Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Primer Semestre de 2022

IIC 2213 - Lógica para ciencia de la Computación

Ayudantía 8: VAL, SAT y compacidad

1 Repaso:

Una L-fórmula φ es **satisfacible** si existe una estructura \mathcal{A} y una asignación τ tal que hagan a φ verdadera, es decir $(\mathcal{A}, \tau) \models \varphi$. Si φ es una oración (no tiene variables libres) entonces solo basta con encontrar \mathcal{A} .

Una L-fórmula φ es **válida** si para toda estructura \mathcal{A} y toda asignación asignación τ φ es verdadera, es decir $(\mathcal{A}, \tau) \models \varphi$. Si φ es una oración (no tiene variables libres) entonces solo basta con probar que esto se cumple para toda \mathcal{A} .

De estas definiciones creamos los siguientes conjuntos:

 $VAL = \{\varphi | \varphi \text{ es una oración válida} \}$

 $SAT = \{ \varphi | \varphi \text{ es una oración satisfacible} \}$

Un gran problema en lógica es determinar si una fórmula pertenece a SAT o VAL. Tenemos además un teorema relacionado:

Teorema de Church: VAL es indecidible.

Teorema de compacidad: Un conjunto Σ de oraciones es satisfacible si y solo si cada subconjunto finito de Σ es satisfacible.

Podemos utilizar compacidad para mostrar que ciertas propiedades no son definibles. Una propiedad es **definible** si existe una oración φ tal que $\mathcal{A} \models \varphi$ si y solo si la estructura pertenece a la propiedad.

2 Ejercicio 1: VAL y SAT

Usa el Teorema de Church para demostrar que SAT es indecidible.

3 Ejercicio 2: LPO y estructuras

Sea \mathcal{L} un vocabulario sin funciones ni constantes. Una \mathcal{L} -fórmula pertenece a la clase existencial-positiva si ϕ solo usa cuantificación existencial y los únicos conectivos que usa ϕ son \vee y \wedge . Además decimos que una \mathcal{L} -estructura \mathfrak{A} es subconjunto de una \mathcal{L} -estructura \mathfrak{B} si (1) el dominio de \mathfrak{A} está contenido en el dominio de \mathfrak{B} , (2) para cada relación R en \mathcal{L} se tiene que $R^{\mathfrak{A}} \subseteq R\mathfrak{B}$. Demuestra el siguiente teorema de monotonía.

Sea \mathcal{L} un vocabulario sin funciones ni constantes y ϕ una fórmula existenciapositiva sobre \mathcal{L} . Entonces para todo par de estructuras \mathfrak{A} y \mathfrak{B} tal que $\mathfrak{A} \subseteq \mathfrak{B}$ y toda asignación τ , si $(\mathfrak{A}, \tau) \models \phi$ entonces $(\mathfrak{B}, \tau) \models \phi$.

4 Ejercicio 3: Compacidad

Usaremos compacidad para demostrar que las siguientes propiedades no son definibles en LPO sobre el vocabulario $\mathcal{L} = \{a, b, E(\cdot, \cdot), R(\cdot, \cdot)\}.$

- $P_1 = \{ A \in STRUCT[L] | R^A \text{ contiene a la clausura transitiva de } E^A \}$
- $P_2 = \{ \mathcal{A} \in STRUCT[L] | a^{\mathcal{A}} \text{ está conectado a } b^{\mathcal{A}} \text{ mediante } E^{\mathcal{A}} \}$