Linear Algebra Assignment #4

2020/09/21 2018112749 对进会

 \mathbf{v}_3 . (5pt) Determine the dimension of the subspace H of \mathbb{R}^3 spanned by the vectors $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 . (First, find a basis for H.)

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -8 \\ 6 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 3 \\ -7 \\ -1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -1 \\ 6 \\ 7 \end{bmatrix}$$

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0.2 \end{bmatrix}, \begin{bmatrix} 0.2\\1 \end{bmatrix} \right\}$$

For \mathbb{R}^2 . If $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, what is \mathbf{x} ?

Q3. (10pt) Given \mathbf{u} in \mathbb{R}^n with $\mathbf{u}^T\mathbf{u} = 1$, let $P = \mathbf{u}\mathbf{u}^T$ (and outer product) and Q = I - 2P. Justify statements (a), (b), and (c).

(a)
$$P^2 = P$$
 (b) $P^T = P$ (c) $Q^2 = I$

(a)
$$\rho^2 = (u \cdot u^T)(u \cdot u^T) = u \cdot u^T u \cdot u^T = u \cdot u^T = \rho$$
.

(b)
$$P^T = (u_1 u^T)^T = u^T \cdot u = u_1 u^T = P$$
.

$$(c) Q^2 = (I-2P)(I-2P) = I^2 - 4P + 4P^2 = I - 4P + 4P = I$$

Q4. (3pt) Let $\mathbf{u} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} 1 \\ 5 \\ 3 \end{bmatrix}$. Determine P and Q as in Q3, and compute $P\mathbf{x}$ and $Q\mathbf{x}$.

$$P = uuv^{T} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}.$$

$$QK = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}$$

$$Q = I - 2\rho = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

 \star The transformation $\mathbf{x} \mapsto P\mathbf{x}$ is called a projection, and $\mathbf{x} \mapsto Q\mathbf{x}$ is called a Householder reflection. Such reflections are used in computer programs to create multiple zeros in a vector(usually a column of a matrix)