Rajalakshmi Engineering College

Name: Tharun Sathishkumar

Email: 240701563@rajalakshmi.edu.in

Roll no: 240701563 Phone: 9363661870

Branch: REC

Department: I CSE FF

Batch: 2028

Degree: B.E - CSE

NeoColab_REC_CS23221_Python Programming

REC_Python_Week 2_CY

Attempt : 1 Total Mark : 40 Marks Obtained : 40

Section 1: Coding

1. Problem Statement

Max is fascinated by prime numbers and the Fibonacci sequence. He wants to combine these two interests by creating a program that outputs the first n prime numbers within the Fibonacci sequence.

Your task is to help Max by writing a program that prints the first n prime numbers in the Fibonacci sequence using a while loop along with the break statement to achieve the desired functionality.

Input Format

The input consists of an integer n, representing the number of prime Fibonacci numbers to generate.

Output Format

The output displays space-separated first n prime numbers found in the Fibonacci sequence.

is round in the

Refer to the sample output for the formatting specifications.

```
Sample Test Case
Input: 5
Output: 2 3 5 13 89
Answer
def isprime(num):
(0) if num <=1:
    return False
  if num== 2:
    return True
  if num%2==0:
    return False
  for i in range(3,int(num**0.5)+1,2):
    if num%i==0:
       return False
  return True
def prime(n):
  fibprime=[]
  a,b=1,1
count=0
  while True:
    if isprime(a) and a not in fibprime:
       fibprime.append(a)
       count+=1
       if count==n:
         break
    a,b=b,a+b
  return fibprime
n=int(input())
result=prime(n)
print(" ".join(map(str,result)))
```

Status : Correct Marks : 10/10

2. Problem Statement

Taylor is tasked with a mathematical challenge that requires finding the smallest positive number divisible by all integers from 1 to n.

Help Taylor to determine the smallest positive number that is divisible by all integers from 1 to n. Make sure to employ the break statement to ensure efficiency in the program.

Input Format

The input consists of a single integer, n.

Output Format

The output displays the smallest positive number that is divisible by all integers from 1 to n.

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 10 Output: 2520

Answer

import math
n=int(input())
lcm=1
for i in range(1,n+1):
lcm=lcm*i//math.gcd(lcm,i)
print(lcm)

Status: Correct Marks: 10/10

3. Problem Statement

Alex is practicing programming and is curious about prime and non-prime digits. He wants to write a program that calculates the sum of the non-

prime digits in a given integer using loops. Help Alex to complete his task. Example: Input: 845 output: 12 Digits: 8 (non-prime), 4 (non-prime), 5 (prime)

The sum of Non-Prime Digits: 0 , 4 Output: 12 **Input Format** The input consists of a single integer X. **Output Format** The output prints an integer representing the sum of non-prime digits in X. Refer to the sample output for formatting specifications. Sample Test Case **Input: 845** Output: 12 **Answer** def isprime(d):

return d in {2,3,5,7}

x=input().strip()

sum=0 for digit in x: d=int(digit)
 if not isprime(d):
 sum+=d
print(sum)

Status: Correct Marks: 10/10

4. Problem Statement

Rohith is a data analyst who needs to categorize countries based on their population growth rates. Each country is assigned a unique code. Rohith will receive a code and corresponding data based on the code. If the data falls within specific thresholds, he needs to classify the country's priority level.

Your task is to write a program that reads a country code and its associated data, and then determines if the priority is "High" or "Low."

Thresholds:France: Priority is "High" if the percentage < 50, else "Low".Japan: Priority is "High" if life expectancy > 80, else "Low".Brazil: Priority is "High" if the urban population > 80, else "Low".

Input Format

The first line of input consists of an integer, representing the country code (1 for France, 2 for Japan, 3 for Brazil).

If the country code is 1,

- The second line consists of a floating-point value N, representing the percentage of the English-speaking population.

If the country code is 2,

- The second line consists of a floating-point value A, representing the average life expectancy in years.

If the country code is 3,

- The second line consists of a floating-point value P, representing the percentage of the urban population.

Output Format

The first line of output displays "Priority: High" or "Priority: Low" based on the input data.

If the country code is invalid, print "Invalid".

Refer to the sample output for formatting specifications.

Sample Test Case

```
Input: 1
30.0
Output: Priority: High
Answer
ccode=int(input())
if ccode==1:
  n=float(input())
  if n<50.0:
    print("Priority: High")
  else:
    print("Priority: Low")
elif ccode==2:
  n=float(input())
  if n>80.0:
    print("Priority: High")
     print("Priority: Low")
elif ccode==3:
  n=float(input())
  if n>80.0:
     print("Priority: High")
  else:
    print("Priority: Low")
else:
  print("Invalid")
```

Status: Correct

Marks : 10/10