Assessment Tool

Create two programs (lab08_<surname>_A.c and lab08_<surname>_B.c) that will communicate using a shared memory to compute for the matrix product of two matrices.

lab08_<surname>_A.c should read a file named input.txt (format below) for the number of test cases and the matrices to be multiplied. lab08_<surname>_A.c will compute the left half of the answer while lab08_<surname>_B.c will compute the right half of the answer. If the number of columns for the answer is odd, lab08_<surname>_A.c will compute for the values in the excess column. Once every cell in the answer is computed, lab08_<surname>_B.c must print in the terminal the matrix product.

Note: Your program **MUST** check if matrix multiplication can be done on the given matrices. That is, if the number of columns of Matrix A is not equal to the number of rows of Matrix B, multiplication can't be done on the two matrices, and your program must proceed to the next test case, if any.

FORMAT OF input.txt:

SAMPLE input.txt file:

SAMPLE output on the terminal:

SAMPLE input.txt file:									SAMPLE output on											
2															55	7	9	85		
5	5														70	9	9	110		
1	2	3	4	5											85	11	9	135		
2	3	4	5	6										-	100	13	9	160		
3	4	5	6	7										-	115	150	9	185		
4	5	6	7	8																
5	6	7	8	9																
5	3														55	7	9	85	100	•)
1	2	3													70	9	9	110	130	•)
2	3	4													85	110	9	135	160	•)
3	4	5												-	100	13	9	160	190	•)
4	5	6												-	115	150	9	185	220	•)
5	6	7																		
-	5																			
	2	_		-																
2	3	4	5	6																
-	4	-	6	7																
4	5	6	7	8																