Zad 1.

```
[[1, 4, 10, 3, 9], ()
[3, 9, 0, 2, 8, 4], /]
[4, 1, 9], /2
[4, 7, 10, 1, 6, 8, 0], /3
[3, 9, 8, 2, 0, 1], /7
[6, 9], /5
[8, 5, 3, 7], /6
[3, 6], /7
[6, 4, 1, 3], /8
[4, 1, 5, 0, 2], /7
[3, 0] / ()
```


Zad 2.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	1	0	1	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	1	1	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	1
7	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
8	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	1	0
9	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

Zad 3.

Tak, ten graf jest hamiltonowski

[[1, 4, 10, 3, 9], ()
[3, 9, 0, 2, 8, 4], (]
[4, 1, 9], (2)
[4, 7, 10, 1, 6, 8, 0], (3)
[3, 9, 8, 2, 0, 1], (4)
[6, 9], (5)
[8, 5, 3, 7], (6)
[3, 6], (7)
[6, 4, 1, 3], (8)
[4, 1, 5, 0, 2], (7)
[3, 0], (7)

Zad 4.

Ten graf nie jest eulerowski ponieważ ma trzy wierzchołki nieparzystych stopni.

Zad 5.

Wierzchołkowo

Krawędziowo

```
[[1, 4, 10, 3, 9], 13, 9, 0, 2, 8, 4], [4, 1, 9], [4, 7, 10, 1, 6, 8, 0], [3, 9, 8, 2, 0, 1], [6, 9], [8, 5, 3, 7], [6, 4, 1, 3], [4, 1, 5, 0, 2], [13, 0], [13, 0], [14, 1, 5, 0, 2], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0], [15, 0],
```


Zad 6.

Liczba chromatyczna tego grafu jest równa 5 (z twierdzenia Brooksa), bo graf nie jest pełny ani nie jest cyklem nieparzystej długości. Indeks chromatyczny jest równy 7 (z tw Vizinga nie może być mniejszy).

Zad 7.

Pod spodem na fioletowo wagi poszczególnych wierzchołków

Zad 8.

Z tego powodu że liczba chromatyczna jest równa 5 to ten graf nie może być planarny, ponieważ dla każdego grafu planarnego liczba chromatyczna jest mniejsza równa 4.

Zastosowanie algorytmu Edmondsa-Karpa

W ogólnym przypadku algorytm pozwala na znalezienie największego przepływu w sieci przepływowej, czyli określenie maksymalną wielkość przepływu od źródła do ujścia przy ograniczonych przepustowościach na poszczególnych krawędziach. W szczególności do tego problemu lepszą złożonością cechuję się algorytm Dinica, który jest modyfikacją Edmondsa-Karpa. Algorytm można wykorzystywać wszędzie tam, gdzie musimy zaplanować jak dużą przepustowość muszą mieć nasze zasoby, np przy planowaniu sieci dróg miejskich, czy kanalizacji.

Znalazłam też pracę w której maksymalny przepływ był wykorzystywany do planowania manewru wojsk. Link:

https://www.researchgate.net/publication/233863006 Zastosowanie metod wyznaczania przeplywu w sieciach do planowania manewru wojsk.

W tym artykule autorzy do rozwiązywania problemu największego przepływu wykorzystują GP-GPU oraz OpenMP, do programowania współbieżnego, przez co czas wykonywania znacznie się zmniejszył. Link:

https://www.researchgate.net/publication/334682557 Modeling the Parallelization of the Edmonds-Karp Algorithm and Application

Tutaj Ford-Fulkerson jest wykorzystywany do wyznaczania które drużyny baseballowe zostaną wyeliminowane bazując na poszczególnych kolejkach oraz kolejności meczów. Link: https://medium.com/swlh/real-world-network-flow-cricket-elimination-problem-55a3036a5d60