PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-253643

(43) Date of publication of application: 30.09.1997

(51)Int.CI.

C02F 1/42 B01J 47/02

B01J 47/06

(21)Application number: 08-066270

(71)Applicant: KURITA WATER IND LTD

(22) Date of filing:

22.03.1996

(72)Inventor: OSAWA KIMINOBU

(54) DEIONIZED WATER MAKING METHOD

(57) Abstract:

PROBLEM TO BE SOLVED: To prevent the generation of live bacteria within a mixed bed type ion exchanger by passing hot water through the mixed bed type ion exchanger having a cation exchange resin and an anion exchange resin built therein and subsequently passing raw water through the mixed bed type ion exchanger to produce deionized water.

SOLUTION: In producing deionized water by passing raw water through a mixed bed type ion exchanger 3, hot water is passed through the mixed bed type ion exchanger 3 packed with a cation exchange resin and an anion exchange resin to subject the ion exchanger 3 to sterilization treatment. In this hot water sterilization treatment, at a time of the rising of an apparatus, for example, a sub-system is sterilized by hot water of 80-90°C.

example, a sub-system is sterilized by hot water of 80-90°C. At this time, the permeated water (hot water of 80-90°C) of a UF membrane apparatus 7 is circulated to the inlet of the mixed bed type ion exchanger 3 without being discharged out of the system to sterilize the mixed bed type ion exchanger 3. By this constitution, the mixed bed type ion exchanger 3 can be sterilized along with the sterilization of the sub-system.

LEGAL STATUS

Searching PAJ

[Date of request for examination]

03.03.2000

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

3468259

[Date of registration]

05.09.2003

[Number of appeal against examiner's

decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開母号

特開平9-253643

(43)公開日 平成9年(1997)9月30日

(51) Int.CL4		裁別配号	庁内整理番号	PΙ			技術表示體所
C02F	1/42			C 0 2 F	1/42	В	
B01J	47/02			B01J	47/02	В	
	47/08				47/06		

審査請求 京請求 請求項の数1 OL (全 5 四)

(21)出顧番号 物顧平8-68270 (71)出題人 000001063 第四工業株式会社 (22)出顧日 平成8年(1996) 3月22日 東京都新官区西新官 3 丁目 4 番 7 号 (72)発明者 大輝 公仲	
(72) 宠明者 大墠 公仲	
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
特許法第30条第1項適用申請有り 平成7年12月11日発 東京都新宿区西新宿3丁目4番7号	田城
行の化学工業日報に掲載	
(74)代键人 弁理士 魚野 聊	
•	

(54) 【発明の名称】 脱イオン水製造方法

(57)【要約】

【課題】 復床式イオン交換器を用いて脱イオン水を製造するに当り、健床式イオン交換器での生菌の発生を防止する。

【解決手段】 陽イオン交換制脂及び除イオン交換制脂 を内蔵した浸床式イオン交換器3に熱水を通水した後、 原水を通水して脱イオン水を製造する。

【効果】 装置運転開始に当り、陽イオン交換樹脂及び 陰イオン交換樹脂を内蔵した混床式イオン交換器を熱水 で製菌処理することにより、混床式イオン交換器からは 破遇に到るまで生菌が発生しないようになる。混床式イ オン交換樹脂本来の除菌、製菌性能により、流入する生 菌をも殺菌し、混床式イオン交換器以降の系内を無菌状 療に維持することができるようになる。

特別平9-253643

(2)

【特許請求の範囲】

【論求項1】 陽イオン交換制脂及び除イオン交換制脂 を内蔵した復床式イオン交換器に通水して脱イオン水を 製造する方法において、

該陽イオン交換樹脂及び陰イオン交換樹脂を内蔵した復 床式イオン交換器に熱水を通した後、原水を該混床式イ オン交換器に通水して脱イオン水を製造することを特徴 とする脱イオン水製造方法。

【発明の詳細な説明】

[0001]

【発明の届する技術分野】本発明は脱イオン水製造方法 に係り、特に、健床式イオン交換器を用いて脱イオン水 を製造するに当り、復床式イオン交換器の除菌、鞭菌性 能を有効に発揮させて、良好な処理水を得る方法に関す る.

[0002]

【従来の技術】現床式イオン交換器を利用した脱イオン 水の製造システムの従来例を図1に示す。

【0003】図1(a)は、医薬分野で用いられる精製 水製造システムの系統図であり、原水(前処理水)は、 タンク1及びポンプP, を経て逆浸透(RO) 膜鉄置2 及び混床式イオン交換器3で処理された後、タンク4、 ポンプP」、熱交換器 5、 紫外線 (UV) 殺菌装置 6 及 び限外流過(UF)膜装置でよりなるサブシステムで処 **塑され、ユースポイントに送給される。**

【0004】図1(b)は、半導体分野で用いられる超 純水製造システムの系統図であり、原水となる純水(脱 塩水)は、タンク1及びボンプP、を経てRO膜装置2 で処理された後、タンク4、ポンプP。、熱交換器5、 装置6及びUF 膜装置7よりなるサブンステムで処理さ れ、ユースポイントに送給される。

【0005】なお、これらのシステムにおいては、装置 の道転開始に当り、サブンステムを熱水又は薬品により 殺菌する。例えば、図1(a)に示す精製水製造システ ムにおいて熱水殺菌を行う場合には、タンク4内の水を 熱交換器5で80~90℃に加熱した後、UV殺菌装置 6及びUF膜装置7に通水する。このUF膜装置7の湯 縮水及び透過水は系外へ排出する。また、ユースポイン トからタンク4に到る配管は蒸気による減菌処理が行わ 40 ができるようになる。

[0006]

【発明が解決しようとする課題】上記従来の精製水製造 システムでは、混床式イオン交換器の処理水に生菌が存 在するため、サブシステムが短時間で生菌により汚染さ れる。この生菌は、UV殺菌装置で完全に除去すること はできず、時間の経過と共に、系内に生菌が増殖するこ ととなる。

【0007】即ち、泥床式イオン交換器の泥床式イオン 交換樹脂には殺菌能力があり、精製水製造システムにも 50 【0015】本発明において、この殺菌処理に用いる熱

いても混床式イオン交換器による殺菌効果が期待される が、実際には、提床式イオン交換器の流出水中には生菌 が存在し、この生菌数は、経時的に増加する傾向にあ

【0008】この復床式イオン交換器の生菌は、樹脂の 充填に当り、予め復床式イオン交換器のタンク(ベッセ ル)及び樹脂自体の殺菌を行っても発生し、通常の場 台、混床式イオン交換器流出水中には10'~10'個 /100cc程度の生菌が存在する。そして、この生菌 19 数は道転時間の経過と共に増大する。この復床式イオン 交換器における生菌の増殖の原因の詳細は明らかではな いが、タンク (ベッセル) に勧脳を充填する際に生じる 外部汚染によるものと推測される。

【0009】とのような混床式イオン交換器における生 **園汚染は、図1(b)に示す超絶水製造システムの混床** 式イオン交換器においても問題となっており、これらの システムにおいて、泥床式イオン交換器における生菌の 発生を防止する方法の関発が望まれている。

【0010】本発明は上記従来の問題点を解決し、混床 20 式イオン交換器を用いて脱イオン水を製造するに当り、 泥床式イオン交換器での生菌の発生を防止すると共に、 泥床式イオン交換樹脂本来の除菌、殺菌性能を有効に発 担させて、良好な処理水を得る方法を提供することを目 的とする。

[0011]

【課題を解決するための手段】本発明の脱イオン水製造 方法は、陽イオン交換制脂及び陰イオン交換制脂を内蔵 した混床式イオン交換器に追水して脱イオン水を製造す る方法において、該院イオン交換制脂及び陰イオン交換 低圧UV酸化装置8、泥床式イオン交換器3、UV殺菌 30 衛脂を内蔵した混床式イオン交換器に熱水を通した後、 原水を該復床式イオン交換器に通水して脱イオン水を製 造することを特徴とする。

> 【0012】このように装置運転開始に当り、陽イオン 交換樹脂及び陰イオン交換樹脂を内蔵した混床式イオン 交換器を熱水で製菌処理することにより、泥床式イオン 交換器は破過(イオンブレーク)に到るまで生菌を発生 させることがない。そして、泥床式イオン交換樹脂本采 の除菌、殺菌性能により、流入する生菌も殺菌され、泥 床式イオン交換器以降の系内を無菌状態に維持すること

[0013]

【発明の真施の形態】以下に本発明の実施の形態を説明

【0014】本発明においては、泥床式イオン交換器 に、原水を通水して脱イオン水を製造するに当り、混床 式イオン交換器に陽イオン交換制脂及び陰イオン交換制 脂を充填した後、熱水を通し、陽イオン交換制脂及び陰 イオン交換制脂を内蔵した混床式イオン交換器を製菌処 選する。

(3)

水は、純水を削熱したものであることが好ましく。用い る熱水の温度は、殺菌効果の面から、60℃以上、好ま しくは70℃以上、より好ましくは85℃以上であるこ とが望ましい。

【0016】また、熱水の流通速度はSV=2~100 h r - 1程度とするのが好ましく、熱水による殺菌処理時 間は15分以上、特に30分以上とするのが好ましい。 【0017】なお、本発明では、このように泥床式イオ ン交換器に熱水を通水するために、系内の熱水と接触す る部分、例えば、復床式イオン交換器のタンクや配管 は、ステンレス等の耐熱性材料で構成する必要がある。 【①①18】本発明の脱イオン水製造方法は、図1

(a)、(b) に示すような医菜向け精製水製造システ ム、半導体向け超純水製造システム、その他、混床式イ オン交換器を用いて脱イオン水を製造する各種のシステ ムに適用することができる。

【① 0 1 9 】例えば、本発明を図 1 (a) に示す医薬向 け精製水製造システムに適用する場合、次のようにして 復床式イオン交換器の熱水殺菌を行うことができる。即 限し、80~90℃の熱水でサブシステム内の製菌を行 う。そして、この殺菌処理において、UF順装置了の湯 縮水及び透過水は系外へ排出する。本莞明の適用に当っ ては、このサブンステムの殺菌処理において、UF膜袋 置7の透過水(80~90℃の熱水)を系外に排出する ことなく、浸床式イオン交換器3の入口側に循環して泥 床式イオン交換器3を熱水で殺菌する。このようにする ことにより、サブシステムの殺菌と共に混床式イオン交 換器の殺菌も行うことができる。この提床式イオン交換 器3の流出水は系外へ排出しても良く、また、後段のタ 30 ンク4に送給しても良い。

【① 020】上記方法は本発明の真鍮の一例であって、 復床式イオン交換器には、別途用意した純水を加熱して 得られた熱水を通水するようにしても良い。

【①①21】なお、本発明においては、タンクに陽イオ ン交換樹脂及び除イオン交換樹脂を充填した後に当該復 床式イオン交換器に熱水を通水するものであるが、混床 式イオン交換器のタンク、並びに、このタンクに充填す る陽イオン交換樹脂及び陰イオン交換樹脂もそれぞれ充 は、タンクは、121 Y以上の蒸気を10~30 分間程 度通して殺菌する。また、陽イオン交換御脂及び除イオ ン交換樹脂は、各々、60°C以上の熱水に15~60分 間程度浸渍処理して殺菌する。

[0022]

【実態例】以下に実施例及び比較例を挙げて、本発明を より具体的に説明する。

【0023】実施例1、比較例1

図2に示す試験装置を用いて、原水(厚木市水)の処理 を行った(処理水登0.5m'/hr)。

【10024】図2の試験装置は、原水を活性炭塔11で 処理した後、タンク12を経てポンプ13でRO膜装置 14に送って、RO麒分能処理し、競返過水を熱交換器 10 15を経て泥床式イオン交換器16A、16Bに2等分 して通水し、各々処理水を得るものである。

【0025】活性炭塔11の活性炭としては(株)クラ レ製「クラレコールKW」を用い、RO膜装置14のR O膜としてはデサリ社製「SG4040C2H」(4) nch)を4本用いた。また、泥床式イオン交換器16 A、16Bとしては、栗田工業(株)製「KWI EX -MG」(25L)を用い、SV=10hr-1に設定し tc.

【0026】混床式イオン交換器16A, 16Bのイオ ち、前述の如く、このシステムでは、装置の立ち上げに 20 ン交換樹脂としては、各々、80℃の熱水に1時間浸漬 した後、陽イオン交換樹脂:陰イオン交換樹脂=1:1 で混合したものを用いた。

> 【0027】まず、復床式イオン交換器16A、16B のタンクに上記イオン交換樹脂を充填する前に、配管 1 7より130℃の蒸気を3kg f/c m' で2時間注入 し、混床式イオン交換器16A、16Bのタンクを殺菌 処理し、その後、イオン交換樹脂を充填した。

【0028】次に、運転を開始したが、この運転開始後 1時間の間は、RO膜装置14の透過水を熱交換器15 で80℃に加熱し、この加熱水を泥床式イオン交換器1 6 Aのみに通水した。

【10029】その後、RO購該置14の透過水を熱交換 器15で25°Cに調整し、提床式イオン交換器16A。 16Bに等通水量で20日間連続通水した。このような 処理に当り、RO膜装置の過過水(RO処理水)の生菌 数と、混床式イオン交換器16A(実施例1)及び復床 式イオン交換器 16 B (比較例 1) の各処理水の生菌数 及び比抵抗値の経時変化を調べ、結果を衰しに示した。

【0030】表1より、健床式イオン交換器に樹脂を充 鎮に先立ち殺菌処理して用いるのが好ましい。具体的に 40 塡した後、熱水を運水することにより、樹脂の駐鍋に到 るまで生菌の流出を防止できることがわかる。

[0031]

【表1】

特関平9-253643

			(4)			
	5						6
運転開始 か ら の 経過日数			赛 施	例 L	比较例1		
		P. O 过程水 生菌数	たト大和政 のA 3 1		混床式イオン交換器 16日の処理水		
	在四日数	(個/19955)	生 歯 数 (個/100cc)	比抵抗固 (NΩ·cm)	生 趨 数 (個/100cc)	比抵抗值 (äΩ·cm)	
	1日目	6.3×10°	ND	18.0<	159	18.0<	
	8日日	3. 1×10 ⁴	ØĐ	18.0<	2. I×10 ⁴	18.0<	
	10日目	3.5×10³	RD.	18.0<	5,5×10*	18.0<	
	15日日	4. E×10 ²	ND	18.0<	5.3×10°	18.0<	
	20日目	2.5×10°	70	2.5	2.5×10°	3. 1	

ND: 検出せず

[0032]

【発明の効果】以上詳述した通り、本発明の脱イオン水 製造方法によれば、湿床式イオン交換器を用いた脱イオ 20 る超純水製造システムの系統図である。 ン水の製造に当り、泥床式イオン交換器における生菌の 発生を防止すると共に、混床式イオン交換器による殺菌 作用で、泥床式イオン交換器から無菌水を取り出すこと が可能となる。

【0033】このため、混床式イオン交換器の後段のU V級菌装置を省略したり、或いは、サブシステムの殺菌 処理の頻度を低減したりすることが可能となり、高水質 の脱イオン水を低コストで効率的に製造することができ るようになる。

【図面の簡単な説明】

*【図1】図1 (a) は医薬分野で用いられる精製水製造 システムの系統図、図1(b)は半導体分野で用いられ

【図2】実施例1及び比較例1で用いた試験装置の系統 図である。

【符号の説明】

- 1, 4 タンク
- 2 RO膜装置
- 3 混床式イオン交換器
- 5 熱交換器
- 6 UV殺菌鉄選
- UF膜装置
- *30 8 低圧UV酸化装置

[図1]

(5)

特関平9-253643

