O wielorękich bandytach, nieuczciwych kasynach i sprytnych statystykach

Plan prezentacji

- Wieloręki bandyta
- Eksploracja vs Eksploatacja
- Motywacje
- Rozwinięcie problemu
- Algorytmy
- Optymalizacja Bayesowska

Model

Model

- Bandyta ma *K* ramion
- Każde ramię i płaci 1 PLN z prawdopodobieństwem p_i
- Nie znamy $\{p_i\}$ ale wiemy, że są stałe w czasie
- ullet W każdym kroku t wybieramy ramię a_t którym gramy
- Na podstawie naszego wyboru otrzymujemy wygraną:
 r_t ~ Bernouli(p_{a(t)})
- W jaki sposób grać, aby zmaksymalizować wygraną?
- Możemy rozważać koszt gry c
- Szukamy strategi π która minimalizuje stratę:

$$R_t = p^*t - E[sum_t r_{\pi(t)}]$$

Model

- Mamy skończony budżet i w ramach tego budżetu chcemy osiągnąć największe zyski (ROI). Jednocześnie optymalizujemy i robimy użytek z naszej wiedzy.
- Pokrewne problemy:
 - Optymalizacja funkcji przy założonym budżecie użytek z naszej wiedzy będziemy robić później (optymalizacja Bayesowska – będzie w dalszej części).
 - Minimalizacja wariancji estymatora przy założonym budżecie (optymalne projektowanie eksperymentu, aktywne uczenie http://burrsettles.com/pub/settles.activelearning.pdf)

Podejście "naiwne" (zachłanne)

- Gra trwa T rund (liczbę rund znamy na początku)
- Na początku gramy każdym ramieniem N razy (faza eksploracji K N < T)
- Pozostały czas gramy ramieniem które wypadło najlepiej w fazie eksploracji (eksploatacja)

Podejście "naiwne" (zachłanne)

- $N = T^{2/3} (\log T)^{1/3}$
- $R_T \le O(T^{2/3} (log T)^{1/3}) \leftarrow na koniec gry$
- Czy możemy grać lepiej (strategie adaptatywne)?
- O ile lepiej możemy grać (ograniczenie dolne na R_{τ})?

Podejście "naiwne"- dlaczego to działa

- Dla każdego ramienia zachodzi |S_n N p| ≤ ε i wybieramy złe ramię => dużo nie tracimy:
 R_T≤N+O(ε (T-KN))
- Jakie jest prawdopodobieństwo, że tracimy dużo, tj.: |S₂ - N p| > ε?
- Ograniczenie Hoeffdinga: $P(|S_n - N p| \le \epsilon) \ge 1 - \exp(-2 \epsilon^2 N)$
- $E[R_{\tau}] = E[R_{\tau}|ok]p(ok) + E[R_{\tau}|bad]p(bad)$
- ε=(2 log T/N)^{1/2}, N = T^{2/3}(log T)^{1/3} => R_T ≤ O(T^{2/3} (log T)^{1/3})

Algorytm ε-zachłanny

- Z prawdopodobieństwem (1 ε), na podstawie dotychczasowych obserwacji wybierz ramię z największym prawdopodobieństwem wygranej.
- Z prawdopodobieństwem ε wybierz losowe ramię.
- $-\epsilon_{t} \sim t^{-1/3}$
- $R_t \le O(t^{2/3} (\log t)^{1/3}) \leftarrow w \text{ każdym momencie gry}$
- Czy można lepiej
- Co jeśli kasyno oszukuje? Algorytm może przynieść duże straty: R_T
 = o(T) ← o tym jeszcze będzie później
- Eksplorujemy przestrzeń parametrów w sposób nieefektywny.

Wieloręki bandyta Górny przedział ufności (UCB1)

- Wybierz każde ramię raz
- W każdej rundzie t:
 - Oblicz średnią wartość ramienia: w₁(a)
 - Oblicz przedział ufności dla ramienia: $r_t(a) = (2 \log T/n_t(a))^{1/2}$
 - Graj optymistycznie, tj. wybierz ramię: arg max_a w_t(a)+r_t(a)
 - Lepsze szacowanie przedziału ufności UCB-tuned

Wieloręki bandyta Górny przedział ufności (UCB1)

- $R_t \leq O((Kt (log T))^{1/2})$
- Jeśli coś wiemy o p_i : $R_t \le O(\log T)[\sum_a 1/\Delta(a)]$

Wieloręki bandyta Jak dobry może być algorytm

- Rodzina wrednych Bandytów: $I_i = \{p_0 = 1/2, p_1 = 1/2, ..., p_i = (1+\epsilon)/2, ..., p_K = 1/2\}$
- Trudno powiedzieć z którym bandytą mamy do czynienia:
 |p(A)-q(A)| ≤ ε T¹/2
- Algorytm: A_i <=> i
- $R_{\mathsf{T}} \geq \Omega((\mathsf{K}\;\mathsf{T})^{1/2})$
- Nawet jeśli coś wiemy o p_i: R_t≥Ω(log t)

Eksploracja vs eksploatacja

- Eksploatacja wykorzystaj dotychczasowe dane do podjęcia najlepszej decyzji
- Eksploracja zgromadź więcej danych
- Najlepsza strategia długoterminowa nie musi być lokalnie optymalna.
- Od czasu do czasu warto wyjść poza "strefę komfortu" oraz inne życiowe prawdy.

Eksploracja vs eksploatacja

 Jeśli bez końca eksplorujemy to nasze straty będą liniowe w czasie.

Motywacje

- Marketing: optymalizacja cen, optymalizacja asortymenty, optymalizacja komunikatów/reklam, optymalizacja układu strony (Amazon, Yahoo!)
- Koszty biznesowe nieoptymalnego działania
- Optymalizacja portfolio (np. przydział środków na projekty R&D)
- Optymalizacja terapii, testy kliniczne

Warianty

- Przestrzeń parametrów jest dyskretna czy ciągła?
- Czy jest jakaś "korelacja przestrzenna" między bandytami/ramionami? Bliskie i implikuje bliskie p_i?
- Czy mamy jakąś dodatkową wiedzę o rozkładzie p_i?
- Czy p_i zmienia się w czasie (stacjonarność vs niestacjonarność)?
- Czy p_i zależy od poprzednich ewaluacji (markowość)?
- Czy jest dodatkowy "kontekst" od którego zależy wygrana (np. informacje o użytkowniku do którego adresujemy reklamę, parametry reklamy)?
- Bandyta przeciwnik (adversarial bandit) nieuczciwe kasyno zna historię naszych ruchów oraz algorytm i na tej podstawie ustala p_i w następnej rundzie.
- Opóźnienia informacji o wygranej (np. poznajemy wygraną 10 rund później, CTR).
- Możliwość przeprowadzenia kilku gier równolegle
- Skończony/otwarty horyzont czasowy.
- Inne modele straty (np. probably approximately correct).

Algorytm Bayesowski

- Czy możemy zrobić użytek z naszej wiedzy o rozkładzie wygranych {p_i}, korelacjach między bandytami, znajomości kontekstu?
- Strata Bayesowska/strukturalna $BR_t = E_{\Theta}[p^*t E[sum_t r_{\pi(t)}]]$ Θ parametry od których zależy wygrana

Algorytm Bayesowski

- Wyznacz rozkład aposteriori prawdopodobieństwa wygranej p_i, przy założeniu dotychczasowych obserwacji (do chwili t).
- Policz wartość oczekiwaną zysku dla każdego i:

$$r^*_i = E[\Sigma_{t'>t} r_i | p_i]$$

Optymalizuj względem i

Wieloręki bandyta Algorytm Bayesowski

- Elastyczność, można uwzględnić:
 - wiedzę aprioi
 - zmienne ciągłe i dyskretne
 - strukturę (korelacje, warunek Lipschitza)
 - zmienność w czasie
 - kontekst
 - szum/brak szumu (optymalizacja funkcji deterministycznych: rozkład aprioi → klasa funkcji)
- Duża złożoność obliczeniowa (aproksymacja przy użyciu MCTS), dla niektórych przypadków łatwiej

Algorytm Bayesowski

- Heurystyka: "bądź optymistą wybieraj najbardziej obiecujące ramię"
- Funkcja użyteczności (np. UCB, p. poprawy)

Próbkowanie Thompsona

- Wylosuj p_i z rozkładu a posteriori, przy założeniu dotychczasowych obserwacji (do chwili t).
- ullet Wyznacz i optymalne dla wylosowanego $oldsymbol{p}_i$
- Algorytm łatwy do implementacji i tani obliczeniowo
- ullet Równoległe eksperymenty losujemy wiele $oldsymbol{p}_i$
- Wyniki eksperymentów potwierdzają skuteczność w porównaniu z innymi algorytmami
- $R_T = O((T K \log T)^{1/2})$
 - r_t rozkład Bernoullego, rozkład jednorodny a priori
 - r_t rozkład Gaussa, rozkład jednorodny a priori

Hedge, EXP3, EXP4, EXP...

Wybierz ramię i z prawdopodobieństwem:

$$p_{i,t}=(1-\gamma) w_{i,t}/\Sigma_i w_{i,t}+\gamma/K$$

Aktualizacja wag:

$$w_{i,t+1} = w_{i,t} exp(\gamma' r_i / K)$$

$$w_{i,t+1} = w_{i,t} exp(\gamma' r_i / p_{i,t} K)$$

- Gra z przeciwnikiem (adversial bandit):
 - Na początku rundy przeciwnik ustala wypłaty r_i , przeciwnik może znać historię ruchów.
 - ullet Gracz wybiera ramię i otrzymuje wypłatę; gracz nie zna r_i
 - $R_t = r^*t E[sum_t r_{\pi(t)}]$
- R_T ≤ O(sqrt(T K log(K))); jeśli istnieje optymalna strategia, jesteśmy w stanie się jej nauczyć

Niestacjonarność

- Kasyno co jakiś czas manipuluje przy bandytach
 - Zmiana skuteczności leków (np. nabywanie odporności przez bakterie)
 - Zmiana zachowań użytkowników serwisów internetowych
- Zapominanie starych wyników (UCB, EXP):
 - Wykładnicze dyskontowanie
 - Okno
 - Restart
- Wykrywanie zmian strukturalnych (EXP.R)

Kontekst

- Kontekst bandyty i kontekst gracza:
 - Podobni bandyci dają podobne wygrane
 - Podobni gracze mają podobne szczęści
- Posiadamy dodatkowe informacje które możemy wykorzystać:
 - Dane pacjenta, historia choroby, dawka leku
 - Historia przeglądania, kategoryzacja produktów
 - Parametry układu treści na stronie, kategoryzacja tematyczna treści

Kontekst

- Dla skończonej liczby kontekstów redukcja do KC niezależnych ramion; nie korzystamy z informacji o podobieństwie.
- Korelacje, ograniczenie/ciągłość Lipschitza: |r_x-r_y|≤L|x-y|
 - Dyskretyzacja: $R_T \le R_T(S) + DE(S)$
 - Adaptatywna dyskretyzacja rozmiar siatki zależy od przedziału ufności
 - $R_T \le O(T^{d+1/d+2} (\log T)^{1/d+2})$
- Podział przestrzeni przy użyciu drzewa/podejście hierarchiczne (BAST, HOO)

Kontekst

Adaptatywna dyskretyzacja: Dlviding RECTangles - DIRECT,
 Perttunen at al. 1993

Kontekst

Model liniowy – LinUCB (niezależna parametryzacja)

arg max_a
$$w_t(a)+r_t(a)$$

 $w_t(a) = x_{t,a} \theta_{t,a}$, $r_t(a) = \alpha \operatorname{sqrt}(x_{t,a} A_{t,a}^{-1} x_{t,a})$
 $\theta_{t,a} = A_{t,a}^{-1} b_{t,a}$
 $A_{t,a} = A_{t-1,a} + x_{t,a} x_{t,a}$
 $b_{t,a} = b_{t-1,a} + x_{t,a} r_{t,a}$

Optymalizacja Bayesowka Wprowadzenie

- Optymalizacja funkcji f(x) której ewaluacja jest kosztowna:
 - długi czas obliczania funkcji optymalizacja meta parametrów w uczeniu maszynowym
 - czynnik ludzki (np. uczenie preferencji, modelowanie materiałów 3D https://arxiv.org/pdf/1012.2599.pdf)
 - adaptatywny eksperyment, testy A/B
 - Przeszukiwanie drzew metodami monte carlo (MCTS)
 - geologia, ekologia
- Optymalizacja f(x) przy założonym budżecie minimalizacja liczby wywołań f(x)

Optymalizacja Bayesowka Założenia

- Założenia odnośnie "gładkości" optymalizowanej funkcji
- Rozkład prawdopodobieństwa służy do modelowania niewiedzy

Optymalizacja Bayesowka Rozkład apriori funkcji

- Założenia odnośnie "gładkości" optymalizowanej funkcji f – ciągłość w sensie Lipschitza: |f(x) – f(y)|≤L|x-y|
- Rozkład apriori powinien umożliwiać łatwą aktualizację wraz z nadchodzącymi danymi oraz łatwe obliczanie "odchylenia" od wartości "średniej"
- Lasy losowe (SMAC)
- Proces Gaussowski f ~ GP(m, k), gdzie:
 - m wartości średnie
 - k funkcja kowariancji, np. RBF ~ exp($|x-x'|^2/2\theta^2$)

Optymalizacja Bayesowka Rozkład apriori funkcji

(scikit-learn)

Optymalizacja Bayesowka Rozkład apriori funkcji

(E. Brochu, V. M. Cora, N. de Freitas, 2010)

Optymalizacja Bayesowka Algorytm

Dla danego kroku t mamy zbiór danych:

$$D_t = \{(x_1, y_1), ..., (x_t, y_t)\}$$

Optymalizujemy funkcję użyteczności dla rozkładu aposteriori:

$$x_{t+1} = argmax_x u(f|D_t)$$

- Obliczamy $y_{t+1} = f(x_{t+1})$
- $D_{t+1} = D_t + \{(x_{t+1}, y_{t+1})\}$
- Funkcja użyteczności: np. UCB = $\mu(x)$ + std(x)
- Rozkład aposteriori dla x_{t+1}

$$\mu(x_{t+1}) = k^{T}K^{-1}y$$

$$\sigma^{2}(x_{t+1}) = k(x_{t+1}, x_{t+1}) - k^{T}K^{-1}k$$

Optymalizacja Bayesowka Algorytm

Optymalizacja Bayesowka Pakiety w Pythonie

- Ogólnego przeznaczenia:
 - bayesian-optimization https://github.com/fmfn/BayesianOptimization
 - pyGPGO http://pygpgo.readthedocs.io/en/latest
 - hyperopt http://hyperopt.github.io/hyperopt/
- Automatyczne uczenie maszynowe optymalizacja pipeline (preprocessing, wybór modelu i optymalizacja metaparametrów)
 - autosklearn https://github.com/automl/auto-sklearn

Literatura

- Introduction to Multi-Armed Bandits, A. Slivkins
- Regret Analysis of Stochastic and Nonstochastic Multiarmed Bandit Problems, S. Bubeck, N. Cesa-Bianchi
- Gambling in a rigged casino: The adversarial multi-armed bandit problem, P. Auer, N. Cesa-Bianchi, Y. Freund, R. E. Schapire
- An Empirical Evaluation of Thompson Sampling, O.
 Chapelle, L. Li
- A Tutorial on Thompson Sampling, D. J. Russo, B. Van Roy,
 A. Kazerouni, I. Osband, Z. Wen

Literatura

- A Survey of Online Experiment Design with the Stochastic Multi-Armed Bandit, G. Burtini, J. Loeppky, R. Lawrence
- A Survey on Contextual Multi-armed Bandits, Li Zhou
- A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning, E. Brochu, V. M. Cora, N. de Freitas
- Taking the Human Out of the Loop: A Review of Bayesian Optimization, B. Shahriari,
 K. Swersky, Z. Wang, et. al.
- Multi-Armed Bandit Algorithms and Empirical Evaluation, J. Vermorel, M. Mohri
- Algorithms for the multi-armed bandit problem, V. Kuleshov, D. Precup
- https://dataorigami.net/blogs/napkin-folding/79031811-multi-armed-bandits