Notes About Constructed Wetlands

Engineers Without Borders Virginia Tech

k-C* Model (1996)

$$A = (\frac{0.0365 * Q}{k}) \ln \left(\frac{C_i - C^*}{C_e - C^*}\right)$$
 (1)

$$C_o = C^* + (C_i - C^*) \exp\left(-\frac{kA}{0.0365Q}\right)$$
 (2)

 $C_o = \text{outlet concentration (mg/L)}$

 $C_i = \text{inlet concentration (mg/L)}$

 $C^* =$ background concentration (mg/L)

k =modified first order areal constant (m/d)

 $A = \text{area (m}^2/\text{d)}$

 $Q = \text{design flow (m}^3/\text{d)}$

Table 1: Typical Media Characteristics for Subsurface Flow Wetlands

	BOD	TSS	Organic N	NH ₄ -N	NO _x N	TN	TP	FC
k20, m/yr	180	1000	35	34	50	27	12	95
Θ	1.0	1.0	1.05	1.04	1.09	1.05	1	1
C*, mg/L	3.5+0.053 C _i	$7.8 + 0.063 C_{i}$	1.5	0	0	1.5	0.02	10

Table 2: Possible Effluent Values at Certain Areas

Area (m²	BOD	TSS	Organic N	NH ₄ -N	NO_xN	TN	TP	FC
500	9.12	13.16	4.16	13.4	6.01	13.38	5.51	47105.1
1000	8.84	13.16	2.27	4.49	1.2	6.4	3.75	2227.97
10000	8.84	13.16	1.36	0	0	1.36	0.02	10

Figure 1: Effluent

Figure 2: Area

P-k-C* Model (2009)

$$\frac{(C_o - C^*)}{(C_i - C^*)} = \frac{1}{(1 + k/Pq)^P}$$
(3)

 $C_o = \text{outlet concentration (mg/L)}$

 $C_i = \text{inlet concentration (mg/L)}$

 $C^* = \text{background concentration (mg/L)}$

k =modified first order areal constant (m/d)

p = number of cells

q = hydrolic loading rate (m/d)

$$k_T = k_{20}\theta^{(T-20)} (4)$$

$$q = Q/A (5)$$

q =hydrolic loading rate

 $Q = \text{inflow rate, m}^3/\text{d}$

 $A = \text{area, } m^2$

$$Q_1 = Q_i + A_1(P - ET - I) (6)$$

 ${\it A}_{1}=$ area of the first segment (tank), ${\it m}^{3}$

ET = evapotranspiration, m/d

I = infiltration, m/d

P =precipitation, m/d

 $Q_i = \text{inlet flow rate, m}^3/\text{d}$

 $Q_1 = \text{outlet flow rate from first segment, m}^3/\text{d}$

Figure 3: Area

Table 3: Calculations from Kadlec Second Edition

Input Parameters

Flow rate, Q: (m^3/d) 42.59 (system) (m²) Cells, P: 4 Area, A: 1000 (m^3) Cell Area: 250.0 100.8 (mg/L) 8.8424 (mg/L) C_i: C*: (m/yr) k: 76.0 0.208 (m/d) k:

Calculated Values		System In	Exit Cell 1	Exit Cell 2	Exit Cell 3	Exit Cell	System Out
Net flow	(m^3/d)	42.59	42.59	42.59	42.59	42.59	42.59
HLR, q	(m/d)	0.04	0.17	0.17	0.17	0.17	0.04
Concentration	(mg/L)	100.8	50.22	27.46	17.22	12.61	12.61
HRT	(days)	N/A	N/A	N/A	N/A	N/A	N/A

Table 4: Summary of First-Order Rate Constants for Selected Parameters

	BOD Tertiary	BOD Tertiary	BOD Tertiary	BOD Tertiary
C_i (mg/L)	0-30 (mg/L)	30-100 (mg/L)	100-200 (mg/L)	>200 (mg/L)
FWS				
P	1	1	1	1
C*, (mg/L)	2	5	10	20
30th %ile (k, m/yr)	16	16	23	54
50th %ile (k, m/yr)	33	41	36	189
70th %ile (k, m/yr)	79	67	112	439
HSSF				
P	3	3	3	3
C*, (mg/L)	1	5	10	15
30th %ile (k, m/yr)	36	24	15	21
50th %ile (k, m/yr)	86	3 7	25	66
70th %ile (k, m/yr)	224	44	44	114
VFSF				
P	6	6	6	6
C*, (mg/L)	0	0	0	0
30th %ile (k, m/yr)	22	40	53	48
50th %ile (k, m/yr)	63	56	76	71
70th %ile (k, m/yr)	105	79	122	93

Table 5: Summary of First-Order Rate Constants for Selected Parameters

C _i (mg/L)	ORG-N	NH ₄ -N	NO _x -N	TKN	TN	TP	FC
FWS							
P	3	3	3	3	3	3.4	3
C*, (mg/L)	1.5	0	0	1.5	1.5	0.002	40
30th %ile (k, m/yr)	10.7	8.7	18.5	6.1	6.6	4.5	49
50th %ile (k, m/yr)	17.3	14.7	26.5	9.8	12.6	10.0	83
70th %ile (k, m/yr)	27.4	45.1	33.6	13.6	24.2	16.7	177
HSSF							
P	6	6	8	6	6	•	6
C*, (mg/L)	1	0	0	1	1	•	0
30th %ile (k, m/yr)	8.8	5.2	32	4.8	4.7	•	56
50th %ile (k, m/yr)	19.6	11.4	42	9.1	8.4	•	103
70th %ile (k, m/yr)	38.0	18.8	73	14.6	14.2	•	181

How to Call Python Functions

Function: changeWetlandType(newType)

Changes between Free Water Surface or Subsurface Wetland Purpose:

Inputs Input Options

"FWS" newType

"SSF"

Function: changeModel(newModel)

Controls which model is used for calculations **Purpose:**

Inputs Input Options

"reed" newType

"kadlec2009" "kadlecPkC" "kadlec1996" "KadleckC"

Function: area(qualityType)

Purpose: Calculates necessary area

Inputs Input Options

"BŌD" qualityType

"TSS"

"organicNitrogen"

"ammonia" "nitrate"

"totalNitrogen" "totalPhosphorus" "fecalColiform"

cells= integer value k= integer value c_i= integer value

Function: printArea(qualityType) Prints area to console **Purpose:**

Inputs Input Options

qualityType

"BOD" "TSS"

"organicNitrogen"

"ammonia" "nitrate"

"totalNitrogen" "totalPhosphorus" "fecalColiform"

 $\begin{array}{ll} \text{cells=} & \text{integer value} \\ \text{k=} & \text{integer value} \\ \text{c_i=} & \text{integer value} \end{array}$

Function: effluent(qualityType)

Purpose: Calculates an effluent value for a certain area

Input Options

qualityType "BOD"

"TSS"

"organicNitrogen"

"ammonia" "nitrate"

"totalNitrogen"

"totalPhosphorus" "fecalColiform"

cells= integer value k= integer value area= integer value

Function: printFffluent(qualityType) **Purpose:** Prints effluent value to console

Inputs Input Options

qualityType "BOD"

"TSS"

"organicNitrogen"

"ammonia" "nitrate"

"totalNitrogen" "totalPhosphorus" "fecalColiform"

cells= integer value k= integer value area= integer value

Table 16.3: Predesign Checklist

Potential Weltand Site Data

Site name: CEFONMA

- City/Community: Xix, Guatemala
- Current Population: 150 (Half day students, half boarding students)
- Future Population: 450

Other anticipated Wetland Uses (nature study, hunting, aquaculture, other):

Key/sensitive wildlife habitat:

Site substrate material (e.g., sand, clay, muck, sandy clay, clayey sand, etc.):

• Substrate permeability: high medium low

%Vegitation Cover:

- Submergent:
- Emergent:
- Meadow:
- Forest:

Land area available:

Proximity to water/wastewater source:

- Zoning:
- Ownership:

Adjacent land use:

- Zoning:
- · Ownership:

Presence of existing or potential limiting land use (e.g., environmentally sensitive areas, etc.):

Protected species historical or archealogical resources on or near site:

Aguifers, aguitards, or natural wetlands (note location):

% of Available land area covered by natural wetlands:

Type of natural wetland (marsh, openwater, floating aquitic, etc):

Dominant plant species:

Site topography (flat, rolling, steep, other):

- Is the wetland/site landlocked? Yes No
- If no, what water body will/does teh treatment wetland discharge to?

Water body classification:

Wetland outlet location and description:

Upland buffer zone description:

Climatic Factors

Site elevation:

Number of frost-free days:

Annual and monthly temperature

Table 6: Annual and Monthly Temps

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
14.6	15.1	16.6	17.4	17.5	17.5	16.7	16.7	16.8	16.1	15.7	15.2	16.33

Table 7: Annual and Monthly Snowfall

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual

Table 8: Annual and Monthly Rainfall

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
65	42	50	66	128	306	264	230	251	224	127	64	1818

Table 9: Annual and Monthly Evapotranspiration

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
	_					_	_		_			

Potential Influent Quantity and Quality

Design flows:

Stormwater to watershed area:

Define watershed border and note watershed area: ha

Runoff coefficient:

Wastewaters (municipal, industrial, etc):

Wastewater pretreatment:

Operating season (months):

Period of record

- Start year
- End year

Average flow (m³/d):

Metals (list):

Pesticides/herbicides (list):

Organics (list):

Parameter Concentrations and Loadings

Parameter		
BOD ₅	 mg/L	 kg/d
TSS	 mg/L	 kg/d
NH ₄ -N	 mg/L	 kg/d
NO ₃ +NO ₂	 mg/L	 kg/d
TN	 mg/L	 kg/d
TKN	 mg/L	 kg/d
Organic Nitrogen	 mg/L	 kg/d
TP	 mg/L	 kg/d
SO_4/S_2	 mg/L	 kg/d
Alkalinity	 mg/L	 kg/d
Chloride	 mg/L	 kg/d
Dissolved Oxygen	 mg/L	 kg/d
Conductivity	 _	
рН		
Temperature	 (°C)	
Fecal Coliform	 (CFU/100 mL)	
E. coli	 (CFU/100 mL)	

Treatment Wetland System Outflow Targets

Approval permit limits to be met at:

- wetland inflow:
- wetland outflow:

Approved flow (per day, week, month, year):

Approval duration:

Parameter		
BOD ₅ TSS NH ₄ -N TN TP Dissolved Oxygen Fecal Coliform pH	mg/L mg/L mg/L mg/L mg/L mg/L (CFU/100 mL)	kg/d kg/d kg/d kg/d kg/d