数据库作业4

2151140 王谦

7.1

7.1 Suppose that we decompose the schema R = (A, B, C, D, E) into

$$(A, B, C)$$

 (A, D, E) .

Show that this decomposition is a lossless decomposition if the following set F of functional dependencies holds:

$$\begin{array}{c} A \rightarrow BC \\ CD \rightarrow E \\ B \rightarrow D \\ E \rightarrow A \end{array}$$

7.1

7.6

7.6 Compute the closure of the following set F of functional dependencies for relation schema R = (A, B, C, D, E).

$$A \to BC$$

$$CD \to E$$

$$B \to D$$

$$E \to A$$

List the candidate keys for R.

7.6 `_`F>A : A>B AA>C :E>ABCDE Z:B>D · CD>E .. A > D :CD>RBCDE ~A>CD 又:CD→E ..A>E : B → D : BC > CD Z: A>A -BC>ABCDE. : A > A B C D E

综上, R的候选码有 A, E, BC, CD

7.30

7.30 Consider the following set F of functional dependencies on the relation schema (A, B, C, D, E, G):

$$\begin{array}{l} A \rightarrow BCD \\ BC \rightarrow DE \\ B \rightarrow D \\ D \rightarrow A \end{array}$$

- a. Compute B^+ .
- b. Prove (using Armstrong's axioms) that AG is a superkey.
- c. Compute a canonical cover for this set of functional dependencies F; give each step of your derivation with an explanation.
- d. Give a 3NF decomposition of the given schema based on a canonical cover.
- e. Give a BCNF decomposition of the given schema using the original set *F* of functional dependencies.

7.30

 $A \Rightarrow BD$ $BD \Rightarrow ABD$ $ABD \Rightarrow ABCD$ $ABCD \Rightarrow ABCD$ $B^{\dagger} = ABCD$

b. $A \Rightarrow BCD$ $A \Rightarrow ABCD$ $BC \Rightarrow DE$ $ABCD \Rightarrow ABCDE$ $A \Rightarrow ABCDE$ $AF \Rightarrow ABCDE$

放AP是超码
۲.
」 C. 由B→D、が得 A→BC BC→E
B→D D→A
由小得B+=ABCDE
有B→E国CS移民
得 A>BC
B>DE D-A
d. r.(A,B,C)
$Y_{\perp}(B,D,E)$
r3 (D, A)
F不依赖于其它 A为超码,添加 Y4(A,F).
13 (D, A)
r. (A, F)
e. r(A,B,C,D,E,F)
由A→BeD、台内 r(A,B,C,D) r2(A,E,F)
F中由A→E、初 r,(A,B,C,D), rs(A,F), rs(A,E)

QIZE

- : AC >B
- " B > E
- : AC>E.

e.
$$U_1 = \{A,B,C\}$$
 $F_1 = \{AC > B,B > C\}$.
 $U_2 = \{C,D\}$ $F_2 = \{C > D\}$
 $U_3 = \{B,E\}$ $F_3 = \{B > E\}$
 $R_1 < U_1,F_1 > R_2 < U_2,F_3 > R_3 < U_3,F_3 > R_$

f. 证明无损

	A	В	C	D	E.
R. (A.B.C)	a,	a,	Ωş	bit	Ьs
RL(B,C,E)	b21	a,	Ø\3	b24	α^{z}
R;((,D)	b31	þ,z	Olz	Ø4	b38

AC→B B→C之后无爱化 C→D之后变为:

	A	В	C	D	E
R, (A, B, c)	a,	αı	Q٤	dy.	Ьs
R. (B, C, E) þ ₂₁	α,	0/3	ay	αΖ
R3((,D)	b31	b,L	Olz	014	b35

B→E之后変か:

	A	В	C	D	E
R. (A.B.C)	a,	aL	(A ₃	dy	αs
RL(B,C,E)	b21	a,	013	ay	α^z
R3((,D)	b31	b,z	ολş	ay	b38

第一分全为 (该分解无损)

证明保持依赖

对户的B>CE

#467 / result = B repeat for ea

for each 海底的Ri t=(result N Ri) + N Ri result = result U t until result 不变

最终 reswh包含CE 所以B>CE的该额解析3 同理可得其他依赖也保持, 故依赖保持