Monitoria 29/05/2002

- 16. Seja $A \subseteq \mathbb{R}^n$ com $n \ge 2$. Prove que, dado $a \in \mathbb{R}^n \backslash A$, o conjunto $A \cup \{a\}$ é aberto se, e somente se, a é um ponto isolado da fronteira de A.
- · Conjunto aberto: A eraberto ← V× ∈ A, ∃r>o, B(x,r) ∈ A
- Fronteira: $x \in \partial A = fr(A) \Leftrightarrow \forall E > 0$, $B(x,E) \cap A \neq \emptyset$, $B(x,E) \cap A^c = \emptyset$
- Ponto isolado: x i ponto isolado de A se x E A e existe r>0 tol que B(x,r) 1 A = {x}
- (\Leftarrow) $A = B(a,r) \setminus \{a\}$
 - $A \cup \{a\} = \overline{B}(a,r) \setminus \{a\} \cup \{a\} = \overline{B}(a,r)$ 4 Contra exemplo.
- (=) A U { a } i = berto, a & A

 a i ponto isolado de DA

(1°) a $\in \partial A \Leftrightarrow \forall \varepsilon > 0$, $B(a, \varepsilon) \cap A \neq \phi$

 $a \leftrightarrow B(a, E) \cap A \neq b \rightarrow trivial$

 $\rightarrow B(a, \varepsilon) \cap A \neq \phi$

3 r>0, B(a,r) ⊆ AU {a} = B(a,r) 19af ⊆ A

EAF (2) B(a,r) EA

 $V \in \mathbb{R}^n$, ||v|| = 1, $y = a + v \cdot \frac{\varepsilon}{2}$, $||a - y|| = \varepsilon/2 < \varepsilon$ $\Rightarrow y \in B(a, \varepsilon) \cap A$

