Exercises(1) February 20, 2024

1. For each $n \in \mathbb{N}$, let g_n be defined for $x \geq 0$ by the formula

$$g_n(x) = nx, \ 0 \le x \le 1/n,$$

= $\frac{1}{nx}$, $1/n < x$.

- (a) (6 points) Show that $\lim_{n\to\infty} g_n(x) = 0$ for all x > 0.
- (b) (6 points) Show that the convergence is not uniform on the domain $x \ge 0$, but that it is uniform on a set $x \ge c$, where c > 0.
- 2. Let (M, d) be a metric space, E be a nonempty set, and $f_k, f : E \to M$ (k = 1, 2, ...).
 - (a) (6 points) Show that $f_k \to f$ uniformly on E if and only if $\sup\{d(f_k(x), f(x)) : x \in E\} \to 0 \text{ as } k \to \infty.$
 - (b) (6 points) Show that f_k does not converge uniformly to f on E (i.e. $f_k \nrightarrow f$ uniformly on E) if and only if there is a sequence $\{x_k\}_{k=1}^\infty$ in E such that $\overline{\lim}_{k\to\infty} d(f_k(x_k),f(x_k))>0$.
 - (c) (6 points) Let $f_k(x) = (1/k)e^{-k^2x^2}$ if $x \in \mathbb{R}$, $k = 1, 2, \ldots$ Prove that $f_k \to 0$ uniformly on \mathbb{R} , that $f'_k \to 0$ pointwise on \mathbb{R} , but that convergence of $\{f'_k\}$ is not uniform on any interval containing the origin.