More Homework problems Math 502

- 1. Symmetries of the icosohedron. The icosohedron is the regular polyhedron having 20 sides, 30 edges, and 12 vertices. Partition the edges into 5 equivalence classes where two edges are equivalent if and only if they are parallel or perpendicular.
 - (a) Show that the symmetry group of the icosohedron is isomorphic to the alternating group A_5 by studying the action on the 5 equivalence classes of edges.
 - (b) Using the character table of A_5 from the previous homework, decompose the permutation representation of A_5 acting on the set of faces into irreducible representations.
 - (c) Decompose the permutation representation of A_5 acting on the set of vertices into irreducible representations.
 - (d) Decompose the permutation representation of A_5 acting on the set of edges into irreducible representations.
- 2. Character table of $SL_2(\mathbb{F}_3)$ and the binary tetrahedral group. Let $G = SL_2(\mathbb{F}_3)$ be the group of 2×2 matrices whose entries are in $\mathbb{F}_3 = \{0, 1, -1\}$, the field with three elements.
 - (a) Determine the set of conjugacy classes of G. (Hint: this is easily done by hand; it is helpful to note that transposition and multiplication by the central element $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ acts on the set of conjugacy classes).
 - (b) Find a normal subgroup $N \subset G$ such that G/N has order three and thus use the three irreducible representations of G/N to provide the first three irreducible representations of G. Fill in their values in the character table.
 - (c) To determine the remaining irreducible representations, consider the action of G on $\mathbb{P}^1(\mathbb{F}_3) = (\mathbb{F}_3 \times \mathbb{F}_3 \{(0,0)\})/\mathbb{F}_3^{\times}$ where $\mathbb{F}_3^{\times} = \{1,-1\}$ is the group of units. The set $\mathbb{P}^1(\mathbb{F}_3)$ has four elements and so we may define a three dimensional representation V so that the permutation representation of G on $\mathbb{P}^1(\mathbb{F}_3)$ is isomorphic to $V \oplus \mathbb{C}$ where \mathbb{C} is the trivial representation. Compute the character of V and show it is an irreducible representation.
 - (d) Show that the representation V is a real representation and that $\Lambda^3 V \cong \mathbb{C}$ so that V gives a map $\rho_V : G \to SO(3)$. Show that this map factors through $G/\{\pm 1\} = PSL_2(\mathbb{F}_3)$ which is a group of order 12.
 - (e) Show that the action of $PSL_2(\mathbb{F}_3)$ on the set $\mathbb{P}^1(\mathbb{F}_3)$ identifies $PSL_2(\mathbb{F}_3)$ as the symmetry group of the tetrahedron which is A_4 (V is the standard representation of A_4 under this identification).
 - (f) From the previous parts we see that $G/\{\pm 1\} \cong A_4$. Show that however, G is not isomorphic to S_4 .
 - (g) Instead we wish to show that G is the subgroup of SU(2) under the preimage of symmetries of the tetrahedron $A_4 \subset SO(3)$ under the double cover $SU(2) \to SO(3)$. Namely, we wish to show that G is isomorphic to the binary tetrahedral group. To do this, find a two dimensional quaternionic representation W such that $\operatorname{Sym}^2(W) \cong V$ (we discussed this phenomenon in class).
 - (h) Determine the character of W and use W and its tensor products with the non-trivial one dimensional G-representations to complete the character table of G.
 - (i) (Bonus question) Find an explicit embedding $G \subset SU(2)$ viewing SU(2) as the set of quaternions of unit length. Namely, find a set of 24 unit quaternions whose multiplication table is the same as $SL_2(\mathbb{F}_3)$.