YOR9-2000-0776 Amendment dated 02/29/2004 S/N: 09/773,809

3,809 00280677aa Reply to office action mailed 1/30/2004

2

The following is a complete listing of all claims in the application, with an indication of the status of each:

## **Listing of claims:**

| 1 | 1. (withdrawn) A method for making prioritized recommendations to a            |
|---|--------------------------------------------------------------------------------|
| 2 | customer in the process of filling a market basket for purchase on an Internet |
| 3 | commerce site, the method comprising the steps of:                             |
| 4 | generating a matrix of training data;                                          |
| 5 | considering preferences based on associative and renewal buying                |
| 6 | history from the training data; and                                            |
| 7 | making a prioritized recommendation of items so as to maximize the             |
| 8 | likelihood that the customer will add to the market basket those items with    |
| 9 | higher priorities.                                                             |
| 1 | 2. (withdrawn) The method of claim 1, wherein the two preferences are          |
| 2 | estimated separately from the training data and combined in proper             |
| 3 | proportions to obtain an overall preference for item not yet in the market     |
| 4 | basket.                                                                        |
| 1 | 3. (original) A method for making prioritized recommendations to a             |
| 2 | customer in the process of filling a market basket for purchase on an Internet |
| 3 | commerce site, the method comprising the steps of:                             |
| 4 | collecting statistics from training data;                                      |
| 5 | precomputing model parameters from the collected statistics; and               |
| 6 | recommending ordering for a given partial market basket based on the           |
| 7 | precomputed model parameters.                                                  |
| 1 | 4. (original) The method of claim 3, wherein the step of collecting statistics |
| 2 | comprises the steps of                                                         |



3

- 3 (a) for each item j, obtaining  $n_i$  a number of baskets with item j purchased;
- 4 (b) for each item j, obtaining  $n_j$  a number of baskets with j being a sole item purchased;
- (c) for each pair of items i and j, obtaining a number of market baskets n<sub>ji</sub>
  with items j and i purchased together; and
  - (d) for each pair of items i and j, obtaining a number of market baskets  $n_{ii}$  with items i and j being the only two items purchased.



8

9

1 2

- 5. (original) The method of claim 4, wherein the step of precomputing model parameters comprises the steps of:
- 3 (a) computing  $\mathbf{P}(\text{renewal}) = \frac{\sum_{k} n_{k}'}{\sum_{k} n_{k}};$
- 4 (b) for each item j, computing  $P(j) = \frac{n_j}{\sum_k n_k}$ ;
- 5. (c) for each item j, computing  $\mathbf{P}(\text{renewal} \mid j) = \frac{n_j'}{n_j} + \mathbf{P}(\text{renewal}) \left(1 \frac{n_j'}{n_j}\right)$
- 6 ;
- 7 (d) for each item j, computing
- 8  $\mathbf{P}'(j \mid \text{renewal}) = \mathbf{P}(\text{renewal} \mid j) \times \frac{\mathbf{P}(j)}{\mathbf{P}(\text{renewal})};$
- 9 (e) for each pair of items i and j with  $n_{ij} \neq 0$ , computing
- 10  $\mathbf{P}(j \mid i) = \frac{n_{ji}}{\sum_{k} n_{ki}};$

Reply to office action mailed 1/30/2004

4

11

1

5

6

Ł

(f) for each pair of items i and j with  $n_{ij} \neq 0$ , computing

12 
$$\mathbf{P}(\text{renewal} \mid j,i) = \frac{n_{ji}'}{n_{ji}} + \mathbf{P}(\text{renewal}) \left(1 - \frac{n_{ji}'}{n_{ji}}\right) ; \text{ and }$$

13 (g) for each pair of items i and j with  $n_{ij} \neq 0$ , computing

14 
$$\mathbf{P}'(j \mid \mathrm{asso},i) = \mathbf{P}(j \mid i) \times \frac{(1-\mathbf{P}(\mathrm{renewal} \mid j,i))}{(1-\mathbf{P}(\mathrm{renewal} \mid i))}.$$



- 6. (original) The method of claim 5, wherein given a partial basket  $\mathbf{B} = \{i_1, i_2, \dots, i_m\}$
- 2 ...,  $i_k$  and  $\overline{\mathbf{B}}$  is a complementary set of items not in  $\mathbf{B}$ , the step of
- recommending ordering for a given partial market basket comprises the steps
- 4 of:
  - (a) if **B** is empty, sorting items in order of decreasing  $P(j \mid \text{renewal})$  and returning this as an item preference ordering;
- 7 (b) if **B** is non-empty, then
- 8 (i) computing  $\mathbf{P}(\text{renewal} \mid \mathbf{B}) = \min_{i, \in \mathbf{B}} \mathbf{P}(\text{renewal} \mid i_k)$ ;
- 9 (ii) compute a normalization factor  $\sum_{k \in \overline{\mathbf{B}}} \mathbf{P}'(k \mid \text{renewal})$ ;
- 10 (iii) for each item  $j \in \overline{\mathbf{B}}$ , computing

11 
$$\mathbf{P}(j \mid \text{renewal}) = \frac{\mathbf{P}'(j \mid \text{renewal})}{\sum_{k \in \overline{\mathbf{B}}} \mathbf{P}'(k \mid \text{renewal})};$$

- (iv) computing a normalization factor  $\sum_{k \in \overline{\mathbf{B}}} \mathbf{P}'(j \mid \text{asso,} \mathbf{B})$ ;
- (v) for each item  $j \in \overline{\mathbf{B}}$ , computing
- 14  $\mathbf{P}'(j \mid \mathsf{asso}, \mathbf{B}) = \mathsf{max}_{i_k \in \mathbf{B}} \mathbf{P}(j \mid \mathsf{asso}, i_k) ;$

## Amendment dated 02/29/2004

Reply to office action mailed 1/30/2004

5

15 for each item  $j \in \overline{\mathbf{B}}$ , computing (vi)  $P(j \mid asso,B) = \frac{P'(j \mid asso,B)}{\sum_{k=1}^{\infty} P'(k \mid asso,B)};$ 16 for each item  $j \in \overline{\mathbf{B}}$ , computing 17 (vii) P(j|B) = P(j | asso,B)P(asso | B)+P(j | renewal,B)P(renewal | B);18 19 and 20 (viii) sorting items in order of decreasing  $P(j \mid B)$  and returning this 21 as an item preference ordering. 1 7. (original) The method of claim 6, wherein the step of sorting comprises 2 the step of using a final probability obtained for each item, P(i | B), of a 3 customer buying the item to maximize profit by recommendation. 1 8. (original) The method of claim 7, wherein the step of using a final 2 probability of an item to maximize profit comprises the steps of: 3 assigning a profit amount, \$, to each item; 4 computing P(j | B)\$, for each item; and 5 ranking recommendations based on the computation of  $P(j \mid B)$ , for 6 each item.



1

2

3

9. (new) A method for making prioritized recommendations to a customer in the process of filling a market basket for purchase on an Internet commerce site, the method comprising the steps of:

collecting statistics on preferences for associative and renewal buying from training data;

precomputing model parameters from the collected statistics; and recommending ordering for a given partial market basket based on the precomputed model parameters.

6

- 1 10. (new) The method of claim 9, wherein the step of collecting statistics comprises the steps of:
- 3 (a) for each item j, obtaining  $n_j$  a number of baskets with item j purchased;
- 4 (b) for each item j, obtaining  $n_j$  a number of baskets with j being a sole item purchased;
  - (c) for each pair of items i and j, obtaining a number of market baskets  $n_{ji}$  with items j and i purchased together; and
  - (d) for each pair of items i and j, obtaining a number of market baskets  $n_{ji}$  with items i and j being the only two items purchased.



6

7

9

1

2

3

11. (new) The method of claim 10, wherein the step of precomputing model parameters comprises the steps of:

(a) computing P(renewal) = 
$$\frac{\sum_{k} n_{k}'}{\sum_{k} n_{k}};$$

- 4 (b) for each item j, computing  $P(j) = \frac{n_j}{\sum_k n_k}$ ;
- 5 (c) for each item j, computing  $\mathbf{P}(\text{renewal} \mid j) = \frac{n_j'}{n_j} + \mathbf{P}(\text{renewal}) \left(1 \frac{n_j'}{n_j}\right)$

6 ;

7 (d) for each item *j*, computing

8 
$$\mathbf{P}'(j \mid \text{renewal}) = \mathbf{P}(\text{renewal} \mid j) \times \frac{\mathbf{P}(j)}{\mathbf{P}(\text{renewal})};$$

9 (e) for each pair of items i and j with  $n_{ij} \neq 0$ , computing

$$\mathbf{P}(j \mid i) = \frac{n_{ji}}{\sum_{k} n_{ki}};$$

00280677aa

7

11

1

5

6

7

8

9

for each pair of items i and j with  $n_{ij} \neq 0$ , computing

12 
$$\mathbf{P}(\text{renewal} \mid j,i) = \frac{n_{ji}'}{n_{ji}} + \mathbf{P}(\text{renewal}) \left(1 - \frac{n_{ji}'}{n_{ji}}\right) ; \text{ and }$$

for each pair of items i and j with  $n_{ij} \neq 0$ , computing 13

14 
$$\mathbf{P}'(j \mid \mathrm{asso},i) = \mathbf{P}(j \mid i) \times \frac{(1 - \mathbf{P}(\mathrm{renewal} \mid j,i))}{(1 - \mathbf{P}(\mathrm{renewal} \mid i))}.$$



12. (new) The method of claim 11, wherein given a partial basket  $\mathbf{B} = \{i_1, i_2, ...\}$ 

...,  $i_k$  and  $\overline{\mathbf{B}}$  is a complementary set of items not in  $\mathbf{B}$ , the step of 2

3 recommending ordering for a given partial market basket comprises the steps

4 of:

> if **B** is empty, sorting items in order of decreasing P(i | renewal) and returning this as an item preference ordering;

(b) if **B** is non-empty, then

computing  $P(\text{renewal} \mid \mathbf{B}) = \min_{i_k \in \mathbf{B}} P(\text{renewal} \mid i_k)$ ; (i)

compute a normalization factor  $\sum_{k \in \overline{\mathbf{R}}} \mathbf{P}'(k \mid \text{renewal})$ ; (ii)

for each item  $j \in \overline{\mathbf{B}}$ , computing 10 (iii)

11 
$$\mathbf{P}(j \mid \text{renewal}) = \frac{\mathbf{P}'(j \mid \text{renewal})}{\sum_{k \in \overline{\mathbf{B}}} \mathbf{P}'(k \mid \text{renewal})};$$

computing a normalization factor  $\sum_{j \in \overline{R}} P'(j \mid asso, B)$ ; 12 (iv)

for each item  $i \in \overline{\mathbf{B}}$ , computing 13 (v)

 $\mathbf{P}'(j \mid \text{asso,} \mathbf{B}) = \max_{i_k \in \mathbf{B}} \mathbf{P}(j \mid \text{asso,} i_k) ;$ 14