太阳能电池基本特性测定

太阳能的利用和太阳能电池特性研究是 21 世纪新型能源开发的重点课题。目前硅太阳能电池应用领域除人造卫星和宇宙飞船外,已应用于许多民用领域:如太阳能汽车、太阳能游艇、太阳能收音机、太阳能计算机、太阳能乡村电站等。太阳能是一种清洁、"绿色"能源,因此,世界各国十分重视对太阳能电池的研究和利用。太阳能电池能够吸收光的能量,并将所吸收的光子能量转换为电能。本实验的目的主要是探讨太阳能电池的基本特性。

【实验目的】

- 1. 提高学生对太阳能电池的特性的认识.
- 2. 学习研究太阳能电池的基本光电特性.
- 3. 学会电学与光学的一些重要实验方法及数据处理方法.

【实验原理】

太阳能电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压 U 与通过电流 I 的关系式为:

$$I = I_o(e^{\beta U} - 1) \tag{1}$$

(1)式中, I_a 和 β 是常数。

由半导体理论,二极管主要是由能隙为 E_c-E_v 的半导体构成,如图 1 所示。 E_c 为半导体导电带, E_v 为半导体价电带。当入射光子能量大于能隙时,光子会被半导体吸收,产生电子和空穴对。电子和空穴对会分别受到二极管之内电场的影响而产生光电流。

假设太阳能电池的理论模型是由一理想电流源(光照产生光电流的电流源)、一个理想二极管、一个并联电阻 R_s ,与一个电阻 R_s 所组成,如图 2 所示。

图 2

图 2 中, I_{ph} 为太阳能电池在光照时该等效电源输出电流, I_d 为光照时通过太阳能电池内部二极管的电流。由基尔霍夫定律得:

$$IR_s + U - (I_{nh} - I_d - I)R_{sh} = 0$$
 (2)

(2) 式中, I 为太阳能电池的输出电流, U 为输出电压。由(1)式可得,

$$I(1 + \frac{R_s}{R_{sh}}) = I_{ph} - \frac{U}{R_{sh}} - I_d$$
 (3)

假定 $R_{sh} = \infty$ 和 $R_s = 0$,太阳能电池可简化为图 3 所示电路。

这里,
$$I = I_{ph} - I_d = I_{ph} - I_0 (e^{\beta U} - 1)$$
。

在短路时,U=0, $I_{ph}=I_{sc}$;

而在开路时,I=0, $I_{sc}-I_0(e^{\beta U_{oc}}-1)=0$;

$$U_{OC} = \frac{1}{\beta} \ln \left[\frac{I_{sc}}{I_0} + 1 \right] \tag{4}$$

(4)式即为在 $R_{sh}=\infty$ 和 $R_s=0$ 的情况下,太阳能电池的开路电压 U_{oc} 和短路电流 I_{sc} 的关系式。 其中 U_{oc} 为开路电压, I_{sc} 为短路电流,而 I_{o} 、 β 是常数。

当无光照时,太阳能电池相当于一个二极管。由 $\frac{I}{I_0}=e^{\beta U}$ -1,当 U 较大时, $e^{\beta U}>>1$,即

 $\ln I = \beta U + \ln I_0$;有光照时,太阳能电池通过光电效应把光能转换为电能,相当于电源作用。研究太阳能电池基本特性时,可以利用等效思想把暗伏安特性和明伏安特性对应的电路图画出来。图 4 为暗伏安特性测试电路接线图,图 5 为明伏安特性测试电路接线图。请做实验时按图示接线。请注意接线时的正负极情况,尤其要注意两种特性的电流表正负极接法的不同(不同电流的方向)。

图 5

【实验装置】

光具座及滑块座、具有引出接线的盒装太阳能电池、数字电压表、数字电流表、电阻箱、白光源(射灯结构,功率 40W)、光功率计(充当 3V 直流稳压电源使用)、导线若干、遮光罩1个。

图 6 实验装置图

【实验内容与步骤】

- 1. 按图 4 连线,在没有光源(全黑)的条件下,测量太阳能电池**正向偏压**时的伏安特性(**正偏暗伏安特性**)。测量电池在不同负载电阻下正向偏压时 I-U关系数据,绘制 $\ln I-U$ 曲线并求出常数 $\boldsymbol{\beta}$ 值。**注意** 此时电池电压与电阻箱电压之和为光功率计(相当于电源)提供的约 3V 电压。
- 2. 按图 5 连线,在不加偏压时(**零偏**),**用白色光源照射**,测量太阳能电池的**零偏明伏安特性**。**注意** 此时光源到太阳能电池距离保持为 20cm。
 - (1) 测量电池在不同负载电阻下 I 对 U 变化关系,绘制 I-U 曲线图。
 - (2) 用外推法得出短路电流 I_{sc} 和开路电压 U_{oc} 。
 - (3) 计算太阳能电池的最大输出功率 Pmax, 写出最大输出功率时对应的负载电阻 Rmax。
 - (4) 计算填充因子 $FF = \frac{P_{\text{max}}}{(I_{\text{cr}} \cdot U_{\text{cr}})}^{\circ}$

【原始数据表格】

表 1 正偏暗伏安特性数据

电阻箱电阻 (KΩ)	电池电压 (V)	电阻箱电压 (V)	电路电流(μA)	对数 lnI(μA)
0				
2				
4				
6				
8				
10				
14				
22				
30				
38				
46				
54				

备注: 对数 lnI 保留三位有效数字。

表 2 零偏明伏安特性数据 1

电阻箱电阻 (KΩ)	电池电压 (V)	电路电流(mA)	功率(mW)
0.1			
0.4			
1.6			
3.0			
4.0			
5.0			
6.0			
7.0			
8.0			
9.0			
10			
20			
30			
40			
50			
60			
70			
80			
90			
99			
99. 99			

备注: 计算得出的功率保留四位有效数字。

【数据处理】

- 1. 根据表 1 **正偏暗伏安特性**数据绘制 $\ln I U$ 曲线,并求出常数 β 值 (**保留三位有效数字**)。
- 2. 根据表 2 零偏明伏安特性数据完成以下内容:
 - (1) 测量电池在不同负载电阻下 I 对 U 变化关系,绘制 I-U 曲线图。
 - (2) 用外推法得出短路电流 I_{sc} 和开路电压 U_{oc} (保留四位有效数字)。
 - (3) 计算太阳能电池的最大输出功率 Pmax, 写出最大输出功率时对应的负载电阻 Rmax。
 - (4) 计算填充因子 $FF = \frac{P_{\text{max}}}{(I_{\text{oc}} \cdot U_{\text{oc}})}$ 。

备注:写出计算填充因子 $_{FF}=P_{\max}/Q_{(I_{\infty}\cdot U_{\infty})}$ 过程,FF 保留三位有效数字。

表 3 零偏明伏安特性数据 2

Isc (mA)	Uoc (V)	Isc* Uoc (mW)	Pmax (mW)	Rmax (KΩ)	填充 因子 FF

提示: 因为原始数据较多,建议把实验报告的原始数据和数据处理位置对换。