

Gdev: First-Class GPU Resource Management in the Operating System

Shinpei Kato
Nagoya University

Michael McThrow Carlos Maltzahn Scott Brandt UC Santa Cruz

GPUs embrace "many cores".

Graphics Processing Unit (GPU)

Performance Trend

Single Precision Performance

Performance per Watt

GPUs Suit Science

Not Yet "General-Purpose"

Gdev

- New approach to GPU resource management
 - Allows the OS as well as user-space applications to use GPUs.
- New functions of GPU resource management
 - Shared device memory (IPC)
 - Data swapping
 - System-level virtualization
- Open-source implementation

Outline

- Motivation
- Approach
- GPU Resource Management
- Evaluation
- Conclusion

Traditional Naïve Approach

Gdev Approach

Outline

- Motivation
- Approach
- GPU Resource Management
- Evaluation
- Conclusion

Shared Device Memory

Physical Device Memory Space

Context 3

E.g., Dataflow (2x2 Tree)

No Shared Memory **Shared Memory IPC** Context 2 Context 1 Context 2 Context 1 D[] **A[]** B[] C[] **A**[] B[] C[] D[] Context 1 Context 2 P[] Q[]P[] **Q[]** A[]xB[]=P[]C[]xD[]=Q[]copy copy Host **Device** P[] Q[] Memory Memory copy copy Context 3 P[] Q[] P[]xQ[]=X[]X[] X[]

Context 3

Data Swapping

Data Swapping (Enhanced)

GPU Virtualization

Virtual GPU Virtual GPU

irtual

Physical GPU

Virtual GPU

Virtual GPU

/dev/gdev0 /dev/gdev1 /dev/gdev2 /dev/gdev3

/dev/dri/card0 (real device file)

• • •

Existing GPU Schedulers Queue and dispatch [Kato ATC11] [Kato RTSS11]

Bandwidth-aware non-preemptive device (BAND) Scheduler

Outline

- Motivation
- Approach
- GPU Resource Management
- Evaluation
- Conclusion

Experimental Setup

- Linux kernel 2.6.39
- NVIDIA GeForce GTX 480
- Intel Core 2 Extreme QX9650
- NVIDIA CUDA Compiler 4.0 and GCC 4.4.6
- Benchmarks & Applications:
 - Rodinia benchmark [Che et al, IISWC'09]
 - eCryptfs encrypted filesystem
 - FAST database search [Kim et al, SIGMOD'10]
 - PTask dataflow benchmarks [Rossbach et al, SOSP'11]

Runtime and Driver Choice

Basic Performance

eCryptfs Read&Write Throughput

Impact of Shared Device Memory

Impact of Data Swapping

Virtual GPU Isolation

No scheduling (FIFO)

Xen VM Policy (Credit)

Gdev Policy (BAND)

Outline

- Motivation
- Approach
- GPU Resource Management
- Evaluation
- Conclusion

Concluding Remarks

Gdev is an OS approach to first-class GPU resource management.

GPUs can be used by the OS.

GPUs can be protected by the OS.

GPUs can be multi-tasked by the OS.

Compromising basic performance to some extent.

Concluding Remarks

Gdev is open-source.

Facilitate systems research.

Visit http://sys.ertl.jp/gdev/.

What's up-to-date:

- RAID6 erasure coding acceleration.
- Dynamic power management.
- Zero-copy between I/O devices and GPUs.

Thank You!

Questions?

