

UNIVERSITY OF GHANA

(All rights reserved)

	•				SCHO	OOL OF EN	NGINEER	RING SC	IENCES					
			B.Sc. (El	NGINEER	ING) S	ECOND 5	EMESTE	R EXAM	NINATIO	ONS 201	4/2015			
	FAEN 204: Fluid Mechanics (3 CREDITS) INSTRUCTION: ANSWER ALL QUESTIONS. ANSWER SECTION 'A ' ON THE QUESTION.'													
				F	PAPER	APER AND ATTACH IT TO THE ANSWER BOOKLET GIVEN								
	TII	ME ALLO	OWED:	TWO (2) HOU	RS								
CA	NDI	DATE ID	No			Sig	nature	**********	*********	***********				
				:	SECTIO	ON A								
1.	Choose the correct answer													
	a.	Newton's Law of viscosity relates												
		(i) Pressure, velocity and viscosity												
		(ii)	Shear s	tress an	d velo	city grad	lient of	a fluid						
		(iii)	Shear s	stress, te	mpera	ture, vel	ocity ar	id visc	osity					
		(iv)	Pressur	re, visco	sity ar	nd veloci	ty grad	ient						
	b.	The pressure in METERS of Oil (sp.gr = 0.8) which is equivalent to 80 m of water is												
		(i)	64		(ii)	80		(iii)	100	(iv)	88			
	c. The continuity Equation													
(i) Expresses the relation between energy and work														
		(ii)	Relates mass rate of flow for two points in a fluid flow system											
		(iii)	Relates the momentum per unit volume for two points in a fluid flow system											
(iv) Expresses a constant discharge through a long straight pipe									е					
	d. Uniform flow in a prismatic channel occurs													
		(i)	Whene	ever the	flow i	s steady								
		(ii)	When	dv/ _{dt} is zo	ero ev	erywhere	e							
		(iii)				ity vecto		point	remain	s const	ant			
		(iv)	•	$d^{v}/_{ds} = 0$		-	•	-						
	e.	In ope	n chann	el flow										
		(i)	(i) The energy grade line coincides with the free surface											

EXAMINER: MR. MAHAMA SEIDU

- The hydraulic grade line coincide (ii)
- (iii) The hydraulic grade line can never rise
- The hydraulic grade line and the free surface coincide (iv)
- Reynolds number for a rectangular pipe may be defined as $\frac{VL}{n}$ where L is
 - The hydraulic radius (i)
 - 2 times the hydraulic radius (ii)
 - (iii) 3 times the hydraulic radius
 - (iv) 4 times the hydraulic radius
- g. For laminar flow in a pipe, if the velocity at the centre of the pipe is 0.1m/sec, then the average velocity is
 - (i) 5cm/sec
- (ii) 10cm/sec
- (iii) 15cm/sec (iv) 20cm/sec
- h. In turbulent flow, the friction factor (f) for a rough pipe depends on
 - (i) The relative roughness only
 - The Reynolds Number only (ii)
 - The size of the pipe and discharge (iii)
 - The Reynolds Number and the relative roughness. (iv)
- i. In a laminar flow of a viscous liquid, if the velocity is V, m/sec pipe diameter, d(m) pipe length L(m) and Re is the Reynolds Number, then the Friction head loss, h_L is given by
 - $h_{L} = Re \frac{LV^{2}}{2aa}$ (i)
- (ii) $h_L = \frac{Re}{16} \cdot \frac{L}{4d} \cdot \frac{V^2}{2a}$
- (iii) $h_{L} = \frac{16}{Re} \cdot \frac{4L}{d} \cdot \frac{V^2}{2g}$ (iv) $h_{L} = \frac{16}{Re} \cdot \frac{L}{4d} \cdot \frac{V^2}{2g}$
- i. A news broadcaster reports that the barometric pressure is 772mm of mercury (sp.gr. = 13.6). The atmospheric pressure in KPa (abs.) is
 - (i) 103.0
 - (ii) 100.0
 - (iii)130.0
 - (iv) 124.0

(30 Marks)

SECTION 'B'

2. A tank containing lubricating oil with a specific gravity of 0.80 has a rectangular gate 8m long and 6m deep located on a side such that the top of the gate is level with the surface of the oil.

Calculate

- (i) The magnitude of the resultant force on the gate.
- (ii) The centre of pressure of this force from the top of the gate.

(20 Marks)

- 3. (a) Sate two restrictions placed on the use of Bernoulli's Equation and indicate how these restrictions are eliminated by the use of the General Energy Equation
 - (b) Water is flowing at a rate of 250 L/min through the turbine shown in the figure below.

The pressure at A is 700KPa and the pressure at B is 125KPa. It is estimated that friction head loss in the piping amounts to 4.0N.m/N of water flowing in the system.

- (a) Calculate the power delivered to the turbine by the water
- (b) If the mechanical efficiency of the turbine is 85%, calculate the power output.

(25Marks)

- 4. (a) Define
 - (i) Hydraulic Radius
 - (ii) Hydraulic Depth of a fluid conveyance system
 - (b) A cross-section of an irrigation canal shown below has a surface of float finished concrete and is laid on a slope which falls 0.1m per 100m of length. Calculate
 - (i) The normal discharge
 - (ii) The Froude Number

Given: n = 0.015

(25 Marks)

EXAMINER: MR. MAHAMA SEIDU