

Weather Frog

- Abschlusspräsentation am 01. März 2021
- Institut: Statistik
- Veranstaltung: Statistisches Praktikum
- Projektpartner: M.Sc. Maximilian Weigert und
 - M.Sc. Magdalena Mittermeier
- Betreuer: Prof. Dr. Helmut Küchenhoff

Gliederung

- 1. Einführung
 - i. Vorstellen des Projekts
 - ii. Datensätze
- 2. Methodik
 - i. Preprocessing
 - ii. Wahl des Clusterverfahrens
 - iii. Ergebnisse
- 3. Deskriptive Analyse
 - i. Verteilung über die Zeit
 - ii. Unterschiede und Ähnlichkeiten in den Clustern
 - iii. Vergleich zur gegebenen GWL-Einteilung
- 4. Ausblick
- 5. Fazit

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

1. Einführung

i. Vorstellen des Projekts

Vorstellen des Projekts

Übergeordnete Fragestellung:

Wie verändert sich das Auftreten verschiedener Großwetterlagen (GWL) unter dem Einfluss des Klimawandels?

Unsere Fragestellung:

Lassen sich Tage anhand von ihren Wettermesswerten sinnvoll clustern?

Wie unterscheiden sich die entstandenen Cluster voneinander?

Vorstellen des Projekts

Definition Großwetterlage

- Atmosphärischer Wetterzustand
- Definiert über ganz Europa
- Dauer: ≥ 3 Tage
- Kategorisierung nach dem Katalog von Hess und Brezowsky
- 29 GWL nach Hess und Brezowsky

Statistisches Praktikum

Großwetterlagen Beispiele

	Abkürzung	Großwetterlage
1	WA	Westlage, antizyklonal
2	WZ	Westlage, zyklonal
3	WS	Südliche Westlage
4	ww	Winkelförmige Westlage
5	SWA	Südwestlage, antizyklonal
6	SWZ	Südwestlage, zyklonal
•••		
29	TRW	Trog Westeuropa
	U	Übergang/Unbestimmt

Ziele des Projekts

Clustereinteilung der Tage anhand beobachteter Wetterdaten

- Anzahl Cluster < Anzahl GWLs
- Berücksichtigung der räumlichen Datenstruktur
- Tage als Beobachtungseinheit
- Ohne Vorinformation der herrschenden GWL

Mit welchem Modell ist dies sinnvoll möglich?

Ziele des Projekts

Vergleich der Cluster

- Verteilung von GWL in den Clustern
- Vergleich der Zusammensetzung der einzelnen Cluster:
 Wie scheinen sie sich auffällig zu unterscheiden?

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

1. Einführung

- i. Vorstellen des Projekts
- ii. Datensätze

Reanalyse Datensatz

LUDWIG-

- Pro Tag Messungen an 160 Standorten zu 4 Zeitpunkten
 - Luftdruck in Pa auf Meeresspiegelhöhe (mslp)
 - Geopotential auf 500 hPa in $\frac{m^2}{s^2} = \frac{1}{9.80665} gpm$ (geopot)
- Standorte im 8x20 Grid über Europa und dem Nordatlantik
- Für die Jahre 1900 bis 2010
 - Beschränkung auf eine Klimaperiode: Jahre 1971 bis 2000

Messpunkte auf einer Weltkarte

Longitude

Statistisches Praktikum

Auszug aus dem Reanalyse Datensatz

^	time	longitude [‡]	latitude [‡]	mslp [‡]	geopotential [‡]
1	1900-01-01 00:00:00	-63.56287	73.85311	100428.99	48268.86
2	1900-01-01 00:00:00	-63.56287	68.23695	100553.77	48770.82
3	1900-01-01 00:00:00	-63.56287	62.62077	99920.18	49171.14
4	1900-01-01 00:00:00	-63.56287	57.00457	100049.80	49487.83
• • •					
640	1900-01-01 18:00:00	43.31280	34.53973	102281.97	55097.32
641	1900-01-02 00:00:00	-63.56287	73.85311	99886.71	47843.04
• • •					
25946239	2010-12-31 18:00:00	43.31280	40.15595	101758.62	54154.39
25946240	2010-12-31 18:00:00	43.31280	34.53973	101400.51	54491.94

Statistisches Praktikum

Auszug aus dem Reanalyse Datensatz

^	time	longitude [‡]	latitude [‡]	mslp [‡]	geopotential [‡]
1	1900-01-01 00:00:00	-63.56287	73.85311	100428.99	48268.86
2	1900-01-01 00:00:00	-63.56287	68.23695	100553.77	48770.82
3	1900-01-01 00:00:00	-63.56287	62.62077	99920.18	49171.14
4	1900-01-01 00:00:00	-63.56287	57.00457	100049.80	49487.83
• • •					
640	1900-01-01 18:00:00	43.31280	34.53973	102281.97	55097.32
641	1900-01-02 00:00:00	-63.56287	73.85311	99886.71	47843.04
• • •					
25946239	2010-12-31 18:00:00	43.31280	40.15595	101758.62	54154.39
25946240	2010-12-31 18:00:00	43.31280	34.53973	101400.51	54491.94

Statistisches Praktikum

Auszug aus dem Reanalyse Datensatz

^	time	longitude [‡]	latitude [‡]	mslp [‡]	geopotential [‡]
1	1900-01-01 00:00:00	-63.56287	73.85311	100428.99	48268.86
2	1900-01-01 00:00:00	-63.56287	68.23695	100553.77	48770.82
3	1900-01-01 00:00:00	-63.56287	62.62077	99920.18	49171.14
4	1900-01-01 00:00:00	-63.56287	57.00457	100049.80	49487.83
• • •					
640	1900-01-01 18:00:00	43.31280	34.53973	102281.97	55097.32
641	1900-01-02 00:00:00	-63.56287	73.85311	99886.71	47843.04
• • •					
25946239	2010-12-31 18:00:00	43.31280	40.15595	101758.62	54154.39
25946240	2010-12-31 18:00:00	43.31280	34.53973	101400.51	54491.94

Statistisches Praktikum

Mslp am 01-01-2006 um 0 Uhr

Statistisches Praktikum

Geopot am 01-01-2006 um 0 Uhr

Daten pro Tag

Der Tag ist die Beobachtungseinheit

2 Parameter * 4 Zeitpunkte * 160 Messpunkte = 1280 Dimensionen

8 Bilder pro Tag

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

Mittelwerte am 01.01.2006

Daten pro Tag

Der Tag ist die Beobachtungseinheit

2 Parameter * 4 Zeitpunkte * 160 Messpunkte = 1280 Dimensionen

8 Bilder pro Tag

Reduzierung der Dimensionen

Mittelwert über 4 Messzeiten pro Messpunkt

10958 Tage mit jeweils 320 Dimensionen

Statistisches Praktikum

1. Einführung

- i. Vorstellen des Projekts
- ii. Datensätze

2. Methodik

i. Preprocessing

Datensatz Mutation

- Idee: Erstellen eines Datensatzes durch Extrahieren gezielter Information
- Gezielte Informationen
 - Verteilung der Parameter (im Vergleich zu anderen Tagen)
 - Räumliche Lage und Form der "Hoch-" und "Tiefgebiete"
 - Veränderung über den Tag

Datensatz Mutation

- Idee: Erstellen eines Datensatzes durch Extrahieren gezielter Information
- Gezielte Informationen
 - Verteilung der Parameter (im Vergleich zu anderen Tagen)
 - Räumliche Lage und Form der "Hoch-" und "Tiefgebiete"
 - Veränderung über den Tag
- Erhoffte Wirkung
 - Dimensionen weiter reduzieren
 - Spezifische Gewichtung wichtiger Größen
 - Verbesserte Interpretierbarkeit

Vorgehen

- Ausgangslage: Datensatz mit 320 Dimensionen roher Messdaten
- Transformation zu Variablen, die jeweils eine interessierende Größe über alle Standorte zusammengefasst verkörpern
 - Beispiel: Mittelwert des Luftdrucks über alle Standorte am Tag
- Beobachtungseinheit bleibt der Tag

Statistisches Praktikum

Extrahierte Variablen

Variable	Erklärung
Minimum/Maximum	Minimaler/Maximaler Wert am Tag
Mittelwert	Mittelwert für beide Variablen pro Tag
Median/Quartile	Median und Quartile für beide Variablen pro Tag
Intensität	Anzahl der Messpunkte von beiden Variablen pro Tag die über/unter den Quartilen liegen
Differenz am Tag	Summierte Differenzen von 4 Messzeitpunkten am Tag an allen Standorten

Extrahierte Variablen

Variable	Erklärung	
Minimum/Maximum	Minimaler/Maximaler Wert am Tag	
Mittelwert	Mittelwert für beide Variablen pro Tag	
Median/Quartile	Median und Quartile für beide Variablen pro Tag	
Intensität	Anzahl der Messpunkte von beiden Variablen pro Tag die über/unter den Quartilen liegen	
Differenz am Tag	Summierte Differenzen von 4 Messzeitpunkten am Tag an allen Standorten	

Verteilungsvariablen

Extrahierte Variablen

Variable	Erklärung	
Distanz zwischen Extrema	Euklidische Distanz	
Distanz der beiden Minima und Maxima	Euklidischer Abstand vom Minimum/Maximum der Parameter Geopotential zu Mslp	
Spalte vom Minimum/Maximum	In welchem Bereich liegt das Minimum/ Maximum? Karte aufgeteilt in 3 Spalten	
Zeile vom Minimum/Maximum	In welchem Bereich liegt das Minimum/ Maximum? Karte aufgeteilt in 3 Zeilen	
Mittelwerte in den Quadranten	Mittelwerte in allen 9 Quadranten von beiden Variablen	

Lage der Extrema

Statistisches Praktikum

Mslp am 01-01-2006 um 0 Uhr

Extrahierte Variablen

Variable	Erklärung	
Distanz zwischen Extrema	Euklidische Distanz	
Distanz der beiden Minima und Maxima	Euklidischer Abstand vom Minimum/Maximum der Parameter Geopotential zu Mslp	
Spalte vom	In welchem Bereich liegt das Minimum/	
Minimum/Maximum	Maximum? Karte aufgeteilt in 3 Spalten	
Zeile vom	In welchem Bereich liegt das Minimum/	
Minimum/Maximum	Maximum? Karte aufgeteilt in 3 Zeilen	
Mittelwerte in den	Mittelwerte in allen 9 Quadranten von beiden	
Quadranten	Variablen	

Räumliche Variablen

Skalierung und Gewichtung

Datensatz wird standardisiert, da die Skalen der einzelnen Variablen unterschiedlich sind

$$x_{i,neu} = \frac{x_i - \mu_i}{\sigma_i} \quad \text{mit } i = 1, \dots, 48$$

- Variablen werden zudem gewichtet
 - Aufgeteilt in Kategorien, die jeweils in Summe gleich gewichtet sind

Skalierung und Gewichtung

Variablen	Gewichte
Minimum, Maximum, Mittelwert	$\frac{1}{3}$
Median, Quartile,	1
Intensität und Differenz am Tag	6
Euklidische Distanzen,	1
Spalten und Zeilen vom	6
Minimum/Maximum	
Mittelwert in den Quadranten	1
	9

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

1. Einführung

- i. Vorstellen des Projekts
- ii. Datensätze

2. Methodik

- i. Preprocessing
- ii. Wahl des Clusterverfahrens

Clusteranalyse

- Verfahren des "unsupervised learning" (kein Target)
- Grundidee: Bildung von möglichst homogenen Gruppen, Cluster untereinander möglichst heterogen
- Betrachten von n Objekten a_1, \ldots, a_n mit zugehörigen Merkmalsvektoren x_1, \ldots, x_p Suchen einer Partition C_1, \ldots, C_k mit $\bigcup_{i=1}^k C_i = \{a_1, \ldots, a_{ni}\}$ wobei $C_i \cap C_j = \emptyset \quad \forall \ i \neq j$
- Verschiedene Ansätze für Clustering
- Distanz zwischen Objekten durch Ähnlichkeits- bzw. Distanzmaß

Clusteralgorithmus PAM

- PAM steht f
 ür Partitioning Around Medoids
- Gehört zu den Partitionierenden Verfahren
- Vorgehen: 1. Anzahl k an Cluster festlegen
 - 2. Wahl von k repräsentativen Objekten (Medoids) aus allen Beobachtungen
 - 3. Für jeden Medoid m und jeden restlichen Datenpunkt o:
 - i. Entscheiden, ob ein Datenpunkt o einen Medoid m ersetzen soll anhand der Summe S der Distanzen von allen Datenpunkten zu deren jeweiligen Medoid
 - ii. Durchführen für alle Datenpunkte
 - iii. Auswahl der Datenpunkte als Medoids, die die Summe S am stärksten minimieren
 - 4. Datenpunkte dem Cluster zuteilen, dessen Medoid am nächsten zu o liegt

Distanzmaß

- Manhattan-Metrik
 - die Distanz d zwischen zwei Objekten a und b definiert ist als

$$d(a,b) = \sum_{i=1}^{p} |a_i - b_i|$$

wobei
$$a = (a_1, ..., a_p)$$
, $b = (b_1, ..., b_p)$

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

1. Einführung

- i. Vorstellen des Projekts
- ii. Datensätze

2. Methodik

- i. Preprocessing
- ii. Wahl des Algorithmus
- iii. Ergebnisse

- Silhouettenkoeffizient
- Verteilung der aufeinanderfolgenden Tage, die im selben Cluster sind (Timeline)

- Silhouettenkoeffizient
 - Maßzahl für die Qualität eines Clusterings
 - Unabhängig von der Anzahl der Cluster
 - Gehört das Objekt o zum Cluster A, so ist die Silhouette von o definiert als

$$S(o) = \begin{cases} 0 & \text{Wenn } x \text{ einziges Element von } A, \text{ ist} \\ \frac{dist(B, o) - dist(A, o)}{\max\{dist(A, o), dist(B, o)\}} & \text{sonst,} \end{cases}$$

wobei dist(A, o) die durschnittliche Distanz eines Objektes o zu anderen Punkten des Clusters A dist(B, o) die Distanz eines Objektes o zum nächstgelegensten Objekt des Clusters B

- Silhouettenkoeffizient
 - Sei k die Anzahl an Cluster, dann ist der Silhouettenkoeffizient definiert durch

$$s = \frac{1}{n} \sum_{o \in N} S(o)$$

wobei
$$S(o) = \begin{cases} 0 & \text{Wenn } x \in A \\ \frac{dist(B, o) - dist(A, o)}{\max\{dist(A, o), dist(B, o)\}} & \text{sonst,} \end{cases}$$

Wenn x einziges Element von A, ist

Statistisches Praktikum

Silhouettenplot

Silhouettenkoeffizient: 0.141

Statistisches Praktikum

Optimale Anzahl an Cluster

- Timeline
 - Häufigkeiten bestimmter Längen an aufeinanderfolgenden Tagen im selben Cluster
 - Erwünscht:
 - Längen ab 3 Tagen
 - Nach oben limitiert

Statistisches Praktikum

Timeline

Statistisches Praktikum

Beispiele

•	date [‡]	cluster [‡]
1	1971-04-26	1
2	1971-04-27	1
3	1971-04-28	1
4	1971-04-29	4
5	1971-04-30	1
6	1971-05-01	4
7	1971-05-02	4
8	1971-05-03	4

⇒ Übergang zwischen Clustern oft nicht sauber

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

1. Einführung

- i. Vorstellen des Projekts
- ii. Datensätze

2. Methodik

- i. Preprocessing
- ii. Wahl des Algorithmus
- iii. Ergebnisse

3. Deskriptive Analyse

i. Verteilung über die Zeit

Verteilung der Cluster über die Jahre

Statistisches Praktikum

Verteilung der Cluster über Saison

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

1. Einführung

- i. Vorstellen des Projekts
- ii. Datensätze

2. Methodik

- i. Preprocessing
- ii. Wahl des Algorithmus
- iii. Ergebnisse

3. Deskriptive Analyse

- i. Verteilung über die Zeit
- ii. Unterschiede und Ähnlichkeiten in den Clustern

Statistisches Praktikum

Mittelwert des Mslp in jedem Cluster

Mittelwert des Geopot in jedem Cluster

Statistisches Praktikum

Mslp im Mittel über Messpunkte

Longitude

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

Geopot im Mittel über Messpunkte

Longitude

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

1. Einführung

- i. Vorstellen des Projekts
- ii. Datensätze

2. Methodik

- i. Preprocessing
- ii. Wahl des Algorithmus
- iii. Ergebnisse

3. Deskriptive Analyse

- i. Verteilung über die Zeit
- ii. Unterschiede und Ähnlichkeiten in den Clustern
- iii. Vergleich zur gegebenen GWL-Einteilung

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

Mosaikplot für Cluster ~ GWL

Beispiele

_	date	cluster	gwl [‡]
1	1971-04-22	5	SA
2	1971-04-23	5	SA
3	1971-04-24	5	SA
4	1971-04-25	1	HNZ
5	1971-04-26	1	HNZ
6	1971-04-27	1	HNZ

Zum Teil wechseln Cluster passend mit den GWL am Tag

Statistisches Praktikum

Gliederung

- 1. Einführung
 - i. Vorstellen des Projekts
 - ii. Datensätze
- 2. Methodik
 - i. Preprocessing
 - ii. Wahl des Algorithmus
 - iii. Ergebnisse
- 3. Deskriptive Analyse
 - i. Verteilung über die Zeit
 - ii. Unterschiede und Ähnlichkeiten in den Clustern
 - iii. Vergleich zur gegebenen GWL-Einteilung
- 4. Ausblick

Anderer Ansatz

- Muster-Erkennung in den Bildern der Tage
 - Vorfiltern der Daten pro Tag
 - Clustern mit dem Standort als Beobachtungseinheit
 - Verwandlung Messdaten/Standort zu "Gebietszugehörigkeit"/Standort

Statistisches Praktikum

Gemittelter Mslp am 01.01.2006

Position und Form der "Hoch-" und "Tiefgebiete"

Statistisches Praktikum

Gemitteltes Geopot am 01.01.2006

Position und Form der "Hoch-" und "Tiefgebiete"

Anderer Ansatz

- Muster-Erkennung in den Bildern der Tage
 - Vorfiltern der Daten pro Tag
 - Clustern mit dem Standort als Beobachtungseinheit
 - Verwandlung Messdaten/Standort zu "Gebietszugehörigkeit"/Standort
- Clusterverfahren
 - Dichtebasiertes Clustern mit Noise
 - Startpunkte der Cluster fix
 - Cluster iterierend wachsen lassen mit zunehmend strengem Nachbarschaftsparameter

Katja Gutmair, Stella Akouete, Noah Hurmer und Anne Gritto

Statistisches Praktikum

Filtern des 01.01.2006

Longitude

LUDWIG-

Distanzberechnung zwischen Tagen

$$d(a,b) = 1 - \left(\frac{\sum I(a_i = b_i)}{\sum I(a_i)}\right)$$

wobei: $\sum I(a_i) := Summe \ der \ Beobachtungen \ nicht \ in \ Noise$

Weiteres Cluster auf Tagesebene mit erhaltener Distanzmatrix

Anderer Ansatz

- Probleme
 - Instabil durch Hyperparameter eps und dessen Verkleinerung
 - Sehr teuer
 - Starkes Reduzieren der gegebenen Information

Limitationen & Ausblick

- Wahl des Gewichtsvektors und der Variablen
 - Ausschlaggebend auf die Clusterbewertungskriterien
 - Fachlich sinnvoll
 - Evtl durch mit mehr Vorinformation über die Daten entscheiden
- Saison
 - Saisonbereinigung
 - Datensatz aufteilen und getrennt analysieren

Limitationen & Ausblick

- Einbeziehen der zeitlichen Struktur
 - Einführen einer 3-Tage-Regel beim Clusterverfahren
 - Datenformat als video betrachten statt Ansammlung von Bildern
- Einbeziehen weiterer Variablen
 - Anderer vorhandenen Messdaten (z.B. Temperatur)
 - Berechnung der Stömungsrichtung anhand des Bewegens bestimmter Gebiete über den Tag

Gliederung

- 1. Einführung
 - i. Vorstellen des Projekts
 - ii. Datensätze
- 2. Methodik
 - i. Preprocessing
 - ii. Wahl des Algorithmus
 - iii. Ergebnisse
- 3. Deskriptive Analyse
 - i. Verteilung über die Zeit
 - ii. Unterschiede und Ähnlichkeiten in den Clustern
 - iii. Vergleich zur gegebenen GWL-Einteilung
- 4. Ausblick
- 5. Fazit

Statistisches Praktikum

Fazit

Lassen sich Tage anhand von ihren Wettermesswerten sinnvoll clustern?

Es ist wenig Struktur erkennbar

Instabil

Wie unterscheiden sich die entstandenen Cluster voneinander?

Starke Unterteilung der Sommer- und Winterzeit und in den von ihnen abhängigen Variablen

räumliche Unterscheidung auf Mslp Ebene erkennbar, beim Geopotential eher nicht

Statistisches Praktikum

Referenzen

- Fattouh, L. & Alharbi, M. Using Modified Partitioning Around Medoids Clustering Technique in Mobile Network Planning. *International Journal of Computer Science Issues* **9** (2013).
- Hoyer, A. (ed Ludwig-Maximilians-Universität München) (Sommersemester 2020).
- James, P. M. An objective classification method for Hess and Brezowsky Grosswetterlagen over Europe. *Theoretical and Applied Climatology* **88**, 17-42, doi:10.1007/s00704-006-0239-3 (2007).
- Neuen, A. *Großwetterlagen: Die antizyklonale Westlage (WA)*, https://wetterkanal.kachelmannwetter.com/grosswetterlagen-die-antizyklonale-westlage-wa/ (11.11.2015).
- Schwarzer. SKlima.de, private Wetterstation Peißenberg, http://sklima.de/impressum.php (2021).