WT32-SC01 规格书

版本 V3.2 启明云端科技 2020 年 04 月 10 日

免责申明和版权公告

本文中的信息,包括供参考的URL地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

历史版本				
版本	作者	时间	描述	
1.0	YAN	2020-01-25	第一次创建	
3. 2	YAN	2020-04-10	修改实物图片,添加板卡测试参数	

目录

一、概述	3
二、板卡尺寸	3
三、硬件资源	5
1、ESP32-WROVER-B 模组	5
2、TP 接口	5
<i>3、LCM 显示屏接口</i>	5
4、电源管理	5
5、外部电源接口	5
6、RST 按键	5
7、Type-C 接口	5
8-9、扩展板接口	6
10、电源指示灯	6
11、UART 通讯指示灯	6
四、上电说明	8
1、电源供应	8
2、注意事项	8
五、板卡电气参数	9
六、电路原理图	10
七、固件烧录	12
八、功能开发	12

一、概述

WT32-SC01 是面向可视化触摸屏幕的开发板,板卡搭载自主开发的 GUI 平台固件,支持图形拖拽式编程以帮助用户完成自定义的控制平台的开发。WT32-SC01 开发板主控采用 ESP32-WROVER-B 模组,该模组是通用型 Wi-Fi+BT+BLE MCU 模组,内配置 4MB SPI Flash和 8MB的 PSRAM。WT32-SC01 开发板还可以通过两边的扩展接口进行按键、语音、摄像头等功能的开发调试,极大缩短用户的开发周期。

如下图为 WT32-SC01 开发板的尺寸示意图,板卡尺寸为 58mmx91mm,板卡的四个脚处均有直径为 4.05mm 的定位孔。

图 1-1: 板卡 PCB 尺寸示意图

图 1-2: 板卡实物尺寸示意图(长宽)

图 1-3: 板卡实物尺寸示意图(高)

三、硬件资源

如下开发板的实物图, 开发板的硬件资源有如下:

图 2 为开发板的正面实物图,其包含一块分辨率为 320x480 的 3.5 寸 LCD 屏和一块电容触 摸板,支持两点触控。

图 3 为开发板的背面实物图, 其包含的硬件资源如下所述:

1、ESP32-WROVER-B 模组

ESP32-WROVER-B 是一款面向各类应用的 Wi-Fi+BT+BLE MCU 模组,功能强大,用途广泛,可用于低功耗传感器网络和要求苛刻的应用,例如语音编码、音频流和 MP3 解码等。此款 ESP32-WROVER-B 参数为: 8Mbyte PSRAM+4Mbyte Flash 。

2、TP接口

电容触摸板接口, I2C 接口, 0.5mm 间距, 6Pin, 翻盖下接式。

3、LCM 显示屏接口

3.5 寸的 LCM 显示屏接口, SPI 接口, 0.5mm 间距, 24pin。此 SPI 接口连接到 ESP32 的硬件 HSPI 接口, 运行时钟频率可达到 80MHz。

4、电源管理

两个 3.3V 输出的 LDO, 一个给板卡自身供电, 另一个给外部扩展板卡供电, 电源分开以防止扩展板卡对 ESP32 供电的干扰, 保证了 ESP32 的运行稳定性。

5、外部电源接口

预留的外部电源接口(正负如图上+-号所示),输入电压范围 5V-9V,要求最大负载电流 I>2A。

6、RST 按键

轻触自复位按钮连接到 ESP32 的 EN 脚, 此按键可用于 ESP32 的复位。

7、Type-C接口

通用 USB-C 接口 (Type-C 接口), 此接口用于对开发板供电、UART 通讯和固件下载。

下载电路的硬件有实现数据流控制,所以固件下载支持一键自动下载。

8-9、扩展板接口

对外扩展板的接口,可对外扩展板的供电、通讯、控制等,实现功能扩展以满足用户的多种需求。8 和 9 两接口是 Pin 对 Pin 连接在一起的,所以扩展板插在 8 接口和 9 接口的电路连接是一样的,只是满足用户扩展板不同方向安插的体验感,同时:当两个的扩展版的 IO 没有冲突时,可以同时插两个扩展板以实现两个扩展功能。扩展板接口规格: 2.0mm 间距、2X20Pin、可选用两侧卧贴排母安装。接口定义见图 3-扩展版接口定义图。

10、电源指示灯

电源指示灯(红色光),插上USB线便会亮起。

11、UART 通讯指示灯

UART 中的 TXD 指示灯和 RXD 指示灯, 有数据流时就会闪烁。

图 2: WTPHIMMainBoard 开发板实物图正面

图 3: WTPHIMMainBoard 开发板实物图背面

图 4: WTPHIMMainBoard 接口定义图

四、上电说明

1、电源供应

本开发板支持 USB Type-C 5V 供电和预留外部电源输入接口(如图 3 标号 5 所示), 当 没有插入其他扩展板卡时建议输入电压 5V 支持电流不小于 1A. 当还有其他扩展板插入时 建议输入电压 5V 支持电流不小于 2A (具体还要参考扩展板卡的实际功耗决定)。注: 通过 预留的电源接口进行外部电源供电时, 电源电压输入范围 5V-9V, 负载电流建议 I > 2A。

2、注意事项

请先确保 TP 和 LCM 屏的 FPC 排线已经插入对应的 FPC 座子然后再给开发板上电,不 然可能会导致 TP 和 LCM 屏损坏。

如果开发板开出现异常, 请先测试板卡上的三个 TestPad 点 (分别是 PP5V、PP3V3_1 和 PP3V3 2) 的电压是否正常。其中 PP3V3 1 输出是给本板卡供 3.3v 电源的、PP3V3 2 是给 外接扩展板卡供 3.3v 电源的, PP5V 是 USB 输入 5V 电源同时也供给外接扩展板。如图 5 为 开发板电源测试点示意图, 分别测试此三点对地电压。

图 5: 开发板电源测试点示意图

五、板卡电气参数

测试环境:

1、温度: 室温-25℃

2、电源供应: 5.0V 纹波 V < 100mA

测试参数:

1、正常工作电流: 240mA (平均电流)

2、休眠下工作电流:小于18mA(平均电流)

六、电路原理图

七、功能开发

八、固件烧录

详情见 http://doc.8ms.xyz/docs/gui/gui-1bv0v24m8j8t7

