Adaptation of my equations to a subdivided population. Notation, for a quantity Y that depends on two sites (Y = e, d, Q):

$$Y_{\text{self}} = Y_{i,i} \tag{1a}$$

$$Y_{\text{in}} = Y_{i,j}, \quad i \text{ and } j \neq i \text{ in the same deme;}$$
 (1b)

$$Y_{\text{out}} = Y_{i,j}$$
, *i* and *j* in different demes. (1c)

For a site i, G_i denotes the deme it is in, and notation $j \in G_i$ means that sites i and j are in the same deme.

The expected frequency of altruists in the population is given by

$$\mathbb{E}\left[\overline{X}\right] = p + \delta \frac{p(1-p)}{\mu} \left[b \left(\beta^D - \beta^I\right) - c \left(\gamma^D - \gamma^I\right) \right]. \tag{2}$$

Moran, Birth-Death

$$\beta_{\text{BD}}^{D} = \sum_{k,\ell=1}^{N} \frac{1-\mu}{N} e_{kl} Q_{lk}$$

$$= \sum_{k=1}^{N} \frac{1-\mu}{N} \Big(e_{\text{self}} + (n-1)e_{\text{in}} Q_{\text{in}} + (N-n)e_{\text{out}} Q_{\text{out}} \Big)$$

$$= (1-\mu) \Big(e_{\text{self}} + (n-1)e_{\text{in}} Q_{\text{in}} + (N-n)e_{\text{out}} Q_{\text{out}} \Big). \tag{3a}$$

$$\begin{split} \beta_{\text{BD}}^{I} &= \sum_{j,k,l=1}^{N} \left(\frac{d_{lj}}{N} - \frac{\mu}{N^2} \right) e_{kl} Q_{jk} \\ &= \frac{1}{N} \sum_{j=1}^{N} \left[\left(\sum_{l=1}^{N} d_{lj} e_{jl} - \frac{\mu}{N} \right) + \sum_{k \in G_j} \left(\sum_{l=1}^{N} d_{lj} e_{kl} Q_{\text{in}} - \frac{\mu}{N} Q_{\text{in}} \right) + \sum_{k \notin G_j} \sum_{l=1}^{N} d_{lj} \left(e_{kl} Q_{\text{out}} - \frac{\mu}{N} Q_{\text{out}} \right) \right] \\ &= \frac{1}{N} \sum_{j=1}^{N} \left[d_{\text{self}} e_{\text{self}} + (n-1) d_{\text{in}} e_{\text{in}} + (N-n) d_{\text{out}} e_{\text{out}} \\ &+ \sum_{k \in G_j} (d_{\text{in}} e_{\text{self}} + d_{\text{self}} e_{\text{in}} + (n-2) d_{\text{in}} e_{\text{in}} + (N-n) d_{\text{out}} e_{\text{out}} \right) Q_{\text{in}} \\ &+ \sum_{k \notin G_j} (d_{\text{self}} e_{\text{out}} + (n-1) d_{\text{in}} e_{\text{out}} + d_{\text{out}} e_{\text{self}} + (n-1) d_{\text{out}} e_{\text{in}} + (N-2n) d_{\text{out}} e_{\text{out}} \right) Q_{\text{out}} \\ &- \frac{\mu}{N} (1 + (n-1) Q_{\text{in}} + (N-n) Q_{\text{out}}) \\ &= d_{\text{self}} e_{\text{self}} + (n-1) d_{\text{in}} e_{\text{in}} + (N-n) d_{\text{out}} e_{\text{out}} \\ &+ (n-1) (d_{\text{in}} e_{\text{self}} + d_{\text{self}} e_{\text{in}} + (n-2) d_{\text{in}} e_{\text{in}} + (N-n) d_{\text{out}} e_{\text{out}} \right) Q_{\text{in}} \\ &+ (N-n) (d_{\text{self}} e_{\text{out}} + (n-1) d_{\text{in}} e_{\text{out}} + d_{\text{out}} e_{\text{self}} + (n-1) d_{\text{out}} e_{\text{in}} + (N-2n) d_{\text{out}} e_{\text{out}} \right) Q_{\text{out}} \\ &- \frac{\mu}{N} (1 + (n-1) Q_{\text{in}} + (N-n) Q_{\text{out}}) \,. \end{split}$$

$$\gamma_{\rm BD}^D = 1 - \mu. \tag{3c}$$

$$\gamma_{\text{BD}}^{I} = \frac{1}{N} \sum_{j,k=1}^{N} \left(d_{kj} - \frac{\mu}{N} \right) Q_{jk}
= \frac{1}{N} \sum_{j=1}^{N} \left[d_{\text{self}} - \frac{\mu}{N} + (n-1) \left(d_{\text{in}} - \frac{\mu}{N} \right) Q_{\text{in}} + (N-n) \left(d_{\text{out}} - \frac{\mu}{N} \right) Q_{\text{out}} \right]
= d_{\text{self}} + (n-1) d_{\text{in}} Q_{\text{in}} + (N-n) d_{\text{out}} Q_{\text{out}}
- \frac{\mu}{N} (1 + (n-1) Q_{\text{in}} + (N-n) Q_{\text{out}})$$
(3d)

Moran, Death-Birth

$$\beta_{\text{DB}}^{D} = \frac{1 - \mu}{N} \sum_{j,k=1}^{N} Q_{jk} e_{jk} = \beta_{\text{BD}}^{D}$$

$$= (1 - \mu) \Big(e_{\text{self}} + (n - 1) e_{\text{in}} Q_{\text{in}} + (N - n) e_{\text{out}} Q_{\text{out}} \Big). \tag{4a}$$

$$\beta_{\text{DB}}^{I} = \frac{1 - \mu}{N} \sum_{i,j,k,l=1}^{N} d_{ji} d_{li} e_{kl} Q_{jk}$$
 (4b)

Presented in the table in the appendix.

$$\gamma_{\rm DB}^D = 1 - \mu = \gamma_{\rm BD}^D. \tag{4c}$$

$$\begin{split} \gamma_{\mathrm{DB}}^{I} &= (1 - \mu) \sum_{i,j,k=1}^{N} \frac{d_{ji} d_{ki}}{N} Q_{jk} \\ &= \frac{1 - \mu}{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \left(d_{ji} d_{ji} + \sum_{k \neq j} d_{ji} d_{ki} Q_{\mathrm{in}} + \sum_{k \not\in G_{j}} d_{ji} d_{ki} Q_{\mathrm{out}} \right) \\ &= \frac{1 - \mu}{N} \sum_{j=1}^{N} \left[d_{\mathrm{self}} d_{\mathrm{self}} + (n-1) d_{\mathrm{in}} d_{\mathrm{in}} + (N-n) d_{\mathrm{out}} d_{\mathrm{out}} \right. \\ &\quad + \left(d_{\mathrm{self}} d_{\mathrm{in}} + d_{\mathrm{in}} d_{\mathrm{self}} + (n-2) d_{\mathrm{in}} d_{\mathrm{in}} + (N-n) d_{\mathrm{out}} d_{\mathrm{out}} \right) Q_{\mathrm{in}} \\ &\quad + \left(d_{\mathrm{self}} d_{\mathrm{out}} + (n-1) d_{\mathrm{in}} d_{\mathrm{out}} + d_{\mathrm{out}} d_{\mathrm{self}} + (n-1) d_{\mathrm{out}} d_{\mathrm{in}} + (N-2n) d_{\mathrm{out}} d_{\mathrm{out}} \right) Q_{\mathrm{out}} \end{split}$$

Probabilities of identity by descent

WF est faux. Il faut utiliser les formules Fourier...!

Moran For $i = \neq j$,

$$Q_{ij} = \frac{1-\mu}{2} \sum_{k=1}^{N} \left(d_{kj} Q_{ki} + d_{ki} Q_{kj} \right).$$
 (5a)

For $j \neq i$, $j \in G_i$,

$$Q_{\rm in} = \frac{1-\mu}{2} \Big((d_{\rm in} + d_{\rm self} Q_{\rm in}) + (d_{\rm self} Q_{\rm in} + d_{\rm in}) + (n-2) (d_{\rm in} Q_{\rm in} + d_{\rm in} Q_{\rm in}) + (N-n) (d_{\rm out} Q_{\rm out} + d_{\rm out} Q_{\rm out}) \Big)$$

$$= (1-\mu) \Big(d_{\rm in} + d_{\rm self} Q_{\rm in} + (n-2) d_{\rm in} Q_{\rm in} + (N-n) d_{\rm out} Q_{\rm out} \Big).$$
 (5b)

And for $j \not\in G_i$,

$$Q_{\text{out}} = \frac{1 - \mu}{2} \Big((d_{\text{out}} + d_{\text{self}} Q_{\text{out}}) + (n - 1) (d_{\text{out}} Q_{\text{in}} + d_{\text{in}} Q_{\text{out}})$$

$$+ (d_{\text{self}} Q_{\text{out}} + d_{\text{out}}) + (n - 1) (d_{\text{in}} Q_{\text{out}} + d_{\text{out}} Q_{\text{in}})$$

$$+ (N - 2n) (d_{\text{out}} Q_{\text{out}} + d_{\text{out}} Q_{\text{out}}) \Big)$$

$$= (1 - \mu) \Big(d_{\text{out}} + d_{\text{self}} Q_{\text{out}} + (n - 1) (d_{\text{out}} Q_{\text{in}} + d_{\text{in}} Q_{\text{out}}) + (N - 2n) d_{\text{out}} Q_{\text{out}} \Big)$$
(5c)

Wright-Fisher For $j \neq i$,

$$Q_{ij} = (1 - \mu)^2 \sum_{k,l=1}^{N} d_{ki} d_{lj} Q_{kl}.$$
 (6a)

When $j \neq i$, $j \in G_i$,

$$Q_{\text{in}} = (1 - \mu)^{2} \left[\left(d_{\text{self}} d_{\text{in}} + d_{\text{in}} d_{\text{self}} + (n - 2) d_{\text{in}} d_{\text{in}} + (N - n) d_{\text{out}} d_{\text{out}} \right) \right.$$

$$\left. + \left(d_{\text{self}} d_{\text{self}} + (n - 2) d_{\text{self}} d_{\text{in}} \right.$$

$$\left. + (n - 1) d_{\text{in}} d_{\text{in}} + (n - 2) d_{\text{in}} d_{\text{self}} \right.$$

$$\left. + (n - 2) (n - 2) d_{\text{in}} d_{\text{in}} + (N - n) (n - 1) d_{\text{out}} d_{\text{out}} \right) Q_{\text{in}} \right.$$

$$\left. + \left((N - n) d_{\text{self}} d_{\text{out}} + (N - n) (n - 1) d_{\text{in}} d_{\text{out}} \right.$$

$$\left. + (N - n) d_{\text{out}} d_{\text{self}} + (N - n) (n - 1) d_{\text{out}} d_{\text{in}} \right.$$

$$\left. + (N - n) (N - 2n) d_{\text{out}} d_{\text{out}} \right) Q_{\text{out}} \right]$$

$$= (1 - \mu)^{2} \left[\left(2 d_{\text{in}} d_{\text{self}} + (n - 2) d_{\text{in}}^{2} + (N - n) d_{\text{out}}^{2} \right) \right.$$

$$\left. + \left(d_{\text{self}}^{2} + 2 (n - 2) d_{\text{self}} d_{\text{in}} + (n^{2} - 3n + 3) d_{\text{in}}^{2} + + (N - n) (n - 1) d_{\text{out}}^{2} \right) Q_{\text{in}} \right.$$

$$\left. + \left(2 (N - n) d_{\text{self}} d_{\text{out}} + 2 (N - n) (n - 1) d_{\text{in}} d_{\text{out}} \right.$$

$$\left. + (N - n) (N - 2n) d_{\text{out}} d_{\text{out}} \right) Q_{\text{out}} \right]$$

$$\left. + (6b)$$

And when $j \not\in G_i$, we have

$$Q_{\text{out}} = (1 - \mu)^{2} \left[\left(2d_{\text{self}} d_{\text{out}} + 2(n - 1)d_{\text{in}} d_{\text{out}} + (N - 2n)d_{\text{out}}^{2} \right) + \left(2(n - 1)d_{\text{self}} d_{\text{out}} + 2(n - 1)^{2} d_{\text{in}} d_{\text{out}} + (N - 2n)(n - 1)d_{\text{out}}^{2} \right) Q_{\text{in}} + \left(d_{\text{self}} d_{\text{self}} + (n - 1)d_{\text{self}} d_{\text{in}} + (N - 2n)d_{\text{self}} d_{\text{out}} + (n - 1)d_{\text{in}} d_{\text{self}} + (n - 1)^{2} d_{\text{in}}^{2} + (n - 1)(N - 2n)d_{\text{in}} d_{\text{out}} + (N - n)d_{\text{out}} d_{\text{self}} + (N - n)(n - 1)d_{\text{out}} d_{\text{in}} + (N - n)(N - 2n)d_{\text{out}} d_{\text{out}} \right) Q_{\text{out}} \right].$$
(6c)

PAS FINI

Appendix

All combinations for i, j, k, l. Notation: (i, j) means that i and j are in the same deme, but are different; G_i refers to the deme containing site i.

j	k	l	Notation	Count	d_{ji}	d_{li}	e_{kl}	Q_{jk}
j = i	k = i	l = i	(i = j = k = l)	1	$d_{ m self}$	$d_{ m self}$	$e_{ m self}$	1
j = i	k = i	$l \neq i; l \in G_i$	(i=j=k,l)	n-1	$d_{ m self}$	$d_{ m in}$	$e_{\rm in}$	1
j = i	k = i	$l \not\in G_i$	(i=j=k),(l)	N-n	$d_{ m self}$	$d_{ m out}$	$e_{ m out}$	1
j = i	$k \neq i; k \in G_i$	l = i	(i=j=l,k)	n-1	$d_{ m self}$	$d_{ m self}$	$e_{\rm in}$	$Q_{\rm in}$
j = i	$k \neq i; k \in G_i$	l = k	(i = j, k = l)	n-1	$d_{ m self}$	$d_{ m in}$	$e_{ m self}$	$Q_{\rm in}$
j = i	$k \neq i; k \in G_i$	$l\neq i,k;l\in G_i$	(i=j,k,l)	(n-1)(n-2)	$d_{ m self}$	$d_{ m in}$	$e_{\rm in}$	$Q_{\rm in}$
j = i	$k \neq i; k \in G_i$	$l \not\in G_i$	(i=j,k),(l)	(n-1)(N-n)	$d_{ m self}$	$d_{ m out}$	$e_{ m out}$	$Q_{\rm in}$
j = i	$k \not\in G_i$	l = i = j	(i=j=l),(k)	(N-n)	$d_{ m self}$	$d_{ m self}$	e_{out}	Q_{out}
j = i	$k \not\in G_i$	$l \neq i, l \in G_i$	(i=j,l),(k)	(N-n)(n-1)	$d_{ m self}$	$d_{ m in}$	e_{out}	Q_{out}
j = i	$k \not\in G_i$	l = k	(i=j), (k=l)	(N-n)	$d_{ m self}$	$d_{ m out}$	$e_{ m self}$	Q_{out}
j = i	$k \not\in G_i$	$l \neq k; l \in G_k$	(i=j),(k,l)	(N-n)(n-1)	$d_{ m self}$	$d_{ m out}$	$e_{\rm in}$	Q_{out}
j = i	$k \not\in G_i$	$l \not\in G_i, G_k$	(i=j),(k),(l)	(N-n)(N-2n)	$d_{ m self}$	$d_{ m out}$	e_{out}	Q_{out}
$j \neq i, j \in G_i$	k = i	l = i	(i=k=l,j)	(n-1)	$d_{ m in}$	$d_{ m self}$	$e_{ m self}$	$Q_{\rm in}$
$j \neq i, j \in G_i$	k = i	l = j	(i = k, j = l)	(n-1)	$d_{ m in}$	$d_{ m in}$	$e_{\rm in}$	$Q_{\rm in}$
$j\neq i, j\in G_i$	k = i	$l\neq i,j;l\in G_i$	(i=k,j,l)	(n-1)(n-2)	$d_{ m in}$	$d_{ m in}$	$e_{\rm in}$	$Q_{\rm in}$
$j \neq i, j \in G_i$	k = i	$l \not\in G_i$	(i=k,j),(l)	(n-1)(N-n)	$d_{ m in}$	$d_{ m out}$	e_{out}	$Q_{\rm in}$
$j \neq i, j \in G_i$	k = j	l = i	(i=l,j=k)	(n-1)	$d_{ m in}$	$d_{ m self}$	$e_{\rm in}$	1
$j \neq i, j \in G_i$	k = j	l = j	(i, j = k = l)	(n-1)	$d_{ m in}$	$d_{ m in}$	$e_{ m self}$	1
$j \neq i, j \in G_i$	k = j	$l\neq i,j;l\in G_i$	(i,j=k,l)	(n-1)(n-2)	$d_{ m in}$	$d_{ m in}$	$e_{\rm in}$	1
$j \neq i, j \in G_i$	k = j	$l \not\in G_i$	(i, j = k), (l)	(n-1)(N-n)	$d_{ m in}$	$d_{ m out}$	e_{out}	1
$j\neq i, j\in G_i$	$k\neq i,j;k\in G_i$	l = i	(i=l,j,k)	(n-1)(n-2)	$d_{ m in}$	$d_{ m self}$	$e_{\rm in}$	$Q_{\rm in}$
$j \neq i, j \in G_i$	$k \neq i, j; k \in G_i$	l = j	(i, j = l, k)	(n-1)(n-2)	$d_{ m in}$	$d_{ m in}$	$e_{\rm in}$	$Q_{\rm in}$
$j\neq i, j\in G_i$	$k\neq i,j;k\in G_i$	l = k	(i, j, k = l)	(n-1)(n-2)	$d_{ m in}$	$d_{ m in}$	$e_{ m self}$	$Q_{\rm in}$
$j \neq i, j \in G_i$	$k \neq i, j; k \in G_i$	$l\neq i,j,k;l\in G_i$	(i, j, k, l)	(n-1)(n-2)(n-3)	$d_{ m in}$	$d_{ m in}$	$e_{\rm in}$	$Q_{\rm in}$
$j\neq i, j\in G_i$	$k \neq i, j; k \in G_i$	$l \not\in G_i$	(i,j,k),(l)	(n-1)(n-2)(N-n)	$d_{ m in}$	$d_{ m out}$	e_{out}	$Q_{\rm in}$

C	
	_

				**		7	•		_
	j	k	l	Notation	Count	d_{ji}	d_{li}	e_{kl}	Q_{jk}
	$j \neq i; j \in G_i$	$k \not\in G_i$	l = i	(i=l,j),(k)	(n-1)(N-n)	$d_{ m in}$	$d_{ m self}$	$e_{ m out}$	Q_{out}
	$j \neq i; j \in G_i$	$k \not\in G_i$	l = j	(i, j = l), (k)	(n-1)(N-n)	$d_{ m in}$	$d_{ m in}$	$e_{ m out}$	Q_{out}
	$j \neq i; j \in G_i$	$k \not\in G_i$	$l\neq i,j;l\in G_i$	(i, j, l), (k)	(n-1)(N-n)(n-2)	$d_{ m in}$	$d_{ m in}$	e_{out}	Q_{out}
	$j \neq i; j \in G_i$	$k \not\in G_i$	l = k	(i,j),(k=l)	(n-1)(N-n)	$d_{ m in}$	$d_{ m out}$	$e_{ m self}$	Q_{out}
	$j \neq i; j \in G_i$	$k \not\in G_i$	$l \neq k; l \in G_k$	(i,j),(k,l)	(n-1)(N-n)(n-1)	$d_{ m in}$	$d_{ m out}$	$e_{ m in}$	Q_{out}
	$j \neq i; j \in G_i$	$k \not\in G_i$	$l \not\in G_i, G_k$	(i,j),(k),(l)	(n-1)(N-n)(N-2n)	$d_{ m in}$	$d_{ m out}$	$e_{ m out}$	Q _{out}
	$j \not\in G_i$	k = i	l = i	(i=k=l),(j)	(N-n)	$d_{ m out}$	$d_{ m self}$	$e_{ m self}$	Q_{out}
	$j \not\in G_i$	k = i	$l \neq i; l \in G_i$	(i=k,l),(j)	(N-n)(n-1)	$d_{ m out}$	$d_{ m in}$	$e_{\rm in}$	Q_{out}
	$j \not\in G_i$	k = i	l = j	(i=k), (j=l)	(N-n)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}
	$j \not\in G_i$	k = i	$l\neq j; l\in G_j$	(i=k),(j,l)	(N-n)(n-1)	$d_{ m out}$	$d_{ m out}$	$e_{\rm out}$	Q_{out}
	$j \not\in G_i$	k = i	$l \not\in G_i, G_j$	(i=k),(j),(l)	(N-n)(N-2n)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}
	$j \not\in G_i$	$k \neq i; k \in G_i$	l = i	(i=l,k),(j)	(N-n)(n-1)	$d_{ m out}$	$d_{ m self}$	$e_{\rm in}$	Q_{out}
0	$j \not\in G_i$	$k \neq i; k \in G_i$	l = k	(i, k = l), (j)	(N-n)(n-1)	$d_{ m out}$	$d_{ m in}$	$e_{ m self}$	Q_{out}
	$j \not\in G_i$	$k \neq i; k \in G_i$	$l\neq i,k;l\in G_i$	(i,k,l),(j)	(N-n)(n-1)(n-2)	$d_{ m out}$	$d_{ m in}$	$e_{\rm in}$	Q_{out}
	$j \not\in G_i$	$k \neq i; k \in G_i$	l = j	(i,k),(j=l)	(N-n)(n-1)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}
	$j \not\in G_i$	$k \neq i; k \in G_i$	$l \neq j; l \in G_j$	(i,k),(j,l)	(N-n)(n-1)(n-1)	$d_{ m out}$	$d_{ m out}$	$e_{ m out}$	Q_{out}
	$j \not\in G_i$	$k \neq i; k \in G_i$	$l \not\in G_i, G_j$	(i,k),(j),(l)	(N-n)(n-1)(N-2n)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}
	$j \not\in G_i$	k = j	l = i	(i=l), (j=k)	(N-n)	$d_{ m out}$	$d_{ m self}$	e_{out}	1
	$j \not\in G_i$	k = j	$l \neq i; l \in G_i$	(i,l),(j=k)	(N-n)(n-1)	$d_{ m out}$	$d_{ m in}$	e_{out}	1
	$j \not\in G_i$	k = j	l = j	(i), (j=k=l)	(N-n)	$d_{ m out}$	$d_{ m out}$	$e_{ m self}$	1
	$j \not\in G_i$	k = j	$l \neq j; l \in G_j$	(i), (j=k,l)	(N-n)(n-1)	$d_{ m out}$	$d_{ m out}$	$e_{\rm in}$	1
	$j \not\in G_i$	k = j	$l \not\in G_i, G_j$	(i), (j=k), (l)	(N-n)(N-2n)	$d_{ m out}$	$d_{ m out}$	$e_{ m out}$	1

j	k	l	Notation	Count	d_{ji}	d_{li}	e_{kl}	Q_{jk}
$j \not\in G_i$	$k \neq j; k \in G_j$	l = i	(i=l),(j,k)	(N-n)(n-1)	$d_{ m out}$	$d_{ m self}$	$e_{ m out}$	$Q_{\rm in}$
$j \not\in G_i$	$k \neq j; k \in G_j$	$l\neq i; l\in G_i$	(i,l),(j,k)	(N-n)(n-1)(n-1)	$d_{ m out}$	$d_{ m in}$	e_{out}	$Q_{\rm in}$
$j \not\in G_i$	$k \neq j; k \in G_j$	l = j	(i), (j=l,k)	(N-n)(n-1)	$d_{ m out}$	$d_{ m out}$	$e_{\rm in}$	$Q_{\rm in}$
$j \not\in G_i$	$k \neq j; k \in G_j$	l = k	(i),(j,k=l)	(N-n)(n-1)	$d_{ m out}$	$d_{ m out}$	$e_{ m self}$	$Q_{\rm in}$
$j \not\in G_i$	$k \neq j; k \in G_j$	$l\neq j,k;l\in G_j$	(i),(j,k,l)	(N-n)(n-1)(n-2)	$d_{ m out}$	$d_{ m out}$	e_{in}	$Q_{\rm in}$
$j \not\in G_i$	$k \neq j; k \in G_j$	$l \not\in G_i, G_j$	(i),(j,k),(l)	(N-n)(n-1)(N-2n)	$d_{ m out}$	$d_{ m out}$	e_{out}	$Q_{\rm in}$
$j \not\in G_i$	$k \not\in G_i, G_j$	l = i	(i=l),(j),(k)	(N-n)(N-2n)	$d_{ m out}$	$d_{ m self}$	e_{out}	Q_{out}
$j \not\in G_i$	$k \not\in G_i, G_j$	$l \neq i; l \in G_i$	(i,l),(j),(k)	(N-n)(N-2n)(n-1)	$d_{ m out}$	$d_{ m in}$	e_{out}	Q_{out}
$j \not\in G_i$	$k \not\in G_i, G_j$	l = j	(i), (j=l), (k)	(N-n)(N-2n)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}
$j \not\in G_i$	$k \not\in G_i, G_j$	$l \neq j; l \in G_j$	(i),(j,l),(k)	(N-n)(N-2n)(n-1)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}
$j \not\in G_i$	$k \not\in G_i, G_j$	l = k	(i),(j),(k=l)	(N-n)(N-2n)	$d_{ m out}$	$d_{ m out}$	$e_{ m self}$	Q_{out}
$j \not\in G_i$	$k \not\in G_i, G_j$	$l \neq k; l \in G_k$	(i),(j),(k,l)	(N-n)(N-2n)(n-1)	$d_{ m out}$	$d_{ m out}$	e_{in}	Q_{out}
$j \not\in G_i$	$k \not\in G_i, G_j$	$l \not\in G_i, G_j, G_k$	(i),(j),(k),(l)	(N-n)(N-2n)(N-3n)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}