Once a solution for λ and μ is obtained, we have

$$w = -X \binom{\lambda}{\mu} = \sum_{i=1}^{p} \lambda_i u_i - \sum_{j=1}^{q} \mu_j v_j$$
$$b = -\sum_{i=1}^{p} \lambda_i + \sum_{j=1}^{q} \mu_j.$$

Note that the constraint

$$\sum_{i=1}^{p} \lambda_i - \sum_{j=1}^{q} \mu_j = 0$$

occurring in the dual of Program (SVM_{s2'}) has been traded for the equation

$$b = -\sum_{i=1}^{p} \lambda_i + \sum_{j=1}^{q} \mu_j$$

determining b.

If $\nu > (p_f + q_f)/(p + q)$, then η is determined by expressing that the duality gap is zero. We obtain

$$\begin{split} ((p+q)\nu - p_f - q_f)\eta &= (p_f - q_f)b + w^\top \bigg(\sum_{j \in K_\mu} v_j - \sum_{i \in K_\lambda} u_i \bigg) \\ &+ \frac{1}{K_s} \begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} \bigg(X^\top X + \begin{pmatrix} \mathbf{1}_p \mathbf{1}_p^\top & -\mathbf{1}_p \mathbf{1}_q^\top \\ -\mathbf{1}_q \mathbf{1}_p^\top & \mathbf{1}_q \mathbf{1}_q^\top \end{pmatrix} \bigg) \begin{pmatrix} \lambda \\ \mu \end{pmatrix}. \end{split}$$

In practice another way to compute η is to assume the Standard Margin Hypothesis for (SVM_{s3}). Under the **Standard Margin Hypothesis** for (SVM_{s3}), either some u_{i_0} is a support vector of type 1 or some v_{j_0} is a support vector of type 1. By the complementary slackness conditions $\epsilon_{i_0} = 0$ or $\xi_{j_0} = 0$, so we have

$$w^{\top} u_{i_0} - b = \eta$$
, or $-w^{\top} v_{j_0} + b = \eta$,

and we can solve for η . As in (SVM_{s2'}) we get more numerically stable formulae by averaging over the sets I_{λ} and I_{μ} .

Proposition 54.5 gives bounds ν , namely

$$\frac{p_f + q_f}{p + q} \le \nu \le \frac{p_m + q_m}{p + q}.$$

In Section 54.11 we investigate conditions on ν that ensure that either there is some blue support vector u_{i_0} or there is some red support vector v_{j_0} . Theorem 54.7 shows