Name: Roll no: Code : TJKZMLAZFS

Scan/click for YouTube playlist to learn solving these questions.

1 Power Systems

- 1. Two resistances R_1 and R_2 are connected in series. What is the equivalent resistance?
 - A. 86.00 Ω
 - Β. 33.00 Ω
 - C. 53.00Ω
 - D. 20.34Ω
- 2. Find the potential difference between P and Q.

- A. 3.06
- B. 2.29

C. 16.04

D. 0.44

3. A transformer has its maximum efficiency of 98% at 25

kVA at upf. During the day it is loaded as follows:

12 hours: 1 kW at pf 0.5 lag 6 hours: 6 kW at pf 0.5 lag 6 hours: 14 kW at pf 0.5 lag

Find the all day efficiency of the transformer

- A. 47.004 %
- B. 5.993 %
- C. -76.915 %
- D. 94.007 %
- 4. A transformer has its maximum efficiency of 98% at 26 kVA at upf. During the day it is loaded as follows:

12 hours: 4 kW at pf 0.6 lag

 $6~\mathrm{hours}$: $9~\mathrm{kW}$ at pf $0.7~\mathrm{lag}$

6 hours: 17 kW at pf 0.4 lag

Find the all day efficiency of the transformer

- A. 94.787 %
- B. -50.181 %
- C. 47.394 %
- D. 5.213 %
- 5. Two resistances R_1 and R_2 are connected in series. What is the equivalent resistance?
 - A. 66.00 Ω
 - B. 35.00Ω
 - C. 31.00Ω
 - D. 16.44 Ω

6. A transformer has its maximum efficiency of 98% at 22 kVA at upf. During the day it is loaded as follows:

12 hours: 6 kW at pf 0.5 lag 6 hours: 8 kW at pf 0.6 lag 6 hours: 19 kW at pf 0.4 lag

Find the all day efficiency of the transformer

- A. -36.443 %
- B. 5.249 %
- C. 94.751 %
- D. 47.376 %

2 Electric Circuits

7. What will be the current density of metal if a current of 46A is passed through a cross-sectional area of $0.1m^2$?

A.
$$0.0022 \text{ A}/m^2$$

B.
$$4.6000 \text{ A}/m^2$$

C.
$$46000.0000 \text{ A}/m^2$$

D. 460.0000
$$A/m^2$$

8. Find the equivalent resistance between the points A and B for r = 182 Ω

- A. 0.005Ω
- B. 364.000Ω
- C. 182.000 Ω
- D. 728.000Ω
- 9. Find the equivalent resistance between the points A and B for r = 443 Ω

- A. $0.002~\Omega$
- B. 886.000Ω
- C. 443.000 Ω
- D. 1772.000 Ω

* * * All the Best * * *