第七章 二元关系

主要内容

- 有序对与笛卡儿积
- 二元关系的定义与表示法
- 关系的运算
- 关系的性质
- 关系的闭包
- 等价关系与划分
- 偏序关系

7.1 有序对与笛卡儿积

定义7.1 由两个元素 x 和 y,按照一定的顺序组成的

二元组称为有序对,记作 $\langle x, y \rangle$.

有序对性质:

- (1) 有序性 $\langle x, y \rangle \neq \langle y, x \rangle$ (当 $x \neq y$ 时)
- (2) < x, y > 与 < u, v > 相等的充分必要条件是

$$\langle x, y \rangle = \langle u, v \rangle \Leftrightarrow x = u \land y = v.$$

笛卡儿积

定义7.2 设 A,B 为集合,A 与 B 的笛卡儿积记作 $A \times B$,且 $A \times B = \{ \langle x, y \rangle | x \in A \land y \in B \}$.

例1
$$A=\{1,2,3\}, B=\{a,b,c\}$$

$$A \times B$$

$$B \times A$$

$$=\{< a,1>,< b,1>,< c,1>,< a,2>,< b,2>,< c,2>,< a,3>,< b,3>,< c,3>\}$$

$$A=\{\emptyset\}, B=\emptyset$$

$$P(A) \times A = \{<\varnothing,\varnothing>,<\{\varnothing\},\varnothing>\}$$

$$P(A) \times B = \emptyset$$

笛卡儿积的性质

(1) 不适合交换律

$$A \times B \neq B \times A \quad (A \neq B, A \neq \emptyset, B \neq \emptyset)$$

(2) 不适合结合律

$$(A \times B) \times C \neq A \times (B \times C) \quad (A \neq \emptyset, B \neq \emptyset, C \neq \emptyset)$$

(3) 对于并或交运算满足分配律

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
 $(B \cup C) \times A = (B \times A) \cup (C \times A)$

$$A \times (B \cap C) = (A \times B) \cap (A \times C) \qquad (B \cap C) \times A = (B \times A) \cap (C \times A)$$

(4) 若 A 或 B 中有一个为空集,则 $A \times B$ 就是空集.

$$A \times \emptyset = \emptyset \times B = \emptyset$$

(5) 若 |A| = m, |B| = n, 则 $|A \times B| = mn$

性质证明

证明: $A\times (B\cup C) = (A\times B)\cup (A\times C)$

证: 任取 <*x*, *y*>

$$\langle x, y \rangle \in A \times (B \cup C)$$

$$\Leftrightarrow x \in A \land y \in B \cup C$$

$$\Leftrightarrow x \in A \land (y \in B \lor y \in C)$$

$$\Leftrightarrow (x \in A \land y \in B) \lor (x \in A \land y \in C)$$

$$\Leftrightarrow \langle x, y \rangle \in A \times B \vee \langle x, y \rangle \in A \times C$$

$$\Leftrightarrow \langle x, y \rangle \in (A \times B) \cup (A \times C)$$

所以有 $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

实例

例2

- (1) 证明 A=B, $C=D \Rightarrow A\times C=B\times D$
- (2) $A \times C = B \times D$ 是否推出 A = B, C = D? 为什么?
- 解(1)任取<x,y>

$$\langle x, y \rangle \in A \times C$$

$$\Leftrightarrow x \in A \land y \in C$$

$$\Leftrightarrow x \in B \land y \in D$$

$$\Leftrightarrow \langle x, y \rangle \in B \times D$$

(2) 不一定. 反例如下:

$$A=\{1\}$$
, $B=\{2\}$, $C=D=\emptyset$, 则 $A\times C=B\times D$ 但是 $A\neq B$.

定义7.3 如果一个集合满足以下条件之一:

- (1) 集合非空,且它的元素都是有序对
- (2) 集合是空集

则称该集合为一个二元关系,简称为关系,记作R.

如果 $\langle x, y \rangle \in R$,可记作xRy;如果 $\langle x, y \rangle \notin R$,则记作 $x \nmid y$

实例: $R=\{<1,2>,<a,b>\}, S=\{<1,2>,a,b\}.$

R 是二元关系,当 a,b 不是有序对时,S 不是二元关系根据上面的记法,可以写 1R2, aRb, aRc 等.

離散數學 A 到 B 的关系与 A 上的关系

定义7.4 设A, B为集合, $A \times B$ 的任何子集所定义的二元关系叫做从A到B的二元关系,当A=B时则叫做 A 上的二元关系.

例3 $A=\{0,1\}, B=\{1,2,3\}, 那么$ $R_1=\{<0,2>\}, R_2=A\times B, R_3=\emptyset, R_4=\{<0,1>\}$ R_1,R_2,R_3,R_4 是从A到B的二元关系, R_3 和 R_4 也是A上的二元关系。

计数: |A|=n, $|A\times A|=n^2$, $A\times A$ 的子集有 2^{n^2} 个. 所以A上有 2^{n^2} 个不同的二元关系.

例如 |A|=3,则 A上有 512 个不同的二元关系.

A 上重要关系的实例

定义7.5 设A 为集合,

- (1) Ø是A上的关系,称为空关系
- (2) 全域关系 $E_A = \{\langle x, y \rangle | x \in A \land y \in A\} = A \times A$

恒等关系 $I_A = \{\langle x, x \rangle | x \in A\}$

小于等于关系 $L_A = \{\langle x, y \rangle | x, y \in A \land x \leq y\}$, A为实数子集

整除关系 $D_B = \{\langle x, y \rangle | x, y \in B \land x$ 整除 $y\}$, B 为非0整数子集

包含关系 $R_{\subset} = \{\langle x, y \rangle | x, y \in A \land x \subseteq y\}$, A是集合族.

实例

例如,
$$A = \{1,2\}$$
,则 $E_A = \{<1,1>,<1,2>,<2,1>,<2,2>\}$
$$I_A = \{<1,1>,<2,2>\}$$
 例如, $A = \{1,2,3\}$, $B = \{a,b\}$,则
$$L_A = \{<1,1>,<1,2>,<1,3>,<2,2>,<2,3>,<3,3>\}$$
 $D_A = \{<1,1>,<1,2>,<1,3>,<2,2>,<3,3>\}$ 例如, $A = P(B) = \{\varnothing,\{a\},\{b\},\{a,b\}\}$,则 A 上的包含关系是 $R_{\subseteq} = \{<\varnothing,\varnothing>,<\varnothing,\{a\}>,<\varnothing,\{b\}>,<\varnothing,\{a,b\}>,<\{a\}>,<\emptyset\}$

类似的还可以定义:

大于等于关系,小于关系,大于关系,真包含关系等.

 $<\{a\}, \{a, b\}>, <\{b\}, \{b\}>, <\{b\}, \{a, b\}>, <\{a, b\}, \{a, b\}>\}$

关系的表示

1. 关系矩阵

$$r_{ij} = 1 \Leftrightarrow \langle x_i, y_j \rangle \in R$$
. 反之 $r_{ij} = 0$

2. 关系图

若 $A = \{x_1, x_2, ..., x_m\}$, R 是 A 上的关系,R 的关系图是 $G_R = \langle A, R \rangle$, 其中 A 为结点集,R 为边集. 如果 $\langle x_i, x_j \rangle$ 属于关系R, 在图中就有一条从 x_i 到 x_i 的有向边.

注意:

- 关系矩阵适合表示从 A 到 B 的关系或 A 上的关系(A, B 为有穷集)
- 关系图适合表示有穷集 A 上的关系

实例

例4 $A = \{1,2,3,4\}, R = \{<1,1>,<1,2>,<2,3>,<2,4>,<4,2>\},$ R 的关系矩阵 M_R 和关系图 G_R 如下:

$$m{M}_R = egin{bmatrix} m{1} & m{1} & m{0} & m{0} \ m{0} & m{0} & m{1} & m{1} \ m{0} & m{0} & m{0} & m{0} \ m{0} & m{1} & m{0} & m{0} \end{bmatrix}$$

7.3 关系的运算

关系的基本运算

定义7.6 关系的定义域、值域与域分别定义为

$$\operatorname{dom} R = \{ x \mid \exists y \ (\langle x, y \rangle \in R) \}$$

$$\operatorname{ran} R = \{ y \mid \exists x \ (\langle x, y \rangle \in R) \}$$

$$\operatorname{fld} R = \operatorname{dom} R \cup \operatorname{ran} R$$

例5
$$R = \{ <1, 2>, <1, 3>, <2, 4>, <4, 3> \}$$
,则 $dom R = \{1, 2, 4\}$ $ran R = \{2, 3, 4\}$ $fld R = \{1, 2, 3, 4\}$

关系运算(逆与合成)

定义7.7 关系的逆运算

$$R^{-1} = \{ \langle y, x \rangle | \langle x, y \rangle \in R \}$$

定义7.8 关系的合成运算

$$R \circ S = \{ \langle x, z \rangle \mid \exists y (\langle x, y \rangle \in R \land \langle y, z \rangle \in S) \}$$

例6
$$R = \{<1, 2>, <2, 3>, <1, 4>, <2, 2>\}$$
 $S = \{<1, 1>, <1,3>, <2,3>, <3, 2>, <3, 3>\}$
 $R^{-1} = \{<2, 1>, <3, 2>, <4, 1>, <2, 2>\}$
 $R \circ S = \{<1, 3>, <2, 2>, <2, 3>\}$
 $S \circ R = \{<1, 2>, <1, 4>, <3, 2>, <3, 3>\}$

合成的图示法

利用图示(不是关系图)方法求合成

$$R \circ S = \{<1, 3>, <2, 2>, <2, 3>\}$$

$$S \circ R = \{<1, 2>, <1, 4>, <3, 2>, <3, 3>\}$$

关系运算(限制与像)

定义7.9 设R为二元关系,A是集合

- (1) R在A上的限制记作 R A A 其中 R A = { $< x, y > | xRy \land x \in A$ }
- (2) A在R下的像记作R[A], 其中 R[A]=ran(R A)

说明:

- A在R下的像 R[A] 是 ranR 的子集,即 R[A] \subseteq ranR

例7 设 $R = \{<1, 2>, <1, 3>, <2, 2>, <2, 4>, <3, 2>\}$,则R[{1}],R[Ø],R[{3}]

$$R \upharpoonright \{1\} = \{<1, 2>, <1, 3>\}$$

$$R \upharpoonright \varnothing = \varnothing$$

$$R \upharpoonright \{2, 3\} = \{\langle 2, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 2 \rangle\}$$

$$R[\{1\}] = \{2, 3\}$$

$$R[\varnothing] = \varnothing$$

$$R[{3}] = {2}$$

关系运算的性质

定理7.1 设F是任意的关系,则

- (1) $(F^{-1})^{-1}=F$
- (2) $dom F^{-1} = ran F$, $ran F^{-1} = dom F$
- 证 (1) 任取<x,y>, 由逆的定义有

$$\langle x, y \rangle \in (F^{-1})^{-1} \Leftrightarrow \langle y, x \rangle \in F^{-1} \Leftrightarrow \langle x, y \rangle \in F.$$

所以有 $(F^{-1})^{-1}=F$.

(2) 任取x, $x \in \text{dom}F^{-1} \Leftrightarrow \exists y (\langle x, y \rangle \in F^{-1})$

$$\Leftrightarrow \exists y (\langle y, x \rangle \in F) \Leftrightarrow x \in \operatorname{ran} F$$

所以有 $dom F^{-1}=ran F$.

同理可证 $ranF^{-1}=dom F$.

关系运算的性质

定理7.2 设F, G, H是任意的关系,则

$$(1) (F \circ G) \circ H = F \circ (G \circ H)$$

(2)
$$(F \circ G)^{-1} = G^{-1} \circ F^{-1}$$

证(1)任取<x,y>,

$$\langle x, y \rangle \in (F \circ G) \circ H$$

$$\Leftrightarrow \exists t (\langle x, t \rangle \in F \circ G \land \langle t, y \rangle \in H)$$

$$\Leftrightarrow \exists t \ (\exists s \ (\langle x, s \rangle \in F \land \langle s, t \rangle \in G) \land \langle t, y \rangle \in H)$$

$$\Leftrightarrow \exists t \ \exists s \ (\langle x, s \rangle \in F \land \langle s, t \rangle \in G \land \langle t, y \rangle \in H)$$

$$\Leftrightarrow \exists s \ (\langle x, s \rangle \in F \land \exists t \ (\langle s, t \rangle \in G \land \langle t, y \rangle \in H))$$

$$\Leftrightarrow \exists s \ (\langle x, s \rangle \in F \land \langle s, y \rangle \in G \circ H)$$

$$\Leftrightarrow \langle x, y \rangle \in F_{\circ}(G \circ H)$$

所以
$$(F \circ G) \circ H = F \circ (G \circ H)$$

证明

(2) 任取<x,y>,

$$\langle x, y \rangle \in (F \circ G)^{-1}$$

$$\Leftrightarrow \langle y, x \rangle \in F \circ G$$

$$\Leftrightarrow \exists t \ (\langle y, t \rangle \in F \land \langle t, x \rangle \in G)$$

$$\Leftrightarrow \exists t (\langle x, t \rangle \in G^{-1} \land \langle t, y \rangle \in F^{-1})$$

$$\Leftrightarrow \langle x, y \rangle \in G^{-1} \circ F^{-1}$$

所以
$$(F \circ G)^{-1} = G^{-1} \circ F^{-1}$$

关系运算的性质

定理7.3 设 R 为 A 上的关系,则

$$R \circ I_A = I_A \circ R = R$$

证 任取<*x*,*y*>

$$\langle x, y \rangle \in R \circ I_A$$

$$\Leftrightarrow \exists t \ (\langle x, t \rangle \in R \land \langle t, y \rangle \in I_A)$$

$$\Leftrightarrow \exists t \ (\langle x, t \rangle \in R \land t = y \land y \in A)$$

$$\Rightarrow \langle x, y \rangle \in R$$

$$\langle x, y \rangle \in R$$

$$\Rightarrow \langle x, y \rangle \in R \land y \in A \Rightarrow \langle x, y \rangle \in R \land \langle y, y \rangle \in I_A$$

$$\Rightarrow \langle x, y \rangle \in R \circ I_A$$

综上所述有 $R^{\circ}I_A = R$

同理可证
$$I_A \circ R = R$$

关系运算的性质

定理7.4

- (1) $F \circ (G \cup H) = F \circ G \cup F \circ H$ (2) $(G \cup H) \circ F = G \circ F \cup H \circ F$
- $(3) F_{\circ}(G \cap H) \subseteq F_{\circ}G \cap F_{\circ}H \qquad (4) (G \cap H)_{\circ}F \subseteq G_{\circ}F \cap H_{\circ}F$

$$\langle x,y\rangle \in F_{\circ}(G\cap H)$$

$$\Leftrightarrow \exists t (\langle x, t \rangle \in F \land \langle t, y \rangle \in G \cap H)$$

$$\Leftrightarrow \exists t (\langle x, t \rangle \in F \land \langle t, y \rangle \in G \land \langle t, y \rangle \in H)$$

$$\Leftrightarrow \exists t \ ((\langle x, t \rangle \in F \land \langle t, y \rangle \in G) \land (\langle x, t \rangle \in F \land \langle t, y \rangle \in H))$$

$$\Rightarrow \exists t (\langle x, t \rangle \in F \land \langle t, y \rangle \in G) \land \exists t (\langle x, t \rangle \in F \land \langle t, y \rangle \in H)$$

$$\Leftrightarrow \langle x, y \rangle \in F \circ G \land \langle x, y \rangle \in F \circ H$$

$$\Leftrightarrow \langle x, y \rangle \in F \circ G \cap F \circ H$$

所以有 $F \circ (G \cap H) \subseteq F \circ G \cap F \circ H$

推广

定理7.4 的结论可以推广到有限多个关系

$$\begin{split} R \circ (R_1 \cup R_2 \cup \ldots \cup R_n) &= R \circ R_1 \cup R \circ R_2 \cup \ldots \cup R \circ R_n \\ (R_1 \cup R_2 \cup \ldots \cup R_n) \circ R &= R_1 \circ R \cup R_2 \circ R \cup \ldots \cup R_n \circ R \\ R \circ (R_1 \cap R_2 \cap \ldots \cap R_n) &\subseteq R \circ R_1 \cap R \circ R_2 \cap \ldots \cap R \circ R_n \\ (R_1 \cap R_2 \cap \ldots \cap R_n) \circ R &\subseteq R_1 \circ R \cap R_2 \circ R \cap \ldots \cap R_n \circ R \end{split}$$

关系运算的性质

定理7.5 设F为关系,A,B为集合,则

$$(1) F \upharpoonright (A \cup B) = F \upharpoonright A \cup F \upharpoonright B$$

(2)
$$F[A \cup B] = F[A] \cup F[B]$$

(3)
$$F \upharpoonright (A \cap B) = F \upharpoonright A \cap F \upharpoonright B$$

$$(4) F[A \cap B] \subseteq F[A] \cap F[B]$$

证明

证 只证 (1) 和 (4).

(1) 任取 <x, y>

$$\langle x, y \rangle \in F \upharpoonright (A \cup B)$$

$$\Leftrightarrow \langle x, y \rangle \in F \land x \in A \cup B$$

$$\Leftrightarrow \langle x, y \rangle \in F \land (x \in A \lor x \in B)$$

$$\Leftrightarrow (\langle x, y \rangle \in F \land x \in A) \lor (\langle x, y \rangle \in F \land x \in B)$$

$$\Leftrightarrow \langle x, y \rangle \in F \upharpoonright A \vee \langle x, y \rangle \in F \upharpoonright B$$

$$\Leftrightarrow \langle x, y \rangle \in F \upharpoonright A \cup F \upharpoonright B$$

所以有 $F \upharpoonright (A \cup B) = F \upharpoonright A \cup F \upharpoonright B$.

证明

(4) 任取 y,

$$y \in F[A \cap B]$$

- $\Leftrightarrow \exists x (\langle x, y \rangle \in F \land x \in A \cap B)$
- $\Leftrightarrow \exists x \ (\langle x, y \rangle \in F \land x \in A \land x \in B)$
- $\Leftrightarrow \exists x \ ((\langle x, y \rangle \in F \land x \in A) \land (\langle x, y \rangle \in F \land x \in B))$
- $\Rightarrow \exists x (\langle x, y \rangle \in F \land x \in A) \land \exists x (\langle x, y \rangle \in F \land x \in B)$
- $\Leftrightarrow y \in F[A] \land y \in F[B]$
- $\Leftrightarrow y \in F[A] \cap F[B]$

所以有 $F[A \cap B] \subseteq F[A] \cap F[B]$.

关系的幂运算

定义7.10

设R为A上的关系,n为自然数,则R的n次幂定义为:

(1)
$$R^0 = \{ \langle x, x \rangle \mid x \in A \} = I_A$$

$$(2) R^{n+1} = R^n \circ R$$

注意:

- Opening 对于A上的任何关系 R_1 和 R_2 都有 $R_1^0 = R_2^0 = I_A$
- 对于A上的任何关系 R 都有 $R^1 = R$

幂的求法

例 8 设 $A = \{a, b, c, d\}$, $R = \{\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, d \rangle\}$, 求R的各次幂,分别用矩阵和关系图表示.

解 R与 R^2 的关系矩阵分别是:

$$M = egin{bmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$M^{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

幂的求法

 R^3 和 R^4 的矩阵是:

$$M^{3} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad M^{4} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

因此 $M^4 = M^2$,即 $R^4 = R^2$. 因此可以得到

$$R^2 = R^4 = R^6 = \dots$$
, $R^3 = R^5 = R^7 = \dots$

$$R^0$$
的关系矩阵是 $M^0 = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$

关系图

 R^0 , R^1 , R^2 , R^3 , ... 的关系图如下图所示.

$$R^3 = R^5 = ...$$

幂运算的性质

定理7.6 设 A 为 n 元集,R 是A上的关系,则存在自然数 s 和t,使得 $R^s = R^t$.

 \overline{U} R 为A上的关系,

由于|A|=n,A上的不同关系只有 2^{n^2} 个.

列出R的各次幂

$$R^0, R^1, R^2, \ldots, R^{2^{n^2}}, \ldots,$$

必存在自然数 s 和 t 使得 $R^s = R^t$

幂运算的性质

定理7.7 设 R 是 A上的关系, $m,n \in \mathbb{N}$,则

$$(1) R^m \circ R^n = R^{m+n}$$

$$(2) (R^m)^n = R^{mn}$$

证用归纳法

(1) 对于任意给定的 $m \in \mathbb{N}$,施归纳于 n.

若
$$n=0$$
,则有

$$R^m \circ R^0 = R^m \circ I_A = R^m = R^{m+0}$$

假设 $R^m \circ R^n = R^{m+n}$, 则有

$$R^m \circ R^{n+1} = R^m \circ (R^n \circ R) = (R^m \circ R^n) \circ R = R^{m+n+1},$$

所以对一切 $m, n \in \mathbb{N}$ 有 $R^m \circ R^n = R^{m+n}$.

证明

(2) 对于任意给定的 $m \in \mathbb{N}$,施归纳于 n.

若n=0,则有

$$(R^m)^0 = I_A = R^0 = R^{m \times 0}$$

假设 $(R^m)^n = R^{mn}$, 则有

$$(R^m)^{n+1} = (R^m)^n \circ R^m = (R^{mn}) \circ R^n$$
$$= R^{mn+m} = R^{m(n+1)}$$

所以对一切 $m, n \in \mathbb{N}$ 有 $(\mathbb{R}^m)^n = \mathbb{R}^{mn}$.

幂运算的性质

定理7.8 设R 是A上的关系,

若存在自然数 s, t (s < t) 使得 $R^s = R^t$,则

- (1) 对任何 $k \in \mathbb{N}$ 有 $\mathbb{R}^{s+k} = \mathbb{R}^{t+k}$
- (2) 对任何 $k, i \in \mathbb{N}$ 有 $R^{s+kp+i} = R^{s+i}$, 其中 p = t-s
- (3) 令 $S = \{R^0, R^1, ..., R^{t-1}\}$,则对于任意的 $q \in \mathbb{N}$ 有 $R^q \in \mathbb{S}$
- \mathbf{L} (1) $\mathbf{R}^{s+k} = \mathbf{R}^s \cdot \mathbf{R}^k = \mathbf{R}^t \cdot \mathbf{R}^k = \mathbf{R}^{t+k}$
 - (2) 对k归纳. 若k=0,则有 $R^{s+0p+i}=R^{s+i}$ 假设 $R^{s+kp+i}=R^{s+i}$,其中p=t-s,则

$$\mathbf{R}^{s+(k+1)p+i} = \mathbf{R}^{s+kp+i+p} = \mathbf{R}^{s+kp+i} \circ \mathbf{R}^{p}$$

$$= R^{s+i} \circ R^p = R^{s+p+i} = R^{s+t-s+i} = R^{t+i} = R^{s+i}$$

由归纳法命题得证.

证明

(3) 任取 $q \in \mathbb{N}$,

若 q < t, 显然有 $\mathbb{R}^q \in S$,

若 $q \ge t$,则存在自然数 k 和 i 使得

$$q = s + kp + i$$
, 其中 $0 \le i \le p - 1$.

于是

$$\mathbf{R}^q = \mathbf{R}^{s+kp+i} = \mathbf{R}^{s+i}$$

而

$$s+i \le s+p-1 = s+t-s-1 = t-1$$

从而证明了 $R^q \in S$.

定义7.11 设R 为A上的关系,

 $R_3 = \{<1, 3>\}$

- (1) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \in R)$,则称 R 在 A 上是自反的.
- (2) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \notin R)$,则称 R 在 A 上是反自反的.

实例:

自反:全域关系 E_A ,恒等关系 I_A ,小于等于关系 I_A ,整除关系 D_A 反自反:实数集上的小于关系、幂集上的真包含关系.

 $A=\{1,2,3\}$, R_1 , R_2 , R_3 是 A 上的关系,其中 $R_1=\{<1,1>,<2,2>\}$ $R_2=\{<1,1>,<2,2>,<3,3>,<1,2>\}$

 R_2 自反, R_3 反自反, R_1 既不是自反的也不是反自反的.

对称性与反对称性

定义7.12 设 R 为 A上的关系,

- (1) 若 $\forall x \forall y (x, y \in A \land \langle x, y \rangle \in R \rightarrow \langle y, x \rangle \in R)$,则称 R 为 A 上对称的关系.
- (2) 若 $\forall x \forall y (x, y \in A \land \langle x, y \rangle \in R \land \langle y, x \rangle \in R \rightarrow x = y)$,则称 R 为A上的反对称关系. 实例:

对称关系: A 上的全域关系 E_A ,恒等关系 I_A 和空关系 \emptyset 反对称关系: 恒等关系 I_A 和空关系也是 A 上的反对称关系.

设 $A = \{1, 2, 3\}$, R_1 , R_2 , R_3 和 R_4 都是 A 上的关系,其中

 $R_1 = \{<1, 1>, <2, 2>\}, R_2 = \{<1, 1>, <1, 2>, <2, 1>\}$

 $R_3 = \{<1, 2>, <1, 3>\}, R_4 = \{<1, 2>, <2, 1>, <1, 3>\}$

 R_1 : 对称和反对称; R_2 : 只有对称; R_3 : 只有反对称;

 R_4 : 不对称、不反对称

定义7.13 设R为A上的关系,若

 $\forall x \forall y \forall z (x, y, z \in A \land \langle x, y \rangle \in R \land \langle y, z \rangle \in R \rightarrow \langle x, z \rangle \in R),$

则称 R 是A上的传递关系.

实例: A上的全域关系 E_A ,恒等关系 I_A 和空关系 Ø,小于等于和小于关系,整除关系,包含与真包含关系

设 $A = \{1, 2, 3\}$, R_1 , R_2 , R_3 是A上的关系,其中

$$R_1 = \{<1, 1>, <2, 2>\}$$

$$R_2 = \{<1, 2>, <2, 3>\}$$

$$R_3 = \{<1, 3>\}$$

 R_1 和 R_3 是 A 上的传递关系, R_2 不是 A 上的传递关系.

離 散 數 學 关系性质成立的充要条件

定理7.9 设 R 为 A 上的关系,则

- (1) R 在 A 上自反当且仅当 $I_A \subseteq R$
- (2) R 在 A 上反自反当且仅当 $R \cap I_A = \emptyset$
- (3) R 在 A 上对称当且仅当 $R = R^{-1}$
- (4) R 在 A 上反对称当且仅当 $R \cap R^{-1} \subseteq I_A$
- (5) R 在 A 上传递当且仅当 $R \circ R \subseteq R$

证明 只证(1)、(3)、(4)、(5)

(1) 必要性

任取 $\langle x, y \rangle$, 由于R 在A 上自反必有

$$\langle x, y \rangle \in I_A \Rightarrow x, y \in A \land x = y \Rightarrow \langle x, y \rangle \in R$$

从而证明了 $I_A \subseteq R$

充分性.

任取x,有

$$x \in A \Rightarrow \langle x, x \rangle \in I_A \Rightarrow \langle x, x \rangle \in R$$

因此 R 在 A 上是自反的.

(3) 必要性.

任取 <x, y>,

$$\langle x, y \rangle \in R \Leftrightarrow \langle y, x \rangle \in R \Leftrightarrow \langle x, y \rangle \in R^{-1}$$

所以 $R = R^{-1}$

充分性.

任取 $\langle x, y \rangle$, 由 $R = R^{-1}$ 得

$$\langle x, y \rangle \in R \Rightarrow \langle y, x \rangle \in R^{-1} \Rightarrow \langle y, x \rangle \in R$$

所以R在A上是对称的

(4) 必要性. 任取< x, y >,有

$$\langle x, y \rangle \in R \cap R^{-1} \Rightarrow \langle x, y \rangle \in R \land \langle x, y \rangle \in R^{-1}$$

 $\Rightarrow \langle x, y \rangle \in R \land \langle y, x \rangle \in R \Rightarrow x = y \land x, y \in A$
 $\Rightarrow \langle x, y \rangle \in I_A$

这就证明了 $R \cap R^{-1} \subseteq I_A$

充分性.

任取
$$\langle x, y \rangle$$
,
$$\langle x, y \rangle \in R \land \langle y, x \rangle \in R \Rightarrow \langle x, y \rangle \in R \land \langle x, y \rangle \in R^{-1}$$

$$\Rightarrow \langle x, y \rangle \in R \cap R^{-1} \Rightarrow \langle x, y \rangle \in I_A$$

$$\Rightarrow x = y$$

从而证明了R在A上是反对称的.

(5) 必要性.

$$\langle x, y \rangle \in R \circ R$$

$$\Rightarrow \exists t (\langle x, t \rangle \in R \land \langle t, y \rangle \in R)$$

$$\Rightarrow \langle x, y \rangle \in R$$

所以 $R \circ R \subseteq R$

充分性.

任取 $\langle x, y \rangle, \langle y, z \rangle \in R$,则

$$\langle x, y \rangle \in R \land \langle y, z \rangle \in R$$

$$\Rightarrow \langle x, z \rangle \in R \circ R \Rightarrow \langle x, z \rangle \in R$$

所以 R 在 A 上是传递的

離 散 數 學 关系性质的三种等价条件

	自反性	反自反性	对称性	反对称性	传递性
集合	$I_A \subseteq R$	$R \cap I_A = \emptyset$	$R=R^{-1}$	$R \cap R^{-1} \subseteq I_A$	$R \circ R \subseteq R$
关系	主对角	主对角线	矩阵是	= 1,且	M ² 中1位置,
矩阵	线元素	元素全是0	对称矩阵	$ i\neq j$,则 $r_{ji}=0$	
	全是1			, and the second	置都是1
关系	每个顶	每个顶点	两点之间	两点之间有	点 x_i 到 x_i 有
图	点都有	都没有环	有边,是	边,是一条有	$ $ 边, x_j 到 x_k
	环		一对方向	向边	有边,则 x_i
			相反的边		到 x_k 也有边

離散數學关系的性质和运算之间的联系

	自反性	反自反性	对称性	反对称性	传递性
R_1^{-1}	$\sqrt{}$	V		V	V
$R_1 \cap R_2$	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark
$R_1 \cup R_2$	$\sqrt{}$	\checkmark	$\sqrt{}$	×	×
R_1 - R_2	×	$\sqrt{}$	$\sqrt{}$		×
$R_1 \circ R_2$	$\sqrt{}$	×	×	×	×

7.5 关系的闭包

主要内容

- 闭包定义
- 闭包的构造方法

集合表示

矩阵表示

图表示

• 闭包的性质

- 定义7.14 设 R 是非空集合 A 上的关系,R 的自反(对称或传递) 闭包是 A 上的关系 R',使得 R' 满足以下条件:
 - (1) R'是自反的(对称的或传递的)
 - $(2) R \subseteq R'$
- (3) 对A上任何包含R的自反(对称或传递)关系R'' 有 $R'\subseteq R''$ R的自反闭包记作r(R),对称闭包记作s(R),传递闭包记作 t(R).

定理7.10 设R为A上的关系,则有

- (1) $r(R)=R \cup R^0$
- (2) $s(R) = R \cup R^{-1}$
- (3) $t(R) = R \cup R^2 \cup R^3 \cup ...$

说明:对有穷集A(|A|=n)上的关系,(3)中的并最多不超过 R^n

证 只证(1)和(3).

- (1) 由 $I_A = R^0 \subseteq R \cup R^0$ 知 $R \cup R^0$ 是自反的,且满足 $R \subseteq R \cup R^0$ 设R'' 是A上包含R的自反关系,则有 $R \subseteq R''$ 和 $I_A \subseteq R''$. 从而有 $R \cup R^0 \subseteq R''$. $R \cup R^0$ 满足闭包定义,所以 $r(R) = R \cup R^0$.
- (3) 先证 $R \cup R^2 \cup ... \subseteq t(R)$ 成立. 用归纳法证明对任意正整数 n 有 $R^n \subseteq t(R)$.

n=1 时有 $R^1=R\subseteq t(R)$.

假设 $R^n \subseteq t(R)$ 成立,那么对任意的 $\langle x, y \rangle$

 $\langle x, y \rangle \in R^{n+1} = R^n \circ R \Rightarrow \exists t \ (\langle x, t \rangle \in R^n \land \langle t, y \rangle \in R)$

 $\Rightarrow \exists t (\langle x, t \rangle \in t(R) \land \langle t, y \rangle \in t(R)) \Rightarrow \langle x, y \rangle \in t(R)$

这就证明了 R^{n+1} $\subseteq t(R)$. 由归纳法命题得证.

再证 $t(R) \subseteq R \cup R^2 \cup ...$ 成立,为此只须证明 $R \cup R^2 \cup ...$ 传递.

任取 $\langle x, y \rangle, \langle y, z \rangle$,则

$$\langle x, y \rangle \in R \cup R^2 \cup ... \land \langle y, z \rangle \in R \cup R^2 \cup ...$$

$$\Rightarrow \exists t (\langle x, y \rangle \in R^t) \land \exists s (\langle y, z \rangle \in R^s)$$

$$\Rightarrow \exists t \; \exists s \; (\langle x, z \rangle \in R^t \circ R^s)$$

$$\Rightarrow \exists t \; \exists s \; (\langle x, z \rangle \in R^{t+s})$$

$$\Rightarrow \langle x, z \rangle \in R \cup R^2 \cup ...$$

从而证明了 $R \cup R^2 \cup ...$ 是传递的.

離散數學 闭包的矩阵表示和图表示

设关系R, r(R), s(R), t(R)的关系矩阵分别为M, M_r , M_s 和 M_t 则 $M_r=M+E$ $M_s=M+M'$ $M_t=M+M^2+M^3+...$ E 是单位矩阵,M'是 转置矩阵,相加时使用逻辑加.

设关系 R, r(R), s(R), t(R) 的关系图分别记为 G, G_r , G_s , G_t , 则 G_r , G_s , G_t 的顶点集与 G 的顶点集相等. 除了G 的边以外,以下述方法添加新的边:

- (1) 考察 G 的每个顶点,若没环就加一个环,得到 G_r
- (2) 考察 G 的每条边,若有一条 x_i 到 x_j 的单向边, $i\neq j$,则在 G 中加一条 x_i 到 x_i 的反向边,得到 G_s
- (3) 考察 G 的每个顶点 x_i ,找 x_i 可达的所有顶点 x_j (允许i=j),如果没有从 x_i 到 x_j 的边,就加上这条边,得到图 G_t

实例

例9 设 $A=\{a,b,c,d\}$, $R=\{\langle a,b\rangle,\langle b,a\rangle,\langle b,c\rangle,\langle c,d\rangle,\langle d,b\rangle\}$,R 和 r(R),s(R),t(R) 的关系图如下图所示.

闭包的性质

定理7.11 设R是非空集合A上的关系,则

- (1) R 是自反的当且仅当 r(R)=R.
- (2) R 是对称的当且仅当 s(R)=R.
- (3) R 是传递的当且仅当 t(R)=R.

定理7.12 设 R_1 和 R_2 是非空集合A上的关系,且 R_1 $\subseteq R_2$,则

- $(1) r(R_1) \subseteq r(R_2)$
- $(2) s(R_1) \subseteq s(R_2)$
- $(3) t(R_1) \subseteq t(R_2)$

证明略

闭包的性质

定理7.13 设 R 是非空集合 A 上的关系,

- (1) 若 R 是自反的,则 s(R) 与 t(R) 也是自反的
- (2) 若 R 是对称的,则 r(R) 与 t(R) 也是对称的
- (3) 若 R 是传递的,则 r(R) 是传递的.

说明:如果需要进行多个闭包运算,比如求R的自反、对称、传递的闭包tsr(R),运算顺序如下:

tsr(R) = rts(R) = trs(R) 传递放在对称之后运算

证明略

7.6 等价关系与划分

主要内容

- 等价关系的定义与实例
- 等价类及其性质
- 商集与集合的划分
- 等价关系与划分的一一对应

離散數學等价关系的定义与实例

定义7.15 设 R 为非空集合上的关系. 如果 R 是自反的、对称的和传递的,则称R为A上的等价关系.

设 R 是一个等价关系,若 $< x, y> \in R$,称 x 等价于y,记做 $x\sim y$.

实例 设 $A=\{1,2,...,8\}$,如下定义A上的关系R:

$$R = \{ \langle x, y \rangle | x, y \in A \land x \equiv y \pmod{3} \}$$

其中 $x \equiv y \pmod{3}$ 叫做 $x = y \notin 3$ 相等,即 x 除以 3 的余数与 y 除以 3 的余数相等. 不难验证 $x \in A$ 为 $x \in A$ 上的等价关系,因为

- $(1) \forall x \in A$,有 $x \equiv x \pmod{3}$
- $(2) \forall x, y \in A$, 若 $x \equiv y \pmod{3}$, 则有 $y \equiv x \pmod{3}$
- $(3) \forall x, y, z \in A$,若 $x \equiv y \pmod{3}$, $y \equiv z \pmod{3}$,则有 $x \equiv z \pmod{3}$

等价关系的实例

模3等价关系的关系图

等价类定义

定义7.16 设R为非空集合A上的等价关系, $\forall x \in A$,令

$$[x]_R = \{ y \mid y \in A \land xRy \}$$

称 $[x]_R$ 为x关于R的等价类,简称为x的等价类,简记为[x]或 x

实例 $A=\{1,2,...,8\}$ 上模 3 等价关系的等价类:

$$[1] = [4] = [7] = \{1, 4, 7\}$$

$$[2] = [5] = [8] = \{2, 5, 8\}$$

$$[3] = [6] = \{3, 6\}$$

等价类的性质

定理7.14 设 R 是非空集合 A 上的等价关系,则

- (1) $\forall x \in A$, [x]是A的非空子集
- $(2) \forall x, y \in A$,如果 xRy,则 [x] = [y]
- (3) $\forall x, y \in A$,如果 $x \neq y$,则 [x]与[y]不交
- $(4) \cup \{[x] \mid x \in A\} = A$
- 证 (1) 由定义, $\forall x \in A$ 有 $[x] \subseteq A$. 又 $x \in [x]$,即[x]非空.
 - (2) 任取 z,则有

$$z \in [x] \Rightarrow \langle x, z \rangle \in R \Rightarrow \langle z, x \rangle \in R$$
 $\langle z, x \rangle \in R \land \langle x, y \rangle \in R \Rightarrow \langle z, y \rangle \in R \Rightarrow \langle y, z \rangle \in R$ 从而证明了 $z \in [y]$. 综上所述必有 $[x] \subseteq [y]$. 同理可证 $[y] \subseteq [x]$.

这就得到了[x] = [y].

- (3) 假设 $[x] \cap [y] \neq \emptyset$,则存在 $z \in [x] \cap [y]$,从而有 $z \in [x] \wedge z \in [y]$,即 $< x, z > \in R \wedge < y, z > \in R$ 成立. 根据 R 的对称性和传递性必有 $< x, y > \in R$,与 $x \not \in y$ 矛盾
- (4) 先证 \cup {[x] | $x \in A$ } $\subseteq A$. 任取y,

$$y \in \bigcup \{[x] \mid x \in A\} \Leftrightarrow \exists x (x \in A \land y \in [x])$$

$$\Rightarrow y \in [x] \land [x] \subseteq A \Rightarrow y \in A$$

从而有 \cup {[x] | x ∈ A} \subseteq A

再证 $A \subseteq \cup \{[x] \mid x \in A\}$. 任取y,

$$y \in A \Rightarrow y \in [y] \land y \in A \Rightarrow y \in \bigcup \{[x] \mid x \in A\}$$

从而有 \cup {[x] | x ∈ A} \subseteq A成立.

综上所述得 \cup {[x] | x ∈A} = A.

商集与划分

定义7.17 设 R 为非空集合A上的等价关系,以 R 的所有等价类 作为元素的集合称为A关于R的商集,记做A/R, $A/R = \{[x]R \mid x \in A\}$

实例 设 $A=\{1,2,...,8\}$, A 关于模3等价关系R 的商集为 $A/R=\{\{1,4,7\},\{2,5,8\},\{3,6\}\}$

A关于恒等关系和全域关系的商集为:

$$A/I_A = \{\{1\}, \{2\}, ..., \{8\}\}, A/E_A = \{\{1,2,...,8\}\}$$

定义7.18 设 A 为非空集合,若 A 的子集族 $\pi(\pi \subseteq P(A))$ 满足:

- $(1) \varnothing \notin \pi$
- (2) $\forall x \forall y (x,y \in \pi \land x \neq y \rightarrow x \cap y = \emptyset)$
- $(3) \cup \pi = A$

则称 π 是A的一个划分,称 π 中的元素为 A 的划分块.

划分实例

例10 设 $A = \{a, b, c, d\}$, 给定 $\pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \pi_6$ 如下: $\pi_1 = \{\{a, b, c\}, \{d\}\}\}$ $\pi_2 = \{\{a, b\}, \{c\}, \{d\}\}\}$ $\pi_3 = \{\{a, b\}, \{c, d\}\}\}$ $\pi_4 = \{\{a, b\}, \{c\}\}\}$ $\pi_5 = \{\emptyset, \{a, b\}, \{c, d\}\}\}$

则 π_1 和 π_2 是 A 的划分, 其他都不是 A 的划分.

 $\pi_6 = \{\{a, \{a\}\}, \{b, c, d\}\}\$

離散數學商集与划分的进一步说明

把商集 A/R 和划分的定义相比较,易见商集就是 A 的一个划分,并且不同的商集将对应于不同的划分. 反之,任给 A 的一个划分 π ,如下定义 A 上的关系 R:

实例

例11 给出 $A = \{1,2,3\}$ 上所有的等价关系

解 先做出 A 的划分,从左到右分别记作 $\pi_1, \pi_2, \pi_3, \pi_4, \pi_5$.

 π_1 对应 E_A ; π_5 对应 I_A ; π_2 , π_3 和 π_4 分别对应 R_2 , R_3 和 R_4 .

$$R_2 = \{ \langle 2, 3 \rangle, \langle 3, 2 \rangle \} \cup I_A$$

 $R_3 = \{ \langle 1, 3 \rangle, \langle 3, 1 \rangle \} \cup I_A$
 $R_4 = \{ \langle 1, 2 \rangle, \langle 2, 1 \rangle \} \cup I_A$

主要内容

- 偏序关系偏序关系的定义偏序关系的实例
- 偏序集与哈斯图
- 偏序集中的特殊元素及其性质极大元、极小元、最大元、最小元上界、下界、最小上界、最大下界

定义与实例

定义7.19

偏序关系: 非空集合A上的自反、反对称和传递的关系,记作<. 设<为偏序关系,如果 <x, y> \in <,则记作 x < y , 读作 x "小于或等于" y.

实例:集合A上的恒等关系 I_A 是 A上的偏序关系.小于或等于关系,整除关系和包含关系也是相应集合上的偏序关系.

定义7.20 设 R 为非空集合A上的偏序关系,

- (1) $x, y \in A$, $x \ni y$ 可比 $\Leftrightarrow x \leqslant y \lor y \leqslant x$
- (2) 任取元素 x 和 y,可能有下述几种情况发生: $x \prec y$ (或 $y \prec x$), x = y, x = y 不是可比的 定义7.21 R 为非空集合A上的偏序关系,
- (1) $\forall x, y \in A$, x = 5y都是可比的,则称 R 为全序(或线序) 实例:数集上的小于或等于关系是全序关系,整除关系不是正整数集合上的全序关系
- 定义7.22 $x, y \in A$, 如果 $x \prec y$ 且不存在 $z \in A$ 使得 $x \prec z \prec y$,则称 y 覆盖 x. 例如{1, 2, 4, 6}集合上整除关系,2 覆盖 1, 4 和 6覆盖2,4不覆盖1.

偏序集与哈斯图

定义7.23 集合A和A上的偏序关系<一起叫做偏序集,记作 <A, <>.

实例: $\langle \mathbf{Z}, \leq \rangle$, $\langle P(A), R_{\subseteq} \rangle$

哈斯图:利用偏序关系的自反、反对称、传递性进行简化的关系图.

特点: (1) 每个结点没有环

- (2) 两个连通的结点之间的序关系通过结点位置的高低表示,位置低的元素的顺序在前
- (3) 具有覆盖关系的两个结点之间连边

实例

例12 偏序集 $<\{1,2,3,4,5,6,7,8,9\}$, R整除 > 和 $< P(\{a,b,c\}), R_{\subset}>$ 的哈斯图.

例13 已知偏序集 <A, R> 的哈斯图如下图所示,试求出集合 A 和关系 R 的表达式.

解 $A = \{ a, b, c, d, e, f, g, h \}$

 $R = \{ <\!\!b,\!\!d\!\!>,\!\!<\!\!b,\!\!e\!\!>,\!\!<\!\!c,\!\!d\!\!>,\!\!<\!\!c,\!\!e\!\!>,\!\!<\!\!c,\!\!f\!\!>,\!\!<\!\!e,\!\!f\!\!>,\!\!<\!\!g,\!\!h\!\!> \} \cup I_A$

偏序集中的特殊元素

定义7.24 设<A, \leq >为偏序集, $B\subseteq$ A, $y\in B$

- (1) 若 $\forall x$ (x∈B→y \leq x)成立,则称y为B的最小元
- (2) 若 $\forall x$ (x∈B $\rightarrow x$ $\leq y$)成立,则称y $\Rightarrow B$ 的最大元
- (3) 若 $\forall x$ (x∈B∧x $\preccurlyeq y → x=y$)成立,则称y为B的极小元
- (4) 若 $\forall x(x \in B \land y \leq x \rightarrow x = y)$ 成立,则称 $y \land B$ 的极大元性质:
- (1) 对于有穷集,极小元和极大元一定存在,可能存在多个.
- (2) 最小元和最大元不一定存在,如果存在一定惟一.
- (3) 最小元一定是极小元; 最大元一定是极大元.
- (4) 孤立结点既是极小元,也是极大元.

偏序集中的特殊元素

定义7.25 设<A, $\leq>$ 为偏序集, $B\subseteq A$, $y\in A$

- (1) 若 $\forall x$ (x∈B→x $\leq y$)成立,则称y为B的上界
- (2) 若 $\forall x$ (x∈B $\rightarrow y$ $\leq x$)成立,则称y $\Rightarrow B$ 的下界
- (3) 令 $C = \{y \mid y \to B$ 的上界 $\}$,C的最小元为B的最小上界或上确界
- (4) 令 $D = \{y \mid y \to B \text{ 的 F } P\}$, D 的最大元为B 的最大下界或下确界性质:
- (1) 下界、上界、下确界、上确界不一定存在
- (2) 下界、上界存在不一定惟一
- (3) 下确界、上确界如果存在,则惟一
- (4) 集合的最小元是其下确界,最大元是其上确界,反之不对.

实例

例14 设偏序集 $\langle A, \leq \rangle$,求A的极小元、最小元、极大元、最大元,设 $B = \{b, c, d\}$,求B的下界、上界、下确界、上确界.

解: 极小元: a, b, c, g;

极大元: a, f, h;

没有最小元与最大元.

B的下界和最大下界都不存在;

上界有d和f,

最小上界为d.

实例

- 例15 设 X 为集合, $A = P(X) \{\emptyset\} \{X\}$,且 $A \neq \emptyset$. 若|X| = n, $n \ge 2$. 问:
- (1) 偏序集 $\langle A, R_{\subset} \rangle$ 是否存在最大元?
- (2) 偏序集 $\langle A, R_{\subset} \rangle$ 是否存在最小元?
- (3) 偏序集 $<A,R_{\le}>$ 中极大元和极小元的一般形式是什么?并说明理由.
- 解: $(1) < A, R_{\subset} >$ 不存在最小元和最大元,因为 $n \ge 2$.
- (2) <A, $R_{<}$ > 的极小元就是 X 的所有单元集,即 $\{x\}$, $x \in X$.
- (3) < A, R < > 的极大元恰好比 X 少一个元素,即 $X \{x\}$, $x \in X$.

第七章 习题课

主要内容

- 有序对与笛卡儿积的定义与性质
- \bullet 二元关系、从A到B的关系、A上的关系
- 关系的表示法: 关系表达式、关系矩阵、关系图
- 关系的运算: 定义域、值域、域、逆、合成、限制、像、幂
- 关系运算的性质: A上关系的自反、反自反、对称、反对称、 传递的性质
- A上关系的自反、对称、传递闭包
- A上的等价关系、等价类、商集与A的划分
- A上的偏序关系与偏序集

基本要求

- 熟练掌握关系的三种表示法
- 能够判定关系的性质(等价关系或偏序关系)
- 掌握含有关系运算的集合等式
- 掌握等价关系、等价类、商集、划分、哈斯图、偏序集等概念
- 计算 $A \times B$, dom R, ranR, fldR, R^{-1} , $R \circ S$, R^n , r(R), s(R), t(R)
- 求等价类和商集A/R
- 给定A的划分π,求出π所对应的等价关系
- 求偏序集中的极大元、极小元、最大元、最小元、上界、 下界、上确界、下确界
- 掌握基本的证明方法证明涉及关系运算的集合等式证明关系的性质、证明关系是等价关系或偏序关系

- 1. 设 $A = \{1, 2, 3\}$, $R = \{\langle x, y \rangle \mid x, y \in A \perp x + 2y \leq 6\}$, $S = \{\langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 2 \rangle\}$, 求:
 - (1) R的集合表达式
 - $(2) R^{-1}$
 - (3) dom R, ran R, fld R
 - (4) $R \circ S$, R^3
 - (5) r(R), s(R), t(R)

解答

- (1) $R = \{<1,1>, <1,2>, <2,1>, <2,2>, <3,1>\}$
- (2) $R^{-1} = \{<1,1>, <2,1>, <1,2>, <2,2>, <1,3>\}$
- (3) $dom R = \{1, 2, 3\}, ran R = \{1, 2\}, fld R = \{1, 2, 3\}$
- (4) $R \circ S = \{ <1, 2>, <1, 3>, <2, 2>, <2, 3>, <3, 2>, <3, 3> \}$ $R^3 = \{ <1, 1>, <1, 2>, <2, 1>, <2, 2>, <3, 1>, <3, 2> \}$
- (5) $r(R) = \{<1, 1>, <1, 2>, <2, 1>, <2, 2>, <3, 1>, <3, 3>\}$ $s(R) = \{<1, 1>, <1, 2>, <2, 1>, <2, 2>, <3, 1>, <1, 3>\}$ $t(R) = \{<1, 1>, <1, 2>, <2, 1>, <2, 2>, <3, 1>, <3, 2>\}$

2. 设 $A=\{1,2,3,4\}$,在 $A\times A$ 上定义二元关系R: <<x,y>, < $u,v>>\in R \Leftrightarrow x+y=u+v$,

求R导出的划分.

A×*A*={<1, 1>, <1, 2>, <1, 3>, <1, 4>, <2, 1>, <2, 2>, <2, 3>, <2, 4>, <3, 1>, <3, 2>, <3, 3>, <3, 4>, <4, 1>, <4, 2>, <4, 3>, <4, 4>}

根据 < x, y> 中的 x+y=2,3,4,5,6,7,8 将 A 划分成等价类: $A/R=\{\{<1,1>\},\{<1,2>,<2,1>\},\{<1,3>,<2,2>,<3,1>\},\{<1,4>,<2,3>,<3,2>,<4,1>\},\{<2,4>,<3,3>,<4,2>\},\{<3,4>,<4,3>\},\{<4,4>\}\}$

3. 设R是Z上的模n等价关系,即

$$x \sim y \Leftrightarrow x \equiv y \pmod{n}$$
,

试给出由R确定的Z的划分 π .

解 设除以n余数为r的整数构成等价类[r],则

$$[r] = \{ kn+r \mid k \in \mathbb{Z} \}, r = 0, 1, ..., n-1$$

$$\pi = \{ [r] \mid r = 0, 1, ..., n-1 \}$$

- 4. 设偏序集 <A,R> 的哈斯图如图所示.
- (1) 写出A和R的集合表达式
- (2) 求该偏序集中的极大元、极小元、最大元、最小元

解:
$$(1) A = \{a, b, c, d, e\}$$

$$R = \{\langle d,b \rangle, \langle d,a \rangle, \langle d,c \rangle,$$

$$\langle e,c \rangle, \langle e,a \rangle, \langle b,a \rangle,$$

$$\langle c,a \rangle \} \cup I_A$$

(2) 极大元和最大元是 a, 极小元是 d, e;没有最小元.

5. 设R是A上的二元关系,设

$$S = \{ \langle a, b \rangle \mid \exists c (\langle a, c \rangle \in R \land \langle c, b \rangle \in R) \}.$$

证明如果R是等价关系,则S也是等价关系.

证 R 是 A 上的等价关系.

(1) 证自反, 任取x,

$$x \in A \Rightarrow \langle x, x \rangle \in R \Rightarrow \exists x \ (\langle x, x \rangle \in R \land \langle x, x \rangle \in R) \Rightarrow \langle x, x \rangle \in S$$

(2) 证对称,任取<x,y>,

$$\langle x, y \rangle \in S \Rightarrow \exists c (\langle x, c \rangle \in R \land \langle c, y \rangle \in R)$$

$$\Rightarrow \exists c \ (\langle c, x \rangle \in R \land \langle y, c \rangle \in R) \Rightarrow \langle y, x \rangle \in S$$

(3) 证传递,任取<x, y>, <y, z>,

$$\langle x, y \rangle \in S \land \langle y, z \rangle \in S$$

$$\Rightarrow \exists c \ (\langle x, c \rangle \in R \land \langle c, y \rangle \in R) \land \exists d \ (\langle y, d \rangle \in R \land \langle d, z \rangle \in R)$$

$$\Rightarrow \langle x, y \rangle \in R \land \langle y, z \rangle \in R \Rightarrow \langle x, z \rangle \in S$$

- 6. 设偏序集 $\langle A, R \rangle$ 和 $\langle B, S \rangle$,定义 $A \times B$ 上二元关系 T: $\langle x, y \rangle T \langle u, v \rangle \Leftrightarrow xRu \wedge ySv$
- 证明 T 为偏序关系.
- 证 (1) 自反性,任取 $\langle x,y \rangle$, $\langle x,y \rangle \in A \times B \Rightarrow x \in A \wedge y \in B \Rightarrow xRx \wedge ySy \Rightarrow \langle x,y \rangle T \langle x,y \rangle$
- (2) 反对称性,任取 $\langle x,y \rangle,\langle u,v \rangle$ $\langle x,y \rangle T \langle u,v \rangle \wedge \langle u,v \rangle T \langle x,y \rangle \Rightarrow xRu \wedge ySv \wedge uRx \wedge vSy$ $\Rightarrow (xRu \wedge uRx) \wedge (ySv \wedge vSy) \Rightarrow x=u \wedge y=v$ $\Rightarrow \langle x,y \rangle = \langle u,v \rangle$
- (3) 传递性,任取 $\langle x, y \rangle$, $\langle u, v \rangle$, $\langle w, t \rangle$ $\langle x, y \rangle T \langle u, v \rangle \wedge \langle u, v \rangle T \langle w, t \rangle \Rightarrow xRu \wedge ySv \wedge uRw \wedge vSt$ $\Rightarrow (xRu \wedge uRw) \wedge (ySv \wedge vSt) \Rightarrow xRw \wedge ySt$ $\Rightarrow \langle x, y \rangle T \langle w, t \rangle$

关系性质的证明方法

1. 证明R在A上自反 任取x,

$$x \in A \Rightarrow \dots \Rightarrow \langle x, x \rangle \in R$$
 前提 推理过程 结论

2. 证明R在A上对称

任取
$$\langle x, y \rangle$$
,

$$\langle x, y \rangle \in \mathbb{R} \Rightarrow \dots \Rightarrow \langle y, x \rangle \in \mathbb{R}$$
 前提 推理过程 结论

关系性质的证明方法

3. 证明*R*在*A*上反对称 任取<*x*, *y*>,

$$\langle x, y \rangle \in \mathbb{R} \land \langle y, x \rangle \in \mathbb{R} \Rightarrow \dots \Rightarrow x = y$$
 前提 推理过程 结论

4. 证明R在A上传递

$$\langle x, y \rangle \in R \land \langle y, z \rangle \in R \Rightarrow \dots \Rightarrow \langle x, z \rangle \in R$$
 前提 推理过程 结论

- 7. R, S 为A上的关系,证明 $R \subseteq S \Rightarrow t(R) \subseteq t(S)$
- 证 只需证明对于任意正整数 n, $R^n \subseteq S^n$. 对n归纳. n=1, 显然为真.

假设对于n,命题为真,任取< x,y>

$$< x, y > \in R^{n+1}$$

$$\Rightarrow \langle x, y \rangle \in \mathbb{R}^n \circ \mathbb{R}$$

$$\Rightarrow \exists t (\langle x, t \rangle \in \mathbb{R}^n \land \langle t, y \rangle \in \mathbb{R})$$

$$\Rightarrow \exists t \ (\langle x, t \rangle \in S^n \land \langle t, y \rangle \in S)$$

$$\Rightarrow \langle x, y \rangle \in S^n \circ S$$

$$\Rightarrow \langle x, y \rangle \in S^{n+1}$$

離散數學关系等式或包含式的证明方法

- 数学归纳法(主要用于幂运算)
- 证明中用到关系运算的定义和公式,如:

$$x \in \text{dom}R \Leftrightarrow \exists y(\langle x, y \rangle \in R)$$

 $y \in \text{ran}R \Leftrightarrow \exists x(\langle x, y \rangle \in R)$
 $\langle x, y \rangle \in R \Leftrightarrow \langle y, x \rangle \in R^{-1}$
 $\langle x, y \rangle \in R \circ S \Leftrightarrow \exists t \ (\langle x, t \rangle \in R \land \langle t, y \rangle \in S)$
 $\langle x, y \rangle \in R \upharpoonright A \Leftrightarrow x \in A \land \langle x, y \rangle \in R$
 $y \in R[A] \Leftrightarrow \exists x \ (x \in A \land \langle x, y \rangle \in R)$
 $r(R) = R \cup I_A$
 $s(R) = R \cup R^{-1}$
 $t(R) = R \cup R^2 \cup ...$