

Statement of Verification

BREG EN EPD No.: 000199

Issue: 1

BRE/Global

This is to verify that the

Environmental Product Declaration provided by:

Aggregate Industries UK Limited

is in accordance with the requirements of:

EN 15804:2012+A1:2013

and

BRE Global Scheme Document SD207

This declaration is for: Limestone Aggregate

Company Address

Bardon Hill Coalville Leicestershire LE67 1TL

Signed for BRE Global Ltd

01 February 2018

Emma Baker

Operator

- 1

01 February 2018

Date of this Issue

31 January 2023

Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms.

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: <u>Enquiries@breglobal.com</u>

BF1805-C Rev 0.1 Page 1 of 8 © BRE Global Ltd, 2017

Environmental Product Declaration

EPD Number: 000199

General Information

EPD Programme Operator	Applicable Product Category Rules							
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013							
Commissioner of LCA study	LCA consultant/Tool							
Aggregate Industries UK Ltd Bardon Hill Coalville Leicestershire LE 67 1TL	BRE LINA							
Declared/Functional Unit	Applicability/Coverage							
1 tonne of limestone aggregate	Product specific							
EPD Type	Background database							
Cradle to Gate	ecoinvent							
Demonstra	ation of Verification							
CEN standard EN 15804 serves as the core PCR ^a								
Independent verification of the declaration and data according to EN ISO 14025:2010 □ Internal ⊠ External								
(Where appropriate ^b)Third party verifier: Kim Allbury								
a: Product category rules b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)								

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A1:2013. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A1:2013 for further guidance

Information modules covered

1	Product Construction				Use stage Related to				End-of-life			Benefits and loads beyond the system								
					Rel	ated to	the bui	lding fa	ng fabric the building											boundary
A1	A2	А3	A4	A 5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D				
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential				
$\overline{\mathbf{A}}$	$\overline{\square}$	$\overline{\mathbf{A}}$																		

Note: Ticks indicate the Information Modules declared.

Manufacturing site

Aggregate Industries Torr Works East Cranmore Shepton Mallett Somerset BA4 4RA

Construction Product

Product Description

Limestone aggregates are produced from a naturally occurring sedimentary rock body by blasting, crushing and screening to produce different size aggregates from 225mm gabion stone to -2mm crushed rock fines.

Torr quarry produces over 5 million tonnes of aggregates per year. These products are used in a variety of applications including asphalt, ready-mixed and precast concrete, coastal and river defence and road construction.

Technical Information

Property	Value, Unit
Thermal conductivity (ASTM-D5334)	1.225 W/m.K
Resistance to Fragmentation (BS EN 1097-2:2010) / Los Angeles Coefficient	28
Oven Dried Particle Density (BS EN 1097-6:2013)	2.65 Mg/m³
Water Absorption (BS EN 1097-6:2013)	0.8 %
Uniaxial Compressive Strength (BS EN 1926:2006)	158.9 MPa

Main Product Contents

Material/Chemical Input	%
Limestone	100

Manufacturing Process

The sedimentary rock mass is drilled and then explosives are used to release several thousands tonnes of rock at a time. This rock which ranges in size from 2.5 meters to 0.5mm is loaded into a crusher to reduce larger pieces to 300 mm, this is transported by conveyor to a processing plant where crushing and screening takes place to produce various sized graded aggregates for sale. 70 % of Torr aggregates are delivered to customers by rail.

Process flow diagram

Richards Associates 2017 Aggregate Industries

Life Cycle Assessment Calculation Rules

Declared / Functional unit description

1 tonne of limestone aggregate

System boundary

This is a cradle to gate EPD (i.e. processes covered in the extraction and processing in modules A1 to A3).

Data sources, quality and allocation

Specific primary data derived from Aggregate Industries Torr works have been modelled. In accordance with the requirements of EN 15804+A1, the most current available data has been used. The manufacture specific data from covers a production period 01/09/2016 to 30/09/17.

Within BRE LINA, all background LCI datasets have been taken from the ecoinvent database v3.2. All ecoinvent datasets are complete within the context used and conform to the system boundary and the criteria for the exclusion of inputs and outputs according to the requirements specified in EN 15804+A1.

100% of the aggregates produced at the Torr works production site in the period are covered by this EPD. No allocation of total site energy use, water, waste and emissions was required.

Cut-off criteria

All raw materials and consumable item inputs, and associated transport to the plant, process energy and water use, direct production waste and wastewater are included.

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts											
			GWP	ODP	AP	EP	POCP	ADPE	ADPF		
			kg CO ₂ equiv.	kg CFC 11 equiv.	kg SO ₂ equiv.	kg (PO ₄) ³⁻ equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, net calorific value.		
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
Draduot ataga	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG	AGG		
	Total (of product stage)	A1-3	5.77e+0	7.16e-7	3.70e-2	9.27e-3	4.67e-3	8.65e-6	8.05e+1		

GWP = Global Warming Potential; ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters describing resource use, primary energy										
			PERE	PERM	PERT	PENRE	PENRM	PENRT		
			MJ	MJ	MJ	MJ	MJ	MJ		
Product stage	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG		
	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG		
	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG		
	Total (of product stage)	A1-3	3.68e+0	8.74e-6	3.68e+0	9.09e+1	0.00	9.09e+1		

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water										
			SM	RSF	NRSF	FW				
			kg	MJ net calorific value	MJ net calorific value	m³				
	Raw material supply	A1	AGG	AGG	AGG	AGG				
Draduot ataga	Transport	A2	AGG	AGG	AGG	AGG				
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG				
	Total (of product stage)	A1-3	0.00	0.00	0.00	2.33e-2				

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

LCA Results (continued)

Other environmental information describing waste categories										
			HWD	NHWD	RWD					
			kg	kg	kg					
	Raw material supply	A1	AGG	AGG	AGG					
Droduot otogo	Transport	A2	AGG	AGG	AGG					
Product stage	Manufacturing	A3	AGG	AGG	AGG					
	Total (of product stage)	A1-3	5.43e-2	1.82e-1	5.62e-4					

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

Other environmental information describing output flows – at end of life										
			CRU	MFR	MER	EE				
			kg	kg	kg	MJ per energy carrier				
Product stage	Raw material supply	A1	AGG	AGG	AGG	AGG				
	Transport	A2	AGG	AGG	AGG	AGG				
	Manufacturing	A3	AGG	AGG	AGG	AGG				
	Total (of product stage)	A1-3	0.00	2.05e-2	1.32e-2	0.00				

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Summary, comments and additional information

About Torr Quarry

Torr quarry produces circa 5 million tonnes of aggregates and crushed rock fines a year, it has its own rail siding and sends 70% of output by rail to depots in South East England, the majority of which is supplied to the London market. The site is unique amongst UK quarries in that it has a "walking" primary crusher that is located near to the face being worked and moved periodically. This minimises the transport distance for the face rock. Once the rock is crushed it is transported by a movable conveyor system to the processing plant. The system used reduces the reliance on large dump trucks to transport primary rock several kilometres around the site, saving on diesel fuel used.

The Quarry is certified to The Wildlife Trust's Biodiversity Benchmark standard and has its own 27 acre reservoir that is used to augment local watercourses when the flow is reduced. The system is fully automated with flow meters linked to variable speed pumps to control the water added. In addition, the site is part of the Mendips Hills Living Landscape Partnership with the Somerset Wildlife Trust which helps to create biodiversity rich environments that link to similar areas, by providing corridors for fauna and flora to spread.

About Aggregate Industries

Aggregate Industries was the first company to be certified to BES 6001 Framework Standard for Responsible Sourcing. We are a heavy weight construction materials company producing and supplying an array of material with over 300 sites and more than 4000 dedicated employees. We produce cement, aggregates, asphalt, ready-mixed concrete and precast concrete products as well as specialist lightweight aggregates (Lytag) and sands. We also offer a national road surfacing service. Our products and services are certified to ISO 9001, 14001 & OHSAS 18001.

Aggregate Industries are part of the LafargeHolcim Group, which is the leading global building materials and solutions company with around 90,000 employees in over 80 countries. It holds leading positions in all regions with a balanced portfolio in developing and mature markets.

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

ASTM D5334-14, Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure, ASTM International, West Conshohocken, PA, 2014, www.astm.org

BSI. Tests for mechanical and physical properties of aggregates. Methods for the determination of resistance to fragmentation. BS EN 1097-2:2010. London, BSI, 2010.

BSI. Tests for mechanical and physical properties of aggregates. Determination of particle density and water absorption. BS EN 1097-6:2013. London, BSI, 2013.

BSI. Natural stone test methods. Determination of uniaxial compressive strength. BS EN 1926:2006. London, BSI, 2006.