Лаборатория Работа 2.1.3 Определение C_p/C_v по скорости звука в газе

Сифат Мд Абдуллах Ал Хасиб Физтех школа электроники, фотоники и молекулярной физики Группа Б04-105

13 апреля 2022 г.

1 Введение

Цель работы: 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) определение показателя адиабаты с помощью уравнения состояния идеального газа

В работе используется: звуковой генератор, электронный осциллограф, теплоизолированная труба, обогреваемая водой из термостата, термостат, телефон, соединённый с генератором звука, микрофон, соединённый с осциллографом.

2 Теоретическая справка

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты.

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}},$$

где R — газовая постоянная, T — температура газа, а μ — его молярная масса. Преобразуя эту формулу, найдем

$$\gamma = \frac{\mu}{RT}c^2. \tag{1}$$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука (молярная масса газа предполагается известной).

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отраженных волн и, вообще говоря, очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = n\lambda/2,\tag{2}$$

где λ — длина волны звука в трубе, а n — любое целое число. Если условие (2) выполнено, то волна, отраженная от торца трубы, вернувшаяся к ее началу и вновь отраженная,

совпадает по фазе с падающей. Совпадающие по фазе волны усиливают друг друга. Амплитуда звуковых колебаний при этом резко возрастает — наступает резонанс. При звуковых колебаниях слои газа, прилегающие к торцам трубы, не испытывают смещения (узел смещения). Узлы смещения повторяются по всей длине трубы через $\lambda/2$. Между узлами находятся максимумы смещения (пучности).

Скорость звука с связана с его частотой f и длиной волны λ соотношением

$$c = \lambda f. (3)$$

Для получения резонанса при постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для последовательных резонансов получим

$$L_n = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k)$$
 (4)

Из (3) и (4) имеем

$$f_{1} = \frac{c}{\lambda_{1}} = \frac{c}{2L}n, \quad f_{2} = \frac{c}{\lambda_{2}} = \frac{c}{2L}(n+1) = f_{1} + \frac{c}{2L}, \quad \dots,$$

$$f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_{1} + \frac{c}{2L}k. \tag{5}$$

Скорость звука, деленная на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

3 Экспериментальная установка:

В нашей работе мы использовали следующую экспериментальную установку. Где звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдается на осциллографе ЭТО. Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчётах оба торца трубы можно считать неподвижными, авлиянием соединительных отверстий пренебречь.

Эта установка (рис. 1) содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре воды, омывающей трубу. На этой установке измеряется зависимость скорости звука от температуры.

Рис. 1: Схема установки

4 Ход работы

Мы провели эксперимент с воздухом внутри трубы длиной 740 ± 1 мм. Температура в помещении в день эксперимента составляла 23° С. Скорость звука при этой температуре составляла $340~{\rm M/c}$. Наш эксперимент был при 6 различных температурах и записали резонансную частоту звука в воздухе внутри трубы.

	T_1, K	T_2, K	$T_3, K \mid T_3$	$T_4, K \mid T_5$	$K \mid T_6,$	K
	296	301	306.1	$311.2 \mid 31$	6.1 32	1
T_1	f_1 , Гц	f_2 , Гц	f_3 , Гц	f_4 , Гц	f_5 , Гц	f_6 , Гц
	251	477	708	928	1163	1393
T_2	f_1 , Гц	f_2 , Гц	f_3 , Гц	f_4 , Гц	f_5 , Гц	f_6 , Гц
	257	484	716	945	1170	1404
T_3	f_1 , Гц	f_2 , Гц	f_3 , Гц	f_4 , Гц	f_5 , Гц	f_6 , Гц
	252	486	720	948	1182	1418
				_		
T_4	f_1 , Гц	f_2 , Гц	f_3 , Гц	f_4 , Гц	f_5 , Гц	f_6 , Гц
	252	491	724	951	1188	1427
T_5	f_1 , Гц	f_2 , Гц	f_3 , Гц	f_4 , Гц	f_5 , Гц	f_6 , Гц
	255	495	731	961	1202	1435
T_6	f_1 , Γ ц	f_2 , Гц	f_3 , Γ ц	f_4 , Гц	f_5 , Гц	f_6 , Гц
	260	498	734	970	1220	1444

Построим графики, откладывая по оси абсцисс номер резонанса k, а по оси ординат — разность между частотой последующих резонансов и частотой первого резонанса: $f_{k+1}-f_1$. Угловой коэффициент прямой определяет величину c/2L.

Рис. 2: График зависимости разности частот от номера резонанса при T_1

Рис. 3: График зависимости разности частот от номера резонанса при T_2

Рис. 4: График зависимости разности частот от номера резонанса при T_3

Рис. 5: График зависимости разности частот от номера резонанса при T_4

Рис. 6: График зависимости разности частот от номера резонанса при T_5

Рис. 7: График зависимости разности частот от номера резонанса при T_6

Рис. 8: График зависимости разности частот от номера резонанса при всех температурах вместе

Угловые коэффициенты прямых соответственно равны:

$$a_1 = 228.22 \ c^{-1}$$
 $a_2 = 229.2 \ c^{-1}$, $a_3 = 232.74 \ c^{-1}$, $a_4 = 234.08 \ c^{-1}$, $a_5 = 235.74 \ c^{-1}$, $a_6 = 237.77 \ c^{-1}$.

Рассчитаем скорость звука и показатель адиабаты при каждой температуре по формулам (1) и (5):

T, K	c, м/с	γ
296	346.03	1.411
301	349.08	1.413
306.1	352.19	1.415
311.2	354.92	1.417
316.1	358.29	1.417
321	361.28	1.418

Оценим погрешности:

$$\varepsilon_T = 0.005 = 0.3\%$$

$$\varepsilon_f = 0.008 = 0.9\%$$

$$\varepsilon_c = \sqrt{\varepsilon_T^2 + \varepsilon_f^2} = 0.0104 = 1.04\%$$

$$\varepsilon_\gamma = 2\varepsilon_c + \varepsilon_T = 0.0311 = 3.11\%$$

Конечный ответ:

$$\gamma = 1.415 \pm 0.05$$

Табличное значение:

$$\gamma_{ ext{табл}} = 1.403$$

5 Вывод

В этом эксперименте мы нашли удельную теплоемкость воздуха. Мы использовали звуковую волну в воздухе и изменили температуру, чтобы получить другое значение скорости звука. Получив константу при 6 различных температурах, мы взяли среднее значение и увидели, что оно очень близко к нашему табличному значению. Наша последняя экспериментальная ошибка почти **1.2** процент.