Uvod v računsko geometrijo

Jure Slak

Institut "Jožef Stefan", odsek E6, laboratorij za vzporedno in porazdeljeno računanje Fakulteta za matematiko in fiziko, oddelek za matematiko

5. 7. 2018, Poletna šola FRI: programiranje v višji predstavi

Uvod

Računska geometrija je veja računalništva, ki se ukvarja z geometrijskimi problemi. Deli se na dva glavna kosa:

- Kombinatorična RG: ukvarja se s točkami, premicami, liki in algoritmi za delo z njimi
- Numerična RG: ukvarja z modeliranjem in dizajnom (krivulje, ploskve)

vir slik: Wikipedia

Kombinatorična RG

Lahko za ljudi, težko za računalnike: že enostavni problemi so lahko precej tečni

Nekaj problemov:

- Presečišče dveh objektov (krogov, premic, daljic)
- Ali točka leži v mnogokotniku?
- Konveksna ovojnica točk
- Konstrukcija triangulacij

Osnovni objekti

Kako predstavimo objekte: (če se le da, se izogibamo decimalkam)

Osnovni objekti

Kako predstavimo objekte: (če se le da, se izogibamo decimalkam)

- Točka: par (x, y), struct point_t { int x, y; };
- Vektor: par (x, y)
- Smer: enotski vector (c, s), **REDKO**: kot φ
- Daljica: par točk
- Trikotnik: tri točke, ponavadi v pozitivni smeri
- Mnogokotnik: seznam točk, ponavadi v pozitivni smeri
- Premica: trojica (a,b,c), ki predstavlja ax+by=c. Enoličnost? **NE**: y=kx+n ali $\frac{y}{n}+\frac{x}{m}=1$
- Krog: točka + radij
- Pravokotnik (poravnan z osmi): $((x_{min}, y_{min}), (x_{max}, y_{max}))$.

Osnovni objekti

Kako predstavimo objekte: (če se le da, se izogibamo decimalkam)

- Točka: par (x, y), struct point_t { int x, y; };
- Vektor: par (x, y)
- Smer: enotski vector (c, s), **REDKO**: kot φ
- Daljica: par točk
- Trikotnik: tri točke, ponavadi v pozitivni smeri
- Mnogokotnik: seznam točk, ponavadi v pozitivni smeri
- Premica: trojica (a,b,c), ki predstavlja ax+by=c. Enoličnost? **NE**: y=kx+n ali $\frac{y}{n}+\frac{x}{m}=1$
- Krog: točka + radij
- Pravokotnik (poravnan z osmi): $((x_{min}, y_{min}), (x_{max}, y_{max}))$.

Problemi: primerjava točk gor/dol, levo/desno. Ali je točka v pravokotniku? Vektor med dvema točkama. Seštevanje vektorjev, množenje s številom.

Točke, vektorji, smeri in razdalje

Razdalja med točkama:

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Pozor, razdalja je lahko tudi drugačna, npr. $|x_1 - x_2| + |y_1 - y_2|$.

Problemi, ki jih znamo rešiti: obseg trikotnika, kvadrata, mnogokotnika, dolžina daljice, velikost vektorja, smer vektorja, ali je točka v krogu, ali se kroga sekata?

Pozor: pogosto pri razdalji ni treba računati korena, npr. ko razdalje primerjamo med seboj

Naklonski kot vektorja (x, y): Ne izumljajte svoje formule!

$$\varphi = \operatorname{atan2}(y, x) \in [-\pi, \pi]$$

Rezultat ni definiran za x = y = 0. Rezultat je v radianih!

Problemi: kot med vektorjema, kot med daljicama

Vektorji

Skalarni produkt: $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 = \|\vec{a}\| \|\vec{b}\| \cos \varphi$

Pravokotnost: $\vec{a} \cdot \vec{b} = 0$.

Če je \vec{a} enotski, je to projekcija \vec{b} na \vec{a} .

Kako dobimo pravokotni vektor od (x,y): (-y,x) ali (y,-x).

Vektorski produkt: $\vec{a} \times \vec{b} = (0,0,a_1b_2-b_1a_2) = (0,0,\|\vec{a}\|\|\vec{b}\|\sin\varphi)$ Vzporednost: $(\vec{a} \times \vec{b})_3 = 0$.

Produkt $\vec{a} \times \vec{b}$ je pravokoten na \vec{a} in \vec{b} in ima dolžino enako ploščini paralelograma, ki ga definirata \vec{a} in \vec{b} . Njegova smer je odvisna od lege \vec{a} in \vec{b} .

Ali je nek vektor na levo od drugega? Ne izumljajte svoje formule! Poglejte samo tretjo komponento $\vec{a} \times \vec{b}$.

Ali so tri točke kolinearne?

Ploščine

Pravokotnik: znamo

Mnogokotnik:

$$po = \sum_{i=1}^{n} (y_i - y_{i-1}) \frac{x_i + x_{i-1}}{2}$$

Seštevamo trapeze, lahko tudi po \boldsymbol{y} osi. Ne deluje za samo-sekajoče like.

Trikotnik:

Heronov obrazec: $p=\sqrt{s(s-a)(s-b)(s-c)}$, $s=\frac{a+b+c}{2}$ ali bolje $1\longrightarrow \longrightarrow$

$$po = \frac{1}{2} (\overrightarrow{AB} \times \overrightarrow{AC})_3$$

Trikotniki, pravokotniki in krogi

Ali je točka v trikotniku? Pogledamo ploščine notranjih trikotnikov.

$$p(\triangle ABC) \stackrel{?}{=} p(\triangle ABT) + p(\triangle ACT) + p(\triangle BCT)$$

Znamo vse: konstrukcija, obseg, ploščina, vsebovanost, enakost, orientacija

Pravokotniki: obseg, ploščina, vsebovanost, enakost, konstrukcija

Presek: $[x_1, x_2] \times [y_1, y_2] \cap [x_3, x_4] \times [y_3, y_4] =$

 $([x_1, x_2] \cap [x_3, x_4]) \times ([y_1, y_2] \cap [y_3, y_4])$ Presek intervalov?

Krogi: obseg, ploščina, vsebovanost, enakost Konstrukcija: tri točke? dve točki in radij?

Premice

Zakaj je y = kx + n slaba oblika? Bolje:

$$ax + by = c$$
.

Predstava: smer + točka.

Enoličnost: a, b, c tuji ali (a, b) enotski.

Premica s smerjo (s,t) skozi točko (p,q)?

$$(t,-s)\cdot((x,y)-(p,q))=0$$

Premica skozi dve točki?

Presečišča premic

Presečišče dveh premic: kaj vse se lahko zgodi?

$$a_1x + b_1y = c_1$$
$$a_2x + b_2y = c_2$$

Presečišča premic

Presečišče dveh premic: kaj vse se lahko zgodi?

$$a_1x + b_1y = c_1$$
$$a_2x + b_2y = c_2$$

Vzporedni, če (a_1,b_1) vzporeden (a_2,b_2) . Pogledamo $d=a_1b_2-a_2b_1$. Če d=0, potem sta premici enaki, če

$$b_1c_2 - b_2c_1 = 0, \quad a_1c_2 - a_2c_1 = 0$$

Če $d \neq 0$, potem je presečišče

$$(x_0, y_0) = (b_2c_1 - b_1c_2, a_1c_2 - a_2c_1)/d$$

Razdalja do premice:

$$d((x_0, y_0), ax + by = c) \cdot o = \frac{ax_0 + by_0 - c}{\sqrt{a^2 + b^2}} = \frac{(a, b) \cdot (x_0, y_0) - c}{\|(a, b)\|}$$

Premica dana z dvema točkama

$$P_{x} = \frac{\begin{vmatrix} \begin{vmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \end{vmatrix} & \begin{vmatrix} x_{1} & 1 \\ x_{2} & y_{2} \end{vmatrix} & \begin{vmatrix} x_{1} & 1 \\ x_{2} & y_{2} \end{vmatrix} & \begin{vmatrix} y_{1} & 1 \\ y_{2} & 1 \end{vmatrix} \\ \begin{vmatrix} x_{3} & y_{3} \\ x_{4} & y_{4} \end{vmatrix} & \begin{vmatrix} x_{3} & 1 \\ x_{4} & 1 \end{vmatrix} & P_{y} = \frac{\begin{vmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \end{vmatrix} & \begin{vmatrix} y_{1} & 1 \\ y_{2} & 1 \end{vmatrix} \\ \begin{vmatrix} x_{1} & 1 \\ x_{2} & 1 \end{vmatrix} & \begin{vmatrix} y_{1} & 1 \\ y_{2} & 1 \end{vmatrix} \\ \begin{vmatrix} x_{3} & 1 \\ x_{2} & 1 \end{vmatrix} & \begin{vmatrix} y_{3} & 1 \\ x_{4} & 1 \end{vmatrix} & \begin{vmatrix} x_{3} & 1 \\ x_{4} & 1 \end{vmatrix} & \begin{vmatrix} y_{3} & 1 \\ x_{4} & 1 \end{vmatrix} & \begin{vmatrix} x_{3} & 1 \\ x_{4} & 1 \end{vmatrix} & \begin{vmatrix} x_{3} & 1 \\ x_{4} & 1 \end{vmatrix} & \begin{vmatrix} x_{3} & 1 \\ x_{4} & 1 \end{vmatrix} & \begin{vmatrix} x_{3} & 1 \\ x_{4} & 1 \end{vmatrix} & \begin{vmatrix} x_{4} & 1 \end{vmatrix}$$

To si je težko zapomniti prav... V praksi naredite lepo postopoma.

Daljice

Možne lege: ...

Ali se sploh sekata?

```
int o1 = sign(cross(p1, p2, q1)); // daljico p1p2 sekamo z q1q2
int o2 = sign(cross(p1, p2, q2));
int o3 = sign(cross(q1, q2, p1));
int o4 = sign(cross(q1, q2, p2));
// za pravo presecisce morajo biti o1, o2, o3, o4 != 0
if (o1 != o2 && o3 != o4 && o1 != 0 && o2 != 0 && o3 != 0 && o4 != 0)
   return line_line_intersection(L(p1, p2), L(q1, q2));
// EQ = se dotika samo z ogliscem ali sta vzporedni
if (o1 == 0 && point_in_rect(q1, p1, p2)) return {EQ, q1}; // q1 lezi na p
if (o2 == 0 && point_in_rect(q2, p1, p2)) return {EQ, q2}; // q2 lezi na p
if (o3 == 0 && point_in_rect(p1, q1, q2)) return {EQ, p1}; // p1 lezi na q
if (o4 == 0 && point_in_rect(p2, q1, q2)) return {EQ, p2}; // p2 lezi na q
return {NO, P()};
```

Mnogokotniki

Mnogokotniki: obseg, ploščina, orientacija

Vsebovanost: poltrak v neskončnost, štejemo presečišča

Ali je konveksen? Če je, gremo vedno na levo.

Ali je točka v konveksnem mnogokotniku: Ali je vedno na levi?

Konstrukcije?

Konveksna ovojnica

lmamo n točk, najdi najmanjši mnogokotnik, ki vsebuje vse.

Kako sploh? Kako bi to naredili hitro? Veliko $O(n \log n)$ algoritmov.

Najenostavnejši: Gift wrapping: najdemo najbolj levo točko, najbolj levo daljico, se premaknemo na naslednjo točko in ponavljamo. Zahtevnost O(nh).

Graham scan

Graham scan:

Začnemo levo spodaj, uredimo točke po naklonu (kako?), stack s trenutno ovojnico. Pri novi dodani točki preverimo, ali smo šli v desno ali v levo; če smo šli v desno, odstranimo staro točko in ponovimo. Zahtevnost $O(n\log n)$.

Naloge

Naloge:

- UVa 1373 krogi in točke
- UVa 2432 trikotniki
- UVa 120 premice/daljice
- UVa 11626 convex hull