

VALORIZING DARBHA GRASS FIBRE TO DEVELOP ECO FRIENDLY BIO-NANOCOMPOSITE BASED ON PP / EPDM FOR IMPACT RESISTANT APPLICATION

Akhil.K(MUT18ME008), Bharath.P.B (MUT18ME022), Jonathan Reggie Ebenezer(MUT18ME038), Sai Nived.M.V. (MUT18ME055)

Department of Mechanical Engineering, Muthoot Institute of Technology and Science Internal Guide: Dr. Praveen K.M, Prof. Rony Thomas Murickan

External Guide: Dr. Neetha John (Central Institute of Plastics and Technology(CIPET))

PROBLEM DESCRIPTION

- Polypropylene(PP) is a light weight plastic polymer which has a market share of 65-75% due to its
 excellent properties applicable in many applications.
- But Polypropylene has low impact strength.
- · On mixing PP with an elastomer its impact strength is found to increase
- Tensile strength decreases on mixing with the elastomer.
- With a better elastomer and ternary fiber material we can produce a composite with high strength and tensile properties
- A novel fiber from Darbha plants (Darbha fiber) with excellent tensile properties has been identified to be used as the ternary phase

METHODOLGY Ethylene Propylene Diene MonomertEPDMJKethan 9565Q Synthetic Rubber Resistance to oxygen, ozone, UV, and heat Darbha GrassDemonstrativa bipinnata Cellulose70.58% Widely available No major studies conducted EXTRUDER PELLETIZER INJECTION MOULDING

RESULTS

CHEMICAL RETTED-DARBHA FIBER

Fiber-matrix debonding

11 32 SEI

156V X2,500 15pm 09 32 SEI

Fiber Fracture

An increase in **flexural strength** and **flexural modulus** was observed as the **flexural modulus** was observed as the strength value increases. The flexural strength value increases from 16.3Mpa for 5% with 62 N/mm2,10% with 63.6 N/mm2 5% filler to 21.4Mpa for 20% filler and 20% with 65 N/mm2. For 15% filler

filler fraction increases. The flexural strength value increases from 16.3Mpa for 5% with 62 N/mm2,10% with 63.6 N/mm2 5% filler to 21.4Mpa for 20% filler amples. Similarly the flexural modulus also increase from 449 MPa for 5% filler decreasing this may be due to fibre to 645 MPa for 20% filler.

In Impact Test impact strength increases as the fibre content increases. The 15 percent filler sample's impact intensity rises from 3.06 KJ/m2 to 5.99 KJ/m2. The value reduces to 4.71 KJ/m2 for the 20% sample. For strong impact strength, an ideal bonding level is necessary, which in our investigation is demonstrated by 15% fibre content.

From the Scanning Electron Microscopy(SEM) of PP/EPDM/15% Darbha fiber. it is evident that the fracture propagation is mainly due to:

No indication of the formation of Darbha fiber

- Fiber-pull outs
- Fiber-matrix debonding

CONCLUSIONS

- Successful fabrication of the Darbha fiber reinforced thermoplastic elastomeric composite has been done by injection moulding
- The tensile, Impact, Hardness and flexural properties are found to increase with increase in fiber content
- It was found from the study that the sample with 15% fiber content showed the highest impact resistance.
- Properties like tensile, impact and flexural strength is found to be greatly affected by void content.
- SEM results shows minor fiber cracks, fiber pullouts and debonding in some regions.
- Possible future work can be carried out by selecting a suitable bonding material

FUTURE WORK

- Sound absorption-Darbha grass posses greater sound absorption properties with NRC(Noise Reduction Coefficient) of 8.5
- Radiation shielding- Darbha grass shows the ability of shielding from X-Ray radiation
- Use of compatibilizers in the surface treatment of darbha fiber for better compatibility
- Supercapacitor- Darbha grass has good electrochemical properties and can help in creating a suer-capacitor with excellent energy density and power density

REFERENCE

- Maddah, Hisham A. "Polypropylene as a promising plastic: A review." Am. J. Polym Sci 6, no. 1 (2016): 1-11.
- . Shirvanimoghaddam, Kamyar, K. V. Balaji, Ram Yadav, Omid Zabihi, Mojtaba Ahmadi, Philip Adetunji, and Minoo Naebe. "Balancing the toughness and strength in polypropylene composites." Composites Part B: Engineering 223 (2021): 109121.
- Balaji, A. N., M. K. V. Karthikeyan, and V. Vignesh. "Characterization of new natural cellulosic fiber from kusha grass." International Journal of Polymer Analysis and Characterization 21, no. 7 (2016): 599-605.