Linguagens Formais e Autômatos

Prof: Maurilio Martins Campano Júnior

Hierarquia de Chomsky

Linguagem	Gramática	Reconhecedor
Tipo 0: Linguagem Enumerável Recursivamente	Irrestrita	Máquina de Turing
Tipo 1: Sensíveis ao Contexto	Sensíveis ao Contexto	Autômato Limitado Linearmente
Tipo 2: Livre de Contexto	Livre de Contexto	Autômato com Pilha
Tipo 3: Regulares	Regular	Autômato Finito

- Uma linguagem livre de contexto é uma linguagem que pode ser descrito por uma gramática livre de contexto
- São as gramáticas onde todas as regras de produção pertencentes ao conjunto P são da forma:
 - $A \rightarrow \beta$
 - Onde $\beta \in (V \cup T)^*$
 - A ∈ V

- Considere a linguagem:
 - $L_1 = \{a^nb^n \mid n \ge 0\}$
- Qual a gramática que gera a linguagem L_1 ?
- $G_1 = (\{S\}, \{a, b\}, P_1, S)$, onde:
 - $P_1 = \{ 1 \} S \rightarrow aSb$ 2) $S \rightarrow \lambda$ }

- Considere a linguagem:
 - $L_2 = \{0^n 1^{2n} 0^m \mid n \ge 0, m \ge 0\}$
- Qual a gramática que gera a linguagem L₂?
- $G_2 = (\{S, A, B\}, \{0, 1\}, P, S), \text{ onde:}$
 - $P = \{ 1 \} S \rightarrow AB$ 2) $A \rightarrow 0A11$ 3) $A \rightarrow \lambda$ 4) $B \rightarrow 0B$ 5) $B \rightarrow \lambda$

- Considere a linguagem:
 - $L_3 = \{w \in \{a,b\}^+ | w \text{ cont\'em n\'umeros de a's igual ao n\'umeros de b's} \text{ ou } \{w \in \{a,b\}^+ | |w|_a = |w|_b\}$
- Qual a gramática que gera a linguagem L_3 ?
- $G_3 = (\{S, A, B\}, \{a, b\}, P, S), onde:$
 - $P = \{ 1 \} S \rightarrow aB$
 - 2) $S \rightarrow bA$
 - 3) $A \rightarrow a$
 - 4) $A \rightarrow aS$
 - $5) A \rightarrow bAA$
 - 6) $B \rightarrow b$
 - 7) $B \rightarrow bS$
 - 8) $B \rightarrow aBB$

- Considere a linguagem:
 - $L_4 = \{a^m b^n a^m \mid n \ge 1, m \ge 1\}$
- Qual a gramática que gera a linguagem L_4 ?
- $G_4 = (\{S, B\}, \{a, b\}, P, S), \text{ onde:}$
 - $P = \{ 1 \} S \rightarrow aSa$
 - 2) $S \rightarrow aBa$
 - 3) $B \rightarrow bB$
 - 4) $B \rightarrow b$

}

- Gramática Livre de Contexto que reconhece expressões aritméticas
- $L_5 = \acute{e}$ composta de expressões aritméticas contendo colchetes balanceados, dois operadores e um operando
- $G_5 = (\{E\}, \{+, *, [,], x\}, P_5, E)$, onde: • $P_5 = \{1\} E \rightarrow E + E$ 2) $E \rightarrow E * E$ 3) $E \rightarrow [E]$ 4) $E \rightarrow x$ }