LA ROTATION DANS LE PLAN

I) RAPPELLES ET COMPLEMENTS

1) La symétrie axiale.

Définition

Soit (D) une droite donnée. On dit que le point M' est le symétrique du point M par rapport à (D) si :

- $M' = M \operatorname{si} M \in (D)$
- (D) est la médiatrice du segment [MM'], si $M \notin (D)$. La relation qui lie le point M à M' s'appelle **la symétrie axiale d'axe** (D); se notre par $S_{(D)}$. On écrit : $S_{(D)}(M) = M'$.

Remarques:

- ➤ Si $M \notin (D)$ alors $M' = S_{(D)}(M) \neq M$ et (D) est la médiatrice du segment [MM'] c'est-à-dire passe par I milieu de [MM'] et perpendiculaire à (MM').
- ightharpoonup Si $N \in (D)$ alors $S_{(D)}(N) = N$ on dit que N est invariant par $S_{(D)}$
- ▶ Inversement si un point N est invariant par $S_{(D)}$ alors $N \in (D)$

Propriétés:

La symétrie axiale conserve :

- Les distances : si $M' = S_{(D)}(M)$ et $N' = S_{(D)}(N)$ alors MN = M'N'
- Le milieu d'un segment et en générale le barycentre d'un système pondéré.
- les mesures des angles géométriques
- Le coefficient de colinéarité de deux vecteurs.

La symétrie axiale inverse les mesures des angles orientés : $(\overline{AB}, \overline{AC}) \equiv -(\overline{A'B'}, \overline{A'C'})$ [2 π]

Propriété:

La symétrie axiale $S_{(\Delta)}$ est une bijection et sa bijection réciproque est elle-même

Preuve:

$$S_{(\Delta)}(M) = M' \iff S_{(\Delta)}(M') = M$$

2) Les angles orientés

Définition:

Soient \vec{u} et \vec{v} deux vecteurs non nuls ; et soient A et B deux points du plan orienté tels que $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{OB}$.

l'angle orienté des demis droites [OA); [OB) s'appelle aussi angle orienté des vecteurs \vec{u} et \vec{v} et on le note par : (\vec{u}, \vec{v}) . la mesure de l'angle orienté (\vec{u}, \vec{v}) est la mesure de l'angle orienté ([OA), [OB)) et se note par (\vec{u}, \vec{v}) .

Propriétés :

Soient \vec{u} , \vec{v} et h et k deux réels non nuls ; on a :

- $(\vec{v}, \vec{u}) \equiv -(\vec{u}, \vec{v})$ [2 π]
- si hk > 0 alors : $(\overline{h\vec{u}, k\vec{v}}) \equiv (\overline{\vec{u}, \vec{v}})$ [2 π]

• si hk < 0 alors : $(\overline{h\vec{u}, k\vec{v}}) \equiv \pi + (\overline{\vec{u}, \vec{v}})$ [2 π]

Propriété:

Soient (D) et (Δ) deux droites de vecteurs directeurs respectifs \vec{u} et \vec{v} et qui se coupent en A, soient B un point de (D) et C un point de (Δ) .

On a:
$$2(\overrightarrow{AB}, \overrightarrow{AC}) \equiv 2(\overrightarrow{u}, \overrightarrow{v})$$
 [2 π]

Preuve:

D'après la propriété précédente : On a $\left(\overline{\overrightarrow{AB}},\overline{\overrightarrow{AC}}\right) \equiv \left(\overline{\overrightarrow{u}},\overline{\overrightarrow{v}}\right)$ [2 π

ou
$$\left(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AC}}\right) \equiv \pi + \left(\overline{\overrightarrow{u}}, \overrightarrow{v}\right) [2\pi]$$

et dans les deux cas : $2\left(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AC}}\right) \equiv 2\left(\overline{\overrightarrow{u}}, \overline{\overrightarrow{v}}\right)$ [2 π]

 (Δ)

II) LA ROTATION DANS LE PLAN

1) Définition :

1.1 Composition de deux symétries axiales

Activité:

Soient (Δ) et (Δ') deux droites sécantes en O; $M_1 = S_{(\Delta)}(M)$ et

 $M' = S_{(\Delta')}(M_1)$ et soit $(\overline{\vec{u}}, \vec{v}) \equiv \alpha[2\pi]$ où \vec{u} vecteur directeur de (Δ) et \vec{v} vecteur directeur de (Δ')

- 1- Quelle est l'application qui transforme M en M'.
- 2- Montrer que OM = OM'
- 3- Montrer que pour tout M dans le plan la mesure : $(\overrightarrow{\overrightarrow{OM}}, \overrightarrow{OM'})$ est constante.

Propriété:

Soient (Δ) et (Δ') deux droites sécantes en O; $S_{(\Delta)}$ et $S_{(\Delta')}$ les symétries axiales d'axes respectifs (Δ) et (Δ') soit $(\overline{\vec{u}}, \vec{v}) \equiv \alpha[2\pi]$ où \vec{u} vecteur directeur de (Δ) et \vec{v} vecteur directeur de (Δ') .

L'application $S_{(\Delta')}oS_{(\Delta)}$ transforme le point M en M' tel que : OM = OM' et OM = OM'

L'application $(S_{(\Delta')}oS_{(\Delta)})$ s'appelle la rotation de centre ${\bf 0}$ et d'angle ${\bf 2}\alpha$

1.2 Définition de la rotation.

Définition:

Soit Ω un point dans le plan et θ un nombre réel, la rotation de centre Ω et d'angle θ est l'application qui transforme tout point M en M' tel que :

$$\left\{ \left(\frac{\Omega M = \Omega M'}{\overline{\Omega M'}, \overline{\Omega M'}} \right) \equiv \theta \ [2\pi]
\right\}$$

 $\left\{ \left(\overrightarrow{\Omega M}, \overrightarrow{\Omega M'} \right) \equiv \boldsymbol{\theta} \right. [2]$

 Ω

On la note par : $R_{(\Omega,\theta)}$

Remarque: Si l'angle de la rotation est non nul, son centre est le seul point invariant.

Exemples:

- La symétrie centrale S_O est la rotation de centre O et d'angle π
- L'identité $\mathcal{I}d_P$ est la rotation d'angle nul. (tous les points de (P) sont centre de cette rotation)
- ABCD un carré de centre O, R est la rotation de centre O et d'angle $\frac{\pi}{2}$ On a : R(A) = B ; R(B) = C et R(D) = A

2) Propriétés de la rotation

2.1 La décomposition d'une rotation

Soit R la rotation de centre O et d'angle α

 $\mathbb{O}(\Delta)$ une droite quelconque qui passe par O et (Δ') l'image de (Δ) par **la rotation** r **de**

centre O et d'angle $\frac{\alpha}{2}$.

D'après ce qui précède $(S_{(\Delta')}oS_{(\Delta)})$ est la rotation de centre O et d'angle $2 \times \frac{\alpha}{2}$

Donc: $S_{(\Delta')} \circ S_{(\Delta)} = R$. (figure 1)

figure 1

figure 2

② (Δ) une droite quelconque qui passe par O et (Δ') l'image de (Δ) par la rotation r de centre O et d'angle $\frac{-\alpha}{2}$.

D'après ce qui précède (composition de deux symétries axiales) $(S_{(\Delta)}oS_{(\Delta')})$ est la rotation de centre O et d'angle $2 \times \frac{\alpha}{2}$

Donc: $S_{(\Delta)} \circ S_{(\Delta')} = R$. (figure 2)

Propriété

Soit R la rotation de centre O et d'angle α ; la rotation R peut-être décomposée comme suite :

- $R = S_{(\Delta')} o S_{(\Delta)} o \dot{u}$ (Δ') l'image de (Δ) par la rotation r de centre O et d'angle : $\frac{\alpha}{2}$.
- $R = S_{(\Delta)} o S_{(\Delta')}$ où (Δ') l'image de (Δ) par la rotation r de centre o et d'angle: $\frac{-\alpha}{2}$.

2.2 Propriété d'une rotation.

Puisque toute rotation est la composition de deux symétries axiales on peut en déduire les propriétés suivantes :

- La rotation est une **isométrie (elle conserve les distances)**: $\mathbf{si} \begin{cases} R(A) = A' \\ R(B) = B' \end{cases} \Rightarrow A'B' = AB$
- La rotation conserve le coefficient de colinéarité de deux vecteurs et par suite conserve la linéarité des points
- La rotation conserve le milieu et le barycentre d'un système pondéré. 0
- La rotation conserve les mesures des angles géométriques 0
- La rotation conserve les mesures des angles orientés (les deux symétries qui composent la rotation inversent les mesures des angles orientés)

Application:

① Soient O, A, B et C quatre points dans le plan tels que OA = OB, construire le point D image de C par la rotation de centre O et qui transforme A puis B.

② Soient A, B, C et D quatre points dans le plan tels que AC = BD et $(AB) \not\parallel (CD)$; Déterminer le centre de la rotation qui transforme A en B et C en D.

Propriété:

La rotation $R_{(\Omega,\theta)}$ est une bijection et sa bijection réciproque est la bijection $R_{(\Omega,-\theta)}$

Preuve:

$$\begin{split} R_{(\Omega,\theta)}(M) &= M' \iff \left\{ \underbrace{\left(\overrightarrow{\Omega M}, \overrightarrow{\Omega M'} \right)}_{\bigcap \overrightarrow{\Omega M'}} \equiv \theta \ [2\pi] \right. \\ &\iff \left\{ \underbrace{\left(\overrightarrow{\Omega M'}, \overrightarrow{\Omega M'} \right)}_{\bigcap \overrightarrow{\Omega M'}} \equiv -\theta \ [2\pi] \right. \\ &\iff R_{(\Omega,-\theta)}(M') = M \end{split}$$

<u>Propriété</u>: (Propriété fondamentale de la rotation)

Soit
$$R_{(\Omega,\theta)}$$
 la rotation de centre Ω et d'angle θ si $R(M) = M' \atop R(N) = N'$ alors $(\overline{MN}, \overline{M'N'}) \equiv \theta$ [2 π]

Preuve:

On a:

$$\left(\overline{MN'}, \overline{M'N'}\right) \equiv \left(\overline{MN'}, \overline{\Omega M'}\right) + \left(\overline{\Omega M'}, \overline{\Omega M'}\right) + \left(\overline{\Omega M'}, \overline{M'N'}\right) \qquad [2\pi]$$

$$\equiv \left(\overline{\Omega M'}, \overline{\Omega M'}\right) \quad [2\pi]$$

Car $\left(\overline{MN},\overline{\Omega M}\right) \equiv \left(\overline{M'N'},\overline{\Omega M'}\right)$ [2 π] (la rotation conserve la mesure des angles orientés)

$$\mathsf{D'où}: \left(\overline{\overrightarrow{MN}, \overrightarrow{\Omega M}}\right) + \left(\overline{\overrightarrow{\Omega M'}, \overrightarrow{M'N'}}\right) \equiv 0 \ [2\pi].$$

III) COMPOSITION DE DEUX ROTATIONS

1) Composition de deux rotations de même centre

Soient $R_{(\Omega,\alpha)}$ et $R'_{(\Omega,\beta)}$ deux rotations de centre Ω ; Posons $R(M)=M_1$ et $R(M_1)=M'$

$$R(M) = M_1 \Longleftrightarrow \left\{ (\overrightarrow{\overline{\Omega M}}, \overrightarrow{\overline{\Omega M_1}}) \equiv \alpha \ [2\pi] \right\}$$

$$R(M_1) = M' \Longleftrightarrow \left\{ (\overline{\overline{\Omega M_1}}, \overline{\Omega M'}) \equiv \beta \ [2\pi] \right.$$

On en déduit que :
$$\left\{ (\overbrace{\overrightarrow{\Omega M}, \overrightarrow{\Omega M'}}^{\Delta M}) \equiv \alpha + \beta \quad [2\pi] \right\}$$

Et par suite : $R''_{(\Omega,\alpha+\beta)}(M) = M'$ et $(R'_{(\Omega,\beta)} \circ R_{(\Omega,\alpha)})(M) = M'$

Donc $R'_{(\Omega,\beta)}o R_{(\Omega,\alpha)} = R''_{(\Omega,\alpha+\beta)}$.

Propriété:

La composition de deux rotations $R_{(\Omega,\alpha)}$ et $R'_{(\Omega,\beta)}$ de même centre Ω est la rotation de centre Ω et d'angle $(\alpha+\beta): R'_{(\Omega,\beta)} \circ R_{(\Omega,\alpha)} = R''_{(\Omega,\alpha+\beta)}$.

Remarque:

On sait que la rotation $R_{(\Omega,\alpha)}$ est une bijection et sa bijection réciproque est $R'_{(\Omega,-\alpha)}$

$$R'_{(\Omega,-\alpha)}oR_{(\Omega,\alpha)}=R''_{(\Omega,0)}=\mathcal{I}d_P$$

2) Composition de deux rotations de centres différents.

2.1 Composition de deux symétries axiales d'axes parallèles

Soient (Δ) et (Δ') deux droites parallèles dans le plan. $S_{(\Delta)}$ et $S'_{(\Delta')}$ les symétries axiales d'axes respectifs (Δ) et (Δ')

On a:

$$M \xrightarrow{S_{(\Delta)}} M_1 \xrightarrow{S'_{(\Delta')}} M'$$

$$S' \circ S$$

Soit (D) une droite perpendiculaire à (Δ)

A et B les intersections respectives de (D) et (Δ) et de (D) et (Δ')

Soient I_M et J_M les milieux respectifs de $[MM_1]$ et $[M_1M']$, on a :

$$\overrightarrow{MM'} = \overrightarrow{MM_1} + \overrightarrow{M_1M'}$$

$$= 2\overrightarrow{I_MM_1} + 2\overrightarrow{M_1J_M}$$

$$= 2\overrightarrow{I_MJ_M}$$

$$= 2\overrightarrow{AB}$$

Propriété:

La composition de deux symétries axiales $S_{(\Delta)}$ et $S'_{(\Delta')}$ d'axes parallèles est la translation de vecteur \overrightarrow{AB} où A et B les intersections respectives de (D) et (Δ) et de (D) et (Δ') avec (D) une droite perpendiculaire à (Δ)

si (
$$\Delta$$
) || (Δ') alors : $S'_{(\Delta')} o S_{(\Delta)} = t_{\overrightarrow{AB}}$

2.2 Composition de deux rotations de centres différents.

Soient $R_{(O,\alpha)}$ et $R'_{(\Omega,\beta)}$ deux rotations dans le plan où $\Omega \neq O$ on s'intéresse à la nature de la transformation R'oR

On sait que toute rotation peut être décomposée en composée de deux symétries axiales.

Posons
$$(\Delta) = (O\Omega)$$

On a : $R=S_{(\Delta)}oS_{(\Delta_1)}$ où (Δ_1) est l'image de la droite (Δ) par la rotation r_1 de centre 0 et d'angle $\frac{-\alpha}{2}$

D'autre part :

 $R'=S_{(\Delta_2)}oS_{(\Delta)}$ où (Δ_2) est l'image de la droite (Δ) par la rotation r_2 de centre Ω et d'angle $\frac{\beta}{2}$

D'où:

$$\begin{split} R'oR &= \left(S_{(\Delta_2)}oS_{(\Delta)}\right)o\left(S_{(\Delta)}oS_{(\Delta_1)}\right) \\ &= S_{(\Delta_2)}o\left(S_{(\Delta)}oS_{(\Delta)}\right)oS_{(\Delta_1)} \qquad \text{(La composition est associative)} \\ &= S_{(\Delta_2)}oS_{(\Delta_1)} \qquad \qquad \left(S_{(\Delta)}oS_{(\Delta)} = \mathcal{I}d_{(P)}\right) \end{split}$$

La nature de R'oR dépend de la position relative de (Δ) et (Δ')

• Si (Δ) et (Δ') se coupent en J (figure 1)

Dans ce cas $R'oR = S_{(\Delta_2)}oS_{(\Delta_1)}$ est une rotation de centre J et d'angle $2(\vec{u}, \vec{v})$ modulo 2π où \vec{u} vecteur directeur de (Δ_1) et \vec{v} vecteur directeur de (Δ_2) .

Détermination de l'angle de la rotation :2γ

On a :
$$-\gamma - \frac{-\alpha}{2} + \frac{\beta}{2} \equiv \pi$$
 [2 π] (lire tous les angles dans le sens trigonométrique)

d'où :
$$\gamma = \frac{\alpha}{2} + \frac{\beta}{2} - \pi \ [2\pi]$$
 $(-\pi \equiv \pi[2\pi])$

finalement :
$$2\gamma = \alpha + \beta [2\pi]$$
 $(2\pi \equiv 0[2\pi])$

2 Si (Δ) et (Δ') sont parallèles (figure 2)

Dans ce cas $\,R'oR=\,S_{(\Delta_2)}oS_{(\Delta_1)}\,$ est une translation.

Quand est ce que (Δ) et (Δ') sont parallèles ?

$$(\Delta)//(\Delta') \Leftrightarrow \frac{-\alpha}{2} \equiv \frac{\beta}{2} [2\pi]$$
$$\Leftrightarrow \alpha + \beta \equiv 0 \quad [2\pi]$$

Théorème:

Soient $R_{(O,\alpha)}$ et $R'_{(\Omega,\beta)}$ deux rotations dans le plan où $\Omega \neq O$

- Si $\alpha + \beta \neq 2k\pi$ alors R'oR est une rotation d'angle $\alpha + \beta$
- Si $\alpha + \beta = 2k\pi$ alors R'oR est une translation dans le plan.

Remarque:

Pour déterminer les éléments de la rotation ou de la translation il est indispensable de maitriser toutes les étapes de la démonstration.