2022-1학기 『통계학개론』기본교재 정오표

쪽	행	틀린 내용	바로 잡은 내용
45	(예제 2-16) 2행	92, 107, 353, 90, 78, 91, 102, 88, 106, 109, 95, 102, 92	92, 107, 180, 90, 78, 91, 102, 88, 106, 125, 95, 102, 162
89	문항 13(1)의 정답	(1) 확률분포 0.15 0.00 0.05 0.00 0 2 4 6 8 10 결석일수	Milipegold 0 1 2 3 4 5 6 7 8 9 10 X
89	문항 13(3)의 정답	(3) 평균 4.49, 분산 6.21	(3) 평균 4.49, 분산 6.15
110	(글상자) '중심극 한정리' 부분	평균이 μ 이고, 분산이 σ^2 인 임의의 무한 모집단에서 표본크기 (n) 가 충분히 크면, 표본평균 \overline{X} 의 분포는 근사적으로 평균이 μ 이고, 분산이 σ^2 정규분포를 따른다. 즉, n 이 충분히 크면 다음이 성립한다.	평균이 μ 이고, 분산이 σ^2 인 임의의 무한 모집단에서 표본크기 (n) 가 충분히 크면, 표본평균 \overline{X} 의 분포는 근사적으로 평균이 μ 이고, 분산이 $\frac{\sigma^2}{n}$ 인 정규분포를 따른 다. 즉, n 이 충분히 크면 다음이 성립한 다.
122	13번 문제	14번의 결과를 이용했을 때	12번의 결과를 이용했을 때
123	14번 문제	단, $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$	단, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$
124	6번 풀이	$P(X=3) = {4 \choose 3} \left(\frac{1}{9}\right)^2 \left(\frac{8}{9}\right)^4 = 0.0049$	$P(X=3) = {4 \choose 3} \left(\frac{1}{9}\right)^3 \left(\frac{8}{9}\right)^1 = 0.0049$

쪽	행	틀린 내용	바로 잡은 내용
125	8번 풀이	$P(X=4) = \frac{5^4 e^{-5}}{4!} = 0.0351$	$P(X=4) = \frac{5^4 e^{-5}}{4!} = 0.175$
125	10번 풀이	$E(X) = 3 \times \frac{4}{100} = 0.12$ $Var(X) = 3 \times 0.04 \times 0.96 \times \frac{97}{99} = 0.1129$	$P(X=1) = \frac{\binom{4}{1}\binom{96}{2}}{\binom{100}{3}} = 0.1128$
125	11번 풀이	$Var(X) = 2 \times 0.8 \times (1 - 0.8) \times \frac{3}{5 - 1} = 0.192$	$Var(X) = 2 \times \frac{2}{5} \times \frac{3}{5} \times \frac{3}{4} = 0.36$
141	(예제 5-7) 2행	25명의 시험점수의	40명의 시험점수의
157	8	[그림 6-2](b)의 점선으로	[그림 6-1](b)의 점선으로
157	10	<예제 6-5>에서	<예제 6-4>에서
157	아래 6~7줄	$ \begin{array}{ccc} \textcircled{1} & H_1: \mu < \mu_0 \\ \textcircled{2} & H_1: \mu > \mu_0 \end{array} $	① $H_1: \mu > \mu_0$ ② $H_1: \mu < \mu_0$
159	예제 6-6 풀이	⑤ 계산된 검정통계량값 $T=3.16$ 이 기각 역의 임곗값(3.16)보다 크므로	⑤ 계산된 검정통계량값 $T=3.16$ 이 기각 역의 임곗값(1.83)보다 크므로
160	예제 6-7 풀이	1하: $\overline{X}=14.12$ 5하: $T=\frac{14.12-11.0}{6.076/\sqrt{16}}=2.054$	1하: $\overline{X}=14.125$ 5항: $T=\frac{14.12-11.0}{6.076/\sqrt{16}}=2.057$
161	3	$n\hat{p} \geq 5n(1-\hat{p}) \geq 5$	$n \hat{p} \geq 5 , n (1 - \hat{p}) \geq 5$
176	예제 7-1	2행: 각 편의점의 일평균을 75만 원 9행: <표 7-1>에서 ①을 참조하여	2행: 각 편의점의 일평균을 70만 원 9행: <표 7-1>에서 ③을 참조하여
197	12	실험 전체의 모평균 $lpha_i$ 는	실험 전체의 모평균, $lpha_i$ 는
198	아래 3	각 수준에서의 모평균 간에는 차이가 있다는 식 (7.28)의	각 수준에서의 모평균 간에는 차이가 <mark>없</mark> 다는 식 (7.28)의
199	2	모평균 간에는 차이가 있다는	모평균 간에는 차이가 <mark>없다는</mark>

쪽	행	틀린 내용	바로 잡은 내용
200	2~3	접촉면이 제품 종류보다 조금 더 영향을 주고 있다고 할 수 있다.	접촉면보다 제조사의 영향이 통계적으로 더 유의하다고 할 수 있다.
201	수식 (7.35)	$Var(\overline{m{x}}_i \;.\; + \overline{m{x}} \;.\;_j - \overline{\overline{m{x}}}) \; = rac{\sigma_E^2}{l m} \ = rac{\sigma_E^2}{n_e}$	$Var(\overline{\boldsymbol{x}}_{i} . \ + \overline{\boldsymbol{x}}_{\cdot j} - \overline{\overline{\boldsymbol{x}}}) \ = \frac{\sigma_{E}^{2} \times (m+l-1)}{l m} \ = \frac{\sigma_{E}^{2}}{n_{e}}$
201	수식 (7.36)	$(\overline{\boldsymbol{x}}_i + \overline{\boldsymbol{x}} \mathrel{.}_j - \overline{\overline{\boldsymbol{x}}}) \pm t \Big(\phi_E; \; \frac{\alpha}{2} \Big) \sqrt{\frac{V_E}{n_e}}$	$(\overline{x}_i. + \overline{x}_{-i} - \overline{\overline{x}}) \pm t \Big(\phi_E; \frac{\alpha}{2}\Big) \sqrt{\frac{V_E}{n_e}}$ (첫 번째 항 x bar를 x bar_(i·) 으로 정정)
202	풀이 6	$t\Big(\phi_E;rac{lpha}{2}\Big)\sqrt{rac{V_E}{n_e}}$	$t\Big(\phi_E;rac{lpha}{2}\Big)\sqrt{rac{V_E}{m}}$
213	(글상자) 아래 3	m은 추정된 모수의 개수	p는 추정된 모수의 개수
220	2번째 표 4행	$rac{\overline{D}-D_0}{s_D/\sqrt{n}} > t_{n-1,lpha/2}$	$\left \left rac{\overline{D} - D_0}{s_D / \sqrt{n}} \right > t_{n-1, lpha/2}$
223	문제 3	④ 3개 이상의 평균을 비교하는 분산분 석을 사용하여 분석한다.	④ 3개 이상의 평균을 비교하기 위해서 는 분산분석을 사용하여 분석한다.
242	(글상자) 수식 부분	$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y_i} - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y})^2$	$\sum_{i=1}^n (y_i - \overline{y})^2 = \sum_{i=1}^n (\hat{y_i} - \overline{y})^2 + \sum_{i=1}^n (y_i - \hat{y_i})^2$ (y hat을 y hat_i 로 정정함)
245	(예제 8-5 풀이) 아래 2	$F_{1, 8, 0.95} = 5.32$	F _{1, 8, 0.05} = 5.32 (F ₋ 1, 8, 0.95를 F ₋ 1, 8, 0.05로 정정함)
248	(글상자) 3	$t = \frac{\alpha - \alpha_0}{SE(a)}$	$t=rac{a-lpha_0}{SE(a)}$ (검정통계량의 alpha를 a로 정정함)
252	9	식 (8.20) 에서 eta_0 는 Y 축의 절편, eta_i 는 Y 와 X_j 간의 기울기로	식 (8.20)에서 eta_0 는 Y 축의 절편, eta_j 는 Y 와 X_j 간의 기울기로 (beta_i를 beta_j로 정정함)
253	식 (8.20)	$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + i$	$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\epsilon_i$ ('+ i'를 '+ epsilon_i'로 정정함)

2022-1학기 『통계학개론』 워크북 정오표

쪽	행	틀린 내용	바로 잡은 내용
41	정답 부분	07. (1) 2 (2) 0.982	07. (1) 2 (2) 0.0183
47	정답 부분	08. [290.1, 309.9]	08. [290.1 만 원, 309.9 만 원]