Project 3 — SST-2 Sentiment Classification Findings Report

Longjie Zhang

May 10, 2025

1 Model Performance & Key Hyper-parameters

Table 1: Best dev/test scores and hyper-parameters

Model	Core hyper-params	Dev Acc.	Test Acc.	Macro-F1
Logistic Regression	$C=4, L2, max_iter = 1000$	0.823	0.821	0.82
Linear SVM	C=2, linear kernel	0.852	0.850	0.85
Random Forest	$n_{\text{estim}} = 500$, depth = free	0.790	0.783	0.78
XGBoost	$n_{\text{estim}} = 400, \text{ depth} = 6, \eta = 0.1$	0.865	0.862	0.86
FF-NN (GloVe frozen)	${ m emb_dim} = 100, { m hidden} = 256, \ { m dropout} = 0.5$	0.847	0.844	0.84
FF-NN (GloVe trainable)	${ m emb_dim} = 100, { m hidden} = 256, \ { m dropout} = 0.5$	0.861	0.859	0.86
BERT-base	$lr = 2 \times 10^{-5}$, epochs = 3, batch = 16	0.931	0.927	0.93

2 Explanation of Key Choices (Detailed)

Table 2: Design decisions, gains and trade-offs

Stage	Rationale	Δ Score	Trade-offs
Vectoriser			
$\begin{array}{l} \text{TF-IDF} \rightarrow \text{GloVe} \\ \rightarrow \text{BERT} \end{array}$	Bigrams capture short negations; GloVe densifies sparse text; contex- tual BERT resolves word sense.	$+3\mathrm{pp}\\+2\mathrm{pp}\\+7\mathrm{pp}$	Memory growth; BERT needs GPU.
Regularisers			
C (LR/SVM), weight_decay (BERT)	Swept $C \in [0.25, 8]$; 0.01 weight-decay curbed over-fit.	$+1.8\mathrm{pp}\ +1.1\mathrm{pp}\ +0.6\mathrm{pp}$	Larger search space; too much decay slows convergence.
Learning rate	Two-tier schedule for FF-NN; LR-finder chose 2×10^{-5} for BERT.	$+1.5\mathrm{pp}\\+0.9\mathrm{pp}$	Extra tuning epoch; tiny LR slows training.
Sequence length Covers 95 % of SST-2 sentences $max_length = avoids truncating negations.$		$+0.4\mathrm{pp}$	+9 % GPU memory.
Batch & GradAcc	Batch $16 + \text{grad-acc}\ 2$ emulates batch 32 within 12 GB.	0	8 % longer wall-time.
$\begin{array}{ll} Early & stopping \\ \text{(patience} = 2) \end{array}$	Prevents late-epoch drift.	0.6 pp variance	Risk of premature stop if patience too small.

3 Analysis

3.1 Parameter-tuning Workflow

- 1. Prototype grid → random search. A 3-parameter grid on 5 % data fixed sensible bounds; RandomizedSearchCV (30 trials) then found near-optimal XGBoost settings in under one hour.
- 2. **Nested CV**. 5-fold outer loops gave unbiased test estimates; 3-fold inner loops tuned C and tree depth.
- 3. **Progressive freezing**. Compared all-trainable vs. frozen vs. delayed-unfreeze (epoch 3). Delayed won by +0.3 pp but we chose all-trainable for reproducibility.
- 4. LR-range test for BERT. 200-step sweep revealed a flat minimum at 2×10^{-5} ; used with 10 % linear warm-up and weight-decay 0.01.

3.2 Result Interpretation

- Classical TF-IDF + linear models plateau near 85 %—surface n-grams only.
- Tree ensembles add non-linear n-gram interactions (+1 pp) but risk memorisation.
- Static-embedding FF-NN exploits semantic similarity (-2 pp error); fine-tuning adds $+1\frac{1}{2}$ pp.
- BERT captures long-range context and negation; macro-F1 \uparrow 0.93, dev-loss flattens after 3 epochs.

Table 3: Progression from classical ML to Transformers

Aspect	Classical ML	Static-embed NN	Transformer
Feature scope	Sparse n-grams	Dense global vectors	Contextual sub-words
Parameters	< 1 M	$\sim 2 \mathrm{\ M}$	$109 \mathrm{\ M}$
GPU time (V100)	— (CPU)	5 min	18 min
Accuracy	8286~%	8486~%	92 ~%
Interpretability	High	Medium	Low (needs attention maps)

4 Conclusion

Top performers. Fine-tuned **BERT-base** (92.7 % / 0.93) and **XGBoost** (86.2 % / 0.86) lead their categories.

Why BERT wins: contextual embeddings resolve clause-internal negation and leverage 330 M-token pre-training.

Where XGBoost shines: < 1 ms CPU inference and ranked feature importance support edge deployment and error analysis.

Sentiment insights. BERT's mean positive-class probability is $0.64~(\pm 0.21)$, aligning with dataset balance; errors gather on sarcasm and idioms.

Take-aways:

- 1. Deep representation learning yields ≈ 7 pp gain, but demands LR scheduling and memory-aware batching.
- 2. Classical models remain viable when compute or transparency is paramount.
- 3. BERT probabilities can serve directly as a high-resolution sentiment index in down-stream dashboards.