SB & SC - Poisson distribution & Type I/II errors

How can 2 Poisson Distributions be combined?	If X and Y are two independent random variables that can be modelled using the Poisson distribution with distributions given by $X \sim \operatorname{Po}(\lambda_x)$ and $Y \sim \operatorname{Po}(\lambda_y)$, then $X + Y \sim \operatorname{Po}(\lambda_x + \lambda_x)$ This leads to result that $m \times X = \operatorname{Po}(m \times \lambda)$ where m is a positive rational number.	
What 4 conditions are needed for something to follow a Poisson distribution?	 Events occur at a constant average rate. Events occur randomly and independently. There can only be a discrete number of events. Events occur singly. Events occurring singly means that the probability of two events occurring in the same narrow interval is negligible. Furthermore, independent and random would mean no queues present (eg, cars on a motorway must be able to overtake freely and calls to a switch board must be dealt with instantly / no queuing).	
What is equal to the mean under Poisson?	Mean (λ) = median = mode = variance. λ is average rate of occurrence in a given interval (eg, average number of events an hour).	
What is H ₀ and H ₁ ?	 H₀ - null hypothesis. H₁ - alternative hypothesis (what you're testing for). 	
What is the p-value?	The probability of getting \geq or \leq a value given the null hypothesis is true (in other words, the probability of the data is at least as extreme as observed).	

		observed	on Ho
What does the central limit theorem state?	The distribution of your sample means tends to the normal distribution (yet with a lower standard deviation than the population) as the sample size increases.		
How is the evidence against H ₀ measured?	 By using the p-value. The smaller it is, the greater the evidence UNTIL it's smaller than the significance value at which you reject H₀. The greater the sample size, the more power the p-value has. 		
What a Type I and Type II error?	 Type I - rejecting H₀ when in fact it is true (false positive) Type II - failing to reject H₀ when it is in fact false (false negative) 		
	Outcomes Underlying truth		ng truth
		H₀ false	H₀ true
	Reject H₀	Correct	Type I error
	Don't reject H₀	Type II error	Correct
What is P(Type I Error) equal to in the case of continuous and the case of discrete?	 Continuous - α (the significance value). Discrete - the probability of something occur just below the significance value. Reducing the value does increase the chances of a Type II error so you need a balance. 		
What is the power of a test?	1 - P(Type II Error).		

	This is, obviously, the probability of not making a Type II error.	
How can you find the P(Type II Error)?	 Find the critical values. Find the probability of accepting H₀ (lying in the critical values) under the actual mean. 	