BEM 114 PS4

May 19, 2024

```
[]: import pandas as pd
    import statsmodels.api as sm
    from sklearn.linear_model import LinearRegression
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.dates import AutoDateLocator, AutoDateFormatter
[]: def make_daily_dates(df):
      return [str(item)[:4] + '-' + str(item)[4:6] + '-' + str(item)[6:] for item_

yin df['Unnamed: 0']]
    def make_monthly_dates(df):
      return [str(item)[:4] + '-' + str(item)[4:] for item in df['Unnamed: 0']]
[]: ff5_daily = pd.read_csv('/content/F-F_Research_Data_5_Factors_2x3_daily.CSV')
    mom_daily = pd.read_csv('/content/F-F_Momentum_Factor_daily.CSV')
    ff5_monthly = pd.read_csv('/content/F-F_Research_Data_5_Factors_2x3.csv')
    mom_monthly = pd.read_csv('/content/F-F_Momentum_Factor.CSV')
    ff5 mom_monthly = pd.merge(ff5_monthly, mom_monthly, how = 'inner', on='Unnamed:
     ff5_mom_daily = pd.merge(ff5_daily, mom_daily, how = 'inner', on='Unnamed: 0')
    ff5_mom_daily['date'] = make_daily_dates(ff5_mom_daily)
    ff5_mom_monthly['date'] = make_monthly_dates(ff5_mom_monthly)
    ff5_mom_daily.rename(columns = {'Mom ': 'Mom'}, inplace = True)
    ff5_mom_monthly.rename(columns = {'Mom ': 'Mom'}, inplace = True)
    aggregate_monthly_data = ff5_mom_monthly.copy()
```

1 1B

```
[]: factors = ['Mkt-RF', 'SMB', 'HML', 'RMW', 'CMA', 'Mom']
     for factor in factors:
       ff5_mom_daily[factor + '_rollvar'] = ff5_mom_daily[factor].rolling(window=22,__
      →min_periods=22).var()
[]: ff5_mom_daily
[]:
            Unnamed: 0
                                  SMB
                                        HML
                                              RMW
                                                    CMA
                       Mkt-RF
                                                            RF
                                                                  Mom
                                                                             date
              19630701
                         -0.67
                                0.02 - 0.35
                                             0.03
                                                   0.13
                                                         0.012 - 0.21
                                                                       1963-07-01
     1
                          0.012
                                                                0.42
              19630702
                                                                       1963-07-02
     2
              19630703
                          0.63 -0.18 -0.10 0.13 -0.25
                                                         0.012
                                                                0.41
                                                                       1963-07-03
     3
                          0.40 0.09 -0.28
                                            0.07 -0.30
              19630705
                                                         0.012
                                                                0.07
                                                                       1963-07-05
     4
              19630708
                         -0.63 0.07 -0.20 -0.27 0.06
                                                         0.012 - 0.45
                                                                       1963-07-08
                         -0.23 -0.98 -0.53
     15285
              20240322
                                            0.29 - 0.37
                                                         0.021
                                                                0.43
                                                                       2024-03-22
     15286
              20240325
                         -0.26 -0.10 0.88 -0.22 -0.17
                                                         0.021 -0.34
                                                                       2024-03-25
     15287
                         -0.26
                               0.10 -0.13 -0.50
                                                   0.23
                                                         0.021 0.09
              20240326
                                                                       2024-03-26
                                       0.91 -0.14 0.58
     15288
              20240327
                          0.88
                                1.29
                                                         0.021 - 1.34
                                                                       2024-03-27
     15289
              20240328
                          0.10
                                0.45
                                      0.48 -0.07 0.09 0.021 -0.44
                                                                       2024-03-28
                            SMB rollvar HML rollvar
                                                      RMW rollvar
                                                                     CMA rollvar
            Mkt-RF rollvar
     0
                       NaN
                                     NaN
                                                  NaN
                                                                NaN
                                                                             NaN
     1
                       NaN
                                     NaN
                                                  NaN
                                                                NaN
                                                                             NaN
     2
                       NaN
                                     NaN
                                                  NaN
                                                                NaN
                                                                             NaN
     3
                       NaN
                                     NaN
                                                  NaN
                                                                NaN
                                                                             NaN
     4
                       NaN
                                     NaN
                                                  NaN
                                                                NaN
                                                                             NaN
                                             0.458988
     15285
                  0.505910
                                0.708938
                                                           0.309487
                                                                        0.250368
     15286
                  0.349962
                                0.607054
                                             0.395853
                                                           0.307150
                                                                        0.185330
     15287
                  0.355926
                                0.601206
                                             0.397961
                                                           0.319346
                                                                        0.186243
     15288
                  0.376593
                                0.637681
                                             0.421055
                                                           0.293502
                                                                        0.199281
     15289
                  0.375942
                                0.568274
                                             0.404085
                                                           0.226731
                                                                        0.181229
            Mom_rollvar
     0
                    NaN
     1
                    NaN
     2
                    NaN
     3
                    NaN
     4
                    NaN
     15285
               0.683857
     15286
               0.517176
     15287
               0.516868
     15288
               0.558861
```

```
15289 0.552656
```

[15290 rows x 15 columns]

2 1C

Dep. Variable:

We can see from the results below that all factors have coefficients on the lagged variance to be significant at the 5% level according to the OLS summaries displayed below.

MKT-RF LAGGED VARIANCE REGRESSION RESULTS:

OLS Regression Results

R-squared:

0.207

Model:		OLS	Adj.	R-squared:		0.206
Method:	Least So	quares	F-sta	atistic:		189.9
Date:	Tue, 14 May	y 2024	Prob	(F-statistic):		1.51e-38
Time:	21	:21:35	Log-I	Likelihood:		-1519.8
No. Observations:		728	AIC:			3044.
Df Residuals:		726	BIC:			3053.
Df Model:		1				
Covariance Type:	non	robust				
==========			=====	.========	======	========
С	oef std er	r	t	P> t	[0.025	0.975]
c c c c c c c c c c c c c c c c c c c				P> t 0.000	[0.025 0.410	0.975] 0.725
	672 0.080	7.				
const 0.5	672 0.080 553 0.033	7. 3 13.	073 781	0.000	0.410	0.725
const 0.5 x1 0.4	672 0.080 553 0.033	7. 3 13. 	073 781 =====	0.000	0.410	0.725

Kurtosis:	156.155	Cond. No.	2.78
=======================================			

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

SMB LAGGED VARIANCE REGRESSION RESULTS:

OLS Regression Results

	OLD Regression Results							
Dep. Variable:				у	R-sqı	 lared:		0.136
Model:				OLS	-	R-squared:		0.134
Method:		Least	: Squa:	res	F-sta	atistic:		114.0
Date:		Tue, 14	May 2	024	Prob	(F-statistic):		8.20e-25
Time:			21:21	:35	Log-I	Likelihood:		-463.72
No. Observation	ns:		•	728	AIC:			931.4
Df Residuals:				726	BIC:			940.6
Df Model:				1				
Covariance Typ	e:	r	nonrob	ust				
=======================================				=====	=====			
	coe	std	err		t	P> t	[0.025	0.975]
const	0.185	7 0.	020	9	.397	0.000	0.147	0.224
x1	0.3684	0.	035	10	.676	0.000	0.301	0.436
Omnibus:	:=====:		1324.	====: 074	Durb:	======== in-Watson:	======	2.111
Prob(Omnibus):			0.0	000	Jarqı	ıe-Bera (JB):		1503081.930
Skew:			11.	992	Prob			0.00
Kurtosis:			224.	307	Cond	. No.		2.25
=========	======			=====	=====		======	

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

HML LAGGED VARIANCE REGRESSION RESULTS:

OLS Regression Results

=======================================	==============		============
Dep. Variable:	у	R-squared:	0.562
Model:	OLS	Adj. R-squared:	0.561
Method:	Least Squares	F-statistic:	930.5
Date:	Tue, 14 May 2024	Prob (F-statistic):	3.57e-132
Time:	21:21:35	Log-Likelihood:	-431.95
No. Observations:	728	AIC:	867.9
Df Residuals:	726	BIC:	877.1
Df Model:	1		
Covariance Type:	nonrobust		
CO	ef std err	t P> t	[0.025 0.975]

const x1	0.0841 0.7494	0.018 0.025	4.621 30.504	0.000	0.048 0.701	0.120 0.798
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	4.	000 Jar 399 Pro	bin-Watson: que-Bera (JB) b(JB): d. No.	:	2.470 65383.289 0.00 1.78
=========	=======			=========		

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

RMW LAGGED VARIANCE REGRESSION RESULTS:

OLS Regression Results

===========	=====	=======	=====	=====	========	======	
Dep. Variable:			у	R-sq	uared:		0.522
Model:			OLS	Adj.	R-squared:		0.522
Method:		Least S	quares	F-st	atistic:		793.7
Date:		Tue, 14 Ma	y 2024	Prob	(F-statistic)	:	1.43e-118
Time:		21	:21:35	Log-	Likelihood:		111.28
No. Observations	s:		728	•			-218.6
Df Residuals:			726	BIC:			-209.4
Df Model:			1				
Covariance Type:		non	robust				
				======		=======	
	coef	std er	r	t	P> t	[0.025	0.975]
const C	.0438	0.00	9	5.035	0.000	0.027	0.061
x1 C	.7226	0.02	26	28.173	0.000	0.672	0.773
Omnibus:		======= 7	'33.346	 Durb	======== in-Watson:	======	2.192
Prob(Omnibus):			0.000	Jarq	ue-Bera (JB):		122814.118
Skew:			4.101	Prob	(JB):		0.00
Kurtosis:			66.099	Cond	. No.		3.42

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

CMA LAGGED VARIANCE REGRESSION RESULTS:

OLS Regression Results

===========	===========		=========
Dep. Variable:	у	R-squared:	0.473
Model:	OLS	Adj. R-squared:	0.472
Method:	Least Squares	F-statistic:	651.3
Date:	Tue, 14 May 2024	Prob (F-statistic):	4.91e-103
Time:	21:21:35	Log-Likelihood:	311.80
No. Observations:	728	AIC:	-619.6

Df Residuals: 726 BIC: -610.4

Df Model: 1
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const x1	0.0441 0.6876	0.007 0.027	6.324 25.520	0.000	0.030 0.635	0.058 0.740
Omnibus: Prob(Omnibus) Skew: Kurtosis:) :	2.	.000 Jarq .579 Prob	in-Watson: ue-Bera (JB) (JB):	·	2.343 27642.076 0.00 4.70
=========	========	========		=========	========	========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

MOM LAGGED VARIANCE REGRESSION RESULTS:

OLS Regression Results

						======	
Dep. Variable:			У	R-sqı	uared:		0.396
Model:			OLS	Adj.	R-squared:		0.395
Method:		Least Squa	ares	F-sta	atistic:		476.5
Date:		Tue, 14 May 2	2024	Prob	(F-statistic):		1.33e-81
Time:		21:2:	1:35	Log-I	Likelihood:		-1033.1
No. Observation	ns:		728	AIC:			2070.
Df Residuals:			726	BIC:			2079.
Df Model:			1				
Covariance Type	e:	nonrol	oust				
==========		========		=====		======	=======
	coef	std err		t	P> t	[0.025	0.975]
const	0.2165	0.041	5	.315	0.000	0.137	0.297
x1	0.6294	0.029	21	.829	0.000	0.573	0.686
Omnibus:	======	807	===== .815	===== Durb:	======== in-Watson:	======	2.335
Prob(Omnibus):		0	.000	Jarqı	ue-Bera (JB):		103546.383
Skew:		5	.017	Prob			0.00
Kurtosis:		60	. 558	Cond	. No.		1.76

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[]: ff5_monthly

```
[]:
         Unnamed: 0 Mkt-RF SMB
                                 HML
                                       RMW
                                             CMA
    0
            196307
                   -0.39 -0.41 -0.97 0.68 -1.18 0.27
    1
            196308
                   5.07 -0.80 1.80 0.36 -0.35 0.25
    2
            196309 -1.57 -0.52 0.13 -0.71 0.29 0.27
            196310 2.53 -1.39 -0.10 2.80 -2.01 0.29
    3
                    -0.85 -0.88 1.75 -0.51 2.24 0.27
    4
            196311
                     ... ... ... ... ...
    . .
    724
            202311
                     8.84 -0.12 1.64 -3.91 -1.00 0.44
            202312 4.87 7.32 4.93 -3.07 1.32 0.43
    725
    726
            202401
                    0.71 -5.74 -2.38  0.69 -0.96  0.47
    727
            202402 5.06 -0.78 -3.49 -1.99 -2.14 0.42
    728
            202403 2.83 -1.16 4.19 1.48 1.18 0.43
```

[729 rows x 7 columns]

For all factors, past variance significantly predicts future variance.

3 1D

```
[]: # Regress at returns for time t on variances at time t - 1 to determine if future returns predicated by variance

for factor in factors:
    input = list(end_of_month_data[factor+'_rollvar'][:-1])
    output = list(ff5_mom_monthly[factor][1:])
    model1 = sm.OLS(output, sm.add_constant(input)).fit()
    print(factor.upper() + " FUTURE RETURNS ON VARIANCE REGRESSION RESULTS:")
    print(model1.summary())
```

MKT-RF FUTURE RETURNS ON VARIANCE REGRESSION RESULTS: OLS Regression Results

______ Dep. Variable: R-squared: 0.000 Model: OLS Adj. R-squared: -0.001 Method: Least Squares F-statistic: 0.007564 Date: Tue, 14 May 2024 Prob (F-statistic): 0.931 Time: 21:24:17 Log-Likelihood: -2126.6 No. Observations: 728 AIC: 4257. Df Residuals: 726 BIC: 4266.

Df Model: 1
Covariance Type: nonrobust

______ P>|t| coef std err t [0.025 ______ 0.002 const 0.5858 0.185 3.174 0.223 0.948 0.076 -0.087 0.931 -0.0066 ______ Omnibus: 58.161 Durbin-Watson: 1.912

Prob(Omnibus):	0.000	•	118.267
Skew:	-0.493	Prob(JB):	2.08e-26
Kurtosis:	4.711	Cond. No.	2.78
			========

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

SMB FUTURE RETURNS ON VARIANCE REGRESSION RESULTS:

OLS Regression Results

Dep. Variable:	у	R-squared:	0.001
Model:	OLS	Adj. R-squared:	-0.001
Method:	Least Squares	F-statistic:	0.3840
Date:	Tue, 14 May 2024	Prob (F-statistic):	0.536
Time:	21:24:17	Log-Likelihood:	-1841.1
No. Observations:	728	AIC:	3686.
Df Residuals:	726	BIC:	3695.
Df Model:	1		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const x1	0.1626 0.1418	0.131 0.229	1.241 0.620	0.215 0.536	-0.095 -0.307	0.420 0.591
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	67.382 0.000 0.317 5.949	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.		1.860 275.941 1.20e-60 2.25

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

HML FUTURE RETURNS ON VARIANCE REGRESSION RESULTS:

OLS Regression Results

Dep. Variable:	у	R-squared:	0.000
Model:	OLS	Adj. R-squared:	-0.001
Method:	Least Squares	F-statistic:	0.3245
Date:	Tue, 14 May 2024	Prob (F-statistic):	0.569
Time:	21:24:17	Log-Likelihood:	-1831.8
No. Observations:	728	AIC:	3668.
Df Residuals:	726	BIC:	3677.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const x1	0.3219 -0.0957	0.125 0.168	2.585 -0.570	0.010 0.569	0.077	0.566
Omnibus: Prob(Omnibus) Skew: Kurtosis:	ıs):	0.		•		1.661 158.124 4.61e-35 1.78

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

RMW FUTURE RETURNS ON VARIANCE REGRESSION RESULTS:

OLS Regression Results

===========	===========		=========
Dep. Variable:	у	R-squared:	0.018
Model:	OLS	Adj. R-squared:	0.016
Method:	Least Squares	F-statistic:	13.19
Date:	Tue, 14 May 2024	Prob (F-statistic):	0.000301
Time:	21:24:17	Log-Likelihood:	-1608.0
No. Observations:	728	AIC:	3220.
Df Residuals:	726	BIC:	3229.
Df Model:	1		
а . п	1 .		

Covariance Ty	rpe:	nonrobust
covariance ry	he.	

=========	========	========	=======		=======	=======	
	coef	std err	t	P> t	[0.025	0.975]	
const	0.1268	0.092	1.376	0.169	-0.054	0.308	
x1	0.9881	0.272	3.632	0.000	0.454	1.522	
Omnibus:		209.1	66 Durbii	n-Watson:		1.734	
Prob(Omnibus):	0.0	00 Jarque	Jarque-Bera (JB):			
Skew:		-0.7	71 Prob(.	<pre>Prob(JB):</pre>			
Kurtosis:		14.5	29 Cond.	No.		3.42	
						=======	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

CMA FUTURE RETURNS ON VARIANCE REGRESSION RESULTS:

OLS Regression Results

===========	============		
Dep. Variable:	у	R-squared:	0.022
Model:	OLS	Adj. R-squared:	0.021
Method:	Least Squares	F-statistic:	16.48
Date:	Tue, 14 May 2024	<pre>Prob (F-statistic):</pre>	5.45e-05

Time: No. Observations: Df Residuals: Df Model: Covariance Type:			28 AIC: 26 BIC:	ikelihood:	-1556.1 3116. 3125.		
========	coef	std err	t	P> t	[0.025	0.975]	
const x1	0.0712 1.4231	0.091 0.351	0.785 4.060	0.432 0.000	-0.107 0.735	0.249 2.111	
Omnibus:	62 Durbin	n-Watson:		1.774			

Prob(Omnibus): 0.000 Jarque-Bera (JB): 51.834 -0.091 Prob(JB): 5.55e-12 Skew: 4.295 4.70 Kurtosis: Cond. No.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

MOM FUTURE RETURNS ON VARIANCE REGRESSION RESULTS:

OLS Regression Results

	======					=======	
Dep. Variable	:		y R-	square	d:		0.033
Model:		OI	S Ac	lj. R-s	quared:		0.031
Method:	Least Square	s F-	statis		24.58		
Date:		Tue, 14 May 202	24 Pr	ob (F-	statistic):		8.88e-07
Time:		21:24:1	.7 Lo	g-Like	lihood:		-2067.5
No. Observati	ons:	72	28 A	.C:			4139.
Df Residuals:		72	26 BI	C:			4148.
Df Model:			1				
Covariance Ty	pe:	nonrobus	st				
	======		=====	=====			
	coef	std err		t	P> t	[0.025	0.975]
const	0.9555	0.169	5.66	 34	0.000	0.624	1.287
x1	-0.5920	0.119	-4.95	8	0.000	-0.826	-0.358
======================================	======	 162.41	.5 Dι	rbin-W	======= atson:	=======	2.022
Prob(Omnibus)	:	0.00)O Ja	rque-B	era (JB):		1347.295
Skew:		-0.75		ob(JB)			2.75e-293
Kurtosis:		9.49	3 Co	nd. No			1.76

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

There is not a consistant pattern between variance in factors and market returns.

4 1E

```
[]: # # Creating weights
     # for factor in factors:
     # mean_var = np.mean(end_of_month_data[factor + '_rollvar'])
     # ff5_mom_monthly[factor + '_weight'] = list(mean_var /_
     →end_of_month_data[factor + '_rollvar'])
     \# ff5_{mom\_monthly}[factor + '\_weight'] = ff5_{mom\_monthly}[factor + '\_weight'].
      \hookrightarrowshift(1)
       ff5\_mom\_monthly[factor + '\_rf\_weight'] = 1 - ff5\_mom\_monthly[factor + \_\]
      →' weight']
     # # ff5_mom_monthly.head(30)
[]: end_of_month_data.head()
     # ff5_mom_monthly.head()
[]:
                Unnamed: 0 Mkt-RF
                                      SMB
                                            HML
                                                  RMW
                                                        CMA
                                                                RF
                                                                     Mom \
     date
     1963-07-31
                   19630731
                              -0.13 0.11 -0.03 -0.13 0.30 0.012 0.01
                               0.44 0.15 -0.13 0.15 -0.21 0.011 -0.11
     1963-08-31
                   19630830
     1963-09-30
                  19630930
                            -0.60 0.21 0.08 0.24 0.13 0.014 -0.56
     1963-10-31
                   19631031
                               0.21 -0.03 0.08 0.10 -0.26 0.013 0.11
     1963-11-30
                               1.34 0.30 0.29 -0.31 -0.15 0.015 -0.09
                   19631129
                Mkt-RF_rollvar SMB_rollvar HML_rollvar RMW_rollvar \
     date
                       0.223726
                                    0.020938
                                                 0.037883
                                                              0.022160
     1963-07-31
     1963-08-31
                       0.086949
                                    0.033653
                                                 0.039540
                                                              0.013295
     1963-09-30
                       0.154223
                                    0.052577
                                                              0.028740
                                                 0.035055
     1963-10-31
                       0.171368
                                    0.077462
                                                 0.116457
                                                              0.061698
     1963-11-30
                       1.493974
                                    0.207698
                                                 0.079971
                                                              0.092893
                 CMA_rollvar Mom_rollvar
     date
     1963-07-31
                    0.031652
                                 0.077050
     1963-08-31
                    0.023129
                                 0.047702
     1963-09-30
                    0.028083
                                 0.072686
     1963-10-31
                    0.085728
                                 0.094405
     1963-11-30
                    0.081876
                                 0.639916
[]: # Calculate the long-run average variance for each factor over the entire
      ⇔sample period
```

```
long_run_avg_var = {factor: end_of_month_data[factor + '_rollvar'].mean() for__

¬factor in factors}
    I.EVERAGE = 1.5
    LEVERAGE = 1.2
    \# LEVERAGE = 1
     # print(long run avg var)
     # Calculate the weights for each factor based on the most recent rolling \Box
     →variance at the end of each month
    for factor in factors:
         # The weight for each month is based on the long-run average variance \Box
      -divided by the rolling variance from the end of the previous month
        ff5_mom_monthly[factor + '_weight'] = list(long_run_avg_var[factor] /_
       \# ff5\_mom\_monthly[factor + '\_weight'] = np.minimum(ff5\_mom\_monthly[factor + \bot] 
      ff5_mom_monthly[factor + '_weight'] = ff5_mom_monthly[factor + '_weight'].
      ⇒shift(1)
        ff5 mom_monthly[factor + '_rf weight'] = 1 - ff5 mom_monthly[factor +__
      # print(factor + " weights:")
        # print(ff5_mom_monthly[[factor + '_weight', factor + '_rf_weight']].
      →head(-25))
        # print(factor + " weights:")
        # print()
         # print(ff5_mom_monthly[[factor + '_weight', factor + '_rf_weight']].
      \hookrightarrowhead(30))
     # Due to the shift in calculation, the first row will have NaN weights which
     ⇔should be handled if necessary
     # print(end_of_month_data.head())
     # ff5 mom monthly.head(10)
[]: print(ff5_mom_monthly['Mom_weight'])
    0
                 NaN
           7.560256
    1
    2
           12.211626
    3
           8.014243
            6.170476
    724
           1.037258
    725
           0.547110
    726
           0.723806
```

727 1.001564 728 0.652168

Name: Mom_weight, Length: 729, dtype: float64

[]:	ff5_	mom_monthly[ff	5_mom_	month]	Ly['Unı	named:	0'] <	202304	<u>.</u>]			
[]:		Unnamed: 0 M	kt-RF	SMB	HML	RMW	CMA	RF	Mom	da	te \	
	0			-0.41	-0.97		-1.18	0.27	0.90	1963-		
	1	196308	5.07	-0.80	1.80	0.36	-0.35	0.25	1.01	1963-		
	2	196309	-1.57	-0.52	0.13	-0.71	0.29	0.27	0.19	1963-	09	
	3	196310	2.53	-1.39	-0.10	2.80	-2.01	0.29	3.12	1963-	10	
	4	196311	-0.85	-0.88	1.75	-0.51	2.24	0.27	-0.74	1963-	11	
		•••		•••		•••	•••	•••				
	712	202211	4.60	-2.74	1.38	6.38	3.18	0.29	-1.98	2022-	11	
	713	202212	-6.41	-0.15	1.37	0.25	4.20	0.33	4.55	2022-	12	
	714	202301	6.65	4.41	-4.01	-2.44	-4.47	0.35	-16.01	2023-	01	
	715	202302	-2.58	0.66	-0.81	1.01	-1.33	0.34	0.15	2023-	02	
	716	202303	2.51	-6.94	-8.85	2.24	-2.37	0.36	-2.47	2023-	03	
		Mit DE	_	NA		7MA£		М		M	£ : _1_+	`
	^	Mkt-RF_weight		CMA_wei	•	JMA_TI_	_weight		weight	Mom_r	f_weight	\
	0	NaN 4.648926	•••	4.436	NaN	2	NaN		NaN 560256		NaN e eeooee	
	1 2	11.961976	•••	6.071			. 436600 . 071510		211626		6.560256 1.211626	
	3	6.744035	•••	5.000			.000403		014243		7.014243	
	4	6.069292	•••	1.638			. 638058 . 638058		170476		5.170476	
	4	6.069292	•••	1.030	0000	-0.			170476		5.170476	
	712	0.329631	•••	0.290	298		.709702	0.	374611		0.625389	
	713	0.326837		0.159	9744	0.	840256	0.	114565		0.885435	
	714	0.567171	•••	0.318	3249	0.	681751	0.	337354		0.662646	
	715	0.890784	•••	0.373	3564	0.	626436	0.	393579		0.606421	
	716	0.931522	•••	0.240	0823	0.	759177	0.	214625		0.785375	
	•	Mkt-RF_return	SMB_	returr	-	_	n RMW_		_	return	Mom_retu	
	0	NaN	4.4	NaN		NaN		NaN		NaN		IaN 705
	1	22.657823		449207		. 905104		028684		111960	5.9957	
	2	-21.740036		610864		.911674		293256		391430	-0.7069	
	3	15.396638		075994		.423037		989730		210927	22.9703	
	4	-6.527607	-4.	081592		.511355) - 1.	713134	: 3.4	196974	-5.9621	.81
	710	4 740740	2					077065	•••		0 5005	000
	712	1.710710		021643		.824265		877965		128962	-0.5603	
	713	-1.872884		248597		.612366		309848		948211	0.8134	
	714	3.923179		035222		.406490		784840		183962	-5.1691	
	715	-2.261088		781287		.503209		688619		283852	0.2652	
	716	2.362772	-5.	681699	, -3.	.064905) 1.	427898	5 -0.2	297446	-0.2473	009

[717 rows x 27 columns]

0.5775582990397805

5 1F

```
[]: def estim_CAPM(portfolio_ret, data_unique_dates):
      model1 = sm.OLS(portfolio_ret, sm.add_constant(data_unique_dates['Mkt-RF'])).
      →fit()
      alpha, beta = model1.params
      print("CAPM ESTIMATES")
      # print(model1.summary())
      # print(f'alpha: {model1.params["const"]}')
      conf_int = model1.conf_int(alpha=0.05) # Default is 95% confidence interval
      alpha_conf_int = conf_int.loc["const"] # Confidence interval for the alpha
       # Print the results including the 95th percentile bounds for alpha
       # print("FF5 + MOMENTUM ESTIMATES")
      print(f'alpha: {round(alpha, 3)}')
      print(f'Alpha 95% Confidence Interval: {round(alpha conf int[0], 3)} to[1]
      →{round(alpha_conf_int[1], 3)}')
     def estim_FF3(portfolio_ret, data_unique_dates):
      model1=sm.OLS(portfolio_ret, sm.add_constant(data_unique_dates[['Mkt-RF',_

¬'SMB', 'HML']])).fit()
      alpha, beta_1, beta_2, beta_3 = model1.params
      print("FF3 ESTIMATES")
      # print(model1.summary())
       # print(f'alpha: {model1.params["const"]}')
      conf_int = model1.conf_int(alpha=0.05) # Default is 95% confidence interval
      alpha_conf_int = conf_int.loc["const"] # Confidence interval for the alpha
       # Print the results including the 95th percentile bounds for alpha
       # print("FF5 + MOMENTUM ESTIMATES")
      print(f'alpha: {round(alpha, 3)}')
```

```
print(f'Alpha 95% Confidence Interval: {round(alpha_conf_int[0], 3)} to_\_
      →{round(alpha_conf_int[1], 3)}')
     # def estim FF5mom(portfolio ret, data unique dates):
     # model1=sm.OLS(portfolio_ret, sm.add_constant(data_unique_dates[['Mkt-RF', ___
     →'SMB', 'HML', 'RMW', 'CMA', 'Mom']])).fit()
     # alpha, beta_1, beta_2, beta_3, beta_4, beta_5, beta_6 = model1.params
     # print("FF5 + MOMENTUM ESTIMATES")
     # print(f'alpha: {model1.params["const"]}')
     # print(model1.summary())
    def estim FF5mom(portfolio ret, data unique dates):
        # Running the regression with Fama-French 5 Factors + Momentum
        model1 = sm.OLS(portfolio_ret, sm.add_constant(data_unique_dates[['Mkt-RF',_

¬'SMB', 'HML', 'RMW', 'CMA', 'Mom']])).fit()
        alpha = model1.params["const"]
        # Extract the 95% confidence interval for the alpha
        conf_int = model1.conf_int(alpha=0.05) # Default is 95% confidence interval
        alpha_conf_int = conf_int.loc["const"] # Confidence interval for the alpha
        # Print the results including the 95th percentile bounds for alpha
        print("FF5 + MOMENTUM ESTIMATES")
        print(f'alpha: {round(alpha, 3)}')
        print(f'Alpha 95% Confidence Interval: {round(alpha_conf_int[0], 3)} to_u
      →{round(alpha_conf_int[1], 3)}')
         # print(model1.summary())
[]: # Run models on each factor
    for factor in factors:
      print(factor.upper() + " MODEL ESTIMATION RESULTS:")
      estim_CAPM(ff5_mom_monthly[factor + '_return'].dropna(), ff5_mom_monthly.

¬dropna())
      estim_FF3(ff5_mom_monthly[factor + '_return'].dropna(), ff5_mom_monthly.
      estim_FF5mom(ff5_mom_monthly[factor + '_return'].dropna(), ff5_mom_monthly.

¬dropna())
      print("_____")
    MKT-RF MODEL ESTIMATION RESULTS:
    CAPM ESTIMATES
    alpha: 0.494
    Alpha 95% Confidence Interval: -0.113 to 1.1
    FF3 ESTIMATES
    alpha: 0.468
    Alpha 95% Confidence Interval: -0.144 to 1.08
```

FF5 + MOMENTUM ESTIMATES

alpha: 0.077

Alpha 95% Confidence Interval: -0.551 to 0.704

SMB MODEL ESTIMATION RESULTS:

CAPM ESTIMATES alpha: 0.136

Alpha 95% Confidence Interval: -0.418 to 0.689

FF3 ESTIMATES alpha: -0.04

Alpha 95% Confidence Interval: -0.451 to 0.371

FF5 + MOMENTUM ESTIMATES

alpha: -0.21

Alpha 95% Confidence Interval: -0.634 to 0.214

HML MODEL ESTIMATION RESULTS:

CAPM ESTIMATES alpha: 1.13

Alpha 95% Confidence Interval: 0.436 to 1.823

FF3 ESTIMATES alpha: 0.401

Alpha 95% Confidence Interval: -0.153 to 0.956

FF5 + MOMENTUM ESTIMATES

alpha: 0.764

Alpha 95% Confidence Interval: 0.212 to 1.316

RMW MODEL ESTIMATION RESULTS:

CAPM ESTIMATES alpha: 0.874

Alpha 95% Confidence Interval: 0.492 to 1.256

FF3 ESTIMATES alpha: 1.034

Alpha 95% Confidence Interval: 0.665 to 1.403

FF5 + MOMENTUM ESTIMATES

alpha: 0.604

Alpha 95% Confidence Interval: 0.291 to 0.918

CMA MODEL ESTIMATION RESULTS:

CAPM ESTIMATES alpha: 0.533

Alpha 95% Confidence Interval: 0.238 to 0.828

FF3 ESTIMATES alpha: 0.296

Alpha 95% Confidence Interval: 0.034 to 0.559

FF5 + MOMENTUM ESTIMATES

alpha: 0.199

Alpha 95% Confidence Interval: -0.021 to 0.419

```
MOM MODEL ESTIMATION RESULTS:
CAPM ESTIMATES
alpha: 4.01
Alpha 95% Confidence Interval: 2.991 to 5.029
FF3 ESTIMATES
alpha: 4.202
Alpha 95% Confidence Interval: 3.18 to 5.225
FF5 + MOMENTUM ESTIMATES
alpha: 2.786
Alpha 95% Confidence Interval: 1.893 to 3.679
```

Based on our results, the only strategy that produces consistant and positive alpha across tests is the MOM estimation model. All the other strategies produce either insignificant or negative alpha in some tests. We acknowlege that this is not the result that we anticipated. We believe that the issue here may be related to the uncapped leverage that this implementation of the strategy employs. The way we are calculating the weights as described in the spec allows for this and we believe this is hurting our alpha generation

6 Question 2

```
[]: # Invert variance
     for factor in factors:
       aggregate_monthly_data[factor+'_invar'] = list(1 / end_of_month_data[factor +_u

¬' rollvar'])
[]: # Create weights for each date and shift by 1 since weights at t - 1 determine_
      \hookrightarrowreturns at t
     def create_weights(group):
       columns = [col for col in group.columns if 'invar' in col]
       # Sum the values across the selected columns for each row
       variance sums = (group[columns].sum(axis=1))
       for factor in factors:
         group[factor + '_weight'] = group[factor + "_invar"] / variance_sums
       return group
     aggregate_monthly_data = aggregate_monthly_data.groupby('date').
      →apply(create_weights)
     aggregate monthly data = aggregate monthly data.reset index(drop = True)
     for factor in factors:
```

```
[]: # Estimate models on aggregate strategy

estim_CAPM(aggregate_monthly_data['returns'], aggregate_monthly_data)
estim_FF3(aggregate_monthly_data['returns'], aggregate_monthly_data)
estim_FF5mom(aggregate_monthly_data['returns'], aggregate_monthly_data)
```

```
CAPM ESTIMATES
alpha: 0.333
Alpha 95% Confidence Interval: 0.257 to 0.41
FF3 ESTIMATES
alpha: 0.251
Alpha 95% Confidence Interval: 0.191 to 0.311
FF5 + MOMENTUM ESTIMATES
alpha: 0.076
Alpha 95% Confidence Interval: 0.033 to 0.119
```

The aggregate portfolio produced significant alpha, which is better than all the individual portfolios except for the momentum.

```
[]: import matplotlib.pyplot as plt
from matplotlib.dates import AutoDateLocator

plt.figure(figsize=(20, 8))
    x_axis = list(aggregate_monthly_data['date'])
    plt.plot(x_axis, market_cumulative, label='Market Cumulative Returns')
    plt.plot(x_axis, strat_cumulative, label='Strategy Cumulative Returns')
    plt.gca().xaxis.set_major_locator(AutoDateLocator())
    plt.gca().set_yscale('log') # Set the y-axis to a logarithmic scale
    plt.legend() # Optionally add a legend
    plt.show()
```


The volatility managed portfolio produces alpha becuase it has a lower variance than the market, but a low market beta. Since the turn of the century, the returns have significantly decreased. This is likely due to capital flowing into the strategy, leading to theory behind this strategy being priced into the market.