

Bases de Datos 1

Clase del 01 de Octubre de 2020

Alejandra Beatriz Lliteras

Contenidos de la materia

- Modelo de datos
 - Conceptos generales
 - Algunos modelos en particular
 - Modelo de Entidades y Relaciones
 - Modelo relacional
- Transformación entre modelos de datos
- Álgebra Relacional
 - Operaciones y Consultas
 - Optimización de consultas
- Teoría de diseño de bases de datos
 - Conceptos generales
 - Proceso de Normalización
- SGBD Relacional
- Conceptos generales de bases de datos

Albarak, M., Bahsoon, R., Ozkaya, I., & Nord, R. L. (2020). Managing Technical Debt in Database Normalization. *IEEE Transactions on Software Engineering*.

- Uno de los principales principios del diseño de bases de datos es la NORMALIZACION
 - Organiza los datos en relaciones o tablas siguiendo reglas específicas para minimizar la redundancia de los datos y en consecuencia, favorecer a la consistencia reduciendo anomalías
 - Un mal diseño puede llevar a la necesidad de refactorizar la base de datos y eso suele ser muy caro
 - Los beneficios de la normalización van mas allá de la calidad de los datos, pudiendo mejorar la mantenibilidad y performance de una base de datos
 - En general se ignora por ser un proceso que requiere tiempo y conocimiento específico

Jadhav, R., Dhabe, P., Gandewar, S., Mirani, P., & Chugwani, R. (2020). A New Data Structure for Representation of Relational Databases for Application in the Normalization Process. In *Machine Learning and Information Processing* (pp. 305-316). Springer, Singapore.

El diseño de un esquema de bases de datos es uno de los factores mas importantes de los que depende el éxito de la base de datos relacional

- La normalización es un paso clave en el diseño de la base de datos relacional
 - Toma una relación grande como entrada y la descompone en relaciones mas pequeñas las cuales están libres de redundancia de datos y otras anomalías como la de inserción/eliminación
 - La descomposición se realiza siguiendo *reglas/pasos*
- Puede ser manual o automática
 - La automatización de la normalización es de gran aplicación en la industria y reduce el costo de la normalización manual

Albarak, M., Bahsoon, R., Ozkaya, I., & Nord, R. L. (2020). Managing Technical Debt in Database Normalization. *IEEE Transactions on Software Engineering*.

- Normalización se aplica a las bases de datos relacionales (no asi a otros modelos como por ejemplo NoSQL)
- El modelo relacional, sigue siendo el modelo dominante en la industria
- Utilizado por los 4 principales DBMS
 - Oracle, MySQL, MS SQL Server y PostgreSQL
- También utilizado por DBMS como IBM Db2 y SQLight

Sep 2020	Rank Aug 2020	Sep 2019	DBMS	Database Model
1.	1.	1.	Oracle 🗄	Relational, Multi-model 🚺
2.	2.	2.	MySQL 🚹	Relational, Multi-model 🔃
3.	3.	3.	Microsoft SQL Server 🔠	Relational, Multi-model 🔃
4.	4.	4.	PostgreSQL 🖽	Relational, Multi-model 🔃
5.	5.	5.	MongoDB 🚹	Document, Multi-model 🚺
6.	6.	6.	IBM Db2 🚹	Relational, Multi-model 🔃
7.	7.	1 8.	Redis 🚹	Key-value, Multi-model 🚺
8.	8.	4 7.	Elasticsearch 🔡	Search engine, Multi-model 🚺
9.	9.	1 11.	SQLite 🖽	Relational
10.	1 11.	10.	Cassandra 🖽	Wide column

- En síntesis
 - El éxito de una base de datos relacional depende del diseño de su esquema
 - Existen procesos manuales y automáticos
 - Con impacto en la industria, además de serlo en la academia
 - Tema relevante y actual
 - El modelo relacional domina el mercado

Teoría de diseño de Bases de Datos Relacionales

- Anomalía
- Dependencia Funcional
- Dependencia Funcional Trivial
- Clave
 - Clave Candidata
 - Super Clave

El proceso de normalización, toma una **relación grande** como entrada y la **descompone** en relaciones mas pequeñas las cuales están libres de redundancia de datos y **anomalías** como la de inserción/eliminación

Anomalía

Problema que surge a raíz del diseño de una relación

PERSONAEMPLEADA (dni, nombre, domicilio, depto, flngDepto, codEmpDepto, jefe)

	dni	nombre	domicilio	depto	fIngDepto	codEmpDepto	jefe
	dni 1	Juan	12 Nro 222	Compras	2016-01-11	E1	J1
/	dni 1	Juan	12 Nro 222	Liq. Sueldos	2015-02-01	E2	J2
	dni 2	Maria	3 Nro. 214	Compras	2014-05-01	E3	J1
	dni 3	José	3 Nro. 214	Compras	2015-01-08	E4	J1

- El código de jefe es único en el sistema.
- Una persona puede trabajar en mas de un departamento y en cada uno de ellos posee un código de empleado.
- El código de empleado no se repite ni por departamento, ni entre departamentos.

Anomalías

Redundancia: Información que se repite innecesariamente en diferentes tuplas

	dni	nombre	domicilio	depto	fIngDepto	codEmpDepto	jefe
/	dni 1	Juan	12 Nro 222	Compras	2016-01-11	E1	J1
	dni 1	Juan	12 Nro 222	Liq. Sueldos	2015-02-01	E2	J2
	dni 2	Maria	3 Nro. 214	Compras	2014-05-01	E3	J1
	dni 3	José	3 Nro. 214	Compras	2015-01-08	E4	J1

Anomalías

Anomalías de actualización: Se puede actualizar el valor en una tupla, sin actualizar los de otras tuplas

	dni	nombre	domicilio	depto	fIngDepto	codEmpDepto	jefe
/	dni 1	Juan	10 Nro 222	Compras	2016-01-11	E1	J1
	dni 1	Juan	12 Nro 222	Liq. Sueldos	2015-02-01	E2	J2
	dni 2	Maria	3 Nro. 214	Compras	2014-05-01	E3	J1
	dni 3	José	3 Nro. 214	Compras	2015-01-08	E4	J1

Anomalías

Anomalías de inserción: insertar valores en ciertos atributos de una relación y no en otros me produce valores nulos

	dni	nombre	domicilio	depto	fIngDepto	codEmpDepto	jefe
	dni 1	Juan	12 Nro 222	Compras	2016-01-11	E1	J1
/	dni 1	Juan	12 Nro 222	Liq. Sueldos	2015-02-01	E2	J2
	dni 2	Maria	3 Nro. 214	Compras	2014-05-01	E3	J1
	dni 3	José	3 Nro. 214	Compras	2015-01-08	E4	J1

¿Qué sucede si quiero insertar solamente datos de la persona y aun no lo tengo asignado a un departamento?

Anomalías

Anomalías de borrado: borrar ciertos valores de una tupla, puede llevarme a perder la información de la tupla completa

dni	nombre	domicilio	depto	fIngDepto	codEmpDepto	jefe
dni 1	Juan	12 Nro 222	Compras	2016-01-11	E1	J1
dni 1	Juan	12 Nro 222	Liq. Sueldos	2015-02-01	E2	J2
dni 2	Maria	3 Nro. 214	Compras	2014-05-01	E3	J1
dni 3	José	3 Nro. 214	Compras	2015-01-08	E4	J1

¿Qué sucede si quiero borrar solamente el dato del jefe?

Anomalías

- Redundancia: Información que se repite innecesariamente en diferentes tuplas
- Anomalías de actualización: Se puede actualizar el valor en una tupla, sin actualizar los de otras tuplas
- Anomalías de inserción: insertar valores en ciertos atributos de una relación y no en otros me produce valores nulos
- Anomalías de borrado: borrar ciertos valores de una tupla, puede llevarme a perder la información de la tupla completa

PERSONAEMPLEADA (dni, nombre, domicilio, depto, flngDepto, codEmpDepto, jefe)

¿Es un buen diseño?

Dependencia funcional:

Concepto fundamental en Normalización

■ Es una **restricción** entre subconjuntos de atributos de una relación

- Dependencia Funcional (df)
 - Si dos tuplas (t1 y t2) de una relación R, coinciden en todos los atributos A1, A2,...,An, entonces DEBEN también coincidir en los atributos B1, B2,..,Bm. Para toda tupla de R.
 - Esto se escribe

A1, A2,...,An -> B1, B2,..,Bm

Y se lee

A1, A2,...,An "determina funcionalmente a" B1, B2,...,Bm

Cuando R cumple una df, estamos indicando una restricción sobre toda la relación R y no sobre algunas tuplas de R.

- Dependencia Funcional (df)
 - Dicho de otra manera:
 - Una dependencia funcional de la forma X -> Y se cumple en R si:
 - Para todos los pares de tuplas t1 y t2 de la relación, cuando se cumple que t1[x]=t2[x],
 - entonces se cumple t1[y]=t2[y].

- Dependencia Funcional (df)
 - Ejemplos:
 - Dada la relación
 - PERSONA(dni, nombre, edad, fechaNacimiento)
 - ■Y valga en PERSONA la
 - df: dni->nombre,edad,fechaNac
 - La df enunciada, indica que si dos tuplas t1 y t2 de la relación PERSONA tienen el mismo valor en el atributo dni, deben necesariamente tener los mismos valores en los atributos nombre, edad y fechaNac

- Dependencia Funcional (df)
 - Ejemplos:
 - Dada la relación: PERSONA(dni, nombre, edad, fechaNac, nroLegajo)
 - Donde
 - Una persona posee un único número de legajo asignado
 - Un número de legajo pertenece a una sola persona

Se pueden enunciar las siguientes dfs

df1) dni -> nombre, edad, fechaNac, nroLegajo df2) nroLegajo -> nombre, edad, fechaNac, dni

- Dependencia Funcional (df)
 - Ejemplos:
 - Dada la relación: PERSONA(dni, nombre, edad, fechaNac, nroLegajo, carrera)
 - Donde
 - Una persona puede cursar diversas carreras
 - Nombre indica como se llama la persona
 - Una persona posee un único número de legajo asignado para cada carrera que cursa
 - Un número de legajo pertenece a una sola persona de una carrera

Se pueden enunciar las siguientes dfs

df1) dni -> nombre, edad, fechaNac

df2) nroLegajo, carrera -> dni

df3) dni, carrera -> nroLegajo

Teoría de diseño para bases de datos relaciones

DEPENDENCIA FUNCIONAL TRIVIAL

Dependencia Funcional trivial

Es una df de la forma:

A1, A2,...,An -> B1, B2,...,Bm

Tal que:

 $\{B1, B2,...,Bm\} \subseteq \{A1, A2,...,An\}$

- Dependencia Funcional trivial
 - Ejemplos:
 - Dada la relación:
 - CONTRATADO(nroContradado, dni, nombrePersona, inicioActividad)
 - ■Dfs:
 - df1) dni -> nombrePersona
 - df2) nroContratado, dni -> inicioActividad

Ejemplos de dependencias funcionales triviales:

dni-> dni nroContratado, dni -> nroContratado

Teoría de diseño para bases de datos relaciones

CLAVE DE UNA RELACIÓN

Clave de una relación

Los atributos {A1, A2,...,An} son la clave de una relación R si cumplen:

- ► {A1, A2,...,An} determinan funcionalmente a todos los restantes atributos de la relación R
- No existe un subconjunto de {A1, A2,...,An} que determine funcionalmente a todos los atributos de R −Esto implica que una clave es un conjunto minimal-

Clave de una relación

Ejemplo

PERSONA(dni, nombre, edad, fechaNac)

df1: dni->nombre,edad,fechaNac

Clave: {dni}

Teoría de diseño para bases de datos relaciones

CLAVE CANDIDATA DE UNA RELACIÓN

Clave de una relación /Clave candidata

- En caso de existir dos o mas conjuntos de atributos (A1, A2,...,An), (B1, B2,...,Bk), ... (N1, N2,...,Nm) en una relación R tales que
 - {A1, A2,...,An} determinan funcionalmente a todos los restantes atributos de la relación R
 - ► {B1, B2,...,Bk} , ... y {N1, N2,...,Nm} también por si mismos determinan al resto de los atributos de R
 - No existe un subconjunto de {A1, A2,...,An} o {B1, B2,...,Bk} , ... o {N1, N2,...,Nm} que determine funcionalmente a todos los atributos de R

Entonces (A1, A2,...,An), (B1, B2,...,Bk), ... (N1, N2,...,Nm) son **CLAVES CANDIDATAS** para la relación R

- Clave de una relación /Clave candidata
 - Ejemplo:
 - Dada la relación: PERSONA(dni, nombre, edad, fechaNacimiento, nroLegajo)
 - Donde
 - Una persona posee un único número de legajo asignado
 - Un número de legajo pertenece a una sola persona
 - Se pueden enunciar las siguientes dfs

df1) dni -> nombre, edad, fechaNac, nroLegajo

df2) nroLegajo -> nombre, edad, fechaNac, dni

Clave candidata 1 (cc1): {dni}

Clave candidata 2 (cc2): {nroLegajo}

- Clave de una relación /Clave candidata
 - Ejemplo:
 - Dada la relación: PERSONA(dni, nombre, edad, fechaNacimiento, nroLegajo, carrera)
 - Donde
 - Una persona puede cursar diversas carreras
 - Nombre indica como se llama la persona
 - Una persona posee un único número de legajo asignado para cada carrera que cursa
 - Un número de legajo pertenece a una sola persona de una carrera

```
df1) dni -> nombre, edad, fechaNac
```

df2) nroLegajo, carrera -> dni

df3) dni, carrera -> nroLegajo

Clave candidata 1 (cc1): {nroLegajo, carrera } Clave candidata 2 (cc2): {dni, carrera }

Teoría de diseño para bases de datos relaciones

SUPERCLAVE DE UNA RELACIÓN

- Superclave de una relación
 - "Super conjunto" de una clave
 - Los atributos {A1, A2,...,An} son la superclave de una relación R si cumplen:
 - {A1, A2,...,An} determinan funcionalmente a todos los restantes atributos de la relación R
 - Notar que:
 - Una clave esta contenida en una superclave
 - Una superclave no necesariamente es minimal (como lo es la clave por la segunda condición de su definición)

Superclave de una relación

Ejemplo

PERSONA(dni, nombre, edad, fechaNacimiento)

df1: dni->nombre,edad,fechaNac

superclave: {dni, nombre}

Actividades para el encuentro participativo

Ejercicio A

Dada la relación

VENTAS(codCliente, nombre, codVenta, monto)

- Donde:
 - Un cliente realiza muchas compras
 - Una compra es realizada por un solo cliente
 - El monto representa el valor total de la compra realizada por un cliente
- Determinar las dependencias funcionales (dfs) y clave o clave candidatas válidas en VENTAS

Ejercicio B

Dada la relación

VENTAS1(codCliente, nombreCliente, codVenta, monto)

- Donde:
 - Un cliente realiza muchas compras
 - Una compra puede ser realizada por mas de un cliente
 - El monto representa el valor total de la compra realizada por cada cliente
- Determinar las dependencias funcionales (dfs) y clave o clave candidatas válidas en VENTAS1

Ejercicio C

Dada la relación

PERSONAEMPLEADA (dni, nombre, domicilio, depto, flngDepto, codEmpDepto, jefe)

Donde

- En cada departamento hay un jefe para todos los empleados. Un mismo jefe puede estar asignado a mas de un departamento
- Una persona puede trabajar en mas de un departamento y en cada uno de ellos puede tener un código de empleado diferente
- El código de empleado no se repite para un mismo departamento, puede repetirse en diferentes departamentos
- Domicilio indica el lugar en el que vive una persona. Mas de una persona pueden vivir en el mismo domicilio
- Nombre indica la forma en la que se llama una persona. Notar que diferentes personas pueden llamarse igual

Determinar las dependencias funcionales y clave o clave candidatas válidas en PERSONAEMPLEADA

Ejercicio D

Dada la relación

PERSONAEMPLEADA1(dni, nombre, domicilio, depto, flngDepto, codEmpDepto, jefe)

Donde

- Cada persona en un departamento tiene asignado a un jefe. El mismo jefe puede estar asignado a /diferente personas de un departamento o de diversos departamentos
- Una persona puede trabajar en mas de un departamento y en cada uno de ellos puede tener un código de empleado diferente
- El código de empleado no se repite para un mismo departamento, puede repetirse en diferentes departamentos
- Domicilio indica el lugar en el que vive una persona. Mas de una persona pueden vivir en el mismo domicilio
- Nombre indica la forma en la que se llama una persona. Notar que diferentes personas pueden llamarse igual

Determinar las dependencias funcionales y clave o clave candidatas válidas en PERSONAEMPLEADA1

Bibliografía de los temas abordados en esta clase

- o Date, C. J. (2019). Database design and relational theory: normal forms and all that jazz. Apress.
- o Garcia-Molina, H. (2008). Database systems: the complete book. Pearson Education India.
- Ullman, J. D. (1988). Principles of database and knowledge-base systems.
- Albarak, M., Bahsoon, R., Ozkaya, I., & Nord, R. L. (2020). Managing Technical Debt in Database Normalization. IEEE Transactions on Software Engineering.
- Jadhav, R., Dhabe, P., Gandewar, S., Mirani, P., & Chugwani, R. (2020). A New Data Structure for Representation of Relational Databases for Application in the Normalization Process. In Machine Learning and Information Processing (pp. 305-316). Springer, Singapore.
- Ghawi, R. (2019, May). Interactive Decomposition of Relational Database Schemes Using Recommendations. In International Conference: Beyond Databases, Architectures and Structures (pp. 97-108). Springer, Cham.
- Stefanidis, C., & Koloniari, G. (2016, November). An interactive tool for teaching and learning database normalization. In Proceedings of the 20th Pan-Hellenic Conference on Informatics (pp. 1-4).
- Knowledge Base of Relational and NoSQL Database Management Systems https://db-engines.com/en/ranking_trend

IMPORTANTE: los slides usados en las clases teóricas de esta materia, no son material de estudio por sí solos.