Robot Autonomy

Lecture 6: Motion Planning I

Oliver Kroemer

Piano Mover Problem

• Given a workspace W with obstacles $O \subset W$ and a c-space C with mapping function $A(q) \subset W$ where $q \in C$ then: $C_{obs} = \{q \in C | A(q) \cap O \neq \emptyset\}$

$$C_{free} = C \setminus C_{obs}$$

• Want the robot to find a continuous path au in C_{free} from initial configuration q_i to goal configuration q_g

$$au: [0,1] o C_{free}$$
 $au(0) = q_i$
 $au(1) = q_q$

Assume that robot can move in any direction in c-space

Piano Mover Problem

Reactive Approach

- Reactive approaches: do not plan ahead, just react
- Robot can create the path as it goes along
 - Move towards the goal
 - Avoid collisions along the way

- Simple and relies mainly on local sensing and knowledge
 - Bug algorithms
 - Potential fields

Behaviour:

- Head towards goal
- Follow wall until you can move towards goal again

Behaviour:

- Head towards goal
- Follow wall until you can move towards goal again

Behaviour:

- Head towards goal
- Follow wall until you reach m-line and can move towards goal again

Behaviour:

- Head towards goal
- Follow wall until you reach m-line and can move towards goal again

Behaviour:

- Head towards goal
- Follow wall until you reach m-line closer to goal and can move towards goal again

- Variety of other Bugs (TangentBug, VisBug, ...)
 - Some use additional sensing, e.g. rangefinders

- Simple and robust behaviour
- Rely primarily on local information and sensing

- Applicable to 2D spaces (some bugs work in 3D)
 - Not suitable for robot arms
- Global information can often provide better paths

Treat robot, goal, and obstacles as having electric charge

Same Charge: Repulsion (local)

Opposite Charge:
Attraction
(global)

Treat robot, goal, and obstacles as having electric charge

Same Charge: Repulsion (local)

Opposite Charge:
Attraction
(global)

Treat robot, goal, and obstacles as having electric charge

Opposite Charge:
Attraction
(global)

Treat robot, goal, and obstacles as having electric charge

Same Charge: Repulsion

Opposite Charge: Attraction

Proposed originally (Khatib) for real-time collision avoidance

 Charged objects create a potential field Potential function:

$$U(q) \in \mathbb{R}$$

 Robot moves towards lower energetic configuration Follow negative gradient of potential:

$$-\nabla U(q)$$

$$q_{t+1} = q_t - \alpha \nabla U(q_t)$$

Attractive Field

Define quadratic field for attraction to goal

Gradient always points to goal

$$-\nabla U_{att}(q) = k_a(q_g - q)$$

Repulsive Field

Define repulsive field based on min distance to obstacles

- Potential becomes infinite at obstacle boundary
- Potential becomes zero beyond a distance of Q*
- Obstacles can create oscillations

Local Minima

Obstacles can lead to getting stuck in additional local minima

Local
Optimum

Distance to Goal

- Ideally U(q) would capture the shortest distance to goal
 - lacktriangle Minimum distance from q to q_g while avoiding obstacles
 - Follow gradient to find shortest path to goal
 - Similar principle to dynamic programming

Computing min continuous distance is generally intractable

Can approximate the shortest distance by discretization

5	4	3	2	1	2	3	4	5	6
6	5	Χ	1	0	1	2	3	4	5
7	6	Χ	Χ	1	2	3	4	5	6
8	7	Χ	Χ	Χ	Χ	Χ	Χ	6	7
9	8	Χ	Χ	Χ	Χ	Χ	Χ	7	8
10	9	Χ	Χ		15	Χ	Χ	8	9
11	10	Χ	Χ	15	14	13	Χ	9	10
12	11	Χ	Χ	14	13	12	11	10	11
13	12	13	14	15	14	13	12	11	12
14	13	14	15		15	14	13	12	13

Shortest Discretized Path

5	۷		3	2		2	3	4	5	6
6	Ę)	Χ	1	0	1	2	3	4	5
7	6		Χ	Χ	1	2	3	4	5	6
8	-		Χ	Χ	Χ	Χ	Χ	Χ	6	7
9	8		Χ	Χ	Χ	Χ	Χ	Χ	7	8
10	Q		Χ	Χ		15	Χ	Χ	8	9
11	1	O	Χ	Χ	15	14	13	Χ	9	10
12	1		Χ	Χ	14	13	12	11	10	11
13	1	2	13	14	15	14	13	12	11	12
14	1	3	14	15		15	14	13	12	13

Always move to the adjacent cell with the lowest value

5	4	3	2	1	2	3	4	5	6
6	5	Χ	1	0	1	2	3	4	5
7	6	Χ	Χ	1	2	3	4	5	6
8	7	Χ	Χ	Χ	Χ	Χ	Χ	6	7
9	8	Χ	Χ	Χ	Χ	Χ	Χ	7	8
10	9	Χ	Χ		15	Χ	Χ	8	9
11	10	Χ	Χ	15	14	13	Χ	9	10
12	11	Χ	Χ	14	13	12	11	10	11
13	12	13	14	15	14	13	12	1	12
14	13	14	15		15	14	13	12	13

Shortest Discretized Path

Always move to the adjacent cell with the lowest value

Discretization makes the path planning tractable

- Grid-based discretisation performs poorly
 - Computationally expensive
 - Does not scale to high-dimensional spaces
 - Approximate obstacles may remove potential paths

How can we "discretize" the space more efficiently?

Topological Graphs

Capture free space and connectivity using a graph structure

The graph consists of vertices and edges in free space

Topological Graphs

- Use graph to turn continuous problem into discrete one
- Define a topological graph G(V, E) as:
 - Vertices

$$v_i \in C_{free}$$

Edges

$$e_{ij} \equiv \tau : [0,1] \rightarrow C_{free}$$

Define swath of graph as all reachable configurations in graph

$$S = \bigcup_{e \in E} e([0,1]) \qquad S \subset C_{free}$$

Road Maps

- Road map is a topological graph s.t. for all $q_i \in C_{free}$ and $q_g \in C_{free}$
 - Accessibility: There is a path from q_i to some $q' \in S$

Departability:
There is a path from q_g to $q'' \in S$

Connectivity Preservation: If there is a path in C_{free} from q_i to q_g then there is a path in S from q' to q''

Combinatorial vs Sample-based Planning

Combinatorial Planning

- lacktriangle Create graph to capture connectivity of C_{free}
- lacktriangle Explicitly represent C_{obs}

Sample-based Planning

- Sample vertices in c-space to create graph
- Use collision checking to detect obstacles

Completeness

Complete:

Planner is complete if I) it always returns a solution if one exists and 2) otherwise returns a failure in bounded time

Probabilistic Complete:

Planner is probabilistic complete if the probability of a solution existing tends to zero as the number of sampled points increases and no solution is found. No time bound.

Focus on feasibility rather than optimality

Example C-Space

Vertical Decomposition

Divide c-space using vertical cuts at obstacle corners

Divides space into rectangles and trapezoids (convex)

Vertical Decomposition

• Connect adjacent cells to create roadmap (complete)

Convex cells ensure accessibility and departability

Vertical Decomposition

Connect adjacent cells to create roadmap (complete)

Convex cells ensure accessibility and departability

Divide mixed cells (obs+free) into smaller cells

Continue until not mixed, or min resolution is reached

Create graph again based on cell adjacency (not shown)

Min resolution restricts completeness of the approach

Create graph again based on cell adjacency (not shown)

Min resolution restricts completeness of the approach

Shortest path between start and goal hits the corners

• Create graph by adding edges between visible corners

• Create graph by adding edges between visible corners

• Create graph by adding edges between visible corners

Connect start and goal to visible corners

• This approach is complete and connects C_{free}

Combinatorial Planning

- Combinatorial methods for creating graphs:
 - Vertical decomposition
 - Approximate decomposition
 - Visibility graph

- Most of these methods are complete and capture C_{free}
- Intractable in higher dimensional c-spaces
- Require explicit C_{obs} representation
- Next time: probabilistic roadmaps

Questions?