Devoir en temps libre n°2

Soient A et B deux matrices carrées non nulles d'ordre p telles que $A + B = I_p$. Soit M une matrice carrée d'ordre p telle qu'il existe deux réels non nuls et distincts λ et μ tels que :

$$M = \lambda A + \mu B$$
 et $M^2 = \lambda^2 A + \mu^2 B$.

- 1. (a) Démontrer que $(M \lambda I_p)(M \mu I_p) = (M \mu I_p)(M \lambda I_p) = 0_p$.
 - (b) En déduire que $AB = BA = 0_p$ et que $A^2 = A$ et $B^2 = B$.
- 2. Démontrer que pour tout entier naturel n, on a :

$$M^n = \lambda^n A + \mu^n B.$$

- 3. **Application.** Soient $A = \begin{pmatrix} 3 & -6 \\ 1 & -2 \end{pmatrix}$, $B = \begin{pmatrix} -2 & 6 \\ -1 & 3 \end{pmatrix}$ et $M = \begin{pmatrix} 8 & -18 \\ 3 & -7 \end{pmatrix}$.
 - (a) Déterminer λ et μ tels que $M = \lambda A + \mu B$ et $M^2 = \lambda^2 A + \mu^2 B$.
 - (b) En déduire M^n pour tout $n \in \mathbb{N}$.

Devoir en temps libre n°2

Soient A et B deux matrices carrées non nulles d'ordre p telles que $A+B=I_p$. Soit M une matrice carrée d'ordre p telle qu'il existe deux réels non nuls et distincts λ et μ tels que :

$$M = \lambda A + \mu B$$
 et $M^2 = \lambda^2 A + \mu^2 B$.

- 1. (a) Démontrer que $(M \lambda I_p)(M \mu I_p) = (M \mu I_p)(M \lambda I_p) = 0_p$.
 - (b) En déduire que $AB = BA = 0_p$ et que $A^2 = A$ et $B^2 = B$.
- 2. Démontrer que pour tout entier naturel n, on a :

$$M^n = \lambda^n A + \mu^n B$$
.

- 3. **Application.** Soient $A = \begin{pmatrix} 3 & -6 \\ 1 & -2 \end{pmatrix}$, $B = \begin{pmatrix} -2 & 6 \\ -1 & 3 \end{pmatrix}$ et $M = \begin{pmatrix} 8 & -18 \\ 3 & -7 \end{pmatrix}$.
 - (a) Déterminer λ et μ tels que $M=\lambda A+\mu B$ et $M^2=\lambda^2 A+\mu^2 B$.
 - (b) En déduire M^n pour tout $n \in \mathbb{N}$.