LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS A2 2014–08–22 kl. 8–13

Svar

- 1. a) $\frac{1}{2\sqrt{5}}$
 - **b**) $\frac{7}{3}e$
 - c) Gränsvärde saknas.
 - **d**) 1
 - e) $\frac{\pi}{4}$
- 2. Lokalt maximum i punkten x = 0. Lodräta asympototer i x = -1 resp. x = 1. Linjen y = 0 är vågrät asympotot då $x \to \infty$ samt $x \to -\infty$. Värdemängden ges av $V_f =]-\infty, -1] \bigcup]0, \infty[$.

- **3.** a) Se Definition 10.1 i kursboken.
 - b) Se Definition 9.7 i kursboken.
 - c) Se beviset av Sats 10.1 i kursboken.
 - d) Betrakta den kontinuerliga funktionen $f(x) = 3x^5 \sin(\frac{\pi}{2}x) 1$. Vi söker lösningar till ekvationen f(x) = 0. Välj två lämpliga punkter och använd $Sats\ 9.8$ (satsen om mellanliggande värden) i kursboken.
- **4. a)** Se *Sats 11.1* i kursboken.
 - **b)** $p_1(x) = x$
 - c) Observera att $(1+x)\cdot \ln(1+x)-x=R_2(x)$, och gör en lämplig uppskattning.
- **5.** Sidornas längd ska vara $\frac{316}{9}$ cm, $\frac{632}{9}$ cm samt $\frac{158}{3}$.
- **6.** a) Se Sats 2.2 i kursboken.
 - b) Enligt förutsättningarna kan vi skriva $p(z) = (z-\alpha)^n \cdot q(z)$ för något polynom q, där faktorsatsen och definitionen av multiplicitet ger att $n \ge 1$ och $q(\alpha) \ne 0$. Anta att n = 1, dvs. $p(z) = (z-\alpha) \cdot q(z)$. Vårt mål är att nå en motsägelse, för att kunna konstatera att $n \ge 1$.

Om α är ett nollställe till derivatan av p, då gäller $p'(\alpha) = 0$. Produktregeln (och kedjeregeln) ger att $p'(z) = 1 \cdot q(z) + (z - \alpha) \cdot q'(z)$. För $z = \alpha$ ger denna ekvation $p'(\alpha) = 1 \cdot q(\alpha) + (\alpha - \alpha) \cdot q'(\alpha)$, dvs. $0 = q(\alpha)$. Detta är en motsägelse, då vi redan visste att $q(\alpha) \neq 0$.