Mit dem Sinus modellieren

Kirill Heitzler

8. April 2021

Inhaltsverzeichnis

Grundlagen

Einheitskreis

Mit dem Sinus modellieren

Anwendung

Zusammenfassung

Quellen

Grundlagen

Rechtwinkliges Dreieck - Beschriftung

Abbildung 1: Rechtwinkliges Dreieck

► Gegen den Uhrzeigersinn

Abbildung 1: Rechtwinkliges Dreieck

- ► Gegen den Uhrzeigersinn
- ► A

Abbildung 1: Rechtwinkliges Dreieck

- ► Gegen den Uhrzeigersinn
- ► A
- ▶ B

Abbildung 1: Rechtwinkliges Dreieck

- ► Gegen den Uhrzeigersinn
- ► A
- B
- C

Abbildung 1: Rechtwinkliges Dreieck

Die Ecken werden mit den Buchstaben A, B, C gegen den Uhrzeigersinn bei A angefangen beschriftet.

Abbildung 1: Rechtwinkliges Dreieck

Abbildung 2: Rechtwinkliges Dreieck

Abbildung 2: Rechtwinkliges Dreieck

- $\triangleright \alpha$
- **▶** β

Abbildung 2: Rechtwinkliges Dreieck

- $\triangleright \alpha$
- **>** £
- $ightharpoonup \gamma$

Abbildung 2: Rechtwinkliges Dreieck

Die Winkel α , β , γ werden in die Ecken der entsprechenden Buchstaben A, B, C gesetzt.

Abbildung 2: Rechtwinkliges Dreieck

Abbildung 3: Rechtwinkliges Dreieck

ightharpoonup "Ankathete von lpha"

Abbildung 3: Rechtwinkliges Dreieck

- ightharpoonup "Ankathete von lpha"
- ightharpoonup "Gegenkathete von α "

Abbildung 3: Rechtwinkliges Dreieck

Die anliegende Kathete zu Winkel α wird "Ankathete von α " genannt und die Kathete gegenüber von α wird "Gegenkathete von α " genannt.

Abbildung 3: Rechtwinkliges Dreieck

Hypotenuse

Abbildung 4: Rechtwinkliges Dreieck

Hypotenuse

"Hypotenuse"

Abbildung 4: Rechtwinkliges Dreieck

Hypotenuse

Die Hypotenuse liegt gegenüber des rechten Winkels $\gamma.$

Abbildung 4: Rechtwinkliges Dreieck

Der Sinus

Abbildung 5: Rechtwinkliges Dreieck

$$sin(\alpha) =$$

Abbildung 5: Rechtwinkliges Dreieck

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{}$$

Abbildung 5: Rechtwinkliges Dreieck

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Hypotenuse}}$$

Abbildung 5: Rechtwinkliges Dreieck

In einem rechtwinkligen Dreieck (Abbildung 16) nennt man zu einem Winkel α des Dreiecks das Streckenverhältnis

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Hypotenuse}}$$

den Sinus von α .

Abbildung 5: Rechtwinkliges Dreieck

Sinus - Beispiel Gegenkathete von α mithilfe des Sinus berechnen

Aufgabe

Berechne die Höhe des Freiburger Münsters. Das rechtwinklige Dreieck in Abbildung 6 besitzt einen rechten Winkel (90°), die Hypotenuse 164,05 Meter und die Winkelweite des Winkels α mit 45°. Berechne die Gegenkathete von α namens x.

Abbildung 6: Rechtwinkliges Dreieck am Münster

$$\sim \alpha = 45^{\circ}$$

- $\sim \alpha = 45^{\circ}$
- $\blacktriangleright \ \mathsf{Hypotenuse} = 164,05 \, m$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164,05m
- ▶ Gegenkathete von $\alpha = x$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ▶ Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}} \tag{1}$$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ▶ Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$

$$\sin(45^\circ) =$$
 (1)

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164,05m
- ▶ Gegenkathete von $\alpha = x$

$$sin(\alpha) = \frac{Gegenkathete \ von \ \alpha}{Hypotenuse}$$

$$sin(45^{\circ}) = \frac{x}{}$$
(1)

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164,05m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 $\sin(45^\circ) = \frac{x}{164,05m}$
(1)

- $\alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m|$ (2)

$$\sin(45^\circ) = \frac{x}{164.05m} \qquad |\cdot 164,05m \quad (2)$$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164,05m
- ▶ Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ)\cdot 164,05\,m =$$

- $\alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ) = \frac{x}{164.05m}$$
 | · 164,05m (2)

$$\sin(45^{\circ}) \cdot 164,05 m = x$$
 (3)

- $\alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ) = \frac{x}{164.05m}$$
 | · 164,05m (2)

$$\sin(45^\circ) \cdot 164,05m = x$$

$$x \cong$$
(3)

- $\alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ) = \frac{x}{164.05m}$$
 | · 164,05m (2)

$$\sin(45^\circ) \cdot 164,05m = x$$
 (3)

$$x \cong 116m \tag{4}$$

Antwort

Abbildung 7: Rechtwinkliges Dreieck am Münster

Antwort

Die Gegenkathete von α beträgt etwa 116 Meter, somit ist das Münster auch etwa 116 Meter groß.

Abbildung 7: Rechtwinkliges Dreieck am Münster

Der Kosinus und der Tangens

Sinus von α

Abbildung 8: Rechtwinkliges Dreieck

Sinus von α

$$\sin(lpha) = rac{\mathsf{Gegenkathete} \ \mathsf{von} \ lpha}{}$$

Abbildung 8: Rechtwinkliges Dreieck

Sinus von α

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Hypotenuse}}$$

Abbildung 8: Rechtwinkliges Dreieck

Cosinus von α

$$\cos(\alpha) =$$

Abbildung 9: Rechtwinkliges Dreieck

Cosinus von α

$$\cos(lpha) = rac{\mathsf{Ankathete} \ \mathsf{von} \ lpha}{}$$

Abbildung 9: Rechtwinkliges Dreieck

Cosinus von α

$$\cos(\alpha) = \frac{\text{Ankathete von } \alpha}{\text{Hypotenuse}}$$

Abbildung 9: Rechtwinkliges Dreieck

Tangens von α

$$tan(\alpha) =$$

Abbildung 10: Rechtwinkliges Dreieck

Tangens von α

$$an(lpha) = rac{\mathsf{Gegenkathete} \; \mathsf{von} \; lpha}{}$$

Abbildung 10: Rechtwinkliges Dreieck

Tangens von α

$$\tan(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Ankathete\ von\ }\alpha}$$

Abbildung 10: Rechtwinkliges Dreieck

Einheitskreis

Einheitskreis - Beispiel

Aufgaben-Text

Auf einem Koordinatensystem eines Radarschirms (Abbildung 11) wird die Lage von zwei Schiffen durch die Entfernung zum Hafen(0) und durch den Kurs gegenüber der x-Achse beschrieben.

Abbildung 11: Radar

Aufgaben A

Ein Schiff A ist mit dem Kurs 30° gegenüber der x-Achse einen Kilometer weit gefahren. Welche Koordinaten im x-y-Kooradinatensystem hat es?

Abbildung 12: Radar

Lösung A Schätzungen?

Abbildung 13: Radar Lösung

Lösung A

Das Schiff A mit dem Kurs 30° befindet sich auf der x-Achse: etwa 0,86 Kilometer und y-Achse: 0,5 Kilometer. Also auf dem Punkt A(0,86|0,5)

Abbildung 13: Radar Lösung

Aufgaben B

Welche Koordinaten hat das Schiff B, das mit dem Kurs **75**° einen Kilometer weit gefahren ist?

Abbildung 14: Radar

Lösung B Schätzungen?

Abbildung 15: Radar Lösung

Lösung B

Das Schiff B mit dem Kurs 75° befindet sich auf der x-Achse: etwa 0,25 Kilometer und y-Achse: 0,96 Kilometer. Also auf dem Punkt A(0,25|0,96)

Abbildung 15: Radar Lösung

Der Sinus und Kosinus am Einheitskreis

Dreieck mit Hypotenusenlänge 1

Dreiecke mit der **Hypotenusenlänge 1** kann man in einem Koordinatensystem auf folgenden Weise darstellen:

Abbildung 16: Dreieck mit Hypotenusenlänge 1

Die Endpunkte der **Hypotenuse** sind der Ursprung O und ein Punkt **P**, der auf einem Kreis um O mit dem **Radius 1** liegt. Diesen Kreis nennt man den **Einheitskreis**.

Abbildung 17: Sinus und Kosinus am Einheitskreis

Die Ecke mit dem rechten Winkel liegt auf der x-Achse senkrecht unter P. Der Punkt P hat somit Koordinaten $P(\cos(\alpha)|\sin(\alpha))$

Abbildung 18: Sinus und Kosinus am Einheitskreis

Beziehungen zwischen Sinus, Kosinus und Tangens

Für $0^{\circ} < \alpha < 90^{\circ}$ nimmt $\sin(\alpha)$ mit wachsendem α zu und $\cos(\alpha)$ ab(Abbildung 19).

Abbildung 19: $0^{\circ} < \alpha < 90^{\circ}$

Für $0^{\circ} < \alpha < 90^{\circ}$ nimmt $\sin(\alpha)$ mit wachsendem α zu und $\cos(\alpha)$ ab(Abbildung 19). $\sin(0^{\circ}) = 0$, $\cos(0^{\circ}) = 1$ (Abbildung ??),

Abbildung 19: $sin(0^\circ) = 0$, $cos(0^\circ) = 1$

Für $0^{\circ} < \alpha < 90^{\circ}$ nimmt $\sin(\alpha)$ mit wachsendem α zu und $\cos(\alpha)$ ab(Abbildung 19). $\sin(0^{\circ}) = 0$, $\cos(0^{\circ}) = 1$ (Abbildung ??), $\sin(90^{\circ}) = 1$, $\cos(90^{\circ}) = 0$ (Abbildung ??).

Abbildung 19: $\sin(90^{\circ}) = 1$, $\cos(90^{\circ}) = 1$

Wendet man auf das im Einheitskreis dargestellte Dreieck den Satz des Pythagoras an(20), so erhält man den für jede Winkelweite gültigen Zusammenhang $\sin^2(\alpha) + \cos^2(\alpha) = 1$.

Abbildung 20: Einheitskreis Dreieck Satz des Pythagoras

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$(\sin(45))^2 +$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 +$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1 \tag{3}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1$$

$$\frac{\sqrt{2^2}}{2^2} +$$
(3)

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2}$$
(3)

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1 \tag{3}$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2} = 1 \tag{4}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1 \tag{3}$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2} = 1 \tag{4}$$

$$\frac{2}{4} + \frac{2}{4} = 1 \tag{5}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1 \tag{3}$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2} = 1 \tag{4}$$

$$\frac{2}{4} + \frac{2}{4} = 1 \tag{5}$$

$$\frac{2}{4} + \frac{2}{4} = 1 \tag{5}$$

$$\frac{1}{2} + \frac{1}{2} = 1 \tag{6}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1 \tag{3}$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2} = 1 \tag{4}$$

$$\frac{2}{4} + \frac{2}{4} = 1 \tag{5}$$

$$\frac{1}{2} + \frac{1}{2} = 1 \tag{6}$$

$$0,5+0,5=1 \tag{7}$$

In Abbildung 21 sieht man: $\sin(90^{\circ} - \alpha) = x = \cos(\alpha)$ und $\cos(90^{\circ} - \alpha) = y = \sin(\alpha)$

Abbildung 21: $\sin(90^{\circ} - \alpha)$; $\cos(90^{\circ} - \alpha)$

$$\sin(90^{\circ} - \alpha) = x \qquad = \cos(\alpha) \tag{1}$$

Abbildung 22: $\sin(90^{\circ} - \alpha)$; $\cos(90^{\circ} - \alpha)$

$$\sin(90^{\circ} - \alpha) = x \qquad = \cos(\alpha) \tag{1}$$

$$\sin(90^{\circ} - 30^{\circ}) =$$

Abbildung 22: $sin(90^{\circ} - \alpha)$; $cos(90^{\circ} - \alpha)$

$$\sin(90^{\circ} - \alpha) = x \qquad = \cos(\alpha) \tag{1}$$

$$\sin(90^{\circ} - 30^{\circ}) = \frac{\sqrt{3}}{2} \qquad =$$

Abbildung 22: $\sin(90^{\circ} - \alpha)$; $\cos(90^{\circ} - \alpha)$

$$\sin(90^{\circ} - \alpha) = x \qquad = \cos(\alpha) \tag{1}$$

$$\sin(90^{\circ} - 30^{\circ}) = \frac{\sqrt{3}}{2}$$
 = $\cos(30^{\circ})$ (2)

Abbildung 22: $\sin(90^{\circ} - \alpha)$; $\cos(90^{\circ} - \alpha)$

$$tan(\alpha) =$$

Abbildung 23: $\sin(90^{\circ} - \alpha)$; $\cos(90^{\circ} - \alpha)$

$$an(lpha) = rac{\mathsf{Gegenkathete} \ \mathsf{von} \ lpha}{} =$$

Abbildung 23: $\sin(90^{\circ} - \alpha)$; $\cos(90^{\circ} - \alpha)$

$$\tan(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Ankathete\ von\ }\alpha} =$$

Abbildung 23: $\sin(90^{\circ} - \alpha)$; $\cos(90^{\circ} - \alpha)$

$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} = \frac{y}{x} = \frac{\sin(\alpha)}{\cos(\alpha)}$$

Abbildung 23: $\sin(90^{\circ} - \alpha)$; $\cos(90^{\circ} - \alpha)$

$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} = \frac{y}{x} = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$tan(90) =$$

$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} = \frac{y}{x} = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$\tan(90) = \frac{\sin(90)}{\cos(90)} =$$

$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} = \frac{y}{x} = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$\tan(90) = \frac{\sin(90)}{\cos(90)} = \frac{1}{0} =$$

$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} = \frac{y}{x} = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$\tan(90) = \frac{\sin(90)}{\cos(90)} = \frac{1}{0} = 1$$

Einheitskreis - Definition

- $ightharpoonup \sin(90^{\circ} \alpha) = \cos(\alpha) \text{ und } \cos(90^{\circ} \alpha) = \sin(\alpha)$

$$ightharpoonup \sin(90^{\circ} - \alpha) = \cos(\alpha) \text{ und } \cos(90^{\circ} - \alpha) = \sin(\alpha)$$

▶
$$tan(\alpha) = \frac{sin(\alpha)}{cos(\alpha)}, \ \alpha \neq 90^{\circ}$$

Einheitskreis - Aufgabe

 $sin(\alpha) = 0,6$. Bestimme:

 $sin(\alpha) = 0,6$. Bestimme:

ightharpoonup a) $\cos(\alpha)$

 $sin(\alpha) = 0,6$. Bestimme:

- ightharpoonup a) $\cos(\alpha)$
- ightharpoonup b) $tan(\alpha)$

 $sin(\alpha) = 0,6$. Bestimme:

- ightharpoonup a) $cos(\alpha)$
- ightharpoonup b) $tan(\alpha)$
- ightharpoonup c) $\sin(90^{\circ} \alpha)$

 $sin(\alpha) = 0, 6$. Bestimme:

- ightharpoonup a) $cos(\alpha)$
- ightharpoonup b) $tan(\alpha)$
- ightharpoonup c) $\sin(90^{\circ} \alpha)$
- ightharpoonup d) $\cos(90^{\circ} \alpha)$

Aufgabe

 $sin(\alpha) = 0,6$ Bestimme:

- ightharpoonup a) $cos(\alpha)$
- ightharpoonup b) $tan(\alpha)$
- ightharpoonup c) $\sin(90^{\circ} \alpha)$
- ightharpoonup d) $\cos(90^{\circ} \alpha)$
- ightharpoonup e) tan(90° $-\alpha$)

$$sin(\alpha) = 0,6$$

 $cos(\alpha)$:

$$\sin(\alpha) = 0.6$$

 $\cos(\alpha)$:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$
(1)

$$\sin(\alpha) = 0.6$$

 $\cos(\alpha)$:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$0.6^2 + (1)$$

$$\sin(\alpha) = 0,6$$

$$\cos(\alpha):$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$0,6^2 + \cos^2(\alpha) = 1$$
(1)

$$\sin(\alpha) = 0,6$$

$$\cos(\alpha):$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$0,6^2 + \cos^2(\alpha) = 1$$

$$|-0,6^2|$$
(2)

$$\sin(\alpha) = 0,6$$

$$\cos(\alpha):$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$0,6^2 + \cos^2(\alpha) = 1$$

$$\cos^2(\alpha) = 1$$

$$(1)$$

$$(2)$$

$$\sin(\alpha) = 0.6$$
 $\cos(\alpha)$:
$$\sin^{2}(\alpha) + \cos^{2}(\alpha) = 1$$

$$0.6^{2} + \cos^{2}(\alpha) = 1$$

$$\cos^{2}(\alpha) = 1 - 0.36$$
(1)

$$sin(\alpha) = 0,6$$

 $cos(\alpha)$:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$
 (1)
 $0, 6^2 + \cos^2(\alpha) = 1$ $|-0, 6^2$ (2)

$$\cos^2(\alpha) = 1 - 0.36 \qquad | \sqrt{}$$
 (3)

$$sin(\alpha) = 0,6$$

 $cos(\alpha)$:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$
 (1)
 $0, 6^2 + \cos^2(\alpha) = 1$ $|-0, 6^2|$ (2)

$$\cos(\alpha) = \sqrt{1 - 0.36} \tag{4}$$

$$sin(\alpha) = 0,6$$

 $cos(\alpha)$:

$$\sin^{2}(\alpha) + \cos^{2}(\alpha) = 1$$
 (1)
 $0, 6^{2} + \cos^{2}(\alpha) = 1$ $|-0, 6^{2}|$ (2)
 $\cos^{2}(\alpha) = 1 - 0, 36$ $|\sqrt{}$ (3)
 $\cos(\alpha) = \sqrt{1 - 0, 36}$ (4)

 $cos(\alpha) = \sqrt{0.64}$

(5)

$$sin(\alpha) = 0,6$$

 $cos(\alpha)$:

```
\sin(\alpha) = 0,6

\cos(\alpha) = 0,8

\tan(\alpha):
```

$$\sin(\alpha) = 0,6$$

 $\cos(\alpha) = 0,8$
 $\tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{1}$$

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$\tan(\alpha) =$$
(1)

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$\tan(\alpha) = \frac{0,6}{}$$
(1)

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$\tan(\alpha) = \frac{0, 6}{0.8}$$
(1)

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{1}$$

$$\tan(\alpha) = \frac{0.6}{0.8} = \frac{\frac{6}{10}}{\frac{8}{10}} \tag{2}$$

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{1}$$

$$\tan(\alpha) = \frac{0.6}{0.8} = \frac{\frac{6}{10}}{\frac{8}{10}} \tag{2}$$

$$tan(\alpha) =$$

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{1}$$

$$\tan(\alpha) = \frac{0.6}{0.8} = \frac{\frac{6}{10}}{\frac{8}{10}} \tag{2}$$

$$\tan(\alpha) = \frac{\frac{6}{10}}{\frac{8}{10}} =$$

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{1}$$

$$\tan(\alpha) = \frac{0.6}{0.8} = \frac{\frac{6}{10}}{\frac{8}{10}} \tag{2}$$

$$\tan(\alpha) = \frac{\frac{6}{10}}{\frac{8}{10}} = \frac{6}{8} \tag{3}$$

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{1}$$

$$\tan(\alpha) = \frac{0.6}{0.8} = \frac{\frac{6}{10}}{\frac{8}{10}} \tag{2}$$

$$\tan(\alpha) = \frac{\frac{6}{\cancel{10}}}{\frac{\cancel{10}}{\cancel{10}}} = \frac{6}{8}$$

$$\tan(\alpha) = \frac{3}{4}$$
(3)

Lösung

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{1}$$

$$\tan(\alpha) = \frac{0.6}{0.8} = \frac{\frac{6}{10}}{\frac{8}{10}} \tag{2}$$

$$\tan(\alpha) = \frac{\frac{6}{\cancel{10}}}{\frac{8}{\cancel{10}}} = \frac{6}{8}$$

$$\tan(\alpha) = \frac{3}{4} = 0,75$$
(4)

$$\tan(\alpha) = \frac{3}{4} = 0.75 \tag{4}$$

$$cos(\alpha) = 0,8$$

 $sin(90^{\circ} - \alpha)$:

$$cos(\alpha) = 0, 8$$

 $sin(90^{\circ} - \alpha)$:

$$sin(90^{\circ} - \alpha) =$$

$$cos(\alpha) = 0, 8$$

 $sin(90^{\circ} - \alpha)$:

$$sin(90^{\circ} - \alpha) = cos(\alpha) =$$

$$cos(\alpha) = 0.8$$

 $sin(90^{\circ} - \alpha)$:

$$\sin(90^{\circ} - \alpha) = \cos(\alpha) = 0.8 \tag{1}$$

$$sin(\alpha) = 0,6$$

 $cos(90^{\circ} - \alpha)$:

$$sin(\alpha) = 0,6$$

 $cos(90^{\circ} - \alpha)$:

$$cos(90^{\circ} - \alpha) =$$

$$sin(\alpha) = 0,6$$

 $cos(90^{\circ} - \alpha)$:

$$cos(90^{\circ} - \alpha) = sin(\alpha) =$$

$$sin(\alpha) = 0,6$$

 $cos(90^{\circ} - \alpha)$:

$$\cos(90^{\circ} - \alpha) = \sin(\alpha) = 0,6 \tag{1}$$

$$\sin(90^{\circ} - \alpha) = 0.8$$

 $\cos(90^{\circ} - \alpha) = 0.6$
 $\tan(90^{\circ} - \alpha)$:

$$\sin(90^{\circ} - \alpha) = 0.8$$

 $\cos(90^{\circ} - \alpha) = 0.6$
 $\tan(90^{\circ} - \alpha)$:

$$tan(90^{\circ} - \alpha) =$$

$$\begin{aligned} \sin(90^\circ - \alpha) &= 0, 8\\ \cos(90^\circ - \alpha) &= 0, 6\\ \tan(90^\circ - \alpha) &: \end{aligned}$$

$$tan(90^\circ - \alpha) = \frac{\sin(90^\circ - \alpha)}{\cos(90^\circ - \alpha)}$$

$$\begin{aligned} \sin(90^\circ - \alpha) &= 0,8\\ \cos(90^\circ - \alpha) &= 0,6\\ \tan(90^\circ - \alpha) &: \end{aligned}$$

$$tan(90^\circ - \alpha) = \frac{sin(90^\circ - \alpha)}{cos(90^\circ - \alpha)}$$

$$\sin(90^{\circ} - \alpha) = 0.8$$

 $\cos(90^{\circ} - \alpha) = 0.6$
 $\tan(90^{\circ} - \alpha)$:

$$\tan(90^{\circ} - \alpha) = \frac{\sin(90^{\circ} - \alpha)}{\cos(90^{\circ} - \alpha)} = \frac{0.8}{0.6}$$
 (1)

e) Lösung:

$$\sin(90^{\circ} - \alpha) = 0.8$$

$$\cos(90^{\circ} - \alpha) = 0.6$$

$$\tan(90^{\circ} - \alpha):$$

$$tan(90^{\circ} - \alpha) = \frac{\sin(90^{\circ} - \alpha)}{\cos(90^{\circ} - \alpha)} = \frac{0.8}{0.6}$$

$$\tan(90^{\circ} - \alpha) = (1)$$

e) Lösung:

$$\sin(90^{\circ} - \alpha) = 0.8$$

 $\cos(90^{\circ} - \alpha) = 0.6$
 $\tan(90^{\circ} - \alpha)$:

$$tan(90^{\circ} - \alpha) = \frac{sin(90^{\circ} - \alpha)}{cos(90^{\circ} - \alpha)} = \frac{0.8}{0.6}$$

$$tan(90^{\circ} - \alpha) = \frac{8}{6} =$$

$$(1)$$

e) Lösung:

$$\sin(90^{\circ} - \alpha) = 0.8$$

 $\cos(90^{\circ} - \alpha) = 0.6$
 $\tan(90^{\circ} - \alpha)$:

$$tan(90^{\circ} - \alpha) = \frac{sin(90^{\circ} - \alpha)}{cos(90^{\circ} - \alpha)} = \frac{0.8}{0.6}$$
 (1)

$$\tan(90^{\circ} - \alpha) = \frac{8}{6} = \frac{4}{3} \tag{2}$$

Mit dem Sinus modellieren

Mit dem Sinus modellieren - Beispiel

Aufgabe

Bei einem Shaufelraddampfer dreht sich das Rad mit dem Durchmesser 2 Meter einmal vollständig in 60 Sekunden (Abbildung 26). In welcher Höhe über dem Wasserspiegel liegt der rot markierte Punkt A?

Erstelle eine Wertetabelle in 5 Sekunden-Schritten.

Abbildung 23: Schaufelraddampfer

Aufgabe

Bei einem Shaufelraddampfer dreht sich das Rad mit dem Durchmesser 2 Meter einmal vollständig in 60 Sekunden (Abbildung 26). In welcher Höhe über dem Wasserspiegel liegt der rot markierte Punkt A?

Erstelle eine Wertetabelle in 5 Sekunden-Schritten.

Abbildung 23: Schaufelraddampfer

Zeit t (in s)	0	5	10	 60
Winkel α	0°	30°	60°	360°
Höhe h (in m)	0	0,5	0,87	0

Zeit t (in s)	0	5	10		30
Winkel $lpha$	0°	30°	60°		
Höhe h (in m)	0	0,5	0,87		

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15		30
Winkel $lpha$	0°	30°	60°			
Höhe h (in m)	0	0,5	0,87			

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	30
Winkel $lpha$	0°	30°	60°			
Höhe h (in m)	0	0,5	0,87			

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°				
Höhe h (in m)	0	0,5	0,87				

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°			
Höhe h (in m)	0	0,5	0,87				

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°		
Höhe h (in m)	0	0,5	0,87				

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	
Höhe h (in m)	0	0,5	0,87				

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87				

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1			

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87		

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35			
Winkel $lpha$				
Höhe h (in m)				

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel α	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40		
Winkel $lpha$				
Höhe h (in m)				

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45		
Winkel $lpha$					
Höhe h (in m)					

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	
Winkel $lpha$					
Höhe h (in m)					

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	
Winkel $lpha$						
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$						
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°					
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°				
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°			
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°		
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	360°
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	360°
Höhe h (in m)	-0,5					

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	360°
Höhe h (in m)	-0,5	-0,87				

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	360°
Höhe h (in m)	-0,5	-0,87	-1			

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	360°
Höhe h (in m)	-0,5	-0,87	-1	-0,87		

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	360°
Höhe h (in m)	-0,5	-0,87	-1	-0,87	-0,5	

Abbildung 25: Schaufelraddampfer

Lösung

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	360°
Höhe h (in m)	-0,5	-0,87	-1	-0,87	-0,5	0

Abbildung 25: Schaufelraddampfer

Lösung

Zeit t (in s)	0	5	10	15	20	25	30	35	40	45	50	55	60
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0	-0,5	-0,87	-1	-0,87	-0,5	0

Abbildung 26: Schaufelraddampfer

Winkel lpha mit $0^\circ \le lpha \le 90^\circ$

Winkel α mit $0^{\circ} < \alpha < 90^{\circ}$

Am Einheitskreis entspricht $\sin(\alpha)$ der y-Koordinate des Punktes P(Abbildung 27). $\sin(40^\circ) \approx 0,64$

Abbildung 27: Winkel α mit $0^{\circ} \leq \alpha \leq 90^{\circ}$

Erweiterter Winkel lpha mit $90^\circ < lpha \leq 360^\circ$

Erweiterter Winkel α mit $90^{\circ} < \alpha \leq 360^{\circ}$

Wird α über 90° vergrößert, wird der Sinuswert von α ebenso als y-Koordinate des Punktes P festgelegt(Abbildung 28). $\sin(120^\circ) \approx 0.87$

Abbildung 28: Erweiterter Winkel α mit $90^{\circ} < \alpha \leq 360^{\circ}$

Erweiterter Winkel α mit $90^{\circ} < \alpha \leq 360^{\circ}$

Wird α über 90° vergrößert, wird der Sinuswert von α ebenso als y-Koordinate des Punktes P festgelegt(Abbildung 28). $\sin(310^\circ) \approx -0.77$

Abbildung 28: Erweiterter Winkel α mit $90^{\circ} < \alpha \leq 360^{\circ}$

Erweiterter Winkel lpha mit 90° $< lpha \le$ 360° - Aufgabe

Ein Punkt P bewegt sich auf dem Einheitskreis(Abbildung 29) gegen den Uhrzeigersinn. Für $\alpha=0^\circ$ befindet er sich im Punkt(1|0).

Abbildung 29: $\alpha = 0^{\circ}$

Ein Punkt P bewegt sich auf dem Einheitskreis(Abbildung 29) gegen den Uhrzeigersinn. Für $\alpha=0^\circ$ befindet er sich im Punkt(1|0).

Bestimme

Abbildung 29: $\alpha = 0^{\circ}$

Ein Punkt P bewegt sich auf dem Einheitskreis(Abbildung 29) gegen den Uhrzeigersinn. Für $\alpha=0^\circ$ befindet er sich im Punkt(1|0).

Bestimme

▶ a) Gib die x- und y-Koordinaten des Punktes P für $\alpha=140^\circ$ und für $\alpha=310^\circ$ an.

Abbildung 29: $\alpha = 0^{\circ}$

Ein Punkt P bewegt sich auf dem Einheitskreis (Abbildung 29) gegen den Uhrzeigersinn. Für $\alpha=0^\circ$ befindet er sich im Punkt (1|0).

Bestimme

- ▶ a) Gib die x- und y-Koordinaten des Punktes P für $\alpha = 140^{\circ}$ und für $\alpha = 310^{\circ}$ an.
- **b**) Bestimme zwei verschiedene Werte für α , sodass seine y-Koordinate 0,8 beträgt.

Abbildung 29: $\alpha = 0^{\circ}$

Für $\alpha=140^{\circ}$

Für
$$\alpha = 140^{\circ}$$

$$\sin(\alpha) = y \tag{1}$$

Für $\alpha = 140^{\circ}$

$$\sin(\alpha) = y \tag{1}$$
$$\sin(140^\circ) \approx$$

Für
$$\alpha=140^\circ$$
: Punkt ($|0,64)$
$$\sin(\alpha)=y \ \sin(140^\circ)\approx 0,64 \ (2)$$

Für
$$\alpha = 140^{\circ}$$
: Punkt ($|0,64)$

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

Für
$$\alpha=140^\circ$$
: Punkt ($|0,64\rangle$
$$\sin(\alpha)=y \qquad \qquad (1)$$

$$\sin(140^\circ)\approx 0,64 \qquad \qquad (2)$$

$$\cos(\alpha)=x \qquad \qquad (3)$$

$$\cos(140^\circ)\approx$$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für
$$\alpha = 310^{\circ}$$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für
$$\alpha = 310^{\circ}$$

$$\sin(\alpha) = y \tag{1}$$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für
$$\alpha = 310^{\circ}$$

$$\sin(\alpha) = y \tag{1}$$
$$\sin(310^\circ) \approx$$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für
$$\alpha = 310^{\circ}$$
: Punkt (|-0,77)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(310^\circ) \approx -0.77 \tag{2}$$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für
$$\alpha = 310^{\circ}$$
: Punkt (|-0,77)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(310^\circ) \approx -0.77 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für
$$\alpha = 310^{\circ}$$
: Punkt (|-0,77)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(310^\circ) \approx -0.77 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$cos(310^\circ) \approx$$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für
$$\alpha = 310^{\circ}$$
: Punkt $(0,64|-0,77)$

$$\sin(\alpha) = y \tag{1}$$

$$\sin(310^\circ) \approx -0.77 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(310^\circ) \approx 0.64 \tag{4}$$

Für $lpha_1$

Für $lpha_1$

$$\sin^{-1}(y) = \alpha \tag{1}$$

Für $lpha_1$

$$\sin^{-1}(y) = \alpha$$

$$\sin^{-1}(0,8) \approx$$
(1)

Für
$$\alpha_1$$
: $sin(53, 1^\circ) \approx 0.8$

$$\sin^{-1}(y) = \alpha \tag{1}$$

$$\sin^{-1}(0,8) \approx 53,1^{\circ}$$
 (2)

Für α_1 : $sin(53, 1^\circ) \approx 0.8$

$$\sin^{-1}(y) = \alpha \tag{1}$$

$$\sin^{-1}(0,8) \approx 53,1^{\circ}$$
 (2)

Für α_2

Für α_1 : $sin(53, 1^\circ) \approx 0, 8$

$$\sin^{-1}(y) = \alpha \tag{1}$$

$$\sin^{-1}(0,8) \approx 53,1^{\circ}$$
 (2)

Für α_2

$$\sin^{-1}(y) = \alpha \tag{1}$$

Für α_1 : $sin(53, 1^\circ) \approx 0.8$

$$\sin^{-1}(y) = \alpha \tag{1}$$

$$\sin^{-1}(0,8) \approx 53,1^{\circ}$$
 (2)

Für α_2

$$\sin^{-1}(y) = \alpha$$
 (1)
53, 1° - 180° =

Für α_1 : $sin(53, 1^\circ) \approx 0.8$

$$\sin^{-1}(y) = \alpha \tag{1}$$

$$\sin^{-1}(0,8) \approx 53,1^{\circ}$$
 (2)

Für α_2 : $\sin(126, 9^\circ) \approx 0.8$

$$\sin^{-1}(y) = \alpha \tag{1}$$

$$53,1^{\circ} - 180^{\circ} = 126,9^{\circ} \tag{2}$$

Funktion f mit $f(\alpha)$

Funktion f mit $f(\alpha)$

Ordnet man jedem Winkel α mit $0^{\circ} \le \alpha \le 360^{\circ}$ seinen Sinuswert zu, so erhält man eine Funktion f mit $f(\alpha) = \sin(\alpha)$.

Funktion f mit $f(\alpha)$

Ordnet man jedem Winkel α mit $0^{\circ} \leq \alpha \leq 360^{\circ}$ seinen Sinuswert zu, so erhält man eine Funktion f mit $f(\alpha) = \sin(\alpha)$.

Man kann mithilfe des Graphen von f (Abbildung 30) zu gegebenem Winkel den Sinuswert näherungsweise ablesen oder näherungsweise Winkel mit vorgegebenem Sinuswert ermitteln.

Abbildung 30: $f(\alpha) = \sin(\alpha)$

Sinusfunktion im Gradmaß - Definition

Definition

Die Funktion f mit $f(\alpha) = \sin(\alpha)$ heißt **Sinusfunktion im Gradmaß**.

Graph einer Sinusfunktion zeichnen

Graph einer Sinusfunktion zeichnen

Winkel α	0°	30°	60°	90°	120°	150°	180°	210°	240°	2700	300°	330°	360°
$sin(\alpha)$	0	0, 5	0,87	1	0,87	0, 5	0	-0,5	-0,87	-1	-0,87	-0,5	0

Abbildung 31: Sinuswelle Zeichnen

Einen Zeitlichen Vorgang modellieren

Einen Zeitlichen Vorgang modellieren

In einem Hafenbecken schwankt der Wasserstand periodisch um seinen Durchschnittswert (Abbildung 32)

Abbildung 32: Wasserstand

Aufgabe

Aufgabe

▶ a) Erläutere, wie man zu einem gegebenenen Zeitpunkt t die Winkelweite α erhält und umgekehrt. Bestimme für t = 5 (t in h) den zugehörigen Winkel.

Aufgabe

- ▶ a) Erläutere, wie man zu einem gegebenenen Zeitpunkt t die Winkelweite α erhält und umgekehrt. Bestimme für t = 5 (t in h) den zugehörigen Winkel.
- **b**) Mit welcher Funktion kann man zu einem gegebenen Winkel α den Wasserstand berechnen? Berechne den Wasserstand 5 Stunden nach Beobachtungsbeginn.

Erläutere, wie man zu einem gegebenenen Zeitpunkt t die Winkelweite α erhält und umgekehrt. Bestimme für t=5 (t in h) den zugehörigen Winkel.

Erläutere, wie man zu einem gegebenenen Zeitpunkt t die Winkelweite α erhält und umgekehrt. Bestimme für t=5 (t in h) den zugehörigen Winkel.

$$12h \stackrel{\triangle}{=} 360^{\circ} \qquad |: 12 \qquad (1)$$

Erläutere, wie man zu einem gegebenenen Zeitpunkt t die Winkelweite α erhält und umgekehrt. Bestimme für t = 5 (t in h) den zugehörigen Winkel.

$$12h = 360^{\circ}$$
 | : 12 (1)

$$1h \triangleq 30^{\circ} \tag{2}$$

Erläutere, wie man zu einem gegebenenen Zeitpunkt t die Winkelweite α erhält und umgekehrt. Bestimme für t = 5 (t in h) den zugehörigen Winkel.

$$12h \stackrel{\triangle}{=} 360^{\circ}$$
 | : 12 (1)

$$1h \triangleq 30^{\circ} \tag{2}$$

12h in Abbildung 32 entsprechen 360 $^{\circ}$, also entspricht 1h dem Winkel 30 $^{\circ}$.

Erläutere, wie man zu einem gegebenenen Zeitpunkt t die Winkelweite α erhält und umgekehrt. Bestimme für t = 5 (t in h) den zugehörigen Winkel.

$$12h \stackrel{\triangle}{=} 360^{\circ}$$
 | : 12 (1)

$$1h \triangleq 30^{\circ} \tag{2}$$

12h in Abbildung 32 entsprechen 360°, also entspricht 1h dem Winkel 30° .

$$\alpha = t \cdot 30^{\circ}$$

Erläutere, wie man zu einem gegebenenen Zeitpunkt t die Winkelweite α erhält und umgekehrt. Bestimme für t = 5 (t in h) den zugehörigen Winkel.

$$12h \stackrel{\triangle}{=} 360^{\circ}$$
 | : 12 (1)

$$1h \triangleq 30^{\circ} \tag{2}$$

12h in Abbildung 32 entsprechen 360°, also entspricht 1h dem Winkel 30° .

$$\alpha = t \cdot 30^{\circ}$$

$$\alpha = 5 \cdot 30^{\circ}$$
(1)

Erläutere, wie man zu einem gegebenenen Zeitpunkt t die Winkelweite α erhält und umgekehrt. Bestimme für t = 5 (t in h) den zugehörigen Winkel.

$$12h \stackrel{\triangle}{=} 360^{\circ}$$
 | : 12 (1)

$$1h \stackrel{\triangle}{=} 30^{\circ} \tag{2}$$

12h in Abbildung 32 entsprechen 360°, also entspricht 1h dem Winkel 30°.

$$\alpha = t \cdot 30^{\circ}$$

$$\alpha = 5 \cdot 30^{\circ}$$
(1)

$$\alpha = 150^{\circ} \tag{2}$$

Erläutere, wie man zu einem gegebenenen Zeitpunkt t die Winkelweite α erhält und umgekehrt. Bestimme für t = 5 (t in h) den zugehörigen Winkel.

$$12h \stackrel{\triangle}{=} 360^{\circ}$$
 | : 12 (1)

$$1h \triangleq 30^{\circ} \tag{2}$$

12h in Abbildung 32 entsprechen 360°, also entspricht 1h dem Winkel 30°.

Daraus Folgt $\alpha = t \cdot 30^{\circ}$ (t in h).

$$\alpha = t \cdot 30^{\circ}$$

$$\alpha = 5 \cdot 30^{\circ}$$
(1)

$$\alpha = 150^{\circ} \tag{2}$$

Für t = 5 erhält man $\alpha = 150^{\circ}$

Da der Wasserstand zwischen -0,2 und 0,2 um den Durchschnittswert pendelt (32), gilt:

Da der Wasserstand zwischen -0,2 und 0,2 um den Durchschnittswert pendelt (32), gilt:

$$f(\alpha) = 0, 2 \cdot sin(\alpha)$$

Da der Wasserstand zwischen -0,2 und 0,2 um den Durchschnittswert pendelt (32), gilt:

$$f(\alpha) = 0, 2 \cdot sin(\alpha)$$

Da der Wasserstand zwischen -0,2 und 0,2 um den Durchschnittswert pendelt (32), gilt:

$$f(\alpha) = 0, 2 \cdot \sin(\alpha)$$

$$\alpha = 5 \cdot 30^{\circ} \tag{1}$$

Da der Wasserstand zwischen -0,2 um den Durchschnittswert pendelt (32), gilt:

$$f(\alpha) = 0, 2 \cdot \sin(\alpha)$$

$$\alpha = 5 \cdot 30^{\circ} \tag{1}$$

$$=150^{\circ}$$
 (2)

Da der Wasserstand zwischen -0,2 um den Durchschnittswert pendelt (32), gilt:

$$f(\alpha) = 0, 2 \cdot \sin(\alpha)$$

$$\alpha = 5 \cdot 30^{\circ} \tag{1}$$

$$=150^{\circ}$$
 (2)

$$f(150^{\circ}) = 0, 2 \cdot \sin(150^{\circ}) \tag{3}$$

Da der Wasserstand zwischen -0,2 und 0,2 um den Durchschnittswert pendelt (32), gilt:

$$f(\alpha) = 0, 2 \cdot \sin(\alpha)$$

$$\alpha = 5 \cdot 30^{\circ} \tag{1}$$

$$=150^{\circ}$$
 (2)

$$f(150^{\circ}) = 0, 2 \cdot \sin(150^{\circ}) \tag{3}$$

$$=0,1 \tag{4}$$

Da der Wasserstand zwischen -0,2 um den Durchschnittswert pendelt (32), gilt:

$$f(\alpha) = 0, 2 \cdot \sin(\alpha)$$

Für t = 5:

$$\alpha = 5 \cdot 30^{\circ} \tag{1}$$

$$=150^{\circ}$$
 (2)

$$f(150^{\circ}) = 0, 2 \cdot \sin(150^{\circ}) \tag{3}$$

$$=0,1 \tag{4}$$

Nach 5 Stunden liegt der Wasserstand 10cm über dem Durchschnittswert.

Auch wenn es uns nicht oft auffällt, viele technische Geräte bzw. Mechanismen verwenden die trigonometrischen Funktionen Sinus und Kosinus. Genauso wie viele mathematische Verfahren. Ein paar Beispiele:

 Oszilloskop (elektronisches MessgerÄd't, das elektrische Spannungen in einen Verlaufsgraphen darstellt)

- Oszilloskop (elektronisches MessgerÄd't, das elektrische Spannungen in einen Verlaufsgraphen darstellt)
- GPS Global Positioning System (Positionsbestimmung mit Hilfe von Satelliten)

- Oszilloskop (elektronisches MessgerÄd't, das elektrische Spannungen in einen Verlaufsgraphen darstellt)
- ▶ GPS Global Positioning System (Positionsbestimmung mit Hilfe von Satelliten)
- Computergrafiken in 3D und 2D

- Oszilloskop (elektronisches MessgerÄd't, das elektrische Spannungen in einen Verlaufsgraphen darstellt)
- ► GPS Global Positioning System (Positionsbestimmung mit Hilfe von Satelliten)
- ► Computergrafiken in 3D und 2D
- ► Landvermessungen

- Oszilloskop (elektronisches MessgerÄd't, das elektrische Spannungen in einen Verlaufsgraphen darstellt)
- GPS Global Positioning System (Positionsbestimmung mit Hilfe von Satelliten)
- Computergrafiken in 3D und 2D
- Landvermessungen
- ► Fourier Transformation (z. B. Anwendung beim Spektroskop für Chemiker)

Auch wenn es uns nicht oft auffällt, viele technische Geräte bzw. Mechanismen verwenden die trigonometrischen Funktionen Sinus und Kosinus. Genauso wie viele mathematische Verfahren. Ein paar Beispiele:

ili paar beispiele.

- Oszilloskop (elektronisches MessgerÄd't, das elektrische Spannungen in einen Verlaufsgraphen darstellt)
- GPS Global Positioning System (Positionsbestimmung mit Hilfe von Satelliten)
- Computergrafiken in 3D und 2D
- Landvermessungen
- ► Fourier Transformation (z. B. Anwendung beim Spektroskop für Chemiker)
- Astronomen nutzten Spektroskope, um chemische Zusammensetzungen von weit entfernten Planeten zu bestimmen

Zusammenfassung

Quellen

Quellen

- Freiburger Münster https://freiburg-schwarzwald.de/ fotos06feb/freiburg12-060227.jpg
- Vector Boot https://www.vecteezy.com/vector-art/ 170704-flat-ship-vectors
- ▶ Lambacher Sweizer 9(S. 90 104) Mathematik Buch
- Sinus und Kosinus im Alltag https: //www.matheretter.de/wiki/sinus-kosinus-alltag