Step 0 | Create Project

• Create a new empty Dataiku project using the "New Project" button and give it a descriptive name.

Step 1 | Import necessary tables.

- Import* the 8 data tables
 - o Flight Data Tables
 - av_engine_data_aic_psql
 - av_engine_data_axm_psql
 - av_engine_data_fron_psql
 - av_engine_data_pgt_psql
 - Supporting Data Tables
 - av_manufacturing_supply_chain_psql
 - av_bom_manufacturing_psql
 - av_esn_rul_psql
 - av_lkp_airport_codes_t_psql
 - Importing the data sets creates a copy from the remote database into your local Dataiku session
 - Simply go to the Dataset tab in Dataiku NEW DATASET>filesystem>BROWSE...> "[dataset name]" then enter the name of the 8 data set tables
 - For help with importing a data set, see the video titled: "Importing Data"

Step 2 | Union all flight tables to consolidate data.

• Single click on the av_engine_data_aic table, then either use the Visual Prepare Recipe or SQL recipe to create a formula to overwrite the column t24 with the new value of (t24 + 459.67).

Prepare

- The reason we are doing this to only one table, is because this airline stored their t24 column in Rankine, the other airlines kept their temps in a standard format.
- o For help with creating a column with a formula, see the video titled: "Creating Columns"
- o **Important:** whenever you are creating a new table, be sure to store your resulting data <u>in the EC2 "dataikuaccess" connection!</u>

Store into

• Either use a code recipe (UNION* ALL in SQL) or the visualize Stack Recipe to combine the 4 **Flight** datasets into a single table.

Stack

- Union combines the 4 datasets into 1 dataset with all elements from the 4 datasets
- o For help with UNIONs, see the video titled: "Combining Data"
- The diagram below is showing the union of two datasets note how the colours overlap to create a new colour.

- Double click on each of the tables and use the black dropdown arrow on each column to 'analyze'
 - Note this isn't a necessary step, however is a useful accessibility feature of Dataiku to gain insight about your table
 - o For example, you can now answer the following questions (& many more) about your data:
 - Is it right-skewed or left-skewed?
 - How many unique values are in the column?
 - What is the min/max?

Step 3 | Calculate departure & destination latitude/longitudes for each row in the consolidated flight table

• Either user a code recipe or visual recipe to create an INNER Join on the created table from step 1 with the av_lkp_airport_codes_t_psql table. We are going to be capturing the destination latitude and longitude for each flight.

- Join on destination_icao and airport_icao
 - ICAO is a code for an airport
- Important: Rename the latitude/longitude columns from the airport lookup table to be destination_latitude and destination_longitude this is done through the "prepare" visual recipe
 - INNER JOINS select records that match a certain criterion (Join Condition) in both

- Either user a code recipe or visual recipe to create an INNER Join on the created table from step 1 with the av_airport_code_lkup table. This time, we are going to be capturing the depart latitude and longitude of each flight.
 - Join on depart icao and airport icao
 - Important: Rename the latitude/longitude columns from the airport lookup table to be depart_latitude and depart_longitude.
 - For help with INNER JOINs, see the video titled: "Combining Data"

Step 4 | Build a supporting KPI table.

- Use a code recipe or visual recipe to INNER JOIN* the manufacturing tables to create a table that has the KPIs (Key Performance Indicators) of each part and the engine serial number (or *ESN*) they associate with.
 - Datasets used: av_manufacturing_supply_chain & av_bom_manufacturing
 - Join on PN (Part Number) and SN (Serial Number) note these are two separate join commands in the same visual recipe

Step 5 | Join the new KPI table to the consolidated flights table.

- Use an INNER JOIN to join the table that you created in Step 4 with the table you created in Step 3
- Join on ESN
 - o **NOTE:** This join may take several minutes.

Step 6 | Join final table with table from step 5 to get remaining useful life (RUL*) for each engine.

- Use a code recipe or visual recipe to INNER JOIN the table you created in step 5 with the av_esn_rul table.
- Join on ESN
- RUL shows the number of cycles remaining until an engine needs to be overhauled
 - o **NOTE:** This join may take several minutes.

Step 7 | Calculate each flight's total distance and LPT temperature.

- Use a visual Prepare recipe to calculate distance of each flight in the table modified in step 2. (Calculations provided below)
- Column Name: distance_between_airport_miles Formula:
 - 7917.5/2*atan2(sqrt(pow(cos(destination_latitude*3.14159/180)*sin(abs(destination_longitude*3.14159/180)depart_longitude*3.14159/180)),2)+pow(cos(depart_latitude*3.14159/180)*sin(destination_latitude*3.14159
 /180)sin(depart_latitude*3.14159/180)*cos(destination_latitude*3.14159/180)*cos(abs(destination_longitude*3.1
 4159/180depart_longitude*3.14159/180)),2)),sin(depart_latitude*3.14159/180)*sin(destination_latitude*3.14159/180)
 +cos(depart_latitude*3.14159/180))*cos(destination_latitude*3.14159/180)*cos(abs(destination_longitude*3.14159/180)))
- Column Name: t50 (total temperature at low pressure turbine LPT outlet) Formula:
 - o *if(t50<1410, t50,1410+2*(t50-1410))*
- For help with creating a column with a formula, see the video titled: "Column Creation"

Step 8 | Export and turn in your final resulting flow

- Export your final table or take a screenshot of your work, return to the Forage portal to upload it, and check your work!
- For help with exporting your finished table, see the video titled: "Exporting Data"