AMENDMENTS TO THE CLAIMS

The following <u>Listing of Claims</u> replaces all prior versions, and listings, of claims in this Application.

LISTING OF CLAIMS

1. (Original) A compound of the general formula (I):

wherein

R² is hydrogen or C₁₋₆-alkyl,

Z is arylene or a divalent radical derived from a 5 or 6 membered heteroaromatic ring containing 1 or 2 heteroatoms selected from nitrogen, oxygen and sulfur,

which may optionally be substituted with one or two groups R^7 and R^8 selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR⁹, -NR⁹R¹⁰ and C₁₋₆-alkyl,

wherein R⁹ and R¹⁰ independently are hydrogen or C₁₋₆-alkyl,

X is

$$-(CH_{2})_{q}^{-}(CR^{12}R^{13})_{r}^{-}(CH_{2})_{s}^{-} , \qquad -(CR^{12}R^{13})_{r}^{-}(CH_{2})_{s}^{-} , \qquad -(CH_{2})_{q}^{-} - (CH_{2})_{s}^{-} , \qquad -(CH_{2})_{s}^{-} , \qquad -(CH_{2})_{s}^{-} , \qquad -(CH_{2})_{s}^{-} - (CH_{2})_{s}^{-} , \qquad -(CH_{2})_{s}^{-} - (CH_{2})_{s}^{-} - (CH_{2$$

wherein

r is 0 or 1,

q and s independently are 0, 1, 2 or 3,

R¹¹, R¹², R¹³ and R¹⁴ independently are hydrogen or C₁₋₆-alkyl,

D is

wherein

R¹⁵, R¹⁶, R¹⁷ and R¹⁸ independently are

- hydrogen, halogen, -CN, -CH₂CN, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃,
 -OCF₂CHF₂, -S(O)₂CF₃, -SCF₃, -NO₂, -OR²¹, -NR²¹R²², -SR²¹, -NR²¹S(O)₂R²²,
 -S(O)₂NR²¹R²², -S(O)NR²¹R²², -S(O)R²¹, -S(O)₂R²¹, -C(O)NR²¹R²², -OC(O)NR²¹R²²,
 -NR²¹C(O)R²², -CH₂C(O)NR²¹R²², -OCH₂C(O)NR²¹R²², -CH₂OR²¹, -CH₂NR²¹R²²,
 -OC(O)R²¹, -C(O)R²¹ or -C(O)OR²¹,
- $\bullet \quad C_{1\text{-}6}\text{-}alkyl, \ C_{2\text{-}6}\text{-}alkenyl \ or \ C_{2\text{-}6}\text{-}alkynyl, \\$
 - which may optionally be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR²¹, -NR²¹R²² and C_{1-6} -alkyl,
- C₃₋₈-cycloalkyl, C₄₋₈-cycloalkenyl, heterocyclyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, C₃₋₈-cycloalkyl-C₁₋₆-alkylthio,

 $C_{3\text{-8}}\text{-cycloalkylthio},\ C_{3\text{-8}}\text{-cycloalkyl-}C_{2\text{-6}}\text{-alkenyl},\ C_{3\text{-8}}\text{-cycloalkyl-}C_{2\text{-6}}\text{-alkynyl},\ C_{4\text{-8}}\text{-cycloalkenyl-}C_{1\text{-6}}\text{-alkyl},\ C_{4\text{-8}}\text{-cycloalkenyl-}C_{2\text{-6}}\text{-alkenyl},\ C_{4\text{-8}}\text{-cycloalkenyl-}C_{2\text{-6}}\text{-alkenyl},\ \text{heterocyclyl-}C_{2\text{-6}}\text{-alkenyl},\ \text{heterocyclyl-}C_{2\text{-6}}\text{-alkynyl},\ \text{aryl-}C_{1\text{-6}}\text{-alkyl},\ \text{aryl-}C_{1\text{-6}}\text{-alkyl},\ \text{aryl-}C_{2\text{-6}}\text{-alkynyl},\ \text{heteroaryl-}C_{1\text{-6}}\text{-alkyl},\ \text{heteroaryl-}C_{2\text{-6}}\text{-alkynyl},\ \text{heteroaryl-}C_{2\text{-6}}\text{-alkynyl},$

of which the cyclic moieties optionally may be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR²¹, -NR²¹R²² and C_{1-6} -alkyl,

wherein R²¹ and R²² independently are hydrogen, C₁₋₆-alkyl or aryl,

or R^{21} and R^{22} when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds,

or two of the groups R^{15} to R^{18} when placed in adjacent positions together may form a bridge $-(CR^{23}R^{24})_a$ -O- $(CR^{25}R^{26})_c$ -O-,

wherein

a is 0, 1 or 2,

c is 1 or 2,

 $R^{23},\,R^{24},\,R^{25}$ and R^{26} independently are hydrogen, $C_{\text{1-6-a}}lkyl$ or fluorine,

 R^{19} and R^{20} independently are hydrogen, $C_{1\text{-}6}$ -alkyl, $C_{3\text{-}8}$ -cycloalkyl or $C_{3\text{-}8}$ -cycloalkyl, alkyl- $C_{1\text{-}6}$ -alkyl,

E is

$$R^{27}$$
 R^{28}
 R^{29}
 R^{30}
 R^{31}
 R^{29}
 R^{30}
 R^{31}
 R^{29}
 R^{31}
 R^{30}
 R^{31}
 R^{29}
 R^{31}
 R^{31}
 R^{29}
 R^{31}
 R^{31}

wherein

R²⁷ and R²⁸ independently are

hydrogen, halogen, -CN, -CF₃, -OCF₃, -OR³², -NR³²R³³, C_{1-6} -alkyl, C_{3-8} -cycloalkyl, C_{4-8} -cycloalkenyl or aryl,

wherein the cyclic moieties optionally may be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR³², -NR³²R³³ and C_{1-6} -alkyl,

wherein

 R^{32} and R^{33} independently are hydrogen or C_{1-6} -alkyl, or

R³² and R³³ when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds,

R²⁹, R³⁰ and R³¹ independently are

hydrogen, halogen, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃, -OCF₂CHF₂, -SCF₃, -OR³⁴, -NR³⁴R³⁵, -SR³⁴, -S(O)R³⁴, -S(O)₂R³⁴, -C(O)NR³⁴R³⁵, -OC(O)NR³⁴R³⁵, -NR³⁴C(O)R³⁵, -OCH₂C(O)NR³⁴R³⁵, -C(O)R³⁴ or -C(O)OR³⁴,

• C_{1-6} -alkyl, C_{2-6} -alkenyl or C_{2-6} -alkynyl,

which may optionally be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR³⁴, -NR³⁴R³⁵ and C_{1-6} -alkyl,

• C₃₋₈-cycloalkyl, C₄₋₈-cycloalkenyl, heterocyclyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, C₃₋₈-cycloalkyl-C₂₋₆-alkenyl, C₃₋₈-cycloalkyl-C₂₋₆-alkynyl, C₄₋₈-cycloalkenyl-C₁₋₆-alkyl, C₄₋₈-cycloalkenyl-C₂₋₆-alkynyl, heterocyclyl-C₁₋₆-alkyl, heterocyclyl-C₂₋₆-alkenyl, heterocyclyl-C₂₋₆-alkynyl, aryl, aryloxy, aroyl, aryl-C₁₋₆-alkoxy, aryl-C₁₋₆-alkyl, aryl-C₂₋₆-alkenyl, aryl-C₂₋₆-alkynyl, heteroaryl, heteroaryl-C₁₋₆-alkyl, heteroaryl-C₂₋₆-alkenyl or heteroaryl-C₂₋₆-alkynyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR³⁴, -NR³⁴R³⁵ and C_{1-6} -alkyl,

wherein R^{34} and R^{35} independently are hydrogen, C_{1-6} -alkyl or aryl,

or R³⁴ and R³⁵ when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds,

or two of the groups R^{29} , R^{30} and R^{31} when attached to the same ring carbon atom or different ring carbon atoms together may form a radical -O-(CH₂)₁-CR³⁶R³⁷-(CH₂)₁-O-, -(CH₂)₁-CR³⁶R³⁷-(CH₂)₁- or -S-(CH₂)₁-CR³⁶R³⁷-(CH₂)₁-S-,

wherein

t and I independently are 0, 1, 2, 3, 4 or 5,

 $R^{36} \ \text{and} \ R^{37} \ \text{independently}$ are hydrogen or $C_{1\text{-}6}\text{-alkyl},$

as well as any optical or geometric isomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof.

- 2. (Original) A compound according to claim 1, wherein R² is hydrogen.
- 3. (Currently Amended) A compound according to claim 1, wherein Z is

wherein R^7 and R^8 are selected from -CN, -CF₃, -OCF₃, -NO₂, -OR⁹, -NR⁹R¹⁰, C₁₋₆-alkyl as defined in claim 1 and hydrogen and R^9 and R^{10} independently are hydrogen or C₁₋₆-alkyl.

4. (Original) A compound according to claim 3, wherein Z is

5. (Original) A compound according to claim 1, wherein X is

wherein q is 0 or 1, r is 0 or 1, s is 0, 1 or 2, and R^{12} and R^{13} independently are hydrogen or $C_{1\text{-}6}$ -alkyl.

- 6. (Original) A compound according to claim 5, wherein X is -C(O)NH-, -C(O)NHCH₂-, -C(O)NHCH₂-, -C(O)CH₂-, -C(O)CH₂
- 7. (Original) A compound according to claim 6, wherein X is -C(O)NH-, -C(O)NHCH₂-, -C(O)NHCH(CH₃)-, -C(O)NHCH₂CH₂-, -C(O)CH₂-, -CH₂-, -C(O)- or -NHC(O)-.
 - 8. (Original) A compound according to claim 7, wherein X is -C(O)NH-.

9. (Original) A compound according to claim 1, wherein D is

$$R^{15}$$
 R^{16} R^{15} R^{16} R^{15} R^{15} R^{16} R^{15} R^{16} R

wherein R^{15} , R^{16} , R^{17} , R^{18} , R^{19} and R^{20} are as defined in claim 1.

10. (Original) A compound according to claim 9, wherein D is

wherein R^{15} , R^{16} and R^{17} are as defined in claim 1.

- 11. (Original) A compound according to claim 9, wherein R^{15} , R^{16} and R^{17} independently are hydrogen, halogen, -CN, -NO₂, -CF₃, -OCF₃, -SCF₃, C₁₋₆-alkyl, C₁₋₆-alkyl, -C(O)OR²¹, -C(O)R²¹, -CH₂OR²¹, -C(O)NR²¹R²², -S(O)₂R²¹, -S(O)₂CF₃, -S(O)₂NR²¹R²², C₃₋₈-cycloalkyl or aryl, or two of the groups R^{15} , R^{16} and R^{17} when placed in adjacent positions together form a bridge $-(CR^{23}R^{24})_a$ -O- $-(CR^{25}R^{26})_c$ -O-, wherein R^{21} and R^{22} independently are hydrogen or C₁₋₆-alkyl, and a, c, R^{23} , R^{24} , R^{25} and R^{26} are as defined in claim 1.
- 12. (Original) A compound according to claim 11, wherein R^{15} , R^{16} and R^{17} independently are hydrogen, halogen, -CN, -CF₃, -OCF₃ or C₁₋₆-alkoxy.
- 13. (Original) A compound according to claim 12, wherein R¹⁵, R¹⁶ and R¹⁷ independently are hydrogen, halogen, -CF₃ or -OCF₃.

14. (Original) A compound according to claim 1, wherein E is

wherein R^{27} , R^{28} , R^{29} , R^{30} and R^{31} are as defined in claim 1.

15. (Original) A compound according to claim 14, wherein E is

wherein R^{27} and R^{28} are as defined in claim 1.

16 (Original) A compound according to claim 14, wherein R^{27} and R^{28} independently are

- hydrogen, C₁₋₆-alkyl,
- C₃₋₈-cycloalkyl, C₄₋₈-cycloalkenyl or phenyl, which may optionally be substituted as defined in claim 1.
- 17. (Original) A compound according to claim 16, wherein R^{27} is hydrogen and R^{28} is

- C₁₋₆-alkyl,
- C₄₋₈-cycloalkenyl or C₃₋₈-cycloalkyl, which may optionally be substituted as defined in claim 1.

18. (Original) A compound according to claim 14, wherein E is

wherein R^{29} , R^{30} and R^{31} are as defined in claim 1.

19. (Original) A compound according to claim 18, wherein E is

wherein R^{29} , R^{30} and R^{31} are as defined in claim 1.

20. (Original) A compound according to claim 18, wherein R^{29} , R^{30} and R^{31} independently are

- hydrogen, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃, -OCF₂CHF₂, -SCF₃, -OR³⁴, -NR³⁴R³⁵, -SR³⁴, -S(O)₂R³⁴, -C(O)NR³⁴R³⁵, -OC(O)NR³⁴R³⁵, -OC(O)NR³⁴R³⁵, -NR³⁴C(O)R³⁵, -OCH₂C(O)NR³⁴R³⁵, -C(O)R³⁴ or -C(O)OR³⁴,
- C_{1-6} -alkyl, C_{2-6} -alkenyl or C_{2-6} -alkynyl,

which may optionally be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR³⁴, -NR³⁴R³⁵ and C_{1-6} -alkyl,

■ C₃₋₈-cycloalkyl or C₄₋₈-cycloalkenyl,

. . . .

which may optionally be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR³⁴, -NR³⁴R³⁵ and C₁₋₆-alkyl,

wherein R³⁴ and R³⁵ independently are hydrogen, C₁₋₆-alkyl or aryl,

or R³⁴ and R³⁵ when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds.

21. (Original) A compound according to claim 20, wherein R²⁹, R³⁰ and R³¹ independently are

hydrogen, C_{1-6} -alkoxy, -CF₃, -OCF₃ or -NR³⁴R³⁵, wherein R³⁴ and R³⁵ are as defined in claim 1, or

 C_{1-6} -alkyl, C_{3-8} -cycloalkyl or C_{4-8} -cycloalkenyl, which are optionally substituted as defined in claim 1.

22. (Original) A compound according to claim 21, wherein R^{29} , R^{30} and R^{31} independently are

hydrogen or

 $C_{1\text{--}6}$ -alkyl, $C_{3\text{--}8}$ -cycloalkyl or $C_{4\text{--}8}$ -cycloalkenyl, which are optionally substituted as defined in claim 1.

23. (Original) A compound according to claim 22, wherein R^{29} , R^{30} and R^{31} independently are hydrogen, $C_{1.6}$ -alkyl, $C_{3.8}$ -cycloalkyl or $C_{4.8}$ -cycloalkenyl, wherein $C_{3.8}$ -cycloalkyl or $C_{4.8}$ -cycloalkenyl are optionally substituted with $C_{1.6}$ -alkyl.

- 24. (Original) A compound according to claim 23, wherein R^{29} and R^{31} are both hydrogen and R^{30} is C_{1-6} -alkyl, C_{3-8} -cycloalkyl or C_{4-8} -cycloalkyl or C_{4-8} -cycloalkyl or C_{4-8} -cycloalkyl or C_{4-8} -cycloalkyl.
- 25. (Original) A compound according to claim 24, wherein R^{29} and R^{31} are both hydrogen and R^{30} is $C_{1\text{-}6}$ -alkyl.
- 26. (Original) A compound according to claim 25, wherein R^{29} and R^{31} are both hydrogen and R^{30} is C_{4-8} -cycloalkenyl which is optionally substituted with C_{1-6} -alkyl.
- 27. (Original) A compound according to claim 1, wherein said compound has an IC_{50} value of no greater than 5 μ M as determined by Glucagon Binding Assay (I) or Glucagon Binding Assay (II).
- 28. (Original) A compound according to claim 27, wherein said compound has an IC₅₀ value of less than 1 μ M, preferably of less than 500 nM and even more preferred of less than 100 nM as determined by Glucagon Binding Assay (II) or Glucagon Binding Assay (II).
- 29. (Original) A compound according to claim 1, wherein said compound is an agent useful for the treatment and/or prevention of an indication selected from the group consisting of hyperglycemia, impaired glucose tolerance, Type 2 diabetes, Type 1 diabetes and obesity.
 - 30. (Cancelled).
- 31. (Original) A pharmaceutical composition comprising at least one compound according to claim 1 together with one or more pharmaceutically acceptable carriers or excipients.
- 32. (Original) A pharmaceutical composition according to claim 31 in unit dosage form, said composition comprising from about 0.05 mg to about 1000 mg of the compound according to claim 1.

33-45 (Cancelled).

*

- 46. (Original) A method for the treatment or prevention of disorders or diseases, wherein a glucagon antagonistic action is beneficial, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.
- 47. (Original) The method according to claim 46, wherein the effective amount of the compound is in the range of from about 0.05 mg to about 2000 mg per day.
- 48. (Original) The method according to claim 46, wherein the effective amount of the compound is in the range of from about 0.1 mg to about 1000 mg per day.
- 49. (Original) The method according to claim 46, wherein the effective amount of the compound is in the range of from about 0.5 mg to about 500 mg per day.
- 50. (Original) A method for the treatment or prevention of glucagon-mediated disorders and diseases, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.
- 51. (Original) A method for the treatment or prevention of hyperglycemia, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.
- 52. (Currently Amended) A method for for lowering blood glucose in a mammal, said method comprising administering to said mammal in need thereof an effective amount of a compound according to claim 1.
- 53. (Original) A method for the treatment or prevention of impaired glucose tolerance, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.

- 54. (Original) A method for the treatment or prevention of Type 2 diabetes, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.
- 55. (Original) A method for delaying or preventing the progression from impaired glucose tolerance to Type 2 diabetes, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.
- 56. (Original) A method for delaying or preventing the progression from non-insulin requiring Type 2 diabetes to insulin requiring Type 2 diabetes, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.
- 57. (Original) A method for the treatment or prevention of Type 1 diabetes, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.
- 58. (Original) A method for the treatment or prevention of obesity, said method comprising administering to a subject in need thereof an effective amount of a compound according to claim 1.
- 59. (Original) The method according to claim 46, further comprising administering an antidiabetic agent to said subject.
- 60. (Original) The method according to claim 46, further comprising administering an antiobesity agent to said subject.
- 61. (Original) The method according to claim 46, further comprising administering an antihypertensive agent to said subject.
- 62. (Original) A pharmaceutical composition according to claim 31 in unit dosage form, said composition comprising from about 0.1 mg to about 500 mg of the compound according to claim 1.

- 63. (Original) A pharmaceutical composition according to claim 31 in unit dosage form, said composition comprising from about 0.5 mg to about 200 mg of the compound according to claim 1.
- 64. (Original) A compound according to claim 27, wherein said compound has an IC₅₀ value of less than 500 nM as determined by Glucagon Binding Assay (I) or Glucagon Binding Assay (II).
- 65. (Original) A compound according to claim 27, wherein said compound has an IC_{50} value of less than 100 nM as determined by Glucagon Binding Assay (I) or Glucagon Binding Assay (II).