1994 年计算机数学基础

四、

1. 由题意可求得 G 和 G^* 。

由于 G^* 中存在奇数度顶点 $v_1^*, v_3^*, v_4^*, v_5^*$, 所以 G^* 不是欧拉图。

由于 v_1^* 只与 v_2^* 相邻,所以 v_1^* 若出现在某个回路 C 中,则 v_1^* 的两侧都只能是 v_2^* ,当 |C|>2 时,C 不是圈。从而 G^* 中不可能存在哈密顿圈。(另证: 令 $V_1^*=\{v_2^*\}$,则 $p(G^*-V_1^*)=2>|V_1^*|$,由教材定理 8.6 知, G^* 不是哈密顿图)。

2. 先求邻接矩阵和 $B_i = \sum_{k=1}^i A^k$ 。

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} 0 & 0 & 0 & 0 & 2 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 2 & 0 \end{pmatrix} \qquad A^{3} = \begin{pmatrix} 2 & 0 & 2 & 0 & 0 \\ 0 & 2 & 0 & 2 & 0 \\ 2 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix} \qquad A^{4} = \begin{pmatrix} 0 & 4 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 4 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 4 \\ 4 & 0 & 4 & 0 & 0 \end{pmatrix}$$