Indoor Scene Structure Analysis for Single Image Depth Estimation

Wei Zhuo, Mathieu Salzmann, Xuming He, and Miaomiao Liu

Presenter: Shahzor Ahmad

Background / Motivation

- Problem: depth from monocular vision is ill-posed
- Motivation: Humans perceive depth from static monocular images due to prior accumulated knowledge about scene structure.
- Goal: learn to predict depth given a set of training RGBD images.

Contribution

- Depth is modelled at <u>local</u> (super-pixels), <u>mid</u> (regions) and <u>global</u> (scene box layout) levels jointly.
- Prior art on depth estimation, by contrast, reasons locally – either at the pixel (e.g., [18]) or superpixel (e.g., [21, 15]) level.
- Prior art on scene global layout (e.g., [12]) only yield a Manhattan box layout, or sparse surface normal (e.g., [19]), but not absolute, metric depth.

Figure 1. **Depth estimation from a single image:** (Top) Image and ground-truth depth map. (Bottom) Estimated layout and detailed depth map. Color indicates depth (red is far, blue is close).

The CRF Model (Structure-aware depth estimation)

Local super-pixels take on labels Y from a 4d discrete space, giving plane parameters (3 params) and centroid depth (1 param)

Mid-level region labels *R* (take on values from the same discrete space as *Y*)

$$E(Y,R,L) = E_l(Y) + E_m(Y,R) + E_g(Y,L)$$

Inference is performed using Distributed Convex Belief Propagation (DCBP) [27]

Global layout labels L (come from a space of quantized scales)

The Discrete Space of Super-pixel and Region Labels

- Discrete state space S, defined by quantizing the range of valid depths for super-pixel / region centroid into V values.
 - Range: 0.5 to 10 (meters?)
 - Steps = 0.5 => *V* = 20
- Super-pixels (resp., regions) are assumed to be planar (resp. close to planar).
- Manhattan world assumption is invoked, restricting plane normals to 3 possible dominant directions, computed from vanishing points using formulas from Lee et. al. CVPR'09 [19].

The Discrete Space of Super-pixel and Region Labels (Contd.)

- Lee et. al. CVPR'09 [19].
 - Ray

$$P = \lambda K^{-1}p, \qquad \lambda > 0$$

• Normal direction of the three major axes given coordinates of three vanishing points (x_k, y_k) in image.

$$v_k = (x_k, y_k, 1)^T \quad \Leftrightarrow \quad V_k = \frac{K^{-1}v_k}{\|K^{-1}v_k\|_2}$$

•For any given super-pixel label y_p , or region label r_{γ} depth d and normal n at any pixel in the super-pixel (or region) may be computed.

Local Depth Estimation

$$E_l(Y) = \sum_{p} \phi_p(y_p) + \sum_{p,q} \phi_{p,q}(y_p, y_q)$$
$$Y = \{y_1, y_2, ..., y_{N_s}\}$$

$$\phi_p(y_p) = \frac{1}{N_p} \sum_{i=1}^{N_p} \left(d_p^i(y_p) - d_{r,p}^i \right)^2$$

Unary potential penalizes, for all super-pixels, $\phi_p(y_p) = \frac{1}{N_p} \sum_{i=1}^{N_p} \left(d_p^i(y_p) - d_{r,p}^i \right)^2 \qquad \text{per-pixel deviation of depth due to assigned labelling from predicted depth regressed on candidate depths (i.e., of corresponding super$ pixels in nearest neighbour training images)

$$\phi_{p,q}(y_p, y_q) = w_l \cdot$$

$$\begin{cases} 0 & \text{if } o_{pq}=1\\ g_{pq}\|\mathbf{n}_p(y_p)-\mathbf{n}_q(y_q)\|^2+\\ \frac{1}{N_{pq}}\sum_{j=1}^{N_{pq}}(d_p^j(y_p)-d_q^j(y_q))^2 & \text{if } o_{pq}=0 \end{cases} \text{ Pairwise term penalizes differences in per-pixel normal and depths in neighbouring super-pixels if they don't occluded each other}$$

if
$$o_{pq} = 1$$

if
$$o_{pq} = 0$$

Pairwise term penalizes

Exploiting Mid-Level Structures

$$E_m(Y,R) = \sum_{\gamma} \phi_{\gamma}(r_{\gamma}) + \sum_{\gamma,p} \phi_{\gamma,p}(r_{\gamma},y_p), \qquad R = \{r_i,r_2,...,r_{N_r}\}$$

$$\phi_{\gamma}(r_{\gamma}) = w_m \cdot [\max(P_{dn}(d, \mathbf{n})) - P_{dn}(d(r_{\gamma}), \mathbf{n}(r_{\gamma}))]$$

3V dimensional histogram of depth-normal labels, computed through voting by super-pixels in nearest neighbour regions in training images to test region

Depth and normal computed under given labeling

$$\phi_{\gamma,p}(r_{\gamma}, y_p) = \frac{w_{m,l}}{N_p} \sum_{i=1}^{N_p} \left(d_p^i(y_p) - d_{\gamma}^i(r_{\gamma}) \right)^2$$

Inter-layer (local and midlevel) coherence imposed to penalize differences between per-pixel depth predicted by region and super-pixels it contains

Incorporating Global Structures (Spatial Box Layout, Hedau et. al. CVPR'09 [11])

Incorporating Global Structures (Contd.)

$$E_g(Y, L) = \sum_p \phi_{L,p}(L, y_p)$$

Porobability that pixel *i* belong to clutter; ensures super-pixel depths are not over-smoothened

L encodes scale of predicted box layout, takes values form a space of quantized scales

$$\phi_{L,p}(L,y_p) = \frac{w_g}{N_p} \sum_{i=1}^{N_p} (1 - P_c^i) \cdot (d_p^i(y_p) - d_L^i(L))^2$$

Inter-layer (local and global) coherence imposed to penalize differences between per-pixel depth predicted by box layout faces and super-pixels it contains

Baselines

- <u>Depth Transfer (Karsch et. al., ECCV'12 [15])</u>: Inspired by the non-parametric SIFT flow / label transfer method of Liu et. al. '09, '11, for object recognition and scene parsing, and applied to *depth* transfer.
- <u>Semantic Depth (Ladicky et. al., CVPR'14 [18])</u>: Instead of learning perpixel depth classifier, it learns classifiers to predict likelihood for a semantic class at an arbitrarily fixed canonical depth; jointly models semantic segmentation and depth estimation.
- <u>DC-Depth (Liu et. al., CVPR'14 [21]):</u> A discrete-continuous CRF models relationships between superpixels, where depth is represented by continuous variables, and relationships by discrete ones.
- <u>Deep Depth (Eigen et. al. arXiv'14 [5])</u>: Deep-learning based method utilizing 140K RGBD training images.

Datasets

■ NYU v2 (Silberman et. al. ECCV'12 [29]):

- 1449 RGB and corresponding in-painted depth images (795 train, 654 test)
- 464 different indoor scenes across 26 scene classes, gathered from commercial and residential buildings in three US cities
- Kinect camera intrinsics are given
- Depth specified in meters

■ RMRC 2014 Challenge [1]:

- 4105 RGB-D training images
- Since GT depth for test images is not provided, 114 train images were randomly obtained to form a test set

Evaluation Metrics – Depth [21, 18]

- average relative error (rel): $\frac{1}{N} \sum_{\mathbf{u}} \frac{|g_{\mathbf{u}} d_{\mathbf{u}}|}{g_{\mathbf{u}}}$,
- average \log_{10} error: $\frac{1}{N} \sum_{\mathbf{u}} |log_{10}g_{\mathbf{u}} log_{10}d_{\mathbf{u}}|$,
- root mean squared error (**rms**): $\sqrt{\frac{1}{N} \sum_{\mathbf{u}} (g_{\mathbf{u}} d_{\mathbf{u}})^2}$

% correct :
$$\left(\frac{1}{N} \sum_{u=1}^{N} [[\max(\frac{d_u}{g_u}, \frac{g_u}{d_u}) = \delta < t]]\right) \cdot 100$$
$$t = 1.25, 1.25^2, 1.25^3$$

Evaluation Metrics – Normals [6]

- Dense per-pixel scene normals were predicted using method of [6], and evaluated using the following metrics:
 - Mean angle difference between estimated & GT normals
 - Medain angle difference between estimated & GT normals
 - % of pixels with angular difference < threshold (11.25 °, 22.5 °, 30°)

Results – 1/6 (NYU v2 Quant.)

Method	rel	log10	rms	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
DepthTransfer	0.374	0.134	1.12	49.81%	79.46%	93.75%
DC-Depth	0.335	0.127	1.06	51.55%	82.32%	95.00%
SemanticDepth	-	_	_	54.22%	82.90%	94.09%
Ours	0.305	0.122	1.04	52.50%	83.77%	96.16%

Method	mean	median	$\theta < 11.25$	$\theta < 22.5$	$\theta < 30$
DepthTransfer	43.0	40.5	6.9%	23.2%	34.9%
DC-Depth	45.7	42.2	19.7%	25.7%	35.4%
SemanticDepth	-	-	-	-	-
Ours	46.7	41.9	21.1%	35.2%	41.7%

Table 1. NYUv2: Comparison of our approach with the baselines.

Results – 2/6 (NYU v2 Qual.)

Figure 2. **NYUv2: Qualitative comparison.** Depth maps estimated by the different baselines and by our approach. Note that our approach typically avoids the oversmoothing of DepthTransfer, while better modeling the scene structure than DC-Depth.

Results – 3/6 (NYU v2 Ablation Study Quant.)

Method	rel	log10	rms	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^{3}$
Ours-local	0.334	0.128	1.05	50.35%	82.31%	95.44%
Ours-mid	0.312	0.123	1.03	52.08%	83.92%	96.13%
Ours-global-only	0.325	0.128	1.07	50.38%	82.06%	95.35%
Ours	0.305	0.122	1.04	52.50%	83.77%	96.16%

Table 2. NYU v2: Ablation study. We evaluate the influence of the different components of our model.

Results – 4/6 (NYU v2 Ablation Study Qual.)

Figure 3. NYUv2: Ablation study. Depth maps obtained by the different components of our approach.

Figure 4. **NYUv2: Depth of the different layers in our model.** We show the depth maps estimated by our final model, corresponding to the variables associated with each layer in our hierarchy.

Results – 5/6 (RMRC Ablation Study Quant.)

Method	rel	log10	rms	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^{3}$
Ours-local	0.440	0.167	1.24	39.38%	72.41%	89.83%
Ours-mid	0.395	0.159	1.22	41.25%	74.29%	90.75%
Ours-global-only	0.423	0.167	1.26	38.64%	71.09%	88.76%
Ours	0.379	0.159	1.22	40.67%	73.67%	90.01%

Table 3. RMRC Indoor: Ablation study.

Results – 6/6 (RMRC Ablation Study Qual.)

Figure 5. RMRC Indoor: Ablation study. Depth maps obtained by the different components of our approach.

Figure 6. **RMRC Indoor: Depth of the different layers in our model.** We show the depth maps estimated by our final model, corresponding to the variables associated with each layer in our hierarchy.

Thank You!