Polarização do diodo ideal vs semi ideal: curva característica

Um diodo ideal ou semi ideal atua de forma semelhante a um interruptor, exceto pelo fato de que o diodo só pode conduzir em um único sentido.

Atuam como um curto circuito na configuração de condução e como um circuito aberto (resistência elétrica infinita) na configuração de não condução.

• Quando a junção "p-n" é formada, os elétrons e as lacunas se combinam na região de contato, formando uma região que se denomina de *região de depleção*.

Para essa configuração, existem três possibilidades: Sem polarização; polarização reversa e polarização direta.

 Polarização reversa: provoca um aumento da região de depleção, gerando uma barreira ao fluxo dos portadores majoritários.

A corrente de saturação reversa "Is" é da ordem do nA a pA, atinge rapidamente a intensidade máxima (saturação) e varia muito pouco com o aumento do valor de V_D .

Os elétrons "livres" no material do tipo "n" são atraídos pelo polo positivo aumentando as cargas positivas na região da depleção. De forma semelhante, os elétrons "livres" do material do tipo p são repelidos para a região de depleção.

• <u>Polarização direta</u>: provoca uma diminuição da região de depleção, pois o movimento dos elétrons ocorre no sentido oposto ao da polarização reversa.

Nessa condição, a corrente de diodo I_D é o resultado da diferença entre as correntes I_m e I_s .

$$I_D = I_m - I_s$$

Polarização do diodo real: curva característica

O modelo matemático conhecido como Equação de Shockley é uma aproximação do comportamento real de um diodo, como pode ser verificado no gráfico ao lado.

$$I_D = I_S \left(e^{rac{V_D}{nV_T}} - 1
ight)$$
 Eq. de Shockley

Curva característica do diodo de Si.

Na medida em que o valor de V_D é aumentado, a região de depleção diminui até que ocorra um aumento significativo do número de elétrons através dessa região, quando a corrente elétrica I_D se estabelece plenamente.

Na Eq. de *Schockley:*
$$I_D = I_S \left(e^{\frac{V_D}{nV_T}} - 1 \right)$$

- V_D é a tensão de polarização aplicada ao diodo;
- $\triangleright V_{\tau}$ é a tensão térmica, dada por

$$V_T = \frac{k_B T}{q}$$

Onde $k_B = 1,38x10^{-23}$ J/K, é a constante de Boltzmann; $V_T = \frac{k_B T}{q}$ "T" é a temperatura em kelvin (K) e $q = 1,602 \times 10^{-19}$ C, é a carga elétrica elementar.

🖒 n é o fator de idealidade, determinado experimentalmente. Em geral, assume valores entre 1 e 2.

Aproximações usuais:

$$I_D \cong -I_S$$

Polarização reversa

$$I_D \cong I_S e^{\frac{V_D}{nV_T}}$$

Polarização direta

Um diodo, sob uma temperatura de 27 °C, é atravessado por uma corrente I_D = 12 mA. A corrente de saturação reversa é de 5,0 pA e o fator de idealidade é 1,2. Qual é, aproximadamente, o valor da ddp a qual o diodo está submetido?

$$I_D \cong I_S e^{\frac{V_D}{nV_T}}$$

$$\frac{I_D}{I_S} = e^{\frac{qV_D}{nk_BT}}$$

$$ln\left(\frac{I_D}{I_S}\right) = \frac{qV_D}{nk_BT}$$

$$V_T = \frac{k_B T}{q}$$

$$\therefore V_D = \frac{nk_BT}{q} ln\left(\frac{I_D}{I_S}\right) = \frac{1,2.1,38 \times 10^{-23}.300}{1,6 \times 10^{-19}} ln\left(\frac{12 \times 10^{-3}}{5 \times 10^{-12}}\right) \cong 0,7 V$$

Dada uma corrente de diodo de 6 mA, V_T = 26 mV, n = 1 e ls = 1 nA, determine (a) a tensão aplicada e (b) a temperatura de operação.

a)
$$I_D = I_S e^{\frac{V_D}{nV_T}}$$
 $ln\left(\frac{I_D}{I_S}\right) = \frac{V_D}{V_T}$

$$V_D = V_T ln\left(\frac{I_D}{I_S}\right) = 26 \times 10^{-3} ln\left(\frac{6 \times 10^{-3}}{1 \times 10^{-9}}\right) \approx 0.4 V$$

b)
$$V_T = \frac{kT}{q} \rightarrow T = \frac{qV_T}{k} = \frac{1.6 \times 10^{-19}.26 \times 10^{-3}}{1.38 \times 10^{-23}} = 301 \, K$$

Determine a corrente de diodo a 20 °C para um diodo de silício com n = 2, Is = 0,1 μ A e um potencial de polarização reversa de - 10 V.

$$I_D = I_S(e^{\frac{V_D}{nV_T}} - 1) = 0.1 \times 10^{-6} (e^{\frac{-10}{2.0,253}} - 1) \approx -0.1 \,\mu A$$

$$V_T = \frac{kT}{q} = \frac{1,38 \times 10^{-23}.293}{1,6 \times 10^{-19}} = 253 \text{ mV}$$

Resistência elétrica do diodo

Devido a forma da curva característica do diodo, a sua resistência elétrica se altera conforme o seu ponto de operação é alterado, ou seja, os valores para V_D e I_D .

Entretanto, quando uma tensão CC é aplicada, a resistência do diodo no ponto de operação pode ser determinada utilizando a expressão que define resistência elétrica.

$$R_D = \frac{V_D}{i_D}$$

Resistência CC ou estática.

Os níveis de resistência elétrica abaixo do "joelho" são maiores do que acima dele, na parte mais vertical da curva.

Resistência elétrica do diodo

Calcule a resistência elétrica para os semicondutores mostrados no gráfico para uma corrente $I_D = 1$ mA.

Ge:

$$V_D = 0.2 V$$

$$V_D = 0.2 V$$
 $R_D = \frac{0.2}{1 \times 10^{-3}} = 200 \Omega$

Si:

$$V_D = 0.6 V$$

$$V_D = 0.6 V$$
 $R_D = \frac{0.6}{1 \times 10^{-3}} = 600 \Omega$

GaAs:

$$V_D = 1.1 V$$
 $R_D = \frac{1.1}{1 \times 10^{-3}} = 1100 \Omega$

O que ocorre se o valor da tensão na polarização reversa for aumentado?

À medida que a tensão através do diodo aumenta na região de polarização reversa, a velocidade dos portadores minoritários responsáveis pela corrente de saturação reversa I, também aumentará. Eventualmente, sua velocidade e energia cinética associada ($W_K = \frac{1}{2} m v^2$) serão suficientes para liberar portadores adicionais por meio de colisões com outras estruturas atômicas estáveis. Isto é, um processo de *ionização* fará com que elétrons de valência absorvam energia suficiente para deixar o átomo de origem. Esses portadores adicionais poderão, então, auxiliar no processo de ionização até que se estabeleça uma alta corrente de *avalanche* e que se determine a região de *ruptura por avalanche*.

O potencial máximo de polarização reversa que pode ser aplicado antes da entrada na região de ruptura é chamado de tensão de pico inversa (ou simplesmente PIV, do inglês Peak Inverse Voltage) ou tensão de pico reversa (PRV, do inglês Peak Reverse Voltage).

Análise por reta de carga

Analisar um circuito simples, como o mostrado abaixo, utilizando a curva característica do diodo implica em lidar com uma expressão não linear. Contudo, a análise por reta de carga oferece uma boa aproximação para se obter de forma mais facilitada o *ponto de operação do circuito*, a partir do qual podemos determinar a corrente e a tensão adequadas ao diodo.

Análise por reta de carga

A reta de carga é traçada juntamente da curva característica, onde o ponto de interseção, identificado como "Q" (ponto quiescente), indica os valores de tensão e corrente para o funcionamento adequado do circuito.

Análise por reta de carga

Naturalmente, a curva característica está associada ao dispositivo escolhido, mas a reta de carga está atrelada a cada circuito e os valores dos eixos horizontal e vertical, nos quais a reta interseciona, precisam ser determinados. Isso é realizado utilizando a regra das malhas de Kirchhoff.

$$V - V_D - RI_D = 0 \rightarrow I_D = \frac{V}{R} - \frac{V_D}{R}$$

Com
$$V_D = 0 V$$
:
$$I_D = \frac{V}{R}$$

Com $I_D = 0$ A:

$$0 = \frac{V}{R} - \frac{V_D}{R} \quad \to \quad V_D = V$$

