Environmental factors controlling microbial colonization of plastics in the North Sea

Emna Zeghal¹, Annika Vaksmaa¹, Judith van Bleijswijk¹ and Helge Niemann^{1,2}

- ¹Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, The Netherlands
- ² Faculty of Geosciences, Utrecht University, The Netherlands

Background

Several million tons of plastic enter the ocean each year

The interactions between marine plastic debris and environmental microorganisms not well constrained

Methods

Water sampling sites for ex-situ incubations

4 Virgin polymers: PE, PS, PET and Nylon-6 **UV** ~ 125 days of UV irradiance at the sea surface in temperate regions

5 10 30 45 (days)

References: ¹ Gambarini, V., Pantos, O., Kingsbury, J. M., Weaver, L., Handley, K. M., and Lear, G. (2022). PlasticDB: a database of microorganisms and proteins linked to plastic biodegradation. *Database* 2022, baac008. doi: 10.1093/database/baac008.

Results

most abundant genera detected through time and potential metabolic interest Genera reported in plastic DB¹ (yellow), genera in curated hydrocarbon degraders database (blue), genera reported in both (green)

Conclusions

- **Location, time** and **polymer type** influence microbes' attachment on plastic in marine environments unlike UV weathering (statistical confirmation via ANOSIM)
- Genera encompassing hydrocarbon degrading and/or plastic degrading strains were detected

