

数字信号处理

Digital Signal Processing

主讲人: 陈后金

电子信息工程学院

[例] 利用MATLAB设计一个9阶低通FIR数字滤波器,其截止频率为0.1π rad,试求出该滤波器的级联型结构系数。

```
M = 9;
h = fir1(M,0.1,hamming(M+1));
% 获得二阶节系数
sos = tf2sos(h,1);
[row col] = size(sos);
for i = 1:row
  for j = 1: col
    fprintf('\%2.4f\t', sos(i, j));
  end
  fprintf('\n');
end
```

直接型FIR数字滤波器系数:

0.0120	0.0326	0.0888	0.1590	0.2076
0.2076	0.1590	0.0888	0.0326	0.0120

级联型FIR数字滤波器系数:

0.0120	0.0120	0.0000	1.0000	0.0000	0.0000
1.0000	0.0120	3.0922	1.0000	0.0000	0.0000
1.0000	0.0070	1.0000	1.0000	0.0000	0.0000
1.0000	1.5426	1.0000	1.0000	0.0000	0.0000
1.0000	0.0031	0.3234	1.0000	0.0000	0.0000

级联型

[例] 某4阶BW型IIR数字带阻滤波器如下

```
H(z) = \frac{0.9522 + 3.7326z^{-1} + 5.5624z^{-2} + 3.7326z^{-3} + 0.9522z^{-4}}{1 + 3.8241z^{-1} + 5.5601z^{-2} + 3.6412z^{-3} + 0.9067z^{-4}}
```

试求出该滤波器的级联型结构系数。

```
num = [0.9522 3.7326 5.5624 3.7326 0.9522];
den = [1 3.8241 5.5601 3.6412 0.9067];
sos = tf2sos(num,den); % 获得二阶节系数
[row col] = size(sos);
for i = 1:row
for j = 1:col
fprintf('%2.4f\t', sos(i, j));
end
end
```


级联型IIR数字滤波器系数:

子系统1 0.9522 1.9078 0.9955 1.0000 1.8949 0.9457

子系统2 1.0000 1.9164 0.9565 1.0000 1.9292 0.9587

[例] 某4阶BW型IIR数字带阻滤波器如下

$$H(z) = \frac{0.9522 + 3.7326z^{-1} + 5.5624z^{-2} + 3.7326z^{-3} + 0.9522z^{-4}}{1 + 3.8241z^{-1} + 5.5601z^{-2} + 3.6412z^{-3} + 0.9067z^{-4}}$$

试求出该滤波器的并联型结构系数。

$$H(z) = K + \sum_{i=1}^{L} \frac{A_i}{z - p_i}$$

并联型IIR数字滤波器系数:

系数A:	极点 <i>p</i> :
0.0189 - j0.0198	-0.9646 + j0.1680
0.0189 + j0.0198	-0.9646 - j0.1680
0.0267 + j0.0013	-0.9474 + j0.2193
0.0267 - j0.0013	-0.9474 - j0.2193

常数项K: 0.9522

$$H(z) = \frac{N(z)}{D(z)} = K + \sum_{i=1}^{L} \frac{A_i}{z - p_i}$$

常数项K: 0.9522

系数A: 极点p:

0.0189 - j0.0198 - 0.9646 + j0.16800.0189 + j0.0198 -0.9646 - j0.1680

0.0267 + j0.0013 -0.9474 + j0.2193 0.0267 - j0.0013 -0.9474 - j0.2193

[a1,b1] = residue(A(1:2),p(1:2),[]);

[a2,b2] = residue(A(3:4),p(3:4),[]);

[例]设计满足如下指标的BW型带阻滤波器,若采用二阶节级联型结构实现该滤波器,其系数量化仍采用8位字长,比较其与直接型结构对滤波器的频率响应和零极点的影响。

$$\Omega_{\rm p1} = 0.45\pi \text{ rad}, \quad \Omega_{\rm p2} = 0.72\pi \text{ rad}, \quad A_{\rm p} \le 1 \text{dB},$$

$$\Omega_{\rm s1} = 0.52\pi \text{ rad}, \quad \Omega_{\rm s2} = 0.62\pi \text{ rad}, \quad A_{\rm s} \ge 20 \text{dB}$$


```
Wp=[0.45,0.72];Ws=[0.52,0.62]; Ap=1;As=20; B = 8; % 量化比特数
w=linspace(0,pi,1024);
[N,Wc]=buttord(Wp,Ws,Ap,As);
[numd,dend]=butter(N,Wc,'stop');
% 对直接型结构的系数a和b进行量化
len1 = length(numd); len2 = length(dend);
pa = [numd dend(2:end)];
                                   % 分子b和分母a系数
                                   % 系数量化
pa_q = qt(pa_B);
                                   % 量化后的分子
num = pa_q(1:len1);
                                   % 量化后的分母, 在系数a前面加一个1
den = [1 pa_q(len1+1:len1+len2-1)];
H_direct = freqz(num, den, w);
figure; plot(w/pi,20*log10(abs(H_direct)),'r');
```



```
sos = tf2sos(numd, dend); % 直接型转为级联型
num2 = sos(1, 1:3); den2 = sos(1, 4:6); % 级联型第一个子系统的分子和分母
pa = [num2 den2(2:end)]; pa_q = qt(pa,B); % 分子系数和分母系数进行量化,分母系数是a
num2 = pa q(1:3); den2 = [1 pa q(4:5)]; % 量化后的分子和分母
H2 = freqz(num2, den2, w); % 级联型第一个子系统的频率响应
H = abs(H2);
for i = 2:N
 num2 = sos(i, 1:3); den2 = sos(i, 4:6); % 级联型第i个子系统的分子和分母
  pa = [num2 den2(2:end)]; pa_q = qt(pa_B);
  num2 = pa_q(1:3);den2 = [1 pa_q(4:5)];
                                % 级联型第i个子系统的频率响应
 H2 = freqz(num2, den2, w);
                                % 级联型子系统的频率响应相乘
  H = H.*abs(H2);
end
plot(w/pi,20*log10(abs(H)),'b');
```



```
% qt: 序列的量化
% 输入 a: 需量化的序列, B: 量化位数
% 输出 aq: 量化后的序列
function aq = qt(a,B)
\max_{v} = \max(a);
\min v = \min(a);
a = (a-min_v)/(max_v-min_v);
a = fix(a*(2^B));
a = a/(2^B);
aq = a*(max_v-min_v)+min_v;
end
```


谢谢

本课程所引用的一些素材为主讲老师多年的教学积累,来源于多种媒体及同事和同行的交流,难以一一注明出处,特此说明并表示感谢!