Отчет по лабораторной работе №1

Операционные системы

Куокконен Дарина Андреевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы 3.1 Создание виртуальной машины	7 7 7 7 11
4	Выводы	13
5	Ответы на контрольные вопросы	14
6	Выполнение домашнего задания	16
Сп	Список литературы	

Список иллюстраций

3.1	Работа в терминале	8
3.2	Установка tmux	8
3.3	Поиск файла	9
3.4	Запуск терминального мультиплексора	9
3.5	Переключение на роль супер-пользователя	10
3.6	Установка пакета dkms	10
3.7	Установка пакета dkms	11
3.8	Примонтирование диска, установка драйверов	11
3.9	Переключение на роль супер-пользователя, установка pandoc	12
3.10	Установка texlive	12
6.1	Анализ последовательности загрузки системы	16
6.2	Поиск версии ядра	16
6.3	Поиск частоты процессора	16
6.4	Поиск модели процессора	17
6.5	Поиск объема доступной оперативной памяти	17
6.6	Поиск типа обнаруженного гипервизора	17
6.7	Поиск типа файловой системы корневого раздела	18
6.8	Последовательность монтирования файловых систем	18

List of Tables

1 Цель работы

Целью моей лабораторной работы является приобретение практических навыков настройки минимально необходимых сервисов для дальнейшей работы.

2 Задание

- 1. Создание виртуальной машины.
- 2. Установка операционной системы.
- 3. Работа с операционной системой после установки.
- 4. Установка программного обеспечения для создания документации.
- 5. Дополнительные задания.

3 Выполнение лабораторной работы

3.1 Создание виртуальной машины

В прошлом семестре я установила уже VirtualBox, и также создала виртуальную машину во время выполнения заданий, следовательно данный этап я пропускаю.

3.2 Установка операционной системы

По аналогичным причинам я пропускаю установку операционной системы.

3.3 Работа с операционной системой после установки

Вхожу в ОС под заданной мной при установке учетной записью, запускаю терминал и переключаюсь на роль супер-пользователя, обновляю все пакеты (рис. 1).

Рис. 3.1: Работа в терминале

Устанавливаю программы для удобства работы в консоли: tmux для открытия нескольких вкладок в одном терминале (рис. 2).

Рис. 3.2: Установка tmux

Теперь я перемещаюсь в директорию /etc/selinux, открываю mc, и ищу нужный файл, для его изменения (рис. 3).

Рис. 3.3: Поиск файла

Изменяю файл *config*: SELINUX=enforcing меняю на значение SELINUX=permissive (рис 4). Перезагружаю виртуальную машину *reboot*

Снова вхожу в ОС, снова запускаю терминал, запускаю терминальный мультиплексор (рис).

Рис. 3.4: Запуск терминального мультиплексора

Переключаюсь на роль супер-пользователя (рис. 8).

Рис. 3.5: Переключение на роль супер-пользователя

Устанавливаю пакет DevelopmentTools (рис. 9).

```
Q
        \oplus
                                                                                                                               dakuokkonen@fedora:~ — tmux
                                                                                                                                                                                                                                                                                                                                                 Установка
                                                       38 Пакетов
                                                    10 Пакетов
Обновление
Объем загрузки: 157 М
00:03
                                                                                                                                                                                                                                                                                                                                          1 896 kB/s
                                                                                                                                                                                                                             130 kB/s | 1.0 MB
546 kB/s | 4.8 MB
                                                                                                                                                                                                                                                                                                                                         00:07
                                                                                                                                                                                                                                                                                                                                          00:09
 (4/48): dyninst-12.2.0-2.fc38.x86_64.rpm
(5/48): ed-1.19-2.fc38.x86_64.rpm
(6/48): flex-2.6.4-12.fc38.x86_64.rpm
(7/48): gettext-0.21.1-2.fc38.x86_64.rpm
                                                                                                                                                                                                                                   32 kB/s
                                                                                                                                                                                                                                                                                       78 kB
                                                                                                                                                                                                                                   85 kB/s |
                                                                                                                                                                                                                                                                                    313 kB
                                                                                                                                                                                                                                                                                                                                         00:03
                                                                                                                                                                                                                                                                                    1.0 MB
126 kB
                                                                                                                                                                                                                                                                                                                                         00:03
(8/48): patch-2.7.6-19.fc38.x86_64.rpm
(9/48): m4-1.4.19-5.fc38.x86_64.rpm
                                                                                                                                                                                                                                                                                                                                         00:01
                                                                                                                                                                                                                                 119 kB/s |
                                                                                                                                                                                                                                                                                     303 kB
  (10/48): patchutils-0.4.2-9.fc38.x86_64.rpm
                                                                                                                                                                                                                                     50 kB/s
                                                                                                                                                                                                                                                                                     107 kB
\(\(\frac{1}{1}\) \(\frac{1}{2}\) \(\frac{1}{2
                                                                                                                                                                                                                                                                                                                                          00:04
                                                                                                                                                                                                                                                                                                                                          00:02
                                                                                                                                                                                                                                                                                                                                          00:02
                                                                                                                                                                                                                                                                                                                                          01:57 ETA
```

Рис. 3.6: Установка пакета dkms

Устанавливаю пакет dkms (рис. 10).

```
xz-devel-5.4.1-1.fc38.x86_64
zlib-devel-1.2.13-3.fc38.x86_64
Выполнено!
[root@fedora ~]# dnf -y install dkms
[0] 0:bash*
```

Рис. 3.7: Установка пакета dkms

В меню виртуальной машины, я подключаю образ диска гостевой ОС и примонтирую диск с помощью утилиты *mount*, устанавливаю драйвера (рис. 11).

Рис. 3.8: Примонтирование диска, установка драйверов

3.4 Установка программного обеспечения для создания документации

Запускаю терминал. Запускаю терминальный мультиплексор tmux, переключаюсь на роль супер-пользователя. Устанавливаю pandoc с помощью утилиты

dnf (рис. 12).

Рис. 3.9: Переключение на роль супер-пользователя, установка pandoc

Устанавливаю дистрибутив texlive (рис. 13).

```
[root@fedora ~]# dnf -y install texlive-scheme-full
[0] 0:bash* "fe
```

Рис. 3.10: Установка texlive

4 Выводы

При выполнении данной лабораторной работы я приобрела практические навыки по настройке минимально необходимых для дальнейшей работы сервисов.

5 Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: –help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в **ОС** с ядром **Linux**.

- 4. С помощью команды *df*, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты *mount*.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду *ps*. Далее в терминале вводим команду *kill* < id процесса >. Или можно использовать утилиту *killall*, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

6 Выполнение домашнего задания

Я ввожу в терминале команду *dmesg*, чтобы проанализировать последовательность загрузки системы (рис. 14).

```
[root@fedora ~]# dmesg
```

Рис. 6.1: Анализ последовательности загрузки системы

С помощью поиска, осуществляемого командой 'dmesg | grep -i ', ищу версию ядра Linux (рис. 15).

Рис. 6.2: Поиск версии ядра

Если вводить "Detected Mhz processor", то мне ничего не выведется. Это происходит потому, что запрос не предусматривает дополнительные символы внутри него. В таком случае оставляем одно из ключевых слов и получаем результат (рис. 16).

```
[root@fedora ~]# dmesg | grep -i "processor"
[    0.000013] tsc: Detected 2595.044 MHz processor
[    1.337306] smpboot: Total of 1 processors activated (5190.08 BogoMIPS)
[    1.395413] ACPI: Added _OSI(Processor Device)
[    1.395417] ACPI: Added _OSI(Processor Aggregator Device)
[root@fedora ~]#
```

Рис. 6.3: Поиск частоты процессора

Аналогично ищу модель процессора (рис. 17).

```
[root@fedora ~]# dmesg | grep -i "CPU0"

[ 1.209880] CPU0: Hyper-Threading is disabled

[ 1.328663] smpboot: CPU0: AMD Ryzen 3 3200U with Radeon Vega Mobile Gfx (family: 0x17, model: 0x18, stepping: 0x1)

[root@fedora ~]#

[0] 0:bash* "fedora" 20:06 28-фeb-24
```

Рис. 6.4: Поиск модели процессора

Объем доступной оперативной памяти ищу аналогично поиску частоты процессора, т. к. возникла та же проблема, что и там (рис. 18).

```
\oplus
                                         dakuokkonen@fedora:~ — tmux
       0.580438] PM: hibernation: Registered nosave memory: [mem 0xfee00000-0xfee0
offf]
       0.580439] PM: hibernation: Registered nosave memory: [mem 0xfee01000-0xfffb
       0.580440] PM: hibernation: Registered nosave memory: [mem 0xfffc0000-0xffff
1.058816] Memory: 3866164K/4095544K available (20480K kernel code, 3276K rv
data, 14748K rodata, 4588K init, 4892K bss, 229120K reserved, 0K cma-reserved)
[ 1.215080] Freeing SMP alternatives memory: 48K
       1.215080] Freeing SMP atternatives memory:
1.339125] x86/mm: Memory block size: 128MB
3.520103] Freeing initrd memory: 32304K
3.564613] Non-volatile memory driver v1.3
      3.564613] Non-volatile memory driver
4.371425] Freeing unused decrypted m
                                                                     y: 2028K
      4.372669] Freeing unused decrypted memory: 2028K
4.372669] Freeing unused kernel image (initmem) memory: 4588i
4.375877] Freeing unused kernel image (rodata/data gap) memo
       8.173463] vmwgfx 0000:00:02.0: [drm] Legacy m
 FIF0 = 2048 kB, surface = 507904 kB
       8.173477] vmwgfx 0000:00:02.0: [drm] Maximum display memory size is 16384 k
     14.271257] systemd[1]: Listening on systemd-oomd.socket - Userspace Out-Of-
        (00M) Killer Socket.
 root@fedora ~]#
```

Рис. 6.5: Поиск объема доступной оперативной памяти

Далее, я нахожу тип обнаруженного гипервизора (рис. 19).

Рис. 6.6: Поиск типа обнаруженного гипервизора

Тип файловой системы корневого раздела можно посомтреть с помощью утилиты *fdisk* (рис. 20).

```
\oplus
                               dakuokkonen@fedora:~ — tmux
                                                                              Q ≡
      (00M) Killer Socket.
[root@fedora ~]# dmesg | grep -i "Hypervisor detected"
   0.000000] H
[root@fedora ~]# fdisk -l
                                    ted: KVM
Диск /dev/sda: 38 GiB, 40802189312 байт, 79691776 секторов
Disk model: VBOX HARDDISK
Единицы: секторов по 1 * 512 = 512 байт
∟дилинды. Секторов По 1 × 312 - 312 байт
Размер сектора (логический/физический): 512 байт / 512 байт
Размер I/O (минимальный/оптимальный): 512 байт / 512 байт
Тип метки диска: gpt
Идентификатор диска: FAF72379-A670-4CF6-A8EE-076D7517A6CE
            начало Конец Секторы Размер Тип
2048 4095 2048 1M BIOS boot
4096 2101247 2097152 1G Файловая система Linux
/dev/sda1
/dev/sda2
/dev/sda3 2101248 79689727 77588480
                                              37G Файловая система Linux
Диск /dev/zram0: 3,73 GiB, 4000317440 байт, 976640 секторов
Единицы: секторов по 1 * 4096 = 4096 байт
Размер сектора (логический/физический): 4096 байт / 4096 байт
Размер I/O (минимальный/оптимальный): 4096 байт / 4096 байт
[root@fedora ~]#
```

Рис. 6.7: Поиск типа файловой системы корневого раздела

Последовательность монтирования файловых систем можно посмотреть, введя в поиск по результату *dmesg* слово *mount* (рис. 21).

```
\oplus
                                 dakuokkonen@fedora:~ — tmux
                                                                                 Q
                                                                                       \equiv
 -40d2-9dcc-4eb503f371e3
                                                   nt proc-sys-fs-binfmt_misc.automount -
    14.246494] systemd[1]: Set up autom
Arbitrary Executable File Formats File System Automount Processor File Formats File System Automount Point.
[ 14.289361] systemd[1]: Mounting dev-hugepages.mount - Huge Pages File System
    14.308290] systemd[1]: Mounting dev-mqueue.mount - POSIX Message Queue File
   14.324189] systemd[1]: Mounting sys-kernel-debug.mount - Kernel Debug File S
   14.338331] systemd[1]: Mounting sys-kernel-tracing.mount - Kernel Trace File
 System.
    14.741588] systemd[1]: Starting systemd-remount-fs.service - Rem
 Kernel File Systems...
14.823512] systemd[1]: Mounted dev-hugepages.mount - Huge Pages File System.
14.860092] systemd[1]: Mounted dev-mqueue.mount - POSIX Message Queue File S
vstem.
   14.860493] systemd[1]: Mounted sys-kernel-debug.mount - Kernel Debug File Sy
    14.860870] systemd[1]: Mounted sys-kernel-tracing.mount - Kernel Trace File
  19.924612] EXT4-fs (sda2): mounted filesystem 4630b864-2f3e-4611-9073-771ee9
ef9448 r/w with ordered data mode. Quota mode: none.
[root@fedora ~]#
```

Рис. 6.8: Последовательность монтирования файловых систем

Список литературы

Архитектура компьютеров и ОС/Электронный ресурс