Kapitel I

Affine Varietäten

§ 1 Nullstellenmengen und Verschwindungsideale

Sei \mathbb{K} ein Körper, $n \in \mathbb{N}$.

Definition 1.1 Eine Menge $V \subseteq \mathbb{K}^n$ heißt affine Varietät, falls es eine Teilmenge $F \subseteq \mathbb{K}[X_1, \dots, X_n]$ gibt, sodass gilt

$$V = V(F) = \{x \in \mathbb{K}^n \mid f(x) = 0 \text{ für alle } f \in F\}$$

Beispiel 1.2 (i) Wir definieren $\mathbb{K}^n := V(\{0\}) = V(\emptyset)$. Damit wird \mathbb{K}^n zur affinen Varietät.

- (ii) Mit $V(\{1\}) = V(1) = \emptyset$ wird \emptyset zur affinen Varietät.
- (iii) Für jedes $a=(a_1,\ldots,a_n)\in\mathbb{K}^n$ ist $\{x\}$ affine Varietät via

$${a} = V(X_1 - a_1, \dots, X_n - a_n)$$

(iv) Allgemeiner gilt: Jeder affine Untervektorraum des \mathbb{K}^n ist affine Varietät.

Bemerkung 1.3 (i) Aus $F_1 \subseteq F_2$ folgt $V(F_1) \supseteq V(F_2)$.

- (ii) $F\ddot{u}r f_1, f_2 \in \mathbb{K}[X_1, \dots, X_n]$ gilt $V(f_1 f_2) = V(f_1) \cup V(f_2)$.
- (iii) Für $F \subseteq \mathbb{K}[X_1, \dots, X_n]$ gilt $V(F) = V(\langle F \rangle)$, wobei $\langle F \rangle$ das von F erzeugte Ideal bezeichnet.

Beweis. (i) Ist $x \in V(F_2)$, so gilt f(x) = 0 für alle $f \in F_2$. Wegen $F_1 \subseteq F_2$ folgt f(x) = 0 für alle $f \in F_1$, also $x \in V(F_1)$.

- (ii) Es gilt $x \in V(f_1f_2)$ genau dann, wenn $(f_1f_2)(x) = 0$, also $f_1(x) = 0$ oder $f_2(x) = 0$ und damit $x \in V(f_1) \cup V(f_2)$.
- (iii) " \supseteq " folgt aus (i) mit $F \subseteq \langle F \rangle$. Für die andere Inklusion wähle $x \in V(F)$ und $f \in \langle F \rangle$. Schreibe

$$f = \sum_{i=0}^{r} a_i f_i, \qquad a_i \in \mathbb{K}[X_1, \dots, X_n], f_i \in F$$

Dann ist

$$f(x) = \sum_{i=0}^{r} a_i(x) f_i(x) = 0$$

und damit $x \in V(\langle F \rangle.$

Folgerung 1.4 Sei $V \subseteq \mathbb{K}^n$ affine Varietät.

- (i) Dann gibt es ein Ideal $I \leq \mathbb{K}[X_1, \dots, X_n]$ mit V = V(I).
- (ii) Dann gibt es es $f_1, \ldots, f_r \in \mathbb{K}[X_1, \ldots, X_n]$ mit $V = V(f_1, \ldots, f_r)$.

Beweis.

- (i) Für V = V(F) wähle $I = \langle F \rangle$.
- (ii) Folgt aus dem Hilbertschen Basissatz.

Bemerkung + **Definition 1.5** (i) Sei R (kommutativer) Ring (mit 1) und $I \leq R$ ein Ideal. Dann heißt

$$\sqrt{I} := \{ f \in R \mid \text{ es existiert } n \in \mathbb{N} \text{ mit } f^n \in I \}$$

das Radikal von I.

- (ii) \sqrt{I} ist Ideal.
- (iii) I heißt Radikalideal, falls $I = \sqrt{I}$.
- (iv) Jedes Primadeal ist Radikalideal.
- (v) $n\mathbb{Z}$ ist Radikalideal genau dann, wenn n quadratfrei ist, d.h. $\nu_p(n) \in \{0,1\}$ für alle $p \in \mathbb{P}$.
- (vi) Für jedes Ideal $I \leq \mathbb{K}[X_1, \dots, X_n]$ gilt $V(I) = V(\sqrt{I})$.

Definition + **Bemerkung 1.6** Sei $V \subseteq \mathbb{K}^n$.

(i) Das Verschwindungsideal von V ist

$$I(V) := \{ f \in \mathbb{K}[X_1, \dots, X_n] \mid f(x) = 0 \text{ für alle } x \in V \}$$

- (ii) $I(V) \leq \mathbb{K}[X_1, \dots, X_n]$ ist Radikalideal.
- (iii) $V(I(V)) \supseteq V$.

Beweis. (i) Folgt aus (f+g)(x) = f(x) + g(x) und $(h \cdot f)(x) = h(x)f(x)$.

- (ii) Folgt aus $f^{d}(x) = f(f(...f(x)...)) = f(x)^{d}$.
- (iii) Klar. \Box

Beispiel 1.7 (i) $I(\emptyset) = \mathbb{K}[X_1, \dots, X_n]$.

- (ii) $I(\mathbb{K}^n) = \{0\}$ genau dann wenn (!) \mathbb{K} unendlich ist.
- (iii) Für n=2 betrachte $V=\{(0,0)\}\subseteq\mathbb{K}^2$. Dann ist

$$I(V) = \left\{ f = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i,j} X^{i} Y^{j} \mid a_{0,0} = 0 \right\}$$

Proposition 1.8 Seien V, V_1, V_2 affine Varietäten in \mathbb{K}^n . Dann gilt

- (i) V(I(V)) = V.
- (ii) $V_1 \subseteq V_2$ genau dann, wenn $I(V_1) \supseteq I(V_2)$.

Beweis. (i) " \supseteq " Klar.

" \subseteq " Sei V = V(I') für ein Ideal $I' \leq \mathbb{K}[X_1, \dots, X_n]$. Dann ist $I' \subseteq I(V)$, denn für $f \in I'$ ist f(x) = 0 für alle $x \in V = V(I')$, also $V(I') \supseteq V(I(V))$.

(ii) Folgt aus (i) und 1.2.

Bemerkung 1.9 Frage: Gilt auch I(V(I)) = I für ein Radikalideal? Antwort: Nicht uneingeschränkt! Betrachte

$$I = \langle X^2 + 1 \rangle \in \mathbb{K}[X]$$

Dann ist für $\mathbb{K} = \mathbb{R} \ V(I) = \emptyset$, also $I(V(I)) = I(\emptyset) = \mathbb{R}[X]$.

Gehen wir dagegen in einen algebraisch abgeschlossenen Körper, z.B. C über:

Dann ist $V(I) = \{i, -i\}$, also

$$I(V(I)) = \langle X - i \rangle \cap \langle X + i \rangle = \langle X^2 + 1 \rangle.$$

Unser Ziel soll es also sein, zu zeigen, dass dies allgemein in algebraisch abgeschlossenen Körpern gilt.

Definition + **Bemerkung 1.10** Sei $V \subseteq \mathbb{K}^n$ affine Varietät, I(V) das Verschwindungsideal.

(i) Wir definieren die affine Algebra bzw. den affinen Koordinatenring zu V als

$$A(V) := \mathbb{K}[X_1, \dots, X_n] / I(V)$$

- (ii) A(V) ist eine endlich erzeugte, reduzierte \mathbb{K} -Algebra, d.h. A(V) enthält keine nilpotenten Elemente, d.h. für $a \neq 0$ gilt $a^d \neq 0$ für alle $d \in \mathbb{N}$.
- (iii) Ist $V' \subseteq V$ affine Varietät, so erhalten wir einen surjektiven Homomorphismus von \mathbb{K} -Algebren $p: A(V) \longrightarrow A(V')$.
- Beweis. (ii) Sei $a \in A(V)$ mit $a \neq 0$ und $a^d = 0$ für ein $d \geq 1$. Wähle $f \in \mathbb{K}[X_1, \dots, X_n]$ mit $\overline{f} = a$ in A(V). Dann ist $f^d \in I(V)$, denn $\overline{f^d} = \overline{f}^d = a^d = 0$, und damit auch $f \in I(V)$, da I(V) Radikalideal ist. Dann gilt a = 0, also ein Widerspruch.
- (iii) Wegen 1.6 ist $I(V') \supseteq I(V)$. Mit dem Homomorphiesatz erhalten wir eine Faktorisierung

welche den gewünschten Homomorphismus liefert.

§ 2 Die Zariski-Topologie

Es sei \mathbb{K} ein Körper, $n \in \mathbb{N}$.

Definition + **Bemerkung 2.1** (i) Die affinen Varietäten in \mathbb{K}^n bilden die abgeschlossenen Mengen einer Topologie auf \mathbb{K}^n .

- (ii) Diese Topologie heißt Zariski-Topologie.
- (iii) Es bezeichne $\mathbb{A}^n(\mathbb{K})$ den topologischen Raum \mathbb{K}^n mit der Zariski-Topologie.

Beweis. Wir rechnen die Axiome einer Topologie nach.

(1) Per Definition sind $\mathbb{K}^n = V(0)$ und $\emptyset = V(1)$ affine Varietäten.

(2) Seien $V_1 = V(I_1), V_2 = V(I_2)$ affine Varietäten.

Beh. (a) Es gilt $V(I_1I_2) \stackrel{(i)}{\subseteq} V_1 \cup V_2 \stackrel{(ii)}{\subseteq} V(I_1 \cup I_2) \stackrel{(iii)}{\subseteq} V(I_1I_2)$.

Dann gilt an jeder Stelle Gleichheit und damit ist auch $V_1 \cup V_2$ affine Varietät.

Bew. (a) Es gilt

- (iii) $I_1I_2 \subseteq I_1 \cap I_2$, also $V(I_1I_2) \supseteq V(I_1 \cap I_2)$.
- (ii) Es ist $I_k \cap I_2 \subseteq I_k$, also $V_k \subseteq V(I_1 \cap I_2)$ für $k \in \{1, 2\}$, also auch $V_1 \cup V_2 \subseteq V(I_1 \cap I_2)$.
- (i) Sei $x \in V(I_1I_2)$, ohne Einschränkung $x \notin V_1$. Zu zeigen: $x \in V_2$. Da $x \notin V_1$, gibt es ein $f \in I_1$, sodass $f(x) \neq 0$. Sei nun $g \in I_2$. Nach Voraussetzung ist dann

$$0 = (f \cdot g)(x) = f(x) \cdot g(x)$$

und damit g(x) = 0. Dies impliziert $x \in V(I_2) = V_2$.

(3) Seien für eine beliebige Indexmenge J V_i , $i \in J$ affine Varietäten, es gelte $V_i = V(I_i)$. Dann ist

$$\bigcap_{i \in J} V_i = V\left(\bigcup_{i \in J} I_i\right) = V\left(\left\langle\bigcup_{i \in J} I_i\right\rangle\right) := V\left(\sum_{i \in J} I_i\right)$$

ebenfalls affine Varietät, was zu zeigen war.

Beispiel 2.2 Betrachte n=1. Dann ist $V \subseteq \mathbb{A}^1(\mathbb{K})$ abgeschlossen genau dann, wenn $V = \mathbb{A}^1(\mathbb{K})$ oder V endlich ist. Insbesondere ist $\mathbb{A}^1(\mathbb{K})$ damit nicht hausdorffsch.

Beispiel 2.3 Ist \mathbb{K} endlich, so ist die Zariski-Topologie auf \mathbb{K}^n die diskrete Topologie.

Proposition 2.4 Sei \mathbb{K} unendlich. Dann ist $\mathbb{A}^n(\mathbb{K})$ nicht hausdorffsch.

Beweis. Siehe Übung.

Proposition 2.5 Für $f \in \mathbb{K}[X_1, \dots, X_n]$ sei

$$D(f) := \{x \in \mathbb{K}^n \mid f(x) \neq 0\} = \mathbb{K}^n \backslash V(f)$$

 $Dann\ bildet\ die\ Familie\ \{D(f)\}_{f\in\mathbb{K}[X_1,\dots,X_n]}\ eine\ Basis\ der\ Zariski-Topologie\ auf\ \mathbb{A}^n(\mathbb{K}).$

Beweis. Sei $U \subseteq \mathbb{A}^n(\mathbb{K})$ offen. Es ist zu zeigen, dass U eine Menge D(f) für ein geeignetes f enthält. Offenbar ist $V := \mathbb{K}^n \setminus U$ abgeschlossen, also eine affine Varietät. Dann schreibe V = V(I) für ein Ideal $I \leq \mathbb{K}[X_1, \dots, X_n]$.

Sei nun $x \in U$. Da $x \notin V$ existiert ein $f \in I(V)$, sodass gilt $f(x) \neq 0$, also $x \in D(f)$. Da $f \in I$, gilt $\langle f \rangle \subseteq I$, also $V(f) \supseteq V(I) = V$ und damit $D(f) \subseteq U$, was zu zeigen war.

Definition + **Bemerkung 2.6** Für jede affine Varietät $V \subseteq \mathbb{A}^n(\mathbb{K})$ heißt die Spurtopologie ebenfalls *Zariski-Topologie*.

Für $f \in A(V) \setminus \mathbb{K}$ sei

$$D(f) := \{ x \in V \mid f(x) \neq 0 \}$$

Dann ist die Familie $\{D(F)\}_{f\in A(V)\setminus \mathbb{K}}$ offen und eine Basis der Zariski-Topologie.

§ 3 Irreduzible Varietäten

Definition 3.1 Sei X ein topologischer Raum.

- (i) X heißt reduzibel, falls es echte abgeschlossene Teilmengen $V, W \subset X$ gibt mit $V \cup W = X$.
- (ii) Ist X nicht reduzibel, so heißt X irreduzibel.
- (iii) Eine maximale irreduzible Teilmenge von X heißt irreduzible Komponente.

Beispiel 3.2 Sei X ein Hausdorffraum. Dann ist X irreduzibel genau dann wenn $|X| \leq 1$, also $X \in \{\{\text{pt}\}, \emptyset\}$.

Beweis. Seien $x, y \in X$, $x \neq y$ und U_x, U_y offene Umgebungen von x, y mit $U_x \cap U_y = \emptyset$. Dann sind $V_x := X \setminus U_x$, $V_y := X \setminus U_y$ abgeschlossene Mengen mit

$$V_x \cup V_y = (X \backslash U_x) \cup (X \backslash U_y) = X \backslash (U_x \cap U_y) = X$$

Bemerkung 3.3 (i) Sei X topologischer Raum, $V \subseteq X$ irreduzibel. Dann ist auch \overline{V} irreduzibel. (ii) Irreduzible Komponenten sind abgeschlossen.

Beispiel 3.4 (i) Sei \mathbb{K} unendlicher Körper. Dann ist $\mathbb{A}^n(\mathbb{K})$ irreduzibel für alle $n \in \mathbb{N}$. Beweis. Sei $\mathbb{A}^n(\mathbb{K}) = V(I_1) \cup V(I_2)$ mit $I_1 \neq \langle 0 \rangle \neq I_2$. Dann gilt nach Bemerkung 2.1

$$\mathbb{A}^{n}(\mathbb{K}) = V(I_{1}) \cup V(I_{2}) = V(I_{2}I_{2})$$

Wähle also $f \in I_2 \setminus \{0\}$, $g \in I_2 \setminus \{0\}$. Dann gilt für alle $x \in \mathbb{K}^n$ $(f \cdot g)(x) = 0$, also $f \cdot g = 0$, ein Widerspruch zur Nullteilerfreiheit.

 $V(X \cdot Y) \subseteq \mathbb{A}^2(\mathbb{K})$ ist reduzibel mit $V(X \cdot Y) = V(X) \cup V(Y)$.

Satz 3.5 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, $V \neq \emptyset$. Dann gilt

$$V \text{ ist irreduzibel } \iff I(V) \leqslant \mathbb{K}[X_1, \dots, X_n] \text{ ist Primideal}$$

Beweis. " \Rightarrow " Seien $f, g \in \mathbb{K}[X_1, \dots, X_n]$ mit $fg \in I(V)$, ohne Einschränkung $f \notin I(V)$. Dann gibt es $x \in V$ mit $f(x) \neq 0$, das heißt es gilt $V \nsubseteq V(f)$, nach Voraussetzung aber $V \subseteq V(fg) = V(f) \cup V(g)$. Damit ist

$$(V \cap V(f)) \cup (V \cap V(g)) = V$$

Da V aber irreduzibel ist und $V \cap V(f) \neq V$, muss gelten $V \cap V(g) = V$, also $V(g) \subseteq V$ und damit $g \in I(V)$.

" \Leftarrow " Sei $V = V_1 \cup V_2$ ein Zerlegung von V in zwei abgeschlossene Teilmengen V_1 und V_2 . Dann ist $V_1 = V(I_1), V_2 = V(I_2)$ für Ideale $I_1, I_2 \leq \mathbb{K}[X_1, \dots, X_n]$. Sei ohne Einschränkung $V \neq V_1$, also $V \nsubseteq V(I_1)$. Dann gibt es $x \in V, f \in I_1$ mit $f(x) \neq 0$, also $f \notin I(V)$. Zeige also $V \subseteq V(I_2)$. Hierfür genügt zu zeigen $I_2 \subseteq I(V)$.

Sei nun $g \in I_2$. Dann ist $fg \in I_1I_2$. Wegen $V = V_1 \cup V_2$, also $V = V(I_1) \cup V(I_2) = V(I_1I_2)$, gilt $I_1I_2 \subseteq I(V)$, also $fg \in I(V)$. Da I(V) prim ist und $f \notin I(V)$, gilt $g \in I(V)$ und damit $I_2 \subseteq I(V)$.

Satz 3.6 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät. Dann qilt

- (i) V ist endliche Vereinigung irreduzibler Varietäten.
- (ii) Gilt $V = V_1 \cup \ldots \cup V_r$ mit irreduziblen Varietäten V_1, \ldots, V_r und $V_i \nsubseteq V_j$ für $i \neq j$ (das heißt, kein V_i ist überflüssig), so sind die V_i die irreduziblen Komponenten von V, also insbesondere eindeutig.

Beweis. (i) Definiere

 $\mathcal{B} := \{V \mid V \text{ ist nicht endliche Vereinigung irreduzibler Varietäten } \}$

$$\mathcal{I} := \{ I(V) \mid V \in \mathcal{B} \}$$

Zu zeigen: \mathcal{B}, \mathcal{I} sind leer.

Angenommen $\mathcal{I} \neq \emptyset$. Dann enthält \mathcal{I} ein maximales Element I_0 , denn $\mathbb{K}[X_1,\ldots,X_n]$ ist noethersch, also wird jede aufsteigende Kette von Idealen stationär. Schreibe $I_0 = I(V_0)$ mit $V_0 \in \mathcal{B}$. V_0 ist reduzibel, schreibe also $V_0 = V_1 \cup V_2$ mit abgeschlossenen Mengen $V_1 \subsetneq V_0 \supsetneq V_2$, also gilt dann $I(V_1) \supsetneq I_0 \subsetneq I(V_2)$. Da I_0 maximal ist, ist $I(V_1), I(V_2) \notin \mathcal{I}$ und damit $V_1, V_2 \notin |\mathcal{B}|$. Per Definition sind dann also V_1, V_2 darstellbar als endliche Vereinigungen irreduzibler Varietäten:

$$V_1 = \bigcup_{i=1}^{n} U_i, \qquad V_2 = \bigcup_{i=n+1}^{m} U_i$$

Damit ist aber V endliche Vereinigung von irreduziblen Komponenten, also $V \in \mathcal{B}$, ein Widerspruch zur Voraussetzung.

(ii) Zeige zunächst die Eindeutigkeit. Sei hierfür $W\subseteq V$ irreduzible Komponente. Zu zeigen: $W=V_i$ für ein $1\leqslant i\leqslant r$. Schreibe

$$W = W \cap V = \bigcup_{i=1}^{r} \underbrace{(W \cap V_i)}_{\text{abgeschlosser}}$$

Da W irreduzibel ist, gilt bereits $W \cap V_i = W$, also $W \subseteq V_i$ für ein $1 \le i \le r$. Da aber auch V_i irreduzibel ist, gilt $W = V_i$.

Zeige nun, dass V_1, \ldots, V_r irreduzible Komponenten sind. Sei $1 \leq i \leq r$. Dann existiert eine irreduzible Komponente W von V mit $V_i \subseteq W$, also $W = V_j$ für ein $j \in \{1, \ldots, r\}$. Also erhalten wir $V_i \subseteq V_j$ und wegen $V_i \nsubseteq V_j$ dann i = j und schließlich $W = V_i$. Damit ist V_i irreduzible Komponente.

Folgerung 3.7 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, I = I(V) ihr Verschwindungsideal und $A(V) := \mathbb{K}[X_1, \dots, X_N] / I(V) := \mathbb{K}[V]$ ihr affiner Koordinatenring. Dann gilt

- (i) $\mathbb{K}[V]$ hat nur endlich viele minimale Primideale.
- (ii) In $\mathbb{K}[X_1,\ldots,X_n]$ gibt es nur endlich viele Primideale, die I umfassen und minimal mit dieser Eigenschaft sind.

Beweis. (i) Folgt aus (ii), denn (surjektive) (Ur-)Bilder von Primidealen sind wieder Primideale.

(ii) Ist $p \leq \mathbb{K}[X_1, \dots, X_n]$ prim sodass $\mathfrak{p} \supseteq I$ und minimal mit dieser Eigenschaft. Dann ist $V(\mathfrak{p}) \subseteq V(I)$ irreduzible Komponente und nach 3.5 ist die Anzahl dieser endlich.

§ 4 Der Hilbertsche Nullstellensatz

Satz 4.1 (Hilbertscher Nullstellensatz) Sei \mathbb{K} algebraisch abgeschlossener Körper, $n \in \mathbb{N}$.

- (i) Für jedes Ideal $\{0\} \neq I \leqslant \mathbb{K}[X_1, \dots, X_n]$ ist $V(I) \neq \emptyset$.
- (ii) Für jedes Ideal $I \leq \mathbb{K}[X_1, \dots, X_n]$ ist $I(V(I)) = \sqrt{I}$.

Satz 4.2 (Algebraische Version des Hilbertschen Nullstellensatzes) Sei \mathbb{K} Körper, $n \in \mathbb{N}$, $\mathfrak{m} \triangleleft \mathbb{K}[X_1, \ldots, X_n]$ ein maximales Ideal. Dann ist $\mathbb{L} := \mathbb{K}[X_1, \ldots, X_n]/\mathfrak{m}$ eine algebraische Körpererweiterung von \mathbb{K} .

Folgerung 4.3 Sei \mathbb{K} algebraisch abgeschlossener Körper, $n \in \mathbb{N}$. Dann gibt es Bijektionen zwischen folgenden Mengen:

- (i) $\{x = (x_1, \dots, x_n) \in \mathbb{K}^n\}$
- (ii) Ideale $\{I_x = \langle X_1 x_1, \dots, X_n x_n \rangle \leqslant \mathbb{K}[X_1 \dots, X_n]\}$
- (iii) Maximale Ideale $\{\mathfrak{m} \triangleleft \mathbb{K}[X_1,\ldots,X_n]\}.$

Beweis. "(i) \Rightarrow (ii)" Klar.

"(ii) \Rightarrow (iii)" Sei für $x \in \mathbb{K}^n \phi : \mathbb{K}[X_1, \dots, X_n] \longrightarrow \mathbb{K}, \ f \mapsto f(x_1, \dots, x_n)$. Dann ist offenbar $\ker(\phi) = I_x$, und da ϕ surjektiv ist damit

$$\mathbb{K}[X_1,\ldots,X_n]/I_x\cong\mathbb{K}$$

"(iii) \Rightarrow (ii)" Sei $\mathfrak{m} \triangleleft \mathbb{K}[X_1,\ldots,X_n]$ maximales Ideal. Mit Satz 4.2 gilt also

$$\mathbb{K}[X_1,\ldots,X_n]/\mathbb{m} \cong \mathbb{K}$$

Sei nun

$$\phi: \mathbb{K}[X_1, \dots, X_n] \longrightarrow \mathbb{K}[X_1, \dots, X_n] / \mathfrak{m} \cong \mathbb{K}$$

die Restklassenabbildung, $x_i := \phi(X_i)$. Dann gilt $\mathfrak{m} = \ker(\phi)$ und $\mathfrak{m} = I_x$.

Beweis von Satz 4.1. (i) Sei $I \triangleleft \mathbb{K}[X_1, \dots, X_n]$ ein echtes Ideal. Dann existiert nach Zorn's Lemma ein maximales Ideal $I \subseteq \mathfrak{m} \triangleleft \mathbb{K}[X_1, \dots, X_n]$. Damit gilt $V(I) \supseteq V(\mathfrak{m})$. Nach Folgerung 4.3 gibt es damit $x = (x_1, \dots, x_n) \in \mathbb{K}^n$ mit

$$\mathfrak{m} = \langle X_1 - x_1, \dots, X_1 - x_1 \rangle$$

und damit $x \in V(\mathfrak{m}) \subseteq V(I)$, also gerade $V(I) \neq \emptyset$.

(ii) Sei $I \leq \mathbb{K}[X_1, \dots, X_n]$ Ideal. Dann gilt offenbar $\sqrt{I} \subseteq I(V(I))$. Zu zeigen ist somit $I(V(I)) \subseteq \sqrt{I}$. Sei also $g \in I(V(I))$. Zeige: Es existiert $d \in \mathbb{N}$ mit $g^d \in \sqrt{I}$. Seien dazu f_1, \dots, f_m Erzeuger von I und

$$J \leqslant \mathbb{K}[X_1, \dots, X_n, Y]$$

das von $f_1 \dots, f_m$ und dem Polynom gY - 1 erzeugte Ideal.

Beh. (a) Es gilt $V(J) = \emptyset$.

Bew. (a) Sei das Tupel $(x_1, \ldots, x_n, y) := (x', y) := x \in V(J)$. Dann gilt für alle $i \in \{1, \ldots, m\}$

$$0 = f_i(x) = f_i(x') \implies x' \in V(I)$$

Da $g \in I(V(I))$, gilt g(x') = 0, denn $x' \in V(I)$. Dann folgt wegen g(x') = 0

$$0 = (gY - 1)(x) = (g(x)Y(x) - 1) = g(x') \cdot Y - 1 = -1,$$

ein Widerspruch. Also gilt $V(J) = \emptyset$.

Damit folgt $J = \mathbb{K}[X_1, \dots, X_n]$, also insbesondere $1 \in J$. Schreibe

$$1 = \sum_{i=1}^{m} b_i f_i + c \cdot (gY - 1), \qquad b_i, c \in \mathbb{K}[X_1, \dots, X_n, Y]$$

Betrachte nun den Ring

$$R := \mathbb{K}[X_1, \dots, X_n] / \langle gY - 1 \rangle \cong \mathbb{K}[X_1, \dots, X_n] \left[\frac{1}{g}\right]$$

Für die Isomorphie betrachte den surjektiven Ringhomomorphismus

$$\phi: \mathbb{K}[X_1, \dots, X_n, Y] \longrightarrow \mathbb{K}[X_1, \dots, X_n] \left[\frac{1}{g}\right], \qquad \begin{cases} X_i \mapsto X_i \\ Y \mapsto \frac{1}{g} \end{cases}$$

Für diesen gilt

$$\ker(\phi) = \left\langle \left\{ Y = \frac{1}{q} \right\} \right\rangle = \left\langle gY - 1 \right\rangle$$

In R gilt

$$1 = \sum_{i=1}^{m} \overline{b_i f_i} + \overline{c(gY - 1)} = \sum_{i=1}^{m} \overline{b_i} f_i$$

Schreibe

$$\overline{b_i} = \sum_{j=1}^{d_i} c_j \frac{1}{g^j} = \sum_{j=1}^{d_i} \frac{c_0 g^{d_i} + c_1 g^{d_i - 1} + \dots + c_{d_i}}{g^{d_i}} := \frac{c_i}{g^{d_i}}$$

Sei $d:=\max_{1\leqslant i\leqslant m}\{d_i\}$. Dann gilt g^d $\overline{b_i}\in\mathbb{K}[X_1,\ldots,X_n]$. Schließlich ist

$$g^{d} = g^{d} \cdot 1 = g^{d} \cdot \sum_{j=1}^{m} \overline{b_{i}} f_{i} = \sum_{j=1}^{m} \underbrace{g^{d} \overline{b_{i}}}_{\in \mathbb{K}[X_{1}, \dots, X_{n}]} f_{i} \in I,$$

was die Behauptung liefert.

Beweis von Satz 4.2. Durch Induktion über n.

 $\mathbf{n} = \mathbf{1} \ \mathfrak{m} = \langle f \rangle$ für ein irreduzibles Polynom $f \in \mathbb{K}[X]$ (Algebra).

 $\mathbf{n}>\mathbf{1}$ Angenommen \mathbb{L}/\mathbb{K} ist nicht algebraisch. Dann ist ohne Einschränkung X_1 transzendent über \mathbb{K} , $x_i:=\overline{X_i}$. Dann ist

$$\mathbb{K}(X) = \operatorname{Quot}(\mathbb{K}[X]) \cong \mathbb{K}(x_1) \subseteq \mathbb{L}$$

Weiter wird \mathbb{L} über $\mathbb{K}(x_1)$ von x_2, \dots, x_n erzeugt. Damit ist

$$\mathbb{L} \cong \mathbb{K}(x_1)[X_2,\ldots,X_n]/\mathfrak{m}'$$

für ein maximales Ideal $\mathfrak{m}' \lhd \mathbb{K}(x_1)[X_2,\ldots,X_n]$. Per Induktionsvoraussetzung sind x_2,\ldots,x_n damit algebraisch über $\mathbb{K}(x_1)$, es gibt also normierte Minimalpolynome $f_2,\ldots,f_m\in\mathbb{K}(x_1)[X]$ aus denen Gleichungen

$$f_i(x_i) = x_i^{m_i} + \sum_{j=0}^{m_i-1} a_{ij} x_i^j = 0$$

mit geeigneten $a_{ij} \in \mathbb{K}(x_1)$. Sei nun R der kleinste Teilring vom $\mathbb{K}(x_1)$, der $\mathbb{K}[x_1]$ und alle a_{ij} enthält. Dann sind x_2, \ldots, x_n ganz über R, also \mathbb{L}/R eine ganze Ringerweiterung. Wir erhalten:

- (1) R ist kein Körper, da $\mathbb{K}[x_1]$ unendlich viele Primelemente enthält, R aber nur endlich viele Primfaktoren als Nenner enthält.
- (2) Jedes $a \in R \setminus \{0\}$ besitzt ein Inverses in R. Offenbar ist $\frac{1}{a}$ in \mathbb{L} enthalten. Andererseits ist $\frac{1}{a}$ ganz über R, das heißt es existiert eine Darstellung

$$\left(\frac{1}{a}\right)^m + \sum_{j=0}^{m-1} b_j \left(\frac{1}{a}\right)^j = 0$$

für geeignete $b_j \in R$. dann gilt aber

$$1 = -\sum_{j=0}^{m-1} b_j \ a^{m-j} = -a \cdot \sum_{j=0}^{m-1} b_j \ a^{m-j-1}$$

und damit $a \in \mathbb{R}^{\times}$, womit \mathbb{R} zum Körper wird, also ein Widerspruch zu (1).

Damit war die Annahme zu Beginn falsch und x_1 , und damit auch \mathbb{L} ist algebraisch über \mathbb{K} . \square

Folgerung 4.4 Für jeden Körper \mathbb{K} und jedes $n \in \mathbb{N}$ sei

$$\mathcal{V}_n(\mathbb{K}) := \{ V \subseteq \mathbb{K}^n \mid V \text{ is affine Varietät } \}$$

$$\mathcal{I}_n(\mathbb{K}) := \{ I \leqslant \mathbb{K}[X_1, \dots, X_n] \mid I = \sqrt{I} \}$$

$$V := V_{n,\mathbb{K}} : \mathcal{I}_n(\mathbb{K}) \longrightarrow \mathcal{V}_n(\mathbb{K}), \quad I \mapsto V(I)$$

$$I := I_{n,\mathbb{K}} : \mathcal{V}_n(\mathbb{K}) \longrightarrow \mathcal{I}_n(\mathbb{K}), \quad V \mapsto I(V)$$

Dann gilt

 \mathbb{K} ist algebraisch abgeschlossen \iff I und V sind zueinander invers

Bemerkung 4.5 Ist \mathbb{K} algebraisch abgeschlossen und ist $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, so entsprechen die Punkte in V bijektiv den maximalen Idealen in $A(V) := \mathbb{K}[X_1, \dots, X_n] / I(V)$.

§ 5 Morphismen zwischen affinen Varietäten

Definition + **Bemerkung 5.1** Sei \mathbb{K} Körper, $V \subseteq \mathbb{A}^n(\mathbb{K})$, $W \subseteq \mathbb{A}^m(\mathbb{K})$ affine Varietäten.

- (i) Eine Abbildung $f: V \longrightarrow W$ heißt Morphismus, falls es Polynome $f_1, \ldots, f_m \in \mathbb{K}[X_1, \ldots, X_n]$ gibt mit $f(x) = (f_1(x), \ldots, f_m(x))$ für alle $x = (x_1, \ldots, x_n) \in V \subseteq \mathbb{K}^n$.
- (ii) Jeder Morphiums $f: V \longrightarrow W$ ist die Einschränkung eines Morphismus $\tilde{f}: \mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}^m(\mathbb{K})$.
- (iii) Ein Morphismus $f: V \longrightarrow W$ heißt *Isomorphismus*, falls es einen Morphismus $g: W \longrightarrow V$ gibt mit $f \circ g = \mathrm{id}_W$ und $g \circ f = \mathrm{id}_V$.
- (iv) Die affinen Varietäten bilden zusammen mit den Morphismen eine Kategorie Aff(K)

Beispiel 5.2 (0) Die Identität

$$\mathrm{id}_{\mathbb{A}^n(\mathbb{K})}: \mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}^n(\mathbb{K}), \qquad (x_1, \dots, x_n) \mapsto (x_1, \dots, x_n)$$

ist ein Morphismus mit $f_i = X_i$.

(i) Weitere Morphismen sind

Einbettungen:
$$\mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}^{n+m}(\mathbb{K}), (x_1, \dots, x_n) \mapsto (x_1, \dots, x_n, 0 \dots, 0)$$

Projektionen:
$$\mathbb{A}^{n+m}(\mathbb{K}) \longrightarrow \mathbb{A}^n(\mathbb{K}), (x_1, \dots x_{n+m}) \mapsto (x_1, \dots, x_n)$$

Vertauschungen:
$$\mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}^n(\mathbb{K}), (x_1, \dots, x_n) \mapsto (x_{\sigma(1)}, \dots, x_{\sigma(n)}), \quad \sigma \in S_n$$

- (ii) Jedes $f \in \mathbb{K}[X_1, \dots, X_n]$ ist ein Morphimsus $f : \mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}(\mathbb{K})$.
- (iii) Sei $V=\mathbb{A}^1(\mathbb{K}),\,W=V(Y^2-X^3)\subseteq\mathbb{A}^2(\mathbb{K}).$ Definiere

$$f: V \longrightarrow W, \ x \mapsto (x^2, x^3)$$

Dann ist f ein Morphismus. Außerdem ist f bijektiv mit Umkehrabbildung

$$g(x,y) = \begin{cases} \frac{y}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

denn es gilt

$$f(g(x,y)) = f\left(\frac{y}{x}\right) = \left(\frac{y^2}{x^2}, \frac{y^3}{x^3}\right) = \left(\frac{x^3}{x^2}, \frac{y^3}{y^2}\right) = (x,y)$$

$$g(f(x)) = g(x^2, x^3) = \left(\frac{x^3}{x^2}\right) = x$$

Aber: g ist kein Morphismus (und f damit kein Isomorphismus), falls \mathbb{K} algebraisch abgeschlossen ist, denn andernfalls gäbe es ein Polynom $h \in \mathbb{K}[X,Y]$ mit $h(X,Y) = \frac{Y}{X}$, also

$$X \cdot h - Y \in I(W) = I(V(\langle Y^2 - X^3 \rangle)) = \langle Y^2 - X^3 \rangle$$

(iv) Sei char(\mathbb{K}) = p > 0. Dann heißt

$$f: \mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}^n(\mathbb{K}), \quad (x_1, \dots, x_n) \mapsto (x_1^p, \dots, x_n^p)$$

Frobenius-Homomorphismus. Es gilt: f ist injektiv, denn für $x^p = y^p$ gilt

$$0 = x^p - y^p = (x - y)^p \implies x - y = 0 \implies x = y$$

f ist surjektiv, falls \mathbb{K} enthalten ist in $\overline{\mathbb{F}}_p$ (im Allgemeinen jedoch nicht!). Damit sind die Fixpunkte unter f gerade jene, deren Koordinaten alle in \mathbb{F}_p liegen, also

$$f(x) = x \iff x \in \mathbb{F}_p^n \text{ für } x = (x_1, \dots, x_n)$$

Bemerkung 5.3 Morphismen affiner Varietäten sind stetig bezüglich der Zariski-Toipologie.

Beweis. Seien $V \subseteq \mathbb{A}^n(\mathbb{K})$, $W \subseteq \mathbb{A}^m(\mathbb{K})$ affine Varietäten und $f: V \longrightarrow W$ ein Morphismus. Zeige, dass das Urbild abgeschlossener Mengen wieder abgeschlossen ist.

Sei $Z \subseteq W$ abgeschlossen. Dann ist Z auch abgeschlossen in $\mathbb{A}^m(\mathbb{K})$, also existiert ein Ideal

$$J \leqslant \mathbb{K}[X_1, \dots, X_n]$$

mit Z = V(J). Zeige: Z ist abgeschlossen, also affine Varietät.

Beh. (a) Es gilt $f^{-1}(Z) = V(I)$ mit $I = \{g \circ f \mid g \in J\} \leq \mathbb{K}[X_1, \dots, X_n]$. Dazu:

Bew. (a) Zunächst sehen wir ein

$$\mathbb{A}^n(\mathbb{K}) \xrightarrow{f} \mathbb{A}^m(\mathbb{K}) \xrightarrow{g} \mathbb{A}^1(\mathbb{K})$$

Damit ist $g \circ f : \mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}(\mathbb{K})$ Morphismus, also gerade $g \circ f \in \mathbb{K}[X_1, \dots, X_n]$. Nun gilt

$$x \in f^{-1}(Z) \iff f(x) \in Z \iff g(f(x)) = 0 = (g \circ f)(x)$$
 für alle $g \in J$ $\iff h(x) = 0$ für alle $h \in I$ $\iff x \in V(I)$

also gerade die Behauptung.

Bemerkung 5.4 Für jede affine Varietät $V \subseteq \mathbb{A}^n(\mathbb{K})$ bilden die Morphismen $V \longrightarrow \mathbb{A}^1(\mathbb{K})$ eine \mathbb{K} -Algebra $\mathbb{K}[V]$. Es gilt

$$\mathbb{K}[V] \cong \mathbb{K}[X_1, \dots, X_n] / I(V) = A(V)$$

Beweis. Offenbar ist $Mor(V, \mathbb{A}^1(\mathbb{K}))$ eine \mathbb{K} -Unteralgebra von $Abb(V, \mathbb{K})$. Weiter ist die Abbildung

$$\phi: \mathbb{K}[X_1, \dots, X_n] \longrightarrow \mathbb{K}[V], \quad f \mapsto f|_V$$

surjektiver Homomorphimus mit $ker(\phi) = I(V)$, also

$$\mathbb{K}[V] \cong \mathbb{K}[X_1, \dots, X_n]/I(V),$$

was zu zeigen war.

Proposition 5.5 Seien $V \subseteq \mathbb{A}^n(\mathbb{K})$, $W \subseteq \mathbb{A}^m(\mathbb{K})$ affine Varietäten.

(i) Für jeden Morphismus $f: V \longrightarrow W$ ist die Abbildung

$$f^{\#}: \mathbb{K}[W] \longrightarrow \mathbb{K}[V], \quad g \mapsto g \circ f$$

ein Homomorphismus von \mathbb{K} -Algebren.

(ii) Die Abbildung

$$\alpha: \operatorname{Mor}(V, W) \longrightarrow \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}[W], \mathbb{K}[V]), \quad f \mapsto f^{\#}$$

ist bijektiv.

Beweis. (i) $g \circ f$ ist als Komposition von Morphismen ein Morphismus $g \circ f : V \longrightarrow \mathbb{A}^n(\mathbb{K})$ und es gilt

$$(g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f$$

usw. (diese Eigenschaften kennen wir bereits lange). Damit ist $f^{\#}$ Homomorphismus.

(ii) Offenbar ist die Abbildung mit (i) wohldefiniert. Für die Bijektivität zeige injektiv. Seien $f_1, f_2 \in \text{Mor}(V, W)$ mit $f_1^{\#} = f_2^{\#}$, also $g \circ f_1 = g \circ f_2$ für alle $g \in \mathbb{K}[W]$. Insbesondere erhalten für die Projektionen p_i anstelle von g für alle $1 \leq i \leq m$

$$p_i \circ f_1 = p_i \circ f_2 \implies f_{1i} = f_{2i} \implies f_1 = f_2$$

surjektiv. Sei $\phi : \mathbb{K}[W] \longrightarrow \mathbb{K}[V]$ Homomorphismus von \mathbb{K} -Algebren, also $\phi \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}[W], \mathbb{K}[V])$. Definiere

$$f: V \longrightarrow \mathbb{A}^m(\mathbb{K}), \quad x \mapsto (\phi(p_1)(x), \dots, \phi(p_m)(x))$$

Zeige nun

Beh. (1) $f(V) \subseteq W$.

Beh. (2) $f^{\#} = \phi$.

Dann ist f ein Urbild von ϕ und die Behauptung folgt.

Bew. (2) Für $i \in \{1, ..., m\}$ gilt $f^{\#}(p_i) = p_i \circ f \stackrel{Def.}{=} \phi(p_i)$. Da die p_i die \mathbb{K} -Algebra $\mathbb{K}[W]$ erzeugen, gilt $f^{\#} = \phi$.

Bew. (1) Zu zeigen ist $f(V) \subseteq V(I(W)) \subseteq W$. Sei also $x \in V$ und $g \in I(W)$ und zeige $g(f(x)) = (g \circ f)(x) = 0$. Sei dazu

$$\tilde{\phi}: \mathbb{K}[X_1, \dots, X_m] \longrightarrow \mathbb{K}[X_1, \dots, X_n]$$

ein Homomorphismus, der die X_i abbildet auf eine Reptäsentanten von $\phi(p_i)$ für $1 \le i \le m$. Genauer, betrachte

$$\mathbb{K}[X_1, \dots, X_m] \xrightarrow{\tilde{\phi}} \mathbb{K}[X_1, \dots, X_n]$$

$$\downarrow^{\pi_W} \qquad \qquad \downarrow^{\pi_V}$$

$$W \xrightarrow{\phi} \mathbb{K}[V]$$

Es gilt $\tilde{\phi}(I(W)) \subseteq I(V)$, also $\tilde{\phi}(g) \in I(V)$. Damit erhalten wir

$$0 = \tilde{\phi}(g)(x) = g(\phi(p_1)(x), \dots, \phi(p_m)(x)) = (g \circ f)(x)$$

und damit die Behauptung.

Folgerung 5.6 Die Zuordnung $V \longrightarrow \mathbb{K}[V]$ ist ein kontravarianter (=richtungsumkehrender) und volltreuer (=bijektiver) Funktor via

$$\Phi:\underline{\mathrm{Aff}}(\mathbb{K})\longrightarrow\mathbb{K}\text{-}\mathrm{Alg}^{\mathrm{red}}$$

 Φ ist ein Morphismus auf Objekte:

$$\Phi(f) = f^{\#}, \quad \Phi(V) = \mathbb{K}[V]$$

Für $f \in Mor(V, W)$ ist

$$\Phi(f): \Phi(W) = \mathbb{K}[W] \longrightarrow \mathbb{K}[V] = \Phi(V), \quad g \mapsto g \circ f = f^{\#}$$

$$\Phi(\mathrm{id}) = \mathrm{id} = \mathrm{id}^{\#}$$

$$\Phi(f_2 \circ f_1) = (f_2 \circ f_1)^{\#} = f_1^{\#} \circ f_2^{\#} = \Phi(f_1) \circ \Phi(f_2)$$

Das heißt, wir haben kommutative Diagramme

Bemerkung 5.7 Seien V, W affine Varietäten über \mathbb{K} und

$$\phi: \mathbb{K}[W] \longrightarrow \mathbb{K}[V]$$

ein Homomorphismus von \mathbb{K} -Algebren. Ist $f: V \longrightarrow W$ der zugehörige Morphismus (also $f^{\#} = \phi$), so gilt für jedes $x \in V$:

$$\mathfrak{m}_{f(x)} = \phi^{-1}(\mathfrak{m}_x)$$

Beweis. Es gilt

$$\mathfrak{m}_x = \{ g \in \mathbb{K}[V] \mid g(x) = 0 \},\$$

also

$$\phi^{-1}(\mathfrak{m}_x) = \{h \in \mathbb{K}[W] \mid \phi \circ h \in \mathfrak{m}_x\} = \{h \in \mathbb{K}[W] \mid h(f(x)) = 0\} = \mathfrak{m}_{f(x)},$$

was zu zeigen war.

Beispiel 5.8 Betrachte die Abbildung

$$f: \mathbb{A}^1(\mathbb{K}) \longrightarrow V(Y^2 - X^3) \subseteq \mathbb{A}^2(\mathbb{K}), \quad x \mapsto (x^2, x^3)$$

Dann ist

$$f^{\#}: \mathbb{K}[X,Y]/\langle Y^2 - X^3 \rangle \longrightarrow \mathbb{K}[T], \quad X \mapsto T^2, Y \mapsto T^3$$

Offensichtlich ist $f^{\#}$ Homomorphismus. Aber: Kein Isomorphismus, denn $f^{\#}$ ist zwar injektiv (nach Konstruktion), aber nicht surjektiv, da $T \notin \text{Bild}(f^{\#})$.

Bemerkung: Bei Übergang in den Quotientenkörper existiert die Fortsetzung $\tilde{f}^{\#}$, da $\langle X^2 - Y^3 \rangle$ prim und damit $\mathbb{K}[X,Y]/\langle Y^2 - X^3 \rangle$ nullteilerfrei ist. Hier gilt $T = \tilde{f}^{\#}\left(\frac{y}{x}\right)$, $\tilde{f}^{\#}$ ist also Isomorphismus.

Satz 5.9 Sei K algebraisch abgeschlossener Körper. Dann ist

$$\Phi: Aff(\mathbb{K}) \longrightarrow \mathbb{K}-Alg^{red}, \quad V \mapsto \mathbb{K}[V]$$

eine Äquivalenz von Kategorien, das heißt, es existiert ein Funktor

$$\Psi: \underline{\mathbb{K}} - \underline{Alg}^{red} \longrightarrow \underline{Aff}_{\mathbb{K}}$$

 $sodass \Phi \circ \Psi \ und \Psi \circ \Phi \ (als \ Funktoren) \ isomorph \ zur \ Identit\"{a}t \ sind.$

Beweis. Sei A endlich erzeugte, reduzierte \mathbb{K} -Algebra und a_1, \ldots, a_n Erzeuger von A als \mathbb{K} -Algebra. Dann gibt es einen surjektiven Homomorphismus von \mathbb{K} -Algebren

$$\pi: \mathbb{K}[X_1, \dots, X_n] \longrightarrow A, \quad X_i \mapsto a_i$$

Setze $V := V(\ker(\pi))$. Dann ist

$$\mathbb{K}[V] \cong \mathbb{K}[X_1, \dots, X_n] / I(V(\ker(\pi)) \stackrel{HNS}{=} \mathbb{K}[X_1, \dots, X_n] / \ker(\pi) = A$$

§ 6 Reguläre Funktionen

In diesem Paragraph sei K stets ein algebraisch abgeschlossener Körper.

Bemerkung 6.1 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, $h \in \mathbb{K}[X_1, \dots, X_n]$. Dann gilt

$$\overline{h} \in (\mathbb{K}[V])^{\times} \iff V(h) \cap V = \emptyset$$

Beweis. Wir erhalten folgende Kette von Äquivalenzen:

$$V \cap V(h) = V(I(V) + \langle h \rangle) \stackrel{!}{=} \emptyset$$

$$\iff$$
 HNS: $I(V) + \langle h \rangle = \mathbb{K}[X_1, \dots, X_n]$

$$\iff$$
 1 = f + gh für ein $f \in I(V)$ und $g \in \mathbb{K}[X_1, \dots, X_n]$

$$\iff$$
 $1 = \overline{g}\overline{h} \mod \mathbb{K}[V]$

$$\iff \overline{h} \in (\mathbb{K}[V])^{\times}.$$

Definition 6.2 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, $U \subseteq V$ offen, $x \in U$.

(i) Eine Abbildung $f: U \longrightarrow \mathbb{K}$ heißt regulär in x, falls es eine offene Umgebung $U_x \subseteq U$ von x und $g, h \in \mathbb{K}[V]$ gibt, sodass für alle $y \in U_x$ gilt

$$h(y) \neq 0$$
 und $f(y) = \frac{g(y)}{h(y)}$

- (ii) f heißt $regul\"{a}r$ auf U, falls f regul\"{a}r in x ist f\"{u}r alle $x \in U$.
- (iii) Die Menge der regulären Funktionen auf U

$$\mathcal{O}_V(U) := \{ f : U \longrightarrow \mathbb{K} \mid f \text{ ist reguläre Funktion auf } U \}$$

ist eine K-Algebra.

(iv) Die Einschränkung

$$\rho_U : \mathbb{K}[V] \longrightarrow \mathcal{O}_V(U), \quad f \mapsto f|_U$$

ist ein Homomorphismus von K-Algebren.

- (v) ρ_U ist injektiv genau dann, wenn U dicht in V ist.
- Beweis von (v) " \Leftarrow " Sei $f \in \ker(\rho_U)$, also $f|_U = 0$. Dann gilt $U \subseteq V(f)$, und da V(f) abgeschlossen ist also auch $\overline{U} \subseteq V(f)$. Da U dicht in V ist erhalten wir $V = \overline{U} \subseteq V(f)$ und damit f = 0 in $\mathbb{K}[V]$.
- " \Rightarrow " Angenommen es gelte $\overline{U} \neq V$. Wähle $x \in V \setminus \overline{U}$. Da $V(I(U)) = \overline{U}$, existiert $f \in I(U)$ mit $f(x) \neq 0$. Damit ist $f \neq 0$ in $\mathbb{K}[V]$ mit $f|_U = \rho_U(f) = 0$, also ist ρ_U nicht injektiv.
- **Beispiel 6.3** (i) $V = \mathbb{A}^1(\mathbb{K})$, $U = \mathbb{A}^1(\mathbb{K})\setminus\{0\}$. Dann ist $\frac{1}{X} \in \mathcal{O}_V(U)$. Setze dafür g(y) = 1 und h(y) = X.
 - (ii) $V = V(Y^2 X^3)$, $U = V \setminus \{(0,0)\}$. Dann ist $\frac{Y}{X} \in \mathcal{O}_V(U)$.
- (iii) $V = \mathbb{A}^n(\mathbb{K}), f \in \mathbb{K}[X_1, \dots, X_n]$. Dann ist $\frac{1}{f} \in \mathcal{O}_V(D(f))$.

Proposition + **Definition 6.4** Für jede affine Varietät $V \subseteq \mathbb{A}^n(\mathbb{K})$ ist die Zuordnung $U \mapsto \mathcal{O}_V(U)$ für alle $U \subseteq V$ offen eine Garbe von Ringen auf V. Das bedeutet im Einzelnen:

(i) Für offene Teilmengen $U' \subseteq U \subseteq V$ ist

$$\rho_{U'}^U: \mathcal{O}_V(U) \longrightarrow \mathcal{O}_V(U'), \quad f \mapsto f|_{U'}$$

ein Homomorphismus von K-Algebren und es gilt für $U'' \subseteq U' \subseteq V$ offen:

$$\rho^U_{U''} \ = \ \rho^{U'}_{U''} \ \circ \ \rho^U_{U'}$$

- (ii) Sei $U \subseteq V$ offen, $(U_i)_{i \in I}$ offene Überdeckung von U. Dann gilt
 - (1) Für $f \in \mathcal{O}_V(U)$ ist $f = 0 \iff \rho_{U_i}^U(f) = 0$ für alle $i \in I$.
 - (2) Ist für jedes $i \in I$ ein $f_i \in \mathcal{O}_V(U_i)$ gegeben, sodass

$$\rho^{U_i}_{U_i \cap U_j}(f_i) \ = \ \rho^{U_j}_{U_i \cap U_j}(f_j) \quad \text{ für alle } i, j \in I$$

so gibt es $f \in \mathcal{O}_V(U)$ mit $f_i = \rho_{U_i}^U(f)$ für alle $i \in I$.

Proposition 6.5 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät. Dann gelten folgende Endlichkeitsaussagen:

- (i) Jede absteigende Kette von abgeschlossenen Teilmengen von V wird stationär, d.h. V ist noetherscher topologische Raum.
- (ii) Jede offene Überdeckung von V besitzt eine endliche Teilüberdeckung, d.h. V ist kompakt.
- (iii) Jede offene Teilmenge von V ist kompakt.
- Beweis. (i) Sei $V_1 \supseteq V_2 \supseteq V_3 \supseteq \ldots$ abgeschlossen in V, d.h. $V_j = V(I_j)$ mit Idealen $I_j \leqslant \mathbb{K}[V]$ für all $j \in I$. Aus $V_j \supseteq V_{j+1}$ folgt $I_j \subseteq I_{j+1}$, also ist $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$ absteigende Kette von Idealen. Da $\mathbb{K}[V]$ noethersch ist, wird wird die Kette der Ideale stationär, so auch die V_j .
 - (ii) Folgt unmittelbar aus (iii).
- (iii) Sei $(U_i)_{i\in I}$ offene Überdeckung von $U\subseteq V$ offen. Angenommen, es gibt eine Folge $(U_k)_{k\in\mathbb{N}}\subseteq (U_i)_{i\in I}$ mit

$$\bigcup_{n=1}^k U_n \neq U \quad \text{und} \quad U_{k+1} \not \subseteq \bigcup_{n=1}^k U_n \quad \text{f\widetilde{A}CEr alle $k \in \mathbb{N}$.}$$

FÃŒr

$$V_k := V \setminus \bigcup_{n=1}^k U_n$$

wäre $V_1 \supsetneq V_2 \supsetneq \ldots$ eine nicht stationär werdende, absteigende Kette von abgeschlossenen Teilmengen, ein Widerspruch zu (i).

Satz 6.6 Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, $f \in \mathbb{K}[V] \setminus \{0\}$. Dann ist

$$\mathcal{O}_V(D(f)) \cong \mathbb{K}[V]_f$$

wobei $\mathbb{K}[V]_f$ die Lokalisierung von $\mathbb{K}[V]$ nach den Potenzen von f bezeichne, also gerade

$$\mathbb{K}[V]_f = \left\{ \frac{g}{f^d} \mid g \in \mathbb{K}[V], \ d \geqslant 0 \right\}$$

Dabei gilt, da $\mathbb{K}[V]$ nicht notwendigerweise nullteilerfrei ist

$$\frac{g_1}{f^{d_1}} = \frac{g_2}{f^{d_2}} \iff f^d \left(g_1 f^{d_2} - g_2 f^{d_1} \right) = 0 \quad \text{für ein } d \geqslant 0$$

Insbesondere erhalten wir für f = 1

$$O_V(V) \cong \mathbb{K}[V]$$

Beweis. Definiere

$$\alpha : \mathbb{K}[V]_f \longrightarrow \mathcal{O}_V(D(f)), \quad \frac{g}{f^d}(y) \mapsto \frac{g(y)}{f(y)^d}$$

Zeige nun, dass α der gewünschte Isomorphismus ist. wohldefiniert. Seien dafür für $d_1, d_2 \geqslant 0, g_1, g_2 \in \mathbb{K}[V]$

$$\frac{g_1}{f^{d_1}} = \frac{g_2}{f^{d_2}} \text{ in } \mathbb{K}[V] \iff f^d\left(g_1f^{d_2} - g_2f^{d_1}\right) = 0 \text{ für ein } d \geqslant 0$$

Damit gilt für alle $y \in V$

$$f(y)^d (g_1(y)f(y)^{d_2} - g_2(y)f(y)^{d_1}) = 0,$$

wegen der Nullteilerfreiheit von \mathbb{K} also

$$g_1(y)f(y)^{d_2} - g_2(y)f(y)^{d_1} = 0 \iff \frac{g_1(y)}{f(y)^{d_1}} = \frac{g_2(y)}{f(y)^{d_2}}$$

injektiv. Sei

$$\frac{g}{f^d} \in \ker(\alpha) \iff \alpha \left(\frac{g}{f^d}(y) \right) = \frac{g(y)}{f(y)^d} = 0 \text{ für alle } y \in D(f)$$

Dann ist g(y) = 0 auf ganz D(f), also $g \in I(D(f))$ und somit $f \cdot g = 0$ auf V. Dann gilt

$$f(g \cdot 1 - 1 \cdot 0) = 0 \iff \frac{g}{1} = \frac{0}{1}$$

und somit g = 0. Folglich ist α injektiv.

surjektiv. Sei $g \in \mathcal{O}_V(V)$. Finde $\tilde{g} \in \mathbb{K}[V]_f$ mit $\alpha(\tilde{g}) = g$.

Für jedes $x \in D(f)$ gibt es offene Umgebungen $U_x \subseteq D(f), g_x, h_x \in \mathbb{K}[V]$, sodass gilt

$$g(y) = \frac{g_x(y)}{h_x(y)}$$
 für alle $y \in U_x$

Wegen 6.4 gibt es endlich viele $x_1, \ldots x_m \in D(f)$ mit

$$\bigcup_{i=1}^{m} U_{x_i} = D(f)$$

Setze $g_i := g_{x_i}, h_i := h_{x_i}, U_i := U_{x_i}$ für alle $1 \le i \le m$. Wegen $U_i \subseteq D(h_i)$ ist mit Komplementbildung

$$D(f) = \bigcup_{i=1}^{m} U_i \subseteq \bigcup_{i=1}^{m} D(h_i)$$

und damit

$$V(f) \supseteq \bigcap_{i=1}^{m} V(h_i) \iff f \in I\left(\bigcap_{i=1}^{m} V(h_i)\right) = \sqrt{\langle h_1, \dots, h_n \rangle}$$

Folglich finden wir $d \in \mathbb{N}$ mit

$$f^d = \sum_{i=1}^m b_i h_i$$
 für geeignete $b_i \in \mathbb{K}[V]$

Sei

$$\tilde{g} := \sum_{i=1}^{m} b_i g_i \in \mathbb{K}[V]$$

Dann gilt für $1 \leq j \leq m$ und $y \in U_j$:

$$g(y) = \frac{g_j(y)}{h_j(y)} = \frac{(g_j f^d)(y)}{(h_j f^d)(y)} = \frac{g_j \sum_{i=1}^m b_i h_i}{h_j f^d}(y) \stackrel{Beh.(i)}{=} \frac{\left(\sum_{i=1}^m b_i g_i\right) h_j}{h_j f^d}(y) = \frac{\tilde{g}}{f^d}(y) = \frac{\tilde{g}(y)}{f^d(y)}$$

Also $\alpha(\tilde{g}) = g$.

Es bleibt zu zeigen:

$$g_j \left(\sum_{i=1}^m b_i h_i \right) = \left(\sum_{i=1}^m b_i g_i \right) h_j$$

also $g_i h_j = g_j h_i$ auf ganz U_j , nicht nur auf $U_j \cap U_i$. Dafür

Beh. (1) Ohne Einschränkung ist $g_i h_j = g_j h_i$ in $\mathbb{K}[V]$.

Beh. (2) Ohne Einschränkung ist $U_i = D(h_i)$.

Nun folgt die Behauptung des Satz.

Bew.(1) Aus Beh. (2) folgt $g_i h_j = g_j h_i$ auf $U_i \cap U_j$, also gerade $D(h_i) \cap D(h_j) = D(h_i h_j)$. Weiter gilt

$$h_i h_j (g_i h_j - g_j h_i) = 0$$
 auf $\mathbb{K}[V]$ (*)

Setze

$$\tilde{g}_i := g_i h_i, \quad \tilde{h}_i := h_i^2, \quad \tilde{g}_j := g_j h_j. \quad \tilde{h}_j := h_j^2$$

Dann wird (*) zu

$$\tilde{g}_i \tilde{h}_j - \tilde{g}_j \tilde{h}_i = 0 \quad \text{in } \mathbb{K}[V]$$

und es gilt

$$\frac{\tilde{g}_i}{\tilde{h}_i} = \frac{g_i}{h_i}, \qquad \frac{\tilde{g}_j}{\tilde{h}_j} = \frac{g_j}{h_j} \quad \text{auf } U_i \cap U_j$$

wobei $U_i = D(h_i)$ und $D(h_j) = U_j$, also folgt die Behauptung.

Bew. (2) Es gilt $U_i \subseteq D(h_i)$. Es bilden die $\{D(h) \mid h \in \mathbb{K}[V]\}$ eine Basis der Zariski-Topologie, d.h. es existiert $h \in \mathbb{K}[V]$ mit $x_i \in D(h)$ und $D(h) \subseteq U_i$.

$$\implies D(h) \subseteq D(h_i) \implies V(h) \supseteq V(h_i)$$

$$\implies h \in I(V(h_i)) = \sqrt{h_i}.$$

Damit finden wir $d \in \mathbb{N}$, sodass gilt

$$h^d = a \cdot h_i$$
 für ein $a \in \mathbb{K}[V]$

Ersetze nun g_i durch $g_i \cdot a$, h_i durch $h^d = a \cdot h_i$, U_i durch $D(h_i)$ und setze \tilde{g}_i , \tilde{h}_i wie oben. Dann gilt für $y \in D(h)$

$$g(y) = \frac{g_i}{h_i}(y) = \frac{g_i \cdot a}{h_i \cdot a}(y) = \frac{\tilde{g}_i}{\tilde{h}_i}(y),$$

es folgt die Behauptung.

Proposition 6.7 Seien $V \subseteq \mathbb{A}^n(\mathbb{K})$, $W \subseteq \mathbb{A}^m(\mathbb{K})$ affine Varietäten, $f: V \longrightarrow W$ ein Morphismus, $U \subseteq W$ offen. Dann ist

$$f_U^{\#}: \mathcal{O}_W(U) \longrightarrow \mathcal{O}_V(f^{-1}(U)), \quad g \mapsto g \circ f$$

ein Homomorphismus von \mathbb{K} -Algebren.

Beweis. Zu zeigen ist: $g \circ f \in \mathcal{O}_V(f^{-1}(U))$. Seien dazu $g \in \mathcal{O}_W(U), x \in f^{-1}(U), y = f(x) \in U$. Nach

Voraussetzung gibt es eine Umgebung $U_y \subseteq U$ von y, sodass

$$g = \frac{g_y}{h_y}$$
 für geeignete $g_y, h_y \in \mathbb{K}[V]$

Für $z \in f^{-1}(U_y) \subseteq f^{-1}(U)$ ist dann

$$(g \circ f)(z) = \frac{g_y(f(z))}{h_y(f(z))} = \frac{g_y \circ f}{h_y \circ f}(z) = \frac{f^{\#}(g_y)}{f^{\#}(h_y)}(z)$$

mit $f^{\#}: \mathbb{K}[V] \longrightarrow \mathbb{K}[V], g \mapsto g \circ f$ wie gewöhnlich. Damit ist $g \circ f$ regulär auf $f^{-1}(U_y)$ und damit insbesondere in x.

- Bemerkung + Definition 6.8 (i) Sind \mathcal{F}, \mathcal{G} Garben, so ist ein *Garbenmorphismus* $\Phi : \mathcal{F} \longrightarrow \mathcal{G}$ eine Kollektion von Morphismen $\phi_U : \mathcal{F}(U) \longrightarrow \mathcal{G}(U)$, welche mit der Einschränkungsabbildung verträglich sind.
 - (ii) Die Homomorphismen $f_U^\#$ für $U\subseteq W$ offen bilden einen Garbenmorphismus

$$f^{\#}: \mathcal{O}_W \longrightarrow f_*\mathcal{O}_V, \quad U \mapsto (f_*\mathcal{O}_V)(U) = \mathcal{O}_v(f^{-1}(U))$$

d.h. für offene Mengen $U' \subseteq U \subseteq W$ ist das folgende Diagramm kommutativ:

$$\mathcal{O}_{W}(U) \xrightarrow{\rho_{U'}^{U}} \rightarrow \mathcal{O}_{W}(U')$$

$$\downarrow^{f_{U}^{\#}} \qquad \qquad \downarrow^{f_{U'}^{\#}}$$

$$\mathcal{O}_{V}(f^{-1}(U)) \xrightarrow{\rho_{f^{-1}(U')}^{f^{-1}(U)}} \rightarrow \mathcal{O}_{V}(f^{-1}(U'))$$

Lemma 6.9 Seien $V \subseteq \mathbb{A}^n(\mathbb{K}), W \subseteq \mathbb{A}^m(\mathbb{K})$ affine Varietäten. Dann ist eine Abbildung $f: V \longrightarrow W$ Morphismus genau dann, wenn für jedes offene $U \subseteq W$ und jedes $g \in \mathcal{O}_W(U)$ gilt: $g \circ f \in \mathcal{O}_V(f^{-1}(U))$.

Beweis. " \Rightarrow " Siehe 6.6

" \Leftarrow " Zu zeigen: $p_i \circ f$ ist Polynom für jedes $i \in \{1, \ldots, n\}$, wobei

$$p_i: \mathbb{A}^n(\mathbb{K}) \longrightarrow \mathbb{A}^1(\mathbb{K}), \quad (x_1, \dots, x_n) \mapsto x_i$$

die Projektionen auf die i-te Komponente ist.

Es gilt $p_i \in \mathcal{O}_W(U)$ für jedes offene $U \subseteq W$, nach Voraussetzung also auch $p_i \circ f \in \mathcal{O}_V(f^{-1}(U))$. Dann gilt $p_i \circ f \in \mathcal{O}_V(V) \stackrel{6.5}{=} \mathbb{K}[V]$.

Beispiel 6.10 Sei $U = \mathbb{A}^1(\mathbb{K}) \setminus \{0\}$. Dann ist $g := \frac{1}{x} \in \mathcal{O}_{\mathbb{A}^1(\mathbb{K})}(U)$. Sei

$$f: U \longrightarrow \mathbb{A}^2(\mathbb{K}), \quad x \mapsto (x, g(x)) = \left(x, \frac{1}{x}\right)$$

Dann ist

$$f(U) = V(XY - 1) \subseteq \mathbb{A}^2(\mathbb{K})$$

Die Projektion

$$p_1: \mathbb{A}^2(\mathbb{K}) \longrightarrow \mathbb{A}^1(\mathbb{K}), \quad (x,y) \mapsto x$$

ist die Umkehrabbildung zu f.

Definition + **Bemerkung 6.11** (i) Ein offene Teilmenge $U \subseteq \mathbb{A}^n(\mathbb{K})$ heißt quasiaffine Varietät, wenn U Zariski-offen in einer affinen Varietät $V \subseteq \mathbb{A}^n(\mathbb{K})$ ist.

- (ii) Eine Abbildung $f: U_1 \longrightarrow U_2$ von quasiaffinen Varietäten heißt *Morphismus* oder auch *regulär*, falls f stetig bezüglich der Zariski-Topologie ist und für jede offene Teilmenge $U \subseteq U_2$ und $g \in \mathcal{O}_{U_2}(U)$ gilt: $g \circ f \in \mathcal{O}_{U_1}(f^{-1}(U))$.
- (iii) Seien $U_1 \subseteq \mathbb{A}^n(\mathbb{K}), U_2 \subseteq \mathbb{A}^m(\mathbb{K})$ quasiaffine Varietäten. Dann ist die Abbildung $f: U_1 \longrightarrow U_2$ genau dann regulär, wenn es reguläre Funktionen $f_1, \ldots, f_m \in \mathcal{O}_{U_1}(U_1)$ gibt, sodass

$$f(x) = (f_1(x), \dots, f_m(x))$$
 für alle $x \in U_1$

- (iv) Die quasiaffinen Varietäten bilden zusammen mit den regulären Abbildungen eine Kategorie, von der $\underline{\text{Aff}}(\mathbb{K})$ eine volle Unterkategorie ist.
- (v) Eine quasioffene Varietät heißt affin (als abstrakte Varietät), falls sie isomorph zu einer affinen Varietät, also einer Zariski-abgeschlossenen Teilmenge des $\mathbb{A}^n(\mathbb{K})$ für ein $n \ge 1$ ist.

Beweis. (iii) Folgt aus 6.8.

(iv) Zeige dass für affine Varietäten die regulären Abbildungen bereits Morphismen sind (also dass $Aff(\mathbb{K})$ eine volle Unterkategorie bildet).

Sei $f:V\longrightarrow W$ regulär zwischen affinen Varietäten V und W. Mit (iii) folgt

$$f(x) = (f_1(x), \dots, f_m(x))$$
 für alle $x \in V$

mit $f_i \in \mathcal{O}_V(V) = \mathbb{K}[V]$. Dann folgt bereits, dass f Morphismus ist.

Bemerkung 6.12 Für $f \in \mathbb{K}[X_1, \dots X_n]$ ist D(f) affin als abstrakte Varietät.

Beweis. Definiere

$$G := f \cdot X_{n+1} - 1 \in \mathbb{K}[X_1, \dots, X_n, X_{n+1}]$$

und $V := V(G) \subseteq \mathbb{A}^{n+1}(\mathbb{K})$.

Die Projektion

$$\pi_{n+1}: \mathbb{A}^{n+1}(\mathbb{K}) \longrightarrow \mathbb{A}^n(\mathbb{K}), \quad (x_1, \dots, x_{n+1}) \mapsto (x_1, \dots, x_n)$$

ist Morphismus mit $\pi_{n+1}(V) \subseteq D(f)$. Weiter ist

$$\phi: D(f) \longrightarrow \mathbb{A}^{n+1}(\mathbb{K}), \quad x \mapsto \left(x, \frac{1}{f(x)}\right)$$

regulär mit $\phi(D(f)) \subseteq V$. π_{n+1}, ϕ sind invers zueinander, also gilt $D(f) \cong V$.

§ 7 Rationale Abbildungen und Funktionenkörper

Sei \mathbb{K} weiterhin algebraisch abgeschlossen.

Definition + **Bemerkung 7.1** Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ quasiaffine Varietät.

(i) Eine rationale Funktion auf V ist eine Äquivalenzklasse von Paaren (U, f) mit $U \subseteq V$ offen und dicht sowie $f \in \mathcal{O}_V(U)$. Dabei sei

$$(U_1, f_1) \sim (U_2, f_2) \iff f_1|_{U_1 \cap U_2} = f_2|_{U_1 \cap U_2}$$

- (ii) In jeder Äquivalenzklasse gibt es eine bezüglich der Inklusion maximalen Vertreter (U_{max}, f_{max}) . U_{max} heißt Definitionsbereich von $(U, f)_{\sim}$. $V \setminus U_{max}$ heißt Polstellenmenge von $(U, f)_{\sim}$.
- (iii) Die rationalen Funktionen auf V bilden eine \mathbb{K} -Algebra.
- (iv) Ist V irreduzibel, so ist

$$Rat(V) \cong \mathbb{K}(V) = Quot(\mathbb{K}[V])$$

der $Funktionenk\"{o}rper$ von V.

- Beweis. (i) Zu zeigen ist lediglich die Transitivität: Gelte $(U_1, f_1) \sim (U_2, f_2), (U_2, f_2) \sim (U_3, f_3).$ Dann gilt per Definition $f_1|_{U_1 \cap U_2 \cap U_3} = f_2|_{U_1 \cap U_2 \cap U_3}$ und damit, da $U_1 \cap U_2 \cap U_3$ dicht in $U_1 \cap U_3$ ist: $f_1|_{U_1 \cap U_3} = f_3|_{U_1 \cap U_3}$.
- (ii) Setze $U_{max} = \bigcup_{(U',f')\in(U,f)_{\sim}} U'$.
- (iii) klar.
- (iv) Sei

$$\alpha : \mathbb{K}(V) \longrightarrow \mathrm{Rat}(V), \quad \frac{f}{g} \mapsto \left(D(g), \frac{f}{g}\right)_{\sim}$$

Dann ist α offensichtlich Homomorphismus von K-Algebren.

injektiv: klar.

surjektiv: Sei $(U, f)_{\sim} \in \text{Rat}(V)$. Dann ist $f \in \mathcal{O}_V(U)$ und es existiert eine offene dichte Teilmenge $U' \subseteq U$ und $g, h \in \mathcal{O}_V(U)$, sodass gilt

$$f = \frac{g}{h}$$
 auf $U' \iff \alpha\left(\frac{g}{h}\right) = f$,

was zu zeigen war.

Beispiel 7.2 Sei $U \subseteq V$ von der Form U = D(h) für ein $h \in \mathbb{K}[V]$. Dann ist

$$\mathcal{O}_V(D(h)) = \mathbb{K}[V]_h = \left\{ \frac{f}{g} \in \text{Quot}(\mathbb{K}[V]) \mid f \in \mathbb{K}[V], g = h^d \text{ für ein } d \in \mathbb{N}_0 \right\}$$

Dann ist

$$\operatorname{Quot}\left(\mathcal{O}_{V}(D(h))\right) = \operatorname{Quot}(\mathbb{K}[V]_{h}) = \operatorname{Quot}(\mathbb{K}[V]) = \mathbb{K}(V),$$

denn es gilt

$$\mathbb{K}[V] \subseteq \mathbb{K}[V]_h \subseteq \mathbb{K}[V]_{\mathbb{K}[V] \setminus \{0\}} = \operatorname{Quot}(\mathbb{K}[V]).$$

Definition + **Bemerkung 7.3** Seien *V, W* quasi-affine Varietäten.

(i) Eine rationale Abbildung $f: V \dashrightarrow W$ ist eine Äquivalenzklasse von Paaren (U, f) mit $U \subseteq V$ offen und dicht sowie $f: U \longrightarrow W$ reguläre Abbildung. Dabei gelte wieder

$$(U_1, f_1) \sim (U_2, f_2) \iff f_1|_{U_1 \cap U_2} = f_2|_{U_1 \cap U_2}$$

- (ii) In jeder Äquivalenzklasse $(U, f)_{\sim}$ gibt es ein maximales U := Def(f). U heißt Definitionsbereich.
- (iii) Rationale Abbildungen $f:V \dashrightarrow \mathbb{A}^1(\mathbb{K})$ entsprechen den rationalen Funktionen auf V.

Definition 7.4 Ein Morphismus $f:V\longrightarrow W$ von quasiaffinen Varietäten heißt dominant, falls $f(V)\subseteq W$ dicht in W ist.

Bemerkung + Definition 7.5 (i) Die irreduziblen quasiaffinen Varietäten über K bilden mit den dominanten rationalen Abbildungen eine Kategorie.

(ii) Isomorphismen in dieser Kategorie heißen birationale Abbildungen.

Beweis von (i). Sind $f: V \dashrightarrow W, g: W \dashrightarrow Z$ dominante rationale Abbildungen irreduzibler Varietäten V, W, Z, so ist $f^{-1}(\text{Def}(g))$ offen und nichtleer, da f dominant ist.

Damit ist $U := f^{-1}(Def(g))$ dicht in V.

 $\Longrightarrow U \subseteq \text{Def}(g \circ f)$, also ist $g \circ f$ rationale Abbildung.

Beispiel 7.6 (i) Sei $V = V(XY) \subseteq \mathbb{A}^2(\mathbb{K})$,

$$f: V \longrightarrow \mathbb{A}^1(\mathbb{K}), \quad (x,y) \mapsto x$$

$$g: \mathbb{A}^1(\mathbb{K}) \longrightarrow \mathbb{A}^1(\mathbb{K}), \quad x \mapsto \frac{1}{x}$$

Dann ist f surjektiv, g ist dominante rationale Abbildung. Aber es gilt $Def(g \circ f) = V \setminus V(X)$ ist nicht dicht in V, also ist $g \circ f$ keine rationale Abbildung.

(ii) Betrachte

$$\sigma: \mathbb{A}^2(\mathbb{K}) \dashrightarrow \mathbb{A}^2(\mathbb{K}), \quad (X,Y) \mapsto \left(\frac{1}{X}, \frac{1}{Y}\right)$$

 σ ist rationale Abbildung mit $Def(\sigma) = D(XY), \sigma^2 = id$ als birationale Abbildung. Damit ist σ eine birationale Abbildung.

Proposition 7.7 Sei $f: V \longrightarrow W$ Morphismus von affinen Varietäten und

$$f^{\#}: \mathbb{K}[V] \longrightarrow \mathbb{K}[V], \quad g \mapsto g \circ f$$

der induzierte K-Algebren Homomorphismus der zwischen den Koordinatenringen. Dann gilt

$$f^{\#}$$
 ist injektiv \iff f ist dominant

Beweis. Beh. (1) Für $Z \subseteq W$ abgeschlossen gilt

$$(f^{\#})^{-1}(I(Z)) = I(\overline{f(Z)}) = I(f(Z))$$

Bew. (1) Es gilt:
$$g \in (f^{\#})^{-1}(I(Z))$$

 $\iff f^{\#}(g) \in I(Z)$
 $\iff g \circ f \in I(Z)$
 $\iff g(f(z)) = 0$ für alle $z \in Z$
 $\iff g(y) = 0$ für alle $y \in f(Z)$
 $\iff g \in I(\overline{f(Z)}) = I(f(Z))$

Damit gilt für Z = V wegen I(V) = 0 in $\mathbb{K}[V]$ mit Beh. (1):

$$(f^{\#})^{-1}(0) = (f^{\#})^{-1}(I(V)) = I(\overline{f(V)}) \stackrel{dom.}{=} I(W) = 0$$

Also gerade $\ker(f^{\#}) = \{0\}$, also ist $f^{\#}$ injektiv.

Folgerung 7.8 Jede dominante Abbildung $f: V \dashrightarrow W$ zwischen irreduziblen quasiaffinen Varietäten induziert einen Körperhomomorphismus $f^{\#}: \mathbb{K}(W) \longrightarrow \mathbb{K}(V)$.

Beweis. Seien V, W affin. Ist f Morphismus, so ist

$$f^{\#}: \mathbb{K}[W] \longrightarrow \mathbb{K}[V], \quad g \mapsto g \circ f$$

injektiv und lässt sich damit fortsetzen zu

$$f^{\#}: \mathbb{K}(W) \longrightarrow \mathbb{K}(V), \quad \frac{g}{h} \mapsto \frac{f^{\#}(g)}{f^{\#}(h)}$$

Ist $Def(f) \neq V$, so sei $g \in \mathbb{K}[V]$ mit $D(g) \supseteq Def(f)$. Für $h \in \mathbb{K}[W]$ ist dann

$$f^{\#}(h) = h \circ f \in \mathcal{O}_V(D(g)),$$

also induziert f einen Homomorphismus

$$f^{\#}: \mathbb{K}[W] \longrightarrow \mathcal{O}_V(D(g)) = \mathbb{K}[V]_g$$

D(g) ist nach 6.10 affin, mit 7.6 folgt also die Injektivität von $f^{\#}$. Damit existiert die Fortsetzung

$$f^{\#}: \mathbb{K}(W) \longrightarrow \operatorname{Quot}(\mathbb{K}[V]_q) = \operatorname{Quot}(\mathbb{K}[V]) = \mathbb{K}(V)$$

Satz 7.9 Ist K algebraisch abgeschlossen, so ist die Zuordnung

$$\Phi: \left\{ \begin{array}{ll} \textit{irreduzible, quasi-affine Variet\"{a}ten} \\ \textit{dominante rationale Abbildungen} \end{array} \right\} \quad \longrightarrow \quad \left\{ \begin{array}{ll} \mathbb{L}/\mathbb{K} \ \textit{endlich erzeugt} \\ \mathbb{K}\text{-}\textit{Algebra Homomorphismen} \end{array} \right\}$$

$$\begin{cases} V \\ f: V \longrightarrow W \end{cases} \mapsto \begin{cases} \mathbb{K}(V) \\ f^{\#}: \mathbb{K}(W) \longrightarrow \mathbb{K}(V) \end{cases}$$

eine Äquivalenz von Kategorien.

Beweis. Offensichtlich ist Φ ein Funktor. Zu zeigen bleibt also noch

- (i) Zu jeder endlich erzeugten Körpererweiterung \mathbb{L}/\mathbb{K} gibt es V mit $\mathbb{K}(V) \cong \mathbb{L}$.
- (ii) Die Zuordnung

$$\operatorname{Rat}^{\operatorname{Dom}}(V,W) \longrightarrow \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}(W),\mathbb{K}(V)), \quad f \mapsto f^{\#}$$

ist eine Bijektion.

zu (i) Seien x_1, \ldots, x_n Erzeuger von \mathbb{L} über \mathbb{K} und $A := \mathbb{K}[x_1, \ldots, x_n]$ die von den x_i erzeugte \mathbb{K} Algebra. A ist als solche offenbar endlich erzeugt und reduziert, da A Teilmenge eines Körpers
ist. Damit existiert eine affine Varietät V mit $A \cong \mathbb{K}[V]$. Da A nullteilerfrei ist, ist V sogar
irreduzibel und damit

$$\mathbb{K}(V) = \operatorname{Quot}(\mathbb{K}[V]) \cong \operatorname{Quot}(A) = \mathbb{L}$$

zu (ii) Es gilt

injektiv. Seien $f, g: V \dashrightarrow W$ mit $f^{\#} = g^{\#}$. Wähle $U = D(h) \subseteq \text{Def}(f) \cap \text{Def}(g)$ offen und affin. $f|_{U}$ und $g|_{U}$ sind Morphismen von U nach W.

Diese induzieren K-Algebren Homomorphismen

$$g_U^{\#}, f_U^{\#} : \mathbb{K}[W] \longrightarrow \mathbb{K}[U] \subseteq \mathbb{K}(V)$$

surjektiv. Sei

$$\alpha: \mathbb{K}(W) \longrightarrow \mathbb{K}(V)$$

ein K-Algebren Homomorphismus. Wähle Erzeuger g_1, \ldots, g_n von K[W] also K-Algebra. Für jedes $1 \leq i \leq n$ ist $\alpha(g_i)$ rationale Funktion auf V.

Da V irreduzibel ist, ist

$$\bigcap_{i=1}^{n} \operatorname{Def}(\alpha(g_i))$$

offen und affin für geeignete $g \in \mathbb{K}[V]$. Nach Konstruktion induziert α einen \mathbb{K} -Algebren Homomorphismus

$$\alpha: \mathbb{K} \longrightarrow \mathcal{O}_U(U) = \mathbb{K}[U]$$

Damit gilt nach 5.8 gilt dann $\alpha = f^{\#}$ für einen Morphismus $f: U \longrightarrow W$.

Da außerdem U dicht in V ist, ist (U, f) rationale Abbildung, denn f ist dominant, da $f^{\#}$ als Körperhomomorphismus injektiv ist.