

Universidad Nacional de Ingeniería Facultad de Ciencias Facultad Desferierad de Mataurítica

Escuela Profesional de Matemática

Ciclo 2018-2

[Cod: CM-431 Curso: Análisis Numérico II]

[Tema: Interpolación.] [Prof: Luis Roca.]

Práctica Dirigida Nº 1

- 1. Encuentre el interpolante de Lagrange $p_2(t)=\sum_{j=0}^2 x_j L_j(t)$ para el conjunto de datos $\left\{(-1,\frac{1}{2}),(0,1),(1,-1)\right\}$. Encuentre $p_{2,j}$ en $p_2(t)=\sum_{j=0}^2 p_{2,j}t^j$
- 2. Encuentre el interpolante de Lagrange $p_3(t)=\sum_{j=0}^3 x_j L_j(t)$ para el conjunto de datos $\{(0,1),(\frac12,2),(1,\frac32),(2,-1)\}$. Encuentre $p_{3,j}$ en $p_3(t)=\sum_{j=0}^3 p_{3,j}t^j$
- 3. Buscamos interpolar x(t) en t_1 , t_2 y $x^{(1)}(t) = dx(t)/dt$ en $t = t_0$, t_3 usando $p_3(t) = \sum_{j=0}^3 p_{3,j}t^j$. Sea $x_j = x(t_j)$ y $x_j^{(1)} = x^{(1)}(t_j)$. Encuentre el sistema lineal de ecuaciones que satisface $(p_{(3,j)})$.
- 4. Encuentre una expresión general para $L_j^{(1)}(t) = \frac{dL_j(t)}{dt}$.
- 5. Implemente el algoritmo rápido para resolver el sistema de Vandermonde Ap=x dado por

$$\begin{bmatrix} 1 & t_0 & t_0^2 & \cdots & t_0^{n-1} & t_0^n \\ 1 & t_0 & t_0^2 & \cdots & t_0^{n-1} & t_0^n \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & t_{n-1} & t_{n-1}^2 & \cdots & t_{n-1}^{n-1} & t_{n-1}^n \\ 1 & t_n & t_n^2 & \cdots & t_n^{n-1} & t_n^n \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ \vdots \\ p_{n-1} \\ p_n \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix}$$

y
$$p_n(t) = \sum_{j=0}^n p_j t^j$$
 interpola los puntos $\{(t_j, x_j): k = 0, 1, \dots, n\}$

for k:=0 to n-1 begin

for i := n downto k+1 do begin

$$x[i] := (x[i] - x[i-1]) / (t[i]-t[i-k+1])$$

 \mathbf{end}

end

for k:=n-1 downto 0 do begin

for i := k to n-1 do begin

$$x [i] := x [i] - t [k] x [i+1]$$

 \mathbf{end}

end

El algoritmo sobre escribe el vector $x = [x_0, x_1, \dots, x_n]^T$ con el vector $p = [p_0, p_1, \dots, p_n]^T$

- a) Cuente el número de operaciones aritméticas necesarias. ¿Cual es la complejidad asintótica?, compárela con el método de eliminación Gaussiana.
- b) Pruebe el algoritmo anterior con el sistema

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} \begin{bmatrix} 10 \\ 26 \\ 58 \\ p_3 \end{bmatrix}$$

c) El primer bloque iterativo del algoritmo propuesto produce la forma Newton de $p_n(t)$. Para el sistema en (b) confirme que

$$p_n(t) = \sum_{k=0}^{n} x_k \prod_{i=0}^{k-1} (t - t_i),$$

donde $\{x_k : k \in \mathbb{Z}_{n+1}\}$ son las salidas del primer bloque iterativo.

6. Pruebe que para A_n la matriz de Vandermonde se tiene

$$\det(A_n) = \prod_{0 < i < j < n} (t_i - t_j)$$

- 7. Sea $f(t) = 1/(1+t^2)$ para $t \in [-5,5]$, utilizando un polinomio interpole f en n puntos igualmente espaciados de [-5,5]. Considere n = 5, 8, 10 y compare con f usando una gráfica.
- 8. Para cada función use diferencias divididas para construir el polinomio de Newton de grado n para los puntos especificados:

a)
$$f(t) = \sqrt{t}$$
, $t_0 = 0$, $t_1 = 1$, $t_2 = 3$. Use $n = 2$

b)
$$f(t) = \cosh t$$
, $t_0 = -1, t_1 = -1/2, t_2 = 1/2, t_3 = 1$. Use $n = 3$

c)
$$f(t) = \ln t$$
, $t_0 = 1$, $t_1 = 2$, $t_2 = 3$. Use $n = 2$

d)
$$f(t) = 1/(1+t)$$
, $t_0 = 0, t_1 = 1/2, t_2 = 1, t_3 = 2$. Use $n = 3$

9. La siguiente matriz es importante para resolver problemas de interpolación spline

$$A_n = egin{bmatrix} 4 & 1 & 0 & \dots & 0 & 0 \ 1 & 4 & 1 & \dots & 0 & 0 \ 0 & 1 & 4 & \dots & 0 & 0 \ dots & dots & dots & dots & dots & dots \ 0 & 0 & 0 & \dots & 4 & 1 \ 0 & 0 & 0 & \dots & 1 & 4 \end{bmatrix}$$

suponga $D_n = \det(A_n)$.

a) Calcule D_1 , D_2 , D_3 y D_4 directamente.

b) Demuestre que

$$D_{n+2} - 4D_{n+1} + D_n = 0$$

c) Para $\alpha, \beta \in \mathbb{R}$, muestre que

$$D_n = \alpha \left(2 + \sqrt{3}\right)^n + \beta (2 - \sqrt{3})^n$$

para $n \in \mathbb{N}$. Encuentre α y β

- d) Pruebe que $D_n > 0, \forall n \in \mathbb{N}$
- e) ¿Es $A_n > 0, \forall n \in \mathbb{N}$?