

Кафедра Интеллектуальных Систем

Градиентные потоки Вассерштайна: методы моделирования и применение в приложениях

Студент: *П.В.Мокров* Научный руководитель: д.ф.-м.н. *Е.В.Бурнаев*

Июнь, 2022

Общая постановка задачи

Моделирование градиентных потоков Вассерштайна

Сферы применения:

- моделирование динамики толпы (Maury et. al., 2010)
- генеративное моделирование (Gao et. al., 2019)
- обучение с подкреплением (Zhang et. al., 2018)

- моделирование динамики популяции (Hashimoto et. al., 2016)
- нелинейная фильтрация (Mokrov et. al., 2021)
- семплирование из ненормированного распределения (Mokrov et. al., 2021)

Существующие методы решения:

- ullet дискретизация пространства ullet
- методы симуляции частиц
- прямой метод Эйлера
- JKO схема (Jordan et. al., 1996)

- в пространствах низкой размерности
- нет моделирования вероятностных мер
- не приближают истинный град. поток

Введение. Градиентные потоки Вассерштайна

Пусть $\rho_t, t \in [0,T]$ - кривая в вероятностном пространстве $\mathcal{P}_2(\mathbb{R}^N)$. Тогда **метрическая производная** этой кривой есть:

$$|\rho_t'| = \lim_{dt \to 0} \frac{\mathcal{W}_2(\rho_t, \rho_{t+dt})}{dt}$$

Кривая $\rho_t,\,t\in[0,T]$ называется градиентным потоком

Вассерштайна относительно функционала $\mathcal{F}:\mathcal{P}_2(\mathbb{R}^N) \to \mathbb{R}$ если она образует кривую наискорейшего спуска относительно этого функционала, т.е. $\forall t \in [0,T]$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{F}(\rho_t) \bigg|_{t=t} = \min_{\substack{\mu_t, \text{ s.t.:} \\ \mu_t = \rho_t \\ |\mu'_t| = |\rho'_t|}} \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{F}(\mu_t) \bigg|_{t=t}$$

Введение. Процессы Ланжевена

Процесс Ланжевена с коэффициентом сноса, являющимся градиентом потенциала $\Phi(X_t)$:

$$dX_t = -\nabla \Phi(X_t)dt + \sqrt{2\beta^{-1}}dW_t$$
, s.t. $X_0 \sim \rho^0$

Уравнение Фоккера-Планка:

$$\frac{\partial \rho_t}{\partial t} = \operatorname{div}(\nabla \Phi(x) \rho_t) + \beta^{-1} \Delta \rho_t, \quad \text{s.t. } \rho_0 = \rho^0.$$

Пример процесса Ланжевена ►

Введение. Процесс Ланжевена как градиентный поток Вассерштайна

Функционал Фоккера-Планка (Jordan, Kinderlehrer, Otto, 1996)

Маргинальные вероятностные меры процесса Ланжевена подчиняются градиентному потоку Вассерштайна отн. функционала Фоккера-Планка:

$$\mathcal{F}_{\mathrm{FP}}(\rho) = \int_{\mathbb{R}^N} \Phi(x) d\rho(x) + \beta^{-1} \int_{\mathbb{R}^N} \log \rho(x) d\rho(x)$$

Иллюстрация градиентного потока Вассерштайна ►

Цель

- разработать масштабируемые методы моделирования градиентных потоков Вассерштайна на основе ЈКО схемы и теории оптимального транспорта
- применить полученные методы в приложениях

План работы

1. **Переформулировать JKO схему** для WGF относительно функционала Фоккера-Планка:

$$\mathcal{F}_{\mathrm{FP}}(\rho) = \int_{\mathbb{R}^N} \Phi(x) d\rho(x) + \beta^{-1} \int_{\mathbb{R}^N} \log \rho(x) d\rho(x)$$

с помощью ICNNs и теории оптимального транспорта.

- Предложить и реализовать алгоритм оптимизации для решения ЈКО схемы.
- 3. **Оценить качество подхода** на численных экспериментах, особое внимание уделяя задачам с высокой размерностью.

Методы. Теория

JKO схема (Jordan, Kinderlehrer, Otto, 1996)

Приближает WGF с функционалом Фоккера-Планка $\mathcal{F}_{\mathrm{FP}}$ с помощью последовательности мер $\left\{
ho_{ au}^k
ight\}_{k=0}^K$; $ho_{ au}^0 =
ho^0$ такой, что:

$$\rho_{\tau}^{k} \leftarrow \underset{\rho \in \mathcal{P}(\mathbb{R}^{N})}{\operatorname{arg\,min}} \frac{1}{2} \mathcal{W}_{2}^{2}(\rho_{\tau}^{k-1}, \rho) + \tau \mathcal{F}_{\mathrm{FP}}(\rho)$$

Переформулировка JKO с помощью **теоремы Бренье** (Brenier, 1987):

$$\psi_k = \underset{\psi \in \text{Conv}(\mathbb{R}^N)}{\arg \min} \tau \mathcal{F}_{\text{FP}}(\rho_{\tau}^k \circ \nabla \psi^{-1}) + \frac{1}{2} \int_{\mathbb{R}^N} \|x - \nabla \psi(x)\|_2^2 d\rho_{\tau}^k(x);$$
$$\rho_{\tau}^{k+1} = \rho_{\tau}^k \circ \nabla \psi_k^{-1}$$

Методы.

Оптимизация

Выпуклые нейронные сети (ICNNs) (Amos, 2017)

Пример структуры ICNN ►. Выпуклость обеспечивается особыми условиями на веса и активации, а также особой топологией слоев сети. Источник рисунка: (Korotin et. al., 2021)

Стохастическая функционал оптимизации JKO (Korotin, 2021)

$$\widehat{F_{\text{FP}}}(x_{1:n}) = \frac{1}{n} \sum_{i=1}^{n} \left| \left\{ \Phi(\nabla \psi_{\theta}(x_i)) - \beta^{-1} \log |\det \operatorname{Hess}(\psi_{\theta})(x_i)| \right\} ; x_i \sim \rho_{\tau}^{k-1} \right|$$

Процедура семплирования ЈКО:

Sample batch
$$Z \sim \rho^0$$
; $\Rightarrow X \leftarrow \nabla \psi_{K-1} \circ \cdots \circ \nabla \psi_0(Z) \sim \rho_{\tau}^K$

Методы. Приложения

Оценка плотности JKO (Korotin, 2021)

Формула замены переменной $ho_{ au}^K(x_K) =
ho^0(x_0) \cdot \left[\prod_{i=0}^{K-1} \det \nabla^2 \psi_i(x_i)\right]^{-1}$ как посл. выпуклых задач оптимизации $x_{i-1} = \arg\max_x \left(x^T x_i - \psi_i(x)\right)$

Алгоритм Метрополиса-Гастингса на основе JKO (Mokrov, 2021)

Алгоритм Метрополиса-Гастингса в задаче нелинейной фильтрации с особыми $\{\psi_i\}_{i=1}^K$ модельно - зависимыми вспомогательными функциями распределения для быстрой оценки отношения плотностей

Результаты. Синтетические эксперименты

Моделирование процессов Орнштейна - Уленбека

$$\Phi(x) = \frac{1}{2}(x-b)^T A(x-b), A \text{ is SPD}$$

Расхождения между истинными и предсказанными вероятностными мерами при t = 0.5 (слева) и t = 0.9 (справа) ▲

Результаты. Синтетические эксперименты

Сходимость к стационарному распределению $\, ho^*(x) = Z^{-1} \exp(-\beta \Phi(x)) \,$

Сравнение сходимости к стационарному распределению в разных размерностях ▲

Визуальное расхождение между истинными и предсказанными стационарными распределениями для размерностей N = 32 (сверху) и N = 13 (снизу). Проекция на 2 главные PC ▶

Результаты. Приложения

Семплирование из ненормированного апостериорного распределения в задаче байесовской логистической регрессии

Dataset	Accuracy		Log-Likelihood	
	Ours	$\lceil SVGD \rfloor$	Ours	$\lceil SVGD \rfloor$
covtype	0.75	0.75	-0.515	-0.515
german	0.67	0.65	-0.6	-0.6
diabetis	0.775	0.78	-0.45	-0.46
twonorm	0.98	0.98	-0.059	-0.062
$\operatorname{ringnorm}$	0.74	0.74	-0.5	-0.5
banana	0.55	0.54	-0.69	-0.69
splice	0.845	0.85	-0.36	-0.355
waveform	0.78	0.765	-0.485	-0.465
image	0.82	0.815	-0.43	-0.44

Сравнение с методом SVGD (*Liu et. al., 2016*) в задаче байесовской логистической регрессии на 9 стандартных датасетах

Результаты. Приложения

Нелинейная фильтрация

Апостериорное распределение процесса Ланжевена X_t на основе зашумленных наблюдений из процесса: $p(X_t|Y_{t_1},Y_{t_2},\ldots,Y_{t_k})$

Визуальное (слева) и boxplot (справа) сравнение апостериорных распределений для 1D нелинейной диффузии Фоккера-Планка с $\Phi(x)=\frac{1}{\pi}\sin(2\pi x)+\frac{1}{4}x^2$

Обсуждение результатов

- Лучшее качество в экспериментах с синтетическими данными (процессы Орнштейна-Уленбека, сходимость к стационарному распределению).
- Сравнимое качество с SVGD в задаче семплирования из ненормированного распределения, более быстрая генерация выборки.
- Конкурентоспособное качество в задаче 1D нелинейной фильтрации. Возможно, лучшее качество в задаче нелинейной фильтрации в больших размерностях.

Научная новизна

Benamou et. al., 2014

Frogner et. al., 2020

Bunne et. al., 2022; Alvarez-Melis et. al., 2021

сходства

Похожая формулировка ЈКО с помощью теоремы Бренье

Похожий набор численных экспериментов

Похожий метод моделирования JKO, параметризация с помощью ICNNs

различия

Сложная дискретизация пространства выпуклых функций

Моделирование WGFs с помощью двойственной задачи JKO

Появились параллельно с нашей работой

Потенциальные приложения

Популяционная динамика.

Single-cell RNA sequencing

Демонстрация пролиферации клеток **▲**. источник рисунка: (Schiebinger et. al., 2019)

Диффузионные **генеративные модели**

Предварительные эксперименты генерации MNIST ▲

Выводы

- 1. Предложена переформулировка JKO схемы с использованием теории оптимального транспорта и параметризации выпуклых функций с помощью ICNNs
- Предложен и реализован алгоритм для решения ICNNпараметризованного JKO с помощью градиентного спуска
- 3. Изучено качество предложенного подхода в нескольких численных экспериментах и в приложениях (семплирование из ненормированного распределения, нелинейная фильтрация).

Публикации по теме диплома

P. Mokrov, A. Korotin, L. Li, A. Genevay, J. Solomon, E. Burnaev. Large-Scale Wasserstein Gradient Flows; in **Advances in Neural Information Processing Systems**, 2021

Благодарности

Хочу выразить благодарность Александру Коротину, который помог мне с этим проектом. В частности, он поделился со мной множеством полезных идей и помог с написанием и подачей нашей статьи на конференцию.