• 数值运算

- 码的表示及范围
 - <u>无符号数</u>
 - 正数
 - 负数
- **■** 原码
- 补码
- 反码
- 移位
- 浮点数
- 0 <u>乘法</u>
- 原码二位乘
 - 运算规则
 - 注意事项
 - 具体算例
- <u>补码一位乘</u>
 - <u>补一运算规则</u>
 - <u>补一注意事项</u>
 - 补一具体算例

数值运算

码的表示及范围

无符号数

依靠寄存器位数表达范围

0-2^n-1

正数

- 数值部分一样
- 整数前加0, , 小数前加0.。
- [-x]补: [x]补码连同符号位在内,每位取反,末位加一

负数

原码

- 数值部分一样
- 整数前加 1, , 小数前加 1.

补码

- 原码除符号位以外,每位取反,末位加一
- [-x]补: [x]补码连同符号位在内,每位取反,末位加一

反码

• 原码除符号位以外,每位取反,末位不加一

移位

规则如下:

2. 算术移位规则

6.3

符号位不变

	码制	添补代码
正数	原码、补码、反码	0
	原码	0
负数	-}्रा	左移添0
火 数	补 码	右移添1
	反 码	1

浮点数

• 表示形式

 $N = S \times r^{j}$ 浮点数的一般形式 S 尾数 j 阶码 r 尾数的基值

计算机中r取 2、4、8、16 等 当 r=2 N=11.0101 _____

$$N = 11.0101$$
 $\checkmark = 0.110101 \times 2^{10}$ 规格化数
 $= 1.10101 \times 2^{1}$
 $= 1101.01 \times 2^{-10}$
 $\checkmark = 0.00110101 \times 2^{100}$

二进制表示

计算机中 S 小数、可正可负

• 各部分含义

- $S_{\rm f}$ 代表浮点数的符号
- n 其位数反映浮点数的精度
- m 其位数反映浮点数的表示范围
- j, 和 m 共同表示小数点的实际位置

• 表示范围

最小负数: [1-2⁽⁻ⁿ⁾] × [-2⁽²m-1)]
 最大负数: [2⁽⁻ⁿ⁾] × [-2⁽²m-1)]
 最小正数: [2⁽⁻ⁿ⁾] × [2⁽²m-1)]

2. 浮点数的表示范围

6.2

上溢 阶码 > 最大阶码 下溢 阶码 < 最小阶码 按 机器零 处理

• 实际样例

设机器数字长为 24 位, 欲表示±3万的十进制数, 试问在保证数的最大精度的前提下, 除阶符、数符各 取1 位外, 阶码、尾数各取几位?

解:
$$2^{14} = 16384$$
 $2^{15} = 32768$

∴ 如果是定点数15 位二进制数可反映 ±3 万之间的十进制数

$$\begin{array}{c}
2^{15} \times 0.\times \times \times \cdots \times \times \times \\
m = 4, 5, 6, \cdots
\end{array}$$

满足 最大精度 可取 m=4, n=18

规格化形式及方法 保证数据精度,有效位数多1为真值2位为2进制两位,也就是4进制1位

3. 浮点数的规格化形式

6.2

r=2 尾数最高位为 1

r=4 尾数最高 2 位不全为 0 基数不同,浮点数的

r=8 尾数最高 3 位不全为 0 规格化形式不同

4. 浮点数的规格化

r=2 左规 尾数左移 1 位,阶码减 1

右规 尾数右移1位,阶码加1

r=4 左规 尾数左移 2 位,阶码减 1

右规 尾数右移 2 位, 阶码加 1

r=8 左规 尾数左移 3 位,阶码减 1

右规 尾数右移 3 位, 阶码加 1

基数r越大,可表示的浮点数的范围越大基数r越大,浮点数的精度降低

• 规格化样例

最大负数
$$2^{-1111} \times (-0.1000000000) = -2^{-15} \times 2^{-1} = -2^{-16}$$

最小负数
$$2^{+1111} \times (-0.1111111111)$$
 $= -2^{15} \times (1-2^{-10})$

2016/2/

乘法

原码二位乘

运算规则

表 6.11 原码两位乘的运算规则

乘数判断位 у,,_,у,	标志位 C _i	操作内容
0 0	0	z →2 位,y°→2 位,C; 保持"0"
0 1	0	z+x°→2位,y°→2位,C,保持"0"
10	0	$z+2x^{\circ}\rightarrow 2$ 位, $y^{\circ}\rightarrow 2$ 位, C_{i} 保持"0"
1 1	0	$z-x^* \rightarrow 2$ 位, $y^* \rightarrow 2$ 位, C_j 置"1"
00	1	$z+x^* \rightarrow 2$ 位, $y^* \rightarrow 2$ 位, C_j 置"0"
0 1	1	$z+2x^{\bullet}\rightarrow 2$ 位, $y^{\bullet}\rightarrow 2$ 位, C_{j} 置"0"
1 0	1	$z-x^* \rightarrow 2$ 位, $y^* \rightarrow 2$ 位, C_i 保持"1"
11	1	z→2 位,y°→2 位,C, 保持"1"

表中 z 表示原有部分积,z* 表示被乘数的绝对值,y* 表示乘数的绝对值, \rightarrow 2 表示右移两位,当进行 -z* 运算时,一般都采用加 [-z* $]_+$ 来实现。这样,参与原码两位乘运算的操作数是绝对值的补码,因此运算中右移两位的操作也必须按补码右移规则完成。尤其应注意的是,乘法过程中可能要加 2 倍被乘数,即 +[2z* $]_+$,使部分积的绝对值大于 2。为此,只有对部分积取 3 位符号位,且以最高符号位作为真正的符号位,才能保证运算过程正确无误。

注意事项

- 部分积三位符号位, 且最高位为真正符号位; 乘数两位符号位
- 乘数y默认取正,符号单独计算
- 仅考虑乘数和被乘数的数值部分
- 求2x时,如符号位要进位,需保留符号位进位
- 符号位不参与计算
- 移位遵循补码规则
- 乘数数值部分偶数位,移n/2次,奇数位,高位前补1个0,最后一步移1位

具体算例

例 6.18 设 x=0.1111111, y=-0.111001,用原码两位乘求 $[x\cdot y]_{x}$

解:① 数值部分的计算如表 6.12 所示,其中

 $x^* = 0.111111, [-x^*]_{*} = 1.000001, 2x^* = 1.111110, y^* = 0.111001$

表 6.12 例 6.18 原码两位乘数值部分的运算过程

部分积	乘数 y*	C,	说 明
000.000000	001110 <u>01</u>	ō	开始,部分积为0,C _j =0 根据 y _{n-1} y _n C _j =010,加 x*,保持 C _j =0
000.111111	11001110	ō	→2 位,得新的部分积,乘数同时→2 位 根据"100"加 2 x^* ,保持 $C_j = 0$
010.001101 000.100011 +111.000001	11 011100 <u>11</u>	ō	→2 位,得新的部分积,乘数同时→2 位 根据"110"减 x*(即加[-x*] _*),C _j 置"1"
111.100100 111.111001 +000.111111	0111 000111 <u>00</u>	1	→2 位,,得新的部分积,乘数同时→2 位 根据"001"加 z*,C, 置"0"
000.111000	000111		形成最终结果

② 乘积符号的确定:

$$x_0 \oplus y_0 = 0 \oplus 1 = 1$$

故 $[x \cdot y]_m = 1.111000000111$

不难理解,当乘数为偶数时,需做 n/2 次移位,最多做 n/2+1 次加法。当乘数为奇数时,乘数高位前可只增加一个"0",此时需做 n/2+1 次移位(最后一步移一位),最多需做 n/2+1 次加法。

补码一位乘

补一运算规则

Y,Y,+1	$y_{i+1} - y_i$	操作
0.0	0	部分积右移一位
0 1	1	部分积加[z] ₄ ,再右移一位
1 0	-1	部分积加[-x]#,再右移一位
1 1	0	部分积右移一位

应该注意的是,按比较法进行补码乘法时,像补码加、减法一样,符号位也一起参加运算。

补一注意事项

- 部分积两位符号位, 且最高位为真正符号位; 乘数一位符号位
- 求2x时,如符号位要进位,需保留符号位进位
- 最后一步不需要移位
- 符号位参与计算
- 移位遵循补码规则
- 求解结果为补码形式

补一具体算例

例 6.21 已知 $[x]_{**}$ = 0.1101, $[y]_{**}$ = 0.1011, $x[x \cdot y]_{**}$ 。解:表 6.16列出了例 6.21的求解过程。

表 6.16 例 6.21 求 [x・y] 山的过程	惠 6 16	49 6 21	#[r · v]	的过程
----------------------------	--------	---------	----------	-----

部分积	乘数 y,	附加位 y _{a+1}	说明
00.0000	01011	Q	初值[z₀] + =0
11.0011	_		y,y,+1 = 10,部分积加[-x]*
11.0011			
11.1001	10101	1	→1 位,得[z,]*
11.1100	11010	1 1	y,y,+1 = 11,部分积→1位,得[z,]*
00.1101			y _n y _{n+1} = 01, 部分积加[x]*
00.1001	11		,
00.0100	11101	ō	→ I 位,得[z ₃] _{**}
11.0011			y _n y _{n+1} = 10, 部分积加[-π] _λ
11.0111	111		
11.1011	11110	1	→1 位,得[z₄]**
+ 00.1101			y,y,,, =01,部分积加[x],
00.1000	1111		最后一步不移位,得[x·y]*

故 $[x \cdot y]_{\#} = 0.10001111$

由表 6.16 可见,与校正法(参见表 6.13 和表 6.14)相比, Booth 算法的部分积仍取双符号位,乘数因符号位参加运算,故多取 1 位。