

QUÍMICA NIVEL SUPERIOR PRUEBA 1

Miércoles 14 de mayo de 2003 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.

223-158 15 páginas

-	7		•	Tabla perió	periód	dica						ю	4	ĸ	9	7	0
1 H 1,01				Número atómico	atómico												2 He 4,00
3 Li 6,94	4 Be 9,01			Eremento Masa atómica	ento tómica							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
11 Na 22,99	12 Mg 24,31		ı									13 AI 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 Cl 35,45	18 Ar 39,95
19 K 39,10	20 Ca 40,08	21 S c 44,96	22 Ti 47,90	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,71	29 Cu 63,55	30 Zn 65,37	31 Ga 69,72	32 Ge 72,59	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,80
37 Rb 85,47	38 Sr 87,62	39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,94	43 Tc 98,91	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,40	49 In 114,82	50 Sn 118,69	51 Sb 121,75	52 Te 127,60	53 I 126,90	54 Xe 131,30
55 Cs 132,91	56 Ba 137,34	57 † La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,85	75 Re 186,21	76 Os 190,21	77 Ir 192,22	78 Pt 195,09	79 Au 196,97	80 Hg 200,59	81 TI 204,37	82 Pb 207,19	83 Bi 208,98	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)															
		÷	58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm 146,92	62 Sm 150,35	63 Eu 151,96	64 Gd 157,25	65 Tb 158,92	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,04	71 Lu 174,97	
		**	90 Th 232,04	91 Pa 231,04	92 U 238,03	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	

- 1. ¿En qué cantidad de oxígeno, O_2 , (expresada en moles) hay 1.8×10^{22} moléculas?
 - A. 0,0030
 - B. 0,030
 - C. 0,30
 - D. 3,0
- 2. Se hace reaccionar 3,0 dm³ de dióxido de azufre con 2,0 dm³ de oxígeno de acuerdo con la ecuación:

$$2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$$

- ¿Qué volumen de trióxido de azufre (expresado en dm³) se forma? (Suponga que la reacción se completa y que todos los gases se miden a la misma temperatura y presión.)
- A. 5,0
- B. 4,0
- C. 3,0
- D. 2,0
- **3.** ¿Qué volumen (expresado en dm³) de solución de NaCl de concentración 0,30 mol dm³ se puede preparar a partir de 0,060 moles de soluto?
 - A. 0,018
 - B. 0,20
 - C. 0,50
 - D. 5,0

4. Observe la composición de las especies W, X, Y y Z que se indica a continuación. ¿Cuál de ellas es un anión?

Especie	Número de protones	Número de neutrones	Número de electrones
W	9	10	10
X	11	12	11
Y	12	12	12
Z	13	14	10

- A. W
- B. X
- C. Y
- D. Z
- 5. ¿Cuál es la configuración electrónica de un átomo con Z = 22?
 - A. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^4$
 - B. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^2$
 - C. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4p^2$
 - D. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2$
- **6.** ¿Con qué se relaciona el número de electrones del nivel energético principal exterior de los elementos desde los metales alcalinos hasta los halógenos?
 - I. Con el número de grupo
 - II. Con el número de periodo
 - A. Sólo I
 - B. Sólo II
 - C. Ambos, I y II
 - D. Ninguno

7.	¿Cuáles de la	as siguientes sa	es forman	soluciones	coloreadas	cuando se	e disuelven e	n agua?
----	---------------	------------------	-----------	------------	------------	-----------	---------------	---------

- I. ScCl₃
- II. FeCl₃
- III. NiCl₂
- IV. ZnCl₂
- A. Sólo I y II
- B. Sólo II y III
- C. Sólo III y IV
- D. I, II, III y IV

8. Los compuestos Na₂O, Al₂O₃ y SO₂ son respectivamente

- A. ácido, anfótero y básico.
- B. anfótero, básico y ácido.
- C. básico, ácido y anfótero.
- D. básico, anfótero y ácido.
- 9. ¿Cuál es la fórmula del compuesto formado por calcio y nitrógeno?
 - A. CaN
 - B. Ca₂N
 - C. Ca₂N₃
 - D. Ca₃N₂

10. ¿Cuál es la mejor descripción de la longitud de los enlaces carbono-oxígeno en el CO_3^{2-} ?

- A. Un enlace corto y dos largos
- B. Un enlace largo y dos cortos
- C. Tres enlaces de la misma longitud
- D. Tres enlaces de distinta longitud

11. ¿Cuál de las siguientes opciones es verdadera para el CO₂?

	enlace C=O	molécula de CO ₂
A.	polar	no polar
B.	no polar	polar
C.	polar	polar
D.	no polar	no polar

- **12.** Las masas molares de los compuestos C₂H₆, CH₃OH y CH₃F son muy semejantes. ¿Cómo se ordenan sus puntos de ebullición?
 - A. $C_2H_6 < CH_3OH < CH_3F$
 - B. $CH_3F < CH_3OH < C_2H_6$
 - C. $CH_3OH < CH_3F < C_2H_6$
 - D. $C_2H_6 < CH_3F < CH_3OH$
- 13. ¿Cuál es la distribución de pares electrónicos y la disposición de átomos en el ion triyoduro, I_3^- ?

	Pares electrónicos	Disposición de átomos
A.	tetraédrica	angular
B.	plana cuadrada	lineal
C.	bipirámide trigonal	lineal
D.	bipirámide trigonal	angular

14. ¿Cuál es el número de enlaces sigma (σ) y pi (π) y la hibridación del átomo de carbono en el compuesto

	Sigma	Pi	Hibridación
A.	4	1	sp^2
B.	4	1	sp^3
C.	3	2	sp ³
D.	3	1	sp ²

- 15. A temperatura cercana a 0 °C y muy baja presión el agua existe en los estados sólido, líquido y gaseoso. ¿Qué relación existe entre las distancias moleculares de los tres estados en las condiciones mencionadas?
 - A. Las distancias son iguales en los tres estados.
 - B. En los estados sólido y líquido las distancias son similares, aunque menores que en estado gaseoso.
 - C. Las distancias son menores en el estado sólido, y similares en los estados líquido y gaseoso.
 - D. Las distancias son menores en el estado líquido, y similares en los estados sólido y gaseoso.
- 16. ¿En cuál de las siguientes muestras gaseosas las moléculas tienen mayor energía cinética media?
 - A. H₂ a 100 K
 - B. CH₄ a 273 K
 - C. H₂O a 373 K
 - D. CH₃OH a 353 K

- 17. ¿Qué variaciones de energía se producen cuando los enlaces químicos se forman y se rompen?
 - A. Cuando los enlaces se forman y se rompen, se absorbe energía.
 - B. Cuando los enlaces se forman y se rompen, se libera energía.
 - C. Cuando los enlaces se forman se absorbe energía y se libera cuando se rompen.
 - D. Cuando los enlaces se forman se libera energía y se absorbe cuando se rompen.
- **18.** ¿Qué combinación de carga iónica y radio iónico produce mayor entalpía de red para un compuesto iónico?

	Carga iónica	Radio iónico
A.	alta	grande
B.	alta	pequeño
C.	baja	pequeño
D.	baja	grande

19. ¿Bajo qué condiciones una reacción es espontánea a cualquier temperatura?

	ΔH^{Θ}	ΔS^{Θ}
A.	+	+
B.	+	-
C.	_	_
D.	_	+

20. ¿Cuál es el valor de ΔH para la siguiente reacción, expresado en kJ?

$$CS_2(g) + 3O_2(g) \rightarrow CO_2(g) + 2SO_2(g)$$

 $[\Delta H_f/kJ \text{ mol}^{-1}: CS_2(g) 110, CO_2(g) - 390, SO_2(g) - 290]$

- A. -570
- B. -790
- C. -860
- D. -1080
- 21. ¿Cuál(es) de los siguientes aspectos es(son) importante(s) para determinar si una reacción se produce?
 - I. Energía de las moléculas

Orden respecto al NO₂

primer

primer

segundo

segundo

- II. Orientación de las moléculas
- A. Sólo I
- B. Sólo II
- C. Ambos, I y II
- D. Ninguno
- **22.** En la siguiente tabla se registran los datos de velocidad para la reacción entre NO₂ y F₂ para determinada temperatura. ¿Cuál es el orden de la reacción con respecto al NO₂ y F₂?

$[\mathrm{NO_2}]/\mathrm{moldm}^{-3}$	$[F_2]/mol\ dm^{-3}$	Velocidad/mol dm ⁻³ min ⁻¹
0,1	0,2	0,1
0,2	0,2	0,4
0,1	0,4	0,2

- A.
- B.
- C.
- D.

223-158 Véase al dorso

segundo

Orden respecto al F₂

primer

segundo

primer

- 23. ¿Cuál es la etapa determinante de la velocidad de una reacción que transcurre en varias etapas?
 - A. La primera etapa
 - B. La última etapa
 - C. La etapa que tenga menor energía de activación
 - D. La etapa que tenga mayor energía de activación

24.
$$I_2(g) + 3CI_2(g) \rightleftharpoons 2ICI_3(g)$$

¿Cuál es la expresión de la constante de equilibrio para la reacción anterior?

A.
$$K_c = \frac{[ICl_3]}{[I_2][Cl_2]}$$

B.
$$K_c = \frac{2[ICl_3]}{3[I_2][Cl_2]}$$

C.
$$K_c = \frac{2[ICl_3]}{[I_2] + 3[Cl_2]}$$

D.
$$K_c = \frac{[ICl_3]^2}{[I_2][Cl_2]^3}$$

- **25.** ¿Cuál(es) de los siguientes factores afecta(n) la presión de vapor en equilibrio de un líquido en un recipiente?
 - I. Temperatura
 - II. Superficie del líquido
 - III. Volumen del recipiente
 - A. Sólo I
 - B. Sólo I y II
 - C. Sólo II y III
 - D. I, II y III

26. ¿Cómo es la $[H^+]$ de una solución acuosa de pH = 4 con respecto a la $[H^+]$ de una solución acuosa de pH = 2?

La [H⁺] es

- A. el doble.
- B. la mitad.
- C. $\frac{1}{10}$ del valor.
- D. $\frac{1}{100}$ del valor.
- 27. ¿Cuál(es) de las siguientes soluciones es(son) buffer o reguladoras?
 - I. $0.01 \text{ mol dm}^{-3} \text{ HCl}, 0.01 \text{ mol dm}^{-3} \text{ NaCl}$
 - II. $0.01 \text{ mol dm}^{-3} \text{ CH}_3\text{COOH}, 0.01 \text{ mol dm}^{-3} \text{ CH}_3\text{COONa}$
 - A. Sólo I
 - B. Sólo II
 - C. Ambas, I y II
 - D. Ninguna
- **28. Una** de las siguientes especies puede comportarse como ácido y base según Brønsted-Lowry en solución acuosa. ¿Cuál es?
 - A. CH₃COOH
 - B. NO_3^-
 - C_{\cdot} $H_2PO_4^-$
 - D. OH

- **29.** El valor de $K_{\rm a}$ para un ácido es 1.0×10^{-2} . ¿Cuál es el valor de $K_{\rm b}$ para su base conjugada?
 - A. $1,0 \times 10^{-2}$
 - B. $1,0 \times 10^{-6}$
 - C. $1,0 \times 10^{-10}$
 - D. $1,0 \times 10^{-12}$
- **30.** Se titulan por separado 20,0 cm³ de solución de ácido débil y de ácido fuerte de la misma concentración, con solución de NaOH. ¿Cuál(es) de las siguientes magnitudes es (son) igual(es) en las dos titulaciones?
 - I. pH inicial
 - II. pH en el punto de equivalencia
 - III. Volumen de solución de NaOH necesario para alcanzar el punto de equivalencia
 - A. Sólo I
 - B. Sólo III
 - C. Sólo I y II
 - D. Sólo II y III
- 31. De acuerdo con las siguientes reacciones espontáneas, ¿cuál es el agente reductor más enérgico?

$$2Cr(s) + 3Fe^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 3Fe(s)$$

Fe(s) + Pb²⁺(aq) \rightarrow Fe²⁺(aq) + Pb(s)

- A. Cr(s)
- B. $Cr^{3+}(aq)$
- C. $Pb^{2+}(aq)$
- D. Pb(s)

32. ¿Qué se produce durante el funcionamiento de una pila basada en la siguiente reacción?

$$Ni(s) + Pb^{2+}(aq) \rightarrow Ni^{2+}(aq) + Pb(s)$$

	Circuito externo	Movimiento de iones en solución
A.	los electrones se mueven desde el Ni hacia el Pb	los iones Pb ²⁺ (aq) salen del Pb(s)
B.	los electrones se mueven desde el Ni hacia el Pb	los iones Pb ²⁺ (aq) se mueven hacia el Pb(s)
C.	los electrones se mueven desde el Pb hacia el Ni	los iones Ni ²⁺ (aq) salen del Ni(s)
D.	los electrones se mueven desde el Pb hacia el Ni	los iones Ni ²⁺ (aq) se mueven hacia el Ni(s)

33.
$$Ag(s) + NO_3^-(aq) + H^+(aq) \rightarrow Ag^+(aq) + NO(g) + H_2O(l)$$

Cuando se ajusta la reacción de oxidación-reducción anterior, ¿cuál es el coeficiente del H⁺(aq)?

- A. 1
- B. 2
- C. 3
- D. 4
- **34.** Se electrolizan soluciones acuosas de AgNO₃, Cu(NO₃)₂ y Cr(NO₃)₃ usando la misma cantidad de electricidad. ¿Qué relación existe entre el número de moles de metales formados?
 - A. Ag = Cu = Cr
 - $B. \qquad Ag > Cu > Cr$
 - C. Ag < Cu < Cr
 - D. Cu > Ag > Cr

- **35.** ¿Cuál de las siguientes sustancias es la **menos** soluble en agua?
 - A. CH₂OHCHOHCH₂OH
 - B. CH₃CCH₃
 - C. CH₃CH₂COH
 - D. CH₃COCH₃
- **36.** ¿Qué producto se obtiene cuando el $CH_2 = CH_2$ reacciona con Br_2 ?
 - A. CHBrCHBr
 - B. CH₂CHBr
 - C. CH₃CH₂Br
 - D. CH₂BrCH₂Br
- **37.** ¿Cuántos tripéptidos diferentes se pueden formar a partir de tres aminoácidos? (cada aminoácido se puede usar sólo una vez en un tripéptido dado)
 - A. 1
 - B. 3
 - C. 6
 - D. 9

- **38.** La reacción del C₆H₆ con Br₂ en presencia de un transportador de halógeno produce
 - A. C_6H_6Br
 - B_{\cdot} $C_6H_6Br_2$
 - C. $C_6H_4Br_2 + H_2$
 - D. $C_6H_5Br + HBr$
- **39.** ¿Cuál de los siguientes compuestos reacciona más rápido con agua?
 - A. $(CH_3)_3CBr$
 - B. $(CH_3)_3CC1$
 - C. CH₃CH₂CH₂CH₂Br
 - D. CH₃CH₂CH₂CH₂Cl
- **40.** ¿Cuál(es) de los siguientes compuestos presenta(n) tres líneas en su espectro de ¹HRMN?
 - I. CH₃CH₂OCH₃
 - II. $(CH_3)_3 CC1$
 - III. CH₃CH₂COOH
 - A. Sólo I
 - B. Sólo II
 - C. Sólo I y III
 - D. I, II y III