1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ

«Информатика и системы управления»

КАФЕДРА

«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

По лабораторной работе №2

По курсу: «Математическая статистика»

Тема: «Интервальные оценки»

Студент: Пронин А. С.

Группа: ИУ7-62Б

Преподаватель: Власов П. А.

Оценка: _____

Москва

Введение

Цель работы: построение доверительных интервалов для математичского ожидания и дисперсии нормальной случайной величины. **Содержание работы:**

- 1. Для выборки объема n из нормальной генеральной совокупности X реализовать в виде программы на ЭВМ
 - а) вычисление точечных оценок $\overset{\wedge}{\mu}(\overrightarrow{x_n})$ и $S^2(\overrightarrow{x_n})$ математического ожидания МХ и дисперсии DX соответсвтенно;
 - б) вычисление нижней и верхней границ $\underline{\mu}(\overrightarrow{x_n}), \ \overline{\mu}(\overrightarrow{x_n})$ для γ доверительного интервала для математического ожидания МХ;
 - в) вычисление нижней и верхней границ $\underline{\sigma}(\overrightarrow{x_n}), \ \overline{\sigma}(\overrightarrow{x_n})$ для γ доверительного интервала для дисперсии DX;
- 2. вычислить $\stackrel{\wedge}{\mu}$ и S^2 для выборки из индивидуального варианта;
- 3. для заданного пользователем уровня доверия γ и N объема выборки из индивидуального варианта:
 - а) на координатной плоскости Oyn построить прямую $y = \stackrel{\wedge}{\mu} (\overrightarrow{x}_N)$, также графики функций $y = \stackrel{\wedge}{\mu} (\overrightarrow{x}_n)$, $y = \underline{\mu} (\overrightarrow{x}_n)$ и $y = \overline{\mu} (\overrightarrow{x}_n)$ как функций объёма n выборки, где n изменяется от 1 до N;
 - б) на другой координатной плоскости Ozn построить прямую $z=S^2(\overrightarrow{x}_N)$, также графики функций $y=S^2(\overrightarrow{x}_n), y=\underline{\sigma}^2(\overrightarrow{x}_n)$ и $y=\overline{\sigma}^2(\overrightarrow{x}_n)$ как функций объёма n выборки, где n изменяется от 1 до N.

Отчёт

Формулы для вычисления величин