

THERMOGENERATOR

Patent number: DE6900274 (U)
Publication date: 1970-08-27
Inventor(s):
Applicant(s): SIEMENS AG [DE]
Classification:
- international:
- european:
Application number: DE19690000274U 19690104
Priority number(s): DE19690000274U 19690104

Abstract not available for DE 6900274 (U)

.....
Data supplied from the **esp@cenet** database — Worldwide

Discloses an improved thermoelectric generator configuration.

DEUTSCHES PATENTAMT

Eintragungsverfügung

(Unterse. Nummer)

37288

1. Zustellungsanschrift:

Herr(en)
Frau
Fräulein
Firma

◀ Aktenzeichen

Bitte
Anmelder und
Aktenzeichen bei
allen Eingaben und
Zahlungen angeben!

◀ Anmelder Ihr Zeichen

2. Die Anmeldung ist mit nachstehenden Angaben und den unten bezeichneten Unterlagen einzutragen:

Aktenzeichen (Alt)		Unterklasse	Untergruppe	Sachbearbeitername	Sachbearb.- Cod.-Nr.
Aktenzeichen (neu)					
6 9 0 0 27 4 0	Int.CL				
0 4 0 1 6 9	dt. Kl.	216	23-02		
Thermogenerator 					
Siemens AG, 1000 Berlin 8000 München					
Ju					

◀ Ann.-Tag
◀ Prio + Code-Buchst.
◀ Bezeichnung der
Erfindung

Code-Ziff. f. Zusatz usw.
◀ Seiten- u. Anspruchszahl
der Unterlagen

Ann.-Code-Nr. +
◀ Anmelder

Vertr.-Code-Nr. +
◀ Vertreter

(T. 10 z 1 - Filmlochkarten)

Modell(e): ja nein

G 6132

G 6131 (Ausg. 10, 68)

12.69

Rollen-Nummer und

Bekanntmachungstag:

690027427.8.70

Für den Anmelder

An das
Deutsche Patentamt
8000 München 2
Zentralstelle 12

Ort: Erlangen
Datum: 3.1.1969
Reg.Zeichen: PLA 52/1737 Sae/2d

Bitte freilassen!

Für die in den Anlagen beschriebene Erfindung wird die Erteilung eines Patents beantragt.

19004058

1/5 B

Anmelder:

(Name u. Anschrift, bei Firmen auch Geschäftsführer, Name u. Firmenziffern Konzern, Schengen, sofern Bezeichnung des Anmelders in Geschäftsführer, Ort, Straße, Haus-Nr., gegeben; Postfach, bei ausländischen Orten auch Post und Telefon)

SIEGENS AKTIENGESELLSCHAFT
Berlin und München
3770 Erlangen 2
Verner-von-Siemens-Str. 50
Postfach 325

75 SEPTEMBER

13

A1

(Q)

Vertreter:

(Name, Anschrift mit Postfach, ggf. auch Postfach, Anwaltsgesellschaft in Übereinstimmung mit der Vollmacht angeben)

Zustellungsberechtigter, Zustellungsanschrift
(Name, Anschrift mit Postfach, ggf. auch Postfach)

SIEGENS AG, 8770 Erlangen 2 • Postfach 325
3770 Erlangen 2 • Verner-von-Siemens-Str. 50

15

A2

14

Beck sagt wird die Erteilung

einer Zustellungsanschrift
zur Anmeldung Akz. Z. (Patent Nr.) _____

(11)

Die Anmeldung ist eine

Ausstellung aus der
Patentanmeldung Akz. Z. _____

9(8)

Für die Ausscheidung wird als Anmelder der _____ beansprucht

5

Die Beschreibung lautet:

(Kurze und genaue technische Beschreibung der Gegenstände, auf denen sich die Erfindung bezieht, über einschlägige mit dem Inhalt der Beschreibung keine Abweichungen bestehen)

2 "Herrnregenerator" ↗
10 00411

Gebrauchsmuster-Hilfsanmeldung

569002740

10

17

Zugleich wird nach Erteilung des Patents eine Meldung der Eintragung in die Gebrauchsmusterrolle beantragt:

ja; Mehrstücke des Antrags u. der Anlagen (s. unten) sind beigelegt.
 nein

In Anspruch genommen wird die Ausstellungspriorität der Voranmeldung (Zeichnungen der Angaben wie 1, Zeichn. 1 unterlegt)

1 Anmeldetag, Land und Alterszeichen:
2 1. Schaustellungstag, omtl. Bezeichnung u. Ort der Ausstellung mit Eröffnungsstag:

Ausstellungspriorität (Zeichnungen der Angaben wie 2, Zeichn. 2 unterlegt)

7

Die Gebühren sind (werden) entrichtet

für die Patentanmeldung in Höhe von 50,- DM
 für die Gebrauchsmuster-Hilfsanmeldg. in Höhe von 15,- DM (1. Hälfte)

Es wird beantragt, auf die Dauer von _____ Monaten (max. 15 Mon. ab Prioritätsstag) die Bekanntmachung auszusetzen

Anlagen: (Die angekreuzten Unterlagen sind beigelegt)

1. Ein weiteres Stück/Drei weitere Stücke") dieses Antrags
2. Zwei/Drei") Beschreibungen
3. Zwei/Drei") übereinstimmende Stücke von Schutzansprüchen
4. Zwei/Drei") Satz Alterszeichnungen mit je Blatt
5. Ein Satz Druckzeichnungen mit je Blatt
6. Eine/Zwei") Vertretvollmächtig(en)
7. Zwei Erfinderbenennungen
- 8.
9. Ein/Zwei") (gleiche) Modellvorlage

1.	1	'3
2.	2	3
3.	2	3
4.	2	3
5.	1	1
6.	1	2
7.	2	2
8.		
9.	1	2

Bitte freilassen

Von diesem Antrag und allen Unterlagen wurden Abschriften zurückbehalten

SIEGENS AKTIENGESELLSCHAFT

(Unterschrift bzw. bei mehreren Anmeldern Unterschriften und ggf. Firmensiegel)

000000

SIEMENS AKTIENGESELLSCHAFT
Berlin und München

Erlangen, -3. JAN. 1969
Werner-von-Siemens-Str. 50
37280

Unser Zeichen:
PLA 68/1737 Soe/Rd

Thermogenerator

Die Erfindung betrifft einen Thermogenerator, insbesondere für kleine Leistungen, mit Thermoelementschenkeln unterschiedlicher Thermokraft, die in abwechselnder Reihenfolge nebeneinander angeordnet und durch Kontaktbrücken elektrisch leitend in Serie verbunden sind.

In Thermogeneratoren sind im allgemeinen Thermoelemente so ver-einigt, daß jeweils die heißen oder kalten Lötstellen in einer Fläche, nämlich der Heiß- oder Kaltseite des Thermogenerators, liegen. Jedes Thermoelement besteht aus einem Thermoelement-schenkelpaar mit Thermoelementschenkeln aus thermoelektrisch wirksamem Material unterschiedlicher Thermokraft. Bevorzugt wird p- bzw. n-leitendes thermoelektrisch wirksames Halbleitermaterial für die Thermoelementschenkel benutzt. Durch Kontaktbrücken aus elektrisch und thermisch leitendem Material werden die Thermoelementschenkel an ihrer Heiß- und Kaltseite so elektrisch leitend verbunden, daß alle Thermoelementschenkel elektrisch in Reihe und thermisch parallel liegen. Sowohl auf die Heiß- als auch auf die Kaltseite der Thermoelemente ist im allgemeinen ein Wärmezustauscher aufgesetzt, der durch eine Schicht aus thermisch leitendem und elektrisch isolierendem Material von den Kontaktbrücken getrennt ist, und der Wärmequelle oder Wärmesenke ist.

Unter anderem kann durch eine entsprechende Auslegung der Thermoelementschenkel-Geometrie, d.h. des Verhältnisses von Thermoelementschenkel-länge zu Thermoelementschenkelquerschnitt, der Wirkungsgrad des Thermogenerators optimiert werden. Für Thermogeneratoren kleiner Leistung ergeben sich dabei bei noch realisierbarer Thermoelementschenkel-länge Thermoelementschenkelquerschnitte, die den Aufbau eines solchen Thermogenerators sehr schwierig

- 2 -

machen. Solche Thermogeneratoren kleiner Leistung, d.h. ungefähr im Leistungsbereich von 200 μW , können als Energieversorgungssystem in der Medizin, beispielsweise für Herzschrittmacher, und beispielsweise in der Regelungs- und Meßtechnik eingesetzt werden.

Bekannt ist ein Thermogenerator kleiner Leistung als Energieversorgung für einen Herzschrittmacher beispielsweise aus einer Literaturstelle von Th.F.Hursen in "IECIEC 68 Record", S.76-772, bei dem als Energiequelle für die Heißseite des Thermogenerators ein radioaktives Isotop mit entsprechender Abschirmung verwendet ist. Die Thermoelementschenkel dieses Thermogenerators sind aus ungefähr 23 cm langen, ungefähr 0,05mm starken Metalldrähten gebildet. Die heißen Lötstellen dieser Drähte sind auf die Abschirmung des Isotops aufgedrückt und die Drähte sind um das Isotop herumgewickelt. Als Isolation werden Glasfasern verwendet, die mit den drahtförmigen Thermoelementschenkeln zu einem Gespinst verwoben sind. Die Herstellung dieses Thermogenerators ist äußerst schwierig und unwirtschaftlich, und da als Material für die Drähte der Thermoelementschenkel thermoelektrisch wirksame Metalle, nämlich Nickel-Chrom- und Konstantanlegierungen, verwendet werden müssen, deren thermoelektrische Effektivität nur gering ist, ist der Wirkungsgrad dieses Thermogenerators sehr niedrig.

Es besteht die Aufgabe, einen Thermogenerator für kleine Leistungen mit dünnem Thermoelementschenkelquerschnitt herzustellen. Dabei soll als Material für die Thermoelementschenkel auch Halbleitermaterial verwendbar sein können.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die Thermoelementschenkel auf einen elektrischen Isolator aufgedampft sind.

Bei einem solchen erfindungsgemäßen Thermogenerator lassen sich bei Thermoelementschenkellängen von ungefähr 5 mm, Thermoelementschenkel-Querschnitte von ungefähr 10 bis 2000 (μm)² realisieren. Damit ist eine Optimierung des Wirkungsgrades ermöglicht. Außerdem können praktisch beliebig viele Thermoelementschenkel zu einem Thermogenerator vereinigt werden, wobei das Herstellungs-

- 3 -

690027427.8.70

- 3 -

verfahren eines solchen Thermogenerators äußerst einfach und wirtschaftlich vertretbar ist. Aufdampfverfahren, mit denen Metalle, halbleitende Elemente oder halbleitende Verbindungen zur Herstellung der Thermoelementschenkel aufgedampft werden können, sind beispielsweise aus der deutschen Auslegeschrift 1033 335 oder der deutschen Patentschrift 1228 889 bekannt.

Die Kontaktbrücken können ebenfalls aufgedampft sein.

Vorzugsweise überlappt sich jeweils das obere Ende eines Thermoelementschenkels mit dem oberen Ende eines benachbarten Thermoelementschenkels und sein unteres Ende mit dem unteren Ende eines zweiten benachbarten Thermoelementschenkels zu einer Kontaktbrücke. Jeder Thermoelementschenkel kann am oberen und unteren Ende mit Vorsprüngen versehen sein, die in entgegengesetzter Richtung seitlich vom Thermoelementschenkel abstehen, wobei sich die Vorsprünge benachbarter Thermoelementschenkel gegenseitig zur Kontaktbrücke überlappen.

Durch die aufgedampften Thermoelementschenkel und Kontaktbrücken kann ein mäanderförmiges Band gebildet sein.

Vorteilhaft ist es, als elektrischen Isolator eine bandförmige Hochtemperatur-Kunststoffolie zu verwenden.

Die Kontaktbrücken der als mäanderförmiges Band aufgedampften Thermoelementschenkel können parallel und in Abstand zu der seitlichen Begrenzung der Kunststoffolie liegen. Die Kunststoffolie kann spiralförmig zu einer Rolle aufgewickelt oder es können mehrere Kunststofffolien aufeinandergeschichtet sein, wobei Thermoelementschenkel aufeinanderfolgender Kunststofffolien durch die Kunststofffolien elektrisch gegeneinander isoliert sind. Die Stirnflächen der Rollen oder die Seitenflächen der aufeinandergeschichteten Kunststofffolien können mit Gießharz vergossen und auf die Stirnflächen der Rolle oder die Seitenflächen der aufeinandergeschichteten Kunststofffolien können Wärmeaustauscher aufgesetzt sein. Zur Verbesserung des Wärmekontaktes kann auf das Gießharz eine Metallschicht aufgebracht sein. Dabei kann unter Berücksichtigung der Strahlenschutzvorschriften als Wärmequelle

- 4 -

690027427.8.70

- 4 -

für die Heißseite des Thermogenerators ein Radioisotop, beispielsweise Plutonium - 238 verwendet werden. Der so ausgestaltete erfindungsgemäße Thermogenerator kann äußerst kompakt aufgebaut werden und ist u.a. vorzüglich als Energieversorgungssystem für einen Herzschrittmacher geeignet.

Im folgenden wird die Erfindung an Hand der Fig. 1 bis 4 näher erläutert. In den Figuren sind zwei Ausführungsformen des erfindungsgemäßen Thermogenerators dargestellt.

Fig. 1 zeigt die Draufsicht auf aufgedampfte Thermoelementschenkel 1 bzw. 2 unterschiedlicher Thermokraft. Als Material für die Thermoelementschenkel kann beispielsweise Bi oder Sb verwendet werden. Als halbleitende Verbindungen für den p-leitenden, aufgedampften Thermoelementschenkel kann beispielsweise entsprechend dotiertes ZnSb, PbTe oder Bi_2Te_3 und für den n-leitenden Thermoelementschenkel beispielsweise entsprechend dotiertes InAs, InSb, PbTe oder Bi_2Te_3 benutzt werden. Die Thermoelementschenkel sind auf einen elektrischen Isolator 3 aufgedampft. Es kann als Isolator eine biegsame Hochtemperatur-Kunststofffolie, beispielsweise eine Polyimid-Folie, verwendet werden, wie sie beispielsweise im Handel unter dem Namen "Kapton" erhältlich ist.

Ein ebenfalls geeigneter elektrischer Isolator 3 ist ein Glasgewebe.

Der Fig. 1 ist zu entnehmen, daß jeder Thermoelementschenkel 1 bzw. 2 an seinem Ende mit einem seitlichen Vorsprung versehen ist, wobei in den Bereichen 4 die seitlichen Vorsprünge benachbarter Thermoelementschenkel sich zu Kontaktbrücken überlappen, über die die Thermoelementschenkel so verbunden sind, daß sie elektrisch in Reihe und thermisch parallel liegen. Die durch die Überlappungsbereiche 4 gebildeten Kontaktbrücken zwischen den Thermoelementschenkeln 1 bzw. 2 besitzen einen geringen Abstand vom Rande der Folie, der beispielsweise ungefähr 0,1 mm beträgt. Damit ist ein Schutz der Thermoelementschenkel gegen mechanische Einflüsse und die elektrische Isolation der Thermoelementschenkel sichergestellt.

- 5 -

690027427.8.70

- 5 -

Die Länge der aufgedampften Thermoelementschenkel kann bei einem Thermoelementschenkelquerschnitt von ungefähr 10 bis 2000 (μm)² ungefähr 5 mm betragen. Mit diesen geometrischen Abmessungen der Thermoelementschenkel ist im Leistungsbereich von ungefähr 200 μW ein bezüglich der Schenkelgeometrie optimaler Wirkungsgrad zu erhalten. Da als Material für die Thermoelementschenkel Halbleiterverbindungen verwendet werden können, deren thermoelektrische Effektivität sehr groß ist, ist der Wirkungsgrad des erfindungsgemäßen Thermogenerators auch bezüglich der anderen Größen, von denen er abhängt, optimiert.

Fig.2 zeigt einen perspektivischen Ausschnitt eines mit Thermoelementschenkeln 1 bzw. 2 bedampften elektrischen Isolators 3, wie er in Fig.1 bereits beschrieben wurde. Der Fig.2 ist die Lage des Überlappungsbereichs 4 zwischen benachbarten Thermoelementschenkeln 1 und 2 deutlich entnehmbar.

In Fig.3 ist in perspektivischer Ansicht ein erfindungsgemäßer Thermogenerator dargestellt. Die mit mäanderförmigen Thermoelementschenkeln 1 bzw. 2 bedampfte Hochtemperaturfolie 3 gemäß Fig.1 ist spiralförmig zu einer Rolle aufgewickelt. Eine gesonderte Isolation zwischen den Thermoelementschenkeln 1 bzw. 2 verschiedener Lagen dieser Rolle ist nicht nötig; diese wird durch den Isolator 3 selbst gebildet. Die Stirnflächen 5 der Rolle können mit einem Gießharz vergossen werden, wodurch die gesamte Anordnung mechanisch äußerst stabil wird. Gleichzeitig dient diese dünne Schicht Gießharz als elektrischer Isolator gegenüber den Wärmeaustauschern, die auf die als Heiß- und Kaltseite wirkenden Stirnflächen 5 der Rolle aufgesetzt werden können. Zur Verbesserung des Wärmeübergangs zu den Wärmeaustauschern kann auf die Gießharzsicht eine Metallschicht oder Metallfolie aufgebracht werden. Der Einfachheit halber sind in der Fig.3 diese isolierende Schicht, die Wärmeaustauscher und die elektrischen Anschlüsse für die Thermoelementschenkel weggelassen. Es ist nochmals darauf hinzuweisen, daß als Wärmequelle für die Heißseite der Rolle ein Radioisotop verwendet werden kann und daß man mit dem vorgeschlagenen Aufbau sehr viele Thermoelementschenkel auf kleinstem Raum unterbringen

- 6 -

690027427.8.70

- 6 -

kann, wobei der elektrische Isclator 3 gleichzeitig als Träger für die Thermoelementschenkel dient.

Fig.4 zeigt eine weitere Ausbildungsform, bei der mehrere mit mäanderförmigen, aufgedämpften Thermoelementschenkeln 1 bzw. 2 versehene elektrische Isclationsfolien 3 aufeinandergeschichtet sind. Die Thermoelementschenkel verschiedener Schichten sind wieder durch die isolierenden Folien 3 elektrisch gegeneinander, isoliert und können durch elektrisch leitende Verbindungen in Serie oder parallel geschaltet werden. Diese elektrisch leitenden Verbindungen sind in der Fig.4 nicht dargestellt. Die Seitenflächen 6 der aufeinandergeschichteten Isclationsfolien 3 können wiederum mit Gießharz vergossen und mit Wärmeaustauschern für die Heiß- bzw. Kaltseite des Thermogenerators versehen werden.

Abschließend ist nochmals darauf hinzuweisen, daß der wirtschaftliche Aufwand für die Herstellung des erfundungsgemäßen Thermogenerators äußerst gering ist, der Wirkungsgrad des Thermogenerators jedoch optimal ist und ein äußerst kompakter und mechanisch robuster Aufbau ermöglicht wird. Der erfundungsgemäß Thermogenerator ist daher insbesondere als Energiequelle für Herzschrittmacher hervorragend geeignet und ist vor allem wegen seiner erheblich größeren Lebensdauer den bisher bei Herzschrittmachern verwendeten konventionellen Batterien weit überlegen. Dabei kann durch eine entsprechende Auslegung der Abschirmung bei mit Radioisotopen betriebenen Thermogeneratoren eine Strahlenschädigung des Körpers ausgeschlossen werden.

Zu erwähnen ist auch noch, daß der erfundungsgemäß Thermogenerator in einfachster Weise gekapselt werden kann, wobei der Innenraum der Kapsel evakuiert werden kann.

12 Patentansprüche
4 Figuren

- 7 -

6900274 27.8.70

P a t e n t a n s p r ü c h e

1. Thermogenerator, insbesondere für kleine Leistungen, mit Thermoelementschenkeln unterschiedlicher Thermokraft, die in abwechselnder Reihefolge nebeneinander angeordnet und durch Kontaktbrücken elektrisch leitend in Serie verbunden sind, dadurch gekennzeichnet, daß die Thermoelementschenkel (1 bzw. 2) auf einen elektrischen Isolator (3) aufgedampft sind.
2. Thermogenerator nach Anspruch 1, dadurch gekennzeichnet, daß die Kontaktbrücken (4) aufgedampft sind.
3. Thermogenerator nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß sich jeweils das obere Ende eines Thermoelementschenkels (1) bzw. (2) mit dem oberen Ende eines benachbarten Thermoelementschenkels und sein unteres Ende mit dem unteren Ende eines zweiten benachbarten Thermoelementschenkels zu einer Kontaktbrücke (4) überlappen.
4. Thermogenerator nach Anspruch 3, dadurch gekennzeichnet, daß jeder Thermoelementschenkel (1 bzw. 2) am oberen und unteren Ende mit Vorsprüngen versehen ist, die in entgegengesetzter Richtung seitlich von jedem Thermoelementschenkel abstehen, und daß sich die Vorsprünge benachbarter Thermoelementschenkel gegenseitig zu einer Kontaktbrücke (4) überlappen.
5. Thermogenerator nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß durch die aufgedampften Thermoelementschenkel (1 bzw. 2) und die Kontaktbrücken (4) ein mäanderförmiges Band gebildet ist.
6. Thermogenerator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Thermoelementschenkel (1 bzw. 2) aus p- bzw. n-leitendem Halbleitermaterial hergestellt sind.

- 8 -

7. Thermogenerator nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß als elektrischer Isolator (3) eine bandförmige, biegsame Hochtemperatur-Kunststofffolie verwendet ist.
8. Thermogenerator nach Anspruch 7, dadurch gekennzeichnet, daß die Kontaktbrücken (4) der als ~~mäanderförmiges~~ Band aufgedämpften Thermoelementschenkel (1 bzw. 2) parallel und in Abstand zu der seitlichen Begrenzung der Kunststoffolie (3) liegen.
9. Thermogenerator nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Kunststoffolie (3) spiralförmig zu einer Rolle aufgewickelt ist.
10. Thermogenerator nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß mehrere Kunststofffolien (3) aufeinandergeschichtet sind, wobei die Thermoelementschenkel (1 bzw. 2) aufeinanderfolgender Kunststofffolien durch die Kunststofffolien elektrisch gegeneinander isoliert sind.
11. Thermogenerator nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Stirnflächen (5) der Rolle oder die Seitenflächen (6) der aufeinandergeschichteten Kunststofffolien (3) mit Gießharz vergossen sind.
12. Thermogenerator nach Anspruch 11, dadurch gekennzeichnet, daß auf die Stirnflächen (5) der Rolle oder die Seitenflächen (6) der aufeinandergeschichteten Kunststofffolien (3) Wärmeaus tauscher aufgesetzt sind.

690027427.8.70

Oly.-01-60

M

Fig. 1

Fig. 2

Fig. 3

Fig. 4

6900274 27.8.70