Udacity Connect Intensive
Session 03 - Model Evaluation and Validation
October 29, 2016

Lutfur Khundkar

Outline - Morning

- Welcome back! (20 min)
 - Introduction
 - Check-in (via Udacity App)
 - Goal setting (via Udacity App)
 - Course schedule & this week's homework
- Jupyter Notebook Lesson (1 hr 20 min)
 - Practice using the sklearn library
- Review of Notebook Lesson (20 min)

© 2016 Udacity. All rights reserved.

Housekeeping Items

ATTENDANCE AND CHECKING IN

- Check in via the Udacity app
- •This week's check-in code: ****
- Cogswellguest/dr*****16
- MUST let me know if you can't check in!

Housekeeping Items

GOAL SETTING - WEEK OF OCT 29

- "I will complete and submit the Predicting Boston Housing Prices project and report."
- "I will complete the lectures in the Supervised Learning Tasks section."
- "I will complete the lectures in the **Artificial Neural Networks** and **Bayesian Methods** sections, saving the mini-projects for session next week."

Connect Intensive

SCHEDULE: https://goo.gl/4D4EqL

_				,				
		\sim	2/	ľC	co	ככו	\cap r	٦.
	U	u	a١	\mathbf{v}	se	וככ	UΙ	١.
-	_			, –			_	

- Model evaluation and validation
- This week's homework lectures:
- Supervised Learning Tasks
- Artificial Neural Networks
- Bayesian Methods
- Submit the Boston Housing Prices project and report this week!

	DATE	SESSION	HOMEWORK			
	OCT 15	Thinking Like a Machine Learnist	Begin the Model Evaluation and Validation course. Complete sections: • Statistical Analysis • Data Modeling: do not do the section in Data Modeling titled "Datasets and Questions"; this will be covered in session next week.			
	OCT 22	Data Modeling with the Enron scandal dataset	Finish the Model Evaluation and Validation course. And review the Predicting Boston Housing Prices project. The following sections from the course should be completed: • Evaluation and Validation • Managing Error and Complexity			
AND ARREST MATERIAL PROPERTY AND ADDRESS OF THE PERSONS ASSESSED.	OCT 29	Model evaluation and validation	Complete and submit the Predicting Boston Housing Prices project (report). Begin the Supervised Learning course. The following sections from the course should be completed: • Supervised Learning Tasks • Artificial Neural Networks: do not do Neural Nets Mini-Project; this will be covered in session next week • Bayesian Methods: do not do Bayes NLP Mini-Project; this will be covered in session next week Note that the itinerary for this week is not in sync with that of the current Nanodegree Syllabus.			
5	NOV 05 Natural Language and Processing and Neural Networks		Finish the Supervised Learning course and review the Building a Student Intervention System project. The following sections from the course should be completed: • Decision Trees • Support Vector Machines • Nonparametric Models • Ensemble of Learners Note that the itinerary for this week is not in sync with that of the current Nanodegree Syllabus.			

© 2016 Udacity. All rights reserved.

This week's homework lectures

lectures to complete before session next week

> mini projects to do in session next week

This Weeks Homework (readable)

Supervised Learning

Supervised Learning Tasks

Supervised Learning Intro

Regression and Classification

Regression

More Regression

Decision Trees -- defer

Artificial Neural Networks

Neural Networks

NN Mini project -- defer

Other sections - defer

Bayesian Networks

Naive Bayes

Bayesian Learning

Bayesian Inference

Bayes NPL mini project - defer

Jupyter Notebook Lesson

PRACTICE WITH sklearn LIBRARY

Exercises:

https://github.com/nickypie/ConnectIntensive lesson-03-part02.ipynb and lesson-03-part02.ipynb

• Solutions in solutions-03.ipynb (for part 01)

The scikit-learn (sklearn) library:

- Installation: http://scikit-learn.org/stable/install.html
- NOTE: The latest stable release of sklearn is 0.18 (September 28, 2016)
- The module model_selection (0.18) groups together the functionalities of:
 - cross_validation, grid_search, learning_curve (0.17)
- For more info: http://scikit-learn.org/stable/whats_new.html#version-0-18

0.17	0.18
sklearn.cross_validation.train_test_split	sklearn.model_selection.train_test_split
sklearn.cross_validation.ShuffleSplit	sklearn.model_selection.ShuffleSplit
sklearn.grid_search.GridSearchCV	sklearn.model_selection.GridSearchCV
sklearn.learning_curve.learning_curve	sklearn.model_selection.learning_curve

Data

Exploration, pre-processing

Data Types

Three types of data - numerical, categorical, time series

Variability of Data

Different ways of quantifying the variability (often good to visualize)

Underlying causes

Random or measurement error

The goal of fitting a model to any data is to capture and "explain away" the variance in the data due to causes

Should not try to account for random error -- leads to overfitting

Model

Model Building -- key points to keep in mind as you follow supervised learning videos

Bias vs Variance

Underfitting vs Overfitting

Curse of Dimensionality

Validation

Model Evaluation and Validation

Performance Metric

Test vs. Training Error

Cross Validation

Model Fitting with sklearn

Generic plan

```
Import data - features and labels
Split data into test and train sets
Import library function, e.g. from sklearn.tree import *Classifier
```

```
Create classifier, set parameters for model Fit(train_features, train_labels)
Predict(test_features)
Score
```

Evaluation Metrics

Classification

Two common metrics:

accuracy (may not be appropriate for skewed classes)

F1 score = 2 * precision * recall /(precision + recall)

A more general way to look at results is the confusion matrix

Precision and recall are two among many different terms used in practice

The term being used often depends on the problem domain

Precision and Recall

		Predicted of	condition			
	Total population	Predicted Condition positive	Predicted Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$		
True condition	condition positive	True positive	False Negative (Type II error)	True positive rate (TPR), Sensitivity, Recall = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False negative rate (FNR) Miss rate $= \frac{\sum False \text{ negative}}{\sum Condition positive}$	
	condition negative	False Positive (Type I error)	True negative	False positive rate (FPR), $Fall-out$ $= \frac{\sum False positive}{\sum Condition negative}$	True negative rate (TNR), Specificity (SPC) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	
	Accuracy (ACC) =	Positive predictive value (PPV), Precision = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Diagnostic odds ratio (DOR) LR+ LR-	
	$\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	False discovery rate (FDR) $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$	Negative predictive value (NPV) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}}$	Negative likelihood ratio $(LR-) = \frac{FNR}{TNR}$		

Evaluation Metrics

Regression

Two common measures of error - smaller is better Mean absolute error Mean squared error

Two common scoring methods - higher is better

R2-score

Explained variance

Sklearn classifiers and regressors general have a default scoring metric to optimize the fit that can be overriden.