My linear algebra exercises

Evgeny Markin

2022

Contents

1	1.A R^n and C^n	5
2	1.B Definition of Vector Space	6

Preface

Exercises are from "Linear algebra done right" by Sheldon Axler, 3rd ed. I've already read this book before and completed some exercises from it. Right now I want to brush up the material once again, put all the proofs on a more durable material than paper and to prepare myself to what's gonna happen afterwards.

Chapter 1

1.A R^n and C^n

1

Suppose a and b are real numbers, not both 0. Find real nuber c and d such that

$$1/(a+bi) = c+di$$

$$\frac{1}{a+bi} = c+di$$

$$\frac{1}{a+bi} - c-di = 0$$

$$\frac{a-bi}{(a+bi)(a-bi)} = c+di$$

$$\frac{a-bi}{(a^2+b^2)} = c+di$$

$$\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i = c+di$$

Thus $c = \frac{a}{a^2 + b^2}$ and $d = -\frac{b}{a^2 + b^2}$

$\mathbf{2}$

Show that

$$\frac{-1+\sqrt{3}i}{2}$$

is a cube root of 1 (meaning that its cube equals 1)

$$(\frac{-1+\sqrt{3}i}{2})^3 = \frac{(-1+\sqrt{3}i)^3}{8} = \frac{(-1+\sqrt{3}i)(-1+\sqrt{3}i)^2}{8} = \frac{(-1+\sqrt{3}i)(1-2\sqrt{3}i-3)}{8} = \frac{(-1+\sqrt{3}i)(1-2\sqrt{$$

$$=\frac{(-1+\sqrt{3}i)(-2-2\sqrt{3}i)}{8}=\frac{2+2\sqrt{3}i-2\sqrt{3}i+6}{8}=\frac{8}{8}=1$$

as desired.

3

Find two distinct square roots of i

Square root of i, I assume, is a number, whose square is equal to i. Suppose that $(a + bi)^2 = i$. It follows that

$$(a+bi)^2 = a^2 + 2abi - b^2$$

So if we set

$$a = b = 1/\sqrt{2}$$

this equation holds. Also it holds for

$$a = b = -1/\sqrt{2}$$

maxima seems to agree with me on this one

4

Show that $\alpha + \beta = \beta + \alpha$ for all $\alpha, \beta \in C$ Let $\alpha = a_1 + b_1 i$ and $\beta = a_2 + b_2 i$. It follows

$$\alpha + \beta = a_1 + b_1 i + a_2 + b_2 i = a_2 + b_2 i + a_1 + b_1 i = \beta + \alpha$$

as desired.

5

Show that
$$(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$$
 for all $\alpha, \beta, \lambda \in \mathbb{C}$
Let $\alpha = a_1 + b_1 i$, $\beta = a_2 + b_2 i$, $\lambda = a_3 + b_3 i$. It follows that
$$\alpha + (\beta + \lambda) = a_1 + b_1 i + (a_2 + b_2 i + a_3 + b_3 i) = (a_1 + b_1 i + a_2 + b_2 i) + a_3 + b_3 i = (\alpha + \beta) + \lambda$$

6

Show that $(\alpha\beta)\lambda = \alpha(\beta\lambda)$

$$\alpha + (\beta + \lambda) = (a_1 + b_1 i)((a_2 + b_2 i) + (a_3 + b_3 i)) = ((a_1 + b_1 i)(a_2 + b_2 i)) + (a_3 + b_3 i) = (\alpha \beta)\lambda$$

7

Show that for every $\alpha \in \mathbf{C}$ there exists a unique $\beta \in \mathbf{C}$ such that $\alpha + \beta = 0$ Suppose that there exist two different $\beta_1 \neq \beta_2$ such that $\alpha + \beta_1 = 0$ and $\alpha + \beta_2 = 0$. It follows that

$$\beta_1 = \beta_1 + 0 = \beta_1 + \alpha + \beta_2 = \alpha + \beta_1 + \beta_2 = 0 + \beta_2 = \beta_2$$

which is a contradiction. Therefore there exists only one unique β .

8

Show that for every $\alpha \in \mathbf{C}$ with $\alpha \neq 0$ there exists a unique $\beta \in \mathbf{C}$ such that $\alpha\beta = 1$

Suppose that it is not true and there exist two different $\beta_1 \neq \beta_2$ such that

$$\alpha \beta_1 = 1$$
 and $\alpha \beta_2 = 1$

it follows then that

$$\beta_1 = 1 * \beta_1 = \alpha \beta_2 \beta_1 = \alpha \beta_1 \beta_2 = 1 * \beta_2 = \beta_2$$

which is a contradiction. Therefore there exists only one unique β .

etc

The rest of the section is the repetition of this kind of stuff. That is a lot of writing, and not a lot of thinking, so I'll skip it. I don't ususally like to skip sections, but I have an feeling, that I've completed this thing on paper somewhere, and there is not much reason to rewrite it here.

Chapter 2

1.B Definition of Vector Space

1

Prove that -(-v) = v for every $v \in V$.

For v there exists only one -v. For -v there exists only one -(-v). Thus

$$v = v + 0 = v + (-v) + (-(-v)) = 0 + (-(-v)) = -(-v)$$

as desired (idk if it's true, I'm not good at axioms and stuff)

$\mathbf{2}$

Suppose $a \in F, v \in V$, and av = 0. Prove that a = 0 or v = 0.

Suppose that $a \neq 0, v \neq 0$ but av = 0. It follows that there exist 1/a -multiplicative inverse of a. It follows that

$$1/a * av = 1/a * 0$$

$$1v = 0$$

$$v = 0$$

which is a contradiction. Thus either a = 0 or v = 0.

3

Suppose $v, w \in V$. Explain why there exists a unique $x \in V$ such that v+3x=w. Suppose that there exists $x_1 \neq x_2$ such that $v+3x_1=w$ and $v+3x_2=w$. Thus

$$3x_1 = w - v = 3x_2$$

$$x_1 = \frac{1}{3}(w - v) = x_2$$

which is a contradiction.

Same can be stated from the fact that x is a unique additive inverse of $\frac{1}{3}(v-w)$.

4

The empty set is not a vector space. The empty set fails to satisfy only one of the requirements listed in 1.19. Which one?

Additive indentity. Empty set does not have zero element in it. BTW $\{0\}$ is a vector space.

5

Show that n the definition of a vector space (1.19), the additive inverse condition can be replaced with the condition that

$$0v = 0 \text{ for all } v \in V$$

Here the 0 on the left side is the number 0, and the 0 on the right side is the additive identity of V.

$$0v = 0$$
$$(1-1)v = 0$$
$$1v - 1v = 0$$
$$v - v = 0$$
$$v + (-v) = 0$$

6

Let ∞ and $-\infty$ denote two distinct object, neither of which is in R. Define an addition and multiplication on $R \cup \{\infty\} \cup \{-\infty\}$ as you could guess from the notation. Specifically, the sum and the product of two real numbers is as usual, and for $t \in R$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0 \\ 0 & \text{if } t = 0 \\ \infty & \text{if } t > 0 \end{cases}$$
$$t(-\infty) = \begin{cases} \infty & \text{if } t < 0 \\ 0 & \text{if } t = 0 \\ -\infty & \text{if } t > 0 \end{cases}$$

$$t + \infty = \infty + t = \infty$$

$$t + (-\infty) = (-\infty) + t = (-\infty)$$

$$\infty + \infty = \infty$$

$$(-\infty) + (-\infty) = (-\infty)$$

$$\infty + (-\infty) = 0$$

Is $R \cup \{\infty\} \cup \{-\infty\}$ a vector space over R? Explain. I don't think that it is, TODO.