IDENTIFICATION IN DIFFERENCE-IN-DIFFERENCES MODELS WITH ROY-LIKE SELF-SELECTION

Julian Leiser

21.06.2024

INTRODUCTION

- Difference-in-differences: Quasi-experimental variation to estimate causal effects
- Identifying assumption: Parallel trends
- Justification: "Quasi-random" treatment assignment
- Plausibility with rational agents: reforms, physical mobility etc.
- How does self-selection interact with the parallel trends assumption?

• Ghanem et al. (2024)

Marx et al. (2024)

- Ghanem et al. (2024)
 - Necessary and sufficient conditions for classes of selection mechansisms

Marx et al. (2024)

- Ghanem et al. (2024)
 - Necessary and sufficient conditions for classes of selection mechansisms
 - "Worst case" scenario
- Marx et al. (2024)

- Ghanem et al. (2024)
 - Necessary and sufficient conditions for classes of selection mechansisms
 - "Worst case" scenario
- Marx et al. (2024)
 - Dynamic utility maximization

- Ghanem et al. (2024)
 - Necessary and sufficient conditions for classes of selection mechansisms
 - "Worst case" scenario
- Marx et al. (2024)
 - Dynamic utility maximization
 - Fuzzy Design

- Ghanem et al. (2024)
 - Necessary and sufficient conditions for classes of selection mechansisms
 - "Worst case" scenario
- Marx et al. (2024)
 - Dynamic utility maximization
 - Fuzzy Design
 - Necessary and sufficient conditions

- Ghanem et al. (2024)
 - Necessary and sufficient conditions for classes of selection mechansisms
 - "Worst case" scenario
- Marx et al. (2024)
 - Dynamic utility maximization
 - Fuzzy Design
 - Necessary and sufficient conditions
 - Roy models, dynamic choices and learning

WHAT I DO

- Extend results of Marx et al. (2024)
- Roy-like selection mechanisms
- Repeated static designs
- Goals

WHAT I DO

- Extend results of Marx et al. (2024)
- Roy-like selection mechanisms
- Repeated static designs
- Goals
 - Gain better understanding of when selfselection is (not) a problem

WHAT I DO

- Extend results of Marx et al. (2024)
- Roy-like selection mechanisms
- Repeated static designs
- Goals
 - Gain better understanding of when selfselection is (not) a problem
 - Theoretical conditions and justifications for parallel trends

SETUP I

- Two periods: 0,1
- ullet Potential outcomes $(Y_t(0),Y_t(1))$
- Fuzzy design
- 4 Groups
 - Always-treated
 - Never-treated
 - Switchers-in
 - Switchers out

SETUP II

ATE on the Switchers into treatment

$$ATS = \mathbb{E}[Y_1(1) - Y_1(0)|D_0 = 0, D_1 = 1]$$

= ATT in design with pre-treatment period

SETUP II

ATE on the Switchers into treatment

$$ATS = \mathbb{E}[Y_1(1) - Y_1(0)|D_0 = 0, D_1 = 1]$$

- = ATT in design with pre-treatment period
- ullet Parallel trends (PT) $\mathbb{E}[Y_1(0)-Y_1(0)|D_0=d_0,D_1=d_1]= au$
- ullet for constant au and all (d_0,d_1)

- ullet Agent: Information U_t
- Outcomes $Y_t(.)$ unkown
- ullet $D_t = f_t(U_t)$

- ullet Agent: Information U_t
- Outcomes $Y_t(.)$ unkown
- ullet $D_t = f_t(U_t)$
- ullet Example: $D_t=\mathbb{1}\{\mathbb{E}[Y_t(1)-Y_t(0)|U_t]\geq 0\}$

- ullet Agent: Information U_t
- Outcomes $Y_t(.)$ unkown
- ullet $D_t = f_t(U_t)$
- ullet Example: $D_t=\mathbb{1}\{\mathbb{E}[Y_t(1)-Y_t(0)|U_t]\geq 0\}$
- ullet $(U_0,Y_0(0),Y_0(1))\perp (U_1,Y_1(0),Y_1(1))$

Result:

$$ext{PT} \Leftrightarrow \mathbb{E}[Y_t(d)|D_0=d_0,D_1=d_1]=\mu_t$$

For some constant μ_t

- $Y_t(.)$ still unknown
- Roy-style selection:

$$D_t = \mathbb{1}\{\mathbb{E}[Y_t(1) - Y_t(0)|U_t] \geq 0\}$$

- ullet Suppose information U_t is a binary signal
- Suppose signal is informative
- Rational agent acts according to information

Result:

$$ext{PT} \Leftrightarrow \mathbb{E}[Y_t(d)|D_0=d_0,D_1=d_1]=\mu_t$$

For some constant μ_t

- Now suppose agent knows the potential outcomes
- Model the treated potential outcomes
- $ullet Y_t(1) = g_t(Y_t(0), E_t)$
- E_t "treatment effect"-variable

- Now suppose agent knows the potential outcomes
- Model the treated potential outcomes
- $ullet Y_t(1) = g_t(Y_t(0), E_t)$
- ullet E_t "treatment effect"-variable
- ullet $D_t = f_t(E_t)$

- Now suppose agent knows the potential outcomes
- Model the treated potential outcomes
- $Y_t(1) = g_t(Y_t(0), E_t)$
- E_t "treatment effect"-variable
- ullet $D_t = f_t(E_t)$
- ullet $(Y_0(0),Y_1(0))\perp (E_0,E_1)$

$$ext{PT} \Leftrightarrow \mathbb{E}[Y_t(d)|D_0=d_0,D_1=d_1]=\mu_t$$

For some constant μ_t

A SIMPLE EXAMPLE, TWFE

- $ullet Y_t(d_t) = lpha_i + \lambda_t + E_{it}d_{it} + arepsilon_{it}$
- Roy-selection
 - $lacksquare D_{it} = \mathbb{1}\{Y_{it}(1) Y_{it}(0) \geq 0\}$
 - ullet $\Leftrightarrow D_{it} = \mathbb{1}\{E_{it} \geq 0\}$

EXTENSIONS AND OTHER RESULTS

- Binary potential outcomes
- Link to ignorability and lagged-dependent variable adjustment
- Covariates

A MAJOR LIMITATION

All results imply

$$\mathbb{E}[Y_1(0)|D_0=d_0,D_1=d_1]=\mu_1$$

- But then we do not need to do DiD!
- Consider ATS:

$$\mathbb{E}[Y_1(1) - Y_1(0)|D_0 = 0, D_1 = 1]$$

A MAJOR LIMITATION

All results imply

$$\mathbb{E}[Y_1(0)|D_0=d_0,D_1=d_1]=\mu_1$$

- But then we do not need to do DiD!
- Consider ATS:

$$egin{aligned} \mathbb{E}[Y_1(1)-Y_1(0)|D_0=0,D_1=1] \ =\mathbb{E}[Y_1|D_0=0,D_1=1]-\mu_1 \end{aligned}$$

A MAJOR LIMITATION

All results imply

$$\mathbb{E}[Y_1(0)|D_0=d_0,D_1=d_1]=\mu_1$$

- But then we do not need to do DiD!
- Consider ATS:

$$egin{aligned} \mathbb{E}[Y_1(1)-Y_1(0)|D_0=0,D_1=1] \ &= \mathbb{E}[Y_1|D_0=0,D_1=1]-\mu_1 \ &= \mathbb{E}[Y_1|D_0=0,D_1=1]-\mathbb{E}[Y_1|D_1=0] \end{aligned}$$

SUMMARY, DISCUSSION AND OPEN QUESTIONS

- Relationship of self-selection in Roy-style model and parallel trends
- Different setups lead to identical necessary and sufficient conditions
 - Restrict dependence over time
 - Strong assumptions on info structure
 - Model potential outcomes and treatment effect
- Mean independence likely too restrictive in most applied settings