A Bayesian model for hybrid vigor

Will Landau

A Bayesian model for hybrid vigor

Will Landau

Iowa State University

September 29, 2013

Outline

Biological background

DNA and RNA

Central dogma

Examples of gene regulation

RNA-seq

Hybrid vigor

The model

The Gibbs sampler

Gibbs steps

Estimated heterosis probabilities

GPU parallelism

The software

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities

Outline

Biological background

DNA and RNA

Central dogma

Examples of gene regulation

RNA-seq

Hybrid vigor

The mode

The Gibbs sampler

Gibbs steps

Estimated heterosis probabilities

GPU parallelism

The software

A Bayesian model for hybrid vigor

Will Landau

Biological background

DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampler
Gibbs steps
Estimated heterosis
probabilities

DNA

··· GTGCATCTGACTCCTGAGGAGAAG ··· CACGTAGACTGAGGACTCCTCTTC ···

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

··· GUGCAUCUGACUCCUGAGGAGAAG ···

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

he model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

Proteins

A Bayesian model for hybrid vigor

Will Landau

Biological
background
DNA and RNA
Central dogma
Examples of gene
regulation
RNA-seq

The model

The Gibbs sampl Gibbs steps Estimated heterosis probabilities

```
GTGCATCTGACTCCTGAGGAGAAG ...
                               DNA
```

A Bavesian model for hybrid vigor

Will Landau

Central dogma

The Gibbs sampler

The Gibbs sampler

Central dogma: how organisms make proteins

GTGCATCTGACTCCTGAGGAGAAG ··· CACGTAGACTGAGGACTCCTCTTC DNA (transcription) RNA GUGCAUCUGACUCCUGAGGAGAAG · · ·

Central dogma of genetics

Central dogma

The Gibbs sampler

protein

- ► HSP = heat shock protein.
- ▶ Prevent heat damage to other proteins.

A Bayesian model for hybrid vigor

Will Landau

Biological
background
DNA and RNA
Central dogma
Examples of gene
regulation
RNA-seq
Hybrid vigor

he model

The Gibbs samp Gibbs steps Estimated heteros probabilities

Temperature spike triggers HSP60 production.

HSP60 Gene

A Bayesian model for hybrid vigor

Will Landau

Biological
background
DNA and RNA
Central dogma
Examples of gene
regulation
RNA-seq
Hybrid vigor

The model

The Gibbs samp Gibbs steps Estimated heterosi probabilities GPU parallelism

Temperature spike causes HSP60 expression.

A Bavesian model for hybrid vigor

Will Landau

Examples of gene regulation

Temperature spike causes HSP60 expression.

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

The Gibbs samp Gibbs steps Estimated heterosis probabilities

- NA-seq
 - RNA sequencing: measure gene expression using relative abundance of RNA.
 - ► Illumina Genome Analyzer:

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

he model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

RNA-seq data: counts of amplified RNA fragments

	Treatment I		Treatr	nent 2	Treatment 3		
Gene I	100	225	0	70	279	300	106
Gene 2	0	1	1	50	501	2	7
Gene 3	3	4	2	700	900	0	0
Gene 4	893	400	760	5	5	1000	513
Gene 34897	10	13	6	819	761	902	912

► Goal: use RNA-seq to study hybrid vigor (heterosis).

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities GPU parallelism

High-parent heterosis: child's trait surpasses

Parent 2

both parents

Parent I

Low-parent heterosis: child's trait is weaker than in each parent

A Bayesian model for hybrid vigor

Will Landau

Biological
background
DNA and RNA
Central dogma
Examples of gene
regulation
RNA-seq
Hybrid vigor

he model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPII parallelism

Mid-parent heterosis: child's trait is different

High-parent heterosis in gene expression

	Parent I			Ch	nild	Parent 2	
Gene I	100	225	0	70	279	300	106
Gene 2	0	I	I	50	501	2	7
Gene 3	3	4	2	700	900	0	0
Gene 4	893	400	760	5	5	1000	513
Gene 34897	10	13	6	819	761	902	912

Low-parent heterosis in gene expression

	Parent I			Ch	ild	Pare	ent 2
Gene I	100	225	0	70	279	300	106
Gene 2	0	-1	-1	50	501	2	7
Gene 3	3	4	2	700	900	0	0
Gene 4	893	400	760	5	5	1000	513
	•••						
Gene 34897	10	13	6	819	761	902	912

A Bayesian model for hybrid vigor

Will Landau

Biological
background
DNA and RNA
Central dogma
Examples of gene
regulation
RNA-seq
Hybrid vigor

he model

The Gibbs samples Gibbs steps Estimated heterosis probabilities

Mid-parent heterosis in gene expression

	Parent I			Ch	ild	Parent 2	
Gene I	100	225	0	70	279	300	106
Gene 2	0	I	-1	50	501	2	7
Gene 3	3	4	2	700	900	0	0
Gene 4	893	400	760	5	5	1000	513
•••							
Gene 34897	10	13	6	819	761	902	912

A Bayesian model for hybrid vigor

Will Landau

Biological
background
DNA and RNA
Central dogma
Examples of gene
regulation
RNA-seq
Hybrid vigor

ne model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

Outline

Biological background

DNA and RNA

Central dogma

Examples of gene regulation

RNA-seq

Hybrid vigor

The model

The Gibbs sample

Gibbs steps

Estimated heterosis probabilities

GPU parallelism

The software

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sampler
Gibbs steps
Estimated heterosis
probabilities
CPU payallolism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

A Bayesian model for hybrid vigor

Will Landau

iological
ackground
DNA and RNA
Central dogma
Examples of gene
egulation
RNA-seq

The model

The Gibbs samp Gibbs steps Estimated heterosis probabilities

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

$$c_n \stackrel{\text{ind}}{\sim} \text{N}(c_n \mid 0, \sigma_c^2)$$

A Bayesian model for hybrid vigor

Will Landau

iological
ackground
DNA and RNA
Central dogma
Examples of gene
egulation
RNA-seq

The model

The Gibbs samp Gibbs steps Estimated heteros probabilities

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$
 $c_n \stackrel{\text{ind}}{\sim} \text{N}(c_n \mid 0, \sigma_c^2)$

$$\varepsilon_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0, \eta_g^2)$$

$$\begin{aligned} y_{g,n} &\overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g))) \\ c_n &\overset{\text{ind}}{\sim} \mathsf{N}(c_n \mid 0, \sigma_c^2) \\ \sigma_c &\sim \mathsf{U}(\sigma_c \mid 0, \sigma_{c0}) \\ \varepsilon_{g,n} &\overset{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0, \eta_g^2) \end{aligned}$$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vicor

The model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities

The Gibbs sampler Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\begin{split} y_{g,n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ c_n & \overset{\text{ind}}{\sim} \mathsf{N}(c_n \mid 0,\sigma_c^2) \\ & \sigma_c \sim \mathsf{U}(\sigma_c \mid 0,\sigma_{c0}) \\ \varepsilon_{g,n} & \overset{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ & \eta_g^2 & \overset{\text{ind}}{\sim} \mathsf{Inv-Gamma}\left(\eta_g^2 \mid \mathsf{shape} = \frac{d}{2} \;, \; \mathsf{rate} = \frac{d \cdot \tau^2}{2} \right) \end{split}$$

The Gibbs samp
Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

$$\begin{split} y_{g,n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ c_n & \overset{\text{ind}}{\sim} \mathsf{N}(c_n \mid 0,\sigma_c^2) \\ & \sigma_c \sim \mathsf{U}(\sigma_c \mid 0,\sigma_{c0}) \\ \varepsilon_{g,n} & \overset{\text{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0,\eta_g^2) \\ & \eta_g^2 & \overset{\text{ind}}{\sim} \mathsf{Inv-Gamma}\left(\eta_g^2 \mid \mathsf{shape} = \frac{d}{2} \;, \; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ & d \sim \mathsf{U}(d \mid 0,d_0) \end{split}$$

The Gibbs sampler Gibbs steps Estimated heterosis probabilities GPU parallelism

$$\begin{aligned} y_{g,n} & \overset{\mathsf{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g))) \\ c_n & \overset{\mathsf{ind}}{\sim} \mathsf{N}(c_n \mid 0, \sigma_c^2) \\ & \sigma_c \sim \mathsf{U}(\sigma_c \mid 0, \sigma_{c0}) \\ \varepsilon_{g,n} & \overset{\mathsf{ind}}{\sim} \mathsf{N}(\varepsilon_{g,n} \mid 0, \eta_g^2) \\ & \eta_g^2 & \overset{\mathsf{ind}}{\sim} \mathsf{Inv}\text{-}\mathsf{Gamma}\left(\eta_g^2 \mid \mathsf{shape} = \frac{d}{2} \;, \; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ & d \sim \mathsf{U}(d \mid 0, d_0) \\ & \tau^2 \sim \mathsf{Gamma}(\tau^2 \mid \mathsf{shape} = a_\tau, \mathsf{rate} = b_\tau) \end{aligned}$$

 $\mathbf{y_{g,n}} \overset{\text{ind}}{\sim} \mathsf{Poisson}(\mathbf{y_{g,n}} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g)))$

A Bayesian model for hybrid vigor

Will Landau

Biological
background
DNA and RNA
Central dogma
Examples of gene
regulation
RNA-seq
Hybrid vigor

The model

The Gibbs samp Gibbs steps Estimated heterosis probabilities

$$\mu(n,\phi_g,\alpha_g,\delta_g) = \begin{cases} \phi_g - \alpha_g & \text{ sample } n \text{ from parent 1} \\ \phi_g + \delta_g & \text{ sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{ sample } n \text{ from parent 3} \end{cases}$$

 $y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vieor

The model

Gibbs steps
Estimated heteros
probabilities
GPU parallelism

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 1 \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 3 \end{cases}$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

$$\phi_g \stackrel{\text{ind}}{\sim} \text{N}(\phi_g \mid \theta_{\phi_g}, \sigma_{\phi}^2)$$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs samp Gibbs steps Estimated heterosis probabilities

$$\mu(n,\phi_{\it g},\alpha_{\it g},\delta_{\it g}) = \begin{cases} \phi_{\it g} - \alpha_{\it g} & \text{sample n from parent 1} \\ \phi_{\it g} + \delta_{\it g} & \text{sample n from child} \\ \phi_{\it g} + \alpha_{\it g} & \text{sample n from parent 3} \end{cases}$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

$$\phi_g \stackrel{\text{ind}}{\sim} \text{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2)$$

$$\alpha_{g} \overset{\text{ind}}{\sim} \pi_{\alpha}^{1-l(\alpha_{g})} [(1-\pi_{\alpha}) \mathsf{N}(\alpha_{g} \mid \theta_{\alpha}, \sigma_{\alpha}^{2})]^{l(\alpha_{g})}$$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$\mu(n,\phi_{\rm g},\alpha_{\rm g},\delta_{\rm g}) = \begin{cases} \phi_{\rm g} - \alpha_{\rm g} & \text{sample n from parent 1} \\ \phi_{\rm g} + \delta_{\rm g} & \text{sample n from child} \\ \phi_{\rm g} + \alpha_{\rm g} & \text{sample n from parent 3} \end{cases}$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

$$\phi_g \stackrel{\text{ind}}{\sim} \text{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2)$$

$$\alpha_{\mathsf{g}} \overset{\mathsf{ind}}{\sim} \pi_{\alpha}^{1-I(\alpha_{\mathsf{g}})} [(1-\pi_{\alpha})\mathsf{N}(\alpha_{\mathsf{g}} \mid \theta_{\alpha}, \sigma_{\alpha}^2)]^{I(\alpha_{\mathsf{g}})}$$

$$\delta_{\mathbf{g}} \overset{\text{ind}}{\sim} \pi_{\delta}^{1-l(\delta_{\mathbf{g}})} [(1-\pi_{\delta}) \mathsf{N}(\delta_{\mathbf{g}} \mid \theta_{\delta}, \sigma_{\delta}^2)]^{l(\delta_{\mathbf{g}})}$$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$\mu(n,\phi_{\it g},\alpha_{\it g},\delta_{\it g}) = \begin{cases} \phi_{\it g} - \alpha_{\it g} & \text{sample n from parent 1} \\ \phi_{\it g} + \delta_{\it g} & \text{sample n from child} \\ \phi_{\it g} + \alpha_{\it g} & \text{sample n from parent 3} \end{cases}$$

$$\begin{split} \mathbf{y}_{\mathbf{g},n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathbf{y}_{\mathbf{g},n} \mid \mathsf{exp}(c_n + \varepsilon_{\mathbf{g},n} + \mu(n,\phi_{\mathbf{g}},\alpha_{\mathbf{g}},\delta_{\mathbf{g}}))) \\ \phi_{\mathbf{g}} &\stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_{\mathbf{g}} \mid \theta_{\phi},\sigma_{\phi}^2) \\ \theta_{\phi} &\sim \mathsf{N}(\theta_{\phi} \mid 0,\gamma_{\phi}^2) \end{split}$$

$$\alpha_{\mathsf{g}} \overset{\mathsf{ind}}{\sim} \pi_{\alpha}^{1-I(\alpha_{\mathsf{g}})} [(1-\pi_{\alpha})\mathsf{N}(\alpha_{\mathsf{g}} \mid \theta_{\alpha}, \sigma_{\alpha}^{2})]^{I(\alpha_{\mathsf{g}})}$$

$$\delta_g \overset{\text{ind}}{\sim} \pi_\delta^{1-I(\delta_g)} [(1-\pi_\delta) \mathsf{N}(\delta_g \mid \theta_\delta, \sigma_\delta^2)]^{I(\delta_g)}$$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$\mu(n,\phi_{\it g},\alpha_{\it g},\delta_{\it g}) = \begin{cases} \phi_{\it g} - \alpha_{\it g} & \text{sample n from parent 1} \\ \phi_{\it g} + \delta_{\it g} & \text{sample n from child} \\ \phi_{\it g} + \alpha_{\it g} & \text{sample n from parent 3} \end{cases}$$

$$\begin{split} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ \phi_g &\stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi,\sigma_\phi^2) \\ \theta_\phi &\sim \mathsf{N}(\theta_\phi \mid 0,\gamma_\phi^2) \end{split}$$

$$\begin{split} \alpha_g & \stackrel{\text{ind}}{\sim} \pi_\alpha^{1-I(\alpha_g)} [(1-\pi_\alpha) \mathsf{N}(\alpha_g \mid \theta_\alpha, \sigma_\alpha^2)]^{I(\alpha_g)} \\ \theta_\alpha & \sim \mathsf{N}(\theta_\alpha \mid 0, \gamma_\alpha^2) \end{split}$$

$$\delta_{\mathbf{g}} \overset{\text{ind}}{\sim} \pi_{\delta}^{1-l(\delta_{\mathbf{g}})} [(1-\pi_{\delta})\mathsf{N}(\delta_{\mathbf{g}} \mid \theta_{\delta}, \sigma_{\delta}^2)]^{l(\delta_{\mathbf{g}})}$$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 1} \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 3} \end{cases}$$

$$\begin{split} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ \phi_g &\stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi,\sigma_\phi^2) \\ \theta_\phi &\sim \mathsf{N}(\theta_\phi \mid 0,\gamma_\phi^2) \end{split}$$

$$\begin{split} \alpha_{g} &\overset{\text{ind}}{\sim} \pi_{\alpha}^{1-l(\alpha_{g})} [(1-\pi_{\alpha})\mathsf{N}(\alpha_{g} \mid \theta_{\alpha}, \sigma_{\alpha}^{2})]^{l(\alpha_{g})} \\ \theta_{\alpha} &\sim \mathsf{N}(\theta_{\alpha} \mid 0, \gamma_{\alpha}^{2}) \end{split}$$

$$\begin{split} \delta_{\mathbf{g}} &\overset{\text{ind}}{\sim} \pi_{\delta}^{1-I(\delta_{\mathbf{g}})} [(1-\pi_{\delta})\mathsf{N}(\delta_{\mathbf{g}} \mid \theta_{\delta}, \sigma_{\delta}^{2})]^{I(\delta_{\mathbf{g}})} \\ &\theta_{\delta} \sim \mathsf{N}(\theta_{\delta} \mid 0, \gamma_{\delta}^{2}) \end{split}$$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$\mu(n,\phi_g,\alpha_g,\delta_g) = \begin{cases} \phi_g - \alpha_g & \text{sample n from parent 1} \\ \phi_g + \delta_g & \text{sample n from child} \\ \phi_g + \alpha_g & \text{sample n from parent 3} \end{cases}$$

$$\begin{split} \mathbf{y}_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathbf{y}_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ \phi_g &\stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi,\sigma_\phi^2) \\ \theta_\phi &\sim \mathsf{N}(\theta_\phi \mid 0,\gamma_\phi^2) \\ \sigma_\phi &\sim \mathsf{U}(\sigma_\phi \mid 0,\sigma_{\phi 0}) \\ \alpha_g &\stackrel{\text{ind}}{\sim} \pi_\alpha^{1-I(\alpha_g)} [(1-\pi_\alpha)\mathsf{N}(\alpha_g \mid \theta_\alpha,\sigma_\alpha^2)]^{I(\alpha_g)} \\ \theta_\alpha &\sim \mathsf{N}(\theta_\alpha \mid 0,\gamma_\alpha^2) \end{split}$$

$$\begin{split} \delta_{\mathbf{g}} &\overset{\text{ind}}{\sim} \pi_{\delta}^{1-I(\delta_{\mathbf{g}})} [(1-\pi_{\delta}) \mathsf{N}(\delta_{\mathbf{g}} \mid \theta_{\delta}, \sigma_{\delta}^{2})]^{I(\delta_{\mathbf{g}})} \\ &\theta_{\delta} \sim \mathsf{N}(\theta_{\delta} \mid 0, \gamma_{\delta}^{2}) \end{split}$$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$\mu(n,\phi_{\it g},\alpha_{\it g},\delta_{\it g}) = \begin{cases} \phi_{\it g} - \alpha_{\it g} & \text{sample n from parent 1} \\ \phi_{\it g} + \delta_{\it g} & \text{sample n from child} \\ \phi_{\it g} + \alpha_{\it g} & \text{sample n from parent 3} \end{cases}$$

$$\begin{split} \mathbf{y}_{g,n} & \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathbf{y}_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ \phi_g & \stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi,\sigma_\phi^2) \\ & \theta_\phi \sim \mathsf{N}(\theta_\phi \mid 0,\gamma_\phi^2) \\ & \sigma_\phi \sim \mathsf{U}(\sigma_\phi \mid 0,\sigma_{\phi 0}) \\ & \alpha_g & \stackrel{\text{ind}}{\sim} \pi_\alpha^{1-I(\alpha_g)} [(1-\pi_\alpha)\mathsf{N}(\alpha_g \mid \theta_\alpha,\sigma_\alpha^2)]^{I(\alpha_g)} \\ & \theta_\alpha \sim \mathsf{N}(\theta_\alpha \mid 0,\gamma_\alpha^2) \\ & \sigma_\alpha \sim \mathsf{U}(\sigma_\alpha \mid 0,\sigma_{\alpha 0}) \end{split}$$

$$\begin{split} \delta_{\mathbf{g}} &\stackrel{\text{ind}}{\sim} \pi_{\delta}^{1-I(\delta_{\mathbf{g}})} [(1-\pi_{\delta}) \mathsf{N}(\delta_{\mathbf{g}} \mid \theta_{\delta}, \sigma_{\delta}^{2})]^{I(\delta_{\mathbf{g}})} \\ &\theta_{\delta} \sim \mathsf{N}(\theta_{\delta} \mid 0, \gamma_{\delta}^{2}) \end{split}$$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 1} \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 3} \end{cases}$$

$$\begin{split} \mathbf{y}_{g,n} & \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathbf{y}_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ \phi_g & \stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi,\sigma_\phi^2) \\ & \theta_\phi \sim \mathsf{N}(\theta_\phi \mid 0,\gamma_\phi^2) \\ & \sigma_\phi \sim \mathsf{U}(\sigma_\phi \mid 0,\sigma_{\phi 0}) \\ & \alpha_g & \stackrel{\text{ind}}{\sim} \pi_\alpha^{1-I(\alpha_g)} [(1-\pi_\alpha)\mathsf{N}(\alpha_g \mid \theta_\alpha,\sigma_\alpha^2)]^{I(\alpha_g)} \\ & \theta_\alpha \sim \mathsf{N}(\theta_\alpha \mid 0,\gamma_\alpha^2) \\ & \sigma_\alpha \sim \mathsf{U}(\sigma_\alpha \mid 0,\sigma_{\alpha 0}) \end{split}$$

$$\begin{split} \delta_g &\stackrel{\text{ind}}{\sim} \pi_{\delta}^{1-I(\delta_g)} [(1-\pi_{\delta})\mathsf{N}(\delta_g \mid \theta_{\delta}, \sigma_{\delta}^2)]^{I(\delta_g)} \\ &\theta_{\delta} \sim \mathsf{N}(\theta_{\delta} \mid 0, \gamma_{\delta}^2) \\ &\sigma_{\delta} \sim \mathsf{U}(\sigma_{\delta} \mid 0, \sigma_{\delta 0}) \end{split}$$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$\begin{split} \mu(n,\phi_g,\alpha_g,\delta_g) &= \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent } 1 \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent } 3 \end{cases} \\ y_{g,n} & \overset{\text{ind}}{\sim} \text{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ \phi_g & \overset{\text{ind}}{\sim} \text{N}(\phi_g \mid \theta_\phi,\sigma_\phi^2) \\ \theta_\phi & \sim \text{N}(\theta_\phi \mid 0,\gamma_\phi^2) \\ \sigma_\phi & \sim \text{U}(\sigma_\phi \mid 0,\sigma_{\phi 0}) \\ \alpha_g & \overset{\text{ind}}{\sim} \frac{1^{-l}(\alpha_g)}{\pi_\alpha} [(1-\pi_\alpha)\text{N}(\alpha_g \mid \theta_\alpha,\sigma_\alpha^2)]^{l(\alpha_g)} \\ \theta_\alpha & \sim \text{N}(\theta_\alpha \mid 0,\gamma_\alpha^2) \\ \sigma_\alpha & \sim \text{U}(\sigma_\alpha \mid 0,\sigma_{\alpha 0}) \\ \pi_\alpha & \sim \text{Beta}(\pi_\alpha \mid a_\alpha,b_\alpha) \\ \delta_g & \overset{\text{ind}}{\sim} \frac{1^{-l}(\delta_g)}{\pi_0^2} [(1-\pi_\delta)\text{N}(\delta_g \mid \theta_\delta,\sigma_\delta^2)]^{l(\delta_g)} \\ \theta_\delta & \sim \text{N}(\theta_\delta \mid 0,\gamma_\delta^2) \end{split}$$

 $\sigma_s \sim U(\sigma_s \mid 0, \sigma_{so})$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 1} \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent 3} \end{cases}$$

$$\begin{aligned} & y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ & \phi_g \stackrel{\text{ind}}{\sim} \mathsf{N}(\phi_g \mid \theta_\phi,\sigma_\phi^2) \\ & \theta_\phi \sim \mathsf{N}(\theta_\phi \mid 0, \gamma_\phi^2) \\ & \sigma_\phi \sim \mathsf{U}(\sigma_\phi \mid 0, \sigma_{\phi 0}) \\ & \alpha_g \stackrel{\text{ind}}{\sim} \pi_\alpha^{1-I(\alpha_g)} [(1 - \pi_\alpha) \mathsf{N}(\alpha_g \mid \theta_\alpha, \sigma_\alpha^2)]^{I(\alpha_g)} \\ & \theta_\alpha \sim \mathsf{N}(\theta_\alpha \mid 0, \gamma_\alpha^2) \\ & \sigma_\alpha \sim \mathsf{U}(\sigma_\alpha \mid 0, \sigma_{\alpha 0}) \\ & \pi_\alpha \sim \mathsf{Beta}(\pi_\alpha \mid a_\alpha, b_\alpha) \\ & \delta_g \stackrel{\text{ind}}{\sim} \pi_\delta^{1-I(\delta_g)} [(1 - \pi_\delta) \mathsf{N}(\delta_g \mid \theta_\delta, \sigma_\delta^2)]^{I(\delta_g)} \\ & \theta_\delta \sim \mathsf{N}(\theta_\delta \mid 0, \gamma_\delta^2) \\ & \sigma_\delta \sim \mathsf{U}(\sigma_\delta \mid 0, \sigma_{\delta 0}) \\ & \pi_\delta \sim \mathsf{Beta}(\pi_\delta \mid a_\delta, b_\delta) \end{aligned}$$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities

Outline

Biological background

DNA and RNA

Central dogma

Examples of gene regulation

RNA-seq

Hybrid vigor

The mode

The Gibbs sampler

Gibbs steps

Estimated heterosis probabilities

GPU parallelism

The software

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation

The model

The Gibbs sampler

Estimated heterosis probabilities GPU parallelism

Partition parameters by conditional independence.

Has a full conditional that depends on...

pends on...

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► From the appropriate full conditional distributions, sample the following:
- 1. c_1, \ldots, c_N

Will Landau

Biological
Biological
BIONA and RNA
Central dogma
Examples of gene
RNA-seq
Hybrid vigor

The model

The Gibbs samp Gibbs steps Estimated heterosis probabilities

Use these partitions as Gibbs steps.

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► From the appropriate full conditional distributions, sample the following:
- 1. c_1, \ldots, c_N
- 2. τ , π_{α} , π_{δ}

A Bayesian model for hybrid vigor

Will Landau

Biological

packground

DNA and RNA

Central dogma

Examples of gene regulation

RNA-see

Hybrid vigger

The model

The Gibbs sampler
Gibbs steps
Estimated heterosis
probabilities

Use these partitions as Gibbs steps.

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

► From the appropriate full conditional distributions, sample the following:

- 1. c_1, \ldots, c_N
- 2. τ , π_{α} , π_{δ}
- 3. d, θ_{ϕ} , θ_{α} , θ_{δ}

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- 1. c_1, \ldots, c_N
- 2. τ , π_{α} , π_{δ}
- 3. d, θ_{ϕ} , θ_{α} , θ_{δ}
- 4. σ_c , σ_ϕ , σ_α , σ_δ , η_1^2 , ..., η_G^2

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- 1. c_1, \ldots, c_N
- 2. τ , π_{α} , π_{δ}
- 3. d, θ_{ϕ} , θ_{α} , θ_{δ}
- 4. σ_c , σ_{ϕ} , σ_{α} , σ_{δ} , η_1^2 , ..., η_G^2
- 5. $\varepsilon_{1,1}, \ \varepsilon_{1,2}, \ \ldots, \ \varepsilon_{1,N}, \ \varepsilon_{2,N}, \ \ldots, \ \varepsilon_{G,N}$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- 1. c_1, \ldots, c_N
- 2. τ , π_{α} , π_{δ}
- 3. d, θ_{ϕ} , θ_{α} , θ_{δ}
- 4. σ_c , σ_{ϕ} , σ_{α} , σ_{δ} , η_1^2 , ..., η_G^2
- 5. $\varepsilon_{1,1}, \ \varepsilon_{1,2}, \ \ldots, \ \varepsilon_{1,N}, \ \varepsilon_{2,N}, \ \ldots, \ \varepsilon_{G,N}$
- 6. ϕ_1, \ldots, ϕ_G

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities

Use these partitions as Gibbs steps.

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

► From the appropriate full conditional distributions, sample the following:

- 1. c_1, \ldots, c_N
- 2. τ , π_{α} , π_{δ}
- 3. d, θ_{ϕ} , θ_{α} , θ_{δ}
- 4. σ_c , σ_{ϕ} , σ_{α} , σ_{δ} , η_1^2 , ..., η_G^2
- 5. $\varepsilon_{1,1}, \ \varepsilon_{1,2}, \ \ldots, \ \varepsilon_{1,N}, \ \varepsilon_{2,N}, \ \ldots, \ \varepsilon_{G,N}$
- 6. ϕ_1, \ldots, ϕ_G
- 7. $\alpha_1, \ldots, \alpha_G$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sampler
Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- 1. c_1, \ldots, c_N
- 2. τ , π_{α} , π_{δ}
- 3. d, θ_{ϕ} , θ_{α} , θ_{δ}
- 4. σ_c , σ_{ϕ} , σ_{α} , σ_{δ} , η_1^2 , ..., η_G^2
- 5. $\varepsilon_{1,1}$, $\varepsilon_{1,2}$, ..., $\varepsilon_{1,N}$, $\varepsilon_{2,N}$, ..., $\varepsilon_{G,N}$
- 6. ϕ_1, \ldots, ϕ_G
- 7. $\alpha_1, \ldots, \alpha_G$
- 8. $\delta_1, \ldots, \delta_G$
- and then repeat.

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sampler
Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 1 \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 3 \end{cases}$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \operatorname{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g)))$$

$$I(\delta_{\mathsf{g}}^{(i)} > |\alpha_{\mathsf{g}}^{(i)}|)$$

$$I(\delta_{\mathbf{g}}^{(i)} < -|\alpha_{\mathbf{g}}^{(i)}|)$$

$$I(\delta_g^{(i)} \neq 0)$$

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

he model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 1 \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 3 \end{cases}$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \operatorname{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g)))$$

Consider one chain with *M* iterations.

$$I(\delta_{\mathsf{g}}^{(i)} > |\alpha_{\mathsf{g}}^{(i)}|)$$

$$I(\delta_{\mathbf{g}}^{(i)} < -|\alpha_{\mathbf{g}}^{(i)}|)$$

$$I(\delta_g^{(i)} \neq 0)$$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

 $\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 1 \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 3 \end{cases}$

$$y_{g,n} \overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g)))$$

Consider one chain with *M* iterations.

$$P(\text{high-parent heterosis in gene }g) pprox rac{1}{M} \sum_{i=1}^{M} I(\delta_{g}^{(i)} > |lpha_{g}^{(i)}|)$$

$$I(\delta_{\mathbf{g}}^{(i)} < -|\alpha_{\mathbf{g}}^{(i)}|)$$

$$I(\delta_{\mathsf{g}}^{(i)} \neq 0)$$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

Estimated heterosis probabilities

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 1 \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 3 \end{cases}$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \operatorname{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g)))$$

Consider one chain with *M* iterations.

$$P(\text{high-parent heterosis in gene } g) \approx \frac{1}{M} \sum_{i=1}^{M} I(\delta_g^{(i)} > |\alpha_g^{(i)}|)$$

$$P(\text{low-parent heterosis in gene } g \) pprox rac{1}{M} \sum_{i=1}^{M} I(\delta_{g}^{(i)} < -|lpha_{g}^{(i)}|)$$

$$I(\delta_{\mathsf{g}}^{(i)} \neq 0)$$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid viggr

he model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

 $\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 1 \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 3 \end{cases}$

$$y_{g,n} \overset{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g)))$$

Consider one chain with *M* iterations.

$$P(\text{high-parent heterosis in gene } g) \approx \frac{1}{M} \sum_{i=1}^{M} I(\delta_g^{(i)} > |\alpha_g^{(i)}|)$$

$$P(\text{low-parent heterosis in gene } g) pprox rac{1}{M} \sum_{i=1}^{M} I(\delta_g^{(i)} < -|lpha_g^{(i)}|)$$

$$P(\text{mid-parent heterosis in gene } g) \approx \frac{1}{M} \sum_{i=1}^{M} I(\delta_g^{(i)} \neq 0)$$

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

Sample in parallel:

A Bayesian model for hybrid vigor

Will Landau

siological
ackground
DNA and RNA
Central dogma
Examples of gene
regulation
RNA-seq
Hybrid vigor

The model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► Sample in parallel:
 - $ightharpoonup \phi_g$'s

Will Landau

iological
ackground
DNA and RNA
Central dogma
examples of gene
egulation
RNA-seq
dybrid vigor

he model

The Gibbs sampler Gibbs steps Estimated heterosis probabilities GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- Sample in parallel:
 - $ightharpoonup \phi_g$'s
 - $\sim \alpha_g$'s

Will Landau

siological
ackground
DNA and RNA
Central dogma
Examples of gene
regulation
RNA-seq

The model

The Gibbs sample Gibbs steps Estimated heterosis probabilities GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- Sample in parallel:
 - $\blacktriangleright \phi_g$'s
 - $ightharpoonup \alpha_{g}$'s
 - \triangleright δ_g 's

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- Sample in parallel:
 - φ_g's
 - $ightharpoonup \alpha_{g}$'s
 - $ightharpoonup \delta_g$'s
 - $\triangleright \varepsilon_{g,n}$'s

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vieor

The model

Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

Tons of opportunity for GPU parallelism across genes!

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► Sample in parallel:
 - φ_σ's
 - $ightharpoonup lpha_{
 m g}$'s
 - $ightharpoonup \delta_g$'s
 - $\triangleright \varepsilon_{g,n}$'s
 - $ightharpoonup \eta_{
 m g}$'s

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► Sample in parallel:
 - φ_σ's
 - $ightharpoonup lpha_{m{g}}$'s
 - \triangleright δ_g 's
 - $\triangleright \varepsilon_{g,n}$'s
 - η_g's
- Use parallel reductions to calculate sufficient statistics for:

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

Gibbs steps
Estimated heterosis
probabilities

GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► Sample in parallel:
 - φ_σ's
 - $ightharpoonup lpha_{m{g}}$'s
 - \triangleright δ_g 's
 - $\triangleright \varepsilon_{g,n}$'s
 - $\triangleright \eta_g$'s
- Use parallel reductions to calculate sufficient statistics for:
 - \triangleright c_n 's

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vicor

The model

Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► Sample in parallel:
 - φ_σ's
 - $ightharpoonup lpha_{f g}$'s
 - \triangleright δ_g 's
 - $\triangleright \varepsilon_{g,n}$'s
 - $\triangleright \eta_g$'s
- Use parallel reductions to calculate sufficient statistics for:
 - \triangleright c_n 's
 - ▶ τ, d

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

he model

Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► Sample in parallel:
 - φ_σ's
 - $ightharpoonup lpha_{
 m g}$'s
 - \triangleright δ_g 's
 - $\triangleright \varepsilon_{\sigma,n}$'s
 - $\vdash \eta_g$'s
- Use parallel reductions to calculate sufficient statistics for:
 - \triangleright c_n 's
 - ▶ τ, d
 - \blacktriangleright θ_{ϕ} , θ_{α} , θ_{δ}

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

he model

Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► Sample in parallel:
 - φ_σ's
 - $ightharpoonup \alpha_{g}$'s
 - \triangleright δ_g 's
 - $\triangleright \varepsilon_{\sigma,n}$'s
 - $\vdash \eta_g$'s
- Use parallel reductions to calculate sufficient statistics for:
 - ► Cn'S
 - ▶ τ. d
 - \blacktriangleright θ_{ϕ} , θ_{α} , θ_{δ}
 - \triangleright σ_{ϕ} , σ_{α} , σ_{δ} , σ_{c}

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

Gibbs steps
Estimated heterosis
probabilities
GPU parallelism

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(y_{g,n} \mid \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- ► Sample in parallel:
 - $\rightarrow \phi_{\sigma}$'s
 - $ightharpoonup \alpha_{g}$'s
 - \triangleright δ_g 's
 - $\triangleright \varepsilon_{\sigma,n}$'s
 - $\vdash \eta_g$'s
- Use parallel reductions to calculate sufficient statistics for:
 - \triangleright c_n 's
 - ▶ τ, d
 - \bullet θ_{ϕ} , θ_{α} , θ_{δ}
 - \triangleright σ_{ϕ} , σ_{α} , σ_{δ} , σ_{c}
 - \blacktriangleright π_{α} , π_{δ}

Hybrid vigor

The Gibbs sample Gibbs steps Estimated heterosis

A Bavesian model

for hybrid vigor

Biological background

GPU parallelism

Outline

Biological background

DNA and RNA

Central dogma

Examples of gene regulation

RNA-seq

Hybrid vigor

The mode

The Gibbs sampler

Gibbs steps

Estimated heterosis probabilities

GPU parallelism

The software

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq

The model

The Gibbs sampler
Gibbs steps
Estimated heterosis
probabilities
GPII parallelism

The software

Ordinary C and GPU-accelerated versions, along with an R package wrapper, are available for download at https://github.com/wlandau/heterosis. A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vieor

The model

The Gibbs sample
Gibbs steps
Estimated heterosis

The software

► Ordinary C and GPU-accelerated versions, along with an R package wrapper, are available for download at https://github.com/wlandau/heterosis.

► Time for a demo...

A Bayesian model for hybrid vigor

Will Landau

Biological background DNA and RNA Central dogma Examples of gene regulation RNA-seq Hybrid vigor

The model

The Gibbs samp Gibbs steps Estimated heterosi probabilities

Sources

Some source.

A Bayesian model for hybrid vigor

Will Landau

Biological
background
DNA and RNA
Central dogma
Examples of gene
regulation
RNA-seq
Hybrid vigor

The model

The Gibbs samp Gibbs steps Estimated heterosis probabilities