Detecção de protocolos de aplicação

67_UDP_DhcPs e 137_UDP

Introdução

- UDP (sigla para User Datagram Protocol)
- Protocolo da camada de transporte
- Simples
- Não requer handshake
- Bastante vulnerável

Dataset

- https://www.inf.ufpr.br/gregio/CI1030/final/appIdent.json
- Analisado e "Limpo"
- Juntado de forma a tem os mesmos parâmetros para comparação
 - Dividido em : Treino(80%) e teste (20%)

index	
ApplicationProtocolName	object
ApplicationProtocolNameFull	object
MinInterArrivalTimePacketsUpAndDownFlow.FeatureValue	float64
MinInterArrivalTimePacketsUpAndDownFlow.ModelValues	float64
MinInterArrivalTimePacketsUpAndDownFlow.Weight	float64
MinInterArrivalTimePacketsUpAndDownFlow.NormalizedWeight	float64
MinInterArrivalTimePacketsUpAndDownFlow.Mean	float64
MinInterArrival TimePacketsUpAndDownFlow.StdDev	float64
MinInterArrival TimePacketsUpAndDownFlow.Max	float64
MinInterArrivalTimePacketsUpAndDownFlow.Min	float64
MinInterArrival TimePacketsUpFlow.FeatureValue	float64
MinInterArrival TimePacketsUpFlow.ModelValues	float64
MinInterArrival TimePacketsUpFlow.Weight	float64
MinInterArrival TimePacketsUpFlow.NormalizedWeight	float64
MinInterArrival TimePacketsUpFlow.Mean	float64
MinInterArrival TimePacketsUpFlow.StdDev	float64
MinInterArrival TimePacketsUpFlow.Max	float64
MinInterArrival TimePacketsUpFlow.Min	float64
MinInterArrival TimePacketsDownFlow.FeatureValue	float64
MinInterArrival TimePacketsDownFlow.ModelValues	float64
MinInterArrival TimePacketsDownFlow.Weight	float64
MinInterArrival TimePacketsDownFlow.NormalizedWeight	float64
MinInterArrival TimePacketsDownFlow.NormalizedWeight MinInterArrival TimePacketsDownFlow.Mean	float64
MinInterArrival TimePacketsDownFlow.Mean MinInterArrival TimePacketsDownFlow.StdDev	float64
MinInterArrivalTimePacketsDownFlow.Max	float64

Dataset

A amostragem da divisão dos dados ficou em:

Metodologia

Classificação dos protocolos UDP Dhcp -67 e UDP-13 utilizando o Dataset rotulado para treinar os algoritmos K-Nearest Neighbors (KNN), Random Forest e Multi Layer Perceptron (MLP), com implementação na biblioteca sklearn. Para a configuração dos parâmetros dos classificadores foi utilizado o algoritmo Grid Seach para predizer os melhores parâmetros de cada um deles.

Implementação

Colaboratory ou "Colab" permite escrever código Python no seu navegador, com:

- Nenhuma configuração necessária
- Acesso gratuito a GPUs
- Compartilhamento fácil
- Você pode ser um estudante,

Código:

https://colab.research.google.com/drive/10-50NKxXO8Caks67rPQErNZCSdV9S5r2#scrollTo=04g1jitfVoia

Resultados:

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
			KNN		
	72 22	82 12	90 4	81 12	86 8
Matriz de confusão	21 68	2 87	2 87	3 86	1 87
Precisão	0.77	0.88	0.92	0.88	0.92
Recall	0.76	0.98	1.00	0.97	0.99
flscore	0.76	0.93	0.96	0.92	0.95
		Rand	dom Forest		-
	94 0	94 0	94 0	94 0	94 0
Matriz de confusão	0 89	0 89	0 89	0 89	0 89
Precisão	1.00	1.00	1.00	1.00	1.00
Recall	1.00	1.00	1.00	1.00	1.00
flscore	1.00	1.00	1.00	1.00	1.00
			MLP		-
	78 16	91 3	86 8	92 1	86 8
Matriz de confusão	10 79	2 87	0 89	4 85	1 87
Precisão	0.83	0.97	0.92	0.99	1.00
Recall	0.89	0.98	1.00	0.96	1.00
flscore	0.86	0.97	0.96	0.97	1.00

Resultados:

Resultados:

Reprodutibilidade

- Datasets:
 - https://drive.google.com/drive/folders/1FcRpscUYHNkOgeqSfk4kWRpRGul HxCtz?usp=sharing
- Implementação: https://colab.research.google.com/drive/10-50NKxXO8Caks67rPQErNZCS <u>dV9S5r2?usp=sharing</u>
- Link para vídeo e apresentação: https://github.com/ACBozzi/Ci-nciaDados/tree/main

Referências

UFSM. Introdução a Mineração de textos com Python. 2021. Disponível em: https://www.ufsm.br/pet/sistemas-de-informacao/2021/07/12/introducao-a-mineracao-de-textos-com-python/. Acesso em: 15 nov. 2021.

POSTEL, J. RFC 768 - User Datagram Protocol. Internet Engineering Task Force (IETF), p.3. 1980.

Ferramenta IPERF: geração e medição de Tráfego TCP e UDP IPERF tool: generation and evaluation of TCP and UDP data traffic. 2014. Disponível em http://revistas.cbpf.br/index.php/nt/article/view/75/67> Acesso em: 16 dez. 2021.