信息安全数学基础7一平方乘算法

杨礼珍

同济大学计算机科学与技术系, 2017

Outline

作业

阅读《密码学原理与实践》5.3.1节关于平方一乘算法的部分(P138-139)

如何快速实现指数运算?

Example

计算: 3⁹

方法一: 直接计算,需要8次乘法运算。

方法二: 注意到:

$$3^9$$
 = $3(3^4)^2$
= $3((3^2)^2)^2$ 第1次乘法
= $3(9^2)^2$ 第2次乘法
= $3 \cdot 81^2$ 第3次乘法
= $3 \cdot 6561$ 第4次乘法
= 19683

算法原理:

假定指数c的二进制表示为 $c = (c_{l-1}, \ldots, c_1, c_0)$,那么

$$c = c_{l-1}2^{l-1} + c_{l-2}2^{l-2} + \dots + 2c_1 + c_0$$

$$= (2c_{l-1} + c_{l-2})2^{l-2} + c_{l-3}2^{l-3} + \dots + 2c_1 + c_0$$

$$= (2(2c_{l-1} + c_{l-2}) + c_{l-3})2^{l-3} + c_{l-4}2^{l-4} + \dots + 2c_1 + c_0$$

$$= 2(\dots 2(2(2c_{l-1} + c_{l-2}) + c_{l-3}) + \dots) + c_1) + c_0$$

因此有:

$$x^{c} = x^{2(\dots 2(2(2c_{l-1}+c_{l-2})+c_{l-3})+\dots)+c_{1})+c_{0}}$$

$$= (\dots (((x^{c_{l-1}})^{2}x^{c_{l-2}})^{2}x^{c_{l-3}})\dots)^{2}x^{c_{0}}$$

$$= (\dots (((1^{2} \cdot x^{c_{l-1}})^{2}x^{c_{l-2}})^{2}x^{c_{l-3}})\dots)^{2}x^{c_{0}}$$

根据: $x^c = (\dots(((1^2 \cdot x^{c_{l-1}})^2 x^{c_{l-2}})^2 x^{c_{l-3}})\dots)^2 x^{c_0}$

平方-乘算法(x, c, n)

计算: $z = x^c \mod n$ 。 假定c的二进制表示为 $c = \sum_{i=0}^{l-1} c_i 2^i, c_i \in \{0,1\}$ 。 $z \leftarrow 1$ (初始化)

for
$$i \leftarrow I - 1$$
 downto 0

$$\operatorname{do} \left\{ \begin{array}{l} z \leftarrow z^2 \bmod n \ (\ldots)^2 \\ \text{if } c_i = 1 \\ \text{then } z \leftarrow (z \times x) \bmod n \ (\ldots \cdot x^{c_i}) \end{array} \right.$$

return (z)

计算复杂度分析:如果n的二进制表示有k位

- 乘法运算的复杂度为O(k2)
- 乘法运算次数为 $O(I) = O(\log_2(c))$
- 计算复杂度为 $O((\log c) \times k^2)$ 。

Example

例5.5(续)n = 11413,公开的解密指数为b = 3533,Alice利用平方-乘算法计算9726³⁵³³ mod 11413 来加密明

713 1 73 71 27 127 71 0: =0			
	i	bi	Z
	11	1	$1^2 \times 9726 = 9726$
文9726:	10	1	$9726^2 \times 9726 = 2659$
	9	0	$2659^2 = 5634$
	8	1	$5634^2 \times 9726 = 9167$
	7	1	$9167^2 \times 9726 = 4958$
	6	1	$4958^2 \times 9726 = 7783$
	5	0	$7783^2 = 6298$
	4	0	$6298^2 = 4629$
	3	1	$4629^2 \times 9726 = 10185$
	2	1	$10185^2 \times 9726 = 105$
	1	0	$105^2 = 11025$
	0	1	$11025^2 \times 9726 = 5761$