An output-sensitive algorithm for persistence

Matt Piekenbrock[†]

† Khoury College of Computer Sciences, Northeastern University

CompPers24 - Austria

(Chen and Kerber 2011) introduced a *rank-based* algorithm for computing persistence The algorithms main attractions are:

ullet It can be used to compute only homology classes with persistence at least Γ

(Chen and Kerber 2011) introduced a rank-based algorithm for computing persistence

The algorithms main attractions are:

- ullet It can be used to compute only homology classes with persistence at least Γ
- It is comprised entirely of 'black-boxed' rank / matvec computations

(Chen and Kerber 2011) introduced a rank-based algorithm for computing persistence

The algorithms main attractions are:

- \bullet It can be used to compute only homology classes with persistence at least Γ
- It is comprised entirely of 'black-boxed' rank / matvec computations
- Its runtime is sensitive to the size of the output¹ (# of persistent pairs)

I The running time of an author condition algorithm depends on the city of the output instead of of in addition to the input (wilki)

(Chen and Kerber 2011) introduced a rank-based algorithm for computing persistence

The algorithms main attractions are:

- \bullet It can be used to compute only homology classes with persistence at least Γ
- It is comprised entirely of 'black-boxed' rank / matvec computations
- Its runtime is sensitive to the size of the output
- ullet Its space complexity is pprox linear in the size of the complex

If $X\subset \mathbb{R}^{n imes d}$, computing $\mathrm{dgm}_p(K)$ takes $^{\mathsf{I}}$

$$O\left(\binom{n}{p+2}^3\right) ext{ time } + O\left(\binom{n}{p+2}^2\right) ext{ s}$$

when p > 0. The improvement in space:

$$O\left(\binom{n}{p+2}\right)$$
 space

Overview - The Algorithm

I. Characterize μ_p as a rank computation on boundary (sub)matrices

$$\mu_p^R(K,f)= ext{rk}(\partial_{p+1}^{j+1,k})- ext{rk}(\partial_{p+1}^{i+1,k})- ext{rk}(\partial_{p+1}^{j+1,l})+ ext{rk}(\partial_{p+1}^{i+1,l})$$

2. Express pivot condition as a recurrence relation

$$\mathrm{low}_R(j) = i \; \Leftrightarrow \; \exists n_{[i,i]} \in \mathcal{T}_m^{[k,l]} \; \mathrm{w} / \; \mu(n_{[i,i]}) = 1$$

3. Divide-and-conquer (in the index persistence plane)

Notation

Computing persistence requires a family $\{K_i\}_{i\in I}$ of simplicial complexes indexed by a <u>totally ordered</u> set I, such that:

- ullet (filtered) for any $i,j \in I$, we have $i < j \implies K_i \subseteq K_j$
- ullet (simplexwise) $K_j \setminus K_i = \{\sigma_j\}$ if $j = \mathrm{succ}(i)$

Any filtration \rightarrow simplexwise via condensing, refining, and reindexing maps (Bauer 2021)

Example: Define (K,f) where $f:K\to I$ satisfies $f(\tau)\leq f(\sigma)$ whenever $\tau\subseteq\sigma$. Then, for any pair $\sigma,\sigma'\in K$ with $\sigma\neq\sigma'$, order I by:

- I. $f(\sigma) \leq f(\sigma')$
- $2.\dim(\sigma) \leq \dim(\sigma')$
- 3. $N(\sigma) < N(\sigma')$, where $N: K_p o [inom{n}{p+1}]$ is a fixed bijection

Common choices for N includes various bijections to the *combinatorial number system*, e.g. induces by the lexicographical ordering of vertices. However, other choices can be made as well, such as $gray \ codes$.

Example

Common choices for I include $[m]=\{1,\ldots,m\}$ and $\mathbb R$

When $\operatorname{dgm}(K,\mathbb{F})$ is defined over [m], we call it index persistence

Background: Reduction

Decomposition Invariants (Edelsbrunner and Harer 2008)

- ullet $R=\partial V$ where ∂ is the filtered boundary matrix of (K,f)
- ullet V is full-rank upper-triangular
- ullet R is reduced: if $\mathrm{col}_i(R)
 eq 0$ and $\mathrm{col}_j(R)
 eq 0$, then $\mathrm{low}_R(i)
 eq \mathrm{low}_R(j)$

Persistence Diagrams

Persistence diagrams are often defined in terms of their Betti numbers:

$$egin{align} \operatorname{dgm}_p(K,f) & riangleq \set{(i,j) \in \Delta_+: \mu_p^{i,j}
eq 0} \; \cup \; \Delta \ \mu_p^{i,j} &= \left(eta_p^{i,j-1} - eta_p^{i,j}
ight) - \left(eta_p^{i-1,j-1} - eta_p^{i-1,j}
ight), \quad eta_p^{k,l} &= \sum\limits_{i \leq k} \sum\limits_{j > l} \mu_p^{i,j} \ \end{array}$$

Theorem(Dey and Wang 2022): Let $\partial\in\mathbb{F}^{m imes m}$ be a boundary matrix for simplexwise filtration (K,f) with decomposition $R=\partial V$. Then the simplices $\sigma_i,\sigma_j\in K$ forms a **persistent pair** $(f(\sigma_i),f(\sigma_j))$ if and only if $\mathrm{low}_R(j)=i$

- ullet Unpaired simplices $\sigma_i \in K$ form essential pairs $(f(\sigma_i), \infty)$
- ullet Though the pairing is unique, the decomposition $R=\partial V$ is a not
- ullet In the index persistence case, f:K o [m] , thus $f(\sigma_i)=i$

Here, we define $\Delta_+=\{(x,y)\in I imes (I\cup\{+\infty\}):x\leq y\}$ and the diagonal $\Delta=\{(x,x)\}$ is counted with infinite multiplicity.

Pairing Uniqueness Lemma

Proposition (Cohen-Steiner, Edelsbrunner, and Morozov 2006): For any simplexwise filtration (K,f), if $R=\partial V$ is a decomposition of its boundary matrix $\partial\in\mathbb{F}^{m\times m}$ obtained using left-to-right column operations, then:

$$\mathrm{low}_R(j) = i \ \Leftrightarrow \ \mathrm{rk}(\partial^{i,j}) - \mathrm{rk}(\partial^{i+1,j}) + \mathrm{rk}(\partial^{i+1,j-1}) - \mathrm{rk}(\partial^{i,j-1})
eq 0$$

where $\partial^{i,j} \equiv$ "lower-left" submatrix given by rows [i,m] and columns [1,j].

Pairing Uniqueness (single)

If $(\sigma_i,\sigma_j)\in \mathrm{dgm}(K,\mathbb{F})$, then $\mathrm{low}_R(j)=i\ (\,R[i,j]
eq 0\,)$

$$R[i,j]
eq 0 \; \leftrightarrow \; \mathrm{rk}(\partial^{i,j}) - \mathrm{rk}(\partial^{i+1,j}) + \mathrm{rk}(\partial^{i+1,j-1}) - \mathrm{rk}(\partial^{i,j-1})
eq 0$$

Pairing Uniqueness (general)

For any box $R=[i,j] imes [k,l]\subset \Delta_+$ in the index upper-left halfplane Δ_+ :

$$\mu_p^R(K,f)=\operatorname{rank}(\partial_{p+1}^{j+1,k})-\operatorname{rank}(\partial_{p+1}^{i+1,k})-\operatorname{rank}(\partial_{p+1}^{j+1,l})+\operatorname{rank}(\partial_{p+1}^{i+1,l})$$

$$eta_p^{i,j}(K,f)^* = \operatorname{rank}(C_p(K_i)) - \operatorname{rank}(\partial_p^{1,i}) - \operatorname{rank}(\partial_{p+1}^{1,j}) + \operatorname{rank}(\partial_{p+1}^{i+1,j})$$

^{*}:The expression for β^R_v in terms in boundary operators is given by (Dey and Wang 2022).

Pairing Uniqueness (interpretation)

			R			_				S		
1												
1			1				1					
				1								
		1		1							1	
	1	1			 				1			1 1 1 1 1 1 1 1
	1							1				
			1							1		

Chen's and Kerbers idea: Let $S_{ij}=1$ if $\mathrm{low}_R(j)=i$ and 0 otherwise.

Then $\#S^{i,j}=\operatorname{rank}(R^{i,j})$ for all i < j, and μ_p^R is like "counting" non-zeros in S

The Key Lemma

Lemma (Dey and Wang 2022): Given a filtration (K,f) of size m=|K| and decomposition $R=\partial V$, for any pair $1\leq i\leq j\leq m$ we have:

$$\operatorname{rk}(R^{i,j}) = \operatorname{rk}(\partial^{i,j})$$

where $(*)^{i,j} \equiv$ "lower-left" submatrix given by columns [1,j] and rows [i,m].

- ullet This also holds for restrictions $R^{i,j}_p$ and $\partial^{i,j}_p$
- ullet Constructing R requires $O(m^3)$ time via reduction
- ullet Constructing $\partial^{i,j}$ requires O(j-i) time for constant $p\geq 0$, and satisfies:

$$\operatorname{nnz}(\partial) = O(m \log m)^*$$
 (sparsity of ∂)

In fact, if K is d-dimensional, any $k \times k$ submatrix of ∂ has O(dk) non-zero entries. Since a d-simplex has $2^{d+1}-1$ faces, $d \le \log(m+1)-1$, which shows the above sparsity argument. See (Chen and Kerber 2011) for details.

The Key Lemma

Pairing uniqueness lemma $\implies \operatorname{rank}(R^{i,j}) = \operatorname{rank}(\partial^{i,j})$

Corollary (Bauer et al. 2022): Any algorithm that preserves the ranks of the submatrices $\partial^{i,j}$ for all $i,j\in\{1,\ldots,n\}$ is a valid barcode algorithm.

Towards a new algorithm

Corollary(Chen and Kerber 2011): If $\mathcal{R}_d(n)$ denotes the cost of computing the rank of an n imes n square matrix with O(dn) non-zero \mathbb{F} -entries, then $\mu_p^R = O(\mathcal{R}_{p+2}(l-i))$

Proof: For any box $R=[i,j] imes [k,l]\subset \Delta_+$, consider the multiplicity expression:

$$\mu_p^R(K,f)=\mathrm{rk}(\partial_{p+1}^{j+1,k})-\mathrm{rk}(\partial_{p+1}^{i+1,k})-\mathrm{rk}(\partial_{p+1}^{j+1,l})+\mathrm{rk}(\partial_{p+1}^{i+1,l})$$

Since $R \subset \Delta_+$, we have $i < j \le k < l$ and thus the inclusions:

$$\partial_{p+1}^{j+1,k}\subset \partial_{p+1}^{i+1,k},\quad \partial_{p+1}^{j+1,l}\subset \partial_{p+1}^{i+1,l},\quad \partial_{p+1}^{i+1,k}\subset \partial_{p+1}^{i+1,l}$$

Thus the complexity is dominated by $\partial_{p+1}^{i+1,l}$. Though this matrix has l columns and m-i+1 rows, there exists a submatrix of size (l-i) rows / columns containing at most (p+2) non-zero $\mathbb F$ entries per column. The above corollary follows.

Chen and Kerbers Algorithm

For filtration (K,f) indexed by I=[m] and a fixed interval [k,l], define $\mathcal{T}_m^{[k,l]}$ as a binary tree¹ with nodes $n_{[a,b]}$ representing subintervals $[a,b]\subseteq [1,m]$ and satisfying:

- ullet Root node is given by $n_{[1,m]}$
- ullet If $n_{[a,b]}$ and $k=\lfloor rac{a+b}{2}
 floor$, then:
 - $\quad \blacksquare \ \operatorname{left}(n_{[a,b]}) = n_{[a,k]}$
 - $\quad \blacksquare \ \operatorname{right}(n_{[a,b]}) = n_{[k+1,b]}$
- ullet Leaves cover singletons, i.e. $n_{[i,i]}$

Assign every node $n \in \mathcal{T}_m$ a μ -value as follows:

$$\mu(n_{[a,b]}) = \mu_p^{a,b}(K,f), ext{ where } R = [a,b] imes [k,l]$$

I Chan and Karbar call \mathcal{T} a hisaction tree in data structures this is analogous to a segment tree

Bisection Tree properties

Prop: Let $\mathcal{T}_m^{[k,l]}$ be a binary tree for some interval $[k,l]\subseteq [1,m]$ whose nodes satisfy:

$$\mu(n_{[a,b]}) = \mu_p^R(K,f), ext{ where } R = [a,b] imes [k,l]$$

 $ig| orall \ (\sigma_i,\sigma_j)\in \mathrm{dgm}_p(K,f)$ with $j\in [k,l]$, there \exists a node $n_{[i,i]}\in \mathcal{T}_m^{[k,l]}$ w/ $\mu(n_{[i,i]})=1$

Figure 2: An illustration of the bisection tree of an interval $[i_1, i_2] = [1, 8]$, which contains two creators, σ_6 and σ_8 . Only the nodes on the two solid paths (and their siblings) are explored by the algorithm.

Bisection Tree Example

Querying creators

Lemma (Chen and Kerber 2011): For any box $R=[i,j] imes [k,l]\subset \Delta_+$, define:

$$P_R = \set{(\sigma_a,\sigma_b) \in \mathrm{dgm}(K,f) : a \in [i,j], b \in [k,l]}$$

If $\mu_p^R=\operatorname{card}(P_R)$, then computing the creators of P_R has time complexity:

$$O((1+\mu_p^R\log(j-i))\mathcal{R}_d(l-i))$$

Proof: There are at most μ_p^R non-zero leaf-to-root paths, each of which has length $O(\log(j-i))$. Since $\mu(n_{[a,b]}) = \mu(\operatorname{left}(n_{[a,b]})) + \mu(\operatorname{right}(n_{[a,b]}))$, we only need query one of these children to descend each path. Since we need to perform one query at the root and since the complexity of any given query is $\mathcal{R}_d(l-i)$, the stated complexity follows.

Querying pairs

Lemma (Chen and Kerber 2011): For any box $R=[i,j] imes [k,l]\subset \Delta_+$, define:

$$P_R = \set{(\sigma_a,\sigma_b) \in \mathrm{dgm}(K,f) : a \in [i,j], b \in [k,l]}$$

If $\mu_p^R=\operatorname{card}(P_R)$, then computing all of the pairs P_R has time complexity:

$$O((1+\mu_p^R\log(l-i))\mathcal{R}_d(l-i))$$

Proof: Fix a creator simplex σ_i that has been previously found in the tree $\mathcal{T}_m^{[k,l]}$. By definition, $\mu(n_{[i,i]})=1$, and its destroyer is the unique integer $j\in[k,l]$ with:

$$\mu_p^{i,j} = \left(eta_p^{i,j-1} - eta_p^{i,j}
ight) - \left(eta_p^{i-1,j-1} - eta_p^{i-1,j}
ight) = 1$$

which can be found via binary search on [k,l] in $O(\log(l-k)\mathcal{R}_d(l-i))$ time. Repeating for all creators yields the complexity in the theorem.

Querying Γ -pairs

Lemma (Chen and Kerber 2011): For any box $R=[i,j] imes [k,l]\subset \Delta_+$, define:

$$P(\Gamma)_R = \set{(\sigma_a,\sigma_b) \in \mathrm{dgm}(K,f) : a \in [i,j], b \in [k,l], f(\sigma_b) - f(\sigma_a) \geq \Gamma}$$

If $\mu_p^R(\Gamma)=\mathrm{card}(P_R(\Gamma))$, then computing all Γ -pairs $P_R(\Gamma)$ has time complexity:

$$O\left(\left(rac{1}{\delta} + C_{(1-\delta)\Gamma}\log n
ight)\mathcal{R}_d(m)
ight)$$

where $\delta \in (0,1)$ is an arbitrary constant and $C_{(1-\delta)\Gamma}$ is a constant given by:

$$C_{(1-\delta)\Gamma}=\mu_p^B((1-\delta)\Gamma), \quad B=[1,k] imes[k,m], \quad k=\lfloor m/2
floor$$

Note: $C_{(1-\delta)\Gamma}$ counts the number of pairs with persistence at least Γ .

Querying Γ -pairs: proof 1

- ullet (left) Dark gray polygon contains pairs in box $R\subset \Delta_+$ with persistence $\geq \Gamma$
- (right) Pairs computed via a divide-and-conquer

Proof Sketch I: Excluding the $1/\delta$ term, the main complexity follows from writing the recurrence for $\mu_p^B(\Gamma)$ & applying the Master Theorem (Bentley, Haken, and Saxe 1980).

Querying Γ -pairs: proof 2

- ullet (left) Two rectangles contain pairs with persistence Γ , plus extra $\Gamma/2$ pairs
- ullet (right) Four rectangles contain pairs with persistence Γ , plus extra $\Gamma/4$ pairs

Proof Sketch 2:The $\delta\in(0,1)$ term comes from defining any monotone increasing sequence of subdivision points a_1,a_2,\ldots,a_{t-1} with $t=\lceil 1/\delta \rceil$ where $\Gamma\cdot(1-\frac{i}{t})$

Instantiating Rank Algorithms

A variety of rank algorithms can be used for \mathbb{Z}_2 coefficients:

Method	Rank Complexity	Persistence Computation	Туре
PLU	$O(n^\omega)$	$O(C_{(1-\delta)_\Gamma} n^{2.376} \log n)$	Deterministic
Las-Vegas	$ ilde{O}(n^{3-1/(\omega-1)})$	$O(C_{(1-\delta)\Gamma}n^{2.28})$	Deterministic
Monte- Carlo	$O(n^2 \log^2 n \log \log n)$	$O(C_{(1-\delta)\Gamma}n^2\log^3 n\log\log n)$	Randomized

The algorithm can also be adapted to:

- Compute representative cycles (via solving a linear system)
- Work with generalized fields (via field extensions)
- Work with other complexes (e.g. cubical complexes)

Care must be taken to handle the randomized case

Some of my own work (Time permitting)

For $\mathbb{F}=\mathbb{R}$, this algorithm can be used to compute all persistence invariants (ranks, pairs, and repr.) in O(m) space, though there are still many barriers that affect its practical use.

Certain use-cases are near to being practical with rank-based approach, such as persistence optimization and large scale homological inference

References

- Bauer, Ulrich. 2021. "Ripser: Efficient Computation of Vietoris—Rips Persistence Barcodes." Journal of Applied and Computational Topology 5 (3): 391–423.
- Bauer, Ulrich, Talha Bin Masood, Barbara Giunti, Guillaume Houry, Michael Kerber, and Abhishek Rathod. 2022. "Keeping It Sparse: Computing Persistent Homology Revised." arXiv Preprint arXiv:2211.09075.
- Bentley, Jon Louis, Dorothea Haken, and James B Saxe. 1980. "A General Method for Solving Divide-and-Conquer Recurrences." ACM SIGACT News 12 (3): 36–44.
- Chen, Chao, and Michael Kerber. 2011. "An Output-Sensitive Algorithm for Persistent Homology." In *Proceedings of the Twenty-Seventh Annual Symposium on Computational Geometry*, 207–16.
- Cohen-Steiner, David, Herbert Edelsbrunner, and Dmitriy Morozov. 2006. "Vines and Vineyards by Updating Persistence in Linear Time." In *Proceedings of the Twenty-Second Annual Symposium on Computational Geometry*, 119–26.
- Dey, Tamal Krishna, and Yusu Wang. 2022. Computational Topology for Data Analysis. Cambridge University Press.
- Edelsbrunner, Herbert, and John Harer. 2008. "Computational Topology." Duke University.
- Gómez, Mario, and Facundo Mémoli. 2024. "Curvature Sets over Persistence Diagrams." Discrete & Computational Geometry, I-90.