Tarea 1 Introducción a los Estimadores de Error A posteriori 525564-1

- 1. Desarrollar con más detalles, lo descrito en la Sección 4 del apunte de Endre Süli, compartido en Teams / Infoda. Puede introducir resultados previos, contenidos en el mismo apunte, que son invocados por el autor en su análisis. En base a ello, luego proceda a resolver los siguientes problemas.
- 2. Considere el problema de valor de contorno

$$\left\{ \begin{array}{l} -u''(x) + 20u'(x) + 10u(x) = 1 \,, \qquad x \in \Omega := (0,1) \\ u(0) = 0 \,, u(1) = 0 \,, \end{array} \right.$$

cuya solución exacta es

$$u(x) = \left(\frac{e^{\lambda_2} - 1}{10(e^{\lambda_1} - e^{\lambda_2})}\right) e^{\lambda_1 x} + \left(\frac{1 - e^{\lambda_1}}{10(e^{\lambda_1} - e^{\lambda_2})}\right) e^{\lambda_2 x} + \frac{1}{10}, \quad \text{siendo} \quad \lambda_1 = 10 + \sqrt{110}, \ \lambda_2 = 10 - \sqrt{110}.$$

- (a) Deduzca una formulación débil del problema, y discuta la existencia y unicidad de solución.
- (b) Resuelva el problema usando el método de elementos finitos del orden más bajo de aproximación posible, y tabule los errores en $||\cdot||_{H^1(\Omega)}$ y $||\cdot||_{L^2(\Omega)}$, así como los órdenes de convergencia experimentales correspondientes en una tabla como la que se muestra a continuación para $h = \frac{1}{2^n}$, $n \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ (refinamiento uniforme).

h	$ u-u_h _{H^1(\Omega)}$	$r_1(u)$	$ u-u_h _{L^2(\Omega)}$	$r_0(u)$

¿Cuáles son sus conclusiones al respecto?

- (c) Implemente el algoritmo de refinamiento adaptativo presentado en clase, teniendo en cuenta el estimador de error a posteriori asociado a la norma L^2 del error (revisar apuntes de clase). Tabule los errores en $||\cdot||_{H^1(\Omega)}$ y $||\cdot||_{L^2(\Omega)}$, así como los órdenes de convergencia experimentales correspondientes en una tabla (similar a la descrita en (2b)), partiendo con $h_0 = 1/10$. Incluya una última columna con los índices de eficiencia. Ponga de manifiesto sus observaciones y conclusiones. Incluya gráficas de algunas mallas adaptadas, y del error en L^2 vs. el estimador a posteriori.
- 3. Considere el problema de convección-difusión unidimensional (con $\nu > 0$)

$$-\nu u''(x) + \beta u'(x) = 1 \quad x \in \Omega := (0,1) \quad ; \quad u(0) = u(1) = 0,$$

cuya solución está dada por la función $u(x) = \frac{1}{\beta} \left(x - \frac{1 - \mathrm{e}^{\lambda x}}{1 - \mathrm{e}^{\lambda}} \right)$, siendo $\lambda := \frac{\beta}{\nu}$.

- (a) Deduzca una formulación débil del problema, y discuta la existencia y unicidad de solución.
- (b) Considere el espacio de elementos finitos (conforme) de funciones P_1 por tramo sobre una partición uniforme de $\bar{\Omega}$ de tamaño h=1/(N+1). Exprese la formulación débil a nivel discreta asociada, y justifique su solubilidad. Luego, deduzca que la matriz del sistema inducido es

$$\boldsymbol{A} = \frac{\nu}{h} \mathrm{tridiag} \left(-1 - \frac{\gamma}{2}, 2, -1 + \frac{\gamma}{2} \right) \,,$$

donde $\gamma := \frac{\beta h}{\nu}$ es el conocido **número de Péclet**.

- (c) Implemente el esquema anterior. Luego considerando $\beta=1$ y N=9, calcule las soluciones de elementos finitos para $\nu\in\{1,0.1,0.01,0.001\}$ (el problema se vuelve cada vez más convección dominante), y tabule los errores en $||\cdot||_{1,\Omega}$ y $||\cdot||_{0,\Omega}$ en cada caso. Verificar que las aproximaciones comienzan a oscilar y eventualmente se vuelven inestables. ¿A qué puede deberse esto?
- d) Implemente el algoritmo de refinamiento adaptativo, propuesto por Súli, partiendo con $h_0 = 1/10$, teniendo en cuenta el estimador de error a posteriori asociado a la norma L^2 del error y tolerancia $Tole = 10^{-4}$ (revisar apuntes de Süli). Para cada (ν, β) dados, tabule los errores en $||\cdot||_{1,\Omega}$ y $||\cdot||_{0,\Omega}$, así como los órdenes de convergencia experimentales correspondientes en una tabla (similar a la descrita en (2b)), partiendo con $h_0 = 1/10$. Incluya una última columna con los índices de eficiencia. Ponga de manifiesto sus observaciones y conclusiones. Incluya gráficas de algunas mallas adaptadas, y del error en L^2 y el estimador a posteriori en una misma gráfica.

Deadline: Sábado 30.03.2024.

RBP/rbp 15.03.2024