IoT Project Proposal

Personalized Climate Control System

Project Title: Personalized Climate Control System Using IoT

Team ID: 48

Team Members: Shivansh Santoki | Ayush Kanani | Dhyey

Thummar

Introduction:

=> Problem Statement:

Indoor climate conditions significantly impact both comfort and energy efficiency in residential and commercial spaces. Traditional HVAC (Humidity-Ventilation-AirConditioning) systems operate on fixed schedules or simple thermostat triggers, often leading to:

- Inconsistent comfort levels across different areas of a space
- Inefficient energy usage during periods of low occupancy
- Poor air quality management, particularly for pollutants like CO2, VOCs, and particulate matter
- Lack of personalization based on individual preferences

=> Project Objectives and Deliverables :

This project aims to develop a smart climate control system that monitors and regulates multiple environmental parameters to enhance comfort, improve air quality, and optimize energy consumption. The system will adapt to occupancy patterns and user preferences through IoT integration.

=> Deliverables:

- 1. A functional prototype demonstrating automated climate control capabilities
- 2. An interactive web interface for monitoring data and manual control
- 3. A documented data analysis system to optimize climate settings
- 4. A comprehensive report on system performance across different conditions

=> Hardware Requirements:

Sensors:

Component	Quan tity	Series/Model	Purpose	Expected Price per Piece
Temperature & Humidity Sensor	2	DHT22 (AM2302)	Primary environmental monitoring across different areas of the room	121
Air Quality Sensor	2	MQ-135 (CO2, Smoke)	Detect air pollutants to trigger ventilation	106
Differential Pressure Sensor	1	MPX5010DP	Measure air circulation effectiveness	1500-2000
Occupancy Sensor	2	PIR Motion Sensor (HC-SR501)	Detect presence to adjust climate settings based on occupancy	58

Controllers and Communication:

Component	Quantit y	Series/Model	Purpose
Microcontroller	1	ESP32 Development Board	Main system controller with built-in WiFi for IoT connectivity
WiFi Module	1	Built into ESP32	Enable remote monitoring and control

Actuators:

Component	Quantity	Series/Model	Purpose
Servo Motors	2	SG90	Control ventilation flaps/dampers
DC Fan Motors	2	5V DC Fan	Simulate HVAC airflow control
LED Indicators	2	RGB LEDs	Visual feedback for system status
Buzzer	1	Piezo Buzzer	Alerts for critical conditions (high pollution, fire risk)

Power and Miscellaneous:

Component	Quantity	Series/Model	Purpose
Power Supply	1	5V/3A DC Supply	Provide consistent power to the system
Breadboard/Protot ype Board	2	-	Component mounting and circuit construction
Jumper Wires	20-25	Male-to-male Male-to-female	Connections between components
Housing/Enclosure	1	-	Tabletop model housing with ventilation

Female Single	2	2.54 mm	To prevent damage to
Header Strip		40 pins in each	ESP32 while soldering or
			mounting on PCB

=> Hardware Features Implementation

- 1. **Multi-zone Sensing:** The DHT22 sensors will be strategically placed to detect temperature gradients across the model space.
- 2. **Automated Ventilation Control:** Servo motors will adjust vent positions based on air quality and pressure difference readings.
- 3. **Simulated HVAC Operation:** DC fans will modulate speeds to represent heating/cooling intensity.
- 4. **Alert System:** The combination of LEDs and buzzer will provide escalating alerts for deteriorating air quality or extreme conditions.

=> Data Collection Plan:

Data Collection Methodology

- 1. **Sampling Frequency:** Environmental parameters will be sampled for 10 days (minimum requirement)
- Storage Medium: Data will be stored both locally and remotely (cloud database)
- 3. Parameters Collected:
 - Temperature and humidity from multiple locations
 - CO2 levels
 - Room occupancy patterns
 - System response actions (fan speed, vent positions)
 - Energy consumption estimates

=> Data Analysis and Expected Outcomes :

1. Comfort Optimization:

Identify optimal temperature and humidity ranges based on occupancy

 Determine correlation between subjective comfort reports and measured parameters.

2. Energy Efficiency Analysis:

 Calculate potential energy savings compared to conventional systems

3. Air Quality Improvement:

- Measure ventilation effectiveness in reducing CO2.
- Determine optimal ventilation schedules based on occupancy patterns

4. System Performance Evaluation:

- Evaluate calibration drift in sensors over the testing period
- Assess failure modes and system resilience

=> Conclusion:

The **Personalized Climate Control System** is more than just a smart gadget—it's a step toward making indoor spaces more comfortable, responsive, and energy-efficient. By seamlessly blending **IoT technology** with environmental sensors, this project shows how automation can **adapt to real-world conditions** and create a more pleasant living or working environment.

The working prototype will showcase the technical feasibility of such a system while providing valuable data on environmental control strategies. The 10-day data collection period will allow for thorough analysis of system performance and effectiveness across varying conditions. The insights gained from this prototype could inform larger-scale implementations in residential or commercial settings, contributing to both energy efficiency goals and enhanced occupant comfort.