Algebraic Methods in Combinatorics

Solutions 1

The aim of the homework problems is to help you understand the theory better by actively using it to solve exercises. **Do not read the solutions** before you believe you have solved the problems: it ruins your best way of preparing for the exam. The purpose of this write-up is merely to provide some guideline on how solutions should look like, and to help clean up hazy arguments. For hints, feel free to consult your teaching assistant.

Problem 1: Note first that if q is just a prime number, then the same argument but over \mathbb{F}_q as in the proof of Berlekamp's theorem for the Oddtown problem (Claim 1.4. in the notes) will work. However, this will not work if $q = p^t$ for some prime p and t > 1. The reason is that if we consider some $A \in \mathcal{A}$ and take its characteristic vector over \mathbb{F}_q , it could be that even though |A| is not divisible by q, we have $\chi_A \cdot \chi_A = 0$, since this field has characteristic p, **not** \mathbf{q} !

Nevertheless, the solution to this will be to apply the same argument over \mathbb{Q} . Indeed, let v_1, \ldots, v_m denote the characteristic vectors of the elements of \mathcal{A} . Suppose, for a contradiction that m > n. Then, they are linearly dependent as vectors in the vector space \mathbb{Q}^n (over \mathbb{Q}), and so, there exist $\gamma_1, \ldots, \gamma_m \in \mathbb{Q}$ (not all zero) such that

$$\gamma_1 v_1 + \ldots + \gamma_m v_m = \underline{\mathbf{0}}$$

By multiplying both sides of the above equation by some adequate integer (the least common multiple of the denominators of the γ 's), we can assume that the γ 's are coprime integers. Now, note that because of the above equation, for each i we have

$$0 = v_i \cdot (\gamma_1 v_1 + \ldots + \gamma_m v_m) = \sum_{j \neq i} \gamma_j (v_i \cdot v_j) + \gamma_i (v_i \cdot v_i) = \sum_{j \neq i} \gamma_j |A_i \cap A_j| + \gamma_i |A_i|.$$

Since each term $|A_i \cap A_j|$ is divisible by $q = p^t$ but $|A_i|$ is not, we must have that $p|\gamma_i$. Since this occurs for all i, this contradicts the fact that the γ 's are coprime.

Problem 2:(b) We work over \mathbb{F}_2^n . Let V be the subspace given by the span of the characteristic vectors of elements of \mathcal{A} and U be the vector space given by the span of the characteristic vectors of elements of \mathcal{B} . For all characteristic vectors χ_A, χ_B for elements $A \in \mathcal{A}$ and $B \in \mathcal{B}$, we have $\chi_A \cdot \chi_B = |A \cap B| = 0$. Therefore, $V \subseteq U^{\perp}$ and so, dim $V + \dim U \leq n$ which then implies that $|\mathcal{A}||\mathcal{B}| \leq |V||U| = 2^{\dim V + \dim U} \leq 2^n$.

To see that 2^n is tight, do the following. For n even, let \mathcal{A}, \mathcal{B} both be the family of sets which for each i, either contain all elements in $\{2i-1,2i\}$ or none of them. For n odd, let \mathcal{A} be the family of sets which do not contain n and for each $i \leq \frac{n-1}{2}$, either contain all elements in $\{2i-1,2i\}$ or none; let \mathcal{B} be the family of sets which for each $i \leq \frac{n-1}{2}$, either contain all elements in $\{2i-1,2i\}$ or none.

Problem 2:(a) We will work in the vector space \mathbb{F}_2^n . The main observation here is the following. Let V be the subspace given by the span of the characteristic vectors of elements of \mathcal{A} . Then,

$$|\mathcal{A}| \le 2^{\dim(V)-1}$$
.

Indeed, let v_1, \ldots, v_k be a basis of V consisting of characteristic vectors of elements of \mathcal{A} - let A_1, \ldots, A_k denote these sets. Trivially, $k = \dim(V)$ and $V = \{\sum_{i \in I} v_i : I \subseteq [k]\}$. Now, let $A \in \mathcal{A}$, v_A denote its characteristic vector and I be such that $\chi_A = \sum_{i \in I} v_i$. Then take an element $B \in \mathcal{B}$, v_B its characteristic vector, and note that by assumption, we have the following in \mathbb{F}_2 :

$$1 = |A \cap B| = v_A \cdot v_B = \sum_{i \in I} v_i \cdot v_B = \sum_{i \in I} |A_i \cap B| = |I|.$$

Hence, I has odd size and so, $\mathcal{A} \subseteq \{\sum_{i \in I} v_i : I \subseteq [k], |I| = \text{odd}\}$ implying $|\mathcal{A}| \leq 2^{k-1} = 2^{\dim(V)-1}$.

To now solve our problem, fix $B_0 \in B$, and let U be the subspace spanned by the vectors $\{v_B - v_{B_0} : B \in \mathcal{B}\}$. Observe that for every $B \in \mathcal{B}$ and $A \in \mathcal{A}$, it holds that $(v_B - v_{B_0}) \cdot v_A = (v_B \cdot v_A) - (v_{B_0} \cdot v_A) = 1 - 1 = 0$. Hence, $U \subseteq V^{\perp}$. Therefore, $\dim(U) \leq n - \dim(V) = n - k$. Observe that $\{v_B : B \in \mathcal{B}\} \subseteq v_{B_0} + U$, and therefore $|\mathcal{B}| \leq |U| = 2^{n-k}$. It now follows that $|\mathcal{A}||\mathcal{B}| \leq 2^{k-1}2^{n-k} = 2^{n-1}$, as required.

Remark: To see that $\dim(V^{\perp}) = n - \dim V$, consider the matrix M whose rows are the vectors v_1, \ldots, v_k (which form a basis for V). Observe that $\underline{\mathbf{x}} \in V^{\perp}$ if and only if $M\underline{\mathbf{x}} = \underline{\mathbf{0}}$. Now, the dimension of the space of solutions of this linear system is n - k (see Lemma 4.16 in the Linear Algebra recap at the end of the lecture notes - remember that v_1, \ldots, v_k are linearly independent so $\mathrm{rk}(M) = k$).

Problem 3(a),(b): Follows from what we did in Problem 2(b).

Problem 3(c): We will build on the ideas shown in Problem 2(b). Let us first divide \mathcal{A} into \mathcal{A}^{odd} , the subfamily of the odd-sized sets, and $\mathcal{A}^{\text{even}}$, the subfamily of the even-sized sets. From what we already know, we can get a bound of $|\mathcal{A}| \leq n + 2^{\lfloor n/2 \rfloor}$. Indeed, from the Oddtown

problem (Claim 1.4. in the notes), we know that $|\mathcal{A}^{\text{odd}}| \leq n$ (since this family satisfies the 'oddtown' rules). Also, from Problem 3(a), we have $|\mathcal{A}^{\text{even}}| \leq 2^{\lfloor n/2 \rfloor}$. But we can do better!

Again we work in the vector space \mathbb{F}_2^n . Let the characteristic vectors of the elements of \mathcal{A}^{odd} be v_1, \ldots, v_k and V be the subspace given by their span. Note that the same proof as in the Oddtown problem (Claim 1.4. in the notes), shows that these vectors are linearly independent! Now, let U be the subspace given by the span of the characteristic vectors of the elements of $\mathcal{A}^{\text{even}}$.

Claim. $U \cap V = \emptyset$.

Proof. Suppose otherwise, so that there exists a vector $w \in U \cap V$. Let $w = \gamma_1 v_1 + \dots + \gamma_k v_k$ and suppose w.l.o.g. that $\gamma_1 \neq 0$. Recall that \mathcal{A} is such that every two distinct elements have even-sized intersection, that is, the dot product of their characteristic vectors is 0. Therefore, $w \cdot v_1 = \gamma_1 \neq 0$. On the other hand, $w \in U$ and so it can also be written as a linear combination of elements of $\mathcal{A}^{\text{even}}$. Since the dot product of v_1 (which is **not** in $\mathcal{A}^{\text{even}}$) with any of these elements is 0, we have also $w \cdot v_1 = 0$, which is a contradiction. \square

To finish the proof, just note that again the characteristics of \mathcal{A} imply that $U \cup V \subseteq U^{\perp}$ and so, $U + V \subseteq U^{\perp}$, giving dim $(U + V) \leq n - \dim U$. Moreover, the claim above implies that dim $(U + V) = \dim U + \dim V = \dim U + k$. So, $k + 2\dim U \leq n$, and since, $k = |\mathcal{A}^{\text{odd}}|$ and $|\mathcal{A}^{\text{even}}| \leq 2^{\dim U}$, we have the bound

$$|\mathcal{A}| \le k + 2^{\frac{n-k}{2}}.$$

This is always at most $2^{\lfloor n/2 \rfloor} + 1$.

Slightly different proof: By the properties of \mathcal{A} , we have that $U \subseteq V^{\perp}$, which has dimension $n-\dim V$. We can then consider working on the vector space V^{\perp} , take in it the bilinear form coming from the usual dot product in \mathbb{F}_2^n . We then, again by orthogonal complement considerations, still have $U \subseteq U^{\perp}$ and so, $2\dim U \leq \dim V^{\perp} \leq n - \dim V$. Now, the rest goes as above.

Problem 4: Let $\mathcal{A} := \{A_1, \ldots, A_m\}$ and suppose, for sake of contradiction, that m < n. The key idea here is to apply Claim 1.8. from the notes. For this, define the dual sets $B_i := \{j : i \in A_j\} \subseteq [m]$ for each $i \in [n]$. Since n > m, we can apply Claim 1.8. to these sets to find disjoint and non-empty sets $I, J \subseteq [n]$ such that

$$\bigcup_{i \in I} B_i = \bigcup_{j \in J} B_j$$

What this means for our family \mathcal{A} is that every set in it either is disjoint to $I \cup J$ or intersects both of them! It then already makes sense to want to colour the elements of [n] so that I is red

and J is blue - since then every set intersecting $I \cup J$ would have both a red element (from I) and a blue element (from J). Indeed, if $[n] = I \cup J$, then this would be a two-colouring such that no set in \mathcal{A} is monochromatic - this would be a contradiction to the fact that \mathcal{A} is not 2-colourable.

In general, let $K := [n] \setminus (I \cup J)$. Recall that we know that all sets in \mathcal{A} either intersect both I and J or are contained in K. In fact, let us denote by \mathcal{A}_K the subfamily of those contained in K. Now, take an element $i \in I$ (exists since this is non-empty) and by assumption, we know there exists $A \in \mathcal{A}$ such that $i \in A$ and moreover, $\mathcal{A} \setminus A$ is 2-colourable. In particular, since $A \notin \mathcal{A}_K$, we have that $\mathcal{A}_K \subseteq \mathcal{A} \setminus A$ is 2-colourable, meaning that there exists a red/blue-colouring of K such that no set in \mathcal{A} which is contained in K is monochromatic. We now extend this to a colouring of [n] by colouring I red and J blue, giving a colouring such that no set in \mathcal{A} is monochromatic - this is a contradiction to the fact that \mathcal{A} is not 2-colourable.