Technical Trading Rules

The Econometrics of Predictability

This version: May 7, 2014

May 7, 2014

Overview

- Technical Trading Rules
 - ► Filter Rules
 - Moving Average Oscillator
 - ► Trading Range Break Out
 - ▶ Channel Breakout
 - Moving Average Convergence/Divergence
 - Relative Strength Indicator
 - Stochastic Oscillator
 - Simple Momentum
 - ► On-Balance Volume
- Model Combination

Technical Trading

- Technical trading is one form or predictive modeling
- It is mostly a graphical, rather than statistical tool
- Constructs rules based on price movements
- Rules, while often used graphically, can usually be written down in mathematical expressions
- This can be used to formally allow for testing for technical trading rules
 - Testing the rules is going to be the basis of the assignments this term
 - Using appropriate methodology for evaluation will be important

Data

- Daily DJIA for 12 months
- Use high, low and close
- Compute the rules, but focus on the visualization of the rule
- Rule implementation
 - ► Red dot is sell
 - Green dot is buy

Definition (x% Buy Filter Rule)

A x% filter rule buys when price has increased by x% from the previous low, and liquidates when the price has declined x% from the high measured since the position was opened.

Definition (x% Sell Filter Rule)

A x% filter rule sells when price has declined by x% from the previous high, and liquidates when the price has increased x% from the low measured since the position was opened.

- These are a momentum rule
- If using both rules with the same percentage, will always have an long or short position, since after a decline of x%, a short is opened, and after a rise of x% a long is opened

A modified rule allows for periods where there is no long or short

Definition (x%/y% Buy Filter Rule)

A x% filter rule buys when price has moved up by x% from the previous low, and liquidates when the price has declined y% from the high measured since the position was opened.

- The sell rule is similarly defined, only using the relative low
- $y \le x$, and y = x then reduces to previous rules
- Do not have to use both long and short rules

Moving-Average Oscillator

Definition (Moving-Average Oscillator)

The moving average oscillator requires two parameters, m and n, n > m,

$$MA_{t} = m^{-1} \sum_{i=t-m+1}^{t} P_{i} - n^{-1} \sum_{i=t-n+1}^{t} P_{i}$$

- ullet This is obviously the difference between an m period MA and a n period MA
- Momentum rule
- It is used as an indicator to buy when positive or sell when negative
 - Usually used to initiate a trade when it first crosses, not simply based on sign

Moving-Average Oscillator

- MA_t is not enough to determine a buy rule, since the direction of the crossing matters
- ullet Formally the buy and sell can be defined as the difference of $M\!A_t$

Buy if
$$sgn(MA_t) - sgn(MA_{t-1}) = 2$$

Sell if $sgn(MA_t) - sgn(MA_{t-1}) = -2$

• sgn is the signum function which returns x/|x| for $x \neq 0$ and 0 for x = 0

Moving Average Oscillator

Trading Range Breakout/Support and Resistance

Definition (Trading Range Breakout)

The trading range break out is takes one parameter, m, and is defined

$$TRB_{t} = \left(P_{t} > \max\left(\left\{P_{i}\right\}_{i=t}^{t-1}\right)\right) - \left(P_{t} < \min\left(\left\{P_{i}\right\}_{i=t}^{t-1}\right)\right)$$

- Positive values (1) indicate that the price is above the m-period moving maximum, negative values -1 indicate that it is below the m-period moving minimum.
- Momentum rule
- Buy on positive signals, sell on negative signals
- If no signal, then takes the value 0

Trading Range Breakout

Channel Breakout

Definition (x% Channel Breakout)

The x% channel breakout rule, using (a m-)day channel, is defined

- Momentum rule
- x% denotes the channel
- Modification of trading range breakout with second condition which may reduce sensitivity to volatility

(and)

Channel Range Breakout

Moving Average Convergence/Divergence (MACD) OXFORD

Definition (Moving Average Convergence/Divergence (MACD))

The moving-average convergence/divergence indicator takes three parameters, m, n and d, and is defined

$$\delta_{t} = (1 - \lambda_{m}) \sum_{i=0}^{\infty} \lambda_{m}^{i} P_{t-i} - (1 - \lambda_{n}) \sum_{i=0}^{\infty} \lambda_{n}^{i} P_{t-i}$$

$$\delta_{t} = (1 - \lambda_{m}) \sum_{i=0}^{\infty} \lambda_{m}^{i} P_{t-i} - (1 - \lambda_{n}) \sum_{i=0}^{\infty} \lambda_{n}^{i} P_{t-i}$$

$$\delta_{t} = (1 - \lambda_{d}) \sum_{i=0}^{\infty} \lambda_{d}^{i} \delta_{t}$$

- Pronounced MAK-D
- $\lambda_m = 1 \frac{2}{m+1}$, $\lambda_n = 1 \frac{2}{n+1}$, $\lambda_d = 1 \frac{2}{d+1}$
- S_t is the signal line
- Plot often has δ and S, and a histogram to indicate the difference $\delta_t S_t$
- Difference is used to predict trends

Buy if
$$\operatorname{sgn}(\delta_t - S_t) - \operatorname{sgn}(\delta_{t-1} - S_{t-1}) = 2$$

Sell if $\operatorname{sgn}(\delta_t - S_t) - \operatorname{sgn}(\delta_{t-1} - S_{t-1}) = -2$

Moving Average Convergence/Divergence

Relative Strength Indicator

Definition (Relative Strength Indicator)

The relative strength indicator takes one parameter m and is defined as

$$RSI = 100 - \frac{100}{1 + \frac{\sum_{i=0}^{\infty} \lambda^{iI} [(P_{t-i} - P_{t-i-1}) > 0]}{\sum_{i=0}^{\infty} \lambda^{iI} [(P_{t-i} - P_{t-i-1}) < 0]}}, \lambda = 1 - \frac{2}{m+1}$$

- The core of the indicator are two EWMAs
- Each EWMA is based on indicator variables or positive (top) or negative (bottom) returns
- If all positive, then indicator will equal 100, if all negative, indicator will equal 0
- EWMA can be replaced with MA
- Buy signals are indicated if RSI is below some threshold (e.g. 30), sell if above a different threshold (e.g. 70)
- RSI is reversal rule

Relative Strength Indicator (Reversal)

Stochastic Oscillator

Definition (Stochastic Oscillator)

A stochastic oscillator takes two parameters m and n and is defined as

$$\%K_{t} = 100 \times \frac{P_{t} - \min\left(\{P_{i}\}_{i=t-m}^{t-1}\right)}{\max\left(\{P_{i}\}_{i=t-m}^{t-1}\right) - \min\left(\{P_{i}\}_{i=t-m}^{t-1}\right)}$$

$$\%D_{t} = \frac{1}{n} \sum_{i=1}^{n} \%K_{t-i+1}$$

- Trading rules are based on intersections of the lines and the direction of of the intersection
- If $\%K_{t-1} < \%D_{t-1}$ and $\%K_t > \%D_t$, then a buy signal is indicated
- If $\%K_{t-1} > \%D_{t-1}$ and $\%K_t < \%D_t$, then a sell signal is indicated
- Often implemented using fast and slow periods, with feedback between the two

Stochastic Oscillator

Stochastic Oscillator

Bollinger Band

Definition (Bollinger Bands)

Bollinger bands plot the m-day moving average and the MA plus/minus 2 times the m-day moving standard deviation, where the moving averages are defined

$$MA_{t} = m^{-1} \sum_{i=1}^{m} P_{t-i+1} \sigma_{t} = \sqrt{m^{-1} \sum_{i=1}^{m} \left(\frac{(P_{t-i+1} - P_{t-i})}{P_{t-i}} \right)^{2}}$$

- Rules can be based on prices leaving the bands, and possibly then crossing of the moving average
- For example, buy when price hit bottom (reversal) and then sell when it hits the MA
- Alternatively buy when it hits the top (strong upward trend)

Bollinger Band

Bollinger Band

A Simple Momentum Rule

- Momentum is a common strategy
- Can construct a momentum rule as

$$S_t = \begin{cases} 1 & \text{if } P_t > P_{t-d} \\ 0 & \text{if } \overline{P_t \le P_{t-d}} \end{cases}$$

• Technically (trivial) moving average rule with d-day delay filter

On-Balance Volume

Definition (On-Balance Volume)

On-Balance Volume (OBV) plots the difference between moving averages of signed daily volume, defined

 $OBV_t = \sum_{s=1}^{t} VOL_sD_s$ Obvious display which is 1 if D

where VOL_s is the volume in period s, D_s is a dummy which is 1 if $P_t > P_{t-1}$ and -1 otherwise, and the trading signal is

$$S_{t} = \begin{cases} 1 & MA_{m,t}^{OBV} > MA_{n,t}^{OBV} \\ 0 & MA_{m,t}^{OBV} \leq MA_{n,t} \end{cases}$$

where
$$MA_{q,t}^{OBV} = q^{-1} \sum_{i=1}^{q} OBV_{t-i-1}, q = m, n, m < n.$$

- Most rules make use of price signals
- OBV mixes volume information with indicator variable

On-Balance Volume

Additional Filters

- Many ways rules can be modified
- MAs and EWMAs can be swapped
- Can use a *d*-day delay filter to stagger execution of trade from signal
- ullet Can use b%-band with some filters to reduce frequency of execution
 - ightharpoonup Requires the price price (or fast signal) to be b% above the band (or slow signal)
 - ► Relevant for most rules
 - Examples
 - Moving-Average Oscillator: Requires fast MA to be larger than 1+b times slow for a buy signal, and smaller than 1-b for a sell signal
 - Trading Range Breakout/Channel Breakout: Use 1+b times max and 1-b times min
- Can use k-day holding period, so that positions are held for k-days and other signal are ignored

From Technical Indicators to Trading Rules

- Most technical rules are interpreted as buy, neutral or sell 1, 0 or -1
- Essentially applies a step function to the trading signal
- Can use a other continuous, monotonic increasing functions, although not clear which ones
- One options is to run a regression

$$r_{t+1} = \beta_0 + \beta_1 S_t + \epsilon_t$$

- S_t is a signal is computed using information up-to and including t
 - Can be discrete or continuous
- Maps to an expected return, which can then be used in Sharpe-optimization

Combining Multiple Technical Indicators

- Technical trading rules can be combined
- Not obvious how to combine when discrete
- Method 1: Majority vote
 - Count number of rules with signs 1, 0 or -1
- Method 2: Aggregation
 - Compute sum of indicators divided by number of indicators

$$\tilde{S}_t = \frac{\sum_{i=1}^k S_{k,t}}{k}$$

and go long/short \tilde{S}_t

► Bound by 100% long and 100% short

Evaluating the Rules

- Obvious strategy it to look at returns, conditional on signal
- Important to have a benchmark model
 - Often buy and hold, or some other much less dynamic strategy
- Obvious test is *t*-statistic of difference in mean return between the active strategy and the benchmark
- Can also examine predictability for other aspects of distribution

Brock, Lakonishok and LeBaron

- One of the first systematically test trading rules
- Focused on two rules:
 - Moving Average Oscillator
 - ► Trading Range Breakout
- (Controversially) documented evidence of excess returns to technical trading rules
- Returns were large enough to cover transaction costs

Moving Average Oscillator

- Moving Average Oscillators implemented for
 - m = 1, n = 50
 - m = 1, n = 150
 - ► m = 5, n = 150
 - ► m = 1, n = 200
 - ► m = 2, n = 200
- Use both the standard rule and one with a 1%-band filter
- Standard is implemented by taking the position and holding for 10 days, ignoring all other signals
- *b*%-band version:
 - Requires an exceedence by 1% of the slow MA, but no crossing

Buy if
$$\left(\frac{MA_t}{n^{-1}\sum_{i=t-n+1}^{t}P_i}\right) > \frac{b}{100}$$
, Sell if $\left(\frac{MA_t}{n^{-1}\sum_{i=t-n+1}^{t}P_i}\right) < -\frac{b}{100}$

- ► If *b* > 0 then some days may have no signal
- If b = 0 then all days are buys or sells

Trading Range Breakout

- Trading range breakout is implemented for
 - ► m = 50
 - m = 100
 - m = 150
- Implemented using the standard and with a 1% band
- b% band version is

$$TRB_{t} = \left(P_{t} \setminus \left(1 + \frac{b}{100}\right) \max\left(\left\{P_{i}\right\}_{i=t-m}^{t-1}\right)\right)$$

$$-\left(P_{t} < \left(1 - \frac{b}{100}\right) \min\left(\left\{P_{i}\right\}_{i=t-m}^{t-1}\right)\right)$$

Empirical Application

- A total of 26 rules are created
 - ► MAO: 5 $(m, n) \times 2$ (Fixed or Variable Window) $\times 2$ (b = 0, .01)
 - ► TRB: 3 (m) × 2 (b = 0, .01)
- DJIA from 1897 until 1986
- Main result is that there appears to be predictability using these rules
- Strongest results were for the fixed windows MAO with $m=1,\,n=200$ and b=.01
- TRB with m = 150 and b = .01 also had a strong result
- Report
 - Number of buy and sell signals
 - Mean return during buy and sell signals
 - Probability of positive return for buy and sell signals
 - Mean return of a portfolio which both buys and sells

Moving Average Oscillator, Variable Length

Period	Test	N(Buy)	$N(\mathrm{Sell})$	Buy	Sell	Buy > 0	Sell > 0	Buy-Sell
1897-1986	(1, 50, 0)	14240	10531	0.00047	-0.00027	0.5387	0.4972	0.00075
				(2.68473)	(-3.54645)			(5.39746)
	(1, 50, 0.01)	11671	8114	0.00062	-0.00032	0.5428	0.4942	0.00094
				(3.73161)	(-3.56230)			(6.04189)
	(1, 150, 0)	14866	9806	0.00040	-0.00022	0.5373	0.4962	0.00062
				(2.04927)	(-3.01836)			(4.39500)
	(1, 150, 0.01)	13556	8534	0.00042	-0.00027	0.5402	0.4943	0.00070
				(2.20929)	(-3.28154)			(4.68162)
	(5, 150, 0)	14858	9814	0.00037	-0.00017	0.5368	0.4970	0.00053
				(1.74706)	(-2.61793)			(3.78784)
	(5, 150, 0.01)	13491	8523	0.00040	-0.00021	0.5382	0.4942	0.00061
				(1.97876)	(-2.78835)			(4.05457)
	(1, 200, 0)	15182	9440	0.00039	-0.00024	0.5358	0.4962	0.00062
				(1.93865)	(-3.12526)			(4.40125)
	(1, 200, 0.01)	14105	8450	0.00040	-0.00030	0.5384	0.4924	0.00070
				(2.01907)	(-3.48278)			(4.73045)
	(2, 200, 0)	15194	9428	0.00038	-0.00023	0.5351	0.4971	0.00060
	•			(1.87057)	(-3.03587)			(4.26535)
	(2, 200, 0.01)	14090	8442	0.00038	-0.00024	0.5368	0.4949	0.00062
				(1.81771)	(-3.03843)			(4.16935)

Moving Average Oscillator, Fixed Length

Test	N(Buy)	N(Sell)	Buy	Sell	Buy > 0	Sell > 0	Buy-Sell
(1, 50, 0)	340	344	0.0029	-0.0044	0.5882	0.4622	0.0072
			(0.5796)	(-3.0021)			(2.6955)
(1, 50, 0.01)	313	316	0.0052	-0.0046	0.6230	0.4589	0.0098
			(1.6809)	(-3.0096)			(3.5168)
(1, 150, 0)	157	188	0.0066	-0.0013	0.5987	0.5691	0.0079
			(1.7090)	(-1.1127)			(2.0789)
(1, 150, 0.01)	170	161	0.0071	-0.0039	0.6529	0.5528	0.0110
			(1.9321)	(-1.9759)			(2.8534)
(5, 150, 0)	133	140	0.0074	-0.0006	0.6241	0.5786	0.0080
			(1.8397)	(-0.7466)			(1.8875)
(5, 150, 0.01)	127	125	0.0062	-0.0033	0.6614	0.5520	0.0095
			(1.4151)	(-1.5536)			(2.1518)
(1, 200, 0)	114	156	0.0050	-0.0019	0.6228	0.5513	0.0069
			(0.9862)	(-1.2316)			(1.5913)
(1, 200, 0.01)	130	127	0.0058	-0.0077	0.6385	0.4724	0.0135
			(1.2855)	(-2.9452)			(3.0740)
(2, 200, 0)	109	140	0.0050	-0.0035	0.6330	0.5500	0.0086
			(0.9690)	(-1.7164)			(1.9092)
(2, 200, 0.01)	117	116	0.0018	-0.0088	0.5556	0.4397	0.0106
			(0.0377)	(-3.1449)			(2.3069)

Trading Range Breakout

Test	N(Buy)	$N(\mathrm{Sell})$	Buy	Sell	Buy > 0	Sell > 0	Buy-Sell
(1, 50, 0)	722	415	0.0050	0.0000	0.5803	0.5422	0.0049
			(2.1931)	(-0.9020)			(2.2801)
(1, 50, 0.01)	248	252	0.0082	-0.0008	0.6290	0.5397	0.0090
			(2.7853)	(-1.0937)			(2.8812)
(1, 150, 0)	512	214	0.0046	-0.0030	0.5762	0.4953	0.0076
			(1.7221)	(-1.8814)			(2.6723)
(1, 150, 0.01)	159	142	0.0086	-0.0035	0.6478	0.4789	0.0120
			(2.4023)	(-1.7015)			(2.9728)
(1, 200, 0)	466	182	0.0043	-0.0023	0.5794	0.5000	0.0067
			(1.4959)	(-1.4912)			(2.1732)
(1,200,0.01)	146	124	0.0072	-0.0047	0.6164	0.4677	0.0119
			(1.8551)	(-1.9795)			(2.7846)
Average			0.0063	-0.0024			0.0087

The Standard Forecasting Model

- Standard forecasts are also popular for predicting economic variables
- Generically expressed $y_{t+1} = \beta_0 + \mathbf{x}_t \boldsymbol{\beta} + \epsilon_{t+1}$
- \mathbf{x}_t is a 1 by k vector of predictors (k = 1 is common)
- Includes both exogenous regressors such as the term or default premium and also autoregressive models
- Forecasts are $\hat{y}_{t+1|t}$

The forecast combination problem

- Two level of aggregation in the combination problem
- 1. Summarize individual forecasters' private information in point forecasts $\hat{y}_{t+h,i|t}$
 - ► Highlights that "inputs" are not the usual explanatory variables, but forecasts
- 2. Aggregate individual forecasts into consensus measure $C\left(\mathbf{y}_{t+h|t},\mathbf{w}_{t+h|t}\right)$
 - Obvious competitor is the "super-model" or "kitchen-sink" a model built using all information in each forecasters information set
 - Aggregation should increase the bias in the forecast relative to SM but may reduce the variance
 - Similar to other model selection procedures in this regard

Why not use the "Super Model"

Could consider pooling information sets

$$\mathcal{F}_t^c = \bigcup_{i=1}^n \mathcal{F}_{t,i}$$

- Would contain all information available to all forecasters
- Could construct consensus directly $C\left(\mathcal{F}_{t}^{c}; \boldsymbol{\theta}_{t+h|t}\right)$
- Some reasons why this may not work
 - Some information in individuals information sets may be qualitative, and so expensive to quantitatively share
 - Combined information sets may have a very high dimension, so that finding the best super model may be hard
 - Potential for lots of estimation error
- Classic bias-variance trade-off is main reason to consider forecasts combinations over a super model
 - Higher bias, lower variance

Linear Combination under MSE Loss

- Models can be combined in many ways for virtually any loss function
- Most standard problem is for MSE loss using only linear combinations
- I will suppress time subscripts when it is clear that it is t + h|t
- Linear combination problem is

2

$$\min_{\mathbf{w}} \mathbf{E}\left[e^{2}\right] = \mathbf{E}\left[\left(y_{t+h} - \mathbf{w}'\hat{\mathbf{y}}\right)^{2}\right]$$

• Requires information about first 2 moments of he joint distribution of the realization y_{t+h} and the time-t forecasts $\hat{\mathbf{y}}$

$$\left[\begin{array}{c} \mathbf{y}_{t+h|t} \\ \mathbf{\hat{y}} \end{array} \right] \sim F\left(\left[\begin{array}{c} \mu_{y} \\ \mu_{\hat{y}} \end{array} \right], \left[\begin{array}{cc} \sigma_{yy} & \Sigma_{y\hat{y}}' \\ \Sigma_{y\hat{y}} & \Sigma_{\hat{y}\hat{y}} \end{array} \right] \right)$$

Linear Combination under MSE Loss

The first order condition for this problem is

$$\frac{\partial \mathbf{E}\left[e^{2}\right]}{\partial \mathbf{w}} = -\mu_{y}\mu_{\hat{\mathbf{y}}} + \mu_{\hat{\mathbf{y}}}\mu'_{\hat{\mathbf{y}}}\mathbf{w} + \Sigma_{\hat{\mathbf{y}}\hat{\mathbf{y}}}\mathbf{w} - \Sigma_{y\hat{\mathbf{y}}} = \mathbf{0}$$

 $\begin{tabular}{l} \blacksquare \begin{tabular}{l} \textbf{The solution to this problem is} \\ \mathbf{w}^\star = \left(\pmb{\mu}_{\hat{\mathbf{y}}} \pmb{\mu}_{\hat{\mathbf{y}}}' + \pmb{\Sigma}_{\hat{\mathbf{y}}\hat{\mathbf{y}}} \right)^{-1} \left(\Sigma_{y\hat{\mathbf{y}}} + \mu_y \pmb{\mu}_{\hat{\mathbf{y}}} \right) \end{aligned}$

 Similar to the solution to the OLS problem, only with extra terms since the forecasts may not have the same conditional mean

44 / 59

Linear Combination under MSE Loss

 Can remove the conditional mean if the combination is allowed to include a constant, w_c

$$w_c = \mu_y - \mathbf{w}^* \boldsymbol{\mu}_{\hat{\mathbf{y}}}$$
$$\mathbf{w}^* = \boldsymbol{\Sigma}_{\hat{\mathbf{y}}\hat{\mathbf{y}}}^{-1} \boldsymbol{\Sigma}_{y\hat{\mathbf{y}}}$$

- These are identical to the OLS where w_c is the intercept and \mathbf{w}^* are the slope coefficients
- The role of w_c is the correct for any biases so that the squared bias term in the MSE is 0

$$MSE[e] = B[e]^2 + V[e]$$

Understanding the Diversification Gains

Simple setup

$$e_1 \sim F_1(0, \sigma_1^2)$$
, $e_2 \sim F_2(0, \sigma_2^2)$, $Corr[e_1, e_2] = \rho$, $Cov[e_1e_2] = \sigma_{12}$

- Assume $\sigma_2^2 \leq \sigma_1^2$
- Assume weights sum to 1 so that $w_1 = 1 w_2$ (Will suppress the subscript and simply write w)
- Forecast error is then

$$y - w\hat{y}_1 - (1 - w)\hat{y}_2$$

Error is given by

$$e^{c} = we_1 + (1 - w)e_2$$

Forecast has mean 0 and variance

$$w^2\sigma_1^2 + (1-w)^2\sigma_2^2 + 2w(1-w)\sigma_{12}$$

Understanding the Diversification Gains

• The optimal w can be solved by minimizing this expression, and is

$$w^* = \frac{\sigma_2^2 - \sigma_{12}}{\sigma_1^2 + \sigma_2^2 - 2\sigma_{12}}, \ 1 - w^* = \frac{\sigma_1^2 - \sigma_{12}}{\sigma_1^2 + \sigma_2^2 - 2\sigma_{12}}$$

- Intuition is that the weight on a model is higher the
 - Larger the variance of the other model
 - Lower the correlation between the models
- ullet 1 weight will be larger than 1 if $ho \geq rac{\sigma_2}{\sigma_1}$
- Weights will be equal if $\sigma_1=\sigma_2$ for any value of correlation
 - Intuitively this must be the case since model 1 and 2 are indistinguishable from a MSE point-of-view
 - Mhen will "optimal" combinations out-perform equally weighted combinations? Any time $\sigma_1 \neq \sigma_2$
- If $\rho = 1$ then only select model with lowest variance (mathematical formulation is not well posed in this case)

Constrained weights

- The previous optimal weight derivation did not impose any restrictions on the weights
- In general some of the weights will be negative, and some will exceed 1
- Many combinations are implemented in a relative, constrained scheme

$$\min_{\mathbf{w}} \mathrm{E}\left[e^{2}\right] = \mathrm{E}\left[\left(y_{t+h} - \mathbf{w}'\hat{\mathbf{y}}\right)^{2}\right]$$
 subject to $\mathbf{w}' \iota = 1$

- The intercept is omitted (although this isn't strictly necessary)
- If the biases are all 0, then the solution is dual to the usual portfolio minimization problem, and is given by

$$\mathbf{w}^{\star} = \frac{\boldsymbol{\Sigma}_{\hat{\mathbf{y}}\hat{\mathbf{y}}}^{-1} \boldsymbol{\iota}}{\boldsymbol{\iota}' \boldsymbol{\Sigma}_{\hat{\mathbf{y}}\hat{\mathbf{y}}}^{-1} \boldsymbol{\iota}}$$

This solution is the same as the Global Minimum Variance Portfolio

Combinations as Hedge against Structural Breaks OXFORD

- One often cited advantage of combinations is (partial) robustness to structural breaks
- Best case is if two positively correlated variables have shifts in opposite directions
- Combinations have been found to be more stable than individual forecasts
 - This is mostly true for static combinations
 - Dynamic combinations can be unstable since some models may produce large errors from time-to-time

- All discussion has focused on "optimal" weights, which requires information on the mean and covariance of both y_{t+h} and $\hat{\mathbf{y}}_{t+h|t}$
 - ► This is clearly highly unrealistic
- In practice weights must be estimated, which introduces extra estimation error
- Theoretically, there should be no need to combine models when all forecasting models are generated by the econometrician (e.g. when using \mathcal{F}^c)
- In practice, this does not appear to be the case
 - High dimensional search space for "true" model
 - Structural instability
 - ► Parameter estimation error
 - Correlation among predictors

Clemen (1989): "Using a combination of forecasts amounts to an admission that the forecaster is unable to build a properly specified model"

- Whether a combination is needed is closely related to forecast encompassing tests
- Model averaging can be thought of a method to avoid the risk of model selection
 - Usually important to consider models with a wide range of features and many different model selection methods
- Has been consistently documented that prescreening models to remove the worst performing is important before combining
- One method is to use the SIC to remove the worst models
 - ► Rank models by SIC, and then keep the x% best
- Estimated weights are usually computed in a 3rd step in the usual procedure
 - ► R: Regression
 - ► P: Prediction
 - ► S: Combination estimation
 - T = P + R + S
- Many schemes have been examined

Standard least squares with an intercept

$$y_{t+h} = w_0 + \mathbf{w}' \hat{\mathbf{y}}_{t+h|t} + \epsilon_{t+h}$$

Least squares without an intercept

$$y_{t+h} = \mathbf{w}' \hat{\mathbf{y}}_{t+h|t} + \epsilon_{t+h}$$

Linearly constrained least squares

$$y_{t+h} - \hat{y}_{t+h,n|t} = \sum_{i=1}^{n-1} w_i \left(\hat{y}_{t+h,i|t} - \hat{y}_{t+h,n|t} \right) + \epsilon_{t+h}$$

- ► This is just a constrained regression where $\sum w_i = 1$ has been implemented where $w_n = 1 \sum_{i=1}^{n-1} w_i$
- Imposing this constraint is thought to help when the forecast is persistent

$$e_{t+h|t}^c = -w_0 + (1 - \mathbf{w}'\iota) y_{t+h} + \mathbf{w}' \mathbf{e}_{t+h|t}$$

- $\mathbf{e}_{t+h|t}$ are the forecasting errors from the n models
- ► Only matters if the forecasts may be biased

Constrained least squares

$$\mathbf{y}_{t+h} = \mathbf{w}' \mathbf{\hat{y}}_{t+h|t} + \epsilon_{t+h}$$
 subject to $\mathbf{w}' \iota$ =1, $w_i \geq 0$

- This is not a standard regression, but can be easily solved using quadratic programming (MATLAB quadprog)
- Forecast combination where the covariance of the forecast errors is assumed to be diagonal
 - Produces weights which are all between 0 and 1
 - Weight on forecast i is

$$w_i = \frac{\frac{1}{\sigma_i^2}}{\sum_{j=1}^n \frac{1}{\sigma_j^2}}$$

- May be far from optimal if ρ is large
- Protects against estimator error in the covariance

- Median
 - Can use the median rather than the mean to aggregate
 - Robust to outliers
 - Still suffers from not having any reduction in parameter variance in the actual forecast
- Rank based schemes
 - Weights are inversely proportional to model's rank

$$w_{i} = \frac{\mathcal{R}_{t+h,i|t}^{-1}}{\sum_{j=1}^{n} \mathcal{R}_{t+h,j|t}^{-1}}$$

- Highest weight to best model, ratio of weights depends only on relative ranks
- Places relatively high weight on top model
- Probability of being the best model-based weights
 - Count the proportion that model i outperforms the other models

$$\begin{array}{lcl} p_{t+h,i|t} & = & T^{-1} \sum_{t=1}^{T} \cap_{j=1,j \neq i}^{n} I\left[L\left(e_{t+h,i|t}\right) < L\left(e_{t+h,j|t}\right)\right] \\ \\ y_{t+h|t}^{c} & = & \sum_{i=1}^{n} p_{t+h,i|t} \hat{y}_{t+h,i|t} \end{array}$$

- Time-varying weights
 - ► These are ultimately based off of multivariate ARCH-type models
 - Most common is EWMA of past forecast errors outer-products
 - Often enforced that covariances are 0 so that combinations have only non-negative weights
 - Can be implemented using rolling-window based schemes as well, both with and without a 0 correlation assumption
 - Time-varying weights are thought to perform poorly when the DGP is stable since they place higher weight on models than a non-time varying scheme and so lead to more parameter estimation error

Broad Recommendations

- Simple combinations are difficult to beat
 - ► 1/n often outperforms estimated weights
 - Constant usually beat dynamic
 - Constrained outperform unconstrained (when using estimated weights)
- Not combining and using the best fitting performs worse than combinations
 often substantially
- Trimming bad models prior to combining improves results
- Clustering similar models (those with the highest correlation of their errors)
 prior to combining leads to better performance, especially when estimating weights
 - Intuition: Equally weighted portfolio of models with high correlation, weight estimation using a much smaller set with lower correlations
- Shrinkage improves weights when estimated
- If using dynamic weights, shrink towards static weights

Equal Weighting

- Equal weighting is hard to beat when the variance of the forecast errors are similar
- If the variance are highly heterogeneous, varying the weights is important
 - If for nothing else than to down-weight the high variance forecasts
- Equally weighted combinations are thought to work well when models are unstable
 - Instability makes finding "optimal" weights very challenging
- Trimmed equally-weighted combinations appear to perform better than equally weighted, at least if there are some very poor models
 - May be important to trim both "good" and "bad" models (in-sample performance)
 - Good models are over-fit
 - Bad models are badly mis-specified

Shrinkage Methods

Linear combination

$$\hat{\mathbf{y}}_{t+h|t}^c = \mathbf{w}' \hat{\mathbf{y}}_{t+h|t}$$

Standard least squares estimates of combination weights are very noisy

- Often found that "shrinking" the weights toward a prior improves performance
- Standard prior is that $w_i = \frac{1}{n}$
- However, do not want to be dogmatic and so use a distribution for the weights
- Generally for an arbitrary *prior weight* \mathbf{w}_0 ,

$$\mathbf{w}|\tau^2 \sim N(\mathbf{w}_0, \mathbf{\Omega})$$

• ${\bf \Omega}$ is a correlation matrix and τ^2 is a parameter which controls the amount of shrinkage

Shrinkage Methods

Leads to a weighted average of the prior and data

$$\bar{\mathbf{w}} = \left(\mathbf{\Omega} + \hat{\mathbf{y}}'\hat{\mathbf{y}}\right)^{-1} \left(\mathbf{\Omega}\mathbf{w}_0 + \hat{\mathbf{y}}'\hat{\mathbf{y}}\hat{\mathbf{w}}\right)$$

- ullet $\hat{\mathbf{w}}$ is the usual least squares estimator of the optimal combination weight
- If $m{\Omega}$ is very large compared to $m{y}'m{y} = \sum_{t=1}^T m{y}_{t+h|t} m{y}'_{t+h|t}$ then $ar{m{w}} pprox m{w}_0$
- \bullet On the other hand, if y'y dominates, then $\bar{w}\approx\hat{w}$
- Other implementation use a g-prior, which is scalar

$$\bar{\mathbf{w}} = (g\hat{\mathbf{y}}'\hat{\mathbf{y}} + \hat{\mathbf{y}}'\hat{\mathbf{y}})^{-1} (g\hat{\mathbf{y}}'\hat{\mathbf{y}}\mathbf{w}_0 + \hat{\mathbf{y}}'\hat{\mathbf{y}}\hat{\mathbf{w}})$$

- Large values of $g \ge 0$ least to large amounts of shrinkage
- 0 corresponds to OLS

$$\bar{\mathbf{w}} = \mathbf{w}_0 + \frac{\hat{\mathbf{w}} - \mathbf{w}_0}{1 + g}$$

