Curves 1.1

We say f is *smooth* if f is C^k for every integer k.

A parameterized curve is a C^n (or smooth) map $\alpha: I \to \mathbb{R}^n$ for some interval I = (a, b) or [a, b] in \mathbb{R} .

We say α is regular parameterized curve if it is a parameterized curve and if $\alpha' \neq 0$ for all $t \in I$.

The velocity vector $\alpha'(t)$ is tangent to the curve at $\alpha(t)$ and its length $||\alpha'(t)||$, is the speed of the particle.

The arclength of a curve α from a to t is given by $s(t) = \int_a^t ||\alpha'(t)|| du$.

The curve α is arclength parametrized if s(t) = t for all t. Equivalently, if $||\alpha'(t)|| = 1$.

Examples of curves.

Given points \vec{P} and \vec{Q} , the parameterization of a line going from \vec{P} to \vec{Q} is given by: $\alpha(t) = P + t(Q - P)$ where $t \in \mathbb{R}$ and $0 \le t \le 1$.

The parameterization of the ellipse is given by $\alpha(t) = (a\cos(t), b\sin(t))$ where $t \in \mathbb{R}$ and $0 \le t \le 2\pi$.

The *cuspidal cubic* parameterization is given by $\alpha(t) = (t^2, t^3)$ and the *nodal cubic* is given by $\beta(t) = (t^2 - 1, t^3 - t)$.

The twisted cubic (in \mathbb{R}^3) is given by $\alpha(t)=(t,t^2,t^3)$ where $t\in\mathbb{R}^3$. It's projections in the xy-,xz- and yz- coordinate planes are given by $y=x^2$, $z=x^3$ and $z^2=y^3$ (cuspidal cubic).

The *cycloid* is given by $\alpha(t) = a(t - \sin(t), 1 - \cos(t))$ where $t \in \mathbb{R}$.

The *helix* (in \mathbb{R}^2) is given by $\alpha(t) = (a\cos(t), a\sin(t), bt)$.

The *catenary* is given by the graph of $f(x) = C \cosh(\frac{x}{C})$, for any constant C > 0 or by the parametrization $\alpha(t) = (t, \cosh(t))$.

The tractrix is given by $\beta(t) = (t - tanh(t), sech(t))$ for all $t \ge 0$.

Important properties of cosh and sinh.

$$\cosh(t) = \frac{e^t + e^{-t}}{2}, \qquad \sinh(t) = \frac{e^t - e^{-t}}{2}, \qquad \tanh(t) = \frac{\sinh(t)}{\cosh(t)}, \qquad \operatorname{sech}(t) = \frac{1}{\cosh(t)}$$

$$\cosh^{2}(t) - \sinh^{2}(t) = 1, \qquad \tanh^{2}(t) + \operatorname{sech}^{2}(t) = 1$$

$$\sinh'(t) = \cosh(t), \qquad \cosh'(t) = \sinh(t), \qquad \tanh'(t) = \operatorname{sech}^{2}(t)$$

$$\operatorname{sech}'(t) = -\tanh(t) \cdot \operatorname{sech}(t).$$

Curves Continued

Let $f:(a,b)\to\mathbb{R}^3$ be differentiable. Then ||f(t)|| is constant for all t if and only if $f(t)\cdot f'(t)=0$.

Assume that the curve α is arclength parameterized. Then $\mathbf{T}(t) = \alpha'(t)$ is the *unit tangent vector* to the curve. Note that \mathbf{T} has constant length and \mathbf{T}' is orthogonal to \mathbf{T} .

Assume $\mathbf{T}' \neq 0$, then we define the *principal normal vector* $\mathbf{N}(t) = \frac{\mathbf{T}'}{||\mathbf{T}'||}$ and the *curvature* is defined to be $\mathcal{K}(t) = ||\mathbf{T}'(t)||$. Note, that if α is a regular parametrized curve, then $\mathcal{K} = \frac{||\alpha' \times \alpha''||}{||\alpha'||^3}$

Assume $\mathcal{K} \neq 0$. We define binormal vector to be $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$.

We define the torsion to be $\tau(t) = \mathbf{N}' \cdot \mathbf{B}$.

The Frenet Apparatus is defined to be the collection $\mathbf{T}, \mathbf{N}, \mathbf{B}, \mathcal{K}$ and τ . The Frenet Frame is given by the formulas:

$$\mathbf{T}'(s) = \mathcal{K}(s)\mathbf{N}(s)$$

$$\mathbf{N}'(s) = -\mathcal{K}(s)\mathbf{T}(s) + \tau(s)\mathbf{B}(s)$$

$$\mathbf{B}'(s) = -\tau(s)\mathbf{N}(s)$$

The *involute* of a curve $\alpha(t)$ is given by $\beta(t) = \alpha(t) + (c-t)\mathbf{T}(t)$ for some constant c. The *evolute* of a curve $\alpha(t)$ is given by $\beta(t) = \alpha(t) + \frac{1}{\mathcal{K}}\mathbf{N}(t) + \frac{1}{\mathcal{K}}\cot(\int \tau dt)\mathbf{B}(t)$.

Assume $\mathcal{K}(t) \neq 0$ for a curve α . Then, its radius of curvature is defined as $\rho(s) = \frac{1}{\mathcal{K}(t)}$. Furthermore, we define the center of curvature c to be given by the formula: $c = \alpha(t) + \rho(t)\mathbf{N}(t)$ where \mathbf{N} is the normal to the curve.

If a simple closed curve C has length L and encloses area A, then the *isoperimetric inequality* states that $L^2 \geq 4\pi A$ where the equality holds if and only if C is a circle.

Surfaces

Let U be an open set in \mathbb{R}^2 . A regular parameterization of a subset $M \subset \mathbb{R}^3$ is a C^3 injective function $x: U \to M \subset \mathbb{R}^3$ so that $x_u \times x_v \neq 0$. A connected subset $M \subset \mathbb{R}^3$ is called a surface if each point has a neighbourhood that is regularly parameterized.

Examples of Surfaces

The graph of a function $f: U \to \mathbb{R}$, z = f(x, y), is parameterized by x(u, v) = (u, v, f(u, v)).

The *helicoid* is given by $x(u,v) = (u\cos(v), u\sin(v), bv)$ for u > 0 and $v \in \mathbb{R}$. Note that the u-curves are called *rays* and the v-curves are called *helices*.

The torus (i.e. the surface of a doughnut) is given by the regular parametrization $x(u,v) = ((a+b\cos(u))\cos(v), (a+b\cos(u))\sin(v), b\sin(u))$ for $0 \le u$ and $v < 2\pi$.

The standard parametrization of the unit sphere σ is given by spherical coordinates $(\phi, \theta) \leftrightarrow (u, v)$: $x(u, v) = (\sin(u)\cos(v), \sin(u)\sin(v), \cos(u))$ for $0 < u < \pi$ and $0 \le v < 2\pi$.

Let $I \subset \mathbb{R}$, and let $\alpha(u) = (0, f(u), g(u)), u \in I$, be a regular parametrized plane curve (injective) with f > 0. Then the *surface of revolution* obtained by rotating α about the z-axis is parametrized by $x(u,v) = (f(u)\cos(v), f(u)\sin(v), g(u))$ where $u \in I$ and $0 \le v < 2\pi$. Note, the u-curves are called *profile curves* or *meridians*. The v-curves are circles, called *parallels*.

Let $I \subset \mathbb{R}$ be an interval, let $\alpha: I \to \mathbb{R}^3$ be a regular parametrized curve, and let $\beta: I \to \mathbb{R}^3$ be an arbitrary smooth function with $\beta(u) \neq 0$ for all $u \in I$. We define a parametrized surface by $x(u,v) = \alpha(u) + v\beta(u)$ for $u \in I$ and $v \in \mathbb{R}$. This is called a *ruled surface* with *rulings* $\beta(u)$ and *directrix* α . The cylinder, helicoid and cone are all examples of a ruled surface.

First Fundamental Form

Let M be a regular parametrized surface, and let $P \in M$. Then choose a regular parametrization $x: U \to M \subset \mathbb{R}^3$ with $P = x(u_0, v_0)$. We define the tangent plane of M at P to be the subspace T_PM spanned by x_u and x_v evaluated at (u_0, v_0) .

The unit normal **n** to a parametrized surface is given by $\mathbf{n} = \frac{x_u \times x_v}{||x_u \times x_v||}$. Note $x_u \times x_v$ is a non zero vector orthogonal to the plane spanned by x_u and x_v .

The first fundamental form is $I_P(U,V) = U \cdot V$ for $U,V \in T_PM$. To find I_P , we define the equations:

$$E = I_P(x_u, x_u) = x_u \cdot x_u$$

$$F = I_P(x_u, x_v) = x_u \cdot x_v = x_v \cdot x_u = I_P(x_v, x_u)$$

$$G = I_P(x_v, x_u) = x_v \cdot x_v$$

so that I_P is given by the symmetric matrix:

$$I_P = \begin{pmatrix} E & F \\ F & G \end{pmatrix}$$

The surface area of the parametrized surface $x:U\to M$ is given by the formula: $\int_U ||x_u\times x_v||dudv=\int_U \sqrt{EG-F^2}dudv$

A map is an *isometry* if it preserves distance and angles. A map is *conformal* if it preserves angles. Note that a map x(u, v) is conformal if and only if E = G and F = 0 and x(u, v) is isometric if and only if E = G = 1 and F = 0.

Second Fundamental Form