Midterm 1

Math 252

Winter 2022

You have 50 minutes to complete this exam and scan and upload it to Canvas. Show all your work. You may use a scientific calculator, but not a graphing one. When you're finished, first check your work if there is time remaining, then scan the exam and upload it to Canvas. If you have a question, don't hesitate to ask — I just may not be able to answer it.

 ${\bf 1.}\ (32\ {\rm points})$ Multiple choice. You don't need to show your work.

- a) (8 points) What is $1 + 2 + 3 + \dots + 499 + 500$?
 - A) 62500.
 - B) 125250.
 - C) 175500.
 - D) 250000.
- b) (8 points) What is $\int \frac{1}{x} dx$?
 - A) $\ln |x| + C$.
 - B) $\sin(x) + C$.
 - C) $-\frac{1}{x^2} + C$.
 - D) $x^2 + C$.
- c) (8 points)

Let f(t) be defined by the previous graph. Then $\int_{-2}^{1} f(t) \ dt$ is

- A) positive.
- B) negative.
- C) zero.
- D) undefined.

d) (8 points) With f defined from the same graph as before, let $g(x) = \int_{-3}^{x} f(t) dt$. Which of the following could possibly be a graph of g?

- 2. (32 points) Short-answer. Explain your reasoning and/or show your work for each question.
- a) (8 points) Write and evaluate the Right Riemann sum with 4 subintervals for the function $f(x) = x^3$ on [-2,2]. You don't need to simplify your answer, but it cannot contain a sum symbol.

b) (8 points) Evaluate $\frac{d}{dx} \int_2^{\ln(x)} \frac{\sin(r)}{r} dr$.

c) (8 points) Evaluate $\int_2^4 (x^2 + x) dx$.

d) (8 points) Evaluate $\int 3t^3 \sin(t^4) dt$.

3. (32 points) Let $v(t) = 2 - 2t$ be the velocity of a particle at time t .
a) (8 points) Find a formula for $a(t)$, the acceleration of the particle at time t .
b) (12 points) Find a formula for $s(t)$, the position of the particle at time t , given that $s(3) = 2$.
c) (12 points) Find the total distance traveled by the particle from time t = 0 to time t = 3.
e) (8 points extra credit) Let $e(x)$ be the average position of the particle from time 0 to time x . Find $e(x)$