第十二次习题课题目

习题 1 (练习 7.3.8). 记实数域 \mathbb{R} 上的全体一元可导函数组成的集合为 $\mathscr{C}^1(\mathbb{R})$, 定义 $\mathscr{C}^1(\mathbb{R})$ 上的变换: $A(f(x)) = xf(x) \ \forall f(x) \in \mathscr{C}^1(\mathbb{R})$.

- (1) 证明 $A \in \mathcal{C}^1(\mathbb{R})$ 上的一个线性变换.
- (2) 设 D 是求导算子, 证明 DA AD = I.

参考解答:

(1) 按照定义证明: $A(f(x)) \in \mathcal{C}^1(\mathbb{R}), A(f(x)+g(x)) = A(f(x)) + A(g(x)), A(kf(x)) = kA(f(x))$

$$(2)(DA - AD)f = DAf - ADf = D(xf) - Af' = xf' + f - xf' = f$$

习题 2 (练习 7.3.9). 令 \mathcal{V} 为全体实数数列组成的线性空间, 其中元素记为 (a_0, a_1, \cdots) . 定义其上变换

$$D((a_0,a_1,\cdots))=(0,a_0,a_1,\cdots), M((a_0,a_1,\cdots))=(a_1,2a_2,3a_3,\cdots)$$

- (1) 证明 D,M 都是线性变换.
- (2) 证明 MD-DM=I.
- (3) 对于任意 n 阶方阵 A,B, 证明 $AB-BA \neq I_n$.

参考解答:

- (1) 按照定义证明即可。
- (2) 直接计算即可。注意这是无限维空间,线性变换不能用矩阵表示,因此与下一问不矛盾。

$$(3)trace(AB - BA) = 0 \neq trace(I_n)$$

习题 3 (练习 7.3.13). 设线性空间 \mathscr{V} 有直和分解: $\mathscr{V} = \mathscr{M}_1 \oplus \mathscr{M}_2$ (即 $\mathscr{V} = \mathscr{M}_1 + \mathscr{M}_2$ 且满足 $\mathscr{M}_1 \cap \mathscr{M}_2 = \{\mathbf{0}\}$),则任取 $\mathbf{a} \in \mathscr{V}$,都有唯一的分解式: $\mathbf{a} = \mathbf{a}_1 + \mathbf{a}_2$,其中 $\mathbf{a}_1 \in \mathscr{M}_1$, $\mathbf{a}_2 \in \mathscr{M}_2$. 定义 \mathscr{V} 上的变换:

$$P_{\mathcal{M}_1}(a) = a_1, \qquad P_{\mathcal{M}_2}(a) = a_2.$$

- (1) 证明, P.M., P.M. 都是 V 上的线性变换.
- (2) 证明, $\ker(P_{\mathcal{M}_1}) = \mathcal{M}_2$, $Im(P_{\mathcal{M}_1}) = \mathcal{M}_1$.
- (3) 证明, $P_{\mathcal{M}_1}^2 = P_{\mathcal{M}_1}$, $P_{\mathcal{M}_1} + P_{\mathcal{M}_2} = I$, $P_{\mathcal{M}_1} P_{\mathcal{M}_2} = O$.
- (4) 分别求 P_{M_1}, P_{M_2} 的特征值和特征向量.
- (1) $R \neq V a, b \in V$, $a = a_1 + a_2$, $b = b_1 + b_2$, $a_1, b_1 \in M$. $a_2, b_1 \in M_2$ $R \neq V k \in F$
 - () Pm, (a) = a, EV

 - ③ Pm, (ka) = Pm, (ka,+kb,) = ka, = k Pm, (a)
 Pm, 同理
- (2) $a \in \ker(P_m) \hookrightarrow P_m, (a) = 0 \hookrightarrow a = 0 + a, a \in M_2$ $a \in I_m(P_m) \hookrightarrow P_m, (a) = a \hookrightarrow a = a + o, a \in M,$
- (3) 0 27 4a EV Pm, (a) Em, Pm, (Pm, (a)) = Pm, (a)
 - $(P_{m_1} + P_{m_2})(a) = P_{m_1}(a) + P_{m_2}(a) = a, +az = a$
 - 3 Pm, Pm, (a) = Pm, (a2) = 0 (a2 & m2)

图 1: 习题三参考答案其一

多若a, 土。且a, 土口 同人 k=1 者值

... Pm. 的特征值为1和0, 特征子空间分别为M.和M.z.。 Pm. 类似

图 2: 习题三参考答案其二

习题 4. 考虑 xy 平面,设 T 为关于 x 轴的反射变换, S 为关于 y 轴的反射变换. 对于任意向量 $\mathbf{v} = (x,y)$,写出 $S(T(\mathbf{v}))$,并给出线性变换 ST 的更简单的描述.

参考答案:

 $S(T(\mathbf{v})) = (-x, -y)$ 是 (x,y) 关于原点的对称点。

习题 5 (练习 7.4.3). 考虑函数空间的子空间 $span(sin^2 x, cos^2 x)$.

- (1) 证明 $\sin^2 x, \cos^2 x$ 和 $1, \cos 2x$ 分别是子空间的一组基.
- (2) 分别求从 $\sin^2 x, \cos^2 x$ 到 $1, \cos 2x$, 和从 $1, \cos 2x$ 到 $\sin^2 x, \cos^2 x$ 的过渡矩阵.
- (3) 分别求 1 和 $\sin^2 x$ 在两组基下的坐标.

参考解答:

(1) 对于 $\sin^2 x$, $\cos^2 x$, 检验其线性无关, 对函数在某些点处赋值即得。 对于 $1,\cos 2x$, 先证其可被 $\sin^2 x$, $\cos^2 x$ 线性表示, 再检验其线性无关。

$$(2)(1,\cos 2x) = \left(\sin^2 x,\cos^2 x\right) \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
$$\left(\sin^2 x,\cos^2 x\right) = (1,\cos 2x) \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}^{-1} = (1,\cos 2x) \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

$$(3)$$

$$1 = (1,\cos 2x) \begin{bmatrix} 1 \\ 0 \end{bmatrix} = (\sin^2 x,\cos^2 x) \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = (\sin^2 x,\cos^2 x) \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

$$\sin^2 x = (\sin^2 x,\cos^2 x) \begin{bmatrix} 1 \\ 0 \end{bmatrix} = (1,\cos 2x) \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = (1,\cos 2x) \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}.$$

习题 6. 考虑线性空间 $P_2[x] := \{y(x)|y(x) = a + bx + cx^2, a, b, c \in \mathbb{R}\}$. 已知 $w_1(x), w_2(x), w_3(x) \in P_2[x]$ 且满足 $w_1(-1) = 1, w_1(0) = 0, w_1(1) = 0, \ w_2(-1) = 0, w_2(0) = 1, w_2(1) = 0, \ w_3(-1) = 0, w_3(0) = 0, w_3(1) = 1.$

- (1) 证明: $w_1(x), w_2(x), w_3(x)$ 构成 $P_2[x]$ 的一组基.
- (2) 取 $v_1(x) = 1, v_2(x) = x, v_3(x) = x^2$, 分别求从 v_1, v_2, v_3 到 w_1, w_2, w_3 的过渡矩阵和从 w_1, w_2, w_3 到 v_1, v_2, v_3 的过渡矩阵.

(1)
$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0$$

$$= \frac{1}{2} + \frac{1}{2$$

图 3: 习题五参考答案

习题 7. 考虑二阶矩阵空间 $M_2(\mathbb{R})$ 上的线性变换 T(M)=AMB, 其中 $A=\begin{bmatrix}1&0\\0&0\end{bmatrix}$, B=

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
. 描述 $\ker(T)$ 及 ImT .

参考答案:

设
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,则 $T(M) = AMB = \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}$
所以 $\ker(T) = \left\{ \begin{bmatrix} a & 0 \\ c & d \end{bmatrix} | a, c, d \in \mathbb{R} \right\}$ 。
$$Im(T) = \left\{ \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} | b \in \mathbb{R} \right\}$$
。
可验证 $\dim \ker(T) + \dim Im(T) = \dim M_2(\mathbb{R})$ 。

习题 8 (练习 7.4.9). 设 e_1, e_2, \dots, e_n 是线性空间 \mathcal{V} 的一组基.

- 1. 判断 $t_1 = e_1, t_2 = e_1 + e_2, \dots, t_n = e_1 + e_2 + \dots + e_n$ 是否也是 \mathcal{V} 的一组基.
- 2. 判断 $t_1 = e_1 + e_2, t_2 = e_2 + e_3, \dots, t_n = e_n + e_1$ 是否也是 $\mathcal V$ 的一组基.

参考答案:

1.
$$(t_1, t_2, \dots, t_n) = (e_1, e_2, \dots, e_n)$$

$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ & 1 & \dots & 1 \\ & & \ddots & \vdots \\ & & & 1 \end{bmatrix}$$
. 过渡矩阵
$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ & 1 & \dots & 1 \\ & & \ddots & \vdots \\ & & & 1 \end{bmatrix}$$
 可逆, 故

 t_1,t_2,\cdots,t_n 是 V 的一组基.

且仅当n是奇数、参见习题四第五题。

习题 9 (练习 7.4.10). 设 a_1, \dots, a_n 是 F 中两两不等的数, e_1, e_2, \dots, e_n 是线性空间 \mathcal{V} 的一组基, 令 $t_i = e_1 + a_i e_2 + \dots + a_i^{n-1} e_n, i = 1, \dots, n$. 证明 t_1, t_2, \dots, t_n 也是 \mathcal{V} 的一组基.

参考答案:

过渡矩阵的行列式为 $a_1,...,a_n$ 的 Vandermonde 行列式, 故不为 0.

习题 10 (练习 7.4.11). 设 (I): $e_1, \dots, e_n(II)$: t_1, \dots, t_n 和 (III): s_1, \dots, s_n 是线性空间 \mathcal{V} 的三组 基, 如果从 (I) 到 (II) 的过渡矩阵是 P, 从 (II) 到 (III) 的过渡矩阵是 Q, 证明,

- 1. 从 (II) 到 (I) 的过渡矩阵是 P-1.
- 2. 从 (I) 到 (III) 的过渡矩阵是 PQ.

参考答案:

- 1. 设 $(e_1, \dots, e_n) = (t_1, \dots, t_n)A$, 则计算可得 $(t_1, \dots, t_n) = (e_1, \dots, e_n)P = (t_1, \dots, t_n)AP$ (用 到了矩阵乘法的结合律)。则 AP = I,即 $A = P^{-1}$
 - 2. 类似计算可得