Probability Theory

Exercise Sheet 6

Exercise 6.1 Let $(X_i)_{i\geq 1}$ be i.i.d. with symmetric stable distribution of parameter $\alpha \in (0,2)$, see lecture notes p. 63.

- (a) Find the distribution of $n^{-1/\alpha}(X_1 + \cdots + X_n)$.
- (b) Does $\frac{1}{\sqrt{n}}(X_1 + \cdots + X_n)$ converge in distribution?

Exercise 6.2 Let $\{X_j\}_{j=1,\dots,n}$, $n \geq 1$ be random variables and let us denote by ϕ_j the characteristic function of X_j . Prove that $\{X_j\}_{j=1,\dots,n}$ are independent if and only if for all $\xi_1,\dots,\xi_n\in\mathbb{R}$.

$$E\left[\exp\left\{i\sum_{j=1}^{n}\xi_{j}X_{j}\right\}\right] = \prod_{j=1}^{n}\phi_{j}(\xi_{j}).$$

Hint: For $d \geq 1$, and ν a probability measure on \mathbb{R}^d , one can define the characteristic function $\phi_{\nu} : \mathbb{R}^d \to \mathbb{R}$ of ν , as

$$\phi_{\nu}(\lambda) = \int_{\mathbb{R}^d} \exp(i\lambda \cdot x) \nu(dx),$$

where $\lambda \cdot x$ denotes the scalar product in \mathbb{R}^d , and then use (without proof) the following uniqueness property of characteristic functions of \mathbb{R}^d -valued random variables: if ν and μ are probability measures on \mathbb{R}^d with the same characteristic function, then $\nu = \mu$, (cf. (2.3.13) the uniqueness property for one-dimensional random variables in the lecture notes).

Exercise 6.3 Let $X_1, X_2, ...$ be independent random variables for which there exists a constant M > 0, such that $|X_n| \le M$, P-a.s. for n = 1, 2, ... We write $S_n = X_1 + ... + X_n$. Show that, if $\sum Var(X_n) = \infty$, then there exist constants a_n, b_n such that $(S_n - b_n)/a_n$ converges in distribution towards a standard normal random variable.

Exercise 6.4 (Optional.) Show that when Y_k , $k \ge 1$ are independent uniformly bounded random variables such that $\sum_k Y_k$ converges P-a.s., then $\sum_k \operatorname{Var}(Y_k) < \infty$.

Hint: consider independent copies \tilde{Y}_k , $k \ge 1$ of the Y_k , $k \ge 1$ and use Exercise 6.3 with $X_k = Y_k - \tilde{Y}_k$, $k \ge 1$.

Submission: until 14:15, Nov 5., during exercise class or in the tray outside of HG G 53.

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Class assignment:

Students	Time & Date	Room	Assistant
Afa-Fül	Tue 13-14	HG F 26.5	Angelo Abächerli
Gan-Math	Tue 13-14	ML H 41.1	Zhouyi Tan
Meh-Schu	Tue 14-15	HG F 26.5	Angelo Abächerli
Schü-Zur	Tue 14-15	ML H 41.1	Dániel Bálint