Chapter 11 Cryptology

Jason Pearson and Sam Demorest

March 31, 2015

Overview

Number Theory Review Greatest Common Divisor Euclid's Algorithm Euclid's Algorithm Extension to Fuclid's Algorithm Modular Arithmetic Group Theory Congruency Modulo n Subgroups Solving Modular Linear Equations

Solving Modular Linear Equations

Computing Modular Powers
Computing Modular Powers

Finding Large Prime Numbers
Searching for a Large Prime
Checking if a Number is
Prime

RSA Public-Key Cryptosystem Public-Key Cryptosystems RSA Cryptosystem

Composite and Prime Numbers

Composite Numbers have a divisor other than itself and one. For example 4|20 means that 20=5*4 The divisors of 12 are 1,2,3,4,6 and 12 Prime numbers have no divisors but 1 and itself First 10 Primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Greatest Common Divisor

If h|m and h|n then h is called a common divisor A common divisor is a number that is a factor of both numbers The greatest common divisor is the largest factor for both numbers This is denoted gcd(n,m) For example gcd(12,15) = 3

For any two integers n and m where m \neq 0 the quotient is n divided by n is given by

$$q = \lfloor n/m \rfloor$$

The remainder r of dividing n by m is given by

$$r = n - qm$$

Greatest Common Divsor (cont)

Let n and m be integers, not both 0 and let $d = \min \{ \text{ in } + \text{ jm such that i,j} \in Z \text{ and in } + \text{ jm } \text{ io } 0 \}$ That is, d is the smallest positive linear combination of n and m For example we know $\gcd(12, 8) = 4$, the smallest linear combination is 4 = 3(12) + (-4)8

Now suppose we have
$$n\geq 0$$
 and $m>0$ and $r=n$ $mod(m)$ then
$$\begin{split} \gcd(n\ ,\ m)&=\gcd(m\ ,\ r)\\ so\ \gcd(64\ ,\ 24)&=\gcd(24,\ 16)\\ &=\gcd(16,\ 8)\\ &=\gcd(8,\ 0)\\ &=8 \end{split}$$

Least Common Multiple

For n and m where they are both nonzero, the least common multiple is denoted lcm(n,m)

For example lcm(6,9) = 18 because 6|18 and 9|18

The lcm(n,m) is a product of primes that are common to m and n, where the power of each prime in the product is the larger of its orders in n and m

So
$$12 = 2^23^1$$
 and $45 = 3^25^1$ so $lcm(12,45) = 2^23^25^1 = 180$

Prime Factorization

Two integers are relatively prime because the gcd of them is 1 For example $\gcd(12, 25) = 1$ so they are relatively prime If h and m are relatively prime and h divides nm, then h divides m. That is $\gcd(h,m) = 1$ and h|nm implies h|n

Prime Factorization (cont)

Every integer X > 1 can be written as a unique product of primes That is $X = p_1^{k_1} * p_2^{k_2} * ... * p_n^{k_n}$ Where $p_1 < p_2 < ... p_n$ and this representation of n is unique Example being $22,275 = 3^4 * 5^2 * 11$

To solve gcd(3,185,325, 7,276,500) we know $3.185.325 = 3^45^211^213^1$ $7.276.500 = 2^2 3^3 5^3 7^2 11^1$

We then take the common divisors and take the lower power to create the gcd

so
$$gcd(3,185,325, 7,276,500) = 3^35^211^1 = 7,425$$

Euclid's Algorithm

```
Euclid's Algorithm gives us a straight forward way to find the gcd of two numbers int\ gcd(int\ n,\ int\ m) \\ \{ \\ if(m == 0) \\ return\ n; \\ else \\ return\ gcd(m,\ n\ mod\ m); \\ \}
```

Extension to Euclid's Algorithm

Group Theory

Congruency Modulo n

Subgroups

Solving Modular Linear Equations

Computing Modular Powers

Searching for a Large Prime

Checking if a Number is Prime

Public-Key Cryptosystems

RSA Cryptosystem