

Universidade Estadual de Maringá Centro de Tecnologia – Departamento de Informática

Introdução à Algoritmos em Grafos

Prof. Heloise Manica Paris Teixeira

Introdução

- Muitas aplicações em computação necessitam considerar conjunto de conexões entre pares de objetos:
 - Web (documentos e suas conexões)
 - Existe um caminho para ir de um objeto a outro seguindo as conexões?
 - Qual é a menor distância entre um objeto e outro objeto?
 - Quantos outros objetos podem ser alcançados a partir de um determinado objeto?
- Existe um tipo abstrato chamado grafo que é usado para modelar tais situações.

- Grafo: conjunto de vértices e arestas.
- Vértice: objeto simples que pode ter nome e outros atributos.
- Aresta: conexão entre dois vértices.

- Notação: G = (V, A)
 - G: grafo
 - V: conjunto de vértices
 - A: conjunto de arestas

Aplicações

- Alguns exemplos de problemas práticos que podem ser resolvidos através de uma modelagem em grafos:
 - Ajudar máquinas de busca a localizar informação relevante na Web.
 - Descobrir os melhores casamentos entre posições disponíveis em empresas e pessoas que aplicaram para as posições de interesse.
 - Descobrir qual é o roteiro mais curto para visitar as principais cidades de uma região turística.

- Definição:
 - -G (V, E), onde:
 - V é um conjunto de vértices (ou nodos)
 - |V| denota o número de elementos de V
 - E é uma coleção de pares de V, chamados de aresta (ou arco)
 - |E| denota o número de elementos de E
 - As arestas descrevem relações entre os vértices
 - Representação Geométrica

- Terminologia:
 - Incidência:
 - a aresta (u,v) é dita incidente à u e a v
 - Adjacência: dois vértices u e v são adjacentes se
 - existe aresta (u,v)

- Grafo não direcionado
 - As arestas (u,v) e (v,u) são consideradas como uma única aresta
 - A relação de adjacência é simétrica
 - Neste caso (u,v) é igual de (v,u)

- Grafo Direcionado (ou Dígrafo)
 - Grafo em que as arestas são pares ordenados
 - Neste caso (u,v) é diferente de (v,u)

- Grafo Direcionado:
 - Grau de entrada de v:
 - número de arestas convergentes a v
 - Grau de saída de v:
 - número de arestas divergentes de v
 - Exemplo
 - O grau de saída do nó e é 3
 - O grau de entrada do nó e é 2

- Grafo Direcionado
 - Exemplo: representação de malha aérea (linhas entre aeroportos)

- Caminho: um caminho do vértice v₁ ao vértice v_k é uma sequência de vértices v₁...v_k tal que (v_j,v_{j+1}) pertence a E
- Comprimento de um caminho: número de arestas percorridas no caminho
 - d, e, b, a é um caminho de comprimento 3

 Grafo conexo: grafo que possui caminho entre cada par de vértices de V

Grafo desconexo: grafo não conexo

- Grafo ponderado: grafo em que se associa um valor (ou peso) a cada aresta
 - O peso de uma aresta e é denotado por w(e)

w(Maringá, Paranavaí)=70

Ciclo em grafo direcionado

Ex.: O caminho (0,1,2,3,0) forma um ciclo. O caminho(0,1,3,0) forma o mesmo ciclo que os caminhos (1,3,0,1) e (3,0,1,3).

Ciclo em um grafo não direcionado

Ex.: O caminho (0, 1, 2, 0) é um ciclo.

Grafos Isomorfos

• G=(V,A) e G'=(V',A') são isomorfos se existir uma bijeção $f:V\to V'$ tal que $(u,v)\in A$ se e somente se $(f(u),f(v))\in A'$.

Subgrafos

- Um grafo G' = (V', A') é um subgrafo de G = (V, A) se $V' \subseteq V$ e $A' \subseteq A$.
- Dado um conjunto $V' \subseteq V$, o subgrafo induzido por V' é o grafo G' = (V', A'), onde $A' = \{(u, v) \in A | u, v \in V'\}.$

Ex.: Subgrafo induzido pelo conjunto de vértices $\{1, 2, 4, 5\}$.

O Tipo Abstratos de Dados Grafo

- Importante considerar os algoritmos em grafos como tipos abstratos de dados.
- Conjunto de operações associado a uma estrutura de dados.
- Independência de implementação para as operações.

Operadores do TAD Grafo

- 1. FGVazio(Grafo): Cria um grafo vazio.
- InsereAresta(V1, V2, Peso, Grafo): Insere uma aresta no grafo.
- ExisteAresta(V1, V2, Grafo): Verifica se existe uma determinada aresta.
- Obtem a lista de vértices adjacentes a um determinado vértice (tratada a seguir).
- RetiraAresta(V1, V2, Peso, Grafo): Retira uma aresta do grafo.
- LiberaGrafo(Grafo): Liberar o espaço ocupado por um grafo.
- 7. ImprimeGrafo(Grafo): Imprime um grafo.
- GrafoTransposto(Grafo,GrafoT): Obtém o transposto de um grafo direcionado.
- RetiraMin(A): Obtém a aresta de menor peso de um grafo com peso nas arestas.

Operação "Obter Lista de Adjacentes"

- ListaAdjVazia(v, Grafo): retorna true se a lista de adjacentes de v está vazia.
- PrimeiroListaAdj(v, Grafo): retorna o endereço do primeiro vértice na lista de adjacentes de v.
- 3. ProxAdj(v, Grafo, u, Peso, Aux, FimListaAdj): retorna o vértice u (apontado por Aux) da lista de adjacentes de v, bem como o peso da aresta (v, u). Ao retornar, Aux aponta para o próximo vértice da lista de adjacentes de v, e FimListaAdj retorna true se o final da lista de adjacentes foi encontrado.

Implementação da Operação "Obter Lista de Adjacentes"

 É comum encontrar um pseudo comando do tipo:

```
for u ∈ ListaAdjacentes (v) do { faz algo com u }
```

 O trecho de programa abaixo apresenta um possível refinamento do pseudo comando acima.

```
if not ListaAdjVazia(v, Grafo)
then begin
    Aux := PrimeiroListaAdj(v, Grafo);
    FimListaAdj := false;
    while not FimListaAdj
    do ProxAdj(v, Grafo, u, Peso, Aux, FimListaAdj);
    end;
```

Implementação de grafos

- Grafos são estruturas de dados presentes em Ciência da Computação, e os algoritmos para trabalhar com eles são Fundamentais na área.
- Existem muitos problemas interessantes definidos em termos de grafos
 - Caminho entre dois elementos;
 - Caminho Mínimo;
 - Otimização de recursos limitados;
 - ...
- Como podemos representar um grafo em um computador?

Implementação de grafos

- Representações Usuais:
 - Matrizes
 - de adjacências
 - de incidências
 - Lista de adjacências

- Para um grafo G = (V,E):
 - Cria-se uma matriz M com dimensões |V| x |V|;
 - Cada linha i e cada coluna j é associada à um vértice do grafo:
 - M[i,j]=1 se existe uma aresta do vértice i para j
 - M[i,j]=0 se não existe uma aresta do vértice i para j;

Exemplo:

Gafo não direcionado

	а	b	С	d	е
а	0	1	0	0	1
b	1	0	1	0	1
С	0	1	0	0	1
d	0	0	0	0	1
е	1	1	1	1	0

- Observe que:
 - Em grafo não direcionado a matriz é simétrica
 - Em grafo direcionado a matriz é não-simétrica
- Exemplo:
 - Grafo Dígrafo M[i,j] ≠ M[j,i]

	а	b	C	đ	е
а	Ö	1	0	0	1
b	0	Ø	0	0	0
С	0	1	0.	0	0
d	0	0	0	0	1
е	0	1	1	1	0

 $M[b,a] \neq M[a,b]$

(a)

	0	1	2	3	4	5	
0		1	1				
1	1		1				
2	1	1					
3							
4							
5							
(b)							

Grafo ponderado:

Cianorte

Coloca-se em M[i,j] o rótulo ou o peso associado à aresta

	Cian	Mand	Mga	Pvai
Cian.	0	0	75	70
Mand	0	0	35	0
Mga	75	35	0	70
Pvai	70	0	70	0

 Definição da estrutura tipo grafo implementado com matriz de adjacências

```
const MaxNumVertices = 100;
     MaxNumArestas = 4500;
type
  TipoValorVertice = 0..MaxNumVertices;
  TipoPeso = integer;
  TipoGrafo = record
               Mat: array[TipoValorVertice, TipoValorVertice]
                    of TipoPeso;
               NumVertices: 0..MaxNumVertices;
               NumArestas: 0...MaxNumArestas;
             end;
```

Vantagens:

- Pode ser preferível quando o grafo é denso
 - |E| é próximo de |V|²
- Possibilidade de acesso rápido à informação sobre uma aresta
 - Tempo de acesso independente de |V| ou |A|
- Custo constante para inserção ou retirada de um vértice

Desvantagens:

- ocupa |V|² posições na memória
- ler ou examinar a matriz tem complexidade de tempo O(|V|²)

Matriz de incidências

- Outra forma de representar:
- Para um grafo G = (V,E):
 - Cria-se uma matriz M com dimensões |V| x |E|
 - Cada linha i (vértice) e cada coluna j (aresta) do grafo
 - M[i,j]=1 se j incide em i;
 - M[i,j]=0 caso contrário;
- Exemplo:

	1	2	3	4	5	6
а	1	1	0	0	0	0
b	1	0	1	1	0	0
С	0	0	1	0	1	0
d	0	0	0	0	0	1
Φ	0	1	0	1	1	1

Neste caso estes números não são pesos, são identificadores das arestas.

Matriz de incidências

- Em cada coluna dois 1's;
- Em cada linha o número de 1's é igual ao grau do vértice;
- Desvantagem:
 - é preciso conhecer antecipadamente o número de vértices e arestas do grafo;

	1	2	3	4	5	6
а	1	1	0	0	0	0
b	1	0	1	1	0	0
С	0	0	1	0	1	0
d	0	0	0	0	0	1
Ф	0	1	0	1	1	1

Matriz de incidências

- Matriz de incidências para grafo dígrafo
 - -1 para arestas divergentes (saída)
 - 1 para arestas convergentes (entrada)

	1	2	3	4	5	6
а	7	-1	0	0	0	0
b	1	0	1	0	0	0
С	0	0	-1	0	1	0
d	0	0	0	-1	0	1
е	0	1	0	1	-1	-1

Exemplo:

Nó e tem as arestas de saída 5 e 6

Nó e tem as arestas de entrada 2 e 4

Listas de Adjacência usando apontadores

Lista de adjacências

- Lista de adjacências consiste em um arranjo Adj com |V| listas encadeadas;
- Em cada vértice, a lista contém ponteiros para todos os demais vértices que são adjacentes a ele (ordem arbitrária);
- Exemplo:

- Complexidade de espaço: |V| + 2|E|
 - aresta n\(\tilde{a}\) orientada aparece duas vezes na lista de adjac\(\tilde{e}\) ncias.

Lista de adjacências

- Lista de adjacências para dígrafos
 - Exemplo:

- Complexidade de espaço: |V| + |E|
 - A soma dos comprimentos de todas as listas de adjacências é |E|

Lista de adjacências

- Podem ser adaptadas para admitir outras variantes de grafos
 - Exemplo, grafos ponderados:

Vetor de registro com dois elementos: primeiro/ultimo

Lista de adjacências

- Indicada para grafos esparsos
 - |E| é muito menor do que |V|²
- Representação compacta e usada na maioria das implementações
- Desvantagem
 - Pode ter tempo O(|V|) para determinar se existe uma aresta entre o vértice i e j
 - pode existir O(|V|) vértices na lista de adjacentes do vértice i

Problema clássico em grafos

- Menor caminho (origem única)
 - para grafos <u>sem pesos</u>:
 - busca em amplitude (largura);
 - –Para grafos <u>ponderados</u> e sem pesos negativos:
 - algoritmos de Dijkstra;

- Base para outros algoritmos em grafos
 - Algoritmo Prim (árvore geradora mínima)
 - Algoritmo Dijkstra (caminho mais curto)
- Encontra o menor caminho a partir de um vértice inicial
- Dado um grafo G(V,E) e um vértice origem, o algoritmo descobre todos os vértices a uma distância k do vértice origem antes de descobrir qualquer vértice a uma distância k + 1.

– Método:

- Inicialmente marca-se o vértice de origem como visitado;
- 2. Coloca-se todos os seus vértices adjacentes ainda não visitados em uma fila F;
- 3. Retira-se o primeiro vértice da fila, marcando-o como visitado.
- Repete-se o processo a partir do passo 2, até que não haja vértices não visitados.

- Exemplo
 - Vértice de origem: a

Fila b	f	g
---------------	---	---

Exemplo

Fila f g c

Exemplo

Fila g c e

Exemplo

Fila c e h

Exemplo

Fila e h

Exemplo

Fila h d

Exemplo

Fila d

Exemplo

Exercícios

- Implemente em uma linguagem de alto nível a estrutura de um grafo utilizando uma matriz de incidência. O algoritmo deve:
 - Ler os vértices e arestas informados pelo usuário e informar:
 - Grafo orientado ou não?
 - Possui ciclos?
 - Possui nós isolados?
 - É conexo?
 - Qual o grau de cada nó do grafo?
- 2. Faça o mesmo exercício anterior usando lista de adjacência.

Referencias

- ZIVIANI, Nivio. Projeto de Algoritmos com implementações em Pascal e C. São Paulo: Pioneira Thomson Learning, 2a. ed., 2004.
- CORMEN, Leiserson, Rivest e Stein. Algoritmos. Editora Campus, 2002;
- DASGUPTA, Sanjoy et al. Algoritmos. Editora: São Paulo: McGraw-Hill, 2009.
- MORAES, Celso Roberto. Estruturas de Dados e Algoritmos. Editora Berkley, 2001.
- Notas de aula prof. Yandre Maldonado. Disponível em: http://www.din.uem.br/yandre/aed.htm