In questo testo $\log x$ indica il logaritmo in base e

(A) Domande.

Stabilire se le seguenti affermazioni sono vere o false e giustificare la propria risposta:¹

- 1. Se $f: \mathbb{R} \to \mathbb{R}$ è derivabile e $f'(x_0) = 0$ per $x_0 \in \mathbb{R}$, allora x_0 è un massimo o un minimo.
- 2. Data la successione $a_n = \frac{100n}{n^2+1}$, esiste un numero intero N > 0 tale che $a_N < \frac{1}{100}$.
- 3. L'equazione differenziale $y'(t) = \cos(y(t))$ non ammette soluzioni costanti
- 1. FALSO. La funzione $f(x) = x^3$ in $x_0 = 0$ non ha massimo né minimo ma f'(0) = 0.
- 2. VERO. Siccome $a_n \to 0$, per la definizione di limite, si ha che dato $0 < \epsilon < 1/100$ esiste N tale che $a_n = |a_n 0| \le \epsilon$ per ogni $n \ge N$, in particolare $a_N < \frac{1}{100}$.
- 3. FALSO. La funzione costante $u(t) = \pi/2$ è soluzione perchè

$$u'(t) = 0,$$
 $\cos(u(t)) = \cos(\pi/2) = 0$

(B) Esercizi.

1. Si studi la funzione seguente sul suo dominio naturale

$$f(x) = \sqrt{x^2 + x} - x$$

e se ne tracci un grafico qualitativo indicando eventuali asintoti (orizzontali/verticali/obliqui). La funzione f è iniettiva?

SOLUZIONE. La funzione è definita per $x^2+x\geq 0$, risolvendo si trova $x\leq -1$ oppure $x\geq 0$ quindi

$$D=]-\infty,-1]\cup[0,+\infty[$$

I limiti ai punti di bordo del dominio si calcolano facilmente i limiti

$$\lim_{x \to -1} \sqrt{x^2 + x} - x = 1, \qquad \lim_{x \to 0} \sqrt{x^2 + x} - x = 0$$

mentre si ha

$$\lim_{x \to -\infty} \sqrt{x^2 + x} - x = +\infty, \qquad \lim_{x \to +\infty} \sqrt{x^2 + x} - x = \frac{1}{2}$$

L'ultimo limite si può ad esempio calcolare moltiplicando numeratore e denominatore per $\sqrt{x^2+x}+x$

$$\lim_{x \to +\infty} \sqrt{x^2 + x} - x = \lim_{x \to +\infty} \frac{x^2 + x - x^2}{\sqrt{x^2 + x} + x} = \lim_{x \to +\infty} \frac{1}{\sqrt{1 + \frac{1}{x}} + 1}$$

¹giustificare tramite un argomento o dimostrazione, o negare tramite un controesempio

Per $x \to -\infty$ esiste un asintoto obliquo infatti si ha (notare che x è negativo!)

$$\lim_{x\to -\infty}\frac{\sqrt{x^2+x}-x}{x}=\lim_{x\to -\infty}-\sqrt{1+\frac{1}{x}}-1=-2$$

inoltre (moltiplicando numeratore e denominatore per $\sqrt{x^2+x}-x$) si arriva a

$$\lim_{x \to -\infty} \sqrt{x^2 + x} - x + 2x = \lim_{x \to -\infty} \sqrt{x^2 + x} + x = -\frac{1}{2}$$

quindi l'asintoto obliquo è $y = -2x - \frac{1}{2}$.

Calcolando la derivata si ha la formula

$$f'(x) = \frac{2x+1}{2\sqrt{x^2+x}} - 1$$

definita sulla unione degli intervalli aperti $]-\infty,-1[\cup]0,+\infty[$. Studiando le disuguaglianze si vede che

$$f'(x) < 0,$$
 se $x < -1$

$$f'(x) > 0, \qquad \text{se } x > 0$$

Notare che $f'(x) \to -\infty$ per $x \to -1$ mentre $f'(x) \to +\infty$ per $x \to 0$.

2. Studiare la convergenza delle serie seguenti

$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}, \qquad \sum_{n=1}^{\infty} \frac{e^{nx}}{n}$$

(nel secondo caso determinare per quali $x \in \mathbb{R}$ la serie converge).

SOLUZIONE. Per il criterio del rapporto sulla prima serie si trova

$$\lim_{n} \frac{a_{n+1}}{a_n} = \lim_{n} \frac{2^n}{n^2} \frac{(n+1)^2}{2^{n+1}} = \frac{1}{2}$$

dunque la serie converge. (Si può applicare anche il criterio della radice)

Per il criterio della radice sulla seconda serie si trova

$$\lim_{n} \sqrt[n]{a_n} = \lim_{n} \sqrt[n]{\frac{e^{nx}}{n}} = \lim_{n} \frac{e^x}{\sqrt[n]{n}} = e^x$$

quindi la serie diverge se $e^x > 1$ ovvero x > 0, mentre converge se $e^x < 1$ ovvero x < 0. Per x = 0 il criterio non si applica ma la serie si riduce alla serie armonica

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

che diverge.

Figure 1: grafico di f(x)

3. Calcolare l'integrale indefinito (ovvero l'insieme delle primitive) seguente

$$\int \frac{1+2e^x}{e^{2x}-1} dx$$

Indicazione: usare una opportuna sostituzione

SOLUZIONE. Facendo il cambio di variabile $u=e^x$ e dunque $x=\log u$ con $dx=\frac{du}{u}$ si ha

$$\int \frac{1+2e^x}{e^{2x}-1} dx = \int \frac{1+2u}{u^2-1} \frac{du}{u}$$

Scomponendo il denominatore in fratti semplici

$$\frac{1+2u}{u(u^2-1)} = \frac{A}{u} + \frac{B}{u+1} + \frac{C}{u-1}$$

si trova che (calcoli omessi) A=-1, B=-1/2, C=3/2.

Da qui si ottiene

$$\int \frac{1+2u}{u(u^2-1)} du = \int \frac{-1}{u} + \frac{-1/2}{u+1} + \frac{3/2}{u-1} du$$
$$= -\log|u| - \frac{1}{2}\log|u+1| + \frac{3}{2}\log|u-1|$$

Sostituendo $u=e^x$ si trova l'insieme delle primitive

$$= -x - \frac{1}{2}\log|e^x + 1| + \frac{3}{2}\log|e^x - 1| + c$$