Notas: - O seu teste está numerado no canto superior direito. Assine a folha de presenças na linha com esse nº.

- só é permitida calculadora sem capacidade de comunicação e material de escrita em papel; todo o restante material (incluindo pasta/mochila, portátil/tablet e telemóvel) deve ser depositado na parte baixa do anfiteatro;
- em cada questão só há uma resposta correcta; uma resposta certa vale 1 valor, uma errada desconta 0,2 valores e uma não resposta vale 0 valores; as respostas têm de ser assinaladas com um X na grelha abaixo; mais do que um X por coluna é considerado como resposta errada; as restantes questões valem 2 valores cada.
- duração do teste: 90 minutos, sem tolerância.

	1	2	3	4	5	6	7	8	9	10	11	12
(a)												
(b)												
(c)												
(d)												

- 1. no circuito à direita:
 - (a) R1 está em série com R2
- **(b)** R1 está em série com R3
- (c) R1 está em série com R4
- (d) R1 está em série com R5

- **2.** Aplicando sobreposição, i₂ é dada pela soma:

 - (a) 3.0 1.5 = 1.5A (b) 1.0 + 0.5 = 1.5A
 - (c) 1.0 0.5 = 0.5A
- (d) -1.0 + 0.5 = -0.5A

3. Para t < 0s o comutador está na posição 1.

Em t = 0s, o comutador muda para a posição 2, ligando a resistência à massa. Ao fim de 500µs:

- (a) 0V < V0 < 3V
- **(b)** 3V < V0 < 5V
- (c) 5V < V0 < 7V
- (d) 7V < V0 < 10V

- **4.** Considere uma onda triangular de 500Hz, que varia entre -4V e +6V. Calcule o seu valor médio:
 - (a) 2 V
- **(b)** 1 V
- (c) 1 V
- (d) 2 V
- **5.** No circuito considere $V\gamma = 0.6V$ e Vz = 4.7V. O valor máximo da corrente é de 7,5 mA quando o sinal de entrada é uma sinusoide de 500Hz com 8Vrms. Determine, com uma precisão melhor que $\pm 2\%$, o valor de R:

- (a) 360Ω
- **(b)** 800Ω
- (c) 880Ω
- (d) 1430Ω
- **6.** Atente nas entradas do OpAmp à direita. Relacionando Vo com Vi, o circuito é um:
 - (a) Amplificador Não Inversor (b) Amplificador Inversor
- - (c) Comparador sem histerese (d) Comparador com histerese

7. No circuito abaixo atente na definição de $v_O(v_O = v_{OB} - v_{OC})$. O ganho v_O/v_I é dado por:

- **(a)** 5
- **(b)** 0
- **(c)** 2,5
- **(d)** 5

8. Considere uma ADC de *tracking* de 6 bits e com um valor de fim de escala de 6,3V. Quando a saída varia de 000100 para 000001, isso corresponde, aproximadamente, a uma variação na entrada de:

- (a) 3 V
- **(b)** 0,3 V
- (c) 0,1 V
- (d) 0,3 V

9. Qual a função lógica do circuito abaixo?

- (a) Y = A + B C D
- (b) $Y = \overline{A + B C D}$
- (a) Y = A + B C
- (b) $Y = \overline{A + B C}$

- (c) Y = (A + B C) D
- (d) $Y = \overline{(A + B C) D}$
- (c) Y = 0
- (d) Y = 1

11. Considere: $R_1=15k\Omega$; $R_2=3k\Omega$; $R_D=2k\Omega$; $R_L=6k\Omega$; e que $V_{to}=1V$; K=1 mA/ V^2 .

Considere que os condensadores se comportam como curtocircuitos para pequeno sinal e circuito-abertos para dc.

Calcule a tensão $V_{\rm DS}$ de polarização:

- (a) 6 V
- **(b)** 8 V
- (c) 10 V
- (d) 12 V

12. Para o circuito anterior, calcule v_O/v_i :

- (a) -8
- **(b)** 6
- (c) 6
- (d) 8

13. O circuito representa uma célula RAM. Os estados 1 a 5 estabelecem-se sequencialmente. Preencha a tabela abaixo com o valor lógico de D, ~D, Q e com o estado (On ou Off) dos transistores.

Estado	CLK	WL	D	~ <i>D</i>	Q	MN2	MP1	MP3
1 Read	1	1				On		
2	0	0						
3 Write	1	1	0	1				
4	0	0						
5	1	0						

14. Considere o comparador à direita, com $R1=5k\Omega$, $R2=15k\Omega$ e $V_{REF} = -2V$. O OpAmp satura a $\pm 10V$.

Justificando todos os passos:

- (b) se v_I for uma onda triangular de 2kHz, entre ± 5 V, calcule o valor médio e o *duty-cycle* de v_O .
- **15.** Pretende-se construir uma DAC de 6 bits, com um valor de fim de escala de 10V, sendo $R4=10k\Omega$ e VR=-5V.

Justificando todos os passos, calcule:

- (a) o valor analógico do LSB;
- (b) o valor de *R*5 e de *R*0 a *R*3;
- (c) o valor de RF (em Ω);
- (d) o valor da corrente em RF e da tensão va, quando a palavra de entrada é 010101.

- **16.** Para o circuito à direita, justificando todos os passos:
 - (a) calcule o valor de Ix e de V0;
 - (b) obtenha o equivalente de Norton para todo o circuito à esquerda dos pontos AB e desenhe esse equivalente.

$$v = \frac{dw}{dq} \quad i = \frac{dq}{dt} \quad p(t) = v(t)i(t) \quad w = \int_{t_1}^{t_2} p(t) dt \quad V = R \times I \quad \sum \text{Iin} = \sum \text{Iout} \quad \sum V = 0$$

$$R_{EQ} = \sum_{n=1}^{N} R_n \quad R_{EQ} = \frac{R_1 R_2}{R_1 + R_2} \quad V_{R2} = Vi \quad \frac{R_2}{R_1 + R_2} \quad I_{R2} = \frac{R_1}{R_1 + R_2} Ii$$

$$V_{med} = \frac{1}{T} \int_{t_0}^{t_0 + T} v(t) dt \quad V_{ef} = V_{rms} = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0 + T} v^2(t) dt$$

$$v = 2\pi f = 2\pi / T \quad \tau = RC \quad \tau = L/R \qquad j^2 = -1$$

$$z = a + jb$$

$$q_{c} = Cv_{c} i_{c} = C\frac{dv_{c}}{dt} v_{c}(t) = \frac{1}{C} \int_{t_{0}}^{t} i_{c} dt + v_{c}(t_{0}) w(t) = \frac{1}{2} Cv^{2}(t)$$

$$z = a + jb$$

$$|z| = \sqrt{a^{2} + b^{2}}$$

$$v_{L} = L\frac{di_{L}}{dt} i_{L}(t) = \frac{1}{L} \int_{t_{0}}^{t} v_{L} dt + i_{L}(t_{0}) w(t) = \frac{1}{2} Li^{2}(t)$$

$$\phi = \tan^{-1}\left(\frac{b}{a}\right)$$

$$v_C(t) = V_i e^{-t/RC}$$

$$v_C(t) = V_s - V_s e^{-t/RC}$$

$$i_L(t) = I_f - I_f e^{-tR/L}$$

 $v_C(t) = V_{\text{final}} - (V_{\text{final}} - V_{\text{inicial}}) e^{-t/RC}$

$$Z_C = -j\frac{1}{\omega C} = \frac{1}{j\omega C} = \frac{1}{\omega C} \angle -90^{\circ}$$

$$Z_L = j\omega L = \omega L \angle 90^{\circ}$$

$$f_B = \frac{1}{2\pi RC} \qquad H(f) = \frac{1}{1+j(f/f_B)} \qquad H(f) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{j(f/f_B)}{1+j(f/f_B)} \qquad |H(f)|_{\text{dB}} = 20\log|H(f)|$$

 $Vr = I_{L \text{med}} T/C$ $I_{L \text{med}} \approx V_{L \text{med}} / R_L$ $Vr = I_{L \text{med}} T/2C$

$$i_{D} = K \Big[2(v_{GS} - V_{to})v_{DS} - v_{DS}^{2} \Big]$$

$$i_{D} = K_{p} [2(v_{SG} + V_{TP})v_{SD} - v_{SD}^{2}]$$

$$i_{D} = K_{p} (v_{SG} + V_{TP})^{2}$$

$$i_{D} = K(v_{GS} - V_{to})^{2}$$

$$g_{m} = 2 K (v_{GS} - V_{to})$$

$$A_{v} = \frac{v_{o}}{v_{in}} = -\frac{R_{2}}{R_{1}}$$

$$A_{v} = \frac{v_{o}}{v_{I}} = 1 + \frac{R_{2}}{R_{1}}$$

$$v_{a \max} = (2^{n-1} + 2^{n-2} + \dots + 2^1 + 2^0) \,\delta v$$
$$= (2^n - 1) \,\delta v$$

1. No circuito à direita:

(a) R1 está em série com R2

(b) R1 está em série com R3

(c) R1 está em série com R4

(d) R1 está em série com R5

Resposta: R1 está em série com R5, porque a corrente que as atravessa é a mesma

2. Aplicando sobreposição, jo é dada pela soma:

Pelo divisor de corrente:

$$i_{2a} = 4 \times 5 / (5+15) = 1.0A$$

$$i_{2b} = -2 \times 5 / (5+15) = -0.5A$$

Resposta: 1.0 - 0.5 = 0.5A

3. Para t < 0s o comutador está na posição 1.

Em t = 0s, o comutador muda para a posição 2, ligando a resistência à massa. Ao fim de 500us, calcule V0.

t < 0s: C carregou completamente através de $5k\Omega$ até aos 10V, pelo que V0 = 10V.

t > 0s : C vai descarregar desde 10V até zero com uma constante de tempo:

$$\tau = RC = 5x10^3 \times 0.2x10^{-6} = 1 \text{ms}.$$
 $V0(500 \text{us}) = V0(0) \times e^{-t/x} = 10 \text{ e}^{-0.5} = 6.1 \text{ V}$

Resposta: 5V < V0 < 7V

T = 1/f = 2ms

área do triângulo positivo = $1.2 \times 6/2 = 3.6 \text{ V.ms}$ área do triângulo negativo = $-0.8 \times 4/2 = -1.6 \text{ V.ms}$

Valor médio = (3.6 - 1.6) / T = 2V.ms/2ms

Resposta: 1 V

5. No circuito considere Vy = 0.6V e Vz = 4.7V. O valor máximo da corrente é de 7,5 mA quando o sinal de entrada é uma sinusoide de 500Hz com 8Vrms. Determine, com uma precisão melhor que ±2%, o valor de R:

$$V_{ip} = V_{ieff} \times \sqrt{2} = 8 \times \sqrt{2} = 11,3V$$

Kirchhoff da malha:
$$V_{ip}$$
 - V_z - V_y = R x I \rightarrow R = (11,3 - 4,7 - 0,6) / 7,5mA =

Resposta: $R = 800 \Omega$

6. Atente nas entradas do OpAmp à direita. Relacionando Vo com Vi, o circuito é um:

Resposta: Amplificador Inversor porque o sinal Vi é aplicado, através de R3, à entrada Inversora e porque há realimentação negativa, dado que R4 liga a saída à entrada Inversora.

7. No circuito atente na definição de $v_O(v_O=v_{OR}-v_{OC})$.

O ganho v_O / v_I é dado por:

$$v_{OB} = [1+(18k/12k)] v_I = 2.5 v_I$$

$$v_{OC} = -(30k/12k) v_I = -2.5 v_I$$

$$v_O = v_{OB} - v_{OC} = 2.5 v_I - (-2.5 v_I) = 5 v_I$$

Resposta: $v_O / v_I = 5$

8. Considere uma ADC de tracking de 6 bits e com um valor de fim de escala de 6.3V. Quando a saída varia de 000100 para 000001, isso corresponde, aproximadamente, a uma variação na entrada de:

$$v_{a \max} = (2^{n-1} + 2^{n-2} + \dots + 2^1 + 2^0) \, \delta v$$

= $(2^n - 1) \, \delta v$

$$\partial v = v \frac{\partial v}{\partial x} = 0.1 \text{ V}$$

$$000100 - 000001 = -3$$
 -> variação de $v_a = -3 \times \partial v = -0.3 \text{V}$

9. Qual a função lógica do circuito abaixo?

Série = AND Paralelo = OR

9. [A // (B em série com C)] em série com D.

(c) Y = (A + B C) DComo há um Inversor à saída, é esta a função implementada:

10. Como CLK = 0, o transistor PMOs está "ON" ligando VDD a Y, pelo que Y = 1.

11. Considere: $R_1=15k\Omega$; $R_2=3k\Omega$; $R_D=2k\Omega$; $R_L=6k\Omega$; e que Vto=1V; $K=1 \text{ mA/V}^2$.

Considere que os condensadores se comportam como curtocircuitos para pequeno sinal e circuito-abertos para dc.

Calcule a tensão V_{DS} de polarização:

$$V_{GS} = V_{G} = V_{DD} \times R_2 \times (R_1 + R_2) = 18 \times 3k \times (15k + 3k) = 3V$$

 $I_{D} = K \cdot (V_{GS} - V_{IO})^2 = 10^{-3} \cdot (3 - 1)^2 = 4mA$

$$V_{\rm DS} = {\rm VDD} - {\rm RD~ID} = 18 - (2 \times 10^3 \times 4 \times 10^{-3})$$
 Resposta: $V_{\rm DS} = 10~{\rm V}$

2º teste teórico - 07.06.2019 Sistemas Electrónicos 2018-19 Pág. 1 Sistemas Electrónicos 2018-19 2º teste teórico - 07.06.2019 Pág. 2 **12.** Para o circuito anterior, calcule v_O/v_i :

$$gm = 2K (VGS - Vto) = 4mA/V$$

Com base no modelo equivalente para pequenos sinais temos:

$$v_0 = -gm (RD //RL) v_i = -4x10^{-3} x 1,5x10^3 x v_i = -6 v_i$$

Resposta: $v_O/v_i = -6$

13. O circuito representa uma célula RAM. Os estados 1 a 5 estabelecem-se sequencialmente. Complete a tabela abaixo com o valor lógico de D, ~D, Q e com o estado (On ou Off) dos transistores.

Estado	CLK	WL	D	~ <i>D</i>	Q	MN2	MP1	MP3
1 Read	1	1	1	0	1	On	On	Off
2	0	0	1	1	1	On	On	On
3 Write	1	1	0	1	0	Off	Off	Off
4	0	0			_	_		
5	1	0		1	0	Off	Off	Off

14. Considere o comparador à direita, com $R1=5k\Omega$, $R2=15k\Omega$ e VREF = -2V. O OpAmp satura a ± 10 V.

Justificando todos os passos:

(a) calcule as tensões de comparação inferior (VTL) e superior
 (VTH) e desenhe o gráfico de v_O em função de v_I, indicando todos os valores relevantes, quer no eixo v_I, quer no eixo v_O;

- (b) se v_I for uma onda triangular de 2kHz, entre $\pm 5V$, calcule o valor médio e o *duty-cycle* de v_O .
- a) O comparador é inversor porque v_I está ligada à entrada inversora do OpAmp e tem histerese porque existe realimentação positiva, através de R2, da saída para a entrada não-inversora. A resistência R1//R2 não influencia o comparador porque não provoca qualquer queda de tensão (a corrente na entrada inversora é nula), ou seja, $v_I = v_+$.

Usando, por exemplo, sobreposição, calcula-se a tensão na entrada não-inversora (v_+) : $v_+ = [V_{REF} R2 / (R1 + R2)] + [v_O R1 / (R1 + R2)] = -2 \times 0,75 + 0,25 v_O = -1,5 + 0,25 v_O$

Como a realimentação é positiva não há curto-circuito virtual entre as entradas do OpAmp. Mas, o comparador compara quando essas entradas se igualam, ou seja, quando $v_I = v_+$, donde, a tensão à qual é feita a comparação obtém-se quando:

$$v_I = v_+ = -1.5 + 0.25 v_O$$

Como
$$v_O = \pm 10 \text{ V}$$
, ocorrem 2 situações ($v_O = \text{VH} = +10 \text{ V}$ e $v_O = \text{VL} = -10 \text{ V}$):
VTH = -1.5 + 0.25 x 10 = +1 V e VTL = -1.5 - 0.25 x 10 = -4 V

Notas:

- VH e VL são medidas ao nível da saída, enquanto que VTH e VTL são medidas ao nível da entrada.
- Como o comparador é inversor:

quando
$$v_I < -4 \text{ V}, v_O = V_H = +10 \text{ V}$$
 e quando $v_I > +1 \text{ V}, v_O = V_L = -10 \text{ V}$

O gráfico seguinte responde ao resto da alínea, com o cuidado de usar os valores numéricos calculados e explicitar as unidades (neste caso V).

b)
$$T = 1/f = 1/2000 = 500 \mu s$$

O comportamento do comparador ao longo do tempo é explicitado pela figura seguinte:

Por mera inspeção da figura retira-se:

- v_I desce de +5V para -5V (total de 10V) em T/2 (250 μ s). Sendo uma triangular, conclui-se que a taxa de variação de v_I é de \pm 10V / 250 μ s = \pm 1V / 25 μ s => Chamemos K = \pm 25 μ s / V
- durante o tempo ON (v_O = +10V), a entrada v_I desce, primeiro, de -4V para -5V e, depois, cresce de -5V até +1V, ou seja, sofre uma variação total (em valor absoluto) de 1+6 = 7V = Δ V.

Sistemas Electrónicos 2018-19 2º teste teórico - 07.06.2019 Pág. 3 Sistemas Electrónicos 2018-19 2º teste teórico - 07.06.2019 Pág. 4

$$ton = \Delta V \times K = 7 \times 25 = 175 \mu s$$

e
$$t_{OFF} = T - t_{ON} = 500 - 175 = 325 \mu s$$

O duty-cycle será, então
$$\partial = \text{ton} / \text{T} = 175 / 500 = 0.35 = 35\%$$

O valor médio de v_0 : Vomed = $\partial V_H + (1-\partial) V_L = 0.35 \times 10 + 0.65 \times (-10) = -3 V$

15. Pretende-se construir uma DAC de 6 bits, com um valor de fim de escala de 10V, sendo $R4=10k\Omega$ e VR=-5V.

Justificando todos os passos, calcule:

- (a) o valor analógico do LSB;
- (b) o valor de R5 e de R0 a R3;
- (c) o valor de RF (em Ω);
- (d) o valor da corrente em RF e da tensão va, quando a palavra de entrada é 010101.

a)
$$v_{a \max} = (2^{n-1} + 2^{n-2} + \dots + 2^1 + 2^0) \delta v$$

=
$$(2^n - 1) \delta v$$

LSB (000001) corresponde ao valor analógico ∂v .

$$\partial v = v_{\text{amax}}/63 = 10 \text{V}/63 = 0.159 \text{ V} \approx 0.16 \text{ V} \text{ (precisão de 0.5 LSB)}$$

b) Raciocinando apenas em valores absolutos, sabe-se que o bit menos significativo (b0), associado a Ro, deve provocar a menor corrente, porque à saída deve provocar a menor tensão que é ∂v . Pela lei de Ohm, rapidamente se conclui que Ro será a maior das resistências de entrada. Por outro lado, é sabido que cada bit tem o dobro do peso do anterior. Assim,

$$R0 = 2 R1 = 4 R2 = 8 R3 = 16 R4 = 32 R5$$
, pelo que

$$R0 = 16 R4 = 16 \times 10 \text{k}\Omega = 160 K\Omega$$

$$R1 = 8 R4 = 80 k\Omega$$
 $R2 = 4 R4 = 40 k\Omega$

$$R3 = 2 R4 = 20 k$$

$$R3 = 2 R4 = 20 k\Omega$$
 e $R5 = R4 / 2 = 5 k\Omega$

- c) Para o LSB (000001) só existe corrente em R0 e o valor analógico na saída é ∂v = 0,159 V. Como o amplificador é inversor $v_a = -VRRF/Rx = -VRRF/Ro = +5VRF/160k\Omega = 0.159$ Donde RF = 5088Ω
- d) Convertendo W = 010101 para decimal obtém-se $16+4+1=21=W_{(10)}$ Da expressão usada na alínea a) retiramos que $v_a = \partial v \times W_{(10)} = 0.159 \times 21 = 3.34 \text{ V}$. Considerando que o sentido da corrente IRF é da direita para a esquerda, vem que $I_{RF} = v_a / R_F = 3.34 \text{V} / 5088 \Omega = 656 \,\mu\text{A}$
- **16.** Para o circuito à direita, justificando todos os passos:
 - (a) calcule o valor de Ix e de V0:
 - (b) obtenha o equivalente de Norton para todo o circuito à esquerda dos pontos AB e desenhe esse equivalente.

a) Como Ii e Ix graficamente têm sentidos contrários, e usando o divisor de corrente, obtém-se:

Sistemas Electrónicos 2018-19 2º teste teórico - 07.06.2019 Pág. 5

$$Ix = -Ii R1 / (R1+R2) = -(3mA) \times 5k\Omega / 15k\Omega = -1 mA$$

A fonte de tensão controlada é 10⁴ Ix = -10V. Ou seia, a fonte é +10V ficando o + ligado a R3.

Designando por R45 = R4//R5 = 2 k
$$\Omega$$
, pelo divisor de tensão temos:

$$V0 = +10V \times R45 / (R3 + R45) = +5V$$

b) Como a malha de entrada não se altera. Ix = -1 mA. Também a fonte dependente continua a ser +10V ficando o + ligado a R3.

Para obter IN, curto-circuita-se A e B, pelo que toda a corrente em R3 passa pelo curto-circuito.

Então:
$$I_N = I_{AB} = I_{R3} = +10 \text{V} / R_3 = 5 \text{ mA}.$$

Para determinar RN, há que identificar que 10⁴ Ix é uma fonte de tensão dependente. Para evitar raciocínios mais elaborados, pode-se, simplesmente, determinar VAB (Thévenin) em circuito aberto, já que é conhecido que RN = VAB / IN.

Como a malha de entrada não se altera Ix = - 1 mA e a fonte dependente continua a ser +10V ficando o + ligado a R3.

2º teste teórico - 07.06.2019

Pág. 6

Mas, agora, R5 não existe (circuito aberto), pelo que

$$V_{AB} = +10V \times R4 / (R3 + R4) = +7.5 V$$

$$R_N = V_{AB} / I_N = 7.5 V / 5 mA = 1.5 k\Omega$$

Desenhando o modelo, tendo em atenção o sentido representado da corrente IN:

Sistemas Electrónicos 2018-19