第三讲 二次函数

知识方法概要

1.定义

函数 $f(x) = ax^2 + bx + c(a \neq 0)$ 称为关于 x 的二次函数. 配方后形式为 $f(x) = a(x - x_0)^2 + f(x_0)(a \neq 0)$ (顶点式), 其中 $x_0 = -\frac{b}{2a}$.

2.
$$f(x) = ax^2 + bx + c(a \neq 0)$$
 的性质

(1) 对称性.

f(x) 的图像关于直线 $x = -\frac{b}{2a}$ 对称.

$$f\left(-\frac{b}{2a} + x\right) = f\left(-\frac{b}{2a} - x\right)$$

(2) 当 a > 0 时 (当 a < 0 时类似),方程

$$ax^2 + bx + c = 0$$
, (1)

和不等式

$$ax^2 + bx + c > 0 \tag{2}$$

$$ax^2 + bx + c < 0 \tag{3}$$

与函数 f(x) 的关系如下 (记 $\Delta = b^2 - 4ac$):

当 $\Delta > 0$ 时,方程 (1) 有两个不相等的实根 $x_1, x_2(x_1 < x_2)$,不等式 (2) 和不等式 (3) 的解集分别是 $\{x | x < x_1 \ \text{或} \ x > x_2\}$ 和 $\{x | x_1 < x < x_2\}$,二次函数 f(x) 的图像与 x 轴有两个不同的交点. f(x) 可写成 $f(x) = a(x - x_1)(x - x_2)(a \neq 0)$ (零点式),这个形式可以导出韦达定理,还可以推广到一元 n 次方程.

当 $\Delta = 0$ 时,方程 (1) 有两个相等的实根 $x_1 = x_2 = x_0 = -\frac{b}{2a}$, 不等式 (2) 和不等式 (3) 的解集分别是 $\left\{x \mid x \neq -\frac{b}{2a}\right\}$ 和空集 \emptyset , f(x) 的图像与 x 轴相切, 只有一个交点.

当 $\Delta < 0$ 时,方程 (1) 无解,不等式 (2) 和不等式 (3) 的解集分别是 **R** 和 \emptyset . f(x) 的图像与x 轴无交点.

当 $\Delta < 0$ 时, 若 a > 0, f(x) > 0, $x \in \mathbb{R}$; 若 a < 0, f(x) < 0, $x \in \mathbb{R}$.

(3) 单调性.

若 a>0, $\left(-\infty,-\frac{b}{2a}\right]$ 为单调递减区间, $\left[-\frac{b}{2a},+\infty\right)$ 为单调递增区间.若 a<0, $\left(-\infty,-\frac{b}{2a}\right]$ 为单调递增区间, $\left[-\frac{b}{2a},+\infty\right)$ 为单调递减区间.

(4) 二次函数的最值.

定义在 **R** 上的二次函数 $f(x) = ax^2 + bx + c$, 当 a > 0 时, 有最小值 $f(x)_{\min} = \frac{4ac-b^2}{4a}$; 当 a < 0 时, 有最大值 $f(x)_{\max} = \frac{4ac-b^2}{4a}$.

3. 二次函数恒成立问题: 转化为最值问题或者参变分离.

类型 1

设 $f(x) = ax^2 + bx + c(a \neq 0)$,

- (1) f(x) > 0 在 $x \in \mathbb{R}$ 上恒成立 ⇔ a > 0 且 $\Delta < 0$;
- (2) f(x) < 0 在 $x \in \mathbb{R}$ 上恒成立 $\Leftrightarrow a < 0$ 且 $\Delta < 0$.

类型 2

$$f(x) > a$$
 对一切 $x \in I$ 恒成立 $\Leftrightarrow f(x)_{\min} > a$,

$$f(x) < a$$
 对一切 $x \in I$ 恒成立 $\Leftrightarrow f(x)_{max} < a$.

【例 3-3】 已知实系数二次函数 f(x) 和 g(x), 若方程 f(x) = g(x) 和 3f(x) + g(x) = 0 都只有一对重根, 方程 f(x) = 0 有两个不等的实根。求证: 方程 g(x) = 0 没有实根。

分析 二次方程 f(x) = g(x) 有重根, 从解析式出发, 有 $f(x) - g(x) = a_1(x - b_1)^2$;从判别式出发, 有 $\Delta = 0$. 可得本题有两种解法.

证 法 1: 由题意, 不妨设 $f(x) - g(x) = a_1(x - b_1)^2$, $3f(x) + g(x) = a_2(x - b_2)^2$, 解得 $f(x) = \frac{1}{4}[a_1(x - b_1)^2 + a_2(x - b_2)^2]$, $g(x) = \frac{1}{4}[a_2(x - b_2)^2 - 3a_1(x - b_1)^2]$.

因为方程 f(x) = 0 有两个不等的实根,则 a_1, a_2 异号且 $a_1 \neq -a_2, b_1 \neq b_2$,于是 $a_2, -3a_1$ 同号, $b_1 \neq b_2$,所以 $g(x) = \frac{1}{4}[a_2(x-b_2)^2 - 3a_1(x-b_1)^2]$ 恒为正或恒为负,所以方程 g(x) = 0 没有实根。

证法 2: 设
$$f(x) = ax^2 + bx + c$$
, $g(x) = dx^2 + ex + f$, $ad \neq 0$, 则
$$f(x) - g(x) = (a - d)x^2 + (b - e)x + c - f \qquad (1)$$

$$3f(x) + g(x) = (3a + d)x^2 + (3b + e)x + 3c + f \qquad (2)$$
所以 $(b - e)^2 = 4(a - d)(c - f)$, $(3b + e)^2 = 4(3a + d)(3c + f)$. 即

$$b^{2} - 2be + e^{2} = 4ac - 4af - 4dc + 4df$$

$$9b^{2} + 6be + e^{2} = 36ac + 12af + 12cd + 4df$$

(1)
$$\times$$
 3 + (2) 整理得 $3b^2 + e^2 = 12ac + 4df$.

又 $b^2 - 4ac > 0$, 得 $\Delta_{g(x)} = e^2 - 4df = -4(b^2 - 4ac) < 0$, 所以方程 g(x) = 0 没有实根.

评注 例 3-3 直接用判别式解答,中间代数运算的过程有点麻烦.

【例 3-4】设二次函数 $f(x) = ax^2 + bx + c(a \neq 0)$ 满足:

- (1) $\stackrel{.}{=}$ $x \in \mathbb{R}$ $\forall f$, f(x-4) = f(2-x), $f(x) \geqslant x$;
- (2) 当 $x \in (0,2)$ 时, $f(x) \leq \left(\frac{x+1}{2}\right)^2$;
- (3) f(x) 在 **R** 上的最小值为 0.

求最大值 m(m > 1), 使得存在 $t \in \mathbb{R}$, 只要 $x \in [1, m]$, 就有 $f(x + t) \leq x$.

分析 首先要根据已知条件建立关于 a,b,c 的关系式,求出 f(x) 的解析式,然后再解决二次函数的恒成立问题.

解:由 (1)知, x = -1是 f(x)的对称轴,所以 $-\frac{b}{2a} = -1$, b = 2a,且 $f(1) \ge 1$. 又由 (2)知, $f(1) \le 1$,所以 f(1) = 1, a + b + c = 1.由 f(-1) = 0, a - b + c = 0,从而 $a = \frac{1}{4}$, $b = \frac{1}{2}$, $c = \frac{1}{4}$, $f(x) = \frac{1}{4}x^2 + \frac{1}{2}x + \frac{1}{4} = \frac{1}{4}(x+1)^2$.

若存在 $t \in \mathbf{R}$, 只要 $x \in [1, m]$, 就有 $f(x + t) \leq x$.

令 x = 1, 有 $f(t+1) \le 1$, 即 $\frac{1}{4}(t+2)^2 \le 1$, 解得 $-4 \le t \le 0$.

对固定的 $t \in [-4,0]$, 令 x = m, 有 $f(t+m) \leq m$.

化简后, 得 $m^2 - 2(1-t)m + (t^2 + 2t + 1) \leq 0$ 。

解得 $1-t-\sqrt{-4t} \le m \le 1-t+\sqrt{-4t}$.

于是 $m \le 1 - t + \sqrt{-4t} \le 1 - (-4) + \sqrt{(-4) \times (-4)} = 9$.

另一方面, 当 t=-4 时, 对任意的 $x \in [1,9]$, 恒有

$$f(x-4) - x = \frac{1}{4}(x^2 - 10x + 9) = \frac{1}{4}(x-1)(x-9) \le 0$$

综上所述, m 的最大值为 9.

【例 3-5】 $f(x) = x^2 + px + q$. 若 f(f(x)) = 0 只有一个实数根, 求证: $p, q \ge 0$.

分析 设 x_0 是方程 f(x) = 0 的根,则使得 $f(x) = x_0$ 成立的 x 的取值即为方程 f(f(x)) = 0 的根.

证明:证法一: f(f(x))=0,即 $f^2(x)+pf(x)+q=0$,由题意知 $\Delta=p^2-4q\geqslant 0$.

(1) 若 $\Delta = p^2 - 4q > 0$,

设 f(f(x)) = 0 的两个根为 $f(x) = x_1, f(x) = x_2(x_1 \neq x_2),$

即 $x^2 + px + q - x_1 = 0$ 或 $x^2 + px + q - x_2 = 0$.

依题意,两方程中仅有一解,不妨设

$$\Delta_1 = p^2 - 4(q - x_1) < 0, \Delta_2 = p^2 - 4(q - x_2) = 0.$$

故
$$x_1 < q - \frac{p^2}{4} < 0$$
, $x_2 = q - \frac{p^2}{4} < 0$.

再由韦达定理知 $q=x_1 \cdot x_2 > 0, p=-(x_1+x_2) > 0$.

(2) 若 $\Delta = p^2 - 4q = 0$,

设 f(f(x)) = 0 的根为 $f(x) = x_0$,

即 $x^2 + px + q - x_0 = 0$. 依题意 $\Delta_3 = p^2 - 4(q - x_0) = 0$,

所以 $x_0 = 0$.

所以 $q=x_0 \cdot x_0=0, p=-(x_0+x_0)=0$.

综上, $p \ge 0, q \ge 0$.

证法二: f(f(x)) = 0,即 $f^2(x) + pf(x) + q = 0$,显然其判别式 $p^2 - 4q \ge 0$.

$$f(x) = \frac{-p \pm \sqrt{p^2 - 4q}}{2},$$

而 f(f(x))=0 有且仅有一个实数解,且 $f(x)\in\left[q-\frac{p^2}{4},+\infty\right)$,

所以
$$f(x) = \frac{-p + \sqrt{p^2 - 4q}}{2} \Big(f(x) = \frac{-p - \sqrt{p^2 - 4q}}{2}$$
舍去 $\Big)$.

且 $f(x)=x^2+px+q=\frac{-p+\sqrt{p^2-4q}}{2}$ 有且仅有一解,即 $x^2+px+q-\frac{-p+\sqrt{p^2-4q}}{2}=0$ 有且仅有一解,即

$$\Delta = p^2 - 4\left(q - \frac{-p + \sqrt{p^2 - 4q}}{2}\right) = 0.$$

所以

$$p^2-4q-2p+2\sqrt{p^2-4q}=0$$
,

可得

法三: 证明: 由题意, f(f(x)) = 0 有解, 从而 f(x) = 0 一定有解.

- (1) 若 f(x) = 0 有且仅有一个解 x_0 , 则 $\Delta = 0$, f(x) = 0 的值域为 $[0, +\infty)$. 由 f(f(x)) = 0 有且只有一个解,则 $f(x) = x_0$ 有且只有一个解,所以 $x_0 = 0$,此时, p = q = 0.
 - (2) 若 f(x) = 0 有两个不等的解 $x_1, x_2(x_1 < x_2)$, 即 $\Delta > 0$ 。由于 f(f(x)) =

0 有且只有一个解, 即两个方程 $f(x) = x_1$, $f(x) = x_2$ 总共只有一个解, 所以 f(x) 的值域为 $[x_2, +\infty)$. 由 f(x) = 0 的判别式 $\Delta > 0$ 得, $x_2 < 0$, 则 $x_1 < x_2 = [f(x)]_{min} < 0$, 则对称轴 $x = -\frac{p}{2} < 0$, f(0) = q > 0, 即 p > 0, q > 0.

综上所述, *p*, *q*≥0.

评注 从方程 f(x) = 0 的根的个数进行分类讨论是例 3-5 很好的一个切入点,可以化难为易。

【例 3-6】设函数 $f(x) = ax^2 + 8x + 3(a < 0)$, 对于给定的负数 a, 有一个最大的正数 l(a), 使得在整个区间 [0, l(a)] 上, 不等式 $|f(x)| \le 5$ 都成立. 问: a 为何值时, l(a) 最大?求这个最大的 l(a), 证明你的结论.

解: 因为
$$f(x) = a\left(x + \frac{4}{a}\right)^2 + 3 - \frac{16}{a}(a < 0)$$
,所以 $f(x)_{\text{max}} = 3 - \frac{16}{a}$.

当 $3 - \frac{16}{a} > 5$,即 $-8 < a < 0$ 时, $l(a)$ 是方程 $ax^2 + 8x + 3 = 5$,即 $ax^2 + 8x - 2 = 0$ 的较小的根. 所以 $l(a) = \frac{-8 + \sqrt{64 + 8a}}{2a}$.

当 $3 - \frac{16}{a} \le 5$, 即 $a \le -8$ 时, l(a) 是方程 $ax^2 + 8x + 3 = -5$ 的较大的根.

$$l(a) = \frac{1}{2a}(-8 - \sqrt{64 - 32a}) = \frac{1}{a}(-4 - 2\sqrt{4 - 2a})$$

$$= \frac{1}{a} \cdot \frac{(-4 + 2\sqrt{4 - 2a})(-4 - 2\sqrt{4 - 2a})}{-4 + 2\sqrt{4 - 2a}}$$

$$= \frac{4}{\sqrt{4 - 2a} - 2} \leqslant \frac{4}{\sqrt{20} - 2} = \frac{1 + \sqrt{5}}{2}$$

$$= \frac{3 - 2}{4}$$

【例 3-7】已知函数 $f(x) = |x^2 - a|$, 其中 a > 0. 若恰好有两组解 (m, n) 使得 f(x) 在定义域 [m, n] 上的值域也为 [m, n], 求实数 a 的取值范围.

分析 所给函数 $f(x) = |x^2 - a|$ 是二次函数的形式,但含有绝对值,所以需要考虑 m , n 的变化范围,设法去掉绝对值符号,再利用一元二次方程根的分布解决.

解: 由于 $f(x) \ge 0$,于是 $m \ge 0$ 且 $m \ne \sqrt{a}$,按 \sqrt{a} 所在的位置分三种情况讨论。

(1) 当 $m < n \le \sqrt{a}$ 时, $f(x) = |x^2 - a| = -x^2 + a$ 在 [m, n] 上单调递减,

于是 $\begin{cases} f(m) = -m^2 + a = n, \\ f(n) = -n^2 + a = m, \end{cases}$ 两式相减得 m + n = 1, 于是 m, n 是关于 t 的方程 $-t^2 + a = 1 - t$ 的.两个根,即关于 t 的方程 $g(t) = t^2 - t + 1 - a = 0$ 在 $[0, \sqrt{a}]$ 上有两个不等实根,则由根的分布

- (∞) 上有两个不等实根,则由根的分布可得 $\begin{cases} \Delta > 0, \\ g(\sqrt{a}) \geqslant 0, \text{ 此时 } a \text{ 无解.} \end{cases}$
- (3) 当 $m < \sqrt{a} < n$ 时, 因为 $f(\sqrt{a}) = 0 \in [m, n]$, 且 $m \ge 0$, 所以 m = 0, 于是 f(x) 在 [m, n] 上的最大值为 f(0) 或 f(n) 。

若 f(0) 为最大值,则 $\begin{cases} n = f(0), \\ f(n) \leq n, \end{cases}$ 即 $\begin{cases} n = a, \\ |n^2 - a| \leq n, \end{cases}$ 结合 $\sqrt{a} < n,$ 则 $\begin{cases} |a^2 - a| \leq a, \\ \sqrt{a} < a, \end{cases}$ 即

若 f(n) 为最大值,则 $\begin{cases} n=f(n), \\ f(0) \leqslant n, \end{cases}$ 即 $\begin{cases} n=n^2-a, \\ a \leqslant n, \end{cases}$ 由第一个方程解得 $n=\frac{1+\sqrt{1+4a}}{2}$

(负舍), 结合
$$\sqrt{a} < n$$
, 则
$$\begin{cases} a \leqslant \frac{1+\sqrt{1+4a}}{2}, \\ \sqrt{a} < \frac{1+\sqrt{1+4a}}{2}, \end{cases}$$
解得 $0 < a \leqslant 2$.

而当 a=2 时,以上两种情况对应的区间均为 [0,2] ,不符合要求。

综上所述, a 的取值范围为 $\left(\frac{3}{4},2\right)$.

【例 3-8】将 25 个首项系数为正的二次三项式放置在 5×5 的正方形表格中. 它们的 75 个系数都是取自从 -37 到 37 的整数 (每个数只用一次). 证明: 至少有一列中的所有二次三项式的和有实根。

证明: 用反证法. 假设表格的每一列中所有二次三项式的和都没有实根. 令 $S_j(x)$ 为第 j 列中所有二次三项式的和, 其中 $1 \le j \le 5$. 由于每个二次三项式的首项系数都是正的, $S_j(x)$ 的首项系数也是正的. 因为 $S_j(x)$, $1 \le j \le 5$ 是没有实根的二次三项式, 所以对于所有 x, $S_j(x) > 0$, $1 \le j \le 5$.

现在考虑表格中所有二次三项式的和 $S(x)=\alpha x^2+\beta x+\gamma$. 由于对于所有 $x,S_j(x)>0$,所以, 对于所有 $x,S(x)=\sum_{j=1}^5S_j(x)>0$.

但是观察到 $\alpha + \beta + \gamma = \sum_{k=-37}^{37} k = 0$. 这推出 S(1) = 0, 与对于所有 $x, S_j(x) > 0$ 矛盾. 因此至少有一列中的所有二次三项式的和 $S_j(x)$ 有实根.

.

第四讲 函数的概念、图像与性质

知识方法述要

1.映射与函数

对于任意两个集合 A,B, 依对应法则 f, 若对 A 中的任意一个元素 x, 在 B 中都有唯一一个元素与之对应,则称 $f:A\to B$ 为一个映射.若 $f:A\to B$ 是一个映射,且对任意 $x,y\in A$, $x\neq y$ 都有 $f(x)\neq f(y)$,则称之为单射.若 $f:A\to B$ 是映射,且对任意 $y\in B$,都有一个 $x\in A$ 使得 f(x)=y,则称 $f:A\to B$ 是 A 到 B 上的满射.若 $f:A\to B$ 既是单射又是满射,则叫作一一映射.一一映射存在逆映射,即从 B 到 A 由相反的对应法则 f^{-1} 构成的映射,记作 $f^{-1}:B\to A$.

从非空数集 A 到非空数集 B 的一个映射 $f:A \to B$ 叫作 A 到 B 的函数,记作: y = f(x), 其中 $x \in A$, $y \in B$.

这里的数集 A 称为函数 f 的定义域. 对于 A 中的每个元素 x, 根据对应法则 f 所对应的 B 中的元素 y,称为 f 点在 x 的函数值,记为 f(x). 全体函数值的集合

$$f(A) = \{y | y = f(x), x \in A\} \subseteq B$$

称为函数 f 的值域.

2. 函数的图像

点集 $\{(x,y)|y=f(x),x\in D\}$ 称为函数 y=f(x) 的图像,其中 D 为 f(x) 的定义域.函数图像形象地显示函数性质,为研究数量关系问题提供了 "形" 的直观性,它是探求解题途径、获得问题结果的重要工具.应当重视数形结合解题的思想方法.

函数图像变换主要有平移、对称、伸缩三种基本变换.

(1) 平移变换.

水平平移: $y = f(x \pm a)(a > 0)$ 的图像, 可由 y = f(x) 的图像向左 (+) 或向右 (-) 平移 a 个单位而得到;

坚直平移: $y = f(x) \pm b(b > 0)$ 的图像, 可由 y = f(x) 的图像向上 (+) 或向下 (-) 平移 b 个单位而得到.

(2) 对称变换.

y = f(-x) 与 y = f(x) 关于 y 轴对称; y = -f(x) 与 y = f(x) 关于 x 轴对称; y = -f(-x) 与 y = f(x) 关于原点对称; $y = f^{-1}(x)$ 与 y = f(x) 关于直线 y = x 对称.

(3) 伸缩变换.

y = Af(x)(A > 0) 的图像, 可将 y = f(x) 图像上每一点的纵坐标伸 (A > 1) 缩 (0 < A < 1) 到原来的 A 倍,横坐标不变而得到;

y = f(ax)(a > 0) 的图像, 可将 y = f(x) 的图像上每一点的横坐标(伸) (0 < a < 1) 缩 (a > 1) 到原来的 $\frac{1}{a}$, 纵坐标不变而得到.

3. 函数的性质

(1) 单调性: 设函数 f(x) 在区间 I 上满足对任意的 $x_1, x_2 \in I$, 并且 $x_1 < x_2$, 总有 $f(x_1) < f(x_2)(f(x_1) > f(x_2))$, 则称 f(x) 在区间 I 上是增(减) 函数, 区间 I 称为单调增(减) 区间.

设 f(x) 在区间 I_1 和 I_2 上都分别是单调递增(或递减),且 $I_1 \cap I_2 \neq \emptyset$,则 f(x) 在 $I_1 \cup I_2$ 上也是单调递增(或递减)的(若 $I_1 \cap I_2 = \emptyset$,则不一定成立,如 $y = \frac{1}{x}$ 在 $(0, +\infty)$ 和 $(-\infty, 0)$ 上均为单调递减,但在 $(-\infty, 0) \cup (0, +\infty)$ 上不是单调递减的).

- (2) **奇偶性:** 设函数 y = f(x) 的定义域为 D, 且 D 是关于原点对称的数集, 若对于任意的 $x \in D$, 都有 f(-x) = -f(x), 则称 f(x) 是奇函数; 若对任意 $x \in D$, 都有 f(-x) = f(x),则称 f(x) 是偶函数. 奇函数的图像关于原点对称, 偶函数的图像关于 y 轴对称.
- (3) 周期性: 对于函数 f(x) , 如果存在一个不为零的常数 T , 使得当 x 取 定义域内每一个数时, f(x+T)=f(x) 总成立, 则称 f(x) 为周期函数, T 称为这个函数的周期, 如果周期中存在最小的正数 T_0 , 则这个正数叫作函数 f(x) 的最小正周期.

周期函数具有无穷多个周期,并不是任何周期函数都有最小正周期,一个十分著名的例子是狄里赫勒函数.

$$D(x) = \begin{cases} 1, x \in \{ \text{ 有理数 } \}, \\ 0, x \in \{ \text{ 无理数 } \}. \end{cases}$$

常量函数 $f(x) = a(x \in \mathbf{R})$, 同样是无最小正周期的周期函数.

4. 连续函数的性质

若 a < b, f(x) 在 [a,b] 上连续,且 $f(a) \cdot f(b) < 0$,则 f(x) = 0 在 (a,b) 上至少有一个实根.

处理函数问题时要注意数形结合思想的应用,经常要将函数与方程相联系.

【例 4-1】求函数 $f(x) = x^2 + x\sqrt{x^2 - 1}$ 的值域.

分析 要求函数的最值或值域,首先考虑函数在定义域内的单调性.

解法 1: 函数的定义域为 $(-\infty, -1] \cup [1, +\infty)$.

(1) 当 $x \ge 1$ 时,易知 $x^2 \ge 1$, $x\sqrt{x^2 - 1} \ge 0$,于是 $f(x) = x^2 + x\sqrt{x^2 - 1} \ge 1$,当 x = 1 时取等号。

$$0 \le 1 - \frac{1}{x^2} < 1, 1 \le 1 + \sqrt{1 - \frac{1}{x^2}} < 2$$
,所以 $\frac{1}{2} < f(x) \le 1$.所以,原函数的值域为 $\left(\frac{1}{2}, + \infty\right)$.

解法 2: 由 $f(x) = x^2 + x\sqrt{x^2 - 1}$ 得,

$$2f(x) = x^2 + 2x\sqrt{x^2 - 1} + (x^2 - 1) + 1 = \left(x + \sqrt{x^2 - 1}\right)^2 + 1$$

- (1) 当 $x \in [1, +\infty)$ 时,易知函数 $t(x) = x + \sqrt{x^2 1}$ 是增函数,所以 $t(x) \ge t(1) = 1$,从而 $f(x) \ge 1$.
- (2) 当 $x \in (-\infty, -1]$ 时,易知函数 $t(x) = x + \sqrt{x^2 1} = \frac{1}{x \sqrt{x^2 1}}$ 是減函数,所以 $1 = t(-1) \leqslant t(x) < 0$,从而 $1 < 2f(x) \leqslant 2$,即 $\frac{1}{2} < f(x) \leqslant 1$.

所以, f(x) 的值域为 $\left(\frac{1}{2}, +\infty\right)$.

【例 4-2】 已知
$$(2x + \sqrt{4x^2 + 1})(\sqrt{y^2 + 4} - 2) \ge y > 0$$
, 求 $x + y$ 的最小值.

分析 本题结构较为复杂, 颇难处理, 但若将条件变形为

$$2x + \sqrt{4x^2 + 1} \geqslant \frac{2}{y} + \sqrt{\frac{4}{y^2} + 1}$$

并自然联想起函数的单调性,则问题迎刃而解.

解: 已知条件可以变形为

$$2x + \sqrt{4x^2 + 1} \geqslant \frac{y}{\sqrt{y^2 + 4} - 2} = \frac{y(\sqrt{y^2 + 4} + 2)}{y^2} = \frac{2}{y} + \sqrt{\frac{4}{y^2} + 1},$$

构造函数 $f(t) = 2t + \sqrt{4t^2 + 1}$, 则以上不等式即为 $f(x) \ge f\left(\frac{1}{\nu}\right)$.

由于 $f(t) = 2t + \sqrt{4t^2 + 1} = \frac{1}{\sqrt{4t^2 + 1} - 2t}$, 易知 f(t) 在 $[0, +\infty)$ 与 $(-\infty, 0]$ 上均单调递增,于是 f(t) 在 \mathbf{R} 上单调递增.所以由 $f(x) \geqslant f\left(\frac{1}{y}\right)$ 知, $x \geqslant \frac{1}{y}$,又因为 y > 0,所以 $xy \geqslant 1$,所以 $x + y \geqslant 2\sqrt{xy} = 2$,当且仅当 x = y = 1 时,等号成立.

【例 4-6】设
$$a,b,c,d$$
 是实数, 且满足 $(a+b+c)^2 \ge 2(a^2+b^2+c^2)+4d$, 求证: $ab+bc+cd \ge 3d$

证明: 题设不等式可以变形为

$$c^{2} - 2(a+b)c + [(a^{2} + b^{2}) - 2ab + 4d] \le 0$$

于是可构造二次函数 $f(x) = x^2 - 2(a+b)x + (a^2 + b^2) - 2ab + 4d$, f(x) 是开口向上的抛物线,且 $f(c) \le 0$, 从而抛物线与 x 一定有交点,于是

$$\Delta = 4(a+b)^2 - 4(a^2 + b^2 - 2ab + 4d) \geqslant 0$$

所以 $ab \geqslant d$. 同理可证 $bc \geqslant d$, $ac \geqslant d$, 所以 $ab + bc + cd \geqslant 3d$.

第五讲 幂函数、指数函数、对数函数

知识方法概要

1.幂函数

形如 $y = x^a (a \in \mathbf{R})$ 的函数叫作幕函数.

2. 指数函数

形如 $y = a^x (a > 0, a \neq 1)$ 的函数叫作指数函数,其定义域是 **R** ,值域为 $(0, +\infty)$ 。当 a > 1 时, $y = a^x$ 在 $(-\infty, +\infty)$ 上单调递增; 当 0 < a < 1 时, $y = a^x$ 在 $(-\infty, +\infty)$ 上单调递减.它的图像恒过定点 (0,1).

分数指数幂:

$$a^{\frac{1}{n}} = \sqrt[n]{a}, a^{\frac{m}{n}} = \sqrt[n]{a^m}, a^{-n} = \frac{1}{a^n}, a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}}$$

有理指数幂 $(a > 0, b > 0, p \in \mathbf{Q}, r \in \mathbf{Q})$:

$$a^{p} \cdot a^{r} = a^{p+r}, (a^{p})^{r} = a^{pr}, (ab)^{p} = a^{p}b^{p}.$$

3.对数函数

形如 $y = \log_a x (a > 0, a \neq 1)$ 的函数叫作对数函数。其定义域是 $(0, + \infty)$,值域是 $(-\infty, +\infty)$ 。 它是指数函数 $y = a^x (a > 0, a \neq 1)$ 的反函数,所有性质均可由指数函数的性质导出。当 a > 1 时, $y = \log_a x$ 在 $(0, +\infty)$ 上单调递增;当 0 < a < 1 时, $y = \log_a x$ 在 $(0, +\infty)$ 上单调递减。它的图像过定点 (1,0).

对数的运算性质 $(M > 0, N > 0, a > 0, a \neq 1, n \in \mathbf{R})$:

$$\log_a (MN) = \log_a M + \log_a N$$
$$\log_a \frac{M}{N} = \log_a M - \log_a N$$
$$\log_a M^n = n\log_a M$$

对数恒等式: $a^{\log_a N} = N$.

对数换底公式: $\log_a M = \frac{\log_c M}{\log_c a} (a > 0, a \neq 1; M > 0; c > 0, c \neq 1).$

由以上性质容易得到以下推论:

$$\log_a b = \frac{1}{\log_b a}, \log_{a^n} b^m = \frac{m}{n} \log_a b.$$

指数函数 $y = a^x$ 与对数函数 $y = \log_a x$ 互为反函数.

【例 5-5】 已知 $a > 0, a \neq 1$, 试求使方程

$$\log_a (x - ak) = \log_{a^2} (x^2 - a^2)$$

有解的 k 的取值范围.

解: 方程等价于

$$\begin{cases} x - ak > 0 \\ x^{2} - a^{2} > 0 \\ (x - ak)^{2} = x^{2} - a^{2} \end{cases}$$

即等价于

$$\begin{cases} x - ak > 0 \\ 2kx = a(1 + k^2) \end{cases}$$

注意到 a > 0 , 所以

当 k = 0 时,方程 (3) 无解.

当 $k \neq 0$ 时,方程 (3) 的解为

$$x = \frac{a(1+k^2)}{2k}$$

因为式 (3) 满足式 (1), 所以

$$\frac{a(1+k^2)}{2k} - ak = \frac{a(1-k^2)}{2k} > 0$$

即

$$k(k^2 - 1) < 0$$

所以, k 的取值范围为 $(-\infty, -1) \cup (0,1)$.

评注 例 5-5 还可以用数形结合、函数的思想求解:

设 $y_1 = (x - ak)^2$, $y_2 = x^2 - a^2$, 分别作出其图像, 交点的横坐标 x 即为方程 $(x - ak)^2 = x^2 - a^2$ 的解。这里 $y_1 = (x - ak)^2$ 的顶点横坐标 ak 只有两种情况才能保证交点的横坐标 x > ak,分别是 ak < -a 和 0 < ak < a, 如图 5-1. 所以 k 的取值范围是 k < -1 或 0 < k < 1(a > 0).

【例 5-6】 已知方程 $2^{333x-2} + 2^{111x+2} = 2^{222x+1} + 1$ 有三个实数根, 求这三个实数根的和.

解: 设 $y = 2^{111x}$, 则原方程等价于

$$\frac{1}{4}y^3 + 4y = 2y^2 + 1,$$

化简后即为

$$y^3 - 8y^2 + 16y - 4 = 0$$

因为原方程的根为实数,所以以上关于 y 的方程三个根都是正数。设原方程的三个根分别为 x_1, x_2, x_3 ,关于 y 的方程三个根分别为 y_1, y_2, y_3 ,则

$$x_1 + x_2 + x_3 = \frac{1}{111} (\log_2 y_1 + \log_2 y_2 + \log_2 y_3) = \frac{\log_2 y_1 y_2 y_3}{111} = \frac{\log_2 4}{111} = \frac{2}{111}$$

评注 最后用到一元三次方程的韦达定理: 若 x_1, x_2, x_3 是一元三次方程 $ax^3 + bx^2 + cx + d = 0$ 的三个实根, 则

$$\begin{cases} x_1 + x_2 + x_3 = -\frac{b}{a} \\ x_1 x_2 + x_2 x_3 + x_3 x_1 = \frac{c}{a} \\ x_1 x_2 x_3 = -\frac{d}{a} \end{cases}$$

【例 5-7】求满足等式

$$\begin{aligned} \left| \lg (xx_1) \right| + \left| \lg (xx_2) \right| + \dots + \left| \lg (xx_n) \right| + \left| \lg \frac{x}{x_1} \right| + \left| \lg \frac{x}{x_2} \right| + \dots + \left| \lg \frac{x}{x_n} \right| \\ &= \left| \lg x_1 + \lg x_2 + \dots + \lg x_n \right| \end{aligned}$$

的所有正实数 x, x_1, x_2, \dots, x_n 的值.

解: 利用绝对值性质,

$$\left| \lg (xx_1) \right| + \left| \lg \frac{x}{x_1} \right| \ge \left| \lg (xx_1) - \lg \frac{x}{x_1} \right| = \left| \lg x_1^2 \right| = 2 \left| \lg x_1 \right|$$

等式 (1) 左边 $\geq 2(|\lg x_1| + |\lg x_2| + \cdots + |\lg x_n|),$

然而,等式 (1) 右边 $\leq \left|\lg x_1\right| + \left|\lg x_2\right| + \cdots + \left|\lg x_n\right|$ 。

所以等式 (1) 不成立,除非 $|\lg x_1|=|\lg x_2|=\cdots=|\lg x_n|=0$, 因此 $x_1=x_2=\cdots=x_n=1$,也不难证明 x=1.

【例 5-9】已知 x 是正数, 求 $2^x - 4^x + 6^x - 8^x - 9^x + 12^x$ 的最小值.

解: 注意到 $1+2^x-4^x+6^x-8^x-9^x+12^x=(3^x-2^x-1)(4^x-3^x-1)$, 因为函

数 $1 - \left(\frac{2}{3}\right)^x - \left(\frac{1}{3}\right)^x$ 和 $1 - \left(\frac{3}{4}\right)^x - \left(\frac{1}{4}\right)^x$ 都是 x 的增函数, 且当 x = 1 时, 函数值为零, 所以, 当 x > 1 时,这两个函数都为正; 当 x < 1 时,这两个函数都为负. 于是

$$1 + 2^{x} - 4^{x} + 6^{x} - 8^{x} - 9^{x} + 12^{x} = 12^{x} \left[1 - \left(\frac{2}{3}\right)^{x} - \left(\frac{1}{3}\right)^{x} \right] \left[1 - \left(\frac{3}{4}\right)^{x} - \left(\frac{1}{4}\right)^{x} \right] \geqslant 0$$

当且仅当 x=1 时, 等号成立. 所以, 当 x=1 时, 所求的最小值为 -1.

同步练习

1、 己知 $a > 0, b > 0, \log_9 a = \log_{12} b = \log_{16} (a + b), 求 \frac{b}{a}$ 的值.

解法 1: 设 $\log_9 a = \log_{12} b = \log_{16} (a+b) = k$,则 $a = 9^k, b = 12^k, a+b = 16^k$ 。由于 $9^k \times 16^k = \left(12^k\right)^2$,所以 $(a+b)a = b^2$,解得 $\frac{b}{a} = \frac{1+\sqrt{5}}{2}$ (负根舍去).

评注: 连等式中,我们常设其都等于一个变量来解决问题。而例 5-1 的解法直入结论 求 $\frac{b}{a}$, 值得借鉴。

解法 2: 设 $\log_9 a = \log_{12} b = \log_{16} (a+b) = k$, 则 $a = 9^k$, $b = 12^k$, $a+b = 16^k$ 。

 $\frac{b}{a} = \frac{12^k}{9^k} = \left(\frac{4}{3}\right)^k$,而 $9^k + 12^k = 16^k$,所以 $1 + \frac{12^k}{9^k} = \frac{16^k}{9^k}$,即 $\left[\left(\frac{4}{3}\right)^k\right]^2 - \left(\frac{4}{3}\right)^k - 1 = 0$,则 $\frac{b}{a} = \left(\frac{4}{3}\right)^k = \frac{1+\sqrt{5}}{2}$ (负根舍去).

2、已知 x_1 是方程 $x + \lg x = 10$ 的根, x_2 是方程 $x + 10^x = 10$ 的根, 求 $x_1 + x_2$ 的值.

解法 1: 由题意得 $\begin{cases} \lg x_1 = 10 - x_1, \\ 10^{x_2} = 10 - x_2, \end{cases}$ 表明 x_1 是函数 $y = \lg x$ 与 y = 10 - x 的交点的 横坐标, x_2 是函数 $y = 10^x$ 与 y = 10 - x 的交点的横坐标. 因为 $y = \lg x$ 与 $y = 10^x$ 互为反函数, 其图像关于 y = x 对称,由 $\begin{cases} y = 10 - x, \\ y = x \end{cases}$ 得, $\begin{cases} x = 5, \\ y = 5, \end{cases}$ 所以 $\frac{x_1 + x_2}{2} = 5, x_1 + x_2 = 10.$

解法 2:构造函数 $f(x) = x + \lg x$,由 $x_1 + \lg x_1 = 10$ 知 $f(x_1) = 10, x_2 + 10^{x_2} = 10$,即 $10^{x_2} + \lg 10^{x_2} = 10$,则 $f(10^{x_2}) = 10$,于是 $f(x_1) = f(10^{x_2})$,又 f(x)为 $(0, +\infty)$ 上的增

函数, 所以 $x_1 = 10^{x_2}, x_1 + x_2 = 10^{x_2} + x_2 = 10.$

解法 3: 由题意得 $\begin{cases} x_1 = 10^{10-x_1}, \\ 10 - x_2 = 10^{x_2}, \end{cases}$ 两式相减有 $x_1 + x_2 - 10 = 10^{10-x_1} - 10^{x_2} \cdot 若 x_1 + x_2 - 10 > 0$,则 $10^{10-x_1} - 10^{x_2} > 0$,得 $10 - x_1 > x_2$,矛盾;若 $x_1 + x_2 - 10 < 0$,则 $10^{10-x_1} - 10^{x_2} < 0$,得 $10 - x_1 < x_2$,矛盾;而当 $x_1 + x_2 = 10$ 时,满足题意.

3、若 $a > a^2 > b > 0$, $m = \log_b \frac{b}{a}$, $n = \log_a \frac{a}{b}$, $p = \log_b a$, $q = \log_a b$. 求 m, n, p, q 从小到大的排列顺序.

分析 先简单得到一些大小关系,再用比较法。

解: 由 $a > a^2$ 得 $a \in (0,1), \frac{a}{b} > 1, n = \log_a \frac{b}{a} < 0$; 又 $\frac{b}{a} < a, b \in (0,1), \log_b \frac{b}{a} > \log_b a$.得 m > p; 又 $b < a, a \in (0,1)$ 得 $\log_a b > \log_a a = 1$,即 $q > 1, p = \frac{1}{q} \in (0,1), p < q$; 下面比较 m, q 的大小.

$$m - q = \log_b \frac{b}{a} - \log_a b = 1 - \log_b a - \log_a b = 1 - (\log_b a + \log_a b)$$

由平均值不等式知 $\log_a b + \log_b a > 2$, 从而 m - q < 0, m < q.

综上所述, n 。

评注: 要掌握对数的上底或下底变动时对数值的变化情况。可以使用换底公式来判断 (都换成自然对数)。

4、求函数 $f(x) = \sqrt{2x^2 - 3x + 4} + \sqrt{x^2 - 2x}$ 的最小值

【解析】先考虑 f(x) 的定义域,由 $2x^2 - 3x + 4 \ge 0$, $x^2 - 2x \ge 0$ 得 $x \in (-\infty, 0] \cup [2, +\infty)$ 。易见 $y = 2x^2 - 3x + 4$ 及 $y = x^2 - 2x$ 都在 $(-\infty, 0]$ 上递减,在 $[2, +\infty)$ 上递增.于是 f(x) 在 $(-\infty, 0]$ 上递减,在 $[2, +\infty)$ 上递增.

所以 $f(x)_{\min} = \min\{f(0), f(2)\} = \min\{2, \sqrt{6}\} = 2$, 即 f(x) 的最小值为 2.

5. 定义: 若函数 f(x) 图像上的点到定点 A 的最短距离小于 3,则称函数 f(x) 是点 A 的近

点函数,已知函数 $f(x) = \frac{-2x+a}{x-2}$ 在 $(2,+\infty)$ 上是严格增函数,且是点 A(0,-4) 的近点函数,求实数 a 的取值范围.

12.【解析】

- 6. 已知函数 $f(x)=x^2+(a-4)x+3-a$,若对于任意的 $a \in (0,4)$,存在 $x \in [0,2]$,使得 $|f(x)| \ge t$,则实数 t 的取值范围是_____
- 6. 【解析】由题意,对任意 $a \in (0,4)$, $\max_{0 \le x \le 2} |f(x)| \ge t$, 故 $\min_{0 \le x \le 2} \left(\max_{0 \le x \le 2} |f(x)| \right) \ge t$. 由于 f(x) 的

对称轴 $x = 2 - \frac{a}{2} \in (0, 2)$,故 $\max |f(x)| = \max \{|3 - a|, |a - 1|, \frac{1}{4}(a - 2)^2\} = |a - 2| + 1$,故 $t \le 1$.

7. 已知函数 $f(x) = \begin{cases} x^2 + (4a-3)x + 3a, x < 0 \\ \log_a(x+1) + 1, x \ge 0 \end{cases}$, (a > 0 且 $a \ne 1)$ 在 R 上单调递减,且关于 x 的方程 |f(x)| = 2 - x 恰好有两个不相等的实数解,则 a 的取值范围是

7.【解析】

8. 设函数 f(x) 满足 $f(x) = f\left(\frac{1}{x+1}\right)$, 定义域为 $D = [0, +\infty)$, 值域为 A, 若集合 $\{y \mid y = f(x), x \in [0, a]\}$ 可取得 A中所有值,则实数 a 的取值范围为_____.

8. 【答案】 $[\frac{\sqrt{5}-1}{2},+\infty)$

【解析】

倘若 $x \in [0,a]$,那么 y = f(x) 可取遍 f(x) 在 [0,a] 上的取值. 对于 $x \geq a$ 的部分,由于 $f(x) = f(\frac{1}{1+x})$,此时 $0 < \frac{1}{1+x} \leq \frac{1}{1+a}$. 因此想要使得通过 $f(\frac{1}{1+x}) = f(x)$ 来得到全部的 $x \geq a$ 部分的取值,仅需 $\frac{1}{1+a} \leq a$ 即可,即 $a \geq \frac{\sqrt{5}-1}{2}$.

张朔解法:

当 $a \ge \frac{-1+\sqrt{5}}{2}$, 那么此时, 集合内一定能取到 $x \in [0, \frac{-1+\sqrt{5}}{2}]$ 时 f(x) 的值.

并且对于 $x \geq \frac{-1+\sqrt{5}}{2}$ 的部分,由于此时 $0 < \frac{1}{1+x} \leq \frac{-1+\sqrt{5}}{2}$,由 $f(\frac{1}{1+x}) = f(x)$ 便可得到全部的 $x \geq \frac{-1+\sqrt{5}}{2}$ 上的函数取值。倘若 $a < \frac{-1+\sqrt{5}}{2}$,构造函数

$$f(x) = \begin{cases} 1, & 0 \le x \le a \vec{x} \le \frac{1}{1+a} \\ 0, & a < x < \frac{1}{1+a} \end{cases}$$

此时函数满足 $f(x) = f(\frac{1}{1+x})$, 值域为 $\{0,1\}$. 集合 $\{y|y=f(x), x\in [0,a]\}=\{1\} \neq A$.

9. 已知函数 y = f(x), 其中 $f(x) = \left| \frac{2^{x+1}}{2^x + 2^{-x}} - 1 - a \right|$, 存在实数 x_1, x_2, \dots, x_n 使得 $\sum_{i=1}^{n-1} f(x_i) = f(x_n)$ 成立,若正整数 n 的最大值为 8,则实数 a 的取值范围是

9. 【解析】

令 $t = \frac{2^{x+1}}{2^x + 2^{-x}} - 1 = 1 + \frac{2}{1 + 2^{-2x}} \in (-1, 1)$, 因此原函数经换元 后变为 q(t) = |t - a|, 其中 $t \in (-1, 1)$.

倘若 $a \in (-1,1)$, 那么 f(x) 的值域中包括 0 这个点, f(x) 的值域是 [0,m), 其中 $m=\max{\{a+1,1-a\}}$, 因此对于任意固定好的 n, 总能找 到 $x_1 = x_2 = \cdots = x_{n-1}$ 和 x_n , 使得 $f(x_1) = f(x_2) = \cdots = f(x_{n-1}) = x_n$ $\frac{m}{2(n-1)}, f(x_n) = \frac{m}{2},$ 此时 $\sum_{k=1}^{n-1} f(x_k) = f(x_n).$

若 $a \ge 1$, 那么 f(x) 的值域是 (a-1,a+1), 那么

$$(n-1)(a-1) < \sum_{k=1}^{n-1} f(x_k) = f(x_n) < a+1$$

因此 $n < \frac{a+1}{a-1} + 1 = \frac{2a}{a-1}$, 由于 n 最大为 8, 从而

$$8 < \frac{2a}{a-1} \le 9$$

结合 $a \ge 1$ 求得 $a \in [\frac{9}{7}, \frac{4}{3})$. 若 $a \le -1$, 那么 f(x) 的值域便是 (-1-a, 1-a), 那么

$$(n-1)(-1-a) < \sum_{k=1}^{n-1} f(x_k) = f(x_n) < 1-a$$

因此 $n < \frac{a-1}{a+1} + 1 = \frac{2a}{a+1}$, 由于 n 最大为 8, 从而

$$8 < \frac{2a}{a+1} \le 9$$

结合 $a \le -1$ 求得 $a \in (-\frac{4}{3}, -\frac{9}{7}]$.

综上
$$a \in (-\frac{4}{3}, -\frac{9}{7}] \cup [\frac{9}{7}, \frac{4}{3}).$$

10. 若关于 x 的方程 $1 + \frac{\log_2{(2 \log a - x)}}{\log_2{x}} = 2 \log_x{2}$ 有两解, 求实数 a 的取值范围.

12.
$$\sqrt{12} = \sqrt{12} =$$

- 11、已知 $a, b, c \in \mathbf{R}_+$, 满足 abc(a + b + c) = 1,
 - (1) 求 S = (a+c)(b+c) 的最小值;
 - (2) 当 S 取最小值时, 求 c 的最大值.

【解析】 (1) 因为 $(a+c)(b+c) = ab + ac + bc + c^2 = ab + (a+b+c)c = ab + \frac{1}{ab} \ge 2\sqrt{ab \cdot \frac{1}{ab}} = 2,$

等号成立的条件是 ab = 1, 当 a = b = 1, $c = \sqrt{2} - 1$ 时, S 可取最小值 2.

(2) 当 S 取最小值时, ab = 1 ,从而 c(a+b+c) = 1,即 $c^2 + (a+b)c - 1 = 0$ 。

令 t = a + b,则 $t \ge 2\sqrt{ab} = 2$,从而 $c = \frac{-t + \sqrt{t^2 + 4}}{2}$ 或者 $c = \frac{-t - \sqrt{t^2 + 4}}{2} < 0$ (舍去),所以 $c = \frac{-t + \sqrt{t^2 + 4}}{2} = \frac{2}{\sqrt{t^2 + 4} + t}$ 在 $t \in [2, +\infty)$ 单调递减,在 t = 2 时,c 有最大值 $\sqrt{2} - 1$.

12.设 n 为奇数, $x_1, x_2, ..., x_n$ 是互不相同的实数, 求满足

$$|f(x_1) - x_1| = |f(x_2) - x_2| = \dots = |f(x_n) - x_n|$$

的一一映射 $f: \{x_1, x_2, \dots, x_n\} \rightarrow \{x_1, x_2, \dots, x_n\}$.

【解析】设 $a = |f(x_1) - x_1| = |f(x_2) - x_2| = \dots = |f(x_n) - x_n|$. 对于每一个 $k, 1 \le k \le n$, 有 $f(x_k) = x_k + \varepsilon_k a$, 其中 $\varepsilon_k = 1$ 或者 $\varepsilon_k = -1$. 把所有等式两边相加得

$$\sum_{k=1}^{n} f(x_k) = \sum_{k=1}^{n} x_k + a \sum_{k=1}^{n} \varepsilon_k$$

因为 f 是一一映射 $f:\{x_1,x_2,\cdots,x_n\}\to\{x_1,x_2,\cdots,x_n\},f(x_1),f(x_2),\cdots,f(x_n)$ 是 x_1,x_2,\cdots,x_n 的一个排列,所以 $\sum_{k=1}^n f(x_k)=\sum_{k=1}^n x_k$,从而 $a\sum_{k=1}^n \varepsilon_k=0$. 但是奇数个奇数 之和不可能等于零,所以 $\sum_{k=1}^n \varepsilon_k\neq 0$,从而 a=0,所以对于所有 $k,f(x_k)=X_K$