Today

- Discussing Pre-lecture Material
- Learning from Examples

Reminders: If your timezone is *not* EST, please let me know if you have not already done so

If you are *not* added to the course Piazza, please email me ASAP

Announcement: I will post classroom in-person

meeting status by Monday

Pre-lecture Material

Humanizing Technology

:) Affectiva

Rana el Kaliouby

Co-founder and CEO

Emotional Intelligence

What is the main problem definition?

Emotional Intelligence

- What is the main problem definition?
 - Machine Learning Problem

Why?

Data Collection

Consent, diversity, cultures

Emotional Intelligence

- What is the main problem definition?
 - Machine Learning Problem
 - Supervised vs. unsupervised

Labels vs. No labels

Emotional Intelligence

- What is the main problem definition?
 - Machine Learning Problem
 - Supervised vs. unsupervised
 - Classification: Happy, Sad, Angry, Surprised, Fear, ...

Classification: Scale for Each Class

• Multi-class vs. Smile Classifier

Applications

- Applications that benefit society:
 - Automotive Safety

Applications

- Applications that benefit society:
 - Mental Health

Applications

- Applications that benefit society:
 - Education

Al and ML

Recap

How is Machine Learning (ML) different from AI?

- Machine learning is a type of artificial intelligence
- Machine learning makes decisions based on data it has seen
- Not all AI algorithms need to do this
- Many of the latest AI systems all make use of ML
- For this reason, many people use the terms AI and ML interchangeably

Types of Machine Learning

Unsupervised Learning

Supervised Learning

Semi-supervised Learning

Reinforcement Learning

Unsupervised Learning

Example:

Clustering using K-means Algorithm for

Unsupervised learning

Training set: $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$

Clustering

Gene analysis

Types of voters

Social network analysis

Trending news

Supervised Learning: Linear Regression

Example of Supervised Learning: Linear Regression

- When the label is a real number
- Training a model to find a relationship between input and output values
- Learning a line of best fit

Linear Regression: Model Parameters

 Learning a best fit line means learning parameters (or weights) for our model.

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $heta_i$'s: Parameters

Linear Regression: Cost Function

 How do we know that the model parameters result in a "best fit" line? If parameter values minimize our cost function.

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

SSD = sum of squared differences, also SSE = sum of squared errors

Multivariate Linear Regression

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$.

 θ_i 's: Parameters

Cost Function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize
$$J(\theta_0, \theta_1, \dots, \theta_n)$$
 How??

Two potential solutions

$$\min_{\theta} J(\theta; x^{(1)}, y^{(1)}, \dots, x^{(m)}, y^{(m)})$$

Gradient descent (or other iterative algorithm)

- Start with a guess for θ
- Change θ to decrease $J(\theta)$
- Until reach minimum

Direct minimization

- Take derivative, set to zero
- Sufficient condition for minima
- Not possible for most "interesting" cost functions