

特点:

- ➤ 3.0V~5.5V 宽电源范围, 半双工;
- ▶ 总线端口 ESD 保护能力 HBM 达到 15KV 以上;
- ▶ 总线容错耐压达到±15V;
- ▶ 1/8 单位负载,允许最多 256 个器件连接到总线;
- ▶ 驱动器短路输出保护;
- ▶ 过温保护功能:
- ▶ 低功耗关断功能;
- ▶ 接收器开路失效保护;
- ▶ 具有较强的抗噪能力;
- ▶ 集成的瞬变电压抵制功能;
- ▶ 在电噪声环境中的数据传输速率可达到 14Mbps
- ▶ 提供小外型 DFN3*3-8/HVSON8, MSOP8/VSSOP8 封装

产品外形:

提供绿色环保无铅封装

描述

SIT3088E 是一款 $3.0V\sim5.5V$ 宽电源供电、总线端口 ESD 保护能力 HBM 达到 15KV 以上、总线耐压范围达到 $\pm15V$ 、半双工、低功耗,功能完全满足 TIA/EIA-485 标准要求的 RS-485 收发器。

SIT3088E 包括一个驱动器和一个接收器,两者均可独立使能与关闭。当两者均禁用时,驱动器与接收器均输出高阻态。SIT3088E 具有 1/8 负载,允许 256 个 SIT3088E 收发器并接在同一通信总线上。可实现高达 14Mbps 的无差错数据传输。

SIT3088E 工作电压范围为 3.0~5.5 V,具备失效安全(fail-safe)、过温保护、限流保护、过压保护等功能。

引脚分布图

图 1 SIT3088E 引脚分布图

3. 0V~5. 5V 供电, ESD 15KV HBM, 256 节点, 14Mbps 半双工 RS485/RS422 收发器

极限参数

参数	符号	大小	单位
电源电压	VCC	+7	V
控制端口电压	/RE, DE, DI	-0.3~VCC+0.5	V
总线侧输入电压	A, B	-15~+15	V
接收器输出电压	RO	-0.3~VCC+0.5	V
工作温度范围		-40~125	$^{\circ}$
存储工作温度范围		-60~150	$^{\circ}$
焊接温度范围		300	$^{\circ}$ C

最大极限参数值是指超过这些值可能会使器件发生不可恢复的损坏。在这些条件之下是不利于器件正常运作的, 器件连续工作在最大允许额定值下可能影响器件可靠性,所有的电压的参考点为地。

引脚定义

引脚序号	引脚名称	引脚功能
1	RO	接收器输出端。 当/RE 为低电平时,若 A-B≥-10mV, RO 输出为高电平; 若 A-B≦-200mV, RO 输出为低电平。
2	/RE	接收器输出使能控制。 当/RE接低电平时,接收器输出使能,RO输出有效;当/RE接高 电平时,接收器输出禁能,RO为高阻态; /RE接高电平且DE接低电平时,器件进入低功耗关断模式。
3	DE	驱动器输出使能控制。 DE 接高电平时驱动器输出有效,DE 为低电平时输出为高阻态; /RE 接高电平且 DE 接低电平时,器件进入低功耗关断模式。
4	DI	DI 驱动器输入。DE 为高电平时, DI 上的低电平使驱动器同相端 A 输出为低电平,驱动器反相端 B 输出为高电平; DI 上的高电平将使同相端输出为高电平,反相端输出为低。
5	GND	接地
6	A	接收器同相输入和驱动器同相输出端
7	В	接收器反相输入和驱动器反相输出端
8	VCC	接电源

3. 0V~5. 5V 供电,ESD 15KV HBM, 256 节点,14Mbps 半双工 RS485/RS422 收发器

驱动器直流电学特性

参数	符号	测试条件	最小	典型	最大	单位
驱动器差分输出 (无负载)	V_{OD1}		3		5.5	V
驱动差分输出	$ m V_{OD2}$	图 2, RL = 54 Ω, VCC=3.3V	1.5		VCC	V
2000年7月11日	V OD2	图 2, RL=54Ω, VCC=5V	1.5		VCC	V
输出电压幅值的变化 (NOTE1)	ΔV_{OD}	图 2, RL = 54 Ω			0.2	V
输出共模电压	V_{OC}	图 2, RL=54Ω			3	V
共模输出电压幅值 的变化(NOTE1)	ΔV_{OC}	图 2, $RL = 54 \Omega$			0.2	V
高电平输入	V_{IH}	DE, DI, /RE	2.0			V
低电平输入	$V_{\rm IL}$	DE, DI, /RE			0.8	V
逻辑输入电流	I_{IN1}	DE, DI, /RE	-2		2	μΑ
输出短路时的电流, 短路到高	I_{OSD1}	短路到 0V~12V			250	mA
输出短路时的电流, 短路到低	I_{OSD2}	短路到-7V~0V	-250			mA
过温关断阈值温度				140		$^{\circ}$
过温关断迟滞温度				20		$^{\circ}$

(如无另外说明,Temp=T_{MIN}~T_{MAX}, Temp=25℃)

NOTE1: ΔV_{OD} 和 ΔV_{OC} 分别是输入信号 DI 状态变化时引起的 V_{OD} 与 V_{OC} 幅值的变化。

接收器直流电学特性

参数	符号	测试条件	最小	典型	最大	单位
输入电流(A,B)	ī	$DE = 0 V$, $VCC=0 $ 或 $3.3/5V$ $V_{IN} = 12 V$			125	μА
和八电机(A,b)	$ m I_{IN2}$	$DE = 0 V$, $VCC=0 $ 或 $3.3/5 V$ $V_{IN} = -7 V$	-100			A

正向输入阈值电压	V_{IT+}	$-7V \le V_{\rm CM} \le 12V$			-10	mV
反向输入阈值电压	V_{IT}	$-7V \le V_{\rm CM} \le 12V$	-200			mV
输入迟滞电压	V_{hys}	$-7V \le V_{\rm CM} \le 12V$	10	30		mV
高电平输出电压	V _{OH}	$I_{OUT} = -2.5 \text{mA},$ $V_{ID} = +200 \text{ mV}$	VCC-1.5			V
低电平输出电压	V_{OL}	I_{OUT} = +2.5mA, V_{ID} = -200 mV			0.4	V
三态输入漏电流	I_{OZR}	$0.4 \text{ V} < \text{V}_{\text{O}} < 2.4 \text{ V}$			±1	μΑ
接收端输入电阻	$R_{\rm IN}$	$-7V \le V_{\rm CM} \le 12V$	96			kΩ
接收器短路电流	I_{OSR}	0 V≤V ₀ ≤VCC	±8		±90	mA

(如无另外说明, Temp=T_{MIN}~T_{MAX}, Temp=25℃)

供电电流

参数	符号	测试条件	最小	典型	最大	单位
		/RE=0V,				
		DE = 0 V,		240	650	μΑ
	T	VCC=3.3V				
	I_{CC1}	/RE=0V,				
		DE = 0 V		270	750	μΑ
 供电电流		VCC=5V				
庆屯屯 机		/RE=VCC,				
	$ m I_{CC2}$	DE=VCC,		250	650	μΑ
		VCC=3.3V				
		/RE=0V,				
		DE = 0 V,		280	750	μΑ
		VCC=5V				
		/RE=VCC,				
		DE=0V,		0.2	10	μΑ
关断电流	T	VCC=3.3V				
	I_{SHDN}	/RE=VCC,				
		DE=0V,		0.2	10	μΑ
		VCC=5V				

驱动器开关特性

参数	符号	测试条件	最小	典型	最大	单位
驱动器差分 输出延迟	t _{DD}	$R_{DIFF} = 60 \Omega$,		20	40	ns
驱动器差分输出 过渡时间	t _{TD}	C _{L1} =C _{L2} =100pF (见图 3 与图 4)		12	28	ns
驱动器传播延迟 从低到高	t _{PLH}			20	40	ns
驱动器传播延迟 从高到低	$t_{ m PHL}$	R _{DIFF} = 27 Ω, (见图 3 与图 4)		20	40	ns
t _{PLH} -t _{PHL}	t_{PDS}			1	8	ns
使能到输出高	t _{PZH}	$R_L = 110\Omega$,			55	ns
使能到输出低	t_{PZL}	(见图 5、6)			55	ns
输入低到禁能	$t_{\rm PLZ}$	$R_L = 110\Omega$,			85	ns
输入高到禁能	t_{PHZ}	(见图 5、6)			85	ns
关断条件下, 使能到输出高	t _{DSH}	R _L = 110Ω, (见图 5、6)		20	100	ns
关断条件下, 使能到输出低	$t_{ m DSL}$	R _L =110Ω, (见图 5、6)		20	100	ns

接收器开关特性

参数	符号	测试条件	最小	典型	最大	单位
接收器 输入到输出传播 延迟从低到高	t _{RPLH}			60		ns
接收器 输入到输出传播 延迟从高到低	t _{RPHL}	C _L =15pF 见图 7 与图 8		60		ns
$ t_{RPLH} - t_{RPHL} $	$t_{ m RPDS}$			3	10	ns
使能到输出低时间	t_{RPZL}	C _L =15pF 见图 7 与图 8		15	40	ns

3. 0V~5. 5V 供电,ESD 15KV HBM,256 节点,14Mbps 半双工 RS485/RS422 收发器

使能到输出高时间	t _{RPZH}	C _L =15pF 见图 7 与图 8		15	40	ns
从输出低到 禁能时间	t_{PRLZ}	C _L =15pF 见图 7 与图 8		25	55	ns
从输出高到 禁能时间	$t_{ m PRHZ}$	C _L =15pF 见图 7 与图 8		25	55	ns
关断状态下 使能到输出高时间	$t_{ m RPSH}$	C _L =15pF 见图 7 与图 8		150	500	ns
关断状态下 使能到输出低时间	$t_{ m RPSL}$	C _L =15pF 见图 7 与图 8		150	500	ns
进入关断状态时间	$t_{ m SHDN}$	NOTE2	50		300	ns

NOTE2: 当/RE=1, DE=0 持续时间小于 50ns 时,器件必不进入 shutdown 状态,当大于 300ns 时,必定进入 shutdown 状态。

功能表

发送功能表

控制	削	输入	输出			
/RE	DE	DI	A	В		
X	1	1	Н	L		
X	1	0	L	Н		
0	0	X	Z	Z		
1	0	X	Z(shutdown)			
	y // 产山亚 // 克阳					

X: 任意电平; Z: 高阻。

接收功能表

2,2,1,1,1							
控	制	输入	输出				
/RE	DE	A-B	RO				
0	X	≥-10mV	Н				
0	X	≤-200mV	L				
0	X	开/短路	Н				
1	X	X	Z				

X: 任意电平; Z: 高阻。

测试电路

图 2 驱动器直流测试负载

CL 包含探针以及杂散电容(下同)

图 3 驱动器差分延迟与渡越时间

图 4 驱动器传播延迟

3. 0V~5. 5V 供电,ESD 15KV HBM, 256 节点,14Mbps 半双工 RS485/RS422 收发器

图 5 驱动器使能与禁能时间

图 6 驱动器使能与禁能时间

图 7 接收器传播延时测试电路

3. 0V~5. 5V 供电, ESD 15KV HBM, 256 节点, 14Mbps 半双工 RS485/RS422 收发器

说明

1 简述

SIT3088E 是一款 3.0V~5.5V 宽电源供电、总线端口 ESD 保护能力 HBM 达到 15KV 以上、总线直流耐压达到±15V 以上、用于 RS-485/RS-422 通信的半双工高速收发器,包含一个驱动器和接收器。具有失效安全,过压保护、过流保护、过热保护功能。SIT3088E 实现高达 14Mbps 的无差错数据传输。

2 总线上挂接 256 个收发器

标准 RS485 接收器的输入阻抗为 12kΩ(1 个单位负载),标准驱动器可最多驱动 32 个单位负载。 SIT3088E 收发器的接收器具有 1/8 单位负载输入阻抗(96kΩ),允许最多 256 个收发器并行挂接在同一通信总线上。这些器件可任意组合,或者与其它 RS485 收发器进行组合,只要总负载不超过 32 个单位负载,都可以挂接在同一总线上。

3 驱动器输出保护

通过两种机制避免故障或总线冲突引起输出电流过大和功耗过高。第一,过流保护,在整个共模电压范围(参考典型工作特性)内提供快速短路保护。第二,热关断电路,当管芯温度超过 140℃时,强制驱动器输出进入高阻状态。

4 典型应用

4.1 总线式组网: SIT3088E RS485 收发器设计用于多点总线传输线上的双向数据通信。图 9 显示了典型网络应用电路。这些器件也能用作电缆长于 4000 英尺的线性转发器,为减小反射,应当在传输线两端以其特性阻抗进行终端匹配,主干线以外的分支连线长度应尽可能短。

图 9 总线式 RS485 半双工通讯网络

4.2 手拉手式组网: 又称菊花链拓扑结构,是 RS485 总线布线的标准及规范,是 TIA 等组织推荐使用的 RS485 总线拓扑结构。其布线方式就是主控设备与多个从控设备形成手拉手连接方式,如图 10 所示,不留分支才是手拉手的方式。这种布线方式,具有信号反射小,通讯成功率高等优点。

图 10 手拉手式 RS485 半双工通讯网络

4.3 总线端口防护: 在恶劣的环境下,RS485 通讯端口通常都做好静电防护、雷击浪涌防护等额外的防护,甚至还需要做好防止 380V 市电接入的方案,以避免智能仪表、工控主机的损坏。图 11 为常见的 3 种 RS485 总线端口防护方案。第一种为 AB 端口分别并联 TVS 器件到保护地,AB 端口之间并联 TVS 器件、AB 端口分别串联热敏电阻、并接气体放电管到保护地形成三级保护的方案;第二种为 AB 分别并联 TVS 到地、串联热敏电阻,AB 之间并联压敏电阻的三级防护方案;第三种为 AB 分别接上下拉电阻到电源与地,AB 之间接 TVS,A 或 B 某一端口接热敏电阻的方案。

SOP8 外形尺寸

科茶尺寸

符号	最小值/mm	典型值/mm	最大值/mm
A	1.50	1.60	1.70
A1	0.1	0.15	0.2
A2	1.35	1.45	1.55
b	0.355	0.400	0.455
D	4.800	4.900	5.00
Е	3.780	3.880	3.980
E1	5.800	6.000	6.200
e		1.270BSC	
L	0.40	0.60	0.80
С	0.153	0.203	0.253
θ	-2 °	-4 °	-6°

MSOP8 /8μMAX / VSSOP8 外形尺寸

封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm
A	2.90	3.0	3.10
A1	0.28		0.35
A2	0.65TYP		
A3	0.375TYP		
В	2.90	3.0	3.10
B1	4.70		5.10
B2	0.45		0.75
С	0.75		0.95
C1			1.10
C2	0.328 TYP		
C3	0.152		
C4	0.15		0.23
Н	0.00		0.09
θ	12 TYP		

DIP8 外形尺寸

封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm
A	9.00	9.20	9.40
A1	0.33	0.45	0.51
A2	2.54TYP		
A3	1.525TYP		
В	8.40	8.70	9.10
B1	6.20	6.40	6.60
B2	7.32	7.62	7.92
С	3.20	3.40	3.60
C1	0.50	0.60	0.80
C2	3.71	4.00	4.31
D	0.20	0.28	0.36
L	3.00	3.30	3.60

HVSON8 / DFN3*3-8 外形

封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm
A	0.700		0.900
A1	0.000	0.02	0.050
A3	0.203 REF		
D	2.900	3.000	3.100
Е	2.900	3.000	3.100
D1	2.200	2.3	2.400
E1	1.400	1.5	1.600
b	0.2	0.25	0.33
e	0.650 TYP		
L	0.250		0.575

定购信息

定购代码	温度	封装
SIT3088EESA	-40℃~125℃	SOP8
SIT3088EEUA	-40℃~125℃	MSOP8/VSSOP8/8μMAX
SIT3088ETK	-40°C~125°C	HVSON8 / DFN3*3-8, 小外形,无引脚
SIT3088EEPA	-40°C~125°C	DIP8

编带式包装为 2500 颗/盘, HVSON8 / DFN3*3-8, 小外形, 无引脚封装为 5000 颗/盘。