Homework #6

Sam Fleischer

May 20, 2016

Problem 1			 •				 																2	•
Problem 2							 																2	•
Problem 3		 •					 																2	•
Problem 4		 •					 																2	2
Problem 5			 				 									 							3	š

Problem 1

Given $f(x) = \frac{1}{(1+x^2)^2}$ find $\widehat{f}(\xi)$. Prove that $\widehat{f} \in C^2$. You can use the following fact that follows from complex integration

 $\int_{-\infty}^{\infty} \frac{\cos(ax)}{x^2 + b^2} dx = \frac{\pi}{b} e^{-ab}, \qquad a, b > 0.$

Proof.

Problem 2

- (a) Prove that if $f, g \in \mathcal{S}(\mathbb{R}^n)$ (the Schwartz class of functions) then $f * g \in \mathcal{S}(\mathbb{R}^n)$.
- (b) Find explicitly $\Psi = \widehat{|x|^2} \in \mathscr{S}'(\mathbb{R}^n)$.

Proof.

Problem 3

Let $0 < \alpha < \frac{n}{2}$.

- (a) Prove that $|x|^{-n+\alpha}$ defines a tempered distribution.
- (b) Prove that

$$\widehat{|x|^{-n+\alpha}}(\xi) = c_{n,\alpha}|\xi|^{-\alpha}.$$

Observe that $|x|^{-n+\alpha}\mathscr{X}_{\{|x|\leq 1\}}\in L^1(\mathbb{R})$ and $|x|^{-n+\alpha}\mathscr{X}_{\{|x|>1\}}\in L^2(\mathbb{R})$. Thus $\widehat{|x|^{-n+\alpha}}(\xi)$ is a function. Show that $\widehat{|x|^{-n+\alpha}}(\xi)$ is radial and homogeneous of order $-\alpha$.

Define the *Hilbert transform* $\mathcal{H}(\phi)$ of a function $\phi \in \mathcal{S}(\mathbb{R})$ by

$$\mathcal{H}(\phi) = \frac{1}{\pi} \text{p.v.} \left(\frac{1}{x}\right) * \phi,$$

where

$$\text{p.v.}\left(\frac{1}{x}\right)(\phi) = \lim_{\varepsilon \to 0} \int_{\varepsilon < |x| < \frac{1}{\varepsilon}} \frac{\phi(x)}{x} dx.$$

Proof.

Problem 4

If $\phi \in \mathcal{S}(\mathbb{R})$, prove that $\mathcal{H}(\phi) \in L^1(\mathbb{R})$ if and only if $\widehat{\phi}(0) = 0$.

 \square

Problem 5

Prove the following identities:

(a)
$$\mathcal{H}(fg) = \mathcal{H}(f)g + f\mathcal{H}(g) + \mathcal{H}(\mathcal{H}(f)\mathcal{H}(g))$$
.

(b)
$$\mathcal{H}(\mathcal{X}_{(-1,1)}) = \frac{1}{\pi} \log \left| \frac{x+1}{x-1} \right|$$
.

Proof. (a) First note that since

$$\widehat{\text{p.v.}\left(\frac{1}{x}\right)} = -i\pi \text{sgn}(\xi),$$

then the Fourier transform of the Hilbert transform is

$$\widehat{\mathcal{H}(\phi)} = \frac{1}{\pi} \widehat{\text{p.v.}} \left(\frac{1}{x}\right) \widehat{\phi} = -i \operatorname{sgn}(\xi) \widehat{\phi}.$$

Also note that

$$sgn(x - y)sgn(y) = sgn(x)sgn(y) + sgn(x - y)sgn(x) - 1$$

Finally,

$$\mathcal{H}(f)g + f\widehat{\mathcal{H}(g)} + \mathcal{H}(\mathcal{H}(f)\mathcal{H}(g)) = [-isgn \, \widehat{f}] * \widehat{g} + [-isgn \, \widehat{g}] * \widehat{f} - isgn \, [\widehat{\mathcal{H}(f)\mathcal{H}(g)}]$$

$$= [-isgn \, \widehat{f}] * \widehat{g} + [-isgn \, \widehat{g}] * \widehat{f} - isgn \, [(-isgn \, \widehat{f}) * (-isgn \, \widehat{g})]$$

$$= \int_{\mathbb{R}} -isgn \, (\xi - y) \widehat{f}(\xi - y) \widehat{g}(y) \mathrm{d}y + \int_{\mathbb{R}} -isgn \, (y) \widehat{g}(y) \widehat{f}(\xi - y) \mathrm{d}y$$

$$- isgn \, (\xi) \int_{\mathbb{R}} -sgn \, (\xi - y) \widehat{f}(\xi - y) \mathrm{sgn} \, (y) \widehat{g}(y) \mathrm{d}y$$

$$= \int_{\mathbb{R}} -isgn \, (\xi - y) \widehat{f}(\xi - y) \widehat{g}(y) \mathrm{d}y + \int_{\mathbb{R}} -isgn \, (y) \widehat{g}(y) \widehat{f}(\xi - y) \mathrm{d}y$$

$$- isgn \, (\xi) \int_{\mathbb{R}} \widehat{f}(\xi - y) \widehat{g}(y) \mathrm{d}y$$

$$+ isgn \, (\xi) \int_{\mathbb{R}} sgn \, (\xi - y) \mathrm{sgn} \, (y) \widehat{f}(\xi - y) \widehat{g}(y) \mathrm{d}y$$

$$+ isgn \, (\xi) \int_{\mathbb{R}} sgn \, (\xi - y) \widehat{g}(y) \mathrm{d}y + \int_{\mathbb{R}} -isgn \, (y) \widehat{g}(y) \widehat{f}(\xi - y) \mathrm{d}y$$

$$- i \int_{\mathbb{R}} sgn \, (\xi) \widehat{f}(\xi - y) \widehat{g}(y) \mathrm{d}y$$

$$- i \int_{\mathbb{R}} sgn \, (\xi) \widehat{f}(\xi - y) \widehat{g}(y) \mathrm{d}y$$

$$+ i \int_{\mathbb{R}} sgn \, (\xi) \widehat{f}(\xi - y) \widehat{g}(y) \mathrm{d}y$$

$$+ i \int_{\mathbb{R}} sgn \, (\xi) \widehat{f}(\xi - y) \widehat{g}(y) \mathrm{d}y$$

$$- isgn \, (\xi) \int_{\mathbb{R}} \widehat{f}(\xi - y) \widehat{g}(y) \mathrm{d}y$$

$$= -isgn \, (\xi) \widehat{f}(\xi - y) \widehat{g}(y) \mathrm{d}y$$

$$= -isgn \, (\xi) \widehat{f}(\xi - y) \widehat{g}(y) \mathrm{d}y$$

$$= -isgn \, (\xi) \widehat{f}(\xi - y) \widehat{g}(y) \mathrm{d}y$$

$$= -isgn \, (\xi) \widehat{f}(\xi - y) \widehat{g}(y) \mathrm{d}y$$

$$= -isgn \, (\xi) \widehat{f}(\xi - y) \widehat{g}(y) \mathrm{d}y$$

Since the Fourier transform is an isomorphism, the identity holds since we can take the inverse Fourier transform of both sides.

(b)

$$\begin{split} \mathscr{H}\big(\mathscr{X}_{(-1,1)}\big) &= \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{\varepsilon < |y| < \frac{1}{\varepsilon}} \frac{\mathscr{X}_{(-1,1)}(y)}{x - y} \, \mathrm{d}y \\ &= \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{\varepsilon < |y| < 1} \frac{1}{x - y} \, \mathrm{d}y \\ &= \frac{1}{\pi} \left[\lim_{\varepsilon \to 0} \left[\int_{\varepsilon}^{1} \frac{1}{x - y} \, \mathrm{d}y + \int_{-1}^{-\varepsilon} \frac{1}{x - y} \, \mathrm{d}y \right] \right] \\ &= \frac{1}{\pi} \left[\lim_{\varepsilon \to 0} \left[\log|x - y| \Big|_{\varepsilon}^{1} + \log|x - y| \Big|_{-1}^{-\varepsilon} \right] \right] \\ &= \frac{1}{\pi} \left[\lim_{\varepsilon \to 0} \left[\log|x - 1| - \log|x - \varepsilon| + \log|x + \varepsilon| - \log|x + 1| \right] \right] \\ &= \frac{1}{\pi} \log \left| \frac{x - 1}{x + 1} \right| \end{split}$$