MODULE 2: Data Representation

Lecture 2.1 Unsigned Data Representation

Prepared By:

- Scott F. Midkiff, PhD
- · Luiz A. DaSilva, PhD
- Kendall E. Giles, PhD

Electrical and Computer Engineering
Virginia Tech

Lecture 2.1 Objectives

- Explain how to represent any (unsigned) value, including integers and fractions, in any radix
- · Convert between decimal, binary, octal, and hexadecimal representations
- Describe the importance of binary, octal, and hexadecimal representations in computer systems

Data Representation

- Computers and other digital devices represent information using only "1's" and "0's" (bits)
 - Voltage level
 - Current level
 - Electrical charge
 - Orientation of a magnetic field
 - Reflection or non-reflection of light
- Higher level information must be represented using sequences of 1's and 0's
 - Numerical, fixed, and floating point numbers
 - Non-numerical, e.g. alphabetic characters

Numerical Data

- Numerical data is usually processed and stored based on binary (base-2 or radix-2) representation
 - Two symbols: {0,1}
- Examples
 - $-(13)_{10} = (1101)_2$
 - $-(13.25)_{10} = (1101.01)_2$
- We use a "binary point" to separate the integer part of the number from the fraction part

Fixed Point Numbers

- Use a fixed number of bits to represent any number
- Always assume that the decimal or binary point is in the same location (by convention, not explicitly stored)
- Examples
 - Decimal: 034.750, 543.201, 000.334
 - Binary: 1111.01, 0110.00, 0101.10
- The number of binary digits (bits) determines the precision and range of values that can be represented

Range and Precision

- The "range" of a representation scheme is the distance from the smallest to largest value that can be represented
 - E.g., What's the biggest number that can be represented?
- The "precision" of a representation scheme indicates the closeness to any actual value that can be represented
 - E.g., What's the error in representing a number?
- Floating point representation allows variable trade-off between range and precision

Graphical View

- Assuming 3 bits for integer and 2 bits for fraction
 - 000.00, 000.01, 000.10, 000.11, 001.00, 001.01, 001.10, 001.11, 010.00, 010.01, ..., 110.11, 111.00, 111.01, 111.10, 111.11

As a checkpoint of your understanding, please pause the video and make sure you can do the following:

• If the smallest three numbers in a fixed point format using four bits for the integer part and two bits for the fraction part are 0000.00 = 0, 0000.01 = .25, and 0000.10 = .5, and the largest three numbers in this format are 1111.01 = 15.25, 1111.10 = 15.5, and 1111.11 = 15.75, what are the range and precision of this number format?

Answer:

• The Range = 15.75 - 0 = 15.75, and the Precision = .25.

If you have any difficulties, please review the lecture video before continuing.

Radices

- Values are represented using some base or radix, e.g. radix-2 (binary) or radix-10 (decimal)
- In general, radix r has r symbols: { 0, ..., r-1 }
 - Binary: {0, 1}
 - Decimal: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 - Radix-8: {0, 1, 2, 3, 4, 5, 6, 7}
 - Radix-16: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
- Values are represented with sequences of these symbols, with each location in the sequence having an implicit weight that is a power of r

Radix-10

 Value of a decimal number where b_i is the decimal digit in position i from the decimal point

$$Value = \sum_{i=-m}^{n-1} b_i \times 10^i$$

- Example: 209.75
 - $-b_2 = 2$, $b_1 = 0$, $b_0 = 9$, $b_{-1} = 7$, $b_{-2} = 5$
 - $-2\times10^{2}+0\times10^{1}+9\times10^{0}+7\times10^{-1}+5\times10^{-2}$
 - $-2 \times 100 + 0 \times 10 + 9 \times 1 + 7 \times 0.1 + 5 \times 0.01 = 209.75$

Radix-2

 Value of a binary number where b_i is the binary digit in position i from the binary point

$$Value = \sum_{i=-m}^{n-1} b_i \times 2^i$$

• Example: 1101.01

-
$$b_3 = 1$$
, $b_2 = 1$, $b_1 = 0$, $b_0 = 1$, $b_{-1} = 0$, $b_{-2} = 1$

$$-1\times2^{3}+1\times2^{2}+0\times2^{1}+1\times2^{0}+0\times2^{-1}+1\times2^{-2}$$

$$-1\times8+1\times4+0\times2+1\times1+0\times0.5+1\times0.25$$

$$-8+4+0+1+0+0.25=(13.25)_{10}$$

Radix-r

For any radix r, value of a radix-r number where b_i is the digit in position i from the radix point

$$Value = \sum_{i=-m}^{n-1} b_i \times r^i$$

Example for radix 8: 157.10

-
$$b_2 = 1$$
, $b_1 = 5$, $b_0 = 7$, $b_{-1} = 1$, $b_{-2} = 0$

$$-1 \times 8^2 + 5 \times 8^1 + 7 \times 8^0 + 1 \times 8^{-1} + 0 \times 8^{-2}$$

$$-1\times64+5\times8+7\times1+1\times(1/8)+0\times(1/64)$$

$$-64 + 40 + 7 + 0.125 = (111.125)_{10}$$

As a checkpoint of your understanding, please pause the video and make sure you can:

Compute the decimal value of this number for radix 8: 147.11

Answer:

•
$$147.11_8 = 1 \times 8^2 + 4 \times 8^1 + 7 \times 8^0 + 1 \times 8^{-1} + 1 \times 8^{-2}$$

= $64 + 32 + 7 + .125 + .015625$
= 103.140625_{10}

If you have any difficulties, please review the lecture video before continuing.

Converting Between Radices

- Converting from any radix to decimal can be done, as just seen, using the "polynomial method"
- Converting a decimal value to any radix is done by separately converting the integer and fraction parts
 - Integer conversion using the "remainder method" with repeated division by the target radix
 - Fraction conversion using the "multiplication method" with repeated multiplication

Integer Conversion

- Divide value by r (where target is radix r) and remainder is next most significant digit
 - Note that remainder will always be less than r
- Example: convert (25)₁₀ to binary (radix-2)

$$25 \div 2 = 12$$
 remainder 1 $b_0 = 1$
 $12 \div 2 = 6$ remainder 0 $b_1 = 0$
 $6 \div 2 = 3$ remainder 0 $b_2 = 0$
 $3 \div 2 = 1$ remainder 1 $b_3 = 1$
 $1 \div 2 = 0$ remainder 1 $b_4 = 1$

Value = $(11001)_2$

Fraction Conversion

- Multiply by r (where target is radix r) and any integer part of the product is the next least significant bit
- Example: convert (0.45)₁₀ to binary (radix-2)

```
0.45 \times 2 = 0.9 integer = 0 b_{-1} = 0

0.9 \times 2 = 1.8 integer = 1 b_{-2} = 1

0.8 \times 2 = 1.6 integer = 1 b_{-3} = 1

0.6 \times 2 = 1.2 integer = 1 b_{-4} = 1

0.2 \times 2 = 0.4 integer = 0 b_{-5} = 0

0.4 \times 2 = 0.8 integer = 0 b_{-6} = 0

0.8 \times 2 = 1.6 integer = 1 b_{-7} = 1
```

Value = $(0.0111001100110011...)_2$

Precision Revisited

- Many values cannot be represented exactly in a given radix r, even though they can be in decimal
- In a practical implementation, some finite number of bits will be used for the fraction
 - In the previous example, we might represent an approximation of $(0.45)_{10}$ as $(0.011100)_2$ or $(0.011101)_2$
- This limited number of bits for representation leads to an error in representation or a loss in precision

As a checkpoint of your understanding, please pause the video and make sure you can:

Convert (4.25)₁₀ to binary (radix-2)

Answer:

 $(4.25)_{10}$

Integer part:

4/2 = 2 remainder 0

2/2 = 1 remainder 0

1/2 = 0 remainder 1 stop

Fraction part:

0.25 * 2 = 0.5 integer 0

0.5 * 2 = 1.0 integer 1

0.0 * 2 = 0.0 integer 0 stop

Therefore $4.25_{10} = 100.01_2$

If you have any difficulties, please review the lecture video before continuing.

Hexadecimal and Octal

- Hexadecimal (or "hex") and octal representation are of special value since they are based on radices that are powers of 2
 - Hexadecimal: radix-16
 - Octal: radix-8
- Useful as more compact representations of sequences of bits
- Since 16 = 24, one hexadecimal digit represents four bits
- Since $8 = 2^3$, one octal digit represents three bits

Hexadecimal Symbols

Hexadecimal (radix-16) requires six new symbols

-
$$(A)_{16} = (10)_{10} = (1010)_2$$

-
$$(B)_{16} = (11)_{10} = (1011)_2$$

-
$$(C)_{16} = (12)_{10} = (1100)_2$$

-
$$(D)_{16} = (13)_{10} = (1101)_2$$

-
$$(E)_{16} = (14)_{10} = (1110)_2$$

-
$$(F)_{16} = (15)_{10} = (1111)_2$$

Conversion From Binary to Hexadecimal

- Conversion is based on the fact that one hexadecimal digit represents four binary digits
- Conversion
 - Form groups of four bits starting from the binary point
 - Each group becomes a hexadecimal digit
- Example: convert (111010100.100)₂ to hex

Conversion From Hexadecimal to Binary

- Conversion
 - Convert each hexadecimal digit to the corresponding four binary digits, including all leading 0's
- Example: convert (3F.A)₁₆ to binary

$$(3F.A)_{16} = (00111111.1010)_2$$

As a checkpoint of your understanding, please pause the video and make sure you can:

Convert (BC.F)₁₆ to binary

Answer:

• $(BC.F)_{16} = 1011 \ 1100 \ . \ 1111 = 10111100 \ . \ 1112$

If you have any difficulties, please review the lecture video before continuing.

Summary

- Numerical values can be represented using any radix r
 - We're used to radix-10 or decimal
 - Radix-2 or binary is better suited to use in computers
 - Octal and hexadecimal are also convenient for notation
- Fixed point representation uses a fixed number of bits to represent values with an implied location for the binary point
 - Trade-off between range and precision
- Conversion between decimal and other radices is needed

MODULE 2: Data Representation

Lecture 2.1 Unsigned Data Representation

Prepared By:

- Scott F. Midkiff, PhD
- · Luiz A. DaSilva, PhD
- Kendall E. Giles, PhD

Electrical and Computer Engineering
Virginia Tech

