BUEC 333, Test 1

June 10, 2015, 14:30-17:20

Important!

- On the front page of **your answer sheet**, write (i) your name; (ii) your student ID.
- On the front page of **this document** (the questions), write: (i) your name; and (ii) your student ID.
- Once you **finish** this exam, **signal** it to us, and we will come to pick up your exam. Stay seated until somebody comes to cllect your exam.
- Unless otherwise noted, provide: (i) the answer; (ii) an explanation. No explanation = no points. A correct answer with correct explanation earns 1 point for each subquestion.

1 Probability

- 1. Consider a random variable X with sample space $\{-a,a\}$ and probability distribution given by P(X=-a)=P(X=a)=0.5.
 - (a) Compute E(X).
 - (b) Compute Var(X).
 - (c) Compute $Var\left(-\frac{1}{a}X\right)$.
- 2. Let X and Y be two RVs, both with sample space $\{0,1\}$. The joint probabilities are all equal:

$$P(X = 0, Y = 0) = P(X = 0, Y = 1) = P(X = 1, Y = 0) = P(X = 1, Y = 1) = 0.25.$$

- (a) Compute E(X|Y=0).
- (b) What is Cov(X, Y)?
- 3. **PS.8** Let X and Y be two RVs, both with sample space $\{0, 10\}$. You know that P(X = 10) = 0.3 and P(Y = 10) = 0.4.
 - (a) Assume that X and Y are independent. Compute P(X = 10, Y = 0).
 - (b) Assume that X and Y are independent. Compute P(X = 10|Y = 0).
 - (c) If X and Y are not independent, can you compute P(X = 10, Y = 0)? Explain.
 - (d) Assume that P(X = 10, Y = 10) = 0.1. Compute E[X|Y = 10].

- 4. Let (X_1, \dots, X_n) be a random sample from a distribution with mean $E(X) = \mu_x$ and $Var(X) = \sigma^2$.
 - (a) Can you express $E(X_1)$ in terms of μ_x ?
 - (b) Express $Var(X_1 + X_2)$ in terms of σ^2 .

2 Statistics

- 5. Assume that you have a random sample (7,8,9) for a RV X with mean μ_x and variance σ_x^2 .
 - (a) For this sample, compute \bar{X} .
 - (b) For this sample, compute the sample variance.
 - (c) Construct a 95%-CI for μ_x based on the sample mean and sample variance. Assume that the Central Limit Theorem applies, so that

$$0.95 = P\left(-1.96 < \frac{\bar{X} - \mu_x}{SE(\bar{X})} < 1.96\right)$$

- (d) What is the coverage probability of your confidence interval?
- (e) Interpret the numbers in your answer to question (c).
- 6. We have a random sample of size n=10, (X_1,X_2,\cdots,X_{10}) from a distribution X with mean μ_x and variance σ_x^2 . Consider two estimators for μ_x . First, the sample average $\bar{X}=\frac{1}{10}(X_1+\cdots+X_{10})$. We know that $E(\bar{X})=\mu_x$ and that $Var(\bar{X})=\sigma^2/10$. Second, the average for the odd half of the sample: $\tilde{X}=\frac{1}{5}(X_1+X_3+X_5+X_7+X_9)$.
 - (a) Is \tilde{X} a random variable?
 - (b) Is \bar{X} unbiased?
 - (c) Is \tilde{X} unbiased?
 - (d) Which of the two estimators is more efficient?