Einfürung in die Algebra Hausaufgaben Blatt Nr. 9

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg(Dated: January 18, 2024)

I. ZAHLENTHEORIE

II. ALLGEMEIN GRUPPENTHEORIE

III. GRUPPENHOMOMORPHISMEN

Theorem 1. *Sei* ϕ : $G \rightarrow H$ *ein Homomorphismus. Es gilt* $ord(\phi(g))|ord(g)$.

IV. GRUPPENOPERATIONEN

V. ABELSCHE GRUPPEN

Theorem 2. Sei n die größte Elementordnung in einer abelschen Gruppe G. Dann gilt $g^n = e$ für alle $g \in G$.

Theorem 3. G ist genau dann abelsch, wenn die Zentrumsfaktorgruppe G/Z(G) zyklisch ist.

Theorem 4. Sei p eine Primzahl. Alle Gruppen der Ordnung p^2 sind abelsch.

VI. ZYKLISCHE GRUPPEN

Theorem 5. G ist zyklisch genau dann, wenn G zu jedem positiven Teiler t von |G| genau eine Untergruppe der Ordnung t besitzt.

VII. SYMMETRISCHE GRUPPEN

Theorem 6. Sei σ , $\tau \in S_n$ disjunkt. Es gilt $ord(\sigma\tau) = kgV(ord(\sigma), ord(\tau))$

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

Theorem 7.

$$S_n = \langle (12), (123 \dots n) \rangle.$$

VIII. EINFACHE GRUPPEN

IX. PRODUKTGRUPPEN

Theorem 8. Sei $A, B \leq G$. AB ist eine Gruppe genau dann, wenn AB = BA. Erfüllt, wenn A oder B normal in G sind.

Theorem 9.

$$|AB| = \frac{|A||B|}{|A \cap B|}.$$

Theorem 10. Internes direktes Produkt: $A, B \subseteq G, A \cap B = \{e\} \implies AB \cong A \times B.$

Theorem 11. Internes semidirektes Produkt: $A \subseteq G$, $B \subseteq G$, $A \cap B = \{e\} \implies AB \cong A \rtimes B$

Definition 12.
$$A \rtimes_{\varphi} B = (A \times B, \circ, (e, e)), \text{ wobei } (u, v) \circ (\tilde{u}, \tilde{v}) = (u \varphi_v(\tilde{u}), v\tilde{v})$$

X. BEISPIELVERZEICHNIS