Nonlinear control and aerospace applications

Random variables and stochastic processes

Carlo Novara

Politecnico di Torino Dip. Elettronica e Telecomunicazioni

Outline

Random variables

2 Stochastic processes

2 Stochastic processes

Definitions

- An outcome is a possible result of an experiment.
- ullet The sample space Ω is the set of all possible outcomes.
- A random variable (or stochastic variable) is a number $v \in V \subseteq \mathbb{R}$ associated with the outcomes of an experiment. More formally, a random variable is a function $v : \Omega \to V \subseteq \mathbb{R}$.
- The set V of all possible values of v is called the *range* of v.
- ullet In general, v may take values in V with a certain probability.

Example: Coin toss.

Definitions

- A random vector (or stochastic vector) $v \in V \subseteq \mathbb{R}^n$ is a collection of random variables $v_i \in \mathbb{R}$: $v = (v_1, \dots, v_n)$.
- A value obtained from a specific outcome is called a *realization* of the random variable (vector).
- In the following:
 - The expression "random variable" will be used also to indicate a random vector.
 - A random variable (vector) will be abbreviated with RV.
 - RVs of arbitrary dimension n will be considered.

Examples

- Coin toss:
 - $\Omega = \{\text{head}, \text{tail}\}\ (2 \text{ possible outcomes}).$
 - $V = \{1, -1\}.$
- Dice roll:
 - $\Omega = \{\text{face1}, ..., \text{face6}\}\ (\text{6 possible outcomes}).$
 - $V = \{1, 2, \dots, 6\}.$
- Measurement of a physical observable: v = "true" value + error.
 - $\Omega = \text{set of all possible "states" of the physical observable and errors (∞ possible outcomes).$
 - ightharpoonup V = "true" value + error set.

Probability functions - discrete RV

- ullet The range V is the set of all possible values of v.
- If V is countable \Rightarrow discrete RV.
- A discrete RV v is described by a probability mass function (PMF) $p_v(x)$.
- The PMF gives the probability of v to take a value x:

$$prob(v = x) = p_v(x).$$

• Suppose $V = \{x_1, x_2, \ldots\}$. Clearly,

$$\operatorname{prob}(v \in V) = \sum_{\forall i} p_v(x_i) = 1.$$

Probability functions - continuous RV

- ullet The range V is the set of all possible values of v.
- If V is uncountable (e.g., a real interval) \Rightarrow continuous RV.
- A continuous RV v is described by a probability density function (PDF) $p_v(x)^1$.
- The PDF multiplied by dx gives the probability that v falls between x and x+dx:

$$prob(x \le v < x + dx) = p_v(x)dx.$$

• The PDF integral over a set $A \subseteq V$ gives the probability of v to take a value in A:

$$\operatorname{prob}(v \in A) = \int_A p_v(x) dx.$$

• Clearly, $\operatorname{prob}(v \in V) = \int_V p_v(x) dx = 1$.

¹Same symbol p_v for both continuous and discrete cases, different meaning.

Definitions - continuous RV

• Expected value (expectation, mean, average) of a function f(v) of a random variable v:

$$\mathcal{E}[f(v)] \doteq \int_{V} f(x) p_{v}(x) dx.$$

- (Raw) moments of the distribution²: $\mathcal{E}[v^k]$, $k=1,2,\ldots$
- Central moments of the distribution: $\mathcal{E}[(v-\mathcal{E}[v])^k], k=1,2,...$
- Expected value of $v = 1^{st}$ moment.
- Variance of v: $\sigma^2 \doteq \text{var}(v) \doteq \mathcal{E}[(v \mathcal{E}[v])^2] = 2^{nd}$ central moment.
- Standard deviation: $\sigma \doteq \operatorname{std}(v) = \sqrt{\operatorname{var}(v)}$.
- Covariance matrix: $P \doteq \text{cov}(v) \doteq \mathcal{E}[(v \mathcal{E}[v])(v \mathcal{E}[v])^{\top}] \in \mathbb{R}^{n \times n}$.

2 Stochastic processes

Stochastic processes

Definitions

- A stochastic process (or random process) is a collection of random variables $\{v(t) \in V, t \in T\}$, where $V \subseteq \mathbb{R}^n$, $T \subseteq \mathbb{R}$.
- Usually, t represents the time and T the time range.
 - $ightharpoonup T=[0,\infty) \implies$ continuous-time process.
 - ▶ $T = \{0, 1, 2, ...\}$ \Longrightarrow discrete-time process (k often used instead of t).
- Examples: random walk, Wiener process, Poisson process.

Stochastic processes

Definitions

- A process v is identically distributed if v(t) has the same PDF $\forall t$.
- A process v is *independent* if, for any collection of distinct times t_1, t_2, \ldots, t_m , the joint PDF of the RVs $v(t_1), v(t_2), \ldots, v(t_m)$ coincides with the product of their individual PDFs, i.e., if

$$p_{v(t_1),\dots,v(t_m)}(x_1,\dots,x_m) = \prod_{i=1}^m p_{v(t_i)}(x_i).$$

- Notation: *i.i.d.* = *iid* = *independent identically distributed*.
- A process v is white if it is independent and $\mathcal{E}[v(t)] = 0$, $var(v(t)) < \infty$, $\forall t$.
- Two processes v and u are independent if, for any collection of distinct times t_1, t_2, \ldots, t_m , the random vectors $(v(t_1), v(t_2), \ldots, v(t_m))$ and $(u(t_1), u(t_2), \ldots, u(t_m))$ are independent.

Stochastic processes Definitions

ullet Given two processes $v(t), u(t) \in \mathbb{R}^n$, their covariance is

$$\mathrm{cov}(v(t), u(\tau)) \doteq \mathcal{E}\left[v(t) - \mathcal{E}[v(t)])(u(\tau) - \mathcal{E}[u(\tau)])^\top\right].$$

 $u(t) \neq v(t)$: cross-covariance; u(t) = v(t): auto-covariance.

- Correlation: $corr(v(t), u(\tau)) \doteq \frac{cov(v(t), u(\tau))}{std(v(t)) std(u(\tau))}$. $u(t) \neq v(t)$: cross-correlation; u(t) = v(t): auto-correlation.
- ullet Two processes $v(t), u(t) \in \mathbb{R}^n$ are uncorrelated if

$$cov(v(t), u(\tau)) = 0, \forall t, \tau.$$

• If two processes are independent, then they are uncorrelated. The inverse is in general not true.

Stochastic processes

Examples of stochastic processes

- Sequence of coin tosses: $\{v(k) \in V, k \in T\}$, $V = \{-1, 1\}$, $T = \{0, 1, 2, \ldots\}$. The stochastic process is $(v(0), v(1), v(2), \ldots, v(k), \ldots) = (1, -1, -1, \ldots, 1, \ldots)$.
- Discrete-time random walk: v(k+1)=v(k)+d(k), where $V\in\mathbb{R}^n$, $k\in T=\{0,1,2,\ldots\}$ and $d(k)\in\mathbb{R}^n$ is a white noise.
- Continuous-time Wiener process (Brownian motion): v(t+dt)=v(t)+d(t), where $V\in\mathbb{R}^n$, $t\in T=[0,\infty)$ and $d(t)\in\mathbb{R}^n$ is a Gaussian white noise with variance dt.
- The Wiener process can be discretized, giving a discrete-time random walk equation.