Genre Classification: A Transductive, Inductive and Deep Approach

Group 32:

Isinsu Katircioglu, Sena Kiciroglu, George Adaimi, Okan Altingovde

Introduction

- Classify genres of the FMA dataset
- Practical applications:
 - Building genre specific playlists, song recommendations etc.
- Methods:
 - Classical ML methods: SVM, MLP, etc.
 - Transductive learning methods
 - Graph Convolutional Networks

FMA Dataset

- 106k songs from 16k artists.
- Small, medium and large subsets.
- Take 8 most popular genres of each subset.

Forming the graph:

- MFCC features
- "Correlation" distance metric
- Threshold edges below 0.9
 - Remove disconnected nodes!

Genre Distributions in Medium Dataset 6103 5314 Flectronic 1251 Experimental 1201 519 510 384 350 186 Pop 178 154 Soul-RnB 118 Spoken

Blues Easy

Number Of Songs

M. Defferrard, et al. FMA: A Dataset for Music Analysis. ISMIR 2017.

Graph Statistics

- Sparse graph
- Average degree generally higher than real life graphs
- Many connected components, but most of nodes in largest component (96%).

Number of Nodes	18648
Number of Edges	447280
Sparsity	0.2%
Average Degree	48.0
Number of Connected Components	214
Size of Largest Connected Component	18084
Average Clustering Coefficient	0.34

Pre-Processing

- PCA to reduce feature dimensionality
- Train a multi layer perceptron
 (MLP) to produce better features,
 tailored to genre classification.
 - Produces better adjacency!

	SVM	RF	KNN
% Error with MLP & PCA	20.38	21.44	21.51
% Error w/o MLP, with PCA	21.86	26.48	21.13
% Error w/o PCA w/o MLP	_	26.87	27.95

 MLP-features and PCA generally reduce error

Classical Inductive ML Methods

- Most commonly used ML methods:
 - Support Vector Machine (SVM)
 - Random forest (RF)
 - K-Nearest Neighbours (KNN)
 - Multi-Layer Perceptrons (MLP)
- Separate graph using "split" in dataset into "training" and "test".
- Use cross-validation for training.

Transductive Learning

X. Zhu et al. ICML 2003 Y. Yamaguchi, et al. AAAI, 2015. X.M. Wu, et al. NIPS, 2012.

Graph Neural Network

$$Y = f_{gcn}(X, A)$$

Graph Neural Network

One Step Further: Graph K-Hop

$$K = 2$$

- Reach neighbors at distance 2.
- Fuse the features coming from network with one-hop adjacency and two-hop adjacency matrices.

Results

	Medium Dataset		Large Dataset	
Method	Error (%)	Training Time (s)	Error (%)	Training Time (s)
SVM	20.38	85	37.13	160
RF	21.44	46	36.46	36
KNN	21.51	39	37.07	48
MLP	20.59	68	38.02	90
GCN	20.53	256	37.78	241
GCN-KHop	$\boldsymbol{20.24}$	731	37.56	1655
GFHF	22.15	93	38.81	140
OMNI-Prop	22.43	303	40.15	339
PORW	26.26	0.7	38.36	0.635

Results

- Good predictions for "Old-Time/Historic", "Classical", "Rock"
- "Experimental" is confused with "Electronic" and "Rock"
- "Folk is confused with "Rock"

Predicted label

Future Work: Drifting in time

- Changing trends in music industry
- Technological advancements in track recording devices and instruments
- Special effects
- Predict release date of song within a genre

Discussion & Conclusion

Challenges:

- Forming good graph crafting good features
- Genre imbalance within medium and large datasets

Summary:

- Used inductive, transductive and deep methods for genre classification.
- Gained experience in building graph representations of data.
- Designed, trained and tested GCNs, which could also be interesting for our own research!