

FUNDACIÓN UNIVERSITARIA KONRAD LORENZ

Facultad de Matemáticas e Ingenierías

DECIMA TAREA

PRESENTA

Deydi Sharik Figueroa Montenegro Maria Paula Hernandez Fajardo Juan Esteban Serrano Vargas Manuel José Parra Malagón

PROFESOR

Ricardo Juniors Cano Caro

ASIGNATURA

Cálculo Diferencial

27 de abril de 2024

${\bf \acute{I}ndice}$

1.	§ Primer Problema § [1]
	1.1. Considere:
	1.2. Resuelva:
2.	§ Segundo Problema § [1]
	2.1. Considere:
	2.2. Solución:

1. § Primer Problema § [1]

1.1. Considere:

El movimiento de una partícula se modela con la función

$$S(t) = \sqrt{3t^2 + 2t - 1} + t$$

Figura 1: Representación de la función del problema

1.2. Resuelva:

- 1. Halle la velocidad en el instante t, v(t)
 - Utilizaremos la regla de la cadena y la regla del producto para encontrar la derivada:

$$S(t) = \sqrt{3t^2 + 2t - 1} + t$$

$$v(t) = S'(t) = \frac{d}{dt} \left(\sqrt{3t^2 + 2t - 1} + t \right)$$

$$v(t) = \frac{1}{2} (3t^2 + 2t - 1)^{-1/2} (6t + 2) + 1$$

■ Simplificando la expresión, obtenemos:

$$v'(t) = \frac{3t+1}{\sqrt{3t^2+2t-1}} + 1$$

- 2. La aceleración se define como la derivada de la velocidad. a(t) = v'(t) = s''(t), calcule a(t):
 - Aplicar la regla de la cadena
 - lacktriangle La función $\mathbf{v}'(\mathbf{t})$ se puede escribir como:

$$v'(t) = \frac{3t+1}{\sqrt{3t^2+2t-1}} + 1$$

• Para encontrar la derivada, aplicamos la regla de la cadena a la función racional:

$$s''(t) = \frac{d}{dt} \left(\frac{3t+1}{\sqrt{3t^2+2t-1}} \right) + 0$$

Aplicar la regla del producto
 La derivada de la función racional se puede escribir como:

$$s''(t) = \frac{(3t+1)'\left(\sqrt{3t^2+2t-1}\right) - (3t+1)\left(\sqrt{3t^2+2t-1}\right)'}{\left(\sqrt{3t^2+2t-1}\right)^2}$$

■ Calcular las derivadas

$$(3t+1)'=3$$

$$\left(\sqrt{3t^2+2t-1}\right)' = \frac{1}{2} \left(3t^2+2t-1\right)^{-1/2} (6t+2)$$

■ Sustituir las derivadas

$$s''(t) = \frac{3\left(\sqrt{3t^2 + 2t - 1}\right) - (3t + 1)\left(\frac{6t + 2}{2\sqrt{3t^2 + 2t - 1}}\right)}{\left(\sqrt{3t^2 + 2t - 1}\right)^2}$$

Simplificar

$$s''(t) = \frac{3\sqrt{3t^2 + 2t - 1} - \frac{3(3t+1)(3t+1)}{2\sqrt{3t^2 + 2t - 1}}}{3t^2 + 2t - 1}$$
$$s''(t) = \frac{6t^2 + 4t - 3}{(3t^2 + 2t - 1)^{3/2}}$$

- 3. Calcule:
 - 3.1 v(1)
 - Para evaluar v(1), sustituimos t = 1 en la función v(t):

$$v(t) = \frac{3t+1}{\sqrt{3t^2+2t-1}} + 1$$

$$v(1) = \frac{3(1)+1}{\sqrt{3(1)^2+2(1)-1}} + 1$$

$$v(1) = \frac{4}{\sqrt{4}} + 1$$

$$v(1) = \frac{4}{2} + 1$$

$$v(1) = 2 + 1$$

$$v(1) = 3$$

 $3.2 \ a(1)$

■ Para evaluar a(1), sustituimos t = 1 en la función a(t):

$$a(t) = \frac{6t^2 + 4t - 3}{(3t^2 + 2t - 1)^{3/2}}$$
$$a(1) = \frac{6(1)^2 + 4(1) - 3}{(3(1)^2 + 2(1) - 1)^{3/2}}$$

$$a(1) = \frac{6+4-3}{(3+2-1)^{3/2}}$$
$$a(1) = \frac{7}{(4)^{3/2}}$$
$$a(1) = \frac{7}{8}$$

2. § Segundo Problema § [1]

2.1. Considere:

Escriba en ChatGpt: "Dame un ejercicio para practicar las reglas de las derivadas"

- Escriba el ejercicio que se le propuso
- Resuelva los tres ítems que se proponen

2.2. Solución:

1. Una función que modele el movimiento de un objeto en caída libre bajo la aceleración constante de la gravedad g (conocida como 9.8m/s^2) puede ser:

$$h(t) = h_0 + v_0 t - \frac{1}{2}gt^2$$

donde h(t) es la altura del objeto en función del tiempo t, h_0 es la altura inicial del objeto, v_0 es la velocidad inicial del objeto y g es la aceleración debida a la gravedad.

- 2. 2.1 Cálculo de la primera derivada
 - Para encontrar la velocidad del objeto en cualquier instante de tiempo t, debemos encontrar la derivada de la función h(t) con respecto al tiempo t.
 - La función h(t) es:

$$h(t) = h_0 + v_0 t - \frac{1}{2}gt^2$$

• Para encontrar la derivada, aplicamos la regla de la potencia y la regla de la suma:

$$h'(t) = \frac{d}{dt} \left(h_0 + v_0 t - \frac{1}{2} g t^2 \right)$$

$$h'(t) = 0 + v_0 - gt$$

$$h'(t) = v_0 - gt$$

- La derivada h'(t) representa la velocidad del objeto en cualquier instante de tiempo t.
- 2.2 Cálculo de la segunda derivada
 - Para encontrar la segunda derivada de la función de altura h(t), debemos tomar la derivada de la velocidad del objeto v(t) con respecto al tiempo t.
 - La velocidad del objeto v(t) es:

$$v(t) = v_0 - gt$$

lacksquare Tomando la derivada de v(t) con respecto al tiempo t, obtenemos:

$$\frac{d}{dt}v(t) = \frac{d}{dt}(v_0 - gt)$$

$$=0-g$$

• Por lo tanto, la segunda derivada de la función de altura h(t) es:

$$a(t) = \frac{d^2}{dt^2}h(t) = \frac{d}{dt}v(t) = -g$$

- Donde a(t) es la aceleración del objeto en función del tiempo t y g es la aceleración debida a la gravedad. La aceleración es constante e igual a -g, lo que indica que el objeto está en caída libre con una aceleración constante hacia abajo.
- $2.3\,$ Evaluar las derivadas en $1\,$
 - ullet Evaluación de la primera derivada en el instante t=1
 - La primera derivada es:

$$h'(t) = v_0 - gt$$

ullet Evaluamos la primera derivada en el instante t = 1:

$$h'(1) = v_0 - g(1)$$

$$h'(1) = v_0 - g$$

- La primera derivada en el instante t = 1 representa la velocidad del objeto en ese instante. En este caso, la velocidad es igual a la velocidad inicial menos la aceleración debida a la gravedad multiplicada por el tiempo.
- lacktriangle Evaluación de la segunda derivada en el instante t=1
- La segunda derivada es:

$$a(t) = -q$$

 \blacksquare Evaluamos la segunda derivada en el instante t = 1:

$$a(1) = -q$$

- La segunda derivada en el instante t = 1 representa la aceleración del objeto en ese instante. En este caso, la aceleración es constante y igual a -g, que es la aceleración debida a la gravedad.
- Contexto del resultado
- En el contexto del movimiento de un objeto en caída libre, la primera derivada representa la velocidad del objeto en función del tiempo. En el instante t = 1, la velocidad del objeto es igual a la velocidad inicial menos la aceleración debida a la gravedad multiplicada por el tiempo.
- La segunda derivada representa la aceleración del objeto en función del tiempo. En el instante t = 1, la aceleración del objeto es constante y igual a -g, que es la aceleración debida a la gravedad. Esto significa que el objeto está siendo atraído hacia abajo por la gravedad con una fuerza constante.
- En resumen, en el instante t = 1, el objeto tiene una velocidad que depende de su velocidad inicial y la aceleración debida a la gravedad, y una aceleración constante hacia abajo debida a la gravedad.

Referencias

[1] Matthew Boelkins. Active Prelude to Calculus. Production Editor: Mitchel T. Keller, Department of Natural and Mathematical Sciences, Morningside College. Department of Mathematics: Grand Valley State University, ago. de 2020.