

NHD-C0220BiZ-FS(RGB)-FBW-3VM

COG (Chip-On-Glass) Character Liquid Crystal Display Module

NHD- Newhaven Display

CO220- COG, 2 Lines x 20 Characters

BiZ- Model, I²C Interface

F- Transflective

S(RGB)- Side LED Backlights – Red, Green, and Blue

F- FSTN, Positive
B- 6:00 Optimal View
W- Wide Temperature

3V- 3.3V LCD

M- Mounting Holes

RoHS Compliant

Newhaven Display International, Inc.

2511 Technology Drive, Suite 101 Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

www.newhavendisplay.com

nhtech@newhavendisplay.com

nhsales@newhavendisplay.com

Document Revision History

Revision	Date	Description	Changed by
0	7/8/09	Initial Release	CL
1	7/10/09	Mechanical Drawing updated	BE
2	9/8/09	Backlight supply current	BE
3	10/9/09	Updated Electrical Characteristics	MC
4	12/9/09	Updated Backlight Power supply and Current	MC
5	5/27/11	Display character address code updated	AK
6	6/13/11	Electrical characteristics updated	AK
7	6/23/14	Mechanical, Electrical & Optical Characteristics Updated	ML
8	5/24/17	Mechanical, Electrical Characteristics Updated	SB
9	3/20/18	Mechanical Drawing Updated	SB

Functions and Features

- 2 lines x 20 characters
- Built-in ST7036i controller with I²C interface
- 3.3V power supply
- 1/16 duty, 1/5 bias
- Built-in DC supply for VLCD (requires 2 external capacitors)

Pin Description and Wiring Diagram

Pin No.	Symbol	External Connection	Function Description
1	RST	MPU	Active LOW Reset signal
2	SCL	MPU	Serial Clock signal (requires pull-up resistor)
3	SDA	MPU	Serial Data signal (requires pull-up resistor)
4	V_{SS}	Power Supply	Ground
5	V_{DD}	Power Supply	Supply Voltage for Logic (+3.3V)
6	V_{OUT}	CAP	Connect 1µF cap to VSS or VDD
7	C1+	CAP	Connect 0.47-2.2µF cap to PIN8
8	C1-	CAP	Connect 0.47-2.2µF cap to PIN7

Recommended LCD connector: N/A, solder directly into PCB

Backlight connector: 3.0mm pitch pins, solder directly into PCB Mates with: ---

Capacitance 0.47 μ F^2.2 μ F; Recommended value = 1 μ F Recommended Resistor: 10k Ω

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Top	Absolute Max	-20	-	+70	°C
Storage Temperature Range	T _{ST}	Absolute Max	-30	-	+80	°C
Supply Voltage	V_{DD}	-	3.0	3.3	3.6	V
Supply Current	I_{DD}	V _{DD} = 3.3V	0.2	0.5	1.5	mA
Supply for LCD (contrast)	V_{LCD}	$T_{OP} = 25^{\circ}C$	5.3	5.5	5.7	V
"H" Level input	V_{IH}	-	0.7 * V _{DD}	-	V_{DD}	V
"L" Level input	VIL	-	Vss	-	0.8	V
"H" Level output	Vон	-	0.7 * V _{DD}	-	V_{DD}	V
"L" Level output	Vol	-	Vss	-	0.8	V
Backlight Supply Current – RED	I_R	-	-	20	30	mA
Backlight Supply Voltage – RED	V_R	$I_R = 20mA$	1.7	1.9	2.1	V
Backlight Supply Current – GREEN	I _G	-	-	30	40	mA
Backlight Supply Voltage – GREEN	V _G	$I_G = 30mA$	2.7	2.9	3.1	V
Backlight Supply Current – BLUE	I _B	-	-	30	40	mA
Backlight Supply Voltage – BLUE	V_B	I _B = 30mA	2.7	2.9	3.1	V

^{*}The LED of the backlight is driven by current; drive voltage is for reference only. Drive voltage must be selected to ensure backlight current drain is below MAX level stated.

Optical Characteristics

	lte	em	Symbol	Condition	Min.	Тур.	Max.	Unit
Ontimal	Тор		φΥ+		•	40	ı	0
Optimal	Bott	om	φΥ-	CR ≥ 2	-	60	-	0
Viewing Angles	Left		θХ-	CR ≥ 2	-	60	-	0
Angles	Righ	nt	θХ+		-	60	-	0
Contrast Rat	io		CR	-	2	5	-	-
Dosnonso T	ima	Rise	T _R	T - 25°C	-	150	250	ms
Response T	ime	Fall	T _F	$T_{OP} = 25^{\circ}C$	-	200	300	ms

Controller Information

Built-in ST7036i controller.

Please download specification at http://www.newhavendisplay.com/app notes/ST7036.pdf

DDRAM Address

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
00	01	02	03	04	05	06	07	08	09	0A	OB	0C	0D	0E	OF	10	11	12	13
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	51	52	53

Slave Address = 0x78

Table of Commands

Instruction		•	lr	ıstr	ucti	on	Cod	le			Description
mstruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC
Return Home	0	0	0	0	0	0	0	0	1	x	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	s	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1:entire display on C=1:cursor on B=1:cursor position on
Function Set	0	0	0	0	1	DL	N	DH	IS2	IS1	DL: interface data is 8/4 bits N: number of line is 2/1 DH: double height font IS[2:1]: instruction table select
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM/ICONRAM)
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM/ICONRAM)

	Instruction table 0(IS[2:1]=[0,0])													
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	x	x	S/C and R/L: Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.			
Set CGRAM	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter			

	Instruction table 1(IS[2:1]=[0,1])													
Bias Set	0	0	0	0	0	1	BS	1	0	FX	BS=1:1/4 bias BS=0:1/5 bias FX: fixed on high in 3-line application and fixed on low in other applications.			
Set ICON Address	0	0	0	1	0	0	AC3	AC2	AC1	AC0	Set ICON address in address counter.			
Power/ICON Control/ Contrast Set	0	0	0	1	0	1	lon	Bon	C5	C4	Ion: ICON display on/off Bon: set booster circuit on/off C5,C4: Contrast set for internal follower mode.			
Follower Control	0	0	0	1	1	0	Fon	Rab 2	Rab 1	Rab 0	Fon: set follower circuit on/off Rab2~0: select follower amplified ratio.			
Contrast Set	0	0	0	1	1	1	СЗ	C2	C1	C0	Contrast set for internal follower mode.			

	Instruction table 2(IS[2:1]=[1,0])														
Double Height Position Select	0	0	0	0	0	1	UD	x	x	x	UD: Double height position select				
Reserved	0	0	0	1	X	X	x	х	×	X	Do not use (reserved for test)				

Timing Characteristics

Item	Signal	Symbol	Condition	VDD=2.7 Rati		VDD=4.5 Ratio	Units	
item	Oigilai	Cymbol	Condition	Min.	Max.	Min.	Max.	Omis
SCL clock frequency		f _{SCLK}		DC	300K	DC	400	kHz
SCL clock low period	SCL	t _{LOW}	_	2.5	_	1.3	_	
SCL clock high period		t _{HIGH}		0.6	_	0.6	_	μs
Data set-up time	SDA	t _{SU;DAT}		1800	_	700	_	ns
Data hold time	JUL	t _{HD:DAT}		0	_	0	0.5	μs
SCL,SDA rise time	SCL,	t _r		20+0.1C _b	300	20+0.1C _b	300	ns
SCL,SDA fall time	SDA	t _f		20+0.1C _b	300	20+0.1C _b	300	115
Capacitive load represent by each bus line		Сь	_	_	400	_	400	pf
Setup time for a repeated START condition	SDA	t _{SU;STA}	_	0.6	_	0.6	_	μs
Start condition hold time		t _{HD;STA}	_	1.8	_	1.0	_	μs
Setup time for STOP condition		t _{su;sto}	_	0.6	_	0.6	_	μs
Bus free time between a Stop and START condition	SCL	t _{BUF}	_	1.3	_	1.3	_	μs

Built-in Font Table (OPR1 = 0, OPR2 = 0)

67-64 60-60	0000	0001	0010	0011	0100	D101	0 110	0111	1000	1001	1010	10 1 1	1100	1 1 01	11 10	1111
0000														•••		
0001																
0010																
0011																
0100																
0101																
0110																
0111																
1000																
1001																
1010																
1011																
1100		•														
1101																
1110																
1111																

Example Initialization Program

```
/**************
         Initialization For ST7036i
****************
void init LCD()
I2C Start();
I2C out(Slave);//Slave=0x78
I2C_{out}(Comsend);//Comsend = 0x00
I2C_out(0x38);
delay(10);
I2C out (0x39);
delay(10);
I2C out(0x14);
I2C out (0x78);
I2C out (0x5E);
I2C out (0x6D);
I2C out (0x0C);
I2C out (0x01);
I2C out(0x06);
delay(10);
I2C Stop();
/*********************************
/**************
        Output command or data via I2C
******************
void I2C_out(unsigned char j)
                                     //I2C Output
{
      int n;
      unsigned char d;
      for(n=0;n<8;n++){
            if((d\&0x80) == 0x80)
            SDA=1;
            else
            SDA=0;
            d = (d << 1);
            SCL = 0;
            SCL = 1;
            SCL = 0;
      SCL = 1;
      while (SDA==1) {
            SCL=0;
            SCL=1;
      SCL=0;
/*********************************
```

```
/**************
    I2C Start
***********************************
void I2C_Start(void)
{
     SCL=1;
     SDA=1;
     SDA=0;
     SCL=0;
/*********************
/**************
       I2C Stop
**********************************
void I2C_Stop(void)
     SDA=0;
     SCL=0;
     SCL=1;
     SDA=1;
/***********************************
/**************
       Send string of ASCII data to LCD
***********************************
void Show(unsigned char *text)
     int n,d;
     d=0x00;
     I2C Start();
     I2C out(Slave); //Slave=0x78
     I2C out(Datasend);//Datasend=0x40
     for (n=0; n<20; n++) {
          I2C out(*text);
          ++text;
     I2C Stop();
    *******************
  ****************
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage	+80°C, 96hrs	2
	temperature for a long time.		
Low Temperature storage	Endurance test applying the low storage	-30°C , 96hrs	1,2
	temperature for a long time.		
High Temperature	Endurance test applying the electric stress	+70°C, 96hrs	2
Operation	(voltage & current) and the high thermal		
	stress for a long time.		
Low Temperature	Endurance test applying the electric stress	-20°C , 96hrs	1,2
Operation	(voltage & current) and the low thermal		
	stress for a long time.		
High Temperature /	Endurance test applying the electric stress	+60°C, 90% RH, 96hrs	1,2
Humidity Operation	(voltage & current) and the high thermal		
	with high humidity stress for a long time.		
Thermal Shock resistance	Endurance test applying the electric stress	-20°C,30min -> 25°C,5min ->	
	(voltage & current) during a cycle of low	70°C,30min = 1 cycle	
	and high thermal stress.	10 cycles	
Vibration test	Endurance test applying vibration to	10-55Hz , 15mm amplitude.	3
	simulate transportation and use.	60 sec in each of 3 directions	
		X,Y,Z	
		For 15 minutes	
Static electricity test	Endurance test applying electric static	VS=800V, RS=1.5kΩ, CS=100pF	
	discharge.	One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information

See Terms & Conditions at http://www.newhavendisplay.com/index.php?main_page=terms