Quantum Mechanics

Homework Assignment 15

Fall, 2019

- 1. [C-T Exercise 13-1] Consider a one-dimensional harmonic oscillator of mass m, angular frequency ω_0 and charge q. Let $|\varphi_n\rangle$ and $E_n=(n+1/2)\hbar\omega_0$ be the eigenstates and eigenvalues of its Hamiltonian \hat{H}_0 .
 - For t < 0, the oscillator is in the ground state $|\varphi_0\rangle$. At t = 0, it is subjected to an electric field "pulse" of duration τ . The corresponding perturbation can be written $\hat{W}(t) = \begin{cases} -q\mathscr{E}\hat{x}, & 0 \le t \le \tau, \\ 0, & t < 0, t > \tau. \end{cases}$ Here \mathscr{E} is the field amplitude and \hat{x} is the position observable. Let \mathscr{P}_{0n} be the probability of finding the oscillator in the state $|\varphi_n\rangle$ after the pulse.
 - (a) Calculate \mathscr{P}_{01} by using first-order time-dependent perturbation theory. How does \mathscr{P}_{01} vary with τ , for fixed ω_0 ?
 - (b) Show that, to obtain \mathscr{P}_{02} , the time-dependent perturbation theory calculation must be pursued at least to second order. Calculate \mathscr{P}_{02} to this perturbation order.
- 2. [C-T Exercise 13-2] Consider two spin 1/2's, $\hat{\vec{S}}_1$ and $\hat{\vec{S}}_2$, coupled by an interaction of the form $a(t)\hat{\vec{S}}_1 \cdot \hat{\vec{S}}_2$; a(t) is a function of time which approaches zero when |t| approaches infinity, and takes on non-negligible values (on the order of a_0) only inside an interval, whose width is of the order of τ , about t=0.
 - (a) At $t = -\infty$, the system is in the state $|+-\rangle$ (an eigenstate of \vec{S}_1 and \vec{S}_2 with the eigenvalues $+\hbar/2$ and $-\hbar/2$). Calculate, without approximations, the state of the system at $t = +\infty$. Show that the probability $\mathscr{P}(+-\to -+)$ of finding, at $t = +\infty$, the system in the state $|-+\rangle$ depends only on the integral $\int_{-\infty}^{+\infty} dt \ a(t)$.
 - (b) Calculate $\mathscr{P}(+-\to -+)$ by using first-order time-dependent perturbation theory. Discuss the validity conditions for such an approximation by comparing the results obtained with those of the preceding question.
 - (c) Now assume that the two spins are also interacting with a static magnetic field \vec{B}_0 parallel to Oz. The corresponding Zeeman Hamiltonian can be written $\hat{H}_0 = -B_0(\gamma_1 \hat{S}_{1z} + \gamma_2 \hat{S}_{2z})$, where γ_1 and γ_2 are the gyromagnetic ratios of the two spins, assumed to be different.

Assume that $a(t) = a_0 e^{-t^2/\tau^2}$. Calculate $\mathscr{P}(+-\to -+)$ by first-order time-dependent perturbation theory. With fixed a_0 and τ , discuss the variation of $\mathscr{P}(+-\to -+)$ with respect to B_0 .

- 3. A particle of mass μ is scattered by the central field $V(r) = \frac{\alpha}{r^2}$ with $\alpha > 0$. Find the differential and total scattering cross sections under the first-order Born approximation.
- 4. [C-T Complement C_{VIII} -3 Exercise b] Consider a central potential V(r) such that $V(r) = \begin{cases} -V_0, & r < r_0, \\ 0, & r > r_0. \end{cases}$ Here V_0 is a positive constant. Set $k_0 = \sqrt{2\mu V_0/\hbar^2}$ with μ the mass of the particle subject to the potential. We shall confine ourselves to the study of the s wave $(\ell = 0)$.
 - (a) Bound states (E < 0)
 - i. Write the radial equation in the two regions $r > r_0$ and $r < r_0$, as well as the condition at the origin. Show that, if one sets $\rho = \sqrt{-2\mu E/\hbar^2}$ and $K = \sqrt{k_0^2 \rho^2}$, the function $u_0(r)$ is necessarily of the form $u_0(r) = \begin{cases} Ae^{-\rho r}, & r > r_0, \\ B\sin(Kr), & r < r_0. \end{cases}$
 - ii. Write the matching conditions at $r = R_0$. Deduce from them that the only possible values for ρ are those which satisfy the equation $\tan(Kr_0) = -K/\rho$.
 - iii. Discuss the equation $\tan(Kr_0) = -K/\rho$. Indicate the number of s bound states as a function of the depth of the well (for fixed r_0) and show, in particular, that there are no bound states if this depth is too small.
 - (b) Scattering resonances (E > 0)

- i. Again write the radial equation, this time setting $k = \sqrt{2\mu E/\hbar}$ and $K' = \sqrt{k_0^2 + k^2}$. Show that $u_{k,0}(r)$ is of the form $u_{k,0}(r) = \begin{cases} A\sin(kr + \delta_0), & r > r_0, \\ B\sin(K'r), & r < r_0. \end{cases}$
- ii. Choosing A=1. Show, using the continuity conditions at $r=r_0$, that the constant B and the phase shift δ_0 are given by $B^2=k^2/\left[k^2+k_0^2\cos^2(K'r_0)\right]$ and $\delta_0=-kr_0+\alpha(k)$ with $\tan\alpha(k)=(k/K')\tan(K'r_0)$.
- iii. Trace the curve representing B^2 as a function of k. This curve clearly shows resonances, for which B^2 is maximum. What are the values of k associated with these resonances? What is then the value of $\alpha(k)$? Show that, if there exists such a resonance for a small energy $(kr_0 \ll 1)$, the corresponding contribution of the s wave to the total cross section is practically maximal.

(c) Relation between bound states and scattering resonances

Assume that k_0r_0 is very close to $(2n+1)\pi/2$, where n is an integer, and set $k_0r_0 = (2n+1)\pi/2 + \varepsilon$ with $|\varepsilon| \ll 1$.

- i. Show that, if ε is positive, there exists a bound state whose binding energy $E = -\hbar^2 \rho^2/2\mu$ is given by $\rho \simeq \varepsilon k_0$.
- ii. Show that if, on the other hand, ε is negative, there exists a scattering resonance at energy $E = \hbar^2 k^2/2\mu$ such that $k^2 \simeq -2k_0\varepsilon/r_0$.
- iii. Deduce from this that if the depth of the well is gradually decreased (for fixed r_0), the bound state which disappears when k_0r_0 passes through an odd multiple of $\pi/2$ gives rise to a low energy scattering resonance.
- 5. [C-T Exercise 14-3] Consider the state space of an electron, spanned by the two vectors $|\varphi_{p_x}\rangle$ and $|\varphi_{p_y}\rangle$ which represent two atomic orbitals, p_x and p_y , of wave functions $\varphi_{p_x}(\vec{r})$ and $\varphi_{p_y}(\vec{r})$, $\varphi_{p_x}(\vec{r}) = xf(r) = rf(r)\sin\theta\cos\phi$, $\varphi_{p_y}(\vec{r}) = yf(r) = rf(r)\sin\theta\sin\phi$.
 - (a) Write, in terms of $|\varphi_{p_x}\rangle$ and $|\varphi_{p_y}\rangle$, the state $|\varphi_{p_\alpha}\rangle$ which represents the p_α orbital pointing in the direction of the xOy plane which makes an angle α with Ox.
 - (b) Consider two electrons whose spins are both in the $|+\rangle$ state, the eigenstate of \hat{S}_z of eigenvalue $+\hbar/2$. Write the normalized state vector $|\psi\rangle$ which represents the system of two electrons, one of which is in the state $|\varphi_{p_x}\rangle$ and the other in the state $|\varphi_{p_y}\rangle$.
 - (c) Same question, with one of the electrons in the state $|\varphi_{p_{\alpha}}\rangle$ and the other one in the state $|\varphi_{p_{\beta}}\rangle$, where α and β are two arbitrary angles. Show that the state vector $|\psi\rangle$ obtained is the same.
 - (d) The system is in the state $|\psi\rangle$ of question (b). Calculate the probability density $\mathscr{P}(r,\theta,\phi;r',\theta',\phi')$ of finding one electron at (r,θ,ϕ) and the other one at (r',θ',ϕ') . Show that the electronic density $\rho(r,\theta,\phi)$ [the probability density of finding any electron at (r,θ,ϕ)] is symmetrical with respect to revolution about the Oz axis. Determine the probability density of having $\phi \phi' = \phi_0$, where ϕ_0 is given. Discuss the variation of this probability density with respect to ϕ_0 .