Comparison of Data Normalization Techniques on KNN Classification Performance on Diabetes Dataset

Yohanes Dimas Pratama 1*, Abu Salam 2**

* Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro 111202113254@mhs.dinus.ac.id ¹, abu.salam@dsn.dinus.ac.id ²

Article Info

Article history:

Received ... Revised ... Accepted ...

Keyword:

Data Normalization, K-Nearest Neighbors, Diabetes Classification, Min-Max Scaling, Z-Score Scaling.

ABSTRACT

This study analyzes the comparison of various data normalization techniques on the performance of the K-Nearest Neighbors (KNN) model in diabetes classification on the Pima Indians Diabetes Dataset. The three normalization techniques evaluated are Min-Max Scaling, Z-Score Scaling, and Decimal Scaling. Data that has gone through the preprocessing and feature selection stages is then applied to the KNN model to predict the likelihood of someone having diabetes. Evaluation is done using several performance metrics, such as accuracy, precision, recall, F1-Score, specificity, and ROC AUC. The results show that Min-Max Scaling provides significant improvement on all metrics, with the highest accuracy recorded at 0.8117 and ROC AUC reaching 0.8050. Z-Score Scaling also showed good results, but not as good as Min-Max Scaling statistically. Meanwhile, Decimal Scaling showed lower performance compared to the other two methods. Overall, Min-Max Scaling proved to be the most effective normalization method to improve the performance of KNN model in diabetes classification.

This is an open access article under the CC-BY-SA license.

I. PENDAHULUAN

Diabetes merupakan salah satu penyakit tidak menular yang semakin meningkat prevalensinya di seluruh dunia, termasuk di Indonesia. Menurut data dari Organisasi Kesehatan Dunia (WHO), jumlah penderita diabetes meningkat dari 108 juta pada tahun 1980 menjadi 422 juta pada tahun 2014. Diperkirakan jumlah penderita diabetes akan mencapai 578 juta pada tahun 2030 dan 700 juta pada tahun 2045 [1]. Diabetes terjadi ketika tubuh tidak bisa mengatur kadar gula darah dengan baik, yang menyebabkan kadar gula darah terlalu tinggi [2][3]. Diabetes dapat menyebabkan berbagai komplikasi kesehatan serius, seperti kerusakan pada jantung, ginjal, mata, dan sistem saraf [3][4]. Oleh karena itu, deteksi dini dan klasifikasi risiko diabetes sangat penting untuk mencegah terjadinya komplikasi lebih lanjut. Dalam hal ini, teknologi informasi dan pembelajaran mesin dapat berperan penting dalam mempermudah dan mempercepat diagnosis serta klasifikasi penyakit diabetes.

Salah satu algoritma pembelajaran mesin yang umum digunakan dalam klasifikasi adalah K-Nearest Neighbors (KNN). KNN merupakan metode klasifikasi yang bekerja

berdasarkan kedekatan jarak antara titik data yang akan diklasifikasikan dengan data yang sudah terlabel [5]. Meskipun KNN sederhana dan mudah diimplementasikan, namun ada salah satu tantangan utama dalam menggunakan algoritma ini adalah sensitifitasnya terhadap data yang belum dinormalisasi. KNN mengandalkan perhitungan jarak, seperti Euclidean, untuk mengukur kedekatan antar data [6]. Jika data memiliki skala atau satuan yang berbeda-beda, hal ini dapat menyebabkan ketidakseimbangan dalam perhitungan jarak, yang pada gilirannya dapat menurunkan kinerja model [7]. Karena itu, normalisasi data menjadi langkah penting sebelum diterapkan pada algoritma KNN. Normalisasi bertujuan untuk mengubah nilai fitur ke dalam skala yang seragam, sehingga perhitungan jarak antar data dapat dilakukan secara akurat tanpa dipengaruhi oleh perbedaan skala [8]. Terdapat tiga teknik normalisasi yang relevan dengan perhitungan Euclidean distance, yaitu Min-Max Scaling, Z-Score, dan Decimal Scaling [9].

Beberapa penelitian sebelumnya telah mengkaji perbandingan teknik normalisasi terhadap kinerja berbagai algoritma klasifikasi, yang memiliki dampak signifikan pada akurasi klasifikasi dalam berbagai dataset. Sebagai contoh, penelitian Muasir Pagan et al. [10] mengkaji perbandingan teknik normalisasi terhadap kinerja algoritma K-Nearest Neighbor (K-NN) dengan menggunakan sepuluh dataset. Mereka mengevaluasi tiga teknik skala data (min-max normalization, Z-score, dan decimal scaling). Hasilnya menunjukkan bahwa Z-score dan decimal scaling memberikan kinerja yang lebih baik dibandingkan min-max normalization, dengan Z-score secara konsisten menghasilkan akurasi, presisi, recall, dan F1-score yang lebih tinggi di sebagian besar dataset. Temuan ini menyoroti pentingnya pemilihan teknik normalisasi yang sesuai berdasarkan karakteristik dataset. Selanjutnya, penelitian Alshdaifat et al. [11] juga mengevaluasi dampak teknik normalisasi (Min-Max, Z-Score, dan Decimal Scaling) terhadap kinerja algoritma klasifikasi seperti SVM dan ANN, dengan temuan yang juga relevan untuk K-Nearest Neighbor (KNN). Hasil penelitian pada 18 dataset menunjukkan bahwa Z-Score Normalization sering kali memberikan hasil terbaik karena kemampuannya menangani outlier, sementara Decimal Scaling dianggap kurang efektif meningkatkan akurasi model secara keseluruhan. Selain itu, penelitian Saichon Sinsomboonthong [12] membandingkan kinerja delapan teknik normalisasi dalam klasifikasi menggunakan ANN pada enam dataset. Hasil penelitian menunjukkan bahwa min-max normalization umumnya memberikan akurasi tertinggi dan MSE terendah. Namun, pada beberapa dataset seperti White Wine Quality dan Pima Indians Diabetes, Adjusted-2 min-max normalization memberikan hasil yang lebih baik. Teknik normalisasi lain seperti Statistical Column dan Decimal Scaling juga menunjukkan hasil kompetitif pada dataset tertentu, namun tidak mengungguli min-max normalization.

Penelitian ini bertujuan untuk menganalisis perbandingan berbagai teknik normalisasi terhadap kinerja model KNN dalam klasifikasi diabetes pada dataset Pima Indians Diabetes. Teknik normalisasi diterapkan sebagai bagian dari preprocessing data untuk mengevaluasi dampaknya terhadap kinerja model [13]. Selain itu, pemilihan fitur juga dilakukan untuk memastikan hanya fitur relevan yang digunakan, guna mengurangi overfitting dan meningkatkan interpretabilitas [14]. Dengan membandingkan teknik normalisasi yang berbeda, diharapkan dapat dibangun model yang lebih akurat dan efisien, mendukung deteksi dini diabetes, serta membantu tenaga medis dalam pengambilan keputusan yang lebih tepat.

II. METODE

Penelitian ini dimulai dengan pengumpulan data dari platform Kaggle, diikuti dengan tahapan preprocessing yang mencakup pemeriksaan tipe data, pemeriksaan nilai hilang (missing values), pemeriksaan duplikasi, pemeriksaan skala fitur numerik, dan pemeriksaan nilai unik pada fitur kategorikal. Dataset kemudian dibagi menjadi dua bagian, yaitu data latih (training) dan data uji (testing). Selanjutnya, dilakukan pemilihan fitur (feature selection) untuk menentukan fitur yang paling relevan terhadap model. Setelah

itu, dilakukan normalisasi data menggunakan tiga teknik, yaitu Min-Max Scaling, Z-Score Scaling (Standard Scaling), dan Decimal Scaling. Setelah normalisasi, dilakukan pelatihan model K-Nearest Neighbor (KNN) dan evaluasi kinerja model. Terakhir, dilakukan analisis terhadap hasil evaluasi model untuk setiap metode normalisasi guna mengetahui perbandingan masing-masing metode terhadap kinerja model. Diagram alur penelitian ini disajikan pada Gambar 1.

Gambar 1. Alur Penelitian

A. Pengumpulan Data

Pada tahap pengumpulan data, penelitian ini menggunakan dataset Pima Indians Diabetes yang diambil dari Kaggle. Dataset ini berasal dari National Institute of Diabetes and Digestive and Kidney Diseases dengan tujuan untuk mengklasifikasi secara diagnostik apakah seorang pasien mengidap diabetes atau tidak berdasarkan berbagai fitur pengukur medis [15]. Dataset ini mencakup 768 baris data, di mana setiap baris mewakili satu pasien. Setiap baris terdiri dari 8 fitur independen yang digunakan untuk mengklasifikasi kemungkinan diabetes serta satu fitur target yang menunjukkan hasil diagnosis diabetes. Fitur tersebut meliputi jumlah kehamilan (Pregnancies), konsentrasi glukosa plasma (Glucose), tekanan darah diastolik (BloodPressure), ketebalan lipatan kulit (SkinThickness), kadar insulin (Insulin), indeks

massa tubuh (BMI), fungsi keturunan diabetes (DiabetesPedigreeFunction), usia (Age), serta fitur target yang menunjukkan hasil diagnosis diabetes (Outcome) [16]. Semua pasien dalam dataset ini adalah perempuan berusia minimal 21 tahun dengan latar belakang keturunan Pima Indian [17]. Visualisasi dataset digambarkan pada Tabel 1.

TABEL 1 FITUR PIMA INDIANS DIABETES DATASET

Fitur	Deskripsi			
Pregnancies	Jumlah kehamilan yang pernah dialami			
	oleh pasien.			
Glucose	Konsentrasi glukosa plasma saat			
	berpuasa.			
BloodPressure	Tekanan darah diastolik (tekanan darah			
	saat relaksasi jantung).			
SkinThickness	Ketebalan lipatan kulit yang diukur di			
	lengan atas.			
Insulin	Kadar insulin yang terdapat dalam darah			
	pasien.			
BMI	Indeks massa tubuh, yang			
	mencerminkan berat badan pasien			
	relatif terhadap tinggi badan.			
Diabetes	Fungsi keturunan diabetes, yang			
Pedigree	menggambarkan riwayat keluarga			
Function	pasien terkait diabetes.			
Age	Usia pasien.			
Outcome	Variabel target yang menunjukkan			
	apakah pasien didiagnosis mengidap			
	diabetes (1) atau tidak (0).			

B. Preprocessing

Preprocessing adalah tahapan penting dalam pengolahan dataset yang bertujuan untuk meningkatkan kualitas data sebelum digunakan dalam pemodelan. Proses ini dilakukan agar informasi yang diekstraksi lebih akurat, sehingga dapat berkontribusi pada peningkatan performa model [18]. Pada penelitian ini, preprocessing mencakup beberapa langkah utama yang dimulai dengan memeriksa tipe data agar setiap fitur memiliki format yang sesuai dan konsisten. Hal ini penting untuk mencegah kesalahan dalam pemrosesan data, terutama saat menerapkan algoritma pembelajaran mesin seperti KNN (K-Nearest Neighbors), yang hanya bisa menghitung jarak antar data jika data berformat numerik [19]. Selanjutnya, dilakukan identifikasi dan penanganan missing values pada setiap fitur. Dalam penelitian ini, data yang memiliki missing values akan dihapus untuk memastikan bahwa hanya data yang lengkap yang digunakan dalam analisis. Pendekatan ini dipilih karena jumlah data yang hilang relatif kecil, sehingga penghapusan tidak berdampak signifikan terhadap keseluruhan dataset [20]. Tahap berikutnya adalah deteksi dan penghapusan data duplikat, karena data yang terduplikasi dapat membuat model terlalu fokus pada pola tertentu, sehingga mengurangi kemampuan generalisasi dan menurunkan akurasi klasifikasi [21]. Setelah itu, fitur dalam dataset diklasifikasikan berdasarkan jenisnya menjadi fitur numerik dan fitur kategorikal. Untuk fitur numerik, dilakukan analisis skala untuk memahami distribusi dan rentang nilainya. Sementara itu, untuk fitur kategorikal, dilakukan identifikasi terhadap nilai unik yang terdapat di dalamnya [22]. Khusus pada fitur Outcome, distribusi nilai unik dianalisis untuk memastikan keseimbangan kelas data.

C. Pembagian Data

Pada tahap pembagian data, dataset yang telah melalui proses preprocessing akan dibagi menjadi dua bagian, yaitu data latih dan data uji. Pembagian ini dilakukan dengan proporsi 80% untuk data latih dan 20% untuk data uji. Data latih akan digunakan untuk melatih model, sedangkan data uji digunakan untuk mengevaluasi performa model yang telah dilatih. Pembagian ini bertujuan untuk memungkinkan model mempelajari pola dari data latih dan menguji kemampuannya dalam mengklasifikasi hasil pada data uji yang belum pernah dilihat sebelumnya, sehingga dapat dinilai kemampuan generalisasi model [23].

D. Pemilihan Fitur

Setelah pembagian dataset menjadi data pelatihan dan pengujian, langkah selanjutnya adalah melakukan feature selection menggunakan metode Random Forest. Feature selection adalah proses penting untuk memilih fitur-fitur yang paling relevan dan signifikan dalam model, sehingga dapat meningkatkan akurasi serta efisiensi komputasi [24]. Random Forest, yang merupakan algoritma berbasis pohon keputusan, dapat digunakan untuk menentukan pentingnya setiap fitur dalam mengklasifikasi target fitur [25]. Metode Random Forest ini menggunakan teknik Ensemble Method yang menggabungkan banyak pohon keputusan yang dilatih dengan subset data yang berbeda, kemudian menggabungkan prediksi dari setiap pohon untuk menghasilkan keputusan akhir [26]. Feature selection akan dilakukan pada dua versi data, vaitu data vang sudah ternormalisasi dan data yang tidak dilakukan normalisasi.

Pada tahap ini, Random Forest akan mengevaluasi kontribusi relatif setiap fitur dengan menghitung feature importance berdasarkan seberapa besar kontribusi fitur dalam mengurangi ketidakpastian (impurity) dalam pohon keputusan. Fitur dengan nilai importance tinggi dianggap lebih berpengaruh dalam klasifikasi dan akan dipertahankan, sementara fitur dengan nilai importance rendah dapat dihapus untuk menyederhanakan model dan meningkatkan performa. Deteksi feature importance hanya dilakukan pada data training untuk mencegah kebocoran data (data leakage). Penghapusan fitur yang tidak relevan harus diterapkan secara konsisten pada kedua dataset, baik training maupun testing, agar struktur data tetap selaras selama pelatihan dan evaluasi model [27]. Proses ini membantu mengurangi kompleksitas model dan mencegah overfitting, yang pada gilirannya dapat meningkatkan performa model dalam mengklasifikasi data yang belum pernah dilihat sebelumnya.

E. Normalisasi

Setelah tahap pemilihan fitur, langkah berikutnya adalah melakukan normalisasi data. Normalisasi dilakukan untuk menyelaraskan skala fitur sehingga tidak ada fitur yang mendominasi perhitungan dalam algoritma berbasis jarak seperti K-Nearest Neighbors (KNN). Dalam algoritma ini, perhitungan jarak, terutama Euclidean Distance, sangat bergantung pada skala data, sehingga perbedaan rentang nilai antar fitur dapat menyebabkan distorsi dalam proses klasifikasi [28]. Oleh karena itu, normalisasi menjadi tahap krusial untuk memastikan setiap fitur memiliki bobot yang seimbang dalam analisis.

Pada penelitian ini, normalisasi diterapkan menggunakan tiga metode, yaitu Min-Max Scaling, Z-Score Normalization (Standard Scaling), dan Decimal Scaling. Masing-masing metode memiliki karakteristik dan manfaat spesifik dalam mengubah distribusi data agar lebih optimal untuk analisis KNN. Penjelasan lebih lanjut mengenai masing-masing metode akan dijelaskan sebagai berikut:

1. Min-Max Scaling

Min-Max Scaling digunakan untuk menormalisasi data dengan mengubah rentang nilai fitur ke dalam skala 0 hingga 1. Proses ini dilakukan dengan merumuskan ulang setiap nilai berdasarkan nilai minimum dan maksimum dalam dataset, sehingga distribusi data tetap terjaga, tetapi dalam skala yang lebih seragam [29]. Metode ini sering dipilih ketika data memiliki nilai yang bervariasi secara signifikan antar fitur, yang dapat memengaruhi performa model. Dalam konteks Pima Dataset, Min-Max Scaling membantu memastikan bahwa setiap fitur akan berada dalam skala yang sama, memungkinkan model untuk memproses data secara lebih efektif tanpa terpengaruh oleh perbedaan skala antar fitur. Rumus Min-Max Scaling adalah sebagai berikut:

Min-Max Scaling adalah sebagai berikut:

$$x' = \frac{x - \min(X)}{\max(X) - \min(X)}$$

2. Z-Score (Standard Scaling)

Z-Score atau Standard Scaling digunakan untuk menstandarisasi data dengan mereskalakan nilai fitur sehingga memiliki rata-rata 0 dan standar deviasi 1. Metode ini menghitung sejauh mana suatu nilai menyimpang dari rata-rata dalam satuan standar deviasi, sehingga memungkinkan perbandingan antar fitur dengan skala yang berbeda [30]. Penggunaan Z-Score sangat tepat ketika fitur-fitur dalam dataset memiliki distribusi yang berbeda dan perlu distandarisasi untuk memudahkan perbandingan antar fitur. Dengan menggunakan Z-Score pada Pima Dataset, nilai-nilai dalam fitur seperti Age dan BMI dapat distandarisasi, memastikan bahwa fitur dengan variabilitas tinggi tidak mendominasi proses analisis. Rumus Z-Score adalah sebagai berikut:

$$z = \frac{x - \mu}{\sigma}$$

3. Decimal Scaling

Decimal Scaling digunakan untuk menormalisasi data dengan membagi setiap nilai dengan pangkat sepuluh yang sesuai, sehingga semua nilai berada dalam rentang yang lebih kecil. Faktor pembagi ditentukan berdasarkan jumlah digit terbesar dalam dataset, menjaga skala data tetap proporsional tanpa mengubah distribusi relatif antar nilai [12]. Decimal Scaling digunakan untuk mengurangi ukuran angka besar pada data tanpa mempengaruhi distribusi data secara signifikan. Pada Pima Dataset, metode ini efektif untuk menurunkan nilai fitur besar, sehingga memudahkan model memproses data lebih cepat dan efisien tanpa mengubah distribusi asli. Meskipun jarang digunakan dalam konteks modern, Decimal Scaling tetap efektif untuk menjaga data tetap proporsional dan mudah diproses, terutama pada fitur dengan nilai besar.. Rumus Decimal Scaling adalah sebagai berikut:

 $x^* = \frac{x}{10^j}$

F. Model KNN (K-Nearest Neighbors)

Setelah proses pemilihan fitur, tahap berikutnya adalah melatih model K-Nearest Neighbors (KNN). Pelatihan model akan dilakukan pada dua versi data, yaitu data yang telah dinormalisasi dengan berbagai metode yang telah diterapkan sebelumnya dan data yang tidak dilakukan normalisasi. Model KNN akan diuji dengan berbagai nilai k, yaitu 1, 3, 5, 7, 9, dan 11, yang dipilih secara manual, untuk menganalisis performa model secara menyeluruh pada setiap kombinasi normalisasi dan nilai k. Dalam algoritma KNN, klasifikasi dilakukan berdasarkan kedekatan suatu data dengan sejumlah k tetangga terdekatnya dalam ruang fitur [5]. Oleh karena itu, pemilihan nilai k menjadi faktor krusial dalam kineria model. Nilai k yang terlalu kecil dapat menyebabkan model terlalu sensitif terhadap data training (overfitting), sedangkan nilai k yang terlalu besar dapat menyebabkan model menjadi terlalu umum (underfitting) [31][32]. Selain itu, metode jarak yang digunakan adalah Euclidean distance, yang merupakan metode default pada KNN. Hasil dari tahap ini digunakan untuk menganalisis pengaruh setiap metode normalisasi terhadap performa algoritma KNN pada berbagai nilai k, serta untuk mengevaluasi metode normalisasi mana yang paling optimal dalam meningkatkan kualitas klasifikasi.

G. Evaluasi

Pada tahap evaluasi, kinerja model K-Nearest Neighbors (KNN) yang telah dilatih akan diuji menggunakan berbagai metrik evaluasi untuk menilai efektivitas model dalam mengidentifikasi pasien dengan diabetes serta menganalisis perbandingan metode normalisasi terhadap performa klasifikasi. Evaluasi dilakukan dengan menggunakan seluruh variasi nilai k, yaitu 1, 3, 5, 7, 9, dan 11, untuk mengamati dampak masing-masing metode normalisasi secara menyeluruh terhadap hasil klasifikasi.

Evaluasi model dilakukan dengan mempertimbangkan empat komponen utama dalam analisis klasifikasi, yaitu True Positive (TP), yang menunjukkan jumlah kasus di mana model benar dalam mengklasifikasi pasien mengidap diabetes, True Negative (TN), yang mengindikasikan jumlah kasus ketika model dengan benar mengklasifikasi pasien tidak mengidap diabetes, False Positive (FP), yang terjadi saat model salah mengklasifikasi pasien mengidap diabetes padahal sebenarnya tidak, serta False Negative (FN), yang terjadi ketika model salah mengklasifikasi pasien tidak mengidap diabetes padahal sebenarnya mengidap [33]. Keempat komponen ini menjadi dasar dalam menghitung berbagai metrik evaluasi yang digunakan untuk mengukur kinerja model secara menyeluruh. Hasil evaluasi ini mencakup berbagai metrik yang digunakan untuk menilai performa model yang akan dijelaskan sebagai berikut [34]:

1. Akurasi

Metrik ini mengukur sejauh mana model dapat melakukan klasifikasi yang benar dibandingkan dengan total klasifikasi. Akurasi memberikan gambaran umum tentang performa model, tetapi kurang berguna pada data yang tidak seimbang. Akurasi dihitung dengan rumus:

yang tidak seimbang. Akurasi dihitung dengan rumus:
$$Akurasi = \frac{TP + TN}{TP + TN + FP + FN}$$

2. Precision

Precision mengukur akurasi klasifikasi positif yang dilakukan oleh model. Metrik ini digunakan untuk mengetahui seberapa banyak klasifikasi positif yang akurat atau sesuai dengan kondisi yang sebenarnya. Precision dihitung dengan rumus:

$$Precision = \frac{TP}{TP + FP}$$

3. Recall

Recall mengukur kemampuan model dalam menemukan semua kasus positif yang sebenarnya. Metrik ini penting ketika sangat penting untuk mendeteksi sebanyak mungkin kasus positif. Recall dihitung dengan rumus:

$$Recall = \frac{TP}{TP + FN}$$

F1-Score

F1-Score adalah rata-rata harmonik antara precision dan recall. Metrik ini penting untuk memberikan gambaran keseimbangan antara kemampuan model dalam mendeteksi kelas positif dan negatif, terutama pada dataset yang tidak seimbang. F1-score dihitung dengan rumus:

$$F1 - Score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

5. Specificity

Specificity mengukur kemampuan model dalam mengidentifikasi data negatif dengan benar. Metrik ini penting untuk memastikan model tidak salah mengklasifikasikan data negatif sebagai positif. Specificity dihitung dengan rumus:

$$Specificity = \frac{TN}{TN + FP}$$

6. ROC AUC

ROC-AUC mengukur kemampuan model dalam membedakan antara kelas positif dan negatif. Nilai AUC yang lebih tinggi menunjukkan model yang lebih baik dalam klasifikasi pada berbagai threshold.

H. Uji Statistik

Uji statistik dilakukan dengan menggunakan metode Paired T-Test dua sisi untuk menguji perbedaan kinerja antara setiap metode normalisasi dan kondisi tanpa normalisasi secara berpasangan. Nilai T-Statistic dihitung berdasarkan selisih performa antara metode normalisasi dan tanpa normalisasi, yang kemudian dibandingkan dengan distribusi T. Dari T-Statistic, dihitung P-Value untuk menentukan apakah perbedaan yang diamati terjadi secara kebetulan. Jika P-Value ≤ 0,05, perbedaan performa dianggap signifikan secara statistik, menunjukkan bahwa metode normalisasi berdampak nyata terhadap performa model [35].

III. HASIL DAN PEMBAHASAN

Pada bab ini, akan dijelaskan hasil yang diperoleh dari setiap tahapan yang telah dijelaskan pada bagian metode penelitian. Berikut adalah penjelasan mengenai hasil yang didapat dari proses yang telah dilakukan:

A. Preprocessing Data

Pada tahap awal preprocessing, dilakukan pemeriksaan terhadap tipe data untuk memastikan bahwa setiap fitur dalam dataset memiliki format yang sesuai. Dalam KNN, perhitungan jarak, seperti menggunakan Euclidean distance, bergantung pada angka yang dapat dihitung secara matematis. Oleh karena itu, jika dataset berisi data non-numerik, algoritma ini tidak akan dapat melakukan perhitungan jarak yang benar, sehingga dapat mempengaruhi akurasi hasil klasifikasi.

TABEL 2
TIPE DATA PADA SETIAP FITUR DATASET

Dita	Time Date
Fitur	Tipe Data
Pregnancies	int64
Glucose	int64
BloodPressure	int64
SkinThickness	int64
Insulin	int64
BMI	float64
DiabetesPedigreeFunction	float64
Age	int64
Outcome	int64

Dari Tabel 2, dapat dilihat bahwa sebagian besar fitur memiliki tipe data int64, kecuali fitur BMI dan DiabetesPedigreeFunction yang bertipe float64. Meskipun terdapat perbedaan antara int64 dan float64, kedua tipe data

tersebut tetap termasuk dalam kategori numerik dan dapat diproses oleh algoritma KNN tanpa memerlukan konversi tipe data tambahan. Pada tahap selanjutnya dalam preprocessing, dilakukan pemeriksaan terhadap missing values dan data duplikat. Jika ditemukan data yang memiliki missing values, data tersebut akan dihapus untuk memastikan hanya data yang lengkap yang digunakan dalam analisis. Begitu juga, jika ditemukan data duplikat, data tersebut akan dihapus untuk mencegah pengaruhnya terhadap hasil analisis, yang dapat menyebabkan model menjadi terlalu fokus pada pola tertentu atau memberikan hasil yang tidak akurat.

TABEL 3
MISSING VALUES DAN DATA DUPLIKAT PADA FITUR DATASET

Fitur	Missing	Data
	Values	Duplikat
Pregnancies	0	0
Glucose	0	0
BloodPressure	0	0
SkinThickness	0	0
Insulin	0	0
BMI	0	0
DiabetesPedigreeFunction	0	0
Age	0	0
Outcome	0	0

Dari Tabel 3, dapat dilihat bahwa tidak ada fitur yang memiliki missing values, dan juga tidak ditemukan data duplikat pada dataset ini. Ini menunjukkan bahwa dataset sudah dalam kondisi yang baik, dengan data yang lengkap, akurat, dan unik. Dengan demikian, tidak perlu ada penghapusan data atau penanganan lebih lanjut terkait missing values atau data duplikat. Langkah selanjutnya dalam preprocessing adalah mengklasifikasikan fitur dalam dataset berdasarkan jenisnya, yaitu fitur numerik dan kategorikal. Fitur numerik mencakup variabel yang memiliki nilai numerik yang dapat dihitung dan digunakan dalam

perhitungan matematis. Sementara itu, fitur kategorikal berisi variabel yang mengelompokkan data ke dalam kategori atau kelas tertentu, yang bersifat diskrit dan tidak memiliki makna kuantitatif. Hasil klasifikasi fitur berdasarkan jenisnya pada Tabel 4

TABEL 4 Klasifikasi Fitur Berdasarkan Jenisnya

Jenis Data	Fitur
	Pregnancies
	Glucose
	BloodPressure
Numerik	SkinThickness
Numerik	Insulin
	BMI
	DiabetesPedigreeFunction
	Age
Kategorikal	Outcome

Dari Tabel 4, kita dapat melihat bahwa seluruh fitur kecuali Outcome termasuk dalam kategori numerik. Outcome dianggap sebagai fitur kategorikal karena berisi informasi kelas atau hasil diagnosis diabetes. Setelah pengklasifikasian ini, selanjutnya akan dilakukan analisis lebih lanjut terhadap fitur numerik, seperti memahami distribusi dan rentang nilainya. Untuk fitur kategorikal, langkah berikutnya adalah memeriksa nilai unik yang terdapat dalam fitur tersebut. Analisis tentang fitur numerik dan kategorikal akan dijelaskan sebagai berikut:

1. Fitur Numerik

Distribusi dan rentang nilai fitur numerik diperiksa menggunakan statistik deskriptif. Statistik ini memberikan informasi mengenai rata-rata (mean), standar deviasi (std), nilai minimum (min), kuartil (25%, 50%, 75%), dan nilai maksimum (max) untuk setiap fitur numerik.

TABEL 5
STATISTIK DESKRIPTIF PADA FITUR NUMERIK

Fitur	Count	Mean	Std	Min	25%	50%	75%	Max
Pregnancies	768	3.845	3.37	0	1	3	6	17
Glucose	768	120.895	31.973	0	99	117	140.25	199
BloodPressure	768	69.105	19.356	0	62	72	80	122
SkinThickness	768	20.536	15.952	0	0	23	40	99
Insulin	768	79.799	115.244	0	0	30.5	127.25	846
BMI	768	31.993	7.884	0	27.3	32	36.6	67.1
DiabetesPedigreeFunction	768	0.472	0.331	0.078	0.244	0.372	0.626	2.42
Age	768	33.241	11.76	21	24	29	41	81

Berdasarkan analisis statistik deskriptif pada fitur numerik yang ditampilkan pada Tabel 5, terlihat adanya variasi signifikan dalam rentang nilai beberapa fitur. Misalnya, fitur Glucose memiliki nilai antara 0 hingga 199, dengan rata-rata 120.90 dan deviasi standar 31.97. Fitur Age memiliki rentang 21 hingga 81, dengan ratarata 33.24 dan deviasi standar 11.76. Sementara itu, fitur Pregnancies memiliki nilai maksimum 17 dan rata-rata 3.85, sedangkan Insulin menunjukkan deviasi standar tinggi, mencapai 115.24, yang mencerminkan variasi

besar dalam data. Fitur seperti SkinThickness memiliki nilai minimum 0 dan rata-rata cukup rendah (20.54), yang dapat mempengaruhi model karena perbedaan skala antar fitur. BMI juga menunjukkan variabilitas besar, dengan rentang 0 hingga 67.1, rata-rata 31.99, dan deviasi standar 7.88. Perbedaan skala ini dapat mempengaruhi kinerja model, karena fitur dengan rentang nilai besar cenderung mendominasi pembelajaran model. Oleh karena itu, normalisasi diperlukan untuk menyelaraskan skala dan memastikan setiap fitur berkontribusi secara seimbang dalam model.

2. Fitur Kategorikal

Untuk fitur kategorikal, dilakukan pemeriksaan terhadap nilai unik yang ada. Dapat dilihat pada Tabel 6 menunjukkan bahwa fitur Outcome hanya memiliki dua nilai unik, yaitu [0, 1].

TABEL 6 Nilai Unik Pada Fitur Kategorikal

Fitur	Nilai Unik
Outcomo	0
Outcome	1

Fitur Outcome ini merupakan fitur target dalam dataset yang mengindikasikan apakah seorang pasien mengidap diabetes (1) atau tidak mengidap diabetes (0). Karena hanya memiliki dua nilai unik, fitur ini dapat diperlakukan sebagai fitur kategorikal biner. Dengan hanya dua kelas, fitur Outcome tidak memerlukan normalisasi.

B. Pembagian Data

Pada tahap ini, akan dilakukan pembagian dataset menjadi dua bagian, yaitu Data Latih dan Data Uji. Pembagian ini dilakukan dengan proporsi 80% untuk data latih dan 20% untuk data uji. Data latih digunakan untuk melatih model, sementara data uji digunakan untuk menguji performa model setelah dilatih. Dataset yang telah dibagi dapat dilihat pada Tabel 7. Data latih terdiri dari 614 baris dan 9 kolom, sementara data uji terdiri dari 154 baris dan 9 kolom. Dengan demikian, dataset sudah siap untuk dilakukan pemilihan fitur.

TABEL 7 PEMBAGIAN DATASET LATIH DAN UJI

Data	Jumlah Baris	Jumlah Kolom
Data Training	614	9
Data Testing	154	9

C. Pemilihan Fitur

Setelah membagi dataset menjadi data latih dan data uji, tahap berikutnya adalah melakukan pemilihan fitur untuk mengidentifikasi fitur yang memiliki kontribusi besar dalam mengklasifikasi target, yaitu kemungkinan seseorang mengidap diabetes. Pemilihan fitur dilakukan dengan metode Random Forest menggunakan teknik Ensemble Method yang

pohon menggabungkan beberapa keputusan untuk meningkatkan stabilitas dan akurasi model. Metode ini memungkinkan pengukuran kontribusi masing-masing fitur terhadap klasifikasi. Proses deteksi feature importance hanya dilakukan pada fitur numerik, karena fitur kategorikal seperti Outcome sudah merupakan hasil klasifikasi dan tidak relevan untuk diukur menggunakan metode ini. Feature importance dihitung berdasarkan data latih, karena model dilatih menggunakan data tersebut. Penghapusan fitur yang tidak relevan harus diterapkan secara konsisten pada kedua dataset agar model yang dievaluasi tidak terpengaruh oleh fitur yang tidak memberikan kontribusi signifikan, sehingga hasil evaluasi menjadi lebih akurat dan dapat diandalkan.

Gambar 2. Feature Importance Plot

Berdasarkan analisis feature importance yang ditunjukkan dalam Gambar 2, beberapa fitur memiliki kontribusi yang lebih besar dibandingkan yang lain. Fitur Glucose, BMI, Age, dan DiabetesPedigreeFunction memiliki nilai penting vang jauh lebih tinggi dibandingkan fitur lainnya. Sebaliknya, fitur SkinThickness, Insulin, Pregnancies, BloodPressure menunjukkan nilai penting yang relatif kecil. Misalnya, SkinThickness (0.065646) dan Insulin (0.076122) memiliki nilai penting yang sangat rendah, yang menunjukkan bahwa keduanya memberikan kontribusi yang terbatas terhadap klasifikasi. Fitur Pregnancies (0.076551) dan BloodPressure (0.088134) juga menunjukkan nilai yang rendah, meskipun sedikit lebih tinggi, namun tidak cukup signifikan untuk dipertahankan dalam model. Fitur SkinThickness, Insulin, Pregnancies, dan BloodPressure diputuskan untuk dihapus karena kontribusinya yang sangat kecil terhadap model. Menghapus fitur-fitur ini akan meningkatkan efisiensi model, mengurangi risiko overfitting, dan memastikan fokus pada fitur yang lebih relevan, seperti Glucose, BMI, DiabetesPedigreeFunction, dan Age. Setelah fitur dihapus dari data latih, langkah yang sama harus diterapkan pada data uji untuk evaluasi model yang konsisten. Hasil dari feature selection ini dapat dilihat pada Tabel 8.

TABEL 8
FITUR YANG TERSISA SETELAH FEATURE SELECTION

Innia Data	T'.
Lenis Data	Hiftir -
ocino Data	1 1001

Numerik	Glucose
	BMI
	DiabetesPedigreeFunction
	Age
Kategorikal	Outcome

D. Normalisasi

Setelah pembagian data menjadi data training dan testing, data akan dilakukan normalisasi. Data asli dapat dilihat pada Tabel 10 dan 11 yang memberikan gambaran tentang rentang dan variasi nilai pada setiap fitur dalam data training dan data testing sebelum proses normalisasi dilakukan. Dengan melihat data asli ini, dapat lebih jelas dipahami adanya perbedaan skala yang signifikan antar fitur.

TABEL 9
DATA TRAINING SEBELUM DILAKUKAN NORMALISASI

No	Glucose	BMI	DiabetesPedigreeFunction	Age	Outcome
1	84	0	0.304	21	0
2	112	28.2	1.282	50	1
3	139	28.7	0.654	22	0
4	161	21.9	0.254	65	0
5	134	46.2	0.238	46	1
			•••		
614	125	22.5	0.262	21	0

TABEL 10
DATA TESTING SEBELUM DILAKUKAN NORMALISASI

No	Glucose	BMI	DiabetesPedigreeFunction	Age	Outcome
1	98	34	0.43	43	0
2	112	35.7	0.148	21	0
3	108	30.8	0.158	21	0
4	107	24.6	0.856	34	0
5	136	29.9	0.21	50	0
154	74	35.3	0.705	39	0

Berdasarkan analisis statistik deskriptif pada fitur numerik dalam Tabel 5, setiap fitur menunjukkan rentang nilai yang bervariasi. Beberapa fitur memiliki nilai minimum nol, sementara yang lain memiliki rentang lebih besar. Perbedaan skala ini dapat memengaruhi pembelajaran model, karena fitur dengan nilai lebih besar cenderung mendominasi. Oleh karena itu, normalisasi diperlukan untuk menyamakan skala antar fitur. Sementara itu, berdasarkan pemeriksaan nilai unik pada fitur kategorikal di Tabel 6, fitur *Outcome* hanya memiliki dua nilai, yaitu 0 dan 1, sehingga termasuk kategori biner dan tidak memerlukan normalisasi. Dengan demikian, normalisasi hanya diterapkan pada fitur selain *Outcome* untuk data training dan testing. Selanjutnya, akan dibahas lebih lanjut mengenai metode normalisasi yang digunakan:

1. Min-Max Scaling

Min-Max Scaling menormalisasi data dengan mengubah nilai fitur ke rentang seragam antara 0 hingga 1. Proses ini dilakukan dengan menghitung nilai minimum dan maksimum dari data training, lalu menggunakan nilai tersebut untuk menyesuaikan skala fitur. Dengan demikian, fitur dengan rentang nilai besar diperkecil, sementara fitur dengan rentang kecil diperbesar, tetapi tetap mempertahankan proporsi antar nilai. Pada data testing, transformasi menggunakan nilai minimum dan maksimum dari data training tanpa perhitungan ulang. Hasil normalisasi ini dapat dilihat pada Tabel 11 untuk data training dan Tabel 12 untuk data testing.

TABEL 11
DATA TRAINING SETELAH DILAKUKAN MIN-MAX SCALING

No	Glucose	BMI	DiabetesPedigreeFunction	Age	Outcome
1	0.422110553	0	0.096498719	0	0
2	0.56281407	0.420268256	0.514090521	0.483333333	1
3	0.698492462	0.427719821	0.245943638	0.016666667	0
4	0.809045226	0.326378539	0.075149445	0.733333333	0
5	0.673366834	0.68852459	0.068317677	0.416666667	1
			•••		
614	0.628140704	0.335320417	0.078565329	0	0

DiabetesPedigreeFunction No Glucose Age Outcome 0.366666667 1 0.492462312 0.506706408 0.15029889 0 2 0.532041729 0.029888984 0.56281407 0 0 3 0.542713568 0.459016393 0.034158839 0 0 0.537688442 0.332194705 4 0.36661699 0.216666667 0 5 0.683417085 0.445603577 0.056362084 0.483333333 0 0.267719898 154 0.371859296 0.526080477 0.3 0

TABEL 12
DATA TESTING SETELAH DILAKUKAN MIN-MAX SCALING

2. Z-Score (Standard Scaling)

Z-Score Scaling mengubah data dengan cara menstandarisasi setiap fitur sehingga memiliki rata-rata 0 dan deviasi standar 1. Proses Z-Score ini menggunakan nilai mean dan standar deviasi yang dihitung dari data training untuk menstandarkan fitur sehingga memiliki distribusi dengan mean nol dan standar deviasi satu.

Parameter ini kemudian diterapkan pada data testing tanpa menghitung ulang statistik baru. Dengan cara ini, data pada data testing akan disesuaikan menggunakan parameter yang diperoleh dari data training, memastikan konsistensi dalam distribusi data. Hasil dari normalisasi ini dapat dilihat pada Tabel 13 untuk data training dan Tabel 14 untuk data testing.

TABEL 13
DATA TRAINING SETELAH DILAKUKAN Z-SCORE (STANDARD SCALING)

No	Glucose	BMI	DiabetesPedigreeFunction	Age	Outcome
1	-1.151397924	-4.135255779	-0.49073479	-1.035940379	0
2	-0.276642826	-0.489168806	2.41502991	1.487100846	1
3	0.566871018	-0.424521874	0.549160552	-0.948938958	0
4	1.254178595	-1.303720151	-0.639291267	2.792122169	0
5	0.410664751	1.838120751	-0.68682934	1.139095159	1
			•••		
614	0.129493469	-1.226143832	-0.615522231	-1.035940379	0

TABEL 14
DATA TESTING SETELAH DILAKUKAN Z-SCORE (STANDARD SCALING)

No	Glucose	BMI	DiabetesPedigreeFunction	Age	Outcome
1	-0.714020375	0.260735607 -0.116372467		0.878090895	0
2	-0.276642826	0.480535176 -0.954231		-1.035940379	0
3	-0.40160784	-0.153004759	-0.924519704	-1.035940379	0
4	-0.432849094	-0.954626717	1.149328721	0.095078101	0
5	0.473147258	-0.269369236	-0.770020968	1.487100846	0
			•••		
154	-1.463810459	0.428817631	0.700688159	0.530085208	0

3. Decimal Scaling

Decimal Scaling menyesuaikan skala fitur dengan membagi nilai setiap fitur dengan pangkat sepuluh yang sesuai. Proses ini dilakukan berdasarkan jumlah digit terbesar dalam dataset. Karena skala ini ditentukan oleh distribusi keseluruhan data, jika hanya dihitung dari data training, distribusi data testing bisa berbeda sehingga

skala menjadi tidak konsisten. Pembagian ini bertujuan agar nilai-nilai dalam dataset tidak terlalu besar atau kecil, tetapi tetap mempertahankan proporsi relatif antar data. Teknik ini sederhana karena hanya melibatkan pembagian dengan angka tetap, dan memastikan distribusi data tetap terjaga dalam rentang lebih kecil. Hasil normalisasi ini dapat dilihat pada Tabel 15 untuk data training dan Tabel 16 untuk data testing.

TABEL 15
DATA TRAINING SETELAH DILAKUKAN DECIMAL SCALING

No	Glucose	BMI	DiabetesPedigreeFunction	Age	Outcome
1	0.084	0	0.0304	0.21	0

2	0.112	0.282	0.1282	0.5	1
3	0.139	0.287	0.0654	0.22	0
4	0.161	0.219	0.0254	0.65	0
5	0.134	0.462	0.0238	0.46	1
			•••		
614	0.125	0.225	0.0262	0.21	0

TABEL 16
DATA TESTING SETELAH DILAKUKAN DECIMAL SCALING

No	Glucose	BMI	DiabetesPedigreeFunction	Age	Outcome
1	0.098	0.34	0.043	0.43	0
2	0.112	0.357	0.0148	0.21	0
3	0.108	0.308	0.0158	0.21	0
4	0.107	0.246	0.0856	0.34	0
5	0.136	0.299	0.021	0.5	0
154	0.074	0.353	0.0705	0.39	0

E. Model KNN (K-Nearest Neighbors)

Setelah tahap pemilihan fitur, proses selanjutnya adalah pelatihan model K-Nearest Neighbors (KNN) menggunakan dua skenario data, yakni data yang telah melalui proses normalisasi dengan berbagai metode dan data yang tidak dilakukan normalisasi. Model dilatih dengan berbagai nilai parameter k, yaitu 1, 3, 5, 7, 9, dan 11, yang dipilih secara manual, untuk mengidentifikasi pengaruh jumlah tetangga terdekat terhadap proses klasifikasi. Variasi nilai k ini digunakan untuk mengamati serta memahami respons model terhadap perbedaan skala fitur yang digunakan. Selain itu, metode jarak yang digunakan adalah Euclidean distance, yang merupakan metode default pada KNN.

F. Evaluasi

Setelah proses pelatihan selesai, evaluasi kinerja dilakukan terhadap setiap model KNN yang telah dibentuk. Evaluasi menggunakan enam metrik utama, yaitu akurasi, precision, recall, F1-score, specificity, dan ROC AUC. Metrik-metrik tersebut dipilih karena mampu memberikan gambaran mengenai kemampuan model menyeluruh dalam membedakan kelas target secara tepat, baik pada kelas positif maupun negatif. Pengujian dilakukan pada seluruh variasi nilai k untuk menilai sensitivitas dan konsistensi performa model terhadap perubahan jumlah tetangga. Hasil evaluasi dari seluruh kombinasi parameter k dan metode normalisasi disajikan pada Tabel 18.

TABEL 17 Hasil Evaluasi Performa Model KNN Berdasarkan Metode Normalisasi dan Nilai K

Metode Normalisasi	Nilai K	Accuracy	Precision	Recall	F1-Score	Specificity	ROC AUC
Tanpa Normalisasi	1	0.7273	0.7030	0.7030	0.7030	0.7879	0.7030
	3	0.7403	0.7179	0.7212	0.7194	0.7879	0.7587
	5	0.7403	0.7188	0.7253	0.7215	0.7778	0.7719
	7	0.7273	0.7065	0.7152	0.7096	0.7576	0.7707
	9	0.7532	0.7318	0.7354	0.7334	0.7980	0.7751
	11	0.7597	0.7390	0.7444	0.7414	0.7980	0.7802
	1	0.7403	0.7179	0.7212	0.7194	0.7879	0.7212
	3	0.7792	0.7596	0.7636	0.7615	0.8182	0.7844
Min May Saaling	5	0.7857	0.7666	0.7687	0.7676	0.8283	0.7910
Min-Max Scaling	7	0.8117	0.7946	0.7970	0.7958	0.8485	0.7950
	9	0.7987	0.7811	0.7788	0.7799	0.8485	0.8037
	11	0.7792	0.7599	0.7556	0.7576	0.8384	0.8050
	1	0.7403	0.7172	0.7172	0.7172	0.7980	0.7172
	3	0.7403	0.7188	0.7253	0.7215	0.7778	0.7553
7 Saara (Standard Saaling)	5	0.7468	0.7252	0.7303	0.7274	0.7879	0.7697
Z-Score (Standard Scaling)	7	0.7922	0.7737	0.7737	0.7737	0.8384	0.7969
	9	0.7792	0.7599	0.7556	0.7576	0.8384	0.8060
	11	0.7727	0.7529	0.7586	0.7554	0.8081	0.8129
Decimal Scaling	1	0.7208	0.6964	0.6980	0.6972	0.7778	0.6980

3	0.7013	0.6813	0.6909	0.6840	0.7273	0.7391
5	0.7208	0.6976	0.7020	0.6995	0.7677	0.7533
7	0.7338	0.7114	0.7162	0.7135	0.7778	0.7728
9	0.7403	0.7172	0.7172	0.7172	0.7980	0.7834
11	0.7273	0.7024	0.6990	0.7006	0.7980	0.7874

Pada model K-Nearest Neighbors (KNN) tanpa normalisasi, performa model cenderung kurang optimal dibanding skenario lainnya. Akurasi tertinggi hanya sebesar 0.7597 pada K = 11, tanpa menunjukkan tren konsisten seiring meningkatnya nilai K. Misalnya, akurasi turun ke 0.7273 pada K = 7, sama seperti saat K = 1. Ini menandakan bahwa tanpa penyamaan skala fitur, model kesulitan menghitung jarak dengan akurat, yang berdampak pada kemampuan klasifikasinya. Precision tertinggi hanya mencapai 0.7390 dan fluktuatif di beberapa nilai K, mengindikasikan efisiensi klasifikasi kelas positif yang belum optimal. Recall juga tergolong rendah, dengan nilai maksimal 0.7444, menunjukkan banyak data positif yang tak terdeteksi. F1-Score tertinggi berada di angka 0.7414 dengan tren performa yang stagnan. Specificity terbaik tercatat sebesar 0.7980 pada K = 9 dan 11, namun peningkatannya tidak signifikan. ROC AUC maksimal 0.7802, menandakan keterbatasan model dalam membedakan kelas positif dan negatif. Secara keseluruhan, tanpa normalisasi, KNN kesulitan memproses jarak secara seimbang ketika fitur memiliki skala berbeda, yang akhirnya menurunkan performa klasifikasi.

Penerapan Min-Max Scaling memberikan peningkatan signifikan pada seluruh metrik evaluasi KNN. Akurasi tertinggi tercapai pada K = 7 dengan nilai 0.8117, tertinggi di antara semua metode yang diuji. Precision meningkat konsisten hingga 0.7946, menunjukkan klasifikasi positif yang lebih tepat dan penurunan false positive. Recall juga membaik secara signifikan, mencapai 0.7970, menandakan sensitivitas model yang lebih baik terhadap data positif. F1-Score tertinggi berada di angka 0.7958, mencerminkan keseimbangan precision dan recall yang optimal. Specificity pun sangat baik, dengan nilai maksimal 0.8485, menunjukkan kemampuan identifikasi data negatif yang akurat. ROC AUC mencapai 0.8050, memperlihatkan kekuatan model dalam membedakan dua kelas secara menyeluruh. Keunggulan Min-Max Scaling terletak pada kemampuannya menyamakan rentang fitur ke skala 0-1, membuat semua fitur berkontribusi seimbang dalam perhitungan jarak. Alhasil, model menjadi lebih stabil, akurat, dan andal dalam menghadapi data multivariat dengan skala berbeda.

Normalisasi dengan Z-Score (Standard Scaling) juga menghasilkan performa KNN yang kompetitif, meskipun beberapa metrik masih sedikit di bawah Min-Max Scaling. Akurasi tertinggi tercapai pada K = 7 sebesar 0.7922, dengan pola stabil di berbagai nilai K. Precision maksimal sebesar 0.7737 menunjukkan kemampuan model dalam menekan false positive secara konsisten. Recall pun cukup baik dengan nilai tertinggi 0.7586, menandakan sensitivitas yang memadai

terhadap data positif. F1-Score tertinggi sebesar 0.7554 menunjukkan keseimbangan yang solid antara precision dan recall. Specificity mencapai 0.8384, memperlihatkan keakuratan model dalam mengenali data negatif. Yang paling menonjol dari metode ini adalah nilai ROC AUC tertinggi, yaitu 0.8129, menunjukkan efektivitas Z-Score dalam membedakan dua kelas secara global. Z-Score bekerja dengan mengurangi nilai fitur dengan rata-rata dan membaginya dengan standar deviasi, sehingga menghasilkan distribusi fitur yang setara. Pendekatan ini tak hanya menyamakan skala, tetapi juga mempertahankan struktur distribusi data, sehingga sangat cocok untuk data berdistribusi normal atau mengandung outlier ringan.

Normalisasi dengan Decimal Scaling menunjukkan performa terendah dibanding metode normalisasi lainnya maupun tanpa normalisasi. Akurasi tertinggi hanya mencapai 0.7403 pada K = 9, dengan tren nilai K yang tidak stabil. Precision dan recall maksimum sama-sama berada di angka 0.7172, menandakan keterbatasan model mengidentifikasi data positif secara akurat dan sensitif. F1-Score juga stagnan di angka 0.7172, menunjukkan keseimbangan precision dan recall yang belum tercapai. Specificity tertinggi sebesar 0.7980, sama seperti kondisi tanpa normalisasi, sehingga tidak ada peningkatan berarti. ROC AUC maksimal 0.7874, masih lebih rendah dibanding Min-Max Scaling dan Z-Score. Decimal Scaling menggeser titik desimal berdasarkan nilai maksimum fitur, tanpa mempertimbangkan distribusi atau penyebaran nilai, sehingga skala antar fitur tetap tidak seragam. Akibatnya, perhitungan jarak dalam KNN menjadi bias dan berdampak negatif pada performa model. Oleh karena itu, Decimal Scaling kurang cocok untuk model berbasis jarak seperti KNN, terutama pada data multivariat dengan rentang nilai yang beragam.

G. Uji Statistik

Untuk memastikan apakah perbedaan performa yang diamati signifikan atau hanya terjadi kebetulan maka selanjutnya akan dilakukan uji statistik. Uji statistik dilakukan dengan menggunakan metode Paired T-Test dua sisi. Metode ini dipilih karena dianggap tepat untuk menguji perbedaan kinerja antara masing-masing metode normalisasi dan kondisi tanpa normalisasi secara berpasangan. Paired T-Test dua sisi memungkinkan kita untuk mengevaluasi apakah terdapat perbedaan signifikan dalam metrik evaluasi utama seperti Accuracy, Precision, Recall, F1-Score, Specificity, dan ROC AUC, baik dalam peningkatan maupun penurunan performa model.

Dalam pengujian ini, nilai T-Statistic dihitung berdasarkan selisih performa antara metode normalisasi dan tanpa normalisasi, yang kemudian dibandingkan dengan distribusi T untuk menentukan apakah perbedaan tersebut cukup besar dibandingkan variasi alami dalam data. Dari nilai T-Statistic, dihitung P-Value, yang menunjukkan probabilitas bahwa perbedaan yang diamati terjadi secara kebetulan. Jika P-Value

≤ 0,05, maka perbedaan performa dianggap signifikan secara statistik, artinya metode normalisasi memang berdampak nyata terhadap performa KNN. Hasil uji statistik ini dapat dilihat secara lengkap pada Tabel 19 dan Tabel 20, yang menyajikan nilai T-Statistic dan P-Value untuk masingmasing perbandingan.

TABEL 18 Hasil Uji T-Statistic pada Setiap Metrik Evaluasi

Metode Normalisasi		T-Statistic						
Wietode Normansasi	Accuracy	Precision	Recall	F1-Score	Specificity	ROC AUC		
Min-Max Scaling vs Tanpa Normalisasi	-3.99754	-4.12930	-3.54493	-4.02148	-3.60555	-14.30525		
Z-Score (Standard Scaling) vs Tanpa	-2.15584	-2.21749	-2.35725	-2.25157	-1.78377	-2.47726		
Normalisasi								
Decimal Scaling vs Tanpa Normalisasi	2.52689	2.73333	2.92463	2.77965	0.91287	0.84161		

TABEL 19 Hasil Uji P-Value pada Setiap Metrik Evaluasi

Metode Normalisasi		P-Value						
Metode Normansasi	Accuracy	Precision	Recall	F1-Score	Specificity	ROC AUC		
Min-Max Scaling vs Tanpa Normalisasi	0.01035	0.00909	0.01648	0.01011	0.01545	0.00003		
Z-Score (Standard Scaling) vs Tanpa	0.08363	0.07737	0.06497	0.07413	0.13454	0.05603		
Normalisasi								
Decimal Scaling vs Tanpa Normalisasi	0.05273	0.04112	0.03284	0.03892	0.40318	0.43839		

Pada metrik Accuracy, hasil uji menunjukkan bahwa Min-Max Scaling memberikan peningkatan performa yang signifikan secara statistik dibandingkan Tanpa Normalisasi. Hal ini dibuktikan oleh P-Value sebesar 0,01035, yang berada di bawah ambang signifikansi 0,05. Artinya, peningkatan akurasi dari Min-Max Scaling bukan sekadar kebetulan, melainkan signifikan secara matematis. Sebaliknya, Z-Score menghasilkan P-Value sebesar 0,08363 dan Decimal Scaling sebesar 0,05273. Keduanya melebihi ambang batas signifikansi, sehingga peningkatan performa dari metode tersebut belum bisa dianggap signifikan secara statistik pada metrik Accuracy.

Pada metrik Precision, hasil uji kembali menunjukkan konsistensi. Min-Max Scaling menghasilkan perbedaan signifikan dengan P-Value sebesar 0,00909, menandakan bahwa model ini secara nyata lebih presisi dalam mengklasifikasikan kelas positif dibandingkan tanpa normalisasi. Z-Score masih belum signifikan dengan P-Value sebesar 0,07737, yang melebihi ambang 0,05. Menariknya, Decimal Scaling justru menunjukkan signifikansi pada metrik dengan P-Value sebesar 0,04112. mengindikasikan bahwa meskipun performa rata-ratanya tidak unggul, dampak Decimal Scaling terhadap precision terdeteksi berbeda secara statistik dari kondisi Tanpa Normalisasi.

Pada metrik Recall, Min-Max Scaling kembali menunjukkan signifikansi dengan P-Value sebesar 0,01648, menandakan peningkatan sensitivitas terhadap kelas positif yang signifikan secara statistik. Z-Score tetap belum signifikan, dengan P-Value sebesar 0,06497 yang masih di

atas ambang 0,05. Menariknya, Decimal Scaling menunjukkan hasil signifikan dengan P-Value sebesar 0,03284. Meski peningkatan absolutnya lebih rendah dibanding Min-Max Scaling, hasil ini menunjukkan bahwa Decimal Scaling tetap berpengaruh dalam meningkatkan recall secara statistik.

Evaluasi pada metrik F1-Score, yang mencerminkan keseimbangan antara precision dan recall, menunjukkan pola serupa. Min-Max Scaling kembali signifikan dengan P-Value sebesar 0,01011. Decimal Scaling juga menunjukkan perbedaan signifikan dengan P-Value sebesar 0,03892. Sebaliknya, Z-Score tetap tidak signifikan karena P-Value sebesar 0,07413 masih di atas ambang 0,05. Temuan ini memperkuat bahwa Decimal Scaling memang memberikan perubahan statistik pada performa model, meskipun tidak menghasilkan peningkatan substansial dalam akurasi secara keseluruhan.

Pada metrik Specificity, yang mengukur kemampuan model dalam mengklasifikasikan kelas negatif dengan benar, Min-Max Scaling kembali menunjukkan hasil signifikan dengan P-Value sebesar 0,01545. Ini menandakan bahwa metode ini efektif dalam menekan false positive secara nyata. Sementara itu, Z-Score dan Decimal Scaling mencatat P-Value sebesar 0,13454 dan 0,40318, yang tidak signifikan secara statistik. Dengan demikian, tidak dapat disimpulkan bahwa kedua metode tersebut memberikan peningkatan nyata dalam mengklasifikasikan kelas negatif.

Pada metrik ROC AUC, yang mengukur kemampuan model dalam membedakan kelas positif dan negatif secara keseluruhan, Min-Max Scaling menunjukkan hasil sangat signifikan dengan P-Value sebesar 0,00003. Nilai ini mengindikasikan bukti yang sangat kuat bahwa metode ini secara nyata meningkatkan performa klasifikasi global. Z-Score mendekati signifikansi dengan P-Value sebesar 0,05603, namun tetap sedikit di atas ambang batas. Sementara itu, Decimal Scaling mencatat P-Value jauh lebih tinggi, yaitu 0,43839, menunjukkan bahwa metode ini tidak berdampak signifikan terhadap kemampuan diskriminatif model.

Berdasarkan hasil uji statistik, Min-Max Scaling terbukti sebagai metode normalisasi yang paling konsisten dan unggul secara statistik. Metode ini menunjukkan perbedaan signifikan pada semua metrik evaluasi, yang menandakan peningkatan performa KNN secara stabil dan dapat diandalkan. Sementara itu, Z-Score meskipun cukup kompetitif secara rata-rata, tidak menghasilkan signifikansi statistik pada metrik apa pun, kemungkinan akibat variabilitas hasil atau ukuran sampel yang terbatas. Di sisi lain, Decimal Scaling memang signifikan pada beberapa metrik seperti precision, recall, dan F1-score, namun performa absolutnya masih rendah dan tidak merata. Dengan demikian, Min-Max Scaling dapat direkomendasikan sebagai metode normalisasi terbaik untuk model KNN pada dataset Pima Indians Diabetes, terutama jika tujuannya adalah meningkatkan performa secara valid dan konsisten di berbagai metrik evaluasi.

IV. KESIMPULAN

Berdasarkan hasil yang diperoleh, dapat disimpulkan normalisasi data berperan penting meningkatkan performa model K-Nearest Neighbors (KNN). Penerapan teknik normalisasi pada data latih dan uji memberikan peningkatan yang signifikan, terutama dengan penggunaan Min-Max Scaling. Metode ini terbukti berdampak positif terhadap seluruh metrik evaluasi, termasuk akurasi, precision, recall, F1-score, specificity, dan ROC AUC. Akurasi tertinggi tercatat sebesar 0.8117 pada nilai K sama dengan tujuh, sedangkan ROC AUC mencapai 0.8050, menunjukkan kemampuan model dalam membedakan dua kelas secara menyeluruh. Z-Score Scaling juga memberikan hasil yang cukup baik, terutama pada metrik ROC AUC yang mendekati signifikansi. Namun, peningkatan pada metrik lain belum cukup kuat untuk dianggap signifikan, yang menunjukkan bahwa dampak Z-Score tidak selalu konsisten meskipun berhasil menormalkan distribusi data. Sementara itu, Decimal Scaling memberikan performa paling rendah dibandingkan dua metode lainnya. Walaupun terdapat peningkatan signifikan pada metrik seperti precision dan recall, performa keseluruhan tetap lebih rendah, dan fluktuasi nilai K menunjukkan ketidakstabilan model.

Dari temuan tersebut, Min-Max Scaling dapat dianggap sebagai metode normalisasi paling efektif untuk model KNN pada dataset Pima Indians Diabetes. Metode ini memberikan hasil terbaik dan signifikan secara statistik, sehingga direkomendasikan untuk meningkatkan performa klasifikasi data multivariat, khususnya dalam kasus klasifikasi diabetes.

DAFTAR PUSTAKA

- [1] I. W. Suryasa, M. Rodríguez-Gámez, and T. Koldoris, "Health and Treatment of Diabetes Mellitus," *Int J Health Sci (Qassim)*, vol. 5, no. 1, pp. I–V, 2021, doi: 10.53730/IJHS.V5N1.2864.
- [2] L. Ryden, G. Ferrannini, and E. Standl, "Risk prediction in patients with diabetes: is SCORE 2D the perfect solution?," Jul. 21, 2023, *Oxford University Press.* doi: 10.1093/eurheartj/ehad263.
- [3] S. Alam, M. K. Hasan, S. Neaz, N. Hussain, M. F. Hossain, and T. Rahman, "Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis, Complications and Comprehensive Management," Jun. 01, 2021, MDPI. doi: 10.3390/diabetology2020004.
- [4] S. Templer, S. Abdo, and T. Wong, "Preventing diabetes complications," *Intern Med J*, vol. 54, no. 8, pp. 1264–1274, Aug. 2024, doi: 10.1111/imj.16455.
- [5] S. Zhang and J. Li, "KNN Classification With One-Step Computation," *IEEE Trans Knowl Data Eng*, vol. 35, no. 3, pp. 2711–2723, Mar. 2023, doi: 10.1109/TKDE.2021.3119140.
- [6] N. Ukey, Z. Yang, B. Li, G. Zhang, Y. Hu, and W. Zhang, "Survey on Exact kNN Queries over High-Dimensional Data Space," Jan. 01, 2023, MDPI. doi: 10.3390/s23020629.
- [7] S. Zhang, "Challenges in KNN Classification," *IEEE Trans Knowl Data Eng*, vol. 34, no. 10, pp. 4663–4675, Oct. 2022, doi: 10.1109/TKDE.2021.3049250.
- [8] M. V. Polyakova and V. N. Krylov, "Data normalization methods to improve the quality of classification in the breast cancer diagnostic system," *Applied Aspects of Information Technology*, vol. 5, no. 1, pp. 55–63, Apr. 2022, doi: 10.15276/aait.05.2022.5.
- [9] M. Zulkifilu and A. Yasir, "About Some Data Precaution Techniques For K-Means Clustering Algorithm," *UMYU Scientifica*, vol. 1, no. 1, pp. 12–19, 2022, doi: 10.47430/usci.1122.003.
- [10] M. Pagan, M. Zarlis, and A. Candra, "Investigating the impact of data scaling on the k-nearest neighbor algorithm," *Computer Science and Information Technologies*, vol. 4, no. 2, pp. 135–142, Jul. 2023, doi: 10.11591/csit.v4i2.pp135-142.
- [11] A. Alsarhan, F. Hussein, S. Moh, and F. S. El-Salhi, "The Effect of Preprocessing Techniques, Applied to Numeric Features, on Classification Algorithms' Performance," *Data (Basel)*, vol. 6, no. 2, 2021, doi: 10.3390/data.
- [12] S. Sinsomboonthong, "Performance Comparison of New Adjusted Min-Max with Decimal Scaling and Statistical Column Normalization Methods for Artificial Neural Network Classification," *Int J Math Math Sci*, vol. 2022, 2022, doi: 10.1155/2022/3584406.

- [13] C. C. Olisah, L. Smith, and M. Smith, "Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective," *Comput Methods Programs Biomed*, vol. 220, Jun. 2022, doi: 10.1016/j.cmpb.2022.106773.
- [14] A. M. Vommi and T. K. Battula, "A hybrid filter-wrapper feature selection using Fuzzy KNN based on Bonferroni mean for medical datasets classification: A COVID-19 case study," *Expert Syst Appl*, vol. 218, May 2023, doi: 10.1016/j.eswa.2023.119612.
- [15] Y. Zhao, "Comparative Analysis of Diabetes Prediction Models Using the Pima Indian Diabetes Database," *ITM Web of Conferences*, vol. 70, p. 02021, Jan. 2025, doi: 10.1051/itmconf/20257002021.
- [16] V. Chang, J. Bailey, Q. A. Xu, and Z. Sun, "Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms," *Neural Comput Appl*, vol. 35, no. 22, pp. 16157–16173, Aug. 2023, doi: 10.1007/s00521-022-07049-z.
- [17] V. Patil and D. R. Ingle, "Comparative Analysis of Different ML Classification Algorithms with Diabetes Prediction through Pima Indian Diabetics Dataset," in 2021 International Conference on Intelligent Technologies, CONIT 2021, Institute of Electrical and Electronics Engineers Inc., Jun. 2021. doi: 10.1109/CONIT51480.2021.9498361.
- [18] H. Karamti *et al.*, "Improving Prediction of Cervical Cancer Using KNN Imputed SMOTE Features and Multi-Model Ensemble Learning Approach," *Cancers (Basel)*, vol. 15, no. 17, Sep. 2023, doi: 10.3390/cancers15174412.
- [19] M. N. Maskuri, K. Sukerti, and R. M. Herdian Bhakti, "Penerapan Algoritma K-Nearest Neighbor (KNN) untuk Memprediksi Penyakit Stroke Stroke Desease Predict Using KNN Algorithm," *Jurnal Ilmiah Intech: Information Technology Journal of UMUS*, vol. 4, no. 1, May 2022.
- [20] C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, "A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data," Mar. 29, 2021, Frontiers Media S.A. doi: 10.3389/fenrg.2021.652801.
- [21] O. Alotaibi, E. Pardede, and S. Tomy, "Cleaning Big Data Streams: A Systematic Literature Review," Aug. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/technologies11040101.
- [22] M. Arif, maruf Setiawan, A. Dwi Hartono, M. Arif Ma, and ruf Setiawan, "Menggunakan Metode Machine Learning Untuk Memprediksi Nilai Mahasiswa Dengan Model Prediksi Multiclass," *Jurnal Informatika: Jurnal pengembangan IT*, vol. 10, no. 1, p. 2025, 2025, doi: 10.30591/jpit.v9ix.xxx.

- [23] L. A. Demidova, "Two-stage hybrid data classifiers based on svm and knn algorithms," *Symmetry (Basel)*, vol. 13, no. 4, Apr. 2021, doi: 10.3390/sym13040615.
- [24] N. Pudjihartono, T. Fadason, A. W. Kempa-Liehr, and J. M. O'Sullivan, "A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction," Jun. 27, 2022, *Frontiers Media SA*. doi: 10.3389/fbinf.2022.927312.
- [25] M. Alduailij, Q. W. Khan, M. Tahir, M. Sardaraz, M. Alduailij, and F. Malik, "Machine-Learning-Based DDoS Attack Detection Using Mutual Information and Random Forest Feature Importance Method," *Symmetry (Basel)*, vol. 14, no. 6, Jun. 2022, doi: 10.3390/sym14061095.
- [26] A. G. Priya Varshini, K. Anitha Kumari, and V. Varadarajan, "Estimating software development efforts using a random forest-based stacked ensemble approach," *Electronics (Switzerland)*, vol. 10, no. 10, May 2021, doi: 10.3390/electronics10101195.
- [27] R. A. Disha and S. Waheed, "Performance analysis of machine learning models for intrusion detection system using Gini Impurity-based Weighted Random Forest (GIWRF) feature selection technique," *Cybersecurity*, vol. 5, no. 1, Dec. 2022, doi: 10.1186/s42400-021-00103-8.
- [28] P. J. Muhammad Ali, "Investigating the Impact of Min-Max Data Normalization on the Regression Performance of K-Nearest Neighbor with Different Similarity Measurements," *ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY*, vol. 10, no. 1, pp. 85–91, Jun. 2022, doi: 10.14500/aro.10955.
- [29] Henderi , T. Wahyuningsih , and E. Rahwanto, "Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer," *International Journal of Informatics and Information System*, vol. 4, no. 1, Mar. 2021, [Online]. Available: http://archive.ics.uci.edu/ml.
- [30] M. R. Firmansyah and Y. P. Astuti, "Stroke Classification Comparison with KNN through Standardization and Normalization Techniques," *Advance Sustainable Science, Engineering and Technology*, vol. 6, no. 1, Jan. 2024, doi: 10.26877/asset.v6i1.17685.
- [31] Emad Majeed Hameed and Hardik Joshi, "Improving Diabetes Prediction by Selecting Optimal K and Distance Measures in KNN Classifier," *Journal of Techniques*, vol. 6, no. 3, pp. 19–25, Aug. 2024, doi: 10.51173/jt.v6i3.2587.
- [32] G. Fatima and S. Saeed, "A Novel Weighted Ensemble Method to Overcome the Impact of Underfitting and Over-fitting on the Classification Accuracy of the Imbalanced Data Sets," *Pakistan Journal of Statistics and Operation Research*, vol. 17,

- no. 2, pp. 483–496, 2021, doi: 10.18187/pjsor.v17i2.3640.
- [33] S. Gündoğdu, "Efficient prediction of early-stage diabetes using XGBoost classifier with random forest feature selection technique," *Multimed Tools Appl*, vol. 82, no. 22, pp. 34163–34181, Sep. 2023, doi: 10.1007/s11042-023-15165-8.
- [34] A. S. Maklad, M. A. Mahdy, A. Malki, N. Niki, and A. A. Mohamed, "Advancing Early Detection of Colorectal Adenomatous Polyps via Genetic Data Analysis: A Hybrid Machine Learning Approach," *Journal of Computer and Communications*, vol. 12, no. 07, pp. 23–38, 2024, doi: 10.4236/jcc.2024.127003.
- [35] A. Zweifach, "Samples in many cell-based experiments are matched/paired but taking this into account does not always increase power of statistical tests for differences in means," *Mol Biol Cell*, vol. 35, no. 1, p. br1, Jan. 2024, doi: 10.1091/mbc.E23-05-0159.