

Uzorkovanje signala i kvantizacija uzoraka

Teorija informacije

Analogni prijenos signala

 ograničit ćemo se na skup striktno pojasno ograničenih signala, {x(t)}

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt = 0 \operatorname{za}|f| > f_g \neq 0$$

- pri prijenosu signala koji nije pojasno ograničen nužno je prenositi neprebrojiv skup kontinuiranih vrijednosti tog signala
 - sve vrijednosti signala x(t), $\forall t \in [t_1, t_2], t_1, t_2 \in \mathbb{R}$
 - $[t_1, t_2]$ je promatrani vremenski interval unutar kojeg se odvija prijenos signala x(t)
 - takav prijenos zovemo i analogni prijenos

Uzorkovanje

- ako je signal pojasno ograničen, tada je unutar promatranog vremenskog intervala dovoljno prenositi prebrojiv skup njegovih vrijednosti
 - pojasno ograničen signal u kontinuiranom vremenu moguće je jednoznačno specificirati pomoću njegovih vrijednosti uzetih u diskretnim trenucima
 - proces uzimanja uzoraka kontinuiranog signala u diskretnim trenucima naziva se uzorkovanje
 - uzorkovanje se provodi u predajniku, a rekonstrukcija izvornog signala u prijemniku
 - uzorkovanje je osnova digitalnog prijenosa signala

prvi korak u digitalizaciji analognog signala

Teorija informacije 3 od 27

Teorem uzorkovanja u vremenskoj domeni

- za striktno pojasno ograničene signale konačne energije
- Prvi dio teorema odnosi se na predajnik
- Pojasno ograničeni signal konačne energije, x(t), t
 ∈ R, čiji spektar ne sadrži frekvencijske
 komponente na frekvencijama iznad B Hz
 - X(f) = 0 za |f| > B
- u potpunosti je i na jednoznačan način opisan pomoću vrijednosti tog signala uzetih u diskretnim vremenskim trenucima $T_n = n/(2B)$
 - $\mathbf{n} \in \mathbf{Z}$, B je gornja granična frekvencija signala

Teorija informacije 4 od 27

Teorem uzorkovanja u vremenskoj domeni (II)

- Drugi dio teorema odnosi se na prijemnik
- Pojasno ograničeni signal x(t) konačne energije čiji spektar ne sadrži frekvencijske komponente na frekvencijama iznad B Hz
 - X(f) = 0 za |f| > B
- moguće je u potpunosti i na jednoznačan način rekonstruirati na temelju poznavanja njegovih uzoraka uzetih u diskretnim trenucima međusobno razmaknutim za 1/(2B) sekundi
 - frekvencija 2B uzorak/s Nyquistova frekvencija
 - (1/2B) [s] Nyquistov interval uzorkovanja

Teorija informacije 5 od 27

Frekvencija uzorkovanja

- osnovni problem uzorkovanja odabir adekvatne frekvencije uzorkovanja f_u
 - slijed uzoraka mora jednoznačno definirati izvorni analogni signal
- poželjno je da f_u bude što manja
 - tada je i broj uzoraka manji
- što su uzorci gušći, to je slijed uzoraka sve bliži originalnom analognom signalu
 - međutim, potrebno prenositi više uzoraka
 - rezultat: neučinkovito korištenje mrežnih resursa

Teorija informacije 6 od 27

Dokaz teorema uzorkovanja

- promatrajmo proizvoljni signal x(t) konačne energije, definiran za svaki t ∈ R
- uzorci se uzimaju jednolikom frekvencijom
 - jedan uzorak svakih T_u sekundi
 - nastaje slijed uzoraka $\{x(nT_u)\}, n \in \mathbf{Z}$
 - T_u nazivamo period uzorkovanja

 - idealno uzorkovanje: trajanje uzimanja uzorka $\Delta t \rightarrow 0$
- uzorkovani signal je slijed Diracovih impulsa

$$x_{\delta}(t) = \sum_{n=-\infty}^{\infty} x(nT_u) \delta(t - nT_u)$$

Proces uzorkovanja

- a) originalni kontinuirani signal
- b) njegova uzorkovana inačica
- Diracov impuls pomnožen koeficijentom $x(nT_u)$
 - aproksimiramo ga pravokutnim impulsom trajanja Δt i amplitude $x(nT_u)/\Delta t$

Teorija informacije 8 od 27

Svojstva Fourierove transformacije

- prvo svojstvo: $\sum_{n=-\infty}^{\infty} \delta(t-nT_0) \rightleftharpoons \frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta(f-\frac{n}{T_0})$
 - drugo svojstvo: funkcija $x_{\delta}(t)$ je umnožak funkcije x(t) i beskonačnog slijeda Diracovih delta impulsa $\delta(t nT_u)$
 - spektar od x(t) je X(f)
 - spektar od slijeda $\delta(t nT_u)$ prvo svojstvo
 - $x_{\delta}(t)$ se preslikava u konvoluciju

$$X(f)*\left[f_{u}\sum_{n=-\infty}^{\infty}\delta(f-nf_{u})\right]=\int_{-\infty}^{\infty}X(\phi)f_{u}\sum_{n=-\infty}^{\infty}\delta(f-nf_{u}-\phi)d\phi=$$

$$=f_{u}\sum_{n=-\infty}^{\infty}\int_{-\infty}^{\infty}X(\phi)\delta(f-nf_{u}-\phi)d\phi=f_{u}\sum_{n=-\infty}^{\infty}X(f-nf_{u}),$$

Dokaz teorema uzorkovanja (nastavak)

 proces jednolikog uzorkovanja kontinuiranog signala konačne energije rezultira periodičkim spektrom čiji je period jednak frekvenciji uzimanja

- a) amplitudni spektar signala pojasno ograničenog na pojas frekvencija (-B, B)
- b) amplitudni spektar uzorkovane inačice tog signala uzorkovane frekvencijom $f_{11} = 1/(2B)$

Dokaz teorema uzorkovanja (nastavak)

- primijenimo Fourierovu transformaciju na obje strane izraza $x_{\delta}(t) = \sum_{n=0}^{\infty} x(nT_n) \delta(t-nT_n)$
- iskoristimo svojstvo: $\delta(t-nT_u) \rightleftharpoons e^{-j2\pi nfT_u}$
- dobivamo: $X_{\delta}(f) = \sum_{n=-\infty}^{\infty} x(nT_u)e^{-j2\pi n f T_u}$
- gornji se izraz naziva diskretna Fourierova transformacija (DFT)
- $X_{\delta}(f)$ je spektar signala $x_{\delta}(t)$

Dokaz teorema uzorkovanja (nastavak)

- pretpostavimo
 - X(f) = 0 za |f| > B i $T_u = 1/(2B)$
- spektar od $x_{\delta}(t)$ je dan izrazom $X_{\delta}(f) = \sum_{n=-\infty}^{\infty} x \left(\frac{n}{2B}\right) e^{-j\pi nf/B}$
- koristeći izraz $x_{\delta}(t) \rightleftharpoons f_{u} \sum_{n=-\infty}^{\infty} X(f nf_{u})$
- dobivamo $X_{\delta}(f) = f_u X(f) + f_u \sum_{\substack{m=-\infty \\ m \neq 0}}^{\infty} X(f mf_u)$
- ako vrijedi X(f) = 0 za | f | > B i f_u = 2B
 - tada je $f_u \sum_{\substack{m=-\infty\\m\neq 0}}^{\infty} X(f mf_u) = 0$

Dokaz teorema uzorkovanja (kraj)

- dakle, vrijedi: $X(f) = \begin{cases} \frac{1}{2B} X_{\delta}(f), & -B \le f \le B \\ 0, & \text{inače} \end{cases}$
- uvrstimo u prethodni izraz $X_{\delta}(f) = \sum_{n=-\infty}^{\infty} x \left(\frac{n}{2B}\right) e^{-j\pi nf/B}$
- pa dobivamo $X(f) = \begin{cases} \frac{1}{2B} \sum_{n=-\infty}^{\infty} x \left(\frac{n}{2B}\right) e^{-j\pi n f/B}, & -B \le f \le B \\ 0, & \text{inače} \end{cases}$
- ako su x[n/(2B)] poznate za svaki n ∈ Z tada je X(f) jednoznačno određen DFT-om
- x(t) je inverzna Fourierova transformacija od X(f)
- dakle, x(t) jednoznačno određen uzorcima x[n/(2B)]

Teorija informacije 13 od 27

Rekonstrukcija signala

◆ Kako iz {x[n/(2B)]} dobiti x(t)?

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df = \int_{-B}^{B} \frac{1}{2B} \sum_{n=-\infty}^{\infty} x \left(\frac{n}{2B}\right) e^{-j\pi nf/B} e^{j2\pi ft}df$$
$$x(t) = \sum_{n=-\infty}^{\infty} x \left(\frac{n}{2B}\right) \frac{1}{2B} \int_{-B}^{B} e^{j2\pi f \left[t-n/(2B)\right]} df$$

$$x(t) = \sum_{n=-\infty}^{\infty} x \left(\frac{n}{2B}\right) \frac{\sin(2\pi Bt - n\pi)}{2\pi Bt - n\pi}, -\infty < t < \infty$$

$$x(t) = \sum_{n=-\infty}^{\infty} x \left(\frac{n}{2B}\right) \operatorname{sinc}(2Bt - n), -\infty < t < \infty$$

• $\operatorname{sinc}(x) = \sin(\pi x)/(\pi x)$

Rekonstrukcija signala (II)

Teorija informacije 15 od 27

Poduzorkovanje

 u praksi se uvijek odvija poduzorkovanje jer realni signali nisu striktno pojasno ograničeni (anti-alias)

- rezultat poduzorkovanja je preklapanje spektara
 - iz izobličenog spektra nije moguće točno rekonstruirati izvorni signal

Teorija informacije 16 od 27

Kvantizacija uzoraka

- nakon uzorkovanja kvantizacija je sljedeći korak u pretvorbi analognog u digitalni signal
 - analogni signal ima beskonačno mnogo mogućih vrijednosti amplitude
 - nije potrebno prenositi točne vrijednosti uzoraka
 - ljudska osjetila mogu detektirati samo konačne razlike između razina signala
 - originalni analogni signal je moguće aproksimirati signalom sastavljenim od diskretnih amplitudnih razina
 - odabiru se iz konačnog skupa po kriteriju minimalne pogreške u razlici između stvarnih i aproksimiranih vrijednosti signala
 - osnova tzv. *impulsno-kodne modulacije* (PCM)

Teorija informacije 17 od 27

Matematički model kvantizacije

- amplitudni uzorci $m(nT_u)$ uzeti od m(t) u nT_u , $n \in \mathbf{Z}$ se pretvaraju u diskretne amplitudne razine $v(nT_u)$
 - skup mogućih razina je konačan
 - T_u je period uzorkovanja signala
 - pretpostavka: kvantizacijski proces je bezmemorijski i trenutan – ne koristi se u naprednijim postupcima
- neka je $m_k < m(nT_u) \le m_k + 1, k = 1, 2, ..., L$ i
- $m_k < v_k \le m_k + 1, k = 1, 2, ..., L$
 - L broj stupnjeva amplitude kvantizatora (broj kvantizacijskih razina)
- tada kvantizator preslikava $m(nT_u) \rightarrow v_k$

Kvantizator

- m_k razine odlučivanja ili pragovi odluke
- v_k+1 − v_k je korak kvantizacije
- v = g(m) − kvantizacijska karakteristika
- najčešći slučaj u praksi: $v_k = (m_k + m_{k+1})/2$
- ovisno o veličini koraka:
 - jednolika kvantizacija svi koraci jednaki
 - u suprotnom nejednolika kvantizacija

Teorija informacije 19 od 27

Primjer kvantiziranja i jednolika kvantizacija

Teorija informacije 20 od 27

Kvantizacijski šum

- šum je razlika između $m(nT_u)$ i $v(nT_u)$
- ulaz u kvantizator kontinuirana slučajna varijabla M
- na izlazu kvantizatora diskretna slučajna varijabla V
 - vrijednosti skupova M i V su m, odnosno v, i vrijedi v = g(m)
- kvantizacijski šum slučajna varijabla Q
 - vrijedi: Q = M V, odnosno q = m v
 - ako je *E[M]* = 0 i kvantizacijska karakteristika simetrična
 - vrijedi: *E*[*V*] = *E*[*Q*] = 0
- cilj: odrediti standardnu devijaciju kvantizacijskog šuma

Teorija informacije 21 od 27

Varijanca kvantizacijskog šuma

- pretpostavka:
 - amplitude ulaznog signala mogu poprimati kontinuirane vrijednosti iz intervala ($-m_{\text{max}}$, m_{max})
 - ako su amplitude ulaznog signala izvan tog intervala, nastupa preopterećenje kvantizatora i izobličenje
- korak kvantizacije $\Delta = 2m_{\text{max}}/L$
- dakle, kvantizacijski šum je ograničen: $-\Delta/2 \le q \le \Delta/2$
 - ako je korak kvantizacije dovoljno mali
 - opravdano je pretpostaviti da slučajna varijabla Q ima jednoliku razdiobu

$$f_{Q}(q) = \begin{cases} \frac{1}{\Delta}, & -\frac{\Delta}{2} < q \le \frac{\Delta}{2}, \\ 0, & \text{inače.} \end{cases}$$

Teorija informacije 22 od 27

Varijanca kvantizacijskog šuma (II)

s obzirom da je E[Q] = 0, vrijedi:

$$\operatorname{var}(Q) = \sigma_Q^2 = E[Q^2] = \int_{-\Delta/2}^{\Delta/2} q^2 f_Q(q) dq$$

$$\operatorname{var}(Q) = \sigma_Q^2 = \frac{1}{\Delta} \int_{-\Delta/2}^{\Delta/2} q^2 dq = \frac{\Delta^2}{12}$$

- uzorci se prije prijenosa kodiraju binarnim kodom i prenose binarnim signalom (dvije razine)
- r označava broj bita za opis svakog uzorka v_k
 - mora vrijediti: $L = 2^r$
 - $L > 2^r$ ne možemo jednoznačno opisati sve uzorke
 - $L < 2^r$ nepotrebna zalihost u kodiranju

Varijanca kvantizacijskog šuma (III)

• nadalje, $\Delta = 2m_{\text{max}}/2^r$

$$\sigma_Q^2 = \frac{1}{3} m_{\text{max}}^2 2^{-2r}$$

- neka je S srednja snaga signala m(t)
- tada vrijedi:

$$(S/N) = \frac{S}{\sigma_Q^2} = \left(\frac{3S}{m_{\text{max}}^2}\right) 2^{2r}$$

Teorija informacije 24 od 27

Primjer: kvantizacija sinusnog signala

- sinusni signal amplitude A_m
 - koristi sve razine za rekonstrukciju signala
 - srednja snaga signala na otporniku otpora 1 om $P = \frac{A_m^2}{2}$
 - raspon amplituda na ulazu kvantizatora iznosi 2A_m
 - dakle, $m_{\text{max}} = A_{\text{m}}$

L	r	<i>S</i> / <i>N</i> [dB]
32	5	31,8
64	6	37,8
128	7	43,8
256	8	49,8

$$\sigma_Q^2 = \frac{1}{3} A_m^2 2^{-2r}$$

$$(S/N) = \frac{A_m^2/2}{A_m^2 2^{-2r}/3} = \frac{3}{2} (2^{2r})$$

$$10\log_{10}(S/N) = 1,76+6,02 \cdot r \text{ [dB]}$$

Kodiranje kvantiziranih uzoraka

- kôd pravilo dodjele sljedova simbola diskretnim kvantizacijskim razinama
 - kodna riječ slijed simbola koji se dodjeljuje nekoj kvantizacijskoj razini
 - ako se prilikom kodiranja uzoraka koriste binarni simboli, tada se radi o binarnom kodu
 - pravilo kodiranja ovisi o vrsti komunikacijskog sustava
 - najčešće je određeno odgovarajućim preporukama, odnosno normama
 - primjer: na izlazu kvantizatora 4 kvantizacijske razine (L = 4): -3U, -U, U i 3U, U – napon u voltima
 - nužno koristiti 2 bita po svakoj razini
 - $-3U \rightarrow 11$, $-U \rightarrow 10$, $U \rightarrow 00$ i $3U \rightarrow 01$

Unipolarni binarni signal

- uobičajeno pravilo je da se
 - binarnoj nuli pridjeljuje razina 0 [V]
 - binarnoj jedinici razina A [V]
- T trajanje binarnih signalnih elemenata
 - ili trajanje bita, izraženo u sekundama
 - prijenosna brzina R = 1/T [bit/s]

Teorija informacije 27 od 27