

BITS Pilani Presentation

BITS Pilani
Pilani Campus

Jagdish Prasad WILP

lead

SSZG575: Ethical Hacking Session No: 16 (Stuxnet Virus)

innovate achieve lead

Agenda

- Case Study: Stuxnet Virus
 - Overview
 - Technical Details

StuxNet

Overview

- June 2010: A worm targeting Siemens Win CC industrial control systems.
- Targets high speed variable program logic controllers from two vendors: Vacon (Finland) and Fararo Paya (Iran)
- Activates only when controllers are running at 807 Hz to 1210 Hz
- Makes the frequency of those controllers from 1410 Hz to 2 Hz to 1064 Hz (84600 rpm to 120 rpm to 63840 rpm)

Infection Status

• AS of 29-Sep-2010

Industrial Control Systems (ICS)

- ICS are operated by special Assembly like code on Programmable Logic Controllers (PLCs)
- The PLCs are programmed typically using Windows computers.
- The ICS are not connected to internet
- ICS usually consider availability and ease of maintenance first and security last
- ICS considers the "airgap" as sufficient security

ICS Environment

Denomination:

Function:

Example:

PG/HMI PLC (Programming Gateway / **Field Device** (Programmable Logic Human-Machine Interface) Controller) Uploads executable Manages the connected Ad-hoc operation. (i.e. instructions into the PLC (i.e. device and reports regulates the rotation via a serial or Profibus status of operations to a speed of an electric interface), controls and visualisation engine) workstation monitors PLC operations Intel-based computer with Frequency driver for Simatic S7-300/400 Windows XP O.S. electric motors

- Siemens Sematic S7-300 PLC
- Hunted by Stuxnet

- Siemens SematicS7-300 PLC
- Hunted by Stuxnet

 Two different attack scenario in Stuxnet. Both use manipulation of ICS system to achieve physical damage exploiting different vulnerabilities of the centrifuge.

Nuclear Centrifuge Technology

- Uranium-235 separation efficiency is critically dependent of centrifuge speed o rotation
- Higher the speed, the better separation efficiency
- However, higher speeds require strong tubes as the centrifuge starts "shaking' at higher frequencies
- Shaking can cause catastrophic failure

Stuxnet Timeline

- 2009 Jun: Earliest Stuxnet seen, does not have signed drivers
- 2010 Jan: Stuxnet driver signed, with a valid certificate belonging to Realtek Semiconductors
- 2010 Jun: Virusblokada reports W32.Stuxnet, Verisign revokes Realtek certificate
- 2010 Jul: Anti-virus vendors Eset identifies new Stuxnet driver with valida certificate from JMicron Technology Corp
- 2010 Jul: Siemens reports they are investigating their SCADA system, JMicron certificate revoked by Verisign

Stuxnet Tech Overview

- Components used:
 - Zero day exploits
 - Windows rootkits
 - PLC rootkits (first ever)
 - Anti-virus evasion
 - Peer to peer updates
 - Signed drivers with a valid certificate
- Command and control interface
- Stuxnet consists of a large .dll fle
 - Designed to sabotage industrial process control system by Siemens SIMATIC
 WinCC and PCS 7 systems

	Vulnerability ID		MS 0-da	0-day	Vulnerability description
	CVE	BID	1413	o day	vanierasinty description
1	CVE-2008-4250	31874	08-067	No	Windows Server Service RPC Handling Remote Code Execution
2	CVE-2010-2568	41732	10-046	Yes	Windows Shortcut 'LNK/PIF' Files Automatic File Execution
3	CVE-2010-2729	43073	10-061	Yes	Windows Print Spooler Service Remote Code Execution
4	CVE-2010-2743	43774	10-073	Yes	Windows Kernel Win32K.sys Keyboard Layout Privilege Escalation
5	CVE-2010-2772	41753	10-092	Yes	Siemens Simatic WinCC Default Password Security Bypass
6	CVE-2010-3888	44357	10-073	Yes	Windows Task Scheduler Privilege Escalation

Reconnaissance:

- Each PLC is configured in a unique manner
- Target ICS schematics are required
- Design docs may have been stolen
- Retrieved by an early version of Stuxnet
- Developed with a goal of sabotaging a specific ICS

Development

- Mirrored development environment is required
- ICS hardware
- PLC modules
- PLC development software
- Estimates: 6+ man years of efforts by a experienced, skilled and well funded team

- The malicious binaries need to be signed to avoid suspicion
 - Two digital certificates were compromised
 - High probability that the digital certificates/keys were stolen from the company premises
 - Realtek and JMicron are in close proximity
- Initial infection
 - Stuxnet needed to be introduced to the target environment
 - Insider
 - Third party or contractor
 - Delivery method
 - USB drive
 - Windows maintenance laptop
 - Target email attack
 - STFP 7 folders

- Infection spread
 - Look for Windows computer that program the PLCs
 - The field PG are typically not networked
 - Spread the infection on computers on the local LAN
 - Zero day vulnerability
 - Two year old vulnerability
 - Spread to all available USBs
 - When a USB connects to a field PG, infection jumps to field PG
 - The "airgap" is breached

- Target Infection
 - Look for particular PLC running Step 7 operating system
 - Change PLC code
 - Sabotage system
 - Hide modifications
 - Command and Control not possible
 - due to "airgap"
 - functionality already embedded

- 201 MrxNet.sys Load driver signed by Realtek/JMicron
- 202 DLL for step 7 infections
- 203 CAB file for WinCC infections
- 205 Data file for resource 201
- 207 Autorun version of Stuxnet
- 208 Step 7 replacement of DLL
- 209 Data file (%windows%/help/winmics.fts)
- 210 Template PE file used for injection
- 221 Exploits MS08-067 to spread via SMB
- 222 Exploit MS10-061 print spooler vulnerability
- 231 Internet connection check
- 240 LNK template file built to exploit LNL exploit
- 241 USB loader DLL ~WTR4141.tmp
- 242 Mrxnet.sys rootkit driver
- 250 Exploit undisclosed Win32k.sys vulnerability

Bypassing Intrusion Detection

- Stuxnet calls load library
 - With a specially crafted file name that does not exist
 - Which causes LoadLibrary to fail
- However W32.Stuxnet has hooked Ntdll.dll
 - To monitor specially crafted file names
 - mapped toa location specified by W32.Stuxnet
 - Where a .dll file was stored by Stuxnet earlier

innovate achieve lead

Code Injection

- Stuxnet used trusted Windows processes or security products
 - Lsass.exe
 - Winlogin.exe & Svchost.exe
 - Kasperkey KAV (avp.exe)
 - Mcafee (Mcshield.exe)
 - Antivir (Avguard.exe)
 - BitDefender (bdagent.exe)
 - Etrust (UmxCfg.exe)
 - F-Secure (fsdfwd.exe)
 - Symantec (rtvscan.exe) & Symantec Common Client (ccSvcHst.exe)
 - Eset NOD32 (ekrn.exe)
 - Trend PC-Cillin (tempproxy.exe)
- Stuxnet detects the version of security product and based on product version adapts its injection process

Configuration

- Stuxnet collects and stores following infirmation
 - Major OS version and Minor OS version
 - Flags used by Stuxnet
 - Flag specifying if computer is part of Workgroup or Domain
 - Time of infection
 - IP address of compromised computer
 - File name of infected project file

innovate achieve lead

Installation: Control Flow

Installation: Infection Routine Flow

innovate achieve lead

Command and Control

- Stuxnet tests if it can connect to
 - www.windowsupdate.com
 - www.msn.com
 - On port 80
- Contacts the command and control server
 - www.mypremierfutbol.com
 - www.todaysfutbol.com
 - The above URLs previously pointed to servers in Malaysia & Denmark
 - Send info about compromised computer

1 & 2: Check internet connectivity
3: Send system information to C&C
4a: C&C response to execute RPC routine
4b: C&C response to execute encrypted binary code

Command and Control

- Stuxnet tests if it can connect to
 - www.windowsupdate.com
 - www.msn.com
 - On port 80
- Contacts the command and control server
 - www.mypremierfutbol.com
 - www.todaysfutbol.com
 - The above URLs previously pointed to servers in Malaysia & Denmark
 - Send info about compromised computer

Modifying PLCs

innovate achieve

- The end goal of Stuxnet is to infect specific types of PLC devices
- PLC devices are loaded with blocks of code and data written in STL
- Compiled code is in Assembly called MC7
 - These blocks are run by the PLC, to execute, control and monitor an industrial process
- The original s7otbxdx.dll is responsible to handling PLC block exchange between the programming devices and the PLC
 - BY replacing this .dll with its own, Stuxnet is able to perform following actions:
 - Monitor PLC blocks being written to and read from PLC

Demo

- The Stuxnet Story
 https://youtu.be/Joc0iTX9dyQ
- The Stuxnet Technical Analysis
 https://www.youtube.com/watch?v=qZcvsnkQOvI&t=2s
- Stuxnet TED talk
 https://www.youtube.com/watch?v=CS01Hmjv1pQ
- Stuxnet 60 Minutes
 https://www.youtube.com/watch?v=zEjUlbmD9kQ&t=17s

Thank You