Marr's Theory of the Hippocampus Part II: Effect of Recurrent Collaterals

Computational Models of Neural Systems
Lecture 3.4

David S. Touretzky October, 2017

Two Layer Model

Two Layer Model Insufficient?

- Marr claimed the two layer model could not satisfy all the constraints he had established concerning:
 - number of stored memories n
 - number of cells
 - sparse activity: $n \alpha_i \alpha_{i-1} \leq 1$
 - but patterns not too sparse for effective retrieval
 - number of synapses per cell: $S_i \alpha_i N_i \ge 20 N_{i-1}$
- But this was really because he assumed the number of output cells was just 10⁴.
- He switched to a three layer model, with neocortical cells, evidence cells (codons), and output cells.
- The output cells had recurrent collaterals.

The Collateral Effect

- Let \mathcal{P}_{i} be a population of cells forming a simple representation.
- Each cell can learn about 100 input events.
- Population as a whole learns $n = 10^5$ events.
- Hence α_i must be around 10⁻³.
- We require $n \alpha_i \alpha_{i-1}$ to be at most 1. Estimated value based on the above is 0.1.
- Hence we can let $\mathcal{P}_{i-1} = \mathcal{P}_i$ and use recurrent collaterals to help clean up the simple representation.
- Result: external input to \mathcal{P}_{i} need not be sufficient by itself to reproduce the entire simple representation.

Parameters of the Three-Layer Model

- $\mathcal{P}_{_{I}}$ has 1.25×10^6 cells divided into 25 blocks of 50,000.
- \mathcal{P}_2 has 500,000 cells divided into 25 blocks of 20,000.
- P_3 has a single block of 100,000 cells.
- Let number of synapses/cell $S_3 = 50,000$.
- Let x_i be number of active synapses on a cell, i.e., the number used to store one event.
- $n\alpha_{i}$ is the expected number of events a cell encodes.
- Probability of a synapse being potentiated is:

$$\Pi_i = 1 - (1 - x_i / S_i)^{n \alpha_i}$$

Parameters of the Three-Layer Model

$$\Pi_i = 1 - (1 - x_i / S_i)^{n \alpha_i}$$

$$x_{i} = \sum_{r \geq R_{i}} P_{i}(r) \cdot r$$

- $P_{l}(r)$ is the probability that a cell in layer i has exactly r active afferent synapses.
- From the above, we have $L_3 = \alpha_3 N_3 = 217$, and $\alpha_3 = 0.002$.
- If we want useful collateral synapses in \mathcal{P}_3 , must have $n(\alpha_3)^2 \leq 1$.
- So with $n = 10^5$ events, we have $\alpha_3 =$ at most 0.003.

Retrieval With Partial/Noisy Cues

- Let P_{30} be the simple representation of E_0 in P_3 .
- Let P_{31} be the remaining cells in P_3 .
- Let C₀ be the active cells in P₃₀ representing subevent X.
- Let C₁ be the active cells in P₃₁ (noise).
- Note that $C_0 + C_1 = \text{pattern size } L_3$.

Collateral Connections

- The <u>statistical threshold</u> is the ratio $C_0:C_1$ such that the effect of collaterals is zero: $C_0:C_1 = C_0:C_1$
- Collaterals help when statistical threshold is exceeded.
- Calculating $C_{0'}:C_{1'}$ is a bit tricky because there is both a subtractive and a divisive threshold; see Marr §3.1.2.

Collateral Effect in P₃

- Let **b** be an arbitrary cell in P₃.
- Z_{31} is probability of a recurrent synapse onto **b**.
- Number of <u>active</u> recurrent synapses onto **b** is distributed as Binomial(L_3 ; Z_{31}) with expected value L_3Z_{31} .
- Probability that **b** has exactly x active synapses onto it:

$$P_{3'}(x) = \begin{pmatrix} L_3 \\ x \end{pmatrix} \cdot Z_3^x \cdot (1 - Z_3)^{L_3 - x}$$

• **b** is either in P₃₀ or not. We'll consider each case:

- Suppose **b** is in P₃₁, so not in P₃₀.
- Of the x active synapses onto \mathbf{b} , the number of facilitated synapses r is distributed as Binomial(x; $\Pi_{3'}$).
- Probability that exactly r of the x active synapses onto \mathbf{b} have been modified when \mathbf{b} is in P_{31} is:

$$Q_{3'1}(r) = \begin{pmatrix} x \\ r \end{pmatrix} \cdot \Pi_{3'}^r \cdot \left(1 - \Pi_{3'}\right)^{x-r}$$

- Suppose **b** is in P₃₀.
- All afferent synapses from other cells in P_{30} onto **b** will have been modified.
- <u>Active</u> synapses onto **b** are drawn from two distributions:
 - Binomial(C₀; Z₃) for cells in P₃₀ modified with probability 1
 - Binomial(C_1 ; $Z_{3'}$) for cells in P_{31} modified with probability $\Pi_{3'}$
- Approximate this mixture with a single distribution for the number of modified active synapses:
 - Binomial(x; $(C_0 + C_1\Pi_{3'})/(C_0 + C_1)$)

 Let C be the expected fraction of synapses onto b in the subevent X that have been modified:

$$C = \frac{C_0 + C_1 \Pi_{3'}}{C_0 + C_1}$$

Probability that r of x active synapses have been modified when b is in P₃₀ is:

$$Q_{3'0}(r) = \begin{pmatrix} x \\ r \end{pmatrix} \cdot C^r \cdot (1-C)^{x-r}$$

Note: this differs from Marr's formula 3.3.

If all cells in P₃, have threshold R, then:

Statistical threshold is the ratio where

$$C_{0} : C_{1} = C_{0} : C_{1}$$

subject to

$$C_0 + C_1 = C_{0'} + C_{1'} \approx L_3$$

14

Dealing With Variable Thresholds

- In reality, cells in \mathcal{P}_3 do not have fixed thresholds R. They have:
 - A subtractive threshold T
 - A divisive threshold f
- Combined threshold:

$$R(b) = max(T, fx)$$

- Can calculate C0* and C1* using R(b) instead of R.
- Details are in Marr §3.1.2.

Results

- More synapses help: $Z_{3'} = 0.2$ gives a statistical threshold twice as good as $Z_{3'} = 0.1$.
- Good performance depends on adjusting T and f.
 (f should start out low and increase; T should decrease to compensate.)
- Collaterals can have a big effect.
- Recovery of E_0 is almost certain for inputs that are more than $0.1\ L_3$ above the statistical threshold.
- Example: Marr table 7: $L_3 = 200$, threshold is 60:140.
- In general: collaterals help whenever $n\alpha^2 \le 1$. (Sparse patterns; not too many stored memories.)

Marr's Performance Estimate

- Input patterns: $L_1 = 2500$ units active out of 1.25 million (25 blocks of 50,000; 100 active units in each block)
- Output patterns: $L_3 = 217$ units out of 100,000.
- With $n = 10^5$ stored events, accurate retrieval from:
 - $_{-}$ 30 active fibers in one block, all of which are in E $_{0}$
 - $_{\rm -}$ 100 active fibers in one block, of which 70 are in E $_{_{\rm 0}}$ and 30 are noise
- With $n = 10^6$ stored events, accurate retrieval from:
 - $_{-}$ 60 active fibers in one block, all of which are in $E_{_{0}}$
 - $_{-}$ 100 active fibers in one block, of which 90 are in E $_{_{0}}$

Willshaw and Buckingham's Model

- Willshaw and Buckingham implemented a simplified 1/100 scale model of Marr's architecture
- Didn't bother partitioning \mathcal{P}_1 and \mathcal{P}_2 into blocks.
- $P_1 = 8000$ cells, $P_2 = 4000$ cells, and $P_3 = 1024$ cells.
- For two-layer version, omit \mathcal{P}_2 .
- Performance was similar for both architectures.
- Memory capacity was roughly 1000 events.
 - Partial cue of 8% gave perfect retrieval 66% of the time.
 - In two-layer net, 16% cue gave perfect retrieval 99% of the time.
 - In three-layer version, 25% cue gave 100% perfect retrieval.

Three-Layer Model Parameters

$$\alpha_{1} = 0.03$$

$$\alpha_{2} = 0.03$$

$$\alpha_{3} = 0.03$$

$$N_1 = 8000$$

$$N_2 = 4000$$

$$N_3 = 1024$$

$$S_2 = 1333$$

$$S_3 = 2666$$

calc.:

$$L_1 = 240$$

$$L_2 = 120$$

$$L_{3} = 30$$

$$Z_{2} = 0.17$$

$$Z_3 = 0.67$$

$$\Pi_2 = 0.41$$

$$\Pi_3 = 0.41$$

Two vs. Three Layers

- Dashed line is two layer; solid is three layer.
- Open circles: partial cue. Solid circles: noisy cue.
- Two and three layer models perform similarly.

Effects of Memory Load

Division Threshold

- I cell supplies divisive inhibition based on the number of active input lines that synapse onto the pyramidal cell, independent of whether they've been modified.
- P cell measures number of active synapses that have been modified, S. Has absolute threshold T (not shown).
- Cell should fire if S > fA and S > T.

How to Set the Thresholds?

- Maximal similarity strategy: choose T and f that cause the smallest number of cells to be in the wrong state.
 (May not be biologically realizable.)
- Staircase strategy: start with small f and high T. Lower T until enough cells become active. Then raise f slightly and lower T to restore the activity level. Repeat until can no longer maintain activity level or f = 1.
- Competitive strategy: set f = 0 and lower T until the required activity level is reached. This is a k-winner-take-all strategy.
- Measure performance as: # of perfectly recalled patterns divided by total # of patterns. Used 1000 patterns in most experiments.

Comparing Threshold Setting Methods

24

Effect of Collaterals

- Marr estimates that the collaterals should have made their full contribution to recovering the event in about 3 cycles. Additional cycles would provide no benefit.
- McNaughton's commentary:
 - Oscillating cycle of excitation and inhibition in hippocampus, known as the theta rhythm: around 7 Hz (140 msec cycle).
 - Hippocampal cell output is phase-locked to the theta rhythm.
 - Assume pattern completion takes place in the ¼ cycle where excitation is increasing: 35 msec window.
 - Conduction delay and synaptic delay total 6–8 msec.
 - This leaves room for just 4–6 cycles in that 35 msec window: very close to Marr's prediction.

Assessment of Marr's Theory

Strong points:

- Sparse, topographic connectivity: more biologically realistic.
- Multiple inhibitory mechanisms: subtraction and division.
- Predicts when recurrent collaterals will help retrieval.
- Anticipated many important findings: LTP, division operations, information transfer during sleep.

Weak points:

- Ignores the trisynaptic circuit (EC \rightarrow DG \rightarrow CA3 \rightarrow CA1). It seems like \mathcal{P}_1 is neocortex, \mathcal{P}_2 is EC, and \mathcal{P}_3 is CA3.
- Says nothing about DG or CA1. Ignores the direct perforant path input to CA1.
- Claim that three layers of cells are necessary was unjustified.
- Unanswered question: how are memories transferred from hippocampus to the neocortex?