SIMULATION AND MODELLING

Tony Field and Giuliano Casale

{ajf,gcasale}@doc.ic.ac.uk

Suggested Books

- Performance Modeling and Design of Computer Systems: Queueing Theory in Action
 Mor Harchol-Balter
 Cambridge University Press, 2013
- Probability, Markov Chains, Queues and Simulation William Stewart
 Princeton University Press, 2009
- ▶ Discrete-event System Simulation (5/e)
 J. Banks, J.S. Carson, B.L. Nelson and D.M. Nicol Prentice Hall International. 2010
- Simulation Modeling and Analysis A.M. Law and W.D. Kelton McGraw Hill, 2000

Syllabus

Part I (Tony)

- 1. Introduction
- 2. Operational laws
- 3. Poisson processes
- 4. Discrete-event simulation
- 5. Markov processes

Part II (Giuliano)

- 1. Markovian queues
- 2. Open queueing networks
- 3. Fork-join subsystems
- 4. Application examples
- 5. Parallel discrete-event simulation

Introduction

- ► This course is about using measurements and models to understand performance aspects of real-world systems
- ▶ We'll focus on computer systems but the principles are widely applicable
- ► Performance models capture the way jobs/customers/entities move around a system and compete for its resources
- ▶ It then becomes a tool for reasoning about the system's performance, e.g. in order to:
 - ▶ Understand the observable behaviour of an existing system
 - ► Guide changes, rewrites or upgrades to a system
 - Study new or imaginary systems

Applications

- ▶ There are many application areas, e.g.
 - ► Compute/web servers
 - ► Cloud computing/storage systems
 - ► Distributed systems
 - ► Mobile & sensor networks
 - Manufacturing
 - ► Transport & logistics
 - ► Healthcare provision
 - ► Military logistics & strategy
- ► We'll (try to!) balance theory and practice, so you'll understand how/why the techniques you'll be learning work

Consider an operating system scheduler where the job sizes (X) are highly variable

$$10 \le C_X^2 = \frac{VAR(X)}{E(X)^2} \le 50$$

Rank the following schedulers in order of mean processing time per job:

- ► Round Robin (preemptive)
- ► First-Come-First-Served
- Shortest Job First (non-preemptive)
- Shortest Remaining Processing Time (preemptive)

Motivation: Some Example Problems

An in-memory TP system accepts and processes a stream of transactions, mediated through a (large) FIFO job queue:

- ► Transactions arrive "randomly" at some specified rate
- ► The service times are distributed exponentially, with some specified rate

Q: If both the arrival rate and service rate are doubled, what happens to the mean response time?

There are five security scanners between the check-in and departures area at Heathrow (T4); one of them is broken:

- ▶ Around 0.5 customers pass through the terminal each second and it takes just under 8 seconds on average to scan each passenger
- ▶ The average delay is about 30 minutes (1600 seconds)

Q: How long would it take on average if all 5 scanners were working?

