FCC RF Test Report

APPLICANT : Xiaomi Communications Co., Ltd.

EQUIPMENT: Mobile Phone

BRAND NAME : MI

MODEL NAME : MEG7

FCC ID : 2AFZZ-RMMEG7

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Sep. 18, 2017 and testing was completed on Sep. 26, 2017. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 1 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

1190

Report No.: FR791813B

TABLE OF CONTENTS

SUI	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Modification of EUT	5
	1.5	Testing Location	6
	1.6	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	9
	2.6	Measurement Results Explanation Example	10
3	TEST	RESULT	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Peak Output Power Measurement	15
	3.3	Power Spectral Density Measurement	16
	3.4	Conducted Band Edges and Spurious Emission Measurement	20
	3.5	Radiated Band Edges and Spurious Emission Measurement	25
	3.6	AC Conducted Emission Measurement	29
	3.7	Antenna Requirements	31
4	LIST	OF MEASURING EQUIPMENT	32
5	UNCE	ERTAINTY OF EVALUATION	33
API	PENDI	X A. CONDUCTED TEST RESULTS	
API	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
API	PENDI	X C. RADIATED SPURIOUS EMISSION	
API	PENDI	X D. RADIATED SPURIOUS EMISSION PLOTS	
API	PENDI	X E. DUTY CYCLE PLOTS	
API	PENDI	X F. SETUP PHOTOGRAPHS	

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 2 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR791813B	Rev. 01	Initial issue of report	Oct. 16, 2017

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 3 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	•
3.1	-	99% Bandwidth	-	Pass	-
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 8.53 dB at 45.930 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 12.70 dB at 0.526 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 4 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

General Description 1

1.1 Applicant

Xiaomi Communications Co., Ltd.

The Rainbow City of China Resources, NO. 68, Qinghe Middle Street, Haidian District, Beijing, China

Report No.: FR791813B

: 5 of 33

1.2 Manufacturer

Xiaomi Communications Co., Ltd.

The Rainbow City of China Resources, NO. 68, Qinghe Middle Street, Haidian District, Beijing, China

1.3 Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n, FM Receiver and **GPS**

Product Specification subjective to this standard						
	WWAN: PIFA Antenna					
	WLAN: PIFA Antenna					
Antonno Tyro	Bluetooth: PIFA Antenna					
Antenna Type	GPS / Glonass / BDS / SBAS: PIFA Antenna					
	FM: Integral Antenna					
	(Earphone acting as FM antenna deemed as an integral antenna)					

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

SPORTON INTERNATIONAL INC. Page Number TEL: 886-3-327-3456 Report Issued Date: Oct. 16, 2017

FAX: 886-3-328-4978 Report Version : Rev. 01 FCC ID: 2AFZZ-RMMEG7 Report Template No.: BU5-FR15CBT4.0 Version 2.0

1.5 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW 0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Report No.: FR791813B

Test Site	SPORTON INTERNATIONAL INC.				
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,				
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.				
Test Site Location	TEL: +886-3-327-3456				
	FAX: +886-3-328-4978				
Test Site No.	Sporte	on Site No.			
Test Site NO.	TH05-HY	CO05-HY			

Test Site	SPORTON INTERNATIONAL INC.				
	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist,				
Test Site Location	Taoyuan City, Taiwan (R.O.C.)				
rest Site Location	TEL: +886-3-327-0868				
	FAX: +886-3-327-0855				
Toot Site No	Sporton Site No.				
Test Site No.	03CH11-HY				

Note: The test site complies with ANSI C63.4 2014 requirement.

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 6 of 33

 TEL: 886-3-327-3456
 Report Issued Date
 : Oct. 16, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID : 2AFZZ-RMMEG7 Report Template No.: BU5-FR15CBT4.0 Version 2.0

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 7 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases
Test Item	Data Rate / Modulation
rest item	Bluetooth – LE / GFSK
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
ICS	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
AC	Mode 1: GSM850 Idle + Bluetooth Link + WLAN (2.4GHz) Link + Earphone + USB
	Cable 1 (Charging from Adapter)
Conducted	Mode 2: GSM850 Idle + Bluetooth Link + WLAN (2.4GHz) Link + Earphone + USB
Emission	Cable 2 (Charging from Adapter)

Remark:

- 1. The worst case of conducted emission is mode 2; only the test data of it was reported.
- 2. For Radiated Test Cases, The tests were performed with Adapter, Earphone, and USB Cable 1.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 8 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	Bluetooth Earphone	Sony Erricsson	MW600	PY7DDA-2029	N/A	N/A
3.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded,1.8m
4.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items utility, "QRCT" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes for continuous transmitting and receiving signals.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 9 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

$$Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$$

= 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 10 of 33

Report Issued Date : Oct. 16, 2017

Report Version : Rev. 01

Report No.: FR791813B

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30kHz and set the Video bandwidth (VBW) = 100kHz.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX : 886-3-328-4978 FCC ID : 2AFZZ-RMMEG7 Page Number : 11 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

6 dB Bandwidth Plot on Channel 00

Date: 23.SEP.2017 17:17:53

6 dB Bandwidth Plot on Channel 19

Date: 23.SEP.2017 17:23:33

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 12 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

6 dB Bandwidth Plot on Channel 39

Date: 23.SEP.2017 17:28:31

3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

99% Bandwidth Plot on Channel 00

Date: 23.SEP.2017 17:21:55

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 13 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

99% Occupied Bandwidth Plot on Channel 19

Date: 23.SEP.2017 17:26:48

99% Occupied Bandwidth Plot on Channel 39

Date: 23.SEP.2017 17:30:36

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 14 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

3.2 Peak Output Power Measurement

3.2.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas.
 Guidance v04 section 9.1.2 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 15 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 16 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 00

Date: 23.SEP.2017 17:20:10

PSD 100kHz Plot on Channel 19

Date: 23.SEP.2017 17:25:01

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 17 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

PSD 100kHz Plot on Channel 39

Date: 23.SEP.2017 17:29:14

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

PSD 3kHz Plot on Channel 00

Date: 23.SEP.2017 17:19:37

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 18 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

PSD 3kHz Plot on Channel 19

Date: 23.SEP.2017 17:24:36

PSD 3kHz Plot on Channel 39

Date: 23.SEP.2017 17:28:56

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 19 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

3.4 Conducted Band Edges and Spurious Emission Measurement

Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedure

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Test Setup 3.4.4

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 20 of 33 Report Issued Date: Oct. 16, 2017 Report Version : Rev. 01

Report No.: FR791813B

3.4.5 Test Result of Conducted Band Edges Plots

Low Band Edge Plot on Channel 00

Date: 23.SEP.2017 17:20:42

High Band Edge Plot on Channel 39

Date: 23.SEP.2017 17:29:30

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 21 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

3.4.6 Test Result of Conducted Spurious Emission Plots

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 23.SEP.2017 17:21:05

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 23.SEP.2017 17:21:14

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 22 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 23.SEP.2017 17:25:19

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 23.SEP.2017 17:25:27

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 23 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 23.SEP.2017 17:29:41

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 23.SEP.2017 17:29:49

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 24 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 25 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 26 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No. : FR791813B

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 27 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 28 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR791813B

Eroquency of emission (MUz)	Conducted limit (dBμV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 29 of 33

 TEL: 886-3-327-3456
 Report Issued Date
 : Oct. 16, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FAX: 886-3-328-4978 Report Version: Rev. 01
FCC ID: 2AFZZ-RMMEG7 Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 30 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 31 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

Report No.: FR791813B

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Anritsu	ML2495A	0932001	N/A	Sep. 29, 2016	Sep.19, 2017 ~ Sep. 23, 2017	Sep. 28, 2017	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	0846202	300MHz~40GHz	Sep. 29, 2016	Sep.19, 2017 ~ Sep. 23, 2017	Sep. 28, 2017	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP30	101067	9kHz ~ 30GHz	Nov. 17, 2016	Sep.19, 2017 ~ Sep. 23, 2017	Nov. 16, 2017	Conducted (TH05-HY)
Programmable Power Supply	GW Instek	PSS-2005	GEO82176 3	N/A	Nov. 14, 2016	Sep.19, 2017 ~ Sep. 23, 2017	Nov. 13, 2017	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Sep. 26, 2017	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Sep. 20, 2017	Sep. 26, 2017	Sep. 19, 2018	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 29, 2016	Sep. 26, 2017	Nov. 28, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Dec. 06, 2016	Sep. 26, 2017	Dec. 05, 2017	Conduction (CO05-HY)
Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz, VSWR : 2.5:1 max	Jul. 18, 2017	Sep. 21, 2017 ~ Sep. 25, 2017	Jul. 17, 2018	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Nov. 10, 2016	Sep. 21, 2017 ~ Sep. 25, 2017	Nov. 09, 2017	Radiation (03CH11-HY)
Bilog Antenna	TESEQ	CBL 6111D& N-6-06	35414&AT- N0602	30MHz~1GHz	Oct. 15, 2016	Sep. 21, 2017 ~ Sep. 25, 2017	Oct. 14, 2017	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-132 6	1GHz ~ 18GHz	Oct. 07, 2016	Sep. 21, 2017 ~ Sep. 25, 2017	Oct. 06, 2017	Radiation (03CH11-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Oct. 20, 2016	Sep. 21, 2017 ~ Sep. 25, 2017	Oct. 19, 2018	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY532700 80	1GHz~26.5GHz	Nov. 10, 2016	Sep. 21, 2017 ~ Sep. 25, 2017	Nov. 09, 2017	Radiation (03CH11-HY)
Preamplifier	MITEQ	AMF-7D-001 01800-30-10 P	1902247	1GHz~18GHz	Jun. 23, 2017	Sep. 21, 2017 ~ Sep. 25, 2017	Jun. 22, 2018	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY542004 86	10Hz ~ 44GHz	Oct. 12, 2016	Sep. 21, 2017 ~ Sep. 25, 2017	Oct. 11, 2017	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500 -B	N/A	1~4m	N/A	Sep. 21, 2017 ~ Sep. 25, 2017	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Sep. 21, 2017 ~ Sep. 25, 2017	N/A	Radiation (03CH11-HY)
EMI Test Receiver	Agilent	N9038A (MXE)	MY532900 53	20Hz to 26.5GHz	Jan. 12, 2017	Sep. 21, 2017 ~ Sep. 25, 2017	Jan. 11, 2018	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Nov. 08, 2016	Sep. 21, 2017 ~ Sep. 25, 2017	Nov. 07, 2017	Radiation (03CH11-HY)

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 32 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.70
of 95% (U = 2Uc(y))	2.70

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	5.20

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.50
of 95% (U = 2Uc(y))	5.50

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.00
of 95% (U = 2Uc(y))	5.20

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: 2AFZZ-RMMEG7 Page Number : 33 of 33
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR791813B

Report Number : FR791813B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	AC Chang	Temperature:	21~25	°C
Test Date:	2017/9/19~2017/9/23	Relative Humidity:	51~54	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	N⊤x	СН.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	1Mbps	1	0	2402	1.058	0.668	0.50	Pass
BLE	1Mbps	1	19	2440	1.058	0.672	0.50	Pass
BLE	1Mbps	1	39	2480	1.058	0.672	0.50	Pass

TEST RESULTS DATA Peak Power Table

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	0.51	30.00	-0.117	0.39	36.00	Pass
BLE	1Mbps	1	19	2440	2.61	30.00	-0.117	2.49	36.00	Pass
BLE	1Mbps	1	39	2480	0.97	30.00	-0.117	0.85	36.00	Pass

TEST RESULTS DATA Average Power Table (Reporting Only)

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)
BLE	1Mbps	1	0	2402	2.06	-0.15
BLE	1Mbps	1	19	2440	2.06	2.09
BLE	1Mbps	1	39	2480	2.06	0.33

TEST RESULTS DATA Peak Power Density

	Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
	BLE	1Mbps	1	0	2402	-1.13	-16.43	-0.12	8.00	Pass
Ī	BLE	1Mbps	1	19	2440	1.12	-14.06	-0.12	8.00	Pass
ĺ	BLE	1Mbps	1	39	2480	-0.44	-15.61	-0.12	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

Appendix B. AC Conducted Emission Test Results

Test Engineer :	Sharoof Vi	Temperature :	26~27 ℃
rest Engineer.	Shareer Tu	Relative Humidity :	38~39%

Report No.: FR791813B

SPORTON INTERNATIONAL INC. Page Number : B1 of I

TEL: 886-3-327-3456 FAX: 886-3-328-4978

EUT Information

Report NO: 791813
Test Mode: Mode 2
Test Voltage: 120Vac/60Hz

Phase: Line

ENV216 Auto Test FCC Power Bar - L

Final Result 1

Frequency	QuasiPeak	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.150000	44.4	Off	L1	19.6	21.6	66.0
0.262000	41.3	Off	L1	19.6	20.1	61.4
0.534000	42.5	Off	L1	19.6	13.5	56.0
0.654000	40.4	Off	L1	19.6	15.6	56.0
0.934000	39.0	Off	L1	19.6	17.0	56.0
1.270000	39.8	Off	L1	19.6	16.2	56.0
17.902000	41.4	Off	L1	20.5	18.6	60.0

Final Result 2

Frequency	Average	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.150000	23.1	Off	L1	19.6	32.9	56.0
0.262000	30.1	Off	L1	19.6	21.3	51.4
0.534000	30.8	Off	L1	19.6	15.2	46.0
0.654000	27.2	Off	L1	19.6	18.8	46.0
0.934000	28.4	Off	L1	19.6	17.6	46.0
1.270000	28.9	Off	L1	19.6	17.1	46.0
17.902000	30.7	Off	L1	20.5	19.3	50.0

EUT Information

Report NO: 791813
Test Mode: Mode 2
Test Voltage: 120Vac/60Hz
Phase: Neutral

ENV216 Auto Test FCC Power Bar - N

Final Result 1

Frequency	QuasiPeak	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.150000	53.2	Off	N	19.5	12.8	66.0
0.526000	43.3	Off	N	19.5	12.7	56.0
0.606000	40.2	Off	N	19.5	15.8	56.0
0.734000	41.9	Off	N	19.5	14.1	56.0
0.870000	40.4	Off	N	19.6	15.6	56.0
17.462000	42.6	Off	N	20.5	17.4	60.0

Final Result 2

Frequency	Average	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.150000	27.0	Off	N	19.5	29.0	56.0
0.526000	29.6	Off	N	19.5	16.4	46.0
0.606000	30.0	Off	N	19.5	16.0	46.0
0.734000	31.5	Off	N	19.5	14.5	46.0
0.870000	28.6	Off	N	19.6	17.4	46.0
17.462000	31.3	Off	N	20.5	18.7	50.0

Appendix C. Radiated Spurious Emission

Toot Engineer	LC Liana Jacky Hung and Kan Wu	Temperature :	26~28 ℃
Test Engineer :	J.C. Liang, Jacky Hung, and Ken Wu	Relative Humidity :	52~57%

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		2379.825	51.76	-22.24	74	42.33	26.81	6.29	33.6	319	98	Р	Н
		2384.97	42.68	-11.32	54	33.18	26.81	6.36	33.6	319	98	Α	Н
	*	2402	96.81	-	-	87.24	26.87	6.36	33.59	319	98	Р	Н
	*	2402	96.19	-	-	86.62	26.87	6.36	33.59	319	98	Α	Н
51.5													Н
BLE CH 00													Н
2402MHz		2354.52	52.13	-21.87	74	42.75	26.76	6.29	33.6	400	85	Р	٧
2402WII 12		2376.045	42.52	-11.48	54	33.09	26.81	6.29	33.6	400	85	Α	V
	*	2402	95.67	-	-	86.1	26.87	6.36	33.59	400	85	Р	V
	*	2402	94.96	-	-	85.39	26.87	6.36	33.59	400	85	Α	V
													V
													V
		2367.68	51.92	-22.08	74	42.54	26.76	6.29	33.6	307	100	Р	Н
		2366	42.39	-11.61	54	33.01	26.76	6.29	33.6	307	100	Α	Н
	*	2440	99.41	-	-	89.66	27.03	6.38	33.59	307	100	Р	Н
	*	2440	98.73	-	-	88.98	27.03	6.38	33.59	307	100	Α	Н
BLE		2492.79	52.89	-21.11	74	42.94	27.2	6.39	33.57	307	100	Р	Н
CH 19		2499.23	43.12	-10.88	54	33.17	27.2	6.39	33.57	307	100	Α	Н
2440MHz		2322.04	51.83	-22.17	74	42.71	26.65	6.15	33.61	345	65	Р	V
±		2366.98	42.43	-11.57	54	33.05	26.76	6.29	33.6	345	65	Α	V
	*	2440	98.17	-	-	88.42	27.03	6.38	33.59	345	65	Р	V
	*	2440	97.54	-	-	87.79	27.03	6.38	33.59	345	65	Α	V
		2499.09	52.22	-21.78	74	42.27	27.2	6.39	33.57	345	65	Р	V
		2499.93	43.35	-10.65	54	33.4	27.2	6.39	33.57	345	65	Α	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: C1 of C6

SPORTON LAB. FCC RF Test Report

*	2480 2492.44	96.15	-				1					
	2492 44			-	86.28	27.14	6.38	33.58	302	100	Α	Н
	2.02	52.19	-21.81	74	42.24	27.2	6.39	33.57	302	100	Р	Н
	2487.52	43.03	-10.97	54	33.09	27.2	6.39	33.58	302	100	Α	Н
												Н
												Н
*	2480	96.17	-	-	86.3	27.14	6.38	33.58	379	64	Р	V
*	2480	95.41	-	-	85.54	27.14	6.38	33.58	379	64	Α	V
	2493.32	52.42	-21.58	74	42.47	27.2	6.39	33.57	379	64	Р	V
	2484.08	43	-11	54	33.13	27.14	6.38	33.58	379	64	Α	V
												V
												V
	•		DI	A	ia 10							
*	* No	* 2480 2493.32 2484.08 No other spurious	2480 95.41 2480 95.41 2493.32 52.42 2484.08 43 No other spurious found.	2480 95.41 - 2480 95.41 - 2493.32 52.42 -21.58 2484.08 43 -11 No other spurious found.	2480 95.17	* 2480 95.41 - - 85.54 * 2493.32 52.42 -21.58 74 42.47 2484.08 43 -11 54 33.13	2480 95.41 85.54 27.14 2493.32 52.42 -21.58 74 42.47 27.2 2484.08 43 -11 54 33.13 27.14 No other spurious found.	2480 95.41 85.54 27.14 6.38 2493.32 52.42 -21.58 74 42.47 27.2 6.39 2484.08 43 -11 54 33.13 27.14 6.38 No other spurious found.	2480 95.41 85.54 27.14 6.38 33.58 2493.32 52.42 -21.58 74 42.47 27.2 6.39 33.57 2484.08 43 -11 54 33.13 27.14 6.38 33.58 No other spurious found.	2480 95.41 85.54 27.14 6.38 33.58 379 2493.32 52.42 -21.58 74 42.47 27.2 6.39 33.57 379 2484.08 43 -11 54 33.13 27.14 6.38 33.58 379 No other spurious found.	2480 95.41 85.54 27.14 6.38 33.58 379 64 2493.32 52.42 -21.58 74 42.47 27.2 6.39 33.57 379 64 2484.08 43 -11 54 33.13 27.14 6.38 33.58 379 64 No other spurious found.	2480 95.41 85.54 27.14 6.38 33.58 379 64 A 2493.32 52.42 -21.58 74 42.47 27.2 6.39 33.57 379 64 P 2484.08 43 -11 54 33.13 27.14 6.38 33.58 379 64 A No other spurious found.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4804	39.16	-34.84	74	60.55	31.6	9.6	63.02	100	0	Р	Н
													Н
D. E													Н
BLE CH 00													Н
2402MHz		4804	39.08	-34.92	74	60.47	31.6	9.6	63.02	100	0	Р	V
24U2IVI													V
													٧
													V
		4880	39.62	-34.38	74	60.79	31.71	9.56	62.87	100	0	Р	Н
		7320	43.31	-30.69	74	56.73	37.51	11.31	62.7	100	0	Р	Н
													Н
BLE													Н
CH 19		4880	39.69	-34.31	74	60.86	31.71	9.56	62.87	100	0	Р	V
2440MHz		7320	44.51	-29.49	74	57.93	37.51	11.31	62.7	100	0	Р	٧
													V
													V
		4960	39.58	-34.42	74	60.45	31.84	9.53	62.68	100	0	Р	Н
		7440	43.69	-30.31	74	56.68	38.06	11.34	62.77	100	0	Р	Н
													Н
BLE													Н
CH 39		4960	40.22	-33.78	74	61.09	31.84	9.53	62.68	100	0	Р	V
2480MHz		7440	43.61	-30.39	74	56.6	38.06	11.34	62.77	100	0	Р	V
													V
													V
			1	<u>I</u>	I		I		1	<u> </u>	<u>I</u>	1	1
Remark		other spurious		مماد مما	. A	:4 1:							
	2. All	results are PA	.ఎం against F	eak and	ı Average IIM	ıt iine.							

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: C3 of C6

Emission below 1GHz 2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		227.91	24.13	-21.87	46	38.49	16	1.95	32.38	-	-	Р	Н
		248.16	28.51	-17.49	46	40.57	18.3	1.95	32.38	-	-	Р	Н
		273.54	29.93	-16.07	46	41.06	19.08	2.09	32.38	-	-	Р	Н
		841.8	31.75	-14.25	46	30.97	28.99	3.6	31.96	-	-	Р	Н
		932.1	32.99	-13.01	46	30.32	30.05	3.82	31.37	-	-	Р	Н
		955.9	33.85	-12.15	46	29.86	31.06	3.9	31.14	100	0	Р	Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE LF		45.93	31.47	-8.53	40	46.71	16.23	1.02	32.49	100	0	Р	V
		64.56	22.81	-17.19	40	42.43	11.84	1.02	32.49	-	-	Р	V
		240.06	20.87	-25.13	46	33.93	17.3	1.95	32.38	-	-	Р	V
		759.9	29.77	-16.23	46	30.27	28.22	3.44	32.3	-	-	Р	V
		867.7	31.87	-14.13	46	30.54	29.34	3.67	31.83	-	-	Р	V
		949.6	33	-13	46	29.44	30.77	3.82	31.2	-	-	Р	V
													V
													V
													V
													V
													V
													V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : C4 of C6

Note symbol

Report No. : FR791813B

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

SPORTON INTERNATIONAL INC. Page Number : C5 of C6

TEL: 886-3-327-3456 FAX: 886-3-328-4978

A calculation example for radiated spurious emission is shown as below:

Report No.: FR791813B

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL INC. Page Number : C6 of C6

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Appendix D. Radiated Spurious Emission Plots

Took Engineer	LC Liona India Huna and Kan Wu	Temperature :	26~28 ℃
Test Engineer :	J.C. Liang, Jacky Hung, and Ken Wu	Relative Humidity :	52~57%

Report No.: FR791813B

Note symbol

-L	Low channel location
-R	High channel location

SPORTON INTERNATIONAL INC. Page Number : D1 of D13

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

BLE 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT BLE CH19 2440MHz - L 1 Horizontal **Fundamental** Peak Avg.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Emission below 1GHz

2.4GHz BLE (LF)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Appendix E. Duty Cycle Plots

Band	Duty Cycle (%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth -LE	62.18	388.00	2.58	3kHz

Bluetooth - LE

Date: 19.SEP.2017 13:47:58