Ing.dell'Automazione, Elettrica, Elettronica, Informatica

ANALISI MATEMATICA 1 Docente: CIPRIANI Seconda prova 20240111 - A

Cognome e nome:

Matricola:

DOMANDE A RISPOSTA MULTIPLA (punti 5, soglia 2)

Per ogni quesito, indicare con una croce l'unica risposta corretta. Per annullare una risposta giÃă data, racchiudere la croce in un cerchio.

1. [punti 2] La serie
$$\sum_{n=1}^{+\infty} \log \left(1 - \frac{n^2}{e^n}\right)$$

- (a) converge; ✓
- (b) diverge $a + \infty$;
- (c) diverge a $-\infty$;
- (d) è irregolare.
- (e) nessuna delle altre.
- 2. [punti 1] Sia $f(x) = |x|^3$. E' vero che
 - (a) $f \in 2$ volte derivabile in tutto \mathbb{R} ; \checkmark
 - (b) f e' derivabile 1 volta ma non è 2 volte derivabile su tutto \mathbb{R} ;
 - (c) f ha un punto angoloso in x = 0;
 - (d) f ha un flesso in x = 0;
 - (e) nessuna delle altre risposte ÃÍ corretta.
- 3. [punti 1] Il limite

$$L := \lim_{x \to 0^+} \frac{\cos(2x) - 1 + 2x^2}{x^4}$$

vale

- (a) $L = +\infty$;
- (b) $L = -\infty$;
- (c) L = 0;
- (d) L e' finito e diverso da zero; \checkmark
- (e) Nessuna delle altre risposte ÃÍ corretta.
- 4. [punti 1] Al variare di $\alpha > 0$, l'integrale

$$\int_{1}^{+\infty} \sin\left(\frac{1}{x^{\alpha}}\right) \frac{1}{\sqrt[3]{x+1}} dx$$

esiste finito se e solo se

- (a) $\alpha > \frac{2}{3}$; \checkmark
- (b) $\alpha > 1$;
- (c) $\alpha < 1$;
- (d) $\alpha < \frac{2}{3}$;
- (e) nessuna delle altre risposte ÃÍ corretta.

ESERCIZI (punti 7, soglia 3,5)

Esercizio 1. [punti 4] Studiare, al variare del parametro $\alpha \in \mathbb{R}$, il carattere della serie $\sum_{n=2}^{+\infty} \alpha^n \frac{\log n}{n}$.

Esercizio 2. [punti 3] Calcolare l'integrale $I := \int_4^9 \frac{\log \sqrt{x}}{2\sqrt{x}} dx$.

TEORIA [punti 4], soglia 2

TEORIA [puliti 4], soglia 2				
1.	Enunciare e	dimostrare il Primo	Teorema Fondamentale	e del Calcolo.