Modélisation et Résolution des Interactions au sein de l'Espace Aérien par Intelligence Artificielle

Loïc Shi-Garrier

Encadré par Daniel Delahaye (ENAC) et Nidhal C. Bouaynaya (Rowan University)

30 mai 2022

<u>Extended ATC Planner</u>: concept opérationnel visant à **lier** responsabilités **stratégiques** (équilibrer la demande avec la capacité) et **tactiques** (séparer les avions).

 $\frac{Objectif\ n°1}{complexit\'e}\ :\ utiliser\ \textbf{l'apprentissage}\ machine\ pour\ \textbf{pr\'edire}\ la$

<u>Problème</u> : l'apprentissage machine n'est pas **robuste** (au bruit, aux attaques, à des données issues d'une autre distribution ...). Le modèle est incapable de **quantifier son incertitude**.

stop sign Confidence: 0.9153

Adversarial perturbation

flowerpot Confidence: 0.8374

→ Excès de confiance, donc problème de fiabilité et d'acceptabilité auprès de l'utilisateur final, en particulier dans le cadre de systèmes critiques comme le contrôle aérien.

Objets d'étude : trajectoires, plans de vol, flux etc. \rightarrow séries temporelles. Objectif n°2 : étudier la robustesse des modèles d'apprentissage machine manipulant des séries temporelles, e.g., réseaux de neurones récurrents, transformers.

Première approche : Réseaux de neurones bayésiens

- Les paramètres du modèle sont des distributions de probabilités.
- Les distributions a posteriori ne peuvent pas être calculées exactement → Variational Inference, Markov Chain Monte Carlo etc.

Seconde approche : Méthodes probabilistes non bayésiennes

- Méthodes ensemblistes: plusieurs modèles sont entraînés.
- Autres méthodes fondées sur l'optimisation robuste.

<u>Troisième voie</u>: Approche géométrique

- Suivre une distribution de probabilité à travers le modèle est difficile.
- En revanche, suivre la géométrie des distributions est plus facile.
- La sortie du modèle est vue comme une variable aléatoire y dont la distribution appartient à une famille paramétrique $p(y|\theta)$.
- Cette famille est munie de la métrique de l'information de Fisher $G_{\theta} = \mathbb{E}_{\theta}[\partial_{\theta^i} \log p(y|\theta)\partial_{\theta^j} \log p(y|\theta)]$ qu'on peut calculer explicitement.
- Le paramètre θ est fourni par le modèle $\theta = N_{\omega}(x)$. On peut "rétropropager la géométrie" en calculant la **métrique pullback** $G_{\mathsf{x}} = N_{\omega}^* G_{\theta}$.
- Le pullback N_{ω}^* ne dépend que du gradient de N_{ω} par rapport à x et peut donc être calculé par **rétropropagation**.
- La métrique G_x permet d'étudier comment le modèle lie l'entrée x
 à la sortie y.

- La métrique pullback $G_x = N_\omega^* G_\theta$ est en général **dégénérée** i.e., son noyau est non trivial.
- L'ensemble des noyaux ker G_x pour chaque x de l'espace d'entrée forme une distribution intégrable → on obtient un feuilletage ker G sur l'espace d'entrée.
- Ce feuilletage est intimement lié à la robustesse du modèle.

^{*}Source: Tron et al. Canonical foliations of neural networks: application to robustness.

- Supposons que la sortie $y = (y_i)$ soit une série temporelle de distribution $p(y|\theta)$ avec $\theta = (\theta_1, \dots, \theta_m)$.
- D'après le **théorème de Takens**, tout système dynamique $s_{t+1} = \phi(s_t) \in \mathbb{R}^n$ peut être reconstruit à partir d'une seule mesure $\theta_t = f(s_t) \in \mathbb{R}$ suffisamment répétée $(\theta_{t_1}, \dots, \theta_{t_{2n+1}}) = \tilde{\phi}(\theta_{t_0}, \dots, \theta_{t_{2n}})$.
- Le modèle a pour but de reconstruire cette dynamique inconnue $N_{\omega} \approx \tilde{\phi}$.
- Ainsi, l'ensemble des trajectoires du système $\tilde{\phi}$ forme un second feuilletage.
- → L'étude de l'interaction des deux feuilletages permet de caractériser la robustesse pour les modèles travaillant sur des séries temporelles.

Questions

