ОБСЛУЖИВАНИЯ ГОЛОСОВЫХ ЗАПРОСОВ И ЗАПРОСОВ В ФОРМЕ ФАЙЛОВ В КОНТАКТ-ЦЕНТРЕ

Рис. 1: Функциональная модель обслуживания голосовых запросов и запросов в форме файлов в контакт-центре

Математическое описание модели

Контакт-центр обслуживает пуассоновский поток запросов интенсивности λ , разделенных на две сервисные категории. С вероятностью p_v запрос поступает от пользователей услуг связи в форме голосового сообщения. Поступление запросов этого потока подчиняется закону Пуассона с интенсивностью λp_v . Запрос обрабатывается роботизированным оператором. Это может быть chatbot, IVR или иное подобное устройство. Время обслуживания у робота моделируется с помощью случайной величины ξ с функцией распределения B(x). Обозначим через h среднее значение ξ . После завершения обслуживания у робота с вероятностью $1-p_r$ обслуживание голосового запроса считается завершенным, а с дополнительной вероятностью p_r продолжается у оператора,

если имеются свободные операторы. Если таковых нет, то голосовой запрос считается потерянным.

С вероятностью p_f запрос поступает от пользователей услуг связи в форме файла. Поступление запросов этого потока подчиняется закону Пуассона с интенсивностью λp_f . Запрос обрабатывается свободным оператором. Если таковых нет, то при наличии свободных мест файл становится в очередь ожидания начала обслуживания. Обозначим через v общее число операторов, а через w общее число мест ожидания. Время пребывания в очереди ожидания начала обслуживания ограничено случайной величиной, имеющей экспоненциальное распределение с параметром σ . Если за это время файл не попал на обслуживание, то он считается потерянным. Это время можно интерпретировать как время старения передаваемой информации. Время обслуживания голосового запроса и запроса в форме файла имеет экспоненциальное распределение с параметром α и не зависит от типа запроса. В анализируемой модели возможность ожидания предусмотрена только для файлов. Если в модели необходимо учесть возможность ожидания голосовых запросов, то это можно сделать переопределив время обслуживания у робота.

Качество обслуживания поступающих заявок определяется значениями: π_v доли потерянных голосовых запросов, π_f доли потерянных запросов в форме файлов; m_v средним числом операторов, занятых обслуживанием голосовых запросов; m_f средним числом операторов, занятых обслуживанием запросов в форме файлов; w_f средним числом файлов, находящихся на ожидании; t_w средним временем нахождения файла на ожидании начала обслуживания; m средним числом занятых операторов.

Определим состояние модели вектором (i), где i — суммарное число операторов занятых на обслуживание голосовых запросов и запросов в форме файлов, а также число ожидающих файлов. Величина i принимает значения $0,1,\ldots,v+w$. Покажем, что такой выбор состояния модели позволит выяснить результат наступления всех событий, рассматриваемых в анализируемом контакт-центре. Рассмотрим все возможные интервалы изменения i и установим происходящие события.

• i < v. В этой ситуации в модели контакт-центра заняты только операторы. На обслуживании находятся либо голосовые запросы, либо файлы. Поступление любого запроса происходит с интенсивностью $\lambda_v p_r + \lambda_f$ и приводит к занятию оператора на соответствующее обслуживание. Освобождение операторов, занятых обработкой голосовых запросов и файлов, происходит с интенсивностью $i\alpha$ и приводит к освобождению одного оператора i > 0.

• $i \geq v$. В этой ситуации в модели контакт-центра заняты все v операторов и в очереди ожидания находятся (i-v) файлов. Поступление голосового запроса приводит к его потере. Поступление запроса на обслуживание файла приводит к его постановке в очередь, если очередь не заполнена. Освобождение занятых операторов происходит с интенсивностью $v\alpha$. Уход ожидающих файлов из-за старения информации происходит с интенсивностью $(i-v)\sigma$.

Таким образом, определив состояния модели через общее число занятых операторов и мест ожидания i мы получаем возможность моделировать исход всех событий, анализируемых в модели. Для оценки введенных характеристик осталось найти величины p(i) доли времени пребывания модели в состоянии (i), где $i=0,1,\ldots,v+w$. Обозначим через S пространство состояний модели $i\in S,\,i=0,1,\ldots,v+w$. Динамика изменения состояний во времени описывается случайным марковским процессом r(t), определенным на пространстве состояний S. Марковские свойства r(t) следуют из положений конструктивного определения марковского процесса.

Определение характеристик обслуживания поступающих запросов

Предположим, что стали известными значения p(i) доли времени пребывания модели в состоянии (i), где $i=0,1,\ldots,v+w$. Сформулируем определения введенных ранее характеристик обслуживания поступающих запросов.

Величина π_v доли потерянных голосовых запросов определяется из соотношения

$$\pi_v = p(v) + \ldots + p(v+w).$$

Величина π_f доли потерянных запросов в форме файлов определяется из равенства

$$\pi_f = p(v+w) + \frac{\sigma}{\lambda_f} \Big(p(v+1) \cdot 1 + p(v+2) \cdot 2 \dots + p(v+w) \cdot w \Big).$$

Величина m среднего числа занятых операторов, находится из формулы

$$m = \sum_{i=1}^{v} p(i)i + v \sum_{i=v+1}^{v+w} p(i).$$

Величина m_v среднего числа операторов, занятых обслуживанием голосовых запросов, определяется из соотношения

$$m_v = \frac{\lambda_v p_r (1 - \pi_v)}{\alpha}.$$

Величина m_f среднего числа операторов, занятых обслуживанием файлов, определяется из равенства

$$m_f = m - m_v$$
.

Величина w_f среднего числа файлов, находящихся на ожидании, определяется из равенства

$$w_f = \sum_{i=v+1}^{v+w} p(i)(i-v).$$

Величина t_w среднего времени нахождения файла на ожидании начала обслуживания определяется из формулы Литтла.

$$t_w = \frac{w_f}{\lambda_f(p(v) + p(v+1) + \dots + p(v+w-1))}.$$

Система уравнений равновесия

Для того чтобы воспользоваться введенными определениями необходимо составить и решить систему уравнений равновесия (СУР). Действуя по определению, получим две формы записи СУР: одна — удобна для представления СУР на алгоритмических языках программирования, другая — для проведения алгебраических преобразований с целью установления рекурсивных зависимостей между отдельными вероятностями состояний.

В модели есть три типа событий, меняющих ее состояние: поступление заявок каждого потока, завершение их обслуживания и уход с мест ожидания из-за старения передаваемой информации. С помощью индикаторной функции СУР можно представить в виде одного соотношения, справедливого для всех $(i) \in S$. Значение индикаторной функции события $I(\cdot)$ равно единице, если условие, сформулированное в скобках выполняется. В противном случае значение функции равно нулю. Для всех $i=0,1,\ldots,v+w$ вид соответствующего уравнения равновесия определяется после подстановки i в уравнение

$$P(i)\{\lambda_{v}p_{r}I(i < v) + \lambda_{f}I(i < v + w) + i\alpha I(0 < i \le v) + v\alpha I(v < i \le v + w) + \sigma(i - v)I(v < i \le v + w)\} =$$

$$= P(i - 1)\lambda_{v}p_{r}I(0 < i \le v) + P(i - 1)\lambda_{f}I(i > 0) + P(i + 1)(i + 1)\alpha I(i < v) + P(i + 1)\{v\alpha + (i + 1 - v)\sigma\}I(v \le i < v + w).$$

Для P(i) выполнено условие нормировки.

$$\sum_{i=0}^{v+w} P(i) = 1.$$

Реализовав приведенное соотношение для всех $i=0,1,\ldots,v+w,$ получаем систему отдельных уравнений равновесия

Для P(i) выполнено условие нормировки.

$$\sum_{i=0}^{v+w} P(i) = 1.$$

Выполнив подстановку первого уравнения СУР во второе уравнение, получаем после сокращения одинаковых выражений соотношение, которое подставляем в третье уравнение СУР и т.д. В результате выполнения перечисленных шагов находим соотношения детального баланса для оценки p(i)

$$P(i)(\lambda_v p_r + \lambda_f) = P(i+1)(i+1)\alpha, \quad i = 0, 1, \dots, v-1;$$

 $P(i)\lambda_f = P(i+1)(v\alpha + (i+1-v)\sigma), \quad i = v, v+1, \dots, v+w-1.$

Оценка стационарных вероятностей модели и характеристик

Полученные выше соотношения детального баланса легко преобразовать в рекурсию для оценки стационарных вероятностей модели и характеристик модели. Приведем основные этапы ее реализации:

- 1. Задаются численные значения входных параметров модели. Это величины: $\lambda_v, \, \lambda_f, \, \alpha, \, \sigma, \, v, \, w, \, p_v, \, p_f, \, p_r.$
- 2. Берем значение P(0) = 1.
- 3. Выражаем вероятности P(i) $i=1,2,\ldots,v$ через P(0), используя рекурсию,

$$P(i+1) = P(i) \frac{\lambda_v p_r + \lambda_f}{(i+1)\alpha}, \quad i = 0, 1, \dots, v-1;$$

4. Выражаем вероятности P(i) $i=v+1,v+2,\ldots,v+w$ через P(0), используя рекурсию,

$$P(i+1) = P(i) \frac{\lambda_f}{v\alpha + (i+1-v)\sigma}, \quad i = v, v+1, \dots, v+w-1.$$

5. Находим величину нормировочной константы N

$$N = \sum_{i=0}^{v+w} P(i).$$

6. Находим нормированные значения вероятностей $p(i), i = 0, 1, \dots, v + w$,

$$p(i) = \frac{P(i)}{N}.$$

7. Производим расчет характеристик обслуживания запросов, поступающих в контактцентр, в соответствии с ранее введенными определениями

Сформулированная процедура без труда реализуется на любом алгоритмическом языке программирования

Численная иллюстрация использования модели в приложениях

- 1. Анализ зависимости характеристик от изменения входных параметров.
- 2. Оценка требуемого числа операторов
- 3. Оценка требуемого числа операторов и мест ожидания
- 4. Анализ совместного и раздельного использования операторов