SHU(MRU) 物理学院-每日一题 16

Prof. Shu

2023年7月21日

题目 16.

- 一个体系由 $N(N\gg 1)$ 个近独立粒子构成,每个粒子的能量只能取 $\varepsilon_1=0$ 和 $\varepsilon_2=\varepsilon>0$. 设低能级的粒子数为 N_1 , 高能级的粒子数为 N_2 .
 - 1. 求体系的熵 S.
 - 2. 求体系温度 T 与体系能量 E 的函数关系, 求出 T < 0 的条件.
 - 3. 当负温度体系与正温度体系接触时, 热流的方向是什么?

题目 16 的提示.

使用统计的方法求熵.Stirling 近似: $n! \approx \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n}$. 温度的热力学定义: $T = \left(\frac{\partial U}{\partial S}\right)_N$

题目 15 的参考答案.

由高斯定理可得电荷密度为

$$\rho(r) = \varepsilon_0 \nabla \cdot \mathbf{E} = \varepsilon_0 A \nabla \cdot \left(\frac{e^{-br}}{r} \hat{\mathbf{r}} \right)
= \varepsilon_0 A \left(\nabla e^{-br} \frac{\hat{\mathbf{r}}}{r} + e^{-br} \nabla \cdot \frac{\hat{\mathbf{r}}}{r} \right)
= \varepsilon_0 A \left[\left(\hat{\mathbf{r}} \frac{\partial}{\partial r} e^{-br} \right) \frac{\hat{\mathbf{r}}}{r} + e^{-br} \nabla \cdot \frac{\hat{\mathbf{r}}}{r} \right]
= -\frac{\varepsilon_0 A b}{r^2} e^{-br} + 4\pi \varepsilon_0 A \delta(\mathbf{r})$$
(1)

其中第四个等号用了球坐标下的 ▽ 表示.

总电荷可由电荷密度积分得

$$Q = \int_0^\infty \rho(r) dV = -\int_0^\infty \frac{\varepsilon_0 Ab}{r^2} e^{-br} \cdot 4\pi r^2 dr + 4\pi \varepsilon_0 A = 0$$
 (2)