A Dictionary Learning Approach for Factorial Gaussian Models - Supplemental Material

Anonymous Author(s)

Affiliation Address email

1 Proofs

 To reduce the notation clutter we drop tilde's, although we still refer to the SC-FM parameters, and we use the regular factorial model notation where the indicator variable $r_t^k \in [M]$, for $k \in [K]$. Conforming with that notation we set the last columns of all the emission matrices to be the shared component, such that $\mu_M^k = s, \forall k \in [K]$.

Definition 1. Let x_l denote l'th column of X^c , so $x_l := X^c(:,l) = \sum_{k=1}^K \sum_{m=1}^{M-1} \mu_m^k r_{m,l}^k + \sum_{k=1}^K s \ r_{M,l}^k$, where $r_{m,l}^k$, $l \in [M^K]$ denotes the m'th entry of an indicator vector of length M where only the m'th entry is one and the rest is zero, for the k'th emission matrix and l'th possible combination.

Definition 2. We define the index sets for three different 'types' of terms. $\mathcal{D}1:=\left\{l\in[M^K]:\sum_{k=1}^Kr_{M,l}^k=0\right\}$, which corresponds to the terms of the form $\sum_{k=1}^K\sum_{m=1}^{M-1}\mu_m^kr_{m,l}^k$, $l\in\mathcal{D}1;\;\mathcal{D}2:=\left\{l\in[M^K]:\sum_{k=1}^Kr_{M,l}^k=K\right\}$, which corresponds to the term $Ks;\;\mathcal{D}3:=[M^K]\setminus\{\mathcal{D}1\cup\mathcal{D}2\}$, which corresponds to the terms of the form $\sum_{k=1}^K\sum_{m=1}^{M-1}\mu_m^kr_{m,l}^k+\sum_{k=1}^Ks\;r_{M,l}^k,\;l\in\mathcal{D}3$.

Definition 3. Let $v(x_{l'}): \mathbb{R}^L \to \mathbb{R}^{M^K}$ denote a vector valued function with the argument $x_{l'}$, such that $v(x_{l'}) = \omega\left(\left[\left\langle x_1, x_{l'}\right\rangle, \left\langle x_2, x_{l'}\right\rangle, \ldots, \left\langle x_l, x_{l'}\right\rangle, \ldots, \left\langle x_{M^K}, x_{l'}\right\rangle\right]\right)$, where $\omega: [M^K] \to [M^K]$ is an ascending sorting mapping such that $v_1(x_{l'}) \leq v_2(x_{l'}) \leq \cdots \leq v_{M^K}(x_{l'})$, where $v_l(x_{l'})$ is the l'th smallest element in $v(x_{l'})$ vector.

Lemma 1. If $\langle \mu_{m''}^{k''}, s \rangle \leq \langle \mu_m^k, \mu_{m'}^{k'} \rangle$, $\forall (k, k', k'') \in [K]$, and $\forall (m, m', m'') \in [M-1]$, i.e. for any component μ_m^k , the least correlated component is s, and $\langle \mu_m^k, s \rangle \leq \langle s, s \rangle$, $\forall k \in [K]$, $m \in [M-1]$, i.e., the shared component s has a non-trivial magnitude (e.g. all zeros vector doesn't satisfy this condition), then

$$Ks = \underset{x_{l'}, l' \in [M^K]}{\operatorname{arg\,min}} \sum_{l=1}^{(M-1)^K} v_l(x_{l'}), \text{ for } M > 2, K \ge 1.$$
 (1)

Proof: The general inner product expression is as follows:

$$\langle x_{l}, x_{l'} \rangle = \left\langle \sum_{k=1}^{K} \sum_{m=1}^{M-1} \mu_{m}^{k} r_{m,l}^{k} + \sum_{k=1}^{K} s \ r_{M,l}^{k}, \sum_{k'=1}^{K} \sum_{m'=1}^{M-1} \mu_{m'}^{k'} r_{m',l'}^{k'} + \sum_{k'=1}^{K} s \ r_{M,l'}^{k'} \right\rangle$$

$$= \sum_{k,k'=1}^{K} \sum_{m,m'=1}^{M-1} \left\langle \mu_{m}^{k}, \mu_{m'}^{k'} \right\rangle r_{m,l}^{k} r_{m',l'}^{k'} + \sum_{k,k'=1}^{K} \sum_{m=1}^{M-1} \left\langle \mu_{m}^{k}, s \right\rangle r_{m,l}^{k} r_{M,l'}^{k'}$$

$$+ \sum_{k,k'=1}^{K} \sum_{m'=1}^{M-1} \left\langle s, \mu_{m'}^{k'} \right\rangle r_{M,l}^{k} r_{m',l'}^{k'} + \sum_{k,k'=1}^{K} \left\langle s, s \right\rangle r_{M,l}^{k} r_{M,l'}^{k'}. \tag{2}$$

Having seen the most general equation, let's consider special cases for $x_{l'}$ separately:

• $v(x_{l'''}) = v(Ks), l''' \in \mathcal{D}2$:

$$\langle x_{l}, x_{l'''} \rangle = \sum_{k,k'''=1}^{K} \sum_{m=1}^{M-1} \langle \mu_{m}^{k}, s \rangle r_{m,l}^{k} r_{M,l'''}^{k'''} + \sum_{k,k'''=1}^{K} \langle s, s \rangle r_{M,l}^{k} r_{M,l'''}^{k'''}$$

$$= K \sum_{k=1}^{K} \sum_{m=1}^{M-1} \langle \mu_{m}^{k}, s \rangle r_{m,l}^{k} + K \sum_{k=1}^{K} \langle s, s \rangle r_{M,l}^{k}$$
(3)

We observe that there are $(M-1)^K$ terms which are of the form $\sum_{k=1}^K \sum_{m=1}^{M-1} \left\langle \mu_m^k, s \right\rangle r_{m,l}^k$. We conclude that,

$$v_l(Ks) = K \sum_{k=1}^K \sum_{m=1}^{M-1} \langle \mu_m^k, s \rangle r_{m,\omega(l)}^k, \ l \in [(M-1)^K], \tag{4}$$

where $\omega:M^K\to M^K$ is the sorting mapping of v(Ks) function.

• $v(x_{l'}) = v\left(\sum_{k'=1}^{K} \sum_{m'=1}^{M-1} \mu_{m'}^{k'} r_{m',l'}^{k'}\right)$, for $l' \in \mathcal{D}1$:

$$\langle x_{l}, x_{l'} \rangle = \sum_{k,k'=1}^{K} \sum_{m,m'=1}^{M-1} \left\langle \mu_{m}^{k}, \mu_{m'}^{k'} \right\rangle r_{m,l}^{k} r_{m',l'}^{k'} + \sum_{k,k'=1}^{K} \sum_{m'=1}^{M-1} \left\langle s, \mu_{m'}^{k'} \right\rangle r_{M,l}^{k} r_{m',l'}^{k'}$$

Notice that we only have one term of the form $K\sum\limits_{k'=1}^K\sum\limits_{m'=1}^{M-1}\left\langle s,\mu_{m'}^{k'}\right\rangle r_{m',l'}^{k'},\ l'\in\mathcal{D}1.$ Consequently,

$$v_1(x_{l'}) = K \sum_{k'=1}^{K} \sum_{m'=1}^{M-1} \left\langle s, \mu_{m'}^{k'} \right\rangle r_{m',l'}^{k'}, \ l' \in \mathcal{D}1.$$

And the larger elements for $2 \le l \le (M-1)^K$ are of the form:

$$v_{l}(x_{l'}) = \sum_{k,k'=1}^{K} \sum_{m,m'=1}^{M-1} \left\langle \mu_{m}^{k}, \mu_{m'}^{k'} \right\rangle r_{m,\omega(l)}^{k} r_{m',l'}^{k'} + \sum_{k,k'=1}^{K} \sum_{m'=1}^{M-1} \left\langle s, \mu_{m'}^{k'} \right\rangle r_{M,\omega(l)}^{k} r_{m',l'}^{k'}$$

$$= \sum_{k,k'=1}^{K} \sum_{m'=1}^{M-1} \left(\sum_{m=1}^{M-1} \left\langle \mu_{m}^{k}, \mu_{m'}^{k'} \right\rangle r_{m,\omega(l)}^{k} r_{m',l'}^{k'} + \left\langle s, \mu_{m'}^{k'} \right\rangle r_{M,\omega(l)}^{k} r_{m',l'}^{k'} \right)$$

$$\geq K \sum_{k'=1}^{K} \sum_{m'=1}^{M-1} \left\langle s, \mu_{m'}^{k'} \right\rangle r_{m',l'}^{k'} = v_{l}(Ks), \ l' \in \mathcal{D}1, \ 2 \leq l \leq (M-1)^{K},$$

where the inequality is due to the first incoherence condition in the Lemma. Therefore we conclude that $\sum_{l=1}^{(M-1)^K} v_l(Ks) \leq \sum_{l=1}^{(M-1)^K} v_l(x_{l'}), \forall l' \in \mathcal{D}1.$

• $v(x_{l''}) = v\left(\sum_{k'=1}^{K} \sum_{m'=1}^{M-1} \mu_{m'}^{k'} r_{m',l''}^{k'} + \sum_{k'=1}^{K} s r_{M,l''}^{k'}\right)$, for $l'' \in \mathcal{D}3$. In this case none of the terms vanish in equation (2):

$$\begin{split} v_l(x_{l''}) &= \sum_{k,k'=1}^K \sum_{m,m'=1}^{M-1} \left\langle \mu_m^k, \mu_{m'}^{k'} \right\rangle r_{m,\omega(l)}^k r_{m',l''}^{k'} + \sum_{k,k'=1}^K \sum_{m=1}^{M-1} \left\langle \mu_m^k, s \right\rangle r_{m,\omega(l)}^k r_{M,l''}^{k'} \\ &+ \sum_{k,k'=1}^K \sum_{m'=1}^{M-1} \left\langle s, \mu_{m'}^{k'} \right\rangle r_{M,\omega(l)}^k r_{m',l''}^{k'} + \sum_{k,k'=1}^K \left\langle s, s \right\rangle r_{M,\omega(l)}^k r_{M,l''}^{k'} \\ &\geq K \sum_{k'=1}^K \sum_{m'=1}^{M-1} \left\langle s, \mu_{m'}^{k'} \right\rangle r_{m',l'}^{k'} = v_l(Ks), \ l' \in \mathcal{D}1, \ l'' \in \mathcal{D}3, \ \text{and}, \ 2 \leq l \leq (M-1)^K, \end{split}$$

where the inequality is due to the incoherence conditions. Therefore, we conclude that $\sum_{l=1}^{(M-1)^K} v_l(Ks) \leq \sum_{l=1}^{(M-1)^K} v_l(x_{l''}) \ \forall l'' \in \mathcal{D}3. \ \text{Together with the conclusion,} \ \sum_{l=1}^{(M-1)^K} v_l(Ks) \leq \sum_{l=1}^{(M-1)^K} v_l(x_{l'}), \ \forall l' \in \mathcal{D}1, \ \text{we see that the claim in the Lemma is true.}$

1.1 Finding Ks term in M=2 case:

Lemma 2. If $\left\langle \mu_{m''}^{k''}, s \right\rangle \leq \left\langle \mu_m^k, \mu_{m'}^{k'} \right\rangle$, $\forall (k, k', k'') \in [K]$, and $\forall (m, m', m'') \in [1]$, i.e. for any component μ_m^k , the least correlated component is s, $\left\langle \mu_m^k, s \right\rangle \leq \left\langle s, s \right\rangle$, $\forall k \in [K]$, $m \in [1]$, i.e., the shared component s has a non-trivial magnitude (e.g. all zeros vector doesn't satisfy this condition), and $\left\langle \mu_m^k, \mu_m^{k'} \right\rangle \leq \left\langle s, s \right\rangle$, $\forall k, k' \in [K]$, $m \in [1]$, then

$$Ks = \underset{x_{l'}, l' \in [2^K]}{\arg \max} \left(\sum_{l=2}^{2^K - 1} v_l(x_{l'}) \right), \text{ for } K \ge 1.$$
 (5)

Proof: We know from Lemma 3 in the paper that Ks is a minimizer of the term $v_1(x_{l'})$. Going through separate cases like we did for the Proof of Lemma 3,

$$\begin{aligned} \bullet \ v(x_{l'''}) &= v(Ks), \, l''' \in \mathcal{D}2: \\ \langle x_{l}, x_{l'''} \rangle &= \sum_{k,k'''=1}^{K} \sum_{m=1}^{M-1} \left\langle \mu_{m}^{k}, s \right\rangle r_{m,l}^{k} r_{M,l'''}^{k'''} + \sum_{k,k'''=1}^{K} \left\langle s, s \right\rangle r_{M,l}^{k} r_{M,l'''}^{k'''} \\ &= K \sum_{k=1}^{K} \sum_{m=1}^{M-1} \left\langle \mu_{m}^{k}, s \right\rangle r_{m,l}^{k} + K \sum_{k=1}^{K} \left\langle s, s \right\rangle r_{M,l}^{k} \\ &= K \sum_{k=1}^{K} \left\langle \mu_{1}^{k}, s \right\rangle r_{1,l}^{k} + K \sum_{k=1}^{K} \left\langle s, s \right\rangle r_{M,l}^{k} \end{aligned}$$

•
$$v(x_{l'}) = v\left(\sum_{k'=1}^{K} \sum_{m'=1}^{M-1} \mu_{m'}^{k'} r_{m',l'}^{k'}\right)$$
, for $l' \in \mathcal{D}1$:

$$\langle x_{l}, x_{l'} \rangle = \sum_{k,k'=1}^{K} \sum_{m,m'=1}^{M-1} \left\langle \mu_{m}^{k}, \mu_{m'}^{k'} \right\rangle r_{m,l}^{k} r_{m',l'}^{k'} + \sum_{k,k'=1}^{K} \sum_{m'=1}^{M-1} \left\langle s, \mu_{m'}^{k'} \right\rangle r_{M,l}^{k} r_{m',l'}^{k'}$$

$$= \sum_{k,k'=1}^{K} \left\langle \mu_{1}^{k}, \mu_{1}^{k'} \right\rangle r_{m,l}^{k} r_{m',l'}^{k'} + \sum_{k,k'=1}^{K} \left\langle s, \mu_{1}^{k'} \right\rangle r_{M,l}^{k} r_{1,l'}^{k'}$$

$$\leq K \sum_{k=1}^{K} \left\langle \mu_{1}^{k}, s \right\rangle r_{1,l}^{k} + K \sum_{k=1}^{K} \left\langle s, s \right\rangle r_{M,l}^{k} = \left\langle x_{l}, x_{l'''} \right\rangle$$

•
$$v(x_{l''}) = v\left(\sum_{k'=1}^{K} \sum_{m'=1}^{M-1} \mu_{m'}^{k'} r_{m',l''}^{k'} + \sum_{k'=1}^{K} s r_{M,l''}^{k'}\right)$$
, for $l'' \in \mathcal{D}3$:

164

165

166

$$\langle x_{l}, x_{l''} \rangle = \sum_{k,k'=1}^{K} \sum_{m,m'=1}^{M-1} \left\langle \mu_{m}^{k}, \mu_{m'}^{k'} \right\rangle r_{m,(l)}^{k} r_{m',l''}^{k'} + \sum_{k,k'=1}^{K} \sum_{m=1}^{M-1} \left\langle \mu_{m}^{k}, s \right\rangle r_{m,(l)}^{k} r_{M,l''}^{k'}$$

168

169

$$+ \sum_{k,k'=1}^{K} \sum_{m'=1}^{M-1} \left\langle s, \mu_{m'}^{k'} \right\rangle r_{M,(l)}^{k} r_{m',l''}^{k'} + \sum_{k,k'=1}^{K} \left\langle s, s \right\rangle r_{M,(l)}^{k} r_{M,l''}^{k'}$$

170

$$= \sum_{k,k'=1}^{K} \left\langle \mu_{1}^{k}, \mu_{1}^{k'} \right\rangle r_{1,(l)}^{k} r_{1,l''}^{k'} + \sum_{k,k'=1}^{K} \left\langle \mu_{1}^{k}, s \right\rangle r_{1,(l)}^{k} r_{M,l''}^{k'}$$

173

174

$$+ \sum_{k,k'=1}^{K} \left\langle s, \mu_{1}^{k'} \right\rangle r_{M,(l)}^{k} r_{1,l'}^{k'} + \sum_{k,k'=1}^{K} \left\langle s, s \right\rangle r_{M,(l)}^{k} r_{M,l''}^{k'}$$

176

177

$$\leq K \sum_{k,k'=1}^{K} \left\langle \mu_{1}^{k}, s \right\rangle r_{1,l}^{k} + K \sum_{k,k'=1}^{K} \left\langle s, s \right\rangle r_{M,l}^{k} = \left\langle x_{l}, x_{l'''} \right\rangle,$$

where all of the inequalities are due to the incoherence conditions. Therefore, we conclude that $\sum\limits_{l=2}^{2^K-1}v_l(Ks)\geq\sum\limits_{l=2}^{2^K-1}v_l(x_{l''})\ \forall l''\in\mathcal{D}3,$ and $\sum\limits_{l=2}^{2^K-1}v_l(Ks)\geq\sum\limits_{l=2}^{2^K-1}v_l(x_{l'}),\ \forall l'\in\mathcal{D}1,$ we see that the claim in the Lemma is true.