CIS 375 CHAPTER 3

Physical Layer

Outline

- Circuits
- Communication Media
- Data Types
- Data Transmission & Transmission Flaws
- Structured Cabling
- Implications for Cyber Security

Circuits

- What is a circuit?
- The word "circuit" can refer to 2 different things:
 - Logical
 - Physical
- Dedicated Circuit
 - Point-to-Point
- Shared Circuit
 - Multipoint

Data Flow

Simplex

Half Duplex

Full Duplex

Multiplexing (MUX)

 Multiplexing = break one high-speed physical circuit into several lower-speed logical circuits

- Categories of Multiplexing
 - Frequency/Wavelength Division
 - Time Division

Communication Media

- Media
 - Guided Media
 - Wireless
- Common media characteristics:
 - Throughput
 - Cost
 - Noise immunity
 - Size & scalability
- Types

Characteristic	Coaxial Cable	Twisted Pair	Fiber Optic Cable
Description	1970s LAN	4 color coded pairs of wire TIA/EIA 568 B STP or UTP	Glass, plastic cladding Reflects LASER/LED Multimode/singlemode
Connectors	BNC	RJ-45	ST, SC, LC, HT-RJ
Throughput	10 Mbps	10 Mbps, 100 Mbps, 1 Gbps	> 1 Gbps
Cost	\$0.2 / foot	\$0.1 - \$0.2 / foot	\$36 - \$50 / foot
Noise immunity	Highly resistant to noise	STP better than UTP	Unaffected by EMI
Size & Scalability	10 Base 2 thin-net 200m 10 Base 5 thick-net 500m	100m	10 Base F 200m Others 150m – 4km

Radiated Media

Characteristic	Wireless	Microwave	Satellite	Infrared
Description	Radio LAN; 2.46 & 5 GHz	WAN; 3.5 & 4GHz	WAN; 10 GHz	WAN; 30 THz
Throughput	Up to 200 Mbps	Up to 70 Mbps	1 Mbps	115 Kbps, 1.15 Mbps, 4 Mbps
Cost	Low	Moderate	High	Low
Noise immunity /Problems	Security	Atmospheric/ obstacle interference	Significant delay in data transmission	Obstacle interference
Size & Scalability	Up to 100m	25-30 mile radius	500 miles	Short
Image				

Media

- Physical matter used to carry voice or data transmissions
- Guided media transmission flows along physical medium
- Wireless (Radiated) media transmission flows through the air

- Twisted-pair (TP) cable
 - Insulated pairs of wires bundled together
 - Wires twisted to reduce electromagnetic interference
 - Some times use additional shielding (STP)
 - Commonly used for telephones, LANs
 - Characteristics
 - Price inexpensive
 - Distance typically up to 100m
 - Use Telephones, LANs

FIGURE 3-5

Category 5e twisted pair wire

Source: Courtesy of Belkin International, Inc.

- Coax cable
 - Has a single copper core, plus outer insulation, shielding, and inner insulation
 - Less prone to interference
 - Characteristics
 - Price inexpensive (but more costly than TP)
 - Distance up to 2 km (1.2 miles)
 - Use: Cable TV / Internet

- Fiber optic cable
 - Optical core made of glass or plastic
 - Data transmitted using light from lasers or LEDs
 - Resistant to interference and corrosion
 - Extremely fast data rates
 - Characteristics
 - Price: Expensive
 - Distance: 500m 100km
 - Use: Trunk line / Backbone, long distance circuits (e.g., undersea cables)

Source: © Hugh Threlfall/Alamy

- Fiber optics
 - Multimode (about 50 micron core)
 - Graded index multimode
 - Single mode (about 5 micron core)

Wireless Media

Radio

- Wireless transmission of electrical waves through air
- Each device on network has a radio transceiver operating at a specific frequency range
- Enables mobile network communication
- Characteristics
 - Distance: depends on frequency and power
 - Use: Wireless LANs, cellular and cordless phones, baby monitors

Wireless Media

Microwave

- High-frequency radio communication
- Requires line of sight which may require large antennas and towers
- Affected by weather
- Characteristics
 - Distance: ~60 km (due to curvature of earth
 - Use: Trunk line / Backbone, long distance

Satellite

- Special form of microwave communication
- Long distance leads to propagation delays

FIGURE 3-8

A microwave tower. The round antennas are microwave antennas and the straight antennas are cell phone antennas

Source: © Matej Pribelsky /

iStockphoto

FIGURE 3-9
Satellites in operation

Media

- Factors to consider in media selection
 - Type of network
 - Cost
 - Transmission distance
 - Security
 - Error rates
 - Transmission speeds

Data Transmission & Transmission Flaws

- Digital transmission of Digital data
 - Unipolar
 - Bipolar
- Analog transmission of Digital data
 - Amplitude Modulation (AM)
 - Phase Modulation (PM)
 - Frequency Modulation (FM)
 - Combination techniques
- Digital transmission of Analog data
 - Pulse Core Modulation

Closer Look: Binary to Decimal Conversion

Binary	27	26	25	24	23	22	21	20
Positional	_	_	—	_	_		—	-
Value								
Decimal								
Value								

Convert the following binary numbers to decimal:

Convert the following decimal numbers to binary:

00000000 =

60 =

11111111 =

182 =

10101010 =

192 =

01110111 =

200 =

Transmission Flaws

Noise

Any undesirable influence degrading or distorting signal

Types of noise

- EMI (electromagnetic interference)
- Cross talk
 - NEXT (near end cross talk)
 - Potential cause: improper termination
- Environmental influences
- Attenuation
- Latency
- Echo

Digital vs. Analog Data

- Digital transmission involves discrete binary values (i.e., 0 or 1)
- Analog transmission involves continuous waves

- Coding scheme needed to ensure sender and receiver understand messages (e.g., ASCII, Unicode, etc.)
- A character is represented by a group of bits

FIGURE 3-10

Binary numbers used to represent different characters using ASCII

Character	ASCII
Α	01000001
В	01000010
c	01000011
D	01000100
E	01000101
a	01100001
b	01100010
c	01100011
d	01100100
e	01100101
1	00110001
2	00110010
3	00110011
4	00110100
!	001000
5	00100100

- Transmission modes
 - 1. Parallel: multiple bits transmitted simultaneously

- Transmission modes
 - 2. Serial: bits are transferred sequentially, one at a time

- Sender and receiver must agree upon:
 - Set of symbols
 - How bits are encoded as voltages or light pulses
 - e.g., +5V might be encodes as a "1"
 - Symbol rate
 - How often symbols are sent
 - e.g., with a symbol rate of 64 kilohertz (kHz), a symbol is sent every 1/64,000 of a second

- Five types of signaling techniques
 - Unipolar voltage is 0 or positive representing binary bits (in some circuits, 0 and negative voltage could be used)

- Five types of signaling techniques
 - 2. **Bipolar NRZ -** voltage is positive or negative, but not zero
 - Fewer errors than unipolar because signals are more distinct

Unipolar, bipolar, and Manchester signals (digital)

FIGURE 3-13

- Five types of signaling techniques
 - Bipolar RZ voltage is positive or negative, returning to zero between each bit
 - Fewer synchronization errors than bipolar NRZ

- Five types of signaling techniques
 - 4. **Bipolar AMI -** voltage is 0, positive, or negative, returns to zero between each bit, and alternates between positive and negative voltage

- Five types of signaling techniques
 - 5. Manchester voltage is positive or negative and bits are indicated by a mid-bit transition

FIGURE 3-13

Unipolar, bipolar, and Manchester signals (digital)

- Telephone system built for analog data
 - Electrical signals mimic sound waves (i.e., voice)
 - Analog transmissions take on range of values (vs. discrete values of digital transmissions)
 - Need a modem (modulator/demodulator) to convert from analog to digital and vice versa

- Three characteristics of waves
 - 1. Amplitude: height of wave (decibels)
 - Frequency: waves per second (hertz)
 - Wavelength is the inverse of frequency
 - 3. Phase: wave direction (degrees) or the point at which the wave begins

- Carrier wave is basic wave transmitted through a circuit
- Modulation is the modification of a carrier wave's fundamental characteristics in order to encode information
- Three ways to modulate a carrier wave:
 - 1. Amplitude Modulation (AM) or Amplitude Shift Keying (ASK)
 - 2. Frequency Modulation (FM) or Frequency Shift Keying (FSK)
 - 3. Phase Modulation (PM) or Phase Shift Keying (PSK)

 Amplitude Modulation

 Frequency Modulation

Phase Modulation

- Symbol: One or more modifications to a carrier wave used to encode data
- Can send 1 bit by defining two different symbols (e.g., amplitudes, frequencies, etc.)
- Can send multiple bits by defining more than two symbols
 - Need more complicated information coding schemes
 - 1 bit of information → 2 symbols
 - 2 bits of information → 4 symbols
 - 3 bits of information → 8 symbols
 - n bits of information \rightarrow 2 symbols

- Two-bit Amplitude Modulation
 - With 4 levels of amplitude defined as symbols, 2 bits can be transmitted per symbol

Two-bit amplitude modulation

- Data rate (or bit rate) is the number of bits transmitted per second
- Symbol rate: number of symbols transmitted per second

Data rate = symbol rate × (# bits/symbol)

Example

```
Symbol rate = 16,000 symbols/sec
#bits/symbol = 4 bits/symbol
```

Data rate = 16,000 symbols/sec × 4 bits/symbol = 64,000 bits/sec = 64Kbps

Digital Transmission of Analog Data

- Codecs (COde, DECode) is a device or software that converts an analog signal (e.g., voice) into digital form and the reverse
- Pulse-Code Modulation (PCM) converts analog to digital by:
 - Sampling the analog signal at regular intervals
 - 2. Measuring the amplitude of each sample
 - 3. Encoding (quantizing) the amplitude as binary data
- Quantizing Error is the difference between the original analog signal and the approximated, digital signal
- Reducing quantizing error can be done by:
 - Sampling more frequently
 - Using more levels of amplitude in encoding

Digital Transmission of Analog Data

FIGURE 3-20 Pulse amplitude modulation (PAM)

Structured Cabling (TIA/EIA 568)

TIA/EIA structured cabling in an enterprise

TIA/EIA structured cabling in a building

Structured Cabling (Cont.)

Implications for Cyber Security

* How do we protect the physical layer? Should we protect it?

Devices that leave the premises of enterprise campus

 Devices that never leave the premises of enterprise campus

Hands-On Activity 3C

- Patch Cable is ...
- Order of wires according to the 568B standard is:
 - Orange/white
 - Orange
 - Green/white
 - Blue
 - Blue/white
 - Green
 - Brown/white
 - Brown
- Cross-over Cable is ...

