Лабораторная работа 5 — Модель измерений

В заданиях 1 (a, c) и 2 нет необходимости использовать Python, все вычисления производятся на листке.

1. Датчик расстояния

Вы пытаетесь найти свою подругу, используя сигналы ее мобильного телефона. Предположим, что на карте Сириуса кампус университета расположен в точке $m_0 = (10,8)^T$, а дом вашей подруги — в точке $m_1 = (6,3)^T$. Вам доступны данные двух вышек сотовой связи, расположенных в точках $x_0 = (12,4)^T$ и $x_1 = (5,7)^T$ соответственно. Расстояние между мобильным телефоном вашей подруги и вышками можно рассчитать по интенсивности сигналов телефона. На эти измерения расстояний влияет независимый гауссовский шум со средним значением 0 и дисперсиями $\sigma_0^2 = 1$ для вышки 0 и $\sigma_1^2 = 1.5$ для вышки 1. Пусть вы получили следующие измерения расстояния (от каждой из вышек): $d_0 = 3.9$ и $d_1 = 4.5$.

- (а) Ваша подруга находится скорее дома или в университете? Обоснуйте свои расчеты.
- (b) Реализуйте функцию правдоподобия p(z|m) и постройте ее 3D-график для всех местоположений m вблизи башен. Выделите на графике точки, соответствующие m_0, m_1, x_0 и x_1 . Является ли функция правдоподобия, которую вы построили, функцией плотности вероятности? Обоснуйте свой ответ.
- (c) Допустим, у вас имеются предварительные знания о планах вашей подруги, которые предполагают, что в настоящее время она находится дома с вероятностью P(дома) = 0.7, в университете с вероятностью P(в университете) = 0.3 и в любом другом месте с вероятностью P(другое) = 0. Используя эту информацию, пересчитайте вероятность, найденную в пункте (a).

2. Модель измерений

Пусть робот оснащен датчиком, который может измерять расстояние и курсовой угол до ориентиров. Кроме того, датчик обеспечивает идентификацию наблюдаемых ориентиров.

Измерение датчика $z = (z_r, z_\theta)^T$ состоит из измеренного расстояния z_r и измеренного угла z_θ до ориентира l. Измерения и расстояния, и угла подвержены гауссовскому шуму с нулевым средним значением и с дисперсиями σ_r^2 и σ_θ^2 соответственно. Измерения расстояния и угла не зависят друг от друга.

Постройте для данного датчика модель измерений $p(z \mid x, l)$, чтобы оценить вероятность измерения z для ориентира l, наблюдаемого роботом из положения x. Обоснуйте свой вывод.