Informed search methods

Uninformed vs. Informed Search

- Uninformed search strategies
 - Find solutions to problems by systematically generating new states and testing for goal
 - Most are incredibly inefficient

Uninformed vs. Informed Search

- Uninformed search strategies
 - Find solutions to problems by systematically generating new states and testing for goal
 - Most are incredibly inefficient
- Informed search strategies
 - Use problem-specific knowledge
 - Find solutions more efficiently

Informed Search

- Informed search strategy
 - One that uses problem-specific knowledge beyond the problem definition itself
- General approach is called "Best First" search
 - Node selected for expansion based on an evaluation function, f(n)
 - Measuring a distance to goal
 - Node with <u>lowest</u> evaluation is selected

Techniques

- Best-first search
 - Expand "minimum cost" nodes first
 - Greedy search
 - A* search

Best-First Search

- Expand "minimum cost" nodes first
 - Greedy search
 - A* search
- Open set
 - Priority queue implementation
 - Insert expanded nodes in decreasing order of desirability (most desirable first)

Greedy Search

- Simplest best-first search strategy
- Minimize estimated cost to reach goal
- Heuristic function h(n)
 - Estimate of cost from node n to goal
 - Require h(n) = 0 if n is goal
- Greedy search expands the node that *appears* to be closest to the goal
 - Each step tries to get as close to goal as possible
 - Though, will not consider if its action will be the best in the long run

Romania Step Costs in km

Straight-Line Distance to Bucharest

HSLD

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Open =
$$\{ Arad(366) \}$$

Open = { Sibu(253), Timisoara(329), Zerind(374) }

Open = { Fagaras(176), RimnicuVilcea(193), Timisoara(329), Arad(366), Zerind(374), Oradea(380) }

Open = { Bucharest(0), Fagaras(176), RimnicuVilcea(193), Sibu(253), Timisoara(329), Arad(366), Zerind(374), Oradea(380) }

Romania Step Costs in km

Properties of Greedy Search

- Not complete (can be bad)
 - Can get stuck in loops
 - Complete if check for repeated states
- Time (can be bad)
 - $-O(b^m)$, m=maximum depth (worst case, like DFS)
- Space (can be bad)
 - $-O(b^m)$, keeps all nodes in memory (worst case)
- Not optimal (can be bad)
 - Heuristic is an estimate

But a good heuristic can give dramatic improvement!

A* Search

- Minimizes total estimated path cost
- Avoids expanding paths already expensive
- Evaluation function f(n) = g(n) + h(n)
 - Actual cost to reach node n so far $\rightarrow g(n)$
 - Estimated cost from n to goal $\rightarrow h(n)$
 - Estimated total cost through *n* to goal

$$\rightarrow f(n) = g(n) + h(n)$$

- A* search uses *admissible* heuristic
 - -i.e., h(n) ≤ h*(n) where h*(n) is true cost from n to goal
 - e.g., h_{SLD}(n) never overestimates actual distance

$$f(Zerid) = 75 + 374 = 449$$

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

$Open = \{ Sibu(393), \}$	
Timisoara(447), Zerind(449)	}

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Open = { Sibu(393), Timisoara(447), Zerind(449) }

$$f(Fagaras) = (140+99) + 176=415$$

Open = { RimnicuVilcea(413), Fagaras(415), Timisoara(447), Zerind(449), Arad(646), Oradea(671) }

366	Mehadia	241
0	Neamt	234
160	Oradea	380
242	Pitesti	100
161	Rimnicu Vilcea	193
176	Sibiu	253
77	Timisoara	329
151	Urziceni	80
226	Vaslui	199
244	Zerind	374
	0 160 242 161 176 77 151 226	0 Neamt 160 Oradea 242 Pitesti 161 Rimnicu Vilcea 176 Sibiu 77 Timisoara 151 Urziceni 226 Vaslui

$$f(Fagaras) = (140+99) + 176=415$$

Open = { RimnicuVilcea(413), Fagaras(415), Timisoara(447), Zerind(449), Arad(646), Oradea(671) }

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374
		•	

 $f(n) = g(n) + h(n) = \cos t \sin t$ so far + estimated cost to goal

 $f(n) = g(n) + h(n) = \cos t \sin t + estimated \cos t + estimated \cos t$

Repeated states in A*

- Contrary to greedy search algorithms, avoiding repeated states can actually harm A*
- Consider:

$$A(0+7=7) B(2+5=7) C(4+1=5) G(4+4+0=8)$$

- Goal is discovered before finding shortest path to it!
- Depending on algorithm construction, could return sub-optimal path
 - At best, devolves to BFS-like performance

Consistent Heuristics

 Consistency: The difference in heuristic values between two connected states is always smaller than (or equal to) the actual cost:

$$cost(x, y) \ge \left| h(x) - h(y) \right|$$
 For two connected states x and y

Consistent Heuristics

 Consistency: The difference in heuristic values between two connected states is always smaller than (or equal to) the actual cost:

$$cost(x, y) \ge \left| h(x) - h(y) \right|$$
 For two connected states x and y

- Consistency ensures that the total estimated path cost always increases (or stays the same) as we get closer to a goal state
 - For this reason, sometimes also called a monotonic heuristic
 - Guarantees that shortest path is always expanded first

Properties of A*

- Complete (good)
 - Unless infinitely many nodes
- Time and space (not good)
 - Still exponential in worst case (keeps all nodes in memory)
 - Strongly depends on choice of heuristic
- Optimal (good)
 - Expands fewest nodes