FH Bielefeld, Campus Minden Prof. Dr.-Ing. Kerstin Müller Sommerssemester 2018 Computergrafik

Aufgabensammlung II

Name: ——	
Gruppe:	

Aufgabe 1 (Rotation 2D)

Leiten Sie anhand folgender Skizze die Rotationsmatrix für eine 2D-Rotation um den Ursprung her. D.h. stellen Sie die Position von z durch eine entsprechende Berechnung in Abhängigkeit von p dar. Benutzen Sie dazu die Bezeichnungen aus der Skizze (siehe Abb. 1)! Hinweis:

$$cos(a+b) = cos(a) \cdot cos(b) - sin(a) \cdot sin(b)$$

$$sin(a+b) = sin(a) \cdot cos(b) + cos(a) \cdot sin(b)$$

Abbildung 1: 2D Rotation.

Aufgabe 2 (Transformationsmatrizen und homogene Koordinaten)

Geben Sie die Matrizen (4x4) an, die folgende Transformationen eines Punktes $(x, y, z)^T$ realisieren. Führen Sie die Transformation des Punktes mit der Matrix durch:

• Translation um den Translationsvektor $t = (u, v, w)^T$.

• Rotation um die x-Achse mit Winkel α.

• Rotation um die y-Achse mit Winkel β.

• Rotation um die z-Achse mit Winkel γ.

Aufgabe 3 (Matrizenreihenfolge)

Zeigen Sie oder wiederlegen Sie: $Rot_x(\alpha) \cdot T(t) = T(t) \cdot Rot_x(\alpha)$ mit T ist (4x4) Translationsmatrix mit Translationsvektor $t = (u, v, w)^T$ und $Rot_x(\alpha)$ ist (4x4) Rotationsmatrix um die x-Achse mit Winkel α .

Aufgabe 4 (Kombination mehrerer Transformationen)

Geben Sie die Gesamtmatrix M (4x4) an, die folgende Transformationen eines Punktes $(x, y, z)^T$ realisiert:

• Erst eine Translation um $(0,1,0)^T$, danach Rotation um die x-Achse um 90 Grad, danach Rotation um die y-Achse um 180 Grad.

 \bullet Erst eine Rotation umd die z-Achse um 90 Grad, danach Translation um $(1,1,2)^T$.

Aufgabe 5 (Rotation um eine beliebige Achse)

Um eine Rotation α um eine beliebige Achse durchzuführen, muss die Gesamt-Rotationsmatrix $R_G(\alpha)$ berechnet werden. Unsere Drehachse sei $c+\lambda d, \lambda \in \mathbb{R}, c=(c_x,c_y,c_z)^T, d=(0,1,0)^T$, der Rotationswinkel sei α . Die Gesamt-Rotationsmatrix $R_G(\alpha)$ ergibt sich aus der Multiplikation von drei 4x4 Matrizen. Geben Sie diese 3 Matrizen (4x4) zur Berechnung der Gesamt-Rotationsmatrix $R_G(\alpha)$ an.

Aufgabe 6 (Transformationen)

Teil 1: Geben Sie für jede 2D-Operation (siehe Abbildung) die entsprechende Transformationsmatrix in homogenen Koordinaten $(3 \times 3 \text{ Matrix})$ an:

Operation 1:

Operation 2:

Operation 3:

