Academia Sabatina de Jóvenes Talento

Polinomios Clase #2

Encuentro: 2

Curso: Polinomios

Nivel: 5

Semestre: I

Fecha: 25 de marzo de 2023 Instructor: Kenny Jordan Tinoco

D. auxiliar: José Adán Duarte

Contenido: Raíces de polinomios I

1. Desarrollo

1.1. Definiciones

Definición 1.1 (Raíz de un Polinomio). La raíz de un polinomio P(x) es un número r, tal que P(r) = 0. También, diremos que r es una solución de la ecuación P(x) = 0.

Ejemplo 1. Demuestre que u es raíz del polinomio $R(x) = x^2 - (u+17)x + 17u$.

Solución. Para demostrar que u es raíz¹ de R(x), basta probar que R(u) = 0. Lo cual es fácil ver cuando evaluamos $R(u) = u^2 - (a + 17)u + 17u = u^2 - u^2 - 17u + 17u = 0$.

Definición 1.2 (Factor de un Polinomio). Sea P un polinomio y $a \in \mathbb{R}$. Entonces, (x-a) es un factor de P(x) si existe un polinomio Q(x) tal que P(x) = (x-a)Q(x).

Teorema 1.1 (**Teorema del factor**). Dado un polinomio P, de grado n y $a \in \mathbb{R}$, diremos que a es una raíz de P si y sólo si (x - a) es un factor de P(x). Es decir

$$P(a) = 0 \leftrightarrow P(x) = (x - a)Q(x)$$

para algún polinomio² Q(x).

Cantidad de raíces de un polinomio: Un polinomio de grado $n \ge 1$ tiene como máximo n raíces (o ceros). Así, por ejemplo, un polinomio P con deg P0 = 7, tiene a lo más 7 raíces. Ejemplo (asumiendo que P1 es factorizable)

$$P(x) = (x - r_1)(x - r_2)(x - r_3)(x - r_4)(x - r_5)(x - r_6)(x - r_7).$$

Multiplicidad de raíces: Si existe $m \in \mathbb{N}$ y un polinomio Q(x) tal que

$$P(x) = (x - a)^m Q(x)$$

diremos que la raíz a tiene multiplicidad m. Cuando m=1 diremos que la raíz a es simple.

¹¿Podés encontrar otra raíz de R(x)?

²¿Por qué deg (Q) = (n-1)?

1.2. Métodos para determinar raíces de polinomios

En este apartado nos centraremos en los métodos para la determinación de raíces de polinomios, particularmente para polinomios cuadráticos y cúbicos.

1.2.1. Factorización

Si un polinomio P(x) es equivalente al producto de otros polinomios con grado menor, entonces diremos que P(x) está factorizado.

Por ejemplo, el polinomio $M(x) = 5x^3 + 4x^2 + 5x + 4$ es equivalente a $M(x) = (5x+4)(x^2+1)$ Determinar las raíces de una ecuación cuadrática por factorización implica user el hecho de que

1.2.2. Completación de cuadrados

1.2.3. Fórmula general

1.2.4. Análisis del discriminante

1.3. Agregados culturales y preguntas

Pregunta: ¿Cuántas raíces reales tiene el polinomio $P(x) = x^2 + 1$?

2. Problemas propuestos

3. Extra

Referencias

[Bar89] Edward Barbeau. *Polynomials*. Springer, 1989.

[BGV14] Radmila Bulajich, José Gómez, and Rogelio Valdez. Álgebra. UNAM, 2014.

[CL22] Axel Canales and Ricardo Largaespada. Clase 2. Raíces de polinomios I. *Academia Sabatina de Jóvenes Talento*, Marzo 2022.

[Rub19] Carlos Rubio. Un breve recorrido por los polinomios. Tzaloa, (2), 2019.

En caso de consultas

Instructor: Kenny J. Tinoco Teléfono: +505 7836 3102 (*Tigo*) Correo: kenny.tinoco10@gmail.com

Docente: José A. Duarte **Teléfono:** +505 8420 4002 (Claro) **Correo:** joseandanduarte@gmail.com