No show to **Appointment**

RESULTS

DISCUSSION

CONCLUSION

Problem Description

- The no-show appointment problem refers to bail on appointments and forgetting scheduled appointments.
- Economic and efficiency problems in the healthcare sector.

Background - Business Understanding

- Previous analytical works have shown a positive correlation between consultation length and patient no-shows.
- Identified age, gender, appointment type, and the number of previous appointments as significant contributors to appointment no-shows.
- Simulation models analyze overbooking and double-booking can reduce negative impacts on the healthcare industry.

Dataset Analysis:

- Our dataset consists of 16 variables:
 - Age, gender, scheduled day, appointment day, month, calling time, waiting time, financial aid, hypertension, diabetes, alcoholism, handicap, appointment reminder, the time between appointments, prior no-show, and show-up.
- Each variable was analyzed and transformed using methods such as factoring, labeling, and other techniques.

Research Question

- 1. Can we predict the Show-up variable using data analytical techniques?
- 2. What are the important features in order to predict the Show-up variable?
- 3. What is the importance of the features?
- 4. How does the presence of outliers change the prediction performance?
- 5. How do the different feature selection methods affect the prediction of the Show-up variable?
- 6. What strategy outline will we propose to increase the performance of the No-Show to appointments?

Phase 2: Data Understanding

- Used Tableau to visualize all variables in the dataset.
- Tableau provided valuable insights into the characteristics and distributions of each variable.
- Statistical reports generated for every variable helped us gain a thorough understanding of their basic properties.
- Developed a clear idea of the necessary actions for subsequent stages of the data processing pipeline.

- •Analyze the data collected.
- Visualize all variables of the dataset
- Bar Chart
- Pie Chart
- Box Plot
- Apply general statistical methods.
- Detect Null Values

Phase 3: Data Preparation

- Imported the dataset
- Removed unimportant columns Patient ID and "Appointment ID."
- Identified zero-variance variables Alcoholism and Handicap.
- Encoded categorical variables (Gender, Scheduled Day, and Appointment Day) using label encoding.
- Detected outliers in variables such as "Age",
 "Calling_time..hour.in.a.day.", "Waiting_time minute.",
 "Time_b_appointment..day.", and "Prior_noshow" through the binning method.
- Transformed the value into numerical

- Delete no important data:
 - Patient ID
 - Appointment ID
- Check Zero variance
 - Alcoholism
 - Handicap
- Encoding (Label Encoding)
 - Gender
 - Scheduled Day
 - Appointment Day
- Outliers Detection
 - Binning
 - Age
 - Waiting Time Minute
 - Time b Appointment
 - Prior No Show
- · Transforms values into numerical

Phase 4: Modeling

- Used balancing techniques (SMOTE and ADASYN) to address dataset imbalance.
- Used Lasso regression and Pearson correlation for feature selection.
- Identified the most relevant and significant variables for showup prediction.
- Tested various classification algorithms (Logistic Regression, Naïve Bayes, Random Forest) to build predictive models.
- Techniques and models
- Creation of an effective predictive model for show-up output.

- Training and Testing Set (70% 30%)
- Balancing Method:
 - SMOTE
 - o ADASYN
- Feature Selection:
 - LASSO
 - PEARSON's CORRELATION
- Models:
 - LOGISTIC REGRESSION
 - NAIVE BAYES
 - RANDOM FOREST

- Analyze the relationship between previous reports
 Finds out the best
- approach for the projectKnowing more about the industry

Phase 2: Data Understanding

- •Analyze the data collected.
- Visualize all variables of the dataset
- Bar Chart
- Pie Chart
- Box Plot
- Apply general statistical methods.
- Detect Null Values

Phase 3: Data Preparation

- Delete no important data:
 - Patient ID
 - Appointment ID
- Check Zero variance
 - Alcoholism
 - Handicap
- Encoding (Label Encoding)
 - Gender
 - Scheduled Day
 - Appointment Day
- Outliers Detection
 - Binning
 - Age
 - Waiting Time Minute
 - Time b Appointment
 - Prior No Show
- Transforms values into numerical

Modeling

- Training and Testing Set (70% 30%)
- Balancing Method:
 - SMOTE
 - ADASYN
- Feature Selection:
 - LASSO
 - PEARSON's CORRELATION
- Models:
 - LOGISTIC REGRESSION
 - NAIVE BAYES
 - RANDOM FOREST

METHODOLOGY FRAMEWORK

Phase 6: Deployment

- Final Report
- Discuss Best Models
- Review Model Evaluation

Phase5: Evaluation

- Metrics:
 - Sensitivity
 - Specificity
 - Precision
 - G-Mean
 - Accuracy
 - AUC
- Select the best model

No Balancing

SMOTE

ADASYN

	O (NO)	10611
	1 (SI)	40214

0 (NO)	30161
1 (SI)	40214

O (NO)	32127
1 (SI)	40158

	Scen ario	Model	Encoding approach	Imputa tion	Outlier handling method	Balancing approach	Feature selection	Sensitivity	Specificity	Precision	Gmean	Accuracy	AUC
1	1	LR	Label Encoding	NA	Binning	SMOTE	Lasso	0.647	0.798	0.457	0.719	0.767	0.807
	2	NB	Label Encoding	NA	Binning	SMOTE	Lasso	0.726	0.613	0.329	0.667	0.636	0.669
3	3	RF	Label Encoding	NA	Binning	SMOTE	Lasso	0.528	0.894	0.566	0.687	0.818	0.711
	4	LR	Label Encoding	NA	Binning	SMOTE	Pearson	0.615	0.795	0.440	0.670	0.758	0.788
	5	NB	Label Encoding	NA	Binning	SMOTE	Pearson	0.715	0.628	0.334	0.670	0.646	0.671
	6	RF	Label Encoding	NA	Binning	SMOTE	Pearson	0.507	0.900	0.572	0.676	0.819	0.704
2	7	LR	Label Encoding	NA	Binning	ADASYN	Pearson	0.654	0.773	0.431	0.711	0.748	0.787
	8	NB	Label Encoding	NA	Binning	ADASYN	Pearson	0.738	0.592	0.322	0.661	0.622	0.665
	9	RF	Label Encoding	NA	Binning	ADASYN	Pearson	0.531	0.883	0.544	0.685	0.810	0.707

Feature	Coefficients		
Age	0.011367586		
Gender	-0.015367918		
ScheduledDay	0.001028447		
Appointment Day	0.000657967		
Month	0.055739646		
Calling_timehour.in.a.day.	0.000322619		
Waiting_timeminute.	-0.079499915		
Financial_aid	0.066590356		
Hypertension	0.046239667		
Diabetes	0.03796823		
Alcoholism	0.072562827		
Handicap	0.338156804		
SMS_received	0.026935681		
Time_b_appointmentday.	0.062889999		
Prior_noshow	-0.487907185		

- ➤ **Prior_noshow** (-0.4879071846) Negative

 Correlation: prior history of not showing up for appointments is associated with a higher likelihood of not attending future appointments
- ➤ Handicap (0.3381568039) Positive Correlation: the presence of a handicap is associated with an increased probability of attending an appointment
- Waiting_time..minute.(-0.0794999147), Alcoholism (0.0725628274), and Financial_aid (0.0665903564), also have a notable relationship with Show Up.

O (NO)	30147	
1 (SI)	40196	

	Metrics	Outliers	No Outliers		
	Sensitivity	0.543	0.647		
	Specificity	0.854	0.798		
	Precision	0.501	0.457		
	G-Mean	0.681	0.719		
	Accuracy	0.788	0.767		
	AUC	0.787	0.807		

- ➤ The presence of outliers significantly impacts the model's performance.
- The model without outliers is better at identifying true positives.
- ➤ The model with outliers performs slightly better in identifying true negatives
- The model without outliers provides a better balance between sensitivity and specificity, making it more suitable for handling imbalanced datasets
- Removing outliers leads to a more balanced and better-performing model

Final Model Selection – Scenario 1

- Scenario 1
- Highest G-mean value- .719
- Parameters
- Smote data balancing
- Lasso Feature Selection
- Logistic Regression Model

Most influential features

- Prior no show
- Handicap
- Waiting Time in Minutes
- Alcoholism
- Financial Aid

Outlier evaluation

- Excluding outliers led to a more efficient model
- Better at dealing with an imbalanced dataset

Future Improvements

- Further Feature Engineering
- Finding a Versatile Outlier Treatment Strategy
- Exploring more Data Balancing Techniques
- Tuning HyperParameters
- Consider Exploring More complex models (GBM's, Neural Networks, etc)

