PATENT ABSTRACTS OF JAPAN

(11) Publication number:

10-106808

(43)Date of publication of application: 24.04.1998

51) htC l

H01C 7/04 H01C 1/148

Q1)Application number : 08-255772

(71)Applicant:TDK CORP

(22)Date of filing:

27.09.1996

(72) Inventor: TAKEUCHIGORO

54) CHP NTC THERM STOR

(57) Abstract:

PROBLEM TO BE SOLVED: To provide at a bw cost a chip NTC therm istor which exhibits small to because of resistance, a large B constant and a by resistance in response to a smaller space between electrodes consequent on the decrease of the size of the them istor.

SOLUTION: A rectangular parallelepiped them istore ement 1 is provided with term in al electrodes 4 form ed by a dip method at both ends. Electrodes 5 for resistance adjustment are form ed by screen printing method on both rectangle major surfaces of the therm istor element 1. The electrodes 5 are connected respectively to the term in all electrodes 4 and have protrusions over the term in all electrodes 4.

The resistance of the therm istor is set by a space g between the electrodes 5 for resistance adjustment.

LEGAL STATUS

Date of request for exam nation]

Date of sending the examiner's decision of rejection]

IK ind of final disposal of application other than the exam ner's decision of rejection or application converted registration

Date of final disposal for application]

Patent num ber]

Date of registration] Number of appeal against examiner's decision of rejection] Date of requesting appeal against exam iner's decision of rejection] Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(II)特許出慮公開登号 特開2000-169821 (P2000-169821A)

(43)公照日 平成12年6月20日(2000.6.20)

(51) Int.CL'	裁別記号	FΙ			チーマンード(参考)
C 0 9 J 183/00		CO9J 163/	/00		
C08F 2/50		C08F 2/	/50		
299/00		299/	/00		
C 0 8 G 59/68		C08G 59/	/68		
CO9J 9/02		C09J 9/	02		
	審查商求	小學家語 象語未	の数7 OL	(全 6 頁)	最終質に疑く
(21)出顧番号	物顧平11-139495	(71)出題人(000132404		
		1	株式会社スリー	-ポンド	
(22)出題日	平成11年5月19日(1999.5.19)	,	京京都八王子!	Y映開町1456	继
		(72)発明者 7	宮岡 英一		
(31)優先権主張書号	特額平10-276297	j	東京都八王子市	持 较同町1456	株式会社スリー
(32) 優先日	平成10年9月30日(1998.9.30)		ボンド内		
(33)優先權主張国	日本 (JP)	(72) 発明者 は	樹江 賢一		
		j	東京都八王 子 F	持续周町1456	模式会社スリー
		,	ポンド内		
		(72)発明者 🧦	杂坂 秀文		
		,	京京都八王子!	7癸間町1456	株式会社スリー
		;	ポンド内		

(54) 【発明の名称】 紫外線硬化性異方導電接着剤

(57)【要約】

【課題】 紫外線硬化性具方郷電接着剤を完全硬化させる 工程の前に、予め紫外線を当該異方郷電接着剤に照射し ておき、光活性オニウム塩からカチオン穏を生成させて 当該異方濃電接着剤がリビング宣合するようにして、低 い硬化温度でもまたは陰影部の箇所でも当該具方導電接 者剤が完全硬化するようにする。

【解決する手段】a)1分子中にグリンジル基を少なくとも2つ以上含むエポキン樹脂化合物と、b)光活性オニウム塩と、c)準電性微粒子と、d)アルコキンシラン化合物を少なくとも必須成分とするベースト状もしくはシート状の襲外線硬化性異方導電接着剤にする。

【特許請求の範囲】

【請求項1】直方体状をなすサーミスタ素体の両端部に ディップ方式により形成された幾子電極を有し、

1

前記サーミスタの矩形状をなず両主面に、スクリーン印 刷法により、前記各選子電極に接続され、かつ端子電極 よりも相手側電極方向に突出して形成された抵抗調整用 電極を有することを特徴とするチップ形NTCサーミス

【請求項2】請求項1において、

 1 mm≤g≤L-0. 2 mm (ただし上は抵抗調整 用電極の対向方向のサーミスタの寸法) の範囲に設定し たことを特徴とするチップ形NTCサーミスタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、抵抗公差が小さ く、かつ抵抗温度変化率(以下B定数と称す)が大きい 低低抗のチップ形NTCサーミスタに関する。

[0002]

【従来の技術】近年、電子部品の小型化に伴い、チップ 形NTCサーミスタにおいてもチップの小型化の要求が 高くなっている。チップ形NTCサーミスタには、単板 タイプのものと積層タイプがあるが、いずれにしても、 チップ形NTCサーミスタには、プリント回路基板パタ ーン等に半田付けにより電気的に接続するとともに機械 的に固定するために、増子電極がチップ(サーミスタ素 体)の両端部に形成される。

【0003】との蝎子電極の形成は、従来、図4の工程 図に示すように、ディップ方式により形成されていた。 すなわち、図4 (A) に示すように、サーミスタ焼成済 基板1Aを縦饋の切断線a.りに沿って切断することに より、図4 (B) に示すような単品のチップ、すなわち サーミスタ素体 1 を得、図4 (C) に示すように、該素 体1の一端を端子電極ペースト2にディップして該ペー ストを塗布し、続いて図4 (D) のように他端部も端子 電極ペースト2にディップして該ペーストを塗布し、焼 成することにより、図4 (E) に示すように、素体1の 両端に幾子弩便3が形成されたサーミスタを得る。この ようなチップ形NTCサーミスタにおいては、端子電極 40 3. 3間の間隔gによってサーミスタとしての抵抗値が 決定される。

[0004]

【発明が解決しようとする課題】しかし、このようなサ ーミスタの小型化に伴い、端子電極3、3間が狭くな り、従来のように、ディップ方式によって幾子電極3、 3の間隔を設定する場合は、特闘平4-177705号 公報に記載のように、端子電極3、3の間隔 g を極端に 狭くしようとすると、両端子電極3. 3間が短絡を起こ

点がある。また、ディップ方式によって端子電極3を形 成する場合、サーミスタの抵抗値がばらつくため、両端 子電極3、3間の間隔 8を高精度で形成することができ なくなり、特開平4-177706号公親にも記載され ているように、抵抗値を所定の公差内におさえるために **銚子電攝3をトリミングする等の工程が必要となり、こ** れにより製品コストがさらに高くなるという問題点があ

【0005】本発明は、上記問題点に鑑み、サーミスタ 主面において互いに対向する抵抗調整用電操間の間隔は 10 の小型化に伴う電操間の間隔の狭磁化に応え、抵抗公登 が小さく、B定数が大きく低抵抗のチップ形NTCサー ミスタを、低コストで提供することを目的とする。 [0006]

> 【課題を解決するための手段】この目的を達成するた め、本発明のチップ形NTCサーミスタは、直方体状を なすサーミスタ素体の両端部にディップ方式により形成 された幾子電極を有し、前記サーミスタの矩形状をなす 両主面に、スクリーン印刷法により、前記各端子電極に 接続され、かつ端子弩極よりも相手側電極方向に突出し 20 て形成された抵抗調整用電極を有することを特徴とする (請求項1)。

【0007】また、本発明において、主面において互い に対向する抵抗調整用電極間の間隔gを、好ましくは、 0. lmm≤g≤L-0. 2mm (ただしLは抵抗調整 用電極の対向方向のサーミスタの寸法) の範囲に設定す る(譲攻項2)。

180001

【作用】請求項1においては、スクリーン印刷法におい て予め設定される抵抗調整用電極の間隔によりサーミス 30 夕の抵抗値が決定されるが、スクリーン印刷法による場 合には、ディップ方式に比較し、電極間隔、すなわちサ ーミスタの抵抗値を高精度に設定できる。また、電極間 隔。抵抗値の精度の向上により、両電極間の間隔を小さ く設定することができ、B定数が大きく、低抵抗のチャ プ形NTCサーミスタが得られ、小型化も容易となる。 【0009】請求項2においては、抵抗調整用電便の間 隔をO. 1mm以上に設定したことにより、短絡不良の 発生を防止できる。また、端子電極を素体の幾面のみに 形成するように設定した場合であっても、蝸子電極のデ ィップによる形成を行った場合、ディップによる電極形 成績度上、總面より主面上(). 1 mm程度の内部まで機 子電極が形成される可能性があり、両端で合計(). 1 m m×2=0.2mm程度は主面が過子電極によって覆わ れる可能性があるため、抵抗調整用電極間の最大間隔は L-0. 2 mのとする。

[0010]

【発明の実施の形態】

(実施例1) 図1は本発明によるチップ形NTCサーミ スタの一臭施剛を示す斜視図である。1は例えばMn-して歩響りを思くし、製品コストを高くするという問題 50 Co-Cu系金属元素を主成分とした直方体状をなすN 3

TCサーミスタ素体、4は該素体1の両端部にディップ 方式により形成した端子電極、5は基端子電極4に一端 が接続されるように、矩形状をなず両主面にスクリーン EII刷法により形成した抵抗調整用電極であり、対向する 抵抗調整用電極5、5間の間隔 g によりサーミスタの抵 抗値が調整される。これらの電極4.5は例えば銀ある いは銀ーパラジウムからなる。

【0011】図2、図3は本真施例のサーミスタの製造 工程を示すもので、まず図2 (A) に示すように、Mn -Co-Cu系金属元素を主成分としたNTCサーミス 10 タ鯨成済基板 I Aを線 a に沿って切断することにより、 図2 (B) に示すように、最終製品の数個分に相当する 短冊状の中間製品である素体1日を得る。

【0012】次に図2(C)、(D)に示すように、こ の素体 1 Bの長辺となる両側部を、主成分が銀または銀 - バラジウムである端子電極ペースト2にディップして 該ペースト2を塗布し、100℃、5分で乾燥すること により、図3(A)に示すように、端子電極4を形成し た.

1 Bの片方の主面cに、サーミスタとして所定の抵抗値 を得るための抵抗調整用電極5をスクリーン印刷法によ り、主面c上で間隔gを持たせ、かつ各々の抵抗調整用 電極5の片側を端子電極4に重ねることにより接続して 形成する。続いて図3 (C) に示すように素体1Bを反 転させて反対側の主面 d にも抵抗調整用電極 5 を形成す る。該抵抗調整用電極5としては、端子電極4と同じ銀 または銀ーパラジウムを主成分とするベーストを用い

【0014】このように抵抗調整用電極5を印刷したも 30 のを、650°C、10分間で加熱することにより、電極 4. 5の焼き付けを行った。この焼き付け後の抵抗調整 用電極5、5の間隔では、抵抗調整用電極5、5の対向*

p 25=10 D·cm, 825/85=2800Kの場合

* 方向の素体寸法をしとして.

0. 1mm≤g≤L-0. 2mm

【0015】次に、電極4.5に銀系ペーストを用いて いることから、マイグレーション防止のため、図3

(D) に示すように、エポキシ樹脂あるいはガラスでな る保護膜6により、前記主面c、dにおける抵抗調整用 電極5、5間の隙間の部分を覆った。なお、この保護順 8は必要に応じて設けられる。

【0016】次に図3 (D) に示す線 bに沿って素体 l Bを切断することにより、図3 (E) に示す最終単品製 品?とした。

【0017】そして従来技術との比較のため、図1にお けるサーミスタの抵抗調整用電極5.5の対向方向の寸 法し=1.6mm、幅W=0.8mmのサイズのものに おいて、素体1として、25℃における比抵抗点25= 10Ω·cm. 25℃と85℃間におけるB定数=28 00Kの特性のものと、p25=8000Ω・cm、2 5℃と85℃間におけるB定数=4150Kの特性のも 【0013】次に、図3(B)に示すように、まず意体 20 のとを選択し、従来のディップ方式により、図4(E) に示すように、端子電極3、3の間隔gを1.2mm、 0. 8mm, 0. 4mm, 0. 2mm, 0. 1mm,

0. 05mmにそれぞれ設定した場合と、前記実施例の ように、抵抗調整用電極5.5間で間隔でを同様の値に それぞれ設定した場合の各サーミスタ特性の比較を行っ た。その結果を表1、表2に示す。

【0018】表1、表2において、R25は25℃にお けるサーミスタの抵抗値、RC. V(%)は該抵抗値R 25のばらつき、B25/85は前記B定数、BC. V (%) はB定数のばちつきである。(以下余白)

[0019]

【费1】

				10年(9		നന	
1	物性_	_1.2	0.8	0.4	0.2	6.1	0.05
	R25(Ω)	203, 70	139,13	65.31	短絡	短點	经格
6 #	R C.V(%)	2.78	3.41	4.62	†	†	Ť
従来	B25/85(K)	2809	2803	2805	†	Ť	1
	B C.V(%)	0.11	0.10	0.16	1	t	
	R25(Ω)	211.54	144.60	70.77	40.14	28.76	经路
本発明	R C.V(%)	1.38	1.58	1.81	1.89	1.94	1
26	625/85(K)	2608	2803	2819	2803	2806	Ť
- 20	B C.V(X)	0.15	0.09	0.11	0.12	0.12	

[0020]

【表2】

ρ25=8000Ω·cm, 825/85=4150Kの場合

		電荷問題壁(9 寸法) mm						
	特性	1,2	0.8	0.4	0.2	0.1	0.05	
	R25(O)	162.4k	105.7k	49.6k	短格	短絡	短格	
健	R C.Y(%)	2.47	2.98	3,82	4	Ť	Ť	
采	825/85(K)	4163	4167	4158	÷	÷	Ť	
~	B C.V(%)	0.14	0,18	0.11	•	Ť	<u>†</u>	
	R25(Q)	169.3k	107.3k	51.7k	30.1k	22.4k	垣梢	
奎	R C.V(%)	1.52	1.39	1.74	1.68	1.75	Ť	
本発明	R26/85(K)	4155	4153	4147	4149	4147	Ť	
77	B C.V(X)	0.07	0.12	0.14	0.09	0.69	Á	

【0021】表1、表2から分かるように、従来のディ 16*mm. W=0. 5mmとしたこと以外は実施例1と同じ ップ方式による場合には、設定される電極間隔8が0. 2 m m以下になると、短絡不良が発生するが、一方、本 発明による場合には、O. 1mm以上であれば短絡不良 が発生しなかった。また、本発明による場合、抵抗値の ばらつき (RC. V (%))が従来品の約1/2とな り、高品質のサーミスタが得られた。

【0022】 (実施例2) サーミスタの寸法L=1.0*

とし、素体1として、その比抵抗の25、B定数が前記 実施例1と同様の2種類のものを用い、電極間隔8を 0. 6mm, 0. 4mm, 0. 2mm, 0. 1mm, 0. 05mmにそれぞれ設定した場合について、前記各 特性の比較を行った。その結果を表3、表4に示す。 [0023]

【表3】

p 25=10 Ω·cm, 825/85=2800kの場合

	E 3.15	- A C	NE	旧题籍 (0	寸法)(0.1	n m 0.06
	人分性	0.6	210.47	0.2	SELEC	SENS.
従来	R C.V(%) B25/85(K) B C.V(%)	294.30 4.25 2814 0.17	210.47 5.31 2821 0.19	1 1	† †	1
李発明	R25(0) R C.Y(%) B25/85(K) B C.Y(%)	302,56 1,55 2798 0,13	224.62 1.68 2804 0.18	120.44 1.71 2804 0.15	85.89 1.70 2897 0.11	短格 † †

[0024]

※ ※ [表4]

p 25=8000Ω·cm, 825/85=4150Kの場合

	T		胃極	题 (9	寸法) (מת מי
	特性	9.6_	0.4	0.2	0.1	0,05
従来	R25(Ω) R C.V(%) B25/85(K) B C.V(%)	230k 3.80 4169 0.12	162k 4.69 4165 0.09	短格 † †	经格 个 个	道路 . †
李堯明	R25(12) R C.V(%) B25/85(K) B C.V(%)	236k 1.53 4150 0.11	171k 1.89 4152 0.14	101k 1.47 4152 9.07	76.7k 1.66 4157 0.14	矩榜 ? † ↑

【0025】表3、表4から分かるように、従来のディ ップ方式による場合には、設定される脅極間隔8が(). 2mm以下になると、短絡不良が発生するが、一方、本 発明による場合には、O. 1 mm以上であれば短絡不良 40 部に、抵抗調整用電極どうしが対向する先端より後退し が発生しなかった。また、本発明による場合、抵抗値の ばらつき (RC. V (%)) が従来品の約1/3とな り、高品質のサーミスタが得られた。

【0026】なお、上記実施例においては、幾子電極4 上に抵抗調整用電操りを重ねて形成するようにしたが、 抵抗調整用電極らをスクリーン印刷法により形成してお き、その後に端子電極4をディップ方式により形成して もよい。また、端子穹径4は、抵抗調整用穹径5より相 手側対向電極側に突出しないのであれば、主面上の所定 の範囲に形成してもよく、端子電極4の形成箇所を景体 50 ブ形NTCサーミスタの小型化が容易となる。

1の端面ないしその近傍のみに限定する必要はない。 100271

【発明の効果】詰求項1によれば、矩形状の素体の両端 た範囲にわたって幾子電極をディップ方式により形成 し、かつ、該端子電極に接続して、抵抗調整用電便をス クリーン印刷法により矩形状をなす両主面に形成し、抵 抗調整用電極どうしが両主面において対向するように構 成したので、電極間の間隔を精度良く形成することが可 能となり、抵抗公差が小さく、かつB定数が大きな低抵 杭のチップ形NTCサーミスタを容易に製造することが 可能となり、製造コストを低減することが可能となる。 また、電極間隔を狭くすることが可能となるので、チッ

7

[0028] 請求項2によれば、抵抗関整用電極の間隔 を0.1mm以上としたことにより、短格不良を無く し、歩圏りを向上させることが可能となる。

【図面の部単な説明】

【図1】本発明によるチップ形NTCサーミスタの一葉 施例を示す斜視図である。

【図2】 $(A) \sim (D)$ は本真施例の製造工程の一部を示す図である。

【図3】(A)~(E)は本実施例の製造工程の残部を*

*示す図である。

【図4】 (A) \sim (E) は従来のチップ形NTCサーミスタの製造工程図である。

【符号の説明】

1:サーミスタ素体、1A:サーミスタ焼成済芸板、1B:短冊状景体、2:増于電極ペースト、4:端子電 極、5:抵抗調整用電極、6:保護膜、7:単品製品、g:電極間隔、L:抵抗調整用電極の対向方向の寸法、W:帽

