Proba E. c)

Matematică *M_pedagogic*

Barem de evaluare și de notare

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{18} = 3\sqrt{2}$	2p
	$3+3\sqrt{2}-3\sqrt{2}=3$	3p
2.	f(3) = 0	2p
	$f(-3) = -6 \Rightarrow f(-3) + f(3) = -6$	3 p
3.	$x^2 + 1 = 5$	3p
	x = -2 sau $x = 2$	2p
4.	Se notează cu x prețul inițial \Rightarrow 10% · x = 70	2p
	x = 700	2p
	Prețul după scumpire este 770 de lei	1p
5.	M mijlocul lui $(PR) \Rightarrow x_M = \frac{x_P + x_R}{2}$ și $y_M = \frac{y_P + y_R}{2}$	1p
	$x_M = 2$	2p
	$y_M = 8$	2 p
6.	$\sin B = \frac{AC}{BC}$	2p
	BC = 100	3 p

SUBIECTUL al II-lea (30 de puncte)

1.	$(-1)*3 = (-1)\cdot 3 + (-1) + 3 =$	3p
	=-1	2p
2.	x * y = xy + x + y = xy + x + y + 1 - 1	3 p
	=(x+1)(y+1)-1, pentru orice numere reale x şi y	2 p
3.	$x*0 = x \cdot 0 + x + 0 = x$, pentru orice număr real x	2p
	$0 * x = 0 \cdot x + 0 + x = x$, pentru orice număr real x	2p
	Finalizare	1p
4.	$x * x = x \Leftrightarrow x^2 + 2x = x$	3 p
	x = -1 sau $x = 0$	2p
5.	(-1) * x = (-1+1)(x+1)-1=	2p
	=-1, pentru orice număr real x	3 p
6.	(-1)*0*1**2012*2013 = (-1)*(0*1**2012*2013) =	3p
	=-1	2 p

SUBIECTUL al III-lea (30 de puncte)

1.	$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	
	$A(1) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	2p
	$\det(A(1)) = \begin{vmatrix} 1 & 1 & 1 \end{vmatrix} = 0$	3 p
2.	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$	
	$\det(A(1)) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0$ $A(1) \cdot A(0) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} = $	2p
	$(2\ 2\ 3)$	
	$= \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix}$	3 p
3.		
	$\det(A(m)) = \begin{vmatrix} m & 1 & 1 \\ 1 & m & 1 \\ 1 & 1 & 1 \end{vmatrix} = m^2 + 2 - 2m - 1 =$	3 p
		2p
	$= m^{2} - 2m + 1$, pentru orice numar real m	F
4.	$= m^{2} - 2m + 1, \text{ pentru orice număr real } m$ $A(0) \cdot B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_{3}$	2p
	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$	
	$B \cdot A(0) = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = I_0 \Rightarrow \text{matricea } B \text{ este inversa matricei } A(0)$	
	$B \cdot A(0) = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3 \Rightarrow \text{matricea } B \text{ este inversa matricei } A(0)$	3p
5.	Suma elementelor lui $A(m)$ este $2m+7$	2p
	$2m+7=2013 \Leftrightarrow m=1003$	3 p
6.	y+z=1	20
	Pentru $m = 0$ sistemul devine $\begin{cases} x + z = 1 \end{cases}$	2p
	$\begin{cases} x + y + z = 3 \end{cases}$	3р
	x = 2, y = 2, z = -1	ГР

Examenul de bacalaureat național 2013 Proba E. c) Matematică *M_pedagogic*

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $3(1+\sqrt{2})-\sqrt{18}=3$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 3. Arătați că f(3) + f(-3) = -6.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(x^2 + 1) = \log_3 5$.
- **5p 4.** După o scumpire cu 10% prețul unui produs crește cu 70 de lei. Calculați prețul produsului după scumpire.
- **5p 5.** În reperul cartezian xOy se consideră punctele P(2,7) și R(2,9). Determinați coordonatele mijlocului segmentului PR.
- **5p 6.** Determinați lungimea laturii *BC* a triunghiului *ABC* dreptunghic în *A*, știind că AC = 40 și $\sin B = \frac{2}{5}$.

SUBIECTUL al II-lea (30 de puncte)

Pe multimea numerelor reale se definește legea de compoziție asociativă dată de x * y = xy + x + y.

- **5p 1.** Calculați (-1)*3.
- **5p** 2. Arătați că x * y = (x+1)(y+1)-1, pentru orice numere reale x și y.
- **5p 3.** Verificați dacă e = 0 este elementul neutru al legii "*".
- **5p** | **4.** Determinați numerele reale x pentru care x * x = x.
- **5p 5.** Arătați că (-1)*x=-1, pentru orice număr real x.
- **5p 6.** Calculați (-1)*0*1*...*2012*2013.

SUBIECTUL al III-lea (30 de puncte)

Pentru fiecare număr real m se consideră matricea $A(m) = \begin{pmatrix} m & 1 & 1 \\ 1 & m & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

- **5p 1.** Arătați că $\det(A(1)) = 0$.
- **5p 2.** Calculați $A(1) \cdot A(0)$.
- **5p** 3. Arătați că $\det(A(m)) = m^2 2m + 1$, pentru orice număr real m.
- **5p 4.** Verificați dacă matricea $B = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$ este inversa matricei A(0).
- **5p 5.** Determinați numărul real m pentru care suma elementelor matricei A(m) este egală cu 2013.
- **5p 6.** Pentru m = 0, rezolvați sistemul $\begin{cases} mx + y + z = 1 \\ x + my + z = 1 \\ x + y + z = 3 \end{cases}$

Proba E. c) Matematică *M_pedagogic* Barem de evaluare și de notare

Varianta 9

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	\\ \(\sigma \) \(2p
	$3+3\sqrt{3}-3\sqrt{3}=3$	3 p
2.	f(-3) = 0	2p
	$f(3) = 6 \Rightarrow f(-3) + f(3) = 6$	3 p
3.	$(x+3)^2 = x^2 + 6x + 9$	2p 3p
	x=1	3 p
4.	$x + \frac{10}{100}x = 220$, unde x reprezintă prețul înainte de scumpire	2p 3p
	Prețul înainte de scumpire este 200 de lei	ър
5.	M mijlocul lui $(PR) \Rightarrow x_M = \frac{x_P + x_R}{2}$ și $y_M = \frac{y_P + y_R}{2}$	1p
	$x_M = 3$	2p 2p
	$y_M = 3$	2p
6.	$\cos B = \frac{AB}{BC}$	2p
	AB = 8	3 p

SUBIECTUL al II-lea (30 de puncte)

1.	$3 \circ (-2) = -6 + 6 + (-4) + 2 =$	3p
	=-2	2p
2.	$x \circ y = xy + 2x + 2y + 2$ şi $y \circ x = yx + 2y + 2x + 2$, pentru orice numere reale x şi y	3p
	$x \circ y = y \circ x$, pentru orice numere reale x şi y	2p
3.	$x \circ y = xy + 2x + 2y + 4 - 2 =$	2 p
	=(x+2)(y+2)-2, pentru orice numere reale x şi y	3p
4.	$x \circ x = (x+2)^2 - 2$	2p
	$(x+2)^2 - 2 = x \Leftrightarrow x = -2 \text{ sau } x = -1$	3p
5.	$x \circ (-2) = (x+2)(-2+2)-2$	3 p
	=-2, pentru orice număr real x	2p
6.	$(-2013) \circ (-2012) \circ \circ (-2) = ((-2013) \circ (-2012) \circ \circ (-3)) \circ (-2) =$	3p
	=-2	2p

(30 de puncte) SUBIECTUL al III-lea

	-	
	$A(0) = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 3 & 1 \\ 2 & 1 & 0 \end{pmatrix}$	2p
	$\det(A(0)) = \begin{vmatrix} -1 & 3 & 1 \\ 2 & 1 & 0 \end{vmatrix} = -4$	3 p
2.	$\det(A(0)) = \begin{vmatrix} 1 & 2 & 1 \\ -1 & 3 & 1 \\ 2 & 1 & 0 \end{vmatrix} = -4$ $\det(A(m)) = \begin{vmatrix} 1 & 2 & 1 \\ -1 & 3 & 1 \\ 2 & 1 & m \end{vmatrix} = 3m - 1 + 4 - 6 + 2m - 1 =$	3р
	=5m-4	2p
3.	$\det(A(m)) = m^2 \Leftrightarrow m^2 - 5m + 4 = 0$	3р
	m=1 sau $m=4$	2p
4.	$A(m) + A(-m) = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 3 & 1 \\ 2 & 1 & m \end{pmatrix} + \begin{pmatrix} 1 & 2 & 1 \\ -1 & 3 & 1 \\ 2 & 1 & m \end{pmatrix} =$	2p
	$= \begin{pmatrix} 2 & 4 & 2 \\ -2 & 6 & 2 \\ 4 & 2 & 0 \end{pmatrix} = 2A(0)$	3р
5.	$A(0) \cdot \begin{pmatrix} -1 & 1 & -1 \\ 2 & -2 & -2 \\ -7 & 3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 3 & 1 \\ 2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 & -1 \\ 2 & -2 & -2 \\ -7 & 3 & 5 \end{pmatrix} =$ $= \begin{pmatrix} -4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{pmatrix} = -4I_3$	2p 3p
6.	$\begin{cases} x + 2y + z = 2 \\ -x + 3y + z = 3 \\ 2x + y = 1 \end{cases}$	2p
	$\begin{cases} 2x + y = 1 \\ x = 0, \ y = 1, \ z = 0 \end{cases}$	3 p

Examenul de bacalaureat național 2013 Proba E. c) Matematică *M_pedagogic*

Varianta 9

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $3(1+\sqrt{3})-\sqrt{27}=3$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 3. Arătați că f(-3) + f(3) = 6.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $(x+3)^2 x^2 15 = 0$
- **5p 4.** După o scumpire cu 10% prețul unui produs este 220 de lei. Calculați prețul produsului înainte de scumpire.
- **5p 5.** În reperul cartezian xOy se consideră punctele P(2,3) și R(4,3). Determinați coordonatele mijlocului segmentului PR.
- **5p 6.** Determinați lungimea laturii *AB* a triunghiului *ABC* dreptunghic în *A*, știind că BC = 20 și $\cos B = \frac{2}{5}$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulţimea numerelor reale se defineşte legea de compoziţie asociativă $x \circ y = xy + 2x + 2y + 2$.

- **5p 1.** Calculați $3 \circ (-2)$.
- **5p 2.** Verificați dacă legea de compoziție "°" este comutativă.
- **5p 3.** Arătați că $x \circ y = (x+2)(y+2)-2$, pentru orice numere reale x și y.
- **5p 4.** Determinați numerele reale *x* pentru care $x \circ x = x$.
- **5p** | **5.** Verificați dacă $x \circ (-2) = -2$, pentru orice număr real x.
- **5p 6.** Calculați $(-2013) \circ (-2012) \circ ... \circ (-2)$.

SUBIECTUL al III-lea (30 de puncte)

Pentru fiecare număr real m se consideră matricea $A(m) = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 3 & 1 \\ 2 & 1 & m \end{pmatrix}$.

- **5p 1.** Calculați $\det(A(0))$.
- **5p** 2. Arătați că $\det(A(m)) = 5m 4$, pentru orice număr real m.
- **5p 3.** Determinați numerele reale m pentru care $\det(A(m)) = m^2$.
- **5p** | **4.** Arătați că A(m) + A(-m) = 2A(0) pentru orice număr real m.
- **5p 5.** Verificați dacă $A(0) \cdot \begin{pmatrix} -1 & 1 & -1 \\ 2 & -2 & -2 \\ -7 & 3 & 5 \end{pmatrix} = -4I_3$, unde $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
- **5p 6.** Pentru m = 0, rezolvați sistemul $\begin{cases} x + 2y + z = 2 \\ -x + 3y + z = 3 \\ 2x + y + mz = 1 \end{cases}$

Proba E. c)

Matematică *M_pedagogic*

Barem de evaluare și de notare

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	1 1 1 12 2 3	3p
	$\frac{1}{3} - \frac{1}{18} + \frac{1}{12} = \frac{12}{36} - \frac{2}{36} + \frac{3}{36}$	Эþ
	Propoziția este adevărată	2p
2.	x = -1	2p
	$y = 1 \Rightarrow$ soluția sistemului este (-1,1)	3 p
3.	$x^2 + 2x - 3 = 0 \Rightarrow x_1 = 1, x_2 = -3$	3 p
	Finalizare: $x \in (-3,1)$	2p
4.	3-x>0	2p
	$x < 3 \Rightarrow D = (-\infty, 3)$	3p
5.	$\overrightarrow{AO} = \overrightarrow{AB} + \overrightarrow{BO}$	2p
	$\overrightarrow{AB} = -\overrightarrow{CD}, \overrightarrow{BO} = \frac{1}{2}\overrightarrow{BD}$	2p
	Finalizare	1p
6.	Triunghiul este isoscel	1p
	$(5\sqrt{2})^2 = 5^2 + 5^2$	2p
	Din reciproca teoremei lui Pitagora triunghiul este dreptunghic	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$0 \circ 0 = \log_3(3^0 + 3^0 + 1) =$	2p
	$=\log_3 3 =$	2p
	=1	1p
2.	$x \circ y = \log_3(3^x + 3^y + 1)$, pentru orice $x, y \in \mathbb{R}$	2p
	$y \circ x = \log_3(3^y + 3^x + 1)$, pentru orice $x, y \in \mathbb{R}$	2p
	Finalizare	1p
3.	$x \circ 0 = x + 1 \Longrightarrow \log_3\left(2 + 3^x\right) = x + 1$	2p
	$2+3^x=3^{x+1} \Longrightarrow 3^x=1$	2p
	x = 0	1p
4.	$3^x > 0, 3^y > 0$ pentru orice $x, y \in \mathbb{R}$	2p
	$3^x + 3^y + 1 > 1 \Rightarrow \log_3(3^x + 3^y + 1) > 0 \Rightarrow x \circ y > 0$, pentru orice $x, y \in \mathbb{R}$	3p
5.	Dacă $e \in \mathbb{R}$ astfel încât $x \circ e = x \Longrightarrow \log_3(3^x + 3^e + 1) = x$	2p
	$3^e = -1$	1p

Probă scrisă la matematică M pedagogic

Barem de evaluare și de notare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

Ministerul Educației, Cercetării, Tineretului și Sportului Centrul Național de Evaluare și Examinare

Finalizare: legea nu admite element neutru	2p
$x \circ x = \log_3\left(2 \cdot 3^x + 1\right)$	2p
$(x \circ x) \circ x = \log_3 (2 \cdot 3^x + 1 + 3^x + 1) =$	2p
$=\log_3(2+3^{x+1})$, pentru orice $x \in \mathbb{R}$	1p

SUBIECTUL al III-lea

(30 de puncte)

1.	(1 1 2)	
	$m=1 \Rightarrow A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	3 p
	$\det A = 3$	2p
2.	$\det A = -m + 4 + m + 2 - m^2 - 2 =$	3p
	$=-m^2+4$	3թ 2p
3.	$\det(2A) = -16 \Rightarrow 2^3 \cdot (2-m)(2+m) = -16$	2p
		_
	$4 - m^2 = -2 \Rightarrow m^2 = 6$	1p
	$m = \pm \sqrt{6} \Rightarrow m = \sqrt{6}$	2 p
4.	$\int 3x + y + 2z = 1$	_
	$m=3 \Rightarrow \begin{cases} 2x-y+3z=2 \end{cases}$	2p
	$m = 3 \Rightarrow \begin{cases} 2x - y + 3z = 2\\ x + y + z = -1 \end{cases}$	
		3 n
	Verificare: $\left(\frac{7}{5}, -\frac{8}{5}, -\frac{4}{5}\right)$ este soluție	3р
5.	$\int x + y + 2z = 1$	
	$m = 1 \Rightarrow \begin{cases} 2x - y + z = 2\\ x + y + z = -1 \end{cases}$	2 p
	x+y+z=-1	2p
	x = -1, y = -2, z = 2	3 p
6.	(2x+y+2z=1	
	$m=2 \Rightarrow \begin{cases} 2x-y+2z=2 \end{cases}$	2p
	$m = 2 \Longrightarrow \begin{cases} 2x - y + 2z = 2\\ x + y + z = -1 \end{cases}$	
		1p
	Scăzând primele 2 ecuații $\Rightarrow y = -\frac{1}{2}$	1 h
	Înlocuind în prima și a treia ecuație \Rightarrow $\begin{cases} 2x + 2z = \frac{3}{2} \\ x + z = -\frac{1}{2} \end{cases}$, imposibil, deci sistemul nu are soluție	2p
	(2	

Proba E. c)

Matematică M pedagogic

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați valoarea de adevăr a propoziției ,, $\frac{1}{3} \frac{1}{18} + \frac{1}{12} = \frac{13}{36}$ ".
- **5p** 2. Rezolvați sistemul de ecuații $\begin{cases} 2x + 3y = 1 \\ 3x + 2y = -1 \end{cases}, x, y \in \mathbb{R}.$
- **5p** 3. Rezolvați în mulțimea numerelor reale inecuația $x^2 + 2x 3 < 0$.
- **5p** | **4.** Determinați domeniul maxim de definiție D al funcției $f: D \to \mathbb{R}$, $f(x) = \log_2(3-x)$.
- **5p 5.** Se consideră pătratul *ABCD* de centru *O*. Arătați că $\overrightarrow{AO} = -\overrightarrow{CD} + \frac{1}{2}\overrightarrow{BD}$.
- **5p 6.** Arătați că triunghiul care are laturile de $5\sqrt{2}$, 5 și 5 este dreptunghic isoscel.

SUBIECTUL al II-lea (30 de puncte

Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = \log_3(3^x + 3^y + 1)$

- **5p 1.** Arătați că $0 \circ 0 = 1$.
- **5p** 2. Demonstrați că legea de compoziție " \circ " este comutativă pe \mathbb{R} .
- **5p** | **3.** Determinați numărul real x pentru care $x \circ 0 = x + 1$.
- **5p** | **4.** Arătați că $x \circ y > 0$, pentru orice $x, y \in \mathbb{R}$.
- 5p | 5. Verificați dacă legea de compoziție "°" admite element neutru.
- **5p 6.** Arătați că $(x \circ x) \circ x = \log_3(2 + 3^{x+1})$, pentru orice $x \in \mathbb{R}$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricea $A = \begin{pmatrix} m & 1 & 2 \\ 2 & -1 & m \\ 1 & 1 & 1 \end{pmatrix}$ și sistemul (S) $\begin{cases} mx + y + 2z = 1 \\ 2x - y + mz = 2 \text{, unde } m \in \mathbb{R} \text{.} \\ x + y + z = -1 \end{cases}$

- **5p 1.** Pentru m=1, arătați că det A=3.
- **5p** | **2.** Calculați determinantul matricei *A*.
- **5p 3.** Determinați numărul real pozitiv m pentru care det(2A) = -16.
- **5p 4.** Pentru m = 3, verificați dacă tripletul $\left(\frac{7}{5}, -\frac{8}{5}, -\frac{4}{5}\right)$ este soluție a sistemului (S).
- **5p 5.** Pentru m = 1, rezolvați sistemul (S).
- **5p 6.** Pentru m = 2, arătați că sistemul (S) nu are soluții.