

- · O problema da divisad do espajo de armatenamento coloca-ox também neste caso, mas agora na determinação do número de bito o cupados pela parte fracionário e pelo expoente.
- · Enta divina é um compromimo entre gama de representação e precinas:
 - =) Aumento do nº de bito da parte fracionário

 l

 mais precisad na representação
 - => Aumento do nº de bits do expoente

 l
 maior gama de representação.

val	Axued (val)	ENO			
71.00	×	O			
¥.01	Ж	n - n. 25 = -1/4			
7.10	x +1	$(n+1) - N.5 = + \frac{1}{2}$			
X.11	71 + 1r	(x+1)-x.75=+1/4			

Erro médio =
$$\frac{0 - \frac{1}{4} + \frac{1}{3} + \frac{1}{4}}{4} = \frac{\frac{1}{8}}{8}$$

→ Soma - 1 av 1° bit à direite de ponte binàrie e

+ runca - se o resultade

L) [arred (val) = trun (val + 0.5)]

-1 (s erro médio é mais próximo de tero do que no cont da truncaturo, mas ligeiramente polaxitado do la do positio

A7	redondame	nto pa	παυ	par mais	priskim	0
val \	Anud (val)	Erro	val	Azzed(val)	Erro	
10.00	n O		1.00		O	
10.01	no	-1/4	и 1.01	и 1	- 1/4	
10.10	NO	- 1/2	W1.10	71+1	+ 1/2	+
NO.11	74 t	+1/4	71.11	n 1+1	+ 1/4	
		15	J			

Erromédio =
$$\left(0 - \frac{1}{4} - \frac{1}{2} + \frac{1}{4}\right) + \left(0 - \frac{1}{4} + \frac{1}{4} + \frac{1}{4}\right)$$

resultado da soma lógica de todos os bits à directo do bit R (p. e. se hou voi a directo de R pelo menos um bit a'(1), entad S = (1)).

I