Ítéletlogika

I. Igazságértékelésfüggvény

A feltételek rekurzív definíciója

- Ha A ítéletváltozó, a φA^i feltételt kielégítő \mathcal{I} interpretációk azok, amelyekre $\mathcal{I}(A) = i$, a φA^h feltételt kielégítők pedig azok, amelyekre $\mathcal{I}(A) = h$.
- A $\varphi(\neg A)^i$ feltétel pontosan akkor teljesül, ha teljesül a φA^h feltétel.
- A $\varphi(\neg A)^h$ feltétel pontosan akkor teljesül, ha teljesül a φA^i feltétel.
- A $\varphi(A \wedge B)^i$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^i és a φB^i feltételek.
- A $\varphi(A \wedge B)^h$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^h vagy a φB^h feltételek.
- A $\varphi(A \vee B)^i$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^i vagy a φB^i feltételek.
- A $\varphi(A \vee B)^h$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^h és a φB^h feltételek.
- A $\varphi(A\supset B)^i$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^h vagy a φB^i feltételek.
- A $\varphi(A\supset B)^h$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^i és a φB^h feltételek.

Tétel: Tetszőleges A ítéletlogikai formula esetén φA^i feltételeket pontosan az A^i -beli interpretációk teljesítik. A φA^h feltételeket pedig pontosan az A^h -beli interpretációk.

II. Formulák és formulahalmazok szemantikus tulajdonságai

- Egy \mathcal{I} interpretáció kielégít egy B formulát ($\mathcal{I} \models_0 B$) ha a formula helyettesítési értéke i az \mathcal{I} interpretációban.
- Egy B formula kielégíthető, ha legalább egy interpretáció kielégíti.
- Egy B formula kielégíthetetlen, ha egyetlen interpretáció sem elégíti ki.
- Egy B formula tautologia (ítéletlogikai törvény) ($\models_0 B$), ha minden interpretáció kielégíti.
- Egy \mathcal{I} interpretáció kielégít egy \mathcal{F} formulahalmazt $(\mathcal{I} \models_0 \mathcal{F})$, ha a formulahalmaz minden formuláját kielégíti.
- Egy \mathcal{F} formulahalmaz *kielégíthető*, ha legalább egy interpretáció kielégíti.

- Egy \mathcal{F} formulahalmaz *kielégíthetetlen*, ha nincs olyan interpretáció, ami egyszerre minden \mathcal{F} -beli formulát kielégít.
- Egy A formulának a B formula tautologikus következménye $(A \models_0 B)$, ha minden A-t kielégítő interpretáció kielégíti B-t is.
- A és B tautologikusan ekvivalensek $(A \sim_0 B)$, ha $A \models_0 B$ és $B \models_0 A$ is teljesül.
- Egy \mathcal{F} formulahalmaznak a B formula tautologikus követ $kezménye(\mathcal{F} \models_0 B)$, ha minden \mathcal{F} -t kielégítő interpretáció kielégíti B-t is.

III. Nevezetes ekvivalenciák (⊤ tautológia, ⊥ kielégíthetetlen formula.)

- (a) $\neg \neg X \sim_0 X$
- (b) $X \vee X \sim_0 X$ valamint $X \wedge X \sim_0 X$,
- (c) $X \vee Y \sim_0 Y \vee X$ valamint $X \wedge Y \sim_0 Y \wedge X$,
- (d) $(X \vee Y) \vee Z \sim_0 X \vee (Y \vee Z)$ valamint $(X \wedge Y) \wedge Z \sim_0 X \wedge (Y \wedge Z)$,
- (e) $(X \vee Y) \wedge Z \sim_0 (X \wedge Z) \vee (Y \wedge Z)$ valamint $(X \wedge Y) \vee Z \sim_0 (X \vee Z) \wedge (Y \vee Z)$,
- (f) $(X \vee Y) \wedge Y \sim_0 Y$ valamint $(X \wedge Y) \vee Y \sim_0 Y$,
- (g) $X \supset Y \sim_0 \neg X \vee Y$,
- (h) $\neg (X \land Y) \sim_0 \neg X \lor \neg Y$ valamint $\neg (X \lor Y) \sim_0 \neg X \land \neg Y$,
- (i) $X \vee \neg X \sim_0 \top$ valamint $X \wedge \neg X \sim_0 \bot$,
- (j) $X \vee \top \sim_0 \top$ valamint $X \wedge \bot \sim_0 \bot$,
- (k) $X \lor \bot \sim_0 X$ valamint $X \land \top \sim_0 X$.

IV. Az ítéletlogika eldöntésproblémája:

$$\{A_1, A_2, \dots, A_n\} \models_0^! B$$

 $\{A_1,A_2,\ldots,A_n\}\models_0 B\Leftrightarrow \{A_1,A_2,\ldots,A_n,\neg B\}$ kielégíthetetlen \Leftrightarrow $H=\{\mathrm{KNF}_{A_1},\mathrm{KNF}_{A_2},\ldots,\mathrm{KNF}_{A_n},\mathrm{KNF}_{\neg B}\}$ kielégíthetetlen \Leftrightarrow \Leftrightarrow A H halmaz formuláiban szereplő klózok halmaza kielégíthetetlen

Elsőrendű logika

I. Alapfogalmak

1.a. Egy elsőrendű logika L nyelvének ábécéje:

Logikán kívüli rész:

(Srt, Pr, Fn, Cnst)

- Srt, nemüres halmaz melynek elemei fajtákat szimbolizálnak, innentől |Srt| = 1 (egyfajtájú eset).
- Pr, predikátumszimbólumok halmaza. ν_1 minden $P \in \Pr$ -re megadja P aritását $(\in \mathbb{N})$
- Fn, függvényszimbólumok halmaza. ν_2 , minden $f \in \text{Fn}$ -re megadja f aritását $(\in \mathbb{N})$
- Cnst, konstansszimbólumok halmaza, ν_3 megadja a konstansok számát ($\in \mathbb{N}$).

1.b. Logikai jelek:

- Megszámlálható végtelen sok individuum változó $V = \{x, y, x_1, \ldots\}$
- $\bullet\,$ unér és binér logikai műveleti jelek $\neg, \wedge, \vee, \supset$
- kvantorok \forall , \exists
- elválasztójelek (,)

Az L nyelv ábécéjére $V[V_v]$ -vel hivatkozunk, ahol V_v adja meg a (ν_1, ν_2, ν_3) szignatúrájú $\langle \operatorname{Srt}, \operatorname{Pr}, \operatorname{Fn}, \operatorname{Cnst} \rangle$ halmaznégyest.

- 2. Term (egyfajtájú eset) ($L_t(V_v)$):
 - (alaplépés) minden individuum változó és konstans szimbólum term.
 - (rekurzív lépés) Ha $f \in \text{Fn } k$ -aritású függvényszimbólum és t_1, t_2, \dots, t_k termek, akkor $f(t_1, t_2, \dots, t_k)$ is term.
 - minden term az 1., 2. szabályok véges sokszori alkalmazásával áll elő.
- 3. Formula (egyfajtájú eset) ($L_f(V_v)$):
 - (alaplépés) Ha $P \in \Pr$ k-aritású predikátumszimbólum és t_1, t_2, \ldots, t_k termek, akkor $P(t_1, t_2, \ldots, t_k)$ formula.
 - (rekurzív lépés)
 - Ha A formula, akkor $\neg A$ is az.
 - Ha A és B formulák, akkor $(A \circ B)$ is formula (\circ a három binér művelet bármelyike).
 - Ha A formula, akkor $\forall x A$ és $\exists x A$ is az.
 - Minden elsőrendű formula az 1., 2. szabályok véges sokszori alkalmazásával áll elő.
- II. Szemantika (egyfajtájú eset)
- 1. Interpretáció

Egy elsőrendű logikai nyelv $L(V_v)$ interpretációja egy

 $\mathcal{I} = \langle \mathcal{I}_{\mathrm{Srt}}, \mathcal{I}_{\mathrm{Pr}}, \mathcal{I}_{\mathrm{Fn}}, \mathcal{I}_{\mathrm{Cnst}} \rangle$ függvénynégyes, ahol

- \mathcal{I}_{Srt} egy U halmaz (univerzum) megjelölése,
- $\mathcal{I}_{\Pr}: P \mapsto P^{\mathcal{I}}$, minden $P \in \Pr$ -re, ha P k-aritású, akkor $P^{\mathcal{I}} \subseteq U^k$, (Logikai fv-es megfogalmazás: $P^{\mathcal{I}}(u_1, \dots, u_k) = i \Leftrightarrow (u_1, \dots, u_k) \in P^{\mathcal{I}}$)
- $\mathcal{I}_{Fn}: f \mapsto f^{\mathcal{I}}$, minden $f \in Fn$ -re, ha f k-aritású, akkor $f^{\mathcal{I}}: U^k \to U$ egy k változós művelet U-n,

- $\mathcal{I}_{\text{Cnst}}: c \mapsto c^{\mathcal{I}} \in U$.
- 2. Változókiértékelés

$$\kappa: V \to U$$
.

- 3. Termek értéke egy $\mathcal I$ interpretációban, egy κ változókiértékelés mellett:
 - Ha x_s individuumváltozó, $|x_s|^{\mathcal{I},\kappa}$ a $\kappa(x) \in U$ individuum. Ha c konstansszimbólum $|c|^{\mathcal{I},\kappa}$ az U-beli $c^{\mathcal{I}}$ individuum.
 - $|f(t_1, t_2, \dots, t_n)|^{\mathcal{I}, \kappa} = f^{\mathcal{I}}(|t_1|^{\mathcal{I}, \kappa}, |t_2|^{\mathcal{I}, \kappa}, \dots, |t_n|^{\mathcal{I}, \kappa}).$
- 4. Formulák igazságértéke egy $\mathcal I$ interpretációban, egy κ változókiértékelés mellett:
 - $|P(t_1, t_2, \dots, t_n)|^{\mathcal{I}, \kappa} = i, \Leftrightarrow (|t_1|^{\mathcal{I}, \kappa}, |t_2|^{\mathcal{I}, \kappa}, \dots, |t_n|^{\mathcal{I}, \kappa}) \in P^{\mathcal{I}}$
 - $|\neg A|^{\mathcal{I},\kappa} = \neg |A|^{\mathcal{I},\kappa}$ $|A \circ B|^{\mathcal{I},\kappa} = |A|^{\mathcal{I},\kappa} \circ |B|^{\mathcal{I},\kappa}$ $\circ \in \{\land, \lor, \supset\}$
 - $|\forall x A|^{\mathcal{I},\kappa} = i$, ha $|A|^{\mathcal{I},\kappa^*} = i$ minden κ^* x variánsára $|\exists x A|^{\mathcal{I},\kappa} = i$, ha $|A|^{\mathcal{I},\kappa^*} = i$ legalább egy κ^* x variánsára

 $(\kappa^* \text{ a } \kappa \text{ x-variánsa, ha } \kappa^*(y) = \kappa(y), \text{ ha } y \neq x.)$

III. Elsőrendű formulák szemantikus tulajdonságai

- Egy A elsőrendű logikai formula kielégíthető, ha van az elsőrendű logika nyelvének olyan \mathcal{I} interpretációja, és \mathcal{I} -ben olyan κ változókiértékelés, melyre $|A|^{\mathcal{I},\kappa}=i$, egyébként kielégíthetetlen.
- A logikailag igaz, ha minden \mathcal{I} , κ -ra, $|A|^{\mathcal{I},\kappa} = i$, ennek jelölése $\models A$.
- A és B elsőrendű logikai formulák logikailag ekvivalensek, ha ha minden \mathcal{I}, κ -ra, $|A|^{\mathcal{I},\kappa} = |B|^{\mathcal{I},\kappa}$. Jelölése $A \sim B$.
- Quine-táblázat: A prímkomponenseket ítéletváltozónak tekintő ítélettábla.
- \bullet Egy Aelsőrendű logikai formula tautologikusan igaz,ha Quine-táblázatában Aoszlopában csupa iáll. Jelölése $\models_0 A.$

IV. Elsőrendű logikai törvények

- ha $x \notin Par(A)$: $\forall x A \sim A \text{ és } \exists x A \sim A.$
- $\forall x \forall y A \sim \forall y \forall x A$ és $\exists x \exists y A \sim \exists y \exists x A$,
- $\neg \exists x A \sim \forall x \neg A$ és $\neg \forall x A \sim \exists x \neg A$.
- ha $x \notin \operatorname{Par}(A)$: $A \wedge \forall xB \sim \forall x(A \wedge B)$ és $A \wedge \exists xB \sim \exists x(A \wedge B)$, $A \vee \forall xB \sim \forall x(A \vee B)$ és $A \vee \exists xB \sim \exists x(A \vee B)$, $A \supset \forall xB \sim \forall x(A \supset B)$ és $A \supset \exists xB \sim \exists x(A \supset B)$, $\forall xB \supset A \sim \exists x(B \supset A)$ és $\exists xB \supset A \sim \forall x(B \supset A)$,
- $\forall x A \land \forall x B \sim \forall x (A \land B)$ és $\exists x A \lor \exists x B \sim \exists x (A \lor B)$.

Függvények aszimptotikus növekedési üteme

I. Általános összefüggések

A. Definíciók

Legyenek $f,g:\mathbb{N}\to\mathbb{R}^+$ függvények, ahol \mathbb{N} a természetes számok, \mathbb{R}^+ pedig a nemnegatív valós számok halmaza.

- f-nek g aszimptotikus felső korlátja (jelölése: f(n) = O(g(n)); ejtsd: f(n) = nagyordó g(n)) ha létezik olyan c > 0 konstans és $N \in \mathbb{N}$ küszöbindex, hogy $f(n) \le c \cdot g(n)$ minden $n \ge N$ -re.
- f-nek g aszimptotikus alsó korlátja (jelölése: $f(n) = \Omega(g(n))$) ha létezik olyan c > 0 konstans és $N \in \mathbb{N}$ küszöbindex, hogy $f(n) \ge c \cdot g(n)$ minden $n \ge N$ -re.
- f-nek g aszimptotikus éles korlátja (jelölése: $f(n) = \Theta(g(n))$) ha léteznek olyan $c_1, c_2 > 0$ konstansok és $N \in \mathbb{N}$ küszöbindex, hogy $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ minden $n \ge N$ -re.

A definíció $f: \mathbb{N} \to \mathbb{R}$ függvényekre is kiterjeszthető, ekkor tekintsük f helyett a $\max\{f, 0\}$ függvényt.

B. Tulajdonságok

 O, Ω, Θ 2-aritású relációnak is felfogható a $\mathbb{N} \to \mathbb{R}^+$ függvények univerzumán, pl. f = O(g)-ra O(f,g) relációként gondolhatunk (de ilyet általában nem írunk). Az alábbiakban néha így gondolunk rájuk.

- 1. O, Ω, Θ tranzitív (pl. $f = O(g), g = O(h) \Rightarrow f = O(h)$)
- 2. O, Ω, Θ reflexív
- 3. Θ szimmetrikus
- 4. O, Ω fordítottan szimmetrikus $(f = O(g) \Leftrightarrow g = \Omega(f))$
- 5. (köv.) Θ ekvivalenciareláció, a $\mathbb{N} \to \mathbb{R}^+$ függvények egy osztályozását adja. Az egyes függvényosztályokat általában "legegyszerűbb" tagjukkal reprezentáljuk. Pl. 1 (korlátos függvények), n (lineáris függvények), n^2 (négyzetes függvények).
- 6. $f, g = O(h) \Rightarrow f + g = O(h)$, hasonlóan Ω -ra, Θ -ra. (Összeadásra való zártság)
- 7. Legyen c>0 konstans $f=O(g)\Rightarrow c\cdot f=O(g),$ hasonlóan Ω -ra, Θ -ra. (Pozitív konstanssal szorzásra való zártság)
- 8. $f+g=\Theta(\max\{f,g\})$ (szekvencia tétele). A domináns tag határozza meg egy összeg aszimptotikus nagyságrendjét.

C. Ha létezik az f/g határérték

- ha $f(n)/g(n) \to +\infty$ $\Rightarrow f(n) = \Omega(g(n))$ és $f(n) \neq O(g(n))$
- ha $f(n)/g(n) \to c$ $(c > 0) \Rightarrow f(n) = \Theta(g(n))$
- ha $f(n)/g(n) \to 0$ $\Rightarrow f(n) = O(g(n))$ és $f(n) \neq \Omega(g(n))$

II. Konkrét függvények

- $p(n) = a_k n^k + \cdots + a_1 n + a_0 \ (a_k > 0)$, ekkor $p(n) = \Theta(n^k)$,
- Minden p(n) polinomra és c > 1 konstansra $p(n) = O(c^n)$, de $p(n) \neq \Omega(c^n)$,
- Minden c > d > 1 konstansokra $d^n = O(c^n)$, de $d^n \neq \Omega(c^n)$,
- Minden a, b > 1-re $\log_a n = \Theta(\log_b n)$,
- Minden c > 0 -ra $\log n = O(n^c)$, de $\log n \neq \Omega(n^c)$.

Eldönthetlenség

A. Definíciók

- Egy $L \subseteq \Sigma^*$ nyelv **Turing-felismerhető**, vagy **rekurzívan felsorolható** ha L = L(M) valamely M Turing-gépre. A rekurzívan felsorolható nyelvek osztályát RE -vel jelüljük.
- Egy $L \subseteq \Sigma^*$ nyelv **eldönthető**, vagy **rekurzív** ha létezik olyan M Turing-gép, mely minden bemeneten megáll és L = L(M). A rekurzív (eldönthető) nyelvek osztályát pedig R-rel jelöljük.
- Egy M Turing-gép **kódja** (jelölése $\langle M \rangle$): Ha $M = (Q, \{0, 1\}, \Gamma, \delta, q_0, q_i, q_n)$, ahol $Q = \{p_1, \dots, p_k\}, \Gamma = \{X_1, \dots, X_m\}, D_1 = R, D_2 = L, D_3 = S$, akkor egy $\delta(p_i, X_j) = (p_r, X_s, D_t)$ átmenet kódja $0^i 10^j 10^r 10^s 10^t$. $\langle M \rangle$ az átmenetek kódjainak felsorolása 11-el elválasztva.
- $\langle M, w \rangle = \langle M \rangle 111w$
- Néhány az előadáson tanult nevezetes nyelv:

$$L_{\text{átló}} = \{ \langle M \rangle \, | \, \langle M \rangle \not\in L(M) \}.$$

$$L_u = \{ \langle M, w \rangle \, | \, w \in L(M) \}.$$

 $L_{\text{halt}} = \{ \langle M, w \rangle \mid M \text{ megáll a } w \text{ bemeneten} \}.$

B. Tételek

- $L_{\text{átló}} \notin RE$
- $L_u \in RE, \ L_u \notin R$
- $L_{\text{halt}} \in RE$, $L_{\text{halt}} \notin R$
- Ha $L \in R$, akkor $\bar{L} \in R$.
- Ha $L \in RE$ és $\bar{L} \in RE$, akkor $L \in R$.

C. Visszavezetés

C1. Definíció

- $f: \Sigma^* \to \Delta^*$ kiszámítható, ha van olyan Turing-gép, ami kiszámítja. (lásd szófüggvényt kiszámító TG-ek)
- $L_1 \subseteq \Sigma^*$ visszavezethető $L_2 \subseteq \Delta^*$ -ra, ha van olyan $f: \Sigma^* \to \Delta^*$ kiszámítható szófüggvény, hogy $w \in L_1 \Leftrightarrow f(w) \in L_2$. Jelölés: $L_1 \leq L_2$

C2. Tételek

- Ha $L_1 \leq L_2$ és $L_1 \notin RE$, akkor $L_2 \notin RE$.
- Ha $L_1 \leq L_2$ és $L_1 \notin R$, akkor $L_2 \notin R$.

D. Egy konkrét eldönthetetlen nyelv

Post megfelelkezési probléma: Legyen Σ egy véges abc. Post megfelelkezési problémájának egy bemenete egy (s,t) $(s,t\in\Sigma^*)$ alakú rendezett párokból álló véges H halmaz. A megfelelkezési feladat egy H bemenetét megoldhatónak nevezzük, ha vannak olyan (nem feltétlenül különböző) H-beli $(s_1,t_1),(s_2,t_2),\ldots,(s_n,t_n)$ párok úgy, hogy $s_1s_2\ldots s_n=t_1t_2\ldots t_n$, Ilyenkor az $s_1s_2\ldots s_n$, vagy ami ugyanaz, a $t_1t_2\ldots t_n$ szót a H megoldásának nevezzük.

 $L_D = \{\langle D \rangle \mid a \ D \ dominókészletnek van megoldása\} \not\in R$

Bonyolultságelmélet

I. Időbonyolultság

A. Determinisztikus és nemdeterminisztikus időbonyolultsági osztályok

- TIME $(f(n)) = \{L \mid L \text{ eldönthető } O(f(n)) \text{ időigényű determinisztikus Turing-géppel} \}$
- NTIME $(f(n)) = \{L \mid L \text{ eldönthető } O(f(n)) \text{ időigényű nemdeterminisztikus Turing-géppel} \}$
- $P = \bigcup_{k>1} TIME(n^k)$.
- NP= $\bigcup_{k>1}$ NTIME (n^k) .
- Észrevétel: $P \subseteq NP$.
- Sejtés: $P \neq NP$ (sejtjük, hogy igaz, de bizonyítani nem tudjuk).

B. Visszavezetés polinom időben

B1. Definíció

- $f: \Sigma^* \to \Delta^*$ polinom időben kiszámítható, ha van olyan Turing-gép, ami polinom időben kiszámítja. (lásd szófüggvényt kiszámító TG-ek)
- $L_1 \subseteq \Sigma^*$ polinom időben visszavezethető $L_2 \subseteq \Delta^*$ -ra, ha van olyan $f: \Sigma^* \to \Delta^*$ polinom időben kiszámítható szófüggvény, hogy $w \in L_1 \Leftrightarrow f(w) \in L_2$. Jelölés: $L_1 \leq_p L_2$.

B2. Tételek

- Ha $L_1 \leq_n L_2$ és $L_2 \in P$, akkor $L_1 \in P$.
- Ha $L_1 \leq_p L_2$ és $L_2 \in NP$, akkor $L_1 \in NP$.

C. NP-teljesség

C1. Definíció

Egy L probléma NP-teljes, ha NP-beli és minden NP-beli probléma polinom időben visszavezethető rá.

C2. Tételek

- Ha L NP-teljes és $L \in P$ akkor P=NP.
- Ha L_1 NP-teljes, $L_2 \in \text{NP}$ és $L_1 \leq_p L_2$ akkor L_2 NP-teljes.

C3. Logika gyorstalpaló

- A logika ítéletlogika (nulladrendű logika) nevű modelljében egy logikai formula ítéletváltozókból és logikai műveletekből (pl. tagadás (¬, negáció), logikai és (∧, konjunkció), megengedő vagy (∨, diszjunkció)) épül fel. Az ítéletváltozókat igazra vagy hamisra értékelhetjük ki. Egy formula igazságértékét az ítéletváltozók adott kiértékelése mellett a formula felépítésére vonatkozó rekurzió alapján kapjuk meg. Egy formula kielégíthető, ha van olyan kiértékelés, ami igazra értékeli ki.
- Tétel: Minden formulához van vele ekvivalens KNF.
- Literál: egy ítéletváltozó vagy egy negált ítéletváltozó. Tag: literálok (lehet 1 darab is) diszjukciója. Konjunktív normálforma (KNF): Tagok (lehet 1 darab is) konjunkciója.
- Példa: $\varphi = (X \vee \neg Y) \wedge (\neg X \vee \neg Y \vee Z) \wedge \neg Z$ kielégíthető KNF, például ha mindhárom ítéletváltozó hamis, akkor φ igaz. $X \wedge (\neg X \vee \neg Y) \wedge Y$ kielégíthetetlen KNF.

C4. Egy NP-teljes nyelv

- Legyen SAT= $\{\langle \varphi \rangle \mid \varphi$ kielégíthető KNF $\}$, ahol $\langle \phi \rangle$ a ϕ formula valamilyen dekódolható kódja $\{0,1\}$ felett.
- Tétel (Cook): Sat NP-teljes.

D. Nevezetes (előadáson ismertetett) NP-teljes nyelvek

 $(\langle \rangle \text{ mindig valamilyen kellően tömör dekódolható kódolást jelent } \{0,1\}$ felett, most nem a kódolásra fókuszálunk.)

- Sat={ $\langle \varphi \rangle \, | \, \varphi$ kielégíthető KNF} (Cook tétel)
- 3SAT= $\{\langle \varphi \rangle \mid \varphi \text{ kielégíthető KNF és minden tagban pontosan 3 literál van}\}$
- 3Színezés= $\{\langle G \rangle \mid G$ 3-színezhető} (egy gráf 3-színezhető, ha csúcsai 3 színnel színezhetők úgy, hogy a szomszédos csúcsok színei különbözőek)
- KLIKK= $\{\langle G \rangle \mid G$ -nek van k méretű teljes részgráfja $\}$ (G irányítatlan gráf; $k \in \mathbb{N}$ előre rögzített)
- FÜGGETLEN CSÚCSHALMAZ= $\{\langle G\rangle \mid G$ -nek van k méretű üres részgráfja $\}$ (G irányítatlan gráf; $k\in\mathbb{N}$ előre rögzített)
- CSÚCSLEFEDÉS= $\{\langle G \rangle \mid \text{van } k \text{ méretű részhalmaza } V(G)\text{-nek, ami az összes élt lefogja}\}$ (G irányítatlan gráf; $k \in \mathbb{N}$ előre rögzített; egy $S \subseteq V(G)$ lefog egy E élt, ha $S \cap E \neq \emptyset$)
- HITTING SET= $\{\langle T \rangle \mid \text{van olyan } k \text{ méretű } S \text{ halmaz, ami az összes } T\text{-beli halmazt lefogja}\}$ ($T \text{ halmazok halmaza; } k \in \mathbb{N} \text{ előre rögzített; egy } S \text{ halmaz lefog egy } X \text{ halmazt, ha } S \cap X \neq \emptyset$)
- HALMAZFEDÉS= $\{\langle U,T\rangle \mid \text{van } k \text{ darab } T\text{-beli halmaz, aminek uniója } U\}$ (U egy halmaz; T U részhalmazainak egy halmaza; $k \in \mathbb{N}$ előre rögzített)
- HÚ= $\{\langle G \rangle \mid \text{van a } G \text{ irányított gráfban } s\text{-ből } t\text{-be Hamilton út}\}$ (A Hamilton út olyan út, ami minden csúcsot bejár; s és t előre rögzítettek)
- IHÚ= $\{\langle G \rangle \mid \text{van a } G \text{ irányítatlan gráfban } s$ -ből t-be Hamilton út} (s és t előre rögzítettek)
- IHK= $\{\langle G \rangle \mid \text{van a } G \text{ irányítatlan gráfban Hamilton kör}\}$
- UTAZÓÜGYNÖK= $\{\langle G \rangle \mid \text{van-e a } G\text{-ben legfeljebb } k \text{ súlyú Hamilton kör}\}$ (G pozitív egészekkel élsúlyozott irányítatlan gráf; $k \in \mathbb{N}$ előre rögzített)

II. Tárbonyolultság

E. A tárbonyolultság mértékegysége

A tárbonyultság vizsgálatához ún. **off-line Turing-gép**eket használunk. Az első szalag a bemeneti szalag, ezt csak olvashatja, az utolsó szalag a kimeneti szalag, erre csak írhat. A Turing-gép **tárigénye** a többi szalagon (ún. munkaszalagokon) felhasznált cellák száma. Egy Turing-gép f(n) **tárkorlátos**, ha bármely u inputra legfeljebb f(|u|) tárat használ.

F. Determinisztikus és nemdeterminisztikus tárbonyolultsági osztályok

- SPACE $(f(n)) = \{L \mid L \text{ eldönthető } O(f(n)) \text{ tárkorlátos determinisztikus Turing-géppel} \}$
- NSPACE $(f(n)) = \{L \mid L \text{ eldönthető } O(f(n)) \text{ tárkorlátos nemdeterminisztikus Turing-géppel} \}$
- PSPACE= $\bigcup_{k>1}$ SPACE (n^k) .
- NPSPACE= $\bigcup_{k>1}$ NSPACE (n^k) .
- NL=NSPACE $(\log n)$.

G. Savitch tétele és következményei

- (Savitch tétele) Ha $f(n) \ge \log n$, akkor NSPACE $(f(n)) \subseteq \text{SPACE}(f^2(n))$
- PSPACE=NPSPACE
- NL \subseteq SPACE ($\log^2 n$)

(Determinisztikus) Turing-gépek

- A Turing-gép egy olyan $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendszer, ahol
 - Q az állapotok véges, nemüres halmaza,
 - $-q_0, q_i, q_n \in Q, q_0$ a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
 - Σ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy $\Sigma \subseteq \Gamma$ és $\sqcup \in \Gamma \setminus \Sigma.$
 - $-\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ az átmenet függvény.
- A Turing-gép működésének fázisait a gép konfigurációival írjuk le. A Turing-gép konfigurációja egy uqv szó, ahol $q \in Q$ és $u, v \in \Gamma^*, v \neq \varepsilon$.

A konfiguráció a gép azon állapotát tükrözi amikor a szalag tartalma uv (uv előtt és után a szalagon már csak $\sqcup van$), a gép a q állapotban van, és a gép író-olvasó feje a v szó első betűjén áll.

- A gép **kezdőkonfigurációja** egy olyan q_0u szó, ahol u csak Σ -beli betűket tartalmaz.
- Egy Turing-gép konfigurációátmenetét az alábbiak szerint definiáljuk. Legyen uqav egy konfiguráció, ahol $a \in \Gamma$, $u, v \in \Gamma^*$.
 - Ha $\delta(q,a)=(r,b,R)$, akkor $uqav\vdash ubrv'$, ahol v'=v, ha $v\neq \varepsilon$, különben $v'=\sqcup$,
 - ha $\delta(q, a) = (r, b, S)$, akkor $uqav \vdash urbv$,
 - ha $\delta(q, a) = (r, b, L)$, akkor $uqav \vdash u'rcbv$, ahol $c \in \Gamma$ és u'c = u, ha $u \neq \varepsilon$, különben u' = u és $c = \sqcup$.
- Azt mondjuk, hogy M véges sok lépésben eljut a C konfigurációból a C' konfigurációba (jele $C \vdash^* C'$), ha van olyan $n \ge 1$ és C_1, \ldots, C_n konfigurációsorozat, hogy $C_1 = C, C_n = C'$ és minden $1 \le i < n$ -re, $C_i \vdash C_{i+1}$.
- Ha $q \in \{q_i, q_n\}$, akkor azt mondjuk, hogy az uqv konfiguráció egy **megállási konfiguráció**. $q = q_i$ esetében **elfogadó**, míg $q = q_n$ esetében **elutasító konfigurációról** beszélünk.
- Az M által **felismert nyelv** (amit L(M)-mel jelölünk) azoknak az $u \in \Sigma^*$ szavaknak a halmaza, melyekre igaz, hogy $q_0u \vdash^* xq_iy$ valamely $x, y \in \Gamma^*, y \neq \varepsilon$ szavakra.
- Egy $L \subseteq \Sigma^*$ nyelv **Turing-felismerhető**, ha L = L(M) valamely M

Turing-gépre. Továbbá, egy $L \subseteq \Sigma^*$ nyelv **eldönthető**, ha létezik olyan M

Turing-gép, mely minden bemeneten megállási konfigurációba jut és felismeri az L-et. A Turing-felismerhető nyelveket szokás **rekurzívan felsorolhatónak**, az eldönthető nyelveket pedig **rekurzívnak** is nevezni. A rekurzívan felsorolható nyelvek osztályát RE -vel, a rekurzív nyelvek osztályát pedig R-rel jelöljük.

- Tekintsünk egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ Turing-gépet és annak egy $u \in \Sigma^*$ bemenő szavát. Azt mondjuk, hogy M futási ideje (időigénye) az u szón n $(n \geq 0)$, ha M a q_0u kezdőkonfigurációból n lépésben (konfigurációátmenettel) jut el megállási konfigurációba. Ha nincs ilyen szám, akkor M futási ideje az u-n végtelen.
- Legyen $f: \mathbb{N} \to \mathbb{N}$ egy függvény. Azt mondjuk, hogy M időigénye f(n) (vagy, hogy M egy f(n) időkorlátos gép), ha minden $u \in \Sigma^*$ input szóra, M időigénye az u szón legfeljebb f(|u|).
- A k-szalagos Turing-gép egy olyan $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendszer, ahol
 - Q az állapotok véges, nemüres halmaza,
 - $-\ q_0,q_i,q_n\in Q,\ q_0$ a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
 - $-\Sigma$ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy $\Sigma \subseteq \Gamma$ és $\sqcup \in \Gamma \setminus \Sigma$,
 - $-\delta: (Q\setminus\{q_i,q_n\})\times\Gamma^k\to Q\times\Gamma^k\times\{L,R,S\}^k$ az átmenet függvény.
- A k szalagos Turing-gép **konfigurációja** egy \vdots q \vdots szó, ahol $q \in Q$ és $u_i, v_i \in \Gamma^*, v_i \neq \varepsilon$ $(1 \le i \le k)$. Az u_k v_k u szóhoz tartozó **kezdőkonfiguráció:** $u_i = \varepsilon$ $(1 \le i \le k)$, $v_1 = u$, és $v_i = \sqcup$ $(2 \le i \le k)$. Időigény: mint az egyszalagosnál (konfigurációátmenetek száma alapján).
- Szófüggvényt kiszámító Turing-gép:

Az M (determinisztikus) Turing-gép kiszámítja az $f: \Sigma^* \to \Gamma^*$ szófüggvényt, ha M minden $u \in \Sigma^*$ -ra olyan vqw megállási konfigurációba jut $(q \in \{q_i, q_n\})$, ahol vw = f(u) (szóeleji és szóvégi \sqcup -ektől eltekintve). Időigény: mint fent (konfigurációátmenetek száma alapján).