Fernando Lozano

Universidad de los Andes

24 de octubre de 2014

• Usualmente aprendizaje no es posible con datos "crudos".

- Usualmente aprendizaje no es posible con datos "crudos".
- Preprocesamiento es muchas veces la fase más importante.

- Usualmente aprendizaje no es posible con datos "crudos".
- Preprocesamiento es muchas veces la fase más importante.
- Extracción de descriptores (features) :

- Usualmente aprendizaje no es posible con datos "crudos".
- Preprocesamiento es muchas veces la fase más importante.
- Extracción de descriptores (features) :
 - Conocimiento previo del problema

- Usualmente aprendizaje no es posible con datos "crudos".
- Preprocesamiento es muchas veces la fase más importante.
- Extracción de descriptores (features) :
 - Conocimiento previo del problema
 - Descriptores similares entre datos de la misma clase, diferentes entre datos de clases diferentes.

- Usualmente aprendizaje no es posible con datos "crudos".
- Preprocesamiento es muchas veces la fase más importante.
- Extracción de descriptores (features) :
 - ► Conocimiento previo del problema
 - ▶ Descriptores similares entre datos de la misma clase, diferentes entre datos de clases diferentes.
- Preprocesamiento:

- Usualmente aprendizaje no es posible con datos "crudos".
- Preprocesamiento es muchas veces la fase más importante.
- Extracción de descriptores (features) :
 - Conocimiento previo del problema
 - Descriptores similares entre datos de la misma clase, diferentes entre datos de clases diferentes.
- Preprocesamiento:
 - Adecuación de los datos.

- Usualmente aprendizaje no es posible con datos "crudos".
- Preprocesamiento es muchas veces la fase más importante.
- Extracción de descriptores (features) :
 - ► Conocimiento previo del problema
 - Descriptores similares entre datos de la misma clase, diferentes entre datos de clases diferentes.
- Preprocesamiento:
 - Adecuación de los datos.
 - ▶ Reducción de dimensionalidad: $\mathbf{x}' = f(\mathbf{x})$, con dim $(\mathbf{x}') \ll \dim(\mathbf{x})$

Normalización

• Media:

$$\mathbf{x}' = \mathbf{x} - \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

Normalización

• Media:

$$\mathbf{x}' = \mathbf{x} - \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

• Escala (varianza):

$$\mathbf{x}'' = \frac{\mathbf{x}'}{\sigma^2}, \quad \sigma^2 = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i')^2$$

Normalización

• Media:

$$\mathbf{x}' = \mathbf{x} - \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

• Escala (varianza):

$$\mathbf{x}'' = \frac{\mathbf{x}'}{\sigma^2}, \quad \sigma^2 = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}'_i)^2$$

• Datos centrados, en la misma escala.

 \bullet Suponga datos centrados \mathbf{x} .

- \bullet Suponga datos centrados \mathbf{x} .
- Matriz de covarianza: $\Sigma = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T$.

- \bullet Suponga datos centrados \mathbf{x} .
- Matriz de covarianza: $\Sigma = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$.
- Σ tiene vectores propios \mathbf{u}_i con valores propios λ_i , y

$$\mathbf{U} = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_n] \quad \mathbf{\Lambda} = egin{bmatrix} \lambda_1 & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{bmatrix}$$

- ullet Suponga datos centrados ${f x}$.
- Matriz de covarianza: $\Sigma = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$.
- Σ tiene vectores propios \mathbf{u}_i con valores propios λ_i , y

$$\mathbf{U} = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_n] \quad \mathbf{\Lambda} = egin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{bmatrix}$$

- ullet Suponga datos centrados ${f x}$.
- Matriz de covarianza: $\Sigma = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$.
- Σ tiene vectores propios \mathbf{u}_i con valores propios λ_i , y

$$\mathbf{U} = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_n] \quad \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

$$\Sigma_{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_{i} \mathbf{y}_{i}^{T}$$

- ullet Suponga datos centrados ${f x}$.
- Matriz de covarianza: $\Sigma = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$.
- Σ tiene vectores propios \mathbf{u}_i con valores propios λ_i , y

$$\mathbf{U} = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_n] \quad \mathbf{\Lambda} = egin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{bmatrix}$$

$$\mathbf{\Sigma}_{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_{i} \mathbf{y}_{i}^{T} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{\Lambda}^{-1/2} \mathbf{U}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{U} \mathbf{\Lambda}^{-1/2}$$

- \bullet Suponga datos centrados \mathbf{x} .
- Matriz de covarianza: $\Sigma = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$.
- Σ tiene vectores propios \mathbf{u}_i con valores propios λ_i , y

$$\mathbf{U} = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_n] \quad \mathbf{\Lambda} = egin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{bmatrix}$$

$$\Sigma_{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_{i} \mathbf{y}_{i}^{T} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{\Lambda}^{-1/2} \mathbf{U}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{U} \mathbf{\Lambda}^{-1/2}$$
$$= \mathbf{\Lambda}^{-1/2} \mathbf{U}^{T} \mathbf{\Sigma} \mathbf{U} \mathbf{\Lambda}^{-1/2}$$

- \bullet Suponga datos centrados \mathbf{x} .
- Matriz de covarianza: $\Sigma = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$.
- Σ tiene vectores propios \mathbf{u}_i con valores propios λ_i , y

$$\mathbf{U} = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_n] \quad \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

$$\Sigma_{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_{i} \mathbf{y}_{i}^{T} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{\Lambda}^{-1/2} \mathbf{U}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{U} \mathbf{\Lambda}^{-1/2}$$
$$= \mathbf{\Lambda}^{-1/2} \mathbf{U}^{T} \mathbf{\Sigma} \mathbf{U} \mathbf{\Lambda}^{-1/2} = \mathbf{I}$$

• Reducir dimensionalidad seleccionando un subconjunto de los descriptores:

- Reducir dimensionalidad seleccionando un subconjunto de los descriptores:
 - ► Eliminar descriptores redundates.

- Reducir dimensionalidad seleccionando un subconjunto de los descriptores:
 - ▶ Eliminar descriptores redundates.
 - Prevenir overfitting.

- Reducir dimensionalidad seleccionando un subconjunto de los descriptores:
 - ▶ Eliminar descriptores redundates.
 - ▶ Prevenir overfitting.
 - Reducir tiempo de entrenamiento.

- Reducir dimensionalidad seleccionando un subconjunto de los descriptores:
 - ▶ Eliminar descriptores redundates.
 - ▶ Prevenir overfitting.
 - Reducir tiempo de entrenamiento.
- Hay si dim $(\mathbf{x}) = d$ hay d! posibles subconjuntos. Si fijamos un tamaño \tilde{d} , hay $\begin{pmatrix} d \\ \tilde{d} \end{pmatrix}$ posibles subconjuntos.

- Reducir dimensionalidad seleccionando un subconjunto de los descriptores:
 - ▶ Eliminar descriptores redundates.
 - ▶ Prevenir overfitting.
 - Reducir tiempo de entrenamiento.
- Hay si dim(\mathbf{x}) = d hay d! posibles subconjuntos. Si fijamos un tamaño \tilde{d} , hay $\begin{pmatrix} d \\ \tilde{d} \end{pmatrix}$ posibles subconjuntos.
- Elementos:

- Reducir dimensionalidad seleccionando un subconjunto de los descriptores:
 - ▶ Eliminar descriptores redundates.
 - ▶ Prevenir overfitting.
 - ▶ Reducir tiempo de entrenamiento.
- Hay si dim(\mathbf{x}) = d hay d! posibles subconjuntos. Si fijamos un tamaño \tilde{d} , hay $\begin{pmatrix} d \\ \tilde{d} \end{pmatrix}$ posibles subconjuntos.
- Elementos:
 - Criterio de evaluación.

- Reducir dimensionalidad seleccionando un subconjunto de los descriptores:
 - ▶ Eliminar descriptores redundates.
 - ▶ Prevenir overfitting.
 - Reducir tiempo de entrenamiento.
- Hay si dim(\mathbf{x}) = d hay d! posibles subconjuntos. Si fijamos un tamaño \tilde{d} , hay $\begin{pmatrix} d \\ \tilde{d} \end{pmatrix}$ posibles subconjuntos.
- Elementos:
 - Criterio de evaluación.
 - Método de búsqueda.

• Entrenar modelo en subconjunto de descriptores

• Entrenar modelo en subconjunto de descriptores (costoso computacionalmente).

- Entrenar modelo en subconjunto de descriptores (costoso computacionalmente).
- Entrenar modelo sencillo (e.g.. LMS)

- Entrenar modelo en subconjunto de descriptores (costoso computacionalmente).
- Entrenar modelo sencillo (e.g., LMS)
- Criterio de separabilidad de los datos.

Criterio de Fisher

- Proyección $y = \mathbf{w}^T \mathbf{x}$
- Sean μ_1, μ_2 las medias de los datos de cada clase y Σ_1, Σ_2 sus covarianzas.

Criterio de Fisher

- Proyección $y = \mathbf{w}^T \mathbf{x}$
- Sean μ_1, μ_2 las medias de los datos de cada clase y Σ_1, Σ_2 sus covarianzas.
- Para una proyección proyección $y = \mathbf{w}^T \mathbf{x}$, el criterio de Fisher es:

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \boldsymbol{\mu}_1 - \mathbf{w}^T \boldsymbol{\mu}_2}{\sigma_1^2 + \sigma_2^2}$$

donde σ_1^2, σ_2^2 son las varianzas de las proyecciones de cada clase.

Criterio de Fisher

- Proyección $y = \mathbf{w}^T \mathbf{x}$
- Sean μ_1, μ_2 las medias de los datos de cada clase y Σ_1, Σ_2 sus covarianzas.
- Para una proyección proyección $y = \mathbf{w}^T \mathbf{x}$, el criterio de Fisher es:

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \boldsymbol{\mu}_1 - \mathbf{w}^T \boldsymbol{\mu}_2}{\sigma_1^2 + \sigma_2^2}$$

donde σ_1^2, σ_2^2 son las varianzas de las proyecciones de cada clase.

• El vector que maximiza $J(\mathbf{w})$ satisface:

$$\mathbf{w} \propto (\mathbf{\Sigma}_1 + \mathbf{\Sigma}_2)^{-1} (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1)$$

• Error de Bayes:

$$\epsilon = \int \min[P_1 p_1(\mathbf{x}), P_2 p_2(\mathbf{x})] d\mathbf{x}$$

• Error de Bayes:

$$\epsilon = \int \min[P_1 p_1(\mathbf{x}), P_2 p_2(\mathbf{x})] d\mathbf{x}$$

• Usando mín $[a, b] \le a^s b^{1-s}$ para $0 \le s \le 1$:

• Error de Bayes:

$$\epsilon = \int \min[P_1 p_1(\mathbf{x}), P_2 p_2(\mathbf{x})] d\mathbf{x}$$

• Usando mín $[a, b] \le a^s b^{1-s}$ para $0 \le s \le 1$:

$$\epsilon \le P_1^s P_2^{1-s} \int p_1^s(\mathbf{x}) p_2^{1-s}(\mathbf{x}) d\mathbf{x}$$

• Error de Bayes:

$$\epsilon = \int \min[P_1 p_1(\mathbf{x}), P_2 p_2(\mathbf{x})] d\mathbf{x}$$

• Usando mín $[a, b] \le a^s b^{1-s}$ para $0 \le s \le 1$:

$$\epsilon \le P_1^s P_2^{1-s} \int p_1^s(\mathbf{x}) p_2^{1-s}(\mathbf{x}) d\mathbf{x}$$

• Para clases distribuídas normalmente:

$$\int p_1^s(\mathbf{x})p_2^{1-s}(\mathbf{x})d\mathbf{x} = e^{-\mu(s)}$$

donde

$$\mu(s) = \frac{s(1-s)}{2} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T (s\boldsymbol{\Sigma}_1 + (1-s)\boldsymbol{\Sigma}_2)^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) + \frac{1}{2} \ln \left(\frac{|s\boldsymbol{\Sigma}_1 + (1-s)\boldsymbol{\Sigma}_2|}{|\boldsymbol{\Sigma}_1|^s |\boldsymbol{\Sigma}_2|^{1-s}} \right)$$

• Cota de Chernoff con $s = \frac{1}{2}$:

• Cota de Chernoff con $s = \frac{1}{2}$:

$$\epsilon \le \sqrt{P_1 P_2} e^{-\mu(1/2)}$$

• Cota de Chernoff con $s = \frac{1}{2}$:

$$\epsilon \le \sqrt{P_1 P_2} e^{-\mu(1/2)}$$

donde

$$\mu(1/2) = \frac{1}{8} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \left[\frac{\boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2}{2} \right]^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) + \frac{1}{2} \ln \frac{\left| \frac{\boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2}{2} \right|}{\sqrt{|\boldsymbol{\Sigma}_1||\boldsymbol{\Sigma}_2}}$$

• Cota de Chernoff con $s = \frac{1}{2}$:

$$\epsilon \le \sqrt{P_1 P_2} e^{-\mu(1/2)}$$

donde

$$\mu(1/2) = \frac{1}{8} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \left[\frac{\boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2}{2} \right]^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) + \frac{1}{2} \ln \frac{\left| \frac{\boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2}{2} \right|}{\sqrt{|\boldsymbol{\Sigma}_1||\boldsymbol{\Sigma}_2}}$$

 \bullet Equivale a cota de Chernoff óptima cuando $\boldsymbol{\Sigma}_1 = \boldsymbol{\Sigma}_2$

• Exahustiva.

- Exahustiva.
- Secuencial hacia adelante.

- Exahustiva.
- Secuencial hacia adelante.
- Secuencial hacia atrás.

- Exahustiva.
- Secuencial hacia adelante.
- Secuencial hacia atrás.
- Branch and Bound.

- Exahustiva.
- Secuencial hacia adelante.
- Secuencial hacia atrás.
- Branch and Bound.
- Otros métodos heurísticos.

ullet Descartar m descriptores de n posibles.

- ullet Descartar m descriptores de n posibles.
- Enumeración: (x_1, \ldots, x_m) . Basta considerar $x_1 < x_2 > \ldots x_m$

- ullet Descartar m descriptores de n posibles.
- Enumeración: (x_1, \ldots, x_m) . Basta considerar $x_1 < x_2 > \ldots x_m$
- Supone criterio de evaluación monótono J: si A, B son conjuntos de descriptores $A \subseteq B \Rightarrow J(A) \leq J(B)$

- ullet Descartar m descriptores de n posibles.
- Enumeración: (x_1, \ldots, x_m) . Basta considerar $x_1 < x_2 > \ldots x_m$
- Supone criterio de evaluación monótono J: si A,B son conjuntos de descriptores $A\subseteq B\Rightarrow J(A)\leq J(B)$

• Suponga que dos componentes de \mathbf{x} están perfectamente correlacionados: $x_i = \alpha x_j$.

- Suponga que dos componentes de \mathbf{x} están perfectamente correlacionados: $x_i = \alpha x_j$.
 - ► Información redundante.

- Suponga que dos componentes de \mathbf{x} están perfectamente correlacionados: $x_i = \alpha x_j$.
 - Información redundante.
 - ▶ Podemos descartar una variable y reducir dimensión de los datos por 1.

- Suponga que dos componentes de \mathbf{x} están perfectamente correlacionados: $x_i = \alpha x_j$.
 - ▶ Información redundante.
 - ▶ Podemos descartar una variable y reducir dimensión de los datos por 1.
- En general, correlación no es perfecta.

- Suponga que dos componentes de \mathbf{x} están perfectamente correlacionados: $x_i = \alpha x_j$.
 - ► Información redundante.
 - ▶ Podemos descartar una variable y reducir dimensión de los datos por 1.
- En general, correlación no es perfecta.
- Podemos tener conjuntos de más de 2 variables correlacionadas entre sí.

- Suponga que dos componentes de \mathbf{x} están perfectamente correlacionados: $x_i = \alpha x_j$.
 - Información redundante.
 - ▶ Podemos descartar una variable y reducir dimensión de los datos por 1.
- En general, correlación no es perfecta.
- Podemos tener conjuntos de más de 2 variables correlacionadas entre sí.
- Suponemos datos normalizados:

- Suponga que dos componentes de \mathbf{x} están perfectamente correlacionados: $x_i = \alpha x_j$.
 - ► Información redundante.
 - ▶ Podemos descartar una variable y reducir dimensión de los datos por 1.
- En general, correlación no es perfecta.
- Podemos tener conjuntos de más de 2 variables correlacionadas entre sí.
- Suponemos datos normalizados:

- Suponga que dos componentes de \mathbf{x} están perfectamente correlacionados: $x_i = \alpha x_j$.
 - ► Información redundante.
 - Podemos descartar una variable y reducir dimensión de los datos por 1.
- En general, correlación no es perfecta.
- Podemos tener conjuntos de más de 2 variables correlacionadas entre sí.
- Suponemos datos normalizados:
 - $\int_{i=1}^{n} \mathbf{x}_{i} = \mathbf{0}$

• Queremos proyección con máxima varianza.

• Proyección ortogonal sobre línea $\mathbf{u}^T \mathbf{x} = 0$, con $\|\mathbf{u}\| = 1$.

- Proyección ortogonal sobre línea $\mathbf{u}^T \mathbf{x} = 0$, con $\|\mathbf{u}\| = 1$.
- Queremos escoger u que maximice la varianza:

$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^T \mathbf{x}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^T \mathbf{x}_i) (\mathbf{x}_i^T \mathbf{u})$$

- Proyección ortogonal sobre línea $\mathbf{u}^T \mathbf{x} = 0$, con $\|\mathbf{u}\| = 1$.
- Queremos escoger u que maximice la varianza:

$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^T \mathbf{x}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^T \mathbf{x}_i) (\mathbf{x}_i^T \mathbf{u})$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^T \mathbf{x}_i) (\mathbf{x}_i^T \mathbf{u})$$

- Proyección ortogonal sobre línea $\mathbf{u}^T \mathbf{x} = 0$, con $\|\mathbf{u}\| = 1$.
- Queremos escoger **u** que maximice la varianza:

$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^{T} \mathbf{x}_{i})^{2} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^{T} \mathbf{x}_{i}) (\mathbf{x}_{i}^{T} \mathbf{u})$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^{T} \mathbf{x}_{i}) (\mathbf{x}_{i}^{T} \mathbf{u})$$
$$= \frac{1}{n} \mathbf{u}^{T} \left(\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \right) \mathbf{u}$$

- Proyección ortogonal sobre línea $\mathbf{u}^T \mathbf{x} = 0$, con $\|\mathbf{u}\| = 1$.
- Queremos escoger **u** que maximice la varianza:

$$\begin{split} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^{T} \mathbf{x}_{i})^{2} &= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^{T} \mathbf{x}_{i}) (\mathbf{x}_{i}^{T} \mathbf{u}) \\ &= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^{T} \mathbf{x}_{i}) (\mathbf{x}_{i}^{T} \mathbf{u}) \\ &= \frac{1}{n} \mathbf{u}^{T} \left(\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \right) \mathbf{u} \\ &= \frac{1}{n} \mathbf{u}^{T} \mathbf{\Sigma} \mathbf{u} \end{split}$$

- Proyección ortogonal sobre línea $\mathbf{u}^T \mathbf{x} = 0$, con $\|\mathbf{u}\| = 1$.
- Queremos escoger u que maximice la varianza:

$$\begin{split} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^{T} \mathbf{x}_{i})^{2} &= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^{T} \mathbf{x}_{i}) (\mathbf{x}_{i}^{T} \mathbf{u}) \\ &= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^{T} \mathbf{x}_{i}) (\mathbf{x}_{i}^{T} \mathbf{u}) \\ &= \frac{1}{n} \mathbf{u}^{T} \left(\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \right) \mathbf{u} \\ &= \frac{1}{n} \mathbf{u}^{T} \mathbf{\Sigma} \mathbf{u} \end{split}$$

donde $\Sigma = \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$ es la matriz de covarianza de los datos $\{\mathbf{x}_{i}\}_{i=1}^{n}$.

$$\begin{aligned} & & & \text{m\'in} & & -\mathbf{u}^T \mathbf{\Sigma} \mathbf{u} \\ & & & \text{sujeto a} & & & & & & & & & & \\ \end{aligned}$$

mín
$$-\mathbf{u}^T \mathbf{\Sigma} \mathbf{u}$$
 sujeto a $\|\mathbf{u}\|^2 = 1$

• El lagrangiano:

$$L(\mathbf{u}, \lambda) = -\mathbf{u}^T \mathbf{\Sigma} \mathbf{u} + \lambda (\mathbf{u}^T \mathbf{u} - 1)$$

mín
$$-\mathbf{u}^T \mathbf{\Sigma} \mathbf{u}$$
 sujeto a $\|\mathbf{u}\|^2 = 1$

• El lagrangiano:

$$L(\mathbf{u}, \lambda) = -\mathbf{u}^T \mathbf{\Sigma} \mathbf{u} + \lambda (\mathbf{u}^T \mathbf{u} - 1)$$

$$\nabla_{\mathbf{u}} L(\mathbf{u}, \lambda) = -2\mathbf{\Sigma}\mathbf{u} + 2\lambda\mathbf{u} = \mathbf{0}$$

mín
$$-\mathbf{u}^T \mathbf{\Sigma} \mathbf{u}$$
 sujeto a $\|\mathbf{u}\|^2 = 1$

• El lagrangiano:

$$L(\mathbf{u}, \lambda) = -\mathbf{u}^T \mathbf{\Sigma} \mathbf{u} + \lambda (\mathbf{u}^T \mathbf{u} - 1)$$

$$\nabla_{\mathbf{u}} L(\mathbf{u}, \lambda) = -2\mathbf{\Sigma}\mathbf{u} + 2\lambda\mathbf{u} = \mathbf{0} \Rightarrow \mathbf{\Sigma}\mathbf{u} = \lambda\mathbf{u}$$

$$\begin{aligned} & & & \text{min} & & -\mathbf{u}^T \mathbf{\Sigma} \mathbf{u} \\ & & & \text{sujeto a} & & & & & & & & & & \\ \end{aligned}$$

• El lagrangiano:

$$L(\mathbf{u}, \lambda) = -\mathbf{u}^T \mathbf{\Sigma} \mathbf{u} + \lambda (\mathbf{u}^T \mathbf{u} - 1)$$

• Derivando con respecto a **u**:

$$\nabla_{\mathbf{u}} L(\mathbf{u}, \lambda) = -2\Sigma \mathbf{u} + 2\lambda \mathbf{u} = \mathbf{0} \Rightarrow \Sigma \mathbf{u} = \lambda \mathbf{u}$$

• Es decir, \mathbf{u} es un vector propio de Σ con valor propio λ .

$$\begin{aligned} & & & \text{min} & & -\mathbf{u}^T \mathbf{\Sigma} \mathbf{u} \\ & & & \text{sujeto a} & & & & & & & & & \\ \end{aligned}$$

• El lagrangiano:

$$L(\mathbf{u}, \lambda) = -\mathbf{u}^T \mathbf{\Sigma} \mathbf{u} + \lambda (\mathbf{u}^T \mathbf{u} - 1)$$

$$\nabla_{\mathbf{u}} L(\mathbf{u}, \lambda) = -2\Sigma \mathbf{u} + 2\lambda \mathbf{u} = \mathbf{0} \Rightarrow \Sigma \mathbf{u} = \lambda \mathbf{u}$$

- Es decir, \mathbf{u} es un vector propio de Σ con valor propio λ .
- Más aún $\mathbf{u}^T \mathbf{\Sigma} \mathbf{u} = \lambda ||\mathbf{u}||^2 = \lambda$,

$$\begin{aligned} & & & \text{min} & & -\mathbf{u}^T \mathbf{\Sigma} \mathbf{u} \\ & & & \text{sujeto a} & & & & & & & & & & \\ \end{aligned}$$

• El lagrangiano:

$$L(\mathbf{u}, \lambda) = -\mathbf{u}^T \mathbf{\Sigma} \mathbf{u} + \lambda (\mathbf{u}^T \mathbf{u} - 1)$$

$$\nabla_{\mathbf{u}} L(\mathbf{u}, \lambda) = -2\Sigma \mathbf{u} + 2\lambda \mathbf{u} = \mathbf{0} \Rightarrow \Sigma \mathbf{u} = \lambda \mathbf{u}$$

- Es decir, **u** es un vector propio de Σ con valor propio λ .
- Más aún $\mathbf{u}^T \mathbf{\Sigma} \mathbf{u} = \lambda ||\mathbf{u}||^2 = \lambda$, es decir, \mathbf{u} es el vector propio de $\mathbf{\Sigma}$ correspondiente al máximo valor propio

• $\mathbf{u}_1 = \mathbf{u}$ es el primer componente principal.

- $\mathbf{u}_1 = \mathbf{u}$ es el primer componente principal.
- Suponga que queremos escoger un segundo componente principal $\mathbf{u}_2 \perp \mathbf{u}_1$ de manera que la varianza del residuo sea máxima:

- $\mathbf{u}_1 = \mathbf{u}$ es el primer componente principal.
- Suponga que queremos escoger un segundo componente principal $\mathbf{u}_2 \perp \mathbf{u}_1$ de manera que la varianza del residuo sea máxima:

$$\frac{1}{n} = \sum_{i=1}^{n} \left(\mathbf{u}_{2}^{T} (\mathbf{x}_{i} - (\mathbf{u}_{1}^{T} \mathbf{x}_{i}) \mathbf{u}_{1}) \right)^{2}$$

- $\mathbf{u}_1 = \mathbf{u}$ es el primer componente principal.
- Suponga que queremos escoger un segundo componente principal $\mathbf{u}_2 \perp \mathbf{u}_1$ de manera que la varianza del residuo sea máxima:

$$\frac{1}{n} = \sum_{i=1}^{n} \left(\mathbf{u}_{2}^{T} (\mathbf{x}_{i} - (\mathbf{u}_{1}^{T} \mathbf{x}_{i}) \mathbf{u}_{1}) \right)^{2} = \sum_{i=1}^{n} \left(\mathbf{u}_{2}^{T} \mathbf{x}_{i} \right)^{2}$$

- $\mathbf{u}_1 = \mathbf{u}$ es el primer componente principal.
- Suponga que queremos escoger un segundo componente principal $\mathbf{u}_2 \perp \mathbf{u}_1$ de manera que la varianza del residuo sea máxima:

$$\frac{1}{n} = \sum_{i=1}^{n} \left(\mathbf{u}_{2}^{T} (\mathbf{x}_{i} - (\mathbf{u}_{1}^{T} \mathbf{x}_{i}) \mathbf{u}_{1}) \right)^{2} = \sum_{i=1}^{n} \left(\mathbf{u}_{2}^{T} \mathbf{x}_{i} \right)^{2}$$

 \bullet El vector \mathbf{u}_2 con $\|\mathbf{u}_2\|=1$ que maximiza la varianza del residuo es

- $\mathbf{u}_1 = \mathbf{u}$ es el primer componente principal.
- Suponga que queremos escoger un segundo componente principal $\mathbf{u}_2 \perp \mathbf{u}_1$ de manera que la varianza del residuo sea máxima:

$$\frac{1}{n} = \sum_{i=1}^{n} \left(\mathbf{u}_{2}^{T} (\mathbf{x}_{i} - (\mathbf{u}_{1}^{T} \mathbf{x}_{i}) \mathbf{u}_{1}) \right)^{2} = \sum_{i=1}^{n} \left(\mathbf{u}_{2}^{T} \mathbf{x}_{i} \right)^{2}$$

• El vector \mathbf{u}_2 con $\|\mathbf{u}_2\|=1$ que maximiza la varianza del residuo es el vector propio de Σ correspondiente al segundo valor propio más grande.

- $\mathbf{u}_1 = \mathbf{u}$ es el primer componente principal.
- Suponga que queremos escoger un segundo componente principal $\mathbf{u}_2 \perp \mathbf{u}_1$ de manera que la varianza del residuo sea máxima:

$$\frac{1}{n} = \sum_{i=1}^{n} \left(\mathbf{u}_{2}^{T} (\mathbf{x}_{i} - (\mathbf{u}_{1}^{T} \mathbf{x}_{i}) \mathbf{u}_{1}) \right)^{2} = \sum_{i=1}^{n} \left(\mathbf{u}_{2}^{T} \mathbf{x}_{i} \right)^{2}$$

- El vector \mathbf{u}_2 con $\|\mathbf{u}_2\|=1$ que maximiza la varianza del residuo es el vector propio de Σ correspondiente al segundo valor propio más grande.
- La varianza total en los componentes $\mathbf{u}_1, \mathbf{u}_2$ es

- $\mathbf{u}_1 = \mathbf{u}$ es el primer componente principal.
- Suponga que queremos escoger un segundo componente principal $\mathbf{u}_2 \perp \mathbf{u}_1$ de manera que la varianza del residuo sea máxima:

$$\frac{1}{n} = \sum_{i=1}^{n} \left(\mathbf{u}_{2}^{T} (\mathbf{x}_{i} - (\mathbf{u}_{1}^{T} \mathbf{x}_{i}) \mathbf{u}_{1}) \right)^{2} = \sum_{i=1}^{n} \left(\mathbf{u}_{2}^{T} \mathbf{x}_{i} \right)^{2}$$

- El vector \mathbf{u}_2 con $\|\mathbf{u}_2\|=1$ que maximiza la varianza del residuo es el vector propio de Σ correspondiente al segundo valor propio más grande.
- La varianza total en los componentes $\mathbf{u}_1, \mathbf{u}_2$ es $\lambda_1 + \lambda_2$

• En general, la proyección en un espacio de $M \leq d$ dimensiones en el que la varianza es máxima está dada por los M vectores propios $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_M$ de Σ correspondientes a los valors propios $\lambda_1, \lambda_2, \ldots, \lambda_n$ más grandes.

- En general, la proyección en un espacio de $M \leq d$ dimensiones en el que la varianza es máxima está dada por los M vectores propios $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_M$ de Σ correspondientes a los valors propios $\lambda_1, \lambda_2, \dots, \lambda_n$ más grandes.
- La varianza total es $\lambda_1 + \lambda_2 + \cdots + \lambda_M$

• Note que los vectores propios $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_d$ son (o pueden escogerse) ortonormales.

- Note que los vectores propios $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_d$ son (o pueden escogerse) ortonormales.
- $y = \mathbf{U}^T \mathbf{x}$ es un cambio de base ortonormal (rotación).

- Note que los vectores propios $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_d$ son (o pueden escogerse) ortonormales.
- $y = \mathbf{U}^T \mathbf{x}$ es un cambio de base ortonormal (rotación).
- PCA escoge los componentes de la base para los cuales la varianza es máxima.

- Note que los vectores propios $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_d$ son (o pueden escogerse) ortonormales.
- $y = \mathbf{U}^T \mathbf{x}$ es un cambio de base ortonormal (rotación).
- PCA escoge los componentes de la base para los cuales la varianza es máxima.
- PCA puede derivarse como la proyección a un subconjunto de una base ortonormal óptima.

• En muchos casos $d \gg n$

- En muchos casos $d \gg n$
- d-n+1 valores propios son cero.

- En muchos casos $d \gg n$
- d-n+1 valores propios son cero.
- Cálculo de \mathbf{u}_i, λ_i es $O(d^3)$.

- En muchos casos $d \gg n$
- d-n+1 valores propios son cero.
- Cálculo de \mathbf{u}_i, λ_i es $O(d^3)$.
- Sea X la matriz $n \times d$ donde cada fila es un dato:

- En muchos casos $d \gg n$
- d-n+1 valores propios son cero.
- Cálculo de \mathbf{u}_i, λ_i es $O(d^3)$.
- Sea X la matriz $n \times d$ donde cada fila es un dato:

$$\frac{1}{n}\mathbf{X}^T\mathbf{X}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

- En muchos casos $d \gg n$
- d-n+1 valores propios son cero.
- Cálculo de \mathbf{u}_i, λ_i es $O(d^3)$.
- Sea X la matriz $n \times d$ donde cada fila es un dato:

$$\frac{1}{n} \mathbf{X}^T \mathbf{X} \mathbf{u}_i = \lambda_i \mathbf{u}_i$$
$$\frac{1}{n} \mathbf{X} \mathbf{X}^T (\mathbf{X} \mathbf{u}_i) = \lambda_i (\mathbf{X} \mathbf{u}_i)$$

- En muchos casos $d \gg n$
- d-n+1 valores propios son cero.
- Cálculo de \mathbf{u}_i, λ_i es $O(d^3)$.
- Sea X la matriz $n \times d$ donde cada fila es un dato:

$$\frac{1}{n} \mathbf{X}^T \mathbf{X} \mathbf{u}_i = \lambda_i \mathbf{u}_i$$
$$\frac{1}{n} \mathbf{X} \mathbf{X}^T (\mathbf{X} \mathbf{u}_i) = \lambda_i (\mathbf{X} \mathbf{u}_i)$$
$$\frac{1}{n} \mathbf{X} \mathbf{v}_i = \lambda_i \mathbf{v}_i$$

- En muchos casos $d \gg n$
- d-n+1 valores propios son cero.
- Cálculo de \mathbf{u}_i, λ_i es $O(d^3)$.
- Sea X la matriz $n \times d$ donde cada fila es un dato:

$$\frac{1}{n} \mathbf{X}^T \mathbf{X} \mathbf{u}_i = \lambda_i \mathbf{u}_i$$
$$\frac{1}{n} \mathbf{X} \mathbf{X}^T (\mathbf{X} \mathbf{u}_i) = \lambda_i (\mathbf{X} \mathbf{u}_i)$$
$$\frac{1}{n} \mathbf{X} \mathbf{v}_i = \lambda_i \mathbf{v}_i$$

 \bullet Cálculo en n dimensiones.