757

Quick Reference Handbook

Quick Action Index

Aborted Engine Start [PW] 7.1
Aborted Engine Start [RR]7.2
Airspeed Unreliable 10.1
APU FIRE 8.1
CABIN ALTITUDE 2.1
Dual Engine Failure [PW]7.3
Dual Engine Failure [RR]7.6
ENGINE FIRE 8.2
Engine Limit or Surge or Stall 7.10
Engine Severe Damage or Separation 8.2
Engine Tailpipe Fire8.6
Evacuation Back Cover.2
Rapid Depressurization 2.1
Smoke, Fire or Fumes8.8

Intentionally Blank

EICAS Messages	Chapter EICAS
Index	Section Index
A	
ACCESS DOORS	
AFT CABIN TEMP	2.6
AFT CARGO DOOR	
AFT CARGO FIRE	
AFT FUEL X-FEED	12.10
AIR/GND SYS	
ALT CALLOUTS	15.1
ALT DISAGREE	
ALTITUDE ALERT	
ANTISKID	14.4
APU BLEED VAL	
APU BTL	
APU FAULT	
APU FIRE	
APU FUEL VAL	
APU GEN OFF	6.5
ATC FAULT	
ATT DISAGREE	
AUTO SPEEDBRAKE	
AUTOBRAKES	
AUTOPILOT DISC	
AUTOPILOT	
AUTOTHROT DISC	4.1
В	
BATTERY OFF	6.6

DO NOT USE FOR FLIGHT

BLEED ISLN VAL	
BRAKE SOURCE	14.8
С	
C FLT CONT HYD	9.4
C HYD 1 OVHT	13.1
C HYD 2 OVHT	13.1
C HYD ELEC 1	13.2
C HYD ELEC 2	13.2
C HYD QTY	13.2
C HYD RSVR PRESS	13.3
C HYD SYS PRESS	.13.14
C HYD SYS PRESS	.13.22
C HYD SYS PRESS	13.4
C IRS DC FAIL	11.4
C IRS FAULT	11.5
C IRS ON DC	11.5
CABIN ALTITUDE	2.1
CABIN AUTO INOP	2.4
CAPT PITOT	3.1
CARGO BTL 1	8.12
CARGO BTL 2	8.12
CARGO DOORS	1.3
CTR L FUEL PUMP	.12.10
CTR R FUEL PUMP	.12.10
E	
E/E ACCESS DOOR	1.1
EICAS CONT PNL	15.2

EICAS DISPLAY	15.3
EMER DOORS	1.13
EMER DOORS	1.4
EMER DOORS	1.6
EMER LIGHTS	1.7
ENG BTL 1	8.15
ENG BTL 2	8.15
ENGINE CONTROLS	7.13
EQPT OVHT	2.10
F	
- F/O PITOT	3.2
,	
FLAP LD RELIEF	
FLAPS	15.1
FLT CONT VALS	
FLT DECK TEMP	2.11
FMC MESSAGE	11.3
FUEL CONFIG	
FWD ACCESS DOOR	1.1
FWD CABIN TEMP	2.6
FWD CARGO DOOR	1.3
FWD CARGO FIRE	8.13
FWD EQPT SMOKE	8.19
FWD FUEL X-FEED	12.10
G	
GEAR DISAGREE	14.10
GEAR DOORS	14.14

DO NOT USE FOR FLIGHT

GEAR NOT DOWN	15.1
GND PROX SYS	15.3
GPS	11.4
I	
IAS DISAGREE	10.5
INSTR SWITCH	10.5
L	
L AC BUS OFF	6.1
L AFT EMER DOOR	1.6
L AFT ENT DOOR	1.8
L AFT FUEL PUMP	12.10
L AOA PROBE	3.1
L AUX PITOT	3.1
L BLD DUCT LEAK	2.2
L BUS ISOLATED	6.6
L CTR ENT DOOR	1.8
L EEC OFF	7.13
L ELEC HYD OVHT	13.1
L EMER DOOR	1.4
L ENG ANTI-ICE	3.2
L ENG BLEED OFF	2.7
L ENG BLEED VAL	2.8
L ENG EEC	7.14
L ENG FUEL FILT	7.18
L ENG FUEL VAL	7.19
L ENG HI STAGE	2.9
L ENG HYD OVHT	13.1

DO NOT USE FOR FLIGHT

L ENG LIM PROT	7.35
L ENG LIMITER	
L ENG OIL PRESS	7.36
L ENG OIL PRESS	7.38
L ENG OVHT	8.16
L ENG OVHT	
L ENG SHUTDOWN	7.40
L ENG STARTER	
L ENG STATOR	7.42
L ENGINE FIRE	8.2
L ENTRY DOORS	
L FLT CONT HYD	9.4
L FMC FAIL	11.2
L FUEL SPAR VAL	7.44
L FUEL SYS PRESS	12.12
L FWD EMER DOOR	1.6
L FWD ENT DOOR	1.8
L FWD FUEL PUMP	12.10
L FWD WINDOW	3.4
L GEN DRIVE	6.7
L GEN OFF	6.8
L GPS	11.4
L HYD ELEC PUMP	
L HYD ENG PUMP	13.2
L HYD QTY	13.2
L HYD RSVR PRESS	13.3
L HYD SYS PRESS	13.14
L HYD SYS PRESS	13.18

DO NOT USE FOR FLIGHT

L HYD SYS PRESS	13.6
L IRS DC FAIL	11.4
L IRS FAULT	11.5
L IRS ON DC	11.5
L OIL FILTER	7.46
L OIL FILTER	7.47
L PACK OFF	2.12
L PACK TEMP	2.16
L RECIR FAN	2.17
L REV ISLN VAL	7.47
L SIDE WINDOW	3.4
L STARTER CUTOUT	7.52
L UTIL BUS OFF	6.15
L WING ANTI-ICE	3.6
L WING SLIDE	1.13
L YAW DAMPER	9.23
LE SLAT ASYM	9.6
LE SLAT DISAGREE	9.10
LOW FUEL	12.14
M	
MACH/SPEED TRIM	9.12
MAIN BAT DISCH	6.9
N	
NOSE A/G SYS	14.15
0	
OVERSPEED	15.3

P	
PARKING BRAKE	14.15
PARKING BRAKE	15.2
PASS OXYGEN ON	1.9
PROBE HEAT	3.3
R	
R AC BUS OFF	6.1
R AFT EMER DOOR	
R AFT ENT DOOR	
R AFT FUEL PUMP	12.10
R AOA PROBE	3.1
R AUX PITOT	3.1
R BLD DUCT LEAK	2.2
R BUS ISOLATED	6.6
R CTR ENT DOOR	1.8
R EEC OFF	7.13
R ELEC HYD OVHT	13.1
R EMER DOOR	1.4
R ENG ANTI-ICE	3.2
R ENG BLEED OFF	2.7
R ENG BLEED VAL	2.8
R ENG EEC	7.14
R ENG FUEL FILT	7.18
R ENG FUEL VAL	7.19
R ENG HI STAGE	2.9
R ENG HYD OVHT	13.1
R ENG LIM PROT	7.35

DO NOT USE FOR FLIGHT

R	ENG LIMITER	.7.35
R	ENG OIL PRESS	.7.36
R	ENG OIL PRESS	.7.38
R	ENG OVHT	.8.16
R	ENG OVHT	.8.18
R	ENG SHUTDOWN	.7.40
R	ENG STARTER	.7.41
R	ENG STATOR	.7.42
R	ENGINE FIRE	8.2
R	ENTRY DOORS	1.8
R	FLT CONT HYD	9.4
R	FMC FAIL	.11.2
R	FUEL SPAR VAL	.7.44
R	FUEL SYS PRESS	12.12
R	FWD EMER DOOR	1.6
R	FWD ENT DOOR	1.8
R	FWD FUEL PUMP	12.10
R	FWD WINDOW	3.4
R	GEN DRIVE	6.7
	GEN OFF	
R	GPS	.11.4
R	HYD ELEC PUMP	.13.2
R	HYD ENG PUMP	.13.2
R	HYD QTY	.13.2
R	HYD RSVR PRESS	.13.3
	HYD SYS PRESS	
R	HYD SYS PRESS	13.18
R	HYD SYS PRESS	13.22

R IRS DC FAIL	11.4
R IRS FAULT	11.5
R IRS ON DC	11.5
R OIL FILTER	7.46
R OIL FILTER	7.47
R PACK OFF	2.12
R PACK TEMP	2.16
R RECIR FAN	2.17
R REV ISLN VAL	7.47
R SIDE WINDOW	3.4
R STARTER CUTOUT	
R UTIL BUS OFF	6.15
R WING ANTI-ICE	3.6
R WING SLIDE	1.13
R YAW DAMPER	9.23
RAT UNLOCKED	13.24
RUDDER RATIO	9.13
S	
SPEEDBRAKES EXT	9.13
SPOILERS	15.2
SPOILERS	9.14
STAB TRIM	9.14
STABILIZER	15.2
STANDBY BUS OFF	6.10
Т	
TAT PROBE	3.3
TCAS OFF	15.4

EICAS.Index.10 **DO NOT USE FOR FLIGHT**

TCAS	15.3
TE FLAP ASYM	9.15
TE FLAP DISAGREE	9.18
TERR OVRD	15.4
TERR POS	15.4
TRIM AIR	2.17
U	
UNABLE RNP	11.6
UNSCHD STAB TRIM	9.22
w	
WHEEL WELL FIRE	
WINDOW HEAT	3.4
WINDSHEAR SYS	15.5

Unannunciated	Chapter Unann
Index	Section Index
Aborted Engine Start [PW]	7.1
Aborted Engine Start [RR]	7.2
Airspeed Unreliable	10.1
All Flaps and Slats Up Landing	9.1
Ditching Preparation	0.1
Dual Engine Failure [PW]	7.3
Dual Engine Failure [RR]	7.6
Engine Failure or Shutdown	7.16
Engine Fuel Leak	12.1
Engine Indication Fluctuations	7.20
Engine In-flight Start [PW]	7.22
Engine In-flight Start [RR]	7.28
Engine Limit or Surge or Stall	7.10
Engine Oil Temperature [PW]	7.39
Engine Oil Temperature [RR]	7.40
Engine Severe Damage or Separa	ition8.2
Engine Tailpipe Fire	8.6
Engine Vibration	7.43
Evacuation	Back Cover.2
Gear Lever Will Not Move Up	14.14
Jammed or Restricted Flight Controls	s9.5
Low Fuel Temperature	12.16
Radio Transmit Continuous (Stuck Microphone Switch)	5.1
Rapid Depressurization	
Smoke or Fumes Removal	

Unann.Index.2

DO NOT USE FOR FLIGHT

Smoke, Fire or Fumes	8.8
Tail Strike	0.3
Volcanic Ash	7.54
Window Damage	1.10
Window Open	1.12

Alphabetical	Chapter Alpha
Index	Section Index
A	
Aborted Engine Start [PW]	7.1
Aborted Engine Start [RR]	7.2
AC BUS OFF	6.1
ACCESS DOOR(S)	1.1
ACCESS DOORS	1.1
AFT CABIN TEMP	2.6
AFT CARGO DOOR	1.3
AFT CARGO FIRE	8.13
AFT FUEL X-FEED	12.10
AIR/GND SYS	14.1
AIR/GROUND SYSTEM	14.1
Airspeed Unreliable	10.1
All Flaps and Slats Up Landing	9.1
ALT CALLOUTS	15.1
ALT DISAGREE	
ALTITUDE ALERT	15.1
ALTITUDE CALLOUTS	15.1
ALTITUDE DISAGREE	10.4
ANTISKID	14.4
AOA PROBE	3.1
APU BLEED VAL	2.2
APU BLEED VALVE	2.2
APU BOTTLE	8.11
APU BTL	8.11
APU FAULT	7.12

Alpha. Index. 2

DO NOT USE FOR FLIGHT

APU FIRE	8.1
APU FUEL VAL	7.13
APU FUEL VALVE	7.13
APU GEN OFF	6.5
APU GENERATOR OFF	6.5
ATC FAULT	11.1
ATT DISAGREE	10.4
ATTITUDE DISAGREE	10.4
AUTO SPEEDBRAKE	9.3
AUTOBRAKES	14.6
AUTOMATIC UNLOCK	1.2
AUTOPILOT	4.1
AUTOPILOT DISC	
AUTOPILOT DISCONNECT	4.1
AUTOTHROT DISC	4.1
AUTOTHROTTLE DISCONNECT	4.1
AUXILIARY PITOT	3.1
В	
BATTERY OFF	6.6
BLEED DUCT LEAK	2.2
BLEED ISLN VAL	2.3
BLEED ISOLATION VALVE	2.3
BRAKE SOURCE	14.8
BUS ISOLATED	6.6
С	
C FLT CONT HYD	9.4
C HYD 1 OVHT	13.1

Alpha. Index. 3

DO NOT USE FOR FLIGHT

C HYD 2 OVHT	13.1
C HYD ELEC 1	13.2
C HYD ELEC 2	13.2
C HYD QTY	13.2
C HYD RSVR PRESS	13.3
C HYD SYS PRESS	13.14
C HYD SYS PRESS	13.22
C HYD SYS PRESS	13.4
C IRS DC FAIL	11.4
C IRS FAULT	11.5
C IRS ON DC	11.5
CABIN ALTITUDE	2.1
CABIN AUTO INOP	2.4
CABIN AUTOMATIC INOPERATIVE	2.4
CABIN TEMPERATURE	2.6
CAPT PITOT	3.1
CAPTAIN PITOT	3.1
CARGO BOTTLE	8.12
CARGO BTL 1	8.12
CARGO BTL 2	
CARGO DOOR(S)	1.3
CARGO DOORS	1.3
CARGO FIRE	
CONFIG FLAPS	
CONFIG GEAR NOT DOWN	15.1
CONFIG PARKING BRAKE	
CONFIG SPOILERS	15.2
CONFIG STABILIZER	15.2

Alpha.Index.4

DO NOT USE FOR FLIGHT

CTR L FUEL PUMPCTR R FUEL PUMP	
D	
Ditching Preparation	0.1
Dual Engine Failure [PW]	
Dual Engine Failure [RR]	
E	
E/E ACCESS DOOR	1.1
EEC OFF	
EICAS CONT PNL	
EICAS CONTROL PANEL	
EICAS DISPLAY	
ELECTRIC HYDRAULIC OVERHEAT	
EMER DOORS	1.13
EMER DOORS	1.4
EMER DOORS	1.6
EMER LIGHTS	1.7
EMERGENCY DOOR(S)	1.4
EMERGENCY DOOR(S)	1.6
EMERGENCY LIGHTS	1.7
ENG BTL 1	8.15
ENG BTL 2	8.15
ENGINE ANTI-ICE	3.2
ENGINE BLEED OFF	2.7
ENGINE BLEED VALVE	2.8
ENGINE BOTTLE	8.15
ENGINE CONTROLS	

Alpha. Index. 5

DO NOT USE FOR FLIGHT

ENGINE CONTROLS	7.13
ENGINE EEC	7.14
Engine Failure or Shutdown	7.16
ENGINE FIRE	8.2
ENGINE FUEL FILTER	7.18
Engine Fuel Leak	12.1
ENGINE FUEL VALVE	7.19
ENGINE HIGH STAGE	2.9
ENGINE HYDRAULIC OVERHEAT	13.1
Engine Indication Fluctuations	7.20
Engine In-flight Start [PW]	7.22
Engine In-flight Start [RR]	7.28
Engine Limit or Surge or Stall	7.10
ENGINE LIMIT PROTECTION	
ENGINE LIMITER	7.35
ENGINE OIL PRESSURE [PW]	7.36
ENGINE OIL PRESSURE [RR]	7.38
Engine Oil Temperature [PW]	7.39
Engine Oil Temperature [RR]	7.40
ENGINE OVERHEAT [PW]	8.16
ENGINE OVERHEAT [RR]	8.18
Engine Severe Damage or Separation	8.2
ENGINE SHUTDOWN	7.40
ENGINE STARTER	7.41
ENGINE STATOR	7.42
Engine Tailpipe Fire	8.6
Engine Vibration	7.43
ENTRY DOOR(S)	1.8

Alpha.Index.6

DO NOT USE FOR FLIGHT

EQPT OVHT	2.10
EQUIPMENT OVERHEAT	2.10
EQUIPMENT SMOKE	8.19
Evacuation	Back Cover.2
F	
F/O PITOT	3.2
FIRE/OVERHEAT SYSTEM	8.19
FIRE/OVHT SYS	8.19
FIRST/OFFICER PITOT	
FLAP LD RELIEF	9.4
FLAP LOAD RELIEF	9.4
FLAPS	15.1
FLIGHT CONTROL HYDRAULIC	9.4
FLIGHT CONTROL VALVES	9.4
FLIGHT DECK TEMPERATURE	2.11
FLT CONT VALS	9.4
FLT DECK TEMP	2.11
FMC FAIL	11.2
FMC MESSAGE	11.3
FUEL CONFIG	12.8
FUEL CONFIGURATION	12.8
FUEL CROSSFEED	12.10
FUEL PUMP	12.10
FUEL SPAR VALVE	7.44
FUEL SYSTEM PRESSURE	12.12
FWD ACCESS DOOR	1.1
FWD CABIN TEMP	2.6

Alpha. Index. 7

DO NOT USE FOR FLIGHT

FWD CARGO DOOR	1.3
FWD CARGO FIRE	8.13
FWD EQPT SMOKE	8.19
FWD FUEL X-FEED	12.10
G	
GEAR DISAGREE	14.10
GEAR DISAGREE	14.10
GEAR DOORS	14.14
Gear Lever Will Not Move Up	14.14
GEAR NOT DOWN	15.1
GENERATOR DRIVE	6.7
GENERATOR OFF	6.8
GND PROX SYS	15.3
GPS	11.4
GROUND PROXIMITY SYSTEM	15.3
н	
HYDRAULIC (1 or 2) OVERHEAT	13.1
HYDRAULIC ELECTRIC (1 or 2)	13.2
HYDRAULIC ELECTRIC PUMP	13.2
HYDRAULIC ENGINE PUMP	13.2
HYDRAULIC QUANTITY	13.2
HYDRAULIC RESERVOIR PRESSURE	13.3
HYDRAULIC SYSTEM PRESSURE (C only)	13.4
HYDRAULIC SYSTEM PRESSURE (L and C)	13.14
HYDRAULIC SYSTEM PRESSURE (L and R)	13.18
HYDRAULIC SYSTEM PRESSURE (L only)	
HYDRAULIC SYSTEM PRESSURE (R and C)	13.22

Alpha.Index.8

DO NOT USE FOR FLIGHT

HYDRAULIC SYSTEM PRESSURE (R only) 13.12
I
IAS DISAGREE10.5
INSTR SWITCH10.5
INSTRUMENT SWITCH10.5
IRS DC FAIL11.4
IRS FAULT11.5
IRS ON DC11.5
J
Jammed or Restricted Flight Controls 9.5
L
L AC BUS OFF 6.1
L AFT EMER DOOR
L AFT ENT DOOR
L AFT FUEL PUMP
L AOA PROBE 3.1
L AUX PITOT 3.1
L BLD DUCT LEAK 2.2
L BUS ISOLATED 6.6
L CTR ENT DOOR 1.8
L EEC OFF
L ELEC HYD OVHT13.1
L EMER DOOR
L ENG ANTI-ICE 3.2
L ENG BLEED OFF
L ENG BLEED VAL
L ENG EEC7.14

Alpha.Index.9

DO NOT USE FOR FLIGHT

L ENG FUEL FILT	7.18
L ENG FUEL VAL	7.19
L ENG HI STAGE	2.9
L ENG HYD OVHT	13.1
L ENG LIM PROT	7.35
L ENG LIMITER	7.35
L ENG OIL PRESS	7.36
L ENG OIL PRESS	7.38
L ENG OVHT	8.16
L ENG OVHT	8.18
L ENG SHUTDOWN	7.40
L ENG STARTER	7.41
L ENG STATOR	7.42
L ENGINE FIRE	8.2
L ENTRY DOORS	1.8
L FLT CONT HYD	9.4
L FMC FAIL	11.2
L FUEL SPAR VAL	7.44
L FUEL SYS PRESS	12.12
L FWD EMER DOOR	1.6
L FWD ENT DOOR	1.8
L FWD FUEL PUMP	12.10
L FWD WINDOW	3.4
L GEN DRIVE	6.7
L GEN OFF	6.8
L GPS	
L HYD ELEC PUMP	13.2
L HYD ENG PUMP	

Alpha.Index.10 **DO NOT USE FOR FLIGHT**

L HYD QTY	13.2
L HYD RSVR PRESS	13.3
L HYD SYS PRESS	13.14
L HYD SYS PRESS	13.18
L HYD SYS PRESS	13.6
L IRS DC FAIL	11.4
L IRS FAULT	11.5
L IRS ON DC	11.5
L OIL FILTER	7.46
L OIL FILTER	7.47
L PACK OFF	2.12
L PACK TEMP	2.16
L RECIR FAN	2.17
L REV ISLN VAL	7.47
L SIDE WINDOW	3.4
L STARTER CUTOUT	
L UTIL BUS OFF	6.15
L WING ANTI-ICE	3.6
L WING SLIDE	1.13
L YAW DAMPER	9.23
LE SLAT ASYM	9.6
LE SLAT DISAGREE	9.10
LEADING EDGE SLAT ASYMMETRY	9.6
LEADING EDGE SLAT DISAGREE	9.10
LOCK FAIL	1.9
LOW FUEL	12.14
Low Fuel Temperature	12.16

M MACH/SPEED TRIM MAIN BAT DISCH MAIN BATTERY DISCHARGE	6.9
N NOSE A/G SYS	14.15
NOSE AJG SYS NOSE AIR/GROUND SYSTEM	
0	
OIL FILTER [PW]	
OIL FILTER [RR]	
OVERSPEED	15.3
P	
PACK OFF	2.12
PACK TEMPERATURE	2.16
PARKING BRAKE	14.15
PARKING BRAKE	15.2
PARKING BRAKE [ADVISORY]	
PASS OXYGEN ON	1.9
PASSENGER OXYGEN ON	1.9
PROBE HEAT	3.3
R	
R AC BUS OFF	6.1
R AFT EMER DOOR	1.6
R AFT ENT DOOR	1.8
R AFT FUEL PUMP	12.10
R AOA PROBE	3.1

Alpha.Index.12 **DO NOT USE FOR FLIGHT**

R	AUX PITOT	3.1
R	BLD DUCT LEAK	2.2
	BUS ISOLATED	
R	CTR ENT DOOR	1.8
R	EEC OFF	7.13
R	ELEC HYD OVHT	13.1
R	EMER DOOR	1.4
R	ENG ANTI-ICE	3.2
R	ENG BLEED OFF	2.7
R	ENG BLEED VAL	2.8
R	ENG EEC	7.14
R	ENG FUEL FILT	7.18
R	ENG FUEL VAL	7.19
R	ENG HI STAGE	2.9
R	ENG HYD OVHT	13.1
R	ENG LIM PROT	7.35
R	ENG LIMITER	7.35
R	ENG OIL PRESS	7.36
R	ENG OIL PRESS	7.38
R	ENG OVHT	8.16
R	ENG OVHT	8.18
R	ENG SHUTDOWN	7.40
R	ENG STARTER	7.41
R	ENG STATOR	7.42
R	ENGINE FIRE	8.2
	ENTRY DOORS	
R	FLT CONT HYD	9.4
R	FMC FAIL	11.2

R FUEL SPAR VAL	7.44
R FUEL SYS PRESS	12.12
R FWD EMER DOOR	1.6
R FWD ENT DOOR	1.8
R FWD FUEL PUMP	12.10
R FWD WINDOW	3.4
R GEN DRIVE	6.7
R GEN OFF	6.8
R GPS	11.4
R HYD ELEC PUMP	13.2
R HYD ENG PUMP	13.2
R HYD QTY	13.2
R HYD RSVR PRESS	13.3
R HYD SYS PRESS	13.12
R HYD SYS PRESS	13.18
R HYD SYS PRESS	13.22
R IRS DC FAIL	11.4
R IRS FAULT	11.5
R IRS ON DC	11.5
R OIL FILTER	7.46
R OIL FILTER	7.47
R PACK OFF	2.12
R PACK TEMP	2.16
R RECIR FAN	
R REV ISLN VAL	7.47
R SIDE WINDOW	3.4
R STARTER CUTOUT	7.52
R UTIL BUS OFF	6.15

Alpha.Index.14 **DO NOT USE FOR FLIGHT**

R WING ANTI-ICE	1.13
R YAW DAMPERRadio Transmit Continuous (Stuck Microphone Switch)	
Microphone Switch) Rapid Depressurization	2.1
RAT UNLOCKED	
RECIRCULATION FAN	
REVERSER ISOLATION VALVE	
REVERSER UNLOCKED	7.48
RUDDER RATIO	9.13
S	
Smoke or Fumes Removal	8 2N
Smoke, Fire or Fumes	
SPEEDBRAKES EXT	
SPEEDBRAKES EXTENDED	
SPOILERS	
SPOILERS	
SPOILERS [Advisory]	
STAB TRIM	
STABILIZER TRIM	
STABILIZER	
STANDBY BUS OFF	
STARTER CUTOUT	
_	
Toll Chilles	2.2
Tail Strike	
TAT PROBE	3.3

TCAS	15.3
TCAS OFF	15.4
TE FLAP ASYM	9.15
TE FLAP DISAGREE	9.18
TERR OVRD	15.4
TERR POS	15.4
TERRAIN OVERRIDE	15.4
TERRAIN POSITION	15.4
TRAILING EDGE FLAP ASYMMETRY	9.15
TRAILING EDGE FLAP DISAGREE	9.18
TRIM AIR	2.17
U	
UNABLE RNP	11 6
UNSCHD STAB TRIM	_
UNSCHEDULED STABILIZER TRIM	_
UTILITY BUS OFF	
UTILITY BUS OFF	0.13
V	
Volcanic Ash	7.54
w	
WHEEL WELL FIRE	8.22
WINDOW (HEAT)	3.4
Window Damage	1.10
Window Open	
WINDSHEAR SYS	
WINDSHEAR SYSTEM	15.5
WING ANTI-ICE	3.6
WING SLIDE	1.13

Alpha.Index.16

DO NOT USE FOR FLIGHT

Y	
YAW DAMPER	9.23

757 Flight Crew Operations Manual

Normal Checklists

Chapter NC

PREFLIGHT		
Oxygen		
Flight instruments Heading, Altimeter		
Parking brakeSet		
Fuel control switches		
BEFORE START		
Flight deck door Closed and locked		
Passenger signs		
Windows Locked		
MCP		
Takeoff speeds		
CDU preflightCompleted		
Trim		
Taxi and takeoff briefing Completed		
Red anti collision light		
BEFORE TAXI		
Anti-ice		
Isolation switchOff		
Recall		
AutobrakeRTO		
Flight controlsChecked		
Ground equipment		

BEFORE	TAKEOFF
Flaps	<u> </u>
AFTER 1	TAKEOFF
Landing gear	UP and OFF
Flaps	UP
DEC	OFNT
	CENT
Pressurization	LDG ALT
Recall	Checked
Autobrake	·····
Landing data	VREF, Minimums
Approach briefing	Completed
APPR	OACH
Altimeters	<u> </u>
ΙΔΝ	DING
•	ARMED
Landing gear	Down

SHUTDOWN						
Hydraulic panel						
Fuel pumps Off						
FlapsUP						
Parking brake						
Fuel control switchesCUTOFF						
Weather radar						
SECURE						
IRSsOFF						
Emergency lights OFF						
Window heat						

Intentionally Blank

Non-Normal Checklists	Chapter NNC	
Miscellaneous	Section 0	
Table of Contents		
Ditching Preparation	0.1	
Tail Strike	0.3	

757 Flight Crew Operations Manual

Table of Contents

Intentionally Blank

Ditching Preparation

Condition: Airplane ditching and evacuation are needed.

- 1 Transmit a distress signal.
- 2 Advise the cabin to prepare for ditching.
- 3 Do **not** use the autobrake.
- 4 Do **not** arm speedbrake lever.
- 5 Use flaps 30 and VREF 30 for landing.
- **6 Checklist Complete Except Deferred Items**

	Deferred Items	
Descent Checklist	t	
Pressurization		. LDG ALT
Recall		Checked
Autobrake		OFF
Landing data	VREF 30, N	1inimums
Approach briefing		Completed
Approach Checkli	st	
Altimeters		· · · · · · · ·

Continued on next page

757 Flight Crew Operations Manual

▼ Ditching Preparation continued **▼**

When below 5,000 feet
GND PROX GEAR OVRD switch OVRD
GND PROX TERR OVRD switch OVRD
PACK control selectors (both) OFF
Cabin altitude MODE SELECT MAN
CABIN ALTITUDE MANUAL control Hold in DESCEND until outflow valve is fully closed
PASS SIGNS selectors
Do not accomplish the following checklists:
PACK OFF
CABIN AUTOMATIC INOPERATIVE
When on final approach
Advise crew of imminent touchdown.
Passenger cabin Secure
Maintain airspeed at VREF 30 to touchdown. Flare airplane to achieve minimum rate of descent at touchdown.
Landing Checklist
Speedbrake
Landing gear UP
Flaps

Tail Strike

Condition: The tail hits the runway.

Caution! Do not pressurize the airplane due to possible structural damage.

- 1 Cabin altitude MODE SELECT MAN
- 2 CABIN ALTITUDE

 MANUAL control Hold in CLIMB until

 outflow valve is fully open
- 3 Level off at the lowest safe altitude.
- 4 Plan to land at the nearest suitable airport.
- 5 Do **not** accomplish the following checklist:

CABIN AUTOMATIC INOPERATIVE

Intentionally Blank

757 Flight Crew Operations Manual

Non-Normal Checklists	Chapter NNC
Airplane Gen., Emer. Equip., Doors, Window	ws Section 1
Table of Contents	
ACCESS DOOR(S)	1.1
AUTOMATIC UNLOCK	1.2
CARGO DOOR(S)	1.3
Ditching Preparation	▶▶0.1
EMERGENCY DOOR(S)	
EMERGENCY DOOR(S)	1.6
EMERGENCY LIGHTS	1.7
ENTRY DOOR(S)	1.8
LOCK FAIL	
PASSENGER OXYGEN ON	1.9
Window Damage	1.10
WINDOW (HEAT)	
Window Open	
WING SLIDE	

Non-Normal Checklists - DO NOT USE FOR FLIGHT
Airplane Gen., Emer. Equip DO NOT USE FOR FLIGHT
Doors, Windows 757 Flight Crew Operations Manual

Table of Contents

Intentionally Blank

۸۲	CESS	1.00E.00 P.	000(6)
DO	OORS	ACCESS D	OOR(S)
Me	essages:	ACCESS DOORS E/E ACCESS DOOR	FWD ACCESS DOOR
Co	ondition:	One or more access and secure.	doors are not closed
1	Choos	e one:	
	♦ Pres	surization is normal	:
		The door is in a saf as cabin pressuriza ■ ■	e configuration as long tion is normal.
	◆ Pres	surization is not nor	mal:
		▶▶Go to step 2	
2	PASS	SIGNS selectors	
3	LDG A	LT selector	Set 9,500 feet
4	Choos	e one:	
	♦Occi	urrence is on takeoff	or initial climb:
		Do not exceed 10,0	000 feet.

♦Occurrence is in climb, cruise, or descent:

Descend to lowest safe altitude **or** 14,000 feet, whichever is higher.

757 Flight Crew Operations Manual

AUTO UNLK

AUTOMATIC UNLOCK

(SB Adds BC001, BC002 with Automatic Unlock checklist for the Enhanced Security Flight Deck Door.)

Condition: The correct emergency access code is

entered.

Objective: To deny unauthorized access to the flight

deck before the door automatically unlocks.

1 FLT DK DOOR lock selector Rotate to DENY and hold for 1 second

CARGO	ļ
DOORS	

CARGO DOOR(S)

Messages: CARGO DOORS

FWD CARGO DOOR AFT CARGO DOOR

Condition: One or more cargo doors are not closed and

secure.

1 Choose one:

◆Pressurization is **normal**:

The door is in a safe configuration as long as cabin pressurization is normal.

Pressurization is not normal:

▶▶Go to step 2

- 2 PASS SIGNS selectors.....ON
- 3 LDG ALT selector Set 9,500 feet
- 4 Choose one:
 - ♦Occurrence is on takeoff or initial climb:

Do **not** exceed 10,000 feet.

Occurrence is in climb, cruise, or descent:

Descend to lowest safe altitude **or** 14,000 feet, whichever is higher.

757 Flight Crew Operations Manual

EMER DOORS

EMERGENCY DOOR(S)

[Option: Aircraft equipped with emergency doors aft of the wing.]

Messages: EMER DOORS

L EMER DOOR R EMER DOOR

Condition: One or more emergency doors are not

closed and secure.

1 Choose one:

◆Pressurization is normal:

The door is in a safe configuration as long as cabin pressurization is normal.

Pressurization is **not normal**:

▶▶Go to step 2

- 3 LDG ALT selector Set 9,500 feet
- 4 Choose one:
 - ♦Occurrence is on takeoff or initial climb:

Do not exceed 10,000 feet.

Occurrence is in climb, cruise, or descent:

Descend to lowest safe altitude or 14,000 feet, whichever is higher.

Intentionally Blank

757 Flight Crew Operations Manual

EMER DOORS

EMERGENCY DOOR(S)

[Option : Aircraft equipped with emergency doors over the wing.]

Messages: EMER DOORS

L AFT EMER DOOR R AFT EMER DOOR L FWD EMER DOOR R FWD EMER DOOR

Condition: One or more emergency doors are not

closed and secure.

1 Choose one:

◆Pressurization is **normal**:

The door is in a safe configuration as long as cabin pressurization is normal.

Pressurization is not normal:

▶▶Go to step 2

- 2 PASS SIGNS selectors ON
- 3 LDG ALT selector Set 9,500 feet

Continued on next page

▼ EMERGENCY DOOR(S) continued ▼

- 4 Choose one:
 - ◆Occurrence is on takeoff or initial climb:

Do not exceed 10,000 feet.

- ▶ Go to step 5
- Occurrence is in climb, cruise, or descent:

Descend to lowest safe altitude or 14,000 feet, whichever is higher.

- ▶▶Go to step 5
- 5 **If** a wing slide deployment is suspected:
 - ► Go to the WING SLIDE checklist on page 1.13

UNARMED

EMERGENCY LIGHTS

Message: EMER LIGHTS

Condition: The emergency lights switch is not ARMED.

757 Flight Crew Operations Manual

ENTRY DOORS

ENTRY DOOR(S)

Messages: L ENTRY DOORS R ENTRY DOORS

L AFT ENT DOOR R AFT ENT DOOR
L CTR ENT DOOR R CTR ENT DOOR
L FWD ENT DOOR R FWD ENT DOOR

Condition: One or more doors are not closed and secure.

1 Choose one:

◆Pressurization is normal:

The door is in a safe configuration as long as cabin pressurization is normal.

Pressurization is not normal:

▶▶Go to step 2

- 3 LDG ALT selector Set 9,500 feet
- 4 Choose one:
 - ♦Occurrence is on **takeoff or initial climb**:

Do not exceed 10,000 feet.

Occurrence is in climb, cruise, or descent:

Descend to lowest safe altitude or 14,000 feet, whichever is higher.

757 Flight Crew Operations Manual

LOCK FAIL

(SB Adds BC001, BC002 with LOCK FAIL checklist that applies Enhanced Security Flight Deck Door.)

Condition: One or more of these occur:

•The flight deck access system switch is off

The lock is failed

Objective: To remove power from the lock to prevent a

possible overheat.

1 If conditions allow:

FLIGHT DECK ACCESS SYSTEM

switch..... OFF

Note: The door can be locked with the

deadbolt.

ON

PASSENGER OXYGEN ON

Message: PASS OXYGEN ON

Condition: The passenger oxygen system is on.

757 Flight Crew Operations Manual

Window Damage

Condition: A flight deck window has one or more of these:

- An electrical arc
- A delamination
- A crack
- Is shattered
- 1 Choose one:
 - ♦Window is arcing, shattered, or cracked:

WINDOW HEAT switch (affected window) Off

Do **not** accomplish the following checklist:

WINDOW (HEAT)

- ▶▶Go to step 2
- Window is **not** arcing, shattered, or cracked:
 - ▶ ▶ Go to step 2
- 2 Choose one:
 - ◆Damaged window is **deformed or** an air leak is **observed**:
 - ▶▶Go to step 3
 - ◆Damaged window is **not** deformed and an air leak is **not** observed:

3 Plan to land at the nearest suitable airport.

▼ Window Damage continued **▼**

- 4 Choose one:
 - ♦Airplane altitude is **above** 10,000 feet:

Descend to lowest safe altitude or 10,000 feet, whichever is higher. This minimizes forces on the window.

- ▶ Go to step 5
- ◆Airplane altitude is **at or below** 10,000 feet:
 - ▶ ▶ Go to step 5
- 5 Sustained flight below 10,000 feet is not recommended due to greater risk of bird strike.

757 Flight Crew Operations Manual

Window Open

Condition: A side window opens during takeoff or in flight.

- 1 Maintain the maneuvering speed for existing flap setting until the window is closed.
- 2 The force needed to close the window increases with airspeed. It may **not** be possible to close the window at speeds above 250 knots.
- 3 Close and lock the window.
- 4 Choose one:
 - ♦Window locks and pressurization is normal:

Continue normal operation.

♦ Window does not lock or pressurization is not normal:

Level off at the lowest safe altitude.

The airplane can fly unpressurized and land safely with the window open.

EMER DOORS

WING SLIDE

Messages: EMER DOORS

L WING SLIDE R WING SLIDE

Condition: One or both wing slide doors are not closed

and secure.

1 Choose one:

◆Visual or aural observation does **not confirm** that the overwing ramp slide is deployed and is still attached to the airplane:

◆Visual or aural observation **confirms** that the overwing ramp slide is deployed and is still attached to the airplane:

▶ ▶ Go to step 2

- 2 Minor damage to the trailing edge flap, aft fuselage, and empennage may occur.
- 3 If needed to minimize slide oscillations and subsequent airplane damage:

Operate at a reduced airspeed.

757 Flight Crew Operations Manual

131 Inght Crew Operations Manual
▼ WING SLIDE continued ▼
4 Choose one:
◆Flaps 25 or Flaps 30 are needed for landing:
Use normal flaps and speeds for landing. \blacksquare \blacksquare \blacksquare
◆Flaps 25 or Flaps 30 are not needed for landing:
GND PROX FLAP OVRD switch OVRD
Use flaps 20 and VREF 20 for landing.
▶▶Go to step 5
5 Checklist Complete Except Deferred Items
Deferred Items
Descent Checklist
Pressurization LDG ALT
Recall
Autobrake
Landing data VREF 20, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
Landing Checklist
Speedbrake

Copyright © The Boeing Company. See title page for details.

Continued on next page ▼

1.15

DO NOT USE FOR FLIGHT

757 Flight Crew Operations Manual

▼ WING SLIDE continued ▼	
Landing gear Dow	/r
Flaps	C

Intentionally Blank

757 Flight Crew Operations Manual

Air Systems	Section 2
Table of Contents CABIN ALTITUDE or Rapid Depressurization	
APU BLEED VALVE	2.2
BLEED DUCT LEAK	
BLEED ISOLATION VALVE	2.3
CABIN ALTITUDE or Rapid Depressurization	2.1
CABIN AUTOMATIC INOPERATIVE	
CABIN TEMPERATURE	
ENGINE BLEED OFF	2.7
ENGINE BLEED VALVE	2.8
ENGINE HIGH STAGE	2.9
EQUIPMENT OVERHEAT	2.10
EQUIPMENT SMOKE	▶▶8.19
FLIGHT DECK TEMPERATURE	2.11
PACK OFF	2.12
PACK TEMPERATURE	2.16
RECIRCULATION FAN	2.17
TRIM AIR	2.17

757 Flight Crew Operations Manual

Table of Contents

Intentionally Blank

CABIN ALTITUDE or Rapid Depressurization

Message: CABIN ALTITUDE

Condition: A cabin altitude exceedance occurs.

- 1 Don the oxygen masks.
- 2 Establish crew communications.
- 3 Check the cabin altitude and rate.
- 4 **If** the cabin altitude is uncontrollable:

PASS OXY switch Push and hold for 1 second

Without delay, descend to the lowest safe altitude or 10,000 feet, whichever is higher.

To descend:

Move the thrust levers to idle

Extend the speedbrakes

If structural integrity is in doubt, limit airspeed and avoid high maneuvering loads.

Descend at VMO/MMO

757 Flight Crew Operations Manual

APU BLEED VALVE

Message: APU E	BLEED VA	٩L
----------------	----------	----

Condition: The APU bleed valve is not in the

commanded position.

DUCT LEAK

BLEED DUCT LEAK

Messages: L BLD DUCT LEAK R BLD DUCT LEAK

Condition: A bleed air leak occurs in the wing area.

1 Determine the affected side:

If either duct pressure is abnormally low and/or corresponding pack has tripped, the low pressure indication determines the affected side.

If duct pressure and pack operation are normal on both sides, use the duct leak message to determine the affected side.

2 ENG BLEED AIR switch (affected side).....Off

3 ISOLATION switchOff

4 **If** the left side is the affected side:

APU BLEED AIR switch Off

lacktriangle Continued on next page lacktriangle

▼ BLEED DUCT LEAK continued **▼**

5 WING ANTI-ICE switch Off
This prevents possible asymmetrical ice buildup on the wings.

- 6 Avoid icing conditions.
- 7 Engine anti-ice on effected side is not available.
- 8 Do **not** accomplish the following checklist:

ENGINE BLEED OFF

VALVE

BLEED ISOLATION VALVE

Message: BLEED ISLN VAL

Condition: The isolation valve is not in the commanded

position.

757 Flight Crew Operations Manual

CABIN AUTOMATIC

AUTO INOF	INC	PERATIVE	
Messages: C	ABIN AUTO INOP		
•	failed	ors: pressurization control is de mode selector is in	
1 Cabin al	titude MODE SE	LECT MAN	
_	LTITUDE MANUA	AL CLIMB or DESCEND as needed to control desired cabin rate and altitude	
Note: Recommended cabin rate is approximately 500 FPM for climbs and descents.			
Red	commended cab	in altitude in cruise is:	
FI	LIGHT LEVEL	CABIN ALTITUDE	
U	p to 230	Landing Field Elevation	
2	60	2000	
3	00	4000	
3.	50	6000	
4	00 and above	8000	
3 Checkli	-	ccept Deferred Items	
	Deferre	d Items	
Descent C	hecklist		
Pressuriza	tion	LDG ALT	
Recall		Checked	
	▼ Continued o	n nevt nege	

▼ CABIN AUTOMATIC INOPERATIVE continued ▼
Autobrake
Landing data VREF, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
When at pattern altitude
CABIN ALTITUDE MANUAL control Hold in CLIMB until outflow valve is fully open
Landing Checklist
Speedbrake
Landing gear Down
Flaps

757 Flight Crew Operations Manual

CABIN TEM	PERATURE	
AFT CABIN TEMP	FWD CABIN TEMP	
A fault in the zoThe compartmentoff	ne temperature contro nt temperature contro	
T TEMP control ted compartment)		OFF
ected compartment warm or too cold:	temperature continues	s to
IM AIR switch		. Off
		о а
not accomplish the	e following checklist:	
TRIM AIR		
	AFT CABIN TEMP One or more of the A fault in the zon The compartment off The trim air swith T TEMP control ted compartment of warm or too cold: IM AIR switch This schedules the programmed term not accomplish the	One or more of these occur: •A fault in the zone temperature contro •The compartment temperature contro off •The trim air switch is off T TEMP control ted compartment)

ENGINE BLEED OFF

F			
M	essages:	L ENG BLEED OFF	R ENG BLEED OFF
Co	ondition:	The engine bleed v system fault.	alve closed because of a
1	ENG E	BLEED AIR switch (a	ffected side)Off
2	If eng	jine and wing anti-i	ce needed:
	PAG	CK control selector ((affected side) OFF
	ISO	DLATION switch	On
		nen engine and wind eded:	g anti–ice no longer
		ISOLATION switch	ch Off
3	If win	g anti-ice needed:	
	PAG	CK control selector ((affected side) OFF
	ISO	DLATION switch	On
	Wł	nen wing anti-ice n	o longer needed:
		ISOLATION swite	ch Off
4	Do no	t accomplish the fo	llowing checklist:
	PAG	CK OFF	

757 Flight Crew Operations Manual

ENGINE BLEED VALVE				
М	essages: L ENG BLEED VAL R ENG BLEED VAL			
Condition: An engine bleed air overheat occurs.				
1	ENG BLEED AIR switch (affected side) Off, then On			
2	If ENG BLEED VAL message reappears:			
	ENG BLEED AIR switch Off			
3	If engine and wing anti-ice needed:			
	PACK control selector (affected side) OFF			
	ISOLATION switchOn			
When engine and wing anti-ice no longer needed:				
	ISOLATION switch Off			
4	If wing anti-ice needed:			
	PACK control selector (affected side) OFF			
	ISOLATION switchOn			
	When wing anti-ice no longer needed:			
	ISOLATION switch Off			
5	Do not accomplish the following checklists:			
	ENGINE BLEED OFF			
	PACK OFF			

757 Flight Crew Operations Manual

ENGINE HIGH STAGE HI STAGE Messages: L ENG HI STAGE R FNG HI STAGE Condition: Excessive engine bleed air pressure occurs. ENG BLEED AIR switch (affected side) Off If engine and wing anti-ice needed: PACK control selector (affected side) OFF ISOLATION switch On When engine and wing anti-ice no longer needed: ISOLATION switch Off If wing anti-ice needed: PACK control selector (affected side) OFF ISOLATION switch On **When** wing anti-ice no longer needed: ISOLATION switch Off 4 Do **not** accomplish the following checklists: ENGINE BLEED OFF PACK OFF

757 Flight Crew Operations Manual

OVHT

EQUIPMENT OVERHEAT

Message: EQPT OVHT

Condition: The forward equipment cooling system is

inoperative.

Note: If accompanied by a FWD EQPT SMOKE

message, delay action until the smoke

message disappears.

1 EQUIP COOLING switch ALTN

2 Choose one:

♦OVHT light **extinguishes**:

♦OVHT light stays illuminated:

Non-essential avionics and electrical equipment are subject to imminent failure

Cooling is being provided as required to essential avionics and electrical equipment

TI	NOP	FLIGHT DECK TEMPERATURE		
-11		122011 DEGR 12111 ERATIONE		
M	essage:	FLT DECK TEMP		
Co	ondition:	One or more of these occur: •A fault in the zone temperature controller •The trim air switch is off		
1	FLT D	K COMPT TEMP control OFF		
2		ected compartment temperature continues to warm or too cold:		

Do **not** accomplish the following checklist:

TRIM AIR switch.....Off

This schedules the operating pack(s) to a

TRIM AIR

programmed temperature.

757 Flight Crew Operations Manual

PACK OFF

PACK OFF

Messages: L PACK OFF R PACK OFF

Condition: A pack valve is closed.

1 Choose one:

♦A single PACK OFF light is illuminated:

Continue normal operation.

♦Both PACK OFF lights are illuminated:

▶ Go to step 2

- Without delay, descend to the lowest safe altitude or 10,000 feet, whichever is higher
- 3 To descend:

Move the thrust levers to idle.

Extend the speedbrakes.

If structural integrity is in doubt, limit airspeed and avoid high maneuvering loads.

Descend at VMO/MMO.

- 4 Consider an alternate engine bleed air source, or if below 17,000 feet the APU bleed air source, if dual PACK OFF condition is a result of engine bleed air loss not caused by a duct leak or engine start valve failure.
- 5 Wait until level off.

lacktriangle Continued on next page lacktriangle

▼ PACK OFF continued ▼

- 6 Choose one:
 - **♦Either or both** PACK OFF lights **extinguish**:

♦Both PACK OFF lights **stay illuminated**:

▶ Go to step 7

- 7 Maintain airspeed at or greater than 290 knots to ensure fresh air circulation .
- 8 Choose one:
 - ♦Airplane altitude is at or below 10,000 feet:
 - ▶▶Go to step 9
 - Airplane altitude is above 10,000 feet:

Don the oxygen masks.

Establish crew communications.

▶▶Go to step 9

9 Cabin altitude MODE SELECT MAN

10 CABIN ALTITUDE

MANUAL control Hold in CLIMB until outflow valve is fully open

- 11 UTILITY BUS switches (Both)........Off
- 12 SHOULDER HEATERS and FOOT HEATERS switches (all)..... OFF
- 13 Minimize flight deck lighting intensity.

lacktriangle Continued on next page lacktriangle

757 Flight Crew Operations Manual

▼ PACK OFF continued ▼

- 14 Open the flight deck door.
- 15 Install flight deck sunvisors during daylight operations.
- 16 Instruct flight attendants to:

Reduce cabin lighting to minimum needed.

Close cabin window shades during daylight operations.

- 17 Plan to land at nearest suitable airport.
- 18 Do **not** accomplish the following checklists:

CABIN AUTOMATIC INOPERATIVE RECIRCULATION FAN UTILITY BUS OFF

757 Flight Crew Operations Manual

II	NOP	PACK TEI	MPERATURE	
M	essages	: L PACK TEMP	R PACK TEMP	
Co	ondition	One or more of tA pack controlA pack overhe	ler fault	
1	PAC	Control selector (affected side) S	TBY N
2	Choc	se one:		
	♦IN(OP light extinguis	hes:	
		▶ Go to step	3	
	◆IN(OP light stays illu i	minated:	
		Wait 5 minutes	5.	
		PACK RESET sw	vitch	Push
		▶ G o to step	3	
3		•	mperature becomes cool with STBY N selec	cted:
		ACK control selectonfected side)	STBY C or ST	BY W, eeded

▼ Continued on next page ▼

▼ PACK TEMPERATURE continued ▼

- 4 Choose one:
 - **♦**INOP light **stays extinguished**:

◆INOP light stays illuminated or illuminates again:

PACK control selector (affected side) . OFF
Do **not** accomplish the following checklist:
PACK OFF

INOP

RECIRCULATION FAN

Messages: L RECIR FAN R RECIR FAN

Condition: The recirculation fan is inoperative.

OFF

TRIM AIR

Message: TRIM AIR

Condition: The trim air switch is OFF.

Non-Normal Checklists	Chapter NNC
Anti-Ice, Rain	Section 3
Table of Content	S
AOA PROBE	3.1
AUXILIARY PITOT	3.1
CAPTAIN PITOT	3.1
ENGINE ANTI-ICE	3.2
FIRST/OFFICER PITOT	3.2
PROBE HEAT	3.3
TAT PROBE	3.3
WINDOW (HEAT)	3.4
WING ANTI-ICE	3.6

DO NOT USE FOR FLIGHT 757 Flight Crew Operations Manual

Table of Contents

AOA PROBE

L AOA R AOA

Messages: L AOA PROBE R AOA PROBE

Condition: The AOA probe heat is failed.

1 Flight in icing conditions may result in some erroneous flight instrument indications.

AUXILIARY PITOT

L AUX R AUX PITOT

Messages: L AUX PITOT R AUX PITOT

Condition: The auxiliary pitot probe heat is failed.

1 Flight in icing conditions may result in some erroneous flight instrument indications.

CAPT PITOT

CAPTAIN PITOT

Message: CAPT PITOT

Condition: The captain's pitot probe heat is failed.

1 Flight in icing conditions may result in some erroneous flight instrument indications.

757 Flight Crew Operations Manual

VALVE

ENGINE ANTI-ICE

Messages: L ENG ANTI-ICE

R ENG ANTI-ICE

Condition: The engine anti-ice valve is not in the

commanded position.

1 Choose one:

◆ENGINE ANTI-ICE switch is **ON**:

Avoid icing conditions.

Leave the ENGINE ANTI-ICE switch ON.

◆ENGINE ANTI-ICE switch is **off**:

▶ Go to step 2

- 2 ENGINE ANTI-ICE switch (affected engine) . . . ON
- 3 **If** total air temperature (TAT) is above 10 degrees C:

Avoid high thrust settings.

F O PITOT

FIRST/OFFICER PITOT

Message:

F/O PITOT

Condition: The first officer's pitot probe heat is failed.

1 Flight in icing conditions may result in some erroneous flight instrument indications.

PROBE HEAT

Message: PROBE HEAT

Condition: Two or more probe heats are failed.

1 Flight in icing conditions may result in some erroneous flight instrument indications.

TAT PROBE

Message: TAT PROBE

Condition: The TAT probe heat is failed.

1 Flight in icing conditions may result in some erroneous flight instrument indications.

INOP	WINDO	W (HEAT)	
Messages:	L FWD WINDOW L SIDE WINDOW WINDOW HEAT	R FWD WINDOW R SIDE WINDOW	
Condition:	One or more wind	low heats are off.	
Objective:	To attempt to rese	et the system.	
1 WIND	OW HEAT switch	Off 10 seco ther	nds, n ON
2 Choos	se one:		
♦INO	P light extinguish	es: ■ ■ ■	
♦INO	P light stays illum	inated:	
	WINDOW HEAT S	switch	. Off
		■ ■	

VALVE	WING ANTI-ICE
Messa	es: L WING ANTI-ICE R WING ANTI-ICE
Condi	on: The wing anti-ice valve is not in the commanded position.
	oose one: VING ANTI-ICE switch is ON : WING ANTI-ICE switchOff Avoid icing conditions. Do not use wing anti-ice ■ ■ ■ ■
•	VING ANTI-ICE switch is Off: When equipped with Rolls Royce engines. ▶▶Go to step 2 When equipped with Pratt and Whitney engines. ▶▶Go to step 3
2 W	NG ANTI-ICE switch
3 If	eft valve failed open:
	APU BLEED AIR switch Off
4 CI	ecklist Complete Except Deferred Items
	▼ Continued on next page ▼

▼ WING ANTI-ICE continued ▼

Deferred Items	
Descent Checklist	
Pressurization	. LDG ALT
Recall	Checked
Autobrake	<u></u>
Landing data VREF, Minimu	ms
Approach briefing	Completed
Approach Checklist	
Altimeters	
Landing Checklist	
Speedbrake	Armed
Landing gear	Down
Flaps	· · · · · · · · · · · · · · · · · · ·
After landing	
ENG BLEED AIR switch (affected side)	Off
ISOLATION switch	Off
This prevents possible structural doverheat.	lamage due to

Chapter NNC		
Section 4		
Table of Contents		
4.1		
4.1		
4.1		

757 Flight Crew Operations Manual

Table of Contents

757 Flight Crew Operations Manual

AUTO PILOT

AUTOPILOT

Message: AUTOPILOT

Condition: One or more of these occur:

- •The autopilot operates in a degraded mode other than the selected mode
- •The engaged roll mode fails
- •The engaged pitch mode fails
- 1 Autopilot disengage switch Push

AUTOPILOT DISCONNECT

Message: AUTOPILOT DISC

Condition: All autopilots are disconnected.

A/T DISC

AUTOTHROTTLE DISCONNECT

Message: AUTOTHROT DISC

Condition: The autothrottle is disconnected.

Non-Normal Checklists	Chapter NNC	
Communications	Section 5	
Table of Contents		
Radio Transmit Continuous (Stuck		
Microphone Switch)	5.1	

DO NOT USE FOR FLIGHT 757 Flight Crew Operations Manual

Table of Contents

Radio Transmit Continuous (Stuck Microphone Switch)

Condition: A radio transmits continuously without crew

input.

Objective: To identify and isolate the stuck

microphone.

- 1 INT microphone selector switches (all) On This deselects radios and stops radio transmissions.
- 2 The microphone/interphone with the stuck switch continuously transmits on interphone.
- 3 The associated audio control panel should remain on interphone. All other audio control panels may be used normally.

8	
Non-Normal Checklists	Chapter NNC
Electrical	Section 6
Table of Contents	
AC BUS OFF	6.1
APU GENERATOR OFF	
BATTERY OFF	
BUS ISOLATED	6.6
ELECTRIC HYDRAULIC OVERHEAT	▶▶13.1
GENERATOR DRIVE	6.7
GENERATOR OFF	6.8
MAIN BATTERY DISCHARGE	6.9
STANDBY BUS OFF	6.10
UTILITY BUS OFF	6.15

757 Flight Crew Operations Manual

Table of Contents

AC BUS OFF

When equipped with the optional hydraulic driven generator.

Messages: L AC BUS OFF R AC BUS OFF

Condition: The AC bus is not powered.

Objective: To attempt to restore electrical power.

- Attempt only one reset GEN CONT switch (affected side).........Off, then ON Choose one: APU is **available**: ▶ Go to step 3 APU is **not** available: ▶ Go to step 5 3 APU selector START, then ON 4 **When** the APU is running:

-<mark>Attempt only one reset |</mark> L BUS TIE switch Off, then AUTO

Attempt only one reset $lue{lue}$ R BUS TIE switch \ldots \ldots Off, then AUTO

Continued on next page \

757 Flight Crew Operations Manual

▼ AC BUS OFF continued **▼**

5 If both AC BUS OFF lights were illuminated and AC power is restored:

Activate the FMC route, if needed.

Enter the FMC performance data, if needed.

If an IRS ALIGN light is illuminated:

Action is **not** reversible. Do this step only for the affected IRS(s)

IRS MODE selector. ATT

Enter heading on IRS control panel or POS

- 6 Choose one:
 - ♦ Both BUS OFF lights are extinguished:

INIT page of FMC.

- ◆ Both BUS OFF lights stay illuminated:
 - ▶ Go to step 9
- Right BUS OFF light stays illuminated:
 - ▶ Go to step 8
- **♦ Left** BUS OFF light stays illuminated:
 - ▶ ▶ Go to step 7

▼ Continued on next page **▼**

▼ AC BUS OFF continued **▼**

7 Plan to land at the nearest suitable airport.

Left AC Bus Off

Inoperative Items

Some pitot heat probes inop

Flight in icing conditions may result in some erroneous flight instrument indications.

Left and Center flight directors inop

Flap indicator inop

Left and Center autopilot inop

8 Plan to land at the nearest suitable airport.

Right AC Bus Off

Inoperative Items

Some pitot heat probes inop

Flight in icing conditions may result in some erroneous flight instrument indications.

Right flight director inop

Right autopilot inop

9 Plan to land at the nearest suitable airport.

11 EQUIP COOLING switch..... ALTN

▼ Continued on next page **▼**

▼ AC BUS OFF continued ▼
12 TRIM AIR switch OFF
Both AC Buses Off
Inoperative Items
Some pitot heat probes inop
Flight in icing conditions may result in some erroneous flight instrument indications.
All flight directors inop
All autopilots inop
Automatic speedbrake system inop Manual speedbrake extension after landing is needed.
Anti-skid for outboard wheels inop
Master caution system inop
13 Do not use the autobrake.
14 Do not arm the speedbrake for landing.
15 Do not accomplish the following checklists:
RAM AIR TURBINE UNLOCKED
TRIM AIR
16 Checklist Complete Except Deferred Items
Deferred Items
Descent Checklist
Pressurization LDG ALT
Recall
Autobrake
▼ Continued on next page ▼
Convright © The Boeing Company See title page for details

▼ AC BUS OFF continued ▼
Landing data VREF, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
Landing Checklist
Speedbrake
Landing gear Dowr
Flaps ■ ■ ■
APU GENERATOR OFF
Message: APU GEN OFF
Condition: The generator control breaker is open.
Attempt only one reset 1 APU GEN switch Off, then ON

757 Flight Crew Operations Manual

OFF BATTERY OFF

Message: BATTERY OFF

Condition: The battery switch is OFF.

BUS ISOLATED

Messages: L BUS ISOLATED R BUS ISOLATED

Condition: The bus tie breaker is open.

757 Flight Crew Operations Manual

GENERATOR DRIVE

Messages: L GEN DRIVE R GEN DRIVE

Condition: A generator drive malfunction occurs.

Action is **not** reversible.

- 2 Choose one:
 - ◆APU is available:

APU selector START, then ON

▶▶Go to step 3

APU is **not available:**

Plan to land at the nearest suitable airport.

▶ Go to step 3

3 Do **not** accomplish the following checklist:

GENERATOR OFF

OT USE FOR FLIGHT

757 Flight Crew Operations Manual

GENERATOR OFF

R GEN OFF Messages: L GEN OFF

Condition: The generator control breaker is open.

- Attempt only one reset
- GEN CONT switch (affected side). . Off, then ON
- Choose one: 2
 - GEN CONT OFF light extinguishes:

Continue normal operation.

- GEN CONT OFF light stays illuminated:
 - ▶ Go to step 3
- 3 Choose one:
 - ◆APU is **available**:

APU selector START, then ON

APU is **not available**:

Plan to land at the nearest suitable airport.

MAIN BATTERY DISCHARGE

Message: MAIN BAT DISCH

Condition: A main battery discharge occurs.

757 Flight Crew Operations Manual

O F		STANDBY BUS OFF
F		
M	essag	e: STANDBY BUS OFF
Co	onditi	 One or more of these buses are not energized: AC standby bus DC standby bus Battery bus
1	STI	BY POWER selector BAT
2	Ch	pose one:
	φS	tandby power bus OFF light is illuminated:
		STBY POWER selectorAUTO
		►►Go to step 3
	♦ S	tandby power bus OFF light is not illuminated :
		STBY POWER selectorAUTO
		►►Go to step 9
3	Aut	copilot disengage switch Push
4	Ch	pose one:
	φE	lectric stabilizer trim is not operative :
		▶▶Go to step 5
	ΦE	lectric stabilizer trim is operative:
		Use electric stabilizer trim.
		►►Go to step 15

Continued on next page ▼

▼ STANDBY BUS OFF continued ▼

- 5 Choose one:
 - ♦Alternate stabilizer trim is **not operative**:
 - ▶▶Go to step 6
 - ◆Alternate stabilizer trim is operative:

Use alternate stabilizer trim.

- ▶ Go to step 15
- 6 Engage left or right autopilot and allow autopilot to remain engaged until landing configuration is established.

Automatic stabilizer trim is available with autopilot engaged.

7 Avoid icing conditions.

Inoperative Items

Wing and engine anti-ice inop

Passenger address, flight, and cabin interphone systems inop

Forward and aft fuel crossfeed valves inop

Vary engine thrust as needed to maintain fuel balance as conditions allow.

Left VHF communication system inop

Rudder trim inop

8 Do the checklist for each consequential EICAS alert message as soon as practical.

9 Autopilot disengage switch Push

757 Flight Crew Operations Manual

▼ STANDBY BUS OFF continued ▼

10 Choose one:

- ◆Electric stabilizer trim is **not operative**:
 - ▶▶Go to step 11
- ◆Electric stabilizer trim is **operative**:

Use electric stabilizer trim.

▶ Go to step 22

11 Choose one:

- ◆Alternate stabilizer trim is **not operative**:
 - ▶▶Go to step 12
- ♦Alternate stabilizer trim is **operative**:

Use alternate stabilizer trim.

- ▶ Go to step 22
- 12 Plan to land with the standby buses powered normally.
- 13 Engage left or right autopilot and allow autopilot to remain engaged until landing configuration is established.

Automatic stabilizer trim is available with autopilot engaged.

14 Avoid icing conditions.

Inoperative Items

Wing and engine anti-ice inop

▼ STANDBY BUS OFF continued ▼

Passenger address, flight, and cabin interphone systems inop

Forward and aft fuel crossfeed valves inop

Vary engine thrust as needed to maintain fuel balance as conditions allow.

Left VHF communication system inop

Rudder trim inop

▶ Go to step 28

- 15 Passenger address, flight, and cabin interphone systems may be inoperative.
- 16 Wing and engine anti-ice may be inoperative.
- 17 Cabin altitude and differential pressure indicators may be inoperative.

Cabin altitude control AUTO 1 or AUTO 2 mode operates normally.

- 18 Left thrust reverser may be inoperative.
- 19 Left VHF communication system may be inoperative.
- 20 Rudder trim may be inoperative.
- 21 Do the checklist for each consequential EICAS alert message as soon as practical.

- 22 Plan to land with the standby buses powered normally.
- 23 Passenger address, flight, and cabin interphone systems may be inoperative.

757 Flight Crew Operations Manual

		continu	

- 24 Wing and engine anti-ice may be inoperative.
- 25 Cabin altitude and differential pressure indicators may be inoperative.

Cabin altitude control AUTO 1 or AUTO 2 mode operates normally.

- 26 Left VHF communication system may be inoperative.
- 27 Rudder trim may be inoperative.
- 28 **When** within approximately 30 minutes of landing:

STBY POWER selector BAT

▶▶Go to step 29

29 Choose one:

◆Standby power bus OFF light is **illuminated:**

Left thrust reverser may be inoperative.

Do the checklist for each consequential EICAS alert message prior to landing.

◆Standby power bus OFF light is **not illuminated:**

Power to all equipment on the standby buses is available.

Continue normal operation.

OFF UTILITY BUS OFF

Messages: L UTIL BUS OFF R UTIL BUS OFF

Condition: The galley and utility buses are not

energized.

1 Choose one:

◆Two generator sources are available:

UTILITY BUS switch Off, then ON

◆Two generator sources are not available:

Intentionally Blank

Non-Normal Checklists	Chapter NNC
Engines, APU	Section 7
Table of Contents	
Aborted Engine Start [PW]	
Aborted Engine Start [RR]	
APU FIRE	
Dual Engine Failure [PW]	
Dual Engine Failure [RR]	
ENGINE FIRE or Severe Damage of Separation	
Engine Limit or Surge or Stall	7 10
Engine Tailpipe Fire	
Aborted Engine Start [PW]	7.1
Aborted Engine Start [RR]	7.2
APU BLEED VALVE	▶▶2.2
APU BOTTLE	▶▶8.11
APU FAULT	7.12
APU FIRE	▶▶8.1
APU FUEL VALVE	
APU GENERATOR OFF	
Dual Engine Failure [PW]	
Dual Engine Failure [RR]	
EEC OFF	
ENGINE ANTI-ICE	
ENGINE BLEED OFF	
ENGINE BLEED VALVE	
ENGINE BOTTLE	
ENGINE CONTROLS	7.13

Table of Contents	
ENGINE EEC	
Engine Failure or Shutdown	7.16
ENGINE FIRE or Severe Damage or	
Separation	
ENGINE FUEL FILTER	
Engine Fuel Leak	
ENGINE FUEL VALVE	7.19
ENGINE HIGH STAGE	▶▶2.9
ENGINE HYDRAULIC OVERHEAT	▶▶13.1
Engine Indication Fluctuations	7.20
Engine In-flight Start [PW]	7.22
Engine In-flight Start [RR]	7.28
Engine Limit or Surge or Stall	7.10
ENGINE LIMIT PROTECTION	7.35
ENGINE LIMITER	7.35
ENGINE OIL PRESSURE [PW]	7.36
ENGINE OIL PRESSURE [RR]	7.38
Engine Oil Temperature [PW]	7.39
Engine Oil Temperature [RR]	7.40
ENGINE OVERHEAT [PW]	▶▶8.16
ENGINE OVERHEAT [RR]	▶▶8.18
ENGINE SHUTDOWN	7.40
ENGINE STARTER	7.41
ENGINE STATOR	7.42
Engine Tailpipe Fire	▶▶8.6
Engine Vibration	
FUEL SPAR VALVE	7.44
OIL FILTER [PW]	7.46

Non-Normal Checklists -Engines, APU

DO NOT USE FOR FLIGHT

Table of Contents	
OIL FILTER [RR]	7.47
REVERSER ISOLATION VALVE	7.47
REVERSER UNLOCKED	7.48
STARTER CUTOUT	7.52
Volcanic Ash	7.54

757 Flight Crew Operations Manual

Table of Contents

Intentionally Blank

Aborted Engine Start [PW]

Option: Pratt and Whitney Engines

Condition: During a ground start, an abort start

condition occurs.

1 FUEL CONTROL switch

(affected side) CUTOFF

- 2 Choose one:
 - **♦**ENG START selector in **GND**:

Motor the engine for 30 seconds.

ENG START selector (affected side)....

iffected side). AUTO

- ◆ENG START selector in AUTO:
 - ▶▶Go to step 3
- 3 When N2 decreases below 20%:

ENG START selector (affected side) GND

Motor the engine for 30 seconds.

ENG START selector (affected side) AUTO

757 Flight Crew Operations Manual

Aborted Engine Start [RR]

(Option:	Rol	ls Ra	ovce	Eng	ines
•	Jpuon.	IVUI.	19 1//	Jycc	LIIE	11103

Condition: During a ground start, an abort start

condition occurs.

1 FUEL CONTROL switch

(affected side) CUTOFF

2 Choose one:

◆ENG START selector in **GND**:

Motor the engine for a minimum of 30 seconds and until EGT is 100° C or less.

ENG START selector

(affected side).....AUTO

◆ENG START selector in **AUTO**:

▶ Go to step 3

3 When N3 decreases below 20%:

ENG START selector (affected side) GND

Motor the engine for a minimum of 30 seconds and until EGT is 100° C or less.

ENG START selector (affected side) AUTO

Dual Engine Failure [PW]

Option: Pratt and Whitney Engines

Note: SEI maximum EGT limit is inflight start EGT

limit.

6 Maintain airspeed as indicated below:

Repeat above step as needed.

Above 35,000 feet use 240 knots.

35,000 feet or below use 250 knots minimum.

Note: OVSPD light and associated aural warning

will indicate Vmo/Mmo exceedances.

Note: Cabin altitude warning may occur during

descent.

	▼ Dual Engine Failure [PW] continued ▼
7	Choose one:
	◆APU is not available :
	▶▶Go to step 9
	◆APU is available :
	▶▶Go to step 8
	Do not wait for successful engine start(s) prior to starting the APU
8 ,	APU selector START, then ON
9	Choose one:
	♦Either or both engines started :
	▶▶Go to step 13
	◆Both engines remain failed:
	►►Go to step 10
10	Thrust levers (both) Idle
11	Engines may accelerate to idle very slowly, especially at high altitude. Slow acceleration may be incorrectly interpreted as a hung start or an engine malfunction. If N2 is steadily increasing, and EGT remains within limits, the start is progressing normally.
12	FUEL CONTROL switches (both) CUTOFF for approximately 30 seconds, then RUN for approximately 30 seconds. Repeat until engine start is achieved

▼ Dual Engine Failure [PW] continued **▼**

- 13 Activate the FMC route.
- 14 Enter the FMC performance data.
- 15 Choose one:
 - ♦All ALIGN lights are **not** illuminated:
 - ▶▶Go to step 18
 - Any ALIGN light is illuminated:
 - ▶▶Go to step 16

Action is **not** reversible. Do this step only for the affected IRS(s)

- 16 IRS MODE selector (affected IRS).....ATT
- 17 Enter heading on IRS control panel or POS INIT page of FMC.

Note: Cabin altitude warning may occur during descent.

18 Choose one:

♦Both engines are **started**:

- ♦An engine stays failed:
 - ► Go to the Engine Failure or Shutdown checklist on page 7.16

757 Flight Crew Operations Manual

Dual Engine Failure [RR]

Option: Rolls Royce Engine

Condition: One of these occurs on both engines: Engine flameout •No response to thrust lever movement ENG START selectors (both)..... FLT 1 2 Thrust levers (both) Idle Do not advance thrust levers during engine recovery until above 50% N3 3 FUEL CONTROL switches (both)CUTOFF, then RUN **If** engine appears stalled **or** EGT approaches the Standby Engine Indicator placard limit: Repeat above step as needed. **Note:** SEI maximum EGT limit is inflight start EGT limit. 5 RAM AIR TURB switch Maintain airspeed as indicated below. Above 30,000 feet use 240 knots.

Note: OVSPD light and associated aural warning will indicate Vmo/Mmo exceedances.

Continued on next page

30,000 feet or below use 300 knots minimum.

▼ Dual Engine Failure [RR] continued **▼**

Note: Cabin altitude warning may occur during descent.

- 7 Choose one:
 - ◆APU is **not available**:
 - ▶ Go to step 9
 - ♦APU is **available**:
 - ▶ Go to step 8

Do **not** wait for successful engine start(s) prior to starting the APU

- 8 APU selector START, then ON
- 9 Choose one:
 - **♦Either or both** engines **started**:
 - ▶ Go to step 13
 - ◆Both engines remain failed:
 - ▶ Go to step 10
- 10 Thrust levers (both) Idle
- 11 Engines may accelerate to idle very slowly, especially at high altitude. Slow acceleration may be incorrectly interpreted as a hung start or an engine malfunction. If N3 is steadily increasing, and EGT remains within limits, the start is progressing normally.
 - **▼** Continued on next page **▼**

757 Flight Crew Operations Manual

▼ Dual Engine Failure [RR] continued ▼

12 FUEL CONTROL

switches (both) CUTOFF for approximately 30 seconds, then RUN for approximately 30 seconds.

Repeat until engine start is achieved

- 13 Activate the FMC route.
- 14 Enter the FMC performance data.
- 15 Choose one:
 - **♦All** ALIGN lights are **not** illuminated:
 - ▶▶Go to step 18
 - ◆Any ALIGN light is illuminated:
 - ▶ Go to step 16

Action is **not** reversible. Do this step only for the affected IRS(s)

- 16 IRS MODE selector (affected IRS) ATT
- 17 Enter heading on IRS control panel or POS INIT page of FMC.

Note: Cabin altitude warning may occur during descent.

▼ Dual Engine Failure [RR] continued **▼**

18 Choose one:

♦Both engines are **started**:

♦An engine stays failed:

► Go to the Engine Failure or Shutdown checklist on page 7.16

757 Flight Crew Operations Manual

Engine Limit or Surge or Stall

Condition: One or more of these occur:

- Engine indications are unusual
- Engine indications are rapidly approaching or exceeding limits
- Unusual engine noises are heard
- •There is no response to thrust lever movement or the response is abnormal.
- 1 A/T ARM switch OFF
- 2 Thrust lever (affected side) Confirm . .Retard until indications remain within normal limits or the thrust lever is at Idle
- 3 Choose one:
 - ♦Indications are **abnormal or** EGT continues to **increase**:

After shutdown, a restart may be attempted if there is N1 rotation and no abnormal airframe vibration.

▶► Go to the Engine Failure or Shutdown checklist on page 7.16

- ◆Indications stabilized and EGT stabilized or decreasing:
 - ▶ Go to step 4

▼ Engine Limit or Surge or Stall continued **▼**

- 4 Thrust lever (affected side) . . Advance slowly and check that RPM and EGT follow thrust lever movement
- 5 Choose one:
 - ◆Engine acceleration is **normal**:

Operate engine normally or at a reduced thrust level which is surge and stall free.

- ♦Engine acceleration is **not normal**:
 - ▶ Go to step 6
- 6 Choose one:
 - ◆EGT is **normal**:
 - ▶ Go to step 7
 - **♦**EGT is **not normal**:

After shutdown, a restart may be attempted if there is N1 rotation and no abnormal airframe vibration.

▶ Go to the Engine Failure or Shutdown checklist on page 7.16

7 ENG BLEED AIR switch (affected side) Off

	▼ Engine Limit or Surge or Stall continued ▼
8	Choose one: ◆Engine responds: ▶ Go to step 9
	◆Engine does not respond : Continue engine operation at idle. ► ► Go to step 9
9	ENG BLEED AIR switch (affected side) On ■ ■ ■ ■
FA	APU FAULT ——
Co	essage: APU FAULT ondition: An APU automatic shutdown occurs.
1 2	
	◆FAULT light stays illuminated :
	◆FAULT light stays illuminated: ■ ■ ■ ■ ◆FAULT light extinguishes: ▶ Go to step 3

Message: APU FUEL VAL

Condition: The APU fuel valve is not in the commanded position.

1 APU selector OFF

2 Do **not** start the APU.

INOP

EEC OFF

Messages: L EEC OFF R EEC OFF

Condition: The EEC switch is off.

ENGINE CONTROLS

Option: Pratt and Whitney Engines

Message: ENGINE CONTROLS

Condition: An EEC system fault occurs.

757 Flight Crew Operations Manual

INOF		EN	IGINE EEC	
	_			
Messa	ages:	L ENG EEC	R ENG EEC	
Cond	ition:	The EEC is inc	operative.	
Objec	ctive:	To operate bomode.	th engines in the same	control
1 A,	/T A	RM switch		OFF
2 TI	hrus	t levers (both)	Retard to mid	position
	Thi	s prevents exc	ceeding thrust limits.	
3 C	hoos	se one:		
		esponding ENO minated:	G LIMITER INOP light i	S
		ENG LIMITER switch (affect	R ted side)	Off
			ates the limiter, re-est gine control, and allow mally.	
		Observe eng	ine limits.	
		Do not acco	mplish the following ch	necklist:
		ENGIN	E LIMITER	
		▶ ▶ Go to st	ер 4	
		responding ENG ninated:	G LIMITER INOP light i	s not
		▶▶Go to st	ер 4	

▼ ENGINE EEC continued ▼

4	\sim 1			
/	(h	oose	α n	٠.
_	\ .	111111	()	

♦ELEC ENG CONT INOP stays illuminated:

L ELEC ENG CONT switch Off

R ELEC ENG CONT switch Off

Observe thrust limits.

♦ELEC ENG CONT INOP extinguishes:

757 Flight Crew Operations Manual

Engine Failure or Shutdown

Co	 One of these occurs: An engine failure An engine flameout Another checklist directs an engine shutdown
1	A/T ARM switch OFF
2	Thrust lever (affected side) . Confirm Idle
3	If engine conditions allow, operate at idle for two minutes to allow engine to cool and stabilize.
4	FUEL CONTROL switch (affected side) Confirm CUTOFF
5	Choose one:
	♦APU is not available :
	▶▶Go to step 7
	♦APU is available:
	►►Go to step 6
6	APU selectorSTART, then ON
7	GND PROX FLAP OVRD switch OVRD
8	Transponder mode selector
9	Plan to land at the nearest suitable airport.
10	If wing anti-ice required:
	PACK control selector (affected side) OFF
	ISOLATION switch On
	▼ Continued on next page ▼

▼ Engine Failure or Shutdown continued ▼
When wing anti-ice no longer required:
ISOLATION switch Off
11 Use flaps 20 and VREF 20 for landing.
12 Use flaps 5 for go-around.
13 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.
14 Do not accomplish the following checklists:
ENGINE SHUTDOWN
PACK OFF
15 Checklist Complete Except Deferred Items

st Complete Except Deferred Items

757 Flight Crew Operations Manual

	▼ Engine Failur	re or Shutd	own continu	ued ▼	
	Defe	erred It	tems		
Descent	Checklist				
Pressuri	zation			. LDG ALT	
Recall .				Chec	ked
Autobra	ke				
Landing	data	V R	EF 20, M	1inimums_	
Approac	h briefing			Comple	ted
	h Checklist				
Altimete	rs				
Landing	Checklist				
Speedbr	ake			ARN	1ED
Landing	gear			Do	own
Flaps					.20
	ENCIN	E ELIEL	FILTER		
Messages:	L ENG FUEL FI	LLI	R ENG F	UEL FILI	
Condition:	Fuel contamine the fuel filter.		an cause	fuel to byp	ass

1 Erratic engine operation and flameout may occur due to fuel contamination.

757 Flight Crew Operations Manual

ENGINE FUEL VALVE

Messages: L ENG FUEL VAL

R ENG FUEL VAL

Condition: The engine fuel valve is not in the

commanded position.

- 1 Choose one:
 - ♦FUEL CONTROL switch is **not** in CUTOFF:

♦FUEL CONTROL switch is in **CUTOFF**:

The engine may continue to run for approximately 1 minute.

- ▶ Go to step 2
- 2 Choose one:

♦In flight:

♦On the **ground**:

Do **not** attempt engine start.

757 Flight Crew Operations Manual

Engine Indication Fluctuations

Op	otion: Ro	lls Royce Engines
Co	ondition:	Engine EPR, N1,EGT, N2 and Fuel Flow fluctuations not approaching or exceeding limits indicate an engine probe has failed
1	A/T AI	RM switch OFF
2	Thrust (affec	t lever ted side) RETARD TO MID POSITION
		events exceeding thrust limits when activating the electronic engine control
3	_	ENG CONTROL (affected side) Off
4	Thrust (affec	t lever ted side) SET 75% N1 MINIMUM
		s thrust to determine if fluctuations are sociated with EEC
5	Choos	e one:
	♦N1,	EGT, N2 and Fuel Flow indications continue

- N1, EGT, N2 and Fuel Flow indications continue to fluctuate or approach a limit:
 - ► Go to the Engine Limit or Surge or Stall checklist on page 7.10
- ◆All indications except EPR stabilize:
 - ▶▶Go to step 6

▼ Engine Indication Fluctuations continued ▼ 6 Thrust lever (other side) RETARD TO MID POSITION Prevents exceeding thrust limits when deactivating the electronic engine control. 7 ELEC ENG CONTROL switch (other side) OFF 8 Continue normal operations with both engines 9 Do not use autothrottle. 10 Observe thrust limits. 11 Do not accomplish the following checklist: EEC OFF

757 Flight Crew Operations Manual

Engine In-flight Start [PW]

Option: Pratt and Whitney Engines.

Condition: An engine start is needed after a shutdown and there is:

- •N1 rotation
- No fire
- No abnormal airframe vibration
- 1 Check altitude and airspeed. Starts are not assured outside the EICAS envelope.
- 2 Engine may accelerate to idle very slowly, especially at high altitude. Slow acceleration may be incorrectly interpreted as a hung start or an engine malfunction. If N2 is steadily increasing, and EGT remains within limits, the start is progressing normally.
- 3 Choose one:
 - **♦**X-BLD is **shown**:
 - ▶▶Go to step 7
 - ♦X-BLD is not shown:
 - ► Go to step 4
- 4 ENG START selector (affected side)..... FLT
- 5 FUEL CONTROL switch......RUN
 - Continued on next page

▼ Engine In-flight Start [PW] continued **▼**

6 Choose one:

◆EGT does **not increase** in 30 seconds **or** another abort start condition as listed in normal procedures **occurs**:

FUEL CONTROL switch (affected side).... Confirm. CUTOFF

▶▶Go to step 17

◆EGT **increases** in 30 seconds **and** another abort start condition as listed in normal procedures does **not occur**:

▶▶Go to step 11

▼ Continued on next page ▼			
10	10 ENG START selector (affected side) $\dots \dots$ GND		
9	Ignition selector BOTH		
8	ISOLATION switch On		
7	PACK control selector (affected side) OFF		

757 Flight Crew Operations Manual

▼ Engine In-flight Start [PW] continued **▼**

When N2 exceeds minimum fuel on command bug:

FUEL CONTROL switch RUN

Choose one:

◆EGT does **not increase** in 30 seconds **or** another abort start condition as listed in normal procedures **occurs**:

FUEL CONTROL switch (affected side)Confirm CUTOFF ENG START selector (affected side) AUTO

▶ ▶ Go to step 17

◆EGT **increases** in 30 seconds **and** another abort start condition as listed in normal procedures does **not occur**:

▶ Go to step 11

▼ Engine In-flight Start [PW] continued **▼**

	▼ Engine In-flight Start [PW] continued ▼			
11 Choose one:				
	◆Engine does not start :			
	FUEL CONTROL switch (affected side) Confirm CUTOFF			
	ENG START selector (affected side)AUTO			
	▶▶Go to step 17			
	◆Engine starts :			
	▶▶Go to step 12			
12	ENG START selector (affected side) AUTO			
13	PACK control selectors (both)AUTO			
14	ISOLATION switchOff			
15	15 Transponder mode selector			
16 GND PROX FLAP OVRD switch Off ■ ■ ■ ■				
17	Plan to land at the nearest suitable airport.			
18	If wing anti-ice required:			
	PACK control selector (affected side) OFF			
	ISOLATION switch On			
	When wing anti-ice no longer required:			
	ISOLATION switch Off			

757 Flight Crew Operations Manual

\blacksquare	Engine	In-flight	Start	[PW1	continued`	▾
		III 111911C	Jui		continuca	

- 19 Use flaps 20 and VREF 20 for landing.
- 20 Use flaps 5 for go-around.
- 21 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.
- 22 Do **not** accomplish the following checklists:

ENGINE SHUTDOWN

PACK OFF

23 Checklist Complete Except Deferred Items

Deferred Items
Descent Checklist
PressurizationLDG ALT
Recall
Autobrake
Landing data VREF 20, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
Landing Checklist
Speedbrake
Landing gear Down
▼ Continued on next page ▼

757 Flight Crew Operations Manual

▼ Engine In-flight Start [PW] continued ▼
Flaps

757 Flight Crew Operations Manual

Engine In-flight Start [RR]

Option: Rolls Royce Engines.

Condition: An engine start is needed after a shutdown and there is:

- •N1 rotation
- No fire
- No abnormal airframe vibration
- 1 Check altitude and airspeed. Starts are not assured outside the EICAS envelope.
- 2 Engine may accelerate to idle very slowly, especially at high altitude. The time from fuel control switch to RUN to stabilized idle may be as long as 2 minutes. Slow acceleration may be incorrectly interpreted as a hung start or an engine malfunction. If N3 is steadily increasing, and EGT remains within limits, the start is progressing normally.
- 3 Choose one:

♦X-BLD is **shown**:

▶ Go to step 7

X-BLD is not shown:

▶▶Go to step 4

4 ENG START selector (affected side)..... FLT

Continued on next page

_	
	▼ Engine In-flight Start [RR] continued ▼
5	Choose one:
	◆EGT is 0 degrees C:
	FUEL CONTROL switch (affected side)RICH
	▶▶Go to step 12
	◆EGT is above 0 degrees C :
	FUEL CONTROL switch (affected side)RUN
	▶▶Go to step 6
	▼ Continued on next page ▼

757 Flight Crew Operations Manual

▼ Engine In-flight Start [RR] continued **▼**

_	\sim 1	
^	(hacca	ana:
U	Choose	une.

◆ Light up is obtained, but EGT and N3 stay low, with no increase for approximately 10 seconds:

FUEL CONTROL switch (affected side) RICH

▶▶Go to step 12

◆ EGT **increases** in 30 seconds **and** another abort start condition as listed in normal procedures does **not occur**:

▶▶Go to step 14

◆ EGT does **not increase** in 30 seconds **or** another abort start condition as listed in normal procedures **occurs**:

FUEL CONTROL switch (affected side) . . Confirm CUTOFF ENG START selector

(affected side) AUTO

▶▶Go to step 19

7	PACK control	selector	(affected	side)				OFF
---	--------------	----------	-----------	-------	--	--	--	-----

8 ISOLATION switch On

9 Ignition selector BOTH

10 ENG START selector (affected side)......GND

When N3 is at a minimum of 20%:

FUEL CONTROL switch RUN

Continued on next page

▼ Engine In-flight Start [RR] continued **▼**

11 Choose one:

- ◆EGT **increases** in 30 seconds **and** another abort start condition as listed in normal procedures does **not occur**:
 - ▶▶Go to step 14
- ◆EGT does **not increase** in 30 seconds **or** another abort start condition as listed in normal procedures **occurs**:

▼ Continued on next page **▼**

757 Flight Crew Operations Manual

▼ Engine In-flight Start [RR] continued ▼

_	$\overline{}$	\sim 1				
1	,	ľr	\sim	റമേ	\sim	ne:
_	_	.	w	JJJC.		uc.

EGT increases in 30 seconds and another abort start condition as listed in normal procedures does not occur:

▶ Go to step 13

EGT does **not increase** in 30 seconds **or** another abort start condition as listed in normal procedures occurs:

FUEL CONTROL switch (affected side) Confirm CUTOFF
ENG START selector (affected side)AUTO

▶ Go to step 19

13 FUEL CONTROL switch (affected side) RUN
14 ENG START selector (affected side) AUTO
15 PACK control selectors (both)AUTO
16 ISOLATION switch Off
17 Transponder mode selector
18 GND PROX FLAP OVRD switch \dots Off

19 Plan to land at the nearest suitable airport.

20 **If** wing anti-ice required:

PACK control selector (affected side)	OFF
ICOLATION cwitch	On

Continued on next page ▼

▼ Engine In-flight Start [RR] continued ▼
When wing anti-ice no longer required:
ISOLATION switch Off
21 Use flaps 20 and VREF 20 for landing.
22 Use flaps 5 for go-around.
23 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.
24 Do not accomplish the following checklists:
ENGINE SHUTDOWN
PACK OFF
25 Checklist Complete Except Deferred Items

Continued on next page

757 Flight Crew Operations Manual

▼ Engine In-flight Start [RR] continued ▼
Deferred Items
Descent Checklist
Pressurization LDG ALT
Recall
Autobrake
Landing data VREF 20, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
Landing Checklist
Speedbrake
Landing gear Down
Flaps

ENG LIM _ PROT

ENGINE LIMIT PROTECTION

Option: Pratt and Whitney Engines

Messages: L ENG LIM PROT R ENG LIM PROT

Condition: The EEC is operating in N2 mode.

- 1 Observe thrust limits
- 2 Engine response may not be synchronized with rapid thrust lever movement
- 3 Anticipate increased thrust lever stagger at high power at low altitude
- 4 Autothrottle is inoperative

INOP

ENGINE LIMITER

Option: Rolls Royce Engines

Messages: L ENG LIMITER R ENG LIMITER

Condition: The engine limiter has failed.

- 1 Autothrottle disconnect switch Push
- 2 Thrust lever (affected side) Retard to mid position
- 3 ENG LIMITER switch (affected side) Off
 Observe engine limits
- 4 Autothrottle Engage Select desired mode

757 Flight Crew Operations Manual

ENGINE OIL PRESSURE [PW]

Option: Pratt and Whitney Engines

L ENG OIL PRESS

R ENG OIL PRESS

Messages: L ENG OIL PRESS R ENG OIL PRESS

Condition: The oil pressure is low.

- 1 Choose one:
 - ♦Oil pressure indication **normal**:

Operate engine normally.

Oil pressure indication in amber band:

Autothrottle disconnect switch.... Push Reduce thrust to minimum required.

- ♦Oil pressure indication at or below red line limit:
 - ▶ Go to the Engine Failure or Shutdown checklist on page 7.16

Intentionally Blank

757 Flight Crew Operations Manual

ENGINE OIL PRESSURE [RR]

Option: Rolls Royce Engines

L ENG OIL PRESS

R ENG OIL PRESS

Messages: L ENG OIL PRESS R ENG OIL PRESS

Condition: The oil pressure is low.

- 1 Choose one:
 - ♦Oil pressure indication **normal**:

Operate engine normally.

Oil pressure indication in amber band:

Autothrottle disconnect switch.... Push

Thrust lever

(affected side)....Confirm ... Move to mid position

- ▶ Go to step 2
- ♦Oil pressure indication at or below red line limit:
 - ► Go to the Engine Failure or Shutdown checklist on page 7.16

▼ Continued on next page ▼

▼ ENGINE OIL PRESSURE [RR] continued ▼

- 2 Choose one:
 - ♦ Oil pressure **can** be maintained above amber band:
 - Oil pressure cannot be maintained above amber band:
 - ► Go to the Engine Failure or Shutdown checklist on page 7.16

Engine Oil Temperature [PW]

Option: Pratt and Whitney Engines

Condition: The oil temperature is high.

- 1 A/T ARM switch OFF
- 2 Thrust lever (affected side) Confirm. . . Retard slowly until the temperature decreases
- 3 If temperature is in the amber band 20 minutes or above upper red line limit:
 - ▶ Go to the Engine Failure or Shutdown checklist on page 7.16

757 Flight Crew Operations Manual

Engine Oil Temperature [RR1]

Option: Rolls Royce Engines

Condition: The oil temperature is high.

- 1 A/T ARM switch OFF
- 2 Thrust lever (affected side) Confirm Move to mid position
- 3 **If** temperature is above red line limit:
 - ▶ Go to the Engine Failure or Shutdown checklist on page 7.16

ENGINE SHUTDOWN

Messages: L ENG SHUTDOWN R ENG SHUTDOWN

Condition: The engine was shutdown by the fuel control

switch or the engine fire switch.

757 Flight Crew Operations Manual

VALVE

ENGINE STARTER

Messages: L ENG STARTER R ENG STARTER

Condition: The start valve is not open.

1 ENG START selector (affected side) AUTO

This prevents bleed air from entering starter if valve subsequently opens.

2 Choose one:

♦On the **ground**:

In flight:

Increase airspeed until X-BLD no longer displayed.

757 Flight Crew Operations Manual

ENGINE STATOR

		ENGIN	ESTATUR	
Op	otion: Pra	att and Whitney Engi	nes	
M	essages:	L ENG STATOR	R ENG STATOR	₹
Co	ondition:	The EEC is not of stator vane actu	capable of controllin	g the
1	A/T A	RM Switch		OFF
2	-		of any of the followin se engine flameout:	g for the
	Th	rust lever		
	En	gine anti-ice swit	tch	
	Wi	ng anti-ice switch	h	
	Pa	ck control selecto	or	
	Re	circulation fan sw	vitch	
3	Choos	se one:		
	♦APU	is not available	e:	
		► ► Go to step	5	
	◆APU	is available :		
		► ► Go to step	4	
4	APU s	selector	START,	then ON
5	If eng	gine fails or flame	es out:	
	Do	not attempt an	engine in-flight star	t.
	>)	Go to the Engi	ne Failure or Shut ge 7.16	down

Engine Vibration

Option: Rolls Royce Engines

Condition: Vibration indication is in the amber band

- 1 Choose one:
 - ♦In icing conditions:

ENGINE ANTI-ICE switches (both) ... ON

Note: Vibration levels in amber band on either or both engines not accompanied by other failure indications are considered normal.

◆Not in icing conditions:

▶ Go to step 2

- 2 A/T ARM switch OFF
- 3 Thrust lever (affected side) Confirm RETARD

Operate at a thrust level which will maintain vibration below amber band

If vibration remains in amber band with the thrust lever at idle:

Go to the Engine Failure or Shutdown checklist on page 7.16

757 Flight Crew Operations Manual

SPAR VALVE

FUEL SPAR VALVE

Messages: L FUEL SPAR VAL R FUEL SPAR VAL

Condition: The spar fuel valve is not in the commanded

position.

1 Choose one:

♦In **flight**:

♦On the **ground**:

Do **not** attempt engine start.

Intentionally Blank

757 Flight Crew Operations Manual

OIL FILTER [PW]

Option: Pratt and Whitney Engines

Messages: L OIL FILTER R OIL FILTER

Condition: Oil filter contamination can cause oil to

bypass the oil filter.

- 1 Choose one:
 - ♦On the **ground**:

Allow oil temp. to increase above 35° C

If Oil Filter message stays shown:

FUEL CONTROL switch

(affected side)..... Confirm.. CUTOFF

- ◆In flight:
 - ▶ Go to step 2
- 2 A/T ARM switch OFF
- 3 Thrust lever (affected side) Confirm . Retard slowly until the message blanks

or the thrust lever is at idle

Continued on next page

▼ OIL FILTER [PW] continued **▼**

4 Choose one:

♦OIL FILTER message **not displayed**:

Continue operating at reduced thrust.

♦OIL FILTER message remains displayed:

► Go to the Engine Failure or Shutdown checklist on page 7.16

OIL FILTER [RR]

Option: Rolls Royce Engines

Messages: L OIL FILTER R OIL FILTER

Condition: Oil filter contamination can cause oil to

bypass the oil filter.

REVERSER ISOLATION VALVE

Messages: L REV ISLN VAL R REV ISLN VAL

Condition: A fault occurs in the thrust reverser system.

- 1 Additional system failures may cause inflight deployment.
- 2 Expect normal reverser operation after landing.

757 Flight Crew Operations Manual

REVERSER UNLOCKED

Condition: The REV indication shows with reverse thrust not intentionally commanded.
1 Reverse thrust lever Verify in t full down positi
2 Choose one:
♦With no yaw, loss of airspeed, or buffet:
Operate engine normally. ■ ■ ■ ■
◆With yaw, loss of airspeed, or buffet:
► ► Go to step 3
3 A/T ARM switch
4 Thrust lever (affected side) . Confirm Id
5 FUEL CONTROL switch (affected side) Confirm CUTO
6 Choose one:
◆APU is not available :
▶▶Go to step 8
♦APU is available :
▶▶Go to step 7
7 APU selector START, then (
8 GND PROX FLAP OVRD switch OVI
9 Transponder mode selector
▼ Continued on next page ▼

▼ REVERSER UNLOCKED continued ▼		
10 Plan to land at the nearest suitable airport.		
11 If wing anti-ice needed:		
PACK control selector (affected side) OFF		
ISOLATION switch On		
When wing anti-ice no longer needed:		
ISOLATION switch Off		
12 Use flaps 20 and VREF 30 + 30 for landing.		
13 Use flaps 5 for go-around.		
14 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.		
15 Do not accomplish the following checklists:		
ENGINE SHUTDOWN		
PACK OFF		
16 Checklist Complete Except Deferred Items		

▼ Continued on next page ▼

757 Flight Crew Operations Manual

▼ REVERSER UNLOCKED continued ▼
Deferred Items
Descent Checklist
Pressurization LDG ALT
Recall
Autobrake
Landing data VREF 30+30, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
Landing Checklist
Speedbrake
Landing gear Down
Flaps

Intentionally Blank

757 Flight Crew Operations Manual

STARTER CUTOUT			
М	essages	es: L STARTER CUTOUT R STARTER CUTO	UT
Co	ondition	n: The start valve is not closed.	
1	ENG	START selector (affected side)	AUTO
2 Choose one:			
	♦VA	ALVE light extinguishes :	
	◆VA	ALVE light stays illuminated :	
		►►Go to step 3	
3	ENG	BLEED AIR switch (affected side)	Off
4	ISOL	LATION switch	Off
5	APU	BLEED AIR Switch	Off
6	6 Choose one:		
	♦Gro	round air source not in use:	
		▶▶Go to step 8	
	♦Gro	round air source in use :	
		► Go to step 7	
7	Disco	connect the ground air source.	
8	WIN	NG ANTI-ICE switch	Off
		This prevents possible asymmetrical ice but no the wings.	uildup
		▼ Continued on next page ▼	

▼ STARTER CUTOUT continued ▼

9 Avoid icing conditions.

Option: Pratt and Whitney Engines

10 PW Engines:

Engine and wing anti-ice on affected side is not available

11 Do **not** accomplish the following checklists:

ENGINE BLEED OFF

PACK OFF

757 Flight Crew Operations Manual

Volcanic Ash

Condition: Volcanic ash is suspected when one or more of these occur:

- •A static discharge around the windshield
- A bright glow in the engine inlets
- •Smoke or dust on the flight deck
- An acrid odor

Caution! Exit volcanic ash as quickly as possible. Consider a 180 degree turn.

1	Don oxygen masks, as needed.
2	Establish crew communications (if needed).
3	A/T ARM switch OFF
	☐ If conditions allow, run the engines at idle
4	Thrust levers (both)
5	ENG START selectors (both) FLT
6	RECIRC FAN switches (both) Off
7	ENGINE ANTI-ICE switches (both) ON
8	WING ANTI-ICE switch
9	Choose one:
	◆APU is not available :
	▶▶Go to step 11
	♦APU is available :
	▶▶Go to step 10

Continued on next page

10 APU selector . . .

. . . START, then ON

▼ Volcanic Ash continued **▼**

11 Engines may accelerate to idle very slowly, especially at high altitude.

Note: Volcanic ash can cause non-normal system reactions such as:

- engine malfunctions, increasing EGT, engine stall or flameout
- decrease or loss of airspeed indications
- equipment overheat or smoke indications
- cargo fire indications

Option: Pratt and Whitney Engines

12 Slow acceleration may be incorrectly interpreted as a hung start or an engine malfunction. If N2 is steadily increasing, and EGT remains within limits, the start is progressing normally.

Option: Rolls Royce Engines

13 Slow acceleration may be incorrectly interpreted as a hung start or an engine malfunction. If N3 is steadily increasing, and EGT remains within limits, the start is progressing normally.

▼ Continued on next page **▼**

757 Flight Crew Operations Manual

▼ Volcanic Ash continued **▼**

14 Choose one:

- ◆Engines **not** flamed out or stalled **and** EGT **stabilized or decreasing**:
 - ▶ Go to step 15
- ◆Engines flamed out or stalled, or EGT rapidly approaching or exceeding limit:
 - ▶ Go to the Dual Engine Failure [PW] checklist on page 7.3
 - ► Go to the Dual Engine Failure [RR] checklist on page 7.6

- 15 Plan to land at the nearest suitable airport.
- 16 Do **not** accomplish the following checklist:

RECIRCULATION FAN

757 Flight Crew Operations Manual

Non-Normal Checklists	Chapter NNC
Fire Protection	Section 8
Table of Contents	
APU FIRE	
ENGINE FIRE or Severe Damage of Separation	
Engine Tailpipe Fire	
Smoke, Fire or Fumes	
APU BOTTLE	8.11
APU FIRE	8.1
CARGO BOTTLE	8.12
CARGO FIRE	8.13
ENGINE BOTTLE	8.15
ENGINE FIRE or Severe Damage o	
Separation	8.2
ENGINE OVERHEAT [PW]	8.16
ENGINE OVERHEAT [RR]	8.18
Engine Tailpipe Fire	8.6
EQUIPMENT SMOKE	8.19
FIRE/OVERHEAT SYSTEM	8.19
Smoke or Fumes Removal	8.20
Smoke, Fire or Fumes	8.8
WHEEL WELL FIRE	

757 Flight Crew Operations Manual

Table of Contents

Intentionally Blank

APU FIRE

Message: APU FIRE

Condition: Fire is detected in the APU.

- 1 APU fire switch....Confirm Pull, rotate to the stop, and hold for 1 second
- 2 Choose one:
 - ◆APU fire warning light **stays illuminated**:

 Plan to land at the nearest suitable airport.
 - ▶ Go to step 3
 - ◆APU fire warning light **extinguishes**:
 - ▶ Go to step 3
- 3 Do **not** accomplish the following checklists:

APU BOTTLE

APU FAULT

Messages: L ENGINE FIRE

757 Flight Crew Operations Manual

ENGINE FIRE Engine Severe Damage or Separation

R ENGINE FIRE

Condition: One or more of these occur: • Engine fire warning • Airframe vibrations with unusual engine indications • Engine separation
1 A/T ARM switch OFF
2 Thrust lever (affected side) Confirm Idle
3 FUEL CONTROL switch (affected side) Confirm CUTOFF
4 Engine fire switch (affected side) Confirm Pull
5 If the engine fire warning light stays illuminated:
Engine fire switch Rotate to the stop and hold for 1 second
If after 30 seconds the engine fire warning light stays illuminated:
Engine fire switch Rotate to the other stop and hold for 1 second
▼ Continued on next page ▼

▼ ENGINE FIRE or Severe Damage or Separation continued ▼

6 **If** high airframe vibration occurs and continues after engine shutdown:

Without delay, reduce airspeed and descend to a safe altitude which results in an acceptable vibration level.

If high airframe vibration returns and further airspeed reduction and descent are not practical, increasing the airspeed may reduce the vibration.

- 7 Choose one:
 - ◆APU is **not available**:
 - ▶ Go to step 9
 - ♦APU is **available**:
 - ▶ Go to step 8

8	APU selector	. START, then ON
9	GND PROX FLAP OVRD switch	OVRD

- 11 Plan to land at the nearest suitable airport.
- 12 If wing anti-ice required:

PACK control selector (affected side) OFF ISOLATION switch On

When wing anti-ice no longer required:

ISOLATION switch Off

▼ Continued on next page ▼

▼ ENGINE FIRE or Severe Damage or Separation continued ▼
13 Use flaps 20 and VREF 20 for landing.
14 Use flaps 5 for go-around.
15 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.
16 Do not accomplish the following checklists:
ENGINE BOTTLE
ENGINE SHUTDOWN
PACK OFF
17 Checklist Complete Except Deferred Items
Deferred Items
Descent Checklist
Pressurization LDG ALT
Recall
Autobrake
Landing data VREF 20, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
Landing Checklist
Speedbrake
▼ Continued on next nage ▼

▼ ENGINE FIRE or Severe Damage or Separation continued ▼
Landing gear Dowr
Flaps

757 Flight Crew Operations Manual

Engine Tailpipe Fire

Condition: An engine tailpipe fire occurs on the ground with no engine fire warning.

- 1 FUEL CONTROL switch (affected side) CUTOFF
- 2 Advise the cabin.
- 3 Choose one:
 - ◆Bleed air is not available:

Advise the tower.

- ◆Bleed air is available:
 - ▶▶Go to step 4
- 4 PACK control selectors (both)..... OFF
- 5 ISOLATION switch On
- 6 Choose one:
 - ♦Affected ENG START selector is in **GND**:
 - ▶ Go to step 10
 - ◆Affected ENG START selector is **not** in GND:
 - ▶▶Go to step 7
 - ▶▶Go to step 8

Option: Pratt and Whitney Engines

7 Wait for N2 to decrease to 30%.

Option: Rolls Royce Engines

8 Wait for N3 to decrease to 30%.

lacktriangle Continued on next page lacktriangle

	▼ Engine Tailpipe Fire continued ▼		
9	ENG START selector (affected side)GND		
10	Advise the tower.		
11	When the Tailpipe Fire is extinguished:		
	ENG START selector (affected side) AUTO		

757 Flight Crew Operations Manual

Smoke, Fire or Fumes

Condition: Smoke, fire or fumes occurs.

- 1 Diversion may be needed.
- 2 Don oxygen masks, as needed.
- 3 Establish crew and cabin communications.
- 4 Advise the cabin crew to turn off main IFE power switches.
- 5 Advise cabin crew that main cabin lighting will be turned off.
- 6 UTILITY BUS switches (both) Off
- 7 L RECIRC FANOff
- 8 APU BLEED AIR switch Off
- 9 **Anytime** the smoke or fumes becomes the greatest threat:
 - ▶ Go to the Smoke or Fumes Removal checklist on page 8.20

Continued on next page

▼ Smoke, Fire or Fumes continued **▼**

10 Choose one:

◆Source of the smoke, fire or fumes is both obvious and can be extinguished quickly:

Isolate and extinguish the source.

If possible remove power from the affected equipment by switch or circuit breaker in the flight deck or cabin.

- ▶▶Go to step 11
- ◆Source of the smoke, fire or fumes is **not** obvious or cannot be extinguished quickly:
 - ▶ Go to step 12

11 Choose one:

◆Source is visually **confirmed** to be extinguished **and** smoke or fumes are **decreasing**:

Continue flight at the Captain's discretion.

Restore unpowered items at the Captain's discretion.

▶ Go to the Smoke or Fumes Removal checklist on page 8.20, if needed

Source is visually not confirmed to be extinguished or smoke or fumes are not decreasing:

▶▶Go to step 12

12 EQUIP COOLING switch..... ALTN

▼ Continued on next page **▼**

▼ Smoke, Fire or Fumes continued ▼
13 Initiate a diversion to the nearest suitable airport while continuing the checklist.
14 Consider an immediate landing if the smoke, fire or fumes situation becomes uncontrollable.
15 Do not delay landing in an attempt to complete all of the following steps.
16 ISOLATION switchOff
17 R PACK control selector OFF
18 Wait 2 minutes unless the smoke or fumes are increasing.
19 Choose one:
◆Smoke or fumes do not continue or are not increasing :
▶▶Go to step 26
◆Smoke or fumes continue or are increasing: ► ► Go to step 20
20 R PACK control selector
21 L PACK control selector OFF
22 Wait 2 minutes unless the smoke or fumes are increasing.
▼ Continued on next page ▼

▼ Smoke, Fire or Fumes continued **▼**

23 Choose one:

- ◆Smoke or fumes do **not continue** or are **not** increasing:
 - ▶ Go to step 26
- Smoke or fumes **continue** or are **increasing**:
 - ▶ Go to step 24
- 24 L PACK control selector AUTO
- 25 Consider an immediate landing.
- 26 Do **not** accomplish the following checklists:

UTILITY BUS OFF

PACK OFF

RECIRCULATION FAN

▶ Go to the Smoke or Fumes Removal checklist on page 8.20, if needed

APU BTL DISCH

APU BOTTLE

Message: APU BTL

Condition: The fire bottle pressure is low.

757 Flight Crew Operations Manual

DISCH CARGO BOTTLE

Messages: CARGO BTL 1 CARGO BTL 2

Condition: A fire bottle pressure is low.

CARGO FIRE

Messages: FWD CARGO FIRE AFT CARGO FIRE

Condition: Smoke is detected in the cargo

compartment.

- 1 CARGO FIRE ARM switch (FWD or AFT)......Confirm.....ARMED
- 2 CARGO FIRE BTL 1 DISCH switch Push and hold for 1 second

Note: DISCH light may require approximately 30 seconds to illuminate.

- 3 PACK control selector (either) Off
- 4 Plan to land at the nearest suitable airport.
- 5 Do **not** accomplish the following checklists:

CARGO BOTTLE

PACK OFF

RECIRCULATION FAN

6 **Wait** 80 minutes or during approach, whichever occurs first:

CARGO FIRE BTL 2 DISCH switch... Push and hold for 1 second

7 Checklist Complete Except Deferred Items

▼ Continued on next page ▼

▼ CARGO FIRE continued ▼	
Deferred Items	
Descent Checklist	
Pressurization LDG ALT	
Recall	
Autobrake	
Landing data VREF, Minimums	
Approach briefing Completed	
Approach Checklist	
Altimeters	
During approach	
If second fire bottle has not been discharged:	
CARGO FIRE BTL 2 DISCH switch Push and hold for 1 second	
Warning! Inform ground personnel NOT to open any cargo door after landing until all passengers and crew have exited the airplane and fire fighting equipment is nearby.	
Landing Checklist	
Speedbrake	
Landing gear Down	
▼ Continued on next page ▼	

757 Flight Crew Operations Manual

▼ CARGO FIRE continued **▼**

ENGINE BOTTLE

ENG BTL ENG BTL 1 DISCH 2 DISCH

Messages: ENG BTL 1 ENG BTL 2

Condition: The fire bottle pressure is low.

757 Flight Crew Operations Manual

ENGINE OVERHEAT [PW]

Option: Pratt and Whitney Engines

L ENG	
OVHT	

R FNG

	OVHT		OVHT	
Me	essages:	L ENG OVE	IT	R ENG OVHT
Со	ndition:	An engine	overhe	at is detected.
1	ENG B	BLEED AIR	switch (affected side)Off
2	ISOLA	TION swite	:h	Off
3	If the	L ENG OVI	HT light	is illuminated:
	API	J BLEED A	IR switc	h Off
4	WING	ANTI-ICE	switch .	Off
5		icing condi fected side		ngine and wing anti-ice on available.
6	Choos	e one:		
	♦ENG	OVHT ligh	t exting	guishes:
		▶ G o to	step 7	,
	♦ENG	OVHT ligh	t stays	illuminated:
		▶ Go to	the Er	ngine Failure or

Shutdown checklist on page 7.16

Do **not** accomplish the following checklists:

ENGINE BLEED OFF

Continued on next page

▼ ENGINE OVERHEAT [PW] continued ▼

PACK OFF

757 Flight Crew Operations Manual

ENGINE OVERHEAT [RR]

Option: Rolls Royce Engines

Op	otion: Rol	Is Royce Engines	
	L ENG OVHT	R ENO	
Me	essages:	L ENG OVHT	R ENG OVHT
Сс	ondition:	An engine over	heat is detected.
1	ENG B	LEED AIR switch	n (affected side)Off
2	A/T AF	RM switch	OFF
3	Thrust	lever	
	(affect	,	onfirm Retard slowly until ENG OVHT light extinguishes or thrust lever is at idle
4	Choos	e one:	
	♦ENG	OVHT light ext	inguishes:
		Operate engin the remainder	e at reduced thrust level for of flight.
		► ► Go to step	5
	◆ENG	OVHT light sta	ys illuminated:
			Engine Failure or checklist on page 7.16
5	If wing	g anti-ice neede	ed:
	PAC	CK control select	tor (affected side) OFF
	ISC	LATION switch	On
		▼ Continue	d on next page ▼

FAIL P-RESET

FIRE/OVERHEAT SYSTEM

Condition: Smoke is sensed in the equipment cooling

Message: FIRE/OVHT SYS

system.

Condition: One or more of these occur:

- Engine fire and overheat detection is inoperative
- APU fire detection is inoperative
- Cargo fire detection is inoperative
- 1 FIRE/OVHT TEST SYS FAIL switch......Push

757 Flight Crew Operations Manual

Smoke or Fumes Removal

Condition: Smoke or fumes removal is needed.

- 1 Do this checklist **only** when directed by the Smoke, Fire or Fumes checklist.
- 2 Do not delay landing in an attempt to complete the following steps.

Warning! Do not turn an operating pack OFF. Selecting PACKS OFF will result in increased smoke concentrations.

- 3 Close the flight deck door.
- 4 LDG ALT selector Set 9,500 feet
- 5 CABIN ALTITUDE AUTO RATE control. MAX
- 6 Choose one:
 - ♦Smoke or fumes is **not persistent**:
 - ▶▶Go to step 9
 - ♦Smoke or fumes continue or are increasing:

▶ Go to step 7

- 7 Descend to 9,500 feet or below as soon as conditions permit.
- 8 When at 9,500 feet:

Cabin Altitude MODE SELECT.....MAN

CABIN ALTITUDE

MANUAL control Hold to CLIMB until outflow valve fully open

Continued on next page

▼ Smoke or Fumes Removal continued **▼**

9 Do **not** accomplish the following checklist: CABIN AUTOMATIC INOPERATIVE

▶ Go to the Smoke, Fire or Fumes checklist on page 8.8 and do the remaining steps

757 Flight Crew Operations Manual

WHL	WELL
FI	RE

WHEEL WELL FIRE

Message: WHEEL WELL FIRE

Condition: Fire is detected in a main wheel well.

Maximum 270K/.82M

1 Landing gear lever.....DN

This attempts to extinguish the fire.

2 Plan to land at the nearest suitable airport.

Note: Do not use FMC fuel predictions with gear extended.

- 3 Flight with gear down increases fuel consumption and decreases climb performance. Refer to Gear Down performance tables in Performance Inflight chapter for flight planning.
- 4 Choose one:
 - Landing gear retraction is **not needed** for airplane performance:

Landing gear retraction is **needed** for airplane performance:

▶ Go to step 5

5 When WHL WELL FIRE light extinguishes:

Wait 20 minutes. This attempts to ensure the fire remains extinguished.

Landing gear lever UP, then OFF

Non-Normal Checklists	Chapter NNC
Flight Controls	Section 9
Table of Contents	
All Flaps and Slats Up Landing	
AUTO SPEEDBRAKE	9.3
CONFIG FLAPS	▶▶15.1
CONFIG SPOILERS	▶▶15.2
CONFIG STABILIZER	▶▶15.2
FLAP LOAD RELIEF	9.4
FLIGHT CONTROL HYDRAULIC	9.4
FLIGHT CONTROL VALVES	9.4
Jammed or Restricted Flight Controls .	9.5
LEADING EDGE SLAT ASYMMETRY	9.6
LEADING EDGE SLAT DISAGREE	9.10
MACH/SPEED TRIM	9.12
RUDDER RATIO	9.13
SPEEDBRAKES EXTENDED	9.13
SPOILERS [Advisory]	9.14
STABILIZER TRIM	9.14
TRAILING EDGE FLAP ASYMMETRY	9.15
TRAILING EDGE FLAP DISAGREE	9.18
UNSCHEDULED STABILIZER TRIM	9.22
YAW DAMPER	9.23

757 Flight Crew Operations Manual

Table of Contents

Intentionally Blank

All Flaps and Slats Up Landing

Condition: The leading edge slats and trailing edge flaps fail to extend.

- 1 Accomplish this checklist only when directed by the LEADING EDGE SLAT ASYMMETRY checklist or the TRAILING EDGE FLAP ASYMMETRY checklist
- 2 Do **not** slow below VREF 30 + 80 until established on final approach.
- 3 Limit bank angle to 15 degrees below VREF 30 + 80.

Note: Tail clearance is reduced on landing.

- 4 ENG START selectors (both)............CONT
- 5 Use VREF 30 + 50 for landing.
- 6 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.
- 7 Checklist Complete Except Deferred Items

▼ Continued on next page ▼

757 Flight Crew Operations Manual

▼ All Flaps and Slats Up Landing continued ▼ **Deferred Items Descent Checklist** Pressurization LDG ALT Landing Data VREF 30 + 50, Minimums____ Approach Briefing Completed **Approach Checklist Landing Checklist** Landing gear Down Flaps......

ΑU	TO
SPD	BRK

AUTO SPEEDBRAKE

Message: AUTO SPEEDBRAKE

Condition: An automatic speedbrake fault occurs.

- 1 Do **not** arm the speedbrake lever.
- 2 Manually extend speedbrakes after landing.
- 3 Checklist Complete Except Deferred Items

	•	
	Deferred Items	
Descent Check	dist	
Pressurization.		LDG ALT
Recall		Checked
Autobrake		· · · · · · · · · · · <u> </u>
Landing data .	VREF	, Minimums
Approach briefi	ing	Completed
Approach Chec	cklist	
Altimeters		
Landing Check	list	
Speedbrake		DOWN
Landing gear .		Down
Flaps		· · · · · · · · · · · · · · · · · · ·

757 Flight Crew Operations Manual

TRAILING EDGE

FLAP LOAD RELIEF

Message: FLAP LD RELIEF

Condition: The flap load relief system is failed.

1 Check flap position and maintain the appropriate speed.

OFF

FLIGHT CONTROL HYDRAULIC

Messages: C FLT CONT HYD L FLT CONT HYD

R FLT CONT HYD

Condition: A flight control valve is closed.

1 All switches must be ON for flight.

OFF

FLIGHT CONTROL VALVES

OFF

Message: FLT CONT VALS

Condition: Two or more flight control shutoff

valves are closed.

1 L, C, and R FLT CONTROL SHUTOFF switches must be ON for flight.

Jammed or Restricted Flight Controls

Condition: A flight control is jammed or restricted in roll, pitch, or yaw.

- 1 Overpower the jammed or restricted system. Use maximum force, including a combined effort of both pilots, if needed.
- 2 If the failure could be due to freezing water and conditions allow, consider descent to a warmer temperature and attempt to overpower the jammed or restricted system again.
- 3 Choose one:
 - **♦**Faulty system can be **overpowered**:

Continue to overpower the jammed or restricted system as needed.

♦Faulty system **cannot** be overpowered:

Use operative flight controls, trim, and thrust as needed for airplane control.

LEADING EDGE	LEADING EDGE SLAT ASYMMETRY
Message:	LE SLAT ASYM
Condition:	The leading edge slats are not symmetrically extended.
Caution!	Limit airspeed to 240 knots maximum
	Do not use FMC fuel predictions with flaps extended.
1 GND F	PROX FLAP OVRD switchOVRD
2 Choos	e one:
∳Indio	cated flap position is greater than 20:
	Use current flaps and VREF 20 for landing.
	▶▶Go to step 10
◆Indid	cated flap position is 20 or less :
	▶▶Go to step 3
3 Use tr landin	ailing edge flaps 20 and VREF 30 + 30 for g.
4 ENG S	START selectors (both)CONT
5 ALTN I	FLAPS selector Position to agree with FLAP lever
Do I	not arm the LE ALTN FLAPS switch
6 (TE #	ALTN FLAPS switch ALTN
7 ALTN I	FLAPS selector Extend or retract trailing edge flaps as needed
	▼ Continued on next page ▼

▼ LEADING EDGE SLAT ASYMMETRY continued ▼

Note: Flap indicator may not move until flaps 5 or greater is selected.

- 8 Choose one:
 - **♦**TE FLAP DISAGREE message is **not** shown:
 - ▶ Go to step 10
 - ◆TE FLAP DISAGREE message is shown:
 - ▶ Go to step 9
 - **▼** Continued on next page **▼**

757 Flight Crew Operations Manual

▼ LEADING EDGE SLAT ASYMMETRY continued ▼

- 9 Choose one:
 - ♦Indicated flap position is **less than 5**:

Do **not** accomplish the following checklist:

TRAILING EDGE FLAP ASYMMETRY
TRAILING EDGE FLAP DISAGREE

► Go to the All Flaps and Slats Up Landing checklist on page 9.1

Indicated flap position is at or greater than 5 and less than 20:

Use current flaps and VREF 30 + 40 for landing.

- ▶ Go to step 10
- ◆Indicated flap position is 20:

Use current flaps and VREF 30 + 30 for landing.

- ▶ Go to step 10
- 10 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.
- 11 Checklist Complete Except Deferred Items

Continued on next page

▼ LEADING EDGE SLAT ASYMMETRY continued ▼

Deferred Items Descent Checklist Pressurization.....LDG ALT_

Landing Checklist

757 Flight Crew Operations Manual

	ADING EDGE	LEADING EDGE SLAT DISAGREE
М	essage:	LE SLAT DISAGREE
Co	ondition:	The leading edge slats are not in the commanded position.
Ca	aution	! Limit airspeed to 240 knots maximum.
1 2	Choos	PROX FLAP OVRD switchOVRD se one: cated flap position greater than 20:
	Titul	Use current flaps and VREF 20 for landing.
		▶ Go to step 10
	1,	•
	◆Inai	cated flap position 20 or less :
		▶▶Go to step 3
3 4		aps 20 and VREF 20 for landing.
	♦FLAF	Plever position greater than 20:
		ALTN FLAPS selector20
		▶▶Go to step 6
	♦ FLAF	P lever position 20 or less :
		▶▶Go to step 5
5	ALTN	FLAPS selector Position to agree with FLAP lever

▼ Continued on next page ▼

	▼ LEADING EDGE SLAT DISAGREE continued ▼
6	LE ALTN FLAPS switch ALTN
7	TE ALTN FLAPS switch ALTN
8	Choose one:
	◆LEADING EDGE light is illuminated :
	LE ALTN FLAPS switch Off
	▶ Go to the LEADING EDGE SLAT ASYMMETRY checklist on page 9.6■ ■ ■ ■
	◆LEADING EDGE light extinguishes :
	▶▶Go to step 9
9	ALTN FLAPS selector Extend or retract leading edge slats and trailing

- edge flaps as needed
- 10 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.
- 11 Checklist Complete Except Deferred Items

Continued on next page

_	Z LEADING EDGE SLAT DISAGREE continued ▼
	Deferred Items
Descent (Checklist
Pressuriza	ation LDG ALT
Recall	
Autobrak	e
Landing o	lataVREF 20, Minimums
Approach	briefing Completed
Approach	Checklist
Altimeter	S
Landing C	Checklist
Speedbra	ke
Landing g	jear Down
Flaps	As directed ■ ■ ■ ■
MACH SPD TRIM	MACH/SPEED TRIM
Message: M	MACH/SPEED TRIM
Condition: T	he Mach/speed system is failed.

757 Flight Crew Operations Manual

RUDDER RATIO

RUDDER RATIO

Message: RUDDER RATIO

Condition: The rudder ratio system is failed.

- 1 Above 160 knots, avoid large or abrupt rudder inputs.
- 2 Choose one:
 - ◆Left hydraulic system pressure is **not normal**:

◆Left hydraulic system pressure is normal:

▶▶Go to step 3

- 3 Crosswind limit is 15 knots.
- 4 Do **not** autoland.

SPEED BRAKES

SPEEDBRAKES EXTENDED

Message: SPEEDBRAKES EXT

Condition: The speedbrakes are extended and one or

more of these occur:

•The radio altitude is between 15 and 800

feet

•The flap lever is in a landing setting

757 Flight Crew Operations Manual

SPOILERS

SPOILERS [Advisory]

Message: SPOILERS

Condition: One or more spoiler pairs are failed.

- 1 Roll rate may be reduced inflight.
- 2 Speedbrake effectiveness may be reduced in flight and during landing.

STAB

STABILIZER TRIM

Message: STAB TRIM

Condition: The stabilizer trim operates at a decreased

rate.

1 **If** a normal stabilizer trim rate is desired:

ALTN STAB TRIM

switches (both) Push and hold when trim is desired

		8
TR	RAILING EDGE	TRAILING EDGE FLAP ASYMMETRY
М	essage:	TE FLAP ASYM
C	ondition:	The trailing edge flaps are not symmetrically extended.
Ca	aution	! Do not arm the TRAILING EDGE (TE) ALTERNATE FLAPS switch.
ı		Do not use FMC fuel predictions with flaps extended.
1	GND I	PROX FLAP OVRD switch OVRD
2	Choos	se one:
	♦Indi	cated flap position at or greater than 20:
		Use current flaps and VREF 20 for landing.
		▶▶Go to step 7
	♦Indi	cated flap position between 5 and 20:
		Use current flaps and VREF 30 + 30 for landing.
		▶▶Go to step 7
	♦Indi	cated flap position at or between 1 and 5:
		▶▶Go to step 5
	♦Indi	cated flap position less than 1:
		▶▶Go to step 3
3	ALTN	FLAPS selector

Continued on next page ▼

	131 Tight Crew Operations Manual
	▼ TRAILING EDGE FLAP ASYMMETRY continued ▼
4	LE ALTN FLAPS switch ALTN
ı	lote: Flap indicator may remain less than 1.
5	Use VREF 30 + 40 for landing.
6	Choose one:
	♦ LE SLAT ASYM or LE SLAT DISAGREE message is shown:
	▶ Go to the All Flaps and Slats Up Landing checklist on page 9.1■ ■ ■ ■
	◆LE SLAT ASYM and LE SLAT DISAGREE messages are not shown:
	Note: Tail clearance is reduced on landing.
	► ► Go to step 7
7	Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.
8	Checklist Complete Except Deferred Items
	Deferred Items
D	escent Checklist
F	Pressurization LDG ALT
	Recall
	Autobrake
	▼ Continued on next page ▼
	a thomas a second as

▼ TRAILING E	EDGE FLAP ASYMMETRY continued ▼
Landing data	VREF 20, or VREF 30 + 30, or VREF 30 + 40, as directed Minimums
Approach briefing	Completed
Approach Checkl	ist
Altimeters	· · · · · · · · · · · · · · · · · · ·
Landing Checklis	t
Speedbrake	ARMED
Landing gear	
Flaps	As directed ■ ■ ■ ■

Message: TE FLAP DISAGREE
TETEN DISTOREE
Condition: The trailing edge flaps are not in the commanded position.
1 GND PROX FLAP OVRD switch OVR
2 Choose one:
◆Indicated flap position greater than 20:
Use current flaps and VREF 20 for landing
▶▶Go to step 8
◆Indicated flap position 20 or less :
Use flaps 20 and VREF 20 for landing.
► Go to step 3
3 Choose one:
◆FLAP lever position greater than 20:
ALTN FLAPS selector 2
▶▶Go to step 4
◆FLAP lever position 20 or less :
ALTN FLAPS selector Position to agre with FLAP leve
▶▶Go to step 4
4 LE ALTN FLAPS switch ALT
5 TE ALTN FLAPS switch ALT
▼ Continued on next page ▼

	737 Fight Crew Operations Manual
	▼ TRAILING EDGE FLAP DISAGREE continued ▼
6	Choose one:
	◆ TRAILING EDGE light is illuminated:
	TE ALTN FLAPS switch Of
	►►Go to the TRAILING EDGE FLAP ASYMMETRY checklist on page 9.15 ■ ■ ■ ■
	◆TRAILING EDGE light extinguishes :
	▶▶Go to step 7
7	ALTN FLAPS selector Extend or retract
8	Check the Non-Normal Configuration Landing

▼ Continued on next page ▼

chapter.

757 Flight Crew Operations Manual

▼ TRAILING EDGE FLAP DISAGREE continued ▼ Deferred Items Descent Checklist Pressurization LDG ALT Landing data VREF 20, Minimums____ Approach briefing Completed **Approach Checklist Landing Checklist** Landing gear Down As directed Flaps........

Intentionally Blank

UI ST.	NSCHED AB TRIM	UNSCHEDULED STABILIZER TRIM —
М	essage: (JNSCHD STAB TRIM
Co		Stabilizer movement occurs without a signal to trim.
1	STAB T (both).	RIM CUT OUT switches
2	need	er than normal control column force may be ed to prevent unwanted pitch change pilot disengage switch Push
3		TRIM CUT OUT switch NORM
4	Choose	
	♦Unsch	neduled trim does not occur :
		▶▶Go to step 8
	♦Unsch	neduled trim occurs :
		▶▶Go to step 5
5	C STAB	TRIM CUT OUT switch CUT OUT
6	R STAB	TRIM CUT OUT switch NORM
7	Choose	one:
	♦Unsch	neduled trim does not occur:
		▶▶Go to step 8
	♦Unsch	neduled trim occurs :
		R STAB TRIM CUT OUT switch CUT OUT
		▶▶Go to step 8

▼ UNSCHEDULED STABILIZER TRIM continued ▼

8 Do **not** accomplish the following checklist:

STABILIZER TRIM

Intentionally Blank

Non-Normal Checklists	Chapter NNC
Flight Instruments, Displays	Section 10
Table of Contents Airspeed Unreliable	10.1
Airspeed Unreliable	10.1
ALTITUDE DISAGREE	10.4
ATTITUDE DISAGREE	10.4
IAS DISAGREE	10.5
INSTRUMENT SWITCH	10.5

Table of Contents

Intentionally Blank

Airspeed Unreliable

Condition: The airspeed or Mach indications are

suspected to be unreliable. (Items which may indicate Airspeed Unreliable are listed in the Additional Information section.)

Objective: Maintain control using manual pitch and thrust.

- 1 Check the pitch attitude and thrust.
- 2 If pitch attitude or thrust is **not** normal for phase of flight:

Note: Normal pitch attitude and thrust settings are available in the FLIGHT WITH UNRELIABLE AIRSPEED table in the Performance Inflight-QRH chapter.

3 Altitude information, vertical speed information, limit EPR, Reference EPR, and EPR bug may be unreliable.

757 Flight Crew Operations Manual

▼ Airspeed Unreliable continued **▼**

- 4 Cross check captain and first officer airspeed indications and standby airspeed indicator. An airspeed display differing by more than 15 knots from the standby indicator should be considered unreliable.
- 5 Choose one:
 - ◆Reliable airspeed data source can be determined:

AIR DATA switch (unreliable side) . . ALTN

Invalid overspeed warning and invalid input to AFDS and autothrottle may occur or continue.

Reliable airspeed data source can **not** be determined:

▶ Go to step 6

- 6 Maintain normal pitch attitude and thrust setting for phase of flight. Refer to the FLIGHT WITH UNRELIABLE AIRSPEED table in the Performance Inflight chapter.
- 7 Maintain visual conditions if possible.
- 8 Checklist Complete Except Deferred Items

Deferred Items

Review before descent:

Establish landing configuration early.

Use electronic and visual glideslope indicators, where available, for approach and landing.

▼ Airspeed Unreliable continued **▼**

Refer to IRS ground speed on the CDU POS REF page and reported wind on approach.

Additional Information

One or more of the following may be evidence of unreliable airspeed/Mach indication:

- speed/altitude information not consistent with pitch attitude and thrust setting
- speed/airspeed/Mach failure flags
- blank or fluctuating airspeed displays
- variation between captain and first officer airspeed displays
- amber line through one or more ADI flight mode annunciations
- overspeed indications
- radome damage or loss
- simultaneous overspeed and stall warnings

Display of one or more of the following EICAS messages may be evidence of unreliable airspeed/Mach indication:

- CAPT PITOT
- •F/O PITOT
- •L AUX PITOT
- MACH/SPEED TRIM
- OVERSPEED
- PROBE HEAT
- •R AUX PITOT
- RUDDER RATIO

757 Flight Crew Operations Manual

ALTITUDE DISAGREE

Message: ALT DISAGREE

Condition: The captain's and the first officer's altitude

indications disagree by more than 200 feet.

- 1 Airplane does not meet RVSM airspace requirements.
- 2 Transponder altitude received by ATC may be unreliable.
- Maintain visual conditions if possible.
 - 4 Checklist Complete Except Deferred Items

Deferred Items

Review before descent:

Establish landing configuration early.

Radio altitude reference is available below 2500 feet.

Use electronic and visual glideslope indicators, where available, for approach and landing.

ATTITUDE DISAGREE

Message: ATT DISAGREE

Condition: The captain's and the first officer's attitude

indications disagree.

IAS DISAGREE

Message: IAS DISAGREE

Condition: The captain's and the first officer's airspeed

indications disagree.

► Go to the Airspeed Unreliable checklist on page 10.1

INSTRUMENT SWITCH

Message: INSTR SWITCH

Condition: Both pilots' ADI and HSI use the same

symbol generator source.

1 Both ADIs and HSIs are displaying information from the center symbol generator.

Intentionally Blank

Non-Normal Checklists	Chapter NNC
Flight Management, Navigation	Section 11
Table of Contents	
ATC FAULT	11.1
FMC FAIL	11.2
FMC MESSAGE	11.3
GPS	11.4
IRS DC FAIL	11.4
IRS FAULT	11.5
IRS ON DC	11.5
UNABLE RNP	11.6

Table of Contents

Intentionally Blank

ATC FAULT

Messages: ATC FAULT

Condition: A transponder fault occurs.

757 Flight Crew Operations Manual

Messages: L FMC FAIL R FMC FAIL

Condition: An FMC is failed.

- 1 Choose one:
 - ◆A **single** FMC is failed:

▶ Go to step 2

◆Both FMCs are failed:

▶ Go to step 4

- 2 NAV SOURCE selector FMC-L or FMC-R Select the operative FMC
- 3 During VOR approaches, one pilot must have raw data from the VOR associated with the approach displayed on the RDMI (RMI) or HSI in a VOR mode, no later than the final approach fix.

- 4 Select autopilot roll and pitch modes appropriate for the desired flight path. LNAV and VNAV are not available.
- 5 Captain's NAV SOURCE selector CDU-L
- 6 First Officer's NAV SOURCE selector CDU-R
- 7 Route modifications must be entered into both CDUs. Enter any new waypoints by latitude and longitude.
- 8 Manually tune navigation radios.

▼ FMC FAIL continued ▼

9 Refer to Performance Inflight chapter for VREF speed and other applicable performance information.

FMC

FMC MESSAGE

Messages: FMC MESSAGE

Condition: An alert message is in the FMC scratchpad.

- 1 Choose one:
 - ◆CDU message **is** FUEL QTY ERROR-PROG 2, FUEL DISAGREE-PROG 2, or INSUFFICIENT FUEL
 - ▶ Go to the Engine Fuel Leak checklist on page 12.1
 - ◆CDU message is **not** FUEL QTY ERROR-PROG 2, FUEL DISAGREE-PROG 2, or INSUFFICIENT FUEL:

Take action as needed per the message.

757 Flight Crew Operations Manual

GPS

Messages: L GPS R GPS

GPS

Condition: One or both GPS receivers are failed.

1 Choose one:

♦L GPS or R GPS message is shown:

The indicated GPS has failed.

♦GPS message is shown:

Both GPSs have failed.

DC FAIL

IRS DC FAIL

Messages: L IRS DC FAIL R IRS DC FAIL

C IRS DC FAIL

Condition: IRS backup DC power is failed.

757 Flight Crew Operations Manual

IRS FAULT

Messages: L IRS FAULT R IRS FAULT

C IRS FAULT

Condition: An IRS fault occurs.

1 Choose one:

♦Left IRS FAULT light is **illuminated**:

Captain's IRS switch ALTN

Right IRS FAULT light is illuminated:

First Officer's IRS switch..... ALTN

◆Center IRS FAULT light is **illuminated**:

ON DC IRS ON DC

Messages: L IRS ON DC R IRS ON DC

C IRS ON DC

Condition: IRS AC power is failed.

757 Flight Crew Operations Manual

UNABLE RNP

Messages: UNABLE RNP

Condition: The actual navigation performance is not

sufficient.

1 **If** on a procedure or airway that has an RNP alerting requirement:

Select alternate procedure or airway, or initiate a qo-around.

2 **If** on a procedure or airway without RNP:

Verify position.

Non-Normal Checklists	Chapter NNC
Fuel	Section 12
Table of Contents	
Engine Fuel Leak	12.1
FUEL CONFIGURATION	12.8
FUEL CROSSFEED	12.10
FUEL PUMP	12.10
FUEL SPAR VALVE	▶▶7.44
FUEL SYSTEM PRESSURE	12.12
LOW FUEL	12.14
Low Fuel Temperature	12.16

757 Flight Crew Operations Manual

Table of Contents

Intentionally Blank

Engine Fuel Leak

		An in flight engine fuel leak is suspected or confirmed.(Items which may indicate an engine fuel leak are listed in the Additional Information section at the end of this procedure.)
1	1 CLan	d C R PUMP switches Off
2	2 Do no t	t accomplish the following checklist:
	FUE	EL CONFIGURATION
	3 FWD a	nd AFT FUEL XFEED switches Off
_		y an engine fuel leak by observing a left or nain tank fuel quantity decreasing faster than ner.
	1000 p	rease in fuel imbalance of approximately bounds or more in 30 minutes should be ered an engine fuel leak.
6	6 If cond	ditions allow:
	Visu	ually check for engine fuel leak.
-	7 Choose	e one:
	▲ Engir	ne fuel leak confirmed :

- - ▶▶Go to step 17
- Left and right main tank quantities decrease at the same rate:
 - ▶ Go to step 8

757 Flight Crew Operations Manual

\blacksquare	Engine	Fuel	Leak	continued	\blacksquare
			LCUIL	Continuca	

- 8 Resume normal fuel management procedures.
- 9 Choose one:
 - ◆FUEL DISAGREE-PROG 2 **and** FUEL QTY ERROR-PROG 2 messages are **not** shown on the CDU scratchpad:
 - ▶ Go to step 12
 - ◆FUEL DISAGREE-PROG 2 **or** FUEL QTY ERROR-PROG 2 message is **shown** on the CDU scratchpad:

▶▶Go to step 10

10 PROGRESS PAGE 2 SELECT

11 TOTALIZER or

CALCULATED Select USE for the most accurate indication

12 Choose one:

◆LOW FUEL message not shown:

◆LOW FUEL message is shown:

FWD and AFT FUEL XFEED switches . . . On

This ensures all fuel is available if the low tank empties.

▶ Go to step 13

757 Flight Crew Operations Manual

▼ Engine Fuel Leak continued ▼
13 PUMP switches (all)
This ensures all fuel is available.
14 Plan to land at nearest suitable airport.
15 Avoid high nose up attitude and excessive acceleration and deceleration.
16 Do not accomplish the following checklist:
LOW FUEL
17 A/T ARM switch OFF
18 Thrust lever (affected side) Confirm Idle
19 FUEL CONTROL switch (affected side) Confirm CUTOFF
20 Choose one:
◆APU is available :
▶▶Go to step 21
◆APU is not available :
►►Go to step 22
21 APU selector START, then ON
22 GND PROX FLAP OVRD switch OVRD
23 Transponder mode selector
24 Plan to land at the nearest suitable airport.

▼ Engine Fuel Leak continued ▼
25 If wing anti-ice needed:
PACK control selector (affected side) OFF
ISOLATION switchOn
When wing anti-ice no longer needed:
ISOLATION switch Off
26 Choose one:
◆FUEL DISAGREE-PROG 2 and FUEL QTY ERROR-PROG 2 messages are not shown on the CDU scratchpad:
▶▶Go to step 29
◆FUEL DISAGREE-PROG 2 or FUEL QTY ERROR-PROG 2 message is shown on the CDU scratchpad:
►►Go to step 27
27 PROGRESS PAGE 2 SELECT
28 TOTALIZER Select USE for TOTALIZER to determine fuel remaining
29 After engine shutdown, all remaining fuel can be used for the operating engine. Resume normal fuel management procedures.
30 Use Flaps 20 and VREF 20 for landing
31 Use Flaps 5 for go-around

▼ Engine Fuel Leak continued **▼**

- 32 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.
- 33 Do **not** accomplish the following checklists:

ENGINE SHUTDOWN

PACK OFF

34 Choose one:

♦LOW FUEL message not shown:

▶ Go to step 39

♦LOW FUEL message is **shown**:

FWD and AFT FUEL XFEED switches . . . On

This ensures all fuel is available if the low tank empties.

▶▶Go to step 35

This ensures all fuel is available.

- 36 Plan to land at nearest suitable airport.
- 37 Avoid high nose up attitude and excessive acceleration and deceleration.
- 38 Do **not** accomplish the following checklist:

LOW FUEL

39 Checklist Complete Except Deferred Items

▼ Engine Fuel Leak continued ▼
Deferred Items
Descent Checklist
Pressurization LDG ALT
Recall
Autobrake
Landing data VREF 20, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
Landing Checklist
Speedbrake
Landing gear Down
Flaps
▼ Continued on next nage ▼

▼ Engine Fuel Leak continued **▼**

Additional Information

One or more of the following may be evidence of an engine fuel leak:

- Visual observation of fuel spray from strut or engine
- Excessive engine fuel flow
- Total fuel quantity decreasing at an abnormal rate
- •FUEL CONFIG message on EICAS.
- •LOW FUEL message on EICAS
- FUEL DISAGREE-PROG 2 or FUEL QTY ERROR-PROG 2 message on the CDU scratchpad
- •INSUFFICIENT FUEL message on the CDU scratchpad

757 Flight Crew Operations Manual

FUEL CONFIG

FUEL CONFIGURATION

Messages: FUEL CONFIG

Condition: One or more of these occur:

- Both center pump switches are off with fuel in the center tank
- •A fuel imbalance between main tanks
- •The fuel quantity is low in a main tank
- 1 The FUEL CONFIG message may be caused by an engine fuel leak. For indications of an engine fuel leak, check:

Total fuel quantity remaining compared to planned fuel remaining.

Fuel flow indications, for an engine with excessive fuel flow.

Individual tank quantities.

Totalizer compared to calculated quantities (PROGRESS page 2). The TOTALIZER value is the sum of the individual tank quantities. The CALCULATED value is the totalizer value at engine start minus fuel used (calculated using fuel flow rates and time).

▼ FUEL CONFIGURATION continued ▼

- 2 Choose one: ◆Engine fuel leak indicated: ▶ ▶ Go to the Engine Fuel Leak checklist on page 12.1 Engine fuel leak **not indicated**: FWD and AFT FUEL XFEED switches ▶ Go to step 3 3 FWD and AFT PUMP switches (low tank) Off This ensures fuel from the high tank feeds both engines. 4 When fuel balancing complete: All FWD and AFT PUMP switches. ON FWD and AFT FUEL XFEED switches Off 5 Choose one: Fuel quantity is **low** in either main tank: ▶ Go to the LOW FUEL checklist on page 12.14
 - ◆Fuel quantity is **not low** in either main tank:

757 Flight Crew Operations Manual

VALVE FUEL CROSSFEED

Messages: AFT FUEL X-FEED FWD FUEL X-FEED

Condition: The fuel crossfeed valve is not in the

commanded position.

1 **If** both crossfeed switches are ON and one valve is open, fuel will crossfeed.

FUEL PUMP

Messages: CTR L FUEL PUMP CTR R FUEL PUMP

L AFT FUEL PUMP R AFT FUEL PUMP
L FWD FUEL PUMP R FWD FUEL PUMP

Condition: The pump pressure is low.

1 Do not reset any tripped fuel pump circuit breaker.

lacktriangle Continued on next page lacktriangle

▼ FUEL PUMP continued ▼

2	Choose one:
	◆ Left or right pump PRESS light is illuminated:
	PUMP switch (affected pump) Off ■ ■ ■ ■
	Center left or center right pump PRESS light is illuminated:
	▶▶Go to step 3
	◆ Center left and center right pump PRESS lights are illuminated:
	C L and C R PUMP switches Off
	FWD and AFT FUEL XFEED switches Off
	▶▶Go to step 6
3	PUMP switch (affected pump) Off
4	FWD and AFT FUEL XFEED switches On
5	When center tank fuel depleted:
	FWD and AFT FUEL XFEED switches Off \blacksquare \blacksquare \blacksquare \blacksquare
6	Check available left and right main tank quantity is sufficient for the planned flight. Center tank fuel is not available.

757 Flight Crew Operations Manual

PRESS - FUE

FUEL SYSTEM PRESSURE

Messages: L FUEL SYS PRESS R FUEL SYS PRESS

Condition: The engine is on suction feed.

Note: At high altitude, thrust deterioration or engine flameout may occur.

- 1 Choose one:
 - **♦Able** to maintain needed thrust on affected engine:

◆Unable to maintain needed thrust on affected engine:

FWD and AFT FUEL XFEED switches ... On

Note: Continued operation with the crossfeed valve open will result in a progressive fuel imbalance when both engines are feeding from the same main tank.

- 2 Do **not** balance fuel.
- 3 Do **not** accomplish the following checklist:

FUEL CONFIGURATION

4 **When** the FUEL CONFIG light illuminates due to main tank imbalance:

FWD and AFT FUEL XFEED switches Off

lacktriangle Continued on next page lacktriangle

▼ FUEL SYSTEM PRESSURE continued ▼

Continue suction feed operation. Sufficient roll control is available to compensate for any main tank fuel imbalance.

If unable to maintain needed thrust on affected engine:

Operate at a lower altitude.

757 Flight Crew Operations Manual

FUEL CONFIG

LOW FUEL

Messages: LOW FUEL

Condition: The fuel quantity is low in a main tank.

1 The LOW FUEL message may be caused by an engine fuel leak. For indications of an engine fuel leak, check:

Total fuel quantity remaining compared to planned fuel remaining.

Fuel flow indications, for an engine with excessive fuel flow.

Individual tank quantities.

Totalizer compared to calculated quantities (PROGRESS page 2). The TOTALIZER value is the sum of the individual tank quantities. The CALCULATED value is the totalizer value at engine start minus fuel used (calculated using fuel flow rates and time).

▼ LOW FUEL continued **▼**

- 2 Choose one:
 - **♦Indication** of engine fuel leak:
 - ▶ Go to the Engine Fuel Leak checklist on page 12.1

- **♦No indication** of engine fuel leak:
 - FWD and AFT FUEL XFEED switches . . . On

This ensures fuel is available to both engines if the low tank empties.

▶▶Go to step 3

- 4 Plan to land at nearest suitable airport.
- 5 Avoid high nose up attitude and excessive acceleration and deceleration.

757 Flight Crew Operations Manual

Low Fuel Temperature

Condition: Fuel temperature is near the minimum.

1 **When** fuel temperature is approaching fuel temperature limit (3°C above the fuel freeze point):

Increase speed, change altitude, and or deviate to a warmer air mass to achieve a TAT equal to or higher than the fuel temperature limit.

TAT will increase approximately 0.5 to 0.7 °C for each .01 Mach increase in speed.

In extreme conditions it may be necessary to descend as low as FL250.

Non-Normal Checklists	Chapter NNC
Hydraulics	Section 13
Table of Contents	
ELECTRIC HYDRAULIC OVERHEAT	13.1
ENGINE HYDRAULIC OVERHEAT	
HYDRAULIC (1 or 2) OVERHEAT	13.1
HYDRAULIC ELECTRIC (1 or 2)	13.2
HYDRAULIC ELECTRIC PUMP	
HYDRAULIC ENGINE PUMP	13.2
HYDRAULIC QUANTITY	13.2
HYDRAULIC RESERVOIR PRESSURE	13.3
HYDRAULIC SYSTEM PRESSURE (C on	ly)13.4
HYDRAULIC SYSTEM PRESSURE (L on	ly)13.6
HYDRAULIC SYSTEM PRESSURE (R on	ly) 13.12
HYDRAULIC SYSTEM PRESSURE (L and	d C) 13.14
HYDRAULIC SYSTEM PRESSURE (L and	d R) 13.18
HYDRAULIC SYSTEM PRESSURE (R an	d C) 13.22
RAT UNI OCKED	13.24

757 Flight Crew Operations Manual

Table of Contents

Intentionally Blank

	VHT	FLECTRIC HY	/DDAIII	LIC OVERHEAT	
U	VII	LLLC I KIC III	DRAGI	LIC OVERILLAT	
Me	essages:	L ELEC HYD OV	HT	R ELEC HYD OVHT	•
Co	ondition:	The pump ter	mperatu	ıre is high.	
1	ELEC	HYD PUMP swi	itch		Off
2	Do no	t accomplish	the follo	wing checklist:	
	HY	DRAULIC ELEC	CTRIC P	UMP	
		FAICTAIE LIV	DDAIII:	C OVERUEAT	
0'	VHT	ENGINE HY	DKAUL.	IC OVERHEAT	
Me	essages:	L ENG HYD OVE	HT.	R ENG HYD OVHT	
Co	ondition:	The pump ter	mperatu	ıre is high.	
1	ENG I	HYD PUMP swit	tch		Off
2	Do no	ot accomplish	the follo	wing checklist:	
	HY	DRAULIC ENG	INE PUN	ИР	
				_	
0	VHT	HYDRAULIC	(1 or :	2) OVERHEAT	
Me	essages:	C HYD 1 OVHT		C HYD 2 OVHT	
Co	ondition:	The pump ter	mperatu	ıre is high.	
1	ELEC	HYD PUMP swi	itch		Off
2	Do no	ot accomplish	the follo	wing checklist:	
	HY	DRAULIC ELEC	CTRIC (1 or 2)	

PRESS	HYDRAULIC ELEC	CTRIC (1 or 2)
Messages:	C HYD ELEC 1	C HYD ELEC 2
Condition:	The pump pressure	is low.
1 ELEC	HYD PUMP switch ■ ■ ■	Off ■
PRESS	HYDRAULIC ELE	CTRIC PUMP
Messages:	L HYD ELEC PUMP	R HYD ELEC PUMP
Condition:	The pump pressure	is low.
1 ELEC	HYD PUMP switch ■ ■ ■	Off ■
PRESS	HYDRAULIC EN	IGINE PUMP
Messages:	L HYD ENG PUMP	R HYD ENG PUMP
Condition:	The pump pressure	is low.
1 ENG H	HYD PUMP switch ■ ■ ■	Off ■
RSVR -	HYDRAULIC (QUANTITY
Messages:	C HYD QTY L HYD QTY	R HYD QTY
Condition:	The hydraulic quant	city is low.

757 Flight Crew Operations Manual

HYDRAULIC RESERVOIR PRESSURE

Messages: C HYD RSVR PRESS R HYD RSVR PRESS

L HYD RSVR PRESS

Condition: The hydraulic reservoir air pressure is low.

757 Flight Crew Operations Manual

HYDRAULIC SYSTEM PRESSURE (C only)

Messages: C HYD SYS PRESS

Condition: The hydraulic system pressure is low.

Objective: To attempt to avoid further damage.

- 1 C1 AND C2 ELEC HYD PUMP switches (both) . . Off
- 2 Do **not** autoland.

Inoperative Items

Center autopilot inop

Left autopilot stabilizer trim inop

One spoiler panel on each wing inop

Roll rate may be reduced in flight. Speedbrake effectiveness may be reduced in flight and during landing.

Center system hydraulic power to stabilizer trim inop

Right system powers the trim at half rate.

- 3 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.
- 4 Do **not** accomplish the following checklists:

HYDRAULIC ELECTRIC (1 or 2)

STABILIZER TRIM

SPOILERS

YAW DAMPER

Intentionally Blank

757 Flight Crew Operations Manual

CVC	
515	
PRESS	

HYDRAULIC SYSTEM PRESSURE (L only)

	(= 0,)
Messages:	L HYD SYS PRESS
Condition:	The hydraulic system pressure is low.
Objective:	To avoid further system damage, and configure for landing using alternate systems, if needed.
1 LENC	G HYD PUMP switchOff
2 L ELE	C HYD PUMP switchOff
3 Above input	e 160 knots, avoid large or abrupt rudder s.
4 Do n o	ot autoland.
5 Do n o	ot use the autobrake.
6 Plan a	additional time for flap and gear extension.
Inonor	ativa Itams

Inoperative Items

Left autopilot inop

Some spoiler panels on each wing inop

Roll rate may be reduced in flight. Speedbrake effectiveness may be reduced in flight and during landing.

Rudder ratio inop

Left thrust reverser inop

7 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.

Continued on next page

▼ HYDRAULIC SYSTEM	PRESSURE ((L only	continued \

8 Do **not** accomplish the following checklists:

HYDRAULIC ELECTRIC PUMP

HYDRAULIC ENGINE PUMP

SPOILERS

RUDDER RATIO

YAW DAMPER

9 Checklist Complete Except Deferred Items

Deferred Items
Descent Checklist
Pressurization LDG ALT
Recall
Autobrake OFF
Landing data VREF, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
▼ Continued on next page ▼

757 Flight Crew Operations Manual

▼ HYDRAULIC SYSTEM PRESSURE (L only) continued ▼

Alternate Flap Extension (if required)

If TE FLAP DISAGREE **is shown** during normal flap extension:

Use flaps 20 and VREF 20 for landing

GND PROX FLAP OVRD switch OVRD

ALTN FLAPS selector Position to agree with FLAP lever

LE ALTN FLAPS arm switch ALTN

TE ALTN FLAPS arm switch ALTN

ALTN FLAPS selector Extend or retract flaps, as needed

Do **not** accomplish the following checklist:

TRAILING EDGE FLAP DISAGREE

Alternate Gear Extension (if required)

If GEAR DISAGREE **is shown** during normal gear extension:

Landing gear lever OFF

GND PROX GEAR OVRD switch.....OVRD

Action is **not** reversible Maximum 250K/.75M

ALTN GEAR EXTEND switch DN

Continued on next page

▼ HYDRAULIC SYSTEM PRESSURE (L only) continued ▼
After gear down lights illuminate:
Landing gear leverDN
Do not arm speedbrakes. Automatic speedbrake is inoperative.
Nose wheel steering is inoperative. Differential braking is available.

757 Flight Crew Operations Manual

▼ HYDRAULIC SYSTEM	PRESSURE ((L only)	continued `
---------------------------	------------	----------	-------------

Do **not** accomplish the following checklist:

GEAR DOORS

Landing Checklist
Speedbrake DOWN
Ensure speedbrakes are extended before using right thrust reverser.
Landing gear
Flaps

Intentionally Blank

757 Flight Crew Operations Manual

HYDRAULIC SYSTEM PRESSURE (R only)

M	essages: R HYD SYS PRESS
Co	ondition: The hydraulic system pressure is low.
Ol	bjective: To avoid further system damage.
1	R ENG HYD PUMP switch Off
2	R ELEC HYD PUMP switchOf
3	Do not autoland.

Inoperative Items

Right autopilot inop

Right stabilizer trim inop.

Center stabilizer powers the trim at half trim rate.

Autobrake inop

Some spoiler panels on each wing inop

Roll rate may be reduced in flight. Speedbrake effectiveness may be reduced in flight and during landing.

Right thrust reverser inop

- 4 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.
- 5 Do **not** accomplish the following checklists:

HYDRAULIC ELECTRIC PUMP HYDRAULIC ENGINE PUMP SPOILERS

▼ Continued on next page ▼

▼ HYDRAULIC SYSTEM PRESSURE (R only) continued ▼

STABILIZER TRIM

6 Checklist Complete Except Deferred Items

Deferred Items
Descent Checklist
Pressurization LDG ALT
Recall
Autobrake OFF
Landing data VREF, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
anding Checklist
Speedbrake
Landing gear Dowr
Flaps

757 Flight Crew Operations Manual

HYDRAULIC SYSTEM PRESSURE (L and C)

SYS PRESS

Ме	ssages:	HYD SYS I	PRESS	C HYD SYS PRES	SS
Со	ndition:	Two hydra	ulic system	pressures are	low.
Ob	jective:		for landing	em damage, an using alternate	
1	L ENG	HYD PUM	switch		Off
2	L ELEC	C HYD PUM	P switch		Off
3	C1 and	d C2 ELEC	HYD PUMP	switches (both)) Off
4	SPEED	BRAKE lev	er		DOWN
	Do	not arm S	PEEDBRAK	E lever.	
5	Plan to	o land at th	ne nearest s	suitable airport.	
6	Crossv	wind limit i	s 20 knots.		
7	Do no	t autoland			
8	Manua	ally extend	speedbrake	es after landing	
9	Do no	t use auto	brakes.		
10	Use fla	aps 20 and	VREF 30 +	- 20 for landing	
11	Avoid knots.	_	orupt rudde	r inputs above	160
12	GND F	ROX FLAP	OVRD swite	ch	.OVRD
		▼ C	ntinued on nev	rt nage 🔻	

▼ HYDRAULIC SYSTEM PRESSURE (L and C) continued ▼

13 Plan additional time for flap and gear extension.

Inoperative Items

Left and Center autopilots inop

Left thrust reverser inop

Some spoiler panels on each wing inop

Roll rate may be reduced in flight. Speedbrake effectiveness may be reduced in flight and during landing.

Center stabilizer trim inop

Right stabilizer powers the trim at half speed.

Rudder ratio system inop

- 14 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.
- 15 Do **not** accomplish the following checklists:

HYDRAULIC ELECTRIC PUMP

HYDRAULIC ENGINE PUMP

HYDRAULIC ELECTRIC (1 or 2)

RUDDER RATIO

SPOILERS

STABILIZER TRIM

YAW DAMPER

16 Checklist Complete Except Deferred Items

▼ Continued on next page **▼**

▼ HYDRAULIC SYSTEM PRESSURE (L and C) continued ▼
Deferred Items
Descent Checklist
Pressurization LDG ALT
Recall
Autobrake
Landing data VREF 30 + 20, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
Alternate Flap Extension (if required)
If TE FLAP DISAGREE is shown during normal flap extension:
ALTN FLAPS selector Position to agree with FLAP lever
LE ALTN FLAPS arm switch ALTN
TE ALTN FLAPS arm switch ALTN
ALTN FLAPS selector Extend or retract flaps as needed
Do not accomplish the following checklist:
TRAILING EDGE FLAP DISAGREE
▼ Continued on next page ▼

▼ HYDRAULIC SYSTEM PRESSURE (L and C) continued ▼

Alternate Gear Extension (if required)
If GEAR DISAGREE is shown during normal gear extension:
Landing gear lever OFF
GND PROX GEAR OVRD switchOVRD
Action is not reversible Maximum 250K/.75M
ALTN GEAR EXTEND switch DN
After gear down lights illuminate:
Landing gear leverDN
Nose wheel steering is inoperative. Differential braking is available.
Do not accomplish the following checklist:
GEAR DOORS
Landing Checklist
Speedbrake
Extend speedbrakes before using right thrust reverser.
Landing gear Down
Flaps

757 Flight Crew Operations Manual

HYDRAULIC SYSTEM PRESSURE (L and R)

cvc
212
DDECC
PKESS

SYS PRESS

Me	ssages: L	. HYD SYS PRESS	R HYD SYS PRESS
Со	ndition:	Two hydraulic system	n pressures are low.
Ob	jective:	To avoid further syst configure for landing systems.	
1	L and	R ENG HYD PUMP swi	tches Off
2	L and	R ELEC HYD PUMP sw	itches Off
3	SPEED	BRAKE lever	DOWN
	Do	not arm SPEEDBRAK	E lever.
4	Plan to	land at the nearest s	suitable airport.
5	Crossv	vind limit is 20 knots.	
5	Do no	t autoland.	
7	Use fla	ps 20 and VREF 30 $+$	20 for landing.
3	Avoid l knots.	arge or abrupt rudde	r inputs above 160
9	GND P	ROX FLAP OVRD swite	chOVRD
10	GND P	ROX GEAR OVRD swit	tch OVRD
11	Plan a	dditional time for flap	and gear extension.

Continued on next page ▼

▼ HYDRAULIC SYSTEM PRESSURE (L and R) continued ▼

Inoperative Items

Left and Right autopilots inop

Left and Right thrust reversers inop

Nose wheel steering inop

Normal and alternate brakes inop

Reserve brakes source to normal brakes is available.

Some spoiler panels on each wing inop

Roll rate may be reduced in flight. Speedbrake effectiveness may be reduced in flight and during landing.

Right system hydraulic power to stabilizer trim inop

Center system powers the trim at half rate.

Rudder ratio system inop

Normal flap operation inop

Alternate flap operation is needed. Allow 3 minutes for flap extension during approach.

Normal landing gear extension and retraction inop

Alternate gear extension is needed.

12 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.

\blacksquare	Continued	on	next	page	

757 Flight Crew Operations Manual

▼ HYDRAULIC SYSTEM PRESSURE	(L and F	R) continued	•
------------------------------------	----------	--------------	---

13	Do	not	accom	plish	the	follo	wing	checkl	ists:

AUTOBRAKES

BRAKE SOURCE

HYDRAULIC ELECTRIC PUMP

HYDRAULIC ENGINE PUMP

GEAR DOORS

RUDDER RATIO

SPOILERS

STABILIZER TRIM

YAW DAMPER

14 Checklist Complete Except Deferred Items

Deferred Items
Descent Checklist
Pressurization LDG ALT
Recall
Autobrake OFF
Landing data VREF 30 + 20, Minimums
Approach briefing Completed
Approach Checklist Altimeters

Continued on next page

▼ HYDRAULIC SYSTEM PRESSURE (L and R) continued ▼

Alternate Flap Extension
ALTN FLAPS selector Position to agree with FLAP lever
LE ALTN FLAPS arm switch ALTN
TE ALTN FLAPS arm switch ALTN
ALTN FLAPS selector Extend or retract flaps, as needed
Alternate Gear Extension
Landing gear lever OFF
Action is not reversible Maximum 250K/.75M ALTN GEAR EXTEND switch
RESERVE BRAKES switch
Do not accomplish the following checklist: GEAR DOORS
Landing Checklist
Speedbrake
Landing gear Down
Flaps

757 Flight Crew Operations Manual

HYDRAULIC SYSTEM PRESSURE (R and C)

M	essages: R HYD SYS PRESS C HYD SYS PRESS			
Condition: Two hydraulic system pressures are low.				
Objective: To avoid further system damage.				
1	R ENG HYD PUMP switch Off			
2	R ELEC HYD PUMP switchOff			
3	C1 and C2 ELEC HYD PUMP switchesOff			
4	Do not autoland.			
5	Plan to land at the nearest suitable airport.			
6	Crosswind limit is 20 knots.			
7	Use flaps 20 and VREF 30 + 20 for landing			
8	GND PROX FLAP OVRD switch OVRD			

▼ HYDRAULIC SYSTEM PRESSURE (R and C) continued ▼

Inoperative Items

All autopilots inop

All stabilizer trim inop

Elevator feel inop

Column forces may be significantly higher than normal, particularly during landing flare.

Autobrake inop

Right thrust reverser inop

Some spoiler panels on each wing inop

Roll rate may be reduced in flight. Speedbrake effectiveness may be reduced in flight and during landing.

- 9 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.
- 10 Do **not** accomplish the following checklists:

HYDRAULIC ELECTRIC PUMP

HYDRAULIC ENGINE PUMP

HYDRAULIC ELECTRIC (1 or 2)

SPOILERS

STABILIZER TRIM

YAW DAMPER

11 Checklist Complete Except Deferred Items

▼ Continued on next page **▼**

▼ HYDRAULIC SYSTEM PRESSURE (R and C) continued ▼			
Deferred Items			
Descent Checklist			
Pressurization LDG ALT			
Recall			
Autobrake OFF			
Landing dataVREF 30 + 20, Minimums			
Approach briefing Completed			
Approach Checklist			
Altimeters			
Landing Checklist			
Speedbrake			
Landing gear Down			
Flaps			
RAT UNLOCKED			
Messages: RAT UNLOCKED			
Condition: The ram air turbine is not stowed and locked.			

To the second of			
Non-Normal Checklists	Chapter NNC		
Landing Gear	Section 14		
Table of Contents			
AIR/GROUND SYSTEM	14.1		
ANTISKID	14.4		
AUTOBRAKES	14.6		
BRAKE SOURCE	14.8		
CONFIG GEAR NOT DOWN			
CONFIG PARKING BRAKE	▶▶15.2		
GEAR DISAGREE	14.10		
GEAR DOORS	14.14		
Gear Lever Will Not Move Up			
NOSE AIR/GROUND SYSTEM	14.15		
PARKING BRAKE [ADVISORY]			
WHEEL WELL FIRE	▶▶8.22		

757 Flight Crew Operations Manual

Table of Contents

Intentionally Blank

AIR/GROUND SYSTEM

Messages: AIR/GND SYS

Condition: The air/ground system is failed in the air

mode.

Inoperative Items

One or both thrust reversers inop

Automatic speedbrake inop

Manual speedbrake extension after landing is needed.

Autobrake inop

Manual braking is needed.

- 1 When deployed manually, spoiler capability is reduced.
- 2 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.
- **3 Checklist Complete Except Deferred Items**

▼ Continued on next page **▼**

▼ AIR/GROUND SYSTEM continued ▼			
Deferred Items			
Descent Checklist			
Pressurization	. LDG ALT		
Recall	Checked		
Autobrake	OFF		
Landing data VREF,	Minimums		
Approach briefing	Completed		
Approach Checklist			
Altimeters	<u></u>		
Landing Checklist			
Speedbrake	DOWN		
Landing gear	Down		
Flaps			

Intentionally Blank

757 Flight Crew Operations Manual

ANTISKID ANTISKID

Messages: ANTISKID

Condition: An antiskid system fault occurs.

- 1 Braking effectiveness may be reduced.
- 2 Use minimum braking consistent with runway conditions to reduce possibility of tire blowout.
- 3 Autobrake system is inoperative.
- 4 Check the Non-Normal Configuration Landing Distance tables in the Performance Inflight-QRH chapter.
- 5 Checklist Complete Except Deferred Items

▼ Continued on next page ▼

▼ ANTISKID continued ▼
Deferred Items
Descent Checklist
Pressurization LDG ALT
Recall Checked
Autobrake OFF
Landing data VREF, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
Landing Checklist
Speedbrake
Landing gear Down
Flanc

757 Flight Crew Operations Manual

AUTO BRAKES	AUTOBRAKES
Messages	AUTOBRAKES
Condition	One of these occurs: •The autobrake system is disarmed •The autobrake system is failed
1 AUTC	BRAKES selector Reselect
2 Choo	se one:
♦AU 7	O BRAKES light extinguishes : ■ ■ ■ ■
♦AU٦	O BRAKES light stays illuminated :
	AUTO BRAKES selector OFF
3 Chec	klist Complete Except Deferred Items
	Deferred Items
Descen	t Checklist
Pressui	rization LDG ALT
Recall	
Autobra	ake
Landing	g dataVREF, Minimums
Approa	ch briefing Completed
Approa	ch Checklist
Altimet	ers
	▼ Continued on next page ▼
	Conviols & The Pening Company See title page for details

▼ AUTOBRAKES continued **▼**

Landing Checklist	
Speedbrake	ARMED
Landing gear	. Down
Flaps	

757 Flight Crew Operations Manual

BRAKE SOURCE	BRAKE SOURCE
	BRAKE SOURCE
Condition:	Normal and alternate brake system pressures are low.
1 RESE	RVE BRAKES switchON
2 Choo	se one:
◆BR <i>A</i>	AKE SOURCE light extinguishes :
◆BRA	AKE SOURCE light stays illuminated :
	► ► Go to step 3
Durin	accumulator pressure is available for braking. g landing rollout, apply steady, increasing pressure and hold to a full stop.
4 Chec	klist Complete Except Deferred Items
	Deferred Items
Descen	t Checklist
Pressur	rizationLDG ALT
Recall	Checked
Autobra	ake
Landing	g dataVREF, Minimums
Approa	ch briefing Completed
	▼ Continued on next page ▼

▼ BRAKE SOURCE continued ▼		
Approach Checklist		
Altimeters		
Landing Checklist		
Speedbrake	D	
Landing gear Dow	'n	
Flaps		

After Landing

Do **not** taxi.

757 Flight Crew Operations Manual

GEAR DISAGREE

Messages: GEAR DISAGREE

Condition: The landing gear position disagrees with the

landing gear lever position.

Note: Do not use FMC fuel predictions with gear

extended.

1 Choose one:

◆Landing gear lever UP:

Observe the gear extend or extended limit speed of 270 knots and .82 Mach.

Flight with gear down increases fuel consumption and decreases climb performance. Refer to the Gear Down performance tables in Performance Inflight chapter for flight planning.

Landing gear lever **DN and any** gear down (green) lights **not** illuminated:

▶ Go to step 2

◆ Landing gear lever **DN and all** gear down (green) lights **illuminated**:

GND PROX GEAR OVRD switch OVRD Accomplish normal landing.

Continued on next page

	▼ GEAR DISAGREE continued ▼
2	Landing gear lever OFF
	Maximum 250K/.75M
3	ALTN GEAR EXTEND switchDN
4	Choose one:
	◆All gear down (green) lights illuminated:
	Landing gear leverDN ■ ■ ■ ■
	◆Any gear down (green) light not illuminated:
	▶▶Go to step 5
5	Plan to land on available gear.
6	Landing gear lever
7	GND PROX GEAR OVRD switchOVRD
8	Use flaps 30 for landing.
	This ensures slowest landing speed.
9	Do not arm speedbrake lever.
	▼ Continued on next page ▼

757 Flight Crew Operations Manual

	CEAD	DISAGRE		•
_	GFAR	DISAUKER	- continue	

4	\sim	\sim 1								
1	11	Cł	γ	\sim	\sim	20	\sim	n	Ω	•
1	u	L .	ш		w	3 C	u		┖	

◆Stopping distance is **not critical**:

Do **not** use thrust reversers.

- ▶ Go to step 13
- Stopping distance is critical:
 - ▶ Go to step 11
- 11 Extend the speedbrakes after all gear, or the nose or engine nacelle have contacted the runway.
- 12 Do **not** use the thrust reversers unless stopping distance is critical.
- 13 Checklist Complete Except Deferred Items

Deferred Items
Descent Checklist
Pressurization LDG ALT
Recall
Autobrake
Landing data VREF 30, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
▼ Continued on next page ▼

.30

757 Flight Crew Operations Manual

▼ GEAR DISAGREE continued **▼**

When at pattern altitude
PACK control selectors (both)OFI
Fuel PUMP switches (all) Of
Do not accomplish the following checklists:
FUEL SYSTEM PRESSURE
PACK OFF
Landing Checklist
Speedbrake
Landing gear Dowr

Flaps.....

757 Flight Crew Operations Manual

I	D	l
	Ō	I
	Ö	
	R	
	S	

GEAR DOORS

Messages: GEAR DOORS

Condition: One or more landing gear doors are not

closed.

Note: Do not use FMC fuel predictions with gear

extended.

1 Choose one:

◆Landing gear lever UP or DN:

Observe the gear extend or extended limit speed of 270 knots and .82 Mach.

Landing gear lever **OFF**:

Landing gear lever UP

Gear Lever Will Not Move Up

Condition: The landing gear lever cannot move to UP.

1 Landing gear lever

LOCK OVRD switch Push and hold

2 Landing gear lever UP, then OFF

NOSE AIR/GROUND SYSTEM

Messages: NOSE A/G SYS

Condition: The nose air/ground system is failed in the

air mode.

1 Takeoff configuration warning system inoperative.

PARK BRAKE

PARKING BRAKE [ADVISORY]

Messages: PARKING BRAKE

Condition: The parking brake is set.

1 Antiskid is inoperative.

Intentionally Blank

757 Flight Crew Operations Manual

Non-Normal Checklists	Chapter NNC
Warning Systems	Section 15
Table of	
ALTITUDE ALERT	15.1
ALTITUDE CALLOUTS	15.1
CONFIG FLAPS	15.1
CONFIG GEAR NOT DOWN.	15.1
CONFIG PARKING BRAKE	15.2
CONFIG SPOILERS	15.2
CONFIG STABILIZER	15.2
EICAS CONTROL PANEL	15.2
EICAS DISPLAY	15.3
GROUND PROXIMITY SYST	EM15.3
OVERSPEED	15.3
TCAS	15.3
TCAS OFF	15.4
TERRAIN OVERRIDE	15.4
TERRAIN POSITION	15.4
WINDSHEAR SYSTEM	15 5

757 Flight Crew Operations Manual

Table of Contents

Intentionally Blank

757 Flight Crew Operations Manual

ALT ALERT

ALTITUDE ALERT

Message: ALTITUDE ALERT

Condition: A deviation from the MCP set altitude occurs.

ALTITUDE CALLOUTS

Message: ALT CALLOUTS

Condition: Altitude voice annunciations during

approach are not supplied.

CONFIG

CONFIG FLAPS

Message: FLAPS

Condition: The flaps are not in a takeoff position during

takeoff.

CONFIG

CONFIG GEAR NOT DOWN

Message: GEAR NOT DOWN

Condition: A landing gear is not down and locked and

one of these occurs:

•A thrust lever is at idle below 800 feet

radio altitude

The flaps are in a landing position

757 Flight Crew Operations Manual

CONFIG

CONFIG PARKING BRAKE

Message: PARKING BRAKE

Condition: The parking brake is set during takeoff.

CONFIG

CONFIG SPOILERS

Message: SPOILERS

Condition: The speedbrake lever is not DOWN during

takeoff.

CONFIG

CONFIG STABILIZER

Message: STABILIZER

Condition: The stabilizer is not in the green band during

takeoff.

EICAS CONTROL PANEL

Message: EICAS CONT PNL

Condition: The EICAS control panel is failed.

EICAS DISPLAY

Message: EICAS DISPLAY

Condition: One EICAS display is failed.

GROUND PROXIMITY SYSTEM

Message: GND PROX SYS

Condition: A ground proximity warning system fault

occurs.

1 Some or all ground proximity alerts are not available.

2 Ground proximity alerts that occur are valid.

OVSPD

OVERSPEED

Message: OVERSPEED

Condition: Airspeed is more than Vmo/Mmo.

TCAS

Message: TCAS

Condition: TCAS system is failed.

757 Flight Crew Operations Manual

TCAS OFF

Message: TCAS OFF

Condition: TCAS modes TA or TA/RA are not selected.

TERRAIN OVERRIDE

Message: TERR OVRD

Condition: The ground proximity terrain override switch

is in override.

1 Look-ahead terrain alerts and the terrain display

are not provided.

TERRAIN POSITION

Message: TERR POS

Condition: Terrain position data is lost.

1 Position data for the terrain map and look-ahead terrain alerts are lost. Ground proximity alerts that occur are valid.

WINDSHEAR SYSTEM

Message: WINDSHEAR SYS

Condition: A windshear system fault occurs.

1 Some or all windshear alerts are not available.

2 Windshear alerts that occur are still valid.

Intentionally Blank

757 Flight Crew Operations Manual

Operations Information	Chapter OI
Table of Contents	Section 0
Ops Info	OI.1
Introduction	OI.1.1

Copyright © The Boeing Company. See title page for details.

May 15, 2008

D632N001-200

OI.TOC.0.1

Intentionally Blank

757 Flight Crew Operations Manual

Operational Information Ops Info

Chapter OI Section 1

Introduction

Note: This Section Reserved For Operator-Developed Information.

757 Flight Crew Operations Manual

Intentionally Blank

757 Flight Crew Operations Manual

Performance Inflight - QRH Table of Contents	Chapter PI-QRH
757-200 535E4 LB FAA	PI-QRH.10.1
757-200 PW2037 LB FAA	PI-QRH.20.1

Intentionally Blank

757 Flight Crew Operations Manual

Performance Inflight - QRH Table of Contents

Chapter PI-QRH

Section 10

757-200 535E4 LB FAA

General	. PI-QRH.10.1
Flight With Unreliable Airspeed /	
Turbulent Air Penetration	. PI-QRH.10.1
Max Climb EPR	. PI-QRH.10.4
VREF (KIAS)	. PI-QRH.10.5
Advisory Information	. PI-QRH.11.1
Normal Configuration Landing Distance	PI-QRH.11.1
Non-Normal Configuration Landing Distance	PI-QRH.11.3
Recommended Brake Cooling Schedule	.PI-QRH.11.11
Engine Inoperative	. PI-QRH.12.1
Initial Max Continuous EPR	PI-ORH 12 1
Max Continuous EPR	•
Driftdown Speed/Level Off Altitude	
Driftdown/LRC Cruise Range Capability	•
Long Range Cruise Altitude Capability	
Long Range Cruise Control	•
Long Range Cruise Diversion Fuel and Time	•
Holding	. PI-QRH.12.8
Gear Down	. PI-QRH.13.1
210 KIAS Max Climb EPR	. PI-QRH.13.1
Long Range Cruise Altitude Capability	•
Long Range Cruise Control	
Long Range Cruise Enroute Fuel and Time	
Descent at VREF30 + 80	. PI-QRH.13.3
Holding	. PI-QRH.13.4
Gear Down, Engine Inoperative	. PI-QRH.14.1
Driftdown Speed/Level Off Altitude	. PI-QRH.14.1

Performance Inflight - QRH **DO NOT USE FOR FLIGHT** Table of Contents

757 Flight Crew Operations Manual

	Long Range Cruise Altitude Capability	PI-QRH.14.1
	Long Range Cruise Control	PI-QRH.14.2
	Long Range Cruise Diversion Fuel and Time	PI-QRH.14.3
	Holding	PI-QRH.14.4
-		DV 0 DVV 4 2 4
Tex	t	PI-QRH.15.1
	Introduction	PI-QRH.15.1
	General	PI-QRH.15.1
	Advisory Information	PI-QRH.15.1
	Engine Inoperative	PI-QRH.15.3
	Gear Down	PI-ORH.15.5

757 Flight Crew Operations Manual

Performance Inflight - QRH General

Chapter PI-QRH Section 10

Flight With Unreliable Airspeed / Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable. Climb (290/.78)

Flaps Up, Set Max Climb Thrust

PRESSURE		WEIGHT (1000 LB)						
ALTITU	DE (FT)	140	180	220	260			
40000	PITCH ATT	4.5	4.5					
40000	V/S (FT/MIN)	1800	900					
30000	PITCH ATT	4.5	4.0	4.0	4.0			
30000	V/S (FT/MIN)	2500	1800	1300	800			
20000	PITCH ATT	7.0	6.5	6.0	6.0			
20000	V/S (FT/MIN)	3900	2900	2200	1600			
10000	PITCH ATT	10.0	8.5	8.0	7.5			
10000	V/S (FT/MIN)	5100	3800	3000	2300			
SEA LEVEL	PITCH ATT	13.5	11.0	10.0	9.5			
SEA LEVEL	V/S (FT/MIN)	6100	4600	3600	2900			

Cruise (.78/290)

Flaps Up, EPR for Level Flight

PRES	SURE		WEIGHT	(1000 LB)	
ALTITU	ALTITUDE (FT)		180	220	260
	PITCH ATT	2.5	3.0		
40000	EPR	1.51	1.62		
	(Alt Mode %N1)	(83.6)	(88.4)		
	PITCH ATT	1.5	2.5	3.0	3.5
35000	EPR	1.45	1.50	1.59	1.71
	(Alt Mode %N1)	(81.1)	(83.6)	(87.3)	(93.6)
	PITCH ATT	1.0	2.0	2.5	3.0
30000	EPR	1.41	1.44	1.48	1.54
	(Alt Mode %N1)	(80.3)	(82.0)	(84.2)	(87.2)
	PITCH ATT	1.5	2.0	2.5	3.5
25000	EPR	1.34	1.37	1.40	1.45
	(Alt Mode %N1)	(76.6)	(78.2)	(80.3)	(82.9)
	PITCH ATT	1.5	2.0	2.5	3.5
20000	EPR	1.29	1.31	1.34	1.38
	(Alt Mode %N1)	(73.0)	(74.7)	(76.7)	(79.1)
	PITCH ATT	1.5	2.0	3.0	3.5
15000	EPR	1.24	1.26	1.28	1.32
	(Alt Mode %N1)	(69.6)	(71.3)	(73.3)	(75.7)

e Inflight - QRH DO NOT USE FOR FLIGHT

757 Flight Crew Operations Manual

Flight With Unreliable Airspeed / Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable. Descent (.78/290)

Flaps Up, Set Idle Thrust

PRESSURE		WEIGHT (1000 LB)						
ALTITU	JDE (FT)	140	180	220	260			
40000	PITCH ATT	-1.0	0.0					
40000	V/S (FT/MIN)	-2600	-2500					
30000	PITCH ATT	-2.5	-1.5	-0.5	0.5			
30000	V/S (FT/MIN)	-3000	-2500	-2300	-2200			
20000	PITCH ATT	-2.5	-1.5	-0.5	0.5			
20000	V/S (FT/MIN)	-2800	-2300	-2100	-2000			
10000	PITCH ATT	-3.0	-1.5	-0.5	0.5			
10000	V/S (FT/MIN)	-2500	-2100	-1900	-1800			
SEA LEVEL	PITCH ATT	-3.0	-1.5	-0.5	0.5			
SEA LEVEL	V/S (FT/MIN)	-2300	-1900	-1700	-1600			

Holding (VREF30 + 80) Flaps Up, EPR for Level Flight

PRESSURE		WEIGHT (1000 LB)						
ALTIT	ALTITUDE (FT) 140 180				260			
	PITCH ATT		5.5	6.0	6.0			
10000	EPR	1.15	1.19	1.23	1.27			
10000	(Alt Mode %N1)	(55.1)	(61.0)	(66.2)	(70.6)			
	KIAS	188	205	220	235			
PITCH ATT		5.5	6.0	6.0	6.5			
5000	EPR	1.13	1.16	1.19	1.23			
3000	(Alt Mode %N1)	(51.5)	(57.3)	(62.1)	(66.5)			
	KIAS	188	205	220	235			

Terminal Area (5000 FT) EPR for Level Flight

FLAP POSITION		WEIGHT (1000 LB)						
(VREF + IN	(VREF + INCREMENT)		180	220	260			
TT 1 DG 1	PITCH ATT	6.5	7.0	7.5	8.0			
FLAPS 1	EPR	1.14	1.18	1.22	1.25			
(GEAR UP) (VREF30 + 60)	KIAS	169	185	201	216			
(VKE150 + 00)	(Alt Mode %N1)	(52.5)	(58.5)	(64.3)	(68.5)			
EL ADG 5	PITCH ATT	7.0	7.5	7.5	8.0			
FLAPS 5	EPR	1.15	1.19	1.23	1.27			
(GEAR UP) (VREF30 + 40)	KIAS	149	165	181	196			
(VICEI 30 + 40)	(Alt Mode %N1)	(53.1)	(59.6)	(65.2)	(69.6)			
EL 1 DG 15	PITCH ATT	8.0	8.0	8.0	7.5			
FLAPS 15 (GEAR UP)	EPR	1.17	1.21	1.26	1.30			
(VREF30 + 20)	KIAS	128	145	161	176			
(VICEI 30 + 20)	(Alt Mode %N1)	(55.6)	(62.5)	(67.7)	(72.5)			
EL A DC 20	PITCH ATT	5.0	5.0	5.0	5.0			
FLAPS 20 (GEAR UP)	EPR	1.18	1.23	1.28	1.32			
(VREF30 + 20)	KIAS	128	145	161	176			
(*REF 50 + 20)	(Alt Mode %N1)	(57.4)	(64.1)	(69.6)	(74.3)			

DO NOT USE FOR FLIGHT Performance Inflight - QRH

757 Flight Crew Operations Manual

Flight With Unreliable Airspeed / Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable. Final Approach (1500 FT)
Gear Down, EPR for 3° Glideslope

FLAP POSITION		WEIGHT (1000 LB)						
(VREF + IN	(VREF + INCREMENT)		180	220	260			
	PITCH ATT	2.5	2.5	2.5	2.5			
FLAPS 25	EPR	1.12	1.16	1.19	1.22			
(VREF25 + 10)	KIAS	121	137	152	167			
	(Alt Mode %N1)	(48.8)	(54.4)	(59.8)	(64.2)			
	PITCH ATT	1.0	1.0	0.5	0.5			
FLAPS 30	EPR	1.15	1.19	1.23	1.27			
(VREF30 + 10)	KIAS	118	135	151	165			
	(Alt Mode %N1)	(52.7)	(59.5)	(64.8)	(69.5)			

FAA

DO NOT USE FOR FLIGHT

757 Flight Crew Operations Manual

Max Climb EPR

Based on engine bleed for packs on and anti-ice off

m.m.		PRI	ESSURE AI	LTITUDE (1000 FT) / S	SPEED (KIA	AS OR MAG	CH)	
TAT (°C)	0	5	10	15	20	25	30	35	40
(C)	250	250	250	290	290	290	290	.78	.78
60	1.41	1.41	1.40	1.40	1.40	1.39	1.39	1.39	1.38
50	1.45	1.45	1.45	1.45	1.44	1.43	1.44	1.44	1.43
40	1.50	1.50	1.50	1.50	1.49	1.49	1.49	1.49	1.48
30	1.52	1.56	1.55	1.55	1.55	1.54	1.54	1.55	1.53
20	1.52	1.57	1.61	1.61	1.61	1.60	1.60	1.61	1.60
10	1.52	1.57	1.61	1.66	1.67	1.66	1.67	1.67	1.66
0	1.52	1.57	1.61	1.66	1.69	1.72	1.72	1.73	1.72
-10	1.52	1.57	1.61	1.66	1.69	1.72	1.75	1.77	1.76
-20 & BELOW	1.52	1.57	1.61	1.66	1.69	1.72	1.75	1.79	1.80

EPR Adjustments for Engine Bleeds

BLEED		PRESSURE ALTITUDE (1000 FT)							
CONFIGURATION	0	5	10	15	20	25	30	35	40
PACKS OFF	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
ENGINE ANTI-ICE ON	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.02	-0.02
ENGINE & WING ANTI-ICE ON	-0.02	-0.02	-0.02	-0.02	-0.02	-0.03	-0.03	-0.04	-0.05

DO NOT USE FOR FLIGHT Performance Inflight - QRH General

757 Flight Crew Operations Manual

VREF (KIAS)

WEIGHT	FLAPS		
(1000 LB)	30	25	20
260	155	157	165
240	148	150	158
220	140	142	151
200	133	135	144
180	125	127	136
160	117	119	128
140	109	111	119

November 18, 2008 D632N001-200 PI-QRH.10.5

757-200/535E4 FAA

Intentionally Blank

757 Flight Crew Operations Manual

Performance Inflight - QRH Advisory Information

Chapter PI-QRH Section 11

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 30 Dry Runway

		LANDING DISTANCE AND ADJUSTMENTS (FT)												
		REF DIST	WT ADJ	ALT ADJ	WINI PER 1	O ADJ 0 KTS	SLOPE PER			P ADJ 10°C	VREF ADJ	REVI THR AI	UST	
	BRAKING CONFIGURATION	WEIGHT		PER 1000 FT STD/ HIGH*			DOWN HILL	UP HILL	ABV ISA	ISA	PER 10 KTS ABOVE VREF30	REV	NO REV	
	MAX MANUAL	2670	+100/-90	60/70	-110	380	40	-30	50	-50	220	50	100	
	MAX AUTO	4060	+160/-160	90/120	-180	580	50	-50	90	-90	310	130	260	
	AUTOBRAKE 4	4390	+190/-180	110/140	-210	680	60	-60	100	-100	360	140	290	
ĺ	AUTOBRAKE 3	4970	+240/-230	130/170	-260	850	70	-70	130	-130	450	160	330	
ĺ	AUTOBRAKE 2	5500	+290/-280	160/210	-300	1010	120	-130	150	-150	460	270	450	
ĺ	AUTOBRAKE 1	5910	+330/-330	190/250	-350	1170	200	-210	160	-160	460	600	900	

Good Reported Braking Action

MAX MANUAL	3510	+160/-140	90/120	-170	610	80	-70	80	-80	290	180	430
MAX AUTO	4250	+180/-180	100/140	-200	690	100	-90	90	-90	310	310	730
AUTOBRAKE 4	4430	+190/-190	110/140	-220	730	80	-70	100	-100	360	180	530
AUTOBRAKE 3	4970	+240/-230	130/170	-260	850	80	-70	130	-130	450	160	330

Medium Reported Braking Action

	MAX MANUAL	4610	+230/-210	130/180	-260	980	190	-150	110	-110	370	520	1350
	MAX AUTO	4940	+250/-240	140/190	-290	1020	200	-170	120	-120	360	650	1680
	AUTOBRAKE 4	4950	+250/-240	140/190	-290	1020	200	-170	120	-120	360	640	1670
1	AUTOBRAKE 3	5170	+260/-240	140/190	-300	1050	160	-120	130	-130	450	450	1430

Poor Reported Braking Action

	-	'										
MAX MANUAL	5750	+320/-280	180/250	-380	1500	420	-280	140	-140	420	1080	3250
MAX AUTO	5810	+330/-300	190/260	-380	1510	420	-310	140	-150	410	1180	3540
AUTOBRAKE 4	5820	+330/-300	190/260	-380	1510	420	-310	140	-150	410	1180	3540
AUTOBRAKE 3	5840	+330/-300	190/260	-380	1520	410	-290	140	-150	450	1160	3510

Reference distance is for sea level, standard day, no wind or slope, VREF30 approach speed and 2 engine reverse thrust.

Max Manual braking data valid for auto speedbrakes. For manual speedbrakes, increase reference landing distance by 280 ft.

Autobrake data valid for both auto and manual speedbrakes.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

*For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply the HIGH adjustment to this new reference distance.

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 25 Dry Runway

			LANDING DISTANCE AND ADJUSTMENTS (FT)											
		REF DIST	WT ADJ	ALT ADJ	WINI PER 1		SLOPE PER		TEMI PER	P ADJ 10°C	VREF ADJ	REVE THR AI	UST	
	BRAKING CONFIGURATION	WEIGHT		PER 1000 FT STD/ HIGH*	WIND		DOWN HILL	UP HILL	ABV ISA	ISA	PER 10 KTS ABOVE VREF25	REV	NO REV	
1	MAX MANUAL	2710	+110/-90	60/70	-110	380	40	-30	50	-50	220	50	110	
	MAX AUTO	4200	+160/-160	90/120	-180	590	60	-50	90	-90	320	140	280	
1	AUTOBRAKE 4	4550	+190/-190	110/140	-210	690	60	-60	110	-110	380	150	300	
1	AUTOBRAKE 3	5180	+240/-230	140/180	-260	870	80	-80	140	-140	480	170	340	
	AUTOBRAKE 2	5760	+290/-280	170/220	-310	1040	120	-130	160	-160	490	260	460	
	AUTOBRAKE 1	6210	+340/-340	200/260	-360	1210	210	-220	170	-170	490	630	920	

Good Reported Braking Action

MAX MANUAL	3590	+150/-140	90/120	-170	610	90	-70	80	-80	300	190	450
MAX AUTO	4390	+180/-180	110/140	-210	710	110	-100	100	-100	320	330	780
AUTOBRAKE 4	4600	+190/-190	110/150	-220	740	80	-70	110	-110	380	190	560
AUTOBRAKE 3	5180	+240/-230	140/180	-260	870	80	-80	140	-140	480	170	350

Medium Reported Braking Action

MAX MANUAL	4770	+240/-210	140/190	-270	990	200	-160	110	-120	380	550	1460
MAX AUTO	5140	+250/-240	150/200	-300	1040	210	-180	120	-130	380	700	1830
AUTOBRAKE 4	5150	+250/-240	150/200	-300	1040	210	-180	120	-130	380	690	1810
AUTOBRAKE 3	5380	+260/-240	150/200	-310	1080	170	-120	140	-140	480	490	1560

Poor Reported Braking Action

1	MAX MANUAL	6000	+330/-290	190/270	-390	1530	440	-300	150	-150	440	1180	3600
	MAX AUTO	6080	+340/-320	200/280	-390	1550	440	-330	150	-150	430	1300	3920
	AUTOBRAKE 4	6080	+340/-320	200/280	-390	1550	440	-330	150	-150	430	1290	3920
ĺ	AUTOBRAKE 3	6100	+330/-310	200/270	-390	1550	430	-310	150	-160	480	1270	3900

Reference distance is for sea level, standard day, no wind or slope, VREF25 approach speed and 2 engine reverse thrust.

Max Manual braking data valid for auto speedbrakes. For manual speedbrakes, increase reference landing distance by 290 ft.

Autobrake data valid for both auto and manual speedbrakes.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

*For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply the HIGH adjustment to this new reference distance.

DO NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

757 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Dry Runway

		I	ANDING I	DISTANCE A	AND AI	JUST	MENTS	(FT)	
LANDING	VREF	REFERENCE DISTANCE* FOR	WT ADJ PER 5000 LB	ALTITUDE ADJ PER 1000 FT	PER I	KTS	PER	1%	APPROACH SPEED PER 10 KTS
CONFIGURATION		190000 LB LANDING WEIGHT	ABOVE/ BELOW 190000 LB	STD/HIGH ***			DOWN HILL		ABOVE VREF
AIR-GROUND LOGIC IN AIR MODE	VREF30	3540	70/-60	75/105	-150	530	75	-65	400
ANTI-SKID SYSTEM INOP	VREF30	4120	90/-80	100/130	-200	745	100	-85	335
FLAPS UP	VREF30+50	3720	175/-60	105/165	-160	615	60	-55	305
HYDRAULIC SYSTEM CENTER INOP	VREF30	2750	55/-45	60/75	-110	400	40	-35	240
HYDRAULIC SYSTEM LEFT INOP	VREF30	3210	65/-55	70/90	-130	465	50	-45	310
HYDRAULIC SYSTEM LEFT INOP WITH LE SLAT OR TE FLAPS DISAGREE FOR FLAPS ≥ 20	VREF20	3490	65/-60	75/105	-140	485	55	-45	310
HYDRAULIC SYSTEM RIGHT INOP	VREF30	3250	70/-60	75/105	-140	505	70	-60	355
HYDRAULIC SYSTEMS CENTER AND LEFT INOP FLAPS 20	VREF30+20	3910	75/-65	90/120	-150	525	70	-60	365
HYDRAULIC SYSTEMS CENTER AND RIGHT INOP FLAPS 20	VREF30+20	4050	85/-75	105/140	-165	580	100	-85	430
HYDRAULIC SYSTEM** LEFT & RIGHT INOP FLAPS 20	VREF30+20	5250	110/-95	140/185	-220	750	375	-280	690

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

*** For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

Copyright © The Boeing Company. See title page for details.

^{**}Reserve Brake System only.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Dry Runway

			LANDING I	DISTANCE A	ND AE	JUST!	MENTS	(FT)	
LANDRIC		REFERENCE DISTANCE*	WT ADJ PER	ALTITUDE ADJ PER	WIND PER 10		SLOPE PER		APPROACH SPEED
LANDING CONFIGURATION	VREF	FOR 190000 LB LANDING WEIGHT	5000 LB ABOVE/ BELOW 190000 LB	1000 FT STD/HIGH ***			DOWN HILL		PER 10 KTS ABOVE VREF
LE SLAT ASYMMETRY FLAPS>20	VREF20	2890	70/-50	60/80	-110	400	40	-40	220
LE SLAT ASYMMETRY FLAPS = 20	VREF30+30	3350	100/-50	80/110	-130	440	50	-40	240
LE SLAT ASYMMETRY 5 ≤ FLAPS < 20	VREF30+40	3600	140/-60	90/130	-130	460	50	-50	240
LE SLAT DISAGREE	VREF20	2890	70/-50	65/85	-115	440	40	-35	230
ONE ENGINE INOP	VREF20	2940	75/-50	65/85	-120	455	45	-40	240
REVERSER UNLOCK FLAPS 20	VREF30+30	3390	105/-55	80/105	-140	515	55	-50	275
TRAILING EDGE FLAP ASYMMETRY FLAPS ≥ 20	VREF20	2890	70/-50	65/85	-115	440	40	-35	230
TRAILING EDGE ASYMMETRY 5 <flaps<20< td=""><td>VREF30+30</td><td>3300</td><td>125/-55</td><td>75/105</td><td>-140</td><td>510</td><td>50</td><td>-45</td><td>260</td></flaps<20<>	VREF30+30	3300	125/-55	75/105	-140	510	50	-45	260
TRAILING EDGE ASYMMETRY FLAPS ≤ 5	VREF30+40	3510	145/-55	85/125	-145	545	55	-50	275
TRAILING EDGE FLAP DISAGREE	VREF20	2890	70/-50	65/85	-115	440	40	-35	230

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

^{***} For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

DO NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

757 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Good Reported Braking Action

		I	LANDING I	DISTANCE A	AND AI	DJUST	MENTS	(FT)	
LANDING CONFIGURATION	VREF	REFERENCE DISTANCE* FOR 190000 LB	WT ADJ PER 5000 LB ABOVE/	ALTITUDE ADJ PER 1000 FT	WINE PER 10	KTS	SLOPE PER DOWN	1%	APPROACH SPEED PER 10 KTS
		LANDING WEIGHT	BELOW 190000 LB	STD/HIGH ***			HILL		ABOVE VREF
AIR-GROUND LOGIC IN AIR MODE	VREF30	5140	110/-95	130/165	-265	950	245	-185	590
ANTI-SKID SYSTEM INOP	VREF30	4980	120/-105	135/180	-280	1070	195	-155	390
FLAPS UP	VREF30+50	5140	105/-95	145/205	-215	770	125	-105	305
HYDRAULIC SYSTEM CENTER INOP	VREF30	3610	85/-70	90/120	-175	645	95	-80	315
HYDRAULIC SYSTEM LEFT INOP	VREF30	4260	95/-85	110/140	-205	750	130	-105	415
HYDRAULIC SYSTEM LEFT INOP WITH LE SLAT OR TE FLAPS DISAGREE FOR FLAPS ≥ 20	VREF20	4720	95/-95	125/170	-220	790	145	-120	430
HYDRAULIC SYSTEM RIGHT INOP	VREF30	4150	100/-85	110/150	-205	745	145	-120	445
HYDRAULIC SYSTEMS CENTER AND LEFT INOP FLAPS 20	VREF30+20	5330	115/-105	145/200	-240	855	180	-145	490
HYDRAULIC SYSTEMS CENTER AND RIGHT INOP FLAPS 20	VREF30+20	5270	120/-105	150/210	-245	855	205	-165	535
HYDRAULIC SYSTEM** LEFT & RIGHT INOP FLAPS 20	VREF30+20	6750	145/-130	195/265	-310	1060	1320	-780	865

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

Copyright © The Boeing Company. See title page for details.

^{**}Reserve Brake System only.

^{***} For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Good Reported Braking Action

		I	LANDING I	DISTANCE A	AND AI	JUST	MENTS	(FT)	
LANDING CONFIGURATION	VREF	REFERENCE DISTANCE* FOR 190000 LB LANDING	WT ADJ PER 5000 LB ABOVE/ BELOW	ALTITUDE ADJ PER 1000 FT STD/HIGH ***		TAIL	SLOPE PER DOWN HILL	1% UP	APPROACH SPEED PER 10 KTS ABOVE VREF
LE SLAT ASYMMETRY FLAPS>20	VREF20	WEIGHT 3880	190000 LB 80/-80	100/140	-180	650	100	-80	300
LE SLAT ASYMMETRY FLAPS = 20	VREF30+30	4500	90/-90	120/170	-200	700	110	-100	320
LE SLAT ASYMMETRY 5 ≤ FLAPS < 20	VREF30+40	4930	100/-90	140/200	-210	740	120	-110	330
LE SLAT DISAGREE	VREF20	3880	115/-105	100/140	-240	855	180	-145	490
ONE ENGINE INOP	VREF20	4070	85/-80	105/145	-195	705	120	-100	335
REVERSER UNLOCK FLAPS 20	VREF30+30	4700	95/-90	125/175	-215	760	135	-115	340
TRAILING EDGE FLAP ASYMMETRY FLAPS ≥ 20	VREF20	3880	80/-75	100/140	-185	670	100	-85	300
TRAILING EDGE ASYMMETRY 5 <flaps<20< td=""><td>VREF30+30</td><td>4490</td><td>95/-85</td><td>120/170</td><td>-200</td><td>720</td><td>110</td><td>-95</td><td>305</td></flaps<20<>	VREF30+30	4490	95/-85	120/170	-200	720	110	-95	305
TRAILING EDGE ASYMMETRY FLAPS ≤ 5	VREF30+40	4800	100/-90	135/180	-205	740	115	-100	305
TRAILING EDGE FLAP DISAGREE	VREF20	3880	80/-75	100/140	-185	670	100	-85	300

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

^{***} For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

DO NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

757 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Medium Reported Braking Action

		I	ANDING I	DISTANCE A	AND AI	JUST	MENTS	(FT)	
LANDING CONFIGURATION	VREF	REFERENCE DISTANCE* FOR 190000 LB LANDING WEIGHT	WT ADJ PER 5000 LB ABOVE/ BELOW 190000 LB	ALTITUDE ADJ PER 1000 FT STD/HIGH ***	HEAD	TAIL	SLOPE PER DOWN HILL	1% UP	APPROACH SPEED PER 10 KTS ABOVE VREF
AIR-GROUND LOGIC IN AIR MODE	VREF30	8380	160/-120	225/300	-530	2000	1125	-620	830
ANTI-SKID SYSTEM INOP	VREF30	6170	160/-145	185/245	-400	1655	465	-300	445
FLAPS UP	VREF30+50	7070	160/-150	225/315	-340	1260	315	-240	405
HYDRAULIC SYSTEM CENTER INOP	VREF30	4760	125/-105	140/180	-270	1055	230	-170	390
HYDRAULIC SYSTEM LEFT INOP	VREF30	5810	145/-130	170/235	-335	1270	355	-250	525
HYDRAULIC SYSTEM LEFT INOP WITH LE SLAT OR TE FLAPS DISAGREE FOR FLAPS ≥ 20	VREF20	6600	155/-145	200/290	-365	1350	410	-290	565
HYDRAULIC SYSTEM RIGHT INOP	VREF30	5780	155/-135	180/245	-335	1275	395	-275	550
HYDRAULIC SYSTEMS CENTER AND LEFT INOP FLAPS 20	VREF30+20	7450	175/-160	235/330	-395	1450	495	-345	625
HYDRAULIC SYSTEMS CENTER AND RIGHT INOP FLAPS 20	VREF30+20	7520	185/-165	250/355	-400	1470	550	-385	675
HYDRAULIC SYSTEM** LEFT & RIGHT INOP FLAPS 20	VREF30+20	10640	235/-210	350/490	-555	1970	5660	-1995	1190

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

*** For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

Copyright © The Boeing Company. See title page for details.

^{**}Reserve Brake System only.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Medium Reported Braking Action

		8							
		I	LANDING I	DISTANCE A	AND AI	JUST	MENTS	(FT)	
LANDING CONFIGURATION	VREF	REFERENCE DISTANCE* FOR 190000 LB LANDING WEIGHT	WT ADJ PER 5000 LB ABOVE/ BELOW 190000 LB	ALTITUDE ADJ PER 1000 FT STD/HIGH ***		TAIL	SLOPE PER DOWN HILL	1% UP	APPROACH SPEED PER 10 KTS ABOVE VREF
LE SLAT ASYMMETRY FLAPS>20	VREF20	5250	120/-120	160/230	-290	1070	240	-190	390
LE SLAT ASYMMETRY FLAPS = 20	VREF30+30	6040	140/-130	190/270	-320	1140	260	-210	390
LE SLAT ASYMMETRY 5 ≤ FLAPS < 20	VREF30+40	6740	160/-150	210/300	-340	1200	290	-240	420
LE SLAT DISAGREE	VREF20	5250	175/-160	155/225	-395	1450	495	-345	625
ONE ENGINE INOP	VREF20	5770	135/-130	170/235	-325	1215	335	-245	450
REVERSER UNLOCK FLAPS 20	VREF30+30	6620	155/-145	200/280	-350	1290	365	-270	445
TRAILING EDGE FLAP ASYMMETRY FLAPS ≥ 20	VREF20	5250	125/-115	155/225	-290	1110	255	-190	385
TRAILING EDGE ASYMMETRY 5 <flaps<20< td=""><td>VREF30+30</td><td>6150</td><td>145/-130</td><td>190/270</td><td>-315</td><td>1190</td><td>285</td><td>-215</td><td>395</td></flaps<20<>	VREF30+30	6150	145/-130	190/270	-315	1190	285	-215	395
TRAILING EDGE ASYMMETRY FLAPS ≤ 5	VREF30+40	6550	150/-140	205/290	-325	1220	295	-225	395
TRAILING EDGE FLAP DISAGREE	VREF20	5250	125/-115	155/225	-290	1110	255	-190	385

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

^{***} For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

DO NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

757 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Poor Reported Braking Action

		I	ANDING I	DISTANCE A	AND AE	JUST	MENTS	(FT)	
LANDING CONFIGURATION	VREF	REFERENCE DISTANCE* FOR 190000 LB LANDING WEIGHT	WT ADJ PER 5000 LB ABOVE/ BELOW 190000 LB	ALTITUDE ADJ PER 1000 FT STD/HIGH ***		TAIL	SLOPE PER DOWN HILL	1% UP	APPROACH SPEED PER 10 KTS ABOVE VREF
AIR-GROUND LOGIC IN AIR MODE	VREF30	> 15000	ı	ı	ı	-	-	-	-
ANTI-SKID SYSTEM INOP	VREF30	8090	230/-205	260/350	-660	3115	3435	-690	490
FLAPS UP	VREF30+50	9150	230/-210	315/470	-505	1965	765	-470	480
HYDRAULIC SYSTEM CENTER INOP	VREF30	5980	165/-145	190/255	-400	1645	545	-320	435
HYDRAULIC SYSTEM LEFT INOP	VREF30	7710	205/-180	255/355	-525	2125	1035	-530	605
HYDRAULIC SYSTEM LEFT INOP WITH LE SLAT OR TE FLAPS DISAGREE FOR FLAPS ≥ 20	VREF20	8910	225/-210	305/475	-570	2265	1200	-620	675
HYDRAULIC SYSTEM RIGHT INOP	VREF30	7750	215/-185	270/370	-530	2145	1110	-565	630
HYDRAULIC SYSTEMS CENTER AND LEFT INOP FLAPS 20	VREF30+20	10050	255/-225	355/525	-625	2420	1430	-730	725
HYDRAULIC SYSTEMS CENTER AND RIGHT INOP FLAPS 20	VREF30+20	10250	270/-240	375/560	-635	2460	1555	-790	770
HYDRAULIC SYSTEM** LEFT & RIGHT INOP FLAPS 20	VREF30+20	> 15000	-	-	-	-	-	-	-

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

*** For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

Copyright © The Boeing Company. See title page for details.

^{**}Reserve Brake System only.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Poor Reported Braking Action

•	U								
		I		DISTANCE A	AND AI	DJUST.		_ /	
LANDING CONFIGURATION	VREF	REFERENCE DISTANCE* FOR 190000 LB	WT ADJ PER 5000 LB ABOVE/	ALTITUDE ADJ PER 1000 FT STD/HIGH		TAIL	PER DOWN	1% UP	APPROACH SPEED PER 10 KTS ABOVE
		LANDING WEIGHT	BELOW 190000 LB	***	WIND	WIND	HILL	HILL	VREF
LE SLAT ASYMMETRY FLAPS>20	VREF20	6780	170/-160	220/330	-440	1690	570	-370	450
LE SLAT ASYMMETRY FLAPS = 20	VREF30+30	7690	200/-180	260/380	-460	1770	600	-400	450
LE SLAT ASYMMETRY 5 ≤ FLAPS < 20	VREF30+40	8680	220/-200	300/430	-500	1860	670	-450	490
LE SLAT DISAGREE	VREF20	6780	255/-225	220/330	-625	2420	1430	-730	725
ONE ENGINE INOP	VREF20	7830	200/-190	255/355	-505	1990	925	-515	545
REVERSER UNLOCK FLAPS 20	VREF30+30	8850	225/-205	290/410	-535	2080	975	-555	525
TRAILING EDGE FLAP ASYMMETRY FLAPS ≥ 20	VREF20	6780	175/-160	220/330	-435	1755	640	-375	450
TRAILING EDGE ASYMMETRY 5 <flaps<20< td=""><td>VREF30+30</td><td>7960</td><td>205/-185</td><td>270/395</td><td>-475</td><td>1865</td><td>705</td><td>-420</td><td>465</td></flaps<20<>	VREF30+30	7960	205/-185	270/395	-475	1865	705	-420	465
TRAILING EDGE ASYMMETRY FLAPS ≤ 5	VREF30+40	8430	215/-195	290/420	-485	1900	720	-435	460
TRAILING EDGE FLAP DISAGREE	VREF20	6780	175/-160	220/330	-435	1755	640	-375	450

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

*** For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

DO NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

757 Flight Crew Operations Manual

ADVISORY INFORMATION

Recommended Brake Cooling Schedule Reference Brake Energy Per Brake (Millions of Foot Pounds)

								BRA	KES	ON	SPEE	D (K)	(AS)						
			80			100			120			140			160			180	
WEIGHT	OAT	PRI	ESS A	ALT	PRI	ESS A	ALT	PR	ESS A	\LT	PR	ESS A	ALT	PR	ESS A	ALT	PR	ESS A	\LT
(1000 LB)	(°F)	0	5	10	0	5	10	0	5	10	0	5	10	0	5	10	0	5	10
	40	9.5	11.1	12.8	14.4	17.1	19.8	20.1	24.1	28.1	26.5	31.8	37.1	33.4	39.8		40.3		
	60	9.8	11.6	13.3	14.9	17.8	20.6	20.9	25.0	29.2	27.5	33.0	38.5	34.6	41.3		41.8		
260	80	10.1	12.0	13.8	15.4	18.4	21.3	21.6	25.9	30.2	28.5	34.2	39.8	35.8	42.7		43.3		
	100	10.4	12.3	14.1	15.9	18.9	21.9	22.2	26.6	31.1	29.4	35.2	41.1	36.9	44.0		44.6		
	120	10.6	12.5	14.4	16.2	19.3	22.5	22.8	27.3	31.9	30.1	36.1	42.2	37.9	45.2		45.8		
	40	8.8	10.4	12.0	13.4	15.9	18.4	18.7	22.3	26.0	24.6	29.5	34.4	31.0	37.0	43.1	37.5		
	60	9.2	10.8	12.4	13.9	16.5	19.1	19.4	23.2	27.0	25.5	30.6	35.7	32.1	38.4	44.7	39.0		
240	80	9.5	11.1	12.8	14.4	17.1	19.8	20.0	24.0	27.9	26.4	31.7	37.0	33.2	39.7	46.2	40.3		
	100	9.7	11.4	13.2	14.8	17.5	20.3	20.6	24.7	28.8	27.2	32.7	38.1	34.3	41.0	47.6	41.5		
	120	9.9	11.7	13.4	15.1	17.9	20.8	21.1	25.3	29.5	27.9	33.5	39.1	35.2	42.1	49.0	42.7		
	40	8.2	9.6	11.1	12.4	14.7	17.0	17.2	20.6	23.9	22.6	27.2	31.7	28.5	34.1	39.8	34.7	41.3	
	60	8.5	10.0	11.5	12.9	15.2	17.6	17.9	21.3	24.8	23.5	28.2	32.9	29.6	35.4	41.3	36.0	42.8	
220	80	8.8	10.3	11.9	13.3	15.8	18.2	18.5	22.1	25.7	24.3	29.2	34.0	30.6	36.7	42.7	37.2	44.3	
	100	9.0	10.6	12.2	13.6	16.2	18.8	19.0	22.7	26.5	25.0	30.0	35.1	31.5	37.8	44.0	38.3	45.6	
	120	9.2	10.8	12.4	13.9	16.6	19.2	19.5	23.3	27.1	25.6	30.8	36.0	32.4	38.8	45.2	39.4	46.9	
	40	7.6	8.9	10.2	11.4	13.5	15.6	15.8	18.8	21.8	20.6	24.8	28.9	26.0	31.2	36.4	31.6	37.8	43.9
	60	7.9	9.2	10.6	11.8	14.0	16.2	16.4	19.5	22.7	21.4	25.7	30.0	27.0	32.3	37.7	32.8	39.2	45.6
200	80	8.1	9.5	10.9	12.2	14.5	16.7	16.9	20.2	23.4	22.2	26.6	31.0	27.9	33.5	39.0	34.0	40.5	47.1
	100	8.3	9.8	11.2	12.5	14.9	17.2	17.4	20.8	24.1	22.8	27.4	31.9	28.7	34.5	40.2	35.0	41.8	48.6
	120	8.5	9.9	11.4	12.8	15.2	17.6	17.8	21.3	24.7	23.4	28.1	32.8	29.5	35.4	41.3	35.9	42.9	50.0
	40	7.0	8.2	9.3	10.4	12.3	14.1	14.3	17.0	19.7	18.6	22.3	26.0	23.4	28.1	32.8	28.5	34.1	39.7
	60	7.2	8.5	9.7	10.8	12.7	14.7	14.8	17.7	20.5	19.3	23.2	27.0	24.3	29.1	34.0	29.5	35.4	41.2
180	80	7.5	8.7	10.0	11.1	13.2	15.2	15.3	18.3	21.2	20.0	24.0	27.9	25.1	30.2	35.2	30.6	36.6	42.6
	100	7.6	8.9	10.2	11.4	13.5	15.6	15.8	18.8	21.8	20.6	24.7	28.7	25.9	31.1	36.3	31.5	37.7	44.0
	120	7.8	9.1	10.4	11.6	13.8	15.9	16.1	19.2	22.3	21.1	25.3	29.5	26.5	31.9	37.2	32.3	38.7	45.2
	40	6.4	7.4	8.4	9.4	11.0	12.7	12.8	15.2	17.6	16.6	19.8	23.1	20.7	24.9	29.0	25.2	30.2	35.2
	60	6.6	7.7	8.8	9.7	11.5	13.2	13.3	15.8	18.3	17.2	20.6	23.9	21.5	25.8	30.1	26.1	31.3	36.6
160	80	6.8	7.9	9.1	10.0	11.8	13.6	13.7	16.3	18.9	17.8	21.3	24.8	22.3	26.7	31.2	27.0	32.4	37.8
	100	6.9	8.1	9.3	10.3	12.2	14.0	14.1	16.8	19.4	18.3	21.9	25.5	22.9	27.5	32.1	27.8	33.4	39.0
	120	7.0	8.2	9.4	10.5	12.4	14.3	14.4	17.2	19.9	18.8	22.5	26.1	23.5	28.2	32.9	28.5	34.3	40.0
	40	5.7	6.7	7.6	8.4	9.8	11.3	11.3	13.4	15.5	14.6	17.3	20.1	18.0	21.6	25.1	21.7	26.1	30.4
	60	5.9	6.9	7.9	8.7	10.2	11.7	11.8	13.9	16.1	15.1	18.0	20.9	18.7	22.4	26.1	22.6	27.1	31.6
140	80	6.1	7.1	8.1	9.0	10.5	12.1	12.1	14.4	16.6	15.6	18.6	21.6	19.4	23.2	27.0	23.3	28.0	32.7
	100	6.3	7.3	8.3	9.2	10.8	12.4	12.5	14.8	17.1	16.1	19.2	22.2	19.9	23.8	27.8	24.0	28.8	33.7
	120	6.3	7.4	8.4	9.3		12.7	12.7	15.1	17.5	16.4	19.6	22.8	20.4	24.4	28.5	24.6	29.6	34.5

^{*}To correct for wind, enter table with the brakes on speed minus one half the headwind or plus 1.5 times the tailwind. If ground speed is used for brakes on speed, ignore wind altitude, and OAT effects.

ADVISORY INFORMATION

Recommended Brake Cooling Schedule Adjusted Brake Energy Per Brake (Millions of Foot Pounds) No Reverse Thrust

		REF	ERENC!	E BRAK	E ENE	RGY PE	R BRAK	Œ (MIL	LIONS	OF FOO	T POU	NDS)
	EVENT	10	12	14	16	18	20	22	24	26	28	30
R	TO MAX MAN	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0	26.0	28.0	30.0
	MAX MAN	8.6	10.5	12.4	14.3	16.2	18.1	20.0	22.0	23.9	25.8	27.7
Ō	MAX AUTO	8.5	10.3	12.1	13.9	15.7	17.5	19.3	21.1	22.9	24.7	26.6
NDING	AUTOBRAKE 4	8.4	10.2	11.9	13.6	15.3	17.0	18.7	20.4	22.1	23.8	25.6
ΙZ	AUTOBRAKE 3	8.3	9.9	11.5	13.1	14.7	16.3	17.9	19.5	21.1	22.7	24.3
Ţ	AUTOBRAKE 2	8.1	9.6	11.1	12.6	14.1	15.5	17.0	18.5	19.9	21.4	22.8
	AUTOBRAKE 1	7.9	9.3	10.7	12.0	13.3	14.6	15.9	17.2	18.5	19.8	21.1

Two Engine Reverse

		REF	ERENCI	E BRAK	E ENEF	RGY PE	R BRAK	E (MIL	LIONS	OF FOC	T POU	NDS)
	EVENT	10	12	14	16	18	20	22	24	26	28	30
R'	TO MAX MAN	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0	26.0	28.0	30.0
	MAX MAN	7.6	9.2	10.9	12.6	14.4	16.1	17.9	19.7	21.4	23.2	24.8
Ð	MAX AUTO	5.8	7.2	8.6	10.0	11.5	12.9	14.4	15.9	17.3	18.8	20.3
NDING	AUTOBRAKE 4	4.5	5.7	6.8	8.0	9.1	10.3	11.5	12.7	14.0	15.2	16.5
	AUTOBRAKE 3	3.3	4.2	5.1	5.9	6.9	7.8	8.7	9.7	10.7	11.7	12.7
LA	AUTOBRAKE 2	2.3	2.9	3.5	4.1	4.8	5.5	6.2	6.9	7.6	8.3	9.0
	AUTOBRAKE 1	1.7	2.1	2.4	2.8	3.2	3.6	4.0	4.5	4.9	5.4	5.9

Cooling Time (Minutes)

		ADJUSTE	ED BRA	KE EN	ERGY I	PER BR	AKE (MILLIC	NS OF FOOT	POUNDS)
		8 & BELOW	9	10	12	14	16	17	18 TO 27	28 & ABOVE
Ī	INFLIGHT GEAR DOWN	NO SPECIAL PROCEDURE	1	2	4	5	7	7	CAUTION	FUSE PLUG
Ι	GROUND	REQUIRED	10	20	38	51	62	66		MELT ZONE
Γ	BTMS	UP TO 2	2	2	3	3	4	5	5 TO 8	8 & ABOVE

Observe maximum quick turnaround limit.

Table shows energy per brake added by a single stop with all brakes operating. Energy is assumed to be equally distributed among the operating brakes. Total energy is the sum of residual energy plus energy added

Add 0.65 million foot pounds per brake for each taxi mile.

For one brake deactivated, increase brake energy by 15 percent.

When in caution zone, wheel fuse plugs may melt. Delay takeoff and inspect after one hour. If overheat occurs after takeoff, extend gear soon for at least 8 minutes.

When in fuse plug melt zone, clear runway immediately. Unless required, do not set parking brake. Do not attempt to taxi for one hour. Tire, wheel and brake replacement may be required. If overheat occurs after takeoff, extend gear soon for at least 12 minutes.

Brake temperature monitor system (BTMS) indication on EICAS may be used to 10 to 15 minutes after airplane has come to a complete stop, or inflight with gear retracted, to determine recommended cooling schedule.

757 Flight Crew Operations Manual

Performance Inflight - QRH Engine Inoperative

Chapter PI-QRH Section 12

ENGINE INOP

Initial Max Continuous EPR Based on engine bleed for one pack on

P	RESSURE		CRUISE MACH NUMBER	-
ALT	TITUDE (FT)	.72	.76	.80
	EPR	1.81	1.80	1.79
41000	MAX TAT (SAT)	-23 (-46)	-20 (-46)	-17 (-46)
	EPR CORR	0.04	0.04	0.04
	EPR	1.81	1.80	1.79
39000	MAX TAT (SAT)	-23 (-46)	-20 (-46)	-17 (-46)
	EPR CORR	0.04	0.04	0.04
	EPR	1.82	1.80	1.79
37000	MAX TAT (SAT)	-23 (-46)	-20 (-46)	-17 (-46)
	EPR CORR	0.04	0.04	0.04
	EPR	1.81	1.80	1.79
35000	MAX TAT (SAT)	-21 (-44)	-18 (-44)	-15 (-44)
	EPR CORR	0.05	0.05	0.05
	EPR	1.80	1.79	1.78
33000	MAX TAT (SAT)	-16 (-40)	-14 (-41)	-11 (-41)
	EPR CORR	0.05	0.05	0.05
	EPR	1.79	1.78	1.77
31000	MAX TAT (SAT)	-12 (-36)	-9 (-36)	-6 (-36)
	EPR CORR	0.05	0.05	0.05

Decrease EPR by the EPR CORR for every 10°C above the MAX TAT shown.

757 Flight Crew Operations Manual

ENGINE INOP

Max Continuous EPR 41000 FT to 22000 FT Pressure Altitudes Based on engine bleed for one pack on and anti-ice off

PRESSU	RE ALTITUDE			KIAS				N	IACH N	IUMBE	R	
	(FT)	180	200	220	240	260	.70	.72	.74	.76	.78	.80
	EPR		1.82	1.81	1.79		1.82	1.81	1.81	1.80	1.80	1.79
41000	MAX TAT		-25	-21	-17		-24	-23	-22	-20	-19	-17
	EPR CORR		0.04	0.04	0.04		0.04	0.04	0.04	0.04	0.04	0.04
	EPR		1.83	1.82	1.80	1.78	1.82	1.81	1.81	1.80	1.80	-1.79
39000	MAX TAT		-27	-23	-19	-15	-24	-23	-22	-20	-19	-17
	EPR CORR		0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
	EPR		1.84	1.82	1.81	1.79	1.82	1.82	1.81	1.80	1.80	1.79
37000	MAX TAT		-29	-25	-21	-17	-24	-23	-22	-20	-19	-17
	EPR CORR		0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
	EPR		1.84	1.82	1.81	1.80	1.81	1.81	1.80	1.80	1.79	1.79
35000	MAX TAT		-28	-24	-21	-17	-22	-21	-19	-18	-16	-15
	EPR CORR		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	EPR		1.83	1.82	1.81	1.80	1.81	1.80	1.79	1.79	1.78	1.78
33000	MAX TAT		-25	-22	-19	-15	-18	-16	-15	-14	-12	-11
	EPR CORR		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	EPR		1.83	1.82	1.81	1.79	1.80	1.79	1.78	1.78	1.77	1.77
31000	MAX TAT		-22	-19	-16	-13	-13	-12	-10	-9	-8	-6
	EPR CORR		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	EPR		1.82	1.81	1.80	1.79	1.79	1.78	1.77	1.77	1.76	1.75
29000	MAX TAT		-19	-16	-13	-10	-9	-7	-6	-5	-3	-2
	EPR CORR		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	EPR		1.82	1.81	1.80	1.79	1.78	1.77	1.76	1.76	1.75	1.74
27000	MAX TAT		-16	-13	-11	-8	-5	-3	-2	0	1	3
	EPR CORR		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	EPR	1.82	1.81	1.80	1.80	1.79	1.77	1.76	1.75	1.75	1.74	1.73
25000	MAX TAT	-15	-13	-10	-8	-5	0	1	3	4	6	7
	EPR CORR	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	EPR	1.81	1.80	1.80	1.79	1.78	1.75	1.74	1.73	1.72	1.72	
22000	MAX TAT	-10	-8	-6	-3	-1	6	8	9	11	12	
	EPR CORR	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	

Decrease EPR by the EPR CORR for every 10°C above the MAX TAT shown.

EPR Adjustments for Engine Bleed

BLEED		PRESSUR	E ALTITUDE	(1000 FT)	
CONFIGURATION	0	10	20	30	40
PACKS OFF	0.01	0.01	0.01	0.01	0.01
ENGINE ANTI-ICE ON	-0.01	-0.01	-0.01	-0.01	-0.02
ENGINE & WING ANTI-ICE ON	-0.03	-0.03	-0.03	-0.05	-0.08

DO NOT USE FOR FLIGHT Performance Inflight - QRH Engine Inoperative

757 Flight Crew Operations Manual

ENGINE INOP

Max Continuous EPR 20000 FT to Sea Level Pressure Altitudes

Based on engine bleed for one pack on and anti-ice off

PRESSU	RE ALTITUDE			KIAS				N	IACH N	IUMBE	R	
	(FT)	180	200	220	240	260	.70	.72	.74	.76	.78	.80
	EPR	1.80	1.80	1.79	1.78	1.77	1.73	1.72	1.71	1.71		
20000	MAX TAT	-6	-5	-3	0	2	11	12	14	15		
	EPR CORR	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06		
	EPR	1.79	1.78	1.78	1.77	1.76	1.71	1.70	1.69			
18000	MAX TAT	-3	-1	1	3	5	15	17	18			
	EPR CORR	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06			
	EPR	1.78	1.77	1.76	1.75	1.74	1.69					
16000	MAX TAT	0	2	4	6	8	19					
	EPR CORR	0.06	0.06	0.06	0.06	0.06	0.06					
	EPR	1.76	1.75	1.75	1.74	1.73						
14000	MAX TAT	4	6	7	9	11						
	EPR CORR	0.06	0.06	0.06	0.06	0.06						
	EPR	1.75	1.74	1.73	1.72	1.71						
12000	MAX TAT	8	9	11	12	14						
	EPR CORR	0.06	0.06	0.06	0.06	0.06						
	EPR	1.73	1.72	1.71	1.70	1.69						
10000	MAX TAT	11	13	14	16	17						
	EPR CORR	0.06	0.06	0.06	0.06	0.06						
	EPR	1.68	1.67	1.67	1.66	1.65						
5000	MAX TAT	20	21	23	24	26						
	EPR CORR	0.06	0.06	0.06	0.06	0.06						
	EPR	1.63	1.62	1.62	1.61	1.60						
1500	MAX TAT	27	28	29	30	32						
	EPR CORR	0.06	0.06	0.06	0.06	0.06						
	EPR	1.61	1.60	1.60	1.59	1.58						
0	MAX TAT	29	30	32	33	34						
	EPR CORR	0.06	0.06	0.06	0.06	0.06						

Decrease EPR by the EPR CORR for every 10°C above the MAX TAT shown.

EPR Adjustments for Engine Bleed

BLEED		PRESSURE ALTITUDE (1000 FT)										
CONFIGURATION	0	10	20	30	40							
PACKS OFF	0.01	0.01	0.01	0.01	0.01							
ENGINE ANTI-ICE ON	-0.01	-0.01	-0.01	-0.01	-0.02							
ENGINE & WING ANTI-ICE ON	-0.03	-0.03	-0.03	-0.05	-0.08							

ENGINE INOP

MAX CONTINUOUS THRUST

Driftdown Speed/Level Off Altitude 100 ft/min residual rate of climb Includes APU fuel burn

WEIGHT	(1000 LB)	OPTIMUM	LEVI	EL OFF ALTITUDI	E (FT)
START DRIFT DOWN	LEVEL OFF	DRIFTDOWN SPEED (KIAS)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
260	250	254	19300	18100	16600
240	231	245	21700	20700	19400
220	212	235	24000	23100	22100
200	193	224	26500	25700	24800
180	174	213	29100	28400	27600
160	154	201	32000	31300	30600
140	135	189	35300	34500	33800

Driftdown/LRC Cruise Range Capability **Ground to Air Miles Conversion**

	AIR D	ISTANCE	(NM)		GROUND	AIR DISTANCE (NM)						
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TAILWIND COMPONENT (KTS)						
100	80	60	40	20	(NM)	20	40	60	80	100		
278	258	240	225	212	200	189	180	171	163	156		
557	516	481	451	424	400	379	360	342	327	312		
831	771	720	675	635	600	568	540	514	491	470		
1101	1024	957	898	846	800	758	721	687	656	628		
1370	1276	1194	1121	1057	1000	949	902	860	822	787		
1639	1527	1430	1344	1268	1200	1139	1084	1034	988	947		
1908	1779	1666	1567	1479	1400	1329	1265	1207	1154	1106		
2179	2032	1904	1790	1690	1600	1519	1446	1380	1319	1264		
2454	2288	2143	2015	1901	1800	1709	1627	1552	1484	1421		

Driftdown/Cruise Fuel and Time

AIR		F	UEL REQUII	RED (1000 LE	3)		TDAT
DIST		WEIGHT A	T START OF	DRIFTDOW	N (1000 LB)		TIME (HR:MIN)
(NM)	160	180	200	220	240	260	(IIIC.WIIN)
200	2.8	3.1	3.4	3.7	3.9	4.2	0:34
400	6.2	6.8	7.5	8.1	8.8	9.5	1:08
600	9.3	10.3	11.3	12.3	13.3	14.4	1:40
800	12.3	13.6	14.9	16.3	17.7	19.1	2:11
1000	15.2	16.9	18.6	20.3	22.0	23.8	2:42
1200	18.2	20.2	22.2	24.2	26.3	28.4	3:13
1400	21.0	23.4	25.7	28.1	30.5	33.0	3:44
1600	23.8	26.5	29.2	31.9	34.6	37.4	4:15
1800	26.6	29.6	32.6	35.6	38.7	41.9	4:48

Includes APU fuel burn.

Driftdown at optimum driftdown speed and cruise at Long Range Cruise speed.

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Altitude Capability 100 ft/min residual rate of climb

WEIGHT		PRESSURE ALTITUDE (FT))
(1000 LB)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
260	14600	11500	8300
250	16300	13700	10300
240	17900	15700	12500
230	19500	17500	14900
220	20900	19300	17000
210	22300	20900	19100
200	23700	22400	20900
190	25200	23900	22400
180	26600	25500	24100
170	28100	27000	25800
160	29600	28600	27400
150	31200	30300	29100
140	32900	32000	31000
130	34700	33800	32900
120	36600	35800	34800

With engine anti-ice on, decrease altitude capability by 1000 ft.

With engine and wing anti-ice on, decrease altitude capability by 3400 ft.

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Control

WE	EIGHT			P	RESSURE	ALTITUE	DE (1000 F	Т)		
(100	00 LB)	10	14	18	21	23	25	27	29	31
	EPR	1.57	1.65							
260	MACH	.574	.606							
260	KIAS	319	313							
	FF/ENG	9867	9808							
	EPR	1.54	1.61	1.70						
240	MACH	.557	.590	.623						
240	KIAS	309	304	298						
	FF/ENG	9127	9040	9034						
	EPR	1.50	1.57	1.65	1.72					
220	MACH	.539	.572	.605	.632					
220	KIAS	299	295	289	285					
	FF/ENG	8411	8292	8244	8273					
	EPR	1.47	1.53	1.61	1.67	1.72	1.77			
200	MACH	.519	.552	.586	.611	.629	.650			
200	KIAS	288	284	279	275	272	270			
	FF/ENG	7710	7557	7483	7466	7487	7555			
	EPR	1.43	1.49	1.56	1.62	1.67	1.71	1.76		
180	MACH	.497	.530	.564	.590	.607	.625	.646		
180	KIAS	275	272	269	265	262	259	257		
	FF/ENG	7015	6856	6744	6702	6692	6702	6773		
	EPR	1.40	1.45	1.51	1.57	1.61	1.66	1.70	1.75	1.80
160	MACH	.474	.505	.539	.566	.583	.601	.619	.639	.661
100	KIAS	262	260	257	254	251	249	246	244	242
	FF/ENG	6347	6161	6030	5964	5936	5922	5925	5984	6108
	EPR	1.36	1.41	1.47	1.51	1.55	1.59	1.64	1.68	1.73
140	MACH	.448	.479	.511	.538	.555	.573	.591	.610	.629
140	KIAS	247	246	243	241	239	237	234	232	229
	FF/ENG	5655	5491	5339	5253	5207	5177	5159	5155	5193
	EPR	1.31	1.36	1.41	1.46	1.49	1.53	1.57	1.61	1.66
120	MACH	.413	.448	.481	.505	.523	.541	.560	.578	.597
120	KIAS	228	230	228	226	224	223	221	219	217
	FF/ENG	4875	4811	4668	4565	4513	4463	4428	4406	4394

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Diversion Fuel and Time Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)			
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TAILWIND COMPONENT (KTS)						
100	80	60	40	20	(NM)	20	40	60	80	100		
288	265	245	228	213	200	190	181	173	166	159		
576	531	490	456	427	400	381	363	347	332	319		
866	797	736	684	640	600	572	545	521	499	479		
1156	1064	982	913	853	800	762	726	694	665	639		
1448	1332	1229	1142	1067	1000	952	909	868	832	799		
1741	1601	1477	1372	1281	1200	1143	1090	1041	997	958		
2036	1871	1725	1602	1495	1400	1333	1271	1214	1163	1117		
2332	2142	1974	1832	1709	1600	1523	1452	1387	1329	1276		
2630	2414	2223	2062	1924	1800	1713	1633	1560	1494	1434		

Reference Fuel and Time Required at Check Point

A ID				PRESS	URE ALT	ITUDE (10	00 FT)						
AIR DIST	1	0	1	4	1	8	2	2	28				
(NM)	FUEL (1000 LB)	TIME	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME	FUEL (1000 LB)	TIME	FUEL (1000 LB)	TIME (HR:MIN			
	()		(,		,				. ,	\			
200	4.5	0:41	3.9	0:40	3.5	0:39	3.2	0:38	2.8	0:36			
400	9.2	1:18	8.3	1:15	7.7	1:12	7.2	1:10	6.7	1:06			
600	13.9	1:55	12.7	1:50	11.8	1:46	11.1	1:42	10.5	1:36			
800	18.5	2:32	17.0	2:26	15.9	2:20	15.0	2:14	14.2	2:06			
1000	23.0	3:10	21.2	3:02	19.9	2:54	18.8	2:47	17.8	2:37			
1200	27.5	3:48	25.4	3:38	23.8	3:28	22.5	3:20	21.4	3:07			
1400	32.0	4:27	29.6	4:14	27.7	4:03	26.3	3:53	24.9	3:38			
1600	36.4	5:06	33.7	4:51	31.6	4:38	29.9	4:27	28.4	4:09			
1800	40.7	5:45	37.8	5:29	35.4	5:13	33.5	5:00	31.8	4:41			

Fuel Required Adjustment (1000 LB)

REFERENCE FUEL REQUIRED		WEIGH	T AT CHEC	K POINT (10	000 LB)	
(1000 LB)	160	180	200	220	240	260
5	-0.4	-0.2	0.0	0.3	0.6	1.0
10	-0.8	-0.4	0.0	0.8	1.5	2.2
15	-1.3	-0.7	0.0	1.2	2.3	3.5
20	-1.7	-0.9	0.0	1.6	3.2	4.8
25	-2.2	-1.1	0.0	2.1	4.1	6.1
30	-2.7	-1.3	0.0	2.5	4.9	7.3
35	-3.1	-1.6	0.0	2.9	5.8	8.6
40	-3.6	-1.8	0.0	3.3	6.7	9.9
45	-4.1	-2.0	0.0	3.8	7.6	11.3

Includes APU fuel burn.

ENGINE INOP

MAX CONTINUOUS THRUST

Holding Flaps Up

W	EIGHT			PRESSU	JRE ALTITU	DE (FT)		
(10	000 LB)	1500	5000	10000	15000	20000	25000	30000
	EPR	1.39	1.45	1.54	1.65			
260	KIAS	235	235	235	235			
	FF/ENG	8720	8640	8590	8710			
	EPR	1.37	1.41	1.50	1.60	1.73		
240	KIAS	228	228	228	228	228		
	FF/ENG	8070	7970	7890	7930	8170		
	EPR	1.34	1.38	1.46	1.55	1.67		
220	KIAS	220	220	220	220	220		
	FF/ENG	7420	7320	7220	7200	7330		
	EPR	1.31	1.35	1.42	1.51	1.61	1.75	
200	KIAS	213	213	213	213	213	213	
	FF/ENG	6770	6680	6570	6510	6550	6790	
	EPR	1.28	1.32	1.38	1.46	1.56	1.68	
180	KIAS	205	205	205	205	205	205	
	FF/ENG	6130	6050	5940	5850	5830	5950	
	EPR	1.25	1.28	1.34	1.41	1.50	1.61	1.75
160	KIAS	197	197	197	197	197	197	197
	FF/ENG	5490	5430	5320	5220	5160	5190	5420
	EPR	1.22	1.25	1.30	1.36	1.44	1.54	1.66
140	KIAS	188	188	188	188	188	188	188
	FF/ENG	4870	4800	4710	4620	4540	4510	4580
	EPR	1.19	1.22	1.26	1.32	1.39	1.47	1.58
120	KIAS	179	179	179	179	179	179	179
	FF/ENG	4250	4190	4110	4030	3940	3880	3870

This table includes 5% additional fuel for holding in a racetrack pattern.

757 Flight Crew Operations Manual

Performance Inflight - QRH Gear Down Chapter PI-QRH Section 13

GEAR DOWN

210 KIAS Max Climb EPR

Based on engine bleed for packs on and anti-ice off

						DECC	IIDE A	T TOTAL	DE (1)	000 ET					
TAT								LTITU		-					
(°C)	0	5	10	12	14	16	18	20	22	24	26	28	30	32	34
55	1.43	1.43	1.43	1.43	1.43	1.43	1.42	1.42	1.42	1.41	1.41	1.41	1.41	1.41	1.41
50	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.44	1.44	1.44	1.44	1.44	1.44	1.44	1.44
45	1.48	1.48	1.48	1.48	1.48	1.47	1.47	1.47	1.46	1.46	1.46	1.46	1.46	1.46	1.46
40	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49
35	1.53	1.53	1.53	1.53	1.53	1.53	1.52	1.52	1.52	1.51	1.51	1.51	1.51	1.52	1.52
30	1.55	1.56	1.55	1.55	1.56	1.55	1.55	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
25	1.55	1.58	1.58	1.58	1.58	1.58	1.58	1.57	1.57	1.57	1.57	1.57	1.57	1.57	1.57
20	1.55	1.60	1.61	1.61	1.61	1.61	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.61
15	1.55	1.60	1.64	1.64	1.64	1.64	1.64	1.63	1.63	1.63	1.63	1.63	1.63	1.64	1.64
10	1.55	1.60	1.65	1.67	1.68	1.67	1.67	1.66	1.66	1.66	1.66	1.66	1.66	1.67	1.67
5	1.55	1.60	1.65	1.68	1.70	1.70	1.70	1.69	1.69	1.69	1.69	1.69	1.69	1.70	1.70
0	1.55	1.60	1.65	1.68	1.70	1.71	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.73
-5	1.55	1.60	1.65	1.68	1.70	1.71	1.73	1.74	1.75	1.74	1.74	1.75	1.75	1.75	1.75
-10	1.55	1.60	1.65	1.68	1.70	1.71	1.73	1.74	1.76	1.77	1.77	1.77	1.77	1.77	1.77
-15	1.55	1.60	1.65	1.68	1.70	1.71	1.73	1.74	1.76	1.77	1.78	1.79	1.79	1.79	1.79
-20	1.55	1.60	1.65	1.68	1.70	1.71	1.73	1.74	1.76	1.77	1.78	1.79	1.80	1.81	1.81
-25	1.55	1.60	1.65	1.68	1.70	1.71	1.73	1.74	1.76	1.77	1.78	1.79	1.80	1.82	1.83
-30	1.55	1.60	1.65	1.68	1.70	1.71	1.73	1.74	1.76	1.77	1.78	1.79	1.80	1.82	1.83

EPR Adjustments for Engine Bleeds

BLEED		PRESSURE ALTITUDE (1000 FT)										
CONFIGURATION	0	5	10	12	16	20	24	26	28	30	32	34
PACKS OFF	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
ENGINE ANTI-ICE ON	0.00	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.02
ENGINE & WING ANTI-ICE ON	-0.01	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.03	-0.03	-0.03	-0.03	-0.04

Long Range Cruise Altitude Capability

WEIGHT		PRESSURE ALTITUDE (FT)	1
(1000 LB)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
260	19800	16700	13700
250	21400	18700	15800
240	23100	20600	17700
230	24800	22600	19600
220	26500	24400	21800
210	28200	26300	23900
200	29800	28200	26100
190	31200	29900	28200
180	32700	31500	30000
170	34100	33100	31700
160	35600	34700	33500
150	36800	36100	35200
140	37900	37300	36600
130	39200	38500	37800
120	40500	39700	39000

Copyright © The Boeing Company. See title page for details.

757 Flight Crew Operations Manual

GEAR DOWN

Long Range Cruise Control

WE	IGHT				PRE	SSURE A	ALTITU	DE (1000	FT)			
(100	00 LB)	10	14	18	21	23	25	27	29	31	33	35
	EPR	1.47	1.54	1.62								
260	MACH	.455	.485	.515								
260	KIAS	254	251	247								
	FF/ENG	7405	7267	7158								
	EPR	1.44	1.51	1.58	1.64	1.69						
240	MACH	.440	.470	.500	.524	.540						
240	KIAS	246	243	240	237	234						
	FF/ENG	6877	6730	6607	6555	6541						
	EPR	1.41	1.47	1.54	1.60	1.64	1.69					
220	MACH	.424	.453	.484	.508	.524	.540					
220	KIAS	236	234	232	229	227	225					
	FF/ENG	6331	6190	6074	6002	5968	5955					
	EPR	1.38	1.44	1.50	1.56	1.60	1.64	1.69	1.74			
200	MACH	.406	.436	.466	.490	.506	.522	.539	.556			
200	KIAS	226	225	223	221	219	217	215	213			
	FF/ENG	5780	5673	5543	5460	5420	5383	5377	5408			
	EPR	1.34	1.40	1.46	1.51	1.55	1.59	1.63	1.68	1.73		
180	MACH	.384	.416	.446	.470	.486	.502	.519	.537	.560		
100	KIAS	214	215	213	212	210	208	207	205	205		
	FF/ENG	5205	5128	5015	4937	4888	4843	4816	4815	4908		
	EPR	1.31	1.36	1.42	1.46	1.50	1.54	1.58	1.62	1.67	1.73	1.79
160	MACH	.363	.393	.424	.448	.464	.480	.496	.516	.539	.562	.587
100	KIAS	202	202	202	201	200	199	197	197	197	197	197
	FF/ENG	4640	4573	4490	4414	4366	4315	4277	4282	4320	4409	4528
	EPR	1.27	1.32	1.37	1.41	1.45	1.48	1.52	1.57	1.61	1.66	1.72
140	MACH	.341	.367	.398	.423	.439	.456	.475	.495	.517	.539	.563
140	KIAS	189	189	190	190	189	188	188	188	188	188	188
	FF/ENG	4080	4007	3950	3894	3854	3811	3796	3792	3802	3841	3911
	EPR	1.24	1.28	1.33	1.37	1.40	1.43	1.47	1.51	1.55	1.60	1.65
120	MACH	.323	.349	.377	.400	.417	.434	.453	.472	.493	.514	.537
120	KIAS	179	179	179	179	179	179	179	179	179	179	179
	FF/ENG	3613	3558	3605	3440	3405	3425	3401	3384	3325	3339	3365

DO NOT USE FOR FLIGHT Performance Inflight - QRH Gear Down

757 Flight Crew Operations Manual

GEAR DOWN

Long Range Cruise Enroute Fuel and Time Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)		
HE.	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TAILWIND COMPONENT (KTS)					
100	80	60	40	20	(NM)	20	40	60	80	100	
327	292	261	237	217	200	188	178	168	160	152	
659	586	524	475	435	400	377	356	337	319	304	
998	886	791	715	654	600	565	533	504	478	456	
1342	1189	1059	956	873	800	753	711	672	638	608	
1692	1496	1329	1198	1092	1000	941	888	840	797	759	
2048	1807	1602	1442	1312	1200	1129	1064	1006	954	909	
2411	2123	1877	1686	1533	1400	1317	1241	1173	1112	1059	
2781	2443	2155	1933	1754	1600	1504	1417	1339	1270	1209	
3157	2766	2435	2180	1976	1800	1692	1593	1505	1427	1358	

Reference Fuel and Time Required at Check Point

A ID				PRESS	URE ALT	ITUDE (10	00 FT)			
AIR DIST	10		1	4	1	8	2	2	28	
(NM)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN						
200	8.4	0:51	7.6	0:49	6.8	0:47	6.2	0:45	5.4	0:43
400	17.1	1:39	15.6	1:34	14.3	1:29	13.2	1:26	11.9	1:21
600	25.5	2:28	23.5	2:20	21.6	2:13	20.0	2:07	18.1	1:59
800	33.8	3:18	31.2	3:06	28.8	2:57	26.7	2:48	24.3	2:37
1000	41.9	4:10	38.7	3:54	35.8	3:41	33.3	3:30	30.3	3:16
1200	49.8	5:02	46.1	4:43	42.7	4:27	39.7	4:13	36.1	3:56
1400	57.5	5:56	53.3	5:33	49.4	5:13	46.0	4:57	41.8	4:36
1600	65.0	6:52	60.3	6:25	56.0	6:01	52.1	5:41	47.5	5:16
1800	72.3	7:48	67.2	7:17	62.5	6:50	58.2	6:26	52.9	5:57

Fuel Required Adjustment (1000 LB)

REFERENCE FUEL REQUIRED	WEIGHT AT CHECK POINT (1000 LB)								
(1000 LB)	160	180	200	220	240	260			
10	-1.0	-0.5	0.0	0.7	1.4	2.2			
20	-2.0	-1.0	0.0	1.5	3.0	4.6			
30	-3.1	-1.5	0.0	2.2	4.5	6.9			
40	-4.3	-2.1	0.0	2.9	5.9	9.1			
50	-5.4	-2.6	0.0	3.5	7.3	11.2			
60	-6.5	-3.2	0.0	4.2	8.6	13.2			
70	-7.6	-3.8	0.0	4.7	9.8	15.1			

Descent at VREF30 + 80

PRESSURE ALT (1000 FT)	5	10	15	17	19	21	23	25	27	29	31	33	35
DISTANCE (NM)	12	21	30	34	38	41	45	49	53	57	61	65	69
TIME (MINUTES)	7	9	11	12	13	13	14	15	16	16	17	18	18

¹ DO NOT USE FOR FLIGHT

757 Flight Crew Operations Manual

GEAR DOWN

Holding Flaps Up

W	EIGHT			PRESSU	JRE ALTITU	DE (FT)		
(10	000 LB)	1500	5000	10000	15000	20000	25000	30000
	EPR	1.33	1.37	1.45	1.54	1.64		
260	KIAS	235	235	235	235	235		
	FF/ENG	7390	7280	7150	7090	7150		
	EPR	1.31	1.35	1.42	1.50	1.60		
240	KIAS	228	228	228	228	228		
	FF/ENG	6880	6780	6640	6560	6570		
	EPR	1.29	1.32	1.39	1.47	1.56	1.68	
220	KIAS	220	220	220	220	220	220	
	FF/ENG	6370	6290	6150	6050	6020	6110	
	EPR	1.26	1.30	1.36	1.43	1.52	1.63	
200	KIAS	213	213	213	213	213	213	
	FF/ENG	5870	5800	5670	5560	5490	5520	
	EPR	1.24	1.27	1.33	1.40	1.48	1.58	1.71
180	KIAS	205	205	205	205	205	205	205
	FF/ENG	5380	5310	5200	5080	5000	4980	5100
	EPR	1.22	1.25	1.30	1.36	1.44	1.53	1.65
160	KIAS	197	197	197	197	197	197	197
	FF/ENG	4900	4830	4730	4630	4530	4480	4510
	EPR	1.20	1.23	1.27	1.33	1.40	1.48	1.59
140	KIAS	188	188	188	188	188	188	188
	FF/ENG	4420	4350	4260	4180	4070	4000	3980
	EPR	1.18	1.20	1.24	1.29	1.35	1.43	1.53
120	KIAS	179	179	179	179	179	179	179
	FF/ENG	4270	3880	3790	3720	3630	3600	3550

This table includes 5% additional fuel for holding in a racetrack pattern.

757 Flight Crew Operations Manual

Performance Inflight - QRH Gear Down, Engine Inop Chapter PI-QRH Section 14

MAX CONTINUOUS THRUST

Driftdown Speed/Level Off Altitude 100 ft/min residual rate of climb Includes APU fuel burn

WEIGHT	(1000 LB)	OPTIMUM	LEVI	EL OFF ALTITUDE	E (FT)
START DRIFT DOWN	LEVEL OFF	DRIFTDOWN SPEED (KIAS)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
240	226	225	3300		
220	208	218	7000	4900	2300
200	190	210	10500	8800	6600
180	171	203	14100	12700	10800
160	152	195	17400	16300	15000
140	134	187	20700	19900	18900

Long Range Cruise Altitude Capability 100 ft/min residual rate of climb

WEIGHT		PRESSURE ALTITUDE (FT)
(1000 LB)	ISA+10°C & BELOW	ISA+15°C	ISA+20°C
210	5700	2100	
200	8100	5400	1300
190	10600	8100	5200
180	12400	10700	8100
170	14400	12800	10900
160	16200	14900	13200
150	17900	16800	15400
140	19700	18700	17500
130	21500	20600	19600
120	23200	22500	21500

GEAR DOWN ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Control

		1		DDEC	CLIDE ALT	ITLIDE (100	A PT		
	EIGHT				SURE ALT				
(100	00 LB)	6	8	10	12	14	16	18	20
	EPR	1.62	1.66	1.70					
200	MACH	.363	.374	.383					
200	KIAS	217	216	213					
	FF/ENG	10785	10750	10700					
	EPR	1.56	1.60	1.65	1.69	1.75			
180	MACH	.348	.359	.370	.383	.398			
100	KIAS	208	207	206	205	205			
	FF/ENG	9711	9658	9610	9656	9795			
	EPR	1.51	1.55	1.59	1.63	1.68	1.73		
160	MACH	.333	.343	.354	.368	.382	.397		
100	KIAS	199	198	197	197	197	197		
	FF/ENG	8698	8611	8561	8594	8661	8774		
	EPR	1.46	1.49	1.53	1.57	1.62	1.66	1.72	1.77
140	MACH	.315	.327	.339	.352	.366	.380	.396	.412
140	KIAS	188	188	188	188	188	188	188	188
	FF/ENG	7680	7644	7621	7617	7635	7683	7769	7906
	EPR	1.41	1.44	1.47	1.51	1.55	1.59	1.64	1.69
120	MACH	.300	.311	.323	.335	.349	.362	.377	.392
120	KIAS	179	179	179	179	179	179	179	179
	FF/ENG	6808	6763	6724	6700	6685	6689	6719	6777

GEAR DOWN ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Diversion Fuel and Time **Ground to Air Miles Conversion**

	AIR D	ISTANCE	(NM)		GROUND	AIR DISTANCE (NM)					
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE					(KTS)	
100	80	60	40	20	(NM)	20	40	60	80	100	
171	151	133	120	109	100	94	88	82	78	74	
346	304	268	241	219	200	187	174	164	155	147	
523	459	405	362	329	300	280	262	246	232	220	
702	615	541	484	439	400	373	349	328	309	293	
881	771	677	606	549	500	466	436	409	386	366	
1062	928	815	728	659	600	560	524	491	463	439	
1245	1087	954	851	770	700	653	610	573	540	511	
1429	1246	1091	974	880	800	746	697	654	616	583	

Reference Fuel and Time Required at Check Point

A ID			PRE	SSURE ALT	TUDE (1000	FT)			
AIR DIST	(5	1	0	1	4	18		
(NM)	FUEL (1000 LB)	TIME (HR:MIN)							
100	4.4	0:29	4.0	0:28	3.6	0:27	3.3	0:26	
200	9.0	0:55	8.3	0:53	7.8	0:51	7.5	0:48	
300	13.6	1:21	12.6	1:18	12.0	1:14	11.6	1:11	
400	18.0	1:48	16.9	1:43	16.1	1:38	15.6	1:33	
500	22.5	2:14	21.0	2:09	20.1	2:02	19.6	1:55	
600	26.8	2:41	25.2	2:34	24.0	2:26	23.5	2:18	
700	31.1	3:08	29.2	3:00	27.9	2:50	27.3	2:41	
800	35.4	3:36	33.2	3:26	31.8	3:15	31.0	3:04	

Fuel Required Adjustment (1000 LB)

REFERENCE FUEL REQUIRED	WEIGHT AT CHECK POINT (1000 LB)					
(1000 LB)	160	180	200	220	240	260
5	-0.5	-0.3	0.0	0.3	0.7	1.0
10	-1.0	-0.5	0.0	0.8	1.5	2.3
15	-1.6	-0.8	0.0	1.2	2.4	3.5
20	-2.1	-1.1	0.0	1.6	3.2	4.7
25	-2.7	-1.4	0.0	2.0	4.0	6.0
30	-3.2	-1.6	0.0	2.5	4.9	7.3
35	-3.7	-1.9	0.0	2.9	5.7	8.5

Includes APU fuel burn.

GEAR DOWN ENGINE INOP

MAX CONTINUOUS THRUST

Holding Flaps Up

WEIGHT (1000 LB)		PRESSURE ALTITUDE (FT)					
		1500 5000		10000	15000		
	EPR	1.60					
240	KIAS	228					
	FF/ENG	13170					
	EPR	1.56	1.63				
220	KIAS	220	220				
	FF/ENG	12070	12120				
	EPR	1.52	1.58	1.70			
200	KIAS	213	213	213			
	FF/ENG	11030	11020	11200			
	EPR	1.47	1.54	1.64			
180	KIAS	205	205	205			
	FF/ENG	10050	10000	10050			
	EPR	1.43	1.49	1.59	1.71		
160	KIAS	197	197	197	197		
	FF/ENG	9100	9020	8990	9150		
	EPR	1.39	1.44	1.53	1.64		
140	KIAS	188	188	188	188		
	FF/ENG	8190	8090	8000	8040		
120	EPR	1.34	1.39	1.47	1.57		
	KIAS	179	179	179	179		
	FF/ENG	7280	7180	7060	7020		

This table includes 5% additional fuel for holding in a racetrack pattern.

757 Flight Crew Operations Manual

Performance Inflight - QRH Text **Chapter PI-QRH Section 15**

Introduction

This chapter contains information to supplement performance data from the Flight Management Computer (FMC). In addition, sufficient inflight data is provided to complete a flight with the FMC inoperative. In the event of conflict between data presented in this chapter and that contained in the approved Airplane Flight Manual, the Flight Manual shall always take precedence.

General

Flight with Unreliable Airspeed / Turbulent Air Penetration

Pitch attitude and average EPR information is provided for use in all phases of flight in the event of unreliable airspeed/Mach indications resulting from blocking or freezing of the pitot system. Loss of radome or turbulent air may also cause unreliable airspeed/Mach indications. The cruise table in this section may also be used for turbulent air penetration.

Pitch attitude is shown in bold type for emphasis since altitude and/or vertical speed indications may also be unreliable.

Max Climb EPR

This table shows Max Climb EPR for a 250/290/.78 climb speed schedule, normal engine bleed for packs on and anti-ice off. Enter the table with airport pressure altitude and TAT and read EPR. EPR adjustments are shown for packs off and anti-ice operation.

VREF

The Reference Speed table contains flaps 30, 25 and 20 landing speeds for a given weight.

Advisory Information

Normal Configuration Landing Distance

Tables are provided as advisory information for normal configuration landing distance on dry runways and slippery runways with good, medium, and poor reported braking action. These values are actual landing distances and do not include the 1.67 regulatory factor. Therefore, they cannot be used to determine the dispatch required landing field length.

757-200/535E4 FA A

757 Flight Crew Operations Manual

To use these tables, determine the reference landing distance for the selected braking configuration. Then adjust the reference distance for landing weight, altitude, wind, slope, temperature, approach speed, and the number of operative thrust reversers to obtain the actual landing distance.

When landing on slippery runways or runways contaminated with ice, snow, slush, or standing water, the reported braking action must be considered. If the surface is affected by water, snow, or ice and the braking action is reported as "good", conditions should not be expected to be as good as on clean, dry runways. The value "good" is comparative and is intended to mean that airplanes should not experience braking or directional control difficulties when landing. The performance level used to calculate the "good" data is consistent with wet runway testing done on early Boeing jets. The performance level used to calculate "poor" data reflects runways covered with wet ice.

Use of the autobrake system commands the airplane to a constant deceleration rate. In some conditions, such as a runway with "poor" braking action, the airplane may not be able to achieve these deceleration rates. In these cases, runway slope and inoperative reversers influence the stopping distance. Since it cannot be determined quickly when this becomes a factor, it is conservative to add the effects of slope and inoperative reversers when using the autobrake system.

Non-normal Configuration Landing Distance

Advisory information is provided to support non-normal configurations that affect the landing performance of the airplane. Landing distances and adjustments are provided for dry runways and runways with good, medium, and poor reported braking action.

Enter the table with the applicable non-normal configuration and read the normal approach speed. The reference landing distance is a reference distance from 50 ft above the threshold to stop based on a reference landing weight and speed at sea level, zero wind, and zero slope. Subsequent columns provide adjustments for off-reference landing weight, altitude, wind, slope, and speed conditions. Each adjustment is independently added to the reference landing distance. Landing distance includes the effects of max manual braking and reverse thrust.

Recommeded Brake Cooling Schedule

Advisory information is provided to assist in avoiding the problems associated with hot brakes. For normal operation, most landings are at weights below the AFM quick turnaround limit weight.

DO NOT USE FOR FLIGHT Performance Inflight - QRH Text

757 Flight Crew Operations Manual

Use of the recommended cooling schedule will help avoid brake overheat and fuse plug problems that could result from repeated landings at short time intervals or a rejected takeoff.

Enter the Recommended Brake Cooling Schedule table with the airplane weight and brakes on speed, adjusted for wind, at the appropriate temperature and altitude condition. Instructions for applying wind adjustments are included below the table. Linear interpolation may be used to obtain intermediate values. The resulting number is the reference brake energy per brake in millions of foot-pounds, and represents the amount of energy absorbed by each brake during a rejected takeoff

To determine the energy per brake absorbed during landing, enter the appropriate Adjusted Brake Energy Per Brake table (No Reverse Thrust or Two Engine Reverse) with the reference brake energy per brake and the type of braking used during landing (Max Manual, Max Auto, or Autobrake). The resulting number is the adjusted brake energy per brake and represents the energy absorbed in each brake during the landing.

The recommended cooling time is found in the final table by entering with the adjusted brake energy per brake or brake temperature monitor system (BTMS) indication on EICAS. Times are provided for ground cooling and inflight gear down cooling.

If brake temperature monitor indication on EICAS is available, the hottest brake indication 10 to 15 minutes after the airplane has come to a complete stop, or inflight with gear retracted, may be used to determine the recommended cooling schedule by entering at the bottom of the chart. The brake temperature light illuminates when the hottest brake is registering 5 on the EICAS indication and extinguishes as the hottest brake cools with an EICAS indication of 4.

Engine Inoperative

Initial Max Continuous EPR

The Initial Max Continuous EPR setting for use following an engine failure is shown. The table shows a range of Cruise Mach numbers to provide a target EPR setting at the start of driftdown. Also shown is the maximum TAT at which the limit EPR can be set. Once driftdown is established, the Max Continuous EPR table should be used to determine EPR for the given conditions.

757-200/535E4 FAA

Max Continuous EPR

Power setting is based on one engine operating with one A/C pack operating and all anti-ice bleeds off. Enter the table with pressure altitude and IAS or Mach to read EPR.

It is desirable to maintain engine thrust level within the limits of the Max Cruise thrust rating. However, where thrust level in excess of Max Cruise rating is required, such as for meeting terrain clearance, ATC altitude assignments, or to attain maximum range capability, it is permissible to use the thrust needed up to the Max Continuous thrust rating. The Max Continuous thrust rating is intended primarily for emergency use at the discretion of the pilot and is the maximum thrust that may be used continuously.

Driftdown Speed/Level Off Altitude

The table shows optimum driftdown speed as a function of cruise weight at start of driftdown. Also shown are the approximate weight and pressure altitude at which the airplane will level off considering 100 ft/min residual rate of climb

The level off altitude is dependent on air temperature (ISA deviation).

Driftdown/LRC Range Capability

This table shows the range capability from the start of driftdown. Driftdown is continued to level off altitude. As weight decreases due to fuel burn, the airplane is accelerated to Long Range Cruise speed. Cruise is continued at level off altitude and Long Range Cruise speed.

To determine fuel required, enter the Ground to Air Miles Conversion table with the desired ground distance and adjust for anticipated winds to obtain air distance to destination. Then enter the Driftdown/Cruise Fuel and Time table with air distance and weight at start of driftdown to determine fuel and time required. If altitudes other than the level off altitude are used, fuel and time required may be obtained by using the Engine Inoperative Long Range Cruise Enroute Fuel and Time table.

Long Range Cruise Altitude Capability

The table shows the maximum altitude that can be maintained at a given weight and air temperature (ISA deviation), based on Long Range Cruise speed, Max Continuous thrust, and 100 ft/min residual rate of climb.

Long Range Cruise Control

The table provides target EPR, engine inoperative Long Range Cruise Mach number, IAS and fuel flow for the airplane weight and pressure altitude. The fuel flow values in this table reflect single engine fuel burn.

 Copyright © The Boeing Company. See title page for details. PI-QRH.15.4 May 19, 2009 D632N001-200

DO NOT USE FOR FLIGHT Performance Inflight - QRH Text

757 Flight Crew Operations Manual

Long Range Cruise Diversion Fuel and Time

Tables are provided for crews to determine the fuel and time required to proceed to an alternate airfield with one engine inoperative. The data is based on single engine Long Range Cruise speed and .78/290/250 descent. Enter with Air Distance as determined from the Ground to Air Miles Conversion table and read Fuel and Time required at the cruise pressure altitude. Adjust the fuel obtained for deviation from the reference weight at checkpoint as required by entering the Fuel Required Adjustment table with the fuel required for the reference weight and the actual weight at checkpoint.

Holding

Target EPR, indicated airspeed and fuel flow per engine information is tabulated for holding with flaps up based on the FMC optimum holding speed schedule. This is the higher of the maximum endurance speed and the maneuvering speed. Small variations in airspeed will not appreciably affect the overall endurance time. Enter the table with weight and pressure altitude to read EPR, IAS and fuel flow per engine.

Gear Down

This section contains performance for airplane operation with the landing gear extended for all phases of flight. The data is based on engine bleeds for normal air conditioning.

NOTE: The Flight Management Computer System (FMCS) does not contain special provisions for operation with landing gear extended. As a result, the FMCS will generate inaccurate enroute speed schedules, display non-conservative predictions of fuel burn, estimated time of arrival (ETA), maximum altitude, and compute overly shallow descent path. To obtain accurate ETA predictions, gear down cruise speed and altitude should be entered on the CLB and CRZ pages. Gear down cruise speed should also be entered on the DES page and a STEP SIZE of zero should be entered on the PERF INIT or CRZ page. Use of the VNAV during descent under these circumstances is not recommended.

Tables for gear down performance in this section are identical in format and used in the same manner as tables for the gear up configuration previously described.

757-200/535E4 FAA

Intentionally Blank

757 Flight Crew Operations Manual

Performance Inflight - QRH Table of Contents

Chapter PI-QRH

Section 20

757-200 PW2037 LB FAA

General	. PI-QRH.20.1
Flight With Unreliable Airspeed /	
Turbulent Air Penetration	. PI-QRH.20.1
Max Climb EPR	. PI-QRH.20.4
VREF (KIAS)	. PI-QRH.20.5
Advisory Information	. PI-QRH.21.1
Normal Configuration Landing Distance	. PI-QRH.21.1
Non-Normal Configuration Landing Distance	. PI-QRH.21.3
Recommended Brake Cooling Schedule	.PI-QRH.21.11
Engine Inoperative	. PI-QRH.22.1
Initial Max Continuous EPR	. PI-QRH.22.1
Max Continuous EPR	. PI-QRH.22.2
Driftdown Speed/Level Off Altitude	. PI-QRH.22.4
Driftdown/LRC Cruise Range Capability	. PI-QRH.22.4
Long Range Cruise Altitude Capability	. PI-QRH.22.5
Long Range Cruise Control	. PI-QRH.22.6
Long Range Cruise Diversion Fuel and Time	. PI-QRH.22.7
Holding	. PI-QRH.22.8
Gear Down	. PI-QRH.23.1
210 KIAS Max Climb EPR	. PI-QRH.23.1
Long Range Cruise Altitude Capability	. PI-QRH.23.1
Long Range Cruise Control	. PI-QRH.23.2
Long Range Cruise Enroute Fuel and Time	
Descent at VREF30+80	. PI-QRH.23.3
Holding	. PI-QRH.23.4
Gear Down, Engine Inoperative	. PI-QRH.24.1
Driftdown Speed/Level Off Altitude	. PI-QRH.24.1

Performance Inflight - QRH **DO NOT USE FOR FLIGHT** Table of Contents

757 Flight Crew Operations Manual

	Long Range Cruise Altitude Capability	PI-QRH.24.1
	Long Range Cruise Control	PI-QRH.24.2
	Long Range Cruise Diversion Fuel and	Γime PI-QRH.24.3
	Holding	PI-QRH.24.4
_		
Tex	t	PI-QRH.25.1
	Introduction	PI-QRH.25.1
	General	PI-QRH.25.1
	Advisory Information	PI-QRH.25.1
	Engine Inoperative	PI-QRH.25.3
	Gear Down	PI-ORH 25.5

757 Flight Crew Operations Manual

Performance Inflight - QRH General

Chapter PI-QRH Section 20

Flight With Unreliable Airspeed / Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable. Climb (290/.78)

Flaps Up, Set Max Climb Thrust

PRES	SURE		WEIGHT	(1000 LB)	
ALTITU	DE (FT)	140	180	220	260
40000	PITCH ATT	4.5	4.0		
40000	V/S (FT/MIN)	1600	700		
30000	PITCH ATT	4.0	4.0	3.5	4.0
30000	V/S (FT/MIN)	2200	1600	1100	700
20000	PITCH ATT	6.5	6.0	5.5	5.5
20000	V/S (FT/MIN)	3500	2600	1900	1400
10000	PITCH ATT	9.5	8.0	7.5	7.0
10000	V/S (FT/MIN)	4600	3500	2700	2100
SEA LEVEL	PITCH ATT	12.5	10.5	9.5	8.5
SEA LEVEL	V/S (FT/MIN)	5600	4200	3300	2600

Cruise (.78/290)

Flaps Up, EPR for Level Flight

PRES	SSURE		WEIGHT	(1000 LB)	
ALTITU	JDE (FT)	140	180	220	260
	PITCH ATT	2.5	3.0		
40000	EPR	1.14	1.26		
	(Alt Mode %N1)	(77.1)	(81.3)		
	PITCH ATT	1.5	2.5	3.0	3.5
35000	EPR	1.08	1.13	1.23	1.38
	(Alt Mode %N1)	(74.6)	(77.1)	(80.4)	(85.7)
	PITCH ATT	1.0	2.0	2.5	3.0
30000	EPR	1.03	1.07	1.11	1.18
	(Alt Mode %N1)	(73.8)	(75.4)	(77.5)	(80.2)
	PITCH ATT	1.5	2.0	2.5	3.5
25000	EPR	0.99	1.02	1.05	1.10
	(Alt Mode %N1)	(70.3)	(71.9)	(73.8)	(76.3)
	PITCH ATT	1.5	2.0	2.5	3.5
20000	EPR	0.98	1.00	1.02	1.05
	(Alt Mode %N1)	(67.2)	(68.5)	(70.5)	(72.8)
	PITCH ATT	1.5	2.0	3.0	3.5
15000	EPR	0.97	0.98	1.00	1.03
	(Alt Mode %N1)	(64.0)	(65.3)	(67.2)	(69.5)

th do not use for flight

757 Flight Crew Operations Manual

Flight With Unreliable Airspeed / Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable. Descent (.78/290)

Flaps Up, Set Idle Thrust

PRES	SURE		WEIGHT	(1000 LB)	
ALTITU	DE (FT)	140	180	220	260
40000	PITCH ATT	-0.5	0.5		
40000	V/S (FT/MIN)	-2300	-2300		
30000	PITCH ATT	-2.0	-1.0	0.0	0.5
30000	V/S (FT/MIN)	-2700	-2300	-2100	-2000
20000	PITCH ATT	-2.0	-1.0	0.0	1.0
20000	V/S (FT/MIN)	-2500	-2100	-1900	-1800
10000	PITCH ATT	-2.5	-1.5	-0.5	0.5
10000	V/S (FT/MIN)	-2400	-2000	-1800	-1700
SEA LEVEL	PITCH ATT	-3.0	-1.5	-0.5	0.5
SEA LEVEL	V/S (FT/MIN)	-2200	-1800	-1600	-1500

Holding

Flaps Up, EPR for Level Flight

PRE	SSURE		WEIGHT	(1000 LB)	
ALTIT	UDE (FT)	140	180	220	260
	PITCH ATT	5.5	5.5	6.0	6.0
10000	EPR	1.01	1.02	1.03	1.04
10000	(Alt Mode %N1)	(50.9)	(56.4)	(61.0)	(64.9)
	KIAS	188	205	222	242
	PITCH ATT	5.5	6.0	6.0	6.0
5000	EPR	1.01	1.01	1.02	1.03
5000	(Alt Mode %N1)	(47.6)	(52.9)	(57.5)	(61.4)
	KIAS	188	205	222	241

Terminal Area (5000 FT) EPR for Level Flight

FLAP PO	OSITION		WEIGHT	(1000 LB)	
(VREF + IN	CREMENT)	140	180	220	260
EL ADG 1	PITCH ATT	6.5	7.0	7.5	8.0
FLAPS 1	EPR	1.02	1.04	1.05	1.07
(GEAR UP) (VREF30 + 60)	KIAS	169	185	201	216
(VICEI 30 + 00)	(Alt Mode %N1)	(47.2)	(52.8)	(58.1)	(63.2)
ELADO 5	PITCH ATT	7.0	7.0	7.5	7.5
FLAPS 5 (GEAR UP)	EPR	1.04	1.05	1.07	1.09
(VREF30 + 40)	KIAS	149	165	181	196
(VICEI 30 + 40)	(Alt Mode %N1)	(47.2)	(53.6)	(59.6)	(64.1)
ELADO 15	PITCH ATT	8.0	8.0	8.0	8.0
FLAPS 15 (GEAR UP)	EPR	1.05	1.07	1.10	1.12
(VREF30 + 20)	KIAS	128	145	161	176
(VICEI 30 + 20)	(Alt Mode %N1)	(48.9)	(56.1)	(62.0)	(66.2)
EL A DC 20	PITCH ATT	5.0	5.0	5.0	5.0
FLAPS 20 (GEAR UP)	EPR	1.06	1.08	1.12	1.14
(VREF30 + 20)	KIAS	128	145	161	176
(*RE1 30 + 20)	(Alt Mode %N1)	(50.5)	(58.0)	(63.5)	(67.9)

DO NOT USE FOR FLIGHT Performance Inflight - QRH

757 Flight Crew Operations Manual

Flight With Unreliable Airspeed / Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable. Final Approach (1500 FT)
Gear Down, EPR for 3° Glideslope

FLAP PO	OSITION		WEIGHT (1000 LB)								
(VREF + IN	CREMENT)	140	180	220	260						
	PITCH ATT	2.5	2.5	2.5	2.5						
FLAPS 25	EPR	1.03	1.04	1.06	1.07						
(VREF25 + 10)	KIAS	121	137	152	167						
	(Alt Mode %N1)	(42.0)	(47.6)	(52.7)	(57.6)						
	PITCH ATT	1.0	1.0	0.5	0.5						
FLAPS 30	EPR	1.04	1.06	1.08	1.11						
(VREF30 + 10)	KIAS	118	135	151	165						
	(Alt Mode %N1)		(52.0)	(58.2)	(63.1)						

November 18, 2008 PI-QRH.20.3 D632N001-200

757 Flight Crew Operations Manual

Max Climb EPR

Based on engine bleed for packs on and anti-ice off

TAT		PR	ESSURE A	LTITUDE (1000 FT)/S	PEED (KIA	S OR MAC	CH)	
TAT (°C)	0	5	10	15	20	25	30	35	40
(C)	250	250	250	290	290	290	290	.78	.78
60	1.15	1.14	1.12	1.08	1.05	1.02	0.99	0.98	0.97
50	1.18	1.17	1.16	1.11	1.09	1.06	1.04	1.03	1.02
40	1.22	1.21	1.19	1.15	1.13	1.11	1.09	1.08	1.07
30	1.24	1.25	1.23	1.20	1.18	1.16	1.14	1.13	1.12
20	1.24	1.27	1.28	1.25	1.23	1.21	1.19	1.18	1.18
10	1.24	1.27	1.30	1.29	1.29	1.27	1.26	1.25	1.24
0	1.24	1.27	1.30	1.29	1.32	1.35	1.33	1.32	1.32
-10	1.24	1.27	1.30	1.29	1.32	1.35	1.39	1.41	1.41
-20	1.24	1.27	1.30	1.29	1.32	1.35	1.39	1.48	1.50

EPR Adjustments for Engine Bleeds

BLEED		PRESSURE ALTITUDE (1000 FT)									
CONFIGURATION	0	5	10	15	20	25	30	35	40		
PACKS OFF	0.01	0.01	0.01	0.01	0.02	0.02	0.03	0.04	0.04		
ENGINE ANTI-ICE ON	0.00	0.00	-0.03	-0.03	-0.03	-0.04	-0.04	-0.05	-0.07		
ENGINE & WING ANTI-ICE ON	-0.02	-0.02	-0.06	-0.06	-0.06	-0.07	-0.08	-0.10	-0.13		

DO NOT USE FOR FLIGHT Performance Inflight - QRH General

757 Flight Crew Operations Manual

VREF (KIAS)

WEIGHT		FLAPS	
(1000 LB)	30	25	20
260	155	157	165
240	148	150	158
220	140	142	151
200	133	135	144
180	125	127	136
160	117	119	128
140	109	111	119

November 18, 2008 D632N001-200 PI-QRH.20.5

757-200/PW2037 FAA

Intentionally Blank

757 Flight Crew Operations Manual

Performance Inflight - QRH Advisory Information

Chapter PI-QRH Section 21

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 30 Dry Runway

	,		LA	NDING	DISTA	NCE A	ND ADJ	USTN	IENT:	S (FT)			
		REF DIST	WT ADJ	ALT ADJ		WIND ADJ PER 10 KTS		SLOPE ADJ PER 1%				REVI THR AI	UST
	BRAKING CONFIGURATION	190000 LB LANDING WEIGHT	PER 10000 LB ABOVE/ BELOW 190000 LB	HIGH*		TAIL WIND		UP HILL	ABV ISA		PER 10 KTS ABOVE VREF30	REV	
1	MAX MANUAL	2700	+100/-90	60/70	-110	380	40	-30	50	-50	210	60	130
	MAX AUTO	4050	+160/-160	90/120	-180	570	50	-50	90	-90	310	180	360
	AUTOBRAKE 4	4380	+190/-180	110/140	-210	680	60	-60	110	-100	360	190	390
1	AUTOBRAKE 3	4950	+240/-240	140/180	-250	850	90	-90	140	-130	410	240	470
1	AUTOBRAKE 2	5300	+290/-280	170/220	-290	980	150	-150	160	-140	410	540	800
	AUTOBRAKE 1	5540	+330/-290	190/270	-320	1110	190	-170	170	-150	410	960	1450

Good Reported Braking Action

MAX MANUAL	3520	+150/-130	90/120	-170	610	80	-70	80	-80	280	220	540
MAX AUTO	4210	+180/-170	100/140	-200	690	90	-80	100	-90	310	360	910
AUTOBRAKE 4	4430	+190/-190	110/140	-220	730	80	-70	110	-110	360	240	670
AUTOBRAKE 3	4950	+240/-240	140/180	-250	850	90	-90	140	-130	410	240	480

Medium Reported Braking Action

	MAX MANUAL	4570	+220/-190	130/180	-260	970	180	-140	120	-110	340	590	1640
	MAX AUTO	4820	+240/-220	140/190	-280	1000	190	-160	130	-110	340	740	2050
	AUTOBRAKE 4	4850	+240/-220	140/190	-280	1000	180	-150	130	-110	360	720	2020
1	AUTOBRAKE 3	5190	+250/-250	150/190	-300	1060	160	-150	140	-130	410	460	1660

Poor Reported Braking Action

	-											
MAX MANUAL	5630	+290/-260	170/250	-370	1470	390	-260	150	-130	380	1200	3850
MAX AUTO	5630	+300/-280	180/250	-400	1480	390	-280	160	-130	370	1320	4200
AUTOBRAKE 4	5630	+300/-280	180/250	-400	1480	390	-280	160	-130	380	1320	4200
AUTOBRAKE 3	5740	+300/-280	170/250	-400	1490	370	-270	160	-140	410	1200	4080

Reference distance is for sea level, standard day, no wind or slope, VREF30 approach speed and 2 engine reverse thrust.

Max Manual braking data valid for auto speedbrakes. For manual speedbrakes, increase reference landing distance by 270 ft.

Autobrake data valid both for auto and manual speedbrakes.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

*For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply the HIGH adjustment to this new reference distance.

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 25

Dry Runway

		LANDING DISTANCE AND ADJUSTMENTS (FT)										
	REF DIST	WT ADJ	ALT ADJ				VREF ADJ	REVE THR AI	UST			
BRAKING CONFIGURATION	190000 LB LANDING WEIGHT		STD/				UP HILL	ABV ISA	ISA	PER 10 KTS ABOVE VREF25	REV	
MAX MANUAL	2730	+90/-90	60/80	-110	390	40	-30	60	-50	210	60	140
MAX AUTO	4170	+160/-160	100/130	-180	580	50	-50	100	-90	320	190	400
AUTOBRAKE 4	4520	+190/-190	110/150	-210	690	60	-60	120	-110	380	210	430
AUTOBRAKE 3	5120	+240/-240	140/190	-260	860	90	-100	150	-130	430	270	530
AUTOBRAKE 2	5480	+290/-290	180/240	-300	1000	160	-160	180	-150	430	610	900
AUTOBRAKE 1	5720	+330/-300	200/280	-330	1120	200	-180	190	-150	430	1070	1600

Good Reported Braking Action

MAX MANUAL	3580	+150/-130	90/120	-170	610	80	-70	80	-80	280	230	580
MAX AUTO	4320	+180/-170	100/140	-210	690	90	-80	100	-100	320	380	990
AUTOBRAKE 4	4570	+190/-190	110/150	-220	740	80	-80	120	-110	380	250	720
AUTOBRAKE 3	5120	+240/-240	140/190	-260	860	90	-100	150	-130	430	270	530

Medium Reported Braking Action

MAX MANUAL	4670	+220/-190	130/190	-260	980	180	-150	120	-110	350	640	1810
MAX AUTO	4950	+240/-220	140/200	-290	1010	190	-160	140	-120	350	810	2270
AUTOBRAKE 4	4990	+230/-220	140/200	-290	1010	180	-150	130	-120	380	770	2230
AUTOBRAKE 3	5360	+250/-250	150/200	-310	1080	170	-150	150	-140	430	500	1840

Poor Reported Braking Action

1	MAX MANUAL	5780	+290/-260	170/250	-370	1490	400	-270	160	-140	390	1300	4320
	MAX AUTO	5780	+300/-280	180/260	-400	1490	400	-290	170	-140	390	1440	4730
1	AUTOBRAKE 4	5780	+300/-280	180/260	-400	1490	400	-290	170	-140	390	1430	4720
1	AUTOBRAKE 3	5920	+300/-280	180/250	-410	1510	380	-270	170	-140	430	1290	4590

Reference distance is for sea level, standard day, no wind or slope, VREF25 approach speed and 2 engine reverse thrust.

Max Manual braking data valid for auto speedbrakes. For manual speedbrakes, increase reference landing distance by 270 ft.

Autobrake data valid for both auto and manual speedbrakes.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

*For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply the HIGH adjustment to this new reference distance.

DO NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

757 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Dry Runway

		I	ANDING I	DISTANCE A	ND AI	JUST.	MENTS	(FT)	
LANDING	VREF	REFERENCE DISTANCE* FOR	WT ADJ PER 5000 LB	ALTITUDE ADJ PER 1000 FT	PER 1	0 KTS	PER	1%	APPROACH SPEED PER 10 KTS
CONFIGURATION		190000 LB LANDING WEIGHT	ABOVE/ BELOW 190000 LB	STD/HIGH ***			DOWN HILL		ADOME
AIR-GROUND LOGIC IN AIR MODE	VREF30	3550	70/-60	85/120	-150	535	75	-65	400
ANTI-SKID SYSTEM INOP	VREF30	4070	85/-75	95/140	-195	730	90	-75	320
FLAPS UP	VREF30+50	3650	160/-60	100/160	-150	585	55	-50	285
HYDRAULIC SYSTEM CENTER INOP	VREF30	2740	55/-45	60/80	-110	400	40	-35	235
HYDRAULIC SYSTEM LEFT INOP	VREF30	3250	65/-55	70/100	-135	475	50	-45	310
HYDRAULIC SYSTEM LEFT INOP WITH LE SLAT OR TE FLAPS DISAGREE FOR FLAPS ≥ 20	VREF20	3520	65/-60	80/110	-140	490	55	-50	310
HYDRAULIC SYSTEM RIGHT INOP	VREF30	3300	70/-60	80/120	-145	515	75	-65	355
HYDRAULIC SYSTEMS CENTER AND LEFT INOP FLAPS 20	VREF30+20	3930	75/-65	95/130	-155	530	65	-60	360
HYDRAULIC SYSTEMS CENTER AND RIGHT INOP FLAPS 20	VREF30+20	4070	80/-75	110/155	-170	585	100	-85	425
HYDRAULIC SYSTEM** LEFT & RIGHT INOP FLAPS 20	VREF30+20	5590	105/-90	155/245	-240	815	220	-175	755

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

*** For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

Copyright © The Boeing Company. See title page for details.

^{**}Reserve Brake System Only.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Dry Runway

		LANDING DISTANCE AND ADJUSTMENTS (FT) REFERENCE WT ADJ ALTITUDE WIND ADJ SLOPE ADJ APPROACH										
LANDING	VREF	DISTANCE* FOR	WT ADJ PER 5000 LB	ALTITUDE ADJ PER 1000 FT	PER 1	0 KTS	PER	1%	APPROACH SPEED PER 10 KTS			
CONFIGURATION	VICE	190000 LB LANDING WEIGHT	ABOVE/ BELOW 190000 LB	STD/HIGH			DOWN HILL		A DOME			
LE SLAT ASYMMETRY FLAPS>20	VREF20	2870	65/-50	60/75	-115	395	35	-35	220			
LE SLAT ASYMMETRY FLAPS = 20	VREF30+30	3330	95/-55	80/105	-125	430	45	-40	230			
LE SLAT ASYMMETRY 5 ≤ FLAPS < 20	VREF30+40	3550	120/-60	85/130	-130	445	45	-45	235			
LE SLAT DISAGREE	VREF20	2860	70/-45	65/80	-110	430	35	-35	220			
ONE ENGINE INOP	VREF20	2920	75/-50	65/85	-115	450	40	-35	235			
REVERSER UNLOCK FLAPS 20	VREF30+30	3360	105/-55	80/105	-135	505	50	-45	265			
TRAILING EDGE FLAP ASYMMETRY FLAPS ≥ 20	VREF20	2860	70/-45	65/80	-110	430	35	-35	220			
TRAILING EDGE ASYMMETRY 5 <flaps<20< td=""><td>VREF30+30</td><td>3240</td><td>115/-50</td><td>75/100</td><td>-135</td><td>495</td><td>45</td><td>-40</td><td>245</td></flaps<20<>	VREF30+30	3240	115/-50	75/100	-135	495	45	-40	245			
TRAILING EDGE ASYMMETRY FLAPS ≤ 5	VREF30+40	3450	135/-55	80/125	-140	525	50	-45	255			
TRAILING EDGE FLAP DISAGREE	VREF20	2860	70/-45	65/80	-110	430	35	-35	220			

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

^{***} For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

DO NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

757 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Good Reported Braking Action

		I	ANDING I	DISTANCE A	ND AI	DJUST	MENTS	(FT)	
LANDING CONFIGURATION	VREF	REFERENCE DISTANCE* FOR 190000 LB LANDING WEIGHT	WT ADJ PER 5000 LB ABOVE/ BELOW 190000 LB	ALTITUDE ADJ PER 1000 FT STD/HIGH ***	PER 1 HEAD	0 KTS TAIL	SLOPE PER DOWN HILL	1% UP	APPROACH SPEED PER 10 KTS ABOVE VREF
AIR-GROUND LOGIC IN AIR MODE	VREF30	5180	110/-90	150/240	-270	965	255	-190	590
ANTI-SKID SYSTEM INOP	VREF30	4850	115/-100	130/185	-265	1035	170	-135	365
FLAPS UP	VREF30+50	4870	100/-90	140/190	-200	720	100	-90	285
HYDRAULIC SYSTEM CENTER INOP	VREF30	3540	80/-70	90/125	-170	630	85	-75	300
HYDRAULIC SYSTEM LEFT INOP	VREF30	4320	95/-85	115/170	-215	775	135	-110	415
HYDRAULIC SYSTEM LEFT INOP WITH LE SLAT OR TE FLAPS DISAGREE FOR FLAPS ≥ 20	VREF20	4750	95/-90	130/190	-225	810	145	-120	420
HYDRAULIC SYSTEM RIGHT INOP	VREF30	4210	100/-85	120/175	-210	770	150	-120	440
HYDRAULIC SYSTEMS CENTER AND LEFT INOP FLAPS 20	VREF30+20	5320	110/-100	150/225	-245	865	175	-140	480
HYDRAULIC SYSTEMS CENTER AND RIGHT INOP FLAPS 20	VREF30+20	5250	115/-105	155/240	-245	865	195	-160	520
HYDRAULIC SYSTEM** LEFT & RIGHT INOP FLAPS 20	VREF30+20	7440	140/-115	235/385	-350	1210	495	-355	980

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

*** For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

Copyright © The Boeing Company. See title page for details.

^{**}Reserve Brake System only.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Good Reported Braking Action

		LANDING DISTANCE AND ADJUSTMENTS (FT) REFERENCE WT ADJ ALTERIDE WIND ADJ SLOPE ADJ APPROACH										
LANDING CONFIGURATION	VREF	REFERENCE DISTANCE* FOR 190000 LB LANDING WEIGHT	WT ADJ PER 5000 LB ABOVE/ BELOW 190000 LB	ALTITUDE ADJ PER 1000 FT STD/HIGH ***	PER 1 HEAD	0 KTS TAIL	SLOPE PER DOWN HILL	1% UP	APPROACH SPEED PER 10 KTS ABOVE VREF			
LE SLAT ASYMMETRY FLAPS>20	VREF20	3750	80/-75	95/135	-175	625	85	-75	290			
LE SLAT ASYMMETRY FLAPS = 20	VREF30+30	4360	90/-85	120/170	-190	670	95	-85	300			
LE SLAT ASYMMETRY 5 ≤ FLAPS < 20	VREF30+40	4690	95/-90	130/185	-200	695	100	-90	305			
LE SLAT DISAGREE	VREF20	3740	75/-70	95/135	-175	640	85	-75	280			
ONE ENGINE INOP	VREF20	3970	85/-80	105/140	-190	685	110	-90	320			
REVERSER UNLOCK FLAPS 20	VREF30+30	4580	95/-90	125/170	-205	740	125	-105	325			
TRAILING EDGE FLAP ASYMMETRY FLAPS ≥ 20	VREF20	3740	75/-70	95/135	-175	640	85	-75	280			
TRAILING EDGE ASYMMETRY 5 <flaps<20< td=""><td>VREF30+30</td><td>4280</td><td>90/-80</td><td>115/165</td><td>-185</td><td>680</td><td>90</td><td>-80</td><td>280</td></flaps<20<>	VREF30+30	4280	90/-80	115/165	-185	680	90	-80	280			
TRAILING EDGE ASYMMETRY FLAPS ≤ 5	VREF30+40	4560	95/-85	125/180	-190	700	95	-85	280			
TRAILING EDGE FLAP DISAGREE	VREF20	3740	75/-70	95/135	-175	640	85	-75	280			

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

^{***} For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

DO NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

757 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Medium Reported Braking Action

		I	ANDING I	NG DISTANCE AND ADJUSTMENTS (FT)					
LANDING CONFIGURATION	VREF	REFERENCE DISTANCE* FOR 190000 LB LANDING WEIGHT	WT ADJ PER 5000 LB ABOVE/ BELOW 190000 LB	ALTITUDE ADJ PER 1000 FT STD/HIGH ***	PER 1 HEAD	0 KTS TAIL	SLOPE PER DOWN HILL	1% UP	APPROACH SPEED PER 10 KTS ABOVE VREF
AIR-GROUND LOGIC IN AIR MODE	VREF30	8530	160/-105	315/640	-545	2090	1210	-650	830
ANTI-SKID SYSTEM INOP	VREF30	5860	150/-130	170/255	-375	1565	385	-255	410
FLAPS UP	VREF30+50	6390	150/-135	205/295	-300	1140	230	-185	360
HYDRAULIC SYSTEM CENTER INOP	VREF30	4550	115/-100	135/190	-255	1005	195	-150	360
HYDRAULIC SYSTEM LEFT INOP	VREF30	5930	140/-120	185/305	-350	1360	380	-265	515
HYDRAULIC SYSTEM LEFT INOP WITH LE SLAT OR TE FLAPS DISAGREE FOR FLAPS ≥ 20	VREF20	6610	145/-135	210/345	-375	1425	420	-290	540
HYDRAULIC SYSTEM RIGHT INOP	VREF30	5890	150/-125	195/325	-355	1365	415	-285	540
HYDRAULIC SYSTEMS CENTER AND LEFT INOP FLAPS 20	VREF30+20	7360	170/-150	245/395	-400	1500	475	-335	595
HYDRAULIC SYSTEMS CENTER AND RIGHT INOP FLAPS 20	VREF30+20	7400	180/-155	260/420	-405	1515	525	-365	635
HYDRAULIC SYSTEM** LEFT & RIGHT INOP FLAPS 20	VREF30+20	13060	210/-105	510/1075	-730	2640	2455	-1215	1420

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

*** For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

Copyright © The Boeing Company. See title page for details.

^{**}Reserve Brake System Only.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Medium Reported Braking Action

LANDING DISTANCE AND ADJUSTMENTS (FT) REFERENCE WT ADJ ALTITUDE WIND ADJ SLOPE ADJ APPROACH										
LANDING CONFIGURATION	VREF	REFERENCE DISTANCE* FOR 190000 LB LANDING WEIGHT	WT ADJ PER 5000 LB ABOVE/ BELOW 190000 LB	ALTITUDE ADJ PER 1000 FT STD/HIGH ***	PER 1 HEAD	0 KTS TAIL	SLOPE PER DOWN HILL	1% UP	SPEED PER 10 KTS	
LE SLAT ASYMMETRY FLAPS>20	VREF20	4880	115/-105	140/210	-265	990	185	-150	360	
LE SLAT ASYMMETRY FLAPS = 20	VREF30+30	5640	135/-120	170/245	-285	1050	205	-170	360	
LE SLAT ASYMMETRY 5 ≤ FLAPS < 20	VREF30+40	6100	145/-130	195/280	-295	1085	215	-180	370	
LE SLAT DISAGREE	VREF20	4870	115/-105	140/210	-265	1025	195	-150	350	
ONE ENGINE INOP	VREF20	5480	130/-120	160/230	-305	1155	285	-210	420	
REVERSER UNLOCK FLAPS 20	VREF30+30	6280	150/-135	190/270	-325	1220	310	-235	415	
TRAILING EDGE FLAP ASYMMETRY FLAPS ≥ 20	VREF20	4870	115/-105	140/210	-265	1025	195	-150	350	
TRAILING EDGE ASYMMETRY 5 <flaps<20< td=""><td>VREF30+30</td><td>5600</td><td>135/-120</td><td>175/250</td><td>-280</td><td>1080</td><td>210</td><td>-165</td><td>350</td></flaps<20<>	VREF30+30	5600	135/-120	175/250	-280	1080	210	-165	350	
TRAILING EDGE ASYMMETRY FLAPS ≤ 5	VREF30+40	5950	140/-125	185/270	-290	1105	220	-170	350	
TRAILING EDGE FLAP DISAGREE	VREF20	4870	115/-105	140/210	-265	1025	195	-150	350	

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

^{***} For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

DO NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

757 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Poor Reported Braking Action

		I	ANDING I	DISTANCE A	ND AI	DJUST	MENTS	(FT)	
LANDING CONFIGURATION	VREF	REFERENCE DISTANCE* FOR 190000 LB LANDING WEIGHT	WT ADJ PER 5000 LB ABOVE/ BELOW 190000 LB	ALTITUDE ADJ PER 1000 FT STD/HIGH ***	PER 1 HEAD	0 KTS TAIL	SLOPE PER DOWN HILL	1% UP	APPROACH SPEED PER 10 KTS ABOVE VREF
AIR-GROUND LOGIC IN AIR MODE	VREF30	> 15000	ı	-	-	-	-	-	-
ANTI-SKID SYSTEM INOP	VREF30	7460	205/-175	235/335	-600	2865	2340	-565	445
FLAPS UP	VREF30+50	7880	200/-180	275/400	-425	1720	515	-325	415
HYDRAULIC SYSTEM CENTER INOP	VREF30	5590	155/-130	175/265	-370	1545	445	-270	400
HYDRAULIC SYSTEM LEFT INOP	VREF30	8060	190//-150	300/555	-590	2555	1645	-615	590
HYDRAULIC SYSTEM LEFT INOP WITH LE SLAT OR TE FLAPS DISAGREE FOR FLAPS ≥ 20	VREF20	9050	205/-175	340/630	-630	2670	1790	-680	635
HYDRAULIC SYSTEM RIGHT INOP	VREF30	8090	200/-155	315/585	-600	2580	1740	-650	610
HYDRAULIC SYSTEMS CENTER AND LEFT INOP FLAPS 20	VREF30+20	9960	235/-190	380/705	-665	2775	1930	-745	675
HYDRAULIC SYSTEMS CENTER AND RIGHT INOP FLAPS 20	VREF30+20	10100	250/-200	405/750	-675	2805	2055	-800	715
HYDRAULIC SYSTEM** LEFT & RIGHT INOP FLAPS 20	VREF30+20	> 15000	-	-	-	-	-	-	-

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

*** For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

Copyright © The Boeing Company. See title page for details.

^{**}Reserve Brake System only.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Poor Reported Braking Action

		I	ANDING I	DISTANCE A	ND AI	JUST	MENTS	(FT)	
LANDING	VREF	REFERENCE DISTANCE* FOR	WT ADJ PER 5000 LB	ALTITUDE ADJ PER 1000 FT	WINI PER 1		SLOPE PER		APPROACH SPEED
CONFIGURATION	VKEF	190000 LB LANDING WEIGHT	ABOVE/ BELOW 190000 LB	STD/HIGH			DOWN HILL		PER 10 KTS ABOVE VREF
LE SLAT ASYMMETRY FLAPS>20	VREF20	6020	155/-140	190/285	-380	1510	410	-275	405
LE SLAT ASYMMETRY FLAPS = 20	VREF30+30	6890	180/-160	225/340	-405	1580	435	-300	400
LE SLAT ASYMMETRY 5 ≤ FLAPS < 20	VREF30+40	7490	195/-175	255/370	-420	1625	455	-315	425
LE SLAT DISAGREE	VREF20	6020	155/-140	190/285	-380	1580	455	-280	395
ONE ENGINE INOP	VREF20	7170	190/-175	230/335	-460	1845	720	-420	500
REVERSER UNLOCK FLAPS 20	VREF30+30	8120	210/-190	270/380	-485	1925	760	-450	485
TRAILING EDGE FLAP ASYMMETRY FLAPS ≥ 20	VREF20	6020	155/-140	190/285	-380	1580	455	-280	395
TRAILING EDGE ASYMMETRY 5 <flaps<20< td=""><td>VREF30+30</td><td>6900</td><td>180/-155</td><td>230/345</td><td>-400</td><td>1645</td><td>480</td><td>-300</td><td>405</td></flaps<20<>	VREF30+30	6900	180/-155	230/345	-400	1645	480	-300	405
TRAILING EDGE ASYMMETRY FLAPS ≤ 5	VREF30+40	7310	190/-165	250/365	-410	1675	490	-305	400
TRAILING EDGE FLAP DISAGREE	VREF20	6020	155/-140	190/285	-380	1580	455	-280	395

^{*} Reference distance assumes sea level, standard day with no wind or slope.

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s). Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

^{***} For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft, then apply HIGH adjustment to this new reference distance.

DO NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

757 Flight Crew Operations Manual

ADVISORY INFORMATION

Recommended Brake Cooling Schedule Reference Brake Energy Per Brake (Millions of Foot Pounds)

	BRAKES ON SPEED (KIAS) 80 100 120 140 160 180																		
			80			100			120			140			160			180	
WEIGHT	OAT	PRI	ESS A	ALT	PRI	ESS A	ALT	PR	ESS A	LT	PR	ESS A	ALT	PR	ESS A	ALT	PR	ESS A	\LT
(1000 LB)	(°F)	0	5	10	0	5	10	0	5	10	0	5	10	0	5	10	0	5	10
	20	8.8	10.5	12.2	13.5	16.2	18.9	19.0	22.9	26.8	25.2	30.4	35.6	31.8	38.2		39.0		
	40	9.2	10.9	12.7	14.0	16.8	19.6	19.8	23.8	27.9	26.2	31.6	37.0	33.1	39.7		40.5		
260	60	9.5	11.4	13.2	14.6	17.5	20.4	20.6	24.8	29.0	27.3	32.9	38.5	34.4	41.3		42.1		
200	80	9.9	11.7	13.6	15.1	18.1	21.1	21.3	25.7	30.0	28.2	34.0	39.8	35.6	42.7		43.6		
	100	10.1	12.0	14.0	15.5	18.6	21.7	21.9	26.4	30.9	29.0	35.0	41.0	36.6	44.0		44.9		
	120	10.2	12.2	14.2	15.8	18.9	22.1	22.3	26.9	31.5	29.6	35.8	42.0	37.5	45.0		45.9		
	20	8.2	9.8	11.3	12.6	15.0	17.5	17.6	21.2	24.8	23.3	28.2	33.0	29.5	35.5	41.5	35.9		
	40	8.5	10.2	11.8	13.1	15.6	18.2	18.3	22.1	25.8	24.3	29.3	34.3	30.7	36.9	43.1	37.3		
240	60	8.9	10.6	12.3	13.6	16.3	18.9	19.1	23.0	26.8	25.2	30.4	35.6	31.9	38.3	44.8	38.8		
	80	9.2	10.9	12.7	14.1	16.8	19.6	19.7	23.8	27.8	26.1	31.5	36.9	33.0	39.7	46.3	40.1		
	100	9.4	11.2	13.0	14.4	17.3	20.1	20.3	24.4	28.6	26.9	32.4	38.0	34.0	40.8	47.7	41.3		
	120 20	9.5 7.6	11.3	13.2	14.6	17.6 13.9	20.5	20.6	24.9 19.5	29.2	27.4	33.1 25.9	38.8	34.7	41.8	48.9 38.2	42.3	20.6	
	40	7.9	9.0 9.4	10.5 10.9	11.6 12.1	13.9	16.1 16.8	16.2 16.9	20.3	23.7	21.4	26.9	30.3	27.1 28.2	34.0	39.7	33.1 34.4	39.6 41.2	
	60	8.2	9.4	11.3	12.1	15.0	17.5	17.6	20.3	24.7	23.2	28.0	32.7	29.3	35.3	41.3	35.7	42.8	
220	80	8.5	10.1	11.7	13.0	15.5	18.1	18.2	21.1	25.5	24.0	29.0	33.9	30.3	36.5	42.7	37.0	44.3	
	100	8.7	10.1	12.0	13.3	15.9	18.5	18.7	22.4	26.2	24.0	29.8	34.9	31.2	37.6	44.0	38.1	45.6	
	120	8.8	10.4	12.0	13.5	16.2	18.9	19.0	22.9	26.8	25.1	30.4	35.6	31.9	38.5	45.0	38.9	46.7	
-	20	7.0	8.3	9.6	10.6	12.7	14.8	14.8	17.8	20.8	19.5	23.5	27.6	24.7	29.8	34.9	30.1	36.2	42.3
	40	7.3	8.7	10.0	11.1	13.2	15.4	15.4	18.5	21.6	20.3	24.5	28.6	25.6	30.9	36.2	31.3	37.6	44.0
	60	7.6	9.0	10.4	11.5	13.7	16.0	16.0	19.3	22.5	21.1	25.5	29.8	26.7	32.2	37.7	32.6	39.1	45.7
200	80	7.9	9.3	10.8	11.9	14.2	16.5	16.6	19.9	23.3	21.9	26.4	30.8	27.6	33.3	39.0	33.7	40.5	47.3
	100	8.0	9.5	11.0	12.2	14.6	17.0	17.0	20.5	23.9	22.5	27.1	31.7	28.4	34.3	40.1	34.7	41.7	48.7
	120	8.1	9.6	11.2	12.4	14.8	17.3	17.3	20.8	24.4	22.9	27.6	32.4	29.0	35.0	41.0	35.4	42.7	49.9
	20	6.4	7.6	8.8	9.7	11.5	13.4	13.4	16.1	18.7	17.6	21.2	24.8	22.2	26.8	31.4	27.1	32.6	38.2
	40	6.7	7.9	9.1	10.1	12.0	13.9	14.0	16.7	19.5	18.3	22.0	25.8	23.1	27.8	32.6	28.1	33.9	39.7
100	60	7.0	8.2	9.5	10.5	12.5	14.5	14.5	17.4	20.3	19.0	22.9	26.8	24.0	28.9	33.9	29.3	35.2	41.2
180	80	7.2	8.5	9.8	10.8	12.9	15.0	15.0	18.0	21.0	19.7	23.7	27.7	24.8	30.0	35.1	30.3	36.5	42.7
	100	7.3	8.7	10.1	11.1	13.2	15.4	15.4	18.5	21.6	20.2	24.4	28.5	25.5	30.8	36.1	31.1	37.5	43.9
	120	7.4	8.8	10.2	11.2	13.4	15.6	15.7	18.8	22.0	20.6	24.9	29.1	26.0	31.5	36.9	31.8	38.4	45.0
	20	5.8	6.9	8.0	8.7	10.4	12.0	12.0	14.4	16.7	15.7	18.8	22.0	19.6	23.7	27.7	23.9	28.8	33.8
	40	6.1	7.2	8.3	9.1	10.8	12.5	12.5	14.9	17.4	16.3	19.6	22.9	20.4	24.6	28.8	24.8	30.0	35.1
160	60	6.3	7.5	8.6	9.4	11.2	13.0	13.0	15.5	18.1	16.9	20.4	23.8	21.2	25.6	30.0		31.2	36.5
100	80	6.5	7.7	8.9	9.8	11.6	13.5	13.5	16.1	18.7	17.5	21.1	24.6	22.0	26.5	31.0	26.8	32.3	37.8
	100	6.6	7.9	9.1	10.0	11.9	13.8	13.8	16.5	19.2	18.0	21.6	25.3	22.6	27.3	31.9	27.5	33.2	38.9
	120	6.7	7.9	9.2	10.1	12.0	14.0	14.0	16.8	19.6	18.3	22.1	25.8	23.0	27.8	32.6	28.1	33.9	39.8
	20	5.2	6.2	7.1	7.8	9.2	10.7	10.6	12.6	14.7	13.7	16.4	19.2	17.0	20.5	24.0	20.6	24.9	29.1
	40	5.4	6.4	7.4	8.1	9.6	11.1	11.0	13.2	15.3	14.3	17.1	19.9	17.7	21.3	24.9	21.4	25.8	30.3
140	60	5.7	6.7	7.7	8.4	10.0	11.5	11.5	13.7	15.9	14.8	17.8	20.7	18.4	22.2	25.9	22.3	26.9	31.5
	80	5.8	6.9	8.0	8.7	10.3	11.9	11.9	14.2	16.5	15.4	18.4	21.5	19.1	23.0	26.9	23.1	27.8	32.6
	100	5.9	7.0	8.1	8.9	10.5	12.2	12.1	14.5	16.9	15.8	18.9	22.1	19.6	23.6	27.6	23.7	28.6	33.5
To correct	120	6.0	7.1	8.2	8.9	10.7	12.4	12.3	14.7	17.2	16.0	19.2	22.5	20.0		28.2	24.2	29.2	

To correct for wind, enter table with the brakes on speed minus one half the headwind or plus 1.5 times the tailwind.

If ground speed is used for brakes on speed, ignore wind and enter table with sea level, 60°F.

Copyright © The Boeing Company. See title page for details.

ADVISORY INFORMATION

Recommended Brake Cooling Schedule Adjusted Brake Energy Per Brake (Millions of Foot Pounds) No Reverse Thrust

		REF	ERENCI	E BRAK	E ENE	RGY PE	R BRAK	E (MIL	LIONS	OF FOO	T POU	NDS)
	EVENT	10	12	14	16	18	20	22	24	26	28	30
R	O MAX MAN	10	12	14	16	18	20	22	24	26	28	30
	MAX MAN	9.2	11.2	13.1	15.0	17.0	18.9	20.9	22.8	24.7	26.7	28.6
Ō	MAX AUTO	8.9	10.8	12.6	14.4	16.3	18.1	19.9	21.7	23.5	25.3	27.2
NDING	AUTOBRAKE 4	8.8	10.6	12.3	14.0	15.7	17.4	19.1	20.8	22.5	24.2	26.0
ΙZ	AUTOBRAKE 3	8.7	10.4	12.0	13.7	15.3	16.9	18.4	20.0	21.6	23.2	24.8
Ţ	AUTOBRAKE 2	8.6	10.2	11.7	13.2	14.7	16.2	17.7	19.1	20.6	22.0	23.5
	AUTOBRAKE 1	8.4	9.8	11.3	12.6	14.0	15.3	16.6	17.8	19.1	20.4	21.7

Two Engine Reverse

		REF	ERENC.	E BRAK	E ENE	RGY PE	R BRAK	Œ (MIL	LIONS	OF FOO	T POU	NDS)
	EVENT	10	12	14	16	18	20	22	24	26	28	30
R	TO MAX MAN	10	12	14	16	18	20	22	24	26	28	30
	MAX MAN	7.6	9.2	10.8	12.5	14.2	15.9	17.6	19.3	21.0	22.6	24.2
Ō	MAX AUTO	5.0	6.3	7.6	8.9	10.2	11.5	12.9	14.2	15.6	16.9	18.3
NDING	AUTOBRAKE 4	3.4	4.3	5.3	6.2	7.2	8.2	9.2	10.2	11.3	12.3	13.5
ΙZ	AUTOBRAKE 3	2.4	3.0	3.6	4.2	4.8	5.5	6.2	6.9	7.7	8.4	9.3
Ţ	AUTOBRAKE 2	1.9	2.2	2.5	2.9	3.2	3.6	4.0	4.5	4.9	5.4	5.9
	AUTOBRAKE 1	1.5	1.7	1.9	2.1	2.3	2.5	2.8	3.0	3.2	3.5	3.7

Cooling Time (Minutes)

	ADJUSTE	ED BRA	KE EN	ERGY I	PER BR	AKE (l	MILLIO	NS OF FOOT	POUNDS)			
	8 & BELOW											
INFLIGHT GEAR DOWN	NO SPECIAL PROCEDURE	1	2	4	5	7	7	CAUTION	FUSE PLUG MELT ZONE			
GROUND	REQUIRED	10	20	38	51	62	66		MELI ZONE			
BTMS	UP TO 2	2	2	3	3	4	5	5 TO 8	8 & ABOVE			

Observe maximum quick turnaround limit.

Table shows energy per brake added by a single stop with all brakes operating. Energy is assumed to be equally distributed among the operating brakes. Total energy is the sum of residual energy plus energy added.

Add 0.65 million foot pounds per brake for each taxi mile.

For one brake deactivated, increase brake energy by 15 percent.

When in caution zone, wheel fuse plugs may melt. Delay takeoff and inspect after one hour. If overheat occurs after takeoff, extend gear soon for at least 8 minutes.

When in fuse plug melt zone, clear runway immediately. Unless required, do not set parking brake. Do not attempt to taxi for one hour. Tire, wheel and brake replacement may be required. If overheat occurs after takeoff, extend gear soon for at least 12 minutes.

Brake temperature monitor system (BTMS) indication on EICAS may be used to 10 to 15 minutes after airplane has come to a complete stop, or inflight with gear retracted, to determine recommended cooling schedule.

757 Flight Crew Operations Manual

Performance Inflight - QRH Engine Inoperative

Chapter PI-QRH Section 22

ENGINE INOP

Initial Max Continuous EPR Based on engine bleed for one pack on

P	RESSURE	(CRUISE MACH NUMBER	
ALT	TITUDE (FT)	.72	.76	.80
	EPR	1.56	1.52	1.48
41000	MAX TAT (SAT)	-23 (-46)	-20 (-46)	-17 (-46)
	EPR CORR	0.12	0.12	0.12
	EPR	1.56	1.52	1.48
39000	MAX TAT (SAT)	-23 (-46)	-20 (-46)	-17 (-46)
	EPR CORR	0.12	0.12	0.12
	EPR	1.57	1.53	1.49
37000	MAX TAT (SAT)	-23 (-46)	-20 (-46)	-17 (-46)
	EPR CORR	0.12	0.12	0.12
	EPR	1.54	1.50	1.46
35000	MAX TAT (SAT)	-21 (-44)	-18 (-44)	-15 (-44)
	EPR CORR	0.12	0.12	0.12
	EPR	1.49	1.45	1.42
33000	MAX TAT (SAT)	-16 (-40)	-13 (-40)	-11 (-41)
	EPR CORR	0.12	0.12	0.12
	EPR	1.44	1.41	1.38
31000	MAX TAT (SAT)	-12 (-36)	-9 (-36)	-6 (-36)
	EPR CORR	0.10	0.10	0.10

Decrease EPR by the EPR CORR for every 10°C above the MAX TAT shown.

FAA

757 Flight Crew Operations Manual

ENGINE INOP

Max Continuous EPR 41000 FT to 22000 FT Pressure Altitudes

Based on engine bleed for one pack on and anti-ice off

PRESSU	RE ALTITUDE			KIAS				N	ИАСН N	IUMBE	R	
	(FT)	180	200	220	240	260	.70	.72	.74	.76	.78	.80
	EPR		1.57	1.53	1.47	1.42	1.57	1.56	1.54	1.52	1.50	1.48
41000	MAX TAT		-25	-21	-17	-12	-24	-23	-22	-20	-19	-17
	EPR CORR		0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
	EPR		1.57	1.56	1.51	1.45	1.57	1.56	1.54	1.52	1.50	1.48
39000	MAX TAT		-27	-23	-19	-15	-24	-23	-22	-20	-19	-17
	EPR CORR		0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
	EPR		1.57	1.57	1.54	1.49	1.57	1.57	1.55	1.53	1.51	1.49
37000	MAX TAT		-28	-25	-21	-17	-24	-23	-22	-20	-19	-17
	EPR CORR		0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
	EPR		1.57	1.57	1.54	1.49	1.56	1.54	1.52	1.50	1.48	1.46
35000	MAX TAT		-28	-24	-21	-17	-22	-21	-19	-18	-16	-15
	EPR CORR		0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
	EPR		1.57	1.56	1.52	1.47	1.51	1.49	1.47	1.45	1.44	1.42
33000	MAX TAT		-25	-22	-19	-15	-18	-16	-15	-13	-12	-11
	EPR CORR		0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
	EPR		1.56	1.53	1.49	1.45	1.46	1.44	1.43	1.41	1.40	1.38
31000	MAX TAT		-22	-19	-16	-13	-13	-12	-10	-9	-8	-6
	EPR CORR		0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
	EPR		1.56	1.52	1.48	1.45	1.44	1.42	1.40	1.39	1.37	1.35
29000	MAX TAT		-19	-16	-13	-10	-9	-7	-6	-5	-3	-2
	EPR CORR		0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
	EPR	1.57	1.56	1.53	1.49	1.46	1.43	1.41	1.39	1.37	1.36	1.34
27000	MAX TAT	-18	-16	-13	-11	-8	-5	-3	-2	0	1	3
	EPR CORR	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
	EPR	1.57	1.56	1.53	1.50	1.47	1.41	1.40	1.38	1.36	1.35	1.33
25000	MAX TAT	-15	-13	-10	-8	-5	0	1	3	4	6	7
	EPR CORR	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
	EPR	1.57	1.55	1.53	1.51	1.48	1.40	1.38	1.36	1.35	1.33	
22000	MAX TAT	-10	-8	-6	-3	-1	6	8	9	11	12	
	EPR CORR	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	

Decrease EPR by the EPR CORR for every 10°C above the MAX TAT shown.

EPR Adjustments for Engine Bleed

BLEED			PRESSU	RE ALTITU	JDE (FT)		
CONFIGURATION	0	8000	8001	10000	20000	30000	40000
PACKS OFF	0.01	0.01	0.01	0.01	0.02	0.03	0.04
ENGINE ANTI-ICE ON	0.00	0.00	-0.03	-0.03	-0.03	-0.04	-0.07
ENGINE & WING ANTI-ICE ON	-0.02	-0.02	-0.05	-0.06	-0.06	-0.08	-0.13

ENGINE INOP

Max Continuous EPR

20000 FT to Sea Level Pressure Altitudes

Based on engine bleed for one pack on and anti-ice off

PRESSU	RE ALTITUDE			KIAS				N	IACH N	UMBE	R	
	(FT)	180	200	220	240	260	.70	.72	.74	.76	.78	.80
	EPR	1.57	1.55	1.53	1.51	1.48	1.39	1.37	1.36			
20000	MAX TAT	-6	-5	-3	0	2	11	12	14			
	EPR CORR	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08			
	EPR	1.55	1.53	1.51	1.48	1.46	1.36	1.34				
18000	MAX TAT	-3	-1	1	3	5	15	17				
	EPR CORR	0.08	0.08	0.08	0.08	0.08	0.08	0.08				
	EPR	1.53	1.51	1.49	1.46	1.44	1.33					
16000	MAX TAT	0	2	4	6	8	19					
	EPR CORR	0.07	0.07	0.07	0.07	0.07	0.07					
	EPR	1.50	1.49	1.47	1.44	1.42						
14000	MAX TAT	4	6	7	9	11						
	EPR CORR	0.07	0.07	0.07	0.07	0.07						
	EPR	1.48	1.46	1.45	1.43	1.40						
12000	MAX TAT	8	9	11	12	14						
	EPR CORR	0.07	0.07	0.07	0.07	0.07						
	EPR	1.46	1.44	1.43	1.41	1.39						
10000	MAX TAT	11	13	14	16	18						
	EPR CORR	0.06	0.06	0.06	0.06	0.06						
	EPR	1.40	1.39	1.33	1.36	1.35						
5000	MAX TAT	20	21	23	24	26						
	EPR CORR	0.05	0.05	0.05	0.05	0.05						
	EPR	1.35	1.34	1.30	1.31	1.30						
1500	MAX TAT	27	28	29	30	32						
	EPR CORR	0.05	0.05	0.05	0.05	0.05						
	EPR	1.33	1.32	1.30	1.29	1.28						
0	MAX TAT	29	30	32	33	34						
	EPR CORR	0.04	0.04	0.04	0.04	0.04						

Decrease EPR by the EPR CORR for every 10°C above the MAX TAT shown.

EPR Adjustments for Engine Bleed

, ,							
BLEED			PRESSU	RE ALTITU	JDE (FT)		
CONFIGURATION	0	8000	8001	10000	20000	30000	40000
PACKS OFF	0.01	0.01	0.01	0.01	0.02	0.03	0.04
ENGINE ANTI-ICE ON	0.00	0.00	-0.03	-0.03	-0.03	-0.04	-0.07
ENGINE & WING ANTI-ICE ON	-0.02	-0.02	-0.05	-0.06	-0.06	-0.08	-0.13

ENGINE INOP

MAX CONTINUOUS THRUST

Driftdown Speed/Level Off Altitude 100 ft/min residual rate of climb

Includes APU fuel burn

WEIGHT	(1000 LB)	OPTIMUM	LEVI	EL OFF ALTITUDI	E (FT)
START DRIFT DOWN	LEVEL OFF	DRIFTDOWN SPEED (KIAS)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
260	250	249	18900	17400	15500
240	232	240	21100	20100	18600
220	213	230	23300	22300	21200
200	193	219	25600	24700	23600
180	174	208	28000	27200	26200
160	154	197	30900	30000	29000
140	135	187	33800	33400	32200

Driftdown/LRC Cruise Range Capability **Ground to Air Miles Conversion**

	AIR D	ISTANCE	E (NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	ILWIND	COMPON	NENT (KT	TS)
100	80	60	40	20	(NM)	20	40	60	80	100
282	260	242	226	212	200	189	179	170	162	155
563	521	484	452	425	400	378	358	341	325	310
839	777	724	677	636	600	568	539	512	489	467
1110	1030	961	901	847	800	758	720	685	654	625
1379	1282	1197	1124	1058	1000	948	901	858	820	784
1647	1533	1433	1346	1269	1200	1138	1082	1032	986	944
1916	1784	1670	1569	1480	1400	1328	1264	1205	1152	1103
2186	2037	1907	1792	1691	1600	1519	1445	1378	1317	1262
2461	2292	2146	2017	1902	1800	1708	1625	1550	1482	1419

Driftdown/Cruise Fuel and Time

A ID DIGT		FUEL REQUIRED (1000 LB)										
AIR DIST (NM)		WEIGHT A	AT START OF	DRIFTDOWN	(1000 LB)		TIME (HR:MIN)					
(1111)	160	180	200	220	240	260	(IIIX.MIIV)					
200	2.7	3.0	3.3	3.5	3.8	4.1	0:35					
400	6.1	6.7	7.3	8.0	8.7	9.3	1:10					
600	9.0	10.0	11.0	12.0	13.0	14.1	1:42					
800	12.0	13.3	14.6	16.0	17.3	18.7	2:14					
1000	14.9	16.6	18.2	19.9	21.5	23.2	2:45					
1200	17.7	19.8	21.7	23.7	25.7	27.7	3:15					
1400	20.6	22.9	25.2	27.5	29.8	32.1	3:46					
1600	23.3	26.0	28.6	31.2	33.8	36.5	4:17					
1800	26.1	29.1	32.0	34.9	37.8	40.8	4:50					

Includes APU fuel burn.

Driftdown at optimum driftdown speed and cruise at Long Range Cruise speed.

Performance Inflight - QRH Engine Inoperative

757 Flight Crew Operations Manual

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Altitude Capability 100 ft/min residual rate of climb

WEIGHT		PRESSURE ALTITUDE (FT)	
(1000 LB)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
260	12200	8100	5100
250	14700	10300	7100
240	16400	12700	9100
230	18300	15000	11200
220	20000	17400	13700
210	21200	19700	16000
200	22300	21100	18600
190	23600	22400	20700
180	24900	23700	22100
170	26200	25100	23500
160	27500	26500	25100
150	29000	28000	26600
140	30800	29500	28300
130	33100	31400	30000
120	35100	33900	32000

With engine anti-ice on, decrease altitude capability by 2600 ft.

With engine and wing anti-ice on, decrease altitude capability by 6600 ft.

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Control

WE	IGHT			P	RESSURE	ALTITUE	E (1000 F	Τ)		
(100	00 LB)	10	14	18	21	23	25	27	29	31
	EPR	1.27	1.34							
260	MACH	.598	.621							
200	KIAS	332	321							
	FF/ENG	10076	9797							
	EPR	1.24	1.30	1.39						
240	MACH	.582	.611	.633						
240	KIAS	323	316	303						
	FF/ENG	9361	9173	8859						
	EPR	1.21	1.27	1.34	1.42					
220	MACH	.561	.596	.620	.642					
220	KIAS	311	308	297	290					
	FF/ENG	8560	8495	8158	8155					
	EPR	1.18	1.24	1.30	1.36	1.42				
200	MACH	.532	.576	.608	.624	.639				
200	KIAS	295	297	291	281	277				
	FF/ENG	7706	7770	7540	7365	7396				
	EPR	1.15	1.20	1.26	1.32	1.36	1.42			
180	MACH	.498	.549	.589	.611	.621	.635			
100	KIAS	276	282	281	275	269	264			
	FF/ENG	6813	6942	6872	6746	6640	6629			
	EPR	1.13	1.17	1.22	1.27	1.31	1.35	1.40		
160	MACH	.473	.511	.561	.590	.606	.618	.630		
100	KIAS	262	262	267	265	262	256	250		
	FF/ENG	6082	6079	6107	6080	6015	5925	5872		
	EPR	1.11	1.14	1.18	1.22	1.26	1.29	1.33	1.38	1.45
140	MACH	.451	.477	.520	.559	.580	.598	.612	.623	.639
140	KIAS	249	245	247	251	250	247	243	237	233
	FF/ENG	5434	5286	5265	5322	5337	5280	5225	5142	5136
	EPR	1.09	1.11	1.14	1.17	1.20	1.23	1.27	1.31	1.36
120	MACH	.423	.451	.479	.511	.538	.564	.584	.602	.616
120	KIAS	234	231	227	228	231	233	232	229	224
	FF/ENG	4765	4638	4460	4477	4527	4561	4555	4504	4426

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Diversion Fuel and Time Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	ILWIND	COMPON	NENT (K7	TS)
100	80	60	40	20	(NM)	20	40	60	80	100
286	264	244	227	213	200	191	182	174	167	160
571	527	488	455	426	400	381	364	348	334	322
859	792	733	683	639	600	572	547	524	502	483
1148	1059	979	911	853	800	763	729	698	669	644
1440	1326	1226	1140	1066	1000	954	912	873	837	804
1733	1595	1473	1370	1280	1200	1144	1093	1046	1003	965
2029	1866	1721	1599	1494	1400	1335	1275	1220	1170	1125
2325	2137	1970	1830	1708	1600	1526	1457	1394	1336	1284
2623	2409	2220	2061	1923	1800	1716	1638	1567	1502	1443

Reference Fuel and Time Required at Check Point

	-			_						
A ID				PRESS	URE ALT	ITUDE (10	00 FT)			
AIR DIST	1	0	1	4	1	8	2	2	2	8
(NM)	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME
,	(1000 LB)	(HR:MIN)	(1000 LB)	(HR:MIN)	(1000 LB)	(HR:MIN)	(1000 LB)	(HR:MIN)	(1000 LB)	(HR:MIN)
200	4.3	0:41	3.8	0:39	3.4	0:38	3.1	0:37	2.7	0:35
400	8.9	1:17	8.2	1:12	7.4	1:10	6.9	1:09	6.5	1:04
600	13.5	1:53	12.4	1:46	11.4	1:42	10.7	1:40	10.2	1:33
800	18.0	2:30	16.7	2:20	15.4	2:15	14.4	2:12	13.9	2:02
1000	22.4	3:08	20.8	2:55	19.3	2:47	18.1	2:44	17.5	2:31
1200	26.8	3:46	24.9	3:30	23.1	3:20	21.8	3:16	21.0	3:01
1400	31.2	4:25	29.0	4:06	27.0	3:54	25.4	3:48	24.5	3:31
1600	35.5	5:04	33.1	4:42	30.7	4:27	29.0	4:20	27.9	4:02
1800	39.7	5:43	37.0	5:18	34.5	5:01	32.5	4:52	31.3	4:32

Fuel Required Adjustment (1000 LB)

REFERENCE FUEL REQUIRED		WEIGH	T AT CHEC	K POINT (10	000 LB)	
(1000 LB)	160	180	200	220	240	260
5	-0.4	-0.2	0.0	0.4	0.8	2.0
10	-0.9	-0.5	0.0	0.8	1.8	3.9
15	-1.4	-0.7	0.0	1.3	2.7	5.6
20	-1.9	-1.0	0.0	1.7	3.6	7.2
25	-2.4	-1.2	0.0	2.2	4.5	8.5
30	-2.9	-1.5	0.0	2.6	5.4	9.7
35	-3.4	-1.7	0.0	3.0	6.2	10.7
40	-3.9	-2.0	0.0	3.4	7.0	11.5
45	-4.4	-2.2	0.0	3.8	7.8	12.0

Includes APU fuel burn.

FAA

757 Flight Crew Operations Manual

ENGINE INOP

MAX CONTINUOUS THRUST

Holding Flaps Up

W	EIGHT		<u> </u>	PRESSU	JRE ALTITU	DE (FT)		
(10	000 LB)	1500	5000	10000	15000	20000	25000	30000
	EPR	1.16	1.20	1.26	1.35			
260	KIAS	241	241	242	243			
	FF/ENG	8460	8430	8430	8440			
	EPR	1.15	1.18	1.23	1.31	1.43		
240	KIAS	231	232	233	234	235		
	FF/ENG	7800	7760	7730	7710	7910		
	EPR	1.13	1.16	1.21	1.27	1.38		
220	KIAS	221	222	223	224	225		
	FF/ENG	7140	7100	7050	7020	7100		
	EPR	1.12	1.14	1.18	1.24	1.33	1.47	
200	KIAS	213	213	213	213	214	215	
	FF/ENG	6590	6450	6390	6320	6360	6640	
	EPR	1.10	1.12	1.15	1.21	1.28	1.39	
180	KIAS	205	205	205	205	205	205	
	FF/ENG	6020	5870	5760	5670	5690	5780	
	EPR	1.08	1.10	1.13	1.17	1.23	1.32	1.48
160	KIAS	197	197	197	197	197	197	197
	FF/ENG	5420	5330	5130	5040	5020	5070	5270
	EPR	1.07	1.08	1.11	1.14	1.19	1.26	1.38
140	KIAS	188	188	188	188	188	188	188
	FF/ENG	4820	4740	4560	4430	4400	4420	4480
	EPR	1.06	1.07	1.09	1.11	1.15	1.21	1.30
120	KIAS	179	179	179	179	179	179	179
	FF/ENG	4230	4160	4000	3860	3800	3800	3870

This table includes 5% additional fuel for holding in a racetrack pattern.

757 Flight Crew Operations Manual

Performance Inflight - QRH Gear Down

Chapter PI-QRH Section 23

GEAR DOWN

210 KIAS Max Climb EPR

Based on engine bleed for packs on and anti-ice off

_		0			_										
TAT]	PRESS	URE A	LTITU	DE (10	000 FT)				
(°C)	0	5	10	12	14	16	18	20	22	24	26	28	30	32	34
55	1.18	1.17	1.16	1.16	1.15	1.14	1.14	1.13	1.11	1.10	1.09	1.07	1.06	1.04	1.03
50	1.19	1.19	1.18	1.18	1.17	1.16	1.15	1.14	1.13	1.12	1.11	1.09	1.08	1.06	1.05
45	1.21	1.21	1.20	1.19	1.19	1.18	1.17	1.16	1.15	1.14	1.12	1.11	1.10	1.08	1.07
40	1.23	1.22	1.21	1.21	1.20	1.20	1.19	1.18	1.17	1.16	1.14	1.13	1.12	1.10	1.09
35	1.25	1.24	1.23	1.23	1.22	1.22	1.21	1.20	1.19	1.18	1.17	1.15	1.14	1.12	1.11
30	1.26	1.26	1.25	1.25	1.24	1.24	1.23	1.22	1.21	1.20	1.19	1.18	1.16	1.15	1.14
25	1.26	1.29	1.28	1.27	1.27	1.26	1.25	1.25	1.24	1.22	1.21	1.20	1.19	1.17	1.16
20	1.26	1.30	1.30	1.30	1.29	1.29	1.28	1.27	1.26	1.25	1.24	1.23	1.21	1.20	1.19
15	1.26	1.30	1.33	1.33	1.32	1.31	1.31	1.30	1.29	1.28	1.27	1.25	1.24	1.23	1.22
10	1.26	1.30	1.34	1.35	1.35	1.34	1.34	1.33	1.32	1.31	1.30	1.28	1.27	1.26	1.25
5	1.26	1.30	1.34	1.36	1.37	1.38	1.37	1.36	1.35	1.34	1.33	1.32	1.30	1.29	1.28
0	1.26	1.30	1.34	1.36	1.37	1.39	1.40	1.40	1.39	1.37	1.36	1.35	1.34	1.33	1.32
-5	1.26	1.30	1.34	1.36	1.37	1.39	1.40	1.42	1.42	1.41	1.40	1.39	1.38	1.37	1.36
-10	1.26	1.30	1.34	1.36	1.37	1.39	1.40	1.42	1.44	1.46	1.45	1.44	1.43	1.42	1.41
-15	1.26	1.30	1.34	1.36	1.37	1.39	1.40	1.42	1.44	1.46	1.48	1.49	1.48	1.47	1.47
-20	1.26	1.30	1.34	1.36	1.37	1.39	1.40	1.42	1.44	1.46	1.48	1.50	1.53	1.54	1.53
-25	1.26	1.30	1.34	1.36	1.37	1.39	1.40	1.42	1.44	1.46	1.48	1.50	1.53	1.56	1.57
-30	1.26	1.30	1.34	1.36	1.37	1.39	1.40	1.42	1.44	1.46	1.48	1.50	1.53	1.56	1.57

EPR Adjustments for Engine Bleeds

BLEED		PRESSURE ALTITUDE (1000 FT)											
CONFIGURATION	0	5	10	12	16	18	22	24	26	28	30	32	34
PACKS OFF	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.03	0.03	0.03	0.04	0.04
ENGINE ANTI-ICE ON	0.00	0.00	-0.03	-0.03	-0.03	-0.03	-0.03	-0.04	-0.04	-0.04	-0.04	-0.05	-0.05
ENGINE & WING ANTI-ICE ON	-0.02	-0.02	-0.05	-0.06	-0.06	-0.06	-0.06	-0.07	-0.07	-0.08	-0.08	-0.09	-0.10

Long Range Cruise Altitude Capability

- 0		•	
WEIGHT		PRESSURE ALTITUDE (FT)
(1000 LB)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
260	15500	13600	10700
250	17200	15100	12800
240	18900	16900	14800
230	20700	18600	16500
220	22600	20300	18400
210	24800	22100	20200
200	27000	24100	22100
190	29200	26300	24000
180	31500	28700	26000
170	33300	31300	28300
160	34600	33600	31100
150	35700	35500	33500
140	36900	36900	35600
130	38200	38100	37000
120	39500	39400	38200

Copyright © The Boeing Company. See title page for details.

757 Flight Crew Operations Manual

GEAR DOWN

Long Range Cruise Control

WE	EIGHT				PRE	SSURE .	ALTITU	DE (1000	FT)			
(100	00 LB)	10	14	18	21	23	25	27	29	31	33	35
	EPR	1.20	1.25									
260	MACH	.451	.483									
260	KIAS	251	250									
	FF/ENG	7079	7051									
	EPR	1.18	1.22	1.29								
240	MACH	.434	.466	.506								
240	KIAS	242	241	242								
	FF/ENG	6515	6477	6483								
	EPR	1.16	1.20	1.25	1.31							
220	MACH	.417	.449	.482	.517							
220	KIAS	232	232	231	233							
	FF/ENG	5955	5928	5832	5934							
	EPR	1.14	1.17	1.22	1.26	1.30	1.35	1.40				
200	MACH	.400	.430	.462	.489	.514	.536	.553				
200	KIAS	222	222	221	221	223	223	221				
	FF/ENG	5409	5371	5282	5290	5363	5394	5396				
	EPR	1.12	1.15	1.19	1.23	1.26	1.30	1.35	1.40	1.47		
180	MACH	.383	.409	.441	.466	.484	.508	.532	.550	.569		
100	KIAS	213	211	210	210	209	211	212	210	208		
	FF/ENG	4907	4821	4741	4714	4722	4787	4828	4831	4854		
	EPR	1.10	1.13	1.16	1.19	1.22	1.25	1.29	1.33	1.38	1.45	1.55
160	MACH	.365	.389	.418	.442	.460	.477	.500	.525	.545	.564	.589
100	KIAS	203	200	199	199	198	198	199	200	199	197	197
	FF/ENG	4431	4304	4198	4183	4176	4162	4210	4258	4246	4279	4440
	EPR	1.08	1.11	1.13	1.16	1.18	1.21	1.24	1.27	1.32	1.37	1.43
140	MACH	.344	.369	.396	.420	.437	.456	.475	.495	.517	.539	.563
110	KIAS	191	190	188	188	188	188	188	188	188	188	188
	FF/ENG	3928	3828	3705	3692	3694	3693	3696	3713	3704	3717	3780
	EPR	1.07	1.09	1.11	1.13	1.15	1.17	1.20	1.23	1.26	1.30	1.35
120	MACH	.323	.349	.377	.400	.417	.434	.453	.472	.493	.514	.537
120	KIAS	179	179	179	179	179	179	179	179	179	179	179
	FF/ENG	3456	3380	3325	3294	3291	3288	3287	3287	3267	3258	3258

DO NOT USE FOR FLIGHT Performance Inflight - QRH Gear Down

757 Flight Crew Operations Manual

GEAR DOWN

Long Range Cruise Enroute Fuel and Time Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	ILWIND	COMPON	NENT (KT	TS)
100	80	60	40	20	(NM)	20	40	60	80	100
329	293	262	237	217	200	188	178	168	160	153
664	590	527	477	436	400	377	357	338	321	306
1002	889	792	716	654	600	566	534	506	481	459
1345	1192	1060	957	873	800	754	712	675	641	612
1693	1497	1330	1199	1092	1000	943	890	843	801	764
2045	1805	1601	1441	1312	1200	1131	1067	1010	960	915
2404	2118	1875	1685	1532	1400	1318	1244	1178	1118	1066
2768	2434	2150	1930	1753	1600	1506	1420	1344	1276	1216
3140	2756	2429	2177	1975	1800	1693	1597	1510	1432	1365

Reference Fuel and Time Required at Check Point

A ID				PRESS	URE ALT	JRE ALTITUDE (1000 FT)						
AIR DIST	10		14		18		22		28			
(NM)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)		
200	7.9	0:51	7.2	0:49	6.5	0:47	6.0	0:45	5.3	0:42		
400	16.2	1:40	15.0	1:35	13.7	1:30	12.8	1:25	11.6	1:19		
600	24.2	2:29	22.5	2:21	20.7	2:14	19.4	2:07	17.7	1:56		
800	32.1	3:19	29.9	3:09	27.6	2:58	25.9	2:48	23.7	2:33		
1000	39.8	4:10	37.1	3:57	34.3	3:43	32.2	3:31	29.6	3:11		
1200	47.3	5:02	44.1	4:46	40.9	4:30	38.4	4:14	35.4	3:50		
1400	54.7	5:55	51.0	5:36	47.3	5:17	44.5	4:58	41.0	4:29		
1600	61.9	6:49	57.8	6:27	53.6	6:04	50.4	5:43	46.5	5:09		
1800	69.0	7:45	64.4	7:19	59.7	6:53	56.2	6:28	51.9	5:50		

Fuel Required Adjustment (1000 LB)

REFERENCE FUEL REQUIRED	WEIGHT AT CHECK POINT (1000 LB)								
(1000 LB)	160	180	200	220	240	260			
10	-0.9	-0.5	0.0	0.8	1.7	2.6			
20	-2.0	-1.0	0.0	1.6	3.4	5.3			
30	-3.0	-1.5	0.0	2.3	5.0	7.8			
40	-4.1	-2.0	0.0	3.0	6.5	10.1			
50	-5.1	-2.6	0.0	3.6	7.8	12.2			
60	-6.2	-3.1	0.0	4.2	8.9	14.1			
70	-7.2	-3.6	0.0	4.8	9.9	15.8			

Descent at VREF30+80

PRESSURE ALTITUDE (1000 FT)	5	10	15	17	19	21	23	25	27	29	31	33	35
DISTANCE (NM)	12	22	31	35	39	42	46	50	54	58	62	66	70
TIME (MINUTES)	7	9	12	13	14	14	15	16	17	18	18	19	20

757 Flight Crew Operations Manual

GEAR DOWN

Holding Flaps Up

W	EIGHT			PRESSU	JRE ALTITU	DE (FT)		
(10	000 LB)	1500	5000	10000	15000	20000	25000	30000
	EPR	1.12	1.14	1.19	1.25			
260	KIAS	235	235	235	235			
	FF/ENG	7030	6940	6900	6850			
	EPR	1.11	1.13	1.17	1.22	1.31		
240	KIAS	228	228	228	228	228		
	FF/ENG	6590	6430	6380	6320	6370		
	EPR	1.09	1.11	1.15	1.20	1.27		
220	KIAS	220	220	220	220	220		
	FF/ENG	6130	5990	5880	5800	5830		
	EPR	1.08	1.10	1.13	1.17	1.24	1.33	
200	KIAS	213	213	213	213	213	213	
	FF/ENG	5660	5570	5390	5310	5300	5360	
	EPR	1.07	1.09	1.11	1.15	1.21	1.29	1.42
180	KIAS	205	205	205	205	205	205	205
	FF/ENG	5210	5110	4930	4830	4810	4850	4940
	EPR	1.06	1.07	1.10	1.13	1.18	1.25	1.35
160	KIAS	197	197	197	197	197	197	197
	FF/ENG	4740	4670	4490	4370	4340	4350	4370
	EPR	1.05	1.06	1.08	1.11	1.15	1.21	1.29
140	KIAS	188	188	188	188	188	188	188
	FF/ENG	4290	4220	4060	3930	3880	3880	3900
	EPR	1.04	1.05	1.07	1.09	1.12	1.17	1.24
120	KIAS	179	179	179	179	179	179	179
	FF/ENG	3850	3770	3630	3500	3460	3450	3460

This table includes 5% additional fuel for holding in a racetrack pattern.

757 Flight Crew Operations Manual

Performance Inflight - QRH Gear Down, Engine Inop Chapter PI-QRH Section 24

MAX CONTINUOUS THRUST

Driftdown Speed/Level Off Altitude 100 ft/min residual rate of climb Includes APU fuel burn

WEIGHT	(1000 LB)	OPTIMUM	LEVEL OFF ALTITUDE (FT)				
START DRIFTDOWN	LEVEL OFF	DRIFTDOWN SPEED (KIAS)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C		
220	208	218	6000	2700			
200	190	210	10000	7800	5300		
180	172	203	13700	11900	9700		
160	153	195	17300	15800	14100		
140	134	187	20600	19700	18300		

Long Range Cruise Altitude Capability 100 ft/min residual rate of climb

WEIGHT	PRESSURE ALTITUDE (FT)							
(1000 LB)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C					
200	6200							
190	9100	5700						
180	11800	9000	5800					
170	14100	12000	8800					
160	16000	14400	12200					
150	17900	16400	14600					
140	19800	18500	16800					
130	21400	20500	19200					
120	22900	22000	21000					

With engine bleed for packs off, increase altitude capability by 100 ft.

With engine anti-ice on, decrease altitude capability by 5100 ft.

With engine and wing anti-ice on, decrease altitude capability by 8900 ft.

May 19, 2009 D632N001-200 PI-QRH.24.1

¹DO NOT USE FOR FLIGHT

757 Flight Crew Operations Manual

GEAR DOWN ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Control

WE	EIGHT			PRES	SURE ALT	ITUDE (100	0 FT)		
(100	00 LB)	6	8	10	12	14	16	18	20
	EPR	1.36	1.40						
200	MACH	.368	.378						
200	KIAS	220	218						
	FF/ENG	10640	10565						
	EPR	1.32	1.35	1.39	1.43				
180	MACH	.353	.364	.374	.385				
100	KIAS	211	210	208	206				
	FF/ENG	9622	9548	9443	9407				
	EPR	1.27	1.30	1.33	1.37	1.41	1.47		
160	MACH	.334	.346	.358	.369	.382	.397		
100	KIAS	200	199	199	197	197	197		
	FF/ENG	8498	8488	8450	8352	8379	8418		
	EPR	1.23	1.25	1.28	1.31	1.35	1.40	1.45	1.52
140	MACH	.315	.327	.339	.352	.366	.380	.396	.412
140	KIAS	188	188	188	188	188	188	188	188
	FF/ENG	7481	7445	7432	7423	7423	7375	7448	7644
	EPR	1.19	1.21	1.24	1.26	1.30	1.33	1.37	1.42
120	MACH	.300	.311	.323	.335	.349	.362	.377	.392
120	KIAS	179	179	179	179	179	179	179	179
	FF/ENG	6612	6590	6559	6520	6536	6457	6465	6502

GEAR DOWN ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Diversion Fuel and Time Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE	HEADWIND COMPONENT (KTS)					TA	ILWIND	COMPON	NENT (KT	TS)
100	80	60	40	20	(NM)	20	40	60	80	100
169	149	132	119	109	100	93	88	83	78	75
343	302	267	240	219	200	187	175	165	156	148
518	455	402	361	328	300	281	263	247	234	222
694	610	538	483	438	400	374	350	329	311	295
872	765	674	604	548	500	467	438	411	388	368
1051	921	811	726	658	600	560	524	492	464	440
1232	1078	948	848	769	700	653	611	574	541	513
1415	1237	1087	971	879	800	746	698	655	617	585

Reference Fuel and Time Required at Check Point

A ID		PRESSURE ALTITUDE (1000 FT)											
AIR DIST	(5	1	0	1	4	18						
(NM)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)					
100	4.3	0:29	3.8	0:28	3.4	0:27	3.2	0:26					
200	8.8	0:54	8.0	0:53	7.6	0:51	7.3	0:47					
300	13.2	1:20	12.2	1:17	11.6	1:14	11.3	1:09					
400	17.6	1:46	16.3	1:42	15.6	1:38	15.2	1:31					
500	21.9	2:12	20.4	2:07	19.5	2:02	19.1	1:53					
600	26.1	2:39	24.4	2:32	23.3	2:26	22.9	2:16					
700	30.4	3:06	28.4	2:58	27.1	2:50	26.6	2:39					
800	34.5	3:33	32.3	3:23	30.9	3:15	30.3	3:02					

Fuel Required Adjustment (1000 LB)

REFERENCE FUEL REQUIRED	WEIGHT AT CHECK POINT (1000 LB)								
(1000 LB)	160	180	200	220	240				
5	-0.5	-0.2	0.0	0.4	1.0				
10	-1.1	-0.5	0.0	0.8	2.0				
15	-1.6	-0.8	0.0	1.3	3.0				
20	-2.2	-1.1	0.0	1.7	3.9				
25	-2.8	-1.4	0.0	2.2	4.8				
30	-3.3	-1.6	0.0	2.7	5.7				
35	-3.9	-1.9	0.0	3.1	6.5				

Includes APU fuel burn.

MAX CONTINUOUS THRUST

Holding Flaps Up

W	EIGHT		PRESSURE A	LTITUDE (FT)	
(10	000 LB)	1500	5000	10000	15000
	EPR	1.31	1.37		
220	KIAS	220	220		
	FF/ENG	11760	11740		
	EPR	1.27	1.33		
200	KIAS	213	213		
	FF/ENG	10730	10720		
	EPR	1.24	1.29	1.38	
180	KIAS	205	205	205	
	FF/ENG	9780	9740	9730	
	EPR	1.21	1.25	1.33	1.44
160	KIAS	197	197	197	197
	FF/ENG	8850	8780	8750	8760
	EPR	1.18	1.22	1.28	1.37
140	KIAS	188	188	188	188
	FF/ENG	7910	7870	7800	7730
	EPR	1.15	1.18	1.24	1.31
120	KIAS	179	179	179	179
	FF/ENG	6970	6950	6890	6790

This table includes 5% additional fuel for holding in a racetrack pattern.

757 Flight Crew Operations Manual

Performance Inflight - QRH Text Chapter PI-QRH Section 25

Introduction

This chapter contains information to supplement performance data from the Flight Management Computer (FMC). In addition, sufficient inflight data is provided to complete a flight with the FMC inoperative. In the event of conflict between data presented in this chapter and that contained in the approved Airplane Flight Manual, the Flight Manual shall always take precedence.

General

Flight with Unreliable Airspeed / Turbulent Air Penetration

Pitch attitude and average EPR information is provided for use in all phases of flight in the event of unreliable airspeed/Mach indications resulting from blocking or freezing of the pitot system. Loss of radome or turbulent air may also cause unreliable airspeed/Mach indications. The cruise table in this section may also be used for turbulent air penetration.

Pitch attitude is shown in bold type for emphasis since altitude and/or vertical speed indications may also be unreliable.

Max Climb EPR

This table shows Max Climb EPR for a 250/290/.78 climb speed schedule, normal engine bleed for packs on and anti-ice off. Enter the table with airport pressure altitude and TAT and read EPR. EPR adjustments are shown for packs off and anti-ice operation.

VREF

The Reference Speed table contains flaps 30, 25 and 20 landing speeds for a given weight.

Advisory Information

Normal Configuration Landing Distance

Tables are provided as advisory information for normal configuration landing distance on dry runways and slippery runways with good, medium, and poor reported braking action. These values are actual landing distances and do not include the 1.67 regulatory factor. Therefore, they cannot be used to determine the dispatch required landing field length.

757-200/PW2037 FA A

757 Flight Crew Operations Manual

To use these tables, determine the reference landing distance for the selected braking configuration. Then adjust the reference distance for landing weight, altitude, wind, slope, temperature, approach speed, and the number of operative thrust reversers to obtain the actual landing distance.

When landing on slippery runways or runways contaminated with ice, snow, slush, or standing water, the reported braking action must be considered. If the surface is affected by water, snow, or ice and the braking action is reported as "good", conditions should not be expected to be as good as on clean, dry runways. The value "good" is comparative and is intended to mean that airplanes should not experience braking or directional control difficulties when landing. The performance level used to calculate the "good" data is consistent with wet runway testing done on early Boeing jets. The performance level used to calculate "poor" data reflects runways covered with wet ice.

Use of the autobrake system commands the airplane to a constant deceleration rate. In some conditions, such as a runway with "poor" braking action, the airplane may not be able to achieve these deceleration rates. In these cases, runway slope and inoperative reversers influence the stopping distance. Since it cannot be determined quickly when this becomes a factor, it is conservative to add the effects of slope and inoperative reversers when using the autobrake system.

Non-normal Configuration Landing Distance

Advisory information is provided to support non-normal configurations that affect the landing performance of the airplane. Landing distances and adjustments are provided for dry runways and runways with good, medium, and poor reported braking action.

Enter the table with the applicable non-normal configuration and read the normal approach speed. The reference landing distance is a reference distance from 50 ft above the threshold to stop based on a reference landing weight and speed at sea level, zero wind, and zero slope. Subsequent columns provide adjustments for off-reference landing weight, altitude, wind, slope, and speed conditions. Each adjustment is independently added to the reference landing distance. Landing distance includes the effects of max manual braking and reverse thrust.

Recommeded Brake Cooling Schedule

Advisory information is provided to assist in avoiding the problems associated with hot brakes. For normal operation, most landings are at weights below the AFM quick turnaround limit weight.

DO NOT USE FOR FLIGHT Performance Inflight - QRH Text

757 Flight Crew Operations Manual

Use of the recommended cooling schedule will help avoid brake overheat and fuse plug problems that could result from repeated landings at short time intervals or a rejected takeoff.

Enter the Recommended Brake Cooling Schedule table with the airplane weight and brakes on speed, adjusted for wind, at the appropriate temperature and altitude condition. Instructions for applying wind adjustments are included below the table. Linear interpolation may be used to obtain intermediate values. The resulting number is the reference brake energy per brake in millions of foot-pounds, and represents the amount of energy absorbed by each brake during a rejected takeoff

To determine the energy per brake absorbed during landing, enter the appropriate Adjusted Brake Energy Per Brake table (No Reverse Thrust or Two Engine Reverse) with the reference brake energy per brake and the type of braking used during landing (Max Manual, Max Auto, or Autobrake). The resulting number is the adjusted brake energy per brake and represents the energy absorbed in each brake during the landing.

The recommended cooling time is found in the final table by entering with the adjusted brake energy per brake or brake temperature monitor system (BTMS) indication on EICAS. Times are provided for ground cooling and inflight gear down cooling.

If brake temperature monitor indication on EICAS is available, the hottest brake indication 10 to 15 minutes after the airplane has come to a complete stop, or inflight with gear retracted, may be used to determine the recommended cooling schedule by entering at the bottom of the chart. The brake temperature light illuminates when the hottest brake is registering 5 on the EICAS indication and extinguishes as the hottest brake cools with an EICAS indication of 4.

Engine Inoperative

Initial Max Continuous EPR

The Initial Max Continuous EPR setting for use following an engine failure is shown. The table shows a range of Cruise Mach numbers to provide a target EPR setting at the start of driftdown. Also shown is the maximum TAT at which the limit EPR can be set. Once driftdown is established, the Max Continuous EPR table should be used to determine EPR for the given conditions.

757-200/PW2037 FAA

Max Continuous EPR

Power setting is based on one engine operating with one A/C pack operating and all anti-ice bleeds off. Enter the table with pressure altitude and IAS or Mach to read EPR.

It is desirable to maintain engine thrust level within the limits of the Max Cruise thrust rating. However, where thrust level in excess of Max Cruise rating is required, such as for meeting terrain clearance, ATC altitude assignments, or to attain maximum range capability, it is permissible to use the thrust needed up to the Max Continuous thrust rating. The Max Continuous thrust rating is intended primarily for emergency use at the discretion of the pilot and is the maximum thrust that may be used continuously.

Driftdown Speed/Level Off Altitude

The table shows optimum driftdown speed as a function of cruise weight at start of driftdown. Also shown are the approximate weight and pressure altitude at which the airplane will level off considering 100 ft/min residual rate of climb.

The level off altitude is dependent on air temperature (ISA deviation).

Driftdown/LRC Range Capability

This table shows the range capability from the start of driftdown. Driftdown is continued to level off altitude. As weight decreases due to fuel burn, the airplane is accelerated to Long Range Cruise speed. Cruise is continued at level off altitude and Long Range Cruise speed.

To determine fuel required, enter the Ground to Air Miles Conversion table with the desired ground distance and adjust for anticipated winds to obtain air distance to destination. Then enter the Driftdown/Cruise Fuel and Time table with air distance and weight at start of driftdown to determine fuel and time required. If altitudes other than the level off altitude are used, fuel and time required may be obtained by using the Engine Inoperative Long Range Cruise Enroute Fuel and Time table.

Long Range Cruise Altitude Capability

The table shows the maximum altitude that can be maintained at a given weight and air temperature (ISA deviation), based on Long Range Cruise speed, Max Continuous thrust, and 100 ft/min residual rate of climb.

Long Range Cruise Control

The table provides target EPR, engine inoperative Long Range Cruise Mach number, IAS and fuel flow for the airplane weight and pressure altitude. The fuel flow values in this table reflect single engine fuel burn.

PI-QRH.25.4 Copyright © The Boeing Company. See title page for details.

D632N001-200 May 19, 2009

DO NOT USE FOR FLIGHT Performance Inflight - QRH Text

757 Flight Crew Operations Manual

Long Range Cruise Diversion Fuel and Time

Tables are provided for crews to determine the fuel and time required to proceed to an alternate airfield with one engine inoperative. The data is based on single engine Long Range Cruise speed and .78/290/250 descent. Enter with Air Distance as determined from the Ground to Air Miles Conversion table and read Fuel and Time required at the cruise pressure altitude. Adjust the fuel obtained for deviation from the reference weight at checkpoint as required by entering the Fuel Required Adjustment table with the fuel required for the reference weight and the actual weight at checkpoint.

Holding

Target EPR, indicated airspeed and fuel flow per engine information is tabulated for holding with flaps up based on the FMC optimum holding speed schedule. This is the higher of the maximum endurance speed and the maneuvering speed. Small variations in airspeed will not appreciably affect the overall endurance time. Enter the table with weight and pressure altitude to read EPR, IAS and fuel flow per engine.

Gear Down

This section contains performance for airplane operation with the landing gear extended for all phases of flight. The data is based on engine bleeds for normal air conditioning.

NOTE: The Flight Management Computer System (FMCS) does not contain special provisions for operation with landing gear extended. As a result, the FMCS will generate inaccurate enroute speed schedules, display non-conservative predictions of fuel burn, estimated time of arrival (ETA), maximum altitude, and compute overly shallow descent path. To obtain accurate ETA predictions, gear down cruise speed and altitude should be entered on the CLB and CRZ pages. Gear down cruise speed should also be entered on the DES page and a STEP SIZE of zero should be entered on the PERF INIT or CRZ page. Use of the VNAV during descent under these circumstances is not recommended.

Tables for gear down performance in this section are identical in format and used in the same manner as tables for the gear up configuration previously described.

Intentionally Blank

757 Flight Crew Operations Manual

Maneuvers Table of Contents	Chapter Man Section 0
Introduction	Man.05
General	Man.05.1
Non-Normal Maneuvers	Man.05.1
Flight Patterns	Man.05.1
Non-Normal Maneuvers	Man.1
Approach to Stall Recovery	Man.1.1
Pilot Induced Roll Oscillation	Man.1.1
Rejected Takeoff	Man.1.2
Terrain Avoidance	Man.1.5
Ground Proximity Caution	Man.1.5
Ground Proximity Warning	Man.1.5
Traffic Avoidance	Man.1.7
For TA:	Man.1.7
For RA, except a climb in landing configurat	
For a climb RA in landing configuration:	Man.1.8
Upset Recovery	Man.1.8
Nose High Recovery	
Nose Low Recovery	Man.1.10
Windshear	
Predictive Windshear (PWS)	
Windshear Indications	
Windshear Encounter	Man.1.11
Windshear Escape Maneuver With Flight Director Guidance	Man.1.12
Flight Patterns.	Man.2
Takeoff	Man.2.1
ILS Approach	
Instrument Approach Using VNAV	
Instrument Approach Using V/S	

Maneuvers -Table of Contents

DO NOT USE FOR FLIGHT

757 Flight Crew Operations Manual

Circling Approach	. Man.2.5
Visual Traffic Pattern	. Man.2.6
Go-Around and Missed Approach	. Man.2.7

ManeuversChapter ManIntroductionSection 05

General

Non-Normal Maneuvers and Flight Patterns are included for training and review purposes.

Non-Normal Maneuvers

Flight crews are expected to do non-normal maneuvers from memory.

Flight Patterns

Flight patterns show procedures for some all-engine and engine-inoperative situations.

Flight patterns do not include all procedural items but show required/recommended:

- configuration changes
- · thrust changes
- Mode Control Panel (MCP) changes
- pitch mode and roll mode changes
- · checklist calls.

Intentionally Blank

Maneuvers Non-Normal Maneuvers

Chapter Man
Section 1

Approach to Stall Recovery

The following is immediately accomplished at the first indication of stall buffet or stick shaker.

Pilot Flying	Pilot Monitoring
 Advance thrust levers to maximum thrust* Smoothly adjust pitch attitude** to avoid ground contact or obstacles Level the wings (do not change flaps or landing gear configuration) Retract the speedbrakes 	 Verify maximum thrust Monitor altitude and airspeed Call out any trend toward terrain contact Verify all required
When ground contact is no longer a factor: • Adjust pitch attitude to accelerate while minimizing altitude loss • Return to a speed appropriate for the configuration	actions have been completed and call out any omissions

Note: * If an approach to stall is encountered with the autopilot engaged, apply maximum thrust and allow the airplane to return to the normal airspeed.

Note: **At high altitude, it may be necessary to descend to accelerate.

Note: If autopilot response is not acceptable, it should be disengaged.

Pilot Induced Roll Oscillation

Pilot Induced Oscillations (PIO) are inadvertent, sustained oscillations of the airplane resulting from interactions between the aircraft and control inputs by the pilot. They are often associated with tasks where the pilot is attempting to precisely and quickly accomplish a flight maneuver (such as the final phase of landing). In a fully developed lateral PIO, pilot control wheel inputs will be out of phase with the airplane roll response.

Flight crews should be aware of the potential for pilot induced roll oscillations when using high rate, high magnitude, rapidly reversed control wheel inputs. This potential is increased when in landing configuration with gusty wind conditions. Pilot techniques that utilize abrupt and pulsing control inputs may also contribute to these events.

Copyright © The Boeing Company. See title page for details.

757 Flight Crew Operations Manual

The following action should be accomplished immediately when either pilot recognizes that a PIO exists:

Pilot Flying	Pilot Monitoring
Announce the situation	
Immediately stop lateral control wheel inputs until the airplane stabilizes	Verify appropriate pilot response
Initiate go-around if oscillations do not diminish or if the aircraft is not in a position from which a safe landing can be made	Recommend go-around if airplane is not stabilized for landing

Rejected Takeoff

The captain has the sole responsibility for the decision to reject the takeoff. The decision must be made in time to start the rejected takeoff maneuver by V1. If the decision is to reject the takeoff, the captain must clearly announce "REJECT," immediately start the rejected takeoff maneuver, and assume control of the airplane. If the first officer is making the takeoff, the first officer must maintain control of the airplane until the captain makes a positive input to the controls.

Prior to 80 knots the takeoff should be rejected for any of the following:

- activation of the master caution
- system failure(s)
- unusual noise or vibration
- tire failure
- abnormally slow acceleration
- takeoff configuration warning
- fire or fire warning
- engine failure
- if a side window opens
- if the airplane is unsafe or unable to fly
- predictive windshear warning

Above 80 knots and prior to V1, the takeoff should be rejected for any of the following:

- fire or fire warning
- engine failure
- if the airplane is unsafe or unable to fly.
- predictive windshear warning

During the takeoff, the crew member observing the non-normal situation will immediately call it out as clearly as possible.

757 Flight Crew Operations Manual

Captain	First Officer
Without delay: Simultaneously close the thrust levers, disengage the autothrottles, and apply maximum manual wheel brakes or verify operation of RTO autobrake. If RTO autobrake is selected, monitor system performance and apply manual wheel brakes if the autobrake disarm or deceleration is not adequate. Raise SPEEDBRAKE lever. Apply the maximum amount of reverse thrust consistent with conditions. Continue maximum braking until certain the airplane will stop on the runway.	Verify actions as follows: Thrust levers closed. Autothrottle disengaged. Maximum brakes applied. Verify speedbrake lever UP and call "SPEEDBRAKES UP." If speedbrake lever not UP call "SPEEDBRAKES NOT UP." Reverse thrust applied. Call out any omitted action items.
Field length permitting: Initiate movement of the reverse thrust levers to reach the reverse idle detent by taxi speed.	Call out 60 knots. Communicate the reject decision to the control tower and appropriate crew members as soon as practical.

When the airplane is stopped, perform procedures as required.

Review Brake Cooling Schedule for brake cooling time and precautions (refer to the Performance Inflight chapter).

Consider the following:

- The possibility of wheel fuse plugs melting
- The need to clear the runway
- The requirement for remote parking
- Wind direction in case of fire
- Alerting fire equipment
- Not setting the parking brake unless passenger evacuation is necessary
- Advising the ground crew of the hot brake hazard
- Advising passengers of the need to remain seated or evacuate
- Completion of Non–Normal checklist (if appropriate) for conditions which caused the RTO

Terrain Avoidance

Ground Proximity Caution

Accomplish the following maneuver for any of these aural alerts*:

- CAUTION TERRAIN
- TERRAIN
- DON'T SINK
- GLIDESLOPE
- SINK RATE
- TOO LOW FLAPS
- TOO LOW GEAR
- TOO LOW TERRAIN
- BANK ANGLE

Pilot Flying	Pilot Monitoring
Correct the flight path or t	the airplane configuration.

The below glideslope deviation alert may be cancelled or inhibited for:

- localizer or backcourse approach
- circling approach from an ILS
- when conditions require a deliberate approach below glideslope
- unreliable glideslope signal.

Note: If a terrain caution occurs when flying under daylight VMC, and positive visual verification is made that no terrain hazard exists, the alert may be regarded as cautionary and the approach may be continued.

Note: *As installed, some repeat.

Ground Proximity Warning

Accomplish the following maneuver for any of these conditions:

- activation of the "TERRAIN TERRAIN PULL UP" warning
- activation of the "PULL UP" warning
- other situations resulting in unacceptable flight toward terrain.

757 Flight Crew Operations Manual

Pilot Flying	Pilot Monitoring
 Disconnect autopilot. Disconnect autothrottle. Aggressively apply maximum* thrust. Simultaneously roll wings level and rotate to an initial pitch attitude of 20°. Retract speedbrakes. If terrain remains a threat, continue rotation up to the pitch limit indicator or stick shaker or initial buffet. 	Verify maximum* thrust. Verify all required actions have been completed and call out any omissions.
 Do not change gear or flap configuration until terrain separation is assured. Monitor radio altimeter for sustained or increasing terrain separation. When clear of the terrain, slowly decrease pitch attitude and accelerate. 	 Monitor vertical speed and altitude (radio altitude for terrain clearance and barometric altitude for a minimum safe altitude). Call out any trend toward terrain contact.

Note: Aft control column force increases as the airspeed decreases. In all cases, the pitch attitude that results in intermittent stick shaker or initial buffet is the upper pitch attitude limit. Flight at intermittent stick shaker may be required to obtain positive terrain separation. Smooth, steady control will avoid a pitch attitude overshoot and stall.

Note: Do not use flight director commands.

Note: * Maximum thrust can be obtained by advancing the thrust levers to the takeoff or go-around limit. On airplanes with EEC's operating normally, the pilot may advance the thrust levers full forward. If terrain contact is imminent, advance thrust levers full forward.

Note: If positive visual verification is made that no terrain hazard exists when flying under daylight VMC conditions prior to a terrain warning, the alert may be regarded as cautionary and the approach may be continued.

Traffic Avoidance

The following is accomplished immediately by recall whenever a TCAS traffic advisory (TA) or resolution advisory (RA) occurs.

WARNING: Comply with the RA if there is a conflict between the RA and air traffic control.

WARNING: Once an RA has been issued, safe separation could be compromised if current vertical speed is changed, except as necessary to comply with the RA. This is because TCAS II-to-TCAS II coordination may be in progress with the intruder aircraft, and any change in vertical speed that does not comply with the RA may negate the effectiveness of the other aircraft's compliance with the RA.

Note: If stick shaker or initial buffet occurs during the maneuver, immediately accomplish the APPROACH TO STALL RECOVERY procedure.

Note: If high speed buffet occurs during the maneuver, relax pitch force as necessary to reduce buffet, but continue the maneuver.

Note: Do not use flight director pitch commands until clear of conflict.

For TA:

Pilot Flying	Pilot Monitoring
Look for traffic using traffic display as a guide. Call out any conflicting traffic	
If traffic is sighted, maneuver if needed.	

Note: Maneuvers based solely on a TA may result in reduced separation and are not recommended.

For RA, except a climb in landing configuration:

WARNING: A DESCEND (fly down) RA issued below 1,000 feet AGL should not be followed.

757 Flight Crew Operations Manual

Pilot Flying	Pilot Monitoring
If maneuvering is required, disengage the autopilot and autothrottle. Smoothly adjust pitch and thrust to satisfy the RA command. Follow the planned lateral flight path unless visual contact with the conflicting traffic requires other action.	
Attempt to establish visual contact. Call out any conflicting traffic.	

For a climb RA in landing configuration:

Pilot Flying	Pilot Monitoring
Disengage the autopilot and autothrottle. Advance thrust levers forward to ensure maximum thrust is attained and call for FLAPS 20. Smoothly adjust pitch to satisfy the RA command. Follow the planned lateral flight path unless visual contact with the conflicting traffic requires other action.	Verify maximum thrust set. Position flap lever to 20 detent.
Verify a positive rate of climb on the altimeter and call "GEAR UP."	Verify a positive rate of climb on the altimeter and call "POSITIVE RATE." Set the landing gear lever to UP.
Attempt to establish visual contact. Call out any conflicting traffic.	

Upset Recovery

An upset can generally be defined as unintentionally exceeding the following conditions:

- pitch attitude greater than 25 degrees nose up, or
- pitch attitude greater than 10 degrees nose down, or
- bank angle greater than 45 degrees, or
- within above parameters but flying at airspeeds inappropriate for the conditions.

Man.1.9

757 Flight Crew Operations Manual

The following techniques represent a logical progression for recovering the airplane. The sequence of actions is for guidance only and represents a series of options to be considered and used depending on the situation. Not all the actions may be necessary once recovery is underway. If needed, use pitch trim sparingly. Careful use of rudder to aid roll control should be considered only if roll control is ineffective and the airplane is not stalled.

These techniques assume that the airplane is not stalled. A stalled condition can exist at any attitude and may be recognized by continuous stick shaker activation accompanied by one or more of the following:

- buffeting, which could be heavy at times
- lack of pitch authority and/or roll control
- inability to arrest descent rate.

If the airplane is stalled, recovery from the stall must be accomplished first by applying and maintaining nose down elevator until stall recovery is complete and stick shaker activation ceases.

Nose High Recovery

Pilot Flying	Pilot Monitoring
Recognize and confirm the situation.	
 Disconnect autopilot and autothrottle. Apply as much as full nose down elevator. *Apply appropriate nose down stabilizer trim. Reduce thrust. *Roll (adjust bank angle) to obtain a nose down pitch rate. Complete the recovery: when approaching the horizon, roll to wings level check airspeed and adjust thrust establish pitch attitude. 	 Call out attitude, airspeed and altitude throughout the recovery. Verify all required actions have been completed and call out any omissions.

757 Flight Crew Operations Manual

Nose Low Recovery

Pilot Flying	Pilot Monitoring
Recognize and confirm the situation.	
 Disconnect autopilot and autothrottle. Recover from stall, if required. *Roll in the shortest direction to wings level (unload and roll if bank angle is more than 90 degrees). Recover to level flight: apply nose up elevator *apply nose up trim, if required adjust thrust and drag as required. 	 Call out attitude, airspeed and altitude throughout the recovery. Verify all required actions have been completed and call out any omissions.

WARNING: * EXCESSIVE USE OF PITCH TRIM OR RUDDER MAY AGGRAVATE AN UPSET SITUATION OR MAY RESULT IN LOSS OF CONTROL AND/OR HIGH STRUCTURAL LOADS.

Windshear

Predictive Windshear (PWS)

PWS Cautions

For predictive windshear caution alert: ("MONITOR RADAR DISPLAY" aural)

Pilot Flying	Pilot Monitoring	
Maneuver as required to avoid the windshear.		

PWS Warnings

Predictive windshear warning during takeoff roll: ("WINDSHEAR AHEAD, WINDSHEAR AHEAD" aural)

- Prior to V1, reject takeoff.
- After V1, perform the Windshear Escape Maneuver.

Predictive windshear warning during approach: ("GO–AROUND, WINDSHEAR AHEAD" aural)

• perform Windshear Escape Maneuver or, at pilot's discretion, perform a normal go—around.

Windshear Indications

The following are indications the airplane is encountering a windshear:

- Unacceptable flight path deviations; recognized as uncontrolled changes from normal steady state flight conditions below 1,000 feet AGL, in excess of any of the following:
 - 15 knots indicated airspeed
 - 500 FPM vertical speed
 - 5 degrees pitch attitude
 - 1 dot displacement from the glideslope
 - unusual thrust lever position for a significant period of time.
- Windshear Immediate-Alert Warning (two-tone siren followed by "WINDSHEAR, WINDSHEAR, WINDSHEAR")

Windshear Encounter

Windshear encountered during takeoff roll:

- If windshear is encountered prior to V1, there may not be sufficient runway remaining to stop if an RTO is initiated at V1. At VR, rotate at a normal rate toward a 15 degree pitch attitude. Once airborne, perform the Windshear Escape Maneuver.
- If windshear is encountered near the normal rotation speed and airspeed suddenly decreases, there may not be sufficient runway left to accelerate back to normal takeoff speed. If there is insufficient runway left to stop, initiate a normal rotation at least 2,000 feet before the end of the runway even if airspeed is low. Higher than normal attitudes may be required to lift off in the remaining runway. Ensure maximum thrust is set.

Windshear encountered in flight:

• perform the Windshear Escape Maneuver.

757 Flight Crew Operations Manual

Windshear Escape Maneuver With Flight Director Guidance

<u>-</u>	
Pilot Flying	Pilot Monitoring
 MANUAL FLIGHT Disconnect autopilot. Push either go—around switch. Aggressively apply maximum* thrust. Disconnect autothrottle. Simultaneously roll wings level and rotate toward an initial pitch attitude of 15°. Retract speedbrakes. Follow flight director GA guidance (if available). AUTOMATIC FLIGHT Press either go—around switch.** Verify GA mode annunciation. Verify thrust advances to GA power. Retract speedbrakes. Monitor system performance***. 	Verify maximum* thrust. Verify all required actions have been completed and call out any omissions.
 Do not change gear or flap configuration until windshear is no longer a factor. Monitor vertical speed and altitude. Do not attempt to regain lost airspeed until windshear is no longer a factor. 	 Monitor vertical speed and altitude. Call out any trend toward terrain contact, descending flight path, or significant airspeed changes.

Note: Aft control column force increases as the airspeed decreases. In all cases, the pitch attitude that results in intermittent stick shaker or initial buffet is the upper pitch attitude limit. Flight at intermittent stick shaker may be required to obtain positive terrain separation. Smooth, steady control will avoid a pitch attitude overshoot and stall

Note: * Maximum thrust can be obtained by advancing the thrust levers to the takeoff or go-around limit. On airplanes with EEC's operating normally, the pilot may advance the thrust levers full forward. If terrain contact is imminent, advance thrust levers full forward

Maneuvers -Non-Normal Maneuvers

757 Flight Crew Operations Manual

Note: ** If GA is not available, disconnect autopilot and autothrottle and fly manually.

WARNING: *** Severe windshear may exceed the performance capability of the AFDS. The pilot flying must be prepared to disconnect the autopilot and autothrottle and fly manually.

Intentionally Blank

757 Flight Crew Operations Manual

Maneuvers Flight Patterns

Chapter Man Section 2

Takeoff

757 Flight Crew Operations Manual

ILS Approach

Instrument Approach Using VNAV

757 Flight Crew Operations Manual

Instrument Approach Using V/S

Circling Approach

757 Flight Crew Operations Manual

Visual Traffic Pattern

Go-Around and Missed Approach

Intentionally Blank

757 Flight Crew Operations Manual

Checklist Instructions	Chapter CI
Table of Contents	Section 0
Model Identification	CI.ModID
Revision Record	CI.RR
QRH List of Effective Pages	CI.LEP
Normal Checklists	CI.1
Introduction	
Normal Checklist Operation	
Checklist Content	
Checklist Construction	
Non-Normal Checklists	CI.2
Introduction	
Non-Normal Checklist Operation	
Non–Normal Checklist Use	
Non–Normal Checklist Legend	
Redirection Symbol	
Separator Symbol	
Task Divider Symbol	
Decision Symbol	
Precaution Symbol	

Intentionally Blank

757 Flight Crew Operations Manual

Checklist Instructions Model Identification

Chapter CI Section ModID

General

The airplanes listed in the table below are covered in the Quick Reference Handbook. The numbers are used to distinguish data peculiar to one or more, but not all of the airplanes. Where data applies to all airplanes listed, no reference is made to individual airplane numbers.

The table permits flight crew correlation of configuration differences by Registry Number in alpha/numeric order within an operator's fleet for airplanes covered in this manual. Configuration data reflects the airplane as delivered configuration and is updated for service bulletin incorporations in conformance with the policy stated in the introduction section of this chapter.

Registry number is supplied by the national regulatory agency. Serial and tabulation numbers are supplied by Boeing.

Registry Number	Serial Number	Tabulation Number
TBC-01	BC001	BC001
TBC-02	BC002	BC002

CLModID.1 May 14, 2010 D632N001-200

DO NOT USE FOR FLIGHT 757 Flight Crew Operations Manual

Intentionally Blank

Checklist Instructions Revision Record

Chapter CI Section RR

Revision Transmittal Letter

To: All holders of The Boeing Company 757 Flight Crew Operations Manual (FCOM), Boeing Document Number D632N001-200.

Subject: Flight Crew Operations Manual Revision.

CAUTION. Before inserting this FCOM revision check for the presence of the Evacuation Checklist. If the Evacuation Checklist is part of this QRH revision, this QRH has been completely reprinted for customer convenience due to the large number of changed pages.

This revision reflects the most current information available to The Boeing Company 45 days before the subject revision date. The following revision highlights explain changes in this revision. General information below explains the use of revision bars to identify new or revised information.

Revision Record

No.	Revision Date	Date Filed
0	May 17, 2007	
2	May 15, 2008	
4	May 19, 2009	
6	May 14, 2010	

No.	Revision Date	Date Filed
1	November 20, 2007	
3	November 18, 2008	
5	November 13, 2009	

General

The Boeing Company issues flight crew operations manual revisions to provide new or revised procedures and information. Formal revisions also incorporate appropriate information from previously issued flight crew operations manual bulletins.

The revision date is the approximate date the manual is mailed to the customer.

Formal revisions include a Transmittal Letter, a new Revision Record, Revision Highlights, and a current List of Effective Pages. Use the information on the new Revision Record and List of Effective Pages to verify the manual content.

757 Flight Crew Operations Manual

Pages containing revised material have revision bars and highlights associated with the changed text or illustration. Revision bars associated with revised effectivity due to additions, deletions of airplanes or changes to previous registration numbers will not have highlights. Changes associated with redirect instructions will also have revision bars without highlights.

The record above should be completed by the person incorporating the revision into the manual

Filing Instructions

Consult the List of Effective Pages (CI.LEP). Pages identified with an asterisk (*) are either replacement pages or new (original) issue pages. Remove corresponding old pages and replace or add new pages. Remove pages that are marked DELETED; there are no replacement pages for deleted pages.

Revision Highlights

This section (CI.RR) replaces the existing section CI.RR in your manual.

Be careful when inserting changes not to throw away pages from the manual that are not replaced. Using the List of Effective Pages (CI.LEP) can help determine the correct content of the manual.

Throughout the manual, airplane effectivity may be updated to reflect coverage as listed on the Preface - Model Identification page, or to show service bulletin airplane effectivity. Highlights are not supplied.

This manual is published from a database; the text and illustrations are marked with configuration information. Occasionally, because the editors rearrange the database markers, or mark items with configuration information due to the addition of new database content, some customers may receive revision bars on content that appears to be unchanged. Pages may also be republished without revision bars due to slight changes in the flow of the document.

Chapter NNC - Non-Normal Checklists

Section 2 - Air Systems

EQUIPMENT OVERHEAT

2.10 - Added missing end of checklist symbol, there is no procedural change.

Section 6 - Electrical

STANDBY BUS OFF

6.10 - Added revised Standby Bus Off procedure for airplanes with unmodified standby power system and electric alternate stab trim switches.

757 Flight Crew Operations Manual

Section 7 - Engines, APU

Engine Limit or Surge or Stall

7.10 - Revised the condition statement to make it clear that this checklist applies to partial loss of engine thrust control malfunctions.

Section 8 - Fire Protection

Smoke, Fire or Fumes

8.8 - Revised the condition statement to clarify that the checklist should be done whenever smoke, fire or fumes occurs.

CARGO FIRE

8.13 - Added PACK OFF to the list of checklists to not accomplish.

Section 10 - Flight Instruments, Displays

Airspeed Unreliable

- 10.1 Revised note to clarify that the Flight With Unreliable Airspeed table is located in the Performance Inflight section of the QRH.
- 10.2 Reformatted steps for cross model standardization.

ALTITUDE DISAGREE

- 10.4 Reformatted steps for cross model standardization.
- 10.4 Reformatted steps for cross model standardization.

Section 12 - Fuel

Engine Fuel Leak

12.2,5 - Format change, no change to technical content.

FUEL CONFIGURATION

12.9 - Format change, no change to technical content.

FUEL PUMP

12.11 - Format change, no change to technical content.

FUEL SYSTEM PRESSURE

12.12 - Revised wording for cross-model standardization. No technical change.

LOW FUEL

12.15 - Format change, no change to technical content.

757 Flight Crew Operations Manual

Section 14 - Landing Gear

GEAR DISAGREE

14.12 - Added requirement not to use reverse thrust to standardize with Flight Crew Training manual.

Chapter PI-QRH - Performance Inflight - QRH

Section 10 - Table of Contents

PI-QRH.TOC.10.1 - 757-200 535E4 LB FAA was added as Section 10.

Section 11 - Advisory Information

Non-Normal Configuration Landing Distance

PI-QRH.11.4,6,8,10 - Added the LE SLAT ASYMMETRY 5 <= FLAPS < 20 landing configuration to reflect the revised Non-Normal Checklist. This addition alters the existing LE SLAT ASYMMETRY data for FLAPS > 20 and FLAPS=20.

Section 20 - Table of Contents

PI-QRH.TOC.20.1 - 757-200 PW2037 LB FAA was added as Section 20.

Section 21 - Advisory Information

Non-Normal Configuration Landing Distance

PI-QRH.21.4,6,8,10 - Added the LE SLAT ASYMMETRY 5 <= FLAPS < 20 landing configuration to reflect the revised Non-Normal Checklist. This addition alters the existing LE SLAT ASYMMETRY data for FLAPS > 20 and FLAPS=20.

Chapter Man - Maneuvers

Section 2 - Flight Patterns

Circling Approach

Man.2.5 - Changed "ALT HLD" to "ALT HOLD" to match the actual nomenclature. Added "HDG HOLD" to the recommended lateral modes for the maneuvering portion of the circling approach.

Chapter CI - Checklist Instructions

Section 2 - Non-Normal Checklists

Non-Normal Checklist Operation

CI.2.2 - Added information on flight crew troubleshooting for cross model standardization.

757 Flight Crew Operations Manual

Checklist Instructions QRH List of Effective Pages

Chapter CI Section LEP

Page	Date		
Quick Reference Handbook			
Quick Ac	Quick Action Index		
QA.Index.1-2	May 19, 2009		
EICAS Me	ssages (tab)		
* EICAS.Index.1-10	May 14, 2010		
Unannunc	eiated (tab)		
* Unann.Index.1-2	May 14, 2010		
Alphabet	tical (tab)		
* Alpha.Index.1-16	May 14, 2010		
Normal Che	ecklists (tab)		
NC.1-4	May 15, 2008		
0 Miscella	neous (tab)		
0.TOC.1-2	May 15, 2008		
0.1	May 19, 2009		
0.2	May 15, 2008		
0.3	November 13, 2009		
0.4	May 15, 2008		
1 Airplane General, Emergency Equipment, Doors, Windows (tab)			
1.TOC.1-2	May 15, 2008		
1.1	May 15, 2008		
1.2	May 19, 2009		
1.3	May 15, 2008		
1.4	May 19, 2009		
1.5	May 15, 2008		
1.6-7	November 13, 2009		
1.8	May 15, 2008		
1.9	May 19, 2009		

Page	Date	
1 Airplane Gen	eral, Emergency	
	s, Windows (cont)	
1.10 May 15, 2008		
1.11	November 13, 2009	
1.12-16	May 15, 2008	
2 Air Sys	tems (tab)	
2.TOC.1-2	November 18, 2008	
2.1	November 18, 2008	
2.2-7	May 15, 2008	
2.8	November 13, 2009	
2.9	November 18, 2008	
* 2.10	May 14, 2010	
2.11-12	May 15, 2008	
* 2.13	May 14, 2010	
2.14	May 19, 2009	
2.15-18	May 15, 2008	
3 Anti-Ice, Rain (tab)		
3.TOC.1-2	May 15, 2008	
3.1-5	May 15, 2008	
* 3.6	May 14, 2010	
3.7-8	May 15, 2008	
4 Automatic Flight (tab)		
4.TOC.1-2	May 15, 2008	
4.1-2	May 15, 2008	
5 Communications (tab)		
5.TOC.1-2	May 15, 2008	
5.1-2	November 13, 2009	

^{* =} Revised, Added, or Deleted

Checklist Instructions -

Checklist Instructions - QRH List of Effective Pages DO NOT USE FOR FLIGHT

757 Flight Crew Operations Manual

Page	Date
6 Electr	rical (tab)
* 6.TOC.1-2	May 14, 2010
* 6.1-16	May 14, 2010
7 Engines	, APU (tab)
* 7.TOC.1-4	May 14, 2010
7.1-2	November 18, 2008
7.3-9	May 19, 2009
* 7.10	May 14, 2010
7.11-40	May 19, 2009
7.41	May 15, 2008
7.42-43	May 19, 2009
7.44-45	May 15, 2008
7.46	November 13, 2009
7.47	May 19, 2009
7.48	May 15, 2008
7.49	May 19, 2009
7.50-54	May 15, 2008
7.55	November 18, 2008
7.56	May 19, 2009
8 Fire Pro	tection (tab)
8.TOC.1-2	November 13, 2009
8.1	May 15, 2008
8.2	November 18, 2008
8.3	May 15, 2008
8.4-5	May 19, 2009
8.6-7	November 18, 2008
* 8.8	May 14, 2010
8.9	May 19, 2009
8.10	November 18, 2008
8.11	May 19, 2009
8.12	November 18, 2008

Page	Date
8 Fire Pro	otection (cont)
* 8.13	May 14, 2010
8.14-17	November 13, 2009
8.18	May 19, 2009
8.19	November 18, 2008
8.20-21	May 19, 2009
8.22	November 18, 2008
9 Flight	Controls (tab)
9.TOC.1-2	May 19, 2009
9.1	May 19, 2009
9.2-6	May 15, 2008
9.7	December 19, 2008
9.8-9	May 19, 2009
9.10-11	November 13, 2009
9.12	December 19, 2008
9.13	November 13, 2009
9.14	December 19, 2008
9.15-17	May 19, 2009
9.18	December 19, 2008
9.19	May 19, 2009
9.20-24	December 19, 2008
10 Flight Instru	ments, Displays (tab)
* 10.TOC.1-2	May 14, 2010
* 10.1-6	May 14, 2010
* 10.7-8	Deleted
11 Flight Manage	ement, Navigation (tab)
11.TOC.1-2	May 15, 2008
11.1-4	May 15, 2008
11.5-6	November 18, 2008

^{* =} Revised, Added, or Deleted

DO NOT USE FOR FLIGHT Checklist Instructions - QRH List of Effective Pages

757 Flight Crew Operations Manual

Page	Date		Page	Date
12 Fuel (tab)			15 Warning S	Systems (tab)
* 12.TOC.1-2	May 14, 2010		15.TOC.1-2	May 15, 2008
* 12.1-5	May 14, 2010		15.1-6	May 15, 2008
12.6	November 18, 2008	ŀ	Ops In	fo (tab)
12.7-8	May 15, 2008		OI.TOC.1-2	May 15, 2008
* 12.9-12	May 14, 2010		OI.1.1-2	May 15, 2008
12.13	May 15, 2008	Performance - Inflight (tab)		
* 12.14-16	May 14, 2010		PI-QRH.TOC.1-2	November 18, 2008
13 Hydra	ulics (tab)		* PI-QRH.TOC.10.1-	2 May 14, 2010
13.TOC.1-2	May 15, 2008		PI-QRH.10.1-6	November 18, 2008
13.1-3	May 15, 2008		PI-QRH.11.1-3	November 18, 2008
13.4	May 19, 2009		* PI-QRH.11.4	May 14, 2010
13.5	May 15, 2008		PI-QRH.11.5	November 18, 2008
13.6	May 19, 2009		* PI-QRH.11.6	May 14, 2010
13.7	May 15, 2008		PI-QRH.11.7	November 18, 2008
13.8	November 18, 2008		* PI-QRH.11.8	May 14, 2010
13.9	May 15, 2008		PI-QRH.11.9	November 18, 2008
13.10	November 13, 2009		* PI-QRH.11.10	May 14, 2010
13.11	May 15, 2008		PI-QRH.11.11-12	November 13, 2009
13.12-16	May 19, 2009		PI-QRH.12.1-8	November 18, 2008
13.17	November 18, 2008		PI-QRH.13.1-4	May 19, 2009
13.18-19	May 19, 2009		PI-QRH.14.1-4	May 19, 2009
13.20-21	May 15, 2008		PI-QRH.15.1-6	May 19, 2009
13.22-24	May 19, 2009		* PI-QRH.TOC.20.1-	2 May 14, 2010
14 Landing	Gear (tab)		PI-QRH.20.1-6	November 18, 2008
* 14.TOC.1-2	May 14, 2010		PI-QRH.21.1-3	November 18, 2008
14.1	May 19, 2009		* PI-QRH.21.4	May 14, 2010
14.2	May 15, 2008		PI-QRH.21.5	November 18, 2008
14.3-10	May 19, 2009		* PI-QRH.21.6	May 14, 2010
* 14.11-16	May 14, 2010		PI-QRH.21.7	November 18, 2008
			* PI-QRH.21.8	May 14, 2010

^{* =} Revised, Added, or Deleted

Copyright © The Boeing Company. See title page for details.

QRH List of Effective Pages DO NOT USE FOR FLIGHT

757 Flight Crew Operations Manual

Page	Date	
Performance - Inflight (cont)		
PI-QRH.21.9	November 18, 2008	
* PI-QRH.21.10	May 14, 2010	
PI-QRH.21.11-12	November 13, 2009	
PI-QRH.22.1-8	November 18, 2008	
PI-QRH.23.1-4	May 19, 2009	
PI-QRH.24.1-4	May 19, 2009	
PI-QRH.25.1-6	May 19, 2009	
Maneuv	vers (tab)	
* Man.TOC.0.1-2	May 14, 2010	
Man.05.1-2	May 15, 2008	
Man.1.1	November 18, 2008	
Man.1.2-3	November 13, 2009	
Man.1.4	May 19, 2009	
Man.1.5-14	November 18, 2008	
Man.2.1-4	May 15, 2008	
* Man.2.5	May 14, 2010	
Man.2.6-8	May 15, 2008	
Checklist Ins	tructions (tab)	
* CI.TOC.0.1-2	May 14, 2010	
* CI.ModID.1-2	May 14, 2010	
* CI.RR.1-4	May 14, 2010	
* CI.LEP.1-4	May 14, 2010	
CI.1.1	May 15, 2008	
CI.1.2	May 19, 2009	
CI.2.1	May 19, 2009	
* CI.2.2-6	May 14, 2010	
CI.2.7-8	November 18, 2008	
Evacuation		
Back Cover.1-2	May 15, 2008	

^{* =} Revised, Added, or Deleted

757 Flight Crew Operations Manual

Checklist Instructions Normal Checklists

Chapter CI Section 1

Introduction

This introduction gives guidelines for use of the Normal Checklist (NC).

The NC is organized by phase of flight.

The NC is used to verify that critical items have been done.

Normal Checklist Operation

Normal checklists are used after doing all respective procedural items.

The following table shows which pilot calls for the checklist and which pilot reads the checklist. Both pilots visually verify that each item is in the needed configuration or that the step is done. The far right column shows which pilot gives the response. This is different than the normal procedures where the far right column can show which pilot does the step.

Checklist	Call	Read	Verify	Respond
PREFLIGHT	Captain	First officer	Both	Area of responsibility
BEFORE START	Captain	First officer	Both	Area of responsibility
BEFORE TAXI	Captain	First officer	Both	Area of responsibility
BEFORE TAKEOFF	Pilot flying	Pilot monitoring	Both	Pilot flying
AFTER TAKEOFF	Pilot flying	Pilot monitoring	Both	Pilot monitoring
DESCENT	Pilot flying	Pilot monitoring	Both	Area of responsibility
APPROACH	Pilot flying	Pilot monitoring	Both	Area of responsibility
LANDING	Pilot flying	Pilot monitoring	Both	Pilot flying
SHUTDOWN	Captain	First officer	Both	Area of responsibility
SECURE	Captain	First officer	Both	Area of responsibility

If the airplane configuration does not agree with the needed configuration:

- · stop the checklist
- complete the respective procedure steps
- · continue the checklist

If it becomes apparent that an entire procedure was not done:

- · stop the checklist
- complete the entire procedure
- · do the checklist from the start

Checklist Instructions -Normal Checklists

DO NOT USE FOR FLIGHT

757 Flight Crew Operations Manual

Try to do checklists before or after high work load times. The crew may need to stop a checklist for a short time to do other tasks. If the interruption is short, continue the checklist with the next step. If a pilot is not sure where the checklist was stopped, do the checklist from the start. If the checklist is stopped for a long time, also do the checklist from the start.

After	completion of each checklist, the pilot reading the checklist calls,
"	CHECKLIST COMPLETE."

Checklist Content

The checklist has the minimum items needed to operate the airplane safely.

Normal checklists have items that meet any of the following criteria:

- items essential to safety of flight that are not monitored by an alerting system, or
- items essential to safety of flight that are monitored by an alerting system but if not done, would likely result in a catastrophic event if the alerting system fails, or
- · needed to meet regulatory requirements, or
- items needed to maintain fleet commonality between the 737, 747-400, 757, 767, and 777, or
- items that enhance safety of flight and are not monitored by an alerting system (for example the autobrake), or
- during shutdown and secure, items that could result in injury to personnel or damage to equipment if not done

Checklist Construction

When a checklist challenge does not end with "switch or lever", then the challenge refers to system status. For example, "Landing Gear...Down", refers to the status of the landing gear, not just the position of the lever.

When a checklist challenge ends with "switch or lever", then the challenge refers to the position of the switch or lever. For example, "FUEL CONTROL switches...CUTOFF" refers to the position of the switches.

757 Flight Crew Operations Manual

Checklist Instructions Non-Normal Checklists

Chapter CI Section 2

Introduction

The non-normal checklists chapter contains checklists used by the flight crew to cope with non-normal situations. The checklists are grouped in sections which match the system description chapters in Volume 2.

Most checklists correspond to an EICAS alert message. The EICAS alert message indicates a non-normal condition and is the cue to select and do the associated checklist.

Checklists without an EICAS alert message (such as Ditching Preparation) are called unannunciated checklists. Most unannunciated checklists are in the associated system section. For example, Engine Fuel Leak is in section 12, Fuel. Unannunciated checklists with no associated system are in section 0, Miscellaneous

All checklists have condition statements. The condition statement briefly describes the situation that caused the EICAS alert message. Unannunciated checklists also have condition statements to help in understanding the reason for the checklist.

Some checklists have objective statements. The objective statement briefly describes the expected result of doing the checklist or briefly describes the reason for steps in the checklist.

Checklists can have both memory and reference items. Memory items are critical steps that must be done before reading the checklist. The last memory item is followed by a dashed horizontal line. Reference items are actions to be done while reading the checklist.

Some checklists have additional information at the end of the checklist. The additional information provides data the crew may wish to consider. The additional information does not need to be read.

Checklists that need a quick response are listed in the Quick Action Index. In each system section, Quick Action Index checklists are listed first, followed by checklists that are not in the Quick Action Index. The titles of Quick Action Index checklists are printed in **bold** type. Checklist titles in upper case (such as AUTOBRAKES) are annunciated by an EICAS alert message or other indication. Checklist titles in upper and lower case (such as Window Damage) are not annunciated.

757 Flight Crew Operations Manual

Non-Normal Checklist Operation

Non-normal checklists start with steps to correct the situation. If needed, information for planning the rest of the flight is included. When special items are needed to configure the airplane for landing, the items are included in the Deferred Items section of the checklist. Flight patterns for some non-normal situations are located in the Maneuvers chapter and show the sequence of configuration changes.

While every attempt is made to supply needed non-normal checklists, it is not possible to develop checklists for all conceivable situations. In some smoke, fire or fumes situations, the flight crew may need to move between the Smoke, Fire or Fumes checklist and the Smoke or Fumes Removal checklist. In some multiple failure situations, the flight crew may need to combine the elements of more than one checklist. In all situations, the captain must assess the situation and use good judgment to determine the safest course of action.

It should be noted that, in determining the safest course of action, troubleshooting, i.e., taking steps beyond published non-normal checklist steps, may cause further loss of system function or system failure. Troubleshooting should only be considered when completion of the published non-normal checklist results in an unacceptable situation.

There are some situations where the flight crew must land at the nearest suitable airport. These situations include, but are not limited to, conditions where:

- the non–normal checklist includes the item "Plan to land at the nearest suitable airport."
- · fire or smoke continues
- only one AC power source remains (engine or APU generator)
- any other situation determined by the flight crew to have a significant adverse effect on safety if the flight is continued.

It must be stressed that for smoke that continues or a fire that cannot be positively confirmed to be completely extinguished, the earliest possible descent, landing, and evacuation must be done

If a smoke, fire or fumes situation becomes uncontrollable, the flight crew should consider an immediate landing. Immediate landing implies immediate diversion to a runway. However, in a severe situation, the flight crew should consider an overweight landing, a tailwind landing, an off-airport landing, or a ditching.

Checklists directing an engine shutdown must be evaluated by the captain to determine whether an actual shutdown or operation at reduced thrust is the safest course of action. Consideration must be given to the probable effects of running the engine at reduced thrust.

Checklist Instructions -Non-Normal Checklists

DO NOT USE FOR FLIGHT

757 Flight Crew Operations Manual

There are no non–normal checklists for the loss of an engine indication or automatic display of the secondary engine indications. Continue normal engine operation unless an EICAS alert message shows or a limit is exceeded.

Non-normal checklists also assume:

- During engine start and before takeoff, the associated non–normal checklist is done if an EICAS alert message is shown or a non-normal situation is identified. After completion of the checklist, the Dispatch Deviations Guide or operator equivalent is consulted to determine if Minimum Equipment List dispatch relief is available.
- System controls are in the normal configuration for the phase of flight before the start of the non-normal checklist.
- Aural alerts are silenced and the system is reset by the flight crew as soon as the cause of the alert is recognized.
- The EICAS message list is cancelled after all checklists are complete or on hold so that future messages are more noticeable.
- The EMERGENCY position of the oxygen regulator is used when needed to supply positive pressure in the masks and goggles to remove contaminants. The 100% position of the oxygen regulator is used when positive pressure is not needed; but contamination of the flight deck air exists. The Normal position of the oxygen regulator is used if prolonged use is needed and the situation allows. Normal boom microphone operation is restored when oxygen is no longer in use.
- Indicator lights are tested to verify suspected faults.
- Flight crew reset of a tripped fuel pump circuit breaker is prohibited. In flight, reset of any other tripped circuit breaker is not recommended. However, these other tripped circuit breakers may be reset once, after a short cooling period (approximately 2 minutes), if in the judgment of the captain, the situation resulting from the circuit breaker trip has a significant adverse effect on safety. On the ground, flight crew reset of any other tripped circuit breaker should only be done after maintenance has determined that it is safe to reset the circuit breaker.
- Flight crew cycling (pulling and resetting) of circuit breakers to clear a non-normal condition is not recommended, unless directed by a non-normal checklist.

757 Flight Crew Operations Manual

Non-Normal Checklist Use

If a checklist or a step in a checklist is not applicable to all airplanes, airplane effectivity information is included in the checklist. Airplane effectivity can be listed by airplane number, registry number, serial number or tabulation number. If a checklist is applicable to some but not all airplanes, airplane effectivity is centered below the checklist title. If a step in a checklist is applicable to some but not all airplanes, airplane effectivity is included above the step. If a checklist or a step in a checklist is applicable to all airplanes, airplane effectivity information is not included

Non-normal checklist use starts when the airplane flight path and configuration are correctly established. Only a few situations need an immediate response (such as CABIN ALTITUDE or Rapid Depressurization). Usually, time is available to assess the situation before corrective action is started. All actions must then be coordinated under the captain's supervision and done in a deliberate, systematic manner. Flight path control must never be compromised.

When a non-normal situation occurs, at the direction of the pilot flying, both crewmembers do all memory items in their areas of responsibility without delay.

The pilot flying calls for the checklist when:

- the flight path is under control
- the airplane is not in a critical phase of flight (such as takeoff or landing)
- all memory items are complete.

The pilot monitoring reads aloud:

- the checklist title
- messages (if applicable)
- as much of the condition statement as needed to verify that the correct checklist has been selected
- as much of the objective statement (if applicable) as needed to understand the expected result of doing the checklist.

The pilot flying does not need to repeat this information but must acknowledge that the information was heard and understood.

For checklists with memory items, the pilot monitoring first verifies that each memory item has been done. The checklist is normally read aloud during this verification. The pilot flying does not need to respond except for items that are not in agreement with the checklist. The item numbers do not need to be read.

Non-memory items are called reference items. The pilot monitoring reads aloud the reference items, including:

- the precaution (if any)
- the response or action
- · any amplifying information.

757 Flight Crew Operations Manual

The pilot flying does not need to repeat this information but must acknowledge that the information was heard and understood. The item numbers do not need to be read

The word "Confirm" is added to checklist items when both crewmembers must verbally agree before action is taken. During an inflight non-normal situation, verbal confirmation is required for::

- · an engine thrust lever
- · a fuel control switch
- an engine or APU fire switch, or a cargo fire arm switch
- a generator drive disconnect switch.

This does not apply to the Dual Engine Failure checklist.

With the airplane stationary on the ground:

• the captain and the first officer take action based on preflight and postflight areas of responsibility.

With the airplane in flight or in motion on the ground:

• the pilot flying and the pilot monitoring take action based on each crewmember's Areas of Responsibility.

After moving the control, the crewmember taking the action also states the checklist response.

The pilot flying may also direct reference checklists to be done by memory if no hazard is created by such action, or if the situation does not allow reference to the checklist

Checklists include an Inoperative Items table only when the condition of the items is needed for planning the rest of the flight and the condition is not shown on EICAS. The inoperative items, including the consequences (if any), are read aloud by the pilot monitoring. The pilot flying does not need to repeat this information but must acknowledge that the information was heard and understood.

Consequential EICAS alert messages can show as a result of a primary failure condition (such as RUDDER RATIO as a result of HYDRAULIC SYSTEM PRESSURE (L Only)) or as a result of doing a non–normal checklist (such as L PACK OFF or R PACK OFF as a result of doing the Smoke, Fire or Fumes checklist). The flight crew should do the checklists for consequential EICAS alert messages, unless the statement "Do not accomplish the following checklists:" is included. All consequential EICAS alert messages may not show while doing the primary checklist, depending on operational circumstances.

After completion of the non–normal checklist, normal procedures are used to configure the airplane for each phase of flight.

757 Flight Crew Operations Manual

When there are no deferred items, the DESCENT, APPROACH and LANDING normal checklists are used to verify that the configuration is correct for each phase of flight.

When there are deferred items, the non-normal checklist will include the item "Checklist Complete Except Deferred Items." The pilot flying is to be made aware when there are deferred items. These items are included in the Deferred Items section of the checklist and may be delayed until the usual point during descent, approach or landing.

The deferred items are read aloud by the pilot monitoring. The pilot flying or the pilot monitoring takes action based on each crewmember's area of responsibility. After moving the control, the crewmember taking the action also states the response.

When there are deferred items, the Deferred Items section of the non-normal checklist will include the Descent, Approach and Landing normal checklists. These checklists should be used instead of the usual DESCENT, APPROACH and LANDING normal checklists. If a normal checklist item is changed as a result of the non-normal situation, the changed response is printed in **bold** type. The pilot flying or the pilot monitoring responds to the deferred normal checklist items based on each crewmember's area of responsibility. However, during the deferred Landing normal checklist, the pilot flying responds to all deferred normal checklist items.

Each checklist has a checklist complete symbol at the end. The following symbol indicates that the checklist is complete:

The checklist complete symbol can also be in the body of the checklist. This only occurs when a checklist divides into two or more paths. Each path can have a checklist complete symbol at the end. The flight crew does not need to continue reading the checklist after the checklist complete symbol.

After completion of each non–normal checklist, the pilot monitoring states "____CHECKLIST COMPLETE."

Additional information at the end of the checklist is not required to be read.

The flight crew must be aware that checklists cannot be created for all conceivable situations and are not intended to replace good judgment. In some situations, at the captain's discretion, deviation from a checklist may be needed.

757 Flight Crew Operations Manual

Non-Normal Checklist Legend

Redirection Symbol

The redirection symbol is used in two ways:

- In the Table of Contents of a system section, to direct the flight crew to a different system section.
- In a non-normal checklist, with the word "Go to", to direct the flight crew to a different checklist or to a different step in the current checklist.

Separator Symbol

The separator symbol is used in two ways:

- In the Table of Contents of a system section, to separate the Quick Action Index checklists from the checklists that are not in the Quick Action Index
- In a non-normal checklist, to separate the memory items from the reference items

Task Divider Symbol

The task divider symbol is used to indicate the end of one task and the beginning of another task.

Decision Symbol

Choose one:

The decision symbol is used to identify possible choices.

Precaution Symbol

The precaution symbol is used to identify information the flight crew must consider before taking the action.

Intentionally Blank

DO NOT USE FOR FLIGHT Back Cover.1

757 Flight Crew Operations Manual

Evacuation Checklist is on the reverse side of this page.

Back Cover. 2nn NOT USE FOR FLIGHT

757 Flight Crew Operations Manual

Evacuation Evacuation is needed. Condition: Parking brake........... 1 Cabin altitude MODE SELECT MAN 2 3 CABIN ALTITUDE MANUAL control Hold in CLIMB until the outflow valve is fully open FUEL CONTROL switches (both) CUTOFF 5 Advise the cabin to evacuate. 6 Advise the tower. Engine and APU 7 fire switches (all) Override and pull If an engine or APU fire warning occurs: Related fire switch Rotate to the stop and hold for 1 second