Welcome to Moth 407

· Groups

Not talked about here:

· Rings

Modules

· Fields

Representations

· Galois Theory

Algebra is multiplying, adding, subtracting, dividing, etc.

Today: Binary operations

Duf: A binary operation on a set A is a function

 $*: A \times A \rightarrow A$. $(a_1, a_2) \mapsto a_3$

Notation: *(a) = az we write ai*az m

place of *(a,,az)

Ex: A = 1/2 , a * b = a+6

3×2 = 5

7*1 = 8

 \underline{Ex} : $A = (0, \infty)$, $a * b = \sqrt{ab}$

 $2*2 = \sqrt{2\cdot 2} = \sqrt{4} = 2$

Ex: $A = (0, \infty)$, $a \times b = \frac{a}{b}$

4*2 = 4/2 = 2

Non-example: A = 1/2 axb = Vab

1 * (-1) = V-1 not real;

 $A \times A \rightarrow A$

$$E_{k}$$
: $A = \mathbb{R}$ $a * b = e^{ab}$

$$Ex: A = M_n(IR), B*C = BC$$

$$Ex: A = \{f: X \rightarrow X\}$$
 is the set of all functions from X to X.

$$f \in A$$
, $g \in A$ thun $f,g: X \to X$
 $f \circ g: X \to X$

Def: A binary operation * on a set A is associative if
$$(a*b)*C = a*(b*C)$$
 for all a,b,c $\in A$.

$$Ex: A = Q$$
, $a*b = a+b$.

$$a,b,c \in \mathbb{Q}$$
 $a*(b*c) = a*(b+c)$
= $a+(b+c)$
= $(a+b)+c$

This is associative!

$$Ex: A = Q, a*b = (a+1)b$$

Question: associative??

$$0*(1*2) = 0*((1+1)2)$$
 $= 0*4$
 $= (0+1)4 = 4$
 $(0*1)*2 = ((0+1)1)*2$
 $= 1*2$
 $= (1+1)2 = 4$
 $(a*b)*c = a*(b*c)$
 $1*(2*3) = 1*9 = 18$ 1 NOT
 $(1*2)*3 = 4*3 = (5 \land assoc.$

Def: A binary operation * on a set A is
 $(ammutative)$ if
 $a*b = b*a$ for all $a,b \in A$.

Provious example: $A = \mathbb{Q}$, $a*b = (a+1)b$
 $0*1 = (0+1)\cdot 1 = 1\cdot 7$ Not
 $1*0 = (1+1)\cdot 0 = 0$ Commutative

Ex: $A = (0,0)$, $a*b = e^{a+b}$
What properties does A home??

 $a*b = e^{a+b} = e^{b+a} = b*a$ Commutative!

Associative? $(2*5)*7 = e^{7*7} = (e^{1+7})$
 $2*(5*7) = 2*e^{12} = (e^{1+7})$
Thus its not associative!

Ex:
$$A = \{1,2,3\}$$

 $A \times A \rightarrow A$
 $1 \times 1 = 3$ $2 \times 1 = 1$ $3 \times 1 = 2$
 $1 \times 2 = 2$ $2 \times 2 = 1$ $3 \times 2 = 3$
 $1 \times 3 = 3$ $2 \times 3 = 1$ $3 \times 3 = 3$

Q: How many diff. bornary ops. on the set \$1,2,3}

3 3 3 3 ... 3

A Multiplication Table:

			•		*		2
*		2	3		ı	B	2
l_	181	12	143		2)	\
2	241	212	2×3	•	3)	2
3	3>+1	3712	3*5)

* commutative off

symmetric (1)

Q: How many commutative broary operations are three on 21,2,33?

¥		2	3
1	X	у	2
2	y	P	ot
3	Z	gt	f

$$X \neq Y = \begin{cases} x+y, & x+y \leq 12 \\ x+y-12, & x+y>12 \end{cases}$$