Instituto Tecnológico de Costa Rica Área Académica de Ingeniería en Computadores Proyecto de Diseño en Ingeniería en Computadores

Project Plan

Daniel Moya Sánchez

1 Name of the project

Design of Application Specific Instruction Set Processors (ASIPs) for Approximate Computing

2 Name of the institution

- Chair for Embedded System (CES), Kalrsruhe Institute of Technology (KIT), Germany, and
- Laboratorio Sistemas Embebidos y Electrónica Digital (SEED-Lab) of Instituto Tecnológico de Costa Rica (ITCR).

3 Confidentiality requirements

Due to the academic nature of this project, there are no special confidentiality requirements. However, results will not be published until the end of the project's work.

4 Problem description

An ASIP is a processor that use an application-specific instruction set, this means that, although it can execute a wide range of applications, it is optimized for a specific one, in which the ASIP can execute with improved performance (for instance, energy consumption or execution time) compared to a General Purpose Processor (GPP). Although Application Specific Integrated Circuits (ASICs) present better performance results, ASIPs possess flexibility. Optimizations for an ASIP can be seen in different forms, including [CITA]:

- Instruction extension: Customized instructions can be made to extend the base Instruction Set Architecture (ISA).
- Inclusion or exclusion of predefined blocks: Not only specific software can be added to extend an architecture but also customized hardware in the form of specialized blocks; also, regular blocks not used can be excluded.
- Parameterization: Certain variables, such as cache sizes or number of registers, can be customized to adjust for a specific application.

ASICs represent a hardware solution to a problem which is very limited and have high costs and a high time-to-market, but achieves the greatest performance. Contrary, GPPs

are seen as a software solution which are very flexible but they are the least efficient. ASIPs are in the middle of these two as they balance flexibility and performance to have a good trade-off between those variables.

ASIPs can also be used to adjust the balance between acceptable amount of error vs. the cost (economic, area, execution time) of an application; which is is the main focus of study of the project. Since different types of applications vary significantly in their requirements and specifications (e.g. where the error-resilient section is), different ASIPs have to be build for each one of them so that the best balance between cost savings and amount of error is achieved. This project focuses on that goal, to design ASIPs for a set of error-tolerant applications.

The environment in which the ASIPs will be developed consists in several software tools which include Design Compiler and Prime Time from Synopsys, ModelSim from Mentor Graphics, ASIPMeister, CoSy compiler, Xilinx ISE and the hardware platform will be a Xilinx Virtex-V board. Regardless these limitations, the project will allow for a custom hardware components choice with its design for specific sections. Also, for the error tolerant applications found, the software implementation and the tests for the general system will be able to be chosen between different options.

Since approximated computing is in its infancy, it still needs a lot of research and testing, so the users of the ASIPs developed will be the same groups of investigation of which this project is part of; it is expected that this helps to make approximated computing a more solid tendency.

5 Objectives

5.1 General objectives

Explore the design of Application-Specific Instruction Set Processors (ASIPs) for error-resilient applications.

5.2 Specific objectives

This project has the following specific objectives:

- 1. Select 3 error tolerant applications to be evaluated.
- 2. Develop at least 3 instances of approximated hardware for tolerant error sections for each of the selected applications.
- 3. Develop ASIPs configurations using specific approximated instructions for the applications selected.

4. Evaluate the selected applications on the designed ASIPs in terms of execution time, area, and power consumption regarding the error introduced by the approximate instructions.

6 Project stakeholders

Due to this project belongs to a research project, there is only a few stakeholders, whom are described below:

- Jorge Castro: He is the project's supervisor and he has the general idea about the project itself and guides its course. He attempts to create new knowledge with the use of ASIPs for error-tolerant applications, using approximate computing techniques, and that their design become automated.
- Sajjad Hussain: He works with Jorge Castro on the general guidance of the project. He supports any issue with the tools in Germany so that the process of using the developing platform (ASIPMeister, Dlxsim, etc.) remains smooth. He has the same interest as Jorge Castro regarding the project.
- Jeferson González: He is the project's supervisor at the ITCR, and the person in charge of the SEED laboratory, from where he occasionally provides guidance and collaboration (such as lab equipment).

7 Solution description

First, an application that can have a approximated behavior in any of its steps needs to be found, for this, several applications have to be examined and each one needs to have a source code that, without any modifications, executes correctly in standard hardware blocks. Next, a selected application must be studied to determine whether an entire section can be approximated or only a certain operation (e.g. a matrix multiplication) or even both sections. Figure 1 shows a generic system in which the above situation can happen.

As seen in figure 1, that example of an application has three sections, from which the first one (this could be a preprocessing stage) can be entirely approximated, the second one cannot be approximated at all (we can think of this as a critical section of the application) and finally, in the third second, three specific instructions can be seen, from which the second one has a approximated version. The specific characteristics of the final applications selected have to be determined to execute an analysis similar to this one presented.

Once the approximate parts have been selected, the process of creating the ASIPs begin. These ASIPs are continuously tested to ensure that the application does not exceed certain

Figure 1: Expected situation to solve with this project

error level but also a greater performance in energy, area or execution time is achieved compared to the original version.

Other solutions have proposed, which include

8 Deliverables and criteria of acceptance

The expected deliverables are presented in table 1.

9 Risk analysis

Since most of the work is done from home or the SEED laboratory, a few risks are considered. Table 2 summarizes this information.

Table 1: Deliverables with the corresponding criteria of acceptance

Name	Description	Criteria of acceptance					
Requirement 1.1	Instances of approximated hardware	[criterio]					
Requirement 2.1	Configuration of approximated ASIPs	[criterio]					
Requirement 3.1	Comparison and analysis of the	Execution of the test					
	obtained results (execution time,	plan with satisfying results					
	area and power vs error)	pian with satisfying results					
Requirement 4.1	Plan Project document	Specifications given by the					
	1 lan 1 roject document	professors for this document					
Requirement 5.1	Requirements document	Specifications given by the					
	requirements document	professors for this document					
Requirement 6.1	Design document	Specifications given by the					
	Design document	professors for this document					
Requirement 7.1	Test plan document	Specifications given by the					
	rest plan document	supervisor for this document					
Requirement 8.1	Final documentation	Specifications given by the					
	r mai documentation	professor for this document					

Table 2: Risk analysis

Risk	Probability of	Impact	Risk exposure		
RISK	occurrence	(hours)	(hours)		
Illness or any special medical condition	0.5	8	4		
General server errors (missing files,	0.6	24	14 4		
permission restrictions, etc)	0.0	24	14.4		
Delays when acquiring the hardware	0.25	8	2		

10 Activities and effort budget

This section takes in consideration a total of 216 engineering hours; this is then distributed among all the tasks, considering a risk reserve. The table 3 summarizes all the activities for the project.

11 Schedule

Considering the 4 months (16 weeks) of the semester, the project is scheduled as shown in figure 4.

References

Table 3: Activities and effort budget

ID	Activity	Engineering	Risk reserve	Total	
	Activity	hours	(hours)	(hours)	
001	Get to know the software platform	24	2	26	
	Find appropriate error-resiliant applications				
002	and identify the sections that can be	42	4	46	
	approximated				
003	Implement the ASIPs in the error	50	3	53	
	tolerant applications found	50	3	99	
004	Evaluate the results obtained with	35	3	33	
	a selected test plan	. 55	3	აა	

Table 4: Schedule for the entire project

	Week															
Activity		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Reading the corresponding																
literature about the																
project and understanding																
the general idea of ASIPs																
Execution of the laboratory																
script to get to know																
the software tools like																
ASIPMeister, Dlxsim, etc																
Delivery of the "Plan Project"																
document																
Delivery of the "Requirements"																
document																
Delivery of the "Design"																
document																
Research of error tolerant																
applications with desirable																
features																
Design of blocks with																
special approximated																
instructions																
Putting the blocks together																
to build the ASIPs																
Final results comparison																
Delivery of the "Final report"																
document																