

CSE 4710 Machine Learning Lab

Experiment No: 7
Name of the experiment: Implementing Support Vector Machine Classifier and Tuning Hyper-parameters

Hasan Mahmud

Assistant Professor, Department of CSE

Fardin Saad

Lecturer, Department of CSE

August 10, 2020

1 Tasks

• Task 01:

Load the Iris Dataset given to you and split it with a 7:3 ratio for training and testing your SVM model.

• Task 02:

Train the dataset with Linear Kernel SVM classifier and display its accuracy, confusion matrix and classification report (Precision, recall etc). Visualize the confusion matrix with a heat-map and correctly label it.

Hint: Use sklearn library for classification report. The classification report and confusion matrix is given below:

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	16
Iris-versicolor	1.00	0.94	0.97	18
Iris-virginica	0.92	1.00	0.96	11
accuracy			0.98	45
macro avg	0.97	0.98	0.98	45
weighted avg	0.98	0.98	0.98	45

Figure 1: Classification report

Figure 2: Confusion Matrix

• Task 03:

Train the dataset with Polynomial Kernel SVM classifier and display its accuracy, confusion matrix and classification report. Visualize the confusion matrix with a heat-map and correctly label it.

Figure 3: Confusion Matrix

• Task 04:

Train the dataset with Gaussian Kernel SVM classifier and display its accuracy, confusion matrix and classification report. Visualize the confusion matrix with a heat-map and correctly label it.

Hint: For Gaussian SVM use 'rbf' as kernel which is also known as Radial Basis Function.

• Task 05:

Tune your Hyper-parameters, C and Gamma using the Grid Search Cross Validation for all the kernels listed above and print the best parameters and estimators.

```
Fitting 5 folds for each of 75 candidates, totalling 375 fits
[CV] C=0.1, gamma=1, kernel=linear ......
[CV] ..... C=0.1, gamma=1, kernel=linear, score=0.905, total=
[CV] C=0.1, gamma=1, kernel=linear .....
[CV] ...... C=0.1, gamma=1, kernel=linear, score=1.000, total= 0.0s
[CV] C=0.1, gamma=1, kernel=linear .....
[CV] ...... C=0.1, gamma=1, kernel=linear, score=1.000, total= 0.0s
[CV] C=0.1, gamma=1, kernel=linear .....
[CV] ...... C=0.1, gamma=1, kernel=linear, score=0.905, total= 0.0s
[CV] C=0.1, gamma=1, kernel=linear ......
[CV] ...... C=0.1, gamma=1, kernel=linear, score=1.000, total= 0.0s
[CV] C=0.1, gamma=1, kernel=poly ......
[CV] ...... C=0.1, gamma=1, kernel=poly, score=0.952, total= 0.0s
   C=0.1, gamma=1, kernel=poly .....
[CV] ...... C=0.1, gamma=1, kernel=poly, score=1.000, total= 0.0s
[CV] C=0.1, gamma=1, kernel=poly .....
[CV] ...... C=0.1, gamma=1, kernel=poly, score=1.000, total= 0.0s
[CV] C=0.1, gamma=1, kernel=poly .....
[CV] ...... C=0.1, gamma=1, kernel=poly, score=0.905, total= 0.0s
[CV] C=0.1, gamma=1, kernel=poly .....
[CV] ...... C=0.1, gamma=1, kernel=poly, score=0.952, total= 0.0s
[CV] C=0.1, gamma=1, kernel=rbf ......
[CV] ...... C=0.1, gamma=1, kernel=rbf, score=0.952, total= 0.0s
```

Figure 4: Hyper-parameter Tuning

```
{'C': 10, 'gamma': 0.1, 'kernel': 'rbf'}
SVC(C=10, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma=0.1, kernel='rbf',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=False)
```

Figure 5: Best Hyper-paramters and Estimators