1.3.1 Finding output with constant inputs

Mohammed Radoan, Adjunct Lecturer, BRAC University

II. Determine the voltage across the $10\,k\Omega$ resistor for the circuit shown below. Assume the op-amp to be ideal except with a finite gain $A=10^4$.

= -15~

The following circuit uses an op amp that is ideal except for having a finite gain A. Measurements indicate $v_0=4.0\,V$ when $v_I=2.0\,V$. What is the op-amp gain A?

Ans: A = 2002

$$V_{+ph} = \frac{lk}{lk+lm} \times V_{I}$$

$$= \frac{1000}{1000+106} \times 2 = 1.998 \text{ mV}$$

1.3.2 Finding output with time varying inputs

Mohammed Radoan, Adjunct Lecturer, BRAC University

• Sketch V_o vs. t and V_o vs. E_i .

An

• The frequency of E_C is constant at 50~Hz. If $V_{temp}=4~V$, $(a)~plot~V_o~vs.~E_C$, $(b)~plot~V_o~vs.~t$, and $(c)^{**}$ calculate the high time of V_o .

Ee > 4V - VSIL = OV

E< 4V + VIL = +15V

1.3.2 Finding output with time varying inputs

Mohammed Radoan, Adjunct Lecturer, BRAC University

In the adjacent circuit, v_I is a time varying voltage as plotted below. Sketch the graphs of (a) V_o vs. t and (b) V_o vs. v_I.

• In the following circuit, E_{in} is a triangular wave of 100~Hz frequency with an amplitude of 5~V. Sketch, with appropriate levels of axes crossings, the graphs of (a) $V_o~vs.~E_{in}$ and (b) $V_o~vs.~t$.

$$V_1 = \frac{31}{12k+3k} \times 15 = 31$$

1.3.3 Designing circuit

Mohammed Radoan, Adjunct Lecturer, BRAC University

- I. Draw the schematics of a circuit whose output voltage will go positive to +15 V, when the input signal crosses +5 V in the positive direction.
- II. Draw the schematics of a circuit whose output voltage will go positive to $+15\,V$, when the input signal is below $-4\,V$. The output should be at $-15\,V$ when the input is above $-4\,V$.

• Design a circuit with a single ideal op-amp for each of the VTC plots shown below. V_{output} and V_{input} are the output voltage and the input voltage respectively.

(a)
$$+\sqrt{s_1t} = (0V)$$

$$-\sqrt{s_2t} = -5V$$

$$-\sqrt{s_2t} = -5V$$

$$-\sqrt{s_2t} = -3V$$

$$-\sqrt{s_2t} = -10V$$

$$\sqrt{s_1t} = -10V$$

$$\sqrt{s_2t} = -10V$$

1.3.4 Drawing VTC

Mohammed Radoan, Adjunct Lecturer, BRAC University

• Draw the Voltage Transfer Characteristics ($v_0 \ vs. \ v_I$) of the following circuit.

- I. Draw the Voltage Transfer Characteristics ($v_0 \ vs. \ v_l$) of the following circuit.
- II. Also design a circuit that would give rise to the VTC you plotted in I.

