SARDAR VALLABHBHAI PATEL INSTITUTE OF TECHNOLOGY VASAD

B. E. Second Semester (All Branch)

Subject: Vector Calculus and Linear Algebra (2110015)

Year 2016-2017 Tutorial: 9

Find $grad(\phi)$, if $\phi = \log(x^2 + y^2 + z^2)$ at the point (1,0,-2) 1

- 2 Find divergence and curl of V = xyz(x, y, z).
- Show that $F = 2xyzi + (x^2z + 2y)j + x^2yk$ is irrotational and find a scalar function f 3 such that F = gradf.
- Find the directional derivative of the divergence of $F(x, y, z) = xy i + xy^2 j + z^2 k$ at the 4 point (2,1,2) in the direction of the outer normal to the sphere $x^2 + y^2 + z^2 = 9$.
- Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 z = 3$ at the 5 point (2,-1,2).
- Find the work done when a force $F = (x^2 y^2 + x)i (2xy + y)j$ moves a particle in the xy-plane from (0, 0) to (1, 1) along the parabola $x^2 = y$?
- 7 Evaluate $\int F \cdot dr$ for $F = 3x^2i + (2xz-y)j + z$ k along the paths.

 - a. The curve x=2t², y=t, z=4t²-t from t=0 to t=1.
 b. Along the curve x²=4y, 3x³=8z from x=0 to x=2.
- Applying Green's theorem, evaluate $\oint_C [(y \sin x)dx + \cos xdy]$, where C is the 8 plane triangle enclosed by the lines $y=0, x=\frac{\pi}{2}$ and $y=\frac{2x}{\pi}$.
- 9 Verify Stoke's Theorem for the hemisphere $S = x^2 + y^2 + z^2 = 9, z \ge 0$ its bounding circle $C = x^2 + y^2 = 9$, z = 0 and the field $F = y\hat{i} - x\hat{j}$.
- State Gauss Divergence theorem. Evaluate $\iint F \cdot n \, dS$ where $F = 4xzi y^2j + yzk$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.