Instituto Tecnológico de Costa Rica

Escuela de Ingeniería Electrónica

Trabajo Final de Graduación

Proyecto: Método basado en aprendizaje reforzado para el control automático de una planta no lineal.

Estudiante: Oscar Andrés Rojas Fonseca

I Semestre 2024 Firma del asesor

Bitácora de trabajo

Fecha	Actividad	Anotaciones	Horas
			dedicadas
19/02/2024	1. Búsqueda de repositorios	a) AAAAAAAAAAAAA	4 horas
	en línea sobre RL.		
20/02/2024	2. Búsqueda de ejemplos de	a) AAAAAAAAAAAAA	5 horas
	uso del modelo <i>Mamba</i> .		
21/02/2024	3. Trabajo en la tesis del	a) AAAAAAAAAAAAA	3 horas
	proyecto.		
22/02/2024	4. Revisión del fun-	a) AAAAAAAAAAAAA	6 horas
	cionamiento del código		
	$RNAM_Synthetic.py.$		
23/02/2024	5. Pruebas de variación de	a) AAAAAAAAAAAAA	3 horas
	hiperparámetros al entre-		
	namiento.		
Total de horas de trabajo:			21 horas

- 1. Estudio de la comunicación entre el sistema (planta) y el módulo de control al sistema (Red neuronal).
 - (a) Model Predictive Control (MPC) [1] Figura 10.2.
 - (b) a
- 2. a
- 3. a
- 4. a

Contenidos de actividades

Resumen de repositorios encontrados

ADADADADADAD [1].

Referencias

[1] S. L. Brunton and J. N. Kutz, *Data-Driven Science and Engineering*. Cambridge University Press, 2021.