大学物理 II 期末试题

2016年1月28日 9:30-11:30

班级		号			名		
任课教师姓名							
填空题	选择题	计算1	计算 2	计算3	计算 4	计算 5	总 分

可能用到的物理常数:

真空介电常量 $\epsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2 \cdot \mathrm{N}^{-1} \cdot \mathrm{m}^{-2}$, 真空磁导率 $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{N} \cdot \mathrm{A}^{-2}$,

普朗克常量 $h = 6.63 \times 10^{-34} \text{ J·s}$, 基本电荷 $e = 1.60 \times 10^{-19} \text{ C}$,

电子质量 $m_{\rm e} = 9.11 \times 10^{-31} \, {\rm kg}$, 质子质量 $m_{\rm p} = 1.67 \times 10^{-27} \, {\rm kg}$ 。

一 填空题 ((共 42 分,请将答案写在卷面指定的横线上。)

1. (3分) 四个均匀带电球体所带的电量相同,彼此相距很远,可视为孤立带电体 (图中球的间距未按比例画出),它们的球心在一条直线 AB 上。在各球心的正上 方取场点 P_1 、 P_2 、 P_3 、 P_4 , 四

个点所在的直线平行于 AB, P_1 P_2 如图所示。设 P_1 、 P_2 、 P_3 、 P_4 P_4 P_5 P_6 P_6 P_6 P_7 P_8 P_8 P_8 P_8 P_8 P_8 P_9 P_9

 E_3 、 E_4 。将 4 个场强的值按由

大到小的顺序排列_____

2. (4 分)一半径为 R 的均匀带电细圆环,带有电荷 Q,水平放置。在圆环轴线的上方离圆心 R 处,有一质量为 m、带电荷为 q 的小球。

当小球从静止下落到圆心O点时,它的速度为

 $v = \underline{\hspace{1cm}}$.

3. (3 分)某带电体电荷分布的体密度为 ρ 。若 ρ 增大为原来的 2 倍,则其电场的能量变为原来的_______ 倍。

向为	
凹刃	0

9.(4 分) 真空中一空间均匀电场随时间 t 变化,如图所示。图中 E_s =6.0×10⁵N/C,

 $t_s=12.0 \,\mu s$ 。在图中 a、b 时间间隔内,通 过一与该电场垂直、面积为 1.6m^2 的平 面的位移电流分别为

10. (3分)静止时边长为 50 cm 的立方体, 当它沿着与它的一个棱边平行的方 向相对于地面以恒定速度 $2.4 \times 10^8 \,\mathrm{m\cdot s}^{-1}$ 运动时,在地面上测得它的体积是

 $\underline{\qquad}$ $m^3 \circ$

11. (3分)在光电效应实验中, 当波长为 3000 Å 的紫外线照射在某金属表面时, 测得截止电压为 2.5V,则出射光电子的动能是_____J; 此金属的红限 频率 ν₀ =_____Hz。

12. (3分)要使处于基态的氢原子受激后可辐射出可见光谱线,最少应供给氢 原子的能量为 eV。

二 选择题(每题3分,共18分,请将答案写在卷面指定的方括号内。)

- 1.一导体球外充满相对介电常量为 ε 。的均匀电介质,若测得导体表面附近场强为 E,则导体球面上的自由电荷面密度 σ 为

 - (A) $\varepsilon_0 E$ (B) $\varepsilon_0 \varepsilon_r E$

 - (C) $\varepsilon_r E$ (D) $(\varepsilon_0 \varepsilon_r \varepsilon_0)E$

Γ

2. 同心导体球与导体球壳周围电场的电场线分布如图所 示,由电场线分布情况可知球壳上所带总电荷

- (A) q > 0 (B) q = 0
- (C) q < 0 (D) 无法确定 []

7

3. 两个完全相同的电容器 C_1 和 C_2 ,串联后与电源连接。现将一各向同性均匀电 介质板插入 C_1 中,如图所示,则

- (A) 电容器组总电容减小
- (B) C_1 上的电荷大于 C_2 上的电荷
- (C) C_1 上的电压高于 C_2 上的电压
- (D) 电容器组贮存的总能量增大

- Γ
- 4. 在氢原子的 L 壳层中,电子可能具有的量子数 (n, l, m_l, m_s) 是

 - (A) $(1, 0, 0, -\frac{1}{2})$ (B) $(2, 1, -1, -\frac{1}{2})$

 - (C) $(2, 0, 1, -\frac{1}{2})$ (D) $(3, 1, -1, -\frac{1}{2})$
- 5. 在康普顿散射中, 若入射光子与散射光子的波长分别为 λ 和 λ' , 则反冲电子获 得的动能 E_K 是
 - (A) $\frac{hc}{\lambda}$
- (B) $\frac{hc}{\lambda} \frac{hc}{\lambda'}$
- (C) $\frac{hc}{\lambda'} \frac{hc}{\lambda}$
- (D) $\frac{hc}{\lambda'}$

- Γ ٦
- 6.物质波的波函数乘以一个大于1的实常数,则粒子在空间的概率分布将
 - (A) 增大

(B) 减小

(C) 不变

(D) 不确定

Γ

三 计算题(40分)

 $1.(10 \, f)$ 两根长直导线彼此平行,半径均为a,两导线轴线的间距为d,且d>>a。求该系统单位长度的电容。

2.(10 分)如图所示,一固定的无限长竖直导线上通有稳恒电流 I,电流方向向上。导线旁有一(与其共面的)长度为 L 的金属直棒 OM,绕其固定端 O 在棒与导线所确定的竖直平面内沿顺时针方向匀速转动,转动角速度为 ω 。已知 O 点到导线的垂直距离为 r_0 ($r_0>L$)。试求金属棒转到与水平面成 θ 角时,棒内感应电动势的大小和方向。

3. (5 分) 在某地发生两个件事,静止于该地的甲测得这两事件的时间间隔为4s。另一观察者乙相对甲作匀速直线运动,若乙测得这两事件的时间间隔为5s,求(1) 乙相对甲的运动速度;(2) 乙测得这两个事件的空间距离。

- 4. (10 分) 静质量为 m_0 、初速度为零的电子,经电势差为 U 的电场加速后,获得动能。就下列两种情况,计算电子的德布罗意波长。
- (1) 电势差 U较小,不考虑相对论效应;
- (2) 电势差 U很大, 考虑相对论效应。

5. (5分)将带有绝缘皮的导线按如图 1 所示的方式绕在一大塑料管外壁上,两端与示波器相连,且相邻圈的间距为 0.10m。将一个很小的强磁铁由塑料管的顶端自由释放,示波器上可以显示出电压的波形,图 2 为该波形的一个局部。实验中记录下磁铁依次通过各个线圈时电压为零的时刻,根据实验数据描绘出了它下落的高度 y 随时间 t 变化的曲线,见图 3。拟合实验数据得到

 $y = 4.9257t^2 + 1.3931t + 0.0883$ (SI).

- 1)解释图 2 所示电压脉冲波形的形成。
- 2)由实验结果推测出该地重力加速度的数值,给出具体说明。

