1ère année Licence GAT

Examen Final S1 (Durée 1h)

Nom: Matricule: Note/20:
Prénom: Section:

Exercice 1(4,25 pts): Choisir la ou les bonnes réponses :

- 1. Quelles sont les combinaisons possibles pour les propositions suivantes ?
 - \circ (n = 2, 1 = -1, m = 0, S = +1/2)
 - \checkmark (n = 3, 1 = 2, m = -2, S = +1/2) (0,25)
 - \circ (n = 3, 1 = 0, m = 0, S = -3/2)
 - \checkmark (n = 2, 1 = 1, m = 0, S = -1/2) (0,25)
- 2. L'ion $^{35}_{17}Cl$ contient:
 - o 17 protons, 16 éléctrons et 18 neutrons
 - o 17 protons, 17 éléctrons et 18 neutrons
 - ✓ 17 protons, 18 éléctrons et 18 neutrons (0,5)
- 3. Parmi les ions suivants, lesquels ont le même nombre d'électrons que l'atome d'Argon $^{40}_{18}Ar$?
 - ✓ ³⁵₁₇Cl⁻ (0,25)
 - $\circ {}^{27}_{13}Al^{3+}$
 - $\checkmark \quad ^{39}_{19}K^+$ (0,25)
 - $\checkmark \ _{16}^{32}S^{2}$ (0,25)
- 4. Parmi les structures électroniques suivantes, quelles sont celles qui ne respectent pas les règles de remplissages :

5. Un électron dans un atome est caractérisé par :

- o Sa masse
- o Sa charge
- ✓ Ses quatre nombres quantiques (0,5)

6. Plus le nombre de couches au sein d'un atome augmente :

- ✓ Plus l'énergie d'ionisation est faible (0,5)
- o Plus l'énergie d'ionisation est grande
- o Aucun effet sur l'énergie d'ionisation

7. Dans la couche M (n=3), il existe :

- o 3 orbitales atomiques
- o 5 orbitales atomiques
- ✓ 9 orbitales atomiques (0,5)

8. Les électrons de la couche de valence sont :

- Les électrons des couches internes
- ✓ Les électrons de la couche externe (0,5)
- O Tous les électrons de l'atome.

Exercice 2: Soit les éléments 16S, 24Cr, Ca, Br et 37Rb

- Le nombre d'électrons de l'ion **Br**⁻¹ est égal à 36
- Ca est un alcalino-terreux, en perdant deux électrons, il acquiert la configuration électronique du gaz rare 18Ar

1. Compléter le tableau suivant :

Elément	La configuration électronique	Z	Période	Groupe et sous groupe	Famille	L'ion le plus stable
16S	10[Ne] 3S ² 3P ⁴ (0,5)		3 (0,25)	VI _A (0,25)		S ²⁻ (0,25)
24Cr	$_{18}[Ar]4S^{1}3d^{5}$ (0,5)		4 (0,25)	VI _B (0,25)	Métaux de transition (0,25)	Cr ⁺ (0,25)
Ca	$_{18}[Ar]4S^{2}$ (0,5)	20 (0,25	4 (0,25)	II _A (0,25)		X
Br	$_{18}[Ar]4S^23d^{10}4P^5$ (0,5)	35 (0,25)	4 (0,25)	VII _A (0,25)	Halogènes (0,25)	
37 Rb	₃₆ [Kr]5S ¹ (0,5)		5 (0,25)	I _A (0,25)	Alcalins (0,25)	Rb ⁺

2. Classer les éléments 16S, 24Cr et 37Rb par ordre croissant de rayon atomique (Justifier)

$$r_{S} < r_{Cr} < r_{Rb}$$
 (0,5)

Justification: Dans la même période: Lorsque Z r r (0,25)

Dans la même colonne: Lorsque n r r (0,25)

3- Parmi les trois éléments : 16S, 24Cr et 37Rb, indiquer en justifiant l'élément le plus électronégatif.

L'élément le plus électronégatif est le soufre ₁₆S (0,25)

Justification : Dans la même période: Lorsque Z 🗡 χ 🗷

Dans la même colonne: Lorsque n 🗷 χ 🐧

(0,25)

Soit : puisque l'électronégativité variée inversement avec le rayon atomique, si le soufre a le rayon le plus petit donc il possède par conséquence l'électronégativité la plus élevée.

4- Donner les quatre nombres quantiques (n, l, m, s) de l'électron célibataire de l'élément 37Rb.

$$n=5$$
 $l=0$ $m=0$ $S=+1/2$ (0,125 (0,125 (0,125)

5- Déterminer la masse atomique de $\frac{85}{37}$ Rb en uma et gramme.

 $(On\ donne: m_p = 1,\, 00728\ uma,\ m_n = 1,\! 00866\ uma,\ m_e = 5,\! 4873.10^{-4}\ uma\ ,1 uma = 1,\! 66\ 10^{-24}g)$

$$m_{\text{atome}} = Z m_{\text{p}} + (A-Z) m_{\text{n}}$$
 (0,5)

$$m_{atome} = 85,7053 \text{ uma}$$
 (0,25)

$$m_{atome} = 1,422 \ 10^{-22} \ g$$
 (0,25)

6- Sachant que le sélénium (Se) est situé dans la même période que 24Cr et appartient à la même famille que 16S, donner la structure électronique de la couche de valence de Se et son numéro atomique

Structure électronique de la couche de valence		Numéro atomique	
$[Ar]4S^23d^{10}4P^4$	<mark>(0,5)</mark>	34	(0,25)

Exercice 3 (5 pts):

1-Donner la représentation de Lewis, le type AX_mE_n et la géométrie des molécules et ions cités dans le tableau ci-dessous (l'atome central est indiqué en **gras**).

La molécule	Structure de Lewis	Type AX _m E _n	Géométrie	
CCl ₄	(0,5)	AX ₄	Tétraédrique (0,25)	
\mathbf{CO}_2	(0,5)	AX ₂ (0,25)	Linéaire <mark>(0,25)</mark>	
CO ₃ -2	(0,5)	AX ₃ (0,25)	Triangulaire (0,25)	
ClO ₂ -	1 <u>0</u> H <u>G</u> - <u>o</u> (0,5)	AX ₂ E ₂ (0,25)	Coudée (forme V) (0,25)	

On donne : 8O, 15P, 17Cl,

2- Sur la base des électronégativités des atomes O et Cl, déterminer la nature de la liaison O-Cl dans la molécule ClO

On donne les électronégativités : O(3,5), Cl(3,16)

$$\Delta \chi = \chi_{\rm O} - \chi_{\rm Cl}$$
 (0,5)

$$\Delta \chi = 0.34$$
 Liaison covalente (0.5)