SCExecute: Analize stratificate pe cod de bare celulare pentru date scRNA-seq

Analiză și prezentare articol științific

Mara Spataru Alexandra Toma Rareș Tudur

Universitatea București Inițiere în cercetare și bioinformatică

May 12, 2025

Cuprins

- Introducere în scRNA-seq
- Coduri de bare celulare
- 3 Necesitatea analizelor stratificate pe cod de bare
- 4 Limitările instrumentelor tradiționale

Ce este scRNA-seq?

- Single-cell RNA sequencing = secvențierea ARN la nivel de celulă unică
- Tehnologie care permite măsurarea expresiei genelor în fiecare celulă individual
- Revoluționează înțelegerea diferențelor între celule (nu mai lucrăm cu medii)
- Permite identificarea tipurilor rare de celule (care altfel ar fi "invizibile")

RNA-seq traditional vs. scRNA-seq

RNA-seq traditional:

- Analizează ARN din grupuri de celule
- Oferă o medie a activității genelor
- Pierde detaliile despre diferentele între celule
- Nu detectează evenimente care apar rar

scRNA-seq:

- Analizează ARN din celule una câte una
- Arată diferențele dintre celule individual
- Descoperă tipuri rare de celule
- Urmărește evoluția diferitelor tipuri de celule
- Necesită algoritmi mai complecși

Comparație	RNA-seq	scRNA-seq	
Ce măsoară	Grupe de celule	Celule individuale	
Ce observăm	Doar media	Diferențele între celule	
Complexitate	Mai simplă	Mai avansată	

Provocări în scRNA-seq

Tehnice:

- Cantitate foarte mică de ARN într-o singură celulă
- Proces ineficient de izolare a ARN-ului (doar 10-40% este identificat)
- Multe gene nu sunt detectate deloc în unele celule (deși sunt prezente)
- $\bullet \ \ \textbf{Zgomot tehnic} = \mathsf{erori} \ \mathsf{\dot{s}i} \ \mathsf{variații} \ \mathsf{introduse} \ \mathsf{de} \ \mathsf{aparatur\check{a}} \ \mathsf{\dot{s}i} \ \mathsf{proceduri}$

Computaționale:

- Volume mari de date (sute de GB)
- Necesitatea identificării celulelor individuale din amestec
- Algoritmi specializați pentru date rare/împrăștiate (multe valori zero)
- Metode complexe pentru standardizare și comparare între celule

Platforme principale scRNA-seq

Platformă	Tehnologie	Caracteristici
10x Genomics	Bazată pe picături	Volum mare de celule
Smart-seq2	Bazată pe plăci	Acoperire completă
Drop-seq	Bazată pe picături	Cost redus
MARS-seq	Bazată pe plăci	Automatizat

- Platforme bazate pe picături (droplet-based):
 - Procesează mii-zeci de mii de celule simultan
 - Necesită coduri de bare celulare pentru identificare
 - (Detalii oral: celulele sunt încapsulate în picături minuscule de apă în ulei)
- Platforme bazate pe plăci (plate-based):
 - Procesează sute de celule
 - Control mai bun, acoperire genomică mai bună
 - (Detalii oral: celulele sunt plasate în godeuri individuale pe o placă cu 96/384 poziții)

6/22

Tehnologii scRNA-seq Conventionale:

- Micropipetă (plăci 96/384)
- Capilar pentru celule unice
- FACS (sortare celule activate)
- Microdisectie cu laser

Microfluidice:

- Droplets (picături cu celule)
- Valve microfluidice
- Nanogodeuri
- Debit mai mare de celule

Single-Cell RNA Sequencing (ScRNA-seq)

Avantaj: Combinare cu analiza proteinelor sau secvențierea genomului

Ce sunt codurile de bare celulare?

- Secvențe scurte de nucleotide (10-20 baze/litere ADN)
- Atașate la ARN-ul din fiecare celulă individuală
- Acționează ca "etichete" pentru identificarea celulei de origine
- Esențiale pentru analiza a mii de celule simultan

Cum functionează codurile de bare?

În tehnologiile bazate pe picături:

- Fiecare celulă este izolată într-o picătură minusculă
- Picătura conține un cod de bare specific
- ARN-ul extras din celulă primește acest cod de bare

În tehnologiile bazate pe plăci:

- Celulele sunt izolate în compartimente separate
- Fiecare compartiment primește un cod de bare unic

Avantaje:

- Permite analizarea a mii de celule într-un singur experiment
- Reduce semnificativ costurile per celulă
- Permite separarea datelor pe celule după secvențiere.

Mecanismul codurilor de bare în droplet-based scRNA-seq

Sursa: Galaxy Project (2022)

- Stânga: secvențe de coduri de bare | Mijloc: ARN din celule cu cod celular (GGG/TCT)
- ullet Dreapta: ARN cu cod celular + UMI unic | Sistem dublu elimină duplicatele PCR

Tipuri de coduri de bare în scRNA-seq

Cod de bare celular (Cell Barcode - CB):

- Identifică din ce celulă provine secvența ARN
- Lungime: 10-20 litere/baze (A, C, G, T)
- În fișierele de aliniere, este stocat ca informație specială (tag)

Identificator Molecular Unic (UMI):

- Identifică exact ce moleculă ARN a fost secventiată
- Previne numărarea multiplă a acelorași molecule (duplicate PCR)
- Lungime: 8-12 litere/baze

Index de probă:

- Identifică din ce pacient/probă provine secvența
- Permite combinarea mai multor probe în același experiment

Provocări în utilizarea codurilor de bare

Provocări tehnice:

- Erori de citire în codurile de bare
- Coduri de bare identice pentru celule diferite
- Gene care nu sunt detectate deși există în celulă
- Eficiență variabilă la atașarea codurilor de bare

Soluții:

- Algoritmi de corectare a erorilor de secvențiere
- Liste predefinite de coduri valide
- Filtrarea codurilor rare (probabil eronate)
- Stocarea informațiilor în câmpuri speciale în fișiere BAM

Observație importantă

Datele scRNA-seq conțin toate celulele amestecate. Trebuie să separăm citirile (reads) pentru fiecare celulă folosind codurile de bare pentru a face analize la nivel de celulă.

De ce sunt necesare analizele stratificate?

- Expresia genică cel mai studiat aspect, dar nu singurul.
- Alte caracteristici la nivel de celulă sunt importante pentru:
 - Înțelegerea diferențelor dintre celule
 - Identificarea grupurilor rare de celule
 - Descoperirea modificărilor genetice rare
 - Studiul evoluției diferitelor grupe de celule
- **Stratificarea** = separarea citirilor (reads) pe celule individuale
- Permite aplicarea metodelor de analiză tradiționale la nivel de celulă

Provocare computațională

Procesarea separată a datelor pentru sute/mii de celule necesită soluții eficiente.

Informații adiționale din scRNA-seq (1/2)

Variante genetice (SNV-uri):

- Modificări la nivelul unei singure baze în ADN/ARN
- Variații genetice specifice unei celule
- Mutații apărute după formarea embrionului (somatice)
- Modificări apărute după transcrierea ARN

Expresie diferențiată a alelelor (ASE):

- Folosirea preferențială a unei versiuni a genei vs cealaltă
- Mecanism de control genetic
- Proces natural în inactivarea cromozomului X la femei
- Modificări în controlul expresiei genelor

Informații adiționale din scRNA-seq (2/2)

Splicing alternativ:

- Diferite moduri de asamblare a ARN-ului mesager
- Specific tipului de celulă
- Crește diversitatea proteinelor posibile
- Mecanism de reglare a funcțiilor celulare

Editare ARN:

- Modificări chimice ale bazelor ARN
- Diferențe între ARN și ADN-ul original
- Variază între tipuri de celule
- Crește diversitatea moleculelor ARN

Cazuri de utilizare a analizelor stratificate

Cercetare în cancer:

- Diferențe între celulele din aceeași tumoră
- Urmărirea evoluției grupurilor de celule
- Înțelegerea rezistenței la tratament

Imunologie:

- Răspunsuri specifice ale celulelor imune
- Diversitatea receptorilor celulelor T și B

Neurobiologie:

- Identificarea tipurilor de neuroni
- Modificări specifice în ARN-ul neuronal

Studiul dezvoltării organismelor:

- Cum se specializează celulele din embrion în diferite țesuturi
- Cum "decid" celulele ce funcții să îndeplinească în organism

Instrumente principale pentru scRNA-seq (1/2)

STARsolo:

- Extensie a programului de aliniere STAR
- Combină alinierea cu identificarea celulelor
- Numără eficient genele exprimate
- Optimizat pentru date 10x Genomics

CellRanger:

- Program dezvoltat de compania 10x Genomics
- Set complet de instrumente pentru scRNA-seq
- Combină aliniere + numărare + grupare
- ullet Special creat pentru datele 10x

Instrumente principale pentru scRNA-seq (2/2)

UMI-tools:

- Procesează identificatorii moleculari unici
- Elimină duplicatele și numără corect
- Flexibil pentru diverse platforme

Seurat/Scanpy:

- Instrumente pentru analiză și vizualizare
- Grupează celulele în tipuri similare
- Permite combinarea mai multor probe

Limitări ale instrumentelor existente

Concentrare doar pe expresia genică:

- Optimizate pentru numărarea genelor
- Nu oferă informații despre variante genetice, splicing, etc.

Lipsa suportului pentru analize personalizate:

- Nu putem folosi direct instrumente create pentru secvențierea clasică
- Pentru fiecare tip nou de analiză, se dezvoltă programe speciale

Probleme de scalabilitate:

- Analiza separată a mii de celule este ineficientă
- Consumă prea multă memorie pentru multe celule

Format de date neadecvat:

- Datele combinate (agregate) trebuie procesate suplimentar
- Necompatibilitate cu programele existente

Bariere în analiza avansată scRNA-seq

Provocări tehnice:

- Separarea manuală a fișierelor BAM consumă timp
- Utilizarea ineficientă a resurselor de calcul
- Complexitate ridicată a fluxurilor de analiză
- Lipsa unei abordări standardizate

Fo	cus	li	mitat	:
$\overline{}$	٠.			

Complexitate de calcul

Date combinate

Unelte inadecvate

Nevoia unei solutii

Este nevoie de o metodă care să permită folosirea programelor existente pentru analiza genetică la nivel de celulă, fără a consuma prea multe resurse.

Problema tehnică la care răspunde SCExecute

- Programele actuale pentru scRNA-seq generează fișiere BAM cu toate celulele
- Programele clasice de analiză genetică (GATK, Strelka2) nu înțeleg codurile de bare
- Este nevoie de:
 - Extragerea secvențelor pentru fiecare celulă
 - Crearea de fisiere BAM separate per celulă (scBAM)
 - Aplicarea programelor de analiză pe fiecare scBAM
 - Combinarea rezultatelor pentru interpretare
- SCExecute este creat exact pentru a rezolva această problemă.

SCExecute permite utilizarea instrumentelor existente pentru analiza datelor la nivel de celulă.

Concluzii

- scRNA-seq oferă rezoluție celulară pentru studierea expresiei genelor
- Codurile de bare celulare sunt esențiale pentru identificarea originii celulare a secvențelor
- Analizele stratificate pe cod de bare permit studiul:
 - Variantelor genetice exprimate (SNV)
 - Expresiei diferențiate a alelelor
 - Splicing-ului alternativ
 - Fditării ARN
- Programele existente pentru scRNA-seq sunt limitate la analiza expresiei genelor
- SCExecute este soluția pentru analize personalizate la nivel de celulă