Appendix A. Calculations of Rate Coefficients

We provide a few further details and comments for the rate constants that were analyzed theoretically as part of this effort (cf. Table B.15). These calculations focused on the reactions of major molecules and radicals for which improved rate estimates were expected to improve the quality of the overall modeling. For the more important of these reactions, the altitude dependence of the predicted rate coefficients is compared with that employed in a number of other modeling studies in Figures A.1 through A.4.

Appendix A.1. Radical-Molecule Reactions with a Barrier

Table A.1 contains a list of the predicted barrier heights, energy transfer parameter, and electronic structure methodology employed in the analysis of the kinetics of the set of radical-molecule reactions with a barrier that were studied here.

250

TS E^(a) Product E^(a) Rovib Method $\Delta E_{down} A, n^{(b)}$ Ref. Energy Method

Reactants	Products	TS $E^{(a)}$	Product $E^{(a)}$	Rovib Method	Energy Method	$\Delta E_{down} A, n^{(b)}$	Ref.
$H + C_2H_2$	C_2H_3	4.29	-34.7	QCISD(T)/cc-pVTZ	QCISD(T)/CBS(T,Q)	60, 1.35	Miller and Klippenstein (200
$H + C_2 H_4$	C_2H_5	2.81	-35.0	QCISD(T)/cc-pVTZ	QCISD(T)/CBS(T,Q)	60, 1.35	Miller and Klippenstein (200
H + CH, CCH,	CH, CCH,	3.09	-35.9	CCSD(T)/cc-pVTZ	ANL0	80, 0.7	Present work
	$H + CH_3CCH$	2.13		CCSD(T)/cc-pVTZ	ANL0	80, 0.7	Present work
	CH,CHČH,	4.76	-55.8	CCSD(T)/cc-pVTZ	ANL0	80, 0.7	Present work
H + CH ₃ CCH	CH ₃ CCH ₂	3.25	-34.8	CCSD(T)/cc-pVTZ	ANL0	80, 0.7	Present work
· ·	H + CH, ČCH,	4.21		CCSD(T)/cc-pVTZ	ANL0	80, 0.7	Present work
	CH ₃ CHCH	5.16	-34.8	CCSD(T)/cc-pVTZ	ANL0	80, 0.7	Present work
	$C_2H_2 + CH_3$	2.41		CCSD(T)/cc-pVTZ	ANL0	80, 0.7	Present work
$H + C_3H_6$	$n-C_3H_7$	3.66	-31.7	CCSD(T)/cc-pVTZ	QCISD(T)/CBS(T,Q)	110, 1.0	Miller and Klippenstein (201
0 0	$C_2H_4 + CH_3$	-1.41		CCSD(T)/cc-pVTZ	QCISD(T)/CBS(T,Q)	110, 1.0	Miller and Klippenstein (201
	$i-C_3H_7$	2.72	-34.7	CCSD(T)/cc-pVTZ	QCISD(T)/CBS(T,Q)	60, 1.0	Miller and Klippenstein (201
	$C_3H_5 + H_2$	7.58		CCSD(T)/cc-pVTZ	ANL0		Present work
$H + C_4H_2$	$i-C_4H_3$	1.71	-42.7	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	100, 1.0	Klippenstein and Miller (200
$H + C_4 H_4$	СН 3СЙССН	1.82	-43.5	CCSD(T)/cc-pVTZ	HL	200, 0.85	Present work
	CH ₂ CHCCH ₂	2.81	-44.0	B2PLYP-D3/VTZ	HL	200, 0.85	Present work
$H + C_6H_6$	$C_6\tilde{H}_7$	5.09	21.3	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	100, 1.0	Present work
$CH_3 + C_3H_3^{(c)}$	$^{3}\text{C}_{3}\text{H}_{2} + \text{CH}_{4}$	12.5	-7.0	B2PLYP-D3/cc-pVTZ	CCSD(T)/CBS(T,Q)		Present work
$C_2 \ddot{H}_3 + \ddot{C}_2 \ddot{H}_2$	C_4H_5	5.97		B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)		Present work
$C_{2}^{2}H_{3}^{3} + C_{2}^{2}H_{4}^{2}$	$C_4^4H_7^3$	4.15		B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)		Present work
$n - C_4 H_3 + C_2 H_2$	$C_6^4H_5^{\prime}$	3.73		B3LYP/6-311++G**	QCISD(T)/TZ MP2/QZ		Present work
$C_6H_5 + C_2H_2$	C_8H_7	3.58	-39.2	B3LYP/6-311G**	G2M		Mebel et al. (2017)
$^{3}CH_{2} + c - C_{3}H_{2}^{(d)}$	$C_4H_3 + H$	0.75	-55.9	CCSD(T)/cc-pVTZ	CCSD(T)-F12/CBS-F12(T,Q)		Present work
H+HCN	H,CN	6.47	-24.5	CCSD(T)/cc-pVTZ	ANLO	60, 1.35	Present work
H+HNC	HČNH	2.45	-27.3	CCSD(T)/cc-pVTZ	ANL0	,	Present work
	H + HCN	-4.0		CCSD(T)/cc-pVTZ	CCSD(T)/cc-pVTZ		Present work
$H + CH_2NH$	CH, NH	3.71	-29.4	CCSD(T)/cc-pVTZ	ANLO	200, 0.85	Present work
. 2	CH ³ NH ₂	3.85	-36.5	CCSD(T)/cc-pVTZ	ANL0	200, 0.85	Present work
	$H_2\tilde{C}N + H_2$	4.90		CCSD(T)/cc-pVTZ	ANL0		Present work
$H + HC_2N$	H2CCCN 2	3.93	-41.0	CCSD(T)/cc-pVTZ	ANL0		Present work
$C_{o}H + HCN$	CHCCHN	1.36	-46.2	CCSD(T)/cc-pVTZ	ANL0		Present work
2 .	HCCCN + H	-16.1	-24.7	CCSD(T)/cc-pVTZ	ANL0		Present work
$C_2H + HNC$	CHCCHN	1.36	-46.2	CCSD(T)/cc-pVTZ	ANL0	100, 1.0	Present work
2	$H + HC_3N$	-16.1		CCSD(T)/cc-pVTZ	ANL0	100, 1.0	Present work
$C_2H_3 + HCN$	CH ₂ CHCHN	6.78	-28.1	CCSD(T)/cc-pVTZ	ANL0	,	Present work
2 3	H + CH2CHCN	2.92		CCSD(T)/cc-pVTZ	CCSD(T)/cc-pVTZ		Present work
$N(^{2}D) + HCN$	CHNN	0.59	-85.0 ANL0	CI+QC(7,7)/cc-pVTZ	CI+QC(7,7)/cc-pVQZ		Present work
CN + HCN	CNCHN	3.18	-36.2	CCSD(T)/cc-pVTZ	ANLO		Present work

Table A.1: Radical-molecule reaction properties.

Table A 1	- Continued	from	previous	nage

Reactants	Products	TS $E^{(a)}$	Product E^a	Rovib Method	Energy Method	$\Delta E_{down} A, n^{(b)}$	Ref.
	H + NCCN	-2.02		CCSD(T)/cc-pVTZ	ANL0		Present work
$H_2CN + HCN$	H ₂ CNCHN	15.3	1.9	CCSD(T)/cc-pVTZ	CCSD(T)/cc-pVTZ		Present work
H + CO	HČO	3.96	-13.80	CCSD(T)/cc-pVQZ	CCSD(T)/cc-pVQZ	63, 0.85	Present work
$CH_3 + CO$	CH ₃ CO	7.4	-9.0	B3LYP/6-311++G**	QCISD(T)/CBS		Present work

 $^{(a)}$ Energies in kcal/mol. Numbers in bold italics include empirical adjustment.

⁽b) Average downwards energy transfer parameter in exponential down model = $A(T/300)^n$ cm⁻¹. (c) Although the $CH_3 + C_3H_3$ reaction is a radical-radical reaction, we are interested in the triplet abstraction, which has a barrier and so is more like a radical molecule reaction with a positive

barrier. $^{(d)}$ For the 3 CH $_{2}$ + c-C $_{3}$ H $_{2}$ reaction one might consider both species to be radicals (i.e, the c-C $_{3}$ H $_{2}$ species has some degree of singlet biradical character), but there is a positive saddle point for the addition and so this reaction is more like a radical molecule reaction.

Figure A.1: Rate coefficient versus altitude in Krasnopolsky (2009); Hébrard et al. (2013); Li et al. (2014); Loison et al. (2015) and this work (or after Vuitton et al. (2012)). (a) $\rm H+C_2H_2 \rightarrow C_2H_3$ (Rn7), (b) $\rm H+C_2H_4 \rightarrow C_2H_5$ (Rn23)3(c) $\rm H+CH_3CCH \rightarrow C_3H_5$ / $\rm H+CH_2CCH_2$ / $\rm C_2H_2+CH_3$ (Rn15), (d) $\rm H+CH_2CCH_2 \rightarrow C_3H_5$ / $\rm H+CH_3CCH$ (Rn16), (e) $\rm H+C_3H_6 \rightarrow C_3H_7$ / $\rm CH_3+C_2H_4$ / $\rm C_3H_5+H_2$ (Rn18), (f) $\rm H+C_4H_2 \rightarrow C_4H_3$ (Rn21). For those reactions, the rate coefficients presented in Dobrijevic et al. (2016) are almost identical to that in Loison et al. (2015) and are not reproduced here for the sake of clarity.

For the $H + C_2H_2 \rightarrow C_2H_3$ and $H + C_2H_4 \rightarrow C_2H_5$ reactions the analysis of Vuitton et al. (2012) is a simple extension of an earlier AITSTME study (Miller and Klippenstein, 2004) to lower temperatures and includes the effects of radiative stabilization. As seen in Figures A.1a and A.1b, the predicted rate coefficients are quite similar to those of previous photochemical models up until about 400 km. At higher altitude, our inclusion of radiative stabilization yields order of magnitude larger rate coefficients.

The H + CH₃CCH and H + CH₂CCH₂ reactions were studied previously as part of a combustion related AITSTME study of reactions on the $\rm C_3H_5$ potential energy surface by Miller et al. (2008). Here we extend that analysis to lower temperatures and pressures after first updating the parameters with higher-level electronic structure data (ANL0). Furthermore, for simplicity we reduce the analysis to a set of three independent single well problems corresponding to the H-atom fissions in CH₃CCH₂ and CH₂CHCH₂, and the H- and CH₃-fissions in CH₃CHCH. This reduction to single well problems, which facilitates the rate fitting, is appropriate at the low temperatures of relevance to Titan's atmosphere because the isomerization barriers lie at or above the entrance and exit barriers. Nevertheless, for simplicity, we ultimately amalgamate all wells into a single $\rm C_3H_5$ species.

The rate predictions for the $\rm H + CH_3CCH$ and $\rm H + CH_2CCH_2$ reactions are contrasted with those from other modeling studies in Figures A.1c and A.1d. The rate estimates from Loison et al. (2015) are also based to some extent on the work of Miller et al. (2008) as well as an early version of our rate predictions (Vuitton et al., 2012). As such, they tend to be quite similar to the present predictions, although they neglect the $\rm H + CH_2CCH_2 \rightarrow \rm H + CH_3CCH$ forming channel, which is the dominant channel for that reaction. Krasnopolsky (2009), who considers only the $\rm H + CH_3CCH$ channel, neglects radiative association and so severely underestimate the association channels at high altitudes. He also uses orders of magnitude larger rate coefficients for the $\rm C_2H_2 + CH_3$ channel.

The present rate predictions for $H + C_3H_6$ arise from an extension to lower temperature of the AITSTME work of Miller and Klippenstein (2013) for the C₃H₇ system. We again reduce the problem to separate single well analyses for H-fissions in $i-C_3H_7$ and H and CH_3 -fissions in $n-C_3H_7$. For the abstraction reaction, $H + C_3H_6 \rightarrow H_2 + C_3H_5$ we performed new high-level ANL0 calculations. As seen in Figure A.1e, for the $H+C_3H_6 \rightarrow i-C_3H_7$ channel the largely empirical estimates of Loison et al. (2015) are higher than the present predictions (by \sim a factor of 3) up to 900 km and then are increasingly lower at higher altitudes, due to their neglect of radiative stabilization. For the abstraction channel the empirical estimates of Loison et al. are fairly similar to present calculations. For the $H + C_3H_6 \rightarrow CH_3 + C_2H_4$ channel the values of Loison et al. are about a factor of 3 lower at high altitude. However, at low altitude we predict that stabilization to $n-C_3H_7$ replaces $CH_3+C_2H_4$ formation. Loison et al. ignore that channel and so at low altitudes their $H + C_3H_6 \rightarrow CH_3 + C_2H_4$ estimates are similar to our $H + C_3H_6 \rightarrow n - C_3H_7$ rate predictions. Meanwhile, Krasnopolsky (2009) considers only the $H + C_3H_6 \rightarrow i - C_3H_7$ channel, and, due to the neglect of radiative stabilization, underestimates that rate constant by many orders of magnitude except below 200 km.

For the $\mathrm{H}+\mathrm{C_4H_2}\to\mathrm{C_4H_3}$ reaction our analysis is a simple extension of the AITSTME study of Klippenstein and Miller (2005) to lower temperature. We again reduce to a one-well system and consider only the formation of $\mathrm{i}-\mathrm{C_4H_3}$ as the barrier to formation of $\mathrm{n}-\mathrm{C_4H_3}$ is 4 kcal/mol higher. The present predictions are about a factor of two higher than the values of Loison et al. (2015) up to 800 km (cf. Figure A.1f), at which point the Loison et al. decay towards zero (due to their neglect of radiative stabilization), while our prediction is nearly altitude independent.

The present rate analyses for $H + C_4H_4 \rightarrow CH_3CHCCH$ and $H + C_4H_4$ \rightarrow CH₂CHCCH₂ builds off the AITSTME work of Miller et al. (2000) for the $C_2H_3 + C_2H_2$ reaction. Here we incorporate higher level electronic structure results, extend the calculations to lower temperature, add the CH₃CHCCH channel, and include the effects of radiative stabilization. Although we have calculated the rate constants for both H-addition channels, we only include the data for the formation of CH₂CHCCH as that channel dominates the kinetics. Again, we reduce the system to a one-well system (CH₃CHCCH). At low altitudes the present rate predictions are about an order of magnitude lower than those employed in previous models (cf. Figure A.2a), while at higher altitudes our inclusion of radiative stabilization again yields a dramatically increased rate constant. The values of Loison et al. are based on the room temperature capture rate of $3.3 \times 10^{-12}~\mathrm{cm^3~s^{-1}}$, measured by Schwanebeck and Warnatz (1975), and which is presumed to be temperature independent. The present determination of a 1.8 kcal/mol barrier indicates that this rate constant should decay with temperature. Notably, at room temperature our a priori calculations predict a rate coefficient of 1.7×10^{-12} cm³ s⁻¹, which is in reasonable agreement with the experimental value.

For the H+C₆H₆ \rightarrow C₆H₇ reaction we performed a new AITSTME rate analysis. These rate predictions are based on a QCISD(T)/CBS(TZ,QZ)//B3LYP/6-311++G(d,p) analysis with the barrier adjusted down by 0.4 kcal/mol to obtain agreement with the experimental measurements of Sauer and Ward (1967). Loison et al. (2015) have estimated this rate constant through comparison with H+C₂H₂, which results in a 106 times smaller k_o, a 10 times larger k_o, while k_R is ignored.

For the $C_2H_3+C_2H_2$, $C_2H_3+C_2H_4$, $C_6H_5+C_2H_2$, and $C_4H_3+C_2H_2$ reactions we have used AITST to predict the high-pressure addition rates. For the first three of these reactions, our predicted rates were so small $(2\times 10^{-21},\,7\times 10^{-20},\,$ and 1×10^{-18} cm³ s⁻¹, respectively, at 140 K) that they were not included in the mechanism. A similarly small rate was predicted for the $C_4H_3+C_2H_2\to C_6H_5$ reaction $(5\times 10^{-19}~{\rm cm^3~s^{-1}}$ at 140 K). Nevertheless, for completeness this rate was included in the modeling. In doing so, we presumed that due to the relatively large size and strong bonding in C_6H_5 , radiative stabilization is efficient and only the capture rate is needed. The predictions for the $C_6H_5+C_2H_2$ recombination involve a simple extension of the study of Mebel et al. (2017), while the other predictions arise from new analyses performed as part of this study.

Figure A.2: Rate coefficient versus altitude in Krasnopolsky (2009); Hébrard et al. (2013); Loison et al. (2015) and this work. (a) H + HCN \rightarrow H₂CN (R_n254), (b) H + HNC \rightarrow H + HCN (R_n255), (c) H + CH₂NH \rightarrow CH₃NH / CH₂NH₂ / CH₃ + NH / H₂CN + H₂ (R_n256), (d) H + HC₃N \rightarrow H₂C₃N (R_n258). In Dobrijevic et al. (2016), the rate coefficients of those reactions are almost identical to that in Loison et al. (2015) at the exception of H + HCN \rightarrow H₂CN that has been omitted.

The present AITSTME predictions for the H + HCN \rightarrow H₂CN rate constant, which are based on high-level ANL0 electronic structure evaluations, are compared in Figure A.2b with those from Loison et al. (2015), who also performed an AITSTME analyses, but with lower level methods (M062X version of DFT and RRKM theory) and neglecting radiative stabilization. The primary difference between the present calculations and those of Loison et al. arises from our inclusion of radiative stabilization, which is particularly effective for this reaction due to the slowness of the tunneling back to reactants from the

incipient adduct. Interestingly, this need for tunneling through a relatively high barrier greatly results in a radiative stabilization probability that is a atypically large for the size of the reactants. The values from Hébrard et al. (2012), which are from an unspecified source, are 5 or more orders of magnitude smaller.

For the H + HNC reaction we considered both the formation of the HCNH complex and the decomposition of this complex to H + HCN. The latter channel dominates the kinetics, due to the difficulty of stabilizing a small complex (HCNH) in the presence of a negative energy (relative to reactants) exit channel saddlepoint. Thus, this channel is the only one included in the model. The present AITSTME treatment again employs high-level ANL0 electronic structure results, which predict an entrance barrier of 2.45 kcal/mol. In contrast, the study of Hébrard et al. (2012) employs the AITST predictions of Sumathi, which are based on the CCSD(T)/6-311++(3df,3pd)/CCSD(T)/6-311++G(d,p) calculated barrier of 3.3 kcal/mol. As a result, the present predictions are about an order of magnitude higher than those of Hébrard et al. (2012) (cf. Figure A.2c). The value employed by Loison et al. (2015) appears to be based on the same data as that of Hébrard et al. (2012), but for unknown reasons is an order of magnitude larger.

For the H + CH₂NH reaction we consider additions to the C and N atoms separately as well as direct abstraction. The two additions are treated as uncoupled single well single channel addition systems. For simplicity in the modeling we amalgamate the two addition products into one and label it as the more stable CH₂NH₂ isomer. The predicted rate constants for these three channels are contrasted in Figure A.2d with the values employed in other modeling studies. The estimates of Loison et al. typically differ by two or more orders of magnitude from the present work. This is perhaps not too surprising given that their estimate for the CH_3NH channel is based on simple analogy with the $H + C_2H_4$ reaction, while their AITST calculation of the abstraction rate constant is based on a DFT analysis (M062X). They neglect the CH₂NH₂ formation channel. In contrast, Hébrard et al. (2012) consider only the abstraction channel, with their estimated rate constant agreeing with our prediction to within a factor of two throughout. Unfortunately, it is not clear how this rate estimate was obtained. Krasnopolsky (2009) considers the products of this reaction to be $CH_3 + NH$, which are 47 kcal/mol endothermic.

For the H+HC₃N addition reaction we predict that the entrance barrier is 2.2 kcal/mol higher than for H+C₄H₂, while the well depth is 1.7 kcal/mol less. Furthermore, there are three fewer vibrational modes, which also implies a lower stabilization probability. We employ an estimate based on our calculations for H+C₄H₂. For reference purposes, our predicted high pressure rate constant is $2.02\times10^{-33}~\mathrm{T}^{7.97}~\mathrm{exp}(307/\mathrm{T})~\mathrm{cm}^3~\mathrm{s}^{-1}$.

For the C_2H+HCN and C_2H_3+HCN reactions we used AITST to calculate the capture rates, which at 140 K are predicted to be 3×10^{-14} and 3×10^{-23} cm³ s⁻¹, respectively. For the C_2H+HCN reaction we have considered addition to both the C and N atoms and find that addition to the N has a 3 kcal/mol higher barrier, and so is insignificant at Titan temperatures. A similarly high barrier is expected for addition of C_2H_3 to the N atom of HCN. The high exothermicity

of the $\mathrm{HC_3N}$ + H product channel suggests that these products are formed with a rate coefficient given by the capture rate independent of pressure, as is verified with limited master equation simulations. For the $\mathrm{C_2H_3}$ + HCN case, the smallness of the capture rate suggests the reaction is likely unimportant. Thus, for this case we also simply presume that $\mathrm{C_3H_3N}$ + H is formed at a pressure independent rate equal to the capture rate.

For the $N(^2D)$ + HCN reaction we report the results of an AITST calculation of the capture, with the presumption that all HCNN adducts dissociate to CH+ N_2 . The latter channel is highly exothermic and the reverse CH+ N_2 association is barrierless, so this presumption is well justified. The wavefunction for the $N(^2D)$ atom, as well as the addition TS, has a great deal of multireference character. Thus, we employ the Davidson corrected multireference configuration interaction (MRCI+Q) method for this AITST analysis. The active space is taken to consist of the π , π^* orbitals for HCN as well as the three 2p orbitals of the N atom.

For the CN + HCN reaction, we report the results of an AITST calculation which yields a capture rate of 4×10^{-17} cm³ s⁻¹ at 140 K. The submerged barrier for the H loss from the initially formed NCCHN adduct, together with the small number of atoms and moderate well depth, suggests that the NCCN + H products will be formed at effectively the reported capture rate. Near room temperature, our predicted rates are in reasonably satisfactory agreement with the measurements of Yang et al. (1992a).

For the $H_2CN+HCN$ reaction, the entrance barrier evaluated at the CCSD(T)/cc-pVTZ level is 15 kcal/mol. Thus, this reaction is safely ignored.

Appendix A.1.3. Oxygen chemistry

For the H + CO, CH + CO, and ${\rm CH_3}$ + CO reactions we have performed AITSTME calculations to predict the radiative association rates. For the ${\rm CH_3}$ + CO reaction, this analysis builds off of the earlier work of Senosiain et al. (2005). The pressure dependent stabilization rate parameters for these reactions are taken from the review of Baulch et al. (2005).

7269 Appendix A.2. Radical-Radical Reactions

Table A.2 lists the exothermicity, energy transfer parameter, and electronic structure methodology employed in the analysis of the radical-radical reactions.

259

Table A.2: Radical-radical reaction properties.

Reactants	Products	Product $E^{(a)}$	Rovib Method	Energy Method	$\Delta E_{down} A,n^{(b)}$	Ref.
$H + CH_3$	CH_A	-103.4	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	220, 0.85	Miller and Klippenstein (2002)
$H + C_2 H_3$	C2H4	-109.2	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	100, 0.85	Klippenstein and Harding (1999)
2 0	$C_{2}H_{2} + H_{2}$	-15.3(TS)	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	100, 0.85	
$H + C_4H$	C4H2	-132.5	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	300, 0.85	Present work
$H + C_4 H_3$	C_4H_4	-91.4	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	200, 0.85	Harding et al. (2007)
$H + C_6H$	C6H2	-130.2	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	100, 0.85	Present work
$H + C_{6}^{\circ}H_{5}^{\circ}$	C ₆ H ₆	-111.5	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	400, 0.7	Present work
CH ₃ + CH ₃	C ₆ H ₂ C ₆ H ₆ C ₂ H ₆	-87.6	B3LYP/6-31G*	QCISD(T)/CBS(T,Q)	60, 0.9	Klippenstein and Harding (1999)
$CH_3 + C_2H_3$	C ₃ H ₆	-99.4			150, 0.85	Ye et al. (2015)
0 2 0	$C_3H_5 + H$	-12.9			150, 0.85	
$CH_{3} + C_{2}H_{5}$	C ₃ H ₈	-86.8	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	100, 0.85	Sivaramakrishnan et al. (2011)
	$C_2H_4 + CH_4$	Roaming TS	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	100, 0.85	
$CH_{3} + C_{6}H_{5}$	С ₇ H ₈ С ₇ H ₇ + Н	-103.5	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	500, 0.90	Klippenstein et al. (2007)
0 0 0	$C_7H_7 + H$	-15.2	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)		
$H + H_2CN$	CH ₂ NH	-86.9	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	100, 0.85	Present work
=	$HNC + H_2$	-1.3(TS), -0.8(TS)	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	100, 0.85	
	$HCN + H_2$	-78.6	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)		Present work
3 NH + CH ₂	CH, NH	-76.35	CCSD(T)/cc-pVTZ	ANL0		Present work
3	CH ₂ NH + H	-46.73	CCSD(T)/cc-pVTZ	ANL0		
$OH + CH_3$	CH ₃ OH	-90.3	CCSD(T)/cc-pVTZ	ANL0	150, 0.85	Jasper et al. (2007)
3	$H_{2}O + {}^{1}CH_{2}$	0.0, -7.3(TS)	CCSD(T)/cc-pVTZ	ANL0	150, 0.85	
	$H_2^2CO + H_2$	-0.3(TS)	CCSD(T)/cc-pVTZ	ANL0	150, 0.85	
	cis-CHOH + Ho	-2.2(TS)	CCSD(T)/cc-pVTZ	ANL0	150, 0.85	
	trans-CHOH + Ho	-4.8(TS)	CCSD(T)/cc-pVTZ	ANL0	150, 0.85	

 $^{^{(}a)}$ Energies in kcal/mol. $^{(b)}$ Average downwards energy transfer parameter in exponential down model = ${\rm A}({\rm T}/300)^n~{\rm cm}^{-1}.$

Figure A.3: Rate coefficient versus altitude in Krasnopolsky (2009); Hébrard et al. (2013); Loison et al. (2015) and this work (or after Vuitton et al. (2012)). (a) H + C₂H₃ \rightarrow C₂H₄ / H₂ + C₂H₂ (R_n8), (b) H + C₄H₃ \rightarrow C₄H₆|₁/ C₄H₂ + H₂ / C₂H₂ + C₂H₂ (R_n22), (c) CH₃ + CH₃ \rightarrow C₂H₆ (R_n90), (d) CH₃ + C₂H₃ \rightarrow C₃H₆ / C₃H₅ + H / C₂H₂ + CH₄ (R_n92), (e) CH₃ + C₂H₅ \rightarrow C₃H₈ / CH₄ + C₂H₄ (R_n93), (f) H + H₂CN \rightarrow HCN + H₂ / HNC + H₂ / CH₂NH (R_n395).

For the $\rm H+CH_3 \to CH_4$ reaction we performed new AITSTME calculations that are closely related to those presented in Miller and Klippenstein (2002). The entrance flux is obtained from a dynamically corrected VRC-TST analysis employing CI+QC/aug-cc-pVQZ interaction energies in close analogy with Klippenstein et al. (2002). The IR intensities for the radiative emission calculations are obtained from B3LYP/6-311++G(d,p) calculations.

For the $H + C_2H_3 \rightarrow C_2H_4$ and $H + C_2H_3 \rightarrow C_2H_2 + H_2$ reactions we performed new AITSTME calculations extending those from Klippenstein and Harding (1999) to lower temperature, including radiative emission, and incorporating revised electronic structure estimates. Our treatment of the $C_2H_3 + H$ capture rate is again based on multireference based VRC-TST treatment. Our analysis for the formation of $C_2H_2 + H_2$ includes a contribution from both direct abstraction and from addition-elimination through the C_2H_4 complex. The presence of a low energy bimolecular loss channel $(C_2H_2 + H_2)$ from the intial adduct (C₂H₄) results in a complex pressure dependence in the ranges of temperature and pressure of relevance to Titan's atmospheric chemistry. Thus, for this one reaction, we have chosen to employ interpolation of a Table of data at various temperatures and pressures in place of the modified Troe forms. Our analysis predicts a more rapid approach to the low pressure limit than do the literature based estimates of Loison et al. (2015) and Krasnopolsky (2009) (cf. Figure A.3a). Our predicted rate constant for forming $C_2H_2 + H_2$ is a factor of three greater than in those two studies.

For the H+C₄H \rightarrow C₄H₂ reaction we performed new AITSTME calculations. The capture rate was modeled with phase space theory (PST) normalized to yield a capture rate of $\sim 3.5 \times 10^{-10} \ \rm cm^3 \ s^{-1}$ at T=140 K, which is a typical capture rate for H atom recombination with radicals. The AITSTME calculations yield pressure dependent rate constants for the stabilization to C₄H₂.

For the $\mathrm{H}+\mathrm{C_4H_3}\to\mathrm{C_4H_4}$ reaction a new AITSTME analysis was performed as part of Vuitton et al. (2012). This analysis considered only the ground state i- $\mathrm{C_4H_3}$ species (CH₂CCCH) and the formation of CH₂CCCH₂. The direct addition to form CH₂CHCCH was shown by Harding et al. (2007) to be relatively minor, and for simplicity isomerizations from the initial adduct were ignored. For the entrance flux, the direct CASPT2 calculated VRC-TST capture rate from Harding et al. (2007) was extended to low temperature. The abstraction rate to form $\mathrm{H_2}+\mathrm{C_4H_2}$ was presumed to be temperature independent at ½ that of the room temperature total capture rate from Harding et al. (2007).

The plots in Figure A.3b provide a comparison of our $H + C_4H_3$ rate predictions with those from Loison et al. (2015) and Hébrard et al. (2012). At 400 km and below our predictions for the stabilization channel (C_4H_4) are similar to those of Loison et al. Above that altitude, our inclusion of radiative stabilization and the inclusion by Loison et al. of a $C_2H_2 + C_2H_2$ bimolecular product channel lead to increasingly divergent results. Our estimated abstraction rate is 3 times that of Loison et al. and Hbrard et al.

For $H + C_6H \rightarrow C_6H_2$ reaction our AITSTME analysis suggests that, due to the very large bond energy, the radiative emission rate constant is essentially identical to the capture rate constant, at least for the temperatures of relevance

to Titan. We have presumed that this capture rate constant is 3×10^{-10} cm³ s⁻¹, which is typical of that for H atoms adding to radicals.

For the $\mathrm{H}+\mathrm{C_6H_5} \to \mathrm{C_6H_6}$ reaction a new AITSTME analysis was performed as part of Vuitton et al. (2012). The entrance flux was evaluated with a direct CASPT2(2e,2o)/aug-cc-pVDZ based direct VRC-TST approach. This VRC-TST analysis included one-dimensional CASPT2/CBS corrections. Although our form includes pressure dependence, this reaction is effectively in the high-pressure limit at all pressures due to radiative stabilization.

For the $\mathrm{CH_3} + \mathrm{CH_3} \to \mathrm{C_2H_6}$ reaction we extended the earlier AITSTME analysis of Klippenstein and Harding (1999) to lower temperatures, incorporated radiative stabilization, and improved the the VRC-TST part of the analysis to employ direct CASPT2(2e,2o)/CBS(DZ,TZ) energies. A closely related analysis was employed in our earlier study (Vuitton et al., 2012). Figure A.3c provides a comparison of our predictions with the values employed by Loison et al. (2015), Hébrard et al. (2012), and Krasnopolsky (2009). At low altitudes the various results are roughly equivalent (i.e., generally within a factor of 3), while above 800 km the values of Loison et al., and of Krasnopolsky deviate substantially due to their neglect of radiative stabilization.

For the CH₃ + C₂H₃ reaction we performed AISTME calculations of the stabilization to form C_3H_6 and the bimolecular formation of $C_3H_5 + H$. Prior VRC-TST treatments yielded high-pressure recombination rate constants of $\sim 1 \times 10^{-10}$ and $\sim 4 \times 10^{-10}$ cm³ s⁻¹ for the CH₃ + C₂H₃ (Ye et al., 2015) and C₃H₅ + H (Harding et al., 2007) barrierless recombination reactions, respectively. The present work extends these analyses to lower temperature and includes a treatment of radiative stabilization. These predictions are compared in Figure A.3d with the estimates of Hébrard et al. (2012), which are based on experimental data near room temperature and pressures of 1 to 200 Torr. Above 200 km, our predicted rate for the $C_3H_5 + H$ channel is nearly identical to that employed by Hébrard et al. (2012), with only modest differences at lower altitude. In contrast, for the stabilization channel, the two altitude dependences are very different, with our estimate falling off more rapidly with altitude at low altitude, but then reaching a constant altitude independent value, while the Hbrard et al. values continue to decline. Our predicted rate coefficient for the $CH_4 + C_2H_2$ channel is about a factor of 10 greater than that of Hbrard et al.

Our AITSTME treatment of the $\mathrm{CH_3} + \mathrm{C_2H_5} \to \mathrm{C_3H_8}$ and $\mathrm{CH_3} + \mathrm{C_2H_5} \to \mathrm{C_2H_4} + \mathrm{CH_4}$ reactions is an extension of the study of Sivaramakrishnan et al. (2011) to lower temperatures and to include approximate treatments of direct abstraction and roaming induced abstraction. The inclusion of roaming yields only minor changes relative to that presented earlier in Vuitton et al. (2012). In contrast, our inclusion of radiative emission yields a much larger stabilization rate coefficient at high altitudes than estimated by Loison et al. (2015) and Krasnopolsky (2009) (cf. Figure A.3e). The present estimate for the abstraction rate coefficient at high altitudes is about an order of magnitude larger than that or earlier estimates.

For the $CH_3 + C_6H_5 \rightarrow C_7H_8$ reaction we extended the earlier AITSTME analysis of Klippenstein et al. (2007) to lower temperature and examined the role

of radiative emission. This analysis includes a treatment of the decomposition to $C_7H_7 + H$. However, we find that radiative emission leads to C_7H_8 being the dominant product for the temperatures of relevance to Titan's atmospheric chemistry and so report rate data for only that channel.

Although we have not explicitly calculated the rate for the $\rm C_2H_3 + \rm C_4H_3$ reaction it is clear that this reaction is barrierless. Furthermore, prior explorations of the $\rm C_6H_6$ PES and related master equation studies (Miller and Klippenstein, 2003; Kislov et al., 2004) indicate that there are low energy pathways, with barriers well below the reactants energy, that allow for isomerization to highly exothermic benzene products. Thus, this reaction is likely to occur at near the collision rate with strong radiative association.

For a number of radical-radical abstractions (CH₃+C₃H₇ \rightarrow C₃H₆+CH₄, H+ C₄H₃ \rightarrow C₄H₂+H₂, and C₂H₅+C₃H₇ \rightarrow products) we estimate a temperature independent rate constant of 1 × 10⁻¹⁰ cm³ s⁻¹ based on analogy with our prior analysis for CH₃ + HCO (Harding et al., 2007). For the C₂H₅ + C₃H₇ reaction we assign half of this to each of the two separate abstraction channels: C₃H₈ + C₂H₄ and C₃H₆ + C₂H₆.

Appendix A.2.2. Nitrogen Chemistry

For the reaction of H with H_2CN we performed AITSTME calculations that consider addition to both the C and N atoms in addition to direct abstraction. However, preliminary calculations suggested that the addition to the N atom dominates over addition to the C atom, since the former is barrierless, while the latter has a positive barrier of ~ 2 kcal/mol. From CH_2NH we considered H_2 losses to form $HCN + H_2$ and $HNC + H_2$, with the latter 11 kcal/mol lower, and thus dominant. The direct abstraction to yield $HCN + H_2$ is also barrierless. We treat the two barrierless channels $(H + CH_2N \rightarrow CH_2NH)$ and $H + CH_2N \rightarrow HCN + H_2$) with direct CASPT2(4e,4o)/aug-cc-pVDZ VRC-TST. The (4e,4o) active space employed in these VRC-TST analyses consists of the π,π^* orbitals of CH_2N , the CH_2N radical orbital, and the H orbital. In both cases we also include a one-dimensional correction for extension to the CBS limit and to allow for geometry relaxation along the MEP.

Our predicted rate coefficients for $H + H_2CN \rightarrow HCN + H_2$ and $H + H_2CN \rightarrow HNC + H_2$ are about an factor of 4 larger than estimated by Loison et al. (2015) and Hébrard et al. (2012) (cf. Figure A.3f). The latter rate estimates are based on RRKM theory calculations employing similar levels of ab initio electronic structure theory. Thus, the differences in the rate estimates are likely an indication of the inadequacy of the modified strong collider assumptions inherent to RRKM theory, particularly when applied to multichannel reactions. After completion of the rate analysis for the present modeling work we performed higher level ANL0 evaluations of the TS for $CH_2NH \rightarrow HNC + H_2$, which yielded a slightly lower barrier of -1.69 kcal/mol relative to $H + H_2CN$. This modest reduction in the barrier height yields only a very modest ($\sim 10\%$) increase in the predicted rate constant. Loison et al. also present the rate coefficient for formation of CH_2NH . For simplicity, we have neglected this channel as we find

it to have an even lower rate coefficient at low altitudes, while at higher altitudes it approaches the radiative rate, which is only 1×10^{-16} cm³ s⁻¹.

For the $^3\mathrm{NH} + \mathrm{CH_3} \to \mathrm{CH_2NH} + \mathrm{H}$ reaction we have performed direct CASPT2(3e,3o)/aug-cc-pVDZ VRC-TST calculations of the rate. This VRC-TST analysis includes a one-dimensional correction for geometry relaxation and for extrapolation to the CBS limit. The (3e,3o) active space consists of the radical orbital of $\mathrm{CH_3}$ and the two radical orbitals of $^3\mathrm{NH}$. For simplicity we presume that the $\mathrm{CH_3NH}$ adduct leads directly to the $\mathrm{CH_2NH} + \mathrm{H}$ products (i.e., without any stabilization), which is justified by the fact that those products are 47 kcal/mol (ANL0) exothermic from the reactants, and the reverse reaction is barrierless.

Appendix A.2.3. Oxygen chemistry

Figure A.4: Rate coefficient versus altitude of OH + CH $_3$ \rightarrow $^1\text{CH}_2$ + H $_2\text{O}$ / CH $_3\text{OH}$ / HCHO + H $_2$ (R $_n$ 526) according to Hörst et al. (2008), Krasnopolsky (2012), Dobrijevic et al. (2014) and this work.

For the OH + CH₃ and $\rm H_2O$ + $^1\rm CH_2$ reactions we have performed a new AITSTME analyses that extends the work of Jasper et al. (2007) to lower temperature and incorporates high level ANL0 calculations for the various decomposition channels from the CH₃OH adduct: OH+CH₃, H₂O + $^1\rm CH_2$, H₂+H₂CO, H₂ + cis-HCOH, and H₂ + trans-HCOH. Figure A.4 provides a comparison of the present predictions for the OH + CH₃ rate coefficients with corresponding values from Dobrijevic et al. (2014), Krasnopolsky (2012), and Hörst et al. (2008). Notably, we predict CHOH + H₂ to be the dominant low temperature products, while this channel is neglected in the other estimates, apparently due to its insignificance at higher temperatures. Meanwhile, Dobrijevic et al., who base their value at least in part on the Jasper et al. work, estimate an order of magnitude larger rate coefficient for the formation of H₂CO + H₂, while Hörst et al. estimated an order of magnitude smaller rate coefficient. Our predicted

decrease relative to Dobrijevic is likely related to a $0.3~\rm kcal/mol$ increase in the barrier height for the present ANL0 calculations. This barrier height happens to be very close to the CH $_3$ + OH asymptotic energy and so a modest change dramatically affects its branching. The three predictions for the $^1\rm CH_2$ + $\rm H_2\rm O$ channel are fairly similar. At low altitudes Krasnopolsky and Dobrijevic predict significant CH $_3\rm OH$ formation, which for simplicity is neglected in the present work.

7441 Appendix A.3. Barrierless Radical-Molecule Reactions

Table A.3 lists the exothermicity and electronic structure methodology employed in the analysis of the barrierless radical-molecule reactions studied here.

Table A.3: Barrierless radical-molecule reaction properties.

Reactants	Products	$TS E^{(a)}$	Product E^a	Rovib Method	Energy Method	$\Delta E_{down} A, n^{(b)}$
$C_3N + C_4H_2$	CHCCCHCCCN	No Barr.	-70.6	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	
_	$H + HC_7N$		-30.8	B3LYP/6-311++G**	QCISD(T)/CBS(T,Q)	
$C_5N + C_2H_2$	$H + HC_7N$	No Barr.	-30.1			
CH + CO	HCCO		-72.2	B3LYP/6-311++G**	$\mathrm{QCISD}(\mathrm{T})/\mathrm{CBS}(\mathrm{T},\mathrm{Q})$	200, 1.0

 $^{^{(}a)} \rm Energies$ in kcal/mol. $^{(b)} \rm Average$ downwards energy transfer parameter in exponential down model = A(T/300)^n cm^{-1}.

Appendix A.3.1. Nitrogen chemistry

For the $C_3N+C_4H_2\to H+HC_7N$ reaction the entrance channel is barrierless and we have employed direct CASPT2 VRC-TST to predict the capture rate. The presence of a highly exothermic exit channel (H+HC₇N) is presumed to imply that those products are produced at the capture rate. The VRC-TST analysis employs a CASPT2(5e,5o)/cc-pVDZ orientational sampling with the active space consisting of the sigma radical orbital of C_3N along with its (4e,4o) π , π^* space. A one-dimensional correction along the MEP is obtained from extrapolation of CASPT2(5e,5o)/cc-pVTZ calculations together with a CASPT2(5e,5o)/cc-pVDZ evaluation of geometry relaxation effects. Evaluations at the CASPT2(9e,9o)/cc-pVDZ level suggest only a modest dependence on active space.

The $C_5N+C_2H_2\to H+HC_7N$ reaction is similar in many respects to the $C_3N+C_4H_2\to H+HC_7N$ reaction. The reactants differ in energy by less than 1 kcal/mol. The formation of the adduct is also expected to be barrierless, and the same products are formed. The $C_5N+C_4H_2\to H+HC_9N$ is simply the next member in this reaction series, with similar energetics expected. Thus, we estimate the rate constants for both of these reactions to be equivalent to that calculated for the $C_3N+C_4H_2\to H+HC_7N$ reaction.

For the N(²D) + HNC reaction we performed direct CASPT2(7e,7o)/CBS(TZ,QZ) VRC-TST calculations. The calculations include a one-dimensional correction obtained from CI+QC(7e,7o)/CBS(TZ,QZ) calculations along the MEP. The active space consists of the 3 p orbitals of the N atom together with the 4e,4o π , π * space of HNC. The CAS reference employs a 5 state average over the states that correlate with the quintuply degenerates states of N(²D). Consideration of the PES and kinetics for HNCN decomposition, as described in Harding et al. (2008), suggests that the primary products are H + NCN.

Appendix A.3.2. Oxygen chemistry

For the CH + CO reaction we have used AITSTME calculations to predict only the radiative association rates. For these calculations the entrance rate was represented with PST normalized to yield a rate of $\sim 3.5 \times 10^{-10}$ cm³ s⁻¹. The pressure dependent stabilization rate parameters for this reaction are taken from the review of Baulch et al. (2005).

For the H + CHOH, $\rm CH_3$ + CHOH, and $\rm N(^2D)$ + CHOH reactions we estimate the radiative recombination rate as 1×10^{-10} cm³ s⁻¹ in analogy with other radical-radical recombination reactions. For the first two reactions, the OH bond is expected to be the weakest bond in the complexes ($\rm CH_2OH$ and $\rm CH_3CHOH$), with OH bond fission highly exothermic relative to reactants. Thus, we predict the products to be $\rm H_2CO+H$ and $\rm CH_3CHO+H$ for the H + CHOH and $\rm CH_3+CHOH$ reactions, respectively. For the $\rm N(^2D)+CHOH$ reaction we expect the intial adduct, HCNOH, to be formed through insertion in the CO bond, with NO bond fission expected to yield HCN + OH as the dominant products.

Appendix A.4. Ion-Molecule Reactions

For the $\mathrm{CH_3} + \mathrm{HCNH^+}$ reaction we performed AITSTME calculations that consider the $\mathrm{CH_3CHNH^+}$ well (-30.13 kcal/mol at the ANL0 level) as well as the H loss channel, H + $\mathrm{CH_3CNH^+}$. The entrance and exit saddle points lie at -4.72 and -4.37 kcal/mol. The entrance flux was evaluated with a two transition state model (Greenwald et al., 2005) employing direct MP2/cc-pVTZ VRC-TST for the long-range TS and an ANL0//CCSD(T)/cc-pVTZ variational TS model for the inner TS. The flux through the exit channel was evaluated with an ANL0//CCSD(T)/cc-pVTZ variational TS model. Near 140 K stabilization is negligible and so we report only the rate coefficient for formation of H + $\mathrm{CH_3CNH^+}$.

For the $C_2H_4 + HCNH^+$ reaction we performed AITSTME calculations of the stabilization to the boat form of C_2H_4 :CHNH⁺ (Bera et al., 2011). We calculate a binding energy of -42.66 kcal/mol at the CCSD(T)/cc-pVTZ level. We treat the entrance flux with PST for an ion-induced dipole potential. The infrared intensities are evaluated with the M06-2X/6-31G* density functional.

Appendix B. Input Data

Appendix B.1. Molecular Diffusion

Table B.1: Molecular diffusion coefficients.

Species	Type	A	S	S	S'	ϕ/k	Ref.
$\overline{\mathrm{CH}_4}$	1	7.34×10^{16}	0.750	0	0	0	(Mason and Marrero, 1970)
$^{40}\mathrm{Ar}$	1	6.73×10^{16}	0.749	0	0	0	(Mason and Marrero, 1970)
H_2	1	1.88×10^{17}	0.820	0	0	0	(Mason and Marrero, 1970)
$C_2H_2^{(a)}$	1	7.91×10^{16}	0.730	0	0	0	-
C_2H_4	1	7.77×10^{16}	0.730	0	0	0	(?)
C_2H_6	1	3.74×10^{16}	0.774	0	0	0	(?)
$C_4H_2^{(a)}$	1	6.54×10^{16}	0.668	0	0	0	4
N	1	9.69×10^{16}	0.774	0	0	0	-
HCN	4	$1.17{ imes}10^{16}$	1.012	0	0	0	-
HNC	4	1.17×10^{16}	1.012	0	0	0	2
H_2O	1	1.38×10^{16}	1.072	0	0	0	2
CO	3	3.24×10^{19}	0.576	-36.23	3.83×10^{3}	1.57×10^{8}	2?
CO_2	2	2.32×10^{17}	0.570	113.6	0	0	?
$\underline{\mathrm{H_2CO}^{(b)}}$	3	3.19×10^{19}	0.576	-36.23	3.83×10^{3}	$1.57{\times}10^{8}$	2?

⁽a) Estimated from the values for C₂H₄ and C₂H₆.

Type 1 is calculated from

$$b = AT^s (B.1)$$

⁽b) Estimated from the value for CO.

Type 2 is calculated from

$$b = AT^s \exp\left(-S/T\right) \tag{B.2}$$

Type 3 from

7506

7515

7516

$$b = AT^{s} \left(\ln(\phi/kT)^{2} \exp\left(-S/T - S'/T^{2} \right) \right)$$
 (B.3)

Parameters for all these types are obtained from the references listed.

Type 4 is calculated from the kinetic theory formula based a on Lennard-Jones 6-12 potential $___$

$$b_{i,j} = \frac{3}{16} \frac{\sqrt{2\pi k^3 T/\mu_{i,j}}}{\pi \sigma_{i,j}^2 \Omega^{(1,1)*}(T_{i,j}^*)}$$
(B.4)

where $\mu_{i,j}$ is the reduced collision mass, $\sigma_{i,j}$ is the collision diameter, and $\Omega^{(1,1)\star}(T_{i,j}^{\star})$ is a Chapman-Cowling transport integral calculated at the reduced temperature

$$T_{i,j} \star = kT/\epsilon_{i,j}$$
 (B.5)

The force parameter $\epsilon_{i,j}$ and collision diameter $\sigma_{i,j}$ are calculated from the Lennard-Jones parameters for the individual molecules by

$$\sigma_{i,j} = \frac{1}{2} \left(\sigma_i + \sigma_j \right) \tag{B.6}$$

$$\epsilon_{i,j} = \sqrt{\epsilon_i \epsilon_j}$$
 (B.7)

T514 Lennard-Jones parameters are obtained from (?).

For molecules not included in the table, the binary diffusion parameter is obtained from the kinetic theory expression for hard sphere collisions

$$b = \frac{3}{8} \frac{kT/\mu}{\sqrt{\pi}\sigma^2} \tag{B.8}$$

7517 Appendix B.2. Saturation Vapor Pressure

Table B.2: Saturation vapor pressures.

Species	Expression (μbar)	T(K)	Ref.
C_2H_2	$10^6 \times e^{(13.4 - 2536/T)}$	< 192	Fray and Schmitt (2009)
C_2H_4	$10^6 \times e^{(1.540 \times 10^1 - 2.206 \times 10^3/T - 1.216 \times 10^4/T^2 + 2.843 \times 10^5/T^3 - 2.203 \times 10^6/T^4)}$	20-104	Fray and Schmitt (2009)
C_2H_6	$10^6 \times e^{(1.511 \times 10^1 - 2.207 \times 10^3/T - 2.411 \times 10^4/T^2 + 7.744 \times 10^5/T^3 - 1.161 \times 10^7/T^4 + 6.763 \times 10^7/T^5)}$	20-90	Fray and Schmitt (2009)
CH_3CCH	$1333 \times 10^{(7.7759-1240.32/T)}$	162-250	Moses et al. (1992)
$\mathrm{CH_2^{\circ}CCH_2}$	$1333 \times 10^{(7.7759-1240.32/T)}$	-	assumed same as CH ₃ CCH
C_3H_6	$1333 \times 10^{(7.7759-1240.32/T)}$	-	assumed same as CH ₃ CCH
C_3H_8	$1333 \times 10^{(8.16173-1176/T)}$	105-238	based on Tickner and Lossing (1951) dat
C_4H_2	$1333 \times 10^{(5.3817 - 3300.5/T + 16.63415 \times log_{10}(1000/T))}$	127-249	Moses et al. (1992)
C_4H_4	$1333 \times 10^{(5.3817 - 3300.5/T + 16.63415 \times log_{10}(1000/T))}$	-	assumed same as C_4H_2
C_4H_6	$1333 \times 10^{(8.032581 - 1441.42/T)}$	181-282	Moses et al. (1992)
C_4H_8	$1333 \times 10^{(8.032581-1441.42/T)}$	-	assumed same as C_4H_6
C_4H_{10}	$1333 \times 10^{(8.446-1461.2/T)}$	128 - 196	Moses et al. (1992)
C_6H_2	$1333 \times 10^{(5.3817 - 3300.5/T + 16.63415 \times log_{10}(1000/T))}$	-	assumed same as C_4H_2
C_6H_6	$10^6 \times e^{(1.735 \times 10^1 - 5.663 \times 10^3/T)}$	< 279	Fray and Schmitt (2009)
NH_3	$10^6 \times e^{(1.596 \times 10^1 - 3.537 \times 10^3/T - 3.310 \times 10^4/T^2 + 1.742 \times 10^6/T^3 - 2.995 \times 10^7/T^4)}$	15-195	Fray and Schmitt (2009)
N_2H_4	$10^6 \times e^{(1.596 \times 10^1 - 3.537 \times 10^3/T - 3.310 \times 10^4/T^2 + 1.742 \times 10^6/T^3 - 2.995 \times 10^7/T^4)}$	_	assumed same as NH ₃
CH_2 NH	$10^3 \times e^{(19.413 - 3333.325/T)}$	_	assumed same as CH ₂ NH
$CH_3^2NH_2$	$10^3 \times e^{(19.413 - 3333.325/T)}$	196-267	Loison et al. (2015)
HCN	$10^6 \times e^{(1.393 \times 10^1 - 3.624 \times 10^3/T - 1.325 \times 10^5/T^2 + 6.314 \times 10^6/T^3 - 1.128 \times 10^8/T^4)}$	15-260	Fray and Schmitt (2009)
HNC	$10^6 \times e^{(1.393 \times 10^1 - 3.624 \times 10^3/T - 1.325 \times 10^5/T^2 + 6.314 \times 10^6/T^3 - 1.128 \times 10^8/T^4)}$		assumed same as HCN
CH ₃ CN	$10^3 \times e^{(18.2432-4017.098/T)}$	295-354	Loison et al. (2015)
HC_3N	$10^6 \times e^{(1.301 \times 10^1 - 4.426 \times 10^3/T)}$	< 202	Fray and Schmitt (2009)
C_2H_3CN	$10 \times 10^{(21.058-2371.0/T-1.560 \times log(T))}$	291-350	Loison et al. (2015)
C_2H_3CN C_2H_5CN	$10^3 \times e^{(18.7211 - 4352.66/T)}$	204-371	Loison et al. (2015)
HC_5N	$10^6 \times e^{(1.301 \times 10^1 - 4.426 \times 10^3/T)}$	_	assumed same as HC ₃ N
C_2N_2	$10^{6} \times e^{(1.653 \times 10^{1} - 4.109 \times 10^{3}/T)}$	< 245	Fray and Schmitt (2009)
C_2N_2 C_4N_2	$10^{6} \times e^{(1.909 \times 10^{1} - 6.036 \times 10^{3}/T)}$	< 273	Fray and Schmitt (2009)
H_2O	$10^{6} \times 6.11657 \times 10^{-3} \times e^{(1.5 \times log(T/273.16) + (1-273.16/T) \times (20.9969665107897)}$	< 273	Fray and Schmitt (2009)
1120	$+3.72437478271362 \times (T/273.16) - 13.9205483215524 \times (T/273.16)^2 + 29.6988765013566 \times (T/273.16)^3$	< 213	Fray and Schmitt (2009)
	$-40.1972392635944\times (T/273.16)^4 + 29.7880481050215\times (T/273.16)^5 - 9.13050963547721\times (T/273.16)^6))$		
CO_2	$10^{6} \times e^{(1.476 \times 10^{1} - 2.571 \times 10^{3}/T - 7.781 \times 10^{4}/T^{2} + 4.325 \times 10^{6}/T^{3} - 1.207 \times 10^{8}/T^{4} + 1.350 \times 10^{9}/T^{5})}$	40-195	Fray and Schmitt (2009)

7518 Appendix B.3. Chemical Species

Table B.3: Neutral species included in the model.

Closed-shell molecules

 $\begin{array}{l} {\rm H_2,\,CH_4,\,C_2H_2,\,C_2H_4,\,C_2H_6,\,CH_3CCH,\,CH_2CCH_2,\,C_3H_6,\,C_3H_8}\\ {\rm C_4H_2,\,C_4H_4,\,C_4H_6,\,C_4H_8,\,C_4H_{10},\,C_6H_2,\,C_6H_6,\,C_7H_8}\\ {\rm N_2,\,NH_3,\,N_2H_4,\,CH_2NH,\,CH_3NH_2,\,HCN,\,HNC,\,CH_3CN}\\ {\rm HC_3N,\,C_2H_3CN,\,C_2H_5CN,\,HC_5N,\,C_2N_2,\,C_4N_2}\\ {\rm H_2O,\,CO,\,H_2CO,\,CH_2CO,\,CH_3CHO,\,CO_2,\,HNO} \end{array}$

Radicals

H, C, CH, $^3\mathrm{CH}_2$, $^1\mathrm{CH}_2$, CH₃, C₂, C₂H, C₂H₃, C₂H₅ C₃, C₃H, C₃H₂, C₃H₃, C₃H₅, C₃H₇ C₄H, C₄H₃, C₄H₅, C₄H₇, C₄H₉, C₆H, C₆H₃, C₆H₅, C₇H₇ N(^4\mathrm{S}), N(^2\mathrm{D}), NH, NH₂ CN, H₂CN, C₂N, HC₂N, CH₂CN, C₃N, C₂H₂CN, C₂H₄CN O(^3\mathrm{P}), O(^1\mathrm{D}), O(^1\mathrm{S}), OH, HCO, CHOH, CH₂OH, HCCO, CH₃CO NO, NCO

Table B.4: Ion species included in the model.

```
Positive ions
H^{+}, H_{2}^{+}, H_{3}^{+}, H_{5}^{+}, C^{+}, CH^{+}, CH_{2}^{+}, CH_{3}^{+}, CH_{4}^{+}, CH_{5}^{+}
C_2H^+, C_2H_2^+, C_2H_3^+, C_2H_4^+, C_2H_5^+, C_2H_6^+, C_2H_7^+
C_3^+, C_3H_7^+, C_3H_2^+, 1-C_3H_3^+, c-C_3H_3^+, C_3H_4^+, C_3H_5^+, C_3H_6^+, C_3H_7^+, C_3H_8^+, C_3H_9^+
C_4H^+, C_4H_2^+, C_4H_3^+, C_4H_4^+, C_4H_5^+, C_4H_6^+, C_4H_7^+, C_4H_8^+, C_4H_9^+
C_5H^+, C_5H_2^+, C_5H_3^+, C_5H_4^+, C_5H_5^+, C_5H_6^+, C_5H_7^+, C_5H_8^+, C_5H_9^+, C_5H_{10}^+, C_5H_{11}^+
C_6H^+, C_6H_2^+, C_6H_3^+, C_6H_4^+, C_6H_5^+, C_6H_6^+, C_6H_7^+, C_6H_9^+, C_6H_{11}^+, C_6H_{13}^+
C_7H^+, C_7H_2^+, C_7H_3^+, C_7H_4^+, C_7H_5^+, C_7H_6^+, C_7H_7^+, C_7H_8^+, C_7H_9^+
C_8H^+, C_8H_2^+, C_8H_3^+, C_8H_4^+, C_8H_5^+, C_8H_6^+, C_8H_7^+, C_8H_9^+
C_9H^+, C_9H_2^+, C_9H_3^+, C_9H_4^+, C_9H_7^+, C_9H_8^+
N<sup>+</sup>, NH<sup>+</sup>, NH<sub>2</sub><sup>+</sup>, NH<sub>3</sub><sup>+</sup>, NH<sub>4</sub><sup>+</sup>, N<sub>2</sub><sup>+</sup>, N<sub>3</sub><sup>+</sup>, N<sub>4</sub><sup>+</sup>, N<sub>2</sub>H<sup>+</sup>, N<sub>2</sub>H<sub>5</sub><sup>+</sup>
CN<sup>+</sup>, HCN<sup>+</sup>, HNC<sup>+</sup>, HCNH<sup>+</sup>, CH<sub>2</sub>NH<sup>+</sup>, CH<sub>2</sub>NH<sub>2</sub><sup>+</sup>, CH<sub>3</sub>NH<sub>2</sub><sup>+</sup>, CH<sub>3</sub>NH<sub>3</sub><sup>+</sup>
CNC^{+}, C_{2}N^{+}, HC_{2}N^{+}, HC_{2}NH^{+}, C_{2}H_{3}N^{+}, C_{2}H_{3}NH^{+}, C_{2}H_{5}N^{+}
C_3N^+, H\bar{C}_3N^+, H\bar{C}_3NH^+, \bar{C}_3H_3N^+, \bar{C}_3H_3NH^+, \bar{C}_3H_5N^+, \bar{C}_3H_5NH^+, \bar{C}_3H_7NH^+, \bar{C}_3H_9NH^+
C_4N^+, HC_4N^+, HC_4NH^+, C_4H_3N^+, C_4H_3NH^+, C_4H_5N^+, C_4H_5NH^+, C_4H_7NH^+, C_4H_9NH^+
C_5N^+, HC_5N^+, HC_5NH^+, C_5H_3N^+, C_5H_3NH^+, C_5H_5N^+, C_5H_5NH^+, C_5H_7NH^+
C_6N^+, HC_6NH^+, C_6H_3NH^+, C_6H_5NH^+, C_6H_7N^+, C_6H_7NH^+, C_6H_9N^+, C_6H_9NH^+
C_7N^+, HC_7N^+, HC_7NH^+, C_7H_3N^+, C_7H_3NH^+, C_7H_7N^+, C_7H_7NH^+
C_2N_2^+, C_2N_2H^+, C_4N_2^+, C_4N_2H^+, C_6N_2^+, C_6N_2H^+, C_xH_yN_z^+
\begin{array}{l} O^{+}, OH^{+}, H_{2}O^{+}, H_{3}O^{+}, CO^{+}, HCO^{+}, HCO^{+}, HOC^{+}, CH_{2}O^{+}, CH_{2}OH^{+}, CH_{3}OH_{2}^{+} \\ HC_{2}O^{+}, CH_{2}CO^{+}, CH_{3}CO^{+}, CH_{3}COH^{+}, CH_{3}CHOH^{+}, HC_{3}O^{+}, C_{2}H_{2}CO^{+}, C_{2}H_{3}CO^{+} \end{array}
CO_2^+, OCOH^+, NO^+, HNO^+, NCO^+, HNCO^+
CH_{5}^{+} \cdot CH_{4}, C_{2}H_{5}^{+} \cdot CH_{4}, C_{2}H_{7}^{+} \cdot CH_{4}, C_{3}H_{7}^{+} \cdot CH_{4}, Adduct^{+}
CH_2^+ \cdot N_2, CH_3^+ \cdot N_2, CH_5^+ \cdot N_2, C_2H_5^+ \cdot N_2, C_3H_7^+ \cdot N_2
CH<sub>5</sub>+·HNC, HCNH+·CH<sub>4</sub>, HCNH+·N<sub>2</sub>, AdductN+
C_4H_3^+\cdot CO, CO^+\cdot N_2, HCO^+\cdot H_2, HCO^+\cdot CO
Negative ions
```

7519 Appendix B.4. Primary Processes

 $H^-, CH_2^-, CH_3^-, C_2H^-, C_4H^-, C_6H^-, CN^-, C_3N^-, C_5N^-, O^-, OH^-, C_xH_yN_z^-$

275

 ${\it Table~B.5:~Energy~thresholds~and~references~for~N_2,~CH_4~and~CO~dissociation~and~ionization~by~photons~and~electrons.}$

		Reaction Channels		ΔE (eV)	Photons Electrons	
		-		Bra	anching Ratios Cross-sections	
$(J_d 1a)$	N ₂	$\rightarrow N(^2D) + N(^4S)$	12.1	(Walter et al., 1993)	(Lavvas et al., 2011a) (100-83.5)	(Itikawa, 2006)
$(J_d 1b)$	_	$\rightarrow N(^2D) + N(^2D)$	14.5	(Lewis et al., 2005)	(Fennelly and Torr, 1992) (83.5-79.5)	
$(J_i 1a)$	N ₂	\rightarrow N ₂ ⁺ + e ⁻	15.6	(Aoto et al., 2006)	(Shaw et al., 1992) (79.5-65.0)	(Shemansky and Liu, 2005)
$(J_i 1b)$		\rightarrow N ^{\mp} + N(⁴ S) + e ^{$-$}	24.3	(Kirby et al., 1979)	(Samson et al., 1987) as reported in (Fennelly and Torr, 1992) (65.0-11.5)	
(J _i 1c)		\rightarrow N ⁺ + N(² D) + e ⁻	26.7	(Krummacher et al., 1980)	(Stolte et al., 1998) (11.5-1.50)	
(J _d 2a)	CH ₄	\rightarrow CH ₃ + H	4.48	(Gans et al., 2011)	(Mount et al., 1977) (160-140)	(Erwin and Kunc, 2005, 2008)
$(J_d 2b)$		\rightarrow ¹ CH ₂ + H ₂	5.14		(Lee and Chiang, 1983) (140-100)	
(J_d^{2c})		\rightarrow CH + H ₂ + H	9.05			
(J_d^2d)		→ ³ CH ₂ + 2 H	9.18			
$(J_i 2a)$	CH_4	\rightarrow CH ₄ ⁺ + e ⁻	12.6		(Samson et al., 1989) (95-11)	(Liu and Shemansky, 2006)
$(J_i 2b)$		\rightarrow CH ₃ ⁺ + H + e ⁻	14.3			(Erwin and Kunc, 2005, 2008)
$(J_i 2c)$		\rightarrow CH ₂ ⁺ + H ₂ + e ⁻	15.2			
$(J_i 2d)$		\rightarrow H ⁺ + CH ₃ + e ⁻	18.0			
$(J_i 2e)$		\rightarrow C ⁺ + H ₂ + H ₂ + e ⁻	19.4			
$(J_i 2f)$		\rightarrow CH ₂ ⁺ + H + H + e ⁻	19.7			
$(J_i 2g)$		\rightarrow CH ^{$\frac{1}{4}$} + H ₂ + H + e ^{$-$}	19.8			
$(J_i 2h)$		$\rightarrow H_{2}^{+} + {}^{3}CH_{2} + e^{-}$	20.2			
(J _d 3a)	CO	$\rightarrow O(^{3}P) + C(^{3}P)$	11.1	(?)	(Cook et al., 1965) (100-60)	
(J_d3b)		$\rightarrow O(^{1}D) + C(^{1}D)$	13.1	(?)	(Chan et al., 1993a) (60-1.50)	
$(J_i 3a)$		\rightarrow CO ⁺ + e ⁻	14.0	(??)		
$(J_i 3b)$		\rightarrow C ⁺ + O(³ P) + e ⁻	22.6	(??)		
(J _i 3c)		\rightarrow O ⁺ + C(³ P) + e ⁻	24.6	(??)		

Notes. ΔE is the adiabatic energy threshold for the given reaction channel. The values in parenthesis represent the energy range in nm.

Table B.6: Photodissociation reactions

Reaction	Channels		ΔE (nm)	λ (nm)	Branching Ratios Values (%)	Ref. λ (:	nm) T (K	-sections Ref.	
(J _d 4)	Ho	→	(11111)	Not included.	varues (70)	itei.	IIII) I (I	.) Itel.	
		\rightarrow C ₂ H + H	217	>110	1.0	Läuter et al. (2002)	100-110	295	Cooper et al. (1995)
$J_d 5)$	C ₂ H ₂	\rightarrow C ₂ n + n	211	>110	1.0	Kovács et al. (2010)	110-117	298	Nakayama and Watanabe (1964)
						Kovacs et al. (2010)	147-153	195	Smith et al. (1991)
							153-189	155	Wu et al. (1989)
							189-225	200	Bénilan et al. (2000)
J _d 6a)	C_2H_4	$\rightarrow C_2H_2 + H_2$	713	>118	0.5	Balko et al. (1992)	100-185	295	Holland et al. (1997)
J _d 6b)	-2-4	\rightarrow C ₂ H ₂ + 2H	200	>118	0.5	Lee et al. (2004)	185-197	295	Orkin et al. (1997)
J _d 7a)	C ₂ H ₆	\rightarrow C ₂ H ₄ + H ₂	925	108-140 / >140	0.14 / 0.56	Akimoto et al. (1965)	110-125	295	Kameta et al. (1996)
J _d 7b)	-2-6	\rightarrow C ₂ H ₂ + H ₂ + H ₂	403	108-140 / >140	0.27 / 0.29	Hampson and McNesby (1965)	125-150	150	Chen and Wu (2004)
J _d 7c)		$\rightarrow CH_3 + CH_3$	325	108-140 / >140	0.06 / 0.00	Lias et al. (1970)	150-161	295	Lee et al. (2001)
J _d 7d)		$\rightarrow CH_4^3 + {}^1CH_2$	278	108-140 / >140	0.22 / 0.02	()			
		\rightarrow Ch ₄ + Ch ₂ \rightarrow C ₂ H ₄ + 2H	213	108-140 / >140	0.22 / 0.02				
J _d 7e)	an aan		394	>119	0.01	Seki and Okabe (1992)	120-160	005	Ho et al. (1998)
J _d 8a)	CH ₃ CCH	→ C ₃ H ₂ + H ₂						295	
$(J_d 8b)$		$\rightarrow C_3^3 H_3^2 + H^2$	318	>119	0.89	Ni et al. (1999)	160-195	233	Fahr and Nayak (1996)
(J _d 8c)		$\rightarrow C_2H_2 + {}^1CH_2$	230	>119	0.10	DeSain and Taatjes (2003)	195-219	183	Bénilan et al. (1999)
J _d 9a)	CH2CCH2	$\rightarrow C_3H_2 + H_2$	400	128-157 / >157	0.11 / 0.10	Jackson et al. (1991)	100-185	200	Chen et al. (2000)
J_d^{9b}		$\rightarrow C_3^0H_3^2 + H^2$	322	128-157 / 157-218 / >218	0.70 / 0.89 / 0.90	Ni et al. (1999)	185-229	183	Bénilan et al. (1999)
J _d 9c)		\rightarrow C ₂ H ₂ + ¹ CH ₂	260	128-157 / 157-218 / >218	0.19 / 0.01 / 0.00	Harich et al. (2000)			
J_d 9d)		= =				Robinson et al. (2005)			
J_{d}^{10a}	C ₃ H ₆	$\rightarrow C_2H_2 + CH_4$	942	>127	0.05	Borrell et al. (1971)	100-110	295	Koizumi et al. (1985)
$J_d 10b)$		$\rightarrow C_3^2H_5^2 + H$	330	127-140 / >140	0.30 / 0.40	Collin et al. (1979)	110-155	295	Samson et al. (1962)
J_{d}^{10c}		$\rightarrow C_2^0H_3^0 + CH_3$	288	127-140 / >140	0.25 / 0.35	Niedzielski et al. (1982)	155-200	223	Fahr and Nayak (1996)
$J_d 10d$		$\rightarrow C_2H_4 + {}^3CH_2$	287	127-140 / >140	0.05 / 0.03	Naroznik and Niedzielski (1986))		
J _d 10e)		$\rightarrow CH_3CCH + H + H$	203	127-140 / >140	0.14 / 0.07	Collin (1988)			
J _d 10f)		\rightarrow CH ₂ CCH ₂ + H + H	201	127-140 / >140	0.21 / 0.10	Gierczak et al. (1988)			
J _d 11a)	C ₂ H ₈	$\rightarrow C_2\hat{H}_A + \hat{C}H_A$	1577	114-140 / >140	0.20 / 0.06	Okabe and McNesby (1962)	100-115	295	Kameta et al. (1996)
$J_d 11b)$	3 0	$\rightarrow C_3^2 H_6 + H_2$	1024	114-140 / >140	0.33 / 0.94	Laufer and McNesby (1966)	115-120	298	Au et al. (1993)
$J_d 11c)$		$\rightarrow C_2^2H_5^2 + CH_3^2$	329	114-140 / >140	0.38 / 0.00		120-160	295	Okabe and Becker (1963)
$J_d 11d$)		$\rightarrow C_2^2 H_6 + {}^1CH_2$	271	114-140 / >140	0.09 / 0.00				
J _d 12a)	C_AH_2	$\rightarrow C_4H + H$	215	122-150 / 150-180 / 180-205 / >205	0.75 / 0.80 / 0.88 / 1.0	Silva et al. (2008)	120-160	296	Okabe (1981)
J _d 12b)	4 2	\rightarrow C ₂ H ₂ + C ₂	203	122-150 / 150-180 / 180-205 / >205	0.06 / 0.16 / 0.12 / 0.0		160-195	223	Fahr and Nayak (1994)
J _d 12c)		$\rightarrow C_4 + H_2$	192	122-150 / 150-160 / 160-205 / >205	0.05 / 0.01 / 0.0 / 0.0		195-250	193	Smith et al. (1998)
J _d 12d)		$\rightarrow C_2H + C_2H$	179	122-150 / 150-180 / 180-205 / >205	0.14 / 0.03 / 0.0 / 0.0				
J _d 13a)	$C_A H_A$	$\rightarrow C_0H_0 + C_0H_0$	745	>129	0.66	Stearns et al. (2006)	160-240	220	Fahr and Nayak (1996)
J _d 13b)	-44	$\rightarrow C_4^2H_2^2 + H_2^2$	744	>129	0.07	(2000)	230-240	-20	(1000)
J _d 13c)		$\rightarrow C_4H_2 + H$	287	>129	0.27				
J_d^{14a}	C_AH_6	$\rightarrow C_2H_4 + C_2H_2$	733	>137	0.20	Robinson et al. (2002)	160-240	218	Fahr and Navak (1994)
J _d 14b)	4 6	$\rightarrow C_4^2H_4^4 + H_2^2$	701	>137	0.02		<u>-</u>		
J _d 14c)		$\rightarrow C_3H_3 + CH_3$	317	>137	0.50				
$J_d 14d$		$\rightarrow C_4H_5 + H$	291	>137	0.20				
J_d 14e)		$\rightarrow C_0H_0 + C_0H_0$	251	>137	0.08				

īζ	
\sim	

Reaction C	Channels	-	ΔE	•	Branching Ratios		Cross-	sections	
			(nm)	λ (nm)	Values (%)	Ref. λ (nr	nm) T (K)	Ref.	
(J _d 15a)	C_4H_8	$\rightarrow C_4H_6 + H_2$	893	130-150 / >150	0.37 / 0.07	Collin and Perrin (1972)	100-105	298	Koizumi et al. (1985)
$J_d 15b)$	• 0	→ CH, CCH + CH,	872	130-150 / >150	0.20 / 0.01	Deslauriers et al. (1987)	105-115	298	Samson et al. (1962)
J_d 15c)		$\rightarrow C_A H_7 + H$	337	130-150 / >150	0.00 / 0.46		115-205	296	Es-sebbar et al. (2013)
J _d 15d)		$\rightarrow C_4 \overset{3}{\text{H}}_7 + \overset{4}{\text{H}}$ $\rightarrow C_3 \overset{3}{\text{H}}_6 + \overset{3}{\text{CH}}_2$	276	130-150 / >150	0.04 / 0.00				
1d 15e)		$\rightarrow C_2H_E + CH_2$	274	130-150 / >150	0.00 / 0.44				
d 15f)		\rightarrow C ₀ H ₀ + CH ₂ + CH ₃	223	130-150 / >150	0.27 / 0.00				
d 15g)		$\rightarrow C_2H_5 + C_2H_2 + H$	205	130-150 / >150	0.08 / 0.01				
d 15h)		$\rightarrow C_2H_4 + C_2H_3 + H$	204	130-150 / >150	0.04 / 0.01				
d 16a)	$C_4^{H_{10}}$	$\rightarrow C_2H_c + CH_4$	1162	116-140 / 140-160	0.05 / 0.01	Okabe and Becker (1963)	120-160	298	Au et al. (1993)
d 16b)	4 10	$\rightarrow C_{2}^{3}H_{6}^{6} + C_{2}^{4}H_{4}$ $\rightarrow C_{4}^{3}H_{8} + H_{2}^{3}$	946	116-140 / 140-160	0.20 / 0.12	Obi et al. (1971)			
d 16c)		$\rightarrow C_4^-H_8^- + H_2^-$	896	116-140 / 140-160	0.40 / 0.70	Jackson and Lias (1974)			
d16d)		$\rightarrow C_0H_r + C_0H_r$	301	116-140 / 140-160	0.15 / 0.10				
d 16e)		$\rightarrow C_2H_4 + CH_2 + CH_2$	327	116-140 / 140-160	0.10 / 0.03				
d 16f)		$\rightarrow C_3H_6 + CH_3 + H$	223	116-140 / 140-160	0.10 / 0.04				
d 17a)	C ₆ H ₂	$\rightarrow C_6H + H$	215	131-150 / 150-180 / 180-205 / >205	0.75 / 0.80 / 0.88 / 1.0	Estimate after C ₄ H ₂	120-185	300	Kloster-Jensen et al. (1974)
d 17b)		$\rightarrow C_4^0H_2 + C_2$	203	131-150 / 150-180 / 180-205 / >205	0.06 / 0.16 / 0.12 / 0.0		185-300	233	Shindo et al. (2003)
d 17c)		\rightarrow C ₆ + H ₂	192	131-150 / 150-180 / 180-205 / >205	0.05 / 0.01 / 0.0 / 0.0				
17d)		$\rightarrow C_4^{\circ}H + C_2^{\circ}H$	179	131-150 / 150-180 / 180-205 / >205	0.14 / 0.03 / 0.0 / 0.0				
d^{18}	C ₆ H ₆	$\rightarrow C_6H_5 + H$	254	>134	1.0	Tsai et al. (2000)	100-115		Koch and Otto (1972)
							115-210		Capalbo et al. (2016)
100)	C 11		052	>140	0.75	* **	210-270		Pantos et al. (1978)
d ^{19a})	C7H8	$\rightarrow C_7H_7 + H$ $\rightarrow C_6H_5 + CH_2$	653 295	>140 >140	0.75 0.25	Luther et al. (1990)	185-240 240-270		Hippler et al. (1983)
d 19b)	*****		295 270		0.25 1.0	Fröchtenicht (1995)	240-270 140-175		Burton and Noyes (1968)
d^{20}	NH ₃	$\rightarrow \text{NH}_2 + \text{H}$	270	>123	1.0	Ashfold et al. (1997)	140-175 175-225		Cheng et al. (2006) Chen et al. (1999)
d21)	NoH4	$\rightarrow N_0H_0 + H$	354	>153	1.0	Vaghjiani (1995)	175-225 191-291		Chen et al. (1999) Vaghjiani (1993)
	HCN	$\rightarrow N_2H_3 + H$ $\rightarrow CN + H$	354 229	>153	1.0	Vaghjiani (1995) Lee (1980)	191-291		Nuth and Glicker (1982)
d^{22}	HUN	→ UN + H	229	>100	1.0	Lee (1980)	100-105 105-190		Nuth and Glicker (1982) Lee (1980)
d^{23}	HNC	\rightarrow		hotodissociation (cf. section 2.6.3)					•
d^{24}	CH ₂ NH	\rightarrow HCN + H + H	258	>124	1.0	Nguyen et al. (1996)	234-260		Teslja et al. (2004)
$I_{d^{25a}}$	CH ₃ NH ₂	\rightarrow CH ₂ NH + H + H	224	139-165 / >165	1.0 / 0.55	Gardner and McNesby (1982)	100-249	19 298	Hubin-Franskin et al. (20
I _d 25b)		\rightarrow HCN + H ₂ + H + H	211	139-165 / >165	0.0 / 0.20				
d^{26}	CH ₃ CN	\rightarrow CN + CH ₃	237	>102	1.0	Halpern and Tang (1985)	100-106		Nuth and Glicker (1982)
							106-184		Suto and Lee (1985)
J_d^{27a}	HC ₃ N	\rightarrow C ₃ N + H	213	107-191 / >191	0.57 / 1.0	Silva et al. (2009)	100-165		Connors et al. (1974)
J _d 27b)		→ CN + C ₂ H	191	107-191 / >191	0.43 / 0.0		185-230		Bénilan et al. (1994)
J _d 28a)	C ₂ H ₃ CN	\rightarrow HC ₃ N + H ₂	668	>114	0.59	Derecskei-Kovacs and North (199	99) 100-230	30 298	Eden et al. (2003)
J _d 28b)		\rightarrow HNC + C ₂ H ₂	528	>114	0.04	Wilhelm et al. (2009)			
J _d 28c)		\rightarrow HCN + C ₂ H ₂	345	>114	0.12				
J _d 28d)		\rightarrow CH ₂ CCN ² + \tilde{H} \rightarrow CN + C ₂ H ₃	273	>114	0.24				
(J _d 28e)	- ** CN	→ CN + C ₂ H ₃	221	>114	0.01	C T CN	100.15	200	(1000)
J _d 29a)	C_2H_5CN	\rightarrow HCN + C_2H_4	864	>104	0.16	Estimate after C ₂ H ₃ CN	100-152		Kanda et al. (1999)
J _d 29b)		\rightarrow C ₂ H ₃ CN + H ₂	840	>104	0.59		152-217	17 -	Same as C ₂ H ₂
J _d 29c)		\rightarrow CÑ + C ₂ H ₅	232	>104	0.01				
J _d 29d)		→ CH ₃ CHCN + H		>104	0.24				

Ŋ	
~~	
00	

Reaction (Channels		ΔE	ΔE Branching Ratios				Cross-sec	tions	
			(nm)	λ (nm)	Values (%)	Ref.	λ (nm)	T (K)	Ref.	
(J _d 30a)	HC _K N	$\rightarrow C_K N + H$	209	<174 / >174	0.50 / 1.0	Estimate after HC ₂ N		115-298	233	Fray et al. (2010)
$(J_d 30b)$	•	\rightarrow CN + C _A H	189	<174 / >174	0.25 / 0.0	Ü				
$(J_d 30c)$		$\rightarrow C_3N + \tilde{C}_2H$	176	<174 / >174	0.25 / 0.0					
(J _d 31a)	C ₂ N ₂	\rightarrow CN + CN	213	>100	1.0	Halpern and Huang (1997)		100-114	295	Nuth and Glicker (1982)
$(J_d 31b)$								114-170	295	Connors et al. (1974)
(J _d 31c)								185-214	293	LISA ^a
$(J_d^a 31d)$								214-225	183	LISA ^a
$(J_d 32)$	C ₄ N ₂	$\rightarrow C_3N + CN$	193	>105	1.0	Halpern et al. (1990)		100-176	295	Connors et al. (1974)
		~						195-275	233	LISA ^a
(J _d 33a)	H ₂ O	\rightarrow OH + H	243	<124 / 124-140 / >140	0.78 / 0.89 / 1.0	Mordaunt et al. (1994)		100-115	298	Chan et al. (1993c)
$(J_d 33b)$		\rightarrow O(¹ D) + H ₂	179	<140 / >140	0.11 / 0.0	Stief et al. (1975)		115-194	298	Mota et al. (2005)
(J _d 33c)		\rightarrow O(³ P) + H + H	129	<124 / >124	0.11 / 0.0	Sander et al. (2006)				
(J _d 34a)	H ₂ CO	\rightarrow CO + H ₂	361	114-250 / > 250	0.5 / Table B.7	Glicker and Stief (1971)		100-225	298	Cooper et al. (1996)
$(J_d 34b)$	-	\rightarrow HCO + \tilde{H}	330	114-250 / >250	0.5 / Table B.7	Sander et al. (2011)		225-375	223	Meller and Moortgat (2000)
$(J_d 35a)$	CH ₂ CO	→ CO + ³ CH ₂	371	129-332 / > 332	0.0 / 1.0	Hayden et al. (1982)		290-354	298	Laufer and Keller (1971)
$(J_d 35b)$	=	\rightarrow CO + 1 CH ₂	332	129-332 / > 332	1.0 / 0.0	Morgan et al. (1996)				
(J _d 36)	CH2CHO	\rightarrow CO + CH ₄	_b	>113	1.0	Sander et al. (2011)		113-184	298	Limão-Vieira et al. (2003)
	3	4						202-300	298	Sander et al. (2011)
$(J_d 37a)$	CO2	\rightarrow CO + O(3 P)	228	>100	Table B.8	Lawrence (1972)		100-117	298	Chan et al. (1993b)
(J _d 37b)	~	\rightarrow CO + O(1 D)	167	>100	Table B.8	Okabe (1978)		117-163	195	Yoshino et al. (1996)
(J _d 37c)		\rightarrow CO + O(1 S)	129	>100	Table B.8	/		163-192	195	Parkinson et al. (2003)
· u								192-300	298	Shemansky (1972)

 $\textbf{Notes.} \ ^a LISA \ cross-sections \ are \ taken \ from \ http://www.lisa.univ-paris12.fr/GPCOS/SCOOPweb/index.html. \\ ^b Exothermic \ reaction.$

Table B.7: Photodissociation of $\mathrm{H}_2\mathrm{CO}\colon$ Branching ratios.

Wavelength (nm)	Prod	lucts
3 ()	$CO + H_2$	HCO + H
250	0.490	0.310
251	0.492	0.308
252	0.493	0.307
253	0.494	0.306
254	0.495	0.305
255	0.496	0.304
256	0.496	0.304
257	0.497	0.303
258	0.497	0.303
259	0.496	0.304
260	0.493	0.307
261	0.490	0.312
262	0.487	0.318
263	0.485	0.325
264	0.482	0.333
265	0.477	0.343
266	0.471	0.354
267	0.465	0.365
268	0.458	0.377
269	0.450	0.390
270	0.441	0.404
271	0.432	0.418
272	0.422	0.433
273	0.412	0.448
274	0.401	0.464
275	0.391	0.479
276	0.380	0.495
277	0.371	0.512
278	0.362	0.528
279	0.356	0.544
280	0.347	0.560
281	0.337	0.576
282	0.329	0.591
283	0.321	0.606
284	0.313	0.620
285	0.307	0.633
286	0.302	0.645
287	0.296	0.657
288	0.291	0.669
289	0.284	0.680
290	0.278	0.690
291	0.272	0.700
292	0.266	0.710
293	0.262 0.262	0.718
294	0.259	0.726
295	0.256	0.720 0.734
296	0.254	0.740
297	0.254 0.252	0.746
298	0.232 0.249	0.740 0.751
299	0.245	0.751 0.755
300	0.243 0.242	0.758
	0.242	0.100

Table B.8: Photodissociation of $\mathrm{CO}_2\colon \mathsf{Branching}$ ratios.

Wavelength (nm)		Products	
	$CO + O(^{3}P)$	$CO + O(^{1}D)$	$CO + O(^1S)$
100	0.35	0	0.65
101	0.30	0	0.70
102	0.25	0	0.75
103	0.21	0	0.79
104	0.17	0	0.83
105	0.13	0	0.87
106	0.095	0	0.91
107	0.045	0	0.96
108	0	0	1
109	0	0	1
110	0	0	1
111	0	0	1
112	0	0	1
113	0	0.010	0.99
114	0	0.025	0.975
115	0	0.08	0.92
116	0	0.19	0.81
117	0	0.33	0.67
118	0	0.54	0.46
119	0	0.70	0.30
120	0	0.80	0.20
121	0	0.86	0.14
122	0	0.91	0.09
123	0	0.954	0.046
124	0	0.974	0.026
125	0	0.98	0.020
126	0	0.99	0.010
127	0	0.99	0.010
≥128	0	1	0

Table B.9: Photodissociation reactions for radicals.

Reaction			Wavelength	Branching	Ref.	
			(nm)	Ratio	Cross-section	Branching Ratio
$(J_d 38)$	$CH_3 + h\nu$	→ ¹ CH ₂ + H	200-240	1.0	Cameron et al. (2002)	Wilson et al. (1994b,c) Wu et al. (2004)
(J _d 39)	$C_2H_3 + h\nu$	$\rightarrow C_2H_2 + H$	160-170	1.0	Fahr and Laufer (1988)	
			225-238	1.0	Fahr et al. (1998)	Ahmed et al. (1999)
			360-505	1.0	Hunziker et al. (1983)	Xu et al. (1999)
$(J_d 40)$	$C_2H_5 + h\nu$		200-260	1.0	Fagerström et al. (1993)	Steinbauer et al. (2012)
(J _d 41a)	$C_3 H_3 + h\nu$	$\rightarrow C_3H_2 + H$	230-300	0.97	Fahr et al. (1997)	
$(J_d 41b)$		$\rightarrow C_3H + H_2$		0.03		Nguyen et al. (2001)
$(J_d 41a)$	$C_{3}H_{3} + h\nu$	$\rightarrow C_3^3H_2 + \tilde{H}$	305-340	0.97		Goncher et al. (2008)
$(J_d 41b)$	0 0	$\rightarrow C_3H + H_2$		0.03	Atkinson and Hudgens (1999)	
$(J_d 41a)$	$C_3 H_3 + h\nu$	\rightarrow C ₃ H ₂ + H \rightarrow CH ₃ CCH + H	340-347	1.0		
(J _d 42a)	$C_3H_5 + h\nu$	→ CH ₃ CCH + H	210-233	0.30	•	
(J_d^{42b})		→ CH ₂ CCH ₂ + H		0.40	Jenkin et al. (1993)	Deyerl et al. (1997)
$(J_d 42c)$		$\rightarrow C_2 \tilde{H}_2 + \tilde{C} H_3$		0.30		Stranges et al. (1998)
(J_d_{42a})	$C_3 H_5 + h\nu$	→ CH ₃ ČCH + H	370-420	0.40		Deyerl et al. (1999)
$(J_d 42b)$	0 0	\rightarrow CH ₂ CCH ₂ + H		0.30	Tonokura and Koshi (2000)	
$(J_d 42c)$		$\rightarrow C_2H_2 + CH_3$		0.30		ſ
$(J_d 43)$	$C_3H_7 + h\nu$	$\rightarrow C_3H_6 + H$	200-350	1.0	Wendt and Hunziker (1984)	Noller and Fischer (2007)
$(J_d 44)$	$C_6 H_5 + h\nu$	$\rightarrow C_6H_4 + H$	225-360	1.0	Wallington et al. (1998)	Song et al. (2012)
$(J_d 45)$	$C_7H_7 + h\nu$	$\rightarrow C_7H_6 + H$	220-340	1.0	Ikeda et al. (1984)	Song et al. (2011)
$(J_d 46)$	$H_2CN + h\nu$	\rightarrow HCN + H	278-287	1.0	Nizamov and Dagdigian (2003)	Bernard et al. (1999)
-	~				Teslja et al. (2006)	
$(J_d 47)$	$HCO + h\nu$	\rightarrow CO + H	613-616	1.0	Flad et al. (2006)	

Table B.10: Photoionization reactions leading to ion-pair formation.

Reacti	on		Resonance Position (e	V) Cross-section (cm	²) Ref.
$(\overline{\mathbf{J}_{ip}2})$	$CH_4 + h\nu$	\rightarrow H ⁻ + CH ₃ ⁺	21.5	1.0×10^{-20}	Mitsuke et al. (1991)
$(J_{ip}3)$	$H_2 + h\nu$	\rightarrow H ⁻ + H ⁺	17.3	2.5×10^{-23}	Chupka et al. (1975)
$(J_{ip}4)$	$C_2H_2 + h\nu$	$\rightarrow C_2H^- + H^+$	18.8	6.0×10^{-21}	Ruscic and Berkowitz (1990)
$(J_{ip}20)$	$HCN + h\nu$	\rightarrow CN ⁻ + H ⁺	15.2	4.4×10^{-20}	Berkowitz et al. (1969)
$(J_{ip}31)$	$H_2O + h\nu$	\rightarrow OH ⁻ + H ⁺	16.9	1.1×10^{-20}	Berkowitz (1996)
$(J_{ip}32)$	$CO + h\nu$	\rightarrow O ⁻ + C ⁺	20.9	1.1×10^{-19}	Oertel et al. (1980)

Table B.11: Dissociative electron attachment reactions.

Reaction			Resonance Position (eV)	Cross-section (cm ²)	Ref.
$(J_{dea}2)$	$CH_A + e^-$	\rightarrow CH $_2^-$ + H $_2$	10.4	1.4×10^{-19}	Rawat et al. (2008)
	•	\rightarrow H ⁻ + CH ₃	9.8	1.6×10^{-18}	
$(J_{dea}3)$	$H_2 + e^-$	\rightarrow H ⁻ + H	3.7	1.5×10^{-21}	Krishnakumar et al. (2011)
aca	2		10.5	1.2×10^{-20}	
			14.0	1.7×10^{-20}	
$(J_{dea}4)$	$C_{2}H_{2} + e^{-}$	$\rightarrow C_2H^- + H$	3.0	3.5×10^{-20}	May et al. (2009)
		$\rightarrow H^{-} + C_2 H$	7.9	3.9×10^{-20}	
$(J_{dea}7)$	$CH_3CCH + e^-$	\rightarrow H ⁻ + C ₂ H ₂	3.6	6.0×10^{-22}	Janečková et al. (2012)
	3	3 3	6.9	1.2×10^{-20}	
			11.6	1.4×10^{-20}	
$(J_{dea}11)$	$C_4H_2 + e^-$	$\rightarrow C_{\underline{A}}H^{-} + H$	2.5	3.0×10^{-20}	May et al. (2008)
		•	5.3	7.3×10^{-19}	
		$\rightarrow C_2H^- + C_2H$	6.0	2.1×10^{-20}	
			8.7	4.5×10^{-21}	
$(J_{dea}18)$	$NH_{3} + e^{-}$	\rightarrow H ⁻ + NH ₂	5.7	2.3×10^{-18}	Rawat et al. (2008)
			10.5	5.0×10^{-19}	
(J_{dea}^{20})	$HCN + e^{-}$	\rightarrow CN ⁻ + H	1.9	9.4×10^{-18}	May et al. (2010)
$(J_{dea}21)$	$HNC + e^{-}$	\rightarrow CN ⁻ + H	3.0	1.0×10^{-17}	Chourou and Orel (2009)
$(J_{dea}24)$	$CH_3CN + e^-$	\rightarrow CN ⁻ + CH ₃	2.0	4.2×10^{-25}	Sailer et al. (2003)
	Ü	· ·	8.0	1.1×10^{-24}	
(J_{dea}^{25})	$HC_3N + e^-$	$\rightarrow C_3 N^- + H$	2.6	3.8×10^{-18}	Dibeler et al. (1961)
	· ·	\rightarrow CN ⁻ + C ₂ H	4.9	4.0×10^{-18}	
$(J_{dea}26)$	$C_2H_2CN + e^-$	\rightarrow CN ⁻ + C ₂ H ₂	4.9	3.7×10^{-18}	Tsuda et al. (1973)
	2 0	2 0	7.6	4.9×10^{-18}	
$(J_{dea}29)$	$C_2N_2 + e^-$	\rightarrow CN ⁻ + CN	5.5	1.9×10^{-17}	Inoue (1966)
(J _{dea} 30)	$C_4 N_2 + e^-$	$\rightarrow C_3 N^- + CN$	2.9	1.7×10^{-17}	Graupner et al. (2008)
	4 2	3	6.0	1.4×10^{-18}	
		\rightarrow CN ⁻ + C ₃ N	3.3	2.6×10^{-18}	
		3	6.0	1.9×10^{-18}	
$(J_{dea}31)$	$H_{2}O + e^{-}$	\rightarrow OH ⁻ + H	6.9	4.9×10^{-20}	Fedor et al. (2006)
	2		8.5	2.4×10^{-20}	Haxton et al. (2007)
			11.3	2.8×10^{-20}	
		\rightarrow O ⁻ + H ₂	7.1	2.1×10^{-19}	
		2	9.2	6.4×10^{-19}	
			11.9	9.1×10^{-19}	
		\rightarrow H ⁻ + OH	6.4	6.4×10^{-18}	
			8.5	1.1×10^{-18}	
$(J_{dea}32)$	CO + e ⁻	→ O ⁻ + C	9.8	2.0×10^{-19}	Rapp and Briglia (1965) Stamatovic and Schulz (1970

Table B.12: Mass-to-charge (m/z), electron affinities (EA) and asymptotic cross-sections σ_0 used in the calculation of the photodetachment cross-sections.

Ion species	m/z (u)	EA (eV)	$\sigma_0 (\mathrm{cm}^2)$	Ref.
H_	1	0.75	1.0×10^{-17}	Hotop and Lineberger (1985); Millar et al. (2007)
CH_2^-	14	0.65	1.0×10^{-17}	Leopold et al. (1985); Millar et al. (2007)
$CH_{\underline{2}}^{-}$ $CH_{\underline{3}}^{-}$	15	0.08	1.0×10^{-17}	Ellison et al. (1978); Millar et al. (2007)
C ₂ H ⁻	25	3.0	8.8×10^{-18}	Best et al. (2011)
$C_4^-H^-$	49	3.6	7.7×10^{-18}	Pino et al. (2002); Best et al. (2011)

C_6H^-	73	3.8	4.8×10^{-18}	Pino et al. (2002); Best et al. (2011)
cn^-	26	3.9	2.8×10^{-17}	Bradforth et al. (1993); Kumar et al. (2013)
C_3N^-	50	4.3	5.2×10^{-17}	Yen et al. (2010); Kumar et al. (2013)
C ₅ N ⁻	74	4.5	1.0×10^{-17}	Yen et al. (2010); Millar et al. (2007)
0_	16	1.5	1.2×10^{-17}	Hotop and Lineberger (1985); Hlavenka et al. (2009)
OH^-	17	1.8	3.3×10^{-17}	Goldfarb et al. (2005); Hlavenka et al. (2009)

Notes. The asymptotic cross-sections for O⁻ and OH⁻ are derived from fits to Equation (E24) using the literature electron affinities shown in column 2, and measured cross-sections at 1.87 and 2.33 eV for O⁻ and 1.87 and 1.96 eV for OH⁻ (cf. Hlavenka et al. (2009)).

Table B.13: Column production rate (cm $^{-2})$ for the fragments of the ionization and dissociation of $\rm CH_4$ and $\rm N_2$ from GCR.

Reaction			Total rate
$\overline{(J_{gcr}1a)}$	$N_2 + GCR$	$\rightarrow N_2^+ + e^-$	9.1×10^{7}
$(J_{gcr}1b)$		$\rightarrow N(^4S) + N(^2D)$	6.9×10^{7}
$(J_{gcr}1c)$		$\rightarrow N^{+} + N(^{4}S) + e^{-}$	2.3×10^{7}
$\overline{(J_{gcr}2a)}$	$\mathrm{CH_4} + \mathrm{GCR}$	$ ightarrow {}^{3}\mathrm{CH}_{2} + \mathrm{H}_{2}$	2.4×10^{6}
$(J_{gcr}2b)$		$\rightarrow CH_3 + H$	2.0×10^{6}
$(J_{gcr}2c)$		$\rightarrow \mathrm{CH_4^+} + \mathrm{e^-}$	1.8×10^{6}
$(J_{gcr}2d)$		$\rightarrow \mathrm{CH_3^+} + \mathrm{H} + \mathrm{e^-}$	1.4×10^{6}
$(J_{gcr}2e)$		$\rightarrow \mathrm{CH}_2^+ + \mathrm{H}_2 + \mathrm{e}^-$	2.4×10^5

Table B.14: Radiative association reactions.

		Тур	e				Reaction	k	Ref.
$R_{ra}1$	2	H	+	e	\rightarrow	H^-		$3.37 \times 10^{-16} T^{-0.64} e^{-9.2/T}$	Stancil and Dalgarno (1998)
$R_{ra}2$	2	3CH_2	+	e	\rightarrow	CH_2^-		1.00×10 ⁻¹⁴	est.(CN+e)
$R_{ra}3$	2	CH ₃	+	e	\rightarrow	CH_3^-		1.00×10^{-14}	est.(CN+e)
$R_{ra}4$	2	C_2H	+	e	\rightarrow	C_2H^-		$2.00\times10^{-15}T^{0.50}$	Herbst and Osamura (2008)
$R_{ra}5$	2	C_4H	+	e	\rightarrow	C_4H^-		$6.60 \times 10^{-09} \text{T}^{0.41} \text{e}^{-0.6/T}$	Carelli et al. (2013)
$R_{ra}6$	2	C ₆ H	+	e	\rightarrow	C_6H^-		$8.62 \times 10^{-08} T^{0.23} e^{-0.5/T}$	Carelli et al. (2013)
$R_{ra}7$	2	CN	+	e	\rightarrow	CN^-		1.00×10^{-14}	Petrie (1996)
$R_{ra}8$	2	C ₃ N	+	e	\rightarrow	C_3N^-		$2.60 \times 10^{-10} T^{0.50}$	Herbst and Osamura (2008)
$R_{ra}9$	2	C ₅ N	+	e	\rightarrow	$C_5 N^-$		$1.25 \times 10^{-07} T^{0.50}$	Herbst and Osamura (2008), Walsh et al. (20
$R_{ra}10$	2	$O(^3P)$	+	e	\rightarrow	O_		1.50×10^{-15}	Prasad and Huntress Jr. (1980)
$R_{ra}11$	2	OH	+	e	\rightarrow	OH^-		1.00×10 ⁻¹⁴	est.(CN+e)
İ									

Appendix B.5. Representation of Rate Coefficients

7521 Appendix B.5.1. Neutral Reactions

7522

7523

7524 7525

7526

7527

7528

7529

7531

7532

7533

7536

7537

7543

7544

7545

7546

7547

7548

Rate coefficients are temperature dependent and are expressed in the standard form:

$$k = AT^n exp(-E_a/T), (E27)$$

where T is the temperature of the neutrals and/or ions considered at the exception of radiative attachment and dissociative/radiative electron recombination where T is the electron temperature (cf. Figure 3).

Our most general rate representations employ Eq. (E18) with 10 parameters: A, B, and C for k_{\circ} , for k_{∞} , and for k_R and a temperature independent parameter F_c . However, in some cases we employ various limiting and alternative representations. The entries in Table B.15 correspond in order to the modified Arrhenius representations for k_1 , k_2 , and k_3 as outlined below.

- Type 1: Pressure independent unimolecular reactions: $k = k_1$, with k_1 in s⁻¹.
- Type 2: Pressure independent bimolecular reactions: $k = k_1$, with k_1 in cm³ s⁻¹.
 - Type 3: Pressure dependent bimolecular reactions: The Troe form of Eq. (E11) with $k_{\infty} = k_1$ in s⁻¹ and $k_{\circ} = k_2$ in cm³ s⁻¹.
- Type 4: Pressure dependent association reactions:

 Our modified Troe form of Eq. (E18) with $k_{\infty}=k_1$ in cm³ s⁻¹, $k_{\circ}=k_2$ in cm⁶ s⁻¹, and $k_R=k_3$ in cm³ s⁻¹. Note, however, that the denominator in Eq. (E18) is singular for $k_R=k_{\infty}$. Thus, for $k_R>0.99k_{\infty}$ we replace this expression with k_{∞} .
 - Types 5 and 6: Special case for OH + CO pressure dependent bimolecular reactions (Sander et al. (2011), section 2.1):

$$OH + CO \rightarrow H + CO_2$$

$$k([M]) = \left(\frac{k_{\circ}}{1 + \frac{k_{\circ}[M]}{k_{\infty}}}\right) 0.6^{\left[1 + \left(\log_{10}\left(\frac{k_{\circ}[M]}{k_{\infty}}\right)\right)^{2}\right]^{-1}}$$
(B.9)

 $k_{\infty} = k_1 \text{ in s}^{-1} \text{ and } k_{\circ} = k_2 \text{ in cm}^3 \text{ s}^{-1}.$

 $OH + CO \rightarrow HOCO$

$$k([M]) = \left(\frac{k_{\circ}[M]}{1 + \frac{k_{\circ}[M]}{k_{\infty}}}\right) 0.6^{\left[1 + \left(\log_{10}\left(\frac{k_{\circ}[M]}{k_{\infty}}\right)\right)^{2}\right]^{-1}}$$
(B.10)

 $k_{\infty} = k_1 \text{ in cm}^3 \text{ s}^{-1} \text{ and } k_{\circ} = k_2 \text{ in cm}^6 \text{ s}^{-1}.$

 $_{7549}$ • Type 7: Special case for $H + C_2H_3$: The Troe form does not accurately reproduce the master equation results and so we instead interpolate the data from a table.

7552 Appendix B.5.2. Positive and Negative Ion Reactions

$$k = A(300/T)^B exp(-C/T)$$
 (B.11)

• Type 1: Unimolecular reactions.

$$k = k_{\infty} \tag{B.12}$$

with $T=T_n=T_i$.

 $k_{\infty} \text{ in } s^{-1}.$

• Type 2: Bimolecular ion-neutral reactions.

$$k = k_{\infty} \tag{B.13}$$

with $T=T_n=T_i$.

 $k_{\infty} \text{ in cm}^3 \text{ s}^{-1}.$

• Type 3: Termolecular ion-neutral reactions.

$$k([M]) = \frac{k_{\infty}k_{\circ}[M]}{k_{\infty} + k_{\circ}[M]}$$
(B.14)

with $T=T_n=T_i$.

 k_{∞} in cm³ s⁻¹ and k_0 in cm⁶ s⁻¹.

• Type 4: Electron recombination reactions.

$$k = k_{\infty} \tag{B.15}$$

with $T=T_e$.

7564

 k_{∞} in cm³ s⁻¹.

• Type 5: Ion-neutral association reactions.

if $(k_{\infty}-k_R)/k_{\infty} > 1 \times 10^{-2}$

$$k([M]) = F \times \frac{(k_R' + k_{\circ}[M])k_{\infty}}{k_{\circ}[M] + k_R' + k_{\infty}}$$
 (B.16)

7567 where

$$k_R' = \frac{k_R k_\infty}{k_\infty - k_R} \tag{B.17}$$

 $_{7568}$ and

$$F = 10^{\left(\frac{\log_{10}(F_c)}{1 + \left(\frac{(\log_{10}[P_r] + C)}{N - 0.14(\log_{10}[P_r] + C)}\right)^2}\right)},$$
(B.18)

where $P_r = k_{\circ}[M]/k_{\infty}, N = 0.75 - 1.27 log_{10}(F_c)$ and C = -0.4

7570 $0.67log_{10}(F_c)$.

else (type -2)

$$k([M]) = k_{\infty} \tag{B.19}$$

with $T=T_n=T_i$.

 $_{^{7573}}$ $$k_{\infty}$$ and k_R in $cm^3~s^{-1},\,k_0$ in $cm^6~s^{-1}.$

7574 Appendix B.6. Reaction Lists

Table B.15: Neutral reaction list

	Type				Re	action			k	F_c	T range	Ref.
$R_n 1$	4	H	+	Н	\rightarrow	${\rm H}_2$			$\begin{array}{c c} 1.00 \times 10^{-10} \\ 1.80 \times 10^{-30} \text{T}^{-1.00} \end{array}$		200-2500	Baulch et al. (2005)
$R_n 2$ $R_n 3$	2 2	H H	++	$^{ m CH}_{^3{ m CH}_2}$	$\overset{\rightarrow}{\rightarrow}$	C CH	++	${\rm H_2} \\ {\rm H_2}$	$\begin{array}{c} 2.81 \times 10^{-12} \text{T}^{0.26} \\ 3.54 \times 10^{-11} \text{T}^{0.32} \end{array}$	0.40	50-500 185-800	van Harrevelt et al. (2002) Fulle and Hippler (1997)
$R_n 4$ $R_n 5a$	2 4	H H	+	$^{1}CH_{2}^{2}$ CH_{3}	$\overset{\rightarrow}{\rightarrow}$	$_{\mathrm{CH}_{4}}^{\mathrm{CH}}$	+	H_2	$\begin{array}{c} 1.00 \times 10^{-10} \\ 1.40 \times 10^{-10} \mathrm{T}^{0.15} \mathrm{e}^{-1./T} \\ 7.68 \times 10^{-25} \mathrm{T}^{-1.66} \mathrm{e}^{-22./T} \end{array}$	0.56	290 50-300	Peeters et al. (1994) Vuitton et al. (2012)
R_n 5b	2	Н	+	CH_3	\rightarrow	$^{1}\mathrm{CH}_{2}$	+	H_2	$\begin{array}{c} 4.56 \times 10^{-14} \mathrm{T}^{-1.09} \mathrm{e}^{-11./T} \\ 2.10 \times 10^{-08} \mathrm{T}^{-0.56} \mathrm{e}^{-8000./T} \end{array}$		300-2500	Baulch et al. (2005)
R_n6	4	Н	+	$\mathrm{C}_2\check{\mathrm{H}}$	\rightarrow	$\mathrm{C_2H_2}$			$\begin{array}{c} 3.73 \times 10^{-11} \mathrm{T}^{0.32} \\ 9.00 \times 10^{-26} \\ 1.00 \times 10^{-13} \end{array}$	0.40	200-2000	Harding et al. (2005),est.(AtomNum
R_n7a	4	Н	+	$\mathrm{C_2H_2}$	\rightarrow	$\mathrm{C_2H_3}$			$1.05 \times 10^{-34} \text{T}^{8.41} \text{e}^{358./T}$ $2.18 \times 10^{-27} \text{T}^{-1.07} \text{e}^{-83./T}$ $1.05 \times 10^{-17} \text{T}^{-0.27} \text{e}^{-34./T}$	0.18	50-300	Vuitton et al. (2012)
$\begin{array}{c} \mathbf{R}_n 7\mathbf{b} \\ \mathbf{R}_n 9\mathbf{a} \end{array}$	2 4	H H	++	$\substack{\mathbf{C_2H_2}\\\mathbf{C_2H_4}}$	$\overset{\rightarrow}{\rightarrow}$	${\rm C_2H}\atop{\rm C_2H_5}$	+	${\rm H}_2$	$\begin{array}{c} 1.67 \times 10^{-14} \mathrm{T}^{1.64} \mathrm{e}^{-15250./T} \\ 4.26 \times 10^{-26} \mathrm{T}^{5.31} \mathrm{e}^{173./T} \\ 5.08 \times 10^{-25} \mathrm{T}^{-1.51} \mathrm{e}^{-72./T} \end{array}$	0.20	200-3000 50-300	Baulch et al. (2005) Vuitton et al. (2012)
R_n 9b R_n 10a	2 4	H H	++	$^{\mathrm{C_2H_4}}_{\mathrm{C_2H_5}}$	$\overset{\rightarrow}{\rightarrow}$	$^{\mathrm{C_2H_3}}_{\mathrm{CH_3}}$	++	$_{\rm CH_3}^{\rm H_2}$	$\begin{array}{l} 9.02\times10^{-16}T^{-0.53}e^{-18./T} \\ 3.90\times10^{-22}T^{3.62}e^{-5670./T} \\ 9.04\times10^{-11}T^{0.16} \\ 9.00\times10^{-26} \end{array}$	0.40	400-2000 200-2000	Baulch et al. (2005) Harding et al. (2005),est.(AtomNum
$R_n 10b$ $R_n 11$	2 4	H H	+ +	$^{\mathrm{C_2H_5}}_{\mathrm{C_3}}$	$\overset{\rightarrow}{\rightarrow}$	$^{\mathrm{C_2H_4}}_{\mathrm{C_3H}}$	+	${\rm H}_2$	$ \begin{array}{c} 1.00 \times 10^{-13} \\ 7.00 \times 10^{-11} \\ 2.00 \times 10^{-10} \\ 1.00 \times 10^{-23} \end{array} $	0.40	298-2000	Baulch et al. (2005) est.(Rad+Rad),est.(AtomNumber)
$R_n 12$	4	Н	+	$\mathrm{C_3H}$	\rightarrow	$\mathrm{C_3H_2}$			$ \begin{array}{c} 2.00 \times 10^{-12} \\ 2.00 \times 10^{-10} \\ 1.00 \times 10^{-23} \end{array} $	0.40	-	est.(Rad+Rad),est.(AtomNumber)
$R_n 13$	4	Н	+	$\mathrm{C_3H_2}$	\rightarrow	$\mathrm{C_3H_3}$			$\begin{array}{c} 2.00 \times 10^{-12} \\ 1.26 \times 10^{-10} \text{T}^{0.22} \text{e}^{43./T} \\ 1.00 \times 10^{-23} \end{array}$	0.40	200-2000	Harding et al. (2007),est.(AtomNum
$R_n 14a$ Continue	4 on Nex	H rt. Page	+	$\mathrm{C_3H_3}$	\rightarrow	$\mathrm{CH_{3}CCH}$			$\begin{array}{c} 2.00 \times 10^{-12} \\ 1.06 \times 10^{-10} \mathrm{T}^{0.10} \mathrm{e}^{15./T} \end{array}$		200-2000	Harding et al. (2007),est.(AtomNum

	١		•	
í	7	S	7	
	٠	'	`	
1	•	ς	-	

	Type				Re	action			k	F_c	T range	Ref.
									1.00×10^{-23} 2.00×10^{-12}	0.40		
$R_n 14b$	4	Н	+	$\mathrm{C_3H_3}$	\rightarrow	$\mathrm{CH_2CCH_2}$			$3.40 \times 10^{-11} \mathrm{T}^{0.21} \mathrm{e}^{87./T}$ 1.00×10^{-23}	0.40	200-2000	Harding et al. (2007),est.(AtomNumb
$R_n 15a$	4	Н	+	$\mathrm{CH_{3}CCH}$	\rightarrow	$\mathrm{C_3H_5}$			$\begin{array}{c} 2.00 \times 10^{-12} \\ 5.01 \times 10^{-30} \mathrm{T}^{6.79} \mathrm{e}^{214./T} \\ 2.32 \times 10^{-20} \mathrm{T}^{-2.67} \mathrm{e}^{-265./T} \end{array}$	0.11	50-300	ThisWork
$R_n 15b$	4	Н	+	$\mathrm{CH_{3}CCH}$	\rightarrow	$\mathrm{C_3H_5}$			$\begin{array}{c} 2.93\times10^{-12}\mathrm{T}^{-1.30}\mathrm{e}^{-256./T} \\ 2.93\times10^{-30}\mathrm{T}^{6.79}\mathrm{e}^{214./T} \\ 5.01\times10^{-30}\mathrm{T}^{6.79}\mathrm{e}^{214./T} \\ 4.78\times10^{-28}\mathrm{T}^{-1.69}\mathrm{e}^{-133./T} \end{array}$	0.50	50-300	ThisWork
D 15		,,,		an aan		an aan			$\begin{array}{c} 4.78 \times 10^{-1} & \text{fe} \\ 6.50 \times 10^{-16} \text{T}^{-1.38} \text{e}^{-163./T} \\ 2.46 \times 10^{-16} \text{T}^{8.57} \text{e}^{-803./T} \end{array}$	0.50	F0 000	m: w i
$R_n 15c$	3	H	+	CH ₃ CCH		CH ₂ CCH ₂	+	H	1.03×10 ⁻¹⁷ T ^{9.30} e ^{-776.} /T		50-300	ThisWork
$R_n 15d$	3	H	+	CH ₃ CCH		C_2H_2	+	CH_3	$1.03 \times 10^{-171333} e^{-1717333} e^{-17173333} e^{-1717333} e^{-1717333} e^{-1717333} e^{-1717333} e^{-17173333} e^{-1717333} e^{-1717333} e^{-17173333} e^{-1717333} e^{-1717333} e^{-1717333} e^{-1717333} e^{-1717333} e^{-1717333} e^{-17$		50-300	ThisWork
$R_n 16a$	4	Н	+	$\mathrm{CH_2CCH_2}$	\rightarrow	C_3H_5			$\begin{array}{c} 2.18 \times 10^{-35} \text{T}^{-356} \text{e}^{-13/7} \\ 5.84 \times 10^{-20} \text{T}^{-2.23} \text{e}^{-261./T} \\ 6.73 \times 10^{-25} \text{T}^{3.74} \text{e}^{0./T} \end{array}$	0.06	50-300	ThisWork
$R_n 16b$	4	Н	+	$\mathrm{CH_2CCH_2}$	\rightarrow	$\mathrm{C_3H_5}$			$7.57 \times 10^{-29} T^{6.30} e^{186./T}$ $2.64 \times 10^{-25} T^{-1.81} e^{-164./T}$	0.60	50-300	ThisWork
									$2.99 \times 10^{-13} T^{-1.62} e^{-171./T}$			
$R_n 16c$	3	Н	+	CH ₂ CCH ₂	\rightarrow	CH_3CCH	+	Н	$7.20 \times 10^{-21} T^{10.40} e^{13./T}$		50-300	ThisWork
$R_n 17a$	4	Н	+	C_3H_5	\rightarrow	C_3H_6			$9.69 \times 10^{-11} T^{0.18} e^{63./T}$		200-2000	Harding et al. (2007),est.(AtomNumb
				0 0		0 0			1.00×10^{-23}	0.40		
									2.00×10^{-12}			
$R_n 17b$	2	H	+	C_3H_5	\rightarrow	CH_2CCH_2	+	H_2	3.00×10^{-11}		300-1000	Baulch et al. (2005)
$R_n 18a$	4	H	+	C_3H_6	\rightarrow	C_3H_7			$5.02 \times 10^{-32} \mathrm{T}^{7.22} \mathrm{e}^{298./T}$		50-300	ThisWork
									$3.93 \times 10^{-30} T^{0.40} e^{-89./T}$	0.80		
$R_n 18b$	4	H	+	C_3H_6	\rightarrow	C_3H_7			$1.27 \times 10^{-27} T^{6.03} e^{157./T}$		50-300	ThisWork
									$4.38 \times 10^{-17} \mathrm{T}^{-2.36} \mathrm{e}^{-273./T}$	0.20		
									$1.29 \times 10^{-13} T^{-0.79} e^{-140./T}$			
$R_n 18c$	3	H	+	C_3H_6	\rightarrow		+	C_2H_4	$1.01 \times 10^{-26} T^{10.82} e^{438./T}$		50-300	ThisWork
$R_n 18d$	2	H	+	C_3H_6		C_3H_5	+	H_2	$1.14 \times 10^{-29} T^{5.25} e^{312./T}$		50-300	ThisWork
$R_n 19a$	4	H	+	C_3H_7	\rightarrow	C_3H_8			$2.76 \times 10^{-11} T^{0.22}$	0.40	200-2000	Harding et al. (2007),est.(AtomNumb
									1.00×10^{-23} 2.00×10^{-12}	0.40		
$R_n 19b$	2	н		СЧ		СЧ		ш	1.00×10 ⁻¹⁰			ThisWork
	2 d on Nex		+	C_3H_7	\rightarrow	C_3H_6	+	H_2	1.00 X 10	1	-	1 IIIS WOFK

1	٠.	١
7	≍	
٠	۰	7
c	_	١
1	_	

	Type				Re	action			k	F_{c}	T range	Ref.
$R_n 20$	4	Н	+	C_4H	\rightarrow	$\mathrm{C_4H}_2$			$9.69 \times 10^{-11} T^{0.24} e^{12./T}$		50-300	ThisWork
									$2.39 \times 10^{-16} \text{T}^{-2.85} \text{e}^{-125./T}$ $5.51 \times 10^{-06} \text{T}^{-2.25} \text{e}^{-106./T}$	0.48		
$R_n 21$	4	н	+	C_4H_2	\rightarrow	C_4H_3			1.28×10 ⁻²⁶ T ^{5.70} e ^{164.} /T		50-300	ThisWork
10,21	4	111		04112	_	04113			$5.69 \times 10^{-18} \text{T}^{-2.77} \text{e}^{-179./T}$	0.30	30-300	THISWOIK
									$3.98 \times 10^{-20} T^{2.89} e^{-39./T}$	"""		
$R_n 22a$	4	Н	+	C_4H_3	\rightarrow	C_4H_4			$1.03 \times 10^{-10} T^{0.05} e^{9./T}$	İ	50-300	Vuitton et al. (2012)
									$2.87 \times 10^{-14} \mathrm{T}^{-3.73} \mathrm{e}^{-208./T}$	0.72		
D 001				G 11		C II			$6.79 \times 10^{-05} \text{T}^{-2.85} \text{e}^{-145./T}$ 1.00×10^{-10}			T31: 317 1
$R_n 22b$ $R_n 23$	2 4	H H	+	C_4H_3 C_4H_4	\rightarrow \rightarrow	4 2	+	H_2	$6.69 \times 10^{-21} \text{T}^{3.40} \text{e}^{-6./T}$		50-300	ThisWork ThisWork
$R_n 23$	4	п	+	$C_4\Pi_4$	\rightarrow	$C_4\Pi_5$			$2.38 \times 10^{-15} \text{T}^{-3.60} \text{e}^{-134./T}$	0.39	50-300	1 his work
									$7.03 \times 10^{-12} T^{-0.63} e^{-260./T}$	0.00		
$R_n 24$	4	Н	+	C_4H_5	\rightarrow	C_4H_6			$3.28 \times 10^{-11} T^{0.29} e^{80./T}$	İ	200-2000	Harding et al. (2007),est.(AtomNum
				4 3		4 0			1.00×10^{-21}	0.40		
									2.00×10 ⁻¹¹			
$R_n 25$	4	H	+	C_4H_7	\rightarrow	C_4H_8			2.00×10^{-10} 1.00×10^{-21}	0.40	-	est.(Rad+Rad),est.(AtomNumber)
									2.00×10 ⁻¹¹	0.40		
$R_n 26$	4	н	+	C_4H_9	\rightarrow	C_4H_{10}			$8.60 \times 10^{-12} \text{T}^{0.28}$		200-2000	Harding et al. (2005),est.(AtomNum
				-4 9		4 10			1.00×10^{-21}	0.40		
									2.00×10^{-11}			
$R_n 27$	2	H	+	C_6H	\rightarrow	C_6H_2			3.00×10 ⁻¹⁰		50-300	ThisWork
$R_n 28$	4	Н	+	C_6H_2	\rightarrow	C_6H_3			$\begin{array}{c} 3.86 \times 10^{-26} \mathrm{T}^{5.55} \mathrm{e}^{153./T} \\ 2.86 \times 10^{-26} \mathrm{T}^{-2.24} \mathrm{e}^{-1074./T} \end{array}$		-	est.(H+C4H2)
									$8.70 \times 10^{-20} \text{T}^{2.75} \text{e}^{-50./T}$	0.30		
$R_n 29$	4	Н	+	C_6H_3	\rightarrow	C_6H_4			2.00×10 ⁻¹⁰		_	est.(Rad+Rad),est.(AtomNumber)
10/120	1	**	'	6113		6114			1.00×10^{-17}	0.40		con(read read),con(recomination)
									2.00×10^{-10}			
$R_n 30$	4	H	+	C_6H_5	\rightarrow	C_6H_6			$1.41 \times 10^{-10} \mathrm{T}^{0.01} \mathrm{e}^{14./T}$		50-300	Vuitton et al. (2012)
									$9.86 \times 10^{-12} T^{-2.54} e^{-122./T}$	0.51		
									$\begin{array}{c} 1.41 \times 10^{-10} \mathrm{T}^{0.01} \mathrm{e}^{14./T} \\ 1.41 \times 10^{-10} \mathrm{T}^{0.01} \mathrm{e}^{14./T} \end{array}$			
$R_n 31$	4	H	+	C_6H_6	\rightarrow	C_6H_7			$1.41 \times 10^{-10} To To To To To To To To To To To To To T$	0.05	50-300	ThisWork
									$1.42 \times 10^{-24} \text{T}^{3.27} \text{e}^{-71./T}$	0.07		
$R_n 32$	4	Н	+	C_7H_7	\rightarrow	C_7H_8			4.30×10 ⁻¹⁰		300-2000	Baulch et al. (2005),est.(AtomNumb
Continue				7-1-7	,	7**8			1	1	1 -30 2000	1 2000),000.(1200111141111

1		
ċ		≍
i	_	_

1	Type				Re	action			k	F_c	T range	Ref.
R _n 33	4	н	+	C_8H_9	\rightarrow	C_8H_{10}			$ \begin{array}{c c} 1.00 \times 10^{-15} \\ 4.30 \times 10^{-10} \\ 2.00 \times 10^{-10} \end{array} $	0.40	_	est.(Rad+Rad),est.(AtomNumber)
				3 3		3 10			1.00×10^{-13} 2.00×10^{-10}	0.40		
R _n 34	4	С	+	${\rm H_2}$	\rightarrow	$^3\mathrm{CH}_2$			$2.06 \times 10^{-11} e^{-57./T}$		300-2000	Harding et al. (1993)
									2.50×10^{-28} 6.00×10^{-16}	0.40		
R _n 35	2	C	+	CH ₃	\rightarrow	C_2H_2	+	Н	1.00×10 ⁻¹⁰		10-300	Smith et al. (2004)
R _n 36a	2	Č	+	C_2H_2	\rightarrow	C ₃ H	+	H	$8.62 \times 10^{-11} T^{-0.12}$		15-295	Chastaing et al. (1999), Chastaing et al. (2
R _n 36b	2	Č	+	C_2H_2	\rightarrow	C_3	+	H ₂	$4.88 \times 10^{-10} T^{-0.12}$		15-295	Chastaing et al. (1999), Chastaing et al. (2
R _n 37	2	C	+	C_2H_4	\rightarrow	C_3H_3	+	H	$5.61 \times 10^{-10} T^{-0.11}$		15-295	Chastaing et al. (1999), Chastaing et al. (20
3,38	2	C	+	CH ₃ CCH	\rightarrow	C_4H_3	+	H	$5.06 \times 10^{-10} T^{-0.11}$		15-295	Chastaing et al. (2001), Loison and Bergeat
R _n 39	2	C	+	CH ₂ CCH ₂	\rightarrow	C_4H_3	+	H	$3.71 \times 10^{-10} T^{-0.01}$		15-295	Chastaing et al. (2001), Naulin et al. (2009)
R _n 40a	2	C	+	$C_3\tilde{H}_6$	\rightarrow	C_4H_5	+	H	$2.29 \times 10^{-10} T^{-0.08}$		15-295	Chastaing et al. (1999), Loison and Bergeat
R _n 40b	2	C	+	C_3H_6	\rightarrow	C_3H_3	+	CH_3	$2.29 \times 10^{-10} T^{-0.08}$		15-295	Chastaing et al. (1999), Loison and Bergeat
R_n41	2	C	+	C_4H_2	\rightarrow	C_5H	+	Н	$5.75 \times 10^{-10} T^{-0.12}$		-	est.(C+C2H2)
$R_n 42$	2	C	+	C_4H_4	\rightarrow	C_5H_3	+	H	$5.75 \times 10^{-10} T^{-0.12}$		-	est.(C+C2H2),Parker et al. (2011)
R_n43	2	C	+	C_4H_6	\rightarrow	C_5H_5	+	H	1.10×10^{-09}		300	Husain and Ioannou (1997), Hahndorf et al
R_n44a	2	C	+	C_4H_8	\rightarrow	C_5H_7	+	H	2.15×10^{-10}		300	Haider and Husain (1993)
R _n 44b	2	C	+	C_4H_8	\rightarrow	C_4H_5	+	CH_3	2.15×10^{-10}		300	Haider and Husain (1993)
$R_n 45$	2	C	+	C_6H_2	\rightarrow	C_7H	+	H	$5.75 \times 10^{-10} T^{-0.12}$		-	est.(C+C2H2)
$R_n 46$	4	CH	+	H_2	\rightarrow	CH_3			$4.16 \times 10^{-11} T^{0.20}$		53-744	Brownsword et al. (1997b),Brownsword et
									$5.72 \times 10^{-34} \text{T}^{1.60}$ 6.00×10^{-16}	0.63		
R _n 47	2	СН	+	CH ₄	\rightarrow	C_2H_4	+	Н	$4.00 \times 10^{-08} T^{-1.04} e^{-36./T}$		23-295	Canosa et al. (1997)
R _n 48	2	CH	+	C,H,	\rightarrow	C_3H_2	+	H	$1.59 \times 10^{-09} T^{-0.23} e^{-16./T}$		23-295	Canosa et al. (1997), Vereecken and Peeters
R _n 49a	2	CH	+	C_2H_4	\rightarrow	CH ₃ CCH	+	H	$2.32 \times 10^{-09} T^{-0.55} e^{-29./T}$		23-295	Canosa et al. (1997), McKee et al. (2003), G
R _n 49b	2	CH	+	$C_2^2H_4^4$	\rightarrow	СН,ССН,	+	H	$5.42 \times 10^{-09} T^{-0.55} e^{-29./T}$		23-295	Canosa et al. (1997), McKee et al. (2003), G
R _n 50a	2	CH	+	C_2H_6	\rightarrow	$C_2\tilde{H}_4$	+	CH_3	$3.27 \times 10^{-08} T^{-0.86} e^{-53./T}$		23-295	Canosa et al. (1997), McKee et al. (2003)
R _n 50b	2	CH	+	C_2H_6	\rightarrow	C_3H_6	+	н	$5.32 \times 10^{-09} \mathrm{T}^{-0.86} \mathrm{e}^{-53./T}$		23-295	Canosa et al. (1997), McKee et al. (2003)
$R_n 51$	2	CH	+	CH ₃ CCH	\rightarrow	C_4H_4	+	H	$1.83 \times 10^{-08} T^{-0.67} e^{-59./T}$	İ	77-170	Daugey et al. (2005), Goulay et al. (2009), I
R _n 52	2	CH	+	CH ₂ CCH ₂	\rightarrow	C_4H_4	+	Н	$2.12 \times 10^{-08} T^{-0.69} e^{-67./T}$		77-170	Daugey et al. (2005),Goulay et al. (2009),I
R _n 53a	2	CH	+	C_3H_6	\rightarrow	C_4H_6	+	Н	$2.84 \times 10^{-09} T^{-0.39} e^{-19./T}$		77-300	Daugey et al. (2005), Loison and Bergeat (
R _n 53b	2	CH	+	C_3H_6	\rightarrow	CH ₃ CCH	+	CH ₃	$3.15 \times 10^{-10} T^{-0.39} e^{-19./T}$		77-300	Daugey et al. (2005), Loison and Bergeat (
R _n 54a	2	CH	+	C ₃ H ₈	\rightarrow	C_2H_4	+	C ₂ H ₅	$1.20 \times 10^{-09} \mathrm{T}^{-0.40} \mathrm{e}^{-4./T}$		10-300	Loison et al. (2006),Faure(PersComm),Rib
Continued				~3**8	,	C2**4	- 1	C2**5	1 1.20/10 1	1	10 000	1 Donot et al. (2000), l'adre(l'elscomm), l'ele

1		•	١
è	6	=	Ś
ñ	7	:	Š

		Type				Re	eaction			k	F_c	T range	Ref.
	$R_n 54b$	2	СН	+	C_3H_8	\rightarrow	C_3H_6	+	CH ₃	$7.02 \times 10^{-10} T^{-0.40} e^{-4./T}$	1	10-300	Loison et al. (2006),Faure(PersComm),R
	$R_n 54c$	2	CH	+	C_3H_8	\rightarrow	C_4H_8	+	Н	$2.97 \times 10^{-10} \mathrm{T}^{-0.40} \mathrm{e}^{-4./T}$		10-300	Loison et al. (2006),Faure(PersComm),R
	R_n55	2	CH	+	C_4H_2	\rightarrow	C_5H_2	+	H	$1.59 \times 10^{-09} T^{-0.23} e^{-16./T}$		-	est.(CH+C2H2)
	$R_n 56$	2	CH	+	C_4H_4	\rightarrow	C_5H_4	+	H	$1.59 \times 10^{-09} T^{-0.23} e^{-16./T}$		-	est.(CH+C2H2)
	R_n57	2	CH	+	C_4H_6	\rightarrow	C_5H_6	+	H	$2.12 \times 10^{-08} \text{T}^{-0.69} \text{e}^{-67./T}$		-	est.(CH+CH2CCH2)
	R_n58a	2	CH	+	C_4H_8	\rightarrow	C_5H_8	+	H	$6.06 \times 10^{-09} \text{T}^{-0.53} \text{e}^{-33./T}$		23-295	Canosa et al. (1997), Loison and Bergeat
	R_n58b	2	CH	+	C_4H_8	\rightarrow	C_4H_6	+	CH ₃	$2.72 \times 10^{-09} \mathrm{T}^{-0.53} \mathrm{e}^{-33./T}$		23-295	Canosa et al. (1997), Loison and Bergeat
	$R_n 59a$	2	CH	+	C_4H_{10}	\rightarrow	$C_5^{-}H_{10}^{-}$	+	Н	$2.52 \times 10^{-10} \mathrm{T}^{-0.33} \mathrm{e}^{-4./T}$		10-300	Faure(PersComm), Loison et al. (2006)
	$R_n 59b$	2	CH	+	C_4H_{10}	\rightarrow	C_4H_8	+	CH ₃	$1.55 \times 10^{-09} \text{T}^{-0.33} \text{e}^{-4./T}$		10-300	Faure(PersComm), Loison et al. (2006)
	$R_n 60$	2	CH	+	C_6H_2	\rightarrow	C_7H_2	+	Н	$1.59 \times 10^{-09} T^{-0.23} e^{-16./T}$		-	est.(CH+C2H2)
	R_n61	1	¹ CH ₂		0 2	\rightarrow	3CH_2	+	$h\nu$	5.56×10^{-02}		-	Jacox (2003)
	R_n62	2	¹ CH ₂	+	N_2	\rightarrow	3CH_2	+	N_2	$2.00\times10^{-11}e^{-237./T}$		200-1000	Baulch et al. (2005)
	R_n63	2	¹ CH ₂	+	N_2I	\rightarrow	3CH_2	+	N_2I	$2.00\times10^{-11}e^{-237./T}$		-	est.(1CH2+N2)
	R_n64a	2	¹ CH ₂	+	H_2	\rightarrow	3CH_2	+	H_2	3.05×10^{-11}		195-798	Gannon et al. (2008)
	R_n64b	2	¹ CH ₂	+	H_2	\rightarrow	CH_3	+	H	7.46×10^{-11}		195-798	Gannon et al. (2008)
R	R_n65	2	$^{1}\mathrm{CH}_{2}^{^{2}}$	+	CH ₃	\rightarrow	C_2H_4	+	H	3.00×10^{-11}		300-2500	Tsang and Hampson (1986)
	R_n66a	2	¹ CH ₂	+	CH ₄	\rightarrow	³ CH ₂	+	CH_4	$3.10\times10^{-12}e^{250./T}$		200-1000	Baulch et al. (2005)
	R_n66b	2	¹ CH ₂	+	CH_4	\rightarrow	CH ₃	+	CH_3	$1.40 \times 10^{-11} e^{250./T}$		200-1000	Baulch et al. (2005)
	R_n66c	2	¹ CH ₂	+	CH_4	\rightarrow	$^{\mathrm{C_2H_5}}_{^3\mathrm{CH_2}}$	+	H	$1.40 \times 10^{-11} e^{250./T}$		200-1000	Baulch et al. (2005)
	R_n67a	2	¹ CH ₂	+	C_2H_2	\rightarrow	$^3\mathrm{CH}_2$	+	C_2H_2	$2.03 \times 10^{-09} \mathrm{T}^{-0.39}$		195-798	Gannon et al. (2010b), Gannon et al. (20
	R_n67b	2	¹ CH ₂	+	C_2H_2	\rightarrow	$^{\mathrm{C_3H_3}}_{^3\mathrm{CH_2}}$	+	H	$7.90 \times 10^{-10} \mathrm{T}^{-0.39}$		195-798	Gannon et al. (2010b),Gannon et al. (20
	R_n68a	2	¹ CH ₂	+	C_2H_4	\rightarrow	$^3\mathrm{CH}_2$	+	C_2H_4	$1.63 \times 10^{-08} \mathrm{T}^{-0.84}$		195-798	Gannon et al. (2010b), Gannon et al. (20
	R_n68b	2	¹ CH ₂	+	C_2H_4	\rightarrow	C_3H_5	+	H	$8.80 \times 10^{-09} \mathrm{T}^{-0.84}$		195-798	Gannon et al. (2010b),Gannon et al. (20
	R_n69a	2	¹ CH ₂	+	C_2H_6	\rightarrow	$^3\mathrm{CH}_2$	+	C_2H_6	3.60×10^{-11}		300-2000	Baulch et al. (1992)
	R_n69b	2	¹ CH ₂	+	C_2H_6	\rightarrow	C_2H_5	+	CH_3	$2.24 \times 10^{-08} T^{-0.90}$		210-475	Wagener (1990)
	R_n70a	2	¹ CH ₂	+	CH_3CCH	\rightarrow	$^3\mathrm{CH}_2$	+	CH_3CCH	1.68×10 ⁻¹⁰		298	Hayes et al. (1995)
	R_n70b	2	¹ CH ₂	+	CH₃CCH	\rightarrow	C_4H_5	+	H	$4.25 \times 10^{-09} T^{-0.52} e^{92./T}$		200-2000	Polino et al. (2013)
	R_n71a	2	¹ CH ₂	+	$\mathrm{CH}_2\mathrm{CCH}_2$	\rightarrow	$^3\mathrm{CH}_2$	+	CH_2CCH_2	1.68×10 ⁻¹⁰		298	Hayes et al. (1995)
	R_n71b	2	¹ CH ₂	+	CH_2CCH_2	\rightarrow	C_4H_5	+	H	$1.12 \times 10^{-09} \text{T}^{-0.35} \text{e}^{232./T}$		200-2000	Polino et al. (2013)
	R_n72a	2	¹CH ₂	+	C ₃ H ₆	\rightarrow	$^3\mathrm{CH}_2$	+	C_3H_6	6.13×10 ⁻¹⁰ T ^{-0.13}		195-798	Gannon et al. (2010a)
	R_n72b	2	¹ CH ₂	+	C_3H_6	\rightarrow	C_4H_7	+	H	$6.06 \times 10^{-11} \mathrm{T}^{-0.13}$		195-798	Gannon et al. (2010a)
	R_n73a	2	¹ CH ₂	+	C_3H_8	\rightarrow	$^3\mathrm{CH}_2$	+	C_3H_8	1.12×10 ⁻¹⁰		298	Hayes et al. (1995)
	R_n73b	2	¹ CH ₂	+	C_3H_8	\rightarrow	C_4H_9	+	Н	1.12×10^{-10} $2.03 \times 10^{-09} \text{T}^{-0.39}$		298	Hayes et al. (1995)
	R_n74a	2	¹ CH ₂	+	C_4H_2	\rightarrow	³ CH ₂	+	C_4H_2	$2.03 \times 10^{-09} T^{-0.39}$ $7.90 \times 10^{-10} T^{-0.39}$		-	est.(1CH2+C2H2)
	R_n74b R_n75a	2 2	¹ CH ₂ ¹ CH ₂	+	C_4H_2 C_4H_4	\rightarrow \rightarrow	$^{\mathrm{C_5H_3}}_{^{3}\mathrm{CH_2}}$	+	H C_4H_4	$7.90 \times 10^{-10} T^{-0.39}$ $2.03 \times 10^{-09} T^{-0.39}$	1	-	est.(1CH2+C2H2) est.(1CH2+C2H2)

1		5
ē	c	5
Ć	ū	3

	Type				Re	action					k	F_c	T range	Ref.
R _n 75b	2	$^{1}\mathrm{CH}_{2}$	+	C_AH_A	\rightarrow	$C_{\kappa}H_{\kappa}$	+	Н			$7.90 \times 10^{-10} \mathrm{T}^{-0.39}$		-	est.(1CH2+C2H2)
R _n 76a	2	$^{1}CH_{2}^{2}$	+	C_4H_6	\rightarrow	3CH ₂	+	C_4H_6			1.68×10^{-10}		_	est.(1CH2+CH2CCH2)
R _n 76b	2	¹ CH ₂	+	C_4H_6	\rightarrow	C_5H_7	+	H	'		$2.92 \times 10^{-09} \text{T}^{-0.48} \text{e}^{220./T}$		200-2000	Polino et al. (2013)
l _n 77a	2	¹ CH ₂	+	C_4H_8	\rightarrow	³ CH ₂	+	C_4H_8			1.13×10 ⁻¹⁰		295	Langford et al. (1983)
n 77b	2	¹ CH ₂	+	C_4H_8	\rightarrow	C_5H_0	+	H	,		1.13×10 ⁻¹⁰		295	Langford et al. (1983)
l _n 78a	2	¹ CH ₂	+	C_4H_{10}	$\stackrel{'}{\rightarrow}$	³ CH ₂	+	C_4H_1			1.27×10^{-10}		298	Hayes et al. (1995)
<i>n</i> 78b	2	¹ CH ₂	+	C_4H_{10} C_4H_{10}	\rightarrow	C_5H_{11}	+	H H	.0		1.27×10^{-10} 1.27×10^{-10}		298	Hayes et al. (1995)
$l_n 79a$	2	¹ CH ₂	+	C_6H_2		$^{3}CH_{2}$	+				$2.03 \times 10^{-09} \mathrm{T}^{-0.39}$		290	est.(1CH2+C2H2)
		CH ₂			\rightarrow			C ₆ H ₂	!		$7.90 \times 10^{-10} \text{T}^{-0.39}$		-	
_n 79b	2		+	C_6H_2	\rightarrow	C_7H_3	+	Н					-	est.(1CH2+C2H2)
$l_n 80a$	4	$^3\mathrm{CH}_2$	+	$^3\mathrm{CH}_2$	\rightarrow	C_2H_2	+	${\rm H}_2$			$2.94 \times 10^{-11} e^{-4./T}$		300-2500	Jasper et al. (2007),est.(AtomNun
											1.00×10^{-25}	0.40		
		_		_							1.00×10^{-13}			
$R_n 80b$	4	3CH_2	+	$^3\mathrm{CH}_2$	\rightarrow	C_2H_2	+	H	+	H	$1.18 \times 10^{-10} e^{-4./T}$		300-2500	Jasper et al. (2007),est.(AtomNum
											1.00×10^{-25}	0.40		
											1.00×10^{-13}			
$R_n 81$	4	3CH ₂	+	CH ₃	\rightarrow	C_2H_4	+	H			$1.99 \times 10^{-09} T^{-0.34} e^{-77./T}$	İ	300	Jasper et al. (2007),est.(AtomNum
				3		2 4					1.00×10^{-25}	0.40		, , , ,
											1.00×10^{-13}			
$R_n 82$	4	$^3\mathrm{CH}_2$	+	C_2H	\rightarrow	C_3H_2	+	Н			8.00×10^{-11}		_	est.(Rad+Rad),est.(AtomNumber)
cn o2		0112		0211		03112					1.00×10^{-23}	0.40		con(read read),con(reomremoer)
											2.00×10^{-12}	0.10		
$R_n 83a$	4	$^3\mathrm{CH}_2$	+	C_2H_3	\rightarrow	C_3H_5					8.00×10 ⁻¹¹			est.(Rad+Rad),est.(AtomNumber)
$\iota_n \circ \circ a$	-4	0112	_	02113	_	C3115					1.00×10^{-23}	0.40	-	est.(Itad+Itad),est.(Atomivumber)
											2.00×10^{-12}	0.40		
		3CH ₂		C II		C II		CIII			3.00×10^{-11}		000 0500	T 1 H (1000)
t _n 83b	2		+	C_2H_3	\rightarrow	C_2H_2	+	CH_3			8.00×10 ⁻¹¹		300-2500	Tsang and Hampson (1986)
$l_n 84a$	4	$^3\mathrm{CH}_2$	+	C_2H_5	\rightarrow	C_3H_7							-	est.(Rad+Rad),est.(AtomNumber)
											1.00×10^{-23}	0.40		
											2.00×10^{-12}			
$l_n 84b$	2	$^3\mathrm{CH}_2$	+	C_2H_5	\rightarrow	C_2H_4	+	CH_3			3.00×10^{-11}		300-2500	Tsang and Hampson (1986)
$l_n 85$	4	$^{3}CH_{2}^{-}$	+	C_3	\rightarrow	C_4H_2					8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
											1.00×10^{-21}	0.40		
											2.00×10^{-11}	İ		
$l_n 86$	4	3CH ₂	+	C_3H	\rightarrow	C_4H_3					8.00×10^{-11}		_	est.(Rad+Rad),est.(AtomNumber)
		- 2		- 3		4 3					1.00×10^{-21}	0.40		,
											2.00×10 ⁻¹¹			
L _n 87	4	3CH ₂	+	C_3H_2	\rightarrow	C_4H_4					8.00×10 ⁻¹¹		_	est.(Rad+Rad),est.(AtomNumber)
		t Page		O3112	_	04114					0.00 / 10	1	-	[csc.(read read),esc.(Atomivumber)

		٠.
٢	>	≺
٩	۶	_
×	1	_

	Type				Re	action			k	F_c	T range	Ref.
$R_n 88$	4	³ CH ₂	+	C_3H_3	\rightarrow	C_4H_5			$ \begin{array}{c} 1.00 \times 10^{-21} \\ 2.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \end{array} $	0.40		est.(Rad+Rad).est.(AtomNumber)
10,00	1	-	'	03113	,	C4115			$ \begin{array}{c} 1.00 \times 10^{-21} \\ 2.00 \times 10^{-11} \end{array} $	0.40		cst.(rad rad),cst.(rttollivalister)
$R_n 89$	2	$^3\mathrm{CH}_2$	+	C_3H_5	\rightarrow	C_4H_6	+	H	5.00×10 ⁻¹¹		300-2500	Tsang and Hampson (1986)
$R_n 90$	4	CH_3	+	CH_3	\rightarrow	C_2H_6			$\begin{array}{c} 3.84 \times 10^{-10} \mathrm{T}^{-0.29} \mathrm{e}^{-28./T} \\ 5.53 \times 10^{-17} \mathrm{T}^{-3.79} \mathrm{e}^{-64./T} \\ 3.20 \times 10^{-06} \mathrm{T}^{-3.25} \mathrm{e}^{-74./T} \end{array}$	0.37	50-300	ThisWork
R_n91	2	CH ₂	+	C_2H		C_3H_3	+	Н	3.20×10 ⁻⁰⁰ T ^{-3.23} e ^{-74.7} 4.00×10 ⁻¹¹		300-2500	Tsang and Hampson (1986)
$R_n 92a$	4	CH ₃	+	C_2H_3	\rightarrow \rightarrow	C_3H_6		11	$8.87 \times 10^{-10} \text{T}^{-0.38} \text{e}^{39./T}$		50-300	ThisWork
10,1024	1	0113	'	02113	,	U3116			$\begin{array}{c} 1.66 \times 10^{-24} \mathrm{T}^{-2.11} \mathrm{e}^{-167./T} \\ 3.63 \times 10^{-12} \mathrm{T}^{-2.18} \mathrm{e}^{-122./T} \end{array}$	0.80	00 000	This Work
$R_n 92b$	3	CH ₃	+	C_2H_3	\rightarrow	C_3H_5	+	Н	$1.24 \times 10^{+05} \text{T}^{0.61} \text{e}^{54./T}$		50-300	ThisWork
$R_n 92c$	2	CH ₃	+	C_2H_3	\rightarrow	C_2H_2	+	CH_4	$1.50 \times 10^{-11} e^{385./T}$		308-900	Stoliarov et al. (2000)
R_n93a	4	CH ₃	+	C_2H_5	\rightarrow	$C_3^2H_8$		*	$2.86 \times 10^{-09} \mathrm{T}^{-0.61} \mathrm{e}^{-44./T}$		50-300	ThisWork
				2 0		0			$4.31 \times 10^{-12} \mathrm{T}^{-4.75} \mathrm{e}^{-96./T}$ $3.62 \times 10^{-02} \mathrm{T}^{-4.25} \mathrm{e}^{-189./T}$	0.95		
R_n93b	3	CH ₃	+	C_2H_5	\rightarrow	C_2H_4	+	CH_4	$4.88 \times 10^{-09} \text{T}^{4.59} \text{e}^{464./T}$		50-300	ThisWork
R_n94	4	CH ₃	+	C_3	\rightarrow	$C_4^2H_3$		- 4	8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
				Ü		- 0			$ \begin{array}{c} 1.00 \times 10^{-21} \\ 2.00 \times 10^{-11} \end{array} $	0.40		
R_n95	4	CH ₃	+	C_3H	\rightarrow	C_4H_4			8.00×10 ⁻¹¹		_	est.(Rad+Rad),est.(AtomNumber)
		- 3		- 3		-4 4			1.00×10^{-21}	0.40		
									2.00×10 ⁻¹¹			
$R_n 96$	4	CH_3	+	C_3H_2	\rightarrow	C_4H_5			8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumber)
									1.00×10^{-21}	0.40		
D 05		CII		G 11		G II			2.00×10^{-11} 6.80×10^{-11} e ^{130./T}		301-800	Tr. 1 Cl. 1 (0001) + (A+ N-1
$R_n 97a$	4	CH ₃	+	C_3H_3	\rightarrow	C_4H_6			1.00×10 ⁻²¹	0.40	301-800	Knyazev and Slagle (2001),est.(AtomNumber
									2.00×10 2.00×10 ⁻¹¹	0.40		
R_n97b	2	CH ₃	+	C_3H_3	\rightarrow	C_3H_2	+	CH_4	$1.50 \times 10^{-11} e^{385./T}$		50-300	ThisWork
R_n98a	4	CH ₃	+	C_3H_5	\rightarrow	C_4H_8		4	$1.55 \times 10^{-09} \mathrm{T}^{-0.54} \mathrm{e}^{117./T}$		301-800	Knyazev and Slagle (2001),Baulch et al. (200
		3		- 35		- 4 8			1.00×10^{-21}	0.40		(400
									2.00×10^{-11}			
R_n98b	2	CH_3	+	C_3H_5	\rightarrow	$\mathrm{CH_{2}CCH_{2}}$	+	CH_4	6.00×10^{-13}		500-800	Baulch et al. (2005)
R_n 98b Continue		$_{ m t~Page.}$.		C_3H_5	\rightarrow	$\mathrm{CH_2CCH_2}$	+	CH_4	6.00×10 ⁻¹³		500-800	Baulch et al. (2005)

10
\odot

	Type				Re	eaction			k	F_c	T range	Ref.
R_n99a	4	CH ₃	+	$\mathrm{C_3H_7}$	\rightarrow	$\mathrm{C_4H}_{10}$			$\begin{array}{c c} 5.33 \times 10^{-10} \mathrm{T}^{-0.47} \mathrm{e}^{97./T} \\ 1.00 \times 10^{-21} \end{array}$	0.40	200-2000	Klippenstein et al. (2006),est.(AtomNumber)
R_n 99b R_n 100a	2 4	$\begin{array}{c} \mathrm{CH_3} \\ \mathrm{CH_3} \end{array}$	++	$\substack{\mathrm{C_3H_7}\\\mathrm{C_4H_3}}$	$\overset{\rightarrow}{\rightarrow}$	${\rm ^{C_3H_6}_{5H_6}}$	+	CH_4	$ \begin{array}{c} 2.00 \times 10^{-11} \\ 1.00 \times 10^{-10} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-19} \end{array} $	0.40	-	ThisWork est.(Rad+Rad),est.(AtomNumber)
$R_n 100b \\ R_n 101$	2 4	$\begin{array}{c} \mathrm{CH_3} \\ \mathrm{CH_3} \end{array}$	++	$\substack{\mathrm{C_4H_3}\\\mathrm{C_4H_5}}$	$\overset{\rightarrow}{\rightarrow}$	$\substack{\mathrm{C_4H_2}\\\mathrm{C_5H_8}}$	+	CH_4	$\begin{array}{c} 8.00\times10^{-11} \\ 1.50\times10^{-11} \mathrm{e}^{385./T} \\ 8.00\times10^{-11} \\ 1.00\times10^{-19} \end{array}$	0.40	-	est.(CH3+C2H3) est.(Rad+Rad),est.(AtomNumber)
R _n 102	4	CH_3	+	$\mathrm{C_4H_7}$	\rightarrow	$\mathrm{C_5H_{10}}$			$\begin{array}{c} 8.00\times10^{-11} \\ 8.00\times10^{-11} \\ 8.00\times10^{-11} \\ 1.00\times10^{-19} \\ 8.00\times10^{-11} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R _n 103	4	CH_3	+	$\mathrm{C_4H_9}$	\rightarrow	$\mathrm{C_5H_{12}}$			$1.16 \times 10^{-09} \text{T}^{-0.67} \text{e}^{73./T}$ 1.00×10^{-19}	0.40	-	Klippenstein et al. (2006),est.(AtomNumber)
$R_n 104a$	4	CH ₃	+	$\mathrm{C_6H_3}$	\rightarrow	$\mathrm{C_7H_6}$			$\begin{array}{c} 1.16\times10^{-09}\mathrm{T}^{-0.67}\mathrm{e}^{73./T} \\ 8.00\times10^{-11} \\ 1.00\times10^{-15} \\ 8.00\times10^{-11} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
$R_n 104b$ $R_n 105$	2 4	$\begin{array}{c} \mathrm{CH_3} \\ \mathrm{CH_3} \end{array}$	+ +	$\substack{\mathrm{C_6H_3}\\\mathrm{C_6H_5}}$	$\overset{\rightarrow}{\rightarrow}$	$\substack{\mathrm{C_6H_2}\\\mathrm{C_7H_8}}$	+	CH_4	$\begin{array}{c} 1.50 \times 10^{-11} \mathrm{e}^{385./T} \\ 3.62 \times 10^{-09} \mathrm{T}^{-0.62} \mathrm{e}^{-29./T} \\ 1.00 \times 10^{-15} \end{array}$	0.40	50-300	est.(CH3+C2H3) Vuitton et al. (2012)
R _n 106	4	CH ₃	+	$\mathrm{C_7H_7}$	\rightarrow	$\mathrm{C_8H_{10}}$			$\begin{array}{c} 3.62\times10^{-09}\mathrm{T}^{-0.62}\mathrm{e}^{-29./T} \\ 8.00\times10^{-11} \\ 1.00\times10^{-13} \\ 8.00\times10^{-11} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R _n 107	4	CH_3	+	$\mathrm{C_8H_9}$	\rightarrow	$\mathrm{C_9H_{12}}$			$\begin{array}{c} 8.00 \times 10^{-11} \\ 1.00 \times 10^{-11} \end{array}$	0.40	-	est.(Rad + Rad), est.(AtomNumber)
$R_{n}108$ $R_{n}109$ $R_{n}110$ $R_{n}111a$ $R_{n}111b$ $R_{n}111c$ Continued	2 2 2 2 2 2 2 ed on Nex	$\begin{bmatrix} \mathbf{C}_2\\ \mathbf{C}_2\\ \mathbf{C}_2\\ \mathbf{C}_2\\ \mathbf{C}_2\\ \mathbf{C}_2\\ \mathbf{C}_2\\ \mathbf{xt} \ \mathrm{Page.} \ . \end{bmatrix}$	+ + + + + +	$\begin{array}{c} {\rm H_2} \\ {\rm CH_4} \\ {\rm C_2H_2} \\ {\rm C_2H_4} \\ {\rm C_2H_4} \\ {\rm C_2H_4} \end{array}$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$\begin{array}{c} {\rm C_2H} \\ {\rm C_2H} \\ {\rm C_4H} \\ {\rm C_4H} \\ {\rm C_2H_2} \\ {\rm C_4H_3} \\ {\rm C_4H_2} \end{array}$	+ + + + +	$\begin{array}{c} \mathbf{H} \\ \mathbf{C}\mathbf{H}_3 \\ \mathbf{H} \\ \mathbf{C}_2\mathbf{H}_2 \\ \mathbf{H} \\ \mathbf{H}_2 \end{array}$	$\begin{array}{l} 8.00\times10^{-11} \\ 5.60\times10^{-11} \mathrm{e}^{-1095./T} \\ 9.83\times10^{-11} \mathrm{T}^{-0.42} \mathrm{e}^{-13./T} \\ 1.92\times10^{-07} \mathrm{T}^{-1.14} \mathrm{e}^{-77./T} \\ 2.57\times10^{-08} \mathrm{T}^{-0.93} \mathrm{e}^{-58./T} \\ 2.13\times10^{-09} \mathrm{T}^{-0.93} \mathrm{e}^{-58./T} \\ 4.03\times10^{-09} \mathrm{T}^{-0.93} \mathrm{e}^{-58./T} \end{array}$		293-395 24-300 49-300 49-300 49-300 49-300	Nakajima et al. (2009) Páramo et al. (2008) Páramo et al. (2008),Gu et al. (2006),Leonori Páramo et al. (2008),Mebel et al. (2006a),Gu Páramo et al. (2008),Mebel et al. (2006a),Gu Páramo et al. (2008),Mebel et al. (2006a)

1		•	
è	2	Ξ	
2	2	ζ	
٠	_	٠	

	Type				Re	action			k	F_c	T range	Ref.
R _n 112	2	C_2 C_2	+	C_2H_6	\rightarrow	${\rm C_2H_5\atop C_5H_3}$	+	$\mathrm{C_2H}$	$2.77 \times 10^{-08} T^{-0.94} e^{-44./T}$	1	24-300	Páramo et al. (2008)
$R_n 113a$	2	C,	+	CH ₃ CCH	\rightarrow	C_5H_3	+	Η̈́	4.41×10^{-10}		77-296	Daugey et al. (2008), Guo et al. (2006a), M
$R_n 113b$	2	C_2	+	CH ₃ CCH	\rightarrow	C_5H_2	+	H_2	9.00×10^{-12}		77-296	Daugey et al. (2008), Mebel et al. (2006b)
$R_n 114$	2	C ₂	+	CH, CCH,	\rightarrow	C_5H_3	+	Η̈́	5.00×10 ⁻¹⁰		77-296	Daugey et al. (2008), Guo et al. (2006b)
$R_n 115a$	2	C,	+	$C_3\tilde{H}_6$	\rightarrow	C_5H_5	+	H	2.86×10^{-10}		77-296	Daugey et al. (2008), Dangi et al. (2013)
$R_n 115b$	2	C_2 C_2	+	C_3H_6	\rightarrow	C_4H_3	+	CH ₃	1.18×10 ⁻¹⁰		77-296	Daugey et al. (2008), Dangi et al. (2013)
$R_n 115c$	2	C ₂	+	C_3H_6	\rightarrow	CH, CCH	+	$C_2 H_2$	1.52×10 ⁻¹¹		77-296	Daugey et al. (2008), Dangi et al. (2013)
R _n 116	2	C_2	+	C_3H_8	\rightarrow	C_3H_7	+	C_2H	$3.89 \times 10^{-07} T^{-1.31} e^{-94./T}$		24-300	Páramo et al. (2008)
$R_n 117$	2	C ₂ H	+	H_2	\rightarrow	C_2H_2	+	н	$3.50 \times 10^{-18} \mathrm{T}^{2.32} \mathrm{e}^{-444./T}$		180-3000	Baulch et al. (2005)
R _n 118	2	C ₂ H	+	\widetilde{CH}_4	\rightarrow	C_2H_2	+	CH ₃	$3.60 \times 10^{-14} T^{0.94} e^{-328./T}$		150-780	Baulch et al. (2005)
R _n 119a	2	C ₂ H	+	C ₂ H	\rightarrow	C_4H	+	Н	3.00×10^{-11}		300-2500	Tsang and Hampson (1986)
R _n 119b	2	C ₂ H	+	C_2^2H	\rightarrow	C_2H_2	+	C_2	3.00×10^{-12}		300-2500	Tsang and Hampson (1986)
R _n 120	2	C ₂ H	+	$C_2^2H_2$	\rightarrow	$C_4^2H_2^2$	+	H	$4.37 \times 10^{-10} \mathrm{T}^{-0.25}$		15-295	Chastaing et al. (1998)
R _n 121a	2	C ₂ H	+	$C_2^2H_3^2$	\rightarrow	$C_4^4H_3^2$	+	H	3.00×10^{-11}		300-2500	Tsang and Hampson (1986)
R _n 121b	2	C ₂ H	+	$C_2^2H_3^3$	\rightarrow	$C_2^4H_2^3$	+	C_2H_2	1.60×10^{-12}		300-2500	Tsang and Hampson (1986)
R _n 122	2	C ₂ H	+	C_2H_4	\rightarrow	C_4H_4	+	H 2	$7.80 \times 10^{-11} e^{134./T}$		150-359	Opansky and Leone (1996), Kovács et al.
R _n 123a	2	C ₂ H	+	$C_{2}^{2}H_{5}^{4}$	\rightarrow	$C_2^4H_4^4$	+	C_2H_2	3.00×10^{-12}		300-2500	Tsang and Hampson (1986)
R _n 123b	2	C ₂ H	+	$C_{2}^{2}H_{5}^{3}$	\rightarrow	$C_{3}^{2}H_{3}^{4}$	+	CH_3^2	3.00×10^{-11}		300-2500	Tsang and Hampson (1986)
$R_n 124$	2	C ₂ H	+	$C_2^2H_6^5$	\rightarrow	$C_2^3H_2^3$	+	C_2H_5	$6.75 \times 10^{-12} T^{0.28} e^{62./T}$		150-780	Baulch et al. (2005)
R _n 125a	2	C ₂ H	+	CH, CCH	\rightarrow	C_5H_4	+	H	$4.64 \times 10^{-10} \mathrm{T}^{-0.30}$		63-296	Carty et al. (2001), Goulay et al. (2007)
R _n 125b	2	C ₂ H	+	CH ₃ CCH	\rightarrow	$C_4^5H_2^4$	+	CH ₃	$6.96 \times 10^{-10} \mathrm{T}^{-0.30}$		63-296	Carty et al. (2001), Goulay et al. (2007)
R _n 126	2	C ₂ H	+	CH ₂ CCH ₂	\rightarrow	C_5H_4	+	Н	$1.95 \times 10^{-09} \mathrm{T}^{-0.40}$		63-296	Carty et al. (2001), Goulay et al. (2011)
R _n 127	2	C ₂ H	+	C_3H_6	\rightarrow	$C_4^3H_4$	+	CH ₃	2.16×10^{-10}		103-296	Vakhtin et al. (2001a), Woon and Park (20
R _n 128	2	C ₂ H	+	C_3H_8	\rightarrow	C_3H_7	+	C_2H_2	$9.80 \times 10^{-11} e^{-71./T}$		96-361	Murphy et al. (2003)
R _n 129	2	C ₂ H	+	C_4H_2	\rightarrow	C_6H_2	+	H	$1.62 \times 10^{-09} T^{-0.31}$		20-300	Cheikh Sid Ely (2012), Gu et al. (2009b)
R _n 130	2	C ₂ H	+	C_4H_4	\rightarrow	C_6H_4	+	Н	$1.03 \times 10^{-09} T^{-0.23} e^{4./T}$		_	est.(C2H+C4H2),Zhang et al. (2011)
R _n 131	2	C ₂ H	+	C_4H_6	\rightarrow	C_6H_6	+	Н	3.00×10 ⁻¹⁰		104-296	Nizamov and Leone (2004a), Jones et al. (
R _n 132a	2	C ₂ H	+	C_4H_8	\rightarrow	C_4H_4	+	C_2H_5	1.32×10 ⁻¹⁰		104-296	Nizamov and Leone (2004a), Woon and Pa
R _n 132b	2	C ₂ H	+	C_4H_8	\rightarrow	C_5H_6	+	CH ₃	8.80×10 ⁻¹¹		104-296	Nizamov and Leone (2004a), Woon and P.
R _n 133	2	C ₂ H	+	C_4^{118} C_4^{11}	$\stackrel{'}{\rightarrow}$	C_2H_2	+	C_4H_9	1.15×10 ⁻¹⁰		104-296	Nizamov and Leone (2004a)
R _n 134	2	C ₂ H	+	C ₆ H ₂	\rightarrow	C_8H_2	+	H	$1.03 \times 10^{-09} T^{-0.23} e^{4./T}$		_	est.(C2H+C4H2)
R _n 135	2	C ₂ H	+	C_6H_6	\rightarrow	C_8H_6	+	Н	$9.10 \times 10^{-10} T^{-0.18}$		105-298	Goulay and Leone (2006)
R _n 136a	4	C ₂ H ₃	+	C_2H_3	\rightarrow	C_4H_5	+	Н	$1.20 \times 10^{-11} e^{400./T}$		300-700	Ismail et al. (2009),est.(AtomNumber)
10n 100a	-	2113	-	2113	7	U ₄ 11 ₅	г	11	1.00×10 ⁻²¹	0.40	300-100	isman et al. (2005),est.(Atomivumber)
									1.20×10 ⁻¹¹	0.40		
R _n 136b	2	C ₂ H ₃	+	C_2H_3	\rightarrow	C_2H_4	+	C_2H_2	2.40×10 ⁻¹¹		298	Fahr et al. (1991)

1	ŀ	,
è	Č	5
-	_	1

	Type				Re	action			k	F_c	T range	Ref.
R _n 137a	4	C_2H_3	+	C_2H_5	\rightarrow	C_4H_8			6.50×10 ⁻¹¹		298	Laufer and Fahr (2004),est.(AtomNumb
									1.00×10 ⁻²¹	0.40		
				G 17				a	2.00×10^{-11} 1.50×10^{-11}			
R _n 137b	2	C ₂ H ₃	+	C_2H_5	\rightarrow	C_2H_4	+	C_2H_4			298	Laufer and Fahr (2004)
R _n 137c	2	C ₂ H ₃	+	C_2H_5	\rightarrow	C_2H_6	+	C_2H_2	1.50×10^{-11} 8.00×10^{-11}		298	Laufer and Fahr (2004)
$R_n 138$	4	C_2H_3	+	C_3	\rightarrow	C_5H_3			8.00×10 11 1.00×10 ⁻¹⁹	0.40	-	est.(Rad+Rad),est.(AtomNumber)
									8.00×10 ⁻¹¹	0.40		
R _n 139	4	C 11		C II		C II			8.00×10 8.00×10 ⁻¹¹			est.(Rad+Rad),est.(AtomNumber)
R _n 139	4	C_2H_3	+	C_3H	\rightarrow	C_5H_4			1.00×10 ⁻¹⁹	0.40	-	est.(Rad+Rad),est.(AtomNumber)
									8.00×10 ⁻¹¹	0.40		
R _n 140	4	C ₂ H ₃	+	C_3H_2	\rightarrow	C_5H_5			8.00×10 ⁻¹¹		_	est.(Rad+Rad),est.(AtomNumber)
10,140	-	2113	'	03112	,	5115			1.00×10 ⁻¹⁹	0.40	_	cst.(read read),cst.(reomrumocr)
									8.00×10 ⁻¹¹	0.40		
R _n 141	4	C ₂ H ₃	+	C_3H_3	\rightarrow	C_5H_6			8.00×10 ⁻¹¹		_	est.(Rad+Rad),est.(AtomNumber)
10n 111	•	2113	'	3113		05116			1.00×10 ⁻¹⁹	0.40		con(read read);con(reconnicalmost)
									8.00×10 ⁻¹¹	1		
R _n 142a	4	C_2H_3	+	C_3H_5	\rightarrow	C_5H_8			8.00×10 ⁻¹¹		_	est.(Rad+Rad).est.(AtomNumber)
		1 2 3		- 3 3		- 3 8			1.00×10^{-19}	0.40		
									8.00×10^{-11}			
R _n 142b	2	C ₂ H ₃	+	C_3H_5	\rightarrow	CH ₂ CCH ₂	+	C_2H_4	4.00×10^{-12}		300-2500	Tsang (1991)
$R_n 142c$	2	C_2H_3	+	C_3H_5	\rightarrow	$C_3\tilde{H}_6$	+	C_2H_2	8.00×10^{-12}		300-2500	Tsang (1991)
$R_n 143a$	4	C_2H_3	+	C_3H_7	\rightarrow	C_5H_{10}			8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
									1.00×10^{-19}	0.40		
									8.00×10^{-11}			
$R_n 143b$	2	C_2H_3	+	C_3H_7	\rightarrow	C_3H_6	+	C_2H_4	$2.53\times10^{-10}\mathrm{T}^{-0.70}$		300-2500	Tsang (1988)
$R_n 143c$	2	C_2H_3	+	C_3H_7	\rightarrow	C_3H_8	+	C_2H_2	$2.53\times10^{-10}\mathrm{T}^{-0.70}$		300-2500	Tsang (1988)
$R_n 144$	4	C_2H_3	+	C_4H_3	\rightarrow	C_6H_6			8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumber)
									1.00×10 ⁻¹⁷	0.40		
									8.00×10 ⁻¹¹			
$R_n 145$	4	C_2H_3	+	C_4H_5	\rightarrow	C_6H_8			8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumber)
									1.00×10 ⁻¹⁷	0.40		
									8.00×10 ⁻¹¹			
$R_n 146$	4	C_2H_3	+	C_4H_7	\rightarrow	C_6H_{10}			8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumber)
									1.00×10 ⁻¹⁷	0.40		
									8.00×10 ⁻¹¹			
$R_n 147$	4	C ₂ H ₃	+	C_4H_9	\rightarrow	$C_{6}H_{12}$			8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)

ĸ	٦.
è	≍
č	7

	Type				Re	eaction			k	F_c	T range	Ref.
	1 '								1.00×10 ⁻¹⁷	0.40		
	1 1	1							8.00×10 ⁻¹¹	'	1	
$R_n 148$	4	C_2H_3	+	C_6H_3	\rightarrow	C_8H_6			8.00×10 ⁻¹¹	'	- '	est.(Rad+Rad),est.(AtomNumber)
	1 1	1							1.00×10 ⁻¹³	0.40	1	
	i , 1	1		~ **					8.00×10 ⁻¹¹	'	1	(
$R_n 149$	4	C_2H_3	+	C_6H_5	\rightarrow	C_8H_8			8.00×10 ⁻¹¹	2.40	[-	est.(Rad+Rad),est.(AtomNumber)
	1 1	1							1.00×10^{-13} 8.00×10^{-11}	0.40	1	
D 1500	1 4 1	~ "		о п	,	C 11			8.00×10^{-11} $1.45 \times 10^{-09} T^{-0.70} e^{1./T}$	'	200-2000	To a second control of the second control of
$R_n 150a$	4	C_2H_5	+	C_2H_5	\rightarrow	C_4H_{10}			1.45×10 ⁻⁰⁵ T ^{-0.76} e ^{1.77} 1.00×10 ⁻²¹	0.40	200-2000	Klippenstein et al. (2006),est.(AtomNumber)
	1 1	1							1.00×10 21 2.00×10 ⁻¹¹	0.40	1	
R _n 150b	2	C ₂ H ₅	+	C_2H_5	\rightarrow	C_2H_4	+	C_2H_6	2.40×10 ⁻¹²	'	300-1200	Baulch et al. (1994)
$R_n 150b$ $R_n 151$	4	C_2H_5 C_2H_5		$C_2\Pi_5$ C_3	\rightarrow \rightarrow	C_2H_4 C_5H_5	+	C ₂ n ₆	8.00×10 ⁻¹¹	'		est.(Rad+Rad),est.(AtomNumber)
10,101	1 - 1	1	٦	\circ_3		C5115			1.00×10 ⁻¹⁹	0.40	1 -	est.(mau+mau),coc.(monin,amoc.)
	1 1	1							8.00×10 ⁻¹¹	0.10	1	
$R_n 152$	4	C ₂ H ₅	+	C_3H	\rightarrow	C_5H_6			8.00×10 ⁻¹¹	'	1 -	est.(Rad+Rad),est.(AtomNumber)
	1 1	1		~3		-56			1.00×10^{-19}	0.40	1	,
1	1 1	1							8.00×10^{-11}	'	1	
$R_n 153$	4	C_2H_5	+	C_3H_2	\rightarrow	C_5H_7			8.00×10^{-11}	'	- ·	est.(Rad+Rad),est.(AtomNumber)
	1 1	1		· -		٠.			1.00×10^{-19}	0.40	1	
	1 1	1							8.00×10 ⁻¹¹	'	1	
$R_n 154$	4	C_2H_5	+	C_3H_3	\rightarrow	C_5H_8			8.00×10 ⁻¹¹	'	-	est.(Rad+Rad),est.(AtomNumber)
	(I	1							1.00×10 ⁻¹⁹	0.40	1	
	1 1	1							8.00×10 ⁻¹¹	'	1	I
$R_n 155a$	4	C_2H_5	+	C_3H_5	\rightarrow	C_5H_{10}			$3.30 \times 10^{-11} e^{66./T}$	'	500-1200	Baulch et al. (2005),est.(AtomNumber)
	í ¹	1							1.00×10 ⁻¹⁹	0.40	1	
	1 2	1		~ **					$3.30 \times 10^{-11} e^{66./T}$ $4.30 \times 10^{-12} e^{66./T}$	'		
R _n 155b	2	C ₂ H ₅		C_3H_5	\rightarrow	C3H6	+	C_2H_4	$4.30 \times 10^{-12} e^{66./T}$ $1.60 \times 10^{-12} e^{66./T}$	'	500-1200	Baulch et al. (2005)
R _n 155c	2	C ₂ H ₅	+	C_3H_5	\rightarrow	CH ₂ CCH ₂	+	C_2H_6	$1.60 \times 10^{-12} e^{66./7}$ 5.00×10^{-11}	'	500-1200	Baulch et al. (2005) ThisWork
R _n 156a	2	C ₂ H ₅	+	C_3H_7	\rightarrow	C_3H_8	+	C_2H_4	5.00×10 ⁻¹¹ 5.00×10 ⁻¹¹	'	1 -	ThisWork ThisWork
R _n 156b	2	C ₂ H ₅	+	C_3H_7	\rightarrow	C_3H_6	+	C_2H_6	5.00×10^{-11} $5.37 \times 10^{-10} \text{T}^{-0.60} \text{e}^{161./T}$	'	- 200 0000	
$R_n 156c$	4	C_2H_5	+	C_3H_7	\rightarrow	C_5H_{12}			5.37×10 ⁻¹⁰ T ^{-0.00} e ^{101./1} 1.00×10 ⁻¹⁹	0.40	200-2000	Klippenstein et al. (2006),est.(AtomNumber)
	1 1	1							$5.37 \times 10^{-10} \text{T}^{-0.60} \text{e}^{161./T}$	0.40	1	
R _n 157	4	LCH	+	C_4H_3		Сн			8.00×10 ⁻¹¹	'	1	est.(Rad+Rad).est.(AtomNumber)
R _n 101	1 4 1	C_2H_5	+	$C_4 H_3$	\rightarrow	C_6H_8			1.00×10 ⁻¹⁷	0.40	1 -	est.(Rad+Rad),est.(Atomivumber)
		1							1.00 \ 10	0.20	1	

1	S	
è	≍	
2	~	

	Type				Re	eaction	k	F_c	T range	Ref.
R _n 158	4	C_2H_5	+	$\mathrm{C_4H}_5$	\rightarrow	$\mathrm{C_6H_{10}}$	$ \begin{vmatrix} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-17} \end{vmatrix} $	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R _n 159	4	$\mathrm{C_2H_5}$	+	$\mathrm{C_4H_7}$	\rightarrow	$\mathrm{C_6H}_{12}$	$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-17} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R _n 160	4	$\mathrm{C_2H_5}$	+	$\mathrm{C_4H_9}$	\rightarrow	$\mathrm{C_6H_{14}}$	$\begin{array}{c} 8.00\times10^{-11} \\ 2.79\times10^{-09}\mathrm{T}^{-0.89}\mathrm{e}^{73./T} \\ 1.00\times10^{-17} \\ 2.79\times10^{-09}\mathrm{T}^{-0.89}\mathrm{e}^{73./T} \end{array}$	0.40	200-2000	Klippenstein et al. (2006),est.(AtomNu
R _n 161	4	$\mathrm{C_2H_5}$	+	$\mathrm{C_6H_3}$	\rightarrow	$\mathrm{C_8H_8}$	$\begin{array}{c} 2.79 \times 10^{-0.07} \text{T}^{-0.05} \text{e}^{-1.5.71} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-13} \\ 8.00 \times 10^{-11} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R _n 162	4	$\mathrm{C_2H_5}$	+	$\mathrm{C}_6\mathrm{H}_5$	\rightarrow	$\mathrm{C_8H_{10}}$	8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-13} 8.00×10^{-11}	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R _n 163	4	C_3	+	$\mathrm{C_3H_3}$	\rightarrow	$\mathrm{C_6H_3}$	$\begin{array}{c} 8.00 \times 10 \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-17} \\ 8.00 \times 10^{-11} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R _n 164	4	C_3	+	$\mathrm{C_3H_5}$	\rightarrow	$\mathrm{C_6H_5}$	$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-17} \\ 8.00 \times 10^{-11} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R _n 165	4	C ₃ H	+	$\mathrm{C_3H_3}$	\rightarrow	$\mathrm{C_6H_4}$	$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-17} \\ 8.00 \times 10^{-11} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R _n 166	4	C ₃ H	+	$\mathrm{C_3H_5}$	\rightarrow	$\mathrm{C_6H_6}$	$\begin{array}{c} 8.00 \times 10^{-11} \\ 1.00 \times 10^{-17} \\ 8.00 \times 10^{-11} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R _n 167	4	C_3H_2	+	$\mathrm{C_3H_3}$	\rightarrow	$\mathrm{C_6H_5}$	$\begin{array}{c} 8.00 \times 10^{-11} \\ 1.00 \times 10^{-17} \\ 8.00 \times 10^{-11} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R _n 168	4	C_3H_2	+	$\mathrm{C_3H_5}$	\rightarrow	C_6H_7	$\begin{array}{c} 8.00 \times 10^{-11} \\ 1.00 \times 10^{-17} \\ 8.00 \times 10^{-11} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R _n 169	4	C ₃ H ₃	+	C_3H_3	\rightarrow	C_6H_6	$ \begin{array}{c c} 6.50 \times 10^{-11} \\ 1.00 \times 10^{-17} \end{array} $	0.40	298-1000	Baulch et al. (2005),est.(AtomNumber)

:	ij	٥
		٥
-	-	١
		_

	Type				Re	eaction			k	F_c	T range	Ref.
$R_n 170a$	4	C_3H_3	+	$\mathrm{C_3H_5}$	\rightarrow	$\mathrm{C_6H_8}$			$ \begin{vmatrix} 6.50 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-17} \end{vmatrix} $	0.40	-	est.(Rad+Rad),est.(AtomNumber)
$R_n 170b$ $R_n 171$	2 4	$\begin{array}{c} \mathrm{C_3H_3} \\ \mathrm{C_3H_3} \end{array}$	++	$^{\mathrm{C_3H_5}}_{\mathrm{C_3H_7}}$	$\overset{\rightarrow}{\rightarrow}$	$\substack{\text{CH}_2\text{CCH}_2\\\text{C}_6\text{H}_{10}}$	+	$\mathrm{CH_2CCH_2}$	$\begin{array}{c} 8.00 \times 10^{-11} \\ 1.00 \times 10^{-13} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-17} \end{array}$	0.40	-	est.(C3H5+C3H5) est.(Rad+Rad),est.(AtomNumber)
$R_n 172$	4	C_3H_3	+	$\mathrm{C_4H_3}$	\rightarrow	$\mathrm{C_7H_6}$			$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-15} \\ 8.00 \times 10^{-11} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
$R_n 173$	4	C_3H_3	+	$\mathrm{C_4H_5}$	\rightarrow	$\mathrm{C_7H_8}$			8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-15}	0.40	-	est.(Rad+Rad),est.(AtomNumber)
$R_n 174$	4	C_3H_3	+	$\mathrm{C_4H_7}$	\rightarrow	$\mathrm{C_7H_{10}}$			$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-15} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
$R_n 175$	4	C_3H_3	+	$\mathrm{C_4H_9}$	\rightarrow	$\mathrm{C_7H_{12}}$			$ \begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-15} \end{array} $	0.40	-	est.(Rad+Rad),est.(AtomNumber)
$R_n 176$	4	C_3H_3	+	$\mathrm{C_6H_3}$	\rightarrow	$\mathrm{C_9H_6}$			$ \begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-11} \end{array} $	0.40	-	est.(Rad+Rad),est.(AtomNumber)
$R_n 177$	4	C_3H_3	+	$\mathrm{C_6H_5}$	\rightarrow	$\mathrm{C_9H_8}$			$ \begin{array}{c c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-11} \end{array} $	0.40	-	est.(Rad+Rad),est.(AtomNumber)
$R_n 178a$	4	C_3H_5	+	$\mathrm{C_3H_5}$	\rightarrow	$\mathrm{C_6H_{10}}$			$\begin{array}{c} 8.00 \times 10^{-11} \\ 2.30 \times 10^{-11} \\ 1.00 \times 10^{-17} \end{array}$	0.40	300-1000	Baulch et al. (2005),est.(AtomNumber
$R_n 178b$ $R_n 179a$	2 4	C_3H_5 C_3H_5	++	$\substack{\mathrm{C_3H_5}\\\mathrm{C_3H_7}}$	$\overset{\rightarrow}{\rightarrow}$	$\substack{\mathrm{C_3H_6}\\\mathrm{C_6H_{12}}}$	+	$\mathrm{CH_2CCH_2}$	$ 2.30 \times 10^{-11} 1.00 \times 10^{-13} 8.00 \times 10^{-11} 1.00 \times 10^{-17} 8.00 \times 10^{-11} $	0.40	300-1000	Baulch et al. (2005) est.(Rad+Rad),est.(AtomNumber)
R_n179b R_n179c R_n180 Continued	2 2 4 d on Nex	$egin{array}{c} {\rm C_3H_5} \\ {\rm C_3H_5} \\ {\rm C_3H_5} \\ {\rm t\ Page.\ .} \end{array}$	+ + +	$^{\mathrm{C_3H_7}}_{\substack{\mathrm{C_3H_7} \\ \mathrm{C_4H_3}}}$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$^{\mathrm{C_3H_8}}_{\substack{\mathrm{C_3H_6} \\ \mathrm{C_7H_8}}}$	+	$\substack{\text{CH}_2\text{CCH}_2\\\text{C}_3\text{H}_6}$	8.00×10^{-12} 7.60×10^{-12} T ^{-0.35} e ^{66.} /T 3.80×10^{-11} T ^{-0.35} e ^{66.} /T 8.00×10^{-11}		300-2500 300-2500 -	Tsang (1991) Tsang (1991) est.(Rad+Rad),est.(AtomNumber)

_		
	-	

Туре	9			Re	action			k	F_c	T range	Ref.
								1.00×10 ⁻¹⁵	0.40		
								8.00×10 ⁻¹¹			
$R_n 181$ 4	C ₃ H ₅	+	C_4H_5	\rightarrow	$C_7 H_{10}$			8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumber)
								1.00×10 ⁻¹⁵	0.40		
D 100 4			C II		C II			8.00×10^{-11} 8.00×10^{-11}			
$R_n 182$ 4	C_3H_5	+	C_4H_7	\rightarrow	C_7H_{12}			1.00×10 ⁻¹⁵	0.40	-	est.(Rad+Rad),est.(AtomNumber)
								8.00×10 ⁻¹¹	0.40		
$R_n 183$ 4	C ₃ H ₅	+	C_4H_0	\rightarrow	C_7H_{14}			8.00×10 ⁻¹¹		_	est.(Rad+Rad),est.(AtomNumber)
	35	'	49		714			1.00×10 ⁻¹⁵	0.40		()
								8.00×10^{-11}			
$R_n 184$ 4	C ₃ H ₅	+	C_6H_3	\rightarrow	C_9H_8			8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
			0 0		0			1.00×10^{-11}	0.40		
								8.00×10 ⁻¹¹			
$R_n 185$ 4	C ₃ H ₅	+	C_6H_5	\rightarrow	$C_{9}H_{10}$			8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumber)
								1.00×10 ⁻¹¹	0.40		
D 400			G 11		a			8.00×10^{-11} 9.79×10^{-10} T ^{-0.86} e ^{132./T}			771
$R_n 186a$ 4	C ₃ H ₇	+	C_3H_7	\rightarrow	C_6H_{14}			9.79×10 10 T 0.00e102.71 1.00×10 ⁻¹⁷	0.40	200-2000	Klippenstein et al. (2006),est.(AtomNun
								$9.79 \times 10^{-10} \text{T}^{-0.86} \text{e}^{132./T}$	0.40		
R _n 186b 2	C ₃ H ₇	+	C_3H_7	\rightarrow	C_3H_8	+	C_3H_6	4.20×10^{-12}		300-1000	Baulch et al. (2005)
R _n 187 4	C_3H_7	+	C_4H_3	$\stackrel{'}{\rightarrow}$	C_7H_{10}		03116	8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumber)
10,101	3117	'	04113		071110			1.00×10^{-15}	0.40		con(trad trad),con(tradiii tuiii ci)
								8.00×10^{-11}			
$R_n 188$ 4	C ₃ H ₇	+	C_4H_5	\rightarrow	C_7H_{12}			8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
	"		- 0					1.00×10^{-15}	0.40		
								8.00×10 ⁻¹¹			
$R_n 189$ 4	C ₃ H ₇	+	C_4H_7	\rightarrow	C_7H_{14}			8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumber)
								1.00×10 ⁻¹⁵	0.40		
D 100			C II		C II			8.00×10^{-11} $9.66 \times 10^{-09} \text{T}^{-1.17} \text{e}^{65./T}$		000 0000	1711
$R_n 190$ 4	C_3H_7	+	C_4H_9	\rightarrow	C_7H_{16}			9.66×10 ⁻⁰⁵ T ^{-1.17} e ^{05.7} 1.00×10 ⁻¹⁵	0.40	200-2000	Klippenstein et al. (2006),est.(AtomNun
								$9.66 \times 10^{-09} \text{T}^{-1.17} \text{e}^{65./T}$	0.40		
$R_n 191$ 4	C ₃ H ₇	+	C_6H_3	\rightarrow	C_9H_{10}			8.00×10 ⁻¹¹			est.(Rad+Rad),est.(AtomNumber)
10,131 4	317	+	$_6$ n ₃	_	O91110			1.00×10 ⁻¹¹	0.40	-	est.(itau+itau),est.(Atominumber)
								8.00×10 ⁻¹¹	0.40		
Continued on N	ext Page.							1	1		I .

ċ	ì	ė	1	
۶	_		ζ	
7			S	

	Type				Re	eaction				k	F_c	T range	Ref.
R _n 192	4	C ₃ H ₇	+	$\mathrm{C_6H_5}$	\rightarrow	C_9H_{12}				8.00×10 ⁻¹¹ 1.00×10 ⁻¹¹ 8.00×10 ⁻¹¹	0.40	-	est.(Rad+Rad),est.(AtomNumber)
$R_n 193$	2	C_AH	+	H_2	\rightarrow	C_4H_2	+	Н		$3.50 \times 10^{-18} T^{2.32} e^{-444./T}$		_	est.(C2H+H2)
R _n 194	2	C ₄ H	+	CH_A	\rightarrow	C_4H_2	+	CH ₃		$1.63 \times 10^{-11} e^{-610./T}$		200	Berteloite et al. (2008),Berteloite et al.
R _n 195	2	C ₄ H	+	C_2H_2	\rightarrow	C_6H_2	+	Н		$7.63 \times 10^{-08} \mathrm{T}^{-1.06} \mathrm{e}^{-65./T}$		39-298	Berteloite et al. (2008),Berteloite et al.
R _n 196	2	C ₄ H	+	C_2H_4	\rightarrow	C_6H_4	+	Н		$1.90 \times 10^{-09} \mathrm{T}^{-0.40} \mathrm{e}^{9./T}$		39-298	Berteloite et al. (2008),Berteloite et al.
R _n 197	2	C ₄ H	+	C_2H_6	\rightarrow	C_4H_2	+	C_2H		$3.19 \times 10^{-08} \text{T}^{-1.23} \text{e}^{-24./T}$		39-298	Berteloite et al. (2008),Berteloite et al.
R _n 198a	2	C ₄ H	+	CH ₃ CCH	$\stackrel{'}{\rightarrow}$	C_7H_4	+	H	5	$1.71 \times 10^{-08} \text{T}^{-0.82} \text{e}^{-47./T}$		39-298	Berteloite et al. (2008),Berteloite et al.
R _n 198b	2	C ₄ H	+	CH ₃ CCH	\rightarrow	C_6H_2	+	CH ₃		$1.71 \times 10^{-08} \text{T}^{-0.82} \text{e}^{-47./T}$		39-298	Berteloite et al. (2008),Berteloite et al.
R _n 199	2	C ₄ H	+	CH ₂ CCH ₂	\rightarrow	C_7H_4	+	H H		$3.07 \times 10^{-07} \mathrm{T}^{-1.18} \mathrm{e}^{-91./T}$		39-300	Berteloite et al. (2010a)
R _n 200	2	C ₄ H	+	C_3H_6	$\stackrel{'}{\rightarrow}$	C_7H_4 C_7H_6	+	Н		$3.89 \times 10^{-08} \text{T}^{-0.84} \text{e}^{-48./T}$		39-298	Berteloite et al. (2010a)
$R_n 201$	2	C ₄ H	+	C_3H_8	\rightarrow	C_4H_2	+	C_3H		$2.46 \times 10^{-07} \text{T}^{-1.36} \text{e}^{-56./T}$		39-298	Berteloite et al. (2008),Berteloite et al.
R _n 202	2	C ₄ H	+	$C_{4}^{3}H_{2}^{8}$	$\stackrel{'}{\rightarrow}$	C_8H_2	+	H H		$7.63 \times 10^{-08} \text{T}^{-1.06} \text{e}^{-65./T}$		-	est.(C4H+C2H2)
$R_n 203$	2	C ₄ H	+	$C_4^{4}H_4$	\rightarrow	C_8H_4	+	Н		$7.63 \times 10^{-08} \mathrm{T}^{-1.06} \mathrm{e}^{-65./T}$		_	est.(C4H+C2H2)
$R_n 204$	2	C ₄ H	+	C_4H_6	\rightarrow	C_8H_6	+	Н		$6.65 \times 10^{-07} \mathrm{T}^{-1.25} \mathrm{e}^{-116./T}$		39-300	Berteloite et al. (2010a)
$R_n 205$	2	C ₄ H	+	C_4H_8	\rightarrow	C_8H_8	+	Н		$2.04 \times 10^{-08} \mathrm{T}^{-0.61} \mathrm{e}^{-65./T}$		39-300	Berteloite et al. (2010a)
R _n 206	2	C ₄ H	+	C_4H_{10}	\rightarrow	C_4H_2	+	C_4H		$4.82 \times 10^{-07} \text{T}^{-1.30} \text{e}^{-90./T}$		39-300	Berteloite et al. (2010b)
$R_n 207$	2	C ₄ H	+	C_6H_2	\rightarrow	$C_{10}H_2$	+	H	,	$7.63 \times 10^{-08} \text{T}^{-1.06} \text{e}^{-65./T}$		-	est.(C4H+C2H2)
R _n 208	2	C ₄ H ₃	+	C_2H_2	\rightarrow	C_6H_4	+	Н		$1.65 \times 10^{-27} \text{T}^{5.13} \text{e}^{-2730./T}$		50-300	ThisWork
$R_n^{n}209$	4	C4H3	+	$C_4^2 H_3^2$	\rightarrow	C ₈ H ₆				5.00×10^{-11}		_	est.(Rad+Rad),est.(AtomNumber)
		4 3		4 3		-8 6				1.00×10^{-13}	0.40		
	İ									5.00×10^{-11}			
$R_n 210$	4	C_4H_3	+	C_4H_5	\rightarrow	C_8H_8				8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
		- "		• 0		0 0				1.00×10^{-13}	0.40		
										8.00×10^{-11}			
$R_n 211$	4	C_4H_3	+	C_4H_7	\rightarrow	C_8H_{10}				8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumber)
										1.00×10 ⁻¹³	0.40		
										8.00×10 ⁻¹¹			
$R_n 212$	4	C_4H_3	+	C_4H_9	\rightarrow	$C_{8}H_{12}$				8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumber)
										1.00×10^{-13}	0.40		
D 040	١.			G 11		G 11				8.00×10 ⁻¹¹			- (D 1: D 1) - (4: N 1)
$R_n 213$	4	C_4H_3	+	C_6H_3	\rightarrow	$C_{10}H_{6}$				8.00×10^{-11} 1.00×10^{-11}	0.40	-	est.(Rad+Rad),est.(AtomNumber)
										1.00×10 ⁻¹¹ 8.00×10 ⁻¹¹	0.40		
D 014	١,,	C 11		C II		C II				8.00×10 11 8.00×10 ⁻¹¹			
$R_n 214$ Continued	l 4 don Nov	C ₄ H ₃	+	C_6H_5	\rightarrow	$C_{10}H_{8}$				8.00×10		-	est.(Rad+Rad),est.(AtomNumber)

	Type			Rea	action	k	F_c	T range	Ref.
						1.00×10 ⁻¹¹	0.40		
						8.00×10 ⁻¹¹			
R _n 215	4	C_4H_5 +	C_4H_5	\rightarrow	C_8H_{10}	5.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
			4 3		8 10	1.00×10^{-13}	0.40		, , , , , , , , , , , , , , , , , , , ,
						5.00×10 ⁻¹¹			
R _n 216	4	C_4H_5 +	C_4H_7	\rightarrow	C_8H_{12}	8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
		•			0 12	1.00×10^{-13}	0.40		
						8.00×10^{-11}			
$R_n 217$	4	C_4H_5 +	C_4H_0	\rightarrow	C_8H_{14}	8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
			4 9		8 14	1.00×10^{-13}	0.40		, , , , , , , , , , , , , , , , , , , ,
						8.00×10^{-11}			
R _n 218	4	C_4H_5 +	C_6H_3	\rightarrow	$C_{10}H_{8}$	8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
			0 3		10 6	1.00×10^{-11}	0.40		
						8.00×10^{-11}			
R _n 219	4	C_4H_5 +	C_6H_5	\rightarrow	$C_{10}H_{10}$	8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
		4 5	6 5		10 10	1.00×10^{-11}	0.40		
						8.00×10^{-11}			
R _n 220	4	C_4H_7 +	C_4H_7	\rightarrow	C_8H_{14}	5.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
		" '	4 /		8 14	1.00×10^{-13}	0.40		
						8.00×10^{-11}			
R _n 221	4	C_4H_7 +	C_4H_9	\rightarrow	C_8H_{16}	8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
			4 9		8 10	1.00×10^{-13}	0.40		
						8.00×10^{-11}			
R _n 222	4	C_4H_7 +	C_6H_3	\rightarrow	$C_{10}H_{10}$	8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
			0 3		10 10	1.00×10^{-11}	0.40		
						8.00×10^{-11}			
R _n 223	4	C4H7 +	C_6H_5	\rightarrow	$C_{10}H_{12}$	8.00×10^{-11}		_	est.(Rad+Rad),est.(AtomNumber)
.,,		4 /	- 6 5		10 12	1.00×10^{-11}	0.40		, , , , , , , , , , , , , , , , , , , ,
						8.00×10^{-11}			
R _n 224	4	C ₄ H ₉ +	C_4H_9	\rightarrow	C_8H_{18}	$2.27 \times 10^{-10} \mathrm{T}^{-0.92} \mathrm{e}^{350./T}$		200-2000	Klippenstein et al. (2006),est.(AtomNumbe
1011221	•	4119	04119		08118	1.00×10 ⁻¹³	0.40	200 2000	impension of an (2000),con(intomitamo
						$2.27 \times 10^{-10} \mathrm{T}^{-0.92} \mathrm{e}^{350./T}$	0.20		
R _n 225	4	C_4H_0 +	C_6H_3	\rightarrow	$C_{10}H_{12}$	8.00×10 ⁻¹¹		_	est.(Rad+Rad),est.(AtomNumber)
ion 220	•	4119	6113	,	0101112	1.00×10 ⁻¹¹	0.40		(11001),000.(110011110111)
						8.00×10 ⁻¹¹	0.40		
R _n 226a	4	C_4H_0 +	C_6H_5	\rightarrow	$C_{10}H_{14}$	$6.90 \times 10^{-10} \text{T}^{-0.75} \text{e}^{-28./T}$		290-972	Park et al. (1999),est.(AtomNumber)
		t Page	$_{6}^{\Pi_{5}}$	-	U ₁₀ 11 ₁₄	0.30×10 1 e		230-312	1 aik ct ai. (1333),cst.(Atominumber)

,	•		
١	٠	۸	
- (-	-	۰
			•

	Type				Re	action			k	F_c	T range	Ref.
n, 226b n, 227 n, 228 ln, 229 ln, 230 ln, 231 ln, 232a ln, 232b ln, 233 ln, 234 ln, 235	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} {\rm C_4H_9} \\ {\rm C_6H} \\ {\rm$	+ + + + + + + + + + + + + + + + + + + +	$\begin{array}{c} {\rm C_6H_5} \\ {\rm H_2} \\ {\rm CH_4} \\ {\rm C_2H_2} \\ {\rm C_2H_4} \\ {\rm C_2H_6} \\ {\rm CH_3CCH} \\ {\rm CH_3CCH} \\ {\rm CH_2CCH_2} \\ {\rm C_3H_6} \\ {\rm C_3H_8} \\ \end{array}$	$\begin{array}{ccc} \rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow $	$\begin{array}{c} C_6H_6 \\ C_6H_2 \\ C_6H_2 \\ C_8H_2 \\ C_8H_4 \\ C_6H_2 \\ C_9H_4 \\ C_8H_2 \\ C_9H_4 \\ C_8H_2 \\ C_9H_6 \\ C_0H_6 \\ C_6H_2 \end{array}$	+ + + + + + + + + + + + + + + + + + + +	$\begin{array}{c} {\rm C_4H_8} \\ {\rm H} \\ {\rm CH_3} \\ {\rm H} \\ {\rm H} \\ {\rm C_2H_5} \\ {\rm H} \\ {\rm CH_3} \\ {\rm H} \\ {\rm H} \\ {\rm CH_3} \\ {\rm H} \\ {\rm C_3H_7} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F _c 0.40	290-972	Park et al. (1999) est.(C2H+H2) est.(C4H+CH4) est.(C4H+C2H2) est.(C4H+C2H4) est.(C4H+C2H6) est.(C4H+CH3CCH) est.(C4H+CH3CCH) est.(C4H+CH3CH) est.(C4H+CH3CH) est.(C4H+CH3CH) est.(C4H+CH3CH)
t _n 236 t _n 237 t _n 238 t _n 239	2 2 2 2 2	C_6H C_6H C_6H C_6H C_6H	+ + + + +	C_4H_2 C_4H_4 C_4H_6 C_4H_8 C_4H_{10}	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$C_{10}H_2$ $C_{10}H_4$ $C_{10}H_6$ $C_{10}H_8$ C_6H_2	+ + + +	$egin{array}{c} H \\ H \\ H \\ C_4 H_9 \end{array}$	$7.63 \times 10^{-08} \text{T}^{-1.06} e^{-05./T}$ $7.63 \times 10^{-08} \text{T}^{-1.06} e^{-65./T}$ $6.65 \times 10^{-07} \text{T}^{-1.25} e^{-116./T}$ $2.04 \times 10^{-08} \text{T}^{-0.61} e^{-65./T}$ $4.82 \times 10^{-07} \text{T}^{-1.30} e^{-90./T}$		- - -	est.(C4H+C2H2) est.(C4H+C2H2) est.(C4H+C4H6) est.(C4H+C4H8) est.(C4H+C4H10)
t _n 241 t _n 242	2 4	C ₆ H C ₆ H ₃	+	C_6H_2 C_6H_3	$\stackrel{\prime}{\rightarrow}$	$C_{12}^{}H_{2}^{}$ $C_{12}^{}H_{6}^{}$	+	Н	$\begin{array}{c} 7.63\times10^{-08}\mathrm{T}^{-1.06}\mathrm{e}^{-65./T} \\ 5.00\times10^{-11} \\ 1.00\times10^{-11} \\ 5.00\times10^{-11} \end{array}$	0.40	-	est.(C4H+C2H2) est.(Rad+Rad),est.(AtomNumber
t _n 243	4	C_6H_3 C_6H_3	+	$\mathbf{C_6H_5}$ $\mathbf{C_7H_7}$	\rightarrow	${f C}_{12}{f H}_{8}$ ${f C}_{13}{f H}_{10}$			$\begin{array}{c} 8.00 \times 10^{-11} \\ 1.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-11} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber
$t_n 245$	4	C_6H_3	+	$\mathrm{C_8H_9}$	\rightarrow	$\mathrm{C}_{14}\mathrm{H}_{12}$			1.00×10^{-11} 8.00×10^{-11} 8.00×10^{-11} 1.00×10^{-11} 8.00×10^{-11}	0.40	-	est.(Rad+Rad),est.(AtomNumber
$t_n 246$	4	C_6H_5	+	$\mathrm{C_6H_5}$	\rightarrow	$\mathrm{C}_{12}\mathrm{H}_{10}$			$5.00 \times 10^{-11} 1.00 \times 10^{-11} 5.00 \times 10^{-11}$	0.40	-	est.(Rad+Rad),est.(AtomNumber
$_{n}247$	4	C_6H_5	+	$\mathrm{C_7H_7}$	\rightarrow	$\mathrm{C}_{13}\mathrm{H}_{12}$			8.00×10^{-11} 1.00×10^{-11}	0.40	-	est.(Rad+Rad),est.(AtomNumber

30				
			ŀ	,
	5	_	`	•
	ς			j

	Type				$R\epsilon$	action			k F _c	T range	Ref.
R _n 248	4	C_6H_5	+	$\mathrm{C_8H_9}$	\rightarrow	$\mathrm{C}_{14}\mathrm{H}_{14}$			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 -	$ \left \begin{array}{c} \text{est.}(\text{Rad}+\text{Rad}), \text{est.}(\text{AtomNumber}) \end{array} \right \\$
R _n 249	4	C ₇ H ₇	+	$\mathrm{C_7H_7}$	\rightarrow	$\mathrm{C}_{14}\mathrm{H}_{14}$			10^{-11} $10^{-10}T^{-0.23}$ 10^{-11} $10^{-10}T^{-0.23}$	250-400	Luther et al. (2004),est.(AtomNumb
R _n 250	4	C ₇ H ₇	+	$\mathrm{C_8H_9}$	\rightarrow	$\mathrm{C}_{15}\mathrm{H}_{16}$			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 -	est.(Rad+Rad),est.(AtomNumber)
R _n 251	4	C ₈ H ₉	+	$\mathrm{C_8H_9}$	\rightarrow	$\mathrm{C}_{16}\mathrm{H}_{18}$			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 -	est.(Rad+Rad),est.(AtomNumber)
R _n 252	2	н	+	NH_3	\rightarrow	NH_2	+	H_2	$10^{-24} \mathrm{T}^{3.93} \mathrm{e}^{-4060./T}$	200-2000	Espinosa-Garcia and Corchado (199
R _n 253	2	Н	+	N_2H_4	\rightarrow	N_2H_3	+	H_2^2	$10^{-11}e^{-1260./T}$	222-657	Vaghjiani (1995)
R _n 254	4	Н	+	HCN	\rightarrow	${ m H_2CN}$		-	10^{-11} 10^{-11} 10^{-11} $T^{-2.88}e^{-442./T}$ 0.0	6 70-250	ThisWork
R _n 255	2	н	+	HNC	\rightarrow	HCN	+	Н	$10^{-25} T^{5.13} e^{117./T}$	50-300	ThisWork
R _n 256a	2	Н	+	CH ₂ NH	\rightarrow	H_2CN	+	H_2	$10^{-22}T^{3.07}e^{171./T}$	50-300	ThisWork
R _n 256b	4	Н	+	$\mathrm{CH}_2^2\mathrm{NH}$	\rightarrow	$\overrightarrow{\mathrm{CH}}_{2}\mathrm{NH}_{2}$		2	$ \begin{array}{c c} 10^{-30} T^{6.55} e^{258./T} \\ 10^{-24} T^{-2.03} e^{-54./T} \\ 10^{-13} T^{-1.32} e^{-150./T} \end{array} $	50-300	ThisWork
R _n 256c	4	Н	+	$\mathrm{CH_2NH}$	\rightarrow	$\mathrm{CH_2NH_2}$			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 50-300	ThisWork
R _n 257	2	н	+	CH ₃ NH ₂	\rightarrow	CH ₂ NH ₂	+	H_2	10^{-21} T ^{3.44} e ^{-1223.} /T	200-3000	Zhang et al. (2005)
R _n 258	4	Н	+	HC ₃ N	\rightarrow	C_3H_2N		2	$ \begin{array}{c c} 10^{-33}T^{7.97}e^{306./T} \\ 10^{-18}T^{-2.77}e^{-179./T} \\ 10^{-16}T^{0.38}e^{-207./T} \end{array} $	50-300	ThisWork,est.(H+C4H2)
R _n 259	4	Н	+	$\mathrm{C_3H_3N}$	\rightarrow	$\mathrm{C_3H_4N}$			$10^{-33}T^{7.97}e^{306./T}$ $10^{-18}T^{-2.77}e^{-179./T}$ 0.4	0 -	est.(H+HC3N)
R _n 260	4	Н	+	$\mathrm{C_2N_2}$	\rightarrow	$\mathrm{HC_2N_2}$			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 -	est.(H+HC3N)

C	'n	•	
>	_	۲	
٩	_	-	
c	2	٦	

	Type				Re	action			k	F_c	T range	Ref.
$R_n 261$	4	Н	+	$\mathrm{C_4N_2}$	\rightarrow	$\mathrm{HC_4N_2}$			2.02×10 ⁻³³ T ^{7.97} e ^{306./T}		-	est.(H+HC3N)
									$5.69 \times 10^{-18} \text{T}^{-2.77} \text{e}^{-179./T}$ $4.10 \times 10^{-16} \text{T}^{0.38} \text{e}^{-207./T}$	0.40		
$R_n 262a$	2	C	+	NH_2	\rightarrow	HCN	+	Н	$9.39 \times 10^{-11} T^{-0.20} e^{-6./T}$		10-300	Wakelam et al. (2015)
R _n 262b	2	C	+	NH_2	\rightarrow	HNC	+	Н	$9.39 \times 10^{-11} \text{T}^{-0.20} \text{e}^{-6./T}$	İ	10-300	Wakelam et al. (2015)
_n 263a	2	CH	+	NH ₂	\rightarrow	CH ₂ NH	+	Н	$2.02 \times 10^{-10} \mathrm{T}^{-0.05}$		10-300	Wakelam et al. (2015)
R _n 263b	2	CH	+	NH ₃	\rightarrow	NH	+	CH ₃	$1.06 \times 10^{-11} T^{-0.05}$		10-300	Wakelam et al. (2015)
$R_n 264a$	2	CH	+	HCN	\rightarrow	HC ₂ N	+	H	$3.69 \times 10^{-10} T^{-0.17}$		100-296	Zabarnick et al. (1991), Hébrard et al.
R _n 264b	2	CH	+	HCN	\rightarrow	C ₂ N	+	H ₂	$3.69 \times 10^{-10} T^{-0.17}$	ŀ	100-296	Zabarnick et al. (1991), Hébrard et al.
265a	2	CH	+	HNC	\rightarrow	HC ₂ N	+	H	$3.69 \times 10^{-10} T^{-0.17}$	ŀ	100-296	est.(CH+HCN)
n265b	2	CH	+	HNC	\rightarrow	C ₂ N	+	H ₂	$3.69 \times 10^{-10} \mathrm{T}^{-0.17}$	ŀ	100-296	est.(CH+HCN)
$R_n 266$	2	CH	+	CH ₃ NH ₂	\rightarrow	C_2H_5N	+	H	$3.11 \times 10^{-10} e^{170./T}$	ŀ	297-677	Zabarnick et al. (1989)
$R_n 267$	2	CH ₂	+	N_2H_4	\rightarrow	N ₂ H ₃	+	CH ₄	$1.32 \times 10^{-24} T^{4.00} e^{-2037./T}$		220-3000	Li and Zhang (2006)
$R_n 268$	2	CH ₃	+	HNC	$\stackrel{'}{\rightarrow}$	HCN	+	CH ₃	$3.00 \times 10^{-11} e^{-3668./T}$		220-3000	Petrie (2002),Petrie and Osamura (200
$R_n 269$	2	C ₂	+	HCN		C ₃ N	+	H	$1.16 \times 10^{-08} \text{T}^{-0.82} \text{e}^{-9./T}$		90-200	Gu et al. (2009a)
$R_n 209$	2	C ₂ H	+	NH ₃	→ `	C_2H_2	+	NH ₂	$4.89 \times 10^{-09} \mathrm{T}^{-0.90}$		104-294	Nizamov and Leone (2004b)
	2			HCN	\rightarrow			H	$7.51 \times 10^{-17} \text{T}^{1.78} \text{e}^{-382./T}$		70-300	ThisWork
$R_n 271$ $R_n 272$	2	C ₂ H	+	HNC	\rightarrow	HC ₃ N	+	Н	3.00×10 ⁻¹⁰		70-300	est.(Petrie02)
	!	C ₂ H	+		\rightarrow	HC ₃ N	+	Н	$7.80 \times 10^{-11} e^{134./T}$		150.250	est.(Petrieu2) est.(C2H+C2H4)
$R_n 273$	2	C ₂ H	+	CH ₂ NH	\rightarrow	C_3H_3N	+		$4.90 \times 10^{-09} \text{T}^{-0.90}$		150-359	
$R_n 274$	2	C ₂ H	+	CH ₃ NH ₂	\rightarrow	CH ₃ CCH	+	NH ₂	$1.79 \times 10^{-11} e^{-769./T}$		-	est.(C2H+NH3)
R _n 275	2	C ₂ H	+	CH ₃ CN	\rightarrow	CH ₂ CN	+	C_2H_2	$1.79 \times 10^{-12} e^{-10.07}$ $1.47 \times 10^{-08} T^{-1.04}$		262-360	Hoobler and Leone (1997), Zhao et al.
$R_n 276$	2	C_2H	+	HC_3N	\rightarrow	HC_5N	+	H	1.47×10 00 T 1.04		20-300	Cheikh Sid Ely (2012)
$R_n 277$	2	C_2H	+	C_3H_3N	\rightarrow	C_5H_3N	+	H	$7.80 \times 10^{-11} e^{134./T}$		-	est.(C2H+C2H4)
$R_n 278$	2	C_2H	+	C_3H_5N	\rightarrow	C_5H_5N	+	H	$3.35 \times 10^{-11} e^{-297./T}$		104-298	Zhao et al. (2008)
$R_n 279$	2	C_2H	+	HC_5N	\rightarrow	HC_7N	+	H	$7.47 \times 10^{-09} \mathrm{T}^{-0.91} \mathrm{e}^{6./T}$		-	est.(C2H+HC3N)
$R_n 280$	2	C_2H_3	+	HCN	\rightarrow	C_3H_3N	+	H	$5.69 \times 10^{-26} \text{T}^{4.70} \text{e}^{-2357./T}$		80-300	ThisWork
$R_n 281$	2	C_2H_3	+	HNC	\rightarrow	HCN	+	C_2H_3	$3.00 \times 10^{-11} e^{-1996./T}$		-	Petrie (2002),Petrie and Osamura (200
$R_n 282$	2	C ₂ H ₅	+	HNC	\rightarrow	HCN	+	C_2H_5	$3.00 \times 10^{-11} e^{-3560./T}$		-	Petrie (2002),Petrie and Osamura (200
$R_n 283$	2	C_4H	+	HC_3N	\rightarrow	HC_7N	+	Н	$7.63 \times 10^{-08} \mathrm{T}^{-1.06} \mathrm{e}^{-65./T}$		-	est.(C4H+C2H2)
$R_n 284$	2	C_4H	+	HC_5N	\rightarrow	HC_0N	+	H	$7.63 \times 10^{-08} T^{-1.06} e^{-65./T}$		-	est.(C4H+C2H2)
$R_n 285$	2	C ₆ H	+	HC ₃ N	\rightarrow	HC _o N	+	Н	$7.63 \times 10^{-08} \mathrm{T}^{-1.06} \mathrm{e}^{-65./T}$	İ	-	est.(C4H+C2H2)
$R_n 286$	2	C ₆ H	+	HC ₅ N	\rightarrow	$HC_{11}^{9}N$	+	H	$7.63 \times 10^{-08} T^{-1.06} e^{-65./T}$		-	est.(C4H+C2H2)
$R_n 287$	4	N	+	Н	\rightarrow	NH			5.00×10^{-16}		298	Brown (1973),est.(AtomNumber)
									5.00×10^{-32}	0.40		// // // // // // // // // // // // //
									5.00×10^{-16}			
$R_n 288$	2	N	+	CH	\rightarrow	CN	+	Н	$1.35 \times 10^{-11} T^{0.41}$		56-300	Wakelam et al. (2015)
	d on Nex	t Page							1	1		1 ()

Ċ	٠	٥	
è	-	5	
:		7	
		4	

	Type				Re	eaction					k	F_c	T range	Ref.
$R_n 289a$	2	N	+	$^3\mathrm{CH}_2$	\rightarrow	HCN	+	H		- 1	$1.90 \times 10^{-11} T^{0.17}$		10-300	Wakelam et al. (2015)
$R_n 289b$	2	N	+	$^3CH_2^2$	\rightarrow	HNC	+	H		-	$1.14 \times 10^{-11} T^{0.17}$		10-300	Wakelam et al. (2015)
$R_n 290a$	2	N	+	CH_3	\rightarrow	H_2CN	+	H		-	5.58×10 ⁻¹¹		150-200	Marston et al. (1989b), Marston et al. (1989a)
$R_n 290b$	2	N	+	CH ₃	\rightarrow	HCN	+	H	+	Н	6.20×10^{-12}		150-200	Marston et al. (1989b), Marston et al. (1989a)
$R_n 291$	2	N	+	C_2H	\rightarrow	C_2N	+	H		- 1	$4.55 \times 10^{-11} T^{0.17}$		-	?
$R_n 292a$	2	N	+	C_2H_3	\rightarrow	C_2H_2	+	NH		- 1	1.31×10^{-11}		298	Payne et al. (1996),Dutuit et al. (2013)
$R_n 292b$	2	N	+	C_2H_3	\rightarrow	$\widetilde{\mathrm{CH}_{2}\mathrm{CN}}$	+	H		- 1	6.39×10^{-11}		298	Payne et al. (1996), Dutuit et al. (2013)
$R_n 293a$	2	N	+	C_2H_5	\rightarrow	$C_2\tilde{H}_4$	+	NH		-	7.15×10^{-11}		298	Stief et al. (1995)
$R_n 293b$	2	N	+	C_2H_5	\rightarrow	H_2^2CN	+	CH_3		- 1	3.85×10^{-11}		298	Stief et al. (1995)
R _n 294	4	N	+	N S	\rightarrow	N_2^2		-		- 1	5.00×10^{-16}		90-611	Clyne and Stedman (1967),est.(AtomNumber)
· ·	i '	1				2				- 1	$1.78 \times 10^{-33} e^{485./T}$	0.40		
1	í '	1								- 1	5.00×10 ⁻¹⁶			
$R_n 295$	2	N	+	NH	\rightarrow	N_2	+	H		- 1	$2.83 \times 10^{-11} T^{0.10}$		10-500	Wakelam et al. (2015)
R _n 296	2	N	+	NH_{o}	\rightarrow	N_2^2	+	H	+	Н	1.20×10^{-10}		10-500	Wakelam et al. (2015)
R _n 297	2	N	+	CN	\rightarrow	N ₂	+	C		- 1	$8.02 \times 10^{-12} T^{0.42}$		56-296	Daranlot et al. (2012)
R _n 298	2	N	+	H ₂ CN	\rightarrow	HCN	+	NH		- 1	$1.00 \times 10^{-10} e^{-200./T}$		200-363	Marston and Stief (1989), Nesbitt et al. (1990)
R _n 299	2	N	+	C_2N	$\stackrel{'}{\rightarrow}$	CN	+	CN		-	1.00×10 ⁻¹⁰		10-300	Wakelam et al. (2015)
R _n 300	4	N	+	HC ₂ N	$\stackrel{'}{\rightarrow}$	C_2N_2	+	Н		- 1	8.00×10 ⁻¹¹		1	est.(Rad+Rad),est.(AtomNumber)
Ten occ	1 1	1	'	1102-		021.2				- 1	1.00×10 ⁻²¹	0.40	[(1001)
1	1 '	1								- 1	2.00×10 ⁻¹¹		[
R _n 301	4	N	+	C_3H_2N	\rightarrow	$C_3H_2N_2$				-	8.00×10 ⁻¹¹		_	est.(Rad+Rad),est.(AtomNumber)
10,,	1 1	1		32-		322				-	1.00×10 ⁻¹⁹	0.40	[
1	i '	1								- 1	8.00×10 ⁻¹¹	0.20	[
$R_n 302$	4	N	+	C_3H_4N	\rightarrow	$C_3H_4N_2$				- 1	8.00×10 ⁻¹¹		ĺ _	est.(Rad+Rad).est.(AtomNumber)
I cnoc_	1 1	1	'	0314-		03142				- 1	1.00×10 ⁻¹⁹	0.40	[(1001)
1	í	1								- 1	8.00×10 ⁻¹¹	0.20	[
R _n 303	1	N(2D)			\rightarrow	N	+	$h\nu$		- 1	2.30×10 ⁻⁰⁵		ĺ _	Okabe (1978)
R _n 304	2	1 `0 ′	+	N_2	$\stackrel{'}{\rightarrow}$	N	+	N ₂		- 1	1.70×10 ⁻¹⁴		298	Herron (1999)
R _n 305	2	_ /	+	N ₂ I	$\stackrel{'}{\rightarrow}$	N	+	N ₂ I		- 1	1.70×10 ⁻¹⁴		1 _	est.(N2D+N2)
R _n 306	2	1 `0 ′	+	H ₂	$\stackrel{'}{\rightarrow}$	NH	+	H		- 1	$4.20 \times 10^{-11} e^{-880./T}$		200-300	Herron (1999)
R _n 307a	2	1 '0 '	+	CH_4	\rightarrow	CH ₂ NH	+	Н		- 1	$3.84 \times 10^{-11} e^{-750./T}$		223-292	Herron (1999)
R_n307a R_n307b	2		+	CH_4 CH_4	\rightarrow	NH	+	CH ₃		- 1	$9.60 \times 10^{-12} e^{-750./T}$		223-292	Herron (1999)
R_n307B R_n308	2		+	C_2H_2	\rightarrow	HC ₂ N	+	H		- 1	$1.60 \times 10^{-10} e^{-270./T}$		220-300	Herron (1999)
	2 2		+					Н		- 1	$2.23 \times 10^{-10} e^{-500./T}$		230-292	
R _n 309a				C_2H_4	<i>→</i>	CH ₃ CN	+			- 1	2.23×10 10 e 000./1 1.96×10 ⁻¹² e ^{-500./T}			Sato et al. (1999), Balucani et al. (2012), Dutu
R _n 309b	2		+	C_2H_4	\rightarrow	CH_2CN	+	H ₂		- 1	$1.96 \times 10^{-12} e^{-500./T}$ $1.56 \times 10^{-12} e^{-500./T}$		230-292	Sato et al. (1999),Balucani et al. (2012),Dutu
R _n 309c	2	$N(^2D)$	+	C_2H_4	\rightarrow	H_2CN	+	3 CH $_2$	2		1.56×10 ⁻¹² e ^{-500.7}		230-292	Sato et al. (1999), Balucani et al. (2012), Dutu

ı			
1		٨	
1	c	Ξ	
1	r	7	

	Type				Re	action			k	F_{c}	T range	Ref.
R_n309d	2		+	C_2H_4	\rightarrow	HCN	+	CH_3	$2.71 \times 10^{-12} e^{-500./T}$		230-292	Sato et al. (1999),Balucani et al. (2012),Dut
$R_n 309e$	2	$N(^2D)$	+	C_2H_4	\rightarrow	HNC	+	CH ₃	$5.06 \times 10^{-13} e^{-500./T}$		230-292	Sato et al. (1999), Balucani et al. (2012), Dut
$R_n 309f$	2	$N(^2D)$	+	C_2H_4	\rightarrow	NH	+	C_2H_3	$2.30 \times 10^{-14} e^{-500./T}$		230-292	Sato et al. (1999), Balucani et al. (2012), Dut
$R_n 310a$	2	$N(^2D)$	+	C_2H_6	\rightarrow	CH_2NH	+	CH_3	1.52×10 ⁻¹¹		298,94-175	Herron (1999),Balucani et al. (2010)
$R_n 310b$	2	$N(^2D)$	+	C_2H_6	\rightarrow	C_2H_5N	+	H	2.72×10 ⁻¹²		298,94-175	Herron (1999),Balucani et al. (2010)
$R_n 310c$	2		+	C_2H_6	\rightarrow	NH	+	C_2H_5	1.05×10 ⁻¹²		298,94-175	Herron (1999),Balucani et al. (2010)
$R_n 311$	2		+	CH ₃ CCH	\rightarrow	C_3H_3N	+	H	$1.60 \times 10^{-10} e^{-270./T}$		-	est.(N2D+C2H2)
$R_n 312$	2	$N(^2D)$	+	CH_2CCH_2	\rightarrow	C_3H_3N	+	H	$2.30 \times 10^{-10} e^{-500./T}$		-	est.(N2D+C2H4)
$R_n 313$	2	$N(^2D)$	+	C_3H_6	\rightarrow	C_3H_5N	+	H	6.60×10 ⁻¹¹		298	Herron (1999)
$R_n 314a$	2	$N(^2D)$	+	C_3H_8	\rightarrow	CH_2NH	+	C_2H_5	9.67×10^{-12}		298	Herron (1999)
$R_n 314b$	2	$N(^2D)$	+	C_3H_8	\rightarrow	C_2H_5N	+	CH ₃	9.67×10 ⁻¹²		298	Herron (1999)
$R_n 314c$	2		+	C_3H_8	\rightarrow	C_3H_7N	+	H	9.67×10 ⁻¹²		298	Herron (1999)
$R_n 315$	2	$N(^2D)$	+	C_4H_2	\rightarrow	HC_4N	+	H	$1.60 \times 10^{-10} e^{-270./T}$		-	est.(N2D+C2H2)
$R_n 316$	2	$N(^2D)$	+	C_4H_4	\rightarrow	C_4H_3N	+	H	$1.60 \times 10^{-10} e^{-270./T}$		-	est.(N2D+C2H2)
$R_n 317$	2	$N(^2D)$	+	C_4H_6	\rightarrow	C_4H_5N	+	H	6.60×10^{-11}		-	est.(N2D+C3H6)
$R_n 318$	2	$N(^2D)$	+	C_4H_8	\rightarrow	C_4H_7N	+	H	6.60×10^{-11}		-	est.(N2D+C3H6)
R_n319a	2	$N(^2D)$	+	C_4H_{10}	\rightarrow	CH_2NH	+	C_3H_7	7.75×10^{-12}		298	Herron (1999)
$R_n 319b$	2	$N(^2D)$	+	C_4H_{10}	\rightarrow	C_2H_5N	+	C_2H_5	7.75×10^{-12}		298	Herron (1999)
$R_n 319c$	2		+	C_4H_{10}	\rightarrow	C_3H_7N	+	CH ₃	7.75×10^{-12}		298	Herron (1999)
$R_n 319d$	2		+	C_4H_{10}	\rightarrow	C_4H_9N	+	H	7.75×10^{-12}		298	Herron (1999)
$R_n 320$	2		+	C_6H_2	\rightarrow	HC_6N	+	H	$1.60 \times 10^{-10} e^{-270./T}$		-	est.(N2D+C2H2)
$R_n 321$	2	$N(^2D)$	+	HCN	\rightarrow	N_2	+	CH	$1.07 \times 10^{-14} \text{T}^{1.82} \text{e}^{-149./T}$		50-300	ThisWork
$R_n 322$	2		+	HNC	\rightarrow	CN ₂	+	H	$1.61 \times 10^{-15} T^{1.60} e^{102./T}$		50-300	ThisWork
$R_n 323$	2	$N(^2D)$	+	CH ₂ NH	\rightarrow	CH ₂ N ₂	+	H	$2.30 \times 10^{-10} e^{-500./T}$		-	est.(N2D+C2H4)
R _n 324a	2	$N(^2D)$	+	CH ₂ CN	\rightarrow	$C_2\tilde{H}_2\tilde{N}_2$	+	H	$3.84 \times 10^{-11} e^{-750./T}$		-	est.(N2D+CH4)
R _n 324b	2	$N(^2D)$	+	CH ₃ CN	\rightarrow	CH ₂ CN	+	NH	$9.60 \times 10^{-12} e^{-750./T}$		-	est.(N2D+CH4)
R _n 325	2	$N(^2D)$	+	HC ₃ N	\rightarrow	$C_3\tilde{N}_2$	+	H	$1.60 \times 10^{-10} e^{-270./T}$		-	est.(N2D+C2H2)
R _n 326	2		+	C_3H_3N	\rightarrow	$C_3H_2N_2$	+	H	$2.30 \times 10^{-10} e^{-500./T}$		_	est.(N2D+C2H4)
R _n 327a	2	$N(^2D)$	+	C_3H_5N	\rightarrow	$C_3H_4N_2$	+	Н	$3.84 \times 10^{-11} e^{-750./T}$		_	est.(N2D+CH4)
R _n 327b	2	$N(^2D)$	+	$C_3^3H_5^5N$	\rightarrow	$C_3^4 H_4^2 N$	+	NH	$9.60 \times 10^{-12} e^{-750./T}$		_	est.(N2D+CH4)
R _n 328	2	$N(^2D)$	+	HC_5N	\rightarrow	C_5N_2	+	Н	$1.60 \times 10^{-10} e^{-270./T}$		_	est.(N2D+C2H2)
R _n 329	2	NH	+	Н	<i>,</i>	N	+	H ₂	$3.12 \times 10^{-16} \text{T}^{1.55} \text{e}^{-103./T}$		300-2000	Adam et al. (2005)
R _n 330	2	NH	+	CH ₃	$\stackrel{'}{\rightarrow}$	CH ₂ NH	+	H	$3.06 \times 10^{-10} \text{T}^{-0.11} \text{e}^{-7./T}$		20-500	ThisWork
R_n331	2	NH	+	C_2H_2	\rightarrow	CH ₂ NH CH ₂ CN	+	Н	$2.00 \times 10^{-09} \text{T}^{-1.07}$		53-188	Mullen and Smith (2005)
$R_n 332$	2	NH	+	C_2H_2 C_2H_4	\rightarrow	NH ₂	+	C_2H_3	$1.16 \times 10^{-09} \text{T}^{-1.09}$		53-188	Mullen and Smith (2005)
$R_n 333$	2	NH	+	C_2H_4 C_2H_6	\rightarrow	NH ₂	+	C_2H_3 C_2H_5	6.80×10 ⁻¹²		53-188	Mullen and Smith (2005)
Continue C			_	C2116	_	11112	+	$O_{2}^{11}_{5}$	0.00 \ 10	1	33-100	Munen and Simon (2005)

Ç	J	٥	
C	_	0	
ē	7	۹	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Type				$R\epsilon$	eaction				k	F_c	T range	Ref.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R _n 334	2	NH	+	CH, CCH	\rightarrow	C ₂ H ₄ N	+	Н		$2.00\times10^{-09}T^{-1.07}$	1	-	est.(NH+C2H2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 335$	2	NH	+				+	C_2H_2		$1.16 \times 10^{-09} T^{-1.09}$		-	est.(NH+C2H4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 336$	2	NH	+	$C_3\tilde{H}_6$	\rightarrow	NH ₂	+	C_3H_5				53-188	Mullen and Smith (2005)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 337$	2	NH	+	C_3H_8	\rightarrow	NH_2	+	C_3H_7		6.80×10 ⁻¹²		-	est.(NH+C2H6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 338$	2	NH	+	C_4H_2	\rightarrow	$C_4 \overline{H}_2 N$	+	H		$8.24 \times 10^{-09} T^{-1.23}$		53-188	Mullen and Smith (2005)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 339$	2		+	C_4H_4	\rightarrow	C_4H_4N	+			$8.24 \times 10^{-09} T^{-1.23}$		-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 340$	2		+	C_4H_6	\rightarrow		+			$6.24 \times 10^{-09} T^{-1.23}$		-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 341$	2		+	C_4H_8	\rightarrow		+	C_4H_7		$6.24 \times 10^{-09} T^{-1.23}$		-	est.(NH+C3H6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 342$	2		+	C_4H_{10}	\rightarrow		+	C_4H_9		6.80×10 ⁻¹²		-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	1	+		\rightarrow		+			$8.24 \times 10^{-09} T^{-1.23}$		-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 344a$	2	NH	+	NH	\rightarrow	NH_2	+	N		$9.40 \times 10^{-25} T^{3.88} e^{-172./T}$		300-2500	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 344b$	2	NH	+	NH	\rightarrow	N_2	+	H +	H	$1.04 \times 10^{-10} T^{-0.04} e^{81./T}$		200-2500	Klippenstein et al. (2009),est.(3CH2+3CH2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 345$	2	NH	+	NH_2	\rightarrow		+			$7.07 \times 10^{-10} T^{-0.27} e^{39./T}$		200-2500	Klippenstein et al. (2009)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 346$	2	NH	+	NH_3	\rightarrow		+	NH_2		$8.53 \times 10^{-23} T^{3.41} e^{-7350./T}$		300-2500	Klippenstein et al. (2009)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 347$	4	NH ₂	+	Н	\rightarrow	NH_3				$1.50 \times 10^{-10} T^{0.13} e^{-2./T}$		-	est.(H+CH3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			~				0				$2.56 \times 10^{-24} T^{-1.80} e^{-31./T}$	0.42		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											$2.05 \times 10^{-13} T^{-1.29} e^{-19./T}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 348a$	2	NH ₂	+	C	\rightarrow	HCN	+	Н		$9.39 \times 10^{-11} T^{-0.20} e^{-6./T}$		10-300	Wakelam et al. (2015)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R_n348b	2	NH ₂	+	C	\rightarrow	HNC	+	Н		$9.39 \times 10^{-11} T^{-0.20} e^{-6./T}$		10-300	Wakelam et al. (2015)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 349$	4	NH ₂	+	CH_3	\rightarrow	CH ₃ NH ₂				$1.20 \times 10^{-11} T^{0.42}$		200-400	Jodkowski et al. (1995),est.(CH3+CH3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 -		Ü		0 2				$6.00 \times 10^{-18} \text{T}^{-3.85}$	0.33		, , , , , , , , , , , , , , , , , , , ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											$2.97 \times 10^{-06} T^{-3.23} e^{-74./T}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 350a$	2	NH ₂	+	C_2H_2	\rightarrow	C_2H_4N	+	H		$3.30 \times 10^{-11} e^{236./T}$		-	est.(CH3+C2H3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 350b$	2	NH2	+		\rightarrow		+	NH ₂		$1.50 \times 10^{-11} e^{385./T}$		-	est.(CH3+C2H3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 351a$	4	NH2	+		\rightarrow			3		$2.86 \times 10^{-09} T^{-0.61} e^{-44./T}$		-	est.(CH3+C2H5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1 -		2 3		2 /				$4.15 \times 10^{-10} T^{-5.49} e^{-441./T}$	0.41		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											$5.24 \times 10^{-02} \text{T}^{-4.33} \text{e}^{-193./T}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R_n351b	2	NHo	+	$C_{\alpha}H_{\pi}$	\rightarrow	C_0H_4	+	NH ₂		$1.99 \times 10^{-08} T^{-1.58} e^{-38./T}$		-	est.(CH3+C2H5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R., 352	4	NH.	+					3		$6.80 \times 10^{-11} e^{130./T}$		_	est.(CH3+C3H3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2		3 3		-3 5				1.00×10^{-21}	0.40		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											2.00×10^{-11}			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R., 353a	4	NHa	+	$C_{\alpha}H_{\pi}$	\rightarrow	CaHaN				$1.55 \times 10^{-09} T^{-0.54} e^{117./T}$		_	est.(CH3+C3H5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2		- 3 - 3		-3 /				1.00×10^{-21}	0.40		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											2.00×10^{-11}	'		
$R_n 354 4 NH_2 + C_3H_7 \rightarrow C_3H_0N 5.33 \times 10^{-10} T^{-0.47} e^{97./T} - est.(CH3+C3H7)$	$R_n 353b$	2	NHa	+	C_2H_E	\rightarrow	CH ₂ CCH ₂	+	NH_2		6.00×10 ⁻¹³		-	est.(CH3+C3H5)
		4				\rightarrow			3		$5.33 \times 10^{-10} T^{-0.47} e^{97./T}$		-	
		d on Nex			3 /		3 9					1	1	1 () () ()

c	٥	
٠	-	
	⊃	

	Type				Re	action			k	F_c	T range	Ref.
									1.00×10 ⁻²¹	0.40		Ī
									2.00×10^{-11}			
$R_n 355$	4	NH ₂	+	C_4H_3	\rightarrow	C_4H_5N			8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
				4 3		4 5			1.00×10^{-19}	0.40		
									8.00×10^{-11}			
R _n 356	4	NH ₂	+	C_4H_5	\rightarrow	C_4H_7N			8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
				4 5		4 /			1.00×10^{-19}	0.40		/ // // // // // // // // // // // // /
									8.00×10^{-11}			
R _n 357	4	NH ₂	+	C_4H_7	\rightarrow	C_4H_0N			8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
				4 /		4 9			1.00×10^{-19}	0.40		
									8.00×10^{-11}			
R _n 358	4	NH ₂	+	C_4H_9	\rightarrow	$C_4H_{11}N$			8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
				4 9		4 11			1.00×10^{-19}	0.40		
									8.00×10^{-11}			
R _n 359	4	NH ₂	+	C_6H_3	\rightarrow	C_6H_5N			8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
				0 3		6 5			1.00×10^{-15}	0.40		
									8.00×10^{-11}			
R _n 360	4	NH ₂	+	C_6H_5	\rightarrow	C_6H_7N			$3.62 \times 10^{-09} T^{-0.62} e^{-29./T}$		_	est.(CH3+C6H5)
.,,				- 6 5		- 6 7			1.00×10^{-15}	0.40		
									$3.62 \times 10^{-09} T^{-0.62} e^{-29./T}$			
R _n 361a	2	NH ₂	+	NH_{α}	\rightarrow	NH_3	+	NH	$9.36 \times 10^{-24} \text{T}^{3.53} \text{e}^{-278./T}$		300-2500	Klippenstein et al. (2009)
R _n 361b	4	NH ₂	+	NH ₂	\rightarrow	N_2H_4			$9.33 \times 10^{-10} T^{-0.41} e^{-33./T}$		300-2500	Klippenstein et al. (2009),est.(CH3+
choole		11112	'	1112		112114			$4.48 \times 10^{-14} \text{T}^{-5.49} \text{e}^{-1000./T}$	0.31	300 2000	Implemental of all (2000),com(Clio+
									$2.97 \times 10^{-06} \text{T}^{-3.23} \text{e}^{-74./T}$	0.01		
R _n 362	2	NH ₂	+	H_2CN	\rightarrow	NH_3	+	HCN	$2.99 \times 10^{-08} \text{T}^{-1.06} \text{e}^{-60./T}$		50-300	Yelle et al. (2010)
$R_n 363$	4	NH ₂	+	CH ₂ CN	\rightarrow	$C_2H_4N_2$	+	HON	8.00×10 ⁻¹¹		30-300	est.(Rad+Rad),est.(AtomNumber)
Ln 303	-4	11112	_	CII2CIV	_	02114112			1.00×10 ⁻²¹	0.40	-	est.(Itau+Itau),est.(Atomivumber)
									2.00×10 ⁻¹¹	0.40		
R _n 364	4	NH ₂	+	C_3H_2N	\rightarrow	$C_3H_4N_2$			8.00×10 ⁻¹¹			est.(Rad+Rad).est.(AtomNumber)
Ln 304	4	INIT ₂	+	$C_3\Pi_2N$	_	$C_3\Pi_4\Pi_2$			1.00×10 ⁻¹⁹	0.40	-	est.(Rad+Rad),est.(AtomNumber)
									8.00×10 ⁻¹¹	0.40		
R _n 365	4	NH ₂	+	C_3H_4N	\rightarrow	$C_3H_6N_2$			8.00×10 8.00×10 ⁻¹¹			est.(Rad+Rad),est.(AtomNumber)
Ln 303	4	INIT ₂	+	$C_3\Pi_4N$	_	$C_3 \Pi_6 \Pi_2$			1.00×10 ⁻¹⁹	0.40	-	est.(Rad+Rad),est.(AtomNumber)
									8.00×10 ⁻¹¹	0.40		
R _n 366	2	N ₂ H ₃	+	Н	,	NH_2		NH_2	2.66×10 ⁻¹²		300	Gehring et al. (1971)
$R_n 367$	4	CN CN	+	Н	\rightarrow \rightarrow	HCN	+	1NI12	$2.99 \times 10^{-09} T^{-0.50}$		500-2500	Tsang (1992),est.(AtomNumber)
		t Page		11	\rightarrow	11011			2.39 X 10 1	1	500-2500	1 sang (1992),est.(Atomivumber)

C	r)
	٦.
_	_
_	_

	Type				Re	action			k	F_c	T range	Ref.
									$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.40		
R _n 368	2	CN	+	H_2	\rightarrow	HCN	+	Н	$1.80 \times 10^{-19} T^{2.60} e^{-960./T}$		200-3500	Baulch et al. (2005)
R _n 369	2	CN	+	\tilde{CH}_4	\rightarrow	HCN	+	CH_3	$5.73 \times 10^{-12} e^{-675./T}$		160-298,195	Sims et al. (1993), Gannon et al. (2007)
R _n 370	2	CN	+	C_2H_2	\rightarrow	HC_3N	+	Н	$5.30 \times 10^{-09} T^{-0.52} e^{-19./T}$		25-298,195	Sims et al. (1993), Gannon et al. (2007)
R _n 371	2	CN	+	C_2H_4	\rightarrow	C_3H_3N	+	H	$1.40 \times 10^{-08} \text{T}^{-0.69} \text{e}^{-31./T}$		25-298,195	Sims et al. (1993), Gannon et al. (2007)
R _n 372	2	CN	+	C_2H_6	\rightarrow	HCN	+	C_2H_5	$5.90 \times 10^{-12} T^{0.22} e^{58./T}$		25-298	Sims et al. (1993)
R _n 373	2	CN	+	CH ₃ CCH	\rightarrow	C_4H_3N	+	H ² ³	4.10×10^{-10}		15-295	Carty et al. (2001), Balucani et al. (2002)
R _n 374	2	CN	+	сн,ссн,	\rightarrow	$C_4^4 H_3^3 N$	+	H	4.10×10^{-10}		15-295	Carty et al. (2001), Balucani et al. (2002)
R _n 375a	2	CN	+	$C_3\tilde{H}_6$	\rightarrow	C ₃ H ₃ N	+	CH ₃	$2.61 \times 10^{-10} T^{-0.09}$		23-298	Morales et al. (2010), Gannon et al. (2007)
R _n 375b	2	CN	+	C_3H_6	\rightarrow	C_4H_5N	+	Н	$2.61 \times 10^{-10} \mathrm{T}^{-0.09}$		23-298	Morales et al. (2010), Gannon et al. (2007)
R _n 376	2	CN	+	C_3H_8	\rightarrow	HCN	+	C_3H_7	$2.44 \times 10^{-14} T^{1.19} e^{378./T}$		170-740	Yang et al. (1992c)
R _n 377	2	CN	+	C_4H_2	\rightarrow	HC_5N	+	н	$1.60 \times 10^{-09} T^{-0.24} e^{-11./T}$		20-300	Cheikh Sid Ely (2012), Fukuzawa et al. (19
R _n 378	2	CN	+	C_4H_4	\rightarrow	C_5H_3N	+	H	$1.07 \times 10^{-07} T^{-0.82} e^{-228./T}$		170-740	Yang et al. (1992b)
R _n 379	2	CN	+	C_4H_6	\rightarrow	C_5H_5N	+	H	$4.80 \times 10^{-10} e^{-9./T}$		23-298	Morales et al. (2011)
R _n 380a	2	CN	+	$C_4^4H_8$	\rightarrow	C_4H_5N	+	CH ₃	1.58×10^{-10}		195-298	Gannon et al. (2007)
R _n 380b	2	CN	+	C_4H_8	\rightarrow	HCN	+	$C_4\ddot{H}_7$	1.58×10 ⁻¹⁰		195-298	Gannon et al. (2007)
R _n 381	2	CN	+	C_4H_{10}	\rightarrow	HCN	+	C_4H_9	$3.61 \times 10^{-14} T^{1.16} e^{392./T}$		170-740	Yang et al. (1992c)
$R_n 382$	2	CN	+	C ₆ H ₂	\rightarrow	HC,N	+	н	$1.60 \times 10^{-09} T^{-0.24} e^{-11./T}$		-	est.(CN+C4H2)
R _n 383	2	CN	+	$C_6H_6^2$	\rightarrow	C_7H_5N	+	H	$2.70 \times 10^{-09} T^{-0.39} e^{-9./T}$		10-295	Faure09
R _n 384	2	CN	+	NH_3	\rightarrow	HCN	+	NH_2	$3.57 \times 10^{-09} T^{-0.85}$		10-300	Wakelam et al. (2015)
R _n 385	4	CN	+	CN	\rightarrow	C_2N_2		-	9.40×10^{-12}		500-2500	Tsang (1992),est.(AtomNumber)
									$9.44 \times 10^{-23} T^{-2.61}$	0.50		
									9.40×10^{-12}			
R _n 386	2	CN	+	HCN	\rightarrow	C_2N_2	+	H	$5.99 \times 10^{-22} T^{3.60} e^{-933./T}$		70-300	ThisWork
R _n 387	2	CN	+	HNC	\rightarrow	C_2N_2	+	H	3.00×10^{-11}		-	Petrie and Osamura (2004)
R _n 388	2	CN	+	CH ₂ NH	\rightarrow	H ₂ CN	+	HCN	$2.81 \times 10^{-19} \text{T}^{2.72} \text{e}^{718./T}$		-	est.(CN+H2CO)
$R_n 389$	2	CN	+	CH ₃ NH ₂	\rightarrow	HČN	+	CH_2NH_2	$3.57 \times 10^{-09} T^{-0.85}$		-	est.(CN+NH3)
$R_n 390$	2	CN	+	CH ₃ CN	\rightarrow	C_2N_2	+	CH ₃	$6.46 \times 10^{-11} e^{-1190./T}$		296-578	Zabarnick and Lin (1989)
$R_n 391$	2	CN	+	HC_3N	\rightarrow	C_4N_2	+	Н	$8.18 \times 10^{-10} T^{-0.67}$		20-300	Cheikh Sid Ely et al. (2013)
$R_n 392$	2	CN	+	C_3H_3N	\rightarrow	$C_4H_2N_2$	+	H	$3.02 \times 10^{-11} e^{103./T}$		297-740	Butterfield et al. (1993)
R _n 393	2	CN	+	C_3H_5N	\rightarrow	C_2N_2	+	C_2H_5	$6.46 \times 10^{-11} e^{-1190./T}$		-	est.(CN+CH3CN)
R _n 394	2	CN	+	HC_5N	\rightarrow	C_6N_2	+	H	$8.18 \times 10^{-10} T^{-0.67}$		-	est.(CN+HC3N)
R _n 395a	2	H ₂ CN	+	н	\rightarrow	HCN	+	H_2	$2.77 \times 10^{-10} T^{-0.03} e^{-4./T}$		50-300	ThisWork
R _n 395b	2	H ₂ CN	+	H	\rightarrow	HNC	+	H_2^2	$6.07 \times 10^{-10} T^{-0.49} e^{-4./T}$		50-300	ThisWork
R _n 396	2	H ₂ CN	+	CH ₂	\rightarrow	HCN	+	\widetilde{CH}_4	$2.29 \times 10^{-08} \text{T}^{-1.06} \text{e}^{-60./T}$		_	est.(NH2+H2CN)

^	. 2
٠	~
	_

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40	298 298 298 298	est.(C2H3+C2H3) est.(C2H3+C2H3) est.(C2H3+C2H5) est.(C2H3+C2H5) est.(C2H3+C2H5) est.(Rad+Rad),est.(AtomNumber)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40	298 298	est.(C2H3+C2H5) est.(C2H3+C2H5) est.(C2H3+C2H5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		298 298	est.(C2H3+C2H5) est.(C2H3+C2H5) est.(C2H3+C2H5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		298 298	est.(C2H3+C2H5) est.(C2H3+C2H5) est.(C2H3+C2H5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		298	est.(C2H3+C2H5) est.(C2H3+C2H5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			est.(C2H3+C2H5) est.(C2H3+C2H5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40		est.(C2H3+C2H5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40		est.(C2H3+C2H5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40		est.(C2H3+C2H5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.10		1 ' ' '
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c} 1.00 \times 10^{-19} \\ 8.00 \times 10^{-11} \end{array}$		_	est.(Rad+Rad),est.(AtomNumber)
8.00×10^{-11}	0.40	_	cst.(rtad rtad),cst.(rttomrtumber)
	0.40		
$R_n 401$ 4 $H_2CN + C_3H_2 \rightarrow C_4H_4N$ 8.00×10^{-11}			est.(Rad+Rad),est.(AtomNumber)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40	-	est.(Kad+Kad),est.(AtomNumber)
8.00×10^{-11}	0.40		
$R_n 402$ 4 $H_2CN + C_3H_3 \rightarrow C_4H_5N$ 8.00×10 ⁻¹¹			est.(Rad+Rad),est.(AtomNumber)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40	-	est.(Kad+Kad),est.(Atomivumber)
8.00×10 ⁻¹¹	0.40		
$R_n 403a$ 4 $H_2CN + C_3H_5 \rightarrow C_4H_7N$ 8.00×10^{-11}			est.(Rad+Rad),est.(AtomNumber)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40	-	est.(Kad+Kad),est.(Atomivumber)
8.00×10^{-11}	0.40		
		300-2500	est.(C2H3+C3H5)
		300-2500	est.(C2H3+C3H3) est.(C2H3+C3H5)
		300-2500	est.(C2H3+C3H3) est.(Rad+Rad),est.(AtomNumber)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
8.00×10^{-11}	0.40		
		300-2500	(G0H2 G2H7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		300-2500 300-2500	est.(C2H3+C3H7) est.(C2H3+C3H7)
		300-2500	
$R_n 405$ 4 $H_2 CN + C_4 H_3 \rightarrow C_5 H_5 N$ 8.00×10^{-11} 1.00×10^{-17}	0.40	-	est.(Rad+Rad),est.(AtomNumber)
1.00×10	0.40		
$R_{0.406}$ 4 $H_{0.0}$ + $C.H_{0.0}$ \rightarrow $C.H_{0.0}$ \rightarrow $C.H_{0.0}$ \rightarrow 0.00×10^{-11} 0.00×10^{-11}			(D 1) D 1) (A) 33 3
		-	est.(Rad+Rad),est.(AtomNumber)
1.00×10 ⁻¹⁷	0.40		
Continued on Next Page 8.00×10^{-11}			

Continued on Next Page...

⋍		^	
	-		·

	Type				Re	action			k	F_c	T range	Ref.
$R_n 407$	4	$\rm H_2CN$	+	C_4H_7	\rightarrow	C_5H_9N			8.00×10 ⁻¹¹	T	-	est.(Rad+Rad),est.(AtomNumber)
									1.00×10 ⁻¹⁷	0.40		
									8.00×10 ⁻¹¹			
$R_n 408$	4	H_2CN	+	C_4H_9	\rightarrow	$C_5H_{11}N$			8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumber)
									1.00×10 ⁻¹⁷	0.40		
									8.00×10 ⁻¹¹			
$R_n 409$	4	H_2CN	+	C_6H_3	\rightarrow	C_7H_5N			8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumber)
									1.00×10^{-13}	0.40		
									8.00×10 ⁻¹¹			
$R_n 410$	4	H_2CN	+	C_6H_5	\rightarrow	C_7H_7N			8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumber)
	!								1.00×10 ⁻¹³	0.40	ĺ	
									8.00×10^{-11}		ĺ	
R_n411a	2	H_2CN		H_2CN	\rightarrow	N_2	+	C_2H_4	3.85×10^{-12}		296	Nizamov and Dagdigian (2003)
R_n411b	4	H ₂ CN	+	H ₂ CN	\rightarrow	$C_2H_4N_2$		_	3.85×10^{-12}		296	Nizamov and Dagdigian (2003),est.(AtomNum
		_		-					1.00×10^{-21}	0.40	ĺ	
									3.85×10^{-12}		ĺ	
$R_n 412$	4	H_2CN	+	C_3H_2N	\rightarrow	$C_4H_4N_2$			8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber)
		_							1.00×10^{-17}	0.40	ĺ	, , , , , , , , , , , , , , , , , , , ,
									8.00×10^{-11}		ĺ	
$R_n 413$	4	H ₂ CN	+	C_3H_4N	\rightarrow	$C_4H_6N_2$			8.00×10^{-11}		[-	est.(Rad+Rad),est.(AtomNumber)
1	!	_		0 -					1.00×10^{-17}	0.40		
	!								8.00×10^{-11}			
$R_n 414$	2	C_2N	+	H	\rightarrow	HCN	+	C	$1.06 \times 10^{-10} T^{0.17}$		10-300	?
$R_n 415$	2	C_2N	+	C	\rightarrow	CN	+	C_2	1.00×10^{-10}		10-300	Woodall et al. (2007)
$R_n 416$	2	C_2N	+	C_2H_2	\rightarrow	HC_4N	+	Н	6.59×10^{-11}		300	citeZhu08
$R_n 417$	2	C_2N	+	C_2H_4	\rightarrow	CH ₃ C ₃ N	+	Н	$8.13\times10^{-04}\mathrm{T}^{-2.55}\mathrm{e}^{-378./T}$		300-673	citeZhu08
R _n 418	2	C_2^2N	+	C ₃ H ₈	\rightarrow	HC ₂ N	+	C_3H_7	$5.79 \times 10^{-07} T^{-1.80} e^{-32./T}$	İ	10-298	Zhu et al. (2003),Faure(PersComm)
R _n 419	2	C ₂ N	+	C_4H_{10}	\rightarrow	HC ₂ N	+	$C_4^3H_9$	$1.08 \times 10^{-07} T^{-1.37} e^{-25./T}$		10-298	Zhu et al. (2003),Faure(PersComm)
R _n 420	2		+	H H	\rightarrow	C_2N	+	H ₂	3.00×10 ⁻¹¹		200	Osamura and Petrie (2004)
R _n 421	2	HC ₂ N		CH ₂	\rightarrow	$C_3^2H_3N$	+	H	3.00×10^{-11}		200	Osamura and Petrie (2004)
$R_n 422$	2	HC ₂ N		HC ₂ N		HC_4N_2	+	Н	3.00×10^{-11}		-	est.(HC2N+CH3)
R _n 423	4	CH ₂ CN		H 1	\rightarrow	CH ₃ CN			2.00×10 ⁻¹⁰		_	est.(Rad+Rad),est.(AtomNumber)
101123	-	0112	'			0113			1.00×10 ⁻²³	0.40		0000(10001/1000),0000(11111111111111111111111111111
									2.00×10 ⁻¹²	0.10	ĺ	
$R_n 424$	4	CH,CN	_	CH ₂	\rightarrow	C_3H_5N			8.00×10 ⁻¹¹		[_	est.(Rad+Rad),est.(AtomNumber)
10, 121	4	CII ₂ CIV	'	0113	,	0311511			1.00×10 ⁻²¹	0.40	[-	cst.(Itad Itad),cst.(Italiiivamber)
G	d on Nov	t Page							1.00×10	0.40	ĺ	I

^		٠
	۰	·
_		

	Type			Re	action	k	F_c	T range	Ref.
						2.00×10 ⁻¹¹	1		
$R_n 425$	4	CH ₂ CN +	C_2H_3	\rightarrow	C_4H_5N	8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber
		_				1.00×10^{-19}	0.40		
						8.00×10^{-11}			
$R_n 426$	4	CH ₂ CN +	C_2H_5	\rightarrow	C_4H_7N	8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumber
						1.00×10^{-19}	0.40		
						8.00×10 ⁻¹¹			
$R_n 427$	4	CH ₂ CN +	C_3H_3	\rightarrow	C_5H_5N	8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumb
						1.00×10^{-17}	0.40		
						8.00×10^{-11}			
$R_n 428$	4	CH ₂ CN +	C_3H_5	\rightarrow	C_5H_7N	8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumb
						1.00×10^{-17}	0.40		
						8.00×10^{-11}			
$R_n 429$	4	CH ₂ CN +	C_3H_7	\rightarrow	C_5H_9N	8.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumb
						1.00×10^{-17}	0.40		
						8.00×10 ⁻¹¹			
$R_n 430$	4	CH ₂ CN +	C_4H_3	\rightarrow	C_6H_5N	8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumb
						1.00×10^{-15}	0.40		
						8.00×10 ⁻¹¹			
$R_n 431$	4	CH ₂ CN +	C_4H_5	\rightarrow	C_6H_7N	8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumb
						1.00×10^{-15}	0.40		
						8.00×10 ⁻¹¹			
$R_n 432$	4	CH ₂ CN +	C_6H_3	\rightarrow	C_8H_5N	8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumb
						1.00×10 ⁻¹¹	0.40		
						8.00×10 ⁻¹¹			
$R_n 433$	4	CH ₂ CN +	C_6H_5	\rightarrow	C_8H_7N	8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumb
						1.00×10 ⁻¹¹	0.40		
						8.00×10 ⁻¹¹			
$R_n 434$	4	CH ₂ CN +	$\mathrm{CH_{2}CN}$	\rightarrow	$C_4H_4N_2$	5.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumb
						1.00×10 ⁻¹⁷	0.40		
						5.00×10 ⁻¹¹			
$R_n 435$	4	CH ₂ CN +	C_3H_2N	\rightarrow	$C_5H_4N_2$	8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumb
						6.00×10 ⁻¹⁶	0.40		
						8.00×10 ⁻¹¹			
$R_n 436$	4	CH ₂ CN +	C_3H_4N	\rightarrow	$C_5H_6N_2$	8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumb
						6.00×10 ⁻¹⁶	0.40		
		t Page				8.00×10^{-11}			

0.0
\sim
_

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Type			Re	action			k	F_c	T range	Ref.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 437$	2	C ₃ N +	H_2	\rightarrow	HC_3N	+	Н			24-300	Fournier (2014)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 438$	2	C ₃ N +	\widetilde{CH}_{A}	\rightarrow	HC ₃ N	+	CH ₃	$8.17 \times 10^{-10} T^{-0.57} e^{-3./T}$		24-300	Fournier (2014)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 439$	2		C_2H_2	\rightarrow	HC_5N	+	н	$8.31 \times 10^{-09} T^{-0.58} e^{-33./T}$		24-300	Fournier (2014)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 440$	2	C ₃ N +	C_2H_4	\rightarrow	HC ₃ N	+	C_2H_3	$3.76 \times 10^{-09} T^{-0.42} e^{-22./T}$		24-300	Fournier (2014)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 441$	2			\rightarrow	HC ₃ N	+		$1.25 \times 10^{-08} T^{-0.69} e^{-30./T}$		24-300	Fournier (2014)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 442$	2	C ₂ N +	CH, CCH	\rightarrow	$C_e H_2 N$	+		$4.70 \times 10^{-09} T^{-0.41} e^{-32./T}$		24-300	Fournier (2014)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 443$	2		СН ССН	\rightarrow		+	H	$1.39 \times 10^{-08} T^{-0.57} e^{-50./T}$		24-300	Fournier (2014)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2			\rightarrow			Н	$1.84 \times 10^{-08} T^{-0.64} e^{-51./T}$		24-300	Fournier (2014)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R., 445	2			\rightarrow			C_2H_7	$8.29 \times 10^{-09} T^{-0.55} e^{-34./T}$		24-300	Fournier (2014)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2			\rightarrow				$9.90 \times 10^{-10} T^{-0.06} e^{-9./T}$		20-400	ThisWork
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R _n 447	2			\rightarrow		+	H	$9.90 \times 10^{-10} T^{-0.06} e^{-9./T}$		_	est.(C3N+C4H2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 448$	2			\rightarrow		+	H	$6.65 \times 10^{-07} T^{-1.25} e^{-116./T}$		-	est.(C4H+C4H6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2			\rightarrow			Н	$2.04 \times 10^{-08} T^{-0.61} e^{-65./T}$		-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 450$	2			\rightarrow		+	C_4H_0	$4.82 \times 10^{-07} T^{-1.30} e^{-90./T}$		-	est.(C4H+C4H10)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2							$9.90 \times 10^{-10} T^{-0.06} e^{-9./T}$		_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2			\rightarrow			NH_{o}	$1.43 \times 10^{-08} T^{-0.67} e^{-28./T}$		24-300	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_n 453$	2			\rightarrow		+	н	3.00×10^{-11}		200	Petrie and Osamura (2004)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 454$	2		HNC	\rightarrow		+	H	3.00×10^{-11}		-	Petrie and Osamura (2004)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 455$	2	C ₂ N +	HC ₂ N	\rightarrow	C_6N_2	+	H	$9.90 \times 10^{-10} T^{-0.06} e^{-9./T}$		-	est.(C3N+C4H2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 456$	4			\rightarrow				2.00×10^{-10}		-	est.(Rad+Rad),est.(AtomNumber)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0 2			0 0				0.00		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 457$	4	$C_3H_2N +$	CH ₃	\rightarrow	C_4H_5N					-	est.(Rad+Rad),est.(AtomNumber)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_							0.40		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 458$	4	$C_3H_2N +$	C_2H_3	\rightarrow	C_5H_5N					-	est.(Rad+Rad),est.(AtomNumber)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										0.40		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_n 459$	4	$C_3H_2N +$	C_2H_5	\rightarrow	C_5H_7N					-	est.(Rad+Rad),est.(AtomNumber)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										0.40		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
8.00×10^{-11}	$R_n 460$	4	$C_3H_2N +$	C_3H_3	\rightarrow	C_6H_5N					-	est.(Rad+Rad),est.(AtomNumber)
										0.40		
$B_{\alpha}461 + 4 + C_{\alpha}H_{\alpha} + C_{\alpha}H_{\alpha} \rightarrow C_{\alpha}H_{\alpha}N$ $+ (Atom + Ba)(Atom +$	D 404	Ι.		a		~						
1.00×10 ⁻¹⁵ 0.40	$\kappa_{n}461$	4	$C_3H_2N +$	C_3H_5	\rightarrow	C_6H_7N				0.40	-	est.(Kad+Kad),est.(AtomNumber)

^		٠
۶	^	٠
۳	-	•
-	٦	٩

	Type			Re	action	k	F_c	T range	Ref.
						8.00×10 ⁻¹¹	1		
$_{n}462$	4	$C_3H_2N +$	C_3H_7	\rightarrow	C_6H_9N	8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumb
						1.00×10 ⁻¹⁵	0.40		
						8.00×10 ⁻¹¹			
$_{n}463$	4	$C_3H_2N +$	C_4H_3	\rightarrow	C_7H_5N	8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumb
						1.00×10 ⁻¹³	0.40		
						8.00×10 ⁻¹¹			
n^{464}	4	$C_3H_2N +$	C_4H_5	\rightarrow	C_7H_7N	8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumb
						1.00×10 ⁻¹³	0.40		
						8.00×10 ⁻¹¹			
$_{n}465$	4	$C_3H_2N +$	C_4H_7	\rightarrow	C_7H_9N	8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumb
						1.00×10^{-13}	0.40		
						8.00×10 ⁻¹¹			
$_{n}466$	4	$C_3H_2N +$	C_4H_9	\rightarrow	$C_7H_{11}N$	8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNumb
						1.00×10^{-13}	0.40		
						8.00×10 ⁻¹¹			
n^{467}	4	$C_3H_2N +$	C_6H_3	\rightarrow	C_9H_5N	8.00×10 ⁻¹¹		-	est.(Rad+Rad),est.(AtomNuml
						1.00×10^{-11} 8.00×10^{-11}	0.40		
100	١.		a		G 77 37				
$_{n}468$	4	$C_3H_2N +$	C_6H_5	\rightarrow	C_9H_7N	8.00×10^{-11} 1.00×10^{-11}		-	est.(Rad+Rad),est.(AtomNumb
						8.00×10 ⁻¹¹	0.40		
100	١.,	G II N	G II N		C II N	8.00×10 11 5.00×10 ⁻¹¹			(D 1 D 1) (A) N 1
$_{n}469$	4	$C_3H_2N +$	C_3H_2N	\rightarrow	$C_6H_4N_2$	1.00×10 ⁻¹³	0.40	-	est.(Rad+Rad),est.(AtomNumb
						5.00×10 ⁻¹³	0.40		
450	١.,	G II N	G II N		C II N	8.00×10^{-11}			(D 1 D 1) (A) N 1
$_{n}470$	4	$C_3H_2N +$	C_3H_4N	\rightarrow	$C_6H_6N_2$	1.00×10 ⁻¹³	0.40	-	est.(Rad+Rad),est.(AtomNumb
						8.00×10 ⁻¹¹	0.40		
4771		CHN	Н		CHN	2.00×10 ⁻¹⁰			est.(Rad+Rad),est.(AtomNumb
$_{n}471$	4	$C_3H_4N +$	п	\rightarrow	C_3H_5N	1.00×10^{-23}	0.40	-	est.(Rad+Rad),est.(AtomNumi
						2.00×10 2.00×10 ⁻¹²	0.40		
470		CHN	CII		CHN	8.00×10 ⁻¹¹			est.(Rad+Rad),est.(AtomNuml
$_{n}472$	4	$C_3H_4N +$	CH_3	\rightarrow	C_4H_7N	$\begin{array}{c} 8.00 \times 10 \\ 1.00 \times 10^{-19} \end{array}$	0.40	-	est.(nad+nad),est.(AtomNumb
						8.00×10 ⁻¹¹	0.40		
$_{n}473$	4	C ₃ H ₄ N +	C_2H_3		C_5H_7N	8.00×10 8.00×10 ⁻¹¹		_	est.(Rad+Rad).est.(AtomNumb
n413	4	O3H4N +	$\cup_2 \Pi_3$	\rightarrow	C5H7IN	1.00×10 1.00×10 ⁻¹⁷	0.40	-	est.(nau+nau),est.(AtomNumi
						8.00×10 ⁻¹¹	0.40		
	ļ	t Page				0.00 X 10	T .		I

	Туре			Re	eaction			k	F_c	T range	Ref.
$R_n 474$	4	$C_3H_4N +$	$\mathrm{C_2H_5}$	\rightarrow	$\mathrm{C_5H_9N}$			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R_n475	4	$C_3H_4N +$	$\mathrm{C_3H_3}$	\rightarrow	$\mathrm{C_6H_7N}$			$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-15} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R_n476	4	$C_3H_4N +$	$\mathrm{C_3H_5}$	\rightarrow	$\mathrm{C_6H_9N}$			$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-15} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R_n477	4	$C_3H_4N +$	$\mathrm{C_3H_7}$	\rightarrow	$C_6H_{11}N$			$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-15} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R_n478	4	$C_3H_4N +$	$\mathrm{C_4H_3}$	\rightarrow	$\mathrm{C_7H_7N}$			$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-13} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
$R_n 479$	4	$C_3H_4N +$	$\mathrm{C_4H_5}$	\rightarrow	$\mathrm{C_7H_9N}$			$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-13} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R_n480	4	$C_3H_4N +$	$\mathrm{C_4H_7}$	\rightarrow	$\mathrm{C_7H_{11}N}$			$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-13} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R_n481	4	$C_3H_4N +$	$\mathrm{C_4H_9}$	\rightarrow	$\mathrm{C_7H_{13}N}$			$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-13} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R_n482	4	$C_3H_4N +$	$\mathrm{C_6H_3}$	\rightarrow	$\mathrm{C_9H_7N}$			$\begin{array}{c} 8.00 \times 10^{-11} \\ 8.00 \times 10^{-11} \\ 1.00 \times 10^{-11} \end{array}$	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R_n483	4	$C_3H_4N +$	$\mathrm{C_6H_5}$	\rightarrow	$\mathrm{C_9H_9N}$			$ 8.00 \times 10^{-11} 8.00 \times 10^{-11} 1.00 \times 10^{-11} $	0.40	-	est.(Rad+Rad),est.(AtomNumber)
$R_n 484$	4	$C_3H_4N +$	$\mathrm{C_3H_4N}$	\rightarrow	$\mathrm{C_6H_8N_2}$			$ 8.00 \times 10^{-11} 5.00 \times 10^{-11} 1.00 \times 10^{-13} $	0.40	-	est.(Rad+Rad),est.(AtomNumber)
R_n485 R_n486 R_n487 Continue	2 2 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{matrix} \mathbf{H_2} \\ \mathbf{CH_4} \\ \mathbf{C_2H_2} \end{matrix}$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$\begin{array}{c} \mathrm{HC_5N} \\ \mathrm{HC_5N} \\ \mathrm{HC_7N} \end{array}$	+ + +	$_{\mathrm{CH}_{3}}^{\mathrm{H}}$	$\begin{array}{c} 5.00 \times 10^{-11} \\ 3.50 \times 10^{-18} \mathrm{T}^{2.32} \mathrm{e}^{-444./T} \\ 1.63 \times 10^{-11} \mathrm{e}^{-610./T} \\ 5.00 \times 10^{-10} \end{array}$		- - 20-400	est.(C2H+H2) est.(C4H+CH4) ThisWork

T range

Ref.

Type

 $\begin{array}{c|cccc} R_n 485 & 2 & C_5 N \\ R_n 486 & 2 & C_5 N \\ R_n 487 & 2 & C_5 N \\ Continued on Next Page. \end{array}$

Reaction

	Туре				Re	action			k	F_{c}	T range	Ref.
R _n 488	2	C ₅ N	+	C_2H_4	\rightarrow	HC_5N	+	C_2H_3	$1.90 \times 10^{-09} T^{-0.40} e^{9./T}$	1	-	est.(C4H+C2H4)
$R_n 489$	2	C ₅ N	+	C_2H_6	\rightarrow	HC ₅ N	+	$C_2^2H_5^3$	$3.19 \times 10^{-08} T^{-1.23} e^{-24./T}$		-	est.(C4H+C2H6)
$R_n 490$	2	C ₅ N	+	CH₃CCH	\rightarrow	$C_8\ddot{H}_3N$	+	H	$3.42 \times 10^{-08} T^{-0.82} e^{-47./T}$		-	est.(C4H+CH3CCH)
$R_n 491$	2	C ₅ N	+	CH ₂ CCH ₂	\rightarrow	C_8H_3N	+	H	$3.07 \times 10^{-07} T^{-1.18} e^{-91./T}$		-	est.(C4H+CH2CCH2)
$R_n 492$	2	C ₅ N	+	C_3H_6	\rightarrow	C_8H_5N	+	H	$3.89 \times 10^{-08} T^{-0.84} e^{-48./T}$		-	est.(C4H+C3H6)
$R_n 493$	2	C ₅ N	+	C ₃ H ₈	\rightarrow	HC, N	+	C_3H_7	$2.46 \times 10^{-07} T^{-1.36} e^{-56./T}$		-	est.(C4H+C3H8)
$R_n 494$	2	C ₅ N	+	C_4H_2	\rightarrow	HC _o N	+	н	$9.90 \times 10^{-10} T^{-0.06} e^{-9./T}$		20-400	ThisWork
$R_n 495$	2	C ₅ N	+	$C_4^4 H_4^2$	\rightarrow	C_0H_3N	+	H	$9.90 \times 10^{-10} T^{-0.06} e^{-9./T}$		-	est.(C3N+C4H2)
$R_n 496$	2	C ₅ N	+	$C_4^4H_6$	\rightarrow	C_9H_5N	+	H	$6.65 \times 10^{-07} T^{-1.25} e^{-116./T}$		-	est.(C4H+C4H6)
$R_n 497$	2	C ₅ N	+	C_4H_8	\rightarrow	C_9H_7N	+	H	$2.04 \times 10^{-08} T^{-0.61} e^{-65./T}$		-	est.(C4H+C4H8)
$R_n 498$	2	C ₅ N	+	C_4H_{10}	\rightarrow	HC_5N	+	C_4H_9	$4.82 \times 10^{-07} \mathrm{T}^{-1.30} \mathrm{e}^{-90./T}$		-	est.(C4H+C4H10)
$R_n 499$	2	C ₅ N	+	C ₆ H ₂	\rightarrow	HC ₁₁ N	+	н	$9.90 \times 10^{-10} T^{-0.06} e^{-9./T}$		-	est.(C3N+C4H2)
$R_n 500$	2	C ₅ N	+	HCN	\rightarrow	C_6N_2	+	H	3.00×10^{-11}		200	Petrie and Osamura (2004)
$R_n 501$	2	C ₅ N	+	HNC	\rightarrow	C_6N_2	+	H	3.00×10^{-11}		-	Petrie and Osamura (2004)
$R_n 502$	2	C ₅ N	+	HC,N	\rightarrow	C_8N_2	+	H	$9.90 \times 10^{-10} T^{-0.06} e^{-9./T}$		-	est.(C3N+C4H2)
$R_n 503a$	4	HC,N,	+	Н	\rightarrow	HCN	+	HCN	2.00×10^{-10}		-	est.(Rad+Rad),est.(AtomNumber)
		1							1.00×10^{-23}	0.40		
									2.00×10^{-11}			
$R_n 503b$	2	HC ₂ N ₂	+	H	\rightarrow	C_2N_2	+	H_2	1.00×10^{-10}		-	est.(Rad+Rad)
$R_n 504a$	4	HC_4N_2	+	H	\rightarrow	HC_3N	+	HCN	2.00×10^{-10}		-	est.(Rad+Rad),est.(AtomNumber)
									1.00×10^{-23}	0.40		
									2.00×10 ⁻¹¹			
$R_n 504b$	2	HC_4N_2		H	\rightarrow	C_4N_2	+	H_2	1.00×10 ⁻¹⁰		-	est.(Rad+Rad)
$R_n 505$	4	$O(^{3}P)$	+	H	\rightarrow	OH			1.00×10 ⁻¹⁰		100-500	Tsang and Hampson (1986),?
									$1.30 \times 10^{-29} \mathrm{T}^{-1.00}$	0.40		
									$5.17 \times 10^{-20} T^{0.26} e^{-4./T}$			
$R_n 506a$	2	$O(^{3}P)$	+	$^{3}CH_{2}$	\rightarrow	CO	+	H + H	1.00×10 ⁻¹⁰		10-300	Wakelam et al. (2015)
$R_n 506b$	2	$O(^3P)$	+	$^{3}CH_{2}^{2}$	\rightarrow	CO	+	H_2	4.00×10 ⁻¹¹		10-300	Wakelam et al. (2015)
$R_n 506c$	2	O(3P)	+	$^3CH_2^2$	\rightarrow	HCO	+	H	2.00×10 ⁻¹²		10-300	Wakelam et al. (2015)
$R_n 507a$	2	O(3P)	+	CH_3	\rightarrow	H_2CO	+	H	1.10×10 ⁻¹⁰		294-2500	Baulch et al. (2005)
$R_n 507b$	2	$O(^{3}P)$	+	CH_3	\rightarrow	CO	+	$\mathrm{H_2}$ + H	2.80×10 ⁻¹¹		298	Baulch et al. (2005)
$R_n 508$	2	$O(^{3}P)$	+	C_2H	\rightarrow	CO	+	CH	1.00×10 ⁻¹⁰		10-298	Wakelam et al. (2015)
$R_n 509a$	2	O(3P)	+	C_2H_2	\rightarrow	CO	+	$^3\mathrm{CH}_2$	$3.90 \times 10^{-16} \mathrm{T}^{1.40} \mathrm{e}^{-1110./T}$		250-2500	Baulch et al. (2005)
$R_n 509b$	2	$O(^3P)$	+	C_2H_2	\rightarrow	HCCO	+	H	$1.56 \times 10^{-15} T^{1.40} e^{-1110./T}$		250-2500	Baulch et al. (2005)
$R_n 510a$	2	$O(^{3}P)$	+	C_2H_4	\rightarrow	HCO	+	CH_3	$1.35 \times 10^{-17} \mathrm{T}^{1.88} \mathrm{e}^{-92./T}$		220-2000	Baulch et al. (2005)
$R_n 510b$	2	O(³ P)	+	C_2H_4	\rightarrow	$\mathrm{CH_{2}CHO}$	+	H	$7.88 \times 10^{-18} \mathrm{T}^{1.88} \mathrm{e}^{-92./T}$		220-2000	Baulch et al. (2005)
Continue	d on Nex	t Page										

٠
3
٦

	Type				Re	action				k	F_c	T range	Ref.
R _n 510c	2	O(3P)	+	C_2H_4	\rightarrow	CH ₂ CO	+	H ₂		$1.13 \times 10^{-18} T^{1.88} e^{-92./T}$		220-2000	Baulch et al. (2005)
$R_n 511a$	2	$O(^3P)$	+	HČO	\rightarrow	CO2	+	Η̈́		5.00×10 ⁻¹¹		300-2500	Baulch et al. (2005)
$R_n 511b$	2	$O(^3P)$	+	HCO	\rightarrow	CO	+	OH		5.00×10 ⁻¹¹		300-2500	Baulch et al. (2005)
$R_n 512a$	2	O(3P)	+	HCCO	\rightarrow	CO	+	CO +	H	1.60×10 ⁻¹⁰		280-2500	Baulch et al. (2005)
$R_n 512b$	2	O(3P)	+	HCCO	\rightarrow	CO_2	+	CH		$4.90 \times 10^{-11} e^{-560./T}$		280-1000	Baulch et al. (2005)
$R_n 513a$	2	O(3P)	+	CH_2CO	\rightarrow	CO_2	+	3CH_2		$1.80 \times 10^{-12} e^{-680./T}$		296-1000	Baulch et al. (2005)
$R_n 513b$	2	O(3P)	+	CH ₂ CO	\rightarrow	HCHO	+	CO		$6.00 \times 10^{-13} e^{-680./T}$		296-1000	Baulch et al. (2005)
$R_n 513c$	2	$O(^3P)$	+	CH ₂ CO	\rightarrow	HCO	+	CO +	Н	$6.00 \times 10^{-13} e^{-680./T}$		296-1000	Baulch et al. (2005)
$R_n 514a$	2	$O(^3P)$	+	CH ₃ CO	\rightarrow	CO ₂	+	CH ₃		2.60×10^{-10}		298	Baulch et al. (2005)
$R_n 514b$	2	O(3P)	+	CH ₃ CO	\rightarrow	CH ₂ CO	+	OH		8.80×10 ⁻¹¹		298	Baulch et al. (2005)
$R_n 515$	1	O(1D)		-	\rightarrow	$O(^{3}P)$	+	$h\nu$		6.70×10^{-03}		-	Okabe (1978)
$R_n 516$	2	O(1D)	+	N_2	\rightarrow	$O(^{3}P)$	+	N_2		$2.15\times10^{-11}e^{110./T}$		200-300	Sander et al. (2006)
$R_n 517$	2	O(1D)	+	H_2	\rightarrow	OH	+	H		1.20×10^{-10}		200-300	Sander et al. (2011)
$R_n 518a$	2	O(1D)		\widetilde{CH}_4	\rightarrow	OH	+	CH ₃		1.31×10^{-10}		200-300	Sander et al. (2011)
$R_n 518b$	2	O(1D)		CH_4	\rightarrow	CH ₂ OH	+	Н		3.50×10^{-11}		200-300	Sander et al. (2011)
$R_n 518c$	2	O(1D)		CH_4	\rightarrow	H_2CO	+	H_2		9.00×10^{-12}		200-300	Sander et al. (2011)
$R_n 519$	2	O(1D)		C_2H_4	\rightarrow	CH_2CO	+	H_2		2.20×10 ⁻¹⁰		298	Kajimoto and Fueno (1979)
$R_n 520$	2	O(1D)		H_2O	\rightarrow	OH	+	OH		$1.63 \times 10^{-10} e^{60./T}$		200-300	Sander et al. (2011)
R_n521a	2	O(1D)		CO	\rightarrow	$O(^{3}P)$	+	CO		$4.70 \times 10^{-11} e^{63./T}$		113-333	Davidson et al. (1978)
$R_n 521b$	4	O(¹ D)	+	CO	\rightarrow	CO_2				8.00×10 ⁻¹¹		100-2100	Tully (1975)
										1.00×10 ⁻³⁰	0.40		
										2.00×10 ⁻¹²			
$R_n 522$	1	O_1S			\rightarrow	$O(^{1}D)$	+	$h\nu$		1.30×10 ⁺⁰⁰		-	Koyano et al. (1975)
$R_n 523$	4	OH	+	H	\rightarrow	H_2O				1.00×10 ⁻¹⁰		300-3000	Baulch et al. (2005),est.(AtomNumber)
										$6.10 \times 10^{-26} T^{-2.00}$	0.40		
										6.00×10 ⁻¹⁶			
$R_n 524$	2	OH	+	H_2	\rightarrow	H_2O	+	H		2.80×10 ⁻¹² e ^{-1800.} /T		200-300	Sander et al. (2011)
$R_n 525$	2	OH	+	$^3\mathrm{CH}_2$	\rightarrow	$\mathrm{H_{2}CO}$	+	H		$4.74 \times 10^{-11} T^{0.12} e^{81./T}$		300-2500	Jasper et al. (2007)
$R_n 526a$	2	OH	+	CH_3	\rightarrow	H_2O	+	$^{1}\mathrm{CH}_{2}$		$9.40 \times 10^{-08} T^{-1.19} e^{-435./T}$		20-300	ThisWork
$R_n 526b$	2	OH	+	CH_3	\rightarrow	H_2CO	+	H_2		$2.94 \times 10^{-09} \mathrm{T}^{-1.58} \mathrm{e}^{-60./T}$		20-300	ThisWork
$R_n 526c$	2	OH	+	CH_3	\rightarrow	CHOH	+	H_2		2.33×10 ⁻⁰⁸ T ^{-1.54} e ^{-60.} /T		20-300	ThisWork
$R_n 526d$	2	OH	+	CH_3	\rightarrow	CHOH	+	H_2		$3.49 \times 10^{-07} \text{T}^{-1.70} \text{e}^{-72./T}$		20-300	ThisWork
$R_n 527$	2	OH	+	CH_4	\rightarrow	H_2O	+	CH ₃		$2.45 \times 10^{-12} e^{-1775./T}$		200-300	Sander et al. (2011)
$R_n 528a$	2	OH	+	C_2H	\rightarrow	CO	+	$^3\mathrm{CH}_2$		3.00×10 ⁻¹¹		300-2500	Tsang and Hampson (1986)
$R_n 528b$	2	OH	+	C_2H	\rightarrow	$O(^3P)$	+	C_2H_2		3.00×10^{-11}		300-2500	Tsang and Hampson (1986)
$R_n 529$	6 N	OH	+	C_2H_2	\rightarrow	$\mathrm{CH_{3}CO}$				Tabulated		228-1400	Sander et al. (2011)
Continue	on Nex	t Page	•										

c		٥
1	Ċ	5
C		٥

	Type				Re	action				k	F_c	T range	Ref.
R _n 530	6	OH	+	C_2H_4	\rightarrow	HOCH ₂ CH ₂	2			Tabulated		200-300	Sander et al. (2011)
$R_n 531$	2	ОН	+	C_2H_6	\rightarrow	H ₂ O	+	C_2H_5		$7.66 \times 10^{-12} e^{-1020./T}$		200-300	Sander et al. (2011)
$R_n 532a$	5	ОН	+	CO	\rightarrow	co,	+	H		1.63×10 ⁻⁰⁶ T ^{6.10}		200-300	Sander et al. (2011)
$R_n 532b$	6	OH	+	CO	\rightarrow	HOCO				Tabulated		200-300	Sander et al. (2011)
$R_n 533$	2	OH	+	H_2CO	\rightarrow	HCO	+	H_2O		$5.50 \times 10^{-12} e^{125./T}$		200-300	Sander et al. (2011)
$R_n 534a$	2	OH	+	CH_2CO	\rightarrow	CH_2OH	+	CO		$1.68 \times 10^{-12} e^{510./T}$		296-1000	Baulch et al. (2005)
$R_n 534b$	2	OH	+	CH_2CO	\rightarrow	CO_2	+	CH_3		$1.04 \times 10^{-12} e^{510./T}$		296-1000	Baulch et al. (2005)
$R_n 534c$	2	OH	+	CH ₂ CO	\rightarrow	HCHO	+	HCO		$5.60 \times 10^{-14} e^{510./T}$		296-1000	Baulch et al. (2005)
$R_n 534d$	2	OH	+	CH ₂ CO	\rightarrow	HCCO	+	H ₂ O		$2.80 \times 10^{-14} e^{510./T}$		296-1000	Baulch et al. (2005)
$R_n 535$	2	H ₂ O	+	CH	\rightarrow	H ₂ CO	+	Η̈́		$7.72 \times 10^{-08} T^{-1.31} e^{-40./T}$		50-296	Hickson et al. (2013),Bergeat et al. (2
$R_n 536a$	2	H ₂ O	+	¹ CH ₂	\rightarrow	OH	+	CH_3		$9.46 \times 10^{-08} \mathrm{T}^{-1.19} \mathrm{e}^{-67./T}$		20-300	ThisWork
$R_n 536b$	2	H ₂ O	+	¹ CH ₂	\rightarrow	H_2CO	+	H ₂		$2.60 \times 10^{-08} T^{-1.91} e^{-58./T}$		20-300	ThisWork
$R_n 536c$	2	H ₂ O	+	¹ CH ₂	\rightarrow	СНОН	+	H ₂		$2.21 \times 10^{-07} \text{T}^{-1.87} \text{e}^{-57./T}$		20-300	ThisWork
$R_n 536d$	2	H ₂ O	+	$^{1}CH_{2}^{2}$	\rightarrow	CHOH	+	H ₂		$3.47 \times 10^{-06} T^{-2.06} e^{-69./T}$		20-300	ThisWork
$R_n 537$	2	H ₂ O	+	C_2H	\rightarrow	OH	+	C_2H_2		$1.90 \times 10^{-11} e^{-200./T}$		295-451	Baulch et al. (2005)
$R_n 538$	4	CÕ	+	Н	\rightarrow	HCO		2 2		2.00×10^{-10}		300-800	Baulch et al. (2005), This Work
										$2.00\times10^{-35}T^{0.20}$	0.40		, ,
										3.00×10^{-21}			
$R_n 539$	4	CO	+	CH	\rightarrow	HCCO				$1.70 \times 10^{-09} \mathrm{T}^{-0.40}$		200-1000	Baulch et al. (2005),ThisWork
										$6.30 \times 10^{-24} T^{-2.50}$	0.60		
										3.75×10^{-17}			
$R_n 540$	4	CO	+	CH_3	\rightarrow	CH_3CO				$3.10 \times 10^{-16} \text{T}^{1.05} \text{e}^{-1300./T}$		300-350	Baulch et al. (2005),ThisWork
										5.90×10^{-36}	0.60		
										1.10×10^{-28}			
$R_n 541$	2	HCO	+	H	\rightarrow	CO	+	H_2		1.50×10^{-10}		298-2500	Baulch et al. (2005)
$R_n 542$	2	HCO	+	$^3\mathrm{CH}_2$	\rightarrow	CO	+	CH_3		3.00×10^{-11}		300-2500	Tsang and Hampson (1986)
$R_n 543$	2	HCO	+	CH_3	\rightarrow	CO	+	CH_4		2.00×10 ⁻¹⁰		300-2500	Tsang and Hampson (1986)
$R_n 544$	2	HCO	+	C_2H	\rightarrow	CO	+	C_2H_2		1.00×10 ⁻¹⁰		300-2500	Tsang and Hampson (1986)
$R_n 545a$	2	H ₂ CO		CH	\rightarrow	CH_2CO	+	H		$6.21 \times 10^{-10} \mathrm{T}^{-0.32} \mathrm{e}^{386./T}$		300-3000	Nguyen et al. (2014)
$R_n 545b$	2	H ₂ CO		CH	\rightarrow	CO	+	CH_3		$1.23 \times 10^{-10} \text{T}^{-0.32} \text{e}^{386./T}$		300-3000	Nguyen et al. (2014)
$R_n 546$	2	H ₂ CO		C_2H	\rightarrow	CO	+	$C_2H_2 +$	Η	1.00×10 ⁻¹⁰		-	Dong et al. (2005)
$R_n 547$	2	CHOH		H	\rightarrow	H_2CO	+	H		1.00×10 ⁻¹⁰		20-300	ThisWork
$R_n 548$	2	CHOH		CH_3	\rightarrow	CH_3CHO	+	H		1.00×10 ⁻¹⁰		20-300	ThisWork
$R_n 549a$	2	CH ₂ OF		H	\rightarrow	H_2CO	+	H_2		2.03×10 ⁻¹¹		298	Baulch et al. (2005)
$R_n 549b$	2	CH ₂ OF		H	\rightarrow	CHOH	+	H_2		2.03×10 ⁻¹¹		298	Baulch et al. (2005)
$R_n 549c$ Continue	2	CH ₂ OF		H	\rightarrow	OH	+	CH ₂		1.74×10^{-11}	1	298	Baulch et al. (2005)

		Type				Re	action			k	$F_{\rm c}$	T range	Ref.
	R_n550a	2	CH ₂ OF	H +	$^3\mathrm{CH}_2$	\rightarrow	ОН	+	C_2H_4	4.00×10 ⁻¹¹		300-2500	Tsang (1987)
	R_n550b	2	CH ₂ OF	H +	$^{3}CH_{2}$	\rightarrow	H ₂ CO	+	CH ₃	2.00×10^{-12}		300-2500	Tsang (1987)
	$R_n 551$	2	CH ₂ OF	H +	CH ₃	\rightarrow	H ₂ CO	+	CH_4	4.00×10^{-12}		300-2500	Tsang (1987)
	R_n552a	2	CH ₂ OF	H +	C_2H	\rightarrow	H ₂ CO	+	C_2H_2	6.00×10 ⁻¹¹		300-2500	Tsang (1987)
	R _n 552b	2	CH ₂ OF		$\tilde{C_2}H$	\rightarrow	OH	+	C_3H_3	2.00×10^{-11}		300-2500	Tsang (1987)
	R _n 553a	2	HCCO		н	\rightarrow	CO	+	1CH ₂	2.02×10^{-10}		280-2000	Baulch et al. (2005)
	R _n 553b	2	HCCO	+	Н	\rightarrow	CO	+	$^{3}CH_{2}^{2}$	1.76×10^{-11}		280-2000	Baulch et al. (2005)
	R _n 554	2	HCCO	+	CH ₂	\rightarrow	CO	+	$C_2H_4^2$	1.00×10^{-10}		-	Dobrijevic et al. (2014)
	$R_n 555$	2	CH,CC) +	н	\rightarrow	CO	+	CH ₃	$5.40 \times 10^{-14} T^{0.85} e^{-1430./T}$		298-2000	Baulch et al. (2005)
	R _n 556a	2	CH ₃ CC		H	\rightarrow	CH ₂ CO	+	H ₂	1.90×10 ⁻¹¹		298	Bartels et al. (1991),Ohmori et al.
	R _n 556b	2	CH ₃ CC		H	\rightarrow	HCO	+	CH ₃	3.60×10 ⁻¹¹		298	Bartels et al. (1991),Ohmori et al.
	R _n 557	2	CH, CC		³ CH ₂	\rightarrow	CH ₂ CO	+	CH ₂	3.00×10 ⁻¹¹		300-2500	Tsang and Hampson (1986)
	R _n 558a	2	CH, CC		CH ₂	\rightarrow	CO	+	C ₂ H ₆	5.43×10 ⁻¹¹		298	Adachi et al. (1981)
	R _n 558b	2	CH ₃ CC		CH ₂	\rightarrow	CH ₂ CO	+	CH_4	1.01×10 ⁻¹¹		298	Hassinen et al. (1990)
	R _n 558c	4	CH, CC		CH ₂	\rightarrow	CH ₃ COCH ₃		4	6.97×10 ⁻¹¹		298	Hassinen et al. (1990)
	10,10000	•	011300	- 1	0113		0113000113			1.00×10 ⁻³⁰	0.40	200	Transmen et al. (1909)
										2.00×10 ⁻¹¹	0.10		
321	$R_n 559$	2	CH ₃ CC) +	C_2H	\rightarrow	CH ₂ CO	+	C_2H_2	3.00×10 ⁻¹¹		300-1500	Tsang and Hampson (1986)
21	R _n 560	2	HOCH			<i>,</i>	CH ₃ CHO	+	H ₂	8.31×10 ⁻¹¹		295	Bartels et al. (1982)
	R _n 561a	2	CO ₂	+	CH	<i>,</i>	HCO	+	CO	$5.30 \times 10^{-17} \text{T}^{1.51} \text{e}^{360./T}$		296-3500	Baulch et al. (2005)
	R _n 561b	2	CO ₂	+	CH	$\stackrel{'}{\rightarrow}$	CO	+	CO + H	$5.30 \times 10^{-17} \text{T}^{1.51} \text{e}^{360./T}$		296-3500	Baulch et al. (2005)
	$R_n 562$	4	H H	+	NO	\rightarrow	HNO	_	CO + 11	1.00×10 ⁻¹⁰		230-750	Baulch et al. (2005) est. (AtomNum
	10,002	4	11		NO	~	IIIVO			$4.23 \times 10^{-30} \mathrm{T}^{-0.77}$	0.40	230-730	Bauten et al. (2005),est.(Atomivum
										1.00×10 ⁻¹³	0.40		
	R _n 563	2	н	+	HNO	\rightarrow	NO	+	H_2	$3.01 \times 10^{-11} e^{-500./T}$		298-2000	Tsang and Herron (1991)
	R _n 564		H		NCO		CO	+	NH	$1.53 \times 10^{-05} \text{T}^{-1.86} \text{e}^{-399./T}$		200-2500	Klippenstein et al. (2009)
	R_n564 R_n565	2 2	C	+	NCO	\rightarrow \rightarrow	CO		CN	1.00×10 ⁻¹⁰		10-300	Wakelam et al. (2009)
	$R_n 566a$	2	CH	+	NO	\rightarrow \rightarrow	O(³ P)	+	HCN	1.00×10^{-10} 2.40×10^{-10} T ^{-0.13}		13-708	Bocherel et al. (2015) Bocherel et al. (1996),Baulch et al.
	R_n 566b	2	CH	+	NO NO		NCO		HCN H	5.57×10 ⁻¹¹ T ^{-0.13}		13-708	Bocherel et al. (1996),Baulch et al. Bocherel et al. (1996),Baulch et al.
		2	CH		NO NO	\rightarrow	CO	+	H NH	2.79×10 ⁻¹¹ T ^{-0.13}		13-708	
	R _n 566c			+	NO NO	\rightarrow	HCO	+	NH N	2.79×10 T T = 0.13 2.09×10 ⁻¹¹ T ^{-0.13}			Bocherel et al. (1996),Baulch et al.
	R _n 566d	2	CH	+		\rightarrow	OH	+		$3.48 \times 10^{-12} \text{T}^{-0.13}$		13-708	Bocherel et al. (1996),Baulch et al.
	R _n 566e	2	CH	+	NO	\rightarrow	NO NO	+	CN 3GH	3.48×10 -11 3.80×10 ⁻¹¹		13-708	Bocherel et al. (1996),Baulch et al.
	R _n 567a	2	CH	+	HNO	\rightarrow		+	³ CH ₂			-	Dobrijevic et al. (2014)
	R _n 567b	2	CH	+	HNO	\rightarrow	HNCO	+	H	1.00×10 ⁻¹⁰		-	Dobrijevic et al. (2014)
	R _n 568a R _n 568b	2	³ CH ₂ ³ CH ₂	+	NO	\rightarrow	HNCO	+	H	$5.04 \times 10^{-12} e^{500./T}$ $5.60 \times 10^{-13} e^{500./T}$		290-1000	Baulch et al. (2005)
				+	NO	\rightarrow	OH	+	HCN			290-1000	Baulch et al. (2005)

٠	÷	
2	^=	
ŗ.	÷	

	Type				Re	action			k	F_c	T range	Ref.
R _n 569	2	CH ₃	+	HNO	\rightarrow	NO	+	CH_4	$2.44 \times 10^{-13} T^{0.76} e^{-175./T}$		298-2500	Choi and Lin (2005)
R_n570a	2	C ₂ H	+	NO	\rightarrow	CO	+	HCN	$7.70 \times 10^{-11} e^{-287./T}$		295-450	Baulch et al. (2005), Feng and Hershberger (2
R_n570b	2	C ₂ H	+	NO	\rightarrow	HCO	+	CN	$2.30 \times 10^{-11} e^{-287./T}$		295-450	Baulch et al. (2005), Feng and Hershberger (2
$R_n 571$	4	N N	+	$O(^{3}P)$	\rightarrow	NO			1.00×10^{-10}		196-298	Campbell and Gray (1973),est.(AtomNumber
				,					$5.46 \times 10^{-33} e^{155./T}$	0.40		
									1.00×10^{-13}			
$R_n 572$	2	N	+	OH	\rightarrow	NO	+	H	$5.00 \times 10^{-11} e^{-6./T}$		10-300	Wakelam et al. (2015)
$R_n 573$	2	N	+	HCO	\rightarrow	NCO	+	H	1.00×10^{-10}		10-280	Wakelam et al. (2012)
$R_n 574$	2	N	+	HCCO	\rightarrow	CO	+	HCN	1.00×10^{-10}		-	Dobrijevic et al. (2014)
R _n 575	2	N	+	NO	\rightarrow	$O(^{3}P)$	+	N_2	$1.25 \times 10^{-10} T^{-0.20} e^{-20./T}$		10-300	Wakelam et al. (2015)
$R_n 576$	2	N	+	NCO	\rightarrow	cò	+	N_2^2	$2.30 \times 10^{-10} T^{-0.25}$		298-1700	Baulch et al. (2005)
$R_n 577a$	2	N(2D)	+	$O(^3P)$	\rightarrow	N	+	$O(^{3}P)$	$1.65 \times 10^{-12} e^{-260./T}$		300-400	Herron (1999)
$R_n 577b$	2	$N(^2D)$	+	$O(^3P)$	\rightarrow	N	+	$O(^{1}D)$	$1.65 \times 10^{-12} e^{-260./T}$		300-400	Herron (1999)
R _n 578	2	N(2D)		OH	\rightarrow	NO	+	H	4.50×10 ⁻¹¹		-	Dobrijevic et al. (2014)
R_n579a	2	N(2D)		H ₂ O	\rightarrow	OH	+	NH	1.30×10 ⁻¹¹		298	Herron (1999)
$R_n 579b$	2	N(2D)	+	H ₂ O	\rightarrow	HNO	+	Н	1.30×10 ⁻¹¹		298	Herron (1999)
$R_n 579c$	2	$N(^2D)$		H ₂ O	\rightarrow	NO	+	H_2	1.30×10^{-11}		298	Herron (1999)
$R_n 580$	2	$N(^2D)$		CO	\rightarrow	N	+	CÔ	1.90×10^{-12}		298	Herron (1999)
$R_n 581$	2	$N(^2D)$		H ₂ CO	\rightarrow	HNCO	+	Н	4.00×10^{-11}		_	Dobrijevic et al. (2014)
$R_n 582$	2	$N(^2D)$		СНОН	\rightarrow	OH	+	HCN	1.00×10^{-10}		20-300	ThisWork
$R_n 583$	2	$N(^2D)$		CO ₂	\rightarrow	NO	+	CO	3.60×10^{-13}		298	Herron (1999)
$R_n 584a$	2	$N(^2D)$		NO	\rightarrow	$O(^3P)$	+	N_2	2.00×10^{-11}		298	Herron (1999)
$R_n 584b$	2	N(2D)	+	NO	\rightarrow	$O(^{1}D)$	+	N_2^2	2.00×10^{-11}		298	Herron (1999)
R_n584c	2	$N(^2D)$	+	NO	\rightarrow	O ₁ S	+	N_2	2.00×10^{-11}		298	Herron (1999)
$R_n 585$	2	N(2D)	+	HNO	\rightarrow	NO	+	NH	5.00×10^{-11}		_	Dobrijevic et al. (2014)
$R_n 586$	2	NH	+	$O(^{3}P)$	\rightarrow	NO	+	H	6.60×10 ⁻¹¹		10-300	Wakelam et al. (2015)
R_n587a	2	NH	+	OH	\rightarrow	NO	+	H_2	4.00×10^{-11}		300-2000	Baulch et al. (2005)
R_n587b	2	NH	+	OH	\rightarrow	HNO	+	Η̈́	4.00×10^{-11}		300-2000	Baulch et al. (2005)
R_n588a	2	NH	+	NO	\rightarrow	OH	+	N_2	$4.56 \times 10^{-11} \mathrm{T}^{-0.30} \mathrm{e}^{0./T}$		53-375	Mullen and Smith (2005), Baulch et al. (2005)
R_n588b	2	NH	+	NO	\rightarrow	N ₂ O	+	H	$1.82 \times 10^{-10} T^{-0.30} e^{0./T}$		53-375	Mullen and Smith (2005), Baulch et al. (2005)
R_n589a	2	NH ₂	+	$O(^{3}P)$	\rightarrow	HNO	+	Н	$1.11 \times 10^{-10} T^{-0.10}$		10-300	Wakelam et al. (2015)
R_n589b	2	NH ₂	+	$O(^3P)$	\rightarrow	ОН	+	NH	$1.24 \times 10^{-11} \mathrm{T}^{-0.10}$		10-300	Wakelam et al. (2015)
$R_n 590a$	4	NH ₂	+	OH	\rightarrow	NH ₂ OH			$3.10 \times 10^{-11} T^{0.20}$		200-500	Baulch et al. (2005),est.(N+O3P)
	-			-		2			$5.46 \times 10^{-33} e^{155./T}$	0.40		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
									1.00×10^{-13}	1		
R _n 590b	2	NHa	+	ОН	\rightarrow	$O(^3P)$	+	NH_3	$4.20 \times 10^{-20} \mathrm{T}^{2.30} \mathrm{e}^{140./T}$		300-2000	Baulch et al. (2005)
Continue				011	,	J(1)		3	1 1120/120 1	1	000 2000	Data of all (2000)

	Type				Re	action				k	F_c	T range	Ref.
R_n591a	2	NH ₂	+	NO	\rightarrow	$\rm H_2O$	+	N_2		$8.55 \times 10^{-09} T^{-1.20} e^{106./T}$		600-2200	Baulch et al. (2005)
R_n591b	2	NH ₂	+	NO	\rightarrow	OH	+	N ₂ +	Η	$1.43 \times 10^{-09} \mathrm{T}^{-1.20} \mathrm{e}^{106./T}$		600-2200	Baulch et al. (2005)
R_n591c	2	NH_2	+	NO	\rightarrow	OH	+	N_2H		$1.43 \times 10^{-09} \mathrm{T}^{-1.20} \mathrm{e}^{106./T}$		600-2200	Baulch et al. (2005)
$R_n 592$	2	NH_2	+	HNO	\rightarrow	NO	+	NH_3		$6.02 \times 10^{-17} T^{1.63} e^{630./T}$		300-5000	Mebel et al. (1996)
$R_n 593$	2	NH_3	+	$O(^{1}D)$	\rightarrow	OH	+	NH_2		2.50×10^{-10}		200-300	Sander et al. (2011)
$R_n 594$	2	NH_3	+	OH	\rightarrow	H_2O	+	NH_2		$1.70 \times 10^{-12} e^{-710./T}$		200-300	Sander et al. (2011)
$R_n 595a$	2	CN	+	$O(^{3}P)$	\rightarrow	CO	+	N		7.50×10^{-12}		10-300	Wakelam et al. (2015)
$R_n 595b$	2	CN	+	$O(^{3}P)$	\rightarrow	CO	+	$N(^2D)$		4.25×10^{-11}		10-300	Wakelam et al. (2015)
$R_n 596a$	2	CN	+	OH	\rightarrow	NCO	+	H		6.70×10 ⁻¹¹		1250-3000	Baulch et al. (2005)
$R_n 596b$	2	$_{\rm CN}$	+	OH	\rightarrow	$O(^{3}P)$	+	HCN		$1.00 \times 10^{-11} e^{-1000./T}$		1250-3000	Baulch et al. (2005)
$R_n 597$	2	CN	+	HCO	\rightarrow	CO	+	HCN		1.00×10^{-10}		500-2500	Tsang (1992)
$R_n 598$	2	$_{\rm CN}$	+	H_2CO	\rightarrow	HCO	+	HCN		$2.81 \times 10^{-19} \mathrm{T}^{2.72} \mathrm{e}^{718./T}$		297-673	Yu and Lin (1993)
$R_n 599$	4	$^{\rm CN}$	+	NO	\rightarrow	ONCN				$2.04 \times 10^{-10} \mathrm{T}^{-0.30}$		99-450	Sims et al. (1993),est.(AtomNumber
										$4.24 \times 10^{-25} \mathrm{T}^{-2.10}$	0.40		
										2.00×10 ⁻¹¹			
$R_n 600$	2	$^{\rm CN}$	+	HNO	\rightarrow	NO	+	HCN		3.00×10^{-11}		500-2500	Tsang (1992)
$R_n 601$	2	$^{\rm CN}$	+	NCO	\rightarrow	CO	+	CN_2		3.01×10^{-11}		500-2500	Tsang (1992)
$R_n 602$	2	HCN	+	OH	\rightarrow					$1.20 \times 10^{-13} e^{-400./T}$		200-300	Sander et al. (2011)
R_n603a	2	H_2CN	+	$O(^{3}P)$	\rightarrow	OH	+	HCN		4.00×10^{-11}		-	Dobrijevic et al. (2014)
R_n603b	2	H_2CN	+	$O(^{3}P)$	\rightarrow	OH	+	HNC		1.00×10^{-11}		-	Dobrijevic et al. (2014)
R_n603c	2	H_2CN	+	$O(^{3}P)$	\rightarrow	HNCO	+	H		5.00×10 ⁻¹¹		-	Dobrijevic et al. (2014)
$R_n 604$	2	H_2CN	+	OH	\rightarrow					7.70×10^{-12}		296	Nizamov and Dagdigian (2003)
$R_n 605$	2	C_2N	+	$O(^{3}P)$	\rightarrow	CO	+	CN		6.00×10 ⁻¹²		298	Woodall et al. (2007)
$R_n 606$	2	C_3N	+	$O(^{3}P)$	\rightarrow	CO	+	C_2N		1.00×10 ⁻¹⁰		10-300	Wakelam et al. (2015)
R_n607a	2	HCCO	+	NO	\rightarrow	HNCO	+	CO		$8.00 \times 10^{-11} e^{-350./T}$		300-2000	Baulch et al. (2005)
$R_n 607b$	2	HCCO	+	NO	\rightarrow	CO_2	+	HCN		$2.00 \times 10^{-11} e^{-350./T}$		300-2000	Baulch et al. (2005)
R_n608a	2	NCO	+	NO	\rightarrow	CO_2	+	N_2		$1.20 \times 10^{-05} \mathrm{T}^{-2.08} \mathrm{e}^{-441./T}$		300-2700	Baulch et al. (2005)
R_n608b	2	NCO	+	NO	\rightarrow	CO	+	$N_2^{-}O$		$3.30 \times 10^{-07} \mathrm{T}^{-1.93} \mathrm{e}^{-400./T}$		300-2700	Baulch et al. (2005)

Table B.16: Positive ion reaction list.

	Type					Reaction					k	Ref.
$R_{cn}1$	2	СН	+	O(3P)	\rightarrow	HCO ⁺	+	e			$4.20\times10^{-13}e^{850.0/T}$	Baulch et al. (2005)
$R_{cn}2a$	2	H ⁺	+	H ₂	\rightarrow	H_3^+	+	hv			1.30×10^{-16}	McEwan and Anicich
$R_{cn}2b$	3	H ⁺	+	H ₂	\rightarrow	H_3^+					1.00×10^{-10}	McEwan and Anicich
CH .				2		3					3.00×10^{-25}	
$R_{cn}3a$	2	H ⁺	+	CH_4	\rightarrow	CH_2^+	+	H_2			3.40×10^{-09}	McEwan and Anicich
$R_{cn}3b$	2	H ⁺	+	CH ₄	\rightarrow	CH ⁺	+	Η̈́			7.47×10^{-10}	McEwan and Anicich
$R_{cn}4$	2	H ⁺	+	C ₂ H ₂	\rightarrow	C ₂ H ₂ ⁺	+	H			5.40×10^{-10}	McEwan and Anicich
$R_{cn}5a$	2	H ⁺	+	C_2H_4	\rightarrow	$C_2H_4^+$	+	H			9.80×10^{-10}	McEwan and Anicich
$R_{cn}5b$	2	H ⁺	+	C_2H_4	\rightarrow	$C_2H_3^{\frac{1}{2}}$	+	H_2			2.94×10^{-09}	McEwan and Anicich
$R_{cn}5c$	2	H ⁺	+	C_2H_4	\rightarrow	C ₂ H ₂ ⁴	+	H ₂	+	H	9.80×10^{-10}	McEwan and Anicich
$R_{cn}6a$	2	H ⁺	+	C_2H_6	\rightarrow	$C_2H_5^{\frac{1}{2}}$	+	H ₂			2.35×10^{-10}	McEwan and Anicich
$R_{cn}6b$	2	H ⁺	+	C_2H_6	\rightarrow	$C_2H_4^+$	+	$\tilde{\rm H_2}$	+	H	1.41×10^{-09}	McEwan and Anicich
$R_{cn}6c$	2	H ⁺	+	C_2H_6	\rightarrow	$C_2H_3^+$	+	H ₂	+	H_2	2.82×10^{-09}	McEwan and Anicich
$R_{cn}6d$	2	H ⁺	+	C_2H_6	\rightarrow	CH ₃ ⁺	+	\tilde{CH}_{4}		~	2.35×10^{-10}	McEwan and Anicich
$R_{cn}7a$	2	H ⁺	+	CH ₃ CCH	\rightarrow	$C_3H_4^+$	+	Н			$1.50 \times 10^{-09} T^{0.50}$	Wakelam et al. (2015)
$R_{cn}7b$	2	H ⁺	+	CH ₃ CCH	\rightarrow	$c-C_3H_3^+$	+	H_2			$7.50 \times 10^{-10} \text{ T}^{0.50}$	Wakelam et al. (2015)
$R_{cn}7c$	2	H ⁺	+	CH ₃ CCH	\rightarrow	$1-C_3H_3^{\mp}$	+	H ₂			$7.50 \times 10^{-10} \mathrm{T}^{0.50}$	Wakelam et al. (2015)
$R_{cn}8a$	2	H ⁺	+	C_4H_2	\rightarrow	$C_4H_2^+$	+	Η			2.00×10^{-09}	Wakelam et al. (2015)
$R_{cn}8b$	2	H ⁺	+	C_4H_2	\rightarrow	C_4H^+	+	H_2			2.00×10^{-09}	Wakelam et al. (2015)
$R_{cn}9a$	2	H ⁺	+	C_5H_4	\rightarrow	$C_5H_4^+$	+	H			$2.36 \times 10^{-09} \mathrm{T}^{0.50}$	Wakelam et al. (2015)
$R_{cn}9b$	2	H ⁺	+	C_5H_4	\rightarrow	$C_5H_3^+$	+	H_2			$2.36 \times 10^{-09} \mathrm{T}^{0.50}$	Wakelam et al. (2015)
$R_{cn}10a$	2	H ⁺	+	C_6H_2	\rightarrow	$C_6H_2^+$	+	H			2.00×10^{-09}	Wakelam et al. (2015)
$R_{cn}10b$	2	H ⁺	+	C_6H_2	\rightarrow	C_6H^+	+	H_2			2.00×10^{-09}	Wakelam et al. (2015)
$R_{cn}11a$	2	H ⁺	+	C_7H_4	\rightarrow	$C_7H_4^+$	+	H			$2.92 \times 10^{-09} \mathrm{T}^{0.50}$	Wakelam et al. (2015)
$R_{cn}11b$	2	H ⁺	+	C_7H_4	\rightarrow	$C_7H_3^+$	+	H_2			$2.92\times10^{-09}T^{0.50}$	Wakelam et al. (2015)
$R_{cn}12a$	2	H ⁺	+	C_8H_2	\rightarrow	$C_8H_2^+$	+	H			2.00×10^{-09}	Wakelam et al. (2015)
$R_{cn}12b$	2	H ⁺	+	C_8H_2	\rightarrow	C_8H^+	+	H_2			2.00×10^{-09}	Wakelam et al. (2015)
$R_{cn}13$	2	H ⁺	+	NH_3	\rightarrow	NH_3^+	+	H			4.94×10^{-09}	Anicich (1993)
$R_{cn}14$	2	H ⁺	+	HCN	\rightarrow	HCN ⁺	+	H			1.10×10^{-08}	McEwan and Anicich
$R_{cn}15$	2	H ⁺	+	CH_2NH	\rightarrow	HCNH ⁺	+	H_2			1.40×10^{-08}	Su-Chesnavich
$R_{cn}16a$	2	H ⁺	+	CH_3NH_2	\rightarrow	$CH_3NH_2^+$	+	H			$2.60 \times 10^{-09} \mathrm{T}^{0.50}$	Wakelam et al. (2015)
$R_{cn}16b$	2	H ⁺	+	CH_3NH_2	\rightarrow	$CH_2NH_2^+$	+	H_2			$2.60 \times 10^{-09} \mathrm{T}^{0.50}$	Wakelam et al. (2015)
$R_{cn}17a$	2	H ⁺	+	CH ₃ CN	\rightarrow	$C_2\tilde{H}_3N^{f}$	+	H			8.40×10^{-09}	McEwan and Anicich
$R_{cn}17b$	2	H ⁺	+	CH ₃ CN	\rightarrow	HC,NH+	+	H_2			6.00×10^{-10}	McEwan and Anicich

C	ď.
7	
5	\succeq
_	,

	1											
	Type					Reaction					k	Ref.
$R_{cn}17c$	2	H ⁺	+	CH ₂ CN	\rightarrow	CH ₃ ⁺	+	HCN			3.00×10^{-09}	McEwan and Anicich (200
$R_{cn}18$	2	H ⁺	+	HC ₃ N	\rightarrow	HC ₃ N ⁺	+	H			2.45×10^{-08}	Su-Chesnavich
$R_{cn}19a$	2	H ⁺	+	C_3H_3N	\rightarrow	HC ₃ NH ⁺	+	H_2			$7.50 \times 10^{-09} T^{0.50}$	Wakelam et al. (2015)
$R_{cn}19b$	2	H ⁺	+	C_3H_3N	\rightarrow	$C_3H_3N^+$	+	Η			$7.50 \times 10^{-09} T^{0.50}$	Wakelam et al. (2015)
$R_{cn}20$	2	H ⁺	+	C_4H_3N	\rightarrow	CH ₂	+	HC_3N			$1.85 \times 10^{-08} \mathrm{T}^{0.50}$	Wakelam et al. (2015)
$R_{cn}21$	2	H ⁺	+	HC.N	\rightarrow	HC ₅ N ⁺	+	н			$4.00\times10^{-08}\mathrm{T}^{0.50}$	Wakelam et al. (2015)
$R_{cn}22$	2	H ⁺	+	$O(^{3}P)$	\rightarrow	O^{+3}	+	H			3.75×10^{-10}	Anicich (1993)
$R_{cn}23$	2	H ⁺	+	H ₂ O	\rightarrow	H ₂ O ⁺	+	H			6.90×10^{-09}	McEwan and Anicich (200
$R_{cn}24a$	2	H ⁺	+	H ₂ CO	\rightarrow	$\tilde{CH}_{2}O^{+}$	+	H			7.86×10^{-09}	Su-Chesnavich
$R_{cn}24b$	2	H ⁺	+	H ₂ CO	\rightarrow	HCO^{+}	+	H_2			7.86×10^{-09}	Su-Chesnavich
$R_{cn}25$	2	H ⁺	+	CŌ,	\rightarrow	HCO^{+}	+	$O(^3P)$			3.80×10^{-09}	Anicich (1993)
$R_{cn}26$	2	H ₂ ⁺	+	H	\rightarrow	H^+	+	H_2			6.40×10^{-10}	McEwan and Anicich (200
$R_{cn}27$	2	H ₂ ⁷	+	H_2	\rightarrow	H_3^+	+	Η			2.00×10^{-09}	McEwan and Anicich (200
$R_{cn}28a$	2	H ₂ ⁺	+	CH_A	\rightarrow	CH ₅ ⁺	+	H			1.14×10^{-10}	McEwan and Anicich (200
$R_{cn}28b$	2	$H_2^{\overline{4}}$	+	CH_4	\rightarrow	CH_4^+	+	H_2			1.41×10^{-09}	McEwan and Anicich (200
$R_{cn}28c$	2	H ₂ ⁺	+	CH_4	\rightarrow	CH ¹	+	H ₂	+	H	2.28×10^{-09}	McEwan and Anicich (200
$R_{cn}29a$	2	H ²	+	C_2H_2	\rightarrow	$C_2H_3^+$	+	ΗŽ			4.77×10^{-10}	McEwan and Anicich (200
$R_{cn}29b$	2	H ⁷	+	C_2H_2	\rightarrow	C2H2	+	H_2			4.82×10^{-09}	McEwan and Anicich (200
$R_{cn}30a$	2	H ²	+	C_2H_4	\rightarrow	$C_{2}^{2}H_{4}^{+}$	+	H ₂			2.20×10^{-09}	McEwan and Anicich (200
$R_{cn}30b$	2	H2	+	C_2H_4	\rightarrow	$C_{2}^{2}H_{3}^{+}$	+	H ₂	+	H	1.81×10^{-09}	McEwan and Anicich (200
$R_{cn}30c$	2	$H_2^{\tilde{+}}$	+	C_2H_4	\rightarrow	$C_{2}^{2}H_{2}^{+}$	+	H ₂	+	H_2	8.82×10^{-10}	McEwan and Anicich (200
$R_{cn}31a$	2	H ²	+	C_2H_6	\rightarrow	$C_{2}^{2}H_{6}^{+}$	+	H ₂		-	2.94×10^{-10}	McEwan and Anicich (200
$R_{cn}31b$	2	H ⁷	+	C_2H_6	\rightarrow	$C_{2}^{2}H_{5}^{+}$	+	H ₂	+	H	1.37×10^{-09}	McEwan and Anicich (200
$R_{cn}31c$	2	H [‡]	+	C_2H_6	\rightarrow	$C_{2}^{2}H_{4}^{2}$	+	H_2^2	+	H_2	2.35×10^{-09}	McEwan and Anicich (200
$R_{cn}31d$	2	H ₂ ⁺	+	C_2H_6	\rightarrow	$C_{2}^{2}H_{3}^{+}$	+	H ₂	+	H_3	6.86×10^{-10}	McEwan and Anicich (200
$R_{cn}31e$	2	H ₂ [‡]	+	C_2H_6	\rightarrow	$C_{2}^{2}H_{2}^{\frac{3}{2}}$	+	H_2^2	+	H_4	1.96×10^{-10}	McEwan and Anicich (200
$R_{cn}32$	2	H ₂ ⁷	+	N N	\rightarrow	NH ⁺	+	ΗŽ		•	1.90×10^{-09}	Wakelam et al. (2015)
$R_{cn}33$	2	H [‡]	+	NH_3	\rightarrow	NH_2^+	+	H_2			5.70×10^{-09}	Anicich (1993)
$R_{cn}34$	2	H2	+	HCN	\rightarrow	HCN+	+	H_2^2			1.38×10^{-08}	Su-Chesnavich
$R_{cn}35$	2	H ²	+	N ₂	\rightarrow	N_0H^+	+	н			2.00×10^{-09}	McEwan and Anicich (200
$R_{cn}36a$	2	H2+	+	H ₂ O	\rightarrow	H ₃ O+	+	Н			3.43×10^{-09}	McEwan and Anicich (200
$R_{cn}36b$	2	H ₂ ⁺	+	H ₂ O	<i>,</i>	H ₂ O ⁺	+	H ₂			3.87×10 ⁻⁰⁹	McEwan and Anicich (200
$R_{cn}37$	2	H ₂ ⁺	+	CO	\rightarrow	HCO ⁺	+	H			2.90×10 ⁻⁰⁹	McEwan and Anicich (200
R _{cn} 38a	2	H ₂ ⁺	+	H,CO	<i>,</i>	CH ₂ O ⁺	+	H ₂			5.65×10 ⁻⁰⁹	Su-Chesnavich
$R_{cn}38b$	2	H ₂ ⁺	+	H ₂ CO	<i>.</i>	HCO ⁺	+	H ₂	+	Н	5.65×10 ⁻⁰⁹	Su-Chesnavich
$R_{cn}39$	2	H ²	+	CO ₂	$\stackrel{'}{\rightarrow}$	OCOH+	+	H H	'		2.35×10 ⁻⁰⁹	Anicich (1993)
Continued				J U 2	,	50011					1 2.00 / 10	1

c	٠
ĭ	•
-	≍

	Type					Reaction					k	Ref.
$R_{cn}40$	3	H ₃ ⁺	+	${\rm H}_2$	\rightarrow	H_5^+					$\begin{array}{ c c c c c }\hline 1.00 \times 10^{-10} \\ 9.00 \times 10^{-30} \\ \hline \end{array}$	McEwan and Anicich (200
$R_{cn}41$	2	H ₃ ⁺ H ₃ ⁺	+	CH_4	\rightarrow	CH_5^+	+	H_2			2.40×10 ⁻⁰⁹	McEwan and Anicich (200
$R_{cn}42$	2	H ⁴	+	C_2H_2	\rightarrow	$C_2H_3^+$	+	H_2			3.20×10^{-09}	McEwan and Anicich (200
$R_{cn}43a$	2	H ⁺	+	C_2H_4	\rightarrow	$C_2H_3^+$	+	H ₂	+	H_2	2.03×10^{-09}	McEwan and Anicich (200
$R_{cn}43b$	2	H ⁴	+	C_2H_4	\rightarrow	C ₂ H ₅ ⁴	+	H ₂		-	8.70×10^{-10}	McEwan and Anicich (200
$R_{cn}44$	2	H ⁴	+	C_2H_6	\rightarrow	$C_2H_5^+$	+	H ₂	+	H_2	2.90×10^{-09}	McEwan and Anicich (200
$R_{cn}45a$	2	H ⁴	+	CH ₃ CCH	\rightarrow	$C_{3}^{2}H_{5}^{4}$	+	H ₂		-	2.10×10^{-09}	McEwan and Anicich (200
$R_{cn}45b$	2	H ⁴	+	CH ₃ CCH	\rightarrow	$C_2H_3^+$	+	\tilde{CH}_4			9.00×10^{-10}	McEwan and Anicich (200
$R_{cn}46$	2	H ²	+	CH, CCH,	\rightarrow	c-C ₂ H ₂ ⁺	+	H_2	+	H_2	2.90×10^{-09}	Milligan et al. (2002)
$R_{cn}47a$	2	H ²	+	$C_3\tilde{H}_6$	\rightarrow	$C_2H_3^{\frac{1}{4}}$	+	CH_4	+	H_2^2	9.30×10^{-10}	McEwan and Anicich (200
$R_{cn}47b$	2	H ²	+	C_3H_6	\rightarrow	$C_{3}^{2}H_{5}^{+}$	+	H_2	+	H ₂	2.17×10^{-09}	McEwan and Anicich (200
R _{cn} 48	2	H ²	+	C_3H_8	\rightarrow	$C_{3}^{3}H_{9}^{\frac{3}{2}}$	+	H ₂		2	3.00×10^{-09}	McEwan and Anicich (200
R _{cn} 49	2	H ²	+	C_4H_2	\rightarrow	$C_4^3H_3^+$	+	H ₂			2.60×10^{-09}	McEwan and Anicich (200
$R_{cn}50$	2	H ²	+	C_5H_4	\rightarrow	$C_5^4H_5^{\frac{4}{1}}$	+	H ₂			$2.76 \times 10^{-09} \text{T}^{0.50}$	Wakelam et al. (2015)
R _{cn} 51	2	H ²	+	C_6H_2	\rightarrow	$C_{6}^{5}H_{3}^{+}$	+	H ₂			2.00×10 ⁻⁰⁹	Wakelam et al. (2015)
$R_{cn}52$	2	H ⁺	+	C_6H_6	\rightarrow	$C_6^{6-3}H_7^+$	+	H ₂			3.90×10 ⁻⁰⁹	Wakelam et al. (2015)
$R_{cn}53$	2	H ²	+	C_7H_4	\rightarrow	$C_7^6H_5^7$	+	H_2^2			$3.40 \times 10^{-09} T^{0.50}$	Wakelam et al. (2015)
R _{cn} 54a	2	H ⁺	+	C_7H_8	\rightarrow	C ₇ H ₉ ⁺	+	H ₂			2.93×10 ⁻⁰⁹	Milligan et al. (2002)
$R_{cn}54b$	2	H ₃ ⁺	+	C_7H_8	\rightarrow	$C_7H_7^+$	+	H_2	+	H_2	7.80×10 ⁻¹⁰	Milligan et al. (2002)
$R_{cn}54c$	2	H.+	+	C_7H_8	\rightarrow	$C_{6}H_{5}^{+}$	+	CH_A	+	H ₂	1.95×10 ⁻¹⁰	Milligan et al. (2002)
$R_{cn}55$	2	H ₂ ⁺	+	C_8H_2	\rightarrow	$C_8H_3^+$	+	H ₂	'	2	2.00×10 ⁻⁰⁹	Wakelam et al. (2015)
$R_{cn}56$	2	H ₂ ⁺	+	NH ₂	\rightarrow	NH ⁺	+	H ₂			4.40×10 ⁻⁰⁹	Anicich (1993)
R _{cn} 57	2	H ₃ ⁺	+	HCN	\rightarrow	HCNH ⁺	+	H ₂			7.50×10 ⁻⁰⁹	McEwan and Anicich (200
R _{cn} 58a	2	H ₃ ⁺	+	CH ₃ NH ₂	<i>→</i>	CH ₃ NH ₃ ⁺	+	H ₂			1.60×10 ⁻¹⁰	Anicich (1993)
$R_{cn}58b$	2	H ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₂ ⁺	+	H ₂	+	Н	7.00×10 ⁻¹¹	Anicich (1993)
$R_{cn}58c$	2	H ₃ ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₂ NH ₂ ⁺	+	H_2	+	H_2	7.60×10 ⁻¹⁰	Anicich (1993)
R _{cn} 58d	2	H ₃ ⁺	+	CH ₂ NH ₂	<i>→</i>	CH ₂ ⁺	+	NH ₂	+	H ₂	1.00×10 ⁻¹¹	Anicich (1993)
R _{cn} 59	2	H ₃ ⁺	+	CH ₃ CN	\rightarrow	C ₂ H ₃ NH ⁺	+	H ₂	'	2	8.90×10 ⁻⁰⁹	McEwan and Anicich (200
$R_{cn}60$	2	H. ³	+	HC ₃ N	<i>→</i>	HC ₃ NH ⁺	+	H ₂			9.80×10 ⁻⁰⁹	McEwan and Anicich (200
$R_{cn}61a$	2	H ₂	+	C_3H_3N	\rightarrow	C ₃ H ₃ NH ⁺	+	H_2			8.19×10 ⁻⁰⁹	Milligan et al. (2002)
$R_{cn}61b$	2	H ₃ ⁺	+	C_3H_3N	<i>→</i>	HCNH ⁺	+	C_2H_2	+	H_2	9.10×10 ⁻¹⁰	Milligan et al. (2002)
$R_{cn}62$	2	H ⁺ ₃	+	C_3H_5N	$\stackrel{'}{\rightarrow}$	C ₂ H _E NH ⁺	+	H ₂	'	2	1.00×10 ⁻⁰⁹	Wincel et al. (1989)
$R_{cn}63$	2	H ₃	+	C_4H_3N	$\stackrel{'}{\rightarrow}$	$C_4H_3NH^+$	+	H ₂			$1.08 \times 10^{-08} T^{0.50}$	Wakelam et al. (2015)
$R_{cn}64$	2	H ₃ ⁺	+	$HC_{\kappa}N$	\rightarrow	HC_5NH^+	+	H ₂			$2.30 \times 10^{-08} \text{ T}^{0.50}$	Wakelam et al. (2015)
$R_{cn}65$	2	H ₂	+	N ₂	\rightarrow	N ₂ H ⁺	+	H ₂			1.86×10 ⁻⁰⁹	McEwan and Anicich (200
Continued				112	7	11211	г	112			1.00/10	McLwan and America (200

,		
٠		ĭ
F.	`	۲

	Type					Reaction					k	Ref.
$R_{cn}66$	2	H ₃ ⁺	+	C_2N_2	\rightarrow	$C_2N_2H^+$	+	H_2			2.80×10^{-09}	McEwan and Anicich (200
$R_{cn}67a$	2	H ₃ ⁺	+	$O(^{3}P)$	\rightarrow	OH^+	+	H_2			8.40×10^{-10}	Milligan and McEwan (20
$R_{cn}67b$	2	H ₃ ⁺	+	$O(^{3}P)$	\rightarrow	H_2O^+	+	H			3.60×10^{-10}	Milligan and McEwan (20
$R_{cn}68$	2	H ₃ ⁺	+	H_2O	\rightarrow	$H_3^-O^+$	+	H_2			5.30×10^{-09}	McEwan and Anicich (200
$R_{cn}69$	2	H_3^{+}	+	CO	\rightarrow	HCO ⁺	+	H_2			1.74×10^{-09}	McEwan and Anicich (200
$R_{cn}70$	2	H ₃ ⁺	+	H ₂ CO	\rightarrow	CH ₂ OH ⁺	+	H ₂			6.24×10^{-09}	Anicich (1993)
$R_{cn}71$	2	H ⁴	+	CO ₂	\rightarrow	$OCOH^+$	+	H_2			2.50×10^{-09}	Anicich (1993)
$R_{cn}72$	2	H [‡]	+	CH_4	\rightarrow	CH_5^+	+	H_2	+	H_2	2.00×10^{-09}	Capone et al. (1976)
$R_{cn}73a$	2	C ⁺	+	H ₂	\rightarrow	CH ⁺	+	Η		-	1.20×10^{-16}	McEwan and Anicich (200
$R_{cn}73b$	3	C ⁺	+	H ₂	\rightarrow	CH_2^+					1.00×10^{-10}	McEwan and Anicich (200
				-		-					2.10×10^{-29}	,
$R_{cn}74a$	2	C ⁺	+	CH_4	\rightarrow	$C_2H_2^+$	+	H_2			3.64×10^{-10}	McEwan and Anicich (200
$R_{cn}74b$	2	C ⁺	+	CH ₄	\rightarrow	$C_2H_3^+$	+	Η			9.36×10^{-10}	McEwan and Anicich (200
$R_{cn}75$	2	C ⁺	+	C,H,	\rightarrow	C ₃ H ⁴	+	H			2.63×10^{-09}	McEwan and Anicich (200
$R_{cn}76a$	2	C ⁺	+	C_2H_4	\rightarrow	$C_2H_3^+$	+	CH			1.20×10^{-10}	McEwan and Anicich (200
$R_{cn}76b$	2	C ⁺	+	C_2H_4	\rightarrow	$C_2H_4^+$	+	C			2.25×10^{-10}	McEwan and Anicich (200
$R_{cn}76c$	2	C ⁺	+	C_2H_4	\rightarrow	$C_3^2H^{\frac{7}{4}}$	+	H_2	+	H	7.50×10^{-11}	McEwan and Anicich (200
$R_{cn}76d$	2	C ⁺	+	C_2H_4	\rightarrow	$C_{3}^{3}H_{2}^{+}$	+	H ₂			4.35×10^{-10}	McEwan and Anicich (200
$R_{cn}76e$	2	C ⁺	+	C_2H_4	\rightarrow	$c - C_3 H_3^+$	+	Η			6.30×10^{-10}	McEwan and Anicich (200
$R_{cn}77a$	2	C ⁺	+	C_2H_6	\rightarrow	$C_2H_2^+$	+	CH_4			8.25×10^{-11}	McEwan and Anicich (200
$R_{cn}77b$	2	C ⁺	+	C_2H_6	\rightarrow	$C_{2}^{2}H_{3}^{+}$	+	CH ₃			4.95×10^{-10}	McEwan and Anicich (200
$R_{cn}77c$	2	C ⁺	+	C_2H_6	\rightarrow	$C_2H_4^+$	+	3CH_2			1.16×10^{-10}	McEwan and Anicich (200
$R_{cn}77d$	2	C ⁺	+	C_2H_6	\rightarrow	$C_{2}^{2}H_{5}^{+}$	+	CH			2.31×10^{-10}	McEwan and Anicich (200
$R_{cn}77e$	2	C ⁺	+	C_2H_6	\rightarrow	$C_3H_2^{\uparrow}$	+	H_2	+	H_2	8.25×10^{-12}	McEwan and Anicich (200
$R_{cn}77f$	2	C ⁺	+	C_2H_6	\rightarrow	c-C ₃ H ₃ ⁺	+	H ₂	+	Η̈́	7.10×10^{-10}	McEwan and Anicich (200
R _{cn} 78a	2	C+	+	CH ₃ CCH	\rightarrow	$C_4H_2^{\frac{4}{7}}$	+	H ₂			5.70×10^{-10}	McEwan and Anicich (200
R _{cn} 78b	2	C ⁺	+	СНССН	\rightarrow	$C_3H_4^{+}$	+	C			5.70×10^{-10}	McEwan and Anicich (200
$R_{cn}78c$	2	C ⁺	+	CH ₂ CCH	\rightarrow	c-C ₃ H ₃ ⁺	+	CH			3.80×10^{-10}	McEwan and Anicich (200
R _{cn} 78d	2	C ⁺	+	CH ₃ CCH	\rightarrow	$C_2H_2^+$	+	C_2H_2			1.90×10^{-10}	McEwan and Anicich (200
R _{cn} 78e	2	C ⁺	+	CH ₂ CCH	\rightarrow	$C_{2}^{2}H_{3}^{+}$	+	C_2H^2			1.90×10^{-10}	McEwan and Anicich (200
R _{cn} 79a	2	C ⁺	+	СН ССН	\rightarrow	$C_4^2H_2^+$	+	H_2			5.60×10^{-10}	Bohme et al. (1982)
R _{cn} 79b	2	C ⁺	+	CH ₂ CCH ₂	\rightarrow	c-C ₃ H ₃ ⁺	+	CH			1.75×10^{-10}	Bohme et al. (1982)
R _{cn} 79c	2	C ⁺	+	CH ₂ CCH ₂	\rightarrow	l-C ₃ H ₃ ²	+	CH			1.75×10^{-10}	Bohme et al. (1982)
R _{cn} 79d	2	C ⁺	+	CH ₂ CCH ₂	\rightarrow	$C_2H_2^+$	+	C_2H_2			2.80×10 ⁻¹⁰	Bohme et al. (1982)
R_{cn} 79e	2	C+	+	CH ₂ CCH ₂	\rightarrow	$C_{3}H_{4}^{+}$	+	C			2.10×10 ⁻¹⁰	Bohme et al. (1982)
R _{cn} 80a	2	C ⁺	+	C ₃ H ₆	\rightarrow	$C_{2}H_{3}^{+}$	+	C_2H_3			6.00×10 ⁻¹⁰	McEwan and Anicich (200
Continued		-		36		23		~23			1	

٠	٠
ĭ	3
'n	7

	TP						Reaction					1.	Ref.
	Type											k	Ref.
$R_{cn}80b$	2	C+	-	+	C_3H_6	\rightarrow	$C_3H_5^+$	+	CH			4.00×10^{-10}	McEwan and Anicich (20
$R_{cn}80c$	2	C ⁺	-	+	C_3H_6	\rightarrow	$c - C_3 H_3^+$	+	CH ₃			3.00×10^{-10}	McEwan and Anicich (20
$R_{cn}80d$	2	C ⁺		+	C_3H_6	\rightarrow	$C_2H_2^+$	+	C_2H_4			3.00×10^{-10}	McEwan and Anicich (20
$R_{cn}80e$	2	C ⁺	-	+	C_3H_6	\rightarrow	$C_3H_6^+$	+	C			2.00×10^{-10}	McEwan and Anicich (20
$R_{cn}80f$	2	C ⁺	-	+	C_3H_6	\rightarrow	$C_4H_3^+$	+	H_2	+	H	2.00×10^{-10}	McEwan and Anicich (20
R _{cn} 81a	2	C ⁺	-	+	C_3H_8	\rightarrow	$C_2^{\dagger}H_3^{\ddagger}$	+	C_2H_5			6.30×10^{-10}	McEwan and Anicich (20
$R_{cn}81b$	2	C ⁺	-	+	C_3H_8	\rightarrow	$C_3^2H_7^{4}$	+	CH			5.40×10^{-10}	McEwan and Anicich (20
R _{cn} 81c	2	C ⁺		+	C_3H_8	\rightarrow	$c - C_3 H_3^+$	+	CH_4	+	H	3.60×10^{-10}	McEwan and Anicich (20
$R_{cn}81d$	2	C ⁺		+	C_3H_8	\rightarrow	$C_3H_8^+$	+	C			1.80×10^{-10}	McEwan and Anicich (20
$R_{cn}81e$	2	C ⁺	-	+	C_3H_8	\rightarrow	$C_4^{3}H_5^{4}$	+	H_2	+	H	9.00×10^{-11}	McEwan and Anicich (20
R _{cn} 82a	2	C ⁺		+	C_4H_2	\rightarrow	C_5H^+	+	Η̈́			1.45×10^{-09}	McEwan and Anicich (20
R _{cn} 82b	2	C ⁺	-	+	$C_4^{\dagger}H_2^{2}$	\rightarrow	$C_4H_2^+$	+	C			1.30×10^{-09}	McEwan and Anicich (20
$R_{cn}82c$	2	C ⁺		+	C_4H_2	\rightarrow	C ₃ H [‡]	+	C_2H			1.45×10^{-10}	McEwan and Anicich (20
$R_{cn}83a$	2	C ⁺	-	+	C_5H_4	\rightarrow	$C_5^{'}H_3^{+}$	+	CH			$4.93 \times 10^{-10} \text{T}^{0.50}$	Wakelam et al. (2015)
R _{cn} 83b	2	C ⁺	-	+	C_5H_4	\rightarrow	$C_6H_2^{\ddagger}$	+	H_2			$4.93 \times 10^{-10} T^{0.50}$	Wakelam et al. (2015)
$R_{cn}83c$	2	C ⁺	-	+	C_5H_4	\rightarrow	$C_6H_3^{\frac{7}{4}}$	+	Η̈́			$4.93 \times 10^{-10} T^{0.50}$	Wakelam et al. (2015)
R _{cn} 84a	2	C ⁺		+	C_6H_2	\rightarrow	$C_7^{\frac{4}{7}}$	+	H_2			1.20×10^{-09}	Wakelam et al. (2015)
$R_{cn}84b$	2	C ⁺		+	C_6H_2	\rightarrow	C ₇ H ⁺	+	Η			1.20×10^{-09}	Wakelam et al. (2015)
$R_{cn}85a$	2	C ⁺		+	C_7H_4	\rightarrow	$C_7H_3^+$	+	CH			$9.00 \times 10^{-10} \mathrm{T}^{0.50}$	Wakelam et al. (2015)
$R_{cn}85b$	2	C ⁺	-	+	C_7H_4	\rightarrow	$C_8H_2^{4}$	+	H_2			$9.00 \times 10^{-10} T^{0.50}$	Wakelam et al. (2015)
$R_{cn}86a$	2	C ⁺		+	C_6H_6	\rightarrow	$C_6H_6^{+}$	+	C			1.61×10^{-09}	Bohme et al. (1982)
$R_{cn}86b$	2	C ⁺	-	+	C_6H_6	\rightarrow	$C_5H_3^{\downarrow}$	+	C_2H_3			4.08×10^{-10}	Bohme et al. (1982)
$R_{cn}86c$	2	C ⁺		+	C_6H_6	\rightarrow	$C_7H_5^+$	+	H			2.40×10^{-10}	Bohme et al. (1982)
$R_{cn}86d$	2	C ⁺	-	+	C_6H_6	\rightarrow	$c-C_3H_3^+$	+	C_4H_3			1.44×10^{-10}	Bohme et al. (1982)
R _{cn} 87a	2	C ⁺		+	C ₈ H ₂	\rightarrow	$CXHYNZ^{+}$	+	H ₂			1.20×10^{-09}	Wakelam et al. (2015)
R _{cn} 87b	2	C ⁺		+	C_8H_2	\rightarrow	$CXHYNZ^{+}$	+	Η̈́			1.20×10^{-09}	Wakelam et al. (2015)
$R_{cn}88a$	2	C ⁺		+	NH ₃	\rightarrow	NH_3^+	+	C			7.36×10^{-10}	Anicich (1993)
$R_{cn}88b$	2	C ⁺	-	+	NH_3	\rightarrow	HCN ⁺	+	H_2			1.15×10 ⁻¹⁰	Anicich (1993)
$R_{cn}88c$	2	C ⁺	-	+	NH_3	\rightarrow	$HCNH^{+}$	+	Н			1.45×10^{-09}	Anicich (1993)
$R_{cn}89$	2	C ⁺	-	+	HCN	\rightarrow	C_2N^+	+	H			2.95×10^{-09}	McEwan and Anicich (20
$R_{cn}90a$	2	C ⁺	-	+	CH ₃ NH ₂	\rightarrow	CH ₃ ⁺	+	HCN	+	H	3.20×10^{-11}	Anicich (1993)
$R_{cn}90b$	2	C ⁺	-	+	CH ₃ NH ₂	\rightarrow	HCNH ⁺	+	CH_3			9.60×10^{-11}	Anicich (1993)
$R_{cn}90c$	2	C ⁺		+	CH ₃ NH ₂	\rightarrow	$CH_2NH_2^+$	+	CH			8.64×10 ⁻¹⁰	Anicich (1993)
$R_{cn}90d$	2	C ⁺	-	+	CH ₃ NH ₂	\rightarrow	$CH_3NH_2^+$	+	C			2.21×10^{-09}	Anicich (1993)
$R_{cn}91$	2	C ⁺	-	+	CH ₃ CN	\rightarrow	HC ₃ NH [∓]	+	H			5.60×10^{-09}	McEwan and Anicich (20
$R_{cn}92a$	2	C ⁺	-	+	HC_3N	\rightarrow	C_3^+	+	HCN			2.75×10^{-10}	McEwan and Anicich (20
Continued	on Next	Page			-		~					•	

c	ı	
ĭ		:
F.	•	-

	Туре					Reaction					k	Ref.
R _{cn} 92b	2	C+	+	HC ₂ N	\rightarrow	C ₂ H ⁺	+	CN			3.85×10 ⁻⁰⁹	McEwan and Anicich (2007)
R _{cn} 92c	2	C ⁺	+	HC ₃ N	\rightarrow	C ₂ N ⁺	+	C_2H			1.10×10^{-10}	McEwan and Anicich (2007)
R_{cn} 92d	2	C ⁺	+	HC ₃ N	\rightarrow	$C_4^2N^+$	+	Η̈́			1.26×10^{-09}	McEwan and Anicich (2007)
R _{cn} 93a	2	C ⁺	+	C_3H_3N	\rightarrow	$C_{3}^{4}H_{2}^{+}$	+	HCN			9.84×10^{-10}	Petrie et al. (1991a), Petrie et al. (1992)
R _{cn} 93b	2	C ⁺	+	C_3H_3N	\rightarrow	c-C ₃ H ₃ ⁺	+	CN			1.80×10^{-09}	Petrie et al. (1991a), Petrie et al. (1992)
R _{cn} 93c	2	C ⁺	+	$C_3^3H_3^3N$	\rightarrow	HC ₄ NH ⁺	+	Н			1.19×10^{-09}	Petrie et al. (1991a), Petrie et al. (1992)
R _{cn} 93d	2	C ⁺	+	$C_3^3H_3^3N$	\rightarrow	$C_4H_3N^+$	+	hv			1.23×10^{-10}	Petrie et al. (1991a), Petrie et al. (1992)
R _{cn} 94a	2	C ⁺	+	$C_4^3H_3^3N$	\rightarrow	$C_{2}^{4}H_{3}^{+}$	+	C_3N			$2.90 \times 10^{-09} \text{T}^{0.50}$	Wakelam et al. (2015)
R _{cn} 94b	2	C+	+	C_4H_3N	\rightarrow	$C_4^2H_3^+$	+	CN			$2.90 \times 10^{-09} T^{0.50}$	Wakelam et al. (2015)
R _{cn} 95a	2	C ⁺	+	HC ₅ N	\rightarrow	HC _E N ⁺	+	C			4.36×10 ⁻⁰⁹	Edwards et al. (2009)
R _{cn} 95b	2	C ⁺	+	HC ₅ N	$\stackrel{'}{\rightarrow}$	C ₆ N ⁺	+	H			2.35×10 ⁻⁰⁹	Edwards et al. (2009)
R _{cn} 96a	2	C+	+	C ₂ N ₂	\rightarrow	CNC+	+	CN			2.09×10 ⁻¹⁰	McEwan and Anicich (2007)
R _{cn} 96b	2	C+	+	C_2N_2	\rightarrow	C ₂ N ⁺	+	CN			1.69×10 ⁻⁰⁹	McEwan and Anicich (2007)
R _{cn} 97a	2	C+	+	H ₂ O	\rightarrow	H ₂ O ⁺	+	C			2.40×10 ⁻¹⁰	McEwan and Anicich (2007)
R _{cn} 97b	2	C+	+	H ₂ O	\rightarrow	HCO ⁺	+	H			2.16×10 ⁻⁰⁹	McEwan and Anicich (2007)
R _{cn} 98a	2	C+	+	H ₂ CO	\rightarrow	CH ⁺	+	CO			2.27×10 ⁻⁰⁹	Anicich (1993)
R _{cn} 98b	2	C+	+	H ₂ CO	\rightarrow	HCO+	+	CH			8.40×10 ⁻¹⁰	Anicich (1993)
R _{cn} 98c	2	C ⁺	+	H ₂ CO	\rightarrow	CH ₂ O ⁺	+	C			1.09×10^{-09}	Anicich (1993)
R _{cn} 99a	2	C ⁺	+	co,	\rightarrow	CO [‡]	+	CO			9.90×10^{-10}	Anicich (1993)
R _{cn} 99b	2	C+	+	CO ₂	\rightarrow	CO_2^+	+	C			1.10×10^{-10}	Anicich (1993)
R _{cn} 100	2	CH ⁺	+	H	\rightarrow	C ⁺ 2	+	H_2			$7.84 \times 10^{-10} \text{T}^{0.22}$	Gerlich et al. (2011), Plašil et al. (2011)
R _{cn} 101	2	CH ⁺	+	H ₂	\rightarrow	CH ₂ ⁺	+	H			1.20×10 ⁻⁰⁹	McEwan and Anicich (2007), Gerlich et al.
R _{cn} 102a	2	CH ⁺	+	CH ₄	\rightarrow	C ₂ H ₂ ⁺	+	H_2	+	Н	1.43×10 ⁻¹⁰	McEwan and Anicich (2007)
R _{cn} 102b	2	CH ⁺	+	CH ₄	$\stackrel{'}{\rightarrow}$	$C_2H_3^+$	+	H_2	'		1.09×10 ⁻⁰⁹	McEwan and Anicich (2007)
R _{cn} 102c	2	CH ⁺	+	CH ₄	$\stackrel{'}{\rightarrow}$	C ₂ H ₄ ⁺	+	H			6.50×10 ⁻¹¹	McEwan and Anicich (2007)
R _{cn} 103	2	CH ⁺	+	C ₂ H ₂	\rightarrow	C ₃ H ₂ ⁺	+	Н			2.40×10 ⁻⁰⁹	McEwan and Anicich (2007)
R _{cn} 104	2	CH ⁺	+	C_2H_6	$\stackrel{'}{\rightarrow}$	$CXHYNZ^+$	'	11			2.60×10 ⁻⁰⁹	McEwan and Anicich (2007)
$R_{cn}104$	2	CH ⁺	+	N N	$\stackrel{'}{\rightarrow}$	CN ⁺	+	Н			1.90×10 ⁻¹⁰	McEwan and Anicich (2007)
R _{cn} 106a	2	CH ⁺	+	NH ₃	$\stackrel{'}{\rightarrow}$	HCNH ⁺	+	H_2			1.84×10 ⁻⁰⁹	Anicich (1993)
R _{cn} 106b	2	CH ⁺	+	NH ₂	$\stackrel{'}{\rightarrow}$	NH ₂ ⁺	+	CH			4.59×10 ⁻¹⁰	Anicich (1993)
R _{cn} 106c	2	CH ⁺	+	NH ₃	\rightarrow	NH ₄	+	C			4.05×10 ⁻¹⁰	Anicich (1993)
$R_{cn}100c$	2	CH ⁺	+	HCN	\rightarrow	HCNH ⁺	+	C			2.10×10 ⁻⁰⁹	McEwan and Anicich (2007)
$R_{cn}107a$	2	CH ⁺	+	HCN	\rightarrow	C_2N^+	+	H ₂			4.20×10 ⁻¹⁰	McEwan and Anicich (2007)
$R_{cn}1076$	2	CH ⁺	+	HCN	\rightarrow	HC ₂ N ⁺	+	H ₂			2.80×10 ⁻¹⁰	McEwan and Anicich (2007)
R _{cn} 1076	2	CH ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₂ NH ₂ ⁺	+	³ CH ₂			1.15×10 ⁻⁰⁹	Anicich (1993)
R _{cn} 108b	2	CH ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₂ NH ₂ CH ₃ NH ₂	+	CH ₂			2.30×10 ⁻¹⁰	Anicich (1993) Anicich (1993)
· · cn IUOD	4	Page	+	\cup n ₃ Nn ₂	\rightarrow	OHanna	+	OH			1 2.00 X 10	America (1990)

	Type					Reaction			k	Ref.
R _{cn} 108c	2	CH ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₃ ⁺	+	С	9.20×10 ⁻¹⁰	Anicich (1993)
$R_{cn}109$	3	CH ⁺	+	N ₂	\rightarrow	AdductN+			1.00×10^{-10}	McEwan and Anicich
				2					5.30×10^{-29}	
R _{cn} 110a	2	CH ⁺	+	$O(^{3}P)$	\rightarrow	CO^{+}	+	H	1.75×10^{-10}	Anicich (1993)
R _{cn} 110b	2	CH ⁺	+	$O(^3P)$	\rightarrow	H^{+}	+	CO	1.75×10^{-10}	Anicich (1993)
R _{cn} 111a	2	CH ⁺	+	H ₂ O	\rightarrow	HCO^{+}	+	H_2	1.45×10^{-09}	McEwan and Anicich
R _{cn} 111b	2	CH ⁺	+	H ₂ O	\rightarrow	CH_2O^+	+	н [*]	7.25×10^{-10}	McEwan and Anicich
R _{cn} 111c	2	CH ⁺	+	H ₂ O	\rightarrow	$H_3\tilde{O}^+$	+	C	7.25×10^{-10}	McEwan and Anicich
$R_{cn}112$	2	CH ⁺	+	CŌ	\rightarrow	HCO ⁺	+	C	7.00×10^{-12}	McEwan and Anicich
$R_{cn}113a$	2	CH ⁺	+	H ₂ CO	\rightarrow	CH_2^+	+	CO	9.60×10^{-10}	Anicich (1993)
$R_{cn}113b$	2	CH ⁺	+	H ₂ CO	\rightarrow	HCO^+	+	³ CH ₂	9.60×10^{-10}	Anicich (1993)
$R_{cn}113c$	2	CH ⁺	+	H ₂ CO	\rightarrow	CH ₂ OH ⁺	+	C	9.60×10^{-10}	Anicich (1993)
$R_{cn}113d$	2	CH ⁺	+	H ₂ CO	\rightarrow	CH ₂ CO ⁺	+	H	3.20×10^{-10}	Anicich (1993)
$R_{cn}114$	2	CH ⁺	+	CŌ,	\rightarrow	HCO^+	+	CO	1.27×10^{-09}	Glosík et al. (1993)
$R_{cn}115$	2	CH ₂ ⁺	+	H_2	\rightarrow	CH_3^+	+	H	1.16×10^{-09}	McEwan and Anicich
$R_{cn}116a$	2	CH [∓]	+	CH_A	\rightarrow	$C_2H_4^+$	+	H_2	9.10×10^{-10}	McEwan and Anicich
c _{cn} 116b	2	CH [‡]	+	CH_4	\rightarrow	$C_2H_5^{\frac{1}{2}}$	+	н	3.90×10^{-10}	McEwan and Anicich
$l_{cn}117$	2	CH [‡]	+	C_2H_2	\rightarrow	$c-C_{3}H_{3}^{+}$	+	H	2.50×10^{-09}	McEwan and Anicich
$R_{cn}118$	2	CH ⁷	+	C_2H_6	\rightarrow	$CXHYNZ^+$			2.60×10^{-09}	McEwan and Anicich
$R_{cn}119a$	2	CH [‡]	+	N	\rightarrow	CN^{+}	+	H_2	1.10×10^{-10}	McEwan and Anicich
R _{cn} 119b	2	CH ⁷	+	N	\rightarrow	HCN ⁺	+	н	1.10×10^{-10}	McEwan and Anicich
$R_{cn}120a$	2	CH [‡]	+	NH_3	\rightarrow	NH_4^+	+	CH	8.78×10^{-10}	Anicich (1993)
$R_{cn}120b$	2	CH ⁷	+	NH ₃	\rightarrow	CH ₂ NH ₂ ⁺	+	H	1.78×10^{-09}	Anicich (1993)
$R_{cn}121$	2	CH ²	+	HCN	\rightarrow	HC ₂ NH ²	+	H	1.80×10^{-09}	McEwan and Anicich
R _{cn} 122a	2	CH [‡]	+	CH2NH2	\rightarrow	CH ₂ NH ₂ ⁺	+	CH ₃	1.15×10^{-09}	Anicich (1993)
R _{cn} 122b	2	CH [‡]	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₂ ⁴	+	³CH₂	7.35×10^{-10}	Anicich (1993)
R _{cn} 122c	2	CH ²	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₃ [±]	+	CH	2.10×10^{-10}	Anicich (1993)
$R_{cn}123$	2	CH ²	+	CH, CN	\rightarrow	$C_3\ddot{H}_3N\ddot{H}^+$	+	H	2.58×10^{-09}	Franklin et al. (1966)
$R_{cn}124$	2	CH [‡]	+	HC_3^3N	\rightarrow	HC ₃ NH ⁺	+	CH	4.10×10^{-09}	McEwan and Anicich
$R_{cn}125$	2	CH ²	+	C_3H_5N	\rightarrow	C ₄ H ₅ NH ⁺	+	H	3.12×10^{-09}	Franklin et al. (1966)
$R_{cn}126$	3	CH2	+	N ₂	\rightarrow	CH ⁺ N ₂			1.00×10^{-10}	McEwan and Anicich
-cn	_	2	'	2		22			1.40×10 ⁻²⁸	
$R_{cn}127$	2	CH ₂ ⁺	+	$H_{2}O$	\rightarrow	CH ₂ OH ⁺	+	Н	2.05×10 ⁻⁰⁹	McEwan and Anicich
$R_{cn}128$	3	CH ₂	+	CO	\rightarrow	CH ₂ CO ⁺			1.00×10 ⁻¹⁰	McEwan and Anicich
-cn -=o			'		,	-11200			2.00×10 ⁻²⁷	men and rinden
R _{cn} 129a	2	CH ₂ ⁺	+	H_2CO	\rightarrow	HCO^{+}	+	CH_3	2.81×10 ⁻⁰⁹	Anicich (1993)
Continued			'	2 - 0	,		'	3	1 =	(1000)

Č	J	:
ç	,	٠

	Type					Reaction					k	Ref.
R _{cn} 129b	2	CH ₂ ⁺	+	H ₂ CO	\rightarrow	CH ₂ CO ⁺	+	H ₂			1.65×10^{-10}	Anicich (1993)
R _{cn} 129c	2	CH ²	+	H ₂ CO	\rightarrow	CH ₂ CO ⁺	+	Η̈́			3.30×10^{-10}	Anicich (1993)
$R_{cn}130$	2	CH ₂	+	CÕ.	\rightarrow	CH ₂ O ⁺	+	CO			1.24×10^{-09}	Glosík et al. (1993)
cn 131a	2	CH ₃ ⁺	+	Н,	\rightarrow	$CH_5^{\frac{7}{4}}$	+	hv			$4.04 \times 10^{-16} \text{T}^{2.30} \text{e}^{-30.0/T}$	Wakelam et al. (2015)
c _n 131b	3	CH ₃ ⁺	+	H ₂	\rightarrow	CH ₅					1.00×10^{-10}	McEwan and Anicich (2
] "		2		3					1.10×10^{-28}	`
$c_n 132$	2	CH ₂ ⁺	+	CH_A	\rightarrow	$C_{2}H_{5}^{+}$	+	H_2			1.10×10^{-09}	McEwan and Anicich (2
cn 133a	2	CH ₃	+	C_2H_2	\rightarrow	$c-C_{3}H_{3}^{+}$	+	$\tilde{H_2}$			2.88×10^{-10}	McEwan and Anicich (2
cn 133b	2	CH ⁺	+	C_2H_2	\rightarrow	l−C ₃ H ₃ [∓]	+	H ₂			8.63×10^{-10}	McEwan and Anicich (2
_{cn} 134a	2	CH ₃ ⁺	+	C_2H_4	\rightarrow	$C_2H_3^+$	+	\tilde{CH}_{4}			4.88×10^{-10}	McEwan and Anicich (2
cn 134b	2	CH ₃ ⁺	+	C_2H_4	\rightarrow	$c-C_3H_3^+$	+	Н,	+	H_2	4.24×10^{-11}	McEwan and Anicich (2
cn 134c	2	CH ²	+	C_2H_4	\rightarrow	$C_3H_5^{\frac{1}{4}}$	+	H_2		-	5.41×10^{-10}	McEwan and Anicich (2
cn 135a	2	CH ²	+	C_2H_6	\rightarrow	$C_2H_5^{\downarrow}$	+	\widetilde{CH}_{A}			1.48×10^{-09}	McEwan and Anicich (2
cn 135b	2	CH ²	+	C_2H_6	\rightarrow	$C_3H_5^{4}$	+	H_2	+	H_2	1.57×10^{-10}	McEwan and Anicich (2
cn 135c	2	CH ₃ ⁺	+	C_2H_6	\rightarrow	$C_3H_7^{4}$	+	H_2		-	1.04×10^{-10}	McEwan and Anicich (2
cn 136a	2	CH ⁺	+	CH, CCH	\rightarrow	$C_2H_3^+$	+	C_2H_4			2.85×10^{-10}	McEwan and Anicich (2
cn 136b	2	CH ²	+	CH ₃ CCH	\rightarrow	$C_2H_5^{\frac{1}{2}}$	+	C_2H_2			1.14×10^{-09}	McEwan and Anicich (2
cn 136c	2	CH ₃ ⁺	+	CH2CCH	\rightarrow	$c-C_{3}H_{3}^{+}$	+	CH_{A}			2.85×10^{-10}	McEwan and Anicich (2
cn 136d	2	CH ²	+	CH ₃ CCH	\rightarrow	$C_4H_5^{\frac{1}{4}}$	+	H_2			1.90×10^{-10}	McEwan and Anicich (2
cn 137	2	CH ²	+	C_3H_8	\rightarrow	$C_3^{\dagger}H_7^{\ddagger}$	+	\widetilde{CH}_{A}			1.00×10^{-09}	McEwan and Anicich (2
cn 138a	2	CH ²	+	C_4H_2	\rightarrow	$c - C_3 H_3^+$	+	C_2H_2			1.17×10^{-09}	McEwan and Anicich (2
cn 138b	2	CH ²	+	C_4H_2	\rightarrow	$C_5H_3^{\frac{1}{4}}$	+	H ₂			1.30×10^{-10}	McEwan and Anicich (2
cn 139	2	CH ²	+	C_6H_2	\rightarrow	$C_7H_3^+$	+	H ₂			1.20×10^{-09}	Fondren et al. (2009)
cn 140a	2	CH ²	+	C_6H_6	\rightarrow	$C_5H_5^{4}$	+	C_2H_4			9.40×10^{-11}	Fondren et al. (2009)
cn 140b	2	CH ⁺	+	C_6H_6	\rightarrow	$C_6H_5^+$	+	CH_{A}			5.83×10^{-10}	Fondren et al. (2009)
_{cn} 140c	2	CH ²	+	C_6H_6	\rightarrow	$C_6H_6^{\frac{3}{4}}$	+	CH ₃			3.20×10^{-10}	Fondren et al. (2009)
cn 140d	2	CH ²	+	C_6H_6	\rightarrow	$C_7H_7^+$	+	H ₂			7.33×10^{-10}	Fondren et al. (2009)
cn 140e	2	CH ²	+	C_6H_6	\rightarrow	$C_7H_9^+$	+	hv			1.50×10^{-10}	Fondren et al. (2009)
$c_{cn}141$	2	CH ²	+	C_8H_2	\rightarrow	CXHYNZ ⁺	+	H_2			1.20×10^{-09}	Wakelam et al. (2015)
cn 142a	2	CH ³	+	N 2	\rightarrow	HCN ⁺	+	H ₂			3.35×10^{-11}	McEwan and Anicich (2
cn 142b	2	CH ₂	+	N	\rightarrow	HCNH ⁺	+	H			3.35×10 ⁻¹¹	McEwan and Anicich (2
_{cn} 143a	2	CH ²	+	NH _a	\rightarrow	NH_4^+	+	$^{3}CH_{2}$			2.63×10 ⁻¹⁰	Anicich (1993)
_{cn} 143b	2	CH3	+	NH_3	\rightarrow	CH ₂ NH ₂ ⁺	+	H ₂			1.49×10^{-09}	Anicich (1993)
cn 143c	2	CH ₂ ⁺	+	NH ₂	\rightarrow	CH ₃ NH ₃ ⁺	+	hv			$9.40 \times 10^{-10} \mathrm{T}^{0.90}$	Wakelam et al. (2015)
_{cn} 144a	2	CH ₃	+	HCN	\rightarrow	C ₂ H ₃ NH ⁺	+	hv			2.00×10 ⁻¹⁰	McEwan and Anicich (2
cn 144b	3	CH ₂	+	HCN	\rightarrow	$C_2H_3NH^+$					1.00×10 ⁻¹⁰	McEwan and Anicich (2
Continued						2 3					1	1

c	٠
~	ř
	`:

	Type					Reaction			k	Ref.
	1								1.07×10 ⁻²³	
$R_{cn}145a$	2	CH ₃ ⁺	+	CH ₃ NH ₂	\rightarrow	$CH_2NH_2^+$	+	CH_4	1.44×10^{-09}	Anicich (1993)
cn 145b	2	CH [±]	+	CH ₃ NH ₂	\rightarrow	$CH_3NH_2^{+}$	+	CH ₃	1.76×10^{-09}	Anicich (1993)
cn 146a	2	CH ³	+	CH ₃ CN	\rightarrow	$C_2\ddot{H}_5^+$	+	HCN	6.66×10^{-10}	McEwan and Anicich (
cn 146b	2	CH [±]	+	CH, CN	\rightarrow	HCNH ⁺	+	C_2H_4	1.04×10^{-09}	McEwan and Anicich (
_{cn} 146c	2	CH ³	+	CH ₂ CN	\rightarrow	$C_3H_5NH^+$	+	hv	9.00×10^{-11}	McEwan and Anicich (
_{cn} 146d	3	CH ²	+	CH ₃ CN	\rightarrow	C ₃ H ₅ NH ⁺			1.00×10^{-10}	McEwan and Anicich (
		,		3		3 3			1.90×10^{-22}	
cn 147a	2	CH ₂ ⁺	+	HC ₃ N	\rightarrow	$c-C_2H_2^+$	+	HCN	1.43×10^{-09}	McEwan and Anicich (
_{cn} 147b	2	СН₹	+	HC_3N	\rightarrow	$C_4H_3NH^+$	+	hv	2.19×10^{-09}	McEwan and Anicich (
_{cn} 147c	3	CH ²	+	HC ₃ N	\rightarrow	c-C ₃ H ₃ ⁺	+	HCN	1.00×10^{-10}	McEwan and Anicich (
		,		3		3 3			1.52×10^{-23}	,
$c_{n}147d$	3	CH ₃ ⁺	+	HC_3N	\rightarrow	$C_4H_3NH^+$			1.00×10^{-10}	McEwan and Anicich (
				- 3		-4 3			2.28×10^{-23}	,
cn 148a	2	CH ⁺	+	C_3H_3N	\rightarrow	$C_2H_3NH^+$	+	C_2H_2	4.32×10^{-09}	Anicich and McEwan (
cn 148b	2	CH ²	+	C_3H_3N	\rightarrow	$C_{2}^{2}H_{3}^{\frac{3}{4}}$	+	CH ₃ CN	5.40×10^{-10}	Anicich and McEwan (
cn 148c	2	CH2	+	C_3H_3N	\rightarrow	C ₃ H ₅ ⁴	+	HCN	2.70×10^{-10}	Anicich and McEwan (
cn 148d	2	CH ²	+	C_3H_3N	\rightarrow	C ₃ H ₃ NH ⁺	+	³ CH ₂	2.70×10^{-10}	Anicich and McEwan (
cn 148e	3	CH ²	+	C_3H_3N	\rightarrow	$c-C_{3}H_{3}^{+}$	+	HCN + H ₂	1.00×10^{-10}	Anicich and McEwan (
cn		3		-33		33		1 112	1.50×10 ⁻²⁴	
R _{cn} 148f	3	CH ₂ ⁺	+	C_3H_3N	\rightarrow	HC ₃ NH ⁺	+	CH_4	1.00×10^{-10}	Anicich and McEwan (
		3		3 3		- 3		- 4	2.75×10^{-24}	,
$R_{cn}148g$	3	CH ₂ ⁺	+	C_3H_3N	\rightarrow	$C_4H_5NH^+$			1.00×10^{-10}	Anicich and McEwan (
cn0		3		-33		45			7.50×10 ⁻²⁵	
$c_{n}149$	2	CH ₂ ⁺	+	C_3H_5N	\rightarrow	$CXHYNZ^{+}$			2.55×10 ⁻⁰⁹	Anicich and McEwan (
cn 150a	2	CH ₃	+	C_4H_5N	\rightarrow	$C_3H_5^+$	+	CH ₂ CN	3.35×10 ⁻¹¹	Fondren et al. (2009)
cn 150b	2	CH ₂	+	C_4H_5N	\rightarrow	$C_{2}^{3}H_{3}^{-5}N^{+}$	+	C_3H_5	3.35×10^{-11}	Fondren et al. (2009)
cn 150c	2	CH ₂	+	C_4H_5N	\rightarrow	$C_2^2H_3^3NH^+$	+	CH, CCH	1.12×10 ⁻¹⁰	Fondren et al. (2009)
cn 150d	2	CH ₂	+	C_4H_5N	\rightarrow	C ₃ H ₅ N ⁺	+	C_2H_3	2.90×10 ⁻¹⁰	Fondren et al. (2009)
cn 150a	2	CH ₂ ⁺	+	C_4H_5N	\rightarrow	$C_4H_5N^+$	+	CH ₃	1.43×10 ⁻⁰⁹	Fondren et al. (2009)
cn 150f	2	CH ₃	+	C_4H_5N	\rightarrow	$C_4H_5NH^+$	+	³ CH ₂	1.56×10 ⁻¹⁰	Fondren et al. (2009)
cn 150g	2	CH ₂ ⁺	+	C_4H_5N	\rightarrow	$C_5H_7NH^+$	+	hv	1.78×10 ⁻¹⁰	Fondren et al. (2009)
cn 150g	2	CH ₂	+	HC ₅ N	\rightarrow	$C_6H_3NH^+$	+	hv	$8.60 \times 10^{-11} \text{T}^{1.40}$	Wakelam et al. (2015)
$c_n 151$ $c_n 152a$	2	CH ₂	+	C_5H_5N	\rightarrow	$C_5H_3NH^+$	+	CH ₄	5.42×10 ⁻¹⁰	Fondren et al. (2009)
$c_{n}152a$	2	CH ₂	+	C_5H_5N	\rightarrow	C ₅ H ₅ N ⁺	+	CH ₃	5.69×10 ⁻¹⁰	Fondren et al. (2009)
cn 1526	2	CH ₃	+	C_5H_5N C_5H_5N	\rightarrow	C_5H_5N $C_5H_5NH^+$	+	³ CH ₂	2.44×10 ⁻¹⁰	Fondren et al. (2009)
ontinued				O511514	_	O51151VII	г	0112	2.770.10	1 ondien et al. (2009)

~	
٠	Ľ
ب	۳
Ç	Ü

	Type					Reaction					k	Ref.
$R_{cn}152d$	2	CH_3^+	+	C_5H_5N	\rightarrow	$C_6H_7NH^+$	+	hv			1.36×10^{-09}	Fondren et al. (2009)
R _{cn} 153	3	CH_3^{+}	+	N_2	\rightarrow	$\mathrm{CH_3^+N_2}$					1.00×10^{-10} 5.40×10^{-29}	McEwan and Anicich (2007)
R _{cn} 154a	2	CH_3^+	+	C_2N_2	\rightarrow	HC_2NH^+	+	HCN			7.20×10^{-11}	McEwan and Anicich (2007)
$R_{cn}154b$	2	CH_3^+	+	C_2N_2	\rightarrow	$C_{3}H_{3}N_{2}^{+}$	+	hv			1.80×10^{-11}	McEwan and Anicich (2007)
$R_{cn}154c$	3	CH [↑] ₃	+	$C_2^2N_2^2$	\rightarrow	AdductN ⁺					1.00×10^{-10}	McEwan and Anicich (2007)
											8.00×10^{-24}	
$R_{cn}155$	2	CH_3^+	+	$O(^{3}P)$	\rightarrow	HCO^{+}	+	H_2			4.10×10^{-10}	Scott et al. (2000)
R _{cn} 156a	2	CH_3^+	+	H ₂ O	\rightarrow	CH ₃ OH ₂ ⁺	+	hv			2.00×10^{-12}	Wakelam et al. (2015)
$R_{cn}156b$	3	CH_3^{\uparrow}	+	H ₂ O	\rightarrow	Adduct					1.00×10^{-10}	McEwan and Anicich (2007)
		o .		-							6.00×10^{-25}	` '
$R_{cn}157a$	2	CH_3^+	+	CO	\rightarrow	CH ₂ CO ⁺	+	hv			$1.20 \times 10^{-13} T^{1.30}$	Wakelam et al. (2015)
R _{cn} 157b	3	CH ³	+	CO	\rightarrow	CH ₃ CO ⁺					1.00×10^{-10}	McEwan and Anicich (2007)
		o .				Ü					2.30×10^{-27}	` '
$R_{cn}158$	2	CH_2^+	+	H ₂ CO	\rightarrow	HCO ⁺	+	CH_4			1.30×10^{-09}	Anicich (1993)
$R_{cn}159$	2	CH ¹ ₃ N ₂	+	H ₂	\rightarrow	CH_5^+	+	N_2			7.00×10^{-14}	Albritton (1978)
R _{cn} 160	2	CH ⁴	+	нŽ	\rightarrow	CH ²	+	H_2			5.00×10^{-10}	Gerlich and Smith (2006), Gerlich et al. (2011)
R _{cn} 161	2	сн‡	+	H_2	\rightarrow	CH ²	+	Η̈́			$3.30\times10^{-11}T^{1.12}$	Asvany et al. (2004), Gerlich et al. (2011)
R _{cn} 162	2	CH [‡]	+	CH₄	\rightarrow	CH ₅	+	CH_3			1.14×10^{-09}	McEwan and Anicich (2007)
R _{cn} 163a	2	CH [‡]	+	C,H,	\rightarrow	$C_2\ddot{H}_2^+$	+	CH_4			1.44×10^{-09}	McEwan and Anicich (2007)
R _{cn} 163b	2	CH [‡]	+	C_2H_2	\rightarrow	$C_{2}^{2}H_{3}^{+}$	+	CH ₃			1.12×10^{-09}	McEwan and Anicich (2007)
R _{cn} 163c	2	CH [‡]	+	C_2H_2	\rightarrow	$c - C_3 H_3^+$	+	H,	+	Н	1.63×10^{-10}	McEwan and Anicich (2007)
R _{cn} 164a	2	CH [‡]	+	$C_2H_4^2$	\rightarrow	$C_2H_4^{\frac{3}{4}}$	+	CH₄			1.70×10^{-09}	McEwan and Anicich (2007)
R _{cn} 164b	2	СН∓	+	C_2H_4	\rightarrow	$C_{2}^{2}H_{5}^{+}$	+	CH ₃			2.60×10^{-10}	McEwan and Anicich (2007)
R _{cn} 164c	2	CH [‡]	+	C_2H_4	\rightarrow	$C_{3}^{2}H_{5}^{2}$	+	H_2	+	H	6.00×10^{-11}	McEwan and Anicich (2007)
R _{cn} 165	2	CH [‡]	+	C_2H_6	\rightarrow	$C_{2}^{3}H_{4}^{+}$	+	CH_4	+	H_2	1.91×10^{-09}	McEwan and Anicich (2007)
R _{cn} 166	2	CH [‡]	+	C_3H_6	\rightarrow	CH_5^+	+	$C_3 \tilde{H}_5$		-	1.00×10^{-09}	McEwan and Anicich (2007)
R _{cn} 167a	2	CH [‡]	+	NH ₃	\rightarrow	CH ₅	+	NH ₂			6.00×10^{-11}	Anicich (1993)
R _{cn} 167b	2	CH [‡]	+	NH ₂	\rightarrow	NH ⁺	+	CH ₃			1.35×10^{-09}	Anicich (1993)
R _{cn} 167c	2	CH [‡]	+	NH_2	\rightarrow	NH ⁴ ₃	+	CH_4^3			1.59×10^{-09}	Anicich (1993)
R _{cn} 168a	2	CH ⁺	+	HCN	\rightarrow	HCNH ⁺	+	CH ₃			3.23×10^{-09}	McEwan and Anicich (2007)
R _{cn} 168b	2	CH ₄	+	HCN	\rightarrow	C ₂ H ₃ NH ⁺	+	Н			6.60×10 ⁻¹¹	McEwan and Anicich (2007)
R _{cn} 169a	2	CH [‡]	+	CH ₂ NH ₂	\rightarrow	CH ₃ NH ₂ ⁺	+	CH_4			1.32×10 ⁻⁰⁹	Adams and Smith (1978),Smith and Adams (1978a)
R _{cn} 169b	2	CH ₄	+	CH ₃ NH ₂	\rightarrow	$CH_2NH_2^{\frac{1}{2}}$	+	CH_4	+	Н	8.80×10 ⁻¹⁰	Adams and Smith (1978),Smith and Adams (1978a)
R _{cn} 170	2	CH ₄	+	CH ₃ CN	\rightarrow	C ₂ H ₃ NH ⁺	+	CH ₃			3.92×10 ⁻⁰⁹	Blair and Harrison (1973)
R _{cn} 171	2	CH ₄	+	HC ₃ N	$\stackrel{'}{\rightarrow}$	HC_3NH^+	+	CH ₃			2.50×10 ⁻⁰⁹	McEwan and Anicich (2007)

ċ	ė
۲	7
ĭ	\sim

	l m					Reaction					•	Ref.
	Type										k	
$R_{cn}172$	2	CH_4^+	+	H_2O	\rightarrow	H_3O^+	+	CH_3			2.50×10^{-09}	McEwan and Anicich (2007)
$R_{cn}173a$	2	CH_4^+	+	CO	\rightarrow	HCO ⁺	+	CH_3			1.04×10^{-09}	McEwan and Anicich (2007)
$R_{cn}173b$	2	CH_4^+	+	CO	\rightarrow	CH_3CO^+	+	H			4.32×10^{-11}	McEwan and Anicich (2007)
$R_{cn}174a$	2	CH_4^+	+	H_2CO	\rightarrow	CH_2O^+	+	CH_4			1.62×10^{-09}	Anicich (1993)
$R_{cn}174b$	2	CH ₄	+	H_2CO	\rightarrow	CH ₂ OH ⁺	+	CH_3			1.98×10^{-09}	Anicich (1993)
$R_{cn}175a$	2	CH ₄ ⁺	+	CO_2	\rightarrow	$OCOH^+$	+	CH_3			9.90×10^{-10}	Anicich (1993)
$R_{cn}175b$	2	CH ₄	+	CO_2	\rightarrow	CH ₃ CO ⁺	+	OH			1.00×10^{-11}	Anicich (1993)
$R_{cn}176$	2	CH ₅	+	H	\rightarrow	CH_4^{\uparrow}	+	H_2			2.30×10^{-11}	Gerlich and Borodi (2009),Gerlich et al. (20
$R_{cn}177$	2	CH ₅	+	CH ₃	\rightarrow	$C_{2}H_{6}^{+}$	+	H_2			5.00×10^{-10}	Capone et al. (1976)
$R_{cn}178$	3	CH ₅	+	CH_4	\rightarrow	CH ₅ CH ₄					1.00×10^{-10}	Dheandhanoo et al. (1984)
											$8.00 \times 10^{-30} \mathrm{T}^{3.50}$	
$R_{cn}179$	2	CH ₅	+	C_2H_2	\rightarrow	$C_{2}H_{3}^{+}$	+	CH_4			1.48×10^{-09}	McEwan and Anicich (2007)
$R_{cn}180$	2	CH ₅	+	C_2H_4	\rightarrow	$C_{2}H_{5}^{+}$	+	CH_4			1.50×10^{-09}	McEwan and Anicich (2007)
$R_{cn}181a$	2	CH ₅	+	C_2H_6	\rightarrow	$C_2H_5^+$	+	CH_4	+	H_2	2.03×10^{-10}	McEwan and Anicich (2007)
$R_{cn}181b$	2	CH ₅	+	C_2H_6	\rightarrow	$C_2H_7^{\downarrow}$	+	CH_4		-	1.15×10^{-09}	McEwan and Anicich (2007)
$R_{cn}182$	2	CH ₅	+	CH ₃ CCH	\rightarrow	$CXHYNZ^{+}$		-			2.00×10^{-09}	McEwan and Anicich (2007)
$R_{cn}183$	2	CH ₅	+	CH ₂ CCH ₂	\rightarrow	$C_{3}H_{5}^{+}$	+	CH_4			1.60×10^{-09}	Langevin
$R_{cn}184$	2	CH ₅	+	C_3H_6	\rightarrow	$CXHYNZ^{+}$		-			2.00×10^{-09}	McEwan and Anicich (2007)
$R_{cn}185$	2	CH ₅	+	C_3H_8	\rightarrow	$C_3H_9^+$	+	CH_4			1.00×10^{-09}	McEwan and Anicich (2007)
$R_{cn}186$	2	CH ₅	+	C_4H_2	\rightarrow	$C_4H_3^+$	+	CH_4			1.70×10^{-09}	Langevin
$R_{cn}187$	2	CH ₅	+	C_5H_4	\rightarrow	$C_5H_5^+$	+	CH_4			3.00×10^{-09}	Su-Chesnavich
$R_{cn}188$	2	CH ₅	+	C_6H_2	\rightarrow	$C_6H_3^+$	+	CH_4			2.20×10^{-09}	Langevin
$R_{cn}189$	2	CH ₅	+	C_6H_6	\rightarrow	$C_6H_7^{+}$	+	CH_4			2.00×10^{-09}	Spanel et al. (1995)
$R_{cn}190$	2	CH ₅	+	C_7H_4	\rightarrow	$C_7H_5^+$	+	CH_4			3.60×10^{-09}	Su-Chesnavich
$R_{cn}191$	2	CH ₅	+	C_7H_8	\rightarrow	$C_7H_9^{\frac{1}{7}}$	+	CH_4			2.30×10^{-09}	Su-Chesnavich
$R_{cn}192$	2	CH ₅	+	C_8H_2	\rightarrow	$C_8H_3^+$	+	CH_4			2.60×10^{-09}	Langevin
$R_{cn}193$	2	CH ₅	+	NH_3	\rightarrow	NH_4^+	+	CH_4			2.40×10^{-09}	Anicich (1993)
$R_{cn}194$	2	CH ₅	+	HCN	\rightarrow	HCNH ⁺	+	CH_4			5.80×10^{-09}	Su-Chesnavich
$R_{cn}195$	2	CH ₅	+	HNC	\rightarrow	HCNH ⁺	+	CH_4			6.00×10^{-09}	Su-Chesnavich
$R_{cn}196$	2	CH ₅	+	CH ₂ NH	\rightarrow	CH ₂ NH ₂ ⁺	+	CH_4			4.20×10^{-09}	Su-Chesnavich
$R_{cn}197$	2	CH ₅	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₃	+	CH_4			2.25×10^{-09}	Su and Bowers (1973)
$R_{cn}198$	2	CH ₅	+	CH ₃ CN	\rightarrow	$C_2\ddot{H}_3N\ddot{H}^+$	+	CH_4			4.90×10^{-09}	Blair and Harrison (1973)
R _{cn} 199	2	CH [±]	+	HC ₃ N	\rightarrow	HC ₃ NH ⁺	+	CH_4			4.50×10^{-09}	McEwan and Anicich (2007)
R_{cn}^{200}	2	CH ₅	+	C_3H_3N	\rightarrow	C ₃ H ₃ NH ⁺	+	CH_4			7.00×10^{-09}	Su-Chesnavich
$R_{cn}201$	2	CH ⁺	+	C_3H_5N	\rightarrow	C ₃ H ₅ NH ⁺	+	CH_4			7.20×10^{-09}	Su-Chesnavich
$R_{cn}202$	2	CH ²	+	C_4H_3N	\rightarrow	$C_4H_3NH^+$	+	CH_4			8.20×10^{-09}	Su-Chesnavich
Continued	on Next	Page		4 3		4 3		4				1

9	٠
Ç	Ľ
С	Я

	Type					Reaction					k	Ref.
$R_{cn}203$	2	CH ₅ ⁺	+	C_4H_5N	\rightarrow	C ₄ H ₅ NH ⁺	+	CH_4			6.60×10 ⁻⁰⁹	Su-Chesnavich
$R_{cn}204$	2	CH_5^+	+	HC_5N	\rightarrow	HC ₅ NH ⁺	+	CH_4			7.60×10^{-09}	Su-Chesnavich
$R_{cn}205$	2	CH [∓]	+	C_5H_5N	\rightarrow	$C_{\kappa}H_{\kappa}NH^{+}$	+	CH_4			4.40×10^{-09}	Su-Chesnavich
$R_{cn}206$	2	CH [∓]	+	C_6H_3N	\rightarrow	C ₆ H ₃ NH ⁺	+	CH.			1.00×10^{-08}	Su-Chesnavich
$R_{cn}207$	2	CH ²	+	C_6H_7N	\rightarrow	C ₆ H ₇ NH ⁺	+	CH_4			3.00×10^{-09}	Su-Chesnavich
$R_{cn}208$	3	CH ⁴	+	N ₂	\rightarrow	CH ₅ ⁺ N ₂		•			1.00×10^{-10}	Speller et al. (1995)
		5		2		5 2					1.00×10^{-27}	. , ,
$R_{cn} 209$	2	CH_{κ}^{+}	+	N_0H_4	\rightarrow	$N_{2}H_{5}^{+}$	+	CH_4			1.40×10^{-09}	Su-Chesnavich
R _{cn} 210a	2	CH ²	+	$O(^{3}P)$	\rightarrow	H ₃ O ³ +	+	$^3\mathrm{CH}_2$			2.35×10^{-10}	Anicich (1993)
cn 210b	2	CH [∓]	+	$O(^3P)$	\rightarrow	сн,он+	+	H_2			4.80×10^{-12}	Anicich (1993)
cn 211	2	CH ²	+	H ₂ O	\rightarrow	$H_3\tilde{O}^+$	+	CH_4			3.70×10^{-09}	McEwan and Anicich
cn 212	2	CH ²	+	CO	\rightarrow	HCO+	+	CH_4			9.90×10^{-10}	McEwan and Anicich
t _{cn} 213	2	CH [‡]	+	H ₂ CO	\rightarrow	CH ₂ OH ⁺	+	CH_4			4.50×10^{-09}	Anicich (1993)
$l_{cn}214$	2	CH [±]	+	CO,	\rightarrow	OCOH+	+	CH_4			3.25×10^{-11}	Anicich (1993)
$c_n 215$	2	CH ¹ ₅ CH₄	+	N_2	\rightarrow	CH_{κ}^{+}	+	CH_4	+	N_2	$1.40 \times 10^{-08} T^{3.50} e^{2230.0/T}$	Dheandhanoo et al. (
cn 216	2	CH ⁺ N ₂	+	N ₂	\rightarrow	CH ⁺	+	N ₂	+	N ₂	3.00×10 ⁻¹⁴	Speller et al. (1995)
cn 217	2	C ₂ H ⁺ ²	+	H_2^2	\rightarrow	C ₂ H ₂ ⁺	+	H		2	1.24×10^{-09}	McEwan and Anicich
cn 218a	2	$C_2^2H^+$	+	CH ₄	\rightarrow	$C_{2}^{2}H_{2}^{+}$	+	CH,			3.74×10^{-10}	McEwan and Anicich
cn218b	2	$C_2^2H^+$	+	CH_4	\rightarrow	$c-C_3H_3^+$	+	H_2			3.74×10^{-10}	McEwan and Anicich
cn218c	2	C ₂ H ⁺	+	CH ₄	\rightarrow	$C_3H_4^+$	+	H			1.32×10 ⁻¹⁰	McEwan and Anicich
c _n 218d	2	C ₂ H ⁺	+	CH_4	\rightarrow	C ₃ H ₅ ⁺					2.20×10 ⁻¹⁰	McEwan and Anicich
$l_{cn}219$	2	C ₂ H ⁺	+	C_2H_2	\rightarrow	$C_4H_2^+$	+	Н			1.85×10 ⁻⁰⁹	McEwan and Anicich
cn 220a	2	$C_2^2H^+$	+	C_2H_4	\rightarrow	$C_{4}^{4}H_{3}^{+}$	+	H ₂			8.30×10^{-10}	McEwan and Anicich
cn 220b	2	$C_2^2H^+$	+	$C_2^2H_4$	\rightarrow	$C_4^4H_2^{\frac{4}{1}}$	+	H_2^2	+	H	1.70×10^{-10}	McEwan and Anicich
cn 221a	2	$C_2^2H^+$	+	C_2H_6	\rightarrow	c-C ₂ H ₂ +	+	CH,			9.10×10 ⁻¹⁰	McEwan and Anicich
cn 221b	2	C ₂ H ⁺	+	C_2H_6	\rightarrow	$C_4H_4^+$	+	H ₂	+	Н	3.00×10 ⁻¹¹	McEwan and Anicich
cn 221c	2	C ₂ H ⁺	+	C_2H_6	\rightarrow	$C_4H_5^+$	+	H ₂			6.00×10 ⁻¹¹	McEwan and Anicich
cn 222	2	$C_2^2H^+$	+	$C_3^2H_8$	\rightarrow	CXHYNZ ⁺		2			4.00×10 ⁻⁰⁹	McEwan and Anicich
cn 223	2	C ₂ H ⁺	+	N N	\rightarrow	CH^+	+	CN			9.50×10 ⁻¹¹	McEwan and Anicich
cn 224a	2	$C_2^2H^+$	+	NH_2	\rightarrow	NH_4^+	+	C_2			1.63×10^{-09}	Su-Chesnavich
cn224b	2	C ₂ H ⁺	+	NH ₃	\rightarrow	HC ₂ NH ⁺	+	H ₂			1.63×10 ⁻⁰⁹	Su-Chesnavich
cn 225a	2	C_2H^+	+	HCN	\rightarrow	C ₂ H ₂ ⁺	+	CN			5.40×10 ⁻¹⁰	McEwan and Anicich
cn 225b	2	C ₂ H ⁺	+	HCN	\rightarrow	HCNH ⁺	+	C ₂			9.45×10 ⁻¹⁰	McEwan and Anicich
cn 225c	2	C_2H^+	+	HCN	\rightarrow	HC ₃ N ⁺	+	H			1.21×10 ⁻⁰⁹	McEwan and Anicich
cn 226	2	C_2H^+	+	CH ₂ CN	\rightarrow	$C_4H_3N^+$	+	Н			3.64×10 ⁻⁰⁹	Franklin et al. (1966)
cn 227a	2	C ₂ H ⁺	+	HC ₃ N	\rightarrow	$C_4H_3^+$	+	HCN			7.60×10 ⁻¹⁰	McEwan and Anicich
ontinued	on Next			3		*					1	1

0	٠.	d
7	ĭ	
١	_	•
(Ų	Σ.

	Type					Reaction					k	Ref.
$R_{cn}227b$	2	C ₂ H ⁺	+	HC_3N	\rightarrow	$C_4H_2^+$	+	CN			4.56×10^{-10}	McEwan and Anicich (2007)
$R_{cn}227c$	2	C ₂ H ⁺	+	HC_3N	\rightarrow	HC_3NH^+	+	C_2			1.41×10^{-09}	McEwan and Anicich (2007)
$R_{cn}227d$	2	C ₂ H ⁺	+	HC_3N	\rightarrow	HC_5N^+	+	H			1.18×10^{-09}	McEwan and Anicich (2007)
$R_{cn}228$	2	C ₂ H ⁺	+	C_3H_3N	\rightarrow	HC ₃ NH ⁺	+	C_2H_2			4.80×10^{-09}	Petrie et al. (1991a),Petrie et al. (199
$R_{cn}229a$	2	C ₂ H ⁺	+	$O(^{3}P)$	\rightarrow	C ⁺	+	HCO			8.25×10^{-11}	Anicich (1993)
$R_{cn}229b$	2	C ₂ H ⁺	+	$O(^{3}P)$	\rightarrow	CH^{+}	+	CO			8.25×10^{-11}	Anicich (1993)
$R_{cn}229c$	2	C ₂ H ⁺	+	$O(^{3}P)$	\rightarrow	HCO^{+}	+	C			8.25×10^{-11}	Anicich (1993)
$R_{cn}229d$	2	C ₂ H ⁺	+	$O(^{3}P)$	\rightarrow	CO^{+}	+	$_{\rm CH}$			8.25×10^{-11}	Anicich (1993)
$R_{cn}230$	2	C ₂ H ⁺	+	H_2O	\rightarrow	CH ₂ CO ⁺	+	H			3.66×10^{-09}	Su-Chesnavich
$R_{cn}231$	2	C ₂ H ⁺	+	H_2CO	\rightarrow	CH ₂ OH ⁺	+	C_2			4.17×10^{-09}	Su-Chesnavich
$R_{cn}232a$	2	$C_2H_2^+$	+	H_2	\rightarrow	$C_2H_3^+$	+	H			1.00×10^{-11}	McEwan and Anicich (2007)
$R_{cn}232b$	3	$C_2H_2^{\mp}$	+	H_2	\rightarrow	$C_2H_4^+$					1.00×10^{-10}	McEwan and Anicich (2007)
											1.30×10^{-27}	
$R_{cn}233a$	2	$C_2H_2^+$	+	CH_4	\rightarrow	$C_3H_4^+$	+	H_2			1.87×10^{-10}	McEwan and Anicich (2007)
$R_{cn}233b$	2	C ₂ H ₂ ⁺	+	CH_A	\rightarrow	$C_3H_5^+$	+	H			7.03×10^{-10}	McEwan and Anicich (2007)
$R_{cn}234a$	2	C ₂ H ₂ [±]	+	C_2H_2	\rightarrow	$C_4H_2^{+}$	+	H_2			4.48×10^{-10}	McEwan and Anicich (2007)
$R_{cn}234b$	2	C ₂ H ₂ ⁺	+	C_2H_2	\rightarrow	$C_4H_3^+$	+	H			9.52×10^{-10}	McEwan and Anicich (2007)
$R_{cn}234c$	3	C ₂ H ₂ [±]	+	C_2H_2	\rightarrow	$C_4H_4^+$					1.00×10^{-10}	McEwan and Anicich (2007)
											1.60×10^{-26}	` ′
$R_{cn}235a$	2	C ₂ H ₂ ⁺	+	C_2H_4	\rightarrow	$C_2H_4^+$	+	C_2H_2			4.14×10^{-10}	McEwan and Anicich (2007)
$R_{cn}235b$	2	C2H2	+	C_2H_4	\rightarrow	$c - C_3 H_3^+$	+	CH ₃			6.49×10^{-10}	McEwan and Anicich (2007)
$R_{cn}235c$	2	C ₂ H ₂ [±]	+	C_2H_4	\rightarrow	$C_4H_5^+$	+	Н			3.17×10^{-10}	McEwan and Anicich (2007)
$R_{cn}236a$	2	C ₂ H ₂ ⁺	+	C_2H_6	\rightarrow	C ₂ H ⁺	+	C_2H_4			2.48×10^{-10}	McEwan and Anicich (2007)
$R_{cn}236b$	2	C2H2	+	C_2H_6	\rightarrow	C ₂ H ₅ ¹	+	C_2H_3			1.24×10^{-10}	McEwan and Anicich (2007)
R _{cn} 236c	2	C2H2+	+	C ₂ H ₆	\rightarrow	$c - C_3 H_3^+$	+	CH ₃	+	H ₂	8.28×10^{-11}	McEwan and Anicich (2007)
$R_{cn}236d$	2	C2H2	+	C_2H_6	\rightarrow	$C_3H_4^{\frac{1}{4}}$	+	CH_4		-	1.38×10^{-11}	McEwan and Anicich (2007)
R _{cn} 236e	2	C ₂ H ₂ ⁺	+	C ₂ H ₆	\rightarrow	C ₃ H ₅ ⁺	+	CH,			7.45×10^{-10}	McEwan and Anicich (2007)
$R_{cn}236f$	2	C2H2	+	C_2H_6	\rightarrow	$C_4H_5^{\frac{4}{1}}$	+	H ₂	+	H	6.90×10^{-11}	McEwan and Anicich (2007)
R _{cn} 236g	2	C ₂ H ₂ [±]	+	C_2H_6	\rightarrow	$C_4^{\dagger}H_7^{\dagger}$	+	ΗŽ			1.24×10^{-10}	McEwan and Anicich (2007)
R _{cn} 237a	2	C2H2	+	CH, CCH	\rightarrow	C3H4+	+	C_2H_2			7.50×10^{-10}	McEwan and Anicich (2007)
R _{cn} 237b	2	C2H2	+	СНЗССН	\rightarrow	C ₃ H ₅ [‡]	+	C_2H^2			7.50×10^{-11}	McEwan and Anicich (2007)
$R_{cn}237c$	2	C ₂ H ₂ ⁺	+	СНССН	\rightarrow	C _E H ⁺	+	H			6.75×10^{-10}	McEwan and Anicich (2007)
R _{cn} 238	2	C2H2	+	C_3H_6	\rightarrow	$C_{3}^{3}H_{6}^{+}$	+	C_2H_2			1.30×10^{-09}	McEwan and Anicich (2007)
R _{cn} 239a	2	C2H2	+	C_3H_8	\rightarrow	$C_3H_6^+$	+	C_2H_4			2.10×10^{-10}	McEwan and Anicich (2007)
R _{cn} 239b	2	C2H2	+	C_3H_8	\rightarrow	$C_{3}^{3}H_{7}^{+}$	+	$C_2^2H_3^4$			7.00×10^{-10}	McEwan and Anicich (2007)
$R_{cn}239c$	2	C _o H _o ⁺	+	C_3H_8	\rightarrow	$C_{3}H_{8}^{+}$	+	C_2H_2			4.20×10 ⁻¹⁰	McEwan and Anicich (2007)
Continued				-3 8		-3 8		- 22			1	(=001)

C	٥
ē	
٠	
-	`

	Type					Reaction			k	Ref.
R _{cn} 239d	2	C ₂ H ₂ ⁺	+	C_3H_8	\rightarrow	$C_4H_7^+$	+	CH_3	7.00×10^{-11}	McEwan and Anicich (2007)
$R_{cn}240a$	2	C ₂ H ₂ ⁺	+	C_4H_2	\rightarrow	$C_4H_2^+$	+	C,H,	1.53×10^{-09}	McEwan and Anicich (2007)
$R_{cn}240b$	2	$C_2H_2^{\uparrow}$	+	C_4H_2	\rightarrow	$C_6H_2^{\frac{1}{4}}$	+	H_2	1.70×10^{-10}	McEwan and Anicich (2007)
$R_{cn}241a$	2	C ₂ H ₂ ⁺	+	C_6H_2	\rightarrow	$C_6H_2^+$	+	C_2H_2	5.00×10^{-10}	Wakelam et al. (2015)
$R_{cn}241b$	2	$C_2H_2^{\uparrow}$	+	C_6H_2	\rightarrow	$C_8H_2^{\frac{7}{4}}$	+	H_2	5.00×10^{-10}	Wakelam et al. (2015)
$R_{cn}241c$	2	C ₂ H ₂ ⁺	+	C_6H_2	\rightarrow	$C_8H_3^{\mp}$	+	H	5.00×10^{-10}	Wakelam et al. (2015)
$c_{cn}242$	2	$C_2H_2^{\uparrow}$	+	C_6H_6	\rightarrow	$C_6H_6^+$	+	C_2H_2	1.00×10^{-09}	Rudolph and Melton (1960)
$R_{cn}243a$	2	$C_2H_2^+$	+	C_8H_2	\rightarrow	$CXHYNZ^{+}$	+	H	1.00×10^{-09}	Wakelam et al. (2015)
$l_{cn}243b$	2	C ₂ H ₂ ⁺	+	C_8H_2	\rightarrow	$CXHYNZ^{+}$	+	H_2	1.00×10^{-09}	Wakelam et al. (2015)
cn 244a	2	C ₂ H ₂ [‡]	+	N	\rightarrow	CH^{+}	+	HČN	2.50×10^{-11}	McEwan and Anicich (2007)
c _{cn} 244b	2	C ₂ H ₂ ⁺	+	N	\rightarrow	C_2N^+	+	H_2	7.50×10^{-11}	McEwan and Anicich (2007)
$R_{cn}244c$	2	$C_2H_2^{\uparrow}$	+	N	\rightarrow	HC_2N^+	+	Н	1.50×10^{-10}	McEwan and Anicich (2007)
$R_{cn}245a$	2	C ₂ H ₂ +	+	NH_3	\rightarrow	NH [‡]	+	C_2H_2	2.14×10^{-09}	Anicich (1993)
$R_{cn}245b$	2	C ₂ H ₂ [±]	+	NH_3	\rightarrow	NH_4^+	+	C_2H	9.61×10^{-10}	Anicich (1993)
$R_{cn}246a$	2	$C_2H_2^+$	+	HCN	\rightarrow	HCNH ⁺	+	C_2H	2.38×10^{-10}	McEwan and Anicich (2007)
R _{cn} 246b	2	C ₂ H ₂ ⁺	+	HCN	\rightarrow	HC ₃ NH ⁺	+	H	1.22×10^{-10}	McEwan and Anicich (2007)
$c_{cn}247a$	2	C ₂ H ₂ [‡]	+	CH_3NH_2	\rightarrow	CH ₃ NH ₃ ⁺	+	C_2H	1.30×10^{-09}	Anicich (1993)
$t_{cn} 247b$	2	C ₂ H ₂ ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₂ ⁺	+	C_2H_2	7.56×10^{-10}	Anicich (1993)
$R_{cn}247c$	2	C ₂ H ₂ [‡]	+	CH ₃ NH ₂	\rightarrow	$CH_2NH_2^{\frac{1}{2}}$	+	C_2H_3	6.48×10^{-10}	Anicich (1993)
$R_{cn}248a$	2	C ₂ H ₂ ⁺	+	CH ₃ CN	\rightarrow	$C_2H_3NH^+$	+	C ₂ H	8.36×10^{-10}	McEwan and Anicich (2007)
$R_{cn}248b$	2	$C_2H_2^{\uparrow}$	+	CH ₃ CN	\rightarrow	$C_3H_5^+$	+	CÑ	1.06×10^{-09}	McEwan and Anicich (2007)
$R_{cn}248c$	2	C ₂ H ₂ ⁺	+	CH ₃ CN	\rightarrow	$C_3H_4^+$	+	HCN	1.06×10^{-09}	McEwan and Anicich (2007)
$R_{cn}248d$	2	$C_2H_2^{\uparrow}$	+	CH ₃ CN	\rightarrow	$C_4H_5N^+$	+	hv	8.74×10^{-10}	McEwan and Anicich (2007)
cn 249a	2	C ₂ H ₂ [‡]	+	HC_3N	\rightarrow	$C_4H_2^+$	+	HCN	3.70×10^{-10}	McEwan and Anicich (2007)
$R_{cn}249b$	3	C ₂ H ₂ ⁺	+	HC ₃ N	\rightarrow	$C_5H_3N^+$			1.00×10^{-10}	McEwan and Anicich (2007)
				-					2.30×10^{-26}	
$R_{cn}250a$	2	$C_2H_2^+$	+	C_3H_3N	\rightarrow	$c-C_3H_3^+$	+	CH_2CN	6.45×10^{-10}	Petrie et al. (1991a),Petrie et al.
$R_{cn}250b$	2	C ₂ H ₂ ⁺	+	C_3H_3N	\rightarrow	$C_3H_3N^+$	+	C_2H_2	2.36×10^{-09}	Petrie et al. (1991a),Petrie et al.
$R_{cn}250c$	2	$C_2H_2^{\mp}$	+	C_3H_3N	\rightarrow	$C_3H_3NH^+$	+	C_2H	6.45×10^{-10}	Petrie et al. (1991a),Petrie et al.
$t_{cn} 250 d$	2	C ₂ H ₂ [‡]	+	C_3H_3N	\rightarrow	$C_5H_5N^+$	+	hv	6.45×10^{-10}	Petrie et al. (1991a),Petrie et al.
$c_{cn}251$	2	$C_2H_2^{\uparrow}$	+	C_3H_5N	\rightarrow	$C_3H_5^+$	+	CH_2CN	4.20×10^{-09}	Edwards et al. (2008)
cn 252a	2	$C_2H_2^{\uparrow}$	+	$O(^{3}P)$	\rightarrow	HCO^{+}	+	CH	1.00×10^{-10}	Scott et al. (2000)
cn 252b	2	C ₂ H ₂ ⁺	+	$O(^3P)$	\rightarrow	HC_2O^+	+	H	1.00×10^{-10}	Scott et al. (2000)
$c_{cn}253$	2	$C_2H_2^{\uparrow}$	+	H ₂ O	\rightarrow	$H_3\tilde{O}^+$	+	C_2H	2.20×10^{-10}	McEwan and Anicich (2007)
cn 254	2	C ₂ H ₂ ⁺	+	CÔ	\rightarrow	C ₂ H ₂ CO ⁺	+	hv	2.30×10^{-14}	McEwan and Anicich (2007)
$l_{cn} 255$	2	C2H2	+	H_2CO	\rightarrow	CH ₂ O ⁺	+	C_2H_2	4.13×10^{-09}	Su-Chesnavich

c	ď	۰
7	Ü	
~	٠	
C	X	

	Type					Reaction			k	Ref.
R _{cn} 256	2	C ₂ H ₃ ⁺	+	Н	\rightarrow	$C_2H_2^+$	+	H_2	6.80×10 ⁻¹¹	McEwan and Anicich (2007)
$R_{cn}257$	3	C ₂ H ₃ ⁺	+	H_2	\rightarrow	$C_{2}^{2}H_{5}^{+}$		-	1.00×10^{-10}	McEwan and Anicich (2007)
		2 3		2		2 0			2.00×10^{-29}	, ,
$R_{cn}258a$	2	C ₂ H ₃ ⁺	+	CH_4	\rightarrow	$C_3H_5^+$	+	H_2	1.90×10^{-10}	McEwan and Anicich (2007)
$R_{cn}258b$	3	C ₂ H ₃ ⁺	+	CH_4	\rightarrow	$C_3H_7^+$		-	1.00×10^{-10}	McEwan and Anicich (2007)
		2 0		•					3.00×10^{-28}	
$R_{cn}259a$	2	$C_2H_3^+$	+	C_2H_2	\rightarrow	$C_4H_3^+$	+	H_2	2.40×10^{-10}	McEwan and Anicich (2007)
$R_{cn}259b$	3	C ₂ H ₃ ⁺	+	C_2H_2	\rightarrow	$C_4H_5^+$		=	1.00×10^{-10}	McEwan and Anicich (2007)
									2.98×10^{-25}	
$R_{cn}260a$	2	C ₂ H ₃ ⁺	+	C_2H_4	\rightarrow	$C_2H_5^+$	+	C_2H_2	8.20×10^{-10}	McEwan and Anicich (2007)
$R_{cn}260b$	3	C ₂ H ₃ ⁺	+	C_2H_4	\rightarrow	$C_4H_7^{\frac{1}{4}}$			1.00×10^{-10}	McEwan and Anicich (2007)
		2 0				• .			9.00×10^{-27}	, ,
$R_{cn}261a$	2	C ₂ H ₃ ⁺	+	C_2H_6	\rightarrow	$C_2H_5^+$	+	C_2H_4	2.91×10^{-10}	McEwan and Anicich (2007)
$R_{cn}261b$	2	C ₂ H ₃ ⁺	+	C_2H_6	\rightarrow	$C_3H_5^+$	+	CH_4	2.48×10^{-10}	McEwan and Anicich (2007)
$R_{cn}261c$	2	C ₂ H ₃ ⁺	+	C_2H_6	\rightarrow	$C_4H_7^+$	+	H ₂	8.06×10^{-11}	McEwan and Anicich (2007)
$R_{cn}262$	2	C ₂ H ₃ ⁺	+	CH ₃ CCH	\rightarrow	$C_3H_5^+$	+	C_2H_2	1.50×10^{-09}	McEwan and Anicich (2007)
$R_{cn}263$	2	C ₂ H ₃ ⁺	+	C_3H_6	\rightarrow	C4H5	+	CH ₄	8.70×10^{-10}	McEwan and Anicich (2007)
$R_{cn}264a$	2	C ₂ H ₃ ⁺	+	C_3H_8	\rightarrow	$C_3^4H_7^{4}$	+	$C_2 \ddot{H}_4$	9.50×10^{-10}	McEwan and Anicich (2007)
R _{cn} 264b	2	C ₂ H ₃ ⁺	+	C_3H_8	\rightarrow	$C_4^{\dagger}H_7^{\dagger}$	+	\widetilde{CH}_4	5.00×10^{-11}	McEwan and Anicich (2007)
$R_{cn}265a$	2	C ₂ H ₃ ⁺	+	C_4H_2	\rightarrow	$C_4H_3^+$	+	C,H,	3.00×10^{-10}	Wakelam et al. (2015)
$R_{cn}265b$	2	C ₂ H ₃ ⁺	+	C_4H_2	\rightarrow	$C_6H_3^{\uparrow}$	+	H ₂	3.00×10^{-10}	Wakelam et al. (2015)
R _{cn} 265c	2	C ₂ H ₃ ⁺	+	$C_4^4H_2^2$	\rightarrow	$C_6H_4^+$	+	Н	3.00×10^{-10}	Wakelam et al. (2015)
R _{cn} 266a	2	C ₂ H ₃ ⁺	+	C_6H_2	\rightarrow	$C_6H_3^{\frac{1}{2}}$	+	C_2H_2	3.00×10^{-10}	Wakelam et al. (2015)
R _{cn} 266b	2	C ₂ H ₃ ⁺	+	C_6H_2	\rightarrow	$C_8^9H_3^{4}$	+	H ₂	3.00×10^{-10}	Wakelam et al. (2015)
R _{cn} 266c	2	C ₂ H ₃ ⁺	+	C_6H_2	\rightarrow	CXHYNZ ⁺	+	н	3.00×10^{-10}	Wakelam et al. (2015)
R _{cn} 267	2	C ₂ H ₃ ⁺	+	C_6H_6	\rightarrow	$C_6H_7^+$	+	C_2H_2	1.60×10^{-09}	Spanel et al. (1995)
R _{cn} 268a	2	C ₂ H ₃ ⁺	+	N	\rightarrow	HC ₂ N ⁺	+	H ₂	1.98×10^{-11}	McEwan and Anicich (2007)
R _{cn} 268b	2	C ₂ H ₃ ⁺	+	N	\rightarrow	HC ₂ NH ⁺	+	н	2.20×10^{-12}	McEwan and Anicich (2007)
R _{cn} 269	2	C ₂ H ₃ ⁺	+	NH ₂	\rightarrow	NH [‡]	+	C_2H_2	2.48×10^{-09}	Anicich (1993)
$R_{cn}270$	2	C ₂ H ₃ ²	+	HCN	\rightarrow	HCNH ⁺	+	C_2H_2	2.30×10^{-09}	McEwan and Anicich (2007)
$R_{cn}271$	2	C ₂ H ₃ ⁺	+	HC ₂ N	\rightarrow	HC ₂ NH ⁺	+	C_2H_2	3.80×10^{-09}	McEwan and Anicich (2007)
R _{cn} 272a	2	C2H3	+	C_3H_3N	\rightarrow	C ₃ H ₃ NH ⁺	+	$C_2^2H_2^2$	3.52×10^{-09}	Petrie et al. (1991a),Petrie et al. (19
R _{cn} 272b	2	C2H3	+	C_3H_3N	\rightarrow	C _E H _E NH ⁺	+	hv	8.80×10^{-10}	Petrie et al. (1991a),Petrie et al. (19
R _{cn} 273	2	C2H3	+	C_3H_5N	\rightarrow	C ₃ H ₅ NH ⁺	+	C_2H_2	1.60×10^{-09}	Franklin et al. (1966)
R _{cn} 274a	2	C ₂ H ₃ ⁺	+	C_2N_2	\rightarrow	C ₂ N ₂ H ⁺	+	C_2H_2	5.50×10 ⁻¹⁰	McEwan and Anicich (2007)
R _{cn} 274b	3	C ₂ H ₂ ⁺	+	C_2N_2	\rightarrow	AdductN ⁺		- 2 2	1.00×10 ⁻¹⁰	McEwan and Anicich (2007)
Continued	on Next		'	- 2 2					1	(=00.)

c	Á	
ē		•
٠	٥	•
Q	Ξ	

	Type					Reaction			k	Ref.
									1.30×10 ⁻²⁶	
$R_{cn}275a$	2	C ₂ H ₃ ⁺	+	$O(^3P)$	\rightarrow	CH_2^+	+	CO	5.00×10 ⁻¹²	Scott et al. (2000)
R _{cn} 275b	2	$C_{2}^{2}H_{3}^{+}$	+	$O(^3P)$	\rightarrow	CH,CO+	+	H	8.50×10^{-11}	Scott et al. (2000)
t _{cn} 275c	2	$C_{2}^{2}H_{3}^{2}$	+	$O(^3P)$	\rightarrow	CH ₃ CO ⁺	+	hv	1.00×10^{-11}	Scott et al. (2000)
$R_{cn}276$	2	$C_{2}^{2}H_{3}^{+}$	+	H ₂ O	\rightarrow	H ₃ O ⁺	+	C_2H_2	1.11×10^{-09}	McEwan and Anicich
c _n 277	2	$C_{2}^{2}H_{3}^{+}$	+	CO	\rightarrow	$C_2^3H_3CO^+$		- 2 2	5.00×10^{-10}	McEwan and Anicich
$l_{cn}278$	2	C2H4	+	Н	\rightarrow	$C_2H_2^{\frac{1}{2}}$	+	H_2	3.00×10 ⁻¹⁰	McEwan and Anicich
c_{cn}^{279}	2	C ₂ H ₄ ⁺	+	CH ₃	\rightarrow	CH ⁺	+	$C_2^2H_4$	1.00×10 ⁻⁰⁹	Capone et al. (1976)
cn 280	3	C ₂ H ₄ ⁺	+	CH ₄	\rightarrow	Adduct ⁺		-24	1.00×10 ⁻¹⁰	Capone et al. (1976)
cn 200		02114	'	0114	,	1144400			1.00×10 ⁻²⁹	capone et an (1010)
cn 281a	2	$C_2H_4^+$	+	C_2H_2	\rightarrow	$c-C_{3}H_{3}^{+}$	+	CH ₂	6.47×10 ⁻¹⁰	McEwan and Anicich
cn 281b	2	$C_{2}H_{4}^{+}$	+	C_2H_2	\rightarrow	$C_4H_5^+$	+	H	1.93×10 ⁻¹⁰	McEwan and Anicich
cn 281c	3	$C_{2}H_{4}^{+}$	+	C_2H_2	$\stackrel{'}{\rightarrow}$	$C_4H_6^+$		11	1.00×10 ⁻¹⁰	McEwan and Anicich
cn 2010		02114		02112	,	4116			3.10×10 ⁻²⁷	Webwan and Timelen
R _{cn} 282a	2	$C_2H_4^+$	+	C_2H_4	\rightarrow	$C_3H_4^+$	+	CH_4	4.74×10 ⁻¹¹	McEwan and Anicich
cn 282b	2	$C_{2}H_{4}^{+}$ $C_{2}H_{4}^{+}$	+	C_2H_4	\rightarrow	C ₃ H ₅ ⁺	+	CH ₃	7.03×10 ⁻¹⁰	McEwan and Anicich
cn 282c	2	$C_{2}H_{4}^{+}$	+	C_2H_4 C_2H_4	\rightarrow	$C_{4}H_{7}^{+}$	+	H	4.74×10 ⁻¹¹	McEwan and Anicich
$l_{cn}282d$	3	$C_{2}H_{4}^{+}$ $C_{2}H_{4}^{+}$	+	C_2H_4 C_2H_4	\rightarrow	$C_4H_7^+$ $C_4H_8^+$	+	п	1.00×10 ⁻¹⁰	McEwan and Anicich
cn 2020	3	02114		$O_{2}\Pi_{4}$	_	04118			6.30×10 ⁻²⁶	McEwan and Ameien
R _{cn} 283a	2	$C_{2}H_{4}^{+}$	+	C_2H_6	\rightarrow	$C_{3}H_{6}^{+}$	+	CH_4	3.60×10 ⁻¹³	McEwan and Anicich
$l_{cn} 283b$	2	$C_{2}H_{4}^{+}$	+	C_2H_6	\rightarrow	$C_3H_6^+$ $C_3H_7^+$	+	CH ₃	4.79×10^{-12}	McEwan and Anicich
$R_{cn} 284a$	2	C_2H_4 $C_2H_4^+$	+	CH ₂ CCH	\rightarrow	$C_3H_7^+$ $C_3H_4^+$	+	C_2H_4	2.20×10^{-10}	McEwan and Anicich
R _{cn} 284b	2			CH ₂ CCH				CH ₃	3.30×10 ⁻¹⁰	McEwan and Anicich
	2	$C_2H_4^+$	+		\rightarrow	$C_4H_5^+$	+	H	5.50×10 ⁻¹⁰	McEwan and Anicich
cn 284c		C ₂ H ₄ ⁺		CH ₃ CCH	\rightarrow	C ₅ H ₇ ⁺	+		1.17×10 ⁻¹⁰	
cn 285a	2	$C_2H_4^+$	+	C_3H_6	\rightarrow	$C_3H_6^+$	+	C_2H_4	1.17×10 1.30×10 ⁻¹¹	McEwan and Anicich
cn 285b	2	$C_2H_4^+$	+	C_3H_6	\rightarrow	$C_4H_7^+$	+	C_2H_3	6.60×10 ⁻¹⁰	McEwan and Anicich
cn 286a	2	C ₂ H ₄ ⁺	+	C_3H_8	\rightarrow	C ₃ H ₆ ⁺	+	C_2H_6		McEwan and Anicich
cn 286b	2	$C_2H_4^+$	+	C_3H_8	\rightarrow	C ₃ H ₇ ⁺	+	C_2H_5	5.40×10^{-10}	McEwan and Anicich
cn 287a	2	$C_2H_4^+$	+	C_4H_2	\rightarrow	C ₅ H ₃ ⁺	+	CH ₃	5.00×10^{-10}	Wakelam et al. (2015)
cn 287b	2	$C_2H_4^+$	+	C_4H_2	\rightarrow	$C_6H_4^+$	+	H_2	5.00×10^{-10}	Wakelam et al. (2015)
$_{cn}287c$	3	$C_{2}H_{4}^{+}$	+	C_4H_2	\rightarrow	$C_{6}H_{6}^{+}$			1.00×10 ⁻¹⁰	McEwan and Anicich
									6.80×10^{-26}	
c_{cn} 288a	2	$C_2H_4^+$	+	C_6H_2	\rightarrow	$C_7H_3^+$	+	CH_3	5.00×10 ⁻¹⁰	Wakelam et al. (2015)
cn 288b	2	$C_2H_4^+$	+	C_6H_2	\rightarrow	CXHYNZ ⁺	+	H_2	5.00×10^{-10}	Wakelam et al. (2015)
$_{cn}289$	2	$C_2H_4^{+}$	+	N	\rightarrow	$C_2H_3N^+$	+	H	3.00×10^{-10}	McEwan and Anicich
_{cn} 290a	2	$C_2H_4^+$ Page	+	NH_3	\rightarrow	NH_3^+	+	C_2H_4	1.24×10^{-10}	Anicich (1993)

,		
٠	t	۰
ŀ	ł	_
C	1	=

	Type					Reaction					k	Ref.
$R_{cn}290b$	2	$C_2H_4^+$	+	NH_3	\rightarrow	NH_4^+	+	C_2H_3			1.94×10^{-09}	Anicich (1993)
$R_{cn}291$	3	$C_{2}H_{4}^{+}$	+	HCN	\rightarrow	$C_3H_5N^+$					1.00×10^{-10}	McEwan and Anicich (2
											1.90×10^{-27}	
$R_{cn}292$	2	$C_2H_4^+$	+	CH_3NH_2	\rightarrow	$CH_3NH_3^+$	+	C_2H_3			6.46×10^{-10}	Petrank et al. (1992)
$R_{cn}293$	2	$C_2H_4^+$	+	CH_3CN	\rightarrow	$C_2H_3NH^+$	+	C_2H_3			2.85×10^{-09}	Petrank et al. (1992)
$R_{cn}294a$	2	$C_2H_4^+$	+	HC_3N	\rightarrow	HC ₃ NH ⁺	+	C_2H_3			1.27×10^{-09}	McEwan and Anicich (2
$R_{cn}294b$	2	$C_2H_4^+$	+	HC_3N	\rightarrow	$C_5H_3NH^+$	+	Н			2.25×10^{-10}	McEwan and Anicich (2
$R_{cn}295$	2	$C_2H_4^+$	+	C_3H_5N	\rightarrow	$C_3H_5NH^+$	+	C_2H_3			4.50×10^{-09}	Edwards et al. (2008)
$R_{cn}296a$	2	$C_2H_4^+$	+	$O(^{3}P)$	\rightarrow	CH ₃	+	HCO			1.08×10 ⁻¹⁰	Scott et al. (2000)
$R_{cn}296b$	2	$C_2H_4^+$	+	$O(^{3}P)$	\rightarrow	HCO ⁺	+	CH_3			8.40×10 ⁻¹¹	Scott et al. (2000)
$R_{cn}296c$	2	$C_2H_4^+$	+	$O(^{3}P)$	\rightarrow	CH_2O^+	+	H_2	+	H	2.40×10 ⁻¹¹	Scott et al. (2000)
$R_{cn}296d$	2	C ₂ H ₄ ⁺	+	$O(^{3}P)$	\rightarrow	CH ₂ CO ⁺	+	H_2			1.20×10 ⁻¹¹	Scott et al. (2000)
$R_{cn}296e$	2	$C_2H_4^+$	+	$O(^{3}P)$	\rightarrow	CH ₃ CO ⁺	+	H			1.20×10 ⁻¹¹	Scott et al. (2000)
$R_{cn}297$	2	C ₂ H ₅ ⁺	+	H	\rightarrow	$C_2H_4^+$	+	H_2			1.00×10^{-11}	McEwan and Anicich (2
$R_{cn}298$	3	$C_2H_5^+$	+	H_2	\rightarrow	$C_2H_7^+$					1.00×10 ⁻¹⁰	McEwan and Anicich (2
											1.00×10^{-30}	
$R_{cn}299$	2	$C_2H_5^+$	+	CH_3	\rightarrow	$C_2H_4^+$	+	CH_4			5.00×10^{-10}	Capone et al. (1976)
$R_{cn}300a$	2	C ₂ H ₅ ⁺	+	CH_4	\rightarrow	$C_3H_7^+$	+	H_2			9.00×10^{-14}	McEwan and Anicich (2
$R_{cn}300b$	3	$C_2H_5^+$	+	CH_4	\rightarrow	$C_2H_5^+CH_4$					1.00×10^{-10}	Dheandhanoo et al. (198
											$1.40 \times 10^{-30} \mathrm{T}^{3.70}$	
$R_{cn}301a$	2	C ₂ H ₅ ⁺	+	C_2H_2	\rightarrow	$c-C_{3}H_{3}^{+}$	+	CH_4			6.84×10^{-11}	McEwan and Anicich (2
$R_{cn}301b$	2	$C_2H_5^+$	+	C_2H_2	\rightarrow	$C_4H_5^+$	+	H_2			1.22×10^{-10}	McEwan and Anicich (2
$R_{cn}301c$	3	C ₂ H ₅ ⁺	+	C_2H_2	\rightarrow	$C_4H_7^{+}$					1.00×10^{-10}	McEwan and Anicich (2
											2.50×10^{-24}	
$R_{cn}302a$	2	C ₂ H ₅ ⁺	+	C_2H_4	\rightarrow	$C_3H_5^+$	+	CH_4			3.55×10^{-10}	McEwan and Anicich (2
$R_{cn}302b$	3	C ₂ H ₅ ⁺	+	C_2H_4	\rightarrow	$C_4H_9^+$		-			1.00×10^{-10}	McEwan and Anicich (2
											1.34×10^{-25}	
$R_{cn}303a$	2	C ₂ H ₅ ⁺	+	C_2H_6	\rightarrow	$C_3H_7^+$	+	CH_A			5.46×10^{-12}	McEwan and Anicich (2
$R_{cn}303b$	2	C ₂ H ₅ ⁺	+	C_2H_6	\rightarrow	$C_4H_9^+$	+	H_2			3.35×10^{-11}	McEwan and Anicich (2
$R_{cn}304a$	2	C ₂ H ₅ ⁺	+	CH, CCH	\rightarrow	$C_3H_5^+$	+	C_2H_4			1.26×10^{-09}	McEwan and Anicich (2
$R_{cn}304b$	2	C ₂ H ₅ ⁴	+	CH ₃ CCH	\rightarrow	$C_4H_5^+$	+	\widetilde{CH}_4			1.40×10^{-10}	McEwan and Anicich (2
$R_{cn}305$	2	C,H+	+	СН,ССН,	\rightarrow	$C_3^4H_5^+$	+	C_2H_4			1.40×10^{-09}	Langevin
$R_{cn}306$	2	C2H5	+	C_3H_6	\rightarrow	$C_3^3H_7^{\frac{3}{4}}$	+	C_2H_4			1.60×10^{-09}	Su-Chesnavich
$R_{cn}307$	2	C2H5	+	C_3H_8	\rightarrow	$C_{3}H_{7}^{+}$	+	C_2H_6			6.30×10 ⁻¹⁰	McEwan and Anicich (2
$R_{cn}308$	2	C ₂ H ₅ ⁺	+	C_4H_2	\rightarrow	C_4^{3-7}	+	C_2H_4			1.50×10 ⁻⁰⁹	Langevin
$R_{cn}309$	2	C ₂ H ₅ ⁺	+	C_5H_4	\rightarrow	C ₅ H ₅ ⁺	+	C_2H_4			2.50×10 ⁻⁰⁹	Su-Chesnavich
Continued		Page		5-4		- 55		-24			1	1

c	ď
٦	٦
н	-

	Type					Reaction					k	Ref.
R _{cn} 310	2	C ₂ H ₅ ⁺	+	C_6H_2	\rightarrow	$C_{6}H_{3}^{+}$	+	C_2H_4			1.80×10 ⁻⁰⁹	Langevin
R _{cn} 311	2	C ₂ H ₅ ⁺	+	C_6H_6	<i>.</i>	$C_6H_7^+$	+	C_2H_4			2.90×10 ⁻¹⁰	Žabka et al. (2009)
$R_{cn}312$	2	C ₂ H ₅ +	+	C_7H_4	\rightarrow	$C_7H_5^+$	+	C_2H_4			2.90×10 ⁻⁰⁹	Su-Chesnavich
t _{cn} 313	2	C ₂ H ₅ ⁺	+	C_7H_8	\rightarrow	$C_7H_9^+$	+	C_2H_4			1.90×10 ⁻⁰⁹	Su-Chesnavich
R _{cn} 314	2	C ₂ H ₅ +	+	C_8H_2	\rightarrow	C ₈ H ₃ ⁺	+	C_2H_4			2.10×10 ⁻⁰⁹	Langevin
c _n 315	2	C ₂ H ₅ ⁺	+	NH ₂	<i>.</i>	NH ⁺	+	C_2H_4			2.09×10 ⁻⁰⁹	Anicich (1993)
$R_{cn}316$	2	C ₂ H ₅ +	+	HCN	<i>,</i>	HCNH ⁺	+	C_2H_4			2.70×10 ⁻⁰⁹	McEwan and Anicich (20
$R_{cn}317$	2	C ₂ H ₅ +	+	HNC	\rightarrow	HCNH ⁺	+	C_2H_4			5.20×10 ⁻⁰⁹	Su-Chesnavich
R _{cn} 318a	2	C ₂ H ₅ ⁺	+	CH ₂ NH	<i>.</i>	CH ₂ NH ₂ ⁺	+	C_2H_4			2.57×10 ⁻⁰⁹	Edwards et al. (2008)
R _{cn} 318b	2	C ₂ H ₅ +	+	CH ₂ NH	\rightarrow	C ₃ H ₇ NH ⁺	+	hv			1.35×10 ⁻¹⁰	Edwards et al. (2008)
c _n 319a	2	C ₂ H ₅ ⁺	+	CH ₃ NH ₂	<i>.</i>	CH ₃ NH ₃ ⁺	+	C_2H_4			1.52×10 ⁻⁰⁹	Edwards et al. (2008)
R _{cn} 319b	2	C ₂ H ₅ +	+	CH ₃ NH ₂	<i>,</i>	C ₃ H ₉ NH ⁺	+	hv			3.80×10 ⁻¹⁰	Edwards et al. (2008)
$R_{cn}320$	2	C ₂ H ₅ ⁺	+	CH ₃ CN	\rightarrow	C ₂ H ₃ NH ⁺	+	C_2H_4			3.80×10 ⁻⁰⁹	McEwan and Anicich (20
R _{cn} 321	2	C ₂ H ₅ +	+	HC ₃ N	\rightarrow	HC_3NH^+	+	C_2H_4			3.55×10 ⁻⁰⁹	McEwan and Anicich (20
$R_{cn}322$	2	C ₂ H ₅ +	+	C_3H_3N	$\stackrel{'}{\rightarrow}$	C ₃ H ₃ NH ⁺	+	C_2H_4			5.80×10 ⁻⁰⁹	Su-Chesnavich
cn 323	2	C ₂ H ₅ +	+	C_3H_5N	$\stackrel{'}{\rightarrow}$	$C_2H_ENH^+$	+	C_2H_4 C_2H_4			6.00×10 ⁻⁰⁹	Su-Chesnavich
c _n 324	2	C ₂ H ₅ +	+	C_4H_3N	$\stackrel{'}{\rightarrow}$	$C_4H_3NH^+$	+	C_2H_4 C_2H_4			6.70×10^{-09}	Su-Chesnavich
$R_{cn}324$	2	C ₂ H ₅ ⁺	+	C_4H_5N	\rightarrow	$C_4H_5NH^+$	+	C_2H_4			5.40×10^{-09}	Su-Chesnavich
R _{cn} 326	2	C ₂ H ₅ +	+	HC ₅ N	$\stackrel{'}{\rightarrow}$	HC ₅ NH ⁺	+	C_2H_4			4.70×10 ⁻⁰⁹	Edwards et al. (2009)
$R_{cn}327$	2	C ₂ H ₅ ⁺	+	$C_{\kappa}H_{\kappa}N$	\rightarrow	$C_{\kappa}H_{\kappa}NH^{+}$	+	C_2H_4			3.60×10^{-09}	Su-Chesnavich
$R_{cn}328$	2	C ₂ H ₅ C ₂ H ₅ ⁺	+	C_6H_3N	\rightarrow	$C_6H_3NH^+$	+	C_2H_4 C_2H_4			8.10×10 ⁻⁰⁹	Su-Chesnavich
$R_{cn}329$	2	C ₂ H ₅ C ₂ H ₅ ⁺	+	C_6H_7N	\rightarrow	$C_6H_7NH^+$	+	C_2H_4 C_2H_4			2.40×10^{-09}	Su-Chesnavich
$c_{cn}329$	3	C ₂ H ₅ C ₂ H ₅	+	N ₂	\rightarrow	$C_9H_5^+N_9$	т	2114			1.00×10 ⁻¹⁰	Speller et al. (1995)
ι_{cn} 330	3	C2 n5	+	IN ₂	\rightarrow	$C_2\Pi_5$ N_2					1.00×10 1.00×10^{-27}	Speller et al. (1995)
R _{cn} 331	2	C ₂ H ₅ ⁺		N_2H_4	\rightarrow	$N_2H_5^+$		C_2H_4			1.00×10 1.20×10 ⁻⁰⁹	Su-Chesnavich
$l_{cn}332a$	2	C ₂ H ₅ C ₂ H ₅ ⁺	+	C_2N_2	\rightarrow	$C_{2}N_{2}H^{+}$	+	C_2H_4 C_2H_4			8.00×10 ⁻¹¹	McEwan and Anicich (20
cn 332b	3	C ₂ H ₅ C ₂ H ₅	+			AdductN ⁺	+	$C_2\Pi_4$			1.00×10 ⁻¹⁰	McEwan and Anicich (20
icn 332D	3	C2 N5	+	C_2N_2	\rightarrow	Adductiv					2.00×10 2.00×10 ⁻²⁴	McEwan and Anicien (20
$R_{cn}333$	2	C ₂ H ₅ ⁺		H_2O		H_3O^+		СИ			1.86×10 ⁻⁰⁹	McEwan and Anicich (20
	2		+	H ₂ CO	→	CH ₂ OH ⁺	+	C_2H_4			3.10×10^{-09}	Anicich (1993)
lcn 334	3	C ₂ H ₅ ⁺	+		\rightarrow	Adduct ⁺	+	C_2H_4			1.00×10^{-10}	Hiraoka et al. (2003)
$l_{cn}335$	3	$C_{2}H_{5}^{+}$	+	CO_2	\rightarrow	Adduct					1.00×10^{-25} 1.00×10^{-25}	niraoka et al. (2003)
226		C H+CH		NT.		C II+		CII		NT.	$1.00 \times 10^{-09} \text{T}^{3.70} \text{e}^{1650.0/T}$	Dh
R _{cn} 336	2	C ₂ H ₅ ⁺ CH ₄	+	N ₂	<i>→</i>	C ₂ H ₅ ⁺	+	CH_4	+	N ₂	1.00×10 05 To 10 e 1000 07 1 4.00×10 ⁻¹⁴	
R _{cn} 337	2	C ₂ H ₅ ⁺ N ₂	+	N ₂	\rightarrow	C ₂ H ₅ ⁺	+	N_2	+	N_2		Speller et al. (1995)
L _{cn} 338	2	C ₂ H ₆ ⁺	+	Н	\rightarrow	$C_2H_5^+$	+	H ₂			1.00×10 ⁻¹⁰	McEwan and Anicich (20
$l_{cn}339$	2	$C_2H_6^+$ Page	+	CH ₃	\rightarrow	CH_3^+	+	C_2H_6			1.00×10^{-09}	Capone et al. (1976)

^	
.Ŧ	ς.

	Type					Reaction					k	Ref.
${\bf R}_{cn}340$	3	$C_2H_6^+$	+	CH_4	\rightarrow	Adduct^+					1.00×10^{-10} 1.00×10^{-29}	Capone et al. (1976)
$R_{cn}341a$	2	C2H6+	+	C_2H_2	\rightarrow	$C_2H_5^+$	+	C_2H_3			2.47×10 ⁻¹⁰	McEwan and Anicich (2007
$R_{cn}341b$	2	C ₂ H ₆ ⁺	+	C_2H_2	\rightarrow	$C_3H_5^+$	+	CH_3			9.10×10^{-10}	McEwan and Anicich (2007
$R_{cn}341c$	2	C ₂ H ₆ ⁺	+	C_2H_2	\rightarrow	$C_4H_7^+$	+	Н			1.43×10^{-10}	McEwan and Anicich (2007
$R_{cn}342$	2	C ₂ H ₆ ⁴	+	C_2H_4	\rightarrow	$C_2H_4^+$	+	C_2H_6			1.15×10^{-09}	McEwan and Anicich (2007
$R_{cn}343a$	2	C ₂ H ₆ ⁺	+	C_2H_6	\rightarrow	$C_3H_8^{\uparrow}$	+	CH_4			7.98×10^{-12}	McEwan and Anicich (2007
$R_{cn}343b$	2	C ₂ H ₆ ⁴	+	C_2H_6	\rightarrow	$C_3^3H_9^{\frac{1}{2}}$	+	CH ₃			1.10×10^{-11}	McEwan and Anicich (2007
$R_{cn}344a$	2	C ₂ H ₆ ⁴	+	NH ₃	\rightarrow	NH ₃ ⁺	+	C_2H_6			6.24×10^{-10}	Huntress (1977)
$R_{cn}344b$	2	C ₂ H ₆ ⁺	+	NH ₃	\rightarrow	NH [‡]	+	C_2H_5			1.61×10^{-09}	Huntress (1977)
$R_{cn}345a$	2	C ₂ H ₆ ⁴	+	HCN	\rightarrow	HCNH ⁺	+	$C_{2}^{2}H_{5}^{3}$			1.14×10^{-09}	McEwan and Anicich (2007
$R_{cn}345b$	2	C ₂ H ₆ ⁺	+	HCN	\rightarrow	$C_3H_5NH^+$	+	ΗŽ			6.00×10^{-11}	McEwan and Anicich (2007
$R_{cn}346$	2	C ₂ H ₆ ⁴	+	H_2O	\rightarrow	$H_3^3O^{\frac{5}{4}}$	+	C_2H_5			2.95×10^{-09}	McEwan and Anicich (2007
$R_{cn}347$	2	C ₂ H ₇ ⁺	+	H	\rightarrow	$C_{2}^{3}H_{6}^{+}$	+	H ₂			1.00×10^{-10}	Capone et al. (1976)
$R_{cn}348$	2	C ₂ H ₇ ⁺	+	CH_3	\rightarrow	$C_{2}^{2}H_{6}^{4}$	+	CH_4			5.00×10^{-10}	Capone et al. (1976)
R _{cn} 349	3	C ₂ H ₇ ⁺	+	CH_4	\rightarrow	$C_2^2H_7^4CH_4$		- 4			1.00×10^{-10}	Molina-Cuberos et al. (199
·Cn		-2 /		- 4		-2 / - 4					1.00×10^{-29}	
$R_{cn}350$	2	C ₂ H ₇ ⁺	+	NH_{o}	\rightarrow	$C_2H_6^+$	+	NH,			1.00×10^{-10}	Capone et al. (1979)
$R_{cn}351$	2	C ₂ H ₇ ⁺	+	NH_3^2	\rightarrow	NH_4^+	+	C_2H_6			1.80×10^{-09}	Hemsworth et al. (1974)
$R_{cn}352a$	2	C ₂ H ₇ ⁺	+	HCN	\rightarrow	HCNH ⁺	+	C_2H_6			1.98×10^{-09}	Mackay et al. (1980)
$R_{cn}352b$	2	C ₂ H ₇ ⁺	+	HCN	\rightarrow	$C_2H_3NH^+$	+	CH_4			2.20×10^{-10}	Mackay et al. (1980)
$R_{cn}353$	2	C ₂ H ₇ +CH ₄	+	N_2	\rightarrow	$C_2H_7^+$	+	CH_4	+	N_2	9.00×10^{-11}	Speller et al. (1995)
$R_{cn}354a$	2	C ₃ H ⁺	+	H ₂	\rightarrow	$C_3H_2^+$	+	н "		-	$1.40 \times 10^{-11} T^{1.05}$	Savić and Gerlich (2005)
$R_{cn}354b$	2	C ₃ H ⁺	+	H ₂	\rightarrow	$c - C_3 H_3^+$	+	hv			$1.15\times10^{-11}T^{1.10}$	Savić and Gerlich (2005)
$R_{cn}354c$	2	C ₃ H ⁺	+	H ₂	\rightarrow	l−C ₃ H ₃ [∓]	+	hv			$1.15 \times 10^{-11} \mathrm{T}^{1.10}$	Savić and Gerlich (2005)
$R_{cn}354d$	3	C ₃ H ⁺	+	H_2^2	\rightarrow	$c-C_{3}H_{3}^{+}$					1.00×10^{-10}	McEwan and Anicich (2007
		"		2		3 3					2.30×10^{-27}	`
$R_{cn}355a$	2	C ₃ H ⁺	+	CH_4	\rightarrow	$C_2H_3^+$	+	C_2H_2			7.83×10^{-10}	McEwan and Anicich (2007
$R_{cn}355b$	2	C ₃ H ⁺	+	CH_4	\rightarrow	$C_4^2H_3^{\frac{1}{4}}$	+	H_2			8.70×10^{-11}	McEwan and Anicich (2007
$R_{cn}355c$	3	C ₃ H ⁺	+	CH_4	\rightarrow	$C_4^{\dagger}H_5^{\dagger}$		-			1.00×10^{-10}	McEwan and Anicich (2007
		"		•		4 3					3.70×10^{-26}	,
$R_{cn}356$	2	C ₃ H ⁺	+	C_2H_2	\rightarrow	$C_5H_2^+$	+	H			8.40×10^{-10}	McEwan and Anicich (2007
$R_{cn}357a$	2	C ₃ H ⁺	+	C_2H_4	\rightarrow	c-C ₃ H ₃ ⁺	+	C_2H_2			9.02×10^{-10}	McEwan and Anicich (2007
$R_{cn}357b$	2	C ₃ H ⁺	+	C_2H_4	\rightarrow	$C_5H_3^{\frac{1}{4}}$	+	H_2^2			4.75×10^{-11}	McEwan and Anicich (2007
$R_{cn}357c$	3	C ₃ H ⁺	+	C_2H_4	\rightarrow	$C_5H_5^+$		-			1.00×10^{-10}	McEwan and Anicich (2007
	1	"				0 0					6.80×10^{-26}	`

C	١,	•
1	К	
н	۰	-
C	١,	•

	Type					Reaction			k	Ref.
$R_{cn}358$	2	C ₃ H ⁺	+	CH ₃ CCH	\rightarrow	$C_4H_3^+$	+	C_2H_2	1.40×10 ⁻⁰⁹	McEwan and Anicich (2007)
$R_{cn}359$	2	C ₃ H ⁺	+	CH, CCH,	\rightarrow	$C_4H_3^+$	+	C_2H_2	1.40×10^{-09}	Anicich (1993)
$R_{cn}360a$	2	C ₃ H ⁺	+	C_3H_6	\rightarrow	$C_4H_4^+$	+	C_2H_3	1.20×10^{-10}	McEwan and Anicich (2007)
R _{cn} 360b	2	C ₃ H ⁺	+	C_3H_6	\rightarrow	$C_4H_3^+$	+	C_2H_4	8.80×10^{-10}	McEwan and Anicich (2007)
$R_{cn}361$	2	C ₃ H ⁺	+	$C_3^3H_8$	\rightarrow	CXHYNZ ⁺		2 4	1.60×10^{-09}	McEwan and Anicich (2007)
$R_{cn}362a$	2	C ₃ H ⁺	+	C_4H_2	\rightarrow	$C_5H_2^+$	+	C_2H	1.02×10^{-09}	McEwan and Anicich (2007)
$R_{cn}362b$	2	C ₃ H ⁺	+	C_4H_2	\rightarrow	C ₅ H [‡]	+	C_2H_2	1.20×10^{-10}	McEwan and Anicich (2007)
$R_{cn}362c$	2	C ₃ H ⁺	+	C_4H_2	\rightarrow	$C_4H_2^+$	+	C_3H	6.00×10^{-11}	McEwan and Anicich (2007)
$R_{cn}363a$	2	C ₃ H ⁺	+	N	\rightarrow	$C_3N^{\frac{1}{4}}$	+	Н	2.43×10^{-10}	McEwan and Anicich (2007)
$R_{cn}363b$	2	C ₃ H ⁺	+	N	\rightarrow	HC ₃ N ⁺			2.70×10^{-11}	McEwan and Anicich (2007)
$R_{cn}364a$	2	C ₃ H ⁺	+	NH ₂	\rightarrow	NH_2^+	+	C_3H	3.30×10^{-10}	Anicich and McEwan (1997)
R _{cn} 364b	2	C ₃ H ⁺	+	NH ₂	\rightarrow	NH [‡]	+	C_3	7.43×10^{-10}	Anicich and McEwan (1997)
R _{cn} 364c	2	C ₃ H ⁺	+	NH ₃	\rightarrow	HCNH ⁺	+	C_2H_2	4.13×10^{-10}	Anicich and McEwan (1997)
R _{cn} 364d	2	C ₃ H ⁺	+	NH ₃	\rightarrow	$C_3H_3N^+$	+	H	1.65×10^{-10}	Anicich and McEwan (1997)
R _{cn} 365a	2	C ₃ H ⁺	+	HCN	\rightarrow	HCNH ⁺	+	C_3	3.60×10^{-12}	McEwan and Anicich (2007)
R _{cn} 365b	2	C ₃ H ⁺	+	HCN	\rightarrow	HC₄NH ⁺	+	hv	3.64×10^{-11}	McEwan and Anicich (2007)
R _{cn} 365c	3	C ₃ H ⁺	+	HCN	\rightarrow	HC₄NH ⁺			1.00×10^{-10}	McEwan and Anicich (2007)
		"				•			8.80×10^{-26}	` ′
R _{cn} 366a	2	C ₂ H ⁺	+	CH ₂ CN	\rightarrow	$C_{2}H_{3}^{+}$	+	HC_3N	6.00×10^{-10}	McEwan and Anicich (2007)
R _{cn} 366b	2	C ₃ H ⁺	+	CH ₂ CN	\rightarrow	$C_2H_3NH^+$	+	C_3	4.50×10^{-10}	McEwan and Anicich (2007)
$R_{cn}366c$	2	C ₃ H ⁺	+	CH ₂ CN	\rightarrow	HC ₃ NH ⁺	+	C_2H_2	9.90×10^{-10}	McEwan and Anicich (2007)
R _{cn} 366d	2	C ₃ H ⁺	+	CH ₃ CN	\rightarrow	$C_5 H_3 NH^+$		2 2	9.00×10^{-10}	McEwan and Anicich (2007)
$R_{cn}367$	2	C ₃ H ⁺	+	HC_3N	\rightarrow	HC ₆ NH ⁺	+	hv	1.25×10^{-09}	McEwan and Anicich (2007)
$R_{cn}368$	2	C ₃ H ⁺	+	C_3H_3N	\rightarrow	$C_6 \ddot{H}_3 NH^+$	+	hv	4.50×10^{-09}	Petrie et al. (1991a), Petrie et al.
$R_{cn}369$	2	C ₃ H ⁺	+	C_2N_2	\rightarrow	$HC_5N_2^+$	+	hv	4.40×10^{-10}	McEwan and Anicich (2007)
$R_{cn}370a$	2	C ₃ H ⁺	+	H ₂ O	\rightarrow	HCO+	+	C_2H_2	4.50×10^{-10}	McEwan and Anicich (2007)
R _{cn} 370b	2	C ₃ H ⁺	+	H ₂ O	\rightarrow	$C_2H_3^+$	+	CO	4.50×10^{-10}	McEwan and Anicich (2007)
$R_{cn}371$	3	C ₃ H ⁺	+	CÕ	\rightarrow	Adduct ⁺			1.00×10^{-10}	McEwan and Anicich (2007)
		"							2.90×10^{-27}	` ′
R _{cn} 372a	2	C ₃ H ⁺	+	H ₂ CO	\rightarrow	$c-C_{3}H_{3}^{+}$	+	CO	5.00×10^{-10}	Prodnuk et al. (1992)
R _{cn} 372b	2	C ₃ H ⁺	+	H ₂ CO	\rightarrow	l−C ₃ H ₃ ²	+	CO	5.00×10^{-10}	Prodnuk et al. (1992)
$R_{cn}373$	2	C ₃ H ₂ ⁺	+	CH ₄	\rightarrow	c-C ₂ H ₂ ⁺	+	CH ₂	5.50×10^{-10}	McEwan and Anicich (2007)
$R_{cn}374$	2	C ₃ H ₂ ⁺	+	C ₂ H ₂	\rightarrow	$C_5H_3^{\frac{3}{4}}$	+	Н	9.00×10^{-10}	McEwan and Anicich (2007)
R _{cn} 375a	2	$C_3H_2^+$	+	C_2H_4	\rightarrow	c-C ₃ H ₃ ⁺	+	C_2H_3	2.75×10 ⁻¹⁰	McEwan and Anicich (2007)
R _{cn} 375b	2	C ₃ H ₂ ⁺	+	C_2H_4	\rightarrow	$C_{3}H_{4}^{+}$	+	C_2H_2	6.60×10 ⁻¹⁰	McEwan and Anicich (2007)
	2							H 2	2.75×10 ⁻¹⁰	McEwan and Anicich (2007)
$R_{cn}375c$ Continued		$C_3H_2^+$ Page	+	C_2H_4	\rightarrow	$C_5H_5^+$	+	Н	2.75×10^{-10}	McEwan and Anicich

1	۲	۹	٠
	Ħ		

	Type					Reaction				k	Ref.
R_{cn} 376a	2	$C_3H_2^+$	+	CH ₃ CCH	\rightarrow	$C_4H_2^+$	+	C_2H_4		1.17×10^{-10}	McEwan and Anicich (200
$R_{cn}376b$	2	$C_3H_2^+$	+	CH ₃ CCH	\rightarrow	$C_4H_3^+$	+	C_2H_3		1.56×10^{-10}	McEwan and Anicich (200
$R_{cn}376c$	2	$C_3H_2^{\mp}$	+	CH ₃ CCH	\rightarrow	$C_4H_4^+$	+	C_2H_2		5.33×10^{-10}	McEwan and Anicich (200
$R_{cn}376d$	2	$C_3H_2^+$	+	CH ₃ CCH	\rightarrow	$C_{5}H_{3}^{+}$	+	CH ₃		2.34×10^{-10}	McEwan and Anicich (200
$R_{cn}376e$	2	$C_3H_2^{\mp}$	+	CH ₃ CCH	\rightarrow	$C_6H_5^+$	+	Н		2.60×10^{-10}	McEwan and Anicich (200
$R_{cn}377a$	2	$C_3H_2^{\mp}$	+	CH, CCH,	\rightarrow	$C_4H_2^+$	+	C_2H_4		5.60×10^{-11}	Anicich (1993)
$R_{cn}377b$	2	$C_3H_2^{\mp}$	+	CH ₂ CCH ₂	\rightarrow	$C_4H_3^+$	+	C_2H_3		1.96×10^{-10}	Anicich (1993)
$R_{cn}377c$	2	$C_3H_2^{\mp}$	+	CH ₂ CCH ₂	\rightarrow	$C_4H_4^+$	+	C_2H_2		7.00×10^{-10}	Anicich (1993)
$R_{cn}377d$	2	$C_3H_2^+$	+	CH, CCH,	\rightarrow	$C_{5}H_{3}^{+}$	+	CH ₃		1.26×10^{-10}	Anicich (1993)
$R_{cn}377e$	2	C ₃ H ₂ [±]	+	CH ₂ CCH ₂	\rightarrow	$C_6H_5^+$	+	Н		2.94×10^{-10}	Anicich (1993)
$R_{cn}378a$	2	$C_3H_2^+$	+	C_3H_6	\rightarrow	$c - C_3 H_3^+$	+	C_3H_5		1.50×10^{-10}	McEwan and Anicich (200
$R_{cn}378b$	2	C ₃ H ₂ [±]	+	C_3H_6	\rightarrow	$C_4H_4^+$	+	C_2H_4		1.50×10^{-10}	McEwan and Anicich (200
$R_{cn}378c$	2	C ₃ H ₂ [‡]	+	C_3H_6	\rightarrow	$C_5H_5^{\uparrow}$	+	CH ₃		2.50×10^{-10}	McEwan and Anicich (200
$R_{cn}378d$	2	C ₃ H ₂ [±]	+	C_3H_6	\rightarrow	$C_6H_7^+$	+	Н		4.50×10^{-10}	McEwan and Anicich (200
$R_{cn}379a$	2	C ₃ H ₂ [±]	+	C_3H_8	\rightarrow	$c-C_3H_3^+$	+	C_3H_7		3.60×10^{-10}	McEwan and Anicich (200
$R_{cn}379b$	2	C ₃ H ₂ +	+	C_3H_8	\rightarrow	$C_3H_7^+$	+	C_3H_3		5.40×10^{-10}	McEwan and Anicich (200
$R_{cn}379c$	2	C ₃ H ₂ [±]	+	C_3H_8	\rightarrow	$C_4H_6^+$	+	C_2H_4		1.20×10^{-10}	McEwan and Anicich (200
$R_{cn}379d$	2	$C_3H_2^{+}$	+	C_3H_8	\rightarrow	$C_4H_8^+$	+	C_2H_2		6.00×10^{-11}	McEwan and Anicich (200
$R_{cn} 379e$	2	C ₃ H ₂ [±]	+	C_3H_8	\rightarrow	$C_5H_7^+$	+	CH ₃		1.20×10^{-10}	McEwan and Anicich (200
$R_{cn}380a$	2	C ₃ H ₂ +	+	C_4H_2	\rightarrow	$C_7H_3^+$	+	Н		3.00×10^{-10}	Wakelam et al. (2015)
$R_{cn}380b$	2	C ₃ H ₂ [±]	+	C_4H_2	\rightarrow	$C_7H_2^+$	+	H_2		3.00×10^{-10}	Wakelam et al. (2015)
$R_{cn}381a$	2	C ₃ H ₂ [‡]	+	C_6H_2	\rightarrow	$CXHYNZ^+$	+	н		3.00×10^{-10}	Wakelam et al. (2015)
$R_{cn}381b$	2	C ₃ H ₂ [±]	+	C_6H_2	\rightarrow	$CXHYNZ^{+}$	+	H_2		3.00×10^{-10}	Wakelam et al. (2015)
$R_{cn}382a$	2	C ₃ H ₂ [±]	+	N 2	\rightarrow	$C_2H_2^+$	+	CN		3.74×10^{-11}	McEwan and Anicich (200
$R_{cn}382b$	2	$C_3H_2^{+}$	+	N	\rightarrow	HCNH ⁺	+	C_2		6.60×10^{-12}	McEwan and Anicich (200
$R_{cn}383a$	2	C ₃ H ₂ [±]	+	NH_3	\rightarrow	NH_4^+	+	$C_3^{\prime}H$		4.60×10^{-10}	Prodnuk et al. (1992)
$R_{cn}383b$	2	$C_3H_2^{+}$	+	NH_3	\rightarrow	CH ₂ NH ⁺	+	C_2H_2		1.15×10^{-10}	Prodnuk et al. (1992)
$R_{cn}383c$	2	C ₃ H ₂ [±]	+	NH_3	\rightarrow	$C_2\tilde{H}_5^+$	+	CN		1.15×10^{-10}	Prodnuk et al. (1992)
$R_{cn}383d$	2	C ₃ H ₂ +	+	NH_3	\rightarrow	$C_3H_3NH^+$	+	H		1.38×10^{-09}	Prodnuk et al. (1992)
$R_{cn}383e$	2	C ₃ H ₂ [±]	+	NH_3	\rightarrow	$C_3H_5N^+$	+	hv		2.30×10^{-10}	Prodnuk et al. (1992)
R _{cn} 384	2	C ₃ H ₂ [‡]	+	HCN	\rightarrow	CXHYNZ ⁺				1.60×10^{-10}	McEwan and Anicich (200
$R_{cn}385a$	2	C ₃ H ₂ [‡]	+	C_3H_3N	\rightarrow	HC_4NH^+	+	C_2H_3		5.00×10^{-11}	Prodnuk et al. (1992)
$R_{cn}385b$	2	C ₃ H ₂ [±]	+	C_3H_3N	\rightarrow	$C_5 \ddot{H}_4^+$	+	HČN		5.00×10^{-11}	Prodnuk et al. (1992)
$R_{cn}385c$	2	$C_3H_2^{\tilde{+}}$	+	C_3H_3N	\rightarrow	C ₆ H ₅ N ⁺	+	hv		9.00×10^{-10}	Prodnuk et al. (1992)
$R_{cn}386a$	2	C ₃ H ₂ ⁴	+	H ₂ CO	\rightarrow	c-C ₃ H ₃ ⁺	+	HCO		3.00×10^{-10}	Prodnuk et al. (1992)
R _{cn} 386b	2	C3H2+	+	H ₂ CO	\rightarrow	$1-C_3H_3^{\frac{3}{2}}$	+	HCO		3.00×10^{-10}	Prodnuk et al. (1992)
Continued	on Next			2		3 3			'		, , ,

ć		è	
1	Ì		
2	:	Ţ	
١	•	•	

	Type					Reaction			k	Ref.
$R_{cn}386c$	2	$C_3H_2^+$	+	H_2CO	\rightarrow	$\mathrm{CH_{2}CO^{+}}$	+	C_2H_2	4.00×10^{-10}	Prodnuk et al. (1992)
$R_{cn}387$	2	c-C ₃ H ₃ ⁺	+	C_7H_8	\rightarrow	$CXHYNZ^{+}$			3.80×10^{-11}	Adams et al. (2010)
$R_{cn}388$	2	c-C ₃ H ₃ ⁺	+	C_3H_3N	\rightarrow	$C_6H_5NH^+$	+	hv	5.00×10^{-11}	Petrie et al. (1991a), Petrie et al. (1992
$R_{cn}389a$	2	1-C ₃ H ₃ ⁺	+	C_2H_2	\rightarrow	$c-C_3H_3^+$	+	C_2H_2	2.10×10^{-10}	McEwan and Anicich (2007)
$R_{cn}389b$	3	1-C ₃ H ₃ ⁺	+	C_2H_2	\rightarrow	$C_5H_5^{\frac{1}{4}}$		2 2	1.00×10^{-10}	McEwan and Anicich (2007)
		""		2 2		5 5			2.50×10^{-24}	` ′
$R_{cn}390a$	2	1-C ₃ H ₃ ⁺	+	C_2H_4	\rightarrow	$C_{\kappa}H_{\kappa}^{+}$	+	H_2	5.50×10^{-10}	Anicich and McEwan (1997)
R _{cn} 390b	2	1-C ₃ H ₃ ⁴	+	$C_2^2H_4^4$	\rightarrow	$C_5^3H_7^{\frac{3}{7}}$	+	hv	5.50×10^{-10}	Anicich and McEwan (1997)
R _{cn} 391	3	1-C ₃ H ₃ ⁴	+	CH ₃ CCH	\rightarrow	$C_{6}^{5}H_{7}^{+}$			1.00×10^{-10}	McEwan and Anicich (2007)
- och - o -		33		3		-67			2.20×10 ⁻²⁶	
$R_{cn}392a$	2	1-C ₃ H ₃ ⁺	+	C_3H_8	\rightarrow	$C_{3}H_{7}^{+}$	+	CH ₃ CCH	8.04×10 ⁻¹⁰	McEwan and Anicich (2007)
R _{cn} 392b	2	l-C ₃ H ₃ ⁺	+	C ₃ H ₈	<i>→</i>	$C_4H_7^+$	+	C_2H_4	3.96×10 ⁻¹⁰	McEwan and Anicich (2007)
R _{cn} 393a	2	l-C ₃ H ₃ ⁺	+	C_4H_2	\rightarrow	$c-C_3H_3^+$	+	C_4H_2	3.36×10 ⁻¹⁰	McEwan and Anicich (2007)
$R_{cn}393b$	2	l-C ₃ H ₃ ⁺	+	C_4H_2	\rightarrow	$C_5H_3^{+}$	+	C_2H_2	1.06×10 ⁻⁰⁹	McEwan and Anicich (2007)
$R_{cn}393c$	3	l-C ₃ H ₃ ⁺	+	C_4H_2	\rightarrow	C ₇ H ₅ ⁺	'	02112	1.00×10 ⁻¹⁰	McEwan and Anicich (2007)
Itcn 050C		1 03113	'	04112		07115			6.20×10 ⁻²⁶	McDwan and Timelen (2001)
R _{cn} 394a	2	1-C ₃ H ₃ ⁺	+	C_6H_6	\rightarrow	$C_7H_7^+$	+	C_2H_2	7.00×10 ⁻¹⁰	Smyth et al. (1981), Smyth et al. (1982)
R _{cn} 394b	2	l-C ₃ H ₃ ⁺	+	C_6H_6	\rightarrow	CXHYNZ ⁺	+	H ₂	7.00×10 ⁻¹⁰	Smyth et al. (1981), Smyth et al. (1982
$R_{cn}395a$	2	l-C ₃ H ₃ ⁺	+	C_7H_8	\rightarrow	Adduct ⁺	+	hv	8.17×10 ⁻¹⁰	Adams et al. (2010)
R _{cn} 395b	2	l-C ₃ H ₃ ⁺	+	C_7H_8	<i>→</i>	$C_7H_7^+$	+	CH ₃ CCH	5.32×10 ⁻¹⁰	Adams et al. (2010)
$R_{cn}395c$	2	l-C ₂ H ₂ ⁺	+	C_7H_8	\rightarrow	CXHYNZ ⁺	+	H ₂	3.23×10 ⁻¹⁰	Adams et al. (2010)
$R_{cn}395d$	2	l-C ₃ H ₃ ⁺	+	C ₇ H ₈	<i>,</i>	CXHYNZ ⁺	+	H ₂ + H	2.28×10 ⁻¹⁰	Adams et al. (2010)
$R_{cn}396$	2	1-C ₃ H ₃ ⁺	+	N N	\rightarrow	HC ₂ N ⁺	+	H ₂	5.80×10 ⁻¹¹	McEwan and Anicich (2007)
$R_{cn}397a$	2	l-C ₃ H ₃ ⁺	+	NH ₂	\rightarrow	NH [‡]	+	C_3H_2	1.80×10 ⁻¹⁰	Anicich and McEwan (1997)
$R_{cn}397b$	2	l-C ₃ H ₃ ⁺	+	NH ₃	\rightarrow	HCNH ⁺	+	$C_{2}H_{4}$	1.20×10 ⁻¹⁰	Anicich and McEwan (1997)
$R_{cn}397c$	3	l-C ₃ H ₃ ⁺	+	NH ₃	\rightarrow	C ₃ H ₅ NH ⁺	'	02114	1.00×10 ⁻¹⁰	Anicich and McEwan (1997)
it _{cn} oo i c		1 03113	'	11113		31151111			5.00×10 ⁻²⁴	Timelen and Nielswan (1997)
$R_{cn}398$	3	l-C ₃ H ₃ ⁺	+	HCN	\rightarrow	$C_4H_3NH^+$			1.00×10 ⁻¹⁰	McEwan and Anicich (2007)
Itenoso		1 03113	'	11011		041131111			4.90×10 ⁻²⁶	Webwah and Timelen (2007)
R _{cn} 399a	2	1-C,H+	+	CH ₂ CN	\rightarrow	$CXHYNZ^{+}$			1.60×10 ⁻¹⁰	Anicich and McEwan (1997)
R _{cn} 399b	3	1-C ₃ H ₃ ⁺	+	CH ₃ CN	\rightarrow	C ₅ H ₅ NH ⁺			1.00×10 ⁻¹⁰	McEwan and Anicich (2007)
reenooo		. 03113	'	0113011	,	051151111			3.40×10 ⁻²⁵	Mozwan and Timeten (2001)
R _{cn} 400a	2	1-C2H2+	+	HC ₂ N	\rightarrow	$CXHYNZ^{+}$			9.00×10 ⁻¹⁰	McEwan and Anicich (2007)
$R_{cn}400b$	2	l-C ₃ H ₃ ⁺	+	HC ₃ N	\rightarrow	C ₆ H ₃ NH ⁺	+	hv	3.50×10 ⁻¹²	McEwan and Anicich (2007)
$R_{cn}4001$	2	l-C ₃ H ₃ ⁺	+	C_3H_3N	\rightarrow	$C_6H_5NH^+$	+	hv	2.00×10 ⁻⁰⁹	Petrie et al. (1991a),Petrie et al. (1992
$R_{cn}402$	2	l-C ₃ H ₃ ⁺	+	C_3H_5N	\rightarrow	$C_6H_7NH^+$	+	hv	3.00×10 ⁻¹⁰	Edwards et al. (2008)
Continued				3-5-		67		-	1	(====)

	۰

	Type					Reaction					k	Ref.
$R_{cn}403a$	2	l-C ₃ H ₃ ⁺	+	C_4H_5N	\rightarrow	$C_7H_7NH^+$	+	hv			1.18×10 ⁻¹⁰	Mathews and Adams (2
R _{cn} 403b	2	l-C ₃ H ₃ ⁺	+	C_4H_5N	\rightarrow	$C_4H_5N^+$	+	C_3H_3			2.24×10 ⁻¹¹	Mathews and Adams (2
$R_{cn}404a$	2	$1-C_3H_3^+$	+	C_5H_5N	\rightarrow	AdductN ⁺	+	hv			1.76×10^{-09}	Adams et al. (2010)
$R_{cn}404b$	2	1-C ₃ H ₃ ⁺	+	C_5H_5N	\rightarrow	$C_5H_5NH^+$	+	C_3H_2			4.40×10^{-10}	Adams et al. (2010)
$R_{cn}405a$	2	1-C ₃ H ₃ ⁺	+	$O(^3P)$	\rightarrow	$C_2H_2CO^+$	+	H			4.50×10^{-11}	Scott et al. (2000)
$R_{cn}405b$	2	1-C ₃ H ₃ ⁺	+	$O(^{3}P)$	\rightarrow	HC_3O^+	+	H_2			2.25×10^{-11}	Scott et al. (2000)
$l_{cn}405c$	2	1-C ₃ H ₃ ⁺	+	$O(^{3}P)$	\rightarrow	$C_2H_3^+$	+	CO			4.50×10^{-11}	Scott et al. (2000)
c _n 405d	2	1-C ₃ H ₃ ⁺	+	$O(^{3}P)$	\rightarrow	$C_2H_2^{+}$	+	HCO			3.75×10^{-11}	Scott et al. (2000)
$l_{cn}406a$	2	1-C ₃ H ₃ +	+	H ₂ O	\rightarrow	H_3O^+	+	C_3H_2			3.20×10^{-12}	McEwan and Anicich (2
c _n 406b	2	1-C ₃ H ₃ ⁺	+	H ₂ O	\rightarrow	$C_2^{\prime}H_3CO^+$	+	H_2			2.40×10^{-12}	McEwan and Anicich (2
cn 406c	2	1-C ₃ H ₃ ⁺	+	H ₂ O	\rightarrow	$C_2^2H_5^2CO^+$	+	hv			2.40×10^{-12}	McEwan and Anicich (2
$c_{cn}407$	2	1-C ₃ H ₃ ⁴	+	H ₂ CO	\rightarrow	$C_{3}^{2}H_{5}^{2}$	+	CO			1.00×10^{-09}	Prodnuk et al. (1992)
cn 408	2	C ₃ H ₄ ⁺	+	H	\rightarrow	c-C ₃ H ₃ ⁺	+	H_2			3.00×10^{-11}	McEwan and Anicich (2
cn 409a	2	C ₃ H ₄ ⁺	+	C_2H_2	\rightarrow	$C_5H_5^{\frac{3}{2}}$	+	H			4.20×10^{-10}	McEwan and Anicich (2
cn 409b	3	C ₃ H ₄ ⁺	+	C_2H_2	\rightarrow	$C_5^{5}H_6^{+}$					1.00×10 ⁻¹⁰	McEwan and Anicich (2
-cn	-	-34		-22		-56					3.30×10^{-26}	
cn410a	2	$C_3H_4^+$	+	C_2H_4	\rightarrow	$C_4H_5^+$	+	CH_3			9.13×10 ⁻¹¹	McEwan and Anicich (2
cn 410b	2	C ₃ H ₄ ⁺	+	C_2H_4	\rightarrow	$C_5H_7^{+}$	+	Н			7.39×10 ⁻¹⁰	McEwan and Anicich (2
cn 410c	3	C ₃ H ₄ ⁺	+	C_2H_4	$\stackrel{'}{\rightarrow}$	$C_5H_8^+$		11			1.00×10 ⁻¹⁰	McEwan and Anicich (2
cn 1100		3114	'	2114	,	05118					8.40×10 ⁻²⁷	McEwan and Timeten (2
R _{cn} 411a	2	$C_3H_4^+$	+	CH ₃ CCH	\rightarrow	$C_3H_5^+$	+	C_3H_3			1.98×10 ⁻¹⁰	McEwan and Anicich (2
R _{cn} 411b	2	$C_{3}H_{4}^{+}$	+	CH ₃ CCH	\rightarrow	$C_4^{11}_4^+$	+	C_2H_4			2.20×10 ⁻¹¹	McEwan and Anicich (2
c _n 411c	2	C ₃ H ₄ C ₃ H ₄	+	CH ₃ CCH	\rightarrow	$C_4H_4^+$ $C_4H_6^+$	+	C_2H_4 C_2H_2			2.20×10 2.20×10 ⁻¹¹	McEwan and Anicich (2
cn411d	2							C_2H_2 CH_3			2.20×10 2.20×10 ⁻¹¹	McEwan and Anicich (2
cn411d	2	C ₃ H ₄ ⁺	+	CH ₃ CCH CH ₂ CCH	\rightarrow	C ₅ H ₅ ⁺	+	H ₂	+	Н	8.80×10 ⁻¹¹	McEwan and Anicich (2
	2	C ₃ H ₄ ⁺	+		\rightarrow	C ₆ H ₅ ⁺	+	H ₂	+	п	7.48×10 ⁻¹⁰	`
411f	2	C ₃ H ₄ ⁺	+	CH ₃ CCH	\rightarrow	C ₆ H ₇ ⁺	+				5.50×10 ⁻¹¹	McEwan and Anicich (2
cn 412a		C ₃ H ₄ ⁺	+	CH ₂ CCH ₂	\rightarrow	$C_4H_4^+$	+	C_2H_4			1.10×10 ⁻¹¹	Anicich (1993)
cn412b	2	C ₃ H ₄ ⁺	+	CH ₂ CCH ₂	\rightarrow	$C_4H_6^+$	+	C_2H_2				Anicich (1993)
cn412c	2	C ₃ H ₄ ⁺	+	CH_2CCH_2	\rightarrow	$C_5H_5^+$	+	CH_3			1.10×10 ⁻¹¹	Anicich (1993)
cn412d	2	$C_3H_4^+$	+	CH_2CCH_2	\rightarrow	$C_{6}H_{5}^{+}$	+	H_2	+	H	7.70×10 ⁻¹¹	Anicich (1993)
$_{cn}412e$	2	C ₃ H ₄ ⁺	+	$\mathrm{CH_2}\mathrm{CCH_2}$	\rightarrow	$C_{6}H_{7}^{+}$	+	H			9.57×10^{-10}	Anicich (1993)
cn413	2	$C_3H_4^+$	+	C_3H_6	\rightarrow	$C_4H_6^+$	+	C_2H_4			1.00×10^{-09}	McEwan and Anicich (2
cn414	2	$C_3H_4^+$	+	C_3H_8	\rightarrow	CXHYNZ ⁺					1.20×10^{-10}	McEwan and Anicich (2
cn415a	2	C ₃ H ₄ ⁺	+	C_4H_2	\rightarrow	$C_5H_4^+$	+	C_2H_2			1.26×10^{-10}	McEwan and Anicich (2
cn415b	2	$C_3H_4^+$	+	C_4H_2	\rightarrow	$C_7H_5^+$	+	H			1.67×10^{-09}	McEwan and Anicich (2
cn 415c	3	C ₃ H ₄ ⁺	+	C_4H_2	\rightarrow	$C_7H_6^+$					1.00×10^{-10}	McEwan and Anicich (2

c	ď
.7	
-	

	Type					Reaction			k	Ref.
$R_{cn}416a$ $R_{cn}416b$ $R_{cn}417a$ $R_{cn}417b$ $R_{cn}418a$ $R_{cn}418b$	2 2 2 2 2 2 2 3	$\begin{bmatrix} C_3H_4^+ \\ C_3H_4^+ \\ C_3H_4^+ \\ C_3H_4^+ \\ C_3H_4^+ \\ C_3H_4^+ \\ C_3H_4^+ \end{bmatrix}$	+ + + + +	$\begin{array}{c} N \\ N \\ NH_3 \\ NH_3 \\ HC_3N \\ HC_3N \end{array}$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$\begin{array}{c} {\rm C_3H_3N^+} \\ {\rm HC_3NH^+} \\ {\rm NH_3^+} \\ {\rm NH_4^+} \\ {\rm HC_3NH^+} \\ {\rm C_6H_5N^+} \end{array}$	+ + + +	${\rm H} \\ {\rm H}_2 \\ {\rm CH}_3 {\rm CCH} \\ {\rm C}_3 {\rm H}_3 \\ {\rm C}_3 {\rm H}_3$	$ \begin{vmatrix} 1.00 \times 10^{-26} \\ 1.00 \times 10^{-10} \\ 1.00 \times 10^{-10} \\ 1.00 \times 10^{-10} \\ 2.10 \times 10^{-10} \\ 1.29 \times 10^{-09} \\ 1.80 \times 10^{-10} \\ 1.00 \times 10^{-10} \end{vmatrix} $	Wakelam et al. (2015) Wakelam et al. (2015) Operti et al. (2004) Operti et al. (2004) McEwan and Anicich (2 McEwan and Anicich (2
$R_{cn}419a$ $R_{cn}419b$ $R_{cn}420a$ $R_{cn}420b$ $R_{cn}421$ $R_{cn}422a$ $R_{cn}422b$	2 2 2 2 2 2 2 2 3	$\begin{array}{c} \mathrm{C_3H_4^+} \\ \mathrm{C_3H_4^+} \\ \mathrm{C_3H_5^+} \\ \mathrm{C_3H_5^+} \\ \mathrm{C_3H_5^+} \\ \mathrm{C_3H_5^+} \\ \mathrm{C_3H_5^+} \\ \mathrm{C_3H_5^+} \end{array}$	+ + + + + + +	${ \begin{array}{c} {\rm C_3H_5N} \\ {\rm C_3H_5N} \\ {\rm H} \\ {\rm H} \\ {\rm H_2} \\ {\rm C_2H_2} \\ {\rm C_2H_2} \\ \end{array} }$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$\begin{array}{c} C_{3}H_{5}NH^{+} \\ C_{6}H_{9}N^{+} \\ C_{2}H_{2}^{\pm} \\ C_{2}H_{3}^{\pm} \\ C_{3}H_{7}^{\pm} \\ C_{5}H_{5}^{\pm} \\ C_{5}H_{7}^{\pm} \end{array}$	+ + + + +	$\begin{array}{c} \mathrm{C_3H_3} \\ \mathrm{hv} \\ \mathrm{CH_4} \\ \mathrm{CH_3} \\ \mathrm{hv} \\ \mathrm{H_2} \end{array}$	$\begin{array}{c} 4.30 \times 10^{-26} \\ 3.71 \times 10^{-09} \\ 1.95 \times 10^{-10} \\ 5.00 \times 10^{-13} \\ 9.50 \times 10^{-12} \\ 1.00 \times 10^{-13} \\ 3.80 \times 10^{-10} \\ 1.00 \times 10^{-10} \\ \end{array}$	Edwards et al. (2008) Edwards et al. (2008) McEwan and Anicich (2 McEwan and Anicich (2 Lin et al. (2013) McEwan and Anicich (2 McEwan and Anicich (2
$R_{cn}423a$ $R_{cn}423b$	2 3	$C_3H_5^+ \\ C_3H_5^+$	++	${\rm C_2H_4}\atop{\rm C_2H_4}$	$\overset{\rightarrow}{\rightarrow}$	$^{\mathrm{C_5H_7^+}}_{\mathrm{C_5H_9^+}}$	+	${\rm H}_2$	$ \begin{array}{c} 3.20 \times 10^{-26} \\ 8.90 \times 10^{-11} \\ 1.00 \times 10^{-10} \end{array} $	McEwan and Anicich (2 McEwan and Anicich (2
$R_{cn}424a$ $R_{cn}424b$	2 3	$C_{3}H_{5}^{+}$ $C_{3}H_{5}^{+}$	++	$_{\rm CH_3CCH}^{\rm CH_3CCH}$	$\overset{\rightarrow}{\rightarrow}$	$^{\mathrm{C_6H_7^+}}_{\mathrm{C_6H_9^+}}$	+	${\rm H}_2$	$ \begin{array}{c} 1.80 \times 10^{-23} \\ 3.50 \times 10^{-10} \\ 1.00 \times 10^{-10} \end{array} $	McEwan and Anicich (2 McEwan and Anicich (2
$R_{cn}425a$ $R_{cn}425b$	2 3	$C_{3}H_{5}^{+}$ $C_{3}H_{5}^{+}$	+++	$^{\mathrm{C_3H_6}}_{\mathrm{C_3H_6}}$	$\overset{\rightarrow}{\rightarrow}$	$^{\mathrm{C_4H_7^+}}_{\mathrm{C_6H_{11}^+}}$	+	$\mathrm{C_2H_4}$	$\begin{array}{c} 6.80 \times 10^{-26} \\ 1.00 \times 10^{-09} \\ 1.00 \times 10^{-10} \\ 0.40 \times 10^{-26} \end{array}$	McEwan and Anicich (2 McEwan and Anicich (2
$R_{cn}426a$ $R_{cn}426b$ $R_{cn}426c$ $R_{cn}426d$	2 2 2 3	$\begin{array}{c} {\rm C_3H_5^+} \\ {\rm C_3H_5^+} \\ {\rm C_3H_5^+} \\ {\rm C_3H_5^+} \\ {\rm C_3H_5^+} \end{array}$	+ + + +	${^{\mathrm{C}_{3}\mathrm{H}_{8}}_{_{3}\mathrm{H}_{8}}}\atop{^{\mathrm{C}_{3}\mathrm{H}_{8}}}\atop{^{\mathrm{C}_{3}\mathrm{H}_{8}}}$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$\substack{ \mathbf{C_3H_7^+} \\ \mathbf{C_4H_7^+} \\ \mathbf{C_4H_9^+} \\ \mathbf{C_6H_{13}^+} \\ }$	+ + +	${{\rm C_3H_6}\atop{\rm C_2H_6}\atop{\rm C_2H_4}}$	$\begin{array}{c} 6.40\times10^{-26} \\ 3.90\times10^{-10} \\ 2.82\times10^{-11} \\ 5.17\times10^{-11} \\ 1.00\times10^{-10} \\ 3.20\times10^{-27} \end{array}$	McEwan and Anicich (2 McEwan and Anicich (2 McEwan and Anicich (2 McEwan and Anicich (2
$R_{cn}427a$ $R_{cn}427b$	2 3	$C_{3}H_{5}^{+}$ $C_{3}H_{5}^{+}$	+++++++++++++++++++++++++++++++++++++++	$\substack{\mathbf{C_4H_2}\\\mathbf{C_4H_2}}$	$\overset{\rightarrow}{\rightarrow}$	$^{\mathrm{C_5H_5^+}}_{\mathrm{C_7H_7^+}}$	+	$\mathrm{C_2H_2}$	$\begin{array}{c} 3.20 \times 10^{-10} \\ 1.50 \times 10^{-10} \\ 1.00 \times 10^{-10} \\ 8.30 \times 10^{-26} \end{array}$	McEwan and Anicich (2 McEwan and Anicich (2
$R_{cn}428a$ $R_{cn}428b$ $R_{cn}429a$ Continued	2 2 2 on Next	C ₃ H ₅ ⁺ C ₃ H ₅ ⁺ C ₃ H ₅ ⁺	+ + +	$^{\mathrm{C_6H_6}}_{\substack{\mathrm{C_6H_6} \\ \mathrm{C_7H_8}}}$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$\substack{\mathrm{C_7H_7^+}\\\mathrm{C_6H_7^+}\\\mathrm{CXHYNZ^+}}$	+ + +	$\begin{array}{c} \mathrm{C_2H_4} \\ \mathrm{CH_3CCH} \\ \mathrm{C_2H_4} \end{array}$	$ \begin{array}{c} 8.30 \times 10 \\ 1.03 \times 10^{-09} \\ 1.15 \times 10^{-10} \\ 1.04 \times 10^{-09} \end{array} $	Houriet et al. (1978) Houriet et al. (1978) Houriet et al. (1978)

ı	•	ċ
í	Ĭ	5
ľ	Ä	-

	Type					Reaction			k	Ref.
R _{cn} 429b	2	C ₃ H ₅ ⁺	+	C_7H_8	\rightarrow	$C_7H_9^+$	+	CH ₃ CCH	2.18×10 ⁻¹⁰	Houriet et al. (1978)
R _{cn} 429c	2	$C_3H_5^+$	+	C ₇ H ₈	\rightarrow	$C_7H_7^+$	+	C_3H_6	1.88×10^{-10}	Houriet et al. (1978)
$R_{cn}430$	2	$C_3H_5^{\frac{3}{4}}$	+	NH3	\rightarrow	NH ⁺	+	CH ₃ CCH	9.00×10^{-10}	Operti et al. (2004)
R _{cn} 431a	2	C3H5	+	HCN	\rightarrow	$C_4 H_5 NH^+$	+	hv	5.00×10^{-12}	McEwan and Anicich (2
R _{cn} 431b	3	C ₃ H ₅ ⁴	+	HCN	\rightarrow	C ₄ H ₅ NH ⁺			1.00×10^{-10}	McEwan and Anicich (2
		-3 5				4 5			9.30×10^{-27}	
$R_{cn}432a$	2	C ₃ H ₅ ⁺	+	CH ₂ NH	\rightarrow	CH ₂ NH ₂ ⁺	+	CH ₃ CCH	1.75×10^{-09}	Edwards et al. (2008)
R _{cn} 432b	2	$C_3H_5^2$	+	CH ₂ NH	\rightarrow	$C_4\tilde{H}_7N\tilde{H}^+$	+	hv	7.50×10^{-10}	Edwards et al. (2008)
t _{cn} 433a	2	C ₃ H ₅	+	CH ₂ NH ₂	\rightarrow	CH ₃ NH ₃ ⁺	+	CH ₃ CCH	7.60×10^{-10}	Edwards et al. (2008)
Lcn 433b	2	C3H5	+	CH ₃ NH ₂	\rightarrow	CH,NH,	+	C_3H_6	4.75×10^{-10}	Edwards et al. (2008)
L _{cn} 433c	2	C ₃ H ₅ ⁺	+	CH ₃ NH ₂	\rightarrow	$C_4 \overset{2}{H_0} N \overset{2}{H}^+$	+	hv	6.65×10^{-10}	Edwards et al. (2008)
c _n 434a	2	$C_3H_5^+$	+	HC ₃ N	\rightarrow	HC ₂ NH ⁺	+	CH ₃ CCH	3.80×10^{-10}	McEwan and Anicich (2
cn 434b	3	C ₃ H ₅ ⁺	+	HC ₃ N	\rightarrow	C ₆ H ₅ NH ⁺		3	1.00×10^{-10}	McEwan and Anicich (2
-cn		-35		3		-65			9.50×10 ⁻²⁶	
$R_{cn}435a$	2	C ₃ H ₅ ⁺	+	C_3H_3N	\rightarrow	$C_3H_3NH^+$	+	CH ₃ CCH	1.00×10 ⁻⁰⁹	McEwan et al. (1998)
R _{cn} 435b	3	C ₃ H ₅ ⁺	+	C_3H_3N	\rightarrow	$C_6H_7NH^+$		3	1.00×10 ⁻¹⁰	McEwan et al. (1998)
cn 1005		03115	'	0311311		061171111			1.00×10 ⁻²⁵	mezwan et an (1000)
$R_{cn}436a$	2	$C_3H_5^+$	+	C_3H_5N	\rightarrow	$C_3H_5NH^+$	+	CH_3CCH	2.68×10 ⁻⁰⁹	Edwards et al. (2008)
R _{cn} 436b	2	C ₃ H ₅ ⁺	+	C_3H_5N	\rightarrow	$C_6H_9NH^+$	+	hv	1.44×10 ⁻⁰⁹	Edwards et al. (2008)
$R_{cn}437a$	2	C ₃ H ₆ ⁺	+	C ₂ H ₂	\rightarrow	$C_4^{6}H_5^{+}$	+	CH ₃	8.04×10 ⁻¹¹	McEwan and Anicich (2
$R_{cn}437b$	2	C ₃ H ₆ ⁺	+	C_2H_2	$\stackrel{'}{\rightarrow}$	$C_5H_7^+$	+	Н	5.90×10 ⁻¹⁰	McEwan and Anicich (2
$R_{cn}437c$	3	C ₃ H ₆ ⁺	+	C_2H_2	\rightarrow	$C_5^{5}H_8^+$			1.00×10 ⁻¹⁰	McEwan and Anicich (2
ten 1010		3116	'	02112	,	05118			7.30×10 ⁻²⁷	McDwan and Timeten (2
R _{cn} 438a	2	C ₃ H ₆ ⁺	+	C_2H_4	\rightarrow	$C_4H_7^+$	+	CH ₃	1.80×10 ⁻¹⁰	McEwan and Anicich (2
c _n 438b	3	C ₃ H ₆ ⁺	+	C_2H_4	\rightarrow	$C_5H_{10}^+$		0113	1.00×10 ⁻¹⁰	McEwan and Anicich (2
cen 4000		3116	'	02114	,	051110			4.40×10 ⁻²⁶	Wellwan and Timelen (2
R _{cn} 439a	2	C ₃ H ₆ ⁺	+	C_3H_6	\rightarrow	$C_3H_7^+$	+	C_3H_5	2.10×10 ⁻¹⁰	McEwan and Anicich (2
R _{cn} 439b	2	C ₃ H ₆ ⁺	+	C_3H_6	\rightarrow	$C_4H_7^+$	+	C_2H_5	2.80×10 ⁻¹⁰	McEwan and Anicich (2
R _{cn} 439c	2	C ₃ H ₆ ⁺	+	C_3H_6	\rightarrow	$C_4H_8^+$	+	C_2H_4	4.90×10 ⁻¹⁰	McEwan and Anicich (2
$R_{cn}439d$	2	C ₃ H ₆ ⁺	+	C_3H_6	\rightarrow	C ₅ H ₉ ⁺	+	CH ₃	4.20×10^{-10}	McEwan and Anicich (2
$R_{cn}440a$	2	C ₃ H ₆ +	+	NH_3	\rightarrow	CH ₂ NH ₂ ⁺	+	C ₂ H ₅	5.70×10 ⁻¹⁰	Lias and Buckley (1984
$l_{cn}440a$	2	C ₃ H ₆ ⁺	+	NH ₂	\rightarrow	CH ₂ NH ₂ CH ₃ NH ₂ ⁺	+	C_2H_5 C_2H_4	1.30×10 ⁻¹⁰	Lias and Buckley (1984 Lias and Buckley (1984
$l_{cn}440c$	2	C ₃ H ₆	+	NH ₃	\rightarrow	NH ₄ ⁺	+	C ₂ H ₄ C ₃ H ₅	3.00×10^{-10}	Lias and Buckley (1984
$R_{cn}441a$	2		+	HCN	\rightarrow	C ₂ H ₂ N ⁺	+		1.60×10 ⁻¹⁰	McEwan and Anicich (2
$R_{cn}441a$	2	C ₃ H ₆ ⁺	+	HCN	\rightarrow	$C_4^{H_5}NH^+$	+	${^{\mathrm{C}}_{2}\mathrm{H}_{4}}$	2.40×10 ⁻¹⁰	McEwan and Anicich (2
$R_{cn}4410$	2	C ₃ H ₆ ⁺ C ₂ H ₇ ⁺	+	H H			+	п Н ₂	3.70×10^{-11}	McEwan and Anicich (2
		Page	+	п	\rightarrow	$C_3H_6^+$	+	Π_2	3.70×10	Micewan and Anicien (2

è			
٠	÷	۰	۰
	Ι	3	S
ā	ĭ	,	

	Type					Reaction					k	Ref.
$R_{cn}443$	3	$C_3H_7^+$	+	CH_4	\rightarrow	$\mathrm{C_3H_7^+CH_4}$					1.00×10^{-10} 1.00×10^{-27}	Vacher et al. (1997)
$R_{cn}444$	2	C ₃ H ₇ ⁺	+	C_2H_6	\rightarrow	$C_4H_9^+$	+	CH_4			1.00×10 1.00×10 ⁻⁰⁹	McEwan and Anicich (2007
$R_{cn}445$	2	C ₃ H ₇ ⁺	+	C_3H_6	\rightarrow	$C_4H_9^{\uparrow}$	+	C_2H_4			4.50×10^{-10}	McEwan and Anicich (2007
$R_{cn}446$	2	$C_3H_7^+$	+	C_3H_8	\rightarrow	$C_3H_7^+$	+	C_3H_8			1.20×10^{-10}	McEwan and Anicich (2007
$R_{cn}447$	2	C ₃ H ₇ ⁺	+	NH_3	\rightarrow	NH_4^+	+	C_3H_6			1.71×10^{-09}	Hemsworth et al. (1974)
$R_{cn}448$	3	C ₃ H ₇ ⁺	+	HCN	\rightarrow	$C_4H_7NH^+$					1.00×10^{-10} 6.20×10^{-27}	McEwan and Anicich (2007
$R_{cn}449$	2	C ₃ H ₇ ⁺	+	CH ₂ NH ₂	\rightarrow	CH,NH,	+	C_3H_6			1.65×10 ⁻⁰⁹	Su and Bowers (1973)
$R_{cn}450$	3	C ₃ H ₇ ⁺	+	N_2	\rightarrow	$C_3H_7^+N_2$		3 0			1.00×10^{-10}	Speller et al. (1995)
		" '		2		3 / 2					1.00×10^{-27}	` '
$R_{cn}451$	2	C ₂ H ₇ CH ₄	+	N_2	\rightarrow	$C_3H_7^+$	+	CH_A	+	N_2	4.00×10^{-09}	Vacher et al. (1997)
$R_{cn}452$	2	C ₃ H ₇ ⁺ N ₂	+	N ₂	\rightarrow	$C_3H_7^+$	+	N ₂	+	N_2	6.00×10^{-11}	Speller et al. (1995)
$R_{cn}453$	2	C ₃ H ₉ ⁺	+	NH_{o}	\rightarrow	C ₃ H ₈ ⁺	+	ΝΉ,		-	1.00×10^{-10}	Capone et al. (1979)
$R_{cn}454$	2	$C_3H_9^{\frac{7}{4}}$	+	NH ₃	\rightarrow	NH_4^+	+	C_3H_8			5.00×10^{-10}	Capone et al. (1980)
$R_{cn}455$	2	C ₄ H ⁺	+	Н	\rightarrow	$C_4H_2^+$	+	hv			$6.00 \times 10^{-14} T^{1.50}$	Wakelam et al. (2015)
$R_{cn}456$	2	C ₄ H ⁺	+	H_2	\rightarrow	$C_4H_2^{\frac{1}{4}}$	+	H			1.65×10^{-10}	Wakelam et al. (2015)
$R_{cn}457$	2	C ₄ H ⁺	+	\tilde{CH}_4	\rightarrow	$C_5H_3^{\uparrow}$	+	H_2			1.10×10^{-09}	Wakelam et al. (2015)
$R_{cn}458$	2	C ₄ H ⁺	+	C_2H_2	\rightarrow	$C_6H_2^+$	+	Н			1.50×10^{-09}	Wakelam et al. (2015)
$R_{cn}459a$	2	C ₄ H ⁺	+	C_2H_4	\rightarrow	$C_4H_3^{\frac{1}{4}}$	+	C_2H_2			7.50×10^{-10}	Wakelam et al. (2015)
$R_{cn}459b$	2	C ₄ H ⁺	+	C_2H_4	\rightarrow	$C_6H_4^+$	+	Η̈́			7.50×10^{-10}	Wakelam et al. (2015)
$R_{cn}460$	2	C ₄ H ⁺	+	CH ₃ CCH	\rightarrow	$C_7H_4^{\uparrow}$	+	H			$6.45 \times 10^{-10} \text{ T}^{0.50}$	Wakelam et al. (2015)
$R_{cn}461$	2	C ₄ H ⁺	+	C_4H_2	\rightarrow	C ₈ H ₂ ¹	+	H			1.60×10^{-09}	Wakelam et al. (2015)
$R_{cn}462$	2	$C_4H_2^+$	+	Н	\rightarrow	$C_4H_3^{\frac{1}{4}}$	+	hv			7.00×10^{-11}	McEwan and Anicich (200)
$R_{cn}463$	2	$C_4H_2^{\uparrow}$	+	H_2	\rightarrow	$C_4H_4^+$	+	hv			5.00×10^{-13}	McEwan and Anicich (200)
$R_{cn}464a$	2	$C_4H_2^+$	+	$\tilde{C_2H_2}$	\rightarrow	$C_6H_3^+$	+	H			1.40×10^{-11}	McEwan and Anicich (200)
$R_{cn}464b$	2	$C_4H_2^{\uparrow}$	+	C_2H_2	\rightarrow	$C_6H_4^+$	+	hv			2.66×10^{-10}	McEwan and Anicich (200)
$R_{cn}464c$	3	$C_4H_2^+$	+	C_2H_2	\rightarrow	$C_6H_4^+$					1.00×10^{-10}	McEwan and Anicich (200)
		1 1				0 4					2.30×10^{-23}	· ·
$R_{cn}465a$	2	$C_4H_2^+$	+	C_2H_4	\rightarrow	$C_4H_4^+$	+	C_2H_2			7.05×10^{-10}	McEwan and Anicich (2007
$R_{cn}465b$	2	$C_4H_2^{\frac{1}{2}}$	+	C_2H_4	\rightarrow	$C_6H_4^+$	+	H.,			7.50×10^{-11}	McEwan and Anicich (2007
$R_{cn}465c$	2	C4H2	+	$C_2^2H_4$	\rightarrow	C ₆ H ₅ [‡]	+	Η̈́			7.20×10^{-10}	McEwan and Anicich (2007
$R_{cn}465d$	3	C4H2	+	C_2H_4	\rightarrow	C ₆ H ₆ ⁺					1.00×10^{-10}	McEwan and Anicich (200)
		4 2		2 4		0 0					3.40×10^{-26}	
$R_{cn}466a$	2	$C_4H_2^+$	+	CH, CCH	\rightarrow	$C_5H_4^+$	+	C_2H_2			1.30×10^{-10}	McEwan and Anicich (2007
$R_{cn}466b$	2	C4H2	+	CH ₃ CCH	\rightarrow	C ₇ H ₅ ⁴	+	H			1.17×10^{-09}	McEwan and Anicich (200)
Continued	on Next			3		, 3					1	

^		•
č	٩	
7	_	
`	_	

	Type					Reaction					k	Ref.
R _{cn} 467a	2	C ₄ H ₂ ⁺	+	C_4H_2	\rightarrow	$C_{6}H_{2}^{+}$	+	C_2H_2			1.40×10 ⁻⁰⁹	McEwan and Anicich (2007)
$R_{cn}467b$	3	$C_4H_2^+$	+	C_4H_2	\rightarrow	Adduct ⁺					1.00×10 ⁻¹⁰	McEwan and Anicich (2007)
$R_{cn}468$	2	$C_4H_2^+$	+	C_6H_6	\rightarrow	$C_{6}H_{6}^{+}$	+	C_4H_2			3.00×10^{-26} 1.46×10^{-09}	Lifshitz and Weiss (1980b)
R _{cn} 469a	2	C ₄ H ₂ ⁺	+	N	\rightarrow	C ₃ H ⁺	+	HCN			1.71×10 ⁻¹⁰	McEwan and Anicich (2007)
$R_{cn}469b$	2	$C_4H_2^+$	+	N	\rightarrow	HC₄N ⁺	+	Н			9.50×10 ⁻¹²	McEwan and Anicich (2007)
R _{cn} 469c	2	$C_4H_2^+$	+	N	\rightarrow	HCNH ⁺	+	C_3			9.50×10 ⁻¹²	McEwan and Anicich (2007)
R _{cn} 470	3	$C_4H_2^+$	+	HCN	\rightarrow	C ₅ H ₃ N ⁺		<u>_3</u>			1.00×10 ⁻¹⁰	McEwan and Anicich (2007)
Itcn TIO		4112	'	11011	,	0511311					2.00×10 ⁻²⁶	McDwaii and Timeten (2001)
$R_{cn}471a$	2	C ₄ H ₂ ⁺	+	HC_3N	\rightarrow	$C_7H_3N^+$	+	hv			1.70×10 ⁻⁰⁹	McEwan and Anicich (2007)
R _{cn} 471b	3	$C_4H_2^+$	+	HC ₃ N	$\stackrel{'}{\rightarrow}$	C ₇ H ₃ N ⁺	'	111			1.00×10 ⁻¹⁰	McEwan and Anicich (2007)
11cn 41110	3	U ₄ 11 ₂		110311	_	71131					3.30×10 ⁻²⁶	Weiswan and Ameien (2007)
$R_{cn}472$	2	$C_4H_2^+$		C_3H_5N	\rightarrow	$C_7H_7N^+$	+	hv			3.60×10 ⁻⁰⁹	Edwards et al. (2008)
$R_{cn}472$ $R_{cn}473$	2	C_4H_2 $C_4H_2^+$	+	$HC_{\kappa}N$	\rightarrow	AdductN ⁺	+	hv			$2.00 \times 10^{-12} T^{2.50}$	Wakelam et al. (2015)
				$C_{\kappa}H_{\kappa}N$				C_4H_2			1.26×10 ⁻⁰⁹	Jiao et al. (2006)
$R_{cn}474a$ $R_{cn}474b$	2 2	$C_4H_2^+$	+		\rightarrow	$C_5H_5N^+$	+				4.42×10 ⁻¹⁰	Jiao et al. (2006) Jiao et al. (2006)
		$C_4H_2^+$	+	C_5H_5N	\rightarrow	C ₅ H ₅ NH ⁺	+	C_4H			2.00×10 ⁻¹⁰	
R _{cn} 475	2	$C_4H_2^+$	+	C_2N_2	\rightarrow	CXHYNZ ⁺						McEwan and Anicich (2007)
$R_{cn}476$	3	$C_4H_2^+$	+	CO	\rightarrow	Adduct ⁺					1.00×10 ⁻¹⁰	Anicich and McEwan (1997)
5	_	G 774		**		G 774					2.30×10^{-27}	1.5
$R_{cn}477$	2	$C_4H_3^+$	+	H	\rightarrow	$C_4H_4^+$	+	hv			6.00×10^{-14}	McEwan and Anicich (2007)
$R_{cn}478a$	2	$C_4H_3^+$	+	C_2H_2	\rightarrow	C ₆ H ₅ ⁺	+	hv			2.20×10^{-10}	McEwan and Anicich (2007)
$R_{cn}478b$	3	$C_4H_3^+$	+	C_2H_2	\rightarrow	$C_{6}H_{5}^{+}$					1.00×10^{-10} 9.50×10^{-24}	McEwan and Anicich (2007)
$R_{cn}479a$	2	$C_4H_3^+$	+	C_2H_4	\rightarrow	$C_{6}H_{5}^{+}$	+	H_2			1.20×10 ⁻¹⁰	McEwan and Anicich (2007)
$R_{cn}479b$	3	C ₄ H ₃ ⁺	+	$C_2^2H_4^4$	\rightarrow	C ₆ H ₇ ⁴		2			1.00×10^{-10}	McEwan and Anicich (2007)
· cn		4 3		2 4		6 7					4.30×10^{-26}	
$R_{cn}480$	2	$C_4H_3^+$	+	CH ₃ CCH	\rightarrow	$C_5H_5^+$	+	C_2H_2			1.40×10 ⁻⁰⁹	McEwan and Anicich (2007)
R _{cn} 481a	2	$C_4H_3^+$	+	C_4H_2	\rightarrow	$C_6^{5}H_3^+$	+	C_2H_2			7.40×10 ⁻¹⁰	McEwan and Anicich (2007)
R _{cn} 481b	3	$C_4H_3^+$	+	C_4H_2	\rightarrow	Adduct ⁺		02112			1.00×10 ⁻¹⁰	McEwan and Anicich (2007)
1020 1010		4113	'	U4112	,	Tadace					8.70×10 ⁻²⁶	mezwan and rimeten (2007)
$R_{cn}482$	2	$C_4H_3^+$	+	C_6H_6	\rightarrow	$C_6H_7^+$	+	C_4H_2			1.30×10^{-09}	Lifshitz and Weiss (1980b), Deakyne et al. (198
$R_{cn}483$	2	$C_4H_3^+$	+	NH,	\rightarrow	NH ⁺	+	C_4H_2			9.90×10^{-10}	Operti et al. (2004)
$R_{cn}484a$	2	C ₄ H ₃ ⁺	+	CHONH	\rightarrow	CH ₂ NH ₂ ⁺	+	$C_4^4H_2^2$			1.92×10^{-09}	Edwards et al. (2008)
$R_{cn}484b$	2	C ₄ H ₃ ⁺	+	CH ₂ NH	\rightarrow	$C_{\kappa}\tilde{H}_{\kappa}N\tilde{H}^{+}$	+	hv			4.80×10^{-10}	Edwards et al. (2008)
$R_{cn}485a$	2	$C_4H_3^{\frac{4}{3}}$	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₃ ⁺	+	C_4H_2			1.30×10^{-09}	Edwards et al. (2008)
$R_{cn}485b$	2	C ₄ H ₃ ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₂ NH ₂	+	C_4H_2	+	H_2	5.00×10 ⁻¹⁰	Edwards et al. (2008)
Continued			'	- 32		- 22		- 4 2		2	1	()
		-										

351	

	Type					Reaction				k	Ref.
R _{cn} 485c	2	C ₄ H ₃ ⁺	+	CH ₃ NH ₂	\rightarrow	C ₅ H ₇ NH ⁺	+	hv		0×10 ⁻¹⁰	Edwards et al. (2008)
$R_{cn}486$	3	$C_4H_3^+$	+	HC ₃ N	\rightarrow	$C_7H_3NH^+$				0×10^{-10}	McEwan and Anicich (2
		"		Ü					1.90	0×10^{-26}	
$R_{cn}487a$	2	$C_4H_3^+$	+	C_5H_5N	\rightarrow	$C_5H_5NH^+$	+	C_4H_2		3×10^{-09}	Jiao et al. (2006)
$R_{cn}487b$	2	$C_4H_3^+$	+	C_5H_5N	\rightarrow	$C_5H_5N^+$	+	C_4H_3		5×10^{-11}	Jiao et al. (2006)
$R_{cn}488$	2	$C_4H_3^+$	+	C_2N_2	\rightarrow	$CXHYNZ^{+}$				0×10^{-10}	McEwan and Anicich (2
$R_{cn}489$	3	$C_4H_3^+$	+	CO	\rightarrow	$C_4H_3^+CO$				0×10^{-10}	McEwan and Anicich (2
										0×10^{-28}	
$R_{cn}490a$	2	$C_4H_4^+$	+	C_2H_2	\rightarrow	$C_{6}H_{4}^{+}$	+	H_2		0×10^{-11}	Anicich (1993)
$R_{cn}490b$	2	$C_4H_4^+$	+	C_2H_2	\rightarrow	$C_{6}H_{5}^{+}$	+	H		0×10^{-11}	Anicich (1993)
$R_{cn}490c$	2	$C_4H_4^+$	+	C_2H_2	\rightarrow	$C_{6}H_{6}^{+}$	+	hv		0×10^{-11}	Anicich (1993)
$R_{cn}491a$	2	$C_4H_4^+$	+	CH_3CCH	\rightarrow	$C_5H_6^+$	+	C_2H_2		0×10^{-11}	Anicich (1993)
$R_{cn}491b$	2	$C_4H_4^+$	+	CH ₃ CCH	\rightarrow	$C_7H_7^+$	+	H		0×10^{-10}	Anicich (1993)
$R_{cn}492a$	2	$C_4H_4^+$	+	C_4H_2	\rightarrow	$C_6H_4^+$	+	C_2H_2	6.90	6×10^{-10}	Anicich (1993)
$R_{cn}492b$	2	$C_4H_4^+$	+	C_4H_2	\rightarrow	CXHYNZ ⁺				4×10^{-10}	Anicich (1993)
$R_{cn}493$	2	$C_4H_4^+$	+	C_6H_6	\rightarrow	$C_{6}H_{6}^{+}$	+	C_4H_4	6.60	0×10^{-10}	Lifshitz et al. (1981)
$R_{cn}494a$	2	$C_4H_4^+$	+	NH_3	\rightarrow	NH_4^+	+	C_4H_3		0×10^{-10}	Operti et al. (2004)
$R_{cn}494b$	2	$C_4H_4^+$	+	NH_3	\rightarrow	$CH_2NH_2^+$	+	C_3H_3		7×10^{-11}	Operti et al. (2004)
$R_{cn}495a$	2	$C_4H_4^+$	+	C_5H_5N	\rightarrow	$CXHYNZ^{+}$	+	H		8×10^{-10}	Jiao et al. (2006)
$R_{cn}495b$	2	$C_4H_4^+$	+	C_5H_5N	\rightarrow	$C_5H_5NH^+$	+	C_4H_3		6×10^{-10}	Jiao et al. (2006)
$R_{cn}495c$	2	$C_4H_4^+$	+	C_5H_5N	\rightarrow	$C_5H_5N^+$	+	C_4H_4		5×10^{-10}	Jiao et al. (2006)
$R_{cn}496a$	2	$C_4H_5^+$	+	C_2H_2	\rightarrow	$C_{6}H_{5}^{+}$	+	H_2		0×10^{-10}	McEwan and Anicich (2
$R_{cn}496b$	3	$C_4H_5^+$	+	C_2H_2	\rightarrow	$C_6H_7^+$				0×10^{-10}	McEwan and Anicich (2
									1.50	0×10^{-26}	
$R_{cn}497$	2	$C_4H_5^+$	+	C_2H_4	\rightarrow	$C_{6}H_{7}^{+}$	+	H_2		0×10^{-11}	McEwan and Anicich (2
$R_{cn}498a$	2	$C_4H_5^+$	+	CH ₃ CCH	\rightarrow	$C_{6}H_{5}^{+}$	+	CH_4		0×10^{-11}	McEwan and Anicich (2
$R_{cn}498b$	2	$C_4H_5^+$	+	CH ₃ CCH	\rightarrow	$C_7H_7^+$	+	H_2		0×10^{-10}	McEwan and Anicich (2
$R_{cn}499$	2	$C_4H_5^+$	+	C_4H_2	\rightarrow	$C_{6}H_{5}^{+}$	+	C_2H_2		0×10^{-09}	McEwan and Anicich (2
$R_{cn}500$	2	$C_4H_5^+$	+	N	\rightarrow	$C_4H_3NH^+$	+	H		0×10^{-10}	Wakelam et al. (2015)
$R_{cn}501$	2	$C_4H_5^+$	+	NH_3	\rightarrow	NH_4^+	+	C_4H_4	4.70	0×10^{-10}	Operti et al. (2004)
$R_{cn}502a$	2	$C_4H_6^+$	+	CH ₃ CCH	\rightarrow	$C_6H_7^+$	+	CH_3		0×10^{-10}	Anicich (1993)
$R_{cn}502b$	2	$C_4H_6^{+}$	+	CH ₃ CCH	\rightarrow	$C_7^+H_9^+$	+	Н		0×10^{-10}	Anicich (1993)
$R_{cn}503$	3	$C_4H_7^+$	+	C_2H_4	\rightarrow	$C_{6}H_{11}^{+}$			1.00	0×10^{-10}	McEwan and Anicich (2
				-					1.40	0×10^{-24}	
$R_{cn}504$	2	$C_4H_7^+$	+	CH_3CCH	\rightarrow	$C_7H_9^+$	+	H_2		0×10^{-10}	McEwan and Anicich (2
$R_{cn}505$	2	$C_4H_7^+$	+	CH ₃ CN	\rightarrow	$C_2H_3NH^+$	+	C_4H_6	5.20	0×10^{-11}	McEwan and Anicich (2
Continued	on Next	Page		-							

	Type					Reaction						k		Ref.			ı
$R_{cn}506a$	2	C ₄ H ₉ ⁺	+	C_2H_4	\rightarrow	C ₆ H ₉ ⁺	+	H_2	+	H_2		2.00×10^{-10}		Burt et al. (1970)			7
$R_{cn}506b$	2	$C_4H_9^+$	+	C_2H_4	\rightarrow	$C_{6}^{0}H_{11}^{+}$	+	H_2^2		-	- 1	2.00×10^{-10}		Burt et al. (1970)			- 7
$R_{cn}507a$	2	$C_4H_9^4$	+	NH_3	\rightarrow	NH_4^+	+	$C_4^2H_8$				1.57×10^{-09}		Anicich (1993)			,
$R_{cn}507b$	2	$C_4H_9^+$	+	NH_3	\rightarrow	$C_4 \ddot{H}_{11} NH^+$	+	hv			- 1	3.20×10^{-11}		Anicich (1993)			- 7
$R_{cn}508$	2	$C_{4}^{4}H_{9}^{\frac{3}{2}}$	+	$CH_3^3NH_2$	\rightarrow	CH ₃ NH ₃ ⁺	+	C_4H_8			- 1	1.31×10^{-09}	1	Anicich (1993)			- 7
R _{cn} 509	2	C4H9	+	HNC	\rightarrow	HCNH ⁺	+	C_4H_8				4.53×10^{-09}		Su-Chesnavich			,
R _{cn} 510	2	C ₅ H ⁴	+	H_2	\rightarrow	$C_5H_2^+$	+	н" °			- 1	1.00×10^{-17}		Wakelam et al. (20	15)		- 7
$R_{cn}511a$	2	C ₅ H ⁺	+	C_2H_2	\rightarrow	$C_7H_2^+$	+	H			- 1	1.50×10^{-10}		Anicich (1993)	,		- 7
$R_{cn}511b$	2	C ₅ H ⁺	+	C_2H_2	\rightarrow	$C_7H_3^{\tilde{+}}$	+	hv				3.50×10^{-10}		Anicich (1993)			,
$R_{cn}512$	2	C ₅ H ⁺	+	$C_4^2H_2^2$	\rightarrow	Adduct ⁺	+	hv			- 1	$1.00 \times 10^{-13} \mathrm{T}^{2.00}$		Wakelam et al. (20			- 7
$R_{cn}513$	2	C ₅ H ⁺	+	N	\rightarrow	C_5N^+	+	H			- 1	2.00×10^{-10}		Wakelam et al. (20	15)		- 7
$R_{cn}514$	2	C ₅ H ⁺	+	HCN	\rightarrow	HC ₆ NH ⁺	+	hv			- 1	9.10×10^{-11}		Anicich (1993)			- 7
$R_{cn}515$	2	C ₅ H ⁺	+	CO	\rightarrow	HC_6O^+	+	hv			- 1	2.30×10^{-10}		Anicich (1993)			- 7
$R_{cn}516a$	2	$C_{5}H_{2}^{+}$	+	CH_4	\rightarrow	$C_6H_5^+$	+	H			- 1	8.00×10^{-10}		Wakelam et al. (20			- 7
$R_{cn}516b$	2	$C_5H_2^+$	+	CH ₄	\rightarrow	$C_6H_4^+$	+	H_2			- 1	2.00×10^{-10}		Wakelam et al. (20	15)		- 7
$R_{cn}517a$	2	$C_5H_2^{\uparrow}$	+	$C_2\ddot{H}_2$	\rightarrow	$C_7H_3^{\uparrow}$	+	Η			- 1	7.00×10^{-10}		Wakelam et al. (20	15)		- 7
$R_{cn}517b$	2	$C_5H_2^{\uparrow}$	+	C_2H_2	\rightarrow	$C_7H_2^+$	+	H_2			- 1	3.00×10^{-10}		Wakelam et al. (20	15)		- 7
$R_{cn}518a$	2	C ₅ H ₂ [‡]	+	C_2H_4	\rightarrow	$C_7H_5^{\uparrow}$	+	Η̈́			- 1	5.00×10^{-10}		Wakelam et al. (20			- 7
$R_{cn}518b$	2	$C_5H_2^{\uparrow}$	+	C_2H_4	\rightarrow	$C_7H_4^+$	+	H_2			- 1	5.00×10^{-10}		Wakelam et al. (20			- 7
$R_{cn}519$	2	$C_5H_2^+$	+	CH₃CCH	\rightarrow	$CXHYNZ^{+}$	+	H_2			- 1	$6.14 \times 10^{-10} \mathrm{T}^{0.50}$		Wakelam et al. (20			- 7
$R_{cn}520a$	2	$C_5H_2^{\uparrow}$	+	$C_4\ddot{H}_2$	\rightarrow	$C_7H_3^+$	+	C_2H				6.00×10^{-10}		Wakelam et al. (20			, ,
$R_{cn}520b$	2	$C_5H_2^+$	+	C_4H_2	\rightarrow	$CXHYNZ^{+}$	+	Н				1.00×10^{-09}		Wakelam et al. (20			, ,
$R_{cn}520c$	2	$C_5H_2^{\uparrow}$	+	C_4H_2	\rightarrow	Adduct ⁺	+	hv			- 1	$1.00 \times 10^{-13} \mathrm{T}^{2.00}$	1	Wakelam et al. (20	15)		- 7
$R_{cn}521$	2	$C_5H_2^{\mp}$	+	N	\rightarrow	HC_5N^+	+	H				2.00×10^{-10}		Wakelam et al. (20	15)		, ,
$R_{cn}522a$	2	$C_5H_3^{+}$	+	CH_3CCH	\rightarrow	$C_6\ddot{H}_5^+$	+	C_2H_2				8.10×10^{-10}		Anicich (1993)			, ,
$R_{cn}522b$	2	$C_5H_3^+$	+	CH_3 CCH	\rightarrow	$CXHYNZ^{+}$	+	Н			- 1	1.90×10^{-10}		Anicich (1993)			
$R_{cn}523a$	2	$C_5H_3^+$	+	C_4H_2	\rightarrow	$C_7H_3^+$	+	C_2H_2				2.41×10^{-10}		Anicich (1993)			•
$R_{cn}523b$	2	$C_5H_3^+$	+	C_4H_2	\rightarrow	Adduct ⁺	+	hv			- 1	3.19×10^{-10}		Anicich (1993)			
$R_{cn}524a$	2	$C_5H_3^+$	+	C_6H_6	\rightarrow	$C_{6}H_{5}^{+}$	+	C_5H_4			- 1	4.80×10^{-11}		Lifshitz and Weiss			
$R_{cn}524b$	2	$C_5H_3^{\uparrow}$	+	C_6H_6	\rightarrow	$C_6H_6^{\uparrow}$	+	C_5H_3			- 1	4.80×10^{-11}		Lifshitz and Weiss	(1980b),Ozturk	et al. (1987)),Ozturl
$R_{cn}524c$	2	$C_5H_3^+$	+	C_6H_6	\rightarrow	$C_7H_7^+$	+	C_4H_2			- 1	4.80×10^{-11}		Lifshitz and Weiss			
$R_{cn}524d$	2	$C_5H_3^{\uparrow}$	+	C_6H_6	\rightarrow	$CXHYNZ^+$	+	C_2H_2			- 1	4.80×10^{-11}		Lifshitz and Weiss	(1980b),Ozturk	et al. (1987)),Ozturl
$R_{cn}524e$	2	C ₅ H ₃ ⁺	+	C_6H_6	\rightarrow	Adduct ⁺					- 1	4.80×10^{-11}		Lifshitz and Weiss			
$R_{cn}525$	2	$C_5H_3^{\frac{3}{4}}$	+	N	\rightarrow	HC_5NH^+	+	H			- 1	2.00×10^{-10}		Wakelam et al. (20			<i></i>
R _{cn} 526a	2	C ₅ H ₄ ⁴	+	CH_3CCH	\rightarrow	$C_6\ddot{H}_6^+$	+	C_2H_2				5.70×10^{-10}		Anicich (1993)	,		
$R_{cn}526b$	2	C ₅ H ₄ ⁺	+	CH ₃ CCH	\rightarrow	$CXHYNZ^{+}$	+	Η̈́			- 1	4.30×10^{-10}		Anicich (1993)			
Continued of	on Next			,										* .			

0		ı	
3	:	1	•
ς		j	
0		ı	۰

	Type					Reaction					k	Ref.
$R_{cn}527$	2	$C_5H_4^+$	+	N	\rightarrow	$C_5H_3N^+$	+	Н			1.00×10 ⁻¹⁰	Wakelam et al. (2015)
$R_{cn}528$	3	$C_5H_5^+$	+	$\mathrm{C_2H_4}$	\rightarrow	$C_7^{}H_9^{+}$					1.00×10^{-10} 6.00×10^{-27}	McEwan and Anicich (20
R _{cn} 529a	2	$C_5H_5^+$	+	C_4H_2	\rightarrow	Adduct ⁺	+	hv			7.33×10^{-11}	McEwan and Anicich (20
$R_{cn}529b$	2	C ₅ H ₅ ⁺	+	C_4H_2	\rightarrow	$C_7H_5^+$	+	C_2H_2			7.33×10^{-11}	McEwan and Anicich (20
$R_{cn}529c$	2	C ₅ H ₅ ⁺	+	C_4H_2	\rightarrow	$C_7H_7^{\frac{1}{7}}$	+	C_2			7.33×10^{-11}	McEwan and Anicich (20
$R_{cn}530$	2	C ₅ H ₅ ⁺	+	N	\rightarrow	$C_5H_3N^+$	+	H_2			1.00×10^{-10}	Wakelam et al. (2015)
$R_{cn}531$	2	C ₅ H ₅ ⁴	+	NH_3	\rightarrow	NH_4^+	+	C_5H_4			3.50×10^{-11}	Operti et al. (2004)
$R_{cn}532$	2	$C_5H_5^+$	+	HCN	\rightarrow	$C_6H_5NH^+$	+	hv			9.00×10^{-12}	McEwan and Anicich (20
$R_{cn}533$	2	C ₅ H ₅ ⁺	+	CH_2NH	\rightarrow	$CH_2NH_2^+$	+	C_5H_4			3.20×10^{-10}	Edwards et al. (2008)
$R_{cn}534a$	2	$C_5H_5^+$	+	CH_3NH_2	\rightarrow	CH ₃ NH ₃ [∓]	+	C_5H_4			2.00×10^{-10}	Edwards et al. (2008)
$R_{cn}534b$	2	C ₅ H ₅ ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₂	+	C_5H_4	+	H_2	2.50×10^{-11}	Edwards et al. (2008)
$R_{cn}534c$	2	C ₅ H ₅ ⁺	+	CH_3NH_2	\rightarrow	$C_6H_9NH^+$	+	hv		-	2.50×10^{-11}	Edwards et al. (2008)
$R_{cn}535a$	2	$C_5H_7^{+}$	+	CH ₃ CCH	\rightarrow	Adduct ⁺	+	hv			7.00×10^{-10}	McEwan and Anicich (20
R _{cn} 535b	3	C ₅ H ₇ ⁺	+	CH ₃ CCH	\rightarrow	Adduct ⁺					1.00×10^{-10}	McEwan and Anicich (20
		" '		Ü							3.10×10^{-27}	· ·
$R_{cn}536$	2	C ₅ H ₁₁	+	NH_3	\rightarrow	NH_4^+	+	C_5H_{10}			6.50×10^{-10}	Su and Bowers (1973)
$R_{cn}537$	2	C ₅ H ₁₁	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₃ ⁺	+	$C_5^{}H_{10}^{}$			9.10×10^{-10}	Su and Bowers (1973)
$R_{cn}538$	2	C ₆ H ⁺	+	H_2	\rightarrow	$C_6H_2^+$	+	H			1.30×10^{-12}	Wakelam et al. (2015)
$R_{cn}539a$	2	C ₆ H ₂ ⁺	+	CH_A	\rightarrow	$C_7H_5^+$	+	H			8.00×10^{-10}	Wakelam et al. (2015)
$R_{cn}539b$	2	C ₆ H ₂ [‡]	+	CH_4	\rightarrow	$C_7H_4^+$	+	H_2			2.00×10^{-10}	Wakelam et al. (2015)
$R_{cn}540$	2	C ₆ H ₂ +	+	C,H,	\rightarrow	Adduct ⁺	+	hv			1.00×10^{-09}	Wakelam et al. (2015)
$R_{cn}541$	2	C ₆ H ₂ [‡]	+	C_2H_4	\rightarrow	$CXHYNZ^{+}$	+	H_2			1.00×10^{-09}	Wakelam et al. (2015)
$R_{cn}542$	2	C ₆ H ₂ [‡]	+	CH ₃ CCH	\rightarrow	$CXHYNZ^{+}$	+	\tilde{H}_2			$5.94 \times 10^{-10} T^{0.50}$	Wakelam et al. (2015)
$R_{cn}543$	2	C ₆ H ₂ [‡]	+	$C_6 \ddot{H}_6$	\rightarrow	$C_6H_6^+$	+	C_6H_2			1.26×10^{-09}	Lifshitz and Weiss (1980)
$R_{cn}544$	2	C ₆ H ₂ [±]	+	N	\rightarrow	C ₅ H ⁺	+	HCN			1.90×10^{-10}	Scott et al. (1999)
$R_{cn}545$	2	C ₆ H ₃ +	+	C_2H_2	\rightarrow	Adduct ⁺	+	hv			2.30×10^{-10}	McEwan and Anicich (20
$R_{cn}546$	3	C ₆ H ₃ [±]	+	C_4H_2	\rightarrow	Adduct ⁺					1.00×10^{-10}	McEwan and Anicich (20
		" "									5.30×10^{-26}	· ·
$R_{cn}547$	2	C ₆ H ₃ ⁺	+	C_6H_6	\rightarrow	$CXHYNZ^{+}$					4.20×10^{-10}	Lifshitz and Weiss (1980)
$R_{cn}548$	3	C ₆ H ₃ ⁺	+	HCN	\rightarrow	AdductN ⁺					1.00×10^{-10}	McEwan and Anicich (20
		" "									6.80×10 ⁻²⁷	`
$R_{cn}549$	2	$C_6H_4^+$	+	H	\rightarrow	$C_6H_5^+$	+	hv			3.30×10^{-11}	McEwan and Anicich (20
R _{cn} 550	2	C ₆ H ₄ ⁴	+	C_2H_2	\rightarrow	Adduct ⁺	+	hv			2.90×10^{-10}	McEwan and Anicich (20
$R_{cn}551a$	2	C ₆ H ₄ ⁺	+	C_6H_6	\rightarrow	Adduct ⁺	+	hv			1.27×10 ⁻¹⁰	Lifshitz and Reuben (196
R _{cn} 551b	2	C ₆ H ₄ ⁺	+	C_6H_6	\rightarrow	CXHYNZ ⁺	+	H ₂			1.41×10 ⁻¹¹	Lifshitz and Reuben (196

^		
٠	•	٠
	J	ľ
-1	`	

	Type					Reaction			k	Ref.
R _{cn} 552	2	C ₆ H ₅ ⁺	+	H_2	\rightarrow	$C_6H_7^+$	+	hv	6.00×10 ⁻¹¹	McEwan and Anicich (20
$R_{cn}553$	2	C ₆ H ₅ ⁺	+	CH ₄	\rightarrow	$C_7H_7^+$	+	H_2	7.50×10^{-11}	McEwan and Anicich (20
$R_{cn}554a$	2	C ₆ H ₅ ⁺	+	C_2H_2	\rightarrow	$CXHYNZ^{+}$	+	H	7.80×10^{-11}	McEwan and Anicich (20)
$R_{cn}554b$	2	C ₆ H ₅ ⁺	+	C ₂ H ₂	\rightarrow	Adduct ⁺	+	hv	5.20×10^{-11}	McEwan and Anicich (20)
$R_{cn}555a$	2	C ₆ H ₅ ⁺	+	C_2H_4	\rightarrow	$C_6H_7^+$	+	C_2H_2	1.02×10^{-10}	McEwan and Anicich (20)
$R_{cn}555b$	2	C ₆ H ₅ ⁺	+	C_2H_4	\rightarrow	$CXHYNZ^{+}$	+	H ₂	6.80×10^{-11}	McEwan and Anicich (20
$R_{cn}555c$	3	C ₆ H ₅ ⁴	+	C_2H_4	\rightarrow	Adduct ⁺		-	1.00×10^{-10}	McEwan and Anicich (20
-Cn		-6 5		- 2 4					3.40×10^{-26}	
R _{cn} 556a	2	C ₆ H ₅ ⁺	+	C_2H_6	\rightarrow	$C_7H_7^+$	+	CH_4	3.90×10^{-12}	McEwan and Anicich (20
R _{cn} 556b	2	C ₆ H ₅ ⁺	+	C_2H_6	\rightarrow	$C_6H_7^+$	+	C_2H_4	1.26×10^{-10}	McEwan and Anicich (20
R _{cn} 557a	2	C ₆ H ₅ ⁴	+	CH, CCH	\rightarrow	$C_7H_7^+$	+	$C_2^2H_2^4$	4.14×10^{-11}	McEwan and Anicich (20
R _{cn} 557b	2	C ₆ H ₅ ⁺	+	CH ₂ CCH	\rightarrow	CXHYNZ+	+	H ₂	1.79×10 ⁻¹⁰	McEwan and Anicich (20
R _{cn} 557c	2	C ₆ H ₅ +	+	CH ₃ CCH	\rightarrow	CXHYNZ ⁺	+	H	1.15×10 ⁻¹¹	McEwan and Anicich (20
$R_{cn}557d$	3	C ₆ H ₅ ⁺	+	CH ₃ CCH	\rightarrow	Adduct ⁺			1.00×10 ⁻¹⁰	McEwan and Anicich (20
reenoora		6115	'	01130011	,	1144460			5.20×10 ⁻²⁴	medium and rimeten (20)
R _{cn} 558a	2	$C_6H_5^+$	+	CH ₂ CCH ₂	\rightarrow	$C_7H_7^+$	+	C_2H_2	1.56×10 ⁻¹⁰	Anicich (1993)
$R_{cn}558b$	2	C ₆ H ₅ +	+	CH ₂ CCH ₂	\rightarrow	CXHYNZ ⁺	+	H ₂	3.64×10 ⁻¹⁰	Anicich (1993)
$R_{cn}559a$	2	C ₆ H ₅ ⁺	+	C_4H_2	\rightarrow	CXHYNZ ⁺	+	C_2^{11}	1.00×10 ⁻⁰⁹	McEwan and Anicich (20
R _{cn} 559b	3	C ₆ H ₅ ⁺	+	C_4H_2 C_4H_2	\rightarrow	Adduct ⁺	'	02112	1.00×10 ⁻¹⁰	McEwan and Anicich (20
n_{cn}	3	C ₆ 11 ₅		$C_{4}^{11}_{2}$	~	Adduct			5.60×10 ⁻²⁶	WicEwan and America (20
R _{cn} 560a	2	C ₆ H ₅ ⁺	+	C_6H_6	\rightarrow	Adduct ⁺	+	hv	8.46×10 ⁻¹¹	Lifshitz et al. (1980)
R _{cn} 560b	2	C ₆ H ₅ +	+	C_6H_6	\rightarrow	CXHYNZ ⁺	+	Н	5.17×10 ⁻¹¹	Lifshitz et al. (1980)
$R_{cn}560c$	2	C ₆ H ₅ ⁺	+	C_6H_6	\rightarrow	CXHYNZ ⁺	+	H ₂	2.30×10 ⁻¹⁰	Lifshitz et al. (1980)
R _{cn} 560d	2	C ₆ H ₅ ⁺	+	C_6H_6	\rightarrow	CXHYNZ ⁺	+	C ₂ H ₂	2.35×10 ⁻¹¹	Lifshitz et al. (1980)
$R_{cn}560e$	2	C ₆ H ₅ ⁺	+	C_6H_6	\rightarrow	CXHYNZ ⁺	+	C ₂ H ₂ C ₂ H ₃	1.41×10 ⁻¹¹	Lifshitz et al. (1980)
R _{cn} 560f	2	C ₆ H ₅ ⁺	+	C_6H_6	\rightarrow	CXHYNZ ⁺	+	CH ₃ CCH	2.82×10 ⁻¹¹	Lifshitz et al. (1980)
$R_{cn}560$	2	C ₆ H ₅ +	+	N 6116	\rightarrow	C ₅ H ₄ ⁺	+	HCN	3.70×10 ⁻¹¹	McEwan and Anicich (20
$R_{cn}562a$	2	C ₆ H ₅ ⁺	+	NH ₂	\rightarrow	NH ⁺	+	C ₆ H ₄	7.49×10^{-11}	Operti et al. (2004)
	2		+	NH ₃	\rightarrow	$C_6H_7N^+$	+	С ₆ н ₄ Н	4.78×10 ⁻¹¹	Operti et al. (2004)
R _{cn} 562b R _{cn} 562c	2	C ₆ H ₅ ⁺	+			$C_6H_7NH^+$	+	hv	8.53×10 ⁻¹¹	Operti et al. (2004) Operti et al. (2004)
		C ₆ H ₅ ⁺		NH ₃	\rightarrow	AdductN ⁺	+	nv	1.00×10 ⁻¹⁰	
$R_{cn}563$	3	$C_6H_5^+$	+	HCN	\rightarrow	AdductN			9.60×10^{-26}	McEwan and Anicich (20)
D FC4-		C 11+		$O(^3P)$		$C_{\kappa}H_{\kappa}^{+}$		CO	9.60×10 6.00×10 ⁻¹¹	Scott et al. (2000)
R _{cn} 564a	2	C ₆ H ₅ ⁺	+		\rightarrow		+		6.00×10^{-11} 4.00×10^{-11}	
R _{cn} 564b	2	C ₆ H ₅ ⁺	+	$O(^{3}P)$	\rightarrow	$c-C_3H_3^+$	+	C_3H_2O	4.00×10	Scott et al. (2000)
$R_{cn}565$	3	C ₆ H ₅ ⁺	+	H_2O	\rightarrow	Adduct ⁺			$\begin{array}{c} 1.00 \times 10^{-10} \\ 6.20 \times 10^{-26} \end{array}$	McEwan and Anicich (20

355	

	Type					Reaction			k	Ref.
R _{cn} 566	2	$C_6H_6^+$	+	Н	\rightarrow	$C_6H_7^+$	+	hv	2.50×10 ⁻¹⁰	McEwan and Anicich (
$R_{cn}567$	2	C ₆ H ₆ ⁺	+	C_4H_2	\rightarrow	Adduct ⁺	+	hv	5.00×10^{-10}	McEwan and Anicich (
$R_{cn}568a$	2	C ₆ H ₆ ⁺	+	N 2	\rightarrow	$C_{\kappa}H_{\kappa}^{+}$	+	HCN	1.33×10^{-10}	McEwan and Anicich (
cn 568b	2	C ₆ H ₆ ⁺	+	N	\rightarrow	c-C ₂ H ₂ ⁺	+	C_3H_3N	7.00×10^{-12}	McEwan and Anicich (
$l_{cn}569a$	2	C ₆ H ₇ ⁴	+	CH ₃ CCH	\rightarrow	$C_7H_7^{\frac{1}{7}}$	+	C_2H_4	9.70×10^{-11}	McEwan and Anicich (
cn 569b	3	C ₆ H ₇ +	+	СНССН	\rightarrow	Adduct ⁺		2 4	1.00×10^{-10}	McEwan and Anicich (
		" '		3					3.00×10^{-25}	,
$1_{cn}570$	2	C ₆ H ₇ ⁺	+	CH, CCH,	\rightarrow	$C_{3}H_{5}^{+}$	+	C_6H_6	4.70×10^{-11}	Lias and Ausloos (1985
c _n 571	2	C ₆ H ₇ ⁺	+	NH ₃	\rightarrow	NH ₄	+	C_6H_6	2.20×10^{-10}	Operti et al. (2004)
$c_{n}572$	2	C ₇	+	H ₂	\rightarrow	$C_7 \ddot{H}^+$	+	Н	1.90×10^{-10}	Wakelam et al. (2015)
cn 573	2	C ₇ H ⁺	+	H ₂	\rightarrow	$C_7H_2^+$	+	H	1.00×10^{-17}	Wakelam et al. (2015)
c _n 574	2	C ₇ H ⁺	+	N	\rightarrow	$C_7N^{\frac{7}{4}}$	+	H	2.00×10^{-10}	Wakelam et al. (2015)
l _{cn} 575	2	$C_7H_2^+$	+	CH_4	\rightarrow	CXHYNZ ⁺	+	H_2	1.00×10^{-09}	Wakelam et al. (2015)
R _{cn} 576a	2	C ₇ H ₂ ⁴	+	C_2H_2	\rightarrow	$CXHYNZ^{+}$	+	H	7.00×10^{-10}	Wakelam et al. (2015)
c _n 576b	2	C7H2	+	C_2H_2	\rightarrow	$CXHYNZ^{+}$	+	H_2	3.00×10^{-10}	Wakelam et al. (2015)
$c_{cn}577$	2	C ₇ H ₂ ⁴	+	$C_2^2H_4^2$	\rightarrow	$CXHYNZ^{+}$	+	H ₂	1.00×10^{-09}	Wakelam et al. (2015)
cn 578	2	$C_7H_2^{\frac{4}{7}}$	+	N N	\rightarrow	HC_7N^+	+	H	2.00×10^{-10}	Wakelam et al. (2015)
cn 579	2	C ₇ H ₃ ⁺	+	N	\rightarrow	HC ₇ NH ⁺	+	H	2.00×10^{-10}	Wakelam et al. (2015)
cn 580	2	C ₇ H ₄ ²	+	N	\rightarrow	$C_7H_3N^+$	+	H	1.00×10^{-10}	Wakelam et al. (2015)
c _n 581	2	C ₇ H ₅ ⁺	+	N	\rightarrow	C ₇ H ₂ N ⁺	+	H_2	1.00×10^{-10}	Wakelam et al. (2015)
Lcn 582	2	C ₇ H ₇ ¹	+	C_2H_4	\rightarrow	Adduct+	+	hv	2.00×10^{-10}	McEwan and Anicich (
L _{cn} 583a	2	C ₇ H ₇ ⁺	+	CH, CCH	\rightarrow	Adduct ⁺	+	hv	1.40×10^{-10}	McEwan and Anicich (
t _{cn} 583b	3	C ₇ H ₇ ⁺	+	CH ₃ CCH	\rightarrow	Adduct ⁺			1.00×10^{-10}	McEwan and Anicich (
		' '		3					7.90×10^{-24}	
t _{cn} 584	2	$C_7H_7^+$	+	C_3H_6	\rightarrow	$CXHYNZ^{+}$			7.00×10^{-11}	Ausloos et al. (1980)
L _{cn} 585	2	C ₇ H ₇ ⁺	+	C_4H_2	\rightarrow	Adduct ⁺	+	hv	1.00×10^{-09}	McEwan and Anicich (
$R_{cn}586$	2	C ₇ H ₇ ⁺	+	$C_7^4H_8^2$	\rightarrow	$CXHYNZ^{+}$	+	C_6H_6	1.60×10^{-10}	Bartmess (1982)
$R_{cn}587$	2	C ₇ H ₇ ⁺	+	CH ₂ NH	\rightarrow	CH ₂ NH ₂ ⁺	+	C_7H_6	3.40×10 ⁻¹¹	Edwards et al. (2008)
R _{cn} 588a	2	C ₇ H ₇ ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₃ ⁺	+	$C_7^7H_6$	1.62×10^{-11}	Edwards et al. (2008)
cn 588b	2	C ₇ H ₇ ⁺	+	CH ₃ NH ₂	\rightarrow	Adduct ⁺	+	hv	1.80×10 ⁻¹²	Edwards et al. (2008)
cn 589	2	C ₇ H ₈ ⁺	+	C_3H_6	\rightarrow	CXHYNZ ⁺	+	Н	1.70×10 ⁻¹⁰	Pithawalla et al. (2001
$c_{n}590$	2	C ₈ H ⁺	+	H ₂	\rightarrow	$C_8H_2^+$	+	Н	1.00×10 ⁻⁰⁹	Wakelam et al. (2015)
cn 591	2	$C_8H_2^+$	+	CH_4	\rightarrow	$CXHYNZ^+$	+	H ₂	1.00×10 ⁻⁰⁹	Wakelam et al. (2015)
c_{n} 592	2	N ⁺	+	H ₂	\rightarrow	NH ⁺	+	H H	$4.16 \times 10^{-10} e^{-41.9/T}$	Marquette et al. (1988)
cn 593a	2	N ⁺	+	CH ₄	\rightarrow	CH ₂ ⁺	+	NH	5.00×10 ⁻¹⁰	Dutuit et al. (2013)
$l_{cn}593b$	2	N ⁺	+	CH ₄	\rightarrow	HCNH ⁺	+	H ₂	3.50×10 ⁻¹⁰	Dutuit et al. (2013) Dutuit et al. (2013)
Continued			1.7	J11 ₄	,	1101111		**2	1 0.00 × 10	Datait Ct al. (2013)

(٠	:
(٠	ī
è	=	

	Type					Reaction					k	Ref.
R _{cn} 593c	2	N ⁺	+	CH ₄	\rightarrow	HCN ⁺	+	H ₂	+	Н	1.00×10^{-10}	Dutuit et al. (2013)
$R_{cn}593d$	2	N ⁺	+	CH ₄	\rightarrow	CH_4^+	+	N			5.00×10^{-11}	Dutuit et al. (2013)
$R_{cn}594a$	2	N ⁺	+	C,H,	\rightarrow	C ₂ H ₂ ⁺	+	N			9.94×10^{-10}	Dutuit et al. (2013)
$R_{cn}594b$	2	N ⁺	+	C_2H_2	\rightarrow	$\tilde{\text{CNC}^+}$	+	H_2			2.13×10 ⁻¹⁰	Dutuit et al. (2013)
$R_{cn}594c$	2	N ⁺	+	C_2H_2	\rightarrow	HC_2N^+	+	Η̈́			2.13×10^{-10}	Dutuit et al. (2013)
$R_{cn}595a$	2	N ⁺	+	C_2H_4	\rightarrow	$C_2\tilde{H}_2^+$	+	NH_2			1.90×10^{-10}	Dutuit et al. (2013)
$R_{cn}595b$	2	N ⁺	+	C_2H_4	\rightarrow	$C_2H_3^{\frac{1}{2}}$	+	NH			5.06×10^{-10}	Dutuit et al. (2013)
$R_{cn}595c$	2	N ⁺	+	C_2H_4	\rightarrow	$C_2H_4^+$	+	N			6.00×10^{-10}	Dutuit et al. (2013)
$R_{cn}595d$	2	N ⁺	+	C_2H_4	\rightarrow	HCN ⁺	+	CH_3			3.16×10^{-11}	Dutuit et al. (2013)
$R_{cn}595e$	2	N ⁺	+	C_2H_4	\rightarrow	HCNH ⁺	+	3CH_2			1.58×10^{-10}	Dutuit et al. (2013)
$R_{cn}595f$	2	N ⁺	+	C_2H_4	\rightarrow	HC_2N^+	+	H_2	+	H	1.58×10^{-11}	Dutuit et al. (2013)
$R_{cn}595g$	2	N ⁺	+	C_2H_4	\rightarrow	HC ₂ NH ⁺	+	H_2			7.90×10^{-11}	Dutuit et al. (2013)
$R_{cn}596a$	2	N ⁺	+	C_2H_6	\rightarrow	$C_2\bar{H}_5^+$	+	NH			1.60×10^{-10}	Dutuit et al. (2013)
$R_{cn}596b$	2	N ⁺	+	C_2H_6	\rightarrow	$C_2H_4^{\uparrow}$	+	NH_2			8.80×10^{-10}	Dutuit et al. (2013)
$R_{cn}596c$	2	N ⁺	+	C_2H_6	\rightarrow	$C_2H_3^+$	+	NH_3			4.00×10^{-10}	Dutuit et al. (2013)
$R_{cn}596d$	2	N ⁺	+	C_2H_6	\rightarrow	HCNH ⁺	+	CH_4			1.60×10^{-10}	Dutuit et al. (2013)
$R_{cn}597a$	2	N ⁺	+	CH ₃ CCH	\rightarrow	$C_2H_2^+$	+	H_2CN			1.20×10^{-10}	Dryahina et al. (2011)
$R_{cn}597b$	2	N ⁺	+	CH ₃ CCH	\rightarrow	$C_2H_4^{+}$	+	CN			1.40×10^{-10}	Dryahina et al. (2011)
$R_{cn}597c$	2	N ⁺	+	CH ₃ CCH	\rightarrow	$C_3H_2^+$	+	NH_2			6.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}597d$	2	N ⁺	+	CH ₃ CCH	\rightarrow	$l-C_3H_3^+$	+	N	+	H	4.35×10^{-10}	Dryahina et al. (2011)
$R_{cn}597e$	2	N ⁺	+	CH ₃ CCH	\rightarrow	$c-C_{3}H_{3}^{+}$	+	N	+	H	4.35×10^{-10}	Dryahina et al. (2011)
$R_{cn}597f$	2	N ⁺	+	CH ₃ CCH	\rightarrow	$l-C_3H_3^{+}$	+	NH			1.15×10^{-10}	Dryahina et al. (2011)
$R_{cn}597g$	2	N ⁺	+	CH ₃ CCH	\rightarrow	$c-C_{3}H_{3}^{+}$	+	NH			1.15×10^{-10}	Dryahina et al. (2011)
$R_{cn}597h$	2	N ⁺	+	CH ₃ CCH	\rightarrow	$C_3H_4^+$	+	N			7.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}597i$	2	N ⁺	+	CH ₃ CCH	\rightarrow	$C_3H_4^{\uparrow}$	+	$N(^2D)$			2.10×10^{-10}	Dryahina et al. (2011)
$R_{cn}597j$	2	N ⁺	+	CH ₃ CCH	\rightarrow	HC ₂ NH ⁺	+	3CH ₂			1.00×10^{-10}	Dryahina et al. (2011)
$R_{cn}597k$	2	N ⁺	+	CH ₃ CCH	\rightarrow	$C_2\tilde{H}_3N^+$	+	CH			4.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}5971$	2	N ⁺	+	CH ₃ CCH	\rightarrow	$C_2H_3NH^+$	+	C			1.00×10^{-10}	Dryahina et al. (2011)
$R_{cn}597m$	2	N ⁺	+	CH ₃ CCH	\rightarrow	HC_3NH^+	+	H_2			6.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}598a$	2	N ⁺	+	C_3H_6	\rightarrow	$C_2 \tilde{H}_2^+$	+	NH	+	CH_3	8.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}598b$	2	N ⁺	+	C_3H_6	\rightarrow	$C_2H_3^{+}$	+	N	+	CH_3	2.00×10^{-10}	Dryahina et al. (2011)
$R_{cn}598c$	2	N ⁺	+	C_3H_6	\rightarrow	$C_2H_4^+$	+	H_2CN		~	1.60×10^{-10}	Dryahina et al. (2011)
$R_{cn}598d$	2	N ⁺	+	C_3H_6	\rightarrow	$C_{2}^{2}H_{5}^{+}$	+	HČN			4.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}598e$	2	N ⁺	+	C_3H_6	\rightarrow	$l-C_3H_3^+$	+	N	+	H_3	2.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}598f$	2	N ⁺	+	C_3H_6	\rightarrow	$c-C_{3}H_{3}^{+}$	+	N	+	H_3	2.00×10^{-11}	Dryahina et al. (2011)
R _{cn} 598g	2	N ⁺	+	C_3H_6	\rightarrow	$1-C_3H_3^{4}$	+	NH	+	H ₂	1.40×10^{-10}	Dryahina et al. (2011)
Continued	on Next	Page		5 5		0 0				-	•	

C	٠
C	,
-	٦.

	Type					Reaction					k	Ref.
R _{cn} 598h	2	N ⁺	+	C_3H_6	\rightarrow	$c-C_{3}H_{3}^{+}$	+	NH	+	H_2	1.40×10^{-10}	Dryahina et al. (2011)
$R_{cn}598i$	2	N ⁺	+	C_3H_6	\rightarrow	$C_3H_4^+$	+	N	+	H_2	8.00×10^{-11}	Dryahina et al. (2011)
_{cn} 598j	2	N ⁺	+	C_3H_6	\rightarrow	$C_3H_5^+$	+	N	+	Н	2.60×10^{-10}	Dryahina et al. (2011)
$l_{cn}598k$	2	N ⁺	+	C_3H_6	\rightarrow	$C_3H_5^+$	+	$N(^2D)$	+	H	1.60×10^{-10}	Dryahina et al. (2011)
$R_{cn}5981$	2	N ⁺	+	C_3H_6	\rightarrow	$C_3H_5^+$	+	NH			6.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}598m$	2	N ⁺	+	C_3H_6	\rightarrow	$C_3H_6^+$	+	N			4.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}598n$	2	N ⁺	+	C_3H_6	\rightarrow	$C_3H_6^+$	+	$N(^2D)$			6.00×10^{-10}	Dryahina et al. (2011)
$R_{cn}599a$	2	N ⁺	+	C_3H_8	\rightarrow	$C_2H_3^+$	+	NH	+	CH_4	2.40×10^{-10}	Dryahina et al. (2011)
$R_{cn}599b$	2	N ⁺	+	C_3H_8	\rightarrow	$C_2H_4^+$	+	N	+	CH_4	1.80×10^{-10}	Dryahina et al. (2011)
$R_{cn}599c$	2	N ⁺	+	C_3H_8	\rightarrow	$C_2H_4^+$	+	$N(^2D)$	+	CH_4	3.00×10^{-10}	Dryahina et al. (2011)
$R_{cn}599d$	2	N ⁺	+	C_3H_8	\rightarrow	$C_2H_4^+$	+	NH	+	CH_3	2.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}599e$	2	N ⁺	+	C_3H_8	\rightarrow	$C_2H_5^+$	+	N	+	CH_3	7.20×10^{-10}	Dryahina et al. (2011)
$R_{cn}599f$	2	N ⁺	+	C_3H_8	\rightarrow	$C_3H_5^+$	+	N	+	H_3	6.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}599g$	2	N ⁺	+	C_3H_8	\rightarrow	$C_3H_5^+$	+	NH	+	H_2	1.60×10^{-10}	Dryahina et al. (2011)
$R_{cn}599h$	2	N ⁺	+	C_3H_8	\rightarrow	$C_3H_6^+$	+	N	+	H_2	6.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}599i$	2	N ⁺	+	C_3H_8	\rightarrow	$C_3H_6^+$	+	$N(^2D)$	+	H_2	4.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}599j$	2	N ⁺	+	C_3H_8	\rightarrow	$C_3H_7^+$	+	N	+	H	1.00×10^{-10}	Dryahina et al. (2011)
$R_{cn}599k$	2	N ⁺	+	C_3H_8	\rightarrow	$C_3H_7^+$	+	$N(^2D)$	+	H	4.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}5991$	2	N ⁺	+	C_3H_8	\rightarrow	$C_3H_7^+$	+	NH			4.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}599m$	2	N ⁺	+	C_3H_8	\rightarrow	$C_3H_8^+$	+	$N(^2D)$			4.00×10^{-11}	Dryahina et al. (2011)
$R_{cn}600a$	2	N ⁺	+	C_6H_6	\rightarrow	$C_6H_6^+$	+	N			1.85×10^{-09}	Stavish et al. (2009)
$R_{cn}600b$	2	N ⁺	+	C_6H_6	\rightarrow	$C_5H_4^+$	+	HCN	+	H	1.82×10^{-10}	Stavish et al. (2009)
$R_{cn}600c$	2	N ⁺	+	C_6H_6	\rightarrow	$c-C_{3}H_{3}^{+}$	+	C_3H_3N			5.72×10^{-10}	Stavish et al. (2009)
$R_{cn}601a$	2	N ⁺	+	C_7H_8	\rightarrow	$C_7H_7^+$	+	NH			1.80×10^{-09}	Arnold et al. (2000)
$R_{cn}601b$	2	N ⁺	+	C_7H_8	\rightarrow	$C_{6}H_{6}^{+}$	+	H_2CN			1.54×10^{-10}	Arnold et al. (2000)
$R_{cn}601c$	2	N ⁺	+	C_7H_8	\rightarrow	$C_5H_5^+$	+	$\mathrm{CH_{3}CN}$			1.10×10^{-10}	Arnold et al. (2000)
$R_{cn}601d$	2	N ⁺	+	C_7H_8	\rightarrow	$C_4H_4^+$	+	C_3H_4N			4.40×10^{-11}	Arnold et al. (2000)
$R_{cn}601e$	2	N ⁺	+	C_7H_8	\rightarrow	$c-C_{3}H_{3}^{+}$	+	C_4H_5N			8.80×10^{-11}	Arnold et al. (2000)
$R_{cn}602a$	2	N ⁺	+	NH_3	\rightarrow	NH_2^+	+	NH			4.70×10^{-10}	Anicich (1993)
$R_{cn}602b$	2	N ⁺	+	NH_3	\rightarrow	NH_3^+	+	N			1.67×10^{-09}	Anicich (1993)
$R_{cn}602c$	2	N ⁺	+	NH_3	\rightarrow	N_2H^+	+	H_2			2.12×10 ⁻¹⁰	Anicich (1993)
$c_n 603a$	2	N ⁺	+	HCN	\rightarrow	HCN ⁺	+	N			2.40×10 ⁻⁰⁹	McEwan and Anicich (
$c_{cn}603b$	2	N ⁺	+	HCN	\rightarrow	CH ⁺	+	N_2			1.29×10^{-09}	McEwan and Anicich (
$c_n 604a$	2	N ⁺	+	$\mathrm{CH_3NH_2}$	\rightarrow	$CH_3NH_2^+$	+	N			1.54×10^{-10}	Jackson et al. (2005)
$c_{cn}604b$	2	N ⁺	+	CH_3NH_2	\rightarrow	$CH_2NH_2^+$	+	N	+	H	1.59×10^{-09}	Jackson et al. (2005)
cn 604c	2	N ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₂ NH ⁺	+	N	+	H_2	1.79×10^{-10}	Jackson et al. (2005)

_	
C	×
C	3
ē	ÿ

	Type					Reaction					k	Ref.
R _{cn} 604d	2	N+	+	CH ₃ NH ₂	\rightarrow	HCNH ⁺	+	N	+	H_3	4.61×10 ⁻¹⁰	Jackson et al. (2005)
$R_{cn}604e$	2	N ⁺	+	CH ₃ NH ₂	\rightarrow	CH_3^+	+	NH_2	+	N	1.79×10^{-10}	Jackson et al. (2005)
$R_{cn}605a$	2	N ⁺	+	CH ₃ CN	\rightarrow	$C_2H_3N^+$	+	N			5.00×10^{-10}	McEwan and Anicich
$R_{cn}605b$	2	N ⁺	+	CH ₃ CN	\rightarrow	HC ₂ NH ⁺	+	NH			3.00×10^{-10}	McEwan and Anicich
$R_{cn}605c$	2	N ⁺	+	CH ₃ CN	\rightarrow	$C_2H_2^+$	+	N ₂	+	H	1.00×10^{-10}	McEwan and Anicich
cn 605d	2	N ⁺	+	CH ₃ CN	\rightarrow	CN ⁺	+	CH,NH			1.00×10^{-10}	McEwan and Anicich
cn606a	2	N ⁺	+	HC ₃ N	\rightarrow	C_3H^+	+	N_2			1.60×10^{-09}	McEwan and Anicich
$c_{cn}606b$	2	N ⁺	+	HC_3N	\rightarrow	HC ₃ N ⁺	+	N			2.65×10^{-09}	McEwan and Anicich
$c_{cn}607a$	2	N ⁺	+	C_3H_3N	\rightarrow	$C_3H_3N^+$	+	N			3.50×10^{-10}	McEwan and Anicich
_{cn} 607b	2	N ⁺	+	C_3H_3N	\rightarrow	HC ₃ NH ⁺	+	NH			1.50×10^{-10}	McEwan and Anicich
_{cn} 607c	2	N ⁺	+	C_3H_3N	\rightarrow	HC ₂ N ⁺	+	H ₂ CN			1.30×10^{-10}	McEwan and Anicich
$c_n 607d$	2	N ⁺	+	C_3H_3N	\rightarrow	$c-\tilde{C}_3H_3^+$	+	N_2			1.20×10^{-10}	McEwan and Anicich
$c_{cn}607e$	2	N ⁺	+	C_3H_3N	\rightarrow	CN ⁺	+	CH ₃ CN			1.30×10^{-10}	McEwan and Anicich
R _{cn} 607f	2	N ⁺	+	C_3H_3N	\rightarrow	$C_2H_2^+$	+	N_2	+	CH	1.20×10^{-10}	McEwan and Anicich
$c_n 608a$	2	N ⁺	+	C_3H_5N	\rightarrow	$N_2^{\frac{1}{2}}$	+	C_3H_5			2.31×10^{-09}	Edwards et al. (2008)
cn 608b	2	N ⁺	+	C_3H_5N	\rightarrow	$1-C_{3}H_{3}^{+}$	+	N_2	+	H_2	4.20×10^{-10}	Edwards et al. (2008)
cn 608c	2	N ⁺	+	C_3H_5N	\rightarrow	c-C,H,+	+	N_2	+	H_2	4.20×10^{-10}	Edwards et al. (2008)
cn 608d	2	N ⁺	+	$C_3^3H_5^3N$	\rightarrow	$C_3H_3^3NH^+$	+	NĤ		2	1.05×10^{-09}	Edwards et al. (2008)
cn 609a	2	N ⁺	+	C_4H_5N	\rightarrow	1-C ₃ H ₃ ⁺	+	H_2CN	+	N	1.23×10^{-10}	Stavish et al. (2009)
c _n 609b	2	N ⁺	+	C_4H_5N	\rightarrow	$c-C_3H_3^+$	+	H ₂ CN	+	N	1.23×10^{-10}	Stavish et al. (2009)
cn 609c	2	N ⁺	+	$C_4^4 H_5^5 N$	\rightarrow	HC ₂ N ⁺	+	N ²	+	C_2H_4	2.45×10^{-10}	Stavish et al. (2009)
cn 609d	2	N ⁺	+	$C_4^4H_5^5N$	\rightarrow	$C_3\tilde{H}_4^+$	+	HCN	+	N 4	2.10×10^{-10}	Stavish et al. (2009)
c _n 609e	2	N ⁺	+	$C_4^4H_5^5N$	\rightarrow	HC ₂ NH ⁺	+	CH ₂ CN			2.10×10^{-10}	Stavish et al. (2009)
cn 609f	2	N ⁺	+	$C_4^4H_5^5N$	\rightarrow	$C_3\tilde{H}_5^+$	+	CN	+	N	1.40×10^{-10}	Stavish et al. (2009)
cn 609g	2	N ⁺	+	C_4H_5N	\rightarrow	$C_2H_3N^+$	+	C_2H_2	+	N	1.40×10^{-10}	Stavish et al. (2009)
cn 609h	2	N ⁺	+	C_4H_5N	\rightarrow	$C_4H_4^+$	+	NH	+	N	2.63×10^{-10}	Stavish et al. (2009)
cn 609i	2	N ⁺	+	$C_4^4 H_5^5 N$	\rightarrow	HC ₃ NH ⁺	+	CH2NH			2.63×10^{-10}	Stavish et al. (2009)
cn 609i	2	N ⁺	+	C_4H_5N	\rightarrow	$C_4H_5^+$	+	N_2			2.63×10^{-10}	Stavish et al. (2009)
t _{cn} 609k	2	N ⁺	+	C_4H_5N	\rightarrow	C ₃ H ₃ N ⁺	+	H ₂ CN			2.63×10 ⁻¹⁰	Stavish et al. (2009)
cn 6091	2	N ⁺	+	C_4H_5N	\rightarrow	C ₃ H ₃ NH ⁺	+	HCN			5.60×10 ⁻¹⁰	Stavish et al. (2009)
_{cn} 609m	2	N ⁺	+	C_4H_5N	\rightarrow	$C_4H_3NH^+$	+	NH			2.80×10 ⁻¹⁰	Stavish et al. (2009)
cn 609n	2	N ⁺	+	C_4H_5N	\rightarrow	$C_4H_5N^+$	+	N			4.20×10 ⁻¹⁰	Stavish et al. (2009)
cn 610a	2	N ⁺	+	HC ₅ N	\rightarrow	HC_5N^+	+	N			3.15×10 ⁻⁰⁹	Edwards et al. (2009)
cn610b	2	N ⁺	+	HC ₅ N	\rightarrow	C ₅ H ⁺	+	N ₂			3.15×10 ⁻⁰⁹	Edwards et al. (2009)
cn611a	2	N ⁺	+	C_5H_5N	\rightarrow	$C_4H_4^+$	+	HCN	+	N	1.84×10 ⁻⁰⁹	Fondren et al. (2007)
cn 611b	2	N ⁺	+	C_5H_5N	\rightarrow	$C_5H_5N^+$	+	N			1.56×10 ⁻⁰⁹	Fondren et al. (2007)
ontinued	on Next		'	- 5 5		- 5 5					1	1

C		ı,	•
č	•	7	7
č	,		
٠	١		•

	Type					Reaction					k	Ref.
$R_{cn}612$	3	N ⁺	+	${\rm N}_2$	\rightarrow	N_3^+					1.00×10^{-10} 4.00×10^{-29} T ^{1.84}	Anicich et al. (2000),McEwan and Anicich (2007
$R_{cn}613a$	2	N ⁺	+	C_2N_2	\rightarrow	$C_2N_2^+$	+	N			3.40×10 ⁻¹⁰	McEwan and Anicich (2007)
$R_{cn}613b$	2	N ⁺	+	C_2N_2	\rightarrow	$C_2^2N^{\frac{5}{4}}$ $O^{\frac{5}{4}}$	+	N_2			1.36×10^{-09}	McEwan and Anicich (2007)
$R_{cn}614$	2	N ⁺	+	$O(^3P)$	\rightarrow	O [‡]	+	N ~			4.50×10^{-12}	Rutherford et al. (1978)
$R_{cn}615$	2	N ⁺	+	H ₂ O	\rightarrow	H ₂ O ⁺	+	N			2.70×10^{-09}	McEwan and Anicich (2007)
$R_{cn}616a$	2	N ⁺	+	CÔ	\rightarrow	C [‡]	+	NO			5.60×10^{-12}	McEwan and Anicich (2007)
$R_{cn}616b$	2	N ⁺	+	CO	\rightarrow	CO^{+}	+	N			4.93×10^{-10}	McEwan and Anicich (2007)
$R_{cn}616c$	2	N ⁺	+	CO	\rightarrow	NO ⁺	+	C			6.16×10 ⁻¹¹	McEwan and Anicich (2007)
$R_{cn}617a$	2	N ⁺	+	$H_{2}CO$	\rightarrow	HCO^{+}	+	NH			7.25×10^{-10}	Anicich (1993)
$R_{cn}617b$	2	N ⁺	+	H ₂ CO	\rightarrow	CH_2O^+	+	N			1.89×10^{-09}	Anicich (1993)
$R_{cn}617c$	2	N ⁺	+	H ₂ CO	\rightarrow	NO [∓]	+	$^{3}CH_{2}$			2.90×10^{-10}	Anicich (1993)
$R_{cn}618a$	2	N ⁺	+	cō,	\rightarrow	CO^{+}	+	NO 2			2.02×10^{-10}	Anicich (1993)
$R_{cn}618b$	2	N ⁺	+	CO2	\rightarrow	CO_2^+	+	N			9.18×10^{-10}	Anicich (1993)
$R_{cn}619a$	2	NH ⁺	+	H,	\rightarrow	H_3^+	+	N			1.85×10^{-10}	McEwan and Anicich (2007)
$R_{cn}619b$	2	NH ⁺	+	H_2	\rightarrow	NH ⁺	+	H			1.05×10^{-09}	McEwan and Anicich (2007)
$R_{cn}620a$	2	NH ⁺	+	\tilde{CH}_4	\rightarrow	CH [‡]	+	N			9.60×10^{-11}	McEwan and Anicich (2007)
$R_{cn}620b$	2	NH ⁺	+	CH ₄	\rightarrow	NH ⁺	+	CH_3			1.92×10^{-10}	McEwan and Anicich (2007)
R _{cn} 620c	2	NH ⁺	+	CH ₄	\rightarrow	HCNH ⁺	+	H_2	+	H	6.72×10^{-10}	McEwan and Anicich (2007)
$R_{cn}621a$	2	NH ⁺	+	C_2H_4	\rightarrow	$C_2H_2^+$	+	NH_3			1.50×10^{-10}	McEwan and Anicich (2007)
$R_{cn}621b$	2	NH ⁺	+	C_2H_4	\rightarrow	$C_2H_3^{+}$	+	NH ₂			3.75×10^{-10}	McEwan and Anicich (2007)
$R_{cn}621c$	2	NH ⁺	+	C_2H_4	\rightarrow	$C_{2}^{2}H_{4}^{\frac{3}{4}}$	+	NH			3.75×10^{-10}	McEwan and Anicich (2007)
$R_{cn}621d$	2	NH ⁺	+	C_2H_4	\rightarrow	HCNH+	+	CH_3			3.00×10^{-10}	McEwan and Anicich (2007)
$R_{cn}621e$	2	NH ⁺	+	C_2H_4	\rightarrow	CH ₂ NH ⁺	+	3 CH $_{2}$			1.50×10^{-10}	McEwan and Anicich (2007)
R _{cn} 621f	2	NH ⁺	+	C_2H_4	\rightarrow	$C_2\tilde{H}_3N^+$	+	H_2			1.50×10^{-10}	McEwan and Anicich (2007)
$R_{cn}622a$	2	NH ⁺	+	CH ₃ CCH	\rightarrow	CH ₂ NH ⁺	+	C_2H_2			1.09×10^{-10}	Operti et al. (2004)
$R_{cn}622b$	2	NH ⁺	+	CH ₃ CCH	\rightarrow	CH ₂ NH ₂ ⁺	+	C ₂ H			9.07×10^{-11}	Operti et al. (2004)
$R_{cn}622c$	2	NH ⁺	+	CH ₃ CCH	\rightarrow	$c-\tilde{C}_3H_3^{\neq}$	+	NH_2			1.59×10^{-10}	Operti et al. (2004)
$R_{cn}622d$	2	NH ⁺	+	CH ₃ CCH	\rightarrow	HC_2N^{+3}	+	CH_4			1.59×10^{-10}	Operti et al. (2004)
$R_{cn}622e$	2	NH ⁺	+	CH ₃ CCH	\rightarrow	$C_3\tilde{H}_4^+$	+	NH			1.27×10^{-10}	Operti et al. (2004)
$R_{cn}622f$	2	NH ⁺	+	СНССН	\rightarrow	HC ₂ NH ⁺	+	CH ₃			1.27×10^{-10}	Operti et al. (2004)
$R_{cn}622g$	2	NH ⁺	+	CH ₂ CCH	\rightarrow	$C_3\ddot{H}_5^+$	+	N			6.35×10 ⁻¹¹	Operti et al. (2004)
R _{cn} 622h	2	NH ⁺	+	CH ₃ CCH	\rightarrow	C ₂ H ₂ N ⁺	+	$^{3}CH_{2}$			6.35×10^{-11}	Operti et al. (2004)
R _{cn} 623	2	NH ⁺	+	N	\rightarrow	$C_{2}H_{3}N^{+}$ N_{2}^{+}	+	H			1.30×10^{-09}	Wakelam et al. (2015)
R _{cn} 624a	2	NH ⁺	+	NH_3	\rightarrow	NH_3^+	+	NH			1.80×10^{-09}	Anicich (1993)
R _{cn} 624b	2	NH ⁺	+	NH ₂	\rightarrow	NH [‡]	+	N			6.00×10 ⁻¹⁰	Anicich (1993)
Continued				3		4					1	()

į	٥	۱	į	١
į	Ċ		3	
	ć			

	_											
	Type					Reaction					k	Ref.
R _{cn} 625	2	NH ⁺	+	HCN	\rightarrow	HCNH ⁺	+	N			6.04×10 ⁻⁰⁹	Su-Chesnavich
R _{cn} 626a	2	NH ⁺	+	CH ₃ NH ₂	\rightarrow	HCNH ⁺	+	NH ₂	+	Н	4.20×10 ⁻¹⁰	Anicich (1993)
R _{cn} 626b	2	NH ⁺	+	CH ₂ NH ₂	\rightarrow	CH ₂ NH ⁺	+	NH ₂	'		1.05×10 ⁻¹⁰	Anicich (1993)
R _{cn} 626c	2	NH ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₂ NH ₂ ⁺	+	NH_2			9.45×10^{-10}	Anicich (1993)
R _{cn} 626d	2	NH ⁺	+	CH ₂ NH ₂	\rightarrow	CH ₃ NH ₂ ⁺	+	NH			4.20×10 ⁻¹⁰	Anicich (1993)
cn 626e	2	NH ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₃ [±]	+	N			4.20×10 ⁻¹⁰	Anicich (1993)
$R_{cn}627$	2	NH ⁺	+	N ₂	\rightarrow	N_2H^+	+	N			6.50×10 ⁻¹⁰	McEwan and Anicich (2007
R _{cn} 628a	2	NH ⁺	+	H ₂ O	\rightarrow	H ₃ O ⁺	+	N			1.05×10 ⁻⁰⁹	McEwan and Anicich (2007
$R_{cn}628b$	2	NH ⁺	+	H ₂ O	\rightarrow	H ₂ O ⁺	+	NH			1.05×10 ⁻⁰⁹	McEwan and Anicich (2007
L _{cn} 628c	2	NH ⁺	+	H ₂ O	\rightarrow	NH ₂ ⁺	+	OH			8.75×10 ⁻¹⁰	McEwan and Anicich (2007
R _{cn} 628d	2	NH ⁺	+	H ₂ O	\rightarrow	NH [‡]	+	$O(^{3}P)$			1.75×10 ⁻¹⁰	McEwan and Anicich (2007
R _{cn} 628e	2	NH ⁺	+	H ₂ O	\rightarrow	HNO+	+	H ₂			3.50×10 ⁻¹⁰	McEwan and Anicich (2007
$R_{cn}629a$	2	NH ⁺	+	CO	\rightarrow	NCO ⁺	+	H			5.39×10 ⁻¹⁰	McEwan and Anicich (2007
$R_{cn}629b$	2	NH ⁺	+	CO	\rightarrow	HCO+	+	N			4.41×10 ⁻¹⁰	McEwan and Anicich (2007
$R_{cn}630a$	2	NH ⁺	+	HaCO	\rightarrow	HCO ⁺	+	NH_2			1.82×10^{-09}	Anicich (1993)
c _n 630b	2	NH ⁺	+	H ₂ CO	\rightarrow	CH ₂ O ⁺	+	NH^{2}			9.90×10^{-10}	Anicich (1993)
c _n 630c	2	NH ⁺	+	H ₂ CO	\rightarrow	CH ₂ OH ⁺	+	N			4.95×10^{-10}	Anicich (1993)
R _{cn} 631a	2	NH ⁺	+	co,	\rightarrow	OCOH+	+	N			3.85×10^{-10}	Adams et al. (1980),Smith
cn 631b	2	NH ⁺	+	CO2	\rightarrow	NO ⁺	+	HCO			3.30×10^{-10}	Adams et al. (1980),Smith
R _{cn} 631c	2	NH ⁺	+	CO2	\rightarrow	HNO^{+}	+	CO			3.85×10^{-10}	Adams et al. (1980),Smith
$R_{cn}632$	2	NH ₂ ⁺	+	H ₂	\rightarrow	NH_2^+	+	H			1.95×10^{-10}	McEwan and Anicich (2007
$R_{cn}633$	2	NH ₂	+	CH,	\rightarrow	NH [‡]	+	CH ₃			9.20×10^{-10}	McEwan and Anicich (2007
$R_{cn}634a$	2	NH2	+	C_2H_4	\rightarrow	$C_2\ddot{H}_4^+$	+	NH_2			4.50×10^{-10}	McEwan and Anicich (2007
c _n 634b	2	NH2	+	C_2H_4	\rightarrow	C ₂ H ₅ ¹	+	NH			3.00×10^{-10}	McEwan and Anicich (2007
R _{cn} 634c	2	NH [‡]	+	C_2H_4	\rightarrow	CH, NH;	+	3CH ₂			4.50×10^{-10}	McEwan and Anicich (2007
R _{cn} 634d	2	NH [‡]	+	C_2H_4	\rightarrow	$C_2\tilde{H}_5N^{\frac{2}{3}}$	+	H			3.00×10^{-10}	McEwan and Anicich (2007
$R_{cn}635a$	2	NH2	+	CH, CCH	\rightarrow	$C_{3}^{2}H_{4}^{+}$	+	NH_2			1.44×10^{-10}	Operti et al. (2004)
cn 635b	2	NH2	+	CH ₃ CCH	\rightarrow	HC ₂ NH ⁺	+	CH_4^2			1.44×10^{-10}	Operti et al. (2004)
$R_{cn}635c$	2	NH2	+	СНССН	\rightarrow	$C_3\tilde{H}_5^+$	+	NH			1.44×10^{-10}	Operti et al. (2004)
$R_{cn}635d$	2	NH2	+	CH ₃ CCH	\rightarrow	$C_{2}^{3}H_{3}^{5}N^{+}$	+	$^{3}CH_{2}$	+	Н	1.44×10^{-10}	Operti et al. (2004)
$l_{cn}635e$	2	NH [‡]	+	CH, CCH	\rightarrow	$C_3^2H_3^3NH^+$	+	H ₂	'		2.03×10 ⁻¹⁰	Operti et al. (2004)
$R_{cn}636$	2	NH ₂	+	N	\rightarrow	N ₂ H ⁺	+	H			9.10×10 ⁻¹¹	Wakelam et al. (2015)
$R_{cn}637a$	2	NH2	+	NH ₃	\rightarrow	NH ₂ ⁺	+	NH ₂			1.15×10 ⁻⁰⁹	Anicich (1993)
R _{cn} 637b	2	NH ⁺	+	NH ₂	\rightarrow	NH ⁺	+	NH			1.15×10 ⁻⁰⁹	Anicich (1993)
$R_{cn}638$	2	NH2	+	HCN	\rightarrow	HCNH ⁺	+	NH			5.94×10^{-09}	Su-Chesnavich
$R_{cn}639a$	2	NH ⁺	+	CH ₃ NH ₂	\rightarrow	NH ⁺	+	CH ₂ NH			1.52×10 ⁻¹⁰	Anicich (1993)

Cr	
$^{\circ}$	

Typ	ре				Reaction				k	Ref.
39b 2	NH ₂ ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₂ NH ₂ ⁺	+	NH ₃		3.80×10 ⁻¹⁰	Anicich (1993)
39c 2	$NH_2^{\tilde{+}}$	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₂ ⁺	+	NH ₂		1.01×10^{-09}	Anicich (1993)
39d 2	NH ⁷	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₃	+	NH		3.80×10^{-10}	Anicich (1993)
10a 2	$NH_2^{\tilde{+}}$	+	H ₂ O	\rightarrow	NH_3^+	+	OH		8.70×10^{-11}	McEwan and Anicich
10b 2	NH ⁷	+	H ₂ O	\rightarrow	$NH_4^{\frac{1}{4}}$	+	$O(^{3}P)$		1.16×10^{-10}	McEwan and Anicich
10c 2	NH ₂	+	H ₂ O	\rightarrow	H ₃ O ⁺	+	NH		2.73×10^{-09}	McEwan and Anicich
11a 2	NH ⁷	+	H ₂ CO	\rightarrow	NH_3^+	+	HCO		5.60×10^{-10}	Anicich (1993)
11b 2	NH ⁷	+	H ₂ CO	\rightarrow	CH ₂ OH ⁺	+	NH		2.24×10^{-09}	Anicich (1993)
12 2	$NH_3^{\tilde{+}}$	+	H ₂	\rightarrow	NH_4^{+}	+	H		2.00×10^{-13}	Wakelam et al. (2015)
13 2	NH ³	+	\tilde{CH}_A	\rightarrow	$NH_4^{\frac{1}{4}}$	+	CH ₃		4.80×10^{-10}	McEwan and Anicich
14 2	NH ⁺	+	C_2H_4	\rightarrow	NH_4^+	+	C_2H_3		1.40×10^{-09}	McEwan and Anicich
15 2	NH [‡]	+	NH ₃	\rightarrow	$NH_4^{\frac{1}{4}}$	+	NH ₂		2.10×10^{-09}	McEwan and Anicich
16a 2	NH [‡]	+	CH ₂ NH ₂	\rightarrow	CH ₃ NH ₂ ⁺	+	NH_3		9.00×10^{-10}	Anicich (1993)
16b 2	NH [‡]	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₃ [‡]	+	NH ₂		6.30×10^{-10}	Anicich (1993)
16c 2	NH ³	+	CH ₃ NH ₂	\rightarrow	NH_4^+	+	CH ₂ NH ₂		2.70×10^{-10}	Anicich (1993)
17 2	NH ⁺	+	C_5H_5N	\rightarrow	$C_5H_5N^+$	+	NH ₃		3.60×10^{-09}	Fondren et al. (2007)
18 2	NH [‡]	+	H_2O	\rightarrow	NH_4^+	+	ОН		2.50×10^{-10}	McEwan and Anicich
19 2	NH ⁺	+	H ₂ CO	\rightarrow	NH_4^+	+	HCO		8.00×10^{-10}	Anicich (1993)
50 2	NH [‡]	+	NH_3	\rightarrow	AdductN ⁺	+	hv		3.00×10^{-10}	McEwan and Anicich
51 2	NH [‡]	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₃ ⁺	+	NH_3		2.00×10^{-09}	Anicich (1993)
52 2	NH [‡]	+	$C_5 \ddot{H}_5 N$	\rightarrow	$C_5H_5NH^+$	+	NH_3		3.50×10^{-09}	Fondren et al. (2007)
53 2	CN [∓]	+	Н	\rightarrow	H ⁺	+	CN		6.40×10^{-10}	McEwan and Anicich
54a 2	CN ⁺	+	H_2	\rightarrow	HCN ⁺	+	H		8.00×10^{-10}	McEwan and Anicich
54b 2	CN ⁺	+	H_2	\rightarrow	HNC^{+}	+	H		8.00×10^{-10}	McEwan and Anicich
55a 2	CN ⁺	+	\tilde{CH}_A	\rightarrow	CH_3^+	+	HCN		5.00×10^{-10}	McEwan and Anicich
55b 2	CN ⁺	+	CH ₄	\rightarrow	CH_4^+	+	CN		1.50×10^{-10}	McEwan and Anicich
55c 2	CN ⁺	+	CH ₄	\rightarrow	HCN ⁺	+	CH ₃		1.50×10^{-10}	McEwan and Anicich
55d 2	CN ⁺	+	CH_4	\rightarrow	HCNH ⁺	+	³ CH ₂		1.00×10^{-10}	McEwan and Anicich
55e 2	CN ⁺	+	CH_4	\rightarrow	HC_2NH^+	+	H_2		1.00×10^{-10}	McEwan and Anicich
56a 2	CN ⁺	+	C_2H_2	\rightarrow	$C_2\tilde{H}_2^+$	+	CN		8.00×10^{-10}	McEwan and Anicich
56b 2	CN ⁺	+	$C_2^2H_2^2$	\rightarrow	HC_3N^+	+	H		2.00×10^{-10}	McEwan and Anicich
57a 2	CN ⁺	+	C_2H_4	\rightarrow	$C_2\ddot{H}_4^+$	+	$^{\rm CN}$		9.10×10^{-10}	McEwan and Anicich
57b 2	CN ⁺	+	C_2H_4	\rightarrow	HCN ⁺	+	C_2H_3		3.25×10^{-10}	McEwan and Anicich
57c 2	CN ⁺	+	C_2H_4	\rightarrow	HC_3NH^+	+	H ₂			McEwan and Anicich
58a 2	CN ⁺	+	C_2H_6	\rightarrow	$C_2\ddot{H}_3^+$	+	HČN +	H_2	2.85×10^{-10}	McEwan and Anicich
58b 2	CN ⁺	+	C_2H_6	\rightarrow	$C_{2}H_{4}^{+}$	+	HCN +	Η	1.23×10^{-09}	McEwan and Anicich
57c 2 58a 2		CN ⁺ CN ⁺ CN ⁺	CN ⁺ + CN ⁺ + CN ⁺ +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

,			
۹		4	
¢		J	Ī
1	Ñ	l	•

	Type					Reaction					k	Ref.	
R _{cn} 658c	2	CN ⁺	+	C_2H_6	\rightarrow	C ₂ H ₅ ⁺	+	HCN			3.80×10 ⁻¹⁰	McEwan and Anicich	(2007)
$R_{cn}659a$	2	CN ⁺	+	$C_4^2H_2$	\rightarrow	$C_4H_2^+$	+	CN			7.27×10^{-10}	McEwan and Anicich	(2007)
R _{cn} 659b	2	CN ⁺	+	$C_4^4H_2^2$	\rightarrow	HC, N+	+	H			2.42×10^{-10}	McEwan and Anicich	(2007)
$R_{cn}660$	2	CN ⁺	+	N 2	\rightarrow	N ₂ ⁺	+	C			6.10×10^{-10}	McEwan and Anicich	(2007)
cn 661a	2	CN ⁺	+	NH_2	\rightarrow	NH_2^+	+	HCN			1.00×10^{-10}	Anicich (1993)	,
cn 661b	2	CN ⁺	+	NH_2	\rightarrow	NH ²	+	CN			1.20×10^{-09}	Anicich (1993)	
cn661c	2	CN ⁺	+	NH_3	\rightarrow	HCN ⁺	+	NH_2			4.00×10^{-10}	Anicich (1993)	
cn 661d	2	CN ⁺	+	NH_3	\rightarrow	HCNH ⁺	+	NH			3.00×10^{-10}	Anicich (1993)	
cn 662a	2	CN ⁺	+	HCN	\rightarrow	HCN ⁺	+	CN			2.24×10^{-09}	McEwan and Anicich	(2007)
cn 662b	2	CN ⁺	+	HCN	\rightarrow	$C_2N_2^+$	+	H			4.59×10^{-10}	McEwan and Anicich	(2007)
cn 663a	2	CN ⁺	+	CH ₃ CN	\rightarrow	$C_2H_3N^+$	+	CN			1.70×10^{-09}	McEwan and Anicich	(2007)
cn 663b	2	CN ⁺	+	CH ₃ CN	\rightarrow	HC ₂ NH ⁺	+	HCN			6.80×10^{-10}	McEwan and Anicich	(2007)
$c_n 663c$	2	CN ⁺	+	CH ₃ CN	\rightarrow	CH [∓]	+	C_2N_2			6.80×10^{-10}	McEwan and Anicich	(2007)
$R_{cn}663d$	2	CN ⁺	+	CH ₃ CN	\rightarrow	C ₂ H ₃ ⁺	+	$\tilde{\text{CN}}_2$			3.40×10^{-10}	McEwan and Anicich	(2007)
cn 664a	2	CN ⁺	+	HC ₃ N	\rightarrow	$C_3^2N^{\frac{3}{4}}$	+	HCN			9.20×10^{-10}	McEwan and Anicich	
cn 664b	2	CN ⁺	+	HC ₃ N	\rightarrow	HC ₃ N ⁺	+	CN			3.68×10^{-09}	McEwan and Anicich	(2007)
cn 665a	2	CN ⁺	+	C_3H_3N	\rightarrow	c-C ₃ H ₃ ⁺	+	N_2	+	C	7.20×10^{-10}	Petrie et al. (1991a),	Petrie et al. (
cn 665b	2	CN ⁺	+	C_3H_3N	\rightarrow	C ₃ H ₃ N ⁴	+	CÑ			1.69×10^{-09}	Petrie et al. (1991a),	Petrie et al. (
$l_{cn}665c$	2	CN ⁺	+	C_3H_3N	\rightarrow	$C_2N_2H^+$	+	C_2H_2			1.69×10^{-09}	Petrie et al. (1991a),	Petrie et al. (
$R_{cn}665d$	2	CN ⁺	+	C_3H_3N	\rightarrow	AdductN ⁺	+	hv			4.05×10^{-10}	Petrie et al. (1991a),	Petrie et al. (
$R_{cn}666a$	2	CN ⁺	+	C_2N_2	\rightarrow	C_2N^+	+	CN ₂			5.25×10^{-11}	McEwan and Anicich	(2007)
$R_{cn}666b$	2	CN ⁺	+	C_2N_2	\rightarrow	$C_2N_2^+$	+	CN			1.63×10^{-09}	McEwan and Anicich	(2007)
c _n 666c	2	CN ⁺	+	C_2N_2	\rightarrow	$C_3N^{\frac{1}{4}}$	+	N_2			8.75×10^{-11}	McEwan and Anicich	(2007)
cn 667a	2	CN ⁺	+	H ₂ O	\rightarrow	H ₂ O ⁺	+	CÑ			3.20×10^{-10}	McEwan and Anicich	(2007)
$R_{cn}667b$	2	CN ⁺	+	H ₂ O	\rightarrow	HCN ⁺	+	OH			1.60×10^{-09}	McEwan and Anicich	(2007)
$c_n 667c$	2	CN ⁺	+	$H_2^{\circ}O$	\rightarrow	HCNH ⁺	+	$O(^{3}P)$			4.80×10^{-10}	McEwan and Anicich	(2007)
$t_{cn}667d$	2	CN ⁺	+	H ₂ O	\rightarrow	HCO^{+}	+	NH			1.60×10^{-10}	McEwan and Anicich	(2007)
$c_n 667e$	2	CN ⁺	+	H ₂ O	\rightarrow	$HNCO^{+}$	+	H			6.40×10^{-10}	McEwan and Anicich	(2007)
$c_{cn}668$	2	CN ⁺	+	CÕ	\rightarrow	CO^{+}	+	CN			4.40×10^{-10}	McEwan and Anicich	(2007)
$c_n 669a$	2	CN ⁺	+	H ₂ CO	\rightarrow	CH ₂ O ⁺	+	CN			2.07×10^{-09}	Su-Chesnavich	
cn 669b	2	CN ⁺	+	H ₂ CO	\rightarrow	HCO^{+}	+	HCN			2.07×10^{-09}	Su-Chesnavich	
cn670	2	HCN ⁺	+	Η̈́	\rightarrow	H^+	+	HCN			3.70×10^{-11}	McEwan and Anicich	(2007)
cn671	2	HCN ⁺	+	H_2	\rightarrow	$HCNH^{+}$	+	H			8.80×10^{-10}	McEwan and Anicich	(2007)
cn672a	2	HCN ⁺	+	\tilde{CH}_4	\rightarrow	$C_2H_3^+$	+	NH_2			1.27×10^{-10}	McEwan and Anicich	(2007)
$t_{cn}672b$	2	HCN ⁺	+	CH ₄	\rightarrow	HCNH ⁺	+	CH_3			1.14×10^{-09}	McEwan and Anicich	(2007)
cn 673a	2	HCN ⁺	+	C_2H_2	\rightarrow	$C_2H_2^+$	+	HCN			1.15×10^{-09}	McEwan and Anicich	(2007)
Continued	on Next	Page									•	•	

^	
٠	٥

	Type					Reaction			k	Ref.
R _{cn} 673b	2	HCN+	+	C_2H_2	\rightarrow	$C_2H_3^+$	+	CN	2.03×10 ⁻¹⁰	McEwan and Anicich (2007)
R _{cn} 673c	2	HCN+	+	C_2H_2	\rightarrow	HC ₃ NH ⁺	+	Н	1.35×10 ⁻¹⁰	McEwan and Anicich (2007)
$R_{cn}674$	2	HCN+	+	N 2	\rightarrow	CH ⁺	+	N_2	2.20×10^{-10}	McEwan and Anicich (2007)
$R_{cn}675a$	2	HCN+	+	NH_2	\rightarrow	NH_3^+	+	HČN	1.68×10^{-09}	Anicich (1993)
$R_{cn}675b$	2	HCN+	+	NH_3	\rightarrow	NH ³	+	CN	1.40×10^{-10}	Anicich (1993)
$R_{cn}675c$	2	HCN ⁺	+	NH_3	\rightarrow	HCNH ⁺	+	NH_2	8.40×10^{-10}	Anicich (1993)
R _{cn} 676	2	HCN ⁺	+	HCN	\rightarrow	HCNH ⁺	+	CN	1.45×10^{-09}	McEwan and Anicich (2007)
$R_{cn}677a$	2	HCN ⁺	+	HC ₃ N	\rightarrow	HC ₃ N ⁺	+	HCN	2.39×10^{-09}	McEwan and Anicich (2007)
$R_{cn}677b$	2	HCN ⁺	+	HC ₃ N	\rightarrow	HC ₃ NH ⁺	+	CN	2.21×10^{-09}	McEwan and Anicich (2007)
$R_{cn}678a$	2	HCN ⁺	+	C_3H_3N	\rightarrow	$C_3H_3N^+$	+	HCN	2.76×10^{-09}	Petrie et al. (1991a), Petrie et al. (1992)
$R_{cn}678b$	2	HCN ⁺	+	C_3H_3N	\rightarrow	C ₃ H ₃ NH ⁺	+	CN	1.84×10^{-09}	Petrie et al. (1991a), Petrie et al. (1992)
$R_{cn}679$	2	HCN ⁺	+	C_2N_2	\rightarrow	$C_2N_2H^+$	+	CN	1.10×10^{-09}	McEwan and Anicich (2007)
$R_{cn}680a$	2	HCN ⁺	+	H ₂ O	\rightarrow	$H_3^2O^{\frac{5}{4}}$	+	CN	1.80×10^{-09}	McEwan and Anicich (2007)
R _{cn} 680b	2	HCN ⁺	+	H ₂ O	\rightarrow	H ₂ O ⁺	+	HCN	1.80×10^{-09}	McEwan and Anicich (2007)
$R_{cn}680c$	2	HCN ⁺	+	H ₂ O	\rightarrow	HČNH ⁺	+	OH	1.80×10^{-10}	McEwan and Anicich (2007)
$R_{cn}681a$	2	HCN ⁺	+	CÕ	\rightarrow	HCO^{+}	+	CN	1.38×10^{-10}	McEwan and Anicich (2007)
$R_{cn}681b$	2	HCN ⁺	+	CO	\rightarrow	HNC^{+}	+	CO	3.22×10^{-10}	McEwan and Anicich (2007)
$R_{cn}682$	2	HCN ⁺	+	H ₂ CO	\rightarrow	CH ₂ OH ⁺	+	CN	4.09×10^{-09}	Su-Chesnavich
$R_{cn}683a$	2	HCN ⁺	+	CŌ,	\rightarrow	$OCOH^+$	+	CN	2.10×10^{-10}	Anicich (1993)
$R_{cn}683b$	2	HCN ⁺	+	CO2	\rightarrow	HNC^{+}	+	CO ₂	2.90×10^{-10}	Anicich (1993)
$R_{cn}684$	2	HNC ⁺	+	н, -	\rightarrow	HCNH ⁺	+	Η	7.00×10^{-10}	McEwan and Anicich (2007)
$R_{cn}685$	2	HNC ⁺	+	\widetilde{CH}_A	\rightarrow	HCNH ⁺	+	CH ₃	1.10×10^{-09}	McEwan and Anicich (2007)
$R_{cn}686a$	2	HNC ⁺	+	C,H,	\rightarrow	$C_2H_2^+$	+	HCN	6.00×10^{-10}	McEwan and Anicich (2007)
$R_{cn}686b$	2	HNC ⁺	+	C_2H_2	\rightarrow	HC ₃ NH ⁺	+	H	9.00×10^{-10}	McEwan and Anicich (2007)
$R_{cn}687$	2	HNC ⁺	+	NH ₃	\rightarrow	$NH_3^{\frac{1}{4}}$	+	HNC	3.23×10^{-09}	Su-Chesnavich
$R_{cn}688$	2	HNC ⁺	+	HCN	\rightarrow	HCNH ⁺	+	CN	5.13×10 ⁻⁰⁹	Su-Chesnavich
$R_{cn}689a$	2	HNC ⁺	+	C_3H_3N	\rightarrow	$C_2H_2N^+$	+	HCN	2.76×10^{-09}	Petrie et al. (1991a), Petrie et al. (1992)
$R_{cn}689b$	2	HNC ⁺	+	C_3H_3N	\rightarrow	$C_3H_3NH^+$	+	CN	1.84×10^{-09}	Petrie et al. (1991a), Petrie et al. (1992)
$R_{cn}690$	2	HNC ⁺	+	H_2O	\rightarrow	H_3O^+	+	CN	3.61×10^{-09}	Su-Chesnavich
$R_{cn}691$	2	HNC ⁺	+	$H_2^{2}CO$	\rightarrow	CH_2OH^+	+	CN	4.09×10^{-09}	Su-Chesnavich
$R_{cn}692$	2	HCNH ⁺	+	$\tilde{CH_3}$	\rightarrow	$C_2H_3NH^+$	+	H	$1.05 \times 10^{-10} T^{2.02} e^{-84.3/T}$	ThisWork
$R_{cn}693$	3	HCNH ⁺	+	CH_4	\rightarrow	HCNH+CH ₄			1.00×10^{-10}	Capone et al. (1981)
				•		•			$1.00 \times 10^{-27} \mathrm{T}^{3.00}$	
$R_{cn}694a$	2	HCNH ⁺	+	C_2H_2	\rightarrow	$C_3H_3NH^+$	+	hv	1.50×10^{-15}	Herbst et al. (1989),Demarais et al. (201
$R_{cn}694b$	3	HCNH ⁺	+	C_2H_2	\rightarrow	$C_3H_3NH^+$			1.00×10^{-10}	Anicich et al. (2000), Milligan et al. (200
									$4.00 \times 10^{-28} \mathrm{T}^{3.00}$	

Continued on Next Page...

ő
0
н-

	Type								k	Ref.	
$R_{cn}695b$	3	HCNH ⁺	+	$\mathrm{C_2H_4}$	\rightarrow	$\mathrm{C_3H_5NH^+}$			$\begin{array}{ c c c c c }\hline 1.00 \times 10^{-10} \\ 7.00 \times 10^{-27} \\\hline \end{array}$	McEwan and Anicich (2007)	
$R_{cn}696$	3	HCNH ⁺	+	$\mathrm{C_2H_6}$	\rightarrow	$\rm AdductN^+$			$\begin{array}{c} 1.00 \times 10^{-10} \\ 1.00 \times 10^{-29} \\ 5.00 \times 10^{-29} \\ \end{array}$	Molina-Cuberos et al. (2002)	
$R_{cn}697$	2	HCNH ⁺	+	CH_3CCH	\rightarrow	$C_3H_5^+$	+	HCN	1.90×10 ⁻⁰⁹	Su-Chesnavich	
$R_{cn}698$	2	HCNH ⁺	+	CH, CCH,	\rightarrow	$C_3H_5^+$	+	HCN	1.40×10^{-09}	Langevin	
$R_{cn}699$	2	HCNH ⁺	+	$C_3\tilde{H}_6$	\rightarrow	$C_3H_7^+$	+	HCN	1.60×10^{-09}	Su-Chesnavich	
$R_{cn}700$	2	HCNH ⁺	+	$C_4^{\prime}H_2^{\prime}$	\rightarrow	$C_4H_3^+$	+	HCN	1.80×10^{-09}	McEwan and Anicich (2007)	
$R_{cn}701$	2	HCNH ⁺	+	C_5H_4	\rightarrow	$C_5H_5^4$	+	HCN	2.50×10^{-09}	Su-Chesnavich	
$R_{cn}702$	2	HCNH ⁺	+	C_6H_2	\rightarrow	$C_6H_3^+$	+	HCN	1.80×10^{-09}	Langevin	
$R_{cn}703$	2	HCNH ⁺	+	C_6H_6	\rightarrow	$C_6H_7^+$	+	HCN	1.70×10^{-09}	Langevin	
$R_{cn}704$	2	HCNH ⁺	+	C_7H_4	\rightarrow	C ₇ H ₅ ⁺	+	HCN	2.90×10^{-09}	Su-Chesnavich	
$R_{cn}705$	2	HCNH ⁺	+	C_7H_8	\rightarrow	$C_7H_9^+$	+	HCN	1.90×10^{-09}	Su-Chesnavich	
$R_{cn}706$	2	HCNH ⁺	+	C_8H_2	\rightarrow	C ₈ H ₃ ⁺	+	HCN	2.20×10^{-09}	Langevin	
$R_{cn}707$	2	HCNH ⁺	+	NH ₃	\rightarrow	NH ₄	+	HCN	2.30×10^{-09}	Anicich (1993)	
$R_{cn}708$	2	HCNH ⁺	+	N_2H_4	\rightarrow	$N_{2}H_{5}^{+}$	+	HCN	1.20×10^{-09}	Su-Chesnavich	
$R_{cn}709$	2	HCNH ⁺	+	CH ₂ NH	\rightarrow	$CH_2NH_2^+$	+	HCN	2.70×10^{-09}	Edwards et al. (2008)	
R _{cn} 710	2	HCNH ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₃ [±]	+	HCN	2.00×10^{-09}	Edwards et al. (2008)	
R_{cn}^{711}	3	HCNH ⁺	+	HCN 2	\rightarrow	AdductN+			1.00×10^{-10}	McEwan and Anicich (2007)	
									1.00×10^{-25}	` ′	
$R_{cn}712$	2	HCNH ⁺	+	HNC	\rightarrow	$HCNH^{+}$	+	HCN	5.20×10^{-09}	Su-Chesnavich	
$R_{cn}713$	2	HCNH ⁺	+	CH, CN	\rightarrow	C ₂ H ₂ NH ⁺	+	HCN	3.80×10^{-09}	McEwan and Anicich (2007)	
$R_{cn}714$	2	HCNH ⁺	+	HC ₃ N	\rightarrow	HC ₃ NH ⁺	+	HCN	3.40×10^{-09}	McEwan and Anicich (2007)	
$R_{cn}715$	2	HCNH ⁺	+	C_3H_3N	\rightarrow	$C_3H_3NH^+$	+	HCN	4.50×10^{-09}	Petrie et al. (1991a),Petrie et al. (19	
$R_{cn}716$	2	HCNH ⁺	+	C_3H_5N	\rightarrow	C ₃ H ₅ NH ⁺	+	HCN	4.20×10^{-09}	Edwards et al. (2008)	
$R_{cn}717$	2	HCNH ⁺	+	C_4H_3N	\rightarrow	$C_4H_3NH^+$	+	HCN	6.80×10^{-09}	Su-Chesnavich	
$R_{cn}718$	2	HCNH ⁺	+	C_4H_5N	\rightarrow	$C_4H_5NH^+$	+	HCN	5.50×10^{-09}	Su-Chesnavich	
$R_{cn}719$	2	HCNH ⁺	+	HC_5N	\rightarrow	HC ₅ NH ⁺	+	HCN	4.80×10^{-09}	Edwards et al. (2009)	
$R_{cn}720$	2	HCNH ⁺	+	$C_5 H_5 N$	\rightarrow	$C_\kappa H_\kappa NH^+$	+	HCN	3.60×10^{-09}	Su-Chesnavich	
$R_{cn}721$	2	HCNH ⁺	+	C_6H_3N	\rightarrow	$C_6H_3NH^+$	+	HCN	8.20×10^{-09}	Su-Chesnavich	
$R_{cn}722$	2	HCNH ⁺	+	C_6H_7N	\rightarrow	$C_6H_7NH^+$	+	HCN	2.40×10^{-09}	Su-Chesnavich	
$R_{cn}723$	3	HCNH ⁺	+	N_2	\rightarrow	$\mathrm{HCNH^{+}N}_{2}$			1.00×10^{-10} 1.00×10^{-27} T ^{3.00}	Capone et al. (1981)	
$l_{cn}724$	2	HCNH ⁺	+	H ₂ O	\rightarrow	H ₂ O ⁺	+	HCN	8.80×10^{-13}	McEwan and Anicich (2007)	
$R_{cn}725$	2	HCNH ⁺	+	H ₂ CO	\rightarrow	CH ₂ OH ⁺	+	HCN	2.10×10 ⁻⁰⁹	Anicich (1993)	
$R_{cn}726$	2	HCNH+CI	ī. +	$C_2^2H_2$	\rightarrow	$C_3\tilde{H}_3NH^+$	+	CH_4	1.00×10^{-09}	Capone et al. (1981)	

C	4
7	÷
7	
•	

	Type					Reaction				k	Ref.
$R_{cn}727$	2	HCNH+CH	4 +	N_2	\rightarrow	HCNH ⁺	+	CH ₄ +	N ₂	9.10×10^{-14}	Vacher et al. (1999)
cn 728	2	HCNH+N2	+	$C_2^2H_2$	\rightarrow	C ₂ H ₂ NH ⁺	+	N ₂	2	1.00×10^{-09}	Capone et al. (1981)
cn 729	2	HCNH ⁺ N ₂	+	$C_2H_6^2$	\rightarrow	$C_3^3H_7^3NH^+$	+	N_2^2		1.00×10^{-09}	Vacher et al. (2000)
$c_n 730$	2	HCNH ⁺ N ₂	+	N ₂	\rightarrow	HCNH ⁺	+	N ₂ +	N_2	2.80×10^{-14}	Vacher et al. (1999)
_{cn} 731a	2	CH ₂ NH ⁺	+	C_2H_4	\rightarrow	HCNH ⁺	+	$C_2^2H_5$	-	2.40×10^{-10}	Chamot-Rooke et al.
cn 731b	2	CH ₂ NH ⁺	+	C_2H_4	\rightarrow	$C_3H_5^+$	+	NH ₂		2.40×10^{-10}	Chamot-Rooke et al.
cn731c	2	CH ₂ NH ⁺	+	C_2H_4	\rightarrow	C ₃ H ₅ NH ⁺	+	Η		7.20×10^{-10}	Chamot-Rooke et al.
cn 732	2	CH ₂ NH ⁺	+	C_3H_6	\rightarrow	C ₃ H ₅ NH ⁺	+	CH ₃		1.20×10^{-09}	Chamot-Rooke et al.
_{cn} 733a	2	CH ₂ NH ⁺	+	C_6H_6	\rightarrow	$C_6H_7^+$	+	H ₂ ČN		4.80×10^{-10}	Chamot-Rooke et al.
_{cn} 733b	2	CH ₂ NH ⁺	+	C_6H_6	\rightarrow	CXHYNZ ⁺	+	Η̈́		7.20×10^{-10}	Chamot-Rooke et al.
cn 734	2	CH ₂ NH ⁺	+	NH ₃	\rightarrow	$CXHYNZ^{+}$				1.20×10^{-09}	Zielinska and Wincel
$c_n 735$	2	CH ₂ NH ⁺	+	CH ₃ NH ₂	\rightarrow	$CH_3NH_3^+$	+	H ₂ CN		1.20×10^{-09}	Zielinska and Wincel
cn 736	2	CH ₂ NH ⁺	+	H,ČO Ž	\rightarrow	HCNH ⁺	+	$\tilde{CH_3O}$		1.00×10^{-09}	Chamot-Rooke et al.
cn.737	2	CH ₂ NH ₂ ⁺	+	NH_3	\rightarrow	NH_4^+	+	CH ₂ NH		1.10×10^{-10}	Operti et al. (2004)
cn 738	2	CH ₂ NH ₂ ⁺	+	CH ₂ NH ₂	\rightarrow	CH ₃ NH ₃ ⁺	+	HCN +	H ₂	1.80×10^{-09}	Anicich (1993)
$c_n 739$	2	CH ₃ NH ₂	+	NH ₃	\rightarrow	NH_4^+	+	CH ₂ NH ₂	-	2.30×10^{-09}	Iraqi et al. (1991)
cn 740	2	CH ₃ NH ₂ ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₃ ⁺	+	CH ₂ NH ₂		1.90×10^{-09}	Anicich (1993)
_{cn} 741a	2	C ₂ N ⁺	+	Н, 3 2	\rightarrow	HCNH+	+	C 2 2		8.10×10^{-10}	McEwan and Anicich
cn 741b	2	$C_2^2N^+$	+	H ₂	\rightarrow	HC ₂ NH ⁺	+	hv		9.00×10^{-11}	McEwan and Anicich
cn 742a	2	$C_2^2N^+$	+	\widetilde{CH}_{4}	\rightarrow	$C_2\tilde{H}_3^+$	+	HCN		4.20×10^{-10}	McEwan and Anicich
cn 742b	2	$C_2^2N^+$	+	CH ₄	\rightarrow	HCNH ⁺	+	C_2H_2		7.00×10^{-11}	McEwan and Anicich
cn742c	2	C ₂ N ⁺	+	CH ₄	\rightarrow	HC ₃ NH ⁺	+	H ₂		2.10×10^{-10}	McEwan and Anicich
cn 743a	2	$C_2^2N^+$	+	$C_2\ddot{H}_2$	\rightarrow	C₃H ⁺	+	HČN		1.47×10^{-09}	McEwan and Anicich
cn743b	2	$C_2^{-}N^{+}$	+	C_2H_2	\rightarrow	HCNH ⁺	+	C_3		1.28×10 ⁻¹⁰	McEwan and Anicich
_{cn} 744a	2	C_2N^+	+	C_2H_4	\rightarrow	$C_2H_4^+$	+	C_2N		1.30×10^{-10}	McEwan and Anicich
cn744b	2	C_2N^+	+	C_2H_4	\rightarrow	HC ₂ NH ⁺	+	C_2H_2		6.50×10^{-10}	McEwan and Anicich
_{cn} 744c	2	C ₂ N ⁺	+	C_2H_4	\rightarrow	$c-\tilde{C}_3H_3^+$	+	HCN		3.90×10^{-10}	McEwan and Anicich
cn744d	2	C ₂ N ⁺	+	C_2H_4	\rightarrow	$HC_{4}NH^{+}$	+	H_2		1.30×10^{-10}	McEwan and Anicich
cn 745a	2	$C_2^{-}N^{+}$	+	C_2H_6	\rightarrow	$C_2H_3^+$	+	CH ₃ CN		1.20×10^{-10}	McEwan and Anicich
cn 745b	2	$C_2^N^+$	+	C_2H_6	\rightarrow	$C_2H_5^+$	+	HC ₂ N		3.00×10^{-10}	McEwan and Anicich
_{cn} 745c	2	$C_2^2N^+$	+	C_2H_6	\rightarrow	$c - C_3 H_3^+$	+	HCN +	H_2	3.60×10^{-10}	McEwan and Anicich
_{cn} 745d	2	$C_2^2N^+$	+	$C_2^2H_6$	\rightarrow	$C_3H_5^{\frac{3}{4}}$	+	HCN	2	1.20×10^{-10}	McEwan and Anicich
n 745e	2	C ₂ N ⁺	+	$C_2^2H_6$	\rightarrow	HC2NH+	+	C_2H_4		3.00×10^{-10}	McEwan and Anicich
_{cn} 746a	2	C ₂ N ⁺	+	$C_4^2H_2^6$	\rightarrow	$C_5 \ddot{H}^+$	+	HCN		7.80×10^{-10}	McEwan and Anicich
cn746b	2	C ₂ N ⁺	+	$C_4^4H_2^2$	\rightarrow	$C_4^5H_2^+$	+	C_2N		2.60×10^{-10}	McEwan and Anicich
cn746c	2	C ₂ N ⁺	+	$C_4^4H_2$	\rightarrow	C ₂ N [‡]	+	$C_4^2H_2$		2.60×10 ⁻¹⁰	McEwan and Anicich
ontinued	on Next			4 2		2		4 2		'	'

	7	_	
	٦		١

Type				Reaction				k	Ref.
7 2 C ₂ N	+	NH ₃	\rightarrow	HCNH ⁺	+	HCN		1.90×10 ⁻⁰⁹	Anicich (1993)
18 3 C ₂ N		HCN	\rightarrow	AdductN ⁺				1.00×10^{-10}	McEwan and Anicich (2007)
								4.30×10^{-26}	` ′
9 2 C ₂ N	+	CH ₃ CN	\rightarrow	$C_2H_3^+$	+	C_2N_2		4.10×10^{-09}	McEwan and Anicich (2007)
0a 2 C ₂ N		C_3H_3N	\rightarrow	$c = C_3 H_3^+$	+	C_2N_2		1.80×10^{-09}	Petrie et al. (1991a), Petrie et al. (1991a)
0b 2 C ₂ N		C_3H_3N	\rightarrow	$1-C_3H_3^{\frac{7}{4}}$	+	C_2N_2		1.80×10^{-09}	Petrie et al. (1991a),Petrie et al. (
$1 2 C_2^2 N$	+	C_3H_5N	\rightarrow	$CXHYNZ^{+}$		2 2		2.05×10^{-09}	Franklin et al. (1966)
$\frac{1}{2}$ 2 $\frac{1}{2}$ N	+	H ₂ O	\rightarrow	HCNH ⁺	+	CO		1.30×10^{-10}	McEwan and Anicich (2007)
2b 2 C ₂ N	+	H ₂ O	\rightarrow	HCO^{+}	+	HCN		1.50×10^{-09}	McEwan and Anicich (2007)
3a 2 CNC		CH ₄	\rightarrow	$C_2H_2^+$	+	HCN		2.10×10^{-12}	Anicich (1993)
3b 2 CNC	+	CH ₄	\rightarrow	HC ₃ NH ⁺	+	H_2		2.10×10^{-12}	Anicich (1993)
4a 2 CNC	+	C_2H_2	\rightarrow	C ₃ H ⁺	+	HČN		7.36×10^{-10}	Anicich (1993)
54b 2 CNC	+	C_2H_2	\rightarrow	HCNH ⁺	+	C_3		6.40×10^{-11}	Anicich (1993)
55a 2 CNC	+	C_2H_4	\rightarrow	$C_2H_4^+$	+	C_2N		1.30×10^{-10}	Anicich (1993)
55b 2 CNC	- +	C_2H_4	\rightarrow	$c - C_3 H_3^+$	+	HČN		1.95×10^{-10}	Anicich (1993)
55c 2 CNC		C_2H_4	\rightarrow	l−C ₂ H ²	+	HCN		1.95×10^{-10}	Anicich (1993)
55d 2 CNC		$C_2^2H_4^4$	\rightarrow	HC,NH+	+	C_2H_2		6.50×10^{-10}	Anicich (1993)
55e 2 CNC	+	C_2H_4	\rightarrow	HC ₄ NH ⁺	+	H ₂ 2		1.30×10^{-10}	Anicich (1993)
66a 2 CNC	- +	C_2H_6	\rightarrow	$C_2H_3^+$	+	CH ₃ CN		1.20×10^{-10}	Anicich (1993)
66b 2 CNC	+	C ₂ H ₆	\rightarrow	C ₂ H ₅ ⁴	+	HC ₂ N		3.00×10^{-10}	Anicich (1993)
66c 2 CNC	- +	C_2H_6	\rightarrow	$c - C_3 H_3^+$	+	HCN +	H_2	1.80×10^{-10}	Anicich (1993)
66d 2 CNC		C_2H_6	\rightarrow	l−C ₃ H ₃ [∓]	+	HCN +	H ₂	1.80×10^{-10}	Anicich (1993)
66e 2 CNC		C_2H_6	\rightarrow	C ₂ H _E ⁺	+	HCN	2	1.20×10^{-10}	Anicich (1993)
66f 2 CNC		$C_2^2H_6$	\rightarrow	HC,NH+	+	C_2H_4		3.00×10^{-10}	Anicich (1993)
7a 2 CNC	+	C_4H_2	\rightarrow	$C_{\kappa}\tilde{H}^{+}$	+	HČN		7.80×10^{-10}	Dheandhanoo et al. (1986)
7b 2 CNC	- +	C_4H_2	\rightarrow	$C_4H_2^+$	+	C_2N		2.60×10^{-10}	Dheandhanoo et al. (1986)
7c 2 CNC	+	C_4H_2	\rightarrow	CXHYNZ+		2		2.60×10^{-10}	Dheandhanoo et al. (1986)
8a 2 CNC		NH ₃	\rightarrow	HCNH ⁺	+	HCN		1.76×10^{-09}	Anicich (1993)
58b 2 CNC		NH ₃	\rightarrow	N_2H^+	+	C_2H_2		9.25×10^{-11}	Anicich (1993)
9 3 CNC	+	HCN	\rightarrow	AdductN ⁺				1.00×10^{-10}	McEwan and Anicich (2007)
								4.30×10^{-26}	, , ,
0 2 CNC	- +	CH, CN	\rightarrow	$C_{2}H_{3}^{+}$	+	C_2N_2		4.10×10^{-09}	Anicich (1993)
1 2 CNC		HC,N	\rightarrow	$C_3^2H^{\frac{3}{4}}$	+	$C_2^2 N_2^2$		3.30×10^{-09}	McEwan and Anicich (2007)
2 CNC	- +		\rightarrow					1.80×10^{-09}	Petrie et al. (1991a),Petrie et al. (1991a)
2b 2 CNC		C_3H_3N	\rightarrow		+			1.80×10^{-09}	Petrie et al. (1991a),Petrie et al. (1991a)
3a 2 CNC		H ₂ O	\rightarrow		+	OH 2		1.75×10^{-11}	McEwan and Anicich (2007)
2 CNC 2 CNC 2 CNC	-	++	$+$ $C_3\ddot{H}_3N$ $+$ C_3H_3N	$\begin{array}{ccc} + & C_3 \ddot{H}_3 N & \rightarrow \\ + & C_3 H_3 N & \rightarrow \end{array}$	$\begin{array}{ccccc} + & \mathrm{C_3H_3N} & \rightarrow & \mathrm{c-C_3H_3^+} \\ + & \mathrm{C_3H_3N} & \rightarrow & \mathrm{l-C_3H_3^+} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(•	į	:
è		١	Š
1		1	i

	Type					Reaction			k	Ref.
$R_{cn}763b$	2	CNC ⁺	+	H ₂ O	\rightarrow	HCO ⁺	+	HCN	5.25×10 ⁻¹¹	McEwan and Anicich (2007)
$R_{cn}764a$	2	HC ₂ N ⁺	+	C_3H_3N	\rightarrow	$C_3H_3NH^+$	+	C_2N	2.03×10^{-09}	Petrie et al. (1991a), Petrie et al. (1992
$R_{cn}764b$	2	HC ₂ N ⁺	+	C_3H_3N	\rightarrow	$C_4H_3N^+$	+	HČN	2.18×10^{-10}	Petrie et al. (1991a),Petrie et al. (1992
$R_{cn}764c$	2	HC ₂ N ⁺	+	C_3H_3N	\rightarrow	$CXHYNZ^+$	+	C_2H_3	2.18×10^{-10}	Petrie et al. (1991a), Petrie et al. (1992
$R_{cn}764d$	2	HC ₂ N ⁺	+	C_3H_3N	\rightarrow	$AdductN^{+}$	+	hv	4.35×10^{-10}	Petrie et al. (1991a), Petrie et al. (1992
$R_{cn}765$	2	HC2NH+	+	CH ₃ CN	\rightarrow	$CXHYNZ^{+}$			1.78×10^{-09}	Franklin et al. (1966)
$R_{cn}766$	2	HC2NH+	+	C_3H_5N	\rightarrow	$CXHYNZ^{+}$			9.50×10^{-10}	Franklin et al. (1966)
$R_{cn}767$	2	C ₂ H̃ ₃ N ⁺	+	H_2	\rightarrow	$C_2H_3NH^+$	+	H	5.70×10^{-10}	Martin and Melton (1960)
$R_{cn}768$	2	C ₂ H ₃ N ⁺	+	\tilde{CH}_A	\rightarrow	$C_2H_3NH^+$	+	CH ₃	1.70×10^{-09}	Martin and Melton (1960)
$R_{cn}769a$	2	$C_2^2H_3^3N^+$	+	CH ₃ CN	\rightarrow	$CXHYNZ^+$	+	hv	8.00×10^{-13}	Fisher and McMahon (1990)
$R_{cn}769b$	2	$C_2^H_3^N^+$	+	CH ₃ CN	\rightarrow	$C_2H_3NH^+$	+	CH ₂ CN	1.96×10^{-09}	Gupta et al. (1967)
$R_{cn}770a$	2	C ₂ H ₃ N ⁺	+	CO	\rightarrow	C ₃ H ₃ NO ⁺	+	hv	8.40×10^{-14}	Wincel et al. (1988)
$R_{cn}770b$	2	C ₂ H ₃ N ⁺	+	CO	\rightarrow	CH ₃ CO ⁺	+	CN	1.26×10^{-13}	Wincel et al. (1988)
$R_{cn}771$	2	C ₂ H ₃ NH ⁺	+	NH_3	\rightarrow	NH_4^+	+	CH ₃ CN	2.90×10^{-09}	Su-Chesnavich
$R_{cn}772$	2	C ₂ H ₃ NH ⁺	+	CH_2NH	\rightarrow	CH ₂ NH ₂ ⁺	+	CH ₃ CN	2.50×10^{-09}	Edwards et al. (2008)
$R_{cn}773$	2	C ₂ H ₃ NH ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₃	+	CH ₃ CN	1.80×10^{-09}	Edwards et al. (2008)
$R_{cn}774$	2	C ₂ H ₃ NH ⁺	+	CH ₃ CN	\rightarrow	$AdductN^+$	+	hv	8.00×10^{-13}	Anicich (1993)
$R_{cn}775$	2	C ₂ H ₃ NH ⁺	+	$C_3 H_3 N$	\rightarrow	$C_3H_3NH^+$	+	CH ₃ CN	5.20×10^{-09}	Su-Chesnavich
$R_{cn}776a$	2	C ₂ H ₃ NH ⁺	+	C_3H_5N	\rightarrow	C ₃ H ₅ NH ⁺	+	CH ₃ CN	4.09×10^{-09}	Edwards et al. (2008)
$R_{cn}776b$	2	C ₂ H ₃ NH ⁺	+	C_3H_5N	\rightarrow	AdductN ⁺	+	hv	2.15×10^{-10}	Edwards et al. (2008)
$R_{cn}777a$	2	C ₃ N [‡]	+	H_2 H_2	\rightarrow	HC_3N^+	+	H	8.19×10^{-10}	McEwan and Anicich (2007)
$R_{cn}777b$	2	C ₃ N ⁺	+	H_2	\rightarrow	HC ₃ NH ⁺	+	hv	9.10×10^{-11}	McEwan and Anicich (2007)
$R_{cn}778a$	2	HC ₃ N ⁺	+	H_2	\rightarrow	$C_2H_2^+$	+	HCN	1.65×10^{-12}	McEwan and Anicich (2007)
$R_{cn}778b$	2	HC ₃ N ⁺	+	H_2	\rightarrow	HC ₃ NH ⁺	+	H	2.80×10^{-12}	McEwan and Anicich (2007)
$R_{cn}779a$	2	HC ₃ N ⁺	+	CH_4	\rightarrow	$C_2H_3N^+$	+	C_2H_2	2.28×10^{-10}	McEwan and Anicich (2007)
$R_{cn}779b$	2	HC ₃ N ⁺	+	CH_A	\rightarrow	$C_3H_5^{+}$	+	CN	2.28×10^{-10}	McEwan and Anicich (2007)
$R_{cn}779c$	2	HC ₃ N ⁺	+	CH_4	\rightarrow	HC ₃ NH ⁺	+	CH ₃	2.91×10^{-10}	McEwan and Anicich (2007)
$R_{cn}779d$	2	HC ₃ N ⁺	+	CH_4	\rightarrow	$C_3 \tilde{H}_4^+$	+	HCN	8.30×10^{-11}	McEwan and Anicich (2007)
$R_{cn}780a$	2	HC ₃ N ⁺	+	C_2H_2	\rightarrow	$C_4H_2^{+}$	+	HCN	5.12×10^{-10}	McEwan and Anicich (2007)
$R_{cn}780b$	2	HC ₃ N ⁺	+	C_2H_2	\rightarrow	$C_2H_2^+$	+	HC ₃ N	1.28×10^{-10}	McEwan and Anicich (2007)
$R_{cn}781a$	2	HC ₃ N ⁺	+	C_2H_4	\rightarrow	$C_2H_4^{\frac{7}{4}}$	+	HC ₃ N	5.36×10^{-10}	McEwan and Anicich (2007)
$R_{cn}781b$	2	HC ₃ N ⁺	+	C_2H_4	\rightarrow	HC ₃ NH ⁺	+	$C_2\ddot{H}_3$	1.34×10^{-10}	McEwan and Anicich (2007)
$R_{cn}782$	2	HC ₃ N ⁺	+	C_4H_2	\rightarrow	$C_4 H_2^+$	+	HC ₃ N	8.90×10^{-10}	McEwan and Anicich (2007)
$R_{cn}783a$	2	HC ₃ N ⁺	+	N 2	\rightarrow	$C_2^{\dagger}N^{\frac{3}{4}}$	+	HCN	1.44×10^{-10}	McEwan and Anicich (2007)
R _{cn} 783b	2	HC ₃ N ⁺	+	N	\rightarrow	$C_3^2H^+$	+	N_2	9.60×10^{-11}	McEwan and Anicich (2007)
R _{cn} 784	2	HC ₃ N ⁺	+	NH_3	\rightarrow	NH_3^+	+	HC₃N	1.70×10^{-09}	Petrie et al. (1992)

١	C	Ľ	۰
	Ξ	٠	
	Ų	,	•
١	C	×	
	~		

	Type					Reaction			k	Ref.
R _{cn} 785a	2	HC ₂ N ⁺	+	HCN	\rightarrow	HCNH ⁺	+	C_3N	3.90×10 ⁻¹⁰	McEwan and Anicich (2007)
$R_{cn}785b$	2	HC3N+	+	HCN	\rightarrow	$C_4N_2H^+$	+	н	2.60×10^{-10}	McEwan and Anicich (2007)
$R_{cn}785c$	2	HC3N+	+	HCN	\rightarrow	AdductN ⁺	+	hv	6.50×10^{-10}	McEwan and Anicich (2007)
$R_{cn}786a$	2	HC3N+	+	HC_3N	\rightarrow	HC_5N^+	+	HCN	1.17×10^{-09}	McEwan and Anicich (2007)
R _{cn} 786b	2	HC ₂ N ⁺	+	HC ₃ N	\rightarrow	CXHYNZ ⁺	+	Н	6.50×10 ⁻¹¹	McEwan and Anicich (2007)
R _{cn} 786c	2	HC ₃ N ⁺	+	HC ₃ N	\rightarrow	AdductN ⁺	+	hv	6.50×10 ⁻¹¹	McEwan and Anicich (2007)
$R_{cn}786d$	3	HC ₃ N ⁺	+	HC_3^3N	\rightarrow	$AdductN^{+}$			1.00×10^{-10}	McEwan and Anicich (2007)
		, ,		3					1.20×10^{-22}	, ,
$R_{cn}787$	2	HC ₃ N ⁺	+	C_3H_5N	\rightarrow	$CXHYNZ^{+}$			3.70×10^{-09}	Franklin et al. (1966)
$R_{cn}788$	2	HC ₃ N ⁺	+	H_2O	\rightarrow	HC ₃ NH ⁺	+	OH	6.70×10^{-10}	McEwan and Anicich (2007)
$R_{cn}789$	3	HC ₃ N ⁺	+	CÕ	\rightarrow	$AdductN^{+}$			1.00×10^{-10}	McEwan and Anicich (2007)
									5.50×10^{-27}	·
$R_{cn}790$	2	HC ₃ NH ⁺	+	C_2H_4	\rightarrow	$C_{\kappa}H_{\kappa}N^{+}$	+	H	1.00×10^{-10}	McEwan and Anicich (2007), Molina-Cuberos et al. (19
$R_{cn}791$	2	HC3NH+	+	$C_4^2H_2$	\rightarrow	$C_7H_3NH^+$	+	hv	8.70×10^{-10}	McEwan and Anicich (2007)
$R_{cn}792$	2	HC ₃ NH ⁺	+	NH ₃	\rightarrow	NH_4^+	+	HC ₃ N	2.00×10^{-09}	Petrie et al. (1991a), Petrie et al. (1992)
$R_{cn}793$	2	HC ₃ NH ⁺	+	HCN	\rightarrow	AdductN ⁺	+	hv	6.00×10^{-11}	McEwan and Anicich (2007)
$R_{cn}794$	2	HC ₃ NH ⁺	+	HNC	\rightarrow	HCNH ⁺	+	HC_3N	4.60×10^{-09}	Su-Chesnavich
$R_{cn}795$	2	HC ₃ NH ⁺	+	CH_2NH	\rightarrow	$CH_2NH_2^+$	+	HC ₃ N	2.40×10^{-09}	Edwards et al. (2008)
$R_{cn}796$	2	HC3NH+	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₃ ⁺	+	HC ₃ N	1.60×10^{-09}	Edwards et al. (2008)
$R_{cn}797$	2	HC ₃ NH ⁺	+	CH ₃ CN	\rightarrow	$C_2\ddot{H}_3N\ddot{H}^+$	+	HC ₃ N	5.10×10^{-09}	Su-Chesnavich
$R_{cn}798a$	2	HC3NH+	+	$C_3 H_3 N$	\rightarrow	$C_3H_3NH^+$	+	HC ₃ N	1.28×10^{-09}	McEwan and Anicich (2007)
$R_{cn}798b$	2	HC3NH+	+	C_3H_3N	\rightarrow	$C_5H_3NH^+$	+	HCN	3.20×10^{-10}	McEwan and Anicich (2007)
$R_{cn}799a$	2	HC3NH+	+	C_3H_5N	\rightarrow	$C_3H_5NH^+$	+	HC ₃ N	5.00×10^{-09}	Su-Chesnavich
$R_{cn}799b$	2	HC3NH+	+	C_3H_5N	\rightarrow	$CXHYNZ^{+}$		· ·	1.90×10^{-09}	Franklin et al. (1966)
$R_{cn}800$	2	HC ₃ NH ⁺	+	HC_5N	\rightarrow	HC_5NH^+	+	HC_3N	3.90×10^{-09}	Edwards et al. (2009)
$R_{cn}801$	2	$C_3H_3N^+$	+	H_2	\rightarrow	$C_3 H_3 NH^+$	+	Н	1.20×10^{-12}	McEwan and Anicich (2007)
$R_{cn}802a$	2	C ₃ H ₃ N ⁺	+	CH_4	\rightarrow	$C_2H_3N^+$	+	C_2H_4	1.82×10^{-11}	McEwan and Anicich (2007)
$R_{cn}802b$	2	C ₃ H ₃ N ⁺	+	CH ₄	\rightarrow	$C_3H_3NH^+$	+	CH ₃	6.50×10^{-12}	McEwan and Anicich (2007)
$R_{cn}802c$	2	C ₃ H ₃ N ⁺	+	CH_4	\rightarrow	$C_4H_5NH^+$	+	Н	1.30×10^{-12}	McEwan and Anicich (2007)
$R_{cn}803a$	2	C ₃ H ₃ N ⁺	+	C_2H_2	\rightarrow	$c-C_{3}H_{3}^{+}$	+	CH ₂ CN	7.44×10^{-11}	McEwan and Anicich (2007)
$R_{cn} 803b$	2	C ₃ H ₃ N ⁺	+	C_2H_2	\rightarrow	$C_4H_4^+$	+	HCN	2.56×10^{-10}	McEwan and Anicich (2007)
$R_{cn}803c$	2	$C_3H_3N^+$	+	C_2H_2	\rightarrow	HC_3NH^+	+	C_2H_3	2.56×10^{-10}	McEwan and Anicich (2007)
$R_{cn}803d$	2	$C_3H_3N^+$	+	C_2H_2	\rightarrow	HC_5NH^+	+	H ₂ + H	1.95×10^{-10}	McEwan and Anicich (2007)
$R_{cn}803e$	2	$C_3H_3N^+$	+	C_2H_2	\rightarrow	$C_5H_3NH^+$	+	H	1.49×10^{-10}	McEwan and Anicich (2007)
$R_{cn}804a$	2	C ₃ H ₃ N ⁺	+	NH_3	\rightarrow	NH_3^+	+	C_3H_3N	1.25×10^{-10}	Anicich (1993)
$R_{cn}804b$	2	C ₃ H ₃ N ⁺	+	NH_3	\rightarrow	$NH_4^{\frac{1}{4}}$	+	C_3H_2N	6.46×10 ⁻¹¹	Anicich (1993)
Continued	on Next			•		-		~ *	•	

0	•	į	
è		٠	
2	i	í	
١	d	٠	

	Type					Reaction					k	Ref.
_{cn} 805a	2	$C_3H_3N^+$	+	HCN	\rightarrow	$C_4N_2H^+$	+	H ₂	+	Н	1.71×10 ⁻¹¹	McEwan and Anicich (2007)
_{cn} 805b	2	C ₃ H ₃ N ⁺	+	HCN	\rightarrow	$CXHYNZ^+$	+	H_2			7.22×10^{-11}	McEwan and Anicich (2007)
_{cn} 805c	2	C ₃ H ₃ N ⁺	+	HCN	\rightarrow	$CXHYNZ^{+}$	+	Η̈́			3.80×10^{-11}	McEwan and Anicich (2007)
cn 805d	2	C ₃ H ₃ N ⁺	+	HCN	\rightarrow	AdductN ⁺	+	hv			6.27×10^{-11}	McEwan and Anicich (2007)
cn 806a	2	C ₃ H ₃ N ⁺	+	C_3H_3N	\rightarrow	$C_3H_3NH^+$	+	C_3H_2N			1.81×10 ⁻⁰⁹	Anicich and McEwan (1997)
cn 806b	2	$C_3H_3N^+$	+	C_3H_3N	\rightarrow	$C_{\kappa}H_{\kappa}N^{+}$	+	HCN			9.50×10^{-11}	Anicich and McEwan (1997)
_{cn} 807a	2	$C_3H_3N^+$	+	H ₂ O	\rightarrow	CH,COH+	+	HCN			1.43×10^{-10}	McEwan and Anicich (2007)
cn 807b	2	C ₃ H ₃ N ⁺	+	H ₂ O	\rightarrow	C2H4NO+	+	H			6.51×10 ⁻¹¹	McEwan and Anicich (2007)
_{cn} 807c	2	C ₃ H ₃ N ⁺	+	H ₂ O	\rightarrow	C2HENO+	+	hv			2.10×10^{-12}	McEwan and Anicich (2007)
n 808	2	$C_3^3H_3^3N^+$	+	CÔ	\rightarrow	CO+°	+	C_3H_3N			7.00×10^{-12}	Petrie et al. (1991a),Petrie et al.
cn809a	2	C ₃ H ₃ NH ⁺	+	C_7H_8	\rightarrow	$C_7H_9^+$	+	C_3H_3N			1.10×10^{-10}	Petrie et al. (1991a),Petrie et al.
n 809b	2	C ₃ H ₃ NH ⁺	+	C_7H_8	\rightarrow	AdductN ⁺					9.90×10^{-11}	Petrie et al. (1991a),Petrie et al.
cn 810	2	C ₃ H ₃ NH ⁺	+	NH ₃	\rightarrow	NH_4^+	+	C_3H_3N			1.70×10^{-09}	Petrie et al. (1991a),Petrie et al.
cn 811	2	C ₃ H ₃ NH ⁺	+	HCN	\rightarrow	AdductN ⁺	+	hv			3.40×10^{-11}	Petrie et al. (1991a),Petrie et al.
cn 812	2	C ₃ H ₃ NH ⁺	+	CH ₂ NH	\rightarrow	CH ₂ NH ₂ ⁺	+	C_3H_3N			2.40×10^{-09}	Edwards et al. (2008)
cn 813	2	C ₃ H ₃ NH ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₃ [‡]	+	C_3H_3N			1.70×10^{-09}	Edwards et al. (2008)
cn814a	2	C ₃ H ₃ NH ⁺	+	CH ₂ CN	\rightarrow	C ₂ H ₃ NH ⁺	+	C_3H_3N			1.00×10^{-10}	Petrie et al. (1991a),Petrie et al.
cn 814b	2	C ₃ H ₃ NH ⁺	+	CH ₃ CN	\rightarrow	AdductN ⁺	+	hv			9.00×10^{-11}	Petrie et al. (1991a),Petrie et al.
cn 815	3	C ₃ H ₃ NH ⁺	+	C_3H_3N	\rightarrow	AdductN ⁺					1.00×10^{-10}	Anicich and McEwan (1997)
		3 3		3 3							1.25×10^{-23}	, ,
cn 816a	2	C ₃ H ₃ NH ⁺	+	C_3H_5N	\rightarrow	$C_3H_5NH^+$	+	C_3H_3N			5.00×10^{-09}	Su-Chesnavich
cn 816b	2	C ₃ H ₃ NH ⁺	+	C_3H_5N	\rightarrow	AdductN ⁺	+	hv			1.20×10^{-09}	Franklin et al. (1966)
cn817	2	C ₃ H ₃ NH ⁺	+	H ₂ O	\rightarrow	$CXHYNZ^{+}$	+	H			1.80×10^{-11}	Petrie et al. (1991a),Petrie et al.
cn 818	2	C ₃ H ₅ NH ⁺	+	NH,	\rightarrow	NH_4^+	+	C_3H_5N			3.10×10^{-09}	Su-Chesnavich
cn 819	2	C ₃ H ₅ NH ⁺	+	CHANH	\rightarrow	CH ₂ NH ₂ ⁺	+	C_3H_5N			2.80×10^{-09}	Su-Chesnavich
cn 820	2	HC ₄ N ⁺	+	H ₂	\rightarrow	$HC_4NH^{\frac{7}{4}}$	+	Н			1.00×10^{-09}	Wakelam et al. (2015)
cn 821	2	HC ₄ NH ⁺	+	H ₂	\rightarrow	$C_4H_3N^+$	+	H			1.00×10^{-09}	Wakelam et al. (2015)
cn822	2	$C_4H_3N^+$	+	H_2	\rightarrow	$C_4^H_3^NH^+$	+	H			1.00×10^{-09}	Wakelam et al. (2015)
cn 823	2	C ₅ N ⁴	+	H ₂	\rightarrow	HC ₅ N ⁺	+	H			1.50×10^{-09}	Wakelam et al. (2015)
_{cn} 824a	2	C ₅ N ⁺	+	\tilde{CH}_4	\rightarrow	HC ₆ NH ⁺	+	H_2			3.00×10^{-11}	Parent (1989), Parent (1990)
en 824b	2	C ₅ N ⁺	+	CH ₄	\rightarrow	HC₄NH ⁺	+	C_2H_2			6.75×10^{-11}	Parent (1989), Parent (1990)
en 824c	2	C ₅ N ⁺	+	CH ₄	\rightarrow	HCNH ⁺	+	C_5H_2			6.00×10 ⁻¹¹	Parent (1989), Parent (1990)
en 824d	2	C ₅ N ⁺	+	CH ₄	\rightarrow	HC_5N^+	+	CH,			2.77×10^{-10}	Parent (1989), Parent (1990)
cn 824e	2	C ₅ N ⁺	+	CH ₄	\rightarrow	$C_5 H_3^+$	+	HCN			3.75×10^{-11}	Parent (1989), Parent (1990)
cn824f	2	C ₅ N ⁺	+	CH ₄	\rightarrow	$c-C_2H_2^+$	+	HC_3N			5.25×10^{-11}	Parent (1989), Parent (1990)
cn824g	2	C ₅ N ⁺	+	CH ₄	\rightarrow	CH ₃ ³ 3	+	HC ₅ N			1.73×10^{-10}	Parent (1989), Parent (1990)

,			
١		٠	
•	-	•	
C	_		١

R _{cn} 824h R _{cn} 825a R _{cn} 825b R _{cn} 825c R _{cn} 826	2 2 2 2	C_5N^+ C_5N^+	+	CH										
$R_{cn}825b$ $R_{cn}825c$ $R_{cn}826$	2	C ₅ N ⁺		CH_A	-	$C_2H_3^+$		+	HC_4N			5.25×10 ⁻¹¹	Parent (1989),Parent	(1990)
$R_{cn}825c$ $R_{cn}826$			+	HCN	-			+	CN			2.54×10^{-10}	Parent and McElvany	(1989)
R _{cn} 826	2	C ₅ N ⁺	+	HCN	-			+	H			5.36×10^{-10}	Parent and McElvany	(1989)
		C ₅ N ⁺	+	HCN	-		+ .	+	hv			1.50×10^{-10}	Parent and McElvany	(1989)
	2	HC ₅ N ⁺	+	H_2	-		[+ .	+	H			5.00×10^{-12}	Wakelam et al. (2015) ` ´
$R_{cn}827a$	2	HC _s N ⁺	+	C_2H_4	-	HC, NI	[+ .	+	C_2H_3			9.00×10^{-10}	McEwan and Anicich	(2007)
$R_{cn}827b$	2	HC ₅ N ⁺	+	C_2H_4	-			+	H ₂			6.00×10 ⁻¹¹	McEwan and Anicich	(2007)
$R_{cn}827c$	2	HC ₅ N ⁺	+	C_2H_4	-			+	hv			2.40×10^{-10}	McEwan and Anicich	(2007)
$R_{cn}828$	2	HC ₅ N ⁺	+	C_4H_2	-	Adduct	N^+	+	hv			1.00×10^{-09}	McEwan and Anicich	(2007)
$R_{cn}829$	2	HC ₅ N ⁺	+	HC_3N	-	Adduct	N^+	+	hv			5.00×10^{-10}	McEwan and Anicich	(2007)
$R_{cn}830$	2	$C_5 H_5 N^+$	+	н	-	$C_{\kappa}H_{\kappa}N$	H^+ .	+	hv			2.50×10^{-10}	est.(C6H6P+H)	, ,
$R_{cn}831$	2	$C_5H_5N^+$	+	N	-	C_4H_3N	H^+ .	+	HCN			1.33×10 ⁻¹⁰	est.(C6H6P+N)	
$R_{cn}832$	2	C ₇ N ⁴	+	H_2	-			+	H			1.50×10^{-09}	Wakelam et al. (2015)
$R_{cn}833$	2	HC ₇ N ⁺	+	H_2	-		[+ .	+	H			5.00×10^{-12}	Wakelam et al. (2015)
$R_{cn}834$	2	N ⁺	+	н	-	H ⁺		+	N_2			1.00×10^{-11}	McEwan and Anicich	(2007)
R _{cn} 835a	2	N [‡]	+	H_2	-	N ₂ H ⁺		+	нŽ			1.29×10^{-09}	Dutuit et al. (2013)	
R _{cn} 835b	2	N [‡]	+	H,	-	~		+	N_2			1.30×10^{-11}	Dutuit et al. (2013)	
R _{cn} 836a	2	N ₂ + N ₂ + N ₂ + N ₂ + N ₂ +	+	CH_4	-			+	N_2^2	+	H	8.16×10 ⁻¹⁰	Dutuit et al. (2013),X	Cu et al.
R _{cn} 836b	2	$N_2^{\frac{7}{4}}$	+	CH ₄	-			+	N_2	+	H_2	3.12×10^{-10}	Dutuit et al. (2013),X	Cu et al.
R _{cn} 836c	2	N [‡]	+	CH4	_			+	\tilde{CH}_3		2	7.20×10^{-11}	Dutuit et al. (2013),X	Cu et al.
R _{cn} 837a	2	N_2^{\uparrow} N_2^{+}	+	C,H,	_			+	N_2			9.40×10^{-10}	Dutuit et al. (2013)	
R _{cn} 837b	2	N2+	+	C_2H_2	_			+	C_2^2H			6.00×10^{-11}	Dutuit et al. (2013)	
R _{cn} 838a	2	$N_2^{\stackrel{\leftarrow}{+}}$ N_2^+	+	C_2H_4	_			+	N_2	+	H	8.71×10^{-10}	Dutuit et al. (2013)	
R _{cn} 838b	2	N [‡]	+	C_2H_4	_			+	N_2^2	+	H_2	2.99×10^{-10}	Dutuit et al. (2013)	
R _{cn} 838c	2	N2 +	+	C_2H_4	_			+	$C_2^2H_3$		2	1.30×10^{-10}	Dutuit et al. (2013)	
R _{cn} 839a	2	N [±]	+	C_2H_6	_			+	N ₂	+	Н	1.82×10 ⁻¹⁰	Dutuit et al. (2013)	
R _{cn} 839b	2	N_2^+ N_2^+	+	$C_{2}H_{6}$	_			+	N ₂	+	H_2	3.51×10 ⁻¹⁰	Dutuit et al. (2013)	
R _{cn} 839c	2	N [‡]	+	C_2H_6	_			+	N ₂	+	H ₃	4.16×10 ⁻¹⁰	Dutuit et al. (2013)	
R _{cn} 839d	2	N ²	+	C_2H_6	_			+	N ₂	+	H_4	2.34×10 ⁻¹⁰	Dutuit et al. (2013)	
R _{cn} 839e	2	N ₂ ⁺ N ₂ ⁺ N ₂ ⁺	+	$C_{2}H_{6}$	_			+	N ₂	+	CH ₃	1.04×10 ⁻¹⁰	Dutuit et al. (2013)	
R _{cn} 839f	2	N ₂ ⁺	+	C_2H_6	_			+	N ₂	+	³ CH ₂	1.30×10 ⁻¹¹	Dutuit et al. (2013)	
R _{cn} 840a	2	N ₂ ⁺	+	C_3H_8	_	- 4		+	N ₂	+	H ₃	1.69×10 ⁻¹⁰	Dutuit et al. (2013)	
R _{cn} 840b	2	N ₂ N ₂ ⁺	+	C_3H_8 C_3H_8	_			+	N ₂	+	CH ₂	3.90×10 ⁻¹⁰	Dutuit et al. (2013) Dutuit et al. (2013)	
R _{cn} 840c	2	N ₂ ⁺	+	C_3H_8 C_3H_8	_			+	N ₂	+	CH ₄	2.21×10 ⁻¹⁰	Dutuit et al. (2013) Dutuit et al. (2013)	
R _{cn} 840d	2	N ₂ N ₂ ⁺	+	C_3H_8 C_3H_8	_			+		+	CH ₄	5.20×10 ⁻¹⁰	Dutuit et al. (2013) Dutuit et al. (2013)	
R _{cn} 841a	2	N2 N2 N2	+	C_6H_6	_			+	N_2 N_2	+	On_5	1.92×10 ⁻¹⁰	Arnold et al. (2013)	

	Type					Reaction					k	Ref.
R _{cn} 841b	2	N ₂ ⁺	+	C_6H_6	\rightarrow	$C_6H_5^+$	+	N_2	+	Н	3.84×10 ⁻¹⁰	Arnold et al. (1999)
$R_{cn}841c$	2	$N_2^{\tilde{+}}$	+	C_6H_6	\rightarrow	$C_6H_4^+$	+	N_2	+	H_2	6.40×10^{-11}	Arnold et al. (1999)
$R_{cn}841d$	2	N_2^{7}	+	C_6H_6	\rightarrow	$C_5H_3^+$	+	N_2	+	CH_3	3.20×10^{-11}	Arnold et al. (1999)
$R_{cn}841e$	2	N_2^+	+	C_6H_6	\rightarrow	$C_4H_4^+$	+	N_2	+	C_2H_2	6.56×10 ⁻¹⁰	Arnold et al. (1999)
$R_{cn}841f$	2	N_2^{7}	+	C_6H_6	\rightarrow	$c-C_{3}H_{3}^{+}$	+	N_2	+	C_3H_3	2.72×10^{-10}	Arnold et al. (1999)
$R_{cn}842a$	2	N_2^{\mp}	+	C_7H_8	\rightarrow	$C_7H_7^+$	+	N_2	+	H	1.62×10^{-09}	Arnold et al. (2000)
$R_{cn}842b$	2	N_2^{\mp}	+	C_7H_8	\rightarrow	$C_6H_5^+$	+	N_2	+	CH_3	9.50×10^{-11}	Arnold et al. (2000)
$R_{cn}842c$	2	N_2^{\mp}	+	C_7H_8	\rightarrow	$C_5H_6^+$	+	N_2	+	C_2H_2	3.80×10^{-11}	Arnold et al. (2000)
$R_{cn}842d$	2	N_2^+	+	C_7H_8	\rightarrow	$C_4H_4^+$	+	N_2	+	CH ₃ CCH	9.50×10^{-11}	Arnold et al. (2000)
$R_{cn}842e$	2	N_2^{\mp}	+	C_7H_8	\rightarrow	$c-C_{3}H_{3}^{+}$	+	N_2	+	C_4H_5	5.70×10^{-11}	Arnold et al. (2000)
$R_{cn}843$	2	N_2^+	+	N	\rightarrow	N ⁺	+	N_2			1.00×10^{-11}	McEwan and Anicich (2007
$R_{cn}844$	2	N_2^{\mp}	+	NH_3	\rightarrow	NH_3^+	+	N_2			1.95×10^{-09}	Anicich (1993)
$R_{cn}845$	2	N ₂ ⁺ N ₂ ⁺	+	HCN	\rightarrow	HCN ⁺	+	N_2			3.90×10^{-10}	McEwan and Anicich (2007
$R_{cn}846a$	2	N ₂ ⁺	+	CH_3NH_2	\rightarrow	$CH_3NH_2^+$	+	N_2			6.10×10 ⁻¹¹	Jackson et al. (2005)
$R_{cn}846b$	2	N_2^{\mp}	+	CH_3NH_2	\rightarrow	$CH_2NH_2^+$	+	N_2	+	H	8.17×10 ⁻¹⁰	Jackson et al. (2005)
$R_{cn}846c$	2	N_2^+	+	CH_3NH_2	\rightarrow	CH ₂ NH ⁺	+	N_2	+	H_2	2.56×10^{-10}	Jackson et al. (2005)
$R_{cn}846d$	2	N_2^{\mp}	+	CH_3NH_2	\rightarrow	$CH_3^{\tilde{+}}$	+	N_2	+	NH_2	8.54×10^{-11}	Jackson et al. (2005)
$R_{cn}847a$	2	N_2^+	+	CH ₃ CN	\rightarrow	$C_2H_3N^+$	+	N_2			3.15×10^{-10}	McEwan and Anicich (2007
$R_{cn}847b$	2	N ₂ ⁺	+	CH_3CN	\rightarrow	HC_2NH^+	+	N_2	+	H	1.36×10^{-09}	McEwan and Anicich (2007
$R_{cn}847c$	2	N_2^+	+	CH ₃ CN	\rightarrow	HC_2N^+	+	N_2	+	H_2	4.20×10^{-10}	McEwan and Anicich (2007
$R_{cn}848$	2	N_2^{7}	+	HC_3N	\rightarrow	HC ₃ N ⁺	+	N_2			3.50×10^{-09}	McEwan and Anicich (2007
$R_{cn}849a$	2	N_2^{\mp}	+	C_3H_3N	\rightarrow	$C_2H_3^+$	+	N_2	+	CN	1.00×10^{-10}	McEwan et al. (1998)
$R_{cn}849b$	2	N_2^{\mp}	+	C_3H_3N	\rightarrow	$C_2H_2^+$	+	N_2	+	HCN	3.00×10^{-10}	McEwan et al. (1998)
$R_{cn}849c$	2	N_2^{\mp}	+	C_3H_3N	\rightarrow	HC_3NH^+	+	N_2	+	H	3.50×10^{-10}	McEwan et al. (1998)
$R_{cn}849d$	2	N_2^+	+	C_3H_3N	\rightarrow	HC ₃ N ⁺	+	N_2	+	H_2	5.00×10^{-11}	McEwan et al. (1998)
$R_{cn}849e$	2	$N_2^{\tilde{7}}$	+	C_3H_3N	\rightarrow	N_2H^+	+	C_3H_2N			2.00×10^{-10}	McEwan et al. (1998)
$R_{cn}850a$	2	N_2^+	+	C_3H_5N	\rightarrow	$C_3H_3NH^+$	+	N_2	+	H	2.21×10^{-09}	Edwards et al. (2008)
$R_{cn}850b$	2	N_2^{\mp}	+	C_3H_5N	\rightarrow	CH ₃ ⁺	+	$\mathrm{CH_{2}CN}$	+	N_2	6.80×10 ⁻¹⁰	Edwards et al. (2008)
$R_{cn}850c$	2	N_2^+	+	C_3H_5N	\rightarrow	$C_2H_2^+$	+	CH_2NH	+	N_2	5.10×10^{-10}	Edwards et al. (2008)
$R_{cn}851a$	2	N_2^{+}	+	C_4H_5N	\rightarrow	$1-C_{3}H_{3}^{+}$	+	N_2	+	H ₂ CN	2.85×10^{-10}	Stavish et al. (2009)
$R_{cn}851b$	2	N ₂	+	C_4H_5N	\rightarrow	$c-C_{3}H_{3}^{+}$	+	N_2	+	H ₂ CN	2.85×10^{-10}	Stavish et al. (2009)
$R_{cn}851c$	2	N_2^{7}	+	C_4H_5N	\rightarrow	HC ₂ N ⁺	+	N_2	+	C_2H_4	5.70×10^{-10}	Stavish et al. (2009)
$R_{cn}851d$	2	N_2^{7}	+	C_4H_5N	\rightarrow	$C_3\tilde{H}_4^+$	+	N_2	+	HCN	1.95×10^{-10}	Stavish et al. (2009)
$R_{cn}851e$	2	N ₂ ⁺	+	C_4H_5N	\rightarrow	HC ₂ NH ⁺	+	N_2	+	C_2H_3	1.95×10^{-10}	Stavish et al. (2009)
$R_{cn}851f$	2	N_2^{7}	+	C_4H_5N	\rightarrow	$C_3\tilde{H}_5^+$	+	N_2	+	CN	4.05×10^{-10}	Stavish et al. (2009)
R _{cn} 851g	2	N ₂ ⁺	+	C_4H_5N	\rightarrow	$C_2H_3N^+$	+	N_2	+	C_2H_2	4.05×10^{-10}	Stavish et al. (2009)
Continued	on Next			- 0		2 3		-			'	

:	′	ĭ
1	ĺ	3

		Type					Reaction					k	Ref.
_	R _{cn} 851h	2	N ₂ ⁺	+	C_4H_5N	\rightarrow	$C_4H_3NH^+$	+	N_2	+	Н	3.75×10 ⁻¹¹	Stavish et al. (2009)
	$R_{cn}851i$	2	N [±]	+	C_4H_5N	\rightarrow	$C_4H_5N^+$	+	N_2			1.28×10^{-10}	Stavish et al. (2009)
	$R_{cn}852$	2	N [‡]	+	HC_5N	\rightarrow	HC_5N^+	+	N_2			4.80×10^{-09}	Edwards et al. (2009)
	$R_{cn}853a$	2	N ₂ ⁺	+	C_5H_5N	\rightarrow	$C_4 \ddot{H}_4^+$	+	HČN	+	N_2	2.35×10^{-09}	Fondren et al. (2007)
	$R_{cn}853b$	2	$egin{array}{c} N_2^+ \ N_2^+ \ N_2^+ \ N_2^+ \ N_2^+ \ N_2^+ \ N_2^+ \ N_2^+ \ N_2^+ \ N_2^+ \ N_2^+ \end{array}$	+	C_5H_5N	\rightarrow	$C_4H_5^{+}$	+	CN	+	N_2	1.76×10^{-10}	Fondren et al. (2007)
	$R_{cn}853c$	2	N_2^{\mp}	+	C_5H_5N	\rightarrow	$C_3H_3N^+$	+	C_2H_2	+	N_2	1.76×10^{-10}	Fondren et al. (2007)
	$R_{cn}854$	3	N_2^{\mp}	+	N_2	\rightarrow	N_4^+				-	1.00×10^{-10} 8.00×10^{-29} T ^{1.84}	Anicich et al. (2000), McEwan and Anicich (200
	$R_{cn}855$	2	N ⁺	+	C_2N_2	\rightarrow	$C_{2}N_{2}^{+}$	+	N_2			9.30×10^{-10}	McEwan and Anicich (2007)
	R _{cn} 856a	2	N ⁺	+	O(³ P)	\rightarrow	O ⁺	+	N_2			9.80×10 ⁻¹²	Anicich (1993)
	R _{cn} 856b	2	N [‡]	+	$O(^3P)$	\rightarrow	NO ⁺	+	N ²			1.30×10^{-10}	Anicich (1993)
	R _{cn} 857a	2	N ⁺	+	H ₂ O	\rightarrow	H ₂ O ⁺	+	N ₂			1.90×10 ⁻⁰⁹	McEwan and Anicich (2007)
	R _{cn} 857b	2	N [‡]	+	H ₂ O	\rightarrow	$N_2^2H^+$	+	OH			5.04×10^{-10}	McEwan and Anicich (2007)
	R _{cn} 858	2	N [‡]	+	CO	\rightarrow	CO+	+	N_2			7.30×10^{-11}	McEwan and Anicich (2007)
	R _{cn} 859a	2	N+2+ N+2+ N+2+ N+2+ N+2+ N+2+ N+2+ N+2+	+	H ₂ CO	\rightarrow	HCO ⁺	+	N_2^2H			2.52×10^{-09}	Anicich (1993)
	R _{cn} 859b	2	N [‡]	+	H ₂ CO	\rightarrow	CH ₂ O ⁺	+	N ₂			3.77×10 ⁻¹⁰	Anicich (1993)
	R _{cn} 860	2	N [‡]	+	CO,	\rightarrow	CO2+	+	N_2^2			8.00×10^{-10}	Anicich (1993)
	R _{cn} 861a	2	N ₂ H ⁺	+	H_2^2	\rightarrow	H_3^{+2}	+	N_2^2			5.10×10^{-18}	McEwan and Anicich (2007)
	R _{cn} 861b	3	N ₂ H ⁺	+	H ₂	\rightarrow	AdductN ⁺		2			1.00×10^{-10}	Anicich and McEwan (1997)
			1 -		2							4.00×10^{-30}	` '
	$R_{cn}862$	2	N ₂ H ⁺	+	CH_4	\rightarrow	CH_5^+	+	N_2			8.90×10^{-10}	McEwan and Anicich (2007)
	$R_{cn}863$	2	N ₂ H ⁺	+	C_2H_2	\rightarrow	$C_2H_3^+$	+	N_2			1.40×10^{-09}	McEwan and Anicich (2007)
	$R_{cn}864$	2	N ₂ H ⁺	+	C_2H_4	\rightarrow	$C_2H_5^+$	+	N_2			1.00×10^{-09}	McEwan and Anicich (2007)
	$R_{cn}865a$	2	N ₂ H ⁺	+	C_2H_6	\rightarrow	$C_2H_5^+$	+	N_2	+	H_2	1.13×10^{-09}	McEwan and Anicich (2007)
	$R_{cn}865b$	2	N ₂ H ⁺	+	C_2H_6	\rightarrow	$C_2H_7^{\perp}$	+	N_2		-	1.69×10^{-10}	McEwan and Anicich (2007)
	$R_{cn}866$	2	N ₂ H ⁺	+	CH ₃ CCH	\rightarrow	$C_3H_5^+$	+	N_2			1.50×10^{-09}	McEwan and Anicich (2007)
	$R_{cn}867$	2	N ₂ H ⁺	+	CH ₂ CCH ₂	\rightarrow	$C_3H_5^+$	+	N_2			1.40×10^{-09}	Milligan et al. (2002)
	$R_{cn}868a$	2	N ₂ H ⁺	+	C_3H_6	\rightarrow	$C_3H_5^+$	+	N ₂	+	H_2	7.70×10^{-10}	Milligan et al. (2002)
	$R_{cn}868b$	2	N ₂ H ⁺	+	C_3H_6	\rightarrow	$C_3H_7^+$	+	N_2		-	6.30×10^{-10}	Milligan et al. (2002)
	$R_{cn}869$	2	N ₂ H ⁺	+	C_4H_2	\rightarrow	$C_4H_3^+$	+	N_2			1.10×10^{-09}	McEwan and Anicich (2007)
	$R_{cn}870$	2	N ₂ H ⁺	+	C_6H_6	\rightarrow	$C_6H_7^+$	+	N_2			1.50×10^{-09}	Milligan et al. (2002)
	$R_{cn}871$	2	N ₂ H ⁺	+	C_7H_8	\rightarrow	$C_7H_9^+$	+	N_2			1.30×10^{-09}	Milligan et al. (2002)
	$R_{cn}872$	2	N ₂ H ⁺	+	NH_3	\rightarrow	NH_4^+	+	N_2			2.30×10^{-09}	Anicich (1993)
	$R_{cn}873$	2	N_2H^+	+	HCN	\rightarrow	HCNH ⁺	+	N_2			3.20×10^{-09}	McEwan and Anicich (2007)
	$R_{cn}874$	2	N_2H^+	+	CH_3CN	\rightarrow	$C_2H_3NH^+$	+	N_2			4.10×10^{-09}	McEwan and Anicich (2007)
	$R_{cn}875$	2	N ₂ H ⁺	+	HC ₃ N	\rightarrow	HC ₃ NH ⁺	+	N ₂			4.20×10^{-09}	McEwan and Anicich (2007)

,			
١		۰	٦
			4

	Type					Reaction					k	Ref.
R _{cn} 876	2	N ₂ H ⁺	+	C_3H_3N	\rightarrow	C ₃ H ₃ NH ⁺	+	N ₂			1.50×10 ⁻⁰⁹	Milligan et al. (2002)
$R_{cn}877$	3	N ₂ H ⁺	+	N_2	\rightarrow	AdductN ⁺		-			1.00×10^{-10}	McEwan and Anicich (
		_		=							4.00×10^{-30}	
$R_{cn}878$	2	N ₂ H ⁺	+	C_2N_2	\rightarrow	$C_{2}N_{2}H^{+}$	+	N_2			1.20×10^{-09}	McEwan and Anicich (
$R_{cn}879$	2	N ₂ H ⁺	+	$O(^{3}P)$	\rightarrow	OH+	+	N_2			1.40×10^{-10}	Anicich (1993)
$R_{cn}880$	2	N ₂ H ⁺	+	H_2O	\rightarrow	H_3O^+	+	N_2			2.60×10^{-09}	McEwan and Anicich (
$R_{cn}881$	2	N ₂ H ⁺	+	CO	\rightarrow	HCO ⁺	+	N_2			8.80×10^{-10}	McEwan and Anicich (
$R_{cn}882$	2	N ₂ H ⁺	+	H_2CO	\rightarrow	CH ₂ OH ⁺	+	N_2			3.30×10^{-09}	Anicich (1993)
$R_{cn}883$	2	N ₂ H ⁺	+	CO ₂	\rightarrow	OCOH ⁺	+	N_2			1.07×10^{-09}	Anicich (1993)
$R_{cn}884a$	2	C ₂ N ₂ ⁺	+	H	\rightarrow	HNC ⁺	+	CN			4.96×10^{-10}	McEwan and Anicich (
R _{cn} 884b	2	$C_2N_2^{\mp}$	+	H	\rightarrow	C_2H^+	+	N_2			1.24×10^{-10}	McEwan and Anicich (
R _{cn} 885	2	$C_2N_2^{\uparrow}$	+	H_2	\rightarrow	$C_2N_2H^+$	+	Η			8.80×10^{-10}	McEwan and Anicich (
R _{cn} 886a	2	$C_2N_2^{\mp}$	+	C_2H_2	\rightarrow	$C_2H_2^{\uparrow}$	+	C_2N_2			1.00×10^{-10}	McEwan and Anicich (
R _{cn} 886b	2	$C_2N_2^+$	+	C_2H_2	\rightarrow	$C_4N_2H^+$	+	Η			7.00×10^{-11}	McEwan and Anicich (
R _{cn} 886c	2	$C_2N_2^{\frac{1}{2}}$	+	C_2H_2	\rightarrow	$C_4N_2^{\frac{1}{4}}$	+	H_2			3.00×10^{-11}	McEwan and Anicich (
R _{cn} 887a	2	$C_2N_2^{\frac{1}{2}}$	+	C_4H_2	\rightarrow	$C_4H_2^{\frac{1}{4}}$	+	C_2N_2			1.08×10 ⁻⁰⁹	McEwan and Anicich (
R _{cn} 887b	2	$C_{2}^{2}N_{2}^{\frac{4}{7}}$	+	$C_4^4H_2^2$	\rightarrow	HC ₅ N ⁺	+	HCN			1.20×10^{-10}	McEwan and Anicich (
R _{cn} 888a	2	$C_2^2N_2^{\frac{4}{7}}$	+	HCN	\rightarrow	HNC+	+	C_2N_2			5.40×10^{-10}	McEwan and Anicich (
R _{cn} 888b	2	$C_{2}^{2}N_{2}^{+}$	+	HCN	\rightarrow	$C_2N_2H^+$	+	CN			2.02×10^{-09}	McEwan and Anicich (
R _{cn} 888c	2	C ₂ N ₂ ⁺	+	HCN	\rightarrow	HC ₃ N ₃ ⁺	+	hv			1.35×10 ⁻¹⁰	McEwan and Anicich (
R _{cn} 889	2	$C_{2}^{2}N_{2}^{+}$	+	HC ₃ N	\rightarrow	HC ₃ N ⁺	+	C_2N_2			1.60×10^{-09}	McEwan and Anicich (
R _{cn} 890	3	$C_2N_2^{\frac{1}{2}}$	+	C_2N_2	\rightarrow	AdductN ⁺		- 2 2			1.00×10^{-10}	McEwan and Anicich (
cenooo		02112	'	02112		114446011					2.20×10 ⁻²⁴	mezwan and rimeten (
R _{cn} 891a	2	C ₂ N ₂ ⁺	+	$H_{2}O$	\rightarrow	H_2O^+	+	C_2N_2			2.34×10 ⁻¹⁰	McEwan and Anicich (
R _{cn} 891b	2	C ₂ N ₂ ⁺	+	H ₂ O	\rightarrow	$C_2N_2H^+$	+	OH			2.37×10 ⁻⁰⁹	McEwan and Anicich (
R _{cn} 892a	2	C ₂ N ₂ H ⁺	+	C_2H_2	\rightarrow	C ₂ H ₃ ⁺	+	C_2N_2			7.20×10 ⁻¹¹	Milligan et al. (1998)
R _{cn} 892b	2	C ₂ N ₂ H ⁺	+	C_2H_2	\rightarrow	AdductN ⁺	+	hv			4.08×10 ⁻¹⁰	Milligan et al. (1998)
$R_{cn}893$	2	C ₂ N ₂ H ⁺	+	C_2H_4	<i>,</i>	C ₂ H ₅ ⁺	+	C_2N_2			8.00×10 ⁻¹⁰	Anicich (1993)
$R_{cn}894$	2		+	H ₂ O	$\stackrel{'}{\rightarrow}$	H ₃ O ⁺	+	C_2N_2			5.10×10 ⁻¹⁰	Anicich (1993)
$R_{cn}895a$	2	$\begin{array}{c} C_{2}N_{2}H^{+} \\ N_{3}^{+} \end{array}$	+	CH_4	\rightarrow	HCNH ⁺	+	N ₂	+	H_2	5.51×10 ⁻¹¹	Anicich et al. (2000)
$R_{cn} 895b$	2	N ₃ ⁺	+	CH ₄	$\stackrel{'}{\rightarrow}$	CH ₂ NH ₂ ⁺	+	N ₂	'	112	2.90×10 ⁻¹²	Anicich et al. (2000)
$R_{cn}896a$	2	N ₃ ⁺	+	C_2H_2	\rightarrow	CH ₂ CN ⁺	+	N ₂			1.08×10 ⁻⁰⁹	Anicich et al. (2000)
R_{cn} 896b	2	N ₃ ⁺	+	C_2H_2 C_2H_2	\rightarrow	C ₂ N ⁺	+	N ₂	+	H_2	6.00×10 ⁻¹¹	Anicich et al. (2000) Anicich et al. (2000)
R _{cn} 896c	2	N3 N3 N3	+	C_2H_2 C_2H_2	\rightarrow	HCNH ⁺	+	N ₂	+	$^{\rm H_2}_{\rm C}$	6.00×10 ⁻¹¹	Anicich et al. (2000) Anicich et al. (2000)
$R_{cn}8900$	2					C ₂ H ₄ ⁺	+		+	N	1.10×10 ⁻⁰⁹	Anicich et al. (2000) Anicich et al. (2000)
$R_{cn}897$	2	N ₃ ⁺ N ₃ ⁺	+	${ m C_2H_4} \ { m HCN}$	\rightarrow	$C_2\Pi_4^-$ CXHYNZ ⁺	+	N ₂	+	IN	6.70×10 ⁻¹⁰	Anicich et al. (2000) Anicich et al. (2000)
		Page	+	HUN	\rightarrow	CAHYNZ	+	N_2			0.70×10	Anicicn et al. (2000)

ಬ	
7	
#	

	Type					Reaction					k	Ref.
R _{cn} 899	3	N ₃ ⁺	+	CO	\rightarrow	$AdductN^+$					1.00×10 ⁻¹⁰	Smith et al. (1978a)
R _{cn} 900	2	N ⁺	+	H_2	\rightarrow	N_2H^+	+	N_2	+	Н	7.00×10^{-29} 1.00×10^{-12}	McEwan and Anicich (2007
R _{cn} 901	2	N ⁴	+	CH ₄	\rightarrow	CH ⁺	+	N ₂	+	N_2	1.10×10 ⁻⁰⁹	McEwan and Anicich (2007
R _{cn} 902	2	N ⁺ ₄	+	C_2H_2	\rightarrow	$C_{2}H_{2}^{+}$	+	N ₂	+	N ₂	9.20×10 ⁻¹⁰	McEwan and Anicich (2007
R _{cn} 903	2	N ₄ ⁺	+	C_2H_4	\rightarrow	C ₂ H ₄ ⁺	+	N ₂	+	N ₂	1.10×10 ⁻⁰⁹	McEwan and Anicich (2007
R _{cn} 904a	2	N ⁺	+	C_2H_6	\rightarrow	C ₂ H ₅ ⁺	+	$N_2^{+}N_2$	+	H	1.74×10 ⁻¹⁰	McEwan and Anicich (2007
R _{cn} 904b	2	N4	+	$C_2^2H_6$	\rightarrow	$C_{2}^{2}H_{4}^{2}$	+	$N_{2}^{+}N_{2}^{2}$	+	H_2	1.07×10^{-09}	McEwan and Anicich (2007
R _{cn} 905a	2	N ₄ ⁴	+	$C_3^2H_8$	\rightarrow	$C_{3}^{2}H_{7}^{\frac{1}{4}}$	+	$N_{2}^{\frac{7}{4}}N_{2}^{\frac{7}{2}}$	+	H	1.22×10^{-10}	McEwan and Anicich (2007
$R_{cn}905b$	2	N ⁴	+	C ₃ H ₈	\rightarrow	C ₂ H ₅ ⁺	+	$N_{2}^{+}N_{2}^{2}$	+	CH ₃	6.71×10^{-10}	McEwan and Anicich (2007
$R_{cn}905c$	2	N [‡]	+	C_3H_8	\rightarrow	$C_{2}^{2}H_{4}^{2}$	+	$N_{2}^{\frac{7}{4}}N_{2}^{\frac{7}{2}}$	+	CH_4	4.27×10^{-10}	McEwan and Anicich (2007
R _{cn} 906	2	N4+	+	HCN	\rightarrow	HCN+	+	N_2	+	N ₂	2.60×10^{-09}	McEwan and Anicich (2007
$R_{cn}907$	2	N ₄ [‡]	+	CO	\rightarrow	CO^{+}	+	N_2	+	N_2	5.00×10^{-10}	Smith et al. (1978a)
$R_{cn}908$	2	O ⁺	+	H	\rightarrow	H^+	+	$O(^3P)$		-	6.40×10^{-10}	Anicich (1993)
$R_{cn}909$	2	O ⁺	+	H_2	\rightarrow	OH^+	+	H			1.62×10^{-09}	Anicich (1993)
$R_{cn}910a$	2	O ⁺	+	CH_4	\rightarrow	CH_4^+	+	$O(^{3}P)$			8.80×10^{-10}	Smith et al. (1992)
$R_{cn}910b$	2	O ⁺	+	CH_4	\rightarrow	CH_3^+	+	OH			2.20×10^{-10}	Smith et al. (1992)
$R_{cn}911a$	2	O ⁺	+	C_2H_4	\rightarrow	$C_2H_4^+$	+	$O(^{3}P)$			7.00×10^{-11}	Smith et al. (1992)
$R_{cn}911b$	2	O ⁺	+	C_2H_4	\rightarrow	$C_{2}H_{3}^{+}$	+	OH			2.10×10^{-10}	Smith et al. (1992)
$R_{cn}911c$	2	O ⁺	+	C_2H_4	\rightarrow	$C_{2}H_{2}^{+}$	+	H_2O			1.12×10 ⁻⁰⁹	Smith et al. (1992)
$R_{cn}912$	2	O ⁺	+	C_2H_2	\rightarrow	$C_{2}H_{2}^{+}$	+	$O(^3P)$			6.20×10^{-11}	Fukuzawa et al. (2001)
$R_{cn}913a$	2	O ⁺	+	C_2H_6	\rightarrow	$C_2H_4^+$	+	H_2O			1.19×10^{-09}	Smith et al. (1992)
$R_{cn}913b$	2	O ⁺	+	C_2H_6	\rightarrow	$C_{2}H_{5}^{+}$	+	OH			5.10×10^{-10}	Smith et al. (1992)
$R_{cn}914$	2	O ⁺	+	C_6H_6	\rightarrow	$C_{6}H_{6}^{+}$	+	$O(^{3}P)$			1.90×10 ⁻⁰⁹	Arnold et al. (1999)
R_{cn} 915a	2	O ⁺	+	C_7H_8	\rightarrow	$C_7H_8^+$	+	$O(^{3}P)$			1.10×10 ⁻¹⁰	Arnold et al. (2000)
R_{cn} 915b	2	O ⁺	+	C_7H_8	\rightarrow	$C_7H_7^+$	+	OH			2.05×10 ⁻⁰⁹	Arnold et al. (2000)
$R_{cn}915c$	2	O ⁺	+	C_7H_8	\rightarrow	$C_{6}H_{6}^{+}$	+	H_2CO			4.40×10^{-11}	Arnold et al. (2000)
$R_{cn}916$	2	O ⁺	+	NH_3	\rightarrow	NH_3^+	+	$O(^{3}P)$			1.10×10 ⁻⁰⁹	Smith et al. (1992)
R_{cn} 917a	2	O ⁺	+	HCN	\rightarrow	HCN ⁺	+	$O(^3P)$			5.00×10 ⁻¹¹	Bastian et al. (1996)
R_{cn} 917b	2	O ⁺	+	HCN	\rightarrow	HCO ⁺	+	N			1.13×10 ⁻⁰⁹	Bastian et al. (1996)
$R_{cn}917c$	2	O ⁺	+	HCN	\rightarrow	NO ⁺	+	CH			1.33×10 ⁻⁰⁹	Bastian et al. (1996)
R _{cn} 918a	2	O ⁺	+	CH ₃ NH ₂	\rightarrow	CH ₃ NH ₂ ⁺	+	$O(^{3}P)$			1.26×10 ⁻¹⁰	Smith et al. (1978a)
R _{cn} 918b	2	0+	+	CH ₃ NH ₂	\rightarrow	CH ₂ NH ₂ ⁺	+	OH			1.66×10 ⁻⁰⁹	Smith et al. (1978a)
R _{cn} 918c	2	0+	+	CH ₃ NH ₂	\rightarrow	CH ₂ NH ⁺	+	H ₂ O			3.15×10 ⁻¹⁰	Smith et al. (1978a)
R _{cn} 919a	2	O ⁺	+	CH ₃ CN	\rightarrow	$C_2H_3N^+$	+	$O(^3P)$			2.94×10 ⁻⁰⁹	Smith et al. (1992)
R _{cn} 919b	2 on Nout		+	$\mathrm{CH_{3}CN}$	\rightarrow	$C_{2}H_{3}^{+}$	+	NO			1.26×10^{-09}	Smith et al. (1992)
Continued	on next	гage										

c	i	٠
-		ă
	٥	ì

						Reaction					k	Ref.
D 000	Туре	O+		3.7		NO ⁺		NT.			$1.85 \times 10^{-12} \text{T}^{1.37} \text{e}^{-28.6/T}$	
R _{cn} 920	2	0+	+	N ₂	\rightarrow		+	N $O(^{3}P)$			2.60×10 ⁻⁰⁹	Le Garrec et al. (2003), Anicich (1993
R _{cn} 921	2	0+	+	H ₂ O	\rightarrow	H_2O^+ CH_2O^+	+				2.10×10 ⁻⁰⁹	Anicich (1993)
R _{cn} 922a	2	0+	+	H ₂ CO	\rightarrow	HCO ⁺	+	$O(^{3}P)$				Smith et al. (1978a)
R_{cn} 922b	2		+	H_2CO	\rightarrow		+	OH			1.40×10 ⁻⁰⁹	Smith et al. (1978a)
$R_{cn}923$	2	0+	+	NO	\rightarrow	NO ⁺	+	$O(^3P)$			$1.65 \times 10^{-12} T^{1.37} e^{-12.1/T}$	LeGarrec et al. (1997), Anicich (1993)
$R_{cn}924$	2	OH ⁺	+	H_2	\rightarrow	H_2O^+	+	H			9.70×10^{-10}	Anicich (1993)
$R_{cn}925a$	2	OH ⁺	+	CH_4	\rightarrow	CH_5^+	+	$O(^{3}P)$			1.89×10 ⁻¹⁰	Anicich (1993)
$R_{cn}925b$	2	OH ⁺	+	CH_4	\rightarrow	H_3O^+	+	$^3\mathrm{CH}_2$			1.26×10 ⁻⁰⁹	Anicich (1993)
$R_{cn}926a$	2	OH ⁺	+	C_2H_6	\rightarrow	H_3O^+	+	C_2H_4			1.60×10 ⁻¹⁰	Mackay et al. (1981)
$R_{cn}926b$	2	OH ⁺	+	C_2H_6	\rightarrow	$C_2H_4^+$	+	OH	+	H_2	1.04×10^{-09}	Mackay et al. (1981)
R_{cn} 926c	2	OH ⁺	+	C_2H_6	\rightarrow	$C_{2}H_{5}^{+}$	+	H_2O			3.20×10^{-10}	Mackay et al. (1981)
R_{cn} 926d	2	OH ⁺	+	C_2H_6	\rightarrow	$C_2H_6^+$	+	OH			4.80×10^{-11}	Mackay et al. (1981)
R_{cn} 926e	2	OH ⁺	+	C_2H_6	\rightarrow	$C_2H_7^+$	+	$O(^{3}P)$			3.20×10^{-11}	Mackay et al. (1981)
$R_{cn}927a$	2	OH ⁺	+	NH_3	\rightarrow	NH_3^+	+	OH			9.20×10^{-10}	Anicich (1993)
$R_{cn}927b$	2	OH ⁺	+	NH ₃	\rightarrow	NH_4^+	+	$O(^{3}P)$			9.20×10^{-10}	Anicich (1993)
$R_{cn}928$	2	OH ⁺	+	N ₂	\rightarrow	N_2H^+	+	$O(^{3}P)$			2.40×10^{-10}	Anicich (1993)
$R_{cn}929a$	2	OH ⁺	+	H ₂ O	\rightarrow	H ₂ O ⁺	+	OH			1.59×10^{-09}	Huntress and Pinizzotto (1973)
$R_{cn}929b$	2	OH ⁺	+	H ₂ O	\rightarrow	H ₃ O ⁺	+	$O(^{3}P)$			1.30×10^{-09}	Huntress and Pinizzotto (1973)
$R_{cn}930$	2	OH ⁺	+	CÕ	\rightarrow	HCO ⁺	+	$O(^3P)$			8.40×10^{-10}	Anicich (1993)
$R_{cn}931a$	2	OH ⁺	+	$H_{2}CO$	\rightarrow	CH_2O^+	+	OH			7.44×10^{-10}	Karpas and Huntress (1978)
$R_{cn}931b$	2	OH ⁺	+	H ₂ CO	\rightarrow	CH ₂ OH ⁺	+	$O(^{3}P)$			1.12×10^{-09}	Karpas and Huntress (1978)
$R_{cn}932$	2	OH ⁺	+	NÕ	\rightarrow	NO [‡]	+	OH			8.15×10^{-10}	Anicich (1993)
R _{cn} 933	2	H _o O ⁺	+	H_2	\rightarrow	H_3O^+	+	H			7.60×10^{-10}	McEwan and Anicich (2007)
R _{cn} 934	2	H ₂ O+	+	CH_4	\rightarrow	H ₃ O+	+	CH_3			1.12×10 ⁻⁰⁹	McEwan and Anicich (2007)
R _{cn} 935	2	H ₂ O+	+	C_2H_2	\rightarrow	C ₂ H ₂ ⁺	+	H,Ö			1.90×10^{-09}	McEwan and Anicich (2007)
R _{cn} 936	2	H ₂ O+	+	C_2H_4	\rightarrow	$C_2H_4^{\frac{7}{4}}$	+	H ₂ O			1.50×10^{-09}	McEwan and Anicich (2007)
$R_{cn}937a$	2	H ₂ O+	+	C_2H_6	\rightarrow	H ₃ O ⁺	+	C_2H_5			1.33×10^{-09}	McEwan and Anicich (2007)
$R_{cn}937b$	2	H ₂ O+	+	C_2H_6	\rightarrow	$C_2^3H_4^+$	+	H ₂ O	+	H ₂	1.92×10^{-10}	McEwan and Anicich (2007)
R _{cn} 937c	2	H ₂ O+	+	$C_2^2H_6$	\rightarrow	$C_{2}^{2}H_{5}^{4}$	+	H ₂ O	+	H	1.60×10^{-11}	McEwan and Anicich (2007)
R _{cn} 937d	2	H ₂ O ⁺	+	C_2H_6	<i>,</i>	$C_{2}H_{6}^{+}$	+	H ₂ O	'		6.40×10 ⁻¹¹	McEwan and Anicich (2007)
R _{cn} 938a	2	H ₂ O ⁺	+	N N	<i>,</i>	HNO ⁺	+	H			1.12×10 ⁻¹⁰	McEwan and Anicich (2007)
R _{cn} 938b	2	H ₂ O ⁺	+	N	<i>,</i>	NO ⁺	+	H ₂			2.80×10 ⁻¹¹	McEwan and Anicich (2007)
R _{cn} 939a	2	H ₂ O ⁺	+	NH ₃	$\stackrel{'}{\rightarrow}$	NH ⁺	+	H ₂ O			2.21×10 ⁻⁰⁹	Anicich (1993)
R _{cn} 939b	2	H ₂ O ⁺	+	NH ₂	\rightarrow	NH ₄	+	OH			9.45×10^{-10}	Anicich (1993)
R _{cn} 940a	2	H ₂ O ⁺	+	HCN	\rightarrow	HCNH ⁺	+	OH			1.05×10 ⁻⁰⁹	McEwan and Anicich (2007)
R _{cn} 940b	2	H ₂ O ⁺	+	HCN	\rightarrow	H ₃ O ⁺	+	CN			1.05×10 ⁻⁰⁹	McEwan and Anicich (2007)
Continued				11011	\rightarrow	1130	_	OIN			1 1.00 × 10	McDwan and America (2001)

١	٠	ı	•
í	•	ľ	
		1	
,	Ļ	,	

	Type					Reaction			k	Ref.
R _{cn} 941	3	H ₂ O ⁺	+	N ₂	\rightarrow	AdductN ⁺			1.00×10 ⁻¹⁰	McEwan and Anicich (20
		1 -		-					1.13×10^{-28}	· ·
$R_{cn}942$	2	H ₂ O ⁺	+	C_2N_2	\rightarrow	$C_2N_2H^+$	+	OH	1.00×10^{-09}	McEwan and Anicich (20
$R_{cn}943$	2	H ₂ O ⁺	+	H ₂ O	\rightarrow	$H_3^{-}O^{+}$	+	OH	1.85×10^{-09}	McEwan and Anicich (20
$R_{cn}944$	2	H ₂ O ⁺	+	CÕ	\rightarrow	HCO^{+}	+	OH	4.25×10^{-10}	McEwan and Anicich (20
$R_{cn}945a$	2	H ₂ O+	+	$H_{2}CO$	\rightarrow	CH_2O^+	+	H ₂ O	1.41×10^{-09}	Anicich (1993)
$R_{cn}945b$	2	H ₂ O+	+	H ₂ CO	\rightarrow	CH ₂ OH ⁺	+	OH	6.62×10 ⁻¹⁰	Anicich (1993)
$R_{cn}946$	3	H ₃ O ⁺	+	C_2H_2	\rightarrow	CH ₃ CHOH ⁺	+		1.00×10^{-10}	McEwan and Anicich (20
		"				3			8.00×10^{-28}	· ·
$R_{cn}947$	3	H ₃ O ⁺	+	C_2H_4	\rightarrow	Adduct ⁺			1.00×10^{-10}	McEwan and Anicich (20
		3		2 4					2.00×10^{-27}	`
$R_{cn}948$	2	H ₃ O ⁺	+	CH ₃ CCH	\rightarrow	$C_3H_5^+$	+	H_2O	1.80×10^{-09}	McEwan and Anicich (20
R _{cn} 949	2	H ₂ O ⁺	+	CH, CCH,	\rightarrow	$C_3H_5^{\frac{3}{4}}$	+	H ₂ O	1.40×10^{-09}	Milligan et al. (2002)
R _{cn} 950	2	H ₃ O+	+	$C_3\tilde{H}_6$	\rightarrow	$C_{3}^{3}H_{7}^{+}$	+	H ₂ O	1.70×10^{-09}	Milligan et al. (2002)
R _{cn} 951	2	H ₃ O+	+	C_4H_2	\rightarrow	$C_4H_3^+$	+	H ₂ O	1.10×10^{-09}	McEwan and Anicich (20
R _{cn} 952	2	H ₃ O ⁺	+	NH ₂	\rightarrow	NH ⁺	+	H ₂ O	2.23×10 ⁻⁰⁹	Anicich (1993)
R _{cn} 953	2	H ₃ O ⁺	+	CH ₂ NH	\rightarrow	CH ₂ NH ₂ ⁺	+	H ₂ O	3.00×10^{-09}	Edwards et al. (2008)
$R_{cn}954$	2	H ₃ O ⁺	+	CH ₂ NH ₂	\rightarrow	CH ₃ NH ₃ ⁺	+	H ₂ O	2.10×10 ⁻⁰⁹	Edwards et al. (2008)
$R_{cn}955$	2	H ₃ O+	+	HCN	<i>,</i>	HCNH ⁺	+	H ₂ O	3.80×10 ⁻⁰⁹	McEwan and Anicich (20
$R_{cn}956$	2	H ₃ O+	+	CH, CN	\rightarrow	C ₂ H ₂ NH ⁺	+	H ₂ O	4.50×10 ⁻⁰⁹	McEwan and Anicich (20
$R_{cn}957$	2	H ₃ O+	+	HC ₂ N	\rightarrow	HC ₃ NH ⁺	+	H ₂ O	3.90×10 ⁻⁰⁹	McEwan and Anicich (20
$R_{cn}958$	2	H ₃ O+	+	C_3H_3N	\rightarrow	C ₃ H ₃ NH ⁺	+	H ₂ O	5.10×10 ⁻⁰⁹	Milligan et al. (2002)
R _{cn} 959	2	H ₃ O ⁺	+	C_3H_5N	\rightarrow	$C_3^{3}H_5^{3}NH^+$	+	H ₂ O	4.60×10 ⁻⁰⁹	Edwards et al. (2008)
R _{cn} 960	2	H ₃ O+	+	HC ₅ N	\rightarrow	$^{3}_{1}$ $^{5}_{1}$ 5 1	+	H ₂ O	5.60×10 ⁻⁰⁹	Edwards et al. (2009)
R _{cn} 961	3	H ₃ O+	+	H ₂ O	\rightarrow	Adduct ⁺		2	1.00×10 ⁻¹⁰	McEwan and Anicich (20
reenoor		1130	'	1120		1144460			3.40×10 ⁻²⁷	medical and immercial (20
$R_{cn}962$	2	H ₂ O ⁺	+	H ₂ CO	\rightarrow	CH_2OH^+	+	H_2O	3.00×10^{-09}	Anicich (1993)
R _{cn} 963	2	CO+	+	H	\rightarrow	H ⁺	+	CO	4.00×10 ⁻¹⁰	McEwan and Anicich (20
R _{cn} 964a	2	CO+	+	H ₂	\rightarrow	HCO+	+	H	7.28×10 ⁻¹⁰	McEwan and Anicich (20
R _{cn} 964b	2	CO+	+	H ₂	\rightarrow	HOC+	+	H	6.72×10 ⁻¹⁰	McEwan and Anicich (20
R _{cn} 965a	2	CO+	+	CH_4	\rightarrow	HCO ⁺	+	CH ₃	6.36×10 ⁻¹⁰	Melko et al. (2014)
R _{cn} 965b	2	CO+	+	CH ₄	\rightarrow	CH ⁺	+	CO	5.16×10 ⁻¹⁰	Melko et al. (2014)
R _{cn} 965c	2	CO+	+	CH ₄	\rightarrow	CH ₂ CO ⁺	+	Н	4.80×10 ⁻¹¹	Melko et al. (2014)
R _{cn} 966	2	CO+	+	C ₂ H ₂	\rightarrow	$C_2H_2^+$	+	CO	4.10×10 ⁻¹⁰	McEwan and Anicich (20
$R_{cn}967a$	2	CO+	+	C_2H_6	\rightarrow	C_{2}^{112} C_{2}^{112}	+	HCO	5.00×10 ⁻¹⁰	McEwan and Anicich (20
$R_{cn}967b$	2	CO ⁺	+	C_2H_6	\rightarrow	$C_{2}^{11}H_{4}^{+}$	+	H ₂ CO	8.62×10 ⁻¹⁰	McEwan and Anicich (20
Continued				C2116	~	C2114		11200	0.02 \ 10	MCDWall and America (20

1
1

	Type					Reaction					k	Ref.
R _{cn} 967c	2	CO ⁺	+	C_2H_6	\rightarrow	CH ₃ ⁺	+	CO	+	CH_3	2.78×10 ⁻¹¹	McEwan and Anicich (2007)
$R_{cn}968a$	2	CO ⁺	+	C_3H_8	\rightarrow	$C_3H_7^+$	+	HCO		-	1.30×10^{-10}	McEwan and Anicich (2007)
R _{cn} 968b	2	CO+	+	C_3H_8	\rightarrow	$C_3H_6^+$	+	H ₂ CO			3.00×10^{-11}	McEwan and Anicich (2007)
L _{cn} 968c	2	CO+	+	C_3H_8	\rightarrow	$C_2H_5^+$	+	CÕ	+	CH ₃	6.60×10^{-10}	McEwan and Anicich (2007)
c _n 968d	2	CO ⁺	+	C_3H_8	\rightarrow	$C_{2}^{2}H_{4}^{2}$	+	CO	+	CH_4	1.80×10 ⁻¹⁰	McEwan and Anicich (2007)
$R_{cn}969$	2	CO ⁺	+	N	\rightarrow	NO+	+	C		4	8.20×10 ⁻¹¹	McEwan and Anicich (2007)
$R_{cn}970$	2	CO+	+	NH ₂	\rightarrow	NH_3^+	+	CO			1.85×10^{-09}	Anicich (1993)
R _{cn} 971a	2	CO+	+	HCN	\rightarrow	HCN+	+	CO			3.06×10^{-09}	McEwan and Anicich (2007)
R _{cn} 971b	2	CO+	+	HCN	\rightarrow	HCO ⁺	+	CN			3.40×10^{-10}	McEwan and Anicich (2007)
c _n 972a	2	CO+	+	CH ₂ CN	\rightarrow	$C_2H_3N^+$	+	CO			2.25×10^{-09}	McEwan and Anicich (2007)
R _{cn} 972b	2	CO+	+	CH ₃ CN	\rightarrow	HC ₂ NH ⁺	+	HCO			7.50×10^{-10}	McEwan and Anicich (2007)
$R_{cn}973$	2	CO+	+	HC ₃ N	\rightarrow	HC ₃ N ⁺	+	CO			3.10×10^{-09}	McEwan and Anicich (2007)
R _{cn} 974a	2	CO+	+	C_3H_3N	\rightarrow	$C_2H_2^+$	+	HCN	+	CO	2.86×10^{-09}	Petrie et al. (1991a), Petrie et al. (1992)
R _{cn} 974b	2	CO+	+	C_3H_3N	\rightarrow	$C_3^2 H_3^2 N^+$	+	CO			1.54×10^{-09}	Petrie et al. (1991a), Petrie et al. (1992)
R _{cn} 975	3	CO+	+	N ₂	\rightarrow	CO+N					1.00×10^{-10}	McEwan and Anicich (2007), Molina-Cuberos et al.
				2		2					2.10×10^{-29}	(,,,
R _{cn} 976a	2	CO+	+	H ₂ O	\rightarrow	H_2O^+	+	CO			1.56×10^{-09}	McEwan and Anicich (2007)
R _{cn} 976b	2	CO+	+	H ₂ O	\rightarrow	HCO+	+	OH			8.40×10^{-10}	McEwan and Anicich (2007)
R _{cn} 977	3	CO+	+	CO	\rightarrow	Adduct ⁺					1.00×10^{-10}	McEwan and Anicich (2007)
· Cri	-										1.40×10^{-28}	(,
R _{cn} 978a	2	CO+	+	H ₂ CO	\rightarrow	HCO ⁺	+	HCO			1.65×10^{-09}	Anicich (1993)
R _{cn} 978b	2	CO+	+	H_2^2CO	\rightarrow	CH_2O^+	+	CO			1.35×10^{-09}	Anicich (1993)
$R_{cn}979$	3	HCO+	+	H ₂	\rightarrow	HCO+H ₂					1.00×10^{-10}	McEwan and Anicich (2007), Molina-Cuberos et al.
				2		2					8.30×10^{-31}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$R_{cn}980$	2	HCO ⁺	+	C_2H_2	\rightarrow	$C_{2}H_{3}^{+}$	+	CO			1.36×10^{-09}	McEwan and Anicich (2007)
R _{cn} 981	2	HCO+	+	C_2H_6	\rightarrow	$C_{2}^{2}H_{7}^{\frac{3}{4}}$	+	CO			1.20×10^{-10}	McEwan and Anicich (2007)
$R_{cn}982$	2	HCO+	+	NH ₂	\rightarrow	NH_4^+	+	CO			2.25×10^{-09}	Anicich (1993)
R _{cn} 983	2	HCO+	+	HCN	\rightarrow	HCNH+	+	CO			3.50×10^{-09}	McEwan and Anicich (2007)
R _{cn} 984	2	HCO+	+	CH, CN	\rightarrow	C ₂ H ₂ NH ⁺	+	CO			4.10×10^{-09}	McEwan and Anicich (2007)
$R_{cn}985$	2	HCO+	+	HC ₃ N	\rightarrow	HC ₃ NH ⁺	+	CO			3.80×10^{-09}	McEwan and Anicich (2007)
R _{cn} 986a	2	HCO+	+	OH	\rightarrow	H ₂ O+	+	CO			1.61×10^{-09}	Su-Chesnavich
R _{cn} 986b	2	HCO+	+	OH	\rightarrow	осон+	+	H			1.61×10^{-09}	Su-Chesnavich
$R_{cn}987$	2	HCO+	+	H ₂ O	\rightarrow	H ₃ O ⁺	+	CO			2.60×10^{-09}	McEwan and Anicich (2007)
$R_{cn}988$	3	HCO+	+	CO	\rightarrow	HCO+CO					1.00×10^{-10}	McEwan and Anicich (2007)
											2.40×10^{-30}	(***)
$R_{cn}989$	2	HCO+	+	$H_{2}CO$	\rightarrow	CH ₂ OH ⁺	+	CO			3.30×10 ⁻⁰⁹	Anicich (1993)
Continued				2		2 -					1	1 \ ' /

(:	۱	٠	
ì	_			

	Type					Reaction					k	Ref.
$R_{cn}990a$	2	HOC+	+	H_2	\rightarrow	H_3^+	+	CO			2.68×10 ⁻¹⁰	McEwan and Anicich (200
$R_{cn}990b$	2	HOC ⁺	+	H_2	\rightarrow	HCO ⁺	+	H_2			2.02×10^{-10}	McEwan and Anicich (200
$R_{cn}991$	2	HOC ⁺	+	CH_4	\rightarrow	CH_5^+	+	CO			1.10×10^{-09}	McEwan and Anicich (200
$R_{cn}992$	2	HOC ⁺	+	N_2	\rightarrow	N_2H^+	+	CO			6.70×10^{-10}	Anicich (1993)
$R_{cn}993$	2	HOC+	+	CŌ	\rightarrow	HCO ⁺	+	CO			6.00×10^{-10}	McEwan and Anicich (200
$R_{cn}994a$	2	CH ₂ O ⁺	+	CH_4	\rightarrow	CH ₂ OH ⁺	+	CH_3			9.35×10^{-11}	Anicich (1993)
$R_{cn}994b$	2	CH ₂ O ⁺	+	CH_4	\rightarrow	CH ₃ CHOH ⁺	+	H			1.65×10^{-11}	Anicich (1993)
$R_{cn}995a$	2	CH ₂ O ⁺	+	NH_3	\rightarrow	NH_3^+	+	H_2CO			7.40×10^{-10}	Anicich (1993)
$R_{cn}995b$	2	CH ₂ O ⁺	+	NH_3	\rightarrow	NH_4^+	+	HCO			1.26×10^{-09}	Anicich (1993)
$R_{cn}996$	2	CH ₂ O ⁺	+	HCN	\rightarrow	HCNH ⁺	+	HCO			1.40×10^{-09}	Anicich (1993)
$R_{cn}997$	2	CH ₂ O ⁺	+	H_2O	\rightarrow	H_3O^+	+	HCO			2.10×10^{-09}	Anicich (1993)
$R_{cn}998$	2	CH_2O^+	+	H_2CO	\rightarrow	CH ₂ OH ⁺	+	HCO			3.20×10^{-09}	Anicich (1993)
$R_{cn}999$	2	CH ₂ OH ⁺	+	C_4H_2	\rightarrow	$C_4H_3^+$	+	H_2CO			9.30×10^{-10}	McEwan and Anicich (200
$R_{cn}1000$	2	CH ₂ OH ⁺	+	NH_3	\rightarrow	NH_4^+	+	H_2CO			2.05×10^{-09}	Anicich (1993)
$R_{cn}1001$	2	CH ₂ OH ⁺	+	HCN	\rightarrow	HCNH ⁺	+	H_2CO			1.30×10^{-09}	McEwan and Anicich (200
$R_{cn}1002$	2	CH ₂ OH ⁺	+	H_2O	\rightarrow	H_3O^+	+	H_2CO			2.30×10^{-10}	McEwan and Anicich (200
$R_{cn}1003a$	2	CH ₂ CO ⁺	+	NH_3	\rightarrow	CH ₃ NH ₂ ⁺	+	CO			4.40×10^{-10}	Iraqi et al. (1991)
$R_{cn}1003b$	2	CH ₂ CO ⁺	+	NH_3	\rightarrow	NH_4^+	+	ONEUT	1		4.40×10^{-10}	Iraqi et al. (1991)
$R_{cn}1004$	2	CH ₃ CHOH ⁺	+	NH ₃	\rightarrow	NH_4^{+}	+	CH ₃ CH	О		1.80×10^{-09}	Wilson et al. (1994a)
$R_{cn}1005a$	2	CH ₃ CHOH ⁺	+	CH ₃ CN	\rightarrow	C ₂ H ₃ NH ⁺	+	CH ₃ CH	О		3.01×10^{-09}	Wilson et al. (1994a)
$R_{cn}1005b$	2	CH ₃ CHOH ⁺	+	CH ₃ CN	\rightarrow	C ₄ H ₈ NO ⁺ H ⁺	+	hv			1.92×10^{-10}	Wilson et al. (1994a)
$R_{cn}1006a$	2	CO_2^{\uparrow}	+	Н	\rightarrow	H ⁺	+	CO_2			5.53×10 ⁻¹¹	Anicich (1993)
$R_{cn}1006b$	2	CO_2^{\mp}	+	H	\rightarrow	HCO^{+}	+	0			2.70×10^{-10}	Anicich (1993)
$R_{cn}1007$	2	CO_2^{+}	+	H_2	\rightarrow	$OCOH^+$	+	H			6.20×10^{-10}	Anicich (1993)
$R_{cn}1008a$	2	CO_2^{\mp}	+	CH_4	\rightarrow	CH_4^+	+	CO_2			2.63×10^{-10}	Anicich (1993)
$R_{cn}1008b$	2	CO ⁺	+	CH_4	\rightarrow	OCOH ⁺	+	CH ₃			7.88×10^{-10}	Anicich (1993)
$R_{cn}1009$	2	$CO_2^{\frac{1}{2}}$	+	C_2H_2	\rightarrow	$C_2H_2^+$	+	CO_2			5.60×10^{-10}	Tsuji et al. (1994)
$R_{cn}1010a$	2	CO [‡]	+	C_2H_4	\rightarrow	$C_2H_4^{\mp}$	+	CO_2			3.07×10^{-10}	Tsuji et al. (1994)
$R_{cn}1010b$	2	CO [‡]	+	C_2H_4	\rightarrow	$C_2H_3^{\frac{1}{4}}$	+	CO_2	+	H	1.88×10 ⁻¹⁰	Tsuji et al. (1994)
$R_{cn}1010c$	2	CO [‡]	+	C_2H_4	\rightarrow	$C_2H_2^{\frac{1}{4}}$	+	CO_2	+	H_2	4.95×10^{-10}	Tsuji et al. (1994)
$R_{cn}1011a$	2	$CO_2^{\frac{7}{2}}$	+	C_2H_6	\rightarrow	$C_{2}^{2}H_{5}^{+}$	+	CO,	+	н	2.50×10^{-10}	Tsuji et al. (1994)
R _{cn} 1011b	2	CO [‡]	+	C_2H_6	\rightarrow	$C_2H_4^{\uparrow}$	+	CO_2	+	H_2	5.30×10^{-10}	Tsuji et al. (1994)
$R_{cn}1012a$	2	CO2+	+	C_3H_6	\rightarrow	$C_{3}^{2}H_{6}^{+}$	+	CO,		2	6.51×10 ⁻¹¹	Tsuji et al. (1994)
$R_{cn}1012b$	2	CO [‡]	+	C_3H_6	\rightarrow	$C_{3}^{3}H_{5}^{+}$	+	CO_2^2	+	Н	6.32×10 ⁻¹⁰	Tsuji et al. (1994)
$R_{cn}1012c$	2	CO2+	+	C_3H_6	\rightarrow	$C_3H_4^+$	+	CO,	+	H_2	1.77×10^{-10}	Tsuji et al. (1994)
$R_{cn}1012d$	2	CO [‡]	+	C_3H_6	\rightarrow	c-C ₃ H ₃ ⁺	+	CO_2	+	$H_{2}^{2} + H$	2.79×10^{-11}	Tsuji et al. (1994)
Continued				- 5 -6				2		2 '	1	(-00-)

	Type					Reaction					k	Ref.
$R_{cn}1012e$	2	CO ₂ ⁺	+	C_3H_6	\rightarrow	$1-C_{3}H_{3}^{+}$	+	CO_2	+	$H_2 + H$	2.79×10 ⁻¹¹	Tsuji et al. (1994)
$R_{cn}1013a$	2	CO ²	+	C_3H_8	\rightarrow	$C_3H_7^+$	+	CO,	+	H	9.36×10^{-11}	Tsuji et al. (1994)
$R_{cn}1013b$	2	CO ₂ [±]	+	C_3H_8	\rightarrow	$C_3H_6^+$	+	CO_2	+	H_2	2.34×10^{-11}	Tsuji et al. (1994)
$R_{cn}1013c$	2	CO ²	+	C_3H_8	\rightarrow	$C_3H_5^+$	+	CO,	+	$H_2 + H$	2.34×10^{-11}	Tsuji et al. (1994)
$R_{cn}1013d$	2	CO ₂ [±]	+	C_3H_8	\rightarrow	$C_2H_5^+$	+	CO_2	+	$\widetilde{CH_3}$	5.46×10^{-10}	Tsuji et al. (1994)
$R_{cn}1013e$	2	CO ₂	+	C_3H_8	\rightarrow	$C_2H_4^{+}$	+	CO,	+	CH_4	9.36×10^{-11}	Tsuji et al. (1994)
$R_{cn}1014a$	2	CO ₂ [±]	+	C_4H_{10}	\rightarrow	$C_4^{\uparrow}H_9^{\uparrow}$	+	CO_2	+	н	7.00×10^{-11}	Tsuji et al. (1993)
$R_{cn}1014b$	2	CO ₂	+	C_4H_{10}	\rightarrow	$C_3H_7^+$	+	CO_2	+	CH_3	5.30×10^{-10}	Tsuji et al. (1993)
$R_{cn}1014c$	2	CO ₂	+	$C_{4}H_{10}$	\rightarrow	$C_3H_6^+$	+	CO ₂	+	CH_4	9.00×10^{-11}	Tsuji et al. (1993)
$R_{cn}1014d$	2	CO ₂	+	C_4H_{10}	\rightarrow	$C_3H_5^+$	+	CO_2	+	$CH_4 + H$	3.10×10^{-10}	Tsuji et al. (1993)
$R_{cn}1015$	2	CO ₂	+	N	\rightarrow	CO^{+}	+	NO			3.40×10^{-10}	Scott et al. (1998)
$R_{cn}1016$	2	CO ₂	+	NH_3	\rightarrow	NH_3^+	+	CO_2			1.90×10^{-09}	Anicich (1993)
$R_{cn}1017a$	2	CO ₂	+	HCN	\rightarrow	HCN ⁺	+	CO ₂			8.10×10 ⁻¹⁰	McEwan et al. (198
$R_{cn}1017b$	2	CO ₂	+	HCN	\rightarrow	$OCOH^{+}$	+	CN			9.00×10^{-11}	McEwan et al. (198
$R_{cn}1018$	2	CO_2^+	+	CO	\rightarrow	CO^{+}	+	CO_2			1.90×10^{-12}	Shul et al. (1988)
$R_{cn}1019$	2	CO ₂ ⁺	+	NO	\rightarrow	NO ⁺	+	CO_2			1.23×10^{-10}	Anicich (1993)
$R_{cn}1020$	2	OCOH+	+	CH_4	\rightarrow	CH_5^+	+	CO_2			7.20×10^{-10}	Anicich (1993)
$R_{cn}1021$	2	OCOH ⁺	+	C_2H_2	\rightarrow	$C_{2}H_{3}^{+}$	+	CO_2			1.37×10^{-09}	Mackay et al. (1977
$R_{cn}1022$	2	OCOH ⁺	+	CH ₃ CN	\rightarrow	$C_2H_3NH^+$	+	CO_2			4.10×10^{-09}	Mackay et al. (1976)
$R_{cn}1023$	2	OCOH ⁺	+	$H_2\tilde{O}$	\rightarrow	$H_3^2O_+$	+	CO_2^2			2.65×10^{-09}	Anicich (1993)
$R_{cn}1024$	2	OCOH ⁺	+	NO	\rightarrow	HNO ⁺	+	CO_2			1.00×10^{-10}	Roche et al. (1971)
$R_{cn}1025$	2	NO ⁺	+	C_6H_6	\rightarrow	$C_{6}H_{6}^{+}$	+	NO			1.43×10 ⁻⁰⁹	Anicich (1993)
$R_{cn}1026$	2	NO ⁺	+	CH ₃ NH ₂	\rightarrow	$CH_3NH_2^+$	+	NO			8.20×10^{-10}	Anicich (1993)

Table B.17: Thermal electron reaction list (electron recombination) $\,$

		Type					Reaction	ı				k Ref.
er1	4	H ⁺	+	е	\rightarrow	Н					$3.50\times10^{-12}\mathrm{T}^{0.70}$	Wakelam et al. (2015)
er2	4	C ⁺	+	e	\rightarrow	C					$4.67 \times 10^{-12} T^{0.60}$	Nahar and Pradhan (1997)
er3	4	N ⁺	+	e	\rightarrow	N					$3.50 \times 10^{-12} T^{0.70}$	Dutuit et al. (2013)
er4	4	O ⁺	+	e	\rightarrow	$O(^{3}P)$					$3.40 \times 10^{-12} T^{0.63}$	Wakelam et al. (2015)
er5	4	$^{\mathrm{H}_{2}^{+}}_{\mathrm{H}_{3}^{+}}$	+	e	\rightarrow	H	+	H			$1.60 \times 10^{-08} T^{0.43}$	Mitchell (1990)
er6a	4	H [‡]	+	e	\rightarrow	H	+	H	+	Н	$4.36 \times 10^{-08} \text{T}^{0.52}$	Wakelam et al. (2015)
er6b	4	H ⁴	+	e	\rightarrow	H_2	+	H			$2.34 \times 10^{-08} T^{0.52}$	Wakelam et al. (2015)
er7	4	H ₅ ⁺	+	e	\rightarrow	H ₂	+	H_2	+	H	$4.00\times10^{-06}\mathrm{T}^{0.70}$	Johnsen and Biondi (1974)
er8	4	CH ⁺	+	e	\rightarrow	Η̈́	+	C			$1.00 \times 10^{-07} \mathrm{T}^{0.37}$	Amitay et al. (1996)
er9a	4	CH ₂ ⁺	+	e	\rightarrow	C	+	H	+	Н	$4.03\times10^{-07}\mathrm{T}^{0.60}$	Larson et al. (1998)
er9b	4	CH_2^{+}	+	e	\rightarrow	CH	+	H			$1.60 \times 10^{-07} \mathrm{T}^{0.60}$	Larson et al. (1998)
er9c	4	CH ²	+	e	\rightarrow	C	+	H_2			$7.68 \times 10^{-08} \text{T}^{0.60}$	Larson et al. (1998)
er 10	4	CH ⁷ ₂ N ₂	+	e	\rightarrow	3CH ₂	+	N_2			$5.00 \times 10^{-06} T^{0.70}$	est.(clusters)
$_{er}11a$	4	CH ₂ [±]	+	e	\rightarrow	3 CH $_2$	+	Η̈́			$1.28 \times 10^{-07} \text{T}^{0.53}$	Sheehan and StMaurice (2004b), Vejby-Christensen et al. (
_{er} 11b	4	CH [‡]	+	e	\rightarrow	C ~	+	H_2	+	Н	$9.60 \times 10^{-08} T^{0.53}$	Sheehan and StMaurice (2004b), Vejby-Christensen et al. (
r11c	4	CH ⁺	+	e	\rightarrow	CH	+	ΗĨ	+	H	$5.12\times10^{-08}\mathrm{T}^{0.53}$	Sheehan and StMaurice (2004b), Vejby-Christensen et al. (
er11d	4	CH ²	+	e	\rightarrow	CH	+	H_2			$4.48 \times 10^{-08} \mathrm{T}^{0.53}$	Sheehan and StMaurice (2004b), Vejby-Christensen et al. (
er12	4	CH ⁺ ₃ N ₂	+	e	\rightarrow	CH ₃	+	N_2			$5.00 \times 10^{-06} T^{0.70}$	est.(clusters)
$_{er}13a$	4	CH [‡]	+	e	\rightarrow	3CH_2	+	Η̈́	+	Н	$8.72 \times 10^{-07} T^{0.66}$	Thomas et al. (2013)
_{er} 13b	4	CH ⁺	+	e	\rightarrow	CH	+	H_2	+	Н	$3.93 \times 10^{-07} T^{0.66}$	Thomas et al. (2013)
_{er} 13c	4	CH [‡]	+	e	\rightarrow	CH_3	+	Η̈́			$3.08 \times 10^{-07} \text{T}^{0.66}$	Thomas et al. (2013)
r 13d	4	CH [‡]	+	e	\rightarrow	3 CH $_{\circ}$	+	H_2			$1.03 \times 10^{-07} T^{0.66}$	Thomas et al. (2013)
_{er} 13e	4	CH [‡]	+	e	\rightarrow	C 2	+	H_2^2	+	H_2	$3.42\times10^{-08}T^{0.66}$	Thomas et al. (2013)
$_{er}14a$	4	CH [‡]	+	e	\rightarrow	CH_3	+	Η̈́	+	ΗŽ	$7.61 \times 10^{-07} T^{0.72}$	Kamińska et al. (2010), Semaniak et al. (1998)
$_{er}14b$	4	CH ⁺	+	e	\rightarrow	3 CH $_{2}$	+	H_2	+	Н	$1.87 \times 10^{-07} T^{0.72}$	Kamińska et al. (2010), Semaniak et al. (1998)
$_{er}14c$	4	CH [∓]	+	e	\rightarrow	CH_4	+	Η̈́			$5.34 \times 10^{-08} \text{T}^{0.72}$	Kamińska et al. (2010), Semaniak et al. (1998)
er 14d	4	CH [±]	+	e	\rightarrow	CH ₃	+	H_2			$5.23 \times 10^{-08} \mathrm{T}^{0.72}$	Kamińska et al. (2010), Semaniak et al. (1998)
er 14e	4	CH ²	+	e	\rightarrow	CH	+	H_2^2	+	H_2	$3.60 \times 10^{-08} T^{0.72}$	Kamińska et al. (2010), Semaniak et al. (1998)
er 15	4	CH [∓] CH₄	+	e	\rightarrow	CH_4	+	\widetilde{CH}_{A}	+	ΗŽ	$4.00\times10^{-06}\mathrm{T}^{0.70}$	Capone et al. (1976)
er 16	4	CH ¹ HNC	+	e	\rightarrow	HNC	+	CH_4		н	$4.00\times10^{-06}T^{0.70}$	est.(clusters)
_{er} 17a	4	C₂H ⁺	+	e	\rightarrow	C_2	+	H 4			$1.16 \times 10^{-07} \text{T}^{0.76}$	Ehlerding et al. (2004)
$_{er}17b$	4	$C_2^2H^+$	+	e	\rightarrow	CH	+	C			$1.05 \times 10^{-07} T^{0.76}$	Ehlerding et al. (2004)
er 17c	4	$C_2^2H^+$	+	e	\rightarrow	C	+	C	+	Н	$4.86 \times 10^{-08} \text{T}^{0.76}$	Ehlerding et al. (2004)
er 18a	4	$C_{2}^{2}H_{2}^{+}$	+	e	\rightarrow	C_2H	+	Н			$1.35 \times 10^{-07} \mathrm{T}^{0.50}$	Mitchell (1990), Derkatch et al. (1999)
	Contin	ued on Next	Page.			-					ı	

		Type					Reaction	1				k Ref.
D 10b	4		_			<i>C</i>		Н	+	Н	$8.10 \times 10^{-08} T^{0.50}$	Mitchell (1990),Derkatch et al. (1999)
R _{er} 18b R _{er} 18c	4	$C_{2}^{1}H_{2}^{+}$ $C_{2}^{1}H_{2}^{+}$	+	e e	\rightarrow \rightarrow	$^{\mathrm{C}_2}_{\mathrm{CH}}$	++	н СН	+	п	$3.51 \times 10^{-08} \text{T}^{0.50}$	Mitchell (1990), Derkatch et al. (1999) Mitchell (1990), Derkatch et al. (1999)
	4	$C_{2}H_{2}^{+}$ $C_{2}H_{2}^{+}$				³ CH ₂		СП			$1.35 \times 10^{-08} \text{T}^{0.50}$	Mitchell (1990), Derkatch et al. (1999) Mitchell (1990), Derkatch et al. (1999)
R _{er} 18d	4		+	e	\rightarrow		+				$5.40 \times 10^{-09} \text{T}^{0.50}$	Mitchell (1990), Derkatch et al. (1999) Mitchell (1990), Derkatch et al. (1999)
R _{er} 18e		C ₂ H ₂ ⁺		е	\rightarrow		+	H_2		Н	$2.95 \times 10^{-07} \text{T}^{0.84}$	
R _{er} 19a	4	C ₂ H ₃ ⁺	+	e	\rightarrow	C_2H	++	H H	+	п	$1.45 \times 10^{-07} \text{T}^{0.84}$	Kalhori et al. (2002) Kalhori et al. (2002)
R _{er} 19b		C ₂ H ₃ ⁺	+	е	\rightarrow	C_2H_2					$3.00 \times 10^{-08} \text{T}^{0.84}$	Kalhori et al. (2002) Kalhori et al. (2002)
R _{er} 19c	4	C ₂ H ₃ ⁺	+	e	\rightarrow	C_2H	+	H_2		Н	$1.50 \times 10^{-08} \text{T}^{0.84}$	Kalhori et al. (2002) Kalhori et al. (2002)
R _{er} 19d	4	C ₂ H ₃ ⁺	+	е	\rightarrow	$^{\mathrm{C_2}}_{^3\mathrm{CH_2}}$	+	H ₂	+	н	$1.50 \times 10^{-08} \text{T}^{0.84}$ $1.50 \times 10^{-08} \text{T}^{0.84}$	
R _{er} 19e	4	C ₂ H ₃ ⁺	+	е	\rightarrow		+	CH			$3.00 \times 10^{-09} \text{T}^{0.84}$	Kalhori et al. (2002)
R _{er} 19f	4	$C_2H_3^+$	+	e	\rightarrow	CH_3	+	С		**	$3.00 \times 10^{-07} \text{T}^{0.76}$ $3.70 \times 10^{-07} \text{T}^{0.76}$	Kalhori et al. (2002)
R _{er} 20a	4	C ₂ H ₄ ⁺	+	e	\rightarrow	C_2H_2	+	H	+	H	3.70×10 °T0.76	Ehlerding et al. (2004)
R _{er} 20b	4	$C_2H_4^+$	+	e	\rightarrow	C_2H_3	+	H			$6.16\times10^{-08}\mathrm{T}^{0.76}$ $5.60\times10^{-08}\mathrm{T}^{0.76}$	Ehlerding et al. (2004)
$R_{er}20c$	4	$C_{2}H_{4}^{+}$	+	e	\rightarrow	C_2H	+	H_2	+	Η	5.60×10 ⁻⁰⁸ T ^{0.76}	Ehlerding et al. (2004)
$R_{er}20d$	4	$C_2H_4^+$	+	e	\rightarrow	C_2H_2	+	H_2			$3.36 \times 10^{-08} T^{0.76}$	Ehlerding et al. (2004)
$R_{er}20e$	4	$C_{2}H_{4}^{+}$	+	e	\rightarrow	$^3\mathrm{CH}_2$	+	3CH	2		$2.24 \times 10^{-08} T^{0.76}$	Ehlerding et al. (2004)
$R_{er}20f$	4	$C_{2}H_{4}^{+}$	+	e	\rightarrow	CH_3	+	$_{\rm CH}$			$1.12 \times 10^{-08} \mathrm{T}^{0.76}$	Ehlerding et al. (2004)
$R_{er}20g$	4	$C_2H_4^+$	+	e	\rightarrow	CH_4	+	C			$5.60 \times 10^{-09} T^{0.76}$	Ehlerding et al. (2004)
$R_{er}21a$	4	$C_{2}H_{5}^{+}$	+	e	\rightarrow	C_2H_2	+	H_2	+	H	$3.55 \times 10^{-07} \mathrm{T}^{1.20}$	McLain et al. (2004),Geppert et al. (2004a)
$R_{er}21b$	4	$C_2H_5^+$	+	e	\rightarrow	C_2H_3	+	H	+	H	$3.33 \times 10^{-07} T^{1.20}$	McLain et al. (2004),Geppert et al. (2004a)
$R_{er}21c$	4	$C_2H_5^+$	+	e	\rightarrow	CH_3	+	3CH,	2		$2.08 \times 10^{-07} T^{1.20}$	McLain et al. (2004),Geppert et al. (2004a)
$R_{er}21d$	4	$C_2H_5^+$	+	e	\rightarrow	C_2H_2	+	H_2	+	H	$1.59 \times 10^{-07} T^{1.20}$	McLain et al. (2004),Geppert et al. (2004a)
$R_{er}21e$	4	$C_2H_5^+$	+	e	\rightarrow	C_2H_4	+	H			$1.47 \times 10^{-07} T^{1.20}$	McLain et al. (2004),Geppert et al. (2004a)
$R_{er}22$	4	$C_2H_5^+CH_4$	+	e	\rightarrow	C_2H_4	+	CH_4	+	H	$4.00\times10^{-06}T^{0.70}$	Capone et al. (1976)
$R_{er}23a$	4	C ₂ H ₆ ⁺	+	e	\rightarrow	C_2H_4	+	н	+	H	$4.60 \times 10^{-07} T^{0.70}$	eq.(E23),Janev and Reiter (2004)
R _{er} 23b	4	C ₂ H ₆ ⁺	+	e	\rightarrow	C_2H_5	+	H			$3.00 \times 10^{-07} T^{0.70}$	eq.(E23),Janev and Reiter (2004)
$R_{er}23c$	4	$C_{2}^{2}H_{6}^{4}$	+	e	\rightarrow	C_2H_4	+	H_2			$8.00 \times 10^{-08} T^{0.70}$	eq.(E23), Janev and Reiter (2004)
$R_{er}23d$	4	C ₂ H ₆ ⁺	+	e	\rightarrow	CH,	+	CH,			$8.00 \times 10^{-08} T^{0.70}$	eq.(E23),Janev and Reiter (2004)
$R_{er}23e$	4	$C_{2}^{2}H_{6}^{+}$	+	e	\rightarrow	CH_4	+	3CH	,		$4.00 \times 10^{-08} T^{0.70}$	eq.(E23),Janev and Reiter (2004)
R _{er} 23f	4	C ₂ H ₆ ⁺	+	e	\rightarrow	C ₂ H ₃	+	H ₂	+	Н	$3.00 \times 10^{-08} T^{0.70}$	eq.(E23),Janev and Reiter (2004)
$R_{er}24a$	4	C ₂ H ₇ ⁺	+	e	\rightarrow	C_2H_6	+	H			$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}24b$	4	$C_{2}H_{7}^{+}$	+	e	$\stackrel{'}{\rightarrow}$	CH_4	+	CH ₃			$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}25$	4	$C_2H_7^+CH_4$	+	e	$\stackrel{'}{\rightarrow}$	C_2H_6	+	CH ₄	+	Н	$4.00 \times 10^{-06} T^{0.70}$	Capone et al. (1976)
$R_{er}26$	4	C ₃ ⁺ C ₃	+	e	\rightarrow	C ₂ 11 ₆	+	C C	- 1	-11	$4.00 \times 10^{-17} T^{0.70}$	eq.(E23), Heber et al. (2006)
$R_{er}27a$	4	C_3^3 H ⁺	+	e	\rightarrow	C_2	+	Н			$3.97 \times 10^{-07} \text{T}^{0.70}$	eq.(E23),Angelova et al. (2004b),Chabot et a
$R_{er}27b$	4	C_3H^+	+	e	\rightarrow	C_2H	+	C			$1.87 \times 10^{-07} T^{0.70}$	eq.(E23),Angelova et al. (2004b),Chabot et a
$R_{er}27c$	4	C_3H^+	+	e	\rightarrow	C_2 C_2	+	CH			$1.56 \times 10^{-08} \text{T}^{0.70}$	eq.(E23),Angelova et al. (2004b),Chabot et a
terzic		ued on Next			\rightarrow	\circ_2	+	ОП			1.50 × 10 1	eq.(1223),Angelova et al. (2004b),Chabot et a

		Type				F	eaction	n				k Ref.
$R_{er}28a$	4	C ₃ H ₂ ⁺	+	е	\rightarrow	C ₃ H	+	Н			$3.66 \times 10^{-07} T^{0.70}$	eq.(E23),Angelova et al. (2004b),Chabot et al. (2013)
$R_{er}28b$	4	$C_3H_2^{\stackrel{7}{+}}$	+	e	\rightarrow	C_3	+	H_2			$1.94 \times 10^{-07} T^{0.70}$	eq.(E23), Angelova et al. (2004b), Chabot et al. (2013)
$R_{er}28c$	4	C ₃ H ₂ [‡]	+	e	\rightarrow	C_3	+	Η̈́	+	Н	$1.40 \times 10^{-07} T^{0.70}$	eq.(E23), Angelova et al. (2004b), Chabot et al. (2013)
$R_{er}28d$	4	C ₃ H ₂ [±]	+	e	\rightarrow	C_2H_2	+	C			$7.71 \times 10^{-08} T^{0.70}$	eq.(E23), Angelova et al. (2004b), Chabot et al. (2013)
$R_{er}28e$	4	$C_3H_2^{\uparrow}$	+	e	\rightarrow	C_2H^2	+	$_{\mathrm{CH}}$			$1.43 \times 10^{-08} \text{T}^{0.70}$	eq.(E23), Angelova et al. (2004b), Chabot et al. (2013)
$R_{er}28f$	4	C ₃ H ₂ [‡]	+	e	\rightarrow	C_2	+	3CH_2			$8.56 \times 10^{-09} T^{0.70}$	eq.(E23), Angelova et al. (2004b), Chabot et al. (2013)
$R_{er}29a$	4	c-C ₃ H ₃ +	+	e	\rightarrow	C ₃ H	+	ΗŽ	+	Н	$4.00 \times 10^{-07} \mathrm{T}^{1.00}$	McLain et al. (2005), Janev and Reiter (2004)
$R_{er}29b$	4	c-C ₃ H ₃ ⁺	+	e	\rightarrow	C_3H_2	+	H			$2.88 \times 10^{-07} T^{1.00}$	McLain et al. (2005), Janev and Reiter (2004)
$R_{er}29c$	4	c-C ₃ H ₃ ⁺	+	e	\rightarrow	C_3H	+	H_2			$4.80 \times 10^{-08} \mathrm{T}^{1.00}$	McLain et al. (2005), Janev and Reiter (2004)
R_{er} 29d	4	c-C ₃ H ₃ ⁺	+	e	\rightarrow	C_2H_2	+	$\tilde{\mathrm{CH}}$			$2.40\times10^{-08}T^{1.00}$	McLain et al. (2005), Janev and Reiter (2004)
$R_{er}29e$	4	c-C ₃ H ₃ ⁺	+	e	\rightarrow	C_2H	+	3CH ₂			$2.40\times10^{-08}\mathrm{T}^{1.00}$	McLain et al. (2005), Janev and Reiter (2004)
$R_{er}29f$	4	c-C ₃ H ₃ ⁺	+	e	\rightarrow	C_2	+	CH_3			$1.60 \times 10^{-08} \mathrm{T}^{1.00}$	McLain et al. (2005), Janev and Reiter (2004)
$R_{er}30a$	4	1-C ₃ H ₃ ⁺	+	e	\rightarrow	C_3H	+	H	+	H	$5.75 \times 10^{-08} \mathrm{T}^{1.00}$	McLain et al. (2005), Janev and Reiter (2004)
$R_{er}30b$	4	1-C ₃ H ₃ ⁺	+	e	\rightarrow	C_3H_2	+	H			$4.15 \times 10^{-08} \mathrm{T}^{1.00}$	McLain et al. (2005), Janev and Reiter (2004)
$R_{er}30c$	4	$1-C_3H_3^+$	+	e	\rightarrow	C_3H	+	H_2			$6.90 \times 10^{-09} \mathrm{T}^{1.00}$	McLain et al. (2005), Janev and Reiter (2004)
$R_{er}30d$	4	$1-C_{3}H_{3}^{+}$	+	e	\rightarrow	C_2H_2	+	$_{\rm CH}$			$3.45 \times 10^{-09} \mathrm{T}^{1.00}$	McLain et al. (2005), Janev and Reiter (2004)
$R_{er}30e$	4	$l-C_3H_3^+$	+	e	\rightarrow	C_2H	+	$^3\mathrm{CH}_2$			$3.45 \times 10^{-09} \mathrm{T}^{1.00}$	McLain et al. (2005), Janev and Reiter (2004)
$R_{er}30f$	4	1-C ₃ H ₃ ⁺	+	e	\rightarrow	C_2	+	CH_3			$2.30 \times 10^{-09} \mathrm{T}^{1.00}$	McLain et al. (2005), Janev and Reiter (2004)
$R_{er}31a$	4	$C_3H_4^+$	+	e	\rightarrow	C_3H_3	+	H			$2.57 \times 10^{-06} \mathrm{T}^{0.67}$	Geppert et al. (2004c)
$R_{er}31b$	4	C ₃ H ₄ ⁺	+	e	\rightarrow	C_2H_2	+	$^3\mathrm{CH}_2$			$1.77 \times 10^{-07} \mathrm{T}^{0.67}$	Geppert et al. (2004c)
$R_{er}31c$	4	$C_3H_4^+$	+	e	\rightarrow	C_2H_3	+	$_{\rm CH}$			$2.95 \times 10^{-08} \mathrm{T}^{0.67}$	Geppert et al. (2004c)
$R_{er}31d$	4	C ₃ H ₄ ⁺	+	e	\rightarrow	C_2H	+	CH_3			$2.95 \times 10^{-08} \mathrm{T}^{0.67}$	Geppert et al. (2004c)
$R_{er}32a$	4	C ₃ H ₅ ⁺	+	e	\rightarrow	C_3H_3	+	H	+	Η	$5.60 \times 10^{-07} T^{0.70}$	eq.(E23),Janev and Reiter (2004)
$R_{er}32b$	4	C ₃ H ₅ ⁺	+	e	\rightarrow	CH_3CCH	+	H			$2.70 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),Janev and Reiter (2004)
$R_{er}32c$	4	$C_3H_5^+$	+	e	\rightarrow	C_3H_3	+	H_2			$4.00 \times 10^{-08} \mathrm{T}^{0.70}$	eq.(E23),Janev and Reiter (2004)
$R_{er}32d$	4	C ₃ H ₅ ⁺	+	e	\rightarrow	C_3H_2	+	H_2	+	Η	$3.00 \times 10^{-08} T^{0.70}$	eq.(E23),Janev and Reiter (2004)
$R_{er}32e$	4	C ₃ H ₅ ⁺	+	e	\rightarrow	C_2H	+	CH_4			$3.00 \times 10^{-08} T^{0.70}$	eq.(E23),Janev and Reiter (2004)
$R_{er}32f$	4	C ₃ H ₅ ⁺	+	e	\rightarrow	C_2H_2	+	CH_3			$3.00 \times 10^{-08} T^{0.70}$	eq.(E23),Janev and Reiter (2004)
$R_{er}32g$	4	C ₃ H ₅ ⁺	+	e	\rightarrow	C_2H_4	+	CH			$2.00 \times 10^{-08} T^{0.70}$	eq.(E23),Janev and Reiter (2004)
$R_{er}32h$	4	C ₃ H ₅ ⁺	+	e	\rightarrow	C_2H_3	+	$^3\mathrm{CH}_2$			$2.00 \times 10^{-08} T^{0.70}$	eq.(E23),Janev and Reiter (2004)
$R_{er}33a$	4	C ₃ H ₆ ⁺	+	e	\rightarrow	CH_3CCH	+	H	+	Η	$4.40 \times 10^{-07} T^{0.70}$	eq.(E23), Angelova et al. (2004b), Janev and Reiter (200
$R_{er}33b$	4	C ₃ H ₆ ⁺	+	e	\rightarrow	C_3H_5	+	H			$2.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23), Angelova et al. (2004b), Janev and Reiter (200
$R_{er}33c$	4	C ₃ H ₆ ⁺	+	e	\rightarrow	C_2H_4	+	$^3\mathrm{CH}_2$			$1.20 \times 10^{-07} T^{0.70}$	eq.(E23), Angelova et al. (2004b), Janev and Reiter (200
$R_{er}33d$	4	C ₃ H ₆ ⁺	+	e	\rightarrow	C_2H_3	+	CH_3			$1.20 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23), Angelova et al. (2004b), Janev and Reiter (200
$R_{er}33e$	4	C ₃ H ₆ ⁺	+	e	\rightarrow	C_2H_5	+	$^{\rm CH}$			$8.00 \times 10^{-08} T^{0.70}$	eq.(E23), Angelova et al. (2004b), Janev and Reiter (200
$R_{er}33f$	4	C ₃ H ₆ ⁺	_+	e	\rightarrow	C_3H_3	+	H_2	+	Н	$3.00\times10^{-08}\mathrm{T}^{0.70}$	eq.(E23), Angelova et al. (2004b), Janev and Reiter (200
	Contin	ued on Next	Page									

	-	Type			R	eaction	n			k Ref.		
$R_{er}33g$	4	C ₃ H ₆ ⁺	+	е	\rightarrow	CH ₃ CCH	+	H ₂		$3.00 \times 10^{-08} T^{0.70}$	eq.(E23),Angelova et al. (2004b),Janev	and Reiter (2004)
$R_{er}34a$	4	C ₃ H ₇ ⁺	+	e	\rightarrow	C_3H_6	+	н		$8.36 \times 10^{-07} T^{0.68}$	Ehlerding et al. (2003)	, ,
$R_{er}34b$	4	C ₃ H ₇ ⁺	+	e	\rightarrow	C_2H_3	+	$CH_3 +$	Н	$3.80 \times 10^{-07} T^{0.68}$	Ehlerding et al. (2003)	
$R_{er}34c$	4	C ₃ H ₇ ⁺	+	e	\rightarrow	C_3H_5	+	H ₂		$1.14 \times 10^{-07} \mathrm{T}^{0.68}$	Ehlerding et al. (2003)	
$R_{er}34d$	4	$C_3H_7^+$	+	e	\rightarrow	C_3H_5	+	H +	Н	$1.14 \times 10^{-07} \mathrm{T}^{0.68}$	Ehlerding et al. (2003)	
$R_{er}34e$	4	C ₃ H ₇ ⁺	+	e	\rightarrow	C_2H_2	+	CH_4 +	H	$1.05 \times 10^{-07} \mathrm{T}^{0.68}$	Ehlerding et al. (2003)	
$R_{er}34f$	4	C ₃ H ₇ ⁺	+	e	\rightarrow	C_2H_2	+	$CH_3 +$	H_2	$1.05 \times 10^{-07} \mathrm{T}^{0.68}$	Ehlerding et al. (2003)	
$R_{er}34g$	4	$C_3H_7^+$	+	e	\rightarrow	CH ₃ CCH	+	H_2 +	Η	$1.71 \times 10^{-07} \mathrm{T}^{0.68}$	Ehlerding et al. (2003)	
$R_{er}34h$	4	$C_3H_7^+$	+	e	\rightarrow	C_2H_4	+	CH ₃		$3.80 \times 10^{-08} \mathrm{T}^{0.68}$	Ehlerding et al. (2003)	
$R_{er}34i$	4	$C_3H_7^+$	+	e	\rightarrow	C_2H_4	+	$^{3}CH_{2} +$	H	$3.80 \times 10^{-08} \mathrm{T}^{0.68}$	Ehlerding et al. (2003)	
$R_{er}35a$	4	$C_3H_8^+$	+	e	\rightarrow	C_3H_6	+	H +	H	$4.00\times10^{-07}\mathrm{T}^{0.70}$	eq.(E23), Angelova et al. (2004b), Janev	and Reiter (2004)
$R_{er}35b$	4	$C_3H_8^+$	+	e	\rightarrow	C_3H_7	+	H		$2.00\times10^{-07}\mathrm{T}^{0.70}$	eq.(E23), Angelova et al. (2004b), Janev	and Reiter (2004)
$R_{er}35c$	4	C ₃ H ₈ ⁺	+	e	\rightarrow	C_2H_6	+	$^3\mathrm{CH}_2$		$1.60 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),Angelova et al. (2004b),Janev	
$R_{er}35d$	4	$C_3H_8^+$	+	e	\rightarrow	C_2H_5	+	CH_3		$1.60 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),Angelova et al. (2004b),Janev	
$R_{er}35e$	4	$C_3H_8^+$	+	e	\rightarrow	C_3H_6	+	H_2		$4.00 \times 10^{-08} \mathrm{T}^{0.70}$	eq.(E23),Angelova et al. (2004b),Janev	
$R_{er}35f$	4	C ₃ H ₈ ⁺	+	e	\rightarrow	C_3H_5	+	H_2 +	Н	$3.00 \times 10^{-08} \mathrm{T}^{0.70}$	eq.(E23),Angelova et al. (2004b),Janev	and Reiter (2004)
$R_{er}36a$	4	$C_3H_9^+$	+	e	\rightarrow	C_3H_8	+	H		$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)	
$R_{er}36b$	4	$C_3H_9^+$	+	e	\rightarrow	C_2H_6	+	CH_3		$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}37a$	4	C_4H^+	+	e	\rightarrow	C_4	+	H		$3.50 \times 10^{-07} T^{0.70}$	eq.(E23),Angelova et al. (2004a),Chabe	
$R_{er}37b$	4	C_4H^+	+	e	\rightarrow	C_2H	+	C_2		$2.23 \times 10^{-07} T^{0.70}$	eq.(E23),Angelova et al. (2004a),Chabe	
$R_{er}37c$	4	C ₄ H ⁺	+	e	\rightarrow	C ₃	+	C +	Н	$1.53 \times 10^{-07} T^{0.70}$ $7.26 \times 10^{-08} T^{0.70}$	eq.(E23), Angelova et al. (2004a), Chabe	
$R_{er}37d$	4	C ₄ H ⁺	+	e	\rightarrow	C ₃ H	+	C		$7.26 \times 10^{-07} \text{T}^{0.79}$ $8.62 \times 10^{-07} \text{T}^{0.79}$	eq.(E23),Angelova et al. (2004a),Chabo	
$R_{er}38a$	4	$C_4H_2^+$	+	e	\rightarrow	C_4H	+	Н		$8.62 \times 10^{-07} T^{0.79}$ $1.95 \times 10^{-07} T^{0.79}$	Danielsson et al. (2008), Angelova et al	
$R_{er}38b$	4	C ₄ H ₂ ⁺	+	e	\rightarrow	C ₂ H	+	C_2H		$1.95 \times 10^{-08} \text{T}^{0.79}$ $4.40 \times 10^{-08} \text{T}^{0.79}$	Danielsson et al. (2008), Angelova et al	
$R_{er}38c$	4	C ₄ H ₂ ⁺	+	e	\rightarrow	C_3H	+	CH H		$4.40 \times 10^{-0.7}$ T ^{0.70}	Danielsson et al. (2008), Angelova et al	
$R_{er}39a$	4	$C_4H_3^+$	+	e	\rightarrow	C_4H_2	+			$4.75 \times 10^{-07} T^{0.70}$ $1.10 \times 10^{-07} T^{0.70}$	Adams and Smith (1988a), Angelova et	
$R_{er}39b$	4	C ₄ H ₃ ⁺	+	e	\rightarrow	C_2H_2	+	C_2H		$3.91 \times 10^{-08} \text{T}^{0.70}$	Adams and Smith (1988a), Angelova et	
$R_{er}39c$	4 4	$C_4H_3^+$	+	e	\rightarrow	C_3H_2	+	CH CO		$5.00 \times 10^{-06} \text{T}^{0.70}$	Adams and Smith (1988a), Angelova et est.(clusters)	al. (2004a)
$R_{er}40$	4	C ₄ H ₃ +CO	+	e	\rightarrow	C_4H_3	+	Н		$9.96 \times 10^{-07} T^{1.10}$	Fournier et al. (2013), Angelova et al. (0004-)
$R_{er}41a$ $R_{er}41b$	4	C ₄ H ₄ ⁺	+	e	\rightarrow	C_4H_3	+			$2.22 \times 10^{-07} \text{T}^{1.10}$	Fournier et al. (2013), Angelova et al. (Fournier et al. (2013), Angelova et al. (
$R_{er}41c$	4	$C_4H_4^+$ $C_4H_4^+$	+	e	\rightarrow	C_2H_2 C_3H_3	+	${\rm C_2H_2} \ {\rm CH}$		$8.19 \times 10^{-08} \text{T}^{1.10}$	Fournier et al. (2013), Angelova et al. (Fournier et al. (2013), Angelova et al. (
$R_{er}41c$ $R_{er}42a$	4	C_4H_4 C_4H_5	+	e e	\rightarrow \rightarrow	C_3H_3 C_4H_2	+	H _o +	Н	$3.77 \times 10^{-07} T^{0.70}$	Rebrion-Rowe et al. (1998), Angelova et al. (
R_{er} 42b	4	$C_4H_5^+$	+	e	\rightarrow	C_4H_2 C_2H_3	+	C ₂ H ₂	11	$3.67 \times 10^{-07} T^{0.70}$	Rebrion-Rowe et al. (1998), Angelova e	
$R_{er}42c$	4	$C_4H_5^+$ $C_4H_5^+$	+	e	\rightarrow	C_2H_3 CH_3CCH	+	C_2H_2 CH		$7.64 \times 10^{-08} \text{T}^{0.70}$	Rebrion-Rowe et al. (1998),Angelova e	
$R_{er}42c$ $R_{er}43a$	4	$C_4H_6^+$	+	e	\rightarrow	C_4H_4	+	H ₂		$5.89 \times 10^{-07} T^{0.70}$	eq.(E23),Angelova et al. (2004a)	ai. (200-ta)
rerroa		$_{1}^{0}$ $_{2}^{0}$ $_{3}^{1}$ $_{6}^{1}$ $_{6}^{1}$ $_{6}^{1}$ $_{1}^{1}$ $_{6}^{1}$ $_{1}^{1}$ $_{1}^{1}$ $_{1}^{1}$ $_{2}^{1}$ $_{3}^{1}$ $_{4}^{1}$ $_{6}^{1}$ $_{1}^{1}$ $_{1}^{1}$ $_{1}^{1}$ $_{2}^{1}$ $_{3}^{1}$ $_{4}^{1}$ $_{1}^{1}$ $_{5}^{1}$ $_{1}^{1}$ $_{1}^{1}$ $_{2}^{1}$ $_{3}^{1}$ $_{4}^{1}$ $_{1}^{1}$ $_{5}^{1}$ $_{1}^{1}$ $_{2}^{1}$ $_{3}^{1}$ $_{4}^{1}$ $_{5}^{1}$,	U4114	'	-12		J 5.55 × 10 1	[cq.(220),ringciova et al. (2004a)	
	- 5110111	110300	80									

		Type				R	eaction	n			k Ref.
$R_{er}43b$	4	C ₄ H ₆ ⁺	+	е	\rightarrow	C_2H_4	+	C ₂ H ₂		$3.21\times10^{-07}T^{0.70}$	eq.(E23),Angelova et al. (2004a)
$R_{er}43c$	4	C ₄ H ₆ ⁺	+	e	\rightarrow	CH ₃ CCH	+	3 CH $_{2}$		$9.00 \times 10^{-08} T^{0.70}$	eq.(E23),Angelova et al. (2004a)
$R_{er}44a$	4	C4H7	+	e	\rightarrow	CH ₃ CCH	+	CH ₃		$6.56 \times 10^{-07} T^{0.70}$	eq.(E23),Angelova et al. (2004a)
$R_{er}44b$	4	$C_4H_7^+$	+	e	\rightarrow	C_4H_2	+	H ₂ +	H_3	$1.98 \times 10^{-07} T^{0.70}$	eq.(E23),Angelova et al. (2004a)
$R_{er}44c$	4	C4H7	+	e	\rightarrow	C_2H_4	+	C_2H_3	3	$1.47 \times 10^{-07} T^{0.70}$	eq.(E23),Angelova et al. (2004a)
$R_{er}45a$	4	C ₄ H ₈ ⁺	+	e	\rightarrow	CH, CCH	+	CH ₄		$6.36 \times 10^{-07} T^{0.70}$	eq.(E23), Angelova et al. (2004a)
$R_{er}45b$	4	C ₄ H ₈ ⁺	+	e	\rightarrow	C_4H_6	+	Н,		$3.05 \times 10^{-07} T^{0.70}$	eq.(E23),Angelova et al. (2004a)
$R_{er}45c$	4	C ₄ H ₈ ⁺	+	e	\rightarrow	C_2H_4	+	C_2H_4		$6.10 \times 10^{-08} \mathrm{T}^{0.70}$	eq.(E23), Angelova et al. (2004a)
$R_{er}46a$	4	C ₄ H ₉ ⁺	+	e	\rightarrow	C_4H_8	+	H		$3.34 \times 10^{-07} \mathrm{T}^{0.59}$	Larsson et al. (2005), Angelova et al.
$R_{er}46b$	4	$C_4H_9^+$	+	e	\rightarrow	C_3H_6	+	CH_3		$2.38 \times 10^{-07} \mathrm{T}^{0.59}$	Larsson et al. (2005), Angelova et al.
$R_{er}46c$	4	$C_4H_0^+$	+	e	\rightarrow	C_2H_6	+	C_2H_3		$8.70 \times 10^{-09} \mathrm{T}^{0.59}$	Larsson et al. (2005), Angelova et al.
$R_{er}47a$	4	C ₅ H [‡]	+	e	\rightarrow	C ₅	+	Η̈́		$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}47b$	4	C ₅ H ⁺	+	e	\rightarrow	C_4H	+	C		$2.50 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}47c$	4	C ₅ H ⁺	+	e	\rightarrow	C_3	+	C_2H		$2.50\times10^{-07}\mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}48$	4	$C_5H_2^+$	+	e	\rightarrow	C_5H	+	H		$1.00 \times 10^{-06} T^{0.70}$	eq.(E23),est.(products)
$R_{er}49$	4	$C_5H_3^{\mp}$	+	e	\rightarrow	C ₅ H ₂	+	H		$9.00 \times 10^{-07} \mathrm{T}^{0.70}$	Abouelaziz et al. (1993),est.(produc
$R_{er}50$	4	C ₅ H ₄ ⁺	+	e	\rightarrow	C_5H_3	+	H		$1.00 \times 10^{-06} T^{0.70}$	eq.(E23),est.(products)
$R_{er}51a$	4	$C_5H_5^+$	+	e	\rightarrow	C_5H_4	+	H		$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23), Wakelam et al. (2015)
$R_{er}51b$	4	C ₅ H ₅ ⁺	+	e	\rightarrow	C_3H_3	+	C_2H_2		$2.50 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23), Wakelam et al. (2015)
$R_{er}51c$	4	$C_5H_5^+$	+	e	\rightarrow	C_4H_2	+	CH_3		$2.50 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23), Wakelam et al. (2015)
$R_{er}52a$	4	C ₅ H ₆ ⁺	+	e	\rightarrow	C_5H_5	+	Н		$4.50 \times 10^{-07} \mathrm{T}^{0.70}$	Fournier et al. (2013),est.(products)
$R_{er}52b$	4	$C_5H_6^+$	+	e	\rightarrow	C_4H_3	+	CH_3		$2.25 \times 10^{-07} \mathrm{T}^{0.70}$	Fournier et al. (2013),est.(products)
$R_{er}52c$	4	C ₅ H ₆ ⁺	+	e	\rightarrow	C_3H_5	+	C_2H		$2.25 \times 10^{-07} \mathrm{T}^{0.70}$	Fournier et al. (2013),est.(products)
$R_{er}53a$	4	C ₅ H ₇ ⁺	+	e	\rightarrow	C_5H_6	+	H		$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}53b$	4	C ₅ H ₇ ⁺	+	e	\rightarrow	C_4H_5	+	3CH_2		$2.50\times10^{-07}\mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}53c$	4	C ₅ H ₇ ⁺	+	e	\rightarrow	CH ₃ CCH	+	C_2H_3		$2.50 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}54a$	4	$C_5H_8^+$	+	e	\rightarrow	C_5H_7	+	Н		$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}54b$	4	$C_5H_8^+$	+	e	\rightarrow	C_4H_5	+	CH ₃		$2.50 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}54c$	4	$C_5H_8^+$	+	e	\rightarrow	C_3H_5	+	C_2H_3		$2.50 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}55a$	4	$C_5H_9^+$	+	e	\rightarrow	C_5H_8	+	H		$4.75 \times 10^{-07} \mathrm{T}^{0.70}$	Rebrion-Rowe et al. (1998),est.(proc
$R_{er}55b$	4	$C_5H_9^+$	+	e	\rightarrow	C_4H_6	+	CH_3		$1.58 \times 10^{-07} \mathrm{T}^{0.70}$	Rebrion-Rowe et al. (1998),est.(proc
$R_{er}55c$	4	$C_5H_9^+$	+	e	\rightarrow	C_3H_6	+	C_2H_3		$1.58 \times 10^{-07} \mathrm{T}^{0.70}$	Rebrion-Rowe et al. (1998),est.(proc
$R_{er}55d$	4	C ₅ H ₉ ⁺	+	e	\rightarrow	CH₃CCH	+	C_2H_5		$1.58 \times 10^{-07} \mathrm{T}^{0.70}$	Rebrion-Rowe et al. (1998),est.(proc
$R_{er}56a$	4	C ₅ H ₁₀	+	e	\rightarrow	C_5H_9	+	н		$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}56b$	4	C ₅ H ₁₀	+	e	\rightarrow	C_4H_7	+	CH_3		$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}56c$	4	C ₅ H ₁₀	+	e	\rightarrow	C_3H_7	+	$C_2\ddot{H}_3$		$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
	Contin	ued on Nex	t Page.								

		Type					Reaction	n		k Ref.
$R_{er}56d$	4	C ₅ H ₁₀ ⁺	+	e	\rightarrow	C_3H_5	+	C_2H_5	$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}57a$	4	C ₅ H ₁₁	+	e	\rightarrow	C_5H_{10}	+	H	$3.60 \times 10^{-07} \mathrm{T}^{0.70}$	Lehfaoui et al. (1997),est.(products)
$R_{er}57b$	4	C ₅ H ₁₁	+	e	\rightarrow	C_4H_9	+	$^3\mathrm{CH}_2$	$9.00\times10^{-08}\mathrm{T}^{0.70}$	Lehfaoui et al. (1997),est.(products)
$R_{er}57c$	4	C ₅ H ⁺ ₁₁	+	e	\rightarrow	C_4H_8	+	CH ₃	$9.00 \times 10^{-08} \mathrm{T}^{0.70}$	Lehfaoui et al. (1997),est.(products)
$R_{er}57d$	4	C ₅ H ₁₁	+	e	\rightarrow	C_3H_7	+	C_2H_4	$9.00 \times 10^{-08} \text{T}^{0.70}$	Lehfaoui et al. (1997),est.(products)
$R_{er}57e$	4	C ₅ H ₁₁	+	e	\rightarrow	C_3H_6	+	C_2H_5	$9.00 \times 10^{-08} T^{0.70}$	Lehfaoui et al. (1997),est.(products)
$R_{er}58a$	4	C ₆ H ⁺	+	e	\rightarrow	C_6	+	Н	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}58b$	4	C ₆ H ⁺	+	e	\rightarrow	C_4H	+	C_2	$2.50 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}58c$	4	C ₆ H ⁺	+	e	\rightarrow	C_4	+	C_2H	$2.50 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}59a$	4	$C_6H_2^+$	+	e	\rightarrow	C_6H	+	H	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}59b$	4	$C_6H_2^+$	+	e	\rightarrow	C_4H	+	C_2H	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}60a$	4	C ₆ H ₃ ⁺	+	e	\rightarrow	C_6H_2	+	H	$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}60b$	4	$C_6H_3^+$	+	e	\rightarrow	C_4H_2	+	C_2H	$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}61$	4	C ₆ H ₄ ⁺	+	e	\rightarrow	C_6H_3	+	H	$1.10 \times 10^{-06} \mathrm{T}^{0.70}$	Rebrion-Rowe et al. (1998),est.(products
$R_{er}62$	4	C ₆ H ₅ ⁺	+	e	\rightarrow	C_6H_4	+	H	$1.10 \times 10^{-06} T^{0.70}$	Rebrion-Rowe et al. (1998),est.(products
$R_{er}63$	4	C ₆ H ₆ ⁺	+	e	\rightarrow	C_6H_5	+	H	$1.30 \times 10^{-06} T^{0.69}$	Hamberg et al. (2011)
$R_{er}64$	4	C ₆ H ₇ ⁺	+	e	\rightarrow	C_6H_6	+	H	$2.00\times10^{-06}T^{0.83}$	Hamberg et al. (2011)
$R_{er}65a$	4	C ₆ H ₉ ⁺	+	e	\rightarrow	C_6H_8	+	H	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}65b$	4	C ₆ H ₉ ⁺	+	e	\rightarrow	C_5H_6	+	CH_3	$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}65c$	4	$C_6H_9^+$	+	e	\rightarrow	C_4H_6	+	C_2H_3	$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}65d$	4	C ₆ H ₉ ⁺	+	e	\rightarrow	C_4H_5	+	C_2H_4	$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}66a$	4	$C_6H_{11}^+$	+	e	\rightarrow	$C_{6}H_{10}$	+	H	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}66b$	4	$C_6H_{11}^+$	+	e	\rightarrow	C_5H_8	+	CH_3	$1.25 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}66c$	4	$C_6H_{11}^+$	+	e	\rightarrow	C_4H_8	+	C_2H_3	$1.25 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
R_{er} 66d	4	$C_6H_{11}^+$	+	e	\rightarrow	C_4H_6	+	C_2H_5	$1.25 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}66e$	4	$C_6H_{11}^+$	+	e	\rightarrow	C_3H_7	+	CH ₃ CCH	$1.25 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}67a$	4	$C_6H_{13}^+$	+	e	\rightarrow	$C_{6}H_{12}$	+	H	$6.50 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}67b$	4	$C_6H_{13}^+$	+	e	\rightarrow	C_5H_{11}	+	$^3\mathrm{CH}_2$	$1.63 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}67c$	4	$C_6H_{13}^+$	+	e	\rightarrow	$C_{5}H_{10}$	+	CH_3	$1.63 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}67d$	4	$C_6H_{13}^+$	+	e	\rightarrow	C_4H_9	+	C_2H_4	$1.63 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}67e$	4	$C_6H_{13}^+$	+	e	\rightarrow	C_3H_7	+	C_3H_6	$1.63 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}68a$	4	C ₇ ⁺ C ₇ ⁺	+	e	\rightarrow	C_4	+	C_3	$1.60 \times 10^{-06} T^{0.30}$	Wakelam et al. (2015)
$R_{er}68b$	4	C ₇ ⁺	+	e	\rightarrow	C_5	+	C_2	$4.00 \times 10^{-07} T^{0.30}$	Wakelam et al. (2015)
$R_{er}69a$	4	C ₇ H ⁺	+	e	\rightarrow	C_7	+	H	$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}69b$	4	C ₇ H ⁺	+	e	\rightarrow	C_6H	+	C	$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}69c$	4	C ₇ H ⁺	+	e	\rightarrow	C_4H	+	C_3	$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
	Contin	ued on Nex	ct Page							

		Type					Reaction	1			k Ref.
$R_{er}69d$	4	C ₇ H ⁺	+	е	\rightarrow	C ₅	+	C_2H		$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}70a$	4	$C_7H_2^+$	+	e	\rightarrow	C_7H	+	H		$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}70b$	4	$C_7H_2^+$	+	e	\rightarrow	C_6	+	3CH_2		$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}70c$	4	$C_7H_2^{\uparrow}$	+	e	\rightarrow	C_5H_2	+	C_2		$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}70d$	4	$C_7H_2^+$	+	e	\rightarrow	C_3H_2	+	C_4		$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}71a$	4	$C_7H_3^{\uparrow}$	+	e	\rightarrow	C_7H_2	+	Н		$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}71b$	4	$C_7H_3^+$	+	e	\rightarrow	C_6H	+	$^3\mathrm{CH}_2$		$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}71c$	4	C ₇ H ₃ ⁺	+	e	\rightarrow	C_5H_2	+	C_2H		$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}71d$	4	$C_7H_3^+$	+	e	\rightarrow	C_4H	+	C_3H_2		$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}72$	4	$C_7H_4^+$	+	e	\rightarrow	C_7H_3	+	Н		$1.00 \times 10^{-06} T^{0.70}$	eq.(E23),est.(products)
$R_{er}73$	4	$C_7H_5^{\uparrow}$	+	e	\rightarrow	C_7H_4	+	H		$7.00 \times 10^{-07} T^{0.70}$	Abouelaziz et al. (1993),est.(products)
$R_{er}74a$	4	$C_7H_6^+$	+	e	\rightarrow	C_7H_5	+	H		$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}74b$	4	$C_7H_6^+$	+	e	\rightarrow	C_6H_3	+	CH_3		$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}74c$	4	$C_7H_6^+$	+	e	\rightarrow	C_5H_5	+	C_2H		$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}74d$	4	$C_7H_6^+$	+	e	\rightarrow	C_4H_3	+	C_3H_3		$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}75a$	4	$C_7H_7^+$	+	e	\rightarrow	C_7H_6	+	Н		$1.60 \times 10^{-07} T^{0.70}$	Rebrion-Rowe et al. (2000),est.(products
$R_{er}75b$	4	$C_7H_7^+$	+	e	\rightarrow	C_6H_5	+	3CH_2		$1.60 \times 10^{-07} \mathrm{T}^{0.70}$	Rebrion-Rowe et al. (2000),est.(products
$R_{er}76a$	4	$C_7H_8^+$	+	e	\rightarrow	C_7H_7	+	Н		$3.00\times10^{-07}\mathrm{T}^{0.70}$	Rebrion-Rowe et al. (2000),est.(products
$R_{er}76b$	4	$C_7H_8^+$	+	e	\rightarrow	C_6H_5	+	CH_3		$3.00\times10^{-07}\mathrm{T}^{0.70}$	Rebrion-Rowe et al. (2000),est.(products
$R_{er}77a$	4	$C_7H_9^+$	+	e	\rightarrow	C_7H_8	+	Н		$1.90 \times 10^{-07} T^{0.70}$	Osborne et al. (2011),est.(products)
$R_{er}77b$	4	$C_7H_9^+$	+	e	\rightarrow	C_6H_5	+	CH_4		$1.90 \times 10^{-07} \mathrm{T}^{0.70}$	Osborne et al. (2011),est.(products)
$R_{er}78a$	4	C ₈ H ⁺	+	e	\rightarrow	C_8	+	H		$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}78b$	4	C ₈ H ⁺	+	e	\rightarrow	C_6H	+	C_2		$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}78c$	4	C _o H ⁺	+	e	\rightarrow	C_6	+	C_2H		$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}78d$	4	C ₈ H ⁺	+	e	\rightarrow	C_4H	+	C_4		$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}79a$	4	$C_8H_2^+$	+	e	\rightarrow	C_8H	+	H		$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}79b$	4	$C_8H_2^+$	+	e	\rightarrow	C_6H	+	C_2H		$2.50\times10^{-07}\mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}79c$	4	$C_8H_2^+$	+	e	\rightarrow	C_4H	+	C_4H		$2.50\times10^{-07}\mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}80a$	4	$C_8H_3^+$	+	e	\rightarrow	C_8H_2	+	H		$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}80b$	4	$C_8H_3^+$	+	e	\rightarrow	C_6H_2	+	C_2H		$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}80c$	4	C ₈ H ₃ ⁺	+	e	\rightarrow	C_6H	+	C_2H_2		$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}80d$	4	C ₈ H ₃ ⁺	+	e	\rightarrow	C_4H_2	+	C_4H		$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}81$	4	NH ⁺	+	e	\rightarrow	N	+	H		$4.30 \times 10^{-08} T^{0.50}$	Mitchell (1990)
$R_{er}82a$	4	NH_2^+	+	e	\rightarrow	N	+	Н -	⊢ H	$1.71 \times 10^{-07} \mathrm{T}^{0.50}$	Mitchell (1990), Thomas et al. (2005)
$R_{er}82b$	4	NH ₂	+	e	\rightarrow	NH	+	H		$1.29 \times 10^{-07} T^{0.50}$	Mitchell (1990), Thomas et al. (2005)
$R_{er}83$	4	NH ⁷	+	e	\rightarrow	NH_2	+	H		$3.10\times10^{-07}\mathrm{T}^{0.50}$	Mitchell (1990),est.(products)
	Contin	ued on Nex	t Page			-				•	

		1					B					
		Type					Reaction	n				k Ref.
$R_{er}84a$	4	NH ₄ ⁺	+	e	\rightarrow	NH_3	+	H			$1.15 \times 10^{-06} \mathrm{T}^{0.60}$	Alge et al. (1983),Öjekull et al. (2004)
$R_{er}84b$	4	NH ⁺	+	e	\rightarrow	NH ₂	+	H	+	Н	$1.76 \times 10^{-07} T^{0.60}$	Alge et al. (1983),Öjekull et al. (2004)
$R_{er}84c$	4	NH [‡]	+	e	\rightarrow	NH_2	+	H_2			$2.70 \times 10^{-08} T^{0.60}$	Alge et al. (1983),Öjekull et al. (2004)
$R_{er}85a$	4	CN ⁺	+	e	\rightarrow	$N(^{2}D)$	+	C			$3.26 \times 10^{-07} \mathrm{T}^{0.55}$	Le Padellec et al. (1999)
$R_{er}85b$	4	CN ⁺	+	e	\rightarrow	N	+	C			$1.36 \times 10^{-08} \mathrm{T}^{0.55}$	Le Padellec et al. (1999)
$R_{er}86$	4	HCN ⁺	+	e	\rightarrow	CN	+	H			$3.90 \times 10^{-07} T^{0.96}$	Sheehan et al. (1999),est.(products)
$R_{er}87$	4	HNC ⁺	+	e	\rightarrow	CN	+	H			$1.82 \times 10^{-07} \mathrm{T}^{0.96}$	Sheehan et al. (1999),est.(products)
$R_{er}88a$	4	HCNH ⁺	+	e	\rightarrow	HCN	+	H			$9.62 \times 10^{-08} \mathrm{T}^{0.65}$	Wakelam et al. (2015)
$R_{er}88b$	4	HCNH ⁺	+	e	\rightarrow	HNC	+	H			$9.62 \times 10^{-08} \text{T}^{0.65}$	Wakelam et al. (2015)
$R_{er}88c$	4	HCNH ⁺	+	e	\rightarrow	CN	+	H	+	Н	$9.06 \times 10^{-08} \text{T}^{0.65}$	Wakelam et al. (2015)
$R_{er}88d$	4	HCNH ⁺	+	e	\rightarrow	CN	+	H_2			$9.06 \times 10^{-08} \text{T}^{0.65}$	Wakelam et al. (2015)
$R_{er}89$	4	HCNH ⁺ CH	$I_4 +$	e	\rightarrow	HCN	+		+	H	5.00×10^{-06}	est.(clusters)
$R_{er}90$	4	HCNH ⁺ N ₂		e	\rightarrow	HCN	+	N_2	+	Н	5.00×10 ⁻⁰⁶	est.(clusters)
$R_{er}91$	4	CH ₂ NH ⁺	+	e	\rightarrow	H_2CN	+	H			$8.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}92a$	4	CH ₂ NH ₂ ⁺	+	e	\rightarrow	CH_2NH	+	H			$7.00 \times 10^{-07} T^{0.70}$	Yelle et al. (2010)
$R_{er}92b$	4	CH ₂ NH ₂ ⁺	+	e	\rightarrow	NH_2	+	$^3\mathrm{CH}_2$			$7.00 \times 10^{-07} \mathrm{T}^{0.70}$	Yelle et al. (2010)
$R_{er}92c$	4	CH ₂ NH ₂ ⁺	+	e	\rightarrow	HCN	+	H	+	H_2	$7.00 \times 10^{-07} T^{0.70}$	Yelle et al. (2010)
$R_{er}93a$	4	CH ₃ NH ₂ ⁺	+	e	\rightarrow	CH_2NH_2	+	H			$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}93b$	4	CH ₃ NH ₂ ⁺	+	e	\rightarrow	NH_2	+	CH_3			$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}94a$	4	CH ₃ NH ₃ ⁺	+	e	\rightarrow	CH_3NH_2	+	H			$7.00 \times 10^{-07} T^{0.70}$	Adams and Smith (1988a),est.(products)
R_{er} 94b	4	CH ₃ NH ₃ ⁺	+	e	\rightarrow	NH_3	+	CH_3			$7.00 \times 10^{-07} T^{0.70}$	Adams and Smith (1988a),est.(products)
$R_{er}95a$	4	CNC ⁺	+	e	\rightarrow	CN	+	C			$3.80 \times 10^{-07} \mathrm{T}^{0.60}$	Wakelam et al. (2015)
$R_{er}95b$	4	CNC ⁺	+	e	\rightarrow	C_2	+	N			$2.00 \times 10^{-08} \mathrm{T}^{0.60}$	Wakelam et al. (2015)
R_{er} 96a	4	C_2N^+	+	e	\rightarrow	CN	+	C			$3.80 \times 10^{-07} T^{0.60}$	est.(CNCP)
R _{er} 96b	4	C ₂ N ⁺	+	e	\rightarrow	C_2	+	N			$2.00 \times 10^{-08} T^{0.60}$	est.(CNCP)
R _{er} 97a	4	HC ₂ N ⁺	+	e	\rightarrow	C_2N	+	H			$3.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
R _{er} 97b	4	HC ₂ N ⁺	+	e	\rightarrow	CH	+	CN			$3.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}98$	4	HC ₂ NH ⁺	+	e	\rightarrow	HC_2N	+	H			$8.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
R _{er} 99a	4	C ₂ H ₃ N ⁺	+	e	\rightarrow	CH ₂ CN	+	H			$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
R _{er} 99b	4	C ₂ H ₃ N ⁺	+	e	\rightarrow	CN	+	CH_3			$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
R _{er} 100a	4	C ₂ H ₃ NH ⁺	+	e	\rightarrow	CH ₃ CN	+	H			$2.67 \times 10^{-07} T^{0.69}$	Geppert et al. (2007), Vigren et al. (2008
R _{er} 100b	4	C ₂ H ₃ NH ⁺	+	e	\rightarrow	CH ₂ CN	+	H	+	Н	$2.67 \times 10^{-07} \mathrm{T}^{0.69}$ $1.38 \times 10^{-07} \mathrm{T}^{0.69}$	Geppert et al. (2007), Vigren et al. (2008
R _{er} 100c	4	C ₂ H ₃ NH ⁺	+	e	\rightarrow	HNC	+	CH ₃			$1.38 \times 10^{-07} \text{T}^{0.69}$ $1.38 \times 10^{-07} \text{T}^{0.69}$	Geppert et al. (2007), Vigren et al. (2008)
R _{er} 100d	4	C ₂ H ₃ NH ⁺	+	e	\rightarrow	HCN	+	$^3\mathrm{CH}_2$	+	Н	$5.00 \times 10^{-07} \text{T}^{0.70}$	Geppert et al. (2007), Vigren et al. (2008
R _{er} 101a	4 4	C ₂ H ₅ N ⁺	+	e e	\rightarrow	C_2H_4N	+				$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}101b$		C ₂ H ₅ N ⁺ ued on Next			\rightarrow	NH_2	+	C_2H_3			5.00×10 **1	eq.(E23),est.(products)
	Contin	ued on Next	rage.									

:		Type					Reaction	n				k Ref.
$R_{er}102$	4	C ₃ N ⁺	+	e	\rightarrow	CN	+	C_2			$6.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}103a$	4	HC ₃ N ⁺	+	e	\rightarrow	C ₃ N	+	H ²			$6.60 \times 10^{-07} T^{0.60}$	Geppert et al. (2004b), Vigren et al. (20
er 103b	4	HC ₃ N ⁺	+	e	\rightarrow	CN	+	C_2H			$3.60 \times 10^{-07} T^{0.60}$	Geppert et al. (2004b), Vigren et al. (20
er 103c	4	HC ₃ N ⁺	+	e	\rightarrow	CN	+		+	Н	$3.60 \times 10^{-07} T^{0.60}$	Geppert et al. (2004b), Vigren et al. (20
er 103d	4	HC ₃ N ⁺	+	e	\rightarrow	C ₂ N	+	\tilde{C}^2	+	Н	$6.00 \times 10^{-08} \mathrm{T}^{0.60}$	Geppert et al. (2004b), Vigren et al. (20
r 103e	4	HC ₃ N ⁺	+	e	\rightarrow	HC ₂ N	+	Č			$3.00 \times 10^{-08} T^{0.60}$	Geppert et al. (2004b), Vigren et al. (20
r 103f	4	HC ₃ N ⁺	+	e	\rightarrow	C_2N	+	CH			$3.00\times10^{-08}\mathrm{T}^{0.60}$	Geppert et al. (2004b), Vigren et al. (20
r104a	4	HC3NH+	+	e	\rightarrow	HC ₃ N	+	H			$7.80 \times 10^{-07} \mathrm{T}^{0.58}$	Geppert et al. (2004b), Vigren et al. (20
r104b	4	HC,NH+	+	e	\rightarrow	CN	+	C_2H_2			$7.20 \times 10^{-07} \mathrm{T}^{0.58}$	Geppert et al. (2004b), Vigren et al. (20
_r 105a	4	C ₃ H ₃ N ⁺	+	е	\rightarrow	C_3H_2N	+	H 2			$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
r105b	4	$C_3^3H_3^3N^+$	+	е	\rightarrow	CN 2	+	C_2H_3			$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
r106a	4	C ₃ H ₃ NH ⁺	+	e	\rightarrow	C_3H_3N	+	ΗŽ			$9.00 \times 10^{-07} T^{0.80}$	Geppert et al. (2007), Vigren et al. (200
r106b	4	C ₃ H ₃ NH ⁺	+	e	\rightarrow	HCN	+	C_2H_2	+	Н	$4.50 \times 10^{-07} \mathrm{T}^{0.80}$	Geppert et al. (2007), Vigren et al. (200
er106c	4	C ₃ H ₃ NH ⁺	+	e	\rightarrow	HNC	+	C_2H_3			$4.50 \times 10^{-07} \mathrm{T}^{0.80}$	Geppert et al. (2007), Vigren et al. (200
r107a	4	C ₃ H ₅ N ⁺	+	e	\rightarrow	C_3H_4N	+	H			$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
r107b	4	C ₃ H ₅ N ⁺	+	e	\rightarrow	C_2H_2N	+	CH_3			$2.50 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
r107c	4	C ₃ H ₅ N ⁺	+	e	\rightarrow	CN	+	C_2H_5			$2.50 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
r108a	4	C ₃ H ₅ NH ⁺	+	e	\rightarrow	C_3H_5N	+	Н			$6.45 \times 10^{-07} \mathrm{T}^{0.76}$	Vigren et al. (2010a)
r108b	4	C ₃ H ₅ NH ⁺	+	e	\rightarrow	$\mathrm{CH_{2}CN}$	+	CH_3	+	Η	$6.45 \times 10^{-07} \mathrm{T}^{0.76}$	Vigren et al. (2010a)
r108c	4	C ₃ H ₅ NH ⁺	+	e	\rightarrow	HNC	+	C_2H_5			$2.10\times10^{-07}\mathrm{T}^{0.76}$	Vigren et al. (2010a)
_r 109a	4	C ₃ H ₇ NH ⁺	+	e	\rightarrow	C_3H_7N	+	H			$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
er109b	4	C ₃ H ₇ NH ⁺	+	e	\rightarrow	C_2H_5N	+	CH_3			$2.50 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
_r 109c	4	C ₃ H ₇ NH ⁺	+	e	\rightarrow	NH_3	+	C_3H_5			$2.50 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
r110a	4	C ₃ H ₉ NH ⁺	+	e	\rightarrow	C_3H_9N	+	H			$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
r110b	4	C ₃ H ₉ NH ⁺	+	e	\rightarrow	C_2H_7N	+	CH_3			$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
r110c	4	C ₃ H ₉ NH ⁺	+	e	\rightarrow	CH_3NH_2	+	C_2H_5			$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$_r110d$	4	C ₃ H ₉ NH ⁺	+	e	\rightarrow	NH_3	+	C_3H_7			$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
r111a	4	C ₄ N ⁺	+	e	\rightarrow	C_3N	+	C			$4.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
r111b	4	C_4N^+	+	e	\rightarrow	CN	+	C_3			$4.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
r112a	4	HC ₄ N ⁺	+	e	\rightarrow	C_4N	+	H			$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
r112b	4	HC ₄ N ⁺	+	e	\rightarrow	C_3N	+	$_{\rm CH}$			$2.50 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
_r 112c	4	HC ₄ N ⁺	+	e	\rightarrow	CN	+	C_3H			$2.50 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
r113a	4	HC ₄ NH ⁺	+	e	\rightarrow	HC_4N	+	H			$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
r113b	4	HC ₄ NH ⁺	+	e	\rightarrow	C_3N	+	$^3\mathrm{CH}_2$			$2.50 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
r113c	4	HC ₄ NH ⁺	+	e	\rightarrow	CN	+	C_3H_2			$2.50 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
er114a	4	$C_4H_3N^+$	+	e	\rightarrow	C_4H_2N	+	H			$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
r114b	4	$C_4H_3N^+$	+	e	\rightarrow	C_3N	+	CH_3			$2.50 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
	Contin	ued on Next	Page.									

		1 =								
		Type				ŀ	Reaction	1		k Ref.
$R_{er}114c$	4	C ₄ H ₃ N ⁺	+	e	\rightarrow	CN	+	C_3H_3	$2.50\times10^{-07}T^{0.70}$	eq.(E23),est.(products)
$R_{er}115a$	4	C4H3NH+	+	e	\rightarrow	CH_3C_3N	+	Н	$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}115b$	4	C ₄ H ₃ NH ⁺	+	e	\rightarrow	HC ₃ N	+	CH ₃	$2.50\times10^{-07}T^{0.70}$	eq.(E23),est.(products)
$R_{er}115c$	4	C ₄ H ₃ NH ⁺	+	e	\rightarrow	HNC	+	$C_3 \ddot{H}_3$	$2.50\times10^{-07}T^{0.70}$	eq.(E23),est.(products)
$R_{er}116a$	4	$C_4H_5N^+$	+	e	\rightarrow	C_4H_4N	+	Н	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}116b$	4	C ₄ H ₅ N ⁺	+	e	\rightarrow	CN	+	C_3H_5	$2.50\times10^{-07}\mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}116c$	4	C ₄ H ₅ N ⁺	+	e	\rightarrow	C_3H_2N	+	CH ₃	$2.50 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}117$	4	C ₄ H ₅ NH ⁺	+	e	\rightarrow	C_4H_5N	+	Н	$4.00\times10^{-07}\mathrm{T}^{0.70}$	Osborne et al. (2011),est.(products)
$R_{er}118a$	4	C ₄ H ₇ NH ⁺	+	e	\rightarrow	C_4H_7N	+	H	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}118b$	4	C ₄ H ₇ NH ⁺	+	e	\rightarrow	HCN	+	C_3H_7	$8.33 \times 10^{-08} T^{0.70}$	eq.(E23),est.(products)
$R_{er}118c$	4	C ₄ H ₇ NH ⁺	+	e	\rightarrow	HNC	+	C_3H_7	$8.33 \times 10^{-08} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}118d$	4	C ₄ H ₇ NH ⁺	+	e	\rightarrow	CH ₃ CN	+	C_2H_5	$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}118e$	4	C ₄ H ₇ NH ⁺	+	e	\rightarrow	C_3H_5N	+	CH ₃	$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}119a$	4	C ₄ H ₉ NH ⁺	+	e	\rightarrow	C_4H_9N	+	Н	$1.35 \times 10^{-06} \mathrm{T}^{0.70}$	Osborne et al. (2011),est.(products)
$R_{er}119b$	4	C ₄ H ₉ NH ⁺	+	e	\rightarrow	C_3H_7N	+	CH ₃	$4.51 \times 10^{-07} \mathrm{T}^{0.70}$	Osborne et al. (2011),est.(products)
$R_{er}119c$	4	$C_4H_9NH^+$	+	e	\rightarrow	C_2H_5N	+	C_2H_5	$4.51 \times 10^{-07} \mathrm{T}^{0.70}$	Osborne et al. (2011),est.(products)
$R_{er}119d$	4	$C_4H_9NH^+$	+	e	\rightarrow	NH_3	+	C_4H_7	$4.51 \times 10^{-07} \mathrm{T}^{0.70}$	Osborne et al. (2011),est.(products)
$R_{er}120a$	4	C ₅ N ⁺	+	e	\rightarrow	C_3N	+	C_2	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	Herbst and Leung (1989),est.(products)
$R_{er}120b$	4	C ₅ N ⁺	+	e	\rightarrow	CN	+	C_4	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	Herbst and Leung (1989),est.(products)
$R_{er}121a$	4	HC ₅ N ⁺	+	e	\rightarrow	C_5N	+	H	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}121b$	4	HC ₅ N ⁺	+	e	\rightarrow	C_3N	+	C_2H	$2.50\times10^{-07}\mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}121c$	4	HC ₅ N ⁺	+	e	\rightarrow	CN	+	C_4H	$2.50 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}122a$	4	HC ₅ NH ⁺	+	e	\rightarrow	HC_5N	+	H	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}122b$	4	HC ₅ NH ⁺	+	e	\rightarrow	C_3N	+	C_2H_2	$2.50\times10^{-07}\mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}122c$	4	HC ₅ NH ⁺	+	e	\rightarrow	CN	+	C_4H_2	$2.50\times10^{-07}T^{0.70}$	eq.(E23),est.(products)
$R_{er}123a$	4	$C_5H_3N^+$	+	e	\rightarrow	C_5H_2N	+	H	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}123b$	4	$C_5H_3N^+$	+	e	\rightarrow	C_4N	+	CH_3	$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}123c$	4	$C_5H_3N^+$	+	e	\rightarrow	C_2N	+	C_3H_3	$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}123d$	4	$C_5H_3N^+$	+	e	\rightarrow	N	+	C_5H_3	$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}124a$	4	C ₅ H ₃ NH ⁺	+	e	\rightarrow	C_5H_3N	+	Н	$5.00 \times 10^{-07} \text{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}124b$	4	C ₅ H ₃ NH ⁺	+	e	\rightarrow	HC_4N	+	CH_3	$1.25 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}124c$	4	C ₅ H ₃ NH ⁺	+	e	\rightarrow	C_5H_3N	+	Н	$1.25 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
R_{er} 124d	4	C ₅ H ₃ NH ⁺	+	e	\rightarrow	HC_2N	+	C_3H_3	$1.25 \times 10^{-07} \text{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}124e$	4	C ₅ H ₃ NH ⁺	+	e	\rightarrow	CN	+	C_4H_3	$1.25 \times 10^{-07} \text{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}125a$	4	$C_5H_5N^+$	+	e	\rightarrow	C_5H_4N	+	Н	$5.00 \times 10^{-07} \text{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}125b$	4	$C_5H_5N^+$	+	e	\rightarrow	C_3H_2N	+	C_2H_3	$2.50 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}125c$	4	$C_5H_5N^+$	+	e	\rightarrow	CN	+	$C_4^H_5$	$2.50\times10^{-07}\mathrm{T}^{0.70}$	eq.(E23),est.(products)
	Contin	ued on Next	Page.					-		

		Type				R	eaction	n		k	Ref.	
$R_{er}126$	4	C ₅ H ₅ NH ⁺	+	е	\rightarrow	C_5H_5N	+	Н	$8.90 \times 10^{-07} T^{0.50}$	Adams et al.	(2010),Osborne et al. (2	2011).est.(products)
$R_{er}127a$	4	C ₅ H ₇ NH ⁺	+	e	\rightarrow	C_5H_7N	+	H	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(,,, (I
$R_{er}127b$	4	C ₅ H ₇ NH ⁺	+	e	\rightarrow	C_4H_5N	+	CH_3	$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(
$R_{er}128a$	4	C ₆ N ⁺	+	e	\rightarrow	C_5^4N	+	C 3	$3.33 \times 10^{-07} T^{0.70}$	eq.(E23),est.(
$R_{er}128b$	4	C ₆ N ⁺	+	e	\rightarrow	C_3^3N	+	C_3	$3.33 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}128c$	4	C ₆ N ⁺	+	е	\rightarrow	CŇ	+	C_5	$3.33 \times 10^{-07} T^{0.70}$	eq.(E23),est.(
$R_{er}129$	4	HC ₆ NH ⁺	+	e	\rightarrow	HC_6N	+	н	$1.00\times10^{-06}T^{0.70}$	eq.(E23),est.(
$R_{er}130a$	4	C ₆ H ₃ NH ⁺	+	e	\rightarrow	CH ₃ C ₅ N	+	H	$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}130b$	4	C ₆ H ₃ NH ⁺	+	e	\rightarrow	C_5 N 3	+	CH_4	$2.50\times10^{-07}T^{0.70}$	eq.(E23),est.(
$R_{er}130c$	4	C6H3NH+	+	e	\rightarrow	CŇ	+	$C_5 \ddot{H}_4$	$2.50 \times 10^{-07} T^{0.70}$	eq.(E23),est.(
$R_{er}131a$	4	C ₆ H ₅ NH ⁺	+	e	\rightarrow	C_5H_3N	+	CH ₃	$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}131b$	4	C ₆ H ₅ NH ⁺	+	e	\rightarrow	C_6H_5N	+	Н	$1.25 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}131c$	4	C ₆ H ₅ NH ⁺	+	e	\rightarrow	HC_4N	+	C_2H_5	$1.25 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}131d$	4	C ₆ H ₅ NH ⁺	+	e	\rightarrow	HCCN	+	$C_4^2H_5^3$	$1.25 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}131e$	4	C ₆ H ₅ NH ⁺	+	e	\rightarrow	CN	+	C_5H_6	$1.25 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}132a$	4	$C_6H_7N^+$	+	e	\rightarrow	C_6H_6N	+	Н	$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}132b$	4	$C_6H_7N^+$	+	e	\rightarrow	C_5H_4N	+	CH_3	$1.67 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)	
$R_{er}132c$	4	$C_6H_7N^+$	+	e	\rightarrow	C_3H_2N	+	C_3H_5	$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}132d$	4	$C_6H_7N^+$	+	e	\rightarrow	CN	+	C_5H_7	$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}133$	4	$C_6H_7NH^+$	+	e	\rightarrow	C_5H_5N	+	CH_3	$1.00\times10^{-06}\mathrm{T}^{0.70}$	eq.(E23),est.(products)	
$R_{er}134a$	4	$C_6H_9N^+$	+	e	\rightarrow	C_6H_8N	+	Н	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)	
$R_{er}134b$	4	$C_6H_9N^+$	+	e	\rightarrow	C_5H_6N	+	CH_3	$1.25 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)	
$R_{er}134c$	4	$C_6H_9N^+$	+	e	\rightarrow	C_4H_4N	+	C_2H_5	$1.25 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)	
$R_{er}134d$	4	$C_6H_9N^+$	+	e	\rightarrow	C_3H_2N	+	C_3H_7	$1.25 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)	
$R_{er}134e$	4	$C_6H_9N^+$	+	e	\rightarrow	CN	+	C_5H_9	$1.25 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)	
$R_{er}135a$	4	$C_6H_9NH^+$	+	e	\rightarrow	C_6H_9N	+	H	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(
$R_{er}135b$	4	$C_6H_9NH^+$	+	e	\rightarrow	C_5H_7N	+	CH_3	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)	
$R_{er}136a$	4	C ₇ N ⁺	+	e	\rightarrow	C_5N	+	C_2	$3.33 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}136b$	4	C ₇ N ⁺	+	e	\rightarrow	C_3N	+	C_4	$3.33 \times 10^{-07} T^{0.70}$	eq.(E23),est.(
$R_{er}136c$	4	C ₇ N ⁺	+	e	\rightarrow	CN	+	C_6	$3.33 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}137a$	4	HC_7N^+	+	e	\rightarrow	C_7N	+	H	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(
$R_{er}137b$	4	HC_7N^+	+	e	\rightarrow	C_5N	+	C_2H	$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(
$R_{er}137c$	4	HC_7N^+	+	e	\rightarrow	C_3N	+	C_4H	$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}137d$	4	HC ₇ N ⁺	+	e	\rightarrow	CN	+	C_6H	$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(
$R_{er}138$	4	HC ₇ NH ⁺	+	e	\rightarrow	HC_7N	+	Н	$1.00 \times 10^{-06} T^{0.70}$	eq.(E23),est.(
$R_{er}139a$	4	$C_7H_3N^+$	+	e	\rightarrow	C_7H_2N	+	H	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(
$R_{er}139b$	4	$C_7H_3N^+$	+	e	\rightarrow	C_6N	+	CH_3	$1.25 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)	
	Contin	ued on Next	Page									

		Туре					Reaction	1		k Ref.
D 120-	4					CN			$1.25 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
R _{er} 139c	4	C ₇ H ₃ N ⁺	+	е	\rightarrow	C_4N	+	C_3H_3	$1.25 \times 10^{-07} \text{T}^{0.70}$	eq.(E23),est.(products) eq.(E23),est.(products)
R _{er} 139d	4	C ₇ H ₃ N ⁺	+	e	\rightarrow	C_2N	+	C_5H_3	$1.25 \times 10^{-07} T^{0.70}$ $1.25 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products) eq.(E23),est.(products)
R _{er} 139e		C ₇ H ₃ N ⁺	+	e	\rightarrow	CN	+	$_{ m H_3}^{ m C_6H_3}$	$5.00 \times 10^{-07} \text{T}^{0.70}$	eq.(E23),est.(products) eq.(E23),est.(products)
R _{er} 140a	4	C ₇ H ₃ NH ⁺	+	e	\rightarrow	C_7H_2N	+		$5.00 \times 10^{-07} \text{T}^{0.70}$	eq.(E23),est.(products) eq.(E23),est.(products)
R _{er} 140b	4	C ₇ H ₃ NH ⁺	+	e	\rightarrow	HC ₆ N	+	$_{ m H}^{ m CH_3}$	$5.00 \times 10^{-07} T^{0.70}$	
R _{er} 141a	4	C ₇ H ₇ N ⁺	+	e	\rightarrow	C ₇ H ₆ N	+		$1.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
R _{er} 141b	4	C ₇ H ₇ N ⁺	+	e	\rightarrow	C ₆ H ₄ N	+	CH ₃	1.00×10^{-10} T ^{0.70}	eq.(E23),est.(products)
R _{er} 141c	4	$C_7H_7N^+ \\ C_7H_7N^+$	+	е	\rightarrow	C_5H_2N	+	C_2H_5	$1.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products) eq.(E23),est.(products)
R _{er} 141d	4		+	e	\rightarrow	C_4N	+	C ₂ H ₇	$1.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products) eq.(E23),est.(products)
R _{er} 141e	4	$C_7H_7N^+ \\ C_7H_7N^+$	+	e	\rightarrow	$_{ m N}^{ m C_2N}$	+	C ₄ H ₇	$1.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products) eq.(E23),est.(products)
R_{er} 141f R_{er} 142a	4		+	e	\rightarrow		+	$^{\mathrm{C}_{7}\mathrm{H}_{7}}_{\mathrm{H}}$	$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products) eq.(E23),est.(products)
R_{er} 142a R_{er} 142b	4	$C_7H_7NH^+$ $C_7H_7NH^+$	+	e	\rightarrow \rightarrow	C ₇ H ₇ N	+	CH ₃	$1.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products) eq.(E23),est.(products)
R_{er} 142b	4	C ₇ H ₇ NH ⁺	+	e e	\rightarrow	C ₆ H ₅ N	+	C_2H_5	1.00×10^{-10} T 0.70	eq.(E23),est.(products)
R_{er} 142d	4	$C_7H_7NH^+$	+	e	\rightarrow	C_5H_3N HC_4N	+	$C_{2}^{11}_{5}$ $C_{3}^{1}_{7}$	$1.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
R_{er} 142e	4	$C_7H_7NH^+$	+	e	\rightarrow	HCCN	+	$C_{5}H_{7}$	$1.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
R_{er} 142f	4	$C_7H_7NH^+$	+	e	\rightarrow	CN	+	C_6H_8	1.00×10^{-1} 1.00×10^{-07} $T^{0.70}$	eq.(E23),est.(products)
R_{er} 143a	4	N ⁺	+	e	\rightarrow	$N(^2D)$	+	$N(^{2}D)$	$1.14 \times 10^{-07} \text{T}^{0.39}$	Sheehan and StMaurice (2004a),Peterso
$R_{er}143b$	4	N ₂ ⁺ N ₂ ⁺	+	e	$\stackrel{'}{\rightarrow}$	N N	+	$N(^2D)$	$1.06 \times 10^{-07} T^{0.39}$	Sheehan and StMaurice (2004a), Peterso
R_{er} 144a	4	N ₂ H ⁺	+	e	\rightarrow	N ₂	+	H H	$2.47 \times 10^{-07} T^{0.84}$	Wakelam et al. (2015)
R_{er} 144b	4	N ₂ H ⁺	+	e	$\stackrel{'}{\rightarrow}$	NH	+	N	$1.30 \times 10^{-08} \text{T}^{0.84}$	Wakelam et al. (2015)
R_{er} 145a	4	N ₂ H ⁺ ₅	+	e	$\stackrel{'}{\rightarrow}$	N ₂ H ₄	+	Н	$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
R_{er} 145b	4	N ₂ H ₅ ⁺	+	e	$\stackrel{'}{\rightarrow}$	NH ₃	+	NH ₂	$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}146$	4	C ₂ N ₂ ⁺	+	e	$\stackrel{'}{\rightarrow}$	CN	+	CN CN	$6.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
R_{er} 147a	4	$C_{2}N_{2}H^{+}$	+	e	$\stackrel{'}{\rightarrow}$	C ₂ N ₂	+	Н	$4.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}147b$	4	$C_2N_2H^+$	+	e	$\stackrel{'}{\rightarrow}$	HCN	+	CN	$2.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}147c$	4	$C_2N_2H^+$	+	e	\rightarrow	HNC	+	CN	$2.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
R _{er} 148	4	$C_4^2N_2^+$	+	e	\rightarrow	C ₃ N	+	CN	$1.00 \times 10^{-06} T^{0.70}$	eq.(E23),est.(products)
$R_{er}149a$	4	$C_4N_2H^+$	+	e	\rightarrow	C_4N_2	+	Н	$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}149b$	4	$C_4N_2H^+$	+	e	\rightarrow	HC_3N	+	CN	$2.50 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}149c$	4	$C_4N_2H^+$	+	e	\rightarrow	C_3N	+	HCN	$1.25 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}149d$	4	$C_4^{4}N_2^{2}H^+$	+	e	\rightarrow	$C_3^{3}N$	+	HNC	$1.25 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}150a$	4	$C_6N_2^+$	+	e	\rightarrow	C_5N	+	CN	$5.00 \times 10^{-07} \mathrm{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}150b$	4	$C_6N_2^+$	+	e	\rightarrow	C_3N	+	C ₃ N	$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}151a$	4	C ₆ N ₂ H ⁺	+	e	\rightarrow	C_6N_2	+	H H	$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}151b$	4	C ₆ N ₂ H ⁺	+	e	<i>,</i>	$HC_{\pi}N$	+	CN	$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
	Contin	ued on Next				9			1	1

		Type					Reactio	n				k Ref.	
$R_{er}151c$	4	C ₆ N ₂ H ⁺	+	е	\rightarrow	C_5N	+	HCN			$8.33\times10^{-08}\mathrm{T}^{0.70}$	eq.(E23),est.(products)	
$R_{er}151d$	4	C ₆ N ₂ H ⁺	+	e	\rightarrow	C_5^5N	+	HNC			$8.33 \times 10^{-08} \text{T}^{0.70}$	eq.(E23),est.(products)	
$R_{er}151e$	4	C ₆ N ₂ H ⁺	+	e	\rightarrow	HC ₃ N	+	C_3N			$1.67 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}152$	4	N ₃ ⁺ 2	+	e	\rightarrow	N_2	+	N			$5.00 \times 10^{-06} T^{0.70}$	est.(clusters)	
$R_{er}153$	4	N [‡]	+	e	\rightarrow	N_2^2	+	N_2			$5.00 \times 10^{-06} \mathrm{T}^{0.70}$	est.(clusters)	
$R_{er}154$	4	N ₄ ⁺ O ⁺	+	e	\rightarrow	$O(^{2}3P)$		2			$3.24 \times 10^{-12} T^{0.66}$	Nahar (1999)	
$R_{er}155$	4	OH ⁺	+	e	\rightarrow	$O(^3P)$	+	H			$3.75 \times 10^{-08} T^{0.50}$	Mul et al. (1983), Mitchell (1990))
$R_{er}156a$	4	H ₂ O ⁺	+	e	\rightarrow	OH	+	H			$8.60 \times 10^{-08} T^{0.50}$	Rosén et al. (2000)	,
$R_{er}156b$	4	H ₂ O+	+	e	\rightarrow	$O(^3P)$	+	H_{2}			$3.87 \times 10^{-08} T^{0.50}$	Rosén et al. (2000)	
$R_{er}156c$	4	H ₂ O+	+	е	\rightarrow	$O(^3P)$	+	Η̈́	+	Η	$3.05 \times 10^{-07} T^{0.50}$	Rosén et al. (2000)	
$R_{er}157a$	4	H ₃ O+	+	e	\rightarrow	OH	+	H	+	Н	$5.09 \times 10^{-07} T^{0.83}$	Neau et al. (2000)	
$R_{er}157b$	4	H ₃ O+	+	e	\rightarrow	H ₂ O	+	H			$1.37 \times 10^{-07} T^{0.83}$	Neau et al. (2000)	
$R_{er}157c$	4	H ₃ O+	+	e	\rightarrow	ОH	+	H_2			$8.36 \times 10^{-08} T^{0.83}$	Neau et al. (2000)	
$R_{er}157d$	4	H ₃ O ⁺	+	e	\rightarrow	$O(^{3}P)$	+	H_2	+	Η	$3.04 \times 10^{-08} \text{T}^{0.83}$	Neau et al. (2000)	
$R_{er}158a$	4	CO+	+	e	\rightarrow	$O(^3P)$	+	C			$2.50 \times 10^{-07} T^{0.55}$	Rosén et al. (1998)	
$R_{er}158b$	4	CO ⁺	+	e	\rightarrow	$O(^{1}D)$	+	C			$2.48 \times 10^{-08} \text{T}^{0.55}$	Rosén et al. (1998)	
$R_{er}159$	4	CO ⁺ N ₂	+	e	\rightarrow	CO	+	N_2			$5.00 \times 10^{-06} T^{0.70}$	est.(clusters)	
$R_{er}160a$	4	HCO ⁺	+	e	\rightarrow	CO	+	H			$1.56 \times 10^{-07} T^{1.20}$	Le Padellec et al. (1997),Geppe	rt et al. (2
$R_{er}160b$	4	HCO ⁺	+	e	\rightarrow	OH	+	C			$1.19 \times 10^{-08} \mathrm{T}^{1.20}$	Le Padellec et al. (1997),Geppe	rt et al. (2
$R_{er}160c$	4	HCO ⁺	+	e	\rightarrow	CH	+	$O(^3P)$)		$1.70 \times 10^{-09} \mathrm{T}^{1.20}$	Le Padellec et al. (1997),Geppe	rt et al. (2
$R_{er}161$	4	HCO ⁺ H ₂	+	e	\rightarrow	HCO	+	H_2			$5.00 \times 10^{-06} \mathrm{T}^{0.70}$	est.(clusters)	
$R_{er}162$	4	HCO+CO	+	e	\rightarrow	HCO	+	CO			$5.00 \times 10^{-06} \mathrm{T}^{0.70}$	est.(clusters)	
$R_{er}163a$	4	HOC+	+	e	\rightarrow	CO	+	H			$1.56 \times 10^{-07} \mathrm{T}^{1.20}$	est.(HCOP)	
$R_{er}163b$	4	HOC+	+	e	\rightarrow	OH	+	C			$1.19 \times 10^{-08} \mathrm{T}^{1.20}$	est.(HCOP)	
$R_{er}163c$	4	HOC+	+	e	\rightarrow	CH	+	$O(^3P)$)		$1.70 \times 10^{-09} T^{1.20}$	est.(HCOP)	
$R_{er}164a$	4	CH ₂ O ⁺	+	e	\rightarrow	CO	+	H	+	Η	$2.50 \times 10^{-07} T^{0.70}$	Wakelam et al. (2015)	
$R_{er}164b$	4	CH ₂ O ⁺	+	e	\rightarrow	HCO	+	H			$1.50 \times 10^{-07} T^{0.70}$	Wakelam et al. (2015)	
$R_{er}164c$	4	CH ₂ O ⁺	+	e	\rightarrow	CO	+	H_{2}			$7.50 \times 10^{-08} \text{T}^{0.70}$	Wakelam et al. (2015)	
$R_{er}164d$	4	CH ₂ O ⁺	+	e	\rightarrow	$^3\mathrm{CH}_2$	+	$O(^3P)$			$2.50 \times 10^{-08} \mathrm{T}^{0.70}$	Wakelam et al. (2015)	
$R_{er}165a$	4	CH ₂ OH ⁺	+	e	\rightarrow	HCO	+	H	+	Η	$6.44 \times 10^{-07} \mathrm{T}^{0.78}$	Hamberg et al. (2007)	
$R_{er}165b$	4	CH ₂ OH ⁺	+	e	\rightarrow	OH	+	$^3\mathrm{CH}_2$			$4.20 \times 10^{-08} \mathrm{T}^{0.78}$	Hamberg et al. (2007)	
$R_{er}165c$	4	CH ₂ OH ⁺	+	e	\rightarrow	H_2O	+	$^{\rm CH}$			$1.40 \times 10^{-08} \mathrm{T}^{0.78}$	Hamberg et al. (2007)	
$R_{er}166$	4	HC ₂ O ⁺	+	e	\rightarrow	ONEUT	+	H			$6.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}167$	4	CH ₂ CO ⁺	+	e	\rightarrow	ONEUT	+	H			$8.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}168a$	4	CH ₃ CO ⁺	+	e	\rightarrow	ONEUT	+	H			$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}168b$	4	CH ₃ CO ⁺	+	e	\rightarrow	CH_3	+	CO			$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)	
$R_{er}169a$	4	CH ₃ COH ⁺	+	e	\rightarrow	H_2O	+	C_2H_2			$5.40 \times 10^{-07} \mathrm{T}^{0.70}$	Vigren et al. (2010b)	
	Contin	ued on Next	Page.										

$R_{er}169b$	4	CH ₃ COH ⁺	+	e	\rightarrow	H_2CO	+	3 CH $_2$		$5.40 \times 10^{-07} T^{0.70}$	Vigren et al. (2010b)
$R_{er}169c$	4	CH ₃ COH ⁺	+	e	\rightarrow	CH ₂ CO	+	н +	H	$4.20 \times 10^{-07} \text{T}^{0.70}$	Vigren et al. (2010b)
$R_{er}170a$	4	CH ₃ CHOH	++	e	\rightarrow	CH ₃ CHO	+	H		$5.00 \times 10^{-07} \text{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}170b$	4	CH ₃ CHOH	++	e	\rightarrow	H_2CO	+	CH_3		$2.50 \times 10^{-07} \text{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}170c$	4	CH ₃ CHOH	++	e	\rightarrow	OH	+	C_2H_4		$2.50 \times 10^{-07} \text{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}171$	4	HC ₃ O ⁺	+	e	\rightarrow	ONEUT	+	H		$8.00 \times 10^{-07} \text{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}172a$	4	C ₂ H ₂ CO ⁺	+	e	\rightarrow	ONEUT	+	H		$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}172b$	4	C ₂ H ₂ CO ⁺	+	e	\rightarrow	C_2H_2	+	CO		$5.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}173a$	4	C ₂ H ₃ CO ⁺	+	e	\rightarrow	ONEUT	+	H		$1.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}173b$	4	C ₂ H ₃ CO ⁺	+	e	\rightarrow	HCO	+	C_2H_2		$9.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}174$	4	CO_2^+	+	e	\rightarrow	CO	+	O		$4.20\times10^{-07}\mathrm{T}^{0.75}$	Viggiano et al. (2005)
$R_{er}175a$	4	OCOH ⁺	+	e	\rightarrow	CO	+	O +	H	$8.16 \times 10^{-07} \mathrm{T}^{0.64}$	Geppert et al. (2004d)
$R_{er}175b$	4	OCOH ⁺	+	e	\rightarrow	CO	+	OH		$3.24 \times 10^{-07} T^{0.64}$	Geppert et al. (2004d)
$R_{er}175c$	4	OCOH ⁺	+	e	\rightarrow	CO_2	+	H		$6.00 \times 10^{-08} \mathrm{T}^{0.64}$	Geppert et al. (2004d)
$R_{er}176a$	4	NO ⁺	+	e	\rightarrow	$O(^{3}P)$	+	$N(^2D)$		$3.19 \times 10^{-07} \mathrm{T}^{0.75}$	Dulaney et al. (1987), Kley et al. (1977)
$R_{er}176b$	4	NO ⁺	+	e	\rightarrow	$O(^3P)$	+	N		$1.01 \times 10^{-07} T^{0.75}$	Dulaney et al. (1987), Kley et al. (1977)
$R_{er}177$	4	HNO ⁺	+	e	\rightarrow	NO	+	H		$4.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}178$	4	NCO ⁺	+	e	\rightarrow	CO	+	N		$4.00 \times 10^{-07} T^{0.70}$	eq.(E23),est.(products)
$R_{er}179$	4	HNCO ⁺	+	e	\rightarrow	CO	+	NH		$6.00 \times 10^{-07} \text{T}^{0.70}$	eq.(E23),est.(products)
$R_{er}180$	4	CXHYNZ ⁺	+	e	\rightarrow	NEUT				$1.00 \times 10^{-06} T^{0.70}$	eq.(E23),est.(products)
$R_{er}181$	4	Adduct ⁺	+	e	\rightarrow	NEUT				$5.00 \times 10^{-06} \text{T}^{0.70}$	est.(clusters)
$R_{er}182$	4	AdductN ⁺	+	e	\rightarrow	NEUT				$5.00 \times 10^{-06} T^{0.70}$	est.(clusters)

Ref.

Reaction

Type

Table B.18: Negative ion reaction list.

		Туре	,			Re	eaction			k	Ref.
$R_{an}1$	2	H-	+	C_2H_2	\rightarrow	C_2H^-	+	H_2	3.10×10^{-09}		Martinez et al. (2010)
$R_{an}2$	2	H ⁻	+	C_4H_2	\rightarrow	C_4H^-	+	H_2	6.40×10^{-09}		Langevin
$R_{an}3$	2	H ⁻	+	C_6H_2	\rightarrow	C_6H^-	+	H_2	6.30×10^{-09}		Langevin
$R_{an}4$	2	H_	+	HCN	\rightarrow	cn^-	+	H_2	1.50×10^{-08}		Mackay et al. (1976)
$R_{an}5$	2	H_	+	HC_3N	\rightarrow	C_3N^-	+	H_2	2.40×10^{-08}		Su-Chesnavich
$R_{an}6$	2	H_	+	HC_5N	\rightarrow	C_5N^-	+	H_2	3.10×10^{-08}		Su-Chesnavich
$R_{an}7$	2	CH ₂	+	HCN	\rightarrow	CN-	+	CH ₃	6.20×10^{-09}		Su-Chesnavich
$R_{an}8$	2	CH ₂	+	HC_3N	\rightarrow	C_3N^-	+	CH ₃	7.20×10^{-09}		Su-Chesnavich
$R_{an}9$	2	CH ₂	+	HC_5N	\rightarrow	C_5N^-	+	CH ₃	8.90×10^{-09}		Su-Chesnavich
t _{an} 10	2	CH ₃	+	HCN	\rightarrow	CN-	+	CH ₄	6.10×10^{-09}		Su-Chesnavich
t _{an} 11	2	CH_3^2	+	HC_3N	\rightarrow	C_3N^-	+	CH ₄	7.00×10^{-09}		Su-Chesnavich
$l_{an}12$	2	CH ₃	+	HC_5N	\rightarrow	C_5N^-	+	CH ₄	8.60×10^{-09}		Su-Chesnavich
$l_{an} 13$	2	C₂H⁻	+	C_2H_2	\rightarrow	C_4H^-	+	Н,	1.00×10^{-12}		De Bleecker et al. (2006), Howling et a
$a_n 14$	2	C ₂ H ⁻	+	C_4H_2	\rightarrow	$C_A^{\dagger}H^-$	+	C_2H_2	1.50×10^{-09}		Langevin
an 15	2	C_2H^-	+	C_6H_2	\rightarrow	$C_6^{^{\bullet}}H^-$	+	C_2H_2	2.30×10^{-09}		Langevin
$a_n 16$	2	C ₂ H ⁻	+	HCN	\rightarrow	CN-	+	C_2H_2	3.90×10^{-09}		Mackay et al. (1976)
$a_n 17$	2	C ₂ H ⁻	+	HC_3N	\rightarrow	C_3N^-	+	C_2H_2	5.80×10^{-09}		Su-Chesnavich
an 18	2	C_2H^-	+	HC_5N	\rightarrow	C_5N^-	+	C_2H_2	7.00×10^{-09}		Su-Chesnavich
$R_{an} 19$	2	C_4H^-	+	C_2H_2	\rightarrow	C_6H^-	+	H., 2	1.00×10^{-12}		De Bleecker et al. (2006), Howling et a
$a_n 20$	2	$C_4^{\dagger}H^-$	+	C_6H_2	\rightarrow	$C_6^{\circ}H^-$	+	$C_4^{2}H_2$	1.80×10^{-09}		Langevin
$a_n 21$	2	C_4H^-	+	N 2	\rightarrow	CN-	+	C_3H	6.00×10^{-12}		Eichelberger et al. (2007)
$a_n 22$	2	C_4H^-	+	HCN	\rightarrow	CN^-	+	C_4H_2	4.50×10^{-09}		Su-Chesnavich
$a_n 23$	2	C_4H^-	+	HC_3N	\rightarrow	C_3N^-	+	C_4H_2	4.80×10^{-09}		Su-Chesnavich
$a_{n}24$	2	C₄H−	+	HC_5N	\rightarrow	C_5N^-	+	$C_4^{\dagger}H_2^{2}$	5.60×10^{-09}		Su-Chesnavich
$l_{an}25$	2	C ₆ H	+	C_2H_2	\rightarrow	$C_x^3 H_y N_z^2$	-	4 2	1.00×10^{-12}		De Bleecker et al. (2006), Howling et a
lan 26	2	C ₆ H	+	N 2	\rightarrow	CN-	+	$C_{\kappa}H$	1.00×10^{-11}		Eichelberger et al. (2007)
$R_{an}27$	2	C ₆ H	+	HCN	\rightarrow	CN^-	+	C_6H_2	4.30×10^{-09}		Su-Chesnavich
$R_{an}28$	2	C ₆ H	+	HC_3N	\rightarrow	C_3N^-	+	C_6H_2	4.30×10^{-09}		Su-Chesnavich
$R_{an} 29$	2	C ₆ H	+	HC_5N	\rightarrow	C_5N^-	+	C_6H_2	5.00×10^{-09}		Su-Chesnavich
t _{an} 30	2	CN-	+	HCN	\rightarrow	$C_x H_y N_x$	-	0 2	1.00×10^{-12}		est.(C2HM+C2H2)
an 31	2	CN-	+	HC_3N	\rightarrow	$C_3N^{-\frac{g}{2}}$	+	HCN	$4.30 \times 10^{-09} T^{0.12}$		Biennier et al. (2014); Romanzin et a
t _{an} 32	2	CN-	+	HC ₅ N	\rightarrow	C_5N^-	+	HCN	6.90×10^{-09}		Su-Chesnavich
t _{an} 33	2	C ₂ N	+	HC ₅ N	\rightarrow	C_5N^-	+	HC_3N	5.40×10^{-09}		Su-Chesnavich
$R_{an}34$	2	0-	+	H ₂	\rightarrow	OH-	+	Н	3.00×10^{-11}		Wakelam et al. (2015)
	Contin	nued on l	Next						1	'	,

	Туре					R	Reaction		k Ref.			
$R_{an}35$	2	b-	+	CH_4	\rightarrow	$\mathrm{OH^-}$	+	CH_3	1.00×10^{-10}	Bohme and Fehsenfeld (1969)		
$R_{an}36$	2	O-	+	C_2H_2	\rightarrow	C_2H^-	+	OH	$1.76 \times 10^{-09} e^{-289.0/T}$	Viggiano and Paulson (1983)		
$R_{an}37$	2	O-	+	C_4H_2	\rightarrow	C_4H^-	+	OH	$1.60 \times 10^{-09} e^{-289.0/T}$	Langevin		
$R_{an}38$	2	O-	+	C_6H_2	\rightarrow	C_6H^-	+	OH	$1.60 \times 10^{-09} e^{-289.0/T}$	Langevin		
$R_{an}39$	2	O-	+	HCN	\rightarrow	CN^-	+	OH	3.70×10^{-09}	Bohme (1975)		
$R_{an}40$	2	O-	+	HC_3N	\rightarrow	C_3N^-	+	OH	6.80×10^{-09}	Su-Chesnavich		
$R_{an}41$	2	O-	+	HC_5N	\rightarrow	$C_5 N^-$	+	OH	8.40×10^{-09}	Su-Chesnavich		
$R_{an}42$	2	OH-	+	C_2H_2	\rightarrow	C_2H^-	+	H_2O	2.20×10^{-09}	Raksit and Bohme (1983)		
$R_{an}43$	2	OH-	+	HCN	\rightarrow	CN^-	+	H_2O	3.50×10^{-09}	Raksit and Bohme (1983)		
$R_{an}44$	2	OH-	+	HC_3N	\rightarrow	C_3N^-	+	H_2O	6.70×10^{-09}	Su-Chesnavich		
$R_{an}45$	2	OH-	+	HC_5N	\rightarrow	$C_5 N^-$	+	H_2O	8.20×10^{-09}	Su-Chesnavich		

Table B.19: Associative detachment reaction list.

=		Туре				Reaction		k Ref.			
$R_{ad}1$	2	H^-	+	Н	\rightarrow	H_2	+	e	5.50×10^{-09}		Gerlich et al. (2012)
$R_{ad}2$	2	H^{-}	+	CH_3	\rightarrow	CH_4	+	e	5.50×10^{-09}		est.(HM+H)
$R_{ad}3$	2	H^{-}	+	N	\rightarrow	NH	+	e	1.00×10^{-09}		Prasad and Huntress Jr. (1980)
$R_{ad}4$	2	CH_2^-	+	H	\rightarrow	CH_3	+	e	1.80×10^{-09}		Adams (1996)
$R_{ad}5$	2	CH_2^-	+	CH_3	\rightarrow	C_2H_5	+	e	1.80×10^{-09}		est.(CH2M+H)
$R_{ad}6$	2	CH_2^-	+	N	\rightarrow	H_2CN	+	e	1.80×10^{-09}		est.(CH2M+H)
$R_{ad}7$	2	CH_3^-	+	H	\rightarrow	CH_4	+	e	1.80×10^{-09}		Adams (1996)
$R_{ad}8$	2	CH_3^-	+	CH_3	\rightarrow	C_2H_6	+	e	1.80×10^{-09}		est.(CH3M+H)
$R_{ad}9$	2	CH_3	+	N	\rightarrow	CH_2NH	+	e	1.80×10^{-09}		est.(CH3M+H)
$R_{ad}10$	2	C_2H^-	+	H	\rightarrow	C_2H_2	+	e	1.60×10^{-09}		Barckholtz et al. (2001)
$R_{ad}11$	2	C_2H^-	+	CH_3	\rightarrow	CH ₃ CCH	+	e	1.60×10^{-09}		est.(C2HM+H)
$R_{ad}12$	2	C_2H^-	+	N	\rightarrow	HC ₂ N	+	e	5.00×10^{-11}		Eichelberger et al. (2007)
$R_{ad}13$	2	C_4H^-	+	H	\rightarrow	$C_4 \overline{H}_2$	+	e	8.30×10^{-10}		Barckholtz et al. (2001)
$R_{ad}14$	2	C_4H^-	+	CH_3	\rightarrow	C_5H_4	+	e	8.30×10^{-10}		est.(C4HM+H)
$R_{ad}15$	2	C_6H^-	+	H	\rightarrow	C_6H_2	+	e	5.00×10^{-10}		Barckholtz et al. (2001)
$R_{ad}16$	2	C_6H^-	+	CH_3	\rightarrow	C_7H_4	+	e	5.00×10^{-10}		est.(C6HM+H)
$R_{ad}17$	2	CN-	+	H	\rightarrow	HCN	+	e	6.30×10^{-10}		Yang et al. (2011)
$R_{ad}18$	2	CN ⁻	+	CH_3	\rightarrow	CH ₃ CN	+	e	6.30×10^{-10}		est.(CNM+H)
$R_{ad}19$	2	C_3N^-	+	H	\rightarrow	HC ₃ N	+	e	5.40×10^{-10}		Snow et al. (2009), Yang et al. (201
$R_{ad}20$	2	C ₃ N ⁻	+	CH_3	\rightarrow	CH_3C_3N	+	e	5.40×10^{-10}		est.(C3NM+H)
$R_{ad}21$	2	C ₅ N ⁻	+	H	\rightarrow	HC ₅ N	+	e	5.80×10^{-10}		Yang et al. (2011)
$R_{ad}22$	2	C ₅ N ⁻	+	CH_3	\rightarrow	CH_3C_5N	+	e	5.80×10^{-10}		est.(C5NM+H)
$R_{ad}23$	2	$C_x H_y N_z^-$	+	H	\rightarrow	NEUT	+	e	1.00×10^{-09}		Adams (1996)
$R_{ad}24$	2	$C_x H_y N_z^-$	+	CH_3	\rightarrow	NEUT	+	e	1.00×10^{-09}		est.(CXHYNZM+H)
$R_{ad}25$	2	$C_x H_y N_z^-$	+	N	\rightarrow	NEUT	+	e	1.00×10^{-09}		est.(CXHYNZM+H)
$R_{ad}26$	2	O-	+	H	\rightarrow	OH	+	e	5.00×10^{-10}		Prasad and Huntress Jr. (1980)
$R_{ad}27$	2	O-	+	CH_3	\rightarrow	$\mathrm{CH_{2}OH}$	+	e	5.00×10^{-10}		est.(OM+H)
$R_{ad}28$	2	O-	+	C_2H_2	\rightarrow	CH_2CO	+	e	1.10×10^{-09} T	0.39	Viggiano and Paulson (1983)
$R_{ad}29$	2	O-	+	N	\rightarrow	NO	+	e	2.20×10^{-10}		Ferguson (1973)
$R_{ad}30$	2	O-	+	CO	\rightarrow	CO_2	+	e	7.30×10^{-10}		Parkes (1972)
$R_{ad}31$	2	OH^-	+	H	\rightarrow	H_2O	+	e	1.40×10^{-09}		Howard et al. (1974)
$R_{ad}32$	2	OH^-	+	CH_3	\rightarrow	CH ₃ OH	+	e	1.40×10^{-09}		est.(OHM+H)
$R_{ad}33$	2	OH-	+	N	\rightarrow	HNO	+	e	1.40×10^{-09}		est.(OHM+H)

Table B.20: Positive + negative ion reaction list.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							_					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Т	уре				Read	ction				k Ref.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 H	-	+	CH_5^+	\rightarrow	H	+	CH_4	+	Η	$1.00 \times 10^{-07} T^{1.00}$	Hickman (1979),Smith et al.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 H		+	$C_2\ddot{H}_5^+$	\rightarrow	H	+	C_2H_4	+	Η	$1.00 \times 10^{-07} T^{1.00}$	Hickman (1979),Smith et al.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 H		+	HCNH ⁺	\rightarrow	H	+	HCN	+	Η	$1.00 \times 10^{-07} T^{1.00}$	Hickman (1979),Smith et al.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 CI	I_2^-	+	CH_5^+	\rightarrow	3 CH $_2$	+	CH_4	+	Η	$1.10 \times 10^{-07} \mathrm{T}^{0.90}$	Miller et al. (2012)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 CI	$\mathbb{T}_2^{\tilde{-}}$	+	$C_2H_5^+$	\rightarrow	3CH_2	+	C_2H_4	+	H	$9.60 \times 10^{-08} \mathrm{T}^{0.90}$	Miller et al. (2012)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 CI	$\overline{\mathbf{I}}_{2}^{2}$	+	HCNH ⁺	\rightarrow	$^{3}CH_{2}^{2}$	+	HCN	+	Η	$9.70 \times 10^{-08} \text{T}^{0.90}$	Miller et al. (2012)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 CI	$\overline{\mathbf{H}}_{3}^{2}$	+	CH_5^+	\rightarrow	CH ₃	+	CH_4	+	H	$1.40 \times 10^{-07} \mathrm{T}^{0.90}$	Miller et al. (2012)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 CI	$\frac{1}{3}$	+	$C_2H_5^+$	\rightarrow	CH ₃	+	C_2H_4	+	Η	$1.20 \times 10^{-07} \mathrm{T}^{0.90}$	Miller et al. (2012)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 CI	$\frac{1}{3}$	+	HCNH ⁺	\rightarrow	CH ₃	+	HCN	+	Η	$1.20 \times 10^{-07} T^{0.90}$	Miller et al. (2012)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 C ₂	,H-	+	CH_5^+	\rightarrow	C_2H	+	CH_4	+	H	$7.60 \times 10^{-08} T^{0.90}$	Miller et al. (2012)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 C.	H^-	+	$C_2H_5^+$	\rightarrow	C ₂ H	+	C_2H_4	+	H	$6.60 \times 10^{-08} \mathrm{T}^{0.90}$	Miller et al. (2012)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 C ₂	H^-	+	HCNH ⁺	\rightarrow	C_2H	+	HCN	+	Η	$6.70 \times 10^{-08} \mathrm{T}^{0.90}$	Miller et al. (2012)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 C	H^-	+	CH_5^+	\rightarrow	C_4H	+	CH_4	+	H	$6.70 \times 10^{-08} \mathrm{T}^{0.90}$	Miller et al. (2012)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 C	H^-	+	$C_2H_5^+$	\rightarrow	C_4H	+	C_2H_4	+	Η	$5.60 \times 10^{-08} \mathrm{T}^{0.90}$	Miller et al. (2012)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 C	H^-	+	HCNH ⁺	\rightarrow	C_4H	+	HCN	+	Η	$5.60 \times 10^{-08} \mathrm{T}^{0.90}$	Miller et al. (2012)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 C	H^{-}	+	CH_5^+	\rightarrow	C_6H	+	CH_4	+	H	$6.30 \times 10^{-08} \text{T}^{0.90}$	Miller et al. (2012)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 C	H^-	+	$C_2H_5^+$	\rightarrow	C_6H	+	C_2H_4	+	Η	$5.20 \times 10^{-08} \mathrm{T}^{0.90}$	Miller et al. (2012)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 C	H^-	+	HCNH ⁺	\rightarrow	C_6H	+	HCN	+	Η	$5.20 \times 10^{-08} \mathrm{T}^{0.90}$	Miller et al. (2012)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 Ci		+	CH_5^+	\rightarrow	CN	+	CH_4	+	Η	$2.60 \times 10^{-07} T^{1.10}$	Miller et al. (2012)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 Cl	N_	+	$C_2H_5^+$	\rightarrow	CN	+	C_2H_4	+	Η	$2.60 \times 10^{-07} \mathrm{T}^{1.10}$	Miller et al. (2012)
$\begin{array}{cccc} a_{ir}23 & 2 \\ a_{ir}24 & 2 \\ a_{ir}25 & 2 \\ a_{ir}26 & 2 \\ a_{ir}27 & 2 \\ a_{ir}28 & 2 \\ a_{ir}29 & 2 \\ a_{ir}30 & 2 \\ \end{array}$	2 C1	N_	+	HCNH ⁺	\rightarrow	CN	+	HCN	+	Η	$2.60 \times 10^{-07} \mathrm{T}^{1.10}$	Miller et al. (2012)
$\begin{array}{cccc} \lambda_{ir} 24 & 2 \\ \lambda_{ir} 25 & 2 \\ \lambda_{ir} 26 & 2 \\ \lambda_{ir} 27 & 2 \\ \lambda_{ir} 28 & 2 \\ \lambda_{ir} 29 & 2 \\ \lambda_{ir} 30 & 2 \\ \end{array}$	2 C ₂	N^{-}	+	CH_5^+	\rightarrow	C_3N	+	CH_4	+	Η	$6.40 \times 10^{-08} \mathrm{T}^{0.90}$	Miller et al. (2012)
$\begin{array}{c cccc} \mathbf{R}_{ir} 25 & 2 \\ \mathbf{R}_{ir} 26 & 2 \\ \mathbf{R}_{ir} 27 & 2 \\ \mathbf{R}_{ir} 28 & 2 \\ \mathbf{R}_{ir} 29 & 2 \\ \mathbf{R}_{ir} 30 & 2 \\ \end{array}$	2 C ₂	N^{-}	+	$C_2H_5^+$	\rightarrow	C_3N	+	C_2H_4	+	Η	$5.40 \times 10^{-08} \mathrm{T}^{0.90}$	Miller et al. (2012)
$ \begin{array}{c ccc} R_{ir}26 & 2 \\ R_{ir}27 & 2 \\ R_{ir}28 & 2 \\ R_{ir}29 & 2 \\ R_{ir}30 & 2 \end{array} $	2 C ₂	N^{-}	+	HCNH ⁺	\rightarrow	C_3N	+	HCN	+	Η	$5.40 \times 10^{-08} \mathrm{T}^{0.90}$	Miller et al. (2012)
$ \begin{array}{c cccc} R_{ir}27 & 2 \\ R_{ir}28 & 2 \\ R_{ir}29 & 2 \\ R_{ir}30 & 2 \end{array} $	2 C _g	N ⁻	+	CH_5^+	\rightarrow	C_5N	+	CH_4	+	Η	$6.20 \times 10^{-08} \mathrm{T}^{0.90}$	Miller et al. (2012)
$\begin{array}{c cccc} R_{ir}28 & 2 & & & & & & & & & & & & & & & & &$	2 C ₅	N^{-}	+	$C_2H_5^+$	\rightarrow	C_5N	+	C_2H_4	+	Η	$5.00 \times 10^{-08} T^{0.90}$	Miller et al. (2012)
$R_{ir}29$ 2 2 $R_{ir}30$ 2		N^{-}	+	HCNH ⁺	\rightarrow	C_5N	+	HCN	+	Η	$5.10 \times 10^{-08} \text{T}^{0.90}$	Miller et al. (2012)
$R_{ir}30$ 2	2 C ₃	$_{z}$ H $_{y}$ N $_{z}^{-}$	+	CH ₅	\rightarrow	NEUT	+	CH_4	+	Η	$1.00 \times 10^{-07} T^{0.90}$	Miller et al. (2012)
	2 C ₂	$H_y N_z^-$	+	$C_2H_5^+$	\rightarrow	NEUT	+	C_2H_4	+	Η	$1.00 \times 10^{-07} T^{0.90}$	Miller et al. (2012)
	2 C ₂	$H_y N_z^-$	+	HCNH ⁺	\rightarrow	NEUT	+	HCN	+	Η	$1.00 \times 10^{-07} \mathrm{T}^{0.90}$	Miller et al. (2012)
	2 O		+	CH_5^+	\rightarrow	$O(^{3}P)$	+	CH_4	+	H	$1.00 \times 10^{-07} T^{1.00}$	Hickman (1979),Smith et al.
$R_{ir}32$ 2			+	$C_2H_5^+$	\rightarrow	$O(^{3}P)$	+	C_2H_4	+	Η	$1.00 \times 10^{-07} T^{1.00}$	Hickman (1979),Smith et al.
$R_{ir}33$ 2			+	HCNH ⁺	\rightarrow	$O(^3P)$	+	HCN	+	Η	$1.00 \times 10^{-07} \mathrm{T}^{1.00}$	Hickman (1979),Smith et al.
$R_{ir}34$ 2			+	CH ₅ ⁺ Page	\rightarrow	OH	+	CH_4	+	H	$2.70 \times 10^{-07} \mathrm{T}^{1.10}$	Miller et al. (2012)

=		Reaction							k	Ref.		
$ \begin{array}{c c} R_{ir}35 & 2 \\ R_{ir}36 & 2 \end{array} $	OH-	+ +	${ m C_2H_5^+} \ { m HCNH^+}$	$\overset{\rightarrow}{\rightarrow}$	OH OH	++	$_{\rm HCN}^{\rm C_2H_4}$			$\begin{array}{ c c c c c c }\hline 2.70 \times 10^{-07} \mathrm{T}^{1.10} \\ 2.70 \times 10^{-07} \mathrm{T}^{1.10} \\ \end{array}$		