

#### Cloud Data Lakes

Amir H. Payberah payberah@kth.se 2025-09-29



| Data Processing                                                 |                                                   |                              |                                                                                            |  |
|-----------------------------------------------------------------|---------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------|--|
| Graph Data Pregel, GraphLab, PowerGraph GraphX, X-Streem, Chaos |                                                   | Structured Data<br>Spark SQL | Machine Learning<br>Mllib<br>Tensorflow                                                    |  |
| Batch Data<br>MapReduce, Dryad<br>FlumeJava, Spark              | MapReduce, Dryad Sto                              |                              | Streaming Data<br>torm, SEEP, Naiad, Spark Streaming, Flink,<br>Millwheel, Google Dataflow |  |
| Data Storage                                                    |                                                   |                              |                                                                                            |  |
| Distributed<br>File Systems<br>GFS, Flat FS                     | NoSQL Databases<br>Dynamo, BigTable,<br>Cassandra |                              | Distributed<br>Messaging Systems<br>Kafka                                                  |  |
| Resource Management                                             |                                                   |                              |                                                                                            |  |
| Mesos, YARN                                                     |                                                   |                              |                                                                                            |  |
|                                                                 |                                                   |                              |                                                                                            |  |



# What Are The Challenges?



### The Biggest Challenges With Data Today

- ► Data quality
- ► Staleness
- ► Data volume
- ► Scale





### Fivetran Data Analyst Survey

- ▶ 60% reported data quality as top challenge.
- ▶ 86% of analysts had to use stale data, with 41% using data that is > 2 months old.
- ▶ 90% regularly had unreliable data sources over the last 12 months





Getting high-quality, timely data is hard!



# The Evolution of Data Management

# Data Warehouses (1980s)

► ETL (Extract, Transform, Load) data directly from operational database systems.





# Data Warehouses (1980s)

- ► ETL (Extract, Transform, Load) data directly from operational database systems.
- ► Purpose-built for SQL analytics and BI: schemas, indexes, caching, etc.





## Data Warehouses (1980s)

- ► ETL (Extract, Transform, Load) data directly from operational database systems.
- ► Purpose-built for SQL analytics and BI: schemas, indexes, caching, etc.
- Powerful management features such as ACID transactions and time travel





#### Data Warehouses - Problems (2010s)

 Could not support rapidly growing unstructured and semi-structured data: time series, logs, images, documents, etc.





#### Data Warehouses - Problems (2010s)

- Could not support rapidly growing unstructured and semi-structured data: time series, logs, images, documents, etc.
- ► High cost to store large datasets.





### Data Warehouses - Problems (2010s)

- Could not support rapidly growing unstructured and semi-structured data: time series, logs, images, documents, etc.
- ► High cost to store large datasets.
- ▶ No support for data science and ML.



# Data Lakes (2010s)

► Low-cost storage to hold all raw data, e.g., Amazon S3, and HDFS.





- ► Low-cost storage to hold all raw data, e.g., Amazon S3, and HDFS.
- ► ETL jobs then load specific data into warehouses, possibly for further ELT.



Structured, Semi-Structured & Unstructured Data



- ► Low-cost storage to hold all raw data, e.g., Amazon S3, and HDFS.
- ► ETL jobs then load specific data into warehouses, possibly for further ELT.
- ▶ Directly readable in ML libraries (e.g., TensorFlow and PyTorch) due to open file format.



Structured, Semi-Structured & Unstructured Data



## Data Lakes - Problems (Todays)

► Cheap to store all the data, but system architecture is much more complex!



Structured, Semi-Structured & Unstructured Data



### Data Lakes - Problems (Todays)

- ► Cheap to store all the data, but system architecture is much more complex!
- ► Data reliability suffers:
  - Multiple storage systems with different semantics, SQL dialects, etc.
  - Extra ETL steps that can go wrong.



Structured, Semi-Structured & Unstructured Data



# Data Lakes - Problems (Todays)

- Cheap to store all the data, but system architecture is much more complex!
- ► Data reliability suffers:
  - Multiple storage systems with different semantics, SQL dialects, etc.
  - Extra ETL steps that can go wrong.
- ► Timeliness suffers and high cost:
  - Extra ETL steps before data is available in data warehouses.
  - · Continuous ETL, duplicated storage







▶ Data Lake stores all data irrespective of the source and its structure whereas Data Warehouse stores data in quantitative metrics with their attributes.





- ▶ Data Lake stores all data irrespective of the source and its structure whereas Data Warehouse stores data in quantitative metrics with their attributes.
- ▶ Data Lake defines the schema after data is stored whereas Data Warehouse defines the schema before data is stored.





- ▶ Data Lake stores all data irrespective of the source and its structure whereas Data Warehouse stores data in quantitative metrics with their attributes.
- ▶ Data Lake defines the schema after data is stored whereas Data Warehouse defines the schema before data is stored.
- ▶ Data Lake uses the ELT process while the Data Warehouse uses ETL process.



# Lakehouse





► Lakehouse systems combine the benefits of Data Warehouses and Data Lakes while simplifying enterprise data architectures.



► Implement Data Warehouse management and performance features on top of directly-accessible data in open formats.





#### Key Technologies Enabling Lakehouse

► Metadata layers for Data Lakes





### Key Technologies Enabling Lakehouse

- ► Metadata layers for Data Lakes
- ► New query engine designs





#### Key Technologies Enabling Lakehouse

- ► Metadata layers for Data Lakes
- ► New query engine designs
- ► Declarative access for data science and ML





#### Metadata Layers for Data Lakes

► Add transactions, versioning, and more ...





#### Metadata Layers for Data Lakes

- ► Add transactions, versioning, and more ...
- ► Track which files are part of a table version to offer rich management features like transactions.





### Metadata Layers for Data Lakes

- ► Add transactions, versioning, and more ...
- ► Track which files are part of a table version to offer rich management features like transactions.
- ▶ Implemented in multiple systems, such as Delta Lake.



# New Query Engine Designs

► Great SQL performance on Data Lake storage systems and file formats.

- ► Great SQL performance on Data Lake storage systems and file formats.
- ▶ Directly-accessible file storage optimizations can enable high SQL performance:

- ► Great SQL performance on Data Lake storage systems and file formats.
- ▶ Directly-accessible file storage optimizations can enable high SQL performance:
  - Caching hot data in RAM/SSD

- ► Great SQL performance on Data Lake storage systems and file formats.
- ▶ Directly-accessible file storage optimizations can enable high SQL performance:
  - Caching hot data in RAM/SSD
  - Data layout within files to cluster co-accessed data

- ► Great SQL performance on Data Lake storage systems and file formats.
- ▶ Directly-accessible file storage optimizations can enable high SQL performance:
  - Caching hot data in RAM/SSD
  - · Data layout within files to cluster co-accessed data
  - Auxiliary data structures like statistics and indexes



#### Declarative Access for Data Science and ML

▶ New declarative interfaces for I/O enable further optimization.





#### Declarative Access for Data Science and ML

- ▶ New declarative interfaces for I/O enable further optimization.
- ► Example: Spark DataFrame API compiles to relational algebra.









▶ Delta Lake is an open source storage layer that brings reliability to Data Lakes.

- ▶ Delta Lake is an open source storage layer that brings reliability to Data Lakes.
- ▶ Provides ACID transactions.



- ▶ Delta Lake is an open source storage layer that brings reliability to Data Lakes.
- Provides ACID transactions.
- ► Provides scalable metadata handling.



- ▶ Delta Lake is an open source storage layer that brings reliability to Data Lakes.
- Provides ACID transactions.
- Provides scalable metadata handling.
- ▶ Provides time travel and versioning.



- ▶ Delta Lake is an open source storage layer that brings reliability to Data Lakes.
- Provides ACID transactions.
- Provides scalable metadata handling.
- Provides time travel and versioning.
- ▶ Unifies streaming and batch data processing.

## Delta Lake Table

▶ Delta Lake Table is a directory (e.g., mytable) that holds data objects and a log of transaction operations.

```
mytable/date=2020-01-01/1b8a32d2ad.parquet
                                                 Data objects
                       /a2dc5244f7.parquet
                                                 (partitioned
       /date=2020-01-02/f52312dfae.parquet
                                                by date field)
                       /ba68f6bd4f.parquet
       / delta log/000001.json
                   /000002.json
                   /000003.json
                                                 Log records
                   /000003.parquet
                                               & checkpoints
                   /000004.json
                   /000005.json
                   / last checkpoint
 Contains (version: "000003")
                                             Combines log
                                             records 1 to 3
 Transaction's operations, e.g.,
 add date=2020-01-01/a2dc5244f7f7.parquet
 add date=2020-01-02/ba68f6bd4f1e.parquet
```



▶ DeltaLog is a transaction log that tracks all changes that users make to the table.

- ▶ DeltaLog is a transaction log that tracks all changes that users make to the table.
- ▶ Delta Lake uses the DeltaLog for many features including ACID transactions, scalable metadata handling, time travel, etc.



When a user creates a Delta Lake Table, its DeltaLog is automatically created in the \_delta\_log subdirectory.





- When a user creates a Delta Lake Table, its DeltaLog is automatically created in the \_delta\_log subdirectory.
- ► Any changes to that table are then recorded as ordered, atomic commits in the DeltaLog.





- When a user creates a Delta Lake Table, its DeltaLog is automatically created in the \_delta\_log subdirectory.
- ► Any changes to that table are then recorded as ordered, atomic commits in the DeltaLog.
- ► Each commit is written out as a JSON file, starting with 000000.json.

```
my_table/
__delta_log/
__delta_
```



- When a user creates a Delta Lake Table, its DeltaLog is automatically created in the \_delta\_log subdirectory.
- ► Any changes to that table are then recorded as ordered, atomic commits in the DeltaLog.
- ► Each commit is written out as a JSON file, starting with 000000.json.
- ► Additional changes to the table generate subsequent JSON files in ascending numerical order, e.g., 000001.json, 000002.json, and so on.

```
my_table/
__delta_log/
__delta_
```



► Assume you add some records to a table from data files 1.parquet and 2.parquet.





- ► Assume you add some records to a table from data files 1.parquet and 2.parquet.
- ► That transaction would automatically be added to the DeltaLog, saved to disk as commit 000000.json.





- ► Assume you add some records to a table from data files 1.parquet and 2.parquet.
- ► That transaction would automatically be added to the DeltaLog, saved to disk as commit 000000.json.
- ► Then, assume remove those files and add 3.parquet instead.





- ► Assume you add some records to a table from data files 1.parquet and 2.parquet.
- ► That transaction would automatically be added to the DeltaLog, saved to disk as commit 000000.json.
- ► Then, assume remove those files and add 3.parquet instead.
- ► Those actions would be recorded as the next commit in the DeltaLog, as 000001.json.





▶ Query: delete all events data about customer no. 17





Query: delete all events data about customer no. 17



Clients now always read a consistent table version!



Query: delete all events data about customer no. 17



- ► Clients now always read a consistent table version!
  - If a client reads v2 of log, it sees file1, file2, file3 (no delete)



Query: delete all events data about customer no. 17



- ► Clients now always read a consistent table version!
  - If a client reads v2 of log, it sees file1, file2, file3 (no delete)
  - If a client reads v3 of log, it sees file1b, file2, file3b (all deleted)

► Each log record object (e.g., 000003.json) contains a commit, i.e., an array of actions recoreded as atomic, ordered units.

- ► Each log record object (e.g., 000003.json) contains a commit, i.e., an array of actions recoreded as atomic, ordered units.
- ► Change metadata: name, schema, partitioning, etc.

- ► Each log record object (e.g., 000003.json) contains a commit, i.e., an array of actions recoreded as atomic, ordered units.
- ► Change metadata: name, schema, partitioning, etc.
- ► Add/remove file: adds/removes a file

- ► Each log record object (e.g., 000003.json) contains a commit, i.e., an array of actions recoreded as atomic, ordered units.
- ► Change metadata: name, schema, partitioning, etc.
- ► Add/remove file: adds/removes a file
- ▶ Protocol evolution: upgrades the version of the transaction protocol

- ► Each log record object (e.g., 000003.json) contains a commit, i.e., an array of actions recoreded as atomic, ordered units.
- ► Change metadata: name, schema, partitioning, etc.
- ► Add/remove file: adds/removes a file
- ▶ Protocol evolution: upgrades the version of the transaction protocol
- ▶ Set transaction: records an idempotent transaction id

- ► Each log record object (e.g., 000003.json) contains a commit, i.e., an array of actions recoreded as atomic, ordered units.
- ► Change metadata: name, schema, partitioning, etc.
- ► Add/remove file: adds/removes a file
- ▶ Protocol evolution: upgrades the version of the transaction protocol
- ▶ Set transaction: records an idempotent transaction id
- ► Commit info: information around commit for auditing

► Every table is the result of the sum of all of the commits recorded in the Delta Lake DeltaLog.

- Every table is the result of the sum of all of the commits recorded in the Delta Lake DeltaLog.
- ► The DeltaLog provides a step-by-step instruction guide, detailing exactly how to get from the table's original state to its current state.

- Every table is the result of the sum of all of the commits recorded in the Delta Lake DeltaLog.
- ► The DeltaLog provides a step-by-step instruction guide, detailing exactly how to get from the table's original state to its current state.
- ▶ Thus, we can recreate the state of a table at any point in time.

- Every table is the result of the sum of all of the commits recorded in the Delta Lake DeltaLog.
- ► The DeltaLog provides a step-by-step instruction guide, detailing exactly how to get from the table's original state to its current state.
- ▶ Thus, we can recreate the state of a table at any point in time.
  - Starting with an original table, and processing only commits made prior to that point.

- Every table is the result of the sum of all of the commits recorded in the Delta Lake DeltaLog.
- ► The DeltaLog provides a step-by-step instruction guide, detailing exactly how to get from the table's original state to its current state.
- ▶ Thus, we can recreate the state of a table at any point in time.
  - Starting with an original table, and processing only commits made prior to that point.
- ► This ability is known as time travel or data versioning.



#### Use Cases - Data Lineage and Debugging

► The Delta Lake DeltaLog offers users a verifiable data lineage.



#### Use Cases - Data Lineage and Debugging

- ► The Delta Lake DeltaLog offers users a verifiable data lineage.
- ▶ It is is useful for governance, audit and compliance purposes.



#### Use Cases - Data Lineage and Debugging

- ► The Delta Lake DeltaLog offers users a verifiable data lineage.
- ▶ It is is useful for governance, audit and compliance purposes.
- ▶ It can also be used to trace the origin of an inadvertent change or a bug in a pipeline back to the exact action that caused it.





▶ Data is always evolving and accumulating.



- ▶ Data is always evolving and accumulating.
- ► So, structure of data evolves over time.



- ▶ Data is always evolving and accumulating.
- ► So, structure of data evolves over time.
- ▶ With Delta Lake, as the data changes, incorporating new dimensions is easy.



- ▶ Data is always evolving and accumulating.
- ► So, structure of data evolves over time.
- ▶ With Delta Lake, as the data changes, incorporating new dimensions is easy.
- ► Schema enforcement: prevents users from accidentally polluting their tables with mistakes or garbage data.



- ▶ Data is always evolving and accumulating.
- ► So, structure of data evolves over time.
- ▶ With Delta Lake, as the data changes, incorporating new dimensions is easy.
- ► Schema enforcement: prevents users from accidentally polluting their tables with mistakes or garbage data.
- ▶ Schema evolution: enables automatic addition of columns when desired.

- ► Spark DataFrames contain the schema.
- ▶ With Delta Lake, the table's schema is saved in JSON format inside the DeltaLog.

```
schemaString: {"type":"struct","fields":[
    {"name":"loan_id","type":"long","nullable":false,"metadata":{}},
    {"name":"funded_amnt","type":"integer","nullable":true,"metadata":{}},
    {"name":"paid_amnt","type":"double","nullable":true,"metadata":{}},
    {"name":"addr_state","type":"string","nullable":true,"metadata":{}}]}
```

# Schema Enforcement

► Schema enforcement (a.k.a schema validation) occurs on write.

- ► Schema enforcement (a.k.a schema validation) occurs on write.
- ▶ If the schema is not compatible, Delta Lake cancels the transaction, i.e., no data is written.

- ► Schema enforcement (a.k.a schema validation) occurs on write.
- ▶ If the schema is not compatible, Delta Lake cancels the transaction, i.e., no data is written.
- ▶ As well, Delta Lake raises an exception to let the user know about the mismatch.

# Schema Enforcement Rules

▶ Rule 1: cannot contain any additional columns that are not present in the target table's schema.

- ▶ Rule 1: cannot contain any additional columns that are not present in the target table's schema.
- ▶ Rule 2: cannot have column data types that differ from the column data types in the target table.

- ▶ Rule 1: cannot contain any additional columns that are not present in the target table's schema.
- ▶ Rule 2: cannot have column data types that differ from the column data types in the target table.
- ▶ Rule 3: Can not contain column names that differ only by case.



► Schema evolution allows users to change a table's current schema to accommodate data that is changing over time.

- ► Schema evolution allows users to change a table's current schema to accommodate data that is changing over time.
- ► Most commonly used operations for append and overwrite.



### Delta Lake and Spark



#### Loading Data into a Delta Lake Table (1/2)

► All you need to migrate any of the structured data formats (e.g., Parquet) to Delta Lake is to use format("delta").

```
// Configure source data and Delta Lake path
val sourcePath = "loan-risks.snappy.parquet"
val deltaPath = "loans_delta"

// Create the Delta table with the same loans data
spark.read.format("parquet").load(sourcePath).write.format("delta").save(deltaPath)

// Create a view on the data called loans_delta
spark.read.format("delta").load(deltaPath).createOrReplaceTempView("loans_delta")
```



#### Loading Data into a Delta Lake Table (2/2)

```
// Read and explore the data
spark.sql("SELECT count(*) FROM loans_delta").show()
+----+
|count(1)|
  14705 l
// First 3 rows of loans table
spark.sql("SELECT * FROM loans_delta LIMIT 3").show()
______
|loan_id|funded_amnt|paid_amnt|addr_state|
 ------
     01
       1000| 182.22|
                             CAI
       1000| 361.19|
                             WAI
          1000
                176.26
                             TX
```



#### Loading Data Streams into a Delta Lake Table

➤ You can modify your existing Structured Streaming jobs to write to and read from a Delta Lake table by setting the format to "delta".



#### Loading Data Streams into a Delta Lake Table

➤ You can modify your existing Structured Streaming jobs to write to and read from a Delta Lake table by setting the format to "delta".

```
import org.apache.spark.sql.streaming._
// Streaming DataFrame with new loans data
val newLoanStreamDF = ...

// Directory for streaming checkpoints
val checkpointDir = ...

val streamingQuery = newLoanStreamDF.writeStream
.format("delta")
.option("checkpointLocation", checkpointDir)
.trigger(Trigger.ProcessingTime("10 seconds"))
.start(deltaPath)
```

▶ All writes to a Delta Lake table can verify whether the data being written has a schema compatible with that of the table.

```
val loanUpdates = Seq(
    (1111111L, 1000, 1000.0, "TX", false),
    (2222222L, 2000, 0.0, "CA", true))
.toDF("loan_id", "funded_amnt", "paid_amnt", "addr_state", "closed")

loanUpdates.write.format("delta").mode("append").save(deltaPath)

// The exception message:
// This write will fail with the following error message:
// org.apache.spark.sql.AnalysisException: A schema mismatch detected when writing
// to the Delta table (Table ID: 48bfa949-5a09-49ce-96cb-34090ab7d695).
```

- ▶ All writes to a Delta Lake table can verify whether the data being written has a schema compatible with that of the table.
- ▶ If it is not compatible, Spark will throw an error before any data is written and committed to the table.

```
val loanUpdates = Seq(
    (1111111L, 1000, 1000.0, "TX", false),
    (2222222L, 2000, 0.0, "CA", true))
.toDF("loan_id", "funded_amnt", "paid_amnt", "addr_state", "closed")

loanUpdates.write.format("delta").mode("append").save(deltaPath)

// The exception message:
// This write will fail with the following error message:
// org.apache.spark.sql.AnalysisException: A schema mismatch detected when writing
// to the Delta table (Table ID: 48bfa949-5a09-49ce-96cb-34090ab7d695).
```

► A new column can be explicitly added by setting the option mergeSchema to true.

```
loanUpdates.write.format("delta").mode("append")
   .option("mergeSchema", "true")
   .save(deltaPath)
```



#### Transforming Existing Data - Updating Data

▶ Delta Lake supports UPDATE, DELETE, and MERGE commands



#### Transforming Existing Data - Updating Data

- ▶ Delta Lake supports UPDATE, DELETE, and MERGE commands
- ► They ensure ACID guarantees.



#### Transforming Existing Data - Updating Data

- ▶ Delta Lake supports UPDATE, DELETE, and MERGE commands
- ► They ensure ACID guarantees.
- ► Assume we want to change all addr\_state = 'OR' to addr\_state = 'WA' in a table.

```
import io.delta.tables.DeltaTable
import org.apache.spark.sql.functions._

val deltaTable = DeltaTable.forPath(spark, deltaPath)

deltaTable.update(
    col("addr_state") === "OR",
    Map("addr_state" -> lit("WA")))
```



#### Transforming Existing Data - Deleting Data

▶ Deleting user data from all tables.

```
val deltaTable = DeltaTable.forPath(spark, deltaPath)

deltaTable.delete("funded_amnt >= paid_amnt")
```



#### Auditing Data Changes with Operation History

- ▶ All of the changes are recorded as commits in the table's DeltaLog.
- Every operation is automatically versioned.
- You can query the table's operation history.

```
deltaTable
    .history(3)
    .select("version", "timestamp", "operation", "operationParameters")
    .show(false)
```



#### Querying Previous Snapshots of a Table with Time Travel

➤ You can query previous versioned snapshots of a table by using the DataFrameReader options versionAsOf and timestampAsOf.

```
spark.read.format("delta")
    .option("timestampAsOf", "2020-01-01") // timestamp after table creation
    .load(deltaPath)

spark.read.format("delta")
    .option("versionAsOf", "4")
    .load(deltaPath)
```



# Summary





- ▶ J. S. Damji et al., "Learning Spark Lightning-Fast Data Analytics", O'Reilly Media, 2020 Chapters 9
- M. Armbrust et al., "Lakehouse: A New Generation of Open Platforms that Unify Data Warehousing and Advanced Analytics", CIDR 2021
- ▶ M. Armbrust et al., "Delta Lake: High-Performance ACID Table Storage over Cloud Object Stores", VLBD 2020



## Questions?

#### Acknowledgements

Some content and images are derived from Jules S. Damji, Andreas Neumann, Burak Yavuz, and Denny Lee slides from Databricks.