Computer Systems Lecture 24

Overview

- Half adder
- Full adder
- Sequential logic circuits
- Flip-flops
- Other types of flip-flops

Doing arithmetic via logic

• Binary addition. For the addition of single-bit binary numbers: (Half-)adder.

Other possible designs for half adder

Full adder

• For the addition of multi-bit binary numbers one needs to deal with carry-in from previous stage, that means the adder should have three inputs.

Full adder (cont.)

Fig. 5.7 Paralleladdition for 4 bit numbers.

Ex. Extend 4-bit full adder into 8-bit full adder

Sequential logic circuits

- Combinational (combinatorial) logic circuits.
 - In all Boolean circuits that we have seen so far, the output at any moment depends only on the input at the same moment.
 - No memory is there.
- Sequential logic circuits.
 - The output depends also on the state of the circuit. The state of the circuit is somehow stored within the circuit.
 - There is a memory inside.

Flip-flops, or latches

- The basic memory element of the sequential circuits is called a **flip-flop**, or **latch**.
- The simplest flip-flop is made up of two NAND gates. It is called set-reset (SR) flip-flop.

• Inputs are S and R while outputs are Q an \bar{Q} .

SR flip-flop

ullet Suppose that S and R are both initially set to 1. Can we determine two outputs Q and ar Q ? **No.** Two variants are possible:

$$Q=1$$
 and $ar Q=0$, or

$$Q=0$$
 and $ar{Q}=1$

Everything is consistent with any of these variants.

SR flip-flop (cont.)

• If we fix both inputs to be 1, then the circuit may have one of the two possible **states**. The circuit is **stable** as long as R and S remain at 1.

SR flip-flop (cont.)

- Let's assume that flip-flop is in a stable state with Q=1.
- Suppose, R momentarily becomes 0. This forces changing the value of Q to 0. The circuit will stay in this state even after input R returns to 1. The flip-flop **switched** the states.
- If then input S momentarily becomes 0 the system will switch the state back.

SR flip-flop (cont.)

- Thus, SR flip-flop remembers which input was set (momentarily) to () last.
- One constraint: the logic surrounding this flip-flop must avoid situations where **both** R and S are 0 at the same time.

State table of SR flip-flop

R	S	Q
0	0	?
0	1	0
1	0	1
1	1	Q_{prev}

SR representation

FlipFlop(SR)

Other types of flip-flops

- All these flip-flops has an input marked for **clock**. The new output occurs when the clock is pulsed, i.e. momentarily changed from 1 to 0.
- CLR (clear) and PR (preset) inputs are used to initialise the flip-flop to known value (0 and 1, respectively).

Other types of flip-flops (cont.)

$$\begin{array}{c|c} \overline{1 \mid Q} \\ \hline 0 \mid Q_{prev} \\ \overline{1 \mid Q_{prev}} \end{array}$$

$$\frac{\text{JK} \mid \text{Q}}{\text{00} \mid Q_{prev}}$$
 $0.1 \mid 0.$
 $1.0 \mid 1.$
 $1.1 \mid \bar{Q}_{prev}$

Use of D flip-flops - Copying data

Circuit to copy data from one register to another.

• Q. What type of flip-flop has an illegal state?

• Q. What type of flip-flop allows us to copy data?

• Q. What type of circuit has 'memory'?

Readings

• [Wil06] Sections 5.1, 5.2, 6.1.