SAE 2.01 - Construire un réseau

Objectifs de la SAE

Cette SAE a été l'occasion de mettre en œuvre de manière concrète les compétences acquises en réseau, notamment sur les équipements de niveau 2 (commutateurs) et de niveau 3 (routeurs).

Elle visait à consolider notre capacité à concevoir, configurer et sécuriser un réseau local complet, à l'aide de GNS3, un logiciel de simulation permettant d'intégrer des routeurs, commutateurs, serveurs et hôtes dans un environnement virtuel.

1. Mise en place du réseau

a) Création de VLANs

Trois VLANs ont été mis en place :

VLAN 100 : Administration

VLAN 200 : Développeurs

• VLAN 300 : Administrateurs

Un VLAN natif (VLAN 999) a été configuré, et le tagging a été activé pour renforcer la sécurité.

La gestion centralisée des VLANs a été assurée par le commutateur principal nommé commutateur-fed.

b) Routage Inter-VLAN

Le **routage inter-VLAN** a été implémenté sur le commutateur-fed, permettant aux différents VLANs de communiquer entre eux.

c) Spanning Tree et Redondance

Un **équilibrage de charge** a été mis en œuvre entre les commutateurs pour les VLANs 100, 200 et 300 grâce au protocole **Spanning Tree**, avec trois liens redondants. Chaque VLAN était assigné à un lien principal, avec bascule automatique en cas de défaillance d'un lien.

2. Plan d'adressage IP

Nous disposions du réseau **192.168.64.0/20**, partagé entre les 32 étudiants du groupe RT12. Chaque étudiant devait sous-segmenter son sous-réseau pour allouer :

- 4 adresses pour chaque VLAN (100, 200, 300),
- 4 adresses pour une zone de production,
- des adresses pour les interconnexions routeur ↔ commutateur.

Les liaisons entre routeurs utilisaient des masques /30.

Le service DHCP a été installé sur un serveur dédié nommé **serveur-dhcp**, et utilisé pour distribuer les adresses dynamiquement.

3. Mise en place des services

Trois serveurs distincts ont été configurés, chacun avec un rôle précis :

a) Serveur FTP

Installé sur le **Serveur-sauvegarde**, avec accès anonyme activé.

Deux comptes utilisateurs (Antoine et Élise) ont été créés avec des droits en lecture/écriture.

b) Serveur Web

Les serveurs **dev** et **production** ont été configurés avec Apache.

Sur le serveur dev, une page web personnalisée a été créée, puis **copiée automatiquement via rsync** sur le serveur production, afin d'assurer la synchronisation du contenu.

4. Sécurisation du réseau

a) Port-security sur les commutateurs

Une politique de **port-security** a été appliquée sur tous les ports des deux commutateurs, restreignant chaque port à la **première machine connectée**, pour éviter tout branchement non autorisé.

b) ACL sur le routeur R2

Des Listes de Contrôle d'Accès (ACL) ont été configurées pour :

- n'autoriser que le trafic HTTP (port 80),
- ainsi que les ports 22 (SSH) et 873 (rsync).

c) ACL sur le routeur de bordure

Sur le routeur connecté au réseau extérieur, seules les connexions **ICMP** (ping) et **HTTP** (port **80**) en provenance de l'extérieur ont été autorisées.

5. Connexion au réseau de l'IUT

À l'aide de l'élément **Cloud** dans GNS3, une **passerelle vers le réseau extérieur** a été mise en place via le routeur R3, permettant à toutes les machines internes d'avoir accès à Internet.

Conclusion

Cette SAE a été particulièrement enrichissante.

Elle m'a permis:

- de maîtriser la conception complète d'un réseau structuré,
- de configurer avec rigueur les VLANs, le routage, les serveurs et les règles de sécurité,
- d'apprendre à planifier un adressage IP avec masques variables,
- et d'automatiser des tâches de synchronisation et de filtrage réseau.

Photo du projet :

