

第4章 中断系统

80C51单片机中断系统 4.1

4.2 中断处理及应用

04

第四章 MCS-51单片机中断系统

4.1 80C51单片机中断系统

4.1.1中断系统的结构与中断的功能

04

第四章 MCS-51单片机中断系统

子程序调用: 在主程序中事先安排好

中断服务程序调用: 主程序无法事先确定调用时间

原因: "中断"的发生由外部因素决定

解决: 调用中断服务程序的过程由硬件自动完成

中断技术的优点:分时操作、实时处理、故障处理

- 2、中断源
- 1. 输入/输出设备: 键盘、打印机等。
- 2. 故障源:如采样或运算结果溢出、系统掉电。
- 3. 控制对象:如电压、电流、温度等超限,继电器动作等。
- 4. 实时时钟及外界计数信号:如定时时间到或计数次数到。

3、中断系统的功能

中断系统----中断源、中断方式、中断控制寄存器、中断响应、 中断请求的撤除。

- 1. 能实现中断及返回
- 2. 能实现优先权排队
- 3. 能实现中断嵌套

04 第四章 MCS-51单片机中断系统 4、AT89S51中断系统组成 高 **TCON** ΙE ΙP 级 PX0 IT0=0 _ 中断请求 TEO EXO IT0=1 РТО РC TO TFO 矢量 ЕТО 地址 PX1 IT1=0. IE1 EX1 IT1=1PT1 TF1 T1 ET1 低 级 TX · ΤI PS + 中 RX RΙ ES EΑ 请 SCON 总允许 源允许 优先级 求 中断标志 矢量 地址 中断源 AT89S51中断系统结构 硬件查询

计算机学院

5、 中断源及中断入口

中断源 1)

AT89S51有5个中断源,它们是:

两个外中断INTO (P3.2) 和INT1 (P3.3)

两个片内定时/计数器溢出中断TF0和TF1

一个片内串行口中断TI或RI

AT89S52还有1个中断源是定时/计数器2 TF2

中断入口

中断源	入口地址
外中断0	0003Н
定时/计数器0	000BH
外中断1	0013H
定时/计数器0	001BH
串行口中断	0023Н

CPU响应中断后,首先将PC(程序计数器)的内容压入堆栈 保护断点,然后把中断入口地址赋予PC,CPU便按新的PC地址 (即中断服务程序入口地址) 执行程序。

4.1.2 中断控制

中断允许控制寄存器IE

AT89S51对中断的开放和屏蔽是由中断允许寄存器IE (A8H) 控制来实现 的, IE的结构格式如下。

ш	D7	D6	D 5	D4	D 3	D2	D 1	D 0
IE	EA	-	ET2*	ES	ET1	EX1	ET0	EX0
位地址	AFH		ADH	ACH	ABH	AAH	A9H	A8H

所有控制位0禁止,1允许

总控制位

中断控制

2. 中断请求标志寄存器

SCON 98H

SCON	D7	D6	D5	D4	D3	D2	D1	D0
SCON	-	-	-	-	-	-	TI	RI
位地址							99H	98H

发送中断标志

入口地址,

接收中断标志

须软件洧除标志。

TCON 88H

TCON	D7	D 6	D 5	D4	D3	D2	D1	D0
	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
位地址	8FH	8EH	8DH	8CH	8BH	8AH	89H	88H

中断请求标志

定时器1中断标志

3、中断优先级寄存器

B8H

ID	D7	D6	D 5	D4	D3	D2	D1	D 0
IP	•	•	PT2*	PS	PT1	PX1	PT0	PX0
位地址			BDH	всн	ввн	BAH	В9Н	В8Н

定时/计数器

自然优先级: 外部中断0 定时器0中断 外部中断1 定时器1中断 串行口中断定

低

4、中断响应条件

CPU响应中断的条件有:

- a. 有中断源发出中断请求。
- b. 中断总允许位EA = 1。
- c. 申请中断的中断源允许。

满足以上基本条件,CPU一般会响应中断,但若有下列任何一种情 况存在,则中断响应会受到阻断。

- a. CPU正在响应同级或高优先级的中断。
- b. 当前指令未执行完。
- c. 正在执行RETI中断返回指令或访问专用寄存器IE和IP的指令。

- 4.2 中断处理及应用
- 4.2.1 中断请求、响应和返回过程
 - 1、中断响应

知行合一、经世致用

2、中断处理与返回

主程序和中断服务程序都会用到累加 们到上 返回主程序断开的位置(即 生寄存 断点),继续执行原来的程 序。中断返回由中断返回指 丁云于 人中断 令RETI来实现。

中断入口 保护现场 中断服务程序 现场恢复 中断返回,栈顶 地址送PC

3、中断请求的撤除

1) 定时器中断请求的撤除

对于定时器0或1溢出中断, CPU在响应中断后即由硬件自动 清除其中断标志位TF0或TF1, 无需采取其它措施。

2) 串行口中断请求的撤除

对于串行口中断, CPU在响应中断后, 硬件不能自动清除中 断请求标志位TI、RI,必须在中断服务程序中用软件将其清除。

3) 外部中断请求的撤除

边沿触发的外部中断0或1, CPU在响应中断后由硬件自动清除其 中断标志位IE0或IE1, 无需采取其 它措施。

中断申请(低电平)

中断,CPU在响应中断后,硬

其中所有求标心位IEU或IEI。所以,在CDIII的自由的低电平。否则,就会引起重复中断。 中断指右上图是可行方案之一。 在中断程序

中断撤除 在中断程序中将D触 发器置位

会自动或用软件清除 一即撤除或引脚上的 解决这个问题。

4) 中断服务程序:

第一条指令必须安排在相应的中断入口地址处,并且一般是转移 指令。由于中断响应时、已经由硬件执行了LCALL指令、中断程序断 点地址已经入栈,所以不能再用子程序调用指令。

例:

0003HORG LJMP INTRO ORG 001BH

DELAY

LJMP

; 定时器T1中断入口地址

:外部中断0入口地址

04

第四章 MCS-51单片机中断系统

; 主程序:

ORG 0000H

AJMP START

ORG 0003H

AJMP INTRO

ORG 0013H

AJMP INTR1

START: NOV TCON, #00H

MOV IE, #05H

MOV P1, #00H

SJMP \$

: 高水位中断服务程序:

INTR0: ORG 0200H

MOV P1, #28H

RETI

; 低水位中断服务程序:

INTR1: ORG 0300H

MOV P1, #14H

LCALL YST5S

MOV P1, #C0H

RETI

THANKS

《单片机与接口技术》

主讲人: 李刚