MDPs with discounted cost as MDPs with finite random duration

"Death and Discouting" by Adam Shwartz

COMP 767 - Reinforcement Learning January 20th

They show that:

- 1) MDPs with discounted cost ~ MDPs with finite random duration. Discout factor ~ life-span
- 2) "an objective function which is a linear combination of several discounted costs does NOT, in general, model processes with several time scales"

• Focus on 1)

M1: Classical discounted MDP with

$$V(x;\pi) = E_x^{\pi} \sum_{n=0}^{\infty} \beta^n c(x_n, a_n)$$

• M2: Now add an absorbing sate Δ ('cemetery') with:

$$- p(\Delta|x,a) = 1 - \beta$$

$$- p(y|x,a) = \beta p(y|x,a)$$

$$- p(\Delta|\Delta,a) = 1 \text{ and } c_{\Delta}(\Delta,a) = 0$$

$$V_{\Delta}(x;\pi_{2}) = \tilde{E}_{x}^{\pi_{2}} \sum_{n=0}^{\infty} c_{\Delta}(x_{n},a_{n})$$

• Let $\{\zeta_n\}$ be a sequence of $\{0,1\}$ i.i.d. rnd.var. with mean β so that $x_n = \Delta \Leftrightarrow \zeta_n = 0$.

T = first time step t when $\zeta_t = 0$

- Let $\{\zeta_n\}$ be a sequence of $\{0,1\}$ i.i.d. rnd.var. with mean β so that $x_n = \Delta \Leftrightarrow \zeta_n = 0$. $T = \text{first time step t when } \zeta_t = 0$
- Lemma: Can replace discount factor of M1 by geometric time-horizon:

$$V(x;\pi) = E_{x}^{\pi} \sum_{n=0}^{\infty} \beta^{n} c(x_{n}, a_{n})$$

$$= E_{x}^{\pi} \sum_{n=0}^{\infty} (\prod_{t=0}^{n-1} \zeta_{t}) c(x_{n}, a_{n})$$

$$= E_{x}^{\pi} \sum_{n=0}^{T-1} c(x_{n}, a_{n})$$

Policies in M2 rely on richer info:

$$\tilde{h}_n = x_0 \zeta_0 a_0 \dots x_{n-1} \zeta_{n-1} a_{n-1} x_n$$

• Given a policy π_2 in M2, we can define π in M1:

$$-\pi(.|x_0a_0...x_n) = \pi_2(.|x_01a_0...1x_n)$$

- Conversely, given π , we can define π_2 :
 - if $\zeta_t = 1 \forall t < n \text{ then } \pi_2(.|\tilde{h}_n) = \pi(.|h_n)$
 - else $\pi_2(.|\tilde{h_n}) = a_{\Delta}$
- Thm: M1 and M2 are equivalent in the following sense: n=1

$$-E_{x}^{\pi}\beta^{n}c(x_{n},a_{n})=E_{x}^{\pi}(\prod_{t=0}^{\pi}\zeta_{t})c(x_{n},a_{n})$$

$$=\tilde{E}_{x}^{\pi_{2}}(\prod_{t=0}^{n-1}\zeta_{t})c_{\Delta}(x_{n},a_{n})=\tilde{E}_{x}^{\pi_{2}}c_{\Delta}(x_{n},a_{n}).$$
so: $V(x,\pi)=V_{\Delta}(x,\pi_{2})$