COMPAS Data Wrangling and Analysis

Dasha Asienga

2024-02-24

The thesis body will have more in-depth descriptions of the data analysis as well as select output and results from this file. This file is intended for general preliminary analysis of the COMPAS data set.

Reading in the Data

```
#read in the data
compas_path <- "/home/dasienga24/Statistics-Senior-Honors-Thesis/Data Sets/COMPAS/compas_data.csv"
compasdata <- read.csv(compas_path)</pre>
```

The Data Set

The COMPAS data set has 12076 observations of defendants that were evaluated for the risk of recidivism by the COMPAS tool. There are 29 variables of interest as described below:

- id: unique person identifier.
- compas_person_id: unique COMPAS case identifier.
- name: full name.
- first: first name.
- last: last name.
- sex: sex categorized as male or female.
- race: race categorized as African-American, Asian, Caucasian, Hispanic, Native American, or Other.
- age: numeric age, ranging from 18 to 96.
- age_cat: age categorized as Less than 25, 25 45, or Greater than 45.
- marital_status: marital status categorized as Single, Significant Other, Married, Widowed, Separated, Divorced, or Unknown.
- custody_status: custody status categorized as Jail Inmate, Prison Inmate, Pretrial Defendant, Parole, Residential Program, or Probation.
- juv_fel_count: number of prior juvenile felonies, ranging from 0 to 20.
- juv_misd_count: number of prior juvenile misdemeanors, ranging from 0 to 13.
- juv_other_count: number of other prior juvenile offenses, ranging from 0 to 17.
- priors count: number of non-juvenile prior offenses, ranging from 0 to 43.
- days_b_screening_arrest: number of days between COMPAS screening and arrest.
- c_days_from_compas: the number of days since COMPAS screening.
- c_charge_degree: the charge degree according to the appropriate laws.
- c_charge_desc: the charge description in words.
- type_of_assessment: the type of assessment, in this case, the assessment is 'Risk of Recidivism'.
- raw score: COMPAS tool raw score on risk of recidivism.
- decile score: decile rank on a scale of 1 10 based on the COMPAS raw score.
- score_text: COMPAS risk of recidivism based on the decile scores and categorized as High, Medium, or Low.

- is_violent_recid: categorical variable recording whether a defendant was accused of a violent crime within 2 years (0 = N, 1 = Y).
- num_vr_cases: number of times a defendant was accused of a violent crime within 2 years.
- is_recid: categorical variable recording whether a defendant was accused of a crime within 2 years (0 = N, 1 = Y).
- num_r_cases: number of times a defendant was accused of a crime within 2 years.
- days in jail: number of days spent in jail.
- days_in_prison: number of days spent in prison.

```
colnames(compasdata)
```

```
[1] "id"
                                    "compas_person_id"
##
    [3] "name"
                                    "first"
##
    [5] "last"
                                   "sex"
##
   [7] "race"
                                    "age"
##
   [9] "age_cat"
                                    "marital_status"
## [11] "custody_status"
                                   "juv_fel_count"
## [13] "juv_misd_count"
                                   "juv_other_count"
## [15] "priors_count"
                                   "days_b_screening_arrest"
                                    "c charge degree"
## [17] "c_days_from_compas"
## [19] "c_charge_desc"
                                   "type_of_assessment"
## [21] "raw score"
                                    "decile score"
## [23] "score_text"
                                   "is_violent_recid"
## [25] "num_vr_cases"
                                    "is_recid"
## [27] "num_r_cases"
                                   "days_in_jail"
## [29] "days_in_prison"
```

Data Wrangling

Before proceeding with the data analysis, we first need to handle some data anomalies. We'll also only consider COMPAS cases within 30 days of arrest to improve the data quality. This resulted in 9638 total observations.

We'll proceed with this data set and 9387 observations total.

Descriptive Statistics

Now that the data is clean, let's generate some descriptive statistics to understand the distribution of the variables in the data set and their relationships with each other.

First, below is a glimpse of the data as described above. Notice that there is a lot of missing data for num_vr_cases and num_r_cases because that information is only recorded for defendants that recommit a crime in the next 2 years.

glimpse(clean_compasdata)

```
## Rows: 9,387
## Columns: 29
## $ id
                           <int> 1, 3, 4, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, ~
## $ compas_person_id
                           <int> 56418, 51601, 38864, 59301, 61330, 56890, 6199~
                           <chr> "miguel hernandez", "kevon dixon", "ed philo",~
## $ name
                           <chr> "miguel", "kevon", "ed", "marsha", "edward", "~
## $ first
## $ last
                           <chr> "hernandez", "dixon", "philo", "miles", "riddl~
## $ sex
                           <chr> "Male", "Male", "Male", "Male", "Male"~
## $ race
                           <chr> "Other", "African-American", "African-American~
## $ age
                           <int> 69, 34, 24, 44, 41, 43, 39, 20, 26, 27, 23, 37~
                           <chr> "Greater than 45", "25 - 45", "Less than 25", ^{\sim}
## $ age_cat
                           <chr> "Single", "Single", "Single", "Separated", "Si~
## $ marital_status
                           <chr> "Jail Inmate", "Jail Inmate", "Jail Inmate", "~
## $ custody_status
## $ juv_fel_count
                           ## $ juv_misd_count
                           ## $ juv_other_count
                           <int> 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0~
                           <int> 0, 0, 4, 0, 14, 3, 0, 0, 0, 0, 3, 0, 0, 0, 1, ~
## $ priors_count
## $ days_b_screening_arrest <int> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 20, ~
## $ c days from compas
                           <int> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 490,~
                           <chr> "(F3)", "(F3)", "(F3)", "(M1)", "(F3)", "(F3)"~
## $ c_charge_degree
                           <chr> "Aggravated Assault w/Firearm", "Felony Batter~
## $ c charge desc
                           <chr> "Risk of Recidivism", "Risk of Recidivism", "R~
## $ type_of_assessment
## $ raw_score
                           <dbl> -2.78, -0.76, -0.66, -1.93, -0.16, -0.72, -1.7~
                           <int> 1, 3, 4, 1, 6, 4, 1, 10, 5, 4, 6, 1, 3, 4, 1, ~
## $ decile score
                           <chr> "Low", "Low", "Low", "Low", "Medium", "Low", "~
## $ score_text
## $ is_violent_recid
                           <int> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ num_vr_cases
                           ## $ is_recid
                           <int> 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1~
## $ num_r_cases
                           <int> NA, 3, 1, NA, 3, NA, NA, NA, NA, NA, NA, NA, NA
## $ days_in_jail
                           <dbl> 8, 10, 139, 1, 48, 17, 3, 46, 87, 1, 4, 1, 0, ~
## $ days_in_prison
                           <dbl> 0, 53, 0, 0, 2130, 0, 0, 3948, 0, 0, 0, 0, 0, ~
```

Next, we will perform some univariate analysis for the variables in the data set before proceeding to conduct some bivariate and multivariate analysis.

Univariate Analysis

Univariate analysis will involve looking at some summary statistics and visualizations of the different variables in the data set.

Categorical Variables

There 7457 males and 1930 females in the data set.

tally(clean_compasdata\$sex) ## X ## Female Male ## 1930 7457 ggplot(data = clean_compasdata, mapping = aes(x = sex)) + geom_bar() + theme_minimal()

Most of the defendants are African-American and Caucasian, with only 27 Native Americans and 48 Asians.

```
tally(clean_compasdata$race)
```

```
## X
## African-American
                                Asian
                                             Caucasian
                                                                Hispanic
               4674
                                                  3250
                                                                     818
##
                                   48
##
    Native American
                                Other
                                  570
ggplot(data = clean_compasdata, mapping = aes(x = race)) +
  geom_bar() +
  theme_minimal()
```


Majority of the defendants are between the age of 25 and 45, with about the same number of defendants less than 25 and greater than 25.

```
tally(clean_compasdata$age_cat)
```

```
## X
## 25 - 45 Greater than 45 Less than 25
## 5366 2012 2009

order <- c("Less than 25", "25 - 45", "Greater than 45")

ggplot(data = clean_compasdata, mapping = aes(x = age_cat)) +
    geom_bar() +
    theme_minimal() +
    scale_x_discrete(limits = order) +
    labs(x = "Age Category")</pre>
```


Most of the defendants are single, followed by married.

tally(clean_compasdata\$marital_status)

```
## X
            Divorced
##
                                Married
                                                Separated Significant Other
                                   1145
##
                 398
                                                       219
                                                                         333
##
              Single
                                Unknown
                                                  Widowed
                                                        40
##
                7195
                                     57
ggplot(data = clean_compasdata, mapping = aes(x = marital_status)) +
 geom_bar() +
  theme minimal() +
 theme(axis.text.x = element_text(angle = 25, vjust = 1.2, hjust=1)) +
  labs(x = "Marital Status")
```


Marital Status

Most of the defendants are jail inmates, with only a handful of prison inmates, probationers, and defendants of the residential program.

tally(clean_compasdata\$custody_status)

```
## X
## Jail Inmate Pretrial Defendant Prison Inmate Probation
## 8208 1170 4 3
## Residential Program
## 2

ggplot(data = clean_compasdata, mapping = aes(x = custody_status)) +
    geom_bar() +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 25, vjust = 1.2, hjust=1)) +
    labs(x = "Custody Status")
```


Custody Status

As a data check, all the assessments are for risk of recidivism.

```
tally(clean_compasdata$type_of_assessment)
## X
```

```
## X
## Risk of Recidivism
## 9387
```

There are 13 different charge degrees present in the data set. Most defendants were charged with (F3), which are felonies of the third degree. These are the least serious felonies in Florida and typically include crimes like breaking and entering, collecting and keeping stolen property, fraud, and petty theft. Many other defendants were also charged with (M1), which are a first-degree misdemeanors and can be punished by up to one year in jail. These include simple battery, disorderly conduct, DUI, indecent exposure, marijuana possession, shoplifting, prostitution, and vandalism, among others.

```
tally(clean_compasdata$c_charge_degree)
```

```
## X
  (CO3)
                                                                                 (X)
##
          (F1)
                 (F2)
                       (F3)
                             (F5)
                                    (F6)
                                          (F7)
                                                (M1)
                                                       (M2)
                                                           (MO3) (NIO) (TCX)
                       5091
                                5
                                       3
                                                2584
           129
                 774
                                                        658
                                                               51
                                                                                   1
ggplot(data = clean_compasdata, mapping = aes(x = c_charge_degree)) +
  geom_bar() +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 25, vjust = 1.2, hjust=1)) +
  labs(x = "Charge Degree")
```


About two-thirds of the defendants did not recommit a crime within two years, while one-thirds did. This is our response variable and is indicative of class imbalance, which can affect the performance of machine learning classification algorithms. This is important to keep in mind when assessing model performance later on.

```
tally(clean_compasdata$is_recid)

## X

## 0 1

## 6199 3188

ggplot(data = clean_compasdata, mapping = aes(x = as.factor(is_recid))) +
    geom_bar() +
    theme_minimal() +
    labs(x = "Recommitted a Crime Within Two Years")
```


Recommited a Crime Within Two Years

Only 745 defendants recommitted a violent crime.

```
tally(clean_compasdata$is_violent_recid)
```

```
## X
## 0 1
## 8642 745
```

Out of the 3188 who recommitted a crime, 2443 re-committed a non-violent crime,

```
tally(clean_compasdata[clean_compasdata$is_recid == 1, ]$is_violent_recid)
```

Recommitted a Crime Within Two Years

title = "Recommitted a Crime Within Two Years")

Finally, the COMPAS tool classified more than half of the defendants as low risk. In particular, 5370 were classified as low risk and 1677 as high risk, with the remaining 2340 as medium risk. This is expected since most of the defendants did not recommit a crime within the two year time window.

```
tally(clean_compasdata$score_text)
```

```
## X
## High Low Medium
## 1677 5370 2340

order <- c("Low", "Medium", "High")

ggplot(data = clean_compasdata, mapping = aes(x = score_text)) +
    geom_bar() +</pre>
```


This wraps up our univariate analysis of the categorical variables. Next, let's examine the univariate distribution of the continuous variables.

Continuous Variables

The age of the defendants ranges from 18 to 96 with a mean of 34 and a median of 32. There is no missing data. There's a right-skew in the distribution because of the few really old defendants.

Most of the defendants had no juvenile felony accounts. The maximum juvenile felony count is 20. There is not enough variation in this variable.

```
favstats(clean_compasdata$juv_fel_count)
```

```
## min Q1 median Q3 max mean sd n missing ## 0 0 0 0 20 0.05837861 0.4518127 9387 0
```

Similarly, most defendants had no juvenile misdemeanor counts, which are less serious crimes than felonies. The maximum was 13, but there is not enough variation in this variable.

favstats(clean_compasdata\$juv_misd_count)

```
## min Q1 median Q3 max mean sd n missing ## 0 0 0 0 13 0.0787259 0.4640061 9387 0
```

Similarly, most defendants had no other juvenile counts, excluding misdemeanors and felonies. The maximum was 11, but there is not enough variation in this variable.

favstats(clean_compasdata\$juv_other_count)

```
## min Q1 median Q3 max mean sd n missing
## 0 0 0 0 11 0.09917972 0.4683305 9387 0
```

There is slightly more variation in the priors_count variable which records the number of non-juvenile prior offenses for each defendant. It ranges from 0 to 38, with a median of 1 and a mean of 3.02, indicating a right skew as visualized in the histogram below. There is no missing data and the standard deviation is 4.586, suggesting that this may be a more informative variable when modeling.

favstats(clean_compasdata\$priors_count)

The days_b_screening_arrest variable indicates how many days passed between arrest and COMPAS screening. It may not be indicative of recidivism, however. We will evaluate this when performing bivariate analysis.

```
favstats(clean_compasdata$days_b_screening_arrest)
```

```
## min Q1 median Q3 max mean sd n missing
## 0 1 1 1 30 2.140194 4.89312 9387 0
```

The interpretation of this variable is not clear – it seems to indicate the number of days since COMPAS screening to date. We will not include this in the analysis.

```
favstats(clean_compasdata$c_days_from_compas)
```

```
## min Q1 median Q3 max mean sd n missing ## 0 1 1 1 9485 24.92436 263.4065 9387 0
```

The number of days spent in jail ranges from 0 to 21540, with a median of 4 days and a mean of 100 days. This variable is extremely right skewed, as visualized in the histogram. The standard deviation is also 393, indicating a lot of variation that may potentially be useful for predicting the risk of recidivism.

favstats(clean_compasdata\$days_in_jail)

The days spent in prison is not as variable as the days spent in jail. The minimum 0 and the maximum is 190739. This skews the mean to 784.7951, but the median is 0. The distinction between jail and prison is still unclear.

```
favstats(clean_compasdata$days_in_prison)
```

```
## min Q1 median Q3 max mean sd n missing ## 0 0 0 0 190739 784.7951 3473.352 9387 0
```

The number of crimes recommitted by the defendants who re-committed a crime within two years ranges from 1 to 55, with a median of 1 and a mean of 1.73.

```
favstats(clean_compasdata$num_r_cases)
```

```
## min Q1 median Q3 max mean sd n missing ## 1 1 1 2 55 1.736512 1.629916 3188 6199
```

Finally, the COMPAS tool outputs a raw score for each defendant. The raw score ranges from -3.21 to 1.69 with a median of -0.74 and a mean of -0.78. The distribution of the raw scores is visualized on the histogram below. The distribution is unimodal and symmetric with a slight left skew.

favstats(clean_compasdata\$raw_score) ## Q1 median Q3 max min mean n missing -3.21 -1.38 -0.74 -0.15 1.69 -0.7763417 0.856942 9387 ## ggplot(data = clean_compasdata, mapping = aes(x = raw_score)) + geom_histogram() + theme_minimal() + labs(x = "COMPAS Raw Score") 600 conut 400 200 0 -3 -2 1 2

The raw scores are then converted into decile scores that determine the predicted risk of recidivism. The decile scores range from 1 to 10 with a median of 4 and a mean of 4.3. The histogram displays the distribution of the decile scores – it makes me wonder how, or whether, the decile scores are computed from the raw scores.

COMPAS Raw Score

Note that the decile scores are mapped to 'low', 'medium', and 'high' risk as detailed in the table below.

Risk	Min	Max
Low	1	4
Medium	5	7
High	8	10

This concludes our univariate analysis of the variables in the COMPAS data set. Next, we will look at some of the bivariate relationships.

Bivariate Analysis

In this section, we will explore the relationships between our variables and the response variable, is_recid, which records whether or not a participant recommitted a crime within 2 years.

break everything by response variable.

Multivariate Analysis

choose most informative variables from bivariate analysis to include in the model. age, days in jail, priors count, the categorical vars.

Demographic Group Analysis

break everything by race.

Logistic Regression

Seldonian Classification

Results

look at visuals/ tables from chap 4 $\,$ ex. mapping of score text to decile scores.