PDEs and numerical methods - Introduction to finite differences

Exercise 1 – 1D schemes

See also NoteBook SchemeBuilding

- **1.1** Derive a symmetric scheme for f''(x) with highest possible order using the points x 2h, x h, x + h and x + 2h.
- **1.2** We want to derive finite difference schemes for $f^{(3)}(x)$ and $f^{(4)}(x)$ using the values of f at points x 3h, x 2h, x h, x, x + h, x + 2h, x + 3h. Which approximation order can we expect? (do not derive the approximation schemes).
- **1.3** Same question with x, x + h, x + 2h, x + 3h.
- **1.4** Derive left-sided schemes of order 2 and 3 for $f''(x_0)$, assuming that one already knows that $f'(x_0) = 0$.

Exercise 2 - Transfer functions

See also NoteBook TransferFunctions

- **2.1** Compare the transfer function of the second-order derivative with the transfer function of its usual second-order centered approximation scheme $\frac{u(x-h)-2u(x)+u(x+h)}{h^2}$.
- **2.2** Same question for the interpolation operator $\frac{u(x-h)+u(x+h)}{2}$. Comment on the quality of the approximation for high frequencies.

Exercise 3 – Equivalent differential equation

See also NoteBook Sheet2-Exercise3

Let the ODE: $u''(x) + \mu^2 u(x) = 0$ for $x \in (a, b)$ discretized on a regular finite difference grid.

- **3.1** What is the equivalent differential equation if u'' is discretized using a standard two-sided second-order scheme? What is the effect of the dominant error term?
- **3.2** We now suppose that u'' is discretized with a fourth-order scheme, but that u(x) is approximated by $\frac{1}{2}(u(x+h)+u(x-h))$. Same questions.

Exercise 4 - Compact finite differences

A drawback of usual finite difference schemes is that it is necessary to use a wide stencil to get a high order of accuracy. In this exercise, we introduce the so-called *compact schemes*, that address this point.

4.1 Let consider the formal relation

$$\alpha u'_{i-1} + u'_i + \alpha u'_{i+1} \simeq a \frac{u_{i+1} - u_{i-1}}{2h}$$

- **4.1.a** Find α and a in order for this formula to be as accurate as possible. What is the order of approximation?
 - **4.1.b** How can such a scheme be used in practice? What about its computation cost?
- **4.2** Generalize this approach starting with

$$\beta u'_{i-2} + \alpha u'_{i-1} + u'_{i} + \alpha u'_{i+1} + \beta u'_{i+2} \simeq a \frac{u_{i+1} - u_{i-1}}{2h} + b \frac{u_{i+2} - u_{i-2}}{4h}$$

- **4.3** What are the transfer functions of the preceding schemes?
- **4.4** Propose a similar approach for the second-order derivative.

Exercise 5 – Shooting method

Let the ODE

$$(P) \quad \left\{ \begin{array}{lcl} y''(x) & = & a(x)y'(x) + b(x)y(x) + c(x) & x \in (\alpha, \beta) \\ y(\alpha) & = & A, \quad y(\beta) = B \end{array} \right.$$

where a, b, c are given regular functions and A, B are given real numbers. Due to the two Dirichlet boundary conditions, a direct one-step method (Euler, Runge-Kutta...) cannot be used. That is why a finite difference scheme is usually implemented. However an alternative method, called shooting method can be used, which reduces this boundary value problem to two auxiliary initial value problems.

5.1 Prove that the solution of (P) is given by $y(x) = Z(x) + \frac{B - Z(\beta)}{Y(\beta)}Y(x), \quad x \in (\alpha, \beta)$ where Z(x) and Y(x) are the solutions of

$$(P_c) \quad \begin{cases} Z''(x) = a(x)Z'(x) + b(x)Z(x) + c(x) \\ Z(\alpha) = A, \quad Z'(\alpha) = 0 \end{cases}$$

and

$$(P_0) \quad \left\{ \begin{array}{lcl} Y''(x) & = & a(x)Y'(x) + b(x)Y(x) \\ Y(\alpha) & = & 0, \quad Y'(\alpha) = 1 \end{array} \right.$$

5.2 Give a numerical method to solve (P), using the Euler method.

Exercise 6 - 2D Laplacian

- **6.1** Let a regular 2-D grid, with space steps h and k in directions x and y.
- **6.1.a** Derive a second-order finite difference scheme for Δf using the five grid points $(x, y), (x \pm h, y), (x, y \pm k)$.
- **6.1.b** Let suppose h = k. Simplify the preceding scheme. Derive another five-point scheme using the other set of five grid points $(x, y), (x \pm h, y \pm k)$.
 - **6.1.c** Is it possible to get a higher order scheme by combining those two schemes?
- **6.2** Derive a scheme for Δu at point (x, y) as a function of the values of u at points (x + a, y), (x b, y), (x, y + c), (x, y d).

Exercise 7 – 2D Taylor formula

- **7.1** The values of a real function f are given on the four vertices of a rectangle. Build a finite difference interpolation formulation for f(M), for any M within the rectangle.
- **7.2** The values of a real function f are given on the three vertices A, B and C of a triangle. We seek an approximation of $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$ at point M within the triangle, under the form $\alpha f(A) + \beta f(B) + \gamma f(C)$. Derive the corresponding linear system for α , β and γ (do not solve it). What is the approximation order?