Operations Research II: Algorithms Course Summary and Future Directions

Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

- Summary and discussions.
- ▶ Preview of the next course.

Summary

- ▶ In this course, we have gone through several important algorithms for solving mathematical programs.
- Let's briefly recall our memory.

Week 2: the simplex method

- ► Topics:
 - ► The standard form.
 - ▶ Basic solutions and basic feasible solutions.
 - ▶ The method (with the tableau representation).
 - Unbounded and infeasible LPs.
- ▶ The publication of the simplex method by George Dantzig in 1947 opened the whole field of Operations Research.
 - ▶ Today many commercial solver still use (some advanced version of) the simplex method.
- ► It runs along edges.
 - ▶ There exists **interior-point methods**, e.g., the Karmarkar's method, that moves through the interior of the feasible region.

Week 3: the branch-and-bound algorithm

- ► Topics:
 - Linear relaxation.
 - Branch and bound.
 - Solving the knapsack problem.
- ▶ It iteratively splits the feasible region without removing an optimal solution.
- ▶ There exists more advanced methods, e.g., the cutting-plane method, branch and cut, branch and price, and many else.
- Compared to linear programming, solving an integer program is much more time-consuming.
 - ► Try your best not to set "quantities" to integers.
 - ▶ Use binary and integer variables only when it is regarding the **selection** among multiple options (e.g., whether to do one thing).

Week 4: gradient descent and Newton's method

- ► Topics:
 - ▶ Introduction.
 - ► Gradient descent.
 - Newton's method.
- ▶ Important foundations for more advanced method.
 - E.g., for methods designed to solve **constrained optimization** problem.
- ▶ Note that they are by nature interior-point methods.
 - ▶ Convergence and speed of convergence are critical issues.

Week 5: a case study

- ▶ A company utilizes integer programming to determine whether to close some existing facilities.
- ▶ A heuristic algorithm is developed with its performance examined.
- Practical consideration for execution is always needed.

Summary

- ▶ All these algorithms are powerful.
 - A mathematical program with any number of variables and constraints is guaranteed to be solved.
 - ► Time complexity is always an issue.
- Some researchers work to improve existing algorithms (or developing new ones) for general problems.
 - ▶ Once an algorithm is improved, all programs (in that class) benefit.
- Some researchers work to develop specific algorithms for specific problems.
 - By considering some special properties of a problem, we should be able to do better.

Road map

- ▶ Summary and discussions.
- ▶ Preview of the next course.

Algorithm design

- ► A good algorithm does **smart search**.
- ► The key of being smart is to do **analysis**.
 - ▶ To obtain some necessary or sufficient conditions for an optimal solution.
 - E.g., if a linear program has an optimal solution, it has an extreme-point optimal solution.
- ▶ Do we have more properties for linear programs?

Algorithm design

- ► How about integer programs?
 - Linear relaxation is typically the first step.
 - ▶ Is it possible for an optimal solution to the linear relaxation be feasible (and thus optimal) to the original integer program? How to ensure this?
- ► How about nonlinear programs?
 - Gradient descent keeps iterating until the first-order derivative is flat enough.
 - ▶ Is it possible for an reported solution (local optimum) to be different from an optimal solution (global optimum)? How to ensure this?

Theory

- ► To go further, we need **theory**.
- ▶ We need to have some ways to rigorously investigate the **theoretical properties** of a mathematical program.
- ► Keywords:
 - Linear programming duality, shadow prices, sensitivity analysis, dual simplex method.
 - ► Total unimodularity, network flow.
 - Convex set, convex function, first-order condition, positive semi-definiteness, Lagrangian relaxation, Lagrangian duality, KKT condition.
 - And more.
- ▶ We will see how theories are **useful** and **beautiful**.

That's all. See you in the next course!