

Real-time crowd identification and monitoring using UAVs

Student: Andrei Rusu

Coordinator: Prof. Dr. Radu Dănescu

Problem

- Crowds in public places = large health hazard
- Difficult to enforce social distancing
- Traditional methods are slow and require offsite processing

Objectives

- Implement CV method for estimating overcrowding & social distancing
- Leverage edge computing to enable realtime processing
- Use UAVs for fast deployment anywhere

Hardware

Software

Real-time detection

Data Logging

UAV control

Hardware platform

- Designed & built myself
- SolidWorks CAD tool
- 3D printed with PETG
- 1.2kg, ~20min flight time

Designed assemblies

Hardware components

Software components

IIIROS Application

runs on JetsonNano

- MobileNetV2 SSD for person detection
- Overcrowding & social distancing
- Data gathering & logging to .csv
- Flight control via MSP
- Parallel execution

Person detection

2. Detect

Overcrowding & Social distancing

- Estimate distances between people
- Estimate average density of crowd
- Density = Area / People
- Obtain area of ground projection from H and $lpha_{cam}$
- Pixel size = Area / resolution [cm]
- Distance on ground = Distance on image * pixel size

Client Application runs on GS Computer

Control application

runs on GS computer

- Sends UDP messages to the ROS application
- Message:
 - 4 control axes (Roll, Pitch, Throttle, Yaw)
 - 2 triggers
 - 6 buttons
 - 1 Directional pad
- Controls drone & functions

(flying, camera tilt, detection etc.)

Validation

Board	CPU	TOPS	Interfaces	Speed	Weight	Cost	PricePerf
RPi4	4	0	USB2+3,HDMI, UART, I2C, SPI	483ms	46g	\$50	24,150
RPi4 + Coral	4	4	USB2+3, UART, I2C, SPI	25ms	~100g	\$110	2750
Jetson Nano	4	0.5	USB3, DP, HDMI, UART, I2C, SPI	25ms	250g	\$100	2500
Jetson Xavier	6	21	USB3, DP, HDMI, UART, I2C, SPI	1.25ms	400g	\$400	500

Main computer comparison using MobileNetV2SSD inference speed

N	M	Tile Width	Tile Height	Runtime/Tile	Runtime/Image	Correctness
3	2	544	616	50ms	305ms	65%
4	3	408	410	54ms	650ms	67%
5	4	326	308	45ms	905ms	73%
6	4	272	308	43ms	1050ms	76%
8	6	204	205	44ms	2100ms	67%

Image tiling comparison for 1632x1232 input image

Results

Flight deployment at Baza Sportivă Gheorgheni

We chose an empty field far from people:

Drone in flight

Test area

Results

Flight deployment at Baza Sportivă Gheorgheni

7.7m high, 60deg camera angle
14 of 23 people detected (60.8%)
9 too close, 0.18/10m² density in 1340m²

3.2m high, **65deg** camera angle **21** of 32 people detected (65.6%) **6** too close, **0.16/10** m^2 density in **786** m^2

Conclusion

Complete system for crowd identification and monitoring using UAVs

Real-time overcrowding and social distancing estimations

Low-latency edge processing close to sensors