Trabalho Prático

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

Inteligência Artificial

Licenciatura Engenharia Informática

Francisco Pinto nº 8170580

Luís Marques nº 8170485

Miguel Carvalho nº 8150146

Índice

1.	Introdução	1
2.	Problema A	2
2.1	Modelação da solução	2
2.2	Regras de validação da solução	2
2.3	Como é inicializada a primeira geração	3
2.4	Configuração do algoritmo por parte do utilizador	4
2.5	Implementação dos operadores genéticos	5
2.6	Fitness da solução	7
2.7	Testes do problema	8
2.8	Requisitos implementados	19
3.	Problema B	21
3.1	Descrição Dataset	21
3.2	Descrição dos modelos treinados, configurações, métricas de performance	22
3.3	Modelo utilizado pelo robot	29
4.	Robot Final	32

1. Introdução

Este trabalho tem como objetivo o desenvolvimento de um robot para a *framework Robocode* que se movimente de acordo com um algoritmo genético e dispare de acordo com um modelo de *Machine Learning* treinado previamente. Estes problemas serão tratados de forma separada, o que levará ao desenvolvimento de alguns robots temporários ao longo do desenvolvimento do projeto.

A aprendizagem e aplicação dos conceitos de inteligência artificial será uma mais valia, para possibilitar otimizações nos robots, melhorando a sua movimentação e precisão de disparo.

Um dos subproblemas que será desenvolvido de forma separada é a movimentação, cujo objetivo a utilização de algoritmos genéticos, que nos permite encontrar um caminho válido entre dois pontos no campo de batalha, e contornando os obstáculos do mesmo.

O outro objetivo que também será tratado de forma separada, é o desenvolvimento de um robot *Robocode* que utilize um modelo *Machine Learning*, que visa otimizar a forma como o mesmo dispara contra os seus inimigos, e que registe a taxa de acerto dos mesmos disparos num *dataset*.

2. Problema A

2.1 Modelação da solução

Para a resolução deste problema decidimos optar por uma abordagem em que cada caminho é composto por um conjunto de pontos pré-determinado pelo utilizador e cada ponto possui coordenadas (x, y) de um ponto no mapa.

```
points.add(new Point(x2Value, y2Value));
```

Figura 1- Adição de um novo ponto na lista de pontos

É necessária a posterior validação de cada caminho, o seu cruzamento, mutação e seleção inerente de cada uma das fases descritas.

2.2 Regras de validação da solução

Para que cada solução apresentada como um caminho seja válida, a mesma tem de respeitar as seguintes regras:

- Cada ponto (x, y) de cada caminho tem de ser obrigatoriamente válido, ou seja, não pode exceder os limites do mapa. Esta regra é garantida a priori pela programação inicial do problema;
- 2. A linha entre 2 pontos consecutivos não pode intercetar nenhum dos obstáculos existentes no mapa.

```
/**

* Funcao responsavel por determinar se um caminho passado por parametro cruza algum obstaculo do mapa

*

* @param pointList a lista a ser passada por parametro

* @param conf configuração inicial do mapa (dimensão, obstaculos)

* @return retorna true se passa por algum obstaculo, false caso contrario

*/

public static boolean collisionDetection(List<IPoint> pointList, UIConfiguration conf) {
```

Figura 2- Função de deteção de colisão

Se as regras descritas em cima forem todas validadas (mais especificamente a regra Nº2), então o caminho/solução é dado/a como válido/a.

Caso a regra Nº2 não seja respeitada, o caminho/solução é na mesma adicionada á lista de caminhos gerados pois pode conter certos pontos que, por cruzamento, podem dar origem a um caminho melhor do que o selecionado até ao momento.

2.3 Como é inicializada a primeira geração

A primeira geração é inicializada de forma aleatória.

É gerado um conjunto de pontos cujas coordenadas X e Y são geradas de forma aleatória onde posteriormente irão ser adicionados como pontos de um caminho até o número máximo de pontos permitidos num caminho seja atingido. Esse caminho é depois avaliado de acordo com as suas características (medindo o seu nível de fitness), selecionado como sendo o melhor caminho registado até ao momento ou não, e por fim adicionado a uma lista de caminhos que irão servir para o cruzamento da população mais avante.

É obrigatório a criação de pelo menos um caminho válido na primeira geração. Caso o ciclo de geração de caminhos da 1ª geração chegar ao fim e não contiver na sua lista pelo menos um caminho válido (caminho válido: um caminho que contenha todos os pontos gerados e que nenhuma das suas linhas intercete nenhum dos obstáculos do mapa), então toda a lista será eliminada e o ciclo de criação da primeira geração ocorrerá do inicio até que pelo menos um solução válida seja adicionada com sucesso.

2.4 Configuração do algoritmo por parte do utilizador

O algoritmo genético foi desenvolvido atendendo a pedidos específicos por parte de um utilizador. Este recebe como parâmetro 4 variáveis cuja configuração é possível de ser manipulada em pelo menos 3 delas. As variáveis do algoritmo são: o número de pontos máximo que um caminho deve conter, o número máximo de caminhos que devem ser produzidos em cada geração e por fim a taxa de mutação a ser aplicada ao caminho selecionado como sendo o melhor, resultante da seleção da 1º e 2º geração. A 4º variável é passada por parâmetro, apenas para atender a informações especificas do mapa tais como, as suas dimensões e a criação de um array contendo a posição dos obstáculos existentes. A sua manipulação por parte do utilizador é possível, contudo não é o foco principal pois esta tende a manter-se inalterada permanentemente.

Figura 3- Função principal do Algoritmo Genético

2.5 Implementação dos operadores genéticos

Seleção:

A estratégia de seleção adotada é baseada no fitness dos caminhos gerados, onde é selecionado apenas 1 caminho, sendo esse o melhor caminho para passar da fase de cruzamento á fase de mutação.

Cruzamento:

O cruzamento é implementado da seguinte forma:

- É selecionado o melhor caminho gerado na fase de iniciação;
- É gerado um caminho temporário com os mesmos pontos do melhor caminho;
- Selecionar 1 ponto aleatório de um caminho;
- Percorrer a lista de caminhos que existe;
- Em cada caminho percorrido, trocar o ponto desse caminho com o ponto do caminho temporário;
- Comparar fitness do caminho temporário com o melhor caminho;
- Se o *fitness* for maior, o melhor caminho passa a possuir os pontos do caminho temporário;
- Repetir processo durante pointsList.size() (tamanho da lista de pontos passada por parâmetro);

Mutação:

A mutação foi implementada da seguinte forma:

- É selecionado o melhor caminho proveniente das operações de inicialização e posteriormente de cruzamento;
- É percorrido os pontos que constituem esse caminho;
- É modificado os valores das suas coordenadas, primeiro no eixo do X e posteriormente do Y e verifica-se se o valor do seu fitness aumenta (o valor máximo de modificação provém da taxa de mutação previamente selecionada pelo utilizador e é dada por: coordenadas X ou Y * taxaDeMutacao) (é tido em consideração se o valor mutado ultrapassa os limites do mapa ou não);

```
newX = (int) (list.get(a).getX() * mutationRate);
newY = (int) (list.get(a).getY() * mutationRate);
```

Figura 4 - Coordenadas mutadas

- Caso o valor do fitness aumente então esse ponto é modificado para ter essas novas coordenadas;
- O eixo dos X ou Y poderão variar em +/- do valor que tomou inicialmente, ou seja, pode ser mutado para a esquerda, direita, cima ou baixo;
- É repetido o processo até que o valor de fitness pare de crescer;

Figura 5 - Função de mutação

2.6 Fitness da solução

O fitness é aplicado em todos os novos caminhos gerados do inicio ao fim do algoritmo genético de modo a determinar se estamos perante uma solução válida ou inválida e se caso estejamos perante uma solução válida, qual é o seu nível comparativamente com os outros caminhos.

A função de fitness recebe como parâmetro uma lista de pontos (um caminho), e a configuração do mapa. Após receber esses parâmetros a função irá determinar inicialmente se esse caminho colide com algum dos obstáculos presentes no mapa. Se não colide, é-lhe atribuído 10.000 pontos de fitness, se colide não lhe é atribuído qualquer quantidade de pontos.

```
if (collisionDetection(points, conf) == false) {
    fitnessPoints = 10000;
}
```

Figura 6 - Atribuição de fitness por não colisão

De seguida, após determinar se o caminho passado por parâmetro colide ou não com algum obstáculo, é determinado a distância total percorrida por esse caminho. Esse valor de distância vai subtraído ao valor que tinha anteriormente sido estabelecido (ou 10.000 ou 0 pontos) e por isso um caminho que não seja válido irá ter sempre um valor de fitness negativo e um caminho que seja válido vai ter um valor positivo de fitness. Cada um desses caminhos irá ser tanto melhor em termos de fitness quanto mais curto for o seu caminho.

```
for (int a = 0; a < points.size() - 1; a++) {
    distance += getDistanceBetweenPoints(points.get(a), points.get(a + 1));
}</pre>
```

Figura 7 - Cálculo de distância total a retirar ao fitness

2.7 Testes do problema

A performance e a eficácia do algoritmo foram avaliadas tendo em consideração os 11 mapas de teste fornecidos pelo professor.

Mais testes adicionais foram realizados no Robocode para testar a boa implementação com o software.

Nota: Os mapas aqui apresentados poderão não corresponder com os mapas de melhor fitness registado na *Leaderboard* online, são apenas para demonstrar o funcionamento do algoritmo.

Fitness: 984.6798465815165

Distancia percorrida: 852.2823368461718

Interceções: 0

Mapa 1

Fitness: 1031.1788968919523

Distancia percorrida: 907.5459037300968

Interceções: 0

Mapa 2

Fitness: 1338.3885474517676

Distancia percorrida: 1012.3470955674402

Interceções: 0

Mapa 3

Fitness: 1506.5324257824475

Distancia percorrida: 1045.6002418957576

Interceções: 0

Mapa 5

Fitness: 851.9828936540308

Distancia percorrida: 718.8773394880591

Interceções: 0

Mapa 6

Fitness: 788.5934150612361

Distancia percorrida: 729.9043414627447

Interceções: 0

Mapa 7

Fitness: 638.0769810061138

Distancia percorrida: 598.5175580846925

Interceções: 0

Mapa 8

Fitness: 778.7873303937281

Distancia percorrida: 541.9999483851822

Interceções: 0

Mapa 10

Fitness: 800.817267880835

Distancia percorrida: 570.880263943829

Interceções: 0

Robocode

O Robocode é um jogo de programação, onde o objetivo é programar robots que competem uns contra os outros num campo/arena de batalha. O jogador deve treinar e programar o seu robot para que este se movimente de acordo com um algoritmo genético e dispare de acordo com um modelo Machine Learning, de forma a reagir da melhor forma a todas as adversidades que podem aparecer ao longo da batalha.

Demonstração de utilização em Robocode:

2.8 Requisitos implementados

R-001

Nome: 1ª população

Descrição: O software deverá conseguir produzir a primeira geração de tamanho de população

pré-definido pelo utilizador com valores aleatórios.

Nível: 5

Estado: Finalizado

R-002

Nome: Cruzamento

Descrição: Reproduzir população de acordo com o melhor espécimen da geração anterior para

possivelmente melhorar os pontos do melhor caminho.

Nível: 5

Estado: Finalizado

R-003

Nome: Mutação

Descrição: Existência de uma função com a capacidade de mutar o melhor espécimen selecionado das gerações anteriores para aperfeiçoar os pontos de cada caminho.

Nível: 5

Estado: Finalizado

R-004

Nome: Fitness

Descrição: Elaboração de uma função de fitness interna que seja capaz de determinar o

melhor caminho gerado pela função algoritmo genético.

Nível: 5

Estado: Finalizado

R-005

Nome: Calcular distancia

Descrição: Elaboração de uma função para determinar a distancia existentes entre 2 pontos

consecutivos num caminho.

Nível: 5

Estado: Finalizado

R-006

Nome: Colisão

Descrição: O software deverá possuir a capacidade de determinar se um conjunto de pontos se traduz numa potencial colisão com algum obstáculo existente no mapa carregado, a partir

de uma função que determine se existe ou não uma colisão.

Nível: 5

Estado: Finalizado

R-007

Nome: Algoritmo genético

Descrição: O software deverá ser capaz de reunir todas as ações necessárias a tomar durante a atividade de um algoritmo genético e que retorne no fim da sua atividade, um caminho com uma lista de pontos que represente um caminho válido a percorrer e o caminho mais curto

gerado durante a sua atividade.

Nível: 5

Estado: Finalizado

R-008

Nome: Anticolisão

Descrição: O robot deverá ser capaz de, no caso de haver uma colisão iminente com o robot e um inimigo, modificar em tempo real o seu caminho e assim evitar uma colisão. No caso de

não haver nenhum caminho válido a tomar, o robot deverá terminar a sua deslocação.

Nível: 3

Estado: Finalizado

20

3. Problema B

3.1 Descrição Dataset

Mediante o problema proposto, decidimos exportar um dataset com algumas variáveis que consideramos importantes para a construção do modelo no H2O. Estas foram:

- "targetName": nome do robot alvo;
- "targetPosX": coordenada X do robot alvo;
- "targetPosY": coordenada Y do robot alvo;
- "targetHeading": direção para a qual o robot alvo está a apontar;
- "targetVelocity": velocidade do robot alvo;
- "power": potência da bala que disparamos;
- "distance": distância a que se encontra o robot alvo;
- "hit": valor inteiro com intenção booleana para definir se a bala disparada para o robot que queríamos atingiu com sucesso o alvo.

3.2 Descrição dos modelos treinados, configurações, métricas de performance

Com a utilização da ferramenta H2O conseguimos gerar vários modelos com várias configurações, dos quais selecionamos apenas seis. Destes últimos, um destacou-se por entre os demais, sendo aquele que registou um MSE (*Mean Squared Error*) e um RMSE (*Root Mean Squared Error*) menores e com valores aceitáveis, isto é, não apresentavam características de *overfitting* nem de *underfitting*.

Modelos gerados:

deeplearning-400-300-200-100_battle_results_error

Figura 8 - Gráfico do modelo deeplearning-400-300-200-100_battle_results

Figura 9 - Tabela de testes do modelo deeplearning-400-300-200-100_battle_results

deeplearning_500_400_300_200_100_10fold_battle_results

Figura 10 - Gráfico do modelo deeplearning_500_400_300_200_100_10fold_battle_results

Figura 11 - Tabela de testes do modelo deeplearning_500_400_300_200_100_10fold_battle_results

drf_50_20_10fold

▼ SCORING HISTORY - LOGLOSS 6.5 training_logloss, validation_logloss 6.0 5.5-5.0-4.5-4.0-3.5-3.0 2.5 2.0 0.5 0.0 ż 35

Figura 12 - Gráfico do modelo drf_50_20_10fold

number_of_trees

▼ OUTPUT - VALIDATION_METRICS model drf-50-20-10fold model_checksum -22312361043313960 frame test.hex frame_checksum 1397587033816451812 description · model_category Multinomial scoring_time 1592619459225 predictions · MSE 0.128404 RMSE 0.358335 nobs 2925 custom_metric_name • custom_metric_value 0 r2 0.941763 logloss 0.494874 mean_per_class_error 0.265812

Figura 13 - Tabela de testes do modelo drf_50_20_10fold

drf_50_20_battle_results

Figura 14 - Gráfico do modelo drf_50_20_battle_results

Figura 15 - Tabela de testes do modelo drf_50_20_battle_results

drf_100_50_10fold_battle_results

number_of_trees

Figura 16 - Gráfico do modelo drf_100_50_10fold_battle_results

▼ OUTPUT - VALIDATION_METRICS model drf-100-50-10fold-battle_results model_checksum -2544557320548557540 frame test.hex frame_checksum 1397587033816451812 description · model_category Multinomial scoring_time 1592620292126 predictions · MSE 0.127959 RMSE 0.357714 nobs 2925 custom_metric_name · custom_metric_value 0 r2 0.941965 logloss 0.490803 mean_per_class_error 0.257950

Figura 17 - Tabela de testes do modelo drf_100_50_10fold_battle_results

• *drf_100_50_battle_results*

▼ SCORING HISTORY - LOGLOSS 6.5 training_logloss, validation_logloss 6.0 5.5-5.0-4.5-4.0-3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 9 number_of_trees

Figura 18 - Gráfico do modelo drf_100_50_battle_results

Figura 19 - Tabela de testes do modelo drf_100_50_battle_results

3.3 Modelo utilizado pelo robot

Após a nossa rigorosa análise de todos os seis modelos gerados, selecionamos o modelo que apresentou valores de MSE e RMSE mais reduzidos, sendo este o modelo $drf_100_50_10fold_battle_results$, que obteve os seguintes resultados:

Gráfico:

Figura 20 - Gráfico do modelo drf_100_50_10fold_battle_results

Tabela de testes:

▼ OUTPUT - VALIDATION_METRICS

```
model drf-100-50-10fold-battle_results
     model_checksum -2544557320548557540
              frame test.hex
      frame_checksum 1397587033816451812
        description ·
     model_category Multinomial
        scoring_time 1592620292126
        predictions ·
                MSE 0.127959
                RMSE 0.357714
               nobs 2925
  custom_metric_name ·
 custom_metric_value 0
                 r2 0.941965
            logloss 0.490803
mean_per_class_error 0.257950
```

Figura 21 - Tabela de testes do modelo drf_100_50_10fold_battle_results

Tabela de previsões:

Row	predict	sample.Corners	sample.Crazy	sample.Fire	sample.SittingDuck	sample.Walls	Target Name	Target Pos X
1	sample.Walls	0.0026	0.1654	0.0046	0	0.8274	sample.Walls	136.0954
2	sample.Walls	0.0042	0.0211	0	0	0.9747	sample.Walls	89.2355
3	sample.Fire	0.0122	0.0305	0.8108	0.1464	Θ	sample.Fire	310.3981
4	sample.Crazy	0.0287	0.7975	0.0001	0	0.1737	sample.Crazy	465.3067
5	sample.Crazy	0.0040	0.9405	0.0072	0	0.0483	sample.Crazy	519.6194
6	sample.Walls	0	0	0	0	1.0	sample.Walls	10.4154
7	sample.Crazy	0.0031	0.6148	0	0	0.3821	sample.Crazy	320.9560
8	sample.Fire	0.0267	0.2237	0.5806	0.0716	0.0973	sample.Fire	376.0674
9	sample.Walls	0	0	0	0	1.0	sample.Walls	212.7069
10	sample.Crazy	0.0365	0.8490	0	0	0.1145	sample.Crazy	711.9157
11	sample.Walls	0.0079	0.0053	0.0038	0	0.9830	sample.Walls	680.6018
12	sample.Crazy	0.0215	0.5383	0.2483	0.0098	0.1821	sample.Fire	402.0752
13	sample.Walls	0	0.0055	0.0038	0.0002	0.9904	sample.Walls	764.5479
14	sample.Walls	0.0018	0.0005	0.0013	0	0.9964	sample.Walls	2.8481
15	sample.Walls	0.0406	0.1751	0.0056	0	0.7787	sample.Corners	208.0379
16	sample.Walls	0.1988	0.3624	0	0	0.4388	sample.Corners	27.2471
17	sample.Fire	0.0070	0.1275	0.7344	0.0977	0.0333	sample.SittingDuc	k 605.8027
18	sample.Walls	0.0054	0	0.0089	0	0.9857	sample.Walls	777.0056
19	sample.Walls	0.0185	0.0002	0.0083	0	0.9730	sample.Walls	769.5499
20	sample.Walls	0	0.0105	0	0	0.9895	sample.Walls	784.3922
21	samole Crazv	P	A 6571	A 3429	A	e	sample Crazv	677 8273

Figura 22 - Tabela de previsões do modelo drf_100_50_10fold_battle_results

Como podemos verificar, sinalizado a vermelho temos as previsões que não se encontram de acordo com os valores reais, o que significa que o modelo que selecionamos também tem as suas falhas, mas de todos os que treinamos e geramos foi o melhor.

4. Robot Final

Com a finalização da elaboração do projeto, foi levado a cabo a construção do último robot que possuirá todas as características de todos os robots construídos até ao momento.

O último robot (*MARK3*) irá possuir as características de movimentação de acordo com o algoritmo genético desenvolvido no robot *MARK1* e as características de disparo de acordo com a técnica de *Machine Learning* do robot *MARK2*.

Terminado o MARK3, ficamos a possuir um robot com todas as capacidades propostas no enunciado e com capacidade de aplicar essas mesmas características em ambiente real (*Robocode*) e com uma capacidade de resposta aceitável.