

Relatório de eletrônica 1

Laboratório 1

Eduardo Kalleb Franciellen Thurler Freire Allemão Sergio Pedro Rodrigues Oliveira Victor Hugo Queiroz

29 setembro 2023

SUMÁRIO

1		OUÇÃO crimento	
2	OBJETI	VO	2
3	LISTA D	DE MATERIAIS	3
4	DESENV	VOLVIMENTO	4
	4.2 Resu 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.1	Curto-circuito	4 5 7 9 11 13 13 13 13 13
5	CONCL	USÃO	14
В	IBLIOGR	AFIA	15

LISTA DE FIGURAS

1	Circuito aberto
2	Montagem do circuito aberto para o experimento 5
3	Gráfico do osciloscópio para o circuito aberto
4	Gráfico do circuito aberto simulado computacionalmente
5	Curto-circuito
6	Montagem do curto-circuito para o experimento
7	Gráfico do osciloscópio para o curto-circuito.
8	Gráfico do curto-circuito simulado computacionalmente
9	Circuito com resistor de $2.0k\Omega$
10	Montagem do circuito com resistor de $2.0k\Omega$ para o experimento
11	Gráfico do osciloscópio para o circuito com resistor de $2.0k\Omega$
12	Gráfico do circuito com resistor de $2.0k\Omega$, simulado computacionalmente
13	Circuito com diodo no sentido direto
14	Montagem do circuito com diodo no sentido direto
15	Gráfico do osciloscópio para o circuito com diodo no sentido direto
16	Gráfico do circuito com diodo no sentido direto, simulado computacionalmente

Т	TST	Π A.	\mathbf{D}		$\Gamma \Lambda$	D	DТ		C
	151	Α		н; :	\mathbf{A}	к	н, г	ıΑ	

1 INTRODUÇÃO

- 1.1 Experimento
- 1.2 Teoria

2 OBJETIVO

- Implementar um traçador de curvas $V \times I$ para dispositivos de 2 terminais.
- Obter as curvas caraterísticas de vários tipos de componentes, com especial ênfase em diodos.

3 LISTA DE MATERIAIS

Table 1: Lista de materiais

Materiais	QTD
Fonte de tensão de 15 Voltz	1
Osciloscópio	1
Multímetro da bancada	1
Jumpers	4
Protoboard	1
Resistências de 2K Ohm	2
Diodo	1
Diodo zener	1

4 DESENVOLVIMENTO

4.1 Descrição do experimento

4.2 Resultados

Comparando os resultados de cada experimento com sua simulação:

- Desenho do circuito
- Cicuito na prática do experimento
- Resultado do experimento (gráfico)
- Simulação (gráfico)

4.2.1 Circuito aberto

O primeiro experimento foi projetado com o circuito aberto no lugar do dispositivo de teste, como pode ser observado pela figura 1. O circuito foi montado como apresentado na figura 2. O resultado obtido pelo gráfico presente no osciloscópio é uma linha reta no eixo x, representando a tensão sobre o nó CH1, figura 3, e o resultado esperado é o simulado computacionalmente pela figura 4.

Figure 1: Circuito aberto.

Figure 2: Montagem do circuito aberto para o experimento.

Figure 3: Gráfico do osciloscópio para o circuito aberto.

Figure 4: Gráfico do circuito aberto simulado computacionalmente.

4.2.2 Curto-circuito

O segundo experimento foi projetado com o circuito em curto no lugar do dispositivo de teste, como pode ser observado pela figura 5. O circuito foi montado como apresentado na figura 6. O resultado obtido pelo gráfico presente no osciloscópio é uma linha reta no eixo y, que representa a corrente que flui do nó CH1 para o terra, figura 7, e o resultado esperado é o simulado computacionalmente pela figura 8.

Figure 5: Curto-circuito.

Figure 6: Montagem do curto-circuito para o experimento.

Figure 7: Gráfico do osciloscópio para o curto-circuito.

Figure 8: Gráfico do curto-circuito simulado computacionalmente.

4.2.3 Resistor

O terceiro experimento foi projetado com uma resistência de $2.0k\Omega$ no lugar do dispositivo de teste, como pode ser observado pela figura 9. O circuito foi montado como apresentado na figura 10. O resultado obtido pelo gráfico presente no osciloscópio é uma linha reta enclinada, que representa bem a relação da lei de Ohm, $V = R \times I$ (Johnson, Hilburn e Johnson, 2015), figura 11, e o resultado esperado é o simulado computacionalmente pela figura 12.

Figure 9: Circuito com resistor de $2.0k\Omega$.

Figure 10: Montagem do circuito com resistor de $2.0k\Omega$ para o experimento.

Figure 11: Gráfico do osciloscópio para o circuito com resistor de $2.0k\Omega$.

Figure 12: Gráfico do circuito com resistor de $2.0k\Omega$, simulado computacionalmente.

4.2.4 Diodo no sentido direto

O quarto experimento foi projetado com um diodo de silício, no sentido da corrente (direto), no lugar do dispositivo de teste, como pode ser observado pela figura 13. O circuito foi montado como apresentado na figura 14. O resultado obtido pelo gráfico presente no osciloscópio é a curva exponencial caracteristica do funcionamento de um diodo de silício com $V_k \approx 0.7V$, figura 15, e o resultado esperado é o simulado computacionalmente pela figura 16.

Figure 13: Circuito com diodo no sentido direto.

Figure 14: Montagem do circuito com diodo no sentido direto.

Figure 15: Gráfico do osciloscópio para o circuito com diodo no sentido direto.

Figure 16: Gráfico do circuito com diodo no sentido direto, simulado computacionalmente.

- 4.2.5 Diodo zener no sentido direto
- 4.2.6 Diodo zener no sentido direto em serie com resistor
- 4.2.7 Diodo zener no sentido reverso em serie com resistor
- 4.2.8 Diodo no sentido direto em serie com diodo zener no sentido direto
- 4.2.9 Diodo no sentido direto em serie com diodo zener no sentido reverso
- 4.2.10 Diodo no sentido direto em paralelo com diodo zener no sentido direto
- 4.2.11 Diodo no sentido direto em paralelo com diodo zener no sentido reverso

5 CONCLUSÃO

BIBLIOGRAFIA

 $\label{eq:condition} \mbox{JOHNSON, D. E.; HILBURN, J. L.; JOHNSON, J. R. \mbox{\bf Fundamentos de Análise de Circuitos Elétricos - 4ed. [s.l.]} \mbox{ Editora LTC, 2015.}$