Assignment 3 Def": a is a subgradient of f at n if $f(y) \geqslant f(n) + a^{T}(g-n) + y$ * Similarly, since the dual function g is concave, a is a supergradient of 9 at n if 9(y) = 9(x)+ a (y-x) + y. minimize f(w) 5-t AW = b Then; 96) = inf L(w, a) = f(w) + aT(Aw-b) Then, for 20 & 3R" 9(20) = inf f(w) + 20 (Aw-b) Let Was = orgmin f(w) + not (AW-b) =) 0(0) = f(W20) + 20 (AW-6) -Similarly, tot for any 2 FR let $W_{\lambda} = \operatorname{argmin} f(w) + \lambda^{T} (AW - b)$ =) 9(a) = f(Wa) + aT(AWa-b) - (2)

Write (P2) a equivalently as
(minimize 1 5file) (Mit)
(minimize 1 Sfi(u.) (1) 1 (1) (1) (1)
st ass(w; -ws) = o + i EN; , where
A = [aii] is a doubly stochasic
matrix compatible with an arbitrary
undirected and connected graph.
4431 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Then adding all the constraints associated with
ench stri gives us
land 1. Edgi; (With) = Broggares ant world
je Ni ei mulfirodo troseo
=> ZaisWi = ZaisWs
seni seni (m)
-> (\(\frac{1}{2} \alpha_{ii} \) \(\text{W}_{i} \) = \(\frac{1}{2} \alpha_{ii} \) \(\text{W}_{i} \)
= (Zai; Wi = Zai; W; ien;
10 - 2 - 2 - 10 - 1 (To) + (To) + (To) + (To) - 2 more - (To)
wi = Eaiswi + ie[N]
ien:
Then (P2) can reformulate (as (140)
Then (P2) can reformulate as
1/0/10
minimize $\perp \mathcal{E}fi(wi)$ w Nien
s.t Wi- Zaiswi = 0 ; ifINT
jen; = 0 ; ; E[N]

Comparison between the dual method and the primal method (Numerically) for a using or particular - connected and undirected graph We consider the following communication graph with 5 users. (3) We used: or fi(Wi) = Wi Bi Wi + 2: TW; , where i = 1,2,3,4,5, where Bis are positive definite matrices. a WIER a Doubly stochastic matrix A is taken as 0.75 0.25 6 6 0-25 0-25 0-25 0-25 0 0 0.25 0.75 0 0 0 0.25 0 3/12 /3 0 0 0 1/3 3/3 Following figure shows the convergences of INCE - wall and 1200 - 9# 1 using the primal method and the dual method, respectively.

