EE466000 introduction to reinforcement learning Homework 3: Gridworld

Due: April 25, 2021 23:59

Goal

• Use dynamic programming to find an optimal policy in HW2.2

Todo

- Implement an algorithm:
 - ✓ Use bellman equation for $q_*(s, a)$

Details

- File description
 - o HW3.ipynb: You'll implement an algorithm in the file.
- Gridworld environment

Example Gridworld

- State: cell of the grid
- Action: north, south, east, and west
- Reward:

Actions take the agent off the grid \rightarrow R=-1 and its location unchanged Actions move the agent out of A or B \rightarrow R= 10 or 5,

its location is relocated to A' or B'

Other actions \rightarrow R=0

18.78	24.42	18.78	19.42	14.73
	24.42 24.42			17.48 14.73
17.80	24.42	17.80	19.42	14.42
19.78	21.98 17.80 17.80	19.78	17.48 17.80 14.42	15.73 16.02 13.42
16.02	17.80	16.02	14.42	12.98
17.80	19.78	17.80	16.02	14.42
14.42	16.02 16.02	14.42	12.98	11.68
16.02 13.42 16.02	17.80 14.42 14.42	16.02	14.42	12.98
12.98	14.42	12.98	11.68	10.51
14.42	16.02	14.42	12.98	11.68
11.98 14.42	12.98 12.98	11.98	10.68	9.51
11.90	15.42	11.90	10.66	9.51

table of an algorithm.

Requirements and Installation

- Python version: 3.6
- pip install matplotlib
- pip install numpy

Report

- Title, name, student ID
- Implementation
 - ✓ Briefly describe your implementation.
- Experiments and Analysis
 - ✓ Plot tables of an algorithm. (As example above)
 - √ Whether q_values are reasonable?
 - ✓ Compare the table to the table of HW2.2.

Reminder

- Please upload your code <u>main.py</u> and <u>report.pdf</u> to iLMS before 4/25 (Sat.) 23:59. No late <u>submission allowed</u>.
- DO NOT zip your code into a single file.
- Please do not copy&paste the code from your classmates.
- Please write a README file to explain how to run your code if you implemented extra functions.