

Práctica 6. Aplicaciones del diodo Zener

Duración: 2 horas.

OBJETIVO.

Analizar experimentalmente redes que emplean diodos Zener como elemento para la regulación de voltaje en un circuito.

Realizar simulaciones en cada uno de los circuitos presentados para esta práctica.

MARCO TEÓRICO.

El alumno deberá de investigar los siguientes conceptos para desarrollar la práctica.

- Funcionamiento del diodo Zener.
- Símbolo eléctrico y polarización.
- Estudiar al diodo Zener como regulador de voltaje bajo las siguientes condiciones:
 - o Voltaje de entrada y carga (resistencia) fijos.
 - o Voltaje de entrada fijo y carga variable.
 - o Carga fija y voltaje de entrada variable.

MATERIALES.

- Multímetro y punta de multímetro.
- Fuente de voltaje doble.
- 10 caimanes.
- Resistencias de acuerdo a los cálculos.
- 2 diodos Zener de 3.3V
- 2 diodos Zener de 5.1V.
- Cables de alimentación de los equipos (fuente de alimentación, generador de funciones y osciloscopio).

DESARROLLO DE LA PRÁCTICA.

 Mostrar a través del diseño de un circuito con diodo Zener que este dispositivo puede funcionar como un recortador de picos (hacerlo para el diodo de 5.1 y 3.3) (Fig. 12). Obtener Oscilograma de Vo y Voltaje en la resistencia.

Fig. 12.- Circuito con diodo Zener para suprimir picos.

2. Mostrar a través del diseño de un circuito con diodo Zener que este dispositivo puede funcionar como un regulador de voltaje cuando se tiene un voltaje de entrada fijo y una carga fija (hacerlo para el diodo de 5.1 y 3.3). Obtener voltaje en diodo Zener y voltaje en la resistencia.

Fig. 13.- Circuito con diodo Zener para voltaje de entrada fijo y carga fija.

3. Mostrar a través del diseño de un circuito con diodo Zener que este dispositivo puede funcionar como un regulador de voltaje cuando se tiene un voltaje de entrada variable y una carga fija (hacerlo para el diodo de 5.1 y 3.3). Obtener la Tabla 3 según circuito de Fig. 14.

TABLA 3.- Comportamiento del circuito con voltaje de entrada variable.

VA	V _R	V _{DZ}	I _{DZ}
0			
2			
4			
6			
8			
20			

Fig. 14.- Circuito con diodo Zener y voltaje de entrada variable.

4. Mostrar a través del diseño de un circuito con diodo Zener que este dispositivo puede funcionar como un regulador de voltaje cuando se tiene un voltaje de entrada fijo y una carga variable (hacerlo para el diodo de 5.1 y 3.3). Obtener la Tabla 4, según el circuito de la figura 15.

TABLA 4.- Variación de la resistencia de carga para circuito con Zener.

R_L	Vo	V_R	I _{RL}
100kohms			
47kohms			
10kohms			
4.7kohms			
1kohm *			
470ohms*			

^{*}prevenir que no se exceda la potencia del diodo o en la resistencia de carga.

Fig. 15.- Circuito con diodo zener y carga variable.

5. Realizar la simulación y cálculos requeridos para cada uno de los circuitos.

BIBLIOGRÁFIA.

- Apuntes de la materia de electrónica
- Boylestad R. L., Nashelsky L. (2003). Electrónica: Teoría de circuitos y dispositivos electrónicos. México. Pearson Education.
- Floyd T. L. (2008). Dispositivos Electrónicos. México. Pearson Educación.
- Sedra A. S., Kenneth C. S. (1999). Circuitos Microelectronicos. México. Oxford University Press.
- Malvino A., Bates D. (2007). Principios de Electrónica. Distrito Federal, México. Mc Graw Hill.