Procédures de qualification Installatrice-électricienne CFC

Installatrice-électricienne CFC Installateur-électricien CFC

Connaissances professionnelles écrites

Pos. 4.2 Technique des systèmes électriques

Dossier des expertes et experts

Temps: 70 minutes

Auxiliaires : Règle, équerre, chablon, calculatrice de poche sans transmission de

données et recueil de formules sans exemple de calcul.

Cotation : - Le nombre de points maximum est donné pour chaque exercice.

 Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.

Barème: Nombres de points maximum: 44,0

		-		•
42,0	-	44,0	Points = Note	6,0
37,5	-	41,5	Points = Note	5,5
33,0	-	37,0	Points = Note	5,0
29,0	-	32,5	Points = Note	4,5
24,5	-	28,5	Points = Note	4,0
20,0	-	24,0	Points = Note	3,5
15,5	-	19,5	Points = Note	3,0
11,0	-	15,0	Points = Note	2,5
7,0	-	10,5	Points = Note	2,0
2,5	-	6,5	Points = Note	1,5
0,0	-	2,0	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente : Cette épreuve d'examen ne peut pas être utilisée librement comme

exercice avant le 1er septembre 2016.

Créé par : Groupe de travail EFA de l'USIE pour la profession

d'installatrice-électricienne CFC / installateur-électricien CFC

Editeur : CSFO, département procédures de qualification, Berne

xer	cices	Nombre of maximal	de points obtenus
1.	5.1.1 Donnez deux raisons pour lesquelles les tensions sont transformées jusqu'à des valeurs de 220 kV ou 380 kV pour le transport de l'énergie.	2	
	Solution :		
	Le courant diminue		
	Les pertes en ligne diminuent	(1	
	La section des conducteurs est inférieure	par	
	Le transport de l'énergie est plus économique	rép.)	
2.	5.1.4 Quelles sont les différentes pertes rencontrées dans les transformateurs ?	2	
	Solution:		
	 pertes cuivre ou pertes Joule ou pertes dans les enroulements les pertes fer (Hystérésis, les pertes par courants de Foucault) 	(1) (1)	
	(si au lieu de pertes de fer que pertes hystérésis ou pertes par courants de foucault 0,5 point)		
3.	 5.1.6 Un transformateur monophasé 400 V / 230 V possède au primaire 1500 spires dans lesquelles circule un courant de 1,2 A. En négligeant les pertes dans le transformateur, calculez : a) le courant au secondaire. b) le nombre de spires au secondaire. 	2	
	Solution :		
	a) $I_2 = \frac{U_1 \cdot I_1}{U_2} = \frac{400 \text{ V} \cdot 1, 2 \text{ A}}{230 \text{ V}} = \underline{\frac{2,09 \text{ A}}{230 \text{ V}}}$	(1)	
	b) $N_2 = \frac{U_2 \cdot N_1}{U_1} = \frac{230 \text{ V} \cdot 1500}{400 \text{ V}} = \underline{863}$	(1)	

Exer	cices		Nombre of maximal	de points obtenus
4.	5.1.7 Un shunt de 200 A de coura ampèremètre.	nt nominal est couplé en parallèle à un	2	
	un courant de 100 A et q	résistance shunt lorsque celle-ci est parcourue par ue la tension à ses bornes est de 30 mV ? issipée dans la résistance shunt parcourue par son		
	Solution :			
	a) $R_s = \frac{U_s}{I_s} = \frac{30 \text{ mV}}{100 \text{ A}} = 0$), 3 mΩ	(1)	
	b) $P_n = I_n^2 \cdot R_n = (200$	$A)^2 \cdot 0, 3 \text{ m}\Omega = \underline{12 \text{ W}}$	(1)	
5.			2	
	programme de séchage ?	ique consommée sur le réseau électrique durant ce e ce programme de séchage ?		
	Solution :			
	a) $W = W_2 - W_1 = 45'4$	$466,3 \text{ kWh} - 45'463,4 \text{ kWh} = \frac{2,9 \text{ kWh}}{2}$	(1)	
	b) $t = \frac{W}{P} = \frac{2,90 \text{ kWh}}{2,1 \text{ kW}} =$	= <u>1,38 h</u>	(1)	
6.	5.2.2 Tracez les adjectifs qui ne s	appliquent pas à la lampe correspondante.	2	
	Ampoule halogène :	Température de couleurs haute / basse; couleurs chaudes / neutres / froides		
	TL, lumière du jour :	Température de couleurs haute / basse; couleurs chaudes / neutres / froides		
	Solution :			
	Ampoule halogène :	Température de couleurs haute /basse; couleurs chaudes/ neutres / froides	(1)	
	TL, lumière du jour :	Température de couleurs haute/ basse ; couleurs chaudes / neutres /froides	(1)	

ercices	Nombre maximal	de point obtenu
5.2.5 La bobine mobile est raccordée via deux contacts glissants sur deux points de connexion. Les bobines à gauche et à droite de la bobine mobile sont fixes et disposent chacune de deux points de connexion.	4	
 a) Relier les bobines à la source de tension (bornes + et -) de sorte que la bobine mobile tourne dans le sens des aiguilles d'une montre. b) Comment peut-on inverser le sens de rotation de la bobine mobile ? 		
+ -		
Solution:		
a)		
	(3)	
* * + -		
(1 point par polarité correcte) Remarque : Il est aussi possible de connecter les bobines en parallèle.		
b) Le sens de rotation peut être inversé en permutant les connexions sur le rotor ou sur les deux enroulements de stator.	(1)	

Exer	cices	Nombre o	de points obtenus
8.	5.2.6 Le fabricant d'un accumulateur fournit la caractéristique ci-dessous. Elle représente la tension aux bornes de l'accumulateur en fonction du courant	2	
	délivré. U[V] 24		
	18 12 6 0 0 60 120 180 240		
	Déterminez, avec cette caractéristique, les grandeurs suivantes :		
	 a) la tension (FEM) à vide. b) le courant de court-circuit. c) la résistance interne. d) la tension aux bornes de l'accumulateur lorsqu'il délivre un courant 		
	de 180 A.		
	Solution: a) $E = \underline{\underline{24 \ V}}$	(0,5)	
	$I_{cc} = \underline{\underline{240 \text{ A}}}$	(0,5)	
	c) $R_i = \frac{E}{I_{CC}} = \frac{24 \text{ V}}{240 \text{ A}} = \underline{0, 1 \Omega}$	(0,5)	
	$\mathbf{d}) \qquad \mathbf{U} = \underline{6 \ \mathbf{V}}$	(0,5)	
9.	5.2.6 Expliquez pour quelle raison le courant dans le secondaire I ₂ circule dans le sens indiqué.	2	
	Solution : Loi de Lenz Le sens du courant induit est tel qu'il s'oppose à ce qui le crée.		
	La bobine primaire produit un flux dans le sens horaire, la bobine secondaire doit donc produire un flux inverse. Elle doit donc avoir un pôle nord en haut et un pôle sud en bas. La règle de la main droite permet de déterminer le sens du courant l2 pour obtenir un pôle nord en haut.		

Exercices	Nombre maximal	de points obtenus
 5.2.9 Quelle est la tension U₂, sachant que R₁ = 100 Ω et que R₂ a une tension de Zener de 5,6 V ? 	2	
+ O +		
\downarrow U_1 R_2 \downarrow U_2		
- 0 -		
a) $U_1 = 4 V$		
$U_2 =$		
b) $U_1 = 8 \text{ V}$ $U_2 =$		
Solution:		
a) $U_2 = \underline{4V}$	(1)	
$\mathbf{b}) \qquad \mathbf{U_2} = \underline{\mathbf{5,6 V}}$	(1)	
 5.2.9 11. Vous construisez un capteur de niveau pour un réservoir d'eau. Lorsque le liquide atteint la résistance intégrée dans le réservoir, celle-ci se refroidit très rapidement. Le processus de remplissage est automatiquement interrompu par le relais. 	2	
 a) Quel type de résistance doit être utilisé pour ce capteur de niveau ? b) Motivez votre réponse. 		
Solution :		
a) Une résistance PTC	(1)	
1	(1)	

Exer	cices	Nombre of maximal	de points obtenus
12.	5.3.1 Une bobine (Inductance $L=3~H$; résistance $R=60~\Omega$) et un condensateur ($C=5~\mu F$) sont couplés en série et reliés sur le réseau de distribution (230 V / 50 Hz).	4	
	Calculez :		
	 a) la réactance de capacité X_c. b) la réactance d'induction X_L. c) l'impédance totale Z. d) le facteur de puissance cos φ. 		
	Solution :		
	a) $X_C = \frac{1}{2 \pi \cdot f \cdot C} = \frac{1}{2 \pi \cdot 50 \text{ Hz} \cdot 5 \cdot 10^{-6} \text{F}} = \underline{636, 6 \Omega}$	(1)	
	b) $X_L = 2 \pi \cdot f \cdot L = 2 \pi \cdot 50 \text{ Hz} \cdot 3 \text{ H} = \underline{942, 5 \Omega}$	(1)	
	c) $Z = \sqrt{(R)^2 + (X_L - X_C)^2} = \sqrt{(60 \Omega)^2 + (942, 5 \Omega - 636, 6 \Omega)^2} = \underline{311, 7 \Omega}$	(1)	
	d) $\cos \varphi = \frac{R}{Z} = \frac{60 \Omega}{311,7 \Omega} = \frac{0,192}{100}$	(1)	
13.	5.3.4 Trois corps de chauffe ayant des résistances de 30 Ω , 40 Ω et 50 Ω sont couplés en étoile sur le réseau triphasé 3 x 400 V / 230 V (le conducteur de neutre est raccordé). Calculez la puissance totale.	2	
	Solution :		
	$P_1 = \frac{{U_1}^2}{R_1} = \frac{(230 \text{ V})^2}{30 \Omega} = \underline{1763 \text{ W}}$	(0,5)	
	$P_2 = \frac{U_2^2}{R_2} = \frac{(230 \text{ V})^2}{40 \Omega} = \underline{1323 \text{ W}}$	(0,5)	
	$P_3 = \frac{{U_3}^2}{R_3} = \frac{(230 \text{ V})^2}{50 \Omega} = \underline{1058 \text{ W}}$	(0,5)	
	$P = P_1 + P_2 + P_3 = 1763 W + 1323 W + 1058 W = 4,144 kW$	(0,5)	

Exercices	Nombre o	de points obtenus
5.3.2 14. Un moteur alternatif monophasé d'une puissance mécanique de 500 W (η = 0,75 / cos φ = 0,78) est raccordé au réseau 230 V / 50 Hz.	2	
Quelle est la valeur du courant circulant dans la ligne d'alimentation ?		
Solution :		
$P_{absorbée} = \frac{P_{utile}}{\eta} = \frac{500 \text{ W}}{0.75} = \frac{666.7 \text{ W}}{0.0000000000000000000000000000000000$	(0,5)	
$S = \frac{P_{absorb\acute{e}e}}{\cos \varphi} = \frac{666,67 \text{ W}}{0,78} = 854,7 \text{ VA}$	(0,5)	
$I = \frac{S}{U} = \frac{854,71}{230 \text{ V}} = \frac{3,72 \text{ A}}{}$	(1)	
5.4.1 15. Classez les composants suivants :	2	
Actionneur Capteur 1. Sonde de température		
Solution :		
Actionneur Capteur 1. Sonde de température	(0,5 par rép.)	

Exer	cices	Nombre o	de points obtenus
	5.3.3	maximai	Obtonus
16.	Calculez pour le circuit suivant :	3	
	a) la résistance équivalente.		
	b) le courant circulant dans la résistance R5.		
	$R_1 = 30 \Omega$; $R_2 = 20 \Omega$; $R_3 = 40 \Omega$; $R_4 = 60 \Omega$; $R_5 = 30 \Omega$		
	R3		
	>		
	> 84 R5 R2 R2		
	R1		
	THE TOTAL PROPERTY OF THE PROP		
	Solution:		
	a) $R_{2_3} = R_2 + R_3 = 20 \Omega + 40 \Omega = \underline{60 \Omega}$	(0,5)	
	D (0.0		
	$R_{2_{3_{-}4}} = \frac{R}{n} = \frac{60 \Omega}{2} = \underline{30 \Omega}$	(0,5)	
	2_3_1 n 2 ——	(, ,	
	$R_{1_2_3_4} = R_{2_3_4} + R_1 = 30 \Omega + 30 \Omega = \underline{60 \Omega}$	(0,5)	
	1_2_5_+ 2_5_+ 1	(0,0)	
	$R_{\text{\'equ}} = \frac{R_{1_2_3_4} \cdot R_5}{R_{1_2_3_4} + R_5} = \frac{60 \Omega \cdot 30 \Omega}{60 \Omega + 30 \Omega} = \frac{20 \Omega}{\blacksquare}$	(0,5)	
	$R_{1_2_3_4} + R_5 = 60 \Omega + 30 \Omega = $	(0,0)	
	b) $I_{R5} = \frac{U}{R5} = \frac{48 \text{ V}}{30 \Omega} = \underline{1.6 \text{ A}}$	(1)	
	1 1	()	

ercices	Nombre maximal	de points obtenus
5.3.4		
Calculez:	5	
a) les courants de lignes (I _{L1} , I _{L2} , I _{L3}).		
b) le courant dans le conducteur de neutre (solution graphique sur la page		
suivante).		
Tous les consommateurs ont une charge purement résistive (ohmique).		
Alimentation triphasée 3 x 400 V / 230 V		
L ₁		
N		
PE		
<u> </u>		
Solution :		
a) $I_1 = 2,23 \text{ A}$		
P ₂ 300 W		
$I_2 = \frac{P_2}{U_{ph}} = \frac{300 \text{ W}}{230 \text{ V}} = \underline{1,304 \text{ A}}$	(0,5)	
Oph 230 V		
U_{ph} 230 V	(0.5)	
$I_3 = \frac{U_{ph}}{R_3} = \frac{230 \text{ V}}{54 \Omega} = \underline{4,259 \text{ A}}$	(0,5)	
D 4000 W		
$I_4 = \frac{P}{U \cdot \sqrt{3}} = \frac{4000 \text{ W}}{400 \text{ V} \cdot \sqrt{3}} = \frac{5,774 \text{ A}}{400 \text{ W}}$	(0,5)	
$0 \cdot \sqrt{3}$ 400 $\mathbf{V} \cdot \sqrt{3}$		
Courants de lignes		
I I I 2 22 A 1 F 774 A 0 A	(0.5)	
$I_{L1} = I_1 + I_4 = 2,23 \text{ A} + 5,774 \text{ A} = \underline{\underline{8 \text{ A}}}$	(0,5)	
$I_{L2} = I_2 + I_4 = 1,304 A + 5,774 A = 7,08 A$	(0,5)	
=======================================	(, ,	
$I_{L3} = I_3 + I_4 = 4,259 A + 5,774 A = 10,03 A$	(0,5)	
		<u> </u>

(er	cices	Nombre maximal	de points obtenus
7.	b) Courant dans le conducteur de neutre Solution graphique 1 A = 5 mm $I_N = 26 \text{ mm} \stackrel{?}{=} \underline{2,6 \text{ A}}$ (correct : 2,4 A à 2,8 A) $I_N = \frac{1}{3}$	Nombre maximal	de points obtenus
	Pour obtenir tous les points, le courant de neutre doit être compris entre 2,4 A et 2,8 A.		
	Remarque : Le courant de neutre peut également être construit en utilisant seulement les courants I1, I2, I3.		

