ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Математико-механический факультет

Специальность «математика»

Кафедра высшей алгебры и теории чисел

Дипломная работа

Гипероктаэдральные комбинаторные типы

К защите допущен»:	
Зав. кафедрой высшей алгебры и теории чисел, профессор, д.фм.н.	 Яковлев А.В.
Научный руководитель, доцент, к.фм.н.	 Пименов К.И.
Рецензент, профессор, д.фм.н.	 Яковлев А.В.
Дипломник	 Воробьев С.Э

г. Санкт-Петербург, 2012

Содержание

Глава	I. Введение	3
	Комбинаторные виды	
1.2.	Композиция комбинаторных видов	
_		
Глава	II. Гипероктаэдральные комбинаторные виды	10
2.1.	Определение	10
2.2.	Вложение species в h-species	10
2.3.	Сложение и умножение h-species	11
2.4.	Аналитический функтор для h-species	11
2.5.	Декатегорификация аналитического функтора	11
2.6.	Сумма и произведение цикленных индексов	15
2.7.	Цикленный индекс композиции	16
2.8.	Цикленный индекс species, вложенных в h-species	19
2.9.	Применение цикленного индекса к решению задач о раскрасках	19
_		
Глава	III. Заключение?	20
	к литературы	0.1
∪ писо п	к литературы	\mathbf{Z}

Глава I. Введение

1.1. Комбинаторные виды

Комбинаторные виды (species) были введены Жуаялем в 1980 году [1]. Они дают универсальный аппарат изучения меченных(labeled) и немеченных(unlabeled) структур, и являются развитием идеи производящих функций. О комбинаторных видах можно говорить на нескольких языках: категорном, комбинаторном и на языке теории представлений. Последний наиболее часто встречается в литературе, хотя автору он кажется наимение выразительным. Во введении изложено начало теории комбинаторных видов. Основным источником информации про комбнаторные виды является [3].

1.1.1. Определение

Рассмотрим категорию \mathcal{B} — группоид конечных множеств. Она эквивалентна группоиду, объекты которого пронумерованы неотрицательными цельми числами и $Hom(n,n)=S_n$.

Определение 1. Комбинаторным видом (species) называется функтор

$$F: \mathcal{B} \to Set$$

Задать такой функтор, это то же самое что для каждого $n \in \mathbb{N}$ задать множества F[n] с действием группы S_n . В комбинаторике такая ситуация возникает, когда мы рассматриваем явно определнные каким-либо образом структуры на конечных множествах. Например: линейные порядки, циклические порядки, деревья. Действие S_n ествественно возникает из перестановок исходных точек.

Пример 1. Вид **E** — вид множесто (без дополнительной структуры). Он сопоставляет набору точек одно множество, состоящие из этих точек, $\mathbf{E}[n] = \{*\}$. Все элементы S_n переходят в тождественное отображение.

Пример 2. C — циклический порядок. Сопоставляет набору из n точек (n-1)! возможных циклических порядков на них.

Пример 3. Линейный порядок **L** сопоставляет n! линейных порядков.

Рис. 1.1. корневые деревья с 3 вершинами

Пример 4. \mathbf{E}_{e} — сужение \mathbf{E} на четные множества. То есть для четных n, совпадает с \mathbf{E} , а для нечетных \emptyset . Аналогично \mathbf{E}_{o} — сужение на нечетные.

Пример 5. На картинке 1.1 изображен вид «корневые деревья с 3 вершинами» (без какого-либо порядка на потомках).

Можно рассмотреть функтор $I: Set \to Vec$, который сопоставляет множеству векторное пространство, базис которого это множество. Тогда $F \circ I: \mathcal{B} \to Vec$, получается для каждого n перестановочное представление группы S_n . При таком подходе, характер этого представления $\chi(\sigma)$, это количество структур, неподвижных относительно $\sigma \in S_n$.

1.1.2. Сложение комбинаторных видов

Сумму двух species F, G легко определить как поточечную сумму функторов. На комбинаторном языке это будет означать «либо структура типа F, либо структура типа G». $(F+G)[n] = F[n] \coprod G[n]$ с покомпонентным действием S_n .

Пример 6. $\mathbb{E} = \mathbb{E}_e + \mathbb{E}_o$

Пример 7. Любой вид F можно разложить в такую сумму $F = F_1 + F_2 + F_3 + \ldots$, где F_i — сужение F на $i \in \mathcal{B}$. Значение F_i на $j \neq i$ равно \emptyset .

1.1.3. Произведение комбинаторных видов

Определим произведение по Коши комбинаторных видов. По определению задать на конечном множестве структуру типа $F \cdot G$ означает разбить множество точек на две части (всевозможные) и на первом ввести структуру типа F, на втором — типа G.

$$(F \cdot G)[X] = \coprod_{X_1 \coprod X_2 = X} F[X_1] \times G[X_2]$$

С категорной точки зрения произведение по Коши возникает из тензорного произведения на категории \mathcal{B} , которое на объектах задается как $n\otimes m=(n+m)$. На морфизмах при помощи вложения $S_n\times S_m\hookrightarrow S_{n+m}$. Все такие вложения сопряжены. Известна конструкция свертки функторов из \mathcal{C} в Set, где \mathcal{C} — моноидальная категория с копроизведениями [8].

На языке теории представлений F[n+m] как множество с действием группы S_{n+m} равно индуцированному представлению $Ind \uparrow_{S_n \times S_m}^{S_{n+m}} F[n] \times F[m]$.

Пример 8. $\mathbf{E} \times \mathbf{E}_1$ — множество с выделенной точкой.

Пример 9. ${\bf C}^2$ — (упорядоченная) пара циклов.

1.2. Композиция комбинаторных видов

Кроме сложения и умножения на species можно ввести операцию композиции. По определению задать на конечном множестве структуру типа $F \circ G$ означает разбить множество точек на части (всевозможные), на частях (как новых точках) ввести структуру типа F, а на каждой части — типа G. Иначе говоря, «раздуть» каждую точку структуры типа F в структуру типа G.

$$(F \circ G)[X] = \coprod_{\coprod_{i} X_{i} = X} F[\{X_{i}\}_{i}] \times (\coprod_{i} G[X_{i}])$$

Замечание 2. Определение species не предполагает конечности F[n], однако цикленный индекс (см. раздел 1.2.3) можно писать только для таких видов. Класс таких species не замкнут относительно композиции. Поскольку при подстановке species F, для котогоро $F[0] \neq \emptyset$ можно выделить сколько угодно пустых частей. Поэтому в дальнейшем в записи $F \circ G$, мы будем неявно предполагать что внутренний операнд «сужен» на \mathbb{N}_+ .

Пример 10. $\mathbf{E}_1 \circ F = F, \ F \circ \mathbf{E}_1 = F.$ \mathbf{E}_1 является нейтральным элементом в монойде species по композиции.

Пример 11. $\mathbf{E}_2 \circ \mathbf{C}$ — (неупорядоченная) пара циклов.

Пример 12. $\mathbf{E} \circ \mathbf{E} - \mathbf{c}$ труктура разбиения множества.

Пример 13. $\mathbf{E} \circ \mathbf{C} = \mathbf{S} -$ структура перестановки. Буквально перестановка — это набор циклов.

Для того, чтобы ввести композицию на категорном языке нам понадобится дополнительная конструкция: аналитический функтор.

1.2.1. Аналитический функтор комбинаторных видов

Аналитический функтор (введен Жуаялем в [2]) \mathcal{F} соответствует species F. Вводить его можно разными способами, мы ограничимся универсальным свойством и явной конструкцией.

Определение 3. Аналитический функтор является левым расширением по Кану функтора F относительно i.

Эта диаграмма не является коммутативной, а коммутативна лишь настолько, насколько может быть коммутативной диаграмма подобного вида. А именно, имеется естественное преобразование $\kappa\colon F\to i\circ \mathcal{F}$, обладающее следующим универсальным свойством: для любого функтора $M\colon Set\to Set$ и морфизма функторов $\eta\colon F\to i\circ M$ этот морфизм пропускаеться через \mathcal{F} при помощи κ .

Явная конструкция для аналитического функтора. Доказательство см. в [3].

$$\mathcal{F}(A) = \sum_{n} F[n] \times A^{n} / S_{n} \tag{1.1}$$

У аналитического функтора для типа структуры F имеется прозрачная комбинаторная интерпретация. Если трактовать множество A как набор цветов, то значение аналитического функтора $\mathcal{F}(A)$ трактуется как множество структур типа F раскрашенных в цвета из A.

1.2.2. Композиция аналитических функторов комбинаторных видов

Теорема 4. Композиция аналитических функторов $\mathcal{F} \circ \mathcal{G}$ является аналитическим функтором для $F \circ G$.

Доказательство. Набросок. Согласно конструкции
$$\mathcal{F}(\mathcal{G}(A)) = \sum_{k} F[k] \times (\sum_{m} G[m] \times A^{m}/S_{m})^{k}/S_{k} = \sum_{n} \sum_{k,m_{1}+\dots+m_{k}=n} F[k] \times (\coprod_{i} G[m_{i}]) \times A^{n}/S_{n}.$$

Строгое доказательство см. в http://arxiv.org/pdf/math/9811127v1. pdf (Lemma 2.5) [это еще и про цикленные индексы]

1.2.3. Цикленный индекс

Надо устроить морфизм из моноидальной категории (категории с тензорным произведением) в какую-нибудь алгебру функций. Мы вводим весовую функцию таким образом что орбита раскрашенной структуры под действием S_n имеет один и тот же вес. После этого можно задать вопрос о коэффициенте при мономе соответствующего веса. Это будет число орбит с заданной весовой функцией. По Лемме Бернсайда это то же самое, что и усредненное число неподвижных точек по всем элементам группы. Чтобы раскрашенная структура была неподвижна под действием перестановки σ нужно, чтобы вопервых она была неподвижна как нераскрашенная структура, а во-вторых расскраска должна переходить в себя. В качестве весовой функции выбираем моном возникающий в произведении переменных отвечающим цветам. Цвета это x_1, x_2, x_3, \ldots Например, расскраске в которой 2 первых цвета и 1 второй соответсвует моном $x_1^2x_2$. Тогда первое условие дает нам сомножитель $\chi(\sigma)$, где характер это характер соответствующего перестановочного представления. Второе условие требует покраски каждого цикла в один и тот же цвет. Итоговая формула называется фробениусовой характеристикой или цикленным индексом. Она считает количество неподвижных раскрашенных структур в среднем.

Утверждение 5.

$$\mathcal{Z}_F = \sum_n \frac{1}{n!} \sum_{\sigma \in S_n} \chi(\sigma) \psi^{\lambda(\sigma)} = \sum_{n, \lambda \vdash n} \chi(\sigma_\lambda) \frac{\psi^\lambda}{z_\lambda}$$
 (1.2)

 $\Gamma \partial e \ \chi - x apa \kappa mep \ (nepecmaho вочного) \ npedcma вления заданного <math>F, \ \sigma -$

перестановка цикленного типа λ , $\psi^{\lambda} = (x_1^{\lambda_1} + x_2^{\lambda_1} + x_3^{\lambda_1} + \dots)(x_1^{\lambda_2} + x_2^{\lambda_2} + x_3^{\lambda_2} + \dots)(x_1^{\lambda_3} + x_2^{\lambda_3} + x_3^{\lambda_3} + \dots) \dots$, $z_{\lambda} - u$ ндекс класса сопряженности σ .

Пример 14. $\mathcal{Z}_{\mathbb{E}}=e^{(\psi^1+\frac{\psi^2}{2}+\frac{\psi^3}{3}+\dots)}$. Доказательство смотри в [3].

1.2.4. Плетизм цикленных индексов

Теорема 6. Композиции аналитически функторов соответствует плетизм цикленных индексов.

Чудесный факт заключается в том, что в декатегорификации композиция соответствует простой формуле подстановки. Сейчас мы ее напишем и приведем набросок доказательства. В качестве множества цветов A рассмотрим счетный набор цветов x_1, x_2, x_3, \ldots Цикленный индекс запишем относительно базиса кольца симметрических функций $\psi^1, \psi^2, \psi^3, \ldots$

$$\mathcal{Z}_{F \circ G}(\psi^{1}, \psi^{2}, \psi^{3}, \dots) = \\ \mathcal{Z}_{F}(\mathcal{Z}_{G}(\psi^{1}, \psi^{2}, \psi^{3}, \dots), \mathcal{Z}_{G}(\psi^{2}, \psi^{4}, \psi^{6}, \dots), \mathcal{Z}_{G}(\psi^{3}, \psi^{6}, \psi^{9}, \dots), \dots)$$
 (1.3)

В композиции двух аналитических функторов получается, что цвета в которые мы красим структуру F это структуры типа G. То есть $\mathcal{Z}_{F\circ G}=\mathcal{Z}_F(\psi_g^1,\psi_g^2,\psi_g^3,\dots)$, где $\psi_g^i=(g_1^i+g_2^i+g_3^i+\dots)$, где g_i — перечисление всех структур типа G. Нужно раскрыть переменные g_i — написать их относительно начальных цветов. Формулу $\psi_g^i=\mathcal{Z}_G(\psi^i,\psi^{2i},\psi^{3i},\dots)$ легко понять в переменных x_1,x_2,x_3,\dots Мы должны покрасить i кусков в одну и ту же G-структуру. Значит каждый цвет x_j заменяется на x_j^i .

Замечание 7. Формулу 1.3 можно специализировать для подсчета labeledструктур. То есть покрашенных структур у которых нет двух одинаковых цветов в расскраске. Соответсвующие мономы (в базисе x_1, x_2, x_3, \ldots) возникают только при раскрытии мономов вида $c(\psi^1)^k$ и коэффициент в них равен ck! — такой же как при мономе с точностью до факториала. Этот факториал приводит к необходимости рассматривать экспоненциальные производящие функции вместо обычных. Можно занулить все остальные мономы подстановкой $\psi^1 = t, \psi^2 = 0, \psi^3 = 0, \psi^4 = 0$. Формула 1.3 примет вид $\mathcal{Z}_{F \circ G}(t, 0, 0, \ldots) = \mathcal{Z}_F(\mathcal{Z}_G(t, 0, 0, \ldots), 0, 0, \ldots)$. А значит для экспоненциальных производящих функции labeled-структур справедливо равенство

$$(f \circ g)(t) = f(g(t)) \tag{1.4}$$

Пример 15. (Экспоненциальная) производящая функция для **E** это $e^x=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\ldots$ А производящая функция для непустых циклов **C** это $-log(1-x)=x+\frac{1}{2}x^2+\frac{1}{3}x^3+\ldots$ А для **S** производящая функция это $\frac{1}{1-x}=1+x+x^2+x^3+\ldots$ И действительно $e^(-log(1-x))=\frac{1}{1-x}$.

Глава II. Гипероктаэдральные комбинаторные виды

2.1. Определение

Рассмотрим категорию HSet. В ней объекты это множества, снабженные дополнительным действием — инволюцией. А стрелки, это морфизмы, сохраняющие инволюцию. Рассмотрим категорию $H\mathcal{B}$ — подкатегорию конечных множеств из HSet с морфизмами только биекциями, и инволюциями без неподвижных точек. Функтор $F:H\mathcal{B}\to HSet$ — гипероктаэдральный (или кубический) это комбинаторный вид. Мы будем так же для краткости употреблять термин h-species. Группоид $H\mathcal{B}$ эквивалентен группойду, объекты которого $\bar{n}=\{-n,-n+1,\ldots,-1,1,2,\ldots,n-1,n\}$, инволюция - смена знака. Эпитет гипероктаэдральный используется потому, что на $H\mathcal{B}[\bar{n}]$ действует гипероктаэдральная группа B_n — группа движений n-мерного куба (иногда будем обозначать ее H_n). Некоторая не очень ясная комбинаторная интерпретация: множеству граней куба сопоставляется множество структур на этих гранях, а действие B_n возникает из перестановок граней.

Пример 16. Вид \mathbb{H} — структура куб. Он сопоставляет \bar{n} одно множество. Все элементы B_n переходят в тождественное отображение.

Пример 17. & — неразличимая пара граней (\mathbb{H}_1). & — различимая пара граней. Оба они принимают значение \emptyset на всем, кроме $\bar{1}$. Второе соответствует действию H_1 на 2-х точечном множестве.

Пример 18. Аналогично \square — структура куб размерности 2 (\mathbb{H}_2). \square — куб размерности 2 с различимыми противоположными гранями. Второе соответствует действию H_2 на 4-х точечном множестве.

Пример 19. Структура $\stackrel{\circ}{\bullet} \times \stackrel{\circ}{\bullet}$. Это не то же самое что \square , поскольку это «упорядоченная пара $\stackrel{\circ}{\bullet}$ ».

2.2. Вложение species в h-species

Обычные комбинаторные виды можно «вложить» в гипероктаэдральные. Иными словами можно каждый species рассмотреть как h-species. Для этого

достаточно рассматривать структуру не на точках, а на парах (неразличимых) граней. Если $F:\mathcal{B}\to Set$, то $\tilde{F}:H\mathcal{B}\to HSet$, где $\tilde{F}[\bar{n}]=F[n]$ как множество, а инволюция тождественна.

2.3. Сложение и умножение h-species

Сложение и умножение определяются полностью аналогично species и тут проблем не возникает.

2.4. Аналитический функтор для h-species

Хочется построить аналог аналитического функтора для h-species

$$\mathcal{F} = \sum_{n} F[\bar{n}] \times A^{\bar{n}}/B_n \tag{2.1}$$

Где $A^{\bar{n}}$ задает отображение, сохраняющее инволюцию. ТОВО:Здесь нужно добавить проверку универсальности картинки

Определение 8. Будем называть элементы $(F[\bar{n}] \times A^{\bar{n}})$ A-крашенными F структурами на гранях n-мерного куба. Таким образом правую часть 2.1 можно интерпретировать как всевозможные классы эквивалентности крашеных структур.

2.5. Декатегорификация аналитического функтора

Можно действовать наивно: написать производящую функцию для числа раскрасок, по аналогии с классическим случаем. Такая формула (2.2) рассматривалась (в контексте теории представлений группы $S_n \ G$) в работе http://www.combinatorics.org/ojs/index.php/eljc/article/download/v11i1r56/pdf (см. также приложение B во втором анлгийском издании книги Макдональда [7]). Но при таком подходе наши попытки определить гипероктаэдральных плетизм оказались безуспешны. Выяснилось, что

правильный аналог цикленного индекса должен помнить информацию о следующем свойстве раскрашенной структуры.

Отметим, что раскраска (элемент $A^{\bar{n}}$), это отображение, сохраняющее инволюцию. Значит пара элементов (-i,i) отображается либо в один и тот же элемент (a,a) (который инволюцией переводиться в себя), либо в пару элементов (b,\bar{b}) , сопряженных инволюцией. Будем называть первый случай моноцветом, второй — бицветом.

Покрашенные структуры сами по себе можно рассматривать как моноцвет, либо бицвет. Это по–прежнему определяется длинной орбиты инволюции на A, уже после факторизации по B_n . То есть кроме действия B_n есть еще внешняя инволюция — действие Z_2 . Будем разделять расскрашенные структуры на моноструктуры и биструктуры.

Цикленный индекс, считающий только моноструктуры будем обозначать $\mathcal{Z}^{(1)}$, биструктуры — $\mathcal{Z}^{(2)}$.

Замечание 9. Таким образом, цикленный индекс для h-species представляет собой пару $(\mathcal{Z}^{(1)}, \mathcal{Z}^{(2)})$.

Утверждение 10. Количество орбит под действием $H_n \times Z_2$ соответствует $\mathcal{Z}^{(1)} + \mathcal{Z}^{(2)}$, а под действием только H_n соответствует $\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}$.

Доказательство. В первом случае каждая моноструктура и биструктура будет посчитана 1 раз. А во втором каждая биструктура будет посчитан два раза, т.к. действие инволюции «склеивающей» две части биструктуры не учтено.

2.5.1. Подсчет цикленного индекса

В качестве H-множества цветов возьмем счетное множество моноцветов x_1, x_2, x_3, \ldots объединенное с счетным множеством бицветов y_1, y_2, y_3, \ldots

Допустим, что мы придумали весовую функцию, отправляющую каждую расскрашенную структуру в моном и любая орбита отправляеться в один моном. Применив Лемму Бернсайда переходим к подсчету неподвижных точек. Циклы в каждом элементе H_n бывают двух типов: $\partial nunhue$ — каждая грань входит в цикл вместе со своей противоположной гранью и kopomkue — пара граней лежит в симметричных, различных циклах.

Посчитаем количество неподвижных точек для H_n . Пусть λ^1 — цикленный тип коротких перестановок, λ^2 — цикленный тип длинных перестановок.

Утверждение 11. Неподвижные раскрашенные структуры, это в точности те, у которых длинный цикл покрашен в моноцвету, а пара симметричных коротких может быть покрашена либо в моноцвет, либо в бицвет.

Под покрашенным циклом мы подразумеваем покраску всех его элементов в этот цвет (такая покрашенная структура будет неподвижна относительно действия этого элемента H_n).

Утверждение 12. Справедлива формула:

$$\mathcal{Z}_{F}^{(1)} + 2\mathcal{Z}_{F}^{(2)} = \sum_{n} \frac{1}{2^{n} n!} \sum_{\sigma \in B_{n}} \chi(\sigma) \psi_{x,y,y}^{\lambda^{1}(\sigma)} \psi_{x}^{\lambda^{2}(\sigma)} = \sum_{n,\lambda^{1} + \lambda^{2} \vdash n} \chi(\sigma_{\lambda^{1} \lambda^{2}}) \frac{\psi_{x,y,y}^{\lambda^{1}} \psi_{x}^{\lambda^{2}}}{z_{\lambda^{1} \lambda^{2}}}$$

$$(2.2)$$

Здесь нижний индекс ψ означает переменные по которым берется степенная сумма. Например $\psi_{x,y,y}^2 = (x_1^2 + x_2^2 + x_3^2 + \dots + y_1^2 + y_2^2 + y_3^2 + \dots + y_1^2 + y_2^2 + y_3^2 + \dots)$. При этом коофициент 2 у y_i^2 отражает тот факт, что можно раскрасить k пар граней в бицвет, так чтобы расскраска была неподвижна, под действием короткого цикла, 2-мя способами.

Посчитаем количество неподвижных точек для $H_n \times Z_2$. Разобъем сумму на две части — $(h,\bar{0})$ и $(h,\bar{1})$. Для первой формула будет аналогична 2.2, только из-за того что порядок группы в 2 раза больше, появится коофициент $\frac{1}{2}$. Во второй части по-прежнему можно красить и длинные и короткие циклы в моноцвет. А вот с бицветом происходит любопытная вещь — предположим мы красим в него цикл (пару циклов, в случае короткого). Тогда реальный цикл от $(h,\bar{1})$ будет получатся из циклов h добавлением «смены грани» на каждом шаге. Значит для циклов нечетной длинны сменится свойство короткий—длинный.

Пример 20. Пусть
$$h_e = \bullet \leftrightarrow \bullet$$
. Тогда $(h_e, \bar{1}) = \bullet \to \bullet$
Пример 21. Пусть $h_o = \bullet \to \bullet$. Тогда $(h_o, \bar{1}) = \bullet \to \bullet$

Утверждение 13. Справедлива формула:

$$\mathcal{Z}_{F}^{(1)} + \mathcal{Z}_{F}^{(2)} = \frac{1}{2} \sum_{n,\lambda^{1} + \lambda^{2} \vdash n} \chi(\sigma_{\lambda^{1}\lambda^{2}}) \frac{\psi_{x,y,y}^{\lambda^{1}} \psi_{x}^{\lambda^{2}}}{z_{\lambda^{1}\lambda^{2}}} + \frac{1}{2} \sum_{n,\lambda^{1}_{0} + \lambda^{2}_{0} + \lambda^{1}_{0} + \lambda^{2}_{0} + \lambda^{1}_{0} + \lambda^{2}_{0} \vdash n} \chi(\sigma_{\lambda^{1}_{o}\lambda^{2}_{o}\lambda^{1}_{e}\lambda^{2}_{e}}) \frac{\psi_{x,y,y}^{\lambda^{1}_{e} + \lambda^{2}_{o}} \psi_{x}^{\lambda^{2}_{e} + \lambda^{1}_{o}}}{z_{\lambda^{1}_{o}\lambda^{2}_{o}\lambda^{1}_{e}\lambda^{2}_{e}}} \tag{2.3}$$

Где λ_o — циклы нечетной длинны, λ_e — циклы четной длинны. Из формул 2.2, 2.3 легко получить

$$\mathcal{Z}_F^{(1)} = \sum_{n,\lambda_o^1 + \lambda_o^2 + \lambda_e^1 + \lambda_e^2 \vdash n} \chi(\sigma_{\lambda_o^1 \lambda_o^2 \lambda_e^1 \lambda_e^2}) \frac{\psi_{x,y,y}^{\lambda_e^1 + \lambda_o^2} \psi_x^{\lambda_e^2 + \lambda_o^1}}{z_{\lambda_o^1 \lambda_o^2 \lambda_e^1 \lambda_e^2}}$$
(2.4)

$$\mathcal{Z}_{F}^{(2)} = \frac{1}{2} \sum_{n,\lambda^{1}+\lambda^{2}\vdash n} \chi(\sigma_{\lambda^{1}\lambda^{2}}) \frac{\psi_{x,y,y}^{\lambda^{1}} \psi_{x}^{\lambda^{2}}}{z_{\lambda^{1}\lambda^{2}}} - \frac{1}{2} \sum_{n,\lambda^{1}_{0}+\lambda^{2}_{0}+\lambda^{1}_{e}+\lambda^{2}_{e}\vdash n} \chi(\sigma_{\lambda^{1}_{o}\lambda^{2}_{o}\lambda^{1}_{e}\lambda^{2}_{e}}) \frac{\psi_{x,y,y}^{\lambda^{1}_{e}+\lambda^{2}_{o}} \psi_{x}^{\lambda^{2}_{e}+\lambda^{1}_{o}}}{z_{\lambda^{1}_{o}\lambda^{2}_{o}\lambda^{1}_{e}\lambda^{2}_{e}}} \tag{2.5}$$

2.5.2. Примеры вычисления цикленного индекса

Посчитаем цикленные индексы для простых h-species. Здесь мы будем писать Z(A) вместо Z_A . Это не должно вызывать путаницу, поскольку вместо A будут использоваться схематические картинки. Их никак не перепутать с переменными, от которых считается цикленный индекс.

Пример 22.

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\mathring{S}) = \frac{1}{2}(\psi_{x,y,y}^1 + \psi_x^1) = \psi_{x,y}^1$$
$$\mathcal{Z}^{(1)}(\mathring{S}) = \frac{1}{2}(\psi_x^1 + \psi_{x,y,y}^1) = \psi_{x,y}^1$$

Значит

$$\mathcal{Z}^{(2)}(\stackrel{\diamond}{\circ}) = 0$$

Пример 23.

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\mathring{\bullet}) = \frac{1}{2}(2\psi_{x,y,y}^1 + 0\psi_x^1) = \psi_{x,y,y}^1$$

$$\mathcal{Z}^{(1)}(\hat{\bullet}) = \frac{1}{2}(2\psi_x^1 + 0\psi_{x,y,y}^1) = \psi_x^1$$

Значит

$$\mathcal{Z}^{(2)}(\stackrel{\circ}{\bullet}) = \psi_y^1$$

Пример 24.

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\square) = \frac{1}{8}((\psi_{x,y,y}^1)^2 + (\psi_x^1)^2 + 2\psi_x^2 + 2(\psi_x^1\psi_{x,y,y}^1) + 2\psi_{x,y,y}^2)$$

Здесь коофициенты — не характеры (характер при каждом слагаемом = 1).

$$\mathcal{Z}^{(1)}(\Box) = \frac{1}{8}((\psi_x^1)^2 + (\psi_{x,y,y}^1)^2 + 2\psi_{x,y,y}^2 + 2(\psi_{x,y,y}^1 + \psi_x^1)^2 + 2\psi_x^2) = [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\Box)$$

Последнее следовало и из общих соображений: легко видеть что $\mathcal{Z}^{(2)}(\Box)=0.$

Пример 25.

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\square) = \frac{1}{8} (4(\psi_{x,y,y}^1)^2 + 0(\psi_x^1)^2 + 0\psi_x^2 + 0(\psi_x^1\psi_{x,y,y}^1) + 2 \times 2\psi_{x,y,y}^2)$$
$$\mathcal{Z}^{(1)}(\square) = \frac{1}{8} (4(\psi_x^1)^2 + 2 \times 2\psi_{x,y,y}^2)$$

Откуда

$$\mathcal{Z}^{(2)}(\square) = \frac{1}{2}([\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\square) - \mathcal{Z}^{(1)}(\square)) = \frac{1}{2}(\psi_{y,y}^1\psi_x^1 + \frac{1}{2}(\psi_{y,y}^1)^2) = \psi_y^1\psi_x^1 + (\psi_y^1)^2$$

2.6. Сумма и произведение цикленных индексов

2.6.1. Сумма

Сумма цикленных индексов соответсвует поточечной сумме аналитических функторов и здесь нет никаких сюрпризов:

$$\mathcal{Z}_{A+B}^{(1)} = \mathcal{Z}_{A}^{(1)} + \mathcal{Z}_{B}^{(1)}$$

$$\mathcal{Z}_{A+B}^{(2)} = \mathcal{Z}_{A}^{(2)} + \mathcal{Z}_{B}^{(2)}$$

2.6.2. Произведение

Для произведения уже не совсем так.

Утверждение 14. Моноструктура получается в произведении двух моноструктур. А биструктура получается, если один из сомножителей биструктура. Причем в случае, когда оба сомножителя — биструктуры, получается две различных биструктуры.

То есть

$$\begin{split} \mathcal{Z}_{A*B}^{(1)} &= \mathcal{Z}_A^{(1)} * \mathcal{Z}_B^{(1)} \\ \mathcal{Z}_{A*B}^{(2)} &= \mathcal{Z}_A^{(1)} * \mathcal{Z}_B^{(2)} + \mathcal{Z}_A^{(2)} * \mathcal{Z}_B^{(1)} + 2(\mathcal{Z}_A^{(2)} * \mathcal{Z}_B^{(2)}) \end{split}$$

Откуда следует

$$(\mathcal{Z}_{A*B}^{(1)} + 2\mathcal{Z}_{A*B}^{(2)}) = (\mathcal{Z}_A^{(1)} + 2\mathcal{Z}_A^{(2)}) * (\mathcal{Z}_B^{(1)} + 2\mathcal{Z}_B^{(2)})$$

Замечание 15. Это логично, поскольку $(\mathcal{Z}_F^{(1)} + 2\mathcal{Z}_F^{(2)})$ — это цикленный индекс для цветов, с «забытой» инволюцией.

2.6.3. Примеры цикленных индексов произведений

Посчитаем произведение уже известных h-структур и их цикленных индексов.

Пример 26. Структура 3×3 .

$$\mathcal{Z}^{(1)}({}^{\lozenge} \times {}^{\lozenge}) = \mathcal{Z}^{(1)}({}^{\lozenge}) \times \mathcal{Z}^{(1)}({}^{\lozenge}) = (\psi^1_{x,y})^2$$

Пример 27. Структура $\stackrel{\diamond}{\bullet} \times \stackrel{\diamond}{\bullet}$.

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\mathring{\bullet} \times \mathring{\bullet}) = [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\mathring{\bullet}) \times [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\mathring{\bullet}) = (\psi_{x,u,y}^1)^2$$

Легко получить эту же формулу и прямым подсчетом по формуле 2.2, как $\frac{1}{8}(8(\psi^1_{x,y,y})^2)$.

$$\mathcal{Z}^{(1)}(\overset{\circ}{\bullet}\times\overset{\circ}{\bullet})=\mathcal{Z}^{(1)}(\overset{\circ}{\bullet})\times\mathcal{Z}^{(1)}(\overset{\circ}{\bullet})=(\psi^1_x)^2$$

2.7. Цикленный индекс композиции

Теперь попробуем выстроить теорию композиции цикленного индекса для h-species, параллельно теории species. В качестве моноцветов возьмем $\{x_1, x_2, x_3, \dots\}$, бицветов — $\{y_1, y_2, y_3, \dots\}$. Формулы 2.2 и 2.3 подсказывают,

что на практике в качестве симметричного базиса можно брать не $\{\psi_x^i, \psi_y^j\}$ а $\{\psi_x^i, \psi_{x,y,y}^j\}$. Или другую линейную комбинацию, например $\{\psi_x^i, \psi_{x,y}^j\}$.

Задача 1. Как выразить

$$\mathcal{Z}_{F \circ G}^{(i)}(\psi_x^1, \psi_x^2, \psi_x^3, \dots, \psi_y^1, \psi_y^2, \psi_y^3, \dots)$$

Теорема 16.

Эта формула слишком грамоздкая, поэтому напишем ее на уровне членов:

$$\psi_x^i \circ (\mathcal{Z}_G^{(1)}, \mathcal{Z}_G^{(2)}) = \mathcal{Z}_G^{(1)}(\psi_x^i, \psi_x^{2i}, \psi_x^{3i}, \dots, \psi_y^i, \psi_y^{2i}, \psi_y^{3i}, \dots)$$

$$\psi_y^i \circ (\mathcal{Z}_G^{(1)}, \mathcal{Z}_G^{(2)}) = \mathcal{Z}_G^{(2)}(\psi_x^i, \psi_x^{2i}, \psi_x^{3i}, \dots, \psi_y^{i}, \psi_y^{2i}, \psi_y^{3i}, \dots)$$

Биструктуры подставляются вместо бицветов, моноструктуры, вместо моноцветов. В остальном рассуждение дословно повторяет случай обычных species.

Замечание 17. Если сделать подстановку

$$\psi_x^1 = t, \psi_x^k = 0, k > 1$$

$$\psi_y^1 = s, \psi_y^k = 0, k > 1$$

То полученная формула показывает, что 1.4 справедливо для экспоненциальных производящих функций bilabeled-структур (то есть производящая функция от двух переменных [TODO: А что такое 1.4 в этом случае?]). А можно сделать подстановку s:=t, которая даст выполнение формулы 1.4 для ехрпроизводящей функции просто labeled-структур [TODO: А это разве что-то новое?].

2.7.1. Примеры цикленного индекса композиции

Пример 28. Посчитаем $(\mathcal{Z}^{(1)}, \mathcal{Z}^{(2)})(\stackrel{\diamond}{\bullet} \circ \stackrel{\diamond}{\circ})$

$$\mathcal{Z}^{(1)}({}^{\lozenge}_{\bullet} \circ {}^{\lozenge}) = \psi^1_x \circ \psi^1_{x,y} = \psi^1_{x,y} = \mathcal{Z}^{(1)}({}^{\lozenge}_{\bullet})$$

$$\mathcal{Z}^{(2)}({}^{\diamond} \circ {}^{\diamond}) = \psi^1_y \circ 0 = 0 = \mathcal{Z}^{(2)}({}^{\diamond})$$

Пример 29. Да и вобще, справедливо

$$\mathcal{Z}^{(i)}(\stackrel{\circ}{\bullet} \circ A) = \mathcal{Z}^{(i)}(A)$$

$$\mathcal{Z}^{(i)}(A \circ \stackrel{\Diamond}{\bullet}) = \mathcal{Z}^{(i)}(A)$$

Замечание 18. Это дает некоторое понимание композиции. Так видимо $A \circ \stackrel{\checkmark}{\bullet} = \stackrel{\checkmark}{\bullet} \circ A = A$. То есть $\stackrel{\checkmark}{\bullet}$ является нейтральным элементом в монойде h-species по композиции. Это несколько контр-интуитивно, поскольку в обычных species нейтральным элементом являеться одноточечное множество. А его образом при вложении species в h-species являеться $\stackrel{?}{\circ}$.

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\square \circ \lozenge) = \frac{1}{2} (\frac{1}{2} (\psi_{x,y,y}^1 + \psi_x^1))^2 + \frac{1}{2} (\frac{1}{2} (\psi_{x,y,y}^2 + \psi_x^2)) = \frac{1}{8} ((\psi_x^1)^2 + (\psi_{x,y,y}^1)^2 + 2\psi_{x,y,y}^2 + 2(\psi_{x,y,y}^1 \psi_x^1) + 2\psi_x^2) = [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\square)$$
(2.7)

Замечание 19. Отсюда можно сделать предположение, что $\square \circ \lozenge = \square$. То есть подстановка $\lozenge -$ это «стирание различий между противоположными гранями».

Пример 31. Посчитаем для структуры V «вершина куба».

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](V) = e^{\psi_{x,y,y}^1 + \frac{\psi_{x,y,y}^2}{2!} + \frac{\psi_{x,y,y}^3}{3!} + \dots}$$

$$\mathcal{Z}^{(1)}(V) = e^{(\psi_x^1 + \frac{\psi_x^2}{2!} + \frac{\psi_x^3}{3!} + \dots) + (\psi_y^2 + \frac{\psi_y^4}{2!} + \frac{\psi_y^6}{3!} + \dots)}$$

Для структуры H «куб».

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](H) = \mathcal{Z}^{(1)}(H) = e^{\psi_{x,y}^1 + \frac{\psi_{x,y}^2}{2!} + \frac{\psi_{x,y}^3}{3!} + \dots}$$

Нетрудно убедится что $\mathcal{Z}^{(i)}(V \circ \S) = \mathcal{Z}^{(i)}(H)$.

2.8. Цикленный индекс species, вложенных в h-species

Утверждение 20. Пусть G — обычный species, вложенный в h-species. \mathcal{Z}_G — его цикленный индекс.

$$(\mathcal{Z}_G^{(1)}, \mathcal{Z}_G^{(2)})(\psi_x^1, \psi_x^2, \psi_x^3, \dots, \psi_{x,y,y}^1, \psi_{x,y,y}^2, \psi_{x,y,y}^3, \dots) = (\mathcal{Z}_G(\psi_{x,y}^1, \psi_{x,y}^2, \psi_{x,y}^3, \dots), 0)$$

2.9. Применение цикленного индекса к решению задач о раскрасках

Задача 2. Посчитать количество способов покрасить n-мерный куб в k цветов с точностью до изометрий. Иными словами, посчитать количество орбит при действии B_n на множестве всевозможно расскрашенных кубов. http://math.stackexchange.com/questions/5697/coloring-the-faces-of-a-hypercube.

Решение. В нашей нотации это вопрос о количестве расскрасок пар граней в k моноцветов и $\frac{k(k-1)}{2}$ бицветов. Поскольку любая расскраска даст нам моноструктуру, то производящая функция для количества расскрасок от размерности, будет равна $\mathcal{Z}_{\mathbb{H}}^{(1)}(kt,kt^2,kt^3,\ldots,k^2t,k^2t^2,k^2t^3,\ldots) = exp(kt+kt^2+kt^3+\cdots+\frac{k(k-1)}{2}t+\frac{k(k-1)}{2}t^2+\frac{k(k-1)}{2}t^3+\ldots) = exp(\frac{k(k+1)}{2}t+\frac{k(k+1)}{2}t^2+\frac{k(k+1)}{2}t^3+\ldots) = (exp(log(\frac{1}{1-t})))^{\frac{k(k+1)}{2}} = \frac{1}{1-t}$

Глава III. Заключение?

Список литературы

- 1. André Joyal, Une théorie combinatoire des séries formelles, Adv. Math 42 (1981), 1–82.
- 2. André Joyal, Foncteurs analytiques et espèces des structures, in Combinatoire Énumérative, Lecture Notes in Mathematics 1234, Springer, Berlin, (1986), pp. 126–159
- 3. F. Bergeron, Gilbert Labelle, Pierre LeRoux Combinatorial Species and Tree-Like Structures, Cambridge University Press, (1998)
- 4. N. Bergeron; P. Choquette. *Hyperoctahedral species* Sém. Lothar. Combin. 61A (2009/10), доступно на http://arxiv.org/abs/0810.4089
- 5. Hetyei, Gábor; Labelle, Gilbert; Leroux, Pierre Cubical species and nonassociative algebras Adv. in Appl. Math. (1998), no. 3
- 6. I. G. Macdonald. *Polynomial functors and wreath products*, J. Pure Appl. Algebra, 18(2):173–204, 1980.
- 7. I. G. Macdonald. Symmetric functions and Hall polynomials Oxford Mathemati- cal Monographs. The Clarendon Press Oxford University Press, New York, second edition, 1995.
- 8. http://nlab.mathforge.org/nlab/show/Day+convolution