

3. Számítógépes morfológia

2018/2019. tanév, I. félév

Mini-nyelvészet

Morfológiatipológia és számítógépes közelítése

A szóalakok a jelentésviszonyokat a világ nyelveiben többféle módon fejezik ki
Izoláló nyelv (pl. kínai, de már lassan az angol is!)
Flektáló nyelv (pl. német, szláv nyelvek – "túlterhelt" szóalakok)
Agglutináló nyelv (toldaléksorok)
Inkorporáló (poliszintetikus) nyelv pl. csukcs, aleut, inuktikut: Parismunngaujumaniralauqsimanngittunga Paris+mut+nngau+juma+niraq+lauq+si+ma+nngit+jun (=Sose mondtam, hogy Párizsba akartam volna menni.)
Konkatenatív és nem-konkatenatív morfológiák (pl. arab, héber, máltai)

Morfológiai alapfogalmak

```
☐ morf
   bagoly, ló, megy, ...
   -hoz, -nak, -ért, ...
☐ allomorf
   bagoly-/bagly-, ló-/lov-, megy-/men-/me-/mé-, ...
   -hoz/-hez/-höz, -nak/-nek, (-ért), ...
□ morféma
   bagOly, IŌV, mEGY, ...
   -hŎz, -nAk, -ért, ...
szuppletív alakok
   go – went, gut – besser – best, volt – van – lesz
részlegesen szuppletív alakok
   France - French - Franco-
```


Morfológiai alapfogalmak (2)

inflexió = ragozás house+s, ház+ak
deriváció = képzés dis+establish+ment, pázmány+os+od+ó
igeragozás (konjugáció)
névszóragozás (deklináció)
paradigma (maga a toldalékok egy adott tőtípushoz kapcsolódó rendszere)
morfológiai osztályok (a tövek viselkedési osztályai inflexióik szerint)
lexikális osztályok (nem feltétlenül formai kritériumokra épülő osztályok, pl. a nemek a franciában)

Mit jelölünk morfológiai úton?

szám
személy
eset
nem
hasonlítás: alapfok, középfok, felsőfok, túlzófok
idő (rég- és közel)múlt (sőt: elbeszélő, összetett, -nd), jelen, jövő (?)
mód: kijelentő, felszólító, feltételes, kötő,
cselekvő, műveltető, szenvedő, visszaható,
igenevesítés (nem-finit alakok létrehozása): gerundium, participium, nomen actionis, infinitivusz (főnévi, melléknévi, határozói, sőt igei igenevek)
de pl. az aspektus a magyarban ritkán jelölt morfológiailag - nem jelöltek: a folyamatos cselekvő (ami megszakítható), pl. keres, csinál), a folyamatos nem-cselekvő (ami nem megszakítható), pl. virágzik, tud - lehetnek jelöltek: a befejezett igék (az igekötő "perfektál"), pl. megindul, kitalál, de: villant
•••

Hogy jelöl a morfológia?

affixum (=toldalék)
szuffixum (=végződés)
infixum (valami hasonló: <i>ház+a+m, ház+a+<u>i</u>+m)</i>
cirkumfixum (valami hasonló: <i>ge+wander+t, leg+nagy+obb)</i>
reduplikáció tagalog: <i>sulat (ír), susulat (írni fog)</i>
klitikumok: proklitikum (<i>a, dr.</i>) enklitikum (<i>-e</i>)
összetételek Leben+s+versicherung+s+gesellschaft+s+angestellter

Atipikus/ritkább/bonyolultabb esetek a lexiko-morfológiában

	Inflexió: ox <u>en</u> , t <u>ee</u> th, formul <u>ae</u> , cherub <u>im</u> , criteri <u>a</u> , ind <u>ices</u> , mafios <u>i</u>
Ш	Deriváció: <u>jár</u> da, <u>lövöl</u> de, <u>óv</u> oda; <u>bölcső</u> de
	Összetétel: <u>blue</u> berry, <u>straw</u> berry, <u>rasp</u> berry, <u>cran</u> berry; <u>es</u> ernyő
	Furcsaságok (morfológiai idiómák?): man-of-war, ládafia
	Zárójelezési paradoxon a morfológia és a szintaxis határán:
	((electrical engineer)ing)
	((un(grammatical))ity)
	((magyar nyelv)ű)
	((barokk fuvol)ista) vs. (első ((fuvol)ista))
	((haza(ad))ás) vs. (szabad((rúg)ás))
	A szemantikai viszonyok nehezen felismerhetők az összetételekben: mosó nő, mosó ruha, mosó szappan, mosó teknő, mosó konyha,

A morfológiai jelenségek formális leírása felé

A számítógépes morfológia célja

- A számítógépes morfológia olyan számítógépes technológiák és algoritmusok kialakításával foglalkozik, melyek segítségével különféle nyelvű toldalékolt szóalakok elemzése és generálása megoldható
- A számítógépes morfológia az írott alakokkal foglalkozik
- 1983: Koskenniemi vs. Winograd
- Szóalak-felismerés: a program visszaadja a toldalékolt szóalakból a szótári tövet (lemmatizálás), annak szófaját és a megjelenített nyelvtani információt
- Szóalak-generálás : a helyes szóalak előállítása a szótő és a morfológiailag releváns nyelvtani információ segítségével

Számítógépes morfológiai elemzés és generálás

- Példa morfológiai elemzésre:
 - 1. Tövesítés (lemmatizálás): dogs > dog
 - 2. Szófaj: Haus > Haus/Noun
 - 3. Morfoszintaktikai jegyek: went > go/Verb + Past
 - 4. Szóképzés (pl. török):

Finlandiyalılaştıramadıklarımızdanmışsınızcasına >

Finlandiya/Noun + Prop + A3sg + Pnon + Nom

['(behaving) as if you have been one of those whom we could not convert into a Finn(ish citizen)/someone from Finland']

5. Összetettszó-elemzés:

számítógépesmorfológia-oktatás > számítógép/Noun + N2Adj | morfológia/Noun | oktat/Verb + V2N

Példa szóalak-generálásra:

kesztyű/Noun + PS-sg2-pl + Ade > kesztyűidhez

Miért kell morfológiai elemzés?

□ A különböző szóalakok nagy száma miatt (típusok)
 10 millió szavas angol szövegkorpusz esetén < 100 000,
 10 millió szavas finn szövegkorpusz esetében > 800 000

□ Toldalékoló nyelvek esetében tetszőleges szövegkorpuszra igaz az alábbi állítás: a szövegkorpuszban aktuálisan előforduló szövegszótípusok száma kisebb, mint azoknak a lehetséges szótípusoknak a száma, melyek nincsenek benn az aktuális korpuszban

A számítógépes morfológia fontosabb technikai ismérvei

- ☐ A (minél nagyobb) szókészlet
- ☐ A (lehetőleg teljes) toldalékkészlet
- □ Az ismeretlen alakok kezelése
- □ Az elemzéshez választott módszer
- □ A lexikonok ábrázolásának módja

Néhány szó a szótárak tárolásáról

A szófa (=trie)

(A, i, in, inn, to, tea, ted, ten)

A szófa (Fredkin 1960) egy olyan, a szavak rákövetkező karaktereivel címkézett élsorozatokat tartalmazó fa, amelyben egy szót úgy találunk meg, hogy végigjárjuk

karakterenként.

A szófák általános tulajdonságai

Bináris keresőfák: $O(m \log(n))$ (n a fában tárolt elemek száma)
Szófa: m hosszúságú kulcs megtalálása max. O(m)
Nagy számú rövid füzér tárolása esetén a szófa kevesebb helyet igényel, mint a bináris keresőfa (ui. a kulcsokat nem tároljuk, a csomópontokat meg közösen használják az egyforma kezdőszeletű füzérek kulcsai)
Hasítótáblák helyett is használható (bár néha a szófák lassabbak)
Nem mindenre jó: vannak füzérként nehezen ábrázolható kulcsok (pl. a lebegőpontos számok)
De: szótárak ábrázolására alkalmas
ADFSA (körmentes determinisztikus véges automata) a szófánál is jobb, de csak ha nincs kiegészítő információ (csak puszta szólista)

Általános szófa

(big, bigger, bill, good, gosh)

Módosított (kompakt) szófa

(big, bigg/er, bil/l, goo/d, gos/h)

Erősen módosított (PATRICIA) szófa

(big, bigg/er, bil/l, goo/d, gos/h)

☐ PATRICIA = Practical Algorithm to Retrieve Information Coded in Alphanumeric (Donald R. Morrison, 1968)

- ☐ Bármely élen több karakter is lehet, pl. az előtagok (igekötők, re-, pre-, anti- stb.) vagy a tipikus és ritka kezdő betűpárok
- ☐ Angol: a 26²=676 indító betűpárból csak 309 létezik (amiből 88 csak 15-nél kevesebb szó elején)

A Kay-féle szóábrázolás

(alma, alom, anya, anyag, apa, apad, aránytalanság)

Ц	Kay (1977): tömörítés numerikus prefixekkel
	alma – 0
	alom – 2
	anya – 1
	anyag – 4
	apa – 1
	apad – 3
	aránytalanság – 1
	Tehát a szótár:
	alma, 20m, 1nya, 4g, 1pa, 3d, 1ránytalanság
	Akkor éri meg, ha hasonlítanak a szókezdetek
	(nagy szótár esetén mindig!)

Szuffixum-szófa

- ☐ Egy füzér minden lehetséges végszelete tárolva
- \square A szuffixum-szófának n levele van és a magassága is n

A szuffixum-szófa néhány tulajdonsága

Eg (tö	y <i>n</i> hosszú <i>S</i> füzérre épített általánosított szófára bbbek közt) az alábbiak állnak:
	O(m) időben eldönthető, hogy egy m hosszú P füzér a részfüzére-e
	O(m) időben megtalálható egy tetszőleges m hosszú P részfüzérének első előfordulása
	O(m+z) időben megtalálható mind a z darab előfordulása egy m hosszú részfüzérének
	Az S_i és az S_j füzérek leghosszabb közös részfüzére megtalálható $O(n_i + n_j)$ idő alatt

Automaták és véges állapotú morfológiák

Nyelvek, nyelvtanok, automaták

- ☐ A formális nyelv egy formális nyelvtan által leírt füzérek halmaza
- \Box G=(N, T, R, S) egy **formális nyelvtan,** ahol
 - N nemterminális szimbólumok véges halmaza
 - T terminális szimbólumok véges halmaza
 - R $(T \cup N)^* N (T \cup N)^* \rightarrow (T \cup N)^*$ alakú szabályok véges halmaza
 - S ∈ N mondatszimbólum
- Formális nyelvék és formális nyelvtanok **Chomsky-hierarchiája** ahol A,B \in N; a \in T; α,β,γ \in (T \cup N)*:
 - 0-típusú nyelvtan ($\alpha \rightarrow \beta$): rekurzív megszámlálható nyelvek
 - 1-típusú nyelvtan ($\alpha A\beta \rightarrow \alpha \gamma \beta$): környezetfüggő nyelvek
 - 2 -típusú nyelvtan (A $\rightarrow \gamma$): környezetfüggetlen nyelvek
 - 3 -típusú nyelvtan (A \rightarrow a and A \rightarrow aB): reguláris nyelvek
- ☐ Az elfogadó automaták hierarchiája:
 - 0: Turing-gép
 - 1: Lineárisan kötött automata
 - 2: Veremautomata O(n³)
 - 3: Véges állapotú automata O(n)

Véges állapotú automaták

- \Box Véges állapotú automata: $A = (S, \Sigma, s, F, T)$ ötös, ahol
 - S állapotok véges halmaza
 - Σ egy ábécének nevezett véges halmaz
 - s ∈ S kiinduló állapot
 - F⊆S a végállapotok halmaza

 - T: $S \times (\Sigma \cup \{\epsilon\}) \rightarrow S$ átmenetfüggvény
- \square Az $X = x_0 x_1 \dots x_n$ Σ ábécéből alkotott füzért **A elfogadja**, ha létezik S-ben az átmenetek r_0 , r_1 , ..., r_n sorrendje a következő feltételekkel:
 - i. $r_0 = s$
 - ii. $r_{i+1} = T(r_i, x_i)$ (i = 0, ..., n-1)
 - iii. $r_n \in F$
- ☐ Reguláris nyelv: a véges állapotú automata által elfogadott füzérek halmaza
- Reguláris kifejezés: olyan formula, mely konkatenáció, unió és iteráció használatával meghatároz egy reguláris nyelvet

Reguláris kifejezés – reguláris nyelv – véges gép

Reguláris kifejezések mint automaták

Véges átalakítók (FST)

- \Box Véges átalakító: $T = (S, \Sigma, \Gamma, s, F, \delta)$ hatos, ahol
 - az állapotok véges halmaza
 - a bemenő ábécének nevezett véges halmaz
 - a kimenő ábécének nevezett véges halmaz
 - s ∈ S a kezdő állapot
 - F⊆S az elfogadó állapotok halmaza
 - T: $S \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow S$ átmenetfüggvény
- \square A T **átalakítja** az $\alpha \in \Sigma^*$ füzért $\beta \in \Gamma^*$ füzérbe (röviden: $\alpha[T]\beta$) ha létezik út a kezdőállapotból egy végállapotba α bemenősorozat és β kimenősorozat mellett
- ☐ Az **FSA** és a **FST** különbsége: az FSA kimenetén egy Boole-válasz jön létre, míg az FST egy füzért ad eredményül (a másik szalag tartalmát)

A reguláris nyelvek és a véges automaták helye

- ☐ G=(N, T, R, S) egy **formális nyelvtan,** ahol
 - nemterminális szimbólumok véges halmaza Ν
 - terminális szimbólumok véges halmaza
 - $(T \cup N)^* N (T \cup N)^* \rightarrow (T \cup N)^*$ alakú szabályok véges halmaza R
 - mondatszimbólum $S \in N$
- ☐ Formális nyelvék és formális nyelvtanok **Chomsky-hierarchiája** ahol A,B \in N; a \in T; α , β , γ \in (T \cup N)*:
 - 0-típusú nyelvtan ($\alpha \rightarrow \beta$): rekurzív megszámlálható nyelvek
 - 1-típusú nyelvtan ($\alpha A\beta \rightarrow \alpha \gamma \beta$): környezetfüggő nyelvek
 - 2 -típusú nyelvtan (A $\rightarrow \gamma$): környezetfüggetlen nyelvek
 - 3 -típusú nyelvtan (A \rightarrow a and A \rightarrow aB): reguláris nyelvek
- ☐ Az elfogadó automaták hierarchiája:
 - 0: Turing-gép
 - 1: Lineárisan kötött automata
 - 2: Veremautomata— O(n3)
 - 3: Véges állapotú automata O(n)

Műveletek véges átalakítókkal

Konkatenáció:

w[T]y és x[S]z

acsa

wx[TS]yz

Unió:

x[T]y vagy x[S]y

acsa

x[TUS]y

Iteráció:

 $w[T^*]y$ és x[T]z

acsa

 $wx[T^*]yz$ és $\varepsilon[T^*]\varepsilon$

Metszet:

x[T]y és x[S]y

 $acsa x[T \times S]y$

Kompozíció: x[T]y és y[S]z

acsa

 $x[T \circ S]z$

Expression	Language / Relation	Network
a 0 b	{"ab"}	O a → O b → ◎
a:0 b:a	{<"ab", "a">}	O a:0 b:a O
a b:0	{<"ab", "a">}	O a → O b:0

Expression	Language / Relation	Network
a*	{"", "a", "aa",}	© a
a+	{"a", "aa",}	O a a

Expression	Language / Relation	Network
a:b .o. b:c	{<"a", "c">}	O a:c ©
a:b .o. b .o. b:c	{<"a", "c">}	O a:c □

A kétszintes leírás felé...

Johnson felfedezése (1972)

A generatív fonológiában, ha az $\alpha \to \beta$ / γ _ δ szabállyal állítjuk elő a $\gamma\beta\delta$
füzért a $\gamma\alpha\delta$ füzérből, akkor a szabály bármely rákövetkező alkalmazása a β
füzért érintetlenül hagyja, azaz csak γ és δ füzéreket érinti
C. Douglas Johnson a Formal Aspects of Phonological Description (1972) című
művében észrevette, hogy egyazon generatív szabály ismételt alkalmazása
esetén nem szokás érinteni az előző alkalmazás kimenetét, hanem az újabb
alkalmazás attól vagy balra vagy jobbra helyezkedik el
Következmény: ha egyazon ciklusban nem alkalmazzuk az újraíró szabályt saját
kimenetére, akkor a bemenet-kimenet párok leírhatók egy reguláris relációval
(példa a következő dián!)
Amint tudjuk korábbról, a reguláris reláció megfeleltethető egy reguláris
nyelvnek, ami ekvivalens egy véges állapotú átalakítóval
Johnson megmutatta, hogy a generatív fonológia szabályai sokkal kevésbé
"erősek", mint ahogy ezt a leírásukhoz használt (környezetfüggő) formalizmus
sugallja: generatív képességük a fenti megszorítás általános elfogadottsága
miatt az 1-es Chomsky-nyelvosztály helyett a 3-as nyelvosztályba sorolja őket

Johnson felismerése egy példán

Kaplan & Kay (1981/1994)

Kaplan és Kay (1981): egy hatékony elemző irányában kutatva leírták
az újraíró szabályok átalakítókba való fordításának algoritmusát
Azt vették észre, hogy a reguláris relációk zártak a soros
kompozícióra nézve: ha veszünk két olyan szabályt, amit átalakítóval
modellálunk, akkor ha az első átalakító kimenete a másik bemenete,
a kompozíció művelete segítségével helyettük egyetlen ekvivalens
átalakítót kaphatunk
A kompozíció eredményeként kapott gép az első átalakító bemenetét
a második kimenetére úgy képezi le, hogy nem generál semmiféle
köztes eredményt
Tetszőleges számú fonológiai újraíró szabályt sorban alkalmazva
reguláris relációt kapunk, az alkalmazott szabályok számától
függetlenül
Megjegyzés: nincs olyan művelet az újraíró szabályok eredeti
világában, ami ugyanerre volna képes

A szabálymegfordítás problémája

Egy (nem létező nyelvből származó) példa:

labiális realizáció p előtt: N -> m,

dentális realizáció egyébként: N -> n;

m után: *p* −> *m*

Az újraíró szabályok tehát:

N
$$\rightarrow$$
 m / _ p; elsewhere, n. p \rightarrow m / m

Lexikálisból felszíni alak (generálás):

kaNpat ==> kammat

Felszíniből lexikális alak (elemzés):

kammat ==> {kaNpat, kampat, kammat}

Ugyanazon generáló szabályok elemzésre való használatakor a kötelező szabályok opcionálisakká válhatnak: a *kaNpat* lexikális füzérből a szabályok egyetlen

felszíni alakot generálnak, de a felszíni alakból az inverz

leképezés "egy a sokhoz" típusú is lehet

Figures from http://www.ling.helsinki.fi/~koskenni/esslli-2001-karttunen/

kammat

kaNpat kammat kammat kammat

A 'kaNpat' automata

A korábbi beszúrószabály véges automatája

$$\varepsilon \rightarrow ab / \underline{b}$$

Figure from http://web.stanford.edu/~laurik/publications/fsc-91/fsc91.html

PÁZMÁNY PÉTER KATOLIKUS EGYETEM - KIEMELT FELSŐOKTATÁSI INTÉZMÉNY

INFORMÁCIÓS TECHNOLÓGIAI ÉS BIONIKAI KAR

Összegzés: véges átalakítók soros kapcsolása

A fonológiai levezetések köztes állapotai mindig kiküszöbölhetők az egyes szabályokból kapott átalakítók kompozíciójával: az eredményül kapott átalakítónak csak két szintje van, a **lexikális** és a **felszíni**

Figures from http://www.ling.helsinki.fi/~koskenni/esslli-2001-karttunen/

- Az egyetlen generatív átalakító használata sokkal hatékonyabb felismerésre is, mintha az eredeti szabályoknak megfelelő átalakítók egyenként invertált sorrendben működnének
- ☐ Kaplan és Kay megoldotta ugyan az egyes szabályok sorozata átalakítóba való fordításának problémáját, azonban a nagy szabályrendszerek egyetlen átalakítóba való kompozíciója az akkori technikai korlátok miatt a gyakorlatban megvalósíthatatlan volt

Véges átalakítók párhuzamos kapcsolása

Kimmo Koskenniemi PhD-értekezése: *Two-level Morphology* (1983) Tudva, hogy a lexikális és a felszíni alakok közötti megfeleltetés leírható reguláris relációval, Koskenniemi egy lényegi változtatást, a szabályhalmazból származó átalakítók **párhuzamos** kapcsolását javasolta

Figures from http://www.ling.helsinki.fi/~koskenni/esslli-2001-karttunen/

Egy "igazi" (angol nyelvi) példa

y:i ⇔ __ 0:e

A kétszintes szabályok alakja

- Egy kétszintes szabály az alábbi három részből áll:
 - megfeleltetett párok: amiről valójában a szabály "szól"
 - **környezet** (bal környezet (*lc*) és/vagy jobb környezet (*rc*))
 - szabályoperátor
- Megfeleltetett párok: egy lexikális és egy felszíni karakterből álló pár (pl. t:c ahol a lexikális t megfelel a felszíni c-nek)
- Környezet: az adott jelenséget körülvevő fonológiai helyzetet specifikálja (az aláhúzás jelenti a a megfeleltetett pár helyzetét az adott környezetben)
- → Szabályoperátor: a megfeleltetett pár és a környezete között fennálló reláció; nagyjából a formális logika feltételeket és következményeket leíró operátorainak felelnek meg:
- ⇒ a megfeleltetés *csak akkor* áll fenn, ha ez a környezet
- ← ha ez a környezet, akkor a megfeleltetés fennáll
- ⇔ a megfeleltetés *akkor és csak akkor* áll fenn, ha ez a környezet

Generatív vs. kétszintes szabályok

- \Box A **t** \rightarrow **c** / ____ i generatív szabály azt jelenti, hogy
- a t átalakul c-be, ha i előtt áll, és
 miután újraírtuk t-t c-vé, t többé nem létezik
- A generatív szabályok sorozata tetszőleges számú köztes szint segítségével konvertál beleső reprezentációkat felszíni formákra
- A generatív szabályok egyirányúak: csak belső reprezentációkból tudnak felszíni alakokat létrehozni, fordított irányban nem alkalmazhatók
- □ Az ezzel analóg kétszintes szabály: t:c ⇒ ____i
- A lexikális t megfelel a felszíni c-nek i előtt; de nem változik át c-vé, hanem megmarad t-ként a szabály alkalmazása után is
- A kétszintes szabályok egyfajta megfeleltetést fejeznek ki, nem újraírást, párhuzamosan alkalmazandók, és nem sorosan, és az újraírással szemben nem hoznak létre semmilyen köztes reprezentációs szintet
- A kétszintes szabályok kétirányúak és deklaratívak: bizonyos megfeleltetéseket fogalmaznak meg a lexikális és a felszíni formák között

"Kizárólag, de nem mindig" $L:S \Rightarrow E$

Mit jelent?
- L csak E-ben realizálódik S-ként
- L S-ként való realizáció nincs megengedve ¬E-ben
- Ha L:S, akkor ennek E-ben kell lennie
- De: L:¬S megengedett E-ben
Logikailag: az ⇒ operátor azt jelenti, hogy a megfeleltetésből következik a
környezet, de a környezetből nem feltétlenül következik a megfeleltetés
Példa: t:c ⇒ i (a lexikális t megfelel csak i előtt felel meg a felszíni c-nek ,
de ebben a környezetben nem feltétlenül mindig; azaz a lexikális t más
realizációi is előfordulhatnak ebben a környezetben, beleértve a t:t párt is)
Negatív megfogalmazásban: ez a szabály letiltja a t:c pár minden olyan
előfordulását, ami nem i előtt van
A ⇒ szabály nagyjából a generatív fonológia opcionális szabályának felel meg,
és tipikusan a szabad variációk leírására használják

"Mindig, de nem kizárólag" **L:S ⇐ E**

Mit jelent?
- L E-ben mindig S-ként realizálódik
- L ¬ S-ként való realizációja nincs megengedve E-ben
- Ha L E-ben van, akkor L:S-nek kell lennie
- De: L:S előfordulhat máshol
Logikailag: az ← operátor azt jelenti, hogy a környezetből következik a
megfeleltetés, de a megfeleltetésből nem feltétlenül következik a környezet
Példa: t:c ← i (a lexikális t i előtt mindig kötelezően megfelel a felszíni
c -nek , de nem szükségszerűen csak ebben a környezetben; azaz a t:c
előfordulhat más környezetben is)
Negatív megfogalmazásban: ha a t :¬c pár azt jelenti, hogy a lexikális t
minden felszíni alaknak megfelelhet, ami nem c, akkor a fenti szabály
megtiltja a t : ¬c előfordulását az adott környezetben
A ← szabály nagyjából a generatív fonológia kötelező szabályának felel meg,
és tipikusan akkor használják, amikor a megfeleltetés kötelező egy adott
környezetben, de előfordulhat más környezetben is

"Mindig és kizárólag" L:S ⇔ E

Az ← és az ⇒ operátor kombinációja
Mit jelent?
- L S-ként akkor és csak akkor realizálható, ha E a környezet
- Mind L:S ⇒ E, mind L:S ← E fennáll
- L:S kötelező E-ben, de máshol sehol
Példa: t:c ⇔i (a lexikális t akkor és csak akkor felel meg a lexikális
c -nek, ha i előtt áll)
A ⇔ szabályt akkor használják, ha egy megfeleltetés kötelező egy adott
környezetben (v.ö. ← operátor) és semmilyen más környezetben nem
fordul elő (v.ö. ⇒ operátor)
Ekvivalens a bikondicionális logikai operátorral és azt jelenti, hogy egy
megfeleltetés akkor és csak akkor megengedett, ha az az adott
környezetben van

"Soha" **L:S ∉ E**

Az
használják"
Az
Mit jelent?
- L soha nem realizálódik S-ként E-ben
- L S-ként való realizációja nem megengedett E-ben
- Ha L E-ben van, akkor L:¬S-nek kell fennállnia
Példa: t:c i:ê (a lexikális t nem felelhet meg a felszíni c-nek i:ê előtt)
A szabály által megfogalmazott megfeleltetés az adott környezetben le van
tiltva
Megengedi tehát a tatê és catê felszíni alakokat, de tiltja a tacê és cacê
alakot
A
adott megfeleltetést más környezetekben

Konvenciók, speciális szimbólumok

	Alapértelmezett (pl t	:t, i:i – röviden: t, i) és speciális megfeleltetések (pl. t:c)
	Dzsókerszimbólum (ál	talában: @) az adott ábécé tetszőleges karaktere helyett
	állhat, pl. $\mathbf{t:c} \Rightarrow \underline{\qquad} \mathbf{i:c}$	<u>@</u>
	Nullszimbólum (általá	ban: 0 vagy ε): beszúrásnál és törlésnél a kétszintes
	rendszer egyik szalagjá	n üres szimbólumnak kell állnia, mert a két szalag csak
	egyenlő számú szimbó	lum esetén használható megfeleteltésre, pl.
	LR: 0tat+i	
	SR: 'tac0i	
	Határszimbólum (által	ában: #) jelzi a szó elejét vagy végét (kizárólag egy másik
	határszimbólummal pa	árban: #:#)
	Részhalmaz: egyszavas	s nevekkel jelzett karakterhalmazok, pl. C a
	mássalhangzók halma:	za, V a magánhangzóké, T a felpattanó hangzóké, vagy
	NAS a nazálisoké:	
	SUBSET C	b c d f g p t k b d g m n ng s l r w y
	SUBSET V	i e a o u
	SUBSET T	p t k b d g
_ ,	SUBSET NAS	m n ng

Kétszintes lexikonok

Kétszintes lexikonok: a tőlexikonok, az alternációs minták lexikonjai és a toldaléklexikonok (inflexiósak és derivációsak)
Lexikon: egy név és az alábbi formájú lexikális elemek listája
Lexikális elemek: lexéma, folytatási osztály, kimeneti információ
A P folytatási osztály definíciója (ami valahol másol van megadva): (P = PS KO #) azt állítja, hogy az eredeti lexikális elemet vagy a PS allexikon (birtokos toldalékok), vagy a KO allexikon (klitikumok) valamelyik eleme követheti, vagy egy határszimbólum

angol morfológia kétszintes leírása (Karttunen & Wittenburg 1985)

Alternációk

```
ALTERNATIONS
       Root = Root )
       AB = AB )
END
```


angol morfológia kétszintes leírása (Karttunen & Wittenburg 1985) Az

Lexiconok 1.

LEXICON N LEXICON MN LEXICON C1 LEXICON C2 LEXICON P3 LEXICON IP3 LEXICON PS LEXICON IPS LEXICON PP LEXICON IPP LEXICON IP LEXICON PR LEXICON I LEXICON IP1 LEXICON AG LEXICON PA LEXICON CA

LEXICON CS

LEXICON Ly

LEXICON AB

```
0
          C2
               .....
0
                  PRES SG 3RD"
                  PRES SG 3RD"
+ ed.
                  PAST"
                  PAST"
+ed
                  PAST PRT"
0
                  PAST PRT"
0
                  PAST"
+ing
                 PROG"
              "v =
0
                  PRES SING 1ST"
              "AG
+er
              "A"
+er
              "A COMP"
+est
              "A SUP"
1y
              "ADV "
+able
              "VERB ABL"
```

GEN"

GEN"

angol morfológia kétszintes leírása (Karttunen & Wittenburg 1985) Az

Lexiconok 2.

```
LEXICON Root
                            "V PRES SING 1ST";
      am
                            "AUX";
      am
                             'AUX";
      are
      are
                               PRES SING 2ND";
      are
      at
      at'tack
      at'tack
      a gree
      be
                   /IVl
      bе
                   /N
      beer
      believe
      big
      under`stand /IV2
      under`stood /IPP
      under`stood /IPS
      und 1d.
                  /IPS
      undo
                  /IVI
      undoes
                  /IP3
      undone
                  /IPP
                  /٧
      untle
                  /IPS
      went
                  /IPS
     went
END
```

Párhuzamos szabályalkalmazás és a szótárak

- A kétszintes rendszer szabályainak alkalmazása önmagában még nem oldaná meg a korábban a kaNpat példával illusztrált "túlelemzési" problémát (a két megszorító szabály a *kammat* alakot engedi többféleképpen, *kaNpat, kampat* vagy kammat alakra is visszavezetni), azonban a kétszintes rendszerben ezt a problémát azért lehet megoldani, mert csak két szint van, és az egyik elemzésekor minden lépésben konzultálni tud a másik szinten további megszorításokat bevezető lexikonnal
- ☐ Koskenniemi modelljében tehát a lexikonhoz fordulás és a felszíni alak elemzése együtt, egyfajta tandem-működésben valósul meg
- ☐ A lexikonok **szófa-erdők**, melyek szorosan együttműködnek a folytatásiosztálylinkekkel, azaz a lexikonhoz fordulás az egyik szófa leveleit a szófaerdő egy másik fájának (vagy fáinak) gyökeréhez kapcsolva determinisztikusan halad
- ☐ Az a lexikon, mely az aktuális lexikális füzért tartalmazza, egyfajta folytonos

lexikális szűrőként működik:

A 'kanPat' példa kétszintes szabályokkal

```
N → m / __p; elsewhere n.
p → m / m__
```

```
Alphabet
```

```
abcdefghijklm N:m N:n nop qrstuvxywz;
```

Rules

```
"N realized as m"
! Before a lexical "p." Always, and only there.
N:m <=> _ p: ;

"p realized as m"
! After a surface "m". Always and only there.
p:m <=> :m ;
```


Figures from http://www.ling.helsinki.fi/~koskenni/esslli-2001-karttunen/

A Xerox lexikonkompozíciója

- Ha elvégezzük a kompozíció műveletét a kétszintes lexikon és a kétszintes szabályhalmaz átalakítóin, a lexikon által nem megengedett füzérek automatikusan kiesnek
- Eleinte a nagyméretű lexikonok és a nagyméretű szabályrendszer kompozíciója eredményétől tartottak a kutatók, hogy az használhatatlanul nagy méretű lesz
- ☐ Lauri Karttunen és más Xerox-kutatók kimutatták, hogy a lexikon és a kétszintes rendszer FST-inek kompozíciója soha **nem lesz szignifikánsan nagyobb** a kiinduló lexikon FST-jénél, és **sokkal kisebb** lesz, mint a szabályok véges átalakítóinak metszeteként kapott FST
- A kapott egyetlen lexikális FST a kiinduló lexikon minden lexikális alakját és ezeknek a szabályok által realizált összes felszíni reprezentációját tartalmazza:

Lexikon + lexikális reprezentáció + felszíni alak

Hogy konvertálunk kétszintes szabályokat FST-be?

A felhasználó környezetfüggő szabályokat használhat
Minden nyelvi jelenséget egy önálló kétszintes szabály segítségével fogalmazun meg (a többit maga a kétszintes rendszer kezeli)
A környezetfüggőnek tűnő kétszintes szabályrendszert egyetlen FST-be lehet fordítani
Ez a fordítás a TWOL-rendszer létrehozásától (1983) évekig csak kézzel történt
A kézi szabályfordítás az átalakítók részletes ismeretét és az újszerű szabályok szemantikájának mély megértését követelte, amit nem sok kutató tudott az elvárt szinten elsajátítani, hiszen a sokszor egymással komplex interakcióba lépó szabályok működésének megértése sok-sok órás koncentrált munkát követelt mind a létrehozáskor, mind a teszteléskor
Az első automatikus szabályfordítót Koskenniemi and Karttunen (1987) hozta létre, Ron Kaplan (Xerox) véges-állapotú kalkulusa első implementációjának

segítségével, aminek alapját Kaplan és Kay (1994) véges állapotú nyelvészeti

leírása adta

Példa: a ⇒ konverziója FST-be

A kétszintes szabály:

t:c ⇒ ____ i

Az ekvivalens FSA:

Az ekvivalens FSA táblázatos alakban:

Példák kétszintes szabályok táblázatos alakjára

Kétszintes definíciók és szabályok

```
ALPHABET a b c d e f q h i j k l m n o p q r s t u v w x y z
; + is morpheme boundary
NULL 0
ANY @
BOUNDARY #
SUBSET C b c d f q h j k l m n p q r s t v w x y z
SUBSET V a e i o u
: more subsets
RULE "Defaults" 1 29
  abcdefqhijklmnopqrstuvwxyz+@
  abcdefqhijklmnopqrstuvwxyz0@
RULE "Voicing s:z <=> V V" 4 4
  Vss@
  V \sim 0
1: 2 0 1 1
2: 2 4 3 1
3: 0 0 1 1
4. 2 0 0 0
; more rules
```


angol morfológia kétszintes leírása (Karttunen & Wittenburg 1985) Az

```
Automata 1.
```

```
ALPHABET
  abcdefghijklmnopqrstuvwxyz'
  NULL 0
  ANY -
  SUBSET Vaeiou
  SUBSET C b c d f g h j k l m n p q r s t v w x z
  SUBSET S s x z
  END
"Surface Characters
   abcdefghijklmnopqrstuvwx
   abcdefghijklmnopqrstuvwx
     11111111111111111111111111111111
            68
"Epenthesis"
   chsSy+
   2 3 3 3 3 0 1 1
   2 3 3 3 3 5 6 1
   0 0 1 0 0 0 0 0
   11011111
"Gemination"
9: 16 16 16 16 16 16 16 16 16 16 16
14: 16 16 16 16 16 16 16 16 16 16 16 16
- 2018. október 3.
```


Az angol morfológia kétszintes leírása (Karttunen & Wittenburg 1985)

Automata 2.

```
"Y-Spelling"
"Elision"
10.
11:
12.
14:
15:
"I-Spelling"
6:
      000001
END
```


Nemkonkatenatív morfológiák FST-ben

- □ Az összefésülő algoritmus: egy olyan mintakitöltő művelet, mely két reguláris nyelvet kombinál: a mintát (template) és a kitöltőt (filler) egyetlen reguláris alakká
- A minta kezdőállapotából kiindulva az algoritmus megpróbálja megtalálni az összes megfelelő illesztést a mintaélek és a kitöltőélek között
- Az illesztés akkor sikeres, ha a kitöltőél címkéje benne van abban az osztályban, amit a mintaél címkéje határoz meg (d ∈ C, r ∈ C, s ∈ C, u ∈ V, i ∈ V)

Végeredmény:

A kétszintes leírás néhány nehézsége

A felszín és a lexikális alak kötelezően azonos hosszúsága
A szuppletív (lexikalizálódott) alakok és a nem produktív toldalékolás kezelése
Ha a szótár "mindent kibír", miért kell a "nehéz" alakokat is levezetésekkel kezelni?
Pl. jöv+ök, jösz+sz, jön+0, jöt+tök, jö+het,
, jő,, gyere, gyerünk, gyertek
Mit ér a reguláris rendszer, ha vannak reguláris nyelvvel nem leírható morfológiai jelenségek?
Pl. nagy, nagy+obb, leg+nagy+obb