Lecture 16 Segment 2

Repeated measures: Risks

Risks

- Order effects
- Counterbalancing
- Missing data

- Consider a simple design with just two conditions, A1 and A2
- One approach is a Blocked Design
 - Subjects are randomly assigned to one of two "order" conditions
 - A1, A2
 - A2, A1

- Consider a simple case with just two conditions, A1 and A2
- Another approach is a Randomized Design
 - Conditions are presented randomly in a mixed fashion
 - A2, A1, A1, A2, A2, A1, A2.....

- Now suppose a = 3 and a blocked design
- There are 6 possible orders (3!)
 - A1, A2, A3
 - A1, A3, A2
 - A2, A1, A3
 - A2, A3, A1
 - A3, A1, A2
 - A3, A2, A1

- To completely counterbalance, subjects would be randomly assigned to one of 6 order conditions
- The number of conditions needed to completely counterbalance becomes large with more conditions
 - -4! = 24
 - -5! = 120

- With many levels of the IV a better approach is to use a "Latin Squares" design
- Latin Squares designs aren't completely counterbalanced but every condition appears at every position at least once

- For example, if a = 3, then
 - -A1,A2,A3
 - -A2, A3, A1
 - -A3,A1,A2

Missing data

- Two issues to consider
 - Relative amount of missing data
 - Pattern of missing data

Missing data ~ Relative amount

- How much is a lot?
 - No hard and fast rules
 - A rule of thumb is
 - Less than 10% on any one variable, OK
 - Greater than 10%, not OK

Missing data ~ Pattern?

- Is the pattern random or lawful?
 - This can easily be detected
 - For any variable of interest (X) create a new variable (XM)
 - XM = 0 if X is missing
 - XM = 1 if X is not missing
 - Conduct a t-test with XM as the IV and X as the DV
 - If significant then pattern of missing data may be lawful

Missing data ~ Remedies

- Drop all cases without a perfect profile
 - Drastic
 - Use only if you can afford it
- Keep all cases and estimate the values of the missing data points
 - There are several options for how to estimate values

Missing data ~ Estimation methods

- Insert the mean
 - Conservative
 - Decreases variance
- Regression-based estimation
 - More precise than using the mean but
 - Confusion often arises over which variables to use as predictors in the regression equation