

Termodinámica – II Semestre 2019

Ayudantía 1

Profesor: Felipe Ovalle

Ayudante: Paulina Balladares Estolaza

- 1. Calcular el volumen específico de un refrigerador a 1 MPa y 50°C con:
 - a) Ecuación de estado gas ideal
 - b) Factor de compresibilidad

Considere cte. de gas ideal R=0.0815 Kpa*m3/KgK, Pcr=4,059 Mpa y Tcr= 374,2

- 2. Del problema anterior, compare los valores obtenidos determinando el porcentaje de error en cada caso si el valor del volumen específico es 0.021796 m3/Kg.
- 3. Calcular la presión de vapor de agua a una temperatura de 500°C y densidad de 24 Kg/m3, usando para ello:
 - a) Gas Ideal
 - b) Factor de Compresibilidad

Los siguientes datos se obtienen de propiedades de gases (vapor de aguas tabuladas). Cte. R=0,4615 Kpa*m3/KgK, Pcr=22,06 Mpa y Tcr=647,1K

- 4. Un estanque rígido de un volumen de 0,5 contiene hidrogeno a 20°C y 600kPa; se conecta con una válvula a otro estanque rígido de 0,5 que contiene hidrogeno a 30° C Y 150 KPa. Se abre una llave y se deja que el sistema llegue a equilibrio térmico con sus alrededores que están a 15°C. Determine la presión final del estanque usando:
 - a) Ecuación de gas ideal
 - b) Ecuación de Van der Waals
 - c) Ecuación de Redlich Kwong
 - d) Carta generalizada (Z)

Considere: Hidrogeno: R-4,124[kPa*/kg*K]; Tc=33,3 [K] ; Pc=1,3[MPa]. Para b, c y d puede usar la masa obtenida como gas ideal

	Ecuaciones de estado	A 160 APA	(5)
· GAS ideal	PV=NRT	~ -	R= Rut
· GAS NO ideal - TACtor	de compresibilidad		
	Z= pv AT	las ezam al	(6)
D	Tc		
11.1.	rreducido Vr' = Pr'V R.Tc.		
	160 0320 10 10 - 0 234		

Ejercicio 1:

b) tactor de compresibiligas
$z = \rho \hat{v}$
2 - FACTOS DE COMPSESSI BILIDAZ lo OBTENEMOS A TRAVÉS DEL GRATICO
Tr - Temperatura repociona Tr = T Temperatura Critica.
Pr = Presión reducida Pr = P -> Presión reducida.
$T_r = 323, 15 \text{ K} = [0.86]$ } y_{ATOS} A observar ω el g_{rAT} ω
7-9-5-1 2= 0,86 s - sadd sagar
V= 2.R.T = 0.86.0,0815 Kpa m3.323,15 K
$\hat{V} = 0.023 \frac{m^3}{V_{19}}$

Ejercicio 2:

2) 0,021796 m ³ kg
% error = 1 T - E 1 . 100
1) 1/2 = 10,026 - 0,022 \ 100 = 15,88%
b) % = 10,023 - 0,022 \ • 100 = 4,35 %.
0,023

Ejercicio 3:

Z= 0,99	PN = ZN P(N-1)	+++++	
	P2= 22. P1		
	Pa= 0,94 · (856	3,41 hpa)	
	P2 = 8049, 61 1	hpa	
Tr = [1,19]		₹= 0,94	
Pr = 80 40	2 060 = 0,36		
	₹, = ₹3	- Termino de iterar. 2 sou iquales	WANDO

Ejercicio4:

A) MA = P1V1 = 600 KP4 · 0.5m3 = 0,248 Kg = 4,124 · 293 K
mg = P.V. = 150 KPA: 0,5m3 = 0,06 Mg = 2
Mrozal = ma + mB = 0,248 + 0,06 = 0,308 kg
P2 = MRT = (0.308 Mg) (4.124 K DAM3) - 288K V Ky K) P2 = 365, 82 KPA 2
b) $P_2 = 27 - \Delta = \frac{4.124 - 288K}{(32468 - 192049 \times 10^2)} = \frac{6.1202}{(32468)^2}$
928 9 366,72 KPA 43

P, RT - A V-b V(u+b) J7
A= 35, 78827 b= 9, 1588 x10-3
P= 4,124.288 - 35,78827 32468- 9,1588 ×10-3 32468(32468+ 8,1588 ×10-3) 5288
P=366,65 KPs - 20
$\frac{1}{7r} = \frac{7}{7c} - \frac{288}{33.3} - \frac{8.65}{33.3}$
Pr = 7 V-V = 3,2468 = 30,74 Que (4,124)(333) = 30,74
Z=1 grazico CABLAS P2=365, 8 KPA.