СМАЧНЕЙШАЯ 2 КР ЛИНАЛ

ИТМО. 2 семестр. Переписывание контрольной работы №2. 16.05.2023

- 1. Являются ли следующие отображение $\varphi: \mathbb{R}^4 \to \mathbb{R}^5$ линейным? Если является, то запишите его матрицу в стандартных базисах пространств. $\varphi(x_1,x_2,x_3,x_4)=(3x_2,x_1-x_3,5x_2-x_1+x_4,x_4+x_3+x_2,-7x_2+z_3)$
- 2. Приведите квадратичную форму $f(x_1, x_2, x_3, x_4, x_5) = 4x_1x_5 + 3x_2x_5 + 2x_3x_4 + 5x_4^2$ к диагональному виду невырожденным преобразованием переменных.
- 3. Пусть e_1,\dots,e_n базис линейного пространства V над полем $\mathbb R$. Докажите, что $e_1+e_2,e_1+e_3,\dots,e_1+e_n$ тоже базис V
- 4. Линейные подпространства V_1 и V_2 линейного пространства V таковы, что $V=V_1\oplus V_2$. Пусть $a,b\in V$. Докажите, что аффинные подпространства V_1+a и V_2+b пересекаются ровно по одному вектору.
- 5. Пусть V конечномерное линейное пространство над полем \mathbb{C} , а оператор $\varphi \in \operatorname{End}(\mathsf{V})$ таков, что $\varphi^3 = \varphi + 1$. Докажите, что собственные числа φ могут принимать не более чем три значения.
 - 1. Являются ли следующие отображения $\varphi : \mathbb{R}^4 \to$ линейными:
 - a) $\varphi(x_1, x_2, x_3, x_4) = (x_2, x_1 + x_3, 5x_4 x_1);$
 - 6) $\varphi(x_1, x_2, x_3, x_4) = (x_1, x_2^3, x_3^2, x_4)$?

Для тех отображений, что являются линейными, запишите их матрицы в стандартных базисах пространств.

- 2. Приведите квадратичную форму $f(x_1,x_2,x_3,x_4,x_5,x_6)=2x_1x_6+3x_2x_5+2x_3x_4+5x_6^2$ к диагональному виду невырожденным преобразованием переменных.
- 3. Пусть e_1,\ldots,e_n базис линейного пространства V над полем $\mathbb R$. При каких $n\in\mathbb N$ $e_1+e_2,e_2+e_3,\ldots,e_n+e_1$ тоже базис V?
- **4.** Пусть V линейное пространство над \mathbb{R} , W его аффинное, но не линейное подпространство, а $e_1, e_2, \ldots, e_n \in W$. Пусть числа $\alpha_1,\ldots,\alpha_n\in\mathbb{R}$ таковы, что $\alpha_1e_1+\ldots+\alpha_ne_n\in W.$ Докажите, что $\alpha_1+\ldots+\alpha_n=1.$
- 5. Дана матрица $A\in M_{m,n}(K)$ и матрицы $B,C\in M_{n,m}(K)$. Оказалось, что $AB=E_m$ и $CA=E_n$. Докажите, что
 - 6. Матрица $A \in M_n(K)$ обратима. Докажите, $\chi_{A \cdot A^T} = \chi_{A^T \cdot A}$.
- 7. Пусть $\dim V=n, \ x\in V$ и $\varphi\in \mathrm{End}(\mathrm{V})$ таковы, что вектора $\varphi(x), \ \varphi^2(x), \dots, \ \varphi^n(x)$ линейно независимы. Докажите, что φ обратим. . No 02 05 2023
- 1.1) да, является, просто проверить. Матрица вот
- 0 3 0 0
- 1 0 -1 0
- -1501
- 0111
- 0-7 1 0
- 1.3) Я так понимаю тут карпов опечатался и в базисе должно быть e1, e1 + e2, ..., e1 + en (иначе задача лажа). Решение: просто предположить р-во нулю, все коэфф будут = 0
- 1.4) пусть a \in V2, b \in V1. Случай когда a \in V1 и b \in V2 очев (пространство при сдвиге перешло само в себя)

Очев один элемент в пересечении это а + b, пусть есть еще один: v1 + a = v2 + b, v1 \in V1, v2 \in V2 v1 - v2 = b - a

НУО v1 - v2 \in V1

(v1 - v2 = b - a; b - a \in V; V поделено на два подпространства; V1 и V2; и в каком-то одном лежит b - а (тк V1 и V1 пересекаются только в нуле, а если b = а то это неинтересный случай); пусть лежит в V1) но тогда a \in V1 - противоречие с критерием прямой суммы

1.5) пусть \alpha - собственное число. Заметим что $\phi^3(x) = \alpha^3 x$ Тогда по условию \alpha^3 = \alpha + 1 - над С не более 3 разных корней, чтд

- 2.1) а) да, б) нет
- 2.2)

- 2.3) Просто посчитать определитель матрицы соответствующей новому базису, он 1 + (-1)^n. Ответ: при нечетных 🛨
- 2.4) Пусть e_i = a + p_i, где p_i \in V. \alpha_1 * e_1 + ... + \alpha_n * e_n \in W a(\alpha_1 + ... + \alpha_n) + \alpha_1 * p1 + ... + \alpha_n * pn \in W Пусть \alpha_1 + ... + \alpha_n = b, HУО b > 1, \alpha_1 * $p1 + ... + \alpha pha_n * pn = v \in V$ тогда ab + $v = a(n + 1) + v \in W$, значит an in V => a in V, тогда W - линейное – противоречие
- 2.5) Pas AB = E_m, то A обратимая матрица и A^-1 = B. Так как $CA = E_n$, то $CA*B = E_n * B$ (она n на m, умножение норм), C = B, значит $C = A^{-1}$. $m = rk(E_m) = rk(AB) \le min(rk(A), rk(B)) = rk(A) > m$ $n = rk(E_n) = rk(CA) \le min(rk(C), rk(A)) \Longrightarrow rk(A) \ge n$ Однако A $\lim M_m, n \Rightarrow rk(A) \leq min(n, m)$ => n=m (n <= rk(A) <= min(n, m) => n <= m) $(m \le rk \le n \le m)$

2.7)

\phi - сюръекция, а так как у нас оператор, то и биекция. А биекция обратима

Пусть
$$P=a+U$$
, $Q=b+V$ — аффинные подпространства пространства V . Дано:

$$W = P \cap Q \neq \emptyset$$
.

Докажем, что W — аффинное подпространство.

Выберем $c \in W$. Тогда $c \in P$ и $c \in Q$, то есть:

$$P = c + U$$
, $Q = c + V$.

Тогда их пересечение:

$$W = P \cap Q = c + (U \cap V).$$

Так как $U\cap V$ — линейное подпространство, то Wимеет вид c+ (линейное подпространство), а значит, является аффинным подпространством.

$$W = c + (U \cap V) \Rightarrow W$$
 — аффинное

2. Построение матрицы перехода

Рассмотрим матрицу A, столбцы которой — координаты новых векторов в базисе $\{e_i\}$:

Эта матрица циркулянтная, и её определитель можно вычислить явно.

ИТМО. 2 семестр. Контрольная работа леж. 1. Являются ли следующие отображения $\varphi: \mathbb{R}^4 o$ линейными:

- a) $\varphi(x_1, x_2, x_3, x_4) = (x_2, x_1 x_3, 2x_4 x_2);$
- 6) $\varphi(x_1, x_2, x_3, x_4) = (x_1, x_2^2, x_3^3, x_4^3)$?
- Для тех отображений, что являются линейными, запишите их матрицы в стандартных базисах пространств. 2. Пусть U,V — конечномерные линейные пространство, U_1 и U_2 — подпространства U,V_1 и V_2 — подпространства

V, а $\varphi:U\to V$ — линейное отображение. Докажите верное из следующих двух равенств. Неверное равенство замените на подходящее включение и докажите это включение, к неверному включению постройте контриример.

- a) $\varphi(U_1 + U_2) = \varphi(U_1) + \varphi(U_2);$
- 6) $\varphi^{-1}(V_1 + V_2) = \varphi^{-1}(V_1) + \varphi^{-1}(V_2)$.
- 3. Пусть V конечномерное линейное пространство пад полем $\mathbb C$, а оператор $\varphi \in \operatorname{End}(\mathbb V)$ таков, что $\varphi^k = 0$ для некоторого патурального числа k. Найдите собственные числа оператора φ .
 - 4. Матрица $A \in M_{m,n}(K)$ такова, что $A \cdot A^T$ обратима. Чему может быть равен $\operatorname{rk}(A)$?
- 5. Пусть P и Q аффинные подпространства линейного простраства V , а $W=P\cap Q$ непусто. Докажите, что Wтакже аффинное подпространство V.
- 6. Пусть V линейное подпространство \mathbb{F}_2^n (напомним, что $\mathbb{F}_2 = \{0,1\}$ поле вычетов по модулю 2, а \mathbb{F}_2^n множество из всех векторов-столбцов, каждый из которых состоит из n нулей и единиц). Весом век- тора из F_2^n называется сумма его коэффициентов. Сколько может быть в V векторов нечетного веса?

3.1) а) да, б) нет

3.2)

3.3)
$$\phi(x) = \lambda x$$

 $\phi(x)^2 = \lambda * \phi(x) = \lambda^2 * x$

 $\phi(x) ^k = \lambda ^k x = 0 => \lambda = 0$

3.4) Пусть А^Т = В (лень писать символы). АВ обратима, значит rk(AB) = n. Мы знаем что rk(A), rk(B)<= n, но n = rk(AB) <= min(rk(A), rk(B)) <= n, значит rk(A) = n

Во втором у меня тут получилось, что а) верно, т.к. для любого и из U_1+U_2 верно $\varphi(u)=$ $\varphi(u_1)+\varphi(u_2)$, а это входит в $\varphi(U_1)+\varphi(U_2)$; также для любых u_1 из U_1 и u_2 из U_2 справедливо $\varphi(u_1)+\varphi(u_2)=\varphi(u_1+u_2)$, а это входит в $\varphi(U_1+U_2)$. В таком случае, б) неверно, а правильное утверждение там - $\varphi^{\{-1\}}(V_1+V_2)$ является надмножеством $\varphi^{\{-1\}}(V_1)$ + $\varphi^{(-1)}(V_2)$. Идея в том, что для любых v_1 из V_1 и v_2 из V_2 справедливо $\varphi^{(-1)}(v_1)+\varphi^{(-1)}(v_2)=u_1+u_2=u$, и при этом $\varphi^{(-1)}(v_1)+\varphi^{(-1)}(v_2)=\varphi^{(-1)}(v_1+v_2)$, то есть все возможные u из U, такие, что $\varphi^{\{-1\}}(v_1) + \varphi^{\{-1\}}(v_2) = u$, автоматически являются прообразами и для $v_1 + v_2$, а значит, $\varphi^{\{-1\}}(V_1)+\varphi^{\{-1\}}(V_2)$ является подмножеством $\varphi^{\{-1\}}(V_1+V_2)$. Обратное может быть неверно, так как могут существовать такие v_1 из V_1 и v_2 из V_2 , что их прообразов не существует (и, соответственно, не существует такого u из U, что $u=\varphi^{\{-1\}}(v_1)+\varphi^{\{-1\}}(v_2))$, но существует прообраз v_1+v_2 , так что в $\varphi^{\{-1\}}(V_1+V_2)$ существует элемент, которого нет в $arphi^{\{-1\}}(V_1) + arphi^{\{-1\}}(V_2)$. Контрпример в голову приходит такой: пусть V - это трёхмерное пространство, U - одномерное, $\varphi((u_1))=(u_1,0,0),$ $V_1=\{(x,y,0)\},$ $V_2=\{(0,y,z)\},$ тогда v_1 из V_1 и v_2 из V_2 , у которых у не равно 0, не имеют прообразов, но если они обратны друг другу по сложению (а ещё z у v_2 равен 0), то $v_1+v_2=(x,0,0)$ - элемент, имеющий прообраз