

Correction T.D. 3: Optique

Exercíce 1 : C.C.1 2018-2019

- 1. Un dioptre est une surface qui sépare deux milieux transparents d'indices de réfraction différents
- 2. Ce dioptre sphérique est convexe
- **3.** Ce dioptre est convergent car son centre C se trouve dans le milieu le plus réfringent (le milieu d'indice de réfraction plus grand)
- **4.** Loi de Snell-Descartes :

$$n_{air}\sin i_1 = n\sin i_1$$

L'angle limite pour $i_1 = \frac{\pi}{2} \implies 1\sin\frac{\pi}{2} = 1.5\sin i_{\lim}$

$$\Rightarrow i_{\text{lim}} = \sin^{-1}(\frac{1}{1.5}) = 41.8^{\circ}$$

5. La relation de conjugaison pour un dioptre sphérique (DS) :

Soit A un objet et A' son image à travers le DS.

$$\frac{n}{\overline{SA'}} - \frac{1}{\overline{SA}} = \frac{n-1}{\overline{SC}}$$
 \Rightarrow $\frac{n}{\overline{SA'}} - \frac{1}{\overline{SA}} = \frac{n-1}{R}$

- **6.** Positions des Foyers :
- F le foyer objet : $A' \to \infty$; A = F : $\overline{SF} = -\frac{R}{n-1}$
- F' le foyer image : $A \rightarrow \infty$; $A' \equiv F'$: $\overline{SF}' = \frac{nR}{n-1}$
- 7. Application numérique :

$$f = \overline{SF} = -20cm$$
 et $f' = \overline{SF}' = 30cm$

8. Image renversée et deux fois plus grand que la taille de l'objet :

$$\gamma = \frac{\overline{SA}'}{n\overline{SA}} = -2$$
 \Rightarrow $\frac{n}{\overline{SA}'} = -\frac{1}{2\overline{SA}}$

$$\frac{n}{\overline{SA}} - \frac{1}{\overline{SA}} = \frac{n-1}{R}$$
 \Rightarrow $\overline{SA} = -\frac{3R}{2(n-1)}$

A.N.:
$$\overline{SA} = -30cm$$

9. Construction géométrique :

10. Si R tend vers l'infini, le dioptre sphérique devient un dioptre plan (DP)

11.

$$A \xrightarrow{(DS)} A_1 \xrightarrow{(DP)} A'$$

$$\frac{1}{\overline{SA}} - \frac{n}{\overline{SA_1}} = \frac{1 - n}{\overline{SC}} \tag{1}$$

$$\frac{n}{\overline{SA_1}} - \frac{1}{\overline{SA'}} = 0 \tag{2}$$

(1) + (2) et
$$S \equiv S' \equiv O \iff \frac{1}{\overline{OA}} - \frac{1}{\overline{OA}'} = \frac{1-n}{\overline{OC}} = \frac{1-n}{R}$$

Exercice 2 : Lentille mince

Données : $\overline{AB} = 1mm$, $\overline{OF}' = f' = 3cm$

1. Objet réel :
$$\overline{OA} = -4cm$$

a-Relation de conjugaison :
$$\frac{1}{\overline{OA}} - \frac{1}{\overline{OA}} = \frac{1}{f'} \implies \overline{OA'} = \frac{\overline{OA}.\overline{OF'}}{\overline{OA} + \overline{OF'}}$$

A.N.:
$$\overline{OA}' = \frac{-12}{-1} = 12cm$$

L'image est réelle $(\overline{OA}' > 0)$ située à 12 cm du centre de la lentille.

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}} = \frac{12}{-4} = -3 \implies \overline{A'B'} = -3mm$$

Image plus grande que l'objet ($\gamma > 1$) est renversée ($\gamma < 0$).

b- construction géométrique :

1. Objet virtuel: $\overline{OA} = +4cm$

a- Relation de conjugaison :
$$\frac{1}{\overline{OA}} - \frac{1}{\overline{OA}} = \frac{1}{f'} \implies \overline{OA}' = \frac{\overline{OA}.\overline{OF}'}{\overline{OA} + \overline{OF}'}$$

A.N.:
$$\overline{OA}' = \frac{4 \times 3}{4 + 3} = 1.71cm$$

L'image est réelle $(\overline{OA}' > 0)$ située à 1.71 cm du centre de la lentille.

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}} = \frac{1.71}{4} = 0.42 \implies \overline{A'B'} = 0.42 nm$$

Image plus petite que l'objet ($\gamma < 1$) est droite ($\gamma > 0$).

b- construction géométrique :

Remarque : Pour la construction géométrique on utilise 3 rayons :

- Rayon 1 : passe par B et le centre O : n'est pas dévié
- Rayon 2 : passe par *B* et parallèle à l'axe optique : émerge de la lentille en passant par le foyen image *F* '
- Rayon 3: passe par B et le foyer objet F: : émerge de la lentille parallèle à l'axe optique Dans l'approximation de Gauss on peut utiliser seulement deux rayons.

Exercice 3: Association de deux lentilles

$$\overline{S_1F_1} = f' = 30cm$$
; $\overline{S_1A_1} = -90cm = -3f'$

1.a. construction géométrique :

- b. image réelle ($\overline{S_1A'_1} > 0$) et renverséé ($\overline{A'_1B'_1} < 0$)
- c. position de A'_1 par rapport à S_I
- * construction géométrique : $\overline{S_1A'_1} = 45cm$ et $\overline{A'_1B'_1} = -\frac{1}{2}\overline{A_1B_1}$
- * relation de conjugaison : $\frac{1}{\overline{S_1A_1}} \frac{1}{\overline{S_1A_1}} = \frac{1}{f'} \Rightarrow \frac{1}{\overline{S_1A_1}} = \frac{1}{-3f'} + \frac{1}{f'} = \frac{2}{3f'} \Rightarrow \overline{S_1A_1} = \frac{3}{2}f' = 45cm$

$$\gamma = \frac{\overline{A_1'B_1'}}{\overline{A_1B_1}} = \frac{\overline{S_1A_1'}}{\overline{S_1A_1}} = \frac{45}{-90} = -\frac{1}{2} \implies \overline{A_1'B_1'} = -\frac{\overline{A_1B_1}}{2}$$

2.a. L'image $\overline{A_2B_2}$ de $\overline{A_1B_1}$ à travers les deux lentilles

- 2.b. image réelle et renversée
- 2.c. en utilisant l'image intermédiaire :

$$\frac{1}{S_2 A_2} - \frac{1}{S_2 A_1'} = \frac{1}{f_2'}$$

Avec:
$$\overline{S_2A'_1} = \frac{1}{2} f'$$
 et $\overline{S_2F'_2} = f'$

$$\Rightarrow \frac{1}{\overline{S_2}A_2} = \frac{1}{f'} + \frac{2}{f'} = \frac{3}{f'} \Rightarrow \overline{S_2}A_2 = \frac{1}{3}f' = 10cm$$

Exercice 4: Association d'une lentille et d'un miroir plan

Le miroir M donne une image A_1B_1 de A'B' symétrique par rapport à M. cette image est virtuelle puisque l'objet est réel.

 A_1B_1 est un objet réel pour (L) (le sens de la lumière est inversé) son image A''B'' est réelle.

Remarque: on peut faire la construction géométrique en utilisant l'image intermédiaire

AB objet $\xrightarrow{(L)}$ A'B' image

A'B' objet $\xrightarrow{(M)}$ A_1B_1 image

 A_1B_1 objet $\xrightarrow{(L)}$ A''B''' image (il faut inverser le sens de la lumière)