Fonctions Polynômes du Second Degré

I Fonction polynôme de degré 2:

Définition:

On appelle fonction polynôme de second degré toute fonction f définie sur $\mathbb R$ par une expression de la forme:

$$f(x) = ax^2 + bx + c$$

où les coefficient a, b et c sont des réels donnés avec $a \neq 0$.

Remarque:

<u>Une fonction</u> polynôme de degré 2 s'appelle également fonction trinôme du second degré ou par abus de langage "trinôme".

Exemples et contre-exemples:

•
$$f_1(x) = 3x^2 - 2x + 4$$
 ($a = 3$, $b = -2$ et $c = 4$)

•
$$f_2(x) = \frac{1}{2}x^2 + 3$$
 ($a = \frac{1}{2}$, $b = 0$ et $c = 3$)

•
$$f_3(x) = -4x^2 + 3x$$
 ($a = -4$, $b = 3$ et $c = 0$)

sont des fonctions polynômes de degré 2.

- g(x) = 3x 1 est une fonction polynôme de degré 1 (fonction affine).
- $h(x) = 4x^3 2x^2 + 4x 1$ est une fonction polynôme de degré 3.
- $k(x) = 3x^4 6x^3 + 3x^2 + 5x 1$ est une fonction polynôme de degré 4.

II Forme canonique d'une fonction polynôme de degré 2:

Soit f définie sur RSoit f une fonction polynôme de degré 2 définie sur R par $f(x) = 2x^2 - 20x + 10$

On veut exprimer la fonction f sous la forme canonique : $f(x) = a(x - \alpha)^2 + \beta$

où a, α et β sont des nombres réels.

$$f(x) = 2x^2 - 20x + 10$$

$$= 2(x^2 - 10x) + 10$$

$$= 2(x^2 - 2 \times x \times 5) + 10$$

$$= 2(x^2 - 2 \times x \times 5 + 5^2 - 5^2) + 10$$

$$=2((x-5)^2-25)+10$$

$$= 2(x-5)^2 - 50 + 10$$

d'où la forme canonique de f est de la forme

$$f(x) = 2(x-5)^2 - 40$$

où
$$a=2$$
 , $\alpha=5$ et $\beta=-40$

Chapitre : Second Degré Page 2/11

Propriété:

Toute fonction polynôme f de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ peut s'écrire sous la forme :

$$f(x) = a(x - \alpha)^2 + \beta$$

où α et β sont deux nombres réels.

Cette dernière écriture s'appelle la forme canonique de f.

Démonstration:

Comme $a \neq 0$, on peut écrire pour tout réel x:

$$f(x) = a(x^2 + \frac{b}{a}) + c$$

$$f(x) = a(x^2 + 2 \times x \times \frac{b}{2a}) + c$$

$$f(x) = a(x^2 + 2 \times x \times \frac{b}{2a} + (\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$$

$$f(x) = a((x + \frac{b}{2a})^2 - \frac{b^2}{4a^2}) + c$$

$$f(x) = a(x + \frac{b}{2a})^2 - \frac{b^2}{4a} + c$$

$$f(x) = a(x + \frac{b}{2a})^2 - \frac{b^2}{4a} + \frac{4ac}{4a}$$

$$f(x) = a(x + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a}$$

Soit, en posant $\alpha = \frac{-b}{2a}$ et $\beta = -\frac{b^2 - 4ac}{4a}$, on obtient: pour tout $x \in \mathbb{R}$, on a:

$$f(x) = a(x - \alpha)^2 + \beta$$

Exemples

Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x)=3x^2-2x+1$, on a $a=3,\,b=-2$ et c=1 alors:

$$\alpha = -\frac{b}{2a} = -\frac{-2}{2\times 3} = \frac{1}{3}$$

et
$$\beta = f(\alpha) = f(\frac{1}{3}) = 3 \times (\frac{1}{3})^2 - 2 \times \frac{1}{3} = \frac{1}{3} - \frac{2}{3} + \frac{3}{3} = \frac{2}{3}$$

D'où, la forme canonique de la fonction polynôme du second degré est

$$f(x) = a(x - \alpha)^2 + \beta = 3(x - \frac{1}{3})^2 + \frac{2}{3}$$

III Variation et représentation graphique d'une fonction polynôme de degré 2:

Quand on connaît la forme canonique d'une fonction polynôme du second degré, on peut en déduire son maximum ou son minimum.

Démonstration:

Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ avec $a \neq 0$, alors pour tout réel x, $f(x) = a(x - \alpha)^2 + \beta$.

1. Étudions le cas où a < 0

Si $x_1 < x_2 \le \alpha$ alors $x_1 - \alpha < x_2 - \alpha \le 0$ d'où $(x_1 - \alpha)^2 > (x_2 - \alpha)^2$. (la fonction carré est décroissante sur $] - \infty; 0]$)

On en déduit que $a(x_1 - \alpha)^2 + \beta < a(x_2 - \alpha)^2 + \beta$ soit $f(x_1) < f(x_2)$.

Si $\alpha \leqslant x_1 < x_2$ alors $0 \leqslant x_1 - \alpha < x_2 - \alpha$ d'où $(x_1 - \alpha)^2 < (x_2 - \alpha)^2$. (la fonction carré est croissante sur $[0; +\infty[)$

On en déduit que $a(x_1 - \alpha)^2 + \beta > a(x_2 - \alpha)^2 + \beta$ soit $f(x_1) > f(x_2)$.

Ainsi, si a < 0 la fonction f est strictement croissante sur l'intervalle $]-\infty;\alpha]$ et strictement décroissante sur l'intervalle $[\alpha;+\infty[$

2. Étudions le cas où a > 0

Si $x_1 < x_2 \le \alpha$ alors $x_1 - \alpha < x_2 - \alpha \le 0$ d'où $(x_1 - \alpha)^2 > (x_2 - \alpha)^2$.

On en déduit que $a(x_1 - \alpha)^2 + \beta > a(x_2 - \alpha)^2 + \beta$ soit $f(x_1) > f(x_2)$.

Si $\alpha \le x_1 < x_2$ alors $0 \le x_1 - \alpha < x_2 - \alpha$ d'où $(x_1 - \alpha)^2 < (x_2 - \alpha)^2$.

On en déduit que $a(x_1 - \alpha)^2 + \beta < a(x_2 - \alpha)^2 + \beta$ soit $f(x_1) < f(x_2)$.

Ainsi, si a>0 la fonction f est strictement décroissante sur l'intervalle $]-\infty;\alpha]$ et strictement croissante sur l'intervalle $[\alpha;+\infty[$

On retient :

Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ avec $a \neq 0$. Les variations de f sont données par les tableaux suivants :

Cas 1

Cas 2

EXEMPLE

Soit f la fonction définie sur $\mathbb R$ par par $f(x)=-3x^2-2x+1$. Ici $a=-3,\ b=-2$ et c=1. Ainsi, $\alpha=-\frac{b}{2a}=-\frac{1}{3}$ et $\beta=f(\alpha)=\frac{4}{3}$. Comme a<0, on en déduit le tableau des variations de f:

Page 4/11 CHAPITRE : SECOND DEGRÉ

x	$-\infty$ $-\frac{1}{3}$	+∞
f(x)	$\frac{4}{3}$	•

Courbe Représentative

Dans un repère orthogonal $(0; \vec{i}, \vec{j})$ du plan, la courbe représentative d'une fonction polynôme f de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ avec $a \neq 0$ est une parabole. On dit que la parabole a pour équation $y = ax^2 + bx + c$

Le sommet S de la parabole a pour abscisse α . Il correspond au maximum ou au minimum sur $\mathbb R$ de la function f.

La parabole a pour axe de symétrie la droite d'équation $x=\alpha$

Cas 1

La parabole est tournée vers le bas

Cas 2

La parabole est tournée vers le haut

III.0.1 Symétrie de la parabole

Pour des raisons de symétrie, l'abscisse α du sommet de la parabole est la moyenne des abscisses x_1 et x_2 de deux points de la parabole ayant même ordonnée : $\alpha = \frac{x_1 + x_2}{2}$

EXEMPLE

Soit f la fonction définie pour tout réel x par $f(x) = 2x^2 - 6x - 5$ où a, b et c sont trois réels.

chapitre : Second Degré Page 5/11

Déterminons deux points de la courbe représentative de la fonction f ayant la même ordonnée. Cherchons les solutions de l'équation f(x) = -5

$$2x^{2} - 6x - 5 = -5 \Leftrightarrow 2x^{2} - 6x = 0$$
$$\Leftrightarrow 2x(x - 3) = 0$$

Soit x=0 ou x=3. Par conséquent, le sommet de la parabole a pour abscisse $\alpha=\frac{0+3}{2}=1,5$

IV Racine d'une fonction polynôme de degré 2:

Définition:

On appelle racine de la fonction f polynôme de degré 2 tout nombre réel x_1 tel que $f(x_1) = 0$. Autrement dit, une racine de est une solution de l'équation f(x) = 0.

Exemple:

La fonction f définie sur \mathbb{R} par f(x)=(2x-1)(x-1) est une fonction polynôme du second degré. En développant, on obtient :

$$f(x) = 2x^2 - 3x - 1$$

Les racines de f sont 1 et $\frac{1}{2}$

En effet,

$$f(1) = 0$$
 et $f(\frac{1}{2}) = 0$

V Factorisation d'une fonction polynôme de degré 2:

Propriété:

Soit f une fonction définie sur \mathbb{R} par une expression de la forme : $f(x) = ax^2 + bc + c$

où les coefficient a, b et c sont des réels donnés avec $a \neq 0$.

Si le réel x_1 est une racine de f, alors f peut se factoriser par $x-x_1$ sous la forme $f(x)=(x-x_1)(ax+d)$ où d est un nombre réel.

Conséquences:

 \bullet Si f admet deux racines x_1 et x_2 , alors f peut se factoriser par

$$f(x_1) = a(x - x_1)(x - x_2)$$

ullet Une fonction f polynôme du second degré admet au plus 2 racines.

Propriété:

Soit f une fonction définie sur \mathbb{R} par une expression de la forme : $f(x) = ax^2 + bc + c$

où les coefficient a, b et c sont des réels donnés avec $a \neq 0$.

Si la fonction f admet deux racines x_1 et x_2 , alors f peut se factoriser sous la forme

$$f(x) = a(x - x_1)(x - x_2)$$

Exemple:

Soit f La fonction définie sur \mathbb{R} par $f(x) = 2x^2 - 6x + 4$.

On a:

$$f(1) = 2 \times (1)^2 - 6 \times (1) + 4 = 0$$

et
$$f(2) = 2 \times (2)^2 - 6 \times (2) + 4 = 0$$

Alors la fonction f admet deux racines $x_1 = 1$ et $x_2 = 2$

d'où la forme factorisée de f est

$$f(x) = 2(x-1)(x-2)$$

VI Somme et produit de racines d'une fonction polynôme de degré 2:

On admet que deux fonctions polynômes du second degré sont égales si et seulement si elles ont les mêmes coefficients

Propriété:

Soit f une fonction définie sur \mathbb{R} par une expression de la forme : $f(x) = ax^2 + bx + c$

où les coefficient a, b et c sont des réels donnés avec $a \neq 0$.

Si f admet les réels x_1 et x_2 pour racines, alors

Démonstration:

D'une part, $f(x) = ax^2 + bx + c$

D'autre part, $f(x) = a(x - x_1)(x - x_2)$

D'où $a(x-x_1)(x-x_2) = ax^2 + bx + c$

On a, $a(x-x_1)(x-x_2) = a(x^2 - x_2 \times x - x_1 \times x + x_1 \times x_2)$

 $= ax^2 - a(x_1 + x_2) \times x + a \times x_1 \times x_2$

 $=ax^2 - a \times S \times x + a \times P$

 $= ax^2 + bx + c$

D'où,

$$-a \times S = b$$

et

$$a \times P = c$$

Ainsi, $S = \frac{-b}{a}$ et $P = \frac{c}{a}$

Applications:

1. Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x^2 - 3x + 1$. Déterminer les racines de f.

On constate que f(1) = 0, donc $x_1 = 1$ est une racine évidente de f. Or, $x_1 \times x_2 = \frac{c}{a} = \frac{1}{2}$ d'où $1 \times x_2 = \frac{1}{2}$

Ainsi,
$$x_2 = \frac{1}{2}$$

Donc, les racines de la fonction f sont $x_1 = 1$ et $x_2 = \frac{1}{2}$

2. Soit f la fonction définie sur \mathbb{R} par $f(x) = -3x^2 + 4x - 7$. Déterminer les racines de f.

On constate que f(-1) = 0, donc $x_1 = -1$ est une racine évidente de f. Or, $x_1 \times x_2 = \frac{c}{a} = \frac{-7}{-3}$ d'où $-1 \times x_2 = \frac{7}{3}$

Ainsi,
$$x_2 = \frac{-7}{3}$$

Donc, les racines de la fonction f sont $x_1 = -1$ et $x_2 = \frac{-7}{3}$

VII Équations du second degré:

Une équation du second degré à une inconnue x, est une équation qui peut s'écrire sous la forme $ax^2 + bx + c = 0$ où a, b, c sont des réels et $a \neq 0$.

L'équation $ax^2 + bx + c = 0$ avec $a \neq 0$ peut s'écrire sous la forme $a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right] = 0$

On pose $\Delta = b^2 - 4ac$, l'équation $ax^2 + bx + c = 0$ avec $a \neq 0$ équivaut à l'équation $a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right] = 0$

0, soit encore $\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} = 0.$

- Si $\Delta < 0$ alors $\frac{\Delta}{4a^2} < 0$ et $\left(x + \frac{b}{2a}\right)^2 \frac{\Delta}{4a^2} > 0$. Donc l'équation du second degré n'a pas de solution.
- Si $\Delta = 0$ alors l'équation $ax^2 + bx + c = 0$ avec $a \neq 0$ équivaut à l'équation $\left(x + \frac{b}{2a}\right)^2 = 0$. Donc l'équation du second degré a pour unique solution $x = -\frac{b}{2a}$.
- Si $\Delta > 0$ alors :

$$\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} = 0 \Leftrightarrow \left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{\Delta}}{2a}\right)^2 = 0$$

$$\Leftrightarrow \left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right) \left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right) = 0$$

$$\Leftrightarrow \left(x + \frac{b + \sqrt{\Delta}}{2a}\right) \left(x + \frac{b - \sqrt{\Delta}}{2a}\right) = 0$$

Donc l'équation du second degré a deux solutions $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Propriétés:

Soit S l'ensemble des solutions dans $\mathbb R$ de l'équation du second degré $ax^2+bx+c=0$ où a,b et c sont des réels fixés avec $a \neq 0$ et $\Delta = b^2 - 4ac$ le discriminant du trinôme.

- Si $\Delta < 0$ alors l'équation n'a pas de solution ; $S = \emptyset$.
- Si $\Delta = 0$ alors l'équation a une seule solution ; $S = \left\{-\frac{b}{2a}\right\}$.
- Si $\Delta > 0$ alors l'équation a deux solutions ; $S = \left\{ \frac{-b \sqrt{\Delta}}{2a}; \frac{-b + \sqrt{\Delta}}{2a} \right\}$

Exemple:

Résoudre dans $\mathbb R$ l'équation $6x^2-3=7x$ Pour tout réel $x, 6x^2-3=7x \Leftrightarrow 6x^2-7x-3=0$. Il s'agit de résoudre une équation du second degré avec a=6, b=-7 et c=-3

Le discriminant du trinôme est $\Delta = b^2 - 4ac$ soit $\Delta = (-7)^2 - 4 \times 6 \times (-3) = 49 + 72 = 121$.

Comme $\Delta > 0$, l'équation admet deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 Soit $x_1 = \frac{7 - 11}{12} = -\frac{1}{3}$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$
 Soit $x_2 = \frac{7 + 11}{12} = \frac{3}{2}$

L'ensemble des solutions de l'équation $6x^2 - 3 = 7x$ est $S = \left\{-\frac{1}{3}; \frac{3}{2}\right\}$

Interprétation graphique:

CHAPITRE : SECOND DEGRÉ Page 9/11

Conséquences:

Factorisation du trinôme $ax^2 + bx + c$ avec $a \neq 0$:

- Si $\Delta < 0$ alors le trinôme ne se factorise pas.
- Si $\Delta = 0$ en notant x_0 l'unique racine : $f(x) = a(x x_0)^2$.
- Si $\Delta > 0$ en notant x_1 et x_2 les deux racines : $f(x) = a(x x_1)(x x_2)$.

VIII Signe d'un trinôme:

Propriétés:

Soit f un polynôme du second degré défini sur \mathbb{R} par $f(x) = ax^2 + bx + c$ avec $a \neq 0$ et $\Delta = b^2 - 4ac$ le discriminant du trinôme.

- Si $\Delta < 0$ alors pour tout réel x, f(x) est du signe de a.
- Si $\Delta = 0$ alors f(x) est du signe de a pour tout réel $x \neq -\frac{b}{2a}$.
- Si $\Delta > 0$, x_1 et x_2 désignant les deux racines du trinôme avec $x_1 < x_2$ alors f(x) est du signe de a pour tout réel $x \in]-\infty; x_1[\cup]x_2; +\infty[$ et f(x) est du signe contraire de celui de a pour tout réel $x \in]x_1; x_2[$.

Démonstration:

Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ avec $a \neq 0$ et $\Delta = b^2 - 4ac$ le discriminant du trinôme.

- Si $\Delta < 0$ alors f(x) est le produit par a d'une somme de deux nombres positifs donc le signe du trinôme est le signe de a pour tout réel x.
- Si $\Delta = 0$ alors $f(x) = a\left(x + \frac{b}{2a}\right)^2$ donc f(x) est nul pour $x = -\frac{b}{2a}$; pour les autres valeurs de x le signe du trinôme est le signe de a.
- Si $\Delta > 0$, x_1 et x_2 désignant les deux racines du trinôme avec $x_1 < x_2$ alors $f(x) = a(x-x_1)(x-x_2)$.

Étudions le signe du produit $a(x-x_1)(x-x_2)$ à l'aide d'un tableau de signe.

x	$-\infty$ x	1 ,	r ₂ +∞
$x-x_1$	- () + 	+
$x-x_2$	_	_	0 + 1
$a(x-x_1)(x-x_2)$	signe de a	signe de $-a$	0 signe de <i>a</i>

Remarque:

On retiendra la règle " Un polynôme du second degré est du signe de a à l'extérieur des racines et du signe contraire de a entre les racines".

Exemple:

1. Résoudre l'inéquation $-\frac{x^2}{4} - x + 3 \le 0$.

Étudions le signe du trinôme $-\frac{x^2}{4}-x+3$ avec $a=-\frac{1}{4},\,b=-1$ et c=3

Le discriminant du trinôme est $\Delta = b^2 - 4ac$ soit $\Delta = (-1)^2 - 4 \times \left(-\frac{1}{4}\right) \times 3 = 1 + 3 = 4$.

Comme $\Delta>0,$ le trinôme admet deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 Soit $x_1 = \frac{1 - 2}{-\frac{1}{2}} = 2$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$
 Soit $x_2 = \frac{1+2}{-\frac{1}{2}} = -6$

Un polynôme du second degré est du signe de a à l'extérieur des racines et du signe contraire de a entre les racines. Ainsi :

x	-∞		-6		2		+∞
Signe du trinôme							
$-\frac{x^2}{4} - x + 3$		_		+	0	_	

L'ensemble des solutions de l'inéquation $-\frac{x^2}{4} - x + 3 \le 0$ est $S =]-\infty; -6] \cup [2; +\infty[$.

2. Étudier les positions relatives de la parabole $\mathcal P$ d'équation $y=x^2$ avec la droite $\mathcal D$ d'équation y=2x-3

Les positions relatives de la parabole et de la droite se déduisent du signe de

$$x^2 - (2x - 3) = x^2 - 2x + 3$$

Le discriminant du trinôme est $\Delta = b^2 - 4ac$ soit $\Delta = (-2)^2 - 4 \times 1 \times 3 = 4 - 12 = -8$. Comme $\Delta < 0$, le trinôme est du signe de a donc pour tout réel x, $x^2 - 2x + 3 > 0$.

La parabole \mathcal{P} est au dessus de la droite \mathcal{D} .

IX Application: Position relative de deux courbes

Soit f et g deux fonctions définies sur $\mathbb R$ par : $f(x) = -x^2 + 8x - 11$ et g(x) = x - 1.

Étudier la position relative des courbes représentatives C_f et C_g .

On va étudier la différence f(x) - g(x)

- Si $f(x) g(x) \le 0$ sur un intervalle I, alors la courbe C_f est en-dessous de la courbe C_g sur l'intervalle I.
- Si $f(x) g(x) \ge 0$ sur un intervalle I, alors la courbe C_f est au-dessus de la courbe C_g sur l'intervalle I.

$$f(x) - g(x) = (-x^2 + 8x - 11) - (x - 1)$$

$$=-x^2+7x-10$$

Le discriminant du trinôme est $\Delta = 7^2 - 4 \times (-1) \times (-10) = 9$

Ainsi, le trinôme possède deux racines distinctes:

$$x_1 = \frac{-7 - \sqrt{9}}{2 \times (-1)} = 5$$
 et $x_2 = \frac{-7 + \sqrt{9}}{2 \times (-1)} = 2$

D'où, on dresse le tableau de signe du trinôme $-x^2+7x-10\,$

x	-∞		2		5		+∞
f(x) - g(x)		_	0	+	0	_	

On conclut:

- \circ La courbe C_f est en-dessous de la courbe C_g sur l'intervalle $]-\infty$; 2] et sur l'intervalle $[5;+\infty[$ \circ La courbe C_f est au-dessus de la courbe C_g sur l'intervalle [2;5].

