

FACULTAD DE INGENIERÍA
DEPARTAMENTO DE INGENIERÍA MECÁNICA

PRÁCTICAS DE PROGRAMACIÓN EN PYTHON

Este documento presenta la guía y la evaluación del 20% del curso de Programación Estructurada y Métodos Numéricos.

Presentado por: Oscar David Hincapie Garcia

EVALUACIÓN

La evaluación correspondiente al 20% del curso se compone de dos prácticas, cada una del 10%. Las prácticas deben realizarse en grupos de 3 personas. Por este motivo, en el enlace anexo a este documento, se deben registrar los grupos de trabajo. Los objetivos y temas que se evaluarán en cada práctica se describen a continuación. La interpretación de la práctica también cuenta como evaluación.

Práctica 1

Objetivos	Temas	Módulos necesarios
relacionados con la	Llamado de funciones,	numpy, plotly (o matplotlib), scipy, sympy.

La práctica 1 se debe entregar el 6 de diciembre a las 12:00 m (medio día).

Práctica 2

Objetivos	Temas	Módulos necesarios
relacionados con la lógica de programación, módulos de Python en-	Sentencias condicionales, Sentencias repetitivas. Definición y Llamado de funciones, Definición de variables. Manejo de	plotlib), ipywidgets,
	módulos (documentación.)	

La práctica 2 se debe entregar el 18 de diciembre a las 12:00 pm.

PRÁCTICA 1 – APLICACIONES DE LAS ECUACIONES DIFERENCIALES

Existen dos tipos de ecuaciones diferenciales, las ecuaciones diferenciales ordinarias EDO (bi-variables, y = f(x)) y las ecuaciones diferenciales parciales EDP (multi-variable, z = f(x, y, w, ...)). El desarrollo de esta práctica se centra en las EDO con coeficientes constantes, es decir, ecuaciones de la forma

$$a_0y + a_1\frac{dy}{dx} + a_2\frac{d^2y}{dx^2} + \dots + a_n\frac{d^y}{dx^y} = f(x)$$

Las posibles ecuaciones diferenciales que se deriven de esta familia permiten describir y representar gran variedad de sistemas dinámicos como los sistemas mecánicos, sistemas eléctricos y los sistemas termodinámicos. Otra representación que tienen estas ecuaciones diferenciales es una representación algebráica a través del operador $D=\frac{d}{dx}$ de modo que la EDO se puede escribir como:

$$(a_0 + a_1D + a_2D^2 + \dots + a_nD^n)y(x) = f(x) \to L_n(D)y(x) = f(x)$$

Donde $L_n(D) = a_0 + a_1D + a_2D^2 + ... + a_nD^n$ es un operador derivador. Para obtener la solución a la EDO se necesitan obtener dos cosas. Las soluciones asociadas a la EDO homogénea $(L_n(D)y(x) = 0)$ y la solución asociada a la perturbación que sufre el sistema debido a la función f(x). La unidad de medida depende del contexto del problema, para sistemas mecánicos es fuerza [N], para sistemas eléctricos es el voltaje [V].

Solución de EDO de coeficientes constantes de segundo orden

Para el desarrollo de esta práctica se trabajará con EDO de coeficientes constantes de segundo orden, es decir, EDO de la forma:

$$(a_0 + a_1D + a_2D^2)y(x) = f(x)$$

Como la EDO es de orden dos, la solución asociada a la EDO homogénea es el conjunto de soluciones $y_H = \{y_{H1}, y_{H2}\}$. Si la EDO es de orden n entonces el conjunto de soluciones tiene n posibles valores. Por lo tanto, la solución se puede escribir como:

$$y(x) = y_H + y_P = c_1 y_{H1} + c_2 y_{H2} + y_P$$

Donde c_1 y c_2 son valores a calcular con base en las condiciones iniciales del problema.

Solución de EDO's homogénea – y_H

El operador derivador $L_n(D) = a_0 + a_1 D + a_2 D^2$ se puede expresar como un polinomio característico $P(\lambda) = a_2 \lambda^2 + a_1 \lambda + a_0$. Las raíces del polinomio λ_1, λ_2 se utilizan para construir la solución homogénea de la siguiente manera:

C1
$$\lambda_1 = \lambda_2 = \lambda \in \mathfrak{R} \to y_H = \{e^{\lambda x}, xe^{\lambda x}\} = c_1 e^{\lambda x} + c_2 xe^{\lambda x}$$

C2
$$\lambda_1 \neq \lambda_2 \in \mathfrak{R} \to y_H = \{e^{\lambda_1 x}, e^{\lambda_2 x}\} = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$$

C3
$$\lambda_{1,2} = \alpha \pm j\gamma \in \mathfrak{C} \to y_H = \{e^{\alpha x} \cos \gamma x, e^{\alpha x} \sin \gamma x\} = c_1 e^{\alpha x} \cos \gamma x + c_2 e^{\alpha x} \sin \gamma x$$

Solución de EDO debido a la perturbación de $f(x) - y_P$

La solución particular se puede obtener por muchos métodos, entre ellos: Variación de Parámetros, Coeficientes Indeterminados, Operador Inverso, Operador Anulador. La deducción de las alternativas se encuentran detalladas en libros de ecuaciones diferenciales. Para el caso de esta práctica, se debe trabajar con el método de Variación de Parámetros. Este método plantea la solución de la siguiente manera:

Partiendo de la solución homogénea Y_H , se puede escribir la solución particular y_P como

$$y_P = \mu_1 y_{H1} + \mu_2 y_{H2}$$

Los valores de μ_i se obtienen al solucionar e integrar el sistema:

$$\begin{bmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{bmatrix} \cdot \begin{bmatrix} \mu'_1 \\ \mu'_2 \end{bmatrix} = \begin{bmatrix} 0 \\ f(x) \end{bmatrix}$$
 (1)

A través de este método, se garantiza que las soluciones sean linealmente independientes.

Evaluación

Para el desarrollo de esta práctica, se debe obtener el promedio de los últimos dos números de la cédula de los integrantes del equipo. Este valor se debe aproximar al menor número entero. Si este valor es mayor o igual a 50, se debe hacer el ejercicio del grupo A. Si el valor es menor a 50, se debe hacer el ejercicio del grupo B. Adicionalmente, si el dato obtenido es par, se deben tomar los valores asociados a los pares y si es impar, se deben tomar los valores asociados a los impares. La evaluación se compone de:

- P1 10% Diagrama de flujo explicando la solución al ejercicio: Se debe presentar un diagrama de flujo donde se detallen todos los pasos necesarios para la solución del problema. Esto incluye el orden de estas acciones. Para desarrollar un diagrama de flujo sin necesidad de instalar otros programas, pueden optar por trabajar en https://www.diagrams.net.
- P2 10% Deducción matemática de la EDO a partir de un diagrama de cuerpo libre: Para ambos problemas, se da la ecuación diferencial. En este punto deben mostrar desde la segunda ley de Newton, cómo se llega a la EDO planteada.
- P3 25% Desarrollo de las funciones que permiten obtener la solución al ejercicio planteado: Esto incluye desarrollar las siguientes funciones:
 - 5% Función para las soluciones homogéneas.
 - 5% Función para la solución particular.
 - 5% Función para obtener los valores de c_1 y c_2 .
 - 5% Función para obtener derivada de la solución. No se está pidiendo programar un método numérico de derivación.
 - 5% Función para encontrar la solución de forma simbólica.

Los parámetros de entrada de cada función se exponen en el cuaderno anexo a la práctica.

- P4 45% Uso de las funciones para dar solución a los sub-problemas planteados: Cada ejercicio tiene un conjunto de condiciones a evaluar. Las funciones que se desarrollen deben ser capaz de solucionar estas condiciones sin ninguna falla.
- P5 10% Buenas prácticas de programación: Esto incluye el cuidado al nombrar variables, al definir variables, al definir las funciones y la documentación del código necesaria. Para más información ver el capítulo 1, 2 y 3 de la urll https://github.com/NarciH/PyMed-2020-1 en la ruta ./Documentos/Guía para desarrollo de prácticas PyMeNu 2019-1.pdf

Grupo A – Péndulo Simple

Un péndulo simple de longitud l, como el mostrado en la figura 1 se deja caer libremente desde un ángulo inicial θ_i en un medio viscoso de flujo laminar con coeficiente de fricción B_0 . Para ángulos pequeños y sin considerar perturbaciones en el sistema, la EDO se puede aproximar a:

$$\frac{dx^2(t)}{dt^2} = -\frac{g}{l}x(t) - \frac{B_0}{m}\frac{dx(t)}{dt}$$

Figura 1: Diagrama para un péndulo simple. Los ejes en color rojo, las fuerzas en color purpura. La linea punteada indica el sentido del movimiento.

Se necesita una aplicación que dependiendo de los valores de g, l, m, B_0 y las condiciones iniciales, entregue la posición y la velocidad del péndulo. Para lograr esto, se deben desarrollar los puntos P1, P2, P3 y P5.

Para el punto P4 se plantea

- 1. Para el sistema dado y las condiciones iniciales dadas:
 - (a) Obtenga y realice una gráfica de la posición, la velocidad y la aceleración del péndulo. Presente las gráficas de forma independiente.

- (b) Obtenga la solución simbólica utilizando el módulo de sympy.
- (c) Realice una gráfica de la velocidad versus la posición del péndulo. ¿Cuál es la velocidad máxima y mínima alcanzada?
- 2. Considere ahora que el sistema se encuentra en el vacío y se hace una perturbación al sistema con una fuerza tangencial $F(t) = A \sin \omega t$.
 - (a) Encuentre y realice una gráfica de la posición y la velocidad del péndulo.
 - (b) Obtenga la solución simbólica utilizando el módulo de sympy.
 - (c) Realice una gráfica de la velocidad versus la posición del péndulo. ¿Qué puede concluir?
 - (d) ¿Por qué la posición y la velocidad tienden a crecer con el tiempo?, ¿Qué similitud tienen con la perturbación del sistema?. Para responder esta pregunta, realice en un mismo gráfico los perfiles de x vs t y F vs t
- 3. Se desea saber el efecto que posee el ángulo inicial en los valores de c_1 y c_2 . Para esto, utilizando el sistema en un medio viscoso de flujo laminar con coeficiente B_0 y sin considerar perturbaciones, realice en una sola gráfica las curvas c_1 vs θ_i y c_2 vs θ_i . El ángulo inicial varía de la forma $\theta_i(i) = i\frac{\pi}{180}$ con i = [1, 2, 3, ..., 15]. Para el desarrollo de este punto, se deben utilizar ciclos for que recorran los posibles valores de θ_i .

Los resultados se deben almacenar en vectores de numpy. Las gráficas se pueden hacer en plotly o matplotlib.

Pares	Impares
l = 0.25 [m]	l = 0.5 [m]
$B_0 = 25 \times 10^{-3} \ [kg/s]$	$B_0 = 30 \times 10^{-3} \ [kg/s]$
m = 0.1 [kg]	m = 0.25 [kg]
$\theta_i = \frac{\pi}{4} \ [rad]$	$\theta_i = \frac{\pi}{6} \ [rad]$
$g = 9.81 \ [m/s^2]$	$g = 9.81 \ [m/s^2]$
A = 0.25 [N]	A = 0.5 [N]
$\omega = 6.261 \ [rad/s]$	$\omega = 4.427 \ [rad/s]$
t = 15 [s]	t = 15 [s]

Grupo B – Sistema masa resorte amorgituador

Un modelo simple para la suspensión de la rueda de un vehículo se presenta en la figura 2. Los resortes del muelle de suspensión se representan con resortes de constantes de elasticidad k. La constante B de fricción representa el amortiguador que ejerce una fuerza contraria al movimiento y es proporcional a la velocidad relativa entre su centro de gravedad y el perfil de la carretera. Y finalmente se acopla a la masa equivalente del vehículo. Si el eje de referencia es tomado en el centro de equilibrio del vehículo (positivo hacia abajo), la ecuación diferencial que rige el movimiento del desplazamiento del centro de equilibrio es

$$\left(D^2 + \frac{B}{m}D + \frac{k}{m}\right)x(t) = \left(\frac{B}{m}D + \frac{k}{m}\right)x_s(t)$$

Figura 2: Diagrama para el modelo 1/4 de suspensión de vehículos. Los ejes en color rojo. La linea punteada indica el sentido del movimiento.

Donde $x_s(t)$ representa la distancia desde el centro de gravedad hasta el perfil de la carretera por donde transita el vehículo. Partiendo del reposo el vehículo transita horizontalmente con velocidad constante por la superficie plana de la tierra y el perfil de la carretera está a una distancia de $h_0 = 200 \ cm$ del suelo.

Para realizar el diagrama de flujo libre, considere tres momento: El momento 1 considerando el sistema sin la masa del vehículo y en equilibrio. El momento 2 considerando el sistema con la masa del vehículo y en equilibrio. El momento 3 considerando el peso del vehículo en un estado diferente al de equilibrio.

Se necesita una aplicación que dependiendo de los valores de m, B, k, B y las condiciones iniciales, entregue la posición y la velocidad del del centro de equilibrio. Para lograr esto, se deben desarrollar los puntos P1, P2, P3 y P5.

Para el punto P4 se plantea

- 1. Para el sistema dado y las condiciones iniciales dadas:
 - (a) Obtenga y realice una gráfica de la posición, la velocidad y la aceleración del centro de equilibrio. Presente las gráficas de forma independiente.
 - (b) Obtenga la solución simbólica utilizando el módulo de sympy.
 - (c) Realice una gráfica de la velocidad versus la posición del centro de quilibrio. ¿Cuál es el desplazamiento máximo del sistema?
- 2. Considere ahora que el vehículo no posee amortiguadores y que atraviesa una serie de pequeños baches en la carretera de tal forma que el perfil de la carretera responde a la función $x_s(t) = h_0 A\cos\omega t$.
 - (a) Encuentre y realice una gráfica del desplazamiento y la velocidad del centro de equilibrio.
 - (b) Obtenga la solución simbólica utilizando el módulo de sympy.
 - (c) Realice una gráfica de la velocidad versus la posición del centro de equilibrio. ¿Qué puede concluir?
 - (d) ¿Qué similitud tienen con la perturbación del sistema?. Para responder esta pregunta, realice en un mismo gráfico los perfiles de x vs t y F vs t
- 3. Se desea saber el efecto que posee la amplitud de la carretera en los valores de c_1 y c_2 . Para esto, considere el sistema con amortiguador B y que el perfil de la carretera responde a la ecuación $x_s(t) = h_0 A\cos\omega t$. Realice en una sola gráfica las curvas c_1 vs A y c_2 vs A. El valor de A varía en A = [0.05, 0.1, 0.15, 0.2, ..., 0.9]. Para el desarrollo de este punto, se deben utilizar ciclos for que recorran los posibles valores de A.

Los resultados se deben almacenar en vectores de numpy. Las gráficas se pueden hacer en plotly o matplotlib.

Pares	Impares
$m = 250 \ [kg]$	m = 500 [kg]
B = 500 [Ns/m]	B = 250 [Ns/m]
$k = 16000 \ [N/m]$	$B = 32000 \ [N/m]$
A = 0.2 [m]	$A = 0.2 \ [m]$
$\omega = 8 \ [rad/s]$	$\omega = 8 \ [rad/s]$
t = 15 [s]	t = 15 [s]

PRÁCTICA 2 – CINEMÁTICA DE BRAZO ROBÓTICO DE 3 ESLABONES