MindStorm EV3

(Line trace)

이건희, 조한진

1.1 Linetrace: 라인감지 원리1

- 어두운 바닥면 빛 많이 흡수, 빛 반사값 작게 측정
- 밝은 바닥면 빛 적게 흡수, 빛 반사값 크게 측정

어두운 바닥면

밝은 바닥면

1.2 Linetrace: 라인감지 원리2

- 센서의 상태, 조명의 상태, 로봇이 움직이는 속도 등으로 인한 오차 발생 가능
- 라인과 흰색 바탕면 경계 근처에서 애매한 값 측정
 → 바닥과 라인의 구별 시 어느 정도의 오차 범위 고려 필요
 경곗값: 판단의 범위의 경계에 있는 값
- 항상 하드웨어나 주변 환경 등의 요인을 같게 유지할 수 없음
 → 로봇이 실행될 때마다 새로 경곗값을 정하는 것이 바람직
- 1센서 라인 트레이싱을 시작할 때 경곗값 자동 계산 함수 호출
 → 현재 센서 값을 통해 자동으로 경곗값 결정
 ※ 로봇 출발 시 컬러 센서(c2)가 검정색 라인에 위치해야 함

경곗값 = (바닥측정값 + 라인측정값) / 2

2. On/Off control2.1 One sensor boundary calculate

On/Off 라인트레이싱 원리: 검은선이 검출되면 우회전, 흰선이 검출되면 좌회전을 한다.

①, ② 구현하기

2. On/Off control2.3 Two sensor boundary calculate

①, ② 구현하기

On/Off 라인트레이싱 원리: 검은선이 검출되는 방향으로 회전한다. 둘 다 흰색이면 직진

3. PID control 3.1 P(Proportional) Control Linetrace

P Control Linetrace 기본 원리

- On/Off 제어처럼 검은선이 검출되면 우회전, 흰선이 검출되면 좌회전을 한다.
- 우회전, 좌회전 속도를 에러 크기에 따라 다르게 한다.
- → 빠르게 경계선에 접근 가능
- → 경계선에 가까워지면 속도가 줄어서 관성에 의해 에러가 커지는 것을 방지
- → 오차가 누적되어 정상상태(Steady-state)에 가도 완전한 수렴이 되지 않는다.

→실습 해보기

3. PID control

3.2 PI (Proportional Integral) Control Linetrace

PI Control Linetrace 기본 원리

- On/Off 제어처럼 검은선이 검출되면 우회전, 흰선이 검출되면 좌회전을 한다.
- 우회전, 좌회전 속도를 에러 크기에 따라 다르게 한다.
- 누적 오차에 의한 영향도 제어 인자에 반영(오차를 적분하여 더해준다.)
- → 빠르게 경계선에 접근 가능
- → 경계선에 가까워지면 속도가 줄어서 관성에 의해 에러가 커지는 것을 방지
- → 정상상태(Steady-state)에 이르러도 잔류 오차가 적다.
- → 제어 시작 부근에서 오버슛이 크게 발생하고 때에 따라서는 라인 이탈이 발생할 수 있다.

→실습 해보기

3. PID control

3.3 PID (Proportional Integral Differential) Control Linetrace

PID Control Linetrace 기본 원리

- On/Off 제어처럼 검은선이 검출되면 우회전, 흰선이 검출되면 좌회전을 한다.
- 우회전, 좌회전 속도를 에러 크기에 따라 다르게 한다.
- 누적 오차에 의한 영향도 제어 인자에 반영(오차를 적분하여 더해준다.)
- 오차의 시간에 따른 변화율을 고려한다. (오차를 미분하여 더해준다.)
- *지글러-니콜스 기법으로 I값을 구하는 것도 추가 수행 $(K_i = \frac{K_p^2}{4 \times K_d})$
- → 빠르게 경계선에 접근 가능
- → 경계선에 가까워지면 속도가 줄어서 관성에 의해 에러가 커지는 것을 방지
- → 정상상태(Steady-state)에 이르러도 잔류 오차가 적다.
- → 제어 시작 부근에서 오버슛이 크게 발생하고 때에 따라서는 라인 이탈이 발생할 수 있다.

→실습 해보기

3. PID control Linetrace

PID 제어 정리

		P 제어	PI 제어	PID 제어
징	상점	- 목표 값에 근접 - 동작이 부드러움 (On/Off 대비)	- 목표 값과 일치 - 잔류 오차 제거	- 목표값과 일치 - 오버슛 제거
딘	·점	- 목표 값과 불일치 - 잔류 오차 발생	- 안정 상태까지 오래 걸림 - 오버슛 발생	- Kp, Ki, Kd를 적절히 맞추 기 어려움

PID 각 계수 크기 변화에 따른 경향성

* 절대적인 것은 아닙니다. 시스템에 따라 달라질 수 있음

		Кр	Ki	Kd
=	1다	- 속도의 변화가 큼 - 진폭이 커짐(불안정)	- 잔차 제거 - 오버슛 발생	- 오버슛 제거 - 진폭이 커짐(불안정)
즈	나	속도 변화가 작음이탈 가능성이 높음	- 잔차 제거 실패	- 오버슛 제거 실패