Stochastic Modelling and Random Processes

Yiming MA

December 14, 2020

Contents

1	Disc	crete-Time Markov Chains	2
	1.1	Countable Discrete-Time Markov Chains	2
2	Con	ntinuous-Time Markov Chains	4
	2.1	Continuous-Time Markov Chains	4
		2.1.1 The Rate Matrix	
		2.1.2 Stationarity and Reversibility	7
		2.1.3 The Jump Chain	7
	2.2	Countable Continuous-Time Markov Chains	8
	2.3	Semi-Markov Chains	9
	2.4	Gaussian Processes	9
	2.5	Uncountable Markov Processes	
		2.5.1 Jump Processes	10
		2.5.2 Diffusion Processes	11

Chapter 1

Discrete-Time Markov Chains

1.1 Countable Discrete-Time Markov Chains

One can extend much of what we have done for finite discrete-time Markov chains to the countably infinite case, e.g. the **simple random walk** on \mathbb{Z} , but some results become more subtle. For example, the simple random walk is *not* SP-ergodic, despite being irreducible. Actually, it even fails to have a stationary probability; also it is not aperiodic, and it has a period 2.

Example 1.1.1. Using definition of the simple random walk:

$$Y_n = \sum_{i=0}^{n-1} X_i,$$

where X_i 's are independent and identically distributed, with

$$X_i = \begin{cases} +1 & \text{with probability } p \\ -1 & \text{with probability } 1-p \end{cases},$$

Compute the $\mathbb{E}[Y_n]$ and $\text{Var}[Y_n]$.

One has to refine various concepts.

Definition 1.1.1 (The First Return Time). The first return time to state x is defined as

$$T_x = \inf\{n \ge 1 : X_n = x | X_0 = x\}.$$

Remark. Notice that when the state space is finite and x is recurrent, T_x is finite. Since the state space here is countably infinite, T_x is allowed to be infinite.

Definition 1.1.2 (Transience). Say $x \in S$ is transient if

$$\mathbb{P}[T_x = \infty] > 0.$$

Remark. If $x \in S$ is transient, then with probability 1 X_n comes back to x only finitely many times.

Definition 1.1.3 (Null Recurrence). Say $x \in S$ is **null recurrent** if

$$\mathbb{P}[T_r < \infty] = 1$$
 and $\mathbb{E}[T_r] = \infty$.

Definition 1.1.4 (Positive Recurrence). Say $x \in S$ is **positive recurrent** if

$$\mathbb{P}[T_x < \infty] = 1$$
 and $\mathbb{E}[T_x] < \infty$.

Remark. A communicating class is either **null recurrent**, which means every member is null recurrent, or **positive recurrent** which means every member is positive recurrent.

Theorem 1.1.1 (Stationarity \iff Positive Recurrence). An absorbing class has a stationary probability if and only if it is positive recurrent. Furthermore, if the class has one stationary probability, then it is uniquely determined by

$$\boldsymbol{\pi}_x = \frac{1}{\mathbb{E}[T_x]}.$$

Chapter 2

Continuous-Time Markov Chains

2.1 Continuous-Time Markov Chains

We are now considering a continuous-time markov chain with a countable state space S and the domain $T \in \mathbb{R}$ (or $T \in \mathbb{R}_+$), and we restrict $X : \mathbb{R} \mapsto S$ to those which are *piecewise constant* and *right-continuous*, meaning

$$X(t) = \begin{cases} \vdots & \vdots \\ s & t \in [J_s, J_{s'}) \\ s' & t \in [J_{s'}, J_{s''}) \\ \vdots & \vdots \end{cases}$$

Definition 2.1.1 (Continuous-Time Markov Chains). $X(t) : \mathbb{R} \to S$ is a **continuous-time Markov** chain, if it satisfies the **Markov property**

$$\mathbb{P}[X(t_{n+1}) \in A | X(t_n) = s_n, \dots, X(t_1) = s_1] = \mathbb{P}[X(t_{n+1}) \in A | X(t_n) = s_n],$$

where $A \subset S$ and $t_1 < \cdots t_n < t_{n+1}$.

Definition 2.1.2 (Homogeneity). A continuous-time Markov chain is **homogeneous** if

$$\mathbb{P}[X(t+u) \in A | X(u) = s] = \mathbb{P}[X(t) \in A | X(0) = s].$$

Remark. Homogeneity means time translation invariance.

Definition 2.1.3 (Transition Matrices). Let $(P_t)_{i,j} := \mathbb{P}[X(t) = j | X(0) = i]$, then P_t is the transition matrix with time step t.

Remark. The (i,j) element of the transition matrix P_t can also be expressed as $P_t(i,j)$.

Theorem 2.1.1 (Chapman-Kolmogorov Equation). The transition matrix P of a homogeneous Markov chain satisfies

$$P_{t+u} = P_t P_u, P_0 = I.$$

Proof. Notice that

$$(P_{t+u})_{i,j} = \mathbb{P}[X(t+u) = j|X(0) = i]$$

$$= \sum_{k \in S} \mathbb{P}[X(t+u) = j|X(t) = k, X(0) = i] \mathbb{P}[X(t) = k|X(0) = i]$$

$$= \sum_{k \in S} \mathbb{P}[X(t+u) = j|X(t) = k] \mathbb{P}[X(t) = k|X(0) = i]$$

$$= \sum_{k \in S} \mathbb{P}[X(u) = j|X(0) = k] \mathbb{P}[X(t) = k|X(0) = i]$$

$$= \sum_{k \in S} (P_u)_{k,j}(P_t)_{i,k}$$

$$= (P_t)_{i,:} (P_u)_{:,j},$$

where $(P_t)_{i,:}$ is the *i*-th row of P_t and $(P_u)_{:,j}$ is the *j*-th column of P_u . Thus, $P_{t+u} = P_t P_u$. And by definition, $(P_0)_{i,j} = \mathbb{P}[X_0 = j | X_0 = i] = \delta_{i,j}$, so $P_0 = I$.

2.1.1 The Rate Matrix

Definition 2.1.4 (Rate Matrix). Suppose P_t is differentiable with respect to t at t = 0, then

$$G := \left. \frac{\mathrm{d}P_t}{\mathrm{d}t} \right|_{t=0}$$

is called the **generator** or the **rate matrix** of the process.

Proposition 2.1.1. $P_t = \exp(tG)$ in the sense of power series.

Proof. By the Chapman-Kolmogorov equation, we have

$$P_{t+u} = P_t P_u$$

$$P_{t+u} - P_t = P_t (P_u - I)$$

$$\frac{P_{t+u} - P_t}{u} = P_t \cdot \frac{P_u - I}{u}$$

$$\lim_{u \to 0} \frac{P_{t+u} - P_t}{u} = \lim_{u \to 0} P_t \cdot \frac{P_u - I}{u}$$

$$\lim_{u \to 0} \frac{P_{t+u} - P_t}{u} = P_t \cdot \lim_{u \to 0} \frac{P_u - I}{u}$$

$$\frac{dP_t}{dt} = P_t G,$$

So $P_t = C \cdot \exp(tG)$, where C is a constant diagonal matrix with diagonal elements being equal. By $P_0 = I$, we know C = I.

Proposition 2.1.2. The generator G also satisfies

$$G\vec{1} = \vec{0}$$
.

Proof. For any probability distribution $\pi_t = \pi_0 P_t$ with initial distribution π_0 , evolves by

$$\frac{\mathrm{d}\boldsymbol{\pi}_t}{\mathrm{d}t} = \boldsymbol{\pi}_0 \frac{\mathrm{d}P_t}{\mathrm{d}t} = \boldsymbol{\pi}_0 P_t G = \boldsymbol{\pi}_t G.$$

And by conservation of probability, we have $\pi_t \vec{1} = \vec{1}$, which implies $\pi_t G \vec{1} = \frac{d\pi_t \vec{1}}{dt} = 0$. Since π_t is arbitrary, we have $G \vec{1} = 0$.

Theorem 2.1.2 (The Master Equation). The equation

$$\frac{\mathrm{d}\boldsymbol{\pi}_t}{\mathrm{d}t} = \boldsymbol{\pi}_t G$$

can be written into

$$\frac{\mathrm{d}(\boldsymbol{\pi}_t)_i}{\mathrm{d}t} = \underbrace{\sum_{j \neq i} (\boldsymbol{\pi}_t)_j G_{j,i}}_{\text{"aain"}} - \underbrace{\sum_{j \neq i} (\boldsymbol{\pi}_t)_i G_{i,j}}_{\text{"loss"}},$$

which is called the master equation.

Proof. For $i \neq j$, since $G_{i,j}$ is the rate at which the process goes from state i to j, we have $G_{i,j} \geq 0$. By $G\vec{1} = \vec{0}$, we have

$$G_{i,i} = -\sum_{j \neq i} G_{i,j}.$$

So

$$\frac{\mathrm{d}(\boldsymbol{\pi}_t)_i}{\mathrm{d}t} = \boldsymbol{\pi}_t G_{:,i}$$

$$= \sum_{j \in S} (\boldsymbol{\pi}_t)_j G_{j,i}$$

$$= \sum_{j \neq i} (\boldsymbol{\pi}_t)_j G_{j,i} - \sum_{j \neq i} (\boldsymbol{\pi}_t)_i G_{i,j}.$$

Remark. The name "master equation" is exaggerated; it does not tell everything about the process, such as the correlations between states at different times.

Example 2.1.1 (Poisson Processes). The **Poisson process** with rate $\lambda > 0$ has the state space $S = \mathbb{N}$, X(0) = 0, and the transition matrix G such that

$$G_{i,j} = \begin{cases} \lambda & j = i+1 \\ -\lambda & j = 1 \end{cases}.$$

It has $\mathbb{P}[X(t+u) = n + k | X(u) = n] = e^{-\lambda t} \frac{(\lambda t)^k}{k!}, \forall n, k \in \mathbb{N}, \forall t, u \in \mathbb{R}_+.$

Example 2.1.2 (Birth and Death Processes). Suppose we have the birth rates α_i and the death rates β_i ($\beta_0 = 0$), for $i \in S = \mathbb{N}$. The rate matrix G is defined by

$$G_{i,j} = \begin{cases} \alpha_i & j = i+1 \\ \beta_i & j = i-1 \\ -(\alpha_i + \beta_i) & j = i \end{cases}$$

Then the process is called the Birth and Death Process

Example 2.1.3 (M/M/1 queue). The birth and death process has a special case - the M/M/1 queue, in which $\alpha_i = \alpha$, $\beta_i = \beta$ for $i \neq 0$ and $\beta_0 = 0$. M means "memoryless", and 1 means there is only one cashier to serve customers.

Example 2.1.4 $(M/M/\infty \text{ queue})$. Another example is the $M/M/\infty$ queue, in which there are infinitely many servers so that customers do not have to wait for people in front of them. In this model $\alpha_i = \alpha$ and $\beta = i\beta$.

Example 2.1.5 (Population Growth). Population growth can be modelled by the birth and death process with $\alpha_i = i\alpha$ and $\beta_i = i\beta$, where i is the size of population.

2.1.2 Stationarity and Reversibility

Definition 2.1.5 (Stationarity). Say $\pi \in \Delta$ is stationary if $\pi G = 0$.

Definition 2.1.6 (Reversibility). Say $\pi \in \Delta$ is reversible if

$$\boldsymbol{\pi}_i G_{i,j} = \boldsymbol{\pi}_j G_{j,i}, \ \forall i, j \in S.$$

Proposition 2.1.3 (Reversibility \implies Stationarity). If $\pi \in \Delta$ is reversibile, then it is also stationary.

Proposition 2.1.4. S is fintie $\implies \exists$ stationary π .

There is an analogous decomposition of the state space S into transient and recurrent states, and of the set of recurrent states into communicating components. And we have the same definition of an absorbing component.

Proposition 2.1.5. If S is finite, then each absorbing component has a unique stationary probability π , and the space of starionary π for the whole continuous-time Markov chain (up to normalisation) is the span of those for its absorbing components. Furthermore, 0 is a semisimple eigenvalue of G.

Theorem 2.1.3. Suppose S is finite and G has a unique absorbing component, then the process is SP-ergodic, which means

$$\lim_{t\to\infty} \boldsymbol{\pi}_t = \boldsymbol{\pi}_{A_t}$$

where π_A is the stationary distribution of the absorbing component.

Remark. Aperiodicity is automatic in continuous time.

2.1.3 The Jump Chain

Definition 2.1.7 (Waiting Times). The waiting time or the holding time W_x is defined as

$$W_x = \inf\{t > 0 : X(t) \neq x | X(0) = x\}.$$

Proposition 2.1.6. The waiting time W_x is exponentially distributed with mean $\frac{1}{|G_{x,x}|}$.

Proof.

$$\begin{split} \mathbb{P}[W_x > t + u | W_x > t] = & \mathbb{P}[W_x > t + u | X(s) = x, \, \forall s \le t] \\ = & \mathbb{P}[W_x > t + u | X(t) = x] \\ = & \mathbb{P}[W_x > u | X(0) = x] \\ = & \mathbb{P}[W_x > u]. \end{split}$$

So $\mathbb{P}[W_x > t + u] = \mathbb{P}[W_x > u]\mathbb{P}[W_x > t]$. So $\exists \gamma \in \mathbb{R}$, such that

$$\mathbb{P}[W_x > t] = e^{-\gamma t}.$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{P}[W_x > t]\Big|_{t=0} = G_{x,x} \text{ shows } \gamma = -G_{x,x}.$$

Definition 2.1.8 (Jump Times). Define **jump times** $J_{n+1} = \inf\{t > J_n : X(t) \neq X(J_n)\}$, with $J_0 = 0$.

Remark. The jump times are an example of "stopping times", i.e. random variables such that $\{J_n \leq t\}$ is independent of $\{X(s): s > t\}$ given $\{X(s): s \leq t\}$.

Theorem 2.1.4. Markov chains satisfy the **strong Markov property**: let T be a stopping time conditional on $X_T = i$, then X_{T+t} $(t \ge 0)$ is Markov and independent of $\{X(s) : s \le T\}$.

Definition 2.1.9 (The Jump Chain). Let $Y_n = X(J_n)$, then $\{Y_n : n \in \mathbb{N}\}$ is called the **jump chain** of $\{X_t : t \in \mathbb{R}\}$.

Remark. The jump chain $\{Y_n : n \in \mathbb{N}\}$ is a discrete-time Markov chain.

Proposition 2.1.7. The one-step transition matrix of the jump chain $\{Y_n : n \in \mathbb{N}\}$ is

$$P_{i,j} = \begin{cases} 0 & j = i \\ \frac{G_{i,j}}{|G_{i,i}|} & j \neq i \& G_{i,i} = 0 \\ \delta_{i,,} & G_{i,i} = 0 \end{cases}.$$

Remark. We can make sample paths for the continuous-time Markov chain by making paths for the associated jump chain and choosing independent waiting times W_{Y_n} with mean $1/|G_{Y_n,Y_n}|$, and let

$$J_n = \sum_{0 \le k \le n} W_{Y_k}.$$

2.2 Countable Continuous-Time Markov Chains

Now suppose the state space S of a continuous-time Markov chains is countable. We can define the null and positive recurrence as in the discrete-time case, but we have to find the return time differently.

Definition 2.2.1 (First Return Time). The first return time to state $x \in S$ is defined as

$$\inf\{t > J_1 : X(t) = x\},\$$

for X(0) = x.

Proposition 2.2.1. Each positive recurrent absorbing component has a unique stationary probability distribution π , and

$$\pi = \frac{\mathbb{E}[W_x]}{\mathbb{E}[T_x]}.$$

In continuous time, the process can get "explosion".

Definition 2.2.2 (Explosion). Let $J_{\infty} = \lim_{n \to \infty} J_n$. If $\mathbb{P}[J_{\infty} = \infty] < 1$, then the continuous-time Markov chain is called **explosive**, which means there is a positive probability for infinitely many events in a bounded time.

Proposition 2.2.2. If $\sup_{i \in S} |G_{i,i}| < \infty$, then the continuous-time Markov chain is not eplosive.

Example 2.2.1 (Explosion). Consider a birth and death process with X(0) = 1, $\alpha_i = i^2$ and $\beta_i = 0$. Then

$$\mathbb{E}[J_{\infty}] = \sum_{i=2}^{\infty} \mathbb{E}[W_i] = \sum_{i=2}^{\infty} \frac{1}{\alpha_i} = \sum_{i=2}^{\infty} \frac{1}{i^2} < \infty,$$

which means with probability 1 J_{∞} is finite.

2.3 Semi-Markov Chains

Definition 2.3.1 (Semi-Markov Chains). Take a discrete-time Markov chain and make a continuous-time process by waiting a time W_x in each state $x \in S$ independently of previous and future states but not necessarily exponentially distributed.

Remark. Semi-Markov chains allow for latent periods and variations of infectivity with time from infection.

2.4 Gaussian Processes

Definition 2.4.1 (Gaussian Processes). Let $X: T \to \mathbb{R}$ be a stochasti process. X(t) is called a **Gaussian process** if $\forall t_1, \dots, t_n \in T$, $(X(t_1), \dots, X(t_2))$ is a multivariate Gaussian random vector, i.e. it has the probability density function

$$f(x_1, \dots x_n) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu}^T) \Sigma^{-1}(\vec{x} - \vec{\mu})\right),$$

for some $\vec{\mu} = [\mu_1, \dots, \mu_n]^T$ and some positive definite symmetric $n \times n$ matrix Σ .

Remark. A Guassian process is not necessarily Markov.

Proposition 2.4.1. There exist functions $m: T \mapsto \mathbb{R}$ and $c: T \times T \mapsto \mathbb{R}$ such that $\mu_i = m(t_i)$ and $\Sigma_{i,j} = c(t_i, t_j)$ with c being "positive definite" i.e. such that Σ is positive definite $\forall t_1, \dots, t_n \in T$.

Example 2.4.1 (Stationary Ornstein-Uhlenbeck Processes). Let $T = \mathbb{R}$, m(t) = 0 and $c(t, t') = e^{-|t'-t|}$, then the process is called a **stationary Ornstein-Uhlenbeck process**.

One can allow degenerate Gaussians, e.g. Ornstein-Uhlenbeck with specified initial condition X(0) = 0, then $f(x_0) = \delta_0(x_0)$, which is not a Gaussian probability density function but can be viewed as the limit of a Gaussian density.

The best way to generate a Gaussian distribution is to use its characteristic function instead of its PDF.

Definition 2.4.2 (Characteristic Functions). Let \vec{X} be a random vector, then its characteristic function is

$$\phi(\vec{\theta}) := \mathbb{E}[e^{i\vec{\theta}^T \vec{X}}].$$

Remark. For a multivariate Gaussian distribution with the mean vector $\vec{\mu}$ and covariance matrix Σ (which is allowed to be positive semi-definite), its characteristic function is

$$\phi(\vec{\theta}) = e^{i\vec{\theta}^T \vec{\mu} - \frac{1}{2}\vec{\theta}^T \Sigma \vec{\theta}}.$$

We can include vector-valued Gaussian processes.

Definition 2.4.3 (Multivariate Gaussian Processes). $\vec{X}: T \mapsto \mathbb{R}^n$ is a multivariate Gaussian process if $X: T \times \{1, \dots, n\} \mapsto \mathbb{R}$ is a Gaussian process.

Definition 2.4.4 (Stationary Gaussian Processes). Suppose $T = \mathbb{R} \times \mathbb{K}$. The Gaussian process is **stationary**, if its mean function m(t, k) is independent of t, and its covariance function c(t, k; t', k') is dependent only on t - t' and k - k'.

Remark. Gaussian processes are great for inference, because $\mathbb{P}[parameters|data]$ reduces to linear algebra.

2.5 Markov Processes with $S = \mathbb{R}$

Suppose $X: T \mapsto \mathbb{R}$, where T can be \mathbb{Z} or \mathbb{R} .

Definition 2.5.1 (Markov Processes). $\{X(t): t \in T\}$ is a **Markov Processes** if it satisfies the Markov property

$$\mathbb{P}[X(t_{n+1}) \in A | X(t_n) = s_n, \cdots, X(t_1) = s_1] = \mathbb{P}[X(t_{n+1}) \in A | X(t_n) = s_n],$$

where $A \subset \mathbb{R}$ and $t_{n+1} > t_n > \cdots > t_1$.

Remark. There is a technical problem in the definition. The conditional probability is not well defined, since random variables $X_{t_n}, \dots, X(t_1)$ now take values in \mathbb{R} , and the probability that they take particular values is 0. This will not be a problem if we restrict to any choice of interpretation of conditional probability such that

$$\mathbb{P}[X(t) \in A] = \int \mathbb{P}[X(t) \in A | X(0) = x] \, d\mathbb{P}[X(0) \le x] \qquad \text{(a Stieltjes integral)}.$$

Definition 2.5.2 (Homogeneity). A Markov process is homoegeneous if

$$\mathbb{P}[X(t) \in A | X(t') = s] = \mathbb{P}[X(t - t') \in A | X(0) = s].$$

It is unlikely that $\mathbb{P}[X(t) = y | X(0) = x] > 0$, so instead we specify $\mathbb{P}[X(t) \in A | X(0) = x]$ for any measurable set $A \subset \mathbb{R}$ as

$$\int_A p_t(x,y) \, \mathrm{d}y$$

for a transition density $p_t(\cdot, \cdot)$.

Definition 2.5.3 (Transition Densities). A transition probability is a function $p_t(\cdot, \cdot) : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that

$$\mathbb{P}[X(t) \in A | X(0) = x] = \int_{A} p_t(x, y) \, \mathrm{d}y$$

Theorem 2.5.1 (The Chapman-Kolmogorov Equation). The Markov property and homogeneity implies the **Chapman-Kolmogorov equation**

$$p_{t+u}(x,y) = \int_{\mathbb{R}} p_t(x,z) p_u(z,y) \, \mathrm{d}z.$$

2.5.1 Jump Processes

Definition 2.5.4 (Jump Processes). $\{X(t):t\in\}$ is a jump process if

• there is a jump rate density r(x,y) with the exit rate

$$R(x) = \int_{\mathbb{R}} r(x, y) \, \mathrm{d}y \le M < \infty, \ \forall x \in \mathbb{R},$$

where $M \in \mathbb{R}$ is a constant;

• its transition density satisfies

$$p_{\Delta t}(x,y) = r(x,y)\Delta t + (1 - R(x)\Delta t)\delta(y-x) + o(\Delta t), \text{ as } \Delta t \to 0.$$

Theorem 2.5.2 (The Kolmogorov-Feller Equation). The Chapman-Kolmogorov equation of a jump process turns into the Kolmogorov-Feller equation for initial condition $x \in \mathbb{R}$

$$\frac{\partial}{\partial t} p_t(x, y) = \int_{\mathbb{R}} p_t(x, z) r(z, y) - p_t(x, y) r(y, z) \, \mathrm{d}z$$

2.5.2 Diffusion Processes

Definition 2.5.5 (The Brownian Motion). The **Brownian motion** is a Gaussian process $B : \mathbb{R}_+ \mapsto \mathbb{R}$ with m(t) = 0 and $c(t, t') = \min(t, t')$ and almost surely continuous paths.

Proposition 2.5.1 (Brownian Motions are Markov). A Brownian motion is Markov, and it has independent increments: $\forall t_1 < \cdots < t_n$, $(X(t_{k+1}) - X_{t_k})_{k=1,\cdots,n-1}$ are independent variables.

Proposition 2.5.2 (Brownian Motions are Homeogeneous). Furthermore, the increments are stationary: X(t) - X(s) and X(t - s) - X(0) = X(t - s) have the same distribution, for t s. So B(t) is homoegeneous.

Remark. B(t) is not stationary.

Proposition 2.5.3. The transition density $p_t(x, y)$ of a Brownian motion is a Gaussian PDF with mean y - x and variance t, which satisfies the heat equation (or diffusion equation):

$$\frac{\partial p_t}{\partial t} = \frac{1}{2} \frac{\partial^2 p_t}{\partial y^2}$$

with the initial condition $p_0(x,y) = \delta(y-x)$.

Proposition 2.5.4. Brownian motions are normally distributed: $B(t) \sim \mathcal{N}(0, t)$.

Proposition 2.5.5. B(t) is scale-invariant: $B(\lambda t)$ and $\sqrt{\lambda}B(t)$ have the same distribution.

Proposition 2.5.6. B(t) is almost surely continuous, but it is also almost surely nowhere differentiable. Actually,

$$\xi_{t,h} := \frac{B(t+h) - B(t)}{h} \sim \mathcal{N}\left(0, \frac{1}{h}\right).$$

Although Brownian motions are almost surely nowhere differentiable, we can still informally talk about the limit process $\xi_t := \lim_{h \to 0} \xi_{t,h}$.

Definition 2.5.6 (Gaussian White Noises). $\xi_t := \lim_{h \to 0} \xi_{t,h}$ is called the **Gaussian white noise**.

Remark. The Gaussian white noise can be considered as a limiting case of a Gaussian process with mean m(t) = 0 and $c(t, t') = \delta(t - t')$.

Proposition 2.5.7. $B(t) = \int_0^t \xi_{t'} dt'$, or we can write it as a Stochastic differential equation

$$\frac{\mathrm{d}B}{\mathrm{d}t} = \xi,$$

with B(0) = 0.