PENGERTIAN SISTEM BILANGAN

Pengertian:

Sistem bilangan (numeral system) adalah kerangka kerja matematika untuk merepresentasikan angka dengan sekumpulan simbol atau digit secara konsisten. Dalam komputasi, sistem bilangan sangat penting karena menjadi dasar cara komputer menyimpan, memproses, dan merepresentasikan data.

Jenis-jenis Sistem Bilangan:

1. Sistem Bilangan Desimal (Basis 10)

- Basis: 10 - Simbol: 0–9

- Karakteristik: Setiap posisi digit bernilai kelipatan 10.

- Aplikasi: Perhitungan sehari-hari, keuangan, pengukuran, antarmuka manusia-komputer.

2. Sistem Bilangan Biner (Basis 2)

- Basis: 2 - Simbol: 0, 1

- Karakteristik: Digit disebut bit, mewakili dua keadaan (on/off, true/false).

- Aplikasi: Representasi data di komputer, logika digital, penyimpanan data.

3. Sistem Bilangan Oktal (Basis 8)

- Basis: 8 - Simbol: 0-7

- Karakteristik: 1 digit oktal = 3 digit biner.

- Aplikasi: Komputer lama, izin file di Unix/Linux.

4. Sistem Bilangan Heksadesimal (Basis 16)

- Basis: 16

- Simbol: 0-9, A-F

- Karakteristik: 1 digit heksa = 4 digit biner.

- Aplikasi: Pemrograman (alamat memori, debugging), desain web (#FFFFF), alamat MAC.

Konversi Antar Sistem Bilangan:

1. Ke Desimal: kalikan tiap digit dengan basis^posisi, lalu jumlahkan.

Contoh: $1011 \blacksquare = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2 \blacksquare) = 11 \blacksquare \blacksquare$

2. Dari Desimal ke Basis lain: bagi bilangan dengan basis tujuan sampai hasil nol, sisa dibaca dari bawah ke atas.

Contoh: $13\blacksquare\blacksquare \rightarrow 1101\blacksquare$

3. Biner ke Oktal: kelompok 3 digit. | Biner ke Heksa: kelompok 4 digit.

Desimal	Biner	Oktal	Heksadesimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6

7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Referensi:

- Stallings, William. Computer Organization and Architecture (2016).
- Patterson, David A. & Hennessy, John L. Computer Organization and Design ARM Edition (2017).
 Tanenbaum, Andrew S. & Austin, Todd. Structured Computer Organization (2013).
 GeeksforGeeks: Number Systems (Sept 2025).

- TutorialsPoint: Number Systems (Sept 2025).