

MSC8102 - Packet Telephony Farm Card (PFC) User Guide and Hardware Detailed Design Description

PFC_DDD_v1.3.doc

Author:	Colin McEwan	Mark Knox
Email:	colin.mcewan@motorola.com	mark.knox@motorola.com
Phone:	+44 1355 356061	+44 1355 356034

Networking and Computing Systems Group (NCSG)

Colvilles Road, Kelvin Industrial Estate, East Kilbride, Glasgow G75 OTG. 44 (0) 1355 355000. Fax: 44 (0) 1355 260780

Reg. Office: Motorola Ltd., Jays Close, Viables Industrial Estate, Basingstoke, Hants., RG22 4PD (registration No. 912182 England)

Revision History

Revision	By	Date	Description of Change
1.0	CM	24/1/3	First Issue
1.1	CM	7/3/3	Updated to reflect Pilot Production Boards
1.2	CM	27/3/3	MSC8102 SDRAM increased to 16MB
1.3	CM	21/4/3	Pilot Production Release (with quick start guide)

CONTENTS

1	OVERVIEW	1
	1.1 SCOPE	1
	1.2 REFERENCE DOCUMENTS	
2	PFC OVERVIEW	2
3		
4	USER GUIDE	4
	4.1 QUICK START	4
	4.2 BOARD CONFIGURATION OPTIONS	
	4.2.1 Single MSC8101 with Default Configuration	
	4.2.2 MSC8101 Boot through HDI16	
	4.2.3 MSC8101 Ethernet/Utopia Options	
	4.2.5 JTAG options	
	4.3 PROGRAMMING FLASH	
5	HARDWARE DESCRIPTION	8
٠		
	5.1 BOARD ARCHITECTURE	8
	5.2 MSC8101 AGGREGATOR & 60X BUS INTERFACE	
	5.2.1.1 SDRAM Initialization Command Sequence	
	5.2.1.2 SDRAM Refresh	
	5.2.2 MSC8101 FLASH Interface	11
	5.2.3 MSC8101 60x to DSI Interface	12
	5.2.3.1 MSC8101 60x to DSI Interface: Synchronous mode	12
	5.2.3.2 MSC8101 60x to DSI Interface: Asynchronous mode	
	5.2.4 MSC8101 to MSC8102 Interrupt Connectivity	
	5.2.6 RMII Interface	
	5.2.7 MSC8101 I2C Controller	
	5.2.8 MSC8101 RS232 Interface	
	5.2.9 MSC8101 Host Interface (HDI16)	
	5.3 MSC8102 DSP PROCESSING ARRAY	
	5.3.1 DSP Array SDRAM Configuration	
	5.3.1.1 SDRAM initialization Command Sequence	
	5.3.2 MSC8102 Array DSI Interface	
	5.3.3 MSC8102 Array TDM Interface	
	5.3.4 MSC8102 RS232 Interface	
	5.4 GENERAL BOARD CONFIGURATION	
	5.4.1 Reset	
	5.4.2 Clock Distribution	
	5.4.4 FPGA Configuration	
	5.4.5 PTMC Connectors	
	5.4.6 JTAG Connectivity	29
	5.4.7 LEDs	
	5.5 PFC BOARD CONFIGURATION	30
6	FIRMWARE IMPLEMENTATION	32
	6.1 MSC8101 Host Memory Controller Settings	32
	6.2 MSC8102 Memory Controller Settings	
	6.3 PFC RESET CONFIGURATION WORD (MSC8101)	
	6.4 PFC RESET CONFIGURATION WORD (MSC8102)	
	6.5 PFC BOOTSTRAP	35
7	PFC BASE CARD	37
	7.1 UTOPIA INTERFACE	37
	7.1 UTOPIA INTERFACE	
	7.3 HDI16 INTERFACE	
	7.4 CT Bus Interface	
	7.5 ETHERNET INTERFACE	39
A	PPENDIX A PFC PARTS	41

APPENDIX B PFC BASE CARD PARTS	43
APPENDIX C JTAG CONFIGURATION FILE (21 CORES)	4
APPENDIX D PFC LAYOUT	45
DICHDEC	
FIGURES	
FIGURE 1. MSC8102 - PACKET TELEPHONY FARM CARD	
FIGURE 3. PACKET TELEPHONY FARM CARD ARCHITECTURE	8
FIGURE 4. SDRAM MODE REGISTER SETTINGS	
FIGURE 6. PFC TO DSI INTERFACE.	
FIGURE 7. AGGREGATOR MSC8102 INTERRUPT CONNECTIVITY OPTIONS	
FIGURE 8. STANDARD INTERRUPT ROUTING	
FIGURE 10. REFRESH CALCULATIONS	
FIGURE 11. TDM TO CT ROUTING	
FIGURE 12. PORESET SCHEME	
FIGURE 13. HRESET SCHEME	
FIGURE 15. MSC8102 AND SDRAM CLOCKING	
FIGURE 16. SETTING VOUT WITH RESISTOR-DIVIDER	
FIGURE 17. JTAG CHAIN	
FIGURE 18. MSC8101 HOST MEMORY MAP	
FIGURE 20. PFC BOOTSTRAP METHOD	
FIGURE 21. PFC & BASE CARD LAYOUT.	
FIGURE 22. PFC LAYOUT - TOP	
FIGURE 23. PFC LAYOUT - BOTTOM	4.
TABLES	
Table 1. Reference Documents	
	4
TABLE 1. REFERENCE DOCUMENTS TABLE 2. MSC8101 BOOT FROM FLASH TABLE 3. MSC8102 BOOT THROUGH DSI TABLE 4. FULL CHAIN (JTAG of 21)	
TABLE 1. REFERENCE DOCUMENTS TABLE 2. MSC8101 BOOT FROM FLASH TABLE 3. MSC8102 BOOT THROUGH DSI TABLE 4. FULL CHAIN (JTAG of 21) TABLE 5. MSC8101 DEFAULT RESET CONFIGURATION WORD	4
TABLE 1. REFERENCE DOCUMENTS TABLE 2. MSC8101 BOOT FROM FLASH TABLE 3. MSC8102 BOOT THROUGH DSI TABLE 4. FULL CHAIN (JTAG OF 21) TABLE 5. MSC8101 DEFAULT RESET CONFIGURATION WORD TABLE 6. MSC8101 HDI16 BOOT	
TABLE 1. REFERENCE DOCUMENTS TABLE 2. MSC8101 BOOT FROM FLASH TABLE 3. MSC8102 BOOT THROUGH DSI TABLE 4. FULL CHAIN (JTAG OF 21) TABLE 5. MSC8101 DEFAULT RESET CONFIGURATION WORD TABLE 6. MSC8101 HDI16 BOOT TABLE 7. JTAG OPTIONS TABLE 8. MSC8101 MEMORY CONTROLLER RESOURCES	
TABLE 1. REFERENCE DOCUMENTS	
TABLE 1. REFERENCE DOCUMENTS	
TABLE 1. REFERENCE DOCUMENTS	
TABLE 1. REFERENCE DOCUMENTS TABLE 2. MSC8101 BOOT FROM FLASH TABLE 3. MSC8102 BOOT THROUGH DSI TABLE 4. FULL CHAIN (JTAG OF 21) TABLE 5. MSC8101 DEFAULT RESET CONFIGURATION WORD. TABLE 6. MSC8101 HDI16 BOOT TABLE 7. JTAG OPTIONS TABLE 8. MSC8101 MEMORY CONTROLLER RESOURCES. TABLE 9. PSDMR SETTINGS. TABLE 10. OR & BR SETTINGS. TABLE 11. MSC8102 DSI ADDRESSES. TABLE 12. MSC8102 DSI ADDRESSES. TABLE 13. DSI ASYNCHRONOUS SIGNALS.	
TABLE 1. REFERENCE DOCUMENTS TABLE 2. MSC8101 BOOT FROM FLASH TABLE 3. MSC8102 BOOT THROUGH DSI TABLE 4. FULL CHAIN (JTAG OF 21) TABLE 5. MSC8101 DEFAULT RESET CONFIGURATION WORD TABLE 6. MSC8101 HDI16 BOOT TABLE 7. JTAG OPTIONS TABLE 7. JTAG OPTIONS TABLE 8. MSC8101 MEMORY CONTROLLER RESOURCES TABLE 9. PSDMR SETTINGS TABLE 10. OR & BR SETTINGS TABLE 11. MSC8102 DSI ADDRESSES TABLE 12. MSC8102 DSI ADDRESSES TABLE 13. DSI ASYNCHRONOUS SIGNALS. TABLE 14. FCC1 INTERFACE	5
TABLE 1. REFERENCE DOCUMENTS TABLE 2. MSC8101 BOOT FROM FLASH TABLE 3. MSC8102 BOOT THROUGH DSI TABLE 4. FULL CHAIN (JTAG OF 21) TABLE 5. MSC8101 DEFAULT RESET CONFIGURATION WORD TABLE 6. MSC8101 HDI16 BOOT TABLE 7. JTAG OPTIONS TABLE 7. JTAG OPTIONS TABLE 8. MSC8101 MEMORY CONTROLLER RESOURCES TABLE 9. PSDMR SETTINGS TABLE 10. OR & BR SETTINGS TABLE 11. MSC8102 DSI ADDRESSES TABLE 12. MSC8102 DSI ADDRESSES TABLE 13. DSI ASYNCHRONOUS SIGNALS TABLE 14. FCC1 INTERFACE TABLE 15. MSC8101 AGGREGATOR FCC2 PTMC CONNECTIVITY	5
TABLE 1. REFERENCE DOCUMENTS TABLE 2. MSC8101 BOOT FROM FLASH TABLE 3. MSC8102 BOOT THROUGH DSI TABLE 4. FULL CHAIN (JTAG OF 21) TABLE 5. MSC8101 DEFAULT RESET CONFIGURATION WORD TABLE 6. MSC8101 HDI16 BOOT TABLE 7. JTAG OPTIONS TABLE 7. JTAG OPTIONS TABLE 8. MSC8101 MEMORY CONTROLLER RESOURCES TABLE 9. PSDMR SETTINGS TABLE 10. OR & BR SETTINGS TABLE 11. MSC8102 DSI ADDRESSES TABLE 12. MSC8102 DSI ADDRESSES TABLE 13. DSI ASYNCHRONOUS SIGNALS. TABLE 14. FCC1 INTERFACE	
TABLE 1. REFERENCE DOCUMENTS. TABLE 2. MSC8101 BOOT FROM FLASH TABLE 3. MSC8102 BOOT THROUGH DSI. TABLE 4. FULL CHAIN (JTAG OF 21). TABLE 5. MSC8101 DEFAULT RESET CONFIGURATION WORD. TABLE 6. MSC8101 HDI16 BOOT. TABLE 7. JTAG OPTIONS. TABLE 8. MSC8101 MEMORY CONTROLLER RESOURCES. TABLE 9. PSDMR SETTINGS. TABLE 10. OR & BR SETTINGS. TABLE 11. MSC8102 DSI ADDRESSES TABLE 11. MSC8102 DSI ADDRESSES. TABLE 12. MSC8102 DSI ADDRESSES. TABLE 14. FCC1 INTERFACE. TABLE 15. MSC8101 AGGREGATOR FCC2 PTMC CONNECTIVITY TABLE 16. HDI6 CONFIGURATION. TABLE 17. PSDMR SETTINGS. TABLE 18. OR SETTINGS	
TABLE 1. REFERENCE DOCUMENTS. TABLE 2. MSC8101 BOOT FROM FLASH TABLE 3. MSC8102 BOOT THROUGH DSI	
TABLE 1. REFERENCE DOCUMENTS. TABLE 2. MSC8101 BOOT FROM FLASH TABLE 3. MSC8102 BOOT THROUGH DSI. TABLE 4. FULL CHAIN (JTAG OF 21). TABLE 5. MSC8101 DEFAULT RESET CONFIGURATION WORD. TABLE 6. MSC8101 HDI16 BOOT. TABLE 7. JTAG OPTIONS. TABLE 8. MSC8101 MEMORY CONTROLLER RESOURCES. TABLE 9. PSDMR SETTINGS. TABLE 10. OR & BR SETTINGS. TABLE 11. MSC8102 DSI ADDRESSES TABLE 11. MSC8102 DSI ADDRESSES. TABLE 12. MSC8102 DSI ADDRESSES. TABLE 14. FCC1 INTERFACE. TABLE 15. MSC8101 AGGREGATOR FCC2 PTMC CONNECTIVITY TABLE 16. HDI6 CONFIGURATION. TABLE 17. PSDMR SETTINGS. TABLE 18. OR SETTINGS	S
TABLE 1. REFERENCE DOCUMENTS TABLE 2. MSC8101 BOOT FROM FLASH TABLE 3. MSC8102 BOOT THROUGH DSI TABLE 4. FULL CHAIN (JTAG OF 21) TABLE 5. MSC8101 DEFAULT RESET CONFIGURATION WORD TABLE 6. MSC8101 HDI16 BOOT TABLE 7. JTAG OPTIONS TABLE 8. MSC8101 MEMORY CONTROLLER RESOURCES TABLE 9. PSDMR SETTINGS TABLE 10. OR & BR SETTINGS TABLE 11. MSC8102 DSI ADDRESSES TABLE 11. MSC8102 DSI ADDRESSES TABLE 12. MSC8102 DSI ADDRESSES TABLE 13. DSI ASYNCHRONOUS SIGNALS TABLE 14. FCC1 INTERFACE TABLE 15. MSC8101 AGGREGATOR FCC2 PTMC CONNECTIVITY TABLE 16. HDI6 CONFIGURATION TABLE 17. PSDMR SETTINGS TABLE 18. OR SETTINGS TABLE 19. TDM TO CT STREAM ROUTING TABLE 20. MSC8101 CLOCK FREQUENCIES TABLE 21. MSC8102 CLOCK FREQUENCIES TABLE 22. PN1/JN1 CONNECTOR PIN OUT (CPORT INTERFACE)	10 11 12 15 16 18 18 18 18 18 18 18 18 18 18 18 18 18
TABLE 1. REFERENCE DOCUMENTS. TABLE 2. MSC8101 BOOT FROM FLASH TABLE 3. MSC8102 BOOT THROUGH DSI TABLE 4. FULL CHAIN (JTAG OF 21). TABLE 5. MSC8101 DEFAULT RESET CONFIGURATION WORD. TABLE 6. MSC8101 DEFAULT RESET CONFIGURATION WORD. TABLE 7. JTAG OPTIONS. TABLE 8. MSC8101 MEMORY CONTROLLER RESOURCES. TABLE 9. PSDMR SETTINGS. TABLE 9. PSDMR SETTINGS. TABLE 10. OR & BR SETTINGS. TABLE 11. MSC8102 DSI ADDRESSES. TABLE 12. MSC8102 DSI ADDRESSES. TABLE 13. DSI ASYNCHRONOUS SIGNALS TABLE 14. FCC1 INTERFACE. TABLE 15. MSC8101 AGGREGATOR FCC2 PTMC CONNECTIVITY TABLE 16. HDIG CONFIGURATION. TABLE 17. PSDMR SETTINGS TABLE 19. TDM TO CT STREAM ROUTING. TABLE 20. MSC8101 CLOCK FREQUENCIES. TABLE 21. MSC8102 CLOCK FREQUENCIES. TABLE 22. PNI/JN1 CONNECTOR PIN OUT (CPORT INTERFACE). TABLE 23. PN2/JN2 CONNECTOR PIN OUT (CPORT INTERFACE).	10 11 12 12 12 12 12 12 12 12 12 12 12 12
TABLE 1. REFERENCE DOCUMENTS TABLE 2. MSC8101 BOOT FROM FLASH TABLE 3. MSC8102 BOOT THROUGH DSI TABLE 4. FULL CHAIN (JTAG OF 21) TABLE 5. MSC8101 DEFAULT RESET CONFIGURATION WORD TABLE 6. MSC8101 HDI16 BOOT TABLE 7. JTAG OPTIONS TABLE 8. MSC8101 MEMORY CONTROLLER RESOURCES TABLE 9. PSDMR SETTINGS TABLE 10. OR & BR SETTINGS TABLE 11. MSC8102 DSI ADDRESSES TABLE 12. MSC8102 DSI ADDRESSES TABLE 13. DSI ASYNCHRONOUS SIGNALS TABLE 14. FCC1 INTERFACE TABLE 15. MSC8101 AGGREGATOR FCC2 PTMC CONNECTIVITY TABLE 16. HDI6 CONFIGURATION TABLE 17. PSDMR SETTINGS TABLE 18. OR SETTINGS TABLE 19. TDM TO CT STREAM ROUTING TABLE 20. MSC8101 CLOCK FREQUENCIES TABLE 21. MSC8102 CLOCK FREQUENCIES TABLE 22. PN1/JN1 CONNECTOR PIN OUT (CPORT INTERFACE) TABLE 23. PN2/JN2 CONNECTOR PIN OUT (CT BUS & RMII)	
Table 1. Reference Documents Table 2. MSC8101 Boot from Flash Table 3. MSC8102 Boot through DSI Table 4. Full chain (JTAG of 21) Table 5. MSC8101 Default Reset Configuration Word Table 6. MSC8101 HDI16 Boot. Table 7. JTAG Options Table 8. MSC8101 MEMORY CONTROLLER RESOURCES Table 9. PSDMR settings. Table 10. OR & BR settings Table 11. MSC8102 DSI Addresses Table 12. MSC8102 DSI Addresses. Table 13. DSI Asynchronous signals. Table 14. FCC1 Interface Table 15. MSC8101 Aggregator FCC2 PTMC Connectivity Table 16. HDI6 Configuration Table 17. PSDMR settings Table 18. OR settings Table 19. TDM to CT Stream Routing Table 20. MSC8101 Clock frequencies Table 21. MSC8102 Clock frequencies Table 22. Pn1/In1 Connector Pin Out (CPORT Interface). Table 23. Pn2/In2 Connector Pin Out (Host Port Interface). Table 24. Pn3/In3 Connector Pin Out (CT Bus & RMII). Table 25. Pn4/In4 Connector Pin Out (UTOPIA).	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Table 1. Reference Documents Table 2. MSC8101 Boot from Flash Table 3. MSC8102 Boot through DSI. Table 4. Full chain (JTAG of 21) Table 5. MSC8101 Default Reset Configuration Word Table 6. MSC8101 Default Reset Configuration Word Table 7. JTAG Options Table 8. MSC8101 MEmory Controller Resources Table 9. PSDMR settings Table 10. OR & BR settings Table 11. MSC8102 DSI Addresses Table 11. MSC8102 DSI Addresses Table 13. DSI Asynchronous signals Table 14. FCC1 Interface Table 15. MSC8101 Aggregator FCC2 PTMC Connectivity Table 16. HDI6 Configuration Table 17. PSDMR settings Table 18. OR settings Table 19. TDM to CT Stream Routing Table 20. MSC8101 Clock frequencies Table 21. MSC8102 Clock frequencies Table 22. PNI/IN1 Connector Pin Out (CPORT Interface) Table 23. PN2/IN2 Connector Pin Out (CT Bus & RMII) Table 24. PN3/IN3 Connector Pin Out (CT Bus & RMII) Table 25. PN4/IN4 Connector Pin Out (ETHERNET) Table 27. Switch 3 Descriptions	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Table 1. Reference Documents	20 22 22 22 22 22 22 23 33
Table 1. Reference Documents Table 2. MSC8101 Boot from Flash Table 3. MSC8102 Boot through DSI Table 4. Full chain (JTAG of 21) Table 5. MSC8101 Default Reset Configuration Word Table 6. MSC8101 HDI16 Boot Table 7. JTAG Options. Table 8. MSC8101 Memory Controller Resources Table 9. PSDMR settings. Table 10. OR & BR settings Table 11. MSC8102 DSI Addresses Table 12. MSC8102 DSI Addresses Table 12. MSC8102 DSI Addresses Table 13. DSI Asynchronous signals. Table 14. FCC1 Interface Table 15. MSC8101 AGGREGATOR FCC2 PTMC Connectivity Table 16. HDI6 Configuration Table 17. PSDMR settings. Table 18. OR settings Table 19. TDM to CT Stream Routing Table 19. TDM to CT Stream Routing Table 20. MSC8101 Clock frequencies Table 21. MSC8102 Clock frequencies Table 22. PNI/INI Connector Pin Out (CPORT Interface) Table 23. PN2/IN2 Connector Pin Out (TB us & RMII). Table 24. PNS/IN3 Connector Pin Out (UTOPIA) Table 25. PN4/IN4 Connector Pin Out (UTOPIA) Table 27. SWITCH 3 DESCRIPTIONS Table 28. SWITCH 2 DESCRIPTIONS Table 29. MSC8101 Memory Controller Resources	2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
Table 1. Reference Documents	2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
TABLE 1. REFERENCE DOCUMENTS. TABLE 2. MSC8101 BOOT FROM FLASH. TABLE 3. MSC8102 BOOT THROUGH DSI TABLE 4. FULL CHAIN (JTAG of 21). TABLE 5. MSC8101 DEFAULT RESET CONFIGURATION WORD. TABLE 6. MSC8101 HDI16 BOOT. TABLE 7. JTAG OPTIONS. TABLE 8. MSC8101 MEMORY CONTROLLER RESOURCES. TABLE 9. PSDMR SETTINGS. TABLE 10. OR & BR SETTINGS. TABLE 11. MSC8102 DSI ADDRESSES. TABLE 11. MSC8102 DSI ADDRESSES. TABLE 12. MSC8102 DSI ADDRESSES. TABLE 13. DSI ASYNCHRONOUS SIGNALS. TABLE 14. FCC1 INTERFACE. TABLE 15. MSC8101 AGGREGATOR FCC2 PTMC CONNECTIVITY TABLE 16. HDI6 CONFIGURATION. TABLE 17. PSDMR SETTINGS TABLE 19. TDM TO CT STREAM ROUTING. TABLE 19. TDM TO CT STREAM ROUTING. TABLE 19. MSC8102 CLOCK FREQUENCIES. TABLE 22. PNIJN1 CONNECTOR PIN OUT (CPORT INTERFACE). TABLE 23. PN2JN2 CONNECTOR PIN OUT (CPORT INTERFACE). TABLE 24. PN3JN3 CONNECTOR PIN OUT (CT BUS & RMII). TABLE 25. PN4JN4 CONNECTOR PIN OUT (CT BUS & RMII). TABLE 26. PN5JN5 CONNECTOR PIN OUT (CT BUS & RMII). TABLE 27. SWITCH 3 DESCRIPTIONS. TABLE 28. SWITCH 2 DESCRIPTIONS. TABLE 29. MSCS101 MEMORY CONTROLLER RESOURCES. TABLE 30. MSCS102 HARD RESET CONFIGURATION WORD.	2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3
TABLE 1. REFERENCE DOCUMENTS. TABLE 2. MSC8101 BOOT FROM FLASH TABLE 3. MSC8102 BOOT THROUGH DSI. TABLE 4. FULL CHAIN (JTAG OF 21). TABLE 5. MSC8101 DEFAULT RESET CONFIGURATION WORD. TABLE 6. MSC8101 HDI16 BOOT. TABLE 7. JTAG OPTIONS. TABLE 8. MSC8101 MEMORY CONTROLLER RESOURCES. TABLE 9. PSDMR SETTINGS. TABLE 10. OR & BR SETTINGS. TABLE 11. MSC8102 DSI ADDRESSES. TABLE 11. MSC8102 DSI ADDRESSES. TABLE 12. MSC8102 DSI ADDRESSES. TABLE 13. DSI ASYNCHRONOUS SIGNALS TABLE 14. FCC1 INTERFACE. TABLE 15. MSC8101 AGGREGATOR FCC2 PTMC CONNECTIVITY TABLE 16. HDI6 CONFIGURATION TABLE 17. PSDMR SETTINGS. TABLE 19. TDM TO CT STREAM ROUTING. TABLE 19. TDM TO CT STREAM ROUTING. TABLE 20. MSC8101 CLOCK FREQUENCIES. TABLE 21. MSC8102 CLOCK FREQUENCIES. TABLE 22. PNI/INI CONNECTOR PIN OUT (CPORT INTERFACE). TABLE 24. PN3/IN3 CONNECTOR PIN OUT (FOST INTERFACE). TABLE 25. PN4/IN4 CONNECTOR PIN OUT (TOTPIA) TABLE 26. PN5/IN5 CONNECTOR PIN OUT (UTOPIA) TABLE 27. SWITCH 3 DESCRIPTIONS TABLE 28. SWITCH 2 DESCRIPTIONS TABLE 29. MSC8101 MEMORY CONTROLLER RESOURCES. TABLE 29. MSC8101 HARD RESET CONFIGURATION WORD	2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

TABLE 36.	CT Bus	39
	ETHERNET INTERFACE	40
TARLE 38	MISCELLANEOUS SIGNALS	40

1 Overview

1.1 Scope

This document provides user guide information and a detailed design description of the MSC8102 Packet Telephony Farm Card.

1.2 Reference Documents

The documents listed in the table below are referenced in this document.

Table 1. Reference Documents

Reference	Document Number	Description	Revision	Date
1	IEEE P1386.1	Standard Physical and Environmental Layers for PCI Mezzanine Cards: PMC	Draft 2.4	January 12, 2001
2	IEEE P1386	Standard for a Common Mezzanine Card Family: CMC	Draft 2.4a	March 21, 2001
3	PICMG 2.15	CompactPCI PCI Telecom Mezzanine/Card Card Specification	R1.0	April 11, 2001
4	H.100	H.100 Hardware Compatability Specification : CT Bus	1.0	

2 PFC Overview

The Packet Telephony Farm Card is a PCI Telephony Mezzanine Card (PTMC) designed primarily as an MSC8102 upgrade and Media Gateway evaluation product for Media Gateway Systems. It is designed around the Star-Core MSC8102 16 bit fixed point DSP device from Motorola Semiconductor. The PFC DSP farm card utilizes five MSC8102 devices and a MSC8101 to aggregate the data to/from the DSP farm. Each MSC8102 DSP has an associated 4M x 32 (16MB) SDRAM. The aggregator has a separate 2M x32 (8MB) SDRAM.

The PFC interfaces with a baseboard platform via its PTMC site. A PTMC is a PMC module, which conforms to the PMC standard for Jn1 and Jn2, but uses Jn3 and Jn4 to support a variety of telecom interfaces. The PTMC site on the Media Gateway is configured as PT3MC, a subset of the PTMC specification, which supports UTOPIA, RMII and CT bus interfaces on Jn3/4. An optional fifth connector (Jn5) has been added to support the two MII interfaces available from the MSC8101; Jn5 is a proprietary connector, effectively supporting an enhanced PTMC, which is backward compatible with existing PTMCs.

Data movement around the board is primarily through the use of 10/100 Mb/s Ethernet (single RMII or dual MII interfaces) or UTOPIA and a Computer Telephony local bus through the PTMC connectors. Additionally an I2C management interface is facilitated through PTMC J3 connector. Additional I/O includes HDI16, RS232 and OnCE JTAG ports for Debug.

The PFC is targeted to interface with Motorola Packet Telephony enhanced PTMC baseboards such as the PDK demonstration system, as well as interfacing with standard customer PTMC Type III baseboards.

Figure 1. MSC8102 - Packet Telephony Farm Card

3 PFC Feature List

PFC Platform

- Digital Support for up to 672 channels
- PTMC Type 3 form card for interfacing to standard subsystems

MSC8101 Aggregator

- One MSC8101 DSP communications processor with:
 - 10/100BaseT Fast Ethernet via PTMC Interface
 - RMII Ethernet via PTMC Interface
 - UTOPIA interface via PTMC Interface
 - Host Interface to enable Host control of Aggregator via PTMC Interface
 - 64-bit/32-bit PPC interface to the MSC8102 DSI port for on board data distribution to DSP Farm
 - RS232 interface on board
 - 4MByte of Flash for System Bootstrap
 - 8MByte of SDRAM

MSC8102 Farm

- Five MSC8102s DSPs each with
 - TDM interface (CT Bus) via PTMC interface
 - 64-bit/32-bit DSI Slave port interfacing to the MSC8101 PPC (via FPGA) for data distribution
 - DSI-Asynchronous mode of operation
 - DSI-Synchronous mode of operation
 - 16MByte of SDRAM
 - MSC8102 DSP1 has RS232 interface on board

FPGA

- PPC to DSI translation for synchronous DSI
- Transparent mode for asynchronous DSI
- Routing of MSC8102 to MSC8101 interrupts
- CPORT cluster interface
- MII to RMII conversion

Debug

- Chained DSP EONCE port with option to configure the full 5 MSC8102s and MSC8101 chain or only the MSC8101 DSP.
- SMC2 RS232 Connection to the MSC8101
- UART connection to one MSC8102
- Break out card allows access to Utopia interfaces via connectors

Power Supply

• For standalone operation 5V/3.3V supplied externally via base card with option to supply 1.6V externally or via on board PFC 5V to 1.6V step down.

4 User Guide

4.1 Quick Start

- 1. Start the Start the Codewarrior tools and ensure that the command converter is running
- 2. Connect a dual supply to the 5V, 3.3V and 0V on the JP1 connector of the Base Card.
- The parallel command converter should also be connected to P3 on the PFC to enable JTAG access, reference Figure 2.

Figure 2. PFC Setup

- 4. Set the switch settings as per Table 2, Table 3 and Table 4.
- 5. Power up the PFC, which will now automatically bootstrap in the following modes:
 - MSC8101 Boot from Flash
 - Operating frequency: 275 MHz Core/ 138 MHz CPM / 69MHz system bus
 - MSC8102 Boot through DSI
 - o Operating frequency: 250MHz core/83MHz system bus
 - 32-bit asynchronous DSI
 - JTAG of 21 cores

Each DSP LED will light after approximately 4 seconds (delay due to FPGA programming) indicating a successful bootstrap.

- 6. The user can now use the StarCore Codewarrior tools to access the DSPs. Note that the user should ensure the following:
 - That reset on connect is NOT selected (a tools reset will restart the boot process, preventing MSC8102 DSP JTAG access)

 The JTAG file "PFCjtag21.cfg" is selected. The file listing and core JTAG numbering is detailed in Appendix C.

Table 2. MSC8101 Boot from Flash

Feature	Settings	Comments	
SW3.1	OFF	$A_MODCK1 = 1$	MODCK 46 [101-110].
SW3.2	OFF	A_MODCK2= 1	CLKIN=34.5MHz
SW3.3	ON	A_MODCK3= 0	Core/CPM/Bus= 275/138/69 MHz
SW3.4	ON	Boot=0, Host Port disabled, Boot from external memory.	
SW3.8	ON	RSTCONF=0, Reset Configuration Master	

Table 3. MSC8102 Boot through DSI

Feature	Settings	Comments	
SW2.1	OFF	CNFGS=1 [MSC8102 Boot Over DSI]. Keeps MSC8102s in reset until RCW received	
SW2.2	ON	MODCK2=0	MODCK 10 [010-10].
SW2.3	OFF	MODCK1=1	CLKIN=41.6MHz
			Core/Bus= 250/83 MHz
SW2.4	ON	DSI64 =0, DSI is 32-bit	
SW2.5	ON	DSISYNC=0, DSI operates in asynchronous mode	
SW2.6	ON	SWTE=0, Software WDT disabled	
SW2.7	ON	RSTCONF=0 [MSC8102 Boot over DSI]. Keeps MSC8102s in reset until RCW received	
SW3.6	OFF	BM2: MSC8102 Boot Sequence through DSI	
SW3.7	ON	BM1	

Table 4. Full chain (JTAG of 21)

Feature	Settings	Comments
JP1	Pos 1-2	Full Chain
SW2.8	ON	Full Chain

4.2 Board Configuration Options

4.2.1 Single MSC8101 with Default Configuration

To initialize the MSC8101 with its default Reset Configuration Word, set the switch settings detailed in Table 5 and Table 8 (MSC8101 only). Note that this mode allow tools access to the MSC8101 only (the MSC8102s will remain in reset), and should be used when the flash is blank or corrupted.

Table 5. MSC8101 Default Reset Configuration Word

Feature	Settings	Comments	
SW3.1	OFF	A_MODCK1 = 1	MODCK 6 [000-110].
SW3.2	OFF	A_MODCK2= 1	CLKIN=34.5MHz
SW3.3	ON	A_MODCK3= 0	Core/CPM/Bus= 138/69/34.5 MHz

SW3.4	ON	Boot=0, Host Port disabled, Boot from external memory
SW3.8	OFF	RSTCONF=1, Reset Configuration Slave

4.2.2 MSC8101 Boot through HDI16

To bootstrap the PFC through the MSC8101 HDI16 interface, set the switch settings detailed in Table 6 and Table 3.

Table 6. MSC8101 HDI16 Boot

Feature	Settings	Comments	
SW3.1	OFF	$A_MODCK1 = 1$	MODCK 46 [101-110].
SW3.2	OFF	A_MODCK2= 1	CLKIN=34.5MHz
SW3.3	ON	A_MODCK3= 0	Core/CPM/Bus= 275/138/69 MHz
SW3.4	OFF	Boot=1, Host Port enabled, MSC8101 boot from HDI16	
SW3.8	OFF	RSTCONF=1, Reset Configuration Slave	

4.2.3 MSC8101 Ethernet/Utopia Options

Switch SW3.5 can be used to select the required MSC8101 CPM options as detailed below

Table 7. MSC8101 Ethernet/Utopia Options

Feature	Settings	Comments	
SW3.5	ON	FCC1 UTOPIA	FCC2 Ethernet (MII2)
SW3.5	OFF	FCC1 Ethernet MII1	FCC2 Ethernet (MII2)

4.2.4 MSC8102 DSI Options

The MSC8102 DSI port cam be configured into 1 of 4 modes

- 32-bit wide Asynchronous Mode
- 64-bit wide Asynchronous Mode
- 32-bit wide Synchronous Mode
- 64-bit wide Synchronous Mode

The PFC is delivered with 32-bit wide asynchronous mode as standard, which is preprogrammed in Flash memory. To implement a different mode the user should contact Motorola to obtain the required firmware.

4.2.5 JTAG options

There are 2 JTAG options available as detailed in Table 8:

Table 8. JTAG Options

Description	Feature	Settings
MSC8101 only	JP1	Pos 2-3

	SW2.8	OFF
Full Chain (21 cores)	JP1	Pos 1-2
	SW2.8	ON

The JTAG configuration file for 21 cores is listed in Appendix C.

4.3 Programming Flash

The PFC uses the same Flash (AM29LV320DB) as the MSC8102ADS so the option exists to use either the Metrowerks Code-warrior or PFC specific Flash Programmer (consult Motorola for additional details on programming Flash).

5 Hardware Description

This section describes the Packet Telephony Farm Card Hardware. The Hardware architecture has been partitioned into the following logical sections: Aggregator, DSP Processing Array, General Board Configuration, Firmware and PFC Base Card.

5.1 Board Architecture

The board architecture of the Packet Telephony Farm Card is shown in Figure 3.

Figure 3. Packet Telephony Farm Card Architecture

This can be split into 2 main blocks

- 1. MSC8101 Aggregator Processor
- 2. MSC8102 Farm

Under typical operating conditions the MSC8101 is used to terminate ATM or 10/100BaseT Ethernet packet traffic from a host card via its PTMC interface, with the subsequent data placed in the MSC8101's internal SRAM or external SDRAM. The data is then distributed to the MSC8102 farm for processing via the MSC8102 DSI port with the FPGA performing the 60x bus to DSI translation (NOTE: the FPGA has been incorporated to allow synchronous DSI transfer – it is not required for asynchronous DSI transfers). After MSC8102 processing the data is dispatched through the MSC8102 TDM interfaces to the PTMC CT Bus.

5.2 MSC8101 Aggregator & 60x Bus Interface

The Aggregator terminates the packet protocol and transfers Media Data to and from the DSP Array through its 60x bus. The 60x interface to the MSC8102 DSI can be configured as 32 or 64-bit wide. When configured for 32-bit operation an external host can access the host port (HDI16) of the MSC8101 aggregator for bootstrap and ongoing data exchange and control. 4 MB of 8-bit wide Flash is connected to the MSC8101 60x bus for configuration, boot and execution code (for all 6 DSPs). 8 MBytes of 32-bit wide SDRAM also hangs off this bus to provide adequate storage during real time operation. It should be noted that the address bus is latched to the SDRAM and Flash memories due to the 60x compatible mode used (when running in DSI Synchronous mode). The data bus is un-buffered to the memories and FPGA but buffered for the HDI16 port. The SDRAM is not required for normal Aggregation functions and has been incorporated purely for maximum flexibility.

Table 9 details the MSC8101 Chip selects used for the 60x bus devices.

Table 9. MSC8101 Memory Controller Resources

Chip Select	Peripheral
CS0	Flash (Boot)
CS2	SDRAM
CS3	DSI Asynchronous (Individual Chip Selects)
CS4	DSI Asynchronous (Broadcast mode)

5.2.1 MSC8101 SDRAM Interface

The Aggregator 60x bus incorporates 64M-bit x32-bit wide x4 bank Micron MT48LC2M32B2 SDRAM surface mounted onto the board providing 8 MBytes of general-purpose system RAM. The MSC8101's Chip Select 2 is used to select the SDRAM devices through the SDRAM controller, which is capable of interfacing to JEDEC compatible SDRAM, the settings of which are now described.

- SDRAM size is 512k x 32 x 4 Banks = 8MBytes, which requires 23 address lines.
- Device has 8 column and 11 Row lines, 2 Bank Selects. The 32-bit port size means addresses 30 and 31 are not used.

For Page based Interleaving the 60x bus is arranged as follows:

A[9:19]	A[20:21]	A[22:29]	A[30:31]
Row (x11)	Bank Select	Column (x8)	LSB

This gives the following MSC8101 Registers settings:

- PSDMR[PBI] = 1, Page Based Interleaving
- ORx[BPD] = 01, 4 Banks per device
- ORx[ROWST] = 1001, Row Starts at A9
- ORx[NUMR]= 010, SDRAM has 11 Row lines

From the SDRAM perspective during an ACTIVATE command it's address port will look like:

A9:A19	A17:A18	A19:A29	A30:A31
	Internal Bank Select (A[20:21])	Row(A[9:19])	LSB

While a Read/Write will look like:

A9:A19	A17:A18	A[19:21]	A[22:29]	A30:A31
	Internal Bank Select (A[20:21])	Don't care	Column (A[22:29])	LSB

Which gives the following register settings:

- PSDMR[SDAM] = 010, A[9:19] muxed to A[19:29]
- PSMDR[BSMA] = 100, A[17-18] are used as Bank Selects Signals
- PSMDR[SDA10] = 001, A9 maps to A10/AP pin

The full PSDMR settings are described in table

Table 10. MSC8101 PSDMR settings

Register Setting	Description
PBI = 1	Paged Based Interleaving
RFEN = 1	Refresh services required

OP = 000	Normal Operation	
SDAM = 010	A[9:19] multiplexed to A[19:29]	
BSMA = 100	A17-A18 are used as Bank Selects Signals	
SDA10 = 001	A9 maps to A10/AP pin	
RFRC = 110	8 Clock Cycles Refresh Recovery	
PRETOACT = 011	Pre-charge to Activate 3 cycle interval	
ACTTORW= 011	Activate to Read/Write 3 clock cycles	
BL 23 = 1	Burst Length is 8	
LDOTOPRE = 10	Precharge can be set 2 cycles before last data is read from SDRAM	
WRC = 00	Precharge is set 4 cycles after the last data is written to SDRAM	
EAMUX= 1	External Address Multiplexing, Fastest timing (set to 0 for MSC8102 SDRAM)	
BUFCMD = 0	Normal Timing for the control lines	
CL = 10	Cycle CAS Latency=2	
	PSDMR = 0xC287378A: MSC8101 SDRAM	

These SDRAM settings are conservative and can be optimized for future configurations. The OR & BR settings are described below:

Table 11. MSC8101 BR & OR settings

Register Setting	Description	
BA=0x2000_0	Base Address = 0x20000000	
PS=11	32-bit port size	
MSEL =010	SDRAM machine	
	0x20001841	
Register Setting	Description	
SDAM = 1111 1111 1000		
LSDAM = 0000 0	8MB SDRAM	
BPD= 01	4 Banks Per Device	
ROWST = 1001	Row Starts at A9	
NUMR = 010	SDRAM has 11 Row lines	
PMSEL = 0	Back to Back Page Mode (Normal Operation)	
IBID = 1	Bank Interleaving Disabled	
	OR = 0xFF803290	

After Power On a JEDEC standard initialization sequence is performed to configure the SDRAM. This is carried out in Software utilizing the SDRAM controller PSDMR register:

5.2.1.1 SDRAM Initialization Command Sequence

- Step 1. Apply power and start clock. Maintain No Operation (NOP) condition at the inputs.
- Step 2. Maintain stable power, stable clock and NOP input conditions at the inputs.

- **Step 3**. Issue Precharge All command (PALL) to all banks of the device. Program PSDMR[OP] bits to [101] and then perform an access to the SDRAM bank.
- **Step 4**. Issue 8 or more CBR Refresh (REF) commands. Program PSDMR[OP] bits to [001] and then perform 8 accesses to the SDRAM bank.
- **Step 5**. Issue Mode Register Set (MRS) command to initialise the mode register. Program PSDMR[OP] bits to [011] and then performing an access to the SDRAM bank at an address offset to 0x08Csee figure below.

Figure 4. MSC8101 SDRAM Mode Register Settings

5.2.1.2 SDRAM Refresh

The SDRAM requires 4096 refresh cycles per 64ms or one refresh cycle per $15.625\mu s$. The MSC8101 can be programmed to carry out the refresh cycle periodically using the SDRAM Refresh Timer (PSRT). By setting the memory refresh timer prescaler register, MPTPR[PTP] to divide by 32, and the PSRT to 0x30 a timer period of $15.625\mu s$ is realized for a 100MHz system clock . For a 69MHz System clock PSRT = 0x17.

$$PSRT = F_{MPTC}xTimerPeriod$$

$$PSRT = F_{MPTC}xTimerPeriod$$

$$PSRT = \frac{100MHz}{32}x15.625us - 1$$

$$PSRT = 0x30$$

$$PSRT = 0x20$$

Figure 5. Refresh Calculations

5.2.2 MSC8101 FLASH Interface

The Aggregator incorporates an AM29LV320DB-120E 4Mx8-bit FLASH for Stand-alone reset configuration and boot. To enable bootstrapping from reset the Flash is mapped to GPCM CS0 and utilizes the following signals

Table 12. MISCOTO2 DSI Addresses		
MSC8102	GPCM Signal	
A_CS_FLASH	CS0	
A_PSDRAS	POE	
A_PSDDQMO	WE	
A_BADDR[27:30]	A[3:0]	

Table 12. MSC8102 DSI Addresses

On the flash the BYTE signal is pulled down for byte mode which enables DQ[0:7] but tri-states DQ[8:14], with DDQ15/A-1 used as an input for the LSB address bit, A_BADDR31. The memory controller uses the BADDR[27-31] signals to interface to the memories when operating in multi-master mode.

5.2.3 MSC8101 60x to DSI Interface

The 60x-DSI interface is the main means of communications between the Aggregator and the DSP Farm. The DSI interface is configurable, and can be set to either 32 or 64bit wide, as well as synchronous or asynchronous modes

- Asynchronous Mode: SRAM-like interface enabling the host single accesses (with no external clock). Data is transferred using the MSC8101 Memory Controller's UPM.
- Synchronous Mode: SSRAM-like interface enabling host single or burst accesses of 256 bits (8 accesses of 32 bits or 4 accesses of 64 bits) with its external clock decoupled from the MSC8102 internal bus clock. Data transferred in this mode is passed onto the external 60x bus to be handled by the FPGA

The DSI gives external hosts direct access to the MSC8102 internal memory space, including on-chip memories and the registers of the on-chip modules. The DSI write buffer stores the address and the data of the accesses until they are performed. The external host can therefore perform multiple writes without waiting for those accesses to complete. Latencies that are typical during accesses to on-chip memories are greatly reduced by the DSI read prefetch mechanism. The host addresses each of the MSC8102 devices using a single chip-select with the most significant bits on the address bus identifying the addressed MSC8102 device. The 4-bit MSC8102 DSI address is hardwired via CHIP_ID[0:3], Table 13

 MSC8102
 CHIP_ID[0:3]

 1
 0000

 2
 0001

 3
 0010

 4
 0011

 5
 0100

Table 13. MSC8102 DSI Addresses

The host can also write the same data to multiple MSC8102 devices simultaneously by asserting a dedicated broadcast chip select.

5.2.3.1 MSC8101 60x to DSI Interface: Synchronous mode

In synchronous mode an FPGA is required to interface between the MSC8101 60x bus and the MSC8102 DSI port. The connectivity is detailed in Figure 6.

Figure 6. PFC to DSI Interface

5.2.3.2 MSC8101 60x to DSI Interface: Asynchronous mode

The DSI can be asynchronously controlled via the following UPM signals:

Table 14. DSI Asynchronous signals

UPM Signal	Description
CS3	Broadcast Chip Select
CS4	Chip Select
PBS[0:7]	Byte Strobe
PGPL2	General Purpose
PGPL4/UPMWAIT	UPMWAIT

These signals are routed through the FPGA, which operates in transparent mode.

5.2.4 MSC8101 to MSC8102 Interrupt Connectivity

The FPGA is used to route the interrupts/GPIO lines between the MSC8101 and MSC8102s. For flexibility the MSC8101 has 5 GPIO lines (PC4, PC5, PC24, PC25 & PC30) connected to the FPGA and in turn receives 7 IRQ inputs from the FPGA. Each MSC8102 has GPIO30 and INT_OUT connected to the FPGA, with their respective IRQ1 and IRQ2 also connected, Figure 7. The standard pre-programmed FPGA interrupt routing is shown in Figure 8.

Figure 7. Aggregator MSC8102 Interrupt Connectivity Options

Figure 8. Standard Interrupt Routing

5.2.5 MSC8101 FCC Interface

The MSC8101 incorporates two FCC interfaces for packet transfers. The packet interfaces are configurable to perform 2xMII ports (FCC1 & FCC2) or an MII (FCC1) plus a UTOPIA (FCC2) port. Both configurations are routed out to the PTMC connector as detailed in Table 15. Signals that are common between UTOPIA FCC1 and MII FCC1 are routed to their connector positions via a PERICOM P13B16233 bus switch.

Table 15. FCC1 Interface

PIN	Function	Signal Signal	Connects to
PA10	FCC1	Utopia II RxD0	Pn4-60
PA11	FCC1	Utopia II RxD1	Pn4-58
PA12	FCC1	Utopia II RxD2	Pn4-54
PA13	FCC1	Utopia II RxD3	Pn4-52
PA14	FCC1	Utopia II Rx4 / MII1 RxD3	Pn4-48 / Pn5-54
PA15	FCC1	Utopia II Rx5 / MII1 RxD2	Pn4-46 / Pn5-50
PA16	FCC1	Utopia II Rx6 / MII1 RxD1	Pn4-42 / Pn5-48
PA17	FCC1	Utopia II Rx7 / MII1 RxD0	Pn4-40 / Pn5-46
PA18	FCC1	Utopia II Tx7 / MII1 TxD0	Pn4-35 / Pn5-41
PA19	FCC1	Utopia II Tx6 / MII1 TxD1	Pn4-37 / Pn5-43
PA20	FCC1	Utopia II Tx5 / MII1 TxD2	Pn4-47 / Pn5-45
PA21	FCC1	Utopia II Tx4 / MII1 TxD3	Pn4-49 / Pn5-47
PA22	FCC1	Utopia II Tx3	Pn4-53
PA23	FCC1	Utopia II Tx2	Pn4-55
PA24	FCC1	Utopia II Tx1	Pn4-59
PA25	FCC1	Utopia II Tx0	Pn4-61
PA26	FCC1	Utopia II RxCLAV / MII1 RX_ER	Pn4-18 / Pn5-56
PA27	FCC1	Utopia II RxSOC / MII1 RX_DV	Pn4-49 / Pn5-64
PA28	FCC1	Utopia II RXENB/ MII1 TX_EN	Pn4-16 / Pn5-53
PA29	FCC1	Utopia II TXSOC/ MII1 TX_ER	Pn4-1 / Pn5-55
PA30	FCC1	Utopia II TXCLAV / MII1 CRS	Pn4-5 / Pn5-58
PA31	FCC1	Utopia II TXENB / MII1 COL	Pn4-49 / Pn5-22
PC6	FCC1	Utopia II RXADDR2	Pn4-24
PC7	FCC1	Utopia II TXADDR2	Pn4-19
PC12	FCC1	Utopia II RXADDR1	Pn4-30
PC13	FCC1	Utopia II TXADDR	Pn4-28
PC14	FCC1	Utopia II RXADDR0	Pn4-34
PC15	FCC1	Utopia II TXADDR0	Pn4-29
PC30	FCC1	Utopia II TXCLK / MII1 TCLK	Pn4-25 / Pn5-64
PC31	FCC1	Utopia II RXCLK / MII1 RCLK	Pn4-43 / Pn5-60
PD7	FCC1	Utopia II TXADDR3	Pn4-17
		1	

PD16	FCC1	Utopia II TXPRTY	Pn4-31
PD17	FCC1	Utopia II RXPRTY	Pn4-36
PD18	FCC1	Utopia II RXADDR4	Pn4-4
PD19	FCC1	Utopia II TXADDR4	Pn4-6
PD29	FCC1	Utopia II RXADDR3	Pn4-7

Table 16. MSC8101 Aggregator FCC2 PTMC Connectivity

PIN	Function	Signal	Connects to
PB18	FCC2	MII2 RXD3	Pn5-34
PB19	FCC2	MII2 RXD2	Pn5-30
PB20	FCC2	MII2 RXD1	Pn5-28
PB21	FCC2	MII2 RXD0	Pn5-26
PB22	FCC2	MII2 TXD0	Pn5-21
PB23	FCC2	MII2 TXD1	Pn5-23
PB24	FCC2	MII2 TXD2	Pn5-25
PB25	FCC2	MII2 TXD3	Pn5-27
PB26	FCC2	MII2 CRS	Pn5-38
PB27	FCC2	MII2 COL	Pn5-37
PB28	FCC2	MII2 RX_ER	Pn5-36
PB29	FCC2	MII2 TX_EN	Pn5-33
PB30	FCC2	MII2 RX_DV	Pn5-24
PB31	FCC2	MII2 TX_ER	Pn5-35

5.2.6 RMII Interface

The MSC8101 FCC2 signals are routed to the FPGA to allow conversion of FCC2's MII interface to RMII enabling connection to the PTMC Type III RMII port on connector PN3.

5.2.7 MSC8101 I2C Controller

An I2C Management for customer specific application.is incorporated on the MSC8101 via J14 Pin 57 [SDA] and J14 Pin 9 [SCL]. The option (via 0 ohm resistors) to provide a standard PTMC I2C is also provided for on Jn1 Pin 41 [SCL] and Pin 42 [SDA].

5.2.8 MSC8101 RS232 Interface

A simple RS232 UART is provided through the MSC8101's Serial Management Channel interface (SMC2) to give programmable debug or communications capability. A Maxim MAX3241 provides the level conversion for the interface.

5.2.9 MSC8101 Host Interface (HDI16)

The 16-bit Host port on the MSC8101 can be used for bootstrapping and ongoing data and control flow from a Host processor if desired. The port connects to PTMC connector PN2 via an IDTQ34XV245Q3 bus switch controllable by the host signal PTENB, by default the switch is open whish isolates any host data signals.

A host processor accessing the MSC8101 aggregator should do so in the following mode

Table 17. HDI6 Configuration

60x signal	HDI16 Signal	Description
Dh57	HDSP=0	Single data strobe mode
Dh58	HDDS=0	Negative data strobe polarity
Dh59	H8BIT=0	16-bit mode enabled
Dh60	HCS2=1	Not used, pulled high

Note that when using the host port the DSI interface must be configured for 32-bits

5.3 MSC8102 DSP Processing Array

The DSP farm contains 5 MSC8102 DSPs connected to the MSC8101 via a shared DSI 60x bus interface. Each DSP has access to 16MB of SDRAM. The DSPs interface to the PSTN world through the PTMC connector via their TDM links. In addition MSC8102 DSP1 (U19) has an SMC UART connection to an onboard connector.

5.3.1 DSP Array SDRAM Configuration

Each DSP incorporates 128M-bit x32-bit wide x4 bank Micron MT48LC4M32B2 SDRAM surface mounted onto the board providing 16 MBytes of general-purpose system RAM. The MSC8102's Chip Select 2 is used to select the SDRAM devices through the SDRAM controller, which is capable of interfacing to JEDEC compatible SDRAM, the settings of which are now described.

- SDRAM size is 1M x 32 x 4 Banks = 16MBytes, which requires 24 address lines.
- Device has 8 column and 12 Row lines, 2 Bank Selects. The 32-bit port size means addresses 30 and 31 are not used.

For Page based interleaving the 60x bus is arranged as follows:

A[8:19]	A[20:21]	A[22:29]	A[30:31]
Row (x12)	Bank Select	Column (x8)	LSB

This gives the following MSC8101 Registers settings:

- PSDMR[PBI] = 1, Page Based Interleaving
- ORx[BPD] = 01, 4 Banks per device
- ORx[ROWST] = 1000, Row Starts at A8
- ORx[NUMR]= 011, SDRAM has 12 Row lines

From the SDRAM perspective during an ACTIVATE command it's address port will look like:

A9:A19	A16:A17	A18:A29	A30:A31
	Internal Bank Select (A[20:21])	Row(A[8:19])	LSB

While a Read/Write will look like:

A9:A19	A16:A17	A[18:21]	A[22:29]	A30:A31
	Internal Bank Select (A[20:21])	Don't care	Column (A[22:29])	LSB

This gives the following register settings:

- PSDMR[SDAM] = 010, A[9:19] multiplexed to A[19:29]
- PSMDR[BSMA] = 011, A[16-17] are used as Bank Selects Signals
- PSMDR[SDA10] = 001, A9 maps to A10/AP pin

The full PSDMR settings are described in table

Table 18. MSC8102 PSDMR settings

Register Setting	Description
PBI = 1	Paged Based Interleaving
RFEN = 1	Refresh services required
OP = 000	Normal Operation
SDAM = 010	A[9:19] muxed to A[19:29]
BSMA = 011	A16-A17 are used as Bank Selects Signals
SDA10 = 001	A9 maps to A10/AP pin
RFRC = 110	8 Clock Cycles Refresh Recovery
PRETOACT = 011	Pre-charge to Activate 3 cycle interval
ACTTORW= 011	Activate to Read/Write 3 clock cycles
BL 23 = 1	Burst Length is 8
LDOTOPRE = 10	Precharge can be set 2 cycles before last data is read from SDRAM
WRC = 00	Precharge is set 4 cycles after the last data is written to SDRAM
EAMUX= 1	SDAMUX asserted for an extra cycle
BUFCMD = 0	Normal Timing for the control lines
CL = 10	Cycle CAS Latency=2
	PSDMR = 0xC267378A: MSC8102 SDRAM

These SDRAM settings are conservative and can be optimized for future configurations. The OR settings are described below:

Table 19. MSC8102 BR & OR Settings

BR Register Setting	Description	
BA=0x2000_0	Base Address = 0x20000000	
PS=11	32-bit port size	
MSEL =010	SDRAM machine	
	BR = 0x20001841	
OR Register Setting	Description	
SDAM = 1111 1111 0000		
LSDAM = 0000 0	16MB SDRAM	
BPD= 01	4 Banks Per Device	
ROWST = 1000	Row Starts at A8	
NUMR = 010	SDRAM has 12 Row lines	
PMSEL = 0	Back to Back Page Mode (Normal Operation)	
IBID = 1	Bank Interleaving Disabled	
	OR = 0xFF003090	

After Power On a JEDEC standard initialization sequence is performed to configure the SDRAM. This is carried out in Software utilizing the SDRAM controller PSDMR register:

5.3.1.1 SDRAM Initialization Command Sequence

- Step 1. Apply power and start clock. Maintain No Operation (NOP) condition at the inputs.
- Step 2. Maintain stable power, stable clock and NOP input conditions at the inputs.
- **Step 3**. Issue Precharge All command (PALL) to all banks of the device. Program PSDMR[OP] bits to [101] and then perform an access to the SDRAM bank.
- **Step 4**. Issue 8 or more CBR Refresh (REF) commands. Program PSDMR[OP] bits to [001] and then perform 8 accesses to the SDRAM bank.
- **Step 5**. Issue Mode Register Set (MRS) command to initialise the mode register. Program PSDMR[OP] bits to [011] and then performing an access to the SDRAM bank at an address offset to 0x08Csee figure below.

Figure 9. SDRAM Mode Register Settings

5.3.1.2 SDRAM Refresh

The SDRAM requires 4096 refresh cycles per 64ms or one refresh cycle per $15.625\mu s$. The MSC8101 can be programmed to carry out the refresh cycle periodically using the SDRAM Refresh Timer (PSRT). By setting the memory refresh timer prescaler register , MPTPR[PTP] to divide by 32, and the PSRT to 0x30 a timer period of $15.625\mu s$ is realised for a 100MHz system clock . For a 83MHz System clock PSRT = 0x17.

$$PSRT = F_{MPTC}xTimerPeriod$$

$$PSRT = \frac{100MHz}{32}x15.625us - 1$$

$$PSRT = 0x30$$

$$PSRT = 0x27$$

$$PSRT = 0x27$$

Figure 10. Refresh Calculations

5.3.2 MSC8102 Array DSI Interface

The MSC8102's DSI interface is the main means of packet media transfers to and from the DSP Array. The DSI is configurable between 32 and 64 bit modes of operation using Dip Switch SW2.

5.3.3 MSC8102 Array TDM Interface

The CT bus is split into 32 streams of 128 timeslots each, giving 4096 timeslots. Each MSC8102 TDM link is uni-directional, meaning two CT Streams are required to interface with the MSC8102

TDM. With the P3TMC specification implemented the number of CT lines is further restricted to 20 streams.

Each MSC8102 has four TDM interfaces. The TDM Streams are routed as follows:

Figure 11. TDM to CT Routing

MSC8102	TDM Ref.	MSC8102 Signal	CT Stream Signal
MSC8102 #1	TDM0	TDM0TDAT	CT_D0
		TDM0RDAT	CT_D1
	TDM1	TDM1TDAT	CT_D2
		TDM1RDAT	CT_D3
	TDM2	TDM2TDAT	CT_D4
		TDM2RDAT	CT_D5
	TDM3	TDM3TDAT	CT_D6
		TDM3RDAT	CT_D7
MSC8102 #2	TDM0	TDM0TDAT	CT_D0
		TDM0RDAT	CT_D1
	TDM1	TDM1TDAT	CT_D2
		TDM1RDAT	CT_D3
	TDM2	TDM2TDAT	CT_D4
		TDM2RDAT	CT_D5
	TDM3	TDM3TDAT	CT_D6
		TDM3RDAT	CT_D7
MSC8102 #3	TDM0	TDM0TDAT	CT_D12
		TDM0RDAT	CT_D13
	TDM1	TDM1TDAT	CT_D18
		TDM1RDAT	CT_D19

	TDM2	TDM2TDAT TDM2RDAT	CT_D12 CT_D13
	TDM3	TDM3TDAT TDM3RDAT	CT_D18 CT_D19
MSC8102 #4	TDM0	TDM0TDAT TDM0RDAT	CT_D14 CT_D15
	TDM1	TDM1TDAT TDM1RDAT	CT_D10 CT_D11
	TDM2	TDM2TDAT TDM2RDAT	CT_D16 CT_D17
	TDM3	TDM3TDAT TDM3RDAT	CT_D8 CT_D9
MSC8102 #5	TDM0	TDM0TDAT TDM0RDAT	CT_D14 CT_D15
	TDM1	TDM1TDAT TDM1RDAT	CT_D10 CT_D11
	TDM2	TDM2TDAT TDM2RDAT	CT_D16 CT_D17
	TDM3	TDM3TDAT TDM3RDAT	CT_D8 CT_D9

Table 20. TDM to CT Stream Routing

The MSC8102s are configured in their four-pin setup with common clock and frame syncs for receive and transmit. The clock and Frame Sync signals routed from the PTMC CT Bus are CT_8_A and CT_FRAME_A respectively.

5.3.4 MSC8102 RS232 Interface

A simple RS232 UART is provided through the MSC8102's serial communications interface (SCI) to give programmable debug or communications capability. A Maxim MAX3232CUE provides the level conversion for the interface. Note that the receiver inputs are pulled low internally while the transmitter inputs have external pull-ups.

5.4 General Board Configuration

5.4.1 Reset

Figure 12 illustrates the reset scheme. The MAXIM MAX6828 generates the primary reset for the PFC (PORESET), which is supplied to the MSC8101, MSC8102s (AND with MSC8101 GPIO: PA7), FPGA and Flash memory. The Open drain output (RESET_N) is pulled low (for a minimum time out period of 140ms) when any of the following conditions occur:

- MR_N is pulled low via the pushbutton switch SW1
- The 1V6 voltage monitor trip voltage is reached (1.23Von Reset In pin),

$$Vmonitor_trip = 0.63(\frac{R10 + R12}{R12})$$

• The threshold voltage on 3V3 is reached (MIN = 2.85V, MAX = 3.00V, TYP = 2.93V)

Figure 12. PORESET Scheme

The MSC8101 controls the generation of individually buffered HRESET signals to the MSC8102s through the AND gating of its own HRESET signal and its HRESET GPIO control line PD31. Note that for flexibility the MSC8102 HRESETS have been routed to the FPGA via 0ohm resistors.

The PMCC signal PTMC_RESET can be used by a prospective PFC base card host to control the HRESET of the PFC.

The SRESET signals for the MSC8101 and MSC8102s have all been pulled high.

Figure 13. HRESET Scheme

5.4.2 Clock Distribution

The PFC has two clock regions

- 1. MSC8101 Aggregator and MSC8102 DSI interface clocking, Figure 14
- 2. MSC8102 and associated SDRAM clocking, Figure 15

In the first clock region the MSC8101 Aggregator and MSC8102 DSI interface clocks (HCK) are generated via a single oscillator, which is distributed via an ICS9112-17 low skew buffer.

In the second clock region the MSC8102 CLKIN signals are generated from a single oscillator, which is distributed via the ICS9112-16 low skew output buffer to the MSC8102 farm. Each MSC8102 CLKOUT signal is in turn fed back as the DLLIN signal via an additional low skew buffer. This buffer also generates the MSC8102's associated SDRAM clock

To accommodate debug and board set up the following clock frequencies are used on the MSC8101 and MSC8102.

Table 21. MSC8101 Clock frequencies

Clock Mode	CLKIN	Core	CPM	Bus
46	34.5 MHz	275 MHz	138 MHz	69 MHz

Table 22. MSC8102 Clock frequencies

Clock Mode	CLKIN	Core	Bus	DSI
10	41.6 MHz	250 MHz	83 MHz	69 MHz

The frequency of operation will depend on the revision of silicon used and the required application. Consult Motorola Ltd for the latest operating frequency characteristics of the MSC8101 and MSC8102.

Note that to ensure synchronous operation the following layout constraints are placed:

- The MSC8102 CLKIN_D[1:5] are of equal length
- The MSC8101 derived clocks: FPGA_CK, SDRAMCKA, A_DLLIN, HCK_D[1:5] are of equal length.
- On the MSC8102s the signals D1_DLLINx, SDRMCKx are of equal length

Figure 14. MSC8101 Aggregator Clocking Scheme

Figure 15. MSC8102 and SDRAM Clocking

5.4.3 Power

The PICMG 2.15 standard currently stipulates that 5V, 3.3V and GND are provided through the PTMC connectors. The optional connector, Pn5/Jn5 has the capabilities to supply the core voltage, 1.6V to the card. In this configuration, there is no need for additional regulation on the card. However, in order to interface with standard PTMC cards Pn5/Jn5 may not be populated – therefore in this scenario the core voltage cannot be obtained through the PTMC connectors. To compensate for this the PFC uses a Maxim MAX1714 Buck Controller to step down from 5V (Supplied via Jn1/Pn1) to 1.6V, capable of supplying 8A. A link is provided to isolate this 1V6 supply when required. Pulling the MAX1714 pin SHDN low can also disable the 1V6. (a resistor pad is provided for this).

The 1V6 output voltage can be adjusted from 1.3V to 2.0V as per Figure 16. The equation for adjusting the output voltage is:

$$Vout = Vfb(1 + \frac{R4}{R5 + VR1})$$
: Vfb =1.0V, R4=R5=1K and VR=2K

Figure 16. Setting Vout with Resistor-Divider

The FPGA requires 1V8 supply and a minimum 500mA (for a few millisecs) on power up. Note that the operating power requirements of the FPGA are application specific. A Maxim MAX8869EU18 linear regulator, which can give a guaranteed 1A, is used to supply the 1V8.

5.4.4 FPGA Configuration

The FPGA is configured with the following:

- M[0:2] = 110, Slave Serial Mode with pre-configuration pull ups
- CCLK: Input clock in slave mode
- PROGRAM_N: initiates a configuration sequence when low.

5.4.5 PTMC Connectors

The PFC is designed to interface with the PTMC connectors implemented on a Media Gateway Platform. The PFC implements an enhanced PTMC Type III or P3TMC configuration, incorporating an additional optional connector, Pn5 to allow the inclusion of 2x MII capabilities. In general the 5 connectors interface is:

- Pn1 CPORT interface
- Pn2 Host Port Interface
- Pn3 CT Bus, Ethernet-RMII
- Pn4 UTOPIA Interface
- Pn5 Ethernet (MII1 & MII2)

The connector pin out utilized is listed in Table 23 to Table 27:

Color	M eaning	
	Not Connected	
	Ground	
	Voltage	
	CT (TDM) Bus	
	Host Interface Signals	
	General Data I/O	

PIN	SIGNAL SIGNAL		PIN
1	NC	NC	2
3	GND	NC	4
5	NC	NC	6
7	NC	+5V	8
9	NC	NC	10
11	GND	NC	12
13	GMII_CK	GND	14
15	GND	NC	16
17	NC	+5V	18
19	VIO	NC	20
21	NC	CP14_D0	22
23	CP13_D6	GND	24
25	GND	CP14_D1	26
27	CP13_D5	CP14_D2	28
29	CP13_D4	+5V	30
31	CP13_D3	CP14_D3	32
33	CP13_D2	GND	34
35	GND	CP14_D4	36
37	CP13_D1	+5V	38
39	GND	CP14_D5	40
41	CP13_D0	CP14_D6	42
43	CP12_D6	GND	44
45	VIO	CP15_D0	46
47	CP12_D5	CP15_D1	48
49	CP12_D4	+5V	50
51	GND	CP15_D2	52
53	CP12_D3	CP15_D3	54
55	CP12_D2	GND	56
57	VIO	CP15_D4	58
59	CP12_D1	CP15_D5	60
61	CP12_D0	+5V	62
63	GND	CP15_D6	64

Table 23. Pn1/Jn1 Connector Pin Out (CPORT Interface)

PIN	SIGNAL	SIGNAL	PIN
1	NC	NC	2
3	NC	NC	4
5	NC	GND	6
7	GND	NC	8
9	HD0	HA1	10
11	HD1	+3.3V	12
13	PTMC_RESET	HA2	14
15	+3.3V	HA3	16
17	HD2	GND	18
19	HD3	HRW	20
21	GND	HDS	22
23	HD4	+3.3V	24
25	HD5	HTREQ	26
27	+3.3V	HRREQ	28
29	HD6	GND	30
31	HD7	A_IRQ7	32
33	GND	HCS	34
35	HD8	+3.3V	36
37	GND	NC	38
39	HD9	GND	40
41	+3.3V	NC	42
43	HD10	GND	44
45	HD11	NC	46
47	GND	NC	48
49	HD12	+3.3V	50
51	HD13	NC	52
53	+3.3V	NC	54
55	HD14	GND	56
57	HD15	NC	58
59	GND	NC	60
61	HA0	+3.3V	62
63	GND	NC	64

Table 24. Pn2/Jn2 Connector Pin Out (Host Port Interface)

PIN	SIGNAL	SIGNAL	PIN
1	MII_MDIO	GND	2
3	GND	NC	4
5	MII_MDC	NC	6
7	RMII_RX_ER0	GND	8
9	NC	RMII_TXD0	10
11	NC	RMII_TXD1	12
13	REF_CLK	GND	14
15	GND	RMII_RXD0	16
17	CT_FRAME_A	RMII_RXD1	18
19	NC	GND	20
21	NC	RMII_TXEN0	22
23	NC	RMII_CRS_DV0	24
25	CT_C8_A	GND	26
27	GND	CT_D19	28
29	CT_D18	CT_D17	30
31	CT_D16	GND	32
33	GND	NC	34
35	CT_D14	NC	36
37	CT_D12	GND	38
39	PTENB	NC	40
41	NC	NC	42
43	NC	GND	44
45	GND	CT_D15	46
47	CT_D10	CT_D13	48
49	CT_D8	CT_D11	50
51	GND	CT_D9	52
53	CT_D6	CT_D7	54
55	CT_D4	GND	56
57	NC	CT_D5	58
59	CT_D2	CT_D3	60
61	CT_D0	GND	62
63	GND	CT_D1	64

Table 25. Pn3/Jn3 Connector Pin Out (CT Bus & RMII)

PIN	SIGNAL	SIGNAL	PIN
1	TxSOC GND		2
3	GND	RXADR4	4
5	TxCLA V	TXADR4	6
7	RXADR3	GND	8
9	I2C_SCL	GND	10
11	GND	5V	12
13	5V	GND	14
15	GND	RXENB#	16
17	TXADR3	RXCLA V	18
19	TXADR2	GND	20
21	5V	TXENB#	22
23	GND	RXADR2	24
25	TXCLK	GND	26
27	GND	TXADR1	28
29	TXADR0	RXADR1	30
31	TXPRTY	GND	32
33	GND	RXADR0	34
35	TXD7	RXPRTY	36
37	TXD6	GND	38
39	5V	RXD7	40
41	GND	RXD6	42
43	RXCLK	GND	44
45	GND	RXD5	46
47	TXD5	RXD4	48
49	TXD4	GND	50
51	GND	RXD3	52
53	TXD3	RXD2	54
55	TXD2	GND	56
57	I2C_SDA	RXD1	58
59	TXD1	RXD0	60
61	TXD0	GND	62
63	GND	RxSOC	64

Table 26. Pn4/Jn4 Connector Pin Out (UTOPIA)

PIN	SIGNAL	SIGNAL	PIN
1	NC	1V6	2
3	NC	NC	4
5	NC	NC	6
7	NC	NC	8
9	1V6	NC	10
11	1V6	GND	12
13	NC	NC	14
15	NC	NC	16
17	NC	NC	18
19	GND	MII2_TCLK	20
21	MII2_TXD0	1V6	22
23	MII2_TXD1	MII2_RXDV	24
25	MII2_TXD2	MII2_RXD0	26
27	MII2_TXD3	MII2_RXD1	28
29	1V6	MII2_RXD2	30
31	1V6	GND	32
33	MII2_TXEN	MII2_RXD3	34
35	MII2_TXER	MII2_RXER	36
37	MII2_COL	MII2_CRS	38
39	GND	MII2_RCLK	40
41	MII1_TXD0	VCC_CORE	42
43	MII1_TXD1	MII1_RXDV	44
45	MII1_TXD2	MII1_RXD0	46
47	MII1_TXD3	MII1_RXD1	48
49	1V6	MII1_RXD2	50
51	1V6	GND	52
53	MII1_TXEN	MII1_RXD3	54
55	MII1_TXER	MII1_RXER	56
57	MII1_COL	MII1_CRS	58
59	GND	MII1_RCLK	60
61	1V6	GND	62
63	1V6	MII1_TCLK	64

Table 27. Pn5/Jn5 Connector Pin Out (Ethernet)

5.4.6 JTAG Connectivity

The MSC810x's EONCE module allows non-intrusive interaction with the SC140 core allowing examination/analysis of registers, memory and on-chip peripherals. The EONCE module interfaces with the debugging system through on-chip JTAG TAP controller pins.

The DSP's EONCE JTAG debug ports are connected in a chain configuration to allow simultaneous debug of the complete DSP Array and Aggregator. There are a number of configurations:

- Setting JP1 jumper to position 1-2 and switch 2_8 to ON (short) enables the debug of the full chain.
- Setting JP1 jumper to position 2-3 and switch 2_8 to OFF (open) enables the debug of only the MSC8101.
- MSC8102s can be removed/added to the chain as required by the removal/addition of various 0 ohm resistors.

An EONCE connector is provided on P3. The signals available on the connector are:

- TMS: This signal is pulled up so that after reset 5 TCK clocks will put the TAP into the Test Logic Reset State,
- TSRT: The Reset signal is pulled low to force the JTAG into reset by default.
- TCK: The clock signal is pulled low (pulled high is also OK for this signal) to save power in low power stop mode.

- TDI: The input signal is pulled high to save power in low power stop mode. All JTAG ports have a weak internal TDI pull up.
- TDO: The output signal is pulled high

Figure 17. JTAG Chain

5.4.7 LEDs

Surface mount 0603 footprints LEDs are provided on each of the MSC8102s, the MSC8101 and the FPGA.

- MSC8101 port line PA6 controls MSC8101 LED
- MSC8102 port line GPIO31 controls MSC8102 LED
- FPGA pin D3 (IO_82) controls FPGA LED

5.5 PFC Board Configuration

The PFC incorporates 2 banks of switches to enable configuration of the MSC8101 and MSC8102. The Configuration switch options are detailed below, consult the user guide section for further details on switch settings. When setting the switches ON = logic 0 and OFF = logic 1.

Feature Description SW3.1 This sets MSC8101 MODCLK [1:3] and works in A_MODCK1 conjunction with the Rest Configuration word to determine A MODCK2 SW3.2 Core/CPM/Bus operating frequencies A_MODCK3 SW3.3 SW3.4 MSC8101 Boot Option: ON = Host Port disabled, Boot from external memory. OFF= Host Port enabled, Boot from HDI16 SW3.5 IO SEL for MSC8101 UTOPIA/Ethernet multiplexed Selection ON = UTOPIAOFF = MII1 Ethernet SW3.6 M1_BM2 MSC8102 Boot Sequence options M1_BM1 $M1_BM1=ON$, $M1_BM2=ON$ => External Memory via 60x bus SW3.7 $M1_BM1=ON$, $M1_BM2=OFF => DSI Boot$ SW3.8 Reset Configuration ON = Reset Configuration Master OFF = Reset Configuration Slave

Table 28. Switch 3 Descriptions

Table 29. Switch 2 Descriptions

Feature	Description	
SW2.1	Configuration So	surce works in conjunction with SW2.7 (RSTCONF)
SW2.2	MODCK2 This sets MSC8121 MODCLK [1:2] and works in conjunction with	
SW2.3	MODCK1	the Reset Configuration word to determine Core/Bus operating frequencies

SW2.4	Select DSI bus width (DSI64)
	ON = 32-bit
	OFF = 64-bit
SW2.5	Select DSI Mode of Operation (DSISYNC)
	ON = Asynchronous mode
	OFF = Synchronous mode
SW2.6	Software Watchdog timer enable (SWTE)
	ON = Software WDT disabled
	OFF =Software WDT enabled
SW2.7	Reset Configuration
	<u>SW2.1 SW2.7</u>
	ON ON: Reset configuration write through 60x bus
	ON OFF: Reset Configuration write through 60x bus (defaults to all zeros after 1024 clock cycles)
	OFF ON: Reset Configuration write through the DSI
SW2.8	JTAG Selection (in conjunction with JP1)
	ON (JP1-pos 1-2) Full JTAG of 21 Cores
	OFF (JP1 pos 2-3) Single MSC8101 JTAG

6 Firmware Implementation

This section describes the firmware implementation on the PFC board, which includes detailed memory maps and register settings and details on how the board is bootstrapped.

6.1 MSC8101 Host Memory Controller Settings

The PFC MSC8101 host DSP uses 6 of the available chip selects as memory resources. Four of these are used for peripherals (Flash, SDRAM, DSI, DSI Broadcast) and 2 are used for internal resources (SRAM and Local Peripherals), which creates a memory map, illustrated in Table 30. Note that when in synchronous DSI mode chips selects are not required for DSI and DSI broadcast as transfers are handled by the external 60x bus (FPGA). The DSI mapping of the MSC8102 when viewed through the DSI port is also detailed. Note that only the local bus can see the core side memory area (i.e. local SRAM which is mapped from 0x000000000 to 0x0007FFFF) and peripherals like HDI16 etc.

The Base and option register settings, which define the memory map, are detailed in Table 30 with Chip Select 10 & 11 automatically set up as part of the ROM boot sequence. In addition to these registers the Bus Configuration Register should be set for multi-master mode BCR[EBM]=1 when using synchronous DSI.

Table 30. MSC8101 Memory Controller Resources

Chip Select	Device	;	Start Address	End Address	Size	BR[x]	OR[x]
CS0	Flash (B	loot)	0xFE00_0000	0xFE3F_FFFF	4MB	0xFE000801	0xFFC00EF4
CS2	SDRAM	1	0x2000_0000	0x20FF_FFFF	8MB	0x20001841	0xFF803290
CS3	DSI Bro	adcast	0x22A0_0000	0x22BF_FFFF	2MB	0x22A01881	0xFFE00104
CS4	DSI	DSP 5	0x2280_0000	0x229F_FFFF	2MB	0x22001881	0xFF000100
		DSP 4	0x2260_0000	0x227F_FFFF	2MB		
		DSP 3	0x2240_0000	0x225F_FFFF	2MB		
		DSP 2	0x2220_0000	0x223F_FFFF	2MB		
		DSP 1	0x2200_0000	0x221F_FFFF	2MB		
CS10	Internal	SRAM	0x0200_0000	0x0207_FFFF	512KB	0x020000c1	0xFFF80000
CS11	Local B Peripher		0x01F0_0000	0x01F0_7FFF	32KB	0x01F00021	0xFFFF0000

Figure 18. MSC8101 Host Memory Map

6.2 MSC8102 Memory Controller Settings

Each PFC MSC8102 slave DSP uses 4 of the available chip selects as memory resources. One of these is used for SDRAM peripheral and 3 are used for internal resources (L1 & L2 SRAM, IP Bus peripherals and DSP Peripherals), which create a memory map, illustrated Table 31. The Base and option register settings, which define the memory map, are detailed in Table 30 with Chip Selects 9-11 automatically set up as part of the ROM boot sequence.

Table 31. MSC8102 Memory Controller Resources

Chip Select	Device	Start Address	End Address	Size	BR[x]	OR[x]
CS2	SDRAM	0x2000_0000	0x20FF_FFFF	16MB	0x20001841	0xFF003290
CS9	IP Peripherals	0x0218_0000	0x021B_FFFF	256KB	0x02181821	0xFFFC0008
CS10	DSP Peripherals	0x021E_0000	0x021E_FFFF	64KB	0x021E002E	0xFFFF0000
CS11	Internal SRAM	0x0200_0000	0x0217_FFFF	1.5MB	0x020000C1	0xFFE00000

Figure 19. MSC8102 Memory Map

6.3 PFC Reset Configuration Word (MSC8101)

When the MSC8101 is configured to boot from external memory it will access the start of Flash at address 0xFE000000 (using CS0) to read the Reset Configuration Word. The configuration master (MSC8101) reads the reset configuration word from the Flash with Byte wide accesses. The Reset Configuration Word is used to define the initial bus, arbitration, memory controller and clocking modes of the device. The Reset Configuration Word for the MSC8101 is given in Table 32.

Table 32. MSC8101 Hard Reset Configuration Word

Bit	Name	Value	Description
0	EARB	0	Internal Arbitration
1	EXMC	0	Internal Memory Controller
2	IRQ7 INT	1	INT_OUT selected
3	EBM	1	Multi Master Mode (set to 1 for synchronous DSI)
4-5	BPS	01	Boot Port size is 8 bits
6	SCDIS	0	SC140 Core enabled
7	ISPS	1	PPC Bus is 32-bit wide
8-9	IRPC	10	IRQ lines act as BADDR
10-11	DPPC	00	Data parity pins act as IRQ lines
12	NMI OUT	0	NMI is serviced by SC140 Core
13-15	ISB	000	Internal Space Base is 0xF0000000
16	Res.	0	Reserved
17	BBD	0	Arbitration Pins enabled
18-19	MMR	00	Initial Bus Request inputs to the master are not masked.
20-21	Res.	00	Reserved
22-23	TCPC	00	TC function selected
24-25	BC1PC	00	BCTL1 function selected
26	Res	0	Reserved
27	DLLDIS	1	DLL bypass
28-30	MODCK_H	101	Clock Configuration 46 used (MODCK_L = 110)
31	Res.	0	Reserved
Configu	ration Word = 0	x3580001.	A

6.4 PFC Reset Configuration Word (MSC8102)

The slave MSC8102s are configured to receive their reset configuration word through the DSI port

Table 33. MSC8102 Hard Reset Configuration Word

Bit	Name	Val	Description
0	EARB	0	Internal Arbitration
1	EXMC	0	Internal Memory Controller
2	INT OUT	1	INT_OUT selected
3	EBM	0	Single MSC8102 Bus Mode
4-5	BPS	00	Boot Port size is 64 bits (not used)
6	SCDIS	0	SC140 Core enabled
7	ISPS	0	Internal Space is 64 bits
8	IRPC	0	IRQ selected (not used)
9	Res.	0	0
10-11	DPPC	00	Data parity pins act as IRQ lines
12	NMI OUT	0	NMI is serviced by SC140 Core
13-15	ISB	000	Internal Space Base is 0xF0000000
16	Res.	0	Reserved
17	BBD	0	Arbitration Pins enabled (not used)
18	MMR	00	No masking on bus request lines
19	Res.	0	
20	TTPC.	0	Transfer Type selected (not used)
21	CS5PC	0	CS5 selected (not used)
22-23	TCPC	00	TC function selected
24	LTLEND	0	Big Endian
25	PPCLE	0	(not applicable)
26	Res.	0	
27	DLLDIS	0	No DLL bypass
28-30	MODCK[3-5]	010	Clock Configuration (Default is Mode 10)
31	Res.	0	
Configu	ration Word = $0x20$	000000	4

6.5 PFC Bootstrap

The flowchart in Figure 20 illustrates the bootstrap method used on the PFC, which is also explained below.

Once PORESET has been released the MSC8101 reads its own Reset Configuration Word from Flash,. There is then a set delay to allow the PLL and DLL to lock after this the HRESET is released. At this stage the MSC8101 will execute its ROM boot code. Once complete it will read from the address look up table at 0xFE000110 and subsequently jump to that address (0xFE000200 -pre-programmed in flash), where it will begin to execute its start-up code. This code switches off the "Watchdog Timer" and then jumps to 0xFE002000 (Sector 1 of Flash) where a simple down loader routine exists. This routine copies the main down loader routine, which is stored at 0xFE004000 (Sector 2 of Flash) to SRAM location 0x69000 and then jumps to the start of the routine. The main down loader, which is now running in SRAM (as opposed to running in Flash, which is slower) copies the PFC application code from flash to SRAM starting at location 0x0 once complete it then jumps to 0x0 and executes the code

The code executed first initializes the FPGA followed by the MSC8101 and finally the MSC8102 DSI ports. It then writes the MSC8102 Reset Configuration Word to the MSC8102s via their DSI port to bring them out of reset. Once they are out of reset the MSC8101 then downloads the MSC8102 code through their DSI port into L1/L2 memory. Once the download is complete the MSC8101 then instructs the MSC8102 cores to execute the code.

Figure 20. PFC Bootstrap Method

7 PFC Base Card

To facilitate debug and customer demonstrations the PFC base card is designed to break out a number of interfaces from the PFC:

- The UTOPIA, Ethernet (MII2) and the Host port interfaces are routed to the VME connectors for interfacing to the MSC8101 ADS UTOPIA PHY, Ethernet PHY and the 60x bus (Host Port)
- The TDM (CT Bus) is routed to a H.100 connector
- The 28-bit CPORT interface (buses CP12, CP13, CP14 and CP15) has been routed to a CPCI connector. For interfacing to J7 of a 9U chassis (expander side)

The card layout is detailed below

Figure 21. PFC & Base Card Layout

7.1 UTOPIA Interface

When the cards are connected, the PFC MSC8101 interfaces directly with the UTOPIA PHY on the ADS with BRG8 supplying the clock.

PFC		MSC8101 ADS		
Signal	Connector	Signal	P2/J2 Connector	
UTOPIA_TXD0	Pn4 61	ATMTXD0	P2 B7	
UTOPIA_TXD1	Pn4 59	ATMTXD1	P2 B8	
UTOPIA_TXD2	Pn4 55	ATMTXD2	P2 B9	
UTOPIA_TXD3	Pn4 53	ATMTXD3	P2 B10	
UTOPIA_TXD4	Pn4 49	ATMTXD4	P2 B11	
UTOPIA_TXD5	Pn4 47	ATMTXD5	P2 B12	

Table 34. UTOPIA Interface

UTOPIA_TXD6	Pn4 37	ATMTXD6	P2 B13
UTOPIA_TXD7	Pn4 35	ATMTXD7	P2 B14
UTOPIA_RXD0	Pn4 60	ATMRXD0	P2 B15
UTOPIA_RXD1	Pn4 58	ATMRXD1	P2 B16
UTOPIA_RXD2	Pn4 54	ATMRXD2	P2 B17
UTOPIA_RXD3	Pn4 52	ATMRXD3	P2 B18
UTOPIA_RXD4	Pn4 48	ATMRXD4	P2 B19
UTOPIA_RXD5	Pn4 46	ATMRXD5	P2B20
UTOPIA_RXD6	Pn4 42	ATMRXD6	P2 B21
UTOPIA_RXD7	Pn4 40	ATMRXD7	P2 B22
UTOPIA_TXSOC	Pn4 1	ATMTSOC	P2 B3
UTOPIA_TXCLAV	Pn4 5	ATMTCAb	P2 B2
UTOPIA_TXCLK(UT_MI_CLK1) [Uses BRG8 in UTOPIA mode]	Pn4 25	ATMFCLK [INPUT]	P2 D6
UTOPIA_TXPRTY	Pn4 31	PD16	P2 A16
UTOPIA_TXENB	Pn4 22	ATMTXENb	P2 B1
UTOPIA_RXSOC	Pn4 64	ATMRSOC	P2 B5
UTOPIA_RXCLAV	Pn4 18	ATMRCA	P2 B6
UTOPIA_RXCLK(UT_MI_CLK2) [Uses CLK7 in UTOPIA mode]	Pn4 43	ATMRCLK [OUTPUT]	P2 C29
UTOPIA_RXPRTY	Pn4 36	SPIMOSI	P2 A15
UTOPIA_RXENB	Pn4 16	ATMRXENb	P2 B4

7.2 I2C Interface

Table 35. I2C Interface

PFC		MSC8101 ADS	
Signal	Connector	Signal	P2/J2 Connector
I2C_SCL	Pn4 9	FETHRXD3	P2 C14
I2C_SDA	Pn4 57	FETHRXD2	P2 C13

7.3 HDI16 Interface

When the 2 cards are connected the MSC8101 on the ADS can access the PFC MSC8101 through its HDI16 port.

Table 36. HDI16 Interface

PFC		MSC8101 ADS	
Signal	Connector	Signal	P2/J2 Connector
HD0	Pn2 9	HD0	P2 C15
HD1	Pn2 11	HD1	P2 C16
HD2	Pn2 17	HD2	P2 C17

	1	T	T
HD3	Pn2 19	HD3	P2 C18
HD4	Pn2 23	HD4	P2 C19
HD5	Pn2 25	HD5	P2 C20
HD6	Pn2 29	HD6	P2 C21
HD7	Pn2 31	HD7	P2 C22
HD8	Pn2 35	HD8	P2 C23
HD9	Pn2 39	HD9	P2 C24
HD10	Pn2 43	HD10	P2 C25
HD11	Pn2 45	HD11	P2 C26
HD12	Pn2 49	HD12	P2 C27
HD13	Pn2 51	HD13	P2 C28
HD14	Pn2 55	HD14	P2 B31
HD15	Pn2 57	HD15	P2 B32
HA0	Pn2 61	HA0	P2 D29
HA1	Pn2 10	HA1	P2 D30
HA2	Pn2 14	HA2	P2 D31
НА3	Pn2 16	HA3	P2 D32
HDI16_HRW	Pn2 20	HRDRW	P2 A23
HDI16_HDS	Pn2 22	HWRDS	P2 A24
HTREQ	Pn2 26	HREQTRQ	P2 D21
HRREQ	Pn2 28	HRRQACK	P2 D24
HDI16_HCS	Pn2 34	HCS1	P2 A22
[HCS2 not used]			

7.4 CT Bus Interface

There are 2 possible methods to interface to the TDMs for testing

- Direct connection to the H100 (All TDMs)
- Connection to TDMA1 on the MSC8101 ADS

Table 37. CT Bus

PFC		MSC8101 ADS		
Signal	Connector	Signal	P2/J2 Connector	
CT_D0 (DSP1: TDM0TDAT)	Pn3 61	L1RXD (L1RXDA1)	P2 B24	
CT_D1 (DSP1: TDM0RDAT)	Pn3 64	L1TXD (L1TXDA1)	P2 B23	
CT_C8_A	Pn3 25	CLK1	P2 D1	
CT_FRAME_A	Pn3 17	L1RSYNC	P2 B26	

7.5 Ethernet Interface

Table 38. Ethernet Interface

PFC		MSC8101 AD	S
Signal	Connector	Signal	P2/J2 Connector
UTOPIA_MTXADDR1 (MII_MDC)	Pn3 1	FETHMDC	P2 D19
UTOPIA_MRXADDR1 (MII_MDIO	Pn3 5	FETHMDIO	P2 D20
MII2_RCLK	Pn5 40	FETHRXCK	P2 D3
MI2_TCLK	Pn5 20	FETHTXCK	P2 D4
MII2_RXDV	Pn5 24	FETHRXDV	P2 C2
MI2_RXER	Pn5 36	FETHRXER	P2 C4
MII2_CRS	Pn5 38	FETHCRS	P2 C6
MII2_TXEN	Pn5 33	FETHTXEN	P2 C3
MII2_TXER	Pn5 35	FETHTXER	P2 C1
MII2_COL	Pn5 37	FETHCOL	P2 C5
MII2_TXD0	Pn5 21	FETHTXD0	P2 C10
MII2_TXD1	Pn5 23	FETHTXD1	P2 C9
MII2_TXD2	Pn5 25	FETHTXD2	P2 C8
MII2_TXD3	Pn5 27	FETHTXD3	P2 C7
MII2_RXD0	Pn5 26	FETHRXD0	P2 C11
MII2_RXD	Pn5 28	FETHRXD1	P2 C12
MII2_RXD2	Pn5 30	FETHRXD2	P2 C13
MII2_RXD3	Pn5 34	FETHRXD3	P2 C14

Table 39. Miscellaneous Signals

PFC		MSC8101 ADS	
Signal	Connector	Signal	P2/J2 Connector
A_IRQ7	Pn2 32	PC15	P2D17
PTMC_RESET	Pn2 13	PC5	P2 D27
PTENB	Pn3 39	PC30	P2 D2

Appendix A PFC Parts.

Board Ref.	Description	Manufacturer	Part Number	
D1,D2,D3,D4,D5,D6,D10	0603 SM YELLOW LED	LiteON	LTST-C190YKT	
D7,D8,D9	1A Silicon Rectifier	General Semi	GF1A	
JP1	HDR 1X3 SMT 100mil SP 380H Au	SAMTEC	TSM-103-01-S-SV	
JP2	Surface Mount 3x2 0.1" pitch header	SAMTEC	TSM-103-01-S-DV	
LK1	1mm dia. 5mm shorting link (10A)	Harwin	D3080-05	
L1	POWER INDUCTOR 1.5UH 14.0A SMD	SUMIDA	CEP1251R5MC	
PN1,PN2,PN3,PN4,PN5	CON 64PIN 1.0MM FH PLUG W/PST 8MM STACK	TYCO	120525-1	
P1	Surface Mount 2x2 0.1" pich header	SAMTEC	TSM-102-01-S-DV	
P3	HDR 2X7 SMT 100mil CTR 380H Au	SAMTEC	TSM-107-01-S-DV	
SW1	SW SPST KEY NO PB SMT 15V 20mA	BOURNS	7914J-1-000E	
SW2,SW3	SW 8P SPST DIP NC SMT 24V 25mA	GRAYHILL	97C08S	
TP1,TP2	Test Point			
U1	DIO SMT Schottky Power Rectifier	ON Semiconductor	MBRS340T3	
U2	CONTROLLER HIGH-SPEED STEP- DOWN	MAXIM	MAX1714BEEE	
U3	TRANSISTOR MOSFET N-CHANNEL 28V	International Rectifier	IRF7811A	
U4	TRANSISTOR MOSFET N-CHANNEL 30V	Fairchild Semiconductor	FDS6670A	
U5	IC RS-232 TRANSCEIVER 3/5.5V 1Mbps	MAXIM	MAX3232CUE	
U6	LOGIC GATE QUAD 2-INPUT AND LCX-CMOS TSSOP 14PIN	ON Semiconductor	MC74LCX08DT	
U7	IC LOGIC GATE HEX BUFFER TSSOP 14PIN	Philips Semiconductors	74LVC07APW	
U8	IC Dual Ultra-Low-Voltage SOT23 μP Supervisors	MAXIM	MAX6828SUT-T	
U9, U29	BUFFER/DRIVER DUAL 4-BIT 20PIN SOP	Philips Semiconductors	74LVC244APW	
U10	IC Linear Regulator	MAXIM	MAX8869EUE18	
U11,U13,U15,U18,U19	IC DSP 431PIN BGA	MOTOROLA	MSC8102	
U12,U14,U16,U17,U20,U34	IC MEM DRAM SYNC PC-100 86PIN TSSOP	MICRON	MT48LC2M32B2TG-6	
U21,U22,U24,U25,U26,U27	IC BUFFER LOW SKEW ZERO DELAY 8PIN TSSOP	ICS-Integrated Circuit Systems	ICS9112AG-16	
U23,U38,U40	OSC CLOCK 50MHZ CMOS 3.3V SMT	EPSON	SG-710ECK50.0000MC	
U28	IC BUFFER LOW SKEW ZERO DELAY 16PIN TSSOP	ICS-Integrated Circuit Systems	ICS9112AF-17	
U30	IC 12-bit to 24-bit mux'd D Type Latches (3state)	Philips Semiconductors	74ALV16260DGG	
U31	BUS SWITCH SSOP 80PIN	IDT	IDTQS34XV245Q3	
U32,U33	16-bit transparent D-type latch	Philips Semiconductors	74ALVT16373DGG	
U35	BUS EXCHANGER TSSOP 56PIN	Pericom Semiconductor	PI3B16233A	

U36	EEPROM FLASH 2MX16/4MX8 TSSOP 48PIN	AMD	AM29LV320DB120EI
U37	IC DSP 332PIN BGA	MOTOROLA	MSC8101
U39	IC FPGA 1.8V Spartan-IIE	Xilinix	XC2S300E-7FG456C
VR1	2K2 variable res	Bourns	3214W-1-222E

Appendix B PFC Base Card Parts.

Board Ref.	Description	Manufacturer	Part Number
D1,D2,D3	1A Silicon Rectifier	GENERAL SEMI	GF1A
JP1	3 way Low Profile PCB Screw terminal (5mm pitch)	IMO	20.501/3SB
JP2	2 way Low Profile PCB Screw terminal (5mm pitch)	IMO	20.501/2SB
J1,J2	Right Angle Male Connector (128pin type D)	ERNI	023816 DIN41612
Ј3	H.100 Connector	AMP	1-557100-7
J4	cPCI Connector (right angle 22 Column TYPE A Socket)	AMP	352068-1
J5	BNC Connector	MACOM	B65N07G999X99
PN1,PN2,PN3,PN4,PN5	CON 64PIN 1.0MM FH SOCKET W/PST 8MM STACK	TYCO	120521-1
P2,P1	Surface Mount 2x2 0.1" pitch header	Samtec	TSM-102-01-S-DV

Appendix C JTAG configuration file (21 cores)

MSC8102Sync		
MSC8102	# DSP5 Core 0	1
MSC8102	# DSP5 Core 1	2
MSC8102	# DSP5 Core 2	3
MSC8102	# DSP5 Core 3	4
MSC8102Sync		
MSC8102	# DSP4 Core 0	6
MSC8102	# DSP4 Core 1	7
MSC8102	# DSP4 Core 2	8
MSC8102	# DSP4 Core 3	9
MSC8102Sync		
MSC8102	# DSP3 Core 0	11
MSC8102	# DSP3 Core 1	12
MSC8102	# DSP3 Core 2	13
MSC8102	# DSP3 Core 3	14
MSC8102Sync		
MSC8102	# DSP2 Core 0	16
MSC8102	# DSP2 Core 1	17
MSC8102	# DSP2 Core 2	18
MSC8102	# DSP2 Core 3	19
MSC8102Sync		
MSC8102	# DSP1 Core 0	21
MSC8102	# DSP1 Core 1	22
MSC8102	# DSP1 Core 2	23
MSC8102	# DSP1 Core 3	24
SC140	# MSC8101	25

Appendix D PFC Layout

Figure 22. PFC Layout - Top

Figure 23. PFC Layout - Bottom

MSC8102PFCUG/D Rev. 1.3