Operációs rendszerek BSc

9. Gyak. 2022.04.04.

Készítette:

Lénárt Zsófia Eszter Gazdaságinformatikus BV9CU6

- **1. feladat -** A tanult rendszerhívásokkal (open(), read()/write(), close() ők fogják a rendszerhívásokat tovább hívni írjanak egy neptunkod_openclose.c programot, amely megnyit egy fájlt neptunkod.txt, tartalma: hallgató neve, szak , neptunkod. A program következő műveleteket végezze:
 - a) olvassa be a neptunkod.txt fájlt, melynek attribútuma: O RDWR
 - b) hiba ellenőrzést,
 - c) write() mennyit ír ki a konzolra.
 - d) read() kiolvassa a neptunkod.txt tartalmát és mennyit olvasott ki (byte), és kiírja konzolra.
 - e) lseek() pozícionálja a fájl kurzor helyét, ez legyen a fájl eleje: SEEK_SET, és kiírja a konzolra.

- **2. feladat -** Készítse el a következő feladatot, melyben egy szignálkezelő több szignált is tud kezelni:
 - a) Készítsen egy szignál kezelőt (handleSignals), amely a SIGINT (CTRL + C) vagy SIGQUIT (CTRL + \) jelek fogására vagy kezelésére képes.
 - **b**) Ha a felhasználó SIGQUIT jelet generál (akár kill paranccsal, akár billentyűzetről a CTRL + \) a kezelő egyszerűen kiírja az üzenetet visszatérési értékét a konzolra
 - c) Ha a felhasználó először generálja a SIGINT jelet (akár kill paranccsal, akár billentyűzetről a CTRL + C), akkor a jelet úgy módosítja, hogy a következő alkalommal alapértelmezett műveletet hajtson végre (a SIG_DFL) kiírás a konzolra
 - **d**) Ha a felhasználó másodszor generálja a SIGINT jelet, akkor végrehajt egy alapértelmezett műveletet, amely a program befejezése kiírás a konzolra
- **3. feladat -** Adott a következő ütemezési feladat, amit a FCFS, SJF és Round Robin (RR: 4 ms) ütemezési algoritmus alapján határozza meg következő teljesítmény értékeket, metrikákat (külön-külön táblázatba):

FCFS megoldás:

FCFS	P1	P2	P3	P4
Érkezés	0	0	2	5
CPU idő	24	3	6	3
Indulás	0	24	27	33
Befejezés	24	27	33	36
Várakozás	0	24	25	28

Algoritmus neve	FCFS
CPU kihasználtság	(36,4-0,4)/36,4=0,99%
Körülfordulási idők átlaga	(24+27+31+31)/4=28.25 ms
Várakozási idők átlaga	77/4=19,25 ms
Válaszidők átlaga	77/4=19,25 ms

SJF megoldás:

SJF	P1	P2	P3	P4
Érkezés	0	0	2	5
CPU idő	24	3	6	3
Indulás	12	0	3	9
Befejezés	36	3	9	12
Várakozás	12	0	1	4

Algoritmus neve	SJF
CPU kihasználtság	(36,4-0,4)/36,4=0,99%
Körülfordulási idők átlaga	(36+3+7+7)/4=13,25 ms
Várakozási idők átlaga	17/4=4,25 ms
Válaszidők átlaga	17/4=4,25 ms

RR (4 ms) megoldás:

RR 4 ms	P1	P2	P3	P4
Érkezés	0,4,15,24,28,3	2 0	2,11	5
CPU idő	24,20,16,12,8,	4 3	6,2	3
Indulás	0,11,20,24,28,3	2 4	7,18	15
Befejezés -	,15,24,28,32,3	s 7	11,20	18
Várakozás	0,7,5,0,0,	4	5,7	10

Algoritmus neve	RR 4 ms
CPU kihasználtság	(37,3-1,3)/37,3=0,97%
Körülfordulási idők átlaga	(36+7+18+13)/4=18,5 ms
Várakozási idők átlaga	38/4=9,5 ms
Válaszidők átlaga	(0+4+9+10)/4=5,75 ms

cs: 0 ms, 4 ms, 7 ms, 11 ms, 15 ms, 18 ms, 20 ms, 24 ms, 28 ms, 32 ms - 10 db sch: 7 ms, 18 ms, 20 ms - 3 db