bike_rental

2024-02-18

1. Exploratory data analysis:

- Load the dataset and the relevant libraries
- Perform data type conversion of the attributes
- Carry out the missing value analysis

Load dataset

```
library(readx1)
bike_data<- read_excel('day.xlsx')
View(bike_data)</pre>
```

Load necessary libraries

```
library(randomForest)
```

```
## randomForest 4.7-1.1
```

```
## Type rfNews() to see new features/changes/bug fixes.
```

library(ggplot2)

```
##
## Attaching package: 'ggplot2'
```

```
## The following object is masked from 'package:randomForest':
##
## margin
```

```
library(caTools)
```

Data type conversion

```
bike_data$dteday <- as.Date(bike_data$dteday)
bike_data$season <- as.factor(bike_data$season)</pre>
```

Missing value analysis

```
print(colSums(is.na(bike_data)))
```

## insta	ant	dteday	season	yr	mnth	holiday	weekday
#	0	0	0	9	0	0	0
## workingo	day we	athersit	temp	atemp	hum	windspeed	casual
##	0	0	0	0	0	0	0
## register	red	cnt					
# #	0	0					

2. Attributes distribution and trends

- Plot monthly distribution of the total number of bikes rented
- Plot yearly distribution of the total number of bikes rented
- Plot boxplot for outliers' analysis

Monthly distribution of total rented bikes

Monthly Distribution of Total Rented Bikes

Yearly distribution of total rented bikes

Yearly Distribution of Total Rented Bikes

Boxplot for outliers analysis

Boxplot for Outliers Analysis

3. Split the dataset into train and test dataset

Drop irrelevant columns for the prediction model

```
X <- bike_data[, !(names(bike_data) %in% c('instant', 'dteday', 'casual', 'registered', 'cn
t'))]
y <- bike_data$cnt</pre>
```

Split the dataset into training and testing sets

```
set.seed(42)
split <- sample.split(y, SplitRatio = 0.8)
X_train <- subset(X, split == TRUE)
X_test <- subset(X, split == FALSE)
y_train <- y[split == TRUE]
y_test <- y[split == FALSE]</pre>
```

4. Create a model using the random forest algorithm

Initialize the Random Forest Regressor model

```
rf_model <- randomForest(y_train ~ ., data = X_train, ntree = 100, seed = 42)
```

5. Predict the performance of the model on the test dataset

Make predictions on the test set

```
y_pred <- predict(rf_model, newdata = X_test)</pre>
```

Evaluate the model performance

```
mse <- mean((y_test - y_pred)^2)
cat('Mean Squared Error on Test Data:', mse, '\n')</pre>
```

```
## Mean Squared Error on Test Data: 594485.5
```

visualize the predictions vs actual values if needed

```
plot(y_test, type = 'l', col = 'blue', lty = 1, ylim = c(0, max(y_test, y_pred)), ylab = 'Tot
al Count', xlab = 'Data Points')
lines(y_pred, col = 'red', lty = 2)
legend('topright', legend = c('Actual', 'Predicted'), col = c('blue', 'red'), lty = 1:2)
```

