STEPPER MOTOR INTERFACE BOARD

Model No : *(VBMB - 13A)*

Application Manual

Version 1.0

Technical Clarification / Suggestion:

61/**5**

Technical Support Division,

Vi Microsystems Dvt. Ltd.,

Plot No:75, Electronics Estate,

Perungudi, Chennai - 600 096, INDIA. Ph: 91- 44-2496 1842, 91-44-2496 1852 Mail: <u>sales@vimicrosystems.com</u>, Web: www.vimicrosystem.com

CONTENTS

CHAPTER - 1	INTRODUCTION TO 8055	
1-1 In	troduction	1 - 1
CHAPTER - 2	INTRODUCTION TO STEPPER MOTOR	
2.1 Step	per Motor	2
2.2 Cons	structional Features	2
2.3 Wav	e Scheme (Unipolar Operation)	4
2.4 2Pha	6	
2.5 Half	Stepping Scheme	8
CHAPTER - 3	HARDWARE DESCRIPTION	
3.1 In	troduction	12
3.2 A	ddress Decoding	12
3.3 D	riving Circuitry	13
3.4 O	perating Voltage Selection	14
CHAPTER - 4	INSTALLATION PROCEDURE	16
CHAPTER - 4	SOFTWARE EXAMPLES	18
	LIST OF APPENDIX	
Appendix - A	Circuit Diagram	23
Appendix - B	Connector Details	25
Appendix - C	Component Layout	27
Appendix - D	PROGRAMS IN 8086/88 ASSEMBLY LANGUAGE	29
Appendix - E	PROGRAMS IN 8086/88 LCD TRAINER	33

PREFACE

VBMB-013A Technical reference manual is intended to present to the user all the details regarding the stepper motor and various modes with which it can be operated. VBMB-013A board is a microprocessor based stepper motor controller, which is capable of demonstrating the various modes of stepper motor operations.

The manual has been organised in such a way as to enable the user to learn about the aspects of stepper motor in a systematic fashion. Starting from the basics of the stepper motor, all the details have been provided in an order of gradually increasing complexity.

For those users who have been wondering about the advantages of the board, CHAPTER 1 is the place to start with.

Chapter 2 furnishes information regarding stepper motor and its operations.

Chapter 3 equips user with the circuit description of this board.

Chapter 4 illustrates the procedure to interface VBMB-13A to any your microprocessor

trainer kit.

Chapter 5 contains the software examples for interfacing VBMB-13A board to

microprocessor trainer kit.

Appendices contain all the relevant material, including the circuit diagram, the component

layout, chip details etc.

We hope this board will be of great use to study the concept of stepper motor operation. Any suggestions to improve this product are greatly appreciated.

Write to:

The Customer-Support Division,

Vi Microsystems Pvt. Ltd.,

Plot No.75, Electronics Estate, Perungudi, Chennai - 600 096.

Phone: (044) 496 1842, 496 1852.

Fax: (044) 496 1536. E-mail: vimicro@vsnl.com

CHAPTER - 1

INTRODUCTION

We have introduced a series of microprocessor Trainers based on different microprocessors such as 8085A, Z-80, 6502, 8086, 8088, 8097, 8031 and we provide sufficient software and hardware experiments. Also we have a range of add-on-boards.

These add-on-boards are meant for beginners who desire to get into hardware interfacing and hardware oriented software.

VBMB-13A is one of the add-on-boards which enable a beginner to get familiarised with interfacing stepper motors to any of our microprocessor based trainer kits. This board supports stepper motor, ranging from 2 to 20Kg with operating voltages 6, 12 & 24V. The supply can be given externally. Two stepper motors of different voltages can be connected to this board. The following sections cover the details of stepper motors, hardware descriptions of this board and software listing for doing experiments in any of our microprocessor kits.

This board can be interfaced to any computer using our PC-Add-on-card VAD-107.

CHAPTER - 2

INTRODUCTION TO STEPPER MOTOR

2.1 STEPPER MOTOR:

A motor in which the rotor is able to assume only discrete stationary angular position is a stepper motor. The rotary motion occurs in a stepwise manner from one equilibrium position to the next.

Stepper motor control is a very popular application of microprocessor in control area. They are widely used in (simple position control systems in the open and closed loop mode) a variety of applications such as computer peripherals (printers, disk driver etc.) and in the areas of process control machine tools, medicine, numerically controlled machines and Robotics.

2.2 CONSTRUCTIONAL FEATURES:

A Stepper motor could be either of the reluctance type or of the permanent magnet type (PM). A PM stepper motor consists of multi phase stator and two part permanent magnet rotor. The VR stepper motor has un magnetised rotor. PM stepper motor is the most commonly used type. The basic two phase stepper motor consists of two pairs of stator poles. Each of the four poles has its own winding. The excitation of any one winding generates a north pole (N), a south pole (S) gets induced at the diametrically opposite side.

Fig 2-1 Stepper Motor Cross-sectional view

Fig.2-2 Typical Stepper Motor Rotor

As shown in the figure 2-1 the four pole structure is continuous with the stator frame and the magnetic field passes through the cylindrical stator annular ring. The rotor magnetic system has two end faces. The left face is permanently magnetised as south pole and the right face as north pole. The south pole structure and the north pole structure possess similar pole faces. The north pole structure is twisted with respect to the south pole structure so that south pole comes precisely between two north poles. The north pole structure is offset with respect to the south pole structure by one pole pitch. The cross sectional view is shown in figure 2-2. In an arrangement where there are four stator poles and three pairs of rotor poles, there exists 12 possible stable positions in which a south pole of the rotor can lock with a north pole of the stator. From this it can be noted that the step size is,

$$\frac{360^{\circ}}{Ns \times Nr}$$

Where

Ns is the No. of stator poles. Nr is the No. of pairs of rotor poles.

Generally step size of the stepper motor depends upon NR. These stable positions can be attained by simply energising the winding on any one of the stator poles with a DC. There are three different schemes available for "stepping" a stepper motor. These are:

- (a) Wave scheme
- (b) 2-phase scheme and
- (c) Half stepping or mixed scheme.

These three schemes are described in detail in the following sections.

2.3 WAVE SCHEME (UNIPOLAR OPERATION):

The stepper motor windings A1, B1, A2, B2 can be cyclically excited with a DC current to run the motor in the clockwise direction. By reversing the phase sequence as A1, B2, A2, B1, we can obtain anticlockwise stepping.

2.3.1 STEPPING DIAGRAM:

Consider the four possible rotor positions and the corresponding stator excitations, illustrated in Fig.2-3. In step (a), it is seen that the rotor pole S1 locks with the stator pole A1(N) and the rotor pole N1 locks with the stator pole A2(S'). Under these conditions, it is obvious that the winding A1 must have been energised. A2 (S') is an induced south pole.

Next, A1 is de-energised and B1 is turned on. The nearest rotor pole S2 locks with B1(N) and the corresponding rotor pole N2 locks with the induced pole B2(S'). This is illustrated in step (b) of Fig.2.3.

Fig.2-3 Simple Wave Scheme for Stepper Motor (Cont...)

Fig.2-3 Simple Wave Scheme for Stepper Motor

When A2 alone is energised next, the nearest rotor pole S3 locks with A2(N) (step (c) of Fig. 2.3).

B2 alone is energised next and the nearest rotor pole S1 locks with B2(N). Totally 12 such steps cause a displacement of 360°. The step angle is 30° (mechanical).

The switching sequence for the wave mode of excitation is given in Table 2-1.

Anticlockwise Clockwise **A**1 A2 **B**1 B2 **A**1 A2 **B**1 B2 Step Step

Table 2.1 Wave switching scheme

2.4 2-PHASE SCHEME:

In this scheme, any two adjacent stator windings are energised. There are two magnetic fields active in quadrature and none of the rotor pole faces can be in direct alignment with the stator poles. A partial but symmetric alignment of the rotor poles is of course possible.

Typical equilibrium conditions of the rotor when the windings on two successive stator poles are excited are illustrated in Fig.2.4. In step (a), A1 and B1 are energised. The pole-face S1 tries to align itself with the axis of A1 (N) and the pole face S2 with B1(N). The north pole N3 of the rotor finds itself in the neutral zone between A1(N) and B1(N). S1 and S2 of the rotor, position themselves symmetrically with respect to the two stator north pole.

Next, when B1 and A2 are energised, S2 tends to align with B1(N) and S3 with A2(N). Of course, again under equilibrium conditions, only partial alignment is possible and N1 finds itself in the neutral region, midway between B1(N) and A2(N) [Step (b)]. In step (c), A2 and B2 are on. S3 and S1 tend to align with A2(N) and B2(N), respectively, with N2 in the neutral zone. Step (d) illustrates the case when A1 and B2 are on.

Fig.2-4 2-Phase Drive Scheme

The step angle is 30° as in the wave scheme. However, the rotor is offset by 15° in the two-phase scheme with respect to the wave scheme. A total of 12 steps are required to move the rotor by 360° (mechanical). Two-phase drives produce more torque than the wave drives.

The switching sequence for the 2-phase scheme is given in Table 2.2.

Clockwise Anti clock wise Step **A**1 A2 **B**1 **B2** Step **A**1 A2 **B**1 **B**2 1 0 0 1 1 0 1 0 1 1 2 0 1 0 1 2 0 1 1 0 3 0 3 0 0 1 1 0 1 1 4 4 1 0 1 0 0 1

Table 2.2 2-Phase switching scheme

2.5 HALF STEPPING SCHEME:

The wave scheme as well as the 2-phase scheme give steps of size 30° for the stepper motor under consideration. However, there is an offset of 15° between these two schemes. By interleaving these two schemes, the step size can be reduced to 15°, thereby improving the accuracy of the stepper motor. The half stepping scheme is a mixture of the wave scheme and the 2-phase scheme [Fig.2.5 (a) to (i)].

The switching sequence is:

- i. A1 (ON)
- ii. A1 and B1 (ON)
- iii. B1 (ON)
- iv. B1 and A2 (ON)
- v. A2 (ON)
- vi. A2 and B2 (ON)
- vii. B2 (ON)
- viii. B2 and A1 (ON)
- ix. A1 (ON), etc.

Eight steps are required to move the shaft by 120° and 24 steps for one complete revolution. By reversing the switching sequence, we can reverse the direction of rotation. One major disadvantage of the half stepping scheme is torque fluctuations. This is because the aligning torque for the wave scheme is different from that for the 2-phase scheme.

Fig.2-5 Half Stepping Scheme (Cont...)

Fig.2-5 Half Stepping Scheme (Cont...)

Fig.2-5 Half Stepping Scheme

CHAPTER - 3

HARDWARE DESCRIPTION

3.1 INTRODUCTION

Among the Vi range of add-on-cards, the VBMB-13A supports the stepper motor interface. This board can be plugged into the VXT Bus in any EB kits using 50 core cable and into the VME Bus of any other kits using our VXT Bus extender. This board consists of 3 sections as following.

- 1. Address decoding.
- 2. Stepper motor driving circuitry.
- 3. Operating voltage selections.

3.2 ADDRESS DECODING

The 74138 chip (U2) generates the address decoding logic to generate the device select pulses, CS1 and CS2 for selecting the ICs 74175 (U3 &U5). The 74175 (U3 &U5) latches the data bus to the stepper motor driving circuitry. Address lines A7 & A6 from VXT Bus is NANded and the O/P is connected to 138 enable signal. Similarly IOW & IOR signals are NANDed and the NAND gate O/P is connected to Pin 6 of 74138, Pin 4 is grounded.

74175 at U3 is selected with the address

A7	A6	A5	A4	A3	A2	A1	A0	_
1	1	0	0	0	X	X	X	= C0 [HEX]

74175 at U4 is selected with the address

A7	A6	A5	A4	A3	A2	A1	A0	_
1	1	0	0	1	X	X	X	= C8 [HEX]

74125 is selected with the address

A7	A6	A5	A4	A3	A2	A1	A0	_
1	1	0	1	0	0	X	X	= D0 [HEX]

The circuit diagram is given in Appendix-A.

3.3 DRIVING CIRCUITRY

Stepper motor requires logic signals of relatively high power. In this board the silicon darlington pair (TIP 122) transistors are used to supply that required power. The driving pulses are generated by the interface circuit. The input for the interface circuit are TTL pulses generated under software control using a microprocessor trainer kit. The TTL levels of pulse sequence from the data bus is translated to high voltage output pulses using a buffer 7407 with open collector.

The darlington pair transistor (TIP 122) drive the stepper motor as they withstand higher current. A 220 ohm resistor and an IN4148 diode are connected between the power supply and darlington pair collector for supporting flyback current.

The data lines D0-D3 and D4-D7 are used to drive the 8 TIP 122 available on this board as shown in the Appendix-A. The four Collector points of each TIP 122 are brought to two 5 pin connectors P2 & P3 to connect two different stepper motors. With this board it is possible to connect stepper motor of torque ranging from 2Kg to 20Kg with operating voltage of 12V, 24V & 6V.

3.4 OPERATING VOLTAGE SELECTION

As explained earlier it is possible to connect two stepper motors of different operating voltage. This is made possible by jumpers J1 to J3.

JUMPER J1:

This jumper selects the voltage for driving stepper motor connected at connector P2.

POSITION OF J1	VOLTAGE SELECTED
A	12V
В	6V
С	24V

JUMPER J2:

This jumper selects the voltage for driving stepper motor connected at connector P3.

POSITION OF J2	VOLTAGE SELECTED
A	12V
В	6V
С	24V

JUMPER J3:

This jumper should be strapped when using stepper motor of operating voltage 12V.

POSITION OF J3	VOLTAGE SELECTED
A	12V from VXT BUS
В	12V Given externally

Strap J3 in A position when 12V from microprocessor trainer kit is used.

Strap J3 in B position when external 12V is used.

CHAPTER - 4

INSTALLATION PROCEDURE

In the previous chapter we have studied about the circuit description. In this chapter let us see how to connect the VBMB-13A to our microprocessor kit.

The figure 4.1 shows how to connect a VBMB-13A board to the EB trainer kit.

Figure 4-1.

Figure 4-2.

Figure 4.2 shows how to connect a VBMB-13A board to kits other flash EB model.

Figure 4.3.

Figure 4.3 shows how to connect a VBMB-13A to power supply. For different voltages the jumpers should be placed as explained in the previous chapter.

CHAPTER - 5

SOFTWARE EXPERIMENTS

This section explains the software listing using 8085 based trainer kit.

EXAMPLE 5-1:

Aim:

To run a stepper motor at different speed in two directions.

PROGRAM

4100	21 1A 41	START:	LXI	H,LOOK UP
4103	06 04		MVI	B, 04
4105	7E	REPT:	MOV	A,M
4106	D3 C0		OUT	0C0H
4108	11 03 03		LXI	D, 0303H
410B	00	DELAY	NOP	
410C	1B		DCX	D
410D	7B		MOV	A,E
410E	B2		ORA	D
410F	C2 0B 41		JNZ	DELAY
4112	23		INX	H
4113	05		DCR	В
4114	CZ 05 41		JNZ	REPT
4117	C3 00 41		JMP	START
411A	09 03 06 0C	LOOK UP:	DB	09 05 06 0A

RESULT:

Enter the above program starting from location 4100. Execute the same. The stepper motor rotates. Speed can be varied by varying the count at DE pair. Direction can be varied by entering the data in the look-up table in the reverse order.

EXAMPLE 5-2:

Aim:

To run a stepper motor for required angle within 360°, which is equivalent to 256 steps.

PROGRAM

4101	OE HEX DATA		MVI	C, HEX DATA
4102	21 20 41	START:	LXI	H, LOOK UP
4105	06 04		MVI	B, 04
4107	7E	REPT:	MOV	A,M
4108	D3 C0		OUT	C0
410A	OD		DCR	C
410B	CA 24 41		JZ	END
410E	11 03 03		LXI	D, COUNT
4111	00	DELAY:	NOP	
4112	1B		DCX	D
4113	7B		MOV	A,E
4114	B2		ORA	D
4115	C2 11 41		JNZ	DELAY
4118	23		INX	Н
4119	05		DCR	В
411A	C2 07 41		JNZ	REPT
411D	C3 02 41		JMP	START
4120	09 05 06 0A	LOOK UP:	DB	09 05 06 0A
4124	76	END:	HLT	

RESULT:

Enter the above program and execute it. By converting the required step in decimal to hex and entering the hex data at 4101 the motor rotates for so much steps and then stops.

EXAMPLE 5-3:

Aim:

To run a stepper motor in two ports.

PROGRAM

5000			ORG	5000H
5000	21 1B 50	START:	LXI	H,LOOKUP
5003	06 04		MVI	B,04
5005	7E	REPT:	MOV	A,M
5006	D3 C0		OUT	0C0H
5008	D3 C8		OUT	0C8H
500A	11 03 03		LXI	D,0303H
500D	1B	DELAY:	DCX	D
500E	7B		MOV	A,E
500F	B2		ORA	D
5010	C2 0D 50		JNZ	DELAY
5013	23		INX	Н
5014	05		DCR	В
5015	C2 05 50		JNZ	REPT
5018	C3 00 50		JMP	START
501B	09 05 06 0A I	LOOKUP:	DB	09H,05H,06H,0AH
501F			END	

RESULT:

Enter the program starting from 5000H onwards. Connect the stepper motors in the two ports. Execute the program. Now it can be seen that the two stepper motors runs in the forward direction simultaneously.

EXAMPLE 5-4:

Aim:

To run Stepper Motor in both Forward and Reverse directions with delay.

PROGRAM

4100			ORG	4100H
4100	0E 20	START:	MVI	C,20H
4102	21 3F 41	FORWD:	LXI	H,FORLOOK
4105	CD 21 41		CALL	ROTATE
4108	0D		DCR	C
4109	C2 02 41		JNZ	FORWD
410C	CD 35 41		CALL	STOP
410F	0E 20		MVI	C,20H
4111	21 43 41	REVES:	LXI	H,REVLOOK
4114	CD 21 41		CALL	ROTATE
4117	0D		DCR	C
4118	C2 11 41		JNZ	REVES
411B	CD 35 41		CALL	STOP
411E	C3 00 41		JMP	START
4121	06 04	ROTATE:	MVI	B,04H
4123	7E	REPT:	MOV	A,M
4124	D3 C0		OUT	0C0H
4126	11 03 03		LXI	D,0303H
4129	1B	LOOP1:	DCX	D
412A	7B		MOV	A,E
412B	B2		ORA	D
412C	C2 29 41		JNZ	LOOP1
412F	23		INX	H
4130	05		DCR	В
4131	C2 23 41		JNZ	REPT
4134	C9		RET	
4135	11 FF FF	STOP:	LXI	D,FFFFH
4138	1B	LOOP2:	DCX	D
4139	7B		MOV	A,E
413A	B2		ORA	D
413B	C2 38 41		JNZ	LOOP2
413E	C9		RET	
413F	09 05 06 0A	FORLOOK	DB	09H,05H,06H,0AH
4143	0A 06 05 09	REVLOOK	DB	0AH,06H,05H,09H
4147			END	

RESULT:

Enter the program starting from 4100H location and connect the stepper motor in port 1. Execute the program. Now you can see that the stepper motor runs in forward direction and reverse direction continuously with a delay.

EXERCISES: 5-5

1. Write a program to run two stepper motors at a time continuously.

NOTE:

The port address of 2nd stepper motor driving circuitry is C8.

2. Write a program to run the stepper motor in other two modes as explained in chapter 2.

NOTE:

The Look-up table data should be changed accordingly.

- 3. Write a program to run the Stepper motor for any no. of steps and to stop it.
- 4. Write a program to make the stepper motor to rotate for required angle and to wait for required time and again to rotate for required angle and so on.

CONCLUSION

We have converted most of the hardware and software sections in details. Thus we come across this section.

APPENDIX-A CIRCUIT DIAGRAM

APPENDIX-B

CONNECTOR DETAILS

APPENDIX-C COMPONENT LAYOUT

LIST OF COMPNENT's :-

IC's :-

U1 - 7400 (14PIN IC BASE)

U2 - 74LS138 (16PIN IC BASE)

U3,U5 - 74175 (16PIN IC BASE)

U4,U6 - 7407 (14PIN IC BASE)

U7 - 74125 (14PIN IC BASE)

CONNECTOR's :-

P1,P4 - J801 4PIN CONNECTOR

P2 - 50PIN FRC (M) CONNECTOR

P3,P5 - SP3961 CONNECTOR

RESISTOR's :-

R1,R4,R6,R9,R11 - 3.3K

R13,R15,R17 - 3.3K

R2,R5,R7,R10,R12 - 22E/1W

R14,R16,R18 - 22E/1W

R3,R8 - 3.3K

OTHER COMPONENT's :-

(DC1-DC7) - 0.1MF DISC CAPACITOR

(D1-D8) - 1N4148 DIDDE

(Q1-Q8) - TIP122 WITH HEATSINK

J1 - 3PIN JUMBER

J2,J3 - 4PIN JUMBER

Vi Microsystems Pvt.Ltd., stepper motor controller interface

MODEL : VBMB - 013A

REV : 5

DATE : 14/10/11

SHEET 1 OF 1

COMPONENT LAYOUT

DRN BY : Mrs.R.V

CHK BY : Mrs.R.K

APPENDIX-D

PROGRAMS IN 8086/88 ASSEMBLY LANGUAGE

EXAMPLE-1: To run a stepper motor at different speed.

1000	PORT1	EQU	ОС0Н
1000		ORG	1000H
1000 BF 14 10	BEGIN:		
1003 B1 04	START:	MOV	DI, OFFSET TABLE
1005 8A 05		MOV	CL, 04
1007 E6 C0	LOOP1:	MOV	AL, [DI]
1009 BA 1010		OUT	PORT1, AL
100C 4A		MOV	DA, 1010H
100D 75 FD		JNZ	DELAY
100F 47		INC	DI
1010 E2 F3		LOOP	LOOP1
1012 EB EC		JMP	START
1014	TABLE:		
1014 09 05 06 0A		DB	9,5,6,0AH

RESULT:

Enter the above program starting from location 1000. Execute the same. The stepper motor rotates. Speed can be varied by varying the count at dx register pair. Direction can be varied by entering the data in the look-up table in the reverse order.

EXAMPLE-2:

To run a stepper motor for required angle within 460°, which is equivalent to 256 steps.

	PORT1	EQU	0C0H
1000		ORG	1000H
1000	BEGIN:		
1000 B3 45		MOV	BL,45H
1002 BF 1B 10	START:	MOV	DI,OFFSET TABLE
1005 B1 04		MOV	CL,04
1007 8A 05	REPT:	MOV	AL,[DI]
1009 E6 C0		OUT	PORT1,AL
100B FE CB		DEC	BL
100D 74 0B		JZ	END
100F BA 1010		MOV	DX,1010H
1012 4A	DELAY:	DEC	DX
1013 75 FD		JNZ	DELAY
1015 47		INC	DI
1016 E2 EF		LOOP	REPT
1018 EB E8		JMP	START
101A F4	END:	HLT	
101B TABLE:			
101B 09 05 06 0A		DB	9.5,6,0AH
100D 74 0B 100F BA 1010 1012 4A 1013 75 FD 1015 47 1016 E2 EF 1018 EB E8 101A F4 101B TABLE:		JZ MOV DEC JNZ INC LOOP JMP HLT	END DX,1010H DX DELAY DI REPT START

RESULT:

Enter the above program and execute it. By converting the required step in decimal to hex and entering the hex data at 1001 the motor rotates for so much steps and then stops.

EXAMPLE-3:

To run a stepper motor in both ports.

	PORT1	EQU	0C0H
	PORT2	EQU	0C8H
1000		ORG	1000H
1000	BEGIN:		
1000 BF 16 10	START:	MOV	DI, OFFSET TABLE
1003 B1 04		MOV	CL,04
1005 8A 05	REPT:	MOV	AL,[DI]
1007 E6 C0		OUT	PORT1,AL
1009 E6 C8		OUT	PORT2,AL
100B BA 1010		MOV	DX,1010H
100E 4A	DELAY:	DEC	DX
100F 75 FD		JNZ	DELAY
1011 47		INC	DI
1012 E2 F1		LOOP	REPT
1014 EB EA		JMP	START
1016 TABLE:			
1016 09 05 06 0A		DB	9,5,6,0AH

RESULT:

Enter the program starting from 1000 onwards. Connect the stepper motors in the two ports. Execute the program. Now it can be seen that the two stepper motors runs in the forward direction simultaneously.

EXAMPLE-4:

To run the stepper motor in both forward and reverse direction with delay.

		PORT1	EQU	0C0H
1000			ORG	1000H
1000		BEGIN:		
1000	B3 20	START:	MOV	BL,20H
1002	BF 37 10	FORWD:	MOV	DI,OFFSET FORW
1005	E8 1800		CALL	ROTATE
1008	FE CB		DEC	BL
100A	75 F6		JNZ	FORWD
100C	E8 21 00		CALL	DELAY
100F	B3 20		MOV	BL,20H
1011	BF 3B 10	REVER:	MOV	DI,OFFSET REV
1014	E8 09 00		CALL	ROTATE
1017	FE CB		DEC	BL
1019	75 F6		JNZ	REVER
101B	E8 12 00		CALL	DELAY
101E	EB E0		JMP	START
1020	B1 04	ROTATE:	MOV	CL,04
1022	8A 05	REPT:	MOV	AL,[DI]
1024	E6 C0		OUT	PORT1,AL
1026	BA 1010		MOV	DX,1010H
1029		LOOP1:		
1029	4A		DEC	DX
102A	75 FD		JNZ	LOOP1
102C	47		INC	DI
102D	E2 F3		LOOP	REPT
102F	C3		RET	
1030	BA FFFF		MOV	DX,0FFFFH
1033	4A	DELAY:	DEC	DX
1034	75 FD		JNZ	DELAY
1036	C3		RET	
1037	09 05 06 0A	FORW:	DB	9,5,6,0AH
103B	0A 06 05 09	REV:	DB	0AH,6,5,9

RESULT:

Enter the program starting from 1000 onwards. Execute the program after connecting the stepper motor in port 1. Execute the program. Now you can see that the stepper motor runs in forward and reverse direction continuously with a delay.

APPENDIX-E

PROGRAMS IN 8086/88 LCD TRAINER

EXAMPLE-1: To run a stepper motor at different speed.

1000	C7 C7 18 10	MOV	DI, 1018
1004	C6 C1 04	MOV	CL, 04
1007	8A 05	MOV	AL, [DI]
1009	E6 C0	OUT	C0, AL
100B	C7 C2 10 10	MOV	DX, 1010
100F	4A	DEC	DX
1010	75 FD	JNZ	100F
1012	47	INC	DI
1013	E2 F2	LOOP	1007
1015	E9 E8 FF	JMP	1000
1018	09 05 06 0A	TABLE	09 05 06 0A

RESULT:

Enter the above program starting from location 1000. Execute the same. The stepper motor rotates. Speed can be varied by varying the count at dx register pair. Direction can be varied by entering the data in the look-up table in the reverse order.

PROGRAMS IN 8086/88 LCD TRAINER

EXAMPLE-2: To run a stepper motor for required angle within 360°, which is equivalent to 256 steps.

1000	C6	C3	45		MOV	BL, 45
1003	C7	C7	20	10	MOV	DI, 1020
1007	C6	C1	04		MOV	CL, 04
100A	8A	05			MOV	AL, [DI]
100C	E6	C0			OUT	C0, AL
100E	E6	CB			DEC	BL
1010	74	0D			JZ	101G
1012	C7	C2	10	10	MOV	DX, 1010
1016	4A				DEC	DX
1017	75	FD			JNZ	1016
1019	47				INC	DI
101A	E2	F0			LOOP	100A
101C	E9	E8	FF		JMP	1003
101F	F4				HLT	
1020	09	05	06	0A	TABLE	09 05 06 0A

RESULT:

Enter the above program execute it. By converting the required step in decimal to hex and entering the hex data at 1001 the motor for so much steps and then stops.

PROGRAMS IN 8086/88 LCD TRAINER

EXAMPLE-3: To run a stepper motor in both ports.

1000	C7 C7 20 10	MOV	DI, 1020
1004	C6 C1 04	MOV	CL, 04
1007	8A 05	MOV	AL, [DI]
1009	E6 C0	OUT	C0, AL
100B	E6 C8	OUT	C8, AL
100D	C7 C2 10 10	MOV	DX, 1010
1011	4A	DEC	DX
1012	75 FD	JNZ	1011
1014	47	INC	DI
1015	E2 F0	LOOP	1007
1017	E9 E8 FF	JMP	1000
1020	09 05 06 0A	TABLE	09 05 06 0A

RESULT:

Enter the above program starting from location 1000. Execute the same. The stepper motor rotates. Speed can be varied by varying the count at dx register pair. Direction can be varied by entering the data in the look-up table in the reverse order.

PROGRAMS IN 8086/88 LCD TRAINER

EXAMPLE-4: To run the stepper motor in both forward and reverse direction with delay.

1000	C6	C3	20		MOV	BI, 20
1003	C7	C7	3F	10	MOV	DI, 103F
1007	E8	1B	00		CALL	1025
100A	FE	CB			DEC	BL
100C	75	F5			JNZ	1003
100E	E8	2A	00		CALL	103B
1011	C6	C3	20		MOV	BL, 20
1014	C7	C7	43	10	MOV	DI, 1043
1018	E8	0A	00		CALL	1025
101B	FE	CB			DEC	BL
101D	75	75			JNZ	1014
101F	E8	19	00		CALL	103B
1022	E9	DB	FF		JMP	1000
1025	C6	C1	04		MOV	CL, 04
1028	8A	05			MOV	AL, [DI]
102A	E6	C0			OUT	C0, AL
102C	C7	C2	10	10	MOV	DX, 1010
1030	4A				DEC	C0, AL
1031	75	FD			JNZ	1030
1033	47				INC	DI
1034	E2	F2			LOOP	1028
1036	C3				RET	
1037	C7	C2	FF	FF	MOV	DX, 0FFFF
103B	4A				DEC	DX
103C	75	FD			JNZ	103B
103E	C3				RET	
103F	09	05	06	0A	FORWARD	DATA
1043	0A	06	05	09	REVERSE	DATA

RESULT:

Enter the above program starting from location 1000 onwards. Execute the program after connecting the stepper motor in port 1. Execute the program. Now you can see that the stepper motor runs in forward and reverse direction continuously with a delay.

APPENDIX-F

SOFTWARE EXAMPLES IN 8031 ASSEMBLY LANGUAGE

EXAMPLE-1:

AIM:

TO RUN A STEPPER MOTOR AT DIFFERENT SPEED

4100			ORG	4100H
4100	90 45 00	START:	MOV	DPTR, #4500H
4103	78 04		MOV	R0, #04
4105	E0	JO:	MOVX	A, @DPTR
4106	C0 83		PUSH	DPH
4108	C0 82		PUSH	DPL
410A	90 FF C0		MOV	DPTR, #FFC0H
410D	7A 04		MOV	R2, #04H
410F	79 0F		MOV	R1, #0FH
4111	7B 0F	DLY1:	MOV	R3, #0FH
4113	DB FE	DLY:	DJNZ	R3, DLY
4115	D9 FA		DJNZ	R1, DLY1
4117	DA F8		DJNZ	R2, DLY1
4119	F0		MOVX	@DPTR, A
411A	D0 82		POP	DPL
411C	D0 83		POP	DPH
411E	A3		INC	DPTR
411F	D8 E4		DJNZ	R0, JO
4121	80 DD		SJMP	START
4123			END	
4500	09, 05, 06, 0A	TABLE:	DB	09,05,06,0A

EXAMPLE-2:

AIM:

TO RUN A STEPPE MOTOR FOR REQUIRED ANGEL WITHIN 360°, WHICH IS EQUIVALENT TO 256 STEPS.

4100			ORG	4100H	
4100	7C 05		MOV	R4, #FF	;Hexdata for 360°
4102		START:			
4102	90 41 14		MOV	DPTR, #LOO	KUP
4105	78 04		MOV	R0, #04	
4107		JO:			
4107	E0		MOVX	A, @DPTR	
4108	C0 83		PUSH	DPH	
410A	C0 82		PUSH	DPL	
410C	90 FF C0		MOV	DPTR, #FFC0)H
410F	F0		MOVX	@DPTR, A	
4110	DC 06		DJNZ	R4, CALL	
4112		HLT:			
4112	80 FE		SJMP	HLT	
4114		LOOKUP:			
4114	09 05 06 0A		DB	09H, 05H, 06	H, 0AH
4118		CALL:			
4118	7A 03		MOV	R2, #03	
411A		DLY2:			
411A	79 FF		MOV	R1, #FFH	
411C		DLY1:			
411C	7B FF		MOV	R3, #FFH	
411E		DLY:			
411E	DB FE		DJNZ	R3, DLY	
4120	D9 FA		DJNZ	R1, DLY1	
4122	DA F6		DJNZ	R2, DLY2	
4124	D0 82		POP	DPL	
4126	D0 83		POP	DPH	
4128	A3		INC	DPTR	
4129	D8 DC		DJNZ	R0, JO	
412B	80 D5		SJMP	START	
412D			END		

EXAMPLE - 3

AIM:

TO RUN A STEPPER AT DIFFRENT SPEED IN BOTH PORTS

4100				
4100	90 45 00	START:	MOV	DPTR, #4500H
4103	78 04		MOV	R0, #04H
4105	E0	J0:	MOVX	A, @DPTR
4106	FC		MOV	R4, A
4107	C0 83		PUSH	DPH
4109	C0 82		PUSH	DPL
410B	90 FF C0		MOV	DPTR, #FFC0H
410E	F0		MOVX	@DPTR, A
410F	12 41 23		LCALL	DELAY
4112	90 FF C8		MOV	DPTR, #FFC8H
4115	EC		MOV	A, R4
4116	F0		MOVX	@DPTR, A
4117	12 41 23		LCALL	DELAY
411A	D0 82		POP	DPL
411C	D0 83		POP	DPH
411E	A3		INC	DPTR
411F	D8 E4		DJNZ	R0, J0
4121	80 DD		SJMP	START
4123		DELAY:		
4123	7A 04		MOV	R2, #04H
4125		L0:		
4125	79 FF		MOV	R1, #FFH
4127		L1:		
4127	7B FF		MOV	R3, #FFH
4129		L2:		
4129	DB FE		DJNZ	R3, L2
412B	D9 FA		DJNZ	R1, L1
412D	DA F6		DJNZ	R2, L0
412F	22		RET	
4130			END	
4500	09, 05, 06, 0A	TABLE:	DB	09, 05, 06, 0A

PROGRAM FOR FORWARD & REVERSE ROTATION IN 8051

PAGE1

4100		1		ORG	4100H
		2	\$MOD52		
4100	7C33	3	START:	MOV	R4, #33H
4102	904144	4	L2:	MOV	DPTR, #FORWARD
4105	12411C	5		LCALL	L1
4108	DCF8	6		DJNZ	R4, L2
410A	124113B	7		LCALL	DELAY
410D	7C33	8		MOV	R4, #33H
410F	904148	9	L3:	MOV	DPTR, # REVERSE
4112	12411C	10		LCALL	L1
4115	DCF8	11		DJNZ	R4, L3
4117	12413B	12		LCALL	DELAY
411A	80E4	13		SLMP	START
411C	7804	14	L1:	MOV	R0, #04H
411E	E0	15	LOOP:	MOVX	A, @DPTR
411F	C083	16		PUSH	83H
4121	C082	17		PUSH	82H
4123	90FFC0	18		MOV	DPTR, #OFFCOH
4126	7A04	19		MOV	R2, #04H
4128	7905	20	L7:	MOV	R1, # 05H
412A	7BFF	21	L6:	MOV	R3, # 0FFH
412C	DBFE	22	L4:	DJNZ	R3, L4
412E	D9F6	23		DJNZ	R1, L6
4130	DAF6	24		DJNZ	R2, L7
4132	F0	25		MOVX	@DPTR, A
4133	D082	26		POP	82H
4135	D083	27		POP	83H
4137	A3	28		INC	DPTR
4138	D8E4	29		DJNZ	R0, LOOP
413A	22	30		RET	
413B	7D01	31	DELAY:	MOV	R5, #01H
413D	7A05	32	L9:	MOV	R2, #01H
413F	DAFE	33	L8:	DJNZ	R2, L8
4141	DDFA	34		DJNZ	R5, L9
4143	22	35		RET	
4144	0905060A	36	FORWARD:	DB 09H, 05H	I, 06H, 0AH
414B	0A060509	37	REVERSE:	DB 0AH, 06H	Н, 05Н, 09Н