KNN Find k examples $\{\mathbf{x}^{(i)}, t^{(i)}\}$ closest to the test instance \mathbf{x} and then output majority $\arg\max_{t^z} \sum_{r=1}^k \delta(t^{(z)}, t^{(r)})$. Define $\delta(a, b) = 1$ if a = b, 0 otw. Choice of k: Rule is $k < \sqrt{n}$, small k may overfit, while large may underfit. Curse of Dim: In high dimensions, "most" points are approximately the same distance. Computation Cost: 0 (minimal) at trianing/ no learning involved. Query time find Ndistances in D dimension $\mathcal{O}(ND)$ and $\mathcal{O}(N\log N)$ sorting time.

Entropy $H(X) = -\mathbb{E}_{X \sim p} \left[\log_2 p(X) \right] = -\sum_{x \in X} p(x) \log_2 p(x)$ Multi-class: $H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$ Properties: H is non-negative, $H(Y|X) \leq H(Y)$, $X \perp Y \implies H(Y|X) = H(Y)$, H(Y|Y) = 0, and H(X,Y) = H(X|Y) + H(Y) = 0H(Y|X) + H(X)

Expected Conditional Entropy $H(Y|X) = \mathbb{E}_{X \sim p(x)}[H(Y|X)] = \sum_{x \in X} p(x)H(Y|X = x) = -\sum_{x \in X} \sum_{y \in Y} p(x,y)\log_2 p(y|x) = -\mathbb{E}_{(X,Y) \sim p(x,y)}\left[\log_2 p(Y|X)\right]$ Information Gain IG(Y|X) = H(Y) - H(Y|X)

Bias Variance Decomposition Using the square error loss $L(y,t) = \frac{1}{2}(y-t)^2$, Bias ($\uparrow \Longrightarrow$ underfitting): How close is our classifier to true target. Variance ($\uparrow \Longrightarrow$ overfitting): How widely dispersed are out predictions as we generate new datasets

$$\mathbb{E}_{\mathbf{x},\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-t\right)^{2}\right] = \mathbb{E}_{\mathbf{x},\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]+\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]-t\right)^{2}\right]$$

$$= \mathbb{E}_{\mathbf{x},\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]\right)^{2}+\left(\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]-t\right)^{2}+2\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]\right)\left(\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]-t\right)\right]$$

$$= \mathbb{E}_{\mathbf{x},\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]\right)^{2}\right]+\mathbb{E}_{\mathbf{x}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]-t\right)^{2}\right]$$
Parising the second of the properties of t

Bagging with Generating Distribution Suppose we could sample m independent trianing sets $\{\mathcal{D}_i\}_{i=1}^m$ from $p_{dataset}$. Learn $h_i := h_{\mathcal{D}_i}$ and out final predictor is $h = 1/m \sum_{i=1}^m h_i$. Bias Unchanged: $\mathbb{E}_{\mathcal{D}_1, \dots, \mathcal{D}_m} \overset{iid}{\sim} p_{dataset}$ $[h(\mathbf{x})] = \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{\mathcal{D}_i \sim p_{dataset}} [h_i(\mathbf{x})] = \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{\mathcal{D}_i \sim p_{dataset}} [h_i(\mathbf{x})]$ $\mathbb{E}_{\mathcal{D} \sim p_{\text{dataset}}} [h_{\mathcal{D}}(\mathbf{x})] \text{ Variance Reduced: } \operatorname{Var}_{\mathcal{D}_1, \dots, \mathcal{D}_m} [h(\mathbf{x})] = \frac{1}{m^2} \sum_{i=1}^m \operatorname{Var} [h_i(\mathbf{x})] = \frac{1}{m} \operatorname{Var} [h_{\mathcal{D}}(\mathbf{x})]$

Bootstrap Aggregation Take a single dataset \mathcal{D} with n sample and generate m new datasets, each by sampling n training examples from \mathcal{D} , with replacement. We then the average the predictions. We have the reduction in variance to be $\operatorname{Var}\left(\frac{1}{m}\sum_{i=1}^{m}h_{i}(\mathbf{x})\right)=$ $\frac{1}{m}(1-\rho)\sigma^2 + \rho\sigma^2$

Random Forest Upon bootstrap aggregation, for each bag we choose a random set of features to make the trees grow on (decorrelates predictions, lower ρ).

Bayes Optimality
$$\mathbb{E}_{\mathbf{x},\mathcal{D},t|\mathbf{x}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-t\right)^{2}\right] = \underbrace{\mathbb{E}_{\mathbf{x}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]-y_{*}(\mathbf{x})\right)^{2}\right]}_{\text{bias}} + \underbrace{\mathbb{E}_{\mathbf{x},\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]\right)^{2}\right]}_{\text{variance}} + \underbrace{\mathbb{E}_{\mathbf{x}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]-y_{*}(\mathbf{x})\right)^{2}\right]}_{\text{Bayes}} + \underbrace{\mathbb{E}_{\mathbf{x},\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]\right)^{2}\right]}_{\text{Variance}} + \underbrace{\mathbb{E}_{\mathbf{x}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]-y_{*}(\mathbf{x})\right)^{2}\right]}_{\text{Bayes}} + \underbrace{\mathbb{E}_{\mathbf{x},\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]\right)^{2}\right]}_{\text{Variance}} + \underbrace{\mathbb{E}_{\mathbf{x}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]-y_{*}(\mathbf{x})\right)^{2}\right]}_{\text{Dayes}} + \underbrace{\mathbb{E}_{\mathbf{x},\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]\right)^{2}\right]}_{\text{Variance}} + \underbrace{\mathbb{E}_{\mathbf{x}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]-y_{*}(\mathbf{x})\right]\right]}_{\text{Dayes}} + \underbrace{\mathbb{E}_{\mathbf{x},\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]\right)^{2}\right]}_{\text{Variance}} + \underbrace{\mathbb{E}_{\mathbf{x},\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]\right]}_{\text{Variance}} + \underbrace{\mathbb{E}_{\mathbf{x},\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]\right)^{2}\right]}_{\text{Variance}} + \underbrace{\mathbb{E}_{\mathbf{x},\mathcal{D}}\left[\left(h_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\mathbf{x})\right]\right)\right]}_{\text{Variance}} + \underbrace{\mathbb{E}_{\mathbf{x},\mathcal{D}}\left$$

Feature Mapping Some time we want fit a polynomial curve, we can do this using a feature map $y = \mathbf{w}^{\top} \psi(x)$ where $\psi(x) = \mathbf{w}^{\top} \psi(x)$ $[1, x, x^2, \ldots]^{\top}$. In general the feature map could be anything.

Ridge Regression $\mathbf{w}_{\lambda}^{Ridge} = \underset{\mathbf{w}}{\operatorname{argmin}} \mathcal{J}_{reg}(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{t}\|_{2}^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} = \left(\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T}\mathbf{t}$ When $\lambda = 0$ this is just OLS.

Gradient Descent Consider the some cost function \mathcal{J} and we want to optimize it.

- GD: $\mathbf{w} \leftarrow \mathbf{w} \alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}$; GD $\mathbf{w}/$ Reg $\mathbf{w} \leftarrow \mathbf{w} \alpha \left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}} + \lambda \frac{\partial \mathcal{R}}{\partial \mathbf{w}} \right) = (1 \alpha \lambda) \mathbf{w} \alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}$ mSGD: Choose mini batch $\mathcal{M} \subset \{1, ..., N\}$ and update $\mathbf{w} \leftarrow \mathbf{w} \frac{\alpha}{|\mathcal{M}|} \sum_{i=1}^{|\mathcal{M}|} \frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}}$ Reasonable size would be $|\mathcal{M}| \approx 100$
- SGD: Choose i at uniform; $\mathbf{w} \leftarrow \mathbf{w} \alpha \frac{\partial \mathcal{L}^{(i)}}{\partial \mathbf{w}}$; Pro//Cons: Progress w/o seeing all data//High Variance & Not efficiently vectorized

Cross Entropy Loss $\mathcal{L}_{CE} = -t \log y - (1-t) \log(1-y)$ Logistic CE $\mathcal{L}_{LCE}(z,t) = \mathcal{L}_{CE}(\sigma(z),t) = t \log(1+e^{-z}) + (1-t) \log(1+e^{z})$

Multiclass Classification

- Softmax Function Natural generalization of logistic func: $y_k = \operatorname{softmax}(z_1, \dots, z_K)_k = \frac{e^{z_k}}{\sum_{k'} e^{z_{k'}}}$; iuputs z_k are called logits.
- CE Loss, Vectorized $\mathcal{L}_{CE}(\mathbf{y}, \mathbf{t}) = -\sum_{k=1}^{K} t_k \log y_k = -\mathbf{t}^{\top}(\log \mathbf{y})$ where the log is applied elementwise.
- Softmax Regression $\mathbf{z} = \mathbf{W}\mathbf{x} + \mathbf{b}$, $\mathbf{y} = \operatorname{softmax}(\mathbf{z})$, and $\mathcal{L}_{CE} = -\mathbf{t}^{\top}(\log \mathbf{y})$; GD Updates is $\mathbf{w}_k \leftarrow \mathbf{w}_k \alpha \frac{1}{N} \sum_{i=1}^{N} \left(y_k^{(i)} t_k^{(i)}\right) \mathbf{x}^{(i)}$ where \mathbf{w}_k means the k-th row of **W**

Activation Functions Identity y = z ReLU $y = \max(0, z)$ Soft ReLU $y = \log(1 + e^z)$ Thresholding y = 1 if z > 0 else 0. Logistic $y = \frac{1}{1+e^{-z}} \tanh y = \frac{e^z - e^{-z}}{e^z + e^{-z}}$

Multilayer Perceptron

- Modularity of Layers $\mathbf{h}^{(1)} = f^{(1)}(\mathbf{x}) = \phi(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}), \ \mathbf{h}^{(2)} = f^{(2)}(\mathbf{h}^{(1)}) = \phi(\mathbf{W}^{(2)}\mathbf{h}^{(1)} + \mathbf{b}^{(2)}), \dots, \ \mathbf{y} = f^{(L)}(\mathbf{h}^{(L-1)}) = f^{(L)}(\mathbf{h}^{(L-1)})$ $f^{(L)} \circ \cdots \circ f^{(1)}(\mathbf{x})$
- Choice of Last Layer Activation Func Regression: $\mathbf{y} = f^{(L)} \left(\mathbf{h}^{(L-1)} \right) = \left(\mathbf{w}^{(L)} \right)^T \mathbf{h}^{(L-1)} + b^{(L)}$; Binary Classification: $\mathbf{y} = \mathbf{h}^{(L)} \left(\mathbf{h}^{(L-1)} \right) = \mathbf{h}^{(L)} \left(\mathbf{h}^{(L)} \right) = \mathbf{$ $f^{(L)}(\mathbf{h}^{(L-1)}) = \sigma((\mathbf{w}^{(L)})^T \mathbf{h}^{(L-1)} + b^{(L)})$
- Back Propagation Suppose \mathcal{L} what I want to optimize, then for some variable \mathbf{w} that we want to optimize w.r.t., $\frac{\partial \mathcal{L}}{\partial \mathbf{w}} =: \overline{\mathbf{w}}$
- Back Prop Cost Forward: one add-multiplicity operation per weight; Backward: two add-multiplicity operations per weight \Longrightarrow the Backward pass is about as expensive as two Forward passes. (cost is linear in # of layers, quadratic in # of units per layer)