DSCI354-451 Foundation: Algorithms and Models

Roger H. French, JiQi Liu 18 October, 2018

Contents

8.2.1.1	Projects					
8.2.1.2	Twitter	Data mining for EDA				
8.2.1.3	Word clo	ouds for visualization				
8.2.1.4	Gramma	ar of Data Science: Comparison of R and Python for DSC	CΙ			
8.2.1.5	Doing D	Oata Science				. :
8.2.1.6	Algorith	ms				. :
8	3.2.1.6.1	Machine Learning Algorithms				. :
8.2.1.7	Statistic	ian and Computer Science Approaches				. ;
8	3.2.1.7.1	Interpreting Parameters (such as Estimators, Predictors))			. ;
8	3.2.1.7.2	Confidence Intervals				. ;
8	3.2.1.7.3	The Role of Explicit Assumptions				
8	3.2.1.7.4	So Is It An Algorithm Or A Model?				
8.2.1.8	Three B	asic Algorithms				. !
8	3.2.1.8.1	Linear Regression				. !
8	3.2.1.8.2	Regression: Evaluation metrics				
8	3.2.1.8.3	Testing and Training datasets (or Cross-validation)				. /

8.2.1.1 Projects

- Why you should start by learning data visualization and manipulation
- Exploratory Data Analysis and Graphics
- Going deeper with dplyr: New features in 0.3 and 0.4 videotutorial

8.2.1.2 Twitter Data mining for EDA

- deprecated twitter datamining
- How to reveal anyone's interests on Twitter using social network analysis
- Twitter Network Analysis
- Graph Analysis of Twitter and people's interests
- Social Network Analysis

8.2.1.3 Word clouds for visualization

- Shiny word clouds
- Word clouds in R

8.2.1.4 Grammar of Data Science: Comparison of R and Python for DSCI

- http://technology.stitchfix.com/blog/2015/03/17/grammar-of-data-science/
- \bullet 1808GrammarOfDSCI.R
 - in your repo scripts folder

8.2.1.5 Doing Data Science

- Data Science is a melding of fields
- And has some tension among pre-existing scientific community cultures
 - e.g. Statisitics and Computer Science
- Stats traditionally focuses on Models and Uncertainty
- Computer Science focuses on Algorithms and "Data Products"

8.2.1.6 Algorithms

An algorithm is a procedure or set of steps or rules to accomplish a task.

Algorithms are one of the fundamental concepts in, or building blocks of, computer science:

- the basis of the design of elegant and efficient code,
- data preparation and processing,
- and software engineering.

Efficient algorithms that work sequentially or in parallel

• are the basis of pipelines to process and prepare data.

With respect to data science, there are at least three classes of algorithms one should be aware of:

- 1. Data munging, preparation, and processing algorithms,
- such as sorting, MapReduce, or Pregel.
- 2. Optimization algorithms for parameter estimation, including
- Stochastic Gradient Descent,
- Newton's Method, and
- Least Squares.
- We mention these types of algorithms throughout,
 - and they underlie many R functions.
- 3. Machine learning algorithms are a big topic
- and we discuss these more next.
- and in DSCI 353-353M-453
- They are covered in ISLR textbook

8.2.1.6.1 Machine Learning Algorithms

- Machine learning algorithms are largely used
 - to predict, classify, or cluster.

So modeling could be used to predict or classify? Yes.

- Here's where some lines have been drawn that can make things a bit confusing,
- and it's worth understanding who drew those lines.

Statistical modeling came out of statistics departments,

- and machine learning algorithms came out of computer science departments.
- Certain methods and techniques are considered to be part of both,
 - and you'll see that we often use the words somewhat interchangeably.

You'll find some of the methods, such as linear regression,

- in machine learning books as well as intro to statistics books.
- It's not necessarily useful to argue over
 - who the rightful owner is of these methods,

- but it's worth pointing out here that it can get
 - a little vague or ambiguous about what the actual difference is.

In general, machine learning algorithms

- that are the basis of artificial intelligence (AI)
 - such as image recognition,
 - speech recognition,
 - recommendation systems,
 - ranking and personalization of content
 - * often the basis of data products
 - are not usually part of a core statistics curriculum or department.

They aren't generally designed to infer the underlying generative process

- (e.g., to model something),
- but rather to predict or classify with the most accuracy.

8.2.1.7 Statistician and Computer Science Approaches

We say the following lovingly and with respect:

- Statisticians have chosen to spend their lives investigating uncertainty,
 - and they're never 100% confident about anything.
- Software engineers like to build things.
- They want to build models that predict the best they can,
 - but there are no concerns about uncertainty—just build it!

8.2.1.7.1 Interpreting Parameters (such as Estimators, Predictors)

- Statisticians think of the parameters
 - in their linear regression models
 - as having real-world interpretations,

And typically want to be able to find meaning

- in behavior or
- describe the real-world phenomenon corresponding to those parameters.

Whereas a software engineer or computer scientist

- might be wanting to build their linear regression algorithm
 - into production-level code,
- and the predictive model is what is known as a black box algorithm,

They don't generally focus on the interpretation of the parameters.

- If they do, it is with the goal of handtuning them
- in order to optimize predictive power.

8.2.1.7.2 Confidence Intervals

- Statisticians provide confidence intervals and posterior distributions
 - for parameters and estimators,

And are interested in capturing the variability or uncertainty of the parameters.

- Many machine learning algorithms,
 - such as k-means or k-nearest neighbors,
 - don't have a notion of confidence intervals or uncertainty.

8.2.1.7.3 The Role of Explicit Assumptions

- Statistical models make explicit assumptions
 - about data-generating processes and distributions,
 - and you use the data to estimate parameters.

Nonparametric solutions,

- don't make any assumptions about probability distributions,
- or they are implicit.

8.2.1.7.4 So Is It An Algorithm Or A Model?

While we tried to make a distinction between the two earlier,

- we admit the colloquial use of the words "model" and "algorithm"
 - gets confusing because the two words seem to be used interchangeably
- when their actual definitions are not the same thing at all.

In the purest sense,

- an algorithm is a set of rules or steps to follow
 - to accomplish some task.
- And a model is an attempt to describe or capture the world.

These two seem obviously different,

• so it seems the distinction should should be obvious.

Unfortunately, it isn't. For example,

- regression can be described as a statistical model
 - as well as a machine learning algorithm.
- You'll waste your time trying to get people to discuss this with any precision.

In some ways this is a historical artifact

- of statistics and computer science communities
- developing methods and techniques in parallel
 - and using different words for the same methods.

The consequence of this is that the distinction

• between machine learning and statistical modeling is muddy.

Some methods (for example, k-means, discussed in the next section)

- we might call an algorithm
- because it's a series of computational steps
 - used to cluster or classify objects

On the other hand, k-means can be reinterpreted as

• a special case of a Gaussian mixture model.

The net result is that colloquially,

- people use the terms algorithm and model interchangeably
 - when it comes to a lot of these methods,
- so try not to let it worry you.
 - (Though it bothers us, too.)

8.2.1.8 Three Basic Algorithms

We need some basic tools to use, so we'll start with

- linear regression,
- k-nearest neighbors (k-NN), and
- k-means.

In addition to what was just said about trying to understand

• the attributes of problems that could use these as solutions,

Look at these three algorithms from the perspective of:

- what patterns can we as humans see in the data with our eyes
- that we'd like to be able to automate with a machine,
 - especially taking into account that as the data gets more complex,
 - we can't see these patterns?

8.2.1.8.1 Linear Regression

One of the most common statistical methods is linear regression.

At its most basic,

- it's used when you want to express the mathematical relationship
 - between two variables or attributes.
- between a predictor and a response

When you use it, you are making the assumption

- that there is a linear relationship between
 - an outcome variable
 - * (sometimes also called the response variable, dependent variable, or label) and a
 - predictor
 - * (sometimes also called an independent variable, explanatory variable, or feature);

Or between

- one variable and several other variables.
- in which case you're modeling the relationship as having a linear structure.

NOTE: the regression method (to fit the data) is a linear method. But Linear Regression can be used for fitting equations of higher order than linear

- So you can use linear regression to fit an exponential parametric equation to your data.
- For this reason I tend to just refer to "regression",
- with a special case of "non-linear regression"
 - if we are using more complex regression fitting methods

One entry point for thinking about linear regression is

- to think about deterministic lines first.
- We learned back in grade school that we could describe
- a line with a slope and an intercept,

$$-y = f(x) = \beta_0 + \beta_1 * x$$
.

- But the setting there was always deterministic.
 - Notice we don't have the explicit error term ϵ listed.

Figure 3-3. Which line is the best fit?

Figure 1: with real data function

Figure 3-1. An obvious linear pattern

Looking at real data and regressing a linear function fit So with real data, we have an equation,

- but there is an error between the fitline and the data
- RSS(β) = $\sigma_i (y_i \beta_x i)^2$
- $y = f(x) = \beta_0 + \beta_1 * x + \epsilon$.

So which line fits best?

So we minimize the residual sum of squares (RSS) between the fitline and the data

Figure 3-4. The line closest to all the points

Figure 2: minimum RSS fitline and data

• where in vector notation $\beta * x = \beta_0 + \beta_1 * x$

Estimators

- Here the little "hat" symbol on top of the β
- indicates that it's the estimator for β .

You don't know the true value of β ;

- all you have is the observed data,
- which you plug into the estimator to get an estimate.

The lm (linear model) function does all this for you in R

8.2.1.8.2 Regression: Evaluation metrics

summary(model) will give you metrics and measures of the goodness of fit,

R-squared: This can be interpreted as the proportion of variance explained by our model.

$$R^2 = 1 - \frac{\sum_{i} \left(y_i - \hat{y}_i\right)^2}{\sum_{i} \left(y_i - \bar{y}\right)^2}$$

• R-squared

p-values: We can interpret the values in this column as follows:

- We are making a null hypothesis that the β s are zero.
- For any given β , the p-value captures

Figure 3-6. Comparing mean squared error in training and test set, taken from a slide of Professor Nando de Freitas; here, the ground truth is known because it came from a dataset with data simulated from a known distribution

Figure 3: Test and Training datasets for model validation

- the probability of observing the data that we observed,
- and obtaining the test-statistic that we obtained under the null hypothesis.
- This means that if we have a low p-value,
 - it is highly unlikely to observe such a test-statistic
 - * under the null hypothesis,
 - * and the coefficient is highly likely to be nonzero
 - * and therefore significant.

8.2.1.8.3 Testing and Training datasets (or Cross-validation)

Another approach to evaluating the model is as follows.

- Divide our data up into a training set and a test set:
- 80% in the training and 20% in the test.
 - I prefer 60% training, 40% test set
- Fit the model on the training set,
 - then look at the mean squared error on the test set
 - and compare it to that on the training set.
- Make this comparison across sample size as well.

If the mean squared errors are approximately the same,

- then our model generalizes well
- and we're not in danger of overfitting. This approach is highly recommended.