

N87-17824

Mathematical Modeling of SCOLE Configuration with Line-of-Sight Error as the Output

by

**S. M. Joshi
NASA Langley
Research Center**

PRECEDING PAGE BLANK NOT FILMED

Mathematical Modeling of the SCOLE Configuration with Line-of Sight Error as the output

S. M. Joshi

ORIGINAL PAGE IS
OF POOR QUALITY

I-SCOLE Linear Model

3 - Rigid-body modes + 10 Flex. modes
(order = 26)

5 inputs $[M_x, M_y, M_z, F_x, F_y]$
Moments applied /
at shuttle |
Forces
Applied at
reflector ctr.

3 output $y = \Delta L.O.S.$

(3-dim. error in Line-of-sight vector)

Coordinate System: D. Roberts

Units : FPS System

Expression for linearized LOS error

If everything is in Robertson's coordinate system, the linearized LOS error is:

$$\Delta_{\text{LOS}} = \begin{cases} -L\theta_3 + r_y \psi_3 + u_\theta(L) - u_\theta(0) + r_y u_\psi(L) - 2Lu'_\theta(L) \\ L\phi_3 + r_x \psi_3 + u_\phi(L) - u_\phi(0) + r_x u_\psi(L) - 2Lu'_\phi(L) \\ -r_x \theta_3 - r_y \phi_3 - r_x u'_\theta(L) + r_y u'_\phi(L) \end{cases}$$

(Where ϕ_3, θ_3, ψ_3 are the rigid-body angles about x, y, z axes).

u_θ, u_ϕ are elastic deflections, $u'_\theta, u'_\phi, u'_\psi$ are elastic angular deflections

ORIGINAL PAGE IS OF POOR QUALITY

Taylor's coordinate system

Robertson's system

X-defl. $-u_\theta$

Y-defl. u_ϕ

Angular defl. (about x) u'_ϕ

Angular defl. (about y) u'_θ

Angular defl. (about z) u'_4

Coordinates of refl. c.m. rel. to shuttle

$(r_x, r_y, -L)$

$$r_x = 18.75 \\ r_y = -32.5, L = 130.$$

X-defl. u_θ

Y-defl. u_ϕ

Angular defl. (about x-axis) $-u'_\phi$

Angular defl. (about y-axis) u'_θ

Angular defl. (about z-axis) u'_4

S. M. Joshi
Nov. '86

1.411 CP SEC

CV

CYBER LOADER 1.0.5-552

PAGE
61

69 TABLE MOVES

A (26 x 26)

11

**ORIGINAL PAGE IS
OF POOR QUALITY**

Cont.

$A_{26 \times 26}$ (Contd. from
previous page)

Row 16

-4-

88

B (26x5)

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -0.00486E-06 & -1.0610E-08 & -1.4337E-07 & -5.9958E-08 & -1.1476E-03 \\ -1.0610E-08 & -1.4272E-06 & -1.0662E-06 & -1.0588E-05 & -1.1794E-05 \\ -1.4337E-07 & -1.0662E-08 & -1.46081E-08 & -1.46726E-03 & -1.7638E-06 \\ -1.4847E-03 & -0.67762E-03 & -0.48084E-04 & -0.19876E+01 & -0.62670E-01 \\ 0 & 0 & 0 & 0 & 0 \\ -5.1993E-02 & -4.5857E-04 & -2.6144E-04 & -1.4599E+00 & -2.0166E+01 \\ 0 & 0 & 0 & 0 & 0 \\ -3.2276E-03 & -7.3050E-04 & -3.0638E-04 & -1.0332E+01 & -3.56127E+00 \\ 0 & 0 & 0 & 0 & 0 \\ -7.1189E-03 & -5.4339E-04 & -3.5905E-07 & -2.7669E+00 & -4.8924E+00 \\ 0 & 0 & 0 & 0 & 0 \\ -1.0890E-03 & -4.3101E-04 & -2.1200E-06 & -9.1695E-01 & -5.1600E-01 \\ 0 & 0 & 0 & 0 & 0 \\ -1.2068E-03 & -9.3335E-05 & -2.4659E-09 & -1.5570E+00 & -2.6696E+00 \\ 0 & 0 & 0 & 0 & 0 \\ -6.62175E-04 & -1.4263E-04 & -1.4394E-06 & -3.7195E+00 & -2.1355E+00 \\ 0 & 0 & 0 & 0 & 0 \\ -6.5351E-04 & -3.5006E-05 & -3.3345E-10 & -1.0385E+00 & -1.7688E+00 \\ 0 & 0 & 0 & 0 & 0 \\ -2.56440E-04 & -5.8553E-05 & -1.9444E-07 & -3.1226E+00 & -1.6050E+00 \\ 0 & 0 & 0 & 0 & 0 \\ -2.3310E-04 & -1.7993E-05 & -5.6658E-11 & -7.6610E-01 & -1.3216E+00 \end{bmatrix}$$

$$U = \begin{bmatrix} M_x \\ M_y \\ M_z \\ F_x \\ F_y \end{bmatrix}_{5 \times 1}$$

Applied moments at
Shuttle.
Original print is
of poor quality

$$U = \begin{bmatrix} M_x \\ M_y \\ M_z \\ F_x \\ F_y \end{bmatrix}_{5 \times 1}$$

Applied forces at
reflector.

$$C (3 \times 26) \quad Y = [A L O S]_{3 \times 1}$$

$$Row_1 \begin{bmatrix} 0 & -1.3000E+03 & -3.22200E+02 & 0 \\ -4.0647E+00 & 0 & 5.7773E+00 & 0 \\ 3.6432E-01 & 0 & 4.21907E+00 & 0 \\ 1.3000E+03 & 0 & 1.8750E+02 & 0 \\ -2.5707E+00 & 0 & -1.88594E+00 & 0 \\ 2.8930E-01 & 0 & 1.1102E+00 & 0 \\ -3.22200E+02 & -1.0750E+02 & 0 & 0 \\ -6.5544E-01 & 0 & -7.5790E-01 & 0 \\ -3.7941E-02 & 0 & -2.9226E-01 & 0 \end{bmatrix}$$

$$Row_2 \begin{bmatrix} 0 & 1.3241E+01 & 0 & 0 \\ -2.6795E-01 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$Row_3 \begin{bmatrix} -1.54352E+00 & 0 & 0 & 0 \\ -8.88903E-01 & 0 & 0 & 0 \\ -5.59866E+00 & 0 & 0 & 0 \\ -9.38653E-02 & 0 & 0 & 0 \\ 1.01360E+00 & 0 & 0 & 0 \\ -3.06059E+00 & 0 & 0 & 0 \\ -3.8916E-01 & 0 & 0 & 0 \\ 1.0363E-01 & 0 & 0 & 0 \\ -7.8259E-01 & 0 & 0 & 0 \end{bmatrix}$$

II- SCOLE - Flexible linear model

(10 Flex. modes only)

8 Inputs } as described
14 Outputs }

Coordinate system: D. Robertson's

FPS Units

Note: For control of LOS using ΔLOS measurements, the previous model which includes rigid + 10 flex modes should be adequate. The following model is provided for those wishing to use additional inputs or outputs. This can be accomplished by selecting appropriate elements of "B" and "C" matrices. Note that the following model contains only flex. modes since its purpose is to supplement the previous (rigid + elastic) model.

S. Johri
5/22/85
Orientation (Dec '84)

Scole -Flexible model (lo modej)

(The state, input, output variables are defined in the *STOLE wfs presentation* (Oct '84))

NO. OF MODES. 100N. 20N. 6L. 14
A MATRIX

