1. 写出理由和答案

设 $X_1,X_2,\cdots,X_n~(n\geq 2)$ 是来自正态总体 $N(\mu,1)$ 的简单随机样本, 且记 \overline{X} 为样本均值, 则下列中不服从 χ^2 分布的是()

(A)
$$\sum_{i=1}^{n} (X_i - \mu)^2$$
 (B) $2(X_n - X_1)^2$ (C) $\sum_{i=1}^{n} (X_i - \overline{X})^2$ (D) $n(\overline{X} - \mu)^2$

2. P205. 第15题

设 X_1, X_2, X_3, X_4 是来自正态总体 $N(0, 2^2)$ 的简单随机样本, 令 $T = a(X_1 - 2X_2)^2 + b(3X_3 - 4X_4)^2$. 试求 a, b 使统计量 T 服从 χ^2 分布.

3. P205, 第16题

设 X_1, X_2, \cdots, X_9 为独立同分布的正态随机变量, 记

$$Y_1 = \frac{1}{6}(X_1 + X_2 + \dots + X_6), \quad Y_2 = \frac{1}{3}(X_7 + X_8 + X_9), \quad S^2 = \frac{1}{2}\sum_{i=2}^{9}(X_i - Y_2)^2.$$

试求 $Z = \sqrt{2}(Y_1 - Y_2)/S$ 的分布.

4. P232, 第8题

总体 X 的概率密度函数为

$$f(x) = \begin{cases} \frac{1}{2\theta}, & 0 < x < \theta, \\ \frac{1}{2(1-\theta)}, & \theta \leqslant x < 1, \\ 0, & \text{其他.} \end{cases}$$

 (X_1, X_2, \cdots, X_n) 是来自总体 X 的简单随机样本, \overline{X} 为样本平均值.

- (1) 求 θ 的矩估计量 $\hat{\theta}$;
- (2) 判断 $4\overline{X}^2$ 是否为 θ^2 的无偏估计量, 并说明理由.

5. P234, 第 27 题第一问

(1) 设 (X_1, X_2, \cdots, X_n) 是来自总体 X 的一个样本, 且 X 服从参数为 λ 的泊松分布. 求 P(X=0) 的最大似然估计;

6. P235, 第29题

设总体 $X \sim U(\theta, \theta + |\theta|), \theta \in \Theta, (X_1, X_2, \cdots, X_n)$ 是从总体中抽取的一个简单随机样本,

- (1) 设 $\Theta = (-\infty, 0)$, 求 θ 的矩估计和最大似然估计;
- (2) 设 $\Theta = (0, \infty)$, 求 θ 的矩估计和最大似然估计.