta_1 x_1 + \theta_2 x_2 \tag{5}$$

其中 $\theta_1 \ge 0, \theta_2 \ge 0$

• E.g.

• 凸锥: 包含集合中所有元素的锥组合的集合

超平面和半空间

• 二维平面上的一条直面将平面中分成两部分

超平面和半空间

- 二维平面上的一条直面将平面中分成两部分
- 超平面: 具有以下形式的集合 $\{x \mid a^T x = b\}$ $(a \neq 0)$
- **半空间**: 具有以下形式的集合 $\{x \mid a^T x \leq b\}$ $(a \neq 0)$,

超平面和半空间

- 二维平面上的一条直面将平面中分成两部分
- 超平面: 具有以下形式的集合 $\{x \mid a^T x = b\}$ $(a \neq 0)$
- **半空间**: 具有以下形式的集合 $\{x \mid a^T x \leq b\}$ $(a \neq 0)$,
- 超平面是仿射集; 半空间是凸的

• 二维平面中的圆和椭圆

- 二维平面中的圆和椭圆
- (欧几里德) 球: 其中 x_c 是球心, r 为半径:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$
(6)

- 二维平面中的圆和椭圆
- (**欧几里德**) **球**: 其中 *x_c* 是球心, *r* 为半径:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$
(6)

• 椭球: 具有以下形式的集合

$$\left\{ x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1 \right\} \tag{7}$$

其中 $P \in \mathbf{S}_{++}^{n}(i.e., P)$ 为对称正定矩阵)

- 二维平面中的圆和椭圆
- (**欧几里德**) **球**: 其中 *x_c* 是球心, *r* 为半径:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$
(6)

• 椭球: 具有以下形式的集合

$$\left\{ x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1 \right\} \tag{7}$$

其中 $P \in \mathbf{S}_{++}^{n}(i.e., P)$ 为对称正定矩阵)

• 另一个表示: $\{x_c + Au \mid ||u||_2 \le 1\}$, A 为正定矩阵

范数球和范数锥

- 范数: ||⋅|| 满足:
 - $||x|| \ge 0$; ||x|| = 0 当且仅当 x = 0
 - $||tx|| = |t|||x|| \; \forall \exists \exists t \in \mathbb{R}$
 - $\bullet ||x + y|| \le ||x|| + ||y||$

范数球和范数锥

- **范数**: ||·|| 满足:
 - $||x|| \ge 0$; ||x|| = 0 当且仅当 x = 0
 - ||tx|| = |t|||x|| 对于 $t \in \mathbb{R}$
 - $\|x + y\| \le \|x\| + \|y\|$
- **范数球** 球心 x_c , 半径为 r 的范数球: $\{x \mid ||x x_c|| \le r\}$

范数球和范数锥

- **范数**: || · || 满足:
 - $||x|| \ge 0$; ||x|| = 0 当且仅当 x = 0
 - ||tx|| = |t|||x|| 对于 $t \in \mathbb{R}$
 - $||x + y|| \le ||x|| + ||y||$
- **范数球** 球心 x_c , 半径为 r 的范数球: $\{x \mid ||x x_c|| \le r\}$
- **范数锥:** $\{(x,t) \mid ||x|| \leq t\}$

欧氏锥称为二阶锥

-范数球和范数锥是凸的

多面体

• 有限个线性不等式和等式的解集

$$Ax \leq b, \quad Cx = d$$
 (8) $(A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, \leq$ 是分量不等式)

多面体

• 有限个线性不等式和等式的解集

$$Ax \leq b, \quad Cx = d$$

$$(A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, \leq$$
是分量不等式)

多面体

• 有限个线性不等式和等式的解集

$$Ax \leq b, \quad Cx = d$$

$$(A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, \leq$$
是分量不等式)

• 多面体是有限个半空间和超平面的交集

• S^n 表示 $n \times n$ 对称矩阵的集合

- S^n 表示 $n \times n$ 对称矩阵的集合
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\} :$ 表示 $n \times n$ 对称半正定矩阵的集合 $X \in \mathbf{S}_{+}^{n} \iff z^{T}Xz \geq 0 \quad \forall z$ (9)

 \mathbf{S}_{+}^{n} 是凸锥

- S^n 表示 $n \times n$ 对称矩阵的集合
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\} : 表示 \ n \times n \ \text{对称半正定矩阵的集合}$ $X \in \mathbf{S}_{+}^{n} \iff z^{T}Xz \geq 0 \quad \forall z$ (9)

 \mathbf{S}_{+}^{n} 是凸锥

• $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}: n \times n$ 对称正定矩阵的集合

- S^n 表示 $n \times n$ 对称矩阵的集合
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\} : 表示 \ n \times n \ \text{对称半正定矩阵的集合}$ $X \in \mathbf{S}_{+}^{n} \iff z^{T}Xz \geq 0 \quad \forall z$ (9)

 \mathbf{S}_{+}^{n} 是凸锥

• $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}: n \times n$ 对称正定矩阵的集合 例如: $\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}_+^2$ $x \ge 0, xz - y^2 \ge 0$

Q: 如何检测一个集合 C 是凸集合? 如何构造凸集合?

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$
 (10)

Q: 如何检测一个集合 C 是凸集合? 如何构造凸集合?

1. 利用定义

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$
 (10)

2. 证明 C 是通过保持凸性的运算获得的: 简单的凸集合(超平面、半空间、 范数球等) \rightarrow 复杂凸集合

Q: 如何检测一个集合 C 是凸集合? 如何构造凸集合?

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$
 (10)

- 2. 证明 C 是通过保持凸性的运算获得的: 简单的凸集合(超平面、半空间、 范数球等) \rightarrow 复杂凸集合
 - 交集

Q: 如何检测一个集合 C 是凸集合? 如何构造凸集合?

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$
 (10)

- 2. 证明 C 是通过保持凸性的运算获得的: 简单的凸集合(超平面、半空间、 范数球等) \rightarrow 复杂凸集合
 - 交集
 - 仿射变换

Q: 如何检测一个集合 C 是凸集合? 如何构造凸集合?

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$
 (10)

- 2. 证明 C 是通过保持凸性的运算获得的: 简单的凸集合(超平面、半空间、 范数球等) \rightarrow 复杂凸集合
 - 交集
 - 仿射变换
 - 透视函数

Q: 如何检测一个集合 C 是凸集合? 如何构造凸集合?

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$
 (10)

- 2. 证明 C 是通过保持凸性的运算获得的: 简单的凸集合(超平面、半空间、 范数球等) \rightarrow 复杂凸集合
 - 交集
 - 仿射变换
 - 透视函数
 - 线性分式映射

交集

● 定理: 凸集合(任意数量)的交集是凸的。

交集

- 定理: 凸集合(任意数量)的交集是凸的。
- 证. 设 C_1 , C_2 凸集合, $\forall x_1, x_2 \in C_1 \cap C_2$, $\theta \in [0, 1]$, 验证 $\theta x_1 + (1 \theta)x_2 \in C_1 \cap C_2$

仿射变换

- 定义. $A: X \to Y$ 为仿射变换: $\forall x_1, x_2 \in X, \theta \in \mathbb{R}$, 有 $A(\theta x_1 + (1 \theta)x_2) = \theta Ax + (1 \theta)Ax_2$
- 如果 $f: \mathbb{R}^n \to \mathbb{R}^m$ 是仿射变换, i.e., f(x) = Ax + b , $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
 - 1. 在 f 下的像集是凸集合

$$S \subseteq \mathbb{R}^n \stackrel{\square}{\to} \Longrightarrow f(S) = \{f(x) \mid x \in S\} \stackrel{\square}{\to} \tag{11}$$

2. 在 f 下凸集的逆像 $f^{-1}(C)$ 是凸的 (proof. Ex.)

$$C \subseteq \mathbb{R}^m \coprod \Longrightarrow f^{-1}(C) = \{ x \in \mathbb{R}^n \mid f(x) \in C \} \coprod \tag{12}$$

证. (1) $\forall y_1, y_2 \in f(S)$, 验证 $\theta y_1 + (1 - \theta)y_2 \in f(S)$, $\theta \in (0, 1)$

例

- 缩放、平移、投影
- 线性矩阵不等式的解集 $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ $(A_i, B \in \mathbf{S}^p)$
- 双曲线锥体 $\left\{x \mid x^T P x \leq \left(c^T x\right)^2, c^T x \geq 0\right\}$ ($P \in \mathbf{S}^n_+$)

• 缩放和平移

$$\alpha S = \{ \alpha x \mid x \in S \}, \quad S + a = \{ x + a \mid x \in S \}$$

• 缩放和平移

$$\alpha S = \{ \alpha x \mid x \in S \}, \quad S + a = \{ x + a \mid x \in S \}$$

• 凸集在其某些坐标上的投影是凸的: 若 $S \subseteq \mathbf{R}^m \times \mathbf{R}^n$ 是凸的, 那么

$$T = \{x_1 \in \mathbf{R}^m \mid (x_1, x_2) \in S, x_2 \in \mathbf{R}^n\}$$

也是凸的.

● 两个集合的和

$$S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}$$

图: 思考 $S_1 + S_2 = ?$, $S_2 = \epsilon \mathbf{B}$

● 两个集合的和

$$S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}$$

● 两个集合的和

$$S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}$$

例. 仿射变换与凸集

如果 S₁ 和 S₂ 是凸的, 那么 S₁ + S₂ 也是凸的.
 证明. 如果 S₁ 和 S₂ 是凸的, 那么乘积或笛卡尔乘积也是凸的

$$S_1 \times S_2 = \{(x_1, x_2) \mid x_1 \in S_1, x_2 \in S_2\}$$

该集合在线性函数下的图像 $f(x_1, x_2) = x_1 + x_2$ 是总和 $S_1 + S_2$.

• 部分和 $S_1, S_2 \in \mathbf{R}^n \times \mathbf{R}^m$, 定义为

$$S = \{(x, y_1 + y_2) \mid (x, y_1) \in S_1, (x, y_2) \in S_2\}$$

其中 $x \in \mathbf{R}^n$ 且 $y_i \in \mathbf{R}^m$.

- 当 m=0, 部分和 → 交集 S_1 和 S_2 ;
- 当 n=0, 部分和 → 集合加法.
- 两个凸集的部分和仍是凸集

透视函数 (选讲)

透视函数 $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$

$$P(x,t) = x/t, \quad P = \{(x,t) \mid t > 0\}$$
 (13)

透视下凸集的图像和逆像是凸集.

透视函数 (选讲)

透视函数 $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$

$$P(x,t) = x/t, \quad P = \{(x,t) \mid t > 0\}$$
 (13)

透视下凸集的图像和逆像是凸集.

透视函数: 针孔照相机的动作

透视函数和线性分式映射

线性分式映射 $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d}, \qquad f = \{x \mid c^T x + d > 0\}$$
 (14)

命题线性分式映射下凸集的图像和逆像是凸集。

广义不等式: 动机

Q. 比较两个大小 a 和 b?

- 两个数字 a, b2 < 3
- $\bullet \ a, b \in \mathbb{R}^2$ $(1, 2) \prec (3, 4)$
- $A, B \in \mathbf{S}^n$?

广义不等式: 动机

Q. 比较 a 和 b?

- 两个真实数字 a, b $2 < 3 \Leftrightarrow 3 2 \in \mathbf{整数}K, K = [0, \infty)$
- $a, b \in \mathbb{R}^2$ $(1,2) \prec (3,4) \Leftrightarrow (3,4) (1,2) \in 整数K, K = \mathbb{R}^2_+$
- $A, B \in \mathbf{S}^n$? $A \prec B \Leftrightarrow B A \in \mathbf{整数}K, K = \mathbf{S}^n_+$

定义. 凸锥 $K \subseteq \mathbb{R}^n$ 称为 正常锥 (proper cone), 若

- *K* 是封闭的 (有边界)
- *K* 是实心的 (内部不是空的)
- K 不包含直线

定义. 凸锥 $K \subseteq \mathbb{R}^n$ 称为 正常锥 (proper cone), 若

- *K* 是封闭的 (有边界)
- *K* 是实心的 (内部不是空的)
- K 不包含直线

实例

• 非负整数 $K = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \ge 0, i = 1, \dots, n\}$

定义. 凸锥 $K \subseteq \mathbb{R}^n$ 称为 正常锥 (proper cone), 若

- *K* 是封闭的 (有边界)
- *K* 是实心的 (内部不是空的)
- K 不包含直线

实例

- 非负整数 $K = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \ge 0, i = 1, \dots, n\}$
- 半正定锥 $K = \mathbf{S}_{+}^{n}$

定义. 凸锥 $K \subseteq \mathbb{R}^n$ 称为 **正常锥** (proper cone), 若

- *K* 是封闭的 (有边界)
- *K* 是实心的 (内部不是空的)
- K 不包含直线

实例

- 非负整数 $K = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \ge 0, i = 1, \dots, n\}$
- 半正定锥 $K = \mathbf{S}_{+}^{n}$
- [0,1] 上的非负多项式:

$$K = \left\{ x \in \mathbb{R}^n \mid x_1 + x_2 t + x_3 t^2 + \dots + x_n t^{n-1} \ge 0, t \in [0, 1] \right\}$$
 (15)

广**义不等式**由正常锥 K 定义:

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{E} K$$
 (16)

实例

广义不等式由正常锥 K 定义:

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{2} K$$
 (16)

实例

• 分量不等式 $(K = \mathbb{R}^n_+)$

$$x \preceq_{\mathbb{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$
 (17)

广义不等式由正常锥 K 定义:

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{E} K$$
 (16)

实例

• 分量不等式 $(K = \mathbb{R}^n_+)$

$$x \preceq_{\mathbb{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$
 (17)

• 矩阵不等式 $(K = \mathbf{S}_{+}^{n})$

$$X \leq_{\mathbf{s}_{+}^{n}} Y \iff Y - X$$
半正定 (18)

广**义不等式**由正常锥 *K* 定义:

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{E} \mathbf{b} K$$
 (16)

实例

• 分量不等式 $(K = \mathbb{R}^n_+)$

$$x \preceq_{\mathbb{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$
 (17)

• 矩阵不等式 $(K = \mathbf{S}_{+}^{n})$

$$X \leq_{\mathbf{s}_{+}^{n}} Y \iff Y - X$$
半正定 (18)

特性: \preceq_K 的很多特性与 \leq 在 ℝ 上的性质相似, e.g.,

$$x \preceq_K y, \quad u \preceq_K v \implies x + u \preceq_K y + v$$
 (19)

超平面分割定理

定理. [超平面分割定理] 如果 C 和 D 是非空不相交凸集,则存在 $a \neq 0, b$:

$$a^T x \le b \forall x \in C, \quad a^T x \ge b \forall x \in D$$
 (20)

定义 若 (20) 成立,称超平面 $\{x \mid a^T x = b\}$ 分离 C 和 D

超平面分割定理

定理. [超平面分割定理] 如果 C 和 D 是非空不相交凸集,则存在 $a \neq 0, b$:

$$a^T x \le b \forall x \in C, \quad a^T x \ge b \forall x \in D$$
 (20)

定义 若 (20) 成立,称超平面 $\{x \mid a^Tx = b\}$ 分离 C 和 D 定义. 严格的分离 若存在 $a \neq 0, b$: $a^Tx < b, \forall x \in C, \quad a^Tx > b \forall x \in D,$ 称超 平面 $\{x \mid a^Tx = b\}$ 严格的分离集合 C 和 D

例子 [点和闭凸集的严格分离] 假设 C 是一个闭凸集, $x_0 \notin C$ $\Rightarrow x_0$ 和 C 可以严格分开.

例子 [点和闭凸集的严格分离] 假设 C 是一个闭凸集, $x_0 \notin C$ $\Rightarrow x_0$ 和 C 可以严格分开.

推论闭凸集是包含它的所有半空间的交集。

支撑超平面定理

定义. C 在边界点 x_0 处的**支撑超平面**:

$$\left\{x \mid a^T x = a^T x_0\right\} \tag{21}$$

对于所有的 $x \in C$ 当 $a \neq 0$ 并且 $a^T x \leq a^T x_0$

支撑超平面定理

定义. C 在边界点 x_0 处的**支撑超平面**:

$$\left\{x \mid a^T x = a^T x_0\right\} \tag{21}$$

对于所有的 $x \in C$ 当 $a \neq 0$ 并且 $a^T x \leq a^T x_0$

定理 [支撑超平面定理] 如果 C 是凸的 $\Rightarrow C$ 的每个边界点上存在一个支撑超平面.

支撑超平面

取
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = |x|$. 考虑其支撑超平面(线)
epi $f = \{(x, t) \in \mathbb{R}^2 | t \ge |x| \}$ at $(0, 0)$.

• 直线的斜率是多少?

支撑超平面

取 $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x|. 考虑其支撑超平面(线) epi $f = \{(x, t) \in \mathbb{R}^2 | t \ge |x| \}$ at (0, 0).

- 直线的斜率是多少?
- 切线蕴含导数 → 支撑超平面蕴含凸函数的(次)微分.

$$\partial f(0) = [-1, 1].$$

$$K^* = \left\{ y \mid y^T x \ge 0 \text{ for all } x \in K \right\} \tag{22}$$

● 定义. K 的对偶锥:

$$K^* = \left\{ y \mid y^T x \ge 0 \text{ for all } x \in K \right\}$$
 (22)

● 示例

$$K^* = \left\{ y \mid y^T x \ge 0 \text{ for all } x \in K \right\}$$
 (22)

- 示例
 - 负值集合. $K = \mathbb{R}^n_+ : K^* = \mathbb{R}^n_+$

● 定义. K 的对偶锥:

$$K^* = \left\{ y \mid y^T x \ge 0 \text{ for all } x \in K \right\}$$
 (22)

● 示例

• 负值集合. $K = \mathbb{R}^n_+ : K^* = \mathbb{R}^n_+$

• 半正定锥. $K = \mathbf{S}_{+}^{n} : K^{*} = \mathbf{S}_{+}^{n}$

$$K^* = \left\{ y \mid y^T x \ge 0 \text{ for all } x \in K \right\}$$
 (22)

- 示例
 - 负值集合. $K = \mathbb{R}^n_+ : K^* = \mathbb{R}^n_+$
 - 半正定锥. $K = \mathbf{S}_{+}^{n} : K^{*} = \mathbf{S}_{+}^{n}$
 - 标准圆锥面 $K = \{(x, t) \mid ||x||_2 \le t\} : K^* = \{(x, t) \mid ||x||_2 \le t\}$

$$K^* = \left\{ y \mid y^T x \ge 0 \text{ for all } x \in K \right\}$$
 (22)

- 示例
 - 负值集合. $K = \mathbb{R}^n_+ : K^* = \mathbb{R}^n_+$
 - 半正定锥. $K = \mathbf{S}_{+}^{n} : K^{*} = \mathbf{S}_{+}^{n}$
 - 标准圆锥面 $K = \{(x, t) \mid ||x||_2 \le t\} : K^* = \{(x, t) \mid ||x||_2 \le t\}$
 - 标准圆锥面 $K = \{(x,t) \mid \|x\|_1 \le t\} : K^* = \{(x,t) \mid \|x\|_\infty \le t\}$

$$K^* = \left\{ y \mid y^T x \ge 0 \text{ for all } x \in K \right\}$$
 (22)

- 示例
 - 负值集合. $K = \mathbb{R}^n_+ : K^* = \mathbb{R}^n_+$
 - 半正定锥. $K = \mathbf{S}_{+}^{n} : K^{*} = \mathbf{S}_{+}^{n}$
 - 标准圆锥面 $K = \{(x, t) \mid ||x||_2 \le t\} : K^* = \{(x, t) \mid ||x||_2 \le t\}$
 - 标准圆锥面 $K = \{(x, t) \mid ||x||_1 \le t\} : K^* = \{(x, t) \mid ||x||_\infty \le t\}$
 - 前三个例子是锥 自对偶锥

$$K^* = \left\{ y \mid y^T x \ge 0 \text{ for all } x \in K \right\}$$
 (22)

- 示例
 - 负值集合. $K = \mathbb{R}^n_+ : K^* = \mathbb{R}^n_+$
 - 半正定锥. $K = \mathbf{S}_{+}^{n} : K^{*} = \mathbf{S}_{+}^{n}$
 - 标准圆锥面 $K = \{(x, t) \mid ||x||_2 \le t\} : K^* = \{(x, t) \mid ||x||_2 \le t\}$
 - 标准圆锥面 $K = \{(x,t) \mid ||x||_1 \le t\} : K^* = \{(x,t) \mid ||x||_\infty \le t\}$
 - 前三个例子是锥 自对偶锥
- 正常锥的对偶锥是正常锥,因此定义了广义不等式

$$y \succeq_{K^*} 0 \iff y^T x \ge 0$$
 对于所有 $x \succeq_K 0$ (23)

- 定义. 仿射集与凸集
- 例子. 超平面、半空间、球、椭球和椭圆、多面体 凸锥: Rⁿ₊, Sⁿ₊, 范数锥
- 保持凸性的操作
 - 交: 例 \clubsuit 多面体,半正定矩阵 \mathbf{S}_{+}^{n}
 - 仿射变换的图像(和逆图像)
 例, *** αS, S + a, S₁ + S₂
 例, 部分和, 线性矩阵不等式的解集, 椭球
 - 透视映射: P(x,t) = x/t, t > 0, 透视映射的图像 (和逆图像)
 - 线性分数映射: $f(x) = \frac{Ax+b}{c^Tx+d}$, $c^Tx+d > 0$.

- 广义不等式
 - 正常锥: 闭的, 实心的, 不含直线 例, \mathbb{R}^n_+ , \mathbb{S}^n_+
 - 广义不等式: $x \leq_K y \Leftrightarrow y x \in K$, $x \prec_K y \Leftrightarrow y x \in int K$
 - 最小元和极小元

- 超平面分割定理
 - 定义.◆ (严格)分离的凸集 C 和 D
 - 定义. $\star x_0 \in \mathbf{bd} C$ 处的支撑超平面 C:

$$\{x|\langle a,x\rangle=a^Tx_0\},\$$

其中 $\langle a, x \rangle \leq a^T x_0, \forall x \in C$

- 例如, 闭凸集和外面与其不相交的一个点可以严格分离。
 - 推论: 闭凸集是包含它的所有半空间的交集。
- 定理. 凸集 $C \Rightarrow C$ 的每个边界点上均存在一个支撑超平面
- 对偶锥与广义不等式
 - 对偶锥 K: K* = $\{y | \langle y, x \rangle \ge 0, \forall x \in K\}$.
 - \emptyset , $(\mathbb{R}^n_+)^* = \mathbb{R}^n_+$, $(\mathbf{S}^n_+)^* = \mathbf{S}^n_+$
 - 例, → 范数 ||·||₁ 对应的范数锥的对偶锥: ||·||∞ 对应的锥

练习题 I

- 1. 证明: 所有 n 阶半正定矩阵的全体构成凸锥.
- 2. 证明一个集合是凸集当且仅当它与任意直线的交是凸的。证明一个集合是仿射的,当且仅当它与任意直线的交是仿射的。
- 3. 两个平行的超平面 $\{\mathbf{x} \in \mathbf{R}^n \mid \mathbf{a}^T\mathbf{x} = b_1\}$ 和 $\{\mathbf{x} \in \mathbf{R}^n \mid \mathbf{a}^T\mathbf{x} = b_2\}$ 之间 的距离是多少?
- 4. 半空间的 Voronoi 描述。令 **a** 和 **b** 为 **R**ⁿ 上互异的两点。证明所有距离 **a** 比距离 **b** 近(Euclid 范数下)的点的集合,即 $\{\mathbf{x} || \mathbf{x} \mathbf{a} ||_2 \le || \mathbf{x} \mathbf{b} ||_2\}$,是一个超平面。用形如 $\mathbf{c}^T \mathbf{x} \le d$ 的不等式进行显式表示并绘出图像。
- $\theta_i \geq 0, \theta_1 + \dots + \theta_k = 1.$ 证明 $\theta_1 x_1 + \dots + \theta_k x_k \in \mathbb{C}$. (凸性的定义是指此式在 k = 2 时成立; 你需要证明对任意 k 的情况。提示:对 k 进行归纳。)

5. 设 $\mathbf{C} \subset \mathbf{R}^{\mathbf{n}}$ 为一个凸集且 $x_1, \dots, x_k \in \mathbf{C}$. 令 $\theta_1, \dots, \theta_k \in \mathbf{R}$ 满足

练习题 II

- 6. 证明如果 S_1 和 S_2 是 $R^{m \times n}$ 中的凸集, 那么它们的部分和 $S = \{(x, y_1 + y_2) \mid x \in R^m, y_1, y_2 \in R^n, \quad (x, y_1) \in S_1, (x, y_2) \in S_2\}$ 也是凸的。
- 7. 支撑超平面。(a) 将闭凸集 $\{ \mathbf{x} \in \mathbf{R}_{+}^{2} \mid x_{1}x_{2} \geq 1 \}$ 表示为半空间的交集。 (b) 令 $\mathbf{C} = \{ \mathbf{x} \in \mathbf{R}^{\mathbf{n}} \mid ||\mathbf{x}||_{\infty} \leq 1 \}$ 表示 $\mathbf{R}^{\mathbf{n}}$ 空间中的单位 ℓ_{∞} 一 范数球,并令 $\hat{\mathbf{x}}$ 为 \mathbf{C} 的边界上的点。显式地写出集合 \mathbf{C} 在 $\hat{\mathbf{x}}$ 处的支撑超平面。
- 8. 支撑超平面定理的逆定理。设集合 C 是闭的、含有非空内部并且在其 边界上的每一点都有支撑超平面。证明 C 是凸集。
- 9. 给出两个不相交的闭凸集不能被严格分离的例子。
- 10. 支撑函数。集合 $C \subseteq \mathbb{R}^n$ 的支撑函数定义为

$$S_C(y) = \sup \left\{ y^T x \mid x \in C \right\}$$

(我们允许 $\mathbf{S}_{\mathbf{C}}(\mathbf{y})$ 取值为 $+\infty$.) 设 \mathbf{C} 和 \mathbf{D} 是 $\mathbf{R}^{\mathbf{n}}$ 上的闭凸集。证明 $\mathbf{C} = \mathbf{D}$ 当且仅当它们的支撑函数相等。

11. 计算 $\{Ax \mid x > 0\}$ 的对偶雉, 其中 $A \in \mathbb{R}^{mxn}$.

