

Global United Technology Services Co., Ltd.

Report No.: GTS201806000076F01

FCC Report (NFC)

Applicant: Magtek Incorporated

1710 Apollo Court, seal beach, California 90740, United **Address of Applicant:**

States

Manufacturer/Factory: Magtek Incorporated

1710 Apollo Court, seal beach, California 90740, United Address of

States Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: kDynamo

Model No.: 21097101, 21097102, 21097103

Trade Mark: MAGTEK

FCC ID: U73-21097101A0

FCC CFR Title 47 Part 15 Subpart C Section 15.225 **Applicable standards:**

Date of sample receipt: June 11, 2018

Date of Test: June 12-19, 2018

Date of report issued: June 20, 2018

PASS * Test Result:

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	June 20, 2018	Original

Prepared By:	Bill. yuon	Date:	June 20, 2018	
	Project Engineer			
Check By:	Andy w	<i>Date:</i>	June 20, 2018	

3 Contents

		Page
CO	VER PAGE	1
VE	RSION	2
CO	NTENTS	3
TE	ST SUMMARY	4
4.1	MEASUREMENT UNCERTAINTY	4
GE	NERAL INFORMATION	5
5.1	GENERAL DESCRIPTION OF EUT	5
5.2	TEST MODE	
5.3	TEST FACILITY	6
5.4	TEST LOCATION	
5.5	DESCRIPTION OF SUPPORT UNITS	6
TE	ST INSTRUMENTS LIST	7
TE	ST RESULTS AND MEASUREMENT DATA	8
7.1	Antenna requirement:	8
7.2	CONDUCTED EMISSIONS	
7.3		
7.4		
-		
7.6	FREQUENCY STABILITY MEASUREMENT	20
TE	ST SETUP PHOTO	22
EU	T CONSTRUCTIONAL DETAILS	24
	VE CO TE: 4.1 GE 5.1 5.2 5.3 5.4 5.5 TE: 7.1 7.2 7.3 7.4 7.5 7.6 TE:	VERSION CONTENTS

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Field Strength of Fundamental Emissions and Mask Measurement	15.225(a)(b)(c)	Pass
Radiated Emission	15.225(d)&15.209	Pass
20dB Emission Bandwidth	15.225&15.215	Pass
Frequency Stability Measurement	15.225(e)	Pass

Remark:

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)			
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)			
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)			
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)			
Emission 0.15MHz ~ 30MHz ± 3.45dB (1) Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

5 General Information

5.1 General Description of EUT

Product Name:	kDynamo
Model No.:	21097101, 21097102, 21097103
Test Model No:	21097101
	identical in the same PCB layout, interior structure and electrical circuits. model name for commercial purpose
Serial No.:	B398F37
Test sample(s) ID:	GTS201806000076-1
Sample(s) Status	Engineered sample
Hardware:	Kdynamo_MB V08A
Software:	Kdynamo-C-20171108
Operation Frequency:	13.56MHz
Channel Number:	1
Modulation:	ASK
Antenna type:	Integral Antenna
Antenna gain:	2.0dBi
Power supply:	Battery: DC 3.7V, 760mAh
	Output: DC 5V,2.4A
	Rated: DC 5V,3A

5.2 Test mode

Transmit	ter mode	Keep the EUT in continuously transmitting.

Pre-test mode.

GTS has verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	Х	Y	Z
Field Strength(dBuV/m)	56.91	57.34	56.73

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup": Y axis (see the test setup photo)

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number
AoHai	USB Charger	A68-502000	N/A
Apple	iPad Air	A1474	DLXMH267FK11

6 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 03 2015	July 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 28 2017	June 27 2018	
4	Loop Antenna	Zhinan	ZN30900A	GTS215	June. 28 2017	June. 27 2018	
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 28 2017	June 27 2018	
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 28 2017	June 27 2018	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June 28 2017	June 27 2018	
9	Coaxial Cable	GTS	N/A	GTS211	June 28 2017	June 27 2018	
10	Coaxial cable	GTS	N/A	GTS210	June 28 2017	June 27 2018	
11	Coaxial Cable	GTS	N/A	GTS212	June 28 2017	June 27 2018	
12	Amplifier (100kHz-3GHz)	HP	8347A	GTS204	June 28 2017	June 27 2018	

Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 28 2017	June. 27 2018
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 28 2017	June. 27 2018
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 28 2017	June. 27 2018
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	June 28 2017	June 27 2018	
2	Thermo meter	KTJ	TA328	GTS233	June 28 2017	June 27 2018	

7 Test results and Measurement Data

7.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is integral antenna, the best case gain of the antenna is 2.0dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto				
Limit:	(0.411.)	Limit (c	dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm	n of the frequency.			
Test setup:	Reference Plane		_		
Test procedure:	Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Test procedure: 1. The E.U.T and simulators are connected				
	 line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details	i			
Test results:	Pass				

Measurement data:

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Freq MHz	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
0.15	42.14	0.40	0.07	42.61	65.74	-23.13	QP
0.15	18.14	0.40	0.07	18.61	55.74	-37.13	Average
0.54	44.65	0.30	0.11	45.06	56.00	-10.94	QP
0.54	25.65	0.30	0.11	26.06	46.00	-19.94	Äverage
1.20	37.11	0.20	0.16	37.47	56.00	-18.53	QP
1.20	24.11	0.20	0.16	24.47	46.00	-21.53	Äverage
1.76	34.28	0.20	0.17	34.65	56.00	-21.35	QP
1.76	19.28	0.20	0.17	19.65	46.00	-26.35	Äverage
3.51	35.86	0.20	0.18	36.24	56.00	-19.76	QP
3.51	20.86	0.20	0.18	21.24	46.00	-24.76	Äverage
22.54	33.72	0.33	0.23	34.28	60.00	-25.72	QP
22.54	17.72	0.33	0. 23	18. 28	50.00	-31, 72	Average

Neutral:

_	rreq MHz	Reading level dBuV	factor dB/m	loss dB	Level dBuV	level dBuV	Over limit dB	Remark
	0.18 0.18	39.17 26.17	0.40 0.40	0.10 0.10	39.67 26.67	64.28 54.28	-24.61 -27.61	QP Average
	0.47	37.70	0.32	0.11	38.13	56.49	-18.36	QP
	0.47	35.70	0.32	0.11	36.13	46.49	-10.36	Average
	1.30	32.82	0.20	0.16	33.18	56.00	-22.82	QP
	1.30	24.82	0.20	0.16	25.18	46.00	-20.82	Average
	2.01	31.86	0.20	0.18	32.24	56.00	-23.76	QP
	2.01	23.86	0.20	0.18	24.24	46.00	-21.76	Average
	3.72	31.17	0.20	0.18	31.55	56.00	-24.45	QP
	3.72	21.17	0.20	0.18	21.55	46.00	-24.45	Average
	22.54	27.52	0.33	0.23	28.08	60.00	-31.92	QP
	22.54	16.52	0.33	0.23	17.08	50.00	-32.92	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Field Strength of Fundamental Emissions and Mask Measurement

TCC Port15 C Section (
RDVV=9KHZ, VDVV=3UP	· '				
Frequency (MHz)	Field Strength (dBuV/m) at 3m				
1.705~13.110	30	69.5			
13.110~13.410	106	80.5			
13.410~13.553	334	90.5			
13.553~13.567	15848	124.0			
13.567~13.710	334	90.5			
13.710~14.010	106	80.5			
14.010~30.000	30	69.5			
RX Antenna 3m Netal Full Soldered Ground Plane Spectrum Anabyzer					
 Configure the EUT according to ANSI C63.4. The EUT was placed of the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable. Power on the EUT, the turntable was rotated by 360 degrees to determine the position of the highest radiation. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength. For Fundamental emissions, use the receiver to measure QP reading 5. When the radiated emissions limits are expressed in terms of the average value of the emissions and pulsed operation is employed, the measurement field strength shall be determined by averaging over or complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 seconds. 					
	ANSI C63.10:2013 Measurement Distance: RBW=9KHz, VBW=30K Frequency (MHz) 1.705~13.110 13.110~13.410 13.410~13.553 13.553~13.567 13.567~13.710 14.010~30.000 1. Configure the EUT a the top of the turntab the loop receiving an meters far away from 2. Power on the EUT, the determine the position 3. The height of the recoground to find the mater and the material embedding of the measurement field since the pulse train, train does not exceed transmitter operates the pulse train exceed be determined from the source of the measurement field since the pulse train exceed the determined from the source of the measurement field since the pulse train exceed the pulse train exceed the determined from the source of the measurement from the source of the measurement field since the pulse train exceed the pulse train exceed the pulse train exceed the determined from the source of the measurement field since the pulse train exceed the pu	RBW=9KHz, VBW=30KHz, Sweep time=Auto Frequency (MHz) 1.705~13.110 13.110~13.410 13.410~13.553 13.553~13.567 15848 13.567~13.710 14.010~30.000 1.705~30.000 30 The tegret be EUT according to ANSI C63.4. The top of the turntable 0.8 meter above ground. the loop receiving antenna mounted antenna tow meters far away from the turntable. Power on the EUT, the turntable was rotated by determine the position of the highest radiation. The height of the receiving antenna was fixed at ground to find the maximum emissions field street. For Fundamental emissions, use the receiver to the top of the emissions and pulsed oper measurement field strength shall be determined complete pulse train, including blanking intervals train does not exceed 0.1 seconds, the measurement transmitter operates for longer than 0.1 seconds the pulse train exceeds 0.1 seconds, the measurement field strain ex			

	110 0110 010 01000000010101
	analyzer with RB set to a 1KHz for the band 13.553~13.567MHz.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Remark
13.56	32.13	24.70	0.51	57.34	124.00	-66.66	QP

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.4 Radiated Emission

7.4 Radiated Lillission						
Test Requirement:	FCC Part15 C	FCC Part15 C Section 15.225(d) and 15.209				
Test Method:	ANSI C63.10: 2	2013				
Test Frequency Range:	9KHz to 1000M	lHz				
Test site:	Measurement [Distance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark	
	9kHz- 150kHz	Quasi-peak	200Hz	300Hz	Quasi-peak Value	
	150kHz- 30MHz	Quasi-peak	9kHz	10kHz	Quasi-peak Value	
	30MHz- 1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value	
Limit:			-		s specified in Section n in Table per Section	
	Frequency	y (MHz)	Field strength (micorvolts/meter)		Measurement distance (meters)	
	0.009~0	0.490	2400/F(KHz)		300	
	0.490~	1.705	24000/F(KHz)		30	
	1.705	~30	30		30	
	30~8	38	100		3	
	88~2	16	150 200		3	
	216~9	960			3	
	960~1	000	500)	3	
Test setup:	Turn To < \$0cm	able+ EUT+	< 3m > · · · · · · · · · · · · · · · · · ·		lica+	
	Above 30MHz					

Report No.: GTS201806000076F01 < 3m > Test Antenna < 1m 4m > EUT Turn Tables Receiver-Preamplifier. Test Procedure: Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable. Power on the EUT, the turntable was rotated by 360 degrees to determine the position of the highest radiation. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization. For each suspected emissions, the antenna tower was scan (from 1M to 4M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading. Set the test-receiver system to Peak or CISPR quasi-peak detect 5. function with specified bandwidth under maximum hold mode. When the radiated emissions limits are expressed in terms of the average value of the emissions and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: **Pass**

Measurement data:

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Horizontal:

Vertical:

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV	Limit level dBuV/m	Over limit dB	Remark
49.881	53.79	12.30	0.77	36. 17	30.69	40.00	-9.31	QP
132.221	43.31	8.01	1.45	36. 97	15.80	43.50	-27.70	QP
167.824	45.28	8.46	1.67	37. 18	18.23	43.50	-25.27	QP
180.017	44.50	8.90	1.74	37. 24	17.90	43.50	-25.60	QP
258.326	44.99	12.44	2.16	37. 39	22.20	46.00	-23.80	QP
284.977	47.99	13.20	2.29	37. 41	26.07	46.00	-19.93	QP

7.5 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.225 and 15.215			
Test Method:	ANSI C63.10:2013			
Limit:	N/A			
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points. Read 20dB bandwidth. 			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

Test frequency (MHz)	20dB bandwidth (KHz)	Result
13.56	2.847	Pass

Test plot as follows:

7.6 Frequency Stability Measurement

Test Requirement:	FCC Part15 C Section 15.225 (e)
Test Method:	ANSI C63.10: 2013
Receiver setup:	RBW=1KHz, VBW=1KHz, Sweep time=Auto
Limit:	The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency
	over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage,
	for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
	For battery operated equipment, the equipment tests shall be performed using a new battery.
Test setup:	Quantum Control of the Control of th
	Spectrum Analyzer OVEN
Test Procedure:	The transmitter output (antenna port) was connected to the spectrum analyzer.
	EUT have transmitted absence of modulation signal and fixed channelize
	Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
	4. Set RBW=1KHz, VBW=1KHz with peak detector and maxhold settings.
	5. fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc $x10^6$ ppm and the limit is less than ± 100 ppm.
	6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
	7. Extreme temperature rule is -20°C ~50°C
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details

Measurement data:

Reference Frequency: 13.56MHz						
Dower complied ()(de)	Tomporature (°C)	Frequer	ncy error	Limit	Desult	
Power supplied (Vdc)	Temperature (℃)	Hz	%	Limit	Result	
	-20	85	0.00063%			
	-10	77	0.00057%		Pass	
	0	62	0.00046%	+/- 0.01%		
2.7	10	79	0.00058%			
3.7	20	68	0.00050%			
	30	75	0.00055%			
	40	73	0.00054%			
	50	79	0.00058%			

Reference Frequency: 13.56MHz					
Temperature (°C)	Power supplied (Vdc)	Frequency error		Limit	Result
		Hz	ppm	Lillill	Nesuit
20	3.145	74	0.00055%	+/- 0.01%	Pass
	3.7	83	0.00061%		
	4.255	89	0.00066%		

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

----- End -----