34. | Optimization Problems "NLP" form ("Norlineer Programmy") min f(x) such that $f(x) \leq 0$ (=0, -1, m)"s.t."

h; (x) = 0 (=0, -1, p)I value denoted p^* Optimal value denoted p* (p*=+10 means infeasible) = not assuming convexity yet = If fo(x) = constant, this is a "fewerbility problem" Sometimes you have to work a soit to put a problem i'm a standard form (eg. mass for to min -fo or 3x>5 ⇐> 5-3x ≤0) Egviralent problems means problems w, same argain, but otherwise many be different mil 11 Ax-61/2 vs min 11 Ax-6112 Inoteven smooth differentiable (Strongly smooth!) Tricks change of variables (often affine) Ex: $min q(x) = \frac{y=1}{x} min \tilde{q}(y) := q(\frac{1}{y})$ $x \in \mathbb{R}^{1} + +$ $y \in \mathbb{R}^{1} + +$ Ex: nuh $\varphi(x)$ $y = tx \quad \text{nuh } \varphi(y) := \varphi(y^2)$ $x \in \mathbb{R}^1 \quad y \in \mathbb{R} \text{ unconstrained } !$

Slack variables mih & (x) xelpn s.t. f. (x) =0 (=1, --, ~ Eliminate Constraints Ex suppose Ax=6 is a constraint > X=Xs+y for some y < Ker(A) (Ay=0) and a "particular" solution xo (Ax = b. Any such xo not let F be a mostrix whose columns are a books? for ker (A), then v= F. 2 for some 2 (ie. if A = [U, U2] [Z, O] [V, T] then T SVD Soy. value \$ ~ \(\chi^{6} + \mathbb{E}^{5} \) (unconstrained!)

§4.2 Convex optimization problems
NID from
min f, w) = require f, to be a convex finetran
firs =0 & require fi to be a convex fonction
$(\cdot \cdot$
(b. h.(x) to AND h.(x) >0 (f. comm>) (s not
so need hi and -hi convex a convex set.
i'e- hi norst be affine, notagran- aitx=bi
· ·
Recell (w) convex constraints)
fo convex => all local sol'n also global
fo stretty erx => global sol'h is vngre
·
fo coercire => global sol'n exists
Optimality conditions
(et C={x: f.(x) =0 \ i=1,, n and a. [x=6: i=1,,p
·
mh f(x) = assume exx fen xe(= assume exx set
By convexity, I a subgraduent at x dedfins
∀y f(y) > f(κ) + <d,y-κ></d,y-κ>
So [Thm xeC is a global numinizer iff
Jdedf(r) st. ∀yeC, (d, y-x> > 0
Fular la con 18 5 15 or 50 1/5
"Enler hequality" (type of VI)

prof of Thm follows directly by definition of subgradient => (for simplicity, we'll assume f is differentiable at x, so d= Vf(x) Suppose 7 y & C St. < CVf(x), y -x> <0 let p(t) := f(x + t-(y-x)) so p'(0) = < Pf(x), y-x> via chain rule by assumption. But +>ot + +>ot + ⇒ 3+20 s.t. φ(+)-φ(b) <0 => q(+) < q(0) f(x) not globally optimal. Level sets of f(x) Of (x) defines a Supporting hyperplane

Optional national: VARIATIONAL INEQUALITIES
ref: "Finife dim. var. they. and complementarity
problems", Facchinei and Pang "02
Det let CEIR" be closed (often assumed to be convex)
and F: C-> R^ a continuous operator, then
the corresponding varietrand inequality problem is
Find xeC s.t. LyeC, <f(x), y-x=""> >0</f(x),>
This generalizes oppmization
Recall the normal cone NC(x)= [delR":(d,y-x>=0
\sim
then VI i's booking for - E(x) =Nc (x)
OFF(x) + N _c (x) so think of F
as the subgradient
Operator
be reformulated as a "complementarity problem" (CP):
be reformulated as a "complementarity problem" (CP):
be reformulated as a "complementarity problem" (CP): Find xeC St. x I F(x) and F(x) e C* (C*=\fid <d, x=""> >0 \times xeC \fis dual)</d,>
be reformulated as a "complementarity problem" (CP): Find $x \in C$ St. $x \perp F(x)$ and $F(x) \in C^*$ $(C^* = \{d: \langle d, x \rangle \geqslant 0 \; \forall \; x \in C \; \} \text{ is dual}$ ex: $C = C^* = \mathbb{R}^n_+$
be reformulated as a "complementarity problem" (CP): Find xeC st. x I F(x) and F(x) e C* (C*={d: <d, x=""> >0 + xeC] is dual ex: C=C*=R? and Faffine is the Linear Complementarity Problem LCP</d,>
be reformulated as a "complementarity problem" (CP): Find xeC st. x L F(x) and F(x) e C* (C*= {d: <d, x=""> >0 + xeC J is dual ex: C=C*=R? and Faffine is the Linear Complementarity Problem LCP Find x70, Ax+5>0 st. x L Ax+6</d,>
be reformulated as a "complementarity problem" (CP): Find xeC st. x L F(x) and F(x) e C* (C*= {d: <d, x=""> >0 + xeC J is dual ex: C=C*=R? and Faffine is the Linear Complementarity Problem LCP Find x70, Ax+5>0 st. x L Ax+6</d,>
be reformulated as a "complementarity problem" (CP): Find xeC st. x L F(x) and F(x) e C* (C*= {d: <d, x=""> >0 + xeC J is dual ex: C=C*=R? and Faffine is the Linear Complementarity Problem LCP Find x70, Ax+5>0 st. x L Ax+6</d,>
be reformulated as a "complementarity problem" (CP): Find xeC st. x I F(x) and F(x) e C* (C*={d: <d,x> >0 \times Complementarity Problem 2CP End x70, Ax+5>0 st. x I Ax+5</d,x>

VI are a non-trivial generalization of optimization
(also, subtle différences: VI look for
equivalents of "stationary pts", so if not convex
these aren't equivalent to globel minimizers)
eg VI are the KKT equations of optimization problems
er nin f(x) := < c, x > + \frac{1}{2} < x, Q x >
S.t. X70 Let Q70 so its convex
optimality conditions:
optimality conditions: L(x,y) = f(x) + (x,y) Robert = 12 Robert
$0=V_{x}Z(x_{y})=C+Q_{x}+y$ is $y=-Q_{x}-c$
X ^T 4=0
and a genesia LCP is solve [x20 Ax+b20]
xy=0, x70, y>0 and a generic LCP is solve [x70, Ax+b>0) x_1 Ax+b
<=> X ?0, Ax+6 ?0,
x ^T (Ax+b)=0
so its a LCP $A = -Q$ $b = -C$ but a general LCP
need not have A > 0 ~ A > 0: A indefinite is 0k
in fact, A need not even be symmetre!
· · · · · · · · · · · · · · · · · · ·
Ofher ex. of VI include finding Nash Egyphibria