GPCell: A Performant Framework for Gaussian Processes in Bioinformatics

Tristan Sones-Dykes

School of Mathematics and Statistics, The University of St Andrews

2025-04-01

Agenda

- Motivation & Background
- ▶ Problem Statement
- ► The Solution: GPCell
- Results
- Discussion
- ► Q&A

Motivation & Background

Historical Foundations

- ▶ Jacob and Monod (1961):
- Hardin, Hall, and Rosbash (1990): Demonstrated feedback mechanisms in gene expression, revealing oscillatory behavior in circadian rhythms.
- Phillips et al. (2017): Applied Gaussian processes to classify gene expression time series in neural progenitor cells, highlighting oscillatory versus aperiodic dynamics.

Introduction to Gaussian Processes

A non-parametric, probabilistic modeling approach that offers flexibility in fitting complex biological signals and quantifying uncertainty.

Problem Statement

Biological Background

Gene expression regulation is central to cellular function and its oscillatory dynamics can indicate critical biological processes such as differentiation.

Current implementation

- MATLAB-based Approach: Previous work relied on MATLAB, limiting accessibility and integration with modern machine learning libraries.
- Performance Issues: Traditional implementations faced slow model fitting and lacked support for parallel processing.
- ▶ Limited Extensibility: The original system was tailored to a specific context and difficult to extend with new inference techniques (e.g., MCMC, Variational Inference).

GPCell

Overview:

A generalised Python library, based on GPflow (Tensorflow Probability), to facilitate model fitting and oscillation detection.

Key Features:

- OscillatorDetector:: A class that handles the entire analysis pipeline (background noise estimation, detrending, and GP model fitting).
- Extensible GaussianProcess class: Allows for adding different models (e.g., MCMC for probabilistic inference) and various fitting algorithms.
- ▶ **Utils** module: for fitting models/generating data quickly in parallel.
- ▶ Robust Pipeline: Incorporates a strong type system, automated CI/CD, and comprehensive testing for reproducibility.

Methods & Results

▶ Validation:

- ► GPCell has been rigorously tested on both synthetic and real gene expression datasets.
- Unit tests (see correctness.py and gpflow_tests.py) ensure that background noise, detrending, and GP parameter estimation are accurate.

▶ Performance:

- Leverages parallel processing via Joblib (see fit_processes in utils.py) to dramatically reduce computation time
- Demonstrated improvements in model fitting speed and oscillation detection accuracy.

Visuals:

Results include performance charts and model prediction plots (e.g., mean and variance estimates from the GaussianProcess class).

Discussion & Impact

Strengths:

- Modularity: Each component (noise estimation, detrending, GP fitting) is self-contained, making the system easy to maintain and extend.
- ► Flexibility: Supports multiple inference techniques (BIC, bootstrap, MCMC) and custom kernel composition.

Challenges:

- Parameter Tuning: Fine-tuning priors and hyperparameters remains challenging in heterogeneous datasets.
- Scalability: Handling extremely large datasets may require additional optimizations.

▶ Broader Impact:

- By transitioning from MATLAB to Python, GPCell enhances reproducibility and accessibility for bioinformatics researchers.
- Its extensible design paves the way for future research and application in diverse scientific domains.

Q & A

Thank you!

Questions?

- Hardin, Paul E., Jeffrey C. Hall, and Michael Rosbash. 1990.
 "Feedback of the Drosophila Period Gene Product on Circadian Cycling of Its Messenger RNA Levels." *Nature* 343 (6258): 536–40. https://doi.org/10.1038/343536a0.
- Jacob, François, and Jacques Monod. 1961. "Genetic Regulatory Mechanisms in the Synthesis of Proteins." *Journal of Molecular Biology* 3 (3): 318–56. https://doi.org/10.1016/S0022-2836(61)80072-7.
- Phillips, Nick E., Cerys Manning, Nancy Papalopulu, and Magnus Rattray. 2017. "Identifying Stochastic Oscillations in Single-Cell Live Imaging Time Series Using Gaussian Processes." *PLOS Computational Biology* 13 (5): e1005479. https://doi.org/10.1371/journal.pcbi.1005479.