# MATH 644

## CHAPTER 1

#### SECTION 1.3: STEREOGRAPHIC PROJECTION

### Contents

| How Is The Riemann Sphere Constructed?  Method | 2 |
|------------------------------------------------|---|
| Topology Of the Extended Complex Plane         | 4 |
| Chordal Metric                                 | 7 |

Created by: Pierre-Olivier Parisé Spring 2023

#### How Is The Riemann Sphere Constructed?

We would like to treat  $\infty$  as any other complex numbers. To do that, we will construct a model using the stereographic projection.

#### Method

1) Embed  $\mathbb{C}$  in  $\mathbb{R}^3$ .





→ (x(y,0)

2) Draw a sphere  $\mathbb{S}^2$  with the following characteristics:

• 
$$\mathbb{S}^2 := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\};$$

• Denote by 
$$N := (0,0,1)$$
 the north pole.



**3)** The stereographic projection:



$$z^* = (x_{11}x_{71}x_{3}) \in S^{2}$$

$$z = x_{11}x_{11}x_{12} \in S^{2}$$

$$(-(t) = (0.01) + (0.01)$$

he know

$$t = \frac{a}{x^2 + y^2 + 1} =$$

We know 
$$Z^{*} \in L$$
 &  $Z^{*} \in S^{2}$   
thue is some  $f \in \mathbb{R} \setminus \{0\}$  o.f.  $Z^{*} = L(f)$ .  
Point of intersection:

$$Z^{\dagger} = \left( \frac{2\pi}{2^{2}+y^{2}+1}, \frac{2y}{2^{2}+y^{2}+1}, \frac{2^{2}+y^{2}-1}{2^{2}+y^{2}+1} \right)$$

IR

4) Inverse of the stereographic projection:

$$L(t)=(0.0,1)+[[x_{11}x_{21}x_{3})-(0.0,1]]t(t\neq 0)$$

$$x = \frac{x_1}{1-x_3}$$

$$y = \frac{\chi_z}{1-\chi_3}$$

So, 
$$Z = \Pi^{-1}(z^{\dagger}) = \frac{\chi_1 + \chi_2 i}{1-\chi_2}$$

Conclusion: 
$$\pi: \mathbb{C} \longrightarrow \mathbb{S}^2 \setminus \{(0,0,1)\}$$

DEFINITION 1. The extended complex plane is the set  $\mathbb{C}^* := \mathbb{C} \cup \{\infty\}$ , where

$$\infty := \pi^{-1}(0, 0, 1).$$

#### TOPOLOGY OF THE EXTENDED COMPLEX PLANE

The Riemann sphere  $\mathbb{S}^2$  inherits a topology from the usual topology of  $\mathbb{R}^3$  generated by the balls in  $\mathbb{R}^3$ . In more details:

• A basis for the topology are of the form  $B \cap \mathbb{S}^2$ , where B is a ball in  $\mathbb{R}^3$ .





Before describing the topology of  $\mathbb{C}^*$ , we first show the following.

**THEOREM 2.** Circles in  $\mathbb{C}$  correspond precisely to circles on  $\mathbb{S}^2 \setminus \{(0,0,1)\}$ .

Proof.

Fact: 
$$C = S^2 \cap P$$
  
In some plane P:  
 $AX + BY + CZ = D$ .

Let 
$$Z^* = (x_{11}x_{71}, x_{3}) \in S^2$$
. Then

 $Z^* \in C \iff Ax_{14} Bx_{24} Cx_3 = D$ 

Use 
$$\pi(z) = z^{\dagger}$$
 to rewrite as

$$A\left(\frac{2x}{x^{2}+y^{2}+1}\right) + B\left(\frac{2y}{x^{2}+y^{2}+1}\right) + C\left(\frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1}\right) = D$$

$$\Rightarrow 2Ax + 2By + (C-D)(x^{2}+y^{2}) = D+C$$

If 
$$D=c$$
, then
$$ZAx + ZBy = 2C$$
& using  $\Pi^{-1}$ , then
$$2A \frac{\chi_{1}}{1-\chi_{3}} + ZB \frac{\chi_{2}}{1-\chi_{3}} = ZC$$

$$\Rightarrow A\chi_{1} + B\chi_{2} + C\chi_{3} = C = D$$

$$(0.011) \text{ Liss on the plane } \#.$$

$$So_{1} C \neq D \cdot A$$

$$\left(\chi - \frac{A}{C-D}\right)^{2} + \left(y - \frac{B}{C-D}\right)^{2} = \frac{D+C+A^{2}+B^{2}}{C-D} (*)$$

we have an eq. of a circle in C.

Forthe other way around, any tircle in C can be put in the form (x). Go backward with

Page 5

### COROLLARY 3.

a) Topology of  $\mathbb{S}^2$  induces the standard topology on  $\mathbb{C}$  under the stereographic projection.

**b)** Moreover, a basis of neighborhoods for  $\infty$  are of the form  $\{z \in \mathbb{C} : |z| > r\} \cup \{\infty\}$ , with r > 0.





$$Z^{*}, \omega^{*} \in \mathbb{S}^{2}$$

From  $\pi_{1}$   $\exists Z_{1} \omega \in \mathbb{C}^{*}$ 
 $\Pi(Z) = Z^{*}$   $\exists \Pi(\omega) = \omega^{*}$ 

$$\frac{P_{rop.}}{1}$$
 (C\*,  $\chi$ ) is a complete metric space.

$$\chi(z_{1}\omega) = \begin{cases}
\frac{2|z-\omega|}{|z-\omega|} & |z_{1}\omega \neq \infty \\
\frac{2|z-\omega|}{|z-\omega|} & |\omega=\infty, z\neq \infty \\
\frac{2}{|z-\omega|} & |\omega=\infty, z\neq \infty \\
\frac{2}{|z-\omega|} & |\omega\neq \infty, z=\infty \end{cases}$$

3) 
$$0 \le \chi(z_1 \omega) \le 2 \quad (\forall z_1 \omega \in C^{\bullet}).$$