Project 4 Report:Popularity Prediction on Twitter *

Tushar Sudhakar Jee, Shubham Agarwal, Pulkit Aggarwal, Ishan Upadhyaya March 19, 2016

1 Part 1

Hashtag:gopatriots

average number of tweets per hour: 38.3861

average number of followers of users posting the tweets: 1558

average number of retweets: 1.0307

Hashtag:gohawks

average number of tweets per hour: 215.47

average number of followers of users posting the tweets: 1709

average number of retweets: 45.0641

Hashtag:patriots

average number of tweets per hour: 556.5743

average number of followers of users posting the tweets: 1859

average number of retweets: 50.6097

Hashtag:sb49

average number of tweets per hour: 1419.8896

average number of followers of users posting the tweets: 2243

average number of retweets: 252.9347

Hashtag:nfl

average number of tweets per hour:294.8925

average number of followers of users posting the tweets: 4376

average number of retweets: 15.0273

Hashtag:superbowl

average number of tweets per hour: 1624.5715

average number of followers of users posting the tweets: 4221

average number of retweets: 222.1168

As the hashtag becomes more generic, like #superbowl is more generic than #gopatriots, number of tweets per hour increases. Similarly, as more users are posting tweets with generic hashtags, average number of followers also increases.

^{*}EE 239AS; Winter 2016

Plots for number of tweets in an hour for superbowl,nfl

Figure 1: Plot for number of tweets in an hour for superbowl

Figure 2: Plot for number of tweets in an hour for nfl

In the above graphs , we can see that number of tweets in a an hour were high near the super-bowl event as compared to days other than super-bowl event.

2 Part 2

The linear regression model was trained on the dataset described in the question to predict the number of tweets in the next hour. This model was trained on each of the hashtags. Features-

x1-number of tweets

x2-total number of retweets

x3- sum of the number of followers of the users posting the hashtag

x4-maximum number of followers of the users posting the hashtag

x5- time of the day.

Linear model for #gopatriots

Dep. Vari	ahla:		у	R-squa	red:		0.614
Model:	abcc.		OLS		R-squared:		0.610
Method:		Least Squa			istic:		142.8
Date:	Sa	it, 19 Mar 2			(F-statistic):		1.95e-90
Time:		01:56			kelihood:		-428.14
No. Obser	vations:		454	AIC:			866.3
Df Residu			449	BIC:			886.9
Df Model:			5				
Covarianc	e Type:	nonrob	ust				
	coef	std err		t	P> t	[95.0% Cor	ıf. Int.]
x1	25.9936	3.320	7	.828	0.000	19.468	32.519
x2	-19.3543	1.470	-13	. 163	0.000	-22.244	-16.465
х3	7.6036	3.897	1	.951	0.052	-0.054	15.262
x4	-3.4688	2.015		.721	0.086	-7.430	
x5	-2.0302	0.629	-3	. 227	0.001	-3.267	-0.794
Omnibus:		 731.	===== 674	Durbir	 n-Watson:		2.379
Prob(Omni	bus):	Θ.	000	Jarque	e-Bera (JB):	36	8193.251
Skew:		8.	991	Prob(J	IB):		0.00
Kurtosis:		129.	368	Cond.	No.		15.1

Figure 3: Figure showing p,t and R²values for #gopatriots

Significant Features:x1,x2,x5 are significant as they have very low p value. Features which have p value less than 0.05 are considered as significant. These features also have a high t-value. This also suggests that these features are significant. Training accuracy can be seen from the value of R-squared. R-squared value is 0.614.

Linear model for #gohawks

Dep. Variable			У	R-squ	ared:	0.522		
Model:			0LS	Adj.	R-squared:		0.518	
Method:		Least Squ	ares	F-sta	tistic:		144.6	
Date:		Sat, 19 Mar	2016	Prob	(F-statistic):		3.75e-103	
Time:		01:5	6:34	Log-L	ikelihood:		-697.04	
No. Observation	ons:		664	AIC:			1404.	
Df Residuals:			659	BIC:			1427.	
Df Model:			5					
Covariance Ty	pe:	nonro	bust					
	coef	std err		t	P> t	[95.0%	====== Conf. Int.]	
x1	12.3965	3.198	3	.877	0.000	6.11	7 18.676	
x2	-0.0975	0.701	- 0	.139	0.889	-1.47	3 1.278	
x3	10.5023	4.049	2	.594	0.010	2.55	2 18.453	
x4	-5.9060	1.595	-3	.702	0.000	-9.03	8 -2.774	
x5	-2.1650	0.747	-2	.896	0.004	-3.63	3 -0.697	
Omnibus:		 953	===== .589	Durbi	======== n-Watson:		2.240	
Prob(Omnibus)		Θ	.000	Jarqu	e-Bera (JB):		982112.218	
Skew:		7	.103	Prob(JB):		0.00	
Kurtosis:		190	.873	Cond.	No.		12.6	

Figure 4: Figure showing p,t and \mathbb{R}^2 values for #gohawks

Significant Features:x1,x4,x5,x3 are significant features with low p values. R-squared value is 0.522.

Linear model for #patriots

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Post Post		y OLS Least Squares Sat, 19 Mar 2016 01:56:34 663 658		ared: R-squared: tistic: (F-statistic): ikelihood:	0.692 0.696.4 296.4 8.31e-166 -549.83 1110. 1132.	
Df Model: Covariance Type:		5 nonrobust	BIC:			=====
x1 27.4 x2 -1.6 x3 -7.8	734 965 8920	0.673 - 1.368 - 0.788	t 5.621 2.522 5.769 2.681 3.731	P> t 0.000 0.012 0.000 0.008 0.000	[95.0% Conf 25.368 -3.017 -10.578 0.566 -3.547	29.579 -0.376 -5.206 3.662 -1.101
Omnibus: Prob(Omnibus): Skew: Kurtosis:		1296.287 0.000 13.791 271.118			2006	1.799 895.273 0.00 5.09

Figure 5: Figure showing p,t and \mathbb{R}^2 values for #patriots

Significant Features: All features are significant, with x1,x3,x5 more significant than x2,x4. Significant features also have a high t-value. R-squared value is 0.692.

Linear model for #sb49

Currently working w		S Regress	sion R	esults		
Dep. Variable:		V	R-sa	uared:		0.795
Model:		0LŚ	Adj.	R-squared:		0.793
Method:	Least	Squares	F-st	atistic:		419.9
Date:	Sat, 19 M	ar 2016	Prob	(F-statistic):	9.	27e-184
Time:	0	1:56:34		Likelihood:		-342.97
No. Observations:		547	AIC:			695.9
Df Residuals:		542	BIC:			717.5
Df Model:		. 5				
Covariance Type:	no	nrobust				
cc	ef stde	rr	t	P> t	[95.0% Conf	. Int.]
x1 25.34	138 1.0	83 23	3.404	0.000	23.217	27.471
x2 -1.76	0.5	46 -3	3.115	0.002	-2.775	-0.629
x3 -7.18	330 1.4	08 -5	5.103	0.000	-9.948	-4.418
x4 4.88	308 0.7	23 6	5.749	0.000	3.460	6.301
x5 -3.37	721 0.4	82 -6	5.996	0.000	-4.319	-2.425
Omnibus:		====== 988.887		in-Watson:		1.190
Prob(Omnibus):		0.000		ue-Bera (JB):	833	300.916
Skew:		11.504		(JB):		0.00
Kurtosis:		192.822	Cond	. No.		6.52

Figure 6: Figure showing p,t and R^2 values for #sb49

Significant Features: x1,x4,x5 are significant features with x1 as the most important feature.. R-squared value is 0.795.

Linear model for #nfl

Currently working	with #n	fl OLS Re	gress	ion R	esults		
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Sat,	east Squa 19 Mar 2 01:56	016 :34 618 613 5	Adj. F-st Prob	uared: R-squared: atistic: (F-statistic): Likelihood:	2	0.623 0.620 202.9 2.14e-127 -575.19 1160. 1183.
	coef	std err		t	P> t	[95.0% Cor	nf. Int.]
x2 -9. x3 10. x4 -5.	3825 8686 1277 0599 2981	2.015 0.812 2.907 1.630 0.747	-12 3 -3	.115 .155 .484 .104	0.000 0.000 0.001 0.002 0.000	16.425 -11.463 4.419 -8.261 -9.765	-8.274 15.836
Omnibus: Prob(Omnibus): Skew: Kurtosis:			000 106	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.	28	2.007 39729.932 0.00 10.8

Figure 7: Figure showing p,t and \mathbb{R}^2 values for #nfl

Significant Features:x1,x2,x5 are significant with high t-value and low p-value. R-squared value is 0.623.

Linear model for #superbowl

Currently working wi	th #superbowl OLS Regres	sion Re	esults	
Dep. Variable: Model: Method: Date: Time: No. Observations:	y OLS Least Squares Sat, 19 Mar 2016 01:56:34	Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic): Likelihood:	0.824 0.823 567.1 1.35e-225 -335.42 680.8
Df Residuals: Df Model: Covariance Type:	605 5 nonrobust	BIC:		702.9
coe	f std err	t	P> t	[95.0% Conf. Int.]
x1 9.940 x2 -16.736 x3 25.323 x4 -2.285 x5 -3.372	5 0.675 -2 7 2.511 1 5 0.852 -	4.701 24.779 10.086 2.684 6.897	0.000 0.000 0.000 0.007 0.000	5.787 14.092 -18.063 -15.410 20.393 30.254 -3.958 -0.613 -4.333 -2.412
Omnibus: Prob(Omnibus): Skew: Kurtosis:	1086.186 0.000 11.291 195.366	Jarqı		2.152 953499.953 0.00 14.2

Figure 8: Figure showing p,t and \mathbb{R}^2 values for #superbowl

Significant features:x2,x3 are significant features. R-squared value is 0.824.

Features used in our analysis of the twitter dataset

3.1 Network Features

Network indicates the connectivity of the users posting the tweets. The connectivity is indicative of how well the tweet can be diffused in the network. Here we take several of the connectivity features which are important for predicting the number of tweets.

Number of retweets: Sum of number of retweets in an hour(x1).

Number of max followers: Here we count a list of followers for the users who tweeted in last hour and take the maximum. This indicates the maximum extent to which a single user can affect his network(x3).

Sum of number of people following the hashtag: As people following the tweets are the likely users to tweet, we take the number of people following that hashtag as a feature(x2).

Number of mentions: Sum of number of tweets in a given hour containing '@' mentions(x5).

Number of unique users: We also take the number of unique users which posted in last hours as a feature(x6).

3.2 Time Series Features

The time series features indicate the trend of tweets in a given time interval. Since the past number of tweets values are extremely important, through these features we try to extract the tweet variation with time.

Moving Average: Averaging number of tweets in last five hours with reference to present value(x7).

Moving Standard Deviation: Standard deviation of tweets in last five hours with reference to present value (x8).

Derivative: Taking number of tweets to be a time-series, the Derivative indicates Slope value at present time(x9).

Derivative mean: Mean of past five derivative values. The derivate gives the trend for past values which is a very good indicator for prediction (x10).

Past value: We take the past five values of number of tweets. This ensures we have enough past information to predict the values in next hour. This is similar to the linear prediction model used in many cases (x10-x15).

Time of the day: Represent hours of the day with respect to a given time reference(x4).

Using the features described on the previous page, we built a Linear Regression model. The training accuracy and significant variables for each hashtag are shown below:

Linear model for #gopatriots

Dep. Variab	le:			у		uared:	0.720		
Model:			0LS			R-squared:	0.711		
Method:			Least So			atistic:		80.91	
Date:		Т	hu, 17 Mar			(F-statistic):		34e-112	
Γime:			02:	10:53		_ikelihood:		355.05	
No. Observa				454	AIC:			738.1	
Df Residual	s:			440	BIC:			795.8	
Df Model:				14					
Covariance	Type:		non	obust					
	=====	===== coef		 -		D. 141	[05_00_Cf	T-+ 1	
		coei	std er		t	P> t	[95.0% Conf.	Int.	
x1	-15.	0933	2.398	3 -	6.295	0.000	-19.806 -	10.381	
x2		8492	6.41		3.720	0.000	11.249	36.449	
x3		9803	2.903		3.437	0.001	-15.687	-4.274	
x4	-2.	0515	0.571		3.594	0.000	-3.173	-0.930	
x5	Θ.	2105	3.785	i	0.056	0.956	-7.228	7.649	
x6	-1.	3659	38.708	3 -	0.035	0.972	-77.441	74.710	
x7	-31.	3866	12.013	-	2.613	0.009	-54.997	-7.776	
x8	7.	4237	4.468	3	1.661	0.097	-1.358	16.205	
x9	-1.	0552	10.342	-	0.102	0.919	-21.382	19.271	
x10	Θ.	9777	1.074		0.910	0.363	-1.133	3.088	
x11	1.	8936	1.621		1.169	0.243	-1.291	5.079	
x12		3083	2.314		4.022	0.000	4.760	13.856	
x13		1025	2.934		4.806	0.000	8.335	19.870	
x14		0488	12.865		0.781	0.435	-15.235	35.333	
x15	9.	1682	21.365	j	0.429	0.668	-32.823	51.159	
======= Omnibus:			-57	 7.377	Durb	======== in-Watson:		2.209	
Prob(Omnibu	s):			0.000		ue-Bera (JB):	1328	337.969	
Skew:	٥,٠			5.784	Prob		1520	0.00	
Kurtosis:			8	3.704	Cond		1.	51e+16	

Figure 9: Figure showing p,t and \mathbb{R}^2 values for #gopatriots

From the values obtained, the significant features were found to be x4(time of day), x12 and x13(past values). These are sort of intuitive as well because we can expect the future value to depend on past values and the current time.

The scatter plot of Predictant values versust the significant features is shown below

Figure 10: Scatter plot of significant variable with Predictant for #gopatriots

Dep. Variable	:			У	R-sq	uared:		0.564
Model:				0LŚ		R-squared:		0.554
Method:			Least S	quares	F-st	atistic:		59.99
Date:		T	hu, 17 Ma	r 2016	Prob	(F-statistic):		4.82e-107
Time:			02	2:10:53	Log-	Likelihood:		-666.80
No. Observati				664				1362.
Of Residuals:				650	BIC:			1425.
Df Model:				14				
Covariance Ty	pe:		nor	robust				
		coef	std er		 t	========== P> t	 [95.0% Co	nf Int l
			3 Lu Ei			r> t	03.0% C0	
x1	Θ.	0119	0.86)3	0.015	0.988	-1.564	1.588
(2		6839	5.16		0.520	0.603	-7.457	12.825
k 3	-3.	8270	1.84	1	-2.079	0.038	-7.441	-0.213
κ4	-2.	6586	0.79	94	-3.349	0.001	-4.217	-1.100
x5	-0.	5538	4.03	39	-0.137	0.891	-8.486	7.378
x6	41.	9631	16.69		2.513	0.012	9.175	74.752
x7		4951	8.74		-0.057	0.955	-17.666	16.676
x8		4563	2.66		-0.171	0.864	-5.690	4.778
k 9		1293	3.54		-2.573	0.010	-16.098	-2.161
k10		1185	1.32		-0.090	0.929	-2.712	2.475
×11		8186	2.01		-2.389	0.017	-8.780	-0.857
k12		9974	2.01		0.494	0.621	-2.963	4.958
k13		4266	2.08		1.641	0.101	-0.675	7.528
x14		2658	4.96		-1.481	0.139	-16.898	2.366
x15	-13.	8771	7.36)5	-1.900	0.058 	-28.220	0.466
 Omnibus:			11	.===== 105.691	Durb	======== in-Watson:		1.982
Prob(Omnibus)				0.000		ue-Bera (JB):	_12	82077.957
skew:				9.710		(JB):		0.00
Kurtosis:			2	17.390		. No.		7.83e+15

Figure 11: Figure showing p,t and R^2 values for #gohawks

The significant variable obtained for this hashtag were x4(time), x6(of unique users) and $x14(most\ recent\ value)$. The reasoning for time and most recent value is same as that we saw above, while number of unique users is also intuitive to understand as this indicates to some extent the reach of the current networ.

The scatter plot of Predictant values versus the significant features is shown below

Figure 12: Scatter plot of significant variable with Predictant for #gohawks

					ion Re				
Dep. Variab	le:			у	R-sq	uared:		0.746	
Model:				0LS	Adj.	R-squared:		0.741	
Method:			Least Squ	ıares		atistic:	136.4		
Date:		1	hu, 17 Mar	2016	Prob	(F-statistic):	1	.33e-182	
Time:			02:1	L0:53	Log-I	_ikelihood:		-485.94	
No. Observa	tions:			663	AIC:			999.9	
Df Residual	s:			649	BIC:			1063.	
Df Model:				14					
Covariance	Type:		nonro	bust					
===========							========		
		coef	std err		t	P> t	[95.0% Cor	f. Int.]	
x1	-1.	.0777	0.654	-1	1.647	0.100	-2.362	0.207	
x2	15.	3767	5.330	2	2.885	0.004	4.911	25.843	
х3	-3.	0994	1.331	-2	2.329	0.020	-5.713	-0.486	
x4	-3.	0439	0.581	-5	.236	0.000	-4.185	-1.902	
x5	42.	1066	7.950	5	. 296	0.000	26.496	57.718	
х6	-125.	6345	24.876	-5	.050	0.000	-174.481	-76.788	
х7	-39.	5285	8.008	- 4	.936	0.000	-55.253	-23.804	
x8	1.	7800	1.714	1	1.038	0.300	-1.586	5.146	
x9	27.	3657	4.122	6	6.639	0.000	19.271	35.460	
x10	-5.	6527	1.235	-4	.576	0.000	-8.078	-3.227	
x11	8.	8564	2.518	3	3.518	0.000	3.913	13.800	
x12		. 1597	1.724		1.153	0.000	3.774	10.545	
x13	14.	6535	2.119		.917	0.000	10.493	18.814	
x14	47.	9428	8.137	5	.892	0.000	31.965	63.921	
x15	63.	9687	10.495	6	.095	0.000	43.360	84.578	
Omnibus:				7.941		in-Watson:		1.940	
Prob(Omnibu	s):			0.000		ue-Bera (JB):	209	0556.493	
Skew:				3.557	Prob			0.00	
Kurtosis:			276	5.754	Cond	. No.		9.19e+15	

Figure 13: Figure showing p,t and \mathbb{R}^2 values for #patriots

Significant Features are:

The significant variable for this hashtag were the x15,x14 and x13. These correspond to previous values, which we have seen are intuitive to understand. The scatter plot of Predictant values versus the significant features is shown below

Figure 14: Scatter plot of significant variable with Predictant for #patriots

Currently working		Regression	Results		
Dep. Variable:		y R-:	squared:		0.922
Model:			i. R-squared:		0.919
Method:	Least Sq		statistic:		417.5
Date:	Thu, 17 Mar		ob (F-statist	ic):	1.08e-282
Time:	02:	10:54 Lo	g-Likelihood:		-79.482
No. Observations:		547 AI	ć:		189.0
Df Residuals:		532 BI	C:		253.5
Df Model:		15			
Covariance Type:	nonr	obust			
	======= coef std err		t P> t	========= [95.0% Co	nf. Int.]
x1 -1.	9093 0.429	-4.44	0.000	-2.752	-1.066
	9628 2.169			26.701	35.224
	0643 0.861			-10.755	-7.373
	6180 0.307			-3.221	-2.015
	3467 7.759			71.104	101.590
x6 -86.				-117.532	-54.982
x7 77.	9401 16.107	4.83	0.000	46.299	109.581
x8 -12.	4929 2.918	-4.28	2 0.000	-18.224	-6.761
x9 -1.062	e+04 2.93e+04	-0.36	2 0.717	-6.82e+04	4.69e+04
x10 1.	3592 1.438	0.94	0.345	-1.465	4.184
x11 -23.	2565 4.169	-5.57	0.000	-31.446	-15.067
x12 -9.	2562 3.346	-2.76	0.006	-15.829	-2.683
	4810 2.814			-8.009	3.047
x14 -2.52		-0.36		-1.62e+05	1.11e+05
x15 2.517	e+04 6.94e+04	0.36	0.717	-1.11e+05	1.62e+05
Omnibus:			 rbin-Watson:		1.658
Prob(Omnibus):			rque-Bera (JB): 12	35742.075
Skew:			ob(JB):		0.00
Kurtosis:	23	4.583 Co	nd. No.		1.07e+06
=======================================		======	========	=======	======

Figure 15: s Figure showing p,t and \mathbb{R}^2 values for #sb49

Significant Features:

The significant features for this variable were found to be x6 (moving average), x4 (time of tweet) and x10 (past value). The presence of x6 makes sense as the moving average denotes the current mean and is a strong indicator of the range we can expect the future values to lie in.

The scatter plot of Predictant values versus the significant features is shown below

Figure 16: Scatter plot of significant variable with Predictant for #patriots

Currently workin	g with		egress	ion R	esults		
Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	Least Squ hu, 17 Mar 02:1	2016 0:53 618 604 14	Adj. F-st Prob	ured: R-squared: atistic: (F-statistic): ikelihood:	0.726 0.720 114.5 2.00e-159 -476.58 981.2 1043.		
=======	coef	std err	=====	t	P> t	[95.0% Co	nf. Int.]
x2 10 x3 -4 x4 -5 x5 5 x6 3 x7 -44 x8 11 x9 0 x10 -2 x11 0 x12 10 x13 11 x14 12	.6759 .8040 .8498 .9471 .2639 .7172 .2920 .1935 .1203 .3161 .6009 .1402 .2701 .9365 .0088	0.856 2.934 1.569 0.745 3.760 5.341 7.910 1.834 1.423 1.198 2.066 2.066 1.949 2.960 3.628	3 -3 -7 1 0 -5 6 0 -1 0 4 5	.306 .682 .091 .985 .400 .696 .599 .104 .085 .933 .291 .907 .784 .371	0.000 0.000 0.002 0.000 0.162 0.487 0.000 0.000 0.933 0.054 0.771 0.000 0.000	-11.357 5.042 -7.932 -7.410 -2.120 -6.772 -59.827 7.592 -2.674 -4.669 -3.457 6.082 7.443 7.124 5.883	-7.995 16.566 -1.768 -4.484 12.647 14.207 -28.757 14.795 2.914 0.037 4.659 14.198 15.097 18.749 20.134
Omnibus: Prob(Omnibus): Skew: Kurtosis:	=====	9 5	===== .044 .000 .185 .949			1	1.889 14761.781 0.00 2.15e+16

Figure 17: Figure showing p,t and \mathbb{R}^2 values for #nfl

Significant Features for this hashtag are x13,x14 and x15. We've seen the reasoning behind these features.

The scatter plot of Predictant values versus the significant features is shown below

Figure 18: Scatter plot of significant variable with Predictant for $\# \mathrm{nfl}$

Dep. Variab	le:			у	R-sq	uared:		0.886
Model:				0LŚ	Adj.	R-squared:		0.884
Method:	ethod:			quares	F-sta	atistic:		331.6
Date:		Т	hu, 17 Ma		Prob	(F-statistic):		2.62e-270
Time:			02	:10:54	Log-l	ikelihood:		-202.65
No. Observa	tions:			610	AIC:			433.3
Df Residual	s:			596	BIC:			495.1
Df Model:				14				
Covariance '	Type:		non	robust				
		coef	std er	r	t	P> t	[95.0% Co	nf. Int.]
x1	- 16	. 6300	0.89	3 -18	3.614	0.000	-18.385	-14.875
x2	19	4817	2.96	9 (5.582	0.000	13.669	25.294
x3	-3.	.2324	0.80	в -:	3.999	0.000	-4.820	-1.645
x4	-2	6742	0.40	B -(5.559	0.000	-3.475	-1.873
x5	-20	6658	5.04	1 -4	1.100	0.000	-30.565	-10.766
х6	35	7385	8.98	9 :	3.980	0.000	18.102	53.375
x7	58.	4107	15.11	3	3.865	0.000	28.730	88.091
x8	- 15	4531	5.07	5 -:	3.045	0.002	-25.421	-5.485
x9	-5.	.7352	2.49	2 -:	2.302	0.022	-10.629	-0.841
x10	5.	. 1579	1.01	3 !	5.091	0.000	3.168	7.147
x11	-1.	6313	2.79	6 -(0.584	0.560	-7.122	3.859
x12	-20	.8473	4.47	5 -4	1.657	0.000	-29.639	-12.056
x13	-22	. 1994	2.71	9 -{	3.165	0.000	-27.539	-16.860
x14	-1.	. 2402	3.94	1 -(3.315	0.753	-8.980	6.500
x15	-4.	. 8355	5.36	5 -(9.901	0.368	-15.373	5.702
======= Omnibus:			======= 10:	====== 90.469	Durb	======== in-Watson:		======= 1.898
Prob(Omnibu:	s):			0.000		ue-Bera (JB):	10	37195.335
Skew:				11.345	Prob		20.	0.00
Kurtosis:				93.731	Cond			9.01e+15

Figure 19: Figure showing p,t and R^2 values for #superbowl

Significant Features for this hashtag are x4,x6 and x10. We've seen the reasoning behind these features.

The scatter plot of Predictant values versus the significant features is shown below

Figure 20: Scatter plot of significant variable with Predictant for #superbowl

In general, the scatter plots indicate a linear relation between the significant variables and predictant values. This behavior is what we expected and also follows the theoretical explanation of p and t values.

The average prediction error obtained from 10 fold cross validation over full dataset is:

hashtag	Average Prediction Error
#gohawks	49.83
#gopatriots	192.83
#nfl	648.23
#patriots	1491.11
#sb49	3103.92
#superbowl	6722.28

Table 1: Table shows the average prediction error for different hashtags

Now we divide the dataset for each hashtag into three periods:

Period 1: Before Feb 1, 8:00

Period 2: Between Feb 1, 8:00 AM and 8:00 PM

Period 3: After Feb 1, 8:00 PM

The cross validation results were calculated for each hashtag in these three periods. The error obtained from cross validation is shown in the tables below.

Period	Cross Validation Error
Period 1	34.60
Period 2	10732.80
Period 3	141.65

Table 2: Cross Validation Error for #gopatriots

Period	Cross Validation Error
Period 1	769.17
Period 2	3190.07
Period 3	349.09

Table 3: Cross Validation Error for #gohawks

Period	Cross Validation Error
Period 1	263.32
Period 2	29426.67
Period 3	179.91

Table 4: Cross Validation Error for #patriots

Period	Cross Validation Error
Period 1	47.42
Period 2	143924.43
Period 3	258.24

Table 5: Cross Validation Error for #sb49

Period	Cross Validation Error
Period 1	121.73
Period 2	12275.64
Period 3	147.26

Table 6: Cross Validation Error for #nfl

Period	Cross Validation Error
Period 1	258.96
Period 2	881809.54
Period 3	679.02

Table 7: Cross Validation Error for #superbowl

We read the period from the file and computed the hashtag as the one which occurs maximum number of times in a given test file. The files along with their obtained hashtag and corresponding tweet prediction for the next hour are shown in table.

File	Computed hashtag	Window	Number of tweets predicted in next hour
Sample1_period1.txt	#nfl	Period 1	7.35e + 03
Sample2_period2.txt	#patriots	Period 2	2.98e + 6
Sample3_period3.txt	#patriots	Period 3	1.18e + 3
Sample4_period1.txt	#nfl	Period 1	9.83e + 4
Sample5_period1.txt	#nfl	Period 1	4.04e + 3
Sample6_period2.txt	#superbowl	Period 2	1.26e + 8
Sample7_period3.txt	#superbowl	Period 3	2.42e + 5
Sample8_period1.txt	#nfl	Period 1	8.83e + 4
Sample9_period2.txt	#superbowl	Period 2	1.50e + 9
Sample10_period3.txt	#nfl	Period 3	3.87e + 02

Table 8: Table shows the prediction for number of tweets in next hour for the test files

Problem Statement:Stock Prediction of selected advertising companies using Sentiment Analysis

The task at hand is to predict the stock market price of a particular company on the next day, given the closing Stock price on the previous day and the sentiment score for that company on the previous day.

The idea is to study the effect of a famous event like SuperBowl on the stock prices of the given companies using sentimental analysis.

Eight companies were taken for analysis from the twitter dataset. The hashtags for those eight companies are. 'doritos' 'makeithappy' 'budweiser' 'mcdonalds' 'mercedes' 'lexus' 'audi' 'minion' Note: 'makeithappy' hashtag represents coca-cola

We did the analysis for a period close to the SuperBowl event. Period from 28 January 2015 to 7 February 2015 was chosen. For each company, the sentiments score on each day was calculated.

Approach for Sentiment Analysis

There are multiple options to do sentimental analysis and classify the tweet into different categories. One way to explore sentiments is to use a list of keywords with tagged sentiment information (e.g. "happy" or "awesome' might have high sentiment scores whereas "terrible" or "awful" might have very low sentiment score.) Then we count the occurrence of these tagged keywords to get a sense of how people feel about that particular company at hand.

We use the AFINN Sentiment Dictionary for our keyword list. Link here: $http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id = 6010$

Using this approach of sentiment analysis, we calculated an average sentiment score for each day for each company.

Sentiment Score(SS):

0: Neutral

large positive value : high positive sentiment large negative value : high negative sentiment

We plotted the sentiment scores for the 8 companies on the day of SuperBowl event and saw that #minion has the highest positive sentiment and #mercedes was neutral. It is also seen that , no company had negative sentiment scores.

Figure 21: Sentiment scores on February 1, 2015

How Sentiment Analysis is done?

Take #dorito, for this company we calculate the sentiment score for each day for the given range

of days . For calculating the score , we took only those tweet which contain the hashtag related to that particular company. If the company hashtag was present in the tweet text, then using the AFINN Sentiment Dictionary , we calculated the score.

Closing Stock Prices

Other challenge for this task was to collect the closing stock prices for each day for the given range of days. This data was collected from the yahoo stock quote python library. (Library Name:'ystockquote 0.2.4') Once this data of closing stock prices was collected, it was used as a feature in the training dataset. We plotted graphs depicting the variation of closing stock with each day for three comapnies.

Figure 22: Closing stock prices for budweiser

Figure 23: Closing stock prices for McDonalds

Figure 24: Closing stock prices for Pepsico

It is clear from the graph that closing stock price changes everyday for the three companies. Finally, the training dataset is made for each company.

How is the training data made? Training data consists of days from 01/28/2015 to 02/06/2015 as rows. Each row represent a single day. Features used for the matrix are sentiment score for a day and the closing stock price on that day. The training label was the closing stock price on the next

day. If closing stock price for the next day was not available (as in case of Saturday and Sunday), we used the stock price on the next available day.

Further work to be done:

The training dataset will be used to make a linear regression model. Once the model is built, we will check the cross validation accuracy of the model. Then make a testing dataset from the days after 02/06/2016 and predict the stock prices for the next days and find the testing RMSE. Since, advertising companies are more talked about near the SuperBowl event, it is likely that the stock prices of these advertising companies will increase. So if we predict a decrease in the stock prices for a particular company after the event, then company can change its marketing strategies for handling with the decrease in the stock prices. But how public sentiment effects the stock price has to studied further.

Other approaches:

Sentimental analysis done in this task can be modified. Instead of the sentiment score, we can find score for different categories of the mood and then use each category as a feature. There are few online tools available for this task like OpinionFiner. Apart from this, we can make a language model of the tweets and combine it with the sentiment analysis features.

References for Part 6

- 1.Mittal, Anshul, and Arpit Goel. "Stock prediction using twitter sentiment analysis." Standford University, CS229 (2012).
- 2. Chung, Sang, and Sandy Liu. "Predicting stock market fluctuations from twitter." Berkeley, California (2011).
- 3.Au, Benjamin, Qian Zhang, and Wanlu Zhang. "Learning Dow Jones From Twitter Sentiment."