

Title: Implementation of Naïve Bayesian algorithm for classification

Batch: B2 Roll No.: 16010420117 Experiment No.:2

Aim: Implementation of Naïve Bayesian algorithm for classification

Resources needed: Any RDBMS, Java

Theory:

A Bayesian classifier is a simple probabilistic classifier. Bayesian classifier can predict membership probabilities such as the probabilities that a sample belongs to a particular class or groupings.

Bayesian classification is based on Bayes theorem and this technique tends to be highly accurate and fast, making it useful on large databases.

Naïve Bayesian Classification Algorithm:

The operation of the Naïve Bayesian is as follows,

- Let D be a training set of tuples and their associated class labels. As usual, each tuple is represented by an n-dimensional attribute vector, $\mathbf{X} = (x1, x2, :::, xn)$, depicting n measurements made on the tuple from n attributes, respectively, A1, A2, :::, An.
- Suppose that there are m classes $C1,C2,\ldots,Cm$, Given a tuple, X, the classifier will predict that X belongs to the class having the highest posterior probability, conditioned on X. That is, the na ive Bayesian classifier predicts that tuple X belongs to the class Ci if and only if,

$$P(C_i|X) > P(C_j|X)$$
 for $1 \le j \le m, j \ne i$.

The class Ci for which P(Ci | X) is maximized is called the maximum posteriori hypothesis. 3)

Using Bayes' theorem,

$$P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)}.$$

As P(X) is constant for all classes, only $P(X/C_i)P(C_i)$ needs to be maximized. If the class prior probabilities are not known, then it is commonly assumed that the classes are equally likely, that is, $P(C_1)=P(C_2)=\ldots=P(C_m)$, and we would therefore maximize $P(X/C_i)$. Otherwise, we maximize $P(X/C_i)P(C_i)$. Note that the class prior probabilities may be estimated by $P(C_i)=|C_{i,D}|/|D|$, where $|C_i,D|$ is the number of training tuples of class C_i in D.

This presumes that the attributes' values are conditionally independent of one another, given the class label of the tuple (i.e., that there are no dependence relationships among the attributes). Thus,

$$P(X|C_i) = \prod_{k=1}^n P(x_k|C_i)$$

= $P(x_1|C_i) \times P(x_2|C_i) \times \dots \times P(x_n|C_i)$

We can easily estimate the probabilities $P(x_1/C_i)$, $P(x_2/C_i)$,, $P(x_n/C_i)$ from the training tuples. Recall that here x_k refers to the value of attribute A_k for tuple X. For each attribute, we look at whether the attribute is categorical or continuous-valued.

4) Sample X is therefore assigned to class Ci if and only if P(X/Ci).P(Ci)>P(X/Cj).P(Cj) for i <= j <= m. $y \ne 1$ In other words if it is assigned to the class C for which P(X/Ci).P(Ci) is Max.

Procedure / Approach / Algorithm / Activity Diagram:

- 1. Identify attributes suitable for applying classification algorithm
- 2. Implement Naïve Bayesian on your dataset.
- 3. Apply Naïve Bayesian to classify unknown tuple.

Results: (Program printout with output / Document printout as per the format)

Program:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math
def accuracy score(y true, y pred):
""" score = (y true - y pred) / len(y true) """
    return round(float(sum(y_pred == y_true))/float(len(y_true)) *
100 ,2)
def pre processing(df):
    """ partioning data into features and target """
    X = df.drop([df.columns[-1]], axis = 1)
    y = df[df.columns[-1]]
    return X, y
def train test split(x, y, test size = 0.25, random state = None):
    """ partioning the data into train and test sets """
    x test = x.sample(frac = test size, random state
random state)
```

```
y test = y[x test.index]
    x train = x.drop(x test.index)
    y_train = y.drop(y_test.index)
    return x train, x test, y train, y test
class NaiveBayes:
    11 11 11
        Bayes Theorem:
                                   Likelihood * Class prior probability
                Posterior Probability =
                                        Predictor prior probability
                                          P(x|c) * p(c)
                                P(c|x) = -----
                                               P(x)
    11 11 11
    def init (self):
   Attributes:
   likelihoods: Likelihood of each feature per class
   class priors: Prior probabilities of classes
   pred priors: Prior probabilities of features
   features: All features of dataset
        self.features = list
        self.likelihoods = {}
        self.class priors = {}
        self.pred priors = {}
        self.X_train = np.array
        self.y train = np.array
        self.train size = int
        self.num feats = int
    def fit(self, X, y):
        self.features = list(X.columns)
        self.X_train = X
        self.y train = y
```

```
self.train size = X.shape[0]
        self.num feats = X.shape[1]
        for feature in self.features:
            self.likelihoods[feature] = {}
            self.pred priors[feature] = {}
            for feat val in np.unique(self.X train[feature]):
                self.pred priors[feature].update({feat val: 0})
                for outcome in np.unique(self.y train):
self.likelihoods[feature].update({feat val+' '+outcome:0})
                    self.class priors.update({outcome: 0})
        self. calc class prior()
        self. calc likelihoods()
        self. calc predictor prior()
    def calc class prior(self):
        """ P(c) - Prior Class Probability """
        for outcome in np.unique(self.y train):
            outcome count = sum(self.y train == outcome)
            self.class priors[outcome] = outcome count
self.train size
    def calc likelihoods(self):
        """ P(x|c) - Likelihood """
        for feature in self.features:
```

```
for outcome in np.unique(self.y train):
                outcome count = sum(self.y train == outcome)
                feat likelihood
self.X train[feature][self.y train[self.y train
outcome].index.values.tolist()].value counts().to dict()
                for feat val, count in feat likelihood.items():
                    self.likelihoods[feature][feat val + ' '
outcome] = count/outcome count
    def calc predictor prior(self):
        """ P(x) - Evidence """
        for feature in self.features:
            feat vals
self.X train[feature].value counts().to dict()
            for feat val, count in feat vals.items():
                self.pred priors[feature][feat val]
count/self.train size
    def predict(self, X):
        """ Calculates Posterior probability P(c|x) """
        results = []
        X = np.array(X)
        for query in X:
            probs outcome = {}
            for outcome in np.unique(self.y train):
                prior = self.class priors[outcome]
                likelihood = 1
                evidence = 1
                for feat, feat val in zip(self.features, query):
```

```
likelihood *= self.likelihoods[feat][feat val
+ ' ' + outcome]
                   evidence *= self.pred priors[feat][feat val]
               posterior = (likelihood * prior) / (evidence)
               probs outcome[outcome] = posterior
           result = max(probs outcome, key = lambda
                                                             x:
probs outcome[x])
           results.append(result)
       return np.array(results)
if name == " main ":
   print("\nWeather Dataset:")
   df = pd.read table("Data\weather.txt")
   X,y = pre processing(df)
   X train, X test, y train, y test = train test split(X, y,
test size = 0.1, random state = 0)
   nb clf = NaiveBayes()
   nb clf.fit(X train, y train)
   print("Train Accuracy: {}".format(accuracy score(y train,
nb clf.predict(X_train))))
```

```
print("Test
                 Accuracy: {}".format(accuracy score(y test,
nb clf.predict(X test))))
   query = np.array([['Rainy','Mild', 'Normal', 't']])
   print("Query 1:- {} ---> {}".format(query,
nb clf.predict(query)))
   #Query 2:
   query = np.array([['Overcast','Cool', 'Normal', 't']])
   print("Query 2:- {} ---> {}".format(query,
nb clf.predict(query)))
   query = np.array([['Sunny','Hot', 'High', 't']])
   print("Query
                                         {}".format(query,
                   3:-
                            {}
                                  --->
nb clf.predict(query)))
```

Output:

```
Weather Dataset:
Train Accuracy: 84.62
Test Accuracy: 100.0
Query 1:- [['Rainy' 'Mild' 'Normal' 't']] ---> ['no']
Query 2:- [['Overcast' 'Cool' 'Normal' 't']] ---> ['yes']
Query 3:- [['Sunny' 'Hot' 'High' 't']] ---> ['no']
```

Post Lab Question- Answers (If Any):

Q.1. What are advantages and disadvantages of Bayesian Classification?

Ans: Advantages

- This algorithm works quickly and can save a lot of time.
- Naive Bayes is suitable for solving multi-class prediction problems.
- If its assumption of the independence of features holds true, it can perform better than other models and requires much less training data.
- Naive Bayes is better suited for categorical input variables than numerical variables.

Disadvantages

- Naive Bayes assumes that all predictors (or features) are independent, rarely happening in real life. This limits the applicability of this algorithm in real-world use cases.
- This algorithm faces the 'zero-frequency problem' where it assigns zero probability to a categorical variable whose category in the test data set wasn't available in the training dataset. It would be best if you used a smoothing technique to overcome this issue.
- Its estimations can be wrong in some cases, so you shouldn't take its probability outputs very seriously.

Q.2. Comment on Laplacian correction.

Ans: Laplace correction is a smoothing technique that helps tackle the problem of zero probability in the Naïve Bayes machine learning algorithm. Using higher alpha values will push the likelihood towards a value of 0.5, i.e., the probability of a word equal to 0.5 for both the positive and negative reviews.

CO: Comprehend basics of ML				
Conclusion: In this experiment, preprocessing techniques.	H successfully understood K. J. SOMAIYA COLLEGE OF ENGG.	and	implemented	Data
Grade: AA / AB / BB / BC / CC / C	D/DD			
Signature of faculty in-charge with da	ate			
References:				

Books/ Journals/ Websites:

1. Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 3nd Edition