Нелинейное уравнение Шредингера

$$i\frac{\partial z}{\partial t} + \frac{\partial^2 z}{\partial x^2} + D|z|^2 z = 0, \quad z = u + iv, D = \text{const}$$
(5)

описывает огибающую волнового пакета в среде с дисперсией и кубической нелинейностью.

Разобьём это комплексное уравнение на систему двух вещественных уравнений:

$$i(\frac{\partial u}{\partial t} + i\frac{\partial v}{\partial t}) + \frac{\partial^2 u}{\partial x^2} + i\frac{\partial^2 v}{\partial x^2} + D(u^2 + v^2)(u + iv) = 0 \Leftrightarrow$$

Im:
$$\frac{\partial \mathbf{v}}{\partial t} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{g}(\mathbf{u}, \mathbf{v})$$

Re:
$$\frac{\partial u}{\partial t} = -\frac{\partial^2 v}{\partial x^2} + f(u, v)$$

$$f(u,v) = -v(u^2+v^2)D$$

$$g(u,v) = u(u^2 + v^2)D$$

Составим схему для системы:

$$au_{j-1}^{n+1} + bu_{j}^{n+1} + au_{j+1}^{n+1} - au_{j-1}^{n} - bu_{j}^{n} - au_{j+1}^{n} + cv_{j-1}^{n+1} + dv_{j}^{n+1} + cv_{j+1}^{n} + cv_{j+1}^{n} + cv_{j+1}^{n} =$$

$$= pf_{j-1}^{n+1} + qf_{j}^{n+1} + pf_{j+1}^{n+1} + pf_{j-1}^{n} + qf_{j}^{n} + pf_{j+1}^{n}$$

$$= Cv_{j-1}^{n+1} + D_{1}v_{j}^{n+1} + Cv_{j+1}^{n+1} - Cv_{j-1}^{n} - D_{1}v_{j}^{n} - Cv_{j+1}^{n} + Au_{j-1}^{n+1} + Bu_{j}^{n+1} + Au_{j+1}^{n+1} + Au_{j+1}^{n} + Bu_{j}^{n} + Au_{j+1}^{n} + Au_{$$

Рис 18. Шаблоны для решения u, v и правой части f, g компактной схемы и

Таблица 5. Пары тестовых функций и соответствующие уравнения «локальной» СЛАУ для определения коэффициентов компактной схемы (6).

u	V	f	g	Уравнение
t-tau/2	0	1	0	$(2\mathbf{a}+\mathbf{b})\tau=(4\mathbf{p}+2\mathbf{q})$
				$(2A+B)\tau - \tau / 2(4A+2B) = 0$
x^2(t-	0	x^2	-2(t-tau/2)	$2ah^2\tau = 4ph^2$
tau/2)				$2Ah^2\tau - \tau/2(4A)h^2 = 0$
1	0	0	0	0 = 0
				(4A+2B)=0
X^2	0	0	-2	$(-a-a+a+a)h^2=0$
				$4Ah^2 = 2(4P + 2Q)$
(t-tau/2)^2	0	2(t-tau/2)	0	$\tau^{2}(2a+b) - \tau^{2}(2a+b) + \tau^{2}/4(0) = 2 * 0$
				$\tau^{2}(2A+B) - \tau^{2}(2A+B) + \tau^{2}/4(0) = 0$
0	t-tau/2	0	1	$2c + e - \tau/2(4c + 2e) = 0$
				$(2C+E)\tau = (4P+2Q)$
0	x^2(t-tau/2)	2(t-tau/2)	X^2	$2ch^2\tau - \tau/2h^2(4c + 2e) = 0$
				$2Ch^2\tau = 4Ph^2$
0	1	0	0	4c + 2e = 0
				0 = 0
0	X^2	2	0	$4ch^2 = 2(4p + 2q)$
				$h^2(c+c-c-c)=0$
0	(t-tau/2)^2	0	2(t-tau/2)	$\tau^{2}(2c+e) - \tau^{2}(2c+e) + \tau^{2}/4(4c+2e) = 0$
				$\tau^{2}(2C + E) - \tau^{2}(2C + E) + \tau^{2}/4(0) = 0$

Будем пробовать разные значения параметров.

В первом уравнении b=1, а – параметр,
$$c = \frac{E\tau + 2Ea\tau}{2h^2}, e = -\frac{E\tau + 2Ea\tau}{h^2}, p = -\frac{a\tau}{2}, q = -\frac{\tau}{2}$$

Во втором уравнении E=1, C – параметр, $A = -\frac{E\tau + 2Ec\tau}{2h^2}$, $B = \frac{E\tau + 2Ec\tau}{h^2}$, $p = \frac{c\tau}{2}$, $q = \frac{\tau}{2}$

Результат явной схемы всегда обозначаем $\left\{\tilde{u}_{j}^{n+1}\right\}_{j=0}^{N-1}$, $\left\{\tilde{v}_{j}^{n+1}\right\}_{j=0}^{N-1}$. Будем искать решение системы (6) в виде малой поправки к решению, полученному по явной схеме: $\left\{\boldsymbol{\varepsilon}_{j}\right\}_{j=1}^{N}$, $\left\{\delta_{j}\right\}_{j=1}^{N}$ к \tilde{u}_{j}^{n+1} , \tilde{v}_{j}^{n+1} . Подставим $u_{j}^{n+1} = \tilde{u}_{j}^{n+1} + \boldsymbol{\varepsilon}_{j}$, $v_{j}^{n+1} = \tilde{v}_{j}^{n+1} + \delta_{j}$ в нелинейную систему (6) и оставим только линейные по $\left\{\boldsymbol{\varepsilon}_{i}\right\}_{i=1}^{N}$, $\left\{\delta_{i}\right\}_{i=1}^{N}$ слагаемые:

$$\mathcal{E}_{j-1}^{n+1}(C - P((\tilde{v}_{j-1}^{n+1})^2 + 3(\tilde{u}_{j-1}^{n+1})^2)) + \mathcal{E}_{j}^{n+1}(E - Q((\tilde{v}_{j}^{n+1})^2 + 3(\tilde{u}_{j}^{n+1})^2)) + \mathcal{E}_{j+1}^{n+1}(C - P((\tilde{v}_{j+1}^{n+1})^2 + 3(\tilde{u}_{j+1}^{n+1})^2)) + \mathcal{E}_{j-1}^{n+1}(A - 2P\tilde{u}_{j-1}^{n+1}\tilde{v}_{j-1}^{n+1}) + \mathcal{E}_{j}^{n+1}(A - 2P\tilde{u}_{j+1}^{n+1}\tilde{v}_{j+1}^{n+1}) = F_{j}, j = 0, ..., N - 1,$$

$$F_{j} = -A\tilde{v}_{j-1}^{n+1} - B\tilde{v}_{j}^{n+1} - A\tilde{v}_{j+1}^{n+1} - Av_{j-1}^{n} - Bv_{j}^{n} - Av_{j+1}^{n} - C\tilde{u}_{j+1}^{n+1} - E\tilde{u}_{j}^{n+1} - C\tilde{u}_{j+1}^{n+1} + Cu_{j+1}^{n} + Eu_{j}^{n} + Cu_{j+1}^{n} + \mathcal{E}_{j+1}^{n} + \mathcal{E}_{j+1}^{n+1} + \mathcal{E}_{j}^{n+1} + \mathcal{E}_{j}^{n+$$

Построим графики первых интегралов в зависимости от разных параметров а для коэффициентов компактной схемы.

Рис 19. А) График первого интеграла для явной схемы и компактной в зависимости от разных значений параметра, a = c. Явная схема МК. N = 100, L = 2*pi

Б) Аналогично 19А), но с другими параметрами

Компактные методы а) позволяют получать существенно более точные решения при тех же вычислительных затратах, б) позволяют расширить область устойчивости разностной схемы, в) позволяют эффективно бороться с нарушениями монотонности типа «вычислительной пилы».

Применимы к широкому классу эволюционных уравнения в частных производных.

Работа подготовлена в ходе проведения исследования (№ 20-04-021) в рамках Программы «Научный фонд Национального исследовательского университета "Высшая школа экономики" (НИУ ВШЭ)» в 2020 — 2022 гг. и в рамках государственной поддержки ведущих университетов Российской Федерации «5-100».

Литература

Уизем Дж. Линейные и нелинейные волны. «Мир».: 1973.

С.К. Годунов, В. С. Рябенький. Разностные схемы. "Наука", 1977.

- В.А.Гордин. Математика, компьютер, прогноз погоды и другие сценарии математической физики. М., ФИЗМАТЛИТ, 1-е изд. 2010, 2-е изд. 2012-2013.
- В.А.Гордин. Дифференциальные и разностные уравнения. Какие явления они описывают и как их решать. «Издательский дом ВШЭ», М., 2016.
- V.A. Gordin, E.A. Tsymbalov. Compact difference scheme for parabolic and Schrodinger-type equations with variable coefficients. J. Comp. Phys. V.375, pp.1451-1468, 2018.
- В.А.Гордин. Компактные разностные схемы для аппроксимации дифференциальных соотношений. «Математическое моделирование» 2019, 31(7), стр.58-74.
- В.А.Гордин. Компактные разностные схемы для слабо нелинейных задач и граничные условия, имитирующие задачу Коши. Океанологические исследования, 2019, Т. 47, №1, СС. 32–37.