

C L A I M S

1. A method of transmitting a radio signal with polarization diversity, comprising the steps of:
5 transmitting a plurality of versions of the radio signal having different polarizations from a first station to a second station; and adaptively controlling respective transmission powers of said versions of the radio signal according to measurements carried out by the first station on signals transmitted by the second station.
- 10
2. The method as claimed in claim 1, wherein said versions of the radio signal are transmitted simultaneously.
- 15
3. The method as claimed in claim 1, wherein an optimal transmission power distribution of the radio signal between the polarizations is estimated on the basis of minimizing a cost function relative to a quality of the signal received by the second station, and the transmission power is distributed between said 20 versions of the radio signal in accordance with the estimated distribution.
4. The method as claimed in claim 3, wherein the cost function to be minimized measures an error probability in receive mode.
- 25
5. The method as claimed in claim 3, wherein transmission parameters for signals transmitted by the second station to the first station and parameters for the receiving by the second station of said versions of the radio signal transmitted with polarization 30 diversity by the first station are measured, and said

measured parameters are transmitted to the first station in order to estimate the optimal transmission power distribution.

6. The method as claimed in claim 5, wherein said
5 second station is designed to transmit with polarization diversity, the method further comprising the steps of:

- 10 - for each transmit polarization, measuring a mean power contribution of at least some of the signals transmitted by the second station;
- 15 - for at least some of the signals transmitted in a defined polarization by the first station to the second station, measuring a mean power contribution of the noise that interferes in receive mode with the useful signal relating to said transmitted signal; and
- 20 - for each transmit polarization, evaluating at the first station power transfer coefficients in a radio propagation channel of at least some of the signals transmitted by the second station.

7. The method as claimed in claim 6, wherein the mean noise power contribution and mean transmission power contribution measurement steps are executed in the second station and the measured mean noise power contribution and mean transmission power contribution are transmitted to the first station for estimating the optimal distribution of the transmission power.
25

8. The method as claimed in claim 5, wherein said second station is designed to transmit with polarization diversity, wherein the mean power contribution of the signals transmitted by the second station is substantially identical for each
30

polarization , the method further comprising the steps of:

- measuring a mean power contribution of at least some of the signals transmitted by the second station;
- for at least some of the signals transmitted in a defined polarization by the first station to the second station, measuring a mean power contribution of the noise that interferes in receive mode with the useful signal relating to said transmitted signal; and
- for each transmit polarization, evaluating at the first station power transfer coefficients in a radio propagation channel of at least some of the signals transmitted by the second station.

9. The method as claimed in claim 8, wherein the mean noise power contribution and mean transmission power contribution measurement steps are executed in the second station and the measured mean noise power contribution and mean transmission power contribution are transmitted to the first station for estimating the optimal distribution of the transmission power.

10. A radiocommunication station with polarization diversity, comprising means for transmitting a plurality of versions of a radio signal having different polarizations to a remote radiocommunication station, means for measuring parameters on the basis of signals transmitted by said remote station, and means for adaptively controlling the respective transmission powers of said versions of the radio signal according to said measured parameters.

11. The radiocommunication station as claimed in claim
10, wherein the transmission means are coupled to n_{pol}
antennas, n_{pol} being a number greater than or equal to
two, and are designed to transmit from each antenna a
5 radio signal in one polarization from among n_{pol}
polarizations.

12. The radiocommunication station as claimed in claim
10, wherein the means for adaptively controlling the
transmission powers comprise means for estimating an
10 optimal distribution of the transmission power of the
signals transmitted with a defined polarization, on the
basis of minimizing a cost function relating to the
quality of the signal received by the remote station,
and means for driving the transmission means so as to
15 distribute the transmission power according to the
estimated distribution.

13. The radiocommunication station as claimed in claim
12, wherein the means for estimating the optimal
transmission power distribution comprise means for
20 minimizing an error probability in receive mode by the
remote station.

14. The radiocommunication station as claimed in claim
12, further comprising means for obtaining parameters
for the transmitting of signals by the remote signal
25 and for the receiving of signals transmitted to the
remote station, cooperating with the means for
estimating the optimal transmission power distribution.

15. The radiocommunication station as claimed in claim
11, further comprising receiving means coupled to the
30 n_{pol} antennas sensitive in receive mode to the n_{pol}
polarizations, and wherein the means for estimating the
optimal transmission power distribution cooperate with

means for obtaining parameters for the transmitting of signals by the remote station and for the receiving of signals transmitted to the remote station and with means for obtaining parameters for the receiving of signals transmitted by the remote station.

16. The radiocommunication station as claimed in claim 15, wherein the means for obtaining parameters for the receiving of signals transmitted by the remote station comprise means for obtaining, for each of the n_{pol} polarizations, a mean power contribution of at least some of the signals transmitted by the remote station and means for estimating power transfer coefficients for signals transmitted by the remote station in each of the n_{pol} polarizations and received on each of the n_{pol} antennas.

17. The radiocommunication station as claimed in claim 15, wherein the means) for obtaining parameters for the receiving of signals transmitted by the remote station comprise means for obtaining a mean power contribution of at least some of the signals transmitted by the remote station and means for determining power transfer coefficients for signals transmitted by the remote station in each of the n_{pol} polarizations and received on each of the n_{pol} antennas.

25 18. The radiocommunication station as claimed in claim 15, wherein the means for obtaining parameters for the receiving of signals transmitted by the remote station comprise means for estimating symbols transmitted by the remote station in each of the n_{pol} polarizations, and received on each of the n_{pol} antennas, and means for combining the estimated symbols.

19. The radiocommunication station as claimed in claim
14, wherein the means for obtaining parameters for the
transmitting of signals by the remote station and for
the receiving of signals transmitted to the remote
5 station comprise means for obtaining, for at least one
of the signals transmitted to the remote station in one
defined polarization among n_{pol}, a measurement of a
mean power contribution of the noise that interferes
with the useful signal relating to said transmitted
10 signal.

20. The radiocommunication station as claimed in claim
14, wherein the means for obtaining parameters for the
transmitting of signals by the remote station and for
the receiving of signals transmitted to the remote
15 station comprise means for measuring, for each of the
n_{pol} transmission polarizations, a mean power
contribution of at least some of the signals
transmitted by the remote station.

21. The radiocommunication station as claimed in claim
20 11, wherein n_{pol} = 2.

22. A radiocommunication terminal, comprising means
for receiving and processing signals transmitted with
polarization diversity in n_{pol} polarizations by a
radiocommunication station of a network infrastructure,
25 n_{pol} being a number greater than or equal to two,
means for measuring, for at least some of the signals
transmitted by said radiocommunication station in a
defined polarization among n_{pol}, a mean power
contribution of the noise that interferes with the
30 useful signal relating to said transmitted signal, and
means for transmitting said mean noise power
contribution measurements to the radiocommunication
network infrastructure.

23. The radiocommunication terminal as claimed in
claim 22, comprising means for receiving and processing
signals transmitted with polarization diversity in
n_{pol} polarizations on n_{ant} antennas, n_{ant} being
5 greater than or equal to 2, means for evaluating, for
each of the n_{pol} polarizations, power transfer
coefficients in a radio propagation channel of at least
some of the signals transmitted by . said
radiocommunication station, and means for transmitting
10 the evaluated coefficients to the radiocommunication
network infrastructure.

24. The radiocommunication terminal as claimed in
claim 22, further comprising means for transmitting
radio signals in said n_{pol} polarizations from n_{ant}
15 transmission antennas, means for measuring, for each of
the n_{pol} transmission polarizations, a mean power
contribution of at least some of the signals
transmitted by said transmission means, and means for
transmitting said measurements to the
20 radiocommunication network infrastructure.

25. The radiocommunication terminal as claimed in
claims 24, wherein n_{ant} = 2.

26. The radiocommunication terminal as claimed in
claim 22, further comprising means for transmitting,
25 with a substantially identical mean power contribution,
radio signals in said n_{pol} polarizations from n_{ant}
transmission antennas, means for measuring a mean power
contribution of at least some of the signals
transmitted by said transmission means, and means for
30 transmitting said measurements to the
radiocommunication network infrastructure.

27. The radiocommunication terminal as claimed in claims 26, wherein n_ant = 2.

28. The radiocommunication terminal as claimed in claim 22, wherein n_pol = 2.