Topologie

STEP, MINES ParisTech

13 septembre 2021 (#b3f42f8)

Question 1 Soit $C = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1\}$ le cercle unité de \mathbb{R}^2 et d la distance sur C dérivée de la norme euclidienne sur \mathbb{R}^2 . Dans ce contexte, la distance entre les points $(-1,0)$ et $(1,0)$ de C vaut
$\Box A : 2.$ $\Box B : \pi.$ $\Box C : 2\pi.$
Question 2 Dans \mathbb{R} , muni de la norme $\ \cdot\ = \cdot $,
□ A : l'ensemble $[0,1]$ est fermé. □ B : l'ensemble $\{2^{-n} \mid n \in \mathbb{N}\}$ est fermé. □ C : l'ensemble $[0,+\infty[$ est fermé.
Question 3 Dans un espace métrique $X,$ un ensemble A est ouvert si et seulement si
□ A : le complémentaire A^c de A dans X est fermé. □ B : sa frontière ∂A est vide. □ C : l'ensemble A n'est pas fermé.
${\bf Question}~{\bf 4}~$ Dans le plan euclidien, identifiez les ensembles qui sont des voisinages de l'origine
$ \Box \text{ A: } \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \ge 1 \text{ et } x_2 \ge 1\} \Box \text{ B: } \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \ge 0 \text{ et } x_2 \ge 0\} \Box \text{ C: } \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \ge -1 \text{ et } x_2 \ge -1\} $
Question 5 Dans un espace métrique, si $A \subset B$, alors : $\Box A : \overline{A} \subset \overline{B}$ $\Box B : \partial A \subset \partial B$ $\Box C : A^{\circ} \subset B^{\circ}$
Question 6 Si $f: \mathbb{R}^2 \to \mathbb{R}$ est une fonction continue et $a \in \mathbb{R}$, que peut-on dire de l'ensemble de niveau $A = \{(x_1, x_2) \in \mathbb{R}^2 \mid f(x_1, x_2) = a\}$?
Réponse : l'ensemble A est

Question 7 Si une suite de vecteurs x_k de \mathbb{R}^n vérifie

$$||x_{k+2} - x_{k+1}|| \le 0.5 \times ||x_{k+1} - x_k||,$$

est-ce qu'elle converge nécessairement?

- $\hfill\Box$ A : oui.
- \square B : non.

Question 8 Dans le plan euclidien, est-ce que les ensembles suivants sont complets? compacts?

- $\Box \mathbf{A} : \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \ge 0 \text{ et } x_2 \ge 0\}$ $\Box \mathbf{B} : \bigcup_{n=1}^{+\infty} S\left(0, \frac{1}{n}\right)$ $\Box \mathbf{C} : \bigcup_{n=1}^{+\infty} S\left(0, n\right)$

Question 9 L'ensemble \mathbb{R}^2 étant muni de la norme euclidienne, la norme d'opérateur ||A|| de la matrice

$$A = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right] \in \mathbb{R}^{2 \times 2}$$

est égale à

- \square A : 0.
- \square B:1.
- \square C: $\sqrt{2}$.