O MÉTODO DE EULER COMO UM MÉTODO DE SÉRIE DE TAYLOR

MÉTODOS DE RUNGE-KUTTA

MAT 271 – Cálculo Numérico – PER3/2021/UFV

Professor Amarísio Araújo DMA/UFV

MÉTODO DE EULER

Temos um PVI: $\begin{cases} y' = f(x,y) \\ & \text{com solução única em um intervalo } [x_0,b]. \\ y(x_0) = y_o \end{cases}$

O Método de Euler consiste em calcular aproximações da solução y do PVI em pontos discretos $x_0, x_1, x_2, ..., x_N$ do intervalo $[x_0, b]$, sendo tais pontos obtidos subdividindo o intervalo em N subintervalos de mesmo comprimento $h = \frac{b-x_0}{N}$, de modo que:

$$x_0, x_1 = x_0 + h, x_2 = x_1 + h, ..., x_N = x_{N-1} + h = b.$$

Os valores aproximados de $y_1 = y(x_1)$, $y_2 = y(x_2)$, ..., $y_N = y(x_N)$, são calculados assim:

$$y_{n+1} = y_n + hf(x_n, y_n)$$
, para $n = 0, 1, 2, ..., N - 1$

 $y(b) \cong y_N = y(x_N); \ y_0, y_1, y_2, \dots, y_N$, formam a aproximação da solução y do PVI em $[x_0, b]$.

(h é o tamanho dos passos e N é o número de passos)

SÉRIE DE TAYLOR-MÉTODO DE EULER

Suponhamos que a solução y do PVI seja infinitamente derivável no intervalo $[x_0, b]$, com todas as derivadas contínuas em $[x_0, b]$.

Fazendo o desenvolvimento em Série de Taylor de y em torno de cada ponto x_n , $n=0,1,2,\ldots,N$:

$$y(x) = y(x_n) + y'(x_n)(x - x_n) + y''(x_n) \frac{(x - x_n)^2}{2!} + y'''(x_n) \frac{(x - x_n)^3}{3!} + \cdots + y^{(k)}(x_n) \frac{(x - x_n)^k}{k!} + y^{(k+1)}(x_n) \frac{(x - x_n)^{k+1}}{(k+1)!} + \cdots$$

Assim, para $x = x_n + h$ (h tal que $x_n + h \in [x_0, b]$), temos:

$$y(x_n + h) = y(x_n) + y'(x_n)h + y''(x_n)\frac{h^2}{2!} + y'''(x_n)\frac{h^3}{3!} + \cdots + y^{(k)}(x_n)\frac{h^k}{k!} + y^{(k+1)}(x_n)\frac{h^{k+1}}{(k+1)!} + \cdots$$

SÉRIE DE TAYLOR-MÉTODO DE EULER

$$y(x_n + h) = y(x_n) + y'(x_n)h + y''(x_n)\frac{h^2}{2!} + y'''(x_n)\frac{h^3}{3!} + \cdots + y^{(k)}(x_n)\frac{h^k}{k!} + y^{(k+1)}(x_n)\frac{h^{k+1}}{(k+1)!} + \cdots$$

Considerando, então, um truncamento de ordem 1 da Série acima, temos:

$$y(x_n + h) \cong y(x_n) + y'(x_n)h = y(x_n) + hy'(x_n)$$

$$\text{Mas } y' = f(x, y) \text{ (PVI)} \quad \Rightarrow \quad y'(x_n) = f(x_n, y(x_n)) = f(x_n, y_n).$$

$$\Rightarrow \quad y(x_n + h) \cong y(x_n) + hf(x_n, y_n) \quad \Rightarrow \quad y(x_{n+1}) \cong y(x_n) + hf(x_n, y_n)$$

$$y_{n+1} \cong y_n + hf(x_n, y_n) \quad \text{QUE \'e A F\'ORMULA DO M\'eTODO DE EULER}$$

DIZEMOS, ENTÃO, QUE O MÉTODO DE EULER É UM MÉTODO DE SÉRIE DE TAYLOR

 $y_{n+1} = y_n + hf(x_n, y_n)$, para n = 0, 1, 2, ..., N - 1

AVALIANDO O ERRO NO MÉTODO DE EULER

Ao fazermos um truncamento de ordem $p\,$ da Série de Taylor

$$y(x_n + h) = y(x_n) + y'(x_n)h + y''(x_n)\frac{h^2}{2!} + y'''(x_n)\frac{h^3}{3!} + \cdots + y^{(k)}(x_n)\frac{h^k}{k!} + y^{(k+1)}(x_n)\frac{h^{k+1}}{(k+1)!} + \cdots$$

o erro absoluto $|E_T|$ de truncamento é tal que:

$$|E_T| \le \frac{h^{p+1}}{(p+1)!} M$$
, onde $M = max\{|y^{(p+1)}(x)|; x \in [x_0, b]\}.$

Como o Método de Euler é obtido do truncamento de ordem 1 da Série de Taylor acima, o erro absoluto |E| no cálculo aproximado da solução y do PVI pelo Método de Euler é tal que:

$$|E| \le \frac{h^2}{2}M$$
, onde $M = max\{|y''(x)|; x \in [x_0, b]\}$. h diminuindo (N aumentando), a aproximação melhora.

h pequeno demais pode causar problema!!!!

Seja o seguinte PVI: y' = x + y, y(0) = 1.

Vamos aplicar o método de Euler, com N=10, para calcular uma aproximação de y(2).

$$h = \frac{2 - 0}{10} = 0.2.$$

$$x_0 = 0$$
, $x_1 = 0.2$, $x_2 = 0.4$, $x_3 = 0.6$, $x_4 = 0.8$, $x_5 = 1$, $x_6 = 1.2$, $x_7 = 1.4$, $x_8 = 1.6$, $x_9 = 1.8$ e $x_{10} = 2$

$$y_{n+1} = y_n + hf(x_n, y_n)$$
, para $n = 0,1,2,...,9$ $x_0 = 0$, $y_0 = 1$, $f(x_n, y_n) = x_n + y_n$

$$y_{n+1} = y_n + 0.2(x_n + y_n)$$
, para $n = 0,1,2,...,9$

$$x_0 = 0$$
, $x_1 = 0.2$, $x_2 = 0.4$, $x_3 = 0.6$, $x_4 = 0.8$, $x_5 = 1$, $x_6 = 1.2$, $x_7 = 1.4$, $x_8 = 1.6$, $x_9 = 1.8$ e $x_{10} = 2$ $y_0 = 1$ $y_{n+1} = y_n + 0.2(x_n + y_n)$, para $n = 0,1,2,...,9$

$$y_1 = y_0 + 0.2(x_0 + y_0) = 1 + 0.2(0 + 1) = 1.2$$

 $y_2 = y_1 + 0.2(x_1 + y_1) = 1.2 + 0.2(0.2 + 1.2) = 1.48$
 $y_3 = y_2 + 0.2(x_2 + y_2) = 1.48 + 0.2(0.4 + 1.48) = 1.856$
 $y_4 = y_3 + 0.2(x_3 + y_3) = 1.856 + 0.2(0.6 + 1.856) = 2.3472$
 $y_5 = y_4 + 0.2(x_4 + y_4) = 2.3472 + 0.2(0.8 + 2.3472) = 2.97664$

$$y_1 = 1.2$$
 $y_2 = 1.48$ $y_3 = 1.856$ $y_4 = 2.3472$ $y_5 = 2.97664$
 $y_6 = y_5 + 0.2(x_5 + y_5) = 2.97664 + 0.2(1 + 2.97664) = 3.771968$
 $y_7 = y_6 + 0.2(x_6 + y_6) = 3.771968 + 0.2(1.2 + 3.771968) = 4.7663616$
 $y_8 = y_7 + 0.2(x_7 + y_7) = 4.7663616 + 0.2(1.4 + 4.7663616) = 5.99963392$
 $y_9 = y_8 + 0.2(x_8 + y_8) = 5.99963392 + 0.2(1.6 + 5.99963392) = 7.519560704$
 $y_{10} = y_9 + 0.2(x_9 + y_9) = 7.519560704 + 0.2(1.8 + 7.519560704) = 9.3834728448$

 $y(2) \cong y_{10} = 9.3834728448$

COMPARANDO COM A SOLUÇÃO ANALÍTICA

A solução exata deste problema, encontrada analiticamente, é $y = 2e^x - (x + 1)$.

у	APROXIMADO	EXATO 1	
y(0)	1		
y(0.2)	1.2	1.2428	
y(0.4)	1.48	1.5836	
y(0.6)	1.856	2.0442	
y(0.8)	2.3472	2.6511	
y(1)	2.9766	3.4366	
y(1.2) y(1.4)	3.7720	4.4402	
	4.7664	5.7104	
y(1.6)	5.9996	7.3061	
y(1.8)	7.5196	9.2993	
y(2)	9.3835	11.7781	

MÉTODO DE TAYLOR DE ORDEM 2

$$y(x_n + h) = y(x_n) + y'(x_n)h + y''(x_n)\frac{h^2}{2!} + y'''(x_n)\frac{h^3}{3!} + \dots + y^{(k)}(x_n)\frac{h^k}{k!} + \dots$$

Considerando, agora, um truncamento de ordem 2 da Série acima, temos:

$$y(x_n + h) \cong y(x_n) + y'(x_n)h + y''(x_n)\frac{h^2}{2!} = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n)$$

Como y' = f(x, y), da Regra da Cadeia para funções reais de duas variáveis, obtemos:

$$y'' = \frac{d}{dx}(y') = \frac{d}{dx}(f(x,y)) = f_x(x,y)\frac{dx}{dx} + f_y(x,y)\frac{dy}{dx} = f_x(x,y) + f_y(x,y)y'$$

$$\Rightarrow y'' = f_x(x, y) + f_y(x, y)y' \Rightarrow y''(x_n) = f_x(x_n, y(x_n)) + f_y(x_n, y(x_n))y'(x_n)$$

$$y(x_n + h) \cong y(x_n) + hy'(x_n) + \frac{h^2}{2} [f_x(x_n, y(x_n)) + f_y(x_n, y(x_n))y'(x_n)]$$

$$f_x = \frac{\partial f}{\partial x}$$

$$f_y = \frac{\partial f}{\partial y}$$

MÉTODO DE TAYLOR DE ORDEM 2

$$y(x_n + h) \cong y(x_n) + hy'(x_n) + \frac{h^2}{2} [f_x(x_n, y(x_n)) + f_y(x_n, y(x_n))y'(x_n)]$$

Como y' = f(x, y), também temos que: $y'(x_n) = f(x_n, y_n)$

$$y(x_n + h) \cong y(x_n) + hf(x_n, y_n) + \frac{h^2}{2} [f_x(x_n, y_n) + f_y(x_n, y_n))f(x_n, y_n)]$$

$$y(x_{n+1}) \cong y(x_n) + hf(x_n, y_n) + \frac{h^2}{2} [f_x(x_n, y_n) + f_y(x_n, y_n))f(x_n, y_n)]$$

$$y_{n+1} \cong y_n + hf(x_n, y_n) + \frac{h^2}{2} [f_x(x_n, y_n) + f_y(x_n, y_n))f(x_n, y_n)]$$

$$y_{n+1} = y_n + hf(x_n, y_n) + \frac{h^2}{2} [f_x(x_n, y_n) + f_y(x_n, y_n))f(x_n, y_n)], n = 0, 1, 2, ..., N - 1$$

MÉTODO DE SÉRIE DE TAYLOR DE ORDEM 2

MÉTODOS DE SÉRIE DE TAYLOR

MÉTODO DE SÉRIE DE TAYLOR DE ORDEM 1

$$y_{n+1} = y_n + hf(x_n, y_n)$$
, para $n = 0, 1, 2, ..., N - 1$

MÉTODO DE EULER

MÉTODO DE SÉRIE DE TAYLOR DE ORDEM 2

$$y_{n+1} = y_n + hf(x_n, y_n) + \frac{h^2}{2} [f_x(x_n, y_n) + f_y(x_n, y_n))f(x_n, y_n)], n = 0, 1, 2, ..., N - 1$$

Aumentando a ordem de truncamento da série de Taylor, obteríamos métodos de série de Taylor de ordem 3, 4,...

Um grande problema: depender do cálculo das derivadas parciais de f(x,y)!!!

Uma saída: MÉTODOS DE RUNGE-KUTTA

MÉTODOS DE RUNGE-KUTTA

$$y(x_n + h) = y(x_n) + y'(x_n)h + y''(x_n)\frac{h^2}{2!} + y'''(x_n)\frac{h^3}{3!} + y^{(4)}(x_n)\frac{h^4}{4!} \dots + y^{(k)}(x_n)\frac{h^k}{k!} + \dots$$

Considerando um truncamento até a ordem 4:

$$y(x_n + h) = y(x_n) + y'(x_n)h + y''(x_n)\frac{h^2}{2!} + y'''(x_n)\frac{h^3}{3!} + y^{(4)}(x_n)\frac{h^4}{4!}$$

$$y(x_n + h) = y(x_n) + h \left[y'(x_n) + y''(x_n) \frac{h}{2!} + y'''(x_n) \frac{h^2}{3!} + y^{(4)}(x_n) \frac{h^3}{4!} \right]$$

$$y_{n+1} = y_n + h \left[y'(x_n) + y''(x_n) \frac{h}{2!} + y'''(x_n) \frac{h^2}{3!} + y^{(4)}(x_n) \frac{h^3}{4!} \right]$$

MÉTODOS DE RUNGE-KUTTA

$$y_{n+1} = y_n + h \left[y'(x_n) + y''(x_n) \frac{h}{2!} + y'''(x_n) \frac{h^2}{3!} + y^{(4)}(x_n) \frac{h^3}{4!} \right]$$
 (*)
$$\text{Como } y'(x_n) = f(x_n, y_n): \qquad y''(x_n) = \frac{d}{dx}(y') = \frac{d}{dx}(f(x_n, y_n))$$

$$y'''(x_n) = \frac{d}{dx}(y'') = \frac{d^2}{dx^2}(f(x_n, y_n)) \qquad y^{(4)}(x_n) = \frac{d}{dx}(y''') = \frac{d^3}{dx^3}(f(x_n, y_n))$$

Os métodos de Runge-Kutta são baseados na avaliação da função f(x, y), de modo que se possa identificar a expressão (*) acima assim:

$$y_{n+1} = y_n + h[c_1k_1 + c_2k_2 + c_3k_3 + c_4k_4], \quad \text{com } c_1 + c_2 + c_3 + c_4 = 1.$$

As estratégias para se obter tal identificação acabam estabelecendo os possíveis valores de c_1 , c_2 , c_3 e c_4 e, consequentemente, as possíveis fórmulas para os chamados Métodos de Runge-Kutta de ordem 1, 2, 3 e 4.

MÉTODO DE RUNGE-KUTTA DE ORDEM 1

$$y_{n+1} = y_n + h[c_1k_1 + c_2k_2 + c_3k_3 + c_4k_4]$$
 $(c_1 + c_2 + c_3 + c_4 = 1)$

O Método de Runge-Kutta de ordem 1 é obtido quando

$$c_1 = 1, c_2 = c_3 = c_4 = 0$$

 $k_1 = f(x_n, y_n).$

$$y_{n+1} = y_n + hf(x_n, y_n)$$

Ou seja, o Método de Runge-Kutta de ordem 1 é o Método de Euler.

MÉTODOS DE RUNGE-KUTTA DE ORDEM 2

$$y_{n+1} = y_n + h[c_1k_1 + c_2k_2 + c_3k_3 + c_4k_4]$$
 $(c_1 + c_2 + c_3 + c_4 = 1)$

Um Método de Runge-Kutta de ordem 2 é obtido quando

$$c_1 = \frac{1}{2}, c_2 = \frac{1}{2}, c_3 = c_4 = 0$$

$$k_1 = f(x_n, y_n), \qquad k_2 = f(x_n + h, y_n + hk_1)$$

$$y_{n+1} = y_n + \frac{h}{2}[k_1 + k_2]$$

TAMBÉM CHAMADO DE MÉTODO DE EULER APERFEIÇOADO

OU: MÉTODO DE EULER MELHORADO

HÁ OUTROS MÉTODOS DE RUNGE-KUTTA DE ORDEM 2

MÉTODOS DE RUNGE-KUTTA DE ORDEM 3

$$y_{n+1} = y_n + h[c_1k_1 + c_2k_2 + c_3k_3 + c_4k_4]$$
 $(c_1 + c_2 + c_3 + c_4 = 1)$

Um Método de Runge-Kutta de ordem 3 é obtido quando

$$c_1 = \frac{2}{9}$$
, $c_2 = \frac{1}{3}$, $c_3 = \frac{4}{9}$, $c_4 = 0$

$$k_1 = f(x_n, y_n),$$
 $k_2 = f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_1\right), k_3 = f\left(x_n + \frac{3h}{4}, y_n + \frac{3h}{4}k_2\right)$

$$y_{n+1} = y_n + \frac{h}{9} [2k_1 + 3k_2 + 4k_3]$$

HÁ OUTROS MÉTODOS DE RUNGE-KUTTA DE ORDEM 3

MÉTODOS DE RUNGE-KUTTA DE ORDEM 4

$$y_{n+1} = y_n + h[c_1k_1 + c_2k_2 + c_3k_3 + c_4k_4]$$
 $(c_1 + c_2 + c_3 + c_4 = 1)$

Um Método de Runge-Kutta de ordem 4 é obtido quando

$$c_1 = \frac{1}{6}, c_2 = \frac{1}{3}, c_3 = \frac{1}{3}, c_4 = \frac{1}{6}$$

$$k_1 = f(x_n, y_n), \qquad k_2 = f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_1\right),$$

$$k_3 = f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_2\right), \qquad k_4 = f(x_n + h, y_n + hk_3)$$

$$y_{n+1} = y_n + \frac{h}{6}[k_1 + 2k_2 + 2k_3 + k_4]$$

HÁ OUTROS MÉTODOS DE RUNGE-KUTTA DE ORDEM 4

Dado o PVI: y' = x + y, y(0) = 1, vamos aplicar o método de Euler Aperfeiçoado (Runge-Kutta de ordem 2), com N = 10, para calcular uma aproximação de y(2).

$$h = \frac{2-0}{10} = 0.2.$$

$$x_0 = 0, x_1 = 0.2, x_2 = 0.4, x_3 = 0.6, x_4 = 0.8, x_5 = 1, x_6 = 1.2, x_7 = 1.4, x_8 = 1.6, x_9 = 1.8 \text{ e } x_{10} = 2$$

$$y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2), n = 0.1, 2, \dots 9$$

$$k_1 = f(x_n, y_n), \qquad k_2 = f(x_n + h, y_n + hk_1)$$

$$x_0 = 0$$
, $y_0 = 1$, $f(x_n, y_n) = x_n + y_n$

$$h = 0.2.$$
 $x_0 = 0, y_0 = 1, f(x, y) = x + y$
 $x_0 = 0, x_1 = 0.2, x_2 = 0.4, x_3 = 0.6, x_4 = 0.8, x_5 = 1, x_6 = 1.2, x_7 = 1.4, x_8 = 1.6, x_9 = 1.8 e x_{10} = 2$
 $y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2), n = 0.1, 2, \dots 9$

$$k_1 = f(x_n, y_n) = x_n + y_n,$$
 $k_2 = f(x_n + h, y_n + hk_1) = (x_n + h) + (y_n + hk_1)$

$$y_1 = y_0 + \frac{h}{2}(k_1 + k_2) = 1 + \frac{0.2}{2}(1 + 1.4) = 1.24$$

$$x_0 = 0, x_1 = 0.2, x_2 = 0.4, x_3 = 0.6, x_4 = 0.8, x_5 = 1, x_6 = 1.2, x_7 = 1.4, x_8 = 1.6, x_9 = 1.8 e x_{10} = 2$$

$$y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2), n = 0,1,2,...9$$

$$k_1 = f(x_n, y_n) = x_n + y_n,$$
 $k_2 = f(x_n + h, y_n + hk_1) = (x_n + h) + (y_n + hk_1)$

 $y_1 = 1.24$

$$n = 1$$

$$k_1 = x_1 + y_1 = 0.2 + 1.24 = 1.44$$

$$k_2 = (x_1 + h) + (y_1 + hk_1) = (0.2 + 0.2) + (1.24 + (0.2)1.44) = 1.928$$

$$y_2 = y_1 + \frac{h}{2}(k_1 + k_2) = 1.24 + \frac{0.2}{2}(1.44 + 1.928) = 1.5768$$

$$x_0 = 0, x_1 = 0.2, x_2 = 0.4, x_3 = 0.6, x_4 = 0.8, x_5 = 1, x_6 = 1.2, x_7 = 1.4, x_8 = 1.6, x_9 = 1.8 e x_{10} = 2$$

$$y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2), n = 0,1,2,...9$$

$$k_1 = f(x_n, y_n) = x_n + y_n,$$
 $k_2 = f(x_n + h, y_n + hk_1) = (x_n + h) + (y_n + hk_1)$

$$y_1 = 1.24$$
 $y_2 = 1.5768$

$$k_1 = x_2 + y_2 = 0.4 + 1.5768 = 1.9768$$

$$k_2 = (x_2 + h) + (y_2 + hk_1) = (0.4 + 0.2) + (1.5768 + (0.2)1.9768) = 2.57216$$

$$y_3 = y_2 + \frac{h}{2}(k_1 + k_2) = 1.5768 + \frac{0.2}{2}(1.9768 + 2.57216) = 2.03169$$

$$x_0 = 0, x_1 = 0.2, x_2 = 0.4, x_3 = 0.6, x_4 = 0.8, x_5 = 1, x_6 = 1.2, x_7 = 1.4, x_8 = 1.6, x_9 = 1.8 e x_{10} = 2$$

$$y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2), n = 0,1,2,...9$$

$$k_1 = f(x_n, y_n) = x_n + y_n,$$
 $k_2 = f(x_n + h, y_n + hk_1) = (x_n + h) + (y_n + hk_1)$

$$y_1 = 1.24$$
 $y_2 = 1.5768$ $y_3 = 2.03169$

$$y_2 - 1.5700$$
 $y_3 - 2.0510$

$$y_4 = y_3 + \frac{h}{2}(k_1 + k_2) = 2.03169 + \frac{0.2}{2}(2.63169 + 3.35803) = 2.63066$$

$$x_0 = 0, x_1 = 0.2, x_2 = 0.4, x_3 = 0.6, x_4 = 0.8, x_5 = 1, x_6 = 1.2, x_7 = 1.4, x_8 = 1.6, x_9 = 1.8 e x_{10} = 2$$

$$y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2), n = 0,1,2,...9$$

$$k_1 = f(x_n, y_n) = x_n + y_n,$$
 $k_2 = f(x_n + h, y_n + hk_1) = (x_n + h) + (y_n + hk_1)$

$$y_1 = 1.24$$

$$y_2 = 1.5768$$

$$y_1 = 1.24$$
 $y_2 = 1.5768$ $y_3 = 2.03169$ $y_4 = 2.63066$

$$y_4 = 2.63066$$

$$k_1 = x_4 + y_4 = 0.8 + 2.63066 = 3.430$$

$$k_1 = x_4 + y_4 = 0.8 + 2.63066 = 3.43066$$

$$k_2 = (x_4 + h) + (y_4 + hk_1) = (0.8 + 0.2) + (2.63066 + (0.2)3.43066) = 4.31679$$

$$y_5 = y_4 + \frac{h}{2}(k_1 + k_2) = 2.63066 + \frac{0.2}{2}(3.43066 + 4.31679) = 3.40541$$

$$x_0 = 0, x_1 = 0.2, x_2 = 0.4, x_3 = 0.6, x_4 = 0.8, x_5 = 1, x_6 = 1.2, x_7 = 1.4, x_8 = 1.6, x_9 = 1.8 e x_{10} = 2$$

$$y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2), n = 0,1,2,...9$$

$$k_1 = f(x_n, y_n) = x_n + y_n,$$
 $k_2 = f(x_n + h, y_n + hk_1) = (x_n + h) + (y_n + hk_1)$

$$y_1 = 1.24$$
 $y_2 = 1.5768$ $y_3 = 2.03169$ $y_4 = 2.63066$ $y_5 = 3.40541$

$$y_3 = 2.03169$$

$$y_4 = 2.63066$$

$$y_5 = 3.40541$$

$$x_0 = 0, x_1 = 0.2, x_2 = 0.4, x_3 = 0.6, x_4 = 0.8, x_5 = 1, x_6 = 1.2, x_7 = 1.4, x_8 = 1.6, x_9 = 1.8 e x_{10} = 2$$

$$y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2), n = 0,1,2,...9$$

$$k_1 = f(x_n, y_n) = x_n + y_n,$$
 $k_2 = f(x_n + h, y_n + hk_1) = (x_n + h) + (y_n + hk_1)$

$$y_1 = 1.24$$

$$y_2 = 1.5768$$

$$y_3 = 2.03169$$

$$y_1 = 1.24$$
 $y_2 = 1.5768$ $y_3 = 2.03169$ $y_4 = 2.63066$ $y_5 = 3.40541$

$$y_5 = 3.40541$$

$$y_6 = 4.3946$$

$$\begin{bmatrix} n = 6 \end{bmatrix} k_1 = x_6 + y_6 = 1.2 + 4.3946 = 5.5946$$

$$k_2 = (x_6 + h) + (y_6 + hk_1) = (1.2 + 0.2) + (4.3946 + (0.2)5.5946) = 6.91352$$

$$y_7 = y_6 + \frac{h}{2}(k_1 + k_2) = 4.3946 + \frac{0.2}{2}(6.91352 + 5.5946) = 5.64541$$

$$x_0 = 0, x_1 = 0.2, x_2 = 0.4, x_3 = 0.6, x_4 = 0.8, x_5 = 1, x_6 = 1.2, x_7 = 1.4, x_8 = 1.6, x_9 = 1.8 e x_{10} = 2$$

$$y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2), n = 0,1,2,...9$$

$$k_1 = f(x_n, y_n) = x_n + y_n,$$
 $k_2 = f(x_n + h, y_n + hk_1) = (x_n + h) + (y_n + hk_1)$

$$y_1 = 1.24$$

$$y_2 = 1.5768$$

$$y_3 = 2.03169$$

$$y_1 = 1.24$$
 $y_2 = 1.5768$ $y_3 = 2.03169$ $y_4 = 2.63066$ $y_5 = 3.40541$

$$y_5 = 3.40541$$

$$y_6 = 4.3946$$

$$y_6 = 4.3946$$
 $y_7 = 5.64541$

$$x_0 = 0, x_1 = 0.2, x_2 = 0.4, x_3 = 0.6, x_4 = 0.8, x_5 = 1, x_6 = 1.2, x_7 = 1.4, x_8 = 1.6, x_9 = 1.8 e x_{10} = 2$$

$$y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2), n = 0,1,2,...9$$

$$k_1 = f(x_n, y_n) = x_n + y_n,$$
 $k_2 = f(x_n + h, y_n + hk_1) = (x_n + h) + (y_n + hk_1)$

$$y_1 = 1.24$$

$$y_2 = 1.5768$$

$$y_3 = 2.03169$$

$$y_1 = 1.24$$
 $y_2 = 1.5768$ $y_3 = 2.03169$ $y_4 = 2.63066$ $y_5 = 3.40541$

$$y_5 = 3.40541$$

$$y_6 = 4.3946$$

$$y_6 = 4.3946$$
 $y_7 = 5.64541$ $y_8 = 7.2154$

$$y_8 = 7.2154$$

$$x_0 = 0, x_1 = 0.2, x_2 = 0.4, x_3 = 0.6, x_4 = 0.8, x_5 = 1, x_6 = 1.2, x_7 = 1.4, x_8 = 1.6, x_9 = 1.8 e x_{10} = 2$$

$$y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2), n = 0,1,2,...9$$

$$k_1 = f(x_n, y_n) = x_n + y_n,$$
 $k_2 = f(x_n + h, y_n + hk_1) = (x_n + h) + (y_n + hk_1)$

$$y_1 = 1.24$$

$$y_2 = 1.5768$$

$$y_3 = 2.03169$$

$$y_1 = 1.24$$
 $y_2 = 1.5768$ $y_3 = 2.03169$ $y_4 = 2.63066$ $y_5 = 3.40541$

$$y_5 = 3.40541$$

$$y_6 = 4.3946$$

$$y_7 = 5.64541$$

$$y_8 = 7.2154$$

$$y_6 = 4.3946$$
 $y_7 = 5.64541$ $y_8 = 7.2154$ $y_9 = 9.17479$

$$n = 9$$

COMPARANDO COM A SOLUÇÃO ANALÍTICA E COM O MÉTODO DE EULER

A solução exata deste problema, encontrada analiticamente, é $y = 2e^x - (x + 1)$.

у	EULER (RK1)	EULER APERF. (RK2)	EXATO
y(0)	1	1	1
y(0.2)	1.2	1.24	1.2428
y(0.4)	1.48	1.5768	1.5836
y(0.6)	1.856	2.0317	2.0442
y(0.8)	2.3472	2.6307	2.6511
y(1)	2.9766	3.4054	3.4366
y(1.2)	3.7720	4.3946	4.4402
y(1.4)	4.7664	5.6454	5.7104
y(1.6)	5.9996	7.2154	7.3061
y(1.8)	7.5196	9.1748	9.2993
y(2)	9.3835	11.6092	11.7781

MAIS UMA COMPARAÇÃO

Resolvendo o PVI: y' = x + y, y(0) = 1, com o método de Euler Aperfeiçoado (Runge-Kutta de ordem 2), com N=5, por exemplo, para calcular uma aproximação de y(2), já se obtém um resultado melhor do que com o método de Euler (Runge-Kutta de ordem 1), com N = 10.

$$N = 5$$
; $h = \frac{2-0}{5} = 0.4$.

$$x_0 = 0$$
, $x_1 = 0.4$, $x_2 = 0.8$, $x_3 = 1.2$, $x_4 = 1.6$, $x_5 = 2$

$$y_1 = 1.56000$$

$$y_2 = 2.58080$$

$$y_3 = 4.28358$$

$$y_4 = 6.00570$$

$$y_5 = 11.20164$$

EULER APERFEIÇOADO (RK2), COM N=5:

$$y(2) \cong y_5 = 11.20164$$

FAÇAM!!!

VALOR EXATO:

$$y(2) = 11.77811$$

COM EULER (RK1), COM N = 10:

$$y(2) \cong y_{10} = 9.38347$$

FEITO NO INÍCIO

EULER APERFEIÇOADO (RK2), COM N = 10: $|| y(2) \cong y_{10} = 11.60924$

$$y(2) \cong y_{10} = 11.60924$$

GRAFICAMENTE

Resolvendo o PVI: y' = x + y, y(0) = 1

EULER APERFEIÇOADO (RK2), COM N=5

EULER (RK1), COM N = 10

