Part C: Visualizing COVID-19

Alisa Ishikawa

January 5, 2020

Generic Plot() Function

- ▶ Basic function in R
- ▶ 2D format
- Correlation
- Scatter plots and line graphs

The generic syntax for the Plot function is:

Plot(x,y...)

Advanced Plot() Function

```
Advanced Plot function syntax is:
plot(x, y, type, main, sub, xlab, ylab)
where...
"p": points
"I": lines
"b": both point and lines in a single place
"c": join empty point by the lines
"o": both lines and over-plotted point
"h": histogram "s": stair steps
"n": no plotting
"xlab": x-axis legends
"ylab": y-axis legends
```

Example Exercise

Exam grades of 10 students in two courses, X and Y, respectively $X=40,\,15,\,50,\,12,\,22,\,29,\,21,\,35,\,14,\,15$ $Y=41,\,42,\,32,\,14,\,42,\,27,\,13,\,50,\,33,\,22$

Exercise 1: Define X and plot as lines plot

```
X = c(40, 15, 50, 12, 22, 29, 21, 35, 14, 15)
plot(X, type = "l")
```


Exercise 2: Define Y and plot as points plot

```
Y = c(41, 42, 32, 14, 42, 27, 13, 50, 33, 22)
plot(Y ,type = "p")
```


Plot() Function Capabilities

ggplots() package

```
# The easiest way to get ggplot2 is to install the whole to
install.packages("tidyverse")

# Alternatively, install just ggplot2:
install.packages("ggplot2")
```

Or the development version from GitHub:

devtools::install github("tidyverse/ggplot2")

install.packages("devtools")

ggplot() capabilities

Case Study

```
Package: nCov2019
By: Dr. Guangchuang Yu (Southern Medical University)
Install and load package

remotes::install_github("GuangchuangYu/nCov2019")

library(nCov2019)
get_nCov2019()
load_nCov2019()
```

1st Impression of dataset

last update: 2020-11-26

```
Assign x and y
x <- get_nCov2019()
y <- load_nCov2019()
Check results for x and y
х
China (total confirmed cases): 95901
last update: 2020-12-21 20:45:32
у
nCov2019 historical data
```

Impression of worldwide data

x['global']

	name	confirm	suspect	dead	deadRate	shot
1	China	95901	7	4771	4.97	FALS
2	United States	18277433	0	324898	1.78	FALS
3	India	10055560	0	145810	1.45	FALS
4	Brazil	7238600	0	186764	2.58	FALS
5	Russia	2850042	0	50723	1.78	FALS
6	France	2529756	0	60665	2.4	FALS
7	United Kingdom	2079564	0	67718	3.26	FALS
8	Turkey	2043704	0	18351	0.9	FALS
9	Italy	1964054	0	69214	3.52	FALS
10	Spain	1817448	0	48926	2.69	FALS
11	Argentina	1541285	0	41813	2.71	FALS
12	Germany	1531998	0	26655	1.74	FALS

Visualize with line graph using ggplot

Using ggplot2, we can see the growth of confirmed cases

Visualize a static map with plot()

```
Package: maps
install.packages("maps")
require(nCov2019)
require(dplyr)
x <- get_nCov2019()</pre>
```

Visualize a static map with plot()

we assigned x <- get_nCov2019(), so now we plot them
plot(x)</pre>

COVID-19

accessed date: 2020-12-21 20:45:32