Today Focus

UNSUPERVISED LEARNING

SUPERVISED LEARNING

Today Focus

Data Preprocessing

Classified by Type

supervised learning

unsupervised learning

Regression & Classification

Supervised vs. Unsupervised Learning

Classification

Supervised learning

Clustering

Unsupervised learning

Regression Learning Model

Regression Learning Model

Regression Learning Model

Classification Learning Model

Classification Learning Model

Classification Learning Model

Finding Neighbors & Voting for Labels

Naive Bayes

$$P(y|X) = \frac{P(X|y) * P(y)}{P(X)}$$

"What is the probability of y given X?"

$$P(y|X) \propto P(X|y) * P(y)$$

The goal is to find the class y with the maximum proportional probability.

Supervised Learning

Supervised Learning

Complete picture

- 1. Prepare & Transform Data
 - 1. Normalizing/standardizing
 - 2. Label Encoding
- 2. Modeling
- 3. Evaluating

- 1. Prepare & Transform Data
 - 1. Outlier
 - 2. Feature Scaling
 - 1. Normalization
 - 2. Standardization
 - 3. Label encoding/ One hot encoding

ML Process Simple

- 1. Prepare & Transform Data
- 2. Model
- 3. Rumble!!
- 4. Backtest

Example

- 1. Prepare & Transform Data
 - 1. Outlier
 - 2. Feature Scaling
 - 1. Normalization
 - 2. Standardization
 - 3. Label encoding/ One hot encoding
- 2. Split Train/ Test Data

Is feature scaling that matter??

Is feature scaling that matter??

Normalize

Standardize

$$z = \frac{x - \mu}{\sigma}$$

$$\mu=$$
 Mean $\sigma=$ Standard Deviation

Why Normalized

Normalized vs Standardized

Column: Salary

Standard Deviation (Salary): Max-Min Normalization (0.33) < Standardisation (1.05)

Standardisation

Max-Min Normalisation

Name	Sklearn_Class
StandardScaler	StandardScaler
MinMaxScaler	MinMaxScaler
MaxAbsScaler	MaxAbsScaler
RobustScaler	RobustScaler
QuantileTransformer-Normal	QuantileTransformer(output_distribution='normal')
QuantileTransformer-Uniform	QuantileTransformer(output_distribution='uniform')
PowerTransformer-Yeo-Johnson	PowerTransformer(method='yeo-johnson')
Normalizer	Normalizer

Normalized vs Standardized

Normalization is good to use when you know that the distribution of your data does not follow a Gaussian distribution

This can be useful in algorithms that do not assume any distribution of the data like K-Nearest Neighbors and Neural Networks.

Gaussian = Normal Distribution

Encoding

Nominal categorical variables are those for which we do not have to worry about the arrangement of the categories.

Male and Female.

Different states like NY, FL, NV, TX

Ordinal categories are those in which we have to worry about the rank. These categories can be rearranged based on ranks.

education level (PHD-1, masters-2, bachelors-3).

- 1. Prepare & Transform Data
 - 1. Outlier
 - 2. Feature Scaling
 - 1. Normalization
 - 2. Standardization
 - 3. Label encoding/ One hot encoding

One Hot Encoding

Red	Blue	Green
1	0	0
0	1	0
0	0	1

Target guided ordinal categories

Mean Encoding

Target guided ordinal categories

Mean Encoding

- kNN breaks down in high-dimensional space
 - "Neighborhood" becomes very large.
- Assume 5000 points uniformly distributed in the unit hypercube and we want to apply 5-nn. Suppose our query point is at the origin.
 - In 1-dimension, we must go a distance of 5/5000 = 0.001 on the average to capture 5 nearest neighbors
 - In 2 dimensions, we must go $\sqrt{0.001}$ to get a square that contains 0.001 of the volume.
 - In d dimensions, we must go (0.001)^{1/d}

Source: mathematics stack exchange

Curse of Dimensionality

- Low dimension → good performance for nearest neighbor.
- As dataset grows, the nearest neighbors are near and carry similar labels.
- Curse of dimensionality: in high dimensions, almost all points are far away from each other.

Figure Bishop 1.21

10/57