

Höhere Mathematik 2

1 Nützliches Wissen $e^{ix} = \cos(x) + i \cdot \sin(x)$

1.0.1 sinh, cosh $\cosh^2(x) - \sinh^2(x) = 1$

$$\begin{aligned} \sinh x &= \frac{1}{2}(e^x - e^{-x}) & \text{arsinh } x := \ln\left(x + \sqrt{x^2 + 1}\right) \\ \cosh x &= \frac{1}{2}(e^x + e^{-x}) & \text{arcosh } x := \ln\left(x + \sqrt{x^2 - 1}\right) \end{aligned}$$

Additionstheoreme

$$\cosh x + \sinh x = e^x$$

$$\sinh(\operatorname{arcosh}(x)) = \sqrt{x^2 - 1}$$

$$\cosh(\operatorname{arsinh}(x)) = \sqrt{x^2 + 1}$$

Stammfunktionen

$$\int \sinh x \, dx = \cosh x + C$$
$$\int \cosh x \, dx = \sinh x + C$$

1.0.2 sin, cos $\sin^2(x) + \cos^2(x) = 1$

\boldsymbol{x}	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π	$\frac{3}{2}\pi$	2π
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	-1 0 $-\infty$	1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞	0	$-\infty$	0
A didded a mostly a construction				Chara				

Additionstheoreme

$$\cos(x - \frac{\pi}{2}) = \sin x$$

$$\sin(x + \frac{\pi}{2}) = \cos x$$

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = 2\cos^2 x - 1$$

$$\sin(x) = \tan(x)\cos(x)$$

Stammfunktionen

1.1 $\log \log(1) = 0$

$$a^x = e^{x \ln a} \qquad \log_a x = \frac{\ln x}{\ln a} \qquad \ln x \le x - 1$$

1.2 Integrale:

- Partielle Integration: $\int uv' = uv \int u'v$
- Substitution: $\int f(g(x)) g'(x) dx = \int f(t) dt$

t c	lt	
F(x)	f(x)	f'(x)
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}
$\frac{2\sqrt{x^3}}{3}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$x \ln(x) - x$	ln(x)	$\frac{1}{x}$
e^x	e^x	e^x
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$-\ln \cos(x) $	tan(x)	$\frac{1}{\cos^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$\frac{-1}{\sin^2(x)}$
$x \arcsin(x) + \sqrt{1 - x^2}$	$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$x \arccos(x) - \sqrt{1 - x^2}$	arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$
$x \arctan(x) - \frac{1}{2} \ln \left 1 + x^2 \right $	arctan(x)	$\frac{1}{1+x^2}$
$e^{(x)}(x-1)$	$x \cdot e^{(x)}$	$e^x(x+1)$
$\frac{1}{2}\left(\sqrt{x^2+1}x+\sinh^{-1}(x)\right)$	$\sqrt{1+x^2}$	$\frac{x}{\sqrt{x^2+1}}$

1.3 Determinante von $A \in \mathbb{K}^{n \times n}$: det(A) = |A|

$$\det\begin{pmatrix}A&0\\C&D\end{pmatrix}=\det\begin{pmatrix}A&B\\0&D\end{pmatrix}=\det(A)\cdot\det(D)$$
 Hat A 2 linear abhäng. Zeilen/Spalten $\Rightarrow |A|=0$

Entwicklung. n.
$$i$$
ter Zeile: $|A| = \sum\limits_{i=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot |A_{ij}|$

2 Normen

Ist V ein \mathbb{R} -VR, so ist $\|.\|:V\to\mathbb{R},v\mapsto\|v\|$ eine Norm, falls

- ||v|| > 0 und $||v|| = 0 \Leftrightarrow v = 0$
- $\|\lambda v\| = |\lambda| \cdot \|v\| \quad \forall v \in V, \forall \lambda \in \mathbb{R}$
- ||v + w|| < ||v|| + ||w||

2.1 l^p -Normen für $v \in \mathbb{K}^n$

$$\begin{array}{l} p=1 \text{ Betragsnorm: } \|v\|_1=|v_1|+|v_2|+\ldots+|v_n|\\ p=2 \text{ Euklidische Norm: } \|v\|_2=\sqrt{v_1^2+v_2^2+\ldots+v_n^2}\\ p\to\infty \text{ Maximumsnorm: } \|v\|_\infty=\max\{|v_i|\,|\,i\in\{1,\ldots,n\}\} \end{array}$$

2.2 Matrixnormen für $A \in \mathbb{K}^{n \times n}$

- submultiplikativ, falls $||AB|| \le ||A|| \cdot ||B|| \quad \forall A, B \in \mathbb{K}^{n \times n}$
- verträglich mit einer Vektornorm $\|.\|_V$ des \mathbb{K}^n , falls

$$||Av||_V \le ||A|| \cdot ||v||_V \quad \forall v \in \mathbb{K}^n, \forall A \in \mathbb{K}^{n \times n}$$

ullet natürlich bzw. induziert durch eine Vektornorm $\|.\|_V$ des \mathbb{K}^n , falls

$$||A|| := \sup \frac{||Av||_V}{||v||_V} \qquad V \in \mathbb{K}^n \setminus \{0\} \qquad ||E_n|| = 1$$

Frobenius norm:
$$||A||_F = \sqrt{\sum_{j=1}^n \sum_{i=1}^n a_{ij}^2}$$

Zeilensummennorm
$$\|A\|_{(\infty)} = \max_i \sum_{j=1}^n |a_{ij}|$$

Spaltensummennorm:
$$||A||_{(1)} = \max_{j} \sum_{i=1}^{n} |a_{ij}|$$

Spektralnorm:
$$\|A\|_{(2)} = \sqrt{\lambda_{max}(A^\top \cdot A)}$$

3 Taylor-Entwicklung

Man approximiert eine m-mal diffbare Funktion $f:I=[a,b]
ightarrow \mathbb{R}$ in $x_0 \in I$ mit dem m-ten Taylorpolynom:

$$T_{m,f,x_0}(x) = \sum_{i=0}^{m} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i$$

Taylor-Entw. von Polynomen/Potenzreihen sind die Funktionen selbst Für $m \to \infty$: Taylorreihe

Konvergenzradius:
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$$

3.1 Das Restglied - die Taylorformel

Für
$$(m+1)$$
-mal stetig diffbare Funktionen gilt $\forall x \in I$:
$$\boxed{R_{m+1}(x) \coloneqq f(x) - T_{m,f,x_0}(x)} = \\ = \frac{1}{m!} \int_{x_0}^x (x-t)^m f^{(m+1)}(t) \mathrm{d}t \quad \text{(Integraldarst.)} \\ = \frac{f^{(m+1)}(\xi)}{(m+1)!} (x-x_0)^{m+1} \quad \xi \in [x,x_0] \text{ (Lagrange) zur Berechnung der Genauigkeit}$$

3.2 Landau-Notation

- f(x) = o(g(x)) für $x \to a \Leftrightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = 0$
- f(x) = O(g(x)) für $x \to a \Leftrightarrow |f(x)| \le C|g(x)|$ für $x \in (a \epsilon, a + \epsilon)$ u. C > 0oder $0 \le \limsup_{x \to a} \left| \frac{f(x)}{g(x)} \right| < \infty$

Bei Taylor-Entwicklung:

- $R_{m+1,f,x_0}(h) = f(x_0+h) T_{m,f,x_0}(h) = o(h^m)$ f muss m-mal differenzierbar sein
- $\bullet \ R_{m+1,f,x_0}(h) = f(x_0+h) T_{m,f,x_0}(h) = O(h^{m+1})$ f muss (m+1)-mal differenzierbar sein

3.2.1 Rechenregeln

- f = O(f)
- $f = o(g) \Rightarrow f = O(g)$
- $f_1 = o(g)$ u. $f_2 = o(g)$ \Rightarrow $f_1 + f_2 = o(g)$
- $f_1 = O(g)$ u. $f_2 = O(g)$ \Rightarrow $f_1 + f_2 = O(g)$
- $f_1 = O(g)$ u. $f_2 = O(g)$ \Rightarrow $f_1 \cdot f_2 = O(g_1 \cdot g_2)$
- $f_1 = O(g)$ u. $f_2 = o(g)$ \Rightarrow $f_1 \cdot f_2 = o(g_1 \cdot g_2)$

3.2.2 Elementarfunktionen

$$e^x = \sum_{k=0}^{m} \frac{x^k}{k!} + O(x^{m+1})$$

• Trigonometrische Funktionen
$$\sin x = \sum_{k=0}^{m} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + O(x^{2m+3})$$
$$\cos x = \sum_{k=0}^{m} (-1)^k \frac{x^{2k}}{(2k)!} + O(x^{2m+2})$$

$$\ln(1+x) = \sum_{k=1}^{m} \frac{(-1)^{k+1}}{k} x^k + O(x^{m+1})$$

4 Iterationsverfahren

Mit Iterationsverfahren werden Nullstellen bestimmt.

4.1 Fixpunktiteration

- 1. f(x) = 0 auf Form g(x) = x bringen
- 2. Konvergenz zeigen (Banach'scher Fixpunktsatz)
 - $g: I = [a; b] \mapsto I$ ist differenzierbar
 - $|g'(x)| < L \quad \forall x \in I \text{ mit } 0 < L < 1$
- 3. Nullstelle mit Folge $x_{n+1} = g(x_n)$ und Startwert x_0 annähern

Abschätzungen: (Nullstelle x*)

- $|x_n x^*| < L^n |x_0 x^*|$ 'a priori'
- $|x_n x^*| \leq \frac{L}{1-L} |x_n x_{n-1}|$ 'a posteriori'
- $|x_n x^*| \le L |x_{n-1} x^*| \to \text{Lineare Konvergenz}$

4.2 Newton-Verfahren

Quadratische Konvergenz:
$$\left|x_n-x^*\right|\leq C\left|x_{n-1}-x^*\right|^2$$
 mit $C>0$ Formel:
$$\left|x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}\right|$$
 mit Startwert x_0

Voraussetzungen

- $f:[a,b]\mapsto\mathbb{R}$ ist **2-mal** stetig differenzierbar
- $m := \min_{x \in \mathcal{X}} |f'(x)| > 0$ u. $M := \max_{x \in \mathcal{X}} |f''(x)|$
- Wenn $|x_0 x^*| \leq \frac{2m}{M} \Rightarrow$ Konvergenz gegen x^*

Abschätzungen:

•
$$|x^* - x_n| \le \frac{M}{2m} |x^* - x_{n-1}|^2$$
; $n = 1, 2, ...$

5 Kurven

Eine Kurve ist ein eindimensionales Objekt

$$\underline{\gamma}:[a,b]\to\mathbb{R}^n, t\mapsto \begin{pmatrix} \gamma_1(t)\\ \vdots\\ \gamma_n(t) \end{pmatrix} \qquad \text{(Funktionenvektor)}$$

- C⁰-Kurve: Positionsstetigkeit (geschlossene Kurve)
- C¹-Kurve: Tangentialstetigkeit (stetig diffbar)
- C²-Kurve: Krümmungsstetigkeit (2 mal stetig diffbar)
- regulär, falls $\forall t \in [a, b] : \dot{\gamma}(t) \neq \mathbf{0}$ (Keine Knicke)

Besondere Punkte von Kurven:

- Singulär, falls $\dot{\gamma}(t) = \underline{\mathbf{0}}$ (Knick)
- \bullet Doppel-punk, falls $\exists t_1,t_2:t_1\neq t_2 \ \land \ \gamma(t_1)=\gamma(t_2)$
- Horizontaler Tangentenpunkt, falls $\dot{\gamma}_1(t) \neq 0 \land \dot{\gamma}_2(t) = 0$
- Vertikaler Tangentenpunkt, falls $\dot{\gamma}_1(t) = 0 \land \dot{\gamma}_2(t) \neq 0$

Bogenlänge einer Kurve:
$$L(\gamma) = \int_a^b \|\dot{\gamma}(t)\| dt$$

Umparametrisierung γ nach Bogenlänge $(\tilde{\gamma})$:

- \bullet Bogenlängenfunktion: $s(t) = \int\limits_{-}^{\iota} \| \dot{\gamma}(\tau) \| \mathrm{d}\tau$ $s: [a, b] \rightarrow [0, L(\gamma)], t \mapsto \overset{a}{s}(t)$
- $\tilde{\gamma}(t) = \gamma(s^{-1}(t))$ $\|\dot{\tilde{\gamma}}(t)\| = 1 \forall t$

Tangenteneineitsvektor an $\gamma(t):T(t)=\frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$

Krümmung von γ : $\kappa(t) = \|\frac{\mathrm{d}^2 \gamma}{12}\| = \frac{\|\dot{T}(t)\|}{2}$

Vereinfachung für n=2: $\gamma:[a,b]\to\mathbb{R}^2, t\mapsto \big(x(t),y(t)\big)$

$$L(\gamma) = \int_a^b \sqrt{\dot{x}^2 + \dot{y}^2} \, dt \qquad \tilde{\kappa}(t) = \frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{(\dot{x}^2 + \dot{y}^2)^{\frac{3}{2}}}$$

6 Skalarfelder

Ein Skalarfeld ordnet jedem Vektor eines Vektorraums einen Wert zu. $f: D \subseteq \mathbb{R}^n \to \mathbb{R}, (x_1, \dots, x_n) \mapsto f(x_1, \dots, x_n)$ Teilmengen von \mathbb{R}^n : $D = [a_1, b_1] \times ... \times [a_n, b_n]$ D^{C} Offene Kugelmenge vom Radius r: $B_r(x_0)$ \dD_ Topologische Begriffe für $D \subseteq \mathbb{R}^n$ \check{D} D

- ullet Das Komplement D^C von $D \colon D^C := \mathbb{R}^n \setminus D$
- innerer Punkt $x_0 \in \mathbb{R}^n$ des Inneren $\overset{\circ}{D}$ von D, falls $\exists \varepsilon > 0 : B_{\varepsilon}(x_0) = \{ x \in \mathbb{R}^n \mid ||x - x_0|| < \varepsilon \} \subseteq D$
- Die Menge D heißt offen, falls D = D
- Randpunkt $x_0 \in \mathbb{R}^n$ des Rands ∂D von D, falls $\forall \varepsilon > 0$: $B_{\varepsilon}(x_0) \cap D \neq \emptyset \wedge B_{\varepsilon}(x_0) \cap D^C \neq \emptyset \Rightarrow \partial D = \partial D^C$
- Abschluß \overline{D} von D: $\overline{D} = D \cup \partial D$
- Die Menge D ist abgeschlossen, falls $\partial D \subseteq D$
- beschränkt, falls $\exists \mu \in \mathbb{R} \forall x \in D : ||x|| < \mu$
- · kompakt, falls D abgeschlossen und beschränkt ist.

Es gilt: Ist $D \subseteq \mathbb{R}^n$ offen, so ist D^C abgeschlossen. R und ∅ sind offen und abgeschlossen.

6.1 Folgen, Grenzwerte, Stetigkeit im \mathbb{R}^n

Eine Folge $(X^{(k)})$ ist eine Abbildung $(X^{(k)}): \mathbb{N}_0 \to \mathbb{R}^n, k \mapsto x^{(k)}$ Die Folge konvergiert, falls $\lim_{k \to \infty} \|x - x^{(k)}\| = 0$

Folge konvergiert, falls sie komponentenweise konvergiert!

Für $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ bedeutet Grenzwert: $\lim_{x\to x_0} f(x) = c \Leftrightarrow f\big(X^{(k)}\to x_0\big)\to c$

Stetigkeit: $\forall x \in \mathbb{R}^n : \lim_{x \to x_0} f(x) = f(x_0)$

Satz von Max. und Min.: Ist $f(\underline{x})$ stetig und D kompakt, so $\exists x_{max}, x_{min} \in D \forall x \in D : f(x_{min}) \leq f(x) \leq f(x_{max})$

6.2 Differentiation von Skalarfeldern - Gradient

Gradientenregeln: $f, g: D \subseteq \mathbb{R}^n \to \mathbb{R}$ sind partiell diffbar: Linearität: $\nabla(\lambda f + \mu g)(x) = \lambda \nabla f(x) + \mu \nabla g(x)$ Produkt: $\nabla (f \cdot g)(x) = g(x)\nabla f(x) + f(x)\nabla g(x)$ Quotient: $\nabla \left(\frac{f}{g}\right) = \frac{1}{g^2} \left(g(x)\nabla f(x) - f(x)\nabla g(x)\right)$

Kettenregeln:

$f: \mathbb{R}^{n} \to \mathbb{R} \wedge g: \mathbb{R} \to \mathbb{R}$	$f: \mathbb{R}^n \to \mathbb{R} \land g: \mathbb{R} \to \mathbb{R}^n$
$h := g \circ f : \mathbb{R}^n \to \mathbb{R}$ $\nabla h(x) = g'(f(x)) \cdot \nabla f(x)$	$h := f \circ g : \mathbb{R} \to \mathbb{R}$ $h'(x) = \nabla f(g(x))^T \cdot \dot{g}(t)$

6.3 Differentialoperatoren

$$\operatorname{div}\left(\operatorname{rot}\left(f\right)\right)=0$$

Operator	Definition
Gradient: $\operatorname{grad} f$ S-Feld $ o$ V-Feld	$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$
$\begin{array}{l} Divergenz:\ \mathrm{div}\ f \\ V\text{-}Feld \to S\text{-}Feld \end{array}$	$\nabla^{\top} \cdot f = \sum_{i=0}^{n} \frac{\partial f_i}{\partial x_i}$
Rotation: rot f V-Feld \rightarrow V-Feld	$\nabla \times f = \begin{pmatrix} \frac{\partial f_3}{\partial y}(x) - \frac{\partial f_2}{\partial z}(x) \\ \frac{\partial f_1}{\partial z}(x) - \frac{\partial f_3}{\partial x}(x) \\ \frac{\partial f_2}{\partial z}(x) - \frac{\partial f_3}{\partial y}(x) \end{pmatrix}$
$\begin{array}{c} Laplace: \ \Delta \ f \\ S-Feld \ \to \ S-Feld \end{array}$	$\nabla^{2}_{\nabla^{\top} \cdot (\nabla f)} = \sum \frac{\partial f}{\partial x_{i} x_{i}}$

6.4 Höhere Partielle Ableitungen $\partial_j \partial_i f(x) = f_{x_i x_j}(x)$

 $C^m(D) = \{ m\text{-mal stetig partiell diffbare Funktion auf D} \}$ Satz von Schwarz: $f \in \mathcal{C}^2(D) \Rightarrow f_{x_i x_j}(x) = f_{x_i x_j}(x) \quad \forall i, j$

Mittelwertsatz ($f:D\subseteq\mathbb{R}^n\to\mathbb{R}, xy\in D\quad x,y\subseteq D$) $\exists \xi \in \overline{x,y} \text{ mit } f(y) - f(x) = \nabla f^{\top}(\xi)(y-x)$ Es gilt $|f(y) - f(x)| \le c|y - x|$ mit $c = \max \|\nabla f(z)\|$ $z \in \overline{x, y}$

$$\text{Hessematrix: } H_f(x) = \nabla^2 f(x) = \begin{bmatrix} \partial_{11} f(x) \ \dots \ \partial_{1n} f(x) \\ \vdots \ \vdots \ \vdots \\ \partial_{n1} f(x) \ \dots \ \partial_{nn} f(x) \end{bmatrix}$$

Die Hessematrix ist symmetrisch, falls $f \in \mathcal{C}^2(D)$

$$\begin{array}{ll} T_{2,f,\underline{x}_0}(\underline{x}) = f(\underline{x}_0) + & \text{(un inder rasant}^1) \\ + \nabla f(\underline{x}_0)^\top (\underline{x} - \underline{x}_0) + & \text{(Tangentialebene)} \\ + \frac{1}{2} (\underline{x} - \underline{x}_0)^\top \underline{H}_f(x_0) (\underline{x} - \underline{x}_0) & \text{(Schmiegequadrik)} \\ T_{3,f,\underline{a}}(\underline{x}) = f(\underline{a}) + \sum \partial_i f(\underline{a}) (x_i - a_i) + \frac{1}{2} \sum \partial_i \partial_j f(\underline{a}) (x_i - a_i) (x_j - a_j) + \frac{1}{6} \sum \partial_i \partial_j \partial_k f(\underline{a}) (x_i - a_i) (x_j - a_j) (x_k - a_k) \end{array}$$

6.5 Lineare Abbildungen

 $f:V \to W$ heißt linear, falls

- f(v + w) = f(v) + f(w)
- $f(\lambda v) = \lambda f(v)$
- Tipp: Prüfe ob f(0) = 0

Kern von $f: \ker(f) = \{v \in V \mid f(v) = 0\}$ ist UVR von VBild von f: Bild $(f) = \{f(v) \mid v \in V\}$ ist UVR von WDualraum $V^* = \{ f : \mathbb{R}^n \to \mathbb{R} \mid f = lin. \}$ Injektiv (aus $f(x) = f(y) \rightarrow x = y$), falls $\ker(f) = \{0\}$ Surjektiv Alle Werte im Zielraum werden angenommen

6.5.1 Dimensionen

$\dim(V) = \dim(\ker(f)) + \dim(\operatorname{Bild}(f))$
rg(f) = dim(Bild(f))

Falls $\dim(V) = \dim(W)$, so gilt: f ist surjektiv $\Leftrightarrow f$ ist injektiv $\Leftrightarrow f$ ist bijektiv.

6.5.2 Die Darstellungsmatrix

...beschreibt eine lineare Abbildung zwischem zwei endlichdimensionalen Vektorräumen.

Sonderfälle:

$$E_n M(f) E_n = \widetilde{A} \quad E_n M(id)_{B'} = \widetilde{B}'$$

Koordinatenvektor ${}_Bv$ von $v=\lambda_1\underline{b}_1+\ldots+\lambda_n\underline{b}_n$ bezüglich \underline{B}

$$gv := \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \in \mathbb{K}$$

Darstellungsmatrix von f bzgl. der Basen B in C $_{C}M(f)_{B} = \begin{pmatrix} _{C}f(b_{1}) & _{C}f(b_{2}) & \dots & _{C}f(b_{n}) \end{pmatrix} \in K^{m \times n}$

Darstellungsmatrizen bei Verkettungen von linearen Abbildungen $DM(g \circ f)_B = DM(g)_C \cdot CM(f)_B$

6.5.3 Die Bassistentransfomationsformel

 $f: V \to W, B, B'$ Basen von V in C, C' Basen von W alle endlich $C'M(f)_{B'} = C'M(id)_C \cdot CM(f)_B \cdot BM(id)_{B'}$

Bestimmung von $C'M(id)_C$: LGS: $(C'|C) \xrightarrow{EZF} (E_n|_{C'}M(id)_C)$

für
$$V = W = K^n$$
 und $C = B = E_n$

$$f: \mathbf{K}^n \to \mathbf{K}^n, f(v) = \mathbf{A}v$$

 $_{B'}M(f)_{B'}={_{B'}M(id)_{E_n}\cdot E_nM(f)_{E_n}\cdot E_nM(id)_{B'}}=$ $B'^{-1} \cdot A \cdot B'$

6.6 Jacobimatrix = Fundamentalmatrix

$$\underline{J}_f(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} = \begin{pmatrix} \nabla f_1^\top \\ \vdots \\ \nabla f_m^\top \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Rechenregeln für die Jacobimatrix:

 $f,g:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ part. diffbar Linearität: $J_{\alpha f + \beta g} = \alpha J_f + \beta J_g$

Produkt: $J_{f^\top g} = g^\top J_f + f^\top J_g \quad (\nabla f^\top g = J_f^\top g + J_g^\top f)$

Komposition: $\mathbf{J}_{g \circ f}(x) = \mathbf{J}_{g}(f(x)) \cdot \mathbf{J}_{f}(x)$

Umkehrfunktion: $J_{f-1}(f(x)) = J_f(x)^{-1}$

7 Koordinatensysteme

Um einen Vektor in anderen Koordinaten darzustellen:

Zur Basistransformation: Transformationsmatrix $oldsymbol{\mathcal{S}}$				3	$f_{kath} =$
	0	$-\sin(\varphi)$ $\cos(\varphi)$ 0	0 1		$oldsymbol{S}_Z \cdot f_{zyl}$
$ \begin{bmatrix} \cos(\varphi) & \sin(\varphi) & \sin(\varphi) \\ \sin(\varphi) & \cos(\theta) \end{bmatrix} $	$ in(\theta) $ $ in(\theta) $ $ \theta$	$-\sin(\varphi) \\ \cos(\varphi) \\ 0$	$ \cos(\varphi)\cos(\theta) \\ \sin(\varphi)\cos(\theta) \\ -\sin(\theta) $		$oldsymbol{S}_k \cdot f_{kugel}$

Die Spalten entsprechen den orthonormalen Basisvektoren im jeweiligen Koordinatensystem.

 \Rightarrow Trafo-Matrizen orthogonal: $oldsymbol{S}^{-1} = oldsymbol{S}^{ op}$

	Zylinderkoordinaten
∇	$\left \begin{array}{cc} (\partial_r, \ \frac{1}{r}\partial_{\varphi}, \ \partial_z)^{\top} \end{array} \right $
div	$ \frac{1}{r} \partial_r (r \cdot \underline{\underline{f}}_r) + \frac{1}{r} \partial_{\varphi} (\underline{\underline{f}}_{\varphi}) + \partial_z (\underline{\underline{f}}_z) $
Δ	$\frac{1}{r}\partial_{rr}(r\cdot f) + \frac{1}{r^2}\partial_{\varphi\varphi}f + \partial_{zz}f$

	Kugelkoordinaten
∇	$(\partial_r, \frac{1}{r}\partial_{\varphi}, \frac{1}{r\sin\theta}\partial_{\theta})^{\top}$
div	$\frac{1}{r^2}\partial_r(r^2\underline{\boldsymbol{f}}_r) + \frac{1}{r\sin\theta}\partial_\varphi(\underline{\boldsymbol{f}}_\varphi) + \frac{1}{r\sin\theta}\partial_\theta(\sin\theta\underline{\boldsymbol{f}}_\theta)$
Δ	$\frac{1}{r^2}\partial_{rr}(r^2f) + \frac{1}{r^2\sin^2\theta}\partial_{\varphi\varphi}(\sin\theta f) + \frac{1}{r^2\sin\theta}\partial_{\theta\theta}f$

8 Implizite Funktionen a

werden als Nullstellenmenge einer expl. Funktion f angegeben. $\{(x,y) \in \mathbb{R}^2 \mid f(x,y) = 0\} \text{ mit } y = g(x) \in \mathbb{R}$

8.1 Satz über implizite Funktionen:

Es gelte: $f:D\in\mathbb{R}^2\to\mathbb{R}$ \to implizite Gleichung f(x,y)=0

- D ist offen
- f ∈ C¹(D)
- $\exists (x_0, y_0) \in D \text{ mit } f(x_0, y_0) = 0$
- $f_u(x_0, y_0) \neq 0$

 $\Rightarrow \exists I \subseteq \mathbb{D} : I = (x_0 - \epsilon, x_0 + \epsilon), J \subseteq \mathbb{R} : J = (y_0 - \delta, y_0 + \delta)$

- $I \times J \subseteq D$ in $f_y(x, y) \neq 0 \forall (x, y) \in I \times y$
- \exists_1 Funktion g(x) mit f(x,y) = 0 ("g wird implizit defniert")
- $g'(x) = \frac{-f_x(x,g(x))}{f_y(x,g(x))} = \frac{-f_x(x,y)}{f_y(x,y)} \quad \forall x \in I$

 $g''(x) = -\frac{f_{xx}(x,g(x)) + 2f_{xy}(x,g(x)) \cdot g'(x) + f_{yy}(x,g(x)) \cdot (g'(x))^2}{f_{yy}(x,g(x))} \text{ Und schließlich: } \underbrace{R} = \underbrace{U}^\top \underbrace{A} \underbrace{U} \quad \Rightarrow \underbrace{R} \text{ ist obere Dreiecksmatrix: Party!}$

8.2 Satz über implizite Funktionen (allgemein)

 $f: \mathbb{R}^{k+m}
ightarrow \mathbb{R}^m$ stetig diffbar, $z_0 = (x_0, y_0) \in \mathbb{R}^{k+m} \ x_0 \in \mathbb{R}^k, y_0 \in \mathbb{R}^m \ \text{mit} \ f(z_0) = 0$ Falls $J_{f,y}=(rac{\partial f_{i(z_0)}}{\partial x_j})_{i=1...mj=k+1...k+m}$ ist invertierbar $(\det J_{f,y}(z_0) \neq 0)$ Dann: \exists offende Menge I in J mit $g:I\to J$ mit f(x,g(x))=0

8.3 Satz von der Umkehrabbildung

 $D \subset \mathbb{R}^n$ offen, $f: D \to \mathbb{R}^n \in C^1(D).X_0 \in D$ mit $J_f(x_0)$ ist

Dann: $\exists U$ Umgebung von x_0 mit $f|_U:U\to f(U)$ ist bijektiv. Die Umkehrfunktion $(f|_u)^{-1}$ ist stetig diffbar und es gilt: $J(f|_{U})^{-1}(f(x)) = (J_{f}(x))^{-1} \forall x \in U$

8.4 Diagonalmatrix

$$\begin{split} & \underbrace{D} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} & \underbrace{D} = \underbrace{B}^{-1} \underbrace{A} \underbrace{B} \\ & B = \left[\underbrace{EV}_1, \underbrace{EV}_2, \ldots \right] \\ & B = \left(E_3 b_1, E_3 \ b_2, E_3 \ b_3 \right) = (v_1, v_2, v_3) \end{split}$$

8.5 Definitheit

Eine sym. Matrix $A = A^{\top} \in \mathbb{R}^{n \times n}$ heißt pos. $\forall v \in \mathbb{R}^n \setminus \{0\} : \underline{v}^\top \underline{A} \underline{v} \geq 0 \Leftrightarrow \text{Alle EW } \lambda \geq 0$ pos. neg. semi definit $\Leftrightarrow \forall v \in \mathbb{R}^n : \underline{v}^\top \underline{A} \underline{v} \stackrel{\geq}{\leq} 0 \Leftrightarrow \text{ Alle EW } \lambda \stackrel{\geq}{\leq} 0$ indefinit $\Leftrightarrow \exists v, w \in \mathbb{R}^n : \underline{v}^\top \underline{A}\underline{v} < 0 \land \underline{w}^\top \underline{A}\underline{w} > 0 \Leftrightarrow$ $\exists \lambda_1 > 0 \land \lambda_2 < 0$ Alle EW von $\mathbf{A} = \mathbf{A}^{\top}$ sind reel. $\lambda \in \mathbb{R}$ selbst wenn EV $v \in \mathbb{C}$! Überprüfung mit $\det \mathbf{A} = \prod \lambda_i$ Sp $\mathbf{A} = \sum \lambda_i$

8.6 Eigenwerte, Eigenvektoren

Eigenwerte: $\det(\boldsymbol{A} - \lambda \boldsymbol{1}) = 0$, Det-Entwickl., Polynom-Div. $\Rightarrow \chi_A = (\lambda_1 - \chi)^{\nu_1} \cdot \dots \cdot (\lambda_r - \chi)^{\nu_r} \quad \nu_i = \text{alg}(\lambda_i)$

Eigenvektoren: $\operatorname{Eig}_A(\lambda_i) = \ker(\mathbf{A} - \lambda_i \mathbf{1}) = v_i$ $\rightarrow \dim(\operatorname{Eig}_A(\lambda_i)) = \operatorname{geo}(\lambda_i) \quad \forall i : 1 \leq \operatorname{geo}(\lambda_i) \leq \operatorname{alg}(\lambda_i)$

$$\underline{\underline{A}}\underline{\underline{v}} = \lambda\underline{\underline{v}}$$
 mit $\underline{\underline{v}}$ EV von $\underline{\underline{A}}$

zwei Matrizen sind ähnlich wenn sie die gleihen EW besitzen.

8.7 Schnurzerlegung

 $oldsymbol{R} = oldsymbol{U}^T oldsymbol{A} oldsymbol{U}$ geht für jede quadratische Matrix $oldsymbol{\widetilde{A}}$, deren charakatristische Polynom in Linearfaktoren zerfällt. U ist orthogonal $U^{\top} = U^{-1}$ R ist obere Dreiecksmatrix

- 1. Finde 1 EW λ_1 und bestimme EV $\underline{\boldsymbol{v}}_1$ zu λ_1 mit $\|\underline{\boldsymbol{v}}_1\|=1$
- 2. Ergänze v_1 zu einer ONB:

$$\underline{\mathcal{B}}_1 = (\underline{v}_1, \underline{w}_2, ..., \underline{w}_n,) \in \mathbb{R}^{n \times n} \qquad (\underline{\mathcal{B}}_1^\top = \underline{\mathcal{B}}_1^{-1})$$

3. Berechne $B_1 \underbrace{M}(f)B_1 = \underbrace{B}_1^{\top} \underbrace{A} \underbrace{B}_1 = \begin{bmatrix} \lambda_1 & * \\ 0 & \underline{A}_1 \end{bmatrix}$

4. Wiederhole 1. bis 4. mit A_1 anstelle von A, bis

Abbruchbedingung:
$$\underline{\mathcal{B}}_i$$
 ist (2×2) -Matrix, dann berechne
$$\underline{\mathcal{U}} := \left[\begin{array}{ccc} \mathbf{\mathcal{B}}_1 & \\ \\ \end{array} \right] \cdot \left[\begin{array}{ccc} 1 & \dots & 0 \\ \vdots & \mathbf{\mathcal{B}}_2 & \\ \end{array} \right] \cdot \dots$$

Das liefert $A_1 \in \mathbb{R}^{(n-1)\times (n-1)}$

8.8 Singulärwertzerlegung $A = U \Sigma V^{ op}$

- ullet Bestimme die Eigenwerte $\lambda_1,...,\lambda_n$ von $oldsymbol{A}^ op\cdotoldsymbol{A}$ (sym.) aus $\mathbb{R}^{n \times n}$ und sortiere: $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n \ge 0$
- Bestimme dann eine ONB $V = (v_1, ..., v_n)$ aus EV von $\mathbf{A}^{\top} \cdot \mathbf{A}$
- $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_2)$

(Ergänze mit Nullspalten/ Zeilen das $\dim \Sigma = \dim A$)

- $\Sigma = U^{\top} \cdot A \cdot V \quad (U, V \text{ sind orthogonal})$ $\stackrel{\sim}{m \times n} \stackrel{\sim}{m \times m} \stackrel{\sim}{m \times n} \stackrel{\sim}{n \times n}$
- Bestimme $\underline{u}_1, \ldots, \underline{u}_k, k = \min\{m, n\}$ aus $\underline{u}_i = \frac{1}{\sigma_i} \underbrace{A}_{\underline{v}_i} \underbrace{v}_{\underline{v}_i}$ mit SW $\sigma_i = \sqrt{\lambda_i}$ daraus erhält man $U = (\underline{u}_1, \underline{u}_2, \dots \underline{u}_k)$ Für $n \leq m$ Vektoren zu ONB U des \mathbb{R}^n ergänzen.

8.9 Extremwerte von Skalarfeldern $f(\underline{x})$

8.9.1 Extremewerte ohne NB

• Suche Kandidaten (stationäre Punkte): $\{\underline{x}_0\}: \nabla f(\underline{x}_0) = 0$

$$\bullet \ \ \mathsf{Falls} \ H_f(\underline{x}_0) \begin{cases} \mathsf{neg. \ definit} & \Rightarrow \underline{x}_0 = \mathsf{lok. \ Max.} \\ \mathsf{pos. \ definit} & \Rightarrow \underline{x}_0 = \mathsf{lok. \ Min.} \\ \mathsf{indefinit} & \Rightarrow \underline{x}_0 = \mathsf{Sattelpunkt} \\ \mathsf{semidefinit} & \Rightarrow \underline{x}_0 = \mathsf{keine \ Aussage} \end{cases}$$

ullet globale Extreme ightarrow prüfe Rand

8.9.2 Extremwerte von $f(\underline{x})$ mit Nebenbedingung

- $\bullet \ \mbox{NB} \ g(x) = 0 \ \mbox{ist nach einer Variable auflösbar.} \\ \rightarrow \mbox{Setze} \ x_i \ \mbox{in} \ f(x) \ \mbox{ein} \rightarrow \mbox{Bestimme EW}$
- Lagrange-Multiplikatorregel Nebenbedingung g(x) = 0

$$L(x,\lambda) = f(x) + \lambda g(x)$$

• Kandidaten 2. Art: $\nabla L(x, \lambda) = 0$

ullet Vergleich der Funktionswerte der Kandidaten o Entscheide über Max/ Min bzw. betrachte Rand

PS: Lagrange bestiehlt kleine Kinder!!!!

8.10 Sonstiges

8.11 Skalares Kurvenintegral

von Skalarfeld $f(\underline{x})$ entlang einer Kurve $\underline{\gamma}(t)$ mit $\underline{x},\underline{\gamma}\in\mathbb{R}^n$

$$\int\limits_{\gamma} f \ \mathrm{d}s := \int\limits_{a}^{b} f\big(\underline{\gamma}(t)\big) \cdot \|\underline{\dot{\gamma}}(t)\| \mathrm{d}t$$

Im Fall n=2 gibt $\int\limits_{\gamma}f\;\mathrm{d}s$ den Flächeninhalt unter f entlang der Spur

von $\underline{\gamma}$ an. $L(\underline{\gamma})$ ist das skalares Kurvenintegral über f=1 Anmerkung: Ist $\varrho(x,y,z)$ die Masse- oder Ladungsdichte eines Drahtes so ist die Gesamtmasse M:

$$\int_{\gamma} f \, \mathrm{d}s = \int_{a}^{b} \varrho(\underline{\gamma}(t)) \cdot \|\underline{\dot{\gamma}}(t)\| \, \mathrm{d}t$$
Por Schwerpunkt $S = (S_1, S_2, S_3)$ ict. $S_4 = (S_1, S_2, S_3)$

Der Schwerpunkt $\underline{S}=(S_1,S_2,S_3)$ ist: $S_i=\frac{1}{M(\underline{\gamma})}\cdot\int\limits_{\gamma}x_i\varrho\;\mathrm{d}s$

8.12 vektorielles Kurvenintegral

von einem Vektorfeld $\underline{v}(\underline{x})$ längs der Kurve $m{\gamma}$ mit $\underline{x},\underline{v},m{\gamma}\in\mathbb{R}^n$

$$\int \underline{\boldsymbol{v}} \cdot d\underline{\boldsymbol{s}} := \int_{a}^{b} \underline{\boldsymbol{v}} \big(\underline{\boldsymbol{\gamma}}(t)\big)^{\top} \cdot \underline{\dot{\boldsymbol{\gamma}}}(t) dt$$

Für beide Integrale gilt: $\forall \lambda, \mu \in \mathbb{R}, \forall f, g$

$$\int \lambda f + \mu g \, ds = \int \lambda f \, ds + \int \mu g \, ds$$

$$\chi = \int \gamma_i \text{ so gilt: } \int f \, ds = \sum \int \int f \, ds$$

$$\int f \, ds = (-) \int \int f \, ds$$

$$\chi = \int \beta_{\text{Bei VF}} - \chi = 0$$

$$\chi = 0$$

$$\chi$$

8.13 Integrabilitätsbedingung (Gradientenfeld)

⇒ Kurve muss einfach zusammenhängend sein. (Man muss die Kurve auf einen Punkt zusammenziehen könnnen)

• Im Fall
$$n=2$$
: $\frac{\partial v_1}{\partial u}=\frac{\partial v_2}{\partial x}$

• Im Fall n=3: rot $v=0 \Rightarrow$ Integrabilitätsbedinung ist erfüllt.

Auch wichtig: Schrödingers Katze