Supporting Protocols ARP and ICMP

Kameswari Chebrolu

Recap

- Forwarding needs IP to MAC address mapping
 - Service provided by ARP protocol
- Network layer needs to provide means for debugging (error signaling) and for router-host communication (determine MTU size, indicate better routes, provide netmask info etc)
 - Service provided by ICMP protocol

Problem Statement

- IP layer forwarding is based on IP addresses
- Next-hop delivery based on Link addresses (MAC)
- Need to perform IP to MAC address translation
- Answer: Address Resolution Protocol (ARP)
 - -what layer?

 How do you consume ARP process gets the relevant Packets? > demices

 What address should the frame Carry?

 what messages would you send & how do you act

 on a message received message?

Address Resolution Protocol (ARP)

- Operates at Link layer (Frame type = 0x0806)
- Based on broadcast: What is the MAC address corresponding to given IP address?
 - Host with matching IP address replies
- Each host maintains a cache with IP to MAC translations
 - Entries in cache timed out periodically (15 min)

Address Resolution Protocol (ARP)

- Originator: Add entry to cache corresponding to target
- Target: Add entry to cache corresponding to the originator (sender)
- Intermediate hosts: Refresh existing entries
- When forwarding a datagram, check cache, if no mapping, invoke ARP

ARP Packet Format

0	8 1	6 33			
Hardware Type (=1)		Protocol Type (=0x0800)			
HLEN (=48)	PLEN (=32)	Operation regnat, reply			
Source Hardware Address (Bytes 0-3)					
Source Hardware	Address (Bytes 4-5)	Source Protocol Address (Bytes 0-1)			
Source Protocol A	Address (Bytes 2-3)	Target Hardware Address (Bytes 0-1)			
Target Hardware Address (Bytes 2-5)					
Target Protocol Address (Bytes 0-3)					

Numbers in brackets capture mapping IP addresses to Ethernet addresses

Gratuitous ARPs

- Generated by a host to inform others of its IP to MAC mapping
- Could be a request or reply
 - If request, no reply will occur
 - If reply, there was no preceding request
 - Source IP = destination IP = IP of machine generating gratuitous ARP
 - Target MAC: ff:ff:ff:ff:ff

Uses of Gratuitous ARPs

- Issued whenever IP or MAC address of an interface changes or brought up from down state
 - Help rectify cached ARP entries
 - Report IP address conflicts (duplicate IP)
 - Inform bridges of the location of new host

ICMP: Internet Control Message Protocol

- Used by hosts & routers to communicate network-level information
 - Error reporting: unreachable host, network, port, protocol
 - Diagnostic purposes: Echo request/reply (used by ping)
 - Routing: Source quench

ICMP Packet Format

demus

- ICMP messages carried in IP datagrams
- 8 bytes of header followed by data.
- Data field in error messages carry
 - entire IP header and first 8 bytes of data of IP packet that caused the error

Select ICMP Messages

Type	Code	Description	
0	0	Echo Reply (Ping)	
3	0	Destination network unreachable	
3	1	Destination host unreachable	
3	3	Destination port unreachable	
3 /	4 /	Fragmentation required, DF flag set	
3	6	Destination network unknown	
3	7	Destination host unknown	

Select ICMP Messages

Type	Code	Description	
4	0	Source Quench	
5	0	Redirect datagram for the network	
8	0	Echo request (Ping)	
11	0	TTL expired	
12	0	Bad IP header	
13	0	Timestamp	
14	0	Timestamp reply	
17	0	Address mask request	
18	0	Address mask reply	

Example: Fragmentation Required

Type=3 Code=4 Checksum Unused Next hop MTU ~	8	
Unused Next hop MTU~	3	Ту
•	Unused	
IP header and first 8 bytes of original datagram's payload		

Traceroute

- Source sends series of UDP segments to destination one after another
 - First has TTL =1

- Second has TTL=2, etc.
- Destination port is set to an unlikely number

Traceroute

- When nth datagram arrives to nth router:
 - Router discards datagram
 - Sends to source an ICMP message (type 11, code 0)
 - Message includes name of router& IP address
- For each ICMP message, sending host notes router id and RTT time to remain and remaining host notes router
- Sending host stops when it gets ICMP message (type 3, code 3)

Summary

- Studied two useful protocols: ARP and ICMP
- ARP is needed for forwarding
 - Performs IP to MAC address translation
- ICMP helps with error reporting and host signaling