Kruskal's Algorithm

Minimum Spanning Trees & Union-Find

Yahya Efe Kuruçay 20220808005

May 17, 2025

Why Minimum Spanning Trees?

- Connect all nodes with minimum total edge weight.
- Applications:
 - Network design (telecom, electrical grids)
 - Cluster analysis
 - Approximation for NP-hard problems (e.g., TSP)

Kruskal's Approach

- Sort edges by weight in ascending order.
- Add edges one by one, skipping cycles.
- Use Union-Find data structure for efficient cycle detection.

Time Complexity: $\mathcal{O}(E \log E)$

Step-by-Step Example: Initial Graph

Sorted edges by weight:

(A-C: 1), (B-C: 2), (A-B: 3), (B-D: 4), (C-D: 5)

Edge Selection Process

Total weight: 1 + 2 + 4 = 7

Python Implementation: Union-Find (Core Logic)

```
class UnionFind:
   def __init__(self, size):
        self.parent = list(range(size))
        self.rank = [0] * size # For union by rank
   def find(self, i): # Path Compression
        if self.parent[i] == i: return i
        self.parent[i] = self.find(self.parent[i]) # Crucial line
        return self.parent[i]
   def union(self, i, j): # Union by Rank
        root i = self.find(i)
        root_j = self.find(j)
        if root_i != root_j:
            # Attach smaller rank tree under root of higher rank tree
            if self.rank[root_i] < self.rank[root_j]: self.parent[root_i] =</pre>

→ root_j

            elif self.rank[root_i] > self.rank[root_j]: self.parent[root_j] =
            \hookrightarrow root i
            else:
                self.parent[root_j] = root_i; self.rank[root_i] += 1
            return True
        return False
```

Python Implementation: Kruskal's Algorithm (Core Logic)

```
# Assumes UnionFind class is defined (previous slide)
def kruskal_algorithm(num_nodes, edges):
    # edges: list of (weight, u, v)
    edges.sort() # 1. Sort edges by weight
    mst_edges = []
    uf = UnionFind(num_nodes) # Initialize UnionFind
    for weight, u, v in edges: # 2. Iterate through sorted edges
        if uf.union(u, v): # 3. Add edge if it doesn't form a cycle
            mst_edges.append((weight, u, v))
            # Optimization: stop if MST has (num_nodes - 1) edges
            if len(mst_edges) == num_nodes - 1:
                break
    return mst_edges
# Example (conceptual):
\# mst = kruskal\_algorithm(4, [(1,0,2), (2,1,2), ...])
```

Core steps: Sort edges, iterate, use Union-Find to check for cycles.

Time Complexity Breakdown

- Sorting edges: $\mathcal{O}(E \log E)$
- Union-Find operations (with path compression union by rank):
 - Initialization of Union-Find: $\mathcal{O}(V)$
 - For E edges, up to 2E 'find' and V-1 'union' operations.
 - Amortized time per operation: Nearly constant, $\mathcal{O}(\alpha(V))$, where α is the inverse Ackermann function.
- **Total Dominant Complexity: ** $\mathcal{O}(E \log E)$ (due to edge sorting).

Real-World Applications of MSTs

Key Takeaways

- Kruskal's is a **greedy algorithm** for finding Minimum Spanning Trees.
- Time complexity is primarily driven by edge sorting: $\mathcal{O}(E \log E)$.
- Efficiently detects cycles using the Union-Find data structure.
- Widely applicable in various network optimization and data analysis problems.