

Z C1.4 Reto en clase

Circuito electrónico para el acondicionamiento de señal con un amplificador operacional y simulación.

Instrucciones

- De acuerdo con la información presentada por el asesor referente al tema acondicionadores de señal, contestar lo que se indica dentro del apartado desarrollo.
- Simule el circuito mostrado utilizando la herramienta tinkercad para ello.

Nesarrollo (

1. Calcule el valor de R1 y R2 que se requiere, para obtener una voltaje de salida de 3.3v, dado que el Voltaje de entrada es de 1.5v? Explique el procedimiento utilizado para realizar el calculo y considere valores comerciales para las resistencias que se considere utilizar.

Formulas base

R2 = VSalida - Ventrada

R1 = Ventrada - 0

Procedimiento

 $R2 = 3.3v - 1.5v = 1.8 k\Omega;$

 $R1 = 1.5V - 0 = 1.5 k\Omega;$

Comprobación

Vsalida = $1.5v * (1 + (1.8 k\Omega/1.5 k\Omega))$

Vsalida = 1.5v * (2.2)Vsalida = 3.3v

Colores	Multiplicador							
Colores	Multiplicador							
	Oro	Negro	Marrón	Rojo	Naranja	Amarillo	Verde	
Marrón - Negro	1.0 [Ω]	10 [Ω]	100 [Ω]	1.0 [ΚΩ]	10 [ΚΩ]	100 [ΚΩ]	1.0 [ΜΩ]	
Marrón - Rojo	1.2 [Ω]	12 [Ω]	120 [Ω]	1.2 [ΚΩ]	12 [KΩ]	120 [ΚΩ]	1.2 [ΜΩ]	
Marrón - Verde	1.5 [Ω]	15 [Ω]	150 [Ω]	1.5 [ΚΩ]	15 [KΩ]	150 [ΚΩ]	1.5 [ΜΩ]	
Marrón - Gris	1.8 [Ω]	18 [Ω]	180 [Ω]	1.8 [ΚΩ]	18 [KΩ]	180 [ΚΩ]	1.8 [ΜΩ]	
Rojo - Rojo	2.2 [Ω]	22 [Ω]	220 [Ω]	2.2 [ΚΩ]	22 [ΚΩ]	220 [ΚΩ]	2.2 [MΩ]	
Rojo - Violeta	2.7 [Ω]	27 [Ω]	270 [Ω]	2.7 [ΚΩ]	27 [ΚΩ]	270 [ΚΩ]	2.7 [ΜΩ]	
Naranja - Naranja	3.3 [Ω]	33 [Ω]	330 [Ω]	3.3 [ΚΩ]	33 [KΩ]	330 [ΚΩ]	3.3 [MΩ]	
Naranja - Blanco	3.9 [Ω]	39 [Ω]	390 [Ω]	3.9 [KΩ]	39 [ΚΩ]	390 [ΚΩ]	3.9 [MΩ]	
Amarillo - Violeta	4.7 [Ω]	47 [Ω]	470 [Ω]	4.7 [ΚΩ]	47 [KΩ]	470 [KΩ]	4.7 [MΩ]	
Verde - Azul	5.6 [Ω]	56 [Ω]	560 [Ω]	5.6 [KΩ]	56 [KΩ]	560 [ΚΩ]	5.6 [MΩ]	
Azul - Gris	6.8 [Ω]	68 [Ω]	680 [Ω]	6.8 [KΩ]	68 [KΩ]	680 [KΩ]	6.8 [MΩ]	
Gris-Rojo	8.2 [Ω]	82 [Ω]	820 [Ω]	8.2 [KΩ]	82 [KΩ]	820 [KΩ]	8.2 [MΩ	
Blanco - Negro	9.1 [Ω]	91 [Ω]	910 [Ω]	9.1 [ΚΩ]	91 [KΩ]	910 [ΚΩ]	9.1 [ΜΩ	

2. Diseñe y simule el circuito utilizando la herramienta Tinkercad.

3. Cambie el valor de R1 o R2 por un potenciómetro de tal forma que pueda compensar una salida de voltaje tal como se muestra en la tabla siguiente:

vo	Resistencia	R2
~ 1v		1.8 kΩ
~ 2v		1.8 kΩ
~ 3v	1.5 kΩ	1.8 kΩ
~ 4v	1.08 kΩ	1.8 kΩ
~ 5v	780 Ω	1.8 kΩ

4. Coloque aqui evidencias de la simulación.

~ 1v

No se puede obtener un valor de salida menor al valor de entrada

~ 2v

Al tener un valor resistivo de $1.5k\Omega$ el minimo voltaje que podemos obtener es 3.3v, si deseamos tener un voltaje menor tendriamos que ajustar el valor resistivo a $5.40k\Omega$ que nos generaria un voltaje de salida de 2v

~ 3v

~ 4v

~ 5v

Criterios	Descripción	Puntaje
Instrucciones	Se cumple con cada uno de los puntos indicados dentro del apartado Instrucciones?	20
Desarrollo	Se respondió a cada uno de los puntos solicitados dentro del desarrollo de la actividad?	80

🔝 Ir a inicio