Universidad San Carlos de Guatemala. Centro Universitario de Occidente. División: Ciencias de la Ingeniería. Docente: Ing. Oliver Ernesto Sierra Pac.

Curso: Lenguajes formales y de programación.

Tarea: Practica 1.

Nombre: Melanni del Rosario Tzul Baquiax.

Carné: 201930171.

Análisis de tokens

Para esta práctica, el alfabeto permitido está compuesto por los siguientes símbolos:

- Letras de la 'a' a la 'z', ya sea mayúsculas o minúsculas. No se incluye la eñe.
- Dígitos del 0 al 9
- Signos de puntuación: punto (.), coma (,), punto y coma (;), dos puntos (:)
- Operadores aritméticos: Suma (+), Resta (), Multiplicación (*), división (/), módulo (%)
- Signos de agrupación: Paréntesis derecho ' (', Paréntesis izquierdo, ') ',
 Corchete izquierdo ' [', corchete derecho '] ', llave izquierda ' { ', llave derecha ' } '
- Espacio, salto de línea.

Expresiones regulares:

- Identificador: Son las palabras que cumplen el iniciar con una letra y pueden estar seguidas de muchas letras o muchos dígitos.
 ([A-Z]|[a-z]).([a-z]|[A-Z]|[0-9])*
- Número: Son palabras que cumplen con tener al menos un dígito o más, y solo puede contener dígitos.
 [0-9]+
- Decimal: Son palabras que cumplen con tener al menos un dígito o más, seguido de un punto, seguido de uno o más dígitos.
 [0-9]+.[.].[0-9]+
- Puntuación: Ser alguno de los signos de puntuación
 [(.)I(,)I(;)I(:)]
- Operador: Ser alguno de los operadores aritméticos
 [(+)I(-)I(*)I(%)]
- Agrupación: Ser alguno de los signos de agrupación
 [(()I()) ([)I())I()]

Expresión regular: [a-z]I[A-Z]+.[0-9]*

Ejemplo: AAaaaAAAfsadkfs1 Dsfksdajfasdo L9s

- 1.Conjuto de estados del A Q= {S1, S2}
- 2.Estado inicial **S1**
- 4.Estado de aceptación F **F={S2}**
- 5. Función de transición ∂

$$\partial$$
 (S1, [a-z]|[A-Z]) = S2

$$∂$$
 (S1, [0-9]) = ERROR

$$\partial$$
 (S2, [a-z]|[A-Z]|[0-9]) = S2

Expresión regular: [0-9]+

Ejemplo:

0

093748

1.Conjuto de estados del A

Q= {S1, S2}

2.Estado inicial

S1

3. Alfabeto ∑

∑= {[0-9]}

4. Estado de aceptación F

F= {S2}

5. Función de transición ∂

 ∂ (S1, [0-9]) = S2

 ∂ (S2, [0-9]) = S2

Expresión regular: [0-9]+.[.].[0-9]+

Ejemplo: 123445.0978

45.0

1.Conjuto de estados del A

2.Estado inicial

S1

3. Alfabeto ∑

$$\Sigma = \{ [0-9], [.] \}$$

4. Estado de aceptación F

$$F = {S4}$$

5.Función de transición ∂

$$\partial$$
 (S1, [0-9]) = S2

$$\partial$$
 (S2, [0-9]) = S2

$$\partial$$
 (S2, [.]) = S3

$$\partial$$
 (S4, [0-9] = S4

S2

[(:)|(,)|(;)|(:)]

- 1.Conjuto de estados del A
- Q= {S1, S2}
- 2.Estado inicial **S1**

S1

- 3. Alfabeto ∑
- $\sum = \{[.], [,], [;], [:]\}$
- 4.Estado de aceptación F **F={S2}**
- 5.Función de transición ∂
- ∂ (S1, [(.) | (,) | (;) | (:)]) = S2

Expresión regular: [(+)I(-)I (*)I (/)I(%)]

Ejemplo:

+

1

1.Conjuto de estados del A

Q= {S1, S2}

2.Estado inicial

S1

3. Alfabeto ∑

 $\Sigma = \{[+], [-], [*], [/], [%]\}$

4. Estado de aceptación F

F={S2}

5. Función de transición ∂

 ∂ (S1, [(.) | (,) | (;) | (:)]) = S2

- 1.Conjuto de estados del A
- $Q=\{S1,\,S2\}$
- 2.Estado inicial
- **S1**
- 3. Alfabeto ∑

 $\sum = \{[(], [)], [[], []], [\{], [\}]\}$

4. Estado de aceptación F

F={S2}

5. Función de transición ∂

 $\partial \left(\mathsf{S1}, \, [\, (()\mathsf{I}()) \, ([)\mathsf{I}(])\mathsf{I}(\{)\mathsf{I}(\})] \right) = \mathsf{S2}$

Autómata finito determinista que acepta todos los tokens

$$A = (() | ()) | ([) | (]) | (\{) | (\})$$

1.Conjuntos de estados

$$Q = \{S1, S2, S3, S4, S5, S6, S7, S8\}$$

2. Estado Inicial

S1

3.Alfabeto

 $\Sigma = \{A, B, C, ([A-Z]), ([a-z]), ([0-9]), (.)\}$

4. Estados de Aceptación

 $F = \{S2, S3, S4, S5, S6, S8\}$

5. Función de Transición

∂(S1,[A-Z] [a- z])= S3	∂(S1,[0- 9])= S6	∂(S1,A)= S2	∂(S1,B)= S5	∂(S1,C)= S4	∂(S1,[.])= S4
∂(S2,[A-Z] [a- z])=ERROR	∂(S2,[0- 9])=ERROR	∂(S2,A)=ERROR	∂(S2,B)=ERROR	∂(S2,C)=ERROR	∂(S2,[.])=ERROR
∂(S3,[A-Z] [a- z])= S3	∂(\$3,[0- 9])= \$3	∂(S3,A)=ERROR	∂(S3,B)=ERROR	∂(S3,C)=ERROR	∂(S3,[.])=ERROR
∂(S4,[A-Z] [a- z])=ERROR	∂(S4,[0- 9])=ERROR	∂(S4,A)=ERROR	∂(S4,B)=ERROR	∂(S4,C)=ERROR	∂(S4,[.])=ERROR
∂(S5,[A-Z] [a- z])=ERROR	∂(S5,[0- 9])=ERROR	∂ (S5,A)=ERROR	∂ (S5,B)=ERROR	∂(S5,C)=ERROR	∂(S5,[.])=ERROR
∂(S6,[A-Z] [a- z])=ERROR	∂(S6,[0- 9])= S6	∂(S6,A)=ERROR	∂(S6,B)=ERROR	∂(S6,C)=ERROR	∂(S6,[.])= S7
∂(S7,[A-Z] [a- z])=ERROR	∂(\$7,[0- 9])= \$8	∂(S7,A)=ERROR	∂(S7,B)=ERROR	∂(S7,C)=ERROR	∂(S7,[.])=ERROR
∂(S8,[A-Z] [a- z])=ERROR	∂(\$8,[0- 9])= \$8	∂(S8,A)=ERROR	∂(S8,B)=ERROR	∂(S8,C)=ERROR	∂(S8,[.])=ERROR