Digital Logic Design (ET3305302) Exam #2 — Closed books

Date: June 6, 2023 Time limit: 100 minutes

This exam has five problems in total. Please read each problem carefully and write down your answers on the answer sheet.

- 1. (20%) Answer each of the following questions:
 - (a) Explain the differences among the bistable device, latch, and flip-flop.
 - (b) In using a flip-flop, what are the three timing parameters that must be considered?
 - (c) What is a self-correcting (also called self-starting) circuit?
 - (d) How would you allow to input data into a D flip-flop as desired but also to be able of keeping the output of the D flip-flop unchanged if necessary? Give at least two methods and explain their operation.
- 2. (20%) Analyzing the sequential circuit shown in Figure 1, answer each of the following questions:
 - (a) Derive the excitation functions of flip-flops from the sequential circuit.
 - (b) Derive the transition table from the excitation functions.
 - (c) Is the sequential circuit self-starting? Explain it. If not, try to modify it so that it may become self-starting.

Figure 1: State table of Problem 2.

- 3. (20%) Considering the state tables shown in Figure 2, answer each of the following questions:
 - (a) Use the compatibility method to simplify the state table shown in Figure 2(a). What is the minimal state table? Represent the minimal state table in standard form.
 - (b) Use the *k*-partition method to simplify the state table depicted in Figure 2(b). What is the minimal state table? Represent the minimal state table in standard form.

PS	$_{X}$ NS, $_{Z}$	
rs	0	1
\overline{A}	D,0	C,0
B	F,0	A, 1
C	D,0	A,0
D	C,0	E,0
E	F,0	<i>C</i> ,1
F	E,0	D,1

$\begin{bmatrix} x & 0 \\ 0 & B, 0 \end{bmatrix}$	1 C,1
B,0	C.1
	- 4
B,0	D,0
E,1	C,1
<i>B</i> ,0	F,0
G,1	C,1
B,0	C,1
B,0	<i>C</i> ,1
	E,1 B,0 G,1 B,0

Figure 2: State tables of Problem 3.

4. (20%) Considering the state diagram shown in Figure 3, answer each of the following questions:

Figure 3: State table of Problem 4.

- (a) Draw its equivalent ASM chart.
- (b) Using the one-hot method, implement the ASM chart you obtained.
- 5. (20%) Design a sequential circuit to generate the following output sequence (wxyz) repeatedly:

$$0 \longrightarrow 8 \longrightarrow 12 \longrightarrow 14 \longrightarrow 15 \longrightarrow 7 \longrightarrow 3 \longrightarrow 1 \longrightarrow 0...$$

- (a) Write your design procedure, assuming that a 4-stage shift register is employed along with a combinational logic circuit.
- (b) Draw the logic circuit with D flip-flops and necessary logic gates if necessary.
- (c) Draw the logic circuit with JK flip-flops and necessary logic gates if necessary.