Mécanique 1 -

Statique du solide

Définitions indispensables

1. Fluides et solides

- Solide: possède une forme et un volume propre, indéformable, la distance entre deux points quelconques reste constante.
- Fluide: n'a pas de forme propre
 - **Liquide**: Volume propre
- Gaz : Pas de volume propre, occupe toute la place disponible

point matériel ou masse ponctuelle : point d'un volume nul et de masse non nulle.

2. Système et référentiel

Penser à définir le système et le référentiel au début du problème.

Barycentre d'un système :

$$\sum_{i=1}^{n} m_i \overrightarrow{GA_i} = \overrightarrow{0} \qquad \text{ou} \qquad \overrightarrow{OG} = \frac{\sum_{i=1}^{n} m_i \overrightarrow{OA_i}}{M_{total}}$$

Pour un solide de masse M:

$$\overrightarrow{OG} = \frac{1}{M} * \iiint_{\text{solide}} \rho \ dV \ \overrightarrow{OM}$$

3. Modéliser des interactions par des forces

Force: concept physique modélisant l'interaction entre deux systèmes (créant un mouvement, une déformation).

Troisième loi de Newton (actions réciproques) : $\overrightarrow{F_{1\to 2}} = -\overrightarrow{F_{2\to 1}}$ (dans tout référentiel).

- $\begin{array}{l} \textbf{Deux types de forces :} \ \text{force à distance ou de contact.} \\ -- \ \underline{\text{Interaction gravitationnelle}} : \overrightarrow{F_{g1 \to 2}} = -G \frac{m_1 m_2}{d^2} \overrightarrow{u_{1 \to 2}} \\ -- \ \underline{\text{Interaction \'Electromagn\'etique}} : \overrightarrow{F_{e1 \to 2}} = \frac{q_1 q_2}{4\pi \epsilon_0 d^2} \overrightarrow{u_{1 \to 2}}. \\ -- \ \underline{\text{Tension d'un fil}} : \ \text{toujours inconnue sauf si le fil est détendu.} \end{array}$

 - Rappel élastique d'un ressort : $\vec{F} = -k(l l_0)\vec{\imath}$.

 $\overline{\text{Avec } l_0 \text{ la longueur à vide, } l}$ la longueur étiré/comprimé et k la constante de raideur du ressort.

- Réaction d'un support
 - Composante normale $\overrightarrow{R_N}$: perpendiculaire au support.
 - Composante tangentielle $\overrightarrow{R_T} = \overrightarrow{f}$, frottements solides : s'oppose au mouvement.

Ne dépend que de la masse, $\|\overrightarrow{R_T}\| = \mu_d \|\overrightarrow{R_N}\|$. (μ_d coefficient de frottements dynamique).

Le système est immobile si $\|\overrightarrow{R_T}\| < \mu_s \|\overrightarrow{R_N}\|$ (μ_s coefficient de frottements statique).

En général, $\mu_s > \mu_d$.

Forces pressantes, la somme de des forces pressantes donne la poussée d'Archimède : $\overrightarrow{\Pi} = -\rho_{fluide} \ V_{fluide} \ d\acute{e}plac\acute{e} \ \vec{g}$

Énergie cinétique et potentielle

Énergie cinétique (point matériel) : $\overrightarrow{E_c} = \frac{1}{2}mv^2$

Énergie potentielle de position:

Pour un solide:

$$\overrightarrow{E_c} = \sum \frac{1}{2} m_i v_i^2$$

 $E_{pp}(M) = E_{pp}(0) + mgz$

Bien définir l'origine des E_{pp} Pour un solide, on prend l'altitude du barycentre.

Énergie potentielle élastique :

$$E_{pe}(M) = \frac{1}{2}k(x - l_0)^2$$

Avec $E_{pe} = 0$ pour $x = l_0$.