Soluciones Parenterales

Dr. Luis Manuel Gallegos Sánchez

Facultad de Estudios Superiores Iztacala UNAM

2021

Soluciones Parenterales

Dr. Luis Manuel Gallegos Sánchez

Facultad de Estudios Superiores Iztacala UNAM

2021

Soluciones

En el grupo de cristaloides ubicó a los que se difunden rápidamente en el agua, dializan fácilmente a través de las membranas permeables y, al ser evaporadas las soluciones de que forman parte, quedan como residuo cristalino. En el grupo de los coloides situó a los que se difunden lentamente, dializan con mucha dificultad o bien no lo hacen y, al ser evaporadas las soluciones de que forman parte, quedan como residuo gomoso. El nombre coloide proviende del griego *kolas* que significa *que puede pegarse*.

Definiciones

Cristaloides

Soluciones de cloruro sódico (fisiológico), Ringer-Lactato, glucosa (glucosado), «glucosa + cloruro sódico» (glucosalino).

Coloides: albúmina.

Desde el punto de vista de su presión osmótica[1], se dividen en hipotónicas, isotónicas e hipertónicas.

Definiciones

Hematíes en un medio isotónico (izquierda), hipotónico (imagen central) e hipertónico (imagen de la derecha). Imágenes obtenidas con microscopio electrónico, procesadas para resaltar el color.

El aumento de la volemia depende directamente de la concentración de Na + en la solución. El catión sodio genera un gradiente osmótico entre los compartimentos intravascular y extravascular. Fisiológicamente, el catión Na + es predominantemente extracelular; y el catión K+ es intracelular.

Clasificación de Soluciones

Isotónica

Es una solución en la que la misma cantidad de soluto y solución está disponible dentro de la célula y fuera de la célula. La solución y el porcentaje de soluto son los mismos dentro de la célula que en la solución fuera de la célula.

Hipertónica

Es una solución que contiene más soluto que la célula que se coloca en ella.

Hipotónica

Es una solución que contiene menos soluto que la célula que se coloca en ella.

Requerimientos de Soluciones

R.N: 65-75 ml/kg/dia

Día	(ml/kg/dia)
1°	75-85
2°	85-95
3°	95-105
4°	105-115
5°	115-125
6°	125-135
7°	135-150

Guías NICE			
Día	(ml/kg/dia)		
R.N y 1°	50-60		
2°	70-80		
3°	80-100		
4°	100-120		
5°-28°	120-150		

Menores de 10 kg

120-180 ml/kg/dia.

Mayores de 10 Kg

1200-1800 mISCdía.

Superficie Corporal

Menores de 10kg

$$\frac{Peso\times 4+\ 9}{100}$$

Mayores de 10 kg

- $Peso \times 4 +7$ Peso + 90
- **GKM**: $\frac{grGT \times 1000}{1400}$ grGT= gr de glucosa Total
- GM2SC: $\frac{grGT \times 1000}{1400}$
- GKM = Peso x Requerimiento X 1440/ 1000 X 100 / concentración de sol. Glucosada / turnos.

HOLLIDAY Y SEGAR

NECESIDADES DE LIQUIDOS Y CONSUMO ENERGÉTICO No debe usarse en neonatos ya que subestima el requerimiento mínimo necesarios.

Peso Volumen líquido

10-20 kg

1000 ml + 50 ml/kg por cada kg por encima de-10 kg.

Más de 20 kg

1500ml + 20ml/kg por cada kg por encima de 20 kg

A estos líquidos de mantenimiento hay que agregarle las pérdidas extras en caso de gastroenteritis, drenajes, o ileostomías. La reposición se hará el $50\,\%$.

Requerimientos de electrolitos menor de 10 Kg MAYOR DE 10KG

Na	2-4 meq/kg/día	20-40meq/m2sc/día
K	K 1-3meq/kg/día	10-30 meq/m2sc/día
Ca	100 200mg/kg/día	100-200 mg/kg/día
Mg	0.3- 0.5 meq/kg/día	0.3- 0.5 meq/kg/día

K

(contraindicado: K elevado, Anuria, lesión renal aguda).

Observaciones

- Solución salina al 0.9 % más glucosa al 5 % (SOLUCION MIXTA): En varios estudios ha demostrado seguridad, baja posibilidad de desarrollar hiponatremia en comparación a soluciones hipotónicas, y muy bajo índice de complicaciones como hipervolemia.
- El cálculo acostumbrado de líquidos y electrólitos como lo conocemos está en desuso por el riesgo de HIPONATREMIA al estar manejando SOLUCIONES HIPOTÓNICAS.