Sinto Project

Quan Xiao 9/20/2019

Tag	DateTime	Length	Base line	Model	Tag	DateTime	Length	Base line	Model
MOLD PUSH OUT RET SINGLE COMP.	8/28/2019 5:46	0	2.5	Single	MOLD PUSH OUT RET SINGLE COMP.	8/28/2019 5:46	0	2.5	HI-MED
CHAPLET SETTING COMPLET ED	8/28/2019 5:46	0	25	Single	CHAPLET SETTING COMPLETE D	8/28/2019 5:46	0	25	HI-MED
COPE PATTERN SPRAY COMP	8/28/2019 5:46	0.409	1	Single	COPE PATTERN SPRAY COMP	8/28/2019 5:46	0.41	1	HI-MED
DRAG PATTERN SPRAY COMP	8/28/2019 5:46	0.515	1	Single	DRAG PATTERN SPRAY COMP	8/28/2019 5:46	0.513	1	HI-MED
INFLATE GATE SEAL COMP	8/28/2019 5:46	0.534	0.5	Single	INFLATE GATE SEAL COMP	8/28/2019 5:46	0.521	0.5	HI-MED
STRIP FLASK DOWN SET COM P	8/28/2019 5:46	0.02	1	Single	STRIP FLASK DOWN SET COM P	8/28/2019 5:46	0.02	0.1	HI-MED
SQUEEZE ADV SET COMP	8/28/2019 5:46	1.201	1.7	Single	SQUEEZE ADV SET COMP	8/28/2019 5:46	1.209	1.5	HI-MED
MOLD PUSH OUT ADV COMP	8/28/2019 5:46	5.928	6.6	Single	MOLD PUSH OUT ADV COMP	8/28/2019 5:46	5.934	6.6	HI-MED
			***					***	
COPE STOPPER OUT COMP	8/28/2019 6:11	0.38	0.5	Single	DRAG FLASK SLD RET COMP	8/28/2019 5:46	1.583	2	HI-MED
DRAG FLASK SLD RET COMP	8/28/2019 6:11	1.591	2	Single	SAND FILL COMP.	8/28/2019 5:46	14.535	15	HI-MED
COPE FLASK LIFTER DWN FO R STRIP COMP	8/28/2019 6:11	1.512	1.5	Single	COPE FLASK LIFTER DWN FO R STRIP COMP	8/28/2019 5:46	1.453	1.5	HI-MED
MOLD RECEIVER UP COMP	8/28/2019 6:11	2.853	2.6	Single	MOLD RECEIVER UP COMP	8/28/2019 5:46	2.854	2.6	HI-MED
STRIP FLASK DOWN STRIP	8/28/2019 6:11	2.012	1.7	Single	STRIP FLASK DOWN STRIP	8/28/2019 5:46	2.011	2	HI-MED
MOLD RECEIVER DOWN COM P	8/28/2019 6:11	1.503	1.2	Single	MOLD RECEIVER DOWN COMP	8/28/2019 5:46	1.451	1.2	HI-MED
CYCLE TIME	8/28/2019 6:11	1515.737	34.5	Single	CYCLE TIME	8/28/2019 5:46	32.836	24.2 5	HI-MED

We can gain several time series according to Tags

The time series plot of Tag 'SQUEEZE MOLD COMP'

Note: The value of this plot is restricted from 0.7 to 1.5.

The first thing we need to is to define a threshold for outliers.

In order to do this, we draw the distribution of each Tag, eg.
Tag 'SQUEEZE MOLD COMP'

• Since $\Pr(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 0.9973$ then we use $\mu + 3\sigma$ to be our threshold. i.e. 1.3 in this Tag.

Related Problems

Problem Set-up

With thresholds for anomalies => the labels => Classification.

Challenges:

- Unbalanced Data: The positively labeled data are less than 1%.
- In this situation, if we still use classification techniques, it's difficult to learn the positive labeled data well.

Anomaly Detection

Unsupervised learning:

- Dataset is extremely unbalanced => only use normal data points to learn the normal patterns and reconstruct them.
- Feed another test data and calculate reconstruction error.
- Large error = Anomaly

Caveat:

 This detection technique can only tell us whether the points are outliers rather than predict them.

Proposed Method

- The pattern before the outlier is clearly different from the patterns before the normal points => Signal
- How to verify?

Problem Setup

Goal: Predict anomaly before it occurs.

Verify the areas before anomalies are also abnormal

Predict the anomalies

Detect the area before anomalies

Baseline model: Verify the feasibility of this hypothesis.

Baseline Model

Baseline Model

kernel SVM (Support Vector Machine)

Features and Description

>				
Feature	Description			
Mean	The DC component (average value) of the signal over the window			
Median	The median signal value over the window			
Standard Deviation	Measure of the spreadness of the signal over the window			
Variance	The square of standard deviation			
Root Mean Square	The quadratic mean value of the signal over the window			
Averaged derivatives	The mean value of the first order derivatives of the signal over the window			
Skewness	The degree of asymmetry of the sensor signal distribution			
Kurtosis	The degree of peakedness of the sensor signal distribution			
Interquartile Range	Measure of the statistical dispersion, being equal to the difference between the 75th and the 25th percentiles of the signal over the window			
Mean Crossing Rate	The total number of times the signal changes from below average to above average or vice versa normalized by the window length			
Spectral Entropy	Measure of the distribution of frequency components			
Model (one-hot encoded)	The model which the signal over the window belong to			

Model Change

 We add Model types as features since the time ratio changes largely when change models

Feature Selection Method

- Why perform feature selection?
- Data interpretation discovery (insights into which factors which are most representative of our problem)
- Method: Sequential Forward Selection
- Greedy search algorithm

How to assess the performance?

Selection criterion

	true condition					
Prediction condition	True positive (TP)	False positive (FP)				
	False negative (FN)	True negative (TN)				

$$ext{Precision} = rac{tp}{tp+fp} \hspace{1cm} ext{Recall} = rac{tp}{tp+fn}$$

 We use F1 score which is defined as follows to be our selection criterion since it earns a trade-off between precision and recall.

$$\mathrm{F_{1}\cdot = rac{2\mathrm{TP}}{2\mathrm{TP}+\mathrm{FP}+\mathrm{FN}}}$$

Selection Results

Selected Features:

- Mean
- Standard Deviation
- Root Mean Square
- Kurtosis
- Mean Crossing Rate
- Model 0,1,3,4,7,10

Fitting Result

Fitting Result (Zoom in)

Fitting Result (Zoom in)

Fitting Result (Zoom in)

Prediction Result

Test set

Prediction Result (Zoom in)

Test set

Prediction Result (Zoom in)

Test set

Observation

Sand Problem

Sand Problem

Service and Maintenance

- Existing maintenances in the report are always after the breakdown
- That's too late.

6/17/2019

8/5/2019

8/20/2019

8/26/2019

Data

The data of July only contains that on July 31st.

Deep Learning Method

LSTM autoencoder

Choose thresholds

 Use the normal and abnormal data in validation set to determine the thresholds of reconstruction errors.

Preliminary Result

Future Work

Future work

- Model Types
- More metrics to assess the reconstruction error
- Maintenance
- Extreme value theory => test outliers
- Varing the time-steps of the inputs
- Use different Tags together to obtain better results
- ...

We wish to have more accurate labels for anomalies

Thank you!

