پیش گزارش آزمایش پنجم (پیاده سازی شبکه عصبی RBF)

امیرحسین احمدی آشتیانی ۹۹۲۳۵۰۱

محمدرضا امیری ۹۹۲۶۰۴۰

محمدمهدی نوروزی ۹۹۲۳۰۸۵

(1

Feature	MLP	RBF Network	
Layers	Multiple layers (input, hidden, output)	Input, hidden (RBF units), output	
Activation Function	Non-linear (sigmoid, ReLU, etc.)	Radial basis functions (Gaussian, etc.)	
Training Method	Backpropagation (gradient descent)	Unsupervised (centers) + supervised (weights)	
Data Processing	Global representations	Localized, distance-based representations	
Use Cases	Wide range (image, NLP, etc.)	Function approximation, localized classification	
Scalability	Effective for complex, high-dimensional problems	Struggles with high-dimensional data	
Computational Cost	High for deep networks	Lighter, but may need many neurons for complex tasks	
Generalization	Global, hierarchical feature learning	Localized patterns, prone to overfitting	

شبكه هاى RBF چند لايه:

- شبکه های RBF سنتی شامل سه لایه هستند: ورودی، پنهان (با توابع پایه شعاعی) و خروجی.
- در شبکه های RBF چندلایه، لایه های پنهان متعدد از واحدهای RBF استفاده می کنند، اما این معماری به ندرت استفاده می شود.

دلايل اصلي عدم توسعه:

- پیچیدگی آموزش: با روشهای سنتی دشوار است و بازیخش خطا (Backpropagation) در شبکههای RBF نایایدار است.
 - بیش برازش: RBFها به دلیل ماهیت موضعی (localized) فعالسازی، در معماریهای عمیق به خوبی تعمیم نمی دهند.
- مشکلات مقیاس پذیری: شبکه های RBF در ورودی های با ابعاد بالا مشکل دارند و نیاز به تعداد زیادی نرون برای پوشش فضای ورودی دارند که آنها را ناکارآمد از نظر محاسباتی می کند.
 - غلبه سایر معماری ها: شبکه های CNN، MLP و ترانسفور مرها عملکرد بهتری در بیشتر وظایف یادگیری عمیق نشان داده اند و این باعث کاهش علاقه به شبکه های RBF شده است.

عمق شبكه هاى RBF خالص:

- محدودیت نظری برای عمق وجود ندارد، اما در عمل، معماری های کم عمق ۲-۲ لایه عملکرد بهتری دارند.
 - اضافه کردن لایه های بیشتر منجر به بازده نزولی می شود به دلیل ماهیت موضعی واحدهای RBF.
 - شبکه های RBF عمیق تر، زمینه کلی را از دست می دهند و مستعد بیش برازش می شوند.

نتیجه گیری از تحقیقات یادگیری عمیق:

- شبکههای RBF چندلایه دشوار برای آموزش، مستعد بیش برازش و ناکارآمد از نظر محاسباتی هستند.
- معماری های مدرن یادگیری عمیق مانند CNNها و MLPها در یادگیری نمایش های پیچیده و جهانی مؤثر تر هستند، که منجر به کاهش پژوهش و توسعه شبکه های RBF عمیق شده است.

(3

Method	Pros	Cons	Best Use Case
Grid Search	Simple, exhaustive	Very slow for large spaces	Small datasets or few hyperparameters
Random Search	More efficient than grid	Might miss optimal combinations	Large hyperparameter spaces
Bayesian Optimization	Efficient, balances exploration/exploitation	Complex, expensive	Expensive model training
Genetic Algorithms (GA)	Good for large spaces, escapes local minima	Requires many evaluations	High-dimensional or complex problems
Hyperband	Efficient, early stopping	May prune good configurations early	Large datasets, quick experimentation
Particle Swarm Optimization	Global exploration, easy to parallelize	May converge prematurely	Large search spaces
Simulated Annealing	Avoids local minima, flexible	Sensitive to cooling schedule	Non-convex problems
Neural Architecture Search	Automated, highly performant architectures	Extremely expensive, complex	Research, high-resource environments