EXPERIMENT - 5

AIM: To implement programs for estimating & eliminating trend in time series data-aggregation, smoothing

PROCEDURE AND CODE:

Steps 1: Importing the necessary packages.

from statsmodels.tsa.holtwinters import SimpleExpSmoothing, ExponentialSmoothing

Step 2: Applying Simple Exponential Smoothing.(taking Volume as variable)

df['SES'] = SimpleExpSmoothing(df['seasional_first_difference']).fit(smoothing_level=0.5, optimized=False).fittedvalues

Step 3: Applying Exponential Smoothing.

df['HWES'] = ExponentialSmoothing(df['seasional_first_difference'], trend='add', seasonal='add', seasonal periods=7).fit().fittedvalues

Step 4: Plotting the graph for Volume. Original vs Simple vs Exponential Smooting.

plt.figure(figsize=(12, 6))

plt.plot(df['Volume'], label='Original')

plt.legend()

plt.title('Smoothing Techniques Comparison')

plt.xlabel('Date')

plt.ylabel('Price')

plt.show()


```
plt.figure(figsize=(12, 6))
plt.plot(df['SES'], label='Simple Exponential Smoothing', color='red')
plt.legend()
plt.title('Simple Exponential Smoothing')
plt.xlabel('Date')
plt.ylabel('Price')
plt.show()
```


Steps 5: Doing Data aggregation techniques which includes mean, avg, volume etc. weekly_data = df.resample('W', on='Date').mean(numeric_only=True) weekly_data average_close_by_ticker = df.groupby('Ticker')['Close'].mean() average_close_by_ticker

rolling_mean_20 = df['Close'].rolling(window=20).mean()
rolling_mean_20

Result: The program to implement programs for estimating & eliminating trend in time series data- aggregation, smoothing