# Efficient Anomaly Detection Using Time Series Decomposition With B-spline Regression

김호현

방송통신대학원 정보과학과

June 11, 2016



1 / 18

# 목차

- Introduction
- 2 Basic Concepts & Related Research
- Proposed Anomaly Detection Algorithm
- Experiment & Results
- Conclusion

## Motivation

## Early Warning System

• 비정상적인 판매 급증을 탐지하여 지점에 경보 ightarrow SPAM, 양치기 소년



3 / 18

# Problem Recognition

#### The reason that we became the shepherd boy

We don't want to miss any potential risk.

#### Mission (impossible???)

- Improving realiability (Precision)
- Detecting anomaly without missing any instance (Recall)



# Basic Concepts - Anomaly

#### Anomaly Detection

- "Anomaly Detection refers to the problem of finding patterns in data that do not conform to expected behavior." (Anomaly Detection ACM Survey, Minnesota Univ. 2009)
- "These nonconforming patterns are referred to as anomalies, outliers."

#### Application of Anomaly Detection

- Fraud detection, Intrusion detection
- Medical and public health anomaly detection , Fault detection
- Image processing, Sensor network, Anomaly detection in text data

# **Anomaly Detection Techniques**

#### Categorization of *Anomaly Detection* techniques

- Classification based
- Clustering based
- Nearest Neighbor based
- Statistical based

#### The things to be considered when choosing techniques

- Characterstics of input data Sequence, Spartial, Graph ...
- Type of anomaly Point anomalies, Contextual anomalies ...
- Existence of label
- Type of output Scores, Labels



# Time Series Decomposition

#### Characteristics of Time Series Data

- Seasonal: patterns that repeat with fixed period of time
- Trend: the underlying trend of the metrics.
- Random/Remainder/Irregular

#### Time Series Decomposition

$$y_t = S_t + T_t + E_t$$



# Novel Techinque for Long-term *Anomaly Detection*<sup>1</sup>

#### Piecewise detection strategy

- 1 Devide data into multi segment
- Use average value as trend within a segment
- Oetect anomalies in each segment separately
- Aggregate results

Very good! But it needs large data  $\rightarrow$  Not fit to my problem Clue: Possibility of using B-spline regression as trend decomposition

<sup>&</sup>lt;sup>1</sup>Owen Vallis et al. June 2014, twitter open source

# Seasonality Detect

- We must know the length of repeating cycle.
- We add the seasonality together and divide by the number of seasonality.
  - ightarrow Same as traditional way.

$$S_x = average(X_{weekday})$$



# Trend Detect: Moving Average

• Simple Moving Average<sup>2</sup> is calculated as follows.

$$\frac{X_{p-m}+X_{p-(m-1)}+\ldots+X_p+\ldots+X_{p+(m-1)}+X_{p+m}}{n}$$
 , where window size  $n=2*m+1$ 

• Trend curve flattens as the window size grows.

<sup>&</sup>lt;sup>2</sup>There are many variations: Weighted Moving Average, Exponential Moving Average, Cumulative Moving Average

# Trend Detect: M.A. & B-spline Regression (Proposal)

- $\textbf{0} \ \ \mathsf{Get} \ \ \mathsf{Moving} \ \ \mathsf{average} \text{:} \ \ \mathsf{ma} = \mathsf{moving} \ \!\!\! \mathsf{\_average}_w(X)$
- Get Trend using B-spline function: trend = bspline(ma)

#### R Pseudo Code

```
\begin{array}{lll} k & \leftarrow \mathsf{endpoints}(\mathsf{sales}, \, \mathsf{on} = "\,\mathsf{months}") \\ \mathsf{model} & \leftarrow \mathsf{Im}(\mathsf{ma} \sim \mathsf{bs}(\mathsf{date}, \, \mathsf{knots} = \mathsf{k}, \, \mathsf{degree} = 3) \\ \mathsf{trend} & \leftarrow \mathsf{predict}(\mathsf{model}, \, \mathsf{date}) \end{array}
```



# Trend Detect: LOESS (STL)<sup>3</sup>

LOESS is "non-parametric regression methods that *combine multiple* regression models in a k-nearest-neighbor-based meta-model" (wikipedia)



<sup>&</sup>lt;sup>3</sup>It may be understood as "LOcal regrESSion". STL means "Seasonal Trend decomposition using Loess"

# Determine Anomaly: Using Multi-threshold (Proposal)

 $p = \text{anova}(\text{abs}(R_x, \text{weekday})) \leftarrow \text{Test difference between weekday}$ 

if  $p < \beta \leftarrow$  significance rate (eg. 0.05, 0.01, 0.001) then  $\theta = \sigma_s[\ ] * \alpha \leftarrow Multi-thershold$ else  $\theta = \sigma * \alpha \leftarrow Uni-threshold$ 

if  $R_x > \theta$ , then Anomaly, else Normal



## Data, Tools<sup>4</sup> & Measurement

#### Experimental Data

- Original: Real daily sales data
- Decompose: Original  $\rightarrow Seasonal + Trend + Random$
- ullet Remove random & Input noise ightarrow Seasonal + Trend + Noise
- Attach label: TRUE, if  $noise > 2\sigma$

#### Measurement

- Precision: TP / (TP + FP)
- Recall: TP / (TP + FN)
- F-score: 2 \* (Pr \* Rc) / (Pr + Rc)

|       |          | 실제 정답                             |                                  |  |
|-------|----------|-----------------------------------|----------------------------------|--|
|       |          | True                              | False                            |  |
| 실험 결과 | Positive | True Positive                     | False Positive<br>(Type I error) |  |
|       | Negative | False Negative<br>(Type II error) | True Negative                    |  |

<sup>&</sup>lt;sup>4</sup>I used R programmming language. You can find every details of the experiment at https://Github.com/Hohyun/bspline-anomaly-detection/

# Experiment Result I: Effects of Multi-threshold

Multi-threshold outperforms Uni-threshold by 14%, 23%

- Uni-threshold:  $\theta = \sigma * 1.96$ 

- Multi-threshold:  $\theta = \sigma_s[\ ]*1.96$ 

| t.window | Threshold      | Precision | Recall | F-score |
|----------|----------------|-----------|--------|---------|
| 15 days  | Uni- $	heta$   | 44.4%     | 56.7%  | 49.8%   |
|          | Multi- $	heta$ | 61.9%     | 67.7%  | 64.7%   |
| 60 days  | Uni- $	heta$   | 49.4%     | 59.8%  | 54.1%   |
|          | Multi- $	heta$ | 76.7%     | 78.0%  | 77.3%   |

# Experiment Result II: Moving Avg, MA\_B-spline, Loess

- MA\_B-spline, LOESS outperforms Moving Average
- Difference between MA\_B-spline and LOESS is not big
  - It differs according to paramater setting

| Algorithm | Parameters           | Pr.   | Rc.   | F-score |
|-----------|----------------------|-------|-------|---------|
| M.A.      | window: 7 days       | 55.7% | 54.4% | 55.1%   |
| M.A. &    | knots: every month   | 76.5% | 70.4% | 73.3%   |
| B-spline  | knots: every quarter | 77.2% | 76.0% | 76.6%   |
| LOESS     | t.window: 31 days    | 68.4% | 74.4% | 71.3%   |
|           | t.window: 91 days    | 78.6% | 79.2% | 78.9%   |

## Result Plots





## Conclusion

#### Proposal algorithm is competitive!

- LOESS is very flexible, but it requires fairly large, densly sampled data sets to produce good results and computationally expensive.
- Moving Average & B-spline regress trend detect algorithm can be a good alternative in some situation.

#### Research plan afterward

- Determining best internal knots parameter for B-spline
- Real system implementation & feedback

