CS218: Design And Analysis Of Algorithms

Dynamic Programming III

Yan Gu

Midterm info

- Time: 11:05am-1:50pm (165 minutes) on Feb 13
- Location: WCH 205/206
- Preparation: 2-page double-sided letter-size handwritten cheat-sheet
- All the standard rules for in-person exams apply here

 Grading: The exam contains 22+3 points. You don't need to finish all of the problems (you could, of course). Your final score will be min(your basic score, 20) + your bonus score

Problem info

• 22+3 points in total

No.	Problem	Basic Pts	Bonus Pts	Candies
1	Multiple Choices	/6	0	0
2	Basic DP	/4	/1	/1
3		/4	/1	/1
4		/5	/1	/1
5		/3	0	0
	Total	/22	/3	/3

General suggestions

Useful topics include but are not limited to:

For greedy:

- Understand the proofs of the problems we covered in class
- Read the proofs in the textbook, and those in CS141 lecture notes
- Understand "greedy choice" and "optimal substructure"

For dynamic programming:

- Understand all DP recurrences for the problems we covered in class
- Understand what the states in the DP recurrences are
- Understand the boundary cases
- Understand memorization

For data structures

Understand range queries

CS218: Design And Analysis Of Algorithms

Dynamic Programming III

Yan Gu

Longest Increasing Subsequence (LIS) and Other Similar Problems

What is an increasing subsequence?

Increasing subsequence:

2 8 9

Longest increasing subsequence (LIS):

0 1 6 8 9

Why studying LIS?

- The length of LIS reflect some intrinsic properties of the sequence
 - Consider it as the "eigenvalue" of a sequence (LIS as the "eigenvector")
 - Applications in many algorithms and quantum computing
- Many similar DP algorithms are similar to the DP algorithm for LIS
 - More examples are given later in this lecture

What are the states for LIS?

- Let l_i be the LIS for the first i element with i selected (as the last in LIS)
- What is the recurrence of LIS?

$$l_i = \max \begin{cases} 1 \\ \max_{0 < j < i, a_j < a_i} \{l_j + 1\} \end{cases}$$

Why is it an optimal substructure?

4 2 7 0 1 6 1 8 5 9

Running the example input

$$l_i = \max \begin{cases} 1 \\ \max_{0 < j < i, a_j < a_i} \{l_j + 1\} \end{cases}$$

Running the example input

$$l_i = \max \begin{cases} 1 \\ \max_{0 < j < i, a_j < a_i} \{l_j + 1\} \end{cases}$$

LIS and similar problems

$$l_i = \max \begin{cases} 1 \\ \max_{0 < j < i, a_j < a_i} \{l_j + 1\} \end{cases}$$

Longest decreasing subsequence?

Longest increasing subsequence with gap ≥ 3 ?

Increasing subsequence with MAX SUM?

What is the time complexity of LIS?

$$l_i = \max \begin{cases} 1\\ \max_{0 < j < i, a_j < a_i} \{l_j + 1\} \end{cases}$$
 • n element, each takes $O(n)$ time to compute, so $O(n^2)$ cost in total

Can we do better?

$$l_i = \max \left\{ \max_{0 < j < i, a_j < a_i} \{l_j + 1\} \right\}$$

• n element, each takes $\mathcal{O}(n)$ time to compute, so $\mathcal{O}(n^2)$ cost in total

Optimize LIS algorithm to $O(n \log n)$

LIS DP recurrence

$$l_i = \max \begin{cases} 1 \\ \max_{0 < j < i, a_j < a_i} \{l_j + 1\} \end{cases}$$

• n element, each takes $\mathcal{O}(n)$ time to compute, so $\mathcal{O}(n^2)$ cost in total

$$l_i = \max \begin{cases} 1 \\ \max_{0 < j < i, a_j < a_i} \{l_j\} + 1 \end{cases}$$

• We need to find, for all l_j before l_i , with $a_j < a_i$, which is the largest value

 l_i : 1 1 2 1 2 3 2 4 ? a_i : 4 2 7 0 1 6 1 8 5 9

 l_i : 1 1 2 1 2 3 2 4 3 a_i : 4 2 7 0 1 6 1 8 5 9

LIS – DP recurrence

•
$$l_i = \max \begin{cases} 1 \\ \max_{0 < j < i, a_j < a_i} \{l_j\} + 1 \end{cases}$$

When processing i

- For all other elements that have been processed (all j < i)
- We only consider when $a_i < a_i$
- Find the largest l_i

A range-max query?

LIS + range query

- Assume we have an ADT D that can deal with range-max query
 - Store key-value pairs
 - insert(k,v): add a new key-value pair
 - range_max(k): for all key < k, find the maximum value

Key	4	7	8	9	10	12	13	15	16	20	25
value	4	7	9	2	2	11	9	17	10	3	2

$$range_max(18) = 17$$

LIS + range query

$$l_i = \max \begin{cases} 1 \\ \max_{0 < j < i, a_j < a_i} \{l_j\} + 1 \end{cases}$$

When processing i

- ullet We need to look at all $oldsymbol{j}$ before $oldsymbol{i}$ (processed $oldsymbol{j}$) and $a_{oldsymbol{j}} < a_{oldsymbol{i}}$
- Find the largest l_i

Assume we have an ADT D that can deal with range-max query

- Store key-value pairs
- insert(k,v): add a new key-value pair
- range_max(k): for all key < k, find the maximum value
- Key: a_j , value: l_j

When processing i

- Call range_max(a_i) on D, get v^* , let $l_i = v^* + 1$
- Insert (a_i, l_i) to D
- Go to i + 1

Example

- Current stored in data structure:
 - (0, 1), (1, 2), (2, 1), (4, 1) (9, 2)
- Range_max query:
 - What is the largest value for all keys smaller than 6??
- l[6] = 2 + 1 = 3
- Insert (6, 3) to the data structure
 - (0, 1), (1, 2), (2, 1), (4, 1), (6, 3), (9, 2)

•

Example

- Current stored in data structure:
 - (0, 1), (1, 2) (2, 1), (4, 1), (6, 3), (9, 2)
- Range_max query:
 - What is the largest value for all keys smaller than 2??
- l[7] = 2 + 1 = 3
- Insert (2, 3) to the data structure (can update (2,1))
 - (0, 1), (1, 2), (2, 3), (4, 1), (6, 3), (9, 2)

 l_i :

 a_i :

Example

Current stored in data structure:

- Range_max query:
 - What is the largest value for all keys smaller than 7??
- l[8] = 3 + 1 = 4
- Insert (7, 4) to the data structure
 - (0, 1), (1, 2), (2, 2), (4, 1), (6, 3), (7, 4), (9, 2)

 l_i :

 a_i :

LIS + range query

- Assume we have an ADT D that can deal with range-max query
 - Store key-value pairs
 - insert(k,v): add a new key-value pair
 - range_max(k): for all key<k, find the maximum value
 - Key: a_i , value: l_i
- To compute each value in $l[\cdot]$, we need:
 - A range_max query: $O(\log n)$ time
 - An insert operation: $O(\log n)$ time
 - Total running time $O(n \log n)$
- We can use an augmented tree and possibly other DS to implement D

Another way for optimization

- Maintain a list B, where B[i] is the smallest a_i that makes l_i to be i
- l_i can only be 1 to n

Activity selection and some variants

Revisit: activity selection

Activity selection

5

Let f_i be the longest length of the first iactivities, with the i-th activity selected, then

$$f_i = \max \begin{cases} 1\\ \max_{j < i, e_j \le s_i} \{f_j + 1\} \end{cases}$$

(just consider the second last activity)

Additional questions:

- What about other objectives? Maximize total length? Largest value? ...
- What if we have other constraints?
- Can you solve it faster than $O(n^2)$?

A6 [12, 16)

Activity selection: longest total length

• Let f_i be the longest length of the first i activities and with the i-th activity selected, then

•
$$f_i = \max \begin{cases} e_i - s_i \\ \max_{j < i, e_j \le s_i} \{ f_j + (e_i - s_i) \} \end{cases}$$
• $O(n^2)$

A1 [1, 4)

A2 [3, 5)

A4 [5, 7)

A5 [5, 9)

Activity selection: largest total value

• Each activity has a value v_i

• Let f_i be the largest total value of the first i activities, with the i-th activity

selected, then

•
$$f_i = \max \begin{cases} v_i \\ \max_{j < i, e_j \le s_i} \{f_j + v_i\} \end{cases}$$

• $O(n^2)$

Conclusion:

For different **objectives**, we can just slightly modify DP recurrence

Question: More constraints? Faster than $O(n^2)$?

Activity selection: limited size, largest total value

- Each activity has a value v_i , can only choose s activities
- Let $f_{i,j}$ be the largest total value for first i activities, choosing j activities

Conclusion:

By adding **another dimension**, we can deal with one more restriction, but more expensive in complexity

Activity selection: can we make it more efficient?

Let's assume we are dealing with the maximum total value

•
$$f_i = \max \begin{cases} v_i \\ \max_{j < i, e_j \le s_i} \{f_j + v_i\} = \max_{j < i, e_j \le s_i} \{f_j\} + v_i \end{cases}$$

- For all activities before i, with $e_j < s_i$, we want the largest f_j
- A range max query again!

Activity selection: can we make it more efficient?

•
$$f_i = \max \begin{cases} v_i \\ \max_{j < i, e_j \le s_i} \{f_j + v_i\} = \max_{j < i, e_j \le s_i} \{f_j\} + v_i \end{cases}$$

- For all activities before i, with $e_j < s_i$, we want the largest f_j
- Assume we have an ADT D that can do range-max query on k-v pairs
 - insert(k,v): add a new key-value pair
 - range_max(k): for all key<k, find the maximum value
 - Key: e_i , value: f_i
- When processing i
 - Find in D range_max(s_i), get v^* , let $f_i = v^* + v_i$
 - Insert (e_i, f_i) into D
 - Continue to i + 1

What can we learn from activity selection problem?

- When we have different objectives, we can use similar idea, but slightly modify the DP recurrence
 - Max number, max total length, max total value
- When we have more restrictions, we can add another dimension
 - $f_{i,j}$ for the first i activities (select i) and select j of them
- When we use different state in DP recurrence, we can have different algorithms, with different complexity
 - Use f_i for max value for the first i activities (select i)
 - Use $f_{i,j}$ for max value for the first i activities up to time j
- If we want to make the algorithm more efficient, sometimes range-max/range-min query can help!

What can we learn today's class?

- For many DP recurrence with high computation cost, usually it's because we need to loop over a large candidate set to make the decision
- Since we are usually taking min/max, they can be viewed as range searches, and we have talked about data structures to do so efficiently
 - For data structures in higher dimension, we will cover them in (my) CS 219
- Other ways to optimize DP
- 1: Decision Monotonicity
 - We can get extra information from the decisions we have made previously
 - Narrow down the search space for a decision
 - May also use data structures to maintain such information

• 2: Parameterization

Run time proportional to problem properties

Dynamic Programming – Summary again

- OK, yes, it is hard!
- It is hard in that you need a LONG TIME and A LOT OF PRACTICE to get used to it
- But there is an "Aha! moment" when you then get to the point of designing many DP algorithm
- "First you hate them DP, then you get used to them DP. Enough time passes, you get so you depend on them DP."
 - From The Shawshank Redemption
 - Got this comment from another course, but it's true for many "hard" learning processes. (although it means totally different things in the movie)
- But again, you should be happy if you are learning something hard from school. The harder/more creative the skill is, the more irreplaceable you are at work.

Dynamic Programming – Summary again

- 80-min lectures (or 80min*4 lectures) won't be sufficient for you to have a good understanding of DP (even more lectures won't be enough)
- What you need
 - Some background (CS218 assumes you have basic knowledge about DP from prerequisite courses)
 - More reading (textbook chapters will be provided)
 - More practice (I can provide more problems for practice if any of you want)
- Welcome to come to any of our OHs for help

Readings

- CLRS Sec. 15
 - 15.1: Memorization (a similar walk-through example similar to our knapsack problem, about how to go from a "brute-force" algorithm to a "DP" algorithm)
 - 15.2 Matrix multiplication chain
 - 15.3 Elements of dynamic programming (you can read this part at last, as it is more "philosophic" and requires higher-level understanding in DP)
 - 15.4 Longest common subsequence
 - 15.5 Optimal binary search trees (one more example, not covered in class, but a good reading in general)
- Another useful textbook: <u>https://www.ics.uci.edu/~goodrich/teach/cs161/notes/dynamicp.pdf</u> (chapter on DP)
- CS141 lecture notes (provided in previous classes. If you didn't get it, you can come to my OH to get one copy)
- So far almost all topics about DP are covered in undergraduate classes

More readings

- CMU 15-451 and 15-210
 - https://www.cs.cmu.edu/~avrim/451f09/lectures/lect1001.pdf
 - http://www.cs.cmu.edu/afs/cs/academic/class/15210-s15/www/lectures/dp-notes.pdf (may be hard to understand if you are not familiar with functional languages)
 - https://www.cs.cmu.edu/~15451-s23/lectures/lec09-dp1.pdf
- Stanford CS161
 - https://stanford-cs161.github.io/winter2022/assets/files/lecture13-notes.pdf
 - https://stanford-cs161.github.io/winter2022/assets/files/lecture13-slides.pdf
- MIT 6.006
 - https://ocw.mit.edu/courses/6-006-introduction-to-algorithms-fall-2011/pages/lecture-notes/ (Lecture notes are brief, may need to watch videos)
- UCI CS161
 - https://www.ics.uci.edu/~goodrich/teach/cs161/notes/dynamicp.pdf (another nice textbook to read: https://www.ics.uci.edu/~goodrich/teach/cs161/notes/)
- CS141 materials are available in the Dropbox folder
- Many more (the examples of these course overlaps but generally differ from each other. DP is a broad topic.)

What is DP / what can be solve by DP / how to design DP algorithms?

- DP is an algorithmic "idea", not a specific algorithm
- "optimal substructure" [need to solve subproblems]

What is DP / what can be solve by DP / how to design DP algorithms?

- "optimal substructure" [need to solve subproblems]
- Then DP is useful when there are "overlapping subproblems"

What is DP / what can be solve by DP / how to design DP algorithms?

- "optimal substructure" [need to solve subproblems]
- Then DP is useful when there are "overlapping subproblems"
- But there is no "formula" that works for all DP problems. There are common ideas that might be useful (Reading CLRS 15.3)
- In CLRS, "DP" comes before greedy
 - DP requires optimal substructure, greedy further requires greedy choice?
 - DP: find best decision
 - Greedy is a special DP, where you know your best decision is your greedy choice!

- Yihan is going to buy candies for 218 students
- Her budget is W dollars

\$5

- There are n candies in store, with price p[i] each
- She doesn't want to buy the same candy twice
- She wants to buy as many candies as possible

\$

- Yihan is going to buy candies for 218 students
- Her budget is W dollars
- There are n candies in store, with price p[i] each
- She doesn't want to buy the same candy twice
- She wants to buy as many candies as possible
- 0/1 Knapsack problem! Weight = price. Value = 1 for each candy

$$s[i,j] = \max \begin{cases} s[i-1,j] & \text{Don't buy the i-th item} \\ s[i-1,j-w_i]+1 & j \geq w_i & \text{Buy the i-th item} \end{cases}$$

- Buy as many candies as possible with W dollars
- 0/1 Knapsack problem! Weight = price. Value = 1 for each candy
- Since we can prove "greedy choice", we know we just need to buy the cheapest candies

If we sort candies by price:

$$s[i,j] = \max \begin{cases} \frac{s[i-1,j]}{s[i-1,j-w_i]+1} & \text{Don't buy the i-th item} \\ s[i-1,j-w_i]+1 & j \geq w_i & \text{Buy the i-th item} \end{cases}$$

 But when value ≠ 1, "greedy choice" is not true any more. We have to use DP!

- Yihan is going to buy candies for 218 students
- Her budget is s dollars
- There are n candies in store, with price p[i] each
- She doesn't want to buy the same candy twice
- She wants to buy as many candies as possible
- 0/1 Knapsack problem! Weight = price. Value = 1 for each candy
- Since we can prove "greedy choice", we know we just need to buy the cheapest candies
- But when value ≠ 1, "greedy choice" is not true any more. We have to use DP!

- Yihan is going to buy candies for 218 students
- Her budget is W dollars
- There are n candies in store, with price p[i] each
- She can buy the same candy twice
- She wants to buy as many candies as possible

\$7

\$15

\$5

\$

55

- Yihan is going to buy candies for 218 students
- Her budget is W dollars
- There are n candies in store, with price p[i] each
- She can buy the same candy twice
- She wants to by Unlimited knaps

 The best value with $i w_j$ weight

Only choose the one with the lowest price!

DP can be used in many more fun topics!

Bitmask DP

 You want to compute the total number of combinations that tessellate the entire grid, which can be pretty large

Consider a snapshot here during a sweepline process

Consider a snapshot here during a sweepline process

 Let's consider such a shape as our DP state: note that any cell with distance 1 away from the sweepline does not matter

• Denote the state as DP[3, '110']

• Generally, it will be DP[0..n, 0..7], and the final answer is DP[n,7]

Moving forward

All the empty slots have to be placed by a horizontal tile

Can choose to put vertical tiles on the "current" tile

Moving forward

All the empty slots have to be placed by a horizontal tile

Can choose to put vertical tiles on the "current" tile

Moving forward

• Will need a mini-search process to extend a current state (e.g., DP[3, '110']) to all possible future states (e.g., DP[4, '001'] and DP[4, '111'])

Avoid double counting!

Summary for this simple tiling problem

- Number of states: $n \times 2^m$
- Total work: $n \times 2^m \times cost_{search} = n \times 2^{2m}$
- ullet Works fairly well for reasonable n and small m
- Details: how to apply the search

Interesting relevant questions

- What if the grid size is not 1*2?
 - What about 1*3?
 - What about L shape?
 - What about all Tetris shapes?
- What if part of the grids are occupied?
- What if the shapes can have constraints?
 - I.e., a 1*2 tile cannot be put "next to" a L shape?

A more advanced version

- Counting the paths in a grid
- Need to in addition maintaining the connectivity information

A more advanced version

Need to in addition maintaining the connectivity information

• State: DP[2, ____]

Another type of bitmask DP

- Consider the classic shortest Hamiltonian path (cycle)
- Given a graph G=(V,E), find the shortest path/cycle that reaches all vertices in a graph
- One of Karp's 21 NP-complete problem

Another type of bitmask DP

- One of Karp's 21 NP-complete problem
- Consider a DP solution:

- State: DP['10100101', 3] that represent the visited nodes and the last visited nodes
- DP['10100101', 3]=min(DP['10000101', 6]+w(6,3), DP['10000101', 8]+w(8,3), DP['10000101', 6]+w(1,3))
- Boundary: DP['10000000',1]=0, others with $+\infty$
- Cost: $O(2^n \cdot n)$

Summary for this type of bitmask DP

- Indicating used / unused "objects" as a bitmask
- When designing the DP recurrence, consider what is useful for your decision
 - For the Hamiltonian path, the "last vertex" matters but not the others
- When programming, consider the correct order to all states

The next lecture...

Algorithmic game theory based on dynamic programming