Changing basis

TOTAL POINTS 5

1. In this quiz, you will practice changing from the standard basis to a basis consisting of orthogonal vectors.

Given vectors $\mathbf{v} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

- $O_{\mathbf{v_b}} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$
- \bullet $\mathbf{v}_b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
- $O_{\mathbf{v_b}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$
- $O_{\mathbf{v}_b} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$

✓ Correct

The vector ${\bf v}$ is projected onto the two vectors ${\bf b_1}$ and ${\bf b_2}$

2. Given vectors $\mathbf{v} = \begin{bmatrix} 10 \\ -5 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

O $v_b = \begin{bmatrix} -2/5 \\ 11/5 \end{bmatrix}$

- $O_{\mathbf{v}_{b}} = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$
- O $\mathbf{v_b} = \begin{bmatrix} 11/5 \\ 2/5 \end{bmatrix}$
- \bullet $\mathbf{v_b} = \begin{bmatrix} 2/5 \\ 11/5 \end{bmatrix}$

✓ Correct

The vector ${f v}$ is projected onto the two vectors ${f b_1}$ and ${f b_2}$

3. Given vectors $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

O $\mathbf{v_b} = \begin{bmatrix} 5/4 \\ -5/2 \end{bmatrix}$

- O $\mathbf{v_b} = \begin{bmatrix} -2/5 \\ 5/4 \end{bmatrix}$
- O $\mathbf{v_b} = \begin{bmatrix} 2/5 \\ -4/5 \end{bmatrix}$
- \bullet $\mathbf{v_b} = \begin{bmatrix} -2/5 \\ 4/5 \end{bmatrix}$
 - ✓ Correct

The vector v is projected onto the two vectors $\mathbf{b_1}$ and $\mathbf{b_2}$

4. Given vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$ and $\mathbf{b_3} = \begin{bmatrix} -1 \\ 2 \\ -5 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$? You are given that $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$ are all pairwise orthogonal to each other.

- $\mathbf{v}_{b} = \begin{bmatrix} 3/5 \\ -1/3 \\ -2/15 \end{bmatrix}$
- $\mathbf{v}_{b} = \begin{bmatrix} -3/5 \\ -1/3 \\ -2/15 \end{bmatrix}$

The vector v is projected onto the vectors $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$

5. Given vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 0 \\ 2 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{b_3} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ and $\mathbf{b_4} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ all written in the standard basis, what 1/1 point
$$\bigcirc \mathbf{v_b} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{v}_{\mathbf{b}} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{array}{c}
\begin{bmatrix} 1 \\ 1 \end{bmatrix} \\
\mathbf{v_b} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}
\end{array}$$

$$\mathbf{v}_{\mathbf{b}} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

 \checkmark Correct $\label{eq:correct} \mbox{The vector } \mathbf{v} \mbox{ is projected onto the vectors } \mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3 \mbox{ and } \mathbf{b}_4.$