2. ESTIMATION PONCTUELLE ET ESTIMATION PAR INTERVALLE

EXERCICE 2.1

La production moyenne d'un quartier de mine est de 400 berlines par jour. On veut connaître le rapport net de la production du quartier.

On a déterminé, pour chaque berline d'un échantillon de 20, le rapport $\frac{\text{net}}{\text{brut}}$.

On a trouvé:

0,60	0,71	0,63	0,71	0,56
0,71	0,46	0,45	0,55	0,75
0,58	0,79	0,79	0,74	0,62
0,57	0,63	0,68	0,64	0,58

1. Déterminer l'estimation ponctuelle de la moyenne population Utiliser la formule du polycopié Chapitre 2 – Tr 28.

$$\hat{\mu} = \bar{x} = \frac{\sum_{i=1}^{n} X_i}{n} = 0,6375$$

2. Déterminer un intervalle de confiance à 95 % pour la moyenne.

Choisir, dans le polycopié Chapitre 2 – Tr 28, la formule la plus proche du contexte de l'exercice (en ajoutant éventuellement des hypothèses).

$$\underline{\text{Donn\'ees\'echantillon}}: \qquad n=20 \qquad \overline{x} = \frac{\sum_{i=1}^n X_i}{n} = 0,6375 \qquad s = \sqrt{\frac{\sum_{i=1}^n x_i^2}{n} - \overline{x}^2} = 0,0950$$

Variance population inconnue, petit échantillon (n < 30) donc il faut faire l'hypothèse que X suit une loi normale pour pouvoir appliquer la formule suivante :

$$\overline{x} - t_{1-\frac{\alpha}{2}; n-1} \frac{s^*}{\sqrt{n}} \le \mu \le \overline{x} + t_{1-\frac{\alpha}{2}; n-1} \frac{s^*}{\sqrt{n}}$$

avec $s^* = \sqrt{\frac{n}{n-1}} s = 0,0975$ et

 $t_{1-\frac{\alpha}{2}; n-1} = t_{0,975; 19} = 2,093$

valeur lue dans la table de Student bilatérale pour la colonne $\alpha=0.05$ et la ligne 19 OU lue dans la table de Student unilatérale pour la colonne P = 0.975 et la ligne 19

Intervalle de confiance à 95 % pour
$$\mu$$

0,6375 - 0,0456 $\leq \mu \leq$ 0,6375 + 0,0456
0,5919 $\leq \mu \leq$ 0,6831

L'intervalle de confiance [0,59;0,68] a 95 % de chances de contenir la valeur μ de la moyenne population.

3. Déterminer la taille de l'échantillon pour ramener la marge d'erreur sur la moyenne à ± 0.03 ($\alpha = 5$ %).

Utiliser, dans un premier temps, l'approximation de u par t pour déterminer n.

Vérifier (puis ajuster éventuellement) le résultat obtenu en recalculant la marge d'erreur k avec t et la valeur de n obtenue précédemment.

On ne connaît toujours pas la valeur de la variance population donc, en supposant que X suit une loi normale, l'expression de la marge d'erreur est :

$$k = |\bar{x} - \mu| = 0.03 = t_{1 - \frac{\alpha}{2}; n - 1} \frac{s^*}{\sqrt{n}}$$
 avec $\widehat{\sigma^2} = s^{*2} = 0.0975^2$

On conserve la valeur estimée pour la variance (calculée à la question précédente) car, faute d'information supplémentaire, elle représente toujours la meilleure estimation pour la variance population.

On en déduit l'expression :
$$n = \frac{\left(t_{0,975; \, n-1}\right)^2}{k^2} s^{*2}$$

Comme on ne connaît pas n et que la valeur à lire dans la table de Student dépend de n, on utilise l'approximation de la loi de Student par la loi normale centrée réduite, valable à partir de n=30, ainsi :

$$n \cong \frac{\left(u_{0,975}\right)^2}{k^2} s^{*2} = \frac{(1,96)^2}{0,03^2} 0,0975^2 = 40,6 \cong 41$$

La valeur de n obtenue est supérieure à 30 donc l'approximation est valide.

Pour vérifier le résultat, on calcule la marge d'erreur k pour n = 41 avec la loi de Student :

$$k = t_{0,975; 41-1=40} = 0.0975 = 0.021 = 0.0975 = 0.0308$$

On trouve une marge d'erreur légèrement supérieure à la marge d'erreur voulue.

Pour affiner, on peut augmenter n d'une unité par itération et à chaque nouvelle valeur on peut recalculer k avec la loi de Student.

Le résultat le plus précis est obtenu pour n = 43:

$$k = t_{0,975; 43-1=42} \frac{0,0975}{\sqrt{43}} = 2,018 \frac{0,0975}{\sqrt{43}} = 0,0300$$

<u>Remarque</u>: la valeur de t pour 42 DL ne figure pas dans la table distribuée; elle est obtenue avec une fonction informatique, par exemple une fonction Excel (cf. tableau des fonctions Excel disponible sur Arche).

4. Déterminer un intervalle de confiance à 95 % pour la variance (n = 20).

Il faut faire l'hypothèse que X suit une loi normale et comme la moyenne population est toujours inconnue, on utilise la formule suivante :

Intervalle de confiance à 95 % pour σ^2

$$\frac{(n-1)s^{*2}}{\chi^{2}_{0,975; n-1=19}} \le \sigma^{2} \le \frac{(n-1)s^{*2}}{\chi^{2}_{0,025; n-1=19}}$$
$$\frac{(n-1)s^{*2}}{32,85} \le \sigma^{2} \le \frac{(n-1)s^{*2}}{8,91}$$
$$0,005 \le \sigma^{2} \le 0,020$$

L'intervalle de confiance [0,005;0,020] a 95 % de chances de contenir la valeur σ^2 de la variance population.

On peut vérifier que l'estimation ponctuelle $\widehat{\sigma^2} = s^{*2} = 0,0095$ est comprise entre les deux bornes de l'intervalle de confiance.