## Univerzita Jana Evangelisty Purkyně v Ústí nad Labem

### Přírodovědecká fakulta



# Optimalizace investičních prostředků z hlediska výnosu fotovoltaických elektráren

BAKALÁŘSKÁ PRÁCE

Vypracoval: Petr Kotlan

Vedoucí práce: Ing. Roman Vaibar, Ph.D., MBA

Studijní program: Matematika ve firmách a veřejné správě

Ústí nad Labem 2024

Studijní program: Matematika ve firmách a veřejné správě Forma studia: Prezenční Přírodovědecká fakulta

Akademický rok: 2023/2024

## Podklad pro zadání BAKALÁŘSKÉ práce studenta

Petr KOTLAN Jméno a příjmení: Osobní číslo: F21060

Téma práce: Optimalizace investičních prostředků z hlediska výnosu fotovoltaických elektráren

Téma práce anglicky: Optimization of investment funds in terms of photovoltaic power plants

Čeština Jazyk práce:

Vedoucí práce: Ing. Roman Vaibar, Ph.D., MBA

Katedra informatiky

#### Zásady pro vypracování:

Cílem bakalářské práce je vyvinout aplikaci, která pomocí lineárního programování optimalizuje rozdělení investičních prostředků pro instalaci fotovoltaických elektráren na daných objektech. Optimalizace bude provedena na základě následujících hledisek:

- typu střechy rovná, sedlová, valbová atd.,
- spotřeby v daném místě,
- ceny energie definované odkupem dle spotových cen OTE, a.s.,
- optimalizace uložiště,
- výpočtu předpokládaného ročního výkonu dle osvitových hodin.

#### Osnova:

- 1. Úvod
- 2. Současné modely výnosů fotovoltaických elektráren v ČR
- Teoretická část
  - Přehled ekonomických pojmů
  - Základní modely matematické optimalizace
- Praktická část
  - Popis aplikace
  - Případové studie
- 5. Zhodnocení výsledků
- 6. Závěr

#### Seznam doporučené literatury:

- VALACH, Josef. Investiční rozhodování a dlouhodobé financování. 3., přeprac. a rozš. vyd. Praha: Ekopress, 2010. ISBN 978-80-86929-71-2.
- PLEVNÝ, Miroslav a Miroslav ŽIŽKA. IModelování a optimalizace v manažerském rozhodování. Vyd. 2. Plzeň: Západočeská univerzita v Plzni, 2010. ISBN 978-80-
- Krátkodobé trhy. Online. OTE. C2018. Dostupné z: https://www.ote-cr.cz/cs/kratkodobe-trhy/elektrina/vnitrodenni-trh. [cit. 2023-12-03].
- MITCHELL, Stuart; KEAN, Anita; MASON, Andrew; O'SULLIVAN, Michael a PHILLIPS, Antony et al. Optimization with PuLP. Online. COIN-OR Documentation Site. C2009. Dostupné z: https://coin-or.github.io/pulp/. [cit. 2023-12-03].

| Podpis studenta:        | Datum:                                                                                 |
|-------------------------|----------------------------------------------------------------------------------------|
|                         |                                                                                        |
| Podpis vedoucího práce: | Datum: © IS/STAG, Portál – Podklad kvalifikační práce , st95134, 26. března 2024 00:37 |

## Obsah

| Ú  | $\operatorname{vod}$ |                                                    | 3  |
|----|----------------------|----------------------------------------------------|----|
| 1  |                      | časné modely výnosů<br>voltaických elektráren v ČR | 5  |
| 2  | Teo                  | retická část                                       | 6  |
|    | 2.1                  | Přehled ekonomických pojmů                         | 6  |
|    |                      | 2.1.1 Ukazatele výnosnosti investice               | 6  |
|    | 2.2                  | Základní modely matematické optimalizace           | 7  |
|    |                      | 2.2.1 Formulace úlohy lineárního programování      | 7  |
|    |                      | 2.2.2 Maticové vyjádření                           | 8  |
|    |                      | 2.2.3 Typy úloh lineárního programování            | 8  |
| 3  | Pra                  | ktická část                                        | ç  |
|    | 3.1                  | Popis aplikace                                     | 9  |
|    |                      | 3.1.1 Data                                         |    |
|    | 3.2                  | Případové studie                                   | Ĝ  |
| 4  | Zho                  | dnocení výsledků a závěr                           | 10 |
| Se | znan                 | n zdrojů                                           | 10 |

## Úvod

## Současné modely výnosů fotovoltaických elektráren v ČR

## Teoretická část

Tato část je rozdělena do dvou kapitol. První kapitola se zabývá hodnotícími metodami investic, které jsou využívány v ekonomice. Druhá kapitola se zabývá lineárním programováním.

## 2.1 Přehled ekonomických pojmů

### 2.1.1 Ukazatele výnosnosti investice

#### Vnitřní výnosové procento

(IRR – Internal Rate of Return)

$$\frac{P_1}{(1+IRR)} + \frac{P_2}{(1+IRR)^2} + \ldots + \frac{P_n}{(1+IRR)^n} = K,$$

kde

n – počet let,

 $P_1, P_2, \dots, P_n$  – peněžní příjmy z investice v jednotlivých letech,

K – kapitálový výdaj,

i – požadovaná míra výnosnosti.

### Čistá současná hodnota

(NPV – Net Present Value)

$$NPV = \frac{P_1}{(1+i)} + \frac{P_2}{(1+i)^2} + \dots + \frac{P_n}{(1+i)^n} - K$$

### 2.2 Základní modely matematické optimalizace

Tato kapitola vychází ze dvou učebních textů. Prvním je *Matematika pro ekonomy* od R. Stolína [2] a druhým je *Operační výzkum* od J. Demela [3].

V úvodu této kapitoly jsou popsány základní pojmy a formulace úlohy lineárního programování.

Lineární programování patří k metodám *operačního výzkumu*. Je zaměřeno na hledání optimálního řešení při kterém, jsou zároveň splněny omezující podmínky.

#### 2.2.1 Formulace úlohy lineárního programování

#### Účelová funkce

Účelová funkce je lineární funkcí n proměnných ve tvaru

$$z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n,$$

kde  $c_1, c_2, \ldots c_n$  jsou konstanty, které nazýváme *cenové koeficienty* nebo *koeficienty účelové* funkce a  $x_1, x_2, \ldots x_n$  jsou strukturní neznámé.

Účelová funkce se buď maximalizuje

$$\max z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n,$$

nebo minimalizuje

$$\min z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n.$$

#### Omezující podmínky

Omezující podmínky jsou lineární rovnice nebo nerovnice ve tvaru

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2,$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m,$$

nebo

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \ge b_1,$$
  
 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \ge b_2,$ 

$$\vdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \ge b_m,$$

kde  $a_{ij}$  jsou konstanty, které nazýváme strukturní koeficienty nebo koeficienty omezení,  $b_i$  jsou konstanty (tzv. požadavková čísla) a  $x_1, x_2, \dots x_n$  jsou strukturní neznámé.

Zároveň omezující podmínky vymezují pro každou proměnnou  $x_1, x_2, \ldots x_n$  množinu hodnot, kterýh může nabývat. Nejčastěji se jedná o podmínky tvaru  $x_i \geq 0$  (nezápornost). Jinými případy mohou být například podmínky tvaru  $x_i \leq 0$  (nekladnost) nebo  $x_i$  může nabývat libovolné hodnoty ("neomezeno").

#### 2.2.2 Maticové vyjádření

Můžeme vyjádřit účelovou funkci jako

$$z = c^T x$$
,

kde  $c = (c_1, c_2, \dots, c_n)^T$  je vektor cenových koeficientů a  $x = (x_1, x_2, \dots, x_n)^T$  je vektor strukturních neznámých.

Omezující podmínky můžeme vyjádřit jako maticový součin

$$Ax \leq b$$
,

kde A je matice strukturních koeficientů a b je vektor pravých stran omezujících podmínek.

#### 2.2.3 Typy úloh lineárního programování

## Praktická část

## 3.1 Popis aplikace

### 3.1.1 Data

Český hydrometeorologický ústav

### ČHMÚ

Podmínky užití dat

### OTE, a.s.

OTE (Otevřený trh s elektřinou)

## 3.2 Případové studie

## Zhodnocení výsledků a závěr

## Seznam zdrojů

- [1] Krátkodobé trhy. Online. OTE. C2018. Dostupné z: https://www.ote-cr.cz/cs/kratkodobe-trhy/elektrina/vnitrodenni-trh. [cit. 2023-12-03].
- [2] STOLÍN, Radek. *Matematika pro ekonomy*. 2., upr. vyd. Jihlava: Vysoká škola polytechnická Jihlava, 2011. ISBN ISBN978-80-87035-35-1.
- [3] DEMEL, Jiří. Operační výzkum.