

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

По дисциплине «Типы и структуре данных»

Название: «Обработка разреженных матриц»

Студент Вольняга Максим

Группа ИУ7 – 36Б

Тип лабораторной работы: Учебная

Вариант № 5

Преподаватель Никульшина Татьяна Александровна

Описание условия

Разреженная (содержащая много нулей) матрица хранится в форме 3-х объектов:

- вектор А содержит значения ненулевых элементов;
- вектор IA содержит номера строк для элементов вектора A;
- связный список JA, в элементе Nk которого находится номер компонент в A и IA, с которых начинается описание столбца Nk матрицы A.
- 1. Смоделировать операцию умножения вектора-строки и матрицы, хранящихся в этой форме, с получением результата в той же форме.
- 2. Произвести операцию умножения, применяя стандартный алгоритм работы с матрицами.
- 3. Сравнить время выполнения операций и объем памяти при использовании этих 2-х алгоритмов при различном проценте заполнения матриц.

Описание ТЗ

Описание исходных данных и результатов:

Программа получает на вход:

Целое число для выбора ввода меню, целые числа, задающие количество строк и столбцов матрицы, элементы матрицы и их положение в ней, процент заполненности матрицы.

Вывод результата:

Исходные вектор-строка и матрица в разреженном или стандартном виде. Матрица строка результат умножения. Таблица сравнения эффективности.

Описание задачи, реализуемой программой

Меню:

Программа предоставляет работу с матрицами. Ввод матрицы и вектор-строки с клавиатуры. Генерация разреженной матрицы и вектора-строки по заданным размерам матрицы и проценту её заполненности. Вывод матриц на экран в разреженном или стандартном виде. Вывод результата операции умножения исходных матриц. Вывод таблицы сравнения эффективности.

Способ обращения к программе

Обращение к программе происходит путём консольного ввода.

Описание возможных аварийных ситуаций и ошибок пользователя

Аварийные ситуации:

- 1. Некорректный ввод пункта меню.
- 2. Некорректный ввод целочисленных данных.
- 3. Попытка вывода или выполнения операции умножения без ввода/генерации исходных матриц.

Описание внутренних СД

Структура исходной таблицы

```
// Структура для хранения размеров матрицы
typedef struct
   int rows; //Количество строк
   int columns; //Количество столбцов
   int nonzeros; //Количество ненулевых элементов
} mtr_size_t;
// Структура матрицы в разреженном виде
typedef struct
{
   mtr_size_t sizes; //Размеры матрицы
   int *elements; // Указатель на массив элементов
матрицы
   int *rows; // Указатель на массив строк,
соответствующих элементам
   int *columns; // Указатель на массив номеров
элементов, с которых начинается столбец
} sparse_mtr_t;
//Структура матрицы в стандартном виде
typedef struct
{
   mtr_size_t sizes; //Размеры матрицы
   int **mtr; // Матрица
} mtr_t;
```

Описание алгоритма

При умножение матрицы на вектор - строку в обычном представление, используется стандартный алгоритм умножения матриц, при котором элемент результирующей матрицы С получается из элементов исходных матриц A и B следующим образом: C[i] [j] = sum(A[i][k] * B[k][j]) где к - от нуля до n -1

При матрицы на вектор - строку в разреженном формате производится обход по матрице с номерами компонента вектора элементов и вектора их строк, ищется непустой столбец, после нахождения происходит поиск номер элемента, на котором этот столбец заканчивается, поочередно выбираются элементы, соответствующие данному столбцу, умножаются на элементы вектора-строки в столбцах, номер которых совпадает с номером строки элемента матрицы, и добавляются в сумму. После нахождения суммы записывается в результирующую матрицу.

Набор тестов с указанием проверяемого параметра

Ввод	Вывод	Что
qwe	ВВеденное число не соответствует ни одному действию код ошибки = 1	Проверка ввода меню - строка
пустой ввод	ВВеденное число не соответствует ни одному действию код ошибки = 2	Проверка ввода меню - пустая строка
11	ВВеденное число не соответствует ни одному действию код ошибки = 1	Проверка ввода меню - выход из диапазона
-78	ВВеденное число не соответствует ни одному действию код ошибки = 1	Проверка ввода меню - выход из диапазона
qwe	Ошибка при чтении числа, код ошибки = 4	Проверка ввода размерности строки для матрицы - строка
-2	ОШИБКА Введенное значение выходит за допустимый диапазон значений , код ошибки = 5	Проверка ввода размерности строки для матрицы - выход из диапазона
qwe	Ошибка при чтении числа, код ошибки = 4	Проверка ввода размерности столбца для матрицы - строка

Ввод	Вывод	Что
-2	ОШИБКА Введенное значение выходит за допустимый диапазон значений , код ошибки = 5	Проверка ввода размерности столбцов для матрицы - выход из диапазона
10	ОШИБКА Количество ненулевых элементов больше количества элементов в матрице код ошибки = 3	Проверка ввода кол-ва не нулевых элементов матрицы - выход из диапазона
-10	ОШИБКА Количество ненулевых элементов больше количества элементов в матрице код ошибки = 3	Проверка ввода кол-ва не нулевых элементов матрицы - выход из диапазона
WE	ОШИБКА Количество ненулевых элементов больше количества элементов в матрице код ошибки = 3	Проверка ввода кол-ва не нулевых элементов матрицы - строка
erer wef wef	ОШИБКА Заданы Неверные параметры элемента матрицы, код ошибки = 11	Проверка ввода элементов матрицы - строка +строка + строка
erer 1 0	ОШИБКА Заданы Неверные параметры элемента матрицы, код ошибки = 11	Проверка ввода элементов матрицы - строка + число + число
1 йцу 0	ОШИБКА Заданы Неверные параметры элемента матрицы, код ошибки = 11	Проверка ввода элементов матрицы - число + строка + число
1 1 ццу	ОШИБКА Заданы Неверные параметры элемента матрицы, код ошибки = 11	Проверка ввода элементов матрицы - число + число + строка

Ввод	Вывод	Что
1 10 1	ОШИБКА Заданы Неверные параметры элемента матрицы, код ошибки = 11	Проверка ввода элементов матрицы - выход из диапазона столбцов
1 1 строка	ОШИБКА Заданы Неверные параметры элемента матрицы, код ошибки = 11	Проверка ввода элементов матрицы - ввод строки элемента в матрицу
10 1	ОШИБКА Заданы Неверные параметры элемента матрицы, код ошибки = 11	Проверка ввода вектора - выход из диапазона
10	ОШИБКА Заданы Неверные параметры элемента матрицы, код ошибки = 11	Проверка ввода вектора - пропуск элемента вектора
10 вцв	ОШИБКА Заданы Неверные параметры элемента матрицы, код ошибки = 11	Проверка ввода вектора - ввод строки в элемент вектора
йцу 1	ОШИБКА Заданы Неверные параметры элемента матрицы, код ошибки = 11	Проверка ввода вектора - ввод строки в индекс элемента
1000	ОШИБКА Процент целое число от 0 до 100, код ошибки = 13	Проверка ввода процента - заполняемости выход за диапазон
-1000	ОШИБКА Процент целое число от 0 до 100, код ошибки = 13	Проверка ввода процента - заполняемости выход за диапазон
строка	Ошибка при чтении числа, код ошибки = 4	Проверка ввода процента заполняемости - строка

Ввод	Вывод	Что
1	ОШИБКА При заполнение матриц одна из матриц пустая, код ошибки = 12	Проверка ввода процента заполняемости - маленький процент
Исходная матрица: 1 строка \0 15 23 \ 2 строка 28 2 0 \ 3 строка 10 -5 0 Исходный вектор-строка: 0 2 23	Результат умножения вектора- строки на матрицу: 286 -111 0	Проверка умножения матрицы и вектора стандартный алгоритм
Исходная матрица: 1 строка \0 15 23 \ 2 строка 28 2 0 \ 3 строка 10 -5 0 Исходный вектор-строка: 0 2 23	Значения элементов: 286 -111 \Индекс строк этих элементов: 0 0 \Индекс элемента, с которого начинается ј-ый столбец: 0 1 -1	Проверка умножения матрицы и вектора алгоритмом обработки разреженных
200 строк и 200 столбцов	sparse multiply multiply	Проверка вывода таблицы эффективности

Оценка эффективности

Процент заполненности 10%: матрица 10х10

	sparse multiply	multiply
mc	0	2
bt	216	480

Процент заполненности 10%: матрица 100х100

	sparse multiply	multiply
mc	14	65
bt	9872	40800

Процент заполненности 10%: матрица 1000х1000

	sparse multiply	multiply
mc	452	4111
bt	820800	4008000

Процент заполненности 30%: матрица 10х10

		sparse multiply	multiply
	mc	1	1
,	bt	440	480

Процент заполненности 30%: матрица 100х100

	sparse multiply	multiply
mc	37	68
bt	26240	40800

Процент заполненности 30%: матрица 1000х1000

		sparse multiply	multiply
n	าต	2054	4431
Ь	t	2422400	4008000

Процент заполненности 50%: матрица 10х10

	sparse multiply	multiply
mc	1	2
bt	632	480

Процент заполненности 50%: матрица 100х100

		sparse multiply	multiply
•	mc	57	49
•	bt	42400	40800

Процент заполненности 50%: матрица 1000х1000

	sparse multiply	multiply
mc	4467	4362
bt	4024000	4008000

Процент заполненности 70%: матрица 10х10

sparse multiply multiply

	sparse multiply	multiply
mc	2	1
bt	816	480

Процент заполненности 70%: матрица 100х100

	sparse multiply	multiply
mc	78	39
bt	58560	40800

Процент заполненности 70%: матрица 1000х1000

		sparse multiply	multiply
	mc	4742	4463
•	bt	5625600	4008000

Процент заполненности 100%: матрица 10х10

	sparse multiply	multiply
mc	2	2
bt	1080	480

Процент заполненности 100%: матрица 100х100

	sparse multiply	multiply
mc	86	36
bt	82800	40800

Процент заполненности 100%: матрица 1000х1000

	sparse multiply	multiply
mc	6144	5903
bt	8028000	4008000

Выводы

Матрица в разреженном формате размерностью 1*1 с не нулевым элементом занимает 36 байт с выравниванием, матрица в обычном представлении занимает 12 байт, следовательно разреженная матрица увеличила объем в 3р

При проценте заполненности, меньшем 50%, алгоритм разреженных матриц выигрывает как по времени, так и по памяти, для любых размерностей матриц. При проценте заполненности, более 50%, такой алгоритм для всех размерностей проигрывает по памяти и времени стандартному алгоритму, так как приходится хранить в 3 раза больше информации. При больших размерностях, и большом заполнение алгоритм разреженных матриц всегда более эффективен, чем стандартный алгоритм, – так как скорость доступа к конкретному элементу матрицы быстрее.

Ответы на вопросы

1. Что такое разреженная матрица, какие схемы хранения таких матриц Вы знаете?

Разряженная матрица — это матрица, содержащая большое количество нулей. Схемы хранения матрицы: связанная схема хранения (с помощью линейных связанных списков), кольцевая связанная схема хранения, двунаправленные стеки и очереди, диагональная схема хранения, строчной формат, столбцовый формат.

2. Каким образом и сколько памяти выделяется под хранение разреженной и обычной матрицы?

Под обычную матрицу (N – количество строк, М – количество столбцов) выделяет N*M ячеек памяти. Для разреженной матрицы количество ячеек памяти завит от способа. В случае разряженного формата требуется N * M ячеек памяти для хранение элементов + N * M ячеек памяти для хранение индексов строк + M ячеек памяти для для хранения индексов не нулевых элементов, преимущество в памяти у разреженной матрицы происходит при менее 50% заполняемости, так как память выделяется только для не нулевых элементов.

3. Каков принцип обработки разреженной матрицы?

При обработке разреженной матрицы мы работаем только с ненулевыми элементами. Тогда количество операций будет пропорционально количеству ненулевых элементов (прямая зависимость).

4. В каком случае для матриц эффективнее применять стандартные алгоритмы обработки матриц? От чего это зависит?

Эффективнее применять стандартные алгоритмы выгоднее при большом количестве ненулевых элементов. Стоит отметить, что если расход памяти в программе не так важен, но важно время выполнения программы, то в случае умножения матрицы на вектор столбец лучше воспользоваться стандартным алгоритмом при большом количестве ненулевых элементов, и умножение специального (разряженного) в случае небольшого количества ненулевых элементов.