User Manual for Dike-Groyne Module of FVCOM

Step 1: Create an original mesh

An ordinary triangular mesh should be firstly created, and the structures of dikes and groynes need be specified as node strings in the mesh module of SMS software (version 8.1 or above is recommended). The mesh in SMS is shown in Fig.1.

Fig. 1 Mesh and dikes node strings of an idealized estuary.

There are two groups of dikes and groynes in this idealized estuary, and they are spatially separated, which then could be allocated into separate CPU domains to increase the computation speed.

The mesh file should be specified as 2dm format, which could be configured under generic model in SMS. The grd format (fort.14) is not supported in this utility. We specified this mesh as *casename no dike.2dm*.

Step 2: Split mesh along dikes and groynes

The mesh information should be given in the main program of source code in *split_mesh* directory, such as that in Fig.2.

```
CASENAME='tst'
FNAME1='./tst_no_dike.2dm'
FNAME2='tst_dam.2dm'
NGL= 9250
MGL= 4688

ISSpherical = .FALSE.
```

Fig.2 Mesh information specification in virtual dike mesh.f90

Then, the node information for the dikes and groynes should be given in

casename_ns.dat in step2_split_mesh directory. The original node string information in 2dm-formated mesh file is shown as Fig.3.

13938	ND	4687 2.	6624900	00e+005	1.5482	3919e+00	5 1.00	000000e+	+001		
13939	ND	4688 2.	6624900	00e+005	1.5512	5339e+00	05 1.00	000000e+	H001		
13940	NS	3429	3428	3234	3029	2814	2584	2583	2349	2111	2110
13941	NS	2109	2108	2107	2106	2105	2104	2103	2102	2101	2100
13942	NS	2099	2098	2097	2096	2095	2094	2093	2092	2091	2090
13943	NS	2089	2323	2322	2321	2320	2083	2082	2081	2080	2079
13944	NS	2078	2077	2076	2075	2074	2073	2072	2071	2070	2069
13945	NS	2300	2299	2298	2064	2295	2294	2293	2292	2059	2289
13946	NS	2056	2055	2054	2053	2052	2051	2050	2049	2048	2047
13947	NS	2046	2045	2044	2043	2042	2041	2040	2039	2038	2269
13948	NS	2268	2511	2749	2968	3174	3368	-3366			
13949	NS	3277	3092	2881	2882	2658	2413	2164	1935	1736	1737
13950	NS	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947
13951	NS	2178	2179	2180	2181	2182	2183	2184	2185	2186	2187
13952	NS	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197
13953	NS	2198	2199	2200	2201	2202	2203	2204	2205	2206	2207
13954	NS	2208	2209	2210	2211	1982	2214	2215	2216	2217	2218
13955	NS	2219	2220	2221	2222	2223	2224	2225	2226	1996	2229
13956	NS	2230	2231	2001	2002	2003	2004	2005	2006	2007	2240
13957	NS	2484	2723	2944	3154	3347	3348	-3535			
13958	NS	2189	2437	2681	2903	3114	3307	3494	3665	-3825	
13959	NS	2215	2462	2703	2925	3135	3328	3515	3686	-3846	
13960	NS	2323	2560	2792	3009	3215	3408	3589	3753	-3910	
13961	NS	2294	2534	2770	2988	3195	3388	3570	3734	-3891	
13962	NS	1	2	3	4	5	6	7	8	9	10
13963	NS	11	12	13	14	15	16	17	18	19	20
13964	NS	21	22	23	24	25	26	27	28	29	30
13965	NS	31	32	33	34	35	36	37	38	39	40
13966	NS	41	42	43	44	-45					
		FPARAMDEF									
40000	CM	111-									

Fig.3 Original format for the node strings in SMS 2dm-format mesh file.

The node strings for dikes and groynes are included from line 13940 to line 13961. The node string from line 13962-13966 indicates the open boundary in this idealized estuary.

Copy these node string lines to *casename_ns.dat*, and replace the blanks with zero. The final format of casename ns.dat is shown as Fig.4.

	Q.,			.2,0, , , ,	3,0, .		4,0,	5,0,	6	.0	7,0,
1	NS	3429	3428	3234	3029	2814	2584	2583	2349	2111	2110
2	NS	2109	2108	2107	2106	2105	2104	2103	2102	2101	2100
3	NS	2099	2098	2097	2096	2095	2094	2093	2092	2091	2090
4	NS	2089	2323	2322	2321	2320	2083	2082	2081	2080	2079
5	NS	2078	2077	2076	2075	2074	2073	2072	2071	2070	2069
6	NS	2300	2299	2298	2064	2295	2294	2293	2292	2059	2289
7	NS	2056	2055	2054	2053	2052	2051	2050	2049	2048	2047
8	NS	2046	2045	2044	2043	2042	2041	2040	2039	2038	2269
9	NS	2268	2511	2749	2968	3174	3368	-3366	0	0	0
10	NS	3277	3092	2881	2882	2658	2413	2164	1935	1736	1737
11	NS	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947
12	NS	2178	2179	2180	2181	2182	2183	2184	2185	2186	2187
13	NS	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197
14	NS	2198	2199	2200	2201	2202	2203	2204	2205	2206	2207
15	NS	2208	2209	2210	2211	1982	2214	2215	2216	2217	2218
16	NS	2219	2220	2221	2222	2223	2224	2225	2226	1996	2229
17	NS	2230	2231	2001	2002	2003	2004	2005	2006	2007	2240
18	NS	2484	2723	2944	3154	3347	3348	-3535	0	0	0
19	NS	2189	2437	2681	2903	3114	3307	3494	3665	-3825	0
20	NS	2215	2462	2703	2925	3135	3328	3515	3686	-3846	0
21	NS	2323	2560	2792	3009	3215	3408	3589	3753	-3910	0
22	NS	2294	2534	2770	2988	3195	3388	3570	3734	-3891	0

Fig.4 Final format of casename ns.dat

Compile the source code in split mesh, and link the executable ./xsplit in

step2_split_mesh directory, and run this program to split this mesh along the dikes and groynes. Some temporary files will be produced, and the final result for this step is *casename dike.2dm*.

The dikes and groynes in *casename_dike.2dm* is shown in Fig.5, indicating inserted solid coastline along the dikes and groynes.

Fig.5 The boundaries for dikes and groynes after mesh splitting.

Step 3: Renumber the mesh and generate the input file

Copy the node string information and other mesh information in casename_no_dike.2dm (Fig.3) to casename_dike.2dm.

Select the open boundary node string, and renumber the whole mesh with new node numbers and cell numbers.

Save the mesh into casename dike renumbered.2dm.

Copy or link the *casename_dike_renumbered.2dm* to *step3_generate_files* directory.

Copy the node string information in *casename_dike_renumbered.2dm* to *casename ns after renumber.dat* file.

Insert a new column after 'NS' column in *casename_ns_after_renumber.dat* file to specify the domain marks. The file format for *casename_ns_after_renumber.dat* file is shown in Fig.6.

It should be noted all spatially connected dikes/groynes should be allocated in one CPU domain. To increase the computation speed under parallel environment, these nodes and cells of dikes and groynes should be allocated as many CPUs as possible if they are spatially separated.

	Q.,		1,0,	ا	2,0, , , , , , ,	3,0,	4,	0, , , , , , , ,	5,0,	6,0		7,0,
1	NS	1	2707	2706	2630	2546	2452	2349	2348	2255	2109	2108
2	NS	1	2107	2106	2105	2104	2103	2102	2101	2100	2099	2098
3	NS	1	2097	2096	2095	2094	2093	2092	2091	2090	2089	2088
4	NS	1	2087	4384	2253	2252	2251	2081	2080	2079	2078	2077
5	NS	1	2076	2075	2074	2073	2072	2071	2070	2069	2068	2067
6	NS	1	2250	2249	2248	2062	2247	4662	2245	2244	2057	2243
7	NS	1	2054	2053	2052	2051	2050	2049	2048	2047	2046	2045
8	NS	1	2044	2043	2042	2041	2040	2039	2038	2037	2036	2242
9	NS	1	2241	2347	2450	2544	2629	2705	-2703	0	0	0
10	NS	1	4384	4596	4522	4456	4392	4330	4268	4201	-4124	0
11	NS	1	4662	4255	4254	4187	4186	4185	4184	4104	-4103	0
12	NS	2	2673	2746	2812	2883	2958	3029	3108	3192	3278	3369
13	NS	2	3368	3367	3366	3365	3364	3452	3531	3609	3687	3768
14	NS	2	3767	3847	3921	3998	4073	4072	4071	4150	4225	4291
15	NS	2	4353	2174	4785	4784	4783	4782	4781	4780	4779	4832
16	NS	2	4864	4880	4889	4888	4881	4865	4834	4833	4786	4709
17	NS	2	4708	4707	4706	4705	4704	4703	2198	4226	4151	4076
18	NS	2	4075	4074	3999	3922	3848	3774	3694	3616	3541	3540
19	NS	2	3539	3538	3463	3458	3462	3461	3460	3459	3381	3289
20	NS	2	3203	3119	3040	2968	2895	2823	-2756	0	0	0
21	NS	2	2174	4413	4350	4287	4220	4219	4143	4142	-4141	0
22	NS	2	2198	4550	4482	4419	4357	4294	4232	4160	-4085	0

Fig.6 File format of casename_ns_after_renumber.dat.

Specify the mesh information in *generate thin dam inputs.f90* as Fig.7.

```
implicit none

CASENAME='tst'
FNAME1='./tst_dike_renumbered.2dm'
NGL= 9250
MGL= 4890

above_ms1= -5.0 * dike top is 5.0m deep below the mean sea level

CALL READ_MESH
CALL READ_NODESTRING
CALL READ_THINDAM
```

Fig. 7 Mesh specification in generate thin dam inputs. f90.

The variable *above_msl* indicates the elevation of dike/groyne top above the mean sea level. In this experiment example, the dike/groyne height is 5m, which means the dike top is located in the middle of water column (uniform 10m-depth bathymetry).

Besides of this uniform value of *above_msl*, some special configuration of dike/groyne height can be given in this utility, such as *casename_ns_adding.dat*, *casename_ns_submerged.dat* and *casename_ns_linear_groyne.dat*. For this idealized experiment, these files could be left blank.

The final input files for dikes and groynes will be generated into casename dam cell.dat and casename dam node.dat.

Step 4: Run the dike-groyne model

Copy or link the *casename_dam_cell.dat* and *casename_dam_node.dat* to *step4 final model/input* directory.

Create the casename grd.dat, casename dep.dat and casename cor.dat

according to casename_dike_renumbered.2dm. Copy them into input directory.

Run the model with

./fvcom -casename=tst for serial computation, or mpiexec -n 10 ./fvcom -casename=tst for parallel running.

User can check the domain specification with Pseudocolor plotting of variable *partition* in model result *tst_0001.nc* as shown in Fig.8. The software VisIt is recommended.

Fig.8 Domain decomposition with dike-groyne module in FVCOM.

The model details could be referred to:

Ge, J., Chen, C., Qi, J., Ding, P., & Beardsley, R. C. (2012). A dike-groyne algorithm in a terrain-following coordinate ocean model (FVCOM): Development, validation and application. *Ocean Modelling*, 47(C), 26–40. doi:10.1016/j.ocemod.2012.01.006

Chen C., R. C. Beardsley, G. Cowles, J. Qi, Z. Lai, G. Gao, D. Stuebe, Q. Xu, P. Xue, J. Ge, S. Hu, R. Ji, R Tian, H. Huang, L. Wu, H. Lin, Y. Sun and L. Zhao, (2013). An Unstructured Grid, Finite-Volume Community Ocean Model FVCOM User Manual, SMAST/UMASSD-13-0701

Regarding any questions and suggestions about the dike-groyne module, users can contact with:

Dr. Changsheng Chen (c1chen@umass.edu) at School of Marine Science and Technology, University of Massachusetts-Dartmouth,

Dr. Jianzhong Ge (jzge@sklec.ecnu.edu.cn) at State Key Laboratory of Estuarine and Coastal Research, East China Normal University.