

Yagi-Uda Antenna

>Antenas y Propagación 2023

>Ing. Alejandro Veneré

>Por: Daniela Colque Chura

Overview / Descripción General

La antena Yagi-Uda es en realidad un arreglo de antenas de dipolo lineal. Consta de:

- \triangleright Elemento Activo: Feed o Alimentador. Es un dipolo plegado de $\lambda/2$.
- Elementos parásitos: Reflector y Directores.

El diagrama de radiación resulta en una antena de haz direccional. La antena expuesta en esta hoja de datos presenta una alta ganancia, por ser muy direccional.

Specifications / Especificaciones

Especificaciones de Diseño		
Frecuencia Central (fo)	550 MHz	
Directividad Requerida	> 10dBi a fo	
Número de Elementos Óptimos (n)	> 6 elementos Elección: 6 elementos	
Longitud de Onda	6/11 ≈ 54.5 cm	
Diámetro de Varillas	4.63 mm	
Radio del Dipolo	0.54 mm	
Factor k: Longitud de Dipolo vs. Diámetro del Dipolo	0.969	
Longitud del Reflector	L1 = 262.9 mm	
Longitud del Dipolo	L2 = 260 mm	
Longitud de Directores	L3 = 233.4 mm	
	L4 = 229 mm	
	L5 = 229 mm	
	L6 = 233.4 mm	
Separación entre Reflector y Dipolo (Feed)	109 mm	
Separación entre directores	136.3 mm	

Especificaciones Técnicas	
Aplicaciones en la banda	
UHF	
Elementos	6
Frecuencia Central (práctico)	550 MHz
Ganancia	7.78 dB
Impedancia de Entrada	75 Ω
Longitud del Boom	
	Varillas:
Material	Cobre /
	Cooper

Especificaciones Técnicas		
Directividad	10.8 dBi	
Elementos	6	
Frecuencia Central	550 MHz	
Ganancia	7.78 dB (esperada)	
	10.79 dBi (obtenida)	
Impedancia de Entrada	75 Ω	
Potencia Máxima	$-3.876 \text{ dB } (\text{W}/m^2)$	

Patrones de Radiación

farfield (f=550) [1] Type Approximation enabled (kR >> 1) Component Abs Output Directivity Frequency 550 MHz Rad. Effic. -0.05571 dB Tot. Effic. -0.7176 dB Dir. 10.84 dBi

Respuesta en frecuencia de la Antena para distintas longitudes de separación Xr [mm], entre el Reflector y el Dipolo Activo.

Respuesta en frecuencia Sucesivas de la Antena para la Eficiencia obtenida a: frecuencia 550 MHz vs. 570 MHz. *esta última consiguió tener mejor adaptación que la frecuencia de operación, cuadros más arriba*

Respuesta en frecuencia de la Antena para las Variaciones de Resistencia dada una separación Xr [mm].

Obtenida a frecuencia 550 MHz y otra de 570 MHz. *esta última consiguió tener mejor adaptación que la frecuencia de operación, cuadros más arriba*

VSWR1 (Xr=109): 2.0670264

VSWR1 (Xr=90): 1.9335928

VSWR1 (Xr=150): 1.6067378

VSWR1 (Xr=180): 1.2203596

VSWR1 (Xr=210): 1.194336

f = 550 MHz

VSWR1 (Xr=109): 2.0670264

VSWR1 (Xr=90): 1.9335928

VSWR1 (Xr=150): 1.6067378

VSWR1 (Xr=180) : 1.2203596

VSWR1 (Xr=210) : 1.194336

f = 570 MHz

Plano E: Vertical o de Elevación

Frequency = 550 MHz Main lobe magnitude = 24.9 dB(V/m) Main lobe direction = 90.0 deg. Angular width (3 dB) = 39.1 deg. Side lobe level = -7.0 dB

Frequency = 550 MHz 13.2 dB(V/m) Main lobe magnitude = Main lobe direction = 90.0 deg. Angular width (3 dB) = 78.6 deg.

Frequency = 550 MHz Main lobe magnitude = 24.9 dB(V/m) Main lobe direction = 0.0 deg. Angular width (3 dB) = 43.8 deg. Side lobe level = -5.9 dB

Plano H: Horizontal o de Azimuth

Frequency = 550 MHz Main lobe magnitude = -26.6 dB(A/m) Main lobe direction = 90.0 deg. Angular width (3 dB) = 39.1 deg. Side lobe level = -7.0 dB

Frequency = 550 MHz Main lobe magnitude = -26.6 dB(A/m) Main lobe direction = Angular width (3 dB) = 43.8 deg. Side lobe level = -5.9 dB

Frequency = 550 MHz Main lobe magnitude = -38.4 dB(A/m) Main lobe direction = 90.0 deg.Angular width (3 dB) = 78.6 deg.