

	SESSIONAL A MINATION-I
Branch: School o	SESSIONAL EXAMINATION-I ODD SEM, 2023-2024 Genering and Technology Modern Computational Physics Batch: 2023, Sem: 19 23PH00
Course Title	Madam Commutation I D
D. No. of Studer	Course
3 1 1	9 8 1 1 0 5 Max. Marks 90 Minu

Instructions:

- Attempt questions in order.
- Students not to write anything on question paper
- Use of calculator allowed.

Course Learning Outcomes:

CLO-I	Apply the knowledge of gradient, divergence, curi and Maxwell's equations to understand the propagation waves
CLO-2	Apply the principles of lasers and optical fibres to to proceed problems in engineering
CLO-3	Analyze scientific measurements related to magnetic materials and superconductivity for engineering ap-
CLO-4	Apply fundamental concepts of physics to suggest appropriate solutions to practical engineering proofers
CLO-5	Probe the physics behind microscopic systems using concepts of quantum mechanics and gaming science.

(All Questions are Compulsory, Each question carries 01 mark) (5x1=5)

For a solenoidal vector field F

Divergence of F is zero

(ii) Curl of F is zero

(iii) Gradient of F is zero

(iv) None of the above

If E and B are electric and magnetic fields, Maxwell's equation $\nabla \times H = J + \frac{\partial D}{\partial t}$ represents

- 2. Coulombs's law of electrostatics
- (ii) Gauss's Law of magnetostatics
- · (iii) Modified Ampere's circuital law
- (iv) Faraday's law of EMI

An electron undergoes a transition between two energy states E1 and E2 if

3. (i) $E_2 - E_1 > hv$ $E_1 - E_2 = hv$

1(iii) E2-E1<hv

(iv) $E_2 - E_1 = hv$

The metastable state does not exist in a

3 level laser

(ii) 4 level laser

· (iii) 2 level laser

(iv) 5 level laser

 Explain the construction and working of the Ruby laser using a suitable energy diagram. Discuss its advantages and disadvantages.

MM XCO

Prergence =0 D.A=0 =501 RCU/1 =0 AXA = Irrot

SECTION - B

2227.1	s questions, each question carries 02 marks) (5x2=10)	
	(Attempt any 5 questions, each question carries 02 marks) (5x2=10)	CLO-2'0 (7
	saland propagation through an optical fibre with the help of a diagram.	Lu
6.	Show the process of signal propagation through an Optical fibre with the help of a diagram. Show the process of signal propagation through an Optical fibre with the help of a diagram. Distinguish between step index and graded index multimode fibres.	CLO-2
	Distinguish between step index and glade List down various applications of optical fibres in engineering and technology. 233.632	CLO-2
7.	10 - Gane Of Option	-
8.	List down various approved hard magnetic materials.	CLO-3
9.	List down various applications of the list down various applications of the list down various applications of the list of suitable mathematical expression.	CLO-3
9.	Differentiate between soft and hard mathematical expression. Discuss isotope effect with the help of suitable mathematical expression.	
10.	Discuss isotope effect with the help of sub- Show on the basis of Meissner effect that superconductors are diamagnetic materials.	CLO-3
11.	- Show on the basis of Melssalet	11 6
	Show on the basis of Meissand	\sim
	(Attempt any 3 questions, each question carries 5 marks) (3x5=15)	()
	(Attempt any 3 questions, each questions, each questions, each questions)	1 12/
	Determine the acceptance angle and numerical aperture of an optical fibre for which the core	CLO-2
12.	Determine the acceptance angle and fluid 1.59, respectively.	1
		CLO-2
13.	whose core and cladding retractive indices	
10000000	of modes and normalized frequency. Give the characteristics of ferromagnetic materials. Why they are used in the production of	CLO-3
14.	normanist magnets?	
	We are exceptibility $4 \times 10^{\circ}$ hs placed in an external magnetic field strength of	f
	Calculate (i) the intensity of magnetization and (ii) magnetic riux density. The	CLO-3
15.	Tability of free space (us) is $4\pi \times 10^{\circ}$ Death 1	
	perinteability of free space (μ ₀) is $4\pi \times 10^{-7}$ NA maybe fix fixed	DA A
	H am = The BI=.	
	H (α_{M}) = ' $\frac{4 \times 10^{-5}}{\text{SECTION-D}}$ B I= -	~
(Attem)	ot any one question, each question carries 10 marks, and subparts (if any) carry equal weightage	e) (1x10=10)
	A light signal is launched into the core of an optical fibre for which core and cladding refractive indices are μ_1 and μ_2 , respectively. Derive the expressions for the acceptance ang	le le
16.	and numerical aperture of this optical fibre if the signal enters the fibre from a medium	of CLO-2
	refractive index $\mu_0 = 0$.	
	Distinguish among diamagnetic paramagnetic and ferromagnetic materials Show	he
17.	hysteresis behaviour of terromagnetic materials on the basis of the hysteresis loop.	CLO-3
	· T ·	
	Of a GN HTS O MUSE	**
	The state of the	
	T = Will Marie Com	سلب
	J 4 1.	6 L
	HXXIV-(T)//	-59
	412=1	2 /
	1 Nacolu	L-U2
	(MMX, NASY.9)	
		112 1
	2-(10-1/41)=/(1)	(6.1)(
	€=sin-1(4)=1	
	· · · · · · · · · · · · · · · · · · ·	

1	/ ·/	TERM	ONS
- 7		ND TERM EXAMINODD SEM, AY: 202	1ATIONS 12 2024
	SOET	Batch: 202	ster: I Modern and Computational Physics
1/	Code Code	Batch: 2023, Semes	Modern and Company
1/8	Studen	Max. Marie	60
		Max Duration	3 Hours
# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ns:	ation	
1 200 11	tempt questions in order.	7	
. 50	udents not to write anything on que of calculator is allowed.	luestion paper.	
- 05	arning Outcomes:	Michaelen	d Maxwell's equations to understand propagation of
Course	Apply the knowledge of gradien	it dive-	well's equations to understant
CLO-1	radio waves.	a, divergence; curl an	d Maxwering
21.03	Apply the principles of lasers an	d ontical Gr	ve practical problems in engineering
CLO-2		opercal fibres to sol	ve place the superconductivity for engineering
CLO-3			
CLO-5	applications	to magnet	est appropriate solutions to practical engineering
CLO-4	Apply fundamental concepts	of physics to sugg	est appropriate solution
CLC 1	problems	- w suge	sing concepts of quantum mechanics and gamin
CLO-5	Probe the physics behind mic	roscopic systems us	sing concepts of quant
	science.		
		024004 - 1000000	magt mswer, ea
·	-1516	SECTION-	-A negative marking for incorrect distre-
(Mueellor	s I to 3 has four choices, out of	sardistante escales man t	
Sacanon		which only one is co	rect, no mes
Question	q	uestion carries 01 m	-A rrect, no negative marking for incorrect answer, each ark) (5x1=5)
	e's theorem converts	uestion carries 01 m	
	e's theorem converts	S	
			Surface integral into line integral
1. Stok	e's theorem converts Surface integral into volume i	ntegral (b)	Surface integral into line integral
 Stok a) c) 	e's theorem converts Surface integral into volume inte	ntegral (_b) gral d)	Surface integral into line integral Volume integral into line integral
 Stok a) c) 	e's theorem converts Surface integral into volume inte	ntegral (_b) gral d)	Surface integral into line integral Volume integral into line integral
 Stok a) c) 	e's theorem converts Surface integral into volume inte	ntegral (_b) gral d)	Surface integral into line integral Volume integral into line integral al fibres for signal propagation?
 Stok a) c) Which 	e's theorem converts Surface integral into volume integral into volume integral of the following phenomena	ntegral (b) gral d) is employed in optic	Surface integral into line integral Volume integral into line integral al fibres for signal propagation?
 Stok a) c) Which 	e's theorem converts Surface integral into volume inte	ntegral (_b) gral d)	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference
 Stok a) c) Which a) 	e's theorem converts Surface integral into volume integral into volume integral into volume integral of the following phenomena. Diffraction	ntegral (-b) gral (i) is employed in optical b)	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference
 Stok a) c) Which 	e's theorem converts Surface integral into volume integral into volume integral of the following phenomena	ntegral (b) gral d) is employed in optic	Surface integral into line integral Volume integral into line integral al fibres for signal propagation?
1. Stok a) c) 2. Whice a) c)	e's theorem converts Surface integral into volume integral into volume integral into volume integral of the following phenomena Diffraction Refraction	ntegral (-b) gral (i) is employed in optical b)	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference
1. Stok a) c) 2. Whice a) c)	e's theorem converts Surface integral into volume integral into volume integral into volume integral of the following phenomena. Diffraction	ntegral (-b) gral (i) is employed in optical b)	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference
 Stok a) which a) c) Bohr 	e's theorem converts Surface integral into volume integral into volume integral into volume integral of the following phenomena Diffraction Refraction magnetron is the unit of	ntegral b) gral d) is employed in optic b) d)	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference Total internal reflection
1. Stok a) c) 2. Whice a) c)	e's theorem converts Surface integral into volume integral into volume integral into volume integral of the following phenomena Diffraction Refraction	ntegral (-b) gral (i) is employed in optical b)	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference
1. Stok a) c) 2. Whice a) c) 3. Bohr	e's theorem converts Surface integral into volume integral into volume integral into volume integral of the following phenomena Diffraction Refraction magnetron is the unit of Magnetic moment	ntegral b) gral d) is employed in optical b) d)	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference Total internal reflection
1. Stok a) c) 2. Whice a) c) 3. Bohr c)	e's theorem converts Surface integral into volume integral into volume integral into volume integral of the following phenomena Diffraction Refraction magnetron is the unit of Magnetic moment Energy	ntegral b) gral d) is employed in optical b) d)	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference Total internal reflection Angular momentum Linear momentum
1. Stok a) c) 2. Whice a) c) 3. Bohr c)	e's theorem converts Surface integral into volume integral into volume integral into volume integral of the following phenomena Diffraction Refraction magnetron is the unit of Magnetic moment Energy	ntegral b) gral d) is employed in optical b) d)	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference Total internal reflection Angular momentum Linear momentum
1. Stok a) c) 2. Whice a) c) 3. Bohr c)	e's theorem converts Surface integral into volume integral into volume integral into volume integral of the following phenomena Diffraction Refraction magnetron is the unit of Magnetic moment	ntegral b) gral d) is employed in optical b) d)	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference Total internal reflection Angular momentum Linear momentum
1. Stok a) c) 2. Whice a) c) 3. Bohr c) c) 4. Temp	e's theorem converts Surface integral into volume integral into volume integral into volume integral of the following phenomena Diffraction Refraction magnetron is the unit of Magnetic moment Energy perature below which a normal	ntegral b) gral d) is employed in optical b) d) b) conductor turns into	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference Total internal reflection Angular momentum Linear momentum superconductors is called
1. Stok a) c) 2. Whice a) c) 3. Bohr c)	e's theorem converts Surface integral into volume integral into volume integral into volume integral of the following phenomena Diffraction Refraction magnetron is the unit of Magnetic moment Energy	ntegral b) gral d) is employed in optical b) d)	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference Total internal reflection Angular momentum Linear momentum superconductors is called
1. Stok a) c) 2. Whice a) c) 3. Bohr c) 4. Temp	e's theorem converts Surface integral into volume integral into volume integral into volume integral of the following phenomena Diffraction Refraction magnetron is the unit of Magnetic moment Energy perature below which a normal Curie temperature	ntegral b) gral d) is employed in optical b) d) conductor turns into	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference Total internal reflection Angular momentum Linear momentum superconductors is called Critical temperature
1. Stok a) c) 2. Whice a) c) 3. Bohr c) c) 4. Temp	e's theorem converts Surface integral into volume integral into volume integral into volume integral of the following phenomena Diffraction Refraction magnetron is the unit of Magnetic moment Energy perature below which a normal	ntegral b) gral d) is employed in optical b) d) b) conductor turns into	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference Total internal reflection Angular momentum Linear momentum superconductors is called Critical temperature
1. Stok a) c) 2. Whice a) c) 3. Bohr c) 4. Temp a) c)	e's theorem converts Surface integral into volume in Line integral into volume inte ch of the following phenomena Diffraction Refraction magnetron is the unit of Magnetic moment Energy perature below which a normal Curie temperature Threshold temperature	ntegral d) gral d) is employed in optical b) d) conductor turns into	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference Total internal reflection Angular momentum Linear momentum superconductors is called Critical temperature Absolute temperature
1. Stok a) c) 2. Whice a) c) 3. Bohr c) 4. Temp a) c)	e's theorem converts Surface integral into volume integral into volume integral into volume integral of the following phenomena Diffraction Refraction magnetron is the unit of Magnetic moment Energy perature below which a normal Curie temperature	ntegral d) gral d) is employed in optical b) d) conductor turns into	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference Total internal reflection Angular momentum Linear momentum superconductors is called Critical temperature Absolute temperature
1. Stok a) c) 2. Whice a) c) 3. Bohr c) 4. Temp a) c) 5. The c	e's theorem converts Surface integral into volume	ntegral b) gral d) is employed in optical b) d) conductor turns into b) d) turn mechanical sy	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference Total internal reflection Angular momentum Linear momentum superconductors is called Critical temperature Absolute temperature stem is contained in
1. Stok a) c) 2. Whice a) c) 3. Bohr c) 4. Temp a) c)	e's theorem converts Surface integral into volume in Line integral into volume inte ch of the following phenomena Diffraction Refraction magnetron is the unit of Magnetic moment Energy perature below which a normal Curie temperature Threshold temperature	ntegral d) gral d) is employed in optical b) d) conductor turns into	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference Total internal reflection Angular momentum Linear momentum superconductors is called Critical temperature Absolute temperature stem is contained in
1. Stok a) c) 2. Whice a) c) 3. Bohr a) c) 4. Temp a) c) 5. The c	e's theorem converts Surface integral into volume	ntegral b) gral d) is employed in optical b) d) conductor turns into b) d) turn mechanical sy	Surface integral into line integral Volume integral into line integral al fibres for signal propagation? Interference Total internal reflection Angular momentum Linear momentum superconductors is called Critical temperature Absolute temperature stem is contained in Position

DONU

	SECTION B	
	(Attempt any 5 questions, each question carries 02 marks) (5x2=10)	
		CLO-1
6 (live the statement and mathematical consequences	55 M
	- a of grunes	CLO-I
7. (Five the statement and mathematical corporation of a scalar function. Give physical significance of gradient of a scalar function.	CLO-3
8. · S	Show that superconductors are diamagnetic materials. Show that superconductors are diamagnetic materials. Show that superconductors are diamagnetic materials. Show that superconductors vary with change in isotopic masses? Explain with the	CLO-3
	New aritical temperature of superconductors	-
24	ale of isotope cites.	CLO-5
	- velocity	CLOS
10.	diamagnetic material of magnetic susceptibility - 4 × 10.5 is placed in an external magnetic field of	CLO-4
0	diamagnetic material of magnetic susception.	
11.	diamagnetic material of magnetic susception. of Am'. Calculate the intensity of magnetisation.	
	SECTION - C	
	OS marks out	=25)
1975	ttempt any 5 question, each question carries 05 marks, subparts (if any) carry equal weightage) (5x5)	/
(A	Find the constant 'a' for which a vector $\mathbf{A} = (\mathbf{x} + 3\mathbf{y})\mathbf{i} + (2\mathbf{y} + 3\mathbf{z})\mathbf{j} + (\mathbf{x} + \mathbf{a}\mathbf{z})\mathbf{k}$ is solenoidal	CLO-I
	Find the constant 'a' for which a vector A = (x = 37) + (2y + 32)] + (x + az) k is solcholdar	Continue to the American
~12.	Derive integral forms of Maxwell's equations from their differential forms.	CLO-4
13.	· Derive integral forms of Maxwell's equal	CLO-3
	had a suitable diagram.	
14.	Discuss the hysteresis defined to the horizont coherence a	nd cros
15.	Distinguish between a laser light and an ordinary light on the basis of coherence a monochromaticity? Is it possible to obtain perfectly monochromatic laser beam?	
	the state of 40 um it	the
	How many modes are allowed to propagate through an optical fibre of core diameter of 45 km. Learning through the wavelength of the core and cladding refractive indices are 1.461, and 1.456, respectively? Given that the wavelength of the core and cladding refractive indices are 1.461, and 1.456, respectively?	hef CLO-2
16.	core and cladding retractive indices and	
	the signal is on	CLO-4
/	Draw a block diagram of a GPS system and discuss its working.	CLO
17.	Dian a sister of	
	SECTION - D	
	tempt any 2 question, each question carries 10 marks, subparts (if any) carry equal weightage) (2	x10=20
(Al	tempt any 2 question, each question carries 10 marks, subparts (1) any carry equal to 5	5.20
	Discuss the functions of various components of a Ruby laser with the help of a diagram. Explain	in its
18.	Discuss the functions of various components of a Ruby laser with the neighbor and schools of a ruby laser with the neighbor and the	CLO-2
• • • •	working principle using a suitable energy level scheme.	
	Consider an optical fibre whose core and cladding refractive indices are μ_1 and μ_2 , respectively.	tively.
19.	Derive expressions for the acceptance angle and numerical apenure of this pole if the sign	mal is CLO-2
_•••	propagated into the core of this fibre from a medium of refractive index $\mu_0 = 0$ (say air).	
	<u> </u>	- 2
20.	Derive time independent Schrodinger equation for a microscopic particle of mass m and total	CLO-5
	energy E if the particle is moving under the influence of a potential V.	12
		SAC
	the vienne amore by	1 11:
Shoo.	t engineering anysins by	1n-1
^	when amph larged	1
50	West amb	

EVEN SEM,	AMINATION-III 2023-2024	
Branch: Computer Science and Engineering Course Title Modern and Computational Physics	Ratch: 2023, Sem: II	23PH001 40 90 Minutes

Instructions:

- Attempt questions in order.
- Students are not to write anything on the question paper.
- Use of scientific calculator is allowed.

Course Le	arning Outcomes:
CLO-1	Apply the knowledge of gradient, divergence, curl and Maxwell's equations to understand the propagation of radio waves
CLO-2	Apply the principles of lasers and optical fibres to solve practical problems in engineering
CLO-3	Analyze scientific measurements related to magnetic materials and superconductivity for engineering applications
CLO-4	Apply fundamental concepts of physics to suggest appropriate solutions to practical engineering problems
CLO-5	Probe the physics behind microscopic systems using concepts of quantum mechanics and gaming science.

SECTION - A

(All Questions are Compulsory, Each question carries 01 mark) (5x1=5)

1.	 The condition for an irrotational vector field 	is that its	
	(i) Curl vanishes (iii) Divergence vanishes	(ii) Gradient vanishes(iv) Curl and divergence both vanish	CLO-1
2.	(i) Coulombs' law of electrostatics (iii) Modified Ampere's circuital law	(ii) Gauss' Law of electrostatics(iv) Gauss' Law of magnetostatics	CLO-1
3.	(i) Absorption (iii) Stimulated emission	ng a stream of photons each with energy hu, the (ii) Spontaneous emission (iv) All of them	CLO-2
4.	A mathematical representation of a quant (i) Waveguide (iii) Differential operator	um particle is described by a (ii) Wavefunction (iv) Partial derivative	CLO-5
5.	In multimode optical fibre, the refractive ind (i) Radial distance (iii) Medium of the propagation		CLO-2

SECTION - B (Attempt any 5 questions, each question carries 02 marks) (5x2=10)

State and explain the theorem that converts the surface integral into line integral in 2 dimension. CLO-1 CLO-1 6. dimension. CLO-1 Calculate $\vec{\nabla} \cdot \vec{A}$ if $\vec{A} = x^2 y \hat{i} + y^2 z \hat{j} + z^2 x \hat{k}$. 7. CLO-2 Interpret the physical significance of the gradient of a scalar field. 8. Distinguish between the single mode and multimode optical fibre. Illustrate the relationship between temperature and isotopic m[ass of a superconductor with a suitable mathematics. CLO-3 9. 10. CLO-2 suitable mathematical expression. 11. Draw the energy level diagram of a four-level laser. SECTION - C (Attempt any 3 questions, each question carries 5 marks) (3x5=15)

	the differential form.	CLO-1
12.	Derive the integral form of Maxwell's first and third equation from the differential form.	020 -
13.	The refractive indices of the core and cladding of an optical fibre are 1.46 and 1.42, respectively. Determine the numerical aperture and acceptance angle of this optical fibre.	CLO-2
1.0	Describe the magnetic behaviour of the superconductors using the Meissner effect.	CLO-4
14.		
15.	Calculate the number of allowed modes and normalised frequency if a light signal of 800 nm wavelength is propagated through an optical fibre of core diameter 0.06 mm and the numerical aperture of the fibre is 0.24.	CLO-2

SECTION - D

(Attempt any one question, each question carries 10 marks, subparts (if any) carry equal weightage) (1x10=10)

- 16. (a) Describe Engineering applications of magnetic materials and superconductors.
 - (b) The critical temperature of a superconducting material is 4.18 K when its atomic mass is 199.5. Calculate its critical temperature when its isotopic mass is 203.4 K.
- 17. Derive a time-independent Schrodinger wave equation for a particle of mass m and total energy E moving under the influence of a potential field V. CLO-5