M328K Homework 12

Joshua Dong

April 23, 2014

0.19.1.12

Show that if $n \in \mathbb{Z}^+$, for some $a, b \perp n$ such that $ord_n a \perp ord_n b$, then $ord_n(ab) = ord_n a \cdot ord_n b.$

0.29.1.16

Show that if $a, m \in \mathbb{Z}^+$, $a \perp m$ such that $ord_m a = m-1$, then $m \in \mathbf{P}$.

In the previous problem, 9.1.12, we showed that the order function modulo some integer power is multiplicative across coprime factors.

Let $ord_m a = g(a)$ for convinience. $g(a) = g(p_1^{a_1} p_2^{a_2} ... p_{\omega(n)}^{a_{\omega}(n)}) = g(p_1^{a_1}) g(p_2^{a_2}) ... g(p_{\omega(n)}^{a_{\omega}(n)})$ (by the fundamental theorem of arithmetic and the multiplicative property of the order function across coprime factors)

The order of prime powers is known. $g(p_i^{a_i}) = (a_i)g(p_i)$, if $\exists g(p_1)$.

If $a \notin \mathbf{P}$, then the product derived from the fundamental theorem of arithmetic is not equal to a-1.

Therefore, if $a, m \in \mathbb{Z}^+$, $a \perp m$ such that $ord_m a = m - 1$, then $m \in \mathbf{P}$.

We can also observe that if m is prime, then the product derived from the fundamental theorem of arithmetic is always equal to $g(p_i)$, which is always $\varphi(m) = m - 1$ when m is prime, by Fermat's little theorem.

0.39.2.8

Let r be a primitive root of the prime p with $p \equiv 1 \pmod{4}$. Show that -r is also a primitive root.

We observe that r must be odd, because if $2 \perp r$, then $r \not \perp 4$ and thus r cannot be a primitive root. Also, p > 2, so we do not have to worry about edge cases.

If we can prove that the order of -r modulo p exists, then that is sufficent to prove that -r is a primitive root.

By 9.1.12, we have that if $r \perp ord_n - 1$, then $ord_n(-r) = ord_n(r) \cdot ord_n(-1)$.

```
ord_n(-1)=2, because -1\cdot -1=1. We do not have to worry about moduli less than or equal to 2. r is a primitive root, \therefore \exists ord_n(r). \therefore \exists k \in \mathbb{Z} such that k=ord_n(-r)=ord_n(r)\cdot ord_n(-1). Therefore -r is a primitive root.
```

$0.4 \quad 9.2.12$

Find the least positive residue of the product of a set of $\varphi(p-1)$ incongruent primitive roots modulo some prime p.