TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8106F

STEREO HEADPHONE POWER AMPLIFIER (1.5V USE)

The TA8106F is a Dual headphone amplifier IC designed for low voltage operation (1.5V, 3.0V), which is suitable for stereo headphone radio and radio cassette recorder equipments. This item can realize the low power dissipation and have high power output capability.

FEATURES

- Condenser-less for input and output.
- Condenser-less for bootstrap.
- Built-in the muting function.
- High power output capability according to adopting the Matrix Drive Method.

```
P_{O(1)} = 14 \text{mW/ch (Typ.)} at V_{in(R)} = V_{in(L)} mode
 P_0(2) = 5.5 \text{mW/ch} (Typ.) at V_{in}(R) = -V_{in}(L) mode
P_{O(3)} = 10.5 \text{mW/ch (Typ.)} at V_{in(R)} = 0 or V_{in(L)} = 0
 (V_{CC} = 1.5V, R_L = 32\Omega, f = 1kHz, THD = 10\%)
```


Operating supply voltage range. : V_{CC} (opr) = 0.9~5.0V (Ta = 25°C)

BLOCK DIAGRAM

2001-06-25

(6) Total gain: GV

In this system, the total gain G_V is given by $G_V = 20 \ell \text{og} \frac{4 \times R_2}{R_1}$

$$G_V = 20 \ell \text{og} \frac{4 \times R_2}{R_1}$$

Typical values of this system is R₁ = 1.6k Ω , R₂ = 19k Ω , then this gain is;

G_V≒34dB (Typ.)

The internal resistances are fixed, then the gain is fixed. In additional to the attenuator in front of this system, the gain is changeable.

Fig.7

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	VCC	5	V
Output Current	I _{O (peak)}	160	mA
Power Dissipation	P _D (Note)	350	mW
Operating Temperature	T _{opr}	- 25∼75	°C
Storage Temperature	T _{stq}	- 55∼150	°C

(Note) Derated above $Ta = 25^{\circ}C$ in the proportion of $2.8 \text{mW}/^{\circ}C$.

ELECTRICAL CHARACTERISTICS (AC)

(Unless otherwise specified, Ta = 25°C, V_{CC} = 1.5V, f = 1kHz, R_g = 620 Ω , R_L = 32 Ω)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Quiescent Supply Current	lccq	_	V _{in} = 0	_	6	8.4	mΑ
Input Resistance	R _{IN}			_	50	_	kΩ
Voltage Gain	GV	_	V _{in} = -50dBV	30	33	36	dB
Channel Balance	⊿G _V	_	$V_{in}(R) = V_{in}(L)$	_	0	1.3	dB
Output Power	Po (1)	_	V _{in} (R) = V _{in} (L) THD = 10%	11	14	_	
	P _o (2)	_	V _{in} (R) = - V _{in} (L) THD = 10%	_	5.5	_	mW
	Po (3)	_	$V_{in}(R) = 0$ or $V_{in}(L) = 0$ THD = 10%	_	10.5	_	
Total Harmonic Distortion	THD (1)	_	$P_O(L) = P_O(R) = 1$ mW $V_{in}(R) = V_{in}(L)$	_	0.4	1.0	
	THD (2)	_	$P_{O}(L) = P_{O}(R) = 1mW$ $V_{in}(R) = -V_{in}(L)$	_	2.5	_	%
	THD (3)	_	$V_{in}(R) = 0$ or $V_{in}(L) = 0$ $P_{o} = 1$ mW	_	0.9	_	
Output Noise	V _{no}	_	$R_g = 620\Omega$, BPF = 20Hz~20kHz	_	0.15	0.3	mV_{rms}
Cross Talk	СТ	_	$V_0 = -10 dBV$, $R_g = 620 \Omega$	_	32	_	dB
Ripple Rejection Ratio	RR	_	$V_r = -30 \text{dBV}$ $f_r = 100 \text{Hz}, R_g = 620 \Omega$	_	35	_	dB
Muting Attenuation	ATT	_	V _{MUTE} = 1.5V		60	_	dB

DC CHARACTERISTICS ($V_{CC} = 1.5V$, Ta = 25°C, terminal voltage at no signal)

PIN No.	SYMBOL	TYP.	UNIT
PIN ① (INPUT L)	V ₁	0.16	V
PIN ② (NF L)	V ₂	0.73	V
PIN ③ (MUTE)	V ₃	_	V
PIN 4 (V _{CC})	V ₄	1.50	V
PIN ⑤ (BIAS)	V ₅	0.74	V
PIN 6 (PRE GND)	V ₆	0	V
PIN ⑦ (NF R)	V ₇	0.73	V
PIN ® (INPUT R)	V ₈	0.16	V
PIN (PHASE COMPENSATION)	V9	0.80	V
PIN ((OUTPUT)	V ₁₀	0.75	V
PIN (1) (PW GND)	V ₁₁	0	V
PIN 1 (OUTPUT)	V ₁₂	0.75	V
PIN ⁽³⁾ (V _{CC})	V ₁₃	1.50	V
PIN (4) (PHASE COMPENSATION)	V ₁₄	0.80	V
PIN ⓑ (OUTPUT)	V ₁₅	0.75	V
PIN (B) (PHASE COMPENSATION)	V ₁₆	0.80	V

TEST CIRCUIT

5 2001-06-25