Zadanie 1.

Niech X_1 będzie zmienną losową o rozkładzie jednostajnym na przedziale (0,1), X_2 zmienną losową o rozkładzie jednostajnym na przedziale $(0,X_1)$, X_3 zmienną losową o rozkładzie jednostajnym na przedziale $(0,X_2)$ i tak dalej. Niech N oznacza zmienną losową o rozkładzie geometrycznym

$$P(N = n) = (1-q)q^{n-1}$$
 gdy $n = 1,2,3,...$,

gdzie $q \in (0,1)$ jest ustaloną liczbą. Zmienna N jest niezależna od zmiennych X_1, X_2, X_3, \ldots

Obliczyć $E(X_1 \cdot X_2 \cdot ... \cdot X_N)$.

(A)
$$\frac{1-q}{q^2} \left(e^q - 1 - q \right)$$

(B)
$$\frac{1-q}{q} \left(e^q - 1 \right)$$

(C)
$$\frac{2(1-q)}{q(2-q)}$$

(D)
$$\frac{1-q}{2-q}$$

(E)
$$(1-q)e^{q}$$

Zadanie 2.

Zmienna losowa (X,Y,Z) ma rozkład normalny z wartością oczekiwaną $EX=0,\ EY=2$, EZ=1 i macierzą kowariancji

$$\begin{bmatrix} 2 & \frac{1}{2} & 0 \\ \frac{1}{2} & 2 & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{4} \end{bmatrix}$$

Obliczyć Var(X(Y-2Z)).

- (A) $\frac{13}{4}$
- (B) $\frac{17}{4}$
- (C) $\frac{5}{4}$
- (D) $\frac{9}{4}$
- (E) 2

Zadanie 3.

Zmienna losowa X ma rozkład Weibulla o gęstości

$$p_{\theta}(x) = \begin{cases} 2\theta x \exp(-\theta x^2) & gdy \ x > 0 \\ 0 & gdy \ x \le 0 \end{cases}$$

 $p_{\theta}(x) = \begin{cases} 2\theta x \exp(-\theta x^2) & gdy \ x > 0 \\ 0 & gdy \ x \leq 0 \end{cases}$ gdzie $\theta > 0$ jest nieznanym parametrem. Statystyk nie obserwuje zmiennej X, uzyskuje tylko informację, gdy zmienna X przekroczy wartość d, a mianowicie obserwuje zmienną Y równą X, gdy zmienna X jest większa niż d. W wyniku takiej obserwacji uzyskuje prostą próbę losową $Y_1, Y_2, ..., Y_k$, k > 2. Wartość oczekiwana estymatora największej wiarogodności parametru θ uzyskanego na podstawie próby losowej $Y_1, Y_2, ..., Y_k$ jest równa

- (A)
- (B) $\frac{k}{k-2}\theta$
- (C) $\frac{k-2}{k}\theta$
- (D) $\frac{k-1}{k}\theta$
- (E) $\frac{k}{k-1}\theta$

Zadanie 4.

Załóżmy, że niezależne zmienne losowe X_1, X_2, X_3, X_4 mają rozkłady wykładnicze o wartościach oczekiwanych $EX_1=1$, $EX_2=EX_3=EX_4=2$. Obliczyć $P\big(X_1=\max\big\{X_1,X_2,X_3,X_4\big\}\big)$.

- $(A) \qquad \frac{5}{35}$
- (B) $\frac{1}{5}$
- (C) $\frac{1}{10}$
- (D) $\frac{16}{35}$
- (E) $\frac{1}{30}$

Zadanie 5.

Niech (X,Y) będzie dwuwymiarową zmienną losową o funkcji gęstości

$$f(x,y) = \begin{cases} 8xy & \text{gdy} \quad y > 0 \text{ i } x > 0 \text{ i } x^2 + y^2 < 1 \\ 0 & \text{w przeciwnym przypadku.} \end{cases}$$

Niech
$$V = \frac{X^2}{X^2 + Y^2}$$
 i $Z = X^2 + Y^2$. Wtedy

- (A) zmienne X i Y są niezależne
- (B) funkcja gęstości rozkładu brzegowego zmiennej V wyraża się wzorem g(v) = 2v dla $v \in (0,1)$
- (C) funkcja gęstości rozkładu brzegowego zmiennej V wyraża się wzorem g(v) = 1 dla $v \in (0,1)$
- (D) $Cov(Z,V) = \frac{1}{6}$
- (E) funkcja gęstości rozkładu brzegowego zmiennej Z wyraża się wzorem h(z) = 1 dla $z \in (0,1)$

Zadanie 6.

Niech $X_1, X_2, ..., X_n, ..., X_{n+m}, m, n > 1$, będzie próbką losową z rozkładu normalnego $N(\mu, \sigma^2)$, gdzie oba parametry są nieznane. Bezpośrednio dostępne są tylko obserwacje $X_1, X_2, ..., X_n$, ale dodatkowo znamy średnią $\overline{X}_{n+m} = \frac{1}{m+n} \sum_{i=1}^{n+m} X_i$. Budujemy estymator parametru σ^2 postaci $T = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_{n+m} \right)^2$. Obciążenie tego estymatora, czyli wielkość $ET - \sigma^2$ jest równa

(A)
$$\frac{m}{(n-1)(n+m)}\sigma^2$$

(B)
$$\frac{n}{(n-1)(n+m)}\sigma^2$$

(C)
$$\frac{n+m-1}{(n-1)(n+m)}\sigma^2$$

(D)
$$\frac{-1}{n+m}\sigma^2$$

(E)
$$\frac{-1}{n}\sigma^2$$

Zadanie 7.

Niech $X_1, X_2, ..., X_6$ będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z wartością oczekiwaną 0 i wariancją $\frac{1}{\theta}$, gdzie $\theta > 0$ jest nieznanym parametrem. Zakładamy, że parametr θ ma rozkład a priori o gęstości

$$p(\theta) = \begin{cases} \beta^2 \theta \exp(-\beta \theta) & gdy \ \theta > 0 \\ 0 & gdy \ \theta \le 0 \end{cases}$$

gdzie $\beta > 0$ jest znane. Wyznaczamy bayesowski przedział ufności dla parametru $\frac{1}{\theta}$ postaci [a,b], taki że

$$\Pi\left(\frac{1}{\theta} < a \mid x\right) = \Pi\left(\frac{1}{\theta} > b \mid x\right) = 0.05,$$

gdzie $\Pi(\cdot|x)$ oznacza prawdopodobieństwo przy rozkładzie a posteriori, gdy zaobserwowana wartość próbki losowej jest równa $x = (x_1, x_2, ..., x_6)$. Tak otrzymany przedział jest równy

(A)
$$\left[\frac{2\beta + \sum_{i=1}^{6} x_i^2}{26,296}, \frac{2\beta + \sum_{i=1}^{6} x_i^2}{7,962}\right]$$

(B)
$$\left[\frac{2\beta + \sum_{i=1}^{6} x_i^2}{18,307}, \frac{2\beta + \sum_{i=1}^{6} x_i^2}{3,940}\right]$$

(C)
$$\left[\frac{2\beta + \sum_{i=1}^{6} x_i^2}{36,614}, \frac{2\beta + \sum_{i=1}^{6} x_i^2}{7,881}\right]$$

(D)
$$\left[\frac{2\beta + \sum_{i=1}^{6} x_i^2}{22,141}, \frac{2\beta + \sum_{i=1}^{6} x_i^2}{2,291}\right]$$

(E)
$$\left[\frac{2\beta + \sum_{i=1}^{6} x_i^2}{11,071}, \frac{2\beta + \sum_{i=1}^{6} x_i^2}{1,146}\right]$$

Zadanie 8.

Zakładamy, że zależność czynnika Y od czynnika x (nielosowego) opisuje model regresji liniowej $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, gdzie błędy ε_i są niezależne i mają rozkłady normalne o wartości oczekiwanej 0 i wariancji 4. Obserwujemy zmienne losowe Y_1, Y_2, \ldots, Y_n przy danych wartościach x_1, x_2, \ldots, x_n . Test najmocniejszy dla weryfikacji hipotezy

$$H_0: \beta_0 = 1 \text{ i } \beta_1 = 1$$

przy alternatywie

$$H_1: \beta_0 = -1 \text{ i } \beta_1 = 2$$

na poziomie istotności 0,05 odrzuca hipotezę H_0 , gdy spełniona jest nierówność

(A)
$$\frac{\sum_{i=1}^{n} (Y_i - x_i - 1)(x_i - 2)}{\sqrt{\sum_{i=1}^{n} (x_i - 2)^2}} > 3,290$$

(B)
$$\frac{\sum_{i=1}^{n} (Y_i - x_i - 1) x_i}{\sqrt{\sum_{i=1}^{n} x_i^2}} > 1,645$$

(C)
$$\frac{\sum_{i=1}^{n} (Y_i - x_i - 1)(2 - x_i)}{\sqrt{\sum_{i=1}^{n} (x_i - 2)^2}} > 3,290$$

(D)
$$\frac{\sum_{i=1}^{n} (Y_i - x_i - 1)(2 - x_i)}{\sqrt{\sum_{i=1}^{n} (x_i - 2)^2}} > 1,645$$

(E)
$$\frac{\sum_{i=1}^{n} (Y_i - x_i - 1) x_i}{\sqrt{\sum_{i=1}^{n} x_i^2}} > 3,290$$

Zadanie 9.

Zmienne losowe Z_1, Z_2, \ldots, Z_n i $(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n)$ są niezależne. Każda ze zmiennych losowych Z_i ma jednakowy rozkład prawdopodobieństwa $P(Z_i=1)=p=1-P(Z_i=0)$. Każda ze zmiennych losowych (X_i,Y_i) ma jednakowy rozkład prawdopodobieństwa taki, że $EX_i=EY_i=m$ i $VarX_i=\sigma^2$, $VarY_i=4\sigma^2$ i współczynnik korelacji $Corr(X_i,Y_i)=\rho$. Niech $\overline{S}_n=\frac{1}{n}\sum_{i=1}^n Z_iX_i$ i $\overline{T}_n=\frac{1}{n}\sum_{i=1}^n Z_iY_i$.

Zbadać zbieżność rozkładów prawdopodobieństwa zmiennych

$$(\overline{S}_n - \overline{T}_n)\sqrt{n}$$
 przy $n \to +\infty$

(A)
$$(S_n - T_n)\sqrt{n} \to N(0, 2p(1-p)\sigma^2(5-2\rho))$$

(B)
$$(S_n - T_n)\sqrt{n} \rightarrow N(0, p\sigma^2(5-2\rho))$$

(C)
$$(S_n - T_n)\sqrt{n} \rightarrow N(0, p^2\sigma^2(5-4\rho))$$

(D)
$$(S_n - T_n)\sqrt{n} \rightarrow N(0, p\sigma^2(5-4\rho))$$

(E) $(S_n - T_n)\sqrt{n}$ nie jest ciągiem zbieżnym do rozkładu normalnego

Zadanie 10.

Wylosowano niezależnie 14 liczb z rozkładu symetrycznego ciągłego i ustawiono je w ciąg według kolejności losowania. Otrzymano 8 liczb dodatnich (każdą z nich oznaczmy symbolem a) i 6 ujemnych (każdą z nich oznaczmy symbolem b). Obliczyć prawdopodobieństwo, że otrzymano 6 serii, gdzie serią nazywamy ciąg elementów jednego typu, przed i za którym występuje element drugiego typu, na przykład w ciągu : aaabbbbaabbbba jest 5 serii (3 serie elementów typu a i 2 serie elementów typu b).

- (A) $\frac{30}{143}$
- (B) $\frac{40}{143}$
- (C) $\frac{20}{143}$
- (D) $\frac{10}{143}$
- (E) $\frac{50}{143}$

Egzamin dla Aktuariuszy z 17 marca 2008 r.

Prawdopodobieństwo i statystyka

Arkusz odpowiedzi*

Imię i nazwisko :	K L U C Z	ODPOWIED	Z I
Pesel			

Zadanie nr	Odpowiedź	Punktacja⁴
1	A	
2	D	
3	Е	
4	C	
5	C	
6	A	
7	В	
8	A	
9	D	
10	C	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.
* Wypełnia Komisja Egzaminacyjna.