PRACA PRZEJŚCIOWA INŻYNIERSKA

PORÓWNANIE ALGORYTMÓW A* ORAZ THETA*

Damian Wysokiński, 286699

Prowadzący: dr inż. Andrzej Chmielniak

Spis treści

Wprowadzenie	3
A*	3
Theta*	3
Narzędzie programistyczne	4
Schematy blokowe	5
A*	5
Theta*	6
Porównanie długości wyznaczonych ścieżek	7
Konfiguracja #0	7
Konfiguracja #1	9
Konfiguracja #2	11
Konfiguracja #3	13
Konfiguracja #5	15
Konfiguracja #6	17
Zestawienie przybliżonych wyników	19
Wnioski	20

Wprowadzenie

A*

Algorytm wyznaczający najkrótszą ścieżkę między 2 węzłami w grafie pod warunkiem, że taka ścieżka istnieje. Kształt ścieżki jest zależny od wybranej heurystyki.

Algorytm realizuje minimalizację funkcji:

 $f_{cost}(x) = g_{cost}(x) + h_{cost}(x)$, gdzie g_{cost} oznacza odległość po przebytej ścieżce od węzła początkowego do danego miejsca – jest zmienna, a h_{cost} oznacza niezmienną odległość obliczoną przez heurystykę między danym węzłem a węzłem będącego celem.

W swojej symulacji wykorzystałem 2 heurystyki: euklidesową i manhattańską.

Ścieżka powstaje w następujący sposób: każdy sprawdzony węzeł przez A* ma informacje o poprzednim węźle, z którego algorytm dotarł do niego. I na tej podstawie można odtworzyć najlepszą ścieżkę od węzła będącego celem do węzła będącego początkiem. Warto tu zaznaczyć, że w A* poprzednikiem węzła może być tylko węzeł leżący w sąsiedztwie danego węzła.

Theta*

Theta* jest algorytmem bardzo zbliżonym do A*. Jedyna różnica polega na tym, że poprzednikiem danego węzła może być węzeł niebędący w najbliższym sąsiedztwie danego węzła. Dzieje się tak jeśli korzystniejsza jest droga od poprzednika poprzednika do danego węzła, z pominięciem poprzednika, niż droga przez każdy z tych węzłów po kolei. Przy analizowaniu Theta* na równomiernej siatce 2D można zauważyć jest to algorytm poruszający się po mapie pod dowolnym kątem. A* natomiast porusza się tylko w kierunkach będącymi wielokrotnościami kąta 45°.

Narzędzie programistyczne

Projekt napisałem w języku C++ w środowisku Visual Studio. Do pokazania zachowania się algorytmu wykorzystałem bibliotekę SFML (Simple and Fast Multimedia Library). <u>Link do repozytorium</u>

Porównanie długości wyznaczonych ścieżek

Konfiguracja #0

A* h. euklidesowa, dł. ścieżki 58.9412

A* h. manhattańska, dł. ścieżki 58.9412

Theta* h. euklidesowa, dł. ścieżki 54.5619

Theta* h. manhattańska, dł. ścieżki 54.5619

A* h. euklidesowa, dł. ścieżki 59.7696

A* h. manhattańska, dł. ścieżki 59.7696

Theta* h. euklidesowa, dł. ścieżki 56.5953

Theta* h. manhattańska, dł. ścieżki 56.843

A* h. euklidesowa, dł. ścieżki 132.841

A* h. manhattańska, dł. ścieżki 132.255

Theta* h. euklidesowa, dł. ścieżki 97.8938

Theta* h. manhattańska, dł. ścieżki 127.477

A* h. euklidesowa, dł. ścieżki 101.042

A* h. manhattańska, dł. ścieżki 100.456

Theta* h. euklidesowa, dł. ścieżki 97.8938

Theta* h. manhattańska, dł. ścieżki 97.474

A* h. euklidesowa, dł. ścieżki 134.498

A* h. manhattańska, dł. ścieżki 134.498

Theta* h. euklidesowa, dł. ścieżki 129.067

Theta* h. manhattańska, dł. ścieżki 129.389

A* h. euklidesowa, dł. ścieżki 92.2549

A* h. manhattańska, dł. ścieżki 88.8406

Theta* h. euklidesowa, dł. ścieżki 86.5466

Theta* h. manhattańska, dł. ścieżki 86.1354

Zestawienie przybliżonych wyników

(dokładne wyniki w /SPRAWOZDANIE/dane podsumowanie.xlsx)

	A*					Theta*						
mapa	h. euklidesowa			h. manhattańska		h. euklidesowa		h. manhattańska				
#0	58,94	236,3	235,8	58,94	17,7	17,2	54,56	235,6	233,8	54,56	19,8	19,5
#1	59,77	166,1	165,3	59,77	41,5	41,0	56,60	147,3	146,3	56,84	41,4	40,7
#2	132,84	109,2	108,6	132,26	62,3	59,3	126,84	116,3	114,9	127,48	68,1	66,7
#3	101,04	199,2	108,6	100,46	36,1	34,9	97,90	185,5	183,7	97,47	40,3	39,4
#5	134,50	49,2	47,4	134,50	45,7	43,3	129,07	48,4	47,7	129,39	48,7	48,1
#6	92,25	101,0	98,2	88,84	87,3	86,1	86,55	108,0	105,4	86,14	92,8	91,6
	dł. ścieżki	czas (ms)	czas (ms prio.)	dł. ścieżki	czas (ms)	czas (ms prio.)	dł. ścieżki	czas (ms)	czas (ms prio.)	dł. ścieżki	czas (ms)	czas (ms prio.)

- Dla A* wykorzystanie heurystyki manhattańskiej zamiast euklidesowej przyśpiesza algorytm około 1.7 razy
- Dla Theta* wykorzystanie heurystyki manhattańskiej zamiast euklidesowej przyśpiesza algorytm około 1.4 razy
- Dla A* heurystyka manhattańska wyznacza krótsze ścieżki o średnio 0.8%
- W przypadku Theta* wybór heurystyki ma pomijalny wpływ (0.045%) na długość ścieżki
- Theta* wyznacza znacznie krótsze ścieżki od A*: średnio 5,4% dla heurtystyki euklidesowej i 4.5% dla manhattańskiej
- Ustawienie najwyższego priorytetu na aplikację i zabicie nieistotnych procesów przyśpiesza algorytm średnio o 1,76%

Wnioski

- 1. Theta* wyznacza wyraźnie krótsze ścieżki w porównaniu do A*
- 2. Dla A* minimalnie krótsze ścieżki daje wykorzystywanie heurystyki manhattańskiej
- 3. Dla Theta* wybór heurystyki nie ma większego wpływu na długość ścieżki
- 4. Dla obu algorytmów heurystyka manhattańska wyraźnie skraca czas obliczeń
- 5. Ustawienie najwyższego priorytetu dla aplikacji oraz zabijanie niepotrzebnych procesów daje niewielki wpływ na szybkość obliczeń
- 6. Do zadań, gdzie ważna jest szybkość obliczeń, a nie dokładność, wybrałym A* z heurystyką manhattańską
- 7. Do zadań, gdzie istotna jest precyzja i szybkość, wybrałbym Theta* z heurystyką manhattańską

Kod źródłowy:

• https://github.com/damianski794/Przejsciowka A Star

Bibliografia:

- https://arxiv.org/ftp/arxiv/papers/1401/1401.3843.pdf
- https://pl.wikipedia.org/wiki/Algorytm_A*
- https://en.wikipedia.org/wiki/Theta*
- https://gamedev.stackexchange.com/questions/75158/line-of-sight-on-a-2d-grid