

The economy as a complex system

Ron Boschma

Department of Human Geography and Planning, Utrecht University

> UiS Business School Stavanger University

Economics of Networks - GEO3-3805

Utrecht, 30 September 2021

structure of lecture

- 1. relatedness and regional diversification
- 2. smart specialisation policy
- 3. role of inter-regional linkages

references

- Hidalgo, C., Balland, P.A., Boschma, R., Delgado, M., Feldman, M., Frenken, K., Glaeser, E., He, C., Kogler, D., Morrison, A., Neffke, F., Rigby, D., Stern, S., Zheng, S., and Zhu, S. (2018)
 The Principle of Relatedness, Proceedings of the 20th International Conference on Complex Systems, forthcoming
- Hidalgo, C. A., Klinger, B., Barabasi, A. L., & Hausmann, R. (2007). The product space conditions the development of nations. Science, 317(5837), 482-487.

• Balland, P.A., R. Boschma, J. Crespo and D. Rigby (2019) Smart specialization policy in the EU: Relatedness, knowledge complexity and regional diversification, Regional Studies 53 (9), 1252-1268.

regional diversification

- regions need to diversify into new activities to secure long-term economic development
- but their capacity to do so differs
- how do regions create new activities?: new activities do not start from scratch
- local capabilities (knowledge, skills, networks, institutions) condition which new activities will be feasible to develop in a region
- local capabilities provide opportunities but also set limits to the diversification process in a region

related diversification

unrelated diversification

region A

studies: **related diversification is rule**, unrelated diversification the exception (Hidalgo et al 2018)

regional diversification

- Hidalgo, Klinger, Barabasi and Hausmann (2007)
- how countries build CA in new export products
- national capabilities condition which new export products will be feasible to develop
- product space: relatedness between products based on co-occurrence of products in countries' export portfolios

- countries develop new export products that are closely related to existing export products
- countries with related variety have more opportunities to diversify and sustain higher economic growth rates

economies as complex systems

economies as complex systems

economic systems as 2-mode networks

non-spatial units (economic sectors)

spatial units (cities, states, neighborhoods)

economic systems as 2-mode networks

compute co-occurrences between nonspatial entities (economic sectors)

how many times B and C co-occur in the same spatial unit? = in how many spatial units do B and C co-exist? response = 3 (in 1,2, and 3)

product space

related diversification in regions

related diversification in regions

(Hidalgo et al)

regional diversification

- other relatedness measures (Boschma 2017), e.g.:
- technology space: relatedness between technologies: co-occurrence of technology classes on patent documents
- solar technology space: relatedness between solar technologies and with other technologies
- industry space: relatedness between industries: based on similarities of skills requirements: intensity of labor flows

technology space (Boschma et al. 2015)

solar technology space

skill space

regional diversification

technological diversification opportunities of regions

- average relatedness density (Balland et al. 2019): the average degree of relatedness between existing technologies in a region and all missing technologies in that region
- the higher that region's score on this measure, the closer, on average, its existing set of technologies to those technologies that are missing in the region: overall average score of a region's potential to develop new technologies

diversification opportunities of European regions

Source: Balland et al. (2019)

diversification potential of European regions in hydrogen technology

smart specialization policy

- EEG has been influential in the EU: smart specialization policy
- focus on identifying possible diversification strategies for regions, based on their capabilities
- relatedness: to assess potential risks of alternative diversification strategies for regions

- complexity: to assess potential benefits of policy, based on diversity and ubiquity (Hidalgo and Hausmann 2009)

complexity: diversity and ubiquity

diversity is the degree centrality of the spatial units

ubiquity is the degree centrality of the econ/tech units

smart specialization policy

University of Stavanger

Source: Balland et al. (2019)

toward a new S3 framework

diversification opportunities in occupations

Île-de-France (FR10)

diversification opportunities in sectors

Île-de-France (FR10)

diversification opportunities in occupations

diversification opportunities in sectors

Silesia (PL22)

diversification opportunities in occupations

diversification opportunities in sectors

inter-regional linkages

- not only regional capabilities may be important, but also inter-regional linkages, to avoid lock-in
- can inter-regional linkages providing access to missing capabilities affect diversification in region?
- need for absorptive capacity to exploit external knowledge: non-local knowledge needs to be related to local knowledge (Boschma and Iammarino 2009)

• Balland, P. and R. Boschma (2021) Complementary inter-regional linkages and Smart Specialisation. An empirical study on European regions, *Regional Studies* 55 (6), 1059-1070.

inter-regional linkages

- identify diversification opportunities of regions:
- based on their regional capabilities (relatedness)
- but also on the nature of their inter-regional linkages
- we analyze the impact of external linkages on technological diversification in European regions, while controlling for regional capabilities

• we test whether inter-regional linkages that give access to additional capabilities in other regions that are related to existing capabilities of regions have a stronger impact on regional diversification

inter-regional linkages

- regional diversification model: patent data from the OECD REGPAT dataset: 654 technological classes (CPC) and 292 European regions (NUTS2)
- role of regional capabilities: relatedness density (RD)
- two measures of inter-regional linkages:
- inter-regional linkages: number of ties with inventors in other regions (NL)

diversification opportunities of region A through complementary linkages with other regions

	(1)	(2)	(3)	(4)
Relatedness Density (RD)	0.003***	0.003***	0.004***	0.002***
	(0.00003)	(0.00003)	(0.00004)	(0.0001)
Number of inter-regional linkages (NL)		0.005***	-0.025***	-0.017***
		(0.0003)	(0.001)	(0.001)
Complementarity of inter- regional linkages (CL)			0.027***	0.018***
			(0.001)	(0.001)
RD*CL				0.0002***
				(0.00001)
GDP per capita	0.001***	0.0001	0.0002**	0.0001
	(0.0001)	(0.0001)	(0.0001)	(0.0001)
Population (log)	0.015***	0.010^{***}	0.011***	0.010^{***}
	(0.001)	(0.001)	(0.001)	(0.001)
Period	-0.007***	-0.008***	-0.008***	-0.008***
	(0.001)	(0.001)	(0.001)	(0.001)
Constant	-0.142***	-0.083***	-0.172***	-0.120***
	(0.010)	(0.011)	(0.011)	(0.011)
Observations	379,876	379,876	379,876	379,876
\mathbb{R}^2	0.037	0.038	0.044	0.044
Adjusted R ²	0.037	0.038	0.044	0.044
Residual Std. Error	0.318 (df = 379871)	0.318 (df = 379870)	0.317 (df = 379869)	0.317 (df = 379868)
F Statistic	3,658.418*** (df = 4; 379871)	2,970.927*** (df = 5; 379870)	2,885.502*** (df = 6; 379869)	2,522.347*** (df = 7; 379868)

*p**p***p<0.01

map of complementarity of all European regions to Île-de-France region in new hydrogen technologies

thank you for your attention!

