

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (Special) Degree in Applied Biology Third Year Semester II Examination – April/May 2015

ZOO 4203 – WILDLIFE MANAGEMENT & CONSERVATION

Time: Two (2)hours

Answer four (04) questions including question number 1.

- 1. Tables 1, 2, 3 and 4 and Figure 1 summarize key findings of a study by Peterman et al., (2015) published in *Conservation Genetics* (2015) 16:59-69, comparing genetic differentiation between multiple populations of two sympatric pond breeding salamanders *Ambystoma annulatum* and *A. maculatum* in Missouri, USA. Both salamander species are generally dependent on forested habitat and prefer to breed in fishless ponds. The investigators sampled multiple populations of the two species and genotyped both species at 19 species-specific microsatellite loci. In addition, for each population of both species, the investigators measured the pairwise Euclidian (direct) distances between ponds and also calculated, allelic richness (A_R), expected heterozygosity (H_e), observed heterozygosity (H_o), inbreeding coefficient (*F* '1S') and pairwise fixation indices (*F* 'ST'). Using these tables, figures and concepts discussed in class, answer the questions given below.
 - a) Why do most species exist as spatially separated populations?
 - b) Which of the two species in this study has populations that show a high level of genetic differentiation and give reasons for your answer.
 - c) Comment on how genetic differentiation in the populations of the two species change in relation to Euclidean (direct) distance between populations (ponds). Suggest behavioral, ecological, environmental or other plausible causes for this pattern. Based on this information, which species may require closer monitoring?
 - d) Briefly discuss the factors that drive genetic differentiation in isolated populations of the same species and what impact might these processes
 have on a population that undergoes sudden reduction in size.

 Table 1. Population genetic summary statistics for Ambystoma maculatum

Population	N	A_R	H_{O}	H_{E}	$F'_{\rm IS}$
2	21	3.54	0.610	0.643	0.051
11	25	3.39	0.619	0.636	0.026
122	23	3.42	0.628	0.629	0.002
152	35	3.03	0.542	0.576	0.059
200	10	2.74	0.559	0.575	0.027
228	35	3.04	0.605	0.604	-0.001
229	33	3.12	0.586	0.603	0.028
238	49	3.20	0.585	0.609	0.040
246	41	3.27	0.581	0.600	0.032
251	17	2.92	0.608	0.605	-0.004
264	43	3.24	0.589	0.605	0.026
274	47	2.90	0.557	0.578	0.035
294	10	2.70	0.616	0.548	-0.124
356	12	2.86	0.583	0.586	0.005
387	51	3.04	0.573	0.580	0.011
393	30	3.11	0.577	0.600	0.038
407	32	3.13	0.592	0.604	0.020
408	15	3.01	0.578	0.592	0.024
415	10	2.86	0.533	0.555	0.039
66	14	3.06	0.599	0.588	-0.020
71	35	2.96	0.592	0.586	-0.011
8	54	3.21	0.611	0.603	-0.014
Avg	29.18	3.08	0.587	0.596	0.013

Table 2. Population genetic summary statistics for Ambystoma annulatum

Population	N	A_R	H _O	H _E	$F'_{\rm IS}$
120	35	3.71	0.724	0.705	-0.027
127	40	3.66	0.624	0.688	0.093
152	32	3.67	0.694	0.704	0.014
228	10	3.34	0.653	0.694	0.059
229	11	3.51	0.655	0.713	0.082
238	15	3.10	0.609	0.646	0.058
246	13	3.14	0.641	0.666	0.038
264	12	3.27	0.637	0.660	0.034
315	10	3.11	0.674	0.662	-0.018
331	30	3.58	0.629	0.681	0.076
380	15	3.87	0.711	0.715	0.006
400	32	3.47	0.603	0.685	0.120
407	13	3.14	0.631	0.640	0.015
66	23	3.51	0.643	0.655	0.018
71	15	3.52	0.709	0.694	0.009
Avg	20.40	3.44	0.656	0.681	0.038

Figure 1. Scatter plot demonstrating the relationship between geographic distance (direct) between two given ponds and the respective pairwise F'_{ST} value (Based on Tables 4 and 5).

Table 3. Pairwise distances among Ambystoma maculatum ponds. F'sr is in the lower triangle and Euclidean distance (meters) is in the upper triangle.

8	4140	4646	2414	2143	4385	1919	1862	1999	2805	2890	1433	4618	4051	4193	2541	2229	1550	2985	6110	1147	926	ſ
71	3489	3940	1511	2002	3678	1015	096	1549	2657	3268	2240	5232	3681	4836	2428	3083	1679	2020	5516	852	ı	0.001
99	4284	4703	2170	2872	3251	1100	1672	2401	3489	2473	1828	4521	2956	4149	1588	2660	865	2486	6319	1	0.022	0.022
415	2036	1708	4238	4225	7382	5564	4659	4111	3676	8781	7538	10709	8405	10294	7732	8289	7180	4348	1	0.095	0.134	0.119
408	2440	2640	742	2832	3173	1435	1176	2005	3066	4853	4222	6972	4058	6617	3552	5070	3294	1	0.140	0.027	0.017	0.011
407	5146	2568	3029	3584	3368	1864	2537	3209	4228	1608	1408	3680	2629	3324	1025	2124	1	0.020	0.124	0.035	0.017	0.015
393	6354	0289	4591	4142	5451	3755	4036	4194	4783	1910	848	2657	4421	2209	2853	1	0.023	0.059	0.135	0.028	0.020	0.019
387	5704	6909	3495	4459	2655	2178	3099	3969	2077	1526	2300	3661	1632	3399	1	0.017	0.012	0.025	0.112	0.015	0.010	900.0
326	8297	8770	6305	6264	5926	5188	5778	6188	6920	1874	2791	448	4442	1	0.029	0.033	0.047	0.050	0.111	0.076	0.054	0.028
294	6460	2699	4288	5734	1656	3028	4061	5104	6293	2756	3927	4573	1	990.0	0.040	0.022	0.029	0.037	0.216	0.073	0.062	0.062
274	8705	9171	6685	0029	6112	5538	6166	8099	7357	2159	3226	. 1	0.050	0.027	0.051	0.046	0.058	0.061	0.161	0.070	0.064	0.045
797	5572	6075	3751	3474	4777	2915	3197	3428	4132	1839	1	0.046	0.028	0.033	0.007	0.000	0.019	0.035	0.122	0.010	0.012	0.015
251	6750	7176	4634	5031	4109	3419	4145	4761	5691	1	-0.002	0.048	600.0	0.033	0.017	0.001	0.018	0.018	0.172	600.0	0.018	0.020
246	2134	2706	2385	663	2962	3316	2324	1211	1	0.025	0.013	0.049	7.00.0	0.052	0.019	0.031	0.026	0.023	0.144	0.032	0.023	0.008
238	2164	2699	1271	830	4762	2107	1116	1	0.016	0.019	0.025	0.071	0.073	0.056	0.023	0.036	0.018	0.033	0.115	0.027	0.007	900.0
525	2623	3031	555	1901	3646	1033	1	0.020	0.018	0.035	0.036	0.075	960.0	0.053	0.024	0.047	0.031	0.013	0.102	0.026	0.021	0.019
228	3547	3883	1328	2821	2728	ı	0.027	0.023	0.028	0.012	0.021	0.074	890.0	0.039	900.0	0.034	0.017	0.012	0.116	0.012	0.008	0.004
200	5592	5707	3655	5528	1	0.041	0.084	0.067	920.0	0.075	090.0	0.154	0.127	0.102	0.038	960.0	0.085	0.090	0.161	980.0	0.058	0.062
152	2494	3068	2101		0.090	0.029	0.020	0.018	0.004	0.042	0.037	0.052	0.112	0.029	0.025	0.042	0.050	0.046	0.137	0.052	0.018	0.009
122	2219	2568	ı	0.025	0.067	0.011	0.027	0.005	0.014	0.023	60000	0.053	0.047	0.030	0.011	0.017	0.003	0.019	0.090	0.014	0.004	900.0
2, 11	- 577	0.012 -	0.013 0.014	0.016 0.046	0.043 0.049	0.013 0.031	0.010 0.041	0.013 0.030	0.018 0.030	0.039 0.062	0.032 0.038	0.082 0.073	0.104 0.109	0.043 0.075	0.024 0.038	0.052 0.055	0.050 0.052	0.032 0.053	0.112 0.119	0.027 0.052	0.032 0.042	0.015 0.025
Pond	7	11	122	152	200	228	229	238	246	251	264	274	294	356	387	393	407	408	415	99	71	∞

Table 4. Pairwise distances among Ambystoma annulatum ponds. F st is in the lower triangle and Euclidean distance (meters) is in the upper triangle.

71	1529	404	2062	1015	096	1549	2593	2240	4612	4588	3706	3820	1679	852	ı
99	2053	789	2872	1100	1672	2401	3422	1828	5016	5035	4307	4060	865	1	0.075
407	2888	1652	3584	1864	2537	3209	4157	1408	5759	5799	5140	4722	1	0.028	0.081
400	2386	3488	4676	2970	3075	3866	4795	5884	1264	1451	1957	ı	0.215	0.171	0.155
380	2255	3542	3606	3296	2749	2957	3501	5946	1500	1294	1	0.074	0.157	0.124	0.101
331	3059	4339	4834	3945	3683	4126	4775	9629	277	1	0.028	0.074	0.125	0.077	0.111
315	3085	4344	4972	3919	3730	4241	4940	6629	1	0.064	0.071	0.150	0.211	0.153	0.174
264	3747	2457	3474	2915	3197	3428	4054	ı	0.182	0.168	0.148	0.249	0.102	0.119	0.099
246	2747	2860	587	3265	2280	1165	1	0.237	0.280	0.219	0.156	0.205	0.240	0.214	0.207
238	1635	1748	830	2107	1116	1	0.192	0.144	0.194	0.083	0.081	0.137	0.099	0.072	0.136
229	689	887	1901	1033	1	0.082	0.132	0.178	0.202	0.115	0.089	0.137	0.121	0.104	0.040
228	1076	613	2821	ı	9200	0.107	0.177	0.060	0.151	0.100	960.0	0.164	0.100	0.056	0.092
152	2462	2362	1	960.0	0.070	0.072	0.087	0.162	0.196	0.119	0.079	0.156	0.152	0.146	0.112
127	1301	1	0.138	0.072	0.073	0.142	0.202	0.108	0.199	0.128	0.113	0.171	0.053	0.062	0.030
120	ı	0.093	0.075	0.062	0.018	0.107	0.144	0.165	0.165	0.092	0.103	0.104	0.153	0.106	0.036
Pond .	120	127	152	228	229	238	246	264	315	331	380	400	407	99	71

- 2. Briefly describe factors or processes that might contribute to a population's extinction and how they are used in Population Viability Analysis (PVA).
- 3. Using appropriate examples, briefly describe why some species are more susceptible to human induced threats.
- 4. Write short notes on **four (04)** of the following;
 - a)Spatial scales of biodiversity
 - b) Population age structure and population growth
 - c) Species concepts and Evolutionarily Significant Units (ESU)
 - d) Source-sink dynamics
 - e)Species diversity and richness
- 5. Briefly comment on the causes and consequences of desertification and deforestation.