Optical Character Recognition

AC-2014

António Lima David Cardoso

Objectivo

Desenvolver redes neuronais com vista a reconhecer os 10 numerais arábicos

11 2 3 4 5 6 7 8 9 0

Os dígitos a reconhecer são feitos pelo utilizador e semelhantes à fonte Arial.

Arquitectura do sistema

- Memória Associativa (opcional)
- Classificador

Input do sistema

 vector P, de tamanho 256 (matrix 16x16 que representa o desenho do numeral)

```
0000011110000000
0001100011110000
0011000000011000
0101000000001100
0110000000000110
0010000000000010
0001000000000011
00011000000000001
0000100000000001
0000110000000001
0000110000000001
0000011000000001
0000001100000001
0000000110000010
0000000011001110
0000000000111000
```

Memória Associativa

- Rede neuronal constituída por uma camada, com funções de activação lineares e sem propensão para determinados valores.
- Serve de filtro ou corrector.
- Caracterizada por:

$$P_2 = W_p \times P_1$$

em que os pesos (W_p) são calculados utilizando a transposta ou a regra de Hebb.

Classificador

- Rede neuronal constituída por uma camada
- Função de activação linear, sigmoidal ou perceptrão
- com propensão para determinados valores em cada neurónio

Produz uma classificação para o dígito de input que pode, ou não, ter passado pela memória associativa primeiro.

Dataset

Como é que o dataset de treino influencia a performance do sistema de classificação?

- 50 exemplos, 5 para cada caracter numérico
- 100 exemplos, 10 para cada caracter numérico
- 500 exemplos, 50 para cada caracter numérico
- adicionar 10 exemplos perfeitos, 1 de cada caracter numérico em Arial

Caso de teste

Este foi o input basal utilizado para construir os restantes, sendo os seus elementos repetidos em iguais quantidades quantas vezes fosse necessário.

Resultados

Notação

Uso de Memória Associativa

- 1. Sim
- 2. Não

Modo de pesagem/ponderação (caso utilize Memória Associativa)

- 1. Método de pesagem transposta
- 2. Regra de Hebb

Função de activação e, função de aprendizagem do peso e da propensão

- 1. Sigmoidal com Gradient Descent
- 2. Linear com Gradient Descent
- 3. Hard-Limit com Perceptrão

Resultados

	perfect input	drawn input –	perfect input	drawn input
Caso de teste	- 500	500	– 100	– 100
Com memória,transposta, sigmoide com gradient descent	1	5	1	5
Com memória,transposta, linear com gradient descent	3	7	1	5
Com memória,transposta, hard-limit com perceptron	1	5	1	5
Com memória,regra de Hebb, sigmoide com gradient descent	1	6	1	3
Com memória,regra de Hebb, linear com gradient descent	9	33	10	27
Com memória,regra de Hebb, hard-limit com perceptron	9	24	10	16
Sem memória, sigmoide com gradient descent	0	6	1	2
Sem memória,linear com gradient descent	9	25	10	12
Sem memória, hard-limit com perceptron	10	41	10	29
Sem memória, sigmoide com gradient descent	0	9	0	4
Sem memória,linear com gradient descent	9	25	10	5
Sem memória, hard-limit com perceptron	10	43	10	29

Resultados

Tempo de treino

Performance

Hebb VS Pesagem Transposta

Análise dos resultados

Quando é utilizada memória associativa, a regra de Hebb apresenta resultados substancialmente melhores na maior parte dos casos, sendo equiparável a um Neurónio Linear nos restantes.

No geral, com memória associativa, a função de activação Linear com Gradient Descent é a que apresenta os melhores resultados. Já na ausência de uma memória associativa é a Hard-Limit com Perceptrão que tem melhor prestação.

De acordo com os resultados, podemos concluir que o classificador, com os inputs originais, tem mais sucesso que a inclusão do pré-processamento realizado pela memória associativa. (Porquê? Poucos inputs? Nº de camadas reduzido? Ruído ou qualidade dos inputs?)

Demo

Antes de mais, um voluntário?

Vamos testar para o caso que apresentou melhores resultados: Rede neuronal que **não usa memória associativa**, com função de activação **Hard-Limit** e, função de aprendizagem do peso e da propensão com **Perceptrão**.

Análise dos resultados da demo e explicação do código utilizado.

Fim

Questões?