

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00

Espacio para la etiqueta identificativa con el código personal del **estudiante**.

Examen

Este enunciado corresponde también a las siguientes asignaturas:

• 81.518 - Fundamentos de computadores

Ficha técnica del examen

- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura matriculada.
- Debes pegar una sola etiqueta de estudiante en el espacio correspondiente de esta hoja.
- No se puede añadir hojas adicionales, ni realizar el examen en lápiz o rotulador grueso.
- Tiempo total: 2 horas Valor de cada pregunta: Prob. 1: 20%; Prob. 2: 35%; Prob. 3: 35%; Prob. 4: 10%.
- En el caso de que los estudiantes puedan consultar algún material durante el examen, ¿cuáles son?: No se puede consultar ningún tipo de material.
- En el caso de poder usar calculadora, de que tipo? NINGUNA
- En el caso de que haya preguntas tipo test: ¿descuentan las respuestas erróneas? NO ¿Cuánto?

Indicaciones específicas

- Razonad las respuestas en cada ejercicio. las respuestas sin justificar no obtendrán puntuación.

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00

Enunciados

PROBLEMA 1 [20%]

Considerad el número binario A = 01000101 y el número decimal B = -27, junto con el formato de representación de los números enteros en **Complemento a 2 y en 8 bits**. Contestad los apartados siguientes:

a) [5%] Si A representa un número entero en el formato dado en este ejercicio, indicad cuál es el valor en decimal de este número entero.

El valor del número A = 01000101 se puede obtener mediante el TFN, es decir:

$$01000101_{(Ca2)} = -0.27 + 1.26 + 0.25 + 0.24 + 0.23 + 1.22 + 0.21 + 1.20 = 64 + 4 + 1 = 69_{(10)}$$

b) [5%] Representad el número entero B en el formato dado.

Aplicamos el método de las divisiones enteras sucesivas para obtener la representación de la magnitud del número *B*.

$$27 = 13 \cdot 2 + 1$$
 $13 = 6 \cdot 2 + 1$
 $6 = 3 \cdot 2 + 0$
 $3 = 1 \cdot 2 + 1$
 $1 = 0 \cdot 2 + 1$

Añadimos ceros y tenemos $27_{(10} = 00011011_{(2)}$ en el formato de 8 bits.

Para obtener la representación de -27 se puede aplicar el cambio de signo de la representación de la magnitud en positivo, que consiste en sumar un 1 al bit menos significativo del número con los bits "invertidos" (es decir, cambiados por el opuesto):

Finalmente, pues: $B = 11100101_{(Ca2)}$.

c) [10%] Realizad la suma de los dos números A + B usando el formato de representación dado. Indicad el resultado y si se produce desbordamiento en el cálculo de este resultado.

Hacemos la suma A + B:

No se produce desbordamiento. La suma de un valor positivo y uno de negativo en Ca2 nunca produce desbordamiento.

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00

PROBLEMA 2 [35%]

a) [10%] Dada la tabla de verdad siguiente, donde a, b, c y d son las entradas y g la salida. Minimizad la salida g mediante el método de Karnaugh.

а	b	С	d	g
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	Χ
1	1	0	1	Χ
1	1	1	0	Χ
1	1	1	1	Х

El mapa de Karnaugh para la función g es el siguiente:

a b	00	01	11	10
00	0	1	x	1
01	0	1	х	1
11	1	1	x	0
10	0	1	x	1

Y obtenemos la siguiente expresión mínima:

$$g = b + ac' + a'cd + ad'$$

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00

b) [15%] Dado el circuito lógico combinacional siguiente:

donde el contenido de la memoria ROM es:

@	M[@]
0	10
1	01
2	11
3	00

Rellenad la tabla de verdad siguiente, que especifica la salida *f* en función de las entradas, calculando previamente los valores intermedios indicados en la tabla (salida del sumador, entrada de datos del multiplexor).

		Salida sumador Entrada MUX								
X 2	X 1	X 0	S 1	S ₀	c_out	e ₃	e ₂	e ₁	e ₀	f
0	0	0								
0	0	1								
0	1	0								
0	1	1								
1	0	0								
1	0	1								
1	1	0								
1	1	1								

Primero, calcularemos las salidas del sumador $S(s_1, s_0)$ y c_out . El sumador incrementa en 1 la entrada de 2 bits formada por $[x_2, x_1]$, por lo tanto:

- Si [x₂,x₁]=00, la salida S del sumador valdrá 01.
- Si [x₂,x₁]=01, la salida S del sumador valdrá 10.

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00

- Si [x₂,x₁]=10, la salida S del sumador valdrá 11.
- Si [x₂,x₁]=11, la salida S del sumador valdrá 00.
- La salida *c* out solamente valdrá 1 cuando [x₂,x₁]=11.

A continuación, calcularemos las salidas del codificador que se conectan a las entradas e₁ y e₀ del MUX. El valor de las salidas del codificador depende de cuál sea la entrada de más peso que valga 1.

- A la entrada de más peso hay conectado un 0, por lo tanto, la salida nunca será 3 (11 en binario).
- A la entrada 2 se le ha conectado la salida s₁ del sumador, si ésta vale 1 la salida del codificador valdrá 2 (10 en binario). Por lo tanto, cuando la salida s₁ del sumador valga 1, la entrada e₁ del multiplexor valdrá 1 y la entrada e₀ valdrá 0.
- La salida del codificador será 01 si la entrada 1 del codificador vale 1 y las entradas 2 y 3 valen 0.
 Por lo tanto, cuando la salida s₁ del sumador valga 0 y la salida s₀ del sumador valga 1 la entrada e₁ del multiplexor valdrá 0 y la entrada e₀ valdrá 1.
- La salida del codificador será 00 si sus entradas 1, 2 y 3 valen 0. Por lo tanto, cuando la salida s₁ del sumador valga 0 y la salida s₀ del sumador valga 0, la entrada e₁ del multiplexor valdrá 0 y la entrada e₀ valdrá 0.

Las salidas de la ROM que están conectadas a les entradas e_3 y e_2 del multiplexor las podemos rellenar directamente a partir del contenido de la ROM, teniendo en cuenta que en su entrada de direcciones se ha conectado $[x_1,x_0]$, así:

- La entrada del multiplexor e_3 valdrá 1 cuando la salida de la ROM sea 10 o 11. Esto pasará cuando $[x_1,x_0]=00$ o cuando $[x_1,x_0]=10$.
- La entrada del multiplexor e_2 valdrá 1 cuando la salida de la ROM sea 01 o 11. Esto pasará cuando $[x_1,x_0]=01$ o cuando $[x_1,x_0]=10$.

Finalmente, la salida f del multiplexor depende de las entrada [x_2 , x_1], ya que éstas están conectadas a su entrada de selección.

- Si [x₂,x₁]=00, la salida del multiplexor será su entrada e₀.
- Si [x₂,x₁]=01, la salida del multiplexor será su entrada e₁.
- Si $[x_2,x_1]=10$, la salida del multiplexor será su entrada e_2 .
- Si [x₂,x₁]=11, la salida del multiplexor será su entrada e₃.

	Salida sumador Entrada MUX									
X 2	X 1	X 0	S 1	S ₀	c_out	e ₃	e ₂	e 1	e ₀	f
0	0	0	0	1	0	1	0	0	1	1
0	0	1	0	1	0	0	1	0	1	1
0	1	0	1	0	0	1	1	1	0	1
0	1	1	1	0	0	0	0	1	0	1
1	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	0	0	1	1	0	1
1	1	0	0	0	1	1	1	0	0	1
1	1	1	0	0	1	0	0	0	0	0

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00

c) [10%] Un sistema combinacional SLC tiene las siguientes entradas y salidas:

A y B son números naturales entre 0 y 7 codificados en binario. El valor de S viene determinado por la siguiente tabla:

С	S
0	A + B
1	max (A, B)

Implementad el sistema SLC a nivel de bloques (la función max(A,B) devuelve cualquiera de los dos valores en caso que sean iguales). Indicad el ancho de todos los buses.

Hay que realizar dos cálculos: A + B, y max(A,B).

Para calcular A + B usaremos un sumador de 4 bits en el que conectaremos las entradas A y B. Al ser el rango de A y B [0..7], el rango de su suma será [0..14]. Por lo tanto, no hará falta tener en cuenta la salida c_out del sumador ya que será siempre 0.

Para calcular max(*A*,*B*), compararemos las entradas *A* y *B*, y en función del resultado de la comparación escogemos con un multiplexor la mayor de las dos. Para esto, conectaremos la salida del comparador a la entrada de selección del multiplexor.

Finalmente, conectaremos el resultado de los dos cálculos a las entradas de datos de un multiplexor al que conectaremos a su entrada de selección la entrada *c*.

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00

PROBLEMA 3 [35%]

a) [15%] Diseñad el grafo de estados de un circuito secuencial, con una entrada E de un bit y una salida S de un bit. El circuito lee bits por la entrada de manera secuencial, y tiene que detectar series que empiecen por 11 (cabecera) y que acaben por 00 (cola). Entre la cabecera y la cola puede haber un número indeterminado de bits, teniendo siempre en cuenta que la pareja 00 acaba la serie. Cuando se detecta una serie, la salida se pondrá a 1 durante un ciclo y empezará a leer el número siguiente. En cualquier otro caso la salida tiene que ser 0.

Ejemplo de funcionamiento:

Entrada E	0	1	0	1	1	0	1	0	0	0	1	0	1	1	0	0	1	0
Salida S	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0

donde las salidas en negrita corresponden a series detectadas.

Los estados que debe tener el circuito son los siguientes:

- Z0: Estado inicial del circuito. No se ha reconocido ningún bit de la serie.
- Z1: Se ha reconocido el primer 1 de la serie.
- Z2: Se ha reconocido los bits 11 que encabezan una serie válida.
- Z3: Se ha reconocido hasta el primer bit a 0 que finaliza una serie válida.
- Z4: Se ha reconocido una serie válida de forma completa.

El único estado que tiene la salida S=1 es el estado Z4. Todos los otros estados tienen la salida S=0.

El grafo de estados que resulta es el siguiente:

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00

b) [20%] Dado el circuito secuencial siguiente:

Completad el cronograma siguiente:

Analizando el circuito vemos que el registro *RB* se carga a cada ciclo de reloj con el contenido del registro *RA*

El registro RA se carga con la entrada E según el valor de la señal L. Esta señal es la XNOR de los bits de menor peso de los registros RA y RB. Esto quiere decir que si estos dos bits son diferentes L=0 y si son iguales L=1.

Miramos qué pasa en el primer flanco ascendente de la señal de reloj, instante t_0 . La señal L justo antes del flanco vale 0 (XNOR de los bits 1 y 0 correspondientes a los bits de menor peso de RA y RB). Por lo tanto, en este flanco el registro RA no se cargará. Una vez hechos los cambios del flanco tenemos que RA continúa valiendo FFh y RB pasa a valer FFh. Ahora, justo al inicio del ciclo, la señal L pasa a valer 1 y permitirá la carga de RA en el próximo flanco.

Si vamos repitiendo este razonamiento en el resto de ciclos tenemos que el cronograma resultante es:

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00

PROBLEMA 4 [10%]

a) [5%] ¿Para qué se usa la memoria caché?

Para proporcionar a la CPU un acceso más rápido a la información de la memoria principal.

b) [5%]¿Qué es la arquitectura de Von Neumann?

Una manera de construir máquinas que tienen una memoria común para las instrucciones y los datos.

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00

Asignatura	Código	Fecha	Hora inicio
Fundamentos de computadores	75.562	09/06/2018	09:00