

Ecrit du vendredi 11 juin 2021

Durée: 1h30 -

Sans document, avec calculatrice de type collège

L'épreuvre comporte trois exercices indépendants.

EXERCICE 1:

Une ligne de transport monophasée est caractérisée par son impédance jX_l . Elle est alimentée par une source $\underline{V_r}$ et dessert une charge d'impédance complexe $\underline{Z} = R + jX$, sous la tension V_c (Figure 1).

Le courant débité par la ligne est alors \underline{I} . On note V_c et V_r les modules respectifs de V_r et V_c .

Figure 1 : Schéma de principe d'une ligne de distribution

Q1. 1 Déterminer $\underline{V_c}$ et \underline{I} en fonction des données du problème $(\underline{V_r}, R, X \ et \ X_l)$.

- Q1. 2 Déterminer \underline{S} , la puissance apparente complexe de la charge. En déduire la puissance active P et la puissance réactive Q consommées par la charge, ainsi que le facteur de puissance de la charge, noté $\cos \varphi$.
- Q1. 3 La Figure 2 représente un agrandissement des courbes tension V_C -puissance P pour différentes valeurs de facteur de puissance $\cos \varphi$. On considère une charge \underline{Z} , telle que P=14~kW et $\cos \varphi=0.8$. Déterminer la valeur de V_C . La valeur de V_C est-elle acceptable ? Calculer Q, la puissance réactive de la charge.
- Q1. 4 On veut relever la tension V_C pour obtenir $V_C' = V_C + \Delta V$. Pour cela, on place en parallèle une charge capacitive dont la puissance réactive Q_C est déterminée par l'approximation $\Delta V \approx Q_C \cdot \frac{X_L}{V_r}$ (formule établie à partir du TD10).
 - → Estimer la valeur de Q_c nécessaire pour obtenir $\Delta V = 20$ [V].
 - → Utiliser la Figure 2 pour estimer le facteur de puissance de la charge compensée.
 - → Estimer la puissance réactive de la charge compensée et retrouver l'ordre de grandeur du facteur de puissance déterminé précédemment.

Figure 2 : Agrandissement des courbes tension $V_{\mathcal{C}}$ -puissance P pour différentes valeurs de $\cos \varphi$

Exercice 2:

Figure 3 : Schéma d'un hacheur abaisseur-élévateur de tension

La Figure 3 donne le schéma de principe d'un hacheur abaisseur-élévateur de tension. Les interrupteurs K1 et K2 constituent une cellule de commutation dont la période de fonctionnement est T. K1 est fermé pendant l'intervalle $[0, \alpha T]$ et ouvert pendant l'intervalle $[\alpha T, T]$. On place en sortie un condensateur de capacité C assez grande pour que les variations temporelles de la tension de sortie v_s puissent être négligées. Le dispositif est alimenté par une source de tension continue v_e . On étudie le fonctionnement du convertisseur en régime permanent périodique. Les interrupteurs sont supposés parfaits et l'inductance idéale.

Q2. 1 Déterminer les tensions v_{K1} , v_{K2} et v_L sur chacun des intervalles $[0, \alpha T]$ et $[\alpha T, T]$.

Q2. 2 Calculer $\langle v_L \rangle$ et montrer que le rapport de transformation vaut $\frac{v_s}{v_e} = -\frac{\alpha}{1-\alpha}$.

Q2. 3 Calculer la valeur du rapport de transformation pour $\alpha = 0.25$; $\alpha = 0.5$ et $\alpha = 0.75$. Justifier alors l'appellation de hacheur « abaisseur-élévateur » de tension. Interpréter le signe de $\frac{v_s}{v_a}$.

Q2. 4 On suppose que $v_e = 12 \, V$ et $v_s = -24 \, V$. Calculer la valeur de α , puis tracer les chronogrammes des tensions v_{K1} , v_{K2} et v_L pour ces valeurs. Les échelles doivent être respectées.

Q2.5 On note i_0 la valeur du courant i_L à t=0. Etablir l'expression du courant i_L sur une période de fonctionnement. Déterminer l'expression de la valeur maximale de i_L .

Q2. 6 Tracer les chronogrammes des trois courants i_L , i_e et i_s pour la même valeur de α qu'à la question Q2. 4.

EXERCICE 3:

Un convertisseur monophasé assure le transfert de puissance entre une source de tension continue constante $U_0 > 0$ et une charge passive constituée d'une résistance R en série avec une inductance L. La Figure 4 représente les chronogramme de la tension $v_s(t)$ et du courant $i_s(t)$ en sortie du convertisseur.

Figure 4 : Chronogrammes de la tension $v_s(t)$ et du courant $i_s(t)$ en sortie du convertisseur

- Q3. 1 Déduire de la lecture des chronogrammes, en justifiant, la nature du convertisseur, la valeur de U_0 et la fréquence des grandeurs de sortie.
- Q3. 2 Faire le schéma du dispositif complet réunissant la source, la charge et le convertisseur à deux cellules de commutation. Faire apparaître clairement toutes les grandeurs électriques pertinentes du montage (tensions et courants). Penser à bien numéroter les différents interrupteurs.
- Q3. 3 On considère le système aux instants t_1 à t_6 définis sur la Figure 5. Pour chacun de ces instants : relever la valeur de la tension v_s et le signe du courant i_s , puis indiquer quels sont les interrupteurs passants et le sens du courant qui les traverse.

Q3. 4 Refaire le schéma du convertisseur en faisant apparaître les composants utilisés pour réaliser les interrupteurs.