# Статистический анализ генов, влияющих на развитие рака груди

Константин Некрасов

# Центральная догма молекулярной биологии



# Нарезка ДНК





Помеченные фрагменты одноцепочечной ДНК наносятся на чип



Комплементарные фрагменты гибридизуются

При облучении лазером флуоресцентные метки светятся





# Экспрессия гена



# Восстановление концентрации

$$\sum_{p} \left( \log I_p^k - a_p - c_{g(p)}^k \right)^2 \to \min_{\{c_g^k\}}$$

- «Липучести»  $a_p$  и интенсивности  $I_{p,g}^k$  известны
- Концентрации генов  $c_g^k \geq 0$  и  $\sum_g c_g^k = 1$
- $m{p}$  номер пробы (много для одного гена!)
- g номер гена
- k номер чипа



Рак

Болезни

Способности

Наклонности

Характер

Предрасположенности

Химиотерапия

Gattaca!

Вид лечения

Продолжительность жизни



#### Диагностика

#### COUNTERTHINK



#### С чем мы имеем дело

Здоровая грудь



Раковая опухоль



# Лечение

Вырезают опухоль



В России в год выявляется 55 000

Обычно в молочных железах

Рецидив

Выздоровление

Из них умирает 22 000

У женщин в 100 раз чаще

> В 2008 году в мире погибло 458 503

Зато у мужчин смертность выше!





#### Химиотерапия



- Для повышения вероятности выздоровления, после операции применяют химиотерапию.
- Это вредно для здоровья: портятся почки, печень, сердце, иммунитет, выпадают волосы и т. д.
- Мы не хотим прописывать химию тем, кто и так выздоровеет

# Задача классификации

Что случится с больным после операции?

Выздоровление



Рецидив

VS.



# Мотивация

• Хотим по 20 генам научиться распознавать рецидив

• 20 генов позволят проводить дешевые тесты

• Сможем судить о том, нужна ли химиотерапия

• Нет конкуренции



#### Данные



"It's a non-linear pattern with outliers.....but for some reason I'm very happy with the data."

- Три разные лаборатории предоставляют уже вычисленные по пациентам экспрессии генов
- В них 79, 58 и 201 человек по 22 тыс. генов
- Всем пациентам была вырезана опухоль
- Есть два типа пациентов: в течении 5 лет случился рецидив, в течении 7 лет рецидива не было.
- Других пациентов не рассматриваем.

#### Эвристики от генетиков

- Концентрация гена не слишком маленькая/большая
- Имеет достаточно большой разброс
- Итоговый классификатор будем применяться на совсем других чипах и на данных от другой лаборатории
- Нужно узнать, насколько результат испортится, если тестировать на выборке пациентов из совсем другой лабо-

ратории



#### Эвристики от генетиков

- Используем лог. шкалу для концентраций
- Медиана по каждому из классов лежит на [5, 12]
- Разница между 95%- и 5%-квантилем больше 2
- Применив эти эвристики остается 470 генов





#### Строим решающее дерево



- Выбираем очередной признак и помещаем его в корень
- Разделяем выборку по этому признаку
- Для каждой части рекурсивно строим дерево
- Пока не иссякнут признаки или останутся объекты одного класса

#### Information Gain

$$I(p) = -p\log_2 p$$

Обучающая выборка  $X = (x_i, y_i)_{i=1}^{N}$ 

$$H(X) = \sum_{k=1}^{K} I\left(\frac{\text{число прецедентов класса } k}{\text{всего прецедентов}}\right)$$

$$IG(X,f) = H(X) - H(X|f)$$

Признак объектов

$$H(X|f) = \sum_{v \in vals(f)} \frac{\text{число прецедентов } x_f = v}{\text{всего прецедентов}} \cdot H(\text{выборка прецедентов с } x_f = v)$$



#### Random Forest



Run Forrest! Run!

- Число прецедентов N
- Число признаков M
- Для каждого дерева случайно <u>с повторением</u> выбираем *N* объектов
- И случайную подвыборку из  $\sqrt{M}$  признаков

### Out-of-bag (OOB)



- В каждое дерево не попадает примерно N/3 прецедентов
- Можно вычислять ошибку случайного леса, посылая в каждое дерево только объекты, которые не участвовали при его обучении
- Такая ошибка будет несмещенной оценкой ошибки на генеральной совокупности

#### Feature importance



- Пусть X обучающая выборка
- Пусть  $X^i$  та же выборка, но значенияi-го признака случайно перемешаны по всем прецедентам
  - Важность i-го признака определяется как разница между ошибками леса на OOB между X и  $X^i$

#### Сравнимо с SVM и бустингом

Высокое качество

Лучше нейросетей

Эффективная обработка большого

числа признаков и классов

Склонен к переобучению на зашумленных данных

Большой размер получающихся моделей Одинаково хорошо обрабатываются дискретные и непрерывные данные

Внутренняя оценка обобщающей способности (out-of-bag)

Параллелизм





#### Число деревьев на обучении

#### Motivation

- Обучение леса отчасти случайно
- Обучая небольшое число деревьев мы можем получать нестабильный результат
- Сколько нужно деревьев для получения стабильности?

#### Experiment

- Будем наращивать число деревьев на обучении
- Сравнивать ошибку на обучении и тесте
- Нужно найти число деревьев, на которых стабилизируется ошибка
- Обучение на 3й (201)
- Тест на 1 и 2й (79+58)

### Число деревьев на обучении



#### Смещенные данные

#### Motivation

- Нам предоставляются данные из трех различных лабораторий
- В каждой съемка чипов проводилась в разных условиях
- Что если данные не однородны и задача не корректна?
- Насколько разную природу имеют данные?

#### Experiment

- Будем обучаться на одной лаборатории и тестировать на других
- Так для каждой лаборатории
- Построим ROC для каждого случая
- По ROC можно судить об однородности данных

79 человек

#### Смещены ли данные?

58 человек

201 человек









Смотрите, данные одной природы!



# Устойчивость отбора признаков

#### Motivation

- Случайный лес позволяет оценить информативность признака
- Лес обучается случайно и разные ансамбли будут возвращать разную информативность
- Насколько устойчив показатель информативности, который возвращает случайный лес из 300 деревьев?

#### Experiment

- Обучим 50 лесов по 300 деревьев
- Вычислим по каждому признаку медиану и интерквантильный размах информативности
- Хорошо, если вверху окажется несколько генов с высокой медианой и низким размахом



# Устойчивость отбора признаков

× 50 лесов

× 300 деревьев

Значимость



Обучение на 3й лаборатории

Медиана

Размах



Признаки отсортированы по медиане значимости

#### Качество отобранных признаков

#### Motivation

- Наконец, мы готовы посмотреть на качество отбираемых признаков
- Будем смотреть на зависимость качества классификатора от числа добавляемых признаков
- Признаки добавляем в порядке убывания значимости

#### Experiment

- Значимость определяем по величине медианы
- Качество будем измерять по AUC
- Обучаем отдельные леса для каждого набора признаков
- Обучение на 3й
- Тест на 1 и 2й отдельно

## Качество отобранных признаков



79 человек

58 человек

201 человек



0.3

0.4

0.3

0.2

0.1

0.1

5 10 15 20 25 30 35 40

Number of features

Добавляем по одному признаку и строим лес заново

## Качество отобранных признаков



Тест

Обучение



79 человек

58 человек

201 человек

Добавляем по одному признаку и строим лес заново

#### Итоговый классификатор

#### Motivation

- Давайте, наконец, посмотрим на ROC итогового классификатора
- Которым будем прогнозировать выздоровление/рецидив!
- Заодно посмотрим, насколько качество скачет на разных лабораториях

#### Experiment

- Берем первые 20 признаков
- Обучение на Зй
- Тест на 1 и 2й отдельно



## Качество отобранных признаков



### Логистическая регрессия



# Логистическая регрессия с $L_1$ и $L_2$ регуляризацией



- Настраивает вероятностную модель для бинарной классификации
- Регуляризация против переобучения
- $L_1$  (Lasso) отбирает небольшое число информативных признаков
- $L_2$  (Ridge) учитывает коррелирующие признаки
- Вписывается с помощью модификации LARS
- Применяется для обработки DNA-microarray

## Максимизация правдоподобия



#### **EXPERIMENT**





#### Подбор параметров

#### Motivation

- Нужно настроить «эластичную сеть»
- Параметр λ указывает общую силу регуляризации
- Параметр lpha определяет компромисс между  $L_1$ - и  $L_2$ -регуляризацией
- Также нужно учесть, что в конечной модели мы хотим получить не более 20 весов

#### Experiment

- Пройдемся фиксированной сеткой альф и лямбд
- Вычислим средний AUC по пяти фолдам на 3й лаборатории
- Посчитаем среднее количество отбираемых весов на фолдах
- Выберем точку с максимальным AUC, со средним числом весов не больше 20

#### AUC на кроссвалидации



l'm back!

## Обнуляем точки с числом признаков более 20



#### Логистическая регрессия

#### Отобраны гены:

- 1. RAD21
- 2. CCT2
- 3. LYPLA1
- 4. S100P
- 5. CX3CR1
- 6. SQLE



## Случайный лес

#### Отобраны гены:

- 1. S100P
- 2. SQLE
- 3. MTDH
- 4. PGK1
- 5. C3orf14
- 6. CX3CR1
- 7. RAD21
- 8. MLF1IP
- 9. LTF
- 10. CCT2
- 11. FCGBP
- 12. CXCL12
- 13. TMEM70
- 14. HMGB2
- 15. TPD52
- **16. LYPLA1**
- 17. TFRC
- 18. MUC1
- 19. PERP
- 20. MRPS12



Судя по AUC – RF лучше, чем LR

#### RF на всех признаках



Смотрите – одно и то же!

#### Критерий качества для генетиков

- Требуется отобрать 20 наиболее информативных генов и научиться предсказывать рецидив
- Точность по выздоровевшим пациентам (нулевой класс)  $P_0 \ge 90\%$
- Точность по пациентам с рецидивом (первый класс)  $P_1 \to \max$
- Сейчас в мире  $P_1 \approx 30..50\%$ ,  $P_0 \approx 90\%$

• Низкое качество, потому что придумывались эвристически



#### Финальная точность

|                   | LR    |       | RF    |       | World   |         |
|-------------------|-------|-------|-------|-------|---------|---------|
|                   | $P_0$ | $P_1$ | $P_0$ | $P_1$ | $P_0$   | $P_1$   |
| Train/OOB (lab 3) | 0.90  | 0.65  | 0.90  | 0.36  |         |         |
| Test (lab 1)      | 0.81  | 0.60  | 0.90  | 0.62  | 0.8-0.9 | 0.3-0.5 |
| Test (lab 2)      | 0.87  | 0.17  | 0.93  | 0.20  |         |         |

Заказчик оперировал точностью!

Пора её вычислить

По результатам в таблице и графикам AUC – RF побеждает



#### Итог

- 1. Мы устойчиво отобрали несколько генов
- 2. Обучили случайный лес и логистическую регрессию с «эластичной сетью»

3. Полученное качество варьирует от 20% до 60% на разных лабораториях

Увидимся на защите!

#### Спасибо за внимание!





## КОНЕЦ