1.Download the dataset

2. Load the Dataset

```
In [1]: import pandas as pd
```

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import scale

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score,confusion_matrix,classification_

In [2]: data = pd.read_csv("abalone.csv")
 data

Out[2]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

In [3]: data.head()

Out[3]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	

One additional task is that, we have to add the "Age" column using "Rings" data. We just have to add '1.5' to the ring data

Out[4]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weiç
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1
4	ı	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0

3. Performing Analysis

1. Univariate Analysis

```
In [5]: #Histogram
sns.displot(data["Age"], color='Cyan')
```

Out[5]: <seaborn.axisgrid.FacetGrid at 0x2734f29e9a0>


```
In [6]: sns.histplot(y=data.Age,color='blue')
```

Out[6]: <AxesSubplot:xlabel='Count', ylabel='Age'>

In [7]: sns.histplot(x=data.Age,kde=True,color='green')

Out[7]: <AxesSubplot:xlabel='Age', ylabel='Count'>


```
In [8]: sns.boxplot(x=data.Age,color='violet')
```

Out[8]: <AxesSubplot:xlabel='Age'>


```
In [9]: # Count-plot
sns.countplot(x=data.Age)
```

Out[9]: <AxesSubplot:xlabel='Age', ylabel='count'>

2. Bi - variate Analysis

```
In [10]: #Linearplot
sns.lineplot(x=data.Age,y=data.Height, color='orange')
```

Out[10]: <AxesSubplot:xlabel='Age', ylabel='Height'>


```
In [11]: #Bar-plot
sns.barplot(x=data.Height,y=data.Age)
```

Out[11]: <AxesSubplot:xlabel='Height', ylabel='Age'>


```
In [12]: #Scatterplot
sns.scatterplot(x=data.Age,y=data.Height,color='maroon')
```

Out[12]: <AxesSubplot:xlabel='Age', ylabel='Height'>

In [13]: #point-plot
sns.pointplot(x=data.Age, y=data.Height, color="red")

Out[13]: <AxesSubplot:xlabel='Age', ylabel='Height'>


```
In [14]: sns.regplot(x=data.Age,y=data.Height,color='green')
```

Out[14]: <AxesSubplot:xlabel='Age', ylabel='Height'>

3. Multi-Variate Analysis

7 of 17

```
In [15]: #pair-plot
sns.pairplot(data=data[["Height","Length","Diameter","Age","Whole_weight",")
```


4. Perform descriptive statistics on the dataset

```
In [17]: #median
         data[['Length','Diameter','Whole_weight','Shucked_weight','Viscera_weight',
Out[17]: Length
                            0.5450
                            0.4250
         Diameter
         Whole_weight
                            0.7995
         Shucked_weight
                            0.3360
         Viscera_weight
                            0.1710
         Shell_weight
                            0.2340
         dtype: float64
         data[['Length','Diameter','Whole_weight','Shucked_weight','Viscera_weight',
In [18]:
Out[18]:
             Length Diameter Whole_weight Shucked_weight Viscera_weight Shell_weight
          0
              0.550
                        0.45
                                   0.2225
                                                  0.175
                                                              0.1715
                                                                           0.275
          1
              0.625
                        NaN
                                    NaN
                                                   NaN
                                                                NaN
                                                                            NaN
In [19]:
         #qunatile
         data[['Length','Diameter','Whole_weight','Shucked_weight','Viscera_weight',
Out[19]: Length
                            0.5450
         Diameter
                            0.4250
         Whole_weight
                            0.7995
         Shucked_weight
                            0.3360
                            0.1710
         Viscera_weight
         Shell_weight
                            0.2340
         Name: 0.5, dtype: float64
In [20]: #Standard - deviation
         data[['Length','Diameter','Whole_weight','Shucked_weight','Viscera_weight',
Out[20]: Length
                            0.120093
         Diameter
                            0.099240
         Whole_weight
                            0.490389
         Shucked_weight
                            0.221963
         Viscera_weight
                            0.109614
         Shell_weight
                            0.139203
         dtype: float64
In [21]: #min
         data[['Length','Diameter','Whole_weight','Shucked_weight','Viscera_weight',
Out[21]: Length
                            0.0750
         Diameter
                            0.0550
         Whole_weight
                            0.0020
         Shucked_weight
                            0.0010
         Viscera_weight
                            0.0005
         Shell_weight
                            0.0015
         dtype: float64
```

```
In [22]: |#max
         data[['Length','Diameter','Whole_weight','Shucked_weight','Viscera_weight',
Out[22]: Length
                           0.8150
         Diameter
                           0.6500
         Whole_weight
                           2.8255
         Shucked_weight
                           1.4880
         Viscera_weight
                           0.7600
         Shell_weight
                           1.0050
         dtype: float64
In [23]: #Skew
         data[['Length','Diameter','Whole_weight','Shucked_weight','Viscera_weight',
Out[23]: Length
                          -0.639873
         Diameter
                          -0.609198
         Whole_weight
                           0.530959
         Shucked_weight
                           0.719098
         Viscera_weight
                           0.591852
         Shell_weight
                           0.620927
         dtype: float64
In [24]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 4177 entries, 0 to 4176
         Data columns (total 9 columns):
              Column
                              Non-Null Count Dtype
         - - -
              ----
                              -----
                                              ----
          0
              Sex
                              4177 non-null
                                              object
          1
                              4177 non-null
                                              float64
              Length
          2
              Diameter
                              4177 non-null
                                              float64
          3
                              4177 non-null
                                              float64
              Height
          4
              Whole_weight
                             4177 non-null
                                              float64
              Shucked_weight 4177 non-null
          5
                                              float64
          6
              Viscera_weight 4177 non-null
                                              float64
          7
                              4177 non-null
                                              float64
              Shell_weight
          8
                              4177 non-null
                                              float64
              Age
         dtypes: float64(8), object(1)
         memory usage: 293.8+ KB
In [25]: data.shape
Out[25]: (4177, 9)
```

In [26]: data.describe(include='all')

Out[26]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera
count	4177	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	417
unique	3	NaN	NaN	NaN	NaN	NaN	
top	М	NaN	NaN	NaN	NaN	NaN	
freq	1528	NaN	NaN	NaN	NaN	NaN	
mean	NaN	0.523992	0.407881	0.139516	0.828742	0.359367	
std	NaN	0.120093	0.099240	0.041827	0.490389	0.221963	
min	NaN	0.075000	0.055000	0.000000	0.002000	0.001000	
25%	NaN	0.450000	0.350000	0.115000	0.441500	0.186000	
50%	NaN	0.545000	0.425000	0.140000	0.799500	0.336000	
75%	NaN	0.615000	0.480000	0.165000	1.153000	0.502000	
max	NaN	0.815000	0.650000	1.130000	2.825500	1.488000	

5. Check for Missing values and deal with them.

In [27]:	data.isnull().su	m()
Out[27]:	Sex	0
	Length	0
	Diameter	0
	Height	0
	Whole_weight	0
	Shucked_weight	0
	Viscera_weight	0
	Shell_weight	0
	Age	0
	dtype: int64	

Hence ,There is no missing values in the dataset

6. Find the outliers and replace them outliers

```
In [28]: sns.boxplot(x=data["Length"],color="Teal")
```

Out[28]: <AxesSubplot:xlabel='Length'>


```
In [29]: sns.boxplot(x=data["Age"],color="purple")
```

Out[29]: <AxesSubplot:xlabel='Age'>


```
In [30]: outliers=data.quantile(q=(0.25,0.75))
  outliers
```

Out[30]:

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight
0.25	0.450	0.35	0.115	0.4415	0.186	0.0935	0.130
0.75	0.615	0.48	0.165	1.1530	0.502	0.2530	0.329

```
In [31]: for i in data:
    if data[i].dtype=='int64' or data[i].dtypes=='float64':
        q1=data[i].quantile(0.25)
        q3=data[i].quantile(0.75)
        iqr=q3-q1
        upper=q3+1.5*iqr
        lower=q1-1.5*iqr
        data[i]=np.where(data[i] >upper, upper, data[i])
        data[i]=np.where(data[i] <lower, lower, data[i])</pre>
```

```
In [32]: print(sns.boxplot(x=data["Height"],color="cyan"))
```

AxesSubplot(0.125,0.125;0.775x0.755)


```
In [33]: sns.boxplot(x=data["Whole_weight"],color="red")
```

Out[33]: <AxesSubplot:xlabel='Whole_weight'>


```
In [34]: sns.boxplot(x=data["Length"],color="lime")
```

Out[34]: <AxesSubplot:xlabel='Length'>

7. Checking for Categorical columns and performing encoding

```
In [35]: label = LabelEncoder()
  data.Sex = label.fit_transform(data.Sex)
  data.head()
```

Out[35]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weiç
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0

8. Splitting the data into dependent and independent variables

```
In [36]: y = data["Sex"]
y.head()
```

Out[36]: 0 2 1 2 2 0 3 2 4 1

Name: Sex, dtype: int32

```
In [37]: x=data.drop(columns=["Sex"],axis=1)
x.head()
```

Out[37]:

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	A
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	1
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	1
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	1
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	

9. Scale the independent variables

```
In [38]: X_Scaled = pd.DataFrame(scale(x), columns=x.columns)
X_Scaled.head()
```

Out[38]:

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weiç
(-0.583117	-0.440884	-1.158093	-0.644740	-0.614985	-0.730304	-0.6451
1	-1.465694	-1.459762	-1.288751	-1.238208	-1.191637	-1.213890	-1.2313
2	0.047295	0.119499	-0.112828	-0.309436	-0.467362	-0.357253	-0.2055
3	-0.709200	-0.440884	-0.374145	-0.640626	-0.656504	-0.610559	-0.6085
4	-1.633804	-1.561650	-1.550067	-1.280378	-1.237770	-1.296790	-1.3413

10. Splitting the data into training and testing

```
In [39]: X_Train, X_Test, Y_Train, Y_Test = train_test_split(X_Scaled, y, test_size=
In [40]: X_Train.shape,X_Test.shape
Out[40]: ((3341, 8), (836, 8))
In [41]: Y_Train.shape,Y_Test.shape
Out[41]: ((3341,), (836,))
```

```
In [42]: X_Train.head()
Out[42]:
                     Length
                             Diameter
                                          Height Whole_weight Shucked_weight Viscera_weight Shell_v
            3141 -2.705504
                             -2.580528
                                       -1.550067
                                                      -1.634195
                                                                       -1.583761
                                                                                       -1.596153
                                                                                                     -1.6
            3521
                  -2.600436
                             -2.580528
                                       -2.203358
                                                      -1.617739
                                                                       -1.581454
                                                                                       -1.577730
                                                                                                     -1.6
                                                                        1.073452
                                                                                        0.292134
             883
                   1.140009
                              1.240265
                                        0.801778
                                                                                                      1.5
                                                       1.158289
            3627
                   1.602311
                              1.189321
                                        1.585727
                                                       2.185800
                                                                        2.731903
                                                                                        2.355432
                                                                                                      1.4
            2106
                   0.593652
                             0.476107
                                        0.409804
                                                       0.439340
                                                                        0.268446
                                                                                        0.278317
                                                                                                     9.0
In [43]: X_Test.head()
Out[43]:
                     Length
                             Diameter
                                          Height Whole_weight Shucked_weight Viscera_weight Shell_\
             668
                   0.215405
                             0.170443
                                        0.409804
                                                       0.185291
                                                                       -0.370485
                                                                                        0.577680
                                                                                                     0.7
            1580
                  -0.204870
                             -0.084276
                                       -0.504803
                                                      -0.434918
                                                                       -0.446603
                                                                                       -0.343436
                                                                                                     -0.3
            3784
                   0.803789
                             0.730826
                                        0.409804
                                                       0.880584
                                                                        0.780513
                                                                                        1.784341
                                                                                                     0.5
                  -2.558408
                             -2.478640
                                                                                       -1.550097
                                                                                                     -1.5
             463
                                       -2.203358
                                                      -1.589968
                                                                       -1.551468
            2615
                   1.013926
                                                       1.405139
                                                                                        1.798157
                                                                                                      1.0
                             0.934602
                                        0.932437
                                                                        1.456349
In [44]: Y_Train.head()
Out[44]:
           3141
                     1
           3521
                     1
           883
                     2
           3627
           2106
                     2
           Name: Sex, dtype: int32
In [45]: Y_Test.head()
Out[45]:
           668
                     2
           1580
                     1
           3784
                     2
           463
                     1
           2615
                     2
           Name: Sex, dtype: int32
```

11. Building the Model

12. Train the Model

13.Test the Model

```
In [49]: print('Testing accuracy: ',accuracy_score(Y_Test,y_predict))
    Testing accuracy: 0.5466507177033493
```

14. Measuring the performance using Metrics

```
In [50]: pd.crosstab(Y_Test,y_predict)
Out[50]:
                          2
          col_0
           Sex
             0 118
                   38
                         93
                39 216
                         36
             2 125
                   48 123
In [51]: print(classification_report(Y_Test,y_predict))
                       precision
                                   recall f1-score
                                                        support
                            0.42
                    0
                                      0.47
                                                0.44
                                                            249
                    1
                            0.72
                                      0.74
                                                0.73
                                                            291
                            0.49
                                      0.42
                                                0.45
                                                            296
                                                0.55
                                                            836
             accuracy
                            0.54
                                      0.54
                                                0.54
                                                            836
            macro avg
         weighted avg
                            0.55
                                      0.55
                                                0.54
                                                            836
```