Lecture 5

Object ives

- * Resolve issues from L4
 - * prove Division Theorem
 - * Inverse for $f_{a.n}(x) = a \cdot_n x$
- * Tools for next lecture
 - + Greatest Common Divider (GCD)

 Concept, algo
 - * Inverse of a in Zn
 - * Inverse e equation a·nX=b
 - * a ·n x = 1 & ax+ny=1
 - * Extended BCD Algo: find x.y s.t.

 ax+ny = gcd (a,n)
 - $X = a^{-1}$ when gcdca.n)=1.

Proof by Contradiction

* Need to prove: P is true

* strategy

* Assume pis false.

* Derive contradiction.

* Conclude : P must be true.

First Step in proving Theorem 2.12

* Need to prove: For any m >, 0,

Exist q 2 r, s.t. m = 9n +r (osran)

* proof by contradiction

* Assume exist m>,0, s.t.

m = qn + r (*)

Not true for any 2, r (o≤r<n)

* choose the Smallest Such m.

* If m<n,

 $m = 0 \cdot n + m \quad (0 \le m < n)$

(q=0, r=m) Satisfies (x)

Contradiction!

* If m 2n

- Let m'= m-n, m'>0

- m' < m. There must exist g',r'

s.t. $m' = 2'n + r' (o \leq r' < n)$

 \Rightarrow M-n=q'n+r'

=) m = (1+2!)n+r'

Contradicts the choice of m!

proof. completed

Proof of Theorem 2.12 2nd Step

* Need to prove :

$$m = qn + r \quad (0 \le r < n) \quad (*)$$

$$m = q'n + r' \quad (0 \leq r' \leq n) \quad (**)$$

* Substract (*) and (**):

$$0 = (9-9')n + Y-Y'$$

$$=) (2'-2)n = r-r'$$

$$\Rightarrow$$
 | 2'-2| n = | r-r'|

$$=$$
 $|9'-9|n< n$

$$\Rightarrow$$
 $|2'-9|=0 \Rightarrow 2'=9$

Proof of Lemma 2.13

proof

* Case 1: Y=0

$$\Rightarrow k=j1,$$
 'j|k

we have: jlj, gcd(j,k)≤j

$$\Rightarrow$$
 gcd(j,k)=j

 $ili_{j} = ilo_{j}$, $gcd(i, o) \leq i$

$$\Rightarrow$$
 gcdCj, κ) = gcd(j, r)

* case 2: r70

will Show:

dlj, dlk @ dlj, dlr (*)

 \Rightarrow gcd(j,k) = gcd(r,j)

proof of (3)

=>: dlj, dlk

 $\Rightarrow k = i_1 d, j = i_2 d$

=) $j=i_2d$, r=k-jq

= i,d - i2d9

 $=(i_1 - i_2 q)d$

=> d|j, d|r. proved.

€ = Similar

Lemma proved.