E1 222 Stochastic Models and Applications Problem Sheet 6

1. Let X, Y be continuous random variables with joint density

$$f_{XY}(x,y) = K(1+xy), \ 0 \le x, y \le 1.$$

Find value of K, E[Y|X] and $E[X^2 + Y^2]$.

2. Let X, Y be discrete random variables, taking non-negative integer values, with joint mass function

$$P[X = i, Y = j] = e^{-(a+bi)} \frac{(bi)^j}{j!} \frac{a^i}{i!}$$

where a, b are positive real numbers. Find Cov(X, Y).

- 3. A total of m keys are to be put in n boxes with each key independently being put in box-i with probability p_i . (Note that $p_i \geq 0, \forall i$ and $\sum_{i=1}^n p_i = 1$). Each time a key is put in a non-empty box, we say a collison has occurred. Find the expected number of collisons.
- 4. Let X, Y be jointly normal with means zero, variances σ_1^2, σ_2^2 and correlation coefficient ρ . Let $W = X \cos \theta + Y \sin \theta$ and $Z = X \cos \theta Y \sin \theta$. Find a value of θ so that Z, W are independent.
- 5. Let X_1, \dots, X_n be *iid* Poisson random variables with mean 1. Let $S_n = \sum_{k=1}^n X_k$. Find $\operatorname{Prob}[S_n \leq n]$. Show that

$$\lim_{n \to \infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} = 0.5.$$

- 6. A fair die is rolled repeatedly till each of the six outcomes occur at least once. Let Z denote the number of rolls needed. Let Y denote the number of distinct outcomes in the first five rolls of the die. Find E[Z|Y=2].
- 7. Let X_i , $i=1,2,\cdots$ be a sequence of *iid* Gaussian random variables with $EX_i=0$ and $Var(X_i)=1$. Let $S_n=\sum_{i=1}^n X_i$. Let F_n be the distribution function of S_n/n and let G_n be the distribution function of S_n/\sqrt{n} . Find F_n and G_n . Do these distribution functions converge as $n\to\infty$? If so, what are the limits?

- 8. Let X_i , $i = 1, 2, \dots$, be *iid* random variables which are uniform over [0,1]. Let $Z_n = \min(X_1, \dots, X_n)$ and $W_n = \max(X_1, \dots, X_n)$. Let $S_n = (Z_n + W_n)/2$. Does S_n converge in probability? Explain.
- 9. Let π be a stationary distribution of a Markov Chain. (i). Show that if $\pi(x) > 0$ and x leads to y then $\pi(y) > 0$. (ii). Suppose the chain has transition probabilities that satisfy the following: for some two states y and z, P(x,y) = cP(x,z), $\forall x$, where c is a constant. Show that $\pi(y) = c\pi(z)$.
- 10. Let $\{N(t), t \geq 0\}$ be a Poisson process with rate λ and assume that it is independent of a non-negative random variable, T. Suppose the mean of T is μ and its variance is σ^2 . Find (i). E[N(T)], (ii). Var(N(T)), (iii). Cov(T, N(T))