

32 位微控制器

时钟控制模块

适用对象

系列	产品型号	系列	产品型号
HC32L13	HC32L130E8PA	HC32F03	HC32F030E8PA
	HC32L130F8UA		HC32F030F8UA
	HC32L130J8TA		HC32F030F8TA
	HC32L136J8TA		HC32F030H8TA
	HC32L136K8TA		HC32F030J8TA
			HC32F030K8TA
HC32L07	HC32L072PATA	HC32F07	HC32F072PATA
	HC32L072KATA		HC32F072KATA
	HC32L072JATA		HC32F072JATA
	HC32L073PATA		
	HC32L073KATA		
	HC32L073JATA		
HC32L17	HC32L176PATA	HC32F17	HC32F176PATA
	HC32L176MATA		HC32F176MATA
	HC32L176KATA		HC32F176KATA
	HC32L176JATA		HC32F176JATA
	HC32L170JATA		HC32F170JATA
	HC32L170FAUA		HC32F170FAUA
HC32L19	HC32L196PCTA	HC32F19	HC32F196PCTA
	HC32L196MCTA		HC32F196MCTA
	HC32L196KCTA		HC32F196KCTA
	HC32L196JCTA		HC32F196JCTA
	HC32L190JCTA		HC32F190JCTA
	HC32L190FCUA		HC32F190FCUA

目 录

1	摘要		. 3	
2		介绍		
3		控制模块		
		时钟树示意图		
	3.2	时钟源介绍	. 4	
	3.3	系统时钟源的开启	. 5	
	3.4	时钟源的切换	. 6	
	3.5	RCH 频率切换	. 8	
	3.6	时钟分频控制		
	3.7	外设时钟的控制	. 8	
4	参考	样例及驱动	. 9	
5	总结		. 9	
6	其他信息			
7	版本信息 & 联系方式1			

1 摘要

本篇应用笔记主要介绍华大半导体 MCU*的时钟控制模块。

本篇应用笔记主要包括:

- 系统时钟模块介绍
- 时钟源的开启
- 时钟源的切换
- RCH 频率切换
- 时钟的分频控制
- 外设时钟的控制

注意:

一本应用笔记为华大半导体 MCU*的应用补充材料,不能代替用户手册,具体功能及寄存器的操作等相关事项请以用户手册为准。

2 功能介绍

时钟控制模块可以配置不同的时钟源作为系统时钟、可以配置不同的系统时钟分频、可以启动或禁用外设时钟,另外为了确保高精度,内部时钟都具有校准功能。

* 支持型号见封面。

应用笔记 Page 3 of 10

3 时钟控制模块

3.1 时钟树示意图

示意图描述了从时钟源到 System CLK、HCLK、PCLK 的连接、分频关系及相关的配置寄存器。参照示意图,可快速熟悉时钟控制模块。

图 1. 系统时钟树

3.2 时钟源介绍

时钟源是 MCU 内部时钟和外部时钟的总称。本系列芯片时钟源包括以下类型:

• 系统时钟

- 外部低速时钟(XTL): 外接 32.768K 晶振
- 一 外部高速时钟(XTH): 可根据实际需求外接 4M~32M 晶振
- 一 内部高速 RC 时钟(RCH): 默认系统时钟,可用于系统快速启动及快速唤醒
- 一 内部低速 RC 时钟(RCL): 可用于低速、低精度应用场景
- 一内部锁相环时钟(PLL): PLL 可选 RCH、XTH 作为时钟源,支持 4M~48M 时钟输出

应用笔记 Page 4 of 10

- 注: XTL 和 XTH/PLL 还可以分别配置为通过 PC14 和 PD00/PD00 端口由外部时钟源输入。
- 其它时钟
 - 内部低速时钟(IRC10K): 提供给 WDT 及 Clock Trim 模块使用
 - 一内部低速时钟(IRC150K):用于内部去抖,提供给VC、LVD模块使用

3.3 系统时钟源的开启

系统时钟源的打开步骤如下:

- 1. 根据所选时钟设置稳定时间:
 - RCL: 配置 RCL_CR.STARTUP
 - XTH: 配置 XTH_CR.STARTUP
 - XTL: 配置 XTL_CR.STARTUP
 - PLL: 配置 PLL_CR.STARTUP
- 2. 如选择外部时钟,根据所选时钟设置对应时钟的 IO 为模拟输入:
 - XTH: 设置 PDADS.PD00 与 PDADS.PD01
 - XTL: 设置 PCADS.PC14 与 PCADS.PC15
- 3. 如选择外部时钟,根据所选时钟设置驱动能力:
 - XTH: 配置 XTH_CR.DRIVER
 - XTL: 配置 XTL_CR.DRIVER
- 4. 如选择内部时钟,需要加载 TRIM 值:
 - RCH: 配置 RCH_CR.TRIM
 - RCL: 配置 RCL_CR.TRIM
- 5. 如选择 PLL 时钟,需要配置 PLL 参数:
 - 一 输入频率范围: 配置 PLL_CR.FRSEL
 - 倍频系数:配置 PLL_CR.DIVN
 - 一输出频率范围:配置 PLL_CR.FOSC

应用笔记 Page 5 of 10

- 一 输入时钟选择: 配置 PLL CR.REFSEL
- 注: 在选择输入时钟时, 必须首先按照系统时钟源开启流程配置并使能所选择的时钟源。
- 6. 使能所选的时钟:
 - RCH: 设置 SYSCTRL0.RCH_EN
 - RCL: 设置 SYSCTRL0.RCL_EN
 - XTH: 设置 SYSCTRL0.XTH_EN
 - XTL:设置 SYSCTRL0.XTL_EN
 - PLL: 设置 SYSCTRL0.PLL EN
- 7. 等待所选的时钟源稳定:
 - RCH: 等待 RCH CR.STABLE 稳定
 - RCL: 等待 RCL_CR.STABLE 稳定
 - XTH: 等待 XTH_CR.STABLE 稳定
 - XTL: 等待 XTL_CR.STABLE 稳定
 - PLL: 等待 PLL_CR.STABLE 稳定

3.4 时钟源的切换

时钟源的切换步骤如下:

- 1. 如果目标时钟或当前时钟频率高于 24MHz,设置 FLASH 读等待周期:
 - 设置 FLASH_CR.WAIT
- 2. 打开目标时钟源(参考: 3.3 系统时钟源的开启)
- 3. 切换时钟:
 - 一配置 SYSCTRL0.CLK_SW5_SEL;
- 4. 根据需要选择是否关闭其他不再使用的时钟源:
 - RCH: 清除 SYSCTRL0.RCH_EN
 - RCL: 清除 SYSCTRL0.RCL_EN

应用笔记 Page 6 of 10

- XTH: 清除 SYSCTRL0.XTH_EN
- XTL: 清除 SYSCTRL0.XTL_EN
- PLL: 清除 SYSCTRL0.PLL_EN

注意:

一 时钟源的切换必须注意:时钟切换之前,需要根据当前时钟和目标时钟最大频率值来判断是否增加 FLASH 读等待周期;时钟切换成功之后,可根据切换后的时钟频率值设置或清除 FLASH 读等待周期。

应用笔记 Page 7 of 10

3.5 RCH 频率切换

如果需要在RCH各个频率段进行切换,推荐遵循以下流程:

- 1. 将系统时钟源切换至 RCL;
- 2. 根据目标 RCH 的频率,加载更新 RCH_CR.TRIM 值;
- 3. 将系统时钟源切换为 RCH。

3.6 时钟分频控制

实际应用中,可根据需要选择任一种时钟源作为系统时钟。系统时钟经过分频可作为 CPU 工作时钟(HCLK),HCLK 再分频可得到外设时钟(PCLK)。

当选定一种时钟源作为系统时钟时,可根据实际需求得到合适的时钟,时钟分频的配置参考步骤如下:

- 1. 配置 HCLK 分频系数:
 - 配置 SYSCTRLO.HCLK PRS
- 2. 配置 PCLK 分频系数:
 - 配置 SYSCTRL0.PCLK PRS

3.7 外设时钟的控制

本系列外设时钟源有门控设置,只有打开门控设置,相应外设才能进行配置和工作。除一些基本的外设默认打开外,大部分外设上电默认都处于关闭状态。启用外设前,需使能相应外设的时钟开关。

打开外设模块的时钟,需使能 PERI_CLKEN 对应模块的控制位;

关闭外设模块的时钟,需清除 PERI_CLKEN 对应模块的控制位。

注: (超)低功耗模式下,可根据需要适时关闭暂不使用的模块时钟,减小功耗。

应用笔记 Page 8 of 10

4 参考样例及驱动

通过上述介绍,配合华大半导体 MCU*的用户手册,我们对本系列 MCU 的时钟控制模块功能及操作方法有了进一步的掌握。

华大半导体(HDSC)官方同时提供了该模块的应用样例及驱动库,用户可通过打开样例的 工程进一步直观地熟悉该模块以及驱动库的应用,在实际开发中也可以直接参考样例和使用 驱动库来快速实现对该模块的操作。

5 总结

以上章节简要介绍了华大半导体 MCU*的时钟控制模块基本功能,详细说明了时钟模块的各个功能及操作步骤。用户在实际的应用开发过程中,如果需要更深一步了解该模块的使用方法及操作事项,应以相应的用户手册为准。本章中提到的样例及驱动库,既可以作为用户进一步的实验与学习,也可以在实际开发中直接应用。

6 其他信息

技术支持信息: www.hdsc.com.cn

* 支持型号见封面。

应用笔记 Page 9 of 10

7 版本信息 & 联系方式

日期	版本	修改记录
2018/09/03	Rev1.0	初版发布
2019/6/24	Rev1.1	更新支持的产品型号。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: www.hdsc.com.cn

通信地址: 上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

应用笔记 AN0060001C