

Pyrexia of unknown origin

Dr. Nashwan Mansoor

Pyrexia of unknown origin

- ❖ **Pyrexia of unknown origin (PUO) :-** was classically defined as A temperature above 38.0°C on multiple occasions for more than 3 weeks, without diagnosis, despite initial investigation in hospital for 1 week.
- The definition has been relaxed to allow for investigation
 - Over 3 days of inpatient care.
 - Three outpatient visits.
 - One week of intensive ambulatory investigation.
- Up to one-third of cases of PUO remain undiagnosed.

Pyrexia of unknown origin

❖ Clinical assessment

- Major causes of PUO are illustrated below.
- Rare causes, such as periodic fever syndromes, considered in those with a family history.
- Children and younger adults are more likely to have infectious (viral infections).
- Older adults are more likely to have certain infectious and non-infectious causes.
- Detailed history and examination should be repeated at regular intervals to detect emerging features (e.g. rashes, signs of infective endocarditis or features of vasculitis).
- In men, the prostate should be considered as a potential source of infection.
- Clinicians should be alert to the possibility of factitious fever.

Pyrexia of unknown origin

❖ A etiology of pyrexia of unknown origin (PUO)

□ Infections (~30%)

➤ Specific locations :-

- Abscesses: hepatobiliary, diverticular, urinary tract, pulmonary, and CNS.
- Infections of oral cavity (including dental), head and neck (including sinuses).
- Bone and joint infections.
- Infective endocarditis.

➤ Specific organisms :-

- TB (particularly extrapulmonary).
- HIV-1 infection.
- Other viral infections: cytomegalovirus (CMV), Epstein–Barr virus (EBV).
- Fungal infections (e.g. Aspergillus spp., Candida spp. or dimorphic fungi).
- Infections with fastidious organisms (e.g. Bartonella spp., Tropheryma whipplei).

Pyrexia of unknown origin

❖ A etiology of pyrexia of unknown origin (PUO)

□ Infections (~30%)

➤ Specific patient groups

● Geographically restricted infection :- •

➤ Malaria, dengue, rickettsial infections, Brucella spp..

➤ Amoebic liver abscess, enteric fevers, Leishmania spp..

➤ Middle East respiratory syndrome coronavirus (MERS-CoV; Arabian Peninsula)

● Residence in or travel to a region with endemic infection: •

➤ TB, extensively drug-resistant TB, Brucella spp., HIV-1,Trypanosoma cruzi.

Pyrexia of unknown origin

❖ A etiology of pyrexia of unknown origin (PUO)

□ Infections (~30%)

➤ Specific patient groups

- Nosocomial infections:

- Pneumonia.

- Infections related to prosthetic materials and surgical procedures.

- Urinary tract infections.

- Central venous catheter infections.

- HIV-positive individuals:

- Acute retroviral syndrome.

- AIDS-defining infections (disseminated *Mycobacterium avium complex (DMAC)*, *Pneumocystis jirovecii pneumonia*, CMV and others)

Pyrexia of unknown origin

❖ A etiology of pyrexia of unknown origin (PUO)

□ Malignancy (~20%)

➤ Hematological malignancy

✓ Lymphoma.

✓ Leukemia.

✓ Myeloma

➤ Solid tumors in ;

✓ Renal.

✓ Liver.

✓ Colon.

✓ Stomach.

✓ Pancreas.

Pyrexia of unknown origin

❖ A etiology of pyrexia of unknown origin (PUO)

□ Connective tissue disorders (~15%)

➤ Older adults

● Temporal arteritis/polymyalgia rheumatica

➤ Younger adults

● Still's disease (juvenile rheumatoid arthritis)

● Systemic lupus erythematosus (SLE)

● Vasculitis disorders, including:-

➤ PAN.

➤ Rheumatoid disease with vasculitis.

➤ Granulomatosis with polyangiitis (formerly known as Wegener's granulomatosis)

● Polymyositis

● Bechet's disease

● Rheumatic fever (in regions where still endemic) .

Pyrexia of unknown origin

❖ A etiology of pyrexia of unknown origin (PUO)

□ Connective tissue disorders (~15%)

➤ Older adults

● Temporal arteritis/polymyalgia rheumatica

➤ Younger adults

● Still's disease (juvenile rheumatoid arthritis)

● Systemic lupus erythematosus (SLE)

● Vasculitis disorders, including:-

➤ PAN.

➤ Rheumatoid disease with vasculitis.

➤ Granulomatosis with polyangiitis (formerly known as Wegener's granulomatosis)

● Polymyositis

● Bechet's disease

● Rheumatic fever (in regions where still endemic) .

Pyrexia of unknown origin

- ❖ A etiology of pyrexia of unknown origin (PUO)
- Miscellaneous (~20%)
- Cardiovascular
 - Atrial myxoma, aortitis, aortic dissection
- Respiratory
 - Sarcoidosis, pulmonary E. and other thromboembolic disease, extrinsic allergic alveolitis.
- Gastrointestinal
 - Inflammatory bowel disease, granulomatous hepatitis, alcoholic liver disease, pancreatitis.
- Endocrine/metabolic
 - Thyrotoxicosis, thyroiditis, hypothalamic lesions, pheochromocytoma, adrenal insufficiency, and hypertriglyceridemia.

Pyrexia of unknown origin

- ❖ A etiology of pyrexia of unknown origin (PUO)
- Miscellaneous (~20%)
- Hematological
- ✓ Hemolytic anemia.
- ✓ Paroxysmal nocturnal hemoglobinuria.
- ✓ Thrombotic thrombocytopenic purpura.
- ✓ Myeloproliferative disorders.
- ✓ Castleman's disease.
- ✓ Graft-versus-host disease (after allogeneic hematopoietic stem cell transplantation).

Pyrexia of unknown origin

❖ A etiology of pyrexia of unknown origin (PUO)

Miscellaneous (~20%)

➤ **Inherited**

✓ **Familial Mediterranean fever.**

✓ **Periodic fever syndromes.**

➤ **Drug reactions**

✓ **Antibiotic fever.**

✓ **Drug hypersensitivity reactions.**

✓ **Others.**

➤ **Factitious fever**

Idiopathic (~15%)

Pyrexia of unknown origin

❖ Clues to the diagnosis of factitious fever:-

A patient who looks well

Bizarre temperature chart with absence of diurnal variation and/or temperature-related changes in pulse rate

Temperature > 41°C

Absence of sweating during effervescence

Normal erythrocyte sedimentation rate and C-reactive protein despite high fever

Evidence of self-injection or self-harm

Normal temperature during supervised (observed) measurement

Infection with multiple commensal organisms (e.g. enteric or mouth flora)

Pyrexia of unknown origin

❖ Investigations :-

- If initial investigation of fever is negative, further microbiological and non-microbiological investigations should be considered.
- The selection and prioritization of tests will be influenced by the geographical location of potential exposure to pathogens.
- Lesions identified on imaging should usually be biopsied for culture.
- Histopathology or NA detection, particularly in patients who have received prior antimicrobials,
- rRNA analysis may aid diagnosis if a microorganism is not cultured.

Pyrexia of unknown origin

❖ Investigations :-

- Positron emission tomography (PET) scans may aid diagnosis of vasculitis or help selection of biopsy sites.
- Liver biopsy may be justified – for example, to identify idiopathic granulomatous hepatitis if there are biochemical or radiological abnormalities.
- Bone marrow biopsies have a diagnostic yield of up to 15%, most often revealing hematological malignancy, myelodysplasia or tuberculosis, and also identifying brucellosis, typhoid fever or visceral leishmaniasis.
- Bone marrow should be sent for culture, as well as microscopy.

Pyrexia of unknown origin

❖ Investigations :-

- Laparoscopy is occasionally undertaken with biopsy of abnormal tissues.
- Splenic aspiration in specialist centers is the diagnostic test of choice for suspected visceral leishmaniasis.
- Temporal artery biopsy should be considered in patients over the age of 50 years, even in the absence of physical signs or a raised ESR.
- ‘Blind’ biopsy of other structures in the absence of localizing signs or laboratory or radiology results is unhelpful.

Pyrexia of unknown origin

❖ Investigations :-

□ Microbiological investigation :-

□ Location-independent investigations

➤ Microscopy

- Blood for atypical lymphocytes (EBV, CMV, HIV-1, hepatitis viruses or *Toxoplasma gondii*).

- Respiratory samples for mycobacteria and fungi.

- Stool for ova, cysts and parasites

- Biopsy for light microscopy (bacteria, mycobacteria, fungi).

- Urine for white or red blood cells and mycobacteria (early morning urine × 3).

Pyrexia of unknown origin

❖ Investigations :-

- Microbiological investigation :-
- Location-independent investigations

➤ Culture

- Aspirates and biopsies (e.g. joint, deep abscess, debrided tissues).
- Blood, including prolonged culture and special media conditions.

- Sputum for mycobacteria
- CSF

- Gastric aspirate for mycobacteria
- Stool

- Swabs
- Urine ± prostatic massage in older men.

Pyrexia of unknown origin

❖ Investigations :-

□ Microbiological investigation :-

□ Location-independent investigations

➤ Antigen detection

- Blood, e.g. HIV antigen, cryptococcal antigen, Aspergillus galactomannan ELISA and for Aspergillus and other causes of invasive, fungal infection.

- CSF for cryptococcal antigen

- Bronchoalveolar lavage fluid for Aspergillus galactomannan

- Nasopharyngeal aspirate/throat swab for respiratory viruses, e.g. IAV or RSV

- Urine, e.g. for Legionella antigen.

Pyrexia of unknown origin

❖ Investigations :-

□ Microbiological investigation :-

□ Location-independent investigations

➤ Nucleic acid detection

- Blood for Bartonella spp. and viruses

- CSF for viruses and key bacteria (meningococcus, pneumococcus, Listeria monocytogenes)

- Nasopharyngeal aspirate/throat swab for respiratory viruses.

- Sputum for Mycobacterium tuberculosis (MTB).

- Bronchoalveolar lavage fluid, e.g. for respiratory viruses.

- Tissue specimens, e.g. for *T. whipplei*.

- Urine, e.g. for *Chlamydia trachomatis*, *Neisseria gonorrhoeae*.

- Stool, e.g. for norovirus, rotavirus.

Pyrexia of unknown origin

❖ Investigations :-

□ **Microbiological investigation :-**

□ **Location-independent investigations**

➤ **Immunological tests**

- Serology (antibody detection) for viruses, including HIV-1, and some bacteria.

- Interferon-gamma release assay for diagnosis of exposure to tuberculosis.

Note this will not distinguish latent from active disease and can only be used to trigger of active disease) further investigations.

Pyrexia of unknown origin

❖ Investigations :-

□ Microbiological investigation :-

□ Geographically restricted tests

➤ Microscopy

- Blood for trypanosomiasis, malaria and *Borrelia* spp.
- Stool for geographically restricted ova, cysts and parasites.
- Biopsy for light microscopy (dimorphic fungi, *Leishmania* spp. And other parasites).
- Urine for red blood cells and schistosome ova.

➤ Antigen detection

- Blood, e.g. dengue virus antigen, *Histoplasma* antigen and malaria antigen.

Pyrexia of unknown origin

❖ Investigations :-

□ Microbiological investigation :-

□ Geographically restricted tests

➤ Nucleic acid detection

● Blood for causes of viral hemorrhagic fever.

● CSF for geographically restricted viruses, e.g. Japanese encephalitis virus.

● Nasopharyngeal aspirate/throat swab or bronchoalveolar lavage fluid for geographically restricted respiratory viruses.

➤ Immunological tests

● Serology (antibody detection) for viruses, dimorphic fungi and protozoa.

Pyrexia of unknown origin

❖ Additional investigations in PUO :-

□ Serological tests for connective tissue disorders:

➤ Autoantibody screen.

➤ Complement levels.

➤ Immunoglobulins.

➤ Cryoglobulins

□ Ferritin.

□ Echocardiography.

□ Ultrasound of abdomen.

□ CT/MRI of thorax, abdomen and/or brain.

Pyrexia of unknown origin

❖ Additional investigations in PUO :-

□ Imaging of the skeletal system:-

➤ Plain X-rays.

➤ CT/MRI spine.

➤ Isotope bone scan.

□ Labelled white cell scan.

□ Positron emission tomography (PET)/single-photon emission computed tomography (SPECT)

Pyrexia of unknown origin

❖ Additional investigations in PUO :-

□ Biopsy:

- Bronchoscopy and lavage ± transbronchial biopsy.
- Lymph node aspirate or biopsy.

- Biopsy of radiological lesion.
- Biopsy of liver.

- Bone marrow aspirate and biopsy.
- Lumbar puncture.

- Laparoscopy and biopsy.
- Temporal artery biopsy.

Pyrexia of unknown origin

❖ Prognosis

- No cause is found in approximately 10-15% of PUO cases.
- As long as there is no significant weight loss or signs of another disease.
- The long-term mortality is low .

THANK YOU