Work Planning & Control for R&D Activities – Lessons Learned

We Put Science To Work

2007 ISM Workshop – Brookhaven National Lab

John Miller Manager, SRNL Safety Programs

Lori Chandler Manager, Analytical Development Directorate

November 28, 2007

Work Planning & Control for R&D Activities – Lessons Learned

Presentation Outline

- SRNL Who We Are
- Safety System Improvements at SRNL
 - Integrated Safety Management (ISM)
 - Work Planning and Control (WP&C)
- Lessons Learned
 - General
 - Scope of Work
 - Analyze the Hazards
 - Develop and Implement Controls
 - Confirmation of Readiness to Work
 - Perform Work
 - Feedback
 - Other Recommendations
 - Summary
- Q&A

We Put Science To Work™

SRNL Research Emphasis Areas

National Security

- Tritium Technology
- Plutonium Technology
- Homeland Security Support
- Non-Proliferation Technology

Energy Security

- Hydrogen Storage Technology
- Thermochemical Production of Hydrogen
- Global Nuclear Energy Partnership
- Biofuels

Environmental and Chemical Process Technology

- Materials Stabilization and Disposition
- Cleanup and Remediation Technologies
- Characterization, Analysis and Closure Technologies

Safety System Improvements – Integrated Safety Management (ISM)

- Developed safety management system for R&D work (1998)
 - Alternative to Conduct of Operations
 - R&D attempt to implement Con Ops was a challenge
- Conduct of Research & Development
 - Roadmap for applying safety requirements to R&D work
 - Consistent with DOE ISM process
 - Component of WSRC ISM Description

Approach to Development of Conduct of R&D

- Built on existing SRS safety systems and culture
- Co-developed by R&D, operations, and ES&H personnel
- Provides consistent approach to hazard identification and control
- Enabling tool for researchers
 - Process designed to facilitate ease of use
 - On-line user interface designed by R&D
 - Easily adaptable no matter what the discipline
 - Easily modifiable as SRNL develops work portfolio

Safety System Improvements – Work Planning & Control

- Enhanced R&D WP&C process in response to DNFSB 2004-1, Commitment 23
 - Conducted assessment (gap analysis) of existing practices against CRAD for Work Planning/Work Control
 - Identified opportunities for improvement
 - Scopes of work
 - Work control documentation
 - Performance of work using "skill-ofthe-craft"

R&D Work Planning & Control Improvements

- Phase 1 (2006)
 - Placed requirements in existing procedures
 - Concentrated on Work Control documentation
 - Eliminated use of "skill-of-the-craft"
- Phase 2 (2007)
 - Developed comprehensive R&D WP&C document
 - WP&C integrated into ISM Core Functions
 - Process map developed
- Retraining for R&D staff and management team scheduled for first quarter 2008

SRNL – Integrated Safety Management

ISMS

Conduct of Operations

Conduct of Engineering

Conduct of R&D

Quality Program

- Work Planning & Control
- Targeted Training
- Management Field Presence
- Lessons Learned/Operating Experience Program
- Behavior-Based Safety Program

- Event and Error Causal Analysis
 –Tracking/Trending Problems
- Conduct of R&D Hazards
 Assessment Program
- Subject Matter Expert Support Network
- Self-Assessments

Safety Performance

Lessons Learned – General

- Provide WP&C guidance language for R&D
 - Guidance language generally written for operations activities and culture
- Integrate WP&C into ISM
 - Foundation already institutionalized and understood
 - Simple construct, easily understood, people already conversant
 - Linking critical WP&C elements to ISM core functions enables more rapid learning
 - Both philosophy and language
- Develop a strong connection between WP&C and the business needs of the lab

WP&C → Safely Executed R&D → Good Business

Lessons Learned – Define Scope of Work

- Guard against scope additions without careful thought
- Ensure that the scope accounts for:
 - Setup, decommissioning, maintenance, abnormal conditions, etc.
 - Appropriate interfaces/communications

Ask yourself:

"Have I added a new unanalyzed hazard with this change?"

Lessons Learned – Analyze the Hazards

- Use of ES&H and Engineering experts is essential:
 - Industrial Hygiene
 - Pressure Protection
 - Health Physics/ Radiological Controls
 - Environmental Compliance
 - Electrical, etc.
- Provides consistency
- Develop screening criteria to guide "knowing when to ask for help"

Lessons Learned – Develop and Implement Controls

- Ensure that hierarchy of controls does not start with PPE
- Ensure analysis is devoted to:
 - Elimination of the hazard
 - Material substitution
 - Equipment modifications
 - (e.g., auto shut-off)
 - Engineered controls

Lessons Learned – Confirmation of Readiness to Work

- Make confirmation of readiness a step in the process
 - Independent oversight during confirmation process is necessary
 - Use peer reviewers and SMEs (who participated in the hazards analysis)

Confirmation of readiness is an essential function that cannot be overlooked

Lessons Learned – Confirmation of Readiness (cont.)

- Ensure all work is authorized
 - All preparations are completed
 - Required controls are in place and tested

No exceptions

Lessons Learned – Confirmation of Readiness (cont.)

Start all work with:

- Pre-job safety discussion (less formal), or
- Pre-job Safety Briefing (formal, documented)
- Involve all work planners and hands-on workers
- Ensure assigned workers
 - Understand all hazards
 - Ready to perform work
 - Understand responsibility to suspend work when

Lessons Learned – Perform Work

- Use an informal stop work process – "time-out"
- Work only to approved scope of work

Scope additions without revisiting the hazards analysis are a recipe for an event

Lessons Learned - Feedback

- Insist on a strong management field presence
 - Continually reinforce expectations
 - Validate that your personnel are using the safety management system
- Conduct post-job and postevent reviews
 - Review simple errors
 - Review all jobs
 - No blame environment

Lessons Learned – Feedback (cont.)

Ensure that Self-Assessment Program has:

- Hands-on workers conducting assessments
- Assessments driven by performance analysis (not just compliance)
- Work groups assessing each other as appropriate
- Vertical and horizontal assessments to add depth and breadth

Other Recommendations

Engage researchers

- Champions for safety
- Involve them in safety management system design and implementation
- Continuously restate expectations for safe work performance
 - Make accountability for safety an element of performance assessment
 - Establish that failure to meet safety expectations has consequence

Summary

- Scope additions without careful thought are a recipe for an event
- Subject Matter Expert involvement with hazards analysis is essential
- Controls need to focus on eliminating or reducing the hazards
- Confirmation of readiness is critical
- Insist on a strong management field presence

Summary – cont.

- Management expectations for performance need to be continually reinforced
- Involve your research staff in the design and operation of your ISMS
- Integrate WP&C into ISM
- WP&C is applicable to an R&D environment

WP&C --- Safely Executed R&D --- Good Business

Work Planning & Control for R&D Activities – Lessons Learned

Questions?

