Activity 19: Hinge Loss and Support Vector Machines

Example: Handwritten digit recognition

$$oldsymbol{x} = ext{vec} oldsymbol{\left(oldsymbol{q}
ight)} \qquad \widehat{y} pprox oldsymbol{x}^T oldsymbol{w}$$

Wikipedia MNIST dataset performance, April 2020

Type	Classifier	Error rate (%)
Linear classifier	Pairwise linear classifier	7.6^{8}
Support-vector machine (SVM)	Virtual SVM , deg-9 poly, 2-pixel jittered	$0.56^{[25]}$
Convolutional neural network	Committee of 20 CNNS with Squeeze-and-Excitation [29]	$0.17^{[30]}$

Hinge Loss and Support Vector Machines

Classifying new data: features $\widehat{y} = \operatorname{sign}(\boldsymbol{x}^T \boldsymbol{w})$ weights

Training a classifier:

$$\min_{oldsymbol{w}} \ell(oldsymbol{w}) + \lambda r(oldsymbol{w})$$

Loss function

$\underline{\ell(oldsymbol{w})}$:

- squared error $||\boldsymbol{X}\boldsymbol{w} \boldsymbol{y}||_2^2$
- ideal (0-1) loss $\sum_{i} \frac{1}{2} |y_i \operatorname{sign}(\boldsymbol{x}_i^T \boldsymbol{w})|$
- hinge loss $\sum_{i} (1 y_i \boldsymbol{x}_i^T \boldsymbol{w})_+$
- logistic loss $\log(1 + e^{-y_i \boldsymbol{x}_i^T \boldsymbol{w}})$

Support Vector Machines

positive when correct classification,

negative when wrong

 $y_i oldsymbol{x}_i^T oldsymbol{w}$

maximize margin

s.t. correct classification

minimize
$$||\tilde{\boldsymbol{w}}||^2$$

s.t. $y_i \boldsymbol{x}_i^T \boldsymbol{w} \ge 1$ for $i = 1, ...$

$$\downarrow$$

$$\min_{\boldsymbol{w}} \sum_i (1 - y_i \boldsymbol{x}_i^T \boldsymbol{w})_+ + \lambda ||\tilde{\boldsymbol{w}}||_2^2$$