Oficina d'Accés a la Universitat

Proves d'accés a la universitat

2019

Electrotècnia

Sèrie 1

La prova consta de dues parts, amb dos exercicis a cadascuna. La primera part és comuna i la segona té dues opcions (A i B). Resoleu els exercicis de la primera part i, per a la segona part, escolliu UNA de les dues opcions (A o B) i feu els exercicis de l'opció triada.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: -0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

Quina és la impedància equivalent a 50 Hz d'una capacitat de valor $C = 10 \,\mu\text{F}$ i una inductància de valor $L = 100 \,\text{mH}$ connectades en sèrie?

- a) $Z = -j 286,9 \Omega$
- **b**) $Z = i 286,9 \Omega$
- c) $\underline{Z} = -j \, 318,3 \, \Omega$
- d) $Z = i 318,3 \Omega$

Qüestió 2

Connectem a una línia de 230 V de tensió dos electrodomèstics monofàsics: un calefactor (resistiu, $\cos \varphi = 1$) i un ventilador (motor d'inducció, $\cos \varphi = 0.8$). El corrent consumit pel calefactor és $I_{\text{calefactor}} = 5$ A, mentre que el corrent consumit pel ventilador és $I_{\text{ventilador}} = 4$ A. Respecte del corrent I que circula per la línia, podem assegurar que té un valor de

- a) 7,4 A.
- **b**) 8,2 A.
- c) 8,5 A.
- d) 9 A.

Qüestió 3

Quina és la funció lògica de la figura següent?

- a) O = 0
- **b**) O = ab + c
- c) $O = \overline{ab} + \overline{c}$
- **d**) O = 1

Qüestió 4

Una impedància de valor $\underline{Z} = 3 + j 6 \Omega$ s'alimenta amb una tensió alterna sinusoidal de 100 V de valor eficaç. Quin és el valor de la potència activa consumida per la càrrega?

- a) 333,3 W
- **b**) 666,7 W
- c) 1490,7 W
- d) 3 333,3 W

Qüestió 5

Una màquina d'inducció trifàsica de tres parells de pols està connectada a una xarxa de freqüència nominal f = 50 Hz. Si sabem que el lliscament nominal és s = 3 % i volem que treballi com a generador en condicions nominals, quina velocitat de gir ha de tenir la màquina?

- a) $970 \,\mathrm{min^{-1}}$
- **b)** $1030 \, \text{min}^{-1}$
- c) 1 470 min⁻¹
- d) 1530 min⁻¹

Exercici 2

[2,5 punts en total]

El circuit de la figura s'alimenta amb un sistema trifàsic simètric i equilibrat de tensions amb neutre. La càrrega trifàsica (NO simètrica) està connectada en estrella i s'alimenta a la tensió U (composta) indicada en el requadre de la figura.

a) Determineu la mesura de l'amperímetre A_1 .

[0,5 punts]

b) Determineu la mesura dels amperímetres A_2 i A_3 .

- [0,5 punts]
- c) Determineu la potència activa total *P* i la potència reactiva total *Q* consumides per la càrrega. [0,5 punts
- d) Dibuixeu el diagrama fasorial i determineu, també, la mesura de l'amperímetre A_4 .

 [1 punt]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts en total]

Un motor d'inducció trifàsic per a aviació té les dades següents en la placa de característiques:

$$P_{\rm N} = 7.5 \,\text{kW}$$
 $n_{\rm N} = 5\,850 \,\text{min}^{-1}$ $U_{\rm N} = 208/120 \,\text{V}$
 $\cos \varphi_{\rm N} = 0.86$ $f = 400 \,\text{Hz}$ $I_{\rm N} = 28/48.5 \,\text{A}$

Si el motor treballa en condicions nominals, determineu:

a) El rendiment η .	[0,5 punts]
b) El nombre de parells de pols <i>p</i> .	[0,5 punts]
c) El parell Γ desenvolupat.	[0,5 punts]
<i>d</i>) El lliscament <i>s</i> expressat en tant per u.	[0,5 punts]
e) La potència reactiva Q consumida pel motor.	[0,5 punts]

Exercici 4

[2,5 punts en total]

$U_1 = 48 \text{ V}$
$U_2 = 12 \text{ V}$
$R_1 = 6 \Omega$
$R_2 = 6 \Omega$
$R_3 = 6 \Omega$
$R_4 = 15 \Omega$

Per al circuit de la figura, determineu:

- a) Els corrents I_1 i I_2 . [1 punt] b) La potència total consumida per les resistències R_1 , R_2 , R_3 i R_4 . [0,5 punts]
- c) El valor de la resistència R_5 si sabem que la potència consumida per la font U_2 és de $12\,\mathrm{W}$.
- d) El valor de la potència subministrada per la font U_1 . [0,5 punts]

OPCIÓ B

Exercici 3

[2,5 punts en total]

El circuit de la figura és alimentat mitjançant una font ideal de tensió U a una freqüència de 50 Hz. Determineu:

a) El valor de la mesura del wattimetre W_2 .

[0,5 punts]

b) El valor de la resistència R_2 si sabem que $R_2 > 15 \Omega$.

[1 punt]

c) El valor de la inductància L si sabem que la potència reactiva total consumida és $Q = 195 \, \text{var}$.

Exercici 4

[2,5 punts en total]

Una línia monofàsica d'una casa té una longitud de 70 m (des de la sortida del magnetotèrmic fins a l'endoll) i està feta amb cables unipolars de coure de 2,5 mm² de secció i una resistivitat $\rho = 0,01786 \, \mu\Omega$ m. S'hi endolla una estufa que consumeix una potència de 1 500 W quan és alimentada a 230 V de tensió. Cada contacte de l'endoll introdueix una resistència de 0,1 Ω . La tensió en la sortida del magnetotèrmic és de 230 V, que coincideix amb la nominal de la línia. En aquestes condicions, determineu:

a) La potència P dissipada per l'estufa.

[0,5 punts]

- b) La caiguda de tensió de la línia $\Delta U_{\rm I}$, en tant per cent, respecte a la nominal. [0,5 punts]
- c) La caiguda de tensió als contactes de l'endoll $\Delta U_{\rm E}$, en tant per cent, respecte a la nominal. [0,5 punts]
- *d*) El rendiment de la línia $\eta_{\rm L}$ en tant per cent.

[0,5 punts]

e) El rendiment de l'endoll η_E en tant per cent.

[0,5 punts]

Oficina d'Accés a la Universitat

Proves d'accés a la universitat

2019

Electrotècnia

Sèrie 4

La prova consta de dues parts, amb dos exercicis a cadascuna. La primera part és comuna i la segona té dues opcions (A i B). Resoleu els exercicis de la primera part i, per a la segona part, escolliu UNA de les dues opcions (A o B) i feu els exercicis de l'opció triada.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: -0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

Un conjunt format per una inductància L = 10 mH i un condensador connectats en sèrie està en ressonància. Sabem que, a la freqüència de ressonància, la reactància inductiva té un valor de $X_L = 13,63 \,\Omega$. Quins són, aproximadament, el valor de la freqüència f de ressonància del conjunt i el valor de la reactància capacitiva X_c del condensador?

- a) $f = 1,36 \text{ Hz i } X_C = 13,63 \Omega$
- **b**) $f = 1.36 \,\mathrm{Hz}$ i $X_C = -13.63 \,\Omega$
- c) $f = 217 \text{ Hz i } X_C = 13,63 \Omega$
- d) f = 217 Hz i $X_C = -13,63$ Ω

Qüestió 2

Un petit aerogenerador funciona amb una màquina d'inducció trifàsica de tres parells de pols i una frequència nominal de 50 Hz. Quina és la velocitat de sincronisme N_c i la velocitat a la qual hauria de funcionar la màquina N_g per a generar electricitat?

- a) $N_s = 1000 \text{ min}^{-1} \text{ i } N_g > 1000 \text{ min}^{-1}$ b) $N_s = 1000 \text{ min}^{-1} \text{ i } N_g < 1000 \text{ min}^{-1}$ c) $N_s = 3000 \text{ min}^{-1} \text{ i } N_g > 3000 \text{ min}^{-1}$ d) $N_s = 3000 \text{ min}^{-1} \text{ i } N_g < 3000 \text{ min}^{-1}$

Qüestió 3

La placa de característiques d'un transformador trifàsic (que podem considerar ideal) conté la dada següent: $S_N=100\,\mathrm{kVA}$. Aquest transformador serveix, doncs, per a alimentar càrregues

- a) únicament resistives, sempre que la potència aparent consumida sigui $S \le 100 \, \text{kVA}$.
- **b**) únicament inductives, sempre que la potència aparent consumida sigui $S \le 100 \, \text{kVA}$.
- *c*) inductives o capacitives però mai resistives, sempre que la potència aparent consumida sigui $S \le 100 \, \text{kVA}$.
- *d*) de qualsevol naturalesa, sempre que la potència aparent consumida sigui $S \le 100 \, \text{kVA}$.

Qüestió 4

Quina és la funció lògica de la figura següent?

$$a) O = a + b + c$$

b)
$$O = a + b + c$$

$$c) \quad O = a + \overline{b} + c$$

$$d) O = a + b + \overline{c}$$

Qüestió 5

El valor de pic d'una tensió composta d'un sistema trifàsic simètric i equilibrat és, respecte del valor eficaç d'una tensió senzilla (simple) del mateix sistema,

- a) $\sqrt{2}$ vegades més gran.
- b) $\sqrt{3}$ vegades més gran.
- c) $\sqrt{6}$ vegades més gran.
- d) $\sqrt{9}$ vegades més gran.

Exercici 2

[2,5 punts en total]

$R_1 = 5 \Omega$
$R_2 = 5 \Omega$
$R_3 = 5 \Omega$
$X_L = 35 \Omega$
$X_C = 15 \Omega$
$W_2 = 3920 \text{ W}$

Per al circuit de la figura, determineu:

a) El valor de la tensió d'alimentació U.

[0,5 punts]

b) La mesura del wattimetre W_1 .

[0,5 punts]

c) L'angle φ de desfasament entre la tensió d'alimentació U i el corrent que circula per A_1 .

d) La mesura de l'amperímetre A_1 .

[0,5 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts en total]

Per al circuit de la figura, que funciona a 50 Hz, amb l'interruptor SW obert, determineu:

a) La mesura de l'amperímetre A_2 .

[0,5 punts]

b) La mesura de l'amperímetre A₁.

[0,5 punts]

c) El valor de la reactància capacitiva X_{c_2} .

[0,5 punts]

Amb l'interruptor SW tancat, connectem el condensador C_1 de manera que tota la potència reactiva queda compensada i, per tant, tot el conjunt passa a tenir un factor de potència unitari ($\cos \varphi = 1$). Determineu:

d) El valor de la reactància capacitiva X_{C1} i la capacitat C_1 corresponent. [0,5 punts]

e) El valor del corrent que proporcionarà la font d'alimentació en aquestes condicions.

[0,5 punts]

Exercici 4

[2,5 punts en total]

Una instal·lació monofàsica alimentada amb una tensió de 230 V a una freqüència de 50 Hz té una llargària de 200 m. Al final de la línia hi ha un consum que es pot representar mitjançant una impedància de valor $\underline{Z}_{\text{consum}} = 7 + j + 4 \Omega$. Cada conductor es pot representar com

una impedància de valor $\underline{Z}_{\text{conductor}} = 1,2 + j 0,3 \frac{\Omega}{\text{km}}$.

Determineu:

a) El corrent *I* que circula per la instal·lació.

[1 punt]

b) La tensió *U* que hi ha en els borns del consum. c) Les potències activa P, reactiva Q i aparent S del consum en aquestes condicions.

[0,5 punts]

[1 punt]

OPCIÓ B

Exercici 3

[2,5 punts en total]

Un motor de corrent continu d'excitació amb imants permanents té les dades següents en la placa de característiques:

$$P_{\rm N} = 392.7 \,\text{W}$$
 $U_{\rm N} = 100 \,\text{V}$ $I_{\rm N} = 4.68 \,\text{A}$ $n_{\rm N} = 2500 \,\text{min}^{-1}$

Les pèrdues mecàniques i en les escombretes es consideren negligibles.

Si el motor treballa en condicions nominals, determineu:

a) El rendiment η_N expressat en tant per cent.

[0,5 punts]

b) El parell Γ desenvolupat.

[0,5 punts]

Si el motor desenvolupa el 60 % del parell nominal i s'alimenta amb una tensió de 80 V, determineu:

c) La nova velocitat de gir del motor.

[1 punt]

d) El rendiment η , expressat en tant per cent, en aquestes condicions.

[0,5 punts]

Exercici 4

[2,5 punts en total]

$$U_1 = 48 \text{ V}$$

 $U_2 = 24 \text{ V}$
 $R_1 = 10 \Omega$
 $R_2 = 30 \Omega$
 $R_3 = 15 \Omega$
 $R_4 = 5 \Omega$

Per al circuit de la figura, amb l'interruptor SW tancat, determineu:

a) La potència total dissipada per totes les resistències.

[1 punt]

b) La potència aportada al sistema per cadascuna de les dues fonts de tensió separadament. [0,5 punts]

En el circuit de la figura, amb l'interruptor SW obert, sabent que la font de tensió U_2 no cedeix ni absorbeix energia, determineu:

c) La potència total dissipada per totes les resistències.

[1 punt]