

Advanced Entry Systems Concepts

International Planetary Probe Workshop – 8
Portsmouth VA
June 4-10, 2011

Charles.H.Campbell@nasa.gov

NASA-JSC Applied Aeroscience and CFD Branch/EG3

Blunt Entry Vehicles

Majority of entry spacecraft are blunt vehicles flown with low lift-drag at trim conditions

Blunt Vehicle Landing Systems

Pathfinder/Sojourner

Lifting Entry Vehicles

Entry Vehicles that generate at least moderate lift-drag ratios are much less common. On Earth, they enable runway landing.....

Flight Test Vehicles

Testing of new technologies is critical to developing knowledge and experience necessary to utilize new approaches

Ideas from the Past can Inform Us

“FIRST” – Rogallo wing entry vehicle

W. Von Braun

Entry Vehicle Concepts

Exploration Systems MD

Constellation
ETDD

Space Operations MD

ISS Utilization
CCDev
COTS

Office of Chief Tech.

Early Stage Innovation
Game Changing Tech.
Cross Cutting Tech.

Other Govm't Agencies

DARPA
AFRL
AFOSR
DOE

*NASA OCT Grand Challenges can identify framework,
and OCT/NRC Roadmapping can define goals.*

Modeling / Ground /Flight Testing

Three pronged approach

- Integrity of Flight Environments modeling *requires* 3-legged stool approach
- Demonstration of vehicle design margin requires application of flight relevant models validated/calibrated with ground and flight data
- Closing a design and certifying a flight vehicle requires an integrated modeling framework which captures all relevant phenomena
- Current SOA for integrated EDL analyses utilizes 6-DOF monte carlo with *simplified response models* using material, aero, aerothermodynamic, atmospheric, etc. databases
- Enhanced integrated entry analyses should leverage high fidelity response surface modeling and inclusion of detailed physical models where possible

Integrated Simulation is a surrogate for flight test data.

An *integrated analyses framework* is required for DDT&E, and should be performed with the highest practical fidelity using comprehensive SOA.

Ideas that May Enable Future Capabilities

- Flexible Thermal Protection Systems
- Combined aero/propulsive capabilities
- Inflatable/Deployable approaches that are scalable across large range of masses
- On-orbit construction of large vehicle systems
- Supersonic Retro-Propulsion
- Auto-rotation landers
- More capable supersonic parachutes

- Ultimately, the entry vehicle aerodynamics and controllability must provide for sufficient altitude to support deployment terminal guidance and touchdown systems
 - Is supersonic reconfiguration possible?
 - Is sufficient lift/drag provided to stage for terminal approach?
 - Are vehicle touchdown systems appropriate to the task of landing in a variety of gravitational and planetary surface characteristics?