

CRAb

Métodos Numéricos 1 (MN1)

Unidade 2: Raízes de Equações Parte 1: Introdução a Raízes de Equações

Joaquim Bento Cavalcante Neto

joaquimb@lia.ufc.br

Grupo de Computação Gráfica, Realidade Virtual e Animação (CRAb)

Departamento de Computação (DC)

Universidade Federal do Ceará (UFC)

Introdução

- Nas mais diversas áreas, encontramos situações que envolvem a resolução de uma equação do tipo f(x) = 0
- Exemplo: Um cabo de energia elétrica é suspenso (em pontos de mesma altura) a partir de duas torres que estão a 100 metros de distância. O cabo desce 10 metros no meio. Qual seria o comprimento do cabo?

Catenária

- A catenária descreve uma família de curvas planas semelhantes às que seriam geradas por uma corda suspensa pelas suas extremidades e sujeitas à ação da gravidade existente
 - Quando o eixo y passa pelo ponto ma baixo, podemos assumir a equação na forma y = λ cosh (x/λ). Precisamos determinar λ nesse equação então
 - As condições do problema são que y(50) = y(0) + 10. Então obtemos que:

$$\lambda \cosh(\frac{50}{\lambda}) = \lambda + 10$$

http://pt.wikipedia.org/wiki/Catenária

Catenária

 Utilizando os métodos que aprenderemos ao longo desta unidade, encontraremos λ = 126.632 e substituindo λ na fórmula do comprimento do arco, veremos então que o comprimento do arco será de 102.619 metros nesse caso

Objetivo: Estudar métodos numéricos para resolução de equações não lineares, como por exemplo, a catenária

Raízes de Equações

- Um número real ξ é um zero da função f(x) ou uma raiz da equação f(x)=0 se f(ξ) = 0
- Dependendo de f(x), valores de ξ podem ser reais ou complexos
- Graficamente, os zeros reais são representados pelas abcissas dos pontos onde a curva intercepta o eixo x

- Para algumas equações, como por exemplos equações polinomiais de segundo grau, existem fórmulas explícitas que dão as raízes em função dos coeficientes sem precisar de aproximações
- Em outros casos, é praticamente impossível encontrar os zeros (raízes) de forma exata
 - São usadas aproximações para esses zeros (raízes), com determinada precisão definida dependendo-se do problema

Idéia central

 Partir de uma aproximação inicial para a raiz, e depois refinar essa aproximação através de método iterativo

Idéia central

- FASE I: Localização ou Isolamento de Raízes
 - Obter um intervalo que contém a raiz desejada da equação

Idéia central

• FASE II: Refinamento das Raízes

- Melhorar sucessivamente as aproximações encontradas na FASE I, até obter-se aproximação para a raiz dentro de precisão prefixada

Análise teórica e gráfica da função f(x)

$$\xi_1 \in [a_1; b_1]$$

 $\xi_2 \in [a_2; b_2]$
 $\xi_3 \in [a_3; b_3]$

Atenção: O sucesso da FASE II depende fortemente da precisão desta análise

Análise teórica

- Teorema dos Sinais
 - Teorema:

$$f(a) \times f(b) < 0 \to \xi \in [a; b]$$

Análise teórica

- Teorema dos Sinais

Corolário:

FASE I: Isolamento Análise teórica: Exemplo

•
$$f(x) = x^3 - 9x + 3$$

- Tabela:	X	- ∞	-100	-10	-5	-3	-1	0	2	3	4	5
A (11	f(x)	7	X	(-)	$\langle - \rangle$	144	+	+	100	+	+	+

Análise:

•
$$I_1 = [-5; -3] \longrightarrow \xi_1$$

•
$$I_2 = [0;1] \longrightarrow \xi_2$$

•
$$I_3 = [2;3] \longrightarrow \xi_3$$

- Conclusão:
 - f(x) é um polinômio de 3º grau então as raízes são únicas

FASE I: Isolamento Análise teórica

- E se f(a) x f(b) > 0?
 - nenhuma raiz
 - mais de uma raiz
 - somente uma raiz

Análise gráfica

- Duas maneiras possíveis:

- a) Esboçar gráfico de f(x) → achar intervalos
 - Mais preciso => sem interseção
 - Mais difícil => função complexa
- b) $f(x) = 0 \rightarrow h(x) = g(x) \rightarrow achar intervalos$
 - Menos preciso => usa interseção
 - Mais fácil => funções mais simples

FASE I: Isolamento Análise gráfica: Exemplo

•
$$f(x) = x^3 - 9x + 3$$

- a) Esboçar o gráfico

-
$$I_1 = [-4; -3] \rightarrow \xi_1$$

- $I_2 = [0; 1] \rightarrow \xi_2$
- $I_3 = [2; 3] \rightarrow \xi_3$

FASE I: Isolamento Análise gráfica: Exemplo

•
$$f(x) = x^3 - 9x + 3$$
 $g(x)$ $h(x)$
- $b) f(x) = 0: x^3 - 9x + 3 = 0 \rightarrow x^3 = 9x - 3$

FASE II: Refinamento

- Método iterativo
 - Sequência de instruções
 que são executadas passo
 a passo, algumas das quais
 são repetidas em ciclos
 - Iteração
 - Execução de um ciclo
 - Utiliza resultados das iterações anteriores (para os seguintes)

FASE II: Refinamento

FASE II: Refinamento Critérios de Parada

- Duas interpretações
 - -c1) $|\overline{x}-\xi|<\varepsilon$
 - -c2) $|f(\overline{x})| < \varepsilon$

Como realizar c1), se não conhecemos §?

Reduzir intervalo a cada iteração:

$$\xi \in [a,b] \quad \text{(isolamento)} \\ |b-a| < \varepsilon \quad \text{(refinamento)} \} \\ \forall x \in [a,b], |x-\xi| < \varepsilon , \overline{x} \to x$$

FASE II: Refinamento Critérios de Parada

Silmutaneidade

FASE II: Refinamento Critérios de Parada

Limitante

- Usar teste do erro relativo

$$\frac{|f(\overline{x})|}{L} < \varepsilon$$
 , onde $L pprox |f(\overline{x})|$

Número de iterações

- Número de iterações > Número máximo de iterações