Generalized Least Squares Math 463, Spring 2017, University of Oregon

David A. Levin

University of Oregon

June 2, 2017

Generalized Least Squares (GLS)

- Suppose $\varepsilon \sim \sigma^2 \Sigma$.
- Write $\Sigma = SS^T$. (Note that if Σ has full rank, we can write $\Sigma = U\Lambda U^T$, in which case $S = U\sqrt{\Lambda}U^T$.) If

$$Y = X\beta + \varepsilon,$$

then

$$\underbrace{S^{-1}Y}_{Y'} = \underbrace{S^{-1}X}_{X'}\beta + S^{-1}\varepsilon.$$

Note that

$$Var(Y') = Var(S^{-1}Y)$$

$$= S^{-1} Var(Y)(S^{-1})^{T}$$

$$= \sigma^{2} S^{-1} SS^{T} (S^{-1})^{T}$$

$$= \sigma^{2} I.$$

so $Y' = X'\beta + \varepsilon'$, where $\{\varepsilon'_i\}$ are i.i.d. N(0,1) errors.

Example with possible correlation between errors

J. W. Longley (1967) An appraisal of least-squares programs from the point of view of the user. Journal of the American Statistical Association, 62, 819–841.

7 economical variables, observed yearly from 1947 to 1962 (n = 16):

variable	description
GNP.deflator	GNP implicit price deflator (1954=100)
GNP	Gross National Product
Unemployed	number of unemployed
Armed.Forces	number of people in the armed forces.
Population	non-institutionalized population 14 years of age or older
Year	the year (time)
Employed	number of people employed

Fit a model by regressing Employed on GNP and Population

Residuals vs. time

- > long.1 = lm(Employed~GNP+Population, data=longley)
- > plot(residuals(long.1)~Year, data=longley,pch=19)

Appears to be dependence of ε_i on ε_{i-1} .

• Model the errors as

$$\varepsilon_{i+1} = \rho \varepsilon_i + \delta_{i+1},$$

where $\{\delta_i\}$ is a sequence of i.i.d. $N(0, \sigma^2)$ errors.

Set

$$\Sigma_{ij} = \operatorname{Cor}(\varepsilon_i, \varepsilon_j) = \rho^{|i-j|}.$$

• Estimate ρ by the sample correlation between

$$(\hat{\boldsymbol{\varepsilon}}_2,\ldots,\hat{\boldsymbol{\varepsilon}}_n)$$

and

$$(\hat{\varepsilon}_1,\ldots,\hat{\varepsilon}_{n-1})$$
.

In this case, $\hat{\rho} = 0.310$.

```
> X = model.matrix(long.1)
> rhoest <- function(v){
   rc = cor(v[-1],v[-16])
   return(rc)
> f <- function(rh){
  Ma = diag(16)
   Ma = rh^abs(row(Ma)-col(Ma))
   ea <- eigen(Ma)
  Va <- ea$vectors
   Sa = Va%*%diag(I(sqrt(1/ea$values)))%*%t(Va)
   Sai = Va%*%diag(sqrt(ea$values))%*%t(Va)
   SYa = Sa%*%longley$Employed
+ SXa = Sa%*%X
   return(list(lm(SYa~SXa-1),Sai))
> rhov = 1:11
> rhov[1] = rhoest(residuals(long.1))
> for(i in 1:10){
 rh = rhov[i]
+ newf = f(rhov[i])
   rhov[i+1] = rhoest(newf[[2]]%*%residuals(newf[[1]]))
+ }
> rhov
 [1] 0.3104092 0.3564161 0.3644994 0.3659364 0.3661923 0.3662378 0.3662460
 [8] 0.3662474 0.3662477 0.3662477 0.3662477
```

- > plot(residuals(long.1)~longley\$Year)
- > points(residuals(newf[[1]])~longley\$Year, col="red")

Weighted Least Squares

Suppose that

$$\Sigma = \begin{bmatrix} 1/w_1 & 0 & \cdots & 0 \\ 0 & 1/w_2 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 1/w_n \end{bmatrix}$$

Then

$$S^{-1} = \begin{bmatrix} \sqrt{w_1} & 0 & \cdots & 0 \\ 0 & \sqrt{w_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \sqrt{w_n} \end{bmatrix}$$

Savings data-set: savings rate is regressed on

- percent population under 15,
- percent population over 75,
- per-capita disposable income,
- percent growth rate of per-capita disposable income.

Estimate two variances: pop15 < 35 and pop15 \geq 35. $\hat{\sigma}_1 = 7.42, \hat{\sigma}_2 = 20.66$.

Note that

$$Var(Y_i - E(Y_i)) = \sigma^2/w_i,$$

SO

S.D.(
$$\sqrt{w_i}(Y_i - EY_i)) = \sigma$$
.

So should check if the spread of $\sqrt{w_i} \times \hat{\varepsilon}_i$ depends on i.

Dealing with stacked data frames

```
> library(gdata)
> librarv(xtable)
> pr12 = read.xls("/Users/dlevin/Dropbox/COURSES/MATH463_S16/SLIDES/GLS/data-prob-5-12.XLS")[1:6]
> names(pr12)[4:6] = c("v.1", "v.2", "v.3")
> # always rename columns with this convention if you are going to reshape them
> pr12[1:3,]
 x1 x2 x3 y.1 y.2 y.3
1 -1 -1 -1 34 10 28
2 0 -1 -1 115 116 130
3 1 -1 -1 192 186 263
> pr12$sd = apply(pr12[4:6],1,sd)+1
> pr12r = reshape(pr12, varying=c("v.1", "v.2", "v.3"), direction="long")
> pr12r[c(1:2,28:29,55:56),]
   x1 x2 x3 sd time y id
1.1 -1 -1 -1 13.489996 1 34 1
2.1 0 -1 -1 9.386497 1 115 2
1.2 -1 -1 -1 13.489996 2 10 1
                      2 116 2
2.2 0 -1 -1 9.386497
1.3 -1 -1 -1 13.489996
                      3 28 1
2.3 0 -1 -1 9.386497
                       3 130 2
> f = lm(y^x1+x2+x3, data=pr12r)
> par(mfrow=c(1,2))
> plot(residuals(f)~fitted.values(f).pch=19)
> f1 = lm(y~x1+x2+x3,data=pr12r,weights=I(1/sd^2))
> plot(I(residuals(f1)/pr12r$sd)~fitted.values(f1),pch=19)
```

	(Intercept)	x1	x2	x3
1	314.67	177.00	109.43	131.46
2	367.26	166.69	117.08	147.17

> xtable(rbind(coef(f),coef(f1)))

