注意: $\Phi(1.65) = 0.95$ $\Phi(1.96) = 0.975$ $\Phi(1.45) = 0.926$ $\Phi(1.40) = 0.92$ $t_{0.99}(7) = 2.998$, $t_{0.95}(7) = 1.895$, $t_{0.99}(6) = 3.143$, $t_{0.95}(6) = 1.943$ $\chi^2_{0.975}(6) = 14.449$ $\chi^2_{0.025}(6) = 1.237$ $\chi_{0.975}^2(7) = 16.013$ $\chi_{0.025}^2(7) = 1.690$

- 一、填空题(每小题3分,共18分)
- 1、若P(A) = 0.5,P(B) = 0.4,P(A B) = 0.3,则 $P(A \cup B) =$ ______.
- 2、设随机变量 X 服从二项分布 B(10, p),若 X 的方差是 $\frac{5}{2}$,则 $p = ____$
- 3、设随机变量 X、Y均服从正态分布 N(2, 0.2) 且相互独立,则随机变量 Z = X - 2Y + 1的概率密度函数为_____
- 4、设总体 $X \sim N(0,4)$,而 $X_1, X_2, ..., X_{15}$ 为取自该总体的样本,则统计量

$$Y = \frac{X_1^2 + X_2^2 + \dots + X_{10}^2}{2(X_{11}^2 + X_{12}^2 + \dots + X_{15}^2)}$$
 服从___分布.

- 5、设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2x & 0 < x < 1 \\ 0 & \text{其它} \end{cases}$,以 Y 表示对 X 的三次独立重复观 察中事件 $\left\{X \leq \frac{1}{2}\right\}$ 出现的次数,则 $P\{Y = 2\} =$ ___.
- 6、设总体 X 和 Y 相互独立, $X \sim N(0,4)$, $Y \sim N(0,9)$, $\overline{X} = \frac{1}{10} \sum_{i=1}^{10} X_i$, $\overline{Y} = \frac{1}{15} \sum_{i=1}^{15} Y_i$, 其中 X_1, X_2, \dots, X_{10} 以及 Y_1, Y_2, \dots, Y_{15} 时分布来自总体X 和Y 的随机样本,则 $|\overline{X} - \overline{Y}|$ 的数 学期望为 _____..

二、单项选择题(每小题3分,共18分)

- 1、设A,B,C三个事件两两独立,则A,B,C相互独立的充分必要条件是().
 - (A) A 与 B C 独立
- (B) *A B 与 A U C* 独立
- (C) A B与 A C 独立 (D) $A \cup B$ 与 $A \cup C$ 独立

2、设A, B是两个随机事件, $P(A) = \frac{2}{5}$, $P(B) = \frac{4}{5}$, $P(B|\overline{A}) = \frac{5}{6}$, 则()

$$(A)P(\overline{A}|B) = \frac{1}{2}$$
 $(B)P(\overline{A}|B) = \frac{3}{4}$ $(C)P(\overline{A}|B) = \frac{5}{8}$ $(D)P(\overline{A}|B) = \frac{12}{25}$

3、设 X, Y 为相互独立的两个随机变量,则下列不正确的结论是()

$$(A) E(X \pm Y) = E(X) \pm E(Y) \qquad (B) E(XY) = E(X) E(Y)$$

$$(C) D(X \pm Y) = D(X) + D(Y) \qquad (D) D(XY) = D(X) D(Y)$$

4. 袋中有 4 个自球 2 个黑球, 今从中任取 3 个球, 则至少一个黑球的概率为().

(A)
$$\frac{4}{5}$$

(C)
$$\frac{1}{5}$$
 (D) $\frac{1}{3}$

5. 设随机变量 X 服从正态分布 $\left(\mu_{1},\sigma_{1}^{2}\right)_{+}$ 随机变量 Y 服从正态分布 $N\left(\mu_{2},\sigma_{2}^{2}\right)_{+}$ 且 $P\left\{\left|X-\mu_{1}\right|<1\right\}>P\left\{\left|Y-\mu_{2}\right|<1\right\}_{+}$ 则必有().

(A)
$$\sigma_1 < \sigma_2$$
 (B) $\sigma_1 > \sigma_2$ (C) $\mu_1 < \mu_2$ (D) $\mu_1 > \mu_2$

(B) 1

6、 $X_1, X_2, \cdots X_9$ 相互独立, $EX_i = 1$, $DX_i = 1$ $(i = 1, 2, \cdots 9)$,则对任意给定的 $\varepsilon > 0$,有().

$$(\mathbf{A})P\left\{\left|\sum_{i=1}^{9}X_{i}-1\right|<\varepsilon\right\}\geq1-\varepsilon^{-2}$$

$$(\mathbf{B})P\left\{\frac{1}{9}\left|\sum_{i=1}^{9}X_{i}-1\right|<\varepsilon\right\}\geq1-\varepsilon^{-2}$$

$$(C)P\left\{\left|\sum_{i=1}^{9} X_{i} - 9\right| < \varepsilon\right\} \ge 1 - \varepsilon^{-2} \qquad (D)P\left\{\left|\sum_{i=1}^{9} X_{i} - 9\right| < \varepsilon\right\} \ge 1 - 9\varepsilon^{-2}$$

三、(10 分) 甲、乙两人轮流投篮,甲先投。一般来说,甲、乙两人独立投篮的命中率

分别为 0.7 和 0.6。但由于心理因素的影响,如果对方在前一次投篮中投中,紧跟在后面投篮的这一方的命中率就会有所下降,甲、乙的命中率分别变为 0.4 和 0.5。求:

- (1) 乙在第一次投篮中投中的概率;
- (2) 甲在第二次投篮中投中的概率。

- 四、(14分) 设(X,Y)在由直线 x=1 , $x=e^2$, y=0 及曲线 $y=\frac{1}{x}$ 所围成的区域上服从均匀分布,
 - (1) 求边缘密度 $f_{\mathbf{v}}(\mathbf{x})$ 和 $f_{\mathbf{v}}(\mathbf{y})$,并说明 \mathbf{X} 与 \mathbf{Y} 是否独立.
 - (2) \bar{x} *P*(*X* + *Y* ≥ 2).
- 五. (10分) 设随机变量 X 与 Y 相互独立且同分布,且 X 的分布律为 $X \sim \begin{bmatrix} 1 & 2 \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$.

记 $U = \max(X,Y)$, $V = \min(X,Y)$, 试求(U,V)的概率分布, 并求Cov(U,V).

六. (10 分) 一养鸡场购进 1 万个良种鸡蛋,已知每个鸡蛋孵化成雏鸡的概率为 0.84,每只雏鸡发育成种鸡的概率为 0.90,试计算这批鸡蛋得到种鸡不少于 7500 只的概率。

七、(10分)

设总体 X 的分布函数为

$$F(x;\beta) = \begin{cases} 1 - \frac{1}{x^{\beta}} & \stackrel{\text{NL}}{=} x > 1 \\ 0 & \stackrel{\text{NL}}{=} x \le 1 \end{cases}$$

其中未知参数 $\beta > 1, X_1, X_2, \cdots, X_n$ 为来自总体 X 的简单随机样本,求

- (1) *β* 的矩估计;
- (2) β 的极大似然估计。

八. (10分)

- (1). 已知多名实习生相互独立地测量同一块土地的面积,设每名实习生得到的测量数据 X 平方米服从正态分布 $N(\mu,\sigma^2)$,从这些测量数据中随机抽取 7 个,经计算,其平均面积为 125 平方米,标准差为 2.71 平方米。求 μ 的置信度为 90%的置信区间。
- (2). 甲乙两厂生产的灯泡,其寿命 X 和 Y 分别服从 $N(\mu_1, 84^2)$ 和 $N(\mu_2, 96^2)$,现从两厂生产的灯泡中各取 60 只,测得平均寿命甲厂为 $\bar{x}=1295$ 小时,乙厂为 $\bar{y}=1230$ 小时,问在显著性水平 $\alpha=0.05$ 下能否认为两厂生产的灯泡寿命无显著差异?