

Indian Institute of Technology Kharagpur

TCP/IP - Part II

Lecture 4: TCP/IP - Part II

- On completion, the student will be able to:
 - Explain the differences between transparent and non-transparent fragmentation in IP packets.
 - Identify the IP header fields used in fragmentation and reassembly.
 - Illustrate how a data packet gets fragmented in the IP protocol with an example.
 - Interpret the various IP address classes, and their capacities.

Introduction

- Most of the fields in the header of an IP datagram have been explained.
- We now discuss the fields used for fragmentation and reassembly of packets.
 - If the packet size exceeds a certain maximum value, it is split into two or more fragment packets.
 - The fragments are reassembled at some later stage.

Fragmentation

- Why needed?
 - The IP layer injects a packet into the datalink layer, and hopes for the best.
 - Not responsible for the reliable transport of these packets.
 - Each layer imposes some maximum size of packets, due to various reasons.
 - Called Maximum Transfer Unit (MTU).
 - Suppose a large packet travels through a network whose MTU is too small.
 - Fragmentation is required.

Fragmentation (contd.)

What to do then?

- The different networks are connected among themselves through routers.
- Allow the routers to break the packets into fragments, if necessary.
- Each fragment is transmitted as a separate IP packet.
- The fragments need to be reassembled back.

Fragmentation (contd.)

- When is reassembly of fragments carried out?
 - >Two alternatives:
 - Transparent fragmentation
 - Non-transparent fragmentation

Interconnection of Networks

Transparent Fragmentation

- Fragmentation is made transparent to subsequent networks, through which the packet pass.
- Basic concept:
 - >An oversized packet reaches a router.
 - >Router breaks it up into fragments.
 - All fragments sent to the same exit router (say, R_E).
 - ►R_E reassembles the fragments before forwarding to the next network.

Transparent Fragmentation (contd.)

- Why called transparent?
 - Subsequent networks are not even aware that fragmentation had occurred.
- A packet may get fragmented several times on its way to the final destination.

Transparent Fragmentation (contd.)

Transparent Fragmentation (contd.)

Drawbacks:

- > All packets must be routed via the same exit router.
- Exit router must know when all the pieces have been received.
 - Either a "count" field or "end-of-packet" field must be stored in each packet.
- Lot of overhead.
 - A large packet may be fragmented and reassembled repeatedly.

Non-transparent Fragmentation

- Fragmentation is not transparent to subsequent networks.
- Basic concept:
 - **▶** Packet fragments are not reassembled at any intermediate router.
 - Each fragment is treated as an independent packet by the routers.
 - The fragments are reassembled at the final destination host.

Non-transparent Frag. (contd.)

Non-transparent Frag. (contd.)

Advantage:

- Multiple exit routers may be used.
- **→** Higher throughput.

Drawback:

- When a large packet is fragmented, overhead increases.
- Each fragment must have a header (minimum 20 bytes).
- IP protocol uses non-transparent fragmentation.

IP Datagram

0	4	8 15	16		31
VER	HLEN	Service type		Total Length	
	Identif	ication	Flags	Fragment Offset	
Time to Live		Protocol	Header Checksum		
Source IP Address					
Destination IP Address					
Options					

DATA

What does IP do?

- To allow fragment reassembly at the final destination, IP uses the following fields in the header:
 - **►**Identification (16 bits)
 - A datagram id set by the source.
 - > Fragment offset (13 bits)
 - Indicates where in the original datagram this fragment belongs to.
 - Specified in multiple of 8 bytes.

What does IP do? (contd.)

- Flags (3 bits)
 - Two flags are defined:
 - D bit :: don't fragment; prevents fragmentation from taking place.
 - M bit :: more fragment; specifies if this fragment is the last one in the original packet or not.

Example :: IP Fragmentation

Example (contd.)

1020 bytes sent and 1080 bytes received

Basic IP Addressing

- Each host connected to the Internet is identified by a unique IP address.
- An IP address is a 32-bit quantity.
 - Expressed as a dotted-decimal notation W.X.Y.Z, where dots are used to separate each of the four octets of the address.
 - Consists of two logical parts:
 - A network number
 - A host number
 - >This partition defines the IP address classes.

Dotted Decimal Notation

Dotted Decimal Notation: 66.134.48.126

Hierarchical Addressing

- A computer on the Internet is addressed using a two-tuple:
 - >The network number
 - Assigned and managed by central authority.
 - >The host number
 - Assigned and managed by local network administrator.
- When routing a packet to the destination network, only the network number is looked at.

IP Address Classes

- There are five defined IP address classes.
 - Class A UNICAST
 - >Class B UNICAST
 - >Class C UNICAST
 - Class D MULTICAST
 - Class E RESERVED
- Identified by the first few bits in the IP address.
- There also exists some special-purpose IP addresses.

IP Address Classes (contd.)

- The class-based addressing is also known as the classful model.
 - Different network classes represent different network-to-hosts ratio.
 - Lend themselves to different network configurations.

Class A Address

0 Network Host Host Host

- Network bits: 7
 - \triangleright Number of networks = $2^7 1 = 127$
- Host bits: 24
 - \triangleright Number of hosts = 2^{24} 2 = 16,777,214
- Address range:
 - >0.0.0.0 to 127.255.255.255

Class B Address

10 Network Network Host Host

- Network bits: 14
 - > Number of networks = 2^{14} 1 = 16,383
- Host bits: 16
 - ightharpoonup Number of hosts = 2^{16} 2 = 65,534
- Address range:
 - >128.0.0.0 to 191.255.255.255

Class C Address

110 Network Network Host

- Network bits: 21
 - \triangleright Number of networks = 2^{21} 1 = 2,097,151
- Host bits: 8
 - \triangleright Number of hosts = 2^{8} 2 = 254
- Address range:
 - >192.0.0.0 to 223.255.255.255

Class D Address

1110

Multicast Address

- Address range:
 - >224.0.0.0 to 239.255.255.255

Address Distribution

A

B

C

2 billion

1 billion

500 million

Special-purpose IP Addresses

Reserved for private use

```
►10.x.x.x (Class A)
```

Loopback/local address

```
►127.0.0.0 - 127.255.255.255
```

Default network

```
≻0.0.0.0
```

Limited broadcast

```
>255.255.255.255
```


Some Conventions

- Within a particular network (Class A, B or C), the first and last addresses serve special functions.
 - The first address represents the network number.
 - For example, 118.0.0.0
 - The last address represents the directed broadcast address of the network.
 - For example, 118.255.255.255

End of Lecture 4

Indian Institute of Technology Kharagpur

