Name: Md Tahoin

ID NO: 2020-2-60-112

Course Tible: Operating System.

Course Call: CSE325

Sec no: 301.

Roll: 34.

Ang the district

St. Frank La

Am to the gaes NO 04

We know, The state of a process in defined in part by the current activity of that process An a process executes, it changes state-According to the Question we have noticed five states of the process of the given seenarly.

New State: It in the state where procen we created. Here, I've elieved the for nocenary operands and operator for calculation.

of Lose Till about North

- Process also waits for the Processor waits for the Process also waits for the Processor. In the Processor to be assigned.
- m Running state: In this state the instructions are executed. In our our problem the software calculated. For the operation given in the running state.
- Dealting State: In this state the process water for name event to

when the running state was over.

Procen finished : enecution and shown output. In our problem, the software showed me the output.

The atthrote proces, And 3+[2-1] +3-D3+3=6 [1 = 3 = 3 than others.] 50, the rend in [3rd] formation 11 correct. menutin = 2.

ID: 2020-2-60-112

R 34

(a)

Awsto the Sus No. 02

**************************************	-		-				-		
Po	T	C0	O., 5	6	10 d A				
P ₁	Į.	I,	C ₁	1 2	01		are trib		
P2	toto		5	2002	C2 14		02		
P3	600	wolfer	7 17 17 7	3.24	· No f	M	65	03	1
1.3			3	3	I	Э	13/	#	- 1
roul	proc	N AL		to all				_	- 1.
· ·	6	12	113	to a	14	***	13	7	64
			·						

1 stransol bounded

The solution of solutions

(5) to solution of solutions

(6)

Aws: 64

Po 10 Po 10 Po 6 Po 10 Po 10 P	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	01 6 02 8 3
	(1-A) Ams = 60	2 60

Ann to the Guer No. @03

into michine tell with a ni typerstain in Output: Hello world tot tours toutello

neitountari worlding (1000 7

in this code we call three three fork() Syntem. of (Pid>0) then it will be the Parent process, and it will exceede if block also enecute PIJI forth() system call. if (Pid==0) block in the block it will

enecute the Phlz=forMU. Syntem entl

also pand "world" else block.

Ams to the Ques NO. 5

Multiple many user threader to a smaller on equal number of Kornel throads. The number of Kornel throader maybe specifie to either of Kornel throader maybe specifie to either of Kornel a particular

applientian. It erates many user threader as reconvery, when a thread processor a blocking system cell, the Kornel school another thread for enecotion is of robarde some com styridam. all fried to society the sign

ID: 2020-2-60-112

34

Ans to the Quen No. 01

(10)

Mary Illa Cours Mr. AADS An interrupt in a h/w that enables cpu to decide that a device needs it's attention The cpu has a wine interrupt-nequest that execution of every single instruction.

in divi co-de ue cell fluer shore for alt ad hin ti nott (000) H. mathers ti skowe Him Ei 1,40 . 1000-897 tours block gloc enclude Pida Kink() Ender Who ti No-ld who is world (a-- big) di enerale Mind Para Para Contra