Problem 1

Note that
$$SSM = \sum_{i=1}^{q} \sum_{j=1}^{q} \sum_{k=1}^{q} \left(\overline{y_{ij}} - y \right)^2 = \sum_{i=1}^{q} \sum_{j=1}^{q} \left[(\overline{y_{ij}} - \overline{y_{i}} - \overline{y_{i}} + \overline{y}) + (\overline{y_{i}} - \overline{y}) + (\overline{y_{i}} - \overline{y}) \right]$$

$$= SSAB + SSA + SSB + 2 = \sum_{i=1}^{4} \sum_{j=1}^{3} \sum_{k=1}^{3} (\bar{y}_{ij} - \bar{y}_{i.} - \bar{y}_{j} + \bar{y}) (\bar{y}_{i.} - \bar{y}_{j}) + 2 = \sum_{j=1}^{4} \sum_{k=1}^{3} (\bar{y}_{ij} - \bar{y}_{i.} - \bar{y}_{j} + \bar{y}) (\bar{y}_{j} - \bar{y}_{j})$$

let all of Nij equal No

$$\Rightarrow \quad | \circ = n_0 \stackrel{?}{\underset{j=1}{2}} \stackrel{?}{\underset{j=1}{2}} (\overline{y_{ij}} - \overline{y_{i}} - \overline{y_{j}} + \overline{y}) (\overline{y_{i}} - \overline{y}) = \quad n_0 \stackrel{?}{\underset{j=1}{2}} \left[(\overline{y_{i}} - \overline{y}) \stackrel{?}{\underset{j=1}{2}} (\overline{y_{ij}} - \overline{y_{i}} - \overline{y_{j}} + \overline{y}) \right]$$

Similarly.
$$2^{\circ} = n_{\circ} \stackrel{b}{\underset{j=1}{\sum}} (y_{.j} - \bar{y}) (ay_{.j} - ay_{.j} - a\bar{y} + a\bar{y}) = 0.$$

$$3^{\circ} = n_{\circ} \stackrel{a}{\underset{\leftarrow}{\longrightarrow}} (y_{1} - y_{2}) (by - by) = 0.$$

from above. We have SSM = SSA + SSB + SSAB

Problem 2

Roblem 2 (1)

From problem, we have $\overline{Y}_A = SS$. $S_A^2 = 300$. $\overline{Y}_B = 70$. $S_B^2 = 225$.

then, the overall mean
$$T = \frac{67a + 77b + 87c + 77b}{28} = 67.85$$

=	SSI	W =	É	⊂∏i -	-いう	i	55 _A	(+)	SB	+ 5	c +	6S _P	= 150	20 †	.}50	+181	o-+	1050	= 571	90		_
	SSE	} =	到	ni (Yi-\) =	60	55-	<i>6</i> 7.85	} + ⁻	1270	- <i>ь</i> Т.°	કુકુટું - (સ્ટુ	1 8	(65	67.8	ध् रे +	7(8	0- 6 7.8	\$ 3 =	2 21.	
⇒	ΑN	ov A	ta	ble:																		
	Sour	ce		Df		Shi	n of	Squi	aves		Меа	ทร์อุเ	1ares		F	Value	•	P-v	/alue			
	Betwe	een		3		2	21.4	+ 3			707	1.14			2.6	דרו		0.0	51b			
	Withi	'n		24		5	700				237	.5										_
	Tota	1		27		1	821.	43														
	Note	≥ th	.at	unde	er H	,. F	<u>-</u>	<u>558</u> 550	<u>/3</u> V/24	~ F	۲3, ۲	24)										
	As	þ-v	alue	< 0	·.[,	⊢]o: f	1 _A =	1B=	Mc = j	K⊳ i	s Ye	ject e	d a	t si	gnif	ianc	e le	ve	d = r	٠١,	> W	ì
eans	; the	z m	ean	Sco	ne o	f d	Hfer	ent	clas	ses	are	not	all	eq	hal.							
# F	roble	m 2	(2)																			
Fir	st o	Fal	l. w	ie r	leed	to	giv	e ti	ne	dispe	rsior	Va	riable	e Zi	j=	۷ij.	- y ̄₁)๋	L				
→	Fact	ors		Α			В			С			D									
				625			(00			232			100									
	zij			225			100			25			0									
				25			[00			625			25									
				400			400			625			25									_
				0			25			25			מטן									
				225			725			215			400									
							400			25			400									
										25												

			<u>-</u>	- 2	225	S	2 2c =	685	71.4	3	ZD	= 15	0.5	. 1 20 =	- 30e	b25 ,	2	= 2	03.5	714	
			_																		
=)	SSW) =	<u>₽</u> (- n: –	1)52		55 ₅₄	+6	S&+	75	£+6	S20=	= 109	82 l4	3						
	SSB	=	£γ	li (≥;	-호)	\ _	6129	0- 2c	3.57	M)2 -	+77	192.9	₹ <i>b</i> -2	03.5T	M-7 ² -	ŀጵ (·)) 	.øጓ.ፔን	14)2		
			12											714)							
=>	the	ΑN	ονA	tal	de	bas	sed	on	Zij												
5	ourc	e		Df		Sum	n of '	Squar	'es	}	Near	Squ	ares		Ļν	alue		P-va	ilue.		
	etwe			3			7500		-			00				ררי		0.84	4]		
٧	Vithir	1		24		l	082l	43			45	089									
	Total			27																	
ļ	ls p	-valı	1e 7	0.],	We	: Ca	ካ በ፡	ot re	2ject	Но	. bà	— ὑ <u>β</u>	:= b) = (bo a	at 1	he	signi	fica	nce	leve
,= 0.), v	vhich) M	3 0715	tha	t vve	2 C0	ın∩ơl	- re	ject	the	. હવા	ual-	Varia	nce	ass	ump-	tion.			
# #	roble	m 2	L3)																		
We	ca :	ท 1	rank	. th	is c	bser	vatio	MS 1	at fi	rst,	the	foll	omin	g is	; th	e 7	ank	ta	Ыe.		
		35		40	50	50	50	55	55	60	60	60	ьь	70	70	70	70	75	75		
Ŋ; <u>;</u>	j			_	Α	В	C	A		<u>B</u>	<u>_</u>	C	D	A	<u>c</u>	<u>c</u>	D	В	D		
	Ī	A	A	_	_	_					1.05	LOL	10.5	14:5	14:5	145	145	17.5	N.5		
Ŋ; <u>;</u>	P	A I	A - 2.5	<u></u>	5	5	5	7.5	7.5	10.5	1115	11.7									
Yi; Grou Vij	P	ı	A - 2.5	2.5	5	5	5	7.5	7.5	10.5	10.5										
Yi; Grou Vij	P) 80	2.5 80	80	80	80	<i>5</i>	7.5 90		90	100										
y:; grou Y:j Con Y:j grou	P tinue P)	2.5 80		80 C	80 D	85 D	90 <u>B</u>													
yii grou Vij Con Yij	P tinue P) 80	2.5 80	80	80 C	80 D	85	90 <u>B</u>	90	90	100										

	Ţ. :	_ 7	.5 +	5+1	0.5 +	10-5-	r14:5	+14:	5+2	+26	= 13.	0b2S	์ วั	_ 	10.5	+14:	5+17	.5+2	.1+24	+26	128	= ²⁸³ = ¹⁴	
																						17	
	=>	test	Sta	tistic	of	, Kı	uska	- W	allis	test	· is		W =	<u>.</u>	28-1 SZ)	- 不	را دار ح	=	6.93	164		
	Nσ	te th	ıat	kw	1~ χ	3 0	PP rox	imat	ely	unde	r H	σ, =	> þ.	Val	ne =	- 0.	0]4}	70.1	S ,	We (Can	no†	
		.1				1.	C	.1								1		•					
reje	ect	that	g	roup	mez	tians	; ot	the	se '	grokf	es o	are	equ	al c	አ ተ 1	he	sign	rlica	nce	(eve	의 었 =	.0-02	1

Problem 3

Problem 3(1)

The ANOVA table is as follows

源	自由度	平方和	均方	F值	Pr > F
模型	3	137.7023590	45.9007863	23.22	<.0001
误差	35	69.1920000	1.9769143		
校正合计	38	206.8943590			

The p-value<0.0001, which indicates the data provide sufficient evidence that worker productivity under the 4 levels of component arrival rate are different. (at significant level $\alpha=0.05$)

Problem 3(2)

The ANOVA table is as follows

源	自由度	平方和	均方	F值	Pr > F
模型	3	62.4494701	20.8164900	5.04	0.0052
误差	35	144.4448889	4.1269968		
校正合计	38	206.8943590			

The p-value=0.0052<0.05, which indicates the data provide sufficient evidence that worker productivity under the 4 levels of room temperature are different. (at significant level $\alpha=0.05$)

Problem 3(3)

The simultaneous confidence intervals using the Tukey-Kramer method is given below:

Comparisons significant at the 0.05 level are indicated by								
X2 比较	均值 间 差值	Simultaneou	s 95% 置信限					
70 - 75	1.8200	-0.6302	4.2702					
70 - 65	2.7000	0.2498	5.1502	***				
70 - 80	3.3889	0.8716	5.9062	***				
75 - 70	-1.8200	-4.2702	0.6302					
75 - 65	0.8800	-1.5702	3.3302					
75 - 80	1.5689	-0.9484	4.0862					
65 - 70	-2.7000	-5.1502	-0.2498	***				
65 - 75	-0.8800	-3.3302	1.5702					
65 - 80	0.6889	-1.8284	3.2062					
80 - 70	-3.3889	-5.9062	-0.8716	***				
80 - 75	-1.5689	-4.0862	0.9484					
80 - 65	-0.6889	-3.2062	1.8284					

From the above figure, we have

- The Ci of $\mu_A \mu_B$ is [-5.1502, -0.2498], which a indicates there exists significant difference between 65°F and 70°F at significant level $\alpha = 0.05$.
- ullet The Ci of $\mu_A-\mu_C$ is [-3.3302,1.5702], which indicates no significant difference between 65°F and

- 75°F at significant level $\alpha = 0.05$.
- The Ci of $\mu_A \mu_D$ is [-1.8284, 3.2062], which indicates no significant difference between 65°F and 80°F at significant level $\alpha = 0.05$.
- The Ci of $\mu_B \mu_C$ is [-0.6302, 4.2702], which indicates no significant difference between 70°F and 75°F at significant level $\alpha = 0.05$.
- The Ci of $\mu_B \mu_D$ is [0.8716, 5.9062], which indicates there exists significant difference between 70°F and 80°F at significant level $\alpha = 0.05$.
- The Ci of $\mu_C \mu_D$ is [-0.9484, 4.0862], which indicates no significant difference between 75°F and 80°F at significant level $\alpha = 0.05$.

Problem 3(4)

The consequence two-way ANOVA is given below:

源	自由度	III 型 SS	均方	F值	Pr > F
X1	3	116.6247752	38.8749251	155.59	<.0001
X2	3	46.1385116	15.3795039	61.55	<.0001
X1*X2	9	17.0887224	1.8987469	7.60	<.0001

Note that the P-value of the interaction effect between component arrival rate and room temperature is 0.0001 < 0.05, so that the data provide sufficient evidence to indicate an interaction effect between between component arrival rate X_1 and room temperature X_2 on worker productivity at significant level $\alpha = 0.05$.

Problem 3(5)

The consequence of test normality of the residuals are given below:

正态性检验									
检验	统计量 p 值								
Shapiro-Wilk	W	0.990597	Pr < W	0.9830					
Kolmogorov-Smirnov	D	0.055452	Pr > D	>0.1500					
Cramer-von Mises	W-Sq	0.01374	Pr > W-Sq	>0.2500					
Anderson-Darling	A-Sq	0.1015	Pr > A-Sq	>0.2500					

Since the sample size is small here, we choose to look at the Shapiro-Wilk test, where the corresponding p-value is 0.9830>0.05, which indicates that the data does provide enough evidence to show the normal distribution of residuals at significant level $\alpha=0.05$.

Problem 3(6)

Treating X_1 and X_2 as continuous variables, perform a regression analysis. The consequence is given below:

源	自由度	Ⅲ 型 SS	均方	F值	Pr > F
X1	1	6.26193717	6.26193717	8.78	0.0057
X1*X1*X1	1	9.91584598	9.91584598	13.90	0.0007
X2	1	10.79998894	10.79998894	15.13	0.0005
X1*X1	1	8.18512907	8.18512907	11.47	0.0019
X2*X2	1	10.22778710	10.22778710	14.33	0.0006
X2*X2*X2	1	9.65762864	9.65762864	13.53	0.0009

Note that

- The p-value of quadratic form of X_1 is 0.0019<0.05, which indicates that we need to add quadratic term of X_1 into the model. (at significant level $\alpha=0.05$)
- The p-value of cubic form of X_1 is 0.0007<0.05, which indicates that we need to add cubic term of X_1 into the model. (at significant level $\alpha=0.05$.)
- The p-value of quadratic form of X_2 is 0.0006<0.05, which indicates that we need to add quadratic term of X_2 into the model. (at significant level $\alpha=0.05$.)
- The p-value of cubic form of X_2 is 0.0009<0.05, which indicates that we need to add cubic term of X_2 into the model. (at significant level $\alpha=0.05$.)

Problem 3(7)

Two-way ANOVA is better.

- Even if quadratic and cubic terms of X_1, X_2 are added to the model in the problem 3(6) to improve the fitness, this model still does not consider the interaction terms of X_1 and X_2 , and the effect of interaction terms can be proven to be significant in the problem 3(4).
- The \mathbb{R}^2 of regression model is 0.88963 even after adding quadratic and cubic term of both X_1 and X_2 into the model, which is less than the \mathbb{R}^2 of the two-way ANOVA model: 0.97222.

Problem 4

Problem 4(1)

The distribution and some statistics of 1000 p-values are given below:

	矩									
数目	1000	权重总和	1000							
均值	0.49865877	观测总和	498.658767							
标准差	0.28896303	方差	0.08349963							
偏度	-0.0001669	峰度	-1.1838695							
未校平方和	332.0767	校正平方和	83.4161342							
变异系数	57.9480501	标准误差均值	0.00913781							

We filter out those with p-value less than 0.05, which is the probability of making type I error. We found a total of 49 elements.

总行数: 49	总列数: 1	┡ ← 行1-49 → →
		PROB
1		0.0124746849
2		0.0405512619
3		0.0149561583
4		0.0171768839
5		0.0086566925

Result: The Type I error rate based on the 1000 p-values (lpha=0.05) is 0.049.

Problem 4(2)

The distribution and some statistics of 1000 p-values are given below:

	矩									
数目	1000	权重总和	1000							
均值	0.50617449	观测总和	506.174488							
标准差	0.30061263	方差	0.09036795							
偏度	-0.0902094	峰度	-1.2519511							
未校平方和	346.490198	校正平方和	90.2775858							
变异系数	59.3891313	标准误差均值	0.00950621							

We filter out those with p-value less than 0.05, which is the probability of making type I error. We found a total of 71 elements

总行数: 71 总列数: 1		► ← 行 1-71 → →
		PROB
1		0.0009474045
2		0.0088761202
3		0.0351019971
4		0.0089288202
5		0.0342815163

Result: The Type I error rate based on the 1000 p-values (lpha=0.05) is 0.071.

Conclusion: When different groups have unequal variances (heteroscedasticity), using the traditional F-test in one-way ANOVA to compare group means would result in "Type I error increase" at a given significance level α , i,e,. at given significance level α , the rate of making type I errors will be significantly greater than α .