Informative Path Planning with a Human Path Constraint

Daqing Yi

Department of Computer Science Brigham Young University

- Introduction
- 2 Problem definition
 - Informative path
 - Human constraint
 - The optimization model
- Solution
 - Backtracking heuristic
 - Anytime algorithm design
- Simulation
 - Robot wingman
 - Results
- Summary

Human-robot collaboration

Human-robot interaction

Human-robot collaboration

Cordon and search

- Maximum coverage problem
- Information gain entropy

Problem definition 000000000

$$f(A) + f(B) \ge f(A+B)$$

Information

- search space *S*
- the observation of a robot \mathbf{O}^X
- the observation of a human **O**^Y

$$f(\mathbf{S}, \mathbf{O}^X) + f(\mathbf{S}, \mathbf{O}^{Y^h}) \ge f(\mathbf{S}, \mathbf{O}^X, \mathbf{O}^{Y^h})$$

Conditional mutual information

$$I(S; \mathbf{O}^X \mid \mathbf{O}^{Y^h}) = H(S \mid \mathbf{O}^{Y^h}) - H(S \mid \mathbf{O}^X, \mathbf{O}^{Y^h})$$

- Entropy reduction
- Submodularity
- Chain rule $I(\mathbf{S}; \mathbf{O}^X \mid \mathbf{O}^{Y^h}) = \sum_{t=1}^T I(O_t^X; \mathbf{S} \mid O_1^X, \cdots, O_{t-1}^X, \mathbf{O}^{Y^h})$

- cooperative observation
- assistance and protection

Neighboring function Human constraint

- human path $\{y_1^h \cdots y_T^h\}$
- neighboring function $N(y_t^h)$

Problem abstraction The optimization model

The multi-partite graph The optimization model

 $N(y_2^h)$ $N(y_3^h)$

Forward pruning

Reachable

$$\forall t \in \{2, \dots T\}, \\ \forall v \in V(t), deg^{-}(v) > 0$$

Backward pruning

Non-terminating

$$\forall t \in \{1, \cdots T - 1\}, \\ \forall v \in V(t), deg^+(v) > 0$$

Obstacles

The optimization model

Submodular orienteering on a multi-partite graph The optimization problem

Objective : $X^* = \arg \max f(X)$;

Constraint : $|X| = T, x_t \in V(t), (x_t, x_{t+1}) \in E$.

Bellman-like equation

$$\hat{x}_t = \arg\max_{X_t} [f(x_t \mid x_1, \cdots, x_{t-1}) + \max_{X_{t+1}, \cdots, X_T} f(x_{t+1}, \cdots, x_T \mid x_1, \cdots, x_t)]$$

Backtracking Heuristic

Expanding tree Anytime algorithm framework

- node in an expanding tree
- vertex in a multi-partite graph

- depth-first recursive traverse
- tracking the search process
- estimation storage

Node freeze Anytime algorithm framework

Flow Anytime algorithm framework

Performance guarantee Anytime algorithm framework

Lemma

Backtracking in Algorithm 1 never underestimates the maximum total reward, which means

$$\forall t \geq t', \hat{u}(x_t \mid v_1, \cdots, v_{t'}) \geq u(x_t \mid v_1, \cdots, v_{t'}).$$

Theorem

The anytime algorithm framework in Algorithm 4 can always find an optimal solution given enough time.

A robot Wingman problem Robot Wingman

Labelling Robot wingman

Labelled world map

Path planning Robot wingman

Metrics Results

- Problem size nodeNum(fully expanding tree)
- Percentage of nodes explored nodeNum(current expanding tree) / nodeNum(fully expanding tree)
- Percentage of optimal at first run score(first found solution) / score(optimal solution)
- Percentage of runs reaching the optimal iterationCount(optimal found) / iterationCount(finish tree expanding)

Performance Results

Compare with greedy heuristic Performance

The performance of the heuristic (Percentage of optimal at first run)

Environment difference Robustness

Human path difference

Human path difference

Summary

- Search space reduction by human constraint
- Effectiveness and efficiency of backtracking on a multi-partite graph

- ullet Vertex duplication in multi-partite graph o Over-estimation increase
- Offline planning → Online planning
- Single objective → Multiple objectives

Thank you!