ConsistencyTTA

Accelerating Diffusion-Based Text-to-Audio Generation with Consistency Distillation

Yatong Bai, Trung Dang, Dung Tran, Kazuhito Koishida, Somayeh Sojoudi

consistency-tta.github.io

yatong bai@berkeley.edu

Project Website Live Demo!

Background

- **Diffusion model** is one of the most popular Text-to-Audio (TTA) methods.
 - Training:
 - Add noise and train model to reverse the noise.
 - Inference:
 - Start from pure noise and gradually denoise.
 - 400 Model Queries = **SLOW INFERENCE!**

Methods

- Consistency Model
 - Distilled from a teacher diffusion model (we use TANGO).
 - Single-step high-quality generation from anywhere on the diffusion trajectory.
- CFG-Aware Distillation
 - Classifier-free guidance (CFG):
 - An external operation that strengthens diffusion models.
 - ConsistencyTTA distills CFG into the model.
 - Add an CFG weight embedding branch to the student neural net, similar to timestep embedding.
 - Add an CFG weight embedding branch to the student neural net, similar to timestep embedding
 When querying the teacher during distillation, apply a random CFG weight sampled from [0, 6).
 - The same weight is fed into the added student embedding branch.

CLAP-Finetuning

- Single-step generation means differentiability.
- Hence, directly optimize generation quality objectives, such as CLAP score.

• Ablation Studies with short training runs:

- Distilling CFG into the model outperforms external CFG.
- Training with random CFG weight is better than fixed.
- Using Heun solver to query teacher is better than DDIM.
- Uniform noise schedule is preferred over Karras.

Goal

• High-quality audio generation with ONE SINGLE MODEL QUERY.

Data

- In-the-wild audio generation.
 - AudioCaps (YouTube video soundtracks + captions).
 - 45,260 training audio clips (10s); 882 validation clips.
- Example prompts:
 - A telephone ringing with loud echo.
 - A horn and then an engine revving.

Results

- Evaluation Metrics:
 - ∘ Frechet Audio Distance (FAD) w/ VGG-ish embeddings ∘ CLAP Score w.r.t. Prompt (CLAP_T)
 - Frechet Distance (FD) w/ PANN embeddings
 KL Divergence (KLD) w/ PANN embeddings
- CLAP Score w.r.t. Ground-Truth Audio (CLAPA)
 Human Subjective Quality & Prompt Alignment
- ConsistencyTTA **Diffusion Baseline** + CLAP-Finetune (ours) FAD: 1.908, FD: 19.57, KLD: 1.350 ConsistencyTTA (ours) Quality FAD: 2.575, FD: 22.08, KLD: 1.354 FAD: Frechet Audio Distance, FD: Frechet Distance, **Traditional Diffusion Acceleration** Higher is better for Quality 400 100 200 300 Speedup (times)

- Uncompromised generation quality in a single step.
 - 99.75% computation reduction.
 - 98.63% wall time reduction.
 - Runs locally on a laptop and still faster than a diffusion model on A100 GPU.

Guidance Method	Solver	Noise Schedule	$CFG\;w$	# Queries (↓)	$FAD(\downarrow)$	$FD(\downarrow)$	KLD (↓)
Unguided	DDIM	Uniform	1	1	13.48	45.75	2.409
Direct Guidance	DDIM Heun	Uniform Karras	3	2	8.565 7.421	38.67 39.36	2.015 1.976
Fixed Guidance Distillation	Heun	Karras Uniform Uniform	3	1	5.702 4.168 3.859	33.18 28.54 27.79	1.494 1.384 1.421
Variable Guidance Distillation	Heun	Uniform	4 6	1	3.180 2.975	27.92 28.63	1.394 1.378