Rappel de cours

Definition 1. Soit E un K-espace vectoriel. Une partie F de E est appele un sous-espace vectoriel si :

- $0_E \in F$,
- $u + v \in F$ pour tous $u, v \in F$,
- $\lambda.u \in F$ pour tout $\lambda \in K$ et tout $u \in F$.

Exercice 1

1-a

Il suffit de montrer les 3 conditions qui définissent un sous-espace vectoriel.

- $0_E \in F(\mathbb{R}, \mathbb{R})$. Vrai la car fonction $0_E : x \to 0$ est continue sur \mathbb{R}
- Pour tous $u, v \in C(\mathbb{R}, \mathbb{R})$, $u + v \in C(\mathbb{R}, \mathbb{R})$, car la somme de 2 fonctions continues est une fonction continue
- Pour tout $\lambda \in \mathbb{R}$ et tout $u \in C(\mathbb{R}, \mathbb{R})$, $\lambda u \in C(\mathbb{R}, \mathbb{R})$ car la multiplication par une constante ne change pas la continuité d'une fonction.

Donc $C(\mathbb{R}, \mathbb{R})$ est un sous-espace vectoriel de $F(\mathbb{R}, \mathbb{R})$.

1-b

Notons $G(\mathbb{R}, \mathbb{R})$ l'ensemble des fonctions $f \in C(\mathbb{R}, R)$ qui sont dérivables et telles que : $\forall x \in \mathbb{R}, f'(x) + xf(x) = 0$. Il suffit de montrer les 3 conditions qui définissent un sous-espace vectoriel.

- $0_E \in G(\mathbb{R}, \mathbb{R})$. Vrai car $0'_E(x) + x.0_E(x) = 0 + x.0 = 0$
- Pour tous $u, v \in C(\mathbb{R}, \mathbb{R}), u'(x) + x.u(x) = 0$ et v'(x) + x.v(x) = 0. On a (u+v)'(x) + x.(u+v)(x) = u'(x) + v'(x) + x.u(x) + x.v(x) = 0 + 0 = 0. Donc $u + v \in G(\mathbb{R}, \mathbb{R})$.
- Pour tout $\lambda \in \mathbb{R}$ et tout $u \in G(\mathbb{R}, \mathbb{R})$, $(\lambda . u(x))' + x . \lambda . u(x) = \lambda (u'(x) + x . u(x)) = \lambda . 0 = 0$ donc $\lambda . u \in G(\mathbb{R}, \mathbb{R})$.

Donc $G(\mathbb{R}, \mathbb{R})$ est un sous-espace vectoriel de $C(\mathbb{R}, \mathbb{R})$.

1-c

Notons $H(\mathbb{R}, \mathbb{R})$ l'ensemble des fonctions $f \in C(\mathbb{R}, R)$ telles que : $\forall x \in \mathbb{R}, 0 \le f(x) \le 1$. Il suffit de montrer les 3 conditions qui définissent un sous-espace vectoriel.

- $0_E \in H(\mathbb{R}, \mathbb{R})$. Vrai car $0 \leq 0_E(x) \leq 1$
- Pour tous $u, v \in C(\mathbb{R}, \mathbb{R})$, $0 \le u(x) \le 1$ et $0 \le v(x) \le 1$. On a $(u+v)(x) = u(x) + v(x) \ge 1$. Donc $u+v \notin H(\mathbb{R}, \mathbb{R})$.
- Pour tout $\lambda \in \mathbb{R}$ et tout $u \in G(\mathbb{R}, \mathbb{R}), \lambda.u(x) \ge 1$ lorsque $\lambda > 1$ donc $\lambda.u \notin H(\mathbb{R}, \mathbb{R}).$

Donc $H(\mathbb{R}, \mathbb{R})$ n'est pas un sous-espace vectoriel de $C(\mathbb{R}, \mathbb{R})$. QED