PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2002179418 A

(43) Date of publication of application: 26.06.02

(51) Int. CI	C01B 31/02		
	B82B 3/00		
	C23C 16/26		·
	C23C 16/44		
	G01N 13/16		
	H01J 1/304		
	H01J 9/02		
(21) Application	number: 2000379334	(71) Applicant:	TOHOKU TECHNO ARCH CO LTD

(72) Inventor:

(54) METHOD FOR FORMING CARBON NANOTUBE

(57) Abstract:

(22) Date of filing: 13.12.00

PROBLEM TO BE SOLVED: To provide a method to grow carbon nanotubes on projections on a substrate having projections.

SOLUTION: Projections are formed on a silicon or quartz substrate, and then a thin film of iron group elements such as nickel, iron and cobalt or compounds of these is deposited as a catalyst metal on the substrate. Then carbon nanotubes are grown by a hot filament chemical vapor deposition method or microwave plasma vapor phase deposition method by applying a negative voltage on the substrate. The vapor phase deposition method is carried out while heating the substrate. Thus, carbon nanotubes can be rather easily and selectively grown on the silicon projections. Or, carbon nanotubes can be grown on the top end of a commercially available silicon SPM probe instead of the substrate. By using the probe made of carbon nanotubes, the profile of a sample can be accurately observed with high resolution.

COPYRIGHT: (C)2002,JPO

ONO TAKAHITO ESASHI MASAKI

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-179418 (P2002-179418A)

(43)公開日 平成14年6月26日(2002.6.26)

(51) Int.Cl.7	-	識別記号	FI	テーマコード(参考)
C01B	31/02	101	C 0 1 B 31/02	101F 4G046
B 8 2 B	3/00		B 8 2 B 3/00	4 K 0 3 0
C 2 3 C	16/26		C 2 3 C 16/26	
	16/44		16/44	Α
G01N	13/16		G01N 13/16	С
		審査請求	未請求 請求項の数5 OL	(全 10 頁) 最終頁に続く
(21)出願番号	}	特顧2000-379334(P2000-379334)	(71)出願人 899000035	
			株式会社 東北	比テクノアーチ
(22)出願日		平成12年12月13日(2000.12.13)	宮城県仙台市	了菜区荒巷宇青菜468番地
			(72)発明者 小野 崇人	
			宮城県仙台市大	k白区八木山香澄町10-5-
			301	
			(72)発明者 江刺 正喜	
			1	K白区八木山南 1 - II - 9
			(74)代理人 100098729	
			弁理士 重信	
			Fターム(参考) 40046 CAO	
				5 AA09 BA27 BB01 CA06
			CA1:	1 DA02 KA22

(54) 【発明の名称】 カーボン・ナノチューブ作成方法

(57)【要約】

【課題】 突起を有する基板に対して、突起上にカーボン・ナノチューブを成長させる方法を提供する。

【解決手段】 シリコンや石英の基板上に突起を形成し、その基板に触媒金属としてニッケル、鉄、コバルト等の鉄族元素やその化合物の薄膜を堆積する。そして熱フィラメント化学気相堆積法やマイクロ波プラズマ気相堆積法を用い、基板を負電圧として、カーボン・ナノチューブを成長させる。また、前述の気相堆積法は、基板を加熱しながら行う。これらの方法により、比較的簡便にシリコンの突起上に選択的にカーボン・ナノチューブを成長させることができる。また、基板の代わりに、市販のシリコン製SPMプローブの先端にカーボン・ナノチューブを選択的に成長させることができる。カーボン・ナノチューブのプローブを用いれば、試料の形状を高分解能で正確に観察することができる。

【特許請求の範囲】

【請求項 1 】 カーボン・ナノチューブ作成方法であって、

突起を有する基板に対して、触媒金属の薄膜を生成し、 気相堆積法を用いて、前記基板を乗せたステージを負電 圧とするとともに、基板を加熱しながら、前記突起上に カーボン・ナノチューブを成長させることを特徴とする カーボン・ナノチューブ作成方法。

【請求項2】 請求項1記載のカーボン・ナノチューブ 作成方法において、前記気相堆積法は、熱フィラメント 化学気相堆積法であり、基板への加熱は、熱フィラメントの輻射を用いて行うことを特徴とするカーボン・ナノ チューブ作成方法。

【請求項3】 請求項1又は2記載のカーボン・ナノチューブ作成方法において、

前記基板は絶縁物の基板であり、該基板の突起にはシリコン膜が生成されており、

前記触媒金属の薄膜は、前記シリコン膜上に生成すると とを特徴とするカーボン・ナノチューブ作成方法。

【請求項4】 請求項1~3のいずれかに記載のカーボ 20 ン・ナノチューブ作成方法を用いて作成されたカーボン ・ナノチューブを突起上に有する電子放出源構造。

【請求項5】 請求項3記載のカーボン・ナノチューブ 作成方法を用いて作成されたカーボン・ナノチューブを 突起上に有する電子放出源構造と、

前記電子放出源を選択する配線とを備えることを特徴と するフィールド・エミッション・ディスプレイ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、カーボン・ナノチューブ(CNT)の作成方法に関し、特に走査型プローブ顕微鏡(SPM)のプローブ(探針)やフィールド・エミッション・ディスプレイ(FED)等の電子放出源に適したカーボン・ナノチューブ作成に関する。 【0002】

【従来の技術】カーボン・ナノチューブ(CNT)とは、炭素原子からなるチューブ状のナノ構造体であり、導電性を有し、電子放出しやすい性質を有している。このカーボン・ナノチューブは、発見以来、数々の特性に関して研究がなされ、その特異な性質が次々と明らかに40なってきた。なかでもとりわけ注目を集めているのが、その特異な形態と優れた機械的性質である。カーボン・ナノチューブはその名の通り、グラファイトを形成するカーボン層の1枚であるグラフェンが一層あるいは複数集まって同心円状の円筒構造を持っている。その形状は、直径が数nmから数十nmであるのに対し、縦方向は数μmから数十μmもある高アスペクト比の構造である。このような構造のため、その先端に電界が集中しやすく、電子放出源として注目を集めている。このカーボン・ナノチューブの応用として、電界電子放出用の探50

針、フィールド・エミッション・ディスプレイや蛍光表示装置、電子顕微鏡等の各種分析装置等があり、電界放射エミッタ等の真空エレクトロニクスへの応用が期待されている。また、このチューブはほぼ完全にグラファイト化しており、強靭な(ダイアモンドの結合よりも強い)グラファイトの面内結合の性質が色濃く現れているため、カーボン・ナノチューブの機械的強度は大変優れている

【0003】 このようなカーボン・ナノチューブのユニ ークな特性をさまざまなデバイスに応用するため、活発 に研究開発が行われている。これらのデバイスでは所望 の場所に任意のカーボン・ナノチューブを成長させると とが要求される。その1つとして走査型プローブ顕微鏡 (SPM)の探針への応用があげられる。走査型プロー ブ顕微鏡は、鋭い探針を試料表面に沿って走査し、表面 のトポグラフィーや探針表面間のさまざまな相互作用を 画像化・観察する顕微鏡である。近年、走査型プローブ 顕微鏡の探針(プローブ)としてカーボン・ナノチュー ブは理想的な材料として期待されている。このカーボン ・ナノチューブを先端に持つ探針は、先端の曲率半径が 変わらず高分解能を維持できる。しなやかであるため生 体試料等の柔らかい試料の計測にも適している。さら に、段差などで探針に異常な応力がかかってもその歪み をよく吸収する。しかしながら、今のところこのような SPM探針はカーボン・ナノチューブをあらかじめ別の 場所で成長させておき、これを何らかの方法で探針の末 端に接着させるという手法をとるものがほとんどであ る。このような手法ではその製作には高い技能が要求さ れ、一部の熟練者による少数の製作にとどまるなど生産 性に大きな問題がある。また、最近報告されているSP M探針先端へのカーボン・ナノチューブの選択成長も、 成長触媒の堆積方法が特殊であるなどの問題がある。 [0004]

【発明が解決しようとする課題】本発明の目的は、基板上にカーボン・ナノチューブを選択的に成長させる方法を提供するととである。

[0005]

【課題を解決するための手段】上記目的を達成するために、本発明は、カーボン・ナノチューブ作成方法であって、突起を有する基板に対して、触媒金属の薄膜を生成し、気相堆積法を用いて、前記基板を乗せたステージを負電圧とするとともに、基板を加熱しながら、前記突起上にカーボン・ナノチューブを成長させる。これにより、比較的簡便に基板の突起上に選択的にカーボン・ナノチューブを成長させることができる。前記気相堆積法は、熱フィラメント化学気相堆積法であり、基板への加熱は、熱フィラメントの輻射を用いて行うこともできる。前記基板は絶縁物の基板であり、該基板の突起上にはシリコン膜が生成されており、前記触媒金属の薄膜は、前記シリコン膜上に生成する。上記の方法を用いて

作成されたカーボン・ナノチューブを基板の突起上に有 する電子放出源構造も本発明である。この電子放出源構 造を走査型プローブ顕微鏡 (SPM) に用いることによ り、試料の形状を高分解能で正確に観察することができ る。また、上記の方法を用いて作成されたカーボン・ナ ノチューブを突起上に有する電子放出源構造と、前記電 子放出源を選択する配線とを備えたフィールド・エミッ ション・ディスプレイも本発明である。

[0006]

【発明の実施の形態】本発明の実施形態を、図面を参照 して詳細に説明する。本発明の発明者はまず、触媒金属 のドット上でのカーボン・ナノチューブの成長状態を観 察し、その後カーボン・ナノチューブの成長機構には電 場が大きく影響しているという知見をもとに、比較的簡 便な方法により、突起の先端にカーボン・ナノチューブ を選択的に成長させる技術を開発した。

【0007】 <カーボン・ナノチューブの電界誘起成長 >カーボン・ナノチューブの成長にはその成長を促進す る成長触媒が必要となる。 これにはNiやCo, Feな ど鉄族元素やその化合物が用いられる。これをあらかじ め半導体リソグラフィー技術を応用してパターンニング しておくことにより、カーボン・ナノチューブを選択的 に成長させることができる。しかし、この方法を用いる 場合、単一のカーボン・ナノチューブを成長させるには 電子線描画法などを用いなければならなくなる。さらに パターンが小さくなるとカーボン・ナノチューブの成長 の割合が下がる。そこで、より簡便で効率のよい成長法 を開発するために、本発明の発明者は現在研究がなされ ているカーボン・ナノチューブの成長モデルのうちの齋 藤らの疑似液体モデル(Y. Saito, T. Yoshikawa, M. I 30 nagaki, M. Tomita and T. Hayashi: Chem. Phys. Let t. 204, 277(1993)) に注目した。図1は、そのカーボ ン・ナノチューブの成長モデルを示した図である。図1 は、等電位面130で示した電界中において、炭素イオ ン121~123を集めて成長を続けているカーボン・ ナノチューブ110を示している。図1(a)では、カ ーボン・ナノチューブ110の成長中、チューブ110 の先端は疑似液体状態になっている。ナノチューブ11 0は、静電引力により表面が引き伸ばされていき、図1 (b)のように電界方向に成長している。ナノチューブ 40 110先端に電界が集中し、炭素イオン121~123 や分極された中性炭素原子がその先端に吸引・堆積す る。このようにしてナノチューブ110は電界方向に成 長してゆく。後述するように、本発明ではあらかじめ基 板に突起を形成しておけば、そこに電界が集中し、この 強電界によってカーボン・ナノチューブが選択的に成長 するのではないかと考えて、その先端での単一カーボン ・ナノチューブの成長をおこなっている。

【0008】<熱フィラメント化学気相堆積法装置>図

用いた熱フィラメント化学気相堆積法(HF-CVD) 装置の摂略を示した図である。従来からカーボン・ナノ チューブの選択成長法として、アーク放電法やレーザア ブレション法等があるが、基板表面への成長には適して いない。また、プラズマによる成長法では装置が複雑に なる。そこで、図2に示すような熱フィラメントHF-CVD装置を作製してカーボン・ナノチューブの成長を 行った。図2において、カーボン・ナノチューブを成長 させるチャンバ200は、外部からガスを注入する注入 10 口240、ガスを排出する排出口250と、内部には熱 フィラメント210と上下に移動可能なステージ220 を備えている。とのステージ220の上には、カーボン ・ナノチューブを成長させる対象である基板230が乗 っており、ステージ220には、電圧が可変な直流電源 260が接続されている。図2に示した構成の装置にお いて、原料ガスが、ガス注入口240よりチャンバ20 0に導入され、高温に熱せられた熱フィラメント210 で分解・活性化されて活性種となる。とれがフィラメン ト210近傍に配置した基板230に供給される。フィ ラメントからの熱により基板230は熱せられている。 基板230にはあらかじめ触媒金属であるニッケルを排 積させている。この基板230のニッケルと活性種が反 応しカーボン・ナノチューブが成長する。

[0009]

【実施例】<SPMプローブ>以下に示す実施例のプロ ーブでは、とくに記述がない場合、上述の熱フィラメン ト化学気相堆積法装置を用いて、以下に説明する条件で 行っている。原料ガスには水素ガス(H2)とアセチレ ン(C₂ H₂)を用いている。C₂ H₂を3Pa導入 し、その後H₂を導入して合計30 Раとした。熱フィ ラメント210はφ0.6mmの線を用いた。この熱フ ィラメント210を通電加熱し、チャンバ200の外部 から放射温度計で温度を計測し、1900℃に保った。 ステージ220は上下方向に移動可能で、成長時には基 板230が熱フィラメント210から5mm程度の位置 に来るようにステージ220の位置を調整した。基板2 30として市販のシリコン製SPMプローブを用いた。 これらにはあらかじめスパッタによりニッケルを十nm 程度堆積させておいた。カーボン・ナノチューブの成長 時間はおよそ15分とした。

【0010】図3はシリコン基板の突起として市販のS PMプローブを用いて、カーボン・ナノチューブを成長 させた過程を示した図である。図3に示すように市阪の シリコン製SPMプローブ612を用意し(図3 (a))、そのSPMプローブ612にスパッタで探針 のある面全体にニッケル614をおよそ5 n m程度堆積 させる(図3(b))。これを基板とし、図2に示した HF-CVD装置を用い、ステージに電圧をかけて処理 を行うと、先端よりカーボン・ナノチューブ616が成 2は、カーボン・ナノチューブを選択成長させるために 50 長する(図3(c))。なお、電圧が可変な電源660

5

を用いてステージに電圧をかけているので、基板にかかる電圧の設定ができる。そこでステージにかける電圧を300V、0V、-300VにしてのHF-CVDを試*

* みた。その結果を以下の表 1 に示す。 (表 1)

ステージの バイアス	300V	0 V	-300V
カーボン・ナノ	成長しない	チップ上の全ての	チップの頂点に
チューブの状態		場所において成長する	おいて成長する

【0011】とのように、ステージに負の電位を与えた とき、基板の先端にカーボン・ナノチューブが成長する ととがわかる。図4は電界中でそのカーボン・ナノチュ ープ730の成長する様子を示した図である。HF-C VD装置内には炭素イオン721~725や分極された 中性炭素原子が存在している。図4(a)のように、等 電位面740に示すような電界中においてニッケルでコ ーティングされたSPMプローブ710の突起している 部分には電界が集中する。 これによりSPMプローブ7 10先端に炭素イオン721,722や分極された中性 炭素原子が引き寄せられる。そして図4 (b) のように 静電引力により電界方向にニッケル表面が引き延ばされ る効果とともに、さらにカーボン・ナノチューブ730 に炭素イオン等が引き寄せられカーボン・ナノチューブ 730の成長を促進する。図5(a)はニッケルでコー ティングされたSPMプローブ710上で300ヵmに 成長したカーボン・ナノチューブである。しかしなが ら、プローブの先端形状が欠けて平らである場合では、 図5(b)のようにニッケルでコーティングされたSP Mプローブ710の先端から多数のカーボン・ナノチュ ーブが成長してしまう。とれは電界の集中がSPMプロ ーブの先端の一点ではなく、先端の面の縁全体に起こっ たため、その縁から複数本のカーボン・ナノチューブが 成長したものと考えられる。また、バイアス電圧をかけ ない場合、図6に示すようにプローブ全体に成長してし まう。とれはフィラメントからの熱電子によってある程 度のバイアスはかかったが、電界がプローブの先端に十 分に集中しなかったためカーボン・ナノチューブがプロ ーブ全体に成長したと考えられる。

【0012】以上の方法により得られた図5(a)のようなプローブを使ったSPMで、SiC上に電子ビームリソグラフィーを用いて作製した直径およそ50nm、75nm周期のドットが規則正しく配列している基板を観察した。測定はタッピングモードにて行った。なお、プローブのカーボン・ナノチューブは直径50nm、長さ400nmである。図7は比較のためにカーボン・ナノチューブのプローブと通常のプローブを用いて計測した、測定イメージである。図7(a)はカーボン・ナノチューブのプローブを用いたSPMの画像、図7(b)は市販の通常のプローブを用いた画像である。図7(a)、(b)を見てもわかるように、カーボン・ナノチューブを持つプローブでは比較的試料の形状を正確に

対称性を反映した画像になっている。また、カーボン・ナノチューブのプローブを用いた場合の方がドットは小10 さく見える。これもカーボン・ナノチューブのプローブがより正確に表面をトレースしており、通常のブローブではドットとドットの間の底面までプローブが届いていないと考えられる。

【0013】<FEDの電子放出源>フィールド・エミ ッション・ディスプレイ(FED)の画素を発光させる 等のための電子放出源(冷陰極)としてカーボン・ナノ チューブを用いる例を述べる。図8は本発明の作成方法 により電子放出源を作成する過程を示している。図8 (i)~(vi)の順を追って説明する。まず、ガラス基 板810を用意し(図8(i))、エッチング等で基板 810に突起を作る(図8(ii))。ガラス基板810 の突起部分を電極とするためのシリコン膜820を生成 する(図8(iii))。スパッタにより突起上にカーボ ン・ナノチューブを生成するための触媒となるニッケル 840の膜、シリコンに通電するための金属配線830 を作成する(図8(iv))。次に、基板810全面を絶 縁膜850で覆い、突起の部分と金属配線830上にエ ッチングで穴をあける(図8(v))。金属配線830 に通電できるように、金属配線830上の穴より金属配 線862を設け、突起の周辺には金属配線864を設け る(図8(vi))。最後に前述の実施例と同じく、例え ぱHF-CVDによって突起上にカーボン・ナノチュー プを成長させる。図9は、上述の過程を経て作成され た、FEDに用いるための格子状に並べられている電子 放出源の横方向から見た断面の模式図を示したものであ る。図9(a)のように並べて配置されている電子放出 源の1つを拡大して表示したものを図9(b)として示 しており、突起上には成長したカーボン・ナノチューブ 870がある。配線830および配線864で、電子を 放出する電子放出源を選択することができる。このカー ボン・ナノチューブ870を用いた電子放出源の性能は 非常に高く、低電界で高い電流密度の電子放出が得ら れ、寿命も長い。

フチューブのフローブと通常のプローブを用いて計測した、測定イメージである。図7(a)はカーボン・ナノチューブのプローブを用いたS PMの画像、図7(b)は市販の通常のプローブを用いた画像である。図7(a)、(b)を見てもわかるように、カーボン・ナノチューブを持つプローブでは比較的試料の形状を正確に表しているのに対し、通常のプローブでは探針形状の非 50 しかし、この条件よりも上述の C_2 H $_2$ を原料ガスとし

10

20

850

870

862, 864

て用いた方が、直線的かつ高密度にカーボン・ナノチュ ーブが成長する。また、気相堆積法として熱フィラメン ト化学気相堆積法を用いているが、他の、例えば、マイ クロ波プラズマ気相堆積法を用いてもよい。上述の熱フ ィラメント化学気相堆積法を用いた実施例では、基板へ の加熱を熱フィラメントからの輻射で行っているが、例 えば、ヒータを用いて基板を直接的に熱するとともでき る。なお、カーボン・ナノチューブの径は、あらかじめ 形成した突起先端の径および触媒金属となる薄膜の厚さ によって制御することが可能である。

[0015]

【発明の効果】本発明では、上述したように、基板の突 起部の形状を利用し、そこにかかる電界を操作すること によって、比較的簡便な手法により基板の突起上にカー ボン・ナノチューブを選択的に成長させることができ る。これにより、シリコンの突起上に選択的にカーボン ・ナノチューブを成長させることができる。

【図面の簡単な説明】

【図1】 カーボン・ナノチューブの成長モデルの1つ を示した図である。

【図2】 カーボン・ナノチューブの選択成長をさせる ための熱フィラメントCVD装置の概略を示した図であ

【図3】 市販のSPMプローブを用いてカーボン・ナ ノチューブを成長させた過程を示した図である。

【図4】 電界中でカーボン・ナノチューブが成長する 様子を示した図である。

【図5】 SPMプローブ上で成長したカーボン・ナノ チューブの画像を示す図である。

【図6】 SPMプローブ上で成長したカーボン・ナノ 30 840 チューブの画像を示す図である。

【図7】 比較のためにカーボン・ナノチューブのブロ ーブと通常のプローブを用いて計測した、測定イメージ

を示す図である。

【図8】 本発明の作成方法により電子放出源を作成す る過程を示した図である。

S

【図9】 格子状に並べられている電子放出源の横方向 から見た断面の模式図を示した図である。

【符号の説明】	
1 1 0	カーボン・ナノチューブ
121~123	炭素イオン
130	等電位面
200	チャンバ
210	熱フィラメント
220	ステージ
230	基板
240	ガス注入口
250	ガス排出口
260	電源
270	アース
612	市販のシリコン製SPMプローブ
6 1 4	ニッケル
616	カーボン・ナノチューブ
660	電源
	アース
7 1 0	SPMプローブ
$721 \sim 725$	炭素イオン
7 3 0	カーボン・ナノチューブ
	等電位面
	ガラス基板
820	シリコン膜
830	金属配線

ニッケル

金属配線

カーボン・ナノチューブ

絶縁膜

[図5]

【図6】

【図9】

【図7】

フロントページの続き

(51)Int.Cl.' 識別記号 FI テマント (参考)
HOlJ 1/304 HOlJ 9/02 B
9/02 1/30 F