	Numer indeksu:		$Grupa^1$:		
Trumer indexsu.	Transfer Transfer		8–10 s.104	8–10 s.105	8–10 s.139
Wersja: $ \mathbf{B} $			8–10 s.140		
			10–12 s.104	10–12 s.139	10–12 s.140
	Logika dla infor	matyk	xów		
	Kolokwium nr 2, 11 czas pisania: 30+	_			
	czas pisama. 307	-00 1111	nut		
Zadanie 1 (2 punkty). Niech funkcja $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ będzie dana wzorem $f(\langle x,y \rangle) = \frac{x^2+y}{2}$. Łatwo zauważyć, że wtedy $f[(0,1)\times(0,1)]=(0,1)$. Jeśli istnieje inny niż $(0,1)\times(0,1)$ zbiór, którego obrazem przez funkcję f jest przedział otwarty $(0,1)$, to w prostokąt poniżej wpisz dowolny taki zbiór. W przeciwnym przypadku wpisz słowa "NIE ISTNIEJE".					
•	e). Niech $R = \{\langle n, n+42 \rangle \mid n \}$ vpisz w prostokąt poniżej taką	-		•	
Zadanie 3 (2 punkty). Rozważmy zbiory osób O , barów B i soków S oraz relacje $Bywa \subseteq O \times B$, $Lubi \subseteq O \times S$ i $Podajq \subseteq B \times S$ informujące odpowiednio o tym jakie osoby bywają w jakich barach, jakie osoby lubią jakie soki oraz jakie bary podają jakie soki. W prostokąt poniżej wpisz taką formułę φ , że $\{x \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz osób nie bywających w żadnym barze podającym sok $Malinowy$.					
$\dot{z}e f(n) = m$. Jeśli zbión	. Dla $n, m \in \mathbb{N}$ niech $A_{n,m}$ ozn r $\bigcup_{n \in \mathbb{N}} \bigcap_{m \in \mathbb{N}} A_{n,m}$ jest pusty, ku wpisz dowolną funkcję, któ	to w p	rostokąt poniż	żej wpisz słow	
Zadanie 5 (2 punkty). W prostokąt poniżej wpisz wszystkie zwrotne i symetryczne relacje na dwuelementowym zbiorze $\{a,b\}$					

¹Proszę zakreślić właściwą grupę ćwiczeniową.

		Numer indeksu:	_	Grupa ¹ :		
				8–10 s.104	8-10 s. 105	8–10 s.139
Wersja:	$ \mathbf{B} $			8–10 s.140		
				10-12 s. 104	10–12 s.139	10–12 s.140

Zadanie 6 (5 punktów). Niech funkcja $f: \mathcal{P}(\mathbb{N} \times \{0,1\}) \to \mathcal{P}(\mathbb{N})$ będzie zdefiniowana wzorem $f(X) = \{2x + y \mid \langle x, y \rangle \in X\}$. Udowodnij, że f jest bijekcją.

Zadanie 7 (5 punktów). Niech R i S będą zwrotnymi relacjami na zbiorze A. Udowodnij, że jeśli $R \cup S$ jest relacją równoważności to relacja R;S jest symetryczna.

Zadanie 8 (5 punktów). Dla funkcji $f:A\to A$ definiujemy $f^0(x)=x$ oraz $f^{n+1}(x)=f(f^n(x))$ dla wszystkich $n\in\mathbb{N}$ oraz wszystkich $x\in A$. Udowodnij, że dla wszystkich $i,j\in\mathbb{N}$ i wszystkich $x\in A$ zachodzi równość $f^{i+j}(x)=f^i(f^j(x))$.

 $^{^{1}\}mathrm{Proszę}$ zakreślić właściwą grupę ćwiczeniową.

Numer i	ndeksu:		Grupa ¹ :		
	Trace and the second		8–10 s.104	8–10 s.105	8-10 s.139
Wersja:			8–10 s.140		
			10–12 s.104	10–12 s.139	10–12 s.140
	Logika dla infor	matyk	ów		
	Kolokwium nr 2, 11 czas pisania: 30+	_			
Zadanie 1 (2 punkty). Dla $n, m \in \mathbb{N}$ niech $A_{n,m}$ oznacza zbiór wszystkich takich funkcji $f : \mathbb{N} \to \mathbb{N}$, że $f(n) = m$. Jeśli zbiór $\bigcup_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} A_{n,m}$ jest pusty, to w prostokąt poniżej wpisz słowo "PUSTY". W przeciwnym przypadku wpisz dowolną funkcję, która należy do tego zbioru.					
Zadanie 2 (2 punkty). Niech używając symboli ∃,∀ wpisz w p		-			-
Zadanie 3 (2 punkty). W pros na dwuelementowym zbiorze $\{a,$	• • • •	szystkie	e zwrotne i sła	bo antysymetr	ryczne relacje
Zadanie 4 (2 punkty). Niech Łatwo zauważyć, że wtedy $f[(0, 1)]$ obrazem przez funkcję f jest przez W przeciwnym przypadku wpisz	$[0, 1) \times (0, 1) = (0, 1)$. Jeedział otwarty $[0, 1)$, te	śli istn o w pro	ieje inny niż ($(0,1)\times(0,1)$ z	biór, którego
Zadanie 5 (2 punkty). Rozwa $Lubi \subseteq O \times S$ i $Podajq \subseteq B \times S$ jakie osoby lubią jakie soki oraz j φ , że $\{x \mid \varphi\}$ jest zapytaniem rela żadnego soku podawanego w bar	informujące odpowied akie bary podają jaki acyjnego rachunku dzie	lnio o t e soki.	ym jakie osob W prostokąt	y bywają w ja poniżej wpisz	akich barach, taką formułę

¹Proszę zakreślić właściwą grupę ćwiczeniową.

		Numer indeksu:
Wersja:	$oldsymbol{\mathbf{C}}$	

Grupa ¹ :		
8-10 s. 104	8-10 s. 105	8–10 s.139
8-10 s. 140		
10–12 s.104	10–12 s.139	10–12 s.140

Zadanie 6 (5 punktów). Dla funkcji $f:A\to A$ definiujemy funkcję $F:A\times\mathbb{N}\to A$ w następujący sposób: F(x,0)=x oraz F(x,n+1)=f(F(x,n)) dla wszystkich $n\in\mathbb{N}$ oraz wszystkich $x\in A$. Udowodnij, że dla wszystkich $n\in\mathbb{N}$ i wszystkich $x\in A$ zachodzi równość f(F(x,n))=F(f(x),n).

Zadanie 7 (5 punktów). Niech funkcja $F: \mathbb{N} \times \mathbb{N} \to \mathbb{N}^{\{a,b\}}$ będzie zdefiniowana wzorem

$$F(m,n):\{a,b\}\to\mathbb{N},\quad (F(m,n))(x)=\left\{\begin{array}{ll} m,&\text{gdy }x=a\\ n,&\text{w przeciwnym przypadku}\end{array}\right.$$

Udowodnij, że F jest bijekcją.

Zadanie 8 (5 punktów). Niech R i S będą symetrycznymi relacjami na zbiorze A. Udowodnij, że jeśli relacja R;S jest symetryczna to R;S=S;R.

¹Proszę zakreślić właściwą grupę ćwiczeniową.