

Learning Parametrised Graph Shift Operators

George Dasoulas* Johannes Lutzeyer* Michalis Vazirgiannis

* Equal contribution.

Definition

Graphs G = (V, E) can be represented using:

▶ the adjacency matrix $A \in \{0,1\}^{n \times n}$ where $A_{ij} = 1$ iff $(i,j) \in E$.

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Definition

Graphs G = (V, E) can be represented using:

- ▶ the adjacency matrix $A \in \{0,1\}^{n \times n}$ where $A_{ij} = 1$ iff $(i,j) \in E$.
- \blacktriangleright the unnormalised graph Laplacian matrix L is defined by L=D-A, where $D = \operatorname{diag}(A1_n)$.

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} \qquad L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{pmatrix}$$

Definition

Graphs G = (V, E) can be represented using:

- ▶ the adjacency matrix $A \in \{0,1\}^{n \times n}$ where $A_{ij} = 1$ iff $(i,j) \in E$.
- ▶ the unnormalised graph Laplacian matrix L is defined by L = D A, where $D = diag(A1_n)$.
- ▶ the symmetric normalised graph Laplacian matrix L_{sym} is defined by $L_{sym} = D^{-1/2}LD^{-1/2}$ and the random-walk normalised Laplacian matrix L_{rw} is defined as $L_{rw} = D^{-1}L$.

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \qquad L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{pmatrix}$$

$$L_{\text{sym}} = \begin{pmatrix} 1.0 & -0.5 & 0.0 & 0.0 & -0.5 \\ -0.5 & 1.0 & -0.5 & 0.0 & 0.0 \\ 0.0 & -0.5 & 1.0 & -0.5 & 0.0 \\ 0.0 & 0.0 & -0.5 & 1.0 & -0.5 \\ -0.5 & 0.0 & 0.0 & -0.5 & 1.0 \end{pmatrix}$$

Definition

Graphs G = (V, E) can be represented using:

- ▶ the adjacency matrix $A \in \{0,1\}^{n \times n}$ where $A_{ij} = 1$ iff $(i,j) \in E$.
- ▶ the unnormalised graph Laplacian matrix L is defined by L = D A, where $D = \operatorname{diag}(A1_n)$.
- ▶ the symmetric normalised graph Laplacian matrix L_{sym} is defined by $L_{\text{sym}} = D^{-1/2}LD^{-1/2}$ and the random-walk normalised Laplacian matrix L_{rw} is defined as $L_{\text{rw}} = D^{-1}L$.
- But there are more representations of graphs!

Definition (Sandryhaila and Moura (2013))

A matrix $S \in \mathbb{R}^{n \times n}$ is called a *Graph Shift Operator* (GSO) if it satisfies: $S_{ij} = 0$ for $i \neq j$ and $(i,j) \notin E$.

Definition

Graphs G = (V, E) can be represented using:

- ▶ the adjacency matrix $A \in \{0,1\}^{n \times n}$ where $A_{ij} = 1$ iff $(i,j) \in E$.
- ▶ the unnormalised graph Laplacian matrix L is defined by L = D A, where $D = diag(A1_n)$.
- ▶ the symmetric normalised graph Laplacian matrix L_{sym} is defined by $L_{sym} = D^{-1/2}LD^{-1/2}$ and the random-walk normalised Laplacian matrix L_{rw} is defined as $L_{rw} = D^{-1}L$.
- But there are more representations of graphs!

Definition (Sandryhaila and Moura (2013))

A matrix $S \in \mathbb{R}^{n \times n}$ is called a *Graph Shift Operator* (GSO) if it satisfies: $S_{ij} = 0$ for $i \neq j$ and $(i, j) \notin E$.

Note: the existence of an edge $(i,j) \in E$ does *not imply* a nonzero entry in the GSO, $S_{ij} \neq 0$. Hence, the correspondence between a GSO and a graph is not bijective in general.

GSOs in Representation Learning

GSOs in Representation Learning

Spectral clustering:

Spectral clustering of the karate network using A in (a), L in (b) and L_{rw} in (c) (Lutzeyer, 2020).

GSOs in Representation Learning

Spectral clustering:

Spectral clustering of the karate network using A in (a), L in (b) and L_{rw} in (c) (Lutzeyer, 2020).

► Graph Neural Networks (GNNs), e.g., the Graph Convolutional Network (Kipf and Welling, 2017)

$$H^{(l+1)} = \sigma(D_1^{-\frac{1}{2}} A_1 D_1^{-\frac{1}{2}} H^{(l)} W^{(l)}). \tag{1}$$

In message-passing schemes, the *sum-based aggregator* corresponds to the use of the adjacency matrix A.

▶ When introducing the different standard GSO choices Butler and Chung (2017) state: "No one matrix is best because each matrix has its own limitations in that there is some property which the matrix cannot always determine".

- When introducing the different standard GSO choices Butler and Chung (2017) state: "No one matrix is best because each matrix has its own limitations in that there is some property which the matrix cannot always determine".
- ▶ Graph signal processing literature: the GSO choice involves "different tradeoffs" and leads to different signal models (Deri and Moura, 2017; Ortega et al., 2018). Therefore, they recommend using whichever GSO works best in a particular analysis or learning task.

- When introducing the different standard GSO choices Butler and Chung (2017) state: "No one matrix is best because each matrix has its own limitations in that there is some property which the matrix cannot always determine".
- ▶ Graph signal processing literature: the GSO choice involves "different tradeoffs" and leads to different signal models (Deri and Moura, 2017; Ortega et al., 2018). Therefore, they recommend using whichever GSO works best in a particular analysis or learning task.

Research Questions

Question 1: Is there a single optimal representation to encode graph structures or is the optimal representation task- and data-dependent?

- When introducing the different standard GSO choices Butler and Chung (2017) state: "No one matrix is best because each matrix has its own limitations in that there is some property which the matrix cannot always determine".
- ▶ Graph signal processing literature: the GSO choice involves "different tradeoffs" and leads to different signal models (Deri and Moura, 2017; Ortega et al., 2018). Therefore, they recommend using whichever GSO works best in a particular analysis or learning task.

Research Questions

Question 1: Is there a single optimal representation to encode graph structures or is the optimal representation task- and data-dependent?

Question 2: Can we learn such an optimal representation to encode graph structure in a numerically stable and computationally efficient way?

Definition

We define the *Parametrised Graph Shift Operator (PGSO)*, denoted by $\gamma(A, S)$, as

$$\gamma(A,S) = m_1 D_a^{e_1} + m_2 D_a^{e_2} A_a D_a^{e_3} + m_3 I_n, \tag{2}$$

where $A_a = A + aI_n$, $D_a = Diag(A_a 1_n)$ and $S = (m_1, m_2, m_3, e_1, e_2, e_3, a)$.

Definition

We define the Parametrised Graph Shift Operator (PGSO), denoted by $\gamma(A,\mathcal{S})$, as

$$\gamma(A,S) = m_1 D_a^{e_1} + m_2 D_a^{e_2} A_a D_a^{e_3} + m_3 I_n, \tag{2}$$

where $A_a=A+aI_n$, $D_a=\mathsf{Diag}(A_a1_n)$ and $S=(m_1,m_2,m_3,e_1,e_2,e_3,a)$.

Definition

We define the *Parametrised Graph Shift Operator (PGSO)*, denoted by $\gamma(A, S)$, as

$$\gamma(A,S) = m_1 D_a^{e_1} + m_2 D_a^{e_2} A_a D_a^{e_3} + m_3 I_n, \tag{2}$$

where $A_a = A + aI_n$, $D_a = Diag(A_a 1_n)$ and $S = (m_1, m_2, m_3, e_1, e_2, e_3, a)$.

Definition

We define the *Parametrised Graph Shift Operator (PGSO)*, denoted by $\gamma(A, S)$, as

$$\gamma(A,S) = m_1 D_a^{e_1} + m_2 D_a^{e_2} A_a D_a^{e_3} + m_3 I_n,$$
 (2)

where $A_a = A + aI_n$, $D_a = Diag(A_a 1_n)$ and $S = (m_1, m_2, m_3, e_1, e_2, e_3, a)$.

Definition

We define the *Parametrised Graph Shift Operator (PGSO)*, denoted by $\gamma(A, S)$, as

$$\gamma(A,S) = m_1 D_a^{e_1} + m_2 D_a^{e_2} A_a D_a^{e_3} + m_3 I_n, \tag{2}$$

where $A_a=A+aI_n$, $D_a=\mathsf{Diag}(A_a1_n)$ and $S=(m_1,m_2,m_3,e_1,e_2,e_3,a)$.

$S = (m_1, m_2, m_3)$	$e_1, e_2, e_3,$	a)	Operator	Description
(0, 1, 0,	0, 0, 0,	0)	Α	Adjacency matrix and Summation Aggregation Operator of GNNs
(1, -1, 0,	1, 0, 0,	0)	D - A	Unnormalised Laplacian matrix L
(1, 1, 0,	1, 0, 0,	0)	D + A	Signless Laplacian matrix Q (Cvetkovic et al., 1997)
(0, -1, 1,	0, -1, 0,		$I_n - D^{-1}A$	Random-walk Normalised Laplacian L_{rw}
(0, -1, 1,	$0, -\frac{1}{2}, -\frac{1}{2},$	0)	$I_n - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$	Symmetric Normalised Laplacian L _{sym}
(0, 1, 0,	$0, -\frac{1}{2}, -\frac{1}{2},$	1)	$D_1^{-\frac{1}{2}}A_1D_1^{-\frac{1}{2}}$	Normalised Adjacency matrix of GCNs (Kipf and Welling, 2017)
(0, 1, 0,	0, -1, 0,	0)	$D^{-1}A$	Mean Aggregation Operator of GNNs (Xu et al., 2019)

Notation:

- ▶ Let a GNN model be denoted by $\mathcal{M}(\phi(A), X)$.
- Non-parametrised function of $A \phi(A) : [0,1]^{n \times n} \to \mathbb{R}^{n \times n}$.
- Attribute matrix $X \in \mathbb{R}^{n \times d}$ (in case of an attributed graph).
- ► Number of aggregation layers *K*.

- 1. **GNN-PGSO**: $\mathcal{M}(\phi(A), X) \to \mathcal{M}'(\gamma(A, S), X)$.
- 2. **GNN-mPGSO** (multi-PGSO): $\mathcal{M}(\phi(A), X) \to \mathcal{M}''(\gamma^{[K]}(A, \mathcal{S}^{[K]}), X)$, where $\gamma^{[K]}(A, \mathcal{S}^{[K]}) = [\gamma(A, \mathcal{S}^1), ..., \gamma(A, \mathcal{S}^K)]$.

Notation:

- ▶ Let a GNN model be denoted by $\mathcal{M}(\phi(A), X)$.
- Non-parametrised function of $A \phi(A) : [0,1]^{n \times n} \to \mathbb{R}^{n \times n}$.
- Attribute matrix $X \in \mathbb{R}^{n \times d}$ (in case of an attributed graph).
- ▶ Number of aggregation layers *K*.

- 1. **GNN-PGSO**: $\mathcal{M}(\phi(A), X) \to \mathcal{M}'(\gamma(A, S), X)$.
- 2. **GNN-mPGSO** (multi-PGSO): $\mathcal{M}(\phi(A), X) \to \mathcal{M}''(\gamma^{[K]}(A, \mathcal{S}^{[K]}), X)$, where $\gamma^{[K]}(A, \mathcal{S}^{[K]}) = [\gamma(A, \mathcal{S}^1), ..., \gamma(A, \mathcal{S}^K)]$.
- ▶ In simple words, we **replace** the GSO used in a GNN model by $\gamma(A, S)$.

Notation:

- Let a GNN model be denoted by $\mathcal{M}(\phi(A), X)$.
- Non-parametrised function of $A \phi(A) : [0,1]^{n \times n} \to \mathbb{R}^{n \times n}$.
- Attribute matrix $X \in \mathbb{R}^{n \times d}$ (in case of an attributed graph).
- ▶ Number of aggregation layers *K*.

- 1. **GNN-PGSO**: $\mathcal{M}(\phi(A), X) \to \mathcal{M}'(\gamma(A, S), X)$.
- 2. **GNN-mPGSO** (multi-PGSO): $\mathcal{M}(\phi(A), X) \to \mathcal{M}''(\gamma^{[K]}(A, \mathcal{S}^{[K]}), X)$, where $\gamma^{[K]}(A, \mathcal{S}^{[K]}) = [\gamma(A, \mathcal{S}^1), ..., \gamma(A, \mathcal{S}^K)]$.
- ▶ In simple words, we **replace** the GSO used in a GNN model by $\gamma(A, S)$.
- ▶ In convolutional architectures, the graph convolution is expressed as a matrix multiplication, involving the GSO → explicit replacement.

Notation:

- Let a GNN model be denoted by $\mathcal{M}(\phi(A), X)$.
- Non-parametrised function of $A \phi(A) : [0,1]^{n \times n} \to \mathbb{R}^{n \times n}$.
- Attribute matrix $X \in \mathbb{R}^{n \times d}$ (in case of an attributed graph).
- ▶ Number of aggregation layers *K*.

- 1. **GNN-PGSO**: $\mathcal{M}(\phi(A), X) \to \mathcal{M}'(\gamma(A, S), X)$.
- 2. **GNN-mPGSO** (multi-PGSO): $\mathcal{M}(\phi(A), X) \to \mathcal{M}''(\gamma^{[K]}(A, \mathcal{S}^{[K]}), X)$, where $\gamma^{[K]}(A, \mathcal{S}^{[K]}) = [\gamma(A, \mathcal{S}^1), ..., \gamma(A, \mathcal{S}^K)]$.
- ▶ In simple words, we **replace** the GSO used in a GNN model by $\gamma(A, S)$.
- In convolutional architectures, the graph convolution is expressed as a matrix multiplication, involving the GSO → explicit replacement.
- ▶ In message-passing architectures, the replacement is performed **implictly** as a neighborhood aggregation step.

Convolutions and message-passing

Examples of utilisation of GNN-PGSO models . . .

Convolutions and message-passing

- ► Examples of utilisation of GNN-PGSO models . . .
- 1. GCN (Kipf & Welling, 2017): The propagation rule is

$$H^{(l+1)} = \sigma \left(D_1^{-\frac{1}{2}} A_1 D_1^{-\frac{1}{2}} H^{(l)} W^{(l)} \right),$$

where $W^{(I)}$ is a weight matrix and σ is a non-linear activation function. The GCN-PGSO and GCN-mPGSO models are defined, respectively, as

$$H^{(l+1)} = \sigma\big(\gamma(A,\mathcal{S})H^{(l)}W^{(l)}\big) \text{ and } H^{(l+1)} = \sigma\big(\gamma(A,\mathcal{S}')H^{(l)}W^{(l)}\big).$$

Convolutions and message-passing

- ► Examples of utilisation of GNN-PGSO models . . .
- 1. GCN (Kipf & Welling, 2017): The propagation rule is

$$H^{(l+1)} = \sigma \big(D_1^{-\frac{1}{2}} A_1 D_1^{-\frac{1}{2}} H^{(l)} W^{(l)} \big),$$

where $W^{(l)}$ is a weight matrix and σ is a non-linear activation function. The GCN-PGSO and GCN-mPGSO models are defined, respectively, as

$$H^{(l+1)} = \sigma(\gamma(A, \mathcal{S})H^{(l)}W^{(l)}) \text{ and } H^{(l+1)} = \sigma(\gamma(A, \mathcal{S}')H^{(l)}W^{(l)}).$$

2. GIN (Xu et al., 2019): The propagation rule is

$$h_i^{(l+1)} = \sigma \Big(h_i^{(l)} W^{(l)} + \sum_{j: v_j \in \mathcal{N}(v_i)} h_j^{(l)} W^{(l)} \Big).$$

The GIN-PGSO model is defined as

$$h_i^{(l+1)} = \sigma \Big(\big(m_1 \left(D_a \right)_i^{e_1} + m_3 \big) h_i^{(l)} W^{(l)} + \sum_{j: v_i \in \mathcal{N}(v_i)} \epsilon_{ij} h_j^{(l)} W^{(l)} \Big),$$

where ϵ_{ij} are edge weights defined as $\epsilon_{ij} = m_2 (D_a)_i^{e_2} (D_a)_i^{e_3}$.

Why study the spectrum of $\gamma(\textbf{A},\mathcal{S})$?

Why study the spectrum of $\gamma(A, S)$?

▶ In the field of Spectral Graph Theory it has been established that the study of spectral properties of the GSOs can yield a great amount of insight.

Why study the spectrum of $\gamma(A, S)$?

- ▶ In the field of Spectral Graph Theory it has been established that the study of spectral properties of the GSOs can yield a great amount of insight.
- ► GNNs can be motivated as performing spectral filtering operations at each message passing operation on the input graph.

Why study the spectrum of $\gamma(A, S)$?

- ▶ In the field of Spectral Graph Theory it has been established that the study of spectral properties of the GSOs can yield a great amount of insight.
- GNNs can be motivated as performing spectral filtering operations at each message passing operation on the input graph.

So, let's begin:

Theorem

 $\gamma(A,\mathcal{S})$ has real eigenvalues and a set of real eigenvectors independent of the parameters chosen in $\mathcal{S}.$

Spectral Analysis: Bounds on the spectral support

Theorem

Let $C_i = m_1(d_i+a)^{e_1} + m_2(d_i+a)^{e_2+e_3}a + m_3$ and $R_i = |m_2|(d_i+a)^{e_2+e_3}d_i$, where d_i denotes the degree of node v_i . Furthermore, we denote eigenvalues of $\gamma(\mathcal{A},\mathcal{S})$ by $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$. Then, for all $j \in \{1,\ldots,n\}$,

$$\lambda_j \in \left[\min_{i \in \{1, \dots, n\}} \left(C_i - R_i \right), \max_{i \in \{1, \dots, n\}} \left(C_i + R_i \right) \right]. \tag{3}$$

Spectral Analysis: Bounds on the spectral support

Theorem

Let $C_i = m_1(d_i + a)^{e_1} + m_2(d_i + a)^{e_2 + e_3} a + m_3$ and $R_i = |m_2|(d_i + a)^{e_2 + e_3} d_i$, where d_i denotes the degree of node v_i . Furthermore, we denote eigenvalues of $\gamma(\mathcal{A}, \mathcal{S})$ by $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$. Then, for all $j \in \{1, \ldots, n\}$,

$$\lambda_j \in \left[\min_{i \in \{1, \dots, n\}} \left(C_i - R_i \right), \max_{i \in \{1, \dots, n\}} \left(C_i + R_i \right) \right]. \tag{3}$$

▶ For the parametrisation of $\gamma(A, S)$ corresponding to the adjacency matrix, we obtain $C_i = 0$ and $R_i = d_i$. R_i is clearly maximised by the maximum degree and therefore, from (3) the spectral support of A is equal to $[-d_{\text{max}}, d_{\text{max}}]$, as required.

Spectral Analysis: Bounds on the spectral support

Theorem

Let $C_i = m_1(d_i+a)^{e_1} + m_2(d_i+a)^{e_2+e_3}a + m_3$ and $R_i = |m_2|(d_i+a)^{e_2+e_3}d_i$, where d_i denotes the degree of node v_i . Furthermore, we denote eigenvalues of $\gamma(\mathcal{A},\mathcal{S})$ by $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$. Then, for all $j \in \{1,\ldots,n\}$,

$$\lambda_j \in \left[\min_{i \in \{1, \dots, n\}} \left(C_i - R_i \right), \max_{i \in \{1, \dots, n\}} \left(C_i + R_i \right) \right]. \tag{3}$$

- For the parametrisation of $\gamma(A, S)$ corresponding to the adjacency matrix, we obtain $C_i = 0$ and $R_i = d_i$. R_i is clearly maximised by the maximum degree and therefore, from (3) the spectral support of A is equal to $[-d_{\text{max}}, d_{\text{max}}]$, as required.
- For the message passing operator in the GCN we obtain $C_i = 1/(d_i+1)$ and $R_i = d_i/(d_i+1)$. Therefore, from (3) the spectral support of the Kipf and Welling operator is restricted to lie within $[-(d_{\max}-1)/(d_{\max}+1),1]$, the lower bound of this interval tends to -1 as $d_{\max} \to \infty$.

Spectral Analysis: empirical observation

Spectral Analysis: empirical observation

Surprisingly, the spectral support of the PGSO remains centered at 0 throughout training. It is nice to observe that this desirable property of the "renormalised" operator used by Kipf and Welling (2017) is preserved throughout training.

Spectral Analysis: empirical observation

- Surprisingly, the spectral support of the PGSO remains centered at 0 throughout training. It is nice to observe that this desirable property of the "renormalised" operator used by Kipf and Welling (2017) is preserved throughout training.
- We observe the parameters of the PGSO to be smoothly varying throughout training.

Experiments

Sparsity Interpretation of $\gamma(A, S)$: SBM use-case

Motivation: In different tasks, we usually have either dense or sparse graphs. How does $\gamma(A, S)$ behave when applied to graphs with varying sparsity levels?

Sparsity Interpretation of $\gamma(A, S)$: SBM use-case

Motivation: In different tasks, we usually have either dense or sparse graphs. How does $\gamma(A, S)$ behave when applied to graphs with varying sparsity levels?

Setup:

- \triangleright 15 decreasing p, q combinations.
- Fixed detectability level.
- $\forall (p,q)$ 25 sampled graphs with 3 200-node communities.
- Node classification (Dwivedi et al., 2020).
- ► 3-layer GCN-PGSO model.

SBM adjacency matrices.

Sparsity Interpretation of $\gamma(A, S)$: SBM use-case

Motivation: In different tasks, we usually have either dense or sparse graphs. How does $\gamma(A, S)$ behave when applied to graphs with varying sparsity levels?

Setup:

- ▶ 15 decreasing p, q combinations.
- Fixed detectability level.
- $\forall (p,q)$ 25 sampled graphs with 3 200-node communities.
- Node classification (Dwivedi et al., 2020).
- 3-layer GCN-PGSO model.

SBM adjacency matrices.

Remarks:

- The additive parameter a increases with the increasing sparsity.
- The remaining parameters remain close to constant.
- confirms the positive impact of GSO regularisation (Dall'Amico et al., 2020; Qin and Rohe, 2013)

Sensitivity analysis of $\gamma(A, S)$ to initialisations

Question

How sensitive is the model performance to the PGSO parameter initialisation?

Sensitivity analysis of $\gamma(A, S)$ to initialisations

Question

How sensitive is the model performance to the PGSO parameter initialisation?

- ▶ Parameters $(m_1, m_3, e_1, e_2, e_3)$ monotonically increase until convergence.
- Parameters (m_2, a) show a "mirroring" behaviour (Laplacians vs others).
- ► The accuracy is **not very sensitive** to the initialisations.

- Evaluation in 8 node classification and graph classification tasks.
- ▶ Model design with 4 architectures: GCN, SGC, GAT and GIN models.
- 3 GSO variants for each model: Standard, PGSO and mPGSO.

- Evaluation in 8 node classification and graph classification tasks.
- ▶ Model design with 4 architectures: GCN, SGC, GAT and GIN models.
- ▶ 3 GSO variants for each model: Standard, PGSO and mPGSO.

► For all datasets and architectures, the incorporation of the PGSO and/or the mPGSO enhances the model performance.

- Evaluation in 8 node classification and graph classification tasks.
- Model design with 4 architectures: GCN, SGC, GAT and GIN models.
- 3 GSO variants for each model: Standard, PGSO and mPGSO.

- ► For all datasets and architectures, the incorporation of the PGSO and/or the mPGSO enhances the model performance.
- ► The impact of PGSO is **higher** in graph classification tasks.

- Evaluation in 8 node classification and graph classification tasks.
- Model design with 4 architectures: GCN, SGC, GAT and GIN models.
- 3 GSO variants for each model: Standard, PGSO and mPGSO.

- For all datasets and architectures, the incorporation of the PGSO and/or the mPGSO enhances the model performance.
- ▶ The impact of PGSO is **higher** in graph classification tasks.
- ► There is **no clear** winner between PGSO and mPGSO.

We conclude:

We proposed a parametrised graph shift operator (PGSO) that encodes graph structures.

We conclude:

- We proposed a parametrised graph shift operator (PGSO) that encodes graph structures.
- We showed that the PGSO has real eigenvalues and a set of real eigenvectors. In addition, we proved spectral bounds on the PGSO.

We conclude:

- We proposed a parametrised graph shift operator (PGSO) that encodes graph structures.
- We showed that the PGSO has real eigenvalues and a set of real eigenvectors. In addition, we proved spectral bounds on the PGSO.
- We demonstrated that the PGSO can be included in the GNN model training and improves their performance on real world datasets.

We conclude:

- We proposed a parametrised graph shift operator (PGSO) that encodes graph structures.
- We showed that the PGSO has real eigenvalues and a set of real eigenvectors. In addition, we proved spectral bounds on the PGSO.
- We demonstrated that the PGSO can be included in the GNN model training and improves their performance on real world datasets.
- A study on stochastic blockmodel graphs demonstrated the ability of the PGSO to automatically adapt to networks with varying sparsity.

ArXiv: https://arxiv.org/abs/2101.10050
Code: https://github.com/gdasoulas/PGSO

The two research questions

In answer to our two research questions:

The two research questions

In answer to our two research questions:

Our experimental results have shown that the optimal representation of graph structures is task- and data-dependent.

The two research questions

In answer to our two research questions:

- Our experimental results have shown that the optimal representation of graph structures is task- and data-dependent.
- ▶ We have furthermore found that PGSO parameters can be incorporated in the training of GNNs and leads to numerically stable learning and message passing operators.

Thank you for your attention!

References

- L. Dall'Amico, R. Couillet & N. Tremblay, "Optimal Laplacian regularization for sparse spectral community detection." ICASSP, 2020.
- S. Butler & F. Chung, "Spectral graph theory," In: L. Hogben (ed) Handbook of linear algebra (2nd edition), Boca Raton, FL: CRC Press, pp. 47/1—47/14, 2017.
- D. Cvetkovic, R. Rowlinson & S. Simic, Eigenspaces of graphs, Cambridge, UK: Cambridge University Press, 1997.
- J. A. Deri & J. M. F. Moura, "Spectral projector-based graph Fourier transforms," IEEE Journal of Selected Topics in Signal Processing, vol. 11, pp. 785–795, 2017.
- V.P. Dwivedi, C.K. Joshi, T. Laurent, Y. Bengio, X. Bresson, "Benchmarking Graph Neural Networks," arXiv:2003.00982, 2020.
- Thomas N. Kipf & M. Welling. "Semi-supervised classification with graph convolutional networks" ICLR, 2017.
- J. Lutzeyer, Network Representation Matrices and their Eigenproperties: A Comparative Study, PhD thesis: Imperial College London, 2020.
- A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura & P. Vandergheynst, "Graph signal processing: Overview, challenges, and applications," *Proceedings of the IEEE*, vol. 106, pp. 808–828, 2018.

Т.	Qin & K	. Rohe,	"Regulari:	zed Spectral	Cluster	ing	under the	Degree-	Correct	ed Stochastic	Blockmodel,"	

Advances in neural information processing systems (NIPS), pp. 3120-3128, 2013.

A. Sandryhaila & J. M. F. Moura "Discrete signal processing on graphs," IEEE Transactions on Signal Processing,

vol. 61, pp. 1644-1656, 2013.

K. Xu, W. Hu, J. Leskovec & S. Jegelka, "How powerful are graph neural networks?," ICLR, 2019.