Import neccessery libraries

```
import pandas as pd
import numpy as np
from scipy import stats
```

Problem

A F&B manager wants to determine whether there is any significant difference in the diameter of the cutlet between two units. A randomly selected sample of cutlets was collected from both units and measured? Analyze the data and draw inferences at 5% significance level. Please state the assumptions and tests that you carried out to check validity of the assumptions

Data description

```
\alpha == 0.05 (95% Confidence)
```

Y == Continious X == Discrete

Is Y1 and Y2 normal?

H0 = Y1 and Y2 are normal H1 = Y1 and Y2 are not normal

H0: The null hypothesis: It is a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

Ha: The alternative hypothesis: It is a claim about the population that is contradictory to H0 and what we conclude when we reject H0.

Import data

```
In [3]: import os
In [4]: os.getcwd()
Out[4]: 'C:\\Users\\Akarsh\\assignment 3'
In [5]: os.chdir('C:\\Users\\Akarsh\\Desktop\\assignments')
In [6]: os.getcwd()
Out[6]: 'C:\\Users\\Akarsh\\Desktop\\assignments'
```

Normality test

1 of 3 06-02-2022, 11:28 am

In [16]:	df		
Out[16]:		Unit A	Unit B
	0	6.8090	6.7703
	1	6.4376	7.5093
	2	6.9157	6.7300
	3	7.3012	6.7878
	4	7.4488	7.1522
	5	7.3871	6.8110
	6	6.8755	7.2212
	7	7.0621	6.6606
	8	6.6840	7.2402
	9	6.8236	7.0503
	10	7.3930	6.8810
	11	7.5169	7.4059
	12	6.9246	6.7652
	13	6.9256	6.0380
	14	6.5797	7.1581
	15	6.8394	7.0240
	16	6.5970	6.6672
	17	7.2705	7.4314
	18	7.2828	7.3070
	19	7.3495	6.7478
	20	6.9438	
	21	7.1560	
	22	6.5341	
		7.2854	
	24	6.9952	
	25	6.8568	
	26	7.2163	
	27	6.6801	
	28	6.9431	
		7.0852	
	30		
	30	6.7794	1.0992

2 of 3 06-02-2022, 11:28 am

```
Unit A Unit B
            7.2783 7.1180
         32 7.1561 6.6965
         33 7.3943 6.5780
 In [9]:
          stats.shapiro(df["Unit A"])
         ShapiroResult(statistic=0.9649458527565002, pvalue=0.3199819028377533)
Out[9]:
In [12]:
          \#P value for Unit A == 0.32 > \alpha
In [10]:
          stats.shapiro(df["Unit B"])
         ShapiroResult(statistic=0.9727300405502319, pvalue=0.5224985480308533)
Out[10]:
In [13]:
          #P value for Unit B == 0.52 > \alpha
```

HO is accepted. Thats is both Y1 and Y2 are normal

Paired t test

model

H0 = Mean for Y1 and Y2 are equal (There is no significance difference between diameter of the Culets)

H1 = Mean for Y1 and Y2 are not equal (There is a significance difference between diameter of the Culets)

```
In [14]: stats.ttest_rel(df["Unit A"], df["Unit B"])
Out[14]: Ttest_relResult(statistic=0.7536787225614314, pvalue=0.4562300768038412)
In [15]: #P value of the Paired T Test is == 0.45 > α
```

H0 is accepted.

Mean of both Y1 and Y2 are equal

```
In [ ]:
```

3 of 3 06-02-2022, 11:28 am