SUFFICIENCY OF CHANNELS OVER VON NEUMANN ALGEBRAS

By DÉNES PETZ

[Received 17th July 1986]

LET M be a von Neumann algebra and N a von Neumann subalgebra of M. A mapping $E: M \rightarrow N$ is called conditional expectation into N if it possesses the following properties.

- (i) E(I) = I and $a \ge 0$ implies that $E(a) \ge 0$.
- (ii) E(ab) = aE(b) for all $a \in N$ and $b \in M$.

When ϕ is a faithful normal state on M then the conditional expectation preserving ϕ is unique whenever exists. The Takesaki Theorem ([27]) claims that it exists if and only if N is stable under the modular group of ϕ . Accardi and Cecchini ([1]) sharpened this result introducing a mapping $E_{\phi} \colon M \to N$ in such a way that $E_{\phi}(ab) = aE_{\phi}(b)$ holds for every $b \in M$ and some $a \in N$ if and only if $\sigma_i^{\phi}(a) \in N$ for all $t \in \mathbb{R}$. In [21] we generalized their construction. Let N and M be von Neumann algebras and $\alpha \colon N \to M$ a positive mapping. For a faithful normal state ϕ on M we defined a ϕ -dual α_{ϕ}^* of α mapping M into N. In the present paper we carry out the generalization of the Takesaki-Accardi-Cecchini theorem by characterizing the fixed point algebra of $\alpha_{\phi}^* \circ \alpha$ (Theorem 2).

The question naturally arises: What is the necessary and sufficient condition for the identity $\alpha_{\phi}^* = \alpha_{\omega}^*$ if ω and ϕ are different states? The answer forms the main result of the paper. Theorem 3 formulates several conditions.

The context of a mapping $\alpha: N \to M$ and a family θ of states on M has information theoretic and statistical aspects. α may be regarded as a channel with a family θ of input states and for $\phi \in \theta$ the corresponding output state is $\phi \circ \alpha$. On the language of statistics (α, θ) is a statistical experiment ([13]). In mathematical physics α may be considered as a coarsegraining ([24] and references therein). So the same mathematical object arises in different fields. Here we deal with a statistical interpretation only because it fits very well into this framework. We call a channel (N, M, α) sufficient with respect to the family θ if there exists a positive mapping $\theta: M \to N$ such that $\phi \circ \theta \circ \alpha = \phi$ for all $\phi \in \theta$. We prove that α is sufficient for θ if and only if $\alpha_{\phi}^* = \alpha_{\omega}^*$ for every ϕ , $\omega \in \theta$. In particular, sufficiency is equivalent to pairwise sufficiency.

Preliminaries

Let M be a von Neumann algebra. We intend to use a convention in the whole paper: By a state we always mean a faithful normal positive (not necessarily normalized) functional. Dealing with several states on M we shall consider M in its standard form ([10], [28]). If M has the standard form (M, H, J, P) then M acts on the Hilbert space H, P is a cone in H such that every state ω has a unique vector representative Ω in P which is cyclic and separating for M. Given another normal state ϕ the densely defined quadratic form

$$a\Omega \rightarrow \phi(aa^*) \qquad (a \in M)$$

is closable and there exists an associated positive self-adjoint operator Δ . It is characterized by the following properties. $M\Omega$ is a core for $\Delta^{\frac{1}{2}}$ and $\|\Delta^{\frac{1}{2}}a\Omega\|^2 = \phi(aa^*)$ ([18], VI. § 2). Δ was called by Araki the relative modular operator of ϕ and ω and it is usually denoted by $\Delta(\phi, \omega)$ (see [3], [4]). Equivalently, $\Delta(\phi, \omega)$ is obtained from the polar decomposition of the closure $S_{\phi\omega}$ of the conjugate linear operator $a\Omega \to a^*\Phi$ (where Φ is the vector representative of ϕ from P). Namely, $S_{\phi\omega} = J\Delta(\phi, \omega)^{\frac{1}{2}}$. The operators J, $\Delta(\omega, \omega)$ and σ_i^{ω} are the standard ingredients of the Tomita-Takesaki theory with respect to $\Omega(\omega)$. (See, for example, [5], 2.5 or [27], Chapter 10). The modular group of ω is a one-parameter group of automorphisms of M and it looks like

$$\sigma_t^{\omega}(a) = \Delta(\omega, \omega)^{it} a \Delta(\omega, \omega)^{-it}.$$

Another Radon-Nikodym derivative like object for comparison of two states is the Radon-Nikodym cocyle discovered by Connes ([7], see also [4]). If ϕ is a faithful normal semi-finite weight then $[D\phi, D\omega]_t = u_t$ is a σ^{ω} -cocycle and

$$\sigma_t^{\phi} = u_t \sigma_t^{\omega} u_t^*.$$

The formula

$$[D\phi,\,D\omega]_\iota=\Delta(\phi,\,\omega)^{i\iota}\Delta(\omega,\,\omega)^{-i\iota}$$

forms a bridge between the two objects (see [4]).

Quasi-entropy was introduced in [23] (but implicitly used also in [19]). If $f: (0, \infty) \to \mathbb{R}$ is a continuous function and $\int \lambda \, dE_{\lambda}$ is the spectral resolution of $\Delta(\phi, \omega)$ then

$$S_f(\phi, \omega) = \int f(\lambda) \,\mathrm{d}\langle E_\lambda \Omega, \Omega \rangle.$$

Monotonicity of quasi-entropies is the following assertion: If f is operator monotone on \mathbb{R}^+ and $\alpha: N \to M$ is a 2-positive unital mapping then

$$S_f(\phi \circ \alpha, \omega \circ \alpha) \geq S_f(\phi, \omega).$$

A special quasi-entropy is the transition probability

$$P_{A}(\phi, \omega) = \langle \Delta(\phi, \omega)^{\frac{1}{2}}\Omega, \Omega \rangle = \langle \Phi, \Omega \rangle$$

introduced by Raggio in [23]. (The subscript A in P_A may stand for Araki, but on the other hand in the measure case sometimes $P_A(\phi, \omega)$ is called the affinity of the measures ϕ and ω .)

Channels

Let N and M be von Neumann algebras. The triple (N, M, α) will be called a channel if $\alpha: N \rightarrow M$ is a linear mapping with the following properties.

- (i) $\alpha(I) = I$.
- (ii) α is w-continuous.
- (iii) α is 2-positive.
- (iv) if $a \in N_+$ and $\alpha(a) = 0$ then a = 0.

We note that (i) and (ii) imply that $||\alpha|| = 1$ ([5], 3.2.6). When M acts on some Hilbert space H then (iii) is equivalent to the following.

(iii)'
$$\sum_{i,j} \langle \alpha(a_i^* a_j) \xi_i, \xi_j \rangle \ge 0$$
 for every $a_i \in N$ and $\xi_i \in H$ $(i = 1, 2)$.

States on M will be called input states of the channel (N, M, α) . If ϕ is an input state then $\phi \circ \alpha$ is the corresponding output state.

Now we fix a notation what we intend to use freely in the whole section. Whenever (N, M, α) is a channel with input states ϕ and ω , (M, H, J, P) $((N, H_0, J_0, P_0))$ stands for the standard form of M(N), and Φ , $\Omega(\Phi_0, \Omega_0)$ are the vector representatives of ϕ and $\omega(\phi \circ \alpha, \omega \circ \alpha)$, respectively.

THEOREM 1. Let (N, M, α) be a channel and ϕ an input state. There exists a channel (M, N, α_{ϕ}^*) characterized by the condition

$$\langle \alpha(a)\Phi, Jb\Phi \rangle = \langle a\Phi_0, J_0\alpha_{\Phi}^*(b)\Phi_0 \rangle$$

for all $a \in N$ and $b \in M$.

Proof. Let $b \in M_+$ be fixed for a while. The correspondence

$$\gamma_b: a \to \langle \alpha(a)\Phi, Jb\Phi \rangle$$

defines a positive normal functional on N. Clearly, $\gamma_b(a) \le ||b|| \phi(\alpha(a))$ for every $a \in N_+$. According to the commutant Radon-Nikodym Theorem ([27], 5.19) there is an $x' \in (N')_+$ such that

$$\gamma_b(a) = \langle a\Phi_0, x'\Phi_0 \rangle = \langle a\Phi_0, J_0(J_0x'J_0)\Phi_0 \rangle.$$

By Tomita's theorem $J_0x'J_0 \in N$ and we define $\alpha_{\phi}^*(b)$ as $J_0x'J_0$. α_{ϕ}^* admits a linear extension to the whole M.

 α_{ϕ}^* is unital and positive by construction. α_{ϕ}^* is continuous with respect to the weak operator topology and hence it is w-continuous. If $\alpha_{\phi}^*(b) = 0$ then $\phi(b) = 0$ and b must be 0 whenever b is positive.

 α_{ϕ}^{*} is 2-positive if and only if

$$\sum_{i,j} \langle \alpha_{\phi}^*(b_i^*b_j) J_0 a_i \Phi_0, J_0 a_j \Phi_0 \rangle \ge 0$$

for every $b_i \in M$ and $a_i \in N$ (i = 1, 2). However,

$$\begin{split} &\sum_{i,j} \left\langle \alpha_{\phi}^*(b_i^*b_j) J_0 a_i \Phi_0, J_0 a_j \Phi_0 \right\rangle \\ &= \sum_{i,j} \left\langle \alpha_{\phi}^*(b_i^*b_j) \Phi_0, J_0 a_i^* a_j \Phi_0 \right\rangle \\ &= \sum_{i,j} \left\langle \alpha(a_i^*a_j) \Phi_0, J_0 b_i^* b_j \Phi_0 \right\rangle \\ &= \sum_{i,j} \left\langle \alpha(a_i^*a_j) J_0 b_i \Phi_0, J_0 b_j \Phi_0 \right\rangle \end{split}$$

and the last expression is positive due to the 2-positivity of α .

There are natural (that is, positive) embeddings $i_{\phi} : M \to M_{*}$ and $i_{\phi \circ \alpha} : N \to N_{*}$. α_{ϕ}^{*} is exactly the mapping which makes the diagram

$$\begin{array}{c}
N & \stackrel{\alpha_{\bullet}}{\longleftarrow} M \\
\downarrow^{\iota_{\bullet}} & \downarrow^{\iota_{\bullet}} \\
N_{\bullet} & \stackrel{\alpha_{\bullet}}{\longleftarrow} M_{\bullet}
\end{array}$$

commutative (α_* is the preadjoint of α). This point was emphasized in [21] where the dual was defined for slightly more general mappings. We ought to mention also the paper [9] where a dual (i.e., adjoint) is treated for not necessarily positive selfmappings of an algebra.

THEOREM 2. Let (N, M, α) be a channel with an input state ϕ . Then for $a \in N$ the following conditions are equivalent.

- (i) $\alpha(a^*a) = \alpha(a)^*\alpha$ (a) and $\alpha(\sigma_i^{\phi *\alpha}(a)) = \sigma_i^{\phi}(\alpha(a))$ for every $t \in \mathbb{R}$.
- (ii) $\alpha_{\alpha}^* \circ \alpha(a) = a$.

Furthermore, α restricted to $N_1 = \{x \in \mathbb{N}: \alpha_{\phi}^* \circ \alpha(x) = x\}$ is an isomorphism onto $M_1 = \{y \in \mathbb{M}: \alpha \circ \alpha_{\phi}^*(y) = y\}$.

Proof. First we treat the implication (i) \rightarrow (ii) and use the fixed notation. Recall that the operators

$$x\Phi_0 \rightarrow x^*\Phi_0$$
 $(x \in N)$
 $y^\Phi \rightarrow y^*\Phi$ $(y \in M)$

are closable and their closures S_0 and S have polar decomposition $S_0 = J_0 \Delta_0^{\frac{1}{2}}$ and $S = J \Delta^{\frac{1}{2}}$ ([5], 2.5.11). Being α a Schwarz mapping

$$x\Phi_0 \rightarrow \alpha(x)\Phi$$
 $(x \in N)$

admits an extension to a contraction V^{ϕ}_{α} . Since $\sigma^{\phi \circ \alpha}_{i}(x) = \Delta^{u}_{0}x \Delta^{-u}_{0}$ and $\sigma^{\phi}_{i}(x) = \Delta^{u}x \Delta^{-u}$ $(x \in N, y \in M)$ we have

$$V_{\alpha}^{\phi}S_{0}\Delta_{0}^{i}a\Phi_{0} = \alpha(\sigma_{t}^{\phi \circ \alpha}(a)^{*})\Phi = (\alpha(\sigma_{t}^{\phi \circ \alpha}(a))^{*}\Phi = S\Delta^{it}V_{\alpha}^{\phi}a\Phi_{0}.$$

Hence

$$V_{\alpha}^{\phi}J_{0}\Delta_{0}^{it+\frac{1}{2}}a\Phi_{0}=J\Delta^{it+\frac{1}{2}}V_{\alpha}^{\phi}a\Phi_{0}$$

for all $t \in \mathbb{R}$. By analytical continuation at t = i/2 we obtain

$$V_{\alpha}^{\phi}J_{0}a\Phi_{0} = JV_{\alpha}^{\phi}a\Phi_{0}. \tag{1}$$

(ii) is equivalent to the condition

$$\langle \alpha(a)\Phi, J\alpha(x)\Phi \rangle = \langle a\Phi_0, J_0x\Phi_0 \rangle$$

for all $x \in N$. Since

$$\langle \alpha(a)\Phi, J\alpha(x)\Phi \rangle = \langle J_0(V_\alpha^\phi)^*JV_\alpha^\phi a\Phi_0, J_0x\Phi_0 \rangle$$

we have to check that

$$J_0 a \Phi_0 = (V_{\alpha}^{\phi})^* J V_{\alpha}^{\phi} a \Phi_0. \tag{2}$$

Straightforward computation gives

$$||V_{\alpha}^{\phi}J_{0}a\Phi_{0}||^{2} = \langle JV_{\alpha}^{\phi}a\Phi_{0}, JV_{\alpha}^{\phi}a\Phi_{0}\rangle = \phi(\alpha(a)^{*}\alpha(a))$$
$$= \phi(\alpha(a^{*}a)) = ||J_{0}a\Phi_{0}||^{2}.$$

Therefore

$$(V_{\alpha}^{\phi})^* V_{\alpha}^{\phi} J_0 a \Phi_0 = J_0 a \Phi_0 \tag{3}$$

must hold. From (1) and (3) the condition (2) follows.

To prove (ii) \rightarrow (i) first note that N_1 and M_1 are von Neumann subalgebras (cf. [20]). We have seen that that $a \in N_1$ is equivalent to (2). So if $a \in N_1$ then

$$||a\Phi_0|| = ||(V_\alpha^\phi)^*JV_\alpha^\phi a\Phi_0|| \le ||V_\alpha^\phi a\Phi_0|| \le ||a\Phi_0||$$

and $||V_{\alpha}^{\phi}a\Phi_{0}|| = ||a\Phi_{0}||$. In other words, $\phi(\alpha(a)^{*}\alpha(a)) = \phi(\alpha(a^{*}a))$. Since $\alpha(a)^{*}\alpha(a) \leq \alpha(a^{*}a)$ and ϕ is faithful, we infer $\alpha(a)^{*}\alpha(a) = \alpha(a^{*}a)$. According to [6] (see also [28], 9.2) we have

$$\alpha(xa) = \alpha(x)\alpha(a)$$
 and $\alpha(a^*x) = \alpha(a)^*\alpha(x)$

for every $x \in N$. In particular, $\alpha \mid N_1$ is an isomorphism, and evidently $\alpha(N_1) = M_1$.

With the notation $\phi' = \phi \mid M_1$ and $\psi' = \phi \circ \alpha \mid N_1$, an invocation to the KMS condition gives

$$\alpha(\sigma_t^{\psi'}(x)) = \sigma_t^{\phi'}(\alpha(x)) \qquad (t \in \mathbb{R}, x \in N_1).$$

By the mean ergodic theorem ([20]) there exists a conditional expectation of M onto M_1 (of N onto N_1) preserving ϕ ($\phi \circ \alpha$) and due to Takesaki Theorem ([29], see also [28], 10.1)

$$\sigma_t^{\psi'} = \sigma_t^{\phi * \alpha} \mid N_1 \quad \text{and} \quad \sigma_t^{\phi'} = \sigma_t^{\phi} \mid M_1.$$

The proof is complete.

THEOREM 3. Let (N, M, α) be a channel. If ϕ and ω are states on M then the following conditions are equivalent.

- (i) $\alpha \circ \alpha_{\omega}^*([D\phi, D\omega]_t) = [D\phi, D\omega]_t$ for every $t \in \mathbb{R}$.
- (ii) $P_A(\phi \circ \alpha, \omega \circ \alpha) = P_A(\phi, \omega)$.
- (iii) $\alpha([D(\phi \circ \alpha), D(\omega \circ \alpha)]_t) = [D\phi, D\omega]_t$ for every $t \in \mathbb{R}$.
- (iv) $\alpha_{\omega}^* = \alpha_{\phi}^*$
- (v) $\phi \circ \alpha_{\omega}^* = \phi$.
- (vi) $\omega \circ \alpha_{\phi}^* = \omega$.

Proof. Suppose (i) and let M_0 be the subalgebra generated by $\{[D\phi, D\omega]_t: t \in \mathbb{R}\}$. Then M_0 is stable under the modular group of ω and there is a conditional expectation $E: M \to M_0$ preserving ω . The converse of Connes' Theorem ([7] and [28], 5.1) guarantees a weight ϕ' on N_0 such that

$$[D\phi, D\omega]_t = [D\phi', D(\omega \mid M_0)]_t$$

On the other hand

$$[D(\phi' \circ E), D\omega]_t = [D\phi', D(\omega \mid N_0)]_t$$

(see [28], 10.5) and $\phi' \circ E$ must be ϕ . Consequently, E preserves also ϕ . Applying the monotonicity theorem we have

$$P_{A}(\phi, \omega) \leq P_{A}(\phi \mid M_{1}, \omega \mid M_{1}) \leq P_{A}(\phi \mid M_{0}, \omega \mid M_{0}) \leq P_{A}(\phi, \omega)$$

$$\leq P_{A}(\phi \circ \alpha, \omega \circ \alpha) \leq P_{A}(\phi \circ \alpha \mid N_{1}, \omega \circ \alpha \mid N_{1})$$

and since

$$P_A(\phi \circ \alpha \mid N_1, \ \omega \circ \alpha \mid N_1) = P_A(\phi \mid M_1, \ \omega \mid M_1)$$

(iii) can be concluded. (Recall that M_1 and N_1 were defined in Theorem 2.)

We shorten our notation to Δ (Δ_0) for the relative modular operator of ϕ and ω ($\phi \circ \alpha$ and $\omega \circ \alpha$). V^{ϕ}_{α} and V^{ω}_{α} are contractions of H_0 into H such that

$$V^{\phi}_{\alpha}(a\Phi_0) = \alpha(a)\Phi$$
 and $V^{\omega}_{\alpha}(a\Omega_0) = \alpha(a)\Omega$ $(a \in N)$.

Turning to (ii) \rightarrow (iii) we use the formula

$$x^{\frac{1}{2}} = \frac{2}{\pi} \int_{0}^{\infty} x(1+t^2x)^{-1} dt$$

and write

$$P_{A}(\phi, \omega) = \langle \Delta^{\frac{1}{2}}\Omega, \Omega \rangle = \frac{2}{\pi} \int_{0}^{\infty} \langle \Delta(1 + t^{2}\Delta)^{-1}\Omega, \Omega \rangle dt$$
$$= \pi^{-1} \int_{0}^{\infty} t^{-2} - t^{-4} \langle (t^{-2} + \Delta)^{-1}\Omega, \Omega \rangle dt$$

Similarly

$$P_{A}(\phi \circ \alpha, \, \omega \circ \alpha) = \frac{2}{\pi} \int_{0}^{\infty} t^{-2} - t^{1} \langle (t^{-2} + \Delta_{0})^{-1} \Omega_{0}, \, \Omega_{0} \rangle \, dt.$$

We prove that

$$(t + \Delta_0)^{-1} \leq (V_\alpha^\omega)^* (t + \Delta)^{-1} V_\alpha^\omega \tag{4}$$

for t > 0.

 Δ is the associated positive selfadjoint operator to the densely defined closable quadratic form

$$q: a\Omega \rightarrow \phi(aa^*) \qquad (a \in M).$$

Let $\int_{0}^{\infty} \lambda \, dE(\lambda)$ be the spectral decomposition of Δ and define $H_n = \int_{0}^{n} \lambda \, dE(\lambda)$. Then $(t + H_n)^{-1} \rightarrow (t + \Delta)^{-1}$ strongly for all t > 0.

The set $\{a\Omega_0: a \in N\}$ is a core for $\Delta_0^{\frac{1}{2}}$. Evidently,

$$\|\Delta_b^{\frac{1}{2}}a\Omega\|^2 = \phi \circ \alpha(aa^*) \ge \phi(\alpha(a)\alpha(a)^*)$$
$$= \|\Delta_a^{\frac{1}{2}}\alpha(a)\Omega\|^2 \ge \|H_a^{\frac{1}{2}}V_{\alpha}^{\alpha}(a\Omega_0)\|^2$$

and we establish

$$(V_{\alpha}^{\omega})^* H_n V_{\alpha}^{\omega} \leq \Delta_0.$$

Then

$$(t + \Delta_0)^{-1} \le (t + (V_{\alpha}^{\omega})^* H_n V_{\alpha}^{\omega})^{-1}.$$

Since

$$(t + (V_{\alpha}^{\omega})^* H_n V_{\alpha}^{\omega})^{-1} \leq (V_{\alpha}^{\omega})^* (t + H_n)^{-1} V_{\alpha}^{\omega}$$

(see [8], or [12]) we arrive at

$$(t + \Delta_0)^{-1} \leq (V_{\alpha}^{\omega})^* (t + H_n)^{-1} V_{\alpha}^{\omega}$$

and letting $n \to \infty$ we complete the proof of (4).

Due to (4) we have

$$\langle (t+\Delta_0)^{-1}\Omega_0, \Omega_0 \rangle \leq \langle (t+\Delta)^{-1}\Omega, \Omega \rangle$$

and $P_A(\phi \circ \alpha, \omega \circ \alpha) = P_A(\phi, \omega)$ must imply that

$$\langle (t + \Delta_0)^{-1} \Omega_0, \, \Omega_0 \rangle = \langle (t + \Delta)^{-1} \Omega, \, \Omega \rangle \tag{5}$$

for almost all $t \in \mathbb{R}^+$ and by continuity for all $t \in \mathbb{R}^+$.

We can estimate

$$\begin{aligned} &\|(V_{\alpha}^{\omega})^{*}(t+\Delta)^{-1}\Omega - (t+\Delta_{0})^{-1}\Omega_{0}\|^{2} \\ &= \|((V_{\alpha}^{\omega})^{*}(t+\Delta)^{-1}V_{\alpha}^{\omega} - (t+\Delta_{0})^{-1})\Omega_{0}\|^{2} \\ &\leq \|((V_{\alpha}^{\omega})^{*}(t+\Delta)^{-1}V_{\alpha}^{\omega} - (t+\Delta_{0})^{-1})^{\frac{1}{2}}\|^{2} \\ &\times \langle ((V_{\alpha}^{\omega})^{*}(t+\Delta)^{-1}V_{\alpha}^{\omega} - (t+\Delta_{0})^{-1})\Omega_{0}, \Omega_{0} \rangle \end{aligned}$$

whenever t > 0. Referring to (5) we have

$$(V_{\alpha}^{\omega})^*(t+\Delta)^{-1}\Omega = (t+\Delta_0)^{-1}\Omega_0$$

for all t > 0 and through analytic continuation for all $t \in \mathbb{C} - \mathbb{R}^-$. Derivating with respect to t we obtain

$$(V_{\alpha}^{\omega})^*(t+\Delta)^{-2}\Omega=(t+\Delta_0)^{-2}\Omega_0.$$

Hence

$$\begin{aligned} \|(V_{\alpha}^{\omega})^*(t+\Delta)^{-1}\Omega\|^2 &= \langle (t+\Delta_0)^{-2}\Omega_0, \Omega_0 \rangle \\ &= \langle (V_{\alpha}^{\omega})^*(t+\Delta)^{-2}\Omega, \Omega_0 \rangle = \|(t+\Delta)^{-1}\Omega\|^2. \end{aligned}$$

Consequently,

$$V_{\alpha}^{\omega}(V_{\alpha}^{\omega})^{*}(t+\Delta)^{-1}\Omega=(t+\Delta)^{-1}\Omega \qquad (t\in\mathbb{C}-\mathbb{R}^{-}).$$

We infer that

$$V_{\alpha}^{\omega}(t+\Delta_0)^{-1}\Omega_0 = V_{\alpha}^{\omega}(V_{\alpha}^{\omega})^*(t+\Delta)^{-1}\Omega = (t+\Delta)^{-1}\Omega$$

and standard application of the Stone-Weierstrass theorem yields

$$V^{\omega}_{\alpha} \Delta^{n}_{0} \Omega_{0} = \Delta^{n} \Omega. \tag{6}$$

Since

$$\alpha([D(\phi \circ \alpha), D(\omega \circ \alpha)]_{\iota})\Omega = V_{\alpha}^{\omega} \Delta_{0}^{\iota \iota} \Delta(\omega \circ \alpha, \omega \circ \alpha)^{-\iota \iota} \Omega_{0} = V_{\alpha}^{\omega} \Delta_{0}^{\iota \iota} \Omega_{0}$$

and

$$\Delta^{it}\Omega = \Delta^{it}\Delta(\omega, \, \omega)^{-it}\Omega = [D\phi, \, D\omega]_{t}\Omega$$

cyclicity of Ω and (6) give

$$[D\phi, D\omega]_t = [D(\phi \circ \alpha), D(\omega \circ \alpha)]_t$$

and we conclude (ii).

We abbreviate $[D\phi, D\omega]_t([D(\phi \circ \alpha), D(\omega \circ \alpha)]_t)$ as $v_t(u_t)$. Assuming (iii) we have

$$\alpha(u_t^*u_t) = v_t^*v_t = \alpha(u_t)^*\alpha(u_t)$$

and

$$\sigma_t^{\omega}(\alpha(u_s)) = v_{t+s}v_t^* = \alpha(\sigma_t^{\omega \cdot \alpha}(u_s))$$

is a consequence of the cocyle property. Because of Theorem 2 we establish (iii) \rightarrow (ii).

Continuing our proof of (iv) we benefit again from Theorem 2. Since $\alpha(au_t) = \alpha(a)v_t$ and $\alpha_{\omega}^*(bv_t) = \alpha_{\omega}^*(b)u_t$ for all $a \in \mathbb{N}$, $b \in M$ and $t \in \mathbb{R}$ we have

$$\begin{split} \left\langle \alpha_{\omega}^{*}(b) \Delta_{0}^{it} \Omega_{0}, J_{0} a \Delta_{0}^{it} \Omega_{0} \right\rangle &= \left\langle \alpha_{\omega}^{*}(b) u_{t} \Omega_{0}, J_{0} a u_{t} \Omega_{0} \right\rangle \\ \left\langle \alpha_{\omega}^{*}(b v_{t}) \Omega_{0}, J_{0} a u_{t} \Omega_{0} \right\rangle &= \left\langle b v_{t} \Omega, J \alpha(a u_{t}) \Omega \right\rangle \\ &= \left\langle b \Delta^{it} \Omega, J \alpha(a) \Delta^{it} \Omega \right\rangle. \end{split}$$

Taking into account that $\Delta_0^{\frac{1}{2}}\Omega_0 = \Phi_0$ and $\Delta^{\frac{1}{2}}\Omega = \Phi$ we consider the analytical extension of the functions

$$t \to \langle \alpha_{\omega}^{*}(b) \Delta_{0}^{i} \Omega_{0}, J_{0} a \Delta_{0}^{i} \Omega_{0} \rangle$$
$$t \to \langle b \Delta^{i} \Omega, J \alpha(a) \Delta^{i} \Omega \rangle$$

to the strip $S = \{z \in \mathbb{C}: -\frac{1}{2} \le \text{Im } z \le 0\}$ (which is analytic on $S^{\circ} = \{z \in \mathbb{C}: -\frac{1}{2} < \text{Im } z < 0\}$, see [27], 9.15). Since they coincide on the real line we infer

$$\langle \alpha_{\omega}^{\bullet}(b)\Phi_{0}, J_{0}a\Phi_{0}\rangle = \langle b\Phi, J\alpha(a)\Phi\rangle$$

evaluating at t = -i/2. This means that $\alpha_{\phi}^* = \alpha_{\omega}^*$.

The implications (iv) \rightarrow (v) and (iv) \rightarrow (vi) are obvious and both (v) and (vi) imply (ii) by the monotonicity theorem.

If N is a subalgebra of M and α is the inclusion then α_{ω}^* reduces to the ω -conditional expectation of Accardi and Cecchini ([1]). In this special case we have the following.

COROLLARY. Let N be a von Neumann subalgebra of M. Then the following conditions are equivalent.

- (i) $[D\phi, D\omega]_t \in N$ for every $t \in \mathbb{R}$.
- (ii) $P_A(\phi \mid N, \omega \mid N) = P_A(\phi, \omega)$.
- (iii) $[D\phi, D\omega]_t = [D(\phi \mid N), D(\omega \mid N)]_t$ for every $t \in \mathbb{R}$.
- (iv) $E_{\phi} = E_{\omega}$.
- (v) $\phi \circ E_{\omega} = \phi$.
- (vi) $\omega \circ E_{\phi} = \omega$.

Sufficiency

Sufficiency is an important notion mathematical statistics ([13], [26]) and it has appeared in an operator algebra setup in the papers [30], [17], [14], [22]. A von Neumann algebra with a family of states corresponds to a statistical experiment (cf. [13]) and a channel as we defined is essentially the same as the randomization of an experiment ([13], [26]). Since many statistical notions do not have algebraic counterparts (yet), sufficiently of a channel can be defined by statistical isomorphism. Formally, a channel (N, M, α) is sufficient with respect to the family θ of input states if there exists a 2-positive mapping $\beta: M \to N$ such that $\phi \circ \alpha \circ \beta = \phi$ for all $\phi \in \theta$.

THEOREM 5. Let (N, M, α) be a channel and ϕ , ω faithful normal states on M. Then the following conditions are equivalent.

- (i) α is sufficient with respect to $\{\phi, \omega\}$.
- (ii) $\alpha \circ \alpha_{\omega}^*([D\phi, D\omega]_t) = [D\phi, D\omega]_t$ for every $t \in \mathbb{R}$.
- (iii) $P_{\mathbf{A}}(\phi \circ \alpha, \, \omega \circ \alpha) = P_{\mathbf{A}}(\phi, \, \omega).$
- (iv) $\alpha([D(\phi \circ \alpha), D(\omega \circ \alpha)]_t) = [D\phi, D\omega]_t$ for every $t \in \mathbb{R}$.
- (v) $\alpha_{\alpha}^* = \alpha_{\alpha}^*$.
- (vi) $\phi \circ \alpha_{\omega}^* = \phi$.
- (vii) $\omega \circ \alpha_{\phi}^* = \omega$.

Proof. (i) \rightarrow (iii) through the monotonicity theorem concerning P_A . The implication (v) \rightarrow (i) is trivial and the equivalence of (ii)-(vii) is stated in Theorem 3.

COROLLARY 6. Let (N, M, α) be a channel with a family θ of faithful normal input states. Then the following conditions are equivalent.

- (i) α is sufficient with respect to θ .
- (iii) α is sufficient with respect to every $\{\phi, \omega\} \subset \theta$.

Assume that $N \subset M$ and θ is a family of faithful normal states on M. We say that N is a sufficient subalgebra of M if the channel (N, M, id) is sufficient with respect to θ . $(id: N \to M)$ is the inclusion mapping.) In other words, N is sufficient if there exists a 2-positive mapping $\theta: M \to N$ such that it leaves invariant all $\phi \in \theta$. (Note that this terminology differs from other ones, used for example in [14], [15], [24].)

The equivalence of the sufficiency and pairwise sufficiency is surprising at the first glance. It is not so if we recognise that a family of faithful normal states corresponds to a dominated experiment in the measure case (cf. [14], § 8). There exists a smallest sufficient subalgebra and in the light of Corollary 4 and Theorem 5 it is the von Neumann subalgebra generated by the set

$$\{[D\phi, D\omega]_t: t \in \mathbb{R} \text{ and } \phi, \omega \in \theta\}.$$

THEOREM 7. Let (N, M, α) be a channel with a family θ of faithful normal input states. Then α is sufficient with respect to θ if and only if the subalgebra $\{a \in M: \alpha \circ \alpha_{\omega}^{*}(a) = a\} = M_1$ is sufficient with respect to θ .

Proof. M_1 is sufficient if and only if $[D\phi, D\omega]_t \in M_1$ for every $t \in \mathbb{R}$ and $\phi, \omega \in \theta$. So Theorem 5 can be applied.

The inner perturbation of a state was studied by Araki ([2]). If $h = h^* \in M$, then for every faithful normal state ω there is a state ω^h determined by

$$[D\omega^h, D\omega]_t = e^{it(H+h)}e^{-itH}$$

where H stands for $\log \Delta(\omega, \omega)$. The main properties of the perturbed state are summarized in [3].

THEOREM 8. Let (N, M, α) be a channel with a faithful normal input state ω . For $h = h^* \in M$ stand ω^h for the inner perturbation of ω by h. Then α is sufficient with respect to $\{\omega, \omega^h\}$ if and only if $h \in M_1 = \{a \in M: \alpha \circ \alpha_m^*(a) = a\}$.

Proof. Since $\alpha \circ \alpha_{\omega}^*$ preserves ω , by [20] the subalgebra M_1 admits a conditional expectation $E: M \to M_0$ preserving ω . Hence reference to Theorem 5 above and to Theorem 6 in [24] makes the proof complete.

Acknowledgement

This work was done while the author stayed at the Mathematical Institute of the University of Tübingen supported by a Forschungsstipendium from the Alexander von Humboldt-Stiftung.

REFERENCES

- L. Accardi and C. Cecchini, 'Conditional expectation in von Neumann algebras and a theorem of Takesaki', J. Functional Analysis, 45 (1982), 245-273.
- H. Araki, 'Relative Hamiltonian for faithful normal states of a von Neumann algebra', Publ. Res. Inst. Math. Sci., 9 (1973), 165-209.
- 3. H. Araki, Recent developments in the theory of operator algebras and their significance in theoretical physics, Symposia Math., XX, 395-424, Academic Press, 1976.
- H. Araki and T. Masuda, 'Positive cones and L_p-spaces for von Neumann algebras', Publ. RIMS, Kyoto Univ. 18 (1982), 339-411.
- O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics 1, Springer, 1979.
- M. D. Choi, 'A Schwarz inequality for positive linear maps on C*-algebras', Ill. J. Math., 18 (1974), 565-574.
- A. Connes, 'Une classification des facteurs de type III', Ann. Ec. Norm. Sup., 6 (1973), 133-252.
- C. Davis, 'A Schwarz inequality for convex operator functions', Proc. Amer. Math. Soc. 8 (1957), 42-44.
- U. Groh and B. Kümmerer, 'Bibounded operators on W*-algebras', Math. Scand., 50 (1982), 269-285.

- U. Haagerup, 'The standard form of von Neumann algebras', Math. Scand., 37 (1975), 271-283.
- 11. P. R. Halmos and L. J. Savage, 'Application of the Radon-Nikodym theorem to the theory of sufficient statistics', *Ann. Math. Statistics* 20 (1949), 225-241.
- 12. F. Hansen and G. K. Pedersen, 'Jensen's inequality for operators and Löwner's theorem', *Math. Ann.*, 258 (1982), 229-241.
- 13. H. Heyer, Theory of statistical experiments, Springer Series in Statistics, Springer, 1982.
- 14. F. Hiai, M. Ohya and M. Tsukada, 'Sufficiency, KMS condition and relative entropy in von Neumann algebras, *Pacific J. Math.* 96 (1981), 99-109.
- 15. F. Hiai, M. Ohya and M. Tsukada, 'Sufficiency and relative entropy in *-algebras with applications in quantum systems', *Pacific J. Math.* 107 (1983), 117-140.
- 16. A. S. Holevo, 'Some estimates for the amount of information transmittable by a quantum communication channel', (in Russian), Problemy Peredaci Informacii, 9 (1973), 3-11.
- 17. A. S. Holevo, 'Investigations in the general theory of statistical decisions', Amer. Math. Soc., Proc. Steklov Inst. of Math. 124, 1978.
- 18. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.
- H. Kosaki, 'Interpolation theory and the Wigner-Yanase-Dyson-Lieb concavity', Comm. Math. Phys., 87 (1982), 315-329.
- B. Kümmerer and R. Nagel, 'Mean ergodic semigroups on W"-algebras', Acta Sci. Math., 41 (1979), 151-155.
- 21. D. Petz, 'A dual in von Neumann algebras with weights', Quart. J. Math. Oxford, 35 (1984), 475-483.
- D. Petz, Properties of quantum entropy, Quantum Probability and Applications II (Ed.: L. Accardi and W. von Waldenfels), Lecture Notes in Math. No. 1136, 428-441, Springer, Berlin, 1985.
- 23. D. Petz, 'Quasi-entropies for states of a von Neumann algebra', *Publ. RIMS Kyoto Univ.*, 21 (1985) 787-800.
- 24. D. Petz, 'Sufficient subalgebras and the relative entropy of states of a von Neumann algebra', Comm. Math. Phys., 105 (1986), 123-131.
- 25. G. A. Raggio, 'Comparison of Uhlmann's transition probability with the one induced by the natural positive cone of a von Neumann algebra in standard form', *Lett. Math. Phys.* 6 (1982), 223–236.
- 26. H. Strasser, Mathematical theory of statistics, de Gruyter, Berlin, 1985.
- Ş. Strătilă and L. Zsidó, Lectures on von Neumann algebras, Abacus Press, Tunbridge Wells. 1979.
- 28. Ş. Strătilă, Modular theory of operator algebras, Abacus Press, Tunbridge Wells, 1981.
- 29. M. Takesaki, 'Conditional expectations in von Neumann algebras', J. Functional Analysis, 9 (1972), 306-321.
- 30. H. Umegaki, 'Conditional expectations in an operator algebra IV (entropy and information)', Kodai Math. Sem. Rep. 14 (1962), 59-85.

Mathematical Institut of HAS Reáltanoda u. 13-15 H-1364 Budapest, PF. 127 Hungary