MLBlocks: Arming FPGA architectures with Dense & Low Precision units in classic column based manner

- 6 times more 8x8 multiplier comparing to a DSP Block (two 8x8),
 RS Data flow, High frequency, flexible data movement. Great for SConv, DWConv, PWConv, Matrix-Matrix Multiplication
- DPS BRAM ratio 1/1 (same as Ultrascale+ arch), Low number of intermediary outputs in practice
- Parameterized (for any budget limitation) can integrate multi precision idea
- 2- Compare with cascade paper (Prof. Nachiket)
- 3- new suggestion to use each 18KBRAM as 36bit streamer using external controler circuit (delivering 662MHz) (in cascade paper: 18bit)

UltraScale+ architecture distribution:	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
		BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
		BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
		BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
		BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	
	URAM	BRAM18	DSP48	BRAM18	DSP48	BRAM18	DSP48	

My amassing MLBlocks world

Dis Parallel:

1- more fan in and outs (since we are talking about small Pes it is fine)

Dis Systolic:

1- tougher scheduling, rythmic scheduling

2- prevent circuit fusions (less optimization)

$$B = B_{Seq} \times B_{par} \times B_{Sys}$$

of Physical MAC: $\times B_{par} \times B_{Sys}$ # of Input: $\times B_{par}$

of Output: $\times B_{par}$

(without internal serial to parallel)

Params = {right side indexes}

```
for param^{i}_{sch\_0}: 0 \rightarrow sch^{i}\_0

for param^{i}_{sch\_1}: 0 \rightarrow sch^{i}\_1

for param^{i}_{sch\_2}: 0 \rightarrow sch^{i}\_2

for param^{i}_{seq}: 0 \rightarrow comp\_seq^{i}

for param^{i}_{uu}: 0 \rightarrow comp\_un^{i}
```


