Metaheurísticas: Práctica 3 Búsquedas por Trayectorias para el Problema de la Máxima Diversidad

David Cabezas Berrido

20079906D

Grupo 2: Viernes

dxabezas@correo.ugr.es

29 de mayo de 2021

Índice

1.	Descripción y formulación del problema	3
2.	Aplicación de los algoritmos	4
3.	Descripción de los algoritmos 3.1. Enfriamiento Simulado	6 7
4.	Algoritmo de comparación: Greedy	9
5.	Desarrollo de la práctica 5.1. Manual de usuario	10
	Experimentación y análisis 6.1. Casos de estudio y resultados	11 11 20

1. Descripción y formulación del problema

Nos enfrentamos al **Problema de la Máxima Diversidad** (Maximum Diversity Problem, MDP). El problema consiste en seleccionar un subconjunto m elementos de un conjunto de n > m elementos de forma que se maximice la diversidad entre los elementos escogidos.

Disponemos de una matriz $D = (d_{ij})$ de dimensión $n \times n$ que contiene las distancias entre los elementos, la entrada (i, j) contiene el valor d_{ij} , que corresponde a la distancia entre el elemento *i*-ésimo y el *j*-ésimo. Obviamente, la matriz D es simétrica y con diagonal nula.

Existen distintas formas de medir la diversidad, que originan distintas variantes del problema. En nuestro caso, la diversidad será la suma de las distancias entre cada par de elementos seleccionados.

De manera formal, se puede formular el problema de la siguiente forma:

Maximizar

$$f(x) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} d_{ij} x_i x_j$$
 (1)

sujeto a

$$\sum_{i=1}^{n} x_i = m$$

$$x_i = \{0, 1\}, \quad \forall i = 1, \dots, n.$$

Una solución al problema es un vector binario x que indica qué elementos son seleccionados, seleccionamos el elemento i-ésimo si $x_i = 1$.

Sin embargo, esta formulación es poco eficiente y para la mayoría de algoritmos proporcionaremos otra equivalente pero más eficiente.

El problema es **NP-completo** y el tamaño del espacio de soluciones es $\binom{n}{m}$, de modo que es conveniente recurrir al uso de metaheurísticas para atacarlo.

2. Aplicación de los algoritmos

Los algoritmos para resolver este problema tendrán como entradas la matriz D $(n \times n)$ y el valor m. La salida será un contenedor (vector, conjunto, ...) con los índices de los elementos seleccionados, y no un vector binario como el que utilizamos para la formulación. En nuestro caso (algoritmos implementados en esta práctica) utilizaremos vectores de enteros para representar soluciones.

La evaluación de la calidad de una solución se hará sumando la contribución de cada uno de los elementos, y dividiremos la evaluación en dos funciones. En lugar de calcular la función evaluación como en (1), lo haremos así:

$$f(x) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} d(i,j) = \frac{1}{2} \sum_{i=1}^{m} \text{contrib}(i)$$
 (2)

La diferencia es que contamos la distancia entre cada dos elementos i, j dos veces, distancia del elemento i-ésimo al j-ésimo y del j-ésimo. Esto es obviamente más lento que con j > i en la sumatoria, pero nos permite factorizar la evaluación de la solución como suma de las contribuciones de los elementos, lo cuál será útil para reaprovechar cálculos al evaluar soluciones para la Búsqueda Local. Además, representar la solución como un vector de m índices y no un vector binario de longitud n presenta una clara ventaja: las sumatorias van hasta m en lugar de n. No tenemos que computar distancias para luego multiplicarlas por cero como sugería la formulación en (1).

Presentamos el pseudocódigo de la función para calcular la contribución de un elemento x_i .

Algorithm 1: Contribución de un elemento en una solución.

Input: Un vector de índices S. Input: La matriz de distancias D.

Input: Un entero e correspondiente al índice del elemento.

Output: La contribución del elemento e, como se describe en (2).

 $contrib \leftarrow 0$ for s in S do

 $\left| \quad contrib \leftarrow contrib + D[e,s] \right|$

// Sumo las distancias del elemento e a cada elemento de S

return contrib

Nótese que el elemento e no tiene que pertenecer al conjunto S. Esto obviamente no ocurrirá cuando se vaya a evaluar una solución al completo invocando esta función con la que describiremos a continuación. Pero, de esta forma, permite conocer cómo influirá en la evaluación el añadir un nuevo elemento sin necesidad de añadirlo realmente.

Ahora presentamos el pseudocódigo de la función para evaluar una solución completa.

Algorithm 2: FITNESS calcula la evaluación de una solución.

Input: Un vector de índices S.

Input: La matriz de distancias D.

Output: El valor de la función objetivo sobre la solución compuesta por S, como se describe en (2).

 $fitness \leftarrow 0$ for e in S do

 $\int fitness \leftarrow fitness + \operatorname{contrib}(S, D, e)$ // Sumo la cont

// Sumo la contribución de cada elemento de la solución

 ${f return}\ fitness/2$

Podemos definir la distancia de un elemento e a un conjunto S como:

$$d(e,S) = \sum_{s \in S} d(e,s) \tag{3}$$

// Hemos contado cada distancia dos veces

Esta expresión nos será de utilidad para la implementación de los algoritmos.

Gracias a la existencia del Algoritmo 1, podemos obtener esta expresión como contrib(S, D, e).

Para los pseudocódigos que siguen, suponemos la matriz de distancias D y los parámetros n y m accesibles. El conjunto de todos los elementos es el $\{0, \ldots, n-1\}$, para cuando nos refiramos a elementos de fuera de un subconjunto de ellos.

Todos los algoritmos de esta práctica parten de soluciones aleatorias. La siguiente función permite construir las soluciones aleatorias que utilizaremos como partida.

Algorithm 3: RandomSol proporciona una solución válida aleatoria

```
Output: Una solución válida del MDP obtenida aleatoriamente.
E \leftarrow \{0, \dots, n-1\}
                                                                       // Vector con todos los elementos.
shuffle(E)
S \leftarrow \emptyset
                                                                             // La solución empieza vacía.
while |S| < m do
S \leftarrow S \cup \{E[|S|]\}
                             // Seleccionamos los m primeros elementos de E, que son aleatorios.
return S
```

La mayoría de algoritmos implementados en esta práctica hacen uso de la búsqueda local. El siguiente algoritmo implementa esta búsqueda. Supondremos declaradas las variables globales LIMIT, que valdrá 100000 o 10000 dependiendo de si el problema es de trayectoria simple o múltiple; y EVALS, las evaluaciones hasta el momento, esta variable comienza a 0 y sólo es reseteada en los problemas de trayectorias múltiples (donde LIMIT vale 10000), y se resetea 10 veces para que el total de evaluaciones siempre sea 100000.

```
Algorithm 4: LOCALSEARCH modifica una solución con varias iteraciones de búsqueda local con primer mejor.
```

```
Input: Solución de partida S.
Output: La solución S se modifica (no se devuelve) con varias iteraciones de búsqueda local.
                                                                      // Vector con todos los elementos.
E \leftarrow \{0, \ldots, n-1\}
carryon \leftarrow true
while carryon do
   carryon \leftarrow false
   lowest \leftarrow indice del elemento de S que menos contribuye, minimiza contrib<math>(S, D, S[lowest])
   min\_contrib \leftarrow contrib(S, D, lowest) \ E \leftarrow shuffle(E)
                                                              // Para explorar los posibles vecinos en
    orden aleatorio.
   for e in E do
      if e \in S then
                                                                   // Si ya está escogido, no lo cuento.
         continue
      contrib \leftarrow contrib(S, D, e) - D[e, S[lowest]]
                                                      // Contribución a la solución sin el elemento a
        sustituir.
       EVALS \leftarrow EVALS + 1
                                                                   // He evaludado una posible solución.
      if contrib > min\_contrib then
          S.fitness \leftarrow S.fitness + contrib - min\_contrib
                                                                          // Fitness de la nueva solución
                                                          // Toca saltar, lo que completa la iteración
          carryon \leftarrow true
          S[lowest] \leftarrow e
                                                                          // Saltamos a la nueva solución
      if carryon == true \ or \ EVALS > LIMIT then
                                                      // Se cumple alguna de las condiciones de parada
```

3. Descripción de los algoritmos

3.1. Enfriamiento Simulado

Para implementar el algoritmo de Enfriamiento Simulado, hemos separado los operadores de generación de vecino y salto.

Algorithm 5: MUTATE genera un vecino aleatorio en un entorno de la solución y calcula la diferencia de fitness.

Input: Solución de partida S.

Output: Índice del elemento a eliminar.

Output: Elemento a añadir.

Output: Diferencia de fitness entre el vecino y la solución S.

 $index_out \leftarrow$ entero aleatorio entre 0 y |S|-1 $elem_in \leftarrow$ elemento aleatorio entre 0 y n-1

while $elem_in \in S$ do

| $elem_in \leftarrow$ elemento aleatorio entre 0 y n-1

 $contrib_in \leftarrow contrib(S, D, elem_in) - D[elem_in, S[index_out]]$ // Contribución del nuevo elemento, no hay que contar su distancia al que vamos a quitar.

 $contrib_out \leftarrow contrib(S, D, S[index_out])$

 $delta \leftarrow contrib_in - contrib_out$

 $EVALS \leftarrow EVALS + 1$

return $elem_in$ return $index_out$ return delta

Algorithm 6: JUMP desplaza la solución al vecino indicado.

Input: Solución de partida S.

Input: Índice del elemento a eliminar: *index_out*.

Input: Elemento a añadir: $elem_{-}in$.

Input: Diferencia de fitness entre el vecino y la solución S: delta.

Output: Nueva solución (no devuelve nada, modifica S).

 $S[index_out] \leftarrow elem_in$

 $S.fitness \leftarrow S.fitness + delta$

3.2. Búsqueda local

Procedemos con la descripción del algoritmo de Búsqueda Local que se nos ha presentado en el seminario. Este algoritmo utiliza la técnica del Primer Mejor, en la que se van generando soluciones en el entorno de la actual y se salta a la primera con mejor evaluación. Para la implementación del algoritmo, necesitamos distintos elementos.

Este algoritmo se implementó en la práctica 1, y utiliza conjuntos de enteros en lugar de vectores para representar las soluciones.

El primer elemento, es una función para generar una solución aleatoria de partida. Simplemente se eligen m elementos diferentes del conjunto. Por comodidad, también calculamos el complementario.

Algorithm 7: RandomSol proporciona una solución válida aleatoria

```
Input: El entero m.
Input: El entero n.
Output: Una solución válida del MDP obtenida aleatoriamente.
Output: El complementario de la solución obtenida.
                                                             // Conjunto con los elementos no seleccionados
E \leftarrow \{0, \ldots, n-1\}
S \leftarrow \emptyset
                                                                                     // La solución empieza vacía
while |S| < m do
   e \leftarrow elemento aleatorio de E
    E \leftarrow E \setminus \{e\}
   S \leftarrow S \cup \{e\}
return S
return E
                                                                                                // El complementario
```

Lo siguiente que necesitamos es un método para generar las soluciones del entorno. Estas soluciones se consiguen sustituyendo el menor contribuyente de la solución actual por otro candidato. Presentamos el código para obtener el menor contribuyente.

Algorithm 8: LOWEST CONTRIB obtiene el elemento de S que menos contribuye en la valoración.

```
Input: Un conjunto de elementos S.
Input: La matriz de distancias D.
Output: El elemento de S que minimiza contrib(S, S, e) con e \in S.
Output: Su contribución, para la factorización de la función objetivo.
lowest \leftarrow primer elemento de S
min\_contrib \leftarrow contrib(S, D, lowest)
for s in S do
   contrib \leftarrow contrib(S, D, s)
   if contrib < min\_contrib then
       min\_contrib \leftarrow contrib
       lowest \leftarrow s
                                      // Si encuentro un candidato con menor contribución, actualizo
return lowest
return min_contrib
```

En el caso de que S se represente como un conjunto, no sabemos cuál será el primer elemento (depende de la implementación del iterador). Pero esto no es relevante, ya que vale cualquier elemento de S.

Finalmente, proporcionamos el algoritmo de Búsqueda Local para actualizar la solución por otra del entorno iterativamente hasta encontrar un máximo local (una solución mejor que todas las de su entorno) o llegar a un límite de evaluaciones de la función objetivo: LIMIT = 100000. Las soluciones del entorno se generan aleatoriamente.

Algorithm 9: LOCALSEARCH

```
Input: El entero m.
Input: La matriz de distancias D, n \times n.
Output: Una solución válida del MDP por el algoritmo de BS que hemos descrito, junto con su evaluación.
S \leftarrow \text{randomSol}(m, n)
                                                                   // Comenzamos con una solución aleatoria
E \leftarrow \{0, \ldots, n-1\} \backslash S
                                                          // randomSol también devuelve el complementario
fitness \leftarrow fitness(S)
                                                                                   // Diversidad de la solución
E \leftarrow \text{vector}(E)
                                                        // No importa el orden, pero debe poder barajarse
carryon \leftarrow true
LIMIT \leftarrow 100000
                                                         // Límite de llamadas a la función de evaluación
CALLS \leftarrow 0
while carryon do
   carryon \leftarrow false
   lowest = lowestContributor(S, D)
   min\_contrib \leftarrow contrib(S, D, lowest)
                                                                    // Se calcula dentro de lowestContributor
   S \leftarrow S \setminus \{lowest\}
   E \leftarrow \text{shuffle}(E)
   for e in E do
       contrib \leftarrow contrib(S, D, e)
       CALLS \leftarrow CALLS + 1
                                                                        // He evaludado una posible solución
       if contrib > min\_contrib then
           fitness \leftarrow fitness + contrib - min\_contrib
                                                                           // Diversidad de la nueva solución
           carryon \leftarrow true
                                                              // Toca saltar, lo que completa la iteración
           S \leftarrow S \cup \{e\}
                                                                               // Saltamos a la nueva solución
           E \leftarrow E \setminus \{e\}
           E \leftarrow E \cup \{lowest\}
       if carryon == true \ or \ CALLS \ge LIMIT then
                                                         // Se cumple alguna de las condiciones de parada
           break
if |S| < m then
S \leftarrow S \cup \{lowest\}
                            // Si salimos porque no encontramos una mejor, recuperamos la solución
return S
return fitness
```

Cabe destacar que en este algoritmo se calcula la fitness factorizando. Esto acelera mucho los cálculos, ya que hay que evaluar muchas soluciones diferentes.

Algoritmo de comparación: Greedy 4.

Para comparar la eficacia de cada algoritmos, lo compararemos con el algoritmo Greedy. El algoritmo consiste en empezar por el elemento más lejano al resto e ir añadiendo el elemento que más contribuya hasta completar una solución válida.

Este algoritmo también se implementó en la primera práctica y utiliza un conjunto de enteros.

Como elemento más lejano al resto se toma el elemento cuya suma de las distancias al resto sea la mayor. Y en cada iteración se introduce el elemento cuya suma de las distancias a los seleccionados sea mayor. Es decir, utilizamos la definición de (3).

Para calcular ambos valores, usamos la siguiente función, que permite obtener el de entre un conjunto de candidatos más lejano (en el sentido que acabamos de comentar) a los elementos de un conjunto dado. El código para calcularlo es similar al del algoritmo ??.

```
Algorithm 10: FARTHEST obtiene el candidato más lejano a los elementos de S.
```

```
Input: Un conjunto de candidatos C.
Input: Un conjunto de elementos S.
Input: La matriz de distancias D.
Output: El candidato más lejano en el sentido de (3).
farthest \leftarrow primer elemento de C
max\_contrib \leftarrow contrib(S, D, farthest)
for e in C do
   contrib \leftarrow contrib(S, D, e)
   if contrib > max\_contrib then
       max\_contrib \leftarrow contrib
       farthest \leftarrow e
                                      // Si encuentro un candidato con mayor contribución, actualizo
```

return farthest

En el caso de que C se represente como un conjunto, no sabemos cuál será el primer elemento (depende de la implementación del iterador). Pero esto no es relevante, ya que vale cualquier elemento de C.

Ya estamos en condiciones de proporcionar una descripción del algoritmo Greedy.

```
Algorithm 11: Greedy
```

```
Input: La matriz de distancias D.
Input: El entero m.
Output: Una solución válida del MDP obtenida como hemos descrito anteriormente, y su diversidad.
C \leftarrow \{0, \ldots, n-1\}
                                                              // En principio los n elementos son candidatos
S \leftarrow \emptyset
                                                                                       // La solución empieza vacía
farthest \leftarrow farthest(C, C, D)
                                                                                   // Elemento más lejano al resto
C \leftarrow C \setminus \{farthest\}
S \leftarrow S \cup \{farthest\}
while |S| < m do
    farthest \leftarrow farthest(C, S, D)
                                                                    // Elemento más lejano a los seleccionados
   C \leftarrow C \setminus \{farthest\}
   S \leftarrow S \cup \{farthest\}
return S
return fitness(S)
```

5. Desarrollo de la práctica

La implementación de los algoritmos y la experimentación con los mismos se ha llevado acabo de C++, utilizando la librería STL. Para representar la soluciones hemos hecho uso del tipo vector.

La mayoría de operadores (mutación, generación de vecino, salto, búsqueda local) se implementan como métodos de una clase Solucion.

Para medir los tiempos de ejecución se utiliza la función clock de la librería time.h.

A lo largo de la práctica se utilizan acciones aleatorias. Utilizamos la librería stdlib.h para la generación de enteros (no negativos) pseudoaleatorios con rand y fijamos la semilla con srand. Se barajan vectores con la función random_shuffle de la librería algorithm.

Para las acciones que se realizan con cierta probabilidad, es necesario generar flotantes pseudoaleatorios en el intervalos [0, 1]. Para esto, se genera un entero no negativo con rand y se divide entre el máximo posible (RAND_MAX).

Se almacena la matriz de distancias completa (no sólo un triángulo) por comodidad de los cálculos.

Se utiliza optimización de código -02 al compilar.

5.1. Manual de usuario

A continuación detallamos instrucciones para lanzar los ejecutables.

Tenemos los siguientes ejecutables:

■ TODO

Todos ellos devuelven la evaluación de la solución obtenida y el tiempo de ejecución por salida estándar. Leen el fichero por entrada estándar, así que es conveniente redirigirla. Todos los archivos reciben la semilla como parámetro.

Además, todos los archivos de búsqueda local reciben la semilla como parámetro. Ejemplo:

bin/ES 197 < datos/MDG-a_1_n500_m50.txt >> salidas/ES.txt

En la carpeta **software** se incluye el script usado para lanzar todas las ejecuciones, **run.sh**. También se incluye el Makefile que compila los ejecutables.

6. Experimentación y análisis

Toda la experimentación se realiza en mi ordenador portátil personal, que tiene las siguientes especificaciones:

■ OS: Ubuntu 20.04.2 LTS x86_64.

■ RAM: 8GB, DDR4.

■ CPU: Intel Core i7-6700HQ, 2.60Hz.

6.1. Casos de estudio y resultados

Tratamos varios casos con distintos parámetros n y m. En cada caso se utiliza una semilla diferente, pero se usa la misma para todos los algoritmos. A continuación presentamos una tabla con los casos estudiados. Para cada caso indicamos los valores de n y m y la semilla que se utiliza.

Caso	n	m	Seed
MDG-a_10_n500_m50	500	50	13
MDG-a_1_n500_m50	500	50	19
$MDG-a_2_n500_m50$	500	50	25
MDG-a_3_n500_m50	500	50	31
$MDG-a_4_n500_m50$	500	50	37
$MDG-a_5_n500_m50$	500	50	43
$MDG-a_6_n500_m50$	500	50	49
MDG-a_7_n500_m50	500	50	55
$MDG-a_8_n500_m50$	500	50	61
$MDG-a_9_n500_m50$	500	50	67
MDG-b_21_n2000_m200	2000	200	73
MDG-b_22_n2000_m200	2000	200	79
MDG-b_23_n2000_m200	2000	200	85
MDG-b_24_n2000_m200	2000	200	91
MDG-b_25_n2000_m200	2000	200	97
MDG-b_26_n2000_m200	2000	200	103
MDG-b_27_n2000_m200	2000	200	109
MDG-b_28_n2000_m200	2000	200	115
MDG-b_29_n2000_m200	2000	200	121
MDG-b_30_n2000_m200	2000	200	127
MDG-c_10_n3000_m400	3000	400	133
MDG-c_13_n3000_m500	3000	500	139
MDG-c_14_n3000_m500	3000	500	145
MDG-c_15_n3000_m500	3000	500	151
MDG-c_19_n3000_m600	3000	600	157
MDG-c_1_n3000_m300	3000	300	163
MDG-c_20_n3000_m600	3000	600	169
MDG-c_2_n3000_m300	3000	300	175
MDG-c_8_n3000_m400	3000	400	181
MDG-c_9_n3000_m400	3000	400	187

Tabla 1: Tabla con los parámetros y semillas de cada caso. Ordenando los nombres de los ficheros por orden alfabético (el orden en el que los procesa el script), las semillas son números del 13 al 187 saltando de 6 en 6.

Ahora mostraremos para cada algoritmo una tabla con los estadísticos (Desviación y Tiempo) que han obtenido en cada caso.

Greedy

Caso	Coste obtenido	Desv	Tiempo (s)
MDG-a_1_n500_m50	7610.42	2.85	0.001375
$MDG-a_2_n500_m50$	7574.39	2.54	0.001293
$MDG-a_3_n500_m50$	7535.96	2.88	0.001304
$MDG-a_4_n500_m50$	7551.52	2.81	0.001281
$MDG-a_5_n500_m50$	7540.14	2.77	0.001284
$MDG-a_6_n500_m50$	7623.65	1.93	0.001278
$MDG-a_7_n500_m50$	7594.62	2.28	0.0014
$MDG-a_8_n500_m50$	7625.94	1.61	0.001367
$MDG-a_9_n500_m50$	7547.25	2.87	0.001351
$MDG-a_10_n500_m50$	7642.27	1.77	0.001893
MDG-b_21_n2000_m200	11099332.620328	1.77	0.319017
MDG-b_22_n2000_m200	11149879.733826	1.21	0.313017
MDG-b_23_n2000_m200	11119613.974858	1.6	0.303374
MDG-b_24_n2000_m200	11106996.970212	1.63	0.311278
MDG-b_25_n2000_m200	11114220.292214	1.61	0.306411
MDG-b_26_n2000_m200	11132801.799043	1.41	0.306542
MDG-b_27_n2000_m200	11130608.965587	1.55	0.310595
MDG-b_28_n2000_m200	11110673.520354	1.5	0.318429
MDG-b_29_n2000_m200	11156328.082493	1.25	0.306362
MDG-b_30_n2000_m200	11109767.818822	1.65	0.296905
MDG-c_1_n3000_m300	24617010	1.07	1.501668
MDG-c_2_n3000_m300	24547293	1.44	1.464132
MDG-c_8_n3000_m400	43056071	0.88	2.546235
MDG-c_9_n3000_m400	42958639	1.1	2.569214
MDG-c_10_n3000_m400	42959794	1.19	2.566065
MDG-c_13_n3000_m500	66493045	0.78	3.67213
MDG-c_14_n3000_m500	66449858	0.79	3.767131
MDG-c_15_n3000_m500	66468837	0.78	3.78725
$MDG-c_19_n3000_m600$	94929882	0.74	5.183856
MDG-c_20_n3000_m600	94979205	0.69	5.582157

Tabla 2: Evaluación de las soluciones y estadísticos Desv y Tiempo obtenidos por el algoritmo Greedy en cada caso de estudio.

Desv	Tiempo (s)
1.63	1.19

Búsqueda Local

Caso	Coste obtenido	Desv	Tiempo (s)
MDG-a_1_n500_m50	7623.23	2.69	0.001809
MDG-a_2_n500_m50	7590.18	2.34	0.001391
MDG-a_3_n500_m50	7544.94	2.76	0.001204
$MDG-a_4_n500_m50$	7576.44	2.49	0.0012
MDG-a_5_n500_m50	7484.27	3.49	0.001308
$MDG-a_6_n500_m50$	7570.96	2.61	0.001297
MDG-a_7_n500_m50	7654.98	1.5	0.001608
MDG-a_8_n500_m50	7623.78	1.64	0.002379
MDG-a_9_n500_m50	7612.74	2.02	0.001494
MDG-a_10_n500_m50	7619.52	2.07	0.001959
MDG-b_21_n2000_m200	11181874.0007	1.04	0.099777
MDG-b_22_n2000_m200	11167876.184	1.05	0.092492
MDG-b_23_n2000_m200	11176568.0611	1.09	0.107634
MDG-b_24_n2000_m200	11188223.318	0.91	0.107425
MDG-b_25_n2000_m200	11181859.8196	1.01	0.090053
MDG-b_26_n2000_m200	11193478.832	0.88	0.122694
MDG-b_27_n2000_m200	11211629.6839	0.83	0.112468
MDG-b_28_n2000_m200	11151089.4629	1.14	0.079449
MDG-b_29_n2000_m200	11183039.6644	1.01	0.09833
MDG-b_30_n2000_m200	11159590.8213	1.21	0.090033
MDG-c_1_n3000_m300	24729057	0.62	0.601221
MDG-c_2_n3000_m300	24738675	0.67	0.584432
MDG-c_8_n3000_m400	43200330	0.55	1.264437
MDG-c_9_n3000_m400	43157977	0.64	1.241837
MDG-c_10_n3000_m400	43188306	0.66	1.195051
MDG-c_13_n3000_m500	66636142	0.56	2.304507
MDG-c_14_n3000_m500	66727635	0.38	2.430114
MDG-c_15_n3000_m500	66808383	0.28	2.78715
MDG-c_19_n3000_m600	95244690	0.41	3.572005
MDG-c_20_n3000_m600	95324379	0.33	3.598978

Tabla 3: Evaluación de las soluciones y estadísticos Desv y Tiempo obtenidos por el algoritmo de Búsqueda Local con Primer Mejor en cada caso de estudio.

Desv	Tiempo (s)
1.3	0.69

Enfriamiento Simulado (Cauchy Modificado)

Caso	Coste obtenido	Desv	Tiempo (s)
MDG-a_1_n500_m50	7670.07	2.09	0.006072
$MDG-a_2_n500_m50$	7605.52	2.14	0.00734
$MDG-a_3_n500_m50$	7640.15	1.54	0.004435
$MDG-a_4_n500_m50$	7506.45	3.39	0.002631
$MDG-a_5_n500_m50$	7595.3	2.06	0.007672
$MDG-a_6_n500_m50$	7513.32	3.35	0.002595
$MDG-a_7_n500_m50$	7531.44	3.09	0.00346
$MDG-a_8_n500_m50$	7609.81	1.82	0.007511
$MDG-a_9_n500_m50$	7654.97	1.48	0.006011
$MDG-a_10_n500_m50$	7707.51	0.94	0.012247
MDG-b_21_n2000_m200	11155738.985299	1.28	0.186285
MDG-b_22_n2000_m200	11164122.435074	1.09	0.184283
MDG-b_23_n2000_m200	11177722.312113	1.08	0.180047
MDG-b_24_n2000_m200	11124330.872795	1.48	0.175191
MDG-b_25_n2000_m200	11181796.14402	1.01	0.175225
MDG-b_26_n2000_m200	11157826.838857	1.19	0.176321
MDG-b_27_n2000_m200	11165835.734422	1.24	0.177808
MDG-b_28_n2000_m200	11119034.565327	1.43	0.174686
MDG-b_29_n2000_m200	11163768.720372	1.18	0.175868
MDG-b_30_n2000_m200	11148372.956175	1.31	0.174758
MDG-c_1_n3000_m300	24637456	0.99	0.418843
MDG-c_2_n3000_m300	24595823	1.24	0.416247
MDG-c_8_n3000_m400	43042008	0.91	0.515977
MDG-c_9_n3000_m400	43044732	0.91	0.51509
MDG-c_10_n3000_m400	43031426	1.02	0.514451
MDG-c_13_n3000_m500	66556889	0.68	0.602169
MDG-c_14_n3000_m500	66646003	0.5	0.598817
MDG-c_15_n3000_m500	66693908	0.45	0.605126
MDG-c_19_n3000_m600	95013094	0.65	0.672743
MDG-c_20_n3000_m600	94941193	0.73	0.664133

Tabla 4: Evaluación de las soluciones y estadísticos Desv y Tiempo obtenidos por el algoritmo de Enfriamiento Simulado con Cauchy modificado en cada caso de estudio.

Desv	Tiempo (s)
1.41	0.25

Enfriamiento Simulado (Proporcional)

Caso	Coste obtenido	Desv	Tiempo (s)
MDG-a_1_n500_m50	7822.51	0.14	0.017657
$MDG-a_2_n500_m50$	7622.47	1.92	0.017737
$MDG-a_3_n500_m50$	7687.45	0.93	0.018346
$MDG-a_4_n500_m50$	7721.95	0.62	0.018346
$MDG-a_5_n500_m50$	7691.9	0.82	0.017978
$MDG-a_6_n500_m50$	7725.73	0.62	0.017659
$MDG-a_7_n500_m50$	7666.35	1.36	0.018872
$MDG-a_8_n500_m50$	7654.96	1.24	0.018646
$MDG-a_9_n500_m50$	7700.72	0.89	0.018478
$MDG-a_10_n500_m50$	7747.54	0.42	0.01974
MDG-b_21_n2000_m200	10162614.655392	10.06	0.209395
MDG-b_22_n2000_m200	10173535.392627	9.86	0.210087
MDG-b_23_n2000_m200	10155768.757838	10.13	0.210103
MDG-b_24_n2000_m200	10153786.637714	10.07	0.209786
MDG-b_25_n2000_m200	10205945.840977	9.65	0.209136
MDG-b_26_n2000_m200	10186840.609219	9.79	0.209538
MDG-b_27_n2000_m200	10178369.828872	9.97	0.210577
MDG-b_28_n2000_m200	10165757.250428	9.88	0.209549
MDG-b_29_n2000_m200	10166804.326253	10.01	0.20924
MDG-b_30_n2000_m200	10167455.620431	9.99	0.210194
MDG-c_1_n3000_m300	22710993	8.73	0.367478
MDG-c_2_n3000_m300	22674638	8.96	0.365672
MDG-c_8_n3000_m400	40198770	7.46	0.44825
MDG-c_9_n3000_m400	40192167	7.47	0.448765
MDG-c_10_n3000_m400	40208739	7.52	0.459702
MDG-c_13_n3000_m500	62739982	6.38	0.524618
MDG-c_14_n3000_m500	62722779	6.36	0.521154
MDG-c_15_n3000_m500	62827242	6.22	0.519484
MDG-c_19_n3000_m600	90250861	5.63	0.576816
MDG-c_20_n3000_m600	90300816	5.59	0.576425

Tabla 5: Evaluación de las soluciones y estadísticos Desv y Tiempo obtenidos por el algoritmo de Enfriamiento Simulado Proporcional en cada caso de estudio.

Desv	Tiempo (s)
5.96	0.24

Búsqueda Multiarranque Básica

Caso	Coste obtenido	Desv	Tiempo (s)
MDG-a_1_n500_m50	7728.33	1.35	0.012555
$MDG-a_2_n500_m50$	7660.38	1.43	0.012736
$MDG-a_3_n500_m50$	7685.73	0.95	0.012163
$MDG-a_4_n500_m50$	7670.73	1.28	0.013113
$MDG-a_5_n500_m50$	7697.13	0.75	0.01369
$MDG-a_6_n500_m50$	7672.51	1.3	0.012915
$MDG-a_7_n500_m50$	7671.47	1.29	0.012711
$MDG-a_8_n500_m50$	7638.95	1.44	0.012538
$MDG-a_9_n500_m50$	7671.42	1.27	0.013783
$MDG-a_10_n500_m50$	7691.73	1.14	0.015372
MDG-b_21_n2000_m200	11191731.408656	0.96	0.548181
MDG-b_22_n2000_m200	11173811.056111	1	0.545127
MDG-b_23_n2000_m200	11188292.385945	0.99	0.536318
MDG-b_24_n2000_m200	11171816.301443	1.05	0.547428
MDG-b_25_n2000_m200	11187435.832728	0.96	0.545627
MDG-b_26_n2000_m200	11183285.709461	0.97	0.539269
MDG-b_27_n2000_m200	11187635.60774	1.04	0.527482
MDG-b_28_n2000_m200	11159849.337533	1.06	0.521256
MDG-b_29_n2000_m200	11165563.257994	1.17	0.519606
MDG-b_30_n2000_m200	11175655.345143	1.07	0.526765
MDG-c_1_n3000_m300	24669394	0.86	2.025703
MDG-c_2_n3000_m300	24640413	1.06	2.012946
MDG-c_8_n3000_m400	43103744	0.77	4.708329
MDG-c_9_n3000_m400	43115518	0.74	4.693528
MDG-c_10_n3000_m400	43106298	0.85	4.674107
MDG-c_13_n3000_m500	66572923	0.66	8.603123
MDG-c_14_n3000_m500	66605573	0.56	8.606731
MDG-c_15_n3000_m500	66616585	0.56	8.536043
MDG-c_19_n3000_m600	95117057	0.54	13.523184
MDG-c_20_n3000_m600	95136282	0.53	13.541991

Tabla 6: Evaluación de las soluciones y estadísticos Desv y Tiempo obtenidos por el algoritmo de Búsqueda Multiarranque Básica en cada caso de estudio.

Desv	Tiempo (s)
0.99	2.55

Búsqueda Local Reiterada

Caso	Coste obtenido	Desv	Tiempo (s)
MDG-a_1_n500_m50	7709.93	1.58	0.005458
$MDG-a_2_n500_m50$	7724.48	0.61	0.005492
$MDG-a_3_n500_m50$	7700.95	0.75	0.005432
$MDG-a_4_n500_m50$	7698.72	0.92	0.004801
$MDG-a_5_n500_m50$	7675.08	1.03	0.005607
$MDG-a_6_n500_m50$	7724.5	0.63	0.00516
$MDG-a_7_n500_m50$	7684.35	1.12	0.005209
$MDG-a_8_n500_m50$	7636.8	1.47	0.004604
$MDG-a_9_n500_m50$	7588.69	2.33	0.005811
$MDG-a_10_n500_m50$	7639.14	1.81	0.005155
MDG-b_21_n2000_m200	11246174.943997	0.48	0.279171
MDG-b_22_n2000_m200	11234217.903533	0.47	0.283377
MDG-b_23_n2000_m200	11265404.407986	0.31	0.282715
MDG-b_24_n2000_m200	11235595.316972	0.49	0.278637
MDG-b_25_n2000_m200	11238488.875162	0.51	0.264429
MDG-b_26_n2000_m200	11222485.977794	0.62	0.266735
MDG-b_27_n2000_m200	11270651.986493	0.31	0.271429
MDG-b_28_n2000_m200	11206855.439177	0.65	0.267736
MDG-b_29_n2000_m200	11232129.73934	0.58	0.28129
MDG-b_30_n2000_m200	11221257.950393	0.67	0.268129
MDG-c_1_n3000_m300	24799202	0.34	0.891335
MDG-c_2_n3000_m300	24768855	0.55	0.873298
MDG-c_8_n3000_m400	43289507	0.34	1.848681
MDG-c_9_n3000_m400	43310665	0.29	1.906863
MDG-c_10_n3000_m400	43295479	0.42	1.905886
MDG-c_13_n3000_m500	66746057	0.4	3.34356
$MDG-c_14_n3000_m500$	66829831	0.22	3.357704
MDG-c_15_n3000_m500	66888838	0.16	3.323805
MDG-c_19_n3000_m600	95338561	0.31	5.247
MDG-c_20_n3000_m600	95405963	0.25	5.039759

Tabla 7: Evaluación de las soluciones y estadísticos Desv y Tiempo obtenidos por el algoritmo de Búsqueda Local Reiterada en cada caso de estudio.

Desv	Tiempo (s)
0.69	1.02

Híbrido ILS-ES (Cauchy Modificado)

Caso	Coste obtenido	Desv	Tiempo (s)
MDG-a_1_n500_m50	7668.88	2.11	0.018958
$MDG-a_2_n500_m50$	7570.89	2.58	0.019275
$MDG-a_3_n500_m50$	7629.52	1.67	0.019115
$MDG-a_4_n500_m50$	7610.35	2.06	0.019151
$MDG-a_5_n500_m50$	7558.51	2.54	0.019174
$MDG-a_6_n500_m50$	7611.88	2.08	0.01904
$MDG-a_7_n500_m50$	7595.01	2.27	0.018986
$MDG-a_8_n500_m50$	7608.75	1.83	0.019084
$MDG-a_9_n500_m50$	7637.98	1.7	0.019134
$MDG-a_10_n500_m50$	7624.97	2	0.02031
MDG-b_21_n2000_m200	11102518.768872	1.75	0.417906
MDG-b_22_n2000_m200	11097704.226095	1.68	0.434521
MDG-b_23_n2000_m200	11107942.10879	1.7	0.422667
MDG-b_24_n2000_m200	11095329.156269	1.73	0.418913
MDG-b_25_n2000_m200	11106612.269199	1.68	0.407629
MDG-b_26_n2000_m200	11115693.739341	1.56	0.437994
MDG-b_27_n2000_m200	11106412.843644	1.76	0.38352
MDG-b_28_n2000_m200	11099474.468795	1.6	0.377382
MDG-b_29_n2000_m200	11090079.958744	1.83	0.381952
MDG-b_30_n2000_m200	11108647.770283	1.66	0.381864
MDG-c_1_n3000_m300	24518332	1.47	1.087397
MDG-c_2_n3000_m300	24539459	1.47	1.088532
MDG-c_8_n3000_m400	42966259	1.08	1.346259
MDG-c_9_n3000_m400	42961477	1.1	1.343878
MDG-c_10_n3000_m400	42931845	1.25	1.340798
MDG-c_13_n3000_m500	66388188	0.93	1.545965
MDG-c_14_n3000_m500	66365061	0.92	1.549764
MDG-c_15_n3000_m500	66443388	0.82	1.548566
MDG-c_19_n3000_m600	94850218	0.82	1.725036
MDG-c_20_n3000_m600	94801190	0.88	1.74827

Tabla 8: Evaluación de las soluciones y estadísticos Desv y Tiempo obtenidos por el algoritmo que combina Búsqueda Local Reiterada con Enfriamiento Simulado (con Cauchy Modificado) en cada caso de estudio.

Desv	Tiempo (s)
1.62	0.62

Híbrido ILS-ES (Proporcional)

Caso	Coste obtenido	Desv	Tiempo (s)
MDG-a_1_n500_m50	7560.83	3.48	0.01891
$MDG-a_2_n500_m50$	7563.4	2.68	0.018826
$MDG-a_3_n500_m50$	7460.16	3.86	0.019232
$MDG-a_4_n500_m50$	7451.87	4.1	0.01887
$MDG-a_5_n500_m50$	7436.75	4.11	0.019018
$MDG-a_6_n500_m50$	7518.25	3.29	0.018643
$MDG-a_7_n500_m50$	7502.04	3.47	0.018787
$MDG-a_8_n500_m50$	7495.04	3.3	0.018996
$MDG-a_9_n500_m50$	7554.54	2.77	0.018889
$MDG-a_10_n500_m50$	7462.38	4.09	0.0205
MDG-b_21_n2000_m200	10057595.617523	10.99	0.192389
MDG-b_22_n2000_m200	10063542.205813	10.84	0.192122
MDG-b_23_n2000_m200	9993237.92958	11.56	0.192491
MDG-b_24_n2000_m200	10021100.549492	11.25	0.192892
MDG-b_25_n2000_m200	10025313.148476	11.25	0.192684
MDG-b_26_n2000_m200	10051312.29967	10.99	0.193354
MDG-b_27_n2000_m200	10051140.804994	11.1	0.192243
MDG-b_28_n2000_m200	10025336.809131	11.12	0.193467
MDG-b_29_n2000_m200	10047516.382319	11.06	0.192314
MDG-b_30_n2000_m200	9971925.528861	11.72	0.19205
MDG-c_1_n3000_m300	22502085	9.57	0.405454
MDG-c_2_n3000_m300	22535949	9.51	0.407438
MDG-c_8_n3000_m400	40024366	7.86	0.499524
MDG-c_9_n3000_m400	40134952	7.6	0.497438
MDG-c_10_n3000_m400	40082879	7.81	0.5004
MDG-c_13_n3000_m500	62482702	6.76	0.576292
MDG-c_14_n3000_m500	62517590	6.66	0.571553
MDG-c_15_n3000_m500	62559375	6.62	0.570204
MDG-c_19_n3000_m600	90059376	5.83	0.63464
MDG-c_20_n3000_m600	89993465	5.91	0.633904

Tabla 9: Evaluación de las soluciones y estadísticos Desv y Tiempo obtenidos por el algoritmo que combina Búsqueda Local Reiterada con Enfriamiento Simulado (Proporcional) en cada caso de estudio.

Desv	Tiempo (s)
7.37	0.25

Comparamos los estadísticos medios obtenidos estos algoritmos entre sí y con los obtenidos por los algoritmos de búsqueda local (con primer mejor) y greedy de la primera práctica.

Algoritmo	Desv	Tiempo (s)
Greedy	1.63	1.19
BL	1.3	0.69
ES-CM	1.41	0.25
ES-prop	5.96	0.24
BMB	0.99	2.55
ILS	0.69	1.02
ILS-ES-CM	1.62	0.62
ILS-ES-prop	7.37	0.25

Tabla 10: Comparativa de los estadísticos medios obtenidos por los distintos algoritmos.

6.2. Análisis de resultados

TODO