Instructions. (100 points) You have 120 minutes. Closed book, closed notes, no calculator. The last page contains some unlabeled theorems from our course. Show all your work to receive full credit.

- (8^{pts}) 1. Consider the points A = (1, 2, -1), B = (-3, 0, 1) and C = (0, 3, 1).
 - (a) (3 pts) Give a parameterization of the straight line segment from A to B. Be sure you state what the parameter may range over.

(b) (5 pts) Find an equation (not a parameterization) for the plane containing A, B, C.

(6^{pts}) **2.** Sketch the region of integration of

$$\int_0^1 \int_{3y}^3 e^{(x^2)} \, dx \, dy.$$

Then use your sketch to reverse the order of integration and evaluate the integral.

(11^{pts}) **3.** Assume a particle has velocity $\mathbf{v}(t) = (t+1)\mathbf{i} + 2\sqrt{t}\mathbf{j} + (t-1)\mathbf{k}$ for $t \ge 1$ with speed measured in m/s. (a) (3 pts) Find the time(s) when acceleration is parallel to $2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$.

(b) (4 pts) Find the distance traveled from t = 1 s to t = 3 s.

(c) (4 pts) Find the position vector $\mathbf{r}(t)$ at all times if $\mathbf{r}(1) = 2\mathbf{i} - \frac{1}{2}\mathbf{k}$.

(6^{pts}) **4.** Use Lagrange multipliers to find the extreme values of the function $f(x,y) = x^2 - y^2$ along the parabola $x - y^2 = -1$.

(12 pts) **5.** Consider the surface S parametrized by:

$$\mathbf{r}(u,v) = \langle u\cos v, u^2 + 1, u\sin v \rangle$$
 for $0 \le u \le 2, 0 \le v \le 2\pi$

in the vector field $\mathbf{F}(x,y,z) = \langle x,yz,y \rangle$ as illustrated below:

(a) (7 pts) Use Stokes' theorem to compute the circulation of $\mathbf{F}(x, y, z)$ around the oriented boundary curve C of the surface S NOT directly BUT as a surface integral using the given S.

(b) (5 pts) Find an equation of the tangent plane to the surface at the point $\left(\frac{1}{2}, 2, \frac{\sqrt{3}}{2}\right)$.

(8^{pts}) **6.** Sketch the two surfaces

$$x^2 + z^2 = 4$$
, $y + z = 5$

and highlight their curve of intersection. Then give a parameterization of that curve.

(8^{pts}) 7. Find all critical points of the function

$$f(x,y) = x^3 - 6xy + 8y^3$$

and, to the extent possible, determine whether they are local maxima, local minima, or saddle points.

(9^{pts}) **8.** Use **cylindrical coordinates** to find the mass of the solid enclosed below by the paraboloid $z=x^2+y^2+1$ and above by the sphere $x^2+y^2+z^2=5$ if the density function is given by $\rho(x,y,z)=\frac{1}{z^2}$.

(8^{pts}) **9.** Let S be the closed surface that encloses the eighth of the unit ball centered at the origin for which $x \geq 0, y \leq 0$ and $z \leq 0$, oriented outward. Use Gauss' Divergence Theorem and **spherical coordinates** to fully SET UP an integral computing the flux out of S of the vector field $\mathbf{F}(x, y, z) = \langle x^2, -2yx, xz \rangle$. DO NOT EVALUATE.

(8^{pts}) 10. Consider the vector field

$$\mathbf{F}(x, y, z) = \langle e^{x-y} - z\sin(xz), z^2 - e^{x-y}, 2yz - x\sin(xz) \rangle.$$

(a) (5 pts) Find a potential function for $\mathbf{F}(x, y, z)$.

(b) (3 pts) Use your answer to part (a) to evaluate the work done by \mathbf{F} if a particle follows a helical path from the point (2,0,0) to the point (2,0,1), spiraling counterclockwise one time around the z-axis.

(8^{pts}) 11. Use Green's theorem to compute

$$\int_C \left(e^{\cos x} - x^2 y\right) dx + (\arctan y + xy) dy$$

over the closed curve C made up of the line segment from (0,0) to (2,0), then three quarters around the circle $x^2 + y^2 = 4$ until (0,-2) then the line segment back to the origin.

- (8^{pts}) **12.** Let $f(x,y) = \frac{x}{y^2} + x^2y$.
 - (a) (4 pts) What is the directional derivative of f at (2,1) when moving towards (0,2)? What does it mean for function values?

(b) (4 pts) Let $x(s,t) = s^2t$ and y(s,t) = 2s - t. Use the appropriate chain rule to find $\frac{\partial f}{\partial t}$ (no direct substitution). Your final answer should only contain s and t but DO NOT simplify.

SOME FORMULAS FROM THEOREMS IN THE COURSE:

$$f(B) - f(A) = \int_{AB} \nabla f \cdot d\mathbf{r}$$

$$\oint_{C=\partial R} P \, dx + Q \, dy = \iint_{R} Q_x - P_y \, dA$$

$$\oint_{C=\partial S} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$$

$$\oiint_{S=\partial V} \mathbf{F} \cdot d\mathbf{S} = \iiint_{V} \operatorname{div} \mathbf{F} \, dV$$