

Computação Paralela com GPU -Aula 1 - Threads

Agenda do Curso

- Aula 1:
 - Introducao (Nivelamento);
 - Threads;
 - Exemplos Threads.
- Aula 2:
 - OpenMP introducao;
 - OpenMP exemplos;
- Aula 3:
 - OpenCL Introducao;
 - OpenCL exemplos;
- Aula 4:
 - CUDA Introducao;
 - CUDA exemplos;

Agenda

- Introdução teórica e histórica
 - Lei de Moore;
 - Arquitetura;
 - Sistemas Operacionais;
- Paralelismo
 - Arquiteturas;
 - Problemas;
 - Modelos;
- Threads
 - Características;
 - Vantagens;
- Exemplos
 - Exemplos Pthreads;

1. Introdução

Um pouco de história....

The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it

will not remain nearly constant for at least 10 years

CPU Transistor Counts 1971-2008 & Moore's Law

Arquitetura

Hardware

Memória X CPU

- Gargalos de memória;
- Níveis de Memória

Computer Memory Hierarchy

Sistema Operacional Software e Drivers

Características Interessantes

Threads X Processos

Processos são independentes e threads são um subconjunto de processos com o mesmo espaço de endereçamento. Processos são gerenciados pelo kernel e threads podem ser gerenciadas por usuários.

Multithreading

Sistemas
Operacionais
multitarefa. São
sistemas capazes de
executar multiplos
processos e threads,
seja por hardware ou
software.

Scheduling

Como a troca de contexto é realizada, mais comum é o time-slicing.

Z. Paralelismo

Linha de produção...

Arquiteturas

- Grid Computing:
 - Combinação de diversos recursos computacionais de multiplos domínios administrativos em um único trabalho.
- Massive Parallel Processors (MPP) system:
 - Arquitetura dos Supercomputadores;
- Cluster Server System:
 - Uma rede de computadores de propósito geral;
- Symmetric Multiprocessing (SMP) system:
 - Processadores idênticos (potência de 2) conectados como um só;
- Multicore Processor:
 - Um único chip com vários núcleos;

Problemas

Condições de Corrida

Ocorre quando duas rotinas executam em uma região crítica ou estão acessando a mesma memória e nenhuma das duas consegue prosseguir.

Paralelizando rotinas

Não é facil identificar e implementar paralelização em alguns códigos.

Soluções

Sincronização

- Mutexes;
- Semáforos;
- Gate;
- Barrier;

Interrupções

Solução implementada em hardware;

Ferramentas

- Threads;
- OpenMP;
- OpenMPI;
- OpenCL;
- CUDA;

Modelos

Produtor X Consumidor

Uma thread cria e gerência os dados e as outras threads fazem o mesmo trabalho.

Pipeline

A tarefa é quebrada em varias tarefas menores e cada operação é concorrente e executada por por núcleos diferentes (Tempo Real)

Peer

A thread Principal cria e participa no processamento.

3. Threads

Primeira ferramenta, mais simples...

Características Threads

Memória Compartilhada

- Mesma memória;
- Possuem dados privados;
- Usuário
 Gerencia.

Segurança

A execução das threads não pode comprometer a execução do processo;

Limites

Cada hardware tem o limite de threads que podem ser executadas.

	User Address Space	
Thread 2 stack	routine2() var1 var2 var3	Stack Pointer Prgrm. Counte Registers
Thread 1 stack	routinel() varl	Stack Pointer Prgrm. Counte Registers
text	main() routine1() routine2()	Process ID User ID Group ID
data	arrayA arrayB	Files Locks
		Sockets

POSIX Threads API

- Gerenciamento:
 - criação;
 - destruição.
- Comunicação:
 - Variáveis de condição.
- Sincronização:
 - Mutexes;
 - Barreiras.

3. Exemplos

Alguns exemplos simples...

66

git clone https://github. com/gaburiero/jornada_parallel.git

Exemplos

- 1. Criação de Threads;
- 2. Argumentos;
- 3. Join;
- 4. Gerenciamento de Stack;
- 5. Mutexes;
- 6. Variáveis de condição.

Bibliografia

- Wikipédia;
- Organizacao Estruturada de Computadores 5ª Ed.;
- Sistemas Operacionais Modernos 3^a Ed.;
- SPRAB27B Multicore Programming Guide, Texas Instruments;
- https://computing.llnl.gov/tutorials/pthreads/;

Obrigado!

Dúvidas?

Meu contato:

gabriel.carvalho@itec.ufpa.br

