Shape From Focus

R.Rohith EP21B030

The following sections show some stack sample images along with their ${\tt SML}$ values for different values of \boldsymbol{q}

1 m = 0

Figure 1: Image_0

Figure 3: SML q = 1

Figure 2: SML $\mathbf{q} = 0$

Figure 4: SML q = 2

2 m = 26

Figure 5: Image_26

Figure 7: SML $\mathbf{q} = 1$

Figure 6: SML q = 0

Figure 8: SML q = 2

3 m = 88

Figure 9: Image_88

Figure 11: SML $\mathbf{q} = 1$

Figure 10: SML q = 0

Figure 12: SML $\mathbf{q} = 2$

The results of running the Shape From Focus (SFF) algorithm for the different values of \mathbf{q} are shown below.

Figure 13: Focused Image for $\mathbf{q} = 0$

Figure 14: 3D Depth Map for $\mathbf{q} = 0$

Figure 15: Focused Image for $\mathbf{q} = 1$

Figure 16: 3D Depth Map for $\mathbf{q} = 1$

Figure 17: Focused Image for $\mathbf{q} = 2$

Figure 18: 3D Depth Map for $\mathbf{q} = 2$

4 Directory Overview

The directory contains the following files

- sff.py The main Python file which computes the depth and reconstructs the all-focused image using Gaussian Interpolation. Uses **multiprocessing** to compute the SMLs using sml.py and **torch-cuda** to compute \bar{d} .
- sml.py Helper file to compute the SMLs uses convolve.py to compute the second derivatives and affine_wrap.py to compute the shifted ML values to compute the SML.
- convolve.py Helper file to convolve.
- affine_wrap.py Helper file to perform Affine Transformations using target-source mapping.

5 Observation

With increase in \mathbf{q} value, the reconstructed all-focused image gets better especially around the borders and the depth map becomes smoother. But when we increase the \mathbf{q} value even more we tend to lose the local information which results in poor depth information.