

#### The Idea

- Learning from pixels
- End to end trained neural network using CNN
- Autonomous driving by mapping camera images to steering angle



#### Approach

- Step 1: Collecting data
  - Data augmentation
  - Corner cases
- Step 2: Training CNN
  - NVIDIA Model
- Step 3: Driving autonomously





#### Architecture and Tools

NVIDIA model

• CNN using Keras



### Approach

- Reading the data
- Splitting the data into training, testing and validation samples
- Data Augmentation:
  - a) Image flipping
    - b) Steering angle negation
- Histogram
- Cropping the images to remove unwanted variables
- Resampling of the data to the mean
- Normalize image data

### Specifications

- Library: Keras API of tensorflow
- Optimizer: Adam, SGD, RMSprop
- Activation function: ReLu
- Loss function: MSE

| <b>Optimizer</b> | Epoch | Learning rate    | MSE<br>Train | MSE Val | Car performance                        | Comments           |
|------------------|-------|------------------|--------------|---------|----------------------------------------|--------------------|
| Adam             | 20    | 10-4             | 8.21e-04     | 0.0248  | Lap not completed                      | Overfitting        |
|                  | 10    | 10-4             | 0.0042       | 0.0233  | Lap not completed                      | Overfitting        |
|                  | 5     | 10 <sup>-4</sup> | 0.0095       | 0.0236  | Lap completed with good performance    | -                  |
|                  | 5     | 10 <sup>-3</sup> | 0.0102       | 0.0208  | Lap not completed                      | Aggressive Turns   |
|                  | 10    | 10 <sup>-3</sup> | 0.0057       | 0.0219  | Lap not completed                      | Aggressive Turns   |
|                  | 50    | 10 <sup>-3</sup> | 6.1e-04      | 0.0228  | Lap not completed                      | Aggressive Turns   |
| SGD              | 5     | 10-4             | 0.0523       | 0.0677  | Lap not completed                      | Could not converge |
|                  | 10    | 10-4             | 0.0517       | 0.0677  | Lap not completed                      | Could not converge |
|                  | 50    | 10-4             | 0.0480       | 0.0630  | Lap not completed                      | Could not converge |
| RMSprop          | 5     | 10-4             | 0.0089       | 0.0234  | Lap completed with average performance | -                  |
|                  | 10    | 10 <sup>-3</sup> | 0.0054       | 0.0203  | Lap not completed                      | Overfitting        |

# Advantages & Limitations

- Smaller networks
- Maximum system performance
- Better performance with unclear visual guidance
- No lane detection

- Non-deterministic
- Camera dependent (no depth information)
- Combination with other algorithms (eg: LiDAR)

## References

End to End learning for self driving cars:

https://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-using-px.pdf