

Gradient Boosting

Son Nguyen

Gradian + Boisting

(combine of multiple "reak" models (usually simple trees)

Example to du		۱ ۲ ا	km [†]	tomonor
	 २०	So		
	66	90	=	
	30	20		
	40	40		
	80	75		
	90	100		
	10	15		

This is a regression (not clossification) LIC 4 is continuous / numeric

Y		
1 7 1	4,	e ₁
50	100	- 20
90	20	70
20	30	-10
40	70	- 30
35	100	-25
100	96	10
15	25	-10
	50 90 20 40 25 100	\$0 160 90 20 20 30 40 70 25 100 100 90

	(-11)	• •		(1
	f			4
X	1 e1	en	1 ez	-
	-20	- 15	-5	
46	70	8D	-10	
50	-10	-5	-<	
40	- 30	- 30	O	コ
90	-25	- 20	-5	
90	10	15	-5	
10	-10	-10	٥	
			,	

Let cay we stop on M3, the first prediction of the committee of M1, M2, M3 is

Final production =
$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

	1				
ĸ	\er	ez	E3		
30	-5	- 7	2		
30 60	-10	-5	-5		
30	-5	-6	1		
40	0	2	-2		
90	-5	- 3	3	-	
90	-5	- 2	- 3		
lo	6	-1			
			_		

target of NI

Garning rak

×	7	41	e ₁
70	ço.	100	- 20
66	90	20	70
30	20	30	-16
40	40	70	- 30
80	35	100	-25
90	100	96	10
10	15	25	-10

X	l e1	e1. L (1=70%)
70	- 20	-20.6 = -14
46	70	70 ·L = 49
50	-10	-10·L = -7
40	- 30	-30·L = -21
500	-25	-2T.L =
90	10	10 .1 = 2
10	-10	-10.4 = -7
		tanel for
		M2

X	er '	ez	C3	
30	-5	- 3	2	
60	-10	-5	-5	
30	-5	-6	t	
40	0	2	-2	
90	-5	-3	3	_
90	-5	-2	-3	
10	6	- 1		
		,		
	l			

- prolite; O 2 is usually from .01 to .1
 - 2 larger L tends to over let the duter
 - Smaller 2 requires greate numbers of " neek" models in the gradient booshrs.

(Enliching Regression Models

True	frediction	Error	True	Baseline mode
٧.	4,	4,-9,	٦,	7
72	92	72 - 92	42	7
42	92	75 - 70	43	7
74	A.	47.	Ya	4
75	7.	4- 0	45	7
,	1 '5	1 45 - 95		•

$$MAE = (14, -4, 1 + \cdots + 145, -451)/5 = 2|4-4|/5$$

$$= \left(\left(7_{1} - \overline{7}_{1} \right)^{2} + \cdots + \left(7_{5} - \overline{7}_{5} \right)^{2} \right) |_{5} = \frac{2 \left(7 - \overline{7}_{1} \right)^{2}}{5}$$

The some as

The some os

Drawing Decision Boundary of the Adabost consisting of the 3 following stumps.

Stump 1:
$$I(\underbrace{\forall_i > 2.5})$$
 From $\xi_1 = .2$

$$I(Y_1 \in 1.5)$$
 Ever $\xi_2 = .1875$

$$\alpha_2 = \frac{133}{}$$

(x)
$$\frac{\text{sign function}}{\text{sign (x)}}$$
 , if $x > 0$

Example:
$$sign(-6) = -1$$
; $sign(.67) = 1$

$$sign(zozz) = 1$$

$$= SISN \left[\alpha, \underline{T(X_2)_{12.5}} + \alpha_2 \cdot \underline{T(X_1(1.5))} + \alpha_3 (X_1(4.5)) \right]$$

$$= sign\left[\alpha, \underline{T(x_2)_{i2.5}} + \alpha_2 \cdot \underline{I(x_1(1.5))} + \alpha_3 \left(\underline{x_1(4.5)}\right)\right]$$

=
$$sign(.693 - .733 + 1.018) = sign(.978) = 1$$

For C:

$$=$$
 sign (.693 - .733 - 1.016) = sign (-1.056) = -1