Smart field monitoring with AloT在監測的發展與應用

Presenter: Yin Jeh Ngui, Jason 魏殷哲 National Yang Ming Chiao Tung University 30th September 2021

Short intro

- 2019 Current : Post-doctoral researcher at DPWE, NYCU
 - Integrated slope monitoring with low-powered long-range IoT devices
 - Dielectric spectroscopy using TDR
 - Suspended sediment concentration (SSC) monitoring in reservoir, river basin
 - Engineering geophysical exploration (borehole geophysics, surface seismic, ERT)
- 2014 2019 : PhD in Civil Engineering, NCTU
 - Advisor : Professor Chih-Ping Lin
 - Research group: Geo-Imaging and Geo-Nerve Research Group
- 2010 2013 : BEng (Hons) in Civil Engineering, Hong Kong PolyU
- Coding experience
 - MATLAB, Python, Node-red, C and C++
 - Software-hardware integration, Raspberry Pi, Arduino, LoRa
 - PCB design @ KiCAD, easyEDA

Roadmap

- What is AloT?
- Why AloT?
- From IoT
- Architecture
- Sensors
- Transmission
- Presentation
- To AloT
- Server / Cloud side AloT
- Edge AI + IoT

- Prospects
- Applications in various fields
- Smart field monitoring
- Discussions

What is AloT?

(Anant Desai, 2020)

Internet of Things + Artificial Intelligence

Conventional Internet

Mobile Internet

Edge computing 邊緣計算 傳統互聯網 音頻采集器 114 Big Data 音頻采集器 (14) 深度學習、Gan、Elm、Mipg-人工智能(AI) 視頻采集器 筆記本 政府機構 虛擬視覺系統 雲反射孤 商業機構 空氣傳感器 水系傳感器 虛擬感覺系統 台式機 大社交網絡(SNS) 土壤傳感器 互聯網操作系統層 AR/VR 中 辦公設備 軍事機構 機器人 生產設備 家用設備 政府機構 雲計算 移動互聯網 工業4.0或工業互聯網 雲反射孤

Conventional Internet

Mobile Internet

Industry 4.0

IoT

Why AIOT?

- Progression of computing technology allowed rapid data reduction and even artificial intelligence (AI) inference
- Full automation, less human effort required

Increase frequencies of measurement, data reduction, information

interpretation

Reduce delay in data interpretation

- Early detection and 24/7 monitoring
- Cost-effectiveness in mass deployment
- Embrace unknowns through AI

Year	Papers published IoT	Papers published AloT
2010-2015	23000	0
2016-2017	8 6300	645
2018-2019	164000	1290
2020	68400	1020
2021	44700	788

From IoT

IoT — Architecture

IoT – Sensors

- Geotechnical applications
- Surveillance image
- Inclination angle
- Water level
- Soil moisture
- Pressure sensor
 - Overburden / back pressure of soil
- GPS/GNSS
- Temperature/humidity
- Precipitation/rainfall

- Civil engineering applications
- Vibration sensor (structural)
- Inclination sensor
- Flow rate
- Turbidity

IoT – Sensors + Loggers

IoT – Data loggers

- Data logger is required to store/send acquired data
 - Micro-controllers (μC)
 - Single-board computer (SBC)
 - Embedded system (PC form)
- Ruggedness, small form factor
- Low power consumption
 - Usually 0.1W-10W

- Rich with GPIO (general purpose input/output)
- ADC
- Sensor communication interfaces
 - Synchronous
 - SPI : Faster, needs more wiring
 - I2C : Slower, only needs 2 wire
 - Asynchronous : UART, USB, RS-232, RS-485
 - Needs same baud rate
 - 1-to-1 communication, non-blocking, RX-TX concurrent

Embedded system

IoT – Transmission

- From data logger to server / cloud service
 - Connect local host/logger to centralized server
 - Involving WAN and LAN
- Some considerations for mass deployment
 - Wireless vs Wired connection
 - Low power consumption
 - Link budget (Transmission distance vs. Data rate)
 - Subscription cost
 - Security

(Arun Kumar V, 2019)

(Nguyen et. al, 2019)

IoT – Interfaces

- How to communicate data into database?
- MQTT is the most popular IoT communication protocol
 - Apart from Websocket (http), CoAP, AMQP
 - File synchronization service (Dropbox, Google Drive, OneDrive etc.) is too bulky for IoT
- MQTT is analogous to a post office system

IoT – Presentation

- Presenting IoT data in a meaningful way
- Node-RED
 - Easy, rapid programming tool based on Node.js for wiring IoT components together
 - Hardware devices, APIs and online services
 - Browser-based editor with flows that lets user directly visualize data flow directions
 - Easy deployment on local host, device, cloud
- Or other frontend language
 - JavaScript, Python, Java, C++
- Further integration with Al
 - TensorFlow.js, machine learning

To AloT

How to AloT?

- AloT makes IoT even more useful
 - allows user gain understanding quickly
 - deduce key information from big data
- How to incorporate AI into IoT architecture?
 - Value-added analysis at server/cloud side
 - Edge AI
- AloT at server/cloud side
 - Deep learning/machine learning on accumulated sensor data
 - Useful information is extracted using AI models from big data
- Edge AI
 - Key info is extracted in edge systems before transferred via IoT
 - No internet is needed

(Kavita Char, 2021)

Server/Cloud AloT

- Al analysis on IoT data stored at server/cloud services
- Train and implement deep learning/machine learning models on measured sensor data
 - Extract data patterns from big data
 - Interpret and identify potential pattern from IoT data
 - Infer possible outcome when new data arrives
- Performed on either self-hosted server or cloud services
 - Google Colab, Amazon Sagemaker, Microsoft Azure
 - Cloud services offer CPU/GPU resources for deep learning
 - Less maintenance required, pay-as-you-use
- Google Colab is popular amongst AI researcher
 - Training data can be accessed from Google Drive directly
 - Access to PyTorch, Keras, TensorFlow, and OpenCV

Edge AI + IoT

- Most Al applications ran in cloud/serve due to complexity of ML in the past
- Why Edge AI?
- Transmission bandwidth for real-time image / video is too demanding
- Requires real-time response and interpretation
- Demand low network latency (low ping)
- Low power, lower cost
- Concern to data privacy and security
- Why is it possible now?
- Higher computational capability on edge devices
- GPU/ASIC/Neuron sticks available to speed up Al computation at the edge

- Common applications
- Image classification
 - Face recognition
 - Traffic control
- Autonomous vehicle
- Vibration analysis
- Voice processing
- Computer vision

Prospects

What happens from AloT?

- Increased operational efficiency
 - AloT process and detect patterns in real-time data that are not visible to the human eye
 - Instantaneous pattern deduction optimizes production processes and improve workflow
 - Increased efficiency and reduced operational costs
- Improved risk management
 - Risks identification in a timely manner
 - Increase safety and reduce loss
 - E.g. early detection on mechanical faults on airlines and safety risks in machineries
 - Allows for predictive maintenance
 - Reduced unplanned downtime

What happens from AloT?

- New products and services
 - Process and draw insights from large data
 - New techniques
 - voice recognition, face recognition and predictive analysis
 - New services
 - Autonomous delivery services, smart video doorbells, voice based virtual assistants
 - Predictive maintenance for vehicles or building automation systems
 - Disaster search and rescue operations
- Enhanced / targeted customer experience
 - In retail, AloT tailors shopping experience and gives personalized recommendations
 - Based on customer behavior, demographic information and customer

Applications

- Intelligent agriculture
- Smart home
- Crowd control
- Traffic detection
- Autonomous vehicle (self-driving cars)
- Healthcare
- Power generation
- Sediment monitoring...

Traffic detection using Yolo v3

Tesla AutoPilot CV

Intelligent agriculture

- Agriculture is one of the earliest sector with IoT involvement, so naturally is AIoT
- Intelligent agriculture system
 - Adjustments based on collected sensor data
 - Weather, water usage, temperature and crop/soil conditions
 - From fuzzy logic to machine learning based action
- AloT in agriculture
 - Smart management on irrigation, fertilization, pest control
 - Assist in resources utilization, yield enhancement, seasonal forecasting, crop planning
- Al + computer vision (CV) to monitor crops and large farmlands
 - Early detection of pest, intruder, hazard and so forth

Smart home

- Home assistant
 - Open source system to home automation
 - Rich integration with node-red, MQTT, Zigbee, BLE, IKEA, Google, AWS, so much more
 - **Presence detection**, intruder alert, temperature control, power consumption ...
- Closed-source/ proprietary home automation
 - HomeKit (Apple), MiJia (XiaoMi), Amazon Echo, SmartThings
- Interesting example
 - Raspberry Pi controlled intruder alert
 - Identify thieves with AI and CV
 - Custom TensorFlow model => recognize package
 - TF + Python => signal the alarm system

Smart field monitoring with IoT

Background

Subsurface monitoring system

- TDR: 2 monitoring hosts
- Ground water level (GWL): 3 real-time monitoring stations (LoRa-based)
- Volumetric water content: 1 station

109-WL-2TC

109-WL-4T

109-WL-1W

109-WL-3W

109-WL-5W

IoT architecture

Monitoring data

Data visualization

- Node-red flow based programming

IoT architecture

- Power control

Remote control the power supply system for field stations

- Through MQTT + node-red
- Switch power physically without requiring physical presence
- Power control and status monitoring

From prototyping to custom PCB

AloT in smart field monitoring

Based on big data gathered from precipitation, ground water level, volumetric water content, TDR signal ...

- Perhaps measured physical parameters are not sufficient
- Require extra dimension of data
- Build deep learning model based on statistical model
- Neural network may see unobserved pattern from big data
- Currently under progress

Power control for stations

- Implement power adjustment based on power generation and consumption
- Predictive maintenance for the health of battery / solar panel

To Al or not to Al?

Background of Al

- Back in 1958, Frank Rosenblatt at Cornell design the first artificial neural network
 - Described presciently as "Pattern-recognizing device"
 - Era of mainframe computers filled rooms and ran on vacuum tubes
 - Inspired by the interconnections between neurons in the brain
- Limitation of computing hardware soon overcame
 - Moore's Law and other improvements in hardware
 - Yielded a roughly 10-million-fold increase in the number of computations that a computer could do in a second
 - Inclusion GPU in computation
- Interest in artificial intelligence (AI) is revisited in the late 2000s
 - Tools available up to the computing challenge
 - Renamed as "deep learning"
 - Extra layers of neurons is introduced

Observation that the transistors amount in a dense integrated circuit (IC) doubles about every two years

In 2014, Intel launched an even smaller, more powerful 14nm chip

Flexible statistical models (most AI/DL)

- Require myriad combinations of priori, activation functions, bias, weighting and networks
- Use numerous neurons (in neural networks) to train suitable AI model
- Provide outcomes with probability [87% cat]

(Khan, 2019)

From expert-based to flexible model

- Key variables are pre-established in expert-based models
 - Priori of possible parameter value is provided
 - Done with limited computation amount, yet with reasonable accuracy
 - Popular early on, but learning ability of these models stalls if not all variable is correctly specified by the expert
- Flexible models (deep learning) are less efficient
 - Needs vastly more computation to match expert models
 - But! with enough computation (and data), flexible models can outperform properly established expert-based models

Current issue on Al implementation

- Current AI/DL are mostly over-parametrized
 - Parameter amount (unknown variables) > data amount
 - Classically, this would lead to overfitting
 - Model learns general trends and the random fluctuation of trained data

 Stochastic gradient descent (隨機梯度下降法) prevents this issue by

- Randomly initialize parameters
- Iteratively adjust parameter sets
- Surprisingly, this enhanced the overall accuracy of trained AI model
 - Proven in machine translation, object detection, and other general AI models

Using shuffled data (CPU/GPU exhaustive)

Cost to higher accuracy

- Improvement cost for deep learning is high
 - Lower error rate by half, expect at least 500x the current computational resources
 - 2012 AlexNet : 2 GPU @ 5-6days
 - 2018 NASNet-A: Half the error rate of AlexNet, but more than 1,000 times computing power
 - In 1,000-fold difference, only 6-fold improvement came from better hardware
 - The rest: more processors / running longer, incurring higher costs
- Training a model with 5% error rate would require 10¹⁹ billion floating-point operations
 - Cost US \$100 billion (NT\$2,781,720,000,000=2781億元) and produce carbon emissions equal to New York City in a month
- Google subsidiary DeepMind trained its system to play Go
 - Estimated cost \$35 million

(Thompson et al., 2020)

Silver lining

- Increasing computing power: Hardware accelerators
 - Already in effect: FPGA, ASIC (Google's TPU), GPU instead of CPU
 - Fundamentally, they sacrifice generality of the computing platform for efficiency of increased specialization
 - Longer-term gains will require adopting wholly different hardware frameworks
 - Perhaps hardware based on analog, neuromorphic, optical, or quantum systems
- Reducing computational complexity: Network Compression and Acceleration
 - Pruning away weights, quantizing the network, or using low-rank compression
 - Reduce floating point operations in evaluation
- Integrated expert-model + Al model
 - Or other under-appreciated machine learning models

Figure 1: Validation accuracy of the same FPN object detector trained on COCO dataset, with mini-batch size 16 (on 8 GPUs) and mini-batch size 256 (on 128 GPUs). The large mini-batch detector is more accurate and its training is nearly an order-of-magnitude faster.

(YOLOv4)

(IBM quantum computer)

Takeaways

- Embrace AI in future researches
 - Al is merely a large statistical model
 - Addition of expert knowledge into AI model is the know-how
- Go towards open source community for robust programming
- TPU > GPU >> CPU

(Mythbusters, 2009)

IoT (sensory organs) eyes, nose, ears, skin, tongue + AI (brain) = AIoT

Label data

(AI)

Train

Create

model

Compile

model

Interested?

- Start from IoT first!
 - Node-red + MQTT + Arduino
- Check out
 - Teachable machine : hosted by Google
 - Tensorflow : Handwriting recognition
 - YOLOv3/v4 (You Only Look Once, Version 3/4)
 - Real-time object detection algorithm that identifies specific objects in videos, live feeds, or images.
 - Identifies 80 object types
 - TinyML
 - suitable for Edge AI in small MCU
 - Arduino Nano 33 BLE Sense, ESP32...

(Teachable machine)

(YOLOv4)

THANK YOU!

Bibliography

- Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. ArXiv:2004.10934 [Cs, Eess]. http://arxiv.org/abs/2004.10934
- Lin and Rustia (2019, November 29). *Trends of AIoT Application in Smart Agriculture*. FFTC Agricultural Policy Platform (FFTC-AP). https://ap.fftc.org.tw/article/1636
- How to Build a Raspberry Pi Alarm that Sprays Porch Pirates | Tom's Hardware. (n.d.). Retrieved September 30, 2021, from https://www.tomshardware.com/how-to/raspberry-pi-porch-pirate-alarm
- Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and Policy Considerations for Deep Learning in NLP. *ArXiv:1906.02243 [Cs]*. http://arxiv.org/abs/1906.02243
- Thompson, N. C., KRISTJAN GREENEWALD, KEEHEON LEE, and GABRIEL F. MANSO. (2021, September 24). *Deep Learning's Diminishing Returns*. IEEE Spectrum. https://spectrum.ieee.org/deep-learning-computational-cost

ngui@nycu.edu.tw