

Cinemática directa de robots manipuladores

- 1. Introducción.
- 2. Espacio articular y espacio cartesiano.
- 3. Problema cinemático directo.
- 4. Conclusiones.

Introducción

- Modelo cinemático: estudia la localización del robot sin tener en cuenta las fuerzas y/o pares que causan el movimiento.
- Problemas a resolver en un sistema robótico:

Introducción: aplicaciones modelo cinemático

- Aplicaciones del modelo cinemático de un robot.
 - Simulación del movimiento de sistemas robóticos.
 - Control cinemático de robots: planificación de trayectorias.
 - Diseño de robots: cálculo de las dimensiones óptimas de los eslabones.

 $Fuente: Youtube \ (https://www.youtube.com/watch?v=cZdtytbGM08)$

Fuente: propia

5

ESPACIO ARTICULAR Y ESPACIO CARTESIANO

Espacio articular – Espacio cartesiano

Espacio articular

Vector de variables articulares define la posición de todas las articulaciones del robot $\mathbf{q} = (q_1, q_2, q_3, \dots, q_n)$

 $p = (x, y, z, \alpha, \beta, \gamma)$

Espacio cartesiano

Vector de posición y orientación del extremo del robot en el espacio cartesiano tridimensional euclídeo

7

Espacio articular – Espacio cartesiano

- Resolución modelo cinemático directo.
 - Solución única: dado un vector de variables articulares de un sistema robótico, sólo existe una posición y orientación del extremo final.

- Posibles diferentes soluciones.
 - *Múltiples soluciones*: diferentes configuraciones del robot para un mismo punto en el espacio cartesiano.
 - Sin solución: soluciones fuera del espacio de trabajo o singularidades.

Espacio articular – Espacio cartesiano

- Ejemplo de resolución del modelo cinemático
 - Mecanismo de 2 GDL: prismática rotacional.

9

Espacio articular - Espacio cartesiano

- Ejemplo de resolución del modelo cinemático
 - Mecanismo de 2 GDL: prismática rotacional.

PROBLEMA CINEMÁTICO DIRECTO

11

Problema cinemático directo

- Objetivo
 - Obtener la localización del extremo del robot basándose en el valor de las variables articulares.

$$(x, y, z, \alpha, \beta, \gamma)$$
 $\boldsymbol{p} = \mathbf{F}(\boldsymbol{q})$ $(q_1, q_2, q_3, \dots, q_n)$

- Resolución
 - Método geométrico.
 - Utiliza relaciones trigonométricas para obtener la posición del extremo del robot.
 - Normalmente sólo se utiliza para obtener la posición y no la orientación.
 - Mediante transformaciones homogéneas.
 - Algoritmo Denavit-Hartenberg (DH).

- Método geométrico. Ejemplo 1 de resolución.
 - Mecanismo robótico planar de 3 GDL.
 - 1 Prismática (q₁).
 - 2 Rotacionales (q₂, q₃).

13

Problema cinemático directo

- Método geométrico. Ejemplo 2 de resolución.
 - Mecanismo robótico de 3 GDL rotacionales (q_1, q_2, q_3) .

- Mediante transformaciones homogéneas.
 - Asocia Sistemas de Referencia a cada eslabón del mecanismo robótico.
 - Calcula las transformaciones homogéneas compuestas de traslaciones y giros básicos para pasar del sistema asociado al eslabón i-1 al del i.
 - La transformación queda en función de los parámetros de la articulación i.

$$\mathbf{T}_{i} = \mathbf{F}(q_{i})$$

Algoritmo Denavit-Hartenberg (DH)

- Definición de reglas para asociar Sistemas de Referencia a los eslabones de un robot
 - Definición y cálculo de los <u>Parámetros DH</u> para pasar de un Sistema de Referencia a otro
- Cálculo de la transformación entre el Sistema de Referencia de la base y del extremo

15

Problema cinemático directo

- Mediante transformaciones homogéneas.
 - Iterando las transformaciones homogéneas desde la base al extremo, se puede obtener $^{\text{base}}T_{\text{extremo}}$ a partir del vector q.

Robot de n articulaciones

- Mediante transformaciones homogéneas.
 - Definición de los parámetros DH.
 - 4 Transformaciones simples para obtener la matriz

Parámetros DH ($\theta_i d_i a_i \alpha_i$)

2 Transformaciones de rotación (θ_i, α_i)

2 Transformaciones de traslación (d_i,a_i)

Parámetros variables relativos a una articulación (rotación, prismática) → θ_i, d_i

17

Problema cinemático directo

- Solución cinemática de un robot articular mediante DH.
 - Aplicación del algoritmo DH: reglas para resolver la cinemática directa.
 - 1. Reglas para la definición de los sistemas de referencia → 1-9 reglas.
 - 2. Reglas para calcular los parámetros DH que relaciona un sistema de referencia con otro (θ_i d_i a_i α_i) → 10-13 reglas.
 - 3. Reglas para calcular las matriz de transformación baseT_{extremo}. 14-15 reglas.

Regla nº 1

Algoritmo DH.

1. Numerar los eslabones comenzando con 1 (primer eslabón móvil de la cadena) y acabando con n (último eslabón móvil). Se numerará como eslabón 0 a la base fija del robot.

19

Problema cinemático directo

Regla nº 1

Algoritmo DH.

1. Numerar los eslabones comenzando con 1 (primer eslabón móvil de la cadena) y acabando con **n** (último eslabón móvil). Se numerará como eslabón 0 a la base fija del robot.

Regla nº 1

Algoritmo DH.

1. Numerar los eslabones comenzando con 1 (primer eslabón móvil de la cadena) y acabando con **n** (último eslabón móvil). Se numerará como eslabón 0 a la base fija del robot.

21

Problema cinemático directo

Regla nº 2

Algoritmo DH.

 2. Numerar cada articulación comenzando por 1 (la correspondiente al primer grado de libertad) y acabando en n.

Regla nº 3

Algoritmo DH.

3. Localizar el eje de cada articulación. Si ésta es rotativa, el eje será su propio eje de giro. Si es prismática será el eje a lo largo del cual se produce el desplazamiento.

23

Problema cinemático directo

Regla nº 4

Algoritmo DH.

4. Para el eje i, de 0 a n-1, situar el eje zi sobre el eje de la articulación i+1.

Regla nº 5

Algoritmo DH.

5. Situar el origen del sistema de la base S0 en cualquier punto del eje $\mathbf{z_0}$. Los ejes $\mathbf{x_0}$ e $\mathbf{y_0}$ se situarán de modo que formen un sistema dextrógiro con $\mathbf{z_0}$.

25

Problema cinemático directo

Regla nº 6

Algoritmo DH.

6. Para **i** de 1 a n-1, situar el origen del sistema **Si** en la intersección del eje **z**_i con la línea normal común a **z**_{i-1} y **z**_i. Si ambos ejes se cortasen se situaría **Si** en el punto de corte. Si fuesen paralelos situaría **Si** se situaría en la articulación i+1.

Regla nº 9

Algoritmo DH.

9. Situar el sistema Sn en el extremo del robot de modo que \mathbf{z}_n coincida con la dirección de \mathbf{z}_{n-1} y \mathbf{x}_n sea normal a \mathbf{z}_{n-1} y \mathbf{z}_n .

29

Problema cinemático directo

Algoritmo DH.

Reglas para la definición de los sistemas de referencia → 1-9 reglas.
 Reglas para calcular los parámetros DH que relaciona un sistema de

2. Reglas para calcular los parámetros DH que relaciona un sistema de referencia con otro ($\theta_i \ d_i \ a_i \ \alpha_i$) \rightarrow 10-13 reglas.

3. Reglas para calcular las matriz de transformación $^{\rm base} \rm T_{\rm extremo}.$ 14-15 reglas.

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12**. a_i : distancia medida sobre $\mathbf{x_i}$ (que ahora coincidiría con $\mathbf{x_{i-1}}$) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- 13. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo Si-1 coincidiese totalmente con Si.

31

Problema cinemático directo

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12.** a_i : distancia medida sobre x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- **13**. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo **Si-1** coincidiese totalmente con **Si**.

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12**. a_i : distancia medida sobre x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- **13**. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo **Si-1** coincidiese totalmente con **Si**.

	$ heta_{ m i}$	$d_{\rm i}$	$a_{\rm i}$	α_{i}
1	q_1	l ₁	0	90°
2				

Problema cinemático directo

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12**. a_i : distancia medida sobre x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- **13**. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo **Si-1** coincidiese totalmente con **Si**.

	$ heta_{ m i}$	d_{i}	$a_{\rm i}$	$lpha_{ m i}$
1	q_1	I ₁	0	90°
2	q ₂ +90°			

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12**. a_i : distancia medida sobre $\mathbf{x_i}$ (que ahora coincidiría con $\mathbf{x_{i-1}}$) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- 13. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo Si-1 coincidiese totalmente con Si.

	$ heta_{ m i}$	$d_{\rm i}$	$a_{\rm i}$	$lpha_{ m i}$
1	q_1	l ₁	0	90°
2	q ₂ +90°	0		

35

Problema cinemático directo

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12**. a_i : distancia medida sobre x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- **13**. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo **Si-1** coincidiese totalmente con **Si**.

	$ heta_{ m i}$	$d_{\rm i}$	$a_{\rm i}$	$lpha_{ m i}$
1	q_1	I ₁	0	90°
2	q ₂ +90°	0	l ₂	

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12**. a_i : distancia medida sobre $\mathbf{x_i}$ (que ahora coincidiría con $\mathbf{x_{i-1}}$) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- 13. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo Si-1 coincidiese totalmente con Si.

	$ heta_{ m i}$	$d_{\rm i}$	$a_{\rm i}$	α_{i}
1	q_1	l ₁	0	90°
2	q ₂ +90°	0	l ₂	0

37

Problema cinemático directo

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12**. a_i : distancia medida sobre x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- **13**. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo **Si-1** coincidiese totalmente con **Si**.

	$ heta_{ m i}$	$d_{\rm i}$	$a_{\rm i}$	$\alpha_{ m i}$
1	q_1	I ₁	0	90°
2	q ₂ +90°	0	l ₂	0
3				

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12**. a_i : distancia medida sobre $\mathbf{x_i}$ (que ahora coincidiría con $\mathbf{x_{i-1}}$) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- 13. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo Si-1 coincidiese totalmente con Si.

	$ heta_{ m i}$	$d_{\rm i}$	$a_{\rm i}$	α_{i}
1	q_1	l ₁	0	90°
2	q ₂ +90°	0	l ₂	0
3	q ₃ -90°			

39

Problema cinemático directo

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12**. a_i : distancia medida sobre x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- 13. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo **Si-1** coincidiese totalmente con **Si**.

	$ heta_{ m i}$	$d_{\rm i}$	$a_{\rm i}$	α_{i}
1	q_1	l ₁	0	90°
2	q ₂ +90°	0	l ₂	0
3	q ₃ -90°	0		

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12**. a_i : distancia medida sobre x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- 13. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo Si-1 coincidiese totalmente con Si.

	$ heta_{ m i}$	$d_{\rm i}$	$a_{\rm i}$	α_{i}
1	q_1	l ₁	0	90°
2	q ₂ +90°	0	l ₂	0
3	q ₃ -90°	0	0	

41

Problema cinemático directo

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12.** a_i : distancia medida sobre x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- **13**. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo **Si-1** coincidiese totalmente con **Si**.

	$ heta_{ m i}$	$d_{\rm i}$	$a_{\rm i}$	$\alpha_{ m i}$
1	q_1	l ₁	0	90°
2	q ₂ + 90°	0	l ₂	0
3	q ₃ -90°	0	0	-90°

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_{i} : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_{i}}$
- **12**. a_i : distancia medida sobre x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- 13. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo **Si-1** coincidiese totalmente con **Si**.

43

Problema cinemático directo

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12**. a_i : distancia medida sobre x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- 13. α_i : ángulo que habría que girar en torno a x_{i-1} (que ahora coincidiría con x_i) para que el nuevo **Si-1** coincidiese totalmente con **Si**.

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12**. a_i : distancia medida sobre x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- 13. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo Si-1 coincidiese totalmente con Si.

	$ heta_{ m i}$	d_{i}	$a_{\rm i}$	$\alpha_{ m i}$
4	q ₄ -90°	l ₃	0	-90°
5				

45

Problema cinemático directo

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12**. a_i : distancia medida sobre x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- **13**. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo **Si-1** coincidiese totalmente con **Si**.

		$ heta_{ m i}$	$d_{\rm i}$	$a_{\rm i}$	$\alpha_{ m i}$
	4	q ₄ -90°	l ₃	0	-90°
	5	q_5	0	0	90°
ì					

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12**. a_i : distancia medida sobre x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- 13. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo Si-1 coincidiese totalmente con Si.

	$ heta_{ m i}$	d_{i}	$a_{\rm i}$	$\alpha_{ m i}$
4	q ₄ -90°	l ₃	0	-90°
5	$q_{\scriptscriptstyle 5}$	0	0	90°
6				

47

Problema cinemático directo

Reglas **10-13**

Algoritmo DH.

- 10. θ_i : ángulo que habría que girar en torno a $\mathbf{z_{i-1}}$ para que $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$ queden paralelos.
- 11. d_i : distancia medida sobre $\mathbf{z_{i-1}}$ que habría que desplazar $\mathbf{S_{i-1}}$ para alinear $\mathbf{x_{i-1}}$ y $\mathbf{x_i}$
- **12.** a_i : distancia medida sobre x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo **Si-1** para que su origen coincidiese con **Si**.
- **13**. α_i : ángulo que habría que girar en torno a $\mathbf{x_{i-1}}$ (que ahora coincidiría con $\mathbf{x_i}$) para que el nuevo **Si-1** coincidiese totalmente con **Si**.

	$ heta_{ m i}$	$d_{\rm i}$	$a_{\rm i}$	$lpha_{ m i}$
4	q ₄ -90°	l ₃	0	-90°
5	q_5	0	0	90°
6	q_6	l ₄	0	0

Algoritmo DH.

Reglas para la definición de los sistemas de referencia → 1-9 reglas.
 Reglas para calcular los parámetros DH que relaciona un sistema de

referencia con otro $(\theta_i \ d_i \ a_i \ \alpha_i) \rightarrow 10\text{-}13 \text{ reglas}.$ 3. Reglas para calcular las matriz de transformación base T_{extremo} . 14-15 reglas.

	$ heta_{\!\scriptscriptstyle i}$	d _i	a _i	$lpha_{i}$	
1	q_1	l ₁	0	90°	$\longrightarrow {}^{0}\mathbf{T}_{1}$
2	q ₂ +90°	0	l ₂	0	\longrightarrow $^{1}\mathbf{T}_{2}$
3	q ₃ -90°	0	0	-90°	\longrightarrow ² \mathbf{T}_3
4	q ₄ -90°	l ₃	0	-90°	\longrightarrow ${}^{3}\mathbf{T}_{4}$
5	q_5	0	0	90°	\longrightarrow ${}^{4}\mathbf{T}_{5}$
6	q_6	l ₄	0	0	\longrightarrow ⁵ \mathbf{T}_6

49

Problema cinemático directo

Algoritmo DH.

• 14. Calcular las matrices i-1T_i.

 $\mathbf{^{i-i}T_{i}} = \mathbf{Rot}(\mathbf{z_{i-i}}, \theta_{i}) \cdot \mathbf{Tras}(\mathbf{z_{i-1}}, d_{i}) \cdot \mathbf{Tras}(\mathbf{x_{i}}, a_{i}) \cdot \mathbf{Rot}(\mathbf{x_{i}}, \alpha_{i})$

50

Regla nº 14

Regla nº **14**

- Algoritmo DH.
 - **14**. Calcular las matrices ⁱ⁻¹T_i.

51

Problema cinemático directo

Regla nº **15**

- Algoritmo DH.
 - 15. Calcular la matriz de transformación que relaciona el sistema de la base con el del extremo del robot: T.

$$T = {}^{0}T_{1} {}^{1}T_{2} \dots {}^{n-1}T_{n}$$
 Robot *n* articulaciones

	$ heta_{ m i}$	$d_{\rm i}$	$a_{\rm i}$	$\pmb{lpha}_{ m i}$
1	q_1	I ₁	0	90°
2	q ₂ +90°	0	l ₂	0
3	q ₃ -90°	0	0	-90°
4	q ₄ -90°	l ₃	0	-90°
5	q_5	0	0	90°
6	q_6	l ₄	0	0

$$\mathbf{T}_{i} = \begin{bmatrix} \cos\theta_{i} & -\cos\alpha_{i} \cdot \sin\theta_{i} & \sin\alpha_{i} \cdot \sin\theta_{i} & a_{i} \cdot \cos\theta_{i} \\ \sin\theta_{i} & \cos\alpha_{i} \cdot \cos\theta_{i} & -\sin\alpha_{i} \cdot \cos\theta_{i} & a_{i} \cdot \sin\theta_{i} \\ 0 & \sin\alpha_{i} & \cos\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T = {}^{0}T_{1} {}^{1}T_{2} {}^{2}T_{3} {}^{3}T_{4} {}^{4}T_{5} {}^{5}T_{6}$$

T define la posición y orientación del extremo del robot respecto a la base en función de las n coordenadas articulares

Conclusiones

- Resolución del problema cinemático directo: localización del extremo del robot en función de las coordenadas articulares:
 - Método geométrico.
 - Basado en relaciones trigonométricas.
 - Se emplea para robots de pocos grados de libertad, normalmente para obtener la posición y no la orientación.
 - Método de Denavit-Hartenberg.
 - Basado en matrices de transformación homogénea.
 - Metodología muy empleada para cualquier tipo de robot manipulador o antropomórfico.

53

Bibliografía

Torres, F., Pomares, J. Gil, P., Puente, S. T., Aracil, R. "Robots y sistemas sensoriales", Prentice Hall, Madrid (2005) ISBN: 84-205-3574-5.

A. Barrientos, A. L. F. Peñín, C. Balaguer, R. Aracil. "Fundamentos de Robótica", Mc Graw Hill (2007) ISBN: 978-84-481-5636-7

55

