Digital Design & Computer Arch.

Lecture 15b: Out-of-Order Execution I

Prof. Onur Mutlu

ETH Zürich
Spring 2021
23 April 2021

Required Readings

This week & Next Week

- Out-of-order execution
 - □ H&H, Chapter 7.8-7.9
- Smith and Sohi, "The Microarchitecture of Superscalar Processors," Proceedings of the IEEE, 1995
 - More advanced pipelining
 - Interrupt and exception handling
 - Out-of-order and superscalar execution concepts

Optional

Kessler, "The Alpha 21264 Microprocessor," IEEE Micro 1999.

Next Week

 McFarling, "Combining Branch Predictors," DEC WRL Technical Report, 1993.

Agenda for Today & Next Few Lectures

- Single-cycle Microarchitectures
- Multi-cycle and Microprogrammed Microarchitectures
- Pipelining
- Issues in Pipelining: Control & Data Dependence Handling,
 State Maintenance and Recovery, ...
- Out-of-Order Execution
- Other Execution Paradigms

Review: In-Order Pipeline with Reorder Buffer

- Decode (D): Access regfile/ROB, allocate entry in ROB, check if instruction can execute, if so dispatch instruction (send to functional unit)
- Execute (E): Instructions can complete out-of-order
- Completion (R): Write result to reorder buffer
- Retirement/Commit (W): Check for exceptions; if none, write result to architectural register file or memory; else, flush pipeline and start from exception handler
- In-order dispatch/execution, out-of-order completion, in-order retirement

Recall: Data Dependence Types

True (flow) dependence

$$r_3 \leftarrow r_1 \text{ op } r_2$$

 $r_5 \leftarrow r_3 \text{ op } r_4$

Read-after-Write (RAW) -- **True**

Anti dependence

$$r_3 \leftarrow r_1 \text{ op } r_2$$
 $r_1 \leftarrow r_4 \text{ op } r_5$

Write-after-Read (WAR) -- **Anti**

Output-dependence

$$r_3 \leftarrow r_1 \text{ op } r_2$$
 $r_5 \leftarrow r_3 \text{ op } r_4$
 $r_6 \text{ op } r_7$

Write-after-Write (WAW) -- **Output**

Remember: Register Renaming with a Reorder Buffer

- Output and anti dependences are not true dependences
 - WHY? The same register refers to values that have nothing to do with each other
 - They exist due to lack of register ID's (i.e. names) in the ISA
- The register ID is renamed to the reorder buffer entry that will hold the register's value
 - □ Register ID → ROB entry ID
 - □ Architectural register ID → Physical register ID
 - After renaming, ROB entry ID used to refer to the register
- This eliminates anti and output dependences
 - Gives the illusion that there are a large number of registers

Out-of-Order Execution (Dynamic Instruction Scheduling)

An In-order Pipeline

- Dispatch: Act of sending an instruction to a functional unit
- Renaming with ROB eliminates stalls due to false dependences
- Problem: A true data dependence stalls dispatch of younger instructions into functional (execution) units

Can We Do Better?

How Can We Do Better?

What do the following two pieces of code have in common (with respect to execution in the previous design)?

```
IMUL R3 \leftarrow R1, R2

ADD R3 \leftarrow R3, R1

ADD R4 \leftarrow R6, R7

IMUL R5 \leftarrow R6, R8

ADD R7 \leftarrow R9, R9
```

```
LD R3 \leftarrow R1 (0)

ADD R3 \leftarrow R3, R1

ADD R4 \leftarrow R6, R7

IMUL R5 \leftarrow R6, R8

ADD R7 \leftarrow R9, R9
```

- Answer: First ADD stalls the whole pipeline!
 - ADD cannot dispatch because its source registers unavailable
 - Later independent instructions cannot get executed
- How are the above code portions different?
 - Answer: Load latency is variable (unknown until runtime)
 - What does this affect? Think compiler vs. microarchitecture

Preventing Dispatch Stalls

- Problem: in-order dispatch (scheduling, or execution)
- Solution: out-of-order dispatch (scheduling, or execution)
- Actually, we have seen the basic idea before:
 - Dataflow: "fire" an instruction only when its inputs are ready
 - We will use similar principles, but not expose it in the ISA
- Aside: Any other way to prevent dispatch stalls?
 - 1. Compile-time instruction scheduling/reordering
 - 2. Value prediction
 - 3. Fine-grained multithreading

Out-of-order Execution (Dynamic Scheduling)

- Idea: Move the dependent instructions out of the way of independent ones (s.t. independent ones can execute)
 - Rest areas for dependent instructions: Reservation stations
- Monitor the source "values" of each instruction in the resting area
- When all source "values" of an instruction are available, "fire" (i.e. dispatch) the instruction
 - Instructions dispatched in dataflow (not control-flow) order

Benefit:

 Latency tolerance: Allows independent instructions to execute and complete in the presence of a long-latency operation

In-order vs. Out-of-order Dispatch

In order dispatch + precise exceptions:


```
IMUL R3 \leftarrow R1, R2
ADD R3 \leftarrow R3, R1
ADD R1 \leftarrow R6, R7
IMUL R5 \leftarrow R6, R8
ADD R7 \leftarrow R3, R5
```

Out-of-order dispatch + precise exceptions:

F	D	Е	Е	Е	Е	R	W				
	F	D	V	VAIT	-	Е	R	W			
		F	D	Е	R		,		W		
			F	D	Е	Е	Е	Е	R	W	
				F	D	V	VAIT	Γ	Е	R	W

16 vs. 12 cycles

Enabling OoO Execution

- 1. Need to link the consumer of a value to the producer
 - Register renaming: Associate a "tag" with each data value
- 2. Need to buffer instructions until they are ready to execute
 - Insert instruction into reservation stations after renaming
- 3. Instructions need to keep track of readiness of source values
 - Broadcast the "tag" when the value is produced
 - Instructions compare their "source tags" to the broadcast tag
 → if match, source value becomes ready
- 4. When all source values of an instruction are ready, need to dispatch the instruction to its functional unit (FU)
 - Instruction wakes up if all sources are ready
 - If multiple instructions are awake, need to select one per FU

Tomasulo's Algorithm for OoO Execution

- OoO with register renaming invented by Robert Tomasulo
 - Used in IBM 360/91 Floating Point Units
 - Read: Tomasulo, "An Efficient Algorithm for Exploiting Multiple Arithmetic Units," IBM Journal of R&D, Jan. 1967.
- What is the major difference today?
 - Precise exceptions
 - Provided by
 - Patt, Hwu, Shebanow, "HPS, a new microarchitecture: rationale and introduction," MICRO 1985.
 - Patt et al., "Critical issues regarding HPS, a high performance microarchitecture," MICRO 1985.
- OoO variants are used in most high-performance processors
 - Initially in Intel Pentium Pro, AMD K5
 - □ Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15, Apple M1, ...

Two Humps in a Modern Pipeline

- in order out or order in order
- Hump 1: Reservation stations (scheduling window)
- Hump 2: Reordering (reorder buffer, aka instruction window or active window)

Two Humps in a Modern Pipeline

General Organization of an OOO Processor

Smith and Sohi, "The Microarchitecture of Superscalar Processors," Proc. IEEE, Dec. 1995.

Tomasulo's Machine: IBM 360/91

Recall Once More: Register Renaming

- Output and anti dependences are not true dependences
 - WHY? The same register refers to values that have nothing to do with each other
 - They exist because not enough register ID's (i.e. names) in the ISA
- The register ID is renamed to the reservation station entry that will hold the register's value
 - □ Register ID → RS entry ID
 - □ Architectural register ID → Physical register ID
 - After renaming, RS entry ID used to refer to the register
- This eliminates anti- and output- dependences
 - Approximates the performance effect of a large number of registers even though ISA has a small number

Tomasulo's Algorithm: Renaming

Register rename table (register alias table)

	tag	value	valio	ď
R0			1	
R1			1	
R2			1	
R3			1	
R4			1	
R5			1	
R6			1	
R7			1	
R8			1	
R9			1	

Tomasulo's Algorithm

- If reservation station available before renaming
 - Instruction + renamed operands (source value/tag) inserted into the reservation station
 - Only rename if reservation station is available
- Else stall
- While in reservation station, each instruction:
 - Watches common data bus (CDB) for tag of its sources
 - When tag seen, grab value for the source and keep it in the reservation station
 - When both operands available, instruction ready to be dispatched
- Dispatch instruction to the Functional Unit when instruction is ready
- After instruction finishes in the Functional Unit
 - Arbitrate for CDB
 - Put tagged value onto CDB (tag broadcast)
 - Register file is connected to the CDB
 - Register contains a tag indicating the latest writer to the register
 - If the tag in the register file matches the broadcast tag, write broadcast value into register (and set valid bit)
 - Reclaim rename tag
 - no valid copy of tag in system!

An Exercise

```
MUL R3 \leftarrow R1, R2

ADD R5 \leftarrow R3, R4

ADD R7 \leftarrow R2, R6

ADD R10 \leftarrow R8, R9

MUL R11 \leftarrow R7, R10

ADD R5 \leftarrow R5, R11
```


- Assume ADD (4 cycle execute), MUL (6 cycle execute)
- Assume one adder and one multiplier
- How many cycles
 - in a non-pipelined machine
 - in an in-order-dispatch pipelined machine with imprecise exceptions (no forwarding and full forwarding)
 - in an out-of-order dispatch pipelined machine imprecise exceptions (full forwarding)

Digital Design & Computer Arch.

Lecture 15b: Out-of-Order Execution I

Prof. Onur Mutlu

ETH Zürich
Spring 2021
23 April 2021

We Will Cover Later Slides in Future Lectures.

Exercise Continued

	Proeline structure
MUL RI,RZ \rightarrow R3 ADD R3,R4 \rightarrow R5 ADD R2,R6 \rightarrow R7 ADD R8,R9 \rightarrow R10 MUL R7,R10 \rightarrow R11 ADD R5,RM \rightarrow R5	Contake milhaple cycles.
MUL tuces 6 oycles ADD takes 4 oycles How many cycles total who data fine " " " WI "	

Exercise Continued

```
FD123456W
           - D1234W
            - - D123 4 W
               FD1234W
                FD--- - D123456 W
                                    D1234W
Execution timeline w/ scareboarding
FD123456W
        E 12134 W
           D 1 23 4 W
                        234 5 6 W
```

Exercise Continued

```
MUL R3 \leftarrow R1, R2

ADD R5 \leftarrow R3, R4

ADD R7 \leftarrow R2, R6

ADD R10 \leftarrow R8, R9

MUL R11 \leftarrow R7, R10

ADD R5 \leftarrow R5, R11
```

```
FD123456W

FD 1234W

FD1234W

FD1234W

FD 1234W

FD 1234W
```

Tomosolo's algorim + Full forwarding

20 cycles

How It Works

Our First OoO Machine Simulation

Program We Will Simulate

MUL	R1,	R2	\rightarrow	R3
ADD	R3,	R4	\rightarrow	R5
ADD	R2,	R6	\rightarrow	R7
ADD	R8,	R9	\rightarrow	R10
MUL	R7,	R10	\rightarrow	R11
ADD	R5,	R11	\rightarrow	R5

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		3
R4	1		4
R5	1		5
R6	1		6
R7	1		7
R8	1		8
R9	1		9
R10	1		10
R11	1		11

Register Alias Table

Initially:

- 1. RS's are all Invalid (Empty)
- 2. All Registers are Valid

RS for ADD Unit

	Source 1			Source 2		
	V	Tag	Value	V Tag Va		Value
а						
b						
С						
d						

RS for MUL Unit

		Source 1			Source 2		
		V	Tag	Value	٧	Tag	Value
_	х						
	у						
	Z						
	t						

ADD and MUL Execution Units

Cycle

MUL	R1,	R2	\rightarrow	R3
ADD	R3,	R4	\rightarrow	R5
ADD	R2,	R6	\rightarrow	R7
ADD	R8,	R9	\rightarrow	R10
MUL	R7,	R10	\rightarrow	R11
ADD	R5,	R11	\rightarrow	R5

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		3
R4	1		4
R5	1		5
R6	1		6
R7	1		7
R8	1		8
R9	1		9
R10	1		10
R11	1		11

	Source 1			Source 2		
	V	Tag	Value	٧	Tag	Value
а						
b						
С						
d						

		Source	1	Source 2		
	V Tag Value		V	Tag	Value	
х						
У						
z						
t	·					

Cycle 1

MUL R1, R2 → R3

ADD R3, R4 → R5

ADD R2, R6 → R7

ADD R8, R9 → R10

MUL R7, R10 → R11

ADD R5, R11 → R5

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		3
R4	1		4
R5	1		5
R6	1		6
R7	1		7
R8	1		8
R9	1		9
R10	1		10
R11	1		11

		Source	1	Source 2		
	V Tag Value		٧	Tag	Value	
а						
b						
С						
d						

		Source	1	Source 2		
	V	Tag	Value	V	Tag	Value
х						
У						
z						
t	·					

MUL gets decoded and allocated into RS x

Step 1: Check if reservation station available. Yes: x

Step 2: Access the Register Alias Table

Step 3: Put source registers into reservation station x.

Step 4: Rename destination register R3 → x

R3 is now renamed to x.

Its new value will produced by the *reservation station* that is identified by tag x.

	Cycle 1	2
MUL	R1, R2 \rightarrow R3 F	D
ADD	F3, R4 → R5	F
ADD	R2, R6 → R7	
ADD	R8, R9 /→ R10	
MUL	$R7$, $R10 \rightarrow R11$	
ADD	R5, R11 \rightarrow R5	
	/	

Reg	ster	Valid	Tag	Value
R	1 /	1		1 =
R	2	1		2 -
R	3	0	X	
R	4	1		4
R	5	1		5
R	6	1		6
R	7	1		7
R	8	1		8
R	9	1		9
R10		1		10
R:	l1	1		11

9	Source	1	Source 2		
V Tag Value		٧	Tag	Value	
			V Tag Value		

			Source	1	Source 2			
		V	Tag	Value	V	Tag	Value	
	х		2			2		
	у							
Ī	Z							
	t							

MUL in RS x is ready to execute in the next cycle!

1. MUL in RS x starts executing

2. ADD gets decoded and allocated into RS a

D

F

Check readiness (Both sources ready?) → Wakeup

Ready → Dispatch the instruction to the MUL unit

Same Steps 1-4 for ADD... Rename R5 → a

Source 1

MUL R1, R2 R3 ADD R3, R4 \rightarrow R5 R2, R6 **R7** ADD ADD R8, R9 R10 MUL R7, R10 /→ R11 ADD R5, R11 \rightarrow

Register	Valid	Tag	Value	
R1	1		1	
R2	1		2	
R3	0	X	•	
R4	1		4	
R5	0	a		
R6	1		6	
R7	1		7	
R8	1		8	
R9	1		9	

1

1

10

11

R10

R11

Source 2

ADD in RS a cannot execute in the next cycle: one source is not valid

MUL R1, R2

ADD R3, R4

ADD

ADD

MUL

ADD

R2, R6

R8, R9

Cycle 1 2 3 4 \rightarrow R3 F D E₁ E₂

→ R5

→ R7

→ R10

R7, R10 \rightarrow R11

R5, R11 \rightarrow R5

F D E₁ E₂
F D -

ADD in RS a waits because one source is not valid.

Rename R7 → b

Register	Valid	Tag	Value
R1	1		1
R2	1		2 -
R3	0	Х	
R4	1		4
R5	0	а	
R6	1		6 -
R7	0	b	
R8	1		8
R9	1		9
R10	1		10
R11	1		11

П			. ♥			
		Source	Source 2			
	V	Tag	Value	٧	Tag	Value
а	0	Х		1	2	4
b		2			2	
С						
d						

T	/

			Source	1	Source 2			
		V	Tag	Value	V	Tag	Value	
_	х	1	2	1	1	2	2	
	у							
	Z							
	t							

ADD in RS b is ready to execute in the next cycle!

It will be executed out of order in the next cycle.

				Cycle	1
MUL	R1,	R2	\rightarrow	R3	F
ADD	R3,	R4	\rightarrow	R5	
ADD	R2,	R6	\rightarrow	R7	
ADD	R8,	R9	\rightarrow	R10	
MUL	R7,	R10	\rightarrow	R11	
ADD	R5,	R11	\rightarrow	R5	

F	D	E_1	E_2	E_3
	F	D	-	-
		F	D	E_1
			F	D
				F

2 3

4

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	0	х	
R4	1		4
R5	0	а	
R6	1		6
R7	0	b	
R8	1		8
R9	1		9
R10	0	С	
R11	1		11

		Source 1			Source 2				
		V	Tag	Value		V	Tag	Value	
	a	0	Х			1	2	4	
	b	1	~	2	2	1	~	6	
	;	1	~	8	}	1	~	9	\neg
	1								\neg
+ © 4 Cycles									

	Source 1			Source 2			
	V	Tag	Value	V	Tag	Value	
х	1	2	1	1	2	2	
У							
Z							
t							

ADD in RS c is ready to execute in the next cycle!

MUL	R1,	R2	\rightarrow	R3
ADD	R3,	R4	\rightarrow	R5
ADD	R2,	R6	\rightarrow	R7
ADD	R8,	R9	\rightarrow	R10

MUL R7, R10 \rightarrow R11 ADD R5, R11 \rightarrow R5

F	D	E ₁	E_2	E ₃	E_4
	F	D	-	-	-
		F	D	E_1	E_2
			F	D	E_1
				F	D
					F

Cycle 1 2 3 4 5 6

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	0	Х	
R4	1		4
R5	0	а	
R6	1		6
R7	0	b	
R8	1		8
R9	1		9
R10	0	С	
R11	0	у	

		Source	1	Source 2							
	V	Tag	Value	٧	Tag Va						
а	0	х		1	2	4					
b	1	~ 2		1	~	6					
С	1	~	8	1	2	9					
d											

		Source	1		Source 2					
	V	Tag	Value	V	Tag	Value				
х	1	2	1	1	2	2				
У	0	b		0	С					
z										
t										

Note what happened to R5!

Cycle	1	2	3	4	5	6	7

MUL	R1,	R2	\rightarrow	R3
ADD	R3,	R4	\rightarrow	R5
ADD	R2,	R6	\rightarrow	R7
ADD	R8,	R9	\rightarrow	R10
MUL	R7,	R10	\rightarrow	R11
ADD	R5,	R11	\rightarrow	R5

D	E ₁	E ₂	E ₃	E_4	E ₅
F	D	-	-	-	-
	F	D	E_1	E_2	E ₃
		F	D	E_1	E_2
			F	D	-
				F	D
		F D	F D -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	0	Х	
R4	1		4
R5	0	d	
R6	1		6
R7	0	b	
R8	1		8
R9	1		9
R10	0	С	
R11	0	у	

		Source	1	Source 2						
	V	Tag	Value	٧	Tag	Value				
а	0	Х		1	2	4				
b	1	2	~ 2 1		2	6				
С	1	~	8	2	9					
d	0	a		0	у					

		9	Source	1	Source 2					
		V	Tag Value		V	Tag	Value			
×	(1	2	1	1	~	2			
	/	0	b		0	С				
Z	,									
t										

Cycle 8 (First Slide)

Cycle 8 (Second Slide)

Register	Valid	Tag	V	/a ue	9				6 -		. 4											. 1] ,			
R1	1						-			urc					ourc			-	-		Sourc				Sou <mark>r</mark> c	
R2	1			1			Г	V	_	Tag	V	alue		-	Tag		Value	1	F	V	T <mark>a</mark> g	Va T	lue	V	Ta <mark>g</mark>	Value
R3	1			1		_	а	1		<u> </u>		2	1	_	^,	1	4		х	1	~	_	1	1	1	2
R4	1			4	1	_	b	1	\perp	<u>۰</u>		2	1		۰,	1	6	_	У	1	<u> </u>	4	8	0	¢	
R5	0	d				_	4	1	_	∼		8	1	+	۰,	1	9		z							
R6	1			6		_	4	0		a		_	0		Ŋ <u>'</u>		\perp		t		Щ		Ш		Ц	
R7	1			8			L				1	Ь		Г	_						•		v			
R8	1			8					7							7					$\overline{}$					7
R9	1			9								4	-		/								*	•		,
R10	0	C								`	_	I			•							_				
R11	0	y									П	b	8													
				Į							L'															

Cycle 8 (Third Slide)

Cycle 1 2 3 4 5 6 7 8

MUL	R1,	R2	\rightarrow	R3
ADD	R3,	R4	\rightarrow	R5
ADD	R2,	R6	\rightarrow	R7
ADD	R8,	R9	\rightarrow	R10
MUL	R7,	R10	\rightarrow	R11
ADD	R5,	R11	\rightarrow	R5

=	D	E_1	E_2	E_3	E_4	E_{5}	E_6
	F	D	-	-	-	-	-
		F	D	E_1	E_2	E_3	E_4
			F	D	E_1	E_2	E_3
				F	D	-	-
					F	D	-

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		2
R4	1		4
R5	0	d	
R6	1		6
R7	1		8
R8	1		8
R9	1		9
R10	0	С	
R11	0	у	

		Source	1	Source 2			
	V	Tag	Value	V	Tag	Value	
а	1	2	2	1	2	4	
b	1	2	2	1	2	6	
С	1	2	8	1	2	9	
d	0	a		0	у		

		Source	1	Source 2			
	V Tag Value			V	Tag	Value	
х	1	2	1	1	2	2	
У	1	2	8	0	С		
z							
t							

MUL R1, R2 \rightarrow R3 ADD R3, R4 \rightarrow R5 ADD R2, R6 \rightarrow R7 ADD R8, R9 \rightarrow R10 MUL R7, R10 \rightarrow R11

ADD R5, R11 \rightarrow R5

Cycle 1 2 3

F	D	E_1	E_2	E_3	E_4	E ₅	E_6	W
	F	D	-	-	-	-	-	E_1
		F	D	E_1	E_2	E_3	E_4	W
			F	D	E_1	E_2	E_3	E_4
				F	D	-	-	-
					F	D	-	-

4 5

6

7

8

9

Broadcast and Update

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		2
R4	1		4
R5	0	d	
R6	1		6
R7	1		8
R8	1		8
R9	1		9
R10	1		17
R11	0	у	

		Source	1	,	Source	2
	V Tag Value			٧	Tag	Value
а	1	~	2	1	2	4
b	1	~	2	1	2	6
С	1	~	8	1	2	9
d	0	a		0	у	

		Source	1	Source 2			
	V Tag Value			V	Tag	Value	
х	1	2	1	1	2	2	
У	1	2	8	1	2	17	
Z							
t							

MUL in RS y is ready to execute in the next cycle!

MUL	R1,	R2	\rightarrow	R3
ADD	R3,	R4	\rightarrow	R5
ADD	R2,	R6	\rightarrow	R7
ADD	R8,	R9	\rightarrow	R10
MUL	R7,	R10	\rightarrow	R11
ADD	R5.	R11	\rightarrow	R5

	,		_
	_		
Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		2
R4	1		4
R5	0	d	
R6	1		6
R7	1		8
R8	1		8
R9	1		9

1

0

R10

R11

17

F	D	E_1	E_2	E_3	E_4	E ₅	E_6	W	
	F	D	-	-	-	-	-	E_1	E_2
		F	D	E_1	E_2	E_3	E_4	W	
			F	D	E_1	E_2	E_3	E_4	W
				F	D	-	-	-	E_1
					F	D	-	-	-

Cycle 1 2 3 4 5 6 7 8 9 10

		Source	1	Source 2			
	V	V Tag Value		V	Tag	Value	
а	1	~	2	1	2	4	
b	1	~	2	1	~	6	
С	1	~	8	1	2	9	
d	0	а		0	У	·	

		Source	1	Source 2			
	V Tag Value		V	Tag	Value		
х	1	2	1	1	2	2	
У	1	2	8	1	2	17	
z							
t							

MUL R1, R2 \rightarrow R3 ADD R3, R4 \rightarrow R5 ADD R2, R6 \rightarrow R7 ADD R8, R9 \rightarrow R10 MUL R7, R10 \rightarrow R11 ADD R5, R11 \rightarrow R5

F	D	E ₁	E_2	E_3	E_4	E ₅	E_6	W		
	F	D	-	-	-	-	-	E_1	E_2	E ₃
		F	D	E_1	E_2	E_3	E_4	W		
			F	D	E_1	E_2	E_3	E_4	W	
				F	D	-	-	-	E_1	E_2
					F	D	-	-	-	-

Cycle 1 2 3 4 5 6 7 8 9 10 11

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		2
R4	1		4
R5	0	d	
R6	1		6
R7	1		8
R8	1		8
R9	1		9
R10	1		17
R11	0	у	

		Source	1	Source 2			
	V	Tag Value		٧	Tag	Value	
а	1	~ 2		1	2	4	
b	1	~ 2		1	2	6	
С	1	2	8	1	2	9	
d	0	a	а		У		

		Source	1	Source 2			
	V Tag Valu		Value	V	Value		
х	1	2	1	1	2	2	
у	1	2	8	1	2	17	
Z							
t							

Cycle 1 2 3 4 5 6 7 8 9 10 11 12

MUL R1, R2 \rightarrow R3 ADD R3, R4 \rightarrow R5 ADD R2, R6 \rightarrow R7 ADD R8, R9 \rightarrow R10 MUL R7, R10 \rightarrow R11 ADD R5, R11 \rightarrow R5 **Broadcast and Update**

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		2
R4	1		4
R5	0	d	
R6	1		6
R7	1		8
R8	1		8
R9	1		9
R10	1		17
R11	0	у	

		Source	1	Source 2			
	V	Tag Value		٧	Tag	Value	
а	1	L ~ 2		1	2	4	
b	1	~ 2		1	2	6	
С	1	2	8	1	2	9	
d	1	2	6	0	у		

		Source	1	Source 2			
	V Tag Value			V	Tag	Value	
х	1	2	1	1	2	2	
У	1	2	8	1	2	17	
Z							
t							

MUL	R1,	R2	\rightarrow	R3
ADD	R3,	R4	\rightarrow	R5
ADD	R2,	R6	\rightarrow	R7
ADD	R8,	R9	\rightarrow	R10
MUL	R7,	R10	\rightarrow	R11
ADD	R5.	R11	\rightarrow	R5

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		2
R4	1		4
R5	0	d	
R6	1		6
R7	1		8
R8	1		8
R9	1		9
R10	1		17
R11	0	у	

F	D	E_1	E_2	E_3	E_4	E_5	E_6	W				
	F	D	-	-	-	-	-	E_1	E_2	E_3	E_4	W
		F	D	E_1	E_2	E_3	E_4	W				
			F	D	E_1	E_2	E_3	E_4	W			
				F	D	-	-	-	E_1	E_2	E_3	E_4
					F	D	-	-	-	-	-	-

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13

		Source	1	,	Source 2			
	V	Tag	Value	٧	Tag	Value		
а	1	2	2	1	2	4		
b	1	2	2	1	2	6		
С	1	~	8	1	2	9		
d	1	2	6	0	у			

		Source	1	Source 2			
	V	Tag	Value	V	Tag	Value	
х	1	2	1	1	2	2	
У	1	2	8	1	2	17	
z							
t							

MUL R1, R2 \rightarrow R3 ADD R3, R4 \rightarrow R5 ADD R2, R6 \rightarrow R7 ADD R8, R9 \rightarrow R10 MUL R7, R10 \rightarrow R11 ADD R5, R11 \rightarrow R5

F	D	E_1	E_2	E_3	E_4	E ₅	E_6	W					
	F	D	-	-	-	-	-	E_1	E_2	E_3	E_4	W	
		F	D	E_1	E_2	E_3	E_4	W					
			F	D	E_1	E_2	E_3	E_4	W				
				F	D	-	-	-	E_1	E_2	E_3	E_4	E ₅
					F	D	-	-	-	-	-	-	-

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		2
R4	1		4
R5	0	d	
R6	1		6
R7	1		8
R8	1		8
R9	1		9
R10	1		17
R11	0	у	

		Source	1	,	Source 2		
	V	Tag	Value	٧	Tag	Value	
а	1	2	2	1	2	4	
b	1	2	2	1	2	6	
С	1	2	8	1	2	9	
d	1	~	6	0	у		

		Source	1	Source 2			
	V	Tag	Value	V	Tag	Value	
х	1	2	1	1	2	2	
У	1	2	8	1	2	17	
Z							
t							

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MUL	R1,	R2	\rightarrow	R3
ADD	R3,	R4	\rightarrow	R5
ADD	R2,	R6	\rightarrow	R7
ADD	R8,	R9	\rightarrow	R10
MUL	R7,	R10	\rightarrow	R11
ADD	R5,	R11	\rightarrow	R5

F	D	E_1	E_2	E_3	E_4	E_{5}	E_6	W						
	F	D	-	-	-	-	-	E_1	E_2	E_3	E_4	W		
		F	D	E_1	E_2	E_3	E_4	W						
			F	D	E_1	E_2	E_3	E_4	W					
				F	D	-	-	-	E_1	E_2	E_3	E_4	E_5	E
					F	D	_	-	-	-	-	-	-	_

Broadcast and	
Update	

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		2
R4	1		4
R5	0	d	
R6	1		6
R7	1		8
R8	1		8
R9	1		9
R10	1		17
R11	1		136

		Source	1	Source 2			
	V	Tag	Value	V	Tag	Value	
а	1	2	2	1	2	4	
b	1	~	2	1	~	6	
С	1	~	8	1	2	9	
d	1	2	6	1	2	136	

+	

		Source	1	,	Source	2		
	V	Tag	Value	>	Tag	Value		
х	1	2	1	l 1 ~				
У	1	2	8	1	~	17		
Z								
t						·		

ADD in RS d is ready to execute in the next cycle!

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ADD R3, R4 \rightarrow R5 ADD R2, R6 \rightarrow R7 ADD R8, R9 \rightarrow R10 MUL R7, R10 \rightarrow R11	MUL	R1,	R2	\rightarrow	R3
ADD R8, R9 \rightarrow R10 MUL R7, R10 \rightarrow R11	ADD	R3,	R4	\rightarrow	R5
MUL R7, R10 → R11	ADD	R2,	R6	\rightarrow	R7
-	ADD	R8,	R9	\rightarrow	R10
_	MUL	R7,	R10	\rightarrow	R11
ADD R5, R11 → R5	ADD	R5,	R11	\rightarrow	R5

F	D	E_1	E_2	E_3	E_4	E ₅	E_6	W							
	F	D	-	-	-	-	-	E_1	E_2	E_3	E_4	W			
		F	D	E_1	E_2	E_3	E_4	W							
			F	D	E_1	E_2	E_3	E_4	W						
				F	D	-	-	-	E_1	E_2	E_3	E_4	E_5	E_6	W
					F	D	-	-	-	-	-	-	-	-	E_1

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		2
R4	1		4
R5	0	d	
R6	1		6
R7	1		8
R8	1		8
R9	1		9
R10	1		17
R11	1		136

		Source	1	,	Source	2 Value 4 6 9 136	
	V	Tag	Value	٧	Tag	Value	
а	1	~	2	1	2	4	
b	1	~	2	1	2	6	
С	1	~	8	1	2	9	
d	1	~	6	1	2	136	

		Source	1		Source	2
	V	Tag	Value	V	Tag	Value
х	1	2	1	1	2	2
У	1	2	8	1	2	17
Z						
t						

MUL R1, R2 \rightarrow R3 ADD R3, R4 \rightarrow R5 ADD R2, R6 \rightarrow R7 ADD R8, R9 \rightarrow R10 MUL R7, R10 \rightarrow R11 ADD R5, R11 \rightarrow R5

F	D	E_1	E_2	E_3	E_4	E_5	E_6	W								
	F	D	-	-	-	-	-	E_1	E_2	E_3	E_4	W				
		F	D	E_1	E_2	E_3	E_4	W								
			F	D	E_1	E_2	E_3	E_4	W							
				F	D	-	-	-	E_1	E_2	E_3	E_4	E_{5}	E_6	W	
					F	D	-	-	-	-	-	-	-	-	E_1	E

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		2
R4	1		4
R5	0	d	
R6	1		6
R7	1		8
R8	1		8
R9	1		9
R10	1		17
R11	1		136

		Source	1	,	Source	2
	V	Tag	Value	٧	Tag	Value
а	1	2	2	1	2	4
b	1	2	2	1	2	6
С	1	~	8	1	2	9
d	1	2	6	1	2	136

		Source	1	!	Source	2			
	V	Tag	Value	V	Tag	Value 2 17			
х	1	2	1	1	2	2			
у	1	2	8	1	~	17			
Z									
t									

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

MUL	R1,	R2	\rightarrow	R3
ADD	R3,	R4	\rightarrow	R5
ADD	R2,	R6	\rightarrow	R7
ADD	R8,	R9	\rightarrow	R10
MUL	R7,	R10	\rightarrow	R11
ADD	R5,	R11	\rightarrow	R5

F	D	E_1	E_2	E_3	E_4	E_5	E_6	W									
	F	D	-	-	-	-	-	E_1	E_2	E_3	E_4	W					
		F	D	E_1	E_2	E_3	E_4	W									
			F	D	E_1	E_2	E_3	E_4	W								
				F	D	-	-	-	E_1	E_2	E_3	E_4	E_5	E_6	W		
					F	D	-	-	-	-	-	-	-	-	E_1	E_2	E ₃

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		2
R4	1		4
R5	0	d	
R6	1		6
R7	1		8
R8	1		8
R9	1		9
R10	1		17
R11	1		136

		Source	1	Source 2			
	V	Tag	Value	٧	Tag	Value	
а	1	2	2	1	2	4	
b	1	2	2	1	2	6	
С	1	~	8	1	2	9	
d	1	2	6	1	2	136	

		Source	1	Source 2				
	V	Tag	Value	V	Tag	Value		
х	1	2	1	1	~	2		
у	1	2	8	1	~	17		
Z								
t								

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R1,	R2	\rightarrow	R3
R3,	R4	\rightarrow	R5
R2,	R6	\rightarrow	R7
R8,	R9	\rightarrow	R10
R7,	R10	\rightarrow	R11
R5,	R11	\rightarrow	R5
	R3, R2, R8, R7,	R3, R4 R2, R6 R8, R9 R7, R10	R1, R2 \rightarrow R3, R4 \rightarrow R2, R6 \rightarrow R8, R9 \rightarrow R7, R10 \rightarrow R5, R11 \rightarrow

F	D	E ₁	E ₂	E ₃	E_4	E ₅	E_6	W										
	F	D	-	-	-	-	-	E_1	E_2	E_3	E_4	W						
		F	D	E_1	E_2	E_3	E_4	W										
			F	D	E_1	E_2	E_3	E_4	W									
				F	D									E_6				
					F	D	-	-	-	-	-	-	-	-	E_1	E_2	E_3	E ₄

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		2
R4	1		4
R5	1		142
R6	1		6
R7	1		8
R8	1		8
R9	1		9
R10	1		17
R11	1		136

		Source	1	Source 2			
	V	Tag	Value	V	Tag	Value	
а	1	~	2	1	2	4	
b	1	~	2	1	~	6	
С	1	~	8	1	2	9	
d	1	~	6	1	2	136	

•	+	
d	14	 2

		Source	1	Source 2				
	V	Tag	Value	V	Tag	Value		
Х	1	2	1	1	~	2		
У	1	2	8	1	~	17		
Z								
t								

Broadcast and Update

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

MUL	R1,	R2	\rightarrow	R3
ADD	R3,	R4	\rightarrow	R5
ADD	R2,	R6	\rightarrow	R7
ADD	R8,	R9	\rightarrow	R10
MUL	R7,	R10	\rightarrow	R11
ADD	R5,	R11	\rightarrow	R5

F	D	E_1	E_2	E_3	E_4	E ₅	E_6	W											
	F	D	-	-	-	-	-	E_1	E_2	E_3	E_4	W							
		F	D	E_1	E_2	E_3	E_4	W											
			F	D	E_1	E_2	E_3	E_4	W										
				F	D	-	-	-	E_1	E_2	E_3	E_4	E_{5}	E_6	W				
					F	D	-	-	-	-	-	-	-	-	E_1	E_2	E_3	E_4	W

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	1		2
R4	1		4
R5	1		142
R6	1		6
R7	1		8
R8	1		8
R9	1		9
R10	1		17
R11	1		136

	Source 1			9	Source	2
	V	Tag	Value	٧	Tag	Value
а	1	2	2	1	2	4
b	1	~	2	1	2	6
С	1	~	8	1	2	9
d	1	~	6	1	2	136

		Source	Source 2			
	V Tag Value			V	Tag	Value
х	1	2	1	1	~	2
У	1	2	8	1	~	17
Z						
t						

Some Questions

- What is needed in hardware to perform tag broadcast and value capture?
 - → make a value valid
 - → wake up an instruction
- Does the tag have to be the ID of the Reservation Station Entry?
- What can potentially become the critical path?
 - □ Tag broadcast → value capture → instruction wake up
- How can you reduce the potential critical paths?

Dataflow Graph for Our Example

```
MUL R3 \leftarrow R1, R2

ADD R5 \leftarrow R3, R4

ADD R7 \leftarrow R2, R6

ADD R10 \leftarrow R8, R9

MUL R11 \leftarrow R7, R10

ADD R5 \leftarrow R5, R11
```

State of RAT and RS in Cycle 7

State of RAT and RS in Cycle 7

Cycle 1 2 3 4 5 6

MUL	R1,	R2	\rightarrow	R3
ADD	R3,	R4	\rightarrow	R5
ADD	R2,	R6	\rightarrow	R7
ADD	R8,	R9	\rightarrow	R10
MUL	R7,	R10	\rightarrow	R11
ADD	R5,	R11	\rightarrow	R5

F	D	E ₁	E_2	E ₃	E_4	E ₅
	F	D	-	-	-	-
		F	D	E_1	E_2	E ₃
			F	D	E_1	E_2
				F	D	-
					F	D

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	0	Х	
R4	1		4
R5	0	d	
R6	1		6
R7	0	b	
R8	1		8
R9	1		9
R10	0	С	
R11	0	у	

		Source	1		Source	2
	V Tag Value			٧	Tag	Value
а	0	х		1	~	4
b	1	~	2	1	~	6
С	1	~	8	1	~	9
d	0	a		0	у	

	9	Source	1	Source 2		
	V Tag Value			V	Tag	Value
х	1	2	1	1	~	2
У	0	b		0	С	
Z						
t						

Corresponding Dataflow Graph (Reverse Engineered)

Some More Questions (Design Choices)

- When is a reservation station entry deallocated?
- Should the reservation stations be dedicated to each functional unit or global across functional units?
 - Centralized vs. Distributed: What are the tradeoffs?
- Should reservation stations and ROB store data values or should there be a centralized physical register file where all data values are stored?
 - What are the tradeoffs?
- Timing: Exactly when does an instruction broadcast its tag?
- Many other design choices for OoO engines

For You: An Exercise, w/ Precise Exceptions

```
MUL R3 \leftarrow R1, R2

ADD R5 \leftarrow R3, R4

ADD R7 \leftarrow R2, R6

ADD R10 \leftarrow R8, R9

MUL R11 \leftarrow R7, R10

ADD R5 \leftarrow R5, R11
```


- Assume ADD (4 cycle execute), MUL (6 cycle execute)
- Assume one adder and one multiplier
- How many cycles
 - in a non-pipelined machine
 - in an in-order-dispatch pipelined machine with reorder buffer (no forwarding and full forwarding)
 - in an out-of-order dispatch pipelined machine with reorder buffer (full forwarding)

Out-of-Order Execution with Precise Exceptions

- Idea: Use a reorder buffer to reorder instructions before committing them to architectural state
- An instruction updates the RAT when it completes execution
 - Also called frontend register file
- An instruction updates a separate architectural register file when it retires
 - i.e., when it is the oldest in the machine and has completed execution
 - In other words, the architectural register file is always updated in program order
- On an exception: flush pipeline, copy architectural register file into frontend register file

Out-of-Order Execution with Precise Exceptions

- in order out of order
- Hump 1: Reservation stations (scheduling window)
- Hump 2: Reordering (reorder buffer, aka instruction window or active window)

Two Humps in a Modern Pipeline

Modern OoO Execution w/ Precise Exceptions

- Most modern processors use the following
- Reorder buffer to support in-order retirement of instructions
- A single register file to store all registers
 - Both speculative and architectural registers
 - INT and FP are still separate
- Two register maps
 - □ Future/frontend register map → used for renaming
 - □ Architectural register map → used for maintaining precise state

An Example from Modern Processors

Boggs et al., "The Microarchitecture of the Pentium 4 Processor," Intel Technology Journal, 2001.

Enabling OoO Execution, Revisited

- 1. Link the consumer of a value to the producer
 - Register renaming: Associate a "tag" with each data value
- 2. Buffer instructions until they are ready
 - Insert instruction into reservation stations after renaming
- 3. Keep track of readiness of source values of an instruction
 - Broadcast the "tag" when the value is produced
 - Instructions compare their "source tags" to the broadcast tag
 → if match, source value becomes ready
- 4. When all source values of an instruction are ready, dispatch the instruction to functional unit (FU)
 - Wakeup and select/schedule the instruction

Summary of OOO Execution Concepts

- Register renaming eliminates false dependences, enables linking of producer to consumers
- Buffering in reservation stations enables the pipeline to move for independent instructions
- Tag broadcast enables communication (of readiness of produced value) between instructions
- Wakeup and select enables out-of-order dispatch

OOO Execution: Restricted Dataflow

- An out-of-order engine dynamically builds the dataflow graph of a piece of the program
 - which piece?
- The dataflow graph is limited to the instruction window
 - Instruction window: all decoded but not yet retired instructions
- Can we do it for the whole program?
- Why would we like to?
- In other words, how can we have a large instruction window?
- Can we do it efficiently with Tomasulo's algorithm?

Recall: Dataflow Graph for Our Example

```
MUL R3 \leftarrow R1, R2

ADD R5 \leftarrow R3, R4

ADD R7 \leftarrow R2, R6

ADD R10 \leftarrow R8, R9

MUL R11 \leftarrow R7, R10

ADD R5 \leftarrow R5, R11
```

Recall: State of RAT and RS in Cycle 7

Recall: State of RAT and RS in Cycle 7

				Cycle	1	2	3
MUL	R1,	R2	\rightarrow	R3	F	D	E_1
ADD	R3,	R4	\rightarrow	R5		F	D
ADD	R2,	R6	\rightarrow	R7			F
ADD	R8,	R9	\rightarrow	R10			
MUL	R7,	R10	\rightarrow	R11			
ADD	R5,	R11	\rightarrow	R5			

F	D	E_1	E_2	E_3	E_4	E ₅
	F	D	-	-	-	-
		F	D	E_1	E_2	E ₃
			F	D	E_1	E_2
				F	D	-
					F	D

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	0	Х	
R4	1		4
R5	0	d	
R6	1		6
R7	0	b	
R8	1		8
R9	1		9
R10	0	С	
R11	0	у	

	Source 1				Source	2
	V	Tag	Value	٧	Tag	Value
а	0	Х		1	2	4
b	1	~	2	1	~	6
С	1	~	8	1	2	9
d	0	a		0	у	

		Source	Source 2			
	V	V Tag Value			Tag	Value
х	1	2	1	1	2	2
У	0	b		0	С	
z						
t						

Recall: Dataflow Graph

Questions to Ponder

- Why is OoO execution beneficial?
 - What if all operations take a single cycle?
 - Latency tolerance: OoO execution tolerates the latency of multi-cycle operations by executing independent operations concurrently
- What if an instruction takes 1000 cycles?
 - How large of an instruction window do we need to continue decoding?
 - How many cycles of latency can OoO tolerate?
 - What limits the latency tolerance scalability of Tomasulo's algorithm?
 - Instruction window size: how many decoded but not yet retired instructions you can keep in the machine.

General Organization of an OOO Processor

Smith and Sohi, "The Microarchitecture of Superscalar Processors," Proc. IEEE, Dec. 1995.

A Modern OoO Design: Intel Pentium 4

Figure 4: Pentium® 4 processor microarchitecture

Boggs et al., "The Microarchitecture of the Pentium 4 Processor," Intel Technology Journal, 2001.

Intel Pentium 4 Simplified

Alpha 21264

Figure 2. Stages of the Alpha 21264 instruction pipeline.

MIPS R10000

IBM POWER4

Tendler et al.,
 "POWER4 system microarchitecture,"
 IBM J R&D, 2002.

IBM POWER4

- 2 cores, out-of-order execution
- 100-entry instruction window in each core
- 8-wide instruction fetch, issue, execute
- Large, local+global hybrid branch predictor
- 1.5MB, 8-way L2 cache
- Aggressive stream based prefetching

IBM POWER5

 Kalla et al., "IBM Power5 Chip: A Dual-Core Multithreaded Processor," IEEE Micro 2004.

Figure 4. Power5 instruction data flow (BXU = branch execution unit and CRL = condition register logical execution unit).

Handling Out-of-Order Execution of Loads and Stores

Registers versus Memory

- So far, we considered mainly registers as part of state
- What about memory?
- What are the fundamental differences between registers and memory?
 - Register dependences known statically memory dependences determined dynamically
 - Register state is small memory state is large
 - Register state is not visible to other threads/processors memory state is shared between threads/processors (in a shared memory multiprocessor)

Memory Dependence Handling (I)

- Need to obey memory dependences in an out-of-order machine
 - and need to do so while providing high performance
- Observation and Problem: Memory address is not known until a load/store executes
- Corollary 1: Renaming memory addresses is difficult
- Corollary 2: Determining dependence or independence of loads/stores has to be handled after their (partial) execution
- Corollary 3: When a load/store has its address ready, there may be older/younger stores/loads with unknown addresses in the machine

Memory Dependence Handling (II)

- When do you schedule a load instruction in an OOO engine?
 - Problem: A younger load can have its address ready before an older store's address is known
 - Known as the memory disambiguation problem or the unknown address problem

Approaches

- Conservative: Stall the load until all previous stores have computed their addresses (or even retired from the machine)
- Aggressive: Assume load is independent of unknown-address stores and schedule the load right away
- Intelligent: Predict (with a more sophisticated predictor) if the load is dependent on any unknown address store

Handling of Store-Load Dependences

- A load's dependence status is not known until all previous store addresses are available.
- How does the OOO engine detect dependence of a load instruction on a previous store?
 - Option 1: Wait until all previous stores committed (no need to check for address match)
 - Option 2: Keep a list of pending stores in a store buffer and check whether load address matches a previous store address
- How does the OOO engine treat the scheduling of a load instruction wrt previous stores?
 - Option 1: Assume load dependent on all previous stores
 - Option 2: Assume load independent of all previous stores
 - Option 3: Predict the dependence of a load on an outstanding store

Memory Disambiguation (I)

- Option 1: Assume load is dependent on all previous stores
 - + No need for recovery
 - -- Too conservative: delays independent loads unnecessarily
- Option 2: Assume load is independent of all previous stores
 - + Simple and can be common case: no delay for independent loads
 - -- Requires recovery and re-execution of load and dependents on misprediction
- Option 3: Predict the dependence of a load on an outstanding store
 - + More accurate. Load store dependences persist over time
 - -- Still requires recovery/re-execution on misprediction
 - Alpha 21264: Initially assume load independent, delay loads found to be dependent
 - Moshovos et al., "Dynamic speculation and synchronization of data dependences," ISCA 1997.
 - Chrysos and Emer, "Memory Dependence Prediction Using Store Sets," ISCA 1998.

Memory Disambiguation (II)

 Chrysos and Emer, "Memory Dependence Prediction Using Store Sets," ISCA 1998.

- Predicting store-load dependences important for performance
- Simple predictors (based on past history) can achieve most of the potential performance

Data Forwarding Between Stores and Loads

- We cannot update memory out of program order
 - → Need to buffer all store and load instructions in instruction window
- Even if we know all addresses of past stores when we generate the address of a load, two questions still remain:
 - 1. How do we check whether or not it is dependent on a store
 - 2. How do we forward data to the load if it is dependent on a store
- Modern processors use a LQ (load queue) and a SQ for this
 - Can be combined or separate between loads and stores
 - A load searches the SQ after it computes its address. Why?
 - A store searches the LQ after it computes its address. Why?

Out-of-Order Completion of Memory Ops

- When a store instruction finishes execution, it writes its address and data in its reorder buffer entry (or SQ entry)
- When a later load instruction generates its address, it:
 - searches the SQ with its address
 - accesses memory with its address
 - receives the value from the youngest older instruction that wrote to that address (either from ROB or memory)
- This is a complicated "search logic" implemented as a Content Addressable Memory
 - Content is "memory address" (but also need size and age)
 - Called store-to-load forwarding logic

Store-Load Forwarding Complexity

- Content Addressable Search (based on Load Address)
- Range Search (based on Address and Size of both the Load and earlier Stores)
- Age-Based Search (for last written values)
- Load data can come from a combination of multiple places
 - One or more stores in the Store Buffer (SQ)
 - Memory/cache

Digital Design & Computer Arch.

Lecture 15b: Out-of-Order Execution

Prof. Onur Mutlu

ETH Zürich
Spring 2021
23 April 2021

Digital Design & Computer Arch.

Lecture 15c: Dataflow & Superscalar Execution

Prof. Onur Mutlu

ETH Zürich
Spring 2020
23 April 2020

Agenda for Today & Next Few Lectures

- Single-cycle Microarchitectures
- Multi-cycle and Microprogrammed Microarchitectures
- Pipelining
- Issues in Pipelining: Control & Data Dependence Handling,
 State Maintenance and Recovery, ...
- Out-of-Order Execution
- Other Execution Paradigms

Other Approaches to Concurrency (or Instruction Level Parallelism)

Approaches to (Instruction-Level) Concurrency

- Pipelining
- Fine-Grained Multithreading
- Out-of-order Execution
- Dataflow (at the ISA level)
- Superscalar Execution
- VLIW
- SIMD Processing (Vector and array processors, GPUs)
- Decoupled Access Execute
- Systolic Arrays

Review: Data Flow: Exploiting Irregular Parallelism

Recall: OOO Execution: Restricted Dataflow

 An out-of-order engine dynamically builds the dataflow graph of a piece of the program

- The dataflow graph is limited to the instruction window
 - Instruction window: all decoded but not yet retired instructions

- Can we do it for the whole program?
 - In other words, how can we have a large instruction window?
- Can we do it efficiently with Tomasulo's algorithm?

Recall: State of RAT and RS in Cycle 7

 E_5

				Cycle	T	2	3	4	5	6
MUL	R1,	R2	\rightarrow	R3	F	D	E_1	E_2	E_3	E_4
ADD	R3,	R4	\rightarrow	R5		F	D	-	-	-
ADD	R2,	R6	\rightarrow	R7			F	D	E_1	E_2
ADD	R8,	R9	\rightarrow	R10				F	D	E_1
MUL	R7,	R10	\rightarrow	R11					F	D
ADD	R5,	R11	\rightarrow	R5						F

Register	Valid	Tag	Value
R1	1		1
R2	1		2
R3	0	Х	
R4	1		4
R5	0	d	
R6	1		6
R7	0	b	
R8	1		8
R9	1		9
R10	0	С	
R11	0	у	

		Source	1	Source 2			
	V	V Tag Valu		٧	Tag	Value	
а	0	х		1	2	4	
b	1	~	2	1	~	6	
С	1	~	8	1	~	9	
d	0	a		0	у		

			Source	1	Source 2			
	V		Tag Value		٧	Tag	Value	
_	х	1	2	1	1	2	2	
	У	0	b		0	С		
	Z							
	t							

Recall: Dataflow Graph

Data Flow Summary

- Availability of data determines order of execution
- A data flow node fires when its sources are ready
- Programs represented as data flow graphs (of nodes)
- Data Flow at the ISA level has not been (as) successful
- Data Flow implementations at the microarchitecture level (while preserving Von Neumann semantics) have been very successful
 - Out of order execution is the prime example

Pure Data Flow Advantages/Disadvantages

Advantages

- Very good at exploiting irregular parallelism
- Only real dependences constrain processing
- More parallelism can be exposed than Von Neumann model

Disadvantages

- No precise state semantics
 - Debugging very difficult
 - Interrupt/exception handling is difficult (what is precise state semantics?)
- Too much parallelism? (Parallelism control needed)
- High bookkeeping overhead (tag matching, data storage)

...

Approaches to (Instruction-Level) Concurrency

- Pipelining
- Fine-Grained Multithreading
- Out-of-order Execution
- Dataflow (at the ISA level)
- Superscalar Execution
- VLIW
- SIMD Processing (Vector and array processors, GPUs)
- Decoupled Access Execute
- Systolic Arrays

Superscalar Execution

Superscalar Execution

- Idea: Fetch, decode, execute, retire multiple instructions per cycle
 - □ N-wide superscalar → N instructions per cycle
- Need to add the hardware resources for doing so
- Hardware performs the dependence checking between concurrently-fetched instructions
- Superscalar execution and out-of-order execution are orthogonal concepts
 - Can have all four combinations of processors:
 [in-order, out-of-order] x [scalar, superscalar]

In-Order Superscalar Processor Example

- Multiple copies of datapath: Can fetch/decode/execute multiple instructions per cycle
- Dependences make it tricky to issue multiple instructions at once

Here: Ideal IPC = 2

In-Order Superscalar Performance Example

Superscalar Performance with Dependences

Superscalar Execution Tradeoffs

- Advantages
 - Higher IPC (instructions per cycle)

- Disadvantages
 - Higher complexity for dependence checking
 - Require checking within a pipeline stage
 - Renaming becomes more complex in an OoO processor
 - More hardware resources needed

Digital Design & Computer Arch.

Lecture 15c: Dataflow & Superscalar Execution

Prof. Onur Mutlu

ETH Zürich
Spring 2020
23 April 2020