!pip install bayesian-optimization

Collecting bayesian-optimization
Downloading bayesian_optimization-1.4.3-py3-none-any.whl (18 kB)
Requirement already satisfied: numpy>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from bayesian-optimization) (1.25.2)
Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from bayesian-optimization) (1.11.4)
Requirement already satisfied: scikit-learn>=0.18.0 in /usr/local/lib/python3.10/dist-packages (from bayesian-optimization)
Collecting colorama>=0.4.6 (from bayesian-optimization)
Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)
Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.18.0->bayesian
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.18.0->b
Installing collected packages: colorama, bayesian-optimization
Successfully installed bayesian-optimization-1.4.3 colorama-0.4.6

!git clone https://github.com/808ss/thesis.git

```
→ Cloning into 'thesis'...
    remote: Enumerating objects: 27, done.
    remote: Counting objects: 100% (27/27), done.
    remote: Compressing objects: 100% (26/26), done.
    remote: Total 27 (delta 0), reused 0 (delta 0), pack-reused 0
    Receiving objects: 100% (27/27), 311.32 KiB | 7.24 MiB/s, done.
import numpy as np
import pandas as pd
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import seaborn as sns
import itertools
from bayes_opt import BayesianOptimization
random\_seed = 808
np.random.seed(random_seed)
```

CAS

Importing CAS and Splitting

```
CAS = pd.read csv('thesis/CAS-Chlorination.csv')
CAS.drop(columns='Date',inplace=True)
X_orig_CAS = CAS.drop(columns='Total Coliform Effluent (MPN/100mL)')
y_orig_CAS = CAS['Total Coliform Effluent (MPN/100mL)']
X_train_orig_CAS, X_test_orig_CAS, y_train_orig_CAS, y_test_orig_CAS = train_test_split(X_orig_CAS,
                                                                                        y_orig_CAS,
                                                                                        test_size = 0.3
                                                                                        random state=808)
df_train_orig_CAS = pd.concat([X_train_orig_CAS,y_train_orig_CAS], axis=1)
df_test_orig_CAS = pd.concat([X_test_orig_CAS,y_test_orig_CAS], axis=1)
   Data Analysis for Raw Dataset
missing_rate_CAS = [(CAS.isnull().sum()[val]/CAS.shape[0])*100 for val in range(0,CAS.shape[1])]
pd.options.display.float_format = '{:,.2f}'.format
CAS_transposed = CAS.describe().T
CAS_transposed['Missingness Rate'] = missing_rate_CAS
CAS_transposed
```


	count	mean	std	min	25%	50%	75%	max	Missingnes: Rate
Flow Rate Influent (m3/d)	289.00	10,366.21	4,355.40	172.00	7,567.00	10,852.00	14,358.00	18,291.00	2.69
Total Coliform Influent (MPN/100mL)	230.00	187,227,782.61	768,962,279.86	490,000.00	13,250,000.00	29,000,000.00	67,750,000.00	10,000,000,000.00	22.5
Total Coliform Effluent (MPN/100mL)	296.00	79,275.50	1,336,778.85	1.00	2.00	10.00	20.00	23,000,000.00	0.3
Fecal Coliform Influent (MPN/100mL)	112.00	84,843,125.00	259,408,932.49	330,000.00	7,800,000.00	13,000,000.00	30,500,000.00	1,700,000,000.00	62.2!
Fecal Coliform Effluent (MPN/100mL)	179.00	44,660.29	590,441.16	2.00	10.00	10.00	10.00	7,900,000.00	39.7
BOD Influent \n(ppm)	232.00	94.02	67.76	7.00	50.00	78.00	115.50	456.00	21.8
BOD Pre-	041.00	6 05	6 04	1 00	2.00	E 00	0 00	E0 00	10 0

Data Analysis for Training Set (Pre-Imputation)

 $missing_rate_train_orig_CAS = [(df_train_orig_CAS.isnull().sum()[val]/df_train_orig_CAS.shape[0])*100 \ for \ val \ in \ range(0,df_train_orig_CAS.shape[0])*100 \ for \ val \ range($

pd.options.display.float_format = '{:,.2f}'.format
#pd.set_option('display.float_format', '{:e}'.format)
df_train_orig_CAS_transposed = df_train_orig_CAS.describe().T
df_train_orig_CAS_transposed['Missingness Rate'] = missing_rate_train_orig_CAS

 ${\tt df_train_orig_CAS_transposed}$

	count	mean	std	min	25%	50%	75%	max	Missingnes Rat
Flow Rate Influent (m3/d)	204.00	10,378.50	4,436.49	781.00	7,487.50	10,736.50	14,393.75	18,011.00	1.4
Total Coliform Influent (MPN/100mL)	163.00	147,519,631.90	425,607,781.81	1,000,000.00	13,000,000.00	26,000,000.00	69,000,000.00	3,100,000,000.00	21.2
Total Coliform Effluent (MPN/100mL)	206.00	112,871.10	1,602,407.01	1.00	2.00	10.00	19.25	23,000,000.00	0.4
Fecal Coliform Influent (MPN/100mL)	82.00	67,232,926.83	213,302,904.11	1,700,000.00	6,475,000.00	12,500,000.00	26,900,000.00	1,500,000,000.00	60.3
Fecal Coliform Effluent (MPN/100mL)	125.00	63,732.38	706,556.25	2.00	8.00	10.00	10.00	7,900,000.00	39.6
BOD Influent \n(ppm)	166.00	88.54	64.17	7.00	39.00	74.50	111.00	456.00	19.8
BOD Pre-	171 00	C 1E	6 1 1	1 00	2.00	E 00	0 00	E0 00	170

Data Analysis for Testing Set (Pre-imputation)

 $missing_rate_test_orig_CAS = [(df_test_orig_CAS.isnull().sum()[val]/df_test_orig_CAS.shape[0])*100 \ for \ val \ in \ range(0,df_test_orig_CAS.isnull().sum()[val]/df_test_orig_CAS.shape[0])*100 \ for \ val \ in \ range(0,df_test_orig_CAS.isnull().sum()[val]/df_test_orig_CAS.shape[0])*100 \ for \ val \ in \ range(0,df_test_orig_CAS.shape[0])*100 \ for \ val \ i$

#pd.options.display.float_format = '{:,.2f}'.format
pd.set_option('display.float_format', '{:e}'.format)
df_test_orig_CAS_transposed = df_test_orig_CAS.describe().T
df_test_orig_CAS_transposed['Missingness Rate'] = missing_rate_test_orig_CAS

df_test_orig_CAS_transposed

	count	mean	std	min	25%	50%	75%	max	Missing
Flow Rate Influent (m3/d)	8.500000e+01	1.033672e+04	4.179829e+03	1.720000e+02	7.765000e+03	1.085600e+04	1.363500e+04	1.829100e+04	5.55556
Total Coliform Influent (MPN/100mL)	6.700000e+01	2.838312e+08	1.262400e+09	4.900000e+05	2.100000e+07	3.300000e+07	5.550000e+07	1.000000e+10	2.555556
Total Coliform Effluent (MPN/100mL)	9.000000e+01	2.378911e+03	1.234018e+04	1.000000e+00	2.000000e+00	1.000000e+01	2.000000e+01	1.100000e+05	0.000000
Fecal Coliform Influent (MPN/100mL)	3.000000e+01	1.329777e+08	3.566722e+08	3.300000e+05	1.200000e+07	1.550000e+07	3.300000e+07	1.700000e+09	6.666667
Fecal Coliform Effluent (MPN/100mL)	5.400000e+01	5.119259e+02	2.306060e+03	2.000000e+00	1.000000e+01	1.000000e+01	1.000000e+01	1.553100e+04	4.000000
BOD Influent \n(ppm)	6.600000e+01	1.078030e+02	7.478651e+01	2.200000e+01	5.750000e+01	8.400000e+01	1.270000e+02	3.490000e+02	2.666667
BOD Pre-	7 0000000 : 01	E E1400E2100	E 0100000.00	1 0000000.00	2 000000	E 0000000.00	0 7500000 .00	2 1000000 : 01	0 000000

Data Imputation

Exporting Datasets to R

df_train_orig_CAS.to_csv('CAS_train_set.csv',index=False)
df_test_orig_CAS.to_csv('CAS_test_set.csv',index=False)

Export to R for mixgb

Mixqb imputation

```
1 library(mixgb)
2 library(openxlsx)
3 set.seed(808)
4
6 CAS_train_set <- read.csv("C:/Users/nikko/PycharmProjects/Thesis/CAS_train_set.csv")
6 CAS_test_set <- read.csv("C:/Users/nikko/PycharmProjects/Thesis/CAS_test_set.csv")
7
7
8 CAS_train_set_df = as.data.frame(CAS_train_set)
9 CAS_test_set_df = as.data.frame(CAS_test_set)
10 clean_CAS_train_set_df <- data_clean(CAS_train_set_df)
11 clean_CAS_test_set_df <- data_clean(CAS_test_set_df)
12 clean_CAS_test_set_df <- data_clean(CAS_test_set_df)
13 cv.results_2 <- mixgb_cv(data = clean_CAS_train_set_df, nrounds = 5000, verbose = FALSE)
14 cv.results_2$evaluation.log
15 cv.results_2$evaluation.log
16 cv.results_2$evaluation.log
17 cas_train_imputed <- mixgb_obj$imputed.data
18 mixgb_obj <- mixgb(data = clean_CAS_train_set_df, m = 5, nrounds = cv.results_1$best.nrounds, save.models = TRUE)
19 CAS_train_imputed <- impute_new(object = mixgb_obj, newdata = clean_CAS_test_set_df)
20 cas_train_imputed <- impute_new(object = mixgb_obj, newdata = clean_CAS_test_set_df)
21 write.xlsx(CAS_train_imputed[[2]], file = 'cas_m1_imputed_train.xlsx')
22 write.xlsx(CAS_train_imputed[[3]], file = 'cas_m2_imputed_train.xlsx')
23 write.xlsx(CAS_train_imputed[[3]], file = 'cas_m3_imputed_train.xlsx')
24 write.xlsx(CAS_test.imputed[[3]], file = 'cas_m3_imputed_train.xlsx')
25 write.xlsx(CAS_test.imputed[[3]], file = 'cas_m3_imputed_train.xlsx')
26 write.xlsx(CAS_test.imputed[[3]], file = 'cas_m3_imputed_train.xlsx')
27 write.xlsx(CAS_test.imputed[[3]], file = 'cas_m3_imputed_test.xlsx')
28 write.xlsx(CAS_test.imputed[[3]], file = 'cas_m3_imputed_test.xlsx')
29 write.xlsx(CAS_test.imputed[[3]], file = 'cas_m3_imputed_test.xlsx')
30 write.xlsx(CAS_test.imputed[[5]], file = 'cas_m3_imputed_test.xlsx')
31 write.xlsx(CAS_test.imputed[[5]], file = 'cas_m3_imputed_test.xlsx')
32 write.xlsx(CAS_test.imputed[[5]], file = 'cas_m3_imputed_test.xlsx')
33 write.xlsx(CAS_test.imputed[[5]], file = 'cas_m3_imputed_test.xlsx')</pre>
```

Import imputed datasets from R

```
dfs = []
for val in range(1,6):
    source = f'thesis/cas_m{val}_imputed_train.xlsx'
    dfs.append(pd.read_excel(source))

average_CAS_train = pd.concat(dfs).groupby(level=0).mean()

dfs = []
for val in range(1,6):
    source = f'thesis/cas_m{val}_imputed_test.xlsx'
    dfs.append(pd.read_excel(source))

average_CAS_test = pd.concat(dfs).groupby(level=0).mean()
```

Data Analysis for Training Set (Post-Imputation)

```
#pd.options.display.float_format = '{:,.2f}'.format
pd.set_option('display.float_format', '{:e}'.format)
average_CAS_train_transposed = average_CAS_train.describe().T
average_CAS_train_transposed
```


Data Analysis for Testing Set (Post-Imputation)

```
pd.options.display.float_format = '{:,.2f}'.format
#pd.set_option('display.float_format', '{:e}'.format)
average_CAS_test_transposed = average_CAS_test.describe().T
```

average_CAS_test_transposed

→	count	mean	std	min	25%	50%	75%	1
Flow.Rate.Influentm3.d.	90.00	10,369.95	4,157.57	172.00	7,821.25	10,958.50	14,130.00	18,291
Total.Coliform.InfluentMPN.100mL.	90.00	235,817,666.67	1,090,795,688.88	490,000.00	23,000,000.00	44,340,000.00	97,700,000.00	10,000,000,000
Total.Coliform.EffluentMPN.100mL.	90.00	2,378.91	12,340.18	1.00	2.00	10.00	20.00	110,000
Fecal.Coliform.InfluentMPN.100mL.	90.00	65,077,666.67	210,186,867.66	330,000.00	13,000,000.00	22,980,000.00	36,335,000.00	1,700,000,000
Fecal.Coliform.EffluentMPN.100mL.	90.00	640.66	2,432.92	2.00	8.40	10.00	15.20	15,531
BOD.Influentppm.	90.00	100.93	67.98	21.40	56.25	79.00	123.45	349
BOD.Pre.chlorinationppm.	90.00	6.88	5.40	1.00	3.00	6.00	9.00	31
COD.Influentppm.	90.00	186.36	151.64	35.00	102.00	147.50	238.25	1,238
COD.Pre.chlorinationppm.	90.00	20.40	11.86	3.00	13.00	17.50	26.30	68
TSS.Pre.chlorinationppm.	90.00	6.06	6.19	1.00	2.00	3.00	8.00	38
pH.Pre.chlorination	90.00	7.08	0.29	6.25	6.90	7.09	7.27	7
Chlorine.DosageL.d.	90.00	180.33	97.55	3.00	110.30	156.10	216.35	573
Residual.chlorineppm.	90.00	2.48	1.88	0.01	0.58	2.19	4.74	Ę

Exhaustive Feature Selection

For Imputed Dataset

```
pd.reset_option('display.float_format')
```

```
X_train_CAS = average_CAS_train.drop(columns=['Residual.chlorine..ppm.','Total.Coliform.Effluent..MPN.100mL.','Fecal.Coliform.Ef
y_train_CAS = average_CAS_train['Total.Coliform.Effluent..MPN.100mL.']
X_test_CAS = average_CAS_test.drop(columns=['Residual.chlorine..ppm.','Total.Coliform.Effluent..MPN.100mL.','Fecal.Coliform.Effluent..MPN.100mL.','
```

y_test_CAS = average_CAS_test['Total.Coliform.Effluent..MPN.100mL.']

```
features_wo_chlorine_dosage = X_train_CAS.columns[:-1]
features_wo_chlorine_dosage
'BOD.Pre.chlorination..ppm.', 'COD.Influent..ppm.', 'COD.Pre.chlorination..ppm.', 'TSS.Pre.chlorination..ppm.',
                        'pH.Pre.chlorination'],
                     dtype='object')
# Generate all combinations of the other features
combinations = []
for r in range(1, len(features_wo_chlorine_dosage) + 1):
        combinations.extend(itertools.combinations(features_wo_chlorine_dosage, r))
# Add the first feature to each combination
combinations = [(X_train_CAS.columns[-1],) + combo for combo in combinations]
params = {'objective': 'reg:squarederror'}
results = []
for combo in combinations:
        dtrain = xgb.DMatrix(X_train_CAS[list(combo)], label=y_train_CAS)
        cv_result = xgb.cv(params, dtrain, num_boost_round=10, nfold=5, metrics='rmse', seed=808)
        last_round_metrics = cv_result.iloc[-1]
        results.append([combo, last_round_metrics['train-rmse-mean'], last_round_metrics['test-rmse-mean'],
                                         last_round_metrics['train-rmse-std'],last_round_metrics['test-rmse-std']])
results_df_CAS = pd.DataFrame(results, columns=['Combination', 'Train RMSE', 'Validation RMSE', 'Train RMSE Std. Dev.', ' Validation RMSE', 'Train RMSE'
results_df_CAS.sort_values(by='Validation RMSE')
 ₹
                                                                                                   Train RMSE Validation RMSE Train RMSE Std. Dev. Validation RMSE Std. Dev
                                                                       Combination
          323 (Chlorine.Dosage..L.d., Flow.Rate.Influent..m3... 280011.047738
                                                                                                                                    7.228241e+05
                                                                                                                                                                               139710.616816
                                                                                                                                                                                                                                      1.433136e+06
          414 (Chlorine.Dosage..L.d., Flow.Rate.Influent..m3... 280011.142987
                                                                                                                                    7 228547e+05
                                                                                                                                                                               139710 969639
                                                                                                                                                                                                                                      1 433121e+06
                    (Chlorine.Dosage..L.d., Flow.Rate.Influent..m3... 280016.513652
                                                                                                                                    7.229206e+05
                                                                                                                                                                               139701.212847
                                                                                                                                                                                                                                      1.433553e+06
          284
                    (Chlorine.Dosage..L.d., Flow.Rate.Influent..m3... 280010.378140
                                                                                                                                    7.229333e+05
                                                                                                                                                                               139711.871439
                                                                                                                                                                                                                                      1.433082e+06
           434
           167
                    (Chlorine.Dosage..L.d., Flow.Rate.Influent..m3... 280073.563225
                                                                                                                                    7.229333e+05
                                                                                                                                                                               139588.264363
                                                                                                                                                                                                                                      1.433290e+06
           354
                      (Chlorine.Dosage..L.d., Total.Coliform.Influen... 280039.984622
                                                                                                                                    2.355080e+06
                                                                                                                                                                               139666.166552
                                                                                                                                                                                                                                      1.925991e+06
           61
                    (Chlorine.Dosage..L.d., Flow.Rate.Influent..m3... 280099.422890
                                                                                                                                    2.355161e+06
                                                                                                                                                                               139544.501879
                                                                                                                                                                                                                                      1.926474e+06
                    (Chlorine.Dosage..L.d., BOD.Influent...ppm., C... 280069.209328
                                                                                                                                    2.355169e+06
                                                                                                                                                                               139608.399453
                                                                                                                                                                                                                                      1.926328e+06
```

results_df_CAS.sort_values(by='Validation RMSE').iloc[0:3]

₹		Combination	Train RMSE	Validation RMSE	Train RMSE Std. Dev.	Validation RMSE Std. Dev
	323	(Chlorine.DosageL.d., Flow.Rate.Influentm3	280011.047738	722824.115553	139710.616816	1.433136e+06
	414	(Chlorine. Dosage L.d., Flow. Rate. Influent m 3	280011.142987	722854.706969	139710.969639	1.433121e+06
	284	(Chlorine.DosageL.d., Flow.Rate.Influentm3	280016.513652	722920.574878	139701.212847	1.433553e+06

2.355171e+06

2.355208e+06

139608.520929

139635.695689

results_df_CAS.sort_values(by='Validation RMSE').iloc[0]['Combination']

(Chlorine.Dosage..L.d., Total.Coliform.Influen... 280068.782687

(Chlorine.Dosage..L.d., Total.Coliform.Influen... 280055.577319

```
('Chlorine.Dosage..L.d.',
    'Flow.Rate.Influent..m3.d.',
    'BOD.Pre.chlorination..ppm.',
    'COD.Pre.chlorination..ppm.',
    'TSS.Pre.chlorination..ppm.',
    'pH.Pre.chlorination')
```

207

219

511 rows x 5 columns

1.926060e+06

1.926157e+06

```
results_df_CAS.sort_values(by='Validation RMSE').iloc[1]['Combination']
```

```
('Chlorine.Dosage..L.d.',
    'Flow.Rate.Influent..m3.d.',
    'Total.Coliform.Influent..MPN.100mL.',
    'BOD.Pre.chlorination..ppm.',
    'COD.Pre.chlorination..ppm.',
    'TSS.Pre.chlorination',
```

results_df_CAS.sort_values(by='Validation RMSE').iloc[2]['Combination']

```
('Chlorine.Dosage..L.d.',
    'Flow.Rate.Influent..m3.d.',
    'Total.Coliform.Influent..MPN.100mL.',
    'BOD.Pre.chlorination..ppm.',
    'COD.Pre.chlorination..ppm.',
    'pH.Pre.chlorination')
```

optimal_features_CAS = results_df_CAS.sort_values(by='Validation RMSE').iloc[0]['Combination']
optimal_features_CAS

```
('Chlorine.Dosage..L.d.',
    'Flow.Rate.Influent..m3.d.',
    'BOD.Pre.chlorination..ppm.',
    'COD.Pre.chlorination..ppm.',
    'TSS.Pre.chlorination..ppm.',
    'pH.Pre.chlorination')
```

results_df_CAS['count'] = results_df_CAS['Combination'].apply(lambda x: len(x))
results_df_CAS.to_csv('CAS Exhaustive Feature Selection.csv', index=False)

For Raw Dataset

```
non_imputed_mask_CAS_train = ~np.isnan(y_train_orig_CAS)
non_imputed_mask_CAS_test = ~np.isnan(y_test_orig_CAS)
```

X_train_orig_CAS.head()

*		Flow Rate Influent (m3/d)	Total Coliform Influent (MPN/100mL)	Fecal Coliform Influent (MPN/100mL)	Fecal Coliform Effluent (MPN/100mL)	BOD Influent \n(ppm)	BOD Pre- chlorination\n(ppm)	COD Influent (ppm)	COD Pre- chlorination\n(ppm)	TSS Prochlorination (ppr
	174	6253.0	60000000.0	90900000.0	95.0	155.0	7.0	441.0	35.0	1
	70	8019.0	50000000.0	NaN	NaN	55.0	5.0	211.0	10.0	8
	179	17590.0	20000000.0	15000000.0	10.0	52.0	3.0	207.0	33.0	6
	252	14848.0	23000000.0	7900000.0	2.0	58.0	2.0	100.0	5.0	1

```
combinations.extend(itertools.combinations(features_wo_chlorine_dosage_dropped, r))
```

Add the first feature to each combination
combinations = [(X_train_CAS_dropped.columns[-1],) + combo for combo in combinations]

params = {'objective': 'reg:squarederror'}

results = []

→

for combo in combinations:

2047 rows x 5 columns

dtrain = xgb.DMatrix(X_train_CAS_dropped[list(combo)], label=y_train_CAS_dropped)

cv_result = xgb.cv(params, dtrain, num_boost_round=10, nfold=5, metrics='rmse', seed=808)

last_round_metrics = cv_result.iloc[-1]

 $results_df_CAS_dropped = pd.DataFrame(results, columns = ['Combination', 'Train RMSE', 'Validation RMSE', 'Train RMSE Std. Dev.', 'Train RMSE', 'Train RMS$

results_df_CAS_dropped.sort_values(by='Validation RMSE')

	Combination	Train RMSE	Validation RMSE	Train RMSE Std. Dev.	Validation RMSE Std. Dev
701	(Chlorine Dosage (L/d), Flow Rate Influent (m3	280643.557667	7.215556e+05	140012.576333	1.433474e+06
1079	(Chlorine Dosage (L/d), Flow Rate Influent (m3	280642.184227	7.215606e+05	140015.323202	1.433471e+06
296	(Chlorine Dosage (L/d), Flow Rate Influent (m3	280643.474975	7.215721e+05	140012.914102	1.433506e+06
595	(Chlorine Dosage (L/d), Flow Rate Influent (m3	280640.513043	7.215748e+05	140018.711156	1.433464e+06
590	(Chlorine Dosage (L/d), Flow Rate Influent (m3	280641.192490	7.215772e+05	140017.479053	1.433504e+06
876	(Chlorine Dosage (L/d), Total Coliform Influen	280656.883197	2.289559e+06	139998.557615	1.580999e+06
893	(Chlorine Dosage (L/d), Total Coliform Influen	280630.728531	2.289593e+06	140051.476551	1.580910e+06
1777	(Chlorine Dosage (L/d), Total Coliform Influen	280621.643446	2.289595e+06	140069.288047	1.580911e+06
1400	(Chlorine Dosage (L/d), Total Coliform Influen	280620.211262	2.289604e+06	140072.511002	1.580919e+06
1391	(Chlorine Dosage (L/d), Total Coliform Influen	280631.400729	2.289610e+06	140049.773563	1.580924e+06

results_df_CAS_dropped.sort_values(by='Validation RMSE').iloc[0:3]

→		Combination	Train RMSE	Validation RMSE	Train RMSE Std. Dev.	Validation RMSE Std. Dev
	701	(Chlorine Dosage (L/d), Flow Rate Influent (m3	280643.557667	721555.592443	140012.576333	1.433474e+06
	1079	(Chlorine Dosage (L/d), Flow Rate Influent (m3	280642.184227	721560.578280	140015.323202	1.433471e+06
	296	(Chlorine Dosage (L/d), Flow Rate Influent (m3	280643.474975	721572.051024	140012.914102	1.433506e+06

results_df_CAS_dropped.sort_values(by='Validation RMSE').iloc[0]['Combination']

```
('Chlorine Dosage (L/d)',
    'Flow Rate Influent (m3/d)',
    'Fecal Coliform Effluent (MPN/100mL)',
    'BOD Influent \n(ppm)',
    'BOD Pre-chlorination\n(ppm)',
    'COD Influent (ppm)')
```

results_df_CAS_dropped.sort_values(by='Validation RMSE').iloc[1]['Combination']

```
('Chlorine Dosage (L/d)',
    'Flow Rate Influent (m3/d)',
    'Total Coliform Influent (MPN/100mL)',
    'Fecal Coliform Effluent (MPN/100mL)',
    'BOD Influent \n(ppm)',
    'BOD Pre-chlorination\n(ppm)',
    'COD Influent (ppm)')
```

results_df_CAS_dropped.sort_values(by='Validation RMSE').iloc[2]['Combination']

```
('Chlorine Dosage (L/d)',
    'Flow Rate Influent (m3/d)',
    'Fecal Coliform Effluent (MPN/100mL)',
```

```
'BOD Influent \n(ppm)',
      'COD Influent (ppm)')
optimal_features_CAS_dropped = results_df_CAS_dropped.sort_values(by='Validation RMSE').iloc[0]['Combination']
optimal_features_CAS_dropped
→ ('Chlorine Dosage (L/d)',
      'Flow Rate Influent (m3/d)'
      'Fecal Coliform Effluent (MPN/100mL)',
      'BOD Influent \n(ppm)',
      'BOD Pre-chlorination\n(ppm)',
      'COD Influent (ppm)')
results_df_CAS_dropped['count'] = results_df_CAS_dropped['Combination'].apply(lambda x: len(x))
results_df_CAS_dropped.to_csv('CAS Dropped Exhaustive Feature Selection.csv', index=False)
```

Hyperparameter Optimization

Start coding or generate with AI.

For Imputed Dataset

```
# Convert the data into DMatrix format
dtrain = xgb.DMatrix(X_train_CAS[list(optimal_features_CAS)], label=y_train_CAS)
# Define the function to be optimized
def xgb_evaluate(eta, alpha, lambd, gamma, subsample, col_subsample, max_depth):
    eta = 10**eta
    alpha = 10**alpha
    lambd = 10**lambd
    gamma = 10**gamma
    max_depth = int(round(2**max_depth))
    params = {'eval_metric': 'rmse',
              'objective': 'reg:squarederror',
              'max_depth': max_depth,
              'eta': eta,
               'gamma': gamma,
              'subsample': subsample,
              'alpha': alpha,
              'lambda': lambd,
              'colsample_bytree': col_subsample,}
    cv_result = xgb.cv(params, dtrain, num_boost_round=1000, nfold=5, early_stopping_rounds=30, seed=808)
    return -1.0 * cv_result['test-rmse-mean'].iloc[-1]
# Specify the hyperparameters to be tuned
xgb_bo_CAS = BayesianOptimization(xgb_evaluate, {'eta': (-3, 0), }
                                              'alpha': (-6, 0.3),
                                              'lambd': (-6, 0.3),
                                              'gamma': (-6, 1.8),
                                              'subsample': (0.5, 1),
                                              'col_subsample': (0.3, 1),
                                              'max_depth': (1, 3)},
                               random_state=808)
```

Optimize the hyperparameters xgb_bo_CAS.maximize(n_iter=1000, init_points=10)# Convert the data into DMatrix format

₹	iter	target alpha	col_su	eta	gamma lambd	max_depth	subsample
	1	-8.298e+0 0.04075	0.4513	-2.68 -1	.662 -1.582	2.026	0.7673
	2	-8.279e+0 -4.514	0.7529	-1.843 -2	.2 -1.339	1.596	0.5436
	3	-8.726e+0 -1.108	0.5069	-1.136 -4	.974 -0.5216	2.693	0.8202
	4	-8.307e+0 -3.147	0.6275	-2.063 1.	604 -0.4504	1.466	0.7294
	5	-1.194e+0 -2.356	0.4052	-0.3806 -0	.09483 -5.01	1.643	0.6674
	j 6	-8.299e+0 -2.162	0.5228	-2 . 659 -5	.793 -3.144	2.227	0.7522
	7	-8.327e+0 -0.1605	0.6002	-1.973 0.	8823 -3.597	1.193	0.6362
	8	-7.941e+0 -0.9486	0.7394	-0.4943 -0	.4982 -3.564	2.166	0.5334
	9	-8.304e+0 -1.814	0.8098	-2.344 -2	.07 -3.54	1.193	0.8742
	10	-1.02e+06 0.06321	0.6188	-0.4746 -0	.88 -0.04974	2.478	0.7132
	11	-8.571e+0 -5.294	0.6658	-1 . 215 -5	.342 -0.3629	2.421	0.9975
	12	-8.297e+0 -4.018	0.5023	-2 . 865 -0	.7772 -2.167	2.849	0.9048

```
0.7323
13
             -8.551e+0
                         -5.736
                                                    -1.385
                                                                -3.443
                                                                              -1.267
                                                                                                       0.8479
14
             -8.271e+0
                         -4.549
                                      0.6199
                                                   -1.97
                                                                -2.466
                                                                             -1.327
                                                                                          1.587
                                                                                                       0.5003
15
             -8.513e+0
                         -0.4235
                                      0.8076
                                                   -1.559
                                                                -0.8907
                                                                             -3.059
                                                                                          1.962
                                                                                                       0.5891
             -1.385e+0
                         -0.4211
                                                    -0.3578
                                                                 0.6482
                                                                                                       0.9886
16
                                       0.718
                                                                              -3.043
                                                                                          2.168
17
             -8.125e+0
                         -1.045
                                       0.8055
                                                    -0.8125
                                                                -1.274
                                                                             -3.58
                                                                                          2.138
                                                                                                       0.5
18
             -7.234e+0
                         -0.8188
                                       0.7891
                                                   0.0
                                                                -1.113
                                                                             -3.898
                                                                                          2,692
                                                                                                       0.5
19
             -1.306e+0
                         -0.5335
                                       0.8491
                                                   -0.544
                                                                -1.374
                                                                             -4.207
                                                                                          2.918
                                                                                                       0.8932
20
             -7.528e+0
                         -0.9643
                                      0.7668
                                                   -0.1575
                                                                -0.9436
                                                                             -3.681
                                                                                          2.4
                                                                                                       0.5
             -8.291e+0
                         -3.597
                                       0.3809
                                                                -3.707
                                                                             -4.822
                                                                                          2.478
21
                                                    -2.441
                                                                                                       0.5501
                                                                             -3.728
             -7.236e+0
                         -1.161
22
                                      0.6781
                                                   0.0
                                                                -0.7441
                                                                                          2.913
                                                                                                       0.5
                                                                -1.414
                                                                             -5.401
23
             -8.725e+0
                         -1.135
                                       0.4966
                                                    -1.187
                                                                                          2.736
                                                                                                       0.6107
24
             -8.308e+0
                         -4.182
                                       0.9605
                                                                -2.19
                                                                              -5.291
                                                                                          1.743
                                                   -2.47
                                                                                                       0.6425
             -7.236e+0
25
                         -1.256
                                                   0.0
                                                                -1.309
                                                                             -3.439
                                      0.7226
                                                                                          2.808
                                                                                                       0.5
26
             -7.219e+0
                         -1.558
                                       1.0
                                                   0.0
                                                                -1.094
                                                                              -3.95
                                                                                          2.607
27
             -1.057e+0
                         -1.426
                                       0.3
                                                   0.0
                                                                 -1.185
                                                                              -3.945
                                                                                           2.532
                                                                                                       0.5
                                                   -0.1118
                                                                                          2.741
28
             -7.254e+0
                         -1.374
                                      1.0
                                                                -0.8555
                                                                             -3.39
                                                                                                       0.5
29
             -9.485e+0
                         -4.808
                                       0.9896
                                                   -0.4094
                                                                -5.86
                                                                             -3.441
                                                                                          1.36
                                                                                                       0.5318
30
             -8.319e+0
                         -2.419
                                       0.5783
                                                    -1.985
                                                                 -4.593
                                                                              -0.2901
                                                                                           2.045
                                                                                                       0.5732
31
             -8.304e+0
                         -5.969
                                       0.4113
                                                   -2.329
                                                                 0.1311
                                                                             -5.538
                                                                                          2.738
                                                                                                       0.6068
             -8.359e+0
                         -0.1682
                                       0.5353
                                                   -1.784
                                                                             -3.447
                                                                                                       0.7435
32
                                                                0.9031
                                                                                          1.366
33
             -1.706e+0
                         -3.113
                                      0.9634
                                                   -0.422
                                                                 -4.206
                                                                             -1.789
                                                                                          1.987
                                                                                                       0.6836
34
             -7.22e+05
                         -0.567
                                      1.0
                                                   0.0
                                                                -1.165
                                                                             -2.934
                                                                                          2.882
                                                                                                       0.5
                         -0.9678
                                                                              -2.754
35
             -7.216e+0
                                       1.0
                                                   0.0
                                                                 -1.643
                                                                                           2.041
                                                                                                       0.5
                                                   -0.6154
36
             -8.026e+0
                         -1.695
                                      0.6671
                                                                -1.457
                                                                             -2.223
                                                                                          2.631
                                                                                                       0.5033
37
             -7.965e+0
                         -1.436
                                      1.0
                                                    -0.7928
                                                                -1.309
                                                                             -2.676
                                                                                          1.343
                                                                                                       0.5
38
             -7.971e+0
                                                   -0.8024
                                                                -1.952
                         -0.5119
                                      1.0
                                                                             -2.215
                                                                                          2.294
                                                                                                       0.5
39
             -8.223e+0
                         -1.511
                                      1.0
                                                   -2.018
                                                                -1.694
                                                                             -2.337
                                                                                          2.119
                                                                                                       0.5
                                                                 -1.456
             -7.212e+0
                         -0.1056
                                                                                          1.449
40
                                       1.0
                                                   0.0
                                                                              -3.087
41
                                                    -0.3388
             -7.511e+0
                         -0.5379
                                      1.0
                                                                 -2.359
                                                                              -2.891
                                                                                          1.039
                                                                                                       0.5
42
             -1.056e+0
                         -0.3201
                                      0.3
                                                   0.0
                                                                -1.739
                                                                             -2.226
                                                                                          1.303
                                                                                                       0.5
43
             -7.209e+0
                         -0.8668
                                      1.0
                                                   0.0
                                                                -1.685
                                                                             -3.679
                                                                                          1.151
                                                                                                       0.5
44
             -8.045e+0
                         -0.2363
                                       1.0
                                                   -0.9211
                                                                 -1.715
                                                                             -3.596
                                                                                          1.0
                                                                                                       0.5
45
             -7.218e+0
                         -0.44
                                      1.0
                                                   0.0
                                                                -2.374
                                                                             -3.428
                                                                                          1.915
                                                                                                       0.5
                                                   -0.4135
                         -1.439
                                       0.7311
                                                                                                       0.5808
46
             -1.429e+0
                                                                -2.984
                                                                             -3.786
                                                                                          1.011
47
             -8.298e+0
                         -2.97
                                       0.8314
                                                   -2.67
                                                                -1.21
                                                                             -2.575
                                                                                          1.528
                                                                                                       0.7009
48
             -8.241e+0
                         -1.425
                                      1.0
                                                   -2.616
                                                                -0.6538
                                                                             -2.913
                                                                                          1.0
                                                                                                       0.5
49
             -8.223e+0
                                                                 -0.594
                                                                             -1.903
                         -2.745
                                      1.0
                                                   -1.672
                                                                                          2.53
                                                                                                       0.5
                                                                                                       0.7743
50
             -8.296e+0
                         -1.808
                                      0.3
                                                   -2.975
                                                                -0.6002
                                                                             -1.835
                                                                                          2.182
             -8.299e+0
                                       0.4919
                                                                -0.1594
                                                                                                       0.7204
51
                         -3.35
                                                   -2.53
                                                                             -1.157
                                                                                          1.627
52
             -8.293e+0
                         -3.033
                                       0.4498
                                                   -2.67
                                                                 -1.67
                                                                             -1.171
                                                                                          2.397
                                                                                                       0.5
53
             -7.213e+0
                                                                             -2.868
                         0.3
                                      1.0
                                                   0.0
                                                                -2.228
                                                                                          2.43
                                                                                                       0.5
             -8.257e+0
                         -2.397
                                                    -2.93
54
                                      1.0
                                                                -1.04
                                                                              -3.053
                                                                                          3.0
                                                                                                       0.5
                                                                                          2.744
55
             -1.357e+0
                         -0.216
                                       0.6097
                                                    -0.464
                                                                 -3.302
                                                                              -2.456
                                                                                                       0.5828
56
            -8.261e+0 |
                         -2.868
                                     1.0
                                                   -3.0
                                                                0.4033
                                                                             -2.506
                                                                                          2.206
                                                                                                       0.5
```

```
# Transform the hyperparameters from log space to original space
best_params_CAS['eta'] = 10 ** best_params_CAS['eta']
best_params_CAS['alpha'] = 10 ** best_params_CAS['alpha']
best_params_CAS['lambda'] = 10 ** best_params_CAS['lambd']
best_params_CAS['gamma'] = 10 ** best_params_CAS['gamma']
best_params_CAS['max_depth'] = int(round(2 ** best_params_CAS['max_depth']))
# Define the remaining xgboost parameters
best_params_CAS['objective'] = 'reg:squarederror' # or 'binary:logistic' for classification
best_params_CAS['eval_metric'] = 'rmse' # or 'auc' for classification
best_params_CAS['colsample_bytree'] = best_params_CAS['col_subsample']
best_params_CAS['subsample'] = best_params_CAS['subsample']
```

Extract the optimal hyperparameters from the Bayesian Optimization object

```
del best_params_CAS['col_subsample']
del best_params_CAS['lambd']
```

best_params_CAS = xgb_bo_CAS.max['params']

best_params_CAS

```
→ {'alpha': 1.9952623149688795,
     'eta': 1.0,
     'gamma': 1e-06,
     'max_depth': 8,
     'subsample': 1.0,
     'lambda': 0.03168506034401033,
     'objective': 'reg:squarederror',
     'eval_metric': 'rmse'
     'colsample_bytree': 1.0}
```

For Raw Dataset

```
# Convert the data into DMatrix format
dtrain = xgb.DMatrix(X_train_CAS_dropped[list(optimal_features_CAS_dropped)], label=y_train_CAS_dropped)
# Define the function to be optimized
def xgb_evaluate(eta, alpha, lambd, gamma, subsample, col_subsample, max_depth):
    eta = 10**eta
   alpha = 10**alpha
   lambd = 10**lambd
   gamma = 10**gamma
   max_depth = int(round(2**max_depth))
    params = {'eval_metric': 'rmse',
              'objective': 'reg:squarederror',
              'max_depth': max_depth,
              'eta': eta,
              'gamma': gamma,
              'subsample': subsample,
              'alpha': alpha,
              'lambda': lambd,
              'colsample_bytree': col_subsample,}
    cv_result = xgb.cv(params, dtrain, num_boost_round=1000, nfold=5, early_stopping_rounds=30, seed=808)
    return -1.0 * cv_result['test-rmse-mean'].iloc[-1]
# Specify the hyperparameters to be tuned
xgb_bo_CAS_dropped = BayesianOptimization(xgb_evaluate, {'eta': (-3, 0),
                                              'alpha': (-6, 0.3),
                                              'lambd': (-6, 0.3),
                                              'gamma': (-6, 1.8),
                                              'subsample': (0.5, 1),
                                              'col_subsample': (0.3, 1),
                                              'max_depth': (1, 3)},
                              random_state=808)
```

Optimize the hyperparameters
xgb_bo_CAS_dropped.maximize(n_iter=1000, init_points=10)# Convert the data into DMatrix format

<u>→</u> iter	target	alpha	col_su	eta	gamma	lambd	max_depth	subsample
1	-8.285e+0	0.04075	0.4513	-2.68	-1.662	-1.582	2.026	0.7673
j 2	-7.796e+0	-4.514	0.7529	-1.843	-2.2	-1.339	1.596	0.5436
j 3	-8.474e+0	-1.108	0.5069	-1.136	-4.974	-0.5216	2.693	0.8202
4	-8.17e+05	-3.147	0.6275	-2.063	1.604	-0.4504	1.466	0.7294
j 5	-1.48e+06	-2.356	0.4052	-0.3806	-0.09483	-5.01	1.643	0.6674
j 6	-8.229e+0	-2.162	0.5228	-2.659	-5.793	-3.144	2.227	0.7522
j 7	-8.329e+0	-0.1605	0.6002	-1.973	0.8823	-3.597	1.193	0.6362
j 8	-1.086e+0	-0.9486	0.7394	-0.4943	-0.4982	-3.564	2.166	0.5334
j 9	-7.963e+0	-1.814	0.8098	-2.344	-2.07	-3.54	1.193	0.8742
j 10	−9.606e+0	0.06321	0.6188	-0.4746	-0 . 88	-0.04974	2.478	0.7132
j 11	-8.011e+0		0.7178	-2.679	-3.238	-1.805	1.63	0.757
j 12	i −7.589e+0	-2.503	1.0	i -3.0	i -0.7462	-1.253	1.0	1.0
j 13	i −7.589e+0	0.3	1.0	-3.0	1.8	-1.115	1.0	1.0
j 14	i −7.596e+0	-6.0	1.0	j -3 . 0	i -0.379	0.3	1.0	1.0
i 15	-7.596e+0	-6.0	1.0	i -3.0	-4.432	0.3	1.0	1.0
j 16	i −7.201e+0	-6.0	1.0	0.0	j -5.2	0.3	3.0	0.5
j 17	-7.196e+0	-6.0	1.0	-1.794	-6.0	-2.323	3.0	1.0
i 18	-7.198e+0	-6.0	1.0	0.0	i -6.0	i -1.874	1.0	0.5
j 19	-7.588e+0	-6.0	1.0	i -3.0	j -6 . 0	-5.251	1.0	0.5
20	-7.588e+0	0.3	1.0	i -3.0	i -6.0	i -6.0	1.0	1.0
j 21	-1.239e+0	-6.0	0.3	0.0	i -6.0	-5.413	3.0	1.0
j 22	i −7.199e+0	-4.166	1.0	-0.6378	j -6 . 0	0.3	1.0	1.0
j 23	-7.588e+0	-6.0	1.0	i -3.0	i -6.0	-2.086	1.0	0.5
j 24	-7.602e+0	-6.0	1.0	-3.0	-6.0	0.3	3.0	0.5
j 25	-7.588e+0	-6.0	1.0	j -3 . 0	-3.237	-1.969	3.0	1.0
i 26	i -7.196e+0	-6.0	1.0	i 0.0	i 1.8	0.3	3.0	1.0
27	-1.009e+0	-6.0	0.3	0.0	-2.601	0.3	1.0	1.0
j 28	−7 . 595e+0	-6.0	1.0	j -3 . 0	1.8	0.3	3.0	1.0
j 29	-7.602e+0	-4.236	1.0	i -3.0	-1.334	i 0.3	3.0	0.5
j 30	-7.199e+0	-4.061	1.0	0.0	j -6 . 0	i -0.9599	3.0	0.5
j 31	-8.279e+0	0.07783	0.4317	-2.983	-3.539	-5.949	2.914	0.7015
32	-7.596e+0	0.3	1.0	-3.0	-6.0	0.3	1.0	1.0
j 33	-7.199e+0	0.3	1.0	0.0	j -6 . 0	-3.505	1.0	0.5
i 34	i −7.199e+0	0.3	1.0	0.0	i -6.0	i -6.0	3.0	0.5
35	-7.588e+0	0.3	1.0	-3.0	1 -6.0	-2.892	1.0	1.0
36	-1.432e+0	0.3	0.3	0.0	-6.0	-6.0	1.0	0.5
j 37	-7.197e+0	-5.384	1.0	-1.149	-5.77	-0.8193	2.084	0.687
38	-7.196e+0	-4.737	1.0	-2.183	-4.679	-1.188	3.0	0.5
39	-7.196e+0	-3.979	1.0	-0.8915	-5.624	-1.831	1.067	0.5
40	-8.247e+0	-4.024	0.3	-2.625	1 -6.0	-0.5526	1.571	1.0
41	-7.197e+0	0.3	1.0	-0.3115	-6.0	-3.279	3.0	0.5361
42	-7.197e+0	0.3	1.0	-0.4342	-6.0	-1.696	1.0	0.5
'								

```
0.5948
                                                   -0.05913
                                                               -5.684
                                                                             -2.688
             -1.356e+0
                         -1.767
                                                                                                      0.9782
44
            -7.197e+0
                         -5.387
                                      1.0
                                                   -1.477
                                                               -4.752
                                                                            -2.217
                                                                                         1.654
                                                                                                      0.5
45
            -8.786e+0
                         -4.308
                                      0.3858
                                                   -0.8986
                                                               -4.76
                                                                            0.1554
                                                                                         2.855
                                                                                                      0.7401
             -7.587e+0
                         -4.902
                                                                -5.237
                                                                             -2.713
46
                                      1.0
                                                   -3.0
                                                                                         2.581
                                                                                                      0.5
                                                   -2.827
47
            -8.248e+0
                         -6.0
                                      0.3
                                                               -4.867
                                                                            -1.251
                                                                                         2.347
                                                                                                      0.5
48
            -7.201e+0
                         -5.967
                                                   0.0
                                                               -6.0
                                                                            0.1885
                                      1.0
                                                                                         1.0
                                                                                                      0.5
49
            -7.197e+0
                         -6.0
                                      1.0
                                                   0.0
                                                               -6.0
                                                                            -1.517
                                                                                         3.0
                                                                                                      0.5
50
            -7.197e+0
                         0.3
                                      1.0
                                                   -2.305
                                                               -6.0
                                                                            -4.337
                                                                                         3.0
                                                                                                      0.5
            -7.198e+0
                                                               0.08586
                                                                            -0.34
                         -5.594
                                      0.9977
                                                                                         2.824
                                                                                                      0.8313
51
                                                   -1.521
            -7.198e+0
52
                                                   -1.202
                                                                            0.3
                         -6.0
                                      1.0
                                                               1.762
                                                                                         1.092
                                                                                                      0.5
            -7.197e+0
                                                   -1.21
                                                                                         2.47
53
                         -6.0
                                      1.0
                                                               1.8
                                                                            -1.672
                                                                                                      0.5
54
             -7.588e+0
                                                               0.01779
                                                                            -2.091
                                                                                         2.423
                         -6.0
                                      1.0
                                                   -3.0
                                                                                                      1.0
                                                   -3.0
55
            -8.259e+0
                                      0.3
                                                                            -1.272
                         -6.0
                                                               1.8
                                                                                         1.0
                                                                                                      0.5
56
            -7.201e+0 | -3.902
                                                   0.0
                                                                           1 0.3
                                                                                       1 3.0
                                                                                                      0.5
```

```
# Extract the optimal hyperparameters from the Bayesian Optimization object
best_params_CAS_dropped = xgb_bo_CAS_dropped.max['params']
# Transform the hyperparameters from log space to original space
best_params_CAS_dropped['eta'] = 10 ** best_params_CAS_dropped['eta']
best_params_CAS_dropped['alpha'] = 10 ** best_params_CAS_dropped['alpha']
best_params_CAS_dropped['lambda'] = 10 ** best_params_CAS_dropped['lambd']
best_params_CAS_dropped['gamma'] = 10 ** best_params_CAS_dropped['gamma']
best_params_CAS_dropped['max_depth'] = int(round(2 ** best_params_CAS_dropped['max_depth']))
# Define the remaining xgboost parameters
best_params_CAS_dropped['objective'] = 'reg:squarederror' # or 'binary:logistic' for classification
best_params_CAS_dropped['eval_metric'] = 'rmse' # or 'auc' for classification
best_params_CAS_dropped['colsample_bytree'] = best_params_CAS_dropped['col_subsample']
best_params_CAS_dropped['subsample'] = best_params_CAS_dropped['subsample']
del best_params_CAS_dropped['col_subsample']
del best_params_CAS_dropped['lambd']
best_params_CAS_dropped
→ {'alpha': 1e-06,
      'eta': 1.0,
      'gamma': 0.011294693573416021,
      'max_depth': 8,
      'subsample': 0.5,
      'lambda': 0.18249597207006912,
      'objective': 'reg:squarederror',
      'eval_metric': 'rmse'
      'colsample_bytree': 1.0}
```

Final Model Training and Testing

Optimized XGBoost 1

- · Optimal Features
- Optimal Hyperparameters
- Trained on Imputed Dataset

```
# Convert test data to DMatrix format
dtrain = xgb.DMatrix(X_train_CAS[list(optimal_features_CAS)], label=y_train_CAS)
dtest = xgb.DMatrix(X_test_CAS[list(optimal_features_CAS)], label=y_test_CAS)
```

Determination of optimal num_boost_round

```
evals_result_CAS = {}
# Train the final model
final_model_CAS = xgb.train(best_params_CAS, dtrain, num_boost_round=1000, early_stopping_rounds=30, evals=[(dtrain, 'train'),(c
                  evals_result=evals_result_CAS)
            train-rmse:49004.73752 test-rmse:12154.66071
₹
    [0]
     [1]
                                     test-rmse:12747.69412
            train-rmse:1530.12270
     [2]
            train-rmse:97.27207
                                     test-rmse:12762.25777
     [3]
            train-rmse:55.00458
                                     test-rmse:12761.97711
            train-rmse:21.11131
                                     test-rmse:12773.49846
            train-rmse:4.42933
                                     test-rmse:12781.71096
```

train-rmse:247107.93377 test-rmse:12508.41538

[2]

```
train-rmse:38153.39067
                                      test-rmse:12446.10278
     [5]
             train-rmse:5913.38238
                                      test-rmse:12204.74036
     [6]
             train-rmse:5915.88864
                                      test-rmse:12403.51241
     [7]
             train-rmse:5745.49813
                                      test-rmse:12444.76614
             train-rmse:5883.02233
     [8]
                                      test-rmse:12466.42200
     [9]
             train-rmse:932.67265
                                      test-rmse:12189.66132
     [10]
             train-rmse:268.09638
                                      test-rmse:12152.21424
     [11]
             train-rmse:253.29569
                                      test-rmse:12151.26545
     [12]
             train-rmse:241.22833
                                      test-rmse:12157.31317
     [13]
             train-rmse:202.94550
                                      test-rmse:12147.19578
     [14]
             train-rmse:223.40859
                                      test-rmse:12145.76781
     [15]
             train-rmse:165.73906
                                      test-rmse:12142.15171
     [16]
             train-rmse:158.62397
                                      test-rmse:12144.12858
     [17]
             train-rmse:51.41457
                                      test-rmse:12145.88952
     [18]
             train-rmse:51.80484
                                      test-rmse:12140.34193
     [19]
             train-rmse:41.54818
                                      test-rmse:12139.98623
     [20]
             train-rmse:49.52654
                                      test-rmse:12140.76733
     [21]
             train-rmse:47.84993
                                      test-rmse:12142.14766
     [22]
             train-rmse:35.16584
                                      test-rmse:12145.02347
     [23]
             train-rmse:10.85244
                                      test-rmse:12145.34387
     [24]
             train-rmse:8.92859
                                      test-rmse:12145.33880
     [25]
             train-rmse:6.38920
                                      test-rmse:12145.57790
     [26]
             train-rmse:5.70117
                                      test-rmse:12145.48659
     [27]
             train-rmse:5.16950
                                      test-rmse:12145.31321
     [28]
             train-rmse:3.97258
                                      test-rmse:12146.25122
     [29]
             train-rmse:3.60399
                                      test-rmse:12146,17854
     [30]
             train-rmse:2.80307
                                      test-rmse:12146.10404
     [31]
             train-rmse:2.53569
                                      test-rmse:12146.06513
     [32]
             train-rmse:2.29142
                                      test-rmse:12146.12167
     [33]
             train-rmse:2.46055
                                      test-rmse:12146.15860
     [34]
             train-rmse:2.36656
                                      test-rmse:12146.17064
     [35]
             train-rmse:2.16004
                                      test-rmse:12146.07583
     [36]
             train-rmse:2.07432
                                      test-rmse:12146.13630
     [37]
             train-rmse:2.14112
                                      test-rmse:12146.11894
     [38]
                                      test-rmse:12146.11669
             train-rmse:2.46385
     [39]
             train-rmse:2.20447
                                      test-rmse:12146.06519
     [40]
             train-rmse:2.07281
                                      test-rmse:12146.09099
     [41]
             train-rmse:1.50348
                                      test-rmse:12146.07556
     [42]
             train-rmse:1.64946
                                      test-rmse:12146.12237
     [43]
             train-rmse:1.19462
                                      test-rmse:12146.10532
     [44]
             train-rmse:1.68894
                                      test-rmse:12146.14418
     [45]
             train-rmse:0.88928
                                      test-rmse:12146.13609
     [46]
             train-rmse:0.76567
                                      test-rmse:12146.00371
     [47]
             train-rmse:0.75361
                                      test-rmse:12145.98221
     [48]
             train-rmse:0.64235
                                      test-rmse:12145.94637
# Train the final model
```

final_model_CAS_dropped = xgb.train(best_params_CAS_dropped, dtrain, num_boost_round=(np.argmin(evals_result_CAS_dropped['train' evals_result=evals_result_CAS_dropped)

Make predictions on the test set y_pred_final_CAS_dropped = final_model_CAS_dropped.predict(dtest)

```
train-rmse:1602394.78629
\overline{\Rightarrow}
    [0]
                                              test-rmse:12310.31219
    [1]
            train-rmse:1601049.20396
                                              test-rmse:12447.93114
    [2]
            train-rmse:247107.93377 test-rmse:12508.41538
    [3]
            train-rmse:247094.27641 test-rmse:12421.06864
    [4]
            train-rmse:38153.39067
                                      test-rmse:12446.10278
    [5]
            train-rmse:5913.38238
                                      test-rmse:12204.74036
    [6]
            train-rmse:5915.88864
                                      test-rmse:12403.51241
    [7]
            train-rmse:5745.49813
                                      test-rmse:12444.76614
    [8]
            train-rmse:5883.02233
                                      test-rmse:12466.42200
    [9]
            train-rmse:932.67265
                                      test-rmse:12189.66132
    [10]
            train-rmse:268.09638
                                      test-rmse:12152.21424
    [11]
            train-rmse:253.29569
                                      test-rmse:12151,26545
    [12]
            train-rmse:241.22833
                                      test-rmse:12157.31317
    [13]
            train-rmse:202.94550
                                      test-rmse:12147.19578
    [14]
            train-rmse:223.40859
                                      test-rmse:12145.76781
    [15]
            train-rmse:165.73906
                                      test-rmse:12142.15171
    [16]
            train-rmse:158.62397
                                      test-rmse:12144.12858
    [17]
            train-rmse:51.41457
                                      test-rmse:12145.88952
    [18]
            train-rmse:51.80484
                                      test-rmse:12140.34193
    [19]
            train-rmse:41.54818
                                      test-rmse:12139.98623
    [20]
            train-rmse:49.52654
                                      test-rmse:12140.76733
    [21]
            train-rmse:47.84993
                                      test-rmse:12142.14766
    [22]
            train-rmse:35.16584
                                      test-rmse:12145.02347
    [23]
            train-rmse:10.85244
                                      test-rmse:12145.34387
    [24]
            train-rmse:8.92859
                                      test-rmse:12145.33880
    [25]
            train-rmse:6.38920
                                      test-rmse:12145.57790
    [26]
            train-rmse:5.70117
                                      test-rmse:12145.48659
    [27]
             train-rmse:5.16950
                                      test-rmse:12145.31321
    [28]
            train-rmse:3.97258
                                      test-rmse:12146.25122
            train-rmse:3.60399
                                      test-rmse:12146.17854
```

```
[30]
        train-rmse:2.80307
                                 test-rmse:12146.10404
[31]
        train-rmse:2.53569
                                 test-rmse:12146.06513
[32]
        train-rmse:2.29142
                                 test-rmse:12146.12167
        train-rmse:2.46055
                                 test-rmse:12146.15860
[33]
[34]
        train-rmse:2.36656
                                 test-rmse:12146.17064
[35]
        train-rmse:2.16004
                                 test-rmse:12146.07583
[36]
        train-rmse:2.07432
                                 test-rmse:12146.13630
[37]
        train-rmse:2.14112
                                 test-rmse:12146.11894
[38]
        train-rmse:2.46385
                                 test-rmse:12146.11669
[39]
        train-rmse:2.20447
                                 test-rmse:12146.06519
[40]
        train-rmse:2.07281
                                 test-rmse:12146.09099
[41]
        train-rmse:1.50348
                                 test-rmse:12146.07556
[42]
        train-rmse:1.64946
                                 test-rmse:12146.12237
[43]
        train-rmse:1.19462
                                 test-rmse:12146.10532
[44]
        train-rmse:1.68894
                                 test-rmse:12146.14418
[45]
        train-rmse:0.88928
                                 test-rmse:12146.13609
[46]
        train-rmse:0.76567
                                 test-rmse:12146.00371
[47]
        train-rmse:0.75361
                                 test-rmse:12145.98221
[48]
        train-rmse:0.64235
                                 test-rmse:12145.94637
[49]
        train-rmse:0.57622
                                 test-rmse:12145.94569
```

Untuned XGBoost 1

- · No Feature Selection
- No Hyperparameter Tuning
- Trained on Imputed Dataset

```
dtrain = xgb.DMatrix(X_train_CAS, label=y_train_CAS)
dtest = xgb.DMatrix(X_test_CAS, label=y_test_CAS)
params = {
    'objective': 'reg:squarederror',
    'eval_metric': 'rmse',
    'seed': 808
# Train the out of the box xgboost model
oob_model_imputed_CAS = xgb.train(params, dtrain, num_boost_round=1000, early_stopping_rounds=30, evals=[(dtrain, 'train'),(dtes
# Make predictions on the test set
y_pred_oob_imputed_CAS = oob_model_imputed_CAS.predict(dtest)
₹
    [0]
            train-rmse:1354423.52169
                                             test-rmse:381637.57776
    [1]
            train-rmse:1150657.29774
                                             test-rmse:683512.05839
     [2]
            train-rmse:977710.56184 test-rmse:943594.21875
     [3]
            train-rmse:830853.27541 test-rmse:1165378.97870
            train-rmse:706110.34248 test-rmse:1354110.01269
    [4]
     [5]
            train-rmse:600128.39363 test-rmse:1514608.85262
     [6]
             train-rmse:510070.77980 test-rmse:1651061.83907
     [7]
            train-rmse:433538.00887 test-rmse:1767060.00561
     [8]
            train-rmse:368494.09609 test-rmse:1865664.06509
    [9]
            train-rmse:313211.59070 test-rmse:1949479.16954
    [10]
            train-rmse:266225.19171 test-rmse:2020722.82590
            train-rmse:226288.49289 test-rmse:2081280.62915
     [11]
    [12]
            train-rmse:192343.99227 test-rmse:2132754.94537
     [13]
            train-rmse:163491.36031 test-rmse:2176508.26098
            train-rmse:138967.82406 test-rmse:2213698.54966
     [14]
    [15]
            train-rmse:118122.64926 test-rmse:2245310.39081
    [16]
            train-rmse:100404.31155 test-rmse:2272180.64747
     [17]
            train-rmse:85343.87396 test-rmse:2295020.27003
    [18]
            train-rmse:72542.76190 test-rmse:2314433.93126
     [19]
            train-rmse:61661.40561
                                     test-rmse:2330935.70805
                                     test-rmse:2344962.16165
     [20]
            train-rmse:52412.42676
    [21]
                                     test-rmse:2356884.45646
            train-rmse:44550.98106
     [22]
            train-rmse:37868.82074
                                     test-rmse:2367018.30419
    [23]
            train-rmse:32188.90705
                                     test-rmse:2375632.19335
    [24]
            train-rmse:27360.66554
                                     test-rmse:2382954.10120
                                     test-rmse:2389177.53586
     [25]
            train-rmse:23257.02598
    [26]
            train-rmse:19769.03860
                                     test-rmse:2394467.58132
    [27]
            train-rmse:16803.84703
                                     test-rmse:2398964.04661
            train-rmse:14283.67274
                                     test-rmse:2402786.15174
    [28]
    [29]
            train-rmse:12141.50366
                                     test-rmse:2406034.84007
```

Untuned XGBoost 2

· No Feature Selection

- · No Hyperparameter Tuning
- Trained on Non-Imputed (Raw) Dataset

```
dtrain = xgb.DMatrix(X_train_CAS_dropped, label=y_train_CAS_dropped)
dtest = xgb.DMatrix(X_test_CAS_dropped, label=y_test_CAS_dropped)
params = {
    'objective': 'reg:squarederror',
    'eval_metric': 'rmse',
    'seed': 808
# Train the out of the box xgboost model
oob_model_CAS = xgb.train(params, dtrain, num_boost_round=1000, early_stopping_rounds=30, evals=[(dtrain, 'train'),(dtest, 'test
# Make predictions on the test set
y_pred_oob_CAS = oob_model_CAS.predict(dtest)
\rightarrow
    [0]
            train-rmse:1357685.79379
                                             test-rmse:381761.33333
     [1]
             train-rmse:1153425.89863
                                             test-rmse:683574.12030
     [2]
             train-rmse:980060.06786 test-rmse:943636.08946
     [3]
            train-rmse:832847.35942 test-rmse:1165410.22076
     [4]
            train-rmse:707802.22117 test-rmse:1354133.33251
            train-rmse:601563.00580 test-rmse:1514625.86182
     [5]
     [6]
             train-rmse:511289.02251 test-rmse:1651075.77468
    [7]
             train-rmse:434572.44065 test-rmse:1767070.84801
     [8]
             train-rmse:369373.57206 test-rmse:1865671.95156
     [9]
             train-rmse:313959.74865 test-rmse:1949485.47023
    [10]
            train-rmse:266861.11410 test-rmse:2020728.00461
     [11]
            train-rmse:226829.32309 test-rmse:2081284.40171
     [12]
             train-rmse:192803.28422 test-rmse:2132758.00004
    [13]
            train-rmse:163881.95854 test-rmse:2176510.45088
    [14]
            train-rmse:139299.07584 test-rmse:2213700.10194
     [15]
             train-rmse:118403.99067 test-rmse:2245311.07192
     [16]
             train-rmse:100643.20366 test-rmse:2272180.71708
             train-rmse:85546.72110 test-rmse:2295019.66371
     [17]
    [18]
             train-rmse:72714.76220
                                     test-rmse:2314432.86138
     [19]
             train-rmse:61807.60853 test-rmse:2330934.05094
     [20]
             train-rmse:52536.50435 test-rmse:2344960.06151
    [21]
            train-rmse:44656.16165
                                     test-rmse:2356882.13179
     [22]
             train-rmse:37957.90034
                                     test-rmse:2367015.86583
     [23]
             train-rmse:32264.28569
                                     test-rmse:2375629.66723
    [24]
             train-rmse:27424.80215
                                     test-rmse:2382951.25055
    [25]
            train-rmse:23311.15951
                                     test-rmse:2389174.76706
     [26]
             train-rmse:19814.45318
                                     test-rmse:2394464.81694
    [27]
            train-rmse:16842.33788
                                     test-rmse:2398961,28653
            train-rmse:14316.14015
     [28]
                                     test-rmse:2402783.16113
     [29]
             train-rmse:12168.82551
                                     test-rmse:2406031.82127
    [30]
             train-rmse:10343.68251 test-rmse:2408793.08686
```

Naive Model 1

· Always predicts the mean effluent chlorine residual of the imputed training dataset

```
y_pred_naive_CAS = np.full(y_test_CAS.shape, y_train_CAS.mean())
```

Naive Model 2

· Always predicts the mean effluent chlorine residual of the Non-imputed (raw) training dataset

```
y_pred_naive_orig_CAS = np.full(y_test_CAS.shape, y_train_orig_CAS.mean())
```

Model Evaluation

```
def compute_metrics(y_pred,y_test):
    std_obs = np.std(y_test)
    std_sim = np.std(y_pred)

mean_obs = np.mean(y_test)
    mean_sim = np.mean(y_pred)
```

```
# Computing correlation
  r = np.corrcoef(y_test, y_pred)[0, 1]
  # Computing KGE
  alpha = std_sim / std_obs
  beta = mean_sim / mean_obs
  kge = 1 - np.sqrt(np.square(r - 1) + np.square(alpha - 1) + np.square(beta - 1))
 # PBIAS Calculation
  pbias = np.sum((y_test - y_pred)) / np.sum(y_test) * 100
 # Computing NSE
  nse = 1 - (np.sum((y_test-y_pred)**2))/(np.sum((y_test-np.mean(y_test))**2))
  if nse > 0.35:
    nse = (nse,'good')
  else:
   nse = (nse,'bad')
  if abs(pbias) < 15:
   pbias = (abs(pbias), 'good')
  else:
   pbias = (abs(pbias),'bad')
  if kge > -0.41:
    kge = (kge, 'good')
  else:
    kge = (kge, 'bad')
  return(nse,pbias,kge)
def compute_nrmse(y_true, y_pred):
    rmse = np.sqrt(mean_squared_error(y_true, y_pred))
    nrmse = rmse / (np.max(y_true) - np.min(y_true))
    return nrmse
non_imputed_mask_CAS = ~np.isnan(y_test_orig_CAS)
```

Model Metrics evaluated on Imputed Test Set

Optimized XGBoost 1

```
nse_final, pbias_final, kge_final = compute_metrics(y_pred_final_CAS, y_test_CAS)
print(f"Final model metrics:\\ \nNSE: \{nse\_final\}, \nPBIAS: \{pbias\_final\}, \nKGE: \{kge\_final\}"\}
rmse = mean_squared_error(y_test_CAS, y_pred_final_CAS, squared=False)
print(f"\nRoot Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_CAS, y_pred_final_CAS)
print(f"Normalized Root Mean Squared Error: {nrmse}")
Final model metrics:
    NSE: (-0.08488257027113977, 'bad'),
PBIAS: (43.28929556662643, 'bad'),
     KGE: (-0.19047708030715937, 'good')
    Root Mean Squared Error: 12781.644535660605
    Normalized Root Mean Squared Error: 0.11619782484986778
  Untuned XGBoost 1
nse_naive, pbias_naive, kge_naive = compute_metrics(y_pred_oob_imputed_CAS, y_test_CAS)
print(f"Final model metrics:\n\nNSE: {nse_naive}, \nPBIAS: {pbias_naive}, \nKGE: {kge_naive}")
rmse = mean_squared_error(y_test_CAS, y_pred_oob_imputed_CAS, squared=False)
print(f"\nRoot Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_CAS, y_pred_oob_imputed_CAS)
print(f"Normalized Root Mean Squared Error: {nrmse}")
```

```
→ Final model metrics:
    NSE: (-38529.92342967909, 'bad'),
     PBIAS: (10659.22881102169, 'bad'),
    KGE: (-220.51428300288126, 'bad')
    Root Mean Squared Error: 2408796.315386435
    Normalized Root Mean Squared Error: 21.898347397580295
  Naive Model 1
rmse = mean_squared_error(y_test_CAS, y_pred_naive_CAS, squared=False)
print(f"Root Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_CAS, y_pred_naive_CAS)
print(f"Normalized Root Mean Squared Error: {nrmse}")
    Root Mean Squared Error: 110632.38378044139
    Normalized Root Mean Squared Error: 1.0057580867138918
  Naive Model 2
rmse = mean_squared_error(y_test_CAS, y_pred_naive_orig_CAS, squared=False)
print(f"Root Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_CAS, y_pred_naive_orig_CAS)
print(f"Normalized Root Mean Squared Error: {nrmse}")
From Root Mean Squared Error: 111171.54475899595
     Normalized Root Mean Squared Error: 1.0106595947144605
   Model Metrics evaluated on Non-Imputed (Raw) Test Set
   Optimized XGBoost 1
nse_final, pbias_final, kge_final = compute_metrics(y_pred_final_CAS[non_imputed_mask_CAS], y_test_CAS_dropped)
print(f"Final model metrics:\\ \\ \nSE: \{nse\_final\}, \\ \nBIAS: \{pbias\_final\}, \\ \nBGE: \{kge\_final\}")
rmse = mean_squared_error(y_test_CAS_dropped, y_pred_final_CAS[non_imputed_mask_CAS],squared=False)
print(f"\nRoot Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_CAS_dropped, y_pred_final_CAS[non_imputed_mask_CAS])
print(f"Normalized Root Mean Squared Error: {nrmse}")
Final model metrics:
    NSE: (-0.08488257027113977, 'bad'),
     PBIAS: (43.28929556662643, 'bad'),
    KGE: (-0.19047708030715937, 'good')
     Root Mean Squared Error: 12781.644535660605
    Normalized Root Mean Squared Error: 0.11619782484986778
  Optimized XGBoost 2
nse_final, pbias_final, kge_final = compute_metrics(y_pred_final_CAS_dropped, y_test_CAS_dropped)
print(f"Final model metrics:\\ \nNSE: \{nse\_final\}, \nPBIAS: \{pbias\_final\}, \nKGE: \{kge\_final\}"\}
rmse = mean_squared_error(y_test_CAS_dropped, y_pred_final_CAS_dropped,squared=False)
print(f"\nRoot Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_CAS_dropped, y_pred_final_CAS_dropped)
print(f"Normalized Root Mean Squared Error: {nrmse}")
Final model metrics:
    NSE: (0.02034785499332281, 'bad'), PBIAS: (58.39414514665331, 'bad'),
     KGE: (-0.2091828035824188, 'good')
```

Root Mean Squared Error: 12145.94517211003 Normalized Root Mean Squared Error: 0.11041868718906563

```
    Untuned XGBoost 2
```

```
nse_naive, pbias_naive, kge_naive = compute_metrics(y_pred_oob_CAS, y_test_CAS_dropped)
print(f"Final model metrics:\n\nNSE: {nse_naive}, \nPBIAS: {pbias_naive}, \nKGE: {kge_naive}")
rmse = mean_squared_error(y_test_CAS_dropped, y_pred_oob_CAS, squared=False)
print(f"\nRoot Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_CAS_dropped, y_pred_oob_CAS)
print(f"Normalized Root Mean Squared Error: {nrmse}")
→ Final model metrics:
    NSE: (-38529.82129668686, 'bad'),
    PBIAS: (10623.828110432103, 'bad'),
KGE: (-220.35052160477284, 'bad')
     Root Mean Squared Error: 2408793.1229150835
    Normalized Root Mean Squared Error: 21.898318374849623
  Naive Model 1
rmse = mean_squared_error(y_test_CAS_dropped, y_pred_naive_CAS[non_imputed_mask_CAS],squared=False)
print(f"Root Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_CAS_dropped, y_pred_naive_CAS[non_imputed_mask_CAS])
print(f"Normalized Root Mean Squared Error: {nrmse}")
    Root Mean Squared Error: 110632.38378044139
    Normalized Root Mean Squared Error: 1.0057580867138918
  Naive Model 2
rmse = mean_squared_error(y_test_CAS_dropped, y_pred_naive_orig_CAS[non_imputed_mask_CAS],squared=False)
print(f"Root Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_CAS_dropped, y_pred_naive_orig_CAS[non_imputed_mask_CAS])
print(f"Normalized Root Mean Squared Error: {nrmse}")
    Root Mean Squared Error: 111171,54475899595
    Normalized Root Mean Squared Error: 1.0106595947144605
  Feature Importance
# Get feature importance
importance_CAS = final_model_CAS.get_score(importance_type='gain')
name_dict_CAS = {
    'Flow.Rate.Influent..m3.d.': 'Flow Rate Influent',
    'BOD.Influent...ppm.': 'BOD Influent',
    'Total.Coliform.Effluent..MPN.100mL.':'Total Coliform Effluent',
    'pH.Pre.chlorination': 'pH Pre-Chlorination',
    'Chlorine.Dosage..L.d.':'Chlorine Dosage',
    'TSS.Pre.chlorination..ppm.':'TSS Pre-Chlorination',
    'Total.Coliform.Influent..MPN.100mL.': 'Total Coliform Influent',
    'Fecal.Coliform.Influent..MPN.100mL.':'Fecal Coliform Influent',
    'BOD.Pre.chlorination..ppm.':'BOD Pre-Chlorination',
    'Fecal.Coliform.Effluent..MPN.100mL.':'Fecal Coliform Effluent',
    'COD.Pre.chlorination..ppm.':'COD Pre-Chlorination'
# For visualization, it is better to convert it to a DataFrame
importance_df_CAS = pd.DataFrame({
    'Feature': list(importance_CAS.keys()),
    'Importance': list(importance_CAS.values())
```

```
importance_df_CAS['Feature'] = importance_df_CAS['Feature'].replace(name_dict_CAS)

# Sort the DataFrame by importance
importance_df_CAS = importance_df_CAS.sort_values(by='Importance', ascending=False)

# Plot feature importance
plt.figure(figsize=(10, 8))
plt.barh(importance_df_CAS['Feature'], importance_df_CAS['Importance'], color='skyblue')
plt.xlabel("Importance")
plt.ylabel("Feature")
plt.title("Feature Importance")
plt.title("Feature Importance")
plt.gca().invert_yaxis() # To show the highest importance at the top
plt.show()
```


- Data Visualization for Model Evaluation
- Optimized XGBoost on Imputed Test Dataset

```
# with imputation
plt.scatter(y_test_CAS,y_pred_final_CAS);
plt.xlabel('True Value');
plt.ylabel('Predicted Value');
```



```
# Create an x-axis range based on the length of the series/array
x = range(1, len(y_test_CAS) + 1)

# Plotting
plt.figure(figsize=(10, 5))
plt.plot(x, y_test_CAS, label='True', marker='o')
plt.plot(x, y_pred_final_CAS, label='Predicted', marker='x')

# Adding labels and title
plt.xlabel('Test Datapoint')
plt.ylabel('Total Coliform Effluent')
plt.title('Comparison of True and Predicted Values on Imputed Test Data')
plt.legend()

# Show plot
plt.show()
```


Comparison of True and Predicted Values on Imputed Test Data

Optimized XGBoost on Non-Imputed (Raw) Test Dataset

```
# without imputation
plt.scatter(y_test_orig_CAS[non_imputed_mask_CAS],y_pred_final_CAS[non_imputed_mask_CAS])
plt.xlabel('True Value');
plt.ylabel('Predicted Value');
```



```
# Create an x-axis range based on the length of the series/array
x = range(1, len(y_test_orig_CAS[non_imputed_mask_CAS]) + 1)

# Plotting
plt.figure(figsize=(10, 5))
plt.plot(x, y_test_orig_CAS[non_imputed_mask_CAS], label='True', marker='o')
plt.plot(x, y_pred_final_CAS[non_imputed_mask_CAS], label='Predicted', marker='x')

# Adding labels and title
plt.xlabel('Test Datapoint')
plt.ylabel('Total Coliform Effluent')
plt.title('Comparison of True and Predicted Values on Raw Test Data')
plt.legend()

# Show plot
plt.show()
```


Exporting Results

```
# Determine the maximum length of the columns
max_length = max(len(y_test_CAS), len(y_test_CAS_dropped), len(y_pred_final_CAS), len(y_pred_final_CAS_dropped), len(y_pred_oob_

# Superior to outside a series on street to the residue length with NeW values.
```

Function to extend a series or array to the maximum length with NaN values
def extend_with_nan(data, length):