№1.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=3, вибіркове середнє $\overline{x}_B=10.2$ і об'єм вибірки n=9.

№2.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 4, вибіркове середнє $\overline{x}_B = 11.4$ і об'єм вибірки n = 16.

*№*3.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 4,5, вибіркове середнє $\overline{x}_B = 15,6$ і об'єм вибірки n = 25.

№4.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 5, вибіркове середнє $\overline{x}_B = 13.2$ і об'єм вибірки n = 9.

*№*5.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 5,5, вибіркове середнє $\overline{x}_B = 11$ і об'єм вибірки n = 16.

№6.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=2, вибіркове середнє $\overline{x}_B=18.2$ і об'єм вибірки n=25.

№7.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 3,5, вибіркове середнє $\overline{x}_B = 12,4$ і об'єм вибірки n = 9.

№8.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=3, вибіркове середнє $\overline{x}_B=11,6$ і об'єм вибірки n=16.

№9.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 4.5, вибіркове середнє $\overline{x}_B = 19.4$ і об'єм вибірки n = 25.

№10.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=6, вибіркове середнє $\overline{x}_B=18,6$ і об'єм вибірки n=9.

*№*11.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=5, вибіркове середнє $\overline{x}_B=17,7$ і об'єм вибірки n=16.

№12.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=3, вибіркове середнє $\overline{x}_B=24,6$ і об'єм вибірки n=25.

*№*13.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 2,5, вибіркове середнє $\overline{x}_B = 14,4$ і об'єм вибірки n = 9.

*№*14.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 4, вибіркове середнє $\overline{x}_B = 20.3$ і об'єм вибірки n = 16.

№15.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=4, вибіркове середнє $\overline{x}_B=15.8$ і об'єм вибірки n=25.

*№*16.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=3, вибіркове середнє $\overline{x}_B=16,5$ і об'єм вибірки n=9.

№17.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 5, вибіркове середнє $\overline{x}_B = 19.2$ і об'єм вибірки n = 16.

№18.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=2, вибіркове середнє $\overline{x}_B=12,2$ і об'єм вибірки n=25.

№19.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=4, вибіркове середнє $\overline{x}_B=18,7$ і об'єм вибірки n=9.

№20.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 3.5, вибіркове середнє $\overline{x}_B = 11.9$ і об'єм вибірки n = 16.

№21.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=5, вибіркове середнє $\overline{x}_B=20,8$ і об'єм вибірки n=25.

№22.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 4, вибіркове середнє $\overline{x}_B = 13.6$ і об'єм вибірки n = 9.

№23.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=3, вибіркове середнє $\overline{x}_B=14.8$ і об'єм вибірки n=16.

№24.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=2, вибіркове середнє $\overline{x}_B=10,4$ і об'єм вибірки n=25.

№25.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 4.5, вибіркове середнє $\overline{x}_B = 15.2$ і об'єм вибірки n = 9.

№26.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=4, вибіркове середнє $\overline{x}_B=15,6$ і об'єм вибірки n=16.

№27.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=3, вибіркове середнє $\overline{x}_B=22.4$ і об'єм вибірки n=25.

№28.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=5, вибіркове середнє $\overline{x}_B=26,8$ і об'єм вибірки n=9.

№29.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 2,4, вибіркове середнє $\overline{x}_B = 37,5$ і об'єм вибірки n = 16.

№30.

Побудувати надійний інтервал для оцінки з надійністю $\gamma=0,95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=3,2, вибіркове середнє $\overline{x}_B=21,9$ і об'єм вибірки n=25.