Time will explain.

Jane Austen, Persuasion

Neural Language Models

LSTM

Dr. Uzair Ahmad

Long Short-Term Memories (LSTM)

- Forget
- Input / Store
- Cell State Update
- Output

Forget

$$f_t = \sigma(w_{fx}x_t + w_{fh}h_t)$$

Forget

$$\tilde{c}_t = \sigma(w_{cx}x_t + w_{ch}h_t)$$

$$I_t = \sigma(w_{Ix}x_t + w_{Ih}h_t)$$

Forget

 $c_t = f_t c_{t-1} + \tilde{c}_t I_t$

• Store • Cell update c_{t-1} c_t tanh h_{t-1} x_t

 $o_t = \sigma(w_{ox}x_t + w_{oh}h_{t-1})$

 $h_t = tanh(c_t) \otimes o_t$

- Forget
- roiget
- Input / Store
- Cell State Update
- Output

 x_t

LSTM Applications

Evaluation of Language Models

- Extrinsic
- Intrinsic
 - Held-out data: $\ell(w) = \sum_{m=1}^{M} \log p(w_m | w_{m-1}, ..., w_1)$
 - $Perplexity(w) = 2^{-\frac{\ell(w)}{M}}$

Summary

Sequential Language Models

- RNN
 - Variable length computation graph

- LSTM
 - Separate Cell State independent of output
 - Forget, Store, Update, Output