Név:	Neptun kód:
	reputit Kod

Algoritmusok és adatszerkezetek I. vizsga, 2016.01.21.

- 1. Egy bináris fa mikor szigorúan bináris? Mikor teljes? Mikor majdnem teljes? Ez utóbbi mikor balra tömörített, és mikor kupac? Szemléltessük a kupacrendezést a következő tömbre! $-\langle 3; 9; 8; 2; 4; 6; 7; 5 \rangle$ Minden lesüllyesztés előtt jelöljük a csúcs mellett egy kis körbe tett sorszámmal, hogy ez a rendezés során a hányadik lesüllyesztés; akkor is, ha az aktuális lesüllyesztés nem mozdítja el a csúcsban lévő kulcsot! Minden valódi lesüllyesztés előtt jelöljük a lesüllyesztés irányát és útvonalát, s utána rajzoljuk újra a fát! A szemléltetést elég addig a pillantig elvégezni, amíg a vektor utolsó három eleme a végső helyére kerül. (20p)
- 2. A bináris fákat ismertnek feltételezve, mondjuk ki az AVL fa meghatározásához szükséges definíciókat! Rajzoljuk le a következő AVL fát a csúcsok egyensúlyaival együtt! { [1 (2)] 4 [(5) 6 ({7} 8)] } Szemléltessük a 3 beszúrását és a 4 törlését, mindkét esetben az eredeti fára! Jelöljük, ha ki kell egyensúlyozni, a kiegyensúlyozás helyét, és a kiegyensúlyozás után is rajzoljuk újra fát! A rajzokon jelöljük a csúcsok egyensúlyait is, a szokásos módon! Rajzoljuk le a hat általános kiegyensúlyozási séma közül azokat, amiket alkalmaztunk! (20p)
- **3.** Az A[1..m] tömb első n elemében egy bináris kupacot tárolunk $(m > 0 \land 0 \le n \le m)$.

Írjuk meg a **kupacba** (A[1..m], n, x) függvényt, ami beteszi a kupacba x-et! Akkor ad vissza **igaz** logikai értéket, ha a művelet sikeres volt. Próbáljunk meg minél hatékonyabb algoritmust írni! Mekkora a műveletigénye? Miért? (20p)

4. L_1 és L_2 is egy-egy fejelemes, egyirányú, nemciklikus láncolt lista fejelemére mutató pointer. Az L_2 lista kezdetben üres.

Irjuk meg a **páratlan_páros** (L_1, L_2) eljárást, ami az L_1 lista, eredetileg páros sorszámű elemeit **átfűzi** az L_2 listába! Az L_1 listában tehát, az eredetileg páratlan sorszámű elemei maradnak. A program minden listaelemet csak egyszer dolgozzon fel! $T(n) \in \Theta(n)$. A listaelemeknek csak a mut (mutató) mezőjéhez férünk hozzá. (20p)

5. Adjuk meg az összefésülő_rendezés(A[1..n]) és segédeljárásai struktogramjait! Igaz-e, hogy $MT(n) \in \Theta(n \lg n)$? Miért? (20p)