4与可并堆

twb@net9.org

- o 优先队列(Priority Queue):
 - 可以把元素加入到优先队列中,也可以从队列中取出优先级最高的元素,即以下ADT:
 - Insert(T, x) : 把x加入优先队列中
 - DeleteMin(T, x):获取优先级最高的元素x,并把它 从优先队列中删除

ADT : Abstract Data Types

• ● 二叉堆(Binary Heap)

- 用二叉堆很容易实现优先队列
- o除了实现优先队列, 堆还有其他用途, 因此操作比优先队列多

Getmin(T, x) : 获得最小值

Delete(T, x) : 删除任意已知结点

ChangeKey(T, x, p): 把x的优先级改为p

IncreaseKey(T, x, p)

DecreaseKey(T, x, p)

Build(T, x) : 把数组x建立成最小堆

• ● 推的定义

- o堆是一棵完全二叉树
 - 所有叶子在同一层或者两个连续层
 - 最后一层的结点占据尽量左的位置

- 堆性质(递归定义)
 - 为空,或者最小元素在根上
 - 两棵子树也是堆

•••雄的存储方式

- o 最小堆的元素保存在数组heap[1..heapSize]内
 - 根在heap[1]
 - k的左儿子是2k, k的右儿子是2k+1

• ● 删除最小值元素

0 三步法

- ●直接删除根
- 用最后一个元素代替根上元素
- 向下调整

• • • 向下调整

- o当前节点的键值过大,需要向下调整
- o首先选取当前结点p的较小儿子.
 - 如果比p小, 调整停止
 - 否则交换p和儿子,继续调整

••• 插入元素和向上调整

○插入元素:

● 添加到末尾, 再向上调整

○向上调整:

- 当前节点键值过小,需要向上调整
- 比较当前结点p和父亲,如果父亲比p小,停止; 否则交换父亲和p,继续调整

• • 。 改变键值

- o 改变一个点的键值后
 - 若键值变小,则执行向上调整
 - 若键值变大,则执行向下调整

- o删除任意元素
 - 用最后一个元素替代当前元素
 - 执行ChangeKey操作

••• 推的建立

- o 从下往上逐层向下调整.
- o 所有的叶子无需调整, 因此从heapSize/2开始.
- o 可用数学归纳法证明循环变量为i时, 第i+1, i+2, ...n均为最小堆的根

••• 时间复杂度分析

- 向上调整/向下调整
 - 每层是常数级别, 共logn层, 因此O(logn)
- 插入/删除
 - 只调用一次向上或向下调整, 因此都是O(logn)
- o 建堆
 - 高度为h的结点有n/2h+1个,总时间为

$$\sum_{h=0}^{\lfloor \log n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil \times O(h) = O\left(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}\right)$$

•••维的建立||一插入建堆

o每一次都插入一个新元素

o则最坏情况每次都是log(heapSize)时间

o 总时间为O(logn!) = O(nlgn)

• • • 例1. K路归并问题

o把k个有序表合并成一个有序表.

o元素共有n个.

· · · 例1. K路归并问题分析

o每个表的元素都是从左到右移入新表

把每个表的当前元素放入二叉堆中,每次删除最小值并放入新表中,然后加入此序列的下一个元素

o 每次操作需要logk时间,因此总共需要 nlogk的时间

••• 例2. 序列和的前n小元素

o 给出两个长度为n的有序表A和B,

o在A和B中各任取一个,可以得到n²个和.

o求这些和中最小的n个

- o可以把这些和看成n个有序表:
 - A[1]+B[1] <= A[1]+B[2] <= A[1]+B[3] <=...
 - A[2]+B[1] <= A[2]+B[2] <= A[2]+B[3] <=...
 - ...
 - A[n]+B[1] <= A[n]+B[2] <= A[n]+B[3] <=...

o 类似刚才的算法, 每次O(logn), 共取n次最小元素,共O(nlogn)

• 例3. 轮廓线

- 每一个建筑物用一个三元组表示(L, H, R), 表示 左边界, 高度和右边界
- o 轮廓线用X, Y, X, Y...这样的交替式表示
- o 右图的轮廓线为: (1, 11, 3, 13, 9, 0, 12, 7, 16, 3, 19, 18, 22, 3, 23, 13, 29, 0)
- o 给N个建筑,求轮廓线

• | 分析

- o 算法一: 用数组记录每一个元线段的高度
 - 离散化, 有n个元线段
 - 每次插入可能影响n个元线段, O(n), 共O(n²)
 - 从左到右扫描元线段高度, 得轮廓线
- 。算法二:每个建筑的左右边界为事件点
 - 把事件点排序, 从左到右扫描
 - 维护建筑物集合, 事件点为线段的插入删除
 - ●需要求最高建筑物,用堆,共O(nlogn)

• • • 例4. 丑数

- o 素因子都在集合{2, 3, 5, 7}的数称为ugly number
- o求第n大的丑数

• | 分析

- o 初始: 把1放入优先队列中
- o 每次从优先队列中取出一个元素k,把2k,3k,5k,7k放入优先队列中
- o 从2开始算,取出的第n个元素就是第n大的 丑数
- 每取出一个数,插入4个数,因此任何堆里 的元素是O(n)的,时间复杂度为O(nlogn)

例5. 赛车

有n辆赛车从各不相同的地方以各种的速度(速度 0<v_i<100)开始往右行驶,不断有超车现象发生。

- o 给出n辆赛车的描述(位置 x_i ,速度 v_i),赛车已按照位置排序($x_1 < x_2 < ... < x_n$)
- o 输出超车总数以及按时间顺序的前m个超车事件

分析

- o事件个数O(n²), 因此只能一个一个求
- o 给定两辆车,超越时刻预先可算出
- o 第一次超车可能在哪些辆车之间?
 - 维护所有车的前方相邻车和追上时刻
 - 局部: 此时刻不一定是该车下个超车时刻!
 - 全局: 所有时刻的最小值就是下次真实超车时刻
- o维护: 超车以后有什么变化?
 - •相对顺序变化…改变三个车的前方相邻车
 - 重新算追上时刻,调整三个权 →
 - 简单的处理方法:删除三个再插入三个

• • • 例6. 可怜的粉牛

- 农夫John有n(n≤100 000)头奶牛,可是由于它们产的奶太少,农夫对它们很不满意,决定每天把产奶最少的一头做成牛肉干吃掉。但还是有一点舍不得,John打算如果不止有一头奶牛产奶最少,当天就大发慈悲,放过所有的牛。
- 由于John的奶牛产奶是周期性的,John在一开始就能可以了解所有牛的最终命运,不过他的数学很差,所以请你帮帮忙,算算最后有多少头奶牛可以幸免于难。每头奶牛的产奶周期T_i可能不同,但不会超过10。在每个周期中,奶牛每天产奶量不超过200。

••• 分析

- 如果采用最笨的方法,每次先求出每头牛的产奶量,再求最小值,则每天的复杂度为O(n),总复杂度为O(Tn),其中T是模拟的总天数。由于周期不超过10,如果有的牛永远也不会被吃掉,那么我们需要多模拟2520天(1,2,3,...,10的最小公倍数)才能确定
- 周期同为t的奶牛在没有都被吃掉之前,每天的最小产奶量也是以t为周期的。因此如果把周期相同的奶牛合并起来,每天只需要比较10类奶牛中每类牛的 最小产奶量就可以了,每天的复杂度为O(k),其中k为最长周期

○假设周期为6的牛有4头,每次只需要比较*k* 组牛的"代表"就可以了,每天模拟的时间复杂度为*O*(*k*)。

项目	第6 <i>n</i> +1天	第6 <i>n</i> +2天	第6 <i>n</i> +3天	第6 <i>n</i> +4天	第6 <i>n</i> +5天	第6 <i>n</i> +6天
华1	2	5	3	5	7/2/	4
华 2	3	1	6	7 -7	5	4
华3	5	3	3	5	3	9
4 4	4	4	3	8	8	2
合并结果	2 (牛1)	1 (牛2)	3 (多)	5 (多)	3 (牛3)	2 (牛4)

• 分析

- 只要周期为6的牛都不被吃掉,这个表一直是有效的。但是在吃掉一头奶牛后,我们需要修改这个表,使它仍然记录着每天的最小产奶量
 - 方法一: 重新计算,时间O(h),其中h是该组的牛数
 - 方法二: 把一个周期中每天的最小产奶量组织成堆,每次删除操作的复杂度是O(klogh)
- o 由于每头奶牛最多被吃掉一次,因此用在维护 "最小产奶量结构"的总复杂度不超过 O(nklogn)。每天复杂度为O(k),总复杂度为 O(Tk+nklogn)

• • • 例7. 黑匣子

- 我们使用黑匣子的一个简单模型。它能存放一个整数序列和一个特别的变量i。在初始时刻,黑匣子为空且i等于0。这个黑匣子执行一系列的命令。有两类命令:
- o ADD(x): 把元素x放入黑匣子;
- o GET: /增1的同时,输出黑匣子内所有整数中第/小的数。牢记第/小的数是当黑匣子中的元素以非降序排序后位于第/位的元素

• • • 例7. 黑匣子

编号	命令	i	黑匣子内容	输出
1	ADD(3)	0	3	_
2	GET	1	3	3
3	ADD (1)	1	1, 3	
4	GET	2	1, 3	3
5	ADD (-4)	2	-4, 1, 3	
6	ADD(2)	2	-4, 1, 2, 3	
7	ADD (8)	2	-4, 1, 2, 3, 8	
8	ADD (-1000)	2	-1000, -4, 1, 2, 3, 8	
9	GET	3	-1000 , -4 , 1 , 2 , 3 , 8	1
10	GET	4	-1000, -4, 1, <mark>2</mark> , 3, 8	2
11	ADD(2)	4	-1000, -4, 1, 2, 2, 3, 8	

• • • 分析

- o 降序堆H_>和升序堆H_<如图放置
- H_{\geq} 根节点的值 H_{\geq} [1]在堆 H_{\geq} 中最大, H_{\leq} 根节点的值 H_{\leq} [1]在堆 H_{\leq} 中最小,并满足
 - H_≥[1]≤ H_≤[1]
 - size[H_≥]=i
- o ADD(x): 比较x与 $H_{\geq}[1]$,若 $x \geq H_{\geq}[1]$,则将x插入 H_{\leq} ,否则从 H_{\geq} 中取出 $H_{\geq}[1]$ 插入 H_{\leq} ,再将x插入 H_{\geq}
- o GET: $H_{≤}[1]$ 就是待获取的对象。输出 $H_{≤}[1]$,同时从 $H_{≤}$ 中取出 $H_{≤}[1]$ 插入 $H_{≥}$,以维护条件(2)

• ● 可并优先队列

- 二叉堆很好的实现了优先队列的各种操作 但是却很难将两个堆合并起来
 - 只能将其中一个堆的元素一个一个取出来插入 另一个堆
 - 如果两个堆的元素都有n个,需要花nlogn的时间

• ● 可并优先队列

- o常用的可并优先队列有四种
 - 左偏树与斜堆
 - 实现简单, 实用性高
 - ●二项堆
 - 实现有一定难度, 是Fibnacci堆的基础
 - Fibonacci堆
 - 理论时间复杂度非常优秀. 但是实现难度相 当大

左偏树

- o 左偏树的定义:
 - 是一棵二叉树(左子树与右子树都是左偏树)
 - 满足堆性质 : 根的键值小于等于儿子键值
 - 満足左偏性质(Leftist Property)

• • Null Path Length

o一个节点的NPL(Null path length)定义为

• 到达子孙中最近的外节点的距离 0 外节点 两个儿子不同时存在的节点

- 左偏性质

- o 记左偏树的根为root
 - root.left.NPL ≥ root.right.NPL (左偏性质)
 - 注意这个性质是递归的,因为根的左子树和右子 树也是左偏树

- o 由左偏性质可知:
 - 一个点的NPL即为其最右路径的长度

• ● 左偏树的性质

 ○ 定理: 若一棵左偏树有N个节点,则该左偏树 的NPL不超过 [log(N+1)]-1.

最右路径: A-C-G 最右路径长度 = 2

最右路径长度即 为该点NPL

• 基本操作: 合并

- o 若A或B为空, 要返回另外一棵树, 否则
 - 第一步:假设A的根≤B的根(否则交换A和B),把 A的根作为新树的根,合并A.right和B
 - 第二步: 如果合并后A.right>A.left(NPL), 交换
 - 第三步: 更新A.NPL=A.right.NPL + 1

●●● 合并徜徉码

```
Function Merge(A, B)
      If A = NULL Then return B
      If B = NULL Then return A
      If B.key < A.key Then swap(A, B)
      A.right ← Merge(A.right, B)
      If A.right. NPL > A.left. NPL Then
            swap(A.left, A.right)
      If A.right = NULL Then A.NPL \leftarrow 0
      Else A. NPL \leftarrow A. right. NPL + 1
      return A
End Function
```

o 下面是一个合并的例子:

o 下面是一个合并的例子:

Merge (8, 6) Merge (3, 6)

o 下面是一个合并的例子:

Merge (8, 7)

Merge (8, 6)

Merge (3, 6)

o 下面是一个合并的例子:

Merge (8,18)

Merge (8, 7)

Merge (8, 6)

Merge (3, 6)

(18)

o 下面是一个合并的例子:

Merge (8, 7)

Merge (8, 6)

Merge (3, 6)

o 下面是一个合并的例子:

Merge (8, 6) Merge (3, 6)

o 下面是一个合并的例子:

o 下面是一个合并的例子:

••• 合并操作的分析

- o每次递归合并时分解右子树
- o 它的距离至少减少1

o 故时间复杂度为O(logN₁+logN₂)

• ● 左偏树的其他操作

- 插入新节点
 - 将单独一个点作为一棵左偏树, 进行合并操作

o删除最小点

• ● 左偏树性质定理的证明

○ 定理: 若一棵左偏树有N个节点,则该左偏树的NPL不超过 [log(N+1)]-1.

- ○要证明这个定理,我们只需要证明另一个引 理即可:
 - 若一棵左偏树的*NPL*(最右路径长度)为r,则该树包含至少2^{r+1}-1个节点

10%证明

- o 如果r = 0, 左偏树至少包含一个节点
- o 否则我们假设上述定理对于r=0..k均成立
- o 考虑一棵最右路径长度为k+1的左偏树
- o由定义知根的右子树的NPL为k,而左子树的NPL大于等于k.
- o 由归纳假设, 左右子树均至少包含2^{k+1}-1个节 点
- o 所以当前这棵左偏树至少包含(2^{k+1}-1)*2+1 = 2^{k+2} 1个节点, 得证.

• • [M] Monkey King_(ZOJ2334)

- o丛林中生活着N只好斗的且互不认识的猴子
- 两只不认识的猴子之间免不了要发生冲突,那个时候,两只猴子会分别邀请他们认识的最强壮的猴子来进行一次决斗
- o 决斗之后,这两群猴子互相都认识了
- 每一个猴子有一个强壮值,而两个猴子在参与决斗之后强壮值将减半

• • [M] Monkey King_(ZOJ2334)

o 现在我们得到了M个信息, 表示哪两只猴子 发生了冲突

- o对于每一个冲突信息
 - 如果这两只猴子早就认识,则输出-1(非法)
 - 否则输出决斗后这群猴子(他们互相都认识了) 中最强壮的猴子的强壮值

• • • [例]Monkey Kings析

- o 用并查集维护连通情况(认识与否)
- 用左偏树维护每一个群体(互相认识的猴子) 内的强壮值.需要用到的操作即为:
 - 删除最大值
 - 插入新值
 - 合并两棵左偏树
- o 时间复杂度: O(MIgN)

THE END

Thank You.

• • • Reference & 感谢

o 部分PPT来自于刘汝佳的讲稿

○ 部分图片&动画来自黄源河同学的论文