Taller 2 entrega problema en grupo. MAT3 (estadística) GIN2 2020-2021 - Estadística inferencial mayo 2021.

Soluciones

Contenidos

1	Tall	ler 2 evaluable. Entrega de problemas	1
	1.1	Problema 1	1
		1.1.1 Solución	2
	1.2	Problema 2	6
		1.2.1 Solución	7
	1.3	Problema 3	11
		1.3.1 Solución	11
	1.4	Problema 4	14
		1.4.1 Solución	16

1 Taller 2 evaluable. Entrega de problemas

Taller en grupo entregad las soluciones en .Rmd y .html o .pdf. o escribirlas de forma manual y escanear el resultado, en un solo fichero. Cada apartado vale 1 punto en total hay 15 puntos y se pondera la 10 puntos.

1.1 Problema 1

- a. Consideremos la siguiente muestra aleatoria simple de una v.a. continua X: -3, -2, -1, 0, 0, 1, 2, 3, 4 de tamaño n=9. Calcular, en esta muestra, el error estándar de estadístico media aritmética de la muestra
- b. Consideremos la siguiente muestra aleatoria simple de tamaño n=10 de una v.a. X con distribución Ber(p): 1,0,1,0,1,1,1,1,0 Calcular, en esta muestra, el estadístico proporción muestral y su error estándar.
- c. Suponiendo que la población es normal calcular un intervalo de confianza del 95% para μ_X .
- d. Suponiendo que la población es normal calcular un intervalo de confianza del 95% para σ_X^2 .

Ayuda de R, acabad vosotros los cálculos

```
muestra1=c(-3,-2,-1,0,0,1,2,3,4)
mean(muestra1)

## [1] 0.4444444

sum(muestra1)

## [1] 4

sum(muestra1^2)

## [1] 44

n=length(muestra1)
n
```

[1] 9

```
muestra2=c(1,0,1,0,1,1,1,1,0)
table(muestra2)
```

muestra2

0 1

3 7

length(muestra2)

[1] 10

1.1.1 Solución

Apartado a)

La muestra es $x_1 = -3$, $x_2 = -2$, $x_3 = -1$, $x_4 = 0$, $x_5 = 0$, $x_6 = 1$, $x_7 = 1$, $x_7 = 2$, $x_8 = 3$, $x_9 = 4$, es de tamaño n = 9 media aritmética es

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{-3 - 2 - 1 + 0 + 0 + 1 + 2 + 3 + 4}{9} = \frac{4}{9} = 0.4444444.$$

La desviación típica de la muestra es

$$\tilde{s}_X = \sqrt{\left(\frac{n}{n-1}\right) \cdot \left(\frac{\sum_{i=1}^n x_i^2}{n} - \overline{x}^2\right)} = \sqrt{\left(\frac{9}{8}\right) \cdot \left(\frac{44}{9} - 0.4444444^2\right)} = 2.2973415$$

Donde 44 es el resultado del código sum (muestra1^2)

Por último el error estándar de \overline{x} es

$$\frac{\tilde{s}_X}{\sqrt{n}} = \frac{2.2973415}{\sqrt{9}} = 0.7657805.$$

Con R

```
muestra1=c(-3,-2,-1,0,0,1,2,3,4)
media=mean(muestra1)
media
```

[1] 0.444444

desv_tip=sd(muestra1)
desv_tip

[1] 2.297341

error_estandar_media=desv_tip/sqrt(n)
error_estandar_media

[1] 0.7657805

Apartado b)

La muestra es $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0, x_6 = 1, x_7 = 1, x_7 = 1, x_8 = 1, x_1 = 0$, es de tamaño n = 10 media aritmética es

$$\hat{p} = \frac{\text{número de 1's}}{n} = \frac{7}{10} = 0.7.$$

Error estándar de \hat{p} es

$$\sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}} = \sqrt{\frac{0.7 \cdot (1 - 0.7)}{10}} = 0.1449138$$

Con R

```
muestra2=c(1,0,1,0,1,1,1,1,1,0)
frecuencias=table(muestra2)
frecuencias
## muestra2
## 0 1
## 3 7
n=length(muestra2)
## [1] 10
exitos=frecuencias[2]
exitos
## 1
## 7
phat=exitos/n
phat
##
     1
## 0.7
error_estandar_phat=sqrt(phat*(1-phat)/n)
names(error_estandar_phat)=NULL
error_estandar_phat
```

[1] 0.1449138

Apartado c

Bajo estas condiciones población normal σ desconocida el intervalo para μ al nivel de confianza del 95% es el del caso IV de la tabla de contrastes de una muestra

Tipo de contraste y condiciones								
Hipótesis nula	Condiciones	Muestra	Hipótesis al- ternativa	Caso				
	Población normal o n grande. σ conocida.	n observaciones independientes.	$H_1: \mu \neq \mu_0$	I				
			$H_1: \mu < \mu_0$	II				
			$H_1: \mu > \mu_0$	III				
	Población normal. σ desconocida.		$H_1: \mu \neq \mu_0$	IV				
$H_0: \mu = \mu_0$		n observaciones independientes.	$H_1: \mu < \mu_0$	\mathbf{V}				
			$H_1: \mu > \mu_0$	VI				

	Detalles del contraste							
Caso	Estadístico	<i>p</i> -valor						
I	$Z = \overline{X} - \mu_0$	$\{Z {\leqslant} {-} z_{1-\frac{\alpha}{2}}\} {\cup} \{Z {\geqslant} z_{1-\frac{\alpha}{2}}\}$	$\left] \overline{X} - z_{1 - \frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1 - \frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \right[$	$2P(Z\geqslant z)$				
II	$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$	$\{Z \leqslant z_{\alpha}\}$	$\left]-\infty, \overline{X}-z_{\alpha}\cdot\frac{\sigma}{\sqrt{n}}\right[$	$P(Z \leqslant z)$				
III	es $N(0,1)$	$\{Z\geqslant z_{1-\alpha}\}$	$\overline{X} - z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}}, \infty$	$P(Z\geqslant z)$				
IV	$T = \frac{\overline{X} - \mu_0}{2}$	$\{T \leqslant -t_{n-1,1-\frac{\alpha}{2}}\} \cup \{T \geqslant t_{n-1,1-\frac{\alpha}{2}}\}$	$\left\ \overline{X} - t_{n-1,1-\frac{\alpha}{2}} \cdot \frac{\bar{S}}{\sqrt{n}}, \overline{X} + t_{n-1,1-\frac{\alpha}{2}} \cdot \frac{\bar{S}}{\sqrt{n}}\right\ $	$2P(t_{n-1}{\geqslant} T)$				
V	$\frac{1}{\sqrt{n}} = \frac{\tilde{S}}{\sqrt{n}}$	$\{T \leqslant t_{n-1,\alpha}\}$	$\left]-\infty, \overline{X}-t_{n-1,\alpha}\cdot\frac{\overline{S}}{\sqrt{n}}\right[$	$P(t_{n-1} \leqslant T)$				

media=mean(muestra1)
media

[1] 0.444444

n=length(muestra1)

[1] 9

desv_tip=sd(muestra1)
desv_tip

[1] 2.297341

alpha=1-0.95# 1-alpha/2=0.975 cuantil=qt(1-alpha/2,df=n-1)# cuantil 0.975 de la t de student con n-1 grados de libertad. cuantil

[1] 2.306004

El intervalo de confianza para μ al nivel de confianza del 95% es

$$\begin{split} \left] \overline{x} - t_{n-1,1-\alpha/2} \cdot \frac{\tilde{s}_X}{\sqrt{n}}, \overline{x} + t_{n-1,1-\alpha/2} \cdot \frac{\tilde{s}_X}{\sqrt{n}} \right[\\ = & \left] 0.4444444 - 2.3060041 \cdot \frac{2.2973415}{3}, 0.4444444 + 2.3060041 \cdot \frac{2.2973415}{3} \right[\\ = & \left] -1.3214485, 2.2103374, \right[\end{split}$$

Con R se puede calcular así también

```
t.test(muestra1,alternative = "two.sided",conf.level = 0.95)-> solucion
solucion$conf.int
```

```
## [1] -1.321449 2.210337
## attr(,"conf.level")
## [1] 0.95
```

Apartado d

Bajo estas condiciones población normal el intervalo para σ_X^2 al nivel de confianza del 95% es el del caso XIII de la tabla de contrastes de una muestra

			1 · L · L ·	
$H_0: \sigma^2 = \sigma_0^2$	Población Normal. μ desconocida	n observaciones independientes.	$H_1: \sigma^2 \neq \sigma_0^2$	XIII
			$H_1: \sigma^2 < \sigma_0^2$	XIV
			$H_1: \sigma^2 > \sigma_0^2$	XV

knitr::include_graphics("casoXIII_2.PNG",dpi=180)

		1	L .		L	
XIII	$\chi^2 = \frac{(n-1)\tilde{S}^2}{\sigma_s^2} /$	$\{\chi^2 \leqslant \chi^2_{n-1,\frac{\alpha}{2}}\} \cup \{\chi^2 \geqslant \chi^2_{n-1,1-\frac{\alpha}{2}}\}$	-	$\frac{(n-1)\tilde{S}2}{\chi^2_{n-1,1-\frac{\alpha}{2}}}, \frac{(n-1)\tilde{S}^2}{\chi^2_{n-1,\frac{\alpha}{2}}}$		$2\min\{P(\chi_{n-1}^2 \leqslant \chi^2),$ $P(\chi_{n-1}^2 \geqslant \chi^2)$
37 7 3 7		. 9 . 9		$\sim (n-1)\tilde{S}^2$		n/ 9 / 9\

media=mean(muestra1)
media

[1] 0.444444

n=length(muestra1)

[1] 9

desv_tip=sd(muestra1)
desv_tip

[1] 2.297341

```
alpha=1-0.95 \# 1-alpha/2=0.975\\ cuantil\_1=qchisq(1-alpha/2,df=n-1) \# cuantil\_0.975 \ de\ una\ chi^2\ con\ n-1\ grados\ de\ libertad.\\ cuantil\_1
```

[1] 17.53455

[1] 2.179731

El intervalo de confianza para σ^2 al nivel de confianza del 95% es

$$\left| \frac{(n-1) \cdot \tilde{s}_X^2}{\chi_{n-1,1-\alpha/2}^2}, \frac{(n-1) \cdot \tilde{s}_X^2}{\chi_{n-1,\alpha/2}^2} \right| = \left| \frac{8 \cdot 2.2973415^2}{17.5345461}, \frac{8 \cdot 2.2973415^2}{2.1797307} \right| = \left| 2.407945, 19.3703843 \right|.$$

1.2 Problema 2

Queremos comparar los rendimientos medidos en consumo de CPU de dos configuraciones (C1 y C2) de un servidor de datos tienen una media similar, de hecho queremos tener evidencia contra que el rendimiento medio del servidor C1 es superior al del servidor C2. No conocemos σ_1 y σ_2 . Disponemos de dos muestras independientes de consumo por hora realizados para cada configuración C1 y C2, de tamaños $n_1 = n_2 = 100$, respectivamente.

Para bajarlos utilizad la dirección del los ficheros raw que se muestran en el siguiente código

```
C1=read.csv(
  "https://raw.githubusercontent.com/joanby/estadistica-inferencial/master/datasets/C1.csv",
            header=TRUE) $time
C2=read.csv(
  "https://raw.githubusercontent.com/joanby/estadistica-inferencial/master/datasets/C2.csv",
  header=TRUE) $time
n1=length(na.omit(C1))
n1
## [1] 100
n2=length(na.omit(C2))
## [1] 100
media.muestra1=mean(C1,na.rm=TRUE)
media.muestra1
## [1] 38.5841
media.muestra2=mean(C2,na.rm=TRUE)
media.muestra2
## [1] 33.7953
desv.tip.muestra1=sd(C1,na.rm=TRUE)
desv.tip.muestra1
## [1] 3.014567
desv.tip.muestra2=sd(C2,na.rm=TRUE)
desv.tip.muestra2
```

[1] 6.727062

Calculamos las medias y las desviaciones típicas muestrales de los tiempos empleados para cada muestra. Los datos obtenidos se resumen en la siguiente tabla:

```
\begin{array}{llll} n_1 &= 100, & n_2 &= 100 \\ \overline{x}_1 &= 38.5841, & \overline{x}_2 &= 33.7953 \\ \tilde{s}_1 &= 3.014567, & \tilde{s}_2 &= 6.7270621 \end{array}
```

Se pide:

- a. Comentad brevemente el código de R explicando que hace cada instrucción.
- b. Contrastad si hay evidencia de que los rendimientos medios son distintas entre los dos grupos. En dos casos considerando las varianzas desconocidas pero iguales o desconocidas pero distintas. Tenéis que hacer el contraste de forma manual y con funciones de R y resolver el contrate con el p-valor.
- c. Calculad e interpretar los intervalos de confianza BILATERALES al nivel de confianza del 95% para la diferencia de medias de los rendimientos en los casos anteriores.
- d. Comprobad con el test de Fisher y el de Levene si las varianza de las dos muestras son iguales contra que son distintas. Tenéis que resolver el test de Fisher con R y de forma manual y el test de Levene con R y decidir utilizando el p-valor.

1.2.1 Solución

Apartado 1. El cogido R carga en las variables C1 y C2 la variables **time** de dos data frames de un servidor en github y por lo tanto hemos tenido que pasar la url del fichero original o *raw*.

Luego calcula los estadísticos básicos para realizar las siguientes preguntas. Para los tamaños muestrales n_1 y n_2 se omiten los valores NA antes de asignar la length de los arrays. También se calculan las medias y las desviaciones típicas muestrales omitiendo (si es que hay) los valores no disponibles.

Apartado 2. Denotemos por μ_1 y μ_2 las medias de los tiempos de las configuraciones 1 y 2 respectivamente. El contraste que se pide es

$$\left\{ \begin{array}{l} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 > \mu_2 \end{array} \right.$$

Estamos en un diseño de comparación de medias entre dos muestras independientes ambas de tamaño 100 que es grande. Tenemos dos casos varianzas desconocidas pero iguales y varianzas desconocidas pero distintas. Las funciones de R del contraste para estos casos son:

Varianzas iguales

```
# test para varianzas iquales
t.test(C1,C2,var.equal = TRUE,alternative = "greater")
##
   Two Sample t-test
##
## data: C1 and C2
## t = 6.4963, df = 198, p-value = 0.000000003258
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
  3.570574
                  Inf
## sample estimates:
## mean of x mean of y
     38.5841
               33.7953
Varianzas distintas
# test para varianzas distintas
t.test(C1,C2,var.equal = FALSE,alternative = "greater")
```

El p-valor en ambos casos es muy pequeño así que la muestra no aporta evidencias rechazar la hipótesis nula las medias son iguales contra que son distintas.

Veamos el cálculo manual.

Varianzas desconocidas pero iguales, n_1 y n_2 grande

Si suponemos que $\sigma_1 = \sigma_2$, el estadístico de contraste es

$$t0 = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \cdot \frac{((n_1 - 1)\widetilde{S}_1^2 + (n_2 - 1)\widetilde{S}_2^2)}{(n_1 + n_2 - 2)}}} = \frac{38.5841 - 33.7953}{\sqrt{\left(\frac{1}{100} + \frac{1}{100}\right) \cdot \frac{((100 - 1)3.014567^2 + (100 - 1)6.7270621^2)}{(100 + 100 - 2)}}}$$

```
t0=(media.muestra1-media.muestra2)/
    sqrt((1/n1+1/n2)*
((n1-1) *desv.tip.muestra1^2+(n2-1)*desv.tip.muestra2^2)/(n1+n2-2))
t0
```

[1] 6.496254

operando obtenemos que t0 = 6.496254. y sabemos que sigue una distribución t-Student $t_{n_1+n_2-2} = t_{198}$. Para este hipótesis alternativa el p-valor es

 $P(t_{198} > 6.4962536)$, lo calculamos con R

```
t0=(media.muestra1-media.muestra2)/
    sqrt((1/n1+1/n2)*
((n1-1)*desv.tip.muestra1^2+(n2-1)*desv.tip.muestra2^2)/(n1+n2-2))
t0
```

[1] 6.496254

n1

[1] 100

n2

[1] 100

```
(1-pt(t0,df=n1+n2-2)) # calculo la probabilidad del complementario
```

[1] 0.000000003257543

```
pt(t0,df=n1+n2-2,lower.tail = FALSE)# calcula el área la cola superior
```

[1] 0.000000003257544

Varianzas desconocidas pero distintas, n_1 y n_2 grande

Si suponemos que $\sigma_1 \neq \sigma_2$, el estadístico de contraste es $t0 = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\widetilde{S}_1^2}{n_1} + \frac{\widetilde{S}_2^2}{n_2}}} \sim t_f$, que, cuando $\mu_1 = \mu_2$, tiene distribución (aproximadamente, en caso de muestras grandes) t_f con

$$f = \frac{\left(\frac{\widetilde{S}_{1}^{2}}{n_{1}} + \frac{\widetilde{S}_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1} - 1} \left(\frac{\widetilde{S}_{1}^{2}}{n_{1}}\right)^{2} + \frac{1}{n_{2} - 1} \left(\frac{\widetilde{S}_{2}^{2}}{n_{2}}\right)^{2}}$$

Calculamos el estadístico y los grados de libertad con R

[1] 0.000000007014172

Apartado 3

Los intervalos de confianza BILATERALES al nivel del 95% los podemos obtener así

Son similares, podemos asegurar que la diferencia de medias se encuentra $3.33 < \mu_1 - \mu_2 < 6.24$ al nivel del 95 la CPU del tipo C1 tiene una media de tiempo entre 3.33 y 6.14 mayor que la del y tipo C2. aproximadamente.

Apartado 4 El test que nos piden es el de igualdad de varianzas

$$\begin{cases} H_0: & \sigma_1^2 = \sigma_2^2 \\ H_1: & \sigma_1^2 \neq \sigma_2^2 \end{cases}.$$

El test de Fisher de igualdad de varianzas

```
var.test(C1,C2,alternative ="two.sided" )
##
##
            F test to compare two variances
##
## data: C1 and C2
## F = 0.20082, num df = 99, denom df = 99, p-value = 0.0000000000000314
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1351176 0.2984600
## sample estimates:
## ratio of variances
                                           0.2008163
##
Obtenemos un p-valor bajo muy bajo no podemos aceptar la igualdad de varianzas.
De forma manual el estadístico de este test sabemos que es
                                                                                                       f_0 = \frac{\tilde{S_1}^2}{\tilde{S_2}^2} = \frac{9.0876143}{45.2533646} = 0.2008163.
Que sigue una ley de distribución de Fisher y el p_valor es min\{2 \cdot P(F_{n_1-1,+n_2-1} \leq f_0), 2 \cdot P(F_{n_1-1,+n_2-1} \geq f_0), 2 \cdot P(F_{n_1-1,+n_2-1} \leq f_0), 2 \cdot P(F_{n_1-1,+n_2-1} \geq f_0), 2 \cdot P(F_{n_1-1,+n_2-1} \leq 
f_0)}.
que con R es
n1
## [1] 100
n2
## [1] 100
f0=desv.tip.muestra1^2/desv.tip.muestra2^2
## [1] 0.2008163
pvalor=min(2*pf(f0,n1-1,n2-2),2*pf(f0,n1-1,n2-2,lower.tail = FALSE))
pvalor
## [1] 0.0000000000033926
Obtenemos los mismos resultados que con la función var.test.
El test de Levene con R tiene las mismas hipótesis que el anterior
library(car,quietly = TRUE)# pongo quietly para que quite avisos
```

##

Attaching package: 'car'

```
tiempo=c(C1,C2)
grupo=as.factor(c(rep(1,length(C1)),rep(2,length(C1))))
leveneTest(tiempo~grupo)

## Levene's Test for Homogeneity of Variance (center = median)
```

```
## Df F value Pr(>F)
## group 1 42.221 0.0000000006461 ***
## 198
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

El p-valor obtenido es bajo así que el test de Levene aporta evidencias contra la igualdad de varianzas entre de los tiempos de los dos grupos.

1.3 Problema 3

Se prueba la misma implementación de una algoritmo para reconocer caras de la base de datos de una empresa con dos diferente tipos de cámaras.

Para ello n = 100 trabajadores pasan por cada una de las cámaras 1 vez.

Los resultados se pueden cargar con el siguiente código.

```
caras=read.csv(
  "https://raw.githubusercontent.com/joanby/estadistica-inferencial/master/datasets/caras.csv",
            header=TRUE)
str(caras)
  'data.frame':
                    100 obs. of 3 variables:
   $ empleado: int 1 2 3 4 5 6 7 8 9 10 ...
   $ aciertoA: int
                     0 1 1 1 1 1 1 1 1 1 ...
   $ aciertoB: int 1 1 1 1 1 1 1 1 1 1 ...
table(caras$aciertoA, caras$aciertoB)
##
##
        0
          1
       0 12
##
     0
```

Donde empleadop es la variable el identificador del empleado y aciertoA y aciertoB valen 1 si se acierta la identidad y 0 si se falla para el mismo empleado en cada una de las cámaras.

Se pide:

- a. Cargad los datos desde el servidos y calcular el tamaño de las muestras y la proporción de aciertos de cada muestra.
- b. Contrastad si hay evidencia de que las las proporciones de aciertos con la cámara A son iguales que las del algoritmo con la cámara B. Definid bien las hipótesis y las condiciones del contraste. Resolver el contraste de forma manual utilizando R solo como calculadora y resolver el contraste con el p-valor (calculado con R).
- c. Resolver el contraste con funciones de R.
- d. Calcular un intervalo de confianza bilateral para la diferencia de la proporciones al nivel de confianza del 95% con R y de forma manual utilizando R como calculadora y para calcular los cuantiles.

1.3.1 Solución

Apartado a

Cargamos los datos y hacemos los cálculos preliminares directamente desde el raw del github y construimos la tabla de contingencia de aciertos y fallos en las cámaras A y B

```
caras=read.csv(
  "https://raw.githubusercontent.com/joanby/estadistica-inferencial/master/datasets/caras.csv",
            header=TRUE)
str(caras)
## 'data.frame':
                    100 obs. of 3 variables:
   $ empleado: int 1 2 3 4 5 6 7 8 9 10 ...
   $ aciertoA: int 0 1 1 1 1 1 1 1 1 1 ...
   $ aciertoB: int 1 1 1 1 1 1 1 1 1 1 ...
tabla=table(caras$aciertoA,caras$aciertoB)
tabla
##
##
        0
         1
##
     0
       0 12
##
     1 1 87
```

Apartado b

Lo haremos por la tabla de comparación de dos proporciones para muestras emparejadas es el caso XXII de la tablas de contrastes de dos muestras

Si denotamos por p_A a la proporción de aciertos en la cámara A y p_B proporción de aciertos en la cámara B para muestras emparejadas. El contraste es

$$\begin{cases} H_0: & p_A = p_B \\ H_1: & p_A \neq p_B \end{cases}$$

1						
	II	Poblaciones Bernoulli,	Dos m.a.s. dependientes de tamaño n		$: p_a \neq p_b$	XXII
	$H_0: p_a = p_d$ Casodependiente	n_1 y n_2 grandes, muchos casos discordants.			$: p_a < p_b$	XXIII
					$: p_a > p_b$	XXIV
	-	ι~_~1−α J			1 (2)	_~/
XXI	$\mathbf{I} \qquad Z = \frac{\widehat{p}_{1\bullet} - \widehat{p}_{\bullet 1}}{\sqrt{\frac{b+d}{n^2}}}$	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$	$\widehat{\widehat{p}}_{1\bullet} - \widehat{p}_{\bullet 1} - z_{1-\frac{\alpha}{2}} \sqrt{\frac{b+d}{n^2}},$		$2P(Z \ge$	≥ z)
			$\widehat{p}_{1\bullet} - \widehat{p}_{\bullet 1} + z_{1-\frac{\alpha}{2}} \sqrt{\frac{b+d}{n^2}} \Big[$			
XXI	$\stackrel{\text{II}}{=} \begin{array}{c} \text{es } N(0,1) \\ \text{(vegeu (i))} \end{array}$	$\{Z \leq z_{\alpha}\}$	$\left] - \infty, \widehat{p}_{1 \bullet} - \widehat{p}_{\bullet 1} - z_{\alpha} \sqrt{\frac{b+d}{n^2}} \right[$		$P(Z \leq$	$\leq z)$
XXI	V (vegeti (i))	$\{Z \ge z_{1-\alpha}\}$	$\widehat{p}_{1\bullet} - \widehat{p}_{\bullet 1} - z_{1-\alpha} \sqrt{\frac{b+d}{n^2}}, +\infty$		P(Z)	$\geq z$)
			1 §2			

(i) Para hacer el contraste, hemos de construir la tabla siguiente:

		Muestra después				
		éxito	Fracaso	Frecuencia	Proporción	
	éxito	a	b	a+b	$\widehat{p}_{1\bullet} = \frac{a+b}{n}$	
Muestra	Fracaso	d	c	c+d	$\widehat{p}_{2\bullet} = \frac{c+d}{n}$	
antes	Frecuencia	a+d	b+c	n		
	Proporción	$\widehat{p}_{\bullet 1} = \frac{a+d}{n}$	$\widehat{p}_{\bullet 2} = \frac{b+c}{n}$		1	

Entonces, el estadístico de contraste se puede escribir como:

$$Z = \frac{\frac{b}{n} - \frac{d}{n}}{\sqrt{\frac{b+d}{n^2}}}$$

Así que el estadístico son las discordancias

```
tabla=table(caras$aciertoA, caras$aciertoB)
tabla
```

Tenemos que las discordancias son b = 1 es la frecuencia éxito en la A (filas) y fracaso en la B (columna) y d = 12 es la frecuencia fracaso en la A (filas) y éxito en la B (columna) y n = 100

```
b=1
d=12
n=100
z=(b/n-d/n)/sqrt((b+d)/n^2)
z
```

```
## [1] -3.050851
```

```
pvalor=2*pnorm(abs(z),lower.tail=FALSE)
pvalor
```

[1] 0.002281937

El estadístico es

$$Z = \frac{\frac{b}{n} - \frac{d}{n}}{\sqrt{\frac{b+d}{n^2}}} = \frac{\frac{1}{100} - \frac{12}{100}}{\sqrt{\frac{1+12}{100^2}}} = -3.0508511.$$

Apartado c

Es un diseño de muestras emparejadas y podemos por ejemplo con R utilizar el mcnear.test (aunque no es exactamente el mismo que el test anterior):

```
mcnemar.test(tabla)
```

##

```
## McNemar's Chi-squared test with continuity correction
##
## data: tabla
## McNemar's chi-squared = 7.6923, df = 1, p-value = 0.005546
```

El p-valor es 0.1356 no podemos rechazar la igualdad de la proporción de aciertos.

Apartado d

Necesitamos estos cálculos

```
tabla
##
##
        0 1
##
       0 12
     1 1 87
pA = (87+1)/100
рA
## [1] 0.88
pB=(12+87)/100
pВ
## [1] 0.99
b=1
d=12
n=100
alpha=1-0.95
alpha
## [1] 0.05
cuantil=qnorm(1-0.05/2)
cuantil
```

[1] 1.959964

Viendo las tablas tenemos que calcular

 $\hat{p}_{\bullet 1}=\hat{p}_A=0.88$ proporción aciertos en $A,\,\hat{p}_{1\bullet}=\hat{p}_B=0.99$ proporción aciertos en B

El intervalo de confianza al nivel 95% es ($\alpha = 0.05$)

$$\begin{split} & \hat{p}_A - \hat{p}_B - z_{1-\frac{\alpha}{2}} \sqrt{\frac{b+d}{n^2}}, \hat{p}_A - \hat{p}_B + z_{1-\frac{\alpha}{2}} \sqrt{\frac{b+d}{n^2}} \\ & = \left] 0.88 - 0.99 - 1.959964 \cdot \sqrt{\frac{1+12}{100^2}}, 0.88 - 0.99 + 1.959964 \cdot \sqrt{\frac{1+12}{100^2}} \right[\\ & = \left] -0.1806675, -0.0393325 \right[\end{split}$$

1.4 Problema 4

El encargado de calidad piensa que X= número de quejas de clientes por día en las oficinas de atención al cliente de una determinada zona de una ciudad sigue una ley $Po(\lambda=5)$. Para comprobarlo toma una muestra de n=100 días:

```
quejas=read.csv(
  "https://raw.githubusercontent.com/joanby/estadistica-inferencial/master/datasets/quejas.csv",
            header=TRUE)
str(quejas)
## 'data.frame':
                   100 obs. of 1 variable:
## $ Num_quejas: int 4 6 4 2 6 2 7 10 7 4 ...
ni=c(0,table(quejas))
names(ni)[1]="0"
ni
## 0 1 2 3 4 5 6 7 8 9 10 11
## 0 1 8 11 16 16 14 14 11 4 4 1
n=sum(ni)
n
## [1] 100
pi=c(dpois(0:10,lambda=5),1-sum(dpois(0:10,lambda=5)))
names(pi)=c(paste0("Prob(X=",0:10,")"),"Prob(X>=11)")
рi
     Prob(X=0)
                Prob(X=1)
                            Prob(X=2)
                                        Prob(X=3)
                                                    Prob(X=4)
                                                                Prob(X=5)
## 0.006737947 0.033689735 0.084224337 0.140373896 0.175467370 0.175467370
    Prob(X=6)
                Prob(X=7)
                            Prob(X=8)
                                        Prob(X=9) Prob(X=10) Prob(X>=11)
## 0.146222808 0.104444863 0.065278039 0.036265577 0.018132789 0.013695269
sum(pi)
## [1] 1
ei=n*pi
еi
##
     Prob(X=0)
                Prob(X=1)
                            Prob(X=2)
                                        Prob(X=3)
                                                     Prob(X=4)
                                                                 Prob(X=5)
     0.6737947
                3.3689735
                            8.4224337 14.0373896 17.5467370 17.5467370
##
    Prob(X=6)
##
                Prob(X=7)
                            Prob(X=8)
                                        Prob(X=9)
                                                   Prob(X=10) Prob(X>=11)
## 14.6222808 10.4444863
                             6.5278039
                                        3.6265577
                                                     1.8132789
                                                                 1.3695269
ei>5
##
     Prob(X=0)
                Prob(X=1)
                            Prob(X=2)
                                        Prob(X=3)
                                                     Prob(X=4)
                                                                 Prob(X=5)
##
        FALSE
                    FALSE
                                  TRUE
                                              TRUE
                                                          TRUE
##
    Prob(X=6)
                Prob(X=7)
                            Prob(X=8)
                                        Prob(X=9) Prob(X=10) Prob(X>=11)
##
         TRUE
                     TRUE
                                 TRUE
                                            FALSE
                                                        FALSE
                                                                    FALSE
# no se cumple la condición para el test chi^2
#hay que agrupar los 3 primeros y los 3 últimos
# test chi^2 sin agrupar...
chi0=sum((ei-ni)^2/ei)
chi0
## [1] 10.36668
k=12# clases de 0 a mayor o iqual 11
k=12# clases de 0 a 11
pchisq(chi0,df=k-1,lower.tail=FALSE)
```

[1] 0.4977365

Se pide:

- a. Plantead un contraste de bondad de ajuste χ^2 H_0 : los datos siguen una distribución $Po(\lambda = 5)$. Calculas las probabilidades y frecuencias esperadas utilizando los datos del código anterior.
- b. Reagrupar los datos y resolver el test manualmente pero usando R para el cálculo del p-valor. Resolver el contraste
- c. Resolver el contraste con la función adecuada de R.

1.4.1 Solución

Apartado a

El contraste que se pide es

```
\left\{ \begin{array}{l} H_0: \quad \text{El número de quejas diarias sigue una distribución } Po(\lambda=5) \\ H_1: \quad \text{El número de quejas diarias sigue otra distribución} \end{array} \right.
```

Con el código que se dan las frecuencias observadas es el array ni hay k = 12 clases y las probabilidades de cada clase bajo la hipótesis nula estén en pi el valor de n = 100 y las frecuencias esperadas están en ei

```
#observadas
ni
         2 3
               4 5 6
                        7
                            8
                               9 10 11
         8 11 16 16 14 14 11
k=length(ni)# numero de clases
## [1] 12
pi# probabilidad de cada supuesto que HO es cierta Po(lambda=5)
     Prob(X=0)
                 Prob(X=1)
                             Prob(X=2)
                                          Prob(X=3)
                                                      Prob(X=4)
##
                                                                  Prob(X=5)
## 0.006737947 0.033689735 0.084224337 0.140373896 0.175467370 0.175467370
     Prob(X=6)
                 Prob(X=7)
                             Prob(X=8)
                                          Prob(X=9)
                                                     Prob(X=10) Prob(X>=11)
## 0.146222808 0.104444863 0.065278039 0.036265577 0.018132789 0.013695269
   tamaño de la muestra
## [1] 100
ei# frecuencias esperadas de cada supuesto que HO es cierta Po(lambda=5)
                 Prob(X=1)
##
     Prob(X=0)
                             Prob(X=2)
                                          Prob(X=3)
                                                      Prob(X=4)
                                                                  Prob(X=5)
     0.6737947
                 3.3689735
##
                             8.4224337
                                         14.0373896
                                                     17.5467370
                                                                 17.5467370
##
     Prob(X=6)
                 Prob(X=7)
                             Prob(X=8)
                                          Prob(X=9)
                                                     Prob(X=10) Prob(X>=11)
   14.6222808
                10.4444863
                             6.5278039
                                          3.6265577
                                                      1.8132789
                                                                  1.3695269
```

Apartado b

El siguiente código hace los cálculos manualmente para agrupar las clases que obtienen frecuencias absolutas esperadas "ei" inferiores a 5. Agrupamos las tres primeras clases y las tres últimas quedando ahora k=8 clases/grupos.

```
ni
## 0 1 2 3 4 5 6 7 8 9 10 11
## 0 1 8 11 16 16 14 14 11 4 4 1
pi
```

```
Prob(X=3)
     Prob(X=0)
                 Prob(X=1)
                             Prob(X=2)
                                                     Prob(X=4)
                                                                 Prob(X=5)
## 0.006737947 0.033689735 0.084224337 0.140373896 0.175467370 0.175467370
    Prob(X=6)
                 Prob(X=7)
                             Prob(X=8)
                                         Prob(X=9) Prob(X=10) Prob(X>=11)
## 0.146222808 0.104444863 0.065278039 0.036265577 0.018132789 0.013695269
chisq.test(ni,p=pi)
## Warning in chisq.test(ni, p = pi): Chi-squared approximation may be incorrect
   Chi-squared test for given probabilities
##
## data: ni
## X-squared = 10.367, df = 11, p-value = 0.4977
chisq.test(ni,p=pi,simulate.p.value = TRUE,B=5000)# test simulando 5000 las ni
##
##
   Chi-squared test for given probabilities with simulated p-value (based
   on 5000 replicates)
##
## data: ni
## X-squared = 10.367, df = NA, p-value = 0.4871
# de muestra de tamaño 100 con estas pi
ni_agrupado=c(sum(ni[1:3]),ni[4:9],sum(ni[10:12]))
ni_agrupado
       3 4 5 6 7 8
##
## 9 11 16 16 14 14 11 9
pi_agrupado=c(sum(pi[1:3]),pi[4:9],sum(pi[10:12]))
pi_agrupado
               Prob(X=3) Prob(X=4) Prob(X=5) Prob(X=6) Prob(X=7) Prob(X=8)
## 0.12465202 0.14037390 0.17546737 0.17546737 0.14622281 0.10444486 0.06527804
##
## 0.06809363
sum(pi_agrupado)
## [1] 1
n=sum(ni)
## [1] 100
ei_agrupado=n*pi_agrupado
ei_agrupado
             Prob(X=3) Prob(X=4) Prob(X=5) Prob(X=6) Prob(X=7) Prob(X=8)
##
## 12.465202 14.037390 17.546737 17.546737 14.622281 10.444486 6.527804 6.809363
ei_agrupado>=5
##
             Prob(X=3) Prob(X=4) Prob(X=5) Prob(X=6) Prob(X=7) Prob(X=8)
        TRUE
                  TRUE
                            TRUE
                                      TRUE
                                                TRUE
                                                          TRUE
                                                                    TRUE
                                                                              TRUE
##
k=length(ei_agrupado)
```

```
## [1] 8
El estadístico de contraste calculado manualmente es
chi0=sum((ni_agrupado-ei_agrupado)^2/ei_agrupado)
chi0
## [1] 6.898705
El p-valor es P(\chi^2_{8-1} > 6.8987051) lo calculamos con R
1-pchisq(chi0,df=8-1,lower.tail=TRUE)
## [1] 0.4395024
pchisq(chi0,df=8-1,lower.tail=FALSE)
## [1] 0.4395024
El p-valor es alto no podemos rechazar que la distribución sea Po(\lambda = 5)
Apartado c
Con la función de R es muy sencillo
chisq.test(ni_agrupado,p=pi_agrupado)
##
    Chi-squared test for given probabilities
##
##
## data: ni_agrupado
## X-squared = 6.8987, df = 7, p-value = 0.4395
Notemos que si no agrupamos
chisq.test(ni,p=pi)
\#\# Warning in chisq.test(ni, p = pi): Chi-squared approximation may be incorrect
    Chi-squared test for given probabilities
##
##
## data: ni
## X-squared = 10.367, df = 11, p-value = 0.4977
El test nos avisa que la aproximación del p-valor por una \chi^2_{12-1} puede ser incorrecta.
Otra opción recurrir a la simulación del test (Monte Calo) con el código
chisq.test(ni,p=pi,simulate.p.value = TRUE,B =5000)
##
## Chi-squared test for given probabilities with simulated p-value (based
    on 5000 replicates)
##
##
## X-squared = 10.367, df = NA, p-value = 0.4829
```

En cualquier caso los p-valores son altos y se acepta la hipótesis nula.