Math 310

Homework 4

Due: 10/9/2024

Name: Gianluca Crescenzo

Exercise 1. Prove the following limits:

(1)
$$\left(\frac{2n}{n+1}\right)_n \to 2$$
.

(2)
$$\left(\frac{\sqrt{n}}{n+1}\right)_n \to 0.$$

$$(3) \left(\frac{(-1)^n}{\sqrt{n+7}}\right)_n \to 0.$$

(4)
$$(n^k b^n)_n \to 0$$
, where $0 \le b < 1$ and $k \in \mathbb{N}$.

(5)
$$\left(\frac{2^{n+1}+3^{n+1}}{2^n+3^n}\right)_n \to 3.$$

Proof. (1) Let $\epsilon > 0$. There exists $N_{\epsilon} \in \mathbb{N}$ such that $N_{\epsilon} > \frac{2}{\epsilon} - 1$. If $n \ge N_{\epsilon}$, then $n > \frac{2}{\epsilon} - 1$ gives:

$$\frac{2}{\epsilon} < n+1 \implies \frac{2}{n+1} < \epsilon$$

$$\implies \frac{|2n-2n-2|}{n+1} < \epsilon$$

$$\implies \left| \frac{2n-2(n+1)}{n+1} \right| < \epsilon$$

$$\implies \left| \frac{2n}{n+1} - 2 \right| < \epsilon.$$

(2) Observe that:

$$\left|\frac{\sqrt{n}}{n+1}\right| \leqslant \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}}.$$

Since $\left(\frac{1}{\sqrt{n}}\right)_n \to 0$, by "Lemma" $\left(\frac{\sqrt{n}}{n+1}\right)_n \to 0$. (3) We have:

$$\left| \frac{(-1)^n}{\sqrt{n+7}} \right| = \frac{1}{\sqrt{n+7}} \leqslant \frac{1}{\sqrt{n}}.$$

Exercise 2. Show that the sequence $(\cos(n))_n$ does not converge.

Exercise 3. If $(x_n)_n$ is a real sequence converging to x, show that

$$(|x_n|)_n \to |x|.$$

Is the converse true?

Proof. Since $(x_n)_n \to x$ is a convergent sequence, we have:

$$||x_n| - |x|| \le |x_n - x| < \epsilon.$$

Thus $(|x_n|)_n \to |x|$. Note that the converse is not true: $(|(-1)^n|)_n \to 1$ converges whereas $((-1)^n)_n$ does not.

Exercise 4. If $(x_n)_n$ is a real sequence converging to x > 0, show that there is an $N \in \mathbb{N}$ and c > 0 such that

$$x_n \geqslant c$$

for all $n \ge N$.

Proof. Pick $c = \frac{x}{2}$. Since $(x_n)_n$ is a convergent sequence, there exists $N_c \in \mathbf{N}$ such that $n \ge N_c$ implies $|x_n - x| < \frac{x}{2}$. Simplifying yields $\frac{x}{2} < x_n < \frac{3x}{2}$. Taking $c = \frac{x}{2}$ yields the desired result.

Exercise 5. If $(x_n)_n$ is a real sequence of positive terms converging to x, show that $x \ge 0$ and

$$(\sqrt{x_n})_n \to \sqrt{x}$$
.

Proof. Observe that:

$$\left|\sqrt{x_n} - \sqrt{x}\right| \le \left|\sqrt{x_n} - \sqrt{x}\right| \left|\sqrt{x_n} + \sqrt{x}\right| = |x_n - x| < \epsilon.$$

Hence $(\sqrt{x_n})_n \to \sqrt{x}$. If x < 0, then $\sqrt{x} \notin \mathbf{R}$, contradicting the definition of a real sequence.

Exercise 6. If $(x_n)_n$ and $(y_n)_n$ are sequences with $(x_n)_n \to 0$ and $(y_n)_n$ bounded, show that

$$(x_n y_n)_n \to 0.$$

Proof. Since $(y_n)_n$ is bounded, $|y_n| \le c$ for some c > 0. We have:

$$|x_n y_n| \leqslant c|x_n|.$$

Taking $e_n = |x_n|$ and using "Lemma" gives $(x_n y_n)_n \to 0$.

Exercise 7. If $(x_n)_n$ is a sequence of positive terms such that

$$\left(\frac{x_{n+1}}{x_n}\right)_n \to L > 1,$$

show that $(x_n)_n$ is not bounded hence not convergent. If L=1, can we make any conclusion?

Exercise 8. Let a and b be positive numbers. Show that

$$\left((a^n + b^n)^{\frac{1}{n}} \right)_n \to \max \left\{ a, b \right\}.$$

Proof. Case 1: $\max\{a, b\} = a$. Then b < a. We have:

$$(a^n)^{\frac{1}{n}} \leqslant (a^n + b^n)^{\frac{1}{n}} \leqslant (2a^n)^{\frac{1}{n}}$$

$$\implies a \leqslant (a^n + b^n)^{\frac{1}{n}} \leqslant (2^{\frac{1}{n}})a.$$

Hence $\left((a^n+b^n)^{\frac{1}{n}}\right)_n \to a$. Case 2: $\max\left\{a,b\right\}=b$. Then a < b. We have:

$$(b^{n})^{\frac{1}{n}} \leqslant (a^{n} + b^{n})^{\frac{1}{n}} \leqslant (2b^{n})^{\frac{1}{n}}$$

$$\implies b \leqslant (a^{n} + b^{n})^{\frac{1}{n}} \leqslant (2^{\frac{1}{n}})b.$$

Hence
$$\left((a^n+b^n)^{\frac{1}{n}}\right)_n \to b$$
.