测试题解答 13.11

根据指数函数的定义得

$$A_e(x) = \sum_{n=0}^{\infty} 4m^n \frac{x^n}{n!} = 4\sum_{n=0}^{\infty} \frac{(mx)^n}{n!} = 4e^{mx}$$

测试题解答 13.12

指数生成函数为

$$A_e(x) = (1 + x + \frac{x^2}{2!} + \frac{x^3}{3!})(1 + x + \frac{x^2}{2!})(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!})$$

其中 x^4 项为 71 · $\frac{x^4}{4!}$, 因此不同的 4 位数个数是 a_4 =71.

如果这个4位数为偶数,则末位为2,那么对应的指数生成函数为

$$A_e(x) = (1 + x + \frac{x^2}{2!} + \frac{x^3}{3!})(1 + x)(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!})$$

其中 x^3 的项为 $20 \cdot \frac{x^3}{3!}$, 因此构成偶数的 4 位数是 $a_3=20$.

测试题解答 13.13

设长为n的有效的码字是 a_n 个,那么 $\{a_n\}$ 的指数生成函数是

$$G_e(x) = \frac{e^x + e^{-x}}{2}e^{7x} = \frac{1}{2}e^{8x} + \frac{1}{2}e^{6x} = \sum_{n=0}^{\infty} \frac{8^n + 6^n}{2} \frac{x^n}{n!}$$

因此 $a_n = \frac{8^n + 6^n}{2}$.

测试题解答 13.14

设方法数为 a_n , $\{a_n\}$ 的指数生成函数为

$$G_e(x) = \left(\frac{e^x + e^{-x}}{2}\right)^2 e^x = \left(\frac{1}{4}e^{2x} + \frac{1}{2} + \frac{1}{4}e^{-2x}\right)e^x = \frac{1}{4}e^{3x} + \frac{1}{2}e^x + \frac{1}{4}e^{-x}$$

$$a_n = \frac{3^n + (-1)^n}{4} + \frac{1}{2}$$