4주차 3차시 다중화 방식

[학습목표]

- 1. 다중화 방식에 대해 설명할 수 있다.
- 2. 주파수 분할 다중화 및 시분할 다중화에 대해 설명할 수 있다.

학습내용1: 다중화 방식이란?

1. 다중화 방식의 개념

- 다중화(Multiplexcing) 방식은 다중화 기술을 이용하여 하나의 회선 또는 전송로를 분할하여 다수의 개별적으로 독립된 신호를 동시에 송수신할 수 있는 장치
- 다중화 방식에 따라 주파수 분할, 시분할, 코드 분할 다중화 방식 등이 있음
- 디지털 방식의 TDM 다중화기 등의 대용량화 및 디지털 정보의 압축, 부호화 기술의 진보와 더불어 멀티미디어 네트워크 구축에 꼭 필요한 장치

2. 다중화기의 장점

- 통신망 이용 효율을 향상시키기 위하여 주로 사용
- 특히 통화량이 많은 전화국 간 중계선이나 장거리 국제 회선의 건설/유지 보수비용을 감소시킴
- 전용회선 이용 요금을 절감시키는 역할을 함.

3. 다중화의 특징

- 효율성을 위해 용량을 공유
- 대용량의 고속 전송 기능, 음성, 데이터, 영상서비스, 망 관리 기능, 데이터의 멀티드롭 기능, 시스템 사이의 전송 선로를 자동 우회하는 기능
- 가입자 측에서 다양한 속도로 접속되는 인터페이스 기능
- 송 · 수신간의 통신자원을 공유하고 시간, 주파수 공간 분할

학습내용2 : 주파수 분할 다중화

- 좁은 주파수 대역을 사용하는 여러 개의 신호들이 넓은 주파수 대역을 가진 하나의 전송로를 따라서 동시에 전송 되는 방식
- 초기에 가장 많이 사용했던 방식
- 지금도 마이크로웨이브 등에서 폭넓게 사용되고 있음
- 아날로그 신호에서 사용되며 TV, 라디오 등이 속함
- 입력되는 여러 신호가 간섭 없이 전송되어야 하므로, 전송하려는 신호의 필요한 대역폭보다 전송매체의 대역폭이 커야 함.

[그림] 주파수 분할 다중화 모형

학습내용3 : 시분할 다중화

- 하나의 전송로(채널)를 사용 시간으로 분할하여 다중화하는 방식
- 시간을 타임슬롯(time slot)이라는 기본 단위로 나누고 채널에 연결된 여러 사용자에게 할당함
- 각 사용자는 자신에게 할당된 시간 동안에만 메시지 또는 메시지의 일부분을 보낼 수 있도록 하는 방식
- 전송매체의 전송속도가 정보 소스(source)의 정보 발생률보다 빠를 때 사용 가능
- 대부분의 고속 데이터 다중화 장비 또는 집중화 장비들이 시분할 방식을 사용하고 아날로그와 디지털 신호 모두를 사용 가능

(1) 단점

사용자들에게 무조건 규칙적으로 타임 슬롯을 할당하기 때문에 보낼 데이터를 갖고 있지 않은 사용자에게 할당된 타임 슬롯은 낭비된다.

[그림] 시분할 다중화 모형

학습내용4 : 코드분할 다중화

- 스펙트럼 확산(Spread Spectrum) 기술을 응용한 다중화 방식
- 보내고자 하는 신호를 그 주파수 대역보다 훨씬 넓은 주파수 대역으로 확산시켜 전송
- 넓은 주파수 대역에 다수의 사용자가 서로 다른 코드를 사용함으로써 동일한 주파수로 동시에 접속이 가능
- 수신측은 송신측에서 사용한 동일한 코드로 수신 신호를 검출
- 서로 다른 코드를 사용하여 통신하기 때문에 통신의 비밀 보호가 우수하며 전파 방해에 강함

[그림] 코드분할 다중화 모형

[학습정리]

- 1. 다중화(Multiplexcing) 방식은 다중화 기술을 이용하여 하나의 회선 또는 전송로를 분할하여 다수의 개별적으로 독립된 신호를 동시에 송수신할 수 있는 장치이다.
- 2. 주파수 분할 다중화 방식은 좁은 주파수 대역을 사용하는 여러 개의 신호들이 넓은 주파수 대역을 가진 하나의 전송로를 따라서 동시에 전송되는 방식이다.
- 3. 시분할 다중화 방식은 하나의 전송로(채널)를 사용 시간으로 분할하여 다중화하는 방식이다.
- 4. 코드분할 다중화 방식은 넓은 주파수 대역에 다수의 사용자가 서로 다른 코드를 사용함으로써 동일한 주파수로 동시에 접속이 가능한 방식이다.