5. Lema dels cinc. Donat el diagrama commutatiu de morfismes de grups abelians

en el qual les files són successions exactes, demostreu:

- 1. Si α és epimorfisme i β i δ són monomorfismes aleshores γ és monomorfisme.
- 2. Si η és monomorfisme i β i δ són epimorfismes aleshores γ és epimorfisme.

En particular, que α, β, δ i η siguin isomorfismes implica que γ és isomorfisme.

Solució.

1. Per veure que γ és monomorfisme (és a dir, que és injectiu) en tindrem prou amb veure que el seu nucli és $\{0\}$ ja que γ és morfisme. Com tots els conjunts considerats al diagrama son grups, tots ells tenen un element 0, i les imatges de les aplicacions considerades contenen el 0 per ser morfismes.

Per començar, escollim un element $c \in C$ tal que $c \in \gamma^{-1}(0_{C'})$, voldrem veure que c només pot ser 0_C , ja que això ens dirà que $\text{Ker}(\gamma) = \{0\}$.

Aplicant la commutativitat del diagrama tenim que $(f'_3 \circ \gamma)(c) = (\delta \circ f_3)(c)$, és a dir, tenim $(f'_3 \circ \gamma)(c) = f'_3(\gamma(c)) = f'_3(0) = 0 = \delta(f_3(c))$. De la darrera part de la igualtat en podem extreure que $f_3(c) = 0$ per la injectivitat de δ , el que significa que $c \in \text{Ker}(f_3)$.

Com les files son complexos de cadenes exactes, tenim que $\text{Ker}(f_3) = \text{Im}(f_2)$, i d'aquí en podem deduir que $c \in \text{Im}(f_2)$ i per tant $\exists b \in B$ tal que $f_2(b) = c$. Aplicant un altre cop la commutativitat del diagrama veiem que $f'_2(\beta(b)) = (f'_2 \circ \beta)(b) = (\gamma \circ f_2)(b) = \gamma(f_2(b)) = \gamma(c) = 0$. Així doncs $\beta(b) \in \text{Ker}(f'_2)$ i per tant $\beta(b) \in \text{Im}(f'_1)$.

Sabem a partir del resultat anterior que $\exists a' \in A'$ tal que $\beta(b) = f'_1(a')$. Ara, per la exhaustivitat de α , sabem també que $\exists a \in A$ tal que $a' = \alpha(a)$.

Aplicant la commutativitat del diagrama és clar que $\beta(b) = (f'_1 \circ \alpha)(a) = (\beta \circ f_1)(a) = \beta(f_1(a))$. Si apliquem la injectivitat de β deduïm que $b = f_1(a)$. Com $b \in \text{Im}(f_1)$, per exactitud sabem que $b \in \text{Ker}(f_2)$, és a dir, que $f_2(b) = 0$, i finalment, com $c = f_2(b)$ tenim el que volíem, que c = 0.

2. Per veure que γ és epimorfisme haurem de veure que tots els elements de C' tenen preimatge a través de γ . Escollim $c' \in C'$ qualsevol, voldrem veure que $\exists c \in C$ tal que $\gamma(c) = c'$.

Trobem $d' = f_3'(c')$, per ser δ epimorfisme tenim que $d' = \delta(d)$, on $d \in D$. Considerem $e' = f_4'(d')$, com que $e' = f_4'(d') = f_4'(f_3'(c'))$ i el complex de cadenes és exacte, sabem que e' = 0.

Per commutativitat del diagrama tenim que $\eta(f_4(d)) = (\eta \circ f_4)(d) = (f'_4 \circ \delta)(d) = e' = 0$, i aplicant la injectivitat de η deduïm que $f_4(d) = 0$. Com $d \in \text{Ker}(f_4)$ i tenim exactitud, sabem que $d \in \text{Im}(f_3)$. Així doncs, $\exists \bar{c} \in C$ tal que $f_3(\bar{c}) = d$.

Podem dir doncs que $(\delta \circ f_3)(\bar{c}) = d' = (f'_3 \circ \gamma)$, la primera part de la igualtat la coneixem pel procés de construcció de \bar{c} , mentre que la segona part la coneixem perquè el diagrama és commutatiu.

La segona part igualtat anterior ens dona informació essencial per a continuar, ja que ens permet establir que $f'_3(\gamma(\bar{c})) = d' = f'_3(c')$, si passem restant un dels dos membres i fem servir que f'_3 és morfisme, tenim que:

$$f_3'(\gamma(\bar{c})) - f_3'(c') = f_3'(\gamma(\bar{c}) - c') = 0$$

Tenim que $\gamma(\bar{c}) - c'$ pertany a $\operatorname{Ker}(f_3')$, i per exactitud també a $\operatorname{Im}(f_2')$, és a dir, $\exists \tilde{b}' \in B'$ tal que $f_2'(\tilde{b}') = \gamma(\bar{c}) - c'$. A partir de la exhaustivitat de β veiem que existeix $\tilde{b} \in B$ tal que $\beta(\tilde{b}) = \tilde{b}'$.

Anomenem $\tilde{c} = f_2(\tilde{b})$, per la commutativitat del diagrama tenim que

$$\gamma(\tilde{c}) = (\gamma \circ f_2)(\tilde{b}) = (f_2' \circ \beta)(\tilde{b}) = c' - \gamma(\bar{c})$$

Aïllem $c' = \gamma(\tilde{c}) + \gamma(\bar{c}) = \gamma(\tilde{c} + \bar{c})$ i així queda provat que c' té preimatge c a través de γ , éssent $c = \tilde{c} + \bar{c}$, i per tant γ és epimorfisme.

Si α, β, δ i η son isomorfismes, en particular tenim que α és epimorfisme i β i δ son monomorfismes, pel que γ és monomorfisme. També tenim que, en particular, β i δ son epimorfismes, i η monomorfisme, pel que γ és epimorfisme. Així doncs, com és epimorfisme i monomorfisme deduïm immediatament que γ és també isomorfisme.