

TEST REPORT

No. I18D00212-SAR01

For

Client: Hisense International Co., Ltd.

Production: Mobile Phone

Model Name: KS907

Brand Name: Hisense

FCC ID: 2ADOBKS907

Hardware Version: V1.00

Software Version: Hisense_F17_4G_40_S02_20181018

Issued date: 2018-12-13

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn

SAR Test Report

Revision Version

Report No.: I18D00212-SAR01

Report Number	Revision	Date	Memo
I18D00212-SAR01	00	2018-12-4	Initial creation of test report
I18D00212-SAR01	01	2018-12-10	Second creation of test report
I18D00212-SAR01	02	2018-12-13	Third creation of test report

East China Institute of Telecommunications Page Number : 2 of 175 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Dec. 13, 2018

: 3 of 175

Page Number

Report Issued Date: Dec. 13, 2018

CONTENTS

1.	TEST LABORATORY	6
1.1.	TESTING LOCATION	6
1.2.	TESTING ENVIRONMENT	6
1.3.	PROJECT DATA	6
1.4.	SIGNATURE	6
2.	STATEMENT OF COMPLIANCE	7
3.	CLIENT INFORMATION	9
3.1.	APPLICANT INFORMATION	9
3.2.	MANUFACTURER INFORMATION	9
4.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	10
4.1.	ABOUT EUT	10
4.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	11
4.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	11
5.	TEST METHODOLOGY	12
5.1.	APPLICABLE LIMIT REGULATIONS	12
5.2.	APPLICABLE MEASUREMENT STANDARDS	12
6.	SPECIFIC ABSORPTION RATE (SAR)	13
6.1.	INTRODUCTION	13
6.2.	SAR DEFINITION	13
7.	TISSUE SIMULATING LIQUIDS	14
7.1.	TARGETS FOR TISSUE SIMULATING LIQUID	14
7.2.	DIELECTRIC PERFORMANCE	15
8.	SYSTEM VERIFICATION	16
8.1.	SYSTEM SETUP	16
8.2.	SYSTEM VERIFICATION	17
9.	MEASUREMENT PROCEDURES	19

SAR Test Report

Page Number : 4 of 175 Report Issued Date : Dec. 13, 2018

9.1.	TESTS TO BE PERFORMED	19
9.2.	GENERAL MEASUREMENT PROCEDURE	19
9.3.	WCDMA MEASUREMENT PROCEDURES FOR SAR	20
9.4.	BLUETOOTH & WIFI MEASUREMENT PROCEDURES FOR SAR	21
9.5.	POWER DRIFT	22
10.	CONDUCTED OUTPUT POWER	23
10.1.	GSM MEASUREMENT RESULT	28
10.2.	WCDMA MEASUREMENT RESULT	29
10.3.	LTE MEASUREMENT RESULT	30
10.4.	WIFI AND BT MEASUREMENT RESULT	39
11.	SIMULTANEOUS TX SAR CONSIDERATIONS	42
11.1.	INTRODUCTION	42
11.2.	TRANSMIT ANTENNA SEPARATION DISTANCES	42
11.3.	STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	43
11.4.	SAR MEASUREMENT POSITIONS	43
12.	SAR TEST RESULT	44
13.	EVALUATION OF SIMULTANEOUS	56
14.	SAR MEASUREMENT VARIABILITY	60
15.	MEASUREMENT UNCERTAINTY	61
16.	MAIN TEST INSTRUMENT	63
ANNE	X A. HIGHEST SAR GRAPH RESULTS	64
ANNE	X B. SYSTEM VALIDATION RESULTS	82
ANNE	X C. SAR MEASUREMENT SETUP	93
ANNE	X D. POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	102
ANNE	X E. EQUIVALENT MEDIA RECIPES	106
ANNE	X F. SYSTEM VALIDATION	107
ΔΝΝΕ	X G. PROBE AND DAE CALIBRATION CERTIFICATE	108

SAR Test Report

ANNEX H. ACCREDITATION CERTIFICATE......175

Report No.: I18D00212-SAR01

East China Institute of Telecommunications Page Number: 5 of 175
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date: Dec. 13, 2018

1. Test Laboratory

1.1. Testing Location

Company Name:	ECIT Shanghai, East China Institute of Telecommunications				
	7-8F, G Area,No. 668, Beijing East Road, Huangpu District,				
Address:	Shanghai, P. R. China				
Postal Code:	200001				
Telephone:	(+86)-021-63843300				
Fax:	(+86)-021-63843301				
FCC registration No:	958356				

1.2. Testing Environment

Normal Temperature:	18-25℃
Relative Humidity:	25-75%
Ambient noise & Reflection:	< 0.012 W/kg

1.3. Project Data

Project Leader:	Xu Yuting
Testing Start Date:	2018-11-04
Testing End Date:	2018-11-20

1.4. Signature

Yan Hang

(Prepared this test report)

傅二艮

: 6 of 175

Fu Erliang

(Reviewed this test report)

Page Number

Report Issued Date: Dec. 13, 2018

Zheng Zhongbin

(Approved this test report)

2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **KS907** are as follows .

Table 2.1: Max. Reported SAR (1g)

D I	SAR 1g(W/Kg)					
Band	Head	Body worn(10mm)	Hotspot(10mm)			
GSM 850	0.349	0.664	0.664			
GSM 1900	0.165	1.040	1.231			
WCDMA Band2	0.199	0.959	1.144			
WCDMA Band5	0.331	0.482	0.482			
LTE Band2	0.293	0.753	0.931			
LTE Band4	0.202	0.592	0.938			
LTE Band5	0.328	0.427	0.432			
LTE Band7	0.173	0.706	1.159			
2.4G WiFi	0.186	0.051	0.051			
5G WiFi	0.940	0.109	0.084			

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

Note: Original 5G test results are obtained from the **TA Technology (Shanghai) Co., Ltd.** Report and report No. is **R1810A0481-S1**.

Page Number

Report Issued Date: Dec. 13, 2018

: 7 of 175

Table 2.2: Simultaneous SAR

Simultaneous multi-band transmission										
Tost	Position		2G	3G	4G	2.4GHz		5GHz	SUM	
1030	Tosidori		20	00	Ţ	ВТ	WIFI	WIFI	2.4GHz	5GHz
	Left	Cheek	0.349	0.331	0.328	0.133	0.173	0.940	0.522	1.289
Head	Len	Tilt 15°	0.241	0.22	0.199	0.133	0.186	0.721	0.427	0.962
Head	Right	Cheek	0.329	0.306	0.328	0.133	0.063	0.555	0.462	0.884
		Tilt 15°	0.238	0.189	0.148	0.133	0.070	0.504	0.371	0.742
Hotspot &Body-	Phantom	Side	0.919	0.713	0.557	0.066	0.051	0.097	0.985	1.016
worn 10 mm	Ground	Side	1.04	0.959	0.753	0.066	0.045	0.109	1.106	1.149
	Left Si	de	0.642	0.219	0.432	0.066	0.005		0.708	0.642
Hotanot 10 mm	Right S	Side	0.531	0.247	0.387	0.066	0.039	0.040	0.597	0.571
Hotspot 10 mm	Top Si	de				0.066	0.050	0.010	0.066	0.01
	Bottom	Side	1.231	1.144	1.159	0.066	-		1.297	1.231

According to the above table, the maximum sum of reported SAR values for GSM/WCDMA/LTE and BT/WiFi is **1.297 W/kg** (1g).

East China Institute of Telecommunications Page Number: 8 of 175
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date: Dec. 13, 2018

SAR Test Report

3. Client Information

3.1. Applicant Information

Company Name: Hisense International Co., Ltd.

Address: Floor 22, Hisense Tower, 17 Donghai Xi Road, Qingdao, 266071, China

Report No.: I18D00212-SAR01

Telephone: /
Postcode: /

3.2. Manufacturer Information

Company Name: Hisense International Co., Ltd.

Address: Floor 22, Hisense Tower, 17 Donghai Xi Road, Qingdao, 266071, China

Telephone: /
Postcode: /

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 9 of 175 Report Issued Date : Dec. 13, 2018

: 10 of 175

4. Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1. About EUT

Description:	Mobile Phone
Model name:	KS907
Operation Model(s):	GSM850/GSM900/GSM1800/GSM1900 WCDMA Band I/Band II/Band V LTE 2/4/5/7/28 BT4.2,BLE;WiFi 802.11a,b,g,n
Tx Frequency:	824.2-848.8MHz(GSM850) 1850.2-1909.8MHz (GSM1900) 1852.4-1907.6 MHz (WCDMA Band II) 826.4-846.6MHz (WCDMA Band V) 1850.7 -1909.3 MHz (LTE Band 2) 1710.7 -1754.3 MHz (LTE Band 4) 824.7 -848.3 MHz (LTE Band 5) 2502.5 – 2567.5 MHz (LTE Band 7) 2412- 2462 MHz (WiFi) 5150~5250 MHz(U-NII-1) 5250~5350 MHz(U-NII-2A) 5745~5825 MHz(U-NII-3) 2402 – 2480 MHz (BT)
Test device Production information:	Production unit
GPRS/EGPRS Class Mode:	В
GPRS/ EGPRS Multislot Class:	12
Device type:	Portable device
UE category:	3
Antenna type:	Inner antenna
Accessories/Body-worn configurations:	Battery
Dimensions:	148.6*72.5*8.7 mm
Hotspot Mode:	Support

4.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Receive Date
N01	8688060330189170	V1.00	Hisense_F17_4G_40_S02_20 181018	2018-10-28
N18	8688060330189519	V1.00	Hisense_F17_4G_40_S02_20 181018	2018-10-28
N32	8688060330190350	V1.00	Hisense_F17_4G_40_S02_20 181018	2018-11-19

^{*}EUT ID: is used to identify the test sample in the lab internally.

N01/N18 is main supply; N32 is second supply.

It is performed to tset SAR with UET N18 to N32 and conducted power with the N01.

4.3. Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
BA01	Battery	N/A	N/A	N/A

^{*}AE ID: is used to identify the test sample in the lab internally.

5. TEST METHODOLOGY

5.1. Applicable Limit Regulations

ANSI C95.1–1999:IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue and **4.0 W/kg** as averaged over any 10 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2. Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices:

Experimental Techniques.

KDB648474 D04 Handset SAR v01r03:SAR Evaluation Considerations for Wireless Handsets.

KDB248227 D01 802 11 WiFi SAR v02r02: SAR measurement procedures for 802.112abg transmitters.

KDB447498 D01 General RF Exposure Guidance v06:Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04:SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 RF Exposure Reporting v01r02:provides general reporting requirements as well as certain specific information required to support MPE and SAR compliance.

KDB941225 D01 3G SAR Procedures v03r01: 3G SAR Measurement Procedures.

KDB 941225 D05 SAR for LTE Devices v02r04: SAR Evaluation Considerations for LTE Devices

KDB941225 D06 hotspot SAR v02r01:SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities.

NOTE: KDB is not in A2LA Scope List.

: 13 of 175

Page Number

Report Issued Date: Dec. 13, 2018

6. Specific Absorption Rate (SAR)

6.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{Odv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7. Tissue Simulating Liquids

7.1. Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

Frequency(MHz)	Liquid Type	Conductivity(σ)	± 5% Range	Permittivity(ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1800	Head	1.40	1.33~1.47	40.0	38.0~42.0
1800	Body	1.52	1.44~1.60	53.3	50.6~56.0
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3
2600	Head	1.96	1.86~2.06	39.0	37.1~40.9
2600	Body	2.16	2.05~2.27	52.5	59.9~55.1
5200	Head	4.66	4.43~4.89	36.0	34.2~37.8
5200	Body	5.30	5.04~5.57	49.0	46.6~51.5
5800	Head	5.27	5.01~5.53	35.3	33.5~37.1
5800	Body	6.00	5.70~6.30	48.2	45.8~50.6

: 15 of 175

7.2. Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurem	Measurement Value								
Liquid Tem	Liquid Temperature: 22.5 $^{\circ}\mathrm{C}$								
Туре	Frequency	Permittivity ε	Drift (%)	Conductivity σ	Drift (%)	Test Date			
Head	835 MHz	42.152	0.92%	0.923	2.56%	2018/11/4			
Head	1750 MHz	40.967	1.38%	1.382	0.88%	2018/11/5			
Head	1900 MHz	41.865	4.66%	1.414	1.00%	2018/11/7			
Head	2450 MHz	39.542	0.87%	1.813	0.72%	2018/11/9			
Head	2600 MHz	40.142	2.93%	1.975	0.77%	2018/11/15			
Body	835 MHz	57.108	3.46%	1.001	3.20%	2018/11/4			
Body	1750 MHz	55.385	3.72%	1.476	-0.94%	2018/11/5			
Body	1900 MHz	52.151	-2.16%	1.549	1.91%	2018/11/16			
Body	2450 MHz	54.121	2.70%	1.932	-0.92%	2018/11/9			
Body	2600 MHz	54.366	3.55%	2.111	-2.27%	2018/11/15			
Body	1900 MHz	52.451	-1.59%	1.555	2.30%	2018/11/20			

8. System verification

8.1. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Page Number

Report Issued Date: Dec. 13, 2018

: 16 of 175

Picture 8.2 Photo of Dipole Setup

8.2. System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

Table 8.1: System Verification of Head

Verification Results								
Input power I	Input power level: 1W							
	Target va	lue (W/kg)	Measured v	alue (W/kg)	Devi	ation	Toot	
Frequency	10 g	1 g	10 g	1 g	10 g	1 g	Test date	
	Average	Average	Average	Average	Average	Average	uale	
835 MHz	6.25	9.63	6.56	9.88	4.96%	2.60%	2018/11/4	
1750 MHz	19.4	36.5	19.56	36.96	0.82%	1.26%	2018/11/5	
1900 MHz	21.1	40.5	20.6	40.4	-2.37%	-0.25%	2018/11/7	
2450 MHz	24.4	52.4	23.44	52.4	-3.93%	0.00%	2018/11/9	
2600 MHz	25.4	57.2	25.4	59.2	-51.53%	3.50%	2018/11/15	

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 17 of 175 Report Issued Date : Dec. 13, 2018

SAR Test Report

Table 8.2: System Verification of Body

Report No.: I18D00212-SAR01

Verification	Verification Results							
Input power I	Input power level: 1W							
	Target val	lue (W/kg)	Measured v	alue (W/kg)	Devi	ation	Test	
Frequency	10 g	1 g	10 g	1 g	10 g	1 g	date	
	Average	Average	Average	Average	Average	Average	uate	
835 MHz	6.4	9.75	6.64	10	3.75%	2.56%	2018/11/4	
1750 MHz	19.9	37.4	21.08	38.4	5.93%	2.67%	2018/11/5	
1900 MHz	21.2	40.4	22.12	41.6	4.34%	2.97%	2018/11/16	
2450 MHz	23.5	50.5	22.88	49.6	-2.64%	-1.78%	2018/11/9	
2600 MHz	24.1	54.3	23.32	53.2	-3.24%	-2.03%	2018/11/15	
1900 MHz	21.2	40.4	20.28	39.44	-4.34%	-2.38%	2018/11/20	

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 18 of 175 Report Issued Date : Dec. 13, 2018

9. Measurement Procedures

9.1. Tests to be performed

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transm it maximum output power
- (b) Measure conducted output power through RF cable
- (c) Place the EUT in the specific position of phantom as Appendix D demonstrates.
- (d) Measure SAR results for Middle channel or the highest power channel on each testing position.
- (e) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg
- (f) Record the SAR value

9.2. General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013. The results should be documented as part of the system validation records and may be requested to support test results

when all the measurement parameters in the following table are not satisfied.

SAR Test Report Report No.: I18D00212-SAR01

			≤ 3 GHz	> 3 GHz
Maximum distance fro (geometric center of p		measurement point rs) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm } \pm 0.5 \text{ mm}$
	Maximum probe angle from probe axis to phantom surface normal at the measurement location			20° ± 1°
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: $\Delta x_{Area}, \Delta y_{Area}$			When the x or y dimension measurement plane orientat above, the measurement res corresponding x or y dimen at least one measurement po	ion, is smaller than the olution must be ≤ the sion of the test device with
Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform grid: Δz _{Zcom} (n)		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
Δz _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Z_{OX}}$	om(n-1) mm	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

9.3. WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH &DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not

Page Number

Report Issued Date: Dec. 13, 2018

: 20 of 175

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta}_c$	$oldsymbol{eta}_d$	β_d (SF)	eta_c / eta_d	$oldsymbol{eta_{hs}}$	CM/dB	MPR
545 0050	\mathcal{P}_{c}	P_d	Pa Con Pa Phs Con		CM/ dB	(dB)	
1	2/15	15/15	64	2/15	4/15	1.5	0.5
2	12/15	15/15	64	12/15	24/25	2.0	1
3	15/15	8/15	64	15/8	30/15	2.0	1
4	15/15	4/15	64	15/4	30/15	2.0	1

For Release 6 HSUPA Data Devices

Sub-	$oldsymbol{eta_c}$	$oldsymbol{eta_d}$	eta_d	$oldsymbol{eta_c}$ / $oldsymbol{eta_d}$	$oldsymbol{eta_{hs}}$	$oldsymbol{eta}_{ec}$	$oldsymbol{eta}_{ed}$	$oldsymbol{eta_{ed}}$ (SF)	eta_{ed} (codes)	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	2.0	1.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	3. 0	2.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	2.0	1.0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	2.0	1.0	21	81

9.4. Bluetooth & WiFi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for

domestic use. SAR for devices with switched diversity should be measured with only one

Page Number

Report Issued Date: Dec. 13, 2018

: 21 of 175

Page Number

Report Issued Date: Dec. 13, 2018

: 22 of 175

antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.5. Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Section 12 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

: 23 of 175

10. Conducted Output Power

Manufacturing tolerance

Table 10.1: GSM Speech

ranio rom oprocin							
	GSM 850						
Channel	Channel Channel 128 Channel 190 Channel 251						
Maximum Target	33.0	33.0	33.0				
Value (dBm)	33.0	33.0	33.0				
	GSN	<i>I</i> 1900					
Channel	Channel 512	Channel 661	Channel 810				
Maximum Target Value (dBm) 30.0 30.0 30.0							

Table 10.2: GPRS (GMSK Modulation)

	GSM 850						
	Channel	128	190	251			
1 Txslots	Maximum Target Value (dBm)	33.0	33.0	33.0			
2 Txslots	Maximum Target Value (dBm)	32.0	32.0	32.0			
3 Txslots	Maximum Target Value (dBm)	30.0	30.0	30.0			
4 Txslots	Maximum Target Value (dBm)	29.0	29.0	29.0			
		GSM 1900					
	Channel	512	661	810			
1 Txslots	Maximum Target Value (dBm)	30.0	30.0	30.0			
2 Txslots	Maximum Target Value (dBm)	29.0	29.0	29.0			
3 Txslots	Maximum Target Value (dBm)	27.0	27.0	27.0			
4 Txslots	Maximum Target Value (dBm)	26.0	26.0	26.0			

East China Institute of Telecommunications Page Number TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date: Dec. 13, 2018

Page Number : 24 of 175 Report Issued Date : Dec. 13, 2018

Table 10.3: WCDMA

WCDMA Band II								
Channel	Channel Channel 9262 Channel 9400 Channel 9538							
Maximum Target Value (dBm)	23	23	23					

	WCDMA Band II HSDPA							
	Channel	9262	9400	9538				
1	Maximum Target Value (dBm)	22.5	22.5	22.5				
2	Maximum Target Value (dBm)	22	22	22				
3	Maximum Target Value (dBm)	22	22	22				
4	Maximum Target Value (dBm)	22	22	22				
	W	CDMA Band II HSU	PA .					
	Channel	9262	9400	9538				
1	Maximum Target Value (dBm)	22	22	22				
2	Maximum Target Value (dBm)	21	21	21				
3	Maximum Target Value (dBm)	21	21	21				
4	Maximum Target Value (dBm)	22	22	22				
5	Maximum Target Value (dBm)	22	22	22				

Page Number : 25 of 175 Report Issued Date : Dec. 13, 2018

Table 10.4: WCDMA

WCDMA Band V							
Channel 4132 4183 4233							
Maximum Target Value (dBm)	24.0	24.0	24.0				

	WCDMA Band V HSDPA						
	Channel	4132	4183	4233			
1	Maximum Target Value (dBm)	23	23	23			
2	Maximum Target Value (dBm)	23	23	23			
3	Maximum Target Value (dBm)	23	23	23			
4	Maximum Target Value (dBm)	22.5	22.5	22.5			
	,	WCDMA Band V H	SUPA				
	Channel	4132	4183	4233			
1	Maximum Target Value (dBm)	22.5	22.5	22.5			
2	Maximum Target Value (dBm)	21.5	21.5	21.5			
3	Maximum Target Value (dBm)	22	22	22			
4	Maximum Target Value (dBm)	22	22	22			
5	Maximum Target Value (dBm)	22	22	22			

Page Number : 26 of 175 Report Issued Date : Dec. 13, 2018

Table 10.5: LTE

LTE Band2									
RB Size	1	50%	100%						
Maximum Target	22.5	22.5	22						
Value (dBm)	22.5	22.5	22						
LTE Band4									
RB Size	1	50%	100%						
Maximum Target	23	23	22						
Value (dBm)	23	23	22						
	LTE I	Band5							
RB Size	1	50%	100%						
Maximum Target	24	24	23						
Value (dBm)	24	24	23						
	LTE I	Band7							
RB Size	1	50%	100%						
Maximum Target	22	21	21						
Value (dBm)		21	21						

Table 10.6: WiFi

WiFi 802.11b 2.4G								
Channel	Channel 1	Channel 6	Channel 11					
Maximum Target Value (dBm)	14	14	14					
WiFi 802.11g 2.4G								
Channel	Channel 1	Channel 6	Channel 11					
Maximum Target Value (dBm)	13	13	13					
	WiFi 802.11	n 20M 2.4G						
Channel	Channel 1	Channel 6	Channel 11					
Maximum Target Value (dBm)	12	12	12					

SAR Test Report

Table 10.7: Bluetooth

Bluetooth						
Channel	Channel 0	Channel 39	Channel 78			
Maximum Target Value (dBm)	5	5	5			

Report No.: I18D00212-SAR01

Table 10.8: BLE

Bluetooth							
Channel	Channel 0	Channel 19	Channel 39				
Maximum Target Value (dBm)	5	5	5				

10.1. GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 10.9: The conducted power measurement results for GSM

GSM		Conducted Power (dBm)						
850MHZ	Channel 128(824.2MHz)	Channel 190(836.6MHz)	Channel 251(848.8MHz)					
OSUIVITZ	32.65	32.68	32.65					
CCM		Conducted Power(dBm)						
GSM 1000MHZ	Channel 512(1850.2MHz)	Channel 661(1880 MHz)	Channel 810(1909.8MHz)					
1900MHZ	29.04	29.02	29.07					

Table 10.10: The conducted power measurement results for GPRS/EGPRS

GSM 850	Measured Power (dBm)			calculation	Avera	ged Power	(dBm)
GMSK	128	190	251		128	190	251
1 Txslot	32.64	32.65	32.62	-9.03dB	23.61	23.62	23.59
2 Txslots	31.75	31.76	31.74	-6.02dB	25.73	25.74	25.72
3 Txslots	29.8	29.82	29.87	-4.26dB	25.54	25.56	25.61
4 Txslots	28.64	28.77	28.71	-3.01dB	25.63	25.76	25.7
GSM 1900	Measu	red Power	(dBm)	calculation	Averaged Power (dBm)		
GMSK	512	661	810		512	661	810
1 Txslot	29.03	29	29.06	-9.03dB	20	19.97	20.03
2 Txslots	28.27	28.27	28.31	-6.02dB	22.25	22.25	22.29
3 Txslots	26.47	26.49	26.57	-4.26dB	22.21	22.23	22.31
4 Txslots	25.38	25.42	25.51	-3.01dB	22.37	22.41	22.5

NOTES:

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 4Txslots for 850MHz; 4Txslots for1900MHz;

East China Institute of Telecommunications Page Number : 28 of 175
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Dec. 13, 2018

¹⁾ Division Factors

: 29 of 175

Page Number

Report Issued Date: Dec. 13, 2018

10.2. WCDMA Measurement result

Table 10.11: The conducted Power for WCDMA

	band	WCDN	IA BAND II result	:(dBm)			
Item	ADEON	9262	9400	9538			
	ARFCN	(1852.4MHz)	(1880.0MHz)	(1907.6MHz)			
WCDMA	1	22.72	22.75	22.77			
	1	22	22.02	22.03			
HSDPA	2	21.78	21.82	21.85			
ПЭРРА	3	21.45	21.52	21.56			
	4	21.37	21.42	21.43			
	1	21.35	21.42	21.42			
	2	20.4	20.36	20.46			
HSUPA	3	20.39	20.5	20.39			
	4	21.2	21.2	21.3			
	5	21	21.1	21.19			
	band	WCDMA BAND V result(dBm)					
Item	ADECN	Ob 1 4400	Channel 4183	Channel 4233			
	ADECN	Channel 4132	Charmer 4103	Channel 4233			
	ARFCN	(826.4MHz)	(836.6MHz)	(846.6MHz)			
WCDMA	ARFCN \						
		(826.4MHz)	(836.6MHz)	(846.6MHz)			
WCDMA	١	(826.4MHz) 23.28	(836.6MHz) 23.32	(846.6MHz) 23.29			
	1	(826.4MHz) 23.28 22.53	(836.6MHz) 23.32 22.58	(846.6MHz) 23.29 22.57			
WCDMA	1 2	(826.4MHz) 23.28 22.53 22.33	(836.6MHz) 23.32 22.58 22.4	(846.6MHz) 23.29 22.57 22.33			
WCDMA	1 2 3	(826.4MHz) 23.28 22.53 22.33 22.06	(836.6MHz) 23.32 22.58 22.4 22.09	(846.6MHz) 23.29 22.57 22.33 22.08			
WCDMA	\ 1 2 3 4	(826.4MHz) 23.28 22.53 22.33 22.06 21.96	(836.6MHz) 23.32 22.58 22.4 22.09 22.02	(846.6MHz) 23.29 22.57 22.33 22.08 21.98			
WCDMA	\ 1 2 3 4 1	(826.4MHz) 23.28 22.53 22.33 22.06 21.96 21.96	(836.6MHz) 23.32 22.58 22.4 22.09 22.02 21.99	(846.6MHz) 23.29 22.57 22.33 22.08 21.98 21.91			
WCDMA HSDPA	\ 1 2 3 4 1 2	(826.4MHz) 23.28 22.53 22.33 22.06 21.96 21.96 20.93	(836.6MHz) 23.32 22.58 22.4 22.09 22.02 21.99 21	(846.6MHz) 23.29 22.57 22.33 22.08 21.98 21.91 20.92			

: 30 of 175

Page Number

Report Issued Date: Dec. 13, 2018

10.3. LTE Measurement result

Table 10.12: The conducted Power for LTE Band 2/4/5/7

	Band2							
Bandwidth	Mode	RB	RB	I	l output power(dBm)		
		Size	Offset	Channel	Channel	Channel		
				18607	18900	19193		
				1850.7MHz	1880MHz	1909.3MHz		
		1	0	21.25	21.38	21.49		
		1	2	21.4	21.52	21.56		
		1	5	21.27	21.39	21.5		
	QPSK	3	0	21.35	21.47	21.58		
		3	1	21.41	21.54	21.66		
		3	2	21.38	21.5	21.61		
4 4 1 1 1 -		6	0	20.36	20.51	20.63		
1.4MHz		1	0	20.57	20.67	20.81		
		1	2	20.68	20.82	20.89		
		1	5	20.56	20.66	20.78		
	16QAM	3	0	20.38	20.52	20.61		
		3	1	20.47	20.55	20.69		
		3	2	20.43	20.56	20.64		
		6	0	19.5	19.58	19.69		
				Actua	l output power(dBm)		
Bandwidth	Mode	RB	RB	Channel	Channel	Channel		
Banawiatii	Wiode	Size	Offset	18615	18900	19185		
				1851.5MHz	1880MHz	1908.5MHz		
		1	0	21.35	21.47	21.52		
		1	8	21.35	21.45	21.55		
		1	14	21.32	21.45	21.56		
	QPSK	8	0	20.38	20.52	20.61		
		8	4	20.43	20.52	20.65		
		8	7	20.39	20.5	20.61		
3MHz		15	0	20.39	20.51	20.61		
SIVII IZ		1	0	20.6	20.7	20.83		
		1	8	20.65	20.73	20.87		
		1	15	20.61	20.75	20.83		
	16QAM	8	0	19.48	19.59	19.68		
		8	4	19.47	19.59	19.71		
		8	7	19.48	19.59	19.68		
		15	0	19.43	19.53	19.65		
				Actua	l output power(dBm)		
Bandwidth	Mode	RB	RB	Channel	Channel	Channel		
		Size	Offset	18625	18900	19175		

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301

				1852.5MHz	1880MHz	1907.5MHz
		1	0	21.25	21.35	21.41
		1	13	21.34	21.47	21.56
		1	24	21.22	21.35	21.46
	QPSK	12	0	20.36	20.5	20.61
		12	6	20.42	20.54	20.64
		12	13	20.36	20.46	20.56
		25	0	20.4	20.5	20.64
5MHz		1	0	20.55	20.61	20.63
		1	13	20.63	20.75	20.83
		1	24	20.49	20.63	20.74
	16QAM	12	0	19.43	19.56	19.64
		12	6	19.48	19.58	19.69
		12	13	19.43	19.51	19.61
		25	0	19.42	19.52	19.66
				Actua	l output power(dBm)
Bandwidth	Mode	RB	RB	Channel	Channel	Channel
Danuwiuin	wode	Size	Offset	18650	18900	19150
				1855MHz	1880MHz	1905MHz
		1	0	21.37	21.47	21.5
		1	25	21.42	21.54	21.61
		1	49	21.29	21.43	21.58
	QPSK	25	0	20.46	20.58	20.68
		25	13	20.41	20.56	20.61
		25	25	20.48	20.52	20.57
10MHz		50	0	20.49	20.6	20.65
TOWN 12		1	0	20.69	20.67	20.64
		1	25	20.66	20.8	20.79
		1	49	20.52	20.75	20.85
	16QAM	25	0	19.44	19.52	19.59
		25	13	19.41	19.54	19.55
		25	25	19.46	19.52	19.51
		50	0	19.44	19.58	19.59
				Actua	l output power(dBm)
Bandwidth	Mode	RB	RB	Channel	Channel	Channel
24.1411411		Size	Offset	18675	18900	19125
				1857.5MHz	1880MHz	1902.5MHz
		1	0	21.3	21.36	21.43
15MHz	QPSK	1	38	21.31	21.47	21.51
10.011	Ψ. Ο.	1	74	21.2	21.4	21.49
		36	0	20.42	20.54	20.53

Page Number : 31 of 175 Report Issued Date : Dec. 13, 2018

		36	18	20.42	20.53	20.58
		36	39	20.34	20.51	20.51
		75	0	20.41	20.53	20.57
		1	0	20.62	20.58	20.69
		1	38	20.66	20.79	20.71
		1	74	20.43	20.72	20.8
	16QAM	36	0	19.48	19.57	19.57
		36	18	19.43	19.56	19.56
		36	39	19.4	19.56	19.53
		75	0	19.43	19.56	19.57
				Actua	l output power(dBm)
Bandwidth	Mode	RB	RB	Channel	Channel	Channel
Dariuwiuiii	ivioue	Size	Offset	18700	18900	19100
				1860MHz	1880MHz	1900MHz
		1	0	21.68	21.69	21.83
		1	50	21.91	22.04	22.11
		1	99	21.51	21.73	21.82
	QPSK	50	0	20.91	21.1	21.09
		50	25	20.9	21.06	21.19
		50	50	20.89	20.99	20.99
20MHz		100	0	20.92	21.08	21.03
ZUIVITZ		1	0	21.01	20.91	21.16
		1	50	21.14	21.29	21.27
		1	99	20.73	21.09	21.13
	16QAM	50	0	19.93	20.08	20.06
		50	25	19.91	20.05	20.05
		50	50	19.87	20	19.96
		100	0	19.9	20.06	19.99

Band2							
Bandwidth	Mode	RB	RB	Actua	Actual output power(dBm)		
		Size	Offset	Channel	Channel	Channel	
				19957	20175	20393	
				1710.7MHz	1732.5MHz	1754.3MHz	
		1	0	22.14	22.09	22.06	
		1	2	22.26	22.24	22.18	
		1	5	22.15	22.09	22.05	
	QPSK	3	0	22.21	22.19	22.17	
1.4MHz		3	1	22.29	22.25	22.21	
		3	2	22.26	22.25	22.18	
		6	0	21.26	21.2	21.18	
	16QAM	1	0	21.32	21.29	21.33	
	IOQAM	1	2	21.45	21.39	21.46	

Page Number : 32 of 175 Report Issued Date : Dec. 13, 2018

21.36 21.25 21.32 1 5 3 0 21.19 21.13 21.19 3 1 21.26 21.24 21.21 3 2 21.24 21.15 21.19 6 0 20.33 20.24 20.28 Actual output power(dBm) RB RB Channel Channel Channel Bandwidth Mode Offset 19965 20175 20385 Size 1711.5MHz 1732.5MHz 1753.5MHz 22.23 0 22.16 22.13 1 1 8 22.17 22.12 22.12 1 14 22.18 22.13 22.09 **QPSK** 8 0 21.23 21.15 21.18 8 4 21.27 21.2 21.18 8 7 21.23 21.17 21.14 15 0 21.24 21.22 21.14 3MHz 21.39 0 21.43 21.39 1 1 8 21.45 21.31 21.36 21.46 1 15 21.3 21.37 16QAM 8 0 20.28 20.2 20.24 8 4 20.28 20.21 20.25 8 7 20.26 20.19 20.19 15 0 20.23 20.19 20.18 Actual output power(dBm) RB RB Channel Channel Channel Bandwidth Mode Size Offset 19975 20175 20375 1712.5MHz 1732.5MHz 1752.5MHz 0 22.12 22.08 1 22.08 1 13 22.19 22.14 22.14 1 24 22.11 22.05 22.03 **QPSK** 12 21.2 21.16 21.19 0 12 6 21.26 21.21 21.2 12 13 21.2 21.14 21.13 25 0 21.23 21.21 21.19 5MHz 1 0 21.37 21.32 21.34 1 13 21.46 21.34 21.4 1 24 21.41 21.21 21.32 16QAM 20.23 20.2 20.23 12 0 12 6 20.27 20.21 20.25 12 13 20.23 20.17 20.21

Mode

Bandwidth

25

RB

0

RB

20.21

20.2

: 33 of 175

20.18

Actual output power(dBm)

Page Number

Report Issued Date: Dec. 13, 2018

Page Number : 34 of 175 Report Issued Date : Dec. 13, 2018

	T	1	T	<u> </u>	<u> </u>	T
		Size	Offset	Channel	Channel	Channel
				20000	20175	20350
				1715MHz	1732.5MHz	1750MHz
		1	0	22.26	22.25	22.2
		1	25	22.36	22.31	22.33
		1	49	22.2	22.16	22.13
	QPSK	25	0	21.41	21.33	21.35
		25	13	21.37	21.32	21.3
		25	25	21.34	21.32	21.26
10MHz		50	0	21.38	21.35	21.34
TOWN 12		1	0	21.43	21.47	21.42
		1	25	21.61	21.45	21.6
		1	49	21.5	21.26	21.39
	16QAM	25	0	20.34	20.25	20.32
		25	13	20.32	20.25	20.27
		25	25	20.3	20.23	20.2
		50	0	20.34	20.27	20.28
				Actua	l output power(dBm)
Bandwidth	Mode	RB	RB	Channel	Channel	Channel
Danuwiuin	Mode	Size	Offset	20025	20175	20325
				1717.5MHz	1732.5MHz	1747.5MHz
		1	0	22.24	22.24	22.18
		1	38	22.29	22.24	22.19
		1	74	22.14	22.08	22.06
	QPSK	36	0	21.37	21.33	21.31
		36	18	21.35	21.31	21.28
		36	39	21.31	21.27	21.2
15MHz		75	0	21.36	21.31	21.29
13101112		1	0	21.5	21.52	21.38
		1	38	21.64	21.45	21.5
		1	74	21.48	21.24	21.37
	16QAM	36	0	20.4	20.33	20.32
		36	18	20.38	20.3	20.32
		36	39	20.35	20.25	20.24
		75	0	20.38	20.3	20.27
				Actua	l output power(dBm)
Bandwidth	Mode	RB	RB	Channel	Channel	Channel
Dariuwiulii	ivioue	Size	Offset	20050	20175	20300
				1720MHz	1732.5MHz	1745MHz
		1	0	22.1	22.12	22.04
20MHz	QPSK	1	50	22.37	22.29	22.3
ZUIVITZ	W F J N	1	99	21.94	21.9	21.86
		50	0	21.42	21.31	21.37

SAR Test Report

		50	25	21.35	21.36	21.31
		50	50	21.34	21.28	21.17
		100	0	21.36	21.31	21.25
	16QAM	1	0	21.37	21.46	21.23
		1	50	21.68	21.51	21.51
		1	99	21.23	21.08	21.2
		50	0	20.42	20.34	20.31
		50	25	20.36	20.31	20.29
		50	50	20.34	20.25	20.17
		100	0	20.34	20.26	20.21

Report No.: I18D00212-SAR01

Band5									
				Actua	Actual output power(dBm)				
Bandwidth	Mode	RB	RB	Channel	Channel	Channel			
		Size	Offset	20407	20525	20643			
				824.7MHz	836.5MHz	848.3MHz			
1.4MHz	QPSK	1	0	23.09	23.14	23.12			
		1	2	23.23	23.28	23.26			
		1	5	23.08	23.12	23.16			
		3	0	23.16	23.22	23.22			
		3	1	23.22	23.27	23.3			
		3	2	23.23	23.26	23.3			
		6	0	22.19	22.23	22.28			
	16QAM	1	0	22.34	22.38	22.4			
		1	2	22.46	22.54	22.47			
		1	5	22.35	22.37	22.37			
		3	0	22.17	22.22	22.23			
		3	1	22.24	22.27	22.31			
		3	2	22.21	22.26	22.27			
		6	0	21.31	21.37	21.38			
Bandwidth	Mode			Actual output power(dBm)					
		RB	RB	Channel	Channel	Channel			
		Size	Offset	20415	20525	20635			
				825.5MHz	836.5MHz	847.5MHz			
3MHz	QPSK	1	0	23.16	23.16	23.18			
		1	8	23.1	23.15	23.16			
		1	14	23.15	23.18	23.23			
		8	0	22.16	22.18	22.19			
		8	4	22.18	22.23	22.24			
		8	7	22.16	22.2	22.19			
		15	0	22.13	22.2	22.21			
	16QAM	1	0	22.42	22.43	22.4			
		1	8	22.4	22.42	22.41			
East China Institute of Telecommunications Page Number : 35 of 175 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Dec. 13, 2018									

15 22.43 22.45 22.45 1 8 0 21.27 21.29 21.27 21.28 21.32 21.34 8 4 7 8 21.26 21.3 21.3 15 0 21.21 21.25 21.27 Actual output power(dBm) RB RΒ Channel Channel Channel Bandwidth Mode Size Offset 20425 20525 20625 826.5MHz 836.5MHz 846.5MHz 1 0 23.06 23.08 23.12 1 13 23.16 23.2 23.16 1 24 23.12 23.07 23.14 **QPSK** 12 0 22.12 22.14 22.24 12 22.21 6 22.21 22.25 12 13 22.18 22.18 22.19 25 0 22.25 22.18 22.21 5MHz 22.35 22.35 22.36 1 0 1 13 22.45 22.42 22.42 1 24 22.37 22.28 22.38 12 0 21.33 **16QAM** 21.23 21.24 12 6 21.28 21.33 21.3 12 13 21.27 21.26 21.23 25 0 21.21 21.24 21.24 Actual output power(dBm) RB RB Channel Channel Channel Bandwidth Mode Size Offset 20450 20525 20600 829MHz 836.5MHz 844MHz 1 0 23.16 23.22 23.23 1 25 23.34 23.35 23.36 1 49 23.27 23.19 23.25 **QPSK** 25 0 22.31 22.31 22.32 25 13 22.3 22.33 22.35 25 25 22.33 22.29 22.3 50 0 22.34 22.3 22.33 10MHz 1 0 22.41 22.44 22.39 1 25 22.6 22.56 22.55 1 49 22.48 22.39 22.45 16QAM 25 0 21.29 21.27 21.32 25 13 21.3 21.34 21.32 25 25 21.28 21.3 21.27 50 0 21.31 21.29 21.27

Page Number

Report Issued Date: Dec. 13, 2018

: 36 of 175

			Bai	nd7		
Bandwidth	Mode	RB	RB	Actua	I output power	(dBm)
		Size	Offset	Channel	Channel	Channel
				20775	21100	21425
				2502.5MHz	2535MHz	2567.5MHz
		1	0	21.35	21.27	21.39
		1	13	21.45	21.38	21.53
		1	24	21.32	21.3	21.43
	QPSK	12	0	20.44	20.38	20.53
		12	6	20.46	20.42	20.6
		12	13	20.46	20.38	20.52
CN411-		25	0	20.49	20.42	20.6
5MHz		1	0	20.59	20.51	20.56
		1	13	20.68	20.59	20.69
		1	24	20.56	20.48	20.6
	16QAM	12	0	19.49	19.43	19.57
		12	6	19.55	19.47	19.6
		12	13	19.5	19.4	19.55
		25	0	19.49	19.43	19.56
				Actua	l output power	(dBm)
Bandwidth	Mada	RB	RB	Channel	Channel	Channel
Bandwidth	Mode	Size	Offset	20800	21100	21400
				2505MHz	2535MHz	2565MHz
		1	0	21.47	21.4	21.48
		1	25	21.55	21.49	21.58
		1	49	21.46	21.43	21.56
	QPSK	25	0	20.5	20.52	20.64
		25	13	20.52	20.49	20.62
		25	25	20.57	20.47	20.62
10MII-		50	0	20.56	20.53	20.65
10MHz		1	0	20.64	20.55	20.63
		1	25	20.69	20.7	20.75
		1	49	20.66	20.6	20.67
	16QAM	25	0	19.47	19.49	19.59
		25	13	19.49	19.45	19.55
		25	25	19.53	19.44	19.55
		50	0	19.51	19.5	19.58
				Actua	I output power	(dBm)
Danduidth	Mada	RB	RB	Channel	Channel	Channel
Bandwidth	Mode	Size	Offset	20825	21100	21375
				2507.5MHz	2535MHz	2562.5MHz
1 E N /! ! -	ODOK	1	0	21.44	21.37	21.43
15MHz	QPSK	1	38	21.52	21.45	21.57

38

21.52

21.45

Page Number : 37 of 175 Report Issued Date : Dec. 13, 2018

21.57

Report No.: I18D00212-SAR01

Report No.: I18D00212-SAR01

Page Number : 38 of 175 Report Issued Date : Dec. 13, 2018

		T	1	ı	1	ı	
		1	74	21.42	21.45	21.56	
		36	0	20.5	20.52	20.6	
		36	18	20.53	20.52	20.61	
		36	39	20.55	20.48	20.61	
		75	0	20.54	20.5	20.62	
		1	0	20.65	20.58	20.64	
		1	38	20.76	20.68	20.77	
		1	74	20.64	20.63	20.73	
	16QAM	36	0	19.53	19.57	19.64	
		36	18	19.59	19.59	19.66	
		36	39	19.63	19.53	19.67	
		75	0	19.56	19.52	19.61	
				Actua	al output power	(dBm)	
Dondwidth	Mada	RB	RB	Channel	Channel	Channel	
Bandwidth	Mode	Size	Offset	20850	21100	21350	
				2510MHz	2535MHz	2560MHz	
		1	0	21.24	21.18	21.2	
		1	50	21.57	21.49	21.61	
		1	99	21.24	21.25	21.38	
	QPSK	50	0	20.45	20.53	20.6	
		50	25	20.59	20.55	20.65	
			50	50	20.55	20.43	20.53
20MHz		100	0	20.49	20.5	20.55	
ZUIVITZ		1	0	20.46	20.39	20.33	
		1	50	20.79	20.72	20.8	
		1	99	20.45	20.45	20.57	
	16QAM	50	0	19.45	19.53	19.58	
		50	25	19.56	19.54	19.62	
		50	50	19.57	19.47	19.51	
		100	0	19.49	19.5	19.52	

10.4. WiFi and BT Measurement result

Table 10.13: The conducted power for Bluetooth

GFSK					
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)		
Conducted Output Power (dBm)	2.5	2.7	4.7		
π/4 DQPSK					
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)		
Conducted Output Power (dBm)	1.7	2.1	3.1		
8DPSK					
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)		
Conducted Output Power (dBm)	1.6	2.1	2.0		

Table 10.14: The conducted power for BLE

GFSK											
Channel	Ch0 (2402 MHz)	Ch19 (2440MHz)	CH39 (2480MHz)								
Conducted Output Power (dBm)	1.92	2.45	4.29								

NOTE: According to KDB447498 D01 BT standalone SAR are not required, because maximum average output power is less than 10mW.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

SAR head value of BT is 0.133 W/Kg. SAR body value of BT is 0.066 W/Kg for 1g.

The default power measurement procedures are:

a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.

b) Power measurement is required for the transmission mode configuration with the

highest maximum output power specified for production units.

- 1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
- 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.
- c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

During WLAN SAR testing EUT is configured with the WLAN continuous TX tool, and the transmission duty factor was monitored on the spectrum analyzer with zero-span setting, the duty cycle is 100%.

Table 10.15: The average conducted power for WiFi

Mode	Channel	Frequence	Average power(dBm)
	1	2412 MHZ	13.22
802.11 b	6	2437 MHZ	13.27
	11	2462 MHZ	12.71
	1	2412 MHZ	12.41
802.11 g	6	2437 MHZ	12.36
	11	2462 MHZ	11.89
902.11 n	1	2412 MHZ	11.48
802.11 n 20M	6	2437 MHZ	11.6
ZUIVI	11	2462 MHZ	11.04

Page Number

Report Issued Date: Dec. 13, 2018

: 40 of 175

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301

2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.

Report No.: I18D00212-SAR01

- a) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
- b) When the highest *reported* SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$.

East China Institute of Telecommunications Page Number : 41 of 175 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Dec. 13, 2018

11. Simultaneous TX SAR Considerations

11.1. Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For this device, the BT and WiFi can transmit simultaneous with other transmitters.

11.2. Transmit Antenna Separation Distances

Picture 11.1 Antenna Locations

: 43 of 175

11.3. Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] .

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 10mW.

Based on the above equation, Bluetooth SAR was not required:

Evaluation=0.996 < 3.0

11.4. SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR Measurement Positions											
Antenna Phantom Ground Left Right Top Bottom											
Mode	Mode										
WWAN	Yes	Yes	Yes	No	No	Yes					
WLAN	WLAN Yes Yes No Yes Yes No										

12. SAR Test Result

Table 12.1: SAR Values(GSM 850 MHz Band-Head)

Frequ	ency	Mode		Test	Figure	Measured average	Maximum allowed	Scaling	Measured	Reported	Power
MHz	Ch.	/Band	Side	Position No. power Power factor (dBm) (dBm)			SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)		
836.6	190	GSM850	Left	Touch	1	32.68	33	1.076	0.324	0.349	-0.09
836.6	190	GSM850	Left	Tilt	1	32.68	33	1.076	0.224	0.241	0.10
836.6	190	GSM850	Right	Touch	1	32.68	33	1.076	0.306	0.329	0.17
836.6	190	GSM850	Right	Tilt	1	32.68	33	1.076	0.221	0.238	0.13

Table 12.2: SAR Values (GSM 850 MHz Band-Body)

Frequ	ency						Measured	Maximum		Measured	Papartad	Power
MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Figure No.	average power (dBm)	allowed Power (dBm)	Scaling factor	SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Drift (dB)
	Hotspot & Body worn											
836.6	190	GPRS 4TS	Class12	Toward Phantom	10	1	28.77	29	1.054	0.498	0.525	-0.03
836.6	190	GPRS 4TS	Class12	Toward Ground	10	2	28.77	29	1.054	0.63	0.664	0.03
						н	otspot					
836.6	190	GPRS 4TS	Class12	Toward Left	10	1	28.77	29	1.054	0.609	0.642	-0.16
836.6	190	GPRS 4TS	Class12	Toward Right	10	1	28.77	29	1.054	0.504	0.531	0.04
836.6	190	GPRS 4TS	Class12	Toward Bottom	10	1	28.77	29	1.054	0.277	0.292	0.05

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 44 of 175 Report Issued Date : Dec. 13, 2018

Table 12.3: SAR Values(GSM 1900 MHz Band-Head)

Freque	ency	Mode		Test	Figure	Measured average	Maximum allowed	Scaling	Measured	Reported	Power
MHz	Ch.	/Band	Side	Position	No.	power (dBm)	ower Power		SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1880	661	GSM1900	Left	Touch	3	29.02	30	1.253	0.132	0.165	-0.04
1880	661	GSM1900	Left	Tilt	1	29.02	30	1.253	0.049	0.061	-0.07
1880	661	GSM1900	Right	Touch	1	29.02	30	1.253	0.107	0.134	0.04
1880	661	GSM1900	Right	Tilt	1	29.02	30	1.253	0.052	0.065	0.12

Table 12.4: SAR Values (GSM 1900 MHz Band-Body)

Freque	ency	Mode	Service	Test	Spacing	Figure	Measured average	Maximum allowed	Scaling	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.	/Band	/Headset	Position	(mm)	No.	power (dBm)	Power (dBm)	factor	(W/kg)	(W/kg)	(dB)
						Hotspot	& Body worn					
1880 661 GPRS 4TS Class12 Toward Phantom 10 / 25.42 26 1.143 0.786 0.898 -0											-0.03	
1850.2	512	GPRS 4TS	Class12	Toward Phantom	10	1	25.38	26	1.153	0.645	0.744	0.01
1909.8	810	GPRS 4TS	Class12	Toward Phantom	10	1	25.51	26	1.119	0.821	0.919	-0.04
1880	661	GPRS 4TS	Class12	Toward Ground	10	1	25.42	26	1.143	0.871	0.995	0.19
1850.2	512	GPRS 4TS	Class12	Toward Ground	10	1	25.38	26	1.153	0.712	0.821	0.06
1909.8	810	GPRS 4TS	Class12	Toward Ground	10	1	25.51	26	1.119	0.929	1.040	-0.12
						Н	otspot					
1880	661	GPRS 4TS	Class12	Toward Left	10	1	25.42	26	1.143	0.198	0.226	0.08
1880	661	GPRS 4TS	Class12	Toward Right	10	1	25.42	26	1.143	0.141	0.161	0.12
1880	661	GPRS 4TS	Class12	Toward Bottom	10	1	25.42	26	1.143	1.04	1.189	0.05
1850.2	512	GPRS 4TS	Class12	Toward Bottom	10	1	25.38	26	1.153	0.864	0.997	-0.04
1909.8	810	GPRS 4TS	Class12	Toward Bottom	10	4	25.51	26	1.119	1.1	1.231	-0.12
						Re	peated					

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301

Page Number : 45 of 175 Report Issued Date: Dec. 13, 2018

GPRS Toward 1909.8 810 Class12 10 25.51 26 1.119 1.1 1.231 -0.03 4TS **Bottom** Second supply **GPRS** Toward 1909.8 810 25.51 1.119 0.933 1.044 Class12 10 26 0.12 4TS Bottom

Report No.: I18D00212-SAR01

Report Issued Date: Dec. 13, 2018

Table 12.5: SAR Values(WCDMA Band II-Head)

Freque	ency	Mode		Test	Test Figure	Measured average	Maximum allowed	Scaling	Measured	Reported	Power
MHz	Ch.	/Band	Side	Position	No.	power (dBm)	Power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1880	9400	Band II	Left	Touch	5	22.75	23	1.059	0.188	0.199	0.09
1880	9400	Band II	Left	Tilt	1	22.75	23	1.059	0.072	0.076	-0.06
1880	9400	Band II	Right	Touch	1	22.75	23	1.059	0.165	0.175	0.02
1880	9400	Band II	Right	Tilt	1	22.75	23	1.059	0.08	0.085	0.02

Table 12.6: SAR Values (WCDMA Band II-Body)

Frequ	ency						Measured	Maximum					
MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Figure No.	average power (dBm)	allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)	
	Hotspot & Body worn												
1880	9400	Band II	12.2kbps RMC	Toward Phantom	10	1	22.75	23	1.059	0.673	0.713	-0.12	
1880	9400	Band II	12.2kbps RMC	Toward Ground	10	1	22.75	23	1.059	0.848	0.898	0.01	
1852.4	9262	Band II	12.2kbps RMC	Toward Ground	10	1	22.72	23	1.067	0.785	0.837	-0.05	
1907.6	9538	Band II	12.2kbps RMC	Toward Ground	10	1	22.77	23	1.054	0.91	0.959	0.12	
						Но	tspot						
1880	9400	Band II	12.2kbps RMC	Toward Left	10	1	22.75	23	1.059	0.194	0.205	0.03	
1880	9400	Band II	12.2kbps RMC	Toward Right	10	1	22.75	23	1.059	0.15	0.159	0.11	
1880	9400	Band II	12.2kbps RMC	Toward Bottom	10	6	22.75	23	1.059	1.08	1.144	-0.04	
1852.4	9262	Band II	12.2kbps RMC	Toward Bottom	10	1	22.72	23	1.067	0.938	1.000	-0.03	
		East (China Institu	te of Teleco	mmunicatio	ns		Page N	umber	: 46 of 175			

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301

1907.6	9538	Band II	12.2kbps RMC	Toward Bottom	10	1	22.77	23	1.054	1.06	1.118	0.02
						Rep	eated					
1880	9400	Band II	12.2kbps RMC	Toward Bottom	10	1	22.75	23	1.059	1.03	1.091	0.01

Report No.: I18D00212-SAR01

Table 12.7: SAR Values (WCDMA Band V-Head)

Frequ	iency	Mode		Test	Figure	Measured average	Maximum allowed	Scaling	Measured	Reported	Power
MHz	Ch.	/Band	Side	Position	No.	power (dBm)	Power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
836.6	4183	Band V	Left	Touch	7	23.32	24	1.169	0.283	0.331	-0.10
836.6	4183	Band V	Left	Tilt	1	23.32	24	1.169	0.188	0.220	-0.03
836.6	4183	Band V	Right	Touch	1	23.32	24	1.169	0.262	0.306	0.11
836.6	4183	Band V	Right	Tilt	1	23.32	24	1.169	0.162	0.189	0.11

Table 12.8: SAR Values (WCDMA Band V-Body)

Frequ	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
						Hotspot	& Body worn					
836.6	4183	Band V	12.2kbps RMC	Toward Phantom	10	1	23.32	24	1.169	0.314	0.367	0.09
836.6	4183	Band V	12.2kbps RMC	Toward Ground	10	8	23.32	24	1.169	0.412	0.482	0.02
						Но	otspot					
836.6	4183	Band V	12.2kbps RMC	Toward Left	10	1	23.32	24	1.169	0.187	0.219	0.07
836.6	4183	Band V	12.2kbps RMC	Toward Right	10	1	23.32	24	1.169	0.211	0.247	0.17
836.6	4183	Band V	12.2kbps RMC	Toward Bottom	10	1	23.32	24	1.169	0.144	0.168	0.01

Page Number

Report Issued Date: Dec. 13, 2018

: 47 of 175

Table 12.9: SAR Values(LTE Band 2-Head)

Report No.: I18D00212-SAR01

Frequ	iency					Measured	Maximum	Casling	Measured	Reported	Power
MHz	Ch.	Configuration	Side	Test Position	Figure No.	average power (dBm)	allowed Power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1900	19100	QPSK_20MHz_1RB_ 50 offset High	Left	Touch	9	22.11	22.5	1.094	0.268	0.293	-0.19
1900	19100	QPSK_20MHz_1RB_ 50 offset High	Left	Tilt	1	22.11	22.5	1.094	0.089	0.097	0.13
1900	19100	QPSK_20MHz_1RB_ 50 offset High	Right	Touch	1	22.11	22.5	1.094	0.203	0.222	0.13
1900	19100	QPSK_20MHz_1RB_ 50 offset High	Right	Tilt	1	22.11	22.5	1.094	0.090	0.098	0.03
1900	19100	QPSK_20MHz_50RB_ 25 offset High	Left	Touch	1	21.19	22.5	1.352	0.211	0.285	0.03
1900	19100	QPSK_20MHz_50RB_ 25 offset High	Left	Tilt	1	21.19	22.5	1.352	0.067	0.091	-0.16
1900	19100	QPSK_20MHz_50RB_ 25 offset High	Right	Touch	1	21.19	22.5	1.352	0.171	0.231	0.17
1900	19100	QPSK_20MHz_50RB_ 25 offset High	Right	Tilt	1	21.19	22.5	1.352	0.068	0.092	0.13

Table 12.10: SAR Values (LTE Band 2-Body)

Frequ	uency					Measured	Maximum		Measured	Reported	Power
MHz	Ch.	Configuration	Test Position	Spacing (mm)	Figure No.	average power (dBm)	allowed Power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
					Hotspot &	Body worn					
1900	19100	QPSK_20MHz_1RB_ 50 offset High	Toward Phantom	10	1	22.11	22.5	1.094	0.506	0.554	-0.14
1900	19100	QPSK_20MHz_1RB_ 50 offset High	Toward Ground	10	1	22.11	22.5	1.094	0.688	0.753	0.04
1900	19100	QPSK_20MHz_50RB_ 25 offset High	Toward Phantom	10	1	21.19	22.5	1.352	0.391	0.529	0.19
1900	19100	QPSK_20MHz_50RB_ 25 offset High	Toward Ground	10	1	21.19	22.5	1.352	0.532	0.719	0.15
					Ho	tspot					
1900	19100	QPSK_20MHz_1RB_ 50 offset High	Toward Left	10	1	22.11	22.5	1.094	0.242	0.265	-0.14
1900	19100	QPSK_20MHz_1RB_ 50 offset High	Toward Right	10	1	22.11	22.5	1.094	0.070	0.077	-0.07

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 48 of 175 Report Issued Date : Dec. 13, 2018

1	1			1		1		Т			
1900	19100	QPSK_20MHz_1RB_	Toward	10	10	22.11	22.5	1.094	0.762	0.834	-0.14
1300	15100	50 offset High	Bottom	.0	.0	22.11	22.0	1.054	0.7 02	0.004	0.14
1860	18700	QPSK_20MHz_1RB_	Toward	10	,	21.91	22.5	1.146	0.74	0.848	-0.07
1000	10700	50 offset Low	Bottom	10	,	21.91	22.5	1.140	0.74	0.040	-0.07
4000	40000	QPSK_20MHz_1RB_	Toward	40	,	22.04	22 F	4 442	0.746	0.000	0.04
1880	18900	50 offset Middle	Bottom	10	/	22.04	22.5	1.112	0.746	0.829	0.01
4000	40400	QPSK_20MHz_50RB_	Toward	40	,	04.40	00.5	4.050	0.000	0.070	0.45
1900	19100	25 offset High	Left	10	/	21.19	22.5	1.352	0.202	0.273	-0.15
1900	19100	QPSK_20MHz_50RB_	Toward	10	,	21.19	22.5	1.352	0.055	0.074	-0.11
1900	19100	25 offset High	Right	10	/	21.19	22.5	1.352	0.055	0.074	-0.11
1900	19100	QPSK_20MHz_50RB_	Toward	10	,	21.19	22.5	1.352	0.622	0.044	0.04
1900	19100	25 offset High	Bottom	10	/	21.19	22.5	1.352	0.622	0.841	-0.04
1860	18700	QPSK_20MHz_50RB_	Toward	10	,	20.9	22.5	1.445	0.577	0.834	0.13
1860	18700	25 offset Low	Bottom	10	/	20.9	22.5	1.445	0.577	0.834	0.13
4000	40000	QPSK_20MHz_50RB_	Toward	40	,	04.00	00.5	4 202	0.050	0.000	0.00
1880	18900	25 offset Middle	Bottom	10	/	21.06	22.5	1.393	0.652	0.908	0.00
4000	40000	QPSK_20MHz_100RB_	Toward	40	,	24.00	22	4 226	0.752	0.024	0.00
1880	18900	0 offset Middle	Bottom	10	/	21.08	22	1.236	0.753	0.931	0.03

Report No.: I18D00212-SAR01

Page Number : 49 of 175 Report Issued Date : Dec. 13, 2018

Frequ	uency			Test	Figure	Measured average	Maximum allowed	Scaling	Measured	Reported	Power
MHz	Ch.	Configuration	Side	Position	No.	power (dBm)	Power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1720	20050	QPSK_20MHz_1RB_ 50 offset Low	Left	Touch	11	22.37	23	1.156	0.175	0.202	-0.11
1720	20050	QPSK_20MHz_1RB_ 50 offset Low	Left	Tilt	1	22.37	23	1.156	0.061	0.071	0.13
1720	20050	QPSK_20MHz_1RB_ 50 offset Low	Right	Touch	1	22.37	23	1.156	0.154	0.178	0.13
1720	20050	QPSK_20MHz_1RB_ 50 offset Low	Right	Tilt	1	22.37	23	1.156	0.085	0.098	0.03
1732.5	20175	QPSK_20MHz_50RB_ 25 offset Middle	Left	Touch	1	21.36	23	1.459	0.134	0.195	0.03
1732.5	20175	QPSK_20MHz_50RB_ 25 offset Middle	Left	Tilt	1	21.36	23	1.459	0.048	0.070	-0.16
1732.5	20175	QPSK_20MHz_50RB_ 25 offset Middle	Right	Touch	1	21.36	23	1.459	0.126	0.184	0.17
1732.5	20175	QPSK_20MHz_50RB_ 25 offset Middle	Right	Tilt	1	21.36	23	1.459	0.062	0.090	0.13

Table 12 12: SAR Values (LTF Band 4-Body)

			Table	÷ 12.12. 3	AR Valu	ies (LIE Ba	па 4-воау)			
Frequ MHz	Ch.	Configuration	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
					Hotspot &	Body worn					
1720	20050	QPSK_20MHz_1RB_ 50 offset Low	Toward Phantom	10	1	22.37	23	1.156	0.42	0.486	-0.14
1720	20050	QPSK_20MHz_1RB_ 50 offset Low	Toward Ground	10	1	22.37	23	1.156	0.466	0.539	0.15
1732.5	20175	QPSK_20MHz_50RB_ 25 offset Middle	Toward Phantom	10	1	21.36	23	1.459	0.382	0.557	0.08
1732.5	20175	QPSK_20MHz_50RB_ 25 offset Middle	Toward Ground	10	1	21.36	23	1.459	0.406	0.592	0.09
					Hot	spot					
1720	20050	QPSK_20MHz_1RB_ 50 offset Low	Toward Left	10	1	22.37	23	1.156	0.137	0.158	-0.14
1720	20050	QPSK_20MHz_1RB_ 50 offset Low	Toward Right	10	1	22.37	23	1.156	0.080	0.092	-0.07

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 50 of 175 Report Issued Date : Dec. 13, 2018

QPSK_20MHz_100RB_

0 offset Middle

1732.5

20175

Toward

Bottom

10

SAR Test Report

QPSK_20MHz_1RB_ Toward 1720 20050 10 22.37 23 1.156 0.747 0.864 0.01 50 offset Low **Bottom** QPSK_20MHz_1RB_ Toward 20175 1732.5 10 1 22.29 23 1.178 0.793 0.934 -0.07 50 offset Middle Bottom QPSK_20MHz_1RB_ Toward 1745 20300 10 22.3 23 1.175 0.798 0.938 0.01 12 50 offset High **Bottom** QPSK_20MHz_50RB_ Toward 1732.5 20175 10 21.36 23 1.459 0.119 0.174 -0.15 25 offset Middle Left QPSK_20MHz_50RB_ Toward 1732.5 20175 1.459 0.075 10 21.36 23 0.109 -0.11 25 offset Middle Right QPSK_20MHz_50RB_ Toward 21.36 1732.5 20175 1.459 0.595 0.868 -0.04 10 1 23 25 offset Middle Bottom QPSK_20MHz_50RB_ Toward 1720 20050 10 21.35 23 1.462 0.573 0.838 0.04 25 offset Low Bottom QPSK_20MHz_50RB_ Toward 1745 20300 10 1 21.31 23 1.476 0.605 0.893 0.07 25 offset High Bottom

Report No.: I18D00212-SAR01

Table 12.13: SAR Values(LTE Band 5-Head)

21.31

22

1.172

0.508

0.595

-0.10

1

			Ia	12.13	. JAN V	alues(LIL	Band 5-Hea	au <i>j</i>			
Frequ	uency			Test	Figure	Measured average	Maximum allowed	Scaling	Measured	Reported	Power
MHz	Ch.	Configuration	Side	Position	No.	power (dBm)	Power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
844	20600	QPSK_10MHz_1RB_ 25 offset High	Left	Touch	13	23.36	24	1.159	0.283	0.328	-0.12
844	20600	QPSK_10MHz_1RB_ 25 offset High	Left	Tilt	1	23.36	24	1.159	0.135	0.156	0.10
844	20600	QPSK_10MHz_1RB_ 25 offset High	Right	Touch	1	23.36	24	1.159	0.228	0.264	0.12
844	20600	QPSK_10MHz_1RB_ 25 offset High	Right	Tilt	1	23.36	24	1.159	0.12	0.139	0.17
844	20600	QPSK_10MHz_25RB_ 13 offset High	Left	Touch	1	22.35	24	1.462	0.222	0.325	0.16
844	20600	QPSK_10MHz_25RB_ 13 offset High	Left	Tilt	1	22.35	24	1.462	0.136	0.199	0.18
844	20600	QPSK_10MHz_25RB_ 13 offset High	Right	Touch	1	22.35	24	1.462	0.224	0.328	0.12
844	20600	QPSK_10MHz_25RB_ 13 offset High	Right	Tilt	1	22.35	24	1.462	0.101	0.148	-0.17

Table 12.14: SAR Values (LTE Band 5-Body)

Frequency Configuration Test Spacing Figure Measured Maximum Scaling Measured Reported
--

Page Number

Report Issued Date: Dec. 13, 2018

: 51 of 175

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301

QPSK_10MHz_25RB_

13 offset High

QPSK_10MHz_25RB_

13 offset High

844

844

20600

20600

Toward

Right

Toward

Bottom

10

10

1

1

22.35

22.35

24

24

1.462

1.462

Page Number

Report Issued Date: Dec. 13, 2018

0.248

0.161

: 52 of 175

0.363

0.235

0.18

0.08

SAR Test Report

Position Drift (mm) No. average allowed factor SAR(1g) SAR(1g) MHz Ch. (dB) power **Power** (W/kg) (W/kg) (dBm) (dBm) Hotspot & Body worn QPSK_10MHz_1RB_ Toward 844 20600 10 23.36 24 1.159 0.281 0.326 -0.03 25 offset High **Phantom** QPSK_10MHz_1RB_ Toward 20600 1 0.424 844 10 23.36 24 1.159 0.366 -0.06 25 offset High Ground QPSK_10MHz_25RB_ **Toward** 20600 1 0.226 0.330 844 10 22.35 24 1.462 0.02 13 offset High **Phantom** QPSK_10MHz_25RB_ Toward 20600 844 10 22.35 24 1.462 0.292 0.427 -0.02 13 offset High Ground Hotspot QPSK_10MHz_1RB_ Toward 20600 844 10 14 23.36 24 1.159 0.373 0.432 -0.09 25 offset High Left QPSK_10MHz_1RB_ Toward 20600 844 10 1 23.36 24 1.159 0.334 0.387 0.16 25 offset High Right QPSK_10MHz_1RB_ **Toward** 20600 844 1 0.143 0.166 0.08 10 23.36 24 1.159 25 offset High **Bottom** QPSK_10MHz_25RB_ Toward 844 20600 10 22.35 24 1.462 0.153 0.224 -0.14 13 offset High Left

Report No.: I18D00212-SAR01

Table 12.15: SAR Values(LTE Band 7-Head)

Frequ	uency			Test	Figure	Measured average	Maximum allowed	Scaling	Measured	Reported	Power
MHz	Ch.	Configuration	Side	Position	No.	power (dBm)	Power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2560	21350	QPSK_20MHz_1RB_ 50 offset High	Left	Touch	1	21.61	22	1.094	0.145	0.159	-0.04
2560	21350	QPSK_20MHz_1RB_ 50 offset High	Left	Tilt	1	21.61	22	1.094	0.062	0.068	0.09
2560	21350	QPSK_20MHz_1RB_ 50 offset High	Right	Touch	1	21.61	22	1.094	0.070	0.077	0.03
2560	21350	QPSK_20MHz_1RB_ 50 offset High	Right	Tilt	1	21.61	22	1.094	0.069	0.075	0.01
2560	21350	QPSK_20MHz_50RB_ 25 offset High	Left	Touch	15	20.65	21	1.084	0.16	0.173	0.13
2560	21350	QPSK_20MHz_50RB_ 25 offset High	Left	Tilt	1	20.65	21	1.084	0.063	0.068	0.16
2560	21350	QPSK_20MHz_50RB_ 25 offset High	Right	Touch	1	20.65	21	1.084	0.081	0.088	0.04
2560	21350	QPSK_20MHz_50RB_ 25 offset High	Right	Tilt	1	20.65	21	1.084	0.084	0.091	0.03

Table 12.16: SAR Values (LTE Band 7-Body)

			labi	e 12.16: S	AR Valu	ies (LTE Ba	ana 7-Boay	<u>()</u>			
MHz	Ch.	Configuration	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
					Hotspot &	Body worn					
2560	21350	QPSK_20MHz_1RB_ 50 offset High	Toward Phantom	10	1	21.61	22	1.094	0.381	0.417	0.08
2560	21350	QPSK_20MHz_1RB_ 50 offset High	Toward Ground	10	1	21.61	22	1.094	0.645	0.706	0.11
2560	21350	QPSK_20MHz_50RB_ 25 offset High	Toward Phantom	10	1	20.65	21	1.084	0.352	0.382	-0.04
2560	21350	QPSK_20MHz_50RB_ 25 offset High	Toward Ground	10	1	20.65	21	1.084	0.505	0.547	0.08
					Hot	tspot					
2560	21350	QPSK_20MHz_1RB_ 50 offset High	Toward Left	10	1	21.61	22	1.094	0.139	0.152	0.05
2560	21350	QPSK_20MHz_1RB_ 50 offset High	Toward Right	10	1	21.61	22	1.094	0.004	0.004	0.13

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 53 of 175 Report Issued Date : Dec. 13, 2018

2560	21350	QPSK_20MHz_1RB_	Toward	10	,	21.61	22	1.094	1.03	1.127	0.04
2560	21350	50 offset High	Bottom	10	,	21.01	22	1.094	1.03	1.127	0.04
2510	20850	QPSK_20MHz_1RB_	Toward	10	16	21.57	22	1.104	1.05	1.159	0.08
2510	20830	50 offset Low	Bottom	10	16	21.57	22	1.104	1.05	1.159	0.00
2525	24400	QPSK_20MHz_1RB_	Toward	40	,	21.49		1.125	1.01	4.420	0.04
2535	2535 21100	50 offset Middle	Bottom	10	/		22	1.125	1.01	1.136	0.01
2560	04050	QPSK_20MHz_50RB_	Toward	10	,	20.65		1.084	0.407	0.116	0.00
2560	2560 21350	25 offset High	Left	10	/	20.65	21	1.004	0.107	0.116	0.08
2560	21350	QPSK_20MHz_50RB_	Toward	10	,	20.65	21	1.084	0.003	0.003	-0.04
2560	21330	25 offset High	Right	10	'	20.65	21	1.004	0.003	0.003	-0.04
2560	21350	QPSK_20MHz_50RB_	Toward	10	,	20.65	21	1.084	0.826	0.895	0.08
2560	21330	25 offset High	Bottom		,	20.03	21	1.004			
2510	20850	QPSK_20MHz_50RB_	Toward	10	,	20.59	21	1.099	0.829	0.911	0.03
2510	20030	25 offset Low	Bottom	10	,		21				0.03
2535	21100	QPSK_20MHz_50RB_	Toward	10	,	20.55	21	1.109	0.757	0.940	0.02
2333	21100	25 offset Middle	Bottom	10	,	20.55	21	1.109	0.757	0.840	0.02
2535	21100	QPSK_20MHz_100RB_	Toward	10	,	20.5	21	1.122	0.92	1.032	-0.16
2000	21100	0 offset Middle	Bottom	10	,	20.5	21	1.122	0.92	1.032	-0.10
	Repeated										
2510	20850	QPSK_20MHz_1RB_	Toward	10	,	21.57	22	1.104	1	1.104	0.05
2310	20000	50 offset Low	Bottom	10	,	21.37	~~	1.104	'	1.104	0.03

Report No.: I18D00212-SAR01

Page Number : 54 of 175 Report Issued Date : Dec. 13, 2018

Table 12.17: SAR Values (WiFi 802.11b - Head)

Frequency		Mode		Test	Figure	Measured average	Maximum allowed	Scaling	Measured	Reported	Power
MHz	Ch.	/Band	Side	Position	No.	power (dBm)	Power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2437	6	WiFi 2450	Left	Touch	1	13.27	14	1.183	0.146	0.173	0.11
2437	6	WiFi 2450	Left	Tilt	17	13.27	14	1.183	0.157	0.186	0.11
2437	6	WiFi 2450	Right	Touch	1	13.27	14	1.183	0.053	0.063	0.16
2437	6	WiFi 2450	Right	Tilt	1	13.27	14	1.183	0.059	0.070	0.13

Table 12.18: SAR Values (WiFi 802.11b - Body)

Frequ	ency						Measured	Maximum		Measured	Reported	Power
MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Figure No.	average power (dBm)	allowed Power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
	Hotspot & Body worn											
2437	6	WiFi 2450	802.11b	Toward Phantom	10	18	13.27	14	1.183	0.043	0.051	0.11
2437	6	WiFi 2450	802.11b	Toward Ground	10	1	13.27	14	1.183	0.0384	0.045	0.15
						н	lotspot					
2437	6	WiFi 2450	802.11b	Toward Left	10	1	13.27	14	1.183	0.004	0.005	0.18
2437	6	WiFi 2450	802.11b	Toward Right	10	1	13.27	14	1.183	0.0328	0.039	0.11
2437	6	WiFi 2450	802.11b	Toward Top	10	1	13.27	14	1.183	0.0425	0.050	0.15

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 55 of 175 Report Issued Date : Dec. 13, 2018

13. Evaluation of Simultaneous

Table13.1 Simultaneous transmission SAR

Standalone SAR for 2G(W/Kg)									
Toot	Position		GSM	GSM	Highest				
lest	Position		850	1900	SAR				
	l oft	Cheek	0.349	0.165	0.349				
Head	Left	Tilt 15°	0.241	0.061	0.241				
пеац	Dight	Cheek	0.329	0.134	0.329				
	Right	Tilt 15°	0.238	0.065	0.238				
Hotspot &Body-	Phantom	Side	0.525	0.919	0.919				
worn 10 mm	Ground	Side	0.664	1.040	1.04				
	Left Si	de	0.642	0.226	0.642				
Hotonot 10 mm	Right S	Side	0.531	0.161	0.531				
Hotspot 10 mm	Top Side		-	-					
	Bottom	Side	0.292	1.231	1.231				

Standalone SAR for 3G(W/Kg) WCDMA WCDMA Test Position Highest SAR Band II Band V Cheek 0.199 0.331 0.331 Left Tilt 15° 0.076 0.220 0.22 Head Cheek 0.175 0.306 0.306 Right Tilt 15° 0.085 0.189 0.189 Phantom Side 0.713 0.713 Hotspot &Body-0.367 Ground Side 0.959 worn 10 mm 0.482 0.959 Left Side 0.205 0.219 0.219 Right Side 0.159 0.247 0.247 Hotspot 10 mm Top Side Bottom Side 1.144 0.168 1.144

Report No.: I18D00212-SAR01

Page Number

Report Issued Date: Dec. 13, 2018

: 57 of 175

Page Number : 58 of 175 Report Issued Date : Dec. 13, 2018

Standalone SAR for 4G (W/Kg)											
Test Pos	ition		LTE Band 2	LTE Band 4	LTE Band5	LTE Band 7	Highest SAR				
	Left	Cheek	0.293	0.202	0.328	0.173	0.328				
Head	Left	Tilt 15°	0.097	0.071	0.199	0.068	0.199				
Неас	Right	Cheek	0.231	0.184	0.328	0.088	0.328				
		Tilt 15°	0.098	0.098	0.148	0.091	0.148				
Hotspot &Body- worn	Phanto	m Side	0.554	0.557	0.330	0.417	0.557				
10 mm	Groun	d Side	0.753	0.592	0.427	0.706	0.753				
	Left	Side	0.273	0.174	0.432	0.152	0.432				
Listen et 10 mm	Right	Side	0.077	0.109	0.387	0.004	0.387				
Hotspot 10 mm	Тор	Side									
	Bottor	n Side	0.931	0.938	0.235	1.159	1.159				

: 59 of 175

Page Number

Report Issued Date: Dec. 13, 2018

	Simultaneous multi-band transmission											
Tost	Test Position				4G	2.4GHz		5GHz	SUM			
1631		2G	3G	7	ВТ	WIFI	WIFI	2.4GHz	5GHz			
	Left	Cheek	0.349	0.331	0.328	0.133	0.173	0.940	0.522	1.289		
Head	Leit	Tilt 15°	0.241	0.22	0.199	0.133	0.186	0.721	0.427	0.962		
пеац	Right	Cheek	0.329	0.306	0.328	0.133	0.063	0.555	0.462	0.884		
		Tilt 15°	0.238	0.189	0.148	0.133	0.070	0.504	0.371	0.742		
Hotspot &Body-	Phantom	Side	0.919	0.713	0.557	0.066	0.051	0.097	0.985	1.016		
worn 10 mm	Ground Side		1.04	0.959	0.753	0.066	0.045	0.109	1.106	1.149		
	Left Si	de	0.642	0.219	0.432	0.066	0.005		0.708	0.642		
Hotopot 10 mm	Right S	ide	0.531	0.247	0.387	0.066	0.039	0.040	0.597	0.571		
Hotspot 10 mm	Top Side					0.066	0.050	0.010	0.066	0.01		
	Bottom	Side	1.231	1.144	1.159	0.066			1.297	1.231		

According to the conducted power measurement result, we can draw the conclusion that: stand-alone SAR for WiFi should be performed. Then, simultaneous transmission SAR for WiFi/BT is considered with measurement results of GSM/WCDMA/LTE and WiFi/BT. According to the above table, the sum of reported SAR values for GSM/WCDMA/LTE and WiFi<1.6W/kg. So the simultaneous transmission SAR is not required for WiFi/BT transmitter.

14. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 14.1: SAR Measurement Variability for Body Value (1g)

Frequency		Configuration	Test	Original SAR	First Repeated	The Ratio
MHz	Ch.	Configuration	Position	(W/kg)	SAR (W/kg)	The Ratio
1909.8	810	GSM1900 GPRS 4TS	Bottom	1.1	1.1	1.00
1880	9400	Band II 12.2kbps RMC	Bottom	1.08	1.03	1.048
2510	20850	LTE Band 7	Bottom	1.05	1	1.05

Note: According to the KDB 865664 D01repeated measurement is not required when the original highest measured SAR is < 0.8 W/kg.

East China Institute of Telecommunications Page Number: 60 of 175 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date: Dec. 13, 2018

15. Measurement Uncertainty

Measurement uncertainty for 750 MHz to 3 GHz averaged over 1 gram

Measurement uncertainty for 750 MHz to 3 GHz averaged over 1 grain										
Uncertainty Component	Uncertainty	Prob.	Div.	C _{i (1g)}	Std. Unc. (1-g)	V _i or Veff				
Measurement System										
Probe Calibration (k=1)	5.4	Normal	2	1	5.40	∞				
Probe Isotropy	4.70	Rectangular	√3	0.7	1.90	∞				
Modulation Response	2.40	Rectangular	√3	1	1.39	∞				
Hemispherical Isotropy	2.60	Rectangular	√3	0.7	1.05	∞				
Boundary Effect	1.00	Rectangular	√3	1	0.58	∞				
Linearity	4.70	Rectangular	√3	1	2.71	∞				
System Detection Limit	1.00	Rectangular	√3	1	0.58	∞				
Readout Electronics	0.30	Normal	1	1	0.30	∞				
Response Time	0.80	Rectangular	√3	1	0.46	∞				
Integration Time	2.60	Rectangular	√3	1	1.50	∞				
RF Ambient Noise	0.00	Rectangular	√3	1	0.00	∞				
RF Ambient Reflections	0.00	Rectangular	√3	1	0.00	∞				
Probe Positioner	0.40	Rectangular	√3	1	0.23	∞				
Probe Positioning	2.90	Rectangular	√3	1	1.67	∞				
Post-processing	1.00	Rectangular	√3	1	0.58	∞				
Test sample Related										
Test sample Positioning	1.2	Normal	1	1	1.2	5				
Device Holder Uncertainty	3.2	Normal	1	1	3.2	71				
Power drift	5	Rectangular	√3	1	2.89	∞				
Power Scaling	0	Rectangular	√3	1	0.00	∞				
Phantom and Tissue Parame	ters									
Phantom Uncertainty	4	Rectangular	√3	1	2.31	∞				
SAR correction	1.9	Rectangular	√3	1	1.10	∞				
Liquid Conductivity (meas)	4.19	Rectangular	1	0.78	3.27	∞				
Liquid Permittivity (meas)	4.4	Rectangular	1	0.26	1.14	∞				
Temp. unc Conductivity	0.18	Rectangular	√3	0.78	0.08	∞				
Temp. unc Permittivity	0.54	Rectangular	√3	0.23	0.07	∞				
Combined Std. Uncertainty		RSS			9.39					
Expanded STD Uncertainty		<i>k</i> =2			18. 77%					

Page Number

Report Issued Date: Dec. 13, 2018

: 61 of 175

: 62 of 175

Page Number

Report Issued Date: Dec. 13, 2018

System check un	certainty for 7	750 MHz to 3	B GHz a	veraged	over 1 grar	n
Uncertainty Component	Uncertainty	Prob.	Div.	C _{i (1g)}	Std. Unc. (1-g)	V _i or Veff
Measurement System						
Probe Calibration (k=1)	5.40	Normal	1	1	5.40	∞
Probe Isotropy	4.70	Rectangular	√3	0.7	1.90	∞
Modulation Response	2.40	Rectangular	√3	1	1.39	∞
Hemispherical Isotropy	2.60	Rectangular	√3	0.7	1.05	∞
Boundary Effect	1.00	Rectangular	√3	1	0.58	∞
Linearity	4.70	Rectangular	√3	1	2.71	∞
System Detection Limit	1.00	Rectangular	√3	1	0.58	∞
Readout Electronics	0.30	Normal	1	1	0.30	∞
Response Time	0.80	Rectangular	√3	1	0.46	∞
Integration Time	2.60	Rectangular	√3	1	1.50	∞
RF Ambient Noise	0.00	Rectangular	√3	1	0.00	∞
RF Ambient Reflections	0.00	Rectangular	√3	1	0.00	∞
Probe Positioner	0.40	Rectangular	√3	1	0.23	∞
Probe Positioning	2.90	Rectangular	√3	1	1.67	∞
Post-processing	1.00	Rectangular	√3	1	0.58	∞
Field source					1	l
Deviation of the experimental source from numerical source	5.5	Normal	1	1	5.5	∞
Source to liquid distance	2	Rectangular	√3	1	1.15	∞
Power drift	5	Rectangular	√3	1	2.89	∞
Phantom and Tissue Parame	ters					
Phantom Uncertainty	4	Rectangular	√3	1	2.31	∞
SAR correction	1.9	Rectangular	√3	1	1.10	∞
Liquid Conductivity (meas)	4.19	Normal	1	0.78	3.27	∞
Liquid Permittivity (meas)	4.4	Normal	1	0.26	1.14	∞
Temp. unc Conductivity	0.18	Rectangular	√3	0.78	0.08	∞
Temp. unc Permittivity	0.54	Rectangular	√3	0.23	0.07	∞
Combined Std. Uncertainty		RSS			10.39	
Expanded STD Uncertainty		<i>k</i> =2			20.79%	

16. Main Test Instrument

Table 16.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	N5242A	MY51221755	Dec 25, 2017	1 year	
02	Power meter	NRVD	102257			
02	Dower concer	NDV 75	100241	May 11, 2018	1 year	
03	Power sensor	NRV-Z5	100644			
04	Signal Generator	E4438C	MY49072044	May 11, 2018	1 Year	
05	Amplifier	NTWPA-0086010F	12023024	No Calibration Requested		
06	Coupler	778D	MY4825551	May 11, 2018	1 year	
07	BTS	E5515C	MY50266468	Dec 25, 2017	1 year	
08	BTS	MT8820C	6201240338	May 11, 2018	1 year	
09	E-field Probe	ES3DV3	2252	Aug 31, 2017	1 year	
09	E-lieid Probe	E93DV3	3252	Sep 4,2018	1 year	
10	DAE	SPEAG DAE4	1244	Dec 4,2017	1 year	
		SPEAG D835V2	4d112	Oct 25,2018	3 year	
		SPEAG D1750V2	1044	Oct 31,2018	3 year	
11	Dipole Validation Kit	SPEAG D1900V2	5d151	Dec 6,2017	1 year	
		SPEAG D2450V2	858	Oct 28,2018	3 year	
		SPEAG D2600V2	1031	Nov 1,2018	3 year	

Page Number

Report Issued Date: Dec. 13, 2018

: 64 of 175

ANNEX A. Highest SAR GRAPH RESULTS

Fig.1 GSM 850 Left Cheek Middle

Date/Time: 2018/11/14 Electronics: DAE4 Sn1244

Medium parameters used: f = 837 MHz; $\sigma = 0.924$ S/m; $\varepsilon_r = 42.126$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM Professional 850MHz; Frequency: 836.6 MHz;

Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.36, 6.36, 6.36); Calibrated: 9/4/2018

GSM 850 Left Cheek Middle/Area Scan (111x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.325 W/kg

GSM 850 Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.051 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.397 W/kg

SAR(1 g) = 0.324 W/kg; SAR(10 g) = 0.251 W/kgMaximum value of SAR (measured) = 0.342 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 65 of 175

Fig.2 GPRS 4TS Ground Mode Middle 10mm

Date/Time: 2018/11/4 Electronics: DAE4 Sn1244

Medium parameters used: f = 837 MHz; $\sigma = 1.003$ S/m; $\varepsilon_r = 57.087$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: GSM 850MHz GPRS 4TS (0); Frequency: 836.6 MHz;

Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 9/4/2018

GPRS 4TS Ground Mode Middle 10mm/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.665 W/kg

GPRS 4TS Ground Mode Middle 10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.00 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.764 W/kg

SAR(1 g) = 0.630 W/kg; SAR(10 g) = 0.491 W/kgMaximum value of SAR (measured) = 0.661 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 66 of 175

Fig.3 GSM1900 Left Cheek Middle

Date/Time: 2018/11/7 Electronics: DAE4 Sn1244

Medium parameters used: f = 1880 MHz; $\sigma = 1.396$ S/m; $\varepsilon_r = 41.953$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM Professional 1900MHz; Frequency: 1880 MHz;

Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.18, 5.18, 5.18); Calibrated: 9/4/2018

GSM1900 Left Cheek Middle/Area Scan (111x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.146 W/kg

GSM1900 Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.241 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.214 W/kg

SAR(1 g) = 0.132 W/kg; SAR(10 g) = 0.080 W/kgMaximum value of SAR (measured) = 0.142 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 67 of 175

Fig.4 GSM1900 4TS Bottom Mode high 10mm

Date/Time: 2018/11/16 Electronics: DAE4 Sn1244

Medium parameters used: f = 1910 MHz; $\sigma = 1.568$ S/m; $\varepsilon_r = 52.038$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 1900MHz GPRS 4TS (0); Frequency: 1909.8 MHz;

Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018

GSM1900 4TS Bottom Mode high 10mm/Area Scan (31x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.966 W/kg

GSM1900 4TS Bottom Mode high 10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.50 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.95 W/kg

SAR(1 g) = 1.1 W/kg; SAR(10 g) = 0.565 W/kgMaximum value of SAR (measured) = 1.25 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 68 of 175

Fig.5 WCDMA Band 2 Left Cheek Middle

Date/Time: 2018/11/7

Electronics: DAE4 Sn1244

Medium parameters used: f = 1880 MHz; $\sigma = 1.396$ S/m; $\varepsilon_r = 41.953$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA Professional Band II; Frequency: 1880 MHz;

Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.18, 5.18, 5.18); Calibrated: 9/4/2018

WCDMA Band 2 Left Cheek Middle/Area Scan (111x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.203 W/kg

WCDMA Band 2 Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.727 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.299 W/kg

SAR(1 g) = 0.188 W/kg; SAR(10 g) = 0.114 W/kgMaximum value of SAR (measured) = 0.202 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 69 of 175

Fig.6 WCDMA Band 2 Bottom Mode Middle

Date/Time: 2018/11/16 Electronics: DAE4 Sn1244

Medium parameters used: f = 1880 MHz; $\sigma = 1.528$ S/m; $\varepsilon_r = 52.214$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA Professional Band II; Frequency: 1880 MHz;

Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018

WCDMA Band 2 Bottom Mode Middle/Area Scan (41x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.14 W/kg

WCDMA Band 2 Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.23 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.94 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.561 W/kgMaximum value of SAR (measured) = 1.19 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 70 of 175

Fig.7 WCDMA Band 5 Left Cheek Middle

Date/Time: 2018/11/4 Electronics: DAE4 Sn1244

Medium parameters used: f = 837 MHz; $\sigma = 0.924$ S/m; $\varepsilon_r = 42.126$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Professional Band V; Frequency: 836.6 MHz;

Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.36, 6.36, 6.36); Calibrated: 9/4/2018

WCDMA Band 5 Left Cheek Middle/Area Scan (111x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.297 W/kg

WCDMA Band 5 Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.909 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.346 W/kg

SAR(1 g) = 0.283 W/kg; SAR(10 g) = 0.220 W/kgMaximum value of SAR (measured) = 0.299 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 71 of 175

Fig.8 WCDMA Band 5 Ground Mode Middle 10mm

Date/Time: 2018/11/4 Electronics: DAE4 Sn1244

Medium parameters used: f = 837 MHz; $\sigma = 1.003$ S/m; $\varepsilon_r = 57.087$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Professional Band V; Frequency: 836.6 MHz;

Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 9/4/2018 **WCDMA Band 5 Ground Mode Middle 10mm/Area Scan (61x101x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.434 W/kg

WCDMA Band 5 Ground Mode Middle 10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.90 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.499 W/kg

SAR(1 g) = 0.412 W/kg; SAR(10 g) = 0.321 W/kgMaximum value of SAR (measured) = 0.431 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 72 of 175

Fig.9 LTE Band 2 20M 1RB 50 Offset Left Cheek High

Date/Time: 2018/11/7 Electronics: DAE4 Sn1244

Medium parameters used: f = 1900 MHz; $\sigma = 1.414 \text{ S/m}$; $\varepsilon_r = 41.865$; $\rho = 1000 \text{ MHz}$

kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: LTE Band 2 Professional 1900MHz; Frequency: 1900

MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.18, 5.18, 5.18); Calibrated: 9/4/2018 LTE Band 2 20M 1RB 50 Offset Left Cheek High/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.305 W/kg

LTE Band 2 20M 1RB 50 Offset Left Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.446 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.444 W/kg

SAR(1 g) = 0.268 W/kg; SAR(10 g) = 0.159 W/kg

Maximum of SAR (measured) = 0.284 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 73 of 175

Fig.10 LTE Band 2 20M 1RB 50 Offset Bottom Mode High 10mm

Date/Time: 2018/11/16 Electronics: DAE4 Sn1244

Medium parameters used: f = 1900 MHz; $\sigma = 1.549$ S/m; $\varepsilon_r = 52.151$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: LTE Band 2 Professional 1900MHz; Frequency: 1900

MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018 LTE Band 2 20M 1RB 50 Offset Bottom Mode High 10mm/Area Scan (31x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.702 W/kg

LTE Band 2 20M 1RB 50 Offset Bottom Mode High 10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.31 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.762 W/kg; SAR(10 g) = 0.395 W/kg

Maximum value of SAR (measured) = 0.818 W/kg

Fig.11 LTE Band 4 20M 1RB 50 Offset Left Cheek Low

Date/Time: 2018/11/5

Electronics: DAE4 Sn1244

Medium parameters used: f = 1720 MHz; $\sigma = 1.353$ S/m; $\varepsilon_r = 41.131$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: LTE Band 4 Professional 1800MHz; Frequency: 1720

MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.39, 5.39, 5.39); Calibrated: 9/4/2018 LTE Band 4 20M 1RB 50 Offset Left Cheek Low/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.202 W/kg

LTE Band 4 20M 1RB 50 Offset Left Cheek Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.257 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.271 W/kg

SAR(1 g) = 0.175 W/kg; SAR(10 g) = 0.112 W/kg

Maximum value of SAR (measured) = 0.185 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 74 of 175

Fig.12 LTE Band 4 20M 1RB 50 Offset Bottom Mode High

Date/Time: 2018/11/5 Electronics: DAE4 Sn1244

Medium parameters used: f = 1745 MHz; $\sigma = 1.471$ S/m; $\varepsilon_r = 55.399$; $\rho = 1000$

kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: LTE Band 4 Professional 1800MHz; Frequency: 1745

MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.99, 4.99, 4.99); Calibrated: 9/4/2018

LTE Band 4 20M 1RB 50 Offset Bottom Mode High/Area Scan (31x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.825 W/kg

LTE Band 4 20M 1RB 50 Offset Bottom Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.33 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 0.798 W/kg; SAR(10 g) = 0.441 W/kgMaximum value of SAR (measured) = 0.905 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 75 of 175

Fig.13 LTE Band 5 10M 1RB 25 Offset Left Cheek High

Date/Time: 2018/11/4 Electronics: DAE4 Sn1244

Medium parameters used: f = 844 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 42.049$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: LTE Band 5 Professional 850MHz; Frequency: 844 MHz;

Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.36, 6.36, 6.36); Calibrated: 9/4/2018 LTE Band 5 10M 1RB 25 Offset Left Cheek High/Area Scan (111x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.301 W/kg

LTE Band 5 10M 1RB 25 Offset Left Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.648 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.344 W/kg

SAR(1 g) = 0.283 W/kg; SAR(10 g) = 0.222 W/kgMaximum value of SAR (measured) = 0.295 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 76 of 175

Fig.14 LTE Band 5 10M 25RB 13 Offset Left Mode High

Date/Time: 2018/11/4 Electronics: DAE4 Sn1244

Medium parameters used: f = 844 MHz; $\sigma = 1.009$ S/m; $\varepsilon_r = 57.014$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: LTE Band 5 Professional 850MHz; Frequency: 844 MHz;

Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 9/4/2018

LTE Band 5 10M 25RB 13 Offset Left Mode High/Area Scan (31x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.403 W/kg

LTE Band 5 10M 25RB 13 Offset Left Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.64 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.517 W/kg

SAR(1 g) = 0.373 W/kg; SAR(10 g) = 0.257 W/kgMaximum value of SAR (measured) = 0.402 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 77 of 175

Fig.15 LTE Band 7 20M 50RB 25 Offset Left Cheek High

Date/Time: 2018/11/15 Electronics: DAE4 Sn1244

Medium parameters used: f = 2560 MHz; $\sigma = 1.942 \text{ S/m}$; $\varepsilon_r = 40.23$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: LTE Band 7 Professional 2600MHz; Frequency: 2560

MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.46, 4.46, 4.46); Calibrated: 9/4/2018

LTE Band 7 20M 50RB 25 Offset Left Cheek High/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.188 W/kg

LTE Band 7 20M 50RB 25 Offset Left Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.9400 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.327 W/kg

SAR(1 g) = 0.160 W/kg; SAR(10 g) = 0.081 W/kgMaximum value of SAR (measured) = 0.176 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 78 of 175

Fig.16 LTE Band 7 20M 1RB 50 offset Bottom Mode Low 10mm

Date/Time: 2018/11/15 Electronics: DAE4 Sn1244

Medium parameters used: f = 2510 MHz; $\sigma = 1.998$ S/m; $\varepsilon_r = 54.618$; $\rho = 1000$

kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: LTE Band 7 Professional 2500MHz; Frequency: 2510

MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.41, 4.41, 4.41); Calibrated: 9/4/2018

LTE Band 7 20M 1RB 50 offset Bottom Mode Low 10mm /Area Scan (31x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.840 W/kg

LTE Band 7 20M 1RB 50 offset Bottom Mode Low 10mm /Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.39 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 2.24 W/kg

SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.458 W/kgMaximum value of SAR (measured) = 1.10 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 79 of 175

Fig.17 WIFI 2450 Left Tilt Middle

Date/Time: 2018/11/9

Electronics: DAE4 Sn1244

Medium parameters used: f = 2437 MHz; $\sigma = 1.798$ S/m; $\varepsilon_r = 39.587$; $\rho = 1000$

kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: Wifi 2450 2450MHz; Frequency: 2437 MHz; Duty Cycle:

1:1

Probe: ES3DV3 - SN3252ConvF(4.74, 4.74, 4.74); Calibrated: 9/4/2018

WIFI 2450 Left Tilt Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.144 W/kg

WIFI 2450 Left Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.526 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.414 W/kg

SAR(1 g) = 0.157 W/kg; SAR(10 g) = 0.066 W/kgMaximum value of SAR (measured) = 0.181 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 80 of 175

Fig.18 WIFI 2450 Phantom Mode Middle 10mm

Date/Time: 2018/11/9 Electronics: DAE4 Sn1244

Medium parameters used: f = 2437 MHz; $\sigma = 1.916$ S/m; $\varepsilon_r = 54.159$; $\rho = 1000$

kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: Wifi 2450 2450MHz; Frequency: 2437 MHz; Duty Cycle:

1:1

Probe: ES3DV3 - SN3252ConvF(4.41, 4.41, 4.41); Calibrated: 9/4/2018 **WIFI 2450 Phantom Mode Middle 10mm/Area Scan (61x121x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.0694 W/kg

WIFI 2450 Phantom Mode Middle 10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.094 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.0790 W/kg

SAR(1 g) = 0.043 W/kg; SAR(10 g) = 0.022 W/kgMaximum of SAR (measured) = 0.0463 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 81 of 175

Page Number

Report Issued Date: Dec. 13, 2018

: 82 of 175

ANNEX B. SYSTEM VALIDATION RESULTS

Head 835MHz

Date/Time: 2018/11/4

Electronics: DAE4 Sn1244

Medium parameters used: f = 835 MHz; $\sigma = 0.923$ S/m; $\varepsilon_r = 42.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: CW 850MHz; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.36, 6.36, 6.36); Calibrated: 9/4/2018

System Validation/Area Scan (61x131x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 2.54 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 47.72 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.64 W/kg

Maximum value of SAR (measured) = 2.65 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 83 of 175

Body 835MHz

Date/Time: 2018/11/4 Electronics: DAE4 Sn1244

Medium parameters used: f = 835 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 57.108$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: CW 850MHz; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 9/4/2018

System Validation/Area Scan (61x131x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 2.55 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 44.09 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 3.60 W/kg

SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.66 W/kg

Maximum value of SAR (measured) = 2.70 W/kg

Head 1750MHz

Date/Time: 2018/11/5 Electronics: DAE4 Sn1244

Medium parameters used: f = 1750 MHz; $\sigma = 1.382$ S/m; $\varepsilon_r = 40.967$; $\rho = 1000$

kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: CW 1800MHz; Frequency: 1750 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.39, 5.39, 5.39); Calibrated: 9/4/2018

System check Validation/Area Scan (61x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 10.5 W/kg

System check Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.97 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 9.24 W/kg; SAR(10 g) = 4.89 W/kgMaximum value of SAR (measured) = 10.4 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 84 of 175

Body 1750MHz

Date/Time: 2018/11/5 Electronics: DAE4 Sn1244

Medium parameters used: f = 1750 MHz; $\sigma = 1.476$ S/m; $\varepsilon_r = 55.385$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: CW 1800MHz; Frequency: 1750 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.99, 4.99, 4.99); Calibrated: 9/4/2018

System check Validation/Area Scan (61x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 11.5 W/kg

System check Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.37 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.6 W/kg; SAR(10 g) = 5.27 W/kg

Maximum value of SAR (measured) = 10.8 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 85 of 175

Head 1900MHz

Date/Time: 2018/11/7 Electronics: DAE4 Sn1244

Medium parameters used: f = 1900 MHz; $\sigma = 1.414 \text{ S/m}$; $\varepsilon_r = 41.865$; $\rho = 1000 \text{ MHz}$

kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: CW 1900MHz; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.18, 5.18, 5.18); Calibrated: 9/4/2018

System Validation/Area Scan (61x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 11.0 W/kg

System Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 46.54 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 19.6 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.15 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 86 of 175

Body 1900MHz

Date/Time: 2018/11/16 Electronics: DAE4 Sn1244

Medium parameters used: f = 1900 MHz; $\sigma = 1.549$ S/m; $\varepsilon_r = 52.151$; $\rho = 1000$

kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: CW 1900MHz; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018

System check Validation/Area Scan (61x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 12.2 W/kg

System check Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.17 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.53 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 88 of 175

Head 2450MHz

Date/Time: 2018/11/9 Electronics: DAE4 Sn1244

Medium parameters used: f = 2450 MHz; $\sigma = 1.813 \text{ S/m}$; $\varepsilon_r = 39.542$; $\rho = 1000$

kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: CW 2450MHz; Frequency: 2450 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.74, 4.74, 4.74); Calibrated: 9/4/2018

System Validation 2/Area Scan (91x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 15.3 W/kg

System Validation 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.54 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 29.9 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 5.86 W/kg

Maximum value of SAR (measured) = 14.8 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 89 of 175

Body 2450MHz

Date/Time: 2018/11/9 Electronics: DAE4 Sn1244

Medium parameters used: f = 2450 MHz; $\sigma = 1.932 \text{ S/m}$; $\varepsilon_r = 54.12$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: CW 2450MHz; Frequency: 2450 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.41, 4.41, 4.41); Calibrated: 9/4/2018

System Validation/Area Scan (91x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 14.4 W/kg

System Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.57 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 25.5 W/kg

SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.72 W/kg

Maximum value of SAR (measured) = 14.2 W/kg

Head 2600MHz

Date/Time: 2018/11/15 Electronics: DAE4 Sn1244

Medium parameters used: f = 2600 MHz; $\sigma = 1.975 \text{ S/m}$; $\varepsilon_r = 40.132$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: CW 2600MHz; Frequency: 2600 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.46, 4.46, 4.46); Calibrated: 9/4/2018

Head 2600MHz/Area Scan (101x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 17.2 W/kg

Head 2600MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 70.31 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 35.7 W/kg

SAR(1 g) = 14.8 W/kg; SAR(10 g) = 6.35 W/kgMaximum value of SAR (measured) = 16.7 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 90 of 175

Body 2600MHz

Date/Time: 2018/11/15 Electronics: DAE4 Sn1244

Medium parameters used: f = 2600 MHz; $\sigma = 2.111 \text{ S/m}$; $\varepsilon_r = 54.366$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: CW 2500MHz; Frequency: 2600 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.41, 4.41, 4.41); Calibrated: 9/4/2018

Body 2600MHz/Area Scan (101x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 15.8 W/kg

Body 2600MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 76.81 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 5.83 W/kgMaximum value of SAR (measured) = 15.3 W/kg

Page Number

Report Issued Date: Dec. 13, 2018

: 91 of 175

Page Number

Report Issued Date: Dec. 13, 2018

: 92 of 175

Body 1900MHz

Date/Time: 2018/11/20 Electronics: DAE4 Sn1244

Medium parameters used: f = 1900 MHz; $\sigma = 1.555 \text{ S/m}$; $\varepsilon_r = 52.451$; $\rho = 1000 \text{ MHz}$

 kg/m^3

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: CW 1900MHz; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018

System check Validation/Area Scan (61x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 12.2 W/kg

System check Validation/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.97 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 9.86 W/kg; SAR(10 g) = 5.07 W/kgMaximum value of SAR (measured) = 11.1 W/kg

ANNEX C. SAR Measurement Setup

C.1. Measurement Set-up

The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy
 of the probe positioning.

: 93 of 175

Page Number

Report Issued Date: Dec. 13, 2018

A computer running WinXP and the DASY5 software.

SAR Test Report

 Remote control and teach pendant as well as additional circuitry for robot safety such as

Report No.: I18D00212-SAR01

- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

East China Institute of Telecommunications Page Number: 94 of 175 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date: Dec. 13, 2018

C.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2ndord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: ES3DV3,EX3DV4

Frequency 10MHz — 6GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity: $\pm 0.2 \text{ dB}(30 \text{ MHz to 4 GHz}) \text{ for ES3DV3}$

± 0.2 dB(30 MHz to 6 GHz) for EX3DV4

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)

Tip-Center: 1 mm (2.0mm for ES3DV3)

Application: SAR Dosimetry Testing

Compliance tests of mobile phones

Dosimetry in strong gradient fields

Picture7-2 Near-field Probe

Picture 7-3 E-field Probe

C.3. E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by

East China Institute of Telecommunications Page Number : 95 of 175 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Dec. 13, 2018

subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm². E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4. Other Test Equipment

C.4.1. Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe

Page Number

Report Issued Date: Dec. 13, 2018

: 96 of 175

collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2. Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX90L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3. Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which

Page Number

Report Issued Date: Dec. 13, 2018

: 98 of 175

: 99 of 175

Page Number

Report Issued Date: Dec. 13, 2018

is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.6 Server for DASY 5

C.4.4. Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point

(ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.7: Device Holder

Picture C.8: Laptop Extension Kit

: 100 of 175

Page Number

Report Issued Date: Dec. 13, 2018

C.4.5. Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: 2 ± 0. 2 mm

Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special

Picture C.9: SAM Twin Phantom