Alguns exercícios de Álgebra

- 1. Considere os grupos (\mathbb{Z}_5^*, \times) e (\mathbb{Z}_7^*, \times) , onde $\mathbb{Z}_5^* = \mathbb{Z}_5 \setminus \{[0]_5\}$ e $\mathbb{Z}_7^* = \mathbb{Z}_7 \setminus \{[0]_7\}$, o produto direto $\mathbb{Z}_7^* \otimes \mathbb{Z}_5^*$ e o morfismo de grupos $\theta : \mathbb{Z}_7^* \otimes \mathbb{Z}_5^* \to \mathbb{Z}_7^*$ definido por $\theta([n]_7, [p]_5) = [n]_7$, para quaisquer $n, p \in \mathbb{Z}$.
 - (a) Indique, sem justificar:
 - (i) a identidade de $\mathbb{Z}_7^* \otimes \mathbb{Z}_5^*$;
 - (ii) o inverso do elemento $([3]_7, [5]_5)$;
 - (iii) o elemento $([4]_7, [3]_5)([2]_7, [4]_5)^{-1}$;
 - (iv) a ordem dos elementos ($[2]_7$, $[4]_5$) e ($[6]_7$, $[1]_5$).
 - (b) Determine $\theta([5]_7, [3]_5)$, $\theta^{\leftarrow}([1]_7)$ e $\theta^{\leftarrow}[([2]_7)^{-1}]$.
- 2. Seja $G = (\mathbb{R} \setminus \{0\}) \times \mathbb{R}$. Considere em G a operação binária * definida por (x, y) * (z, w) = (xz, w + zy), para quaisquer $(x, y), (z, w) \in (\mathbb{R} \setminus \{0\}) \times \mathbb{R}$.
 - (a) Sabendo que a operação * é associativa, mostre que (G, *) é um grupo não abeliano.
 - (b) Sendo $H = \{(a, b) \in G : a > 0\}$, mostre que (H, *) é um subgrupo de (G, *).
- 3. Dado um grupo G, mostre que o subgrupo $H = \{(g,g): g \in G\}$ de $G \times G$ é invariante em $G \times G$ se e só se G é abeliano.
- 4. Seja G um grupo abeliano. Considere o grupo produto direto $G \times G$ e o subgrupo H de $G \times G$ tal que $H = \{(x, x^{-1}) : x \in G\}$. Mostre que H é um subgrupo de $G \times G$.
- 5. Seja $G = \langle b \rangle$ um grupo cíclico de ordem 45.
 - (a) Determine a ordem dos elementos b^9 e b^{41} de G.
 - (b) Dê exemplo, caso existam, de quatro elementos $a,x,c,d\in G$ com ordem 9, 6, 45 e 50 respectivamente. Justifique.
- 6. Sejam G e H grupos. Considere o produto direto $G \otimes H$. Mostre que o subgrupo

$$\mathcal{L} = \{(a, 1_H) \in G \times H : a \in G\}$$

de $G \otimes H$ é invariante.

- 7. Considere o grupo $(\mathbb{Z}_5 \setminus \{0\}, \times)$ e a aplicação $f: (\mathbb{Z}_5 \setminus \{0\}, \times) \longrightarrow (\mathbb{Z}_5 \setminus \{0\}, \times)$ definida por $f([a]_5) = ([a]_5^{-1})^6$, para qualquer $[a]_5 \in \mathbb{Z}_5 \setminus \{0\}$.
 - (a) Mostre que f é um morfismo de grupos.
 - (b) Determine os elementos que constituem o núcleo de f.
 - (c) Diga, justificando, se f é um epimorfismo.
- 8. Sejam G um grupo, H um grupo abeliano e $f,g:G\to H$ dois morfismos. Seja

$$S = \{x \in G : f(x) = g(x)\}.$$

Considere o morfismo $\theta: G \to H$ definida por $\theta(x) = f(x^{-1}) g(x)$, para qualquer $x \in G$. Prove que:

- (a) S é um subgrupo invariante de G;
- (b) Nuc $\theta = S$.

- 9. Sejam G um grupo, $(\mathbb{Z}, +)$ o grupo aditivo dos inteiros e $\theta : G \to \mathbb{Z}$ um monomorfismo. Considere o produto direto $G \otimes G$ e a aplicação $\varphi : G \otimes G \to \mathbb{Z}$ definida por $\varphi[(x, y)] = \theta(x) \theta(y)$.
 - (a) Mostre que φ é um morfismo.
 - (b) Determine $\operatorname{Nuc} \varphi$.
 - (c) Indique, justificando, uma condição necessária e suficiente para que o morfismo φ seja injetivo.
- 10. Sejam G um grupo, S < G e a um elemento arbitrariamente fixo em G. Considere o subconjunto S_a de G definido por $S_a = \{asa^{-1} : s \in S\}$.
 - (a) Mostre que S_a é um subgrupo de G.
 - (b) Mostre que a aplicação $f: S \to S_a$, definida por f(x) = axa-1, para todo $x \in S$, é um morfismo de grupos.
 - (c) Determine Nuc f.
 - (d) Os grupos S e S_a são isomorfos? Porquê?
- 11. Justifique se é verdadeira ou falsa cada uma das seguintes proposições:
 - (a) $\mathbb{Z}_4 \subseteq \mathbb{Z}_8$;
 - (b) $4\mathbb{Z} \cap 12\mathbb{Z} = 12\mathbb{Z}$;
 - (c) $9\mathbb{Z} \cap 10\mathbb{Z} = \emptyset$;
 - (d) O semigrupo ($\mathbb{Z}_8 \setminus \{\overline{0}\}, \times$) é um grupo;
 - (e) Em (\mathbb{Z}_9, \times) , o elemento $[8]_9$ é invertível.
 - (f) Num grupo G de ordem 34, se $b \in G$ é tal que $b^{50} = b^{101}$, então o subgrupo < b > de G tem ordem 17;
 - (g) Se H é um grupo e $H \subseteq K$ então H é um subgrupo de K.
 - (h) Um subconjunto singular de um grupo G é subgrupo de G.
 - (i) Para qualquer $n \in \mathbb{N}$, todos os elementos do grupo $(\mathbb{Z}_n, +)$ diferentes da identidade têm ordem n.
 - (j) Um grupo G, que contenha um elemento de oredm 8, contém um elemento de ordem 2.
 - (k) Todo o grupo admite, pelo menos, dois subgrupos distintos.
 - (1) Existem grupos que admitem um só subgrupo normal.
 - (m) Um semigrupo no qual é válida a lei do corte é um grupo.
 - (n) Se H e G são grupos e $f:H\longrightarrow G$ é um monomorfismo, então os grupos f(H) e H são isomorfos.