Notas de Álgebra Lineal

Carlos Francisco Flores Galicia.

Capítulo 1

Espacios vectoriales

- 1.0.1. Espacios vectoriales
- 1.0.2. Subespacios vectoriales
- 1.0.3. Combinaciones lineales

Definición 1. Sea V un espacio vectorial $y \in S \subseteq V$, $S \neq \emptyset$. Se dice que un vector $v \in V$ es combinación lineal de elementos de S, si existe un conjunto finito $\{s_1, s_2, ..., s_n\} \subseteq S$ y escalares $\lambda_1, \lambda_2, ...\lambda_n \in K$ tales que $v = \lambda_1 s_1 + \lambda_2 s_2 + ... + \lambda_n s_n$. Se dice también que v es combinación lineal de $\{s_1, s_2, ..., s_n\}$.

Definición 2. Sea V un espacio vectorial y $S \subseteq V$, $S \neq \emptyset$. Definimos al conjunto generado por elementos de S como

$$\langle S \rangle = \{ \lambda_1 s_1 + \lambda_2 s_2 + \dots + \lambda_n s_n : \lambda_1, \lambda_2, \dots \lambda_n \in K \}$$
 (1.1)

Esto es, el conjunto generado por S es el conjunto de todas las combinaciones lineales de los elementos de S.

Definición 3. $\langle \emptyset \rangle = \{0_k\}$

Teorema 1. Sea V un espacio vectorial $y \in S \subseteq V$, $S \neq \emptyset$, entonces $\langle S \rangle \subseteq V$ $y \langle S \rangle$ es el subespacio de V más pequeño que contiene a S (es decir, que $\langle S \rangle$ es un subconjunto de todos los subespacios de V que contienen a S).

Demostración. Probemos primero que $\langle S \rangle \leq V$.