## Agenda

- 1. Probability distributions
- 2. Summarizing random variables
- 3. Sampling from distributions

## A discrete distribution

# Probability mass function (PMF) Sum of two fair dice





Support: integers from 2 to 12 (discrete)

## A continuous distribution

## Probability density function (PDF)



Time between Metro arrivals,  $(\lambda=1/12)$ 



**Support**: non-negative, real [0,∞)

#### A discrete bivariate distribution

#### **Contingency table**

 $X_1$ 

Questions measuring authoritarian attitudes



|                                                                                        |       | Women should have to promise to obey their husbands when they get married. |          |
|----------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------|----------|
|                                                                                        |       | Agree                                                                      | Disagree |
| Gays and lesbians are just as healthy and moral as anybody else.  Gays and Agree Agree | Agree | 0.05                                                                       | 0.53     |
|                                                                                        | 0.33  | 0.09                                                                       |          |

Joint distributions measure probability across multiple variables and the association between those variables

$$Pr(X_1=A, X_2=A) = 0.05$$
  $Pr(X_1=A, X_2=D) = 0.53$ 

$$Pr(X_1=D, X_2=A) = 0.33$$
  $Pr(X_1=D, X_2=D) = 0.09$ 

### A discrete bivariate distribution





Conditional probability: measures probability of one variable in a joint distribution, holding the other constant

|                                       | Agree                  | Disagree    |
|---------------------------------------|------------------------|-------------|
|                                       | $\frac{0.33}{}$ = 0.79 | 0.09        |
| $Pr(X_2 \mid X_1 = D) x_1 = Disagree$ | 0.33 + 0.09 $-0.79$    | 0.33 + 0.09 |

#### A discrete bivariate distribution





Marginal probability: measures probability of one variable in a joint distribution, across all possible values of the other

|           | Agree             | Disagree           |
|-----------|-------------------|--------------------|
| $Pr(X_2)$ | 0.5 + 0.33 = 0.38 | 0.53 + 0.09 = 0.62 |

### A continuous bivariate distribution



$$X \sim \text{Norm} \left( \mu = (0, 2), \Sigma = \begin{bmatrix} 1.2 & 0.5 \\ 0.5 & 0.8 \end{bmatrix} \right)$$

## Some common distributions

|                      | Туре       | Parameters | Support            |
|----------------------|------------|------------|--------------------|
| Binomial             | Discrete   | n, p       | {0,, <i>n</i> }    |
| Poisson              | Discrete   | λ          | {0,1,2,}           |
| Geometric            | Discrete   | р          | {0,1,2,}           |
| Normal<br>(Gaussian) | Continuous | μ, σ       | $(-\infty,\infty)$ |
| Cauchy               | Continuous | Χο, γ      | $(-\infty,\infty)$ |
| Beta                 | Continuous | α, β       | [0,1]              |
| Exponential          | Continuous | λ          | [0,∞)              |
|                      |            |            |                    |

(Statisticians have devised and named *many* distributions over time. See <a href="https://en.wikipedia.org/wiki/List">https://en.wikipedia.org/wiki/List</a> of probability distributions for an incomplete list)

## Describing models

A language for describing probabilistic models Using probability distributions to link our (known) data with our (unknown) parameters allows succinct communication



## Describing models

A language for describing probabilistic models Using probability distributions to link our (known) data with our (unknown) parameters allows succinct communication

#### Example from last week:

Estimating the unemployment rate p from count of unemployed (Y) in our sample of *n* individuals

$$Y \sim \text{Binom}(n, p)$$

$$p \sim \text{Unif}(0,1)$$

$$Y \sim \text{Binom}(n, p)$$

Changes to model are clear  $p \sim \text{Beta}(1.01, 1.01)$ 

$$p \sim \text{Beta}(1.01, 1.01)$$

#### A note on likelihood



# Posterior and prior are distributions over *p*:

Posterior tells us "probability of any p, given the data"

Prior tells us "probability of any p, a priori"

When we plot posterior and prior for values of *p*, we see a valid probability distribution

# Likelihood is a distribution over the *data*:

Likelihood tells us "probability of the data, given any p"

When we calculate that probability across values of p, it is not a proper probability distribution

Measure of how surprised we would be by our data for all possible values of *p* 

## Summarizing distributions

Communicating the shape of a distribution Probability distributions like those that result from Bayesian analysis are complex



## Summarizing distributions

#### **Point summaries**

Describe the "center" of the distribution Mean, median, and mode all have different meanings



## Summarizing distributions





#### **Credible intervals**

Describe the "spread" of the distribution

Percentile intervals leave the same amount on either end of the distribution

Highest posterior density intervals find the narrowest possible interval