Практическая работа №3 Расчет шагающих конвейеров

Цель работы: рассчитать время цикла шагающего конвейера.

Теоретическая часть

Шагающие конвейеры, созданные впервые в нашей стране, относятся к числу наиболее эффективных транспортных устройств циклического действия. Конвейер перемещает штучные крупные грузы на один шаг вперед через равные промежутки времени вдоль линии технологического процесса производства.

Они обслуживают литейные, сборочные, механические и термические цехи машиностроительной, судостроительной, авиационной и других отраслей промышленности. Шагающие конвейеры устанавливают на уровне пола цеха и легко встраивают их в автоматические линии в условиях мелкосерийного и единичного производства.

В шагающих конвейерах груз передвигается в двух плоскостях: горизонтальной — возвратно-поступательное движение рабочего органа и вертикальной — подъем и опускание. Цикл движения состоит из четырех этапов: подъем рамы с грузом, рабочий ход, опускание рамы с грузом и обратный ход рамы без груза. В качестве привода принимают электромеханический, гидравлический и комбинированный.

В зависимости от назначения шагающие конвейеры имеют различные конструктивные исполнения. На рисунке 5 приведена схема шагающего конвейера, в котором чередуются пилообразные неподвижные 1 и подвижные 2 пластины. Благодаря возвратно- поступательному движению подвижных пластин вверх и вниз изделия перемещаются относительно неподвижных пластин за каждый ход подвижных пластин.

Рисунок 5 – Схема шагающего конвейера

Изм	Лист	№ докум.	Подпись	Дата	МиТОМ.ПТУМЦ.Пр.№3.2021.Отчет				ет		
Разр		Болсун А.В	подши	Диги		Лит	r	Лист	Листов		
1						7111		JIMCI	листов		
Пров	вер.	Астапенко И.В.			Расчет шагающих конвейеров			1	6		
Реце	нз.					ГГТ	У	им. П.С	Э. Сухого		
Н. Контр.Утверд.							-				
			·					гр. МД-41			

На рисунке 6 показан конвейер с гидравлическими механизмами подъема 13 и перемещения рамы 2 посредством рычага 7. При движении поршня цилиндра 11 рейка 10, прикрепленная к штоку 9, приводит во вращение шестерню 8, на валу которой насажены шестерни 6, входящие в зацепление с рейками 5 и поднимающие раму 2 одновременно с горизонтальным перемещением по опорным роликам 4. При этом изделие 1 снимается с неподвижной рамы 3 и перемещается на один шаг вперед. От конечных выключателей хода поршня цилиндра штоковая полость подъемных цилиндров 13 переключается со слива на нагнетание жидкости, и поршни, сжимая пружины 12, опускают раму 2 с изделием 1 на неподвижную раму 3. В конечном нижнем положении рама 2 включает конечный выключатель механизма перемещения, и рабочая жидкость снова поступает в бесштоковую полость цилиндра 11. Цикл повторяется. Пружины 12 служат для подъема рамы при снятии давления в цилиндре.

Загрузка и разгрузка шагающих конвейеров осуществляются кранами, погрузчиками или роликовыми конвейерами. Длина конвейеров доходит до 100 м, масса единичного груза до 8 т, скорость перемещаемого груза до 0,1 м/с.

Рисунок 6 – Шагающий конвейер

Шагающие конвейеры обладают рядом преимуществ перед другими типами конвейеров. Например, использование их в литейном и сборочном цехах вместо тележечных способствует повышению производительности на

Изм.	Лист	№ докум.	Подпись	Дата

15...20% при меньшей (в 1,6...2 раза) металлоемкости, резкому сокращению производственных площадей.

Приводы механизмов шагающего конвейера работают в тяжелых динамических режимах пуска и торможения. Поэтому, кроме силовых необходимо быстродействие, проверять его на расчетов, продолжительность каждого работы этапа оказывает влияние на производительность конвейера.

Первый этап – подъем рамы. Определяют эффективную подъемную силу:

$$F_{\mathfrak{I}} = k(m_{1}g + m_{2}g),$$
 (23)

где $k = 1,2...1,5; m_1; m_2$ — масса груза и подвижной рамы соответственно. Величина ускорения

$$a_1 = \frac{F_{"}}{m_2} = kg \, \frac{m_1 + m_2}{m_2} \,. \tag{24}$$

Время движение рамы t_{I} до соприкосновения с грузом при высоте подъема h_{I} определяется как

$$t_1 = \sqrt{\frac{2h_1}{a_1}} = \sqrt{\frac{2h_1m_2}{kg(m_1 + m_2)}}.$$
 (25)

К концу соприкосновения с грузом скорость рамы равна

$$v_1 = a_1 t_1 = \sqrt{2kgh_1 \left(\frac{m_1 + m_2}{m_2}\right)}. (26)$$

При соприкосновении рамы с грузом происходят удары. Начальная скорость определяется по формуле

$$v_2 = v_1 \sqrt{\frac{m_2}{m_1 + m_2}} = \sqrt{2kgh_1} \tag{27}$$

Конечная скорость уз подъема рамы с грузом определяется как

$$v_3 = \sqrt{v_2^2 + 2(k-1)gh_2},\tag{28}$$

где h_2 – высота подъема рамы вместе с грузом.

Время движения $t^l{}_l$ рамы с грузом будет

$$t_1^1 = \frac{2h_2}{v_2 + v_3} \tag{29}$$

Второй этап: минимальное время рабочего хода определяется предельными ускорениями при разгоне и торможении:

$$t_p = \sqrt{\frac{2l}{a_p(1 + a_p / a_T)}},$$
 (30)

					МиТОМ.ПТУМЦ.Пр.№3.2021.Отчет
Изм.	Лист	№ докум.	Подпись	Дата	' 1

При одинаковых ускорениях разгона и торможения

$$a_P = a_T = a,$$

$$t_2 = 2\sqrt{l/a}$$

Третий этап – опускание рамы при равнозамедленном движении. Ускорение должно быть меньше ускорения свободного падения a_0 . Время опускания

$$t_3 = \sqrt{\frac{2h}{a_0}} \tag{31}$$

где h – высота подъема.

Четвертый этап – обратный ход рамы при равнопеременном и равнозамедленном движении:

$$t_4 = 2\sqrt{\frac{l}{ng}} \tag{32}$$

где n — допустимый коэффициент инерционных перегрузок (n = 1,75...4). Время цикла

$$T_u = t_1 + t^1_1 + t_2 + t_3 + t_4 \tag{33}$$

 $T_{\it u} = t_{\it l} + t^{\it l}_{\it l} + t_{\it 2} + t_{\it 3} + t_{\it 4}$ должно быть больше времени, Время заданного цикла не технологическими условиями.

Задание

Рассчитать время цикла шагающего конвейера.

Таблица 7 – Исхолные ланные

№ варианта	Масса поднимаемого груза m_1 , т	Масса подвижной рамы m_2 , т	<i>h</i> ₁ , м	<i>h</i> ₂ , м	<i>h</i> , м	<i>l</i> , м	а, м/с	<i>а</i> о, м/с
1	6/4/2	20/15/12	0,2	0,1	0,4	0,7	2	6
2	8/10/14	17/13/9	0,4	0,3	0,7	1	0,5	5
3	4/5/9	15/11/6	0,35	0,2	0,7	2	1	6
4	3/8/11	13/10/18	0,3	0,3	0,7	1	2	5
5	1/7/12	5/7/14	0,25	0,4	0,7	0,8	1,5	5

Пример

Рассчитать время цикла шагающего конвейера, если известно: масса поднимаемого груза $m_1 = 5000 \,\mathrm{kr} = 5 \,\mathrm{T};$ масса подвижной рамы $m_2 = 15000$ кг = 15 т; высота подъема $h_1 = 0.3$ м; высота подъема рамы вместе

Изм.	Лист	№ докум.	Подпись	Дата

с грузом $h_2=0,2$ м; высота подъема h=0,4 м; длина рабочего хода l=0,5 м; ускорение рабочего хода a=1 м/с; ускорение опускания $a_0=4$ м/с.

Решение

Определяем эффективную подъемную силу по формуле (23):

$$F_{\mathcal{I}} = k(m_1g + m_2g) = 1,2(5000 \cdot 9,81 + 15000 \cdot 9,81) = 235440 \text{ H}.$$

Определяем величину ускорения по формуле (24):

$$a_1 = \frac{F_{\mathcal{G}}}{m_2} = kg \frac{m_1 + m_2}{m_2} = 1, 2.9, 81 \frac{5000 + 15000}{15000} = 15 \text{ m/c}^2.$$

Определяем время движения рамы t_1 до соприкосновения с грузом при высоте подъема $h_1 = 0.3$ м по формуле (25):

$$t_1 = \sqrt{\frac{2h_1}{a_1}} = \sqrt{\frac{2 \cdot 0.3}{15}} = 0.2 \text{ c}.$$

Определяем скорость рамы по формуле (26):

$$v_1 = a_1 t_1 = 15 \cdot 0, 2 = 3 \text{ M/c}.$$

Определяем начальную скорость при соприкосновении рамы с грузом по формуле (27):

$$v_2 = v_1 \sqrt{\frac{m_2}{m_1 + m_2}} = 3\sqrt{\frac{15000}{5000 + 15000}} = 2,5 \text{ m/c}.$$

Определяем конечную скорость v_3 подъема рамы с грузом по формуле (28):

$$v_3 = \sqrt{v_2^2 + 2(k-1)gh_2} = \sqrt{2,5^2 + 2(1,2-1)9,81 \cdot 0,2} = 2,4 \text{ m/c}.$$

Определяем время движения t^{1}_{1} рамы с грузом по формуле (29):

$$t_1^1 = \frac{2h_2}{v_2 + v_3} = \frac{2 \cdot 0, 2}{2, 5 + 2, 4} = 0,08 \text{ c}.$$

Определяем время рабочего хода по формуле

$$t_2 = 2\sqrt{l/a} = 2\sqrt{0.5/1} = 1.4 \text{ m/c}.$$

Определяем время опускания рамы по формуле (31):

Изм.	Лист	№ докум.	Подпись	Дата

$$t_3 = \sqrt{\frac{2h}{a_0}} = \sqrt{\frac{2 \cdot 0, 4}{4}} = 0, 4 \text{ c.}$$

Определяем время обратного хода рамы по формуле (32):

$$t_4 = 2\sqrt{\frac{l}{ng}} = 2\sqrt{\frac{0.5}{2.9.81}} = 0.3 \text{ c}.$$

Определяем время цикла по формуле (33):

$$T_{u} = t_1 + t_1^1 + t_2 + t_3 + t_4 = 0.2 + 0.08 + 1.4 + 0.4 + 0.3 = 2.38 \text{ c.}$$

Практическая часть

№ варианта	Масса поднимаемого груза m_1 , т	Масса подвижной рамы m_2 , т	<i>h</i> 1, м	<i>h</i> 2, м	<i>h</i> , м	<i>l</i> , м	<i>а</i> , м/с	<i>а</i> _{0,} м/с
1	6/4/2	20/15/12	0,2	0,1	0,4	0,7	2	6

Определяем эффективную подъемную силу по формуле (23):

$$F_9 = k(m_1g + m_2g) = 1,2(5000 \cdot 9,81 + 15000 \cdot 9,81) = 235440 \text{ H}.$$

Определяем величину ускорения по формуле (24):

$$a_1 = \frac{F_{\Im}}{m_2} = kg \frac{m_1 + m_2}{m_2} = 1, 2.9, 81 \frac{5000 + 15000}{15000} = 15 \text{ m/c}^2.$$

Определяем время движения рамы t_1 до соприкосновения с грузом при высоте подъема $h_1 = 0.3$ м по формуле (25):

$$t_1 = \sqrt{\frac{2h_1}{a_1}} = \sqrt{\frac{2 \cdot 0.3}{15}} = 0.2 \text{ c}.$$

Определяем скорость рамы по формуле (26):

$$v_1 = a_1 t_1 = 15 \cdot 0, 2 = 3 \text{ M/c}$$
.

Определяем начальную скорость при соприкосновении рамы с грузом по формуле (27):

$$v_2 = v_1 \sqrt{\frac{m_2}{m_1 + m_2}} = 3\sqrt{\frac{15000}{5000 + 15000}} = 2,5 \text{ m/c}.$$

Определяем конечную скорость v_3 подъема рамы с грузом по формуле (28):

Изм.	Лист	№ докум.	Подпись	Дата

$$v_3 = \sqrt{v_2^2 + 2(k-1)gh_2} = \sqrt{2,5^2 + 2(1,2-1)9,81 \cdot 0,2} = 2,4 \text{ m/c}.$$

Определяем время движения t^{1}_{1} рамы с грузом по формуле (29):

$$t_1^1 = \frac{2h_2}{v_2 + v_3} = \frac{2 \cdot 0.2}{2.5 + 2.4} = 0.08 \text{ c}.$$

Определяем время рабочего хода по формуле

$$t_2 = 2\sqrt{l/a} = 2\sqrt{0.5/1} = 1.4 \text{ m/c}.$$

Определяем время опускания рамы по формуле (31):

$$t_3 = \sqrt{\frac{2h}{a_0}} = \sqrt{\frac{2 \cdot 0.4}{4}} = 0.4 \text{ c.}$$

Определяем время обратного хода рамы по формуле (32):

$$t_4 = 2\sqrt{\frac{l}{ng}} = 2\sqrt{\frac{0.5}{2.9.81}} = 0.3 \text{ c}.$$

Определяем время цикла по формуле (33):

$$T_u = t_1 + t_1^1 + t_2 + t_3 + t_4 = 0.2 + 0.08 + 1.4 + 0.4 + 0.3 = 2.38 \text{ c.}$$

Изм.	Лист	№ докум.	Подпись	Дата