Question 8
=) The same code au &7 is utilized
in a new copy labelled "gulana - 98. py"
John et. al, 2024 states mat au
me value of epsilon becomes very small, the presence of a boundary
layer arier, characteried by thin gradient near the boundary. This leads to instability in the system
and prevent he system from
converging.
=) To test mis, a smaller value of dx is utilised of an =002 (T=100)
to Properly observe onese changer.
=> Because I did not utilize science and simulations at
scipy sparse, my simulations at very fine grids take an

exmemely long time to run, and soly two cases were observed The graph plotted for varying & valuer can be found in 1) 1 gulana - 98 -epsilon - 0-0001 -dx=002. pg 2) n quiana - 98 - epsilon - le - 05 - dx = 002 - jog 3)" gulana-98-opsilon-le-06_dx=0.02.jog =) As me value of epsilon decreases , he width of the boundary layer tende to decrease we can see mis au a steeper gradient at t=0.250sfor $\epsilon=0^{-4}$, and a leu steep gradient pro C= 105, 106 =) To reproduce me graphs, simply sun me code an is-