AMENDMENTS TO THE SPECIFICATION

Please replace paragraph [0003] with the following amended paragraph:

[0003] FIG. 1 shows the structure of a surface discharge type triode plasma display panel. FIG. 2 shows an example of a display cell of the plasma display panel shown in FIG. 1. Referring to FIGS. 1 and 2, address electrode lines A_{R1} , $[[A_{R2}]] \underline{A_{GL}}, \ldots, A_{Gm}, A_{Bm}$, dielectric layers 11 and 15, Y-electrode lines Y_1, \ldots, Y_m , X-electrode lines X_1, \ldots, X_m , phosphor layers 16, partition walls 17, and a magnesium oxide (MgO) layer 12 as a protective layer are provided between front and rear glass substrates 10 and 13 of a general surface discharge plasma display panel 1.

Please replace paragraph [0009] with the following amended paragraph:

[0009] Referring to FIGS. 4 and 5, in the typical driving apparatus using the address-display separation driving scheme as shown in FIG. 3, the X-driver 64 and the Y-driver 65 works work together. The X-driver 64 includes a single reset circuit RC x and a single sustain circuit SC v. The Y-driver includes a single reset/sustain circuit RSC and a single scan circuit.

Please replace paragraph [0020] with the following amended paragraph:

[0020] Accordingly, it can be inferred that a high power transistor for switching needs to be connected between an upper common <u>power</u> line PL_U of the upper transistors YU1 through YUn of the switching output circuit SIC and the terminal of the scan bias voltage V_{SCAN} . When only a single high power transistor S_{SC1} or S_{SC2} is connected, the following problems occur.

Please replace paragraph [0021] with the following amended paragraph:

[0021] When only the second high power transistor S_{SC2} is connected, during the reset period and the display-sustain period, the driving signals O_{RS} of the reset/sustain circuit RSC are applied to the terminal of the scan bias voltage V_{SCAN} via an internal diode of the second high power transistor S_{SC2} , and thus a current flows. As a result, a driving operation during the reset period and the display-sustain period is <u>unstable</u> instable and requires high power consumption.

Please replace paragraph [0024] with the following amended paragraph:

[0024] In the meantime, when the third high power transistor S_{SP} is not connected and thus the upper common <u>power</u> line PL_U of the upper transistors YU1 through YUn is merely disconnected with a lower common <u>power</u> line PL_U of the lower transistors YL1 through YLn, during the reset period and the display-sustain period, the driving signals O_{RS} of the reset/sustain circuit RSC are applied to all of the Y-electrode lines Y_1 through Y_n via all of the lower transistors YL1 through YLn of the switching output circuit SIC and also applied to the first high power transistor S_{SC1} via internal diodes of the upper transistors YU1 through YUn and an internal diode of the second high power transistor S_{SC2} of the scan driving circuit AC. As a result, the performance and the life span of the first high power transistor S_{SC1} are decreased. However, when the third high power transistor S_{SP} is connected, a voltage is dropped down by a predetermined level by the third high power transistor S_{SP} so that a voltage applied to the first high power transistor S_{SC1} can be decreased.

Please replace paragraph [0025] with the following amended paragraph:

[0025] In such a Y-driver of a typical driving apparatus, even when all of the lower transistors YL1 through YLn of the switching output circuit SIC are turned off, the driving signals Opes of the reset/sustain circuit RSC are applied to all of the Y-electrode lines Y₁ through Y₂, via

Response to Office Action of February 21, 2007

the lower common power line $\underline{P_{L_l}}$ and the internal diodes of the upper transistors YU1 through YUn.

Please replace paragraph [0054] with the following amended paragraph:

[0054] The scan circuit of each of the first and second scan/sustain circuits SSC1 and SSC2 includes a scan driving circuit AC and a switching output circuit SIC and sequentially applies scan pulses to Y-electrode lines to perform an addressing operation of generating a predetermined wall voltage in selected display cells. The switching output circuit SIC includes upper transistors YU₁ through YU_{n/2} and lower transistors YL₁ through YL_{n/2} of an XY-electrode line line pair group corresponding to the switching output circuit SIC, and common output lines of the respective upper and lower transistor pairs are connected to Y-electrode lines Y₁ through Y_{n/2}, respectively. During an address period, the scan driving circuit AC generates driving signals to be applied to the Y-electrode lines Y₁ through Y_{1/2} of the Y-electrode line pair group corresponding to the scan driving circuit AC. In other words, the scan driving circuit AC is connected to the an upper common power line PLu of the upper transistors YU1 through YUn/2 of the switching output circuit SIC and a lower common power line PL, of the lower transistors YL, through YL_{n/2} of the switching output circuit SIC, applies a scan voltage to Y-electrode lines. which are scanned during the address period, and applies a scan bias voltage to Y-electrode lines, which are not scanned during the address period. FIG. 12 is a timing chart showing voltage waveforms of driving signals applied to electrode lines in a subfield when addressdisplay mixing driving is performed by the driving apparatus shown in FIG. 6. In FIG. 12, a reference character O_{AR1...ARm} denotes a display data signal applied from the address driver 63 of FIG. 3 to the address electrode lines A_{R1} through A_{Bm} of FIG. 1. A reference character O_X denotes a driving signal applied from the X-driver 64 of FIG. 3 to the X-electrode lines X₁ through X_n of FIG. 1. A reference character O_{VG1} denotes a driving signal applied from the first

scan/sustain circuit SSC1 to the Y-electrode lines Y_1 through $Y_{n/2}$ of the first XY-electrode line pair group. A reference character O_{YG2} denotes a driving signal applied from the second scan/sustain circuit SSC2 to the Y-electrode lines $Y_{n/2+1}$ through Y_n of the second XY-electrode line pair group. A reference character R denotes a reset period. A reference character AM denotes a mixed period in which an address period and a mixed display-sustain period coexist. A reference character CS denotes a common display-sustain period. A reference character AS denotes a compensation display-sustain period.

Please replace paragraph [0058] with the following amended paragraph:

[0058] During the address period in the mixed period AM, a scan bias voltage $V_{SC,H}$ induced by charging a capacitor C_{SP} is applied to the upper common power line PL_U and the upper transistors YU_1 through $YU_{n/2}$ of the switching output circuit SIC. In addition, the high power transistor S_{SCL} is turned on. As a result, a negative scan voltage V_{SC} is applied to the lower transistors YL_1 through $YL_{n/2}$ of the switching output circuit SIC via the high power transistors S_{SCL} . Then, a lower transistor connected to a Y-electrode line to be scanned is turned on, and an upper transistor connected to the Y-electrode line to be scanned are turned off, and upper transistors connected to all of other Y-electrode lines not to be scanned are turned off, and upper transistors connected to all of the other Y-electrode lines not to be scanned are turned on. Accordingly, the negative scan voltage V_{SC} is applied to the Y-electrode lines not to be scanned, and the scan bias voltage V_{SC_H} is applied to the other Y-electrode lines not to be scanned.

Please replace paragraph [0066] with the following amended paragraph:

[0066] During the mixed display-sustain period in the mixed period AM, during the common display-sustain period CS, and during the compensation display-sustain period AS, while the voltage of pulses applied to the Y-electrode lines Y_1 through $Y_{n/2}$ of the first XY-electrode line pair group increases from a ground voltage V_G to a second voltage V_S , only a first transistor STI is turned on. As a result, charges collected in an energy regeneration capacitor C_{SY} [[is]] are applied to the Y-electrode lines Y_1 through $Y_{n/2}$ of the first XY-electrode line pair group via inductor Ly.

Please replace paragraph [0078] with the following amended paragraph:

[0078] During the mixed display-sustain period in the mixed period AM, during the common display-sustain period CS, and during the compensation display-sustain period AS, while the voltage of pulses applied to the X-electrode lines X_1 through X_n increases from the ground voltage V_G to the second voltage V_S , only a 141st transistor ST141 is turned on. As a result, charges collected in an energy regeneration capacitor C_{SX} [[is]] are applied to the X-electrode lines X_1 through X_n via an inductor L_X .