Damped Harmonic Oscillator

COURSE NAME: Mechanics, Oscillations and Waves (MOW)

PHY F111

Instructor: Dr. Indrani Chakraborty

Semester II 2021

e-mail: indranic@goa.bits-pilani.ac.in

Damped oscillations

Undamped, free vibration

All free vibrations die away with time due to the presence of dissipative forces

Some examples of dissipative forces causing damped oscillations:

Damped, free vibration

Resistance in an electrical oscillator

Viscous drag of the liquid

Air resistance and friction at the swing suspension point

Modelling damped motion

- The damping force on an object is a function of its velocity.
- For linear damping, we can write the damping force f as:

$$f = -b\dot{x} \tag{1}$$

So the equation for a damped harmonic oscillator is:

$$m\frac{d^2x}{dt^2} = -kx - b\dot{x} \tag{2}$$

$$\frac{d^2x}{dt^2} + \gamma \frac{dx}{dt} + \omega_0^2 x = 0 \text{ where } \omega_0^2 = k/m \text{ and } \gamma = \frac{b}{m}$$
 (3)

Here damping constant γ has a dimension of frequency, while ω_0 is the undamped angular frequency.

Let's solve this! We will use complex exponentials.

We will solve equation 3 by using complex exponentials!

So let's write equation 3 as
$$\frac{d^2z}{dt^2} + \gamma \frac{dz}{dt} + \omega_0^2 z = 0 \quad (4)$$

We assume a solution of the form
$$z = Ae^{i(pt+\alpha)}$$
 (5)

Putting equation 5 in 4, we obtain,

$$(-p^2 + ip\gamma + \omega_0^2)Ae^{i(pt+\alpha)} = 0$$

If this is to be satisfied for all values of t, we must have:

$$-p^2 + ip\gamma + \omega_0^2 = 0$$
(6)

This implies two separately satisfied conditions involving real and imaginary parts!

Therefore, the quantity p cannot be purely real and we put p = n + is where n and s are both real.

Then,

$$p^2 = n^2 + 2ins - s^2 \tag{7}$$

Substituting this in equation (6) gives us:

$$-n^2 - 2ins + s^2 + in\gamma - s\gamma + \omega_0^2 = 0$$
 (8)

From this we can write two separate equations taking the real and imaginary parts:

From the real part, $-n^2 + s^2 - s\gamma + \omega_0^2 = 0 \qquad (9)$ From the imaginary part, $-2ns + n\gamma = 0 \qquad (10)$

So from equation (10), we can write: $s = \frac{\gamma}{2}$ (11)

Putting (11) in (9), we get: $n^2 = \omega_0^2 - \frac{\gamma^2}{4}$ (12)

Now we take equation (5), that is $z = Ae^{i(pt+\alpha)}$ and put equation p = n + is in it.

$$z = Ae^{i(pt+\alpha)} = Ae^{i(nt+ist+\alpha)} = Ae^{-st}e^{i(nt+\alpha)}$$

Taking the real part from this, $x = Ae^{-st}\cos(nt + \alpha)$ (13)

Putting equations (11) and (12) in this, that is putting in the values of n and s we get,

$$x = Ae^{-\frac{\gamma t}{2}}\cos(\omega t + \alpha) \tag{14}$$

where,
$$\omega^2 = n^2 = {\omega_0}^2 - {\gamma^2 \over 4} = {k \over m} - {b^2 \over 4m^2}$$

So how do we damp a system in a controlled way?

Mechanically: Eg. A 'Dashpot': Cylinder with piston immersed in a viscous fluid

Electrically:
Eg. Use eddy current generated in an oscillating coil by an electromagnet

Comparisons

www.xmphysics.com

Plots of functions

Quality factor Q

A damped oscillator has two main quantities involved : ω_0 and γ .

Both have dimensions of 1/time.

Let's define a quantity called the Quality Factor Q given by:

$$Q = \frac{\omega_0}{\gamma} \tag{15}$$

We have seen before that

$$\omega^2 = \omega_0^2 - \frac{\gamma^2}{4}$$
 (16)

This can be written as:

$$\omega^2 = \omega_0^2 \left(1 - \frac{1}{4Q^2} \right) \tag{17}$$

Now we will see how the damped vibrations look for different Q values.

Underdamped systems

$$\omega^2 = \omega_0^2 - \frac{\gamma^2}{4}$$

Case A: If the damping is low ($\gamma < 2\omega_0$), $Q > \frac{1}{2}$ and $\omega \approx \omega_0$

$$x = Ae^{-\frac{\omega_0 t}{2Q}}\cos(\omega_0 t + \alpha) \tag{18}$$

 $A'(t) = Ae^{-\frac{\omega_0 t}{2Q}}$ (A' is just a notation, not derivative)

Let us measure the time t in number of complete oscillations n. Then we can write $t \approx \frac{2\pi n}{\omega_0}$

Therefore, $A'(n) \approx Ae^{-\frac{n\pi}{Q}} \rightarrow$ amplitude falls by a factor e in Q/π cycles of oscillation.

Underdamped system

Eg: Motion of a swing

Overdamped systems

$$\omega^2 = \omega_0^2 - \frac{\gamma^2}{4}$$

Case B: If the damping is high ($\gamma>2\omega_0$), then $Q<rac{1}{2}$

$$x = Re(Ae^{-\frac{\gamma t}{2}}e^{i(\omega t + \alpha)})$$

If now $\omega_0^2 < \frac{\gamma^2}{4}$, then we can write: $\omega^2 = -\left(\frac{\gamma^2}{4} - \omega_0^2\right)$.

Therefore,

$$\omega = \pm i \left(\frac{\gamma^2}{4} - \omega_0^2 \right)^{\frac{1}{2}} = \pm i\beta$$

SO, $e^{i\omega t} = e^{\mp \beta t}$ and this gives rise to two possible decay modes: $e^{-\left(\frac{\gamma}{2} + \beta\right)t}$ and $e^{-\left(\frac{\gamma}{2} - \beta\right)t}$ (take $\alpha = 0$)

So we can write a general solution of $x = A_1 e^{-(\frac{\gamma}{2} + \beta)t} + A_2 e^{-(\frac{\gamma}{2} - \beta)t}$ (19)

Overdamped system

$$x = A_1 e^{-\left(\frac{\gamma}{2} + \beta\right)t} + A_2 e^{-\left(\frac{\gamma}{2} - \beta\right)t}$$

$$x(0) = 0$$

$$A_1 + A_2 = 0, \text{ so } A_2 = -A_1 = A$$

$$x(t) = \frac{2A}{2} e^{-\frac{\gamma t}{2}} \left(-e^{-\beta t} + e^{+\beta t} \right)$$

$$= 2A e^{-\frac{\gamma t}{2}} \sinh(\beta t)$$
where $\frac{e^{+\beta t} - e^{-\beta t}}{2} = \sinh(\beta t)$ is a hyperbolic function

Eg: Automatic door-close

Critically damped systems

$$\omega^2 = \omega_0^2 - \frac{\gamma^2}{4}$$

Case C: If
$$(\gamma=2\omega_0)$$
, then $Q=\frac{1}{2}$ and $\omega=0$ and $\beta=0$

Equation (19) then has only one term and not two!

We still need two adjustable constants and so an appropriate solution is

$$x = (A + Bt)e^{-\frac{\gamma t}{2}}$$
 (20)

You can check by substitution that (20) will satisfy the basic damped oscillator equation (equation(3)) when $\gamma = 2\omega_0$.

Critically damped system

$$x = (A + Bt)e^{-\frac{\gamma t}{2}}$$

$$x(0) = 0$$

$$x(t) = Bte^{-\frac{\gamma t}{2}}$$

Decay of amplitude is fastest for critically damped!

Eg: Shock absorber in a car

Comparisons: Let's plot them together!

Underdamped: $x = Ae^{-\frac{\gamma t}{2}}\cos(\omega_0 t + \alpha)$

Overdamped: $x = A_1 e^{-\left(\frac{\gamma}{2} + \beta\right)t} + A_2 e^{-\left(\frac{\gamma}{2} - \beta\right)t}$

Critically damped: $x = (A + Bt)e^{-\frac{\gamma t}{2}}$

Decay of amplitude is fastest for critically damped!

Energy considerations

Under damping, amplitude falls off as: $A(t) = A_0 e^{-\frac{\gamma t}{2}}$

$$A(t) = A_0 e^{-\frac{\gamma t}{2}}$$

 $\gamma << \omega$, then we can approximate the oscillation as an SHM with a 'nearly' constant amplitude A

So we can write the total mechanical energy of the oscillator as:

$$E = \frac{1}{2}kA(t)^2$$

$$E(t) = \frac{1}{2}k A_0^2 e^{-\gamma t} = E_0 e^{-\gamma t}$$
 (21)

Also,
$$Q = \frac{Energy \, stored}{Energy \, lost \, per \, radian} = \frac{E}{-t_r \frac{dE}{dt}} = \frac{E\omega}{\gamma E}$$

For low damping, $\omega \approx \omega_0$, so $Q = \frac{\omega_0}{\nu}$

Q is large for less energy loss: "Quality" of the oscillation

Energy considerations: a little more detail

$$x = Ae^{-\frac{\gamma t}{2}}\cos(\omega t + \alpha)$$

$$v = \dot{x} = -\frac{1}{2}Ae^{-\frac{\gamma t}{2}}[\gamma\cos(\omega t + \alpha) + 2\omega\sin(\omega t + \alpha)]$$

Potential energy: $E_P=rac{1}{2}kx^2$ where $k=m\omega_0^2$

Kinetic energy: $E_k = \frac{1}{2}mv^2 = \frac{1}{8}mA^2e^{-\gamma t}[\gamma^2\cos^2(\omega t + \alpha) + 4\gamma\omega\cos(\omega t + \alpha)\sin(\omega t + \alpha) + 4\omega^2\sin^2(\omega t + \alpha)]$

Total energy: $E = E_P + E_k = \frac{1}{8} mA^2 e^{-\gamma t} [\gamma^2 cos^2(\omega t + \alpha) + 4\gamma\omega\cos(\omega t + \alpha)\sin(\omega t + \alpha) + 4\omega^2 sin^2(\omega t + \omega) + 4\omega^2 sin$

Using:

a)
$$2\cos^2\theta = 1 + \cos 2\theta$$

b)
$$\omega^2 = {\omega_0}^2 - \frac{\gamma^2}{4}$$

Energy considerations: a little more detail

Energy of a damped oscillator. Force ∝ velocity, so energy is both oscillatory and decaying.

Energy of an underdamped oscillator with $\gamma \ll 2\omega_0$. Approximately exponentially decaying energy.

An example

A tuning fork having a natural frequency of 440 Hz is struck. How long will it take to reduce the energy by a factor of 5 if Q = 6912?

$$\omega_0 = 2\pi n = 2\pi \times 440 = 2765 \, rad/s$$

Using
$$E(t) = E_0 e^{-\gamma t}$$
, we can write $\frac{E_0}{E_0 e^{-\gamma t}} = 5$ or $t = \frac{1}{\gamma} \ln 5$.

Now
$$\gamma = \frac{\omega_0}{Q}$$

$$\gamma = \frac{\omega_0}{Q} = \frac{2765}{6912} = 0.4 \, s^{-1}$$
, hence $t = 4s$