System Architecture

The Future of Computing

David Kanter

dkanter@gmail.com

www.realworldtech.com

@TheKanter

My Background

- Real World Tech
 - CSI/QPI; CPU, process, GPUs, etc.
 - Technology and IP consulting
 - Microprocessor Report
- Strandera
 - Speculative multi-threading for x86

Several aerial imaging/camera patents

- Garden of Eden
- (Silicon) Paradise Lost
- Case Studies
- What Can You Do?

CMOS is Made of These

Transistors (1 layer)

Metal interconnects (e.g., 7-13 layers)

Moore's Law Scaling: Cost

Dennard Scaling: Performance

Device or Circuit Parameter Scaling Factor
Device dimension t_{ox} , L, W 1/kDoping concentration N_a kVoltage V 1/kCurrent I 1/kCapacitance eA/t 1/kDelay time per circuit VC/I 1/kPower dissipation per circuit VI 1/kPower density VI/A 1

Table I: Scaling Results for Circuit Performance (from Dennard)

CPU Performance over time
Frequency increased by 3,500X
© Hennessey & Patterson, 2009

- Garden of Eden
- (Silicon) Paradise Lost
- Future of Computing
- Case Studies
- What Can You Do?

Physics is a Harsh Mistress

Geometric scaling is increasingly difficult

Dennard scaling stopped around 2000-2005

Silicon performance and density are decoupled

193nm Lithography Woes

Increased wafer cost erodes Moore's Law

A Decade of Ingenuity

Material science improves performance

- Strain, High-k/metal gate, FinFET, air gaps
- Scaling continues, cost/complexity increases

No More Free Lunch

Reality: Cannot improve everything

- Multi-dimensional trade-offs
 - Performance, active power, idle power, area, time-to-market, NRE, yield
 - Analog & RF very different from digital

Must focus on value for each product

Servers, ASICs, phones different

- Garden of Eden
- (Silicon) Paradise Lost
- Future of Computing
- Case Studies
- Where Next?

Systems: Better Together

Software

Hypervisor, OS, driver, libs, app, languages

IP

CPU, cache, GPU, fabric, PCIe, memory, storage

Silicon

Logic, DRAM, NAND, analog, RF, interposers

Abstraction and isolation are costly

A unified view enables macro-optimization

Systems Drive Performance

Power Limits Performance

© 2017 David Kanter

What Drives Power?

Activity Factor * Cap. * V_{dd}^2 * Frequency

Power_{STATIC} = Complicated

0.15pJ/bit per mm in copper with 1V signal

Creating Value

Performance is obvious, but also need:

- Security
- Reliability/robustness/resilience
- Programmability
- Form factor (temperature, volume, etc.)

- Garden of Eden
- (Silicon) Paradise Lost
- Future of Computing
- Case Studies
- What Can You Do?

Modern Graphics Systems

Modern GPU core

© The Linley Group, 2016

Customized for different products

Nvidia Pascal Cores

Instruction		A, A[MUL	•	special functions	add, sub, boolean	compare, min/max, SAD, int32 shift, int32 bitfield	warp shuffle	64b convert	other convert, popcount	int32 mul/muladd, int24 mul, LZCOUNT, SIMD
Datatype	HP	SP	DP	SP	int32	iiit32 bitiieid				video
P100	128	64	32	16	64	32	32	16	16	Multiple instructions
GP10x	2	128	4	32	128	64	32	4	32	Multiple instructions

Throughput changes by product L1 cache, shared memory also change Some instructions are very slow

HBM instead of GDDR

Transmit data over ~mm of silicon... instead of ~cm of package/circuit board

HBM Advantages

- Wide and slow interface
 - Very simple PHY, no training, easy to idle
 - Lower voltage
- No ESD for on-package interconnect

	R 290X GDDR5	R Fury HBM
Bus width	16x 32-bit	4x 1,024-bit
Clock/data rates	1.25GHz/5Gbps	0.5GHz/1Gbps
Bandwidth	320GB/s	512GB/s
Voltage	1.5V	1.3V
Power	30W	12W

GPUs as Accelerators

Leverage volume/economics of graphics

- Great for FP matrix multiplication
 - E.g., some HPC, neural network training, etc.

- Tolerable for image and video (mostly ints)
 - But eclipsed by dedicated hardware

Avoid control flow, pick right problem size

On-Chip Data: CPUs and GPU

GPU registers are impressive, mind the cliff!

Off-Chip Data: CPUs and GPU

GPUs have small but fast memory

Workload Specific Accelerators

Bespoke hardware for the largest gains

Example: Eyeriss project at MIT

- Reconfigurable convolutional neural network accelerator
- Chen, et. al. from ISSCC 2016

Convolutional Neural Networks

Modern **Deep** CNN: **5 – 152** Layers Low-Level **High-Level** Conv Conv → Classes Features → **Features** Layer >90% of compute/run-time Convolution **Activation** Norm. **Pooling**

Convolution Dataflow

CNN Inference Accelerator

Minimize Data Movement

Don't move data! Keep input row * filter row within a PE

Dataflow on Accelerator

Dataflow in Practice

Multicast, P2P network saves power

Compress out zeroes (sparse data)

CNN Accelerator Recap

Beats general-purpose GPUs easily!

- 10X less DRAM bandwidth
- Much better perf/watt

Why? Specialized architecture!

- Custom network-on-chip
- Minimal data movement/compression
- Simple cores

Mobile Full Disk Encryption

Security, privacy important for customers

Challenges

- Performance overhead
- Power/energy cost
- Application adoption

Mobile System Architecture

Software Crypto

Works on all **ARMv8** systems... © ...slowly and ineffeciently ®

Hardware Crypto

Must spend area on crypto module
No change to NAND or controller

...actually works well!

SW Crypto Performance

HW Crypto Performance

Accelerator Challenges I

- Is the workload stable?
 - May need programmable solution
 - E.g., Intel Gen GPU for media pipeline
 - Can harden over time

- How do we expose accelerators?
 - Instructions, e.g., AESNI, TSX
 - DSLs, e.g., Halide; APIs, e.g., Tensorflow
 - Don't enable 3rd parties (e.g., Apple DSPs)

Accelerator Challenges II

- How often can we use an accelerator?
 - Determined by market/customer/use case
 - Will this run on GPU, DSP (existing HW)?
 - Developer adoption usually necessary

- How do I get paid?
 - Pay attention to volume and economics
 - Enabling new capabilities is best
 - Selling better perf/power is OK

- Garden of Eden
- (Silicon) Paradise Lost
- Future of Computing
- Case Studies
- What Can You Do?

Focus on the System

- Intersection of SW and HW
 - Understand hardware and underlying tech
 - Don't be that guy who defrags an SSD!
 - Cross layers of abstraction
 - Technical, business, company, etc.

- Learn new technologies
 - Computers were vacuum tubes in the 60's
 - Have a critical eye and remember economics

Future Options to Ponder

- Computing
 - Quantum, near-threshold, approximate, FPGA
- Memory
 - ReRAM, MRAM, 3D Xpoint, CBRAM, HMC
- Exotic semiconductors (e.g., GaN)
- MEMs
- Low power communications
- Displays, sensors

Q&A

Suggested Reading

RWT: www.realworldtech.com

Accelerators, NTV: http://bit.ly/2lhOZtv

CBRAM: http://bit.ly/2mt7E5u

Hot Chips: http://www.hotchips.org/archives/