素数定理

芝浦工業大学 数理科学研究会

平成 28 年 11 月 4 日

※何か不明な点や計算ミス等がありましたら加筆修正しますので指摘をお願いします

制作: BV15005 石川直幹

目次

目 次

0	はじ	るめに	1
1	整数	京論的関数	1
	1.1	基本の定義	1
	1.2	関数の定義と性質	3
	1.3	$\vartheta(x)$ と $\psi(x)$ の性質と不等式	9
	1.4	Abel の変形法と和の評価	14
2	素数	双定理	19
	2.1	Mertens の第一定理	19
	2.2	素数に関する不等式	20
	2.3	Selberg の不等式	23
	2.4	素数定理のための補題	26
	2.5	素数定理の証明	29
		$2.5.1$ $ R(x) $ の評価 \dots	29
		2.5.2 証明の完結	32
3	今後	なの課題	35

0 はじめに

素数が自然数列上でどのように分布しているかは、紀元前から現代に至るまで脈々と研究されているにもかかわらず、未だに完全把握 (n 番目の素数を出力する関数) は見つかっていない。しかし、素数の分布に関する重要な手がかりがいくつか知られており、その中で最も有名とされている素数定理について研究したので、今回はそれを発表する。そもそも素数定理とは、

$$\lim_{x \to \infty} \frac{\pi(x)}{\frac{x}{\log x}} = 1$$

のことである $(\pi(x)$ 関数については後述). しかし、研究までたどり着かず証明を勉強しただけで終わってしまった。 なのでそれをまとめた.

1 整数論的関数

この節では、基本となる定義と議論を簡単に述べ、必要な関数を定義し、性質を見る. そして、Abel の変形法を示し、和の評価を行う.

1.1 基本の定義

定義 1.1.

(例) $2 \in \mathbb{P}, 3 \in \mathbb{P}, 97 \in \mathbb{P}.$

以下,特に断りのない限り $p,q \in \mathbb{P}$ とする.

定義 1.2 (Bachmann-Landau の記号 O, o, \sim). g(x) は正の十数値をとる関数とし, f(x) は実数値または 複素数値の関数とする.

$$|f(x)| \le cg(x) \quad (x \in X)$$

であることを

$$f(x) = O(q(x))$$

と書く. また

$$f(x) = \varepsilon(x)g(x)$$

と書かれ、かつ $\lim_{x\to a} \varepsilon(x) = 0$ であるとき、

$$f(x) = o(g(x)) \quad (x \to a)$$

と記す. f(x) = o(g(x)) ならば明らかに f(x) = O(g(x)) である.

(例) $\sin x = O(1), x = o(x^2).$

定義 1.3. 実関数 f(x), g(x) に対して,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

であることを

$$f(x) \sim g(x) \ (x \to a)$$

と書く.

1.1 基本の定義 1 整数論的関数

(例) $\sin x \sim x$ $(x \to 0)$ $\cos x \sim 1$.

定義 1.4 (Euler の定数).

$$\gamma := \lim_{x \to \infty} \left(\sum_{n=1}^{x} \frac{1}{n} - \log x \right)$$

とする. また, 右辺は収束する. なぜなら $n \in \mathbb{N}$ に対して,

$$a_n = \sum_{k=1}^n \frac{1}{k} - \log n$$

とすると, $n \ge 2$ のとき,

$$a_n = \sum_{k=1}^n \frac{1}{k} - \sum_{k=2}^n \int_{k-1}^k \frac{1}{x} dx$$
$$= 1 + \sum_{k=1}^n \left(\frac{1}{k} - \int_{k-1}^k \frac{1}{x} dx \right)$$
$$= 1 + \sum_{k=1}^n \int_{k-1}^k \left(\frac{1}{k} - \frac{1}{x} \right) dx$$

となる. m > n > 2 として, 差の絶対値を考えると,

$$|a_m - a_n| \le \sum_{k=n+1}^m \int_{k-1}^k \left| \frac{1}{k} - \frac{1}{x} \right| dx$$

$$= \sum_{k=n+1}^m \int_{k-1}^k \left(\frac{1}{k} - \frac{1}{x} \right) dx$$

$$\le \sum_{k=n+1}^m \left(\frac{1}{k-1} - \frac{1}{k} \right) = \frac{1}{n} - \frac{1}{m}$$

となり、これは明らかに Cauchy 列となるからである.

定義 1.5.

 $\pi(x) := \{x \in \mathbb{R} \ (x > 0) \ \text{に対して}, x \text{ を超えない素数の個数 } \}.$

(例) $\pi(1) = 0$, $\pi(2) = 1$, $\pi(100) = 25$.

定理 1.6. 合成数を素数の積に分解することができる. かつその分解の結果はただ一通りである.

証明. 最小の合成数 $4 = 2 \times 2$ のとき、成り立つ.

aよりも小さい合成数のとき,成り立つと仮定する.

分解の可能性については、a のときを考えると、a は合成数であるから、a=bc、1 < b < a、1 < c < a になるようなb、c がある。b も c も素数であるか、または仮定のよって素数の積に分解されるから、a(も同様である。) は素数の積に分解される.

分解の一意性については、a の素因数に分解して

$$a = pp'p'', \ldots = qq'q'', \ldots$$

を得たとすれば, pp'p'' ... が素数 q で割り切れるから, p, p', p'', ... の中に q で割り切れるのもがある (定理 1.8). いま p が q で割り切れるとすれば p が素数であるから, p = q. よって

$$p'p''\ldots=q'q''\ldots$$

これを繰り返せば, p' = q', p'' = q'', ... となるから, 二つの分解は (合致) 一致する. 以上より, 数学的帰納法を用いて, すべての自然数について, 成り立つ.

(例) $n \ge 2$ のとき, n! の標準形

$$n! = \prod_{p \le n} p^{e_p} \tag{1}$$

を求めると、明らかに、n! は素因数としてn以下の素数pをすべて含みnを超えるものは含まない。

$$e_p = \sum_{r=1}^{\infty} \left[\frac{n}{p^r} \right] \tag{2}$$

見かけ上, 無限和の形に表されているが, この和は, $p^r > n$ に対しては $[\frac{n}{p^r}] = 0$ であるので実質的に有限和である.

1.2 関数の定義と性質

定義 1.7 (整数論的関数). 整数論的関数とは、一般的にいえば、整数の空でないある集合の上で定義された実数値または複素数値関数のことである。乗法的関数とは、整数論的関数 f(n) が

- f(n) は恒等的に 0 でない.
- (2) $gcd(m,n) = 1 \Rightarrow f(mn) = f(m)f(n)$.

を満たすことをいう. また. f(n) が完全乗法的関数であるとは. (1) と

(3) $\forall n, m \in \mathbb{N} \Rightarrow f(mn) = f(m)f(n)$.

を満たすことをいう.

例として、補題 1.8 より下で定める Möbius の関数を上げる.

補題 1.8. 乗法的関数 f(n) において常に, f(1) = 1 である.

証明. f(n) は恒等的に 0 でないから $\exists n_1 \in \mathbb{N}$ s.t. $f(n_1) \neq 0$ である. このとき,

$$f(n_1) = f(1 \cdot n_1) = f(1)f(n_1)$$

よって,

$$f(1) = 1.$$

定義 1.9 (Möbius の関数).

$$\mu(n) := \left\{ \begin{array}{ll} 1 & (n=1 \ \text{のとき}), \\ (-1)^k & (n \ \text{が} \ k \ \text{個の相異なる素数の積であるとき}), \\ 0 & (n \ \text{が} \ 1 \ \text{のほかに平方因数をもつとき}) \end{array} \right.$$

(例) $\mu(2) = -1$, $\mu(4) = 0$, $\mu(6) = 1$.

補題 1.10.

$$\mu(n) := \left\{ \begin{array}{ll} 1 & (n=1 \ \mathcal{O} \ \mathcal{E} \ \tilde{\mathcal{E}}), \\ 0 & (n>0 \ \mathcal{O} \ \mathcal{E} \ \tilde{\mathcal{E}}). \end{array} \right.$$

証明n=1 のとき, 明らかに成り立つ.

 $n > 1 \text{ Obs}, n > p_1^{a_1} p_2^{a_2} \dots p_k^{a_k} \ (k \ge 1) \text{ bts},$

$$\sum_{d|n} \mu(d) = 1 + \sum_{i} \mu(p_i) + \sum_{i < j} \mu(p_i p_j) + \dots + \mu(p_1 p_2 \dots p_k)$$
$$= 1 - {}_k C_1 + {}_k C_2 + \dots + {}_k C_k = (1 - 1)^k = 0$$

となる.

補題 1.11. 整数論的関数 f(n) が乗法的ならば、

$$g(n) = \sum_{d|n} f(d)$$

によって定義される関数 g(n) は乗法的である.

証明. 明らかに, $g(1) = \sum_{d|1} f(d) = 1$ であり, $\gcd(m,n) = 1$ ならば, $d_1|m$, $d_2|n$ とすると, $\gcd(d_1,d_2) = 1$ で $d = d_1d_2$ は mn の約数であり, 逆に mn の任意の約数 d は必ず $d = d_1d_2$, $d_1|m$, $d_2|n$ という形で書けるので,

$$g(mn) = \sum_{d|mn} f(d) = \sum_{d_1|m,d_2|n} f(d_1d_2)$$
$$= \sum_{d_1|m} f(d_1) \sum_{d_2|n} f(d_2) = g(m)g(n)$$

となる.

ここで、補題 1.11 において、 $f(n) = \mu(n)$ とすると、

$$g(n) = \sum_{d|n} \mu(d).$$

明らかに g(1)=1 で, $g(p^a)=1+\mu(p)=0$ $(p\in\mathbb{P},a>0)$ であるから n>0 ならば g(n)=0 である. これは補題 1.10 の別証明である. これら二つの補題より、

定理 1.12 (Möbius の反転公式). f(x) は $\forall n \in \mathbb{N}$ で定義された任意の整数論的関数とする. もし $\forall n > 0$ に対して,

$$g(n) = \sum_{d|n} f(d)$$

ならば、 $\forall n > 0$ に対して、

$$f(x) = \sum_{d|n} \mu(d)g\left(\frac{n}{d}\right)$$

である. さらに逆も成り立つ.

証明. $\forall n \in \mathbb{N}$ に対して、

$$g(n) = \sum_{d|n} f(d)$$

であるとすると,

$$\begin{split} \sum_{d|n} \mu(d)g\left(\frac{n}{d}\right) &= \sum_{d|n} \mu(d) \sum_{d' \mid \frac{n}{d}} f(d') \\ &= \sum_{d' \mid n} f(d') \sum_{d \mid \frac{n}{d'}} \mu(d) = f(n) \quad (補題 1.10). \end{split}$$

逆に、 $\forall n \in \mathbb{N}$ に対して、

$$\forall n \in \mathbb{N}, \ f(n) = \sum_{d|n} \mu(d)g\left(\frac{n}{d}\right)$$

であるとすると,

$$\sum_{d|n} f(d) = \sum_{d|n} f\left(\frac{n}{d}\right) = \sum_{d|n} \sum_{d'|\frac{n}{d}} \mu\left(\frac{n}{dd'}\right) g(d')$$
$$= \sum_{d|n} \sum_{dd'|n} \mu\left(\frac{n}{dd'}\right) g(d')$$

となり, dd' は n の約数全体の上を渡るから,

$$\sum_{d|n} \sum_{dd'|n} \mu\left(\frac{n}{dd'}\right) g(d') = \sum_{dd'|n} \mu\left(\frac{n}{dd'}\right) g(d')$$

さらc, d' は n の約数全体の上を渡るから、

$$\begin{split} \sum_{dd'|n} \mu\left(\frac{n}{dd'}\right) g(d') &= \sum_{d|n} g(d) \sum_{dd'|n} \left(\frac{n}{dd'}\right) \\ &= \sum_{d|n} g(d) \sum_{d|\frac{n}{d'}} \left(\frac{n}{dd'}\right) = g(n) \quad (補題 \ 1.10) \end{split}$$

となる.

定理 1.13 (Möbius の反転公式 ver2). $F,G:\mathbb{R}_{++}\to\mathbb{R}_{++}$ としたとき,

$$G(x) = \sum_{n \le x} F\left(\frac{x}{n}\right) \iff F(x) = \sum_{n \le x} \mu(n)G\left(\frac{x}{n}\right)$$

が成り立つ.

証明. まず, 十分条件を示す.

$$G(x) = \sum_{x \le x} F\left(\frac{x}{n}\right)$$

を仮定すると,

$$\sum_{n \le x} \mu(n) G\left(\frac{x}{n}\right) = \sum_{n \le x} \mu(n) \sum_{d \le \frac{x}{n}} F\left(\frac{x}{nd}\right)$$
$$= \sum_{n \le x} \sum_{nd \le x} \mu(n) F\left(\frac{x}{nd}\right)$$

となる. さらに, $n \ge d$ がどのような集合を動くかを考えると,

$$\{(n,d)\}\in\mathbb{N}\times\mathbb{N}|n\leq x,\ nd\leq x\}=A$$

となり, m = nd とすると, n は m の約数となるから,

$$\{(n,m) \in \mathbb{N} \times \mathbb{N} | n \le x, \ m \le x, \ n|m\} = \{(n,m) \in \mathbb{N} \times \mathbb{N} | n \le x, \ n|m\} = B$$

となる. ここで, $(a,b)\in A$, $(r,s)\in B$ とし, $\alpha:A\to B$ を $\alpha((a,b))=(a,ab)$ とすると α は明らかに全単射となる. 従って, A=B となるから,

$$\sum_{n \leq x} \sum_{d \leq x} \mu(n) F\left(\frac{x}{nd}\right) = \sum_{n \leq x} \sum_{n \mid m} \mu(n) F\left(\frac{x}{m}\right)$$

よって、補題 1.10 より、

$$\sum_{n < x} \mu(n) G\left(\frac{x}{nd}\right) = \sum_{m < x} F\left(\frac{x}{m}\right) \sum_{n \mid m} \mu(n) = F(x)$$

1 整数論的関数

となる.

次に,必要条件を示す.

$$F(x) = \sum_{n \le x} \mu(n) G\left(\frac{x}{n}\right)$$

を仮定すると

$$\begin{split} \sum_{n \leq x} F\left(\frac{x}{m}\right) &= \sum_{n \leq x} \sum_{d \leq \frac{x}{n}} \mu(d) G\left(\frac{x}{nd}\right) \\ &= \sum_{n \leq x} \sum_{\substack{m \leq x \\ (nd = m)}} \mu(d) G\left(\frac{x}{m}\right) \end{split}$$

となる. ここで、十分条件を確かめたときと同じ議論をすると、

$$\sum_{n \le x} \sum_{\substack{m \le x \\ (nd = m)}} \mu(n) G\left(\frac{x}{m}\right) = \sum_{m \le x} \sum_{d \mid m} \mu(d) G\left(\frac{x}{m}\right)$$

であるから、補題 1.10 より、

$$\sum_{n \le x} F\left(\frac{x}{n}\right) = \sum_{m \le x} G\left(\frac{x}{m}\right) \sum_{d \mid m} \mu(d) = G(x)$$

となる.

補題 1.14.

$$\sum_{n \le x} \frac{\mu(n)}{n} = O(1).$$

証明. F(x) = 1, G(x) = [x] として, Möbius の反転公式 ver2 を用いると,

$$1 = \sum_{n \le x} \mu(n) \left[\frac{x}{n} \right] = \sum_{n \le x} \mu(n) \left(\frac{x}{n} - \frac{x}{n} + \left[\frac{x}{n} \right] \right)$$

$$1 + \sum_{n \le x} \mu(n) \ge x \sum_{n \le x} \frac{\mu(n)}{n}$$

$$x \sum_{n \le x} \frac{\mu(n)}{n} = O(x) \quad (\mu(x) \text{ O定義})$$

$$\sum_{n \le x} \frac{\mu(n)}{n} = O(1)$$

となる.

補題 1.15.

$$\sum_{n \in \mathbb{Z}} \frac{\mu(n)}{n} \log \frac{x}{n} = O(1).$$

証明. $G(x) = \sum_{n \le x} \frac{x}{n}$ とすると、この後の 1.4 節で示す (1.28) より、

$$G(x) = x \sum_{n \le x} \frac{1}{n} = x \left(\log x + \gamma + O\left(\frac{1}{x}\right) \right)$$
$$= x \log x + \gamma x + O(1)$$

であるから, F(x) = x として, F(x) と G(x) に対して Möbius の反転公式 ver2 を用いると,

$$x = \sum_{n \le x} \mu(n) \left(\frac{x}{n} \log \frac{x}{n} + \gamma \frac{x}{n} + O(1) \right)$$

$$= x \sum_{n \le x} \frac{\mu(n)}{n} \log \frac{x}{n} + \gamma x \sum_{n \le x} \frac{\mu(n)}{n} + O\left(\sum_{n \le x} \mu(n) \right)$$

$$x \sum_{n \le x} \frac{\mu(n)}{n} \log \frac{x}{n} = x - \gamma x O(1) + O(x)$$

$$\sum_{n \le x} \frac{\mu(n)}{n} \log \frac{x}{n} = O(1)$$

となる.

補題 1.16.

$$\sum_{n \le x} \frac{\mu(n)}{n} \log^2 \frac{x}{n} = 2 \log x + O(1).$$

証明.

$$G(x) = \sum_{n \le x} \frac{x}{n} \log \frac{x}{n}$$

とすると、この後の1.4節で示す補題1.28、補題1.31より、

$$\begin{split} G(x) &= x \sum_{n \leq x} \frac{1}{n} \left(\log x - \log n \right) \\ &= x \log x \sum_{n \leq x} \frac{1}{n} - x \sum_{n \leq x} \log n \\ &= x \log x \left(\log x + \gamma + O\left(\frac{1}{x}\right) \right) - x \left(\frac{1}{2} \log^2 x + c + O\left(\frac{\log x}{x}\right) \right) \\ &= \frac{1}{2} x \log^2 x + \gamma x \log x - cx + O(\log x) \end{split}$$

となるので, $F(x) = x \log x$, G(x) に対して Möbius の反転公式 ver2 を用いると,

$$x\log x = \sum_{n \le x} \mu(n) = \sum_{n \le x} \mu(n) \left\{ \frac{1}{2} \cdot \frac{x}{n} \log^2 \frac{x}{n} + \gamma \frac{x}{n} \log \frac{x}{n} - c \frac{x}{n} + O\left(\log \frac{x}{n}\right) \right\}$$

$$x\log x - \gamma \frac{x}{n} \sum_{n \le x} \frac{\mu(n)}{n} \log \frac{x}{n} + cx \sum_{n \le x} \frac{\mu(n)}{n} = \frac{x}{2} \sum_{n \le x} \frac{\mu(n)}{n} \log^2 \frac{x}{n} + O\left(\sum_{n \le x} \mu(n) \log \frac{x}{n}\right)$$

$$\sum_{n \le x} \frac{\mu(n)}{n} \log^2 \frac{x}{n} + O\left(\frac{1}{x} \sum_{n \le x} \mu(n) \log \frac{x}{n}\right) = 2 \log x + O(1) + O(1)$$

となる. また,

$$\sum_{n \le x} \mu(n) \log \frac{x}{n} = \mu(1) \log \frac{x}{1} + \mu(2) \log \frac{x}{2} + \dots + \mu([x] - 1) \log \frac{x}{[x] - 1} + \mu([x]) \log \frac{x}{[x]}$$

$$\leq \log \frac{x}{1} + \log \frac{x}{2} + \dots + \log \frac{x}{[x] - 1} + \log \frac{x}{[x]}$$

$$= \sum_{n \le x} \log \frac{x}{n}$$

であり、補題 1.31 の証明より、

$$\sum_{n \le x} \log x \ge x \log x - x, \ - \sum_{n \le x} \log x \le x - x \log x$$

であることを用いると,

$$\sum_{n \le x} \log x \le [x] \log x + x - x \log x$$

$$= ([x] - x) \log x + x$$

$$\le x,$$

$$- \sum_{n \le x} \log \frac{x}{n} \le x \log x - x + c_1 \log x - [x] \log x$$

$$= (x - [x]) \log x + c_1 \log x - x$$

$$= c_2 \log x - x$$

となるので,

$$\left| \sum_{n \le x} \log \frac{x}{n} \right| \le x \Leftrightarrow \sum_{n \le x} \log \frac{x}{n} = O(x)$$

となる. よって.

$$\sum_{n \le x} \frac{\mu(n)}{n} \log^2 \frac{x}{n} = 2 \log x + O(1)$$

となる.

定義 1.17 (Mangoldt の関数).

$$\Lambda(n) := \begin{cases} \log p & (n = p^a, \ a > 0), \\ 0 & (n \neq p^a, \ a > 0), \\ 0 & (n = 1). \end{cases}$$

(例) $\Lambda(2) = \log 2$, $\Lambda(4) = \log 2$, $\Lambda(6) = 0$.

定理 1.18.

$$\left\{ \begin{array}{l} \log n = \sum_{d \mid n} \Lambda(d), \\ \Lambda(n) = \sum_{d \mid n} \mu(d) \log \frac{n}{d} = -\sum_{d \mid n} \log d. \end{array} \right.$$

証明. 一つ目の等式が示せれば、定理 1.12、補題 1.10 からすぐに得られる. さて、

$$n = \prod_{p|n} p^{\epsilon}$$

とすれば.

$$\sum_{d|n} \Lambda(d) = \sum_{p^{\alpha}|n} \log p$$

となる. ここで, 右辺の和は n のすべての素因数 p と $p^{\alpha}|n$ であるようなすべての a $(0<\alpha\leq a)$ との上を わたる. よって,

$$\sum_{p^{\alpha}|n} \log p = \sum_{p|n} a \log p = \log \prod_{p|n} p^{a}$$
$$= \log n$$

となる.

定義 1.19 (Riemann $O \zeta$ 関数).

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} \quad (s \in \mathbb{R})$$

(例)
$$\zeta(1) = \infty, \ \zeta(2) = \frac{\pi^2}{6}.$$

定理 1.20.

$$\zeta(s) := \begin{cases} \infty & (0 < s \le 1) \\ O(1) & (1 < s) \end{cases}$$

証明. s < 1 のとき, x > 1 なら $\frac{1}{x^s}$ は単調減少するから面積に関して,

$$\int_{n}^{n+1} \frac{1}{x^{s}} dx < \frac{1}{n^{s}} < \int_{n-1} n \frac{1}{x^{s}} dx$$

という不等式が成り立つ. 従って.

$$\sum_{n=1}^{\infty} \frac{1}{n^s} < \int_2^3 \frac{1}{x^s} dx + \int_3^4 \frac{1}{x^s} dx + \dots + \int_{n-1}^m \frac{1}{x^s} dx + 1$$

$$= \int_2^m \frac{1}{x^s} dx + 1$$

$$< \int_2^\infty \frac{1}{x^s} dx + 1 = \frac{s}{s-1} > 0$$

となる. よって,

$$\zeta(s) = O(1).$$

 $s=1 \mathcal{O}$

$$\zeta(1) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots$$

である。ここで、各項を 2 項目から 2 の階乗ごとに区切って、その区切りの中の数を全てその区切りの中の最小数に置き換えると、

$$\zeta(1) > \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$$

$$= \infty$$

 $\forall x \in S$ $\forall x \in S$ $\forall x \in S$ $\forall x \in S$ $\forall x \in S$

$$\zeta(s) = \infty$$

となることがわかる.

1.3 $\vartheta(x)$ と $\psi(x)$ の性質と不等式

定義 1.21.

$$\begin{split} \vartheta(x) &:= \sum_{p \leq x} \log p \quad (x \geq 1), \\ \psi(x) &:= \sum_{n \leq x} \Lambda(n) \quad (x \geq 1) \end{split}$$

(例) $\vartheta(1) = 0$, $\vartheta(2) = \log 2$, $\vartheta(4) = \log 2 + \log 3$, $\psi(2) = \log 2$, $\psi(3) = \log 2$, $\psi(4) = 2 \log 2$.

 $\Lambda(n)$ の定義より, $p_1 < \ldots < p_k$ とすると,

$$\psi(x) = \sum_{p^m \le x} \log p = m_1 \log p_1 \quad (p_1^{m_1} \le x)$$

.

$$= m_k \log p_k \quad (p_k^{m_k} \le x)$$

となる. ただし, m_1, \ldots, m_k はそれぞれ最大の整数である. つまり,

$$\psi(x) = \sum_{p^m \le x} \log p = \sum_{p \le x} \left[\frac{\log x}{\log p} \right] \log p \tag{3}$$

と書くことができる.

これにより,

$$\psi(x) = \sum_{m=1}^{\infty} \vartheta\left(x^{\frac{1}{m}}\right) \tag{4}$$

であることがわかる. この右辺の和は, 実質上, 有限和である.

$$x^{\frac{1}{m}} < 2$$

すなわち.

$$m > \frac{\log x}{\log 2}$$

ならば

$$\vartheta\left(x^{\frac{1}{m}}\right) = 0$$

となるからである.

定理 1.22. 正の実数 c_1 , c_2 , c_3 , c_4 を適当にとれば,

$$c_1 x < \vartheta(x) < c_2 x, \ c_3 x < \psi(x) < c_4 x \quad (x \ge 2)$$

が成り立つ.

証明. これは,

$$\vartheta(x) < c_9 x, \ c_{10} x < \psi(x) \quad (x \ge 2)$$

であることを示せばよい. なぜなら, $\vartheta(x) = O(x)$ とすると, (4) より,

$$\psi(x) = \vartheta(x) + \vartheta(x^{\frac{1}{2}}) + \sum_{m \ge 3} \vartheta(x^{\frac{1}{m}})$$
$$\sum_{m \ge 3} \vartheta(x^{\frac{1}{m}}) = \vartheta(x^{\frac{1}{3}}) + \vartheta(x^{\frac{1}{4}}) + \dots + \vartheta(x^{\frac{1}{m}}) + \dots$$

上で述べている通り, $m>\frac{\log x}{\log 2}$ となったとき $\vartheta(x)=0$ となる.つまり, $\vartheta(x^{\frac{1}{m}})$ は $\left[\frac{\log x}{\log 2}\right]$ となったとき, $\vartheta(x)=0$ となる.つまり, $\vartheta(x^{\frac{1}{m}})$ は $\left[\frac{\log x}{\log 2}\right]$ 個並んでいるから,

$$\sum_{m\geq 3} \vartheta(x^{\frac{1}{m}}) \leq \left[\frac{\log x}{\log 2} \right] \vartheta(x^{\frac{1}{3}}) \leq \frac{\log x}{\log 2} O(x^{\frac{1}{3}}) = O(x^{\frac{1}{3}} \log x).$$

$$\psi(x) = \vartheta(x) + O(x^{\frac{1}{2}}) + O(x^{\frac{1}{3}} \log x)$$

すなわち,

$$\psi(x) = \vartheta(x) + O(x^{\frac{1}{2}}) \tag{5}$$

であるからである. なぜなら,

$$c_1 x^{\frac{1}{2}} + c_2 x^{\frac{1}{3}} \log x < c_3 x^{\frac{1}{2}}$$

となるためには.

$$x^{\frac{1}{3}}\log x \le \frac{c_3 - c_2}{c_2} x^{\frac{1}{2}} = c_4 x^{\frac{1}{2}}$$

となればよいので,

$$f(x) = c_4 x^{\frac{1}{2}} - x^{\frac{1}{3}} \log x \quad (f(1) = c_4),$$

$$f'(x) = \frac{c_4}{2} x^{\frac{-1}{2}} - \frac{1}{3} x^{\frac{-2}{3}} \log x - x^{\frac{1}{3}} \cdot \frac{1}{x}$$

$$= x^{\frac{-1}{2}} \left\{ \frac{c_4}{2} - \frac{1}{3} (\log x + 3) \frac{1}{\sqrt[6]{x}} \right\}$$

$$= \frac{1}{\sqrt[3]{x}} \left(c - \frac{\log x + 3}{\sqrt[6]{x}} \right) \quad \left(c = \frac{3}{4} c_4 \right).$$

$$g(x) = \frac{\log x + 3}{\sqrt[6]{x}}$$

とすると,

$$g'(x) = \frac{\frac{1}{x}x^{\frac{1}{6}} - (\log x + 3) \cdot \frac{1}{6}x^{\frac{-5}{6}}}{\sqrt[3]{x}}$$
$$= \frac{1}{6}x^{\frac{-7}{6}}(3 - \log x)$$

となり、増減表を書くと、

x		e^3	
f'(x)	+	0	
f(x)	7	$\frac{6}{\sqrt{e}}$	7

であるから,

$$g(x) \le \frac{6}{\sqrt{e}} \implies \frac{6}{\sqrt{e}} \le C \left(\frac{4}{\sqrt{e}} \le c_4\right) \implies f'(x) \ge 0$$

$$\implies f(x) \ge 0 \quad (x \ge 1)$$

となるからである.

まず, 示すのは,

$$\vartheta(x) < (2\log 2)x \quad (x \ge 1) \tag{6}$$

である. 明らかに、ここで $x = n \ge 1$ としてよい. さらに、二項係数

$$M = {}_{2m+1}C_m = \frac{(2m+1)(2m)\dots(m+2)}{m!} \quad (m \ge 1)$$

は整数であって,

$$(1+1)^{2m+1} > {}_{2m+1}C_m + {}_{2m+1}C_{m+1} = 2M$$
$$< 2^{2m}$$

である. $p \in \mathbb{P}$ が m+1 を満たすならば, <math>p は M の分子を割り切るが分母は割り切らない. よって

$$\prod_{m+1$$

であり,

$$\vartheta(2m+1) - \vartheta(m+1) = \sum_{m+1 < P < 2m+1} \log p \le \log M < (2\log 2)m$$

であることがわかる. n=1 または 2 に対しては明らかに

$$\vartheta(n) < (2\log 2)n.$$

そこでいまこれがすべての $n \le n_0 (n_0 \ge 2)$ に対して成り立つとする. もし, $n_0 = 2m$ が偶数ならば,

$$\vartheta(n_0 + 1) = \vartheta(2m + 1) - \vartheta(m + 1) + \vartheta(m + 1)$$

$$< (2 \log 2)m + (2 \log 2)(m + 1)$$

$$= (2 \log 2)(2m + 1) = (2 \log 2)(n_0 + 1)$$

となる. もし, n_0 が奇数ならば,

$$\vartheta(n_0 + 1) = \vartheta(n_0) < (2\log 2)n_0 < (2\log 2)(n_0 + 1).$$

よって、いずれにしても $\vartheta(n_0+1)<(2\log 2)(n_0+1)$ となり、帰納法により、 $\forall n\geq 1$ に対して $\vartheta(x)<(2\log 2)n$ が成り立つ。よって、(6) がいえた。

次に示すのは,

$$\psi(x) > \frac{\log 2}{4}x \quad (x \ge 2) \tag{7}$$

である.

$$N = {}_{2n}C_n = \frac{(2n)!}{(n!)^2} = \prod_{p \le 2n} p^{k_p} \quad (n \ge 1)$$

と書けば, (1) より,

$$k_p = \sum_{m=1}^{\infty} \left(\left[\frac{2n}{p^m} \right] - 2 \left[\frac{n}{p^m} \right] \right)$$

である. $\forall t \in \mathbb{R}$ に対して $0 \leq [2t] - 2[t] \leq 1$ であるから,

$$k_p \le \sum_{\substack{p^m \le 2n}} 1 = \left[\frac{\log 2n}{\log p}\right]$$

よって、(??)により

$$\log N = \sum_{p \le 2n} k_p \log p \le \sum_{p \le 2n} \left[\frac{\log 2n}{\log p} \right] \log p = \psi(2n)$$

を得る. ところで,

$$N = \frac{(2n)!}{(n!)^2} = \frac{n+1}{1} \cdot \frac{n+2}{2} \cdot \dots \cdot \frac{2n}{n} \ge 2^n$$

であるから,

$$\psi(2n) \ge (\log 2)n$$

そこで, $x \ge 2$ に対して $n = \left[\frac{x}{2}\right] \ge 1$ とおけば,

$$\psi(x) \ge \psi(2n) \ge (\log 2)n \ge \frac{\log 2}{4}x$$

となる.

 $\vartheta(x)$ または $\psi(x)$ と $\pi(x)$ との関係は次の定理によって示される.

定理 1.23.

$$\pi(x) \sim \frac{\vartheta(x)}{\log x}, \ \pi(x) \sim \frac{\psi(x)}{\log x} \quad (x \to \infty).$$

証明。(5)により、第一の漸近式が成り立つことを示せばよい。さて、明らかに、

$$\vartheta(x) = \sum_{p \le x} \log p \le \log x \sum_{p \le x} 1 = \pi(x) \log x,$$

すなわち,

$$\pi(x) \ge \frac{\vartheta(x)}{\log x} \quad (x \ge 2).$$

また, $0 < {}^{\forall} \delta < 1$ に対して,

$$\vartheta(x) \ge \sum_{x^{1-\delta} \le p \le x} \log p \ge (1-\delta) \log x \sum_{x^{1-\delta} \le p \le x} 1$$

となる. なぜなら, $\sum_{x^{1-\delta}\leq p\leq x}\log p$ と $(1-\delta)\log x$ $\sum_{x^{1-\delta}\leq p\leq x}1$ は,出てくる項の数が同じであるから,一番最初の項で

$$\log p \ge \log x^{(1-\delta)}$$

が言えればよいが, $x^{(1-\delta)} \leq p$ がすでに与えられているからである. 以上より,

$$\begin{split} \vartheta(x) &\geq \sum_{x^{1-\delta} \leq p \leq x} \log p \geq (1-\delta) \log x \sum_{x^{1-\delta} \leq p \leq x} 1 \\ &= (1-\delta) \log x \{\pi(x) - \pi(x^{1-\delta})\} \\ &\geq (1-\delta) \log x \{\pi(x) - x^{1-\delta}\} \end{split}$$

すなわち

$$\pi(x) \le x^{1-\delta} + \frac{\vartheta(x)}{(1-\delta)\log x} \quad (x \ge 2).$$

いま $\forall \varepsilon > 0$ に対して δ を

$$1 < \frac{1}{1 - \delta} < 1 + \frac{\varepsilon}{2}$$

となるようにとり、次に x_0 を十分大きくえらんで $x>x_0$ ならば

$$\frac{x^{1-\delta}\log x}{\vartheta(x)} < \frac{\log x}{c_8 x^{\delta}} < \frac{\varepsilon}{2}$$

であるようにすることができる. そうすると, すべての $x > x_0$ に対して,

$$1 \le \frac{pi(x)\log x}{\vartheta(x)} \le \frac{x^{1-\delta}\log x}{\vartheta(x)} + \frac{1}{1-\delta} < 1 + \varepsilon$$

が成り立つ. よって, $\varepsilon > 0$ は任意なので,

$$\pi(x) \sim \frac{\vartheta(x)}{\log x} \quad (x \to \infty)$$

となる.

定理 1.22, 定理 1.23 より,

系 1.24.

$$c_1 \frac{x}{\log x} < \pi(x) < c_2 \frac{x}{\log x}$$

が得られ, 定理 1.23 より,

系 1.25.

$$\pi(x) \sim \frac{x}{\log x} \quad (x \to \infty) \iff \vartheta(x) \sim x \quad (x \to \infty)$$

 $\iff \psi(x) \sim x \quad (x \to \infty)$

となる. よって、素数定理を直接示すのではなく、系 1.25 を示せばよいことがわかる.

1.4 Abel の変形法と和の評価

いろいろな和の値を求めたりその大きさを評価したりする際によく用いられる二つの総和公式を示す.

定理 1.26 (Abel の変形法). $a_n(n=1,2,3,\ldots)$ は与えれた実数または、複素数の列とし

$$A(t) = \sum_{n_0 \le n \le t} a_n \quad (0 \le n_0, \ 0 < t)$$

とおく. また f(t) は $n_0 < t$ に対して定義された任意の関数とする. そうすると

$$\sum_{n_0 \le n \le x} a_n f(n) = \sum_{n_0 \le n \le x - 1} A(n) \{ f(n) - f(n+1) \} + A(x) f([x]) \ (n_0 < x)$$

である. さらに, f(t) が $n_0 < t$ において連続な導関数をもつならば

$$\sum_{n_0 < n < x} a_n f(n) = -\int_{n_0}^x A(t) f'(t) dt + A(x) f(x)$$

が成り立つ.

証明. 実際, A(t) = 0 $(t < n_0 + 1)$ に注意すれば

$$\sum_{n_0 \le n \le x} a_n f(n) = \sum_{n_0 \le n \le x} \{A(x) - A(n-1)\} f(x)$$
$$= \sum_{n_0 \le n \le x-1} A(n) \{f(n) - f(n+1)\} + A(x) f([x]).$$

となり, A(t) = A(n) $(n \le t < n+1)$ であるから, f'(t) が $n_0 < t$ において存在して連続ならば

$$A(n)\{f(n) - f(n+1)\} = -\int_{n}^{n+1} A(t)f'(t) dt.$$

よって,

$$\sum_{n_0 \le n \le x} a_n f(n) = \sum_{n_0 \le n \le x - 1} \int_n^{n+1} A(t) f'(t) \ dt + A(x) f([x])$$
$$= \int_{n_0}^x A(t) f'(t) \ dt + A(x) f(x)$$

となる.

次の補題は Taylor の定理の特別な場合である.

補題 1.27. 区間 (a,b) において連続な導関数をもつ任意の関数 f(x) に対して

$$\sum_{a < n \le b} f(x) = \int_a^b f(t) \ dt + \int_a^b \left(t - [t] - \frac{1}{2} \right) f'(x) \ dt + \left(a - [a] - \frac{1}{2} \right) f(a) - \left(b - [b] - \frac{1}{2} \right) f(b)$$

が成り立つ.

証明.まず

$$\int_{a}^{b} dt[t]f'(t) dt = \int_{[a]}^{[b]} [t]f'(t) dt - \int_{a}^{[a]} [t]f'(t) dt + \int_{[b]}^{b} [t]f'(t) dt$$

$$= \sum_{n=[a]}^{[b]-1} n \int_{n}^{n+1} f'(t) dt - [a] \int_{[a]}^{a} f'(t) dt + [b] \int_{[b]}^{b} f'(t) dt$$

$$= \sum_{n=[a]}^{[b]-1} n\{f(n+1) - f(n)\} - [a]\{f(a) - f([a])\} + [b]\{f(b) - f([b])\}$$

$$= \sum_{n=[a]+1}^{[b]} f(n) - [a]f(a) + [b]f(b)$$

である. また

$$\int_{a}^{b} \left(t - \frac{1}{2} \right) f'(t) \ dt = \left(b - \frac{1}{2} \right) f(b) - \left(a - \frac{1}{2} \right) f(a) - \int_{a}^{b} f(t) \ dt.$$

上って

$$\int_{a}^{b} \left(t - [t] - \frac{1}{2} \right) f'(t) \ dt = \sum_{n=[a]+1}^{[b]} f(n) - \int_{a}^{b} f(t) \ dt - \left(a - [a] - \frac{1}{2} \right) f(a) + \left(b - [b] - \frac{1}{2} \right) f(b)$$

となる.

定理 1.28.

$$\sum_{1 \le n \le x} \frac{1}{n} = \log x + \gamma + O\left(\frac{1}{x}\right) \quad (x \ge 1).$$

証明. $(a,b)=(1,x), f(t)=\frac{1}{t}$ とおき、補題 1.27 を用いると、

$$\sum_{1 < n \le x} \frac{1}{n} = \int_{1}^{x} \frac{dt}{t} - \int_{1}^{x} \frac{t - [t] - \frac{1}{2}}{t^{2}} dt - \frac{1}{2} - \frac{x - [x] - \frac{1}{2}}{x}$$

$$\sum_{1 < n \le x} \frac{1}{n} = \log x + C + E$$

となる. ただし,

$$C = \frac{1}{2} - \int_{1}^{\infty} \frac{t - [t] - \frac{1}{2}}{t^{2}} dt, \ E = \int_{x}^{\infty} \frac{t - [t] - \frac{1}{2}}{t^{2}} dt - \frac{x - [x] - \frac{1}{2}}{x}$$

であり,

$$\begin{split} E &= -\frac{1}{2} \int_{x}^{\infty} \frac{t - [t]}{t^{2}} \ dt - \frac{x - [x]}{x} + \frac{1}{2} \cdot \frac{1}{x} \\ &= \frac{1}{2} \int_{x}^{\infty} \frac{[t] - t}{t^{2}} \ dt + \frac{[x] - x}{x} + \frac{1}{2} \cdot \frac{1}{x} \\ &\leq \frac{1}{2} \cdot \frac{1}{x} \quad (-1 < [x] - x \le 0) \end{split}$$

となるから,

$$E = \int_{x}^{\infty} \frac{t - [t] - \frac{1}{2}}{t^2} dt - \frac{x - [x] - \frac{1}{2}}{x} = O\left(\frac{1}{x}\right)$$

$$C = \frac{1}{2} + \frac{1}{2} \int_{1}^{\infty} \frac{1}{t^{2}} dt - \int_{1}^{\infty} \frac{t - [t]}{t^{2}} dt$$
$$= 1 - \int_{1}^{\infty} \frac{t - [t]}{t^{2}} dt$$

であり,

$$\int_{1}^{x} \frac{[t]}{t^{2}} dt = \int_{1}^{2} \frac{1}{t^{2}} dt + 2 \int_{2}^{3} \frac{1}{t^{2}} dt + 3 \int_{3}^{4} \frac{1}{t^{2}} dt + \dots + ([x] - 1) \int_{[x] - 1}^{[x]} \frac{1}{t^{2}} dt + [x] \int_{[x]}^{x} \frac{1}{t^{2}} dt$$

$$= \frac{1}{2} + 2 \left(\frac{1}{6}\right) + 3 \left(\frac{1}{12}\right) + \dots + ([x] - 1) \left(\frac{1}{[x]([x] - 1)}\right) + [x] \left(\frac{x - [x]}{x[x]}\right)$$

$$= \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{[x]} + \frac{x - [x]}{x} \to \sum_{x = 2}^{\infty} \frac{1}{n} \quad (x \to \infty)$$

であるから,

$$C = 1 - \int_{1}^{\infty} \frac{1}{t} dt + \int_{1}^{\infty} \frac{[t]}{t^{2}} dt$$
$$= 1 + \sum_{n=2}^{\infty} \frac{1}{n} - \int_{1}^{\infty} \frac{1}{t} dt = \lim_{x \to \infty} \left(\sum_{n=1}^{\infty} \frac{1}{n} - \log x \right).$$

となり、これは Euler の定数である. よって、

$$\sum_{1 \le n \le x} \frac{1}{n} = \log x + \gamma + O\left(\frac{1}{x}\right) \quad (x \ge 1)$$

となる.

また、この結果は、 $n_0=1$ 、 $a_n=1$ 、 $f(x)=\frac{1}{t}$ とおいて、Abel の変形法を用いても得られる. 以下、補題 8 と同様に Abel の変形法を用いて和の評価を行っていく.

補題 1.29.

$$\sum_{n \le x} \frac{1}{\sqrt{n}} = 2\sqrt{x} + c_6 + O\left(\frac{1}{\sqrt{x}}\right) \quad (x \ge 1)$$

証明. $n_0=1,\,a_n=1,\,f(x)=\frac{1}{\sqrt{x}}$ とし、Abel の変形法を用いると、A(x)=[x] なので、

$$\begin{split} \sum_{1 \le n \le x} \frac{1}{\sqrt{n}} &= \int_{1}^{x} \frac{-[t]}{2t\sqrt{t}} \ dt + \frac{[x]}{\sqrt{x}} \\ &= \int_{1}^{x} \frac{t - t + [t]}{2t\sqrt{t}} \ dt + \frac{x - x + [x]}{\sqrt{x}} \\ &= \int_{1}^{x} \frac{1}{2[t]} \ dt + \int_{1}^{x} \frac{t - [t]}{2t\sqrt{t}} \ dt + \frac{x}{\sqrt{x}} - \frac{x - [x]}{\sqrt{x}} \\ &\le \sqrt{x} - 1 + \int_{1}^{x} \frac{1}{2t\sqrt{t}} \ dt + \sqrt{x} + \frac{1}{\sqrt{x}} \\ &= 2\sqrt{x} + \frac{2}{\sqrt{x}} - 2 \end{split}$$

となるので,

$$\sum_{n \le x} \frac{1}{\sqrt{n}} = 2\sqrt{x} + c + O\left(\frac{1}{\sqrt{x}}\right) \quad (x \ge 1).$$

補題 1.30.

$$\sum_{n \le x} \frac{\log n}{n} = \frac{1}{2} \log^2 x + c + O\left(\frac{\log x}{x}\right) \quad (x \ge 2)$$

証明. $n_0=1,\,a_n=1,\,f(x)=rac{\log x}{x}$ とおいて、Abel の変形法を用いると、A(x)=[x] となり、

$$\sum_{1 \le n \le x} \frac{\log n}{n} = -\int_{1}^{x} \frac{[t](1 - \log t)}{t^{2}} dt + \frac{[x] \log x}{x}$$

$$= -\int_{1}^{x} \frac{(t - t + [t])(1 - \log t)}{t^{2}} dt + \log x - \frac{(x - [x]) \log x}{x}$$

$$= \frac{1}{2} \log^{2} x + \int_{1}^{\infty} \frac{(t - [t])(1 - \log t)}{t^{2}} dt - \int_{1}^{x} \frac{(t - [t])(1 - \log t)}{t^{2}} dt - \frac{(x - [x]) \log x}{x}$$

となる. また,

$$\int_{x}^{\infty} \frac{1 - \log t}{t^2} dt = \frac{-\log x}{x}$$

なので.

$$c := \int_{T}^{\infty} \frac{(t - [t])(1 - \log t)}{t^2} dt$$

は収束する. よって,

$$\sum_{n \le x} \frac{\log n}{n} = \frac{1}{2} \log^2 x + c - (1 + x - [x]) \frac{\log x}{x}$$
$$= \frac{1}{2} \log^2 x + c + O\left(\frac{\log x}{x}\right)$$

となる.

補題 1.31.

$$\sum_{n \le x} \log n = x \log x - x + O(\log x) \quad (x \ge 2).$$

証明. $n_0 = 1$, $a_n = 1$, $f(x) = \log x$ とおき, Abel の変形法を用いると, A(x) = [x] なので,

$$\begin{split} \sum_{1 \leq n \leq x} \log n &= -\int_{1}^{x} \frac{[t]}{t} \; dt + [x] \log x \\ &= -\int_{1}^{x} \frac{t - t + [t]}{t} \; dt + ([x] + x - x) \log x \\ &= +\int_{1}^{x} \frac{t - [t]}{t} \; dt + x \log x - (x - [x]) \log x - x + 1 \\ &\leq -x + 1 + \int_{1}^{x} \frac{1}{t} \; dt + x \log x + c' \log x \quad (0 \leq x - [x] < 1) \\ &\leq x \log x - x + C \log x \end{split}$$

つまり,

$$\sum_{n \le x} \log n = x \log x - x + O(\log x)$$

となる.

補題 1.32.

$$\sum_{n \le x} \log^2 n = x(\log^2 x - 2\log x + 2) + O(\log^2 x).$$

証明. $n_0 = 1$, $a_n = 1$, $f(x) = \log^2 x$ とし, Abel の変形法を用いると, A(x) = [x] なので,

$$\sum_{1 \le n \le x} \log^2 n = -2 \int_1^x \frac{[t] \log t}{t} dt + [x] \log^2 x$$

$$= (x - x + [x]) \log^2 x - 2 \int_1^x \frac{(t - t + [t]) \log t}{t} dt$$

$$\le x (\log^2 x - 2 \log x + 2) - 2 + c_1 \log^2 x + 2 \int_1^x c_2 \frac{\log t}{t} dt$$

よって,

$$\sum_{n \le x} \log^2 n = x(\log^2 x - 2\log x + 2) + O(\log^2 x)$$

となる.

ところで、補題 1.28 より、

$$\sum_{1 \le n \le x} \frac{1}{n} - 1 = \log x - \int_1^\infty \frac{t - [t]}{t^2} dt + O\left(\frac{1}{x}\right)$$

$$\le \log x + \gamma - 1 + \frac{c_1(1 - x)}{x} \le c_2 \log x$$

$$\sum_{n \le x} \frac{1}{n} - 1 = O(\log x) \tag{8}$$

である.

補題 1.33.

$$\sum_{2 \le n \le x} \frac{1}{n \log n} = O(\log \log x).$$

証明. $n_0=2,\,a_n=rac{1}{n},\,f(x)=rac{1}{\log x}$ とし、Abel の変形法を用いると、

$$\begin{split} \sum_{2 \le n \le x} \frac{1}{n \log n} &= \frac{A(x)}{\log n} + \int_2^x \frac{A(x)}{t \log^2 t} \ dt \\ &\le \frac{n}{2} \cdot \frac{1}{\log n} + \int_2^x \frac{c_3 \log t + 1}{t \log^2 t} \ dt \quad ((8) \ \ \sharp \ \%) \end{split}$$

さらに,

$$\frac{n}{2} \cdot \frac{1}{\log n} + \int_{2}^{x} \frac{\log t + 1}{t \log^{2} t} dt = \frac{n}{2} \cdot \frac{1}{\log n} + \int_{2}^{x} \frac{c_{3}}{t \log t} dt + \int_{2}^{x} \frac{1}{t \log^{2} t} dt$$

$$= \frac{n}{2} \cdot \frac{1}{\log n} + c_{3}(\log \log x - \log \log 2) + \frac{1}{\log x} - \frac{1}{\log 2} \le 1 + \frac{n}{2} + c_{3} \log x$$

 $1+\frac{n}{2}$ は定数であり, $\log\log x$ は単調増加関数なので, c_3 を適当にとれば,

$$\sum_{2 \le n \le x} \frac{1}{n \log n} \le c_3' \log \log x.$$

よって,

$$\sum_{2 \le n \le x} \frac{1}{n \log n} = O(\log \log x)$$

となる.

2 素数定理

この節では、素数に関わりの深い不等式をいくつか示した後、素数定理の証明を補題から述べる.

2.1 Mertens の第一定理

補題 2.1.

$$\sum_{n=2}^{\infty} \frac{\log n}{n(n-1)} = O(1).$$

証明.

$$f(x) = \sqrt{x} - \log x \quad (x \ge 1)$$

とすると,

$$f'(x) = \frac{1}{2}x^{\frac{-1}{2}} - \frac{1}{x} = \frac{1}{2x}(\sqrt{x} - 1) > 0 \quad (x \ge 1)$$

となり, f(x) は単調増加関数である. さらに,

$$f(1) = 1$$

であるから,

$$f(x) \ge 0 \iff \sqrt{x} \ge \log x$$

となる.これにより,

$$\frac{\log n}{n(n-1)} \le \frac{\sqrt{n}}{n(n-1)} = \frac{1}{\sqrt{n}(n-1)} \le \frac{1}{(n-1)^{\frac{3}{2}}}$$

がいえるから, 定理 1.20 より,

$$\sum_{n=2} \frac{\log n}{n(n-1)} \leq \sum_{n=2} \frac{1}{(n-1)^{\frac{3}{2}}} = \sum_{n=1} \frac{1}{n^{\frac{3}{2}}} = O(1)$$

となる.

定理 2.2 (Mertens の第一定理).

$$\sum_{p \le x} \frac{\log p}{p} = \log x + O(1)$$

証明. $x \ge 2$ のとき, (1), (2) より,

$$\sum_{n \leq x} \log n = \sum_{n \leq x} \left[\frac{x}{n} \right] \Lambda(n)$$

であり、定理1.22より、

$$\sum_{n \le x} \Lambda(n) = O(x)$$

となるので,

$$\sum_{n \le x} \Lambda(n) = \sum_{n \le x} \left[\frac{x}{n} \right] \Lambda(n) + O(x)$$

$$= \sum_{n \le x} \log(n) + O(x)$$

$$\le x \log x - x + c_1 \log x + c_2 x \quad (\text{#} \mathbb{B} 1.31)$$

よって,

$$\sum_{n \le x} \frac{\Lambda(n)}{n} = \log x + O(1) \tag{9}$$

が得られる. また,

$$\sum_{n \le x} \log(n) \ge \sum_{p \le x} \log(p) \ge \sum_{p \le x} \frac{\log(p)}{p}$$

なので,

$$\sum_{p \le x} \frac{\log(p)}{p} = \log x + O(1)$$

となる.

2.2 素数に関する不等式

補題 2.3.

$$\sum_{p^{i} < x, i > 1} (2i - 1) \log^{2} p = O(x).$$

証明.

$$\sum_{p^{i} \leq x, i > 1} (2i - 1) \log^{2} p \leq \sum_{p \leq \sqrt{x}} \log^{2} p \sum_{i \leq \log_{p} x} (2i - 1)$$

となるので,

$$\sum_{p \le \sqrt{x}} \log^2 p \sum_{i \le \log_p x} (2i - 1) \le \sum_{p \le \sqrt{x}} \log^2 p \frac{\log^2 x}{\log^2 p}$$
$$\le \sum_{n < \sqrt{x}} \log^2 x \le \sqrt{x} \log^2 x$$

となる. さらに,

$$\exists c \in \mathbb{R} \text{ s.t. } cx > \sqrt{x} \log^2 x$$

であるから,

$$\sum_{p^{i} \le x, i > 1} (2i - 1) \log^{2} p = O(x)$$

となる.

補題 2.4.

$$\sum_{\substack{p^i q^j \le x \\ p \ne q, \ i > 1}} \log p \log q = O(x).$$

証明.

$$\begin{split} \sum_{\substack{p^i q^j \leq x \\ p \neq q, \ i > 1}} \log p \log q &= \sum_{\substack{p^i \leq x, \ i > 1}} \log p \sum_{\substack{q^j \leq \frac{x}{p^i}, \ p \neq q}} \log q \\ &= \sum_{\substack{p^i \leq x, \ i > 1}} \log p \cdot \psi\left(\frac{x}{p^i}\right) \\ &= O\left(x \sum_{\substack{p^i \leq x, \ i > 1}} \frac{\log p}{p^i}\right) \quad (定理 \ 1.22) \end{split}$$

であり,

$$x \sum_{p^{i} \le x, i > 1} \frac{\log p}{p^{i}} \le x \sum_{n=2}^{\infty} \sum_{i=2}^{\infty} \frac{\log n}{n^{i}} = x \sum_{n=2}^{\infty} \frac{\log n}{n(n-1)}$$
$$= O(x) \quad (\text{#}\mathbb{B} 2.1)$$

となる.

補題 2.5.

$$\sum_{p < \frac{x}{p}} \frac{\log p}{p \log \frac{x}{p}} = O\left(\sqrt{\log x}\right).$$

証明. $\xi = \xi(x) := x \exp\left(-\sqrt{logx}\right)$ とすると、

$$\begin{split} \sum_{p \leq \frac{x}{2}} \frac{\log p}{p \log \frac{x}{p}} &= \sum_{p \leq \xi} \frac{\log p}{p \log \frac{x}{p}} + \sum_{\xi \leq p \leq \frac{x}{2}} \frac{\log p}{p \log \frac{x}{p}} \\ &\leq \frac{1}{\log \frac{x}{\xi}} \sum_{p \leq \xi} \frac{\log p}{p} + \frac{1}{\log 2} \sum_{\xi \leq p \leq \frac{x}{2}} \frac{\log p}{p} \\ &\leq \frac{1}{\sqrt{\log x}} \sum_{p \leq \xi} \frac{\log p}{p} + \frac{1}{\log 2} \left(\sum_{p \leq x} \frac{\log p}{p} - \sum_{p \leq \xi} \frac{\log p}{p} \right) \\ &\leq \frac{1}{\sqrt{\log x}} (\log x + c_1) + \frac{1}{\log 2} (\log x - \log \xi + c_2) \quad \text{(Mertens \mathcal{O}} 第 - 定理) \end{split}$$

よって,

$$\sum_{p \le \frac{x}{2}} \frac{\log p}{p \log \frac{x}{p}} = O\left(\sqrt{\log x}\right)$$

となる.

補題 2.6.

$$\sum_{p < x} \frac{\log^2 p}{p} = \frac{1}{2} \log^2 x + O(\log x).$$

証明. $b \in \mathbb{N}$ に対して,

$$a_n = \begin{cases} \frac{logp}{p} & (n \in \mathbb{P}), \\ 0 & (n \notin \mathbb{P}) \end{cases}$$

とし、 $f(x) = \log x$ として、Abel の変形法を用いると、Mertens の第一定理より、

$$A(x) = \sum_{p \le x} \frac{\log p}{p} = \log x + O(1)$$

となるので,

$$\sum_{p \le x} \frac{\log^2 p}{p} = -\int_1^x \frac{A(t)}{t} dt + A(x) \log x$$

$$\le -\int_1^x \frac{\log t}{t} dt + \int_1^x \frac{c_1}{t} dt + (\log x + c_1) \log x$$

$$\le \log^2 x + c_1 \log x - \frac{1}{2} \log^2 x + c_1 \log x$$

$$= \frac{1}{2} \log^2 x + O(\log x)$$

となる.

補題 2.7.

$$\sum_{pq \le x} \frac{\log p \log q}{pq} = \frac{1}{2} \log^2 x + O(\log x).$$

証明.

$$\begin{split} \sum_{pq \leq x} \frac{\log p \log q}{pq} &= \sum_{p \leq x} \frac{\log p}{p} \sum_{q \leq \frac{x}{p}} \frac{\log q}{q} \\ &\leq \sum_{p \leq x} \frac{\log p}{p} \left(\log \frac{x}{p} + c_1 \right) \quad \text{(Mertens の第一定理)} \\ &= \log x \sum_{p \leq x} \frac{\log p}{p} - \sum_{p \leq x} \frac{\log^2 p}{p} + c_1 \sum_{p \leq x} \frac{\log p}{p} \\ &\leq \log x (\log x + c_2) - \frac{1}{2} \log^2 x + c_3 \log x + c_1 \log x + c_1 c_2 \quad \text{(Mertens の第一定理, 補題 2.6)} \end{split}$$

よって,

$$\sum_{pq \le x} \frac{\log p \log q}{pq} = \frac{1}{2} \log^2 x + O(\log x)$$

となる.

補題 2.8.

$$\sum_{pq \le x} \frac{\log p \log q}{pq \log pq} = \log x + O(\log \log x).$$

証明. $n \ge 2$ に対して,

$$a_n = \begin{cases} \frac{\log p \log q}{pq} & (n = pq), \\ 0 & (n \neq pq) \end{cases}$$

とし, $f(x) = \frac{1}{\log x}$ とし, Abel の変形法を用いると,

$$\sum_{pq \le x} \frac{\log p \log q}{pq \log pq} = + \int_{2}^{x} \frac{A(t)}{t \log^{2} t} dt + \frac{A(x)}{\log x}$$

$$\le \frac{1}{2} \int_{2}^{x} \frac{1}{t} dt + c_{1} \int_{2}^{x} \frac{1}{t \log t} dt + c_{1} + \frac{1}{2} \log x \quad (\text{#\mu} 2.7)$$

よって,

$$\sum_{pq \le x} \frac{\log p \log q}{pq \log pq} = \log x + O(\log \log x)$$

となる.

2.3 Selberg の不等式

補題 2.9. $n \in \mathbb{N}$ に対して,

$$\theta_n := \sum_{d|n} \mu(d) \log^2 \frac{n}{d}$$

とすると,

$$\theta_n = \begin{cases} (2i-1)\log^2 p & (n=p^i, i \ge 1), \\ 2\log p \log q & (n=p^i q^j, i \ge 1, j \ge 1, p \ne q), \\ 0 & (n=p_1^{e_1} \dots p_k^{e_k}) \end{cases}$$

となる.

証明. n = 1 のとき, 定義より $\theta_1 = 0$. $n = p^i$, i > 1 のとき,

$$\theta_n = \sum_{d|p^i} \mu(d) \log^2 \frac{p^i}{d}$$

$$= \mu(1) \log^2 p^i - \mu(p) \log^2 p^{i-1} \quad (\mu(n) \text{ の定義})$$

$$= i^2 \log^2 p - (i-1)^2 \log^2 p$$

$$= (2i-1) \log^2 p$$

が成り立つ.

$$n = p^i q^j, i \ge 1, j \ge 1, p \ne q$$
のとき,

$$\theta_n = \sum_{d|p^i} \mu(d) \log^2 \frac{p^i q^j}{d}$$

$$= \mu(1) \log^2 p^i q^j + \mu(p) \log^2 p \ i - 1q^j + \mu(q) \log p^i q^{j-1} + \mu(pq) \log^2 p^{i-1} q^{j-1}$$

$$= \{ (i \log p + j \log q)^2 - \{ (i-1) \log p + j \log q \}^2 - \{ i \log p + (j-1) \log q \}^2 + \{ (i-1) \log p + (j-1) \log q \}^2$$

$$= 2 \log p \log q$$

が成り立つ.

$$n = p_1^{e_1}, \dots, p_k^{e_k}, p_1, \dots, p_k \in \mathcal{E},$$

$$\theta_{n} = \sum_{d|p_{1}...p_{k}} \mu(d) \log^{2} \frac{n}{d}$$

$$= \sum_{d|p_{1}...p_{k-1}} \mu(d)\mu(d) \log^{2} \frac{n}{d} + \sum_{d|p_{1}...p_{k-1}} \mu(dp_{k}) \log^{2} \frac{n}{dp_{k}}$$

$$= \sum_{d|p_{1}...p_{k-1}} \mu(d) \left(\log^{2} \frac{n}{d} - \log^{2} \frac{n}{dp_{k}} \right)$$

$$= \sum_{d|p_{1}...p_{k-1}} \mu(d)\mu \left(2\log \frac{n}{d} - \log p_{k} \right) \log p_{k}$$

$$= 2\log p_{k} \sum_{d|p_{1}...p_{k-1}} \mu(d) \log \frac{n}{d} - \log^{2} p_{k} \sum_{d|p_{1}...p_{k-1}} \mu(d)$$

$$= 2\log p_{k} \sum_{d|p_{1}...p_{k-1}} \mu(d) \log \frac{n}{d} \quad ($$
 im 1.10

となり,

$$\sum_{d|p_1...p_{k-1}} \mu(d) \log \frac{n}{d} = \sum_{d|p_1...p_{k-2}} \mu(d) \log \frac{n}{d} - \sum_{d|p_1...p_{k-2}} \mu(dp_{k-1}) \log \frac{n}{dp_{k-1}} \quad (k \ge 3)$$

$$= \sum_{d|p_1...p_{k-2}} \mu(d) \left(\log \frac{n}{d} - \log \frac{n}{dp_{k-1}} \right)$$

$$= \sum_{d|p_1...p_{k-2}} \mu(d) \log p_{k-1}$$

$$= \log p_{k-1} \sum_{d|p_1...p_{k-2}} \mu(d) = 0$$

が成り立つ.

定理 2.10 (Selberg の不等式).

$$\vartheta(x)\log x + \sum_{p \le x} \vartheta\left(\frac{x}{p}\right)\log p = 2x\log x + O(x).$$

証明. $\sum_{n \leq x} \theta_n$ を二通りの方法で計算することによって証明する. まず, θ_n の定義にもとずいて二重和を計算すると.

$$\sum_{n \le x} \theta_n = \sum_{n \le x} \sum_{d|n} \mu(d) \log^2 \frac{n}{d}$$

$$= \sum_{dm|\le x} \mu(d) \log^2 m$$

$$= \sum_{d \le x} \mu(d) \sum_{m \le \frac{x}{d}} \log^2 m$$

$$= \sum_{d \le x} \mu(d) \left\{ \frac{x}{d} \left(\log^2 \frac{x}{d} - 2 \log \frac{x}{d} + 2 \right) + O\left(\log^2 \frac{x}{d} \right) \right\}$$

$$= x \sum_{d \le x} \frac{\mu(d)}{d} \log^2 \frac{x}{d} - 2x \sum_{d \le x} \frac{\mu(d)}{d} \log \frac{x}{d} + 2x \sum_{d \le x} \frac{\mu(d)}{d} + O\left(\sum_{d \le x} \log^2 \frac{x}{d} \right) \quad (\text{#i} 1.32)$$

$$= 2x \log x + O(x) \quad (\text{#i} 1.14, \text{#i} 1.15, \text{#i} 1.16)$$

となる.

一方, 計算結果より,

$$\sum_{n \le x} \theta_n = \sum_{n \le x} (2i - 1) \log^2 p + \sum_{p^i q^j \le x, p \ne q} \log p \log q$$

$$= \sum_{p \le x} \log^2 p + \sum_{pq \le x, p \ne q} \log p \log q + O(x) \quad (\text{\text{\'a}} \text{ is 2.3, \'a} \text{\ is 2.4})$$

となるが.

$$\sum_{p^2 \le x} \log^2 p = \sum_{p \le \sqrt{x}} \log^2 p < \sqrt{x} \log^2 x = O(x)$$

となるので、二つ目の和の $p \neq q$ である条件が消えて、

$$\sum_{n \le x} \theta_n = \sum_{p \le x} \log^2 p + \sum_{pq \le x} \log p \log q + O(x)$$

2.3 Selberg の不等式 2 素数定理

が得られた. 二通りの計算を合わせることにより,

$$\sum_{p \le x} \log^2 p + \sum_{pq \le x} \log p \log q = 2x \log x + O(x). \tag{10}$$

また., 数列 $\{a_n\}$ を

$$a_n = \begin{cases} \log p & (n \in \mathbb{P}), \\ 0 & (n \notin \mathbb{P}) \end{cases}$$

とし、この $\{a_n\}$ と $f(x) = \log x$ に対して Abel の変形法を用いると、 $A(x) = \vartheta(x)$ なので、

$$\sum_{p \le x} \log^2 p = -\int_1^x \frac{\vartheta(t)}{t} dt + \vartheta(x) \log x$$

$$= \vartheta(x) \log x + O\left(\int_1^x dt\right) \quad ($$
 定理 1.22)
$$= \vartheta(x) \log x + O(x) \tag{11}$$

となる. さらに,

$$\sum_{p \le x} \log p \log q = \sum_{p \le x} \log p \sum_{q \le \frac{x}{p}} \log q = \sum_{p \le x} \vartheta\left(\frac{x}{p}\right) \log p \tag{12}$$

である. よって、(10)、(11)、(12) より、

$$\vartheta(x)\log x + \sum_{p \le x} \vartheta\left(\frac{x}{p}\right)\log p = 2x\log x + O(x)$$

となる.

系 2.11.

$$\vartheta(x) + \sum_{pq \le x} \frac{\log p \log q}{\log pq} = 2x + O\left(\frac{x}{\log x}\right) \quad (x \ge 2).$$

証明. $2 \le n \ (n \in \mathbb{N})$ に対して a_n を

$$a_n = \begin{cases} \log^2 p & (n=p) \\ \log p \log q & (n=pq) \\ 0 & (\text{otherwise}) \end{cases}$$
 (13)

で定め、この数列 $\{a_n\}$ と $n_0=2$, $f(x)=\frac{1}{\log x}$ に対して Abel の変形法を用いると、(10) より、

$$A(x) = \sum_{p \le x} \log^2 p + \sum_{pq \le x} \log p \log q = 2x \log x + O(x)$$

なので,

$$\begin{split} \vartheta(x) + \sum_{pq \leq x} \frac{\log p \log q}{\log p q} &= + \int_2^x \frac{A(t)}{t \log^2 t} \ dt + \frac{A(x)}{\log x} \\ \vartheta(x) + \sum_{pq \leq x} \frac{\log p \log q}{\log p q} &\leq 2 \int_2^x \frac{1}{\log t} \ dt + \int_2^x \frac{c_1}{\log^2 t} \ dt + 2x + \frac{c_2 x}{\log x} \\ &= 2x + O\left(\frac{x}{\log x}\right) \end{split}$$

となる.

系 2.12.

$$\vartheta(x)\log x = \sum_{pq \le x} \vartheta\left(\frac{x}{pq}\right) \frac{\log p \log q}{\log pq} + O\left(x\sqrt{\log x}\right).$$

証明. $p>\frac{x}{2}$ \Rightarrow $\vartheta\left(\frac{x}{p}\right)=0,\,qr>\frac{x}{2}$ \Rightarrow $\left(\frac{x}{qr}\right)=0$ であるから,

$$\begin{split} \sum_{p \leq x} \vartheta\left(\frac{x}{p}\right) \log p &= \sum_{p \leq \frac{x}{2}} \vartheta\left(\frac{x}{p}\right) \log p \\ &= \sum_{p \leq \frac{x}{2}} \frac{2x}{p} \log p - \sum_{p \leq \frac{x}{2}} \log p \sum_{p \leq \frac{x}{p}} \frac{\log q \log r}{\log q r} + O\left(\sum_{p \leq \frac{x}{2}} \frac{x}{p \log \frac{x}{p}} \log p\right) \quad (\text{$\%$ 1.24}) \\ &= 2x \sum_{p \leq \frac{x}{2}} \frac{\log p}{p} - \sum_{qr \leq x} \frac{\log q \log r}{\log q r} \sum_{p \leq \frac{x}{qr}} \log p + O\left(x \sum_{p \leq \frac{x}{2}} \frac{\log p}{p \log \frac{x}{p}}\right) \\ &\leq 2x (\log x + c_1) - \sum_{qr \leq x} \vartheta\left(\frac{x}{qr}\right) \frac{\log q \log r}{\log q r} + c_2 x \sqrt{\log x} \quad (\text{Mertens \mathcal{O}} \hat{\mathbf{x}} - \hat{\mathbf{x}} \hat{\mathbf{z}}, \text{ and } \hat{\mathbf{z}} \hat{\mathbf{z}}) \end{split}$$

となる. また, $cx\sqrt{\log x} - x = x(c\sqrt{\log x} - 1)$ より, f(x) を以下のように定めると,

$$f(x) = c\sqrt{\log x} - 1$$
$$f'(x) = \frac{c}{2x\sqrt{\log x}} > 0$$

であるから,

$$\forall x \geq 2, \exists \text{ s.t. } x(c\sqrt{\log x} - 1)$$

2xy, x = 1 o 25,

$$\sum_{p \le \frac{1}{2}} \vartheta\left(\frac{1}{p}\right) \log p = 0, \ 2 \cdot 1 \log 1 - \sum_{qr \le x} \vartheta\left(\frac{1}{qr}\right) \frac{\log q \log r}{\log qr} + c \cdot 1\sqrt{\log 1} = 0$$

となるから,

$$\sum_{p \leq \frac{x}{2}} \vartheta\left(\frac{x}{p}\right) \log p = 2x \log x - \sum_{qr \leq x} \vartheta\left(\frac{x}{qr}\right) \frac{\log q \log r}{\log qr} + O\left(x\sqrt{\log x}\right)$$

となる. さらに、Selberg の不等式により、

$$2x \log x - \vartheta(x) \log x + O(x) = 2x \log x - \sum_{qr \le x} \frac{\log q \log r}{\log q r} + O\left(x\sqrt{\log x}\right)$$

となる.

2.4 素数定理のための補題

ここで、素数定理のための補題 2.15 を準備する. この補題 2.15 が |R(x)| の評価をより厳しくするため、素数定理の証明において重要な役割を果たす. 以下、

$$R(x) := \vartheta(x) - x$$

とする.

補題 2.13.

$$\int_1^x \frac{R(t)}{t^2} dt = O(1).$$

証明. $n \in \mathbb{N}$ に対して、

$$a_n = \begin{cases} \log p & (p \in \mathbb{P}) \\ 0 & (\text{otherwise}) \end{cases}$$

とし, $f(x) = \frac{1}{x}$ に対して Abel の変形法を用いると, $A(x) = \vartheta(x)$ なので,

$$\sum_{p \le x} \frac{\log p}{p} = + \int_1^x \frac{f(x)}{t^2} dt + \frac{f(x)}{x}$$

$$\log x + O(1) = \int_1^x \frac{1}{t} dt + \int_1^x \frac{R(t)}{t^2} dt + O(1) \quad \text{(Mertens の第一定理, 定理 1.22)}$$

$$\int_1^x \frac{R(t)}{t^2} dt = O(1).$$

となる.

補題 2.14. $0 < {}^{\forall} \delta < 1$ に対して, $x_0 > 0$, K > 0 が存在して, ${}^{\forall} x > x_0$ に対して,

$$\exists y \in [x, e^{\frac{K}{\delta}}x] \text{ s.t. } |R(x)| < \delta y$$

が成り立つ. つまり.

$$0 < {}^{\forall} \delta < 1, \ {}^{\exists} x_0 > 0, \ {}^{\exists} K > 0 \ s.t. \ {}^{\forall} x > x_0, \ {}^{\exists} y \in [x, e^{\frac{K}{\delta}} x] \ s.t. \ |R(x)| < \delta y.$$

証明、 $1 < \forall x < x'$ に対して

$$^{\exists}K > 0 \text{ s.t. } \left| \int_{x}^{x'} \frac{R(t)}{t^2} \ dt \right| < K \quad (補題 2.13)$$

であり, $0 < \forall \delta < 1$ に対して,

$$f(t) = \delta t - \frac{1}{2}\log t,$$

$$f'(t) = \delta - \frac{1}{2t} = \frac{2t\delta - 1}{2t}$$

となるから, $0<\frac{1}{2\delta}<\frac{1}{2}$ なので, $t>\frac{1}{2\delta}$ とすれば, f'(t)>0 となり,

$$f\left(\frac{1}{2\delta}\right) = \frac{1}{2} - \frac{1}{2}\log\frac{1}{2\delta} = \frac{1}{2}\left(1 - \log\frac{1}{2\delta}\right) > 0$$

となるので.

$$\exists x_0 > 0 \text{ s.t. } t > x_0 \implies \delta t > \frac{1}{2} \log t$$

ここで, $x>x_0$ のとき, $\forall t\in[x,e^{\frac{K}{\delta}}x]$ に対して $R(t)\geq\delta t$ が成り立つような x が存在すると仮定すると,

$$|R(x)| \ge \delta t > \frac{1}{2} \log t$$

であるから, R(x) はこの区間で定符号であることが分かる. よって,

$$\left| \int_{x}^{e^{\frac{K}{\delta}x}} \frac{R(t)}{t^2} dt \right| = \int_{x}^{e^{\frac{K}{\delta}x}} \frac{R(t)}{t^2} dt \ge \delta \int_{x}^{e^{\frac{K}{\delta}x}} \frac{1}{t} dt = K$$

となり、Kの取り方に矛盾する.

補題 **2.15.** $0 < {}^{\forall} \delta < 1$ に対して, $x_1 > 0$, K > 0 が存在し, ${}^{\forall} x \ge x_1$ に対して,

$$|R(x)| < 4\delta z \quad (\forall z \in [y, e^{\frac{\delta}{2}}y])$$

が成り立つ. 区間

$$[y, e^{\frac{\delta}{2}}y] \subset [x, e^{\frac{K}{\delta}}x]$$

が存在する.

証明. 補題 2.14 の x_0 , K をとり, $x \ge x_0$ の x に対して同様に補題 2.14 によって存在する y をとると, 系 2.11 より, y < z として,

$$\begin{split} \vartheta(z) - \vartheta(y) + \sum_{y < pq \leq z} \frac{\log p \log q}{\log pq} &= 2(z - y) + O\left(\frac{z}{\log z}\right) \\ 0 \leq \sum_{y < p \leq x} \log p = 2(z - y) + O\left(\frac{z}{\log z}\right) \\ - (z - y) \leq \vartheta(z) - z - \{\vartheta(y) - y\} &= z - y + 0\left(\frac{z}{\log z}\right) \\ z - y + c_1\left(\frac{z}{\log z}\right) \leq R(z) - R(y) \leq z - y + c_1\left(\frac{z}{\log z}\right) \\ z - y + c_1\left(\frac{z}{\log z}\right) - |R(y)| \leq R(z) \leq z - y + c_1\left(\frac{z}{\log z}\right) + |R(y)| \quad (-|R(y)| < R(y) < |R(x)|) \\ |R(z)| \leq |R(y)| + z - y + \left(\frac{z}{\log z}\right) \\ < \delta y + z - y + \frac{K'z}{\log z} \quad ($$
(補題 2.14)

ここでは、 x_0 は $x_0 \ge 2$ としておき、K は $e^{\frac{\delta}{2}}y \le e^{\frac{K}{8}}x$ が $\forall x \ge x_0$ に対してが成り立つように取り換えることを考えている。また、 $c_1 > 0$ は定数とし、 $\forall z \in [y, e^{\frac{\delta}{2}}y] \subset [x, e^{\frac{K}{8}}x]$ をとる。すると、 $e^{\frac{\delta}{2}} \le (1-\delta)^{-1}$ より、 $z-y \le \delta z$ であるから、

$$\left| \frac{R(z)}{z} \right| < \delta \frac{y}{z} + \delta + \frac{c_1}{\log x} < 2\delta + \frac{c_1}{\log x} \quad \left(\frac{y}{z} < 1, \ x \le z \right)$$

が成り立つ. $x>e^{\frac{K'}{2\delta}}$ ならばこれは 4δ でおさえられるので, $x_1=\max\{x_0,e^{\frac{c_1}{2\delta}}\}$ とすれば,

$$|R(z)| < 4\delta z$$

となる.

補題 **2.16.** 定数 $K > \frac{4}{75}$, 数列 $\{\alpha_n\}$ を $\alpha_1 = 4$,

$$\alpha_{n+1} = \alpha_n \left(1 - \frac{\alpha_n^2}{300K} \right)$$

により定める. このとき,

$$\lim_{n \to \infty} \alpha_n = 0$$

が成り立つ.

証明. まず, $0 < \alpha_n \le 4$ を示す. n = 1 のとき, 明らかに成り立つ. n = k のとき, $0 < a_k < 4$ であると仮定する. n = k + 1 のとき,

$$\begin{split} &0 < a_k^2 < 16 \quad (仮定) \\ &0 < \frac{a_k^2}{300K} < 1 \quad \left(K > \frac{4}{75}\right) \\ &0 < 1 - \frac{a_k^2}{300K} < 1 \\ &0 < a_k \left(1 - \frac{a_k^2}{300K}\right) < 4 \end{split}$$

となり、 $0 < a_{k+1} < 4$ が成り立つ. 以上より、 $0 < a_n < 4$ が成り立つ. また、 $0 < a_n < 4$ なので、 $\forall n \in \mathbb{N}$ に対して、

$$0 < 1 - \frac{a_k^2}{300K} < 1, \ a_{n+1} = a_n \left(1 - \frac{a_n^2}{300K} \right)$$

なので, $\{\alpha_n\}$ は単調減少数列となる. よって,

$$\lim_{n \to \infty} a_n = 0$$

となる.

2.5 素数定理の証明

2.5.1 |R(x)| の評価

素数定理の証明は,

$$|R(x)| < \alpha_1 x \Rightarrow |R(x)| < \alpha_2 x \Rightarrow \dots$$

というように, |R(x)| の評価を厳しくしていくことで行う. そのために, 以下の補題を示す.

補題 2.17.

$$|R(x)| = \frac{1}{\log x} \sum_{n \le x} \left| R\left(\frac{x}{n}\right) \right| + O\left(\frac{x}{\sqrt{\log x}}\right).$$

証明. Selberg の不等式より,

$$(x+R(x))\log x + \sum_{p \le x} \left(\frac{x}{p} + R\left(\frac{x}{p}\right)\right)\log p = 2x\log x + O(x)$$

$$R(x)\log x + x\sum_{p \le x} \frac{\log p}{p} + \sum_{p \le x} R\left(\frac{x}{p}\right)\log p = x\log x + O(x)$$

$$R(x)\log x = -\sum_{p \le x} R\left(\frac{x}{p}\right)\log p + O(x) \quad \text{(Mertens の第一定理)} \quad (14)$$

が得られる. また, 系 2.12 より,

$$(x + R(x)) \log x = \sum_{p \le x} \left(\frac{x}{pq} + R\left(\frac{x}{pq}\right)\right) \frac{\log p \log q}{\log p q} + O\left(x\sqrt{\log x}\right)$$

$$R(x) \log x = \sum_{p \le x} R\left(\frac{x}{pq}\right) \frac{\log p \log q}{\log p q} + O\left(x\sqrt{\log x}\right) \quad (\text{#$!} 2.8)$$

$$R(x) \log x = \sum_{pq \le x} R\left(\frac{x}{pq}\right) \frac{\log p \log q}{\log p q} + O\left(x\sqrt{\log x}\right) \quad (15)$$

を得る. (14), (15) より,

$$2R(x)\log x = \sum_{p \le x} R\left(\frac{x}{p}\right)\log p + O(x) + \sum_{pq \le x} \left| R\left(\frac{x}{pq}\right) \left| \frac{\log p \log q}{\log pq} + O\left(x\sqrt{\log x}\right) \right|$$

$$2|R(x)|\log x = \sum_{p \le x} \left| R\left(\frac{x}{p}\right) \right| \log p + \sum_{pq \le x} \left| R\left(\frac{x}{pq}\right) \left| \frac{\log p \log q}{\log pq} + O\left(x\sqrt{\log x}\right) \right|$$

$$(16)$$

と評価できる.この右辺をさらに上から評価することを考える.

$$r(x) := \vartheta(x) + \sum_{pq \le x} \frac{\log p \log q}{\log pq} - 2x$$

とすると, $n \in \mathbb{N}$ に対して.

$$\begin{split} r(n) - r(n-1) &= \left(\vartheta(n) + \sum_{pq \leq x} \frac{\log p \log q}{\log p q} - 2n\right) - \left(\vartheta(n-1) + \sum_{pq \leq x} \frac{\log p \log q}{\log p q} - 2(n-1)\right) \\ &= \begin{cases} l \log p & (n=p) \\ 0 & (\text{otherwise}) \end{cases} + \begin{cases} l \frac{\log p \log q}{\log p q} & (n=pq) \\ 0 & (\text{otherwise}) \end{cases} - 2 \end{split}$$

なので,

$$\sum_{p \le x} \left| R\left(\frac{x}{p}\right) \right| \log p + \sum_{pq \le x} \left| R\left(\frac{x}{pq}\right) \right| \frac{\log p \log q}{\log pq} = \sum_{n \le x} \left\{ 2 + r(n) - r(n-1) \right\} \left| R\left(\frac{x}{n}\right) \right| \\
= 2 \sum_{n \le x} \left| R\left(\frac{x}{n}\right) \right| + \sum_{n \le x} r(n) \left\{ \left| R\left(\frac{x}{n}\right) \right| - \left| R\left(\frac{x}{n+1}\right) \right| \right\} \\
+ r(|x|) \left| R\left(\frac{x}{|x|+1}\right) \right| \tag{17}$$

が得られる. さらに、定理 1.22 より、R(x) = O(x) であるから、

$$r(1)\left\{|R(x)| - \left|R\left(\frac{x}{2}\right)\right|\right\} = O(x)$$

である. よって, 系 2.11 より,

$$\vartheta(x) + \sum_{pq \le x} \frac{\log p \log q}{\log pq} - 2x = r(x) = O\left(\frac{x}{\log x}\right)$$

なので,

$$\sum_{n \le x} r(x) \left\{ \left| R\left(\frac{x}{n}\right) \right| - \left| R\left(\frac{x}{n+1}\right) \right| \right\} = O(x) + O\left(\sum_{2 \le n \le x} \frac{n}{\log n} \left| R\left(\frac{x}{n}\right) - R\left(\frac{x}{n+1}\right) \right| \right)$$
(18)

が成り立つ. ここで,

$$\left| R\left(\frac{x}{n}\right) - R\left(\frac{x}{n+1}\right) \right| \le \left| \vartheta\left(\frac{x}{n}\right) - \vartheta\left(\frac{x}{n+1}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right) \right|$$

$$\le \left| \vartheta\left(\frac{x}{n}\right) - \vartheta\left(\frac{x}{n+1}\right) \right| + \left| \left(\frac{1}{n} - \frac{1}{n+1}\right) \right|$$

$$= \left| \sum_{p \le 1} \log \frac{p}{n} - \sum_{p \le 1} \log \frac{p}{n+1} \right| + \left| \frac{x}{n(n+1)} \right|$$

$$= \left| \sum_{p \le 1} \log \frac{n+1}{n} \right| + \frac{x}{n(n+1)}$$

$$< \vartheta\left(\frac{x}{n}\right) - \vartheta\left(\frac{x}{n+1}\right) + \frac{x}{n^2}$$

を用いると,

$$\begin{split} \sum_{2 \le n \le x} \frac{n}{\log n} \left| R\left(\frac{x}{n}\right) - R\left(\frac{x}{n+1}\right) \right| &\le \sum_{2 \le n \le x} \frac{n}{\log n} \left\{ \vartheta\left(\frac{x}{n}\right) - \vartheta\left(\frac{x}{n+1}\right) + \frac{x}{n^2} \right\} \\ &= \sum_{2 < n < x} \frac{n}{\log n} \left\{ \vartheta\left(\frac{x}{n}\right) - \vartheta\left(\frac{x}{n+1}\right) \right\} + x \sum_{2 < n < x} \frac{1}{n \log n} \right\} \end{split}$$

となり,

$$\sum_{2 \le n \le x} \frac{n}{\log n} \left\{ \vartheta\left(\frac{x}{n}\right) - \vartheta\left(\frac{x}{n+1}\right) \right\} = \frac{2}{\log 2} \vartheta\left(\frac{x}{2}\right) + \sum_{3 \le n \le x} \left\{ \frac{n}{\log n} - \frac{n-1}{\log(n-1)} \right\} \vartheta\left(\frac{x}{n}\right) - \frac{[x]}{\log[x]} \vartheta\left(\frac{x}{[x]+1}\right)$$

$$= O(x) + \sum_{3 \le n \le x} \left\{ \frac{n}{\log n} - \frac{n-1}{\log(n-1)} \right\} \vartheta\left(\frac{x}{n}\right) \quad (\text{\mathbb{Z}}\text{ \mathbb{Z}} 1.22)$$

となる. さらに,

$$\sum_{3 \le n \le x} \left\{ \frac{n}{\log n} - \frac{n-1}{\log(n-1)} \right\} \vartheta\left(\frac{x}{n}\right) = O\left(\sum_{3 \le n \le x} \left\{ \frac{n}{\log n} - \frac{n-1}{\log(n-1)} \right\} \frac{x}{n}\right) \quad (\text{定理 } 1.22)$$

$$= O\left(x \sum_{3 \le n \le x} \frac{1}{n} \left\{ \frac{n}{\log n} - \frac{n-1}{\log(n-1)} \right\} \right)$$

となるが,

$$\frac{1}{\log n} - \left(\frac{n}{\log n} - \frac{n-1}{\log(n-1)}\right) = \frac{1-n}{\log n} + \frac{n-1}{\log(n-1)}$$
$$= (n-1)\left\{\frac{1}{\log(n-1)} - \frac{1}{\log n}\right\} > 0$$

であるから、定理1.22と合わせて、

$$\sum_{3 \le n \le x} \left\{ \frac{n}{\log n} - \frac{n-1}{\log(n-1)} \right\} \vartheta\left(\frac{x}{n}\right) = O\left(\sum_{3 \le n \le x} \frac{1}{\log n} \cdot \frac{x}{n}\right)$$

となる. 以上と補題 1.33 より.

$$\sum_{2 \le n \le x} \frac{n}{\log n} \left| R\left(\frac{x}{n}\right) - R\left(\frac{x}{n+1}\right) \right| = O(x) + O(x \log \log x)$$

$$= O(x \log \log x)$$
(19)

$$\begin{split} r([x]) &= \vartheta([x]) + \sum_{pq \leq x} \frac{\log p \log q}{\log p q} - 2[x] = O\left(\frac{[x]}{\log[x]}\right), \\ \left| R\left(\frac{x}{[x]+1}\right) \right| &= \left| \vartheta\left(\frac{x}{[x]+1}\right) - \frac{x}{[x]+1} \right| = O\left(\frac{x}{[x]+1}\right) \end{split}$$

であるから,

$$r([x])\left|R\left(\frac{x}{[x]+1}\right)\right| = O\left(\frac{x}{\log x}\right) \tag{20}$$

となる. 以上より,

$$\begin{aligned} 2|R(x)|\log x - O\left(x\sqrt{\log x}\right) &= \sum_{p \leq x} \left|R\left(\frac{x}{p}\right)\right| \log p + \sum_{pq \leq x} \left|R\left(\frac{x}{pq}\right)\right| \frac{\log p \log q}{\log pq} \quad ((16) \ \&^{\,9}) \\ &\leq 2 \sum_{n \leq x} \left|R\left(\frac{x}{n}\right)\right| + \sum_{2 \leq n \leq x} \frac{n}{\log n} \left\{\left|R\left(\frac{x}{n}\right)\right| - \left|R\left(\frac{x}{n+1}\right)\right|\right\} \\ &+ r([x]) \left|R\left(\frac{x}{[x]+1}\right)\right| \quad ((17) \ \&^{\,9}) \\ &= 2 \sum_{n \leq x} \left|R\left(\frac{x}{n}\right)\right| + O(x) + O\left(\sum_{2 \leq n \leq x} \frac{n}{\log n} \left|R\left(\frac{x}{n}\right) - R\left(\frac{x}{n+1}\right)\right|\right) \\ &+ r([x]) \left|R\left(\frac{x}{[x]+1}\right)\right| \quad ((18) \ \&^{\,9}) \\ &= 2 \sum_{n \leq x} \left|R\left(\frac{x}{n}\right)\right| + O(x) + O(x \log \log x) + r([x]) \left|R\left(\frac{x}{[x]+1}\right)\right| \quad ((19) \ \&^{\,9}) \\ &= 2 \sum_{n \leq x} \left|R\left(\frac{x}{n}\right)\right| + O(x \log \log x) + \left(\frac{x}{\log x}\right) \quad ((20) \ \&^{\,9}) \\ &= 2 \sum_{n \leq x} \left|R\left(\frac{x}{n}\right)\right| + O(x \log \log x) \end{aligned}$$

よって,

$$|R(x)|\log x = \sum_{n \le x} \left| R\left(\frac{x}{n}\right) \right| + O(x\log\log x) + O\left(x\sqrt{\log x}\right)$$
$$= \sum_{n \le x} \left| R\left(\frac{x}{n}\right) \right| + O\left(x\sqrt{\log x}\right)$$

従って,

$$|R(x)| = \frac{1}{\log x} \sum_{n \le x} \left| R\left(\frac{x}{n}\right) \right| + O\left(\frac{x}{\sqrt{\log x}}\right)$$

となる.

2.5.2 証明の完結

定理 2.18 (素数定理).

$$\lim_{x \to \infty} \frac{\pi(x)}{\frac{x}{\log x}} = 1.$$

証明. (6) より,

$$0 < \exists \alpha < 8 \text{ s.t. } \left| \frac{R(x)}{x} \right| \le \alpha$$
 (21)

である. また, $\delta := \frac{\alpha}{8}$ とすると $0 < \delta < 1$ となるので, この δ に対して補題 2.15 を適用させる. さらに, x_2 を補題 2.15 に現れる x_1 より大きくとり固定する. 補題 2.17 より,

$$|R(x)| = \frac{1}{\log x} \sum_{n \le x} \left| R\left(\frac{x}{n}\right) \right| + O\left(\frac{x}{\sqrt{\log x}}\right)$$

であり, (21) を用いることで,

$$|R(x)| = \frac{\alpha x}{\log x} \sum_{\frac{x}{x_2} < n \le x} \frac{1}{n} + \frac{x}{\log x} \sum_{n \le \frac{x}{x_2}} \frac{1}{n} \left| R\left(\frac{x}{n}\right) \right| + O\left(\frac{x}{\sqrt{\log x}}\right)$$
(22)

となる. 和の $\frac{x}{x_2} < n \le x$ の部分については (1.28) より,

$$\begin{split} \frac{\alpha x}{\log x} \sum_{\frac{x}{x_2} < n \leq x} \frac{1}{n} &= \frac{\alpha x}{\log x} \left\{ \left(\log x + \gamma + O\left(\frac{1}{x}\right) \right) - \left(\log \frac{x}{x_2} + \gamma + O\left(\frac{1}{x}\right) \right) \right\} \\ &= \frac{\alpha x}{\log x} \left(\log x_2 + O\left(\frac{1}{x}\right) \right) \\ &= O\left(\frac{x}{\sqrt{\log x}}\right). \end{split}$$

となる.

次に $n \leq \frac{x}{x_2}$ なる和については補題 2.15 を用いる. K を補題 2.15 における K(ただし, $K > \frac{4}{75}$) とし, $p := e^{\frac{K}{5}}$ とすると,

$$\frac{x}{n} \in [x_2, x] \supset \bigcup_{\nu=1}^{[\log_{\rho} \frac{x}{x_2}]} [\rho^{\nu-1} x_2, \rho^{\nu} x_2]$$

である, 各 ν に対して y_{ν} が存在して,

$$\forall z \in [y_{\nu}, e^{\frac{\delta}{2}}y_{\nu}] \Rightarrow |R(x)| < \frac{\alpha}{2}z \quad (1 < \alpha < 8)$$

が成り立つ. つまり,

$$[x_2, x] \supset \bigcup_{\nu=1}^{\lfloor \log_{\rho} \frac{x}{x_2} \rfloor} [\rho^{\nu-1} x_2, \rho^{\nu} x_2]$$

$$[\log_{\rho} \frac{x}{x_2}]$$

$$\supset \bigcup_{\nu=1}^{\lfloor \log_{\rho} \frac{x}{x_2} \rfloor} [y_{\nu}, e^{\frac{\delta}{2}} y_{\nu}] \ni z$$

となるので、 $\frac{x}{n}\in[y_{\nu},e^{\frac{\delta}{2}}y_{\nu}]$ となる n に対しては $|R(x)|<\frac{\alpha}{2}x$ を用いて、その他の $n\leq\frac{x}{x_2}$ に対しては $|R(x)|<\alpha x$ を用いて評価すると、

$$|R(x)| < \frac{\alpha}{\log x} \sum_{n \le \frac{x}{x_2}} \frac{1}{n} - \frac{\alpha x}{2 \log x} \sum_{\nu=1}^{\left[\log_{\rho} \frac{x}{x_2}\right]} \sum_{\substack{\frac{x}{e^{\delta/2}} y_{\nu} \le n \le \frac{x}{y_{\nu}}}} \frac{1}{n} + O\left(\frac{x}{\sqrt{\log x}}\right)$$

を得る. ここで, (1.28) より, 上と同様に,

$$\frac{\alpha}{\log x} \sum_{n \le \frac{x}{x_2}} \frac{1}{n} = \frac{\alpha}{\log x} (\log x + O(x))$$
$$= \alpha x + O\left(\frac{x}{\sqrt{\log x}}\right)$$

である. また, (1.28) より,

$$\begin{split} \frac{\alpha x}{2\log x} \sum_{\nu=1}^{[\log_{\rho} \frac{x}{x_{2}}]} \sum_{x} \sum_{x=1} \frac{1}{n} &= \frac{\alpha x}{2\log x} \sum_{\nu=1}^{[\log_{\rho} \frac{x}{x_{2}}]} \left\{ \left(\log \frac{x}{y_{\nu}} + \gamma + O\left(\frac{y_{\nu}}{x}\right)\right) - \left(\log \frac{x}{e^{\frac{\delta}{2}}y_{\nu}} + \gamma + O\left(\frac{e^{\frac{\delta}{2}}y_{\nu}}{x}\right)\right) \right\} \\ &= \frac{\alpha x}{2\log x} \sum_{\nu=1}^{[\log_{\rho} \frac{x}{x_{2}}]} \left(\frac{\delta}{2} + O\left(\frac{y_{\nu}}{x}\right)\right) \\ &= \frac{\alpha x}{2\log x} \cdot \frac{\delta}{2} \left[\log_{\rho} \frac{x}{x_{2}}\right] + O\left(\frac{1}{\log x} \sum_{\nu=1}^{[\log_{\rho} \frac{x}{x_{2}}]} y_{\nu}\right) \\ &= \frac{\alpha \delta x}{2\log x} \cdot \frac{\delta}{2} \log_{\rho} \frac{x}{x_{2}} + O\left(\frac{1}{\log x} \sum_{\nu=1}^{[\log_{\rho} \frac{x}{x_{2}}]} y_{\nu}\right) \\ &= \frac{\alpha \delta x}{4\log \rho} - \frac{\alpha \delta}{\log \rho} \cdot \frac{x \log x_{2}}{\log x} + O\left(\frac{1}{\log x} \sum_{\nu=1}^{[\log_{\rho} \frac{x}{x_{2}}]} y_{\nu}\right) \\ &= \frac{\alpha \delta x}{2\log \rho} + O\left(\frac{x}{\sqrt{\log x}}\right) + O\left(\frac{1}{\log x} \sum_{\nu=1}^{[\log_{\rho} \frac{x}{x_{2}}]} y_{\nu}\right) \\ &= \frac{\alpha^{3} x}{256K} + O\left(\frac{x}{\sqrt{\log x}}\right) \end{split}$$

となる. ここで, 各 ν に対して, $[y_{\nu}, e^{\frac{\delta}{2}y_{\nu}}] \supset [\rho^{\nu-1}x_2, \rho^{\nu}x_n]$ となるように y_{ν} をとってきたので,

$$\sum_{\nu=1}^{[\log_{\rho} \frac{x}{x_{2}}]} y_{\nu} \leq \sum_{\nu=1}^{[\log_{\rho} \frac{x}{x_{2}}]} \rho^{\nu} x_{2} = x_{2} \sum_{\nu=1}^{[\log_{\rho} \frac{x}{x_{2}}]} (e^{\frac{K}{\delta}})^{\nu}$$

$$= O\left(\sum_{\nu=1}^{[\log_{\rho} \frac{x}{x_{2}}]} (e^{\frac{K}{\delta}})^{\nu}\right)$$

となる.よって,等比数列の和の公式より,

$$\sum_{\nu=1}^{\left[\log_{\rho} \frac{x}{x_{2}}\right]} (e^{\frac{K}{\delta}})^{\nu} = \frac{e^{\frac{K}{\delta}}}{e^{\frac{K}{\delta}} - 1} \left(\frac{x}{x_{2}} - 1\right)$$
$$= O(x)$$

であることがわかるから,

$$\sum_{\nu=1}^{\left[\log_{\rho} \frac{x}{x_{2}}\right]} y_{\nu} = O(x).$$

よって,

$$\frac{\alpha x}{2\log x} \sum_{\nu=1}^{\lceil \log_{\rho} \frac{x}{x_{2}} \rceil} \sum_{x \le n \le \frac{x}{y_{\nu}}} \frac{1}{n} = \frac{\alpha \delta^{2} x}{4K} + O\left(\frac{x}{\sqrt{\log x}}\right) + O\left(\frac{x}{\log x}\right)$$
$$= \left(\frac{\alpha^{3}}{256K}\right) x + O\left(\frac{x}{\sqrt{\log x}}\right)$$

となる. 以上より, |R(x)| の評価は,

$$|R(x)| = \alpha x - \frac{\alpha^3}{256K}x + O\left(\frac{x}{\sqrt{\log x}}\right)$$
$$= \alpha \left(1 - \frac{\alpha^2}{256K}\right)x + O\left(\frac{x}{\sqrt{\log x}}\right)$$

であるから,

$$\forall S > 0, \ ^{\exists}x_3 \in \mathbb{R} \text{ s.t. } x > x_3 \ \Rightarrow \ x - \frac{c'x}{\sqrt{\log x}} > S.$$

$$\Leftrightarrow \ ^{\forall}c', \beta, S > 0, \ ^{\exists}x_3 \in \mathbb{R} \text{ s.t. } x > x_3 \ \Rightarrow \ \beta x - \frac{\beta c'x}{\sqrt{\log x}} > \beta S.$$

$$\Leftrightarrow \ ^{\forall}c, \beta > 0, \ ^{\exists}x_3 \in \mathbb{R} \text{ s.t. } x > x_3 \ \Rightarrow \ \beta x > \frac{cx}{\sqrt{\log x}}.$$

である. 従って, $\forall x > x_3$ に対して,

$$|R(x)| < \alpha \left(1 - \frac{\alpha^2}{300K}\right) x$$
$$\left|\frac{R(x)}{x}\right| < \alpha \left(1 - \frac{\alpha^2}{300K}\right)$$

となる. つまり, $X = \max(x_2, x_3)$ とすれば,

$$\forall \alpha \ge \left| \frac{R(x)}{x} \right|, \ \exists X \in \mathbb{R} \text{ s.t. } x > X \implies \left| \frac{R(x)}{x} \right| \le \alpha \left(1 - \frac{\alpha^2}{300K} \right)$$
 (23)

が成り立つ.

さて, $X_n := X(\alpha_n)$ とし, $\alpha_1 = 4$ に対して (23) を用いると, 補題 2.16 より,

$$\alpha_1 > \alpha_1 \left(1 - \frac{\alpha_1^2}{300K} \right) = \alpha_2$$

となるから, $X_1 < X_2$ となる. これを繰り返すことにより,

$$\alpha_n \to 0 \ (x \to \infty) \quad ($$
 補題 2.16).

これにより,

$$\lim_{n \to \infty} \frac{R(x)}{x} = 0$$

が成り立つ. よって, 系 1.25 より, 素数定理が成り立つ.

3 今後の課題

今回は素数定理の証明だけで終わってしまったが、今後は、さらに精度がよく、扱いやすい (計算しやすく、できれば微分可能な) 関数 $\frac{x}{\log x}$ や $\frac{x}{\log x}$ より精度が良いことで知られている $\mathrm{li}(x)$ よりも早く $\pi(x)$ に近づいていく曲線を自分で見つけたい。 具体的には、Weierstrass の多項式近似定理や $\pi(x) \leq cx/\log x$ などをもとに数式処理ソフト等で探したい。

参考文献

- [1] 内山 三郎:素数の分布, 1970年, 宝文館出版
- [2] 高木貞治:初等整数論講義, 1971年, 共立出版
- [3] 高木貞治:解析概論, 2013年第5版,
- [4] 吉田武:オイラーの贈物, 2013年第1版,
- [5] 素数定理の初等的証明 (予告編), 2016年, http://integers.hatenablog.com/entry/2016/03/03/000000
- [6] 素数定理の初等的証明 (Selberg の漸近公式編), 2016年, http://integers.hatenablog.com/entry/2016/03/04/000000
- [7] 素数定理の初等的証明 (|R(x)| の評価編), 2016 年, http://integers.hatenablog.com/entry/2016/03/05/040438
- [8] 素数定理の初等的証明 (完結編), 2016年, http://integers.hatenablog.com/entry/2016/03/06/230227
- [9] 素数定理, 2015年, http://integers.hatenablog.com/entry/2015/12/06/000000
- [10] Abel の総和法, 2016年, http://integers.hatenablog.com/entry/2016/01/24/035015
- [11] チェビシェフの定理, 2016年, http://integers.hatenablog.com/entry/2016/01/29/040810
- [12] メルテンスの第一定理, 2016年, http://integers.hatenablog.com/entry/2016/01/29/040810
- [13] メビウスの関数, 2016年, http://integers.hatenablog.com/entry/2016/02/08/234926
- [14] 素数に関する漸近公式, 2016, http://integers.hatenablog.com/entry/2016/02/25/115818
- [15] 小澤徹:Euler の定数, 2007年, www.math.sci.hokudai.ac.jp/~ozawa/pdf/euler.pdf 最終アクセスはすべて 2016年 11月 25日