

MATERIAL DE APOIO EXERCÍCIOS RESOLVIDOS

PESQUISA OPERACIONAL

Prof. Alexandre Lima Marques da Silva

Maceió, outubro de 2009.

SUMÁRIO

CAPÍTULO 1: CONSTRUÇÃO DE MODELOS	03
CAPÍTULO 2: MÉTODO GRÁFICO	06
CAPÍTULO 3: MÉTODO SIMPLEX	11
CAPÍTULO 4: PROBLEMA DOS TRANSPORTES	20
REFERÊNCIAS	29

,	
CAPITULO	1
CALITULO	1

CONSTRUÇÃO DE MODELOS

EXERCÍCIOS RESOLVIDOS

1.1 Certa empresa fabrica dois produtos P1 e P2. O lucro unitário do produto P1 é de R\$ 1.000,00 e o lucro unitário de P2 é R\$ 1.800. A empresa precisa de 20 horas para fabricar uma unidade de P1 e de 30 horas para fabricar uma unidade de P2. O tempo anual de produção disponível para isso é de 1200horas. A demanda esperada para cada produto é de 40 unidades para P1 e 30 unidades para P2. Construa o modelo de programação linear que objetiva Maximizar o lucro.

Solução:

P1: Lucro – R\$ 1.000,00

Tempo de produção P1: 20 horas

P2: Lucro – R\$ 1.800,00

Tempo de produção P2: 30 horas

Tempo Disponível de Produção: 1200horas

Demanda Esperada P1: 40 unidades

Demanda Esperada P2: 30 unidades

Unidade produzida do Produto P1: x

Unidade produzida do Produto P2: y

Função Objetivo:

Maximizar: 1000x + 1.800y

Restrições:

- Tempo de Produção: 1.200h

 $20x + 30y \le 1.200$

- Demanda Esperada do Produto P1: 40 unidades

 $x \le 40$

- Demanda Esperada do Produto P2: 30 unidades

 $y \le 30$

Logo:

Maximizar Lucro: Max Z = 1000x + 1.800y

Restrições:

$$20x + 30y \le 1.200$$

 $x \le 40$

 $y \le 30$

 $x, y \ge 0$

1.2 A necessidade mínima de vitaminas na alimentação é de 32 unidades por dia e a de proteínas de 36 unidades por dia. Uma pessoa tem disponível carne e ovo para se alimentar. Cada unidade de carne contém 4 unidades de vitaminas e 6 unidades de proteínas. Cada unidade de ovo contém 8 unidades de vitaminas e 6 unidades de proteínas. Qual a quantidade de carne e ovo que deve ser consumida de forma a ter o Menos custo possível. Cada unidade de carne custa R\$ 3,00 e cada unidade de ovo custa R\$ 2,5.

Solução:

Necessidade mínima de Vitamina: 32 unidades / dia

Necessidade mímima de Proteínas: 36 unidades / dia

- 1 unidade de carne: $\begin{cases} 4 \text{ unidades vita min as} \\ 6 \text{ unidades de proteínas} \\ Custo: R$3,00 \end{cases}$

- 1 unidade de ovo: $\begin{cases} 8 \text{ unidades vita min as} \\ 6 \text{ unidades de proteínas} \\ \text{Custo} : R\$2,50 \end{cases}$

Unidade consumida de carne: x

Unidade consumida de carne: y

Minimizar Custo: Min Z = 3x + 2.5y

Restrições:

$$4x + 8y \ge 32$$

$$6x + 6y \ge 36$$

$$x, y \ge 0$$

CAPÍTULO 2

MÉTODO GRÁFICO

EXERCÍCIOS RESOLVIDOS

2.1 Resolva pelo Método Gráfico o seguinte modelo de Programação Linear:

$$\mathbf{Max}\ \mathbf{Z} = 3\mathbf{x} + 4\mathbf{y}$$

a) Solução 01: Coordenadas da Zona Permissível

Representação gráfica das inequações num mesmo eixo cartesiano.

As restrições apresentam uma área comum que está destacada em vermelho que caracteriza a Zona Permissível, ou seja, a área onde está a solução ótima do problema de Maximização.

Esta área define 5 vértices, cujas coordenadas são:

- A(0,0)
- B(0,4)
- C Interseção das retas: $\begin{cases} y = 4 \\ x + y = 6 \end{cases}$

Logo:
$$x + 4 = 6 \rightarrow x = 2$$

Portanto: C(2,4)

• D – Interseção das retas: $\begin{cases} x = 4 \\ x + y = 6 \end{cases}$

Logo:
$$4 + y = 6 \rightarrow y = 2$$

Portanto: D(4,2)

• E(4,0).

Definição da Solução Ótima do Problema:

Vamos verificar em qual vértice a Função Objetivo atinge o seu maior valor:

$$Max Z = 3x + 4y$$

$$ZA = 3(0) + 4(0) = 0$$

$$ZB = 3(0) + 4(4) = 16$$

$$ZC = 3(2) + 4(4) = 22$$

$$ZD = 3(4) + 4(2) = 20$$

$$ZE = 3(4) + 4(0) = 12$$

Logo a Função Objetivo atinge o seu maior valor em Z = 22, para x = 2 e y = 4.

b) Solução 02: Critério da Função Objetivo

Uma outra forma de determinar a solução do problema de maximização é através da representação gráfica da função objetivo no mesmo gráfico das restrições. Os pontos candidatos a solução ótima continuam sendo os mesmos.

Por se tratar de um problema de maximização, o último ponto que a função objetivo interceptar será o ponto que representará a solução ótima do problema.

São representadas duas retas da Função Objetivo:

A primeira adotando Z = 12, resulta x = 4 e y = 3.

A segunda adotando Z = 18, resulta x = 6 e y = 4.5.

Percebemos de forma clara que estas duas retas são paralelas. Logo fica bastante intuitivo que o último ponto que será interceptado pela função objetivo será o ponto C.

$$2.2 \mathbf{Min} \mathbf{Z} = 2\mathbf{x} + 3\mathbf{y}$$

Sujeito a:
$$\begin{pmatrix} x+y \ge 5 \\ 5x+y \ge 10 \\ x \le 8 \\ x, y \ge 0 \end{pmatrix}$$

a) Solução 01: Coordenadas da Zona Permissível

Representação gráfica das inequações num mesmo eixo cartesiano.

As restrições apresentam uma área comum que está destacada em vermelho que caracteriza a Zona Permissível, ou seja, a área onde está a solução ótima do problema de Minimização.

Esta área define 3 vértices possíveis para a solução, cujas coordenadas são:

- A(0,10)
- B Interseção das retas: $\begin{cases} x + y = 5 \\ 5x + y = 10 \end{cases}$

Logo:
$$4x = 5 \rightarrow x=5/4$$

$$Y = 15/4$$

Portanto: B(5/4,15/4)

• C(5,0).

Definição da Solução Ótima do Problema:

Vamos verificar em qual vértice a Função Objetivo atinge o seu menor valor:

$$Min Z = 2x + 3y$$

$$ZA = 2(0) + 3(10) = 30$$

$$ZB = 2(5/4) + 3(15/4) = 10/4 + 45/4 = 55/4$$

$$ZC = 2(5) + 3(0) = 10$$

Logo a Função Objetivo atinge o seu menor valor em Z = 10, para x = 5 e y = 0.

b) Solução 02: Critério da Função Objetivo

Uma outra forma de determinar a solução do problema de minimização é através da representação gráfica da função objetivo no mesmo gráfico das restrições. Os pontos candidatos a solução ótima continuam sendo os mesmos.

Por se tratar de um problema de minimização, o primeiro ponto que a função objetivo interceptar será o ponto que representará a solução ótima do problema.

São representadas duas retas da Função Objetivo:

A primeira adotando Z = 6, resulta x = 3 e y = 2.

A segunda adotando Z = 10, resulta x = 5 e y = 10/3.

Percebemos de forma clara que o primeiro ponto que é interceptado pela Função Objetivo é o ponto C, que conforme o critério anterior de fato representa a solução ótima do problema de minimização.

10

CAPÍTULO 3

MÉTODO SIMPLEX

EXERCÍCIOS RESOLVIDOS

3.1 A partir do <u>Método Simplex</u> determine a solução dos seguintes problemas de Programação Linear.

$$\underline{\mathbf{Maximizar}\;\mathbf{L}} = 4\mathbf{x} + 5\mathbf{y}$$

Sujeito a:

$$4x + 7y \le 336$$

$$6x + 3y \le 252$$

$$x1, x2 \ge 0$$

Solução:

1º Passo: Transformação da Função Objetivo e das Restrições:

$$L - 4x - 5y = 0$$

$$4x + 7y + f1 = 336$$

$$6x + 3y + f2 = 252$$

2º Passo: Montagem do 1º Tableau:

Z	X	y	F1	F2	LD	Base
1	-4	-5	0	0	0	Linha Z
0	4	7	1	0	336	F1
0	6	3	0	1	252	F2

Neste primeiro tableau temos F1 e F2 na base, assumindo os valores 336 e 252, respectivamente. Como as variáveis x e y estão fora da base os seus valores são 0.

Como na Linha Z temos elementos negativos o tableau ainda não representa a solução ótima. Portanto, alguma variável tem que entrar na base e, conseqüentemente, outra variável tem que sair.

3º Passo: Critério para definir a variável que entra na base:

Temos que escolher o menor valor da linha Z.

Z	X	у	F1	F2	LD	Base
1	-4	-5	0	0	0	Linha Z
0	4	7	1	0	336	F1
0	6	3	0	1	252	F2

A partir do tableau podemos perceber que esse valor é -5. Portanto, a variável y deverá entrar na base. Logo temos que definir entre F1 e F2 quem vai sair da base. A coluna da variável que vai entrar na base é caracterizada por coluna-pivô.

4º Passo: Critério para definir a variável que sai da base:

Z	X	У	F1	F2	LD	Quociente	Base
1	-4	-5	0	0	0		Linha Z
0	4	7	1	0	336		F1
0	6	3	0	1	252		F2

Para definir qual será a variável que vai sair da base (F1 ou F2) temos que calcular o quociente entre o Lado Direito (LD) e os valores que estão em destaque na coluna y, que foi a variável selecionada para entrar na base.

Logo: F1: 336/7 = 48

F2: 252/3 = 84

Portanto a variável F1 vai sair da base e a sua linha é caracterizada por linha-pivô.

Observação: Nessa divisão não podemos ter número negativo como resultado.

5º Passo: Definição do elemento pivô:

Temos que verificar qual é o elemento comum que é gerado da linha-pivô e da coluna-pivô.

Z	X	у	F1	F2	LD	Quociente	Base
1	-4	-5	0	0	0		Linha Z
0	4	7	1	0	336		Y
0	6	3	0	1	252		F2

Esse elemento é o 7. Logo ele representa o número pivô que será utilizado para transformar os demais elementos da coluna-pivô em zero (0).

Observação: Perceba que agora na base temos a presença da variável y no lugar da variável F1.

6º Passo: Alteração do elemento-pivô.

Vamos dividir toda a linha-pivô por 7, que é o elemento-pivô, transformando o elemento-pivô em 1, conforme destaque no tableau a seguir. Esse procedimento vai ser importante, pois vai facilitar o trabalho de eliminação dos demais elementos da coluna-pivô.

Z	X	у	F1	F2	LD	Base
1	-4	-5	0	0	0	Linha Z
0	4/7	1)	1/7	0	48	Y
0	6	3	0	1	252	F2

7º Passo: Alteração dos elementos da coluna-pivô.

A partir de operações elementares vamos fazer o seguinte procedimento.

- <u>Definição da nova linha y</u>: Manter a linha y original.
- <u>Definição da nova linha Z</u>: Multiplicar a linha y por 5 e somar o resultado obtido com a linha Z
- <u>Definição da nova linha F2</u>: Multiplicar a linha y por -3 e somar o resultado obtido com a linha F2.

Z	X	y	F1	F2	LD	Base
1	-8/7	0	5/7	0	240	Linha Z
0	4/7	1	1/7	0	48	Y
0	30/7	0	-3/7	1	108	F2

Esse é o novo tableau que poderá ou não representar a solução ótima.

8º Passo: Análise da nova Linha Z

Z	X	у	F1	F2	LD	Base
1	-8/7	0	5/7	0	240	Linha Z
0	4/7	1	1/7	0	48	Y
0	30/7	0	-3/7	1	108	F2

Agora os procedimentos serão repetidos. Na linha Z ainda temos um elemento negativo. Logo a variável x vai entrar na base. Definindo quem vai sair da base teremos:

$$y = \frac{48}{\frac{4}{7}} = 48.\frac{7}{4} = 84$$
; $F2 = \frac{108}{\frac{30}{7}} = 108.\frac{7}{30} = 25,2$

Logo com a variável F2 saindo da base teremos como elemento-pivô o número 30/7, conforme tabela a seguir:

14

Z	X	у	F1	F2	LD	Base
1	-8/7	0	5/7	0	240	Linha Z
0	4/7	1	1/7	0	48	Y
0	30/7	0	-3/7	1	108	F2

O próximo passo é a transformação do elemento pivô em 1. Para tanto teremos que dividir toda a nova linha-pivô por 30/7.

Z	X	у	F1	F2	LD	Base
1	-8/7	0	5/7	0	240	Linha Z
0	4/7	1	1/7	0	48	Y
0	1	0	-1/10	7/30	126/5	X

• Transformar os demais elementos da coluna-pivô em zero.

Nova linha Z: Multiplicar a linha x por 8/7 e somar o resultado obtido com a linha z Nova linha Y: Multiplicar a linha x por -4/7 e somar o resultado obtido com a linha y

Z	X	У	F1	F2	LD	Base
1	0	0	42/70	56/210	1344/5	Linha Z
0	0	1	14/70	-28/210	168/5	Y
0	1	0	-1/10	7/30	126/5	X

Esse é o novo tableau. Agora alcançamos a solução ótima uma vez que não temos mais a presença de elementos negativos na linha Z. Portanto a solução do problema de Programação Linear é a seguinte:

$$Z = 1344/5$$
 (Valor máximo)

$$X = 126/5$$
 $F1=F2 = 0$ (pois estão fora da base)

$$Y = 1344/5$$

$$3.2 Maximizar L = 4x + 3y$$

Sujeito a:

$$3x + 2y \le 15$$

$$2x+y\leq 8$$

$$x1, x2 \ge 0$$

Solução:

1º Passo: Transformação da Função Objetivo e das Restrições:

$$L - 4x - 3y = 0$$

$$3x + 2y + F1 = 15$$

$$2x + y + F2 = 8$$

$$y + F3 = 6$$

2º Passo: Montagem do 1º Tableau:

Z	X	Y	F1	F2	F3	LD	Base
1	-4	-3	0	0	0	0	Linha Z
0	3	2	1	0	0	15	F1
0	2	1	0	1	0	8	F2
0	0	1	0	0	1	6	F3

Neste primeiro tableau temos F1, F2 e F3 na base, assumindo os valores 15, 8 e 6, respectivamente. Como as variáveis x e y estão fora da base os seus valores são 0.

Como na Linha Z temos elementos negativos o tableau ainda não representa a solução ótima. Portanto, alguma variável tem que entrar na base e, consequentemente, outra variável tem que sair.

3º Passo: Critério para definir a variável que entra na base:

Temos que escolher o menor valor da linha Z.

Z	X	Y	F1	F2	F3	LD	Base
1	(-4)	-3	0	0	0	0	Linha Z
0	3	2	1	0	0	15	F1
0	2	1	0	1	0	8	F2
0	0	1	0	0	1	6	F3

A partir do tableau podemos perceber que esse valor é -4. Portanto, a variável X deverá entrar na base. Logo temos que definir entre F1, F2 e F3 quem vai sair da base. A coluna da variável que vai entrar na base é caracterizada por coluna-pivô.

4º Passo: Critério para definir a variável que sai da base:

Z	X	Y	F1	F2	F3	LD	Base
1	-4	-3	0	0	0	0	Linha Z
0	3	2	1	0	0	15	F1
0	2	1	0	1	0	8	F2
0	0	1	0	0	1	6	F3

Para definir qual será a variável que vai sair da base (F1, F2 ou F3) temos que calcular o quociente entre o Lado Direito (LD) e os valores que estão em destaque na coluna X, que foi a variável selecionada para entrar na base.

Logo: F1:
$$15/3 = 5$$
 / F2: $8/2 = 4$ / F3: $6/0 = N\tilde{a}o$ existe

Portanto a variável F2 vai sair da base e a sua linha é caracterizada por linha-pivô.

Observação: Nessa divisão não podemos ter número negativo como resultado ou divisão por zero, conforme temos com o cálculo da variável F3.

5º Passo: Definição do elemento pivô:

Temos que verificar qual é o elemento comum que é gerado da linha-pivô e da coluna-pivô.

Z	X	Y	F1	F2	F3	LD	Base
1	-4	-3	0	0	0	0	Linha Z
0	3	2	1	0	0	15	F1
0	2	1	0	1	0	8	X
0	0	1	0	0	1	6	F3

Esse elemento é o 2. Logo ele representa o número pivô que será utilizado para transformar os demais elementos da coluna-pivô em zero (0).

Observação: Perceba que agora na base temos a presença da variável X no lugar da variável F2.

6º Passo: Alteração do elemento-pivô.

Vamos dividir toda a linha-pivô por 2, que é o elemento-pivô, transformando o elemento-pivô em 1, conforme destaque no tableau a seguir. Esse procedimento vai ser importante, pois vai facilitar o trabalho de eliminação dos demais elementos da coluna-pivô.

1	-4	-3	0	0	0	0	Linha Z
0	3	2	1	0	0	15	F1
0	1	1/2	0	1/2	0	4	X
0	0	1	0	0	1	6	F3

7º Passo: Alteração dos elementos da coluna-pivô.

A partir de operações elementares vamos fazer o seguinte procedimento.

- <u>Definição da nova linha Z</u>: Multiplicar a linha x por 4 e somar o resultado obtido com a linha z.
- <u>Definição da nova linha F1</u>: Multiplicar a linha x por -3 e somar o resultado obtido com a linha F1.
- Definição da nova linha X: Mantém a linha X
- <u>Definição da nova linha F3</u>: Como já temos o número zero não precisamos fazer nenhuma operação.

Z	X	Y	F1	F2	F3	LD	Base
1	0	-1	0	2	0	16	Linha Z
0	0	1/2	1	-3/2	0	3	F1
0	1	1/2	0	1/2	0	4	X
0	0	1	0	0	1	6	F3

Esse é o novo tableau que poderá ou não representar a solução ótima.

8º Passo: Análise da nova Linha Z

Z	X	Y	F1	F2	F3	LD	Base
1	0	(-1)	0	2	0	16	Linha Z
0	0	1/2	1	-3/2	0	3	F1
0	1	1/2	0	1/2	0	4	X
0	0	1	0	0	1	6	F3

Agora os procedimentos serão repetidos. Na linha Z ainda temos elemento negativo. Logo a variável Y vai entrar na base. Definindo quem vai sair da base teremos:

F1=
$$\frac{3}{\frac{1}{2}}$$
 = 6; F2= $\frac{4}{\frac{1}{2}}$ = 8; F3 = 6/1 = 6

Logo temos duas variáveis que apresentam o mesmo menor valor: F1 = F3 = 6

Escolhendo, por exemplo, a variável F3 para sair da base teremos como elemento-pivô o número 1, conforme tabela a seguir:

Z	X	Y	F1	F2	F3	LD	Base
1	0	-1	0	2	0	16	Linha Z
0	0	1/2	1	-3/2	0	3	F1
0	1	1/2	0	1/2	0	4	X
0	0	(1)	0	0	1	6	Y

Como o elemento pivô já é o número 1 não precisamos fazer nenhuma transformação do mesmo. Observem que se por acaso escolhêssemos a variável F1 para sair da base o elemento-pivô seria ½. Nesse caso teríamos que dividir toda a linha-pivô por ½, o que obviamente geraria um maior trabalho.

Agora conforme a sistemática de cálculo do simplex teremos que transformar os demais elementos que estão na nova coluna-pivô.

• Transformar os demais elementos da coluna-pivô em zero.

Nova linha Z: Multiplicar a linha y por 1 e somar o resultado obtido com a linha z Nova linha F1: Multiplicar a linha x por -1/2 e somar o resultado obtido com a linha F1.

Nova linha X: Multiplicar a linha x por -1/2 e somar o resultado obtido com a linha X.

Nova linha Y: Mantém a linha Y.

Z	X	Y	F1	F2	F3	LD	Base
1	0	0	0	2	1	22	Linha Z
0	0	0	1	-3/2	-1/2	0	F1
0	1	0	0	1/2	-1/2	1	X
0	0	1	0	0	1	6	Y

Esse é o novo tableau. Agora alcançamos a solução ótima uma vez que não temos mais a presença de elementos negativos na linha Z. Portanto a solução do problema de Programação Linear é a seguinte:

Z = 22 (Valor máximo)

X = 1

Y = 6

F1 = 0

F2 = F3 = 0 (Variáveis fora da base).

CAPÍTULO 4		
CAPITULO 4		
S TRANSPORTES	ROBLEMA D	

EXERCÍCIOS RESOLVIDOS

4.1 A prefeitura de uma cidade está fazendo obras em três bairros. O material para essas obras é transportado de três depósitos O1, O2 e O3 de onde são retiradas 57, 76 e 93 toneladas de material, respectivamente. As obras são destinadas para os bairros D1, D2 e D3, que necessitam diariamente de 41, 80 e 105 toneladas, respectivamente. Os custos unitários para o transporte desse material estão na tabela a seguir.

Tabela 01 - Custos Unitários dos Transportes (R\$/unidade)

	Destino 01	Destino 03	Destino 03
Depósito 01	7	8	4
Depósito 02	5	6	3
Depósito 03	6	5	4

Pede-se para determinar:

- a) O modelo de transporte que minimiza o custo de transporte.
- b) O custo do transporte a partir do Método de Aproximação de Vogel.

Solução:

a) O primeiro passo é verificar se temos um sistema equilibrado ou não-equilibrado.

Os depósitos podem transportar até 57 + 76 + 93 = 226 toneladas

Os pontos de destino requerem 41 + 80 + 105 = 226 toneladas.

Logo temos um sistema de fato equilibrado.

Uma vez que o objetivo é determinar a quantidade de material que poderá ser transportado de cada depósito para bairro vamos considerar as seguintes variáveis:

	Destino 01	Destino 03	Destino 03
Depósito 01	X11	X12	X13
Depósito 02	X21	X22	X23
Depósito 03	X31	X32	X33

X11: Quantidade que será transportada do Depósito 01 para o Destino 01

X12: Quantidade que será transportada do Depósito 01 para o Destino 02

...

X33: Quantidade que será transportada do Depósito 03 para o Destino 03

Logo a função objetivo será:

Minimizar
$$C = 7x11 + 8x12 + 4x13 + 5x21 + 6x21 + 3x23 + 6x31 + 5x32 + 4x33$$

A seguir iremos apresentar as restrições em função da disponibilidade de transporte dos depósitos, bem como pela necessidade de recebimentos dos pontos de destino.

	Destino 01	Destino 03	Destino 03	Capacidade
Depósito 01	X11	X12	X13	57
Depósito 02	X21	X22	X23	76
Depósito 03	X31	X32	X33	93
Necessidade das	41	80	105	
Demandas				

Restrições da Capacidade dos Depósitos:

$$X11 + X12 + X13 \le 57$$

$$X21 + X22 + X23 \le 76$$

$$X31 + X32 + X33 \le 93$$

Restrições da Necessidades das Demandas:

$$X11 + X21 + X31 = 40$$

$$X12 + X22 + X32 = 80$$

$$X13 + X23 + X33 = 105$$

Restrições de Não-negatividade:

$$X11, X12, ..., X32, X33 \ge 0$$

b) Agora vamos resolver o modelo que acabamos de modelos a partir do **Método de Aproximação de Vogel (VAM)**.

- Cálculo das Penalidades

Subtração dos dois menores custos: Linha e Coluna

	D1	D2	D3	Capacidade	Penalidade
Depósito 01	7	8	4	57	3
Depósito 02	5	6	3	76	2
Depósito 03	6	5	4	93	1
Demanda	41	80	105		
Penalidade	1	1	1		

- Determinação da maior penalidade e do menor custo

	D1	D2	D3	Capacidade	Penalidade
Depósito 01(O1)	7	8	4	57	3
Depósito 02(O2)	5	6	3	76	2
Depósito 03 (O3)	6	5	4	93	1

Demanda	41	80	105	
Penalidade	1	1	1	

Logo a célula O1D3 vai receber a primeira carga.

	D1	D2	D3	Suprim.
01			57	.57
	(7)	(8)	(4)	0
O2	5	6	3	76
O3	6	5	4	93
Demanda			48 105	
	41	80	105	

Uma vez que alocamos 57 unidades na célula O1D3 o depósito O1 não tem mais carga a transportar. Por isso, os destinos D1 e D2 que são oriundos de O1 são zerados, conforme ilustrado na tabela acima. O destino D3, por sua vez, tinha uma necessidade de 105 unidades e com essa alocação de 57 unidades, necessita agora apenas de 48 unidades para ser totalmente atendido.

Agora o processo começar a se repetir, ou seja, determina-se a nova célula que irá receber a carga, a partir do cálculo das novas penalidades, determinação do seu maior valor associado ao menor custo.

Portanto:

<u>Cálculo da Penalidade</u>

	D1	D2	D3	Suprim.	Penalidade
01			57		
	(7)	(8)	(4)	0	
O2	5	6	(3)	76	2)
O3	6	5	4	93	1
Demanda	41	80	48		
Penalidade	1	1	1		

- Célula a ser alocada: O2D3

	D1	D2	D3	Suprim.
O1			57	
	(7)	(8)	(4)	0
O2			48	28
	5	6	3	76
O3				93
	6	5	4	
Demanda	41	80	48	

Cálculo da Penalidade

	D1	D2	D3	Suprim.	Penalidade
01			57		
	(7)	(8)	(4)	0	
O2			48	28	1
	5	6	(3)		
O3				93	1
	6	5	4		
Demanda	41	80	48		
Penalidade	1	1			

Como a maior penalidade agora é igual a 1, temos 4 opções. Como em todas elas o menor custo associado também é igual (5) a escolha é arbitrário.

Logo por exemplo, escolhendo a célula O2D1 teremos a seguinte configuração:

	D1	D2	D3	Suprim.	Penalidade
01			57		
	(7)	(8)	(4)	0	
O2	28		48	28	1
	(5)	(6)	(3)	0	
O3				93	1
	(6)	(5)	(4)		
Demanda	Al	80	48		
	13				
Penalidade	1	1			

Logo fazendo as alocações que restam teremos o seguinte quadro final:

	D1	D2	D3	Suprim.
01			57	
	(7)	(8)	(4)	0
O2	28		48	28
	(5)	(6)	(3)	0
O3	13	80		<i>1</i> 93
	(6)	(5)	(4)	0
Demanda	13	<i>\$</i> 6	48	
	0	0		

	D1	D2	D3
01			57
	(7)	(8)	(4)

24

O2	28		48
	(5)	(6)	3
O3	13	80	
	(6)	(5)	(4)

Valor do Custo: 57 * 4 + 28* 5 + 48* 3 + 13* 6 + 80*5 = R\$ 990,00

Custo Mínimo: R\$ 990,00

- 4.2 A transportadora ÔMEGA irá fazer o transporte dos seus produtos eletrônicos de 3 (três) fábricas para 4 (quatro) Centros de Distribuição. Os custos unitários do transporte são apresentados na tabela a seguir. Sabe-se que as fábricas (1, 2 e 3) têm capacidade de produção de 40, 100 e 60 unidades respectivamente. As necessidades dos Centros de Distribuição (A, B, C e D) são 20, 70, 50, 90 respectivamente. Pede-se para determinar:
 - a) O custo do transporte a partir do "Método de Aproximação de Vogel".
 - b) O(s) destino(s) que não será(ão) plenamente abastecido(s).

Tabela 01 - Custos Unitários dos Transportes (R\$/unidade)

	CD 01	CD 02	CD 03	CD 04	Capacidade
Fábrica 01	5	3	10	8	40
Fábrica 02	5	2	4	9	100
Fábrica 03	8	11	9	10	60
Demanda	20	70	50	90	

Solução:

a) Capacidade das Fábricas (Pontos de Origem): 40 + 100 + 60 = 200 unidades Necessidade das Demandas (Pontos de Destino): 20 + 70 + 50 + 90 = 230 unidades

Logo como as 3 fábricas não são suficientes para atender plenamente as necessidades requeridas dos 4 pontos de destino, temos que "criar uma fábrica fictícia" para poder resolver o problema. Essa fábrica F4 irá produzir exatamente a quantidade que está faltando, ou seja, 30 unidades. Logo o novo quadro ficará calculado desta forma:

	CD 01	CD 02	CD 03	CD 04	Capacidade
Fábrica 01	5	3	10	8	40
Fábrica 02	5	2	4	9	100
Fábrica 03	8	11	9	10	60
Fábrica 04	0	0	0	0	30
Demanda	20	70	50	90	

<u>Observação</u>: Perceba que na matriz de custo foram associados os valores 0(zero) para os custos de F4 para D1, D2, D3 e D4, respectivamente, uma vez que de fato essa fábrica não existe.

O procedimento agora será análogo ao exemplo anterior, com o cálculo das penalidades, identificação da maior penalidade, menor custo e definição da célula de alocação.

	CD 01	CD 02	CD 03	CD 04	Capacidade	Penalidade
Fábrica 01	5	3	10	8	40	2
Fábrica 02	5	2	4	9	100	2
Fábrica 03	8	11	9	10	60	1
Fábrica 04	0	0	0	0	30	0
Demanda	20	70	50	90		
Penalidade	5	2	4	8		

Célula de Alocação: F4D4

	CD 01	CD 02	CD 03	CD 04	Capacidade
Fábrica 01	5	3	10	8	40
Fábrica 02	5	2	4	9	100
Fábrica 03	8	11	9	10	60
Fábrica 04				30	30
	0	0	0	0	0
Demanda				90	
	20	70	50	60	

Cálculo das Penalidades

	CD 01	CD 02	CD 03	CD 04	Capacidade	Penalidade
Fábrica 01	(5)	(3)	(10)	(8)	40	2
Fábrica 02	(5)	(2)	(4)	(9)	100	2
Fábrica 03	(8)	(11)	(9)	(10)	60	1
Fábrica 04				30		
	(0)	(0)	(0)	(0)	0	
Demanda						
	20	70	50	60		
Penalidade	0	1	(5)			

Célula de Alocação: F2D3

	CD 01	CD 02	CD 03	CD 04	Capacidade
Fábrica 01	(5)	(3)		(8)	40
			(10)		
Fábrica 02			50		400
	(5)	(2)	(4)	(9)	50
Fábrica 03	(8)	(11)		(10)	60
			(9)		

Fábrica 04				30	
	(0)	(0)	(0)	(0)	0
Demanda	20	70	<i>5</i> 0	60	
			0		

Cálculo das Penalidades

	CD 01	CD 02	CD 03	CD 04	Capacidade	Penalidade
Fábrica 01	(5)	(3)		(8)	40	2
			(10)			
Fábrica 02			50		50	3
	(5)	(2)	(4)	(9)		_
Fábrica 03	(8)	(11)		(10)	60	2
			(9)			
Fábrica 04				30		
	(0)	(0)	(0)	(0)	0	
Demanda	20	70	0	60		
Penalidade	0	1		1		

Célula F2D2

	CD 01	CD 02	CD 03	CD 04	Capacidade
Fábrica 01	(5)	(3)		(8)	40
			(10)		
Fábrica 02		50	50		<i>,5</i> 0
	(5)	(2)	(4)	(9)	0
Fábrica 03	(8)	(11)		(10)	60
			(9)		
Fábrica 04				30	
	(0)	(0)	(0)	(0)	0
Demanda	20	-70	0	60	
		20			

Cálculo das Penalidades

	CD 01	CD 02	CD 03	CD 04	Capacidade	Penalidade
Fábrica 01	(5)	(3)		(8)	40	2
			(10)			
Fábrica 02		50	50		0	
	(5)	(2)	(4)	(9)		

Fábrica 03	(8)	(11)		(10)	60	2
			(9)			
Fábrica 04				30		
	(0)	(0)	(0)	(0)	0	
Demanda	20	20	0	60		
Penalidade	3	(8)				

Célula de Alocação: F1D2

	CD 01	CD 02	CD 03	CD 04	Capacidade
Fábrica 01	(5)	20		(8)	A 0
		(3)	(10)		20
Fábrica 02		50	50		0
	(5)	(2)	(4)	(9)	
Fábrica 03	(8)			(10)	60
		(11)	(9)		
Fábrica 04				30	
	(0)	(0)	(0)	(0)	0
Demanda	20	20	0	60	
		0			

<u>Cálculo das Penalidades</u>:

	CD 01	CD 02	CD 03	CD 04	Capacidade	Penalidade
Fábrica 01	(5)	20		(8)	20	3
		(3)	(10)			
Fábrica 02		50	50		0	
	(5)	(2)	(4)	(9)		
Fábrica 03	(8)			(10)	60	2
		(11)	(9)			
Fábrica 04				30		
	(0)	(0)	(0)	(0)	0	
Demanda	20	0	0	60		
Penalidades	3			2		

Célula de Alocação: F1D1

	CD 01	CD 02	CD 03	CD 04	Capacidade
Fábrica 01	20	20		(8)	-20
	(5)	(3)	(10)		0
Fábrica 02		50	50		0
	(5)	(2)	(4)	(9)	

28

Fábrica 03				60	/6 0
	(8)	(11)	(9)	(10)	0
Fábrica 04				30	
	(0)	(0)	(0)	(0)	0
Demanda	-20	0	0	60	
	0			0	

Quadro Final

	CD 01	CD 02	CD 03	CD 04
Fábrica 01	20	20		(8)
	(5)	(3)	(10)	
Fábrica 02		50	50	
	(5)	(2)	(4)	(9)
Fábrica 03				60
	(8)	(11)	(9)	(10)
Fábrica 04				30
	(0)	(0)	(0)	(0)

Logo:

Custo Mínimo de Transporte: 20*5 + 20*3 + 50*2 + 50*4 + 60*10 + 30*0

Custo Mínimo de Transporte: 100 + 60 + 100 + 200 + 600 + 0 =

Custo Mínimo de Transporte: R\$ 1.060,00

b) Como na tabela final a Fábrica Fictícia está enviando 30 unidades para o destino 04, este é a demanda que não será plenamente abastecida.

REFERÊNCIAS

- ANDRADE, Eduardo Leopoldino de, Introdução À Pesquisa Operacional 3ª Ed., LTC,
 2004.
- CORRAR, Luiz J.; THEÓPHILO, Carlos Renato. Pesquisa operacional para decisão em contabilidade e administração 1ª Edição. São Paulo: Atlas, 2004.
 - LACHTERMACHER, Gerson. Pesquisa operacional na tomada de decisões 3ª Ed. Rio de

Janeiro: Campus, 2006.

 MOREIRA, Daniel Augusto. Pesquisa operacional - curso introdutório. São Paulo: Thomson, 2006.