Cross Matrix

You are given a N^* N matrix, U. You have to choose 2 sub-matrices A and B made of only 1s of U, such that, they have at least 1 cell in common, and each matrix is not completely engulfed by the other, i.e.,

If *U* is of the form

$$U = \begin{bmatrix} a_{0,0} & a_{0,1} & \dots & a_{0,N-2} & a_{0,N-1} \\ a_{1,0} & a_{1,1} & \dots & a_{1,N-2} & a_{2,N-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{N-1,0} & a_{N-1,1} & \dots & a_{N-1,N-2} & a_{N-1,N-1} \end{bmatrix}$$

and A is of the form

$$A = \begin{bmatrix} a_{x_1,y_1} & \dots & a_{x_1,y_2} \\ & & & \ddots \\ & & & \ddots \\ & & & \ddots \\ a_{x_2,y_1} & \dots & a_{x_2,y_2} \end{bmatrix}$$

and B is of the form

$$B = \begin{bmatrix} a_{x_3,y_3} & \dots & a_{x_3,y_4} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{x_4,y_3} & \dots & a_{x_4,y_4} \end{bmatrix}$$

then, there exists atleast 1 $a_{i,j}$: $a_{i,j} \in A$ and $a_{i,j} \in B$ then, there exists atleast 1 $a_{i1,j1}$: $a_{i1,j1} \in A$ and $a_{i1,j1} \notin B$ then, there exists atleast 1 $a_{i2,j2}$: $a_{i2,j2} \in B$ and $a_{i2,j2} \notin A$ $a_{x,y} = 1 \ \forall \ a_{x,y} \in B$

How many such (A, B) exist?

Input Format

The first line of the input contains a number N.

N lines follow, each line containing N integers (0/1) **NOT** separated by any space.

Output Format

Output the total number of such (A, B) pairs. If the answer is greater than or equal to $10^9 + 7$, then print answer modulo (%) $10^9 + 7$.

Constraints

 $2 \le N \le 1500$ $a_{i,j} \in [0, 1] : 0 \le i, j \le N - 1$

Sample Input

Sample Output

10

Explanation

X means the common part of A and B. We can swap A and B to get another answer.

```
0010
0001
A010
XB10
0010
0001
A010
XBB0
0010
0001
10A0
1BX0
0010
0001
10A0
BBX0
0010
0001
1010
AXB0
```

TimeLimits

Time limit for this challenge is mentioned here