Advanced Statistical Methods Assignment 1

Dahye Kim 2021 9 20

1.2

Since most of bootstrap replications in Figure 1.3 show a similar pattern to Figure 1.2, one might suggest that the flat spot between ages 25 and 35 is genuine.

1.3

Under the assumption, I think the largest observed t value might be 3.826058. Because in all 7128 cases t exactly follows a student-t distribution with 70 degrees, the smallest p-value of t might be $\frac{1}{7128} = 0.00014$, which makes t value the largest. And since $t_{70}(3.826058) = 0.00014$, I think the largest observed t value might be 3.826058.

qt(1/7128, 70)

[1] -3.825437

2.3

The definition of frequentism in terms of probabilistic accuracy attribute for an observed estimate $\hat{\theta} = t(x)$ the probabilistic properties of $\hat{\Theta} = t(X)$ as an estimator of $\hat{\theta}$. That is, $\hat{\theta}$ is just a single number but $\hat{\Theta}$ takes on a range of values whose spread can define measures of accuracy. Similarly, the definition of frequentism in terms of an infinite sequence of future trials attribute for $\hat{\theta}$ the accuracy properties of the ensemble of $\hat{\Theta}$ values.

2.4

In (2.15),

$$\hat{\theta} = x_2 - x_1 \sim N(0, \sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2} \right))$$

under H_0 , which depends on σ . And if we plug in the unbiased estimate of σ^2 ,

$$\hat{\sigma}^2 = \left[\sum_{1}^{n_1} (x_{1i} - x_1)^2 + \sum_{1}^{n_2} (x_{2i} - x_2)^2 \right] / (n_1 + n_2 - 2)$$

in (2.15), then the approximate 0.95 confidence interval for the difference μ_2 – μ_1 is

$$x_2 - x_1 \pm 1.96 \cdot sd$$

However, when we use student-t hypothesis test,

$$t = \frac{x_2 - x_1}{sd} \sim t_{n_1 + n_2 - 2}$$

under H_0 , where $sd = \hat{\sigma} \left(\frac{1}{n_1} + \frac{1}{n_2} \right)^{1/2}$. t is pivotal, having the same distribution, no matter what the value of the "nuisance parameter" σ . So we do not

have to "plug in". And the exact 0.95 confidence interval for the difference $\mu_2 - \mu_1$ is

$$- - \wedge \times_2 - x_1 \pm 1.99 \cdot sd.$$

, which is larger than that of approximate 95% normal theory hypothesis test, covering the true value in 95% of repetitions of probability model (2.12)-(2.13). This is because the tail of student-t distribution is usually fatter than that of normal distribution.

Loading [Mathjax/jjax/outpu/HTML/CSS/jax is test performs better.