Rajat Mehta

Boston, MA | \$\overline{\o

Education

Northeastern University, Boston, MA

May 2023

Master of Science in Robotics, ECE Concentration

Related Coursework: Deep Learning, Machine Learning, Computer Vision, Reinforcement Learning

Shri G.S. Institute of Technology and Science, Indore, India

June 2021

Bachelor of Technology, Electronics and Telecommunication Engineering

Experience

Tocaro Blue, LLC

Feb 2024 – Feb 2025

Machine Learning and Autonomy Engineer Birmingham, AL

- Engineered **Marine-Perception end-to-end pipeline** by developing **Semantic segmentation** models for radar scanline images cutting the production costs by 13%.
- Designed **Vision Transformer (ViT) architectures** to enhance object **detection and classification** in marine environments.
- Developed and trained a hybrid Image-Statistics machine learning model to classify marine objects into 8 categories, achieving a 4.2% increase in model accuracy.
- Optimized **Multi-Sensor Fusion** (Radar + GPS) for autonomous marine navigation, enhancing object recognition and tracking.

Skills: Transformers · Computer Vision · Marine Radar · Segmentation · Statistical Modelling · Tracking Filters

BlueFusion Inc.

June 2022-Aug 2022

Perception Engineering Coop, Autonomous Systems

Boston, MA

- Engineered an **end-to-end Radar perception pipeline**, refining **FFT heatmaps** via **image processing** and integrating **YOLO-based object detection** for improved perception.
- Redesigned Lidar-based detection models (PointNet & PointNet++) to work with 3D Radar dense point clouds, boosting perception accuracy in autonomous systems.
- Performed **simulations in Unreal Engine and MATLAB** to compare **radar-based perception** against **stereo vision-based approaches**, proving radar's superiority in adverse weather conditions..

 $\textbf{Skills:} \ \textit{Autonomous Perception} \cdot \textit{Sensor Fusion} \cdot \textit{Computer Vision} \cdot \textit{Radar Systems} \cdot \textit{Lidar} \cdot \textit{Stereo Imagery}$

Proiects

Dense Depth Maps Generation using LiDAR and Stereo Imagery (code, report)

- Generated 3D Depth maps for Autonomous Vehicles using a special CNN arch. with an encoder-decoder network for using point cloud data from LiDAR and the disparity generated from stereo images.
- Trained the **CNN** model on KITTI datasets and achieved an RMSE score of 1548.89 while generating depth maps in 0.4s on an NVIDIA GTX 1060 GPU.

Skin Cancer Detection Using Transformer-Based Vision Models (code, report)

- Developed a Deep Learning pipeline for skin lesion Classification using ConvNeXt and ViT architectures, integrating custom data augmentation and preprocessing techniques.
- Achieved 92.1% accuracy on a balanced 2000-image test set using optimized vision models.

Monocular 6-DOF Camera Tracking via Essential Matrix & Feature Matching (code)

- Developed a pose estimation pipeline to recover 6-DOF camera trajectories from monocular videos using Essential Matrix decomposition and feature matching achieving **90% alignment accuracy.**
- Engineered robust SIFT-based tracking and optimized trajectory correction through cheirality filtering and projection error minimization.

Technical Skills

Programming Skills: C, C++, Python, MATLAB, HTML, CSS, SQL, JavaScript

Libraries and Tools: TensorFlow, PyTorch, Keras, ONNX, scikit-learn, OpenCV, numpy, Pandas, ROS, PCL, QT Rviz, Gazebo, Matplotlib, Unreal Engine, ADT MATLAB, Arduino, SHAP library

Hardware: Raspberry Pi, Intel RealSense Stereo Camera, ATMEL MCU, Arduino, ESP Modules, RAMPS Shield **DevOps & Cloud Technologies:** Docker, Kubernetes (**Containerization**), Jenkins, GitHub Actions, GitLab (**CI/CD**), AWS (EKS, ECS, Lambda), JarvisLabs.ai, FastAPI(**Microservices**)

Data Handling & Storage: Amazon S3, Data Version Control (DVC), Git LFS

Version Control & Agile Tools: Git, GitHub, GitLab, Bitbucket, JIRA, Trello, Confluence