

INTRODUCTION

In today's digital world, online advertising is a primary way for businesses to reach potential customers. However, showing irrelevant ads wastes advertising budgets and leads to poor user engagement.

Click-Through Rate (CTR) represents the likelihood of a user clicking on an advertisement, making it a critical metric in digital marketing.

This project uses historical user and ad data with machine learning models to predict CTR, demonstrating how data-driven approaches can improve online advertising efficiency.

PROBLEMSTATEMENT

In digital marketing, businesses invest heavily in online advertising to reach customers and drive engagement. However, existing ad-serving systems often use simplistic, rule-based targeting that fails to capture complex user behavior and ad context.

This project addresses the need for a machine learning-based CTR Prediction Model to accurately predict the likelihood of a user clicking on an advertisement by analyzing historical user behavior, demographic data, and ad-specific features.

By solving this problem, the system helps:

• Enable data-driven decisions in digital advertising.

OBJECTIVE

The primary objective of this project is to develop a machine learning-based CTR Prediction Model to improve the accuracy and efficiency of online advertising.

- Predict the likelihood of a user clicking on an advertisement using historical user behavior, demographic data, and ad-specific features.
- Improve user experience by displaying relevant, personalized advertisements.
- Build and deploy a user-friendly Streamlit application for real-time CTR predictions.
- Enhance practical skills in data science, machine learning, and deployment within a real-world digital marketing context.

	Clicked on Ad	0	0	0	0	1	
	stamp						
	Time	2016 09 21:43	2016 16 17:56	2016 29 10:50	2016 21 14:32	2016 21 10:54	
			re	oupe			
	Country	Svalbar Jan Mag Islands	Singapo	Guadel	Zambia	Qatar	
	nder	le	le	male	male	male	
	Ge	Ma	Ma	Fe	Fe	Fe	
36		fort	st jelabury	esfurt	v hael	st nard	
A	Cit	Lis	We An		Ne Mi	We	
7	Line	ilized circuit		ation ization		ation ization	
A	1 Topic	ecentra al-time	otional nge ojectio	tal ngener andard	nlance npowe ccess	tal ngener andard	
			ra	5	е	5	
	Daily Intern Usage	172.8	207.1	172.8	207.1	201.5	
	a ome	81.85	340.26	377.15	80.93	324.73	
	e Ar	0 69	0 61	0 57	0 56	0 54	
	Age	32.	31.	30.	28.	30.	
	Daily Time Spent on Site	62.26	41.73	44.40	59.88	49.21	
		0	1	2	3	4	

DATASET USAGE:

- Used for training and evaluating multiple machine learning models.
- Features engineered to extract patterns influencing ad click behavior.
- Data preprocessed for handling missing values, encoding categorical features, and ensuring consistency for model training and deployment.

TOOLS AND TECHNOLOGIES USED

PLATFORMS:

- Kaggle Notebook: Used for data exploration, preprocessing, model training, and evaluation in a cloud-based environment.
- VS Code + Streamlit: Used to develop and test the Streamlit app locally for real-time CTR prediction.

LIBRARIES AND FRAMEWORKS:

- pandas, numpy: Data loading, manipulation, and numerical computations.
- matplotlib, seaborn: Data visualization during EDA for understanding feature distributions and relationships.
- scikit-learn: Model implementation (Logistic Regression, Decision Tree, Random Forest), preprocessing utilities, and evaluation metrics.

TOOLS AND TECHNOLOGIES USED

LIBRARIES AND FRAMEWORKS:

- XGBoost: Implemented the final prediction model with high accuracy and efficiency.
- joblib: Model serialization for saving and loading the trained model seamlessly in the app.
- Streamlit: For building a user-friendly, interactive web app for real-time CTR predictions.
- datetime: For extracting and managing time-based features (day, month, hour) from the dataset.

METHODOLOGY/WORKFLOW

DATA COLLECTION

Sourced CTR dataset from Kaggle.

EXPLORATORY DATA ANALYSIS(EDA)

- Analyzed feature distributions and patterns.
- Visualized correlations to understand influencing factors.
- Detected and handled outliers.

DATA PREPROCESSING

- Encoded categorical features (Label & Frequency Encoding).
- Extracted time-based features (day, month, hour).

METHODOLOGY/WORKFLOW

MODEL TRAINING & EVALUATION

- Trained:
 - Logistic Regression
 - Decision Tree
 - Random Forest
 - XGBoost (final model with best accuracy)
- Evaluated using accuracy, MAE, and RMSE.

MODEL SAVING AND DEPLOYMENT

- Saved the trained XGBoost model and encoders using Joblib.
- Built a Streamlit app to:
- Take real-time user inputs.
- Predict CTR instantly.
- Display click probability and feature importance insights.

1.DATA LAYER

- Historical Data: Loads ad click data from Kaggle using pandas for training.
- Real-Time Input: Uses Streamlit forms to collect user data for live predictions.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 10 columns):
            Non-Null Count Dtype
    Column
                       -----
    DailyTime_Spent_on_Site 10000 non-null float64
                         10000 non-null float64
    Area_Income
                         10000 non-null float64
    Daily_Internet_Usage 10000 non-null float64
    Ad_Topic_Line
                          10000 non-null object
                10000 non-null object
    City
               10000 non-null object
    Gender
                     10000 non-null object
    Country
                      10000 non-null datetime64[ns]
    Timestamp
    Clicked_on_Ad
                         10000 non-null int64
dtypes: datetime64[ns](1), float64(4), int64(1), object(4)
memory usage: 781.4+ KB
```

data.nunique()

DailyTime_Spent_on_Site	460	
Age	39	
Area_Income	524	
Daily_Internet_Usage	505	
Ad_Topic_Line	559	
City	521	
Gender	2	
Country	207	
Timestamp	567	
Clicked_on_Ad	2	
dtype: int64		

6 Ad Click-Through Rate (CTR) Prediction

Predict whether a user will click on an advertisement

2. Analysis & Processing Layer

EDA STEPS

- Descriptive Statistics
- Visualization
- Outlier Detection

2. Analysis & Processing Layer

PREPROCESSES DATA

- Encoding categorical features
- Feature Engineering

day_of_month	hour_of_day	day_of_week	month
9	21	3	6
16	17	5	1
29	10	2	6
21	14	1	6
21	10	3	7

Out[19]:			
	0	1	
	1	1	
	2	0	
	3	0	
	4	0	

Name: Gender, dtype: int64

City_frequency	City_encoded	Country_frequency	Country_encoded	Ad_Topic_encoded
261	234	6	173	96
109	460	130	165	301
205	379	9	71	484
110	269	39	204	24
16	495	223	148	484

3. MODELLAYER

MODEL TRAINING:

- Logistic Regression: A simple linear model that predicts the probability of a user clicking on an ad.
- Decision Tree: Splits data into branches using rules to capture non-linear patterns.
- Random Forest: Combines multiple decision trees to improve accuracy and reduce overfitting.
- XGBoost: An advanced boosting algorithm that builds trees sequentially for high accuracy (selected for deployment).

3. MODELLAYER

MODEL EVALUATION:

- Evaluated using:
 - Accuracy
 - Mean Absolute Error (MAE)
 - Root Mean Square Error (RMSE)
- XGBoost achieved highest accuracy, making it the final choice.

MODEL SAVING:

• Uses Joblib to save the trained XGBoost model and preprocessing artifacts.

MODEL LOADING:

Loads the saved model in the Streamlit app for real-time CTR predictions.

4. APPLICATION LAYER

- User Interface: Built using Streamlit for a clean, interactive web app.
- Real-Time User Inputs
- Prediction Display:
 - Uses the loaded XGBoost model to predict CTR instantly.
 - Shows:
 - Click / No Click prediction
 - Click probability
 - Feature importance for transparency
 - Targeting insights (Excellent, Moderate, Low)

4. APPLICATION LAYER

Click Probability
31.1%

Insights

Poor targeting. This user profile is unlikely to engage.

© WILL CLICK

80.6%

Insights

© Excellent targeting! This user profile shows high engagement potential.

Click Probability
62.8%

Insights

Moderate targeting. Consider optimizing ad content or timing.

RESULT

The CTR Prediction Model successfully predicts user ad clicks, improving targeting and campaign efficiency.

DEPLOYED LIVE:

Access the deployed application here: https://ctr-prediction-ds.onrender.com

FUTURESCOPE

1.INTEGRATION OF DEEP LEARNING

- Explore Deep Neural Networks (DNN) for capturing complex, high-order feature interactions.
- Potential for even higher accuracy on large datasets.

2. REAL-TIME DATA STREAMING

 Use Kafka or similar tools to enable continuous model updates and live predictions as user data flows in.

3. AUTOMATED MODEL RETRAINING

 Build pipelines for scheduled or event-triggered retraining to maintain prediction accuracy as user behavior evolves.

CONCLUSION

In conclusion, the CTR Prediction Model using machine learning demonstrates how data-driven approaches can improve digital advertising by predicting the likelihood of a user clicking on an ad. By leveraging user behavior, demographics, and ad features, the project helps advertisers reduce budget wastage and improve user engagement. Using a systematic workflow, the model was trained and deployed in a user-friendly Streamlit app for real-time predictions. This project showcases the practical application of machine learning in solving realworld problems, bridging the gap between theoretical learning and industry needs.

