

Steganografia z poziomu teoretycznego i programowalnego Łukasz Ogan, Wydział Matematyki i Informatyki UMK

Steganografia

Pojęcie wywodzi się ze słów języka greckiego steganos (potajemny) i grapho (piszę)

Utajnianie informacji w innych informacjach

Dźwięk – wykorzystanie częstotliwości, których nie słyszy człowiek

Obraz – wykorzystanie nadmiarowych informacji o kolorze

Im lepsza jakość obrazu bądź dźwięku tym większa ilość nadmiarowych danych

NIEWIDOCZNOŚĆ = NIEWYKRYWALNOŚĆ

Nie tylko ukrycie informacji, ale również gwarancja niezauważalności zmian w nośniku.

Wady steganografii

Pojedyncza warstwa

Informacja może zostać odczyta przez każdego kto o niej wie i zna metodę ukrywania

Łatwe zniszczenie informacji

Ukrywane informacje muszą być dość małe

Podstawowe Pojęcia

Bit – (najmniejsza) jednostka logiczna stanowiąca wartościowanie 0 lub 1

Bajt - najmniejsza adresowalna jednostka informacji pamięci komputerowej, składająca się z 8 bitów, 1 bajt = jeden znak np. "z"

System binarny – system liczbowy, którego podstawą jest liczba 2. Do zapisu liczb potrzebne są tylko dwie cyfry: 0 i 1

$$1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 10$$

Najmniej znaczący BIT

Least significant bit, LSB – bit o najmniejszej wadze

$$11\ 11111 = 77$$

$$01\ 11111 = 37$$

Tablica ascii

American Standard Code for Information Interchange – 7 bitowa tablica kodowa

Mapuje liczby z zakresu 0-127 na podstawowe znaki

Każdy znak posiada 8 bitowy kod

Dec Hex	Oct	Chr	Dec	Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Ch
0 0	000	NULL	32	20	040		Space	64	40	100	@	@	96	60	140	`	•
11	001	Start of Header	33		041	!	!	65	41	101	A	Α	97	61	141	a	a
2 2	002	Start of Text	34	22	042	"		66	42	102	B	В	98	62	142	b	b
3 3	003	End of Text	35	23	043	#	#	67	43	103	C	C	99	63	143	c	C
4 4	004	End of Transmission		24	044	\$	\$	68	44	104	D	D	100	64	144	d	d
5 5	005	Enquiry	37	25	045	%	%	69	45	105	E	E	101	65	145	e	е
6 6	006	Acknowledgment	38	26	046	&	&	70	46	106	F	F	102	66	146	f	f
7 7	007	Bell	39	27	047	'	1	71	47	107	G	G	103	67	147	g	g
88	010	Backspace	40	28	050	((72	48	110	H	Н	104	68	150	h	h
9 9	011	Horizontal Tab	41	29	051))	73	49	111	I	I	105	69	151	i	i
10 A	012	Line feed	42	2A	052	*	*	74	4A	112	J	J	106	6A	152	j	j
11 B	013	Vertical Tab	43	2B	053	+	+	75	4B	113	K	K	107	6B	153	k	k
12 C	014	Form feed	44	2C	054	,	,	76	4C	114	L	L	108	6C	154	l	1
13 D	015	Carriage return	45	2D	055	-	-	77	4D	115	M	M	109	6D	155	m	n
14 E	016	Shift Out	46	2E	056	.		78	4E	116	N	N	110	6E	156	n	n
15 F	017	Shift In	47	2F	057	/	/	79	4F	117	O	0	111	6F	157	o	0
16 10	020	Data Link Escape	48	30	060	0	0	80	50	120	P	P	112	70	160	p	p
17 11	021	Device Control 1	49	31	061	1	1	81	51	121	Q	Q	113	71	161	q	q
18 12	022	Device Control 2	50	32	062	2	2	82	52	122	R	R	114	72	162	r	r
19 13	023	Device Control 3	51	33	063	3	3	83	53	123	S	S	115	73	163	s	S
20 14	024	Device Control 4	52	34	064	4	4	84	54	124	T	T	116	74	164	t	t
21 15	025	Negative Ack.	53	35	065	5	5	85	55	125	U	U	117	75	165	u	u
22 16	026	Synchronous idle	54	36	066	6	6	86	56	126	V	V	118	76	166	v	V
23 17	027	End of Trans. Block	55	37	067	7	7	87	57	127	W	W	119	77	167	w	V
24 18	030	Cancel	56	38	070	8	8	88	58	130	X	X	120	78	170	x	X
25 19	031	End of Medium	57	39	071	9	9	89	59	131	Y	Υ	121	79	171	y	У
26 1A	032	Substitute	58	3A	072	:	:	90	5A	132	Z	Z	122	7A	172	z	Z
27 1B	033	Escape	59	3B	073	;	;	91	5B	133	[1	123	7B	173	{	{
28 1C	034	File Separator	60	3C	074	<	<	92	5C	134	\	1	124	7C	174		Ì
29 1D	035	Group Separator	61	3D	075	=	=	93	5D	135]]	125	7D	175	}	}
30 1E	036	Record Separator	62	3E	076	>	>	94	5E	136	^	٨	126	7E	176	~	_
31 1F	037	Unit Separator	63	3F	077	?	?	95	5F	137	_		127	7F	177		
															asciio	harstabl	e.

Dec Hex	Oct	Chr	Dec H	ex Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr
0 0	000	NULL	32 20	040		Space	64	40	100	@	@	96	60	140	`	
1 1	001	Start of Header	33 23	041	!	!	65	41	101	A	Α	97	61	141	a	a
2 2	002	Start of Text	34 22	042	"	**	66	42	102	B	В	98	62	142	b	b
3 3	003	End of Text	35 23	043	#	#	67	43	103	C	C	99	63	143	c	C
4 4	004	End of Transmission	36 24	1 044	\$	\$	68	44	104	D	D	100	64	144	d	d
5 5	005	Enquiry	37 25	045	%	%	69	45	105	E	E	101	65	145	e	е
6 6	006	Acknowledgment	38 26	046	&	&	70	46	106	F	F	102	66	146	f	f
7 7	007	Bell	39 27	7 047	'	*	71	47	107	G	G	103	67	147	g	g
88	010	Backspace	40 28	3 050	((72	48	110	H	Н	104	68	150	h	h
9 9	011	Horizontal Tab	41 29	051))	73	49	111	I	I	105	69	151	i	i
10 A	012	Line feed	42 2/	052	*	*	74	4A	112	J	J	106	6A	152	j	j
11 B	013	Vertical Tab	43 2	3 053	+	+	75	4B	113	K	K	107	6B	153	k	k
12 C	014	Form feed	44 20	054	,	,	76	4C	114	L	L	108	6C	154	l	1
13 D	015	Carriage return	45 2	055	-	-	77	4D	115	M	M	109	6D	155	m	m
14 E	016	Shift Out	46 21	056	.	•	78	4E	116	N	N	110	6E	156	n	n
15 F	017	Shift In	47 2F	057	/	/	79	4F	117	O	0	111	6F	157	o	0
16 10	020	Data Link Escape	48 30	060	0	0	80	50	120	P	P	112	70	160	p	р
17 11	021	Device Control 1	49 33	061	1	1	81	51	121	Q	Q	113	71	161	q	q
18 12	022	Device Control 2	50 32	062	2	2	82	52	122	R	R	114	72	162	r	r
19 13	023	Device Control 3	51 33	063	3	3	83	53	123	S	S	115	73	163	s	S
20 14	024	Device Control 4	52 34	1 06∠	4	4	84	54	124	T	Т	116	74	164	t	t
21 15	025	Negative Ack.	53 35	065	5	5	85	55	125	U	U	117	75	165	u	u
22 16	026	Synchronous idle	54 36	066	6	6	86	56	126	V	V	118	76	166	v	V
23 17	027	End of Trans. Block	55 37	7 067	7	7	87	57	127	W	W	119	77	167	w	W
24 18	030	Cancel	56 38	3 070	8	8	88	58	130	X	X	120	78	170	x	X
25 19	031	End of Medium	57 39	071	9	9	89	59	131	Y	Υ	121	79	171	y	y
26 1A	032	Substitute	58 3 <i>i</i>	A 072	:	:	90	5A	132	Z	Z	122	7A	172	z	Z
27 1B	033	Escape	59 38	3 073	;	;	91	5B	133	[[123	7B	173	{	{
28 1C	034	File Separator	60 30	074	<	<	92	5C	134	\	1	124	7C	174		
29 1D	035	Group Separator	61 30	075	=	=	93	5D	135]]	125	7D	175	}	}
30 1E	036	Record Separator	62 31	076	>	>	94	5E	136	^	^	126	7E	176	~	~
31 1F	037	Unit Separator	63 3F	077	?	?	95	5F	137	_	_	127	7F	177		Del
AIA	KI SILCIOM	/L 2017, LUKASZ OGAN, LUKASZ.OGAN@GM /	₹IL.COIVI									-		asciio	charstable	e.com

RGB – Red Green Blue

Model barw oparty o zapisanie trzech kolorów w postaci liczbowej

24 bitowy RGB lub BRG – każdy piksel jest reprezentowany przez trzy 8 bitowe liczby naturalne, określające kolejno barwę czerwoną, zieloną i niebieską.

Widoczność pikseli

Dlaczego akurat RGB

Wyświetlanie obrazu związane jest z budową ludzkiego oka

3 rodzaje czopków (światłoczułe receptory) reagują na światło widzialne o długości

564-580 nm – barwa czerwona

534-545 nm – barwa zielona

420-440 nm – barwa niebieska

← Wzrastanie częstotliwości (v)

Wzrastanie długości fali (λ) -

Wzrastanie długości fali (λ) w nm →

Kolor biały

R G B

1111111 1111111 1111111

RGB(255, 255, 255)

Poziomy koloru białego

RGB(254, 254, 254)

RGB(253, 253, 253, 253)

RGB (153, 253, 253)

Ukrycie litery w obrazku

Ukrycie Litery S

S = 01010011

Obrazek przed i po

Większy fragment tekstu

Rozmiar: 12,2 KB

Rozmiar: 14,9 KB

Ukryty tekst: to jest kawalek tekstu ktory chce ukryc poufna wiadomosc

Audio

Spektrogram - wykres widma amplitudowego sygnału

Ukrywanie informacji na częstotliwościach, których nie słyszy człowiek

Literatura

- 1. Gynvael Coldwind, Zrozumieć programowanie
- 2. Volodymyr Mosorov, Steganografia cyfrowa. Sztuka ukrywania informacji
- 3. Marta Walenczykowska, Analiza wybranych aplikacji stegograficznych
- 4. Linux Magazine 62/2009, Zabawy ze steganografią
- 5. Cox, M.Miller, Digital Watermarking and Steganography, Morgan Kaufmann
- 6. Viswanathan V., Information hiding in wave files through frequency domain