Generative Adversarial Networks and its applications

Takaya KOIZUMI

Mathematical Science, B4

Applied Mathematics and Physics informal seminor, 2nd

Contents

- 1 Generative Adversarial Networks
 - GAN の構造
 - GAN 目的といたちごっこ
 - 本当にいたちごっこで学 習できるのか
- 2 GAN's training instability and stabilization

- GAN の学習不安定性
- 学習の安定化: Spectral
- Normalization
- 3 GAN's Applications and

Social issues

- Cycle-Consistent Adversarial Networks
- 娯楽と GAN
- Deepfake による犯罪

Contents

- 1 Generative Adversarial Networks
 - GAN の構造
 - GAN 目的といたちごっこ
 - ■本当にいたちごっこで学
- 2 GAN's training instability and stabilization

- GAN の学習不安定性
- 学習の安定化: Spectral
- 3 GAN's Applications and Social issues
 - Cycle-Consistent
 - 娯楽と GAN
 - Deepfake による犯罪

Generarive Adversarial Networks

敵対的生成ネットワーク (Generative Adversarial Networks, GAN) は Goodfellow らによって生み出された。2つのニューラルネット ワークを用いる教師なし学習の一種である。現在も様々な亜種が 多く考案されており、近年様々なアプリに応用されている、

Definition (Generative Adversarial Networks[1])

ML空間 $(\mathcal{X}, \mathcal{Y}, \mathbb{D}, \mathcal{H}_{G} \times \mathcal{H}_{D}, \mathcal{L}_{\mathbb{D}})$ を以下のように定義する. \mathcal{X} は \mathbb{R}^d のコンパクト部分集合, $\mathcal{Y} = [0,1]$,

ここで、 \mathcal{Z} は潜在空間と呼ばれる \mathbb{R}^d の部分空間である、また、 \mathbb{P}_c は $G \in \mathcal{H}_G$ と確率分布 \mathbb{P}_Z (一様分布や正規分布) に従う確率変数 $Z: \Omega \to \mathcal{Z}(\mathcal{I})$ に対し, G(Z) が従う確率分布である. この時,

$$\operatorname*{arg\ min}_{G\in\mathcal{H}_{G}}\operatorname*{max}_{D\in\mathcal{H}_{D}}\mathcal{L}_{\mathbb{D}}(G,D).$$

を求める問題を敵対的生成ネットワーク (GAN)という.

Generator & Discriminator

Definition (Generator & Discriminator)

 $(\mathcal{X}, \mathcal{Y}, \mathbb{D}, \mathcal{H}_G \times \mathcal{H}_D, \mathcal{L}_{\mathbb{D}})$ を GAN とする. $G \in \mathcal{H}_G$ を生成器 (Generator) と呼び, $D \in \mathcal{H}_D$ を判別器 (Discriminator) と呼ぶ. ま た, 経験損失関数 $\mathcal{L}_{\mathbb{D}}$ を Adversarial loss という. さらに, $G \in \mathcal{H}_{G}$ に対して $D_c^* \in \mathcal{H}_D$ が,

$$orall D \in \mathcal{H}_D, \mathcal{L}_{\mathbb{D}}(G, D_G^*) \geq \mathcal{L}_{\mathbb{D}}(G, D)$$

を満たす時, D_c^* は G に関しての最適 Discriminator であるという.

Notation 2.

今後, p_{data} は \mathbb{P}_{data} の確率密度関数であり, p_G は \mathbb{P}_G の確率密度関 数を表すものとする.

- 1 Generative Adversarial Networks
 - GAN の構造
 - GAN 目的といたちごっこ
 - 本当にいたちごっこで学
- 2 GAN's training instability and stabilization

- GAN の学習不安定性
- 学習の安定化: Spectral
- 3 GAN's Applications and Social issues
 - Cycle-Consistent
 - 娯楽と GAN
 - Deepfake による犯罪

GANのやりたいこと

今まで敵対的生成ネットワークの構造を話してきたが、ここでは GAN の成し遂げたいことについて解説する. GAN の目的は「デー タの確率密度関数 p_{data} をニューラルネット G を用いて近似し、 あたえられたデータにそっくりなデータ G(z) を生成すること」 である.

これを実現するために GAN では Gと D のいたちごっこ (min-max ゲーム) を行っている.

GAN のいたちごっこ

- G は偽物を作成する.
- D は与えられたデータが本物かどうかを判定する (本物であ る確率を返す).

すなわち, GとDを敵対させて学習させ, データ G(z) を生成する 手法が GAN である.

GAN でいたちごっこを実現させる要は GAN の経験損失関数 (Adversarial loss),

$$egin{aligned} \mathcal{L}_{\mathbb{D}}(G,D) &= \mathbb{E}_{x \sim \mathbb{P}_{data}}[\log D(x)] + \mathbb{E}_{x' \sim \mathbb{P}_{G}}[\log(1-D(x'))] \ &= \mathbb{E}_{x \sim \mathbb{P}_{data}}[\log D(x)] + \mathbb{E}_{z \sim \mathbb{P}_{Z}}[\log(1-D(G(z)))] \end{aligned}$$

である. x は本物のデータ. G(z) は偽物のデータであるから. D(x), 1 - D(G(z)) が大きくなるように学習させると D(v) はデー タyが本物である確率に近づく. 逆に, D(y) はデータyが本物で ある確率であるから、1 - D(G(z))が小さくなるように学習させ ると G(z) は本物のデータに近づく. すなわち. $\mathcal{L}_{\mathbb{D}}(G,D)$ を $G \in \mathcal{H}_C$ に関して最小化. $D \in \mathcal{H}_D$ に関して最大化させることが いたちごっこを実現していることがわかる.

- 1 Generative Adversarial Networks
 - GAN の構造
 - GAN 目的といたちごっこ
 - 本当にいたちごっこで学 習できるのか
- 2 GAN's training instability and stabilization

- GAN の学習不安定性
- 学習の安定化: Spectral
- 3 GAN's Applications and Social issues
 - Cycle-Consistent
 - 娯楽と GAN
 - Deepfake による犯罪

ここからは実際にいたちごっこの結果、pc が pdata と等しくなる ことを示す.

Proposition (Optimal Discriminator[1])

 $(\mathcal{X}, \mathcal{Y}, \mathbb{D}, \mathcal{H}_G \times \mathcal{H}_D, \mathcal{L}_{\mathbb{D}})$ を GAN とし, $G \in \mathcal{H}_G$ とする. この時, 最適 Discriminator は以下で与えられる.

$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)}.$$

命題の証明

Proof.

期待値の計算から

$$\mathcal{L}_{\mathbb{D}}(G, D) = \int_{\mathcal{X}} p_{data}(x) \log(D(x)) dx + \int_{\mathcal{X}} p_{G}(x) \log(1 - D(x)) dx$$
$$= \int_{\mathcal{X}} p_{data}(x) \log(D(x)) + p_{G}(x) \log(1 - D(x)) dx$$

を得る. ここで, $(a,b) \in \mathbb{R}^2 - (0,0)$ に対して, (0,1) 上の関数 $F(v) = a \log(v) + b \log(1-v) \, \mathcal{D}^{s}$

$$\operatorname*{arg\ max}_{y\in(0,1)}F(y)=\frac{a}{a+b}$$

を満たすことを用いれば主張が従う.

Takava KOIZUMI

先の命題より \mathcal{H}_c 上の関数 $C:\mathcal{H}_c\to\mathbb{R}$ が

$$C(G) = \mathbb{E}_{x \sim \mathbb{P}_{data}} \left[\log \frac{p_{data}(x)}{p_{data}(x) + p_G(x)} \right] + \mathbb{E}_{x' \sim \mathbb{P}_G} \left[\log \frac{p_G(x')}{p_{data}(x') + p_G(x')} \right]$$

で定まる. 関数 C を仮想訓練基準 (virtual training criterion) と 呼ぶ

Theorem (GAN の最小性[1])

 $(\mathcal{X},\mathcal{Y},\mathbb{D},\mathcal{H}_G\times\mathcal{H}_D,\mathcal{L}_\mathbb{D})$ を GAN, $C:\mathcal{H}_G\to\mathbb{R}$ を仮想訓練基準と する. C が最小値 $-\log 4$ を取るための必要十分条件は $\mathbb{P}_{data} = \mathbb{P}_{G}$ となることである

Proof.

 $\mathbb{P}_{data} = \mathbb{P}_{G}$ とする. この時.

$$\begin{split} C(G) &= \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{data}} \left[\log \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_G(\mathbf{x})} \right] + \mathbb{E}_{\mathbf{x}' \sim \mathbb{P}_G} \left[\log \frac{p_G(\mathbf{x}')}{p_{data}(\mathbf{x}') + p_G(\mathbf{x}')} \right] \\ &= \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{data}} \left[\log \frac{1}{2} \right] + \mathbb{E}_{\mathbf{x}' \sim \mathbb{P}_G} \left[\log \frac{1}{2} \right] \\ &= -\log 2 - \log 2 = -\log 4 \end{split}$$

であるから, C は常に最小値 – log 4 をとる. 逆に C の最小値が − log 4 であるとする. JSD を Jensen-Shannon Divergence とし, C を変形すると

$$C(G) = -\log 4 + JSD(\mathbb{P}_{data}||\mathbb{P}_G)$$

となる. ここで $JSD(\mathbb{P}_{data}||\mathbb{P}_G) = 0$ と $\mathbb{P}_{data} = \mathbb{P}_G$ は同値だから $\mathbb{P}_{data} = \mathbb{P}_{G} \ \mathcal{C} \ \mathcal{B} \ \mathcal{B}$.

Contents

- 1 Generative Adversarial Networks
 - GAN の構造
 - GAN 目的といたちごっこ
 - ■本当にいたちごっこで学
- 2 GAN's training instability and stabilization

■ GAN の学習不安定性

- 学習の安定化:Spectral
- 3 GAN's Applications and
 - Social issues
 - Cycle-Consistent
 - 娯楽と GAN
 - Deepfake による犯罪

前節で GAN の学習について述べたが、述べた枠組みでは Discriminator が最適化に近づけは近づくほど、GAN の学習が不安 定 (G の学習勾配が 0 になって学習が進まなくなる) ことを示す. この subsection では以下の仮定を P とおく.

assumption P

 $(\mathcal{X}, \mathcal{Y}, \mathbb{D}, \mathcal{H}_G \times \mathcal{H}_D, \mathcal{L}_{\mathbb{D}})$ をGANとする. この時, \mathcal{X} のコンパクト 部分集合 P. M が存在して.

$$M \cap P = \emptyset$$
, $supp(p_{data}) \subset M$ かつ $supp(p_G) \subset P$

が成立する。

Perfect Discriminator Theorem

Theorem (The Perfect Discriminator Theorem[3])

 $(\mathcal{X},\mathcal{Y},\mathbb{D},\mathcal{H},\mathcal{L}_{\mathbb{D}})$ を GAN とする. 仮定 P が成り立つならば, 以下 の性質を満たす smooth な最適 Discriminator D* が存在する.

1
$$\mathbb{P}_{data}(D^*=1)=1$$
 かっク $\mathbb{P}_G(D^*=0)=1$

$$\forall x \in M \cup P, \nabla_x D^*(x) = 0.$$

なお, 最大値の一意性より, $D_c^* = D^*$ であるから, 以下この命題の D* を D* と表記する.

Proof.

 $P \cap M = \emptyset$ だから, $\delta = d(P, M)$ とすれば $\delta > 0$ である. ここで,

$$\hat{M} = \{x \in \mathcal{X} \mid d(x, M) \le \delta/3\}, \quad \hat{P} = \{x \in \mathcal{X} \mid d(x, P) \le \delta/3\}$$

と定義する. M. P がコンパクトであることと. δ の定義より \hat{M} . \hat{P} は共にコンパクトであり. $\hat{M} \cap \hat{P} = \emptyset$ である. したがって. Urysohn's smooth lemma より

$$\exists D^* \in \mathcal{H}_D$$
 : smooth s.t. $D^*|_{\hat{M}} = 1$ $begin{align} b > D > D^*|_{\hat{P}} = 0 \end{aligned}$

が成立する. 任意の $x \in \text{supp}(p_{data})$ に対して, $D^*(x) = 1$ だから, $\log D_c^*(x) = 0$ である. また, 任意の $x \in \text{supp}(p_G)$ に対して, $D^*(x) = 0$ だから, $\log(1 - D_c^*(x)) = 0$ である. これより D^* が最 適 Discriminator であること, 及び 1. が従う. また D^* は $M \cup P$ 上 で定値写像だから2が成立する。

以下, $D \in \mathcal{H}_D$ のノルムを以下で定義する.

$$||D|| = \sup_{x \in \mathcal{X}} |D(x)| + ||\nabla_x D(x)||_2$$

Theorem (Vanishing gradient on the Generator)

 $(\mathcal{X},\mathcal{Y},\mathbb{D},\mathcal{H},\mathcal{L}_{\mathbb{D}})$ を GAN とする. 仮定 P および, $\varepsilon > 0$ を任意にと る ある M > 0 が存在して

$$\forall D \in \mathcal{H}_D, \|D_G - D_G^*\| < \varepsilon$$
 かつ $\mathbb{E}_{z \sim \mathbb{P}_Z}[\|J_\theta G_\theta(z)\|_2^2] \leq M^2$

が成立するとする。この時、

$$\forall D \in \mathcal{H}_D, \|\nabla_{\theta} \mathbb{E}_{z \sim \mathbb{P}_Z}[\log(1 - D(G_{\theta}(z)))]\|_2 < M \frac{\varepsilon}{1 - \varepsilon}$$

が成立する (証明は [3] Thm 2.4. をみよ).

Corollary

 $(\mathcal{X}, \mathcal{Y}, \mathbb{D}, \mathcal{H}, \mathcal{L}_{\mathbb{D}})$ を GAN とする. 仮定 P および, $\varepsilon > 0$ を任意にと る。あるM > 0が存在して

$$\forall D \in \mathcal{H}_D, \|D_G - D_G^*\| < \varepsilon$$
 かっ $\mathbb{E}_{z \sim \mathbb{P}_Z}[\|J_\theta G_\theta(z)\|_2^2] \leq M^2$

が成立するとする. この時.

$$\lim_{D \to D_G^*} \nabla_{\theta} \mathbb{E}_{z \sim \mathbb{P}_Z}[\log(1 - D(G_{\theta}(z)))] = 0$$

が成立する.

- 1 Generative Adversarial Networks
 - GAN の構造
 - GAN 目的といたちごっこ
 - ■本当にいたちごっこで学
- 2 GAN's training instability and stabilization

- GAN の学習不安定性
- 学習の安定化: Spectral
- Normalization
- 3 GAN's Applications and

Social issues

- Cycle-Consistent
- 娯楽と GAN
- Deepfake による犯罪

前節では GAN の学習が不安定になることを述べた。ここでは、 Mivato らによって開発された行列のスペクトル (最大特異値)を 用いて GAN の学習を安定化させる手法である Spectral Normalization について述べる.

Notation

 $n \times m$ 行列 A に対して, A の作用素ノルムを $||A||_{op}$ と表す. また, Lipschitz 連続関数 $f: \mathcal{X} \to \mathbb{R}$ に対して, Lipschitz ノルムを $||f||_{Lip}$ と表す。

 $(\mathcal{X},\mathcal{Y},\mathbb{D},\mathcal{H}_G\times\mathcal{H}_D,\mathcal{L}_{\mathbb{D}})$ を GAN とする. f を D から最終層の活性 化関数 A を省いたものとする (すなわち $D = A \circ f$.)

Proposition

f の各層の活性化関数の Lipschitz ノルムが 1 であるとする. こ の時.

$$||f||_{Lip} \le \prod_{k=1}^{K+1} ||W_k||$$

が成立する. ここで $g_k = \eta(W_k x + b_k)$ とした時,

Proof.

Lipschitz ノルムの性質と $||g_k||_{Lip} = ||W_k||_{op}$ より,

$$||f||_{Lip} \le \prod_{k=1}^{K} ||g_k||_{Lip}$$

$$= \prod_{k=1}^{K} ||\eta_k||_{Lip} ||W_k||_{op}$$

$$= \prod_{k=1}^{K} ||W_k||_{op}.$$

Spectral Normalization Generative Adversarial Networks

したがって、各層のパラメータ W_K の各成分を $\|W_k\|_{op}$ で割れば、 $||f||_{Lin} \le 1$ とすることができる. この手法を, Spectral Normalization と呼ぶ ($||A||_{op}$ は A の最大特異値に等しい.)

Definition (SNGAN[4])

 $(\mathcal{X}, \mathcal{Y}, \mathbb{D}, \mathcal{H}_G \times \mathcal{H}_D, \mathcal{L}_{\mathbb{D}})$ を GAN の ML 空間とする. この時, Spectral Normalization を用いて

> arg min arg max $\mathcal{L}_{\mathbb{D}}(G, D)$. $G \in \mathcal{H}_G$ $D \in \mathcal{H}_D, ||f||_{Lip} \leq 1$

を解く問題を SNGAN という. ここで, f は D から最終層の活性化

Contents

- 1 Generative Adversarial Networks
 - GAN の構造
 - GAN 目的といたちごっこ
 - ■本当にいたちごっこで学
- 2 GAN's training instability and stabilization

- GAN の学習不安定性
- 学習の安定化: Spectral
- 3 GAN's Applications and Social issues
 - Cycle-Consistent Adversarial Networks
 - 娯楽と GAN
 - Deepfake による犯罪

Cycle-Consistent Adversarial Networks

Takaya KOIZUMI Mathematical Science, B4

- 1 Generative Adversarial Networks
 - GAN の構造
 - GAN 目的といたちごっこ
 - ■本当にいたちごっこで学
- 2 GAN's training instability and stabilization

- GAN の学習不安定性
- 学習の安定化: Spectral

- 3 GAN's Applications and
 - Social issues
 - Cycle-Consistent
 - 娯楽と GAN
 - Deepfake による犯罪

MakeGirlsMoe と Crypko

アニメに出てくるような画像が作れる.

Figure: MakeGirlsMoe (https://make.girls.moe /)

Crypko (https://crypko.ai/beta) を使えはもっとアニメチックなも のが作れる (現在開発中.)

- 1 Generative Adversarial Networks
 - GAN の構造
 - GAN 目的といたちごっこ
 - ■本当にいたちごっこで学
- 2 GAN's training instability and stabilization

- GAN の学習不安定性
- 学習の安定化: Spectral

- 3 GAN's Applications and
 - Social issues
 - Cycle-Consistent
 - 娯楽と GAN
 - Deepfake による犯罪

Deepfake

近代社会において Deepfake(GAN を応用した技術) で以下のよう な犯罪が発生している.

(https://www.nikkei.com/article/DGXMZO64577690S0A001C2CZ8000/, "「ディープフェイク」脅威に 国内初摘発、海外被害も", 日本 経済新聞, 2020年11月27日午前1時頃閲覧)

- 合成ポルノの作成
- 会社の役員の音声複製
- トランプ (元) 大統領のフェイク画像

面白い技術だけどみんなでルールを守ることが大切!

References

- Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David, Warde-Farley, Sherjil Ozair, Aaron Courville and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems, 2014.
- Jun-Yan Zhu, Taesung Park, Phillip Isola and Alexei A. Efros, [2] Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, International Conference on Computer Vision, 2017
- [3] Martin Arjovsky and Leon Bottou, Towards Principled Methods for Training Generative Adversarial Networks, International Conference on Learning Representations, 2017.
- Takeru Miyato, Toshiki Kataoka, Masanori Koyama and Yuichi Yoshida, Spectral Normalization for Generative Adversarial Networks, International Conference on Learning