The Implementation of an Augmented Reality Display and a Virtual Reality Controller on Glasses

Jiuhe Tian
Princeton International School of Mathematics and Science
General Engineering
2022 - 2023

Content

- 1. Basic Information
- 2. Application
- 3. Approach

Basic Information - AR Display Model

The plastic board reflects the information from the projector

The overview of the AR display model

(compare with the first image)

The laptop screen

Basic Information - VR Controller Model

The VR controller model includes a breadboard, an ESP8266 processor, and a MPU6050 accelerometer. The model is currently sending information to the laptop in the image.

Basic Information - Position Tracking

Screenshot of the Unity project, the blue bar shows the rotation and position information of the VR controller model. (could have a live demonstration here)

Application - Ideas

The diagram shows the logic relationship among AR, VR, and my AR + VR project. The AR + VR system integrates advantages of AR and VR, to use in broader areas

Application - Applicable Areas

The project could be used in long-distance control.

The controller records human action, and send to a server. The server could then control robots far away to do the same action as people does. (E.g. long distance online surgery, star exploration)

The controlling could also be zoomed in or out proportionally by changing the robot size, which could also enable people operate robots to do gigantic or tiny works.

Approach - Design Draft

Approach - AR Near-eye Display

The screenshot of optics simulator shows how the light from the projector is going to be transmitted to human eye.

Approach - VR Position Tracking

General idea: add up short time displacement with short time acceleration

Calculate displacement x from acceleration a with integration.

$$v = \int a dt$$
, (1)

$$x = \int v dt, \qquad (2)$$

When $\Delta t \rightarrow 0$, we can express (1) and (2) as

$$\lim_{\Delta t \to 0} \sum_{i=0}^{n} \frac{1}{2} \overline{a_i} \Delta t^2$$

$$where \ \overline{a_i} = \frac{a_i + a_{i+1}}{2}$$

With formula (3), the displacement information can be calculated from the acceleration data sent from the accelerometer.

Approach - Connection Setup

The graph shows how the ESP8266 is connected with the MPU6050 accelerometer. Link:

https://randomnerdtutorials.com/es p8266-nodemcu-mpu-6050-accele rometer-gyroscope-arduino/

Approach - Connection Setup (cont'd)

The graph above shows how the final product will be like. Two accelerometers will connect with the server on different ports, and The projector will display what the server shows about the accelerometer data

Conclusion

- What to make: an AR glass with VR position tracking
- Why to make: to build a glasses which integrates the advantages of AR and VR
- How to make: use optics for display, an accelerometer for positioning, and a laptop as a server

Thanks for Listening

March 2023

References

- 1. Random Nerd Tutorials, ESP8266 NodeMCU with MPU-6050 Accelerometer, Gyroscope and Temperature Sensor (Arduino). url: https://randomnerdtutorials.com/esp8266-nodemcu-mpu-6050-accelerometer-gyroscope-arduino/
- 2. Arvind Sanjeev, How to Interface Arduino and the MPU 6050 Sensor, 2018. url: https://maker.pro/arduino/tutorial/how-to-interface-arduino-and-the-mpu-6050-sensor#comment-2305
- 3. Seokil Moon, Chang-Kun Lee, Seung-Woo Nam, Changwon Jang, Gun-Yeal Lee, Wontaek Seo, Geeyoung Sung, Hong-Seok Lee & Byoungho Lee. (2019). Augmented reality near-eye display using Pancharatnam-Berry phase lenses. Nature, 9:6616.
- 4. Wikipedia, Augmented Reality. https://en.wikipedia.org/wiki/Augmented_reality
- 5. Wikipedia, Virtual Reality. https://en.wikipedia.org/wiki/Virtual reality
- 6. Stambol, AR Glasses for Consumer & Enterprise Users. 2020. https://www.stambol.com/2020/09/28/ar-glasses-for-consumer-enterprise-users/
- 7. Ray Optics Simulation, https://ricktu288.github.io/ray-optics/simulator/
- 8. Large Type, https://large-type.com/#*hello*
- 9. Nreal Air's AR Glass Amazon shopping page, https://www.amazon.com/Glasses-Massive-Micro-OLED-Augmented-iOS-Consoles-Compatible/dp/B0BF5LKP5Q/
- 10. C-Thru's AR helmet for firefighters from CBS mornings, https://www.youtube.com/watch?v=D-t7h6hukiA