# Aproximación de imágenes con polígonos mediante triangulación de Delaunay

# Guido Dinello

Facultad de Ingeniería Universidad de la república Montevideo, Uruguay guido.dinello@fing.edu.uy Alexis Baladón
Facultad de Ingeniería
Universidad de la república
Montevideo, Uruguay
alexis.baladon@fing.edu.uy

Abstract—Mediante la aplicación de un algoritmo evolutivo se busca generar una representación artística que emule una imágen mediante una red conexa de triángulos a partir de una cantidad fija de vértices.

Index Terms—Algoritmos evolutivos, Procesamiento de Imágenes, Tringulación de Delaunay, Paralelismo, Polígonos

#### I. DESCRIPCIÓN DEL PROBLEMA

La representación de curvas mediante polígonos es una tarea que ha sido revolucionaria en el procesamiento de imágenes. Lograr un adecuado compromiso entre la visualización de una imagen y la complejidad computacional del renderizado es de especial interés en el área de la computación gráfica la cual tiene impacto en diversos sectores como la industria de videojuegos y el diseño gráfico. Si bien este estudio no apunta a abarcar tal amplitud de temas sí se propone lograr y evaluar la aplicación de algoritmos evolutivos para obtener buenas aproximaciones a imágenes utilizando la poligonización por triángulos. Aunque actualmente se han planteado problemas similares donde se intenta generar una imagen con triángulos con cierto grado de transparencia y capaces de superponerse, esta solución intenta aproximar la imagen de entrada sin ninguna de las dos, imponiendo que esta sea formada mediante la unión de triángulos de forma similar a la que una imagen puede ser representada por pixeles cuadrados.

#### II. ESTRATEGIA DE RESOLUCIÓN

Con el fin de cumplir con el objetivo del problema, se buscará lograr una representación de una imagen usando una red de triángulos conexa y convexa que, a su vez, cumpla la condición de Delaunay [1]. Es decir, que la circunferencia circunscrita de cada triángulo de la red no contendrá a ningún vértice de otro triángulo. Dadas las restricciones del problema, es necesario contar con un método para lograr tales representaciones. En este caso, el algoritmo de Delaunay [1] será capaz de lograr este propósito sirviendo como caja negra para formar una red de triángulos dado un número N de vértices en un orden computacional de  $O(N^2)$ . Un ejemplo de la aplicación de este algoritmo puede verse en la figura 1



Fig. 1. Resultados de aplicar el algoritmo de Delaunay a 100 puntos aleatorios.

# A. Representación de las soluciones

Para este problema la representación elegida es un arreglo de N coordenadas (equivalente a N vértices) que se utilizarán en la imagen poligonal. En particular, cada coordenada (X,Y) será una pareja de enteros que representarán la posición del respectivo punto en la imagen de tamaño (W,H) generada, por lo que el dominio de X se encontrará acotado entre 0 y W-1, mientras que Y lo estará entre 0 y H-1. El dominio de la representación puede ser expresado como:

$$\mathcal{D} = \{ (X, Y) \in \mathbb{Z}^2 \mid X \in [0, W - 1], Y \in [0, H - 1] \}^N$$

Es importante destacar que estas coordenadas no representan a un triángulo en particular, sino a un vértice, el cuál podrá formar parte de varios triángulos a la vez. Además, el color de cada triángulo no estará especificado en un cromosoma, ya que es tomada la heurística de asignar a un triángulo el color de la imagen original ubicado en el centroide del conjunto de sus vértices, o sea, al triángulo formado por los vértices  $\{\vec{v_0}, \vec{v_1}, \vec{v_2}\}$  se le asignará el color de la imagen objetivo en la coordenada  $(\vec{v_0} + \vec{v_1} + \vec{v_2})/3$ .





Fig. 2. Resultado de aplicar denoising con NlMeans a imagen utilizada en configuración.

Esta heurística es útil para no incluir a los colores en el genotipo del algoritmo evolutivo, aunque tiene el problema de que sólo se tiene en consideración el color de un único punto que, a causa del ruido, podría contener un color no representativo con respecto a los colores a su alrededor. Aún así, dado lo veloz que esta solución resulta este mecanismo se conserva, aunque para reducir este posible problema se decide utilizar técnicas de denoising con el fin de suavizar la imágen de entrada, haciendo que un individuo tome los colores de la imagen de menor ruido en lugar de la original. Para esto es utilizado el algoritmo fast NlMeans a color [2] proveído por la librería Open-CV [3]. En la figura 2 puede observarse un ejemplo de aplicar este algoritmo a la imagen utilizada en la configuración.

Adicionalmente, se toma la decisión de fijar 4 vértices en las esquinas de la imagen (estando estos fuera de la representación), dado que en caso contrario existirían secciones de la imagen sin un color definido. Estos 4 vértices claramente no formarán parte de la representación, por lo que el algoritmo requerirá un mínimo de 5 vértices para ser ejecutado.

Debe destacarse que este tipo de representación admite que existan varios fenotipos iguales para distintos genotipos, lo cuál no es un punto a favor para esta. Sin embargo, se tomarán medidas en la inicialización para mitigar este problema de las cuales se hablará más adelante.

# B. Función de fitness

La función de fitness a utilizar será el error cuadrático medio entre la imagen generada y la imagen original ya preprocesada (en este caso mediante denoising).

$$MSE = \frac{1}{WH} \sum_{i=0}^{W-1} \sum_{j=0}^{H-1} \sum_{k=0}^{2} [O(i,j,k) - G(i,j,k)]^{2}$$
 (2)

, donde W es el ancho de la imagen y H su alto.

Se destaca que cada imagen será procesada con formato RGB, por lo cual, como se ve reflejado en la tercera sumatoria, cada pixel estará formado por tres números en el dominio [0, 255].

#### C. Condiciones de Parada

Será utilizada como condición de parada que se haya alcanzado una cantidad predefinida y máxima de generaciones. En este caso fue tomado un número de generaciones de 100 como parámetro por defecto, momento en el que el algoritmo suele estancarse dado a que, como se verá más adelante, tiende a no continuar mejorando dado que está basado en operadores elitistas.

# D. Operadores Evolutivos

#### 1) Mutación:

a- Gausiana: Este operador suma un determinado valor aleatorio con distribución normal con cierta media y desvío a un grupo aleatorio de alelos. Si bien el operador se basa en esta política, se decide modificarlo levemente con el fin de ajustarse a los requerimientos del problema. En este caso, se utilizarán los valores de media  $\mu=0$  y un desvío  $\sigma$  que, en vez de tomar un valor fijo, tomará el máximo valor del gen mutado multiplicado por una constante a la cual de aquí en adelante se le llamará gaussian rate. Esto se realiza dado que el valor máximo que puede tomar un gen corresponde a W-1 al estar este en un locus de índice par y a H-1 en caso contrario.

Por otro lado, dado que un alelo de un individuo está formado por un valor de una coordenada de los vértices en su fenotipo, tiene más sentido mutar cada valor de una coordenada (un gen de tamaño 2) en vez de solo uno, lo cual ya no sería equivalente a desplazar un vértice únicamente vertical u horizontalmente. Consecuentemente, se decide generar una implementación personalizada de este operador para que desplace ambos valores de sus coordenadas, tal como si sus alelos fueran bidimensionales. Es importante destacar además que este es un operador continuo, mientras que un cromosoma está formado por valores enteros, por lo que el valor de la mutación será aproximado a su valor entero más cercano.

De aquí en más se le llamará MUTPB a la probabilidad de mutar un individuo e INDPB a la probabilidad de mutar un gen.

#### 2) Cruzamiento:

• 2PX: Para este operador se utiliza el cruzamiento a dos puntos. Este segmenta a un par de individuos en dos índices y se genera como resultado a dos individuos formados por la combinación de una mitad de cada padre. Este podría llegar a ser altamente disruptivo para la representación planteada, dado que dos individuos con mismos vértices en un distinto orden no serían favorecidos al cruzarse, es más, empeoraría su aptitud, por lo que se tomarán medidas en la inicialización para mitigar dicho problema.

# 3) Selección:

- <u>Elitista</u>: (Determinista): Se seleccionan a los k individuos de mayor fitness, lo cual asegura la convergencia aunque puede favorecer la deriva genética dada la posible falta de exploración.
- Torneo (Mixto) Dado un grupo de individuos, se creará una cantidad de k torneos para los cuales serán elegidos m individuos al azar, siendo aquel con mejor aptitud seleccionado para el cruzamiento.

Ambas selecciones serán opciones posibles como parámetros de la implementación. La selección por defecto es la del mejor individuo (elitista).

# 4) Reemplazo:

•  $\mu + \lambda$ : La solución presentada utiliza una estrategia de reemplazo  $\mu + \lambda$ , en la cual tanto padres como hijos compiten para ser seleccionados.

#### E. Inicialización

Una inicialización aleatoria con valores de coordenadas uniformemente distribuidos parece en principio una buena solución. Sin embargo, esto no hace uso de toda la información que una imagen inherentemente provee, por ejemplo, transiciones entre un color y otro (sus bordes). Por esto, se toma la heurística de inicializar un 50% de los vértices del algoritmo de forma aleatoria y otro 50% en bordes de la imagen. Para esto se utiliza el algoritmo Canny [4] proveído por la librería opency, que dada una imagen retorna un conjunto de vértices. Es importante notar que un 100% sería perjudicial dado que aunque en los bordes se encuentran los cambios más drásticos de colores, imágenes suaves con cambios leves en colores contiguos requerirán eventualmente de un cambio de color de un pixel a otro. Un ejemplo del uso de este algoritmo es el de la figura 3



Fig. 3. Resultado de aplicar detección de bordes con Canny a imagen utilizada en configuración.

Luego, como fue comentado, existen varios problemas relacionados a la representación elegida. Entre ellos, problemas de cruzamiento, ya que se espera que este operador no realice cambios excesivos que no favorezcan en lo absoluto al individuo. Por esto, se decide ordenar todos los genotipos de los individuos según el valor de X de cada coordenada y en caso de empate por la coordenada y. Este ordenamiento sólo se realizará al iniciar el algoritmo, ya que los algoritmos de ordenamiento tienen órdenes computacionales altos, y que de todos modos luego de cruzarse un determinado número de veces los individuos tendrán vértices similares alineados a modo de cruzarse con 2PX sin mayores problemas.

### F. Métodos avanzados

El algoritmo planteado puede ser realizado de forma paralela. La arquitectura seguida en este caso es la maestroesclavo, la cual se basa en distribuir la evaluación del fitness entre varios trabajadores. El algoritmo por lo tanto presenta un parámetro de cpu\_count para regular la cantidad de procesadores siendo utilizados en simultáneo.

#### G. Parámetros

A continuación se encuentran los parámetros involucrados en el algoritmo, junto con sus valores por defecto o no para aquellos que es necesario que el usuario introduzca para ejecutar la solución.

# III. EVALUACIÓN EXPERIMENTAL

Debido a la naturaleza estocástica de los algoritmos que fueron utilizados es necesario realizar una evaluación estadística que nos permita realizar inferencias sobre su desempeño. Es entonces el objetivo de esta sección, el exponer la metodología empleada así como los resultados obtenidos.

# A. Plataforma de Ejecución

Todos los algoritmos referenciados fueron ejecutados con las configuraciones y especificaciones detalladas en la siguiente tabla.

| Parametro       | Valor por defecto  |
|-----------------|--------------------|
| INDPB           | 0.1                |
| CXPB            | 0.9                |
| MUTPB           | 0.1                |
| NGEN            | 100                |
| $\mu$           | 50                 |
| λ               | 50                 |
| selection       | best               |
| tournament_size | 2                  |
| gaussian_rate   | 0.05               |
| input_path      | -                  |
| input_name      | -                  |
| width           | W                  |
| height          | Н                  |
| vertex_count    | -                  |
| cpu_count       | n° de procesadores |
| edge_rate       | 0.5                |

TABLE I PARÁMETROS Y VALORES POR DEFECTO

| Sistema operativo | Windows 10                |
|-------------------|---------------------------|
| Procesador        | Intel(R) Core(TM) i5-7400 |
| Memoria RAM       | 8GB                       |
| Versión de Python | 3.9.6                     |

TABLE II ESPECIFICACIONES DE HARDWARE

#### B. Configuración Paramétrica

Bajo la finalidad de encontrar la combinación de parámetros que permitiera al algoritmo evolutivo desempeñarse de mejor manera en el problema abordado, se recopilaron métricas del desempeño del mismo sobre un conjunto independiente de ejecuciones. En particular, para la instancia 15, se reportarán y analizarán los valores de mejor fitness histórico, es decir, el mínimo fitness de una ejecución completa de 100 generaciones sobre 50 individuos para 30 semillas distintas sobre cada una de las combinaciones de parámetros estudiadas. Aún más, sobre los valores mencionados anteriormente se reportarán el mínimo, el promedio y el desvío estándar, así como el tiempo promedio de ejecución para cada configuración sobre las 30 semillas utilizadas.

Las configuraciones estudiadas surgen de la combinación ortogonal de los siguientes conjuntos de parámetros y valores asociados:

1) Probabilidad de Cruzamiento:

$$CXPB \in \{0.8, 0.9\}$$

2) Probabilidad de Mutación:

$$MUTPB \in \{0.01, 0.05, 0.1\}$$

La tabla XVII muestra los valores recabados.

Como primer paso del análisis estadístico realizado se evaluó mediante tests de hipótesis —en particular la prueba bondad de ajuste de Kolmogorov-Smirnov (de dos colas) de la libreria scipy [5] que nos permite comparar la distribución subyacente de una muestra contra otra dada—, si la distribución de los mejores fitness obtenidos en cada ejecución se ajusta a una distribución normal. Los resultados obtenidos se pueden apreciar en las tablas III y IV.

| $P_c$ | $P_m$ | min(MSE) | $\overline{MSE}$ | $\sigma(MSE)$ | $\overline{time}$ |
|-------|-------|----------|------------------|---------------|-------------------|
| 0.8   | 0.01  | 1247.616 | 1280.580         | 17.193        | 420.956           |
| 0.8   | 0.05  | 1197.162 | 1264.674         | 20.580        | 425.269           |
| 0.8   | 0.1   | 1212.100 | 1261.774         | 15.694        | 431.654           |
| 0.9   | 0.01  | 1241.939 | 1271.891         | 18.606        | 454.564           |
| 0.9   | 0.05  | 1203.522 | 1249.126         | 24.999        | 456.455           |
| 0.9   | 0.1   | 1197.937 | 1242.558         | 22.956        | 458.275           |

TABLE III MÉTRICAS RECOLECTADAS PARA CADA CONFIGURACIÓN

| $P_c$ | $P_m$ | pvalue |
|-------|-------|--------|
| 0.8   | 0.01  | 0.9264 |
| 0.8   | 0.05  | 0.4760 |
| 0.8   | 0.1   | 0.9222 |
| 0.9   | 0.01  | 0.8900 |
| 0.9   | 0.05  | 0.8486 |
| 0.9   | 0.1   | 0.7020 |

TABLE IV P-VALORES PARA CADA CONFIGURACIÓN

Gráficos de los histogramas asociados se pueden encontrar en el anexo 10.

Como se puede apreciar en la tabla IV, todos los p-valores son mayores a 0.05, asumiendo un nivel de confianza del 95% no podemos rechazar la hipótesis nula por lo que consideramos que nuestros datos se ajustan a una distribución normal.

En segunda instancia, y sirviendonos del resultado de la prueba anterior, se procede a realizar un análisis de varianza (ANOVA [6]) de una vía [3] para determinar la existencia de una diferencia estadísticamente significativa entre las medias de los datos de cada configuración.

$$H_0: \mu_0 = \mu_1 = \dots = \mu_n$$
  
 $H_a: i, j \in \{0, \dots, n\} \mu_i \neq \mu_j$  (3)

Obteniendo el siguiente resultado:

$$p - value = 1.5756 \times 10^{-11}$$

Este resultado —asumiendo nuevamente un nivel de significancia del 0.05—, nos permite sostener la afirmación de que hay al menos dos configuraciones que difieren en su media.

Finalmente, es de interés saber cuáles de estos grupos son los que difieren en su media por lo que se procede a realizar tests post hoc de comparación de la media, más específicamente se llevó a cabo un test de student de cada pareja [7] corrigiendo los p-valores usando el método Holm [8] para controlar el FWER <sup>1</sup>.

Los resultados obtenidos se pueden observar en la tabla V.

Como puede observarse en la tabla III, tanto el mejor fitness histórico como promedio es mínimo para la combinación de [0.9,0.1]. Además, por los pvalores obtenidos en la tabla V podemos afirmar la existencia evidencia estadística de que esta combinación es mejor que las demás con un nivel de confianza del 0.05 — a excepción de [0.9,0.05]—. Aún así, se decide tomar [0.9,0.10] dado que la diferencia en tiempo no es significativa y tuvo mejores resultados en los demás atributos.

Consideramos entonces que la mejor configuración de parametros (dentro de los evaluados) para nuestro algoritmo evolutivo es: [CXPB, MUTPB] = [0.9, 0.1]

La imagen utilizada con al configuración obtenida y 10.000 vértices se presenta en la figura 15.

<sup>&</sup>lt;sup>1</sup>Family-Wise Error Rate [9]

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |              |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Config1      | Config2      | pvalue                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [0.8 - 0.01] | [0.8 - 0.05] | 0.0182                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [0.8 — 0.01] | [0.8 - 0.1]  | 0.0007                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [0.8 — 0.01] | [0.9 - 0.01] | 0.2794                  |
| $ \begin{array}{c ccccc} [0.8-0.05] & [0.8-0.1] & 0.6034 \\ \hline [0.8-0.05] & [0.9-0.01] & 0.4998 \\ \hline [0.8-0.05] & [0.9-0.05] & 0.0857 \\ \hline [0.8-0.05] & [0.9-0.1] & 0.0028 \\ \hline [0.8-0.1] & [0.9-0.1] & 0.1476 \\ \hline [0.8-0.1] & [0.9-0.05] & 0.1476 \\ \hline [0.8-0.1] & [0.9-0.05] & 0.1476 \\ \hline [0.8-0.1] & [0.9-0.1] & 0.0040 \\ \hline [0.9-0.01] & [0.9-0.05] & 0.0025 \\ \hline [0.9-0.01] & [0.9-0.1] & 2.0608 \times 10^{-5} \\ \hline \end{array} $ | [0.8 - 0.01] | [0.9 - 0.05] | $9.1939 \times 10^{-6}$ |
| $ \begin{array}{c cccc} [0.8-0.05] & [0.9-0.01] & 0.4998 \\ \hline [0.8-0.05] & [0.9-0.05] & 0.0857 \\ \hline [0.8-0.05] & [0.9-0.1] & 0.0028 \\ \hline [0.8-0.1] & [0.9-0.01] & 0.1476 \\ \hline [0.8-0.1] & [0.9-0.05] & 0.1476 \\ \hline [0.8-0.1] & [0.9-0.05] & 0.0440 \\ \hline [0.9-0.01] & [0.9-0.05] & 0.0025 \\ \hline [0.9-0.01] & [0.9-0.1] & 2.0608 \times 10^{-5} \\ \hline \end{array} $                                                                                    | [0.8 - 0.01] | [0.9 - 0.1]  | $2.5666 \times 10^{-8}$ |
| $ \begin{array}{c cccc} [0.8-0.05] & [0.9-0.05] & 0.0857 \\ \hline [0.8-0.05] & [0.9-0.1] & 0.0028 \\ \hline [0.8-0.1] & [0.9-0.01] & 0.1476 \\ \hline [0.8-0.1] & [0.9-0.05] & 0.1476 \\ \hline [0.8-0.1] & [0.9-0.05] & 0.0440 \\ \hline [0.9-0.01] & [0.9-0.05] & 0.0025 \\ \hline [0.9-0.01] & [0.9-0.1] & 2.0608 \times 10^{-5} \\ \hline \end{array} $                                                                                                                               | [0.8 - 0.05] | [0.8 - 0.1]  | 0.6034                  |
| $ \begin{array}{c cccc} \hline [0.8-0.05] & \hline [0.9-0.1] & 0.0028 \\ \hline [0.8-0.1] & [0.9-0.01] & 0.1476 \\ \hline [0.8-0.1] & [0.9-0.05] & 0.1476 \\ \hline [0.8-0.1] & [0.9-0.05] & 0.0446 \\ \hline [0.9-0.01] & [0.9-0.05] & 0.0025 \\ \hline [0.9-0.01] & [0.9-0.1] & 2.0608 \times 10^{-5} \\ \hline \end{array} $                                                                                                                                                            | [0.8 - 0.05] | [0.9 - 0.01] | 0.4998                  |
| $ \begin{array}{c cccc} [0.8-0.1] & [0.9-0.01] & 0.1476 \\ \hline [0.8-0.1] & [0.9-0.05] & 0.1476 \\ \hline [0.8-0.1] & [0.9-0.1] & 0.0040 \\ \hline [0.9-0.01] & [0.9-0.05] & 0.0025 \\ \hline [0.9-0.01] & [0.9-0.1] & 2.0608 \times 10^{-5} \\ \hline \end{array} $                                                                                                                                                                                                                     | [0.8 - 0.05] | [0.9 - 0.05] | 0.0857                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [0.8 - 0.05] | [0.9 - 0.1]  | 0.0028                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [0.8 - 0.1]  | [0.9 - 0.01] | 0.1476                  |
| $ \begin{array}{c ccc} [0.9-0.01] & [0.9-0.05] & 0.0025 \\ \hline [0.9-0.01] & [0.9-0.1] & 2.0608 \times 10^{-5} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                          | [0.8 - 0.1]  | [0.9 - 0.05] | 0.1476                  |
| $[0.9 - 0.01]$ $[0.9 - 0.1]$ $2.0608 \times 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                       | [0.8 - 0.1]  | [0.9 - 0.1]  | 0.0040                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [0.9 - 0.01] | [0.9 - 0.05] | 0.0025                  |
| [0.9 - 0.05] $[0.9 - 0.1]$ $0.6034$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [0.9 - 0.01] | [0.9 - 0.1]  | $2.0608 \times 10^{-5}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [0.9 - 0.05] | [0.9 - 0.1]  | 0.6034                  |

TABLE V P-VALORES RESULTADO DEL TEST POST HOC

| tournsize | min(MSE) | $\overline{MSE}$ | $\sigma(MSE)$ | $\overline{time}$ |
|-----------|----------|------------------|---------------|-------------------|
| 2         | 1277.845 | 1287.592         | 18.530        | 478.451           |
| 3         | 1337.026 | 1295.067         | 21.619        | 491.637           |



Fig. 4. ultima\_cena.jpg 10000 vértices con configuración obtenida.

# C. Análisis Informal

Siguiendo una metodología similar a la mencionada en el inciso anterior realizamos un conjunto de evaluaciones independientes —en concreto se ejecutó el algoritmo sobre 30 semillas distintas—, sobre un parámetro más de nuestro algoritmo.

Utilizando la configuración paramétrica considerada como "óptima" que fue hallada en el apartado que precede, recolectamos valores del desempeño para el algoritmo variando el tipo de selección. Es decir, se pasó de una selección elitista a una por torneo, donde se experimentó con el tamaño del "pool", esto es, la cantidad de individuos seleccionados aleatoriamente de la cual posteriormente se seleccionará al mejor.

Los valores experimentados fueron 2 y 3 y se obtuvieron los resultados correspondientes a las tablas VI, VII. Además se puede encontrar la tabla XVIII del anexo con los resultados completos y gráficos asociados 11.

Analizando los p-valores es razonable decir que ambas muestras provienen de distribuciones normales. Es por esto, que se procede a realizar un test ANOVA que nos proporciona el siguiente resultado:

$$p - value = 1.1232 \times 10^{-15}$$

| tournsize | pvalue |
|-----------|--------|
| 2         | 0.8726 |
| 3         | 0.9863 |

| Config1 | Config2  | pvalue                   |
|---------|----------|--------------------------|
| [2]     | [3]      | 0.1628                   |
| [2]     | elitista | $5.2347 \times 10^{-11}$ |
| [3]     | elitista | $4.5051 \times 10^{-12}$ |

TABLE VIII
P-VALORES RESULTADO DEL TEST POST HOC

El resultado obtenido sobre los conjuntos torneo[2], torneo[3] y elitista nos permite concluir que hay una diferencia estadísticamente significativa entre las medias de almenos dos grupos. La continuación del análisis dió como resultado la tabla de p-valores VIII —resultado de realizar un estudio comparativo de a pares como el realizado en la sección Configuración Paramétrica—. Si bien esta no nos permite afirmar que un tamaño del "pool" del torneo es mejor que otro si nos permite extraer conclusiones y decantarnos por la selección elitista puesto que muestra resultados superiores tanto en fitness como en tiempo de ejecución.

#### D. Comparación con otras Técnicas

Para llevar a cabo una correcta evaluación del modelo obtenido es de interés comparar el desempeño del AE frente a otras técnicas de resolución del problema tanto en términos de la calidad de las soluciones alcanzadas como de la eficiencia computacional. Es por esto que se proponen dos variaciones de un algoritmo alternativo.

# Algorithm 1 Proposed Alternative

```
Require: max\_iter \ge 0
Require: max \ eval > 0
Require: threshold > 0
  eval \leftarrow evaluate(ind)
  i \leftarrow 0
  eval \ count \leftarrow 1
  while i < max\_iter \land eval\_count < max\_evals do
     qen = random\_gene(ind)
     best delta \leftarrow 0
     deltas \leftarrow get\_deltas(method, threshold)
     {f for} \ delta \ {f in} \ deltas \ {f do}
        ind_{qen} \leftarrow ind_{qen} + delta
        eval\_count \leftarrow eval\_count + 1
        new\ eval \leftarrow evaluate(ind)
        if new eval is better than eval then
           best \ delta \leftarrow delta
           eval \leftarrow new \ eval
        ind_{gen} \leftarrow ind_{gen} - delta
     ind_{gen} \leftarrow ind_{gen} + best\_delta
     i \leftarrow i + 1
  end while=0
```

Las dos variantes, denominadas "gaussian" y "local\_search" difieren únicamente en la función get\_deltas. En el primer caso

devuelve una muestra de valores aleatorios provenientes de una distribución normal de media 0 y desvío igual a threshold y en el segundo todos los valores enteros del rango [-threshold, threshold]. Se supone que el primero puede ser interpretado por un un algoritmo genético con una población de un individuo, y probabilidad 1 de mutación. Por otro lado, el segundo sería interpretado como un algoritmo local-search que cambia valores de coordenadas aleatorias en una vecindad de tamaño threshold, quedándose siempre con el mejor resultado.

Tanto del algoritmo evolutivo (configurado) como de los dos algoritmos propuestos se llevó a cabo una recopilación de métricas del desempeño de 30 ejecuciones independientes, sobre 3 instancias distintas —"fox"[17], "monalisa"[18] y "old man"[16]—. Los resultados numéricos obtenidos resumidos pueden encontrarse en las tablas IX y X.





Fig. 5. fox.jpg 1500 vértices.





Fig. 6. monalisa.jpg 2000 vértices.

|          |             |          | 7.665   | (3.60E)       |         |
|----------|-------------|----------|---------|---------------|---------|
| instance | algorithm   | min(MSE) | MSE     | $\sigma(MSE)$ | time    |
| fox      | EA          | 194.745  | 205.305 | 5.397         | 144.797 |
| fox      | localsearch | 167.123  | 185.915 | 11.121        | 348.691 |
| fox      | gaussian    | 189.391  | 224.928 | 17.759        | 359.525 |
| monalisa | EA          | 128.088  | 133.316 | 3.370         | 212.298 |
| monalisa | localsearch | 148.044  | 165.664 | 8.011         | 460.628 |
| monalisa | gaussian    | 112.576  | 130.533 | 14.545        | 470.093 |
| oldman   | EA          | 593.902  | 607.164 | 8.868         | 326.688 |
| oldman   | localsearch | 555.127  | 581.379 | 12.603        | 720.360 |
| oldman   | gaussian    | 561.642  | 618.913 | 29.671        | 710.275 |

TABLE IX MÉTRICAS RECOLECTADAS PARA CADA PAR ALGORITMO E INSTANCIA

| instance | algorithm   | pvalue |
|----------|-------------|--------|
| fox      | EA          | 0.9131 |
| fox      | localsearch | 0.4604 |
| fox      | gaussian    | 0.8800 |
| monalisa | EA          | 0.3265 |
| monalisa | localsearch | 0.5200 |
| monalisa | gaussian    | 0.5635 |
| oldman   | EA          | 0.8295 |
| oldman   | localsearch | 0.4607 |
| oldman   | gaussian    | 0.9711 |

TABLE X
P-VALORES RESULTADO DEL TEST DE NORMALIDAD PARA UN ALGORITMO
E INSTANCIA DADOS SOBRE 30 EJECUCIONES INDEPENDIENTES





Fig. 7. old\_man.jpeg 3000 vértices.

Los resultados extensos aparecen en la tabla XIX del anexo y los gráficos 12, 13, 14 sirven de acompañamiento visual.

Observando la tabla X podemos concluir que cada una de las muestras de 30 valores de cada pareja instancia-algoritmo cumplen con la hipótesis de normalidad puesto que los p-valores son todos mayores al nivel de significancia admitido.

Esto nos permite entonces realizar un test de ANOVA para cada instancia, es decir, se evaluará si hay evidencia estadística suficiente para afirmar la existencia de diferencia entre las medias de cada algoritmo en cada una de las instancias en concreto. Los resultados obtenidos se detallan a continuación.

Sobre la instancia "fox":

$$p - value = 5.8087 \times 10^{-19}$$

Sobre la instancia "monalisa\_sqr":

$$pvalue = 3.2058 \times 10^{-25}$$

Sobre la instancia "old man":

$$pvalue = 2.6991 \times 10^{-10}$$

Los 3 resultados anteriores nos indican que efectivamente existen al menos 2 algoritmos que difieren en la media del mejor fitness alcanzado para cada una de las instancias.

Corresponde entonces realizar las pruebas post hoc para identificar entre cuales existe dicha diferencia.

Los resultados se puede apreciar en las tablas XI, XII, XIII.



Fig. 8. Mejor fitness (normalizado) para cada instancia.

Respecto a la instancia fox, dado que los p-valores nos permiten comparar las 3 combinaciones concluimos que para dicha instancia el algoritmo con mejor desempeño es la variante localsearch, luego la variante gaussiana y por último el EA. Quizás es prudente remarcar que a pesar del pobre desempeño del EA este logra una diferencia considerable en el tiempo empleado para alcanzar dicho valor, de hecho, este alcanza una solución con aptitud similar en menos de la mitad de tiempo.

En la instancia monalisa podemos contrastar el desempeño de la variante localsearch con el EA y con la gaussiana, pero no a estos últimos dos entre sí. Tanto el EA como el guassiano son más performantes que el localsearch. Una vez más el EA únicamente destaca en el tiempo promedio de ejecución.

Finalmente, para la última instancia podemos extraer conclusiones de las tres comparaciones, donde una vez más el EA se ve superado en la calidad de la soluciones obtenidas por ambas variantes y exclusivamente destaca en el tiempo de ejecución.

Este resultado es desalentador aunque cabe resaltar que el algoritmo evolutivo logra su objetivo en mucho menos tiempo promedio aún dada la cantidad de operaciones realizadas en un algoritmo evolutivo, probablemente debido al uso de múltiples procesadores. Es importante resaltar que debido al elitismo del AE el mejor fitness obtenido generalmente se lograba mucho antes del máximo de generaciones.

Es posible además que exista una configuración de los valores de mutación (Por ejemplo, de un gen o de un individuo) del algoritmo evolutivo para los cuales este tenga un comportamiento similar al algoritmo gaussiano que en varias ocasiones lo supera, por lo cual se puede concluir que aunque logra superarlo probablemente exista una configuración que logre mejores resultados, dado que en esencia se está realizando la misma operación aunque sin otros operadores característicos de un AE.

### E. Eficiencia Computacional

Como fue mencionado en la sección II-F el algoritmo evolutivo fue implementado permitiendo su ejecución paralela. Esto permite alcanzar una mayor capacidad de procesamiento y por consiguiente un menor tiempo de procesamiento.

El siguiente gráfico muestra como el uso de una mayor cantidad de CPUs disminuye el tiempo de ejecución :

| Alg1         | Alg2         | pvalue                   |
|--------------|--------------|--------------------------|
| EA           | local_search | $2.1911 \times 10^{-11}$ |
| EA           | gaussian     | $4.3377 \times 10^{-7}$  |
| local_search | gaussian     | $8.4377 \times 10^{-14}$ |

 $\begin{tabular}{ll} TABLE~XI\\ P-VALORES~RESULTADO~DEL~TEST~POST~HOC~DE~LA~INSTANCIA~FOX\\ \end{tabular}$ 

| Alg1         | Alg2         | pvalue                   |
|--------------|--------------|--------------------------|
| EA           | local_search | $2.8250 \times 10^{-27}$ |
| EA           | gaussian     | 0.3197                   |
| local_search | gaussian     | $3.9754 \times 10^{-16}$ |

TABLE XII P-VALORES RESULTADO DEL TEST POST HOC DE LA INSTANCIA MONALISA



Fig. 9. Tiempo en segundos por cantidad de CPU usada.

Es clara la tendencia negativa. Sin embargo, también es claro que la disminución de tiempo requerido no es lineal a la cantidad de CPUs utilizadas lo cual se puede observar bajo la métrica *speedup* de la tabla XIV.

Valores para las otras instancias aparecen en el anexo, tablas XV y XVI.

#### F. Ejecuciones informales

En IV se presentarán imágenes obtenidas luego de pruebas informales del programa. De ellas se destaca la distribución no uniforme

| Alg1         | Alg2         | pvalue                   |
|--------------|--------------|--------------------------|
| EA           | local_search | $3.8243 \times 10^{-12}$ |
| EA           | gaussian     | 0.0456                   |
| local_search | gaussian     | $9.7431 \times 10^{-8}$  |

TABLE XIII
P-VALORES RESULTADO DEL TEST POST HOC DE LA INSTANCIA OLD\_MAN

| CPU | time     | speedup | efficiency |
|-----|----------|---------|------------|
| 1   | 394.2663 | 1.0000  | 1.0000     |
| 2   | 222.0688 | 1.7754  | 0.8877     |
| 3   | 169.1529 | 2.3308  | 0.7769     |
| 4   | 145.1067 | 2.7171  | 0.6793     |

TABLE XIV
MÉTRICAS DESEMPEÑO EJECUCIÓN PARALELA INSTANCIA FOX.

de los triángulos, los cuales aparecen en mayor cantidad en zonas donde hay mayor variación de colores.

#### IV. CONCLUSIONES

Es claro que el algoritmo planteado tiene muchos detalles a mejorar. Se resalta de él aún así características como su inicialización (mejoras como la de detección de bordes tanto como el denoising fueron detalles claves para obtener individuos más aptos e imágenes de mejor calidad), además de la velocidad con la que se logra el objetivo principal comparado con otros métodos utilizados como comparación, lo cual no se habría logrado sin el uso de múltiples procesos.

En cuanto a detalles a mejorar, la comparación con otros algoritmos lleva a la conclusión de que es probable que falte una mayor exhaustividad en cuanto a la parametrización del algoritmo. Es claro que un algoritmo evolutivo tiene una cantidad masiva de parámetros e intentar todas las combinaciones es imposible en un tiempo acotado. Es más, distintas imágenes podrían ser buenas para distintas combinaciones por lo que seguramente existan múltiples "mejores combinaciones", dificultando aún más el trabajo.

Es claro además que en este tipo de problemas donde se trabaja con procesamiento de imágenes lenguajes como C o C++ serían una opción indudablemente superior si de eficiencia computacional se tratase. No se considera a Python una mala elección dado que el trabajo humano se reduce ampliamente, lo cual es fundamental en situaciones tanto empresariales como universitarias donde el tiempo es crucial. Aún así, se considera beneficioso el uso de librerías como numpy o cv2, que utilizan rutinas implementadas en C y hacen su trabajo especialmente rápido aún estando en un lenguaje débilmente tipado e interpretado. Se destaca además que al utilizar múltiples cajas negras (funciones ya implementadas) tales como la librería DEAP, Delaunay, o Pillow fue necesario utilizar muchos casteos de tipos que podrían haberse evitado haciendo las implementaciones de forma manual.

En cuanto a la representación, es claro que no fue la mejor elegida dadas las características de las coordenadas. Es posible que un genotipo alternativo como una matriz booleana, donde cada valor tiene un 1 si la coordenada correspondiente es un vértice de la imagen. Esto mejoraría los problemas que se dan en el cruzamiento aunque empeoraría en cuanto a memoria utilizada. Se destaca por otro lado que los métodos utilizados logran mitigar los defectos de la representación, aunque sin duda hace falta investigar esto con más detalle.

























Fig. 10. Histograms and p-values associated to each configuration



Fig. 11. Histograms and p-values associated to each tournsize value



Fig. 12. Histograms and p-values associated to each algorithm for "fox" instance  $% \left( 1\right) =\left( 1\right) \left( 1\right)$ 











Fig. 14. Histograms and p-values associated to each algorithm for "old\_man" instance



Fig. 15. Instancia "ultima\_cena.jpg" usada en la evaluación experimental



Fig. 16. Instancia "old\_man.jpeg" usada en la evaluación experimental



Fig. 17. Instancia "fox.jpg" usada en la evaluación experimental



Fig. 18. Instancia "monalisa\_sqr.jpg" usada en la evaluación experimental

| CPU | time     | speedup | efficiency |
|-----|----------|---------|------------|
| 1   | 557.4455 | 1.0000  | 1.0000     |
| 2   | 311.9573 | 1.2638  | 0.6319     |
| 3   | 233.5849 | 1.6879  | 0.5626     |
| 4   | 197.8120 | 1.9931  | 0.4983     |

| CPU | time     | speedup | efficiency |  |
|-----|----------|---------|------------|--|
| 1   | 783.0731 | 1.0000  | 1.0000     |  |
| 2   | 460.7971 | 0.8556  | 0.4278     |  |
| 3   | 348.8206 | 1.1303  | 0.3768     |  |
| 4   | 301.5565 | 1.3074  | 0.3269     |  |

TABLE XVI MÉTRICAS DESEMPEÑO EJECUCIÓN PARALELA INSTANCIA OLD\_MAN.

| 0.8 0.01  | 0.8 0.05  | 0.8 0.1   | 0.9 0.01  | 0.9 0.05  | 0.9 0.1   |
|-----------|-----------|-----------|-----------|-----------|-----------|
| 1285.6718 | 1296.2316 | 1257.1360 | 1282.1887 | 1270.8018 | 1247.1361 |
| 1277.8005 | 1266.7087 | 1277.8595 | 1293.3680 | 1203.5224 | 1222.5994 |
| 1283.5207 | 1282.1819 | 1257.9150 | 1267.7370 | 1268.1959 | 1278.8437 |
| 1268.6046 | 1296.2809 | 1212.0996 | 1276.4848 | 1238.1162 | 1276.7174 |
| 1266.4327 | 1197.1615 | 1278.3394 | 1276.0069 | 1253.7022 | 1248.5497 |
| 1249.9504 | 1234.0554 | 1278.7676 | 1288.5598 | 1290.6218 | 1249.4327 |
| 1272.4721 | 1273.4345 | 1272.4503 | 1259.5005 | 1232.3408 | 1287.5816 |
| 1279.1580 | 1273.5890 | 1269.1835 | 1241.9385 | 1222.1688 | 1197.9369 |
| 1263.9115 | 1264.8539 | 1253.5634 | 1264.5462 | 1208.2918 | 1243.9483 |
| 1311.4938 | 1272.8676 | 1261.7821 | 1274.8375 | 1263.8410 | 1269.3246 |
| 1290.4645 | 1279.7795 | 1286.2260 | 1257.0741 | 1233.0469 | 1247.9482 |
| 1288.0625 | 1261.9743 | 1268.5354 | 1257.0056 | 1230.4345 | 1250.9151 |
| 1309.0145 | 1269.0062 | 1257.8357 | 1311.0611 | 1215.1523 | 1258.5598 |
| 1290.9403 | 1269.0272 | 1248.5782 | 1276.7160 | 1298.5209 | 1204.5557 |
| 1276.8797 | 1246.9403 | 1253.9363 | 1271.2036 | 1247.3562 | 1258.7548 |
| 1308.3408 | 1259.4911 | 1281.7611 | 1250.6130 | 1269.0497 | 1244.8141 |
| 1284.3283 | 1253.7797 | 1274.9837 | 1268.2817 | 1275.5456 | 1267.3656 |
| 1291.1544 | 1268.7488 | 1253.9245 | 1265.6365 | 1208.7293 | 1220.5942 |
| 1278.5617 | 1284.8983 | 1273.1054 | 1284.3675 | 1270.2110 | 1236.4464 |
| 1294.3869 | 1268.3956 | 1286.0519 | 1295.0319 | 1278.8329 | 1255.8330 |
| 1274.3965 | 1251.7734 | 1249.3824 | 1288.0501 | 1273.7892 | 1218.3705 |
| 1270.1234 | 1284.7593 | 1250.7912 | 1327.0271 | 1234.0046 | 1248.7563 |
| 1247.6159 | 1237.5675 | 1263.8418 | 1257.1326 | 1226.1833 | 1214.4975 |
| 1257.3569 | 1269.9647 | 1252.7585 | 1249.3579 | 1260.1345 | 1216.1588 |
| 1262.4379 | 1262.7887 | 1244.8466 | 1254.7337 | 1262.8462 | 1259.9421 |
| 1306.1583 | 1281.6706 | 1268.4594 | 1262.9895 | 1235.4076 | 1218.8816 |
| 1280.4407 | 1279.9461 | 1248.0241 | 1278.2913 | 1255.7811 | 1227.7410 |
| 1285.4793 | 1238.4895 | 1269.8589 | 1259.6509 | 1272.6496 | 1206.3900 |
| 1306.4801 | 1277.4858 | 1264.4755 | 1269.5254 | 1230.9654 | 1256.9984 |
| 1255.7520 | 1236.3769 | 1236.7613 | 1247.8087 | 1243.5220 | 1241.1383 |
|           |           |           |           |           |           |

TABLE XVII RESULTADOS NUMÉRICOS DEL MEJOR FITNESS OBTENIDO EN CADA EJECUCIÓN PARA CADA CONFIGURACIÓN PARAMÉTRICA

| 2         | 3         |
|-----------|-----------|
| 1295.0564 | 1332.4642 |
| 1314.0835 | 1307.8886 |
| 1321.9536 | 1319.9888 |
| 1280.4055 | 1286.9034 |
| 1315.2798 | 1268.5276 |
| 1293.7734 | 1301.6071 |
| 1277.6218 | 1256.6834 |
| 1262.9631 | 1272.2587 |
| 1320.7925 | 1273.5196 |
| 1304.8608 | 1304.5471 |
| 1286.4181 | 1307.0920 |
| 1261.7812 | 1261.2181 |
| 1302.9913 | 1329.4915 |
| 1267.1699 | 1286.1576 |
| 1264.3638 | 1277.8901 |
| 1280.9976 | 1290.5736 |
| 1289.6851 | 1282.7918 |
| 1312.3864 | 1282.0402 |
| 1286.9146 | 1283.5717 |
| 1272.8391 | 1312.9531 |
| 1290.5929 | 1260.1048 |
| 1311.0519 | 1328.9160 |
| 1289.0652 | 1295.6980 |
| 1256.5770 | 1278.5302 |
| 1264.9878 | 1296.0841 |
| 1275.3501 | 1306.5349 |
| 1279.1265 | 1308.4746 |
| 1273.2254 | 1305.8820 |
| 1297.6123 | 1296.5932 |
| 1277.8450 | 1337.0260 |

TABLE XVIII

RESULTADOS NUMÉRICOS DEL MEJOR FITNESS OBTENIDO EN CADA EJECUCIÓN PARA LOS DIFERENTES VALORES DE tournsize

| EA-fox   | ls-fox   | g-fox    | EA-monalisa | ls-monalisa | g-monalisa | EA-old_man | ls-old man | g-old_man |
|----------|----------|----------|-------------|-------------|------------|------------|------------|-----------|
| 206.2058 | 178.7275 | 217.9447 | 128.0883    | 170.9017    | 121.6847   | 620.1102   | 592.3749   | 561.6418  |
| 204.5051 | 213.0275 | 251.5757 | 141.3873    | 164.2051    | 126.9666   | 625.7992   | 557.0035   | 581.0144  |
| 202.4320 | 180.8425 | 204.3949 | 129.6351    | 166.8769    | 116.5370   | 601.6035   | 570.5601   | 620.2943  |
| 207.0510 | 188.7812 | 198.8661 | 135.2533    | 169.8875    | 112.5757   | 608.2018   | 602.7074   | 646.8996  |
| 199.2354 | 187.0419 | 244.7806 | 131.0436    | 165.7596    | 139.9465   | 619.9887   | 587.6206   | 632.2120  |
| 207.0242 | 202.2994 | 240.3157 | 130.0731    | 164.0303    | 165.0247   | 605.3587   | 587.5126   | 657.6629  |
| 207.4972 | 181.4400 | 221.3665 | 129.9022    | 150.6502    | 120.9623   | 599.2735   | 563.1057   | 591.9690  |
| 209.0009 | 188.7611 | 202.8646 | 139.0126    | 167.9505    | 122.6007   | 595.2606   | 588.2255   | 591.3814  |
| 204.7178 | 184.3599 | 230.8892 | 134.9930    | 163.1332    | 136.1244   | 617.7540   | 595.4134   | 590.8487  |
| 212.7071 | 181.1839 | 237.6027 | 140.9338    | 181.5786    | 117.7051   | 612.1374   | 583.1280   | 633.5005  |
| 204.3450 | 209.2648 | 223.4898 | 140.7503    | 152.1391    | 148.0525   | 609.1867   | 591.1248   | 612.0691  |
| 194.7450 | 186.6593 | 234.6259 | 131.6095    | 160.0193    | 143.5785   | 603.4724   | 601.5338   | 627.1506  |
| 196.4175 | 173.3540 | 194.0197 | 131.5338    | 164.5477    | 120.1403   | 619.0388   | 580.2602   | 587.7564  |
| 205.3671 | 188.3459 | 215.6567 | 132.8496    | 167.2136    | 116.2292   | 607.0347   | 599.5173   | 671.7710  |
| 199.2126 | 167.1225 | 226.3300 | 133.3322    | 175.3009    | 117.3582   | 599.1969   | 563.2907   | 618.5382  |
| 201.1157 | 167.3361 | 218.4415 | 131.8696    | 179.2272    | 125.2805   | 596.4124   | 583.9168   | 579.4784  |
| 209.9922 | 177.8215 | 208.0153 | 129.4282    | 156.4704    | 152.0982   | 615.3960   | 589.3143   | 672.5558  |
| 208.2508 | 193.3161 | 225.4000 | 131.4776    | 172.2621    | 149.2224   | 605.8951   | 571.3749   | 595.1651  |
| 198.5744 | 189.2554 | 251.9157 | 134.2414    | 173.3159    | 116.6437   | 607.6637   | 571.9280   | 622.2419  |
| 206.3213 | 183.2192 | 225.9861 | 131.5077    | 156.6312    | 128.3394   | 597.2828   | 592.0346   | 611.5013  |
| 204.5470 | 167.9364 | 216.2909 | 133.5893    | 173.3001    | 131.9909   | 622.0458   | 565.0941   | 619.1463  |
| 199.8934 | 182.0464 | 238.8941 | 131.5835    | 167.7425    | 158.4678   | 598.0827   | 587.7453   | 605.4309  |
| 205.0182 | 184.3949 | 223.2209 | 132.2594    | 170.9937    | 150.2719   | 614.1677   | 577.9632   | 581.3623  |
| 213.0499 | 198.5511 | 264.6492 | 131.1639    | 172.4809    | 135.5998   | 593.9021   | 587.9500   | 647.7596  |
| 200.6789 | 181.2217 | 240.5804 | 131.2341    | 148.0444    | 112.8297   | 595.6968   | 578.7406   | 630.9273  |
| 210.5742 | 186.5493 | 211.2079 | 133.0896    | 163.1085    | 124.2936   | 611.3639   | 570.2534   | 631.3304  |
| 200.9346 | 192.9215 | 220.0357 | 135.3204    | 165.7942    | 132.2776   | 604.9042   | 576.8815   | 619.9482  |
| 216.1583 | 185.2223 | 247.2411 | 135.9135    | 169.4846    | 141.3947   | 607.7598   | 555.1271   | 602.0262  |
| 217.4636 | 203.0170 | 189.3914 | 133.2931    | 153.6176    | 117.7744   | 596.8963   | 590.5425   | 685.3580  |
| 206.1149 | 173.4219 | 221.8556 | 133.1114    | 163.2394    | 114.0330   | 604.0266   | 579.1382   | 638.4350  |

TABLE XIX RESULTADOS NUMÉRICOS DEL MEJOR FITNESS OBTENIDO EN CADA EJECUCIÓN PARA CADA PAR ALGORITMO-INSTANCIA

# REFERENCES

- Delaunay, Boris (1934). "Sur la sphère vide". Bulletin de l'Académie des Sciences de l'URSS, Classe des Sciences Mathématiques et Naturelles. 6: 793–800.
- [2] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel, Non-Local Means Denoising, Image Processing On Line, 1 (2011), pp. 208–212. https://doi.org/10.5201/ipol.2011.bcm\_nlm
- [3] OpenCV-Python. https://docs.opencv.org/
- [4] Li, Q., Wang, B., Fan, S. (2009). Browse Conference Publications Computer Science and Engineer ... Help Working with Abstracts An Improved CANNY Edge Detection Algorithm. In 2009 Second International Workshop on Computer Science and Engineering proceedings: WCSE 2009: 28–30 October 2009, Qingdao, China (pp. 497–500). Los Alamitos, CA: IEEE Computer Society
- Kolmogorov-Smirnov test for goodness of fit. https://docs.scipy.org/doc/ scipy/reference/generated/scipy.stats.kstest.html
- [6] ANOVA scipy library implementation. https://docs.scipy.org/doc/scipy/ reference/generated/scipy.stats.f\_oneway.html
- [7] Pairwise T test for multiple comparisons of independent groups. https://scikit-posthocs.readthedocs.io/en/latest/generated/scikit\_posthocs.posthoc\_ttest/
- [8] Holm–Bonferroni method https://en.wikipedia.org/wiki/Holm%E2% 80%93Bonferroni\_method
- [9] Family-wise error rate https://en.wikipedia.org/wiki/Family-wise\_error\_ rate