## 固体物理 Solid State Physics

冯雪

x-feng@tsinghua.edu.cn

罗姆楼2-101B

## 第十一次课作业

1.硅PN结中的n区施主杂质浓度1×10<sup>17</sup> cm<sup>-3</sup>, p区的受主杂质浓度为1×10<sup>16</sup> cm<sup>-3</sup>, 试估算室温下pn结的内建电势差。

- 2.硅PN结的掺杂曲线如图所示, 在零偏条件下:
  - (a)计算内建电势差 $V_d$ ;
  - (b)画出平衡状态能带图;

(注: Si材料: 带隙宽度  $E_g=1.12 \text{ eV}$ , 本征载流子 浓度  $n_i=1.5\times 10^{10} \text{ cm}^{-3}$ )



## 第十一次课作业

3. A、B两种半导体材料形成理想异质结,A为p-Ge,B 为n-GaAs,它们的基本常数为:

$$E_{gA} = 0.67eV, E_{gB} = 1.43eV, \chi_A = 4.13eV, \chi_B = 4.06eV$$
  
$$\delta_A = (E_C - E_F)_A = 0.53eV, \delta_B = (E_C - E_F)_B = 0.1eV$$

- 1) 此异质结结构界面处的导带不连续量、价带的不连续量,接触电势差分别为多少?
- 2)画出异质结的能带简图(画出带边变化趋势,标明  $\Delta E_{c}$  、 $\Delta E_{v}$  、 $E_{F}$  )。

## 第十一次课作业

4. "设计"一种特殊的半导体材料,要求半导体为n型,施主掺杂浓度为 $N_D$ = $1\times10^{15}$ cm<sup>-3</sup>,假设完全电离且  $N_A$ =0。有效状态密度为Nc=Nv= $1.5\times10^{19}$  cm<sup>-3</sup>且与温度 无关,用该材料制作的器件电子浓度在T=400K时,要求不大于 $1.01\times10^{15}$  cm<sup>-3</sup> 请问对禁带宽度有何要求?

5.证明异质结中电子注入比:

$$\frac{J_{n}}{J_{p}} = \frac{D_{n}n_{P}^{0}}{L_{n}} / \frac{D_{p}p_{N}^{0}}{L_{p}} = \frac{D_{n}L_{p}N_{D}}{D_{p}L_{n}N_{A}}e^{\frac{E_{gN}-E_{gP}}{k_{B}T}}$$