

| Column of A × raw of B  mx  1xp                                                                                                                                                                       | $AB = sum of (cols of A)$ $\times (rows of B)$                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} (2) \\ (3) \\ (4) \end{array} \begin{bmatrix} 2 \\ (3) \\ (4) \end{bmatrix} = \begin{bmatrix} 2 \\ (12) \\ (3) \\ (4) \end{bmatrix} \begin{bmatrix} 2 \\ (12) \\ (4) \end{bmatrix}$ | $ \begin{array}{c c} (2 & 1) \\ \hline & 3 & 8 \\ 4 & 1 \end{array} $                                                                                       |
|                                                                                                                                                                                                       | $= \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} 16 \end{bmatrix} + \begin{bmatrix} 9 \\ 9 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix}$        |
| 5 Block multiplication A.B. +                                                                                                                                                                         | A2 B3                                                                                                                                                       |
| $\begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ & & & & & \\ & & & & & \\ & & & &$                          |                                                                                                                                                             |
| Inverses (square matrices)                                                                                                                                                                            |                                                                                                                                                             |
| $A^{-1}$ $A = I = A A^{-1}$<br>C if this matrix exists                                                                                                                                                | Singular Case                                                                                                                                               |
| Tif this matrix exists                                                                                                                                                                                | (No inverse)                                                                                                                                                |
| invertible, nonsingular                                                                                                                                                                               | A=[13]                                                                                                                                                      |
|                                                                                                                                                                                                       | You can find a vector $\times (x \neq 0)$ with $Ax = 0$ .                                                                                                   |
|                                                                                                                                                                                                       | $Ax = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 3 & 7 & = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \end{bmatrix}$                           |
|                                                                                                                                                                                                       | Then A is singular case  because $A^{-1}\dot{A} \times = X = 0 = \pi^{-1} \cdot 0$ That the singular case $A^{-1}\dot{A} \times = X = 0 = \pi^{-1} \cdot 0$ |
|                                                                                                                                                                                                       | false                                                                                                                                                       |
|                                                                                                                                                                                                       |                                                                                                                                                             |

