Enviar as soluções de 3 exercícios a sua escolha para o email walner+comb@mat.ufc.br.

Exercício 1 (Frankl, 1986). Seja \mathcal{A} uma família de conjuntos de cardinalidade k na qual quaisquer três conjuntos $A, B, C \in \mathcal{A}$, temos que $A \cap B \not\subset C$. Mostre que

$$|\mathcal{A}| \le 1 + \binom{k}{\lfloor k/2 \rfloor}.$$

Exercício 2 (Tuza, 1985). Sejam A_1, \ldots, A_m e B_1, \ldots, B_m coleções de conjuntos tais que, para todo $i \in [m]$, temos $A_i \cap B_i = \emptyset$; e para todo $i \neq j$ temos que $A_i \cap B_j \neq \emptyset$ ou $A_j \cap B_i \neq \emptyset$ (ou ambos). Mostre que, para qualquer número real 0 , vale que

$$\sum_{i \in [m]} p^{|A_i|} (1-p)^{|B_i|} \le 1.$$

Exercício 3. Seja $n \leq 2k$ e considere uma família $\mathcal{A} \subseteq 2^{[n]}$ de conjuntos de cardinalidade k tal que $A \cup B \neq [n]$, para todo $A, B \in \mathcal{A}$. Mostre que

$$|\mathcal{A}| \le \left(1 - \frac{k}{n}\right) \binom{n}{k}.$$

Exercício 4. Seja $\mathcal{A} \subseteq 2^{[n]}$. Mostre que se |A| é par para todo $A \in \mathcal{A}$ e $|A \cap B|$ é impar para todo $A, B \in \mathcal{A}$ distintos, então $|A| \leq n$.

Exercício 5. Mostre que toda família ℓ -intersectante maximal tem dois conjuntos com interseção de tamanho exatamente ℓ .

Exercício 6. Seja $P = \{p_1, \dots, p_m\}$ um conjunto de pontos no plano que não estão todos contidos em uma mesma reta. Mostre que os pontos de P determinam pelo menos m retas.

Exercício 7 (Frankl e Wilson, 1981). Seja $\mathcal{A} \subseteq 2^{[n]}$ e seja $L \subseteq \mathbb{N}$ com |L| = s. Mostre que se \mathcal{A} é L-intersectante, então

$$|\mathcal{A}| \le \sum_{i=0}^{s} \binom{n}{i}.$$

[Dica: Considere os polinômios $f_A(x) = \prod_{\ell \in L, \ell < |A|} \left(\sum_{i \in A} x_i - \ell \right)$ para cada $A \in \mathcal{A}$.]