Chemistry 605 (Reich)

FIRST HOUR EXAM

Thursday, March 7, 2013

Question/Points R-12A____/20 R-12B____/30 R-12C /20 R-12D____/14 72 Average Hi 94 R-12E____/16 Mode 85 Median 74 Total _____/100 80 AB BC 55

Name_____

If you place answers anywhere else except in the spaces provided, (e.g. on the spectra or on extra pages) clearly indicate this on the answer sheets.

(a) Show a coupling tree, and do a mathematically accurate analysis of this spectrum. If there are two solutions, report them both. Show your work, and tabulate your data in an easily readable form.

- (b) If you are proposing two solutions, suggest at least one criterion which allows you to identify the correct one.
- Given the structure, the signs of J_{AX} and J_{BX} must be both be positive, so Sol. 1 is correct. Can also use calculated intensities, which are very different for Sol 1 and Sol 2. Size of the couplings is not a very solid criterion in this case.

Problem R-12B ($C_{16}H_{16}O_3$). Determine the structure (or part structure) of **R-12B** from the IR, 1H NMR and ^{13}C NMR spectra provided.

(a) DBE _9 (b) What information can you obtain from the IR spectrum? Give frequency and assignment.

3470 cm⁻¹ OH stretch 3040, 3060 sp² C-H stretch (aromatic C-H) 1740 cm⁻¹ C=O stretch, probably of an ester

2

(c) Interpret the ¹³C NMR spectrum. The multiplicity of each signal is given on the spectrum. Identify what kind of carbon each signal corresponds to (be as specific as possible) and write likely part structures.

Type of C (e.g. $sp^3 \underline{C}H_2$) and/or part structures (e.g. $N-\underline{C}H_2$)

	ppm			
	40.3	sp ³ CH ₂	128.5	sp ² CH 3x?
	67.1	sp ³ OCH	129.4	sp ² CH 2x
4	71.2	sp ³ OCH ₂	135.0	sp ² C
	126.6	sp ² CH 2x	136.2	sp ² C
	128.2	sp ² CH 2x	173.8	CO ₂ R
	128.4	sp ² CH		
	120.7		•	

(d) Analyze the 2-proton multiplet between δ 2.8 and 3.1 (reproduced below). Draw a coupling tree and report coupling constants (in the standard form: e.g., δ 3.9, tq, J = 12, 4 Hz, 1H) and part structure you could obtain from the signal. You may use first-order analysis.

 δ 2.91 dd, J = 14, 6.5

6

From the chemical shift R is likely to be C=O or Ph

What kind of pattern is this? AB of ABX What other signal is coupled to these protons?

(e) Analyze the two-proton multiplet between δ 5.0 and 5.2 in the ¹H NMR spectrum. The multiplet is reproduced below. Draw a coupling tree and report exact coupling(s) and chemical shifts, and a part structure.

$$J_{AB} = 12.2$$

c=(5+3)/2 = 1524.08

$$\Delta v_{ab} = \text{sqrt}((4-1)(3-2)) = 8.9$$

$$c \pm v_{ab}/2 = 1528.6 1519.6$$

$$\delta_{A}, \, \delta_{B} = 5.095 \, 5.065$$

What kind of pattern is this?_

AB

(e) Show a structure for R-12B. If there is more than one possibility, circle your best choice.

8

6

17 other structures, including:

(f) Do a chemical shift calculation (from methane as model) of the carbon in your structure you have assigned the signal at δ 40.3. Show parameters you used.

4

1

	•
Base	-2.1
$lpha_{Ph}$ -n	23
$lpha_{C}$	9,1
β_{CO2R} -n	3
β_{OH} -iso	8
	41.0

2

Base -2.1 20 α_{CO2R} -n 9,1 α_{C} 9 β_{Ph}-n 8 β_{OH}-iso 44.0

Observed: 40.3

Problem R-12C The 100 MHz 13 C NMR spectra of three substituted pyrrolidines is shown on the next page. Their structures are shown below (ttc = trans-trans-cis). R = para-fluorophenyl.

- (a) Identify the compound (ttc, ctc or ttt) which corresponds to spectrum R-12C-1. Give your reasoning.
 - ttt This must be either the ctc or ttt isomer, each of which has an axis of symmetry.

(b) Identify the compound which corresponds to spectrum R-12C-2. Give your reasoning.

ctc

6

- This must be either the ctc or ttt isomer, each of which has an axis of symmetry. In the ctc isomer two of the groups (an OH and a CH₂OH) on each side are cis to each other, and thus there is a γ-gauche interaction between them that is largely absent in the ttt isomer, so expect an upfield shift of the CH₂OH carbon. So this must be the ctc isomers since all carbons are upfield of the ttt isomer
 - (c) Identify the compound which corresponds to spectrum R-12C-3. Give your reasoning.

ttc

- 6 This is the only isomer which has all carbons different (no symmetry), so must be ttc
 - (d) In each of the spectra there are two peaks at δ 155 ppm. Assign and explain these peaks.

Problem R-12C ($C_{12}H_{16}FNO_4$). 100 MHz ^{13}C NMR spectra in DMSO-d6

(Source: Allen B. Reitz/JOC 1994, 59, 3175)

$$\begin{array}{c} & & & \\ & &$$

(a) On the expansion reproduced below, mark clearly the assignment of the protons H_A to H_E . Draw a coupling tree for each one to show that you understand the line assignments. You may use first order analysis.

(b) Report the data below in the standard format (e.g., δ 5.31, dq, J = 8.2, 3.3 Hz)

- (c) What is the stereochemistry at the H_{A} H_{B} double bond? Explain briefly.
- 2 Double bond must be cis 11 Hz coupling too small for trans
 - (d) What is the stereochemistry at the $H_{\rm D}$ $H_{\rm E}$ double bond? Explain briefly.
- 2 Double bond must be trans 18 Hz coupling

Problem R-12E ($C_5H_8Br_2$). Determine the structure (or part structure) of **R-12E** from the ¹H NMR, ¹³C NMR and IR spectra provided.

2 (a) DBE 1. (b) Analyze the ¹H NMR signals, in particular the multiplet at δ 2.6. Report δ, multiplicities and *J* values. Show the structure of **R-12E**.

5 δ 2.6, 1H, d septets, J = 8.5, 7 Hz δ 6.2, 1H, d, J = 8.5 Hz δ 1.0, 6H, d, J = 7 Hz

2 Br 2 3
4 other structures, none fit the data

(c) Assign the 13 C NMR signals (write them on a structure). Explain the signal at δ 86.8 ppm.

Br

(d) IR spectrum.

Problem R-12E (C₅H₈Br₂)

IR spectrum (CDCI₃)

(Source: J. Holladay/Reich 10/23)

