# Hierarchical Bayesian Model Selection

## The Role of Nutritional Supplementation on Betaine Concentration in Pregnant Pakistani Women

Nicholas Weaver

#### Introduction

- <u>Hierarchical Bayesian Models</u> occur when the parameter(s) of a prior distribution has/have a prior distribution
  - Common in correlated responses
- <u>Betaine</u> has been connected to pregnancy outcomes such as infant length at birth.
  - Nutritional supplements for malnourished pregnant women may have an impact on the concentration of Betaine in the mother after 34 weeks gestation.

#### The Data

- 31 pregnant Pakistani women
  - 13 on NS since preconception (Arm 1)
  - 18 on NS since 12 Weeks gestation (Arm 2)
- Women from 13 different locations in Pakistan (clusters, denoted with subscript *i*)
  - Implies correlated responses

**Betaine vs BMI** 



**Figure 1. Betaine Scatterplot by BMI:** The natural log of betaine concentration for the observed Pakistani women. Values from Arm 1 and Arm 2 are signified by color (white and blue, respectively). Future work will consider the role of BMI (the x-axis).

## <u>Acknowledgments</u>

- Dr. Joshua French and his course MATH 7393
- Dr. Audrey Hendricks, Dr. Stephanie Gilley, and Dr. Sarah Borengasser for guiding this study
- The Women First Research Group led by Dr. Michael Hambidge and Dr. Nancy Krebs for providing the data and producing the overall study

## Model Designs

 $Y_{i,j}$ : Betaine concentration for the  $j^{th}$  person from the  $i^{th}$  cluster.

 $oldsymbol{eta}_0$ : parameter for the mean metabolite concentration of Women from Arm 2

 $\beta_1$ : parameter for the difference in mean metabolite concentration between Arm1 and Arm 2 Women

## **Model with No Random Effect (NRE)**

Sampling Distribution:

$$\ln(Y_{i,j}) \sim N(\mu_{i,j}, \sigma^2)$$
,  $\mu_{i,j} = \beta_0 + \beta_1 X_{i,j} + \beta_i$ 

Prior Distributions:  $\beta_k \sim N(0, 1,000)$ , k = 0,1,...,13 $\sigma^2 \sim IG(0.001, 0.001)$ 

## **Model with Random Effect for Site (RES)**

Sampling Distribution:

$$\ln(Y_{i,j}) \sim N(\mu_{i,j} + \alpha_i, \sigma_0^2), \mu_{i,j} = \beta_0 + \beta_1 X_{i,j}$$

Prior Distributions:

$$\beta_k \sim N(0, 1,000)$$
, k = 0, 1

$$\alpha_i \sim N(0, \sigma_1^2)$$
 $\sigma_l^2 \sim IG(0.001, 0.001), l = 0, 1$ 

#### **Model with Random Effect for Site and Woman (RESW)**

Sampling Distribution:

$$\ln(Y_{i,j,k}) \sim N(\mu_{i,j} + \alpha_i + \gamma_k, \sigma_0^2)$$
,  $\mu_{i,j} = \beta_0 + \beta_1 X_{i,j}$ 

Prior Distributions:

$$\beta_m \sim N(0, 1,000)$$
, m = 0, 1

$$\alpha_i \sim N(0, \sigma_1^2)$$

$$\gamma_k \sim N(0, \sigma_2^2)$$

 $\sigma_l^2 \sim IG(0.001, 0.001), l = 0, 1, 2$ 

Where k is the  $k^{th}$  observation

## Model Analysis

| Model | Variance<br>Breakdown | Mean   | SD     | 2.5 Percentile | 97.5 Percentile |
|-------|-----------------------|--------|--------|----------------|-----------------|
| NRE   | $\sigma^2$            | 0.1094 | 0.0428 | 0.0544609      | 0.2171397       |
| INKE  | Total Variance        | 0.1094 | 0.0428 | 0.0544609      | 0.2171397       |
| RES   | $\sigma^2$            | 0.0993 | 0.0316 | 0.0535146      | 0.1758947       |
|       | $\sigma_1^2$          | 0.0219 | 0.0259 | 0.0008010      | 0.0903016       |
|       | Total Variance        | 0.1212 | 0.0375 | 0.0696655      | 0.2118633       |
| RESW  | $\sigma^2$            | 0.0510 | 0.0431 | 0.0009505      | 0.1449823       |
|       | $\sigma_1^2$          | 0.0216 | 0.0260 | 0.0007846      | 0.0897476       |
|       | $\sigma_2^2$          | 0.0508 | 0.0431 | 0.0008985      | 0.1452992       |
|       | Total Variance        | 0.1234 | 0.0384 | 0.0706971      | 0.2162895       |

**Table 1. Random Effects:** Posterior values for distributions of the variance components for each model.



**Figure 3. Model verification:** (**TL**) 50% (dark orange), 90% (light orange) bands and mean estimate (gray circle) for the replicated response value at each observed response (dark blue circle). Calculated from 10,000 replicated data sets. (**TR**) Density of the Bayesian R-squared value for the RESW model with mean estimate - 0.171. (**BL**) Overlay of 200 replicated data densities generated from the posterior distributions of the RESW model. (**BR**) Average autocorrelation for  $\beta_1$  in RESW model.

#### **Model Selection**

| NRE 43.382 Leave-one-out-information criterion (LOOIC) |
|--------------------------------------------------------|
| RES 73 951                                             |
| recommends the model wi                                |
| RESW 11.678 the smallest value (RESW).                 |

#### Results

| Parameter | Posterior Mean | 95% CPI         |
|-----------|----------------|-----------------|
| $eta_1$   | -0.106         | (-0.349, 0.138) |

**Table 3. Arm Parameter Results:** The posterior mean and 95% central posterior interval for the distribution of the  $\beta_1$  parameter. Results are from the RESW model, as determined through model selection.

#### Conclusion/Future Work

- Arm 1 and Arm 2 do not appear to have significant differences in terms of metabolic concentration among the Pakistani women.
- The final model (RESW) has poor predictive ability
- Consider the interaction of BMI and Arm type to potentially strengthen the model