NRI 7350

Plots and Loading Data

Check-in

- Everyone getting emails?
 - Email about having your own data?
 - Email about these slides?
- Everyone have access to these slides? https://steffilazerte.ca/NRI_Labs/slides.html

2/70

Getting started (again)

Open RStudio Open your NRI project Open a **new** script for today: File > New File > R Script

Make sure to load **tidyverse** at the top: **library(tidyverse)**

Creating Figures

Our data set: Palmer Penguins! library(palmerpenguins) penguins ## # A tibble: 344 x 8 species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex <dbl> <dbl> <fct> <fct> 181 18.7 ## 1 Adelie Torgersen 39.1 3750 male 2007 ## 2 Adelie Torgersen 39.5 17.4 186 3800 female 2007 18 NA 3250 female 2007 ## 3 Adelie Torgersen 40.3 195 NA NA <NA> 2007 ## 4 Adelie Torgersen 36.7 39.3 ## 5 Adelie Torgersen 193 3450 female 2007 19.3 6 Adelie Torgersen 20.6 3650 male 7 Adelie Torgersen 3625 female 2007 ## 8 Adelie Torgersen 19.6 195 4675 male 2007 ## 9 Adelie Torgersen 34.1 18.1 193 3475 <NA> 2007 ## 10 Adelie Torgersen 20.2 4250 <NA> 2007 ## # \dots with 334 more rows 7/70 Artwork by @allison horst

Break it down

```
library(palmerpenguins)
library(tidyverse)

ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm)) +
    geom_point()
```

library(palmerpenguins)

• Load the palmerguins package so we have access to penguins data

9/70

Break it down

```
library(palmerpenguins)
library(tidyverse)

ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm)) +
    geom_point()
```

library(tidyverse)

• Load the tidyverse package (which loads the ggplot2 package)

10 / 70

Break it down

```
library(palmerpenguins)
library(tidyverse)

ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm)) +
    geom_point()
```

ggplot()

- Set the attributes of your plot
- data = Dataset
- aes = Aesthetics (how the data are used)
- Think of this as your plot defaults

Break it down

```
library(palmerpenguins)
library(tidyverse)

ggplot(data = penguins, aes(x = body_mass_g, y = bill_length_mm)) +
    geom_point()
```

geom_point()

- Choose a **geom** function to display the data
- Always added to a ggplot() call with +

ggplots are essentially layered objects, starting with a call to ggplot()

12 / 70

Plots are layered

Plots are layered

Plots are objects

Any ggplot can be saved as an object

g <- ggplot(data = penguins, aes(x = sex, y = body_mass_g))</pre>

18 / 70

Plots are objects

Any ggplot can be saved as an object

g <- ggplot(data = penguins, aes(x = sex, y = body_mass_g))</pre>

g 6000 - 5 5

More Geoms (Plot types)

Your Turn: Create this plot

Showing data by group

Trendlines / Regression Lines

Trendlines / Regression lines

A line for each group

• Specify group (here we use **colour** to specify **sex**)

Using stats: Trendlines / Regression lines

A line for each group

• stat_smooth() automatically uses the same grouping

Trendlines / Regression lines A line for each group AND overall g + stat_smooth(method = "lm", se = FALSE) + stat_smooth(method = "lm", se = FALSE, colour = "black") species Adelie Chinstrap Gentoo

Your Turn: Create this plot

- A scatter plot
- Comparing Flipper Length by Body Mass grouped by Species
- With a single regression line for the overall trend

41 / 70

Customizing plots

Customizing: Labels

Customizing: Labels

Customizing: Data range

Limit the data (exclude data)

46 / 70

Customizing: Axes

scale_ + (x or y) + type (contiuous, discrete, date, datetime)

- scale_x_continuous()
- scale_y_discrete()
- etc.

Common arguments

```
g + scale_x_continuous(breaks = seq(0, 20, 10)) # Tick breaks
g + scale_x_continuous(limits = c(0, 15)) # xlim() is a shortcut for this
g + scale_x_continuous(expand = c(0, 0)) # Space between axis and data
```


Customizing: Aesthetics

Using scales

scale_ + aesthetic (colour, fill, size, etc.) + type (manual, continuous, datetime, etc.)

Customizing: Aesthetics

Using scales

Or be very explicit:

Saving plots

Saving plots

RStudio Export

Demo

55 / 70

Saving plots

RStudio Export

Demo

ggsave()

```
g <- ggplot(penguins, aes(x = sex, y = bill_length_mm, fill = year)) +
    geom_boxplot()

ggsave(filename = "penguins_mass.png", plot = g)

## Saving 8 x 3.6 in image</pre>
```

Saving plots

Publication quality plots

- Many publications require 'lossless' (pdf, svg, eps, ps) or high quality formats (tiff, png)
- Specific sizes corresponding to columns widths
- Minimum resolutions

```
g <- ggplot(penguins, aes(x = sex, y = body_mass_g)) +
geom_boxplot() +
labs(x = "Sex", y = "Body Mass (g)") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
ggsave(filename = "penguin_mass.pdf", plot = g, dpi = 300,
height = 80, width = 129, units = "mm")</pre>
```

56 / 70

Loading Data

Data types: What kind of data do you have?

Specific program files

Туре	R Package	Function (example usage)
Excel (.xls, .xlsx)	readxl	<pre>read_excel("file.xlsx", sheet = 1)</pre>
Comma separated (.csv)	readr	read_csv("file.csv")
Tab separated (e.g, .txt, .dat)	readr	<pre>read_tsv("file.txt")</pre>
Space separated (e.g, .txt, .dat)	readr	read_delim("file.dat", delim = " ")
Fixed-width (e.g, .txt, .dat)	readr	read_fwf("file.dat")

Data types: What kind of data do you have?

Specific program files

Туре	R Package	Function (example usage)
Excel (.xls, .xlsx)	readxl	<pre>read_excel("file.xlsx", sheet = 1)</pre>
Comma separated (.csv)	readr	read_csv("file.csv")
Tab separated (e.g, .txt, .dat)	readr	read_tsv("file.txt")
Space separated (e.g, .txt, .dat)	readr	read_delim("file.dat", delim = " ")
Fixed-width (e.g, .txt, .dat)	readr	read_fwf("file.dat")

Notes

- 1. You may be familiar with base functions (i.e. read.csv(), read.table())
- These are perfectly acceptable, but readr is a bit more powerful and quick
- 2. It can be quicker and safer to save Excel files as a *.csv (Comma-separated-variables file) and then use readr package and read_csv() function
- 3. readr is a tidyverse package

58 / 70

Where is my data?

```
library(tidyverse) # Load tidyverse which includes readr package

my_data <- read_csv("weather.csv")

## Error: 'weather.csv' does not exist in current working directory
('/home/steffi/Projects/Teaching/UofM - NRI/2020/Site/_labs').</pre>
```

With no folder (just file name) R expects file to be in Working directory

59 / 70

Where is my data?

```
library(tidyverse) # Load tidyverse which includes readr package
my_data <- read_csv("weather.csv")</pre>
```

Error: 'weather.csv' does not exist in current working directory ('/home/steffi/Projects/Teaching/UofM - NRI/2020/Site/_labs').

With no folder (just file name) R expects file to be in Working directory

Working directory is:

- Where your RStudio project is
- Your home directory (My Documents, etc.) [If not using RStudio Projects]
- Where you've set it (using **setwd()** or RStudio's Session > Set Working Directory)

Where is my data?

library(tidyverse) # Load tidyverse which includes readr package
my_data <- read_csv("weather.csv")</pre>

Error: 'weather.csv' does not exist in current working directory
('/home/steffi/Projects/Teaching/UofM - NRI/2020/Site/_labs').

With no folder (just file name) R expects file to be in Working directory

Working directory is:

- Where your RStudio project is
- Your home directory (My Documents, etc.) [If not using RStudio Projects]
- Where you've set it (using **setwd()** or RStudio's Session > Set Working Directory)

Using Projects in RStudio is a great idea

59 / 70

Where is my data?

Absolute Paths

os	Absolute Path
LINUX	/home/steffi/Documents/R Projects/mydata.csv
WINDOWS	C:/Users/steffi/My Documents/R Projects/mydata.csv
MAC	/users/steffi/Documents/R Projects/mydata.csv

Relative Paths

Path	Where to look	
./mydata.csv	Here (current directory) (./)	
/mydata.csv	Go up one directory (/)	
./data/mydata.csv	Stay here (./), go into "data" folder (data/)	
/data/mydata.csv	Go up one directory (/), then into "data" folder (data/)	

Where is my data?

Absolute Paths

os	Absolute Path
LINUX	/home/steffi/Documents/R Projects/mydata.csv
WINDOWS	C:/Users/steffi/My Documents/R Projects/mydata.csv
MAC	/users/steffi/Documents/R Projects/mydata.csv

Relative Paths

With RStudio 'Projects' only need to use **relative** paths

Path	Where to look	
./mydata.csv	Here (current directory) (./)	_
/mydata.csv	Go up one directory (/)	
./data/mydata.csv	Stay here (./), go into "data" folder (data/)	
/data/mydata.csv	Go up one directory (/), then into "data" folder (data/)	60.47

Keep yourself organized

- Create an RStudio Project for each Project
- Create a specific "Data" folder within each project (one per project)

Folders look like:

Now when you load data, you can use something like this: "./Data/mydata1.csv"

61 / 70

Checking / Cleaning your data

62 / 70

Checking / Cleaning your data

```
tail(my_data)
## # A tibble: 6 x 6
         `Body Mass (g)` ...5 ...6
## `Sample Number` Stage
                                                               <dbl> <lgl> <lgl> <lgl>
##
## 1
                                                                        3650 NA
                                                                                    NA
## 2 64 Adult, 1 Egg ... 2009-11-19 00:00:00 4000 NA

## 3 65 Adult, 1 Egg ... 2009-11-21 00:00:00 3400 NA

## 4 66 Adult, 1 Egg ... 2009-11-21 00:00:00 3775 NA

## 5 67 Adult, 1 Egg ... 2009-11-21 00:00:00 4100 NA
                   64 Adult, 1 Egg ... 2009-11-19 00:00:00
                                                                                     NA
                                                                                     NA
## 5
                   67 Adult, 1 Egg ... 2009-11-21 00:00:00
                                                                         4100 NA
                                                                                     NA
       68 Adult, 1 Egg ... 2009-11-21 00:00:00 3775 NA
## 6
```

Checking / Cleaning your data

```
tail(my_data)
## # A tibble: 6 x 6
                                                  `Body Mass (g)` ...5 ...6
## `Sample Number` Stage
                               `Date Egg`
                                                    <dbl> <lgl> <lgl>
          <dbl> <chr>
            63 Adult, 1 Egg ... 2009-11-19 00:00:00
## 1
                                                           3650 NA
                                                                     NA
## 2
               64 Adult, 1 Egg ... 2009-11-19 00:00:00
                                                           4000 NA
                                                                      NA
               65 Adult, 1 Egg ... 2009-11-21 00:00:00
                                                           3400 NA
                                                          3775 NA
               66 Adult, 1 Egg ... 2009-11-21 00:00:00
## 4
                                                                      NA
## 5
                67 Adult, 1 Egg ... 2009-11-21 00:00:00
                                                            4100 NA
                                                                      NA
      68 Adult, 1 Egg ... 2009-11-21 00:00:00
## 6
                                                     3775 NA
                                                                      NA
```

- Looks like we have some extra, empty, columns... (..5, ..6)
- Also looks like some column names might not work well in R
 - o (Anything with a space or special character, i.e. Date Egg and Body Mass (g)

63 / 70

Checking / Cleaning your data

- When loading data that was in Excel (etc.) it can often have some funky things going on
- Use the janitor package to quickly fix some of those problems (library(janitor))

Column names

```
my_data <- clean_names(my_data)</pre>
 head(my_data)
## # A tibble: 6 x 6
                                      date_egg body_mass_g x5
## sample_number stage
                                                            <dbl> <lgl> <lgl>
        <dbl> <chr>
##
                                      <dttm>
         1 Adult, 1 Egg Stage 2007-11-11 00:00:00 3750 NA NA
2 Adult, 1 Egg Stage 2007-11-11 00:00:00 3800 NA NA
## 1
                                                               3250 NA
               3 Adult, 1 Egg Stage 2007-11-16 00:00:00
4 Adult, 1 Egg Stage 2007-11-16 00:00:00
## 3
                                                                             NA
                                                                  NA NA
## 4
                                                                             NA
               5 Adult, 1 Egg Stage 2007-11-16 00:00:00
## 5
                                                               3450 NA
                                                                             NA
        6 Adult, 1 Egg Stage 2007-11-16 00:00:00 3650 NA NA
## 6
```

64 / 70

Checking / Cleaning your data

- When loading data that was in Excel (etc.) it can often have some funky things going on
- Use the janitor package to quickly fix some of those problems (library(janitor))

Empty rows/columns

```
my_data <- remove_empty(my_data, which = c("rows", "cols"))</pre>
 head(my_data)
      date_egg

\text{Adult, 1 Egg Stage 2007-11-11 00:00:00}

2 Adult, 1 Egg Stage 2007-11-11 00:00:00

3 Adult, 1 Egg Stage 2007-11

4 Adult, 1 Egg Stage 2007-11
## # A tibble: 6 x 4
                                                                        body_mass_g
## sample_number stage
##
                                                                               <dbl>
## 1
                                                                                3750
                   2 Adult, 1 Egg Stage 2007-11-11 00:00:00
                                                                                3800
## 3
                                                                                3250
## 4
                                                                                  NA
## 5
                                                                                 3450
         6 Adult, 1 Egg Stage 2007-11-16 00:00:00
## 6
                                                                                3650
                                                                                                                         65 / 70
```

Loading your data

This blazing fast intro to loading/cleaning will not cover the many, *many*, **many**, **MANY** ways that data can be weird.

Let me know if (when) you run into problems and we can trouble shoot together!

66 / 70

Your Turn! / Homework

- Create a new RStudio Project for your class project
- Create a "Data" folder inside this project folder
 - Files pane > New Folder
- Add data to it (if you have data)
 - Use your computers folder navigator for this
- Create a new script in the main folder
 - [Menu] File > New > R Script
- Add code to this script to load your data into R
 - Load the appropriate packages (tidyverse, readxl)
 - Use the appropriate function given your data type (e.g., read_csv() for .csv, read_excel for .xlsx)
 - Use the appropriate file location (e.g, "./Data/my_data.csv")
 Remember quotes (" ") around the entire file location
- Explore your data Click on your data in the Environment pane and take a look!

67 / 70

Your Turn! / Homework

- Create a **new RStudio Project** for your class project
- Create a "Data" folder inside this project folder
 - ∘ Files pane > New Folder
- Add data to it (if you have data)
 - o Use your computers folder navigator for this
- Create a new script in the main folder
 - [Menu] File > New > R Script
- Add code to this script to load your data into R
 - Load the appropriate packages (tidyverse, readxl)
 - Use the appropriate function given your data type (e.g., read_csv() for .csv, read_excel for .xlsx)
 - Use the appropriate file location (e.g, "./Data/my_data.csv")
 Remember quotes (" ") around the entire file location
- Explore your data Click on your data in the Environment pane and take a look!

If we run out of time, we'll check in next week to see how this went

Wrapping Up!

Wrapping up: Common mistakes

Figures

- The package is ggplot2, the function is just ggplot()
- Did you remember to put the + at the end of the line?
- Order matters! If you're using custom **theme()**'s, make sure you put these lines **after** bundled themes like **theme_bw()**, or they will be overwritten
- Variables like 'year' are treated as continuous, but are really categories
 - o Wrap them in factor(), i.e. ggplot(data = penguins, aes(x = factor(year), y = body_mass_g))

Loading data

- Not using RProjects which makes it hard to find your data
- Expecting your data to be something it's not
- (open your data in a text editor or spreadsheet program to take a look)
- Using the wrong function (i.e you used read_csv() when you should have used read_tsv()) 70

Wrapping up: Further reading (all **Free**!)

- RStudio > Help > Cheatsheets > Data Visualization with ggplot2
- ggplot2 book v3
 - o By Hadley Wickham, Danielle Navarro, and Thomas Lin Pedersen
- Cookbook for R by Winston Chang
 - · See also R Graphics Cookbook by Winston Chang
- R for Data Science
 - Data Visualization
 - Workflow and Projects
 - o Data Import