BEST AVAILABLE COPV

PATENT ABSTRACTS OF JAPAN

JPA06-213926

(11)Publication number:

06-213726

(43) Date of publication of application: 05.08.1994

(51)Int.CI.

G01J 5/60

(21)Application number: 05-295210

(71)Applicant: CANON INF SYST INC

(22)Date of filing:

25.11.1993

(72)Inventor: BERETTA GIORDANO B

(30)Priority

Priority number: 92 981437

Priority date : 25.11.1992

Priority country: US

(54) METHOD AND DEVICE FOR REGULATING COLOR TEMPERATURE

(57) Abstract:

PURPOSE: To automatically regulate a correlated color temperature according to the detection of an ambient light or a projected light.

CONSTITUTION: This device has a host CPU 50 for generating color image data; a color monitor 51 for displaying the color image data generated by the host CPU 50; a sensor 56 for sensing the color temperatures of observing lights 57, 59 for observing the color image displayed on the color monitor 51 and the color image printed by a color printer 53; and a sensor 54 for sensing the light 55 from the color monitor 51. The host CPU 50 regulates the intensity of controllable first and second light sources 60, 61 or the color temperature of the color monitor 51, whereby the color temperature of the observing lights 57, 59 can be automatically matched to the color temperature of the color monitor 51.

(19)日本国特許庁(JP)

(12)公開特許公報 (4)

(11)特許出願公開番号

特開平6-213726

(43)公開日 平成6年(1994)8月5日

(51) Int. Cl. 5

識別記号 庁内整理番号 FΙ

技術表示箇所

GO1J 5/60

A 7204-2G

審査請求 未請求 請求項の数26 〇L (全17頁)

(21)出願番号 特願平5-295210

(22)出願日

平成5年(1993)11月25日

(31)優先権主張番号 07/981437

(32)優先日

1992年11月25日

(33)優先権主張国

米国(US)

(71)出願人 592208172

キヤノン インフォメーション システム ズ インク.

Canon Information S ystems, Inc.

アメリカ合衆国 カリフォルニア州 9262 6, コスタ メサ, プルマン ストリー

Ի 3188

(72)発明者 ジオルダノ ブルーノ ベレッタ

アメリカ合衆国 カリフォルニア州 9430 3 パロ アルト, ニューウェル ロー F 1760

(74)代理人 弁理士 大塚 康徳 (外1名)

(54) 【発明の名称】色温度調整方法及び装置

(57)【要約】

【目的】 周囲光又は投影された光の検出にしたがって 相関色温度の調整を自動的に行う。

【構成】 色画像データを生成するホストCPU50 と、そのホストCPU50で生成された色画像データを 表示するカラーモニタ51と、カラーモニタ51に表示 された色画像及びカラープリンタ53によって印刷され た色画像を見る観測光57,59の色温度を感知するセ ンサ56と、カラーモニタ51からの光55を感知する センサ54とを備え、ホストCPU50が制御可能な第 1又は第2の光源60,61の強さ、或いはカラーモニ タ51の色温度を調整することにより、観測光57,5 9の色温度とカラーモニタ51の色温度とを自動的に合 わせることができる。

【特許請求の範囲】

【請求項1】 第2の場所から第1の場所における観測 光の色温度を読み出し、

前記読み出し工程において読み出した色温度に基づいて 色出力信号を均衡したものにし、

均衡化された色データに基づいて第1の場所において色 画像を印刷する各工程を含むことを特徴とする色温度調 整方法。

【請求項2】 前記読み出し工程は、色温度に対するリクエストをディジタル・インタフェースに接続するアド 10 レス指定可能な色温度センサにアドレスする工程を含むことを特徴とする請求項1記載の色温度調整方法。

【請求項3】 第1の場所における前記印刷する工程に おいて印刷された色画像を見る工程を更に含むことを特 徴とする請求項1記載の色温度調整方法。

【請求項4】 観測光の色温度とカラーモニタの色温度とを合わせる色温度調整方法において、

観測光の色温度を読み出し、

観測光の色温度をモニタの色温度と比較し、

前記比較工程の結果に基づいて観測光の色温度をモニタ 20 の色温度に合わせる各工程を含むことを特徴とする色温 度調整方法。

【請求項5】 前記カラーモニタの白色点を調節する工程を更に含むことを特徴とする請求項4記載の色温度調整方法。

【請求項6】 前記調節する工程は、観測光の色温度が モニタの色温度より高い場合に観測光の色温度を下げる 工程と、観測光の色温度がモニタの色温度より低い場合 に観測光の色温度を上げる工程とを含むことを特徴とす る請求項5記載の色温度調整方法。

【請求項7】 モニタの色温度が観測光の色温度よりも低い場合にモニタの白色点を上げ、モニタの色温度が観測光の色温度よりも高い場合にモニタの白色点を下げることを特徴とする請求項5記載の色温度調整方法。

【請求項8】 観測光の色温度を下げる工程は、白熱光 源の強さを弱く及び/又はけい光光源の強さを強くする 工程を含むことを特徴とする請求項7記載の色温度調整 方法。

【請求項9】 観測光の色温度を上げる工程は、白熱光 源の強さを強く及び/又はけい光光源の強さを弱くする 40 工程を含むことを特徴とする請求項7記載の色温度調整 方法。

【請求項10】 前記合わせる工程において、観測光の 色温度が調節されることを特徴とする請求項4記載の色 温度調整方法。

【請求項11】 前配合わせる工程は、カラーモニタの 白色点及び観測光の色温度の両方を調節する工程を含む ことを特徴とする請求項4記載の色温度調整方法。

【請求項12】 観測光の色温度を所定の色温度に調節する装置において、

強さの調節が可能な第1の光源と、

周囲の光と前記第1光源の出力する光とを含む観測光の 色温度を測定する測定手段と、

前記測定手段によって測定された色温度を所定の色温度と比較する比較手段と、

前記比較手段での比較結果に基づいて前記第1光源を調 節する調整手段と、

を備えることを特徴とする色温度調整装置。

【請求項13】 強さの調節が可能な第2の光源を更に 含み、該第2の光源が前記第1の光源の色温度とは異な る色温度を有することを特徴とする請求項12記載の色 温度調整装置。

【請求項14】 前記調節手段は、相対的色温度に基づいて前記第1の光源及び前記第2の光源を調節することを特徴とする請求項13記載の色温度調整装置。

【請求項15】 前記調節手段は、前記第2の光源の色温度が前記第1の光源の色温度よりも高く、前記測定装置によって測定された色温度が低い場合に、前記第2の光源の強さを強くし、前記測定装置によって測定された色温度が高い場合に、前記第1の光源の強さを強くするように調整することを特徴とする請求項13記載の色温度調整装置。

【請求項16】 前記第1の強さを調節可能な光源は、 前記調節手段によって制御可能な制御可能調光器を含む ことを特徴とする請求項12記載の色温度調整装置。

【請求項17】 予め指定される色温度を設定する設定 手段を更に備えることを特徴とする請求項12記載の色 温度調整装置。

【請求項18】 前記設定手段は、カラーモニタの色温 30 度を測定する色温度測定手段を含み、前記予め指定され た温度が前記カラーモニタの色温度に設定されることを 特徴とする請求項17記載の色温度調整装置。

【請求項19】 色画像データを生成する中央処理ユニットと、

前記中央処理ユニットによって生成された色画像データ を表示するカラーモニタと、

前記中央処理ユニットによって生成された色画像データを印刷するカラープリンタと、

前記モニタに表示された色画像及び前記プリンタによって印刷された色画像を見るための観測光の色温度を感知する色温度感知装置と、

前記中央処理ユニットよって制御可能な光出力の強さを 有する第1の光源とを備え、前記中央処理ユニットは、 前記感知装置によって感知された色温度を所定の色温度 に合わせるように、前記感知装置によって感知された色 温度にしたがって前記第1の光源の強さを制御するよう にされていることを特徴とするカラー印刷システム。

【請求項20】 前記カラーモニタの色温度を感知する 第2の色感知装置を更に備え、前記中央処理ユニット

50 は、所定の色温度を前配第2の色感知装置によって感知

された色温度に設定するようにされており、観測光の色 温度がカラーモニタの色温度に合わせられることを特徴 とする請求項19記載のカラー印刷システム。

【請求項21】 強さを調節可能な第2の光源を更に備 え、該第2の光源は前記第1の光源の色温度とは異なる 色温度を有することを特徴とする請求項19記載のカラ 一印刷システム。

【請求項22】 前記中央処理ユニットは、相対的色温 度に基づいて前記第1の光源及び前記第2の光源を調節 することを特徴とする請求項21記載のカラー印刷シス 10 テム。

【請求項23】 前記中央処理ユニットは、前記第2の 光源の色温度が前記第1の光源の色温度よりも高く、前 記色温度感知装置によって測定された色温度が低い場合 に前記第2の光源の強さを強くし、前記色温度感知装置 によって測定された色温度が高い場合に前記第1の光源 の強さを強くするようになされていることを特徴とする 請求項21記載のカラー印刷システム。

【請求項24】 前記中央処理ユニットは、色温度を所 定の色温度に調節するように、前記感知装置によって感 20 知した色温度にしたがって前記第1の光源及び前記カラ ーモニタの両方の強さを制御するようになされているこ とを特徴とする請求項19記載のカラー印刷システム。 【請求項25】 前記カラーモニタの色温度を感知する 色感知装置を更に備え、前記中央処理ユニットは、カラ ープリンタの出力色画像をカラーモニタの色温度に合わ せるように調節するようになされていることを特徴とす る請求項19記載のカラー印刷システム。

【請求項26】 前記強さを調節可能な第1の光源は、 中央処理ユニットによって制御可能な制御可能調光器を 30 含むことを特徴とする請求項19記載のカラー印刷シス テム。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、周囲光又は投影された 光の検出にしたがった、相関色温度の調節に関し、例え ば表示画像の色を調節及び/又は観測光の色温度を変化 させるように光源を調節することによって、表示画像の 相関色温度と観測光の相関色温度とを自動的につり合っ たものに調整する色温度調整方法及び装置に関する。

[0002]

【従来の技術】商業印刷及び写真等の色再生分野におい ては、視覚作用に用いられる光の相関色温度が、観測者 の色画像の知覚の仕方に影響を与えることが知られてい る。特に、異なる相関色温度で見た場合に、観測者が同 一の色画像を異なるもののように感じることが知られて いる。例えば、早朝の日光で見た場合、普通に見えた色 画像が、どんよりと曇った昼間の空の下で見た場合に は、青味がかってぼんやりと見えることになる。

光と同じ色の光を放射する黒体放射体のケルビン温度 (°K) にしたがったものとされている。図1は色度図 であり、プランクの軌跡1 (又は以下において「白色 線」) に、約1500° Kから約10,000° Kの白 色の温度を示している。見るのに用いる観測光の白色温 度は、線1によって示されるように、観測光の純色量に 左右される。したがって、上述の早朝の日光が約3,0 00°K(以下"D30")の白色温度を有するのに対 し、曇った昼間の空は、10,000°K(以下 "D1 00") の白色温度を有する。D60で見た色画像が比 較的赤味がかった色調をしているのに対し、D100で 見た同じ色画像は、比較的青味がかった色調をしてい

【0004】これらの知覚的相違のために、従来の色再 現においては、5,000°K(以下"D50")を標 準の白色温度として受け入れている。この従来の方式に したがって、商業的な色再現のための施設は、一般に、 ライトをD50の白色温度に調節した部屋において、色 の忠実度について色画像を評価している。しかし、最 近、低価格、高画質の色再現装置を、個人のユーザが入 手することが可能となった。これらのユーザは、普通、 D50に周囲光を調節した部屋を用意することができな い。そして、そのような部屋が利用可能であったとして も、色画像は、普通は周囲光がD50である部屋におい ては表示されない。むしろ、そのような色画像は、D5 0ではない白色温度の部屋において表示されることが多 く、例えば見る光がD50から大きく異なるオフィスピ ルディングにおいて、業務上のプレゼンテーションの一 環として利用される場合がある。

【0005】白色温度が色の知覚に影響を与えることか ら、見る光の白色温度の測定値にしたがって、色画像の 色を変えることが提案された。例えば、J. Schwartz, Jou rnalOf Image Science And Technology, Vol. 36, No. 4, Ju ly/August,1992 による "Color Equalization" は、見 る光の色温度に基づいて印刷過程において用いられる個 別のインクの量を調節することによって、見る光の白色 温度に基づいて色画像をつり合ったものにすることを提 案している。

[0006]

40 【発明が解決しようとする課題】しかしながら、現在ま では、観測光の白色温度を測定し、かつ、その検出した 白色温度にしたがってカラー画像生成装置又は観測光を 自動的に調節することは可能ではなかった。即ち、従来 は、観測光の白色温度を一旦求めて、印刷機器や写真機 器等を、その観測光に合わせるか又は適合するように手 動で調節しなければならなかった。しかし、機器又は光 源の手動調節は、複雑で、時間がかかり、一般に訓練さ れた技術者を必要とする。このため、幾つかの離れた別 々の場所において1つの画像を見るため、又は表示する 【0003】相関色温度は、色再現分野において、その 50 ために、調節されたライティングを設定することは極め

て困難、かつ、費用がかかるものであった。

【0007】本発明は、上記課題を解決するために成されたもので、周囲光又は投影された光の検出にしたがって、相関色温度の調整を自動的に行える色温度調整方法及び装置を提供することを目的とする。

[8000]

【課題を解決するための手段】上記目的を達成するために、本発明の構成は観測光の色温度とカラーモニタの色温度とを合わせる色温度調整方法において、観測光の色温度を読み出し、観測光の色温度をモニタの色温度と比 10較し、前記比較工程の結果に基づいて観測光の色温度をモニタの色温度に合わせる各工程を有する。

【0009】また、本発明の他の構成は色画像データを生成する中央処理ユニットと、前記中央処理ユニットによって生成された色画像データを表示するカラーモニタと、前記中央処理ユニットによって生成された色画像データを印刷するカラープリンタと、前記モニタに表示された色画像及び前記プリンタによって印刷された色画像を見るための観測光の色温度を感知する色温度感知装置と、前記中央処理ユニットよって制御可能な光出力の強さを有する第1の光源とを備え、前記中央処理ユニットは、前記感知装置によって感知された色温度を所定の色温度に合わせるように、前記感知装置によって感知された色温度にしたがって前記第1の光源の強さを制御することを特徴とする。

【0010】本発明の上述の簡単な概要は、本発明の本質が速やかに理解されるようにするものである。添付の図面と関連させて以下の本発明の詳細な説明を参照することによって、そのより深い理解を得ることができる。 【0011】

【実施例】図2は、本発明による相関色温度感知装置1 0 の透視図である。色感知装置は、色画像を見る光のよ うな周囲の光が集められ、均一な状態で光センサにもた らされる集積球又は拡散半球からなる測定ヘッド11を 含む。以下に述べるように光感知要素が単一の基板に集 積される場合は、測定ヘッド11はその基板を内包す る。測定ヘッド11は、任意選択の表示装置14と警告 表示器15を支持するペース12に取り付けられてい る。表示装置14は測定ヘッド11に当たる光の相関色 温度を表示するもので、図2において数字"65"は 6, 500° K又は"D65"の相関色温度を示して表 示されており、警告表示器15は測定ヘッド11に入射 する光が強く色相をおびており、それを白色光とみなす ことができず、同様に相関色温度のない場合に視覚的に 警告を発する。表示器15の動作は、図5に関連して以 下においてより詳細に説明する。

【0012】直列ケーブル17はディジタル1/Oインタフェースを提供するものであり、これによって、センサが動作のリクエスト及び/又は指令を受けとり、センサが相関色温度のディジタル出力を提供する。RS-2 50

32等の適切な直列の規約にしたがったものを用いるこ とができる。図3は、本発明による相関色温度センサの 機能構成を示すプロック図である。相関色温度センサ は、それぞれが周囲の光24の別々の色成分を感知し、 それを表すアナログ信号をもたらすための光センサ2 1, 22及び23を含む。本例においては、センサ21 は光24の赤色成分を感知してそのアナログ信号を提供 し、センサ22は光24の緑色成分を感知してそのアナ ログ信号を提供し、センサ23は光24の青色成分を感 知してそのアナログ信号を提供する。また、赤信号Rに 対する青の寄与R1を測定するための任意のセンサ21 aを設けても良い。このようにすれば、検出の正確さが 向上する。これらのアナログ信号がそれぞれアナログ/ ディジタル(A/D)変換器25,26及び27によっ て変換され、変換されたディジタル信号がマルチプレク サ29に向けられる。

【0013】マイクロプロセッサ30からのチャネル情 報に応答して、マルチプレクサ29はA/D変換器2 5,26又は27のディジタル信号の選択された1つを データ線を介してマイクロプロセッサ30に提供する。 マイクロプロセッサ30は論理ゲートアレーとして実現 可能であるが、NEC社製のV53等のプログラマブル ・マイクロプロセッサとすることがより好ましい。各デ ィジタル色成分信号に対して、マイクロプロセッサ30 は補正データを得るためにメモリ31にアクセスし、セ ンサ21,22及び23における非直線性、一貫性の欠 如及び他の誤りのディジタル信号を補正する。即ち、メ モリ31は、赤チャネル、緑チャネル及び青チャネルに 対する補正データを格納するための領域31a,31b 30 及び31cを含む。補正データは、単純なパイアス及び ゲイン調節の様式としても良いが、A/D変換器の1つ からのディジタルデータを用いてそのデータのための補 正値を参照する参照用テーブルの様式とすることがより 好ましい。

【0014】また、測定ヘッド11にマルチプレクサ29によってサンプリングされる温度センサ及びそれに付随するA/D変換器を設けて、センサヘッドにおけるセンサ21,22及び23の温度をマイクロプロセッサ30に供給することもできる。この場合、補正データは、マイクロプロセッサ30に温度補償されたR,G及びBの光の量を計算させるように、温度に基づいた補正値も含む。

【0015】周囲光24のR、G及びB成分それぞれを補正した後に、マイクロプロセッサ30はメモリ31に格納された相関色温度テーブル31dを参照する。相関色温度テーブル31dは補正されたR、G及びBディジタル信号に基づき相関色温度を提供する。相関色温度は、周囲光24の色成分が図1の線1上で示した白色のいずれとも完全には等しくない状態に関連する。相関色温度は、同じ明るさ及び同じ視覚条件においてその仮定

上の黒体放射体のものに、視認される色が最もよく似て いる黒体放射体の温度として定義される。

【0016】図5は、CIE1931(x,y)空間における等温度線を示している。線1は、図1に示した同じ白色線である。線1にほぼ垂直な付加された線が等温度線である。相関色温度テーブル31dに格納された値は、等温度線の1つにあてはまる各色が、その線に沿って白色線1にぶつかるまで戻ったものである。相関色温度は、白色線1とであった所の温度とみなされる。したがって、例えば、そのRGB値が参照数字2によって示いって、例えば、そのRGB値が参照数字2によって示いれる点におくような色の周囲光の場合、その周囲光の相関色温度は6,500°K又はD65である。この状況では、白色線2より上にある各点が僅かに緑がかって見えるのに対して白色線1より下にある各点が僅かにピンクがかって見えるが、周囲光は純粋な白色からはずれているものの、そのずれはそれを非白色とみなすほどには大きくない。

【0017】一方、その色成分が破線3によって示される領域のほぼ外側に位置する光は、もはや白とはみなされないほどに色相を帯びていることになる。点4で示さ 20れる光のように色が破線領域3の外側にある光に対して、マイクロプロセッサ30は相関色温度テーブル31 dを用いて範囲外表示器15を点灯するのに用いられる非白色インディケータを生成する。

【0018】相関色温度テーブル31dから求められる相関色温度は、表示装置14を点灯させる信号を生成するのに用いられる。したがって、その色によって点2に位置する光の場合、その光の6,500°Kの色温度に対応した信号"65"が生成される。図3に戻り、マイクロプロセッサ30は、表示装置14に対してだけでなる、パーソナルコンピュータのような他のディジタル機器との通信のための直列線の上に対しても相関色温度を表すディジタル信号を提供できる直列インタフェースを備えていることが望ましい。図3に示すインタフェース32は、従来のユニパーサル非同期受/送信器("UART")で構成されても良く、これによって、直列線17上で受けとった順次リクエストを処理でき、適切な場合には、相関色温度をディジタル信号で表したものを提供することができる。

【0019】上述の色感知モードに加えて、校正モード 40を提供すべく、マイクロプロセッサ30をプログラムしても良い。そのような校正モードでは、マイクロプロセッサ30は相関色温度を出力するのではなく、補正されていないディジタルR、G及びB信号を出力する。より詳しく言えば、直列線からの指令として概略的に図示されているが、簡単なプッシュボタン・スイッチの操作から形成される指令でも良い校正モードに移行させるための指令に応答して、マイクロプロセッサ30は補正されていないR、G及びB値が出力される校正モードに移行する。これらの出力値は期待されるRGB値と比較され50

る。したがって、例えば校正された光にセンサを図出することによって予測される校正値とこれらの値とが比較される。R、G及びB成分それぞれに対する期待値は、R、G及びB成分の実際に補正されていない値と共に、R、G及びB補正テーブル31a、31b及び31cの中に組み込まれる。新しい補正データは、例えば直列インタフェースからマイクロプロセッサ30に送られ、メモリ31に格納される。

【0020】校正モードに関連し、センサに、LED34のような自己内蔵型の発光装置を備えても良い。校正モードに移行する指令に応答して、マイクロプロセッサ30はLED34をいろいろな予め指定した強度レベルにおいて発光するように制御する。LEDは、その寿命期間に渡り安定した色温度値を有しているので、補正されていないR、G及びB出力値を、LEDが発光する予め指定されたレベルから期待されるものと容易に比較することができ、これにより、テーブル31a、31b及び31cに対する補正データを形成する。

【0021】LED34を単一の白みがかった出力のLEDとして示したが、それらを組み合わせた光が白みがかった光をもたらすところの赤、緑及び青のLEDのような別個のLEDを設けることも可能である。この場合、色センサを照らす前に光を混合させるように測定へッド11内に光を投影するように、各LEDが配置されるべきであり、これにより、色の混線が最小のものとなる。

【0022】また、校正LEDを、別個の校正装置に提供することも可能である。例えば、図4は、本発明の色温度感知装置を校正するために用いることのできる校正装置の一部を破断して示す透視図である。校正装置70は、その一端に開口72を有する中空の円筒71で構成される。開口72は、色温度感知装置を矢印Aの方向に入らせるのに十分な大きさを有している。

【0023】円筒71は、色温度感知装置の測定ヘッド11とほぼ同じ直径の開口72を有しており、迷光が管に入るのを防ぐために、円筒71が測定ヘッド11にぴったりと嵌まるようになっている。このため、円筒71の底部分73の壁は、光吸収面を形成するように黒く塗られている。残りの内部74は、みがきオパールガラ

ス、セラミックス、及びふっ素化高分子のような、通常、完全白色拡散器として用いられる何等かの物質で構成される白色ライニングでコーティングされている。円筒71の開口72と反対側の端に、3個の発光ダイオード(LED)75,76及び77が配置されている。各LEDは、円筒71の上部に熱放散が良好となるように取り付けられている。

「0024】LED75,76及び77は、それぞれがの指令に応答して、マイクロプロセッサ30は補正され 異なる色のもので、好ましくは赤、緑及び背である。こていないR、G及びB値が出力される校正モードに移行 のようにして、LED75,76及び77が同時に光をする。これらの出力値は期待されるRGB値と比較され 50 放出すると、組み合わせられた色が混合して白色とな

10

る。所定の色温度を得るために、任意の数のLEDを任 意の比率で用いることができる。例えば、青のLEDは 赤のLEDよりも放出する光が少ない場合が多いから、 白色を得るためには、青のLEDをより大きな比率で存 在させるべきである。また、同様な効果を得るために、 個別のLEDを独立して点灯させても良い。

【0025】電力は、プラグ79からケーブル78を通 して校正装置70に供給される。プラグ79はフィード スルー・RS-232C・コネクタであり、データ・タ ーミナル・レディ・ライン (Data Terminal Ready Lin e) を用い、必要なエネルギーを校正装置70に向けて 分岐することができる。任意のLED80を円筒11の 延長部に取り付けて校正装置11が動作可能であること を示しても良い。

【0026】校正装置は、図4には円筒として示されて いるが、LEDから光を受ける入口開口と放出された混 合LED照明光のための出口開口とを有する集積球のよ うな他の構成も可能である。内部隔壁(パッフル)を設 けてLEDからの光が出口開口を通して直接放出されな いように確実にシールドしても良い。使用に際しては、 校正装置70を校正モードで動作している色温度センサ 10の上に配置する。校正装置70は色センサを白色が かった光に露出し、マイクロプロセッサ30は上述した ように補正されていないRGB値を送り返す。非補正R GB値は期待RGB値と比較され、そこから校正テープ ルが求められる。

【0027】図6は、図3のプロック図に示したセンサ の構成の正面図である。図6に示すように、色温度セン サは、図3において点線として示した基板40上に構成 され、その中に、色成分センサ21, 22及び23, A 30 /D変換器25,26及び27,マイクロプロセッサ3 0、メモリ31及びインタフェース32が集積又は固定 される。また、図6に示した装置は、赤の信号の青の寄 与を感知するようにされ、より正確にR, G及びB三刺 激値をもたらす付加的な色センサ21a及び対応するA /D変換器25aも備えている。基板40を図6に示し た各個別の構成要素が取り付けられる非導電性基板とし ても良いが、基板40は、図6に示した各構成要素が従 来のVLSI技術にしたがってその上に構成されるVL S I チップとすることがより好ましい。図 6 には示さな 40 かったが、基板40上の個別構成要素間を内部接続し、 かつ、色温度センサへの外部アクセスをもたらすコネク 夕が設けられている。

【0028】センサ21、22及び23(及び設けられ ていればセンサ21a)は、特定の色合せファンクショ ンに前もって適応するようにされたものではない。むし ろ、これらのセンサは、周囲の光を赤、緑及び背の三刺 激値に分離するための、フィルターによって覆われた従 来の感光装置又は他の装置である。したがって、図6の 線6-6に沿った断面図である図7において示すよう

に、赤センサー21及び緑センサー22は、それぞれ適 切な色のフィルター42によって覆われた従来型の感光 要素41によって構成される。各色フィルター42の上 に重ねられるのは、周囲の光を集め、かつ、アセンブリ 内における光散乱を抑制するレンズレット44である。 これについては、感光要素から離れた領域を45に図示 する層等の不透明層の材料によってシールドすれば、さ らに感度の向上が得られる。

【0029】動作に際しては、図示しないソースからの 電力が色温度感知装置に供給され、相関色温度感知装置 10 が、カラープリントアウトを見るための観測光等の周囲 の光を集める位置に配置される。ユーザは、観測光の相 関色温度を表示器14から読取り、観測光を白色とみな すには強く色相を帯び過ぎていることを示すところの表 示器15が点灯していないことを確認する。ユーザは、 相関色温度を利用して色画像が適正な条件の下で見られ ていることを確実にする。したがって、状況によって は、ユーザは、例えば色温度を増すように外側の窓の日 除けを開けることによって、或いは色温度を低下させる ように白熱電球をつけることによって観測光の色温度を 変えることができる。或いは、ユーザは、その赤、緑及 び背のガンが最大信号を生成している場合にカラーモニ 夕によって生成されるところの色の温度であるカラーモ 二夕の白色点を調節し、それと照らしている周囲の光の 色温度と合わせても良い。さらに別の例として、ユーザ は、色温度に基づいて動作するカラー印刷ソフトウェア に色温度を入力し、カラープリンタによって印刷される 色を観測条件とつりあうようにすることができる。

【0030】色温度センサ10が他のディジタル機器へ のアクセスを可能にする直列インタフェースを備えてい る場合、そのディジタル機器は、図8,図9において示 したフローチャートにしたがって該カラーセンサを利用 することができる。ステップS701において、マイク ロプロセッサ30はラインモニタループを開始する。ラ インモニタループは、直列線17において新たな開始文 字が検出されるまでその直列線のステータスを監視す る。ステップS702では、直列線において新たな開始 文字が検出されるまでは、マイクロプロセッサ30は単 にそのライン監視動作を再び開始し(ステップS70 3)、新たな開始文字が検出されるまでラインモニタル ープにとどまる。直列線において新たな開始文字が検出 されると、ステップS704に進み、マイクロプロセッ サ30は受け手のアドレスを直列線から読み出す。より 詳しく言えば、通常、数個の直列装置が直列線17に接 続されている。色温度感知装置10を含む各装置のそれ ぞれが、固有のアドレスコードによってアクセスされ る。したがって、ステップS704において、マイクロ プロセッサ30は受け手のアドレスコードを直列線から 読み出す。そのアドレスコードが色温度センサのアドレ 50 スに対応しない場合 (ステップS705)、フローはス テップS703に戻り、新たな開始文字が再び検出され るまでラインモニタループが再び開始される。

【0031】ステップS705においてマイクロプロセ ッサ30が、アドレスされたと判断した場合、フローは ステップS706に進み、そのセンサのアドレスが格納 される。このセンサのアドレスは応答を生成する際にマ イクロプロセッサ30によって利用される。即ち、直列 線に対する逐次応答を生成する場合、マイクロプロセッ サ30は、その応答の頭にセンサのアドレスを付け、相 関色温度装置の応答が適正な受け手に向けられるように 10 する。

【0032】ステップS707は、色温度センサ10が 実行すべき指令を取り出す。即ち、マイクロプロセッサ 30は、直列線に温度をもたらす指令、校正モードに移 行する指令、校正テーブルの新しい補正データを受け取 り、かつ格納するための指令、又は新しいアドレスにリ セットする指令等の、異なる指令に対して応答をもたら すようにプログラムすることができる。 ステップS70 7においてその指令が取り出される。

度の問合せであるか否かを判定するためにそれを調べ る。指令が温度の問合せである場合、マイクロプロセッ サ30は現在の周囲光24に対応する相関色温度を送り (ステップS709)、そしてフローはステップS70 3に戻り、ラインモニタループが再び開始される。指令 が温度の問合せでない場合、ステップS710は相関色 温度の白色線からの距離か判定する。指令がこの距離を 求める指令である場合、ステップS711において、こ の距離が表示され、フローはステップS703に戻る。 ステップS710において距離の問合せが選択されず、 輝度を調べる指令を受けとった場合(ステップS71 2)、ステップS713においてマイクロプロセッサ3 0は、直列ポートを介して輝度情報を送り出す。

【0034】指令が輝度情報に対する指令ではなく、R GB三刺激値に対するリクエストである場合(ステップ S714)、ステップS715において、RGB値を求 めて直列ポートを介して出力することができる。指令が 温度の問合せ指令でない場合、ステップS716で、そ の指令が校正モードに移行させるための指令であるかど うかを判断する。指令が校正モードに移行させるための 40 指令である場合、マイクロプロセッサ30は校正モード に入り、補正されていない色成分が直列線17上を伝送 され(ステップS718)、そうなった場合、マイクロ プロセッサ30はLED34を点灯する(ステップS7 17)。図3に関連して上述したように、LED34 は、複数の異なる予め指定された照明レベルにされ、こ れらの照明レベルに対する補正されていないR、G及び B成分が直列線17を介して外部の校正機器に送られ る。これにより、フローはステップS703に戻り、ラ インモニタループが再び開始される。

【0035】校正モードが指令されたのではなく、新し い補正データを受け入れる指令を受けとった場合は(ス テップS719)、ステップS720において、マイク ロプロセッサ30が新しい補正データをR, G及びB校 正テーブル31a, 31b及び31cに格納する。上述 したように、これらの補正データは、A/D変換器2 5、26及び27からのディジタルデータを補正し、デ ィジタル色成分における非線形性、非均一性及び他の誤 りのソースに対する補償をするために、マイクロプロセ ッサ30によって利用される。次に、フローはステップ S703に戻り、ラインモニタループが再び開始され る。

【0036】ステップS707において取り出された指 令が、新しい校正テーブルを格納するための指令ではな く、新しい装置アドレスを受け入れるための指令であっ た場合(ステップS721)、フローはステップS72 2に進み、マイクロプロセッサ30は装置10に対する 新しいアドレスを格納する。その後、マイクロプロセッ サは、ステップS704において、その新しいアドレス 【0033】ステップS708において、その指令が温 20 への逐次の問合せ対してのみ応答する。次に、フローは ステップS703に戻り、ラインモニタループが再び開 始される。

> 【0037】上述の指令のリストは代表的なものだけで あり、他の指令をマイクロプロセッサ30によって規定 することもできる。しかしながら、マイクロプロセッサ 30がステップS707において取り出した指令を認識 しなければ、装置が動作可能であることをオペレータに 知らせるために、ステップS723において誤り信号を 出力することが望ましい場合がある。

【0038】図10は、コンピュータ化されたフィード バックをもたらす構成を示す図であり、カラーモニタの カラー出力又はカラープリンタによって形成された色画 像が、周囲の観測条件に対して適正につり合うようにさ れる。図10において、従来のパーソナルコンピューテ ィングシステムであるホストCPU50は、カラーモニ タ51と、キーボード52と、カラープリンタ53とを 備えている。色温度感知装置10が、直列インタフェー ス17を介してホストCPU50に接続されており、カ ラーモニタ51又はカラープリンタ53のどちらか又は 両方に対する周囲の観測光を感知するように構成されて

【0039】図11は、モニタ51のカラー出力又はカ ラープリンタ53によって印刷された色を周囲の観測光 とつり合わせるために、ホストCPU50によって実行 される処理を示している。ステップS901において、 CPU50は、相関色温度装置10に向けられた直列線 17上に温度リクエストを生成する。色温度感知装置1 0は、図8、図9に関連して上述したように、この逐次 リクエストに応答し、直列インタフェース17を介して 50 観測光の色温度をディジタル方式で表したものをCPU

50に送り返す。

【0040】ステップS902において、CPU50 は、モニタの白色点が観測光の色温度と等しいかどうか を判断する。モニタの白色点が観測温度と等しくない場 合は、CPU50は、例えばカラーモニタ51の赤、緑 及び青のガンのゲインを調節することによってモニタの 白色点を鰯節する(ステップS903)。いずれの場合 も、フローは次にステップS904に進み、CPU50 はカラープリンタ53において色画像を印刷するための 印刷指令を受けとったかどうかを判断する。印刷指令を 10 受けとっていない場合、フローは次にステップS901 に戻り、CPU50が観測光の温度を定常的に監視し、 カラーモニタ51の白色点をつり合ったものにする。こ れに対して、印刷命令を受けとった場合、フローはステ ップS905に進み、CPU50が、カラープリンタ5 3によって印刷された色をそれらが観測光の色温度とつ りあうように調節する。望ましい場合には、前述したス チワート (Schwartz) の文献に述べられているような種 類の均等化を利用することができる。

[0041] 均等化の後、フローはステップS901に 20 戻り、上述の動作が繰り返される。図12は、業務が行 われる異なるオフィスのような異なる場所において複数 の色温度センサを配置した構成を示す図である。各色温 度モニタが異なる順次アドレスを有しており、それぞれ がネットワークパス50への直列インタフェースに接続 されている。上述した構成により、オフィス2における 会合や会議中のような、異なる場所におけるカラー画像 を見ることを要求する、オフィス1のような第1の場所 にいるユーザにとって、温度リクエストをオフィス2の 色温度センサに向けさせることで観測光の相関色温度を 30 読み取ることが可能となる。オフィス2の色温度センサ により戻される相関色温度に基づき、オフィス1のユー ザは、彼のプリンタにおけるカラープリントアウトプッ トを、生成されるカラー画像がオフィス2の観測条件と つり合ったものとなるように変えることができる。

【0042】同様に、例えばオフィス2のようにパーソナルカラープリンタを持っていないユーザは、彼のカラープリンタアウトプットを、例えばオフィス3において示すような主たる場所に合わせることができる。この場合、オフィス2のユーザは、カラープリントアウトプッ 40トの前に彼の相関色温度センサを読み、このカラープリントアウトプットがオフィス2の相関色温度を用いてつり合わせられ、それにより、オフィス2のユーザが彼のオフィスに戻ったときに適正な視覚条件がもたらされる。

【0043】オフィス3は、その独自の色温度センサを備えている。この色温度センサが、カラーコピー機及びカラーファクシミリのカラー出力を周囲の観測光につり合わせるように、オフィス3のカラーコピー機及びカラーファクシミリ装置によって図11に示したのと同様に 50

利用される。図13は、観測光温度を、カラーモニタの 白色点や、D50のような標準昼光シミュレータ等の別 の光の温度と合わせる構成を表している。図13におい て、ホストCPU50は、カラーモニタ51と、キーボ ード52と、カラープリンタ53とを備えている。カラ ーモニタ51からの光55を感知し、モニタ51の白色 点温度をホストCPU50にもたらすために、色温度感 知装置54が設けられている。色温度センサ56がカラ ーモニタ51から離れた領域に設けられており、その領 域における観測光を感知するようになっている。この観 測光は、外に面する窓からの光のような周囲光57と少 なくとも1つの制御可能な光源からの光59が組み合わ せられたものである。図13に示した構成において、光 59は2つの光源、即ち、比較的低い色温度を有する白 熱光源60又は他の光源と、比較的高い色温度を有する けい光光源61又は他の光源とからきている。光源60 及び61のそれぞれからの光の強さは、強さ制御装置6 2及び64を介して独立して制御可能である。強さ制御 装置62及び64は、ホストCPU50からのディジタ ル制御によって動作可能なディジタル制御可能調光スイ ッチで構成することができる。

【0044】図14は、観測光色温度と別の光の温度と をどのようにして合わせるかを示すフローチャートであ る。図14のフローチャートにおいて、観測光の相関色 温度がD50等の所望の標準照明光を十分にシミュレー トしたものになるまで観測光が調節される。ステップS 1201において、CPU50は図8, 図9に示したフ ローチャートにしたがって観測光の色温度を色温度セン サ56から読み取る。ステップS1202において、C PU50は、観測光温度をD65等の所望の光の温度と 比較する。ステップS1203で観測光温度がほぼ所望 の温度である場合には、フローが終了する。これに対し て、観測光温度が所望の色温度より低い場合(ステップ S1204)、制御可能な光59の色温度を上げること により観測光色温度を上昇させる。ここで説明する実施 例においては、白熱光源60の強さを低下させるか(ス テップS1205)、けい光光源61の強さを強くする か(ステップS1206)、或いはそれらの組み合わせ によって達成している。これらの調節は、強さ制御装置 62及び64のインクリメンタル制御を通してCPU5 0がなすことができ、これにより、光59の色温度にお いてはインクリメンタル又は段階的変化だけがなされ る。次に、フローはステップS1201に戻り、観測光 の色温度が再び読み出されて、それが所望の色温度の温 度と等しいレベルにされたかどうかを判断する。

【0045】ステップS1204で観測色温度が所望の相関色温度よりも高いと判断された場合は、制御可能な光59の相関色温度を下げることによって観測光温度を下げなければならない。ここで説明する実施例においては、白熱光源60の強さを強くするか(ステップS12

07)、けい光光源61の強さを低くするか(ステップ S1208)、或いはそれらの組み合わせによって達成 している。上述したように、CPU50は、強さ制御装 置62及び64のディジタル制御を通してこれらの変化 を達成することができ、これらの変化をインクリメンタ ル又は段階的なものとして、光59の色温度におけるイ ンクリメンタル又は段階的な変化のみを達成するように することが好ましい。これによって、フローはステップ S1201に戻り、所望の色温度が達成されたか否かを 判定する。

【0046】図15は、観測光の相関色温度を別の相関 色温度に合わせる別の例を示すフローチャートである。 図15に示したフローにおいて、観測光の色温度は調節 されず、モニタ51の白色点をそれが観測光の色温度と 同じになるまで調節する。したがって、ステップS10 31において、CPU50は、色温度センサ56から観 測光の色温度を読み出す。ステップS1302におい て、CPU50は、モニタ51からの光55の色温度を 色温度センサ54から判定する。ステップS1303に おいて、CPU50は、色温度が所定の許容範囲内にあ 20 るか否かを判定する。それらの色温度が受け入れられる ものである場合、フローは終了する。これに対して、モ ニタ51の色温度が低い場合(ステップS1304)、 フローは次にステップS1305に進み、例えばカラー モニタの青のガンのゲインを増すか或いは赤のガンのゲ インを低下させることによって、カラーモニタの白色点 を上げさせる。この変化はインクリメンタル又は段階的 になすことができ、観測光及びモニタの色温度を相互に 合わせることを可能にしている。これによって、フロー はステップS1301に戻る。

【0047】これに対して、モニタ51の色温度が観測 光の色温度よりも大きい場合は、フローはステップS1 306に進み、例えばカラーモニタ51の青のガンのゲ インを低下させるか或いは赤のガンのゲインを大きくす ることによって、モニタ51の相関色温度が低下させら れる。ここでも、色温度の変化をインクリメンタルにし て、モニタの色温度の対応したインクリメンタルな低下 を達成するようにすることができ、モニタ及び観測光の 色温度が相互的に合わせられる。

【0048】図16は、観測光の色温度と他の光のそれ 40 とを合わせる方法のさらに別の例である。図16の例に おいては、観測光の色温度が、モニタ51のそれの色温 度と合うように調節される。 ステップS1401からス テップS1404は、ステップS1301からステップ S1304と同じである。

【0049】ステップS1404においてCPU50は モニタの相関色温度が観測光の相関色温度よりも低いと 判断した場合は、光59の色温度を下げることによって 観測光の色温度が下げられる。この例においては、白熱 光源60の強さを強くするか、又はけい光光源61の強 50 びカラープリンタの色を調節することのできる構成を示

さを下げることによって、或いはそれらの組み合わせに よってこのことを達成している。このような調節は、強 さ制御装置62及び64を通してCPU50によってな されるものであり、相互的な色温度合わせを達成するよ うにインクリメンタルになされることが好ましい。これ によってフローはステップS1401に戻る。

【0050】これに対して、CPU50がステップS1 404でモニタの色温度が観測光のそれよりも高いと判 断した場合は、フローはステップS1407及びステッ 10 プS 1 4 0 8 に進み、光 5 9 の色温度を上げることによ って観測光の色温度を高める。この例においては、白熱 光源60の強さを弱くするか(ステップS1407)、 けい光光源61の強さを増すか(ステップS140

8)、或いはそれらの組み合わせによって光59の色温 度を上げている。CPU50は、強さ制御装置62及び 64を介してこれらの調節に影響を与え、色合わせを反 復的に達成するようにしている。フローは次にステップ S1401に戻る。

【0051】図15においてはモニタの色温度のみが調 節され、また図16においては観測光の色温度のみが調 節されたが、これらの効果の組み合わせを、観測光の色 温度をモニタの色温度に合わせる際に利用できることを 理解すべきである。即ち、色51の白色点を変えるのと 組み合わせて光59の色温度も変え、観測光の色温度と モニタの色温度とのつりあいを達成するようにすること ができる。

[0052]

【発明の効果】以上説明したように、本発明によれば、 周囲光又は投影された光の検出にしたがって、相関色温 30 度の調整を自動的に行える色温度調整方法及び装置を提 供することが可能となる。

【図面の簡単な説明】

【図1】 CIE空間においてプランクの軌跡(又は以下 において"白色線")を示した色度図である。

【図2】本発明による色感知装置の透視図である。

【図3】本発明による色感知装置の機能ブロック図であ る。

【図4】色感知装置を校正する校正装置を示す図であ る。

【図5】図1の白色線に直接あてはまらない照明光の相 関色温度を与える等温度線を示すCIE色度図である。

【図6】図3のプロック図に示した構成要素の物体的構 成の正面図である。

【図7】図6の線6-6における断面図である。

【図8】図3の実施例が直列線上のリクエストに対応す る処理を示すフローチャートである。

【図9】図3の実施例が直列線上のリクエストに対応す る処理を示すフローチャートである。

【図10】観測光の色温度にしたがってカラーモニタ及

すブロック図である。

【図11】図10のような調節のための処理を示すフローチャートである。

【図12】異なる場所における複数の色温度センサの構成を示すプロック図である。

【図13】観測光温度と別の色温度とを互いに合わせる ことのできる構成を示すプロック図である。 【図14】観測光温度をD65のような所望の色温度に 調節する方法のフローチャートである。

【図15】モニタ温度を観測光温度に調節する方法のフローチャートである。

【図16】観測光温度をモニタのそれに合わせる方法のフローチャートである。

【図1】

[図2]

[図3]

【図8】

【図12】

,

[図9]

. i

【図11】

[図13]

【図14】

【図15】

【図16】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TENT OR DRAWING
☐ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.