CS-C3100 Computer Graphics Bézier Curves and Splines

3.4 Differential properties of curves & cubic B-Splines

In These Slides

- Velocity, tangent, and curvature of smooth curves
- Orders of continuity
 - How smoothly curve segments join together
- Cubic B-Splines
 - -C² (curvature continuous=very smooth) cubic splines

Differential properties of curves

- Motivation
 - Compute normal for surfaces
 - Compute velocity for animation
 - Analyze smoothness

Velocity

- First derivative w.r.t. t
- Can you compute this for Bezier curves?

$$P(t) = (1-t)^{3} \qquad P_{1}$$

$$+ 3t(1-t)^{2} \qquad P_{2}$$

$$+ 3t^{2}(1-t) \qquad P_{3} \qquad P_{1}$$

$$+ t^{3} \qquad P_{4} \qquad t = 0$$

• You know how to differentiate polynomials...

Velocity

- First derivative w.r.t. t
- Can you compute this for Bezier curves?

$$P(t) = (1-t)^{3} \qquad P_{1} \\ + 3t(1-t)^{2} \qquad P_{2} \\ + 3t^{2}(1-t) \qquad P_{3} \qquad P_{1} \\ + t^{3} \qquad P_{4} \qquad t = 0$$

• P'(t) =
$$-3(1-t)^2$$
 P₁
+ $[3(1-t)^2 - 6t(1-t)]$ P₂
+ $[6t(1-t) - 3t^2]$ P₃
+ $3t^2$ P₄

Sanity check: t=0; t=1

Can also write this using a matrix **B**'

– try it out!

Tangent

- The tangent to the curve P(t) can be defined as T(t)=P'(t)/||P'(t)||
 - normalized velocity, ||T(t)|| = 1
- This provides us with one orientation for swept surfaces in a little while

Curvature

- Derivative of **unit** tangent (*not* just the 1st deriv.!)
 - -K(t)=T'(t)
 - Magnitude ||K(t)|| is constant for a circle
 - Zero for a straight line
- Always orthogonal to tangent, ie. $K \cdot T = 0$
 - Can you prove this? (Hints: ||T(t)||=1, (x(t)y(t))'=?)

Geometric Interpretation

- K is zero for a line, constant for circle
 - What constant? 1/r
- 1/||K(t)|| is the radius of the circle that touches P(t) at t and has the same curvature as the curve

Curve Normal

• Normalized curvature: T'(t)/||T'(t)||

45

Orders of Continuity

- $C^0 = continuous$
 - The seam can be a sharp kink
- G^1 = geometric continuity
 - Tangents point to the same
 direction at the seam
- C^1 = parametric continuity
 - Tangents **are the same** at the seam, implies G¹
- C^2 = curvature continuity
 - Tangents and their derivatives are the same

(Even nicer: Clothoid Splines)

- Curves with piecewise linear curvature
- See <u>our paper from 2010</u> this is now the basis of Illustrator's freehand drawing tool!

Sketching Clothoid Splines Using Shortest Paths

Ilya Baran Jaakko Lehtinen Jovan Popović

Connecting Cubic Bézier Curves

- How can we guarantee C⁰ continuity?
- How can we guarantee G¹ continuity?
- How can we guarantee C¹ continuity?
- C² and above gets difficult

Connecting Cubic Bézier Curves

- Where is this curve
 - C⁰ continuous?
 - G¹ continuous?
 - C¹ continuous?
- What's the relationship between:
 - the # of control points, and the # of cubic Bézier subcurves?

- \geq 4 control points
- Locally cubic

- Cubics chained together, again.

- \geq 4 control points
- Locally cubic
 - Cubics chained together, again...
 - BUT with a sliding window of 4 control points!

- \geq 4 control points
- Locally cubic
- Cubics chained together, again.

- \geq 4 control points
- Locally cubic
 - Cubics chained together, again.
 BUT with a sliding window of 4 control points!

- \geq 4 control points
- Locally cubic
 - Cubics chained together, again.

Curve is not constrained to pass through any control points

A BSpline curve is also bounded by the convex hull of its control points.

Cubic B-Splines: Basis

$$B_1(t) = \frac{1}{6}(1-t)^3$$

$$B_3(t) = \frac{1}{6}(-3t^3 + 3t^2 + 3t + 1)$$

$$B_2(t) = \frac{1}{6}(3t^3 - 6t^2 + 4)$$

$$B_4(t) = \frac{1}{6}t^3$$

Cubic B-Splines: Basis

$$Q(t) = \frac{(1-t)^3}{6} P_{i-3} + \frac{3t^3 - 6t^2 + 4}{6} P_{i-2} + \frac{-3t^3 + 3t^2 + 3t + 1}{6} P_{i-1} + \frac{t^3}{6} P_i$$

$$Q(t) = \mathbf{GBT(t)}$$

$$B_{B-Spline} = rac{1}{6} egin{pmatrix} 1 & -3 & 3 & -1 \ 4 & 0 & -6 & 3 \ 1 & 3 & 3 & -3 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Local control (windowing)
- Automatically C², and no need to match tangents!

B-Spline Curve Control Points

Default BSpline

BSpline with derivative discontinuity

Repeat interior control point

BSpline which passes through end points

Repeat end points

Bézier ≠ B-Spline

But both are cubics, so one can be converted into the other!

- Simple with the basis matrices!
 - Note that this only works for a single segment of 4 $B_{Bezier} = \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
- $P(t) = G B_1 T(t) =$ G B₁ (B₂-1B₂) T(t)=
 (G B₁ B₂-1) B₂ T(t) $B_{B-Spline} = \frac{1}{6} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 4 & 0 & -6 & 3 \\ 1 & 3 & 3 & -3 \\ 0 & 0 & 1 \end{pmatrix}$ • G B₁ B₂-1 are the control points
- for the segment in new basis.

$$Q(t) = \mathbf{GBT(t)}$$
 = Geometry $\mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T(t)}$

original control points as Bézier

original control points as BSpline

Curve Editor _ = × Curve Editor _ = X original new control points as Bézier Curve Editor _ = X

BSpline control points to match Bézier

original control points as **BSpline**

original control points as Bézier

new
BSpline
control
points to
match
Bézier

new
Bézier
control
points to
match
BSpline

original control points as BSpline

Why Bother with B-Splines?

- Automatic C² is nice!
- Also, B-Splines can be split into segments of non-uniform length without affecting the global parametrization.
 - "Non-uniform B-Splines"
 - We'll not do this, but just so you know.

NURBS (Generalized B-Splines)

- Rational cubics
 - Use homogeneous coordinates, just add w!
 - Provides a "tension" parameter to control points
- NURBS: Non-Uniform Rational B-Spline
 - non-uniform = different spacing between the blending functions, a.k.a. "knots"
 - rational = ratio of cubic polynomials (instead of just cubic)
 - implemented by adding the homogeneous coordinate w into the control points.