5.

සියල ම නිම්කම් ඇවිරින් / முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

ලී ලංකා විතාශ දෙපාර්තමේන්තුව ලී ලංකා විතාශ දෙපාර්තමේ පුටු කිරීම පිළිබඳ සම්ප්රත්තමේන්තුව විතාශ දෙපාර්තමේන්තුව ලී ලංකා විතාශ දෙපාර්තමේන්තුව මු ලංකා විතාශ දෙපාර්තමේන්තුව මු ලංකා විතාශ දෙපාර්තමේන්තුව මු ලංකා විතාශ දෙපාර්තමේන්තුව මු ලංකා විතාශ දෙපාර්තමේන්තුව විතාශ දෙපාර්තමේන්තුව විතාශ දෙපාර්තමේන්තුව විතාශ දෙපාර්තමේන්තුව මු ලංකා විතාශ දෙපාර්තමේන්තුව විතාශ දෙපාර්තමේන්තුව මු ලංකා විතාශ දෙපාර්තමේන්තුව මු ලෙසා විතාශ දෙපාර්තමේන්තුව මු ලංකා විතාශ දෙපාර්තමේන්තුව මු ලෙසා විතාශ දෙපාර්තමේන

අධාායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

ගුණිතය I கணிதம் Mathematics

2018.08.29 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

අමතර කියවීම් කාලය මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුඛත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය		
(5000 4000)		

උපදෙස් :

* මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ.

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්තවලට පිළිතුරු සපයන්න. එක් එක් පුශ්තය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්ත **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙනයාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය හඳහා පමණි.

(07) ඉණිතය I				
කොටස	පුශ්න අංකය	ලකුණු		
	1			
	2	4.4		
	3	11/2		
	4			
A	5			
A	6			
	7			
	8			
	9			
	10	7		
В	11			
	12	io		
	13			
	14	-0		
	15	31		
	16			
	17			
	එකතුව			
	පුතිශත ය			

I පතුය	
Π පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

සංකේත අංක

උත්තර පතු පරීක්ෂක	2
පරීක්ෂා කළේ: 2	
අධීක්ෂණය කළේ:	

 A, B හා C යනු S තර්වනු කූලකයක උපකුලක යැයි ගනිමු. (A ∪ C) ∩ [(A ∩ B) ∪ (C' ∩ B)] = පෙන්වන්න. S = {m ∈ Z : 1 ≤ m ≤ 20} යනු පර්වනු කූලකය යැයි ද A යනු S කුළ ඇති ඔන්නේ පංඛන කූලකය යැයි ද කුළ ඇති 36 හි සංඛන කූලකය යැයි ද C = {9, 10} යැයි ද ගනිමු. (A ∪ B)', (A ∪ C)' සහ (A ∪ B ∪ C)' සොයන්න. 	
$S=\{n\in \mathbb{Z}:1\leq n\leq 20\}$ යනු සර්වනු කුලකය යැයි ද A යනු S තුළ ඇති ඔන්නේ සංඛාග කුලකය යැයි ද තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C=\{9,10\}$ යැයි ද ගනිමු. $(A\cup B)', (A\cup C)'$ සහ $(A\cup B\cup C)'$ සොයන්න.	= A ∩ B බ8
2. $S = \{n \in \mathbb{Z}: 1 \le n \le 20\}$ යනු සර්වන කුලකය යැයි ද A යනු S තුළ ඇති ඔන්නේ සංඛාහ කුලකය යැයි ද තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C = \{9,10\}$ යැයි ද ගනිමු. $(A \cup B)', (A \cup C)'$ සහ $(A \cup B \cup C)'$ සොයන්න.	
2. $S = \{n \in \mathbb{Z}: 1 \le n \le 20\}$ යනු සර්වන කුලකය යැයි ද A යනු S තුළ ඇති ඔන්නේ සංඛාහ කුලකය යැයි ද තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C = \{9,10\}$ යැයි ද ගනිමු. $(A \cup B)', (A \cup C)'$ සහ $(A \cup B \cup C)'$ සොයන්න.	
2. $S=\{n\in \mathbb{Z}:1\leq n\leq 20\}$ යනු සර්වනු කුලකය යැයි ද A යනු S තුළ ඇති ඔන්නේ සංඛාහ කුලකය යැයි ද තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C=\{9,10\}$ යැයි ද ගනිමු. $(A\cup B)', (A\cup C)'$ සහ $(A\cup B\cup C)'$ සොයන්න.	
2. $S = \{n \in \mathbb{Z}: 1 \le n \le 20\}$ යනු සර්වනු කුලකය යැයි ද A යනු S තුළ ඇති ඔත්තේ සංඛාා කුලකය යැයි ද තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C = \{9,10\}$ යැයි ද ගනිමු. $(A \cup B)', (A \cup C)'$ සහ $(A \cup B \cup C)'$ සොයන්න.	
2. $S = \{n \in \mathbb{Z} : 1 \le n \le 20\}$ යනු සර්වතු කුලකය යැයි ද A යනු S තුළ ඇති ඔත්තේ සංඛාහ කුලකය යැයි ද තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C = \{9, 10\}$ යැයි ද ගනිමු. $(A \cup B)', (A \cup C)'$ සහ $(A \cup B \cup C)'$ සොයන්න.	********
2. $S=\{n\!\in\!{f Z}:1\!\le\! n\!\le\! 20\}$ යනු සර්වනු කුලකය යැයි ද A යනු S තුළ ඇති ඔත්තේ සංඛාහ කුලකය යැයි ද තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C=\{9,10\}$ යැයි ද ගනිමු. $(A\cup B)', (A\cup C)'$ සහ $(A\cup B\cup C)'$ සොයන්න.	*******
2. $S = \{n \in \mathbb{Z}: 1 \le n \le 20\}$ යනු සර්වතු කුලකය යැයි ද A යනු S තුළ ඇති ඔත්තේ සංඛාහ කුලකය යැයි ද තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C = \{9,10\}$ යැයි ද ගනිමු. $(A \cup B)', (A \cup C)'$ සහ $(A \cup B \cup C)'$ සොයන්න.	
$S=\{n\!\in\! \mathbb{Z}:1\!\leq\! n\!\leq\! 20\}$ යනු සර්වනු කුලකය යැයි ද A යනු S තුළ ඇති ඔන්නේ සංඛන කුලකය යැයි ද තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C=\{9,10\}$ යැයි ද ගනිමු. $(A\cup B)', (A\cup C)'$ සහ $(A\cup B\cup C)'$ සොයන්න.	•••••
$S=\{n\!\in\!\mathbb{Z}:1\!\leq\!n\!\leq\!20\}$ යනු සර්වනු කුලකය යැයි ද A යනු S තුළ ඇති ඔන්තේ සංඛාහ කුලකය යැයි ද තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C=\{9,10\}$ යැයි ද ගනිමු. $(A\cup B)',(A\cup C)'$ සහ $(A\cup B\cup C)'$ සොයන්න.	•••••
$S=\{n\!\in\!\mathbb{Z}:1\!\leq\!n\!\leq\!20\}$ යනු සර්වනු කුලකය යැයි ද A යනු S තුළ ඇති ඔන්තේ සංඛාහ කුලකය යැයි ද තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C=\{9,10\}$ යැයි ද ගනිමු. $(A\cup B)',(A\cup C)'$ සහ $(A\cup B\cup C)'$ සොයන්න.	*******
2. $S = \{n \in \mathbb{Z} : 1 \le n \le 20\}$ යනු සර්වනු කුලකය යැයි ද A යනු S තුළ ඇති ඔන්නේ සංඛාහ කුලකය යැයි ද තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C = \{9, 10\}$ යැයි ද ගනිමු. $(A \cup B)', (A \cup C)'$ සහ $(A \cup B \cup C)'$ සොයන්න.	•••••
2. $S = \{n \in \mathbb{Z} : 1 \le n \le 20\}$ යනු සර්වනු කුලකය යැයි ද A යනු S තුළ ඇති ඔන්නේ සංඛාහ කුලකය යැයි ද තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C = \{9, 10\}$ යැයි ද ගනිමු. $(A \cup B)', (A \cup C)'$ සහ $(A \cup B \cup C)'$ සොයන්න.	•••••
2. $S = \{n \in \mathbb{Z} : 1 \le n \le 20\}$ යනු සර්වනු කුලකය යැයි ද A යනු S තුළ ඇති ඔන්නේ සංඛාහ කුලකය යැයි ද තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C = \{9, 10\}$ යැයි ද ගනිමු. $(A \cup B)', (A \cup C)'$ සහ $(A \cup B \cup C)'$ සොයන්න.	
2. $S = \{n \in \mathbb{Z} : 1 \le n \le 20\}$ යනු සර්වනු කුලකය යැයි ද A යනු S තුළ ඇති ඔන්නේ සංඛාහ කුලකය යැයි ද තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C = \{9, 10\}$ යැයි ද ගනිමු. $(A \cup B)', (A \cup C)'$ සහ $(A \cup B \cup C)'$ සොයන්න.	
තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C = \{9, 10\}$ යැයි ද ගනිමු. $(A \cup B)', (A \cup C)'$ සහ $(A \cup B \cup C)'$ සොයන්න.	
තුළ ඇති 36 හි සාධක කුලකය යැයි ද $C = \{9, 10\}$ යැයි ද ගනිමු. $(A \cup B)', (A \cup C)'$ සහ $(A \cup B \cup C)'$ සොයන්න.	ද <i>B</i> යනු <i>S</i>
$(A \cup B)', (A \cup C)'$ සහ $(A \cup B \cup C)'$ මසායන්න.	
	,,,,,,,
	•••••
,	

3.	$f\colon [-\pi,\pi] o \mathbb{R}$ යනු $f(x)=\sin x -\cos x$ මගින් අර්ථ දැක්වෙන ශිුතය යැයි ගනිමු. $a,b\in [-\pi,\pi]$ සඳහා $f(a)=f(b)$ නම්, R සම්බන්ධයක් aRb මගින් අර්ථ දැක්වේ. R යනු $[-\pi,\pi]$ මත තුලානා සම්බන්ධයක් බව
	පෙන්වා $rac{\pi}{4}$ හි තුලාතා පන්තිය සොයන්න.
4.	f(x)=ax+b හා $g(x)=px+q$ යන ඒකජ ශුිත එකිනෙකෙහි පුතිලෝම වේ. $ap=1$ හා $pb+q=0$ බව පෙන්වන්න.
4.	$f(x)=ax+b$ හා $g(x)=px+q$ යන ඒකජ ශිුත එකිනෙකෙහි පුතිලෝම වේ. $ap=1$ හා $pb+q=0$ බව පෙන්වන්න. $f(0)=2$ හා $f(1)=1$ නම් $f^{-1}(x)$ සොයන්න.
4.	
4.	
4.	$f(0)=2$ හා $f(1)=1$ නම් $f^{-1}(x)$ සොයන්න.
4.	$f(0)=2$ හා $f(1)=1$ නම් $f^{-1}(x)$ සොයන්න.
4.	$f(0)=2$ හා $f(1)=1$ නම් $f^{-1}(x)$ සොයන්න.
4.	$f(0)=2$ හා $f(1)=1$ නම් $f^{-1}(x)$ සොයන්න.
4.	$f(0)=2$ හා $f(1)=1$ නම් $f^{-1}(x)$ සොයන්න.
4.	$f(0)=2$ හා $f(1)=1$ නම් $f^{-1}(x)$ සොයන්න.
4.	$f(0)=2$ හා $f(1)=1$ නම් $f^{-1}(x)$ සොයන්න.
4.	$f(0)=2$ හා $f(1)=1$ නම් $f^{-1}(x)$ සොයන්න.
4.	$f(0)=2$ හා $f(1)=1$ නම් $f^{-1}(x)$ සොයන්න.
4.	$f(0)=2$ හා $f(1)=1$ නම් $f^{-1}(x)$ සොයන්න.
4.	$f(0)=2$ හා $f(1)=1$ නම් $f^{-1}(x)$ සොයන්න.
4.	f(0) = 2 හා f(1) = 1 නම් f ⁻¹ (x) සොයන්න.
4.	$f(0)=2$ හා $f(1)=1$ නම් $f^{-1}(x)$ සොයන්න.

5.	x හා y සඳහා $\log_2{(x+2y)}=3$ හා $\log_3{x}=2\log_3{y}$ යන සමගාමී සමීකරණ විසඳන්න.
6.	$f(x)=egin{bmatrix} 1 & 1 & 1 \ a & x & b \ a^2 & x^2 & bx \end{bmatrix}$ යැයි ගනිමු; මෙහි $a,b\in\mathbb{R}$ හා $ab eq 0$ වේ.
	නිශ්චායකය පුසාරණය නොකර, $(x-a)$ යන්න $f(x)$ හි සාධකයක් බව පෙන්වන්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ x සඳහා $f(x)=0$ විසඳන්න.

7.	$A\equiv (-1,-1)$ හා $B\equiv (5,-7)$ යැයි ගනිමු. AB රේඛාව $x-y=4$ රේඛාවට ලම්බ වන බව පෙන්වන්න.	
	$C\equiv (1,-3)$ යනු ඉහත රේඛාවල ඡේදන ලක්ෂාය නම් $AC:CB$ සොයන්න.	

		į
8.	අරය ඒකක 5 ක් වූ ද කේන්දුයෙහි y -ඛණ්ඩාංකය ධන වූ ද $(-4,0)$ හා $(4,0)$ ලක්ෂ z හරහා යන වෘත්තයෙහි සමීකරණය සොයන්න.	,
	සමකාරණය ජනාසනයා.	
		١
	••••••	
	······································	
	•••••••••••••••••••••••••••••••••••••••	
	•••••••••••••••••••••••••••••••••••••••	
1		

٩	ටී. දිග, පළල මෙන් දෙගුණයක් වූ හැඩය සැම විටම පවත්වා ගනිමින් ඍජුකෝණාසුයක ක්ෂේතුඵලය 48 cm² s ⁻¹ ක ශීසුතාවකින් වැඩි වේ. පළල 4 cm වන විට දිග වැඩි වීමේ ශීසුතාව සොයන්න.
Ŀ	
	. $y=2(x-a)^2+b$ වකුයට එය මත වූ $P\equiv (0,\ c)$ ලක්ෂායේ දී ඇඳි ස්පර්ශකයෙහි අනුකුමණය 4 ක් වේ; මෙහි a,b හා c යනු තාත්ත්වික නියත වේ. P හි දී වකුයට ඇඳි අභිලම්බයෙහි සමීකරණය $x+4y=4$ බව දී ඇත. a,b හා c හි අගයන් සොයන්න.
	i

සියලු ම හිමිකම් ඇව්රිනි / ω ලාදා් பதிப்புநிமையுடையது / $All\ Rights\ Reserved$]

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

<mark>ගණිතය I</mark> கணிதம் I Mathematics I

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

- 11. (a) α හා β යනු $2x^2 8x + 9 = 0$ සමීකරණයේ මූල යැයි ගනිමු. $\alpha^2 1$ හා $\beta^2 1$ ස්වකීය මූල ලෙස ඇති නිඛිල සංගුණක සහිත වර්ගජ සමීකරණය සොයන්න.
 - (b) P(x) යනු බහුපදයක් යැයි ගනිමු. (x-1) න් හා (x-2) න් P(x) බෙදූ විට ශේෂයන් පිළිවෙළින් 2 හා 1 බව දී ඇත. (x-1) (x-2) න් P(x) බෙදූ විට ශේෂය සොයන්න.

P(x) යන්න x^3 හි සංගුණකය 1 ට සමාන වන ඝනජ බහුපදයක් වේ නම් හා $P\left(0\right)=-3$ වේ නම්, P(x) නිර්ණය කරන්න.

 $oldsymbol{12.}$ (a) ගණිත අභනුහන මූලධර්මය භාවිතයෙන්, සියලු $n\in {\mathbb Z}^+$ සඳහා

 $\sum_{r=1}^{n} \frac{1}{r(r+1)} = \frac{n}{n+1} \ \text{බව සාධනය කරන්න.}$

(b) $r \in \mathbb{Z}^+$ සඳහා $\frac{2}{r} - \frac{1}{r+1} = \frac{(r+2)}{r(r+1)}$ බව සතහාපනය කරන්න.

 $r \in \mathbb{Z}^+$ සඳහා $U_r = \frac{(r+2)}{r(r+1)} \cdot \frac{1}{2^r}$ යැයි ගනිමු.

ඉහත පුතිඵලය භාවිතයෙන්, $r\in {\mathbb Z}^+$ සඳහා $U_r=f(r)-f(r+1)$ වන පරිදි f(r) සොයන්න.

ඒ නයින්, $\displaystyle\sum_{r=1}^n U_r$ සොයා $\displaystyle\sum_{r=1}^\infty U_r$ අභිසාරී වන බව පෙන්වන්න.

 $\sum_{r=1}^{\infty} \left(U_r + 1 \right)$ ශුේණිය අභිසාරී වේ ද? ඔබේ පිළිතුර සනාථ කරන්න.

- $oxed{13.}$ (a) නිශ්-ශූනා සංඛාහංකයකින් ආරම්භ වන 0,1,2,...,9 යන සංඛාහංක 10 න් සෑදිය හැකි
 - (i) කිසිදු සංඛාාවක 7 අන්තර්ගත නොවන,
 - (ii) සංඛාාවේ අඩු තරමින් එක්වරක්වත් 7 අන්තර්ගත වන,
 - (iii) සංඛාාවේ වැඩි තරමින් එක්වරක්වත් 7 අන්තර්ගත වන,

පරිදි සංඛාහාංක තුනක සංඛාහ කොපමණ තිබේ ද?

(b) මල්ලවපොරකරුවන් 2 දෙනකුගෙන්, බොක්සිං කීඩකයන් 3 දෙනකුගෙන් සහ ධාවකයන් 5 දෙනකුගෙන් සමන්විත වන කීඩකයන් 10 දෙනකුගේ කණ්ඩායමක් පාසලකට ඇත. ඉහතින් සඳහන් කරන ලද එක් එක් කීඩාචෙන් අඩු තරමින් එක් කෙනකුවත් නියෝජනය වන පරිදි තරගයකට සහභාගි වීම සඳහා 6 සාමාජික කණ්ඩායමක් සෑදීමට පාසලට අවශාව ඇත.

එවැනි කණ්ඩායමක් සෑදිය හැකි වෙනස් ආකාර ගණන සොයන්න.

14.
$$\mathbf{A} = \begin{pmatrix} 0 & -2 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$
 හා $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$ යැයි ගනිමු.

More Past Papers at

tamilguru.lk

ගුණිත නාහසය $\mathbf{C} = \mathbf{A}\mathbf{B}$ සොයන්න. \mathbf{C}^{-1} ලියා දක්වන්න.

 $\mathbf{CDC}^{-1} = 2\mathbf{C}^2 + 3\mathbf{C}$ වන පරිදි \mathbf{D} නාහසය සොයන්න.

 $(CD)^{-1} = D^{-1}C^{-1}$ බව සකාහපනය කරන්න.

ගුණිත නාහසය $\mathbf{P} = \mathbf{B}\mathbf{A}$ සොයන්න.

$$\mathbf{X} = \left(egin{array}{c} a \ 2 \ b \end{array}
ight)$$
 යැයි ගනිමු; මෙහි $a,b \in \mathbb{R}$ වේ.

$$\mathbf{PX} = \left(egin{array}{c} 4 \ 3 \ -1 \end{array}
ight)$$
 වන පරිදි a හා b අගයන් සොයන්න.

- 15. (a) $\left(2x+\frac{1}{x^3}\right)^6$ හි ද්විපද පුසාරණයෙහි නියත පදයක් නොමැති බව පෙන්වා එම පුසාරණයෙහි x^{-10} හි සංගුණකය සොයන්න.
 - (b) පුද්ගලයෙක් මාසයක මුල දී රුපියල් 50000 ක් තැන්පත් කරමින් 1% ක මාසික පොලියක් මාසිකව වැල් පොලී කර ගෙවන බැංකු ගිණුමක් විවෘත කරයි. ඔහු ඊළඟ අවුරුදු 5 සඳහා සෑම මසකම මුල දී රුපියල් 10000 ක් තැන්පත් කරයි. මෙම කාලය තුළ ඔහු වෙනත් කිසිම ගනුදෙනුවක් නොකරන්නේ යැයි උපකල්පනය කරමින්, අවුරුදු 5 කට පසු ඔහුගේ ගිණුමේ ඇති ශේෂය සොයන්න. ඔහු ඉන්පසු සෑම මසකම ආරම්භයේ දී ඊළඟ අවුරුද්ද සඳහා රුපියල් 25000 ක් ආපසු ගනියි. මෙම අවුරුදු 6 අවසානයේ දී ඔහුගේ ගිණුමෙහි ඇති ශේෂය සොයන්න.
- ${f 16.}\ \ \, x^2+y^2-4x-8y-5\,=0$ මගින් දෙනු ලබන C වෘත්තයෙහි කේන්දුය හා අරය සොයන්න.

3x-4y=15 මගින් දෙනු ලබන l රේඛාව C වෘත්තය ස්පර්ශ කරන බව පෙන්වන්න.

 $P\equiv (1,-3)$ ලක්ෂාය l මත පිහිටන බව සතාාපනය කර, P සිට C ට අඳිනු ලබන අනෙක් ස්පර්ශකයේ සමීකරණය සොයන්න. C ට ඇඳි ඉහත ස්පර්ශකවල ස්පර්ශ ලක්ෂායන් යා කරනු ලබන ජාායෙහි දිග සොයන්න.

- 17. (a) $\lim_{x \to 1} \frac{x^3 1}{x^2 1}$ සොයන්න.
 - (b) පහත දැක්වෙන එක එකක් x විෂයයෙන් අවකලනය කරන්න:

(i)
$$x^5 \ln x + 2e^{-x}$$
 (ii) $\sqrt{\frac{1+e^x}{1-e^x}}$ (iii) $\ln\left(\frac{\sin x}{1+\cos x}\right)$

(c) ක්ෂේතුඵලය $9~\text{m}^2$ වන දෙන ලද කාඩ්බෝඩ් පුමාණයකින් සමචතුරාසුාකාර ආධාරකයක් සහිත විවෘත පෙට්ටියක් සෑදීමට අවශාව ඇත. පෙට්ටියේ උපරිම පරිමාව $\frac{3\sqrt{3}}{2}~\text{m}^3$ බව පෙන්වන්න.

සියලු ම හිමිකම් ඇවිරීම / (மුழුப் பதிப்புநிமையுடையது / $All\ Rights\ Reserved$)

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

<mark>ගණිතය II</mark> සණෝதාර II Mathematics II

07 S II

2018.08.30 / 0830 - 1140

පැය තුනයි

முன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුවත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය

උපදෙස් :

- * මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ.
 A කොටස (පුශ්න 1 10) සහ B කොටස (පුශ්න 11 17).
- * A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- ※ නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙනයාමට ඔබට අවසර ඇත.
- 🔆 සංඛාහන වගු සපයනු ලැබේ.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(07) ගණිතය II			
කොටස පුශ්න අංකය ලකුණු			
	1		
	2		
	3		
Ì	4		
A	5		
A	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
В	14		
ļ	15		
	16	_	
!	17		
	එකතුව		
	පුතිශතය		

I පතුය	_	
II පතුය		
එකතුව		
අවසාන ලකුණු		

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරෙන්	

සංකේත අංක

උත්තර පතු පරීක්ෂඃ	ක	
	1	
පරීක්ෂා කළේ:	2	
අධීක්ෂණය කළේ:		

$^{\mathbf{A}}$	- 2 -
	A කොටස
1.	$\frac{x}{x-2} \ge \frac{3x-4}{x}$ අසමානතාව සපුරාලන x හි සියලු තාත්ත්වික අගයන් සොයන්න.
2.	$y \ge x^2, \ y \le x+2$ හා $-1 \le x \le 1$ අසමානතා සපුරාලන xy -තලයෙහි වූ පෙදෙස අඳුරු කරන්න.
	•••••••••••••••••••••••••••••••••••••••
	•
	•••••••••••••••••••••••••••••••••••••••
	······································
	•••••••••••••••••••••••••••••••••••••••

ΔT	/201	8/0′	7/S-	П
`	# 4 VI	U U	11	

	2	
-	.)	_

විභාග	අංකය	
-------	------	--

3.	$\cos x + \sqrt{3} \sin x - 2 \sin \left(x + \frac{\pi}{3} \right)$ යන්න $R \cos (x + \alpha)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි R (> 0) හා $\alpha \left(0 < \alpha < \frac{\pi}{2} \right)$ යනු නිර්ණය කළ යුතු තාත්ත්වික නියත වේ.
	$lpha \left(0 < lpha < rac{\pi}{2} ight)$ යනු නිර්ණය කළ යුතු තාත්ත්වික නියත වේ.
	`
4.	$\frac{3x}{(x-1)(x+2)}$ යන්න භින්න භාග ඇසුරෙන් පුකාශ කරන්න. ඒ නයින්, $\int \frac{x}{(x-1)(x+2)} \mathrm{d}x$ සොයන්න.
4.	
4.	
4.	
4.	$\frac{3x}{(x-1)(x+2)}$ යන්න භින්න භාග ඇසුරෙන් පුකාශ කරන්න. ඒ නයින්, $\int \frac{x}{(x-1)(x+2)} \mathrm{d}x$ සොයන්න.
4.	$\frac{3x}{(x-1)(x+2)}$ යන්න භින්න භාග ඇසුරෙන් පුකාශ කරන්න. ඒ නයින්, $\int \frac{x}{(x-1)(x+2)} \mathrm{d}x$ සොයන්න.
4.	$\frac{3x}{(x-1)(x+2)}$ යන්න භින්න භාග ඇසුරෙන් පුකාශ කරන්න. ඒ නයින්, $\int \frac{x}{(x-1)(x+2)} \mathrm{d}x$ සොයන්න.
4.	$\frac{3x}{(x-1)(x+2)}$ යන්න භින්න භාග ඇසුරෙන් පුකාශ කරන්න. ඒ නයින්, $\int \frac{x}{(x-1)(x+2)} \mathrm{d}x$ සොයන්න.
4.	$\frac{3x}{(x-1)(x+2)}$ යන්න භින්න භාග ඇසුරෙන් පුකාශ කරන්න. ඒ නයින්, $\int \frac{x}{(x-1)(x+2)} \mathrm{d}x$ සොයන්න.
4.	$\frac{3x}{(x-1)(x+2)}$ යන්න භින්න භාග ඇසුරෙන් පුකාශ කරන්න. ඒ නයින්, $\int \frac{x}{(x-1)(x+2)} \mathrm{d}x$ සොයන්න.
4.	$\frac{3x}{(x-1)(x+2)}$ යන්න භින්න භාග ඇසුරෙන් පුකාශ කරන්න. ඒ නයින්, $\int \frac{x}{(x-1)(x+2)} \mathrm{d}x$ සොයන්න.
4.	$\frac{3x}{(x-1)(x+2)}$ යන්න භින්න භාග ඇසුරෙන් පුකාශ කරන්න. ඒ නයින්, $\int \frac{x}{(x-1)(x+2)} \mathrm{d}x$ සොයන්න.
4.	$\frac{3x}{(x-1)(x+2)}$ යන්න භින්න භාග ඇසුරෙන් පුකාශ කරන්න. ඒ නයින්, $\int \frac{x}{(x-1)(x+2)} \mathrm{d}x$ සොයන්න.
4.	$\frac{3x}{(x-1)(x+2)}$ යන්න භින්න භාග ඇසුරෙන් පුකාශ කරන්න. ඒ නයින්, $\int \frac{x}{(x-1)(x+2)} \mathrm{d}x$ සොයන්න.
4.	$\frac{3x}{(x-1)(x+2)}$ යන්න භින්න භාග ඇසුරෙන් පුකාශ කරන්න. ඒ නයින්, $\int \frac{x}{(x-1)(x+2)} \mathrm{d}x$ සොයන්න.
4.	$\frac{3x}{(x-1)(x+2)}$ යන්න භින්න භාග ඇසුරෙන් පුකාශ කරන්න. ඒ නයින්, $\int \frac{x}{(x-1)(x+2)} \mathrm{d}x$ සොයන්න.
4.	$\frac{3x}{(x-1)(x+2)}$ යන්න භින්න භාග ඇසුරෙන් පුකාශ කරන්න. ඒ නයින්, $\int \frac{x}{(x-1)(x+2)} \mathrm{d}x$ සොයන්න.

5	. කොටස් වශයෙන් අනුකලන කුමය භාවිතයෙන්, $\int\limits_0^\pi e^x \sin x \mathrm{d}x = rac{1}{2} \Big(e^\pi + 1 \Big)$ බව පෙන්වන්න.
ĺ	
_	
0.	X සසම්භාවී විචලාගයක මධානාය 6 වේ. $Y=X(X-3)$ යන පරිණාමනය මගින් අර්ථ දැක්වෙන Y සසම්භාවී විචලාගයෙහි මධානාය 54 නම්, X හි විචලතාව සොයන්න.

42

7.	මුහුණත්වල 1, 2, 3, 4, 5 හා 5 යන සංඛාහංක හය ලකුණු කරන ලද පැති හයකින් යුත් සාධාරණ දාදු කැටයක්, 5 ලකුණු කරන ලද මුහුණතක් උඩු අතට වැටෙන තෙක් නැවත නැවත පෙරළීමෙන් කීඩාවක් කරනු ලැබේ. 5 සංඛාහංකය ලකුණු කරන ලද මුහුණතක් උඩු අතට වැටුණු වාරය ද ඇතුළුව දාදු කැටය පෙරළු වාර ගණන කීඩාවෙන් ලැබුණු ලකුණ ලෙස ගනිමු. එක් එක් පෙරළීමෙහි පුතිඵලය අනෙක් ඒවායින් ස්වායත්ත වේ.	
	(i) ලබාගත් ලකුණ 1 වීමේ,	l
	(ii) ලබාගත් ලකුණ 1 ට වඩා වැඩි බව දී ඇති විට එය 2 ක් වීමේ,	l
	සම්භාවිතාව සොයන්න.	l
	••••••	
		İ
		П
	P = P = P = P = P = P = P = P = P = P =	
8.	A හා B යනු එකම S නියැදි අවකාශය මත අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=rac{1}{3}$ හා $P(A\cap B')=rac{1}{5}$ නම්, $P(A)$ හා $P(Big A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැදි අවකාශය මත අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=rac{1}{3}$ හා $P(A\cap B')=rac{1}{5}$ නම්, $P(A)$ හා $P(B A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැදි අවකාශය මත අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=rac{1}{3}$ හා $P(A\cap B')=rac{1}{5}$ නම්, $P(A)$ හා $P(B A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැදි අවකාශය මන අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=rac{1}{3}$ හා $P(A\cap B')=rac{1}{5}$ නම්, $P(A)$ හා $P(B A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැදි අවකාශය මත අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=rac{1}{3}$ හා $P(A\cap B')=rac{1}{5}$ නම්, $P(A)$ හා $P(B A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැදි අවකාශය මත අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=rac{1}{3}$ හා $P(A\cap B')=rac{1}{5}$ නම්, $P(A)$ හා $P(B A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැදි අවකාශය මත අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=rac{1}{3}$ හා $P(A\cap B')=rac{1}{5}$ නම්, $P(A)$ හා $P(B A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැඳි අවකාශය මත අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=rac{1}{3}$ හා $P(A\cap B')=rac{1}{5}$ නම්, $P(A)$ හා $P(Big A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැඳි අවකාශය මත අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=rac{1}{3}$ හා $P(A\cap B')=rac{1}{5}$ නම්, $P(A)$ හා $P(B A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැඳි අවකාශය මත අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=rac{1}{3}$ හා $P(A\cap B')=rac{1}{5}$ නම්, $P(A)$ හා $P(B A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැදි අවකාශය මත අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=\frac{1}{3}$ හා $P(A\cap B')=\frac{1}{5}$ නම්, $P(A)$ හා $P(B A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැඳි අවකාශය මන අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=\frac{1}{3}$ හා $P(A\cap B')=\frac{1}{5}$ නම්, $P(A)$ හා $P(B A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැදි අවකාශය මත අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=rac{1}{3}$ හා $P(A\cap B')=rac{1}{5}$ නම්, $P(A)$ හා $P(B A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැදි අවකාශය මත අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=\frac{1}{3}$ හා $P(A\cap B')=\frac{1}{5}$ නම්, $P(A)$ හා $P(B A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැදි අවකාශය මත අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=\frac{1}{3}$ හා $P(A\cap B')=\frac{1}{5}$ නම්, $P(A)$ හා $P(B A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැදි අවකාශය මත අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=\frac{1}{3}$ හා $P(A\cap B')=\frac{1}{5}$ නම්, $P(A)$ හා $P(B A)$ සොයන්න.	
8.	A හා B යනු එකම S නියැඳි අවකාශය මත අර්ථ දැක්වූ සිද්ධි දෙකක් යැයි ද B' යනු B සිද්ධියේ අනුපූරකය යැයි ද ගනිමු. $P(A\cap B)=\frac{1}{3}$ හා $P(A\cap B')=\frac{1}{5}$ නම්, $P(A)$ හා $P(B A)$ සොයන්න.	

у.	. ළමයින් 40 දෙනකු සිටින පන්තියක, 60% ක් ගැහැනු ළමයින් වේ. මෙම පන්තියෙහි පිරිමි ළමයින්ගෙන් 80% æ හා ගැහැනු ළමයින්ගෙන් 40% ක් කිුකට් කීීඩා කිරීමට කැමැත්තක් දක්වයි.					
	(i) මෙම පන්තියෙන් සසම්භාවී ලෙස තෝරාගත් ළමයකු කිකට් කි්රීමට කැමති වීමේ සම්භාවිතාව සොයන	ර්න				
	(ii) මෙම පන්තියෙන් සසම්භාවී ලෙස ළමයින් තිදෙනකු තෝරාගතහොත්, අඩු තරමින් ඔවුන්ගෙන් එක් අයකු කිකට් කී්ඩා කිරීමට කැමති වීමේ සම්භාවිතාව සොයන්න.					
	······					
	•••••••••••••••••••••••••••••••••••••••					
l 0.	X සන්තතික සසම්භාවී විචලාසයට ගත හැක්කේ $k(>0)$ අගය නොඉක්මවන ධන අගයන් පමණි. X හි සම්භාවි k	තා				
	ඝනත්ව ශිතය $f(x)$ යන්න $f(x)=rac{4}{3}(2x+1)$ ආකාරයේ වෙයි නම්, k හි අගය සොයන්න.					
	තව ද සසම්භාවී විචලාස 0.3 ට වඩා අඩු අගයක් ගැනීමේ සම්භාවිතාව සොයන්න.					
		,				
		ļ				
		}				
		ĺ				

		- 1				

සියලු ම හිමිකම් ඇවිරිණි / ψ ැගුට பதிப்புநிமையுடையது / $All\ Rights\ Reserved$)

අධාපයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අශෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

ுறைகை II கணிதம் II Mathematics II

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

11. නිෂ්පාදකයෙක්, A හා B යන නිපැයුම්වලින් ඔහුගේ මුළු ලාහය උපරිම කර ගැනීම සඳහා සතියක දී නිපදවිය යුතු ඒකක ගණන් නිර්ණය කිරීමට අදහස් කරයි. මෙම එක් එක් නිපැයුම නිෂ්පාදනය කිරීම සඳහා I හා II යන කියාවලි වර්ග දෙකක් අවශා වේ.

A නිපැයුමෙහි හා B නිපැයුමෙහි එක ඒකකයක් නිපදවීම සඳහා එක් එක් කිුයාවලියේ දී අවශා වන පැය ගණන හා එක් එක් කිුයාවලියට සතියකට මෙහෙයවිය හැකි කාර්ය පැය ගණන පහත දැක්වෙන වගුවෙන් දෙනු ලැබේ.

එක් ඒකකයක් නිපදවීම සඳහා අවශූූූූූ වන කුයාවලි වර්ගය පැය ගණන		කියාවලියට සතියකට මෙහෙයවිය හැකි කාර්ය පැය ගණන	
	නිපැයුම <i>A</i>	නිපැයුම $oldsymbol{B}$	
I	2	1	1000
II	1	1	800

A හා B නිපැයුම්වල ඒකකයක් සඳහා ලාභය පිළිවෙළින් රුපියල් 3000ක් හා රුපියල් 2000ක් වේ. නිෂ්පාදනය සඳහා අමුදුවා සැපයුමේ බාධාවක් නොපවතී. B නිෂ්පාදනය සඳහා ඉල්ලුම සීමා රහිත වන නමුත්, A නිෂ්පාදනය සඳහා සතියකට ඉල්ලුම වැඩි තරමින් ඒකක 350ක් වේ.

- (i) මෙය රේඛීය පුකුමණ ගැටලුවක් ලෙස සූතුගත කරන්න.
- (ii) ශකාතා පෙදෙසෙහි දළ සටහතක් අඳින්න.
- (iii) පුස්තාරික කුමය භාවිතයෙන්, මුළු ලාභය උපරිම කර ගැනීම සඳහා A හා B එක් එක් නිපැයුමෙන් සතියක දී නිපදවිය යුතු ඒකක ගණන සොයන්න.

B තිපැයුමෙහි සතියකට ඉල්ලුම ඒකක 500ක් දක්වා අඩු වුණි නම් හා නිෂ්පාදකයා තවමත් ලාභය උපරිම කර ගැනීමට බලාපොරොත්තු වෙයි නම් මුළු ලාභයේ අඩු වීම සොයන්න.

- 12. (a) $0 \le x \le \frac{\pi}{2}$ සඳහා $4\cos x(2 + \cos x) = 5$ සමීකරණය විසඳන්න.
 - (b) $\sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1} x = 2\sin^{-1}\left(\frac{1}{2}\right)$ විසඳන්න.
 - (c) සුපුරුදු අංකනයෙන්, ABC තිුකෝණය සඳහා **සයින් නීතිය** පුකාශ කරන්න.

ABC තිකෝණය සඳහා $\frac{a+b}{b+c}=2$ බව දී තිබේ.

 $\sin(A+B) = \frac{1}{2}[\sin A - \sin B]$ බව පෙන්වන්න.

More Past Papers at tamilguru.lk

- 13. (a) $x^2 + y^2 = 16$ වෘත්තයෙන් හා $y^2 = 6x$ වකුයෙන් ආවෘත කෙරෙන වර්ගඵලය සොයන්න.
 - (b) පහත සඳහන් වගුව, 0 හා 2 අතර දිග 0.5ක් වූ පුාන්කරවල දී x හි අගයන් සඳහා $f(x) = \frac{x}{x^2 + 1}$ යන ශිතයෙහි අගයන් දශමස්ථාන හතරකට නිවැරදි ව දෙයි:

х	0.00	0.50	1.00	1.50	2.00
f(x)	0.0000	0.4000	0.5000	0.4615	0.4000

සිම්සන් නීතිය භාවිතයෙන්, $I=\int\limits_0^2 \frac{x}{x^2+1} \; \mathrm{d}x$ සඳහා ආසන්න අගයක් දශමස්ථාන තුනකට නිවැරදි ව සොයන්න.

ඒ නයින්, ln 5 සඳහා ආසන්න අගයක් සොයන්න.

14. (a) පුද්ගලයින් කණ්ඩායමක මධානය බර (kg) 61.4 වේ. තව ද කණ්ඩායමෙහි සිටින සියලු පිරිමින්ගේ හා කණ්ඩායමෙහි සිටින සියලු ගැහැනුන්ගේ මධානය බර (kg) පිළිවෙළින් 65.3 සහ 60.1 වේ. මෙම කණ්ඩායමෙහි සිටින පිරිමින්ගේ පුතිශතය සොයන්න.

මෙම කණ්ඩායමෙන් සසම්භාවී ලෙස පුද්ගලයින් 20 දෙනකු තෝරාගතහොත්, තෝරාගත් පුද්ගලයින් 20 දෙනා අතර සිටින පිරිමින්ගේ අපේක්ෂිත සංඛාාව සොයන්න.

පුද්ගලයින් 25 දෙනකුගෙන් යුත් අලුත් කණ්ඩායමක් සෑදීමට තෝරාගත් පුද්ගලයින් 20 දෙනාගේ කණ්ඩායමට තවත් පිරිමින් 5 දෙනකු එකතු කරනු ලැබුවේ නම්, අලුත් කණ්ඩායමෙහි මධානා බර නිමානය කරන්න.

(b) කම්කරුවන් 130 දෙනකු නිශ්චිත කාර්යයක් සිදු කිරීමට ගත කළ කාලයන් (මිනිත්තුවලින්) පහත සංඛාත වාහප්තියෙන් දෙනු ලැබේ.

කාලය (මිනිත්තු)	කම්කරුවන් ගණන
30 - 39	10
40 - 49	35
50 - 59	44
60 - 69	27
70 - 79	14

සුදුසු කේත කුමයක් භාවිතයෙන් සංඛාහත වහාප්තියෙහි මධානාහය සහ විචලතාව සොයන්න.

15. වෙළෙඳ සැලක විකුණන ලද කේතල්වලින් 40%, 30% හා 30% ක් පිළිවෙළින් A,B හා C වෙළෙඳ නාම සහිත ඒවා යැයි සිතමු. තව ද A,B හා C යන වෙළෙඳ නාම සහිත විකුණන ලද කේතල්වලින් පිළිවෙළින් 1%, 2% හා 1% ක් වගකීම් කාලය තුළ ආපසු භාර දෙනු ලබන්නේ යැයි ද සිතමු.

විකුණන ලද කේතල් අතරින් සසම්භාවී ලෙස තෝරාගත් කේතලයක් වගකීම් කාලය තුළ ආපසු භාර දෙනු ලැබීමේ සම්භාවිතාව සොයන්න.

- (i) කේතලයක් වගකීම් කාලය තුළ ආපසු භාර දෙනු ලැබුවේ නම්, එය A යන වෙළෙඳ නාමය සහිත වීමේ සම්භාවිතාව සොයන්න,
- (ii) කේතලය A යන වෙළෙඳ නාමය සහිත නොවන බව දී ඇති විට, එය වගකීම් කාලය තුළ ආපසු භාර දෙනු ලැබීමේ සම්භාවිතාව සොයන්න.
- (iii) කේතලයක් වගකීම් කාලය තුළ ආපසු භාර නොදුන් බව දී ඇති විට, එය A යන වෙළෙඳ නාමයෙන් යුක්ත නොවීමේ සම්භාවිතාව සොයන්න,
- (iv) සසම්භාවී ලෙස කේතල් 2ක් තෝරාගත්තේ නම්, ඒවා අතරින් හරියටම එක් කේතලයක් පමණක් වගකීම් කාලය තුළ නැවත භාර දෙනු ලැබීමේ සම්භාවිතාව සොයන්න.

- 16. පාසලක සිටින සිසුන්ගේ උස, මධානාසය අඟල් 62.8ක් හා සම්මත අපගමනය අඟල් σ ලෙස ඇතිව පුමතව වාසාප්ත වී ඇත. සිසුන්ගෙන් 33%ක් අඟල් 60.6 ට වඩා උසින් අඩු නම්, σ සොයන්න.
 - (i) සිසුන්ගෙන් 71.9%ක් අමල්ට වඩා උසින් අඩු නම්, අමල්ගේ උස ආසන්න අඟලට ගණනය කරන්න.
 - (ii) අඟල් 66 ට වඩා උසින් වැඩි සිසුන්ගේ පුතිශතය සොයන්න.
 - (iii) අහඹු ලෙස තෝරාගත් සිසුවකු මධානා ෙඋස වන අඟල් 62.8 ට වඩා උසින් වැඩි නම්, මෙම සිසුවා අඟල් 66 ට වඩා උසින් වැඩි වීමේ සම්භාවිතාව සොයන්න.
 - (iv) පාසලින් සසම්භාවී ලෙස සිසුන් තුන්දෙනකු තෝරාගනු ලැබුවහොක් ඔවුන් අතරින් උසින් අඩුම සිසුවා අඟල් 66 ට වඩා උසින් වැඩි වීමේ සම්භාවිතාව සොයන්න. (ඔබේ පිළිතුර සුළු කිරීම අවශා නොවේ.)
- 17. වීථියක එක් පැත්තක එකිනෙකට මීටර 50ක දුරින් සර්වසම ලාම්පු සවි කර ඇත. ලාම්පුවක්, එක් දිනක වැඩ කරයි නම්, ඊට පසු දිනයේ ද එය වැඩ කිරීමේ සම්භාවිතාව 0.80කි. ලාම්පුවක් එක් දිනක වැඩ නොකරයි නම්, ඊට පසු දිනයේ දී එය වැඩ කරන තත්ත්වයට අලුත්වැඩියා කිරීමේ සම්භාවිතාව 0.60කි.

ලාම්පුවක තත්ත්වය 'වැඩ කරන (W)' සහ 'වැඩ නොකරන (NW)' යන අවස්ථා දෙක සහිත ද්වි-අවස්ථා මාකොව් දාමයක් ලෙස සලකන්න.

එක් - පියවර සංකුමණ සම්භාවිතා නාහසය P ලියා දක්වා ද්වී - පියවර සංකුමණ සම්භාවිතා නාහසය ලබාගන්න.

2018 ජනවාරි 01 වන දින සියලු ම ලාම්පු වැඩ කරන තත්ත්වයේ පැවතුණි යැයි සිතන්න.

සසම්භාවී ලෙස තෝරාගත් ලාම්පුවක් 2018 ජනවාරි 03 වන දින වැඩ කරන තත්ත්වයේ පැවතීමේ සම්භාවිතාව සොයන්න.

පුද්ගලයෙක් 2018 ජනවාරි 03 වන දින විථියෙහි එක් කොණක පළමු ලාම්පුවෙහි සිට විථියෙහි අනෙක් කොණ දක්වා පයින් ගමන් කරයි.

පළමුවන වැඩ නොකරන ලාම්පුවට ළඟා වීමට පුද්ගලයාට මීටර 500 කට වඩා පයින් යෑමට සිදු වීමේ සම්භාවිතාව සොයන්න. (ඔබේ විසඳුම සුළු කිරීම අවශා නොවේ.)

පුද්ගලයා දැනටමත් මීටර 100ක් පයින් ගමන් කර ඇති බව දී ඇති විට පළමුවන වැඩ නොකරන ලාම්පුවට ළඟා වීමට පුද්ගලයාට හරියටම මීටර 200ක් පයින් යාමට සිදු වීමේ සම්භාවිතාව සොයන්න.

* * *

More Past Papers at tamilguru.lk