

PATIENT Wang, Fu Ting TUMOR TYPE Soft tissue perivascular epithelioid cell tumor (PEComa) COUNTRY CODE TW

REPORT DATE 26 Apr 2023

ORDERED TEST # ORD-1611555-01

ABOUT THE TEST FoundationOne® Heme is a comprehensive genomic profiling test designed to identify genomic alterations within hundreds of cancer-related genes in hematologic malignancies and sarcomas.

ENT

DISEASE Soft tissue perivascular epithelioid cell tumor (PEComa)

NAME Wang, Fu Ting DATE OF BIRTH 18 April 1996 **SEX** Female

MEDICAL RECORD # 49390887

ORDERING PHYSICIAN Yeh, Yi-Chen MEDICAL FACILITY Taipei Veterans General Hospital ADDITIONAL RECIPIENT None MEDICAL FACILITY ID 205872 PATHOLOGIST Not Provided

SPECIMEN SITE Vagina **SPECIMEN ID** \$112-66474 N (PF23038) SPECIMEN TYPE Slide Deck DATE OF COLLECTION 07 April 2023 SPECIMEN RECEIVED 17 April 2023

Biomarker Findings

Microsatellite status - MS-Stable Tumor Mutational Burden - 0 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

TFE3 NONO-TFE3 fusion

Report Highlights

- Variants with diagnostic implications that may indicate a specific cancer type: TFE3 NONO-TFE3 fusion (p. 3)
- Targeted therapies with potential clinical benefit approved in another tumor type: Sunitinib (p. 4)
- Evidence-matched clinical trial options based on this patient's genomic findings: (p. 5)

BIOMARKER FINDINGS Microsatellite status - MS-Stable Tumor Mutational Burden - 0 Muts/Mb **GENOMIC FINDINGS** TFE3 - NONO-TFE3 fusion 10 Trials see p. 5

THERAPY AND CLINICAL TRIAL IMPLICATIONS				
No therapies or clinical trials. See Biomarker Findings section				
No therapies or clinical trials. See Biomarker Findings section				
THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)			
none	Sunitinib			
owever, the agents listed in this report may have varied clinic	al evidence in the patient's tumor type.			

NOTE Genomic alterations detected may be associated with activity of certain FDA-approved drugs:

Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

BIOMARKER FINDINGS

BIOMARKER

Microsatellite status

RESULT MS-Stable

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence, MSS tumors are significantly less likely than MSI-H tumors to respond to anti-PD-1 immune checkpoint inhibitors¹⁻³, including approved therapies nivolumab and pembrolizumab⁴. In a retrospective analysis of 361 patients with solid tumors treated with pembrolizumab, 3% were MSI-H and experienced a significantly higher ORR compared with non-MSI-H cases (70% vs. 12%, p=0.001)⁵.

FREQUENCY & PROGNOSIS

In a computational analysis of paired tumor and normal sarcomas in the TCGA dataset, of which 25% were liposarcomas, only 0.8% (2/255) of samples were MSI-high (MSI-H)6. However, reports of MSI in sarcomas in the literature are conflicting and varied due to substantial heterogeneity, lack of consensus on the markers and methods used for MSI assessment, and small sample size in most studies⁷. In these smaller studies of soft tissue sarcoma, reports of MSI at any level have been rare, with the highest incidences between 11% (2/18) to 25% (10/40) of cases⁸⁻¹³. In one study, MSI was reported to occur more frequently in high-grade soft tissue sarcomas compared with lower grade¹⁴. However, published data investigating the prognostic implications of MSI in sarcoma are limited (PubMed, Jan 2023).

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor¹⁵. Defective MMR and consequent MSI occur as a result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH₂, MSH₆, or PMS₂¹⁵⁻¹⁷. This sample is microsatellite-stable (MSS), equivalent to the clinical definition of an MSS tumor: one with mutations in none of the tested microsatellite markers¹⁸⁻²⁰. MSS status indicates MMR proficiency and typically correlates with intact expression of all MMR family proteins $^{15,17,19-20}$.

BIOMARKER

Tumor Mutational Burden

RESULT 0 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence in solid tumors. increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L121-23, anti-PD-1 therapies21-24, and combination nivolumab and ipilimumab $^{25\mbox{-}30}.$ In multiple pan-tumor studies, increased tissue tumor mutational burden (TMB) was associated with sensitivity to immune checkpoint inhibitors^{21-24,31-35}. In the KEYNOTE 158 trial of pembrolizumab monotherapy for patients with solid tumors, significant improvement in ORR was observed for patients with TMB ≥10 Muts/Mb (as measured by this assay) compared with those with TMB <10 Muts/Mb in a large cohort that included multiple tumor types³¹; similar findings were observed in the KEYNOTE 028 and 012 trials²⁴. At the same TMB cutpoint, retrospective analysis of patients with solid tumors treated with any checkpoint inhibitor identified that tissue TMB scores ≥ 10 Muts/Mb were associated with

prolonged time to treatment failure compared with scores <10 muts/Mb (HR=0.68)35. For patients with solid tumors treated with nivolumab plus ipilimumab in the CheckMate 848 trial, improved responses were observed in patients with a tissue TMB ≥ 10 Muts/Mb independent of blood TMB at any cutpoint in matched samples³⁶. However, support for higher TMB thresholds and efficacy was observed in the prospective Phase 2 MyPathway trial of atezolizumab for patients with pan-solid tumors, where improved ORR and DCR was seen in patients with TMB ≥ 16 Muts/Mb than those with TMB \geq 10 and <16 Muts/Mb³⁴. Similarly, analyses across several solid tumor types reported that patients with higher TMB (defined as ≥16-20 Muts/Mb) achieved greater clinical benefit from PD-1 or PD-L1-targeting monotherapy compared with patients with higher TMB treated with chemotherapy³⁷ or those with lower TMB treated with PD-1 or PD-L1-targeting agents²².

FREQUENCY & PROGNOSIS

Perivascular epithelioid cell tumors harbor a median TMB of 1.6 mutations per megabase (muts/Mb) in a study of 31 cases³⁸. Soft tissue sarcomas harbor a median tumor mutational burden (TMB) of 2.4-2.5 mutations per megabase (muts/Mb), with angiosarcoma (up to 15%) and malignant peripheral nerve sheath tumor (up to 11%) having the highest percentage of cases with high TMB³⁹⁻⁴⁰. In a study, 3.9% of soft tissue sarcoma samples analyzed harbor TMB ≥10 muts/Mb³⁹; in addition, increased

mutational burden has been reported in undifferentiated pleomorphic sarcomas as compared with Ewing sarcomas or rhabdomyosarcomas⁴¹⁻⁴³. Published data investigating the prognostic implications of tissue TMB in sarcoma are conflicting (PubMed, Feb 2023). High tissue TMB was associated with improved PFS and metastasis-free survival in a study of undifferentiated sarcomas⁴⁴, but with reduced survival in a study of patients with rhabdomyosarcoma⁴⁵.

FINDING SUMMARY

Tumor mutation burden (TMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma⁴⁶⁻⁴⁷ and cigarette smoke in lung cancer⁴⁸⁻⁴⁹, treatment with temozolomide-based chemotherapy in glioma⁵⁰⁻⁵¹, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes⁵²⁻⁵⁶, and microsatellite instability (MSI)52,55-56. This sample harbors a TMB level associated with lower rates of clinical benefit from treatment with PD-1- or PD-L1-targeting immune checkpoint inhibitors compared with patients with tumors harboring higher TMB levels, based on several studies in multiple solid tumor types^{22-23,31}.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

GENOMIC FINDINGS

TFF3

ALTERATIONNONO-TFE3 fusion

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

Clinical benefit in certain TFE3-rearranged solid tumors has been reported in response to antiangiogenic agents such as sunitinib⁵⁷⁻⁶⁴, sorafenib⁵⁷⁻⁵⁸, and cediranib⁶⁵⁻⁶⁶; to mTOR inhibitors^{58,67-72}; and to MET inhibitors⁷³⁻⁷⁴. Clinical studies have shown high response rates to treatment with sunitinib for patients with TFE3 fusion-associated cancers, including alveolar soft part sarcoma (ASPS)62-64 and translocation renal cell carcinoma (tRCC or Xp11.2 RCC)⁵⁷⁻⁶¹. In addition, TFE3 fusions result in increased MET expression^{73,75-76} and clinical and preclinical sensitivity to MET inhibitors⁷³⁻⁷⁵; a Phase 2 study of crizotinib to treat advanced or metastatic ASPS reported 1 PR and 35 SDs out of 40 METexpressing cases⁷³. Two patients with Xp11.2 RCC experienced clinical benefit from immune

checkpoint inhibitors, with ongoing time on treatments of 37 and 15.7 months in a retrospective analysis $(n=8)^{67}$.

FREQUENCY & PROGNOSIS

TFE3 rearrangements have been observed in a variety of types of perivascular epithelioid cell tumors (PEComa), including those of cervical, renal, and uterine origin⁷⁷⁻⁷⁹. Due to the low frequency of PEComa cases, the incidence of TFE3 rearrangement or mutation in PEComa is unclear. However, one study tested 29 PEComa patients for TFE3 alteration and identified 4 (14%) patients with TFE3 rearrangements and concomitant increased TFE3 expression as well as an additional 4 (14%) patients with increased TFE3 expression⁷⁸. Another study reported TFE3 rearrangement in 23% (9/38) of PEComa patients and identified TFE3 rearrangements as being mutually exclusive from TSC2 mutation, a frequent mutation found in PEComa⁸⁰. TFE₃ rearrangements are generally rare in human cancer but characterize Xp11 translocation cancers, which include renal cell carcinoma, perivascular epithelioid cell tumor (PEComa), epithelioid hemangioendothelioma, alveolar soft part sarcoma, and melanotic Xp11 neoplasm, with a variety of TFE3 fusion partners

reported in these diseases⁸¹. An analysis of 3 PEComa patients with TFE₃ rearrangement and increased expression reported that 2 of the 3 patients exhibited histological malignancy and aggressive growth, while the other patient exhibited a benign course⁸².

FINDING SUMMARY

TFE3 encodes the transcription factor for immunoglobulin heavy chain enhancer 3 protein. Multiple fusions with TFE3 as a 3' partner have been reported in cancer and characterized as activating^{76,83-87}. NONO-TFE3 fusions have been reported in renal cell carcinomas^{85,88-90} and neoplasms with melanocytic differentiation including melanocytic perivascular epithelioid cell neoplasms (PEComas)⁹⁰⁻⁹² and are likely activating^{88,93-94}, although one in vitro study found NONO-TFE3 was unable to activate transcription⁸⁷.

POTENTIAL DIAGNOSTIC IMPLICATIONS

TFE3 rearrangements are characteristic of a group of neoplasms known as Xp11 translocation cancers, which include renal cell carcinoma, PEComa, epithelioid hemangioendothelioma, alveolar soft part sarcoma, and melanotic Xp11 neoplasm^{81,95-101}.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

TUMOR TYPE Soft tissue perivascular epithelioid cell tumor (PEComa)

REPORT DATE 26 Apr 2023

ORDERED TEST # ORD-1611555-01

FOUNDATIONONE®HEME

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Sunitinib

Assay findings association

TFE3 NONO-TFE3 fusion

AREAS OF THERAPEUTIC USE

Sunitinib is a small-molecule tyrosine kinase inhibitor that targets PDGFRs, VEGFRs, KIT, FLT3, CSF-1R, and RET. It is FDA approved for the treatment of advanced or metastatic pancreatic neuroendocrine tumors, gastrointestinal stromal tumors (GISTs) in patients who have progressed on or are intolerant to imatinib, and advanced renal cell carcinoma (RCC) as well as for the adjuvant treatment of patients at high risk of recurrent RCC after nephrectomy. Please see the drug label for full prescribing information.

GENE ASSOCIATION

TFE3 fusions may confer sensitivity to sunitinib, based on

both clinical⁵⁷⁻⁶⁴ and preclinical^{76,102-104} evidence.

SUPPORTING DATA

Clinical data on the efficacy of sunitinib for the treatment of PEComa and angiomyolipoma are limited (PubMed, Apr 2023). A patient with malignant PEComa of the kidney treated with sunitinib for 4 weeks followed by resection exhibited a durable response before progressing¹⁰⁵. A patient with epithelioid angiomyolipoma (EAML) of kidney treated with sunitinib had a short response for 2 months¹⁰⁶. Another patient with kidney EAML who was treated with sunitinib for a short time and then switched to everolimus experienced favorable response for 30 months¹⁰⁷.

NOTE Genomic alterations detected may be associated with activity of certain FDA approved drugs, however, the agents listed in this report may have varied evidence in the patient's tumor type.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

Wang, Fu Ting

TUMOR TYPE
Soft tissue perivascular epithelioid
cell tumor (PEComa)

REPORT DATE 26 Apr 2023

ORDERED TEST # ORD-1611555-01

CLINICAL TRIALS

NOTE Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and

should be investigated by the physician or research staff. This is not a comprehensive list of all available clinical trials. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial \Rightarrow Geographical proximity \Rightarrow Later trial phase. Clinical trials listed here may have additional enrollment criteria that may require

medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. Or visit https://www.foundationmedicine.com/genomic-testing#support-services.

GENE TFF3

ALTERATION NONO-TFE3 fusion

RATIONALE

TFE3 fusions may activate angiogenic pathways and increase expression of the MET oncogene and may therefore confer sensitivity to MET inhibitors

or to tyrosine kinase inhibitors such as sunitinib, sorafenib, or cediranib. TFE3 fusions may also predict sensitivity to mTOR inhibitors.

NCT03175224	PHASE 1/2
CBT-101 Study for Advanced Solid Tumors and c-Met Dysregulation	TARGETS MET

LOCATIONS: Taipei City (Taiwan), Taipei (Taiwan), New Taipei City (Taiwan), Taoyuan City (Taiwan), Taichung (Taiwan), Tainan (Taiwan), Singapore (Singapore), Nedlands (Australia), North Adelaide (Australia), Bedford Park (Australia)

NCT05439993	PHASE 1/2
Tepotinib Plus Paclitaxel in MET Amplified or MET Exon 14 Alterated Gastric and GEJ Carcinoma	TARGETS MET
LOCATIONS: Gyeonggi-do (Korea, Republic of)	

NCT03784014	PHASE 3
MOLECULAR PROFILING OF ADVANCED SOFT-TISSUE SARCOMAS	TARGETS ABL, KIT, ROS1, ALK, MET, ERBB2, EGFR, BRAF, MEK, PARP, PD-L1, CDK4, CDK6

LOCATIONS: Strasbourg (France), Dijon (France), Paris (France), Villejuif (France), Lyon (France), Clermont-Ferrand (France), Marseille (France), Saint-Herblain (France), Bordeaux (France)

NCT04817956	PHASE 2
Improving Public Cancer Care by Implementing Precision Medicine in Norway	TARGETS PD-L1, VEGFA, ERBB2, ALK, RET, PARP, SMO, TRKB, TRKC, ROS1, TRKA, MEK, BRAF, PI3K-alpha, FGFR1, FGFR2, FGFR3, MET, KIT, ABL

LOCATIONS: Tromsø (Norway), Bodø (Norway), Hamar (Norway), Oslo (Norway), Fredrikstad (Norway), Drammen (Norway), Trondheim (Norway), Skien (Norway), Førde (Norway), Bergen (Norway)

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use

TUMOR TYPE
Soft tissue perivascular epithelioid
cell tumor (PEComa)

REPORT DATE 26 Apr 2023

ORDERED TEST # ORD-1611555-01

FOUNDATION ONE *HEME

CLINICAL TRIALS

NCT04220229	PHASE 1/2
Cabozantinib With Radiation Therapy for the Treatment of Sarcomas of the Extremities	TARGETS MET, ROS1, RET, VEGFRS
LOCATIONS: Washington	
NCT04200443	PHASE 2
Cabozantinib and Temozolomide for the Treatment of Unresectable or Metastatic Leiomyosarcoma or Other Soft Tissue Sarcoma	TARGETS MET, ROS1, RET, VEGFRS
LOCATIONS: California, Iowa, Wisconsin, Illinois, Missouri	
NCT05135975	PHASE 2
A Study of Cabozantinib as a Maintenance Agent to Prevent Progression or Recurrence in High-Risk Pediatric Solid Tumors	TARGETS MET, ROS1, RET, VEGFRS
LOCATIONS: Ohio	
NCT05468359	PHASE 1/2
Safety and Efficacy of Cyclophosphamide, Sorafenib, Bevacizumab, and Atezolizumab in Pediatric Solid Tumor Patients	TARGETS RET, KIT, RAFs, FLT3, VEGFRs, VEGFA, PD-L1
LOCATIONS: Tennessee	
NCT02484404	PHASE 1/2
Phase I/II Study of the Anti-Programmed Death Ligand-1 Antibody MEDI4736 in Combination With Olaparib and/or Cediranib for Advanced Solid Tumors and Advanced or Recurrent Ovarian, Triple Negative Breast, Lung, Prostate and Colorectal Cancers	TARGETS PARP, VEGFRS, PDGFRA, PDGFRB, KIT, PD-L1
LOCATIONS: Maryland	
NCT05038839	PHASE 1
Cabozantinib and Pamiparib for the Treatment of Advanced of Refractory Solid Tumors	TARGETS MET, ROS1, RET, VEGFRS, PARP
LOCATIONS: Texas	

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

TUMOR TYPE
Soft tissue perivascular epithelioid
cell tumor (PEComa)

REPORT DATE 26 Apr 2023

ORDERED TEST # ORD-1611555-01

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future. Please note that some VUS rearrangements between targeted genes and unknown fusion partners or intergenic regions detected by RNA sequencing may not be reported.

APC

NM_000038.4: c.3374T>C (p.V1125A) chr5:112174665

NUP98

NM_016320.4: c.4891A>C (p.K1631Q) chr11:3704457

ASXL1

NM_015338.5: c.342T>G (p.N114K) chr20:31016020

PRKDC

NM_006904.6: c.9844C>A (p.R3282S) chr8:48715945

FLT1

NM_002019.4: c.2434C>T (p.R812W) chr13:28913359

SOCS1

NM_003745.1: c.44C>T (p.T15I) chr16:11349292

MAP3K14

NM_003954.4: c.295C>T (p.R99C) chr17:43366633

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

Genes Assayed in FoundationOne®Heme

FoundationOne Heme is designed to include genes known to be somatically altered in human hematologic malignancies and sarcomas that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay utilizes DNA sequencing to interrogate 406 genes as well as selected introns of 31 genes involved in rearrangements, in addition to RNA sequencing of 265 genes. The assay will be updated periodically to reflect new knowledge about cancer biology.

HEMATOLOGICAL MALIGNANCY DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY NUMBER ALTERATIONS

ABL1	ACTB	ADGRA2 (GPR124,) AKT1	AKT2	AKT3	ALK	AMER1 (FAM123B	or WTX)
APC	APH1A	AR	ARAF	ARFRP1	ARHGAP26 (GRAF)	ARID1A	ARID2
ASMTL	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXL
B2M	BAP1	BARD1	BCL10	BCL11B	BCL2	BCL2L2	BCL6	BCL7A
BCOR	BCORL1	BIRC3	BLM	BRAF	BRCA1	BRCA2	BRD4	BRIP1
BRSK1	BTG2	ВТК	BTLA	CAD	CALR*	CARD11	CBFB	CBL
CCN6 (WISP3)	CCND1	CCND2	CCND3	CCNE1	ССТ6В	CD22	CD274 (PD-L1)	CD36
CD58	CD70	CD79A	CD79B	CDC73	CDH1	CDK12	CDK4	CDK6
CDK8	CDKN1B	CDKN2A	CDKN2B	CDKN2C	CEBPA	CHD2	CHEK1	CHEK2
CIC	CIITA	CKS1B	CPS1	CREBBP	CRKL	CRLF2	CSF1R	CSF3R
CTCF	CTNNA1	CTNNB1	CUX1	CXCR4	DAXX	DDR2	DDX3X	DNM2
DNMT3A	DOT1L	DTX1	DUSP2	DUSP9	EBF1	ECT2L	EED	EGFR
ELP2	EMSY (C11orf30)	EP300	EPHA3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3
ERBB4	ERG	ESR1	ETS1	ETV6	EXOSC6	EZH2	FAF1	FANCA
FANCC	FANCD2	FANCE	FANCF	FANCG	FANCL	FAS (TNFRSF6)	FBXO11	FBXO31
FBXW7	FGF10	FGF14	FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1
FGFR2	FGFR3	FGFR4	FHIT	FLCN	FLT1	FLT3	FLT4	FLYWCH1
FOXL2	FOXO1	FOXO3	FOXP1	FRS2	GADD45B	GATA1	GATA2	GATA3
GID4 (C17orf39)	GNA11	GNA12	GNA13	GNAQ	GNAS	GRIN2A	GSK3B	GTSE1
HDAC1	HDAC4	HDAC7	HGF	H1-2 (HIST1H1C)	UNAS	H1-3 (HIST1H1D)	OSKSD	GISLI
H1-4 (HIST1H1E)	TIDAC4	H2AC6 (HIST1H2A		H2AC11 (HIST1H2A	G)	H2AC16 (HIST1H2)	4/)	
H2AC17 (HIST1H2	444)	H2BC4 (HIST1H2B	-	H2BC11 (HIST1H2B.	-	H2BC12 (HIST1H2B	•	
H2BC17 (HIST1H2	•	H3C2 (HIST1H3B)	C)	HNF1A	HRAS	HSP90AA1	ICK	ID3
IDH1	IDH2	IGF1R	IKBKE	IKZF1	IKZF2	IKZF3	IL7R	INHBA
INPP4B	INPP5D (SHIP)	IRF1	IRF4	IRF8	IRS2	JAK1	JAK2	JAK3
JARID2	JUN	KAT6A (MYST3)	KDM2B	KDM4C	KDM5A	KDM5C	KDM6A	KDR
KEAP1	KIT	KLHL6	KMT2A (MLL)	KMT2C (MLL3)	KMT2D (MLL2)	KRAS	LEF1	LRP1B
LRRK2	MAF	MAFB	MAGED1	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1
MAP3K14	MAP3K6	MAP3K7	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B
MEF2C	MEN1	MET	MIB1	MITF	MKI67	MLH1	MPL	MRE11 (MRE11A)
MSH2	MSH3	MSH6	MTOR	MUTYH	MYC	MYCL (MYCL1)	MYCN	MYD88
MYO18A	NCOR2	NCSTN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOD1
NOTCH1	NOTCH2	NPM1	NRAS	NSD2 (WHSC1 or N		NT5C2	NTRK1	NTRK2
NTRK3	NUP93	NUP98	P2RY8	PAG1	PAK3	PALB2	PASK	PAX5
PBRM1	PC	PCBP1	PCLO	PDCD1	PDCD11	PDCD1LG2 (PD-L2)		PDGFRA
PDGFRB	PDK1	PHF6	PIK3CA	PIK3CG	PIK3R1	PIK3R2	PIM1	PLCG2
POT1	PPP2R1A	PRDM1	PRKAR1A	PRKDC	PRSS8	PTCH1	PTEN	PTPN11
PTPN2	PTPN6 (SHP-1)	PTPRO	RAD21	RAD50	RAD51	RAF1	RARA	RASGEF1A
RB1	RELN	RET	RHOA	RICTOR	RNF43	ROS1	RPTOR	RUNX1
S1PR2	SDHA	SDHB	SDHC	SDHD	SERP2	SETBP1	SETD2	SF3B1
SGK1	SMAD2	SMAD4	SMARCA1	SMARCA4	SMARCB1	SMC1A	SMC3	SMO
		SOCS3				SPOP	SRC	
SOCS1	SOCS2		SOX10	SOX2	SPEN STATE			SRSF2
STAG2	STAT3	STAT4	STAT5A	STAT5B	STAT6	STK11	SUFU	SUZ12
TAF1	TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TENT5C (FAM46C)		TGFBR2	TLL2	TMEM30A
TMSB4XP8 (TMSI		TNFAIP3	TNFRSF11A	TNFRSF14	TNFRSF17	TOP1	TP53	TP63
TRAF2	TRAF3	TRAF5	TSC1	TSC2	TSHR	TUSC3	TYK2	U2AF1

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use

ORDERED TEST #	# ORD-1611555-0	01			APPE	NDIX Genes	Assayed in Found	ationOne®Heme
U2AF2	VHL	WDR90	WT1	XBP1	XPO1	YY1AP1	ZMYM3	ZNF217
ZNF24 (ZSCAN3)	ZNF/03	ZRSR2						
*Note: the assay v	vas updated on 11/	8/2016 to include t	he detection of alt	erations in CALR				
HEMATOLOGIC	AL MALIGNANCY	DNA GENE LIST	: FOR THE DETE	CTION OF SELEC	CT REARRANGEM	IENTS		
ALK	BCL2	BCL6	BCR	BRAF	CCND1	CRLF2	EGFR	EPOR
ETV1	ETV4	ETV5	ETV6	EWSR1	FGFR2	IGH	IGK	IGL
JAK1	JAK2	KMT2A (MLL)	MYC	NTRK1	PDGFRA	PDGFRB	RAF1	RARA
RET	ROS1	TMPRSS2	TRG					
HEMATOLOGIC	AL MALIGNANCY	' RNA GENE LIST	: FOR THE DETE	CTION OF SELEC	CT REARRANGEM	IENTS*		
ABI1	ABL1	ABL2	ACSL6	AFDN (MLLT4 or		AFF1	AFF4	ALK
ARHGAP26 (GRAI		ARHGEF12	ARID1A	ARNT	ASXL1	ATF1	ATG5	ATIC
BCL10	BCL11A	BCL11B	BCL2	BCL3	BCL6	BCL7A	BCL9	BCOR
BCR	BIRC3	BRAF	BTG1	CAMTA1	CARS1 (CARS)	CBFA2T3	CBFB	CBL
CCND1	CCND2	CCND3	CD274 (PD-L1)	CDK6	CDX2	CEP43 (FGFR1OP)	CHIC2	CHN1
CIC	CIITA	CLP1	CLTC	CLTCL1	CNTRL (CEP110)	COL1A1	CREB3L1	CREB3L2
CREBBP	CRLF2	CSF1	CTNNB1	DDIT3	DDX10	DDX6	DEK	DUSP22
EGFR	EIF4A2	ELF4	ELL	ELN	EML4	EP300	EPOR	EPS15
ERBB2	ERG	ETS1	ETV1	ETV4	ETV5	ETV6	EWSR1	FCGR2B
FCRL4	FEV	FGFR1	FGFR2	FGFR3	FLI1	FNBP1	FOXO1	FOXO3
FOXO4	FOXP1	FSTL3	FUS	GAS7	GLI1	GMPS	GPHN	H4C9 (HIST1H4I)
HERPUD1	HEY1	HIP1	HLF	HMGA1	HMGA2	HOXA11	HOXA13	HOXA3
HOXA9	HOXC11	HOXC13	HOXD11	HOXD13	HSP90AA1	HSP90AB1	IGH	IGK
IGL	IKZF1	IL21R	IL3	IRF4	ITK	JAK1	JAK2	JAK3
JAZF1	KAT6A (MYST3)	KDSR	KIF5B	KMT2A (MLL)	LASP1	LCP1	LMO1	LMO2
LPP	LYL1	MAF	MAFB	MALT1	MDS2	MECOM	MLF1	MLLT1 (ENL)
MLLT10 (AF10)	MLLT3	MLLT6	MN1	MNX1	MRTFA (MKL1)	MSI2	MSN	MUC1
MYB	MYC	MYH11	МҮН9	NACA	NBEAP1 (BCL8)	NCOA2	NDRG1	NF1
NF2	NFKB2	NIN	NOTCH1	NPM1	NR4A3	NSD1	NSD2 (WHSC1 or I	MMSET)
NSD3 (WHSC1L1)	NTRK1	NTRK2	NTRK3	NUMA1	NUP214	NUP98	NUTM2A	OMD
P2RY8	PAFAH1B2	PAX3	PAX5	PAX7	PBX1	PCM1	PCSK7	PDCD1LG2 (PD-L2)
PDE4DIP	PDGFB	PDGFRA	PDGFRB	PER1	PHF1	PICALM	PIM1	PLAG1
PML	POU2AF1	PPP1CB	PRDM1	PRDM16	PRRX1	PSIP1	PTCH1	PTK7
RABEP1	RAF1	RALGDS	RAP1GDS1	RARA	RBM15	RET	RHOH	RNF213
RNF217-AS1 (STL)		ROS1	RPL22	RPN1	RUNX1	RUNX1T1 (ETO)	RUNX2	SEC31A
SEPTIN5 (SEPT5)	SEPTIN6 (SEPT6)	SEPTIN9 (SEPT9)	SET	SH3GL1	SLC1A2	SNX29 (RUNDC2A)	SRSF3
SS18	SSX1	SSX2	SSX4	STAT6	SYK	TAF15	TAL1	TAL2
TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TEC	TET1	TFE3	TFG	TFPT	TFRC

 $^{^*}$ Note: some VUS rearrangements between targeted genes and unknown fusion partners or intergenic regions detected by RNA sequencing may not be reported.

TOP1

YPEL5

TP63

ZBTB16

ТРМ3

ZMYM2

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

TMPRSS2

TYK2

TNFRSF11A

USP6

Microsatellite (MS) status Tumor Mutational Burden (TMB)

TLX1

TRIP11

TLX3

TTL

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

TPM4

ZNF384

TRIM24

ZNF521

APPENDIX

Performance Specifications

The median exon coverage for this sample is 668x

ACCURACY				
Sensitivity: Base Substitutions	At ≥5% Minor Allele Frequency	>99.0%		
Sensitivity: Insertions/Deletions (1-40bp)	At ≥10% Minor Allele Frequency	98.0%		
Sensitivity: Focal Copy Number Alterations (Homozygous Deletions or Amplifications)	At ≥8 copies	>95.0%		
Sensitivity: Microsatellite Instability-High (MSI-H) status	Positive Predictive Agreement (PPA)	100.0% (87.54%-100.00%)*		
Sensitivity: Microsatellite Stable (MSS) status	Positive Predictive Agreement (PPA)	89.66% (81.50%, 94.46%)*		
Sensitivity: Known Gene Fusions	>95.0%			
Specificity: Base Substitutions, Insertions/Deletions, and Focal Copy Number Alterations	Positive Predictive Value (PPV)	>99.0%		
Specificity: Known Gene Fusions	Positive Predictive Value (PPV)	>95.0%		
Specificity: Microsatellite Instability-High (MSI-H) status	Negative Predictive Agreement (NPA)	97.44% (91.12%-99.29%)*		
Specificity: Microsatellite Stable (MSS) status	Negative Predictive Agreement (NPA)	94.44% (86.57%, 97.82%)*		
Accuracy: Tumor Mutation Burden	At ≥20% tumor nuclei	>90.0%		
Reproducibility (average concordance between replicates)	97.0% inter-batch precision 97.0% intra-batch precision 95.0% microsatellite status precision 96.0% tumor mutation burden precision			

^{*95%} Confidence Interval

Assay specifications were determined for typical median exon coverage of approximately 500 X. For additional information regarding the validation of FoundationOne®Heme, please refer to the article He, J. et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting, Blood (2016 Jun. 16).

In the fraction-based MSI algorithm, a tumor specimen will be categorized as MSI-H, MSS, or MS-Equivocal according to the fraction of microsatellite loci determined to be altered or unstable (i.e., the fraction unstable loci score). In the FoundationOne Heme assay, MSI is evaluated based on a genome-wide analysis across >2000 microsatellite loci. For a given microsatellite locus, non-somatic alleles are discarded, and the microsatellite is categorized as unstable if remaining alleles differ from the reference genome. The final fraction unstable loci score is calculated as the number of unstable microsatellite loci divided by

the number of evaluable microsatellite loci. The MSI-H and MSS cut-off thresholds were determined by analytical concordance to a PCR comparator assay using a pan-tumor sample set. Patients with results categorized as "MS-Stable" with median exon coverage <300X, "MS-Equivocal," or "Cannot Be Determined" should receive confirmatory testing using a validated orthogonal (alternative) method.

Tumor Mutational Burden (TMB) is determined by measuring the number of somatic mutations in sequenced genes on the FoundationOne Heme test and extrapolating to the genome as a whole. TMB is assayed for all FoundationOne Heme samples and is reported as the number of mutations per megabase (Muts/Mb). Tumor Mutational Burden is reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine Tumor Mutational Burden.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

About FoundationOne®Heme

ABOUT FOUNDATIONONE HEME

FoundationOne®Heme is a comprehensive genomic profiling test for hematologic malignancies and sarcomas. The test is designed to provide physicians with clinically actionable information to help with diagnostic sub-classification, prognosis assessment, and targeted therapeutic selection. Test results provide information about clinically significant alterations, potential targeted therapies, available clinical trials, and quantitative markers that may support immunotherapy clinical trial enrollment. FoundationOne Heme is analytically validated to detect all classes of genomic alterations in more than 400 cancer-related genes. In addition to DNA sequencing, FoundationOne Heme employs RNA sequencing across 265 genes to capture a broad range of gene fusions, common drivers of hematologic malignancies and sarcomas.

FoundationOne Heme was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne Heme has not been cleared or approved by the United States Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. FoundationOne Heme may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Diagnostic Significance

cancer-associated genes or portions of genes (biomarkers). In some cases, the Report also highlights selected negative test results regarding biomarkers of clinical significance.

Electronically signed by Lena Stuart, M.D. | 26 April 2023 Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531

Foundation Medicine, Inc. | 1.888.988.3639

Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309

Qualified Alteration Calls (Equivocal and Subclonal)

An alteration denoted as "amplification - equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne Heme for identifying a copy number amplification is five (5) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that FoundationOne Heme analytical methodology has identified as being present in <10% of the assayed tumor DNA.

Ranking of Therapies and Clinical Trials

Ranking of Therapies in Summary Table Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials Pediatric trial qualification → Geographical proximity → Later trial phase.

NATIONAL COMPREHENSIVE CANCER NETWORK® (NCCN®) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2023. All rights reserved. To view the most recent and complete version of the guidelines, go online to FoundationOne Heme identifies alterations to select NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne Heme.

TREATMENT DECISIONS ARE **RESPONSIBILITY OF PHYSICIAN**

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. These include: subclonal alterations in heterogeneous samples, low sample quality or with homozygous losses of <3 exons; and deletions and insertions >4obp, or in repetitive/high homology sequences. FoundationOne Heme is performed using DNA and RNA derived from tumor, and as such germline events may not be reported.

The following targets typically have low coverage resulting in a reduction in sensitivity: SDHD exon 4, TNFRSF11A exon1, and TP53 exon 1.

FoundationOne Heme fulfills the requirements of the European Directive 98/79 EC for in vitro

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

APPENDIX

About FoundationOne®Heme

diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.

CE

REPORT HIGHLIGHTS

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal hematopoiesis implications. Information included in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1. BRCA1, BRCA2, BRIP1, CHEK2, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only.

Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, CBL, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
TKI	Tyrosine kinase inhibitor

REFERENCE SEQUENCE INFORMATION

Sequence data is mapped to the human genome, Genome Reference Consortium Human Build 37 (GRCh37), also known as hg19.

MR Suite Version (RG) 7.8.0

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

References

ORDERED TEST # ORD-1611555-01

- 1. Gatalica Z, et al. Cancer Epidemiol. Biomarkers Prev. (2014) pmid: 25392179
- 2. Kroemer G, et al. Oncoimmunology (2015) pmid: 26140250
- 3. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- 4. Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 5. Ayers et al., 2016; ASCO-SITC Abstract P60
- 6. Bonneville R, et al. JCO Precis Oncol (2017) pmid: 29850653
- 7. Monument MJ, et al. ISRN Oncol (2012) pmid: 23401795
- 8. Wooster R, et al. Nat. Genet. (1994) pmid: 8162069
- 9. Kawaguchi K. et al. Oncol. Rep. (2005) pmid: 15643505
- 10. Saito T, et al. Hum. Pathol. (2003) pmid: 14562278
- 11. Suwa K, et al. J Orthop Sci (1999) pmid: 10370164
- 12. Garcia JJ, et al. Mod. Pathol. (2006) pmid: 16619000
- 13. Aue G, et al. Cancer Genet. Cytogenet. (1998) pmid:
- 14. Rucińska M, et al. Med. Sci. Monit. (2005) pmid: 15668629
- 15. Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015) pmid: 26337942
- You JF, et al. Br. J. Cancer (2010) pmid: 21081928
- 17. Bairwa NK, et al. Methods Mol. Biol. (2014) pmid: 24623249
- 18. Boland CR, et al. Cancer Res. (1998) pmid: 9823339
- 19. Pawlik TM, et al. Dis. Markers (2004) pmid: 15528785
- 20. Boland CR, et al. Gastroenterology (2010) pmid: 20420947
- 21. Samstein RM, et al. Nat. Genet. (2019) pmid: 30643254
- Goodman AM, et al. Mol. Cancer Ther. (2017) pmid: 28835386
- Goodman AM, et al. Cancer Immunol Res (2019) pmid:
- 24. Cristescu R. et al. Science (2018) pmid: 30309915
- 25. Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
- 26. Hellmann MD, et al. N. Engl. J. Med. (2018) pmid: 29658845
- 27. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128
- 28. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- 29. Rozeman EA, et al. Nat Med (2021) pmid: 33558721
- 30. Sharma P, et al. Cancer Cell (2020) pmid: 32916128
- Marabelle A, et al. Lancet Oncol. (2020) pmid: 32919526
- 32. Ott PA, et al. J. Clin. Oncol. (2019) pmid: 30557521
- 33. Cristescu R, et al. J Immunother Cancer (2022) pmid: 35101941
- Friedman CF, et al. Cancer Discov (2022) pmid: 34876409

- 35. Sturgill EG, et al. Oncologist (2022) pmid: 35274716
- 36. Schenker at al., 2022; AACR Abstract 7845
- 37. Legrand et al., 2018; ASCO Abstract 12000
- 38. Akumalla S, et al. Oncology (2020) pmid: 32966992
- 39. Gounder MM, et al. Nat Commun (2022) pmid: 35705558
- 40. Chalmers ZR, et al. Genome Med (2017) pmid:
- 41. Lim J. et al. Clin. Cancer Res. (2015) pmid: 26330427
- 42. Brohl AS, et al. PLoS Genet. (2014) pmid: 25010205
- 43. Chen X, et al. Cancer Cell (2013) pmid: 24332040
- 44. Steele CD, et al. Cancer Cell (2019) pmid: 30889380 45. Casev DL, et al. Clin Cancer Res (2020) pmid: 31699828
- 46. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 47. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 48. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 49. Rizvi NA, et al. Science (2015) pmid: 25765070
- 50. Johnson BE, et al. Science (2014) pmid: 24336570 51. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- 52. Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 53. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 54. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 55. Nature (2012) pmid: 22810696
- 56. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid:
- 57. Choueiri TK, et al. Cancer (2010) pmid: 20665500
- 58. Malouf GG, et al. Ann. Oncol. (2010) pmid: 20154303
- Numakura K, et al. Int. J. Clin. Oncol. (2011) pmid:
- 60. Liu YC, et al. Jpn. J. Clin. Oncol. (2011) pmid: 21965162
- 61. Chowdhury T, et al. J. Pediatr. Hematol. Oncol. (2013) pmid: 22995920
- 62. Stacchiotti S, et al. Clin. Cancer Res. (2009) pmid:
- 63. Stacchiotti S, et al. Ann. Oncol. (2011) pmid: 21242589
- 64. Orbach D, et al. Pediatr Blood Cancer (2013) pmid: 23857870
- 65. Kummar S. et al. J. Clin. Oncol. (2013) pmid: 23630200
- 66. Judson I, et al. Clin. Cancer Res. (2014) pmid: 24714778
- 67. Marcon J, et al. Clin Cancer Res (2020) pmid: 32220885
- 68. Qu Y, et al. Sci Rep (2016) pmid: 27026382
- 69. Rua Fernández OR, et al. Urology (2018) pmid: 29702156
- 70. Koh Y. et al. Ann Oncol (2013) pmid: 23180114
- 71. Kakoki K. et al. Clin Genitourin Cancer (2017) pmid:

- 28190703
- 72. Parikh J, et al. Rare Tumors (2009) pmid: 21139932
- 73. Schöffski P, et al. Ann. Oncol. (2018) pmid: 29216400
- Wedekind MF, et al. Pediatr Blood Cancer (2017) pmid:
- 75. Tsuda M, et al. Cancer Res. (2007) pmid: 17283122
- 76. Kobos R, et al. J. Pathol. (2013) pmid: 23288701
- 77. Liu F, et al. Int J Clin Exp Pathol (2014) pmid: 25337301
- 78. Argani P, et al. Am. J. Surg. Pathol. (2010) pmid: 20871214
- Schoolmeester JK, et al. Am. J. Surg. Pathol. (2015) pmid: 25517951
- Agaram NP, et al. Am. J. Surg. Pathol. (2015) pmid: 80.
- 81. Wang XT, et al. Mod. Pathol. (2018) pmid: 29713041 82. Shen Q, et al. Virchows Arch. (2014) pmid: 25239799
- 83. Gotoh M, et al. Genes Chromosomes Cancer (2014) pmid: 25230976
- 84. Argani P, et al. Am. J. Pathol. (2001) pmid: 11438465
- 85. Clark J, et al. Oncogene (1997) pmid: 9393982
- 86. Weterman MJ, et al. Oncogene (2000) pmid: 10644981
- 87. Skalsky YM, et al. Oncogene (2001) pmid: 11313942
- 88. Sato Y, et al. Nat. Genet. (2013) pmid: 23797736
- 89. Xia QY, et al. Mod Pathol (2017) pmid: 27934879
- Argani P, et al. Am. J. Surg. Pathol. (2016) pmid: 26975036
- 91. McGregor SM, et al. Am J Surg Pathol (2017) pmid:
- 92. Wang XT, et al. Histopathology (2016) pmid: 26844676 93. Davis IJ, et al. Cancer Cell (2006) pmid: 16766266
- 94. Kauffman EC, et al. Nat Rev Urol (2014) pmid:
- 25048860
- Weterman MA, et al. Proc Natl Acad Sci U S A (1996) pmid: 8986805
- Argani P, et al. Oncogene (2003) pmid: 12917640 96
- 97. Bruder E, et al. Am. J. Surg. Pathol. (2004) pmid: 15316311
- 98. Trpkov K, et al. Mod Pathol (2021) pmid: 33664427
- 99. Moch H, et al. Eur Urol (2016) pmid: 26935559
- 100. Warren TE, et al. Heart Lung (1983) pmid: 6575003
- 101. Cajajba MM, et al. Cancer (2018) pmid: 29905933 102. Vistica DT, et al. J. Pediatr. Hematol. Oncol. (2009) pmid: 19636271
- 103. Covell DG, et al. PLoS ONE (2012) pmid: 23226201
- 104. Ford KM, et al. Mol. Vis. (2012) pmid: 22419845
- 105. AlAzab RS, et al. Res Rep Urol (2019) pmid: 32010646 106. Citak EC, et al. Can Urol Assoc J () pmid: 26279736 107. Huľová S. et al. Klin Onkol (2018) pmid: 30545225

isclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy