Lec 15

Properties of Relations

1. Reflexive Relation

- 1. A relation R on a set A is called reflexive if (a,a) \in R for every element $a \in A$
- 2. A relation R is reflexive <u>if and only if MR(Matrix of R)</u> has 1 in every position on its main diagonal.

2. Irreflexive Relation

- 1. A relation R on a set A is called irreflexive if (a,a) \notin R for every element $a \in A$.
- 2. Irreflexive \neq not reflexive
- 3. A relation R is irreflexive if and only if MR has 0 in every position on its main diagonal.

3. Symmetric Relation

- 1. A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.
- 2. A relation R is symmetric if and only if MR is symmetric.

$$MR^T = MR$$

4. Antisymmetric Relation

- 1. A relation R on a set A is called antisymmetric if (b, a) \in R and (a, b) \in R implies a = b for all a, b \in A
- 2. Antisymmetric \neq not Symmetric
- 3. if have $(b, a) \in R$ and $(a, b) \in R$. a must equal to b;

5. Transitive Relation

1. A relation R on a set A is called transitive if (a, b) \in R and (b, c) \in R implies (a, c) \in R for all a, b, c \in A.

Combining Relations

- 1. **Definition:** Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.
- 2. **Definition:** Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a; c) where a ∈ A and c ∈ C and for which there is a b ∈ B such that (a; b) ∈ R and (b, c) ∈ S. We denote the composite of **R and S** by S ∘ R.
- 3. Combining Relation same as Matrix multiplication.

4. Power Relation:

Let R be a relation on A. The powers \mathbb{R}^n , for n = 1, 2, 3, ..., is defined inductively by

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

Theorem: The relation R on a set A is transitive if and only if Rn \circ R for n = 1, 2, 3, ...

Proof:

if:
$$R^n\subseteq R$$
 for ${\sf n}=$ 1,2,3... \to R is transitive Let ${\sf n}=$ 2 , $R^2\subseteq R$ $(a,b),(b,c)\in R$ $R^2=R\circ R$ $(a,c)\in R^2\subseteq R\Rightarrow R$ is transitive only if :
$${\sf R} \text{ is transitive} \to R^n\subseteq R \quad for \quad n=1,2,3\dots$$
 Mathematical Induction 1: base case: ${\sf n}=$ 1, $R^1\subseteq R$ 2: i.h. ${\sf n}=$ k, $R^k\subseteq R$ 3: i.s. ${\sf n}=$ k+1 $R^{k+1}=R^k\circ R$ $(a,b)\in R^{k+1}$ $(x,b)\in R^k\subseteq R$ $(a,b)\in R$

4: by

Number of Reflexive Relations

1. The number of reflexive relations on a set A with |A| = n is $2^{n(n-1)}$.

n-ary Relations

Relational Databases ??★★

- 1. primary key
- 2. composite key
- 3. E-R Diagram
- 4. Selection Operator
- 5. Projection Operators
- 6. Join Operator

Some special ways to represent binary relations:

- with a zero-one matrix
- with a directed graph

reflevive

irreflexive

symmetric

antisymmetric