МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Факультет «Информатика и система управления» Кафедра ИУ-5 «Системы обработки информации и управления»

ОТЧЕТ

Лабораторная работа №1 по курсу «Методы машинного обучения»

Исполнитель - студент группы ИУ5-21М:

Кауров Максим _____

This dataset contains a list of video games with sales greater than 100,000 copies. It was generat

Fields include

Rank - Ranking of overall sales

Name - The games name

Platform - Platform of the games release (i.e. PC,PS4, etc.)

Year - Year of the game's release

Genre - Genre of the game

Publisher - Publisher of the game

NA_Sales - Sales in North America (in millions)

EU_Sales - Sales in Europe (in millions)

JP_Sales - Sales in Japan (in millions)

Other_Sales - Sales in the rest of the world (in millions)

Global_Sales - Total worldwide sales.

The script to scrape the data is available at https://github.com/GregorUT/vgchartzScrape. It is bas 16,598 records. 2 records were dropped due to incomplete information.

```
#Подключаем библиотеки import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline sns.set(style="ticks")
```

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarnin
import pandas.util.testing as tm

```
#Загружаем датасет
from google.colab import files
files.upload()
```

```
С→ Выбрать файлы vgsales.csv
```

• **vgsales.csv**(application/vnd.ms-excel) - 1355781 bytes, last modified: 19.09.2019 - 100% done Saving vgsales.csv to vgsales.csv {'vgsales.csv': b'Rank,Name,Platform,Year,Genre,Publisher,NA Sales,EU Sales,JP Sales,

```
#Парсим датасет data = pd.read_csv('vgsales.csv', sep=",")
```

Основные характеристики датасета:

Первые 5 строк датасета data.head()

₽	Rank		Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sa:
	0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3
	1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6
	2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3
	3	4	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.75	11.01	3

Определим размер датсета data.shape

┌→ (16598, 11)

Список колонок с типами данных data.dtypes

C→	Rank	int64
	Name	object
	Platform	object
	Year	float64
	Genre	object
	Publisher	object
	NA_Sales	float64
	EU_Sales	float64
	JP_Sales	float64
	Other_Sales	float64
	Global_Sales	float64
	dtype: object	

- # Проверим наличие пустых значений
- # Цикл по колонкам датасета

for col in data.columns:

Количество пустых значений - все значения заполнены
temp_null_count = data[data[col].isnull()].shape[0]
print('{} - {}'.format(col, temp_null_count))

Rank - 0
Name - 0
Platform - 0
Year - 271
Genre - 0
Publisher - 58
NA_Sales - 0
EU_Sales - 0
JP_Sales - 0
Other_Sales - 0
Global_Sales - 0

C→

Основные статистические характеристки набора данных data.describe()

	Rank	Year	NA_Sales	EU_Sales	JP_Sales	Other_Sal
count	16598.000000	16327.000000	16598.000000	16598.000000	16598.000000	16598.0000
mean	8300.605254	2006.406443	0.264667	0.146652	0.077782	0.0480
std	4791.853933	5.828981	0.816683	0.505351	0.309291	0.1885
min	1.000000	1980.000000	0.000000	0.000000	0.000000	0.0000
25%	4151.250000	2003.000000	0.000000	0.000000	0.000000	0.0000
50%	8300.500000	2007.000000	0.080000	0.020000	0.000000	0.0100
75%	12449.750000	2010.000000	0.240000	0.110000	0.040000	0.0400
max	16600.000000	2020.000000	41.490000	29.020000	10.220000	10.5700

Визуальное исследование датасета

```
#Диаграмма расссеяния для глобальных продаж и продаж EU fig, ax = plt.subplots(figsize=(10,10)) sns.scatterplot(ax=ax, x='Global_Sales', y='EU_Sales', data=data)
```

₽

<matplotlib.axes._subplots.AxesSubplot at 0x7f3c7c9c6a58>

#Гистограмма по годам fig, ax = plt.subplots(figsize=(10,10)) sns.distplot(data['Year'])

C→

<matplotlib.axes._subplots.AxesSubplot at 0x7f3c7c8f8588>

#Jointplot
#Комбинация гистограмм и диаграмм рассеивания. Для года и NA продаж sns.jointplot(x='Year', y='NA_Sales', data=data)

₽

<seaborn.axisgrid.JointGrid at 0x7f3c7c982ac8>

#Парные диаграммы для всего датасета sns.pairplot(data)

₽

Распределение параметра All_sales сгруппированные по Year. sns.violinplot(x='Global_Sales', y='Year', data=data)

Информация о корреляции признаков

#Корреляционная матрица data.corr()

₽		Rank	Year	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_
	Rank	1.000000	0.178814	-0.401362	-0.379123	-0.267785	-0.332986	-0.42
	Year	0.178814	1.000000	-0.091402	0.006014	-0.169316	0.041058	-0.0
	NA_Sales	-0.401362	-0.091402	1.000000	0.767727	0.449787	0.634737	0.94
	EU_Sales	-0.379123	0.006014	0.767727	1.000000	0.435584	0.726385	0.90
	JP_Sales	-0.267785	-0.169316	0.449787	0.435584	1.000000	0.290186	0.6
	Other_Sales	-0.332986	0.041058	0.634737	0.726385	0.290186	1.000000	0.74
	Global_Sales	-0.427407	-0.074735	0.941047	0.902836	0.611816	0.748331	1.00

Построим корреляционные матрицы на основе различных методов

data.corr(method='pearson')

₽		Rank	Year	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_
	Rank	1.000000	0.178814	-0.401362	-0.379123	-0.267785	-0.332986	-0.4;
	Year	0.178814	1.000000	-0.091402	0.006014	-0.169316	0.041058	-0.0
	NA_Sales	-0.401362	-0.091402	1.000000	0.767727	0.449787	0.634737	0.94
	EU_Sales	-0.379123	0.006014	0.767727	1.000000	0.435584	0.726385	0.90
	JP_Sales	-0.267785	-0.169316	0.449787	0.435584	1.000000	0.290186	0.6
	Other_Sales	-0.332986	0.041058	0.634737	0.726385	0.290186	1.000000	0.74
	Global_Sales	-0.427407	-0.074735	0.941047	0.902836	0.611816	0.748331	1.00

data.corr(method='kendall')

₽		Rank	Year	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_
	Rank	1.000000	0.104901	-0.669392	-0.556641	-0.125372	-0.677420	-0.98
	Year	0.104901	1.000000	-0.094939	-0.047794	0.013893	0.041790	-0.10
	NA_Sales	-0.669392	-0.094939	1.000000	0.556031	-0.181112	0.640092	0.6
	EU_Sales	-0.556641	-0.047794	0.556031	1.000000	-0.143193	0.661482	0.56
	JP_Sales	-0.125372	0.013893	-0.181112	-0.143193	1.000000	-0.058865	0.12
	Other_Sales	-0.677420	0.041790	0.640092	0.661482	-0.058865	1.000000	0.68
	Global_Sales	-0.989750	-0.105730	0.675652	0.561736	0.126682	0.684007	1.00

data.corr(method='spearman')

₽		Rank	Year	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_
	Rank	1.000000	0.151529	-0.795516	-0.697105	-0.151851	-0.810416	-0.9
	Year	0.151529	1.000000	-0.133088	-0.057729	0.009605	0.055726	-0.1
	NA_Sales	-0.795516	-0.133088	1.000000	0.681254	-0.228603	0.769432	0.79
	EU_Sales	-0.697105	-0.057729	0.681254	1.000000	-0.177486	0.766054	0.69
	JP_Sales	-0.151851	0.009605	-0.228603	-0.177486	1.000000	-0.069990	0.1
	Other_Sales	-0.810416	0.055726	0.769432	0.766054	-0.069990	1.000000	8.0
	Global_Sales	-0.999622	-0.151248	0.795572	0.696846	0.151931	0.810381	1.00

[#] Используем метод heatmap для различных методов

fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5))

 $sns.heatmap(data.corr(method='pearson'), \ ax=ax[0], \ annot=True, \ fmt='.2f')$

sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f')

https://colab.research.google.com/drive/1Rt4D2AhVkmlfAAQospc_x-k6DReud3J5#scrollTo=C7Hvpi7Bc4IZ&printMode=true

```
sns.neatmap(data.corr(metnod= spearman ), ax=ax[z], annot=rrue, тmt= .zr ) fig.suptitle('Корреляционные матрицы, построенные различными методами') ax[0].title.set_text('Pearson') ax[1].title.set_text('Kendall') ax[2].title.set_text('Spearman')
```

