$$d = 2r \ arcsin\left(\sqrt{sin^2\left(\frac{\phi_2 - \phi_1}{2}\right) + cos(\phi_1)cos(\phi_2)sin^2\left(\frac{\lambda_2 - \lambda_1}{2}\right)}\right)$$

where ϕ_1 and ϕ_2 correspond to latitude 1 and latitude 2, λ_1 and λ_2 correspond to longitude 1 and longitude 2, and r is the radius of the Earth.

The latitude and longitude coordinates for each house and each metro station are substituded into the haversine fuction for $(\phi_1, \lambda_1) \& (\phi_2, \lambda_2)$ respectively. The distance from a single house to all 91 metro stations are calculated, then the minumum distance is selected and added to the dataframe.