

Real-time Scheduling of Periodic Tasks (2)

Advanced Operating Systems Lecture 3

Lecture Outline

- The rate monotonic algorithm (cont'd)
 - ...
 - Maximum utilisation test
- The deadline monotonic algorithm
- The earliest deadline first algorithm
 - Definition
 - Optimality
 - Maximum utilisation test
- The least slack time algorithm
- Discussion

Rate Monotonic: Other Scheduling Tests

- Exhaustive simulation and time-demand analysis complex and error prone
- Simple scheduling tests derived for some cases:
 - Simply periodic systems
 - Maximum utilisation test

Simply Periodic Systems

- In a simply periodic system, the periods of all tasks are integer multiples of each other
 - $p_k = n \cdot p_i$ for all i, k such that $p_i < p_k$ where n is a positive integer
 - True for many real-world systems, since easy to engineer around multiples of a single run loop

Simply Periodic Rate Monotonic Tasks

- Rate monotonic optimal for simply periodic systems
 - A set of *simply periodic*, independent, preemptable tasks with $D_i \ge p_i$ can be scheduled on a single processor using RM provided $U \le 1$
- Proof follows from time-demand analysis:
 - A simply periodic system, assume tasks in phase
 - Worst case execution time occurs when tasks in phase
 - T_i misses deadline at time t where t is an integer multiple of p_i
 - Again, worst case $\Rightarrow D_i = p_i$
 - Simply periodic $\Rightarrow t$ integer multiple of periods of all higher priority tasks
 - Total time required to complete jobs with deadline $\leq t$ is $\sum_{k=1}^{\infty} \frac{e_k}{p_k} t = t \cdot U_i$
 - Only fails when $U_i > 1$

Maximum Utilisation Tests

Simply periodic systems have a simple maximum utilisation test

- Possible to generalise the result to general rate monotonic systems
 - Derive a maximum utilisation, such that it is guaranteed a feasible schedule exists provided the maximum is not exceeded

RM Maximum Utilisation Test: $D_i = p_i$

• A system of n independent preemptable periodic tasks with $D_i = p_i$ can be feasibly scheduled on one processor using rate monotonic if $U \le n \cdot (2^{1/n} - 1)$

- $\bullet \qquad U_{\rm RM}(n) = n \cdot (2^{1/n} 1)$
- For large $n \to \ln 2$ (i.e., $n \to 0.69314718056...$)

See Jane W. S. Liu, "Real-time systems", Section 6.7 for proof

• $U \le U_{RM}(n)$ is a *sufficient, but not necessary*, condition – i.e., a feasible rate monotonic schedule is guaranteed to exist if $U \le U_{RM}(n)$, but might still be possible if $U > U_{RM}(n)$

RM Maximum Utilisation Test: $D_i = v \cdot p_i$

- Maximum utilisation varies if relative deadline and period differ
- For n tasks, where the relative deadline $D_k = v \cdot p_k$ it can be shown that:

$$U_{RM}(n,v) = \begin{cases} v & \text{for } 0 \le v \le 0.5\\ n((2v)^{\frac{1}{n}} - 1) + 1 - v & \text{for } 0.5 \le v \le 1\\ v(n-1)[(\frac{v+1}{v})^{\frac{1}{n}-1} - 1] & \text{for } v = 2, 3, \dots \end{cases}$$

(you are not expected to remember this formula – but should understand how the utilisation changes in general terms)

RM Maximum Utilisation Test: $D_i = v \cdot p_i$

n	$\upsilon = 4.0$	v = 3.0	$\upsilon = 2.0$	$\upsilon = 1.0$	v = 0.9	v = 0.8	$\upsilon = 0.7$	v = 0.6	$\upsilon = 0.5$
2	0.944	0.928	0.898	0.828	0.783	0.729	0.666	0.590	0.500
3	0.926	0.906	0.868	0.779	0.749	0.708	0.656	0.588	0.500
4	0.917	0.894	0.853	0.756	0.733	0.698	0.651	0.586	0.500
5	0.912	0.888	0.844	0.743	0.723	0.692	0.648	0.585	0.500
6	0.909	0.884	0.838	0.734	0.717	0.688	0.646	0.585	0.500
7	0.906	0.881	0.834	0.728	0.713	0.686	0.644	0.584	0.500
8	0.905	0.878	0.831	0.724	0.709	0.684	0.643	0.584	0.500
9	0.903	0.876	0.829	0.720	0.707	0.682	0.642	0.584	0.500
∞	0.892	0.863	0.810	0.693	0.687	0.670	0.636	0.582	0.500

 $D_i > p_i \Rightarrow$ Maximum utilisation increases

 $D_i < p_i \Rightarrow$ Maximum utilisation decreases

 $D_i = p_i$

The Deadline Monotonic Algorithm

- Assign priorities to jobs in each task based on the relative deadline of that task
 - Shorter relative deadline → higher the priority
 - If relative deadline equals period, schedule is identical to rate monotonic
 - When the relative deadlines and periods differ: deadline monotonic can sometimes produce a feasible schedule in cases where rate monotonic cannot; rate monotonic always fails when deadline monotonic fails
 - Hence deadline monotonic preferred if deadline ≠ period
- Not widely used periodic systems typically have relative deadline equal to their period

The Earliest Deadline First Algorithm

- Assign priority to jobs based on deadline: earlier deadline = higher priority
- Rationale: do the most urgent thing first
- Dynamic priority algorithm: priority of a job depends on relative deadlines of all active tasks
 - May change over time as other jobs complete or are released
 - May differ from other jobs in the task

Earliest Deadline First: Example

Time	Ready to run	Running		
0	$J_{2,1}$	$J_{1,1}$		
1		$J_{2,1}$		
2	$J_{2,1}$	$J_{1,2}$		
3		$J_{2,1}$		
4	$J_{1,3}$	$J_{2,1}$		
4.5		$J_{1,3}$		
5	$J_{2,2}$	$J_{1,3}$		
5.5		$J_{2,2}$		
6	$J_{2,2}$	$J_{1,4}$		
7		$J_{2,2}$		

Time	Ready to run	Running
8	$J_{2,2}$	$J_{1,5}$
9		$J_{2,2}$
10	$J_{2,3}$	$J_{1,6}$
	•••	•••

Earliest Deadline First is Optimal

- EDF is optimal, provided the system has a single processor, preemption is allowed, and jobs don't contend for resources
 - That is, it will find a feasible schedule if one exists, not that it will always be able to schedule a set of tasks
- EDF is not optimal with multiple processors, or if preemption is not allowed

Earliest Deadline First is Optimal: Proof

- Any feasible schedule can be transformed into an EDF schedule
 - If J_i is scheduled to run before J_k , but J_i 's deadline is later than J_k 's either:
 - The release time of J_k is after the J_i completes \Rightarrow they're already in EDF order
 - The release time of J_k is before the end of the interval when J_i executes:

• Swap J_i and J_k (this is always possible, since J_i 's deadline is later than J_k 's)

Move any jobs following idle periods forward into the idle period

- The result is an EDF schedule
- So, if EDF fails to produce a feasible schedule, no such schedule exists
 - If a feasible schedule existed it could be transformed into an EDF schedule, contradicting the statement that EDF failed to produce a feasible schedule [proof for LST is similar]

Maximum Utilisation Test: $D_i \ge p_i$

• Theorem:

- A system of independent preemptable periodic tasks with $D_i \ge p_i$ can be feasibly scheduled on one processor using EDF if and only if $U \le 1$
- Note: result is independent of φ_i
- Proof follows from optimality of the system
 - [Proof in the book, Section 6.3.1]

Maximum Utilisation Test: $D_i < p_i$

• Test fails if $D_i < p_i$ for some i

 $J_{2.1}$ is preempted and misses deadline

• E.g. $T_1 = (2, 0.8), T_2 = (5, 2.3, 3)$

- However, there is an alternative test:
 - The density of the task, T_i , is $\delta_i = e_i / \min(D_i, p_i)$
 - The density of the system is $\Delta = \delta_1 + \delta_2 + ... + \delta_n$
 - Theorem: A system T of independent, preemptable periodic tasks can be feasibly scheduled on one processor using EDT if $\Delta \le 1$.
- Note:
 - This is a sufficient condition, but not a necessary condition i.e. a system is guaranteed to be feasible if $\Delta \le 1$, but might still be feasible if $\Delta > 1$ (would have to run the exhaustive simulation to prove)

The Least Slack Time Algorithm

Least Slack Time first (LST)

- A job J_i has deadline d_i , execution time e_i , and was released at time r_i
- At time $t < d_i$: remaining execution time $t_{\text{rem}} = e_i (t r_i)$
- Assign priority based on least slack time, $t_{\text{slack}} = d_i t t_{\text{rem}}$
- Two variants:
 - Strict LST scheduling decision made whenever a queued job's slack time becomes smaller than the executing job's slack time – high overhead, not used;
 - Non-strict LST scheduling decisions made only when jobs release or complete
- More complex, requires knowledge of execution times and deadlines
- Infrequently used, since has similar behaviour to EDF, but more complex

Discussion

- EDF is optimal, and simpler to prove correct why use RM?
 - RM more widely supported since easier to retro-fit to standard fixed priority scheduler, and support included in POSIX real-time APIs
 - RM more predictable: worst case execution time of a task occurs with worst case execution time of the component jobs – not always true for EDF, where speeding up one job can *increase* overall execution time (known as a "scheduling anomaly")

Summary

- The rate monotonic algorithm
 - Simply periodic systems
 - Maximum utilisation test
- The earliest deadline first algorithm
 - Optimality
 - Maximum utilisation tests
- Other algorithms
 - Deadline monotonic
 - Least slack time