Introduction to Numerical Analysis

Day 2: Singular Value Decomposition (SVD)

Joaquin Cavieres

Geoinformatics, Bayreuth University

Outline

Singular Value Decomposition (SVD)

Singular values

Let A be an $m \times n$ matrix. If we consider AA^T is a symmetric matrix of dimension $n \times n$, its eigenvalues are real. So,

If λ is an eigenvalue of $\mathbf{A}\mathbf{A}^T$, then $\lambda \geq 0$.

Singular values

As $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of $\mathbf{A}\mathbf{A}^T$, we can order these such that $\lambda_1 \geq \lambda_2 \geq \ldots \lambda_n \geq 0$. On the other hand, doing $\sigma_i = \sqrt{\lambda_i}$, so that $\sigma_1 \geq \sigma_2 \geq \ldots \sigma_n \geq 0$. Thus:

Definition

The numbers $\sigma_i = \sqrt{\lambda_i}$, so that $\sigma_1 \geq \sigma_2 \geq \dots \sigma_n \geq 0$ defined above are called the singular values of \boldsymbol{A} .

SVD decomposition

Let **A** is a matrix of dimension $m \times n$ with singular values $\sigma_1 \geq \sigma_2 \geq \dots \sigma_n \geq 0$, and r denote the number of nonzero singular values of **A** (the rank of **A**).

Definition

The SVD of the matrix **A** can be expressed as:

$$A = U \Sigma V^T$$

where:

- U is an $m \times m$ orthogonal matrix.
- Σ is an $m \times n$ matrix whose i-th diagonal entry equals the i-th singular value σ_i for i = 1, ..., r. All the other entries of Σ are zero.
- U is an $n \times n$ orthogonal matrix.

Example

Consider a matrix \bf{A} of dimension 3×2 and compute the SVD.

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix} \tag{1}$$

Step 1: Calculate AA^T

$$\mathbf{A}\mathbf{A}^{T} = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 1 \\ 1 & 11 \end{bmatrix}$$
 (2)

It is a square symmetric matrix through which we can find the eigenvalues.

Step 2: Find the eigenvalues and corresponding eigenvectors of AA^T

You can find eigenvalues and eigenvectors by treating a matrix as a system of linear equations. For example, for the next matrix:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \tag{3}$$

we can apply the following formula:

$$\mathbf{A}\vec{v} = \lambda\vec{v} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 (4)

The equation (4) is the same as:

$$2x_1 + x_2 = \lambda x_1 \tag{5}$$

$$x_1 + 2x_2 = \lambda x_2 \tag{6}$$

which can be rearranged as:

$$(2 - \lambda)x_1 + x_2 = 0 (7)$$

$$x_1 + (2 - \lambda)x_2 = 0 (8)$$

The linear system does not to have a nonzero vector $(x_1, x_2)^T$, that is the determinant of the coefficient matrix must be 0.

$$\begin{vmatrix} (2-\lambda) & 1 \\ 1 & (2-\lambda) \end{vmatrix} = 0$$

SO,

$$(2 - \lambda)(2 - \lambda) - 1 * 1 = 0$$

 $\lambda^2 - 4\lambda + 3 = 0$
 $(\lambda - 3)(\lambda - 1) = 0$

Two values of λ satisfy the last equation; $\lambda_1 = 3$ and $\lambda_2 = 1$.

Step 3: Find the eigenvectors

We can start with $\lambda=3$ to find its eigenvector, so we will use the equation (5):

$$(2-\lambda)x_1+x_2=0$$

substituting we get

$$(2-3)x_1+x_2=0$$

that is:

$$x_1 = x_2$$

Since could be an infinite values for x_1 which satisfy this equation; the only restriction that not all the components in an eigenvector can equal zero. Thus, if $x_1=1$, then $x_2=1$ and this condition is satisfied. Finally, the eigenvector corresponding to $\lambda=3$ is $(1,1)^T$.

Do the same for the eigenvector corespondent to $\lambda = 1$

Continuing with our example:

$$\begin{bmatrix} 11 & 1 \\ 1 & 11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

That is the same as:

$$11x_1 + x_2 = \lambda x_1$$
$$x_1 + 11x_2 = \lambda x_2$$

which can be rearranged as:

$$(11 - \lambda)x_1 + x_2 = 0$$

 $x_1 + (11 - \lambda)x_2 = 0$

Calculating the det:

$$egin{array}{c|c} \left| egin{array}{cc} (11-\lambda) & 1 \ 1 & (11-\lambda) \end{array}
ight| = 0$$

so,

$$(11 - \lambda)(11 - \lambda) - 1 * 1 = 0$$

 $(\lambda - 10)(\lambda - 12) = 0$

Thus $\lambda = 10$ and $\lambda = 12$

Using the lambda's calculates in the original equations gives us our eigenvectors. For example, $\lambda=10$:

$$(11-10)x_1 + x_2 = 0$$
$$x_1 = -x_2$$

we can consider $x_1 = 1$ and $x_2 = -1$, so our eigenvector is $(1, -1)^T$. For $\lambda = 12$:

$$(11 - 12)x_1 + x_2 = 0$$
$$x_1 = x_2$$

and our eigenvector is $(1,1)^T$.

See you next class!...

Howard, J. P. (2017). Computational Methods for Numerical Analysis with R. CRC Press.