

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Karnaugh Maps

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW4 is out
- It is due on Monday Sep 19 @ 4 pm
- It is posted on the class web page
- I also sent you an e-mail with the link.

Administrative Stuff

Homework Solutions are posted on BlackBoard

Quick Review

Do You Still Remember This Boolean Algebra Theorem?

14a.
$$x \cdot y + x \cdot \overline{y} = x$$
 Combining
14b. $(x + y) \cdot (x + \overline{y}) = x$

х	у	x	•	Y	+	x	•	<u>y</u>	=	x
0	0									
0	1									
1	0									
1	1									

х	у	x	•	Y	+	x	•	Ÿ	=	x
0	0		0							
0	1		0							
1	0		0							
1	1		1							

x	у	x	•	Y	+	x	•	Ÿ	=	x
0	0		0				0			
0	1		0				0			
1	0		0				1			
1	1		1				0			

X	у	x •	y +	x •	$\overline{\mathbf{y}} = \mathbf{z}$	x
0	0	0	0	0		
0	1	0	0	0		
1	0	0	1	1		
1	$1 \mid$	1	1	0		
		I				

у	x	•	Y	+	x	•	<u>y</u>	=	x
0		0		0		0			0
1		0		0		0			0
0		0		1		1			1
$\tilde{1}$		1		1		0			1
	y 0 1 0 1	y x 0 1 0 1 1	y x • 0 0 0 1 0 0 0 1 1	y x • y 0 0 1 0 0 0 1 1 1 1	y x y + 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1	y x y + x 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1	y x y + x 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0	y x y + x \fotage{y} 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0	y x y x \forall x \forall z 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0

х	у	x	•	Y	+	x	•	<u>y</u>	=	x
0	0		0		0		0			0
0	1		0		0		0			$\begin{vmatrix} 0 \end{vmatrix}$
1	0		0		1		1			1
1	1		1		1		0			1

They are equal.

Motivation

ABCD	F
0000	0
0001	1
0010	1
0011	1
0100	0
0101	0
0110	1
0111	0
1000	0
1001	1
1010	0
1011	1
1100	1
1101	0
1110	1
1111	0

An approach for simplifying logic expressions

How do we guarantee we have reached minimum SOP/POS representation?

Two-Variable K-Map

Karnaugh Map (K-map)

- View the function in a visual form
- Same information as truth table
- Easier to group minterms

^x 2	
0	m_0
1	m_1
0	m_2
1	m_3
	0 1 0

(a) Truth table

(b) Karnaugh map

Minterms

x ₂	
0	m_0
1	m_1
0	m_2
1	m_3
	0

$egin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>x</u> 1	x ₂	m_0	m_1	m_2	m_3
0 1 0 1 0 0	0	0	1	0	0	0
	0	1	0	1	0	0
1 0 0 0 1 0	1	0	0	0	1	0
1 1 0 0 0 1	1	1	0	0	0	1

Minterm Example

<u>x</u> ₁	^x ₂	
0	0	0
0	1	1
1	0	0
1	1	1

<u>x</u> ₁	x ₂	m_0	m_1	m_2	m_3	$m_1 + m_3$
0	0	1	0	0	0	0
0	1	0	1	0	0	1
1	0	0	0	1	0	0
1	1	0	0	0	1	1

Minterm Example

<u>x</u> ₁	^x ₂	
0	0	0
0	1	1
1	0	0
1	1	1

<u>x</u> ₁	\mathbf{x}_2	m_0	m_1	m_2	m_3	$m_1 + m_3$
0	0	1	0	0	0	0
0	1	0	1	0	0	1
1	0	0	0	1	0	0
1	1	0	0	0	1	1
		4				■

$$\overline{X}_1 X_2 + X_1 X_2 = X_2$$

 m_0 m_1

Property 14a (Combining)

Grouping Rules

- Group "1"s with rectangles
- Both sides a power of 2:
 - 1x1, 1x2, 2x1, 2x2, 1x4, 4x1, 2x4, 4x2, 4x4
- Can use the same minterm more than once
- Can wrap around the edges of the map
- Some rules in selecting groups:
 - Try to use as few groups as possible to cover all "1"s.
 - For each group, try to make it as large as you can (i.e., if you can use a 2x2, don't use a 2x1 even if that is enough).

Two-Variable K-map

<u>x</u> ₁	x ₂	
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3

(a) Truth table

(b) Karnaugh map

Step-By-Step Example

<u>x</u> ₁	x ₂	
0	0	1
0	1	1
1	0	0
1	1	1

1. Draw The Map

x ₁	x ₂	
0	0	1
0	1	1
1	0	0
1	1	1

2. Fill The Map

	<u>x</u> ₁	x ₂	
m_0	0	0	1
m_1	0	1	1
m_2	1	0	0
m_3	1	1	1
m_3	1	1	1

2. Fill The Map

	x ₁	x ₂	
m_0	0	0	1
m_1	0	1	1
m_2	1	0	0
m_3	1	1	1

3. Group

	<u>x</u> 1	x ₂	
m_0	0	0	1
m_1	0	1	1
m_2	1	0	0
m_3	1	1	1
			l

3. Group

	x ₁	x ₂	
m_0	0	0	1
m_1	0	1	1
m_2	1	0	0
m_3	1	1	1
			l

3. Group

	<u>x</u> ₁	x ₂	
m_0	0	0	1
m_1	0	1	1
m_2	1	0	0
m_3	1	1	1

4. Write The Expression

<u>x</u> ₁	x ₂	
0	0	1
0	1	1
1	0	0
1	1	1

4. Write The Expression

<u>x</u> ₁	x ₂	
0	0	1
0	1	1
1	0	0
1	1	1

$$\overline{x}_1 + x_2$$

Writing The Expression

Find which variable is constant

 \overline{x}_1 is constant

Writing The Expression

Find which variable is constant

x₁ is constant

These are also valid

But try to use larger rectangles if possible.

This one is valid too

In this case the result is the constant function 1.

Why are these two not valid?

 m_0 m_3

We can't use Property 14a here. This can't be simplified.

Three-Variable K-Map

Location of three-variable minterms

x_1	x_2	x_3	
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7

(b) Karnaugh map

(a) Truth table

Location of three-variable minterms

x_1	x_2	x_3	
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7
			l

(a) Truth table

(b) Karnaugh map

Notice the placement of

- Variables
- Binary pair values
- Minterms

Gray Code

- Sequence of binary codes
- Vary by only 1 bit

	000
	001
00	011
01	010
11	110
10	111
	101
	100

Gray Code & K-map

_	
_	$s x_1 x_2$
m_0^-	000
m_1	001
m_2	010
m_3	0 1 1
m_4	100
m_5	101
m_6	110
m_{7}	111

$\setminus S \lambda$	c_1			
x_2	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

Gray Code & K-map

_	
	$s x_1 x_2$
m_0	000
m_1	001
m_2	010
m_3	0 1 1
m_4	100
m_5	101
m_6	110
m_{7}	111

	S X	1			
x_2		00	01	11	10
(0	000	010	110	100
	1	001	011	111	101

Adjacency Rules

$x^{x_1x_2}$	2			
¹ 3	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

x_1x_2	2			
x_3	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

x_1x_2	2			
x_3	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

x_1x_2	2			
x_3	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

x^{x_1x}	_			
x_3	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

$x^{x_1x_2}$	2			
x_3	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

$x^{x_1x_2}$	2			
x_3	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

x_3 x_1	_			
*3	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

x_3	2 00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

x_1x_2	2			
x_3	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

x_3 x_1 x_2				
3	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

x_3 x_1 x_2	_	0.4		4.0
3	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

$x^{x_1x_2}$	2			
x_3	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

	x_1x_2	2				
x_3		00	01	11	10	
	0	m_0	m_2	m_6	m_4	
	1	m_1	m_3	m_7	m_5	

This is a valid grouping

Some invalid groupings

Examples of three-variable Karnaugh maps

(a) The function of Figure 2.23

(b) The function of Figure 2.48

Four-Variable K-Map

A four-variable Karnaugh map

A four-variable Karnaugh map

x1	x2	x 3	x4	
0	0	0	0	m0
0	0	0	1	m1
0	0	1	0	m2
0	0	1	1	m3
0	1	0	0	m4
0	1	0	1	m5
0	1	1	0	m6
0	1	1	1	m7
1	0	0	0	m8
1	0	0	1	m9
1	0	1	0	m10
1	0	1	1	m11
1	1	0	0	m12
1	1	0	1	m13
1	1	1	0	m14
1	1	1	1	m15

Adjacency Rules

Some Valid Groupings

Some Valid Groupings

11

 m_3

 m_2

Some Valid Groupings

Some Invalid Groupings

 x_2

 x_2

All sides must be powers of 2.

_	X_1X_2	.		<i>X</i>	1	
x_3x_2	$4^{x_1x_2}$	00	01	11	10	•
	00	m_0	m_4	m_{12}	m_8	
	01	m_1	m_5	m_{13}	m_9	
y.]	11	m_3	m_7	m_{15}	m_{11}	× x ₄
$x_3 \neq$	10	m_2	m_6	m_{14}	m_{10}	
		•	х	2		,

Some valid Groupings

 x_2

 x_2

All sides must be powers of 2.

[Figure 2.54 from the textbook]

[Figure 2.54 from the textbook]

[Figure 2.54 from the textbook]

Five-Variable K-Map

A five-variable Karnaugh map

Questions?

THE END