Projeto 4: Prevendo o Risco de Calote

Passo 1: Entendimento de negócios e dados

Decisões chave:

1. Que decisões precisam ser tomadas?

Se um empréstimo deve ser concedido ou não.

2. Que dados são necessários para informar essas decisões?

Ocupação atual, histórico de pagamento, propósito do empréstimo, reserva atual, valor do patrimônio atual, prazo para pagamento e quaisquer outros dados que possam ilustrar a saúde financeira atual do cliente.

3. Que tipo de modelo (Contínuo, Binário, Não-Binário, Time-Series) precisamos usar para ajudar a tomar essas decisões?

Modelo binário.

Passo 2: Construindo o Conjunto de Treinamento

1. Em seu processo de limpeza, quais campos você removeu ou imputou? Por favor, justifique por que você removeu ou imputou esses campos. As visualizações são incentivadas.

No processo de limpeza foi rodado um field summary e uma association analysis, levando a exclusão dos campos abaixo:

- 1. Telephone
- I elephone
 No-of-dependents
 Coccupation
 Concurrent-Credits
- 3. Guarantors
- 4. Foreign-worker
- Occupation
- 7. Duration-in-Current-address

A variável 1 foi excluída por não haver razão lógica de a mesma influenciar no modelo.

Já as variáveis 2 a 6, não serão mantidas por possuírem baixa variabilidade, como pode ser visto nos histogramas abaixo.

Por fim, foi excluída a variável **7** (*Duration-in-Current-address*), por conta da alta taxa de dados faltantes (69%).

Além da exclusão dos campos citados, a variável *Age-years* apresentou 2% dos registros com dados faltantes, que foram imputados com a média das outras observações, conforme instrução prévia.

Não foi encontrado nenhum caso de alta correlação interna entre as possíveis variáveis preditoras.

Passo 3: Treinar seus Modelos de Classificação

Regressão Logística:

1. Quais variáveis preditoras são significativas ou as mais importantes? Por favor, mostre os p-values ou gráficos de importância para todas as suas variáveis de previsão.

As variáveis mais importantes foram *Account.balance*, *Purpose*, *Credit.Amout e Instalment.Per.Cent*

Coefficients:				
	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.9621914	6.837e-01	-4.3326	1e-05 ***
Account.BalanceSome Balance	-1.6053228	3.067e-01	-5.2344	1.65e-07 ***
Payment.Status.of.Previous.CreditPaid Up	0.2360857	2.977e-01	0.7930	0.42775
Payment.Status.of.Previous.CreditSome Problems	1.2154514	5.151e-01	2.3595	0.0183 *
PurposeNew car	-1.6993164	6.142e-01	-2.7668	0.00566 **
PurposeOther	-0.3257637	8.179e-01	-0.3983	0.69042
PurposeUsed car	-0.7645820	4.004e-01	-1.9096	0.05618.
Credit.Amount	0.0001704	5.733e-05	2.9716	0.00296 **
Length.of.current.employment4-7 yrs	0.3127022	4.587e-01	0.6817	0.49545
Length.of.current.employment< 1yr	0.8125785	3.874e-01	2.0973	0.03596 *
Instalment.per.cent	0.3016731	1.350e-01	2.2340	0.02549 *
Most.valuable.available.asset	0.2650267	1.425e-01	1.8599	0.06289.

Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial taken to be 1)

Null deviance: 413.16 on 349 degrees of freedom Residual deviance: 328.55 on 338 degrees of freedom McFadden R-Squared: 0.2048, AIC: 352.5

Record Report

Response: Credit.Application.Result

	LR Chi-Sq	DF	Pr(>Chi-Sq)
Account.Balance	31.129	1	2.41e-08 ***
Payment.Status.of.Previous.Credit	5.687	2	0.05823.
Purpose	12.225	3	0.00665 **
Credit.Amount	9.882	1	0.00167 **
Length.of.current.employment	5.522	2	0.06324 .
Instalment.per.cent	5.198	1	0.02261 *
Most.valuable.available.asset	3.509	1	0.06104.

Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2. Valide seu modelo em relação ao conjunto de Validação. Qual foi a porcentagem geral de precisão? Mostre a matriz de confusão. Existe algum viés (bais) nas previsões do modelo?

O modelo tem precisão geral de 76%, com leve viés para taxações Creditworthy.

Confusion matrix of SW_Credit		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	92	23
Predicted_Non-Creditworthy	13	22

Árvore de Decisão:

1. Quais variáveis preditoras são significativas ou as mais importantes? Por favor, mostre os p-values ou gráficos de importância para todas as suas variáveis de previsão.

As variáveis usadas no modelo foram: Account.Balance Duration.of.Credit.Month Value.Savings.Stocks.

Variable Importance

2. Valide seu modelo em relação ao conjunto de Validação. Qual foi a porcentagem geral de precisão? Mostre a matriz de confusão. Existe algum viés (bais) nas previsões do modelo?

O modelo tem precisão geral de 75%, com leve viés para taxações Creditworthy.

Confusion matrix of DT_Credit		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	91	24
Predicted_Non-Creditworthy	14	21

Modelo de Floresta:

1. Quais variáveis preditoras são significativas ou as mais importantes? Por favor, mostre os p-values ou gráficos de importância para todas as suas variáveis de previsão.

As variáveis de maior importância foram: *Credit.Amount, Age_Years* e *Duration.of.Credit.Month.*

2. Valide seu modelo em relação ao conjunto de Validação. Qual foi a porcentagem geral de precisão? Mostre a matriz de confusão. Existe algum viés (bais) nas previsões do modelo?

O modelo tem precisão geral de 80% e não apresentou viés contra o conjunto de validação.

Confusion matrix of FM_Credit		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	102	27
Predicted_Non-Creditworthy	3	18

Boosted Model:

1. Quais variáveis preditoras são significativas ou as mais importantes? Por favor, mostre os p-values ou gráficos de importância para todas as suas variáveis de previsão

As variáveis de maior importância foram: Account. Balance e Credit. Amount.

2. Valide seu modelo em relação ao conjunto de Validação. Qual foi a porcentagem geral de precisão? Mostre a matriz de confusão. Existe algum viés (bais) nas previsões do modelo?

O modelo tem precisão geral de 79% e não apresentou viés contra o conjunto de validação.

Confusion matrix of BM_Credit		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	100	27
Predicted_Non-Creditworthy	5	18

Step 4: Escrita

Responda estas perguntas:

- 1. Qual modelo você escolheu usar? Por favor, justifique sua decisão usando apenas as seguintes técnicas:
 - a. Precisão geral contra o seu conjunto de validação
 - b. Exatidão dentro dos segmentos "Creditworthy" e "Non-Creditworthy"
 - c. Gráfico ROC
 - d. Bias nas Matrizes de Confusão

Nota: Lembre-se de que seu chefe só se preocupa com a precisão das previsões para os segmentos Credityworth e Non-Creditworthy.

Com base na acurácia geral apresentada pelos modelos, a disputa ficou entre o Modelo de Floresta e o Modelo Boosted.

Com isto em mente, ao analisar a acurácia dentro dos segmentos para os dois modelos, observamos que o Modelo de Floresta apresenta melhor acurácia na previsão de clientes *Non-Creditworthy*, reduzindo a chance de concessão de crédito a maus pagadores (falsos positivos).

Fit and er	ror measure	es			
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy
DT_Credit	0,7467	0,8273	0,7054	0,7913	0,6000
FM_Credit	0,8000	0,8718	0,7379	0,7907	0,8571
BM_Credit	0,7867	0,8621	0,7526	0,7874	0,7826
SW_Credit	0,7600	0,8364	0,7306	0,8000	0,6286

Ao observarmos a matriz de confusão, percebemos que os modelos apresentam resultados bastante similares, sem exibir nenhum viés claro.

Confusion matrix of BM_Credit		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	100	27
Predicted_Non-Creditworthy	5	18
Confusion matrix of FM_Credit		
Confusion matrix of FM_Credit	Actual_Creditworthy	Actual_Non-Creditworthy
Confusion matrix of FM_Credit Predicted_Creditworthy	Actual_Creditworthy	Actual_Non-Creditworthy

Outro ponto a ser observado é que, apesar de o Modelo Boosted alcançar um patamar alto mais rapidamente na curva ROC, podemos ver que os resultados finais dos AUCs foram bem similares, com leve vantagem para o Modelo Boosted (+0,015)

Assim sendo, acredito que o **Modelo de Floresta seja a melhor opção** por uma leve margem, já que apresenta uma acurácia ligeiramente maior.

2. Quantos indivíduos são bons pagadores?

Usando o modelo de floresta, 412.