

Machine Learning y

Ciberseguridad

Métricas

Índice

- 1. Métricas en clasificación
- 2. Problemas desbalanceados

3. Métricas en regresión

Teoría de la decisión

Métrica 1: tasa de error

- Contar errores:
 - True: [1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0]
 - Pred: [10000001001000011001]
 - Tasa de error (ERR): # errores / N
 - Tasa de acierto (ACC): # aciertos / N
 - ACC = 1 ERR
- Da igual el sentido del error

Métrica 1: tasa de error

 Si cuento el sentido de los errores, en un problema de clasificación binaria tengo cuatro posibilidades:

- True Positive (TP)
- True Negative (TN)
- False Positive (FP)
- False Negative (FN)

Métrica 1: tasa de error

 Representamos estas tasas en modo de matriz de confusión

		Etiquetas predichas	
		$y_pred = 0$	y_pred = 1
	y_true = 0	TN	FP \
Etiquetas			
reales	y_true = 1	FN -/	TP

Matriz de confusión

Sobre la matriz de confusión se definen la siguientes métricas

		Etiquetas predichas	
		y_pred = 0	y_pred = 1
	y_true = 0	TN	FP
Etiquetas			
reales	y_true = 1	FN	TP

$$oxed{ ext{SEN} = ext{Recall} = rac{TP}{TP + FN} ext{ESP} = rac{TN}{TN + FP}}$$

$$egin{aligned} ext{ACC} &= rac{TP + TN}{TP + TN + FP + FN} \end{aligned}$$
 $egin{aligned} ext{PPV} &= ext{Precisión} = rac{TP}{TP + FP} \end{aligned}$ $egin{aligned} ext{FSC} &= ext{F1-score} = rac{2 \cdot ext{PPV} \cdot ext{SEN}}{ ext{PPV} + ext{SEN}} \end{aligned}$

Métricas en clasificación

Sobre la matriz de confusión se definen la siguientes métricas

	Etiquetas predich		predichas
		y_pred = 0	y_pred = 1
	y_true = 0	TN	FP
Etiquetas			
reales	y_true = 1	FN	TP

$$oxed{ ext{SEN} = ext{Recall} = rac{TP}{TP + FN} ext{ESP} = rac{TN}{TN + FP}}$$

$$egin{aligned} ext{ACC} &= rac{TP + TN}{TP + TN + FP + FN} \end{aligned}$$
 $egin{aligned} ext{PPV} &= ext{Precisión} = rac{TP}{TP + FP} \end{aligned}$ $egin{aligned} ext{FSC} &= ext{F1-score} = rac{2 \cdot ext{PPV} \cdot ext{SEN}}{ ext{PPV} + ext{SEN}} \end{aligned}$

Compromiso entre métricas (I)

Hay un compromiso entre las métricas (no se puede tener todo)

			Etiquetas predichas	
			<u>y_pred = 0</u>	<u>y_pred = 1</u>
ΙГ		y_true = 0	TN	FP
П	Etiquetas			
П	reales	y_true = 1	FN	TP
֡֡֡֡֡֡֡֜֜֡֡֡֜֜֜֜֡֡֡֜֜֜֜֜֜֜֜֜֡֡֡֡֡֜֜֜֜֜֜	2.2.50			

Si umbral aumenta, entonces TP↓, TN↑, FP↓, FN↑

Compromiso entre métricas (II)

Hay un compromiso entre las métricas (no se puede tener todo)

		Etiquetas predichas	
		y_pred = 0	y_pred = 1
	y_true = 0	TN	FP
Etiquetas			
reales	y_true = 1	FN	TP

Si umbral disminuye, entonces TP↑, TN↓, FP↑, FN↓

Curva ROC

• Representa la SEN vs 1-ESP (Tasa de Falsos Positivos) cuando se desplaza el umbral

Curva ROC: situación ideal

• Representa la SEN vs 1-ESP (Tasa de Falsos Positivos) cuando se desplaza el umbral

Curva ROC: utilidad

• Es un método interesante para comparar clasificadores

Clasificación multiclase

- Podemos calcular la matriz de confusión igualmente
 - Análisis de errores

Podéis consultar la <u>documentación</u> <u>de sklearn.</u>

Índice

1. Métricas en clasificación

- 2. Problemas desbalanceados
- 3. Métricas en regresión

Problemas desbalanceados

- ¿Qué pasa si la proporción de muestras y = {1/0} es 90/10% y nuestro clasificador tiene una ACC = 0.9?
 - Decimos que estamos ante un problema desbalanceado cuando la proporción de una clase es mucho mayor que la proporción de la otra
 - Fraude: 0.1 %
 - Detección de anomalías
 - Fuga: 5-15%
- ¿Cómo entrenamos un clasificador en estas condiciones?
 - La ACC no nos sirve como métrica

keep coding

Estrategias

- Utilizar un conjunto de métricas que ponderen la clases
 - o FSC
 - Balanced Error Rate = 1-0.5(SEN + ESP)
- Penalizar más los errores en la clase minoritaria: class weight
- Modificar el conjunto de entrenamiento para balancearlo
 - Sobremuestrear clase minoritaria
 - Crear muestras sintéticas de la clase minoritaria: <u>SMOTE</u>
 - Bajomuestrear clase mayoritaria

Índice

1. Métricas en clasificación

2. Problemas desbalanceados

3. <u>Métricas en regresión</u>

Métricas en regresión

Mean Squared Error

Mean Absolute Error

Root Mean Squared Error

• R^2

$$MSE(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} (y_i - \hat{y}_i)^2.$$

$$MAE(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} |y_i - \hat{y}_i|.$$

$$RMSE(y, \hat{y}) = \sqrt{MSE(y, \hat{y})}$$

$$R^{2}(y,\hat{y}) = 1 - \frac{\sum_{i=0}^{n_{\text{samples}}-1} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=0}^{n_{\text{samples}}-1} (y_{i} - \bar{y})^{2}}$$

Referencias

- Introduction to Statistical Learning.
 - Capítulo 4, Sección 4.4.3
- Hands On Machine Learning.
 - Capítulo 3
- Documentación scikit-learn

LET'S CODE

keep coding