Design & Analysis of Data Science Experiments Hypothesis Testing & Tests

Nagiza F. Samatova, <u>samatova@csc.ncsu.edu</u>

Professor, Department of Computer Science North Carolina State University

Senior Scientist, Computer Science & Mathematics Division Oak Ridge National Laboratory

Outline

- Hypothesis Testing
 - Testing Procedure
 - Null Hypothesis & Alternative Hypothesis
 - p-value and Degrees of Freedom (df)
 - Type I and Type II Errors
- Examplar Tests: Parametric & Nonparametric
 - T-Tests and Wilcoxon Tests
 - Single Sample: T-Test
 - Two-Sample: Independent Groups
 - Paired Two-Sample: Dependent Groups
 - Multiple Samples: Independent Groups

Statistical Distributions & Functions in R

Distribution	Random Number Generator	Density	Distribution	Quantile
Normal	rnorm	dnorm	pnorm	qnorm
t	rt	dt	pt	qt
F	rf	df	pf	qf
χ^2	rchisq	dchisq	pchisq	qchisq

{dpqr}distribution_abbreviation()

- **d** = density
- p = distribution function
- q = quantile function
- r = random generation
- pnorm(a) $\equiv P(X \leq a)$: probability that a or smaller number occurs
- pnorm(b) pnorm(a) $\equiv P(a \leq X \leq b)$: probability that the variable falls between two points
- qnorm(): given the cumulative probability distribution, it returns the quantile

Statistical Distributions: Mean and Variance

Distribution	Degrees of freedom	Mean	Variance
Normal		μ	σ^2
t	\boldsymbol{n}	0	n/(n-2)
F	n_1 and n_2	$n_2/(n_2-2)$	a/b
χ^2	r	r	2r

$$a = 2n_2^2(n_1 + n_2 - 2)$$

 $b = n_1(n_2 - 2)^2(n_2 - 4)$

Reminder: Statistic & its Proxy

Aim	Model Statistic	Sample Statistic	Proxy Statistic	Formula for Proxy
Estimate the mean μ of a normal distribution with known variance σ^2	μ	m	Z-statistic	$Z{\sim}rac{m-\mu}{\sigma/\sqrt{n}}$
Estimate the variance σ^2 of a normal distribution with known mean μ	σ^2	S^2	χ^2 -statistic	$\chi^2_{n-1} \sim (n-1) \frac{S^2}{\sigma^2}$
Estimate the mean μ of a normal distribution with un-known variance σ^2	μ	m	t-statistic	$T_{n-1} \sim \frac{m-\mu}{S/\sqrt{n}}$

Ex.	Proxy Statistic	Distribution	Degrees of Freedom (df)
1	Z-statistic	<i>N</i> (0, 1)	
2	χ^2 -statistic	$\chi^2(n-1)$	n-1
3	t-statistic	T_{n-1}	n-1

Hypothesis Testing: Procedure

- Step 1: Define a statistic that obeys a certain distribution if the hypothesis is correct:
 - Ex-1: The mean μ from a normal distribution with known variance σ^2
 - Ex-2: The variance σ^2 from a normal distribution with known mean μ
 - Ex-3: The mean μ from a normal distribution with unknown variance σ^2
- Step 2 (optional): Transform the statistic to a proxy statistic with the proxy distribution of better understood properties/characteristics:
 - Ex-1: Z-statistic from a uniform normal distribution, N(0,1)
 - Ex-2: χ_{n-1} -statistic from a χ^2 distribution with n df
 - Ex-3: T_{n-1} -statistic from a t-distribution with n-1 df
- Step 3: Calculate the statistic (original/proxy) from the sample
- Step 4: Compute the probability (the p-value) of this sample with this statistic to be drawn from this distribution (original/proxy)
 - Reject the hypothesis if probability is low (e.g., p-value < 0.05)
 - Fail to reject the hypothesis otherwise (e.g., p-value ≥ 0.05)

Important Note

DO NOT SAY: We **ACCEPT** the Hypothesis

INSTEAD: We **FAIL TO REJECT** the Hypothesis

Given the sample we had to calculate the statistic

Null Hypothesis vs. Alternative Hypothesis

- Null Hypothesis (H_0) : what is considered to be true:
 - **Example:** $H_0: \mu = \mu_0$: We want to test a hypothesis that the unknown mean μ for a sample from a normal distribution with known variance σ^2 is equal to a specific constant μ_0
- Alternative Hypothesis (H_1) : If the null hypothesis is rejected:
 - Example: $H_1: \mu \neq \mu_0$

Two-sided Confidence Interval for $Z \sim N(0, 1)$

95% of the unit normal distribution lies between - 1.96 and 1.96

$$P\{ |Z - 0| < 1.96 \} = 0.95$$

pnorm (1.96) – pnorm (-1.96)

What is (1 - pnorm(1.96))?

One-sided Confidence Interval for $Z \sim N(0, 1)$

95% of the unit normal distribution lies below 1.64

$$P\{Z < 1.64\} = 0.95$$

Significance Level: Two-sided Test

- Null Hypothesis: $H_0: \mu = \mu_0$
- Alternative Hypothesis: $H_1: \mu \neq \mu_0$
- Significance Level (α): We fail to reject the null hypothesis with level of significance α if the estimate of the sample statistic lies within the $100(1-\alpha)$ percent two-sided confidence interval (CI) for the hypothesized value of the statistic:
 - m is the point estimate of μ :
 - We fail to reject H_0 if m is close to μ_0 , i.e., within the confidence interval, namely, if $Z \sim \frac{m \mu_0}{\sigma / \sqrt{n}} \in (-z_{\alpha/2}, z_{\alpha/2})$
 - We reject H_0 if m is too far from μ_0 , i.e., outside the confidence interval, namely, if $Z \sim \frac{m \mu_0}{\sigma / \sqrt{n}} \notin (-z_{\alpha/2}, z_{\alpha/2})$

Significance Level: One-sided Test

- Null Hypothesis: $H_0: \mu \leq \mu_0$
- Alternative Hypothesis: $H_1: \mu > \mu_0$
- Significance Level (α): We fail to reject the null hypothesis with level of significance α if the estimate of the sample statistic lies within the $100(1-\alpha)$ percent one-sided confidence interval (CI) for the hypothesized value of the statistic:
 - m is the point estimate of μ :
 - We fail to reject H_0 if m is close to μ_0 , i.e., within the confidence interval, namely, if $Z \sim \frac{m-\mu_0}{\sigma/\sqrt{n}} \in (-\infty, Z_\alpha)$
 - We reject H_0 if m is too far from μ_0 , i.e., outside the confidence interval, namely, if $Z \sim \frac{m \mu_0}{\sigma / \sqrt{n}} \notin (-\infty, \mathbf{Z}_{\alpha})$

Exercise: Test the null hypothesis

- Null Hypothesis (H_0) : what is considered to be true:
 - H_0 : $\mu = \mu_0$: We want to test a hypothesis that the **unknown** mean μ for a sample from a normal distribution with **unknown** variance σ^2 is equal to a specific constant μ_0
- Hint: Use t-statistic rather than Z-statistic from the previous examples

Solution: Test the null hypothesis

- Null Hypothesis (H_0) : what is considered to be true:
 - H_0 : $\mu = \mu_0$: We want to test a hypothesis that the **unknown** mean μ for a sample from a normal distribution with **unknown** variance σ^2 is equal to a specific constant μ_0

Use *t*-statistic:
$$T_{n-1} \sim \frac{m-\mu}{S/\sqrt{n}}$$

Two-sided Test:

• We fail to reject H_0 at significance level α if

$$T_{n-1} \sim \frac{m - \mu_0}{S / \sqrt{n}} \in (-t_{\alpha/2, n-1}, t_{\alpha/2, n-1})$$

• We reject H_0 at significance level α if

$$T_{n-1} \sim \frac{m-\mu_0}{S/\sqrt{n}} \notin (-t_{\alpha/2,n-1},t_{\alpha/2,n-1})$$

Example: T-Test Hypothesis Testing in R

Null Hypothesis (H_0): The average tip is equal to \$2.50

```
> data(tips, package = "reshape2")
 head (tips)
 total_bill tip sex smoker day time size
      16.99 1.01 Female
                          No Sun Dinner
1
3
4
5
      10.34 1.66 Male
                          No Sun Dinner
                                         3
      21.01 3.50 Male No Sun Dinner
     23.68 3.31 Male No Sun Dinner
  24.59 3.61 Female No Sun Dinner
  25.29 4.71 Male No Sun Dinner
> unique (tips$sex)
[1] Female Male
Levels: Female Male
> unique (tips$day)
[1] Sun Sat Thur Fri
Levels: Fri Sat Sun Thur
```

One-Sample T-Test (cont.)

Null Hypothesis (H_0): The average tip is equal to \$2.50

```
> t.test(tips$tip, alternative="two.sided", mu=2.5)
 One Sample t-test
                                        Reject Null Hypothesis
<u>data: tip</u>s$tip
t = 5.6253, df = 243, p-value = 5.08e-08
alternative hypothesis: true mean is not equal to 2.5
95 percent confidence interval:
 2.823799 3.172758 -
sample estimates:
mean of x
 2.998279
                                                95% CI
                                           2.8
  • The p-value (less than 0.05)
     indicates the null hypothesis
                                \mu_0 = 2.5
                                              m=\widehat{\mu}=2.99
     should be rejected
```

Conclusion: The mean is not equal to \$2.50

Reject H_0

Examine t-statistic & its probability visually

```
randT \leftarrow rt(3000, df=NROW(tips)-1)
23
   tipTTest <- t.test(tips$tip,
                        alternative="two.sided",
24
25
                       mu = 2.5
26
   require (ggplot2)
27
   ggplot(data.frame(x=randT)) +
28
     geom_density(aes(x=x), fill="grey", color="grey") +
     geom_vline(xintercept=tipTTest$statistic, color="red") +
29
30
     geom_vline(xintercept=mean(randT) +
31
                   c(-2,2)*sd(randT), linetype=2)
```


Probability of t-statistic

p-value = 5.08e-08

t-statistic = 5.62

t-distribution and t-statistic for tip data:

- dashed lines are two sd's from the mean in either direction
- thick red line (t-statistic) is far
 outside the distribution → reject null
 hypothesis → true mean is not
 equal to \$2.50

What about one-sided T-Test

Null Hypothesis (H_0): The average tip is less than \$2.50

```
> t.test(tips$tip, alternative="greater", mu=2.5)
 One Sample t-test
                                    Reject Null Hypothesis
data: tips$tip
t = 5.6253, df = 243, p-value = 2.54e-08
alternative hypothesis: true mean is greater than 2.5
95 percent confidence interval:
 2.852023 Inf
                                   • The p-value (less than 0.05)
sample estimates:
                                     indicates the null hypothesis
mean of x
                                     should be rejected
 2.998279
```

Conclusion: The mean is greater than \$2.50

Comments on p-value & degrees of freedom

- p-value: The probability, if the null hypothesis were correct, of getting as extreme, or more extreme, a result for the tested statistic (e.g., the estimated mean):
 - It is a measure of how extreme the statistic is
 - If the statistic is too extreme, we conclude that H_0 should be rejected
 - Typical p-value to reject H_0 : 0.10, 0.05 or 0.01 to be too extreme

- Degrees of freedom (df): Represents the effective number of observations:
 - Usually, df is the number of observations minus the number of parameters being estimated

Type I and Type II Errors, Power Function

	Decision		
Truth	Fail to reject H_0 Reject H_0		
True	Correct	Type I Error	
False	Type II Error	Correct (Power)	

- Type I Error: Reject the null hypothesis H_0 , when H_0 is correct
 - The significance level α set before the test defines how much Type I Error we can tolerate
 - Typical values for $\alpha = 0.1, 0.05, 0.01$
- Type II Error: Fail to reject the null hypothesis H_0 , when H_0 is false
 - Fail to reject the null hypothesis when the true mean μ is unequal to μ_0 .
 - The probability that H_0 is not rejected when the true mean is μ is a function of μ : $\beta(\mu) = P_{\mu} \{ -z_{\alpha/2} \leq \frac{m-\mu_0}{\sigma/\sqrt{n}} \leq z_{\alpha/2} \}$
- Power function of the test $(1 \beta(\mu))$: The probability of rejection when μ is the true value
 - Type II error probability increases as μ and μ_0 get closer

Comparing Two Groups of Observations

- Parametric vs. Nonparametric
 - Parametric tests are more powerful if the underlying assumptions hold true

 Always try parametric tests first
 - Nonparametric tests are more appropriate when the assumptions are grossly unreasonable (e.g., rank ordered data)
- Dependent vs. Independent Groups
 - Paired Tests (paired = TRUE) for dependent groups

Examples: Hypothesis Tests

Sample	Paired	Null Hypothesis	Assumptions	Test
One Sample		$H_0: \mu = \mu_0$	i.i.d. $N(\mu, \sigma^2)$	t.test()
Two Samples	No	$H_0: \ \sigma_1^2 = \sigma_2^2$	Normally distributed	F-test: var.test() Bartlett: bartlett.test()
Two Samples	No	$H_0: \ \sigma_1^2 = \sigma_2^2$	Non- parametric	Ansari-Bradley test: ansari.test()
Two Samples	No	$H_0: \ \mu_1 = \mu_2$	$\sigma_1^2 = \sigma_2^2$	t.test(var.equal=TRUE)
Two Samples	No	$H_0: \ \mu_1 = \mu_2$	$\sigma_1^2 \neq \sigma_2^2$	Welch t-test t.test(var.equal=FALSE)
Two samples	No	$p_1(x) = p_2(x)$ p: probab. distr	Non- parametric	Wilcoxon rank sum wilcox.test ()
Two Samples	Yes	$H_0: \ \mu_1=\mu_2$	$\sigma_1^2 \neq \sigma_2^2$	t.test(paired=TRUE)
Two samples	Yes	$p_1(x) = p_2(x)$ p: probab. distr	Non- parametric	wilcox.test (paired=TRUE)

Non-parametric Test of Equal Variance

$$H_0: \sigma_1^2 = \sigma_2^2$$

- Input: Two independent samples (i.e., two groups of observations)
- Null Hypothesis: The variances of two populations are equal
- Assumption: The data does not appear to be normally distributed
 - Hence, parametric tests can not be applied:
 - Neither F-test (var.test) nor Bartlett test can be applied
- Ansari-Bradley Test: ansari.test()
 - Non-parametric (no assumptions about population distribution)
 - Fail to reject the null hypothesis if the p-value is large, i.e.,
 - in this case, we conclude that the test indicates that the variances are equal

Ex: Ansari-Bradley Test: Equality of Variances

H_0 : The variances in tips between female and male groups are equal

```
> aggregate (tip ~ sex, data = tips, var) Quick look into variances
    sex tip
1 Female 1.344428
2 Male 2.217424
```

Ex: Ansari-Bradley Test: Equality of Variances

H_0 : The variances in tips between female and male groups are equal

```
> shapiro.test(tips$tip[tips$sex == "Female"])
shapiro-wilk normality test

data: tips$tip[tips$sex == "Female"]
w = 0.9568, p-value = 0.005448

> shapiro.test(tips$tip[tips$sex == "Male"])
shapiro-wilk normality test

data: tips$tip[tips$sex == "Male"]
w = 0.8759, p-value = 3.708e-10
```

Check the assumptions: test for normality of tip distributions

- p-value < 0.05: the null hypothesis should be rejected
- Conclusion: groups are not normally distributed

```
> ansari.test(tip ~ sex, tips)
Ansari-Bradley test

data: tip by sex
AB = 5582.5, p-value = 0.376
alternative hypothesis: true ratio of scales is not equal to 1
```

Assumption appears to be correct: apply a non-parametric test

- p-value > 0.05: fail to reject the null hypothesis
 - According to this test, the results
 were not significant;
- Conclusion: the variances are equal

Ex: T-Test: Equality of Means

H_0 : Female and male groups are, on average, tipped equally

- Based on the Ansari-Bradley test, the variances in tips between two groups are equal
- Hence, a standard two sample t-test can be used rather than the Welch test for unequal variances

Check the assumptions: test for equal variances

Assumption appears to be correct: apply a standard two sample t-test

- p-value > 0.05: fail to reject the null hypothesis
- According to this test, the results were not significant;
- Conclusion: female and male workers are tipped roughly equally

Paired Two-Sample T-Test: Dependent Groups

 H_0 : Fathers and sons have equal heights, on average

```
install.packages("UsingR")
require(UsingR)
head(father.son)
```

mean of the differences

-0.9969728

Check the assumptions:

test for normal distribution

Conclusion: fathers and sons (at least for

this data set) have different heights

test for equal variances

```
t.test(father.son$fheight, father.son$sheight, paired=TRUE)
 Paired t-test
data: father.son$fheight and father.son$sheight
t = -11.7885, df = 1077, p-value < 2.2e-16 \leftarrow Reject H_0
alternative hypothesis: true difference in means is not equal
to 0
95 percent confidence interval:
 -1.1629160 -0.8310296
                               p-value < 0.05: the null hypothesis should</li>
sample estimates:
```

be rejected

Wilcoxon Rank Sum Test

Non-parametric comparison of two (in)dependent groups

 H_0 : Both groups are sampled from the same probability distribution: $p_1(x) = p_2(x)$

- <u>Assumptions</u> for using Wilcoxon Rank Sum Test: wilcox.test():
 - Two groups are independent
 - If two groups are dependent then use parameter paired = TRUE
 - Unable to meet the parametric assumptions of a t-test or ANOVA
 - Outcome variables are severely skewed or
 - Outcome variables are ordinal in nature (rank ordered data):
 - Probability of obtaining higher scores is greater in one population than the other

Example: Wilcoxon Rank Sum Test Non-parametric comparison of two independent groups

 H_0 : Incareceration rates are the same in Southern & non-Southern states

```
67 library(MASS)
68 head(Uscrime)
69 # So: Southern vs non-Southern state
70 # Prob: Probability of incareceration
71 # (i.e., being imprisoned if committed a crime)
72 with (Uscrime, by(Prob, so, median))
73
74 wilcox.test (Prob ~ So, data = Uscrime)

Wilcoxon rank sum test

data: Prob by So
W = 81, p-value = 8.488e-05
alternative hypothesis: true location shift
is not equal to 0
Reject H<sub>0</sub>
```

- p-value < 0.05: the null hypothesis should be rejected
- Conclusion: incareceration rates are not the same

Example: Paired Wilcoxon Signed Rank Test Non-parametric comparison of two dependent groups

 H_0 : Unemployment rates are the same for younger and older males in Alabama

```
library(MASS)

90 head(UScrime)

91 sapply(UScrime[c("U1", "U2")], median)

92 with (UScrime, wilcox.test(U1, U2, paired = TRUE))

wilcoxon signed rank test with continuity correction

data: U1 and U2

V = 1128, p-value = 2.464e-09

alternative hypothesis: true location shift is not equal to 0
```

- p-value < 0.05: the null hypothesis should be rejected
- Conclusion: unemployment rates are not the same

Example: Paired T-Test

mean of the differences

61.48936

Parametric comparison of two dependent groups

 H_0 : Unemployment rates are the same for younger and older males in Alabama

```
94 library(MASS)
   head(UScrime)
95
   sapply(UScrime[c("U1", "U2")],
          function(x) c(mean=mean(x), sd=sd(x))
97
98 with (UScrime, t.test(U1, U2, paired = TRUE))
 Paired t-test
data: U1 and U2
                                               — Reject H_0
t = 32.4066, df = 46, p-value < 2.2e-16
alternative hypothesis: true difference in
means is not equal to 0
95 percent confidence interval:
 57.67003 65.30870
sample estimates:
```

- the mean difference (61.5) is large to warrant rejection of H_0 that the mean unemployment rate for older and younger males is the same
- younger males have a higher rate
- probability of obtaining a sample difference that large if population means are equal is $2.2e^{-16}$

Comparing More than Two Groups

- Parametric vs. Nonparametric
 - Parametric tests: ANOVA Later as part of Experiment Design
 - Nonparametric tests: Kruskal Wallis or Friedman
- Dependent vs. Independent Groups : Nonparametric Tests
 - Independent Groups: Kruskal Wallis Test: kruskal.test()
 - Dependent Groups: Friedman Test: friedman.test()