Condición necesaria y suficiente de Integrabilidad de Riemann

Alex David Montero Garay y Erick Hernández Peón

1. Equivalencias de Integrabilidad Riemann

Sea $f:[a,b]\to\mathbb{R}$ una función acotada. Las siguientes proposiciones son equivalentes:

Demostrar que:

$$f \in R : [a, b] \iff \forall \varepsilon > 0 [\exists P_{\varepsilon} : P' \supset P_{\varepsilon} | \sigma(f, P', \chi) - I | < \varepsilon] \iff \overline{I} = I.$$

Condiciones a Demostrar:

1. f es Riemann integrable en [a, b].

$$f \in R : [a, b]$$

2. para todo epsilon, existe una partición P subepsilon tal que para toda partición más fina P subepsilon se encuentre contenida en la partición P' y cualquier elección de puntos Xi:

$$\forall \varepsilon > 0 [\exists P_{\varepsilon} : P' \supseteq P_{\varepsilon} | \sigma(f, P', \chi) - I | < \varepsilon]$$

3. La integral superior e inferior coinciden:

$$\overline{I} = I$$

Demostración de las equivalencias

Demostración. Demostrar $(1) \Rightarrow (2)$.

Hipótesis: f es Riemann integrable en [a,b], es decir, la integral superior \overline{I} y la integral inferior \underline{I} coinciden:

$$\overline{I} = I = I$$
.

Tesis: Para todo $\varepsilon > 0$, existe una partición P_{ε} tal que, para cualquier refinamiento $P' \supseteq P_{\varepsilon}$ y cualquier elección de puntos de muestra χ , se cumple:

$$|\sigma(f, P', \chi) - I| < \varepsilon.$$

1. Integral superior e inferior:

$$\overline{I} = \inf_{P} U(f, P), \quad \underline{I} = \sup_{P} L(f, P),$$

donde U(f,P) y L(f,P) son las sumas de Darboux (superior e inferior) asociadas a una partición P.

2. Criterio de Darboux para integrabilidad: Si f es Riemann integrable, entonces para todo $\varepsilon>0$, existe una partición P_ε tal que:

$$U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon.$$

Por la integrabilidad de f, aplicamos el criterio de Darboux. Para el $\varepsilon > 0$ dado, existe una partición $P_{\varepsilon} = \{x_0, x_1, \dots, x_n\}$ de [a, b] tal que:

$$U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon.$$

Sea $P' \supseteq P_{\varepsilon}$ un refinamiento de P_{ε} .

Por propiedades de las sumas de Darboux: .

a). Monotonía:

$$L(f, P_{\varepsilon}) \le L(f, P') \le U(f, P') \le U(f, P_{\varepsilon}).$$

b).

$$U(f, P') - L(f, P') \le U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon.$$

Sea $\sigma(f,P',\chi)=\sum_{i=1}^m f(\chi_i)\Delta x_i$ una suma de Riemann asociada a P' y puntos de muestra $\chi=\{\chi_1,\ldots,\chi_m\}$. Por definición:

$$L(f, P') < \sigma(f, P', \chi) < U(f, P').$$

Además, como f es integrable, I satisface:

$$L(f, P') \le I \le U(f, P').$$

Desigualdad triangular para la diferencia:

$$|\sigma(f, P', \chi) - I| \le \max\{|U(f, P') - I|, |L(f, P') - I|\}.$$

Pero, $U(f, P') - L(f, P') < \varepsilon$, y como $I \in [L(f, P'), U(f, P')]$:

$$|U(f, P') - I| \le U(f, P') - L(f, P') < \varepsilon,$$

$$|L(f, P') - I| \le U(f, P') - L(f, P') < \varepsilon.$$

Por lo tanto:

$$|\sigma(f, P', \chi) - I| < \varepsilon.$$

Conclusión: Si f es Riemann integrable en [a,b], entonces para todo $\varepsilon > 0$, existe una partición P_{ε} tal que cualquier refinamiento $P' \supseteq P_{\varepsilon}$ cumple $|\sigma(f,P',\chi)-I| < \varepsilon$. Esto demuestra la implicación:

$$f \in \mathcal{R}[a,b] \implies \forall \varepsilon > 0, \exists P_{\varepsilon} : P' \supseteq P_{\varepsilon} \implies |\sigma(f,P',\chi) - I| < \varepsilon.$$

$f \in \mathcal{R}[a,b] \implies \forall \varepsilon > 0, \exists P_{\varepsilon} : P' \supseteq P_{\varepsilon} \implies |\sigma(f,P',\chi) - I| < \varepsilon$

Demostración. Demostrar $(2) \Rightarrow (3)$.

Hipótesis: Para todo $\varepsilon>0$, existe una partición P_{ε} tal que, para cualquier afinamiento $P'\supseteq P_{\varepsilon}$ y cualquier elección de puntos de muestra χ :

$$|\sigma(f, P', \chi) - I| < \varepsilon.$$

Tesis:

$$\overline{I} = I$$
.

1. Integral superior (Darboux):

$$\overline{I} = \inf_{P} U(f, P),$$

donde $U(f, P) = \sum_{i=1}^{n} M_i \Delta x_i$, con $M_i = \sup_{[x_{i-1}, x_i]} f(x)$. 2. Integral inferior (Darboux):

$$\underline{I} = \sup_{P} L(f, P),$$

donde $L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i$, con $m_i = \inf_{[x_{i-1}, x_i]} f(x)$.

3. *Propiedad fundamental:* Para toda partición $P, L(f, P) \leq \underline{I} \leq \overline{I} \leq \overline{I}$ U(f, P).

Tomando supremo e ínfimo sobre las sumas de Riemann:

$$I-\varepsilon \leq L(P',f) \leq (I) \leq \overline{(I)} \leq U(P',f) \leq I+\varepsilon.$$

Como ε es arbitrario, se concluye:

$$\overline{I} = I = I$$
.

Por hipótesis, para todo $\varepsilon > 0$, existe P_{ε} tal que:

$$|\sigma(f, P', \chi) - I| < \varepsilon \quad \forall P' \supseteq P_{\varepsilon}, \forall \chi.$$

Esto implica:

$$I - \varepsilon < \sigma(f, P', \chi) < I + \varepsilon.$$

Como $U(f, P') = \sup_{\chi} \sigma(f, P', \chi)$, se tiene:

$$U(f, P') \le I + \varepsilon$$
.

Cota para la suma inferior L(f,P'): Como $L(f,P')=\inf_{\chi}\sigma(f,P',\chi)$, se tiene:

$$L(f, P') \ge I - \varepsilon$$
.

Acotación de \overline{I} : Por definición, \overline{I} es el ínfimo de todas las sumas superiores. Dado que $U(f, P') \leq I + \varepsilon$ para todo refinamiento $P' \supseteq P_{\varepsilon}$:

$$\overline{I} < I + \varepsilon$$
.

Como $\varepsilon > 0$ es arbitrario, tomando $\varepsilon \to 0^+$:

$$\overline{I} < I$$
.

Acotación de \underline{I} : Por definición, \underline{I} es el supremo de todas las sumas inferiores. Dado que $L(f, P') \geq I - \varepsilon$ para todo afinamiento $P' \supseteq P_{\varepsilon}$:

$$\underline{I} \geq I - \varepsilon$$
.

Tomando $\varepsilon \to 0^+$:

$$\underline{I} \geq I$$
.

De los resultados anteriores:

$$\overline{I} \leq I$$
 y $\underline{I} \geq I$.

Pero por la propiedad fundamental $\underline{I} \leq \overline{I}$, se concluye:

$$\underline{I} \ge I \ge \overline{I} \ge \underline{I}$$
.

Esto solo es posible si:

$$\overline{I} = I = I$$
.

Conclusión: La condición $\forall \varepsilon > 0$, $\exists P_{\varepsilon} : P' \supseteq P_{\varepsilon} \implies |\sigma(f, P', \chi) - I| < \varepsilon$ implica necesariamente que las integrales superior e inferior coinciden $(\overline{I} = \underline{I})$

$$\forall \varepsilon > 0, \exists P_{\varepsilon} : P' \supseteq P_{\varepsilon} \implies |\sigma(f, P', \chi) - I| < \varepsilon \implies \overline{I} = \underline{I}$$

Demostración. Demostrar (3) \Rightarrow (1):

Hipótesis:

$$\overline{I} = I = I$$
,

donde \overline{I} es la integral superior de Darboux y \underline{I} la integral inferior. Tesis: f es Riemann integrable en [a,b], es decir:

$$\forall \varepsilon > 0, \exists P_{\varepsilon} : \forall P' \supseteq P_{\varepsilon}, |\sigma(f, P', \chi) - I| < \varepsilon.$$

Integral superior:

$$\overline{I} = \inf_{P} U(f, P), \quad U(f, P) = \sum_{i=1}^{n} M_i \Delta x_i, \quad M_i = \sup_{[x_{i-1}, x_i]} f(x).$$

Integral inferior:

$$\underline{I} = \sup_{P} L(f, P), \quad L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i, \quad m_i = \inf_{[x_{i-1}, x_i]} f(x).$$

Criterio de Darboux: f es Riemann integrable si y solo si:

$$\forall \varepsilon > 0, \exists P_{\varepsilon} : U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon.$$

Aplicación del Criterio de Darboux Dado que $\overline{I}=\underline{I}=I$, por definición de ínfimo y supremo: - Para todo $\varepsilon>0$, existe una partición P_1 tal que:

$$U(f, P_1) < \overline{I} + \frac{\varepsilon}{2} = I + \frac{\varepsilon}{2}.$$

- Existe una partición P_2 tal que:

$$L(f, P_2) > \underline{I} - \frac{\varepsilon}{2} = I - \frac{\varepsilon}{2}.$$

Sea $P_{\varepsilon}=P_1\cup P_2$ (afinamiento común de P_1 y P_2). Por propiedades de las sumas de Darboux:

$$U(f, P_{\varepsilon}) \le U(f, P_1) < I + \frac{\varepsilon}{2},$$

$$L(f, P_{\varepsilon}) \ge L(f, P_2) > I - \frac{\varepsilon}{2}.$$

Por lo tanto:

$$U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \left(I + \frac{\varepsilon}{2}\right) - \left(I - \frac{\varepsilon}{2}\right) = \varepsilon.$$

Sea $P'\supseteq P_{\varepsilon}$ un afinamiento de P_{ε} . Para cualquier elección de puntos χ :

$$L(f, P_{\varepsilon}) \le L(f, P') \le \sigma(f, P', \chi) \le U(f, P') \le U(f, P_{\varepsilon}).$$

Dado que $I = \overline{I} = I$, tenemos:

$$I - \frac{\varepsilon}{2} < L(f, P_{\varepsilon}) \le L(f, P') \le \sigma(f, P', \chi) \le U(f, P') \le U(f, P_{\varepsilon}) < I + \frac{\varepsilon}{2}.$$

Esto implica:

$$|\sigma(f, P', \chi) - I| < \frac{\varepsilon}{2} < \varepsilon.$$

Conclusión Si $\overline{I} = \underline{I}$, entonces para todo $\varepsilon > 0$, existe una partición P_{ε} tal que cualquier refinamiento $P' \supseteq P_{\varepsilon}$ satisface:

$$|\sigma(f, P', \chi) - I| < \varepsilon.$$

Por lo tanto, f es Riemann integrable en [a, b].

$$\boxed{\overline{I} = \underline{I} \implies f \in \mathcal{R}[a, b]}$$

Por Tanto:

$$f \in R : [a,b] \iff \forall \varepsilon > 0 [\exists P_{\varepsilon} : P' \supseteq P_{\varepsilon} | \sigma(f,P',\chi) - I | < \varepsilon] \iff \overline{I} = \underline{I}.$$