

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA A - 2019/1

Plano Aula 19

Markus Stein 14 May 2019

... continuação Família Exponencial

- Definições Bolafrine e Sandoval × Notas de aula/Casella e Berger.
- Exercícios da aula 18, quem fez?
- E os teoremas, alguma tentativa de provar?
- Exercício 1: Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim Normal(\mu, \sigma^2)$, verifique se a distribuição de $X = (X_1, \ldots, X_n)$ pertence a família exponencial multiparamétrica.

Relembrando função escore e informação de Fisher (individual e total)

Para uma amostra aleatória X_1, \ldots, X_n de X, onde $X \sim f(x; \theta)$, então

• Função Escore $U(\theta)$: seja $X = (X_1, \dots, X_n)$ definimos a função escore como

$$U(\theta) = \frac{\partial \log f(\boldsymbol{x}; \theta)}{\partial \theta}$$

- Para uma única variável aleatória X, podemos definir a **função escore individual** $U_1(\theta) = \frac{\partial \log f(x;\theta)}{\partial \theta}$.
- Exercício 2: Mostrar que a função escore total é dada pela soma dos escores individuais, $U(\theta) = \sum_{i=1}^n \frac{\partial \log f(x_i;\theta)}{\partial \theta}!!!$
- **Teorema**: Mostrar que $E[U_1(\theta)] = 0$ para $f(\cdot)$ pertencente à família exponencial.
- Como ficaria no caso multiparamétrico para uma amostra aleatória $\mathbf{X} = (X_1, \dots, X_n)$? E no caso multiparamétrico $\boldsymbol{\theta} = (\theta_1, \dots, \theta_k)$?
- Estimador de Máxima Verossimilhança (EMV): se $f(\cdot)$ é diferenciável para todo θ , então o EMV $\widehat{\theta}_{EMV}$, é obtido como
 - * problema de otimização: $\widehat{\theta}_{EMV}$ é o ponto de máximo de $\log f(x;\theta)$, ou
 - * solução de equação linear: $\widehat{\theta}_{EMV}$ é a solução de $U(\theta) = 0$
- Informação de Fisher (individual e total) esperada
 - Informação total: $I(\theta) = E\left[\left(\frac{\partial \log f(\mathbf{X};\theta)}{\partial \theta}\right)^2\right];$
 - Informação individual: $I_1(\theta) = E\left[\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right)^2\right];$
 - Exercício 3: Mostrar que $I(\theta) = n \times I_1(\theta)$

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA A - 2019/1

Tarefa 1: Fazer os exercícios acima.

Tarefa 2: Ler seções 1 e 2 do capítulo 6 do livro "Statistical Methods and Scientific Inference".

Tarefa 3: Ler "slides aula 13" para a próxima aula.

Aula 18

Família exponencial

• Definição 1: (Família Exponencial Unidimensional) (Bolfarine e Sandoval, definição 2.4.1, pg. 25) Dizemos que a distribuição da variável aleatória X, com f.m.p ou f.d.p. dada por $f(x;\theta)$, pertence à família exponencial unidimensional, se pudermos escrever f como

$$f(x;\theta) = e^{c(\theta) T(x) + d(\theta) + S(x)} I_A(x),$$

onde

- $-c(\cdot)$ e $d(\cdot)$ são funções reais de θ ;
- $-T(\cdot)$ e $S(\cdot)$ são funções reais de x;
- A não depende de θ .

Exercício 1: Verificar qual(is) das seguintes distribuições pertence(m) à família exponencial. i) $X \sim Bernoulli(\theta), X \sim Normal(\mu, 1), X \sim Uniforme(0, \theta).$

- Teorema 1: Família exponencial unidimensional para uma amostra aleatória X_1, \ldots, X_n de X. (Bolfarine e Sandoval, teorema 2.4.1). Provar:
- Definição 2: (Família Exponencial k Dimensional (Bolfarine e Sandoval, definição 2.4.2, pg. 27) Dizemos que a distribuição da variável aleatória X, com f.m.p ou f.d.p. dada por $f(x; \theta)$, pertence à família exponencial k dimensional, se pudermos escrever f como

$$f(x; \boldsymbol{\theta}) = e^{\sum_{j=1}^{k} c_j(\theta) T_j(x) + d(\theta) + S(x)} I_A(x).$$

 Teorema 2: Família exponencial k dimensional para uma amostra aleatória (Notas de Aula, definição 2.13, pg. 37). Provar!!!

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA A - 2019/1

Informação de Fisher na Família Exponencial

Teorema 3: Seja X uma variável aleatória tal que sua f.d.p. ou f.m.p. $f(x;\theta)$ pertence à família exponencial, e a **informação individual de Fisher** dada por

$$I_1(\theta) = E\left\{ \left[\frac{\partial}{\partial} \log f(X; \theta) \right]^2 \right\},$$

então vale a igualdade da informação

$$E\left\{ \left[\frac{\partial}{\partial \theta} \log f(X; \theta) \right]^2 \right\} = -E\left[\frac{\partial^2}{\partial \theta^2} \log f(X; \theta) \right]$$

Prova: