

开关电源设计开发实践与创新思维课程报告

——交错串联电容分接 Buck 降压电路 ISC-TaB

第四组: 王浩瑞 蒋佳诚 曹广旭

电气工程及自动化学院

2020年10月20日

提纲

提纲

背景

参考电路图

仿真电路图

电路原理

降压比计算

结论/思考

参考文献

背景

- 通讯、工业系统用电需要做到高低压隔离
 - DC/DC 变换器
 - 如何实现高降压比?
- Buck 电路及其拓扑
 - SC-Buck
 - Buck-Boost
 - ISC-Buck
 - 提出 ISC-Buck 拓扑结构实现 48V-3.3V 降压

4 / 14

参考电路图

图: 参考电路图

- 使用了六个开关管 MOS1-MOS6 D 倍降压
- 电路拓扑结构具有对称性 phaseA,phaseB 两倍降压
- 使用了变压器降压 n:1 倍降压
- LLC 软开关

仿真电路图

图: 仿真电路图

- 注意 MOS1-MOS6 的开关顺序 和相位
- 注意 L_r 和 L_m 的选用
- 输出选用大容值电容

1920

仿真电路图

Description	2ph SC-TaB	ISC-TaB
Resonant Inductor $(L_{r1}=L_{r2}=L_r)$	120 nH	210 nH
Resonant capacitor	2 μF	2 μF
Magnetizing Inductance (L_m)	2.2 uH	6.6 uH
Series capacitor (C_I)	N/A	2*10 uF
Power switches	S ₁ /S ₄ /S ₃ /S ₆ :BSC072N08NS5 S ₂ /S ₅ : BSC009NE2LS	S ₃ /S ₆ : BSC035N04S S ₁ /S ₄ : BSC072N08NS5 S ₂ /S ₅ : BSC009NE2LS
Turns ratio (n)	5	2
Rated power(Pout)	66 W	
Input voltage (V_{in})	48 V	
Output voltage (V_o)	3.3 V	
Output current (I_o)	20 A	
Switching frequency(f_s)	400 kHz	
Magnetic core	PC95ELT18	

图: 电流流向 (开态)

图: 电流大小关系 (开态)

$$\begin{cases} \frac{V_{\text{in}}}{2} - V_o - v_{\text{Cr}2} = L_{r2} \frac{di_{\text{Lr}2}}{dt} + L_m \frac{di_{\text{Lr}2}}{dt} \frac{(n+1)^2}{n^2} \\ i_{\text{Lr}2} = C_{r2} \frac{dv_{\text{Cr}2}}{dt} \end{cases}$$

图: 电流流向 (关态)

图: 电流大小关系 (关态)

(3)

9(5) 0

降压比计算

ullet 谐振电感电压 $V_{L_{r2}}$

$$V_{\rm Lr2} = \frac{\frac{V_{\rm in}}{2} - V_o - V_{\rm Cr2}}{1 + \frac{L_m}{L_{r2}} \cdot \frac{(n+1)^2}{n^2}}$$

ullet 变压器励磁电感电压 V_{L_m}

$$V_{\rm Lm} = \frac{L_m}{L_{r2}} \cdot \left(1 + \frac{1}{n}\right) \cdot \, V_{\rm Lr2} \label{eq:VLm}$$

• 伏秒平衡 (开态)

$$V_{\text{Lr2}} \cdot D + (-V_{\text{Cr2}} + nV_{o}) \cdot (1 - D) = 0$$

• 伏秒平衡 (关态)

$$V_{\text{Lm}} \cdot D + (1 - D)(-nV_0) = 0$$

降压比计算

• 降压比

$$\frac{V_o}{V_{\rm in}} = \frac{D}{2 \cdot \left(n + 1 + \frac{L_r}{L_m} \cdot \frac{n^2}{n+1}\right)}$$

结论/思考

- 该电路成功实现了 48V-3.3V 的 10 倍以上降压
- 优点
 - 单极降压比高
 - 输出电流大, 带负载能力强
- 可能存在的问题
 - 效率
 - 解决措施: intergrate the inductor and the PCB 开关电源的 EMC 设计 https://zhuanlan.zhihu.com/p/90704119
 - 结构复杂程度

参考文献

Lanhua Zhang, Sombuddha Chakraborty *An Interleaved Series-Capacitor Tapped Buck Converter for High Step-Down DC/DC Application*, VOL.34, JULY, 2019, IEEE TRANSACTIONS ON POWER ELECTRONICS

