QUANTUM MECHANICS 2 - WORKSHOP 8

Q1: A spin s=1 particle is in an orbit with orbital angular momentum quantum number l=2. The total angular momentum is $\underline{J}=\underline{L}+\underline{S}$, where the associated operators J^2 and J_z , have eigenvalues $j(j+1)\hbar^2$ and $m_j\hbar$.

(a) What are the possible values resulting from measurements of J^2 and J_z ? [Hint: do it systematically — j runs from |l-s| to (l+s) in integer steps, and for each possible j give the possible values of m_j .]

Second hint: You might find it useful to think in terms of the vector model as illustrated for the case l = 1 and s = 1/2 in the following figure.

(b) When considering a thermal cloud of such particles, where you expect the populations of each angular momentum sublevel to be the same, what is the probability to measure one such particle to have $J_z = 0$?

Q2: The Lyman alpha line in Hydrogen involves transitions between n=2 and n=1. The energy of each level depends on n and j only.

- (a) How many different line energies are there?
- (b) If there were no other factors operating (to, e.g., pump the atoms in a thermal cloud into a particular sublevel), what is the probability to get each line energy?
- (c) Emission of a photon leads to a change in angular momentum $\Delta l = 1$ since the photon carries this away. How does this extra condition change the probability for each line energy?

Q3: There are first order corrections to the energy levels in Hydrogen from relativistic correc-

tions, spin-orbit coupling and the finite size of the proton:

$$\begin{split} E_{n,\mathbf{r}}^1 &= -\frac{(E_n^0)^2}{2mc^2} \left[\frac{4n}{l+1/2} - 3 \right], & \text{which holds for all } l; \\ E_{n,\mathbf{so}}^1 &= \frac{(E_n^0)^2}{mc^2} \frac{n[j(j+1) - l(l+1) - 3/4]}{l(l+1/2)(l+1)}, & \text{which holds for } l \neq 0; \\ E_{n,\mathbf{D}}^1 &= 2n\frac{(E_n^0)^2}{mc^2}, & \text{which holds for } l = 0. \end{split}$$

add these together for the three separate cases $l \neq 0$ and j = l - 1/2, $l \neq 0$ and j = l + 1/2, l = 0 so j = 1/2.