Suivi des objectifs – Projet Treuillage Sonar Remorqué 2025

Tableau de suivi

Objectif	État	m Responsable(s)
	${f d'}$ avancement	
2. Exploitation des données recueillies		Thomas
Comprendre le fonctionnement du sonar	avancé	Thomas
latéral et interpréter les images acquises		
Associer les images du sonar à une	à travailler avec le	Ewen + Lancelot?
localisation géographique précise	layback	
Identifier les sources d'erreurs dans les	Non commencé	Thomas?
mesures et les données collectées		
3. Modélisation de la déformée du câble	de remorquage	Ewen + Lancelot
Modéliser la déformée du câble de	achevé	Ewen + Lancelot
remorquage (layback)		
Estimer la position réelle du sonar à partir	à expliquer (ajouter	Ewen?
des données de navigation du navire et du	layback en dir opp à	
modèle de câble	la vitesse)	
Modéliser les efforts hydrodynamiques	achevé	Ewen + Lancelot
appliqués au câble et au sonar		
Valider la pertinence du modèle retenu	shéma python à	Lancelot + Ewen
(comparaison, sensibilité, simulations)	interpréter	
4. Conception d'un support de treuil de mise à la mer		Elouan
Exprimer le besoin technique et les	à rédiger sur rapport	0
contraintes d'intégration sur le navire		?
Concevoir une solution mécanique de	En cours?	Elouan
treuillage à installer sur le navire (support		
motorisé)		
Concevoir un tambour permettant	En cours?	Elouan
l'enroulement et le déroulement efficaces du		
câble		
Étudier et concevoir un système de	Envisagé? en cours?	Elouan
trancannage si nécessaire pour préserver le		
câble		
Garantir la protection du câble lors de sa	rouleaux de	
mise à la mer	guidage?	?
Assurer la compatibilité de l'ensemble du	En cours	Elouan
système avec le navire La Mélité		

Légende

Non commencé : aucune tâche engagée

 $\bullet~{\bf En~cours}$: des éléments en discussion ou conception

• Terminé : tâche finalisée et validée

Détail des objectifs

1. Comprendre le fonctionnement du sonar latéral et interpréter les images acquises

Cette tâche consiste à :

- Étudier le principe physique du sonar latéral (propagation, retour d'onde, angle d'émission, résolution).
- Se familiariser avec les types d'images produites (zones d'ombres, texture, intensité de retour).
- Identifier les objets caractéristiques sur les images (épaves, rochers, câbles, etc.).

2. Associer les images du sonar à une localisation géographique précise

Cette tâche comprend:

- L'analyse du format des données de navigation (GPS, cap, vitesse).
- Le calage spatial entre l'image acquise et la position du sonar.
- L'établissement d'une cartographie des images géolocalisées.

3. Modéliser la déformée du câble de remorquage (layback)

Il s'agit ici de :

- Étudier les modèles de catenaires et les lois de traction d'un câble dans l'eau.
- Prendre en compte les effets de traînée, de flottabilité et de vitesse du navire.
- Déduire la forme du câble et la position probable du sonar sous l'eau.

4. Estimer la position réelle du sonar à partir des données de navigation du navire

Objectifs:

- Intégrer les données de navigation avec le modèle du câble.
- Calculer le "layback" (décalage horizontal entre navire et sonar).
- Simuler ou valider cette estimation avec des cas tests.

5. Concevoir une solution mécanique de treuillage à installer sur le navire

Il faut ici:

- Identifier les contraintes mécaniques et spatiales sur le navire La Mélité.
- Concevoir une structure stable et résistante pour fixer le treuil.
- Choisir un moteur adapté au câble, à la tension, et aux efforts en jeu.

6. Concevoir un tambour permettant l'enroulement et le déroulement efficaces du câble

Cette tâche vise à :

- Définir le diamètre, la capacité, et la vitesse d'enroulement du tambour.
- Garantir un guidage régulier du câble.
- Prévoir la fixation au moteur ou à la transmission.

7. Étudier et concevoir un système de trancannage si nécessaire

Le trancannage permet :

- D'éviter l'accumulation désordonnée du câble sur le tambour.
- De guider le câble latéralement au fur et à mesure de son enroulement.
- Il peut être mécanique, motorisé ou synchronisé avec la rotation.

8. Garantir la protection du câble lors de sa mise à la mer

Objectifs:

- Étudier les risques d'usure ou d'arrachement du câble.
- Concevoir un guide-câble ou une rampe de lancement.
- Minimiser les chocs et les frictions sur le bateau.

9. Assurer la compatibilité du système avec le navire La Mélité

Il faudra:

- Relever les dimensions, emplacements disponibles et interfaces du navire.
- Vérifier la tenue mécanique du système.
- S'assurer que le fonctionnement n'interfère pas avec les manœuvres marines.