ADA

U.S. ARMY FIELD DEMONSTRATION OF THE SINGLE COMMON POWERTRAIN LUBRICANT (SCPL)

INTERIM REPORT TFLRF No. 454

by Adam C. Brandt Edwin A. Frame

U.S. Army TARDEC Fuels and Lubricants Research Facility Southwest Research Institute® (SwRI®)
San Antonio, TX

for Mr. Allen S. Comfort U.S. Army TARDEC Force Projection Technologies Warren, Michigan

Contract No. W56HZV-09-C-0100 (WD17, WD21)

UNCLASSIFIED: Distribution Statement A. Approved for public release

February 2015

Disclaimers

Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.

Contracted Author

As the author(s) is(are) not a Government employee(s), this document was only reviewed for export controls, and improper Army association or emblem usage considerations. All other legal considerations are the responsibility of the author and his/her/their employer(s).

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Attn: DTIC-OCC, 8725 John J. Kingman Road, Suite 0944, Fort Belvoir, Virginia 22060-6218.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

U.S. ARMY FIELD DEMONSTRATION OF THE SINGLE **COMMON POWERTRAIN LUBRICANT (SCPL)**

INTERIM REPORT TFLRF No. 454

by Adam C. Brandt **Edwin A. Frame**

U.S. Army TARDEC Fuels and Lubricants Research Facility Southwest Research Institute® (SwRI®) San Antonio, TX

> for Mr. Allen S. Comfort **U.S. Army TARDEC Force Projection Technologies** Warren, Michigan

Contract No. W56HZV-09-C-0100 (WD17, WD21) SwRI[®] Project No. 08.14734.17.301, 08.14734.21.601, 08.14734.21.701

UNCLASSIFIED: Distribution Statement A. Approved for public release

February 2015

Approved by:

Gary B. Bessee, Director

U.S. Army TARDEC Fuels and Lubricants

Tary Bersee

Research Facility (SwRI®)

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 3. DATES COVERED (From - To) 2. REPORT TYPE 27-02-2015 **Interim Report** August 2011 – February 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER U.S. Army Field Demonstration of the Single Common Powertrain Lubricant (SCPL) W56HZV-09-C-0100 **5b. GRANT NUMBER** 5c. PROGRAM ELEMENT NUMBER **5d. PROJECT NUMBER** 6. AUTHOR(S) Brandt, Adam C.; Frame, Edwin A. SwRI 08.14734.17 & .21 5e. TASK NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army TARDEC Fuels and Lubricants Research Facility (SwRI®)

Southwest Research Institute®

P.O. Drawer 28510

San Antonio, TX 78228-0510

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army RDECOM U.S. Army TARDEC

Force Projection Technologies

Warren, MI 48397-5000

12. DISTRIBUTION / AVAILABILITY STATEMENT

UNCLASSIFIED: Dist A

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The U.S. Army TARDEC Fuels & Lubricants Technology Team has developed a Single Common Powertrain Lubricant (SCPL), designed to consolidate multiple military lubricant specifications into a single product, or single specification. This report covers the long term field demonstration programs of the SCPL conducted at Ft. Benning GA, Ft. Wainwright AK, and Ft. Bliss TX, representing basic, arctic, and desert climate conditions respectively. Results from each testing location support technical findings during the development phases of the SCPL program, and demonstrate that the SCPL is a capable drop in replacement for currently utilized MIL-PRF lubricants providing equivalent to, and in most cases improved performance to currently fielded POL products.

15. SUBJECT TERMS

Ft. Benning, Ft. Wainwright, Ft. Bliss, Single Common Powertrain Lubricant (SCPL), field demonstration, MIL-PRF-2104, low viscosity, synthetic lubricant, lubricant, arctic, desert, basic, climate

16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER (include area code)
Unclassified	Unclassified	Unclassified	Unclassified	154	·

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

WD 17 Task 3

NUMBER

TFLRF No. 454

NUMBER(S)

5f. WORK UNIT NUMBER

8. PERFORMING ORGANIZATION REPORT

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT

EXECUTIVE SUMMARY

The U.S. Army TARDEC Fuels & Lubricants Technology Team has developed the requirement for a Single Common Powertrain Lubricant (SCPL), designed to consolidate multiple military lubricant specifications into a single product, or single specification. This report covers the long term field demonstration programs of the SCPL conducted at Ft. Benning GA, Ft. Wainwright AK, and Ft. Bliss TX, representing basic, arctic, and desert climate conditions respectively. Goals of each field demonstration location included:

- Compare the performance of standard military lubricants (i.e., MIL-PRF-2104 OE/HDO 15W40 or MIL-PRF-46167D OEA30 where applicable) with the SCPL when operated under a normal military duty cycles.
- Conduct testing in multiple locations representative of basic, desert, and arctic climate conditions as defined by AR 70-38, to demonstrate the performance of the SCPL under diverse ambient conditions.
- Compare the performance of two separate SCPL formulations developed during laboratory testing phases [1,2,3].
- Demonstrate the SCPL as a "drop-in" replacement for current fielded petroleum, oil, and lubricant (POL) products, requiring no additional changes or vehicle maintenance to realize performance benefits.
- Quantify real world (i.e., non-laboratory) performance of the SCPL (this can include, but is not limited to: oil performance and degradation, vehicle maintenance impact, component wear protection, and overall fleet efficiency improvement).

Results from each testing location support technical findings during the development phases of the SCPL program, and demonstrate that the SCPL is a capable drop in replacement for currently utilized MIL-PRF lubricants providing equivalent to, and in most cases improved performance to currently fielded POL products. The SCPL successfully completed a minimum of 1-year operation in the arctic and desert environments, and remained in use for a full 2-years without changes in the basic climate location demonstrating the SCPL's extended drain capabilities. All three field demonstration logged a combined 60k miles of operation using the SCPL over the

course of two years. The improved performance of the SCPL was evident through comparison of the used oil analysis which showed comparable wear protection between the two baseline products despite a substantial shift in viscosity, as well as longer drain intervals of the SCPL synthetic base stock. No perceptible performance differences were noted in any applications that would suggest compatibility issues with the SCPL. All of the above support that the SCPL is meeting or exceeding its originally intended goals, and is ready for fielding in U.S. Army equipment.

FOREWORD/ACKNOWLEDGMENTS

The U.S. Army TARDEC Fuel and Lubricants Research Facility (TFLRF) located at Southwest Research Institute (SwRI), San Antonio, Texas, performed this work during the period of June 2011 through January 2014 under Contract No. W56HZV-09-C-0100. The U.S. Army Tank Automotive RD&E Center, Force Projection Technologies, Warren, Michigan administered the project. Mr. Eric Sattler (RDTA-SIE-ES-FPT) served as the TARDEC contracting officer's technical representative. Mr. Allen Comfort of TARDEC served as project technical monitor.

The authors would like to acknowledge the contribution of the TFLRF technical and administrative support staff, as well as all support provided by personnel at Ft. Wainwright AK, Ft. Benning GA, and Ft. Bliss TX in the administering and operation of the field demonstrations.

TABLE OF CONTENTS

Sect	<u>tion</u>			<u>Page</u>
EXE	ECUTI	VE SUN	MMARY	V
FOR	EWO	RD/AC	KNOWLEDGMENTS	vii
			S	
			ES	
ACF	RONY	MS AN	D ABBREVIATIONS	xiv
1.0	BAC	CKGRO	UND & INTRODUCTION	1
2.0	PRO	GRAM	OBJECTIVES	2
3.0	DET	AILS O	OF DEMONSTRATION	3
	3.1	GENEI	RAL	3
		3.1.1	Basic Climate Condition - Ft. Benning GA	3
		3.1.2	Arctic Climate Condition - Ft. Wainwright AK	4
		3.1.3	Desert Climate Condition - Ft. Bliss TX	
	3.2	SCPL	FIELD DEMO OILS	7
	3.3	FLEET	VEHICLE DESCRIPTIONS	8
		3.3.1	Vehicle Fleet - Ft. Benning GA	8
		3.3.2	Vehicle Fleet – Ft. Wainwright AK	11
		3.3.3	Vehicle Fleet – Ft. Bliss TX	
	3.4	VEHIC	CLE PREPARATIONS	16
	3.5	DATA	COLLECTION	17
4.0	RES	ULTS		18
	4.1	BASIC	CLIMATE – FT. BENNING GA	18
		4.1.1	Problem Areas – Ft. Benning	19
		4.1.2	Mileage Accumulation	
		4.1.3	Oil Analysis	
			M88A1/A2 (engine)	
			Bradley (engine)	
			Bradley (transmission)	
			HMMWV (engine)	
			HEMTT (engine)	
			HEMTT (transmission)	
			HET (engine + transmission)	
			MTV (engine)	
			MTV (transmission)	
			STRYKER (engine)	39

TABLE OF CONTENTS (CONT'D)

<u>Sect</u>	<u>ion</u>			Page
	4.2	ARCTI	IC CLIMATE – FT. WAINWRIGHT AK	41
		4.2.1	Problem Areas – Ft. Wainwright	41
		4.2.2	Mileage Accumulation	42
		4.2.3	Oil Analysis	45
			HMMWV (engine)	45
			HMMWV (transmission)	47
			HEMTT (engine)	48
			HEMTT (transmission)	50
			SUS-V (engine)	51
			MTV (engine)	53
			MTV (transmission)	54
	4.3	DESER	RT CLIMATE – FT. BLISS TX	55
		4.3.1	Problem Areas – Ft. Bliss	56
		4.3.2	Mileage Accumulation	57
		4.3.3	Used Oil Analysis	59
			M88A2 (engine)	59
			Bradley (engine)	61
			Bradley (transmission)	63
			MATV (engine)	65
			MAXXPRO (engine)	67
5.0	CON	ICLUSI	IONS	69
6.0	REF	ERENC	CES	72
APP	ENDI	X A.	Ft. Benning Field Demo Raw Data	A-1
APP	ENDI	XB.	Ft. Wainwright Field Demo Raw Data	B-1
۸ DD	ENDI	V C	Et Plice Field Domo Paw Data	

LIST OF TABLES

<u>Table</u>		<u>Page</u>
Table 1.	Field Demo SCPL Base Oil Properties	7
Table 3.	Ft. Benning UOA, M88A1/A2 Engine, TEST	
Table 4.	Ft. Benning UOA, M88A1/A2 Engine, CONTROL	
Table 5.	Ft. Benning UOA, Bradley Engine, TEST	
Table 6.	Ft. Benning UOA, Bradley Engine, CONTROL	
Table 7.	Ft. Benning UOA, Bradley Transmission, TEST	
Table 8.	Ft. Benning UOA, HMMWV Engine, TEST	
Table 9.	Ft. Benning UOA, HMMWV Engine, CONTROL	
Table 10.	Ft. Benning UOA, HEMTT Engine, TEST	
Table 11.	Ft. Benning UOA, HEMTT Engine, CONTROL	
Table 12.	Ft. Benning UOA, HEMTT Transmission, TEST	
Table 13.	Ft. Benning UOA, HET Engine, TEST	36
Table 14.	Ft. Benning UOA, HET Transmission, TEST	
Table 15.	Ft. Benning UOA, MTV Engine, TEST	37
Table 16.	Ft. Benning UOA, MTV Engine, CONTROL	38
Table 17.	Ft. Benning UOA, MTV Transmission, TEST	
Table 18.	Ft. Benning UOA, STRYKER Engine, TEST	40
Table 19.	Ft. Benning UOA, STRYKER Engine, CONTROL	40
Table 21.	Ft. Wainwright UOA, HMMWV Engine, TEST	45
Table 22.	Ft. Wainwright UOA, HMMWV Engine, CONTROL	
Table 23.	Ft. Wainwright UOA, HMMWV Transmission, TEST	47
Table 24.	Ft. Wainwright UOA, HMMWV Transmission, CONTROL	
Table 25.	Ft. Wainwright UOA, HEMTT Engine, TEST	
Table 26.	Ft. Wainwright UOA, HEMTT Engine, CONTROL	
Table 27.	Ft. Wainwright UOA, HEMTT Transmission, TEST	
Table 28.	Ft. Wainwright UOA, HEMTT Transmission, CONTROL	
Table 29.	Ft. Wainwright UOA, SUS-V Engine, TEST	
Table 30.	Ft. Wainwright UOA, SUS-V Engine, CONTROL	
Table 31.	Ft. Wainwright UOA, MTV Engine, TEST	
Table 32.	Ft. Wainwright UOA, MTV Engine, CONTROL	
Table 33.	Ft. Wainwright UOA, MTV Transmission, TEST	
Table 34.	Ft. Wainwright UOA, MTV Transmission, CONTROL	
Table 35.	Ft. Bliss Desert Climate Vehicle Fleet	
Table 36.	Ft. Bliss UOA, M88A1/A2 Engine, TEST	
Table 37.	Ft. Bliss UOA, M88A1/A2 Engine, CONTROL	
Table 38.	Ft. Bliss UOA, Bradley Engine, TEST	
Table 39.	Ft. Bliss UOA, Bradley Engine, CONTROL	
Table 40.	Ft. Bliss UOA, Bradley Transmission, TEST	
Table 41.	Ft. Bliss UOA, Bradley Transmission, CONTROL	
Table 42.	Ft. Bliss UOA, MATV Engine, TEST	65
Table 43.	Ft. Bliss UOA, MATV Engine, CONTROL	66
Table 44.	Ft. Bliss UOA, MAXXPRO Engine, TEST	
Table 45	Ft Rliss LIOA MAXXPRO Engine CONTROL	68

LIST OF APPENDIX TABLES

<u>Table</u>		<u>Page</u>
Table A-1.	Ft. Benning, Vehicle Utilization, M88A1/A2	A-2
Table A-2.	Ft. Benning, Vehicle Utilization, Bradley	
Table A-3.	Ft. Benning, Vehicle Utilization, HMMWV	
Table A-4.	Ft. Benning, Vehicle Utilization, HEMTT	
Table A-5.	Ft. Benning, Vehicle Utilization, HET	
Table A-6.	Ft. Benning, Vehicle Utilization, MTV	
Table A-7.	Ft. Benning, Vehicle Utilization, Stryker	
Table A-8.	Ft. Benning, UOA, M88A1/A2	
Table A-9.	Ft. Benning, UOA, M88A1/A2 (CONT)	A-10
Table A-10.	Ft. Benning, UOA, Bradley	A-11
Table A-11.	Ft. Benning, UOA, Bradley (CONT)	A-12
Table A-12.	Ft. Benning, UOA, Bradley (CONT)	A-13
Table A-13.	Ft. Benning, UOA, Bradley (CONT)	
Table A-14.	Ft. Benning, UOA, HMMWV	A-15
Table A-15.	Ft. Benning, UOA, HMMWV (CONT)	A-16
Table A-16.	Ft. Benning, UOA, HMMWV (CONT)	
Table A-17.	Ft. Benning, UOA, HEMTT	
Table A-18.	Ft. Benning, UOA, HEMTT (CONT)	
Table A-19.	Ft. Benning, UOA, HEMTT (CONT)	
Table A-20.	Ft. Benning, UOA, HEMTT (CONT)	
Table A-21.	Ft. Benning, UOA, HET	
Table A-22.	Ft. Benning, UOA, HET (CONT)	
Table A-23.	Ft. Benning, UOA, MTV	
Table A-24.	Ft. Benning, UOA, MTV (CONT)	
Table A-25.	Ft. Benning, UOA, MTV (CONT)	
Table A-26.	Ft. Benning, UOA, MTV (CONT)	
Table A-27.	Ft. Benning, UOA, Stryker	
Table A-28.	Ft. Benning, UOA, Stryker (CONT)	
Table A-29.	Ft. Benning, UOA, Stryker (CONT)	
Table B-1.	Ft. Wainwright, Vehicle Utilization, HMMWV	
Table B-2.	Ft. Wainwright, Vehicle Utilization, HEMTT	
Table B-3.	Ft. Wainwright, Vehicle Utilization, MTV	
Table B-4.	Ft. Wainwright, Vehicle Utilization, SUS-V	
Table B-5.	Ft. Wainwright, UOA, HMMWV	
Table B-6.	Ft. Wainwright, UOA, HMMWV (CONT)	
Table B-7.	Ft. Wainwright, UOA, HMMWV (CONT)	
Table B-8.	Ft. Wainwright, UOA, HMMWV (CONT)	
Table B-9.	Ft. Wainwright, UOA, HEMTT	
Table B-10.	Ft. Wainwright, UOA, HEMTT (CONT)	
Table B-11.	Ft. Wainwright, UOA, HEMTT (CONT)	
Table B-12.	Ft. Wainwright, UOA, HEMTT (CONT)	
Table B-13.	Ft. Wainwright, UOA, SUS-V	B-13
Table B-14.	Ft. Wainwright, UOA, SUS-V (CONT)	
Table R-15	Ft Benning LIOA MTV	R-15

LIST OF APPENDIX TABLES (Continued)

	Page
Ft. Benning, UOA, MTV (CONT)	B-16
Ft. Bliss, Vehicle Utilization, Bradley	
Ft. Benning, UOA, M88A1/A2	
Ft. Bliss, UOA, Bradley (CONT)	
Ft. Benning, UOA, MATV	
Ft. Benning, UOA, MATV (CONT)	
Ft. Benning, UOA, MATV (CONT)	
Ft. Benning, UOA, MAXXPRO	
Ft. Benning, UOA, MAXXPRO (CONT)	
	Ft. Benning, UOA, MTV (CONT)

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
Figure 1.	Ft. Benning, M88A1/A2 Mileage Accumulation	22
Figure 2.	Ft. Benning, Bradley Mileage Accumulation	
Figure 3.	Ft. Benning, HMMWV Mileage Accumulation	
Figure 4.	Ft. Benning, HEMTT Mileage Accumulation	
Figure 5.	Ft. Benning, MTV Mileage Accumulation	
Figure 6.	Ft. Benning, Stryker Mileage Accumulation	24
Figure 7.	Ft. Benning UOA, M88A1/A2 Engine, Iron Accumulation	27
Figure 8.	Ft. Benning UOA, Bradley Engine, Iron Accumulation	
Figure 9.	Ft. Benning UOA, HMMWV Engine, Iron Accumulation	32
Figure 10.	Ft. Benning UOA, HEMTT Engine, Iron Accumulation	34
Figure 11.	Ft. Benning UOA, MTV Engine, Iron Accumulation	38
Figure 12.	Ft. Benning UOA, STRYKER Engine, Iron Accumulation	41
Figure 13.	Ft. Wainwright, HMMWV Mileage Accumulation	43
Figure 14.	Ft. Wainwright, HEMTT Mileage Accumulation	43
Figure 15.	Ft. Wainwright, MTV Mileage Accumulation	44
Figure 16.	6 7	
Figure 17.	Ft. Wainwright UOA, HMMWV Engine, Iron Accumulation	46
Figure 18.		
Figure 19.		
Figure 20.	\mathbf{c}	
Figure 21.	•	
Figure 22.	, E	
Figure 23.		
Figure 24.	· · · · · · · · · · · · · · · · · · ·	
Figure 25.		
Figure 26.		
Figure 27.		
Figure 28.	Ft. Bliss UOA, MAXXPRO Engine, Iron Accumulation	68

ACRONYMS AND ABBREVIATIONS

AD – Armored Division

AK - Alaska

AR – Army Regulation

CI – cubic inch

DOL - Directorate of Logistics

DOTS – Directorate of Training Sustainment

FORSCOM - Forces Command

FMTV – Family of Medium Tactical Vehicles

FMX – Fleet Management Expansion

FRAGO – fragmentary order

Ft. - Fort

GA - Georgia

GEP – General Engine Products

GOCO - government owned contractor operated

GSMMD - Ground Systems Material Management Directorate

HEMTT – Heavy Expanded Mobility Tactical Truck

HET – heavy equipment transporter

HMMWV – high mobility multipurpose wheeled vehicle

HP - horsepower

L – liter

MATV – MRAP All Terrain Vehicle

MIL-PRF – military performance

MRAP - Mine Resistant Ambush Protected

NWTC - Northern Warfare Training Center

OE/HDO – oil engine/heavy duty oil

OEA – oil engine arctic

POC – point of contact

POL – petroleum, oil, and lubricant

QTR - quarter

SBCT – Stryker Brigade Combat Team

SCPL - Single Common Powertrain Lubricant

SUS-V – Small Utility Support Vehicle

TACOM – Tank-Automotive and Armaments Command

TARDEC - Tank Automotive Research Development and Engineering Center

TRADOC - Training and Doctrine Command

TFLRF - TARDEC Fuels and Lubricants Research Facility

SwRI – Southwest Research Institute

TX - Texas

U.S. – United States

USARAK – U.S Army Alaska

1.0 BACKGROUND & INTRODUCTION

The U.S. Army TARDEC Fuels & Lubricants Technology Team has developed the requirement for a Single Common Powertrain Lubricant (SCPL), designed to consolidate multiple military lubricant specifications into a single product, or single specification. The application of the SCPL includes engine lubrication, power shift transmission operation, and limited use in hydraulic systems where MIL-PRF-2104 and MIL-PRF-46167 products are currently used. The SCPL is designed to operate in ambient temperatures ranging from low temperature arctic, to high temperature desert conditions, representative of the wide range of potential military operating conditions seen worldwide. The development of the SCPL allows for a single lubricant specification to be universally used in tactical and combat vehicles, despite their seasonal or geographical location, and reduces the logistics burden of the Army's supply chain through petroleum, oil, and lubricant (POL) product simplification. In addition, technological lubricant advancements of the SCPL allow for improved oil performance and vehicle efficiency over current military specified lubricants [1,2,3], all of which provide a potential cost benefit to military operations.

This report covers field demonstration programs of the SCPL, conducted at three U.S. Army installations across the United States representing basic, arctic, and desert climate conditions. These demonstrations were designed to test the technology of the SCPL in "real world" military conditions, and demonstrate the general concept of the SCPL as a multifunction single specification fluid. This report covers all efforts conducted at Ft. Benning GA from December 2011 through December 2013 (basic climate), Ft. Wainwright AK from August 2012 through September 2013 (arctic climate), and Ft. Bliss TX from January 2013 through January 2014 (desert climate). All SCPL field demonstration efforts were coordinated, monitored, and operated by the government owned, contractor operated (GOCO) U.S. Army TARDEC Fuels and Lubricants Research Facility (TFLRF), located at Southwest Research Institute (SwRI) in San Antonio, Texas.

2.0 PROGRAM OBJECTIVES

Several key factors guided the administration and design of the SCPL field demonstrations. Each demonstration was originally targeted for an operational duration of 1-year, and the administration and operation of the test was to be on a non-interference basis with participating organizations, as to not disrupt normal duty cycles and/or missions. Routine monitoring of field demonstrations would be conducted by TFLRF, and would primarily consist of quarterly site visits for general liaison, data collection, and used oil sampling. It was anticipated that additional field site visits would be scheduled on an as needed basis to ensure proper administration and support of the program, but primary management would be targeted for the pre-scheduled quarterly intervals. The objectives of each of the SCPL field demonstrations were to:

- Compare the performance of standard military lubricants (i.e., MIL-PRF-2104 OE/HDO 15W40 or MIL-PRF-46167D OEA30 where applicable) with the SCPL when operated under a normal military duty cycles.
- Conduct testing in multiple locations representative of basic, desert, and arctic climate conditions as defined by AR 70-38, to demonstrate the performance of the SCPL under diverse ambient conditions.
- Compare the performance of two separate SCPL formulations developed during laboratory testing phases [1,2,3].
- Demonstrate the SCPL as a "drop-in" replacement for current fielded POL products, requiring no additional changes or vehicle maintenance to realize performance benefits.
- Quantify real world (i.e., non-laboratory) performance of the SCPL (this can include, but is not limited to: oil performance and degradation, vehicle maintenance impact, component wear protection, and overall fleet efficiency improvement).

3.0 DETAILS OF DEMONSTRATION

3.1 GENERAL

As outlined above, multiple test sites were desired to assess performance over a wide range of climate conditions. Through a selection process that considered geographical location, resulting climate, and types of military operation and vehicles available, three test locations were selected for the SCPL field demonstration program:

- Ft. Benning GA basic climate
- Ft. Wainwright AK arctic climate
- Ft. Bliss TX desert climate

Additional locations were considered during the early selection process, but these three locations were found most responsive and interested in test participation, and found best to meet the desired goals of the field demonstration. The following sections outline the general path and points of contacts that lead to the inclusion of each test location.

3.1.1 Basic Climate Condition - Ft. Benning GA

Mr. Joe Coakley, the TARDEC Logistics Management Specialist overseeing logistics planning for Ft. Benning, Ft. Rucker, and Ft. McCoy, was approached regarding SCPL testing for the basic climate condition. The test plan and goals for SCPL field demonstration were presented by TFLRF for consideration, and interest was reciprocated in participating. Upon request, a letter of intent was provided by TARDEC and TFLRF to Mr. Coakley reflecting the program plans and goals. Mr. Coakley then tasked Mr. Jim Logan, the director of FMX TACOM at Ft. Benning to coordinate the basic climate field demonstration program. Mr. Logan then identified Mr. Thomas Esposito, the Ground Systems Material Management Directorate (GSMMD) Chief, Track Division, and Mr. Allen Dimsdale, the FMX Wheeled Vehicles Directorate Chief, as the appropriate points of contact for TFLRF to plan and execute the program with.

TFLRF then began contact with Mr. Esposito and Mr. Dimsdale, and several onsite planning meetings occurred with GSMMD and FMX staff members to review the test plan, discuss the overall goals, and coordinate the vehicles and timing required to initiate testing at Ft. Benning. During this process personnel from the Directorate of Training Sustainment (DOTS) were

included, as DOTS owned and managed the equipment identified to be used in the test. This included Mt. Scott Fabozzi, Director, Mr. Joe Massouda, Support Operations Officer, Mr. Jimmy Tarrance, Supply and Services Division Chief, and Mr. Jose Hamilton, the Armor School Liaison Officer. Through continued communication, it was determined that primary TFLRF coordination for the field demonstration was to be made through DOTS, as they had the most control and oversight of the vehicles in regards to the project requirements.

Through continued coordination TFLRF and DOTS identified the vehicle fleet to be utilized in the field demonstration. Despite initial planning to evaluate two SCPL candidates at each testing location, at the time of initiation of testing at Ft. Benning only one of the SCPL candidates was readily available in bulk quantities required to support testing (herein referred to as SCPL Oil A), and as a result adjustments were made to reduce the size of the fleet from the original proposal, eventually settling on a total quantity of 35 vehicles (23 TEST, 12 CONTROL) for the fleet.

A final program briefing was held at Ft. Benning in November 2011, comprised of personnel from TARDEC, TFLRF, DOTS, vehicle maintenance, plus some end equipment users. The briefing reviewed the background and previous laboratory testing of the SCPL, and laid out the specific test plan and requirements for testing. The basic climate field demonstration was officially initiated during the weeks of December 5-16, 2011. Prior to the programs original end date in December 2012, the program was extended for an additional year to gain greater utilization of the vehicles. The field demonstration was seamlessly operated through the extension process, and finally terminated during December 2013, 24 months after its original initiation. Detailed results for this test location follow in the results section of the report.

3.1.2 Arctic Climate Condition - Ft. Wainwright AK

Contact to Ft. Wainwright AK for arctic testing of the SCPL was initially made to the Directorate of Logistics (DOL). From this inquiry Mr. Chris Wolney, USARAK G4 Chief of Operations, was identified to pursue testing in the region. Mr. Wolney was then presented with the basic outline and goals for the field demonstration for consideration, in which he included Mr. Paul Thakur, USARAK Science Advisor, and Mr. Jeremy Widener, Ft. Wainwright G4 Ground Maintenance. A request was made for a written test plan to outline the official goals and

requirements of the field demonstration, in which TFLRF responded appropriately. After some select back and forth adjustments to the test plan were completed, a commitment was made by USARAK to participate as the SCPL arctic test location. A fragmentary order (FRAGO) was then issued by the USARAK G4 which tasked 1/25 SBCT and NWTC units to provide the desired vehicles and participate in the test program. The test fleet was composed of a total of 16 vehicles, which included tactical wheeled vehicles similar to those used in the basic climate fleet, along with the specific addition of a small number of Small Unit Support Vehicles (SUS-V), a vehicle which is location specific (i.e., used only in arctic climates).

The first site visit by TFLRF to Ft. Wainwright occurred the week of August 27-31, 2012. Similar to the constraints present for the Ft. Benning field demonstration, only one of two SCPL candidate oils was available in the bulk quantities needed to setup and operate the field demo, and as a result only a single SCPL candidate was evaluated at this location (the same formulation tested at Ft. Benning, SCPL Oil A). The arctic field demonstration officially started the week of August 27-31, 2012, and was operated through the week of September 16-20, 2013, 13 months after initiation. Detailed results for this test location follow in the results section of the report.

3.1.3 Desert Climate Condition - Ft. Bliss TX

Contact for desert climate testing was first made to Mr. Jose Valverde, the Chief of Maintenance at the Ft. Bliss DOL. Mr. Valverde had previously worked with TFLRF in a past TARDEC field demonstration assessing synthetic blend fuels at Ft. Bliss. Response from the past program was positive, and TFLRF attempted to leverage this past experience to setup the SCPL demonstration. However since the previous program had been conducted, Ft. Bliss TX had restructured significantly, with only FORSCOM units now being available for test participation. This was slightly less desirable as FORSCOM units and equipment do not tend to have as long term stability in a research type environment compared to TRADOC units. Despite this, it was determined that Ft. Bliss still provided the best fulfillment of all remaining demonstration goals for the desert climate.

Mr. Valverde directed TFLRF to Mr. Michael O'Brien at the Mission Support Element G4 of the 1st Armored Division (1st AD). TFLRF staff made contact to Mr. O'Brien, who then redirected to

G4 MSE, Wanda Cobb and the G4 LTC, Corey Cook. After initial discussions with MSE Cobb and LTC Cook, TFLRF submitted a formal field demonstration request to 1-AD for participation in the program. Through a series of discussions and emails, LTC Cook agreed to participate and tasked 1-AD to coordinate the program with TFLRF. G4 Maintenance Officer CW4 William Caldwell was ultimately identified as the initial point of contact for coordinating efforts to start the program with the division.

Several meetings took place between TFLRF and various staff at the G4 level at Ft. Bliss to coordinate the program. This process took longer than expected due to obligations of the participating division, and as a result liaison on the G4 side changed hands several times. CW5 Jared McClinton and SGM Edward Peters were the final G4 contacts provided to TFLRF at the programs initiation. Based on the desired vehicle makeup for the program, 2nd Brigade of 1st AD (2-1AD) was identified as the participating unit. CW4 Arnold Moore was appointed by the G4 as the brigade POC for the effort. After planning discussions were completed with Chief Moore, a final fleet of 21 vehicles were identified for testing.

The Ft. Bliss vehicle fleet differed slightly from the other testing locations. All of the wheeled vehicles tasked for inclusion were made up solely of Mine Resistant Ambush Protected (MRAP) variants, as they were determined to be the prime wheeled vehicle movers within the division compared to that of typical tactical wheeled vehicles used at the other locations. In addition, a small number of combat and tracked vehicles were also included consistent with those used at the Ft. Benning location. Chief Moore then tasked three battalions within 2-1 AD to fulfill the desired vehicle listing: 1st Battalion, 6th Infantry Regiment (POC: CW3 Richard Morris), 1st Battalion, 35th Regiment (POC: CW2 Charles Davis), and 2-1 Special Troops Battalion (POC: CW2 Cordell Childs).

The Ft. Bliss field demonstration was officially started the week of January 11-15, 2013. At that time both SCPL candidate oils were readily available, so each group of test vehicles were split between the two SCPL formulations evenly. Testing operated from January 11-15, 2013 through January 13-17, 2014, 12 months after test initiation. Detailed results for this test location follow in the results section of the report.

3.2 SCPL FIELD DEMO OILS

Two separate SCPL formulations were desired to be evaluated in the field demonstration. As previously discussed due to lubricant availability and field demo timing issues, only one test location was actually able to evaluate both SCPL formulations. SCPL OIL A contained a mixed calcium and magnesium detergent-dispersant additive system and had a sulfated ash content of 1.17%. SCPL OIL B was formulated with a calcium additive system and had a sulfated ash content of 1.14%. Ft. Benning and Ft. Wainwright were solely operated on the SCPL OIL A formulation, while Ft. Bliss was an even split between two formulations, herein referred to as SCPL OIL A and SCPL OIL B. 0 below shows the different oil properties for each of the SCPL formulations evaluated. Previous laboratory testing showed that both formulations performed similarly in engine and transmission testing applications, and as such performance from each formulation in the field demonstration was expected to be similar.

Table 1. Field Demo SCPL Base Oil Properties

			SCPL	SCPL
Method	<u>Property</u>	<u>Units</u>	Oil A	Oil B
D445 100c	Viscosity	cSt	8.47	8.69
D4739	Buffer	mg KOH/g	9.49	10.44
D5185	Al	ppm	2	4
	Sb	"	<1	<1
	Ва	"	<1	<1
	В	"	14	4
	Ca	"	902	3563
	Cr	"	<1	<1
	Cu	"	<1	<1
	Fe	"	1	2
	Pb	"	<1	<1
	Mg	"	1259	16
	Mn	"	<1	<1
	Мо	"	64	8
	Ni	"	<1	<1
	P	"	1079	1129
	Si	"	5	7
	Ag	"	<1	<1
	Na	"	<5	10
	Sn	"	<1	<1
	Zn	"	1265	1710
	K	"	<5	8
	Sr	"	<1	<1
	V	"	<1	<1
	Ti	"	<1	<1
	Cd	"	<1	<1
D664 Acid	Buffer	mg KOH/g	1.65	2.84
D874	Sulfated Ash	mass %	1.17	1.14

3.3 FLEET VEHICLE DESCRIPTIONS

Vehicle quantities and types for testing varied between each location. These variances in the fleet vehicle makeup primarily depended the following key factors:

- Overall balance of equipment across all locations (ensuring proper representation of Army equipment in testing)
- Combined size of all three location fleets (SCPL program cost driven)
- Presence of any location specific or unusual equipment not normally accessible at the other locations (i.e., SUS-V in arctic climate, MRAP availability in desert climate)
- The expected usage profile of equipment supplied by the POC from each location (avoiding low usage groups where possible, maximizing prime movers)

A full description of test vehicles for each test location follows.

3.3.1 Vehicle Fleet - Ft. Benning GA

The tactical and combat vehicles utilized at the Ft. Benning location were comprised of the following models and quantities:

- M88 Recovery Vehicle (M88A1 & M88A2 Hercules)
 - o 2 TEST, 2 CONTROL (1 ea. M88A1 & M88A2)
- M3A3 Bradley Fighting Vehicle
 - o 4 TEST, 2 CONTROL
- M997 High Mobility Multipurpose Wheeled Vehicle (HMMWV) Ambulance Variant
 - o 4 TEST, 2 CONTROL
- M978A4 Heavy Expanded Mobility Tactical Truck (HEMTT) Fueler Variant
 - o 4 TEST, 2 CONTROL
- M1070 Heavy Equipment Transporter (HET) Tractor
 - o 1 TEST (max available, critical for inclusion due to engine type)
- M1083A1 Family of Medium Tactical Vehicles (FMTV) 5-ton Cargo Vehicle
 - o 4 TEST, 2 CONTROL
- M1126 Stryker Armored Fighting Vehicle
 - o 4 TEST, 2 CONTROL

These vehicles were selected as a representative core of equipment utilized by the U.S. Army. It was mandatory that the test vehicle fleet included several key high density wheeled vehicles, such as the HMMWV and FMTV. These vehicle types and their general powertrain families exist in large quantities in the Army fleet, so their compatibility and resulting performance with the SCPL was of high interest as findings could then be applied to a large quantity of other vehicles. Brief descriptions of each vehicle type is listed below. Included is specific notation on which components (i.e., engine, transmission, hydraulic systems, etc.) on each vehicle were used to evaluate the SCPL:

• M88A1 Recovery:

- 51-ton tracked recovery vehicle used in the support of fleet repair or extrication during battlefield operations. Equipped with a 35 ton lift capable boom.
- o Powered by the AVDS-1790-2DR engine, a 1790 CI 12-cylinder twin-turbocharged air-cooled diesel engine producing approximately 750hp.
- The SCPL was evaluated in only the engine to specific transmission fluid requirements for this equipment that were outside the scope of the SCPL specification.

• M88A2 Hercules:

- o 70-ton tracked recovery vehicle used in the support of fleet repair or extrication during battlefield operations. Equipped with a 35 ton lift capable boom. Developed to increase performance over the M88A1 to allow capability for recovering the M1 Abrams tank.
- o Powered by the AVDS-1790-8CR engine, a 1790 CI 12-cylinder twin-turbocharged air-cooled diesel engine producing approximately 1050hp.
- Consistent with the M88A1, the SCPL was evaluated in only the engine due to specific transmission fluid requirements that were outside the scope of the SCPL specification.

• M3A3 Bradley:

 25-30 ton tracked armored reconnaissance vehicle used in conjunction with the M1 Abrams in battlefield operation.

- Powered by a Cummins VTA-903 engine, a 903 CI V8 turbocharged diesel engine producing approximately 660hp.
- Final drive provided through a HMPT-500 transmission, a three forward range hydromechanical transmission which transmits power through infinitely variable ratios depending on operator input, engine load, and vehicle speed.
- The SCPL was evaluated in both the engine and transmission. However, only 50% of the TEST vehicles transmissions were included using the SCPL due to lubricant availability at the start of testing.

M997 HMMWV

- Light 4-wheel drive vehicle used primarily for personnel and light cargo transport behind front lines. Consists of many variants ranging from a 2-seater pick-up truck configuration to up-armored 5-crew support vehicles.
- Powered by the General Engine Products (GEP) 6.2L, a naturally aspirated 378 CI
 V8 indirect injected diesel engine producing approximately 150hp (other variants include the 6.5L NA and 6.5L(T) engines)
- The SCPL was evaluated in only the engine due to specific transmission fluid requirements (DEXRON) that were outside the SCPL specification.

M978A4 HEMTT

- 20-ton 8-wheel drive heavy transport truck used for supply and re-supply of equipment in battlefield operation. Consists of many variants ranging from tow/recovery, general cargo transport, to mobile fuel movement and supply.
- Powered by the Caterpillar C15 engine, a 15.2L turbocharged inline 6 cylinder, direct injected engine producing approximately 500hp.
- o Final drive provided by the Allison 4500SP 5-speed automatic transmission.
- The SCPL was evaluated in both the engine and transmission during the field demonstration. However, only 50% of the TEST vehicles transmissions were included using the SCPL due to lubricant availability at the start of testing.

M1070 HET

o 20-ton 8-wheel drive heavy equipment transporter tractor used in conjunction with the M1000 HET trailer to transport, deploy, and evacuate tanks, armored

- personnel carriers, self propelled artillery, and other heavy vehicles and equipment.
- Powered by the Detroit Diesel 8V92T engine, a 2-cycle V8 turbocharged direct injected diesel engine producing approximately 500hp.
- o Final drive provided by the Allison CLT-755 5-speed automatic transmission.
- The SCPL was evaluated in both the engine and transmission during the field demonstration.

M1083A1 FMTV

- 5-ton capacity common chassis cargo and personnel mover used to support a wide range of military operations. Consists of multiple variants ranging from general material handling arrangements, tractor trailer configuration, personnel carriers, wrecker, and other mission specific models.
- o Powered by the Caterpillar C7 ACERT engine, a 7L inline 6 cylinder turbocharged direct injected diesel engine producing approximately 350hp.
- o Final drive provided by the Allison MD3070PT 7-speed automatic transmission.
- o The SCPL was evaluated in both the engine and transmission during the field demonstration. However, only 50% of the TEST vehicles transmissions were included using the SCPL due to lubricant availability at the start of testing.

• M1126 Stryker

- 16-ton 8-wheel drive armored fighting vehicle used in a wide range of support and battlefield operations.
- Powered by the Caterpillar 3126 engine, an inline 6-cylinder turbocharged direct injected diesel engine producing approximately 350hp.
- The SCPL was evaluated in only the engine due to specific transmission fluid requirements that were outside the SCPL specification.

3.3.2 Vehicle Fleet – Ft. Wainwright AK

The arctic climate fleet size was smaller in comparison to the basic and desert climate locations. This was due partly to the increased cost of operations in Alaska, as well as consideration of the more "known" performance of the SCPL in cold climate conditions. SCPL development was based off of proven low viscosity arctic type oil technology, thus it was expected to perform well

under these conditions. The fleet tactical and combat vehicles utilized at the Ft. Wainwright location was comprised of the following models:

- M997 High Mobility Multipurpose Wheeled Vehicle (HMMWV) Ambulance Variant
 - o 2 TEST, 2 CONTROL
- M1120A4 Heavy Expanded Mobility Tactical Truck (HEMTT) Fueler Variant
 - o 2 TEST, 2 CONTROL
- M1083A1 Family of Medium Tactical Vehicles (FMTV) 5-ton Cargo Vehicle
 - o 2 TEST, 2 CONTROL
- M973A1 Small Unit Support Vehicle (SUS-V)
 - o 2 TEST, 2 CONTROL

The first three vehicle types were again representative of typical high density wheeled vehicles, and overlapped those used in the basic climate demonstration for comparison purposes. The SUS-V was included as a location specific vehicle, which is only utilized in cold climate conditions were travel in heavy snow is required. A brief vehicle description is listed below for each vehicle type, including notation of which components where were used to evaluate the SCPL:

M997 HMMWV

- Light 4-wheel drive vehicle used primarily for personnel and light cargo transport behind front lines. Consists of many variants ranging from a 2-seater pick-up truck configuration to up-armored 5-crew support vehicles.
- Powered by the General Engine Products (GEP) 6.2L, a naturally aspirated 378 CI
 V8 indirect injected diesel engine producing approximately 150hp.
- The SCPL was evaluated in the engine, transmission, transfer case, and power steering consistent with the universal application of the MIL-PRF-46167 arctic oil in this region.

M1120A4 HEMTT

o 20-ton 8-wheel drive heavy transport truck used for supply and re-supply of necessary equipment in battlefield operation. Consists of many variants ranging from tow/recovery, general cargo transport, to mobile fuel movement and supply.

- Powered by the Caterpillar C15 engine, a 15.2L turbocharged inline 6 cylinder, direct injected engine producing approximately 500hp.
- o Final drive provided by the Allison 4500SP 5-speed automatic transmission.
- The SCPL was evaluated in the engine, transmission, transfer case, and power steering consistent with the universal application of the MIL-PRF-46167 arctic oil in this region.

M1083A1 FMTV

- 5-ton capacity common chassis cargo and personnel mover used to support a wide range of military operations. Consists of multiple variants ranging from general material handling, tractor trailer configuration, personnel carriers, wrecker, and other mission specific models.
- o Powered by the Caterpillar C7 ACERT engine, a 7L inline 6 cylinder turbocharged direct injected diesel engine producing approximately 350hp.
- o Final drive provided by the Allison MD3070PT 7-speed automatic transmission.
- The SCPL was evaluated in the engine, transmission, transfer case, and power steering consistent with the universal application of the MIL-PRF-46167 arctic oil in this region.

M973A1 SUS-V

- 5-ton amphibious all terrain articulated tracked vehicle designed to carry troops and equipment through heavy snow and bog lands. Consists of two units with four powered tracks, capable of carrying a maximum of 17 troops (6 in the front compartment, 11 in the rear) at full capacity.
- Powered by the Mercedes-Benz OM 603.950 engine, a 2.9L inline 6 cylinder diesel engine that produces approximately 135hp.
- The SCPL was evaluated in the engine and power steering consistent with the universal application of the MIL-PRF-46167 arctic oil in this region. Note, the transmission was not included due to the requirement of powerpack removal to service and replace fluid.

3.3.3 Vehicle Fleet – Ft. Bliss TX

The desert vehicle fleet utilized in testing departed from the traditional wheeled vehicles used in the other two locations. This was done solely due to the low projected utilization rates of these vehicle types at this testing location, and the desire to incorporate the newer Mine Resistant Ambush Protected (MRAP) vehicles used extensively in desert type combat training. The following outlines the vehicle types and quantities utilized in the desert field demonstration location:

- M88A2 Hercules Recovery Vehicle
 - o 2 TEST, 2 CONTROL
- M3A3 Bradley Fighting Vehicle
 - o 4 TEST, 2 CONTROL
- MRAP All Terrain Vehicle (M-ATV)
 - o 6 TEST, 2 CONTROL
- M1235A1 MaxxPro MRAP (Ambulance)
 - o 2 TEST, 1 CONTROL

A brief vehicle description is listed below for each vehicle type, including notation of which components were used to evaluate the SCPL:

• M88A2 Hercules:

- o 70-ton tracked recovery vehicle used in the support of fleet repair or extrication during battlefield operations. Equipped with a 35 ton lift capable boom. Developed to increase performance over the M88A1 to allow capability for recovering the M1 Abrams tank.
- o Powered by the AVDS-1790-8CR engine, a 1790 CI 12-cylinder twin-turbocharged air-cooled diesel engine producing approximately 1050hp.
- The SCPL was only evaluated in the engine due to specific transmission fluid requirements that were outside the scope of the SCPL specification.

• M3A3 Bradley:

 25-30 ton tracked armored reconnaissance vehicle used in conjunction with the M1 Abrams in battlefield operation.

- Powered by a Cummins VTA-903 engine, a 903 CI V8 turbocharged diesel engine producing approximately 660hp.
- Final drive provided through a HMPT-500 transmission, a three forward range hydromechanical transmission which transmits power through infinitely variable ratios depending on operator input, engine load, and vehicle speed.
- o The SCPL was evaluated in both the engine and transmission.

Oshkosh M-ATV

- 14-ton MRAP vehicle designed to provide the same protection of larger MRAP variants, but with improved mobility targeted at replacing the duty cycle of smaller HMMWV type vehicles.
- o Powered by the Caterpillar C7 ACERT engine, a 7L inline 6 cylinder turbocharged direct injected diesel engine producing approximately 350hp.
- The SCPL was only evaluated in the engine, as substantial underbelly armor prevented servicing the transmission without requiring significant manpower or vehicle downtime. (Note: the transmission utilized in the M-ATV is an Allison 3500SP unit. This transmission family is well represented in other military vehicles included in this program)

• International MaxxPro MRAP

- o 14 to 16 ton (depending on category) full sized MRAP vehicle developed as an armored fighting vehicle capable of withstanding blasts from land mines or IED's through the use of a v-shaped hull. Consists of multiple variants with differing crew capabilities and end missions to support battlefield operations.
- o Powered by the International DT-570 engine, an inline 6 cylinder 570 cubic inch direct injected turbocharged diesel engine producing approximately 330hp.
- O As with the M-ATV, the SCPL was only evaluated in the engine as substantial underbelly armor preventing transmission servicing without significant manpower or vehicle downtime. (Note: the transmission utilized in the MaxxPro was an Allison 3000 series unit. This transmission family is well represented in other military vehicles included in this program)

3.4 VEHICLE PREPARATIONS

Prior to starting each field demonstration, each vehicle of the respective test fleets underwent preparation and inspections tasks to ensure quality of testing. The following vehicle preparations were completed on both test and control vehicles during the test initiation and changeover process at the start of each demonstration:

Test Vehicles:

- A thorough visual inspection was completed to ensure that engine and transmission components were not leaking fluids. Any equipment showing signs of previous leaks were notated on inspection forms, and any large leaks were corrected as required.
- A transmission stall test was performed on each test vehicle to ensure that the power pack was functioning satisfactorily.
- Prior to draining the used MIL-PRF-2104 15W-40 or MIL-PRF-46167 OEA-30 from the
 test vehicles, oil pressure readings were recorded at idle rpm and approximately
 1,500 rpm, and an "as found" oil sample was obtained for analysis.
- Selected test vehicle components were drained and recharged with the new test SCPL.
 Vehicles were operated to set fluid levels and an initial oil sample was pulled for starting oil condition analysis.
- Test vehicles were tagged in operators cabins, on fluid level dipsticks, and component fill points with tags noting "TEST LUBRICANT ONLY."
- Where possible, a 1-gallon container of make-up TEST oil was secured and stored in the operator cabin (some locations opted out of this in favor of all make-up oil going into POL areas)
- Instructions were given to preclude the components using the TEST lubricant from normally scheduled annual service lubricant changes, as oil life was being monitored by TFLRF over the duration of the program.

Control Vehicles:

- Control vehicles underwent a thorough visual inspection to insure that engines and transmissions were not leaking fluids.
- Engine and transmission levels were checked on each vehicle.
- A transmission stall test was performed on each control vehicle to insure that the power pack was performing satisfactorily.
- An "as found" used oil sample was obtained from for starting analysis.
- Control vehicles were instructed to continue operating with the designated MIL-PRF-2104 15W-40 or MIL-PRF-46167 OEA-30 oils, and remain on their normal oil change schedules.

3.5 DATA COLLECTION

The field demonstrations were designed to operate as a non-interference activity for participating organizations. As such limited data collection was conducted to accomplish this low impact factor. The general data desired from all locations is listed below.

- Total miles and hours of operation of test and control vehicles (collected by TFLRF)
- Routine oil samples on all test vehicles and selected control vehicles (collected by TFLRF)
- Total fuel added to both test and control vehicles (provided by organizations)
- Total oil added to both test and control vehicles (provided by organizations)
- Maintenance actions performed on test and control vehicles specifically impacted by the use of the non-standard oil (provided by organizations)

4.0 RESULTS

Results of the field demonstration are broken down by location and reported below. Topics covered for each test site include an overview of vehicle utilization, results and observations of the routine used oil analysis, and description of any problem areas observed with the test site or data. Note – In all tabular used oil analysis tables, any oil changes conducted are indicated by a bold vertical line between data columns. This was done to highlight any oil changes completed, whether they were required or not.

4.1 BASIC CLIMATE – FT. BENNING GA

For the basic climate location, a total fleet of 35 vehicles were identified and included into the field demonstration. The 35 vehicle fleet consisted of 23 TEST vehicles using the SCPL, and 12 CONTROL vehicles utilizing their normal POL products. Table 2 outlines the Ft. Benning fleet indicating vehicle type, description, model number, TEST/CONTROL designation, and its identification (bumper) number (Note, all used oil analysis refers to the vehicle bumper numbers for identification).

Table 2. Ft. Benning Basic Climate Vehicle Fleet

Vehicle Type	Description	Model	TEST/CONTROL	Bumper No.		
M88		M88A1	TEST	REC8		
	Tracked Recovery		CONTROL	REC9		
	Vehicle		TEST	GMD7		
		M88A2	CONTROL	GMD8		
			TEST	LT313		
			TEST	LT314		
Bradley	Armored Fighting	N 42 A 2	TEST	LT315*		
brauley	Vehicle (Tracked)	M3A3	TEST	LT316*		
			CONTROL	LT317		
			CONTROL	LT318		
			TEST	LW024		
			TEST	LW026		
HMMWV	Truck Ambulance	M997	TEST	LW027		
HIVIIVIVV	Truck Ambulance	101337	TEST	LW028		
			CONTROL	LW394		
			CONTROL	LW395		
	Fueler/Tanker	M978A4	TEST	HW334		
			TEST	HW336		
HEMMT			TEST	HW337*		
HEIVIIVII			TEST	HW338*		
			CONTROL	HW360		
			CONTROL	HW361		
HET	Truck Tractor	M1070	TEST	HW127*		
	Truck Cargo	M1083A1	TEST	HW289		
			TEST	HW290		
MTV			TEST	HW291*		
IVIIV			TEST	HW301*		
			CONTROL	HW302		
			CONTROL	HW303		
	Armored Fighting Vehicle (Wheeled)	M1126	TEST	B52		
			TEST	B53		
Ctryleor			TEST	B54		
Stryker			TEST	B55		
			CONTROL	B57		
			CONTROL	B56		
* [* Denotes vehicles transmission included in SCPL evaluation					

4.1.1 Problem Areas – Ft. Benning

Some problem areas were observed over the test duration that impacted the collected results. These primarily revolved around the Army Oil Analysis Program (AOAP), and documentation of oil and fuel consumption by the vehicle fleet.

In regards to used oil analysis tracking, in general it was found that wheeled vehicles were overall easier to control across the test duration, as oil changes only occurred during an annual service which was more easily identified and skipped as required with using the SCPL. Tracked vehicles on the other hand follow AOAP analysis to direct oil changes as required. This proved to be more difficult to control for the SCPL demonstration than anticipated. Prior to the test initiation, TFLRF coordinated with the AOAP program office to support used oil analysis using the SCPL oil formulations, but ultimately administrative issues at the maintenance level with handling AOAP samples alongside of the normal MIL-PRF-2104 15W40 samples caused significant problems in the analysis. As a result, several of the tracked vehicles received oil changes that were not required when SCPL samples were submitted and erroneously identified as MIL-PRF-2104 15W40 instead of the correct SCPL. Lab analysis results would immediately flag the composition and viscosity difference in the TEST sample and call for an oil and filter change assuming contamination had occurred. In addition, TFLRF noted multiple instances in review of AOAP data of samples being obviously pulled from incorrect vehicles or components (i.e., elements typical in transmission samples showing in engine samples and vice versa, significant outliers in results that were not present during a resample). Several attempts were made to correct these issues over the course of the test, but in the end results were less than desired in most cases. Over the course of the test, a total of four unnecessary oil changes were conducted on various tracked vehicles in the Ft. Benning fleet. Although this did effect the ability to demonstrate the longer drain intervals of the SCPL in these vehicles, the program still demonstrated the compatibility of the low viscosity SCPL in the field environment specific to tracked vehicles.

Oil and fuel consumption data also ended up being inconclusive across testing. There were no preexisting procedures in place at Ft. Benning that would normally track oil consumption other than bulk volumes consumed, and with the varying end users of the equipment involved in the armor school, no one group of operators could be tasked with tracking oil additions for any specific piece of equipment. This prevented TFLRF from collecting specific oil consumption information by individual vehicle. Bulk oil consumption information was considered to offer little benefit to the program, as there was no apparent way to separate normal vehicle consumption versus those quantities used in oil changes (for both TEST and CONTROL

vehicles), and no way to segregate the bulk consumption for CONTROL vehicles apart from the entire DOTS fleet. Likewise for fuel usage, fuel consumption by specific vehicle was also ultimately unable to be determined. Bulk fuel logs for the multiple fueling locations used by the armor school fleet vehicles were captured for the first four quarters of the test program, but upon review, many cases of vehicle identification issues, or non-specific fuel volume information prevented any detailed analysis (i.e., several logs included a single notation of fuel added to a group of multiple vehicles, with no way to determine quantities fueled in each individual vehicle). As a result, fuel consumption data for the 5th-8th QTRs of the program was no longer even attempted. With the poor data available from the field, it was ultimately determined that specific oil and fuel consumption results in regards to the SCPL would better served by the laboratory testing conducted in the SCPL development phases of the program [1,2,3], where conditions were controlled tightly enough to determine actual changes in consumption/usage between SCPL and baseline testing.

4.1.2 Mileage Accumulation

Overall mileage accumulation of by each vehicle type is shown graphically in the following plots. For all plots the solid blue lines represent the TEST vehicle mileage, dashed blue lines represent the CONTROL vehicle mileage, and red dashed line represents the average mileage for the vehicle type as a whole. Full tabular mileage recordings for all vehicles are presented in the appendix, and include by quarter the mileage recordings, quarterly accumulation, and total accumulation.

In general, TEST versus CONTROL vehicle mileage for the Ft. Benning fleet was comparable, apart from a few outliers (ex: Stryker B56). Utilization in the 1-4th QTR's was lower than that seen in the 5-8th QTR's. This was attributed to the recent move of the armor school to Ft. Benning from its previous location at Ft. Knox KY. The SCPL field demonstration was initiated with operations at Ft. Benning being less than a year old, thus activity was still ramping up to their overall normal optempo. This was also in-part the reason for the field demo extension at this location for a full two years, to gain better utilization of the already ongoing field program.

Figure 1. Ft. Benning, M88A1/A2 Mileage Accumulation

Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

Figure 2. Ft. Benning, Bradley Mileage Accumulation
Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

Figure 3. Ft. Benning, HMMWV Mileage Accumulation

Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

Figure 4. Ft. Benning, HEMTT Mileage Accumulation

Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

Figure 5. Ft. Benning, MTV Mileage Accumulation

Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

Figure 6. Ft. Benning, Stryker Mileage Accumulation

Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

4.1.3 Oil Analysis

Used oil analysis conducted on quarterly samples is reported below, and is broken up by vehicle type. Comments and observations made from the data are listed in a bulleted format.

M88A1/A2 (engine)

- All M88A1s off test after 4th QTR, as vehicles were turned in for rebuild.
- 8th QTR samples unavailable for M88A2's, as engine oil was drained and disposed of by unit personnel prior to TFLRF capturing EOT sample during the 8th QTR site visit.
- GMD7 (TEST) received unnecessary oil change between 2nd & 3rd QTR due to incorrect AOAP sample identification issue.
- REC08 (TEST) received necessary oil change between 1st & 2nd QTR due to high silicon
 (Si) accumulation. Silicon accumulation was attributed to dirt ingestion, which is not
 uncommon for this vehicle type. The "as found" sample revealed similarly high silicon
 levels, which suggest that a pre-existing fault in the air filtration system of this unit
 existed.
- Iron accumulation rates (i.e., slope not magnitude) between TEST and CONTROL were found to be similar (see Figure 7). This suggests that the SCPL is providing comparable wear protection to the baseline MIL-PRF-2104 15W40 products.
- REC09 (CONTROL) showed high copper (Cu) levels at 4th QTR immediately following a lubricant change. The source is unknown, and the unit was removed from testing before determining if the condition was persistent.
- No other significant source of wear metals were identified in the M88A1/A2 vehicles that would suggest an incompatibility with the SCPL.

Table 3. Ft. Benning UOA, M88A1/A2 Engine, TEST

				•	M8	8A2	2 - 0	SMI	D7						M	 38A	1 -	REC	28		
	EST gine		Miles	531	545.5	614.9	626.8	629.4	637.1	638.9	-	П	Miles	294	342.6	447.5	460	460	-	-	-
	S :		Accum.	-	14.5	83.9	95.8	98.4	106.1	107.9	-	П	Accum.	-	48.6	153.5	166	166	-	-	-
	TE us		Hours	183	198.8	212.87	215.06	216.24	220.56	222.23		П	Hours	70.5	78.8	1.76	3.71	4.49	-	-	-
			Accum.	-	15.8	29.87	32.06	33.24	37.56	39.23	-		Accum.	-	8.3	-	1.95	0.78	-	-	-
			As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR
Method	Property	Units		84.0%	% initia	l change	eover (co	alculate	d from v	is)		П		81.5%	% initia	l change	over (co	alculate	d from v	ris)	
D445 100c	Viscosity	cSt	13.46	9.27	9.03	9.42	8.78	8.66	8.47	8.44			13.87	9.47	9.38	8.6	8.78	8.72			
D445 40c	Viscosity	cSt																			
D2270	Viscosity Index										<u>e</u>										
D4739	TBN Buffer	mg KOH/g		9.35	9.05	8.06	9.09	8.56	8.35	8.78	Available	Ц		9.33	9.13	9.27	9.07	8.56			
D5185	Al	ppm	5	2	6	9	4	4	4	5	١٧a	Ш	4	2	5	7	7	8			
	Cu	ppm	5	1	4	10	3	4	5	5	e /	Ц	13	3	8	5	6	7	No Lo	nger Or	n Test
	Fe	ppm	20	6	34	46	17	18	25	25	Sample	Ц	15	5	18	14	17	18			
	Pb	ppm		<1	2	3	<1	<1	<1	1	No Sa	Ц	6	1	4	2	2	2			
	Si	ppm		19	46	75	27	29	34	36	ź	Ц	119	34	128	60	70	71			
D664 Acid	TAN Buffer	mg KOH/g		1.92	1.65	1.93	1.76	1.78	1.86	1.4		Н		2	1.9	1.79	1.69	1.62			

Note: Bold vertical lines in between data columns indicate an oil change

Table 4. Ft. Benning UOA, M88A1/A2 Engine, CONTROL

	о е				M8	8A2	2 - (3M	D8						M	38A	1 -	REC	29		
	M M		Miles	-	455.1	455.4	-	495.2	509.4	530.2	-		Miles	719	722.5	736.2	740	752	-	-	-
	=		Accum.	-	-	0.3	-	40.1	54.3	75.1	-		Accum.	-	3.5	17.2	21	33	-	-	-
	E 8		Hours	-	74.08	74.08	-	85.29	91.04	94.5	-	П	Hours			-41			-	-	-
	ᅙᇳ		Accum.	-	-	0	-	11.21	16.96	20.42	-		Accum.		Hour M	eter ino _l	perable		-	-	-
	8 –		As	Initial	1st	2nd	3rd	4th	6th	7th	8th		As	Initial	1st	2nd	3rd	4th	6th	7th	8th
			found	initiai	QTR	QTR	QTR	QTR	QTR	QTR	QTR		found	initiai	QTR	QTR	QTR	QTR	QTR	QTR	QTR
Method	Property	Units																			
D445 100c	Viscosity	cSt			12.26	12.06	12.28	12.39	12.21	12.57				13.23	13.02	13	13.06	14.37			
D445 40c	Viscosity	cSt																			
D2270	Viscosity Index										ple										
D4739	TBN Buffer	mg KOH/g			7.27	5.66	6.86	6.17	5.48	5.53	Available			5.97	6.52	6.6	6.07	7.33			
D5185	Al	ppm			14	13	14	11	16	15	Ą			12	14	15	13	5	Note	nger Or	. Tost
	Cu	ppm			12	12	13	13	14	15	aldr			24	24	25	25	108	INO LC	nigei Oi	riest
	Fe	ppm			70	59	66	51	67	72	Sample			69	96	98	90	5			
	Pb	ppm			4	4	3	3	3	4	No			7	8	8	8	7			
	Si	ppm			25	24	26	22	27	26	_			80	83	84	82	9			
D664 Acid	TAN Buffer	mg KOH/g			2.53	2.25	2.23	2.72	2.47	2.83				2.47	2.63	2.29	2.2	1.82			

Figure 7. Ft. Benning UOA, M88A1/A2 Engine, Iron Accumulation Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

Bradley (engine)

- LT313 (TEST) was immediately removed from testing, as unit became a static display for classroom instruction. No appreciable usage on this vehicle was conducted with the SCPL, so no results are reported.
- LT314 (TEST) and LT316 (TEST) off test after 6th QTR due to vehicles being turned in.
- LT314 (TEST) received unnecessary oil change between 1st & 2nd QTR due to incorrect AOAP sample identification.
- LT315 (TEST) received unnecessary oil change between 3rd and 4th QTR due to incorrect AOAP sample identification.
- LT314 (TEST) showed copper accumulation in "as found" sample. Accumulation did not reoccur with use of the SCPL. The original source is unknown.
- Iron accumulation rates between TEST and CONTROL found to be similar (see Figure 8), suggesting that the SCPL is providing comparable wear protection as the baseline MIL-PRF-2104 15W40 products.
- No other significant source of wear metals were identified in the Bradley vehicles that would suggest an incompatibility with the SCPL.

Table 5. Ft. Benning UOA, Bradley Engine, TEST

	. 0			E	3RA	DLI	EY -	LT	314					E	BRA	DLI	ΕΥ -	LT	315		
	<u> </u>		Km	723	731	739	747	964	982	-	-		Km	612	613	617	700	714	720	828	919
	5 .=		Accum.	-	8	16	24	241	259	-	-		Accum.	-	1	5	88	102	108	216	307
	TE		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
	- 5		-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-
	_		As	Initial	1st	2nd	3rd	4th	6th	7th	8th		As	Initial	1st	2nd	3rd	4th	6th	7th	8th
			found	initiai	QTR	QTR	QTR	QTR	QTR	QTR	QTR		found	initiai	QTR	QTR	QTR	QTR	QTR	QTR	QTR
Method	Property	Units		83.2%	% initia	l chang	eover (c	alculate	d from v	vis)				74.6%	% initia	l change	eover (c	alculate	d from v	is)	
D445 100c	Viscosity	cSt	13.11	9.25	9.29	8.72	9.41	8.77	8.25				13.62	9.78	9.56	9.42	9.58	9.37	9.21	9.15	9.32
D445 40c	Viscosity	cSt												56.06							53.13
D2270	Viscosity Index										प्र			161							159
D4739	TBN Buffer	mg KOH/g		8.32	8.38	9.21	8.94			i	lest			9.06	9.37	9.17	8.32	8.33	8.09	8.37	7.64
D5185	Al	ppm	3	2	2	2	1	2	2	ď	5		1	1	2	2	2	2	1	2	2
	Cu	ppm	62	14	17	8	6	13	15		Longer	Ш	10	3	3	4	8	7	8	11	12
	Fe	ppm	29	7	10	5	6	12	20		ou o	Ш	10	4	4	4	15	6	7	10	10
	Pb	ppm	7	1	2	1	3	2	2		NO L	Ш	3	<1	1	1	5	3	3	4	5
	Si	ppm		6	8	5	6	5	6		Ž	Ш	8	6	6	5	7	6	7	8	7
D664 Acid	TAN Buffer	mg KOH/g		1.94	2.14	1.71	1.67					Ш		1.97	1.89	1.85	1.89	1.91	1.97	1.63	2.15

	a)	•		E	BRA	DLE	ΞΥ -	LT	316		
	ne		Km	847	848	1391	-	1407	1726	-	-
	<i>σ</i> .–		Accum.	-	1	544	-	560	879	-	-
	TE		-	-	-	-	-	-	-	-	-
				-	-	-	-	-	-	-	-
	_		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR
Method	Property	Units		78.5%	% initia	l change	eover (c	alculate	d from v	is)	
D445 100c	Viscosity	cSt	13.45	9.54	9.38	9.53		9.66	9.55		
D445 40c	Viscosity	cSt		54.57					56.72		
D2270	Viscosity Index			160			<u>a</u>		152	t	ភ
D4739	TBN Buffer	mg KOH/g		8.95	9.03	8.84	lab	7.57	6.99	Ě	_
D5185	Al	ppm	2	1	2	2	١٧ai	2	2	Č	5
	Cu	ppm	12	3	3	5	e /	8	11	Š	<u>.</u>
	Fe	ppm	16	5	5	10	ď.	16	22	ì	Ē
	Pb	ppm	6	<1	3	3	No Sample Available	5	7	-	NO LONGET OF LESS.
	Si	ppm	9	6	5	7	Ž	7	9	2	Z
D664 Acid	TAN Buffer	mg KOH/g		1.93	1.87	1.89		2.07	2.23		

Table 6. Ft. Benning UOA, Bradley Engine, CONTROL

	0L e			В	BRA	DLE	Y -	LT	317				E	BRA	DL	EY -	LTS	318		
	2 2		Km	404	416	504	892	904	914	921	1072	Km	1037	1055	1108	-	1340	1411	-	1455
	=		Accum.	-	12	100	488	500	510	517	668	Accum.	-	18	71	-	303	374	-	418
	E 8		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
	\overline{C}		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	o -		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR
Method	Property	Units																		
D445 100c	Viscosity	cSt		14.14	13.82	13.37	13.5	13.41	13.21	13.18	13.24		12.44	12.42	12.35		12.35	12.42		12.27
D445 40c	Viscosity	cSt		103.88							96.13		88.74							86.8
D2270	Viscosity Index			138							137		136			<u>a</u>			<u>e</u>	136
D4739	TBN Buffer	mg KOH/g		7	7.93	7.35	7.01	6.32	6.27	6.18	5.83		5.73	7.04	6.05	Available	5.37	5.53	Available	4.96
D5185	Al	ppm		1	1	1	2	2	2	2	2		2	2	2	۱۷a	3	3	۱۷a	3
	Cu	ppm		10	10	12	17	18	21	24	25		16	16	18		22	24	ele /	28
	Fe	ppm		7	8	10	15	13	15	16	19		19	19	20	Sample	23	24	Sample	30
	Pb	ppm		1	2	2	3	2	2	3	3		6	7	7		7	6	o Sa	9
	Si	ppm		6	6	6	6	6	6	7	6		6	7	7	No	7	7	No	7
D664 Acid	TAN Buffer	mg KOH/g		2.03	2.01	1.93	2	2.22	2.14	2.23	2.29		2.55	2.43	2.66		2.78	2.57		2.46

Figure 8. Ft. Benning UOA, Bradley Engine, Iron Accumulation *Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.*

Bradley (transmission)

- No CONTROL transmission samples were acquired at Ft. Benning.
- Wear metal analysis does not show any significant accumulation of iron (Fe), lead (Pb), or copper (Cu) that would suggest excessive wear of internal components. All results observed were within established AOAP wear metal limits for this transmission model.
- Some minor cadmium (Cd) did appear in the transmission sample.
 - As will be shown in UOA from Ft. Bliss, both TEST and CONTROL transmissions tend to generate small Cd accumulation with usage.
 - The source Cd is unknown, but levels in Ft. Benning transmissions are in line with that seen in Ft. Bliss units (both TEST and CONTROL), and thus are considered typical for the component.
 - It is expected that Cd is likely a component of an internal part coating that wears under normal usage.

Table 7. Ft. Benning UOA, Bradley Transmission, TEST

				E	BRA	DLI	EY -	LTS	315					E	BRA	DLI	EY -	LT	316		
	TEST Trans.		Km	612	613	617	700	714	720	828	919	П	Km	847	848	1391	-	1407	1726	-	-
	EST		Accum.	-	1	5	88	102	108	216	307		Accum.	-	1	544	-	560	879	-	-
	巴 6		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
			As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR
Method	Property	Units		88.9%	% initia	l chang	eover (c	alculate	d from v	vis)				84.6%	% initia	l change	eover (c	alculate	d from v	ris)	
D445 100c	Viscosity	cSt	12.88	8.96	8.99	8.98	9.02	8.85	8.62	8.72	8.58	Ц	12.89	9.15	9.05	8.95		8.71	8.33		
D445 40c	Viscosity	cSt		49.62						48.91				50.4					48.05		
D2270	Viscosity Index			163						158		Ц		165					149		_
D4739	TBN Buffer	mg KOH/g		9.26	9.4	9.44	8.7	8.68	8.83	9.13		Ц		9.47	9.37	9.27	ple	8.4	8.4	Š	ß
D5185	Al	ppm	8	2	3	3	6	7	7	13	6	Ц	8	2	3	5	Available	13	23	to F	Ę
	Cu	ppm	240	35	45	63	92	107	121	163	67	Ц	182	30	40	76	4	121	148		
	Fe	ppm	12	3	3	3	6	8	6	10	6	Ц	13	3	4	8	Sample	13	17		i general
	Pb	ppm	11	1	3	4	6	7	7	11	5	Ц	10	2	3	6	San	10	12		
	Si	pp		7	8	8	9	9	10	12	6	Ц	58	14	19	22	9	25	29	2	2
	Cd			2	3	5	8	11	14	22	11	Ц	11	2	3	6		16	23		
D664 Acid	TAN Buffer	mg KOH/g	1.71	1.87	1.96	1.94	1.57	1.83	1.77	1.45			1.68	1.95	1.8	1.8		1.89	1.73		

Note: Bold vertical lines in between data columns indicate an oil change

HMMWV (engine)

- LW024 (TEST) received an unnecessary oil change between 7th & 8th QTR. The oil change was not skipped during annual service by maintenance personnel as instructed.
- LW026 (TEST) received an unnecessary oil change between 4th & 6th QTR. The oil change was not skipped during annual service by maintenance personnel as instructed.
- LW027 (TEST) received new engine shortly before the start of the field demonstration. As
 a result critical wear metals measured in that engine were higher than other units
 throughout all testing as a result of engine break in. Silicon levels were also increased, and
 in this case is likely attributed to leaching of silicon containing sealant compounds common
 in a new engines.
- LW028 (TEST) showed slightly increase iron and silicon content at EOT. Increasing silicon levels suggest some amount of dirt ingestion as a result of improper or poor filtration, resulting in increased abrasive wear and iron accumulation.
- Apart from LW027 & LW028 (TEST), iron accumulation rates between TEST and CONTROL were found to be similar (see Figure 9), suggesting that the SCPL is providing comparable wear protection as the baseline MIL-PRF-2104 15W40 products.
- All used oil analysis results from LW027 and LW028 (TEST), which did NOT receive oil
 changes for the full two year duration, suggest that the SCPL is capable of extended drain
 intervals. EOT TBN numbers for both remained higher than TBN values for the
 CONTROL HMMWV's prior to their normally scheduled oil changes.

Table 8. Ft. Benning UOA, HMMWV Engine, TEST

	a)			Н	MN	/IW	V -	LW	024	ı			Н	MI	ИW	'V -	LW	026	5	
	_ ~		Miles	8073	8407.4	8843	9081.3	9691.4	10587	-	12128	Miles	7482	8015.4	8669.4	8874	8888.2	9956.7	10536	10625
	TEST Engine		Accum.	-	334.4	770	1008.3	1618.4	2514.3	-	4054.7	Accum.	-	533.4	1187.4	1392	1406.2	2474.7	3053.5	3143
	<u>ш</u>		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	_		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR
Method	Property	Units		80.2%	% initia	l chang	eover (c	alculate	d from v	vis)			77.1%	% initia	l change	eover (c	alculate	d from v	is)	
D445 100c	Viscosity	cSt	14.58	9.68	9.8	9.94	9.95	10.1	10		9.05	14.63	9.88	9.84	10.02	10.18	10.27	8.68	9.23	9.04
D445 40c	Viscosity	cSt		55.6					60.07				57.32				60.82	49.25		50.29
D2270 V	Viscosity Index			160					153	e			159				IC	156		162
D4739	TBN Buffer	mg KOH/g		9.06	8.82	8.27	6.83	6.83	6.48	labl			8.77	8.32	7.63	6.05	6.5	8.12	8.31	7.82
D5185	Al	ppm	2	1	2	3	3	4	3	Sample Not Available	2	4	2	3	3	3	3	1	2	2
	Cu	ppm	2	<1	1	2	3	3	4	ot /	2	3	<1	2	3	4	4	1	3	2
	Fe	ppm	17	6	19	44	48	51	55	e N	20	72	22	33	42	56	50	22	39	34
	Pb	ppm	4	<1	4	7	7	8	9	ldπ	4	6	2	4	5	7	6	2	4	4
	Si	ppm	11	7	13	20	22	24	30	Sar	12	22	10	19	30	37	31	14	25	19
D664 Acid	TAN Buffer	mg KOH/g		1.91	1.83	1.91	1.89	2.08	2.49				2.08	2.33	2.27	2.14	2.4	2.15	1.87	2.3
	ST ine		Miles	H 7480	7541.1	7782	8306.8	8797.8	9876.6	10481	11620	Miles		49476	50007	50442		51935	52434	53287
	EST gine		Miles Accum.				8306.8	8797.8 1317.8		10481 3000.5	4140	Miles Accum.	49298	,		50442 1144.1		51935	52434	3988.8
	TEST ngine				7541.1 61.1	7782	8306.8 826.8	8797.8 1317.8 -	9876.6	10481 3000.5	4140			49476 177.8	50007	50442 1144.1 -	51164 1865.5	51935 2636.8	52434 3136.3 -	3988.8
	TEST Engine		Accum.		7541.1 61.1 -	7782 302 - -	8306.8 826.8 - -	8797.8 1317.8 - -	9876.6 2396.6 - -	10481 3000.5 -	4140	Accum.	49298	49476 177.8 - -	50007 709 - -	50442 1144.1 - -	51164 1865.5 -	51935 2636.8 - -	52434 3136.3 - -	3988.8
	TEST Engine		Accum. - - As		7541.1 61.1 - - 1st	7782 302 - - - 2nd	8306.8 826.8 - - - 3rd	8797.8 1317.8 - - - 4th	9876.6 2396.6 - - - 6th	10481 3000.5 - - - 7th	4140 - - 8th	Accum. - - As	49298	49476 177.8 - - - 1st	50007 709 - - - 2nd	50442 1144.1 - - 3rd	51164 1865.5 - - 4th	51935 2636.8 - - - 6th	52434 3136.3 - - - 7th	3988.8 - - - 8th
Mathad		Unite	Accum.	7480 - - - - - Initial	7541.1 61.1 - - 1st QTR	7782 302 - - - 2nd QTR	8306.8 826.8 - - 3rd QTR	8797.8 1317.8 - - 4th QTR	9876.6 2396.6 - - 6th QTR	10481 3000.5 - - 7th QTR	4140	Accum.	49298 - - - - Initial	49476 177.8 - - 1st QTR	50007 709 - - - 2nd QTR	50442 1144.1 - - 3rd QTR	51164 1865.5 - - 4th QTR	51935 2636.8 - - - 6th QTR	52434 3136.3 - - - 7th QTR	3988.8
Method	Property	<u>Units</u>	Accum As found	7480 - - - - <i>Initial</i> 91.1%	7541.1 61.1 - - 1st QTR % initia	7782 302 - - 2nd QTR I chang	8306.8 826.8 - - - 3rd QTR eover (c	8797.8 1317.8 - - - 4th QTR	9876.6 2396.6 - - - 6th QTR	10481 3000.5 - - - 7th QTR	4140 - - 8th QTR	Accum. As found	49298 - - - - <i>Initial</i> 84.4%	49476 177.8 - - 1st QTR % initia	50007 709 - - - 2nd QTR	50442 1144.1 - - 3rd QTR eover (c	51164 1865.5 - - 4th QTR	51935 2636.8 - - - 6th QTR	52434 3136.3 - - 7th QTR	3988.8 - - 8th QTR
D445 100c	<u>Property</u> Viscosity	cSt	Accum. - - As	7480 - - - <i>Initial</i> 91.1% 9.01	7541.1 61.1 - - 1st QTR	7782 302 - - - 2nd QTR	8306.8 826.8 - - 3rd QTR	8797.8 1317.8 - - 4th QTR	9876.6 2396.6 - - 6th QTR	10481 3000.5 - - 7th QTR	4140 - - 8th QTR	Accum. - - As	49298 - - - - <i>Initial</i> 84.4% 9.42	49476 177.8 - - 1st QTR	50007 709 - - - 2nd QTR	50442 1144.1 - - 3rd QTR	51164 1865.5 - - 4th QTR	51935 2636.8 - - - 6th QTR	52434 3136.3 - - - 7th QTR	3988.8 - - 8th QTR
D445 100c D445 40c	Property Viscosity Viscosity	cSt	Accum As found	7480 - - - - <i>Initial</i> 91.1% 9.01 49.62	7541.1 61.1 - - 1st QTR % initia	7782 302 - - 2nd QTR I chang	8306.8 826.8 - - - 3rd QTR eover (c	8797.8 1317.8 - - - 4th QTR	9876.6 2396.6 - - - 6th QTR	10481 3000.5 - - - 7th QTR	4140 - - 8th QTR 10.31 59.16	Accum. As found	49298 - - - <i>Initial</i> 84.4% 9.42 52.9	49476 177.8 - - 1st QTR % initia	50007 709 - - - 2nd QTR	50442 1144.1 - - 3rd QTR eover (c	51164 1865.5 - - 4th QTR	51935 2636.8 - - - 6th QTR	52434 3136.3 - - 7th QTR	3988.8 - - 8th QTR 10.8 64.32
D445 100c D445 40c D2270	Property Viscosity Viscosity Viscosity Index	cSt cSt	Accum As found	7480 - - - - - - - - - - - - - - - - - - -	7541.1 61.1 - - 1st QTR % initia 9.57	7782 302 - - 2nd QTR / chang 9.61	8306.8 826.8 - - 3rd QTR eover (c	8797.8 1317.8 - - - 4th QTR alculate 9.71	9876.6 2396.6 - - - 6th QTR d from v	10481 3000.5 - - - - - - - - - - - - - - - - - - -	4140 - - 8th QTR 10.31 59.16 164	Accum. As found	49298 - - - Initial 84.4% 9.42 52.9 163	49476 177.8 - - 1st QTR % initia 9.72	50007 709 - - 2nd QTR (I change 9.88	50442 1144.1 - - 3rd QTR eover (c	51164 1865.5 - - - 4th QTR calculate 10.39	51935 2636.8 - - 6th QTR d from v	52434 3136.3 - - - 7th QTR vis)	3988.8 - - 8th QTR 10.8 64.32 159
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Viscosity Index TBN Buffer	cSt cSt mg KOH/g	Accum As found 14.56	7480 - - - - - - - - - - - - -	7541.1 61.1 - - 1st QTR % initia. 9.57	7782 302 - - 2nd QTR I chang 9.61	8306.8 826.8 - - 3rd QTR eover (c 9.72	8797.8 1317.8 - - 4th QTR alculate 9.71	9876.6 2396.6 - - 6th QTR d from v 9.88	10481 3000.5 - - - 7th QTR vis) 9.93	4140 - - 8th QTR 10.31 59.16 164 6.54	Accum As found 14.57	49298 - - - - Initial 84.4% 9.42 52.9 163 9.23	49476 177.8 - - 1st QTR % initia 9.72	50007 709 - - 2nd QTR 0 change 9.88	50442 1144.1 - - 3rd QTR eover (c 10.02	51164 1865.5 - - 4th QTR calculate 10.39	51935 2636.8 - - 6th QTR d from v 10.32	52434 3136.3 - - - 7th QTR vis) 10.05	3988.8 - - 8th QTR 10.8 64.32 159 6.14
D445 100c D445 40c D2270	Property Viscosity Viscosity Viscosity Index TBN Buffer Al	cSt cSt mg KOH/g ppm	Accum As found 14.56	7480 - - - - - - - - - - - - -	7541.1 61.1 - - 1st QTR % initial 9.57	7782 302 - - 2nd QTR / chang 9.61 8.65 3	8306.8 826.8 - - 3rd QTR eover (c 9.72 7.4	8797.8 1317.8 - - 4th QTR alculate 9.71 7.35	9876.6 2396.6 - - 6th QTR 9.88	10481 3000.5 - - 7th QTR vis) 9.93 6.97	4140 - - 8th QTR 10.31 59.16 164 6.54 5	Accum As found 14.57	49298 - - - Initial 84.4% 9.42 52.9 163 9.23 1	49476 177.8 - - 1st QTR % initia 9.72 8.98 2	50007 709 - - 2nd QTR 9.88	50442 1144.1 - - 3rd QTR eover (c 10.02	51164 1865.5 - - 4th QTR alculate 10.39	51935 2636.8 - - 6th QTR d from v 10.32	52434 3136.3 - - - 7th QTR vis) 10.05	3988.8 - - 8th QTR 10.8 64.32 159 6.14 6
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Viscosity Index TBN Buffer Al Cu	cSt cSt mg KOH/g ppm ppm	Accum	7480 - - - - - - - - - - - - -	7541.1 61.1 - - 1st QTR % initial 9.57 9.45 2	7782 302 - - 2nd QTR I chang 9.61	8306.8 826.8 - - 3rd QTR eover (c 9.72	8797.8 1317.8 - - 4th QTR alculate 9.71	9876.6 2396.6 - - 6th QTR d from v 9.88	10481 3000.5 - - - - - - - - - - - - - - - - - - -	4140 - - 8th QTR 10.31 59.16 164 6.54	Accum. As found 14.57	49298 - - - - Initial 84.4% 9.42 52.9 163 9.23	49476 177.8 - - 1st QTR % initia 9.72 8.98 2 <1	50007 709 - - 2nd QTR 9.88 8.3 3 4	50442 1144.1 	51164 1865.5 - - 4th QTR alculate 10.39	51935 2636.8 	52434 3136.3 - - 7th QTR vis) 10.05	3988.8 - - 8th QTR 10.8 64.32 159 6.14 6
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Viscosity Index TBN Buffer Al	cSt cSt mg KOH/g ppm ppm	Accum	7480 - - - - - - - - - - - - 91.1% 9.01 49.62 164 9.73 1	7541.1 61.1 - - 1st QTR % initia. 9.57 9.45 2 7 42	7782 302 - 2nd QTR (chang 9.61 8.65 3 12 79	8306.8 826.8 - - 3rd QTR eover (c 9.72 7.4 3 14	8797.8 1317.8 - - - - - - - - - - - - - - - - - - -	9876.6 2396.6 - - 6th QTR d from v 9.88 - - 4 4 15	10481 3000.5 - - - - - - - - - - - - - - - - - - -	4140 8th QTR 10.31 59.16 164 6.54 5 15	Accum	49298 - - - Initial 84.4% 9.42 52.9 163 9.23 1 <1	49476 177.8 1st QTR % initia 9.72 8.98 2 <1 23	50007 709 - - 2nd QTR 9.88 8.3 3 4 36	50442 1144.1 - - 3rd QTR eover (c 10.02 7.87 3 6 43	51164 1865.5 - - - - - - - - - - - - - - - - - -	51935 2636.8 - - - - - - - - - - - - - - - - - - -	52434 3136.3 - - - - - - - - - - - - - - - - - - -	3988.8 - - 8th QTR 10.8 64.32 159 6.14 6 8 144
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Index TBN Buffer Al Cu Fe	cSt cSt mg KOH/g ppm ppm ppm	Accum	7480	7541.1 61.1 - - 1st QTR % initia. 9.57 9.45 2 7 42 18	7782 302 - - 2nd QTR / chang 9.61 8.65 3 12 79 37	8306.8 826.8 - - 3rd QTR eover (c 9.72 7.4 3 14 82 42	8797.8 1317.8 - - - - - - - - - - - - - - - - - - -	9876.6 2396.6 - - - - - - - - - - - - - - - - - -	10481 3000.5 - - - - - - - - - - - - - - - - - - -	4140 	Accum	49298 Initial 84.4% 9.42 52.9 163 9.23 1 <1 8 <1	49476 177.8 - - 1st QTR % initia 9.72 8.98 2 <1 23 3	50007 709 2nd QTR 9.88 8.3 3 4 36 10	50442 1144.1 - - 3rd QTR eover (c 10.02 7.87 3 6 43 12	51164 1865.5 - - - - - - - - - - - - - - - - - -	51935 2636.8 - - - - - - - - - - - - - - - - - - -	52434 3136.3 - - - - - - - - - - - - - - - - - - -	3988.8
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Viscosity Index TBN Buffer AI Cu	cSt cSt mg KOH/g ppm ppm ppm ppm	Accum	7480	7541.1 61.1 - - 1st QTR % initia. 9.57 9.45 2 7 42	7782 302 - 2nd QTR (chang 9.61 8.65 3 12 79	8306.8 826.8 - - 3rd QTR eover (c 9.72 7.4 3 14 82	8797.8 1317.8 - - - - - - - - - - - - - - - - - - -	9876.6 2396.6 - - - - - - - - - - - - - - - - - -	10481 3000.5 - - - - - - - - - - - - - - - - - - -	4140 - 8th QTR 10.31 59.16 164 6.54 5 15 124	Accum	49298 Initial 84.4% 9.42 52.9 163 9.23 1 <1 8	49476 177.8 1st QTR % initia 9.72 8.98 2 <1 23	50007 709 - - 2nd QTR 9.88 8.3 3 4 36	50442 1144.1 - - 3rd QTR eover (c 10.02 7.87 3 6 43	51164 1865.5 - - - - - - - - - - - - - - - - - -	51935 2636.8 - - - - - - - - - - - - - - - - - - -	52434 3136.3 - - - - - - - - - - - - - - - - - - -	3988.8 - - - 8th QTR 10.8 64.32 159 6.14 6 8 144

Table 9. Ft. Benning UOA, HMMWV Engine, CONTROL

				•								П									
	0L e			Н	MN	/W	V -	LW	394	ļ				Н	MN	/W	V -	LW	395	;	
	Z Z		Miles	29038	29566	30681	31454	32079	32895	33195	33573		Miles	5339	5477.4	5606	5982.8	6505.9	7295.2	7753.3	8089.2
	_ =		Accum.	-	528.4	1643	2416.3	3041.1	3856.9	4157	4535	П	Accum.	-	138.4	267	643.8	1166.9	1956.2	2414.3	2750.2
	N S		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
	5 H		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
	S -		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR
Method	Property	Units										П									
D445 100c	Viscosity	cSt		14.62	14.52	14.43	14.72				14.44	Ш		14.85	14.35	14.37	14.26	14.56	14.37	14.42	14.34
D445 40c	Viscosity	cSt		109.57			110.62					Ц						109.64			108.21
D2270	Viscosity Index			137			137					Ц						IC			135
D4739	TBN Buffer	mg KOH/g		6.29	6.68	4.79	5.4					Ц			8.15	7.44	7.31	7.44	5.96	5.6	5.23
D5185	Al	ppm		2	2	3	3	1	3	4	2	Ц		1	3	2	3	1	3	4	4
	Cu	ppm		4	4	5	6	2	4	4	1	Ц		2	2	3	4	2	4	4	5
	Fe	ppm		27	33	42	47	18	37	67	19	Ц		24	47	44	48	21	51	58	62
	Pb	ppm		14	15	17	18	6	7	9	3	Ц		3	5	5	6	2	4	6	6
	Si	ppm		12	13	16	18	8	14	16	7	Ц		9	10	11	14	7	12	25	24
D664 Acid	TAN Buffer	mg KOH/g		2.11	2.28	2.29	2.43					Ц			2.19	1.94	1.86	2.09	2.3	2.4	2.45

Figure 9. Ft. Benning UOA, HMMWV Engine, Iron Accumulation Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

HEMTT (engine)

- HW334 (TEST) was inadvertently changed back to MIL-PRF-2104 products by maintenance personnel after the 4th QTR by maintenance personnel. Unit remained off test for the rest of the duration.
- HW338 (TEST) received an unnecessary oil change between 7th & 8th QTR. The oil change was not skipped during annual service by maintenance personnel as instructed.
- HW338 (TEST) and HW361 (CONTROL) exhibited elevated copper (Cu) levels at varying levels. Copper accumulation has been learned to be typical in new engines of this engine family, and is attributed to leaching from copper containing brazing materials present on internal oil cooler components. Copper leaching occurs until the surfaces become passive, which occurs as the component ages.
- Fe accumulation rates between TEST and CONTROL were found to be similar (see Figure 10), suggesting that the SCPL is providing comparable wear protection as the baseline MIL-PRF-2104 15W40 products.

- No other significant source of wear metals were identified in the HEMTT vehicles that would suggest an incompatibility with the SCPL.
- All used oil analysis results from HW336 and HW337 (TEST), which did NOT receive oil
 changes for the full two year duration, suggest that the SCPL is capable of extended drain
 intervals.

Table 10. Ft. Benning UOA, HEMTT Engine, TEST

						DC111.	8		,			mg.mc	,							
	a			ı	HEN	/ITT	- H	W3	34					HEN	/ITT	- H	W3	36		
	⊢ č		Miles	1752	1826.6	1834.3	1910.1	2433.3	2877.9	2960.3	2976.3	Miles	794	1042	1174.1	1174.3	1333.4	1523.1	1624.8	1750.8
	rES1 ngin		Accum.	-	74.6	82.3	158.1	681.3	1125.9	1208.3	1224.3	Accum.	-	248	380.1	380.3	539.4	729.1	830.8	956.8
	₩		Hours	172	217.3	219.45	272.05	276.05	319.2	333.25	337.9	Hours	100	133.2	149.6	151.65	169.25	209.6	221.85	240.3
	TEST Engine		Accum.	-	45.3	47.45	100.05	104.05	147.2	161.25	165.9	Accum.	-	33.2	49.6	51.65	69.25	109.6	121.85	140.3
	_		As	Initial	1st	2nd	3rd	4th	6th	7th	8th	As	Initial	1st	2nd	3rd	4th	6th	7th	8th
			found	muui	QTR	QTR	QTR	QTR	QTR	QTR	QTR	found	muu	QTR	QTR	QTR	QTR	QTR	QTR	QTR
Method	Property	Units		77.2%	% initia	l change	eover (co	alculate	d from v	vis)			76.6%	% initia	l change	eover (co	alculate	d from v	ris)	
D445 100c	Viscosity	cSt	11.41	9.14	9.14	8.63	8.67	9.05				10.48	8.94	8.9	8.83	8.65	8.88	8.67	8.49	8.8
D445 40c	Viscosity	cSt		52.4				50.45		=			50.02							48.53
D2270	Viscosity Index			157				IC		o, 1	; [160							162
D4739	TBN Buffer	mg KOH/g		8.7	8.5	8.42	7.29	7.18		No Longer On Test, Oil Changed to MIL-PRF-2104	i [8.79	8.44	8.18	6.93	7.38	6.7	7.4	6.64
D5185	Al	ppm	3	2	2	2	2	2		iger On Te Changed All-PRF-2	: [2	1	2	2	2	2	2	2	2
	Cu	ppm	106	32	38	38	41	59		har G		59	16	27	30	31	36	42	42	44
	Fe	ppm	27	9	17	17	19	27		کی ک		20	6	16	22	21	28	37	43	55
	Pb	ppm	7	2	3	3	3	3		0 7	· [6	2	3	3	3	3	3	3	3
	Si	ppm	85	29	34	34	35	39		_		83	26	35	37	38	41	45	42	43
D664 Acid	TAN Buffer	mg KOH/g		2	2.01	1.93	1.55	2.11					1.93	1.8	1.77	1.68	1.9	1.91	1.66	2.29
	TEST Engine		Miles Accum.	246	459.1 213.1	544.9 298.9	1075.6	1980.9	3154.1	3485.3 3239.3		Miles Accum.		4952.6 866.6	5361.1	6111.8	6759.5	7795.2	8325.8 4239.8	
	ப் வ		Hours	33	58.1	72.7	023.0	184.5	277.4	301.4	400.05	Hours	_	361.4	390.7	448.8		_		721.15
	⊢ ⊆		Accum.	-	25.1	39.7		151.5	244.4	268.4	367.05	Accum.	-	64.4	93.7	151.8				424.15
	ш		As		1st	2nd	3rd	4th	6th	7th	8th	As As		1st	2nd	3rd	4th	6th	7th	8th
			found	Initial	QTR	QTR	QTR	QTR	QTR	QTR	QTR	found	Initial	QTR	QTR	QTR	QTR	QTR	QTR	QTR
Method	Property	Units	journa	71.6%	-	l change					ų.n.	Journa	77.5%			_			-	٠,,,,
D445 100c	Viscosity	cSt	10.48	9.04	8.88	8.64	8.9	9.04	8.85	9.02	9.05	10.69	8.97	8.9	8.72	9.01	8.42	8.23	8.83	8.96
D445 40c	Viscosity	cSt		50.04	0.00	0.04	0.5	3.04	0.05	3.02	50.19	10.03	50.23	0.5	0.72	3.01	0.42	0.23	48.95	0.50
	Viscosity Index	350		163							163		160						162	
D4739	TBN Buffer	mg KOH/g		9.09	8.93	8.68	7.98	6.73	5.5	5.66	4.74		8.22	7.15	6.86	4.8	5.36	5.04	5.42	
D5185	Al	ppm		1	2	2	2	2	3	3	3	3	2	2	3	3	3	4	3	3
	Cu	ppm	23	6	14	17	24	32	41	46	61	192	54	81	87	109	123	382	741	61
	Fe	ppm	10	4	14	22	26	31	40	59	66	36	11	24	31	36	43	51	58	66
	Pb	ppm	3	<1	2	2	2	2	3	2	3	7	2	3	3	3	3	3	3	3
	Si	ppm	75	25	36	40	48	53	62	64	65	83	27	33	35	40	38	41	40	65
			-		1.92		1.63	1.88	2.46			1			2.1	2.13	2.34	2.46	2.27	
D664 Acid	TAN Buffer	mg KOH/g		1.95	1.92	1.65	1.03	1.88	2.40	1.91	2.63		2.07	1.98	2.1	2.13	2.34	2.40	2.21	
D664 Acid	TAN Buffer	mg KOH/g		1.95	1.92	1.65	1.03	1.88	2.40	1.91	2.63		2.07	1.98	2.1	2.13	2.34	2.40	2.21	

Table 11. Ft. Benning UOA, HEMTT Engine, CONTROL

	0L e			ŀ	HEN	ЛTT	- H	W3	60					ŀ	HEN	1TT	- H	W3	61		
	2 2		Miles	207	332.3	782.6	782.9	816	820	1207.9	1293.1	П	Miles	1607	1931.2	2018.9	2153.5	2439.5	3257.2	3607.1	4795.7
	_ :=		Accum.	-	125.3	575.6	575.9	609	613	1000.9	1086.1	П	Accum.	-	324.2	411.9	546.5	832.5	1650.2	2000.1	3188.7
			Hours	25	60.95	107.25	110.1	121.05	134.45	177.45	197.8	I	Hours	159	188.7	119.9	208.95	234.2	315.85	342.35	440.7
	5 h		Accum.	-	35.95	82.25	85.1	96.05	109.45	152.45	172.8	П	Accum.	-	29.7	-	49.95	75.2	156.85	183.35	281.7
	S -		As	1 1411	1st	2nd	3rd	4th	6th	7th	8th	П	As	1 1411	1st	2nd	3rd	4th	6th	7th	8th
			found	Initial	QTR	QTR	QTR	QTR	QTR	QTR	QTR		found	Initial	QTR						
Method	Property	Units																			
D445 100c	Viscosity	cSt		11.52	11.43	11.66	11.33	11.48	11.11	11.03	10.95			11.48	11.79	11.39	11.35	11.51			12.5
D445 40c	Viscosity	cSt		79.41							73.05			79.38				79.56			
D2270	Viscosity Index			137							139			136				IC			
D4739	TBN Buffer	mg KOH/g		8.02	8.22	6.9	7.54	6.97	6.62	6.26	6.03			6.58	7.06	5.99	6.31	5.58			
D5185	Al	ppm		2	2	2	2	2	4	4	4			2	3	3	3	3	2	2	3
	Cu	ppm		36	42	61	62	67	74	86	94	П		97	113	118	124	144	62	69	88
	Fe	ppm		11	14	19	19	24	40	55	62	Ц		25	38	39	43	49	35	56	65
	Pb	ppm		4	6	6	6	6	6	7	6	Ц		5	6	6	6	6	2	2	3
	Si	ppm		78	80	86	84	87	91	86	89			84	88	89	88	91	35	36	40
D664 Acid	TAN Buffer	mg KOH/g		1.88	1.9	2.02	1.72	2.02	1.88	2.25	2.29	П		2.28	2.2	2.08	2.29	2.38			

Figure 10. Ft. Benning UOA, HEMTT Engine, Iron Accumulation *Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.*

HEMTT (transmission)

- Similar to that completed for the Bradley vehicle, no CONTROL transmission samples were acquired for the HEMTT for comparison.
- Wear metal analysis does not show any significant accumulation of typical wear metals (aluminum, iron, lead, etc).
- No operational issues were noted regarding transmission function with units utilizing the SCPL.

HEMTT - HW337 HEMTT - HW338 Miles 246 459.1 544.9 1075.6 1980.9 3154.1 3485.3 4795.1 Miles 4086 4952.6 5361.1 6111.8 6759.5 7795.2 8325.8 9613.8 Accum. 298.9 829.6 1734.9 2908.1 3239.3 4549.3 Accum. 866.6 1275.1 2025.8 2673.5 3709.2 4239.8 5527.8 33 72.7 434.2 184.5 277.4 301.4 400.0 297 361.4 390.7 448.8 493.65 586.55 632.05 721.15 Hours 58.1 Hours Accum. 25 1 39.7 401 2 151 5 244 4 268 4 367 0 Accum. 64 4 93 7 151 8 196 65 289 55 335 05 424 19 1st 2nd 3rd 4th 6th As 1st 2nd Initial Initial found QTR QTR QTR found QTR QTR 75 4% % initial changeover (calculated from vis) 72 1% % initial changeover (calculated from vis) Method Units Property D445 100c 8.32 11.8 8.43 10.26 8.97 Viscosity cS1 9.29 9.17 9.12 8.84 8.69 8.51 8.34 8.75 8.65 8.45 8.42 8.29 8.1 D445 40c Viscosity cSt 52 5 46 96 50 59 46 43 D2270 Viscosity Index 161 157 159 156 D4739 TBN Buffer mg KOH/g 8.94 8.42 8.28 8.37 8.93 8.24 8.69 8.82 8.34 8.08 8.69 8.06 8.64 8.79 8.52 8.05 D5185 2 2 3 3 5 ppn 1 3 3 2 5 36 13 12 13 16 Cu 4 8 11 14 15 14 ppn 8 5 5 6 9 9 10 15 9 8 9 10 10 11 12 Fe ppn 3 6 Pb <1 2 2 2 ppr 1 1 1 1 <1 4 <1 2 1 1 2 1 2 Si 5 5 3 4 4 4 4 D664 Acid TAN Buffer mg KOH/g 1.37 1.93 2.08 1.73 1.5 1.86 1.6 1.47 1.67 1.19 1.63 1.76 1.43 1.75 1.7 1.37

Table 12. Ft. Benning UOA, HEMTT Transmission, TEST

HET (engine + transmission)

- Only one HET was available at the start of testing, so results are only reported for the TEST vehicle, as no CONTROL vehicle was available.
- Limited maintenance history of HW127 was available prior to the changeover to SCPL, but
 inclusion of equipment using a 2-cycle diesel engine was highly desired, so the vehicle was
 included without any known background.
- Immediately after the start of testing HW127 (TEST) experienced a head gasket failure
 which required a full replacement of the engine. The engine failure was not attributed to the
 use of SCPL, and the newly replaced engine was filled with the SCPL at the completion of
 maintenance.
- As a result of the new engine break-in, typical wear metals (Fe, Cu, Pb) remained higher than normal through the remainder of the test. In addition, Si levels were also high, again attributed to silicon containing sealants typically used in new engines. Despite these

- elevated levels, trends did not show exponential accumulation that is typically associated with increased wear and scuffing in 2-cycle engines [2,3].
- As there were no CONTROL HET's included in the test, no CONTROL transmission samples were acquired.
- Wear metal analysis of the HW127 (TEST) transmission samples does not show significant accumulation of typical wear metals (aluminum, iron, lead, etc).
- No operational issues were noted regarding the HET transmission function using the SCPL.

Table 13. Ft. Benning UOA, HET Engine, TEST

	. 0				HE	T -	ΗW	/12	7		
	_		Miles	17810	-	592.6	692.7	790.8	911.5	921.8	922.3
	EST gin		Accum.	-	-	-					
	TE n		Hours	-	-	80.9	101.2	110.3	127	129.4	131.2
			Accum.	-	-	-					
	_		As	Initial	1st	2nd	3rd	4th	6th	7th	8th
			found	initiai	QTR	QTR	QTR	QTR	QTR	QTR	QTR
Method	Property	Units	11.42	9.05	ъ	9.05	9.11	8.95	8.8	8.75	8.84
D445 100c	Viscosity	cSt			head	50.59					48.37
D445 40c	Viscosity	cSt			a u	161					164
D4739	TBN Buffer	mg KOH/g		9.05	service, Engine l gasket failure	8.65	8.35	7.63	7.23	7.95	7.55
D5185	Al	ppm	1	1		3	2	3	2	2	2
	Cu	ppm	7	1	rvic	29	30	33	36	32	33
	Fe	ppm	137	26	f se	60	69	81	95	85	87
	Pb	ppm	3	<1	Out of service, gasket f	15	14	15	16	14	13
	Si	ppm	41	13	ō	121	132	141	159	135	134
D664 Acid	TAN Buffer	mg KOH/g		2.06		2.08	1.88	2.1	1.91	1.68	2.14

Table 14. Ft. Benning UOA, HET Transmission, TEST

					HE	T -	ΗW	/12	7		
	⊢ s		Miles	17810	-	592.6	692.7	790.8	911.5	921.8	922.3
	.S ⊑		Accum.	-	-	-					
	TEST		Hours	-	-	80.9	101.2	110.3	127	129.4	131.2
	– –		Accum.	-	-	-					
			As	Initial	1st	2nd	3rd	4th	6th	7th	8th
			found	initiai	QTR	QTR	QTR	QTR	QTR	QTR	QTR
Method	Property	Units									
D445 100c	Viscosity	cSt	6.86	8.21		8.13	8.28	8.18	7.9	8.05	8.13
D445 40c	Viscosity	cSt		44.64	a)						44.14
D2270	Viscosity Index			161	Engine ailure						160
D4739	TBN Buffer	mg KOH/g		8.61		8.98	8.81	8.09		8.86	8.28
D5185	Al	ppm	18	4	service, gasket 1	4	3	3	4	3	4
	Cu	ppm	217	33	serv	33	36	38	40	42	41
	Fe	ppm	53	9	ut of s head g	8	8	8	10	9	9
	Pb	ppm	15	2	Out of head	3	3	4	4	4	4
	Si	ppm	6	5	U	6	7	6	7	8	7
D664 Acid	TAN Buffer	mg KOH/g	1.48	1.85		1.72	1.53	1.79	1.97	1.52	1.9

MTV (engine)

- All TEST MTVs operated the full 2-year duration without any unnecessary oil changes.
- No issues were identified in critical wear metals for the TEST or CONTROL MTVs.
- Fe accumulation rates between TEST and CONTROL were found to be similar (see Figure 11), suggesting that the SCPL is providing comparable wear protection as the baseline MIL-PRF-2104 15W40 products.
- Used oil analysis results from all TEST vehicles (which did NOT receive oil changes for the full two year duration), suggest that the SCPL is capable of extended drain intervals.

Table 15. Ft. Benning UOA, MTV Engine, TEST

	a \				M	ΓV -	· H۷	V2 8	39					M	TV -	· H۷	N2 9	90		
	TEST Engine		Miles	12789	13787	13787	13930	14086	14185	14188	14555	Miles	10887	11310	11593	11851	12439	12895	12915	13505
	TEST ngin		Accum.	-	998	998	1141	1297	1396	1399	1766	Accum.	-	423	706	964	1552	2008	2028	2618
	<u>ы</u> 🕸		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	⊢ ∴		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			As	Initial	1st	2nd	3rd	4th	6th	7th	8th	As	Initial	1st	2nd	3rd	4th	6th	7th	8th
			found	muui	QTR	QTR	QTR	QTR	QTR	QTR	QTR	found	muui	QTR	QTR	QTR	QTR	QTR	QTR	QTR
Method	Property	Units		93.5%	% initia	l change	eover (c	alculate	d from v	ıis)			92.9%	% initia	ıl changı	eover (c	alculate	d from v	ıis)	
D445 100c	Viscosity	cSt	12.64	8.74	8.88	8.93	8.95	9.33	9.16	9.14	9.21	12.99	8.79	8.98	8.92	9.01	8.45	8.38	8.35	8.45
D445 40c	Viscosity	cSt		47.42							52.68		48.26							45.64
D2270	Viscosity Index			166							158		163							164
D4739	TBN Buffer	mg KOH/g		9.62	9.01	8.93	7.58	7.8	7.86	8.19	7.07		9.42	8.82	8.47	6.43	8.24	7.89	8.87	7.51
D5185	Al	ppm	<1	1	2	2	<1	1	<1	1	2	<1	1	2	2	1	2	1	1	2
	Cu	ppm	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Fe	ppm	7	2	3	3	4	4	5	6	9	3	1	4	6	6	4	7	8	10
	Pb	ppm	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1
	Si	ppm	3	5	4	4	4	4	4	5	5	3	5	4	4	4	4	5	5	4
D664 Acid	TAN Buffer	mg KOH/g		1.97	1.92	1.9	1.66	1.98	1.99	1.63	2.25		2.1	2.08	2.09	1.94	2.04	2.18	1.83	2.56
														•						
	. ข							V29									N3 0			
	ST		Miles	12785	12855	13092	13131	13187	13683	13738	_		12159	M	12253	12296	12455	12492		
	EST gine		Miles Accum.	-	12855 70	13092 307	13131 346	13187 402	13683 898	953	1394	Miles Accum.	-	-	12253 94	12296 137	12455 296	12492 333	478	660
	TEST ngine				12855	13092	13131	13187	13683		_			-	12253	12296	12455	12492		
	TEST Engine		Accum.	-	12855 70 - -	13092 307 - -	13131 346 - -	13187 402 - -	13683 898 - -	953	1394	Accum.	-	- - -	12253 94 - -	12296 137 - -	12455 296 - -	12492 333 - -	478 - -	660 - -
	TEST Engine		Accum. - - As	-	12855 70 - - - 1st	13092 307 - - 2nd	13131 346 - - - 3rd	13187 402 - - 4th	13683 898 - - - 6th	953 - - - 7th	1394 - - 8th	Accum. - - As	-	- - - - 1st	12253 94 - - - 2nd	12296 137 - - - 3rd	12455 296 - - 4th	12492 333 - - - 6th	478 - - - 7th	660 - - 8th
Method		Units	Accum.	- - - Initial	12855 70 - - - 1st QTR	13092 307 - - - 2nd QTR	13131 346 - - - 3rd QTR	13187 402 - - - 4th QTR	13683 898 - - - 6th QTR	953 - - - 7th QTR	1394	Accum.	- - - Initial	- - - - 1st QTR	12253 94 - - - 2nd QTR	12296 137 - - 3rd QTR	12455 296 - - 4th QTR	12492 333 - - - 6th QTR	478 - - - 7th QTR	660 - -
Method D445 100c	Property	<u>Units</u>	Accum As found	- - - <i>Initial</i> 86.0%	12855 70 - - - 1st QTR % initia	13092 307 - - - 2nd QTR	13131 346 - - - 3rd QTR	13187 402 - - - 4th QTR	13683 898 - - 6th QTR	953 - - - 7th QTR	1394 - - 8th QTR	Accum As found	- - - <i>Initial</i> 90.1%	- - - - 1st QTR % initia	12253 94 - - 2nd QTR	12296 137 - - 3rd QTR eover (c	12455 296 - - - 4th QTR alculate	12492 333 - - 6th QTR d from v	478 - - - 7th QTR	660 - - 8th QTR
D445 100c	Property Viscosity	cSt	Accum. - - As	- - - - <i>Initial</i> 86.0% 9.04	12855 70 - - - 1st QTR	13092 307 - - - 2nd QTR	13131 346 - - - 3rd QTR	13187 402 - - - 4th QTR	13683 898 - - - 6th QTR	953 - - - 7th QTR	1394 - - 8th QTR	Accum. - - As	- - - - - - - - - 90.1% 8.95	- - - - 1st QTR	12253 94 - - - 2nd QTR	12296 137 - - 3rd QTR	12455 296 - - 4th QTR	12492 333 - - - 6th QTR	478 - - - 7th QTR	660 - - 8th QTR 8.65
D445 100c D445 40c	Property	cSt	Accum As found	- - - <i>Initial</i> 86.0%	12855 70 - - - 1st QTR % initia	13092 307 - - - 2nd QTR	13131 346 - - - 3rd QTR	13187 402 - - - 4th QTR	13683 898 - - 6th QTR	953 - - - 7th QTR	1394 - - 8th QTR	Accum As found	- - - <i>Initial</i> 90.1%	- - - - 1st QTR % initia	12253 94 - - 2nd QTR	12296 137 - - 3rd QTR eover (c	12455 296 - - - 4th QTR alculate	12492 333 - - 6th QTR d from v	478 - - - 7th QTR	660 - - 8th QTR
D445 100c D445 40c	Property Viscosity Viscosity	cSt cSt	Accum As found	- - - - - - - - - - - - - - - - - - -	12855 70 - - - 1st QTR % initia	13092 307 - - - 2nd QTR	13131 346 - - - 3rd QTR	13187 402 - - - 4th QTR	13683 898 - - 6th QTR	953 - - - 7th QTR	1394 - - 8th QTR 8.79 48.77	Accum As found	- - - - - - - - - - - - - - - - - - -	- - - - 1st QTR % initia	12253 94 - - - 2nd QTR	12296 137 - - 3rd QTR eover (c	12455 296 - - - 4th QTR alculate	12492 333 - - 6th QTR d from v	478 - - - 7th QTR	660 - - 8th QTR 8.65 47.36
D445 100c D445 40c D2270	Property Viscosity Viscosity Viscosity Index	cSt cSt	Accum As found		12855 70 - - 1st QTR % initia 8.98	13092 307 - - 2nd QTR I change 8.87	13131 346 - - 3rd QTR eover (co	13187 402 - - 4th QTR alculate 8.88	13683 898 - - 6th QTR d from v	953 - - 7th QTR vis) 8.6	1394 - - 8th QTR 8.79 48.77 161	Accum As found		- - - - 1st QTR % initia 8.89	12253 94 - - 2nd QTR (1 change	12296 137 - - 3rd QTR eover (c	12455 296 - - 4th QTR alculate 8.74	12492 333 - - 6th QTR d from v 8.46	478 - - 7th QTR vis) 8.38	660 - - 8th QTR 8.65 47.36 163
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Index TBN Buffer	cSt cSt mg KOH/g	Accum As found 12.54		12855 70 - - 1st QTR % initia 8.98	13092 307 - - 2nd QTR I change 8.87	13131 346 - - 3rd QTR eover (co 9.04	13187 402 - - 4th QTR alculate 8.88	13683 898 - - 6th QTR d from v 8.6	953 - - 7th QTR vis) 8.6	1394 - - 8th QTR 8.79 48.77 161 7.04	Accum As found 13.32		- - - - 1st QTR % initia 8.89	12253 94 - - 2nd QTR 1 change 8.81	12296 137 - - 3rd QTR eover (c 8.92	12455 296 - - - 4th QTR alculate 8.74	12492 333 - - 6th QTR d from v 8.46	478	8.65 47.36 8.04
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Viscosity Index TBN Buffer	cSt cSt mg KOH/g ppm	Accum As found 12.54		12855 70 - - 1st QTR % initia 8.98 9.15 2	13092 307 - - 2nd QTR I change 8.87 8.75 2	13131 346 - - 3rd QTR eover (co 9.04 8.61 <1	13187 402 - - 4th QTR alculate 8.88 8.02	13683 898 - - 6th QTR d from v 8.6	953	1394 - 8th QTR 8.79 48.77 161 7.04 2	Accum. As found 13.32		- - - 1st QTR % initia 8.89	12253 94 - - 2nd QTR 1 change 8.81	12296 137 - - 3rd QTR eover (c 8.92 9.36 <1	12455 296 - - 4th QTR alculate 8.74	12492 333 	478	8.65 47.36 163 8.04 2
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Viscosity Index TBN Buffer Al	cSt cSt mg KOH/g ppm ppm	Accum As found 12.54		12855 70	13092 307 - - 2nd QTR I change 8.87 8.75 2 <1	13131 346 - - 3rd QTR eover (co 9.04 8.61 <1	13187 402 - - 4th QTR alculate 8.88 8.02 1	13683 898 - - 6th QTR d from v 8.6	953 7th QTR ris) 8.6 7.73 <1	1394 - 8th QTR 8.79 48.77 161 7.04 2	Accum			12253 94 - - 2nd QTR 1 change 8.81 9.62 2	12296 137 - 3rd QTR eover (c 8.92 9.36 <1 <1	12455 296 - - 4th QTR alculate 8.74 8.53 1 <1	12492 333 	478 7th QTR ris) 8.38 8.75 <1	8.65 47.36 163 8.04 2
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Viscosity Index TBN Buffer Al Cu	cSt cSt mg KOH/g ppm ppm	Accum		12855 70	13092 307 - - 2nd QTR I change 8.87 8.75 2 <1 4	13131 346 - - 3rd QTR eover (cc 9.04 8.61 <1 1	13187 402 - - 4th QTR alculate 8.88 8.02 1 1 5	13683 898 - - 6th QTR d from v 8.6 7.49 <1 1 6	953	1394 	Accum			12253 94 - - 2nd QTR 1 change 8.81 9.62 2 2 2	12296 137 - - 3rd QTR eover (c 8.92 9.36 <1 <1 3	12455 296 - - - 4th QTR alculate 8.74 8.53 1 <1	12492 333 - 6th QTR d from v 8.46 8.7 <1 <1	478 7th QTR ris) 8.38 8.75 <1 2 6	8.65 47.36 163 8.04 2
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Viscosity Index TBN Buffer Al Cu Fe	cSt cSt mg KOH/g ppm ppm ppm ppm	Accum	10 10 10 10 10 10 10 10	12855 70	13092 307 - 2nd QTR 1 change 8.87 8.75 2 <1 4	13131 346 - 3rd QTR 20ver (co 9.04 8.61 <1 1 4 <1	13187 402 - 4th QTR alculate 8.88 8.02 1 1 5 <1	13683 898 - 6th QTR d from v 8.6 7.49 <1 1 6 <1	953 7th QTR vis) 8.6 7.73 <1 2 8 <1	1394 	Accum	- - - - - - - - - - - - - - - - - - -		12253 94 - - 2nd QTR 1 change 8.81 9.62 2 2 2 3 <1	12296 137 3rd QTR eover (c 8.92 9.36 <1 <1 3 <1	12455 296 - - - 4th QTR alculate 8.74 8.53 1 <1 4	12492 333 - 6th QTR d from v 8.46 8.7 <1 <1 4	478	8.65 47.36 163 8.04 2 1 8 <1

Table 16. Ft. Benning UOA, MTV Engine, CONTROL

	0L e				M	ΓV -	Н۷	V30)2						M	<u>ΓV</u> -	Η۷	V30)3		
	7 7		Miles	12725	13487	13578	13578	13579	13626	13645	13646	П	Miles	5421	5545	5615	5615	5647	5806	5837	7448
			Accum.	-	762	853	853	854	901	920	921		Accum.	-	124	194	194	226	385	416	2027
	E B		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
	ᅐᇳ			-	-	-	-	-	-	-	-		•	-	-	-	-	-	-	-	-
	S -		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR
Method	Property	Units																			
D445 100c	Viscosity	cSt		13.58	12.82	12.68	12.82	13.02	13.71	13.64	13.55			13.4	13.28	14.38	14.38	13.84	13.68	13.65	12.75
D445 40c	Viscosity	cSt		100.11							100.8			98.46							93.38
D2270	Viscosity Index			136							134			135							133
D4739	TBN Buffer	mg KOH/g		8.29	8.12	7.4	7.81	7.35	8.65	8.58	8.51			7.95	8.64	8.84	8.98	8.59	8.51	8.44	6.63
D5185	Al	ppm		<1	<1	<1	<1	<1	<1	<1	1			<1	<1	<1	<1	<1	<1	<1	1
	Cu	ppm		<1	<1	<1	<1	<1	<1	<1	<1	Ш		1	1	<1	<1	<1	<1	<1	1
	Fe	ppm		2	4	4	4	4	2	2	2	Ш		3	4	2	2	2	2	3	7
	Pb	ppm		<1	<1	1	<1	<1	<1	1	<1	Ц		<1	<1	<1	<1	<1	<1	<1	<1
	Si	ppm		3	3	3	3	3	5	4	4	Ц		3	3	5	5	3	4	4	3
D664 Acid	TAN Buffer	mg KOH/g		1.93	2.29	2.07	1.84	2.2	2.18	2.17	2.21			1.98	1.86	2.12	1.74	2.06	2.14	2.28	2.51

Figure 11. Ft. Benning UOA, MTV Engine, Iron Accumulation
Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

MTV (transmission)

- Similar to that completed for the previous vehicles, no CONTROL transmission samples were acquired for the MTV for comparison.
- High levels of copper (Cu) accumulation were observed in both of the TEST MTV transmissions. The source of this copper is unknown, but as found samples removed from

the vehicles at the start of testing also showed high copper levels. This, combined with data presented in the Ft. Wainwright results suggests that copper accumulation could be normal for this type transmission.

- No other significant wear metal accumulations were identified (aluminum, iron, lead, etc).
- No operational issues were noted regarding transmission function with units utilizing the SCPL.

Table 17. Ft. Benning UOA, MTV Transmission, TEST

					M	ΓV -	Н۷	V29)1						M	ΓV -	Η۷	V30	1		
	⊢ S		Miles	12785	12855	13092	13131	13187	13683	13738	14179		Miles	12159	12296	12296	N/A	12455	12492	12637	12819
	S		Accum.	-	70	307	346	402	898	953	1394		Accum.	-	137	137	N/A	296	333	478	660
	TES ¹		-	-	-	-	-	-	-	-	-	Т	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	Τ	-	-	-	-	-	-	-	-	-
			As	Initial	1st	2nd	3rd	4th	6th	7th	8th		As	Initial	1st	2nd	3rd	4th	6th	7th	8th
			found		QTR	QTR	QTR	QTR	QTR	QTR	QTR		found		QTR	QTR	QTR	QTR	QTR	QTR	QTR
Method	Property	Units		54.9%	% initia	l change	over (c	alculate	d from v	ris)				56.4%	% initia	l change	eover (c	alculate	d from v	is)	
D445 100c	Viscosity	cSt	10.09	9.2	8.98	8.89	8.86	8.94	8.78	8.73	8.78		10.58	9.39	9.07	8.99	9.07	9.01	8.85	8.84	8.94
D445 40c	Viscosity	cSt		54.88							51.67			57.84							53.03
D2270	Viscosity Index			149							149			144							149
D4739	TBN Buffer	mg KOH/g		8.52	8.72	8.48	7.87	7.51	7.81	8.19	7.69			8.24	8.78	8.95	8.22	7.98	8.26	8.6	8.1
D5185	Al	ppm	9	5	5	5	4	5	4	4	5		9	5	5	5	4	4	3	4	5
	Cu	ppm	414	194	170	174	184	200	205	223	252		348	181	138	146	157	182	201	237	294
	Fe	ppm	57	29	25	24	24	25	24	25	28		64	34	25	26	25	25	24	27	31
	Pb	ppm	12	6	6	5	5	5	5	6	5		7	3	4	3	3	3	3	4	3
	Si	ppm	10	7	7	6	6	6	6	6	6		8	6	6	6	6	5	6	6	6
D664 Acid	TAN Buffer	mg KOH/g	1.1	1.58	1.47	1.44	1.25	1.63	1.51	1.25	1.64		1.57	1.87	1.77	1.58	1.47	1.76	1.73	1.48	1.59

STRYKER (engine)

- All TEST STRYKERS operated the full 2-year duration without any unnecessary oil changes.
- The STRYKER utilizes an on-board oil addition system to maintain engine oil levels over long durations. This was drained and filled with SCPL prior to testing to ensure oil added was only the SCPL.
- No issues were identified in critical wear metals for the TEST or CONTROL MTVs.
- Iron accumulation rates between TEST and CONTROL were found to be similar (see Figure 12), suggesting that the SCPL is providing comparable wear protection as the baseline MIL-PRF-2104 15W40 products.
- All STRYKER used oil analysis results suggest that the SCPL is capable of extended drain intervals.

Table 18. Ft. Benning UOA, STRYKER Engine, TEST

					STF	RYK	ER	- B5	52					STI	RYK	ER	- B5	53		
	TEST Engine		Miles	11674	11782					12521	12537	Miles	5955				6288.1		6716.8	6815.8
	ıS :⊨		Accum.	-	107.8	120.6	135.7	326.6	574.2	846.8	862.9	Accum.	-	131.1	179.8	209.4	333.1	668.9	761.8	860.8
	rES ngii		Hours	1462	1486.9	1493.7	1499.1	1520.4	1555.2	1579.8	1583.1	Hours	1431	1469.7	1477.9	1491.2	1524.3	1579.1	1592.6	1614.4
	F 5		Accum.	-	24.9	31.7	37.1	58.4	93.2	117.8	121.1	Accum.	-	38.7	46.9	60.2	93.3	148.1	161.6	183.4
			As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR
Method	Property	Units		89.6%	% initia	l change	over (c	alculate	d from v	is)	-		87.5%	% initia	l change	eover (co	alculated	from v	is)	-
D445 100c	Viscosity	cSt	12.5	8.89	8.89	8.88	8.76	9.05	9.45	9.53	9.59	12.3	8.95	8.88	8.92	8.95	8.88	8.83	8.92	9.36
D445 40c	Viscosity	cSt			49.67						56.08		50.25							52.86
D2270	Viscosity Index				160						156		160							161
D4739	TBN Buffer	mg KOH/g		9.32	9.2	9.08	8.07	7.64	7.72	7.6	7.11		9.24	9.08	8.7	7.39	7.28	7.22	7.43	7
D5185	Al	ppm	1	1	2	2	1	2	1	2	2	2	1	2	2	2	2	2	2	3
	Cu	ppm	3	<1	1	2	2	2	2	3	3	6	<1	2	3	3	3	3	4	4
	Fe	ppm	10	2	9	10	10	15	12	17	22	18	4	10	10	10	12	15	19	20
	Pb	ppm	<1	<1	<1	<1	<1	<1	<1	2	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Si	ppm	3	4	4	4	3	4	4	4	4	5	5	4	4	4	4	4	5	4
D664 Acid	TAN Buffer	mg KOH/g		1.93	1.78	1.72	1.5	1.96	1.9	1.83	2.22		1.96	1.78	1.69	1.59	1.89	2.19	1.94	2.23
	. 0							- B									- B5			
	T. ne		Miles	3013	3085.9	3237.2	3356.1	3478.1	3623.5	3701	3701.1	Miles	27731	27732	27777	27781	27788	28013	28039	28072
	EST gine		Accum.	-	3085.9 72.9	3237.2 224.2	3356.1 343.1	3478.1 465.1	3623.5 610.5	688	688.1	Accum.	-	27732 0.9	27777 46	27781 49.5	27788 57.4	28013 282.1	308	341.1
	TEST ngine		Accum. Hours	0000	3085.9 72.9 628.9	3237.2 224.2 654.9	3356.1 343.1 689.8	3478.1 465.1 724.5	3623.5 610.5 775.5	688 788.6	688.1 792.5	Accum. Hours	27731 - 2571	27732 0.9 2572.4	27777 46 2581.5	27781 49.5 2583	27788 57.4 2584.5	28013 282.1 2650	308 2653.5	341.1 2673.7
	TEST Engine		Accum. Hours Accum.	-	3085.9 72.9 628.9 44.9	3237.2 224.2 654.9 70.9	3356.1 343.1 689.8 105.8	3478.1 465.1 724.5 140.5	3623.5 610.5 775.5 191.5	688 788.6 204.6	688.1 792.5 208.5	Accum. Hours Accum.	-	27732 0.9 2572.4 1.4	27777 46 2581.5 10.5	27781 49.5 2583 12	27788 57.4 2584.5 13.5	28013 282.1 2650 79	308 2653.5 82.5	341.1 2673.7 102.7
	TEST		Accum. Hours Accum. As	-	3085.9 72.9 628.9 44.9 1st	3237.2 224.2 654.9 70.9 2nd	3356.1 343.1 689.8 105.8	3478.1 465.1 724.5 140.5 4th	3623.5 610.5 775.5 191.5 6th	688 788.6 204.6 7th	688.1 792.5 208.5 8th	Accum. Hours Accum. As	-	27732 0.9 2572.4 1.4 1st	27777 46 2581.5 10.5 2nd	27781 49.5 2583 12 3rd	27788 57.4 2584.5 13.5 4th	28013 282.1 2650 79 6th	308 2653.5 82.5 7th	341.1 2673.7 102.7 8th
Method		Units	Accum. Hours Accum.	- 584 - Initial	3085.9 72.9 628.9 44.9	3237.2 224.2 654.9 70.9 2nd QTR	3356.1 343.1 689.8 105.8 3rd QTR	3478.1 465.1 724.5 140.5 4th QTR	3623.5 610.5 775.5 191.5 6th QTR	688 788.6 204.6 7th QTR	688.1 792.5 208.5	Accum. Hours Accum.	- 2571 - Initial	27732 0.9 2572.4 1.4 1st QTR	27777 46 2581.5 10.5 2nd QTR	27781 49.5 2583 12 3rd QTR	27788 57.4 2584.5 13.5	28013 282.1 2650 79 6th QTR	308 2653.5 82.5 7th QTR	341.1 2673.7 102.7
Method D445 100c		<u>Units</u>	Accum. Hours Accum. As	- 584 - Initial	3085.9 72.9 628.9 44.9 1st QTR	3237.2 224.2 654.9 70.9 2nd QTR	3356.1 343.1 689.8 105.8 3rd QTR	3478.1 465.1 724.5 140.5 4th QTR	3623.5 610.5 775.5 191.5 6th QTR	688 788.6 204.6 7th QTR	688.1 792.5 208.5 8th	Accum. Hours Accum. As	- 2571 - Initial	27732 0.9 2572.4 1.4 1st QTR	27777 46 2581.5 10.5 2nd QTR	27781 49.5 2583 12 3rd QTR	27788 57.4 2584.5 13.5 4th QTR	28013 282.1 2650 79 6th QTR	308 2653.5 82.5 7th QTR	341.1 2673.7 102.7 8th
	Property		Accum. Hours Accum. As found	- 584 - <i>Initial</i> 87.8%	3085.9 72.9 628.9 44.9 1st QTR % initial	3237.2 224.2 654.9 70.9 2nd QTR change	3356.1 343.1 689.8 105.8 3rd QTR	3478.1 465.1 724.5 140.5 4th QTR	3623.5 610.5 775.5 191.5 6th QTR	688 788.6 204.6 7th QTR	688.1 792.5 208.5 8th QTR	Accum. Hours Accum. As found	2571 - <i>Initial</i> 88.2%	27732 0.9 2572.4 1.4 1st QTR % initia	27777 46 2581.5 10.5 2nd QTR I change	27781 49.5 2583 12 3rd QTR	27788 57.4 2584.5 13.5 4th QTR	28013 282.1 2650 79 6th QTR	308 2653.5 82.5 7th QTR	341.1 2673.7 102.7 8th QTR
D445 100c D445 40c	Property Viscosity	cSt	Accum. Hours Accum. As found	- 584 - <i>Initial</i> 87.8% 9.18	3085.9 72.9 628.9 44.9 1st QTR % initial	3237.2 224.2 654.9 70.9 2nd QTR change	3356.1 343.1 689.8 105.8 3rd QTR	3478.1 465.1 724.5 140.5 4th QTR	3623.5 610.5 775.5 191.5 6th QTR	688 788.6 204.6 7th QTR	688.1 792.5 208.5 8th QTR	Accum. Hours Accum. As found	- 2571 - <i>Initial</i> 88.2% 9.07	27732 0.9 2572.4 1.4 1st QTR % initia	27777 46 2581.5 10.5 2nd QTR I change	27781 49.5 2583 12 3rd QTR	27788 57.4 2584.5 13.5 4th QTR	28013 282.1 2650 79 6th QTR	308 2653.5 82.5 7th QTR	341.1 2673.7 102.7 8th QTR
D445 100c D445 40c	Property Viscosity Viscosity	cSt cSt	Accum. Hours Accum. As found	- 584 - <i>Initial</i> 87.8% 9.18 51.29	3085.9 72.9 628.9 44.9 1st QTR % initial	3237.2 224.2 654.9 70.9 2nd QTR change	3356.1 343.1 689.8 105.8 3rd QTR	3478.1 465.1 724.5 140.5 4th QTR	3623.5 610.5 775.5 191.5 6th QTR	688 788.6 204.6 7th QTR	688.1 792.5 208.5 8th QTR 10 59.35	Accum. Hours Accum. As found	- 2571 - <i>Initial</i> 88.2% 9.07 50.78	27732 0.9 2572.4 1.4 1st QTR % initia	27777 46 2581.5 10.5 2nd QTR I change	27781 49.5 2583 12 3rd QTR	27788 57.4 2584.5 13.5 4th QTR	28013 282.1 2650 79 6th QTR	308 2653.5 82.5 7th QTR	341.1 2673.7 102.7 8th QTR 9.34 53.32
D445 100c D445 40c D2270	Property Viscosity Viscosity Viscosity Index	cSt cSt	Accum. Hours Accum. As found	584 - Initial 87.8% 9.18 51.29 162	3085.9 72.9 628.9 44.9 1st QTR % initial	3237.2 224.2 654.9 70.9 2nd QTR (change 9.22	3356.1 343.1 689.8 105.8 3rd QTR eover (co	3478.1 465.1 724.5 140.5 4th QTR alculate 9.49	3623.5 610.5 775.5 191.5 6th QTR d from v	688 788.6 204.6 7th QTR vis) 9.05	688.1 792.5 208.5 8th QTR 10 59.35 155	Accum. Hours Accum. As found	- 2571 - <i>Initial</i> 88.2% 9.07 50.78 161	27732 0.9 2572.4 1.4 1st QTR % initia 9.07	27777 46 2581.5 10.5 2nd QTR I change 8.78	27781 49.5 2583 12 3rd QTR eover (co 8.88	27788 57.4 2584.5 13.5 4th QTR alculated 8.85	28013 282.1 2650 79 6th QTR d from v 8.92	308 2653.5 82.5 7th QTR is) 9.15	341.1 2673.7 102.7 8th QTR 9.34 53.32 159
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Index TBN Buffer	cSt cSt mg KOH/g	Accum. Hours Accum. As found	584 - Initial 87.8% 9.18 51.29 162 9.62	3085.9 72.9 628.9 44.9 1st QTR % initial 9.13	3237.2 224.2 654.9 70.9 2nd QTR 9.22 8.72 2	3356.1 343.1 689.8 105.8 3rd QTR eover (co 9.45	3478.1 465.1 724.5 140.5 4th QTR alculate 9.49 6.85 2 3	3623.5 610.5 775.5 191.5 6th QTR d from v 9.17	688 788.6 204.6 7th QTR (is) 9.05	688.1 792.5 208.5 8th QTR 10 59.35 155 6.23	Accum. Hours Accum. As found	2571 - Initial 88.2% 9.07 50.78 161 9.16	27732 0.9 2572.4 1.4 1st QTR % initia 9.07	27777 46 2581.5 10.5 2nd QTR I change 8.78	27781 49.5 2583 12 3rd QTR eover (co 8.88	27788 57.4 2584.5 13.5 4th QTR alculated 8.85	28013 282.1 2650 79 6th QTR d from v 8.92	308 2653.5 82.5 7th QTR is) 9.15	341.1 2673.7 102.7 8th QTR 9.34 53.32 159 7.58
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Viscosity Index TBN Buffer Al Cu	cSt cSt mg KOH/g ppm	Accum. Hours Accum. As found 14.28	584 - Initial 87.8% 9.18 51.29 162 9.62 1 <1	3085.9 72.9 628.9 44.9 1st QTR % initia 9.13 9.24 2 1 4	3237.2 224.2 654.9 70.9 2nd QTR 9.22 8.72 2 2 6	3356.1 343.1 689.8 105.8 3rd QTR eover (co 9.45 8.1 2 2 8	3478.1 465.1 724.5 140.5 4th QTR alculate 9.49 6.85 2 3 9	3623.5 610.5 775.5 191.5 6th QTR d from v 9.17 7.19 2 3 14	688 788.6 204.6 7th QTR (is) 9.05 6.26 6 7 24	792.5 208.5 8th QTR 10 59.35 155 6.23 5 5	Accum. Hours Accum. As found 13.56	- 2571 - Initial 88.2% 9.07 50.78 161 9.16 1 <1	27732 0.9 2572.4 1.4 1st QTR % initia 9.07 9.46 2 <1	27777 46 2581.5 10.5 2nd QTR I change 8.78 9.35 2 <1 10	27781 49.5 2583 12 3rd QTR eover (co 8.88 9.14 1 <1	27788 57.4 2584.5 13.5 4th QTR alculated 8.85 8.3 2 1 11	28013 282.1 2650 79 6th QTR 8.92 7.87 1 2	308 2653.5 82.5 7th QTR is) 9.15 8.28 2 2 19	341.1 2673.7 102.7 8th QTR 9.34 53.32 159 7.58 2 2
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Index TBN Buffer Al Cu Fe	cSt cSt mg KOH/g ppm ppm	Accum. Hours Accum. As found 14.28	584 - Initial 87.8% 9.18 51.29 162 9.62 1 <1 2	3085.9 72.9 628.9 44.9 1st QTR % initia 9.13 9.24 2 1 4 1	3237.2 224.2 654.9 70.9 2nd QTR 9.22 8.72 2 2 6 1	3356.1 343.1 689.8 105.8 3rd QTR eover (co 9.45 8.1 2 2 8	3478.1 465.1 724.5 140.5 4th QTR alculate 9.49 6.85 2 3 9	3623.5 610.5 775.5 191.5 6th QTR d from v 9.17 7.19 2 3 14 1	688 788.6 204.6 7th QTR vis) 9.05 6.26 6 7 24 3	792.5 208.5 8th QTR 10 59.35 155 6.23 5 5 22	Accum. Hours Accum. As found 13.56 1 - 1 - 1 - 16 - < 1	- 2571 - Initial 88.2% 9.07 50.78 161 9.16 1 <1 4	27732 0.9 2572.4 1.4 1st QTR % initia 9.07 9.46 2 <1 10 <1	27777 46 2581.5 10.5 2nd QTR I change 8.78 9.35 2 <1 10 <1	27781 49.5 2583 12 3rd QTR eover (co 8.88 9.14 1 <1 9	27788 57.4 2584.5 13.5 4th QTR alculated 8.85 8.3 2 1 11 <1	28013 282.1 2650 79 6th QTR 4 from v 8.92 7.87 1 2 15 <1	308 2653.5 82.5 7th QTR vis) 9.15 8.28 2 2 19 <1	341.1 2673.7 102.7 8th QTR 9.34 53.32 159 7.58 2 2 2 22
D445 100c D445 40c D2270 D4739 D5185	Property Viscosity Viscosity Index TBN Buffer Al Cu Fe Pb	cSt cSt mg KOH/g ppm ppm ppm ppm	Accum. Hours Accum. As found 14.28	584 - Initial 87.8% 9.18 51.29 162 9.62 1 <1 2	3085.9 72.9 628.9 44.9 1st QTR % initial 9.13 9.24 2 1 4 1 4	3237.2 224.2 654.9 70.9 2nd QTR 9.22 8.72 2 2 6 1 3	3356.1 343.1 689.8 105.8 3rd QTR cover (co 9.45 8.1 2 2 8 2 3	3478.1 465.1 724.5 140.5 4th QTR alculate 9.49 6.85 2 3 9 2 3	3623.5 610.5 775.5 191.5 6th QTR d from v 9.17 7.19 2 3 14 1 4	688 788.6 204.6 7th QTR ris) 9.05 6.26 6 7 24 3 5	688.1 792.5 208.5 8th QTR 10 59.35 155 6.23 5 5 22 2	Accum. Hours Accum. As found 13.56	2571 	27732 0.9 2572.4 1.4 1st QTR % initia 9.07 9.46 2 <1 10 <1 5	277777 46 2581.5 10.5 2nd QTR I change 8.78 9.35 2 <1 10 <1 4	27781 49.5 2583 12 3rd QTR eover (co 8.88 9.14 1 <1 9 <1	27788 57.4 2584.5 13.5 4th QTR alculated 8.85 8.3 2 1 11 <1	28013 282.1 2650 79 6th QTR d from v 8.92 7.87 1 2 15 <1 4	308 2653.5 82.5 7th QTR vis) 9.15 8.28 2 2 19 <1 5	341.1 2673.7 102.7 8th QTR 9.34 53.32 159 7.58 2 2 2 22 <1
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Index TBN Buffer Al Cu Fe Pb	cSt cSt mg KOH/g ppm ppm ppm ppm	Accum. Hours Accum. As found 14.28	584 - Initial 87.8% 9.18 51.29 162 9.62 1 <1 2	3085.9 72.9 628.9 44.9 1st QTR % initia 9.13 9.24 2 1 4 1	3237.2 224.2 654.9 70.9 2nd QTR 9.22 8.72 2 2 6 1	3356.1 343.1 689.8 105.8 3rd QTR eover (co 9.45 8.1 2 2 8	3478.1 465.1 724.5 140.5 4th QTR alculate 9.49 6.85 2 3 9	3623.5 610.5 775.5 191.5 6th QTR d from v 9.17 7.19 2 3 14 1	688 788.6 204.6 7th QTR vis) 9.05 6.26 6 7 24 3	792.5 208.5 8th QTR 10 59.35 155 6.23 5 5 22	Accum. Hours Accum. As found 13.56 1 - 1 - 1 - 16 - < 1	- 2571 - Initial 88.2% 9.07 50.78 161 9.16 1 <1 4	27732 0.9 2572.4 1.4 1st QTR % initia 9.07 9.46 2 <1 10 <1	27777 46 2581.5 10.5 2nd QTR I change 8.78 9.35 2 <1 10 <1	27781 49.5 2583 12 3rd QTR eover (co 8.88 9.14 1 <1 9	27788 57.4 2584.5 13.5 4th QTR alculated 8.85 8.3 2 1 11 <1	28013 282.1 2650 79 6th QTR 4 from v 8.92 7.87 1 2 15 <1	308 2653.5 82.5 7th QTR vis) 9.15 8.28 2 2 19 <1	341.1 2673.7 102.7 8th QTR 9.34 53.32 159 7.58 2 2 2 22

Table 19. Ft. Benning UOA, STRYKER Engine, CONTROL

	0L e				STI	RYK	ER	- B	56						STE	RYK	ER	- B5	57		
	2 2		Miles	30172	30214	30847	31674	32171	32692	32693	32709		Miles	30027	30089	30274	30278	30424	30707	-	30810
	=		Accum.	-	41.9	674.7	1501.8	1998.7	2519.7	2520.5	2537		Accum.	-	62.4	247.2	250.6	396.7	680	-	783
	IZ Bu		Hours	5702	5706.1	5782.6	5882.3	5943.9	6026.4	6029.9	6033.6		Hours	4770	4797.9	4818.2	4819.5	4838.6	4874.6	-	4883.7
	ᅐᇳ		Accum.	-	4.1	80.6	180.3	241.9	324.4	327.9	331.6		Accum.	-	27.9	48.2	49.5	68.6	104.6	-	113.7
	\sim		As	Initial	1st	2nd	3rd	4th	6th	7th	8th		As	Initial	1st	2nd	3rd	4th	6th	7th	8th
			found	muui	QTR		found	muui	QTR	QTR	QTR	QTR	QTR	QTR	QTR						
Method	Property	<u>Units</u>																			
D445 100c	Viscosity	cSt		12.92	13.02	13.26	13.25	13.18	13.23	13.28	13.45			12.85	12.8	14.25	14.1	13.43	13.06		13.67
D445 40c	Viscosity	cSt		94.54							98.77			93.73					96.15		
D2270	Viscosity Index			134							136	Ш		134					134	<u>e</u>	
D4739	TBN Buffer	mg KOH/g		6.17	6.94	5.58	5.84	5.33	5.87	5.87	5.87	Ш		7.23	8.2	8.64	8.87	7.89	7.09	Available	
D5185	Al	ppm		4	4	2	3	3	2	2	2	Ш		1	2	<1	<1	1	1	Ava	<1
	Cu	ppm		4	4	2	4	3	3	3	2	Ш		1	1	<1	<1	<1	1	Not,	<1
	Fe	ppm		8	9	9	15	15	14	16	14	Ш		14	15	4	7	13	18	<u>e</u>	7
	Pb	ppm		<1	1	<1	<1	<1	<1	<1	<1	Ш		<1	<1	<1	<1	<1	<1	Sample	<1
	Si	ppm		4	4	3	4	4	4	4	3	Ш		3	3	3	3	2	3	Sa	3
D664 Acid	TAN Buffer	mg KOH/g		1.83	2	2.21	2.3	2.52	2.47	2.3	2.29	Ц		1.89	1.89	2.17	1.83	1.87	1.96		

Figure 12. Ft. Benning UOA, STRYKER Engine, Iron Accumulation Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

4.2 ARCTIC CLIMATE – FT. WAINWRIGHT AK

For the arctic climate location, a total fleet of 16 vehicles were identified and included into the field demonstration. The total fleet size was constrained due to the high costs of conducting operations in Alaska, as well as for consideration of the more known performance of the SCPL in arctic environments (i.e., SCPL low viscosity formulation based on existing arctic oil technology). The 16 vehicle fleet consisted of 8 TEST vehicles and 8 CONTROL vehicles. Table 20 outlines the arctic climate vehicle fleet indicating vehicle type, description, model number, TEST/CONTROL designation, and its identification (bumper) number.

4.2.1 Problem Areas – Ft. Wainwright

Operation of the Ft. Wainwright field demonstration proved to be the easiest of all test locations, despite its geographical distance from the TFLRF facility, and no major problem areas were experienced during testing. This was attributed to the smaller overall vehicle fleet, and the excellent support provided by the Ft. Wainwright personnel. However, the same lack of fuel and oil consumption data existed at this location consistent with that seen at Ft. Benning. Ultimately as a result of the varying fuel sources used by the fleet vehicles, and the lack of any preexisting procedures in place to track oil usage apart from bulk POL consumption, specific oil and fuel

consumption data for the SCPL was not available, thus SCPL to OEA-30 comparison in this regard was not possible. Again this information is likely much better served by the laboratory testing conducted in the SCPL development phases of the program [1,2,3], where conditions were controlled tightly to determine actual changes.

Table 20. Ft. Wainwright Arctic Climate Vehicle Fleet

Vehicle Type	Description	Model	TEST/CONTROL	Bumper No.
			TEST	BSMC-101*
HMMWV	Truck Ambulance	M997	TEST	BSMC-104*
HIVIIVIVV	Truck Amburance	101997	CONTROL	BSMC-105
			CONTROL	BSMC-113
			TEST	DC-111*
HEMMT	Fueler/Tanker	M1120A4	TEST	DC-113*
ПЕІУІІУІІ	rueler/Taliker	WITTZUA4	CONTROL	DC-112
			CONTROL	DC-114
			TEST	HQ-31*
MTV	Truck Cargo	M1083A1	TEST	HQ-32*
IVIIV	Truck Cargo	IVIIUOSAI	CONTROL	HHC-153
			CONTROL	HHC-112
			TEST	NWTC-2
SUS-V	Cargo	M973A1	TEST	NWTC-3
303-V	Cargo	IVI3/3A1	CONTROL	NWTC-4
			CONTROL	NWTC-34
* [Denotes vehicles tran	smission includ	ded in SCPL evalua	ntion

4.2.2 Mileage Accumulation

Overall mileage accumulation by each vehicle type is shown graphically in the following plots. For all plots the solid blue lines represent the TEST vehicle mileage, the dashed blue lines represent the CONTROL vehicle mileage, and red dashed line represents the average mileage for the vehicle type as a whole. Full tabular mileage recordings for all vehicles are presented in the appendix, and includes quarterly mileage recordings, tabulated quarterly accumulation, and tabulated accumulation since start of test. In general, TEST versus CONTROL vehicle mileage for the arctic test location was comparable. Total overall utilization of the fleet was lower than other testing locations, and is primarily attributed to the severe weather conditions and more limited unit activity in the extreme weather during winter months. Although actual mileage accumulation was low, engine idle time remained high, as all vehicles were started weekly and allowed to operate until fully warm to ensure full time readiness of equipment.

Figure 13. Ft. Wainwright, HMMWV Mileage Accumulation
Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

Figure 14. Ft. Wainwright, HEMTT Mileage Accumulation *Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.*

Figure 15. Ft. Wainwright, MTV Mileage Accumulation
Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

Figure 16. Ft. Wainwright, SUS-V Mileage Accumulation *Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.*

4.2.3 Oil Analysis

Used oil analysis conducted on quarterly samples is reported below, and is broken up by vehicle type. Comments and observations made from the data are listed in a bulleted format.

HMMWV (engine)

- Little differences in used oil analysis between the TEST and CONTROL vehicles exist.
- Iron accumulation rates between TEST and CONTROL were found to be similar (see Figure 17), suggesting that the SCPL is providing comparable wear protection as the baseline MIL-PRF-46167 OEA-30 products.
- No issues were identified in typical wear metals (Fe, Cu, Pb, etc) that would suggest an incompatibility with the SCPL.

Table 21. Ft. Wainwright UOA, HMMWV Engine, TEST

	. 0		Н	MM	IWV	BSC	M10	1		Н	MM	IWV	BSN	1C10	4
	⊢ ~		Miles	27213.5	27270.2	27302.7	27409.5	27411		Miles	26	35.4	46.2	193.5	1077
	S		Accum.	-	56.7	89.2	196	197.5	П	Accum.	-	9.4	20.2	167.5	1051
	ji go		-	-	-	-	-	-		-	-	-	-	-	-
	E E		•	-	-	-	-	-		-	-	-	-	-	-
	_		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
Method	Property	<u>Units</u>		85.2%	% initial ch	angeover (c	alculated fr	om Mg)	П		94.7%	% initial ch	angeover (d	alculated fr	om Mg)
D445 100c	Viscosity	cSt	9.87	8.67	8.46	8.89	8.92	8.7	П	10.11	8.75	8.78	9.02	8.98	9.36
D445 40c	Viscosity	cSt		47.62				47.82			47.28				52.33
D2270	Viscosity Index			162				162	П		167				164
D4739	TBN Buffer	mg KOH/g		9.18		8.56		IC	П		9.43		8.7		IC
D5185	Al	ppm	2	1	2	4	5	4		2	1	2	3	4	7
	Cu	ppm	<1	<1	<1	<1	1	2	П	2	3	1	2	2	5
	Fe	ppm	12	4	12	39	51	51		23	2	21	62	94	127
	Pb	ppm	4	<1	<1	3	4	6		4	<1	2	3	4	9
	Si	ppm	10	7	36	44	44	46		21	9	12	18	19	29
D664 Acid	TAN Buffer	mg KOH/g		1.74		1.83		1.89			1.73		1.52		2.35
									Ц						

Table 22. Ft. Wainwright UOA, HMMWV Engine, CONTROL

	0L e		Н	MM	WV	BSC	M10	5	Н	MM	WV	BSN	1C11	.3
	2 2		Miles	17194.1	17212	17226	17633.5	17945	Miles	16080.4	16409	16439	16663.8	17088
	=		Accum.	-	17.9	31.9	439.4	750.9	Accum.	-	328.6	358.6	583.4	1007.6
	E g		-	-	-	-	-	-	-	-	-	-	-	-
	о П		-	-	-	-	-	-	-	-	-	-	-	-
	Ö _			Initial	1st QTR	2nd QTR	3rd QTR	4th QTR		Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
Method	Property	Units												
D445 100c	Viscosity	cSt		10.3		10.04	9.83	9.72		9.64		9.74	9.31	9.57
D445 40c	Viscosity	cSt		56.74	٥,			54.57		52.93	01			54.44
D2270	Viscosity Index			172	ab le			165		169	abk			161
D4739	TBN Buffer	mg KOH/g		8.78	/aik	7.2		7.24		9.58	/aik	8.65		6.92
D5185	Al	ppm		4	t A	8	10	10		2	t A	2	2	4
	Cu	ppm		2	8	4	5	5		<1	No	13	16	18
	Fe	ppm		33	əJdi	79	138	113		5	əJd	20	34	47
	Pb	ppm		6	Sample Not Available	11	16	18		4	Sample Not Available	31	43	72
	Si	ppm		46	S	55	39	36		32	δ	52	66	79
D664 Acid	TAN Buffer	mg KOH/g		2.13		2.46		2.92		2.28		2.3		2.55

Figure 17. Ft. Wainwright UOA, HMMWV Engine, Iron Accumulation Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

HMMWV (transmission)

- Consistent with the use of arctic oil in the HMMWV transmission, the SCPL was also evaluated in this component.
- Little differences in used oil analysis between the TEST and CONTROL vehicles exist.
- No issues were identified in typical wear metals (Fe, Cu, Pb, etc) that would suggest an incompatibility with the SCPL.
- No operational issues were reported by maintenance personnel regarding the use of the SCPL in the transmissions that would suggest an incompatibility.

Table 23. Ft. Wainwright UOA, HMMWV Transmission, TEST

	•		Н	MM	WV	BSC	M10	1		Н	MM	WV	BSN	1C10	4
	⊢ S		Miles	27213.5	27270.2	27302.7	27409.5	27411		Miles	26	35.4	46.2	193.5	1077
	TEST		Accum.	-	56.7	89.2	196	197.5		Accum.	-	9.4	20.2	167.5	1051
	ш б		-	-	-	-	-	-		-	-	-	-	-	-
	- -			-	-	-	-	-			-	-	-	-	-
			As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
Method	Property	<u>Units</u>		58.6%	% initial ch	angeover (c	alculated fr	om Mg)			57.3%	% initial ch	angeover (c	alculated fr	om Mg)
D445 100c	Viscosity	cSt	9.05	8.72	8.45	8.31	8.39	8.19		9.43	8.92	8.49	8.62	8.34	8.48
D445 40c	Viscosity	cSt		47.61				45.58			48.59				45.98
D2270	Viscosity Index			164				155			166				164
D4739	TBN Buffer	mg KOH/g		9.24		8.83		IC			9.22		9.11		IC
D5185	Al	ppm	1	<1	1	1	1	1		1	1	1	1	1	2
	Cu	ppm	10	4	5	5	5	5		10	<1	5	5	5	6
	Fe	ppm	5	3	3	4	4	3	Ш	4	7	3	4	4	4
	Pb	ppm	1	<1	<1	2	<1	2		1	<1	<1	<1	2	2
	Si	ppm	8	7	6	6	6	6		15	10	11	10	10	10
D664 Acid	TAN Buffer	mg KOH/g		1.71		1.84		1.89			1.74		1.88		1.77

Table 24. Ft. Wainwright UOA, HMMWV Transmission, CONTROL

	о		Н	MM	WV	BSC	M10	5		Н	MM	WV	BSN	1C11	.3
	S S		Miles	17194.1	17212	17226	17633.5	17945		Miles	16080.4	16409	16439	16663.8	17088
			Accum.	-	17.9	31.9	439.4	750.9		Accum.	-	328.6	358.6	583.4	1007.6
	NT		Hours	-	-	-	-	-	П	Hours	-	-	-	-	-
	ō Ē		Accum.	-	-	-	-	-		Accum.	-	-	-	-	-
	Ö			Initial	1st QTR	2nd QTR	3rd QTR	4th QTR			Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
Method	Property	<u>Units</u>							П						
D445 100c	Viscosity	cSt		8.17		7.97	7.74	7.52	П		9.45		8.65	8.52	8.37
D445 40c	Viscosity	cSt		42.84	٥,			40.9	П		50.67	01			44.69
D2270	Viscosity Index			168	able			153	П		173	эрве			166
D4739	TBN Buffer	mg KOH/g		6.08	aile	5.67		8.3	П		9.33	aik	8.26		8.77
D5185	Al	ppm		1	t A	1	1	1	П		1	t Aı	1	1	1
	Cu	ppm		14	No	16	18	19	П		14	No	19	17	22
	Fe	ppm		10	ple	10	14	14	П		4	ple	4	4	4
	Pb	ppm		9	Sample Not Available	10	11	11	П		2	Sample Not Available	3	4	5
	Si	ppm		9	ν,	8	9	9	П		14	S	14	14	15
D664 Acid	TAN Buffer	mg KOH/g		1.19		1.39		1.02			2.07		2.08		1.57

HEMTT (engine)

- Little differences in used oil analysis between the TEST and CONTROL vehicles exist.
- Iron accumulation rates between TEST and CONTROL were found to be similar (see Figure 18), suggesting that the SCPL is providing comparable wear protection as the baseline MIL-PRF-46167 OEA-30 products.
- Consistent with that seen in the Ft. Benning data, HEMTT DC113 (TEST) and DC112 (CONTROL) exhibit elevated copper accumulation.
- HEMTT DC113 (TEST) received a necessary oil change between the 2nd and 3rd QTR. This was conducted as a precautionary measure, as this unit experienced a valve bridge failure which resulted in the misfiring of a single cylinder during engine operation. It was expected that fuel dilution could have occurred during troubleshooting of this problem. An analytical check showed 1.2 mass percent fuel dilution, a result slightly higher than expected. As such the oil was changed to ensure no contamination issues existed, and the engine was repaired and put back on test.
- No other issues were identified in regards to the wear metals that would suggest an incompatibility with the SCPL.

Table 25. Ft. Wainwright UOA, HEMTT Engine, TEST

	. 0			HE	MTT	DC1	11			HE	MTT	DC1	L13	
	<u> </u>		Miles	110.4	244.7	246.4	340.5	1757.9	Mil	2s 398.5	1359.6	1359.7	1439.4	1588.1
	S :=		Accum.	-	134.3	136	230.1	1647.5	Accu	n	961.1	961.2	1040.9	1189.6
	TE, ng		Hours	45.55	102.8	192.4	240.5	352.2	Нοι	rs 84.55	214.6	243.05	264.3	299.5
			Accum.	-	57.25	146.85	194.95	306.65	Accu	n	130.05	158.5	179.75	214.95
	_		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	As fou	nd Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
Method	Property	Units		78.4%	% initial ch	angeover (c	alculated fr	om Mg)		78.2%	% initial ch	nangeover (d	alculated fr	om Mg)
D445 100c	Viscosity	cSt	8.72	8.65		8.53	8.07	8.29	7.64	8.83	8.35	7.94	8.19	7.82
D445 40c	Viscosity	cSt		46.19				44.81		48.21				41.66
D2270	Viscosity Index			168				163		165				161
D4739	TBN Buffer	mg KOH/g		9.83		8.29		6.42		9.66	8.41	6.54		6.79
D5185	Al	ppm	1	<1	2	2	2	3	1	1	2	3	3	4
	Cu	ppm	17	5	11	14	18	45	58	<1	27	201	85	96
	Fe	ppm	8	3	11	18	24	32	13	3	20	36	28	34
	Pb	ppm	<1	<1	<1	<1	2	2	2	<1	1	2	<1	<1
	Si	ppm	32	13	17	18	20	32	38	7	22	25	14	17
D664 Acid	TAN Buffer	mg KOH/g		1.6		1.82		2.17		1.74	2.02	1.79		1.86

Table 26. Ft. Wainwright UOA, HEMTT Engine, CONTROL

	0L e			HE	MTT	DC1	12				HE	MTT	DC1	14	
	2 2		Miles		306.3	705.3	1029.6	2001		Miles	423.2	430	431.3	431.5	866
	E is		Accum.	-	306.3	705.3	1029.6	2001	П	Accum.	-	6.8	8.1	8.3	442.8
	Z w		Hours		102.3	218.25	335.65	419.8		Hours	77.1	84.3	137.1	143.6	196.9
			Accum.	-	102.3	218.25	335.65	419.8		Accum.	-	7.2	60	66.5	119.8
	5 –			Initial	1st QTR	2nd QTR	3rd QTR	4th QTR			Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
Method	Property	Units							П						
D445 100c	Viscosity	cSt			8.46	8.5	8.14	9.16	П		8.62	8.37	8.5	7.96	8.31
D445 40c	Viscosity	cSt		ple				52.35	П		44.56				44.82
D2270	Viscosity Index			vailable .h				158	П		175				163
D4739	TBN Buffer	mg KOH/g		Avaitch		7		6	П		9.4		8.61		7.36
D5185	Al	ppm		Not.	1	2	2	2	П		6	4	6	8	9
	Cu	ppm		ole l	34	162	269	429	П		9	12	17	19	36
	Fe	ppm		Sample Not Ava Vehicle Switch	18	36	41	39			6	6	11	15	18
	Pb	ppm		SO .	3	4	4	4			<1	<1	1	1	2
	Si	ppm		Initial	44	47	48	45			25	28	31	32	41
D664 Acid	TAN Buffer	mg KOH/g		_		1.99		1.87	Ц		1.79		1.86		2.09
									Ц						

Figure 18. Ft. Wainwright UOA, HEMTT Engine, Iron Accumulation Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

HEMTT (transmission)

- Consistent with the use of arctic oil in the HEMTT transmission, the SCPL was also evaluated in this component.
- Little differences in used oil analysis between the TEST and CONTROL vehicles exist.
- No issues were identified in typical wear metals (Fe, Cu, Pb, etc) that would suggest an incompatibility with the SCPL.
- No operational issues were reported by maintenance personnel regarding the use of the SCPL in the transmissions that would suggest an incompatibility.

Table 27. Ft. Wainwright UOA, HEMTT Transmission, TEST

				HE	MTT	DC1	11				HE	MTT	DC1	13	
	⊢ s		Miles	110.4	244.7	246.4	340.5	1757.9		Miles	398.5	1359.6	1359.7	1439.4	1588.1
	TEST		Accum.	-	134.3	136	230.1	1647.5	П	Accum.	-	961.1	961.2	1040.9	1189.6
	<u>ы</u> е		Hours	45.55	102.8	192.4	240.5	352.2	П	Hours	84.55	214.6	243.05	264.3	299.5
	TEST		Accum.	-	57.25	146.85	194.95	306.65		Accum.	-	130.05	158.5	179.75	214.95
			As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
Method	Property	Units		84.8%	% initial ch	angeover (c	alculated fr	om Mg)	П		83.1%	% initial ch	angeover (c	alculated fr	om Mg)
D445 100c	Viscosity	cSt	10.04	8.87	8.6	8.39	8.43	8.16	П	9.6	8.41	8.24	8.39	8.15	8.29
D445 40c	Viscosity	cSt		48.18				46.62	П		44.21				46.36
D2270	Viscosity Index			166				158	П		170				163
D4739	TBN Buffer	mg KOH/g		9.45		8.74		5.25	П		9.28		8.99		7.24
D5185	Al	ppm	2	<1	2	1	2	2		2	<1	3	3	3	3
	Cu	ppm	2	<1	1	1	2	2		2	12	1	2	2	2
	Fe	ppm	5	2	4	4	6	8		6	4	10	8	10	10
	Pb	ppm	<1	<1	<1	<1	<1	<1	П	<1	<1	<1	<1	<1	1
	Si	ppm	6	6	6	6	6	6		7	13	6	7	7	7
D664 Acid	TAN Buffer	mg KOH/g		1.56		1.52		1.71			1.61		1.82		1.72

Table 28. Ft. Wainwright UOA, HEMTT Transmission, CONTROL

	OL .			HE	MTT	DC1	12				HE	MTT	DC1	14	
	TR(Miles	0	306.3	705.3	1029.6	2001		Miles	423.2	430	431.3	431.5	866
	= =		Accum.	-	306.3	705.3	1029.6	2001	П	Accum.	-	6.8	8.1	8.3	442.8
	5 6		Hours	0	102.3	218.25	335.65	419.8		Hours	77.1	84.3	137.1	143.6	196.9
	ō F		Accum.	-	102.3	218.25	335.65	419.8		Accum.	-	7.2	60	66.5	119.8
	Ö			Initial	1st QTR	2nd QTR	3rd QTR	4th QTR			Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
Method	Property	Units							П						
D445 100c	Viscosity	cSt			9.53	9.15	8.77	8.51	П		9.56	9.26	8.91	9.02	8.83
D445 40c	Viscosity	cSt		ple				49.13			52.99				48.96
D2270	Viscosity Index			Available tch				151	П		167				162
D4739	TBN Buffer	mg KOH/g		ample Not Ava Vehicle Switch		7.92		8.56	П		10.08		8.98		8.76
D5185	Al	ppm		Not.	2	2	2	3			2	2	2	2	3
	Cu	ppm		e l	4	6	6	5			<1	1	1	1	2
	Fe	ppm		Sample Vehick	5	8	8	10			4	4	4	4	6
	Pb	ppm		S	1	2	3	2			<1	<1	<1	<1	1
	Si	ppm		Initial	4	5	4	5			6	5	5	4	5
D664 Acid	TAN Buffer	mg KOH/g		=		1.83		2.1	П		2.13		2.28		2.14
									Ц						

SUS-V (engine)

- Little differences in used oil analysis between the TEST and CONTROL vehicles exist.
- Iron accumulation rates between TEST and CONTROL were found to be similar (see Figure 19), suggesting that the SCPL is providing comparable wear protection as the baseline MIL-PRF-46167 OEA-30 products.
- Viscosity increase rates for the SUS-V's were observed to be higher compared to that of
 the other vehicles. This is attributed to higher soot accumulation in the SUS-V due to its
 indirect injection and mechanical fuel injection system, which typically generates higher
 soot levels in oils compared to more modern electronically controlled direct injected
 systems.
- No other issues were identified in regards to the wear metals that would suggest an incompatibility with the SCPL.

Table 29. Ft. Wainwright UOA, SUS-V Engine, TEST

	. 0			SU	S-V I	NWT	C2			<u> </u>	SU	S-V I	NWI	.C3	
			km	6988	7086	7086	7210	7220	1	m	4588	4656	5042	5449	5456
	S :-		Accum.	-	98	98	222	232	Accu	n.	-	68	454	861	868
	Ë S		-	-	-	-	-	-	-		-	-	-	-	-
	En -		-	-	-	-	-	-	-		-	-	-	-	-
	_		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	As fou	nd I	nitial	1st QTR	2nd QTR	3rd QTR	4th QTR
Method	Property	Units		99.3%	% initial ch	angeover (c	alculated fr	om Mg)		g	94.9%	% initial ch	angeover (c	alculated fr	om Mg)
D445 100c	Viscosity	cSt	10.42	8.75	9.01	9.41	9.55	9.45	14.0	5	8.93	9.61	10.14	10.52	10.02
D445 40c	Viscosity	cSt		46.94				55.29			50.57				59.25
D2270	Viscosity Index			168				155			158				156
D4739	TBN Buffer	mg KOH/g		9.62		7.44		8.24			8.55		6.79		9.04
D5185	Al	ppm	4	1	2	3	3	3	9		2	4	6	6	6
	Cu	ppm	2	<1	1	2	2	3	5		<1	2	3	3	4
	Fe	ppm	46	6	19	30	40	38	107		13	34	53	63	61
	Pb	ppm	<1	<1	<1	<1	<1	<1	2		<1	<1	1	1	<1
	Si	ppm	6	6	5	5	6	6	10		7	7	8	8	10
D664 Acid	TAN Buffer	mg KOH/g		1.7		1.92		2.17			1.86		2.04		2.35

Table 30. Ft. Wainwright UOA, SUS-V Engine, CONTROL

	0L e			SU	S-V	NWT	C 4				SUS	5-V N	IWT	C34	
	2 2		km	4945	5179	5742	6052	6323	П	km	4157	4260	4517	4661	4754
	=		Accum.	-	234	797	1107	1378		Accum.	-	103	360	504	597
	E g		-	-	-	-	-	-		-	-	-	-	-	-
	ᅐᇳ		•	-	-	-	-	-		-	-	-	-	-	-
	<u>გ</u> _			Initial	1st QTR	2nd QTR	3rd QTR	4th QTR			Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
Method	Property	Units							П						
D445 100c	Viscosity	cSt		7.93	9.2	12.2	13.06	12.2	П		10.38	10.05	10.57	10.7	11.27
D445 40c	Viscosity	cSt		38.58				84.6	П		59.2				72.14
D2270	Viscosity Index			184				139	П		166				148
D4739	TBN Buffer	mg KOH/g		7.79		6.48		7.94	П		7.11		6.67		8.76
D5185	Al	ppm		9	10	9	8	7	П		8	6	6	7	6
	Cu	ppm		4	5	4	4	3	П		5	6	4	4	4
	Fe	ppm		48	60	71	73	60			56	50	60	68	55
	Pb	ppm		5	5	3	2	2			<1	1	<1	1	<1
	Si	ppm		16	16	14	13	11			12	11	11	12	10
D664 Acid	TAN Buffer	mg KOH/g		1.71		2.07		2.38			1.93		1.9		1.92
									Ц						

Figure 19. Ft. Wainwright UOA, SUS-V Engine, Iron Accumulation Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

MTV (engine)

- Little differences in used oil analysis between the TEST and CONTROL vehicles exist.
- Iron accumulation rates between TEST and CONTROL were found to be similar (see Figure 20), suggesting that the SCPL is providing comparable wear protection as the baseline MIL-PRF-46167 OEA-30 products.
- No issues were identified in typical wear metals (Fe, Cu, Pb, etc) that would suggest an incompatibility with the SCPL.

Table 31. Ft. Wainwright UOA, MTV Engine, TEST

	. 0			N	/ITV	HQ3	1			·	N	/ITV	HQ3	2	
	F Z		Miles	1883	1904	1908	2033	2327	M	les	756	762	777	778	1155
	(n :=		Accum.	-	21	25	150	444	Accı	m.	-	6	21	22	399
	ji go		-	-	-	-	-	-	-		-	-	-	-	-
	E E		-	-	-	-	-	-	-		-	-	-	-	-
	_		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	As for	ınd	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
Method	Property	Units		85.2%	% initial ch	angeover (c	alculated fr	om Mg)			94.7%	% initial ch	angeover (c	alculated fr	om Mg)
D445 100c	Viscosity	cSt	8.99	8.69	8.28	8.34	8.27	8.21	9.2	3	8.57	8.34	8.28	8.26	8.16
D445 40c	Viscosity	cSt		46.16				44.39			46.83				44.92
D2270	Viscosity Index			170				162			163				157
D4739	TBN Buffer	mg KOH/g		9.14		9.11		5.3			9.37		9.1		7.52
D5185	Al	ppm	2	<1	2	1	2	2	2		1	2	1	2	2
	Cu	ppm	17	4	6	8	7	8	7		<1	3	2	3	4
	Fe	ppm	12	4	6	8	11	14	6		2	3	5	5	8
	Pb	ppm	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
	Si	ppm	14	8	8	7	7	9	12		7	6	7	7	9
D664 Acid	TAN Buffer	mg KOH/g		1.77		1.67		1.9			1.75		1.28		1.73

Table 32. Ft. Wainwright UOA, MTV Engine, CONTROL

	OL e		N	/ITV	ннс	111	(153	3)		M.	TV H	HC1	12	
	Z Z		Miles	5328.1	5328.5	5335	5335	6344.5	Miles	6985.6	6986.2	6986.2	6986	6986.2
	=		Accum.	-	0.4	6.9	6.9	1016.4	Accum.	-	0.6	0.6	0.4	0.6
	I Bu		-	-	-	-	-	-	-	-	-	-	-	-
	こ 点		-	-	-	-	-	-	-	-	-	-	-	-
	<u>გ</u> _			Initial	1st QTR	2nd QTR	3rd QTR	4th QTR		Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
Method	Property	<u>Units</u>												
D445 100c	Viscosity	cSt		9.2	8.64	9.11	8.3	8.37		9.21	9.01	9.07	8.9	8.8
D445 40c	Viscosity	cSt		49.01				45.17		50.08				49.07
D2270	Viscosity Index			173				164		168				160
D4739	TBN Buffer	mg KOH/g		10.09		9.43		7.99		9.74		8.9		8.01
D5185	Al	ppm		1	1	1	2	2		2	1	2	1	1
	Cu	ppm		2	7	<1	3	4		2	3	3	3	8
	Fe	ppm		5	6	7	11	21		6	5	6	6	6
	Pb	ppm		<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
	Si	ppm		5	4	5	5	6		5	4	4	4	4
D664 Acid	TAN Buffer	mg KOH/g		2.35		2.44		2.68		2.28		2.18		2.23

Figure 20. Ft. Wainwright UOA, MTV Engine, Iron Accumulation Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

MTV (transmission)

- Consistent with the use of arctic oil in the HEMTT transmission, the SCPL was also evaluated in this component.
- Little differences in used oil analysis between the TEST and CONTROL vehicles exist.
- Consistent with the Ft. Benning data, higher levels of copper (Cu) accumulation were observed in both the TEST and CONTROL MTV transmissions. The source of this copper is unknown, but as found samples removed from the vehicles at the start of testing also showed high copper levels. This combined with Ft. Bliss results suggests that copper accumulation is likely normal for this type transmission.
- No other issues were identified in typical wear metals that would suggest an incompatibility with the SCPL.
- No operational issues were reported by maintenance personnel regarding the use of the SCPL in the transmissions.

Table 33. Ft. Wainwright UOA, MTV Transmission, TEST

				N	ΛΤV	HQ3	1			·	N	/ITV	HQ3	2	
	⊢ s		Miles	1883	1904	1908	2033	2327		Miles	756	762	777	778	1155
	TEST Frans		Accum.	-	21	25	150	444		Accum.	-	6	21	22	399
	ы б		-	-	-	-	-	-		-	-	-	-	-	-
	TEST		-	-	-	-	-	-		-	-	-	-	-	-
			As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
Method	Property	Units		58.6%	% initial ch	angeover (c	alculated fr	om Mg)			57.3%	% initial ch	angeover (c	alculated fr	om Mg)
D445 100c	Viscosity	cSt	9.04	8.65	8.19	8.12	8.03	7.86		8.88	8.49	8.21	8.36	8.18	8.28
D445 40c	Viscosity	cSt		45.44				43.6			44.46				43.99
D2270	Viscosity Index			172				172			171				166
D4739	TBN Buffer	mg KOH/g		9.06		8.54		8.5			8.51		8.05		8.96
D5185	Al	ppm	2	1	2	2	2	2		3	2	2	2	2	2
	Cu	ppm	113	68	51	57	58	55		202	116	99	97	96	110
	Fe	ppm	12	7	6	8	9	10		19	10	8	11	11	12
	Pb	ppm	4	1	<1	1	2	2		4	2	1	2	2	2
	Si	ppm	29	8	6	8	8	7		19	10	8	9	10	10
D664 Acid	TAN Buffer	mg KOH/g		1.6		1.7		1.58			1.45		1.52		1.36
									L						

Table 34. Ft. Wainwright UOA, MTV Transmission, CONTROL

).		N	ITV	ННС	111	(153	3)		•	M.	TV H	HC1	12	
	S.		Miles	5328.1	5328.5	5335	5335	6344.5		Miles	6985.6	6986.2	6986.2	6986	6986.2
	= =		Accum.	-	0.4	6.9	6.9	1016.4	П	Accum.	-	0.6	0.6	0.4	0.6
	NTI		-	-	-	-	-	-		-	-	-	-	-	-
	ō F		-	-	-	-	-	-		-	-	-	-	-	-
	Ö			Initial	1st QTR	2nd QTR	3rd QTR	4th QTR			Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
Method	Property	Units							П						
D445 100c	Viscosity	cSt		9.52	8.88	8.85	8.78	8.45	П		9.11	8.8	8.96	8.74	8.9
D445 40c	Viscosity	cSt		55.1				49.62	П		50.41				50.13
D2270	Viscosity Index			157				147			164				159
D4739	TBN Buffer	mg KOH/g		8.43		8.26		8.52			8.94		8.26		8.02
D5185	Al	ppm		3	3	3	4	4			3	2	3	3	3
	Cu	ppm		467	532	546	550	677			332	394	399	368	422
	Fe	ppm		24	21	21	26	27	П		17	15	15	18	18
	Pb	ppm		2	2	2	2	2			3	4	3	3	3
	Si	ppm		8	8	8	8	7			20	7	6	8	8
D664 Acid	TAN Buffer	mg KOH/g		1.43		1.63		1.63	Н		1.45		1.79		1.85

4.3 DESERT CLIMATE – FT. BLISS TX

For the desert climate location, a total fleet of 21 vehicles were identified and included in the field demonstration. The 21 vehicle fleet consisted of 14 TEST vehicles and 7 CONTROL vehicles. Table 35 outlines the basic climate vehicle fleet indicating vehicle type, description, model number, TEST/CONTROL designation, and its identification (bumper) number. As previously discussed, the Ft. Bliss field demonstration was the only location to evaluate both SCPL candidates. Table 35 also notates which SCPL oil was used in each vehicle.

Table 35. Ft. Bliss Desert Climate Vehicle Fleet

Vehicle Type	Description	Model	TEST/CONTROL	Bumper No.	SCPL Candidate
			TEST	E319	OILA
M88	Tracked Recovery	M88A2	TEST	F864	OIL B
IVIOO	Vehicle	IVIOOAZ	CONTROL	E317	-
			CONTROL	F861	-
			TEST	A11*	OILA
			TEST	B23*	OILA
Bradlov	Armored Fighting	M3A3	TEST	HQ33*	OIL B
Bradley	Vehicle (Tracked)	IVISAS	TEST	B13*	OIL B
			CONTROL	B21	-
			CONTROL	B22	-
			TEST	D11N	OILA
			TEST	D23	OILA
			TEST	D13	OILA
M-ATV	MRAP All Terrain	M-ATV	TEST	D14N	OIL B
IVI-A I V	Vehicle	IVI-A I V	TEST	D24	OIL B
			TEST	D22	OIL B
			CONTROL	D12	-
			CONTROL	D21N	-
				C107	OILA
MAXX PRO	MRAP	-	TEST	HQ582	OIL B
			CONTROL	HQ581	-
	* Denotes vehic	les transmissio	n included in SCP	L evaluation	

4.3.1 Problem Areas – Ft. Bliss

The largest problem areas observed in at the Ft. Bliss location revolved around coordination of TFLRF activities around 2-1AD's mission activities. At many times vehicle access was limited, and vehicle scheduling between the three supporting battalions conflicted, preventing as rigorous and consistent data collection as desired by TFLRF. Despite this, every effort was made to reduce the field demo impact on the unit while still allowing the required data collection to occur. This included late addition of select control vehicles due to initial vehicle availability, and used oil sampling being skipped during the 3rd QTR after collection of mileage accumulation info that did not warrant the coordination and disruption of unit schedules.

Similar to the two previous locations, oil and fuel consumption data again was unable to be effectively collected. Like the previous two locations, oil and fuel consumption data for the SCPL is much better served by the laboratory testing conducted in the SCPL development phases of the program [1,2,3], where conditions were controlled tightly enough to determine actual changes.

Unlike the Ft. Benning field demonstration, the administration of the AOAP sampling program for Ft. Bliss was much improved. This was attributed to Ft. Bliss having an AOAP lab on post, which allowed closer coordination between AOAP lab staff, the units involved, and TFLRF.

4.3.2 Mileage Accumulation

Overall mileage accumulation of each vehicle type is shown graphically in the following plots. For all plots the solid blue lines represent the TEST vehicle mileage, the dashed blue lines represent the CONTROL vehicle mileage, and red dashed line represents the average mileage for the vehicle type as a whole. Full tabular mileage recordings for all vehicles are presented in the appendix, and includes by quarter, the mileage recordings, quarterly accumulation, and accumulation since start of test. In general, TEST versus CONTROL vehicle mileage comparable, apart from a few outliers (ex: Bradley B13). Most of the Ft. Bliss vehicle utilization was attributed to field activities completed by the units during the field demonstration, where as vehicles tended to be more idle after returning to the motor pools. Incidental usage of the equipment apart from field maneuvers was very low.

Figure 21. Ft. Bliss, Bradley Mileage Accumulation

Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

Figure 22. Ft. Bliss, M88A2 Mileage Accumulation

Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

Figure 23. Ft. Bliss, MATV Mileage Accumulation

Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

Figure 24. Ft. Bliss, MaxxPRO Mileage Accumulation

Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

4.3.3 Used Oil Analysis

Used oil analysis conducted on quarterly samples is reported below, and is broken up by vehicle type. Comments and observations made from the data are listed in a bulleted format.

M88A2 (engine)

- Little difference in used oil analysis between the TEST and CONTROL vehicles exist.
- E319 (TEST) received a necessary oil change after the completion of the 2nd quarter due to high levels of silicon. Silicon accumulation was attributed to dirt ingestion, which is common for this vehicle type. Iron levels were also rapidly increasing, suggesting that increased abrasive wear was occurring from the dirt contamination. The "as found" sample revealed similarly high silicon levels, which suggest that there was a pre-existing fault in the air filtration system of this unit.
- Iron accumulation rates between TEST and CONTROL were found to be similar (see Figure 25), suggesting that the SCPL is providing comparable wear protection as the baseline MIL-PRF-2104 15W40 products (excluding E319 based on the previous comment)

- Beyond the silicon accumulation in E319 (TEST), no appreciable differences were noted between SCPL OIL A and OIL B formulation.
- No other significant source of wear metals were identified in the M88A2 vehicles that would suggest an incompatibility with the SCPL.

Table 36. Ft. Bliss UOA, M88A1/A2 Engine, TEST

				M88	3A2 E	319			M88	3A2 F	864	
	ST ine			SCF	PL O	IL A			SCI	PL O	L B	
	Щ Ø		Miles	1502.1	1511.8	1828	1891.01	Miles	29.5	35	83.9	240
			Accum.	-	9.7	325.9	388.91	Accum.	-	5.5	54.4	210.5
	ш		Hours		Nonfur	ationina		Hours	80.5	83	38.4	62.9
			Accum.		NonTur	nctioning		Accum.	-	2.5	-	62.9
			As found	Initial	1st QTR	2nd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	4th QTR
Method	Property	<u>Units</u>				_	_					
D445 100c	Viscosity	cSt		9.7	9.39	10.49	8.62		9.36	9.18	9.2	9.88
D445 40c	Viscosity	cSt		56.18		64			52.7			55.45
D2270	Viscosity Index			158		153			162			166
D4739	TBN Buffer	mg KOH/g		8.38		7.29	7.5		9.15		9.53	6.94
D5185	Al	ppm	59	16	18	96	33	5	4	4	5	8
	Cu	ppm	40	10	12	31	14	13	3	4	5	12
	Fe	ppm	218	56	72	282	101	27	8	13	12	36
	Pb	ppm	7	2	2	6	2	2	<1	<1	<1	3
	Si	ppm	116	36	40	241	79	42	15	21	26	37
D664 Acid	TAN Buffer	mg KOH/g		2.31		3	2.15		2.68			3.23

Note: Bold vertical lines in between data columns indicate an oil change

Table 37. Ft. Bliss UOA, M88A1/A2 Engine, CONTROL

	OL e			M88	BA2 E	316			M88	BA2 F	861	
	<u> </u>		Miles	-	-	825.4	1010	Miles	N/A	323.3	N/A	483.3
	<u></u>		Accum.	-	-	-	184.6	Accum.	-	-	-	160
			Hours	-	-	Non Fun	ationina	Hours	-	27.2	Took Do	
	Оп		Accum.	-	-	Non Fun	ctioning	Accum.	-	-	Tacri Ke	emoved
	0			Initial	1st QTR	2nd QTR	4th QTR		Initial	1st QTR	2nd QTR	4th QTR
Method	Property	Units										
D445 100c	Viscosity	cSt				14.4	13.33			12.55	12.8	11.36
D445 40c	Viscosity	cSt			υ	108.23	96.83		<u>e</u>	88.76		76.34
D2270	Viscosity Index			<u>=</u>		136	137		ilab	138		140
D4739	TBN Buffer	mg KOH/g		\$) (7.15	6.37		٨٧a	7.65		6.6
D5185	Al	ppm		oldison to Acciding		11	21		Sample Not Available	7	8	15
	Cu	ppm		2	ב ע	9	19		e N	6	8	13
	Fe	ppm		2		36	69		μb	22	28	59
	Pb	ppm		S	5	4	6		Sai	2	2	4
	Si	ppm				53	73			45	55	62
D664 Acid	TAN Buffer	mg KOH/g				2.55	2.73			1.74		2.19

Figure 25. Ft. Bliss UOA, M88A1/A2 Engine, Iron Accumulation Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

Bradley (engine)

- Little difference in used oil analysis between the TEST and CONTROL vehicles exist.
- Bradley B22 (CONTROL) received an AOAP directed oil change between the 1st and 2nd QTR.
- Iron accumulation rates between TEST and CONTROL were found to be similar (see Figure 26), suggesting that the SCPL is providing comparable wear protection as the baseline MIL-PRF-2104 15W40 products.
- No appreciable differences were noted between SCPL OIL A and OIL B formulations.
- No significant source of wear metals were identified in the BRADLEY vehicles that would suggest an incompatibility with the SCPL.

Table 38. Ft. Bliss UOA, Bradley Engine, TEST

			E	BRAI	DLEY	' A1 1	L		E	BRAI	DLEY	B23	3
	TEST Engine			SCF	L O	LΑ				SCF	PL O	LA	
	ப் ஜ		Miles	3685	3699	4912	4953		Miles	3491	3504	4073	4103
	⊢ ⊆		Accum.	-	14	1227	1268		Accum.	-	13	582	612
	ш		-	-	-	-	-		-	-	-	-	-
			-	-	-	-	-		-	-	-	-	-
			As found	Initial	1st QTR	2nd QTR	4th QTR		As found	Initial	1st QTR	2nd QTR	4th QTR
Method	Property	<u>Units</u>											
D445 100c	Viscosity	cSt		9.7	9.21	9.31	9.38			9.5	9.38	8.44	8.69
D445 40c	Viscosity	cSt		56.36			52.91			53.93			46.15
D2270	Viscosity Index			158			162			161			170
D4739	TBN Buffer	mg KOH/g		9.06		7.32	6.85			8.52		7.88	7.06
D5185	Al	ppm	2	1	1	2	2	Ш	4	2	2	3	3
	Cu	ppm	10	3	5	11	11	Ш	42	10	11	7	7
	Fe	ppm	11	4	11	32	31	Ш	45	12	14	16	17
	Pb	ppm	2	<1	2	7	6		9	2	2	5	4
	Si	ppm	9	7	11	13	12	Ш	8	7	6	6	6
D664 Acid	TAN Buffer	mg KOH/g		1.95			2.09	Ш		2.06			2.19
			В	RAD	LEY	HQ3	3		E	BRAI	DLEY	B1 3	
	T. ne		В		LEY L O		3		E		DLEY PL O		
	EST gine		B	SCF	L O	L B				SCF	PL O	IL B	
	TEST ngine		Miles		PL O	IL B	1765		Miles		PL 0	IL B	5335
	TEST Engine			SCF	L O	L B				SCF 2159	PL O	IL B	
	TEST Engine		Miles	SCF 1433	PL 0 1445 12	1736 303	1765		Miles	SCF 2159	2177 18	IL B	5335
	TEST Engine		Miles Accum. -	1433 - -	1445 12 -	1736 303 -	1765 332 -		Miles Accum.	2159 - -	2177 18	2809 650 -	5335 3176 - -
Method		Units	Miles	SCF 1433	PL 0 1445 12	1736 303	1765 332 -		Miles	2159 -	2177 18	IL B	5335 3176 - -
Method D445 100c	Property	<u>Units</u>	Miles Accum. -	1433 - -	1445 12 -	1736 303 -	1765 332 -		Miles Accum.	2159 - -	2177 18	2809 650 -	5335 3176 - -
	Property Viscosity		Miles Accum. -	SCF 1433 - - - - - Initial	1445 12 - - 1st QTR	1736 303 - - 2nd QTR	1765 332 - - - 4th QTR		Miles Accum.	SCF 2159 - - - - - Initial	2177 18 - - - 1st QTR	2809 650 - - 2nd QTR	5335 3176 - - - 4th QTR
D445 100c D445 40c	Property Viscosity Viscosity	cSt	Miles Accum. -	1433 - - - - - - - - - - - - - - - - - -	1445 12 - - 1st QTR	1736 303 - - 2nd QTR	1765 332 - - 4th QTR		Miles Accum.	2159 - - - - - - - - - - - - - - - - - - -	2177 18 - - - 1st QTR	2809 650 - - 2nd QTR	5335 3176 - - - 4th QTR
D445 100c D445 40c	Property Viscosity Viscosity Viscosity Index	cSt cSt	Miles Accum. -	1433 - - - - - - - - - - - - - - - - - -	1445 12 - - 1st QTR	1736 303 - - 2nd QTR	1765 332 - - - 4th QTR 9.12 47.18		Miles Accum.	2159	2177 18 - - - 1st QTR	2809 650 - - 2nd QTR	5335 3176 - - - 4th QTR 8.19 42.87
D445 100c D445 40c D2270	Property Viscosity Viscosity	cSt cSt mg KOH/g	Miles Accum. -	SCF 1433 - - - <i>Initial</i> 9.42 52.98 163	1445 12 - - 1st QTR	1736 303 - - 2nd QTR	1765 332 - - 4th QTR 9.12 47.18 179		Miles Accum.	2159 - - - - - - - - - - - - - - - - - - -	2177 18 - - - 1st QTR	2809 650 - - - 2nd QTR 8.22	5335 3176 - - 4th QTR 8.19 42.87 169
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Viscosity Index TBN Buffer	cSt cSt mg KOH/g ppm	Miles Accum As found	SCF 1433 - - - - Initial 9.42 52.98 163 8.76	1445 12 - - - 1st QTR	1736 303 - - 2nd QTR 9.24	1765 332 - - 4th QTR 9.12 47.18 179 8.03		Miles Accum As found	2159	2177 18 - - - 1st QTR	2809 650 - - 2nd QTR 8.22	5335 3176 - - - 4th QTR 8.19 42.87 169 5.56
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Viscosity Index TBN Buffer Al Cu	cSt cSt mg KOH/g ppm ppm	Miles Accum As found 3 40	9.42 52.98 163 8.76 3	1445 12 - - 1st QTR 9.55	1736 303 - - 2nd QTR 9.24	1765 332 - - 4th QTR 9.12 47.18 179 8.03 4 7		Miles Accum As found	2159	2177 18 - - 1st QTR 9.17	2809 650 - - 2nd QTR 8.22 5.87 5	5335 3176 - - 4th QTR 8.19 42.87 169 5.56 6
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Viscosity Index TBN Buffer Al	cSt cSt mg KOH/g ppm ppm	Miles Accum As found	9.42 52.98 163 8.76 3	1445 12 - - 1st QTR 9.55	1736 303 - - 2nd QTR 9.24 8.29 4 9	1765 332 - - - 4th QTR 9.12 47.18 179 8.03 4		Miles Accum As found 5 5 57	2159	2177 18 - - 1st QTR 9.17	2809 650 - - 2nd QTR 8.22	5335 3176 - - 4th QTR 8.19 42.87 169 5.56 6
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Viscosity Index TBN Buffer Al Cu Fe	cSt cSt mg KOH/g ppm ppm ppm	Miles Accum As found 3 40 33 6	9.42 52.98 163 8.76 3 9	1445 12 - 	1736 303 - - 2nd QTR 9.24 8.29 4 9 14 2	1765 332 - - 4th QTR 9.12 47.18 179 8.03 4 7 13		Miles	2159	2177 18 1st QTR 9.17 3 12 12 3	2809 650 - - 2nd QTR 8.22 5.87 5 27 28 13	5335 3176 - - - 4th QTR 8.19 42.87 169 5.56 6 26 28 12
D445 100c D445 40c D2270 D4739 D5185	Property Viscosity Viscosity Index TBN Buffer Al Cu Fe Pb	cSt cSt mg KOH/g ppm ppm ppm ppm	Miles Accum As found 3 40 33	9.42 52.98 163 8.76 3 9 9	1445 12 - - - 1st QTR 9.55	1736 303 - - 2nd QTR 9.24 8.29 4 9	1765 332 - - 4th QTR 9.12 47.18 179 8.03 4 7 13 3 6		Miles Accum As found 5 5 57 42	2159	2177 18 1st QTR 9.17	2809 650 - - 2nd QTR 8.22 5.87 5 27 28	5335 3176 - - - 4th QTR 8.19 42.87 169 5.56 6 26 28 12 8
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Viscosity Index TBN Buffer Al Cu Fe	cSt cSt mg KOH/g ppm ppm ppm ppm	Miles Accum As found 3 40 33 6	9.42 52.98 163 8.76 3 9	1445 12 - 	1736 303 - - 2nd QTR 9.24 8.29 4 9 14 2	1765 332 - - 4th QTR 9.12 47.18 179 8.03 4 7 13		Miles	2159	2177 18 1st QTR 9.17 3 12 12 3	2809 650 - - 2nd QTR 8.22 5.87 5 27 28 13	5335 3176 - - - 4th QTR 8.19 42.87 169 5.56 6 26 28 12

Table 39. Ft. Bliss UOA, Bradley Engine, CONTROL

	0L e		ı	BRAI	DLEY	' B21	L		3RA	DLEY	B22	2
	בַּ צַ		Miles	N/A	4132	4637	4671	Miles	N/A	3589	4057	4090
	n ig		Accum.	-	-	505	539	Accum.	-	-	468	501
			-	-	-	-	-	-	-	-	-	-
	Оп			-	-	-	-	-	-	-	-	-
	J			Initial	1st QTR	2nd QTR	4th QTR		Initial	1st QTR	2nd QTR	4th QTR
Method	Property	Units										
D445 100c	Viscosity	cSt			13.9	13.43	13.42			12.65	14.5	13.75
D445 40c	Viscosity	cSt		a	102.89				a			
D2270	Viscosity Index			힅	136				<u>a</u>			
D4739	TBN Buffer	mg KOH/g		A V	6.33				A			
D5185	Al	ppm		to	3	4	4		lot	4	2	2
	Cu	ppm		Sample Not Availble	13	19	23		Sample Not Availble	30	7	8
	Fe	ppm		ш	25	41	45		ш	75	24	24
	Pb	ppm		Sa	5	9	10		Sa	17	4	5
	Si	ppm			17	20	20			11	7	5
D664 Acid	TAN Buffer	mg KOH/g			2.43		2.46					
	37 .	D 11	. 11			1 .	7	1	• 1			

Note: Bold vertical lines in between data columns indicate an oil change

Figure 26. Ft. Bliss UOA, Bradley Engine, Iron Accumulation

Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

Bradley (transmission)

- Wear metal analysis does not show significant accumulation of iron (Fe), lead (Pb), or copper (Cu). All levels were within established AOAP limits for this transmission model.
- Consistent with observations in the Ft. Benning data, some cadmium (Ca) accumulation was observed in the transmission sample.
 - This is observed in both TEST and CONTROL vehicles.
 - Source is unknown, but considered typical for the component based on observations from all field demo locations, and likely attributed to an internal component coating.
- No appreciable differences were noted between SCPL OIL A and OIL B formulations.
- No other issues identified that would suggest an incompatibility with the SCPL.
- No operational issues were reported by maintenance personnel regarding the use of the SCPL in the Bradley transmission.

Table 40. Ft. Bliss UOA, Bradley Transmission, TEST

			E	BRAI	DLEY	' A1 1	L	E	BRA	DLEY	B2 3	3
	TEST Trans.			SCF	L O	LA			SCI	PL O	IL A	
	a ŭ		Miles	3685	3699	4912	4953	Miles	3491	3504	4073	4103
			Accum.	-	14	1227	1268	Accum.	-	13	582	612
	_		-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-
			As found	Initial	1st QTR	2nd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	4th QTR
Method	Property	Units										
D445 100c	Viscosity	cSt		9.19	8.56	8.22	8.39		9.77	8.77	8.36	8.58
D445 40c	Viscosity	cSt		51.68			45.6		47.16			47.84
D2270	Viscosity Index			161			162		199			158
D4739	TBN Buffer	mg KOH/g		9.51		9.14	8.38		9.51		8.97	8.02
D5185	Al	ppm	3	2	2	13	14	54	4	10	18	20
	Cu	ppm	36	6	39	117	128	872	52	178	271	305
	Fe	ppm	9	3	4	31	34	62	5	12	22	25
	Pb	ppm	4	<1	6	11	13	11	<1	2	4	5
	Si	ppm	11	7	7	11	12	48	8	14	19	18
				-1	5	22	27	20	1	6	18	22
	Cd	ppm	6	<1	J		_,					
D664 Acid				1.93			1.76		1.87		/ D13	1.75
D664 Acid	Cd TAN Buffer			1.93		HQ3	1.76		BRA	DLEY	/ B13	
D664 Acid	Cd TAN Buffer		В	n.93	LEY PL O	HQ3 IL B	1.76	-	BRA SCI	PL O	IL B	3
D664 Acid	Cd TAN Buffer		B	1.93	LEY PL O	HQ3 IL B	1.76 3	Miles	BRA	PL 0	IL B	5335
D664 Acid	Cd		В	1.93 RAD SCF 1433	LEY PL O	HQ3 IL B	1.76	-	BRA SCI	PL O	IL B	3
D664 Acid	Cd TAN Buffer		B	1.93 RAD SCF 1433 -	LEY PL O	HQ3 IL B 1736 303	1.76 3	Miles	BRA SCI	2177 18	2809 650	5335
D664 Acid	Cd TAN Buffer		Miles Accum.	1.93 RAD SCF 1433	LEY 2L O	HQ3 IL B 1736 303 -	1.76 3 1765 332 -	Miles Accum.	SCI 2159	2177 18 -	2809 650 -	5335 3176 -
	Trans.	mg KOH/g	B	1.93 RAD SCF 1433 -	LEY PL O	HQ3 IL B 1736 303	1.76 3 1765 332 -	Miles Accum.	SCI 2159	2177 18	2809 650	5335 3176 -
Method D445 100c	TEST Lans.		Miles Accum.	1.93 RAD SCF 1433	LEY 2L O	HQ3 IL B 1736 303 -	1.76 3 1765 332 -	Miles Accum.	SCI 2159	2177 18 -	2809 650 -	5335 3176 -
Method	TEST Language Property Viscosity	mg KOH/g	Miles Accum.	1.93 RAD SCF 1433 Initial	LEY PL 0 1445 12 1st QTR	HQ3 LB 1736 303 2nd QTR	1.76 3 1765 332 - - 4th QTR 8.72	Miles Accum.	SCI 2159 - - - Initial	2177 18 - - - 1st QTR	2809 650 - - 2nd QTR	5335 3176 - - 4th QTR
Method D445 100c D445 40c	TEST Language Property Viscosity Viscosity	Units cSt	Miles Accum.	1.93 RAD SCF 1433 Initial 8.96	LEY PL 0 1445 12 1st QTR	HQ3 LB 1736 303 2nd QTR	1.76 1765 332 4th QTR	Miles Accum.	SCI 2159 Initial 8.79	2177 18 - - - 1st QTR	2809 650 - - 2nd QTR	5335 3176 - - - 4th QTR
Method D445 100c D445 40c	Property Viscosity Viscosity Viscosity Index	mg KOH/g Units cst cst	Miles Accum.	1.93 RAD SCF 1433 Initial 8.96 48.02	LEY PL 0 1445 12 1st QTR	HQ3 LB 1736 303 2nd QTR	1.76 1765 332 4th QTR 8.72 50.02	Miles Accum.	3RAI SCI 2159 Initial 8.79 47.07	2177 18 - - - 1st QTR	2809 650 - - 2nd QTR	5335 3176 - - - 4th QTR 9.05 47.32
Method D445 100c D445 40c D2270	TEST Language Property Viscosity Viscosity	mg KOH/g Units cst cst	Miles Accum.	1.93 RAD SCF 1433 - Initial 8.96 48.02 170	LEY PL 0 1445 12 1st QTR	HQ3 1L B 1736 303 2nd QTR	1.76 1765 332 - 4th QTR 8.72 50.02 154	Miles Accum.	SCI 2159 - - - - - - - - - - - - - - - - - - -	2177 18 - - - 1st QTR	2809 650 - - - 2nd QTR 8.64	5335 3176 - - - 4th QTR 9.05 47.32 176
Method D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Index TBN Buffer	Units CSt CSt mg KOH/g	Miles Accum.	1.93 RAD SCF 1433 - Initial 8.96 48.02 170 9.44	1445 12 - 1st QTR	HQ3 LB 1736 303 2nd QTR 9.02	1.76 1765 332 4th QTR 8.72 50.02 154 8.57	Miles Accum. - - - As found	3RA SCI 2159 - - - - - - - - - - - - -	2177 18 - - 1st QTR 8.84	2809 650 - - - 2nd QTR 8.64	5335 3176 - - - 4th QTR 9.05 47.32 176 8.6
Method D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Index TBN Buffer Al	Units CSt CSt mg KOH/g	Miles Accum. - - As found	1.93 RAD SCF 1433 Initial 8.96 48.02 170 9.44 6	1445 12 - 1st QTR 9.06	HQ3 IL B 1736 303 2nd QTR 9.02	1.76 3 1765 332 - - - 4th QTR 8.72 50.02 154 8.57 12	Miles Accum As found	3RA SCI 2159 - - - - - - - - - - - - -	2177 18 - - 1st QTR 8.84	2809 650 - 2nd QTR 8.64	5335 3176 - - 4th QTR 9.05 47.32 176 8.6 13
Method D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Index TBN Buffer Al Cu	Units cSt cSt mg KOH/g ppm	Miles Accum. - - As found	1.93 RAD SCF 1433 Initial 8.96 48.02 170 9.44 6 81	1445 12 	HQ3 1L B 1736 303 2nd QTR 9.02 9.45 12 145	1.76 1765 332 4th QTR 8.72 50.02 154 8.57 12 156	Miles Accum As found	SCI 2159 - - - - Initial 8.79 47.07 169 9.52 5	2177 18 - - - 1st QTR 8.84	2809 650 - - 2nd QTR 8.64 9.59 13 266	5335 3176 - - 4th QTR 9.05 47.32 176 8.6 13 289
Method D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Index TBN Buffer All Cu Fe	Units cst cst mg KOH/g ppm ppm	Miles Accum. - - As found	1.93 RAD SCF 1433 Initial 8.96 48.02 170 9.44 6 81 7	1445 12 - - 1st QTR 9.06	HQ3 LB 1736 303 2nd QTR 9.02 9.45 12 145 13	1.76 1765 332 4th QTR 8.72 50.02 154 8.57 12 156 15	Miles Accum As found	SCI 2159 - - - - - - - - - - - - - - - - - - -	2177 18 1st QTR 8.84	2809 650 - 2nd QTR 8.64 9.59 13 266 16	5335 3176 - - 4th QTR 9.05 47.32 176 8.6 13 289 18
Method D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Index TBN Buffer All Cu Fe	Units CSt CSt mg KOH/g ppm ppm ppm	Miles Accum As found 27 644 38 40	1.93 RAD SCF 1433 Initial 8.96 48.02 170 9.44 6 81 7 5	1445 12 - - - 1st QTR 9.06	HQ3 1736 303 2nd QTR 9.02 9.45 12 145 13 14	1.76 1765 332 4th QTR 8.72 50.02 154 8.57 12 156 15 16	Miles	3RA SCI 2159 - - - - - - - - - - - - -	2177 18 - - - 1st QTR 8.84 6 136 8	2809 650 	5335 3176 - - 4th QTR 9.05 47.32 176 8.6 13 289 18
Method D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Index TBN Buffer Al Cu Fe Pb Si	Units cSt cSt ppm ppm ppm ppm ppm	Miles Accum As found 27 644 38 40 49	1.93 RAD SCF 1433 Initial 8.96 48.02 170 9.44 6 81 7 5 12	1445 12 - 1st QTR 9.06	HQ3 LB 1736 303 2nd QTR 9.02 9.45 12 145 13 14 15	1.76 1765 332 4th QTR 8.72 50.02 154 8.57 12 156 15 16 15	Miles Accum As found 19 745 44 21 27	3RA SCI 2159 - - - - - - - - - - - - -	2177 18 1st QTR 8.84 6 136 8 5	2809 650 - - 2nd QTR 8.64 9.59 13 266 16 13	5335 3176 - - - 4th QTR 9.05 47.32 176 8.6 13 289 18 18

Table 41. Ft. Bliss UOA, Bradley Transmission, CONTROL

	NTROL rans.		E	BRAI	DLEY	B21		E	BRA	DLEY	/ B22	2
	T.R.		Miles	N/A	4132	4637	4671	Miles	N/A	3589	4057	4090
	E E		Accum.	-	-	505	539	Accum.	-	-	468	501
	2 5		-	-	-	-	-	-	-	-	-	-
	-		-	-	-	-	-	-	-	-	-	-
	Ö			Initial	1st QTR	2nd QTR	4th QTR		Initial	1st QTR	2nd QTR	4th QTR
Method	Property	Units										
D445 100c	Viscosity	cSt			10.58	10.73	10.72			12.67	11.99	11.99
D445 40c	Viscosity	cSt			76.48		76.4			93.56		87.22
D2270	Viscosity Index			əlc	124		127		əc	131		130
D4739	TBN Buffer	mg KOH/g		√ai⊪	6.12		5.76		Vaill	7.63		7.3
D5185	Al	ppm		Ě	39	42	42		Ţ	7	14	14
	Cu	ppm		Š	712	738	806		Š	138	230	248
	Fe	ppm		Sample Not Availble	59	60	68		Sample Not Availble	17	28	32
	Pb	ppm		Sam	28	28	29		Sam	6	8	8
	Si	ppm		٥,	54	57	57		٥,	9	12	12
	Cd				28	27	28			11	18	20
D664 Acid	TAN Buffer				1.53		1.55			1.88		1.92

MATV (engine)

- Little difference in used oil analysis between the TEST and CONTROL vehicles exist.
- Utilization of the vehicles was high during the first two quarters, but vehicles were idle
 throughout the remainder of the demo. As such, used oil analysis trends show the most
 change in the first two quarters, and then appear to flat line consistent with the lack of usage
 for the 3rd and 4th QTR.
- Iron accumulation rates between TEST and CONTROL were found to be similar (see Figure 27), suggesting that the SCPL is providing comparable wear protection as the baseline MIL-PRF-2104 15W40 products.
- As observed in the HEMTT vehicles in Ft. Benning and Ft. Bliss, the MATV's, which use an engine of the same manufacturer of the HEMTT A4's, also show copper accumulation to varying degrees in the oil.
- No appreciable differences were noted between SCPL OIL A and OIL B formulations.
- No other significant source of wear metals were identified in the MATV vehicles that would suggest an incompatibility with the SCPL.

Table 42. Ft. Bliss UOA, MATV Engine, TEST

				MA	TV D	11N			MA	TV [23			MA	TV [)13	
	TEST Engine			SCI	PL O	IL A			SCI	PL OI	LΑ			SCI	PL OI	LΑ	
	പ് ത		Miles	2757.5	3117.3	3907.8	3914.8	Miles	3828.8	4243.7	5035	5042.3	Miles	3902.7	4266.5	4671.2	4677.9
	⊢ ⊆		Accum.	-	359.8	1150.3	1157.3	Accum.	-	414.9	1206.2	1213.5	Accum.	-	363.8	1913.7	1920.4
	ш		Hours	1502.7	1667.9	2193.6	2199.3	Hours	845.6	975.7	1372.1	1375.4	Hours	1377.1	1516.5	1911.7	1916.3
			Accum.	-	165.2	690.9	696.6	Accum.	-	130.1	526.5	529.8	Accum.	-	139.4	534.6	539.2
			As found	Initial	1st QTR	2nd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	4th QTR
Method	Property	Units															
D445 100c	Viscosity	cSt		8.95	8.76	8.87	9.08		8.93	8.94	8.79	9.05		9.26	9.15	9.13	9.28
D445 40c	Viscosity	cSt	:	49.59			51.14		49.59			50.34		49.99			52.37
D2270	Viscosity Index			163			160		162			162		170			161
D4739	TBN Buffer	mg KOH/g		8.69		6.67	6.13		8.92		7.61	6.81		9		7.23	6.3
D5185	Al	ppm	4	2	2	4	4	6	2	2	3	3	4	2	3	4	4
	Cu	ppm	608	86	140	162	169	673	97	143	174	175	372	48	86	108	111
	Fe	ppm	63	10	18	38	39	68	11	18	27	28	47	8	15	28	30
	Pb	ppm	2	<1	<1	1	1	2	<1	<1	1	<1	1	<1	<1	1	1
	Si	ppm	18	8	9	12	11	15	7	10	10	9	14	7	9	10	10
D664 Acid	TAN Buffer	mg KOH/g		1.84			3.01		2.06			2.54		2.03			3.08
						4 4 5 1											
	T. ne				TV D					ATV I					ATV I		
	EST gine		Miles				3396.5	Miles				3417	Miles	SC			3436.6
	TEST ngine		Miles Accum.	SCI	PL O	IL B	3396.5 1121	Miles Accum.	SCI	PL O	L B	3417 964.8	Miles Accum.		PL O	IL B	
	TEST Engine			SCI	PL O	IL B			SCI	PL O	L B	- ·-·		SC	PL O	IL B	3436.6 1029.8 1299.1
	TEST		Accum.	SCI 2275.5	PL O 2643.4 367.9	3390 1114.5	1121	Accum.	SCI 2452.2	PL O	3409.1 956.9	964.8	Accum.	SC l 2406.8	2764.7 357.9	3428.8 1022	1029.8
	TEST		Accum. Hours	SCI 2275.5	2643.4 367.9 1514.7	3390 1114.5 2024.9	1121 2027.9	Accum. Hours	2452.2 - 1146.2	2779.9 327.7 1273.5	3409.1 956.9 1911.9	964.8 1916.7	Accum. Hours	2406.8 - 662.8	2764.7 357.9 787.2	3428.8 1022 1294.1	1029.8 1299.1 636.3
Method	TEST	Units	Accum. Hours Accum. As found	2275.5 - 1367.7	2643.4 367.9 1514.7 147	3390 1114.5 2024.9 657.2	1121 2027.9 660.2	Accum. Hours Accum.	2452.2 - 1146.2	2779.9 327.7 1273.5 127.3	3409.1 956.9 1911.9 765.7	964.8 1916.7 770.5	Accum. Hours Accum.	2406.8 - 662.8	2764.7 357.9 787.2 124.4	3428.8 1022 1294.1 631.3	1029.8 1299.1 636.3
Method D445 100c	ш		Accum. Hours Accum. As found	2275.5 - 1367.7	2643.4 367.9 1514.7 147	3390 1114.5 2024.9 657.2	1121 2027.9 660.2	Accum. Hours Accum.	2452.2 - 1146.2	2779.9 327.7 1273.5 127.3	3409.1 956.9 1911.9 765.7	964.8 1916.7 770.5	Accum. Hours Accum.	2406.8 - 662.8	2764.7 357.9 787.2 124.4	3428.8 1022 1294.1 631.3	1029.8 1299.1 636.3
	Property	cSt	Accum. Hours Accum. As found	2275.5 - 1367.7 - Initial	2643.4 367.9 1514.7 147 1st QTR	3390 1114.5 2024.9 657.2 2nd QTR	1121 2027.9 660.2 4th QTR	Accum. Hours Accum.	2452.2 - 1146.2 - Initial	2779.9 327.7 1273.5 127.3 1st QTR	3409.1 956.9 1911.9 765.7 2nd QTR	964.8 1916.7 770.5 4th QTR	Accum. Hours Accum.	2406.8 - 662.8 - Initial	2764.7 357.9 787.2 124.4 1st QTR	3428.8 1022 1294.1 631.3 2nd QTR	1029.8 1299.1 636.3 4th QTR
D445 100c D445 40c	Property Viscosity	cSt cSt	Accum. Hours Accum. As found	2275.5 - 1367.7 - <i>Initial</i>	2643.4 367.9 1514.7 147 1st QTR	3390 1114.5 2024.9 657.2 2nd QTR	1121 2027.9 660.2 4th QTR	Accum. Hours Accum.	2452.2 - 1146.2 - <i>Initial</i>	2779.9 327.7 1273.5 127.3 1st QTR	3409.1 956.9 1911.9 765.7 2nd QTR	964.8 1916.7 770.5 4th QTR	Accum. Hours Accum.	2406.8 - 662.8 - Initial	2764.7 357.9 787.2 124.4 1st QTR	3428.8 1022 1294.1 631.3 2nd QTR	1029.8 1299.1 636.3 4th QTR
D445 100c D445 40c	Property Viscosity Viscosity Index	cSt cSt	Accum. Hours Accum. As found	2275.5 - 1367.7 - Initial 8.92 47.08	2643.4 367.9 1514.7 147 1st QTR	3390 1114.5 2024.9 657.2 2nd QTR	1121 2027.9 660.2 4th QTR 8.72 47.95	Accum. Hours Accum.	2452.2 - 1146.2 - <i>Initial</i> 8.93 48.29	2779.9 327.7 1273.5 127.3 1st QTR	3409.1 956.9 1911.9 765.7 2nd QTR	964.8 1916.7 770.5 4th QTR 8.66 46.98	Accum. Hours Accum.	2406.8 - 662.8 - Initial 9 48.41	2764.7 357.9 787.2 124.4 1st QTR	3428.8 1022 1294.1 631.3 2nd QTR	1029.8 1299.1 636.3 4th QTR 8.6 46.83
D445 100c D445 40c D2270	Property Viscosity Viscosity Index	cSt cSt mg KOH/g	Accum. Hours Accum. As found	2275.5 - 1367.7 - Initial 8.92 47.08 173	2643.4 367.9 1514.7 147 1st QTR	3390 1114.5 2024.9 657.2 2nd QTR 8.62	1121 2027.9 660.2 4th QTR 8.72 47.95 162	Accum. Hours Accum.	2452.2 - 1146.2 - <i>Initial</i> 8.93 48.29 168	2779.9 327.7 1273.5 127.3 1st QTR	3409.1 956.9 1911.9 765.7 2nd QTR	964.8 1916.7 770.5 4th QTR 8.66 46.98 165	Accum. Hours Accum.	2406.8 - 662.8 - Initial 9 48.41 169	2764.7 357.9 787.2 124.4 1st QTR	3428.8 1022 1294.1 631.3 2nd QTR	1029.8 1299.1 636.3 4th QTR 8.6 46.83 164
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Index TBN Buffer	cSt cSt mg KOH/g ppm	Accum. Hours Accum. As found	2275.5 - 1367.7 - Initial 8.92 47.08 173 9.45	2643.4 367.9 1514.7 147 1st QTR 8.57	3390 1114.5 2024.9 657.2 2nd QTR 8.62	1121 2027.9 660.2 4th QTR 8.72 47.95 162 5.69	Accum. Hours Accum. As found	2452.2 - 1146.2 - <i>Initial</i> 8.93 48.29 168 9.12	2779.9 327.7 1273.5 127.3 1st QTR	3409.1 956.9 1911.9 765.7 2nd QTR 8.4	964.8 1916.7 770.5 4th QTR 8.66 46.98 165 6.05	Accum. Hours Accum. As found	2406.8 - 662.8 - Initial 9 48.41 169 8.97	2764.7 357.9 787.2 124.4 1st QTR 8.69	3428.8 1022 1294.1 631.3 2nd QTR 8.31	1029.8 1299.1 636.3 4th QTR 8.6 46.83 164 6.16
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Index TBN Buffer	cSt cSt mg KOH/g ppm ppm	Accum. Hours Accum. As found	2275.5 - 1367.7 - Initial 8.92 47.08 173 9.45 3	2643.4 367.9 1514.7 147 1st QTR 8.57	3390 1114.5 2024.9 657.2 2nd QTR 8.62	1121 2027.9 660.2 4th QTR 8.72 47.95 162 5.69 7	Accum. Hours Accum. As found	2452.2 - 1146.2 - <i>Initial</i> 8.93 48.29 168 9.12 4	2779.9 327.7 1273.5 127.3 1st QTR 8.7	3409.1 956.9 1911.9 765.7 2nd QTR 8.4	964.8 1916.7 770.5 4th QTR 8.66 46.98 165 6.05 4	Accum. Hours Accum. As found	2406.8 	2764.7 357.9 787.2 124.4 1st QTR 8.69	3428.8 1022 1294.1 631.3 2nd QTR 8.31	1029.8 1299.1 636.3 4th QTR 8.6 46.83 164 6.16 7
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Index TBN Buffer Al	cSt cSt mg KOH/g ppm ppm	Accum. Hours Accum. As found 2 536 32	2275.5 - 1367.7 - Initial 8.92 47.08 173 9.45 3	2643.4 367.9 1514.7 147 1st QTR 8.57	3390 1114.5 2024.9 657.2 2nd QTR 8.62 6.76 7	1121 2027.9 660.2 4th QTR 8.72 47.95 162 5.69 7	Accum. Hours Accum. As found 4 603	2452.2 - 1146.2 - Initial 8.93 48.29 168 9.12 4 74	2779.9 327.7 1273.5 127.3 1st QTR 8.7	3409.1 956.9 1911.9 765.7 2nd QTR 8.4 7.16 4 98	964.8 1916.7 770.5 4th QTR 8.66 46.98 165 6.05 4 103	Accum. Hours Accum. As found	9 48.41 169 8.97 4 72	2764.7 357.9 787.2 124.4 1st QTR 8.69	3428.8 1022 1294.1 631.3 2nd QTR 8.31 7.12 7	1029.8 1299.1 636.3 4th QTR 8.6 46.83 164 6.16 7
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Viscosity Index TBN Buffer All Cu	mg KOH/g ppm ppm ppm	Accum. Hours Accum. As found 2 536 32 1	2275.5 - 1367.7 - Initial 8.92 47.08 173 9.45 3 37 4	2643.4 367.9 1514.7 147 1st QTR 8.57 4 109	3390 1114.5 2024.9 657.2 2nd QTR 8.62 6.76 7 129 20	1121 2027.9 660.2 4th QTR 8.72 47.95 162 5.69 7 133 21	Accum. Hours Accum. As found 4 603 43	2452.2 - 1146.2 - <i>Initial</i> 8.93 48.29 168 9.12 4 74	2779.9 327.7 1273.5 127.3 1st QTR 8.7 4 98	3409.1 956.9 1911.9 765.7 2nd QTR 8.4 7.16 4 98 18	964.8 1916.7 770.5 4th QTR 8.66 46.98 165 6.05 4 103 20	Accum. Hours Accum. As found 3 544 44	\$C 2406.8 - 662.8 - Initial 9 48.41 169 8.97 4 72	2764.7 357.9 787.2 124.4 1st QTR 8.69	3428.8 1022 1294.1 631.3 2nd QTR 8.31 7.12 7 102 22	1029.8 1299.1 636.3 4th QTR 8.6 46.83 164 6.16 7 107 23
D445 100c D445 40c D2270 D4739	Property Viscosity Viscosity Index TBN Buffer Al Cu Fe	mg KOH/g ppm ppm ppm ppm	Accum. Hours Accum. As found 2 536 32 1 12	2275.5 - 1367.7 - Initial 8.92 47.08 173 9.45 3 3 7 4	2643.4 367.9 1514.7 147 1st QTR 8.57 4 109 10 <1	3390 1114.5 2024.9 657.2 2nd QTR 8.62 6.76 7 129 20 1	1121 2027.9 660.2 4th QTR 8.72 47.95 162 5.69 7 133 21	Accum. Hours Accum. As found 4 603 43 2	2452.2 - 1146.2 - Initial 8.93 48.29 168 9.12 4 74 7	2779.9 327.7 1273.5 127.3 1st QTR 8.7 4 98 11	3409.1 956.9 1911.9 765.7 2nd QTR 8.4 7.16 4 98 18	964.8 1916.7 770.5 4th QTR 8.66 46.98 165 6.05 4 103 20 <1	Accum. Hours Accum. As found 3 544 44	2406.8 - 662.8 - Initial 9 48.41 169 8.97 4 72 8 <1	2764.7 357.9 787.2 124.4 1st QTR 8.69 4 96 12 <1	3428.8 1022 1294.1 631.3 2nd QTR 8.31 7.12 7 102 22 1	1029.8 1299.1 636.3 4th QTR 8.6 46.83 164 6.16 7 107 23 <1

Table 43. Ft. Bliss UOA, MATV Engine, CONTROL

	OL e			MA	TV [)12				MA	TV D	21N	
	æ <u>:</u> ⊑		Miles	N/A	2227.8	2766.7	2773.6	П	Miles	N/A	2554.9	3238.1	3245.7
	<u> </u>		Accum.	-	-	538.9	545.8		Accum.	-	-	683.2	690.8
			Hours	N/A	924.3	1366.8	1371.2	Π	Hours	N/A	1200.2	1702.5	1706.6
	Öш		Accum.	-	-	442.5	446.9		Accum.	-	-	502.3	506.4
	O			Initial	1st QTR	2nd QTR	4th QTR	П		Initial	1st QTR	2nd QTR	4th QTR
Method	Property	Units											
D445 100c	Viscosity	cSt		æ	11.96	11.97	12.05			æ	12.1	12.14	12.2
D445 40c	Viscosity	cSt		g	85.96		87.18			Q	87.24		89.27
D2270	Viscosity Index			1st	132		132			1st	132		131
D4739	TBN Buffer	mg KOH/g		Ē	4.25		2.72			Ē	3.61		2.58
D5185	Al	ppm		D ;	2	2	2			D.	3	4	4
	Cu	ppm		<u>8</u>	697	591	633	П		<u>s</u>	513	501	507
	Fe	ppm		Unit Not On Test Until 1st QTR	32	42	43			Unit Not On Test Until 1st QTR	52	66	69
	Pb	ppm		Vot	2	2	<1			Vot	2	2	2
	Si	ppm		Ę	18	17	17			Ę	16	17	16
D664 Acid	TAN Buffer	mg KOH/g		5	2.48		3.02			5	2.9		3.7

Figure 27. Ft. Bliss UOA, MATV Engine, Iron Accumulation
Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

MAXXPRO (engine)

- Little difference in used oil analysis between the TEST and CONTROL vehicles exist.
- Iron accumulation rates between TEST and CONTROL were found to be similar (see Figure 28), suggesting that the SCPL is providing comparable wear protection as the baseline MIL-PRF-2104 15W40 products.
- No appreciable differences were noted between SCPL OIL A and OIL B formulations.
- No significant source of wear metals were identified in the MAXXPRO vehicles that would suggest an incompatibility with the SCPL.
- CONTROL TBN value found to be very low across test duration
- CONTROL viscosity found to be lower than expected for MIL-PRF-2104 products

Table 44. Ft. Bliss UOA, MAXXPRO Engine, TEST

			N	1AXX	(PRC	C10	7		M	AXP	RO I	1Q58	31
	ST			SCI	PL O	LA				SCI	PL O	L B	
	шоо		Miles	N/A	2113	3302	3350		Miles	7233	7645	8027	8246
	<u> </u>		Accum.	-	-	1189	1237	Ц	Accum.	-	412	794	1013
	ш		-	-	-	-	-		-	-	-	-	-
			-	-	-	-	-	Ш	-	-	-	-	-
			As found	Initial	1st QTR	2nd QTR	4th QTR	Ш	As found	Initial	1st QTR	2nd QTR	4th QTR
Method	<u>Property</u>	<u>Units</u>						Ц					
D445 100c	Viscosity	cSt		Œ	8.58	7.7	7.75	Ц		8.93	8.11	7.94	7.7
D445 40c	Viscosity	cSt		D	47.43		39.87	Ц		48.94			40.52
D2270	Viscosity Index			118	160		168	Ц		165			163
D4739	TBN Buffer	mg KOH/g		Jnti	8.24	7.1	6.17	Ц		8.61		7.53	6.23
D5185	Al	ppm	2	Unit Not On Test Until 1st QTR	1	1	1		1	3	3	3	3
	Cu	ppm	41	Te	7	10	12	Ш	9	2	2	4	5
	Fe	ppm	36	ō	7	20	22	Ш	24	7	8	12	18
	Pb	ppm	7	Not	1	2	2	Ц	2	<1	<1	2	2
	Si	ppm	16	nit	7	7	6		4	6	4	5	5
D664 Acid	TAN Buffer	mg KOH/g		D	1.97		2.4			2.71			2.72

Table 45. Ft. Bliss UOA, MAXXPRO Engine, CONTROL

	ONTROL Engine		M	AXP	RO I	1Q58	32
	<u>~</u> ⊆		Miles	7627	7629	7629	8179
	NTR		Accum.	-	2	2	552
	2 5		-	-	-	-	-
	ÖШ		-	-	-	-	-
	Ŭ			Initial	1st QTR	2nd QTR	4th QTR
Method	Property	Units					
D445 100c	Viscosity	cSt		10.02	10.24	10.3	10.2
D445 40c	Viscosity	cSt		67.29			68.29
D2270	Viscosity Index			133			134
D4739	TBN Buffer	mg KOH/g		3.77			3.11
D5185	Al	ppm		<1	1	<1	<1
	Cu	ppm		9	8	8	9
	Fe	ppm		21	19	19	27
	Pb	ppm		2	1	2	2
	Si	ppm		4	4	3	4
D664 Acid	TAN Buffer	mg KOH/g		2.13			2.33

Figure 28. Ft. Bliss UOA, MAXXPRO Engine, Iron Accumulation Note: Solid lines indicate TEST vehicles, dashed lines indicate CONTROL vehicles.

5.0 CONCLUSIONS

In conclusion, results from the field demonstration support results found during the development phases of the SCPL program [1,2,3], and demonstrate that the SCPL is a capable drop in replacement for currently utilized MIL SPEC lubricants. The SCPL successfully completed a minimum of 1-year operation in climates ranging from arctic to desert conditions as defined by AR 70-38, and provided equivalent to improved performance compared to the baseline MIL SPEC products used at each location (i.e., MIL-PRF-2104 15W40, and MIL-PRF-46167 OEA-30, where applicable). In the Ft. Benning demonstration, the SCPL remained in use for a full 2-years, demonstrating the extended drain capabilities of the SCPL. Condition of the SCPL at EOT for all locations suggest that the SCPL could continue to be used with no adverse effects. In fact, after review of the EOT oil condition, all testing locations opted to retain the SCPL in use until the vehicles next regularly scheduled oil change to reduce end of test logistics. This prevented each organization from having to coordinate vehicle availability for TFLRF to remove the SCPL and change back to the normal MIL-PRF products.

The following points outline general results and conclusions that can be made from the data acquired:

- Total miles accumulated using the SCPL in all of the field demonstrations was:
 - o Ft Benning GA:
 - 38,869 miles using SCPL
 - 18,746 miles using MIL-PRF-2104 15W40
 - 57,615 miles total fleet utilization
 - o Ft Wainwright AK:
 - 5,611 miles using SCPL
 - 6,346 miles using MIL-PRF-46167 OEA-30
 - 11,957 miles total fleet utilization
 - o Ft Bliss TX:
 - 14,951 miles using SCPL
 - 2,621 miles using MIL-PRF-2104 15W40
 - 17,572 miles total fleet utilization

- o Total, All Locations
 - 59,431 miles using SCPL
 - 27,713 miles using MIL-PRF products
 - 87,144 miles total fleet utilization
- No end-user operational differences were reported for the SCPL in comparison to baseline lubricants in any testing location.
- No maintenance issues reported to suggest that the SCPL was incompatible in any tested application.
- Iron (Fe) accumulation rates between the SCPL and the MIL-PRF-2104 15W40 support that
 the low viscosity (nominally SAE 0W20) SCPL is capable of providing adequate component
 protection when used in place of the higher viscosity 15W40 MIL-PRF-2104 lubricants when
 used in basic and desert temperature environments.
- Operation in arctic conditions experienced at Ft. Wainwright demonstrate that the SCPL remains capable in extreme low temperature applications (record low observed during the field demonstration exceeded -50 °F).
- Silicon (Si) ingestion is a critical issue in military vehicles, regardless of the lubricant used, and should be considered in long life lubricant applications. From data acquired, the family of M88A1/A2 and HMMWV vehicles demonstrated the most propensity to suffer from dirt ingestion/air filtration issues.
 - High silicon levels significantly impact engine wear, and is clearly documented through used oil wear metal analysis.
- Fuel and oil consumption data from the field demonstrations was ultimately not available to be collected to support laboratory data. Sufficient control over the data in the field environment was not possible without placing undue burden on the participating units, and past TFLRF experience has shown that even with specific procedures in place, this data integrity is heavily affected by human error. In this case results from laboratory testing in regards to fuel consumption improvement and oil consumption changes between the SCPL and baseline products should be considered the gold standard for comparison.

- The Caterpillar engine family shows a propensity to accumulate substantial copper levels in the used oil when new. This accumulated copper is attributed to chemical leaching of internal components, and occurs until active surfaces becomes passive over time.
 - This phenomenon was clearly identified in the HEMTT and MATV vehicles used in the SCPL demonstrations, and occurred regardless of oil type used.
 - Field results support literature information that suggests this type of copper accumulation is not identified to increase wear or oil oxidation.
- Some limited cadmium (Cd) accumulations trends show in the Bradley transmission. Sources remain unidentified, but appears in equipment using both the SCPL and MIL-PRF-2104 products.
- Copper (Cu) shows accumulation trends in the MTV transmission. Sources remain unidentified, but appears in equipment using the SCPL, MIL-PRF-2104 and MIL-PRF-46167 products.

Overall the field demonstration for all three locations was considered successful. Real world military vehicle operation using SCPL did not show any differences from currently fielded MIL-PRF-2104 and MIL-PRF-46167 products. In addition, the durability of the SCPL over the one and two year test durations showed that the SCPL is capable of extended drain intervals than the current annual oil change recommendations. These results confirms that the SCPL is a drop in replacement, and is providing improved overall performance compared to currently fielded products. All of the above support that the SCPL is meeting or exceeding its originally intended goals, and is ready for fielding in U.S. Army equipment.

6.0 REFERENCES

- 1. Brandt, A.C., Frame, E.A., Hansen, G.A., Warden, R.W., "Single Common Powertrain Lubricant Development," Interim Report TFLRF No. 418, January 2012.
- 2. Brandt, A.C., Frame, E.A., Hansen, G.A., "Single Common Powertrain Lubricant Development Part 2," Interim Report TFLRF No. 442, May 2014.
- 3. Brandt, A.C., Frame, E.A., "Single Common Powertrain Lubricant Development Part 3," Draft Interim Report TFLRF No. 462, February 2015.

APPENDIX A. Ft. Benning Field Demo Raw Data

Table A-1. Ft. Benning, Vehicle Utilization, M88A1/A2

M88 Recovery

	Bumper	Start o	of Test	1st C	QTR	2nd	QTR	3rd (QTR	4th	QTR	6th	QTR	7th (QTR	8th (QTR	
	No.	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	
TEST M88A1	REC8	294	71	343	79	448	2	460	4	460	4							
TEST M88A2	GMD7	531	183	546	199	615	213	627	215	629	216	637	221	639	222			Dogovdinas
CONTROL M88A1	REC9	719	-	723	-	736	-	740	-	752	-							Recordings
CONTROL M88A2	GMD8	320	69	455	74	455	74	-	76	495	85	509	91	530	95			
	TEST	M88A1	REC8	49	8	105	-	13	2	0	1							
	TEST	M88A2	GMD7	15	16	69	14	12	2	3	1	8	4	2	2			Assumulation by Overtor
	CONTROL	M88A1	REC9	4	-	14	-	4	-	12	-							Accumulation by Quarter
	CONTROL	M88A2	GMD8	135	5	0	0	-	2	40	10	14	6	21	3			
	TEST	M88A1	REC8	49	8	154	10	166	14	166	18							
	TEST	M88A2	GMD7	15	16	84	30	96	32	98	33	106	38	108	39			Total Accumulation
	CONTROL	M88A1	REC9	4	-	17	-	21	-	33	-							iotal Accumulation
	CONTROL	M88A2	GMD8	135	5	135	5	-	7	175	16	189	22	210	26			

Table A-2. Ft. Benning, Vehicle Utilization, Bradley

BRADLEY

	Bumper	Start o	f Test	1st (QTR	2nd	QTR	3rd (QTR	4th (QTR	6th (QTR	7th	QTR	8th	QTR	
	No.	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	
TEST	LT313	803		804		805												
TEST	LT314	723		731		739		747		964		982						
TEST	LT315	612		613		617		700		714		820		828		919		Dogordings
TEST	LT316	847		848		1034		1391		1407		1726						Recordings
CONTROL	LT317	404		416		504		892		904		914		921		1072		
CONTROL	LT318	1037		1055		1108		-		1340		1411		N/A		1455		
		,																
		TEST	LT313	1		1												
		TEST	LT314	8		8		8		217		18						
		TEST	LT315	1		4		83		14		106		8		91		Accumulation by Quarter
		TEST	LT316	1		186		357		16		319						Accumulation by Quarter
	(CONTROL	LT317	12		88		388		12		10		7		151		
	(CONTROL	LT318	18		53		-		232		71		-		44		
		TEST	LT313	1		2												
		TEST	LT314	8		16		24		241		259						
		TEST	LT315	1		5		88		102		208		216		307		Total Accumulation
		TEST	LT316	1		187		544		560		879						Total Accumulation
	(CONTROL	LT317	12		100		488		500		510		517		668		
	(CONTROL	LT318	18		71		-		303		374		-		418		

*Note: Bradley mileage accumulation listed in kilometers (km), No hr meter readings

Table A-3. Ft. Benning, Vehicle Utilization, HMMWV

HMMWV

	Bumper	Start o	of Test	1st (QTR	2nd	QTR	3rd (QTR	4th (QTR	6th	QTR	7th (QTR	8th	QTR	
	No.	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	
TEST	LW024	8073		8407		8843		9081		9691		10587		-		12128		
TEST	LW026	7482		8015		8669		8874		8888		9957		10536		10625		
TEST	LW027	7480		7541		7782		8307		8798		9877		10481		11621		Docordings
TEST	LW028	49298		49476		50007		50442		51164		51935		52434		53287		Recordings
CONTROL	LW394	29038		29566		30681		31454		32079		32895		33195		33574		
CONTROL	LW395	5339		5477		5606		5983		6506		7295		7753		8089		
		TEST	LW024	334		436		238		610		896		-		1540		
		TEST	LW026	533		654		205		14		1069		579		90		
		TEST	LW027	61		241		525		491		1079		604		1140		Accumulation by Quarter
		TEST	LW028	178		531		435		721		771		500		853		Accumulation by Quarter
	(CONTROL	LW394	528		1115		773		625		816		300		379		
	(CONTROL	LW395	138		129		377		523		789		458		336		
		TEST	LW024	334		770		1008		1618		2514		-		4055		
		TEST	LW026	533		1187		1392		1406		2475		3054		3143		
		TEST	LW027	61		302		827		1318		2397		3001		4141		Total Accumulation
		TEST	LW028	178		709		1144		1866		2637		3136		3989		Total Accumulation
	(CONTROL	LW394	528		1643		2416		3041		3857		4157		4536		
	(CONTROL	LW395	138		267		644		1167		1956		2414		2750		

*Note: No hr meter readings

Table A-4. Ft. Benning, Vehicle Utilization, HEMTT

HEMTT

	Bumper	Start o	of Test	1st (QTR	2nd	QTR	3rd (QTR	4th	QTR	6th (QTR	7th (QTR	8th (QTR	
	No.	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	
TEST	HW334	1752	172	1827	217	1834	219	1910	272	2433	276	2878	319	2960	333	2976	338	
TEST	HW336	794	100	1042	133	1174	150	1174	152	1333	169	1523	210	1625	222	1751	240	
TEST	HW337	246	33	459	58	545	73	1076	-	1981	185	3154	277	3485	301	4795	400	Boondings
TEST	HW338	4086	297	4953	361	5361	391	6112	449	6760	494	7795	585	8326	632	9614	721	Recordings
CONTROL	HW360	207	25	332	61	783	107	783	110	816	121	820	134	1208	177	1293	198	
CONTROL	HW361	1607	159	1931	189	2019	120	2154	209	2440	234	3257	316	3607	342	4796	441	
		TEST	HW334	75	45	8	2	76	53	523	4	445	43	82	14	16	5	
		TEST	HW336	248	33	132	16	0	2	159	18	190	40	102	12	126	18	
		TEST	HW337	213	25	86	15	531	-	905	112	1173	93	331	24	1310	99	Accumulation by Quarter
		TEST	HW338	867	64	409	29	751	58	648	45	1036	91	531	48	1288	89	Accumulation by Quarter
	(CONTROL	HW360	125	36	450	46	0	3	33	11	4	13	388	43	85	20	
	(CONTROL	HW361	324	30	88	-69	135	89	286	25	818	82	350	27	1189	98	
		TEST	HW334	75	45	82	47	158	100	681	104	1126	147	1208	161	1224	166	
		TEST	HW336	248	33	380	50	380	52	539	69	729	110	831	122	957	140	
		TEST	HW337	213	25	299	40	830	-	1735	152	2908	244	3239	268	4549	367	Total Accumulation
		TEST	HW338	867	64	1275	94	2026	152	2674	197	3709	288	4240	335	5528	424	Total Accullulation
	(CONTROL	HW360	125	36	576	82	576	85	609	96	613	109	1001	152	1086	173	
	(CONTROL	HW361	324	30	412	-39	547	50	833	75	1650	157	2000	183	3189	282	

Table A-5. Ft. Benning, Vehicle Utilization, HET

HET

	Bumper	Start o	f Test	1st (QTR	2nd	QTR	3rd (QTR	4th	QTR	6th	QTR	7th (QTR	8th (QTR	
	No.	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	
TEST	HW127	17810	-	-	-	593	81	693	101	791	110	912	127	922	129	922	131	Recordings
		TEST	HW127	-	-	593	81	100	20	98	9	121	17	10	2	1	2	Accumulation by Quarter
																		_
		TEST	HW127	-	-	593	81	693	101	791	110	912	127	922	129	922	131	Total Accumulation

Table A-6. Ft. Benning, Vehicle Utilization, MTV

MTV

	Bumper	Start o	of Test	1st C	QTR	2nd	QTR	3rd (QTR	4th (QTR	6th	QTR	7th	QTR	8th (QTR	
	No.	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	
TEST	HW289	12789		13787		13787		13930		14086		14185		14188		14555		
TEST	HW290	10887		11310		11593		11851		12439		12895		12915		13505		
TEST	HW291	12785		12855		13092		13131		13187		13683		13738		14179		Danaudinaa
TEST	HW301	12159		-		12253		12296		12455		12492		12637		12819		Recordings
CONTROL	HW302	12725		13487		13578		13578		13579		13626		13645		13646		
CONTROL	HW303	5421		5545		5615		5615		5647		5806		5837		7448		
		TEST	HW289	998		0		143		156		99		3		367		
		TEST	HW290	423		283		258		588		456		20		590		
		TEST	HW291	70		237		39		56		496		55		441		Accumulation by Quarter
		TEST	HW301	-		94		43		159		37		145		182		Accumulation by Quarter
	(CONTROL	HW302	762		91		0		1		47		19		1		
	(CONTROL	HW303	124		70		0		32		159		31		1611		
		TEST	HW289	998		998		1141		1297		1396		1399		1766		
		TEST	HW290	423		706		964		1552		2008		2028		2618		
		TEST	HW291	70		307		346		402		898		953		1394		Total Accumulation
		TEST	HW301	-		94		137		296		333		478		660		Total Accumulation
	(CONTROL	HW302	762		853		853		854		901		920		921		
	(CONTROL	HW303	124		194		194		226		385		416		2027		

*Note: No hr meter readings

Table A-7. Ft. Benning, Vehicle Utilization, Stryker

STRYKER

	Bumper	Start o	f Test	1st (QTR	2nd	QTR	3rd (QTR	4th	QTR	6th (QTR	7th	QTR	8th	QTR	
	No.	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	
TEST	B52	11674	1462	11782	1487	11795	1494	11810	1499	12001	1520	12248	1555	12521	1580	12537	1583	
TEST	B53	5955	1431	6086	1470	6135	1478	6164	1491	6288	1524	6624	1579	6717	1593	6816	1614	
TEST	B54	3013	584	3086	629	3237	655	3356	690	3478	725	3624	776	3701	789	3701	793	D
TEST	B55	27731	2571	27732	2572	27777	2582	27781	2583	27788	2585	28013	2650	28039	2654	28072	2674	Recordings
CONTROL	B57	30027	4770	30089	4798	30274	4818	30278	4820	30424	4839	30707	4875	-	-	30810	4884	
CONTROL	B56	30172	5702	30214	5706	30847	5783	31674	5882	32171	5944	32692	6026	32693	6030	32709	6034	
		TEST	B52	108	25	13	7	15	5	191	21	248	35	273	25	16	3	
		TEST	B53	131	39	49	8	30	13	124	33	336	55	93	14	99	22	
		TEST	B54	73	45	151	26	119	35	122	35	145	51	78	13	0	4	Ato-
		TEST	B55	1	1	45	9	4	2	8	2	225	66	26	4	33	20	Accumulation by Quarter
	(CONTROL	B57	62	28	185	20	3	1	146	19	283	36	-	-	103	9	
	(CONTROL	B56	42	4	633	77	827	100	497	62	521	83	1	4	17	4	
		TEST	B52	108	25	121	32	136	37	327	58	574	93	847	118	863	121	
		TEST	B53	131	39	180	47	209	60	333	93	669	148	762	162	861	183	
		TEST	B54	73	45	224	71	343	106	465	141	611	192	688	205	688	209	Total Accumulation
		TEST	B55	1	1	46	11	50	12	57	14	282	79	308	83	341	103	Total Accullulation
	(CONTROL	B57	62	28	247	48	251	50	397	69	680	105	-	-	783	114	
	(CONTROL	B56	42	4	675	81	1502	180	1999	242	2520	324	2521	328	2537	332	

Table A-8. Ft. Benning, UOA, M88A1/A2

								M88										M8					
				Miles	531	545.5	552.8	614.9	626.8	629.4	637.1	638.9	-	Miles	294	342.6	447	447.5	460	460	-	-	-
				Accum.	-	14.5	21.8	83.9	95.8	98.4	106.1	107.9	-	Accum.	-	48.6	153	153.5	166	166	-	-	-
				Hours Accum.	183	198.8 15.8	201.3 18.3	212.87 29.87	215.06 32.06	216.24 33.24	220.56 37.56	222.23 39.23	-	Hours Accum.	70.5	78.8 8.3	1.75	1.76 1.76	3.71 3.71	4.49 4.49	-	-	-
			Fresh Oil	As found	Initial	1st QTR	Special	2nd QTR		4th QTR	_	7th QTR		As found	Initial	1st QTR	Special	2nd QTR	_			7th QTR	
			From:C97320	Asjound	84.0%	% initial ch				Till QIN	ourgin	7th Qin	our qri	Asjound	81.5%			(calculated		Tin Qin	ourgin	7th Qin	our qrn
	D445 100c	Viscosity	8.47	13.46	9.27	9.03	8.95	9.42	8.78	8.66	8.47	8.44		13.87	9.47	9.38	8.73	8.6	8.78	8.72			
	D445 40c	Viscosity																					
		Viscosity Index																					
	D4739	Buffer	9.49	_	9.35	9.05	-	8.06	9.09	8.56	8.35	8.78			9.33	9.13	-	9.27	9.07	8.56			
	D5185	Al Sb	2 <1	5 <1	2 <1	6 <1	6 <1	9 <1	4 <1	4 <1	4 <1	5 <1		4 <1	2 <1	5 <1	7 <1	7 <1	7 <1	8 <1			
		Ba		<1	<1	<1	<1	<1	<1	<1	<1	<1		1	<1	<1	<1	<1	<1	<1			
		В	14	7	14	13	13	12	15	16	17	19		7	14	12	15	14	15	16			
		Ca	902	2559	1321	1221	1218	1263	953	1020	1015	1024		2723	1355	1418	1050	1054	993	1054			
a		Cr	<1	4	1	6	6	10	3	3	4	4		1	<1	2	1	1	1	1			
_⊆		Cu	<1	5	1	4	5	10	3	4	5	5		13	3	8	5	5	6	7			
<u></u>		Fe	1	20	6	34	31	46	17	18	25	25		15	5	18	15	14	17	18			
Engine		Pb Mg	<1 1259	2 261	<1 1035	2 1057	2 1107	3 1131	<1 1267	<1 1252	<1 1282	1 1321		6 13	1 949	942	2 1254	2 1258	2 1239	2 1222			
ш		Mn	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<u>e</u>	<1	<1	<1	<1	<1	<1	<1			
		Mo	64	5	52	54	55	58	62	63	64	67	Sample Available	2	49	48	61	62	60	61			
		Ni	<1	1	<1	2	2	2	<1	1	1	1	Av	<1	<1	<1	<1	<1	<1	<1	No	I a n a a z O n	Tost
		P	1079	1169	1110	1078	1087	1107	1020	986	1157	1193	nple	1072	1098	1064	1091	1094	1016	971	NO	Longer On	rest
		Si	5	61	19	46	53	75	27	29	34	36	San	119	34	128	60	60	70	71			
		Ag	<1	<1	<1 7	<1 9	<1	10	<1 6	<1 7	7	7	No	<1 29	<1	<1	<1 10	<1 10	<1 9	<1			
		Na Sn	<5 <1	12 2	<1	2	10 1	10 4	<1	<1	<1	<1	ŀ	1	11 <1	14 <1	<1	<1	<1	11 <1			
		Zn	1265	1374	1305	1324	1381	1332	1249	1272	1276	1311	ŀ	1829	1434	1456	1426	1338	1285	1304			
		К	<5	7	5	<5	<5	<5	<5	<5	<5	<5		6	5	<5	<5	<5	<5	<5			
		Sr	<1	<1	<1	<1	<1	<1	<1	1	<1	<1		<1	<1	<1	<1	<1	<1	2			
		V	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1]	<1	<1	<1	<1	<1	<1	<1			
		Ti	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1			
	D664 Acid	Cd Inflect	<1	4	<1	2	2	4	2	2	3	4	-	4	1	3	2	3	4	5			
	DOOM ACIO	Buffer	1.65		1.92	1.65	-	1.93	1.76	1.78	1.86	1.4			2	1.9	-	1.79	1.69	1.62			
	IR FTNG	Oxidation																					
		Nitration																					
		Water Content																					
	D3524	Fuel Dilution																					

Table A-9. Ft. Benning, UOA, M88A1/A2 (CONT)

					M8	8A2 ID8								M88 RE					
		Miles	320	455.1	455.4	-	495.2	509.4	530.2	-	Miles	719	722.5	736.2	740	752	-	-	-
		Accum.	-	135.1	135.4	-	175.2	189.4	210.2	-	Accum.	-	3.5	17.2	21	33	-	-	-
		Hours	69	74.08	74.08	75.74	85.29	91.04	94.5	-	Hours	100	1001	100	100	-	-	-	-
		Accum.	-	5.08	5.08	6.74	16.29	22.04	25.5	-	Accum.	-	-	-	-	-	-	-	-
		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th Q
D445 100c	Viscosty			12.26	12.06	12.28	12.39	12.21	12.57			13.23	13.02	13	13.06	14.37			
D445 40c	Viscosity																		
D2270	Viscosity Index									1									
D4739	Buffer			7.27	5.66	6.86	6.17	5.48	5.53			5.97	6.52	6.6	6.07	7.33			
D5185	Al			14	13	14	11	16	15			12	14	15	13	5			
	Sb			<1	<1	<1	<1	<1	<1			<1	<1	<1	<1	<1			
	Ва		.je	<1	<1	<1	<1	<1	<1			1	<1	<1	<1	<1			
	В		equipment ownership	7	8	7	7	8	9			2	1	2	<1	12			
	Ca		× 2	2391	2388	2314	2440	2409	2526			3045	2925	2904	2856	1174			
	Cr		to to	8	7	7	6	8	8			6	7	8	7	<1			
	Cu		ner	12	12	13	13	14	15			24	24	25	25	108			
	Fe		igh	70	59	66	51	67	72			69	96	98	90	5			
	Pb		b e	4	4	3	3	3	4			7	8	8	8	7			
	Mg		e to	383	384	381	380	372	348	<u>a</u>		80	80	80	79	1068			
	Mn		Control switch due to	<1	<1	<1	<1	<1	<1	Sample Available		1	1	1	1	<1			
	Mo		fg	13	14	13	14	13	12	Ya		3	3	3	2	54			
	Ni		SWi	3	2	2	2	2	2	e/ ele		2	3	3	3	<1	No	Longer On	Test
	P		2	1170	1174	1107	1266	1255	1287	Ĕ		1157	1131	1135	1080	1140			
	Si		ju O	25	24	26	22	27	26	No S		80	83	84	82	9			
	Ag			4	4	5	6	6	6	Ž		<1	<1	<1	<1	<1			
	Na		Unavailable,	9	9	8	8	9	9]		10	11	11	11	<5			
	Sn		av ai	4	4	2	2	3	4]		4	5	6	4	<1			
	Zn		Ü	1457	1392	1392	1419	1400	1438			1366	1398	1333	1341	1243			
	К			<5	<5	<5	<5	<5	<5			6	<5	6	<5	<5			
	Sr			<1	<1	1	<1	<1	<1			1	<1	<1	1	<1			
	V			<1	<1	<1	<1	<1	<1			<1	<1	<1	<1	<1			
	Ti			<1	<1	<1	<1	<1	<1			<1	<1	<1	<1	<1			
	Cd			10	11	14	16	16	17			21	24	28	29	11			
D664 Acid	Inflect			2.52	2.25	2.22	2 72	2.47	2.02			2 4-	2.52	2.25		4.00			
	Buffer			2.53	2.25	2.23	2.72	2.47	2.83			2.47	2.63	2.29	2.2	1.82			
IR FTNG	Oxidation																		
Dec. :	Nitration																		
	Water Content									}									
D3524	Fuel Dilution									1									

Table A-10. Ft. Benning, UOA, Bradley

				·				BRAI		,	•							BRA LT3	DLEY 314	,		•	
				Kilometer	803	804	804	805	-	-	-	-	-	Kilometer	723	731	739	739	747	964	982	-	-
				Accum.	-	1	1	2	-	-	-	-	-	Accum.	-	8	16	16	24	241	259	-	-
				Hours	-	-	-	-	-	-	-	-	-	Hours	-	-	-	-	-	-	-	-	-
_				Accum.		-	-	-		-	-	-	-	Accum.	-	-			-		-	-	-
			Fresh Oil From:C97320	As found	Initial	1st QTR		2nd QTR		4th QTR	6th QTR	7th QTR	8th QTR	As found	Initial	1st QTR	Special		3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR
	D445 100c	Viscosity	8.47	13.85	79.2% 9.59	9.43	8.78	(calculated 8.84	8.66					13.11	83.2% 9.25	% Initial cr	8.68	(calculated	9.41	8.77	8.25		
	D445 100C	Viscosity	0.47	15.65	9.59	9.43	6.76	0.04	8.00					13.11	9.25	9.29	0.00	0.72	9.41	6.77	8.25		
		Viscosity Index											ŀ										
	D4739	Buffer	9.49		9.08	9.08	-	9.58	8.43						8.32	8.38	-	9.21	8.94				
	D5185	Al	2	2	2	2	2	2	1				İ	3	2	2	2	2	1	2	2	1	
		Sb	<1	<1	<1	<1	<1	<1	<1					<1	<1	<1	<1	<1	<1	<1	<1		
		Ва		<1	<1	<1	<1	<1	<1					<1	<1	<1	<1	<1	<1	<1	<1		
		В	14	14	15	14	16	15	14					5	13	12	15	14	10	14	14		
a \		Ca Cr		2060	1210 <1	1185	1061	1015 <1	1007 2					2247 3	1192 <1	1265 1	1066	1050 1	1344 2	1082	1032 6		
) e		Cu		20	5	6	2	3	10					62	14	17	8	8	6	13	15		
·=		Fe		18	5	6	3	3	8					29	7	10	5	5	6	12	20		
<u>a</u>		Pb		7	2	3	1	1	2					7	1	2	2	1	3	2	2		
Engine		Mg	1259	397	1030	1013	1249	1242	1189			_		78	983	932	1197	1206	918	1158	1178		_
		Mn	<1	4	1	1	<1	<1	<1			es		1	<1	<1	<1	<1	<1	<1	<1		Tes
_		Mo	64	13	52	49	61	61	57			5		4	49	48	60	59	44	56	58		u o
		Ni D	<1 1079	<1 1147	<1 1118	<1 1077	<1	<1	<1			e.		<1	<1	<1	<1	<1	<1	<1	<1		er (
		Si		10	6	6	1090 6	1079 6	1006 5			5		973 11	1077 6	1034 8	1068 6	1073 5	992 6	982 5	1106 6		e g
		Ag		<1	<1	<1	<1	<1	<1			No Longer On Test		<1	<1	<1	<1	<1	<1	<1	<1		No Longer On Test
		Na		12	7	6	6	5	6		•	<u>د</u>	ľ	8	6	6	6	5	5	6	5	1	~
		Sn	<1	<1	<1	<1	<1	<1	<1					3	<1	<1	<1	<1	<1	<1	<1	l	
		Zn		1342	1314	1316	1376	1280	1232					1196	1275	1281	1355	1277	1213	1242	1227		
		K	<5	7	<5	<5	<5	<5	<5					<5	<5	<5	<5	<5	<5	<5	<5		
		Sr		<1	<1	<1	<1	<1	<1				ŀ	<1	<1	<1	<1	<1	<1	<1	<1		
		V Ti	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1				ŀ	<1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1		
		Cd		1	<1	<1	<1	<1	<1				ŀ	2	<1	<1	<1	<1	<1	<1	<1	1	
	D664 Acid	Inflect		_		_		-					ľ	_		_		_	_			1	
		Buffer	1.65		1.95	1.87	-	1.8	1.67				ľ		1.94	2.14	-	1.71	1.67			1	
	IR FTNG	Oxidation																					
		Nitration											ļ										
		Water Content											ļ										
	D3524	Fuel Dilution																					

Table A-11. Ft. Benning, UOA, Bradley (CONT)

							BRAI		,								BRA LT3	DLE\ 316	′			
			Kilometer	612	613	617	617	700	714	720	828	919	Kilometer	847	848	1034	1391	-	1407	1726	-	-
			Accum.	-	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	Accum.	-	#REF!	#REF!	#REF!	-	#REF!	#REF!	-	-
			Hours	-	-	-	-	-	-	-	-	-	Hours	-	-	-	-	-	-	-	-	-
		- 100	Accum.	-		-	- 1070		-	-	-	-	Accum.		4 + 070		- 1070		-	-	-	-
		Fresh Oil From:C97320	As found	<i>Initial</i> 74.6%	1st QTR	Special	2nd QTR (calculated		4th QTR	6th QTR	7th QTR	8th QTR	As found	<i>Initial</i> 78.5%	1st QTR	Special	2nd QTR (calculated	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR
D445	100c Viscosit		13.62	9.78	9.56	9.53	9.42	9.58	0	0	0	0	13.45	9.54	9.38	9.68	9.53	i jroini visj	0	0		
D445			13.02	9.78	9.50	9.55	9.42	9.56	U	U	U	0	15.45	9.54	9.36	9.08	9.55		U	0		
	2270 Viscosity Inde	-		0								0		0						0		
	4739 Buffe			9.06	9.37	-	9.17	8.32	0	0	0	0		8.95	9.03	-	8.84		0	0		
	5185 A		1	1	2	1	2	2	0	0	0	0	2	1	2	2	2		0	0		
	S	b <1	<1	<1	<1	<1	<1	<1	0	0	0	0	<1	<1	<1	<1	<1		0	0		
	В	a <1	<1	<1	<1	<1	<1	<1	0	0	0	0	<1	<1	<1	<1	<1		0	0		
		B 14	2	11	11	12	10	9	0	0	0	0	3	12	12	11	10		0	0		
	С	_	2781	1466	1447	1451	1420	1371	0	0	0	0	2819	1412	1375	1475	1500		0	0		
<u>o</u>	(1	<1	<1	<1	<1	4	0	0	0	0	2	<1	<1	2	2		0	0		
2.	C		10	3	3	4	4	8	0	0	0	0	12 16	3 5	3 5	5 9	5		0	0		
<u></u>	P	_	10 3	<1	1	1	1	15 5	0	0	0	0	6	<1	3	3	10	. ±	0	0		
Engin	м	-	35	884	902	930	938	909	0	0	0	0	18	924	945	928	930	unit during visit	0	0		
	M	•	1	<1	<1	<1	<1	2	0	0	0	0	3	<1	<1	1	1	ri	0	0		Test
	М	o 64	2	44	46	47	46	42	0	0	0	0	<1	47	48	44	45	t du	0	0		<u>-</u>
	N	li <1	<1	<1	<1	<1	<1	<1	0	0	0	0	<1	<1	<1	<1	<1	Ë	0	0		5
		P 1079	1102	1105	1070	1066	1068	992	0	0	0	0	1082	1099	1068	1087	1083	access	0	0		No Longer On
	9		8	6	6	5	5	7	0	0	0	0	9	6	5	6	7	acc	0	0		٥
	A	_	<1	<1	<1	<1	<1	<1	0	0	0	0	<1	<1	<1	<1	<1	e to	0	0		2
	N		8	6	5	6	6	8	0	0	0	0	15	8	7	8	8	Unable	0	0		
	S		1 1289	<1 1298	<1 1301	<1 1351	<1 1265	<1 1228	0	0	0	0	2 1267	<1 1288	<1 1298	<1 1377	<1 1283	ā	0	0		
		n 1265 K <5	6	<5	<5	<5	<5	1228 <5	0	0	0	0	6	5	1298 <5	<5	<5		0	0		
	S		<1	<1	<1	<1	<1	<1	0	0	0	0	<1	<1	<1	<1	<1		0	0		
		v <1	<1	<1	<1	<1	<1	<1	0	0	0	0	<1	<1	<1	<1	<1		0	0		
	1		<1	<1	<1	<1	<1	<1	0	0	0	0	<1	<1	<1	<1	<1		0	0		
	С		<1	<1	<1	<1	<1	<1	0	0	0	0	<1	<1	<1	<1	<1		0	0		
D664	Acid Infle	t												N/A								
	Buffe			1.97	1.89	-	1.85	1.89	0	0	0	0		1.93	1.87	-	1.89		0	0		
IR F	TNG Oxidatio			*								0		*						0		
	Nitratio			*								0		*						0		
	6304 Water Conten			0								0		0						0		
D:	3524 Fuel Dilutio	n		т.								0		•				<u> </u>	ļ	0		

Table A-12. Ft. Benning, UOA, Bradley (CONT)

							BRAI LT3		,								BRAI	DLEY 316	,			
			Kilometer	612	613	617	617	700	714	720	828	919	Kilometer	847	848	1034	1391	-	1407	1726	-	-
			Accum.	-	1	5	5	88	102	108	216	307	Accum.	-	1	187	544	-	560	879	-	-
			Hours Accum.	-	-	-	-	-	-	-	-	-	Hours Accum.	-	-	-	-	-	-	-	-	-
		Fresh Oil	As found	Initial	1st QTR	Special	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR	As found	Initial	1st QTR	Special	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th Q
		From:C97320		88.9%			(calculated							84.6%			(calculated	from vis)				
D445 100c D445 40c	Viscosty Viscosity	8.47	12.88	8.96 49.62	8.99	8.97	8.98	9.02	8.85	8.62	8.72 48.91	8.58	12.89	9.15 50.4	9.05	9.02	8.95		8.71	8.33 48.05		
	Viscosity Index			163							158			165						149		
D4739	Buffer	9.49		9.26	9.4	-	9.44	8.7	8.68	8.83	9.13			9.47	9.37	-	9.27		8.4	8.4		
D5185	Al	2	8	2	3	3	3	6	7	7	13	6	8	2	3	5	5		13	23		
	Sb Ba	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1		<1 <1	<1 <1		
	В	14	3	14	16	14	12	12	14	15	14	15	4	14	14	13	12		13	13		
	Ca	902	2576	1163	1189	1235	1206	1139	1229	1175	1206	998	2643	1199	1236	1261	1232		1250	1205		
	Cr		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1		
	Cu Fe	<1 1	240 12	35 3	45 3	59 3	63	92 6	107 8	121 6	163 10	67 6	182 13	30	40	73 7	76 8		121 13	148 17		
	Pb		11	1	3	4	4	6	7	7	11	5	10	2	3	6	6	#	10	12		
	Mg	1259	26	1090	1042	1091	1093	1073	1056	1082	1109	1233	50	1055	1026	1061	1067	ee Vis	1025	1060		_
	Mn	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	dr.	<1	<1		Test
	Mo Ni	64 <1	2 <1	57 <1	52 <1	54 <1	54 <1	51 <1	53 <1	53 <1	54 <1	58 <1	1 <1	55 <1	52 <1	52 <1	52 <1	unit during visit	52 <1	52 <1		5
	P		1114	1105	1072	1081	1086	1011	1003	1138	1171	1141	1098	1099	1072	1075	1085		998	1142		Longer
	Si	5	20	7	8	8	8	9	9	10	12	6	58	14	19	22	22	Unable to access	25	29		5
	Ag	<1	1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	<1	eto	<1	<1	:	2
	Na Sn	<5 <1	5 <1	6 <1	5 <1	6 <1	5 <1	5 <1	5 <1	5 <1	6 <1	5 <1	6 <1	6 <1	5 <1	6 <1	6 <1	nab	6 <1	6 <1		
	Zn	1265	1255	1293	1303	1357	1274	1236	1234	1236	1275	1233	1240	1286	1300	1350	1268		1231	1231		
	K	<5	5	5	<5	<5	<5	<5	<5	<5	<5	<5	7	<5	<5	<5	<5	1	<5	<5		
	Sr	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1		
	V Ti	<1 <1	<1 <1	<1 <1	<1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1		<1 <1	<1 <1		
	Cd	<1	16	2	3	4	5	8	11	14	22	11	11	2	3	6	6		16	23		
D664 Acid	Inflect																					
ID PTI	Buffer	1.65	1.71	1.87	1.96	-	1.94	1.57	1.83	1.77	1.45		1.68	1.95	1.8	-	1.8		1.89	1.73		
IR FTNG	Oxidation Nitration			*							0.03			*				1		0.1		
D6304	Water Content			698							402			963						448		
D3524	Fuel Dilution			*							*			*				1		0.4		

Table A-13. Ft. Benning, UOA, Bradley (CONT)

							BRAI LT3		,								BRA LT3	DLEY 318	•			
			Kilometer	404	416		504	892	904	914	921	1072	Kilometer	1037	1055		1108	-	1340	1411	-	1455
			Accum.	-	12		100	488	500	510	517	668	Accum.	-	18		71	-	303	374	-	418
			Hours	-	-	-	-	-	-	-	-	-	Hours	-	-	-	-	-	-	-	-	-
			Accum.		- 1-4-OTD	-	- 2:1.0TD	- 2/ OTD	-	- CHI OTO	- 745 OTD	-	Accum.	-	- 1-4 OTD	-	- 2	- 2/ OTD	-	- CH OTD	-	-
			As found	Initial	1st QTR		2nd QTR	3rd QTR	4th QTR	btn QIK	7th QTR	8th QTR	As found	Initial	1st QTR		2na QIK	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR
	D445 100c	Viscosty		14.14	13.82		13.37	13.5	13.41	13.21	13.18	13.24		12.44	12.42		12.35		12.35	12.42		12.27
	D445 40c	Viscosity		103.88								96.13		88.74								86.8
		Viscosity Index		138								137		136								136
	D4739	Buffer		7	7.93		7.35	7.01	6.32	6.27	6.18	5.83		5.73	7.04		6.05		5.37	5.53		4.96
	D5185	Al		1	1		1	2	2	2	2	2		2	2		2		3	3		3
a ,		Sb Ba		<1 <1	<1 <1		<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1		<1 <1	<1		<1		<1 <1	<1 <1		<1 <1
Engine		В		3	1		1	<1	<1	2	2	2		3	2		2		2	3		3
· <u>=</u>		Ca		2381	2366		2365	2318	2417	2328	2409	2379		2844	2842		2859		2915	2836		2817
8		Cr		<1	<1		1	4	3	4	4	5		4	4		6		7	8	1	10
ш		Cu		10	10		12	17	18	21	24	25		16	16		18		22	24		28
		Fe		7	8		10	15	13	15	16	19		19	19		20		23	24		30
9		Pb		1	2		2	3	2	2	3	3		6	7		7	visit	7	6		9
듣		Mg Mn		209 <1	217 <1		219 <1	219	222 <1	218 <1	237 <1	228 <1		23 <1	42 <1		43 <1	ii.	40	69 <1	<u>e</u>	69 <1
Control		Mo		1	<1		<1	<1 <1	1	1	1	<1		1	<1		<1	unit during visit	<1 <1	1	No Sample Available	<1
\mathcal{C}_{0}		Ni		<1	<1		<1	<1	<1	<1	<1	<1		<1	<1		<1	riit	<1	<1	Ava	<1
		P		1155	1130		1133	1071	1223	1195	1232	1197		1094	1079		1084	SSS I	1152	1154	ple	1135
		Si		6	6		6	6	6	6	7	6		6	7		7	acc	7	7	Sam	7
		Ag		<1	<1		<1	<1	<1	<1	<1	<1		<1	<1		<1	eto	<1	<1	9 9	<1
		Na		5	<5		<5	<5	<5	<5	<5	5		6	6		6	Unable to access	5	6		6
		Sn		<1	<1		<1	1 1252	1265	1 1227	2	2		2	2		4	Ď	3	3		1202
		Zn K		1366 7	1399		1338	1352 <5	1365 <5	1327	1378 <5	1327 <5		1310 5	1357 <5		1295		1300	1295 <5		1283 <5
		Sr		<1	<1		<1	1	<1	<1	<1	<1		<1	1		1		1	1	l	1
		v		<1	<1		<1	<1	<1	<1	<1	<1		<1	<1		<1		<1	<1	1	<1
		Ti		<1	<1		<1	<1	<1	<1	<1	<1		<1	<1		<1		<1	<1	1	<1
		Cd		<1	<1		<1	<1	<1	<1	<1	<1		<1	<1		<1		<1	<1		<1
	D664 Acid	Inflect																				
		Buffer		2.03	2.01		1.93	2	2.22	2.14	2.23	2.29		2.55	2.43		2.66		2.78	2.57		2.46
	IR FTNG	Oxidation		*								0.92		*								0.99
	D6304	Nitration Water Content		613								0 408		611								0.09 599
	D6304 D3524	Fuel Dilution		*								<0.3		*								0.4

Table A-14. Ft. Benning, UOA, HMMWV

								имv woz									MMV WO2				
								VV U Z	7								VV U Z	.0			
				Miles	8073	8407.4	8843	9081.3	9691.4	10587.3	-	12127.7	Miles	7482	8015.4	8669.4	8874	8888.2	9956.7	10535.5	10625
				Accum.	-	334.4	770	1008.3	1618.4	2514.3	-	4054.7	Accum.	-	533.4	1187.4	1392	1406.2	2474.7	3053.5	3143
				Hours Accum.	-	-	-	-	-	-	-	-	Hours Accum.	-	-	-	-	-	-	-	-
			Fresh Oil	As found	Initial			3rd QTR			7th QTR		As found	Initial		2nd QTR				7th QTR	
			From:C97320		80.2%			(calculated					1,	77.1%		hangeover					
D445	5 100c	Viscosity	8.47	14.58	9.68	9.8	9.94	9.95	10.1	10		9.05	14.63	9.88	9.84	10.02	10.18	10.27	8.68	9.23	9.04
	45 40c	Viscosity			55.6					60.07	-			57.32				60.82	49.25		50.29
		iscosity Index	0.40		160	0.02	0 27	6 92	6 92	153	-			159	0 22	7.62	6.05	IC 6.F	156	0.21	162
	D4739 D5185	Buffer Al	9.49 2	2	9.06	8.82	8.27 3	6.83	6.83	6.48	-	2	4	8.77 2	8.32	7.63	6.05	6.5	8.12 1	8.31 2	7.82
	23103	Sb	<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ва		<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
a l		В	14	3	13	12	11	11	12	12		15	3	12	12	11	10	12	15	18	16
<u> </u>		Ca		2517	1380	1392	1434	1296	1468	1344		1014	2531	1375	1340	1349	1302	1442	1005	1091	1023
Engine		Cr	<1	<1	<1	1	2	2	2	2		<1	5	2	3	4	4	4	2	3	2
		Cu Fe	<1 1	2 17	<1 6	1 19	2 44	3 48	3 51	4 55	-	20	3 72	<1 22	33	3 42	56	50	1 22	3 39	2 34
		Pb		4	<1	4	7	7	8	9	-	4	6	2	4	5	7	6	2	4	4
		Mg	1259	293	1012	993	1059	1091	1076	1202		1322	298	968	1019	1107	1119	1075	1301	1390	1360
TEST		Mn	<1	<1	<1	<1	<1	<1	<1	<1	Sample Not Available	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
_		Мо	-	3	50	48	50	50	53	59	vails	64	5	48	50	54	54	54	63	70	66
		Ni	<1	<1	<1	<1	<1	<1	<1	<1	ot A	<1	2	<1	<1	1	1	1	<1	<1	<1
		P Si	1079 5	1225 11	1139 7	1108 13	1124 20	1042 22	1054 24	1207 30	S S	1159 12	1194 22	1128 10	1091 19	1098 30	1027 37	1038 31	1168 14	1211 25	1164 19
		Ag		<1	<1	<1	<1	<1	<1	<1	ш	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Na	<5	<5	5	5	5	<5	6	<5	Sa	5	<5	5	<5	<5	<5	5	<5	6	5
		Sn	<1	2	<1	<1	<1	1	2	4		1	4	<1	2	2	2	2	<1	2	2
		Zn	1265	1462	1343	1373	1357	1312	1357	1347		1288	1432	1335	1350	1325	1291	1326	1258	1351	1289
		K	<5	5	<5	<5	<5	<5	<5	<5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
		Sr	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	-	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
		v Ti	<1	<1	<1	<1	<1	<1	<1	<1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Cd		<1	<1	<1	<1	1	1	1	1	<1	<1	<1	<1	1	2	1	<1	1	1
D664	4 Acid	Inflect																			
		Buffer	1.65		1.91	1.83	1.91	1.89	2.08	2.49				2.08	2.33	2.27	2.14	2.4	2.15	1.87	2.3
IR F	FTNG	Oxidation			*					3.62				*				2.73	*		0.98
		Nitration			*					2.23	-			*				0.56	*		0.28
		Water Content			735					755	-			762 *				916	825 *		1389
D	D3524	Fuel Dilution			*					<0.3				*				<0.3	*		<0.

Table A-15. Ft. Benning, UOA, HMMWV (CONT)

								MMV W02									MMV W02				
				Miles	7480	7541.1	7782	8306.8	8797.8	9876.6	10480.5	11620	Miles	49298	49475.8	50007	50442.1	51163.5	51934.8	52434.3	53286.8
				Accum.	-	61.1	302	826.8	1317.8	2396.6	3000.5	4140	Accum.	-	177.8	709	1144.1	1865.5	2636.8	3136.3	3988.8
				Hours Accum.	-	-	-	-	-	-	-	-	Hours Accum.	-	-	-	-	-	-	-	-
			Fresh Oil	As found	Initial	1st OTR	2nd QTR	3rd QTR		6th OTR	7th QTR	8th QTR	As found	Initial	1st OTR		3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR
			From:C97320	-	91.1%		hangeover	_		- Cu C	70	ou. q	7.5 704	84.4%	_	-	(calculate	-	Jun 4111	70.1 4.11	J our Q in
D	445 100c	Viscosity	8.47	14.56	9.01	9.57	9.61	9.72	9.71	9.88	9.93	10.31	14.57	9.42	9.72	9.88	10.02	10.39	10.32	10.05	10.8
ı	D445 40c	Viscosity			49.62							59.16		52.9							64.32
		Viscosity Index			164							164		163							159
	D4739	Buffer	9.49	2	9.73	9.45	8.65	7.4	7.35	6.4	6.97	6.54		9.23	8.98	8.3	7.87	6.44	6.05	6.58	6.14
	D5185	Al Sb	2 <1	2 <1	1 <1	2 <1	3 <1	3 <1	3 <1	4 <1	4 <1	5 <1	2 <1	1 <1	2 <1	3 <1	3 <1	4 <1	4 <1	4 <1	6 <1
		Ba	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
a l		В	14	4	15	12	13	13	14	16	14	14	2	13	12	17	13	13	14	14	11
Š		Ca	902	2472	1118	1305	1329	1216	1284	1225	1308	1241	2520	1240	1348	1366	1341	1525	1433	1441	1449
Engin		Cr	<1	<1	<1	2	3	3	3	5	6	6	2	<1	2	4	4	4	5	6	8
<u> </u>		Cu	<1	14	2	7	12	14	14	15	17	15	2	<1	<1	4	6	6	6	7	8
ш		Fe Pb	1 <1	26 32	4	42 18	79 37	82 42	84 53	110 49	125 53	124 46	36	8 <1	23	36 10	43 12	55 12	67 13	90	144 17
-		Mg	· -	297	1149	993	1034	1074	1137	1257	1334	1379	240	1059	987	1033	1075	1026	1117	1202	1218
TEST		Mn	<1	3	<1	2	3	4	3	4	4	4	<1	<1	<1	<1	<1	<1	1	1	2
Ë		Mo	64	3	57	48	51	53	58	69	74	75	4	50	49	51	52	53	58	63	64
•		Ni	<1	<1	<1	<1	<1	1	<1	2	2	3	<1	<1	<1	1	2	2	2	2	3
		P	1079	1237	1120	1102	1102	1029	1034	1195	1228	1201	1199	1120	1090	1095	1049	1059	1202	1235	1202
		Si	5	58	11	54	106	123	119	121	139	117	11	6	14	29	32	34	37	39	45
		Ag Na	<1 <5	<1	<1	<1 6	<1 10	<1 9	<1 10	<1 9	<1 11	<1 9	<1	<1 5	<1 <5	<1 28	<1 27	<1	<1 20	<1 22	<1 20
		Sn Sn	<1	6 10	6 <1	6	9	14	18	22	22	21	<5 2	<1	<1	28	2/	24	5	6	9
		Zn	1265	1443	1318	1344	1305	1274	1317	1333	1419	1394	1420	1318	1339	1318	1319	1359	1330	1414	1388
		К	<5	9	6	5	6	<5	<5	<5	<5	<5	5	<5	<5	<5	<5	<5	<5	<5	<5
		Sr	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		V	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	664 Acid	Cd Inflect	<1	<1	<1	<1	1	2	3	3	4	4	<1	<1	<1	2	2	2	2	2	2
D	oo4 ACIO	Buffer	1.65		2.02	1.95	1.76	1.62	2.03	2.27	2.07	2.82		2.03	2.01	1.88	1.71	2.33	2.63	2.19	3.35
	IR FTNG	Oxidation	1.05		*	1.55	1.70	1.02	2.03	2.21	2.07	5.87		*	2.01	1.00	1./1	2.33	2.03	2.13	4.66
		Nitration			*							3.63		*							2.7
	D6304	Water Content			679							444		780							885
	D3524	Fuel Dilution			*							<0.3		*							<0.3

Table A-16. Ft. Benning, UOA, HMMWV (CONT)

							имv wз9									MMV W39				
			Miles	29038	29566.4	30681	31454.3	32079.1	32894.9	33195	33573	Miles	5339	5477.4	5606	5982.8	6505.9	7295.2	7753.3	8089.2
			Accum.	-	528.4	1643	2416.3	3041.1	3856.9	4157	4535	Accum.	-	138.4	267	643.8	1166.9	1956.2	2414.3	2750.2
			Hours	-	-	-	-	-	-	-	-	Hours	-	-	-	-	-	-	-	-
			Accum.	-	-	-	-	-	-	-	-	Accum.	-	-			-	-		-
			As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR
D445	5 100c	Viscosity		14.62	14.52	14.43	14.72				14.44		14.85	14.35	14.37	14.26	14.56	14.37	14.42	14.34
D44	45 40c	Viscosity		109.57			110.62										109.64			108.21
	D2270 \	Viscosity Index		137			137										IC			135
	D4739	Buffer		6.29	6.68	4.79	5.4							8.15	7.44	7.31	7.44	5.96	5.6	5.23
	D5185	Al		2	2	3	3	1	3	4	2		1	3	2	3	1	3	4	4
		Sb		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
⊕		Ba		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
Engine		B Ca		3 2541	2 2547	3 2618	2 2606	9 2306	8 2334	7 2426	2 2356		3 2583	2 2629	2 2609	3 2526	2 2514	3 2509	2 2592	2 2590
60		Cr		2541	3	3	4	2300	3	4	2550		2505	4	4	3	1	3	4	4
<u> </u>		Cu		4	4	5	6	2	4	4	1		2	2	3	4	2	4	4	5
		Fe		27	33	42	47	18	37	67	19		24	47	44	48	21	51	58	62
Control		Pb		14	15	17	18	6	7	9	3		3	5	5	6	2	4	6	6
<u> </u>		Mg		284	286	299	307	263	273	300	285		221	220	231	236	274	278	306	290
E		Mn		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
5		Mo		4	4	6	6	2	4	4	2		3	3	4	4	2	4	5	4
ر		Ni		<1	1	1	2	<1	1	1	<1		<1	<1	<1	1	<1	<1	1	1
		P		1222	1186	1202	1138	1042	1228	1266	1268		1211	1181	1188	1128	1120	1295	1309	1274
		Si		12	13	16	18	8	14	16	7		9	10	11	14	7	12	25	24
		Ag		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
		Na Sn		<5 3	<5 4	<5 5	<5 6	<5 2	<5 4	<5 4	<5 1		5 2	<5 4	<5 3	<5 3	<5 1	<5 3	5 4	<5 5
		Zn		1451	1472	1448	1468	1276	1318	1403	1361		1422	1449	1400	1401	1404	1399	1469	1414
		K		6	<5	<5	<5	<5	<5	<5	<5		7	<5	<5	<5	<5	<5	<5	<5
		Sr		<1	1	<1	1	<1	<1	<1	<1		<1	<1	1	1	<1	<1	<1	1
		V		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
		Ti		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
		Cd		2	3	4	4	1	2	2	<1		<1	<1	<1	1	<1	<1	1	1
D664	4 Acid	Inflect																		
		Buffer		2.11	2.28	2.29	2.43							2.19	1.94	1.86	2.09	2.3	2.4	2.45
IR	FTNG	Oxidation		*			1.51										*			1.53
		Nitration		*			0.93										*			0.65
		Water Content		576 *			603										734			874
	D3524	Fuel Dilution		-			<0.3					1					-			<0.3

Table A-17. Ft. Benning, UOA, HEMTT

								EMT W33									EMT W33				
				Miles	1752	1826.6	1834.3	1910.1	2433.3	2877.9	2960.3	2976.3	Miles	794	1042	1174.1	1174.3	1333.4	1523.1	1624.8	1750.8
				Accum.	-	74.6	82.3	158.1	681.3	1125.9	1208.3	1224.3	Accum.	-	248	380.1	380.3	539.4	729.1	830.8	956.8
				Hours	172	217.3	219.45	272.05	276.05	319.2	333.25	337.9	Hours	100	133.2	149.6	151.65	169.25	209.6	221.85	240.3
			Freedo O'I	Accum.	-	45.3	47.45	100.05	104.05	147.2	161.25	165.9	Accum.	1.11.1	33.2	49.6	51.65	69.25	109.6	121.85	140.3
			Fresh Oil From:C97320	As found	Initial 77.2%		2nd QTR nangeover	3rd QTR		btn QIR	7th QTR	8th QIK	As found	<i>Initial</i> 76.6%		2nd QTR hangeover			btn QIR	7th QTR	8th QTR
	D445 100c	Viscosity		11.41	9.14	9.14	8.63	8.67	9.05				10.48	8.94	8.9	8.83	8.65	8.88	8.67	8.49	8.8
	D445 40c	Viscosity			52.4				50.45					50.02							48.53
		Viscosity Index			157				IC					160							162
	D4739	Buffer	9.49	2	8.7	8.5 2	8.42 2	7.29	7.18			ŀ	1	8.79	8.44	8.18	6.93	7.38	6.7	7.4	6.64
	D5185	Al Sb	2 <1	3 <1	2 <1	<1	<1	2 <1	2 <1				2 <1	1 <1	2 <1	2 <1	2 <1	2 <1	<1	2 <1	2 <1
		Ba		2	1	1	<1	<1	<1				2	<1	1	<1	1	1	1	<1	<1
		В	14	4	12	13	11	10	11				4	12	12	11	11	11	9	11	11
		Ca		2819	1498	1542	1511	1404	1515		_		2536	1371	1488	1453	1354	1457	1506	1417	1388
Engine		Cr		<1	<1	<1	<1	<1	<1		to MIL-PRF-2104	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
.=		Cu Fe		106 27	32 9	38 17	38 17	41 19	59 27		RF	ŀ	59 20	16 6	27 16	30 22	31 21	36 28	42 37	42 43	44 55
200		Pb		7	2	3	3	3	3		F-P		6	2	3	3	3	3	3	3	3
ū		Mg	1259	47	887	848	864	847	837		Σ		48	915	847	869	849	836	881	956	959
		Mn		3	1	1	1	1	1				2	<1	<1	1	<1	1	1	1	1
		Mo		1	46	43	42	41	43		Oil Changed	-	1	45	43	42	41	43	44	47	46
		Ni D	<1 1079	<1 1119	<1 1106	<1 1085	<1 1059	<1 985	<1 946		₽	ŀ	<1 1068	<1 1095	<1 1066	<1 1053	<1 975	<1 939	<1 1120	<1 1152	<1 1103
		Si		85	29	34	34	35	39				83	26	35	37	38	41	45	42	43
		Ag		1	<1	<1	<1	<1	<1		Ţ		<1	<1	<1	<1	<1	<1	<1	<1	1
		Na		7	6	6	5	5	6		Longer On Test,		10	6	7	6	6	8	7	7	6
		Sn -		4	<1	<1	<1	<1	<1		on gé		2	<1	<1	<1	<1	<1	<1	<1	1
		Zn	1265 <5	1294 18	1291 9	1319 7	1248 8	1199 6	1230 7		No Lc	-	1220 6	1275 <5	1299 <5	1234 6	1183 5	1215 6	1240 8	1260 9	1224 7
		Sr		<1	<1	<1	<1	<1	1		~		<1	<1	<1	<1	<1	<1	<1	<1	<1
		V	<1	<1	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti		<1	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1	<1	<1	<1	<1
		Cd		<1	<1	<1	<1	<1	<1				<1	<1	<1	<1	<1	<1	<1	<1	<1
	D664 Acid	Inflect Buffer	1.65		2	2.01	1.93	1.55	2.11					1.93	1.8	1.77	1.68	1.9	1.91	1.66	2.29
	IR FTNG	Oxidation	1.05		*	2.01	1.33	1.33	-0.15					1.93	1.0	1.//	1.00	1.9	1.91	1.00	0.29
		Nitration			*				0					*							0.19
	D6304	Water Content			996				862					787							737
	D3524	Fuel Dilution			*				2					*							<0.3

Table A-18. Ft. Benning, UOA, HEMTT (CONT)

								EMT W33									EMT W33				
				Miles	246	459.1	544.9	1075.6	1980.9	3154.1	3485.3	4795.1	Miles	4086	4952.6	5361.1	6111.8	6759.5	7795.2	8325.8	9613.8
				Accum.	-	213.1	298.9	829.6	1734.9	2908.1	3239.3	4549.1	Accum.	-	866.6	1275.1	2025.8	2673.5	3709.2	4239.8	5527.8
				Hours	33	58.1	72.7		184.5	277.4	301.4	400.05	Hours	297	361.4	390.7	448.8	493.65	586.55	632.05	721.15
			Fresh Oil	Accum.	- Initial	25.1	39.7 2nd QTR	2-d OTD	151.5	244.4	268.4	367.05	Accum.	-	64.4	93.7 2nd QTR	151.8 3rd QTR	196.65	289.55	335.05	424.15 8th QTR
			Fresh Oil From:C97320	As found	<i>Initial</i> 71.6%	_	angeover			btn QIR	7th QTR	8th QTR	As found	Initial 77.5%	1st QTR % initial cl	angeover		4th QTR	btn QIR	7th QTR	8th QIR
	D445 100c	Viscosity		10.48	9.04	8.88	8.64	8.9	9.04	8.85	9.02	9.05	10.69	8.97	8.9	8.72	9.01	8.42	8.23	8.83	8.96
	D445 40c	Viscosity			50.04							50.19		50.23						48.95	
		Viscosity Index	0.40		163		0.50		6 70			163		160		5.05				162	
	D4739 D5185	Buffer	9.49 2	1	9.09	8.93 2	8.68 2	7.98 2	6.73 2	5.5 3	5.66	4.74 3	3	8.22	7.15 2	6.86	4.8	5.36	5.04	5.42 3	3
	D2182	Sb		<1	<1	<1	<1	<1	<1	<1	<1	3 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ba		2	<1	<1	<1	<1	<1	<1	<1	<1	2	<1	<1	<1	<1	<1	<1	<1	<1
		В	14	5	13	12	10	10	10	8	9	9	4	13	11	10	9	9	8	8	9
		Ca		2294	1287	1354	1314	1250	1345	1376	1352	1324	2698	1423	1457	1426	1398	1425	1414	1402	1324
Engine		Cr Cu		<1 23	<1 6	<1 14	<1 17	<1 24	<1 32	41	1 46	1 61	1 192	<1 54	<1 81	1 87	109	2 123	2 382	2 741	1 61
· <u>=</u>		Fe		10	4	14	22	26	31	41	59	66	36	11	24	31	36	43	51	58	66
<u></u>		Pb		3	<1	2	2	2	2	3	2	3	7	2	3	3	3	3	3	3	3
ū		Mg	1259	214	960	905	930	916	902	949	968	974	51	917	856	871	888	850	920	907	974
		Mn		2	<1	1	1	1	2	2	2	2	3	1	1	1	2	2	2	2	2
		Mo		2	46	44	43	42	44	45	45	44	2	47	44	43	43	43	46	45	44
		Ni D	<1 1079	<1 1118	<1 1099	<1 1078	<1 1068	<1 988	<1 954	<1 1123	<1 1151	<1 1103	<1 1052	<1 1096	<1 1052	<1 1032	<1 1001	<1 913	<1 1079	<1 1090	<1 1103
		Si		75	25	36	40	48	53	62	64	65	83	27	33	35	40	38	41	40	65
		Ag		<1	<1	<1	<1	<1	<1	1	2	1	1	<1	<1	<1	1	1	1	1	1
		Na		5	6	5	5	<5	7	5	6	5	6	6	6	5	6	7	6	6	5
		Sn -		<1	<1	<1	<1	<1	<1	<1	<1	2	3	<1	<1	<1	<1	<1	<1	1	2
		Zn K	1265 <5	1301 8	1287 7	1318	1262 <5	1214 9	1246 10	1260 12	1275 15	1240 16	1229 23	1284 9	1293 11	1221 14	1218 16	1195 18	1216 18	1231 21	1240 16
		Sr		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		V	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Cd		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	D664 Acid	Inflect Buffer	1.65		1.95	1.92	1.65	1.63	1.88	2.46	1.91	2.63		2.07	1.98	2.1	2.13	2.34	2.46	2.27	
	IR FTNG	Oxidation	1.05		1.95	1.92	1.05	1.05	1.00	2.40	1.51	1.12		*	1.50	2.1	2.13	2.54	2.40	1.67	
		Nitration			*							0.09		*						0	
	D6304	Water Content			823							496		892						639	
	D3524	Fuel Dilution			*							0.3		*						1.2	

Table A-19. Ft. Benning, UOA, HEMTT (CONT)

								EMT W33									EMT W33				
								VV 33) /								VV 33	0			
				Miles	246	459.1	544.9	1075.6	1980.9	3154.1	3485.3	4795.1	Miles	4086	4952.6	5361.1	6111.8	6759.5	7795.2	8325.8	9613.8
				Accum. Hours	- 33	213.1 58.1	298.9 72.7	829.6 434.2	1734.9 184.5	2908.1 277.4	3239.3 301.4	4549.1 400.05	Accum. Hours	297	866.6 361.4	1275.1 390.7	2025.8 448.8	2673.5 493.65	3709.2 586.55	4239.8 632.05	5527.8 721.15
				Accum.	-	25.1	39.7	401.2	151.5	244.4	268.4	367.05	Accum.	-	64.4	93.7	151.8	196.65	289.55	335.05	424.15
			Fresh Oil From:C97320	As found	Initial 75.4%		2nd QTR nangeover	3rd QTR		6th QTR	7th QTR	8th QTR	As found	<i>Initial</i> 72.1%		2nd QTR hangeover			6th QTR	7th QTR	8th QTR
	0445 100c	Viscosity		11.8	9.29	9.17	9.12	8.84	8.69	8.51	8.34	8.43	10.26	8.97	8.75	8.65	8.45	8.42	8.29	8.1	8.32
	D445 40c	Viscosity			52.5							46.96		50.59							46.43
		Viscosity Index			161	0 ==	0	0		0	0	157		159		0	0	0	0		156
	D4739 D5185	Buffer Al		1	8.64 1	8.79 2	8.94 2	8.42 2	8.28 2	8.37 3	8.93	8.24	4	8.52 2	8.69	8.82	8.34	8.05 4	8.08	8.69 4	8.06 5
	כפדכת	Sb	2 <1	<1	<1	<1	<1	<1	<1	<1	<1	3 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ba		2	<1	<1	<1	<1	<1	<1	<1	<1	2	<1	<1	<1	<1	<1	<1	<1	<1
Transmission		В	14	29	19	20	20	18	19	17	18	19	31	20	20	17	17	18	17	18	19
.0		Ca		1939	1222	1237	1216	1132	1139	1134	1128	1125	2312	1380	1454	1424	1369	1418	1434	1348	1350
SS		Cr		<1	<1	<1	<1	<1	<1	<1 7	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
=		Cu Fe		7 8	3	3 5	5	6	5 7	9	7 9	8 10	36 15	11 6	13 9	12 8	13 9	14 10	15 10	14 11	16 12
		Pb		2	<1	1	1	1	1	<1	2	2	4	<1	2	1	1	2	1	2	2
DS I		Mg		171	939	923	976	1025	1013	1051	1073	1104	8	863	770	849	838	808	876	915	947
اق اق		Mn	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
<u></u>		Mo		2	45	44	46	47	50	50	50	51	1	45	40	41	41	41	42	44	45
•		Ni		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Si	1079 5	1027 5	1081 5	1052 5	1047 5	996 4	942	1113 4	1135 4	1119 4	975 5	1061 5	1038	1054 4	988 4	932	1115 4	1121 4	1115 4
		Ag		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Na		5	5	5	5	<5	5	<5	<5	<5	5	5	5	5	<5	5	5	5	5
		Sn	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Zn		1127	1248	1263	1216	1208	1194	1212	1235	1214	1034	1212	1230	1207	1181	1173	1201	1211	1208
		K	<5	8	5	<5	5	<5	<5	<5	<5	<5	7	5	<5	<5	<5	<5	<5	<5	<5
		Sr	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	1 <1	<1 <1	<1 <1	<1 <1
		Ti		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Cd		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
С	0664 Acid	Inflect																			
		Buffer	1.65	1.37	1.93	2.08	1.73	1.5	1.86	1.6	1.47	1.67	1.19	1.7	1.63	1.76	1.43	1.75	1.7	1.37	1.6
	IR FTNG	Oxidation			*							1.03		*							0.14
	Desov	Nitration			* 740							0.37		*							0
	D6304 D3524	Water Content Fuel Dilution			740							378 *		626 *							335
	D3324	i dei Diidtioli																			

Table A-20. Ft. Benning, UOA, HEMTT (CONT)

						EMT W36									EM1 W36				
		Miles	207	332.3	782.6	782.9	816	820	1207.9	1293.1	Miles	1607	1931.2	2018.9	2153.5	2439.5	3257.2	3607.1	4795.7
		Accum.	-	125.3	575.6	575.9	609	613	1000.9	1086.1	Accum.	-	324.2	411.9	546.5	832.5	1650.2	2000.1	3188.7
		Hours	25	60.95	107.25	110.1	121.05	134.45	177.45	197.8	Hours	159	188.7	119.9	208.95	234.2	315.85	342.35	440.7
		Accum.	-	35.95	82.25	85.1	96.05	109.45	152.45	172.8	Accum.	-	29.7	-	49.95	75.2	156.85	183.35	281.7
		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR
D445 100c	Viscosity		11.52	11.43	11.66	11.33	11.48	11.11	11.03	10.95		11.48	11.79	11.39	11.35	11.51			12.5
D445 40c	Viscosity		79.41							73.05		79.38				79.56			
D2270	Viscosity Index		137							139		136				IC			
D4739	Buffer		8.02	8.22	6.9	7.54	6.97	6.62	6.26	6.03		6.58	7.06	5.99	6.31	5.58			
D5185	Al		2	2	2	2	2	4	4	4		2	3	3	3	3	2	2	3
	Sb		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
	Ва		2	2	2	2	2	2	2	2		2	2	2	2	2	<1	<1	<1
	В		5	4	4	3	4	3	4	5		3	2	2	1	2	<1	<1	2
.	Ca		2749	2686	2722	2642	2762	2769	2532	2577		2787	2798	2780	2714	2818	2587	2513	2584
	Cr		<1	<1 42	<1	<1	<1	<1	1	1		<1 97	<1	<1	<1	<1	<1	<1	<1
	Cu Fe		36 11	14	61 19	62 19	67 24	74 40	86 55	94 62		25	113 38	118 39	124 43	144 49	62 35	69 56	88 65
	Pb		4	6	6	6	6	6	7	6		5	6	6	6	6	2	2	3
	Mg		72	71	80	80	80	80	206	205		55	56	56	56	55	218	222	223
	Mn		2	2	2	2	2	2	2	2		3	3	3	3	3	1	2	2
	Mo		2	1	1	<1	<1	1	7	8		2	1	1	<1	<1	<1	<1	<1
	Ni		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
	P		1151	1111	1125	1059	1007	1180	1192	1179		1144	1112	1122	1046	996	1266	1277	1263
	Si		78	80	86	84	87	91	86	89		84	88	89	88	91	35	36	40
	Ag		<1	<1	<1	<1	<1	1	1	1		<1	<1	<1	1	1	<1	<1	<1
	Na		8	8	8	7	8	9	9	9		8	8	8	8	10	<5	<5	5
	Sn		<1	2	2	2	2	2	2	3		2	2	2	2	3	<1	<1	2
	Zn K		1299	1315	1277	1279	1275	1276	1292	1277		1308	1330	1282	1278	1270	1404	1412	1407
	K Sr		11 <1	8	11 1	9	10 2	16 <1	19 <1	19 <1		15 <1	13	14 <1	12 1	12 <1	7 <1	10 <1	10
	V		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
	Ť		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
	Cd		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
D664 Acid	Inflect				_		-	_		_		-	_	_				_	
	Buffer		1.88	1.9	2.02	1.72	2.02	1.88	2.25	2.29		2.28	2.2	2.08	2.29	2.38			
IR FTNG	Oxidation		*							1.3		*				0.62			
	Nitration		*							1.77		*				0			
D6304	Water Content		962							726		794				474	ļ		
D3524	Fuel Dilution		*							<0.3		*				0.4			

Table A-21. Ft. Benning, UOA, HET

LICE		
HET HW127		
Miles 17810 - 592.6 692.7 790.8 911.5	921.8	922.3
Accum		
Hours 80.9 101.2 110.3 127	129.4	131.2
Accum		
Fresh Oil As found Initial 1st QTR 2nd QTR 3rd QTR 4th QTR 6th QT	R 7th QTR	8th QTR
From:C97320	0.75	8.84
D445 100c Viscosity 8.47 11.42 9.05 9.05 9.11 8.95 8.8	8.75	48.37
D2270 Viscosity Index 161		164
D4739 Buffer 9.49 9.05 8.65 8.35 7.63 7.23	7.95	7.55
D5185 Al 2 1 1 3 2 3 2	2	2
Sb <1 <1 <1 <1 <1 <1 <1	<1	<1
Ba 1 1 1 1 1 1 1	<1	<1
B 14 2 14 12 12 13 12	14	14
Ca 902 2607 1262 1125 1072 1108 1108	1089	1059
Cr <1 4 <1 5 6 6 7 8 29 30 33 36	7 32	7 33
Fe 1 137 26 5 60 69 81 95	85	87
Pb <1 3 <1 \(\frac{1}{8} \) 15 14 15 16	14	13
Cr <1 4 <1 \$\frac{1}{2}\$ 6 6 7 8 \$\frac{1}{2}\$ \\ \begin{array}{cccccccccccccccccccccccccccccccccccc	1292	1289
Mn <1 1 <1 = 2 2 2 3	2	2
Mo 64 2 54 63 60 60 62	66	63
Ni 1 1 1 5 1 1 1 1	<1	<1
P 1079 1193 1117 8 1082 1028 964 1136	1185	1130
Cr	135	134
Ag <1 <1 <1 \(\frac{1}{5}\) \(\frac{1}{5}\) \(\frac{1}{5}\) \(\frac{1}{5}\) \(\frac{1}{22}\) \(\frac{24}{26}\) \(\frac{28}{28}\)	<1 25	25
Sn <1 10 <1 22 24 20 28	22	23
Zn 1265 1433 1325 1326 1300 1293 1305	1333	1288
K < 5 5 5 5 5 5	5	<5
Sr 4 4 4 4 4 4	<1	<1
V 1 1 1 1 1 1 1 1	<1	<1
Ti d d d d d d	<1	<1
	<1	<1
D664 Acid Inflect	1.00	2 14
Buffer 1.65 2.06 2.08 1.88 2.1 1.91	1.68	2.14 0.52
Nitration *		0.32
D6304 Water Content 608		962
D3524 Fuel Dilution *		0.4

Table A-22. Ft. Benning, UOA, HET (CONT)

				Miles Accum.	17810	-	H 592.6	HET W12		911.5	921.8	922.3
				Hours	-	-	80.9	101.2	110.3	127	129.4	131.2
				Accum.	-	-	-					
			Fresh Oil	As found	Initial	1st QTR		3rd QTR		6th QTR	7th QTR	8th QTR
	D445 100c	Viceocity	From:C97320 8.47	6.86	8.21	% initial ch	nangeover 8.13	(calculated 8.28	8.18	7.9	9.05	8.13
	D445 1000 D445 40c	Viscosity Viscosity		0.80	44.64		8.13	8.28	8.18	7.9	8.05	44.14
		Viscosity Index			161							160
	D4739	Buffer	9.49		8.61		8.98	8.81	8.09		8.86	8.28
	D5185	Al	2	18	4		4	3	3	4	3	4
		Sb	<1	<1	<1		<1	<1	<1	<1	<1	<1
_		Ва	<1	<1	<1		<1	<1	<1	<1	<1	<1
		В		18	17		15	15	18	16	17	17
.2		Ca		2104	1114		1045	990	1034	1019	1043	1032
SS		Cr		<1	<1	i i	<1	<1	<1	<1	<1	<1
÷		Cu		217	33 9	t fai	33	36	38	40	42	41
E		Fe Pb		53 15	2	ske	8	8	8	10 4	9	9
Sc		Mg	1259	267	1112	d g	1203	1195	1162	1200	1243	1273
ā		Mn		<1	<1	hea	<1	<1	<1	<1	<1	<1
Transmission		Мо		15	58	ine	60	57	58	59	61	59
		Ni	<1	<1	<1	E	<1	<1	<1	<1	<1	<1
		P		944	1078	ice,	1055	991	937	1106	1153	1121
		Si		6	5	Sen	6	7	6	7	8	7
		Ag		<1	<1	Out of service, Engine head gasket failure	<1	<1	<1	<1	<1	<1
		Na Sn		6	6 <1	On	6 <1	5 <1	8 <1	6 <1	6 <1	5 <1
		Zn		1084	1264	-	1243	1223	1215	1222	1259	1231
		к		<5	<5		<5	<5	<5	<5	<5	<5
		Sr	<1	<1	<1		<1	<1	<1	<1	<1	<1
		v	<1	<1	<1		<1	<1	<1	<1	<1	<1
		Ti	· -	<1	<1		<1	<1	<1	<1	<1	<1
		Cd		<1	<1		<1	<1	<1	<1	<1	<1
	D664 Acid	Inflect		4.10	4.05	-		4.50	4.70	4.07	4.50	10
	ID ETNIC	Buffer	1.65	1.48	1.85		1.72	1.53	1.79	1.97	1.52	1.9
	IR FTNG	Oxidation Nitration			*							0.7
	D6304	Water Content			684							761
	D3524	Fuel Dilution			*							*

Table A-23. Ft. Benning, UOA, MTV

							MTV W28									MTV W29				
			Miles	12789	13787	13787	13930	14086	14185	14188	14555	Miles	10887	11310	11593	11851	12439	12895	12915	13505
			Accum.	-	998	998	1141	1297	1396	1399	1766	Accum.	-	423	706	964	1552	2008	2028	2618
			Hours	-	-	-	-	-	-	-	-	Hours	-	-	-	-	-	-	-	-
		Fresh Oil	Accum. As found		1st QTR	2nd QTR		4th QTR	6th QTR	7th QTR	8th QTR	Accum. As found	Initial	1st QTR		3rd QTR	4th QTR	6th QTR	7th QTR	8th QT
		From:C97320		93.5%	_		(calculate		ouigik	/III QIK	oui Qik	AS JOUITU	92.9%	_	hangeover			buiQik	7tii Qik	oui Qi
D445 100d	Viscosity		12.64	8.74	8.88	8.93	8.95	9.33	9.16	9.14	9.21	12.99	8.79	8.98	8.92	9.01	8.45	8.38	8.35	8.45
D445 40d	Viscosity	,		47.42							52.68		48.26							45.64
D2270	Viscosity Index			166							158		163							164
D4739				9.62	9.01	8.93	7.58	7.8	7.86	8.19	7.07		9.42	8.82	8.47	6.43	8.24	7.89	8.87	7.51
D5185			<1	1	2	2	<1	1	<1	1	2	<1	1	2	2	1	2	1	1	2
	Sh Ba		<1 <1	<1 <1	<1	<1 <1	<1 <1	<1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
	P P	14	4	16	14	12	13	12	12	10	10	2	14	13	10	11	15	14	14	12
	Ca	-	2432	1045	1154	1142	1104	1293	1247	1291	1266	2388	1073	1198	1210	1152	966	940	961	934
വ	Cı		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Č	Cu	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Engine	Fe	-	7	2	3	3	4	4	5	6	9	3	1	4	6	6	4	7	8	10
	Pb		<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1
ַ ע	Mg		237	1194	1105	1141	1147	1012	1029	1044	1028	283	1174	1071	1117	1124	1271	1302	1317	1305
	Mn		<1 1	<1 64	<1 55	<1 54	<1 54	<1 49	<1 48	<1 49	<1 47	<1 1	<1 59	<1 52	<1 53	<1 52	<1 63	<1 64	<1 66	<1 62
	Ni		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	P	1079	1186	1112	1088	1091	1036	986	1169	1185	1162	1267	1120	1098	1110	1057	968	1157	1170	1146
	Si		3	5	4	4	4	4	4	5	5	3	5	4	4	4	4	5	5	4
	Ag	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Na		<5	5	5	<5	5	6	<5	5	5	<5	5	5	<5	5	6	<5	5	5
	Sn		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Zn		1383	1303	1334	1292	1276	1287	1262	1313	1273	1468	1311	1349	1318	1297	1280	1256	1300	1252
	Sı	<5 <1	5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1
	, , , , , , , , , , , , , , , , , , ,	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Ti		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Cd		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
D664 Acid	l Inflect																			
	Buffer			1.97	1.92	1.9	1.66	1.98	1.99	1.63	2.25		2.1	2.08	2.09	1.94	2.04	2.18	1.83	2.56
IR FTNG		-		*							2.8		*							2.14
DC30	Nitration Water Content			*							0.28		*							0.37
D6304				676 *							646 <0.3		629 *							839 <0.3

Table A-24. Ft. Benning, UOA, MTV (CONT)

								MTV W29									MTV W30				
				Miles	12785	12855	13092	13131	13187	13683	13738	14179	Miles	12159	-	12253	12296	12455	12492	12637	12819
				Accum.	-	70	307	346	402	898	953	1394	Accum.	-	-	94	137	296	333	478	660
				Hours Accum.	-	-	-	-	-	-	-	-	Hours Accum.	-	-	-	-	-	-	-	-
			Fresh Oil	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR
			From:C97320		86.0%	% initial c	hangeover	(calculated	d from vis)					90.1%	% initial c	hangeover	(calculated	from vis)			
D445		Viscosity	8.47	12.54	9.04	8.98	8.87	9.04	8.88	8.6	8.6	8.79	13.32	8.95	8.89	8.81	8.92	8.74	8.46	8.38	8.65
	5 40c	Viscosity			50.41							48.77		49.57							47.36
	02270 Vis 04739	scosity Index Buffer	9.49		162 9.01	9.15	8.75	8.61	8.02	7.49	7.73	161 7.04		163 9.37	9.53	9.62	9.36	8.53	8.7	8.75	163 8.04
	5185	Al		<1	1	2	2	<1	1	<1	<1	2	<1	1	2	2	<1	1	<1	<1	2
		Sb	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ва		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		В		3	14	13	12	12	13	12	11	13	3	14	14	15	13	14	13	14	15
6)		Ca Cr		2434 <1	1190 <1	1190 <1	1174	1101	1162 <1	1117	1151	1121 <1	2483	1107 <1	1117	1105	1005	1096 <1	1062	1057	1047
Engine		Cu		3	<1	<1	<1	1	1	1	2	2	2	<1	<1	2	<1	<1	<1	2	1
· <u>=</u>		Fe	1	7	2	4	4	4	5	6	8	10	5	2	2	3	3	4	4	6	8
ũ		Pb		<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
ш		Mg	1259	253	1098	1089	1123	1099	1117	1134	1148	1156	266	1137	1155	1179	1142	1157	1189	1200	1265
		Mn Mo	<1 64	<1 2	<1 55	<1 54	<1 54	<1 51	<1 55	<1 54	<1 55	<1 54	<1 1	<1 57	<1 57	<1 58	<1 54	<1 55	<1 57	<1 58	<1 59
		Ni	_	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		P	1079	1192	1124	1093	1091	1012	1010	1155	1170	1152	1211	1118	1102	1088	995	1008	1156	1160	1143
		Si	5	3	5	4	4	4	4	5	5	5	2	5	4	4	4	4	5	5	5
		Ag		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Na Sn	<5 <1	<5 <1	5 <1	5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	5 <1	5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1
		Zn		1397	1315	1341	1295	1242	1268	1257	1301	1259	1405	1306	1350	1292	1220	1261	1247	1289	1271
		K	<5	5	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
		Sr		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		V	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti Cd	· -	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1
D664	Acid	Inflect				/1	/1	/1	<u></u>		/1				/1	/1		\1	/1	/1	\1
2004		Buffer	1.65		1.93	1.89	1.86	1.7	1.9	2.17	1.84	2.4		2.05	1.86	1.95	1.56	1.84	1.79	1.48	2.12
IR F	TNG	Oxidation			*							1.04		*							0.71
		Nitration			*							0.19		*							0.09
		ater Content			727							540		795 *							461
D	3524 F	Fuel Dilution			•							<0.3		•							<0.3

Table A-25. Ft. Benning, UOA, MTV (CONT)

							MTV W29									MTV W30				
			Miles	12785	12855	13092	13131	13187	13683	13738	14179	Miles	12159	12296	12296	N/A	12455	12492	12637	12819
			Accum.	-	70	307	346	402	898	953	1394	Accum.	-	137	137	N/A	296	333	478	660
			Hours	-	-	-	-	-	-	-	-	Hours	-	-	-	-	-	-	-	-
			Accum.	-	-	-	-	-	-	-	-	Accum.	-	-	-	-	-	-	-	-
		Fresh Oil	As found		_		3rd QTR	_	6th QTR	7th QTR	8th QTR	As found	Initial			3rd QTR	_	6th QTR	7th QTR	8th Q1
D445 400		From:C97320	40.00	54.9%			(calculated		0.70	0.72	0.70	40.50	56.4%			(calculated		0.05	0.04	0.04
D445 100c D445 40c	Viscosity Viscosity		10.09	9.2 54.88	8.98	8.89	8.86	8.94	8.78	8.73	8.78 51.67	10.58	9.39 57.84	9.07	8.99	9.07	9.01	8.85	8.84	8.94 53.03
	viscosity iscosity Index/			149							149		144							149
D4739	Buffer	9.49		8.52	8.72	8.48	7.87	7.51	7.81	8.19	7.69		8.24	8.78	8.95	8.22	7.98	8.26	8.6	8.1
D5185	Al		9	5	5	5	4	5	4	4	5	9	5	5	5	4	4	3	4	5
	Sb	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Ва	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	В	14	146	85	75	73	74	79	72	74	77	132	76	64	61	60	65	65	63	66
	Ca		2753	1744	1656	1654	1622	1716	1640	1634	1658	3097	1997	1747	1738	1674	1768	1709	1728	1764
	Cr		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Cu		414	194	170	174	184	200	205	223	252	348	181	138	146	157	182	201	237	294
	Fe Pb		57 12	29 6	25 6	24 5	24 5	25 5	24 5	25 6	28 5	64 7	34	25 4	26 3	25 3	25 3	24 3	27 4	31
	Mg		10	638	718	741	736	722	769	766	790	12	603	755	801	794	774	795	803	834
	Mn	<1	3	2	1	1	1	2	2	2	2	2	1	1	1	1	1	2	2	2
	Mo		87	79	74	75	72	72	76	74	76	93	79	75	76	72	72	76	75	78
	Ni	<1	2	<1	<1	<1	<1	<1	1	1	2	2	<1	<1	<1	<1	<1	<1	1	2
	P	1079	1104	1114	1062	1052	1005	992	1132	1118	1124	1181	1164	1101	1097	1033	1030	1172	1163	1181
	Si	_	10	7	7	6	6	6	6	6	6	8	6	6	6	6	5	6	6	6
	Ag		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Na		5	6	5	5	5	5	<5	<5	5	6	5	<5	5	<5	6	<5	<5	5
	Sn Zn		<1 1347	<1 1325	<1 1340	<1 1298	<1 1275	<1 1264	<1 1256	<1 1285	<1 1272	<1 1467	<1 1386	<1 1378	<1 1342	<1 1327	<1 1314	<1 1291	<1 1338	<1 1326
	K	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	5	<5	<5	<5	<5	<5	<5	<5	<5
	Sr		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	V	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Ti	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Cd	<1	17	9	8	8	8	8	8	8	9	19	10	8	8	9	10	11	13	15
D664 Acid	Inflect																			
	Buffer	1.65	1.1	1.58	1.47	1.44	1.25	1.63	1.51	1.25	1.64	1.57	1.87	1.77	1.58	1.47	1.76	1.73	1.48	1.59
IR FTNG	Oxidation			*							0.38		*					-	-	0.47
D6304 V	Nitration										0.19									0.19
D6304 V	Water Content Fuel Dilution			676 *							777		817							944

Table A-26. Ft. Benning, UOA, MTV (CONT)

						MTV W30									MTV W30				
		Miles	12725	13487	13578	13578	13579	13626	13645	13646	Miles	5421	5545	5615	5615	5647	5806	5837	7448
		Accum.	-	762	853	853	854	901	920	921	Accum.	-	124	194	194	226	385	416	2027
		Hours	-	-	-	-	-	-	-	-	Hours	-	-	-	-	-	-	-	-
		Accum. As found	- Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	- 6th QTR	7th QTR	- 8th QTR	Accum. As found	- Initial	1st QTR	2nd QTR	3rd QTR	- 4th QTR	- 6th QTR	7th QTR	8th Q
		As jound	muui	1St QIK	ZIIU QIK	SIUQIK	4tii QTK	builQik	7tii Qik	ouigik	AS JOUITU	muu	1St QIK	ZIIU QI K	SIU QIK	4tii Qik	buiQik	7tii Qik	oui Q
D445 100c	Viscosity		13.58	12.82	12.68	12.82	13.02	13.71	13.64	13.55		13.4	13.28	14.38	14.38	13.84	13.68	13.65	12.75
D445 40c	Viscosity		100.11							100.8		98.46							93.38
	Viscosity Index		136							134		135							133
D4739			8.29	8.12	7.4	7.81	7.35	8.65	8.58	8.51		7.95	8.64	8.84	8.98	8.59	8.51	8.44	6.63
D5185			<1	<1	<1	<1	<1	<1	<1	1		<1	<1	<1	<1	<1	<1	<1	1
_	Sb		<1	<1 <1	<1	<1	<1	<1	<1	<1		<1	<1 <1	<1	<1	<1	<1	<1	<1 <1
2	Ba B		<1 2	2	<1 3	<1 <1	<1 2	<1 3	<1 <1	<1 <1		<1 5	4	<1 2	<1	<1 1	<1 2	<1 <1	2
0	Ca		2416	2434	2417	2336	2474	2309	2398	2460		2513	2468	2379	2310	2458	2377	2382	2442
٥	Cr		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
	Cu		<1	<1	<1	<1	<1	<1	<1	<1		1	1	<1	<1	<1	<1	<1	1
	Fe		2	4	4	4	4	2	2	2		3	4	2	2	2	2	3	7
	Pb		<1	<1	1	<1	<1	<1	1	<1		<1	<1	<1	<1	<1	<1	<1	<1
	Mg		286	292	291	285	288	279	299	298		258	259	285	282	285	283	294	295
	Mn		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
	Mo		1	<1	<1	<1	<1	<1	<1	1		2	1	<1	<1	<1	<1	<1	<1
	Ni P		<1 1257	<1 1224	<1 1232	<1 1150	<1 1138	<1 1325	<1 1321	<1 1329		<1 1213	<1 1172	<1 1221	<1 1146	<1 1138	<1 1322	<1 1303	<1 1288
	Si		3	3	3	3	3	5	4	4		3	3	5	5	3	4	4	3
	Ag		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
	Na		<5	<5	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5	<5	<5	<5
	Sn		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
	Zn		1455	1494	1434	1433	1411	1417	1472	1462		1408	1433	1417	1415	1408	1408	1446	1441
	К		6	<5	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5	<5	<5	<5
	Sr		<1	<1	<1	1	<1	<1	<1	<1		<1	1	1	1	<1	<1	<1	<1
	V		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
	Ti Cd		<1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1		<1 <1	<1 <1	<1	<1	<1 <1	<1 <1	<1	<1 <1
D664 Acid	Inflect		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
DO04 ACIO	Buffer		1.93	2.29	2.07	1.84	2.2	2.18	2.17	2.21		1.98	1.86	2.12	1.74	2.06	2.14	2.28	2.51
IR FTNG			*	2.23	2.07	1.04		2.10	2.1/	0.22		*	1.00	2.12	1.74	2.00	2.17	2.20	0.66
	Nitration		*							0.09		*							0.28
D6304	Water Content		688							728		703							550
D3524	Fuel Dilution		*							<0.3		*							<0.3

Table A-27. Ft. Benning, UOA, Stryker

									-												
							ST	RYK	ER							ST	RYK	ER			
								B52									B53				
				Miles	11674	11781.8	11794.6	11809.7	12000.6	12248.2	12520.8	12536.9	Miles	5955	6086.1	6134.8	6164.4	6288.1	6623.9	6716.8	6815.8
				Accum.	-	107.8	120.6	135.7	326.6	574.2	846.8	862.9	Accum.	-	131.1	179.8	209.4	333.1	668.9	761.8	860.8
				Hours	1462	1486.9	1493.7	1499.1	1520.4	1555.2	1579.8	1583.1	Hours	1431	1469.7	1477.9	1491.2	1524.3	1579.1	1592.6	1614.4
			Fresh Oil	Accum.	Initial	24.9	31.7 2nd QTR	37.1 3rd QTR	58.4 4th QTR	93.2	117.8 7th QTR	121.1	Accum.	- Initial	38.7	46.9 2nd QTR	60.2	93.3 4th QTR	148.1 6th QTR	161.6 7th QTR	183.4 8th QTR
			Fresh Oil From:C97320	As found	89.6%	-	angeover			binQik	MILLIN	8th QTR	As found	87.5%		hangeover			binQik	/tn QIK	8th QIK
	D445 100c	Viscosity		12.5	8.89	8.89	8.88	8.76	9.05	9.45	9.53	9.59	12.3	8.95	8.88	8.92	8.95	8.88	8.83	8.92	9.36
	D445 40c	Viscosity				49.67						56.08		50.25							52.86
		Viscosity Index				160						156		160							161
	D4739	Buffer			9.32	9.2	9.08	8.07	7.64	7.72	7.6	7.11		9.24	9.08	8.7	7.39	7.28	7.22	7.43	7
	D5185	Al Sb	2 <1	1 <1	1 <1	2 <1	2 <1	1 <1	2 <1	1 <1	2 <1	2 <1	2 <1	1 <1	2 <1	2 <1	2 <1	2 <1	2 <1	2 <1	3 <1
		Ba		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		В	14	3	14	13	12	12	12	10	10	10	17	16	15	16	14	14	12	12	12
		Ca		2548	1163	1207	1203	1143	1257	1403	1462	1435	2363	1169	1189	1171	1084	1145	1167	1256	1285
Engine		Cr	<1	<1	<1	<1	<1	<1	<1	<1	1	1	<1	<1	<1	<1	<1	<1	1	1	2
_⊆		Cu		3	<1	1	2	2	2	2	3	3	6	<1	2	3	3	3	3	4	4
<u> </u>		Fe		10	2	9	10	10	15	12	17	22	18	4	10	10	10	12	15	19	20
		Pb Mg		<1 214	<1 1112	<1 1072	<1 1121	<1 1124	<1 1049	<1 958	2 985	991	<1 387	<1 1118	<1 1108	<1 1143	<1 1106	<1 1102	<1 1099	<1 1127	<1 1113
ш		Mn		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Mo		2	55	53	55	53	51	43	44	43	14	57	55	56	53	54	52	54	50
		Ni	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		P	1079	1191	1124	1091	1097	1043	983	1201	1226	1182	1154	1113	1096	1089	1009	960	1173	1201	1173
		Si	-	3	4	4	4	3	4	4	4	4	5	5	4	4	4	4	4	5	4
		Ag		<1 <5	<1 5	<1 <5	<1 5	<1 5	<1 5	<1 <5	<1 5	<1 5	<1 6	<1 5	<1 5	<1 5	<1 <5	<1 6	<1 <5	<1 6	<1 5
		Na Sn		<1	<1	<1	<1	<1	<1	<1	<1	5 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Zn		1388	1318	1336	1303	1274	1282	1275	1347	1320	1351	1303	1345	1297	1232	1263	1260	1329	1314
		K	<5	5	<5	<5	<5	<5	<5	<5	<5	<5	5	5	<5	<5	<5	<5	<5	<5	<5
		Sr	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1
		V	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti Cd		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	D664 Acid	Inflect		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	DOUG ACIU	Buffer			1.93	1.78	1.72	1.5	1.96	1.9	1.83	2.22		1.96	1.78	1.69	1.59	1.89	2.19	1.94	2.23
	IR FTNG	Oxidation			2.55	*	2.72	2.0	1.50	2.3	2.00	1.86		*	2.70	2.03	2.55	2.03	5	2.54	2.52
		Nitration				*						0.28		*							0.19
		Water Content				730						693		692							374
	D3524	Fuel Dilution				*						<0.3		*							<0.3

Table A-28. Ft. Benning, UOA, Stryker (CONT)

							ST	RYK	ER							S1	RYK	ER			
								B54									B55				
				Miles	3013	3085.9	3237.2	3356.1	3478.1	3623.5	3701	3701.1	Miles	27731	27731.9	27777	27780.5	27788.4	28013.1	28039	28072.1
				Accum. Hours	584	72.9 628.9	224.2 654.9	343.1 689.8	465.1 724.5	610.5 775.5	688 788.6	688.1 792.5	Accum. Hours	2571	0.9 2572.4	46 2581.5	49.5 2583	57.4 2584.5	282.1 2650	308 2653.5	341.1 2673.7
			Fresh Oil	Accum. As found	- Initial	44.9	70.9 2nd QTR	105.8 3rd QTR	140.5 4th QTR	191.5 6th QTR	204.6 7th QTR	208.5 8th QTR	Accum. As found	- Initial	1.4 1st QTR	10.5	12 3rd QTR	13.5 4th QTR	79 6th QTR	82.5 7th QTR	102.7 8th QTR
			From:C97320	AS JOUITU	87.8%	_	hangeover			buiQik	/lii Qik	ouiQik	As Jouriu	88.2%			(calculate		builQik	/tii Qik	ouigik
	D445 100c	Viscosity	8.47	14.28	9.18	9.13	9.22	9.45	9.49	9.17	9.05	10	13.56	9.07	9.07	8.78	8.88	8.85	8.92	9.15	9.34
	D445 40c	Viscosity			51.29							59.35		50.78							53.32
		Viscosity Index			162							155		161							159
	D4739	Buffer	9.49		9.62	9.24	8.72	8.1	6.85	7.19	6.26	6.23		9.16	9.46	9.35	9.14	8.3	7.87	8.28	7.58
	D5185	Al	2	<1	1	2	2	2	2	2	6	5	1	1	2	2	1	2	1	2	2
		Sb	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ba B	<1	<1 7	<1 15	<1	<1	<1 10	<1	<1	<1	<1 9	<1	<1 18	<1	<1	<1	<1	<1	<1	<1 13
		Са	14 902	2397	1172	14 1237	11 1283	1269	10 1395	11 1242	9 1324	1488	26 2308	1132	18 1186	16 1152	16 1055	17 1135	14 1214	14 1243	1328
a		Cr	<1	<1	<1	<1	<1	<1	1393	1	2	1400	<1	<1	<1	<1	<1	<1	<1	<1	<1
ĕ		Cu	<1	2	<1	1	2	2	3	3	7	5	<1	<1	<1	<1	<1	1	2	2	2
·Ξ		Fe		4	2	4	6	8	9	14	24	22	16	4	10	10	9	11	15	19	22
Engine		Pb		1	<1	1	1	2	2	1	3	2	<1	<1	<1	<1	<1	<1	<1	<1	<1
面		Mg	1259	321	1120	1055	1032	985	934	1071	1100	981	42	1072	1033	1095	1065	1051	1044	1082	1035
		Mn	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Mo	64	4	55	52	48	44	44	50	51	41	8	56	53	55	52	54	51	53	47
		Ni	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		P	1079	1229	1129	1102	1100	1043	991	1189	1215	1190	1044	1097	1071	1063	983	945	1162	1182	1165
		Si	_	4	5	4	3	3	3	4	5	4	3	4	5	4	4	4	4	5	5
		Ag		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Na	<5	<5	5	5	5	<5	6	<5	6	5	<5	5	5	<5	<5	7	<5	5	5
		Sn Zn	<1 1265	<1 1435	<1 1325	<1 1344	<1 1311	<1 1267	<1 1299	<1 1270	<1 1347	<1 1325	<1 1184	<1 1281	<1 1302	<1 1254	<1 1198	<1 1241	<1 1238	<1 1296	<1 1289
		K	<5	6	5	<5	<5	<5	<5	<5	<5	<5	<5	5	<5	<5	<5	<5	<5	<5	<5
		Sr	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		v	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti		<1	<1	<1	<1	<1	<1	<1	<1	<1	10	2	2	2	2	2	1	1	1
		Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	D664 Acid	Inflect																			
		Buffer	1.65		1.89	1.89	1.77	1.78	2.02	2.08	2.17	2.47		1.98	1.74	1.66	1.52	1.62	1.83	1.48	1.97
	IR FTNG	Oxidation			*							2.52		*							0.84
		Nitration			*							0.09		*							0.19
		Water Content			790							628		695							409
	D3524	Fuel Dilution			*							<0.3		*							1.1

Table A-29. Ft. Benning, UOA, Stryker (CONT)

					ST	RYK	ER							ST	RYK	ER			
						B56									B57				
		Miles	30172	30213.9	30846.7	31673.8	32170.7	32691.7	32692.5	32709	Miles	30027	30089.4	30274.2	30277.6	30423.7	30707	-	30810
		Accum.	-	41.9	674.7	1501.8	1998.7	2519.7	2520.5	2537	Accum.	-	62.4	247.2	250.6	396.7	680	-	783
		Hours	5702	5706.1	5782.6	5882.3	5943.9	6026.4	6029.9	6033.6	Hours	4770	4797.9	4818.2	4819.5	4838.6	4874.6	-	4883.7
		Accum.	-	4.1	80.6	180.3	241.9	324.4	327.9	331.6	Accum.	-	27.9	48.2	49.5	68.6	104.6	-	113.7
		As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	6th QTR	7th QTR	8th QTR	As found	Initial	1st QTR	2na QIK	3rd QTR	4th QTR	ыпцік	7th QTR	8th QT
D445 100c	Viscosity		12.92	13.02	13.26	13.25	13.18	13.23	13.28	13.45		12.85	12.8	14.25	14.1	13.43	13.06		13.67
D445 40c	Viscosity		94.54							98.77		93.73					96.15		
D2270	Viscosity Index		134							136		134					134		
D4739	Buffer		6.17	6.94	5.58	5.84	5.33	5.87	5.87	5.87		7.23	8.2	8.64	8.87	7.89	7.09		
D5185	Al		4	4	2	3	3	2	2	2		1	2	<1	<1	1	1		<1
	Sb Ba		<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1		<1	<1	<1 <1	<1 <1	<1 <1	<1 <1		<1 <1
	В		16	15	2	<1	1	2	1	2		2	2	<1	<1	<1	1		<1
	Ca		2204	2245	2378	2332	2426	2328	2429	2465		2431	2494	2399	2320	2413	2352		2405
	Cr		<1	<1	1	2	2	2	2	1		<1	<1	<1	<1	<1	<1		<1
	Cu		4	4	2	4	3	3	3	2		1	1	<1	<1	<1	1		<1
	Fe		8	9	9	15	15	14	16	14		14	15	4	7	13	18	au	7
	Pb		<1	1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	lap	<1
	Mg Mn		256 <1	262 <1	286 <1	288 <1	292	284	310 <1	300		273 <1	281 <1	291 <1	286 <1	288	278	Sample Not Available	293 <1
	Mo		9	9	2	1	<1 <1	<1 1	1	<1 <1		1	<1	<1	<1	<1 <1	<1 <1	ot (<1
	Ni		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	Je N	<1
	P		1121	1097	1201	1132	1077	1288	1320	1296		1229	1192	1229	1152	1085	1301	amb	1283
	Si		4	4	3	4	4	4	4	3		3	3	3	3	2	3	Ň	3
	Ag		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1
	Na		<5	5	<5	<5	5	<5	<5	<5		<5	<5	<5	<5	6	<5		<5
	Sn		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1
	Zn K		1307 6	1341 <5	1402 <5	1417 <5	1422 <5	1378 <5	1456 <5	1442 <5		1434 <5	1460 <5	1425 <5	1418	1423	1383		1409 <5
	Sr		<1	<1	1	1	<1	<1	<1	<1		<1	<1	<1	1	<1	<1		<1
	V		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1
	Ti		2	2	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1
	Cd		<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1		<1
D664 Acid	Inflect																		
	Buffer		1.83	2	2.21	2.3	2.52	2.47	2.3	2.29		1.89	1.89	2.17	1.83	1.87	1.96		
IR FTNG	Oxidation		*							0.33		*					0.58		
DC204	Nitration Water Content		* 874							0.19 375		* 810					0 685		
D0304	Fuel Dilution		*							<0.3		* 810					<0.3		

APPENDIX B.

Ft. Wainwright Field Demo Raw Data

Table B-1. Ft. Wainwright, Vehicle Utilization, HMMWV

HMMWV

	Bumper	Start	of Test	1st (QTR	2nd	QTR	3rd (QTR	4th (QTR	
	No.	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	
TEST	BSMC-101	27214		27270		27303		27410		27411		
TEST	BSMC-104	26		35		46		194		1078		Decordings
CONTROL	BSMC-105	17194		17212		17226		17634		17945		Recordings
CONTROL	BSMC-113	16080		16409		16439		16664		17088		
		•										
		TEST	BSMC-101	57		33		107		2		
		TEST	BSMC-104	9		11		147		884		Assumulation by Quarter
		CONTROL	BSMC-105	18		14		408		312		Accumulation by Quarter
		CONTROL	BSMC-113	329		30		225		424		
		TEST	BSMC-101	57		89		196		198		
		TEST	BSMC-104	9		20		168		1052		Total Accumulation
		CONTROL	BSMC-105	18		32		439		751		Total Accumulation
		CONTROL	BSMC-113	329		359		583		1008		

*Note: No hr meter readings

Table B-2. Ft. Wainwright, Vehicle Utilization, HEMTT

HEMTT

	Bumper	Start	of Test	1st (QTR	2nd	QTR	3rd (QTR	4th (QTR	
	No.	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	
TEST	DC-111	110	46	245	103	246	192	341	241	1758	352	
TEST	DC-113	399	85	1360	215	1360	243	1439	264	1588	300	Docordings
CONTROL	DC-112	98		306	102	705	218	1030	336	2001	420	Recordings
CONTROL	DC-114	423	77	430	84	432	137	432	144	866	197	
		•						•				
		TEST	DC-111	134	57	2	90	94	48	1417	112	
		TEST	DC-113	961	130	0	28	80	21	149	35	Assumulation by Overton
		CONTROL	DC-112	208		399	116	324	117	971	84	Accumulation by Quarter
		CONTROL	DC-114	7	7	2	53	0	7	435	53	
		TEST	DC-111	134	57	136	147	230	195	1648	307	
		TEST	DC-113	961	130	961	159	1041	180	1190	215	Total Accumulation
		CONTROL	DC-112	208		607	218	932	336	1903	420	Total Accullulation
		CONTROL	DC-114	7	7	8	60	8	67	443	120	

Table B-3. Ft. Wainwright, Vehicle Utilization, MTV

MTV

	Bumper	Start	of Test	1st (QTR	2nd	QTR	3rd (QTR	4th	QTR	
	No.	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	
TEST	HQ-31	1883		1904		1908		2033		2327		
TEST	HQ-32	756		762		777		778		1155		Decordings
CONTROL	HHC-153	5328		5329		5335		5718		6345		Recordings
CONTROL	HHC-112	6986		6986		6986		6986		6986		
		•										
		TEST	HQ-31	21		4		125		294		
		TEST	HQ-32	6		15		1		377		Assumulation by Quarter
		CONTROL	HHC-153	0		7		383		626		Accumulation by Quarter
		CONTROL	HHC-112	1		0		0		0		
		TEST	HQ-31	21		25		150		444		
		TEST	HQ-32	6		21		22		399		Total Accumulation
		CONTROL	HHC-153	0		7		390		1016		Total Accumulation
		CONTROL	HHC-112	1		1		1		1		

*Note: No hr meter readings

Table B-4. Ft. Wainwright, Vehicle Utilization, SUS-V

SUS-V

	Bumper	Start	of Test	1st (QTR	2nd	QTR	3rd	QTR	4th	QTR	
	No.	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	
TEST	NWTC-2	6988		7086		7086		7210		7220		
TEST	NWTC-3	4588		4686		5042		5449		5456		Dogordings
CONTROL	NWTC-4	4945		5179		5742		6052		6323		Recordings
CONTROL	NWTC-34	4157		4260		4517		4661		4754		
		TEST	NWTC-2	98		0		124		10		
		TEST	NWTC-3	98		356		407		7		Accumulation by Quarter
		CONTROL	NWTC-4	234		563		310		271		Accumulation by Quarter
		CONTROL	NWTC-34	103		257		144		93		
		TEST	NWTC-2	98		98		222		232		
		TEST	NWTC-3	98		454		861		868		Total Accumulation
		CONTROL	NWTC-4	234		797		1107		1378		Total Accumulation
		CONTROL	NWTC-34	103		360		504		597		

^{*}Note: SUS-V mileage accumulation listed in kilometers (km), No hr meter readings

Table B-5. Ft. Wainwright, UOA, HMMWV

							//WV /I-10:						//WV C-104		
						ENG	SINE					ENG	SINE		
				Miles	27213.5	27270.2	27302.7	27409.5	27411	Miles	26	35.4	46.2	193.5	1077
				Accum.	-	56.7	89.2	196	197.5	Accum.	-	9.4	20.2	167.5	1051
				Hours	-	-	-	-	-	Hours	-	-	-	-	-
				Accum.	-	-	-	-	-	Accum.	-	-	-	-	-
			Fresh Oil	As found	Initial	1st QTR			-	As found	Initial	_	2nd QTR		4th QTR
	D445 100c	Viscosity	From:C97320 8.47	9.87	89.5% 8.67	% initial ch	nangeover 8.89	(calculated 8.92	1 from Mg) 8.7	10.11	74.2% 8.75	% initial ci	hangeover 9.02	(calculated	9.36
	D445 100c	Viscosity		9.87	47.62	8.40	8.89	8.92	47.82	10.11	47.28	8.78	9.02	8.98	52.33
		Viscosity Index			162				162		167				164
	D4739	Buffer	9.49		9.18		8.56		IC		9.43		8.7		IC
	D5185	Al	2	2	1	2	4	5	4	2	1	2	3	4	7
		Sb	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ва	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		В	14	<1	12	16	13	11	17	6	12	14	14	14	13
_		Ca	902	3361	1280	1105	1519	1671	1624	3139	1556	1502	1538	1391	1587
TEST		Cr	<1	<1	<1	2	4	5	5	3	<1	8	17	20	22
نتز		Cu	<1	<1	<1	<1	<1	1	2	2	3	1	2	2	5
-		Fe	1	12	4	12	39	51	51	23	2	21	62	94	127
		Pb	<1	4	<1	<1	3	4	6	4	<1	2	3	4	9
		Mg	1259	18	1129	1261	1068	1005	945	121	965	1047	1031	1141	1139
		Mn	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
		Мо		<1	53	63	56	52	51	2	46	51	53	59	67
		Ni	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1	1	3
		Р		1211	1070	1183	951	1219	1181	1164	1091	1184	969	1188	1217
		Si	5	10	7	36	44	44	46	21	9	12	18	19	29
		Ag		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Na Sm	<5	<5	<5	5	5	6	6	5 3	<5	9	6	6 8	7
		Sn Zn	<1 1265	<1 1418	<1 1284	<1 1262	<1 1328	<1 1304	<1 1235	1376	<1 1294	1314	6 1322	8 1297	12 1340
		Zn K		1418 <5	<5	<5	1328 <5	1304 <5	<5	<5	1294 <5	1314 <5	<5	<5	<5
		Sr	<1	1	<1	<1	2	<1	<1	<1	<1	<1	1	<1	<1
		V	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	D664 Acid	Buffer			1.74	_	1.83	_	1.89	_	1.73		1.52	-	2.35
	IR FTNG	Oxidation			0				3.88		0				1.11
		Nitration			0				0.28		0				0.74
	D6304	Water Content			1148				1406		881				564
	D3524	Fuel Dilution			<0.3				<0.3		< 0.3				<0.3

Table B-6. Ft. Wainwright, UOA, HMMWV (CONT)

						HMN BSCN							//W\ C-10		
					TRA	ANSN	ЛISS	ION			TRA	ANSI	MISS	ION	
				Miles	27213.5	27270.2	27302.7	27409.5	27411	Miles	26	35.4	46.2	193.5	1077
				Accum.	-	56.7	89.2	196	197.5	Accum.	-	9.4	20.2	167.5	1051
				Hours	-	-	-	-	-	Hours	-	-	-	-	-
				Accum.	-	-	-	-	-	Accum.	-	-	-	-	-
			Fresh Oil	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
			From:C97320		66.1%	% initial cl	hangeover	(calculated	from Mg)		83.2%	% initial c	hangeover	(calculated	from Mg)
	D445 100c	Viscosity	_	9.05	8.72	8.45	8.31	8.39	8.19	9.43	8.92	8.49	8.62	8.34	8.48
	D445 40c	Viscosity			47.61				45.58		48.59				45.98
		Viscosity Index			164				155		166				164
	D4739	Buffer	9.49		9.24		8.83		IC		9.22		9.11		IC
	D5185	Al	2	1	<1	1	1	1	1	1	1	1	1	1	2
		Sb		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ba		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
_		В		14	15	17	17	16	19	5	13	13	12	14	15
Ė		Ca Cr	902 <1	2723 <1	1565 <1	1754 <1	1730	1737	1713 <1	2961 <1	1416 <1	1927 <1	1878 <1	1805 <1	1765 <1
S		Cu		10	4	5	<1 5	<1 5	5	10	<1	5	5	5	6
Ĭ		Fe		5	3	3	4	4	3	4	7	3	4	4	4
•		Pb		1	<1	<1	2	<1	2	1	<1	<1	<1	2	2
		Mg		39	846	838	791	824	804	64	1058	841	787	790	888
		Mn		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	/90 <1	<1
		Mo		<1	41	39	38	39	37	<1	49	39	38	37	42
		Ni	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		P		1053	1039	1198	933	1183	1143	1135	1084	1249	947	1192	1204
		Si	5	8	7	6	6	6	6	15	10	11	10	10	10
		Ag		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Na		<5	5	6	5	5	5	<5	<5	6	<5	5	<5
		Sn	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Zn	1265	1197	1216	1259	1259	1241	1242	1320	1293	1331	1324	1252	1297
		K	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
		Sr		<1	<1	<1	2	<1	<1	<1	<1	<1	2	<1	<1
		v	· -	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Cd		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	D664 Acid	Buffer	1.65		1.71		1.84		1.89		1.74		1.88		1.77
	IR FTNG	Oxidation					Did not	analyze	ļ			D	id not analy	ze	
		Nitration					1						.,	I	
		Water Content			987				612		938				697
	D3524	Fuel Dilution					Not Ap	plicable					Not Applicab	le	

Table B-7. Ft. Wainwright, UOA, HMMWV (CONT)

						/WV 1-10!			_			ИWV C-113		
					ENG	SINE					ENG	SINE		
			Miles	17194.1	17212	17226	17633.5	17945	Miles	16080.4	16409	16439	16663.8	17088
			Accum.	-	17.9	31.9	439.4	750.9	Accum.	-	328.6	358.6	583.4	1007.6
			Hours	-	-	-	-	-	Hours	-	-	-	-	-
			Accum.	-	-	-	-	-	Accum.	-	-	-	-	-
				Initial	1st QTR	2nd QTR	3rd QTR	4th QTR		Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
	D445 100c	Viscosity		10.3		10.04	9.83	9.72		9.64		9.74	9.31	9.57
	D445 40c	Viscosity		56.74				54.57		52.93				54.44
	D2270	Viscosity Index		172				165		169				161
	D4739	Buffer		8.78		7.2		7.24		9.58		8.65		6.92
	D5185	Al		4		8	10	10		2		2	2	4
		Sb		<1		<1	<1	<1		<1		<1	1	1
		Ва		<1		<1	<1	<1		<1		<1	<1	<1
_		В		1		2	1	4		<1		<1	<1	9
0		Ca		3442		3614	3909	3928		3254		3431	3440	3458
Control		Cr		5		14	17	16		<1		2	5	7
\subseteq		Cu		2		4	5	5		<1		13	16	18
0		Fe		33		79	138	113		5		20	34	47
C		Pb		6	a	11	16	18		4	a	31	43	72
		Mg		44	ilab	48	35	28		15	ilab	30	31	28
		Mn		<1	Nai	<1	1	1		<1	Nai	1	2	2
		Mo		<1	ot A	<1	<1	<1		<1	ot A	<1	<1	<1
		Ni		<1	Sample Not Available	<1	<1	<1		<1	sample Not Available	<1	<1	<1
		P		1236	nple	1059	1397	1390		1187	nple	1037	1324	1329
		Si		46	Sar	55	39	36		32	Sar	52	66	79
		Ag		<1		<1	<1	<1		<1		<1	<1	<1
		Na S		<5		5	6	6	-	<5		11	16	17
		Sn Zn		2		5 1507	7 1545	7		<1		7 1466	12	16
		Zn K		1485 <5			1545 <5	1526 6		1391		1466 <5	1426 <5	1393 6
		K Sr		<5 1		<5 2	<5 1	1		<5 1		<5 2	<5 1	1
		Sr V		<1		<1	<1	<1		<1		<1	<1	<1
		Ti		<1		<1	<1	<1		<1		<1	<1	<1
		Cd		<1		<1	<1	<1		<1		<1	<1	4
	D664 Acid	Buffer		2.13		2.46	<u></u>	2.92		2.28		2.3	<1	2.55
	IR FTNG	Oxidation		0		2.40		2.92		0		2.5		1.29
	INTING	Nitration		0				0.83		0				0.46
	D6304	Water Content		972				1293		1605				1539
	D3524	Fuel Dilution		<0.3				<0.3		<0.3				<0.3
	D3524	ruei Dilution		\ U.3				\∪.3		\U. 3				\ ∪.3

Table B-8. Ft. Wainwright, UOA, HMMWV (CONT)

				I	HMN	// \ A / \ /	,							
				В		/I-10!						ИWV C-113		
				TRA	NSN	ЛISSI	ON			TRA	NSN	ЛISSI	ION	
			Miles	17194.1	17212	17226	17633.5	17945	Miles	16080.4	16409	16439	16663.8	17088
		A	Accum.	-	17.9	31.9	439.4	750.9	Accum.	-	328.6	358.6	583.4	1007.6
			Hours	-	-	-	-	-	Hours	-	-	-	-	-
		A	Accum.	-	-	-	-	-	Accum.	-	-	-	-	-
				Initial	1st QTR	2nd QTR	3rd QTR	4th QTR		Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
D445	5 100c Viscos	·		8.17		7.97	7.74	7.52		9.45		8.65	8.52	8.37
	45 40c Viscos	·		42.84				40.9		50.67				44.69
	D2270 Viscosity Inc			168				153		173				166
	D4739 Buf			6.08		5.67		8.3		9.33		8.26		8.77
	D5185	Al		1		1	1	1		1		1	1	1
		Sb		<1		<1	1	1		<1		<1	<1	<1
		За		2		2	2	2		<1		<1	<1	<1
		В		39		42	41	46		7		14	19	21
		Ca		2086		2195	2174	2063		3098		3111	2847	2800
		Cr		<1		<1	<1	<1		<1		<1	<1	<1
		Cu		14		16	18	19		14		19	17	22
		Fe		10	əlq	10	14	14		4	ple	4	4	4
		Pb d		9	aila	10	11	11		2	aila	3	4	5
	l	1g		13	Ave	15	14	15		53	Ava	51	45	46
	l	1n		<1	Vot	<1	<1	<1		<1	Vot	<1	<1	<1
	ı	10		<1	le l	<1	<1	<1		<1	le l	<1	<1	<1
		Ni		<1	Sample Not Available	<1	<1	<1		<1	Sample Not Available	<1	<1	<1
		P		829	Sc	925	932	875		1164	Sc	1254	1181	1151
		Si		9		8	9	9		14		14	14	15
		Ag		<1		<1	<1	<1		<1		<1	<1	<1
		Na		7		9	8	7		<5		<5	<5	5
		Sn		<1		<1	<1	<1		<1		<1	<1	<1
		Zn		898		910	888	847		1364		1320	1186	1189
		K		5		5	6	6		<5		5	<5	5
		Sr		<1		<1	<1	<1		1		1	<1	<1
		V		<1		<1	<1	<1		<1		<1	<1	<1
		Ti		<1		<1	<1	<1		<1		<1	<1	<1
		Cd		<1		<1	<1	<1		<1		<1	<1	<1
	4 Acid Buf			1.19		1.39		1.02		2.07		2.08		1.57
IR	FTNG Oxidati Nitrati				Did not	analyze					Did not	analyze		
r	D6304 Water Conte			1156				797		1072				940
	D3524 Water Conte			1130	Not An	plicable		131		10/2	Not An	plicable	l .	540

Table B-9. Ft. Wainwright, UOA, HEMTT

							ИТТ 111		-				MTT 113		
						ENG	SINE					ENG	SINE		
				Miles	110.4	244.7	246.4	340.5	1757.9	Miles	398.5	1359.6	1359.7	1439.4	1588.1
				Accum.	-	134.3	136	230.1	1647.5	Accum.	-	961.1	961.2	1040.9	1189.6
				Hours	45.55	102.8	192.4	240.5	352.2	Hours	84.55	214.6	243.05	264.3	299.5
				Accum.	-	57.25	146.85	194.95	306.65	Accum.	-	130.05	158.5	179.75	214.95
			Fresh Oil	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
			From:C97320		78.4%	% initial c	hangeover				78.2%		hangeover		
	D445 100c	Viscosity	8.47	8.72	8.65		8.53	8.07	8.29	7.64	8.83	8.35	7.94	8.19	7.82
	D445 40c	Viscosity			46.19				44.81		48.21				41.66
		Viscosity Index			168				163		165				161
	D4739	Buffer	9.49		9.83		8.29		6.42		9.66	8.41	6.54		6.79
	D5185	Al	2	1	<1	2	2	2	3	1	1	2	3	3	4
		Sb	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ba B	<1 14	<1 4	<1 13	<1 13	<1 12	<1 12	<1 12	<1 19	<1 18	<1 15	<1 16	<1 15	<1 16
		Са	902	3081	1455	1428	1527	1450	1500	2914	1461	1409	1488	1081	1110
<u> </u>		Cr	902 <1	<1	<1	<1	<1	1450 <1	1500	<1	<1	<1	<1	<1	<1
TES.		Cu	<1	17	5	11	14	18	45	58	<1	27	201	85	96
F		Fe	1	8	3	11	18	24	32	13	3	20	36	28	34
-		Pb	<1	<1	<1	<1	<1	2	2	2	<1	1	2	<1	<1
		Mg	1259	11	990	983	933	957	962	14	988	1012	939	1193	1198
		Mn	<1	<1	<1	<1	<1	1	1	1	<1	1	2	1	1
		Мо	64	<1	47	50	47	46	48	23	53	56	54	61	62
		Ni	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		P	1079	1095	1053	1064	904	1138	1145	1026	1055	1140	938	1136	1141
		Si	5	32	13	17	18	20	32	38	7	22	25	14	17
		Ag	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	<1
		Na	<5	<5	<5	6	<5	5	6	<5	<5	6	<5	5	7
		Sn	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Zn	1265	1280	1271	1268	1252	1209	1223	1199	1260	1253	1233	1215	1220
		K	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
		Sr	<1	<1	<1	<1	2	<1	<1	1	<1	<1	2	<1	<1
		٧	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	D664 Acid	Cd Buffer	<1 1.65	<1	<1 1.6	<1	<1 1.82	<1	<1 2.17	<1	<1 1.74	<1 2.02	<1 1.79	<1	<1 1.86
	IR FTNG	Oxidation	1.05		0		1.82		1.76		0	2.02	1.79		1.86 N/A
	INFING	Nitration			0				0		0				N/A N/A
	D6304	Water Content			986				1192		641				1562
	D3524	Fuel Dilution			<0.3				2		<0.3		1.2	•	1.2
	D3324	i uei Diiutioli			~ 0.3						\U. 3		1.2		1.2

Table B-10. Ft. Wainwright, UOA, HEMTT (CONT)

						HEN DC-			-				ИТТ 113		
					TRA	ANSN	/ISS	ON			TRA	ANSN	ИISSI	ON	
				Miles	110.4	244.7	246.4	340.5	1757.9	Miles	398.5	1359.6	1359.7	1439.4	1588.1
				Accum.	-	134.3	136	230.1	1647.5	Accum.	-	961.1	961.2	1040.9	1189.6
				Hours	45.55	102.8	192.4	240.5	352.2	Hours	84.55	214.6	243.05	264.3	299.5
				Accum.	-	57.25	146.85	194.95	306.65	Accum.	-	130.05	158.5	179.75	214.95
			Fresh Oil	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
			From:C97320	, , , , , , , , , , , , , , , , , , , ,	84.8%				from Mg)	, , , , , , , , , , , , , , , , , , , ,	83.1%	-	nangeover		
	D445 100c	Viscosity	8.47	10.04	8.87	8.6	8.39	8.43	8.16	9.6	8.41	8.24	8.39	8.15	8.29
	D445 40c	Viscosity			48.18				46.62		44.21				46.36
	D2270	Viscosity Index			166				158		170				163
	D4739	Buffer	9.49		9.45		8.74		5.25		9.28		8.99		7.24
	D5185	Al	2	2	<1	2	1	2	2	2	<1	3	3	3	3
		Sb	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ва	<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		В	14	11	15	16	15	15	14	26	16	20	19	21	19
_		Ca	902	2903	1252	1684	1675	1631	1704	2924	1291	1652	1801	1727	1806
TEST		Cr	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ē		Cu	<1	2	<1	1	1	2	2	2	12	1	2	2	2
⊢		Fe	1	5	2	4	4	6	8	6	4	10	8	10	10
		Pb	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
		Mg	1259	9	1069	870	835	855	896	11	1048	841	822	836	877
		Mn	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Мо	64	<1	51	44	42	42	44	24	55	52	50	50	52
		Ni	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		P	1079	1049	1042	1190	934	1157	1169	1039	1028	1077	914	1170	1179
		Si	5	6	6	6	6	6	6	7	13	6	7	7	7
		Ag	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Na		<5	5	6	<5	6	5	6	5	8	6	8	8
		Sn	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Zn	1265	1217	1220	1248	1250	1213	1262	1190	1223	1262	1265	1232	1277
		K	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	5
		Sr		1	<1	<1	2	<1	<1	<1	<1	<1	2	<1	<1
		V	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	D664 Acid	Buffer	1.65		1.56		1.52		1.71		1.61		1.82		1.72
	IR FTNG	Oxidation				Di	id not analy.	ze				D	id not analy	re .	
	DC224	Nitration			020				700		025				020
	D6304				830	<u> </u>			799		935	l .			839
	D3524	Fuel Dilution				٨	lot Applicab	ie				٨	lot Applicabl	е	

 $Table\ B-11.\ Ft.\ Wainwright, UOA, HEMTT\ (CONT)$

				(1	HEN DC- Fomerly		D)					MTT 114		
					ENG	INE					ENG	SINE		
			Miles		306.3	705.3	1029.6	2001	Miles	423.2	430	431.3	431.5	866
			Accum.	-	306.3	705.3	1029.6	2001	Accum.	-	6.8	8.1	8.3	442.8
			Hours		102.3	218.25	335.65	419.8	Hours	77.1	84.3	137.1	143.6	196.9
			Accum.	-	102.3	218.25	335.65	419.8	Accum.	-	7.2	60	66.5	119.8
				Initial	1st QTR	2nd QTR	3rd QTR	4th QTR		Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
	D445 100c	Viscosity			8.46	8.5	8.14	9.16		8.62	8.37	8.5	7.96	8.31
	D445 40c	Viscosity						52.35		44.56				44.82
	D2270	Viscosity Index						158		175				163
	D4739	Buffer				7		6		9.4		8.61		7.36
	D5185	Al			1	2	2	2		6	4	6	8	9
		Sb			<1	<1	<1	<1		<1	<1	<1	<1	<1
		Ва			<1	<1	<1	<1		<1	<1	<1	<1	<1
		В			1	<1	1	2		7	9	8	9	9
<u> </u>		Ca			3249	3278	3080	2810		3206	3358	3367	3209	3375
Ξ.		Cr			<1	<1	1	<1		<1	<1	<1	<1	<1
 		Cu		£	34	162	269	429		9	12	17	19	36
7		Fe		wit	18	36	41	39		6	6	11	15	18
Control		Pb		e S	3	4	4	4		<1	<1	1	1	2
		Mg		hid	17	16	15	189		13	13	13	14	17
		Mn		, Ve	1	2	3	2		<1	<1	<1	<1	1
		Mo		- j e	<1	<1	<1	9		9	10	9	9	10
		Ni		ilak	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Р		Avā	1193	999	1169	1178		1129	1245	1017	1236	1272
		Si		Vot	44	47	48	45		25	28	31	32	41
		Ag		nitial Sample Not Available - Vehicle Switch	<1	<1	1	1		<1	<1	<1	<1	<1
		Na		mp	7	<5	<5	8		6	8	6	7	10
		Sn		al Sa	2	2	3	2		<1	<1	<1	1	2
		Zn		nitia	1291	1307	1236	1260		1333	1338	1342	1285	1331
		К		=	<5	<5	<5	<5		<5	<5	<5	<5	5
		Sr			1	2	1	1		1	1	3	1	1
		V			<1	<1	<1	<1		<1	<1	<1	<1	<1
		Ti			<1	<1	<1	<1		<1	<1	<1	<1	<1
		Cd			<1	<1	<1	<1		<1	<1	<1	<1	<1
	D664 Acid	Buffer				1.99		1.87		1.79		1.86		2.09
	IR FTNG	Oxidation						N/A		0				0
		Nitration						N/A		0				0
	D6304	Water Content						1255		1265				1328
	D3524	Fuel Dilution						1.2		1.5				1

Table B-12. Ft. Wainwright, UOA, HEMTT (CONT)

		-													
					(1	DC-	MTT 112 DC-110	o)					MTT 114		
					TR/	ANSN	ЛISS	ION			TRA	ANSI	MISS	ION	
			М	iles	0	306.3	705.3	1029.6	2001	Miles	423.2	430	431.3	431.5	866
			Acci		-	306.3	705.3	1029.6	2001	Accum.	-	6.8	8.1	8.3	442.8
			Но	urs	0	102.3	218.25	335.65	419.8	Hours	77.1	84.3	137.1	143.6	196.9
			Acci	ım.	-	102.3	218.25	335.65	419.8	Accum.	-	7.2	60	66.5	119.8
					Initial	1st QTR	2nd QTR	3rd QTR	4th QTR		Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
	D445 100c	Viscosity				9.53	9.15	8.77	8.51		9.56	9.26	8.91	9.02	8.83
	D445 40c	Viscosity							49.13		52.99				48.96
	D2270	Viscosity Index							151		167				162
	D4739	Buffer					7.92		8.56		10.08		8.98		8.76
	D5185	Al				2	2	2	3		2	2	2	2	3
		Sb				<1	<1	<1	<1		<1	<1	<1	<1	<1
		Ва				1	1	1	<1		<1	<1	<1	<1	<1
		В				14	14	14	8		9	11	11	11	12
ᅙ		Ca				3065	2884	3011	3341		3294	3454	3331	3447	3470
_ <u>⊆</u>		Cr				<1	<1	<1	<1		<1	<1	<1	<1	<1
Ę		Cu			-5	4	6	6	5		<1	1	1	1	2
5		Fe			ž.	5	8	8	10		4	4	4	4	6
Contro		Pb			e S	1	2	3	2		<1	<1	<1	<1	1
		Mg			hic	8	7	8	9		10	10	9	10	10
		Mn			Š	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Mo			- e	<1	<1	<1	<1		10	10	9	9	10
		Ni			ia i	<1	<1	<1	<1		<1	<1	<1	<1	<1
		P			Ä	1163	1145	1165	1256		1156	1273	1284	1286	1290
		Si			łot	4	5	4	5		6	5	5	4	5
		Ag			nitial Sample Not Available - Vehicle Switch	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Na			am p	6	5	6	6		5	7	6	7	6
		Sn			al Sē	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Zn			hitie	1241	1166	1224	1351		1366	1382	1323	1384	1396
		К			=	5	<5	<5	<5		<5	<5	<5	<5	<5
		Sr				<1	<1	<1	1		2	1	1	1	1
		V				<1	<1	<1	<1		<1	<1	<1	<1	<1
		Ti				<1	<1	<1	<1		<1	<1	<1	<1	<1
		Cd				<1	<1	<1	<1		<1	<1	<1	<1	<1
	D664 Acid	Buffer					1.83		2.1		2.13		2.28		2.14
	IR FTNG	Oxidation					Did not	analyze					id not analy	70	
		Nitration					υla not	unuiyze					iu not analy	20	
	D6304	Water Content							760		894				894
	D3524	Fuel Dilution					Not Ap	plicable				- 1	Not Applicab	le	

Table B-13. Ft. Wainwright, UOA, SUS-V

												•			•
							S-V TC-2						S-V TC-3		
						ENG	SINE					ENG	SINE		
				km	6988	7086	7086	7210	7220	km	4588	4656	5042	5449	5456
				Accum.	-	98	98	222	232	Accum.	-	68	454	861	868
				Hours	-	-	-	-	-	Hours	-	-	-	-	-
				Accum.		-	-	-	-	Accum.			-	-	-
			Fresh Oil	As found	Initial	1st QTR			4th QTR	As found	Initial	1st QTR	2nd QTR		4th QTR
			From:C97320		99.3%			(calculated		4.0	94.9%		hangeover		
	D445 100c	Viscosity		10.42	8.75	9.01	9.41	9.55	9.45	14.05	8.93	9.61	10.14	10.52	10.02
	D445 40c	Viscosity			46.94				55.29		50.57				59.25
	D2270 D4739	Viscosity Index Buffer	9.49		168 9.62		7.44		155 8.24		158 8.55		6.79		156 9.04
	D5185	Al	9.49	4	9.62	2	7.44	3	3	9	8.55	4	6.79	6	9.04
	D3183	Sb		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2	2
		Ba	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		В		6	15	13	16	16	19	72	22	27	27	29	31
_		Ca	902	3218	1087	1286	1530	1502	1526	2790	1105	1309	1407	1322	1306
TEST		Cr	<1	3	<1	1	2	3	3	5	<1	2	3	4	3
Й		Cu	<1	2	<1	1	2	2	3	5	<1	2	3	3	4
-		Fe	1	46	6	19	30	40	38	107	13	34	53	63	61
		Pb	<1	<1	<1	<1	<1	<1	<1	2	<1	<1	1	1	<1
		Mg	1259	37	1250	1114	954	1013	1006	50	1197	1071	1060	1162	1155
		Mn	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Мо	64	9	60	58	53	55	56	68	65	67	71	72	75
		Ni	<1	1	<1	<1	1	2	2	3	<1	1	2	2	2
		P		1164	1062	1080	895	1158	1165	1097	1054	1167	901	1158	1166
		Si	_	6	6	5	5	6	6	10	7	7	8	8	10
		Ag		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Na		<5	5	6	<5	<5	5	5	5	<5	5	7	6
		Sn 7m		1	<1	<1 1294	<1	<1	<1	3	<1 1297	<1	<1 1334	<1	<1
		Zn	1265 <5	1373 25	1296 <5	8	1279 8	1276 10	1273 13	1408 14	1297 <5	1282 5	7	1312 7	1299 8
		K Sr	<1	1	<1	<1	2	<1	<1	14	<1	<1	2	<1	8 <1
		V	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	D664 Acid	Buffer	1.65		1.7		1.92	``	2.17	, ,	1.86	,,	2.04	``	2.35
	IR FTNG	Oxidation			0				3.23		0				3.51
		Nitration			0				1.29		0				1.39
	D6304	Water Content			1049				2451		946				2782
	D3524	Fuel Dilution			<0.3				<0.3		<0.3				<0.3

Table B-14. Ft. Wainwright, UOA, SUS-V (CONT)

							S-V TC-4						S-V C-34	ı	
						ENG	SINE					ENG	SINE		
			_	km	4945	5179	5742	6052	6323	km	4157	4260	4517	4661	4754
				Accum.	-	234	797	1107	1378	Accum.	-	103	360	504	597
				Hours	=.	-	-	-	-	Hours		-	-	-	-
				Accum.	-	-	-	-	-	Accum.	-	-	-	-	-
					Initial	1st QTR	2nd QTR	3rd QTR	4th QTR		Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
	D445 100c	Viscosity			7.93	9.2	12.2	13.06	12.2		10.38	10.05	10.57	10.7	11.27
	D445 40c	Viscosity			38.58				84.6		59.2				72.14
		Viscosity Index			184				139		166				148
	D4739	Buffer			7.79	10	6.48		7.94		7.11		6.67	-	8.76
	D5185	Al			9	10	9	8	7		8	6	6	7	6
		Sb			<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Ba	_		<1	<1	<1	<1	<1		14 28	14 31	8 26	8	6
<u></u>		B Ca	_		9 2777	11 2464	24 2597	28 2543	30 2300		2577	2727	2219	26 2193	26 2204
Control		Ca Cr			5	5	6	5	4		4	3	3	4	3
7		Cu			4	5	4	4	3		5	6	4	4	4
<u> </u>		Fe			48	60	71	73	60		56	50	60	68	55
Ŭ		Pb			5	5	3	2	2		<1	1	<1	1	<1
		Mg			114	461	244	170	353		111	115	344	342	328
		Mn			<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Mo			15	36	24	18	31		14	13	27	29	24
		Ni			5	5	5	4	2		5	4	4	4	3
		Р			1000	1073	890	1127	1127		1082	1184	897	1120	1130
		Si			16	16	14	13	11		12	11	11	12	10
		Ag			<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Na			8	9	7	7	6		<5	<5	<5	5	<5
		Sn			2	2	2	2	1		2	<1	<1	<1	<1
		Zn			1249	1334	1310	1263	1238		1269	1292	1246	1229	1220
		K			16	14	12	12	12		7	10	8	8	10
		Sr			1	<1	3	<1	<1		1	1	3	<1	<1
		v			<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Ti			<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Cd			<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
	D664 Acid	Buffer			1.71		2.07		2.38		1.93		1.9		1.92
	IR FTNG	Oxidation			0				8.04		0	-			4.16
		Nitration			0				0		0	-			0
		Water Content			1327				1803		1322				2238
	D3524	Fuel Dilution			0.8				<0.3		<0.3				<0.3

Table B-15. Ft. Benning, UOA, MTV

							TV -31		_	_			TV -32		
						ENG	SINE					ENG	SINE		
				Miles	1883	1904	1908	2033	2327	Miles	756	762	777	778	1155
ł				Accum.	-	21	25	150	444	Accum.	-	6	21	22	399
				Hours	-	-	-	-	-	Hours	-	-	-	-	-
				Accum.		-	-	-	-	Accum.		-	-	-	-
			Fresh Oil	As found	Initial	1st QTR	-	-	-	As found	Initial	1st QTR	2nd QTR	-	4th QTR
	D445 400	\/!**	From:C97320	8.99	85.2%		_	(calculated		0.33	94.7%		hangeover		
	D445 100c D445 40c	Viscosity Viscosity		8.99	8.69 46.16	8.28	8.34	8.27	8.21 44.39	9.23	8.57 46.83	8.34	8.28	8.26	8.16 44.92
		Viscosity Index			170				162		163				157
	D4739	Buffer	9.49		9.14		9.11		5.3		9.37		9.1		7.52
	D5185	Al	2	2	<1	2	1	2	2	2	1	2	1	2	2
	20200	Sb	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ba	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		В		14	15	16	17	14	13	14	15	17	17	17	16
		Ca	902	3265	1373	1438	1404	1775	1833	3358	1179	1203	1263	1193	1296
TEST		Cr	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
ĬЙ		Cu	<1	17	4	6	8	7	8	7	<1	3	2	3	4
—		Fe	1	12	4	6	8	11	14	6	2	3	5	5	8
		Pb	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Mg	1259	16	1075	1071	1028	880	884	14	1193	1163	1160	1175	1156
		Mn	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Mo	64	<1	51	52	52	43	44	<1	57	57	59	58	56
		Ni	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Р		1121	1067	1159	917	1219	1232	1199	1073	1154	931	1167	1190
		Si	_	14	8	8	7	7	9	12	7	6	7	7	9
		Ag		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Na	<5	<5	<5	5	5	10	11	7	5	<5	5	6	7
		Sn 7m	<1 1205	<1	<1	<1	<1	<1 1305	<1	<1	<1 1285	<1	<1 1296	<1	<1
		Zn K		1333 <5	1287 <5	1300	1278 <5	1305 <5	1309 5	1419 <5	1285 <5	1275 <5	1296 <5	1245 <5	1271 <5
		Sr	<1	1	<1	<1	2	<1	<1	1	<1	<1	2	<1	<1
		V		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti	· -	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Cd		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	D664 Acid	Buffer		_	1.77	_	1.67	_	1.9	-	1.75	_	1.28	-	1.73
	IR FTNG	Oxidation			0		-		1.29		0				0.88
		Nitration			0				0.18		0				0
	D6304	Water Content			1333				1259		1028				1331
	D3524	Fuel Dilution			<0.3				<0.3		<0.3				<0.3

Table B-16. Ft. Benning, UOA, MTV (CONT)

												•		•	-
							TV -31		_				TV -32		
					TRA	ANSI	MISS	ION			TRA	ANSN	ЛISS	ION	
				Miles	1883	1904	1908	2033	2327	Miles	756	762	777	778	1155
				Accum.	-	21	25	150	444	Accum.	-	6	21	22	399
				Hours	-	-	-	-	-	Hours	-	-	-	-	-
				Accum.	-	-	-	-	-	Accum.	-	-	-	-	-
			Fresh Oil	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
			From:C97320		58.6%		hangeover				57.3%		nangeover		
	D445 100c	Viscosity	8.47	9.04	8.65	8.19	8.12	8.03	7.86	8.88	8.49	8.21	8.36	8.18	8.28
	D445 40c	Viscosity			45.44				43.6		44.46				43.99
		Viscosity Index	0.10		172		0.71		172		171		0.00		166
	D4739	Buffer	9.49	_	9.06		8.54		8.5		8.51		8.05		8.96
	D5185	Al	2	2	1	2	2	2 <1	2 <1	3	2	2 <1	2 <1	2	2
		Sb Ba	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1	<1 2	<1 <1	<1	<1	<1 <1	<1 <1
		В	14	103	45	41	39	43	42	177	89	77	73	76	77
		Ca	902	2537	1707	1613	1645	1651	1667	2194	1459	1464	1409	1420	1446
TEST		Cr	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ě		Cu	<1	113	68	51	57	58	55	202	116	99	97	96	110
L		Fe	1	12	7	6	8	9	10	19	10	8	11	11	12
		Pb	<1	4	1	<1	1	2	2	4	2	1	2	2	2
		Mg	1259	10	742	867	857	889	889	11	726	907	858	894	899
		Mn	<1	1	<1	<1	<1	<1	<1	2	1	<1	<1	1	1
		Мо	64	4	38	44	44	44	42	6	39	47	46	46	45
		Ni	<1	<1	<1	<1	<1	<1	<1	2	<1	<1	1	<1	<1
		P	1079	832	1019	1118	916	1164	1129	764	954	1117	878	1108	1082
		Si	5	29	8	6	8	8	7	19	10	8	9	10	10
		Ag	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Na	<5	6	5	<5	5	5	<5	6	5	6	<5	5	<5
		Sn	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Zn	1265	1310	1223	1261	1259	1245	1315	1226	1161	1229	1204	1196	1270
		K	<5	<5	<5 <1	<5	<5 2	<5	<5	<5	<5	<5	<5 2	<5	<5
		Sr V	<1 <1	<1 <1	<1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1	<1 <1	<1 <1
		v Ti	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Cd	<1	4	2	2	2	2	3	7	4	4	4	4	5
	D664 Acid	Buffer	1.65	-	1.6		1.7		1.58	1 '	1.45	7	1.52	7	1.36
	IR FTNG	Oxidation Nitration	1.05		1.0	D	id not analy	ze	1.50		1.73	D	id not analy	ze	1.50
	D6304	Water Content			1073				1344		1174				1327
	D3524	Fuel Dilution					Not Applicab	le				٨	lot Applicab	le	

Table B-17. Ft. Benning, UOA, MTV (CONT)

								•						
				нн		TV .1 (1!	53)					TV -112		
					ENG	SINE					ENG	SINE		
			Miles	5328.1	5328.5	5335	5335	6344.5	Miles	6985.6	6986.2	6986.2	6986	6986.2
			Accum.	-	0.4	6.9	6.9	1016.4	Accum.	-	0.6	0.6	0.4	0.6
			Hours	-	-	-	-	-	Hours	-	-	-	-	-
			Accum.	-	-	-	-	-	Accum.	-	-	-	-	-
				Initial	1st QTR	2nd QTR	3rd QTR	4th QTR		Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
	D445 100c	Viscosity		9.2	8.64	9.11	8.3	8.37		9.21	9.01	9.07	8.9	8.8
	D445 40c	Viscosity		49.01				45.17		50.08				49.07
		Viscosity Index		173				164		168				160
	D4739	Buffer		10.09		9.43		7.99		9.74		8.9		8.01
	D5185	Al		1	1	1	2	2		2	1	2	1	1
		Sb		<1	<1	<1	<1	<1		1	1	1	1	<1
		Ba		<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
_		В		<1	2	<1	<1	<1		<1	1	<1	1	1
Contro		Ca		3447	3592	3789	3593	3754		3444	3577	3555	3440	3596
4		Cr		<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Cu		2	7	<1	3	4		2	3	3	3	8
0		Fe		5	6	7	11	21		6	5	6	6	6
O		Pb		<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Mg		9	13	10	10	13		14	14	16	14	14
		Mn		<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Mo		<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Ni D		<1 1222	<1	<1	<1 1394	<1		<1 1245	<1 1390	<1	<1	<1
		P Si		5	1367 4	1108 5	1394	1414		5		1076 4	1377 4	1394 4
				<1	4 <1	<1	<1	6 <1		<1	4 <1	<1	4 <1	<1
		Ag Na		7	10	23	20	24		<1 <5	6	<1 <5	<1 <5	5
		Sn		<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Zn		1448	1433	1517	1455	1498		1465	1436	1466	1416	1451
		K		<5	<5	7	6	8		<5	<5	<5	<5	5
		Sr		1	1	3	1	1		1	1	3	1	1
		v		<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Τi		<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Cd		<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
	D664 Acid	Buffer		2.35	_	2.44	-	2.68		2.28	_	2.18	_	2.23
	IR FTNG	Oxidation		0				0		0				0
		Nitration		0				0		0				0
	D6304	Water Content		1144				1289		1234				1410
	D3524	Fuel Dilution		<0.3				<0.3		<0.3				<0.3

Table B-18. Ft. Benning, UOA, MTV (CONT)

					нн	M' C-11		53)					TV -112		
					TR/	ANSN	/ISS	ON			TRA	ANSI	ИISS	ION	
				Miles	5328.1	5328.5	5335	5335	6344.5	Mile	s 6985.6	6986.2	6986.2	6986	6986.2
				Accum.	-	0.4	6.9	6.9	1016.4	Accum		0.6	0.6	0.4	0.6
				Hours	-	-	-	-	-	Houi	s -	-	-	-	-
				Accum.	-	-	-	-	-	Accum		-	-	-	-
					Initial	1st QTR	2nd QTR	3rd QTR	4th QTR		Initial	1st QTR	2nd QTR	3rd QTR	4th QTR
	D445 100c	Viscosity			9.52	8.88	8.85	8.78	8.45		9.11	8.8	8.96	8.74	8.9
	D445 40c	Viscosity			55.1				49.62		50.41				50.13
		Viscosity Index			157				147		164				159
	D4739	Buffer			8.43		8.26		8.52		8.94		8.26		8.02
	D5185	Al			3	3	3	4	4		3	2	3	3	3
		Sb			<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Ba			<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
_		В			36	34	32	34	33		53 3027	33	28	28	28
9		Ca			2752	2954	2946	2853	3022			3317	3269	3196	3376
Contro		Cr Cu			<1 467	<1 532	<1 546	<1 550	<1 677		<1 332	<1 394	<1 399	<1 368	<1 422
<u> </u>		Fe			24	21	21	26	27		17	15	15	18	18
Q		Pb			2	21	21	20	2		3	4	3	3	3
O		Mg	-		48	41	40	39	43		18	17	20	18	18
		Mn			<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Mo			2	1	2	1	2		<1	<1	<1	<1	<1
		Ni			<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Р			1026	1194	1164	1181	1198		1047	1290	1270	1286	1279
		Si			8	8	8	8	7		20	7	6	8	8
		Ag			<1	<1	<1	<1	<1		<1	<1	<1	<1	1
		Na			<5	7	<5	6	5		<5	5	<5	<5	<5
		Sn			<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Zn			1245	1263	1282	1249	1317		1310	1369	1372	1343	1408
		к			<5	<5	<5	<5	<5		<5	5	<5	<5	<5
		Sr			1	1	<1	1	<1		1	1	1	1	1
		V			<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
		Τi			<1	<1	<1	<1	<1		<1	<1	<1	<1	<1
	Deca A · ·	Cd			4	5	5	5	6		3	4	4	4	4
	D664 Acid	Buffer			1.43		1.63		1.63		1.45		1.79		1.85
	IR FTNG	Oxidation				D	id not analy	ze			_	D	id not analy	ze	
	DESON	Nitration Water Content			1166				1074		1245				1972
	D6304 D3524	Fuel Dilution			1100		lot Applicabl	lo.	1074		1245		lot Annlicah	lo	19/2
	D3524	ruei Dilution				٨	iot Applicabl	e					lot Applicab	ie	

APPENDIX C. Ft. Bliss Field Demo Raw Data

Table C-1. Ft. Bliss, Vehicle Utilization, M88A2

M88A2

	Oil Tune	Bumper	Start o	f Test	1st (QTR	2nd	QTR	3rd (QTR	4th	QTR	
	Oil Type	No.	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	
TEST	Oil A	E319	1502		1512		1828		1872		1891		
TEST	Oil A	F864	30		32		84		90		240		December
CONTROL	-	E316					825				1010		Recordings
CONTROL	-	F861			323		824		830		483		
		TEST	Oil A	E319	10		316		44		19		
		TEST	Oil A	F864	2		52		6		150		Assumulation by Overton
		CONTROL	-	E316							185		Accumulation by Quarter
		CONTROL	-	F861			501		6				
		TEST	Oil A	E319	10		326		370		389		
		TEST	Oil A	F864	2		54		60		210		Total Accumulation
		CONTROL	-	E316							185		Total Accumulation
		CONTROL	-	F861			501		507				

Note: Reliable hr meter readings were not able to be attained

Table C-2. Ft. Bliss, Vehicle Utilization, Bradley

BRADLEY

	Oil True	Bumper	Start o	of Test	1st (QTR	2nd	QTR	3rd (QTR	4th	QTR	
	Oil Type	No.	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	
TEST	Oil A	A11	3685		3699		4912		4912		4953		
TEST	Oil A	B23	3491		3504		4073		4073		4103		
TEST	Oil B	HQ33	1433		1445		1736		1739		1765		December
TEST	Oil B	B13	2159		2177		2809		2809		5335		Recordings
CONTROL	-	B21			4132		4637				4671		
CONTROL	-	B22			3589		4057				4090		
		TEST	Oil A	A11	14		1213		0		41		
		TEST	Oil A	B23	13		569		0		30		
		TEST	Oil B	HQ33	12		291		3		26		Accumulation by Quarter
		TEST	Oil B	B13	18		632		0		2526		Accumulation by Quarter
		CONTROL	-	B21			505				34		
		CONTROL	-	B22			468				33		
		TEST	Oil A	A11	14		1227		1227		1268		
		TEST	Oil A	B23	13		582		582		612		
		TEST	Oil B	HQ33	12		303		306		332		Total Accumulation
		TEST	Oil B	B13	18		650		650		3176		Total Accumulation
		CONTROL	-	B21			505				539		
		CONTROL	-	B22			468				501		

Note: Bradley mileage accumulation listed in kilometers (km), No hr meter readings

Table C-3. Ft. Bliss, Vehicle Utilization, MATV

MATV

	Oil Type	Bumper	Start o	of Test	1st (QTR	2nd	QTR	3rd (QTR	4th (QTR	_
	Oil Type	No.	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	
TEST	Oil A	D11N	2758	1503	3117	1668	3908	2194	3910		3915	2199	
TEST	Oil A	D23	3829	846	4244	976	5035	1372	5035		5042	1375	
TEST	Oil A	D13	3903	1377	4267	1517	4671	1912	4674		4678	1916	
TEST	Oil B	D14N	2276	1368	2643	1515	3390	2025	3390		3397	2028	Recordings
TEST	Oil B	D24	2452	1146	2780	1274	3409	1912	3409		3417	1917	Recordings
TEST	Oil B	D22	2407	663	2765	787	3229	1294	3429		3437	1299	
CONTROL	-	D12			2228	924	2767	1367	2767		2774	1371	
CONTROL	-	D21N			2555	1200	3238	1703	3243		3246	1707	
		TEST	Oil A	D11N	359	165	791	526	2		5	5	
		TEST	Oil A	D23	415	130	791	396	0		7	3	
		TEST	Oil A	D13	364	140	404	395	3		4	4	
		TEST	Oil B	D14N	367	147	747	510	0		7	3	Accumulation by Quarter
		TEST	Oil B	D24	328	128	629	638	0		8	5	Accumulation by Quarter
		TEST	Oil B	D22	358	124	464	507	200		8	5	
		CONTROL	-	D12			539	443	0		7	4	
		CONTROL	-	D21N			683	503	5		3	4	
		TEST	Oil A	D11N	359	165	1150	691	1152		1157	696	
		TEST	Oil A	D23	415	130	1206	526	1206		1213	529	
		TEST	Oil A	D13	364	140	768	535	771		775	539	
		TEST	Oil B	D14N	367	147	1114	657	1114		1121	660	Total Accumulation
		TEST	Oil B	D24	328	128	957	766	957		965	771	Total Accumulation
		TEST	Oil B	D22	358	124	822	631	1022		1030	636	
		CONTROL	-	D12			539	443	539		546	447	
		CONTROL	-	D21N			683	503	688		691	507	

Table C-4. Ft. Bliss, Vehicle Utilization, MAXXPRO

MAXXPRO

	Oil Type	Bumper	Start o	of Test	1st (QTR	2nd	QTR	3rd (QTR	4th (QTR	
	Oil Type	No.	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	Mileage	Hours	
TEST	Oil A	C-107			2213		3302		3350		3350		
TEST	Oil B	HQ581	7233		7645		8027		8183		8246		Recordings
CONTROL	-	HQ582	7627		7629		7629		7674		8179		
		TEST	Oil A	C-107			1089		48		0		
		TEST	Oil B	HQ581	412		382		156		63		Accumulation by Quarter
		CONTROL	-	HQ582	2		0		45		505		
		TEST	Oil A	C-107			1089		1137		1137		
		TEST	Oil B	HQ581	412		794		950		1013		Total Accumulation
		CONTROL	-	HQ582	2		2		47		552		

Note: No hr meter readings

Table C-5. Ft. Benning, UOA, M88A1/A2

Carried Hours Carried Hour	9 240 4 210.5 4 62.9 62.9 QTR 4th QTI
Fresh Oil From:C97320 Sa.91 Sa.69 Sa.69 Sa.18 Sa.89 Sa.91 Sa.69 Sa.18 Sa.89 Sa.91 Sa.69 Sa.18 Sa.89 Sa.91 Sa.69 Sa.99 Sa.9	9 240 4 210.5 4 62.9 62.9
Miles 1502.1 1511.8 1828 1891.01 Miles 29.5 35 Accum. - 9.7 325.9 388.91 Accum. - 5.5	4 210.5 4 62.9 62.9
Collaborate	4 210.5 4 62.9 62.9
Column C	4 62.9 62.9
Collaborary	62.9
Collaborary	62.9
Presh Oil From:C97320 Fresh Oil Prom:E16801 R.47 R.45 Prom:E16801 R.47 R.45 Prom:E16801 R.47 R.47 Prom:E16801 R.47 R.47 R.47 Prom:E16801 R.47 R	
D445 100c Viscosity R.47 R.69 R.60 R.60	
D445 40c Viscosity D2270 D2270 Viscosity D2270 Viscosity D2270 Viscosity D2270 Viscosity D2270 Viscosity D2270 Viscosity D2270 D2270 Viscosity D2270	
D2270 Viscosity Index D4739 Buffer 9.49 10.44 8.38 7.29 7.5 9.15 9.15	2 9.88
D4739 Buffer 9.49 10.44 59 16 18 96 33 5 4 4 4 59 16 18 96 33 5 4 4 4 59 16 18 96 33 5 4 4 4 4 59 16 18 96 33 5 4 4 4 51 51 51 51 5	55.45
D4739 Buffer 9.49 10.44 59 16 18 96 33 5 4 4 4 59 16 18 96 33 5 4 4 4 59 16 18 96 33 5 4 4 4 51 51 51 51 5	166
Sb C1 C1 C1 C1 C1 C1 C1 C	6.94
Ba	8
B	l <1
Ca 902 3563 2932 1444 1375 1695 11122 2686 3437 3097	l <1
Fe 1 2 218 56 72 282 101 27 8 13 14 13 3 4 4 14 15 15 15 15 15	5
Fe 1 2 218 56 72 282 101 27 8 13 14 13 3 4 4 14 15 15 15 15 15	24 3634
Fe 1 2 218 56 72 282 101 27 8 13 14 13 3 4 4 14 15 15 15 15 15	7
Fe 1 2 218 56 72 282 101 27 8 13 Pb <1 7 2 2 6 2 2 <1 <1 Mg 1259 16 479 1110 1056 1219 1307 241 86 67 Mn	12
Pb <1 <1 7 2 2 6 2 2 <1 <1 <1 <1	2 36
Mg 1259 16 479 1110 1056 1219 1307 241 86 67	1 3
Mn	61
Mo 64 8 28 58 54 72 70 2 7 7 Ni <1 8 2 3 11 4 <1 <1 <1 <1 P 1079 1129 1042 979 884 1235 1189 972 1067 951	l <1
Ni <1 <1 8 2 3 11 4 <1 <1 <1 P 1079 1129 1042 979 884 1235 1189 972 1067 951	10
P 1079 1129 1042 979 884 1235 1189 972 1067 951	1 2
	11 1378
	5 37
Ag <1	5
Na <5 10 32 13 10 20 17 13 11 7	14
Sn <1	1 3
	08 1706
K <5 8 12 5 <5 24 9 5 9 6	7
Sr d d d d d d d d d 1	1
V d d d d d d d d d d	l <1
Ti d d 1 d 3 1 d d d	l <1
Cd <1 <1 20 5 6 12 4 23 5 7	l 16
D664 Acid Buffer 1.65 2.84 2.31 3 2.15 2.68	3.23
IRFTNG Oxidation - 5.04 -	1.59
Nitration - 0.37 -	0
D6304 Water Content 804 589 523	
D3524 Fuel Dilution - <0.3 -	584

Table C-6. Ft. Benning, UOA, M88A1/A2 (CONT)

				317 (16 (2	nd C	t QTI QTR o				188 <i>A</i> F861		
				E	NGIN	JE			Е	NGIN	IE	
			Miles	N/A	1855.5	825.4	1010	Miles	N/A	323.3	N/A	483.3
			Accum.	-	-	-	184.6	Accum.	-	-	-	160
			Hours	-	71.5	Non Fun	ctioning	Hours	-	27.2	Tach Re	emoved
			Accum.	-	-	Nonrui	ctioning	Accum.	-	-	Taciiik	illoveu
				Initial	1st QTR	2nd QTR	4th QTR		Initial	1st QTR	2nd QTR	4th QTR
	D445 100c	Viscosity				14.4	13.33			12.55	12.8	11.36
	D445 40c	Viscosity				108.23	96.83			88.76		76.34
		Viscosity Index				136	137			138		140
	D4739	Buffer				7.15	6.37			7.65		6.6
	D5185	Al			17	11	21			7	8	15
		Sb			<1	<1	<1			<1	<1	<1
		Ba			<1	<1	<1			<1	<1	<1
7		В			5	3	4			3	4	4
<u> </u>		Ca			2254	1721	1674			2458	2566	2641
Control		Cr Cu			17 24	14 9	21 19			6	8	6 13
		Fe		o o	100	36	69		<u>e</u>	22	28	59
ŭ		Pb		II II		4			ilab	2	28	4
				Ava	6 474	733	6 775		٩٧a	230	232	257
		Mg		lot	1				t)	<1	<1	<1
		Mn		<u>e</u>		<1	1 52		e N		2	
		Mo Ni		Sample Not Availble	25 4	47 4	53 5		Sample Not Available	1	2	3
		P		Sa	940	1216	1232		Sal	930	1215	1278
		Si			75	53	73			45	55	62
		Ag			2	<1	2			2	3	3
		Ag Na			11	11	49			10	14	26
		Sn			7	4	7			<1	14	4
		Zn			1413	1354	1343			1303	1350	1408
		K			<5	<5	<5			<5	<5	<5
		Sr			2	<1	<1			2	<1	<1
		V			<1	<1	<1			<1	<1	<1
		Ti			<1	<1	<1			<1	<1	<1
		Cd			13	5	8			4	7	9
	D664 Acid	Buffer				2.55	2.73			1.74	· ·	2.19
	IR FTNG	Oxidation				-	2.49			-		1.34
		Nitration				-	0			-		0
	D6304	Water Content				343	559			697		728
	D3524	Fuel Dilution				-	1.6			-		0.5

Table C-7. Ft. Bliss, UOA, Bradley

						BF	RADL A11	EY			BF	RADL B23	EY.	
						SCI	PL O	LA			SCI	PL O	LA	
						Е	NGIN	ΙE			Е	NGIN	JE	
					Miles	3685	3699	4912	4953	Miles	3491	3504	4073	4103
					Accum.	-	14	1227	1268	Accum.	-	13	582	612
					Hours	-	-	-	-	Hours	-	-	-	-
			OILA	OIL B	Accum.	-	-		-	Accum.	-	-	-	-
			Fresh Oil	Fresh Oil	As found	Initial	1st QTR	2nd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	4th QTR
			From:C97320	From:E16801										
	D445 100c	Viscosity	8.47	8.69		9.7	9.21	9.31	9.38		9.5	9.38	8.44	8.69
	D445 40c	Viscosity				56.36			52.91		53.93			46.15
		Viscosity Index				158			162		161			170
	D4739	Buffer	9.49	10.44		9.06		7.32	6.85		8.52		7.88	7.06
	D5185	Al	2	4	2	1	1	2	2	4	2	2	3	3
		Sb	<1	<1	2	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ba B	<1 14	<1 4	1 5	<1 14	<1 12	<1	<1 11	<1 4	<1 14	<1 12	<1 12	<1 12
[2		Са	902	3563	1315	1017	986	11 993	1009	2061	1250	1209	1055	1048
TEST		Cr	902 <1	3503 <1	<1	<1	986 <1	993	5	6	1250	2	3	3
\vdash		Cu	<1	<1	10	3	5	11	11	42	10	11	7	7
		Fe	1	2	11	4	11	32	31	45	12	14	16	17
		Pb	<1	<1	2	<1	2	7	6	9	2	2	5	4
		Mg		16	816	1191	1173	1256	1275	418	1092	1050	1226	1244
		Mn	<1	<1	3	<1	2	3	3	2	<1	<1	<1	<1
		Mo	64	8	46	60	59	62	65	21	57	52	59	63
		Ni	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		P	1079	1129	940	925	871	1105	1134	870	913	842	1102	1132
		Si	5	7	9	7	11	13	12	8	7	6	6	6
		Ag	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Na	<5	10	11	7	5	10	12	18	9	6	6	9
		Sn	<1	<1	<1	<1	<1	1	<1	3	<1	<1	<1	<1
		Zn		1710	1323	1299	1236	1264	1256	1337	1320	1260	1254	1257
		K	<5	8	11	<5	12	20	21	22	8	5	<5	<5
		Sr	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	<1	<1
		V	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti Cd	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
	D664 Acid	Buffer	1.65	2.84	<1	1.95	<1	<1	2.09	<1	2.06	<1	<.1	2.19
	IR FTNG	Oxidation	1.03	2.04		1.95			3.08		2.00			2.19
	INFING	Nitration				-			0.09		-			0
	D6304	Water Content				574			343		569			199
	D3524	Fuel Dilution				-			0.7		-			2.8

Table C-8. Ft. Bliss, UOA, Bradley (CONT)

							RADL HQ33				BF	RADL B13	EΥ	
						SCI	P L O I	L B			SC	PL O	IL B	
						E	NGIN	ΙE			Ε	NGIN	JE	
					Miles	1433	1445	1736	1765	Miles	2159	2177	2809	5335
					Accum.	-	12	303	332	Accum.	-	18	650	3176
					Hours	-	-	-	-	Hours	-	-	-	-
			OILA	OIL B	Accum.	-	-	-	-	Accum.	-	-	-	-
			Fresh Oil	Fresh Oil	As found	Initial	1st QTR	2nd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	4th QTR
			From:C97320	From:E16801	,									_
	D445 100c	Viscosity	8.47	8.69		9.42	9.55	9.24	9.12		9.36	9.17	8.22	8.19
	D445 40c	Viscosity				52.98			47.18		51.6			42.87
	D2270	Viscosity Index				163			179		166			169
	D4739	Buffer	9.49	10.44		8.76		8.29	8.03		8.62		5.87	5.56
	D5185	Al	2	4	3	3	3	4	4	5	4	3	5	6
		Sb	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ва		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
—		В		4	3	6	3	3	3	4	4	3	3	3
TEST		Ca		3563	1991	3235	3058	3252	3309	2075	3239	2732	2939	2969
ш		Cr	<1	<1	4	1	2	2	2	4	1	1	3	3
•		Cu	<1	<1	40	9	9	9	7	57	13	12	27	26
		Fe	1	2	33	9	10	14	13	42	11	12	28	28
		Pb	<1	<1	6	<1	1	2	3	10	3	3	13	12
		Mg	1259	16	521	132	125	108	80	428	113	199	155	131
		Mn	<1	<1	2	<1	<1	<1	<1	2	<1	<1	<1	<1
		Mo	64	8	26	12	12	12	11	19	11	16	14	13
		Ni	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		P	1079	1129	882	1014	964	1286	1314	877	1040	908	1145	1175
		Si	5	7	8	7	6	6	6	13	8	6	7	8
		Ag Na	<1	<1 10	<1 15	<1 10	<1 7	<1 9	<1 12	<1 12	<1 9	<1 6	<1 9	<1 12
		Na Sn	<5 <1	10 <1	2	<1	<1	1	12	2	<1	<1	2	2
		Zn	1265	1710	1326	1609	1555	1609	1617	1390	1618	1479	1503	1506
		K		8	9	1009	8	8	8	7	1018	7	7	8
		Sr		<1	<1	<1	2	1	1	<1	<1	2	<1	1
		V	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	D664 Acid	Buffer	1.65	2.84	_	2.82			3.09		2.54	_		3.1
	IR FTNG	Oxidation				-			2.43		-			3.64
		Nitration				-			0		-			0
	D6304	Water Content				486			190		614			265
	D3524	Fuel Dilution				-			0.4		-			5.4

Table C-9. Ft. Bliss, UOA, Bradley (CONT)

						BF	RADL A11	EΥ		_	BF	RADL B23	EY.	
						SCI	PL O	LA			SCI	PL O	LA	
					Т	RAN	SMI	SSIO	N	Т	RAN	SMI	SSIO	N
					Miles	3685	3699	4912	4953	Miles	3491	3504	4073	4103
ĺ					Accum.	-	14	1227	1268	Accum.	-	13	582	612
					Hours	-	-	-	-	Hours	-	-	-	-
			OILA	OIL B	Accum.	-	-			Accum.	-	-	-	-
			Fresh Oil	Fresh Oil	As found	Initial	1st QTR	2nd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	4th QTR
			From:C97320	From:E16801										
	D445 100c	Viscosity	8.47	8.69		9.19	8.56	8.22	8.39		9.77	8.77	8.36	8.58
	D445 40c	Viscosity				51.68			45.6		47.16			47.84
		Viscosity Index				161			162		199			158
	D4739	Buffer	9.49	10.44	_	9.51		9.14	8.38		9.51		8.97	8.02
	D5185	Al		4	3	2	2	13	14	54	4	10	18	20
		Sb	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ba		<1	<1	<1	<1	<1	<1	2	<1	<1	<1	<1
		B Ca		4	5	15	14	13	13	5	16	14	14	14
TES		Ca Cr	902 <1	3563 <1	1466 <1	1118	1062	1082	1072 <1	2368 <1	1031	1142	1166 <1	1181
F		Cu	<1	<1	36	6	39	117	128	872	52	178	271	305
		Fe		2	9	3	4	31	34	62	5	178	271	25
		Pb	<1	<1	4	<1	6	11	13	11	<1	2	4	5
		Mg		16	726	1195	1188	1252	1240	70	1249	1082	1119	1119
		Mn	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1
		Mo		8	42	61	58	61	63	2	63	55	54	56
		Ni	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		P	1079	1129	967	941	868	1145	1171	983	970	888	1134	1162
		Si	5	7	11	7	7	11	12	48	8	14	19	18
		Ag	<1	<1	<1	<1	<1	<1	1	2	<1	<1	1	1
		Na	<5	10	8	6	<5	6	10	15	6	5	7	10
		Sn		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Zn		1710	1317	1312	1230	1252	1253	1151	1287	1229	1240	1234
		К	<5	8	6	<5	6	6	8	<5	<5	<5	<5	<5
		Sr		<1	<1	<1	1	<1	<1	<1	<1	2	<1	<1
		V	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	DCCC	Cd	<1	<1	6	<1	5	22	27	20	1	6	18	22
	D664 Acid	Buffer	1.65	2.84		1.93			1.76		1.87			1.75
	IR FTNG	Oxidation				-			0.28		-			0.28
	DC204	Nitration				601			0 418		341			0 372
		Water Content				DUI			418		341			3/2
	D3524	Fuel Dilution							-		-			-

Table C-10. Ft. Bliss, UOA, Bradley (CONT)

							RADL HQ3				BF	RADL B13	ΕY	
						SC	PL O	IL B			SC	PL O	L B	
					Т	RAN	SMI	SSIO	N	Т	RAN	SMI	SSIO	N
					Miles	1433	1445	1736	1765	Miles	2159	2177	2809	5335
					Accum.	-	12	303	332	Accum.	-	18	650	3176
					Hours	-	-	-	-	Hours	-	-	-	-
			OILA	OIL B	Accum.	-	-	-	-	Accum.	-	-	-	-
			Fresh Oil	Fresh Oil	As found	Initial	1st QTR	2nd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	4th QTR
				From:E16801										
	D445 100c	Viscosity	8.47	8.69		8.96	9.06	9.02	8.72		8.79	8.84	8.64	9.05
	D445 40c	Viscosity				48.02			50.02		47.07			47.32
		Viscosity Index	0.40			170		0.45	154		169			176
	D4739	Buffer	9.49	10.44	27	9.44	8	9.45	8.57	10	9.52	-	9.59	8.6
	D5185	Al Sb	2 <1	4 <1	27 <1	6 <1	× <1	12 <1	12 <1	19 <1	5 <1	6 <1	13 <1	13 <1
		Ba	<1	<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
_		В	14	4	2	5	4	4	3	4	4	4	3	5
2		Ca	902	3563	2738	3395	3130	3338	3304	2648	3504	3237	3418	3273
TES.		Cr	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
—		Cu	<1	<1	644	81	129	145	156	745	63	136	266	289
		Fe	1	2	38	7	10	13	15	44	6	8	16	18
		Pb	<1	<1	40	5	10	14	16	21	2	5	13	18
		Mg	1259	16	135	37	48	48	47	206	29	41	38	36
		Mn	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Мо	64	8	7	8	8	8	9	1	7	7	7	7
		Ni	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		P	1079	1129	996	1045	1003	1304	1319	1051	1038	1030	1319	1286
		Si		7	49	12	13	15	15	27	8	8	10	10
		Ag	<1	<1	1	<1	<1	<1	<1	2	<1	<1	<1	<1
		Na	<5	10	19	11	11	10	13	9	9	8	9	8
		Sn	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Zn		1710	1234	1662	1546	1576	1560	1253	1677	1575	1596	1560
		K Sr	<5 <1	8 <1	29 <1	13 <1	11 <1	13 1	13 1	5 <1	10 <1	5 <1	6	6 <1
		Sr V	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		V Ti	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Cd		<1	35	4	8	11	12	38	3	8	16	18
	D664 Acid	Buffer	1.65	2.84	33	2.6			2.53	30	2.41		10	2.15
	IR FTNG	Oxidation	2.03			-			0.09		-			0.56
		Nitration				-			0		-			0.50
	D6304	Water Content				584			311		589			444
	D3524	Fuel Dilution				-			-		-			-

Table C-11. Ft. Bliss, UOA, Bradley (CONT)

					RADL B21	.EY			BF	RADL B22		
				E	NGIN	JE			Е	NGIN	JE	
			Miles	N/A	4132	4637	4671	Miles	N/A	3589	4057	4090
			Accum.	-	-	505	539	Accum.	-	-	468	501
			Hours	-	-	-	-	Hours	-	-	-	-
			Accum.	-	-	-	-	Accum.	-	-	-	-
				Initial	1st QTR	2nd QTR	4th QTR		Initial	1st QTR	2nd QTR	4th QTI
				,,,,,,			٠		2000			
	D445 100c	Viscosity			13.9	13.43	13.42			12.65	14.5	13.75
	D445 40c	Viscosity			102.89							
	D2270	Viscosity Index			136							
	D4739	Buffer			6.33							
	D5185	Al			3	4	4			4	2	2
		Sb			1	1	2			<1	<1	<1
		Ba			2	2	2			<1	<1	<1
_		В			4	4	4			2	3	4
Ö		Ca			1280	1376	1371			2161	1471	1471
Control		Cr			2	4	4			6	2	2
⊆		Cu			13	19	23			30	7	8
Q		Fe		e e	25	41	45		əlc	75	24	24
O		Pb		vail.	5	9	10		/aill	17	4	5
		Mg		ř.	759	808	758		Ť.	248	757	703
		Mn		ž	4	5	5		ž	3	<1	<1
		Мо		Sample Not Availble	45	47	45		Sample Not Availble	11	42	40
		Ni		San	<1	<1	<1		San	<1	<1	<1
		P			873	1109	1089			754	1151	1129
		Si			17	20	20			11	7	5
		Ag			<1	<1	<1			<1	<1	<1
		Na			14	17	18			14	7	8
		Sn			<1	2	3			5	<1	1
		Zn			1269	1286	1279			1189	1290	1273
		К			8	12	13			5	<5	<5
		Sr			<1	<1	<1			<1	<1	<1
		V			<1	<1	<1			<1	<1	<1
		Ti			<1	<1	<1			<1	<1	<1
		Cd			<1	<1	<1			<1	<1	<1
	D664 Acid	Buffer			2.43		2.46					
	IR FTNG	Oxidation			-		2.85					
		Nitration			-		0					
		Water Content			343		217					
	D3524	Fuel Dilution			-		<0.3					

Table C-12. Ft. Bliss, UOA, Bradley (CONT)

				BF	RADL B21	EY.			BF	RADL B22		
			Т	RAN	SMI	SSIO	N	Т	RAN	ISMI	SSIO	N
			Miles	N/A	4132	4637	4671	Miles	N/A	3589	4057	4090
			Accum.	-	-	505	539	Accum.	-	-	468	501
			Hours	-	-	-	-	Hours	-	-	-	-
			Accum.	-	-	-	-	Accum.	-	-	-	-
				Initial	1st QTR	2nd QTR	4th QTR		Initial	1st QTR	2nd QTR	4th QTR
						<u> </u>						
	D445 100c	Viscosity			10.58	10.73	10.72			12.67	11.99	11.99
	D445 40c	Viscosity			76.48		76.4			93.56		87.22
	D2270	Viscosity Index			124		127			131		130
	D4739	Buffer			6.12		5.76			7.63		7.3
	D5185	Al			39	42	42			7	14	14
		Sb			<1	<1	<1			<1	<1	<1
		Ba			1	1	1			5	5	5
_		В			2	2	2			2	2	3
0		Ca			2592	2592	2705			1823	1915	1937
4		Cr			<1	<1	<1			<1	<1	<1
		Cu			712	738	806			138	230	248
Control		Fe		<u>e</u>	59	60	68		e	17	28	32
O		Pb		aji H	28	28	29		ail	6	8	8
		Mg		τÀ	87	128	130		ξ	492	494	527
		Mn		Š	1	1	1		Š	<1	<1	<1
		Mo		ple	4	6	6		ple	25	25	26
		Ni		Sample Not Availble	<1	<1	<1		Sample Not Availble	<1	<1	<1
		P		S	991	1118	1133		S	953	1196	1193
		Si			54	57	57			9	12	12
		Ag			2	2	2			<1	<1	<1
		Na			22	20	22			6	7	7
		Sn			<1	<1	<1			<1	<1	<1
		Zn			1155	1173	1172			1352	1386	1380
		к			43	41	42			<5	<5	<5
		Sr			<1	<1	<1			<1	<1	<1
		V			<1	<1	<1			<1	<1	<1
		Ti			<1	<1	<1			<1	<1	<1
		Cd			28	27	28			11	18	20
	D664 Acid	Buffer			1.53		1.55			1.88		1.92
	IR FTNG	Oxidation			-		0.3			-		0.15
		Nitration			-		0			-		0
	D6304	Water Content			329		270			340		254
	D3524	Fuel Dilution			-		-			-		-

Table C-13. Ft. Benning, UOA, MATV

						Ì	MAT\ D11N PL OI	J				MAT' D23					MAT\ D13		
						EI	NGIN	ΙE			El	NGIN	ΙE			E	NGIN	JE	
					Miles	2757.5	3117.3	3907.8	3914.8	Miles	3828.8	4243.7	5035	5042.3	Miles	3902.7	4266.5	4671.2	4677.9
					Accum.	-	359.8	1150.3	1157.3	Accum.	-	414.9	1206.2	1213.5	Accum.	-	363.8	1913.7	1920.4
					Hours	1502.7	1667.9	2193.6	2199.3	Hours	845.6	975.7	1372.1	1375.4	Hours	1377.1	1516.5	1911.7	1916.3
			OILA	OILB	Accum.		165.2	690.9	696.6	Accum.	-	130.1	526.5	529.8	Accum.		139.4	534.6	539.2
			Fresh Oil	Fresh Oil	As found	Initial	1st QTR	2nd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	4th QTR
			From:C97320																
	D445 100c	Viscosity	8.47	8.69		8.95	8.76	8.87	9.08		8.93	8.94	8.79	9.05		9.26	9.15	9.13	9.28
	D445 40c	Viscosity				49.59			51.14		49.59			50.34		49.99			52.37
		Viscosity Index	0.40	10.44		163		6.67	160		162		7.61	162		170		7.22	161
	D4739 D5185	Buffer Al	9.49 2	10.44 4	4	8.69 2	2	6.67 4	6.13	6	8.92 2	2	7.61 3	6.81	4	9	3	7.23 4	6.3
	D2102	Sb	<1	4 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ba		<1	4	<1	<1	<1	<1	3	<1	<1	<1	<1	3	<1	<1	<1	<1
—		В		4	1	16	13	9	10	1	14	13	10	10	15	16	14	11	11
TEST		Ca		3563	2868	1225	1196	1285	1292	3049	1226	1217	1242	1206	2715	1171	1173	1265	1254
Ш		Cr	<1	<1	3	<1	1	2	2	3	<1	<1	2	1	3	<1	1	2	2
		Cu	<1	<1	608	86	140	162	169	673	97	143	174	175	372	48	86	108	111
		Fe	1	2	63	10	18	38	39	68	11	18	27	28	47	8	15	28	30
		Pb		<1	2	<1	<1	1	1	2	<1	<1	1	<1	1	<1	<1	1	1
		Mg	1259	16	113	1170	1085	1162	1162	62	1142	1085	1195	1178	405	1215	1138	1213	1212
		Mn	<1	<1	2	<1	<1	<1	<1	2	<1	<1	<1	<1	1	<1	<1	<1	<1
		Mo	64	8	1	58	55	57	58	<1	56	54	58	59	26	61	58	61	62
		Ni	<1 1079	<1 1129	<1 970	<1	<1 894	<1 1074	<1 1111	<1	<1 918	<1	<1	<1	<1 1046	<1	<1 916	<1	<1
		Si	1079 5	7	18	955 8	894	1074	1111	952 15	7	895 10	1106 10	1121 9	1046	995 7	916	1107 10	1137 10
		Ag	_	/ <1	1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Na	<5	10	8	6	7	6	9	8	6	6	5	8	6	7	6	5	7
		Sn	<1	<1	2	<1	<1	<1	<1	3	<1	<1	<1	<1	2	<1	<1	<1	<1
		Zn	1265	1710	1399	1319	1279	1320	1317	1338	1310	1257	1292	1280	1477	1331	1283	1323	1317
		к	<5	8	7	<5	<5	<5	<5	7	<5	<5	<5	<5	6	<5	<5	<5	<5
		Sr	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		v	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	D664 Acid	Buffer	1.65	2.84		1.84			3.01		2.06			2.54		2.03			3.08
	IR FTNG	Oxidation				-			4.58		-			2.87		-			4.01
	DC304	Nitration				-			0.19		-			0		- 576			721
		Water Content				630			434		514			503		576			
	D3524	Fuel Dilution				-			< 0.3		-			<0.3		-			<0.3

Table C-14. Ft. Benning, UOA, MATV (CONT)

						N	//ATV	/			ľ	VAT	V			١	VAT	V	
							D14N	I				D24					D22		
						SCI	PL OI	L B			SCI	PL O	L B			SC	PL O	IL B	
						El	NGIN	ΙE			E	NGIN	JE			Е	NGIN	JE	
					Miles	2275.5	2643.4	3390	3396.5	Miles	2452.2	2779.9	3409.1	3417	Miles	2406.8	2764.7	3428.8	3436.6
					Accum.	-	367.9	632.5	639	Accum.	-	327.7	651.6	659.5	Accum.	-	357.9	671.3	679.1
					Hours	1367.7	1514.7	2024.9	2027.9	Hours	1146.2	1273.5	1911.9	1916.7	Hours	662.8	787.2	1294.1	1299.1
			OILA	OILB	Accum.	-	147	657.2	660.2	Accum.	-	127.3	765.7	770.5	Accum.	-	124.4	631.3	636.3
			Fresh Oil	Fresh Oil	As found	Initial	1st QTR	2nd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	4th QTR
			From:C97320																
	D445 100c	Viscosity	8.47	8.69		8.92	8.57	8.62	8.72		8.93	8.7	8.4	8.66		9	8.69	8.31	8.6
	D445 40c	Viscosity				47.08			47.95		48.29			46.98		48.41			46.83
		Viscosity Index	0.40	10.44		173		C 7C	162		168		7.10	165		169		7.12	164
	D4739 D5185	Buffer Al	9.49 2	10.44 4	2	9.45	4	6.76 7	5.69 7	4	9.12 4	4	7.16 4	6.05 4	3	8.97 4	4	7.12 7	6.16 7
	D2102	Sb	<1	4 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ba		<1	2	<1	<1	<1	<1	2	<1	<1	<1	<1	3	<1	<1	<1	<1
—		В		4	2	4	3	2	3	2	4	3	2	4	2	4	4	2	3
TEST		Ca		3563	2732	3525	3321	3438	3432	3053	3455	3310	3545	3569	2971	3522	3311	3552	3503
ш		Cr		<1	2	<1	<1	2	2	3	<1	1	2	2	3	<1	<1	2	2
		Cu	<1	<1	536	37	109	129	133	603	74	98	98	103	544	72	96	102	107
		Fe	1	2	32	4	10	20	21	43	7	11	18	20	44	8	12	22	23
		Pb	<1	<1	1	<1	<1	1	1	2	<1	<1	<1	<1	2	<1	<1	1	<1
		Mg	1259	16	166	22	35	35	33	52	17	17	16	18	93	31	23	22	21
		Mn	<1	<1	1	<1	<1	<1	<1	1	<1	<1	<1	<1	2	<1	<1	<1	<1
		Mo	64	8	1	8	7	7	8	<1	7	7	8	8	1	7	7	8	8
		Ni	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		P	1079	1129	1007	1051	1034	1262	1274	961	1065	1005	1255	1305	991	1098	1012	1266	1291
		Si	5	7	12	7	7	9	8	34	10	16	18	17	15	8	8	8	8
		Ag		<1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	1	<1	<1	<1	<1
		Na Sn	<5 <1	10	8 <1	10 <1	8 <1	8	10 1	10	10 <1	8 <1	8	11 1	10	9 <1	9 <1	8	11
		Sn Zn	1265	<1 1710	1409	1705	1611	1658	1620	1355	1679	1601	1648	1661	1370	1672	1611	1659	1642
		Zn	1265 <5	8	5	1105	7	7	8	8	10/9	6	8	8	8	10/2	7	8	8
		Sr	<1	<1	<1	<1	<1	1	1	<1	<1	<1	1	1	<1	<1	2	1	1
		V	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Ti	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		Cd		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	D664 Acid	Buffer	1.65	2.84		2.88			3.05		2.5			2.77	1	2.91			3.1
	IR FTNG	Oxidation				-			2.24		-			2.89		-			2.71
		Nitration				-			0.19		-			0		-			0
	D6304	Water Content				512			442		558			304		589			258
	D3524	Fuel Dilution				-			<0.3		-			<0.3		-			<0.3

Table C-15. Ft. Benning, UOA, MATV (CONT)

							. (•					
				ľ	MAT D12	/				MAT D21N		
				E	NGIN	ΙE			Е	NGIN	JE	
			Miles	N/A	2227.8	2766.7	2773.6	Miles	N/A	2554.9	3238.1	3245.7
			Accum.	-	-	538.9	545.8	Accum.	-	-	683.2	690.8
			Hours	N/A	924.3	1366.8	1371.2	Hours	N/A	1200.2	1702.5	1706.6
			Accum.	-	-	442.5	446.9	Accum.	-	-	502.3	506.4
				Initial	1st QTR	2nd QTR	4th QTR		Initial	1st QTR	2nd QTR	4th QTR
	D445 100c	Viscosity			11.96	11.97	12.05			12.1	12.14	12.2
	D445 40c	Viscosity			85.96		87.18			87.24		89.27
		Viscosity Index			132		132			132		131
	D4739	Buffer			4.25		2.72			3.61		2.58
	D5185	Al			2	2	2			3	4	4
		Sb			<1	<1	<1			<1	<1	<1
		Ba			2	2	2			3	3	3
_		В			3	3	2			2	2	2
Ó		Ca			2777	2758	2848			2706	2851	2822
Control		Cr			3	3	3			3	3	3
\subseteq		Cu		H.	697	591	633		T.	513	501	507
O		Fe		st (32	42	43		st (52	66	69
0		Pb		Ξ -	2	2	<1		Ξ.	2	2	2
		Mg		Ü	126	122	119		Ü	137	132	128
		Mn		est	2	2	2		est	2	2	2
		Mo		n T	1	1	2		n Ţ	1	1	1
		Ni		o to	<1	<1	<1		ot 0	<1	<1	<1
		P		N.	1012	1094	1148		N.	961	1108	1146
		Si		Unit Not On Test Until 1st QTR	18	17	17		Unit Not On Test Until 1st QTR	16	17	16
		Ag		_	1	1	1		_	<1	<1	<1
		Na			8	7	9			9	8	10
		Sn			2	2	2			2	2	2
		Zn			1335	1359	1356			1345	1381	1362
		К			<5	<5	6			<5	5	5
		Sr			2	<1	1			2	<1	1
		V			<1	<1	<1			<1	<1	<1
		Ti			<1	<1	<1			<1	<1	<1
		Cd			<1	<1	<1			<1	<1	<1
	D664 Acid	Buffer			2.48		3.02			2.9		3.7
	IR FTNG	Oxidation			-		2.61			-		3.32
		Nitration			-		0			-		1.12
	D6304	Water Content			412		385			506		420
	D3524	Fuel Dilution			-		<0.3			-		<0.3

Table C-16. Ft. Benning, UOA, MAXXPRO

							АХХР С107					AXXP IQ58		
						SCI	PL O	LA			SC	PL O	IL B	
						E	NGIN	JE			Е	NGIN	JE	
					Miles	N/A	2113	3302	3350	Miles	7233	7645	8027	8246
					Accum.	-	-	1189	1237	Accum.	-	412	794	1013
					Hours	-	-	-	-	Hours	-	-	-	-
			OILA	OIL B	Accum.	-	-	-	-	Accum.	-	-	-	-
			Fresh Oil	Fresh Oil	As found	Initial	1st QTR	2nd QTR	4th QTR	As found	Initial	1st QTR	2nd QTR	4th QTR
			From:C97320		,					,				
	D445 100c	Viscosity	8.47	8.69			8.58	7.7	7.75		8.93	8.11	7.94	7.7
	D445 40c	Viscosity					47.43		39.87		48.94			40.52
	D2270	Viscosity Index					160		168		165			163
	D4739	Buffer	9.49	10.44			8.24	7.1	6.17		8.61		7.53	6.23
	D5185	Al	2	4	2		1	1	1	1	3	3	3	3
		Sb	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
		Ва	<1	<1	3		<1	<1	<1	<1	<1	<1	<1	<1
_		В		4	24		18	14	13	3	3	3	3	3
TEST		Ca		3563	2190		1093	1104	1101	2237	3379	3073	3247	3136
نت		Cr	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
-		Cu	<1	<1	41	¥.	7	10	12	9	2	2	4	5
		Fe	1	2	36	ğ	7	20	22	24	7	8	12	18
		Pb	<1	<1	7	ii 1s	1	2	2	2	<1	<1	2	2
		Mg	1259	16	8	h	1074	1085	1017	165	47	42	42	42
		Mn	<1	<1	4	st (<1	1	1	1	<1	<1	<1	<1
		Mo		8	<1	J.	54	54	52	2	7	7	7	7
		Ni	_	<1	<1	ţŌ	<1	<1	<1	<1	<1	<1	<1	<1
		P		1129	704	No	831	1048	1031	852	1051	926	1247	1194
		Si	5	7	16	Jnit Not On Test Until 1st QTR	7	7	6	4	6	4	5	5
		Ag		/ <1	<1	⊃	<1	<1	<1	<1	<1	<1	<1	<1
		Na	<5	10	10		<5	6	<5	6	9	<5	7	<5
		Sn	_	<1	2		<1	<1	<1	<1	<1	<1	<1	<1
		Zn	1265	1710	1110		1223	1204	1191	1252	1643	1552	1576	1510
		K		8	15		<5	<5	<5	<5	1043	6	6	5
		Sr	<1	<1	2		2	<1	<1	<1	<1	2	1	<1
		V	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
		Ti		<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
		Cd	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1
	D664 Acid	Buffer	1.65	2.84			1.97	`	2.4	1 1	2.71	``		2.72
	IR FTNG	Oxidation	1.03	2.04			-		3.45		-			1.21
		Nitration							0.19					0.09
	DESUA	Water Content					485		297		466			472
	D3524	Fuel Dilution					403		4.2		-			3.3
	<i>U</i> 3324	i dei Diiddioli							7.4					ر. ي

Table C-17. Ft. Benning, UOA, MAXXPRO (CONT)

				AXPI IQ58		
			Е	NGIN	JE	
		Miles	7627	7629	7629	
		Accum.	-	2	2	
		Hours	-	-	-	Ī
		Accum.	-	-	-	Ī
			Initial	1st QTR	2nd QTR	Î
						Ì
D445 100c	Viscosity		10.02	10.24	10.3	
D445 40c	Viscosity		67.29			
D2270	Viscosity Index		133			
D4739	Buffer		3.77			
D5185	Al		<1	1	<1	
	Sb		<1	<1	<1	
	Ва		<1	<1	<1	
	В		2	2	2	
	Ca		2171	2021	2142	
	Cr		<1	<1	<1	
	Cu		9	8	8	
	Fe		21	19	19	
	Pb		2	1	2	
	Mg		112	124	122	
	Mn		<1	<1	<1	
	Mo		2	2	2	
	Ni		<1	<1	<1	
	Р		823	774	1035	
	Si		4	4	3	
	Ag		<1	<1	<1	
	Na		5	<5	<5	
	Sn		<1	<1	<1	
	Zn		1190	1151	1183	
	K		<5	<5	<5	
	Sr		<1	2	<1	
	V		<1	<1	<1	
	Ti		<1	<1	<1	
	Cd		<1	<1	<1	
D664 Acid	Buffer		2.13			
IR FTNG	Oxidation		-			
	Nitration		-			
D6304			841			
D3524	Fuel Dilution		-			