Problems

Thursday, 10 March 2022 11:51

Make atable for x+y.

	YX	1 2 3 4 X+4=
	1	(1/150) 2/150 (1/150)
P(x,y)	2	2/10 (120 (6/120) (8/130)
	3	(200 P100 P100 P120
	4	(4100) 8/100 (4/30) 12/100.
	7	120 19180 15100 150.
•		

X+4-2 > S(1,1)

 $x+y=3 \rightarrow d(1,2),(2,1)$. $x+y=4 \rightarrow d(1,3,)(2,2),(3,1)$. $x+y=5 \rightarrow d(1,4,)(2,3),(3,2),(4,1)$. $x+y=6 \rightarrow d(1,5)(2,4),(3,3),(4,2)$. $x+y=4 \rightarrow d(1,5)(2,4),(3,3),(4,2)$. $x+y=4 \rightarrow d(4,4),(3,5)$. $x+y=4 \rightarrow d(4,4),(3,5)$.

Ex Binomial: $P(x) = {n \choose x} P^{\chi}(1-P)^{\chi-\chi}.$ E(x) . Vax(x). $X N B(n_1 P)$ $E(x) = \sum_{x=0}^{n} \lambda . {y \choose x} P^{\chi}(1-P)^{\chi-\chi}.$ OneNote 10.03.22, 15:30

$$= \sum_{x=1}^{n} x \cdot \begin{pmatrix} u \\ x \end{pmatrix} p^{n} \begin{pmatrix} 1-p \\ x-1 \end{pmatrix}$$

$$= \frac{n!}{\alpha! (n-n)!} \qquad \begin{pmatrix} n-1 \\ x-1 \end{pmatrix} = \frac{(n-1)!}{(n-1)!(n-$$

$$E(x) = Np \cdot (p + (1-p))^{N-1} = N$$

$$X \sim B(n_1 p)$$

One trial: $B(1_1 p)$
 $X_1, X_2, ..., X_n$.
 $X = X_1 + X_2 + ... + X_n$.
 $E(X) = E[X_1 + X_2 + ... + X_n]$
 $= E[X_1] + E[X_2] + ... + E[$
 $= p + p + ... + p = n$
 $Vor(X) = Vor(X_1 + ... + X_n)$.
 $= Vor(X_1 + ... + Vor(X_n))$
 $= p(1-p) + ... + p(1-1)$
 $= n p(1-p)$.

Normal dist-
$$P(x) = \int exp(-\frac{1}{\sqrt{2\pi}}) dx$$

$$F(x) = \int x (0,1) dx$$

$$F(x) = 0 - \frac{1}{\sqrt{2\pi}}$$

$$Var(x) = 1$$

$$P(x \le x) = P(-\frac{1}{\sqrt{2\pi}})$$

$$P(x \le x) = P(-\frac{1}{\sqrt{2\pi}})$$

CLT:
Lef-Xj be The ID
Selected person.

$$E(X_j) = 100$$

 $D(X_j) = 15$
Lef X be The average of 1
Yandamly Selected people
 $D(X_j) = 100$
 $D(X_j) = 100$

Standardi zed this in

P(x>115) =

OneNote 10.03.22, 15:30