

Lab	
HW	
Until	

การบ้านปฏิบัติการ 15

Problem Solving and Algorithm Practice (20 คะแหน)

ข้อกำหนด

- i. การเรียกใช้ฟังก์ชันเพื่อการทดสอบ ต้องอยู่ภายใต้เงื่อนไข **if** __name__ == '__main__' : เพื่อให้สามารถ import ไปเรียกใช้งานจาก Script อื่น ๆ ได้อย่างเป็นมาตรฐาน
- ii. ทุกข้อต้องมีการสร้างฟังก์ชัน my_id() โดยให้คืนค่าสายอักขระแทนเลขประจำตัวนักศึกษา 9 หลัก
- 1) 4 คะแนน (Lab15_1_6xxxxxxxx.py) ให้เขียนฟังก์ชันแบบ sum_nested_list(list_a) เพื่อ<u>คืนค่า</u>ผลรวมของ <u>จำนวนเต็ม</u>ทั้งหมดใน list_a คูณกับค่าความลึก (Depth) ของจำนวนนั้น ๆ โดยแต่ละสมาชิกของ list_a มีชนิด ข้อมูลที่เป็นไปได้ <u>2 ประเภท</u> คือ เป็นจำนวนเต็ม (int) หรือเป็น list โดย list ที่เป็นสมาชิกดังกล่าว ก็สามารถ มีสมาชิกเป็นจำนวนเต็มและ list ได้เช่นกัน และกำหนดค่าความลึกคือจำนวนชั้นของลิสต์ที่ซ้อนกันก่อนที่จะเจอ จำนวนนั้น ๆ ตัวอย่างเช่น

จากตัวอย่างเป็น list ที่มี 4 สมาชิก โดยสมาชิก ที่ 0, และ 1 และ 3 ของ list มีชนิดเป็นจำนวนเต็ม ในขณะที่ <u>สมาชิกที่ 2</u> มีชนิดเป็น list: [[3, 0], 4] และผลรวมของจำนวนเต็มทั้งหมดจะมีค่า $1+2+(3\times3)+(0\times3)+(4\times2)+8=28$ เนื่องจาก 4 อยู่ในลิสต์ชั้นที่ 2 ในขณะที่ 3 และ 0 อยู่ในลิสต์ชั้นที่ 3

Hint:

•สามารถเรียกใช้ฟังก์ชัน isinstance(object, classinfo) เพื่อตรวจสอบชนิดของสมาชิก เช่น isinstance([3], list) จะคืนค่าเป็น True

<u>Input</u>	Output
[1, 2, [[3, [[4], 5]], [6, 7]]]	91
[1, [2, [3]]]	14
[1, [[2, [3]], 4, [5]], [6, [7]]]	75 ersitV
[9, [[8, [7]], 6, [5, [44, [33]]]]]	429

2) **4 คะแนน** (Lab15_2_6xxxxxxxx.py) ให้เขียนฟังก์ชัน reshape(matrix) เพื่อเปลี่ยนแปลงขนาดของ list สองมิติในตัวแปร matrix ให้มีขนาด $m \times n$ โดยกำหนดให้ m น้อยกว่าหรือเท่ากับ n เสมอ และความต่างของ m และ n จะต้องมีค่าไม่เกิน 1 ทั้งนี้ผลลัพธ์ที่ได้จะต้องมีจำนวนสมาชิกเท่ากันในทุก row และเรียงสมาชิกตามลำดับเดิม

ในตัวแปร *matrix* ที่ละ row และ column จากซ้ายบนไปขวาล่าง โดยสามารถเพิ่มจำนวนสมาชิกที่เป็น 0 ได้ถ้า จำเป็น โดยจำนวน element ที่มีค่า 0 ที่เพิ่มเข้าไปจะต้องมีค่าน้อยที่สุดที่เป็นไปได้ ทั้งนี้กำหนดให้ฟังก์ชันทำงาน แบบ **Destructive**

<u>Input</u>	<u>Output</u>
[[1, 2], [1, 2, 3], [1, 2], [1, 2], [1]]	[[1, 2, 1, 2], [3, 1, 2, 1], [2, 1, 0, 0]]

<u>Input</u>	<u>Output</u>
[[2, 3, 4], [1, 2, 3]]	[[2, 3, 4], [1, 2, 3]]
[[1, 2], [3, 4], [5, 6]]	[[1, 2, 3], [4, 5, 6]]

3) 4 คะแนน (HW15_1_6XXXXXXXX.py) น้องออนิวเป็นนักสะสมหนังสือการ์ตูนมังงะ (Manga) ในชั้นวางหนังสือของ เขาที่บ้านเกิดจังหวัดเชียงใหม่ ออนิวเรียงหนังสือไว้อย่างเรียบร้อยตามวิสัยนักสะสม Manga ทั่วไป โดยจะเรียงตาม ชื่อเรื่อง และ เลขประจำเล่ม และเมื่อเขาซื้อหนังสือ Manga มาเพิ่มเขาจะต้องนำไปเรียงแทรกในดำแหน่งที่ถูกต้อง เสมอ โชคร้ายที่หนังสือบางส่วนเสียหายจากความชื้นจากพายุฝนลูกเห็บที่มาพร้อมผู้นำที่มาเยือนจังหวัดเชียงใหม่ เมื่อไม่นานมานี้ เขาจึงต้องทยอยหาเล่มใหม่มาใส่ในชั้นคืนจากหลากหลายแหล่งที่มา ซึ่งจะส่งมาที่บ้านในลำดับและ ชื่อเรื่องที่คละกันไป จากคอร์ส Python ที่เขาเรียนออนไลน์ เขาพบว่าเขาสามารถใช้ Binary Search ช่วยเรียง หนังสือเข้าชั้นวางได้เร็วกว่าวิธีไล่เรียงจากเล่มแรกมาแบบที่เขาเคยใช้

หน้าที่ของคุณคือให้เขียนฟังก์ชัน manga_add(manga_shelf, new_m, show_steps=False) เพื่อนำ หนังสือ Manga เล่มใหม่ new_m ใส่ไปยังชั้นวางหนังสือ manga_shelf โดย new_m ที่เป็น tuple ของ (title, num) เมื่อ title คือ str แทนชื่อเรื่องในภาษาอังกฤษ (สามารถมีอักขระว่าง หรือเครื่องหมายต่าง ๆ หรือตัวเลข) และ num คือ int แทนเลขประจำเล่ม และ manga_shelf เป็น list ของ tuple ของหนังสือในรูป (title, num) ที่อาจเป็นชั้นเปล่า หรือเป็นชั้นที่มีหนังสือที่เรียงลำดับไว้แล้ว โดยมี Optional Parameter show_step เพื่อ แสดงตำแหน่ง Index ที่ต้องทำการเปรียบเทียบในแต่ละรอบของการทำ Binary Search ทั้งนี้ให้ถือว่าจะไม่มี Manga เล่มไหนซ้ำกัน ชั้นวางหนังสือมีความยาวไม่จำกัด และกำหนดให้ฟังก์ชันทำงานแบบ Destructive

Function Call

```
shelf = [('Bleach', 10), ('Naruto', 5), ('One Piece', 24)]
new = ('Naruto', 18)
manga_add(shelf, new, True)
print('--')
print(shelf)
```

Output

```
[1] ('Naruto', 5)
[2] ('One Piece', 24)
--
[('Bleach', 10), ('Naruto', 5), ('Naruto', 18), ('One Piece', 24)]
```

Function Call

```
shelf = [('Bleach', 100), ('Bleach', 10000)]
new = ('Bleach', 99)
manga_add(shelf, new)
print('--')
print(shelf)
```

Output

```
--
[('Bleach', 99), ('Bleach', 100), ('Bleach', 10000)]
```

4) **4 คะแนน** (HW15_1_6XXXXXXXX.py) ให้เขียนฟังก์ชัน histogram(scores) เพื่อ<u>แสดงผล</u>แผนภูมิ histogram ของคะแนนรายวิชาโปรแกรมมิ่ง 101 ณ สถาบันแห่งหนึ่งทางภาคเหนือ โดยให้คำนวณความถี่จากตัวแปร scores ที่ อยู่ในรูป tuple ความยาว n (n > 0) ซึ่งคะแนนของนักศึกษาแต่ละคนจะเป็นจำนวนเต็มตั้งแต่ 0 - 100

ในการแจกแจงความถี่ กำหนดให้ bin size มีขนาด 10 เสมอ (ยกเว้นช่วงคะแนนสุดท้าย) โดยให้ bin แรกสุด สำหรับคะแนน 0 - 9 คะแนน และ bin ถัดไปสำหรับคะแนน 10 - 19 ดังนี้ จนไปถึง bin สุดท้ายสำหรับคะแนน 90 - 100 คะแนน (bin size ขนาด 11) ทั้งนี้ในการแสดงผลเครื่องหมาย '*****' หนึ่งแถวในแนวนอนจะแทนคะแนน 5 คะแนน โดยจะแสดงผล<u>แบบปัดขึ้น</u> ดังนั้นความถี่ที่ 48 คน จะแสดงผลด้วย '*****' 10 แถวเป็นต้น Hint: เราสามารถสร้าง string สำหรับแต่ละแท่งแทนช่วงความถี่แยกกันเ แล้วนำมารวมด้วย string method ต่าง ๆ

<u>Input</u>

```
(19, 39, 59, 42, 42, 100)
```

Output

<u>Input</u>

```
(62, 49, 75, 86, 71, 63, 74, 42, 57, 75, 56, 58, 67, 78, 63, 73, 60, 49, 66, 77, 47, 69, 74, 63, 65, 64, 55, 52, 52, 57, 86, 75, 68, 70, 34, 34, 68, 46, 60, 56, 60, 65, 66, 70, 64, 84, 61, 46, 60, 76, 59, 64, 68, 69, 68, 47, 72, 80, 11, 44, 53, 70, 50, 79, 81, 68, 75, 48, 62, 68)
```

Output

5) 4 คะแนน (HW15_3_6XXXXXXX.py) ให้เขียนฟังก์ชัน count_segment($list_a$) เพื่อ<u>คืนค่า</u>จำนวนส่วนของ วงกลม (Segment) ที่อยู่ใน Quadrant ต่างๆ ที่ระบุด้วย $list_a$ โดย $list_a$ จะเป็น List ของ tuple ที่อยู่ใน รูป (px, py, r) เมื่อ px และ py คือพิกัดในแนวแกน x และแกน y ตามลำดับ และ r คือ รัศมีวงกลม (r > 0) โดย ฟังก์ชันจะคืนค่า tuple แทนจำนวนวงกลม หรือส่วนของวงกลม ที่อยู่ใน Quadrant 1, 2, 3 และ 4 ตามลำดับ

เช่นจากรูปด้านบน ฟังก์ชันจะคืนค่า (2, 1, 2, 3)

<u>Input</u>

Output / OrSit V

[(2, 7, 1.5),	# a	(2, 1, 2, 3)
(3.2, 2.5, 4.06),	# b	
(-5.5, -4.5, 2.5),	# c	
(2, -5.2, 3),	# d	
(7.2, -2.8, 1.2)]	# e	