Computational model of the peripheral nervous system: PNPy

Yann Le Guen

Advisors: Simon Schultz and Sarah Jarvis

Introduction

Motivation: Improve understanding of anatomy and neurophysiology of peripheral nerves

Hypothesis: Axons can be modelled by electrical circuits

Objective: Produce as an output the type of signals measured by nerve cuff electrodes

<u>Project applications:</u> Vagus nerve stimulation (VNS), bioelectronics medicines

Background

Cable model schematic

Hodgkin & Huxley model schematic

Credits: Queen Margaret University Edinburgh, Applied Sciences website

Representation of myelinated and unmyelinated nerve fibres

Background

Credits: S. Poliak and E. Peles, Nature, December 2013

Detailed myelinated axon structure around the nodes the of Ranvier

Credits: M. S. Evans et al, Acta Neurol Scand, 2004

Example of a compound action potential recorded from the cervical portion of left vagus nerve.

Methods

1. Axons parameters

Unmyelinated axon	Myelinated axon
Distribution of densities & diameters	Distribution of densities & diameters
Axon length (μm)	Number of nodes
Specific axial resistance (µF/cm²)	

Credits: C. McIntyre et al, J Neurophysiol, 2002

Myelinated axon model used in PNPy

Methods

Stimulus duration (ms)

2. Electrodes parameters

Stimulating electrode	Recording electrode
Stimulation type	Number contact points
Coordinates	Position along nerve
Frequency and duty cycle	Number of electrodes
Amplitude (nA)	Simulation duration (ms)
Jitter parameters	

Credits: SC. Ordelman et al 2003

Schematic of a multi-contact electrode cuff around a nerve

Point source model:

$$V(r,t) = \frac{1}{4\pi\sigma} \sum_{n=1}^{N} \frac{I_n(t)}{|r - r_n|}$$

Line source model:

$$V(r,t) = \frac{1}{4\pi\sigma} \sum_{n=1}^{N} I_n(t) \int \frac{dr_n}{|r - r_n|}$$

3. Diameter distributions and bundle parameters

Credits: T. Shimizu et al 2011

Histogram of myelinated and unmyelinated fibre densities of the human vagal visceral branch

Bundle parameters

Bundle radius

Proportion myelinated axons

Proportion unmyelinated axons

Number of axons

Credits: University of Minnesota, College of Veterinary Medicine website

Transverse section through a canine vagus nerve.

AP propagation along an unmyelinated axon

Axon diameter 1,8 cm - Conduction velocity ≈ 0.5 m/s

AP propagation along a myelinated axon

Axon diameter = 4,6 cm - Conduction velocity: ≈ 58 m/s

CAP bipolar recording 9mm from stimulus

20% of myelinated axons

CAP monopolar recording 1,5cm from stimulus 17,5% of

myelinated axons

CAP temporal/spatial propagation

Distribution myelinated axons propagating at different conduction velocities

Distribution unmyelinated axons propagating at different conduction velocities

Discussion

Cervical vagus nerve recording with bipolar electrode 8cm from the stimulus

Objective: To be able to back derive the composition of the nerve in term of myelinated and unmyelinated fibres from the CAP measurement using PNPy

References

- Evans, M. S., Verma-Ahuja, S., Naritoku, D. K. & Espinosa, J. A. (2004) Intraoperative human vagus nerve compound action potentials. *Acta Neurologica Scandinavica*. 110 (4), 232-238.
- McIntyre, C. C., Richardson, A. G. & Grill, W. M. (2002) Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. *Journal of Neurophysiology.* 87 (2), 995-1006.
- Ordelman, S. C., Kornet, L., Cornelussen, R., Buschman, H. P. & Veltink, P. H. (2013) Selectivity for specific cardiovascular effects of vagal nerve stimulation with a multi-contact electrode cuff. *IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society.* 21 (1), 32-36.
- Poliak, S. & Peles, E. (2003) The local differentiation of myelinated axons at nodes of Ranvier. *Nature Reviews.Neuroscience.* 4 (12), 968-980.
- Queen Margaret University Edinburgh. (September 5th 2001) Applied Sciences THE PERIPHERAL NERVOUS SYSTEM. [Online] Available from:
 http://www.qmu.ac.uk/hn/appliedscience/Coordination%20&%20Control/C%20PNS.htm
 [Accessed 8th August 2015].
- Shimizu, T., Hayashi, M., Kawata, A., Mizutani, T., Watabe, K. & Matsubara, S. (2011) A morphometric study of the vagus nerve in amyotropic lateral sclerosis with circulatory collapse. *Amyotrophic Lateral Sclerosis : Official Publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.* 12 (5), 356-362.
- University of Minnesota, College of Veterinary Medicine. (Last modified June 2011) Lab 1: Nervous
 Tissue Histology Peripheral Nerves. [Online] Available from:
 http://vanat.cvm.umn.edu/neurLab1/nerves.html [Accessed 20th August 2015].

Annex

```
unmyelinatedDistribution = {
     'densities': [250,1250,5000,8000,9800,10200,8900,7600,5700,4000,3900,23
00,2000,1300,900,750,600,600,500,250], # Fibers densities
    'diameters': [ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1., 1.1,
1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.], # Diameters for each densities
unmyelinatedParameters = {
    'name': "unmyelinated axon", # Axon name (for NEURON)
    'L': 10500, # Axon length (µm)
    'diam': unmyelinatedDistribution, # Axon diameter distribution (µm)
    'cm': 1.0, # Specific membrane capacitance (µF/cm<sup>2</sup>)
    'Ra': 200.0, # Specific axial resistance (Ohm cm)
    'rec v': False, # Set voltage recorders True or False
myelinatedDistribution = {
    'densities': [100,300,1150,2750,3650,2850,1750,900,500,250,200,150,110,10
0,110,100,105], # Fibres densities
     'diameters': [ 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5,
7.,7.5, 8., 8.5, 9.], # Diameters for each densities
myelinatedParametersA = {
     'name': "myelinated axonA", # Axon name (for NEURON)
     'Nnodes': 21, # Number of nodes
     'fiberD': myelinatedDistribution, # Fibre diameter distribution (µm)
     'rec v': False, # Set voltage recorders True or False
```

Annex

```
stimulusParameters = {
     'stim type': "EXTRA", #Stimulation type either "INTRA" or "EXTRA"
     'stim coord': [[0,50,0]], # spatial coordinates of the stimulating
electrodes, example for bipolar case=[[xe0,ye0,ze0], [xe1,ye1,ze1]]
     'amplitude': 2.0, # Pulse amplitude (nA)
     'freg': 0.1, # Frequency of the sin pulse (kHz)
     'duty cycle': 0.001, # Percentage stimulus is ON for one period
     'stim dur' : 1e1, # Stimulus duration (ms)
     'jitter para': [0,0], # Mean and standard deviation of the delay
recordingParameters = {
    "number contact points": 8, #Number of points on the circle
constituting the cuff electrode
    'recording elec pos': [9000], #Position of the recording electrode
along axon in um, in "BIPOLAR" case should be given as a couple [x1,x2]
    'number elecs': 100, #number of electrodes along the bundle
    'dur': h.tstop, # Simulation duration (ms)
    'rec CAP': True, # Boolean stating if CAP is recorded
bundleParameters = {
     'radius bundle': 150.0, # Radius of the bundle in um
     'number of axons': 640, # Number of axons in the bundle
     'p A': 0.2, # Percentage of myelinated fibre type A
     'p B': 0, # Percentage of myelinated fibre type B
     'p C': 0.8, # Percentage of unmyelinated fibre type C
     'myelinated A': myelinatedParametersA, # Parameters for fibre type A
     'myelinated B': myelinatedParametersB, # Parameters for fibre type B
     'unmyelinated': unmyelinatedParameters, # Parameters for fibre type C
```