Database Systems, Even 2020-21

Introduction to Relational Model

Attributes (or columns)

Example of a Relation

The *instructor* relation

	+	+	+	
ID	name	dept_name	salary	
10101	Srinivasan	Comp. Sci.	65000	
12121	Wu	Finance	90000	Tuples (or rows)
15151	Mozart	Music	40000	
22222	Einstein	Physics	95000	X
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	

Relation Schema, Instance and Attributes

- $A_1, A_2, ..., A_n$ are attributes
- $R = (A_1, A_2, ..., A_n)$ is a relation schema
- Example: instructor = (ID, name, dept_name, salary)
- A relation instance r defined over schema R is denoted by r(R)
- The current values a relation are specified by a table
- An element t of relation r is called a tuple and is represented by a row in a table
- The set of allowed values for each attribute is called the domain of the attribute (alphanumeric string, alpha string, date, etc.)
- Attribute values are (normally) required to be atomic; that is, indivisible
- The special value null is a member of every domain, which indicates that the value is "unknown"
- The null value causes complications in the definition of many operations

Relations are Unordered

- Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
- Example: instructor relation with unordered tuples

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Database Schema

 Database schema: It is the logical structure of the database

 Database instance: It is a snapshot of the data in the database at a given instant in time

- Example:
 - Schema: instructor (ID, name, dept_name, salary)
 - Instance:

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Keys

- Let K ⊂ R
- K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)
 - Example: {ID} and {ID, name} are both superkeys of instructor
- Superkey K is a candidate key if K is minimal
 - Example: {ID} is a candidate key for instructor
- One of the candidate keys is selected to be the primary key
 - Which one? No key attribute can be a null-able field
- Secondary/Alternate key
- Simple/Composite key

Keys

- Foreign key constraint: Value in one relation must appear in another
 - Referencing relation
 - Referenced relation
 - Example: dept_name in instructor is a foreign key from instructor referencing department
- A compound key consists of more than one attribute to uniquely identify an entity occurrence
 - Each attribute which form the key is a simple key in its own right
 - Generally, the components come from different tables
- A surrogate key (or synthetic key) in a database is a unique identifier for either an entity in the modeled world or an object in the database
 - The surrogate key is not derived from application data, unlike a natural (or business) key which
 is derived from application data

Schema Diagram for University Database

Relational Query Languages

- Procedural versus non-procedural or declarative
 - Procedural programing requires that the programmer tell the computer what to do
 - That is how to get the output for the range of required inputs
 - The programmer must know an appropriate algorithm
 - The declarative programming requires a more descriptive style
 - o The programmer must know *what* relationship hold among various entities
- Example: Square root of N
 - Procedural
 - Guess x_0 (close to root of N)
 - $0 \quad x_i = (x_i + N/x_i)/2$
 - o Repeat step 2 if $|x_i x_{i-1}| > \delta$
 - Declarative
 - o Root of N must be M such that $M^2 = N$

Relational Query Languages

- "Pure" languages:
 - Relational algebra
 - Tuple relational calculus
 - Domain relational calculus
- The above 3 pure languages are equivalent in computing power
- We will concentrate in this chapter on relational algebra
 - Not Turing-machine equivalent
 - Not all algorithms cab be expressed in RA
 - Consists of 6 basic operations

Introduction to Relational Model

Thank you for your attention...

Any question?

Contact:

Department of Information Technology, NITK Surathkal, India

6th Floor, Room: 13

Phone: +91-9477678768

E-mail: shrutilipi@nitk.edu.in