Machine Learning Introduction

Al Summer School

University of Tehran

Definition of Machine Learning

Arthur Samuel (1959): Machine Learning is the field of study that gives the computer the ability to learn without being explicitly programmed.

A. L. Samuel*

Some Studies in Machine Learning
Using the Game of Checkers. II—Recent Progress

Taxonomy of Machine Learning (A Simplistic View Based on Tasks)

Supervised Unsupervised Learning Learning Reinforcement Learning

Supervised Learning

Housing Price Prediction

 \triangleright Given: a dataset that contains n samples

$$(x^{(1)}, y^{(1)}), ... (x^{(n)}, y^{(n)})$$

 \triangleright Task: if a residence has x square feet, predict its price?

Housing Price Prediction

 \triangleright Given: a dataset that contains n samples

$$(x^{(1)}, y^{(1)}), ... (x^{(n)}, y^{(n)})$$

 \triangleright Task: if a residence has x square feet, predict its price?

> Lecture 2&3: fitting linear/quadratic functions to the dataset

More Features

- Suppose we also know the lot size
- Task: find a function that maps

$$\begin{array}{c} \text{(size, lot size)} \rightarrow & \text{price} \\ \\ \text{features/input label/output} \\ x \in \mathbb{R}^2 & y \in \mathbb{R} \end{array}$$

- ➤ Dataset: $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})$ where $x^{(i)} = (x_1^{(i)}, x_2^{(i)})$
- \succ "Supervision" refers to $y^{(1)}, \dots, y^{(n)}$

High-dimensional Features

- $x \in \mathbb{R}^d$ for large d
- E.g.,

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_d \end{bmatrix} \xrightarrow{--- \text{living size}} ---- \text{lot size}$$

$$---- # \text{ floors}$$

$$---- \text{ condition}$$

$$---- \text{ zip code}$$

$$\vdots$$

$$\vdots$$

- > Lec. 6-7: infinite dimensional features (kernels)
- > Lec. 10-11: select features based on data (deep learning)

Regression vs Classification

- regression: if $y \in \mathbb{R}$ is a continuous variable
 - e.g., price prediction
- classification: the label is a discrete variable
 - e.g., the task of predicting the types of residence

(size, lot size) \rightarrow house or townhouse?

Lecture 3&4: classification

Supervised Learning in Computer Vision

- Image Classification
 - x = raw pixels of the image, y = the main object

Supervised Learning in Computer Vision

- Object localization and detection
 - x = raw pixels of the image, y = the bounding boxes

kit fox

croquette

frog

ImageNet Large Scale Visual Recognition Challenge. Russakovsky et al.'2015

Supervised Learning in Natural Language Processing • Machine translation

- Note: this course only covers the basic and fundamental techniques of supervised learning (which are not enough for solving hard vision or NLP problems.)
- CS224N and CS231N, if you are interested in the particular applications.

Unsupervised Learning

Unsupervised Learning

- Dataset contains no labels: $x^{(1)}$, ... $x^{(n)}$
- Goal (vaguely-posed): to find interesting structures in the data

supervised 8 house townhouse 0.5 1.0 1.5 2.0 2.5 3.0

unsupervised

Clustering

Clustering

➤ Lecture 12&13: k-mean clustering, mixture of Gaussians

Clustering Genes

Identifying Regulatory Mechanisms using Individual Variation Reveals Key Role for Chromatin Modification. [Su-In Lee, Dana Pe'er, Aimee M. Dudley, George M. Church and Daphne Koller. '06]

REINFORCEMENT LEARNING

Reinforcement Learning

The algorithm can collect data interactively

Try the strategy and collect feedback

Improve the strategy based on the feedback