Workshop i følger og rækker

Ungdommens Naturvidenskabelige Forening

02-03-2022

Program

- Introduktion
- 2 Følger
- Rækker
- 4 Videre forløb

Program

- Introduktion
- 2 Følger
- 3 Rækker
- 4 Videre forløb

Introduktion

En mængde er en samling af relaterede objekter kaldet elementer. Vi skriver mængder med tuborgklammer, f.eks. $A = \{1, 2, 3\}$.

Introduktion

En *mængde* er en samling af relaterede objekter kaldet *elementer*. Vi skriver mængder med tuborgklammer, f.eks. $A = \{1, 2, 3\}$.

Hvis a er et element i A, skriver vi $a \in A$. Hvis ikke skriver vi $a \notin A$. F.eks. er $1 \in \{1, 2, 3\}$ og $4 \notin \{1, 2, 3\}$.

Introduktion

Vi er mest interesserede i de to talmængder

$$\mathbb{N} = \{1, 2, 3, ...\}$$

kaldet de naturlige tal samt

 \mathbb{R}

kaldet de reelle tal. I er velkomne til at tænke på $\mathbb R$ som "alle tal".

Program

- Introduktion
- 2 Følger
- 3 Rækker
- 4 Videre forløb

Hvad er en følge?

Definition

En talfølge er en samling af reelle tal $a_n \in \mathbb{R}$ indekseret ved de naturlige tal,

$$a_1, a_2, \dots$$

Vi skriver $\{a_n\}_{n\in\mathbb{N}}$ for en talfølge.

Hvad er en følge?

Definition

En talfølge er en samling af reelle tal $a_n \in \mathbb{R}$ indekseret ved de naturlige tal.

$$a_1, a_2, ...$$

Vi skriver $\{a_n\}_{n\in\mathbb{N}}$ for en talfølge.

Vi tager nogle eksempler på tavlen.

Operationer med følger

Definition

Lad $\{a_n\}_{n\in\mathbb{N}}$ og $\{b_n\}_{n\in\mathbb{N}}$ være følger. Vi definerer følgende:

- Følgen $\{a_n + b_n\}_{n \in \mathbb{N}}$ har følgeelementer $a_n + b_n$.
- Følgen $\{a_n \cdot b_n\}_{n \in \mathbb{N}}$ har følgeelementer $a_n \cdot b_n$.
- Følgen $\{a_n/b_n\}_{n\in\mathbb{N}}$ har følgeelementer a_n/b_n (hvor vi her må antage, at $b_n\neq 0$ for alle $n\in\mathbb{N}$).
- For et tal $c \in \mathbb{R}$ har følgen $\{ca_n\}_{n \in \mathbb{N}}$ følgeelementer ca_n .

Fibonacci-tallene

Fibonacci-tallene er defineret såkaldt *rekursivt*. Lad f_n betegne det n'te Fibonacci-tal. Da er $f_1 = 0, f_2 = 1$ og

$$f_n = f_{n-1} + f_{n-2}$$

for $n \ge 3$.

Fibonacci-tallene

Fibonacci-tallene er defineret såkaldt *rekursivt*. Lad f_n betegne det n'te Fibonacci-tal. Da er $f_1 = 0, f_2 = 1$ og

$$f_n = f_{n-1} + f_{n-2}$$

for $n \ge 3$. De første Fibonacci-tal er

$$0, 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

Collatz-formodningen

Collatz-formodningen eller 3n+1-formodningen. Vælg et tal $m\in\mathbb{N}$ og lad $a_1=m$. Definér da

$$a_n = \begin{cases} 3n+1 & \text{hvis } n \text{ er ulige} \\ \frac{n}{2} & \text{hvis } n \text{ er lige} \end{cases}.$$

Collatz-formodningen

Collatz-formodningen eller 3n+1-formodningen. Vælg et tal $m\in\mathbb{N}$ og lad $a_1=m$. Definér da

$$a_n = \begin{cases} 3n+1 & \text{hvis } n \text{ er ulige} \\ \frac{n}{2} & \text{hvis } n \text{ er lige} \end{cases}.$$

Collatz-formodningen siger, at uanset valget af $m \in \mathbb{N}$ vil følgen på et tidspunkt ramme 1. Til trods for en stor indsats af mange matematikere, er det endnu ikke lykkedes at bevise formodningen eller at komme med et modeksempel.

Collat-formodningen for m = 177

Opgaver

Kig på opgave 2.1 og 2.2 på side 4. Gå i gang med den, I finder mest interessant.

Program

- Introduktion
- 2 Følger
- Rækker
- 4 Videre forløb

Summer

Summen af dit ord er sandhed.

- Salmernes bog 119:160

Summer

Definition

Lad $a_1, ..., a_n$ være reelle tal. Da er

$$\sum_{i=1}^n a_i = a_1 + \cdots + a_n.$$

Summer

Definition

Lad $a_1, ..., a_n$ være reelle tal. Da er

$$\sum_{i=1}^n a_i = a_1 + \cdots + a_n.$$

Lad os tage nogle eksempler på tavlen.

Geometriske summer

Definition

Lad $x \in \mathbb{R}$ og $n \in \mathbb{N}$. Da kalder vi

$$\sum_{i=0}^{n} x^{i} = 1 + x + x^{2} + \dots + x^{n}$$

en geometrisk sum.

Geometriske summer

Sætning

Lad $x \neq 1$ være et reelt tal. Da er

$$\sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}.$$

Hvis x = 1 er

$$\sum_{i=0}^{n} x^{i} = n.$$

Geometriske summer

Sætning

Lad $x \neq 1$ være et reelt tal. Da er

$$\sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}.$$

Hvis x = 1 er

$$\sum_{i=0}^{n} x^{i} = n.$$

Vi tager beviset (samt eksempler) på tavlen.

Rækker

Definition

Lad $a_1, a_2, ...$ være en følge af reelle tal. Da kalder vi

$$\sum_{i=0}^{\infty} a_i = \lim_{n \to \infty} \sum_{i=0}^{n} a_i$$

for en række.

Rækker

Definition

Lad $a_1, a_2, ...$ være en følge af reelle tal. Da kalder vi

$$\sum_{i=0}^{\infty} a_i = \lim_{n \to \infty} \sum_{i=0}^{n} a_i$$

for en række.

Lad $x \in \mathbb{R}$. En række på formen

$$\sum_{i=0}^{\infty} x^i$$

kaldes en geometrisk række.

Udregning af geometriske rækker

Sætning

Lad x være et reelt tal med |x| < 1 (altså -1 < x < 1). Da er

$$\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$$

Udregning af geometriske rækker

Sætning

Lad x være et reelt tal med |x| < 1 (altså -1 < x < 1). Da er

$$\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$$

Bevis: For |x| < 1 vil x^{n+1} gå mod nul for n gående mod uendelig. Dermed er

$$\sum_{i=0}^{\infty} x^{i} = \lim_{n \to \infty} \sum_{i=0}^{n} x^{i} = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x}.$$

Opgaver

Se på opgave 3.1, 3.2 og 3.6 - 3.8. Bliver I færdige, lav da 3.3-3.5.

Program

- Introduktion
- 2 Følger
- 3 Rækker
- 4 Videre forløb

Videre forløb

I kan nu vælge én af to forløb (eller at arbejde videre med de forrige):

Rækker for funktioner: Mange funktioner kan udtrykkes som en række. I skal regne på en masse eksempler. Forudsætter differentialregning!

Konvergens af følger: Mere abstrakt. I skal få erfaring med noget formel matematik og arbejde med definitionen af konvergens.

02-03-2022