Data Transformation and Integration Part 2: Data Fusion

Dr Tom Diethe tom.diethe@bristol.ac.uk

University of Bristol

Recap and Outlook

- Lec 1 Data Formats
- Lec 3 Databases
- Lec 4 Data Wrangling
 - Demonstration
 - Cleaning data
 - Missing data
- Lec 5 Data Fusion
 - Demonstration (continued)
 - Merging Datasets
 - Data Aggregation
- Lec 6 Data Exploration
- Lec 7 Data Visualisation

Data Integration

- - ► Commercial (e.g. similar companies)
 - Scientific (e.g. bioinformatics)

Figure: Extract, Transform, Load (ETL)

Figure: Data-integration solution

★ Heterogeneity: Datasets may be different in terms of:

- Resolution (e.g. temporal/spatial)
- Coding (e.g. country names)
- Imputation of missing values
- Methods of collection
- License
- **&** Bad Data
- Lack of Storage Capacity
- Original source(s) may vanish
- Read the specifications!

- ★ Heterogeneity: Datasets may be different in terms of:
 - ► Resolution (e.g. temporal/spatial)
 - Coding (e.g. country names)
 - Imputation of missing values
 - Methods of collection
 - License
- Bad Data
- Lack of Storage Capacity
- Original source(s) may vanish
- Read the specifications!

- ★ Heterogeneity: Datasets may be different in terms of:
 - ► Resolution (e.g. temporal/spatial)
 - Coding (e.g. country names)
 - Imputation of missing values
 - Methods of collection
 - License
- **&** Bad Data
- Lack of Storage Capacity
- Original source(s) may vanish
- Read the specifications!

- ★ Heterogeneity: Datasets may be different in terms of:
 - ► Resolution (e.g. temporal/spatial)
 - Coding (e.g. country names)
 - Imputation of missing values
 - Methods of collection
 - License
- **&** Bad Data
- Lack of Storage Capacity
- Read the specifications!

- ★ Heterogeneity: Datasets may be different in terms of:
 - ► Resolution (e.g. temporal/spatial)
 - Coding (e.g. country names)
 - Imputation of missing values
 - Methods of collection
 - License
- Bad Data
- Lack of Storage Capacity
- Read the specifications!

- ★ Heterogeneity: Datasets may be different in terms of:
 - ► Resolution (e.g. temporal/spatial)
 - Coding (e.g. country names)
 - Imputation of missing values
 - Methods of collection
 - License
- **&** Bad Data
- Lack of Storage Capacity
- Read the specifications!

- Heterogeneity: Datasets may be different in terms of:
 - ► Resolution (e.g. temporal/spatial)
 - Coding (e.g. country names)
 - Imputation of missing values
 - ► Methods of collection
 - License
- Lack of Storage Capacity
- Original source(s) may vanish
- Read the specifications!

- ★ Heterogeneity: Datasets may be different in terms of:
 - Resolution (e.g. temporal/spatial)
 - Coding (e.g. country names)
 - Imputation of missing values
 - Methods of collection
 - License

- Read the specifications!

- ★ Heterogeneity: Datasets may be different in terms of:
 - Resolution (e.g. temporal/spatial)
 - Coding (e.g. country names)
 - Imputation of missing values
 - Methods of collection
 - License
- Lack of Storage Capacity
- Read the specifications!

- ★ Heterogeneity: Datasets may be different in terms of:
 - Resolution (e.g. temporal/spatial)
 - Coding (e.g. country names)
 - Imputation of missing values
 - Methods of collection
 - License
- Lack of Storage Capacity
- Read the specifications!

Simple integration example

Worldbank data integration:

https://github.com/njtwomey/ADS/blob/master/03_data_transformation_and_integration/02_worldbank.ipynb

₭ See also:

https://goo.gl/2U2ZUs

More complex integration example

- CASAS wrangling (continued from February 22nd)
- Start at "Merging categorical and numeric data together"

https://github.com/njtwomey/ADS/blob/master/03_data_transformation_and_integration/01_wrangling_casas.ipynb

- Converting data between incompatible type systems in OO languages
- "virtual object database"
- +ves Speeds-up development; overcomes SQL differences
- -ves Less control; execution speed; difficult to do complex queries
 - Lesign queries for least number of round-trips with the server

 - **E**xamples
 - Hibernate (Java)
 - Django, mongoengine (python)
 - ► SQLAlchemy (python)
 - LINQ to SQL (.NET languages)
 - More: https://en.wikipedia.org/wiki/List_of_ object-relational_mapping_software

- Converting data between incompatible type systems in OO languages
- "virtual object database"
- +ves Speeds-up development; overcomes SQL differences
- -ves Less control; execution speed; difficult to do complex queries
 - Lesign queries for least number of round-trips with the server

 - **E**xamples
 - Hibernate (Java)
 - Django, mongoengine (python)
 - ► SQLAlchemy (python)
 - LINQ to SQL (.NET languages)
 - More: https://en.wikipedia.org/wiki/List_of_ object-relational_mapping_software

- Converting data between incompatible type systems in OO languages
- "virtual object database"
- +ves Speeds-up development; overcomes SQL differences
 - -ves Less control; execution speed; difficult to do complex queries
 - Design queries for least number of round-trips with the server

 - **E**xamples
 - Hibernate (Java)
 - Django, mongoengine (python)
 - ► SQLAlchemy (python)
 - LINQ to SQL (.NET languages)
 - More: https://en.wikipedia.org/wiki/List_of_ object-relational_mapping_software

- Converting data between incompatible type systems in OO languages
- "virtual object database"
- +ves Speeds-up development; overcomes SQL differences
- -ves Less control; execution speed; difficult to do complex queries
 - Lesign queries for least number of round-trips with the server
 - Compare queries with the actual ones being executed in SQL server profiler
 - **E**xamples
 - Hibernate (Java)
 - Django, mongoengine (python)
 - ► SQLAlchemy (python)
 - LINQ to SQL (.NET languages)
 - More: https://en.wikipedia.org/wiki/List_of_ object-relational_mapping_software

- Converting data between incompatible type systems in OO languages
- "virtual object database"
- +ves Speeds-up development; overcomes SQL differences
- -ves Less control; execution speed; difficult to do complex queries
 - Design queries for least number of round-trips with the server
 - Compare queries with the actual ones being executed in SQL server profiler
 - **E**xamples
 - Hibernate (Java)
 - Django, mongoengine (python)
 - ► SQLAlchemy (python)
 - LINQ to SQL (.NET languages)
 - More: https://en.wikipedia.org/wiki/List_of_ object-relational_mapping_software

- Converting data between incompatible type systems in OO languages
- "virtual object database"
- +ves Speeds-up development; overcomes SQL differences
- -ves Less control; execution speed; difficult to do complex queries
 - Design queries for least number of round-trips with the server

 - **E**xamples
 - Hibernate (Java)
 - Django, mongoengine (python)
 - SQLAlchemy (python)
 - LINQ to SQL (.NET languages)
 - More: https://en.wikipedia.org/wiki/List_of_ object-relational_mapping_software

- Converting data between incompatible type systems in OO languages
- "virtual object database"
- +ves Speeds-up development; overcomes SQL differences
- -ves Less control; execution speed; difficult to do complex queries
 - Design queries for least number of round-trips with the server

 - **Examples**
 - ► Hibernate (Java)
 - Django, mongoengine (python)
 - ► SQLAlchemy (python)
 - LINQ to SQL (.NET languages)
 - More: https://en.wikipedia.org/wiki/List_of_ object-relational_mapping_software

ORM Example

```
// Standard version
string sql = "SELECT * FROM persons WHERE id = 10";
DbCommand cmd = new DbCommand(connection, sql);
Result res = cmd.Execute();
string name = res[0]["FIRST_NAME"];

// ORM version
Person p = repository.GetPerson(10);
string name = p.getFirstName();
```


ORM Example

```
string sql = "SELECT * FROM persons WHERE id = 10";
DbCommand cmd = new DbCommand(connection, sql);
Result res = cmd.Execute();
string name = res[0]["FIRST_NAME"];

// ORM version
Person p = repository.GetPerson(10);
string name = p.getFirstName();
```


Language Integrated Query (LINQ)

- .NET based abstraction layer for working with data
- Enumerations, set-based operations, projections, filters, etc
- k Providers for relational data (LINQ \rightarrow SQL, \rightarrow Datasets, \rightarrow Entities)

Query structure

```
// Query syntax
int[] numbers = { 7, 53, 45, 99 };
var res = from n in numbers
      where n > 50
      orderby n
      select n.ToString();
// Lambda syntax
int[] numbers = { 7, 53, 45, 99 };
var res = numbers.Where(n => n > 50)
              .OrderBy(n => n)
              .Select(n => n.ToString());
```

Query structure

```
// Query syntax
int[] numbers = { 7, 53, 45, 99 };
var res = from n in numbers
      where n > 50
      orderby n
       select n.ToString();
// Lambda syntax
int[] numbers = { 7, 53, 45, 99 };
var res = numbers.Where(n => n > 50)
              .OrderBy(n => n)
              .Select(n => n.ToString());
```


LINQ Examples

₭ LINQ to Database C# demo:

https://github.com/njtwomey/ADS/tree/master/03_data_transformation_and_integration/Linq2dbDemo

Summary

- Data integration
 - Challenges
- Data aggregation
 - ► Object Relational Mapping (ORM)
 - Language Integrated Query (LINQ)
 - Some resources:
 - pandas documentation http://pandas.pydata.org/
 - Chapter 9 of Python for Data Analysis
 - ► Effective Django ORM: http://www.effectivedjango.com/orm.html
 - Edulinq: https://codeblog.jonskeet.uk/category/edulinq/-an eBook about LINQ by Jon Skeet