

Supplementary Material

Supplementary Table 1: 6-layer CNN architecture

The padding size in max pooling layers depends on the input: columns of zeros are added along a dimension until the size along this dimension is a multiple of the stride size. A ReLU activation is used for the model.

layer	output size	kernel size	stride	padding	dilation
input	$1 \times 121 \times 145 \times 121$				
convolution		3	1	1	1
batch normalization	$8 \times 121 \times 145 \times 121$				
activation					
max pooling	$8 \times 61 \times 73 \times 61$	2	2	*	1
convolution		3	1	1	1
batch normalization	$16 \times 61 \times 73 \times 61$				
activation					
max pooling	$16 \times 31 \times 37 \times 31$	2	2	*	1
convolution		3	1	1	1
batch normalization	$32 \times 31 \times 37 \times 31$				
activation					
max pooling	$32 \times 16 \times 19 \times 16$	2	2	*	1
convolution		3	1	1	1
batch normalization	64 × 16 × 19 × 16				
activation					
max pooling	$64 \times 8 \times 10 \times 8$	2	2	*	1
convolution		3	1	1	1
batch normalization	$128 \times 8 \times 10 \times 8$				
activation					
max pooling	$128 \times 4 \times 5 \times 4$	2	2	*	1
dropout (80%)	10 240		-		-
linear	1				

Supplementary Table 3: Resnet architecture

An ELU activation function is used for this model.

layer name	layer type	output size	kernel size	stride	padding	dilation
input		$1\times121\times145\times121$				
	convolution		3	1	1	1
	batch normalization					
	activation					
residual block 1	convolution	$1\times121\times145\times121$	3	1	1	1
residuai biock i	batch normalization					
	convolution shortcut		1	1	0	1
	concatenation					
	activation					
max pooling		$8 \times 60 \times 72 \times 60$	3	2	0	1
	convolution		3	1	1	1
	batch normalization					
	activation					
residual block 2	convolution	$8 \times 60 \times 72 \times 60$	3	1	1	1
	batch normalization					
	convolution shortcut		1	1	0	1
	concatenation					
	activation					
max pooling		$16\times29\times35\times29$	3	2	0	1
	convolution		3	1	1	1
residual block 3	batch normalization					
	activation					
	convolution	$16\times29\times35\times29$	3	1	1	1
residuai biock 5	batch normalization					
	convolution shortcut		1	1	0	1
	concatenation					
	activation					
max pooling		$32\times14\times17\times14$	3	2	0	1
	convolution		3	1	1	1
	batch normalization					
	activation					
masidual blook 4	convolution	$32\times14\times17\times14$	3	1	1	1
residual block 4	batch normalization					
	convolution shortcut		1	1	0	1
	concatenation					
	activation					
max pooling		$64 \times 6 \times 8 \times 6$	3	2	0	1
	convolution		3	1	1	1
[batch normalization					
residual block 5	activation	$64 \times 6 \times 8 \times 6$				
	convolution		3	1	1	1

	batch normalization					
	convolution shortcut		1	1	0	1
	concatenation					
	activation					
max pooling		$128 \times 2 \times 3 \times 2$	3	2	0	1

Supplementary Table 4: Resnet fully connected layer

layer name	output size
input	$128 \times 2 \times 3 \times 2$
linear	256
activation	256
dropout (80%)	256
add covariable	256 + 2
linear	1

Supplementary Table 5: 3D-Inception-v1 architecture - Stem Network

A ReLU activation is used for the model.

Layer	output size	kernel size	stride	padding	dilation
input	$1\times121\times145\times121$				
convolution		7	2	1	1
batch normalization	$64 \times 59 \times 71 \times 59$				
activation					
max pooling	$64 \times 29 \times 35 \times 29$	3	2		
convolution		1	1	1	1
batch normalization	$64 \times 29 \times 35 \times 29$				
activation					
convolution		3	2	1	1
batch normalization	$129 \times 29 \times 35 \times 29$				
activation					
max pooling	$129 \times 14 \times 17 \times 14$	3	2		

Supplementary Table 6: 3D-Inception-v1 architecture - Auxiliary Regression

The padding size in max pooling layers depends on the input: columns of zeros are added along a dimension until the size along this dimension is a multiple of the stride size. A ReLU activation is used for the model.

layer	output size	kernel size	stride	padding	dilation
inception (4a 4d)	$(512 528) \times 6 \times 8 \times 6$				
average pooling	$(512 528) \times 3 \times 3 \times 3$	3			
convolution		1	1	1	1
batch normalization	$128 \times 3 \times 3 \times 3$				
activation					
resizing	3456				
linear	1024				
dropout (70%)	1024				
linear	1				

Supplementary Table 7: 3D-Inception-v1 architecture - Main Architecture

The padding size in max pooling layers depends on the input: columns of zeros are added along a dimension until the size along this dimension is a multiple of the stride size. A ReLU activation is used for the model.

layer	output size	kernel size	stride	#1x1	#3x3red	#3x3	#3x3red(2)	#3x3(2)	Pool proj
stem network	192 × 14 × 17 × 14								
inception (3a)	$256 \times 14 \times 17 \times 14$			64	96	128	16	32	32
inception (3b)	$480 \times 14 \times 17 \times 14$			128	128	192	32	96	64
max pooling	$480 \times 6 \times 8 \times 6$	3	2						
inception (4a)	$512 \times 6 \times 8 \times 6$			192	96	208	16	48	64
inception (4b)	$512 \times 6 \times 8 \times 6$			160	112	224	24	64	64
inception (4c)	$512 \times 6 \times 8 \times 6$			128	128	256	24	64	64
inception (4d)	$528 \times 6 \times 8 \times 6$			112	144	288	32	64	64
inception (4e)	$832 \times 6 \times 8 \times 6$			256	160	320	32	128	128
max pooling	$832 \times 2 \times 3 \times 2$	3	2						
inception (5a)	$832 \times 2 \times 3 \times 2$			256	160	320	32	128	128
inception (5b)	$1024 \times 2 \times 3 \times 2$			384	192	384	48	128	128
average pooling	$1024 \times 1 \times 1 \times 1$	$2 \times 3 \times 2$	1						
dropout (70%)	$1024 \times 1 \times 1 \times 1$	_							
resizing	1024								
linear	1								

	age	sex
	Mean (SD)	% females
Fold 1	35.8 (16.6)	56
Fold 2	35.9 (16.2)	54
Fold 3	36.0 (16.1)	51
Fold 4	35.9 (16.2)	53
Fold 5	35.9 (15.9)	51
Total sample	35.9 (16.2)	53

Supplementary Table 9: Spearman correlation between PAD and chronological age for each model and each fold for the first challenge.

	BLUP mean	BLUP quantil es	SVM	6-layers CNN	Age spe. 6- layers CNN	ResNet	Inception V1	Ensemble learning			ing
								LM	RT	mean	median
Fold 1	0.32	0.37	0.58	0.25	0.30	0.24	0.41	0.32	0.39	0.43	0.42
Fold 2	0.25	0.29	0.52	0.19	0.28	0.29	0.32	0.33	0.41	0.37	0.37
Fold 3	0.18	0.18	0.53	0.42	0.39	0.32	0.28	0.32	0.36	0.42	0.39
Fold 4	0.22	0.23	0.47	0.47	0.46	0.37	0.39	0.35	0.38	0.46	0.45
Fold 5	0.23	0.23	0.52	0.15	0.24	0.32	0.38	0.25	0.36	0.37	0.37

Supplementary Table 10: Mean absolute error (standard error) for each model and each fold (second challenge).

Fold 1 corresponds to the train-test split used in the PAC challenge and presented in Table 1. LM (linear model), RF (random forest), mean and median age scores are the four methods considered for ensemble learning. The standard error (SE = SD/sqrt(N)) reflects the uncertainty around the MAE estimate. A 95% confidence interval may be calculated as MAE \pm 1.96*SE, though it (falsely) assumes normality of the absolute error distribution. For the 5-fold combined MAE we did not report the SE as it is notoriously biased downward (Bengio & Grandvalet, 2004) due to the overlap of the different training/test samples. * indicates a significant reduction of MAE via ensemble learning compared to Inception alone (p<0.01, assuming 5 independent tests).

	BLUP mean	BLUP quantiles	SVM	6-layer CNN	Age spe. 6-layer CNN	ResNet	Inceptio n V1	Ensemble learning			
								LM	RF	mean	median
Fold 1	6.56	6.78	6.62	6.13	6.10	6.38	5.92	4.69	3.82	4.77	4.90
	(0.25)	(0.26)	(0.25)	(0.24)	(0.23)	(0.23)	(0.22)	(0.19)	(0.15)	(0.19)	(0.19)
Fold 2	8.39	7.93	7.88	8.03	7.76	7.68	7.74	5.30	4.14	5.32	5.34
	(0.32)	(0.31)	(0.30)	(0.31)	(0.29)	(0.30)	(0.30)	(0.19)	(0.19)	(0.19)	(0.20)
Fold 3	7.17	7.27	6.94	6.95	7.02	6.96	6.91	5.00	3.97	4.94	5.17
	(0.27)	(0.27)	(0.26)	(0.26)	(0.26)	(0.25)	(0.26)	(0.20)	(0.16)	(0.19)	(0.20)
Fold 4	7.19	7.35	7.10	6.79	6.80	6.89	6.76	4.95	4.13	4.91	5.07
	(0.28)	(0.28)	(0.28)	(0.27)	(0.26)	(0.27)	(0.26)	(0.19)	(0.16)	(0.18)	(0.19)
Fold 5	8.22	7.74	7.32	7.06	6.87	7.31	7.01	5.42	4.06	5.28	5.26
	(0.35)	(0.31)	(0.30)	(0.28)	(0.27)	(0.29)	(0.26)	(0.22)	(0.17)	(0.23)	(0.23)
5-fold combined	7.50	7.41	7.17	6.99	6.91	7.04	6.87	5.07	4.02	5.04	5.15

Supplementary Table 11: Spearman correlation between brain PAD and chronological age for each model on each fold for the second challenge.

Cells in bold correspond to correlation > 0.10, which was the maximal bias allowed to enter the second PAC2019 challenge.

	BLUP mean	BLUP quantiles	SVM	6-layer CNN	Age spe. 6-layer CNN	ResNet	Inceptio n V1	Ensemble learning			
								LM	RF	mean	median
Fold 1	0.14	0.15	0.15	0.085	0.068	0.11	0.058	0.058	0.40	0.13	0.11
Fold 2	0.023	0.026	0.018	0.008	0.057	0.012	0.026	0.042	0.38	0.0068	0.013
Fold 3	0.013	0.016	0.016	0.005	0.033	0.024	0.035	0.045	0.34	0.013	0.0089
Fold 4	0.066	0.042	0.064	0.08	0.052	0.01	0.024	0.014	0.41	0.056	0.048
Fold 5	0.046	0.032	0.035	0.004	0.043	0.014	0.011	0.037	0.40	0.024	0.026

Supplementary Figure 1: distribution of linear weights in ensemble learning for PAC challenge 1.

The different panels correspond to the five folds used in the analysis. In each fold, we present the distribution of weights, estimated by linear regression on ~265 participants, over 500 bootstrap iterations (see methods).

Supplementary Figure 2: distribution of linear weights in ensemble learning for PAC challenge 2.

The different panels correspond to the five folds used in the analysis. In each fold, we present the distribution of weights, estimated by linear regression on ~265 participants, over 500 bootstrap iterations (see methods).