SPHERICAL COORDINATE SYSTEM

Our motivation for spherical coord. system
Our motivation for spherical coord. System is mostly for expressing comera position in world space.
in world space.
To express P(x, y, z) in terms of P(r, o, o) from fig 1:
from fig 1:
$x^2 = x^2 + y^2 + 7^2$; $y = \sqrt{x^2 + y^2 + 2^2}$
$y^2 = n^2 + y^2 + 2^2$; $y = \sqrt{n^2 + y^2 + 2^2}$ $tan \theta = \frac{Z}{x}$; $\theta = tan^2(\frac{Z}{x})$
(oct) - 4 · (b = Coc-1/4)
$(\cos \phi - \frac{y}{\sqrt{x^2 + y^2 + 2^2}}; \phi = (\cos^{-1}(\frac{y}{\sqrt{x^2 + y^2 + 2^2}})$
To overes Ply A ds in terms of Plan u >
To express $P(x, \theta, \phi)$ in terms of $P(x, y, z)$, from Fig 1: $y = x \log \phi$
, from the state of
J- 0 ws 4
op' = 8 Sin o
0 - 00/ (A - x (1- A (-, C)
$n = OP' (od \theta = rSind (os \theta)$
y = op' Sind = r Sind Sind