Mathematics: analysis and approaches

Higher level

Additional Practice

Counting Principles (Non-Calculator)

ID: 4003

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Answer all the questions in the answer booklet provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the **mathematics: analysis and approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [93 marks].

[Maximum points: 4]

1.

2. [Maximum points: 4]

The circle below has 20 points on its circumference. Two points are randomly chosen and connected with a straight line. Another two of the remaining 18 points are then randomly chosen and also connected with a straight line.

Find the probability that the two lines intersect.

3.	[Ma	ximum points: 4]	
	Five	friends stand randomly in a line. Determine the probability that	
	(a)	the youngest person is the first person in the line	[2]
	(b)	they are stood in order of age (ascending or descending)	[2]

n 9.				

4.

[Maximum points: 5]

 		• • • • • • • • • • • • • • • • • • • •	 	 	

5.

[Maximum points: 5]

6. [Maximum points: 5]

The diagram below shows an equilateral triangle with sides of length 3.

- (a) Divide the triangle into 9 smaller identical equilateral triangles. [2]
- (b) Explain why if we randomly draw 10 points inside the triangle then at least two of them must be no more than a distance of 1 apart. [3]

7.	[Maximum points: 6]	
	Let $A = \{ \text{factors of } 6 \}.$	
	(a) List the members of A .	[1]
	Let $B = \{x^2 + bx + c = 0 \mid b, c \in A, b \neq c\}.$	
	(b) Determine how many elements are in set <i>B</i> .	[2]
	Let $C = \{\text{equations with rational roots}\}.$	
	(c) Describe the members of set $B \cap C$.	[1]
	(d) Find all members of $B \cap C$.	[2]
		• •
1		

(a) Show that ${}^{N}C_{r} \cdot {}^{N-r}C_{n-r} = \frac{N!}{r!(n-r)!(N-n)!}$.	[2]
(b) Find an expression for $\sum_{r=0}^{n} {}^{n}C_{r}$ in terms of only n .	[2]
(c) Hence prove that $\sum_{r=0}^{n} {}^{N}C_{r} \cdot {}^{N-r}C_{n-r} = \frac{2^{n} \cdot {}^{N}P_{n}}{n!}.$	[2]
	•
	•

[Maximum points: 6]

Let $N, n, r \in \mathbb{N}$, $n \le N$ and $r \le N$.

8.

9.	[Ma	ximum points: 6]	
	Rod	, Jane and Freddie stand randomly in a line with three other friends.	
	(a)	Find the number of ways the six people can stand in a line.	[2]
	(b)	Find the probability that Rod is between Jane and Freddie, either directly or indirectly.	[2]
	(c)	Hence find the total number of ways the six people can stand in a line so that Rod is between Jane and Freddie, either directly or indirectly.	[2]

(a) Prove that $\sum_{k=0}^{n} {}^{n}C_{k} = 2^{n}.$	[2]
(b) Hence determine an expression for the total number of factors of P_n .	[4]

10. [Maximum points: 6]

 	 	 •	

11. [Maximum points: 7]

(a)	a multiple of 5	
(b)	a multiple of 4	

12. [Maximum points: 7]

 exactly the same time.

13. [Maximum points: 9]

14.	Maximum	points:	197
	1110/111110111	pomis.	1/

Let a, b and c represent the lengths of the three sides of a triangle where c is the length of the longest side.

(a) Consider the inequality a + b = c. Determine which of the symbols <, >, \le or \ge we must replace \blacksquare with.

Let
$$X = \{x \mid 1 \le x \le 10, x \in \mathbb{N} \}.$$

(b) List the elements of
$$X$$
. [1]

Three numbers are chosen from set *X* with no repetition.

(c) Find the total number of ways of choosing the three numbers. The order of the numbers does not matter. [2]

Let set Y represent the set of all non-congruent triangles that can be formed by choosing three numbers from set X with no repetition and using these for the lengths of the sides of the triangle.

- (d) Explain why no triangles can have a side of length 1. [2]
- (e) Show that set *Y* contains [4]
 - (i) 7 triangles with a shortest side of length 2
 - (ii) 6+5=11 triangles with a shortest side of length 3
- (f) Find the total number of triangles in set *Y*. [6]
- (g) Hence find the probability that the three numbers chosen from set X can be used to construct a triangle. [1]
- (h) Given that the three numbers chosen from set *X* can be used to construct a triangle find the probability that it is a right-angled triangle. [2]