01.112/50.007 Machine Learning

Lecture 9 Kernel Methods

Recap

Support Vector Machine (SVM)

- SVMs maximize the margin around the separating hyperplane. A.k.a. large margin classifiers.
- The decision function is fully specified by a subset of training samples, *the support vectors*.
- Solving SVMs is a quadratic programming problem.
- Seen by many as the most successful current text classification method*

^{*}but other discriminative methods often perform very similarly 3

Computing the margin

Maximum Margin

Our goal is to

maximize $1/\|\theta\|$ subject to $y(\theta^{T}x + \theta_0) \ge 1$ for all data (x, y)

Or equivalently,

minimize $\frac{1}{2} \|\theta\|^2$ subject to $y(\theta^T x + \theta_0) \ge 1$ for all data (x, y)

Primal-Dual

Primal.

minimize $\frac{1}{2} \|\theta\|^2$ subject to $y(\theta^T x + \theta_0) \ge 1$ for all data (x, y)

Dual.

Support Vectors

Complementary Slackness.

$$\hat{\alpha}_{x,y} > 0$$
: $y(\hat{\theta}^{\mathsf{T}}x + \theta_0) = 1$
 $\hat{\alpha}_{x,y} = 0$: $y(\hat{\theta}^{\mathsf{T}}x + \theta_0) > 1$

$$\hat{\alpha}_{x,y} = 0$$
: $y(\hat{\theta}^{\mathsf{T}}x + \theta_0) > 1$

Support Vectors Non-Support Vectors

Sparsity

Since very few data points are support vectors, most of the $\hat{\alpha}_{x,y}$ will be zero.

Consider the dual objective function

$$\ell(\alpha) = \sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \, \alpha_{x',y'} y y'(x^{\mathsf{T}} x')$$

- Claim: This function is maximized only for support vectors from opposite sides of the margin.
 - Case 1: Inner product is 0 (dissimilar)
 - Case 2: Inner product is 1 (similar)
 - Sub-case 1: same class
 - Sub-case 2: different classes

Consider the dual objective function

$$\ell(\alpha) = \sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \, \alpha_{x',y'} y y'(x^{\mathsf{T}} x')$$

Inner product is 0 (dissimilar vectors)

Consider the dual objective function

$$\ell(\alpha) = \sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \, \alpha_{x',y'} y y'(x^{\mathsf{T}} x')$$

Inner product is 1 (same class)

Consider the dual objective function

$$\ell(\alpha) = \sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \, \alpha_{x',y'} y y'(x^{\mathsf{T}} x')$$

• Inner product is 1 (different class)

SVM

Learning.

$$\ell(\alpha) = \sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} yy' (x^{\mathsf{T}} x')$$

Inner product between training examples

Prediction.

$$h(x;\theta) = \operatorname{sign}(\theta^{\mathsf{T}}x + \theta_0) = \operatorname{sign}\left(\sum_{(x',y')} \alpha_{x',y'} y'(x^{\mathsf{T}}x') + \theta_0\right)$$

For the dual, we don't need the feature vectors x, x'. Knowing just the dot products (x^Tx') is enough.

Recall that (x^Tx') is a measure of similarity between x and x'. This similarity function is also called a *kernel*.

Inner product between training example and new test sample

Kernels

Non-Linear SVM

Primal.

minimize
$$\frac{\lambda}{2} \|\theta\|^2 + \frac{1}{n} \sum_{(x,y)} \xi_{x,y}$$
 subject to
$$y(\theta^\top x + \theta_0) \ge 1 - \xi_{x,y}$$

$$\xi_{x,y} \ge 0$$

for all data (x, y)for all data (x, y)

Dual.

maximize
$$\sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} y y' (x^{\mathsf{T}} x')$$
 subject to
$$1/\lambda \ge \alpha_{x,y} \ge 0 \text{ for all } (x,y)$$

$$\sum_{(x,y)} \alpha_{x,y} y = 0$$

Non-Linear SVM

- Transform the input feature vectors to higher dimensions
- Data is now linearly separable in 3D
- This means that the problem can still be solved by a linear classifier

$$\Phi: \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \to \left(\begin{array}{c} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \end{array}\right) \quad \mathbb{R}^2 \to \mathbb{R}^3$$

10/10/2019

SVM in transformed feature space

Learn classifier linear in θ for \mathbb{R}^D :

$$y = \operatorname{sign}(\theta \cdot \phi(x) + \theta_0)$$

 $\Phi(x)$ is a feature map

SVM in transformed feature space

Learning.

$$\ell(\alpha) = \sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} yy' (x^{\mathsf{T}}x')$$

Prediction.

$$h(x;\theta) = \operatorname{sign}(\theta^{\mathsf{T}} x + \theta_0) = \operatorname{sign} \left(\sum_{(x',y')} \alpha_{x',y'} y'(x^{\mathsf{T}} x') + \theta_0 \right)$$

Learning.

$$\ell(\alpha) = \sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} yy'(\emptyset(x),\emptyset(x'))$$
Prediction.

Prediction.

$$h(x;\theta) = \operatorname{sign}(\theta^\top x + \theta_0) = \operatorname{sign}\left(\sum_{(x',y')} \alpha_{x',y'} y'(\emptyset(x),\emptyset(x')) + \theta_0\right)$$

Kernel Methods

 Inner product is easier to obtain, than transforming each feature to higher dimension space.

$$K(x, x') = \emptyset(x).\emptyset(x')$$

 Kernel methods can be used for any linear prediction methods to deal with non-linear data.

Perceptron: $y = sign(\theta \cdot \phi(x) + \theta_0)$

SVM: $y = sign(\theta \cdot \phi(x) + \theta_0)$

Linear Regression : $y = \theta \cdot \phi(x) + \theta_0$

Inner product of polynomials

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 $\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \Phi(\mathbf{x}) = \text{polynomials of degree exactly } m$

m=1
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}$$

m=2
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1^2 \\ v_2 x_1 x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} z_1^2 \\ v_2 z_1 z_2 \\ z_2^2 \end{bmatrix} = x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$$

$$= (x_1 z_1 + x_2 z_2)^2$$

$$= (\mathbf{x} \cdot \mathbf{z})^2$$

$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^{\mathsf{m}} = K(\mathbf{x}, \mathbf{z})$$

Don't store high-dimensional features – Only evaluate inner product with kernels

Kernel Methods

Properties of kernel functions

- 1. K(x, x') = 1 is a kernel function.
- 2. Let $f: \mathbb{R}^d \to \mathbb{R}$ be any real valued function of x. Then, if K(x, x') is a kernel function, then so is $\tilde{K}(x, x') = f(x)K(x, x')f(x')$
- 3. If $K_1(x, x')$ and $K_2(x, x')$ are kernels, then so is their sum. In other words, $K(x, x') = K_1(x, x') + K_2(x, x')$ is a kernel.
- 4. If $K_1(x, x')$ and $K_2(x, x')$ are kernels, then so is their product $K(x, x') = K_1(x, x')K_2(x, x')$

Common Kernels

Polynomials of degree exactly d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

Gaussian kernels

$$K(\vec{u},\vec{v}) = \exp\left(-\frac{||\vec{u}-\vec{v}||_2^2}{2\sigma^2}\right) \qquad \text{Euclidean distance, squared}$$

And many others: very active area of research!
 (e.g., structured kernels that use dynamic programming to evaluate, string kernels, ...)

Non-Linear SVM

Primal.

minimize
$$\frac{\lambda}{2} \|\theta\|^2 + \frac{1}{n} \sum_{(x,y)} \xi_{x,y}$$
 subject to
$$y(\theta^\top x + \theta_0) \ge 1 - \xi_{x,y}$$

$$\xi_{x,y} \ge 0$$

for all data (x, y)for all data (x, y)

Dual.

maximize
$$\sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} yy'(\emptyset(x),\emptyset(x'))$$
 subject to
$$1/\lambda \ge \alpha_{x,y} \ge 0 \text{ for all } (x,y)$$

$$\sum_{(x,y)} \alpha_{x,y} y = 0$$

Cross Validation

General Strategy

Split data up into three parts

Assume that the data is randomly allocated to these three,
e.g. 60/20/20

Cross Validation

Recycle the data

Use (almost) all of this for training:

Leave one out Cross Validation

Lets say we have N data points k indices the data points, i.e. k=1...N

Let (x_k, y_k) be the k^{th} example

Temporarily remove (x_k, y_k) from the dataset

Train on the remaining N-1 data points

Test your error on (x_k, y_k)

Do this for each k=1..N and report the average error

Once the best parameters (e.g., choice of C for the SVM) are found, re-train using all of the training data

K-fold cross validation

- E.g. In 3 fold cv, there are 3 runs
- The error is averaged over all runs

Summary

- Classifiers can be learnt for high dimensional features spaces, without actually having to map the points into the high dimensional space.
- Data may be linearly separable in the high dimensional space, but not linearly separable in the original feature space.
- Kernels can be used for an SVM because of the scalar product in the dual form, but can also be used elsewhere – they are not tied to the SVM formalism.

Intended Learning Outcomes

- What is a kernel function and how it is used in the context of SVM.
- What are the essential properties associated with a kernel function.
- How to identify whether a function is a valid (or an invalid) kernel function.
- What is the definition of a RBF kernel.