GROUP PROJECT PRESENTATION

Survey Research Methodology II

Irene García-Espantaleón, Candela Gómez, Bradley McKenzie, Diego Paroli

Universidad Carlos III de Madrid

Contents

- Country level data
- Data cleaning
- Variable creation for attitudinal questions
- Missing data
- Literature review and EDA
- Robustness checks modelling
 NA predictability

- Explanatory models
 - Our approach
 - Performance
- Predictive models
 - Our approach
 - Comparison and findings
- Final considerations

Country level data

• GDP per Capita - World Bank

- LGBT+ Rights Index Our World in Data
- Gender Inequality Index UN Development Programme (UNDP)
 - Chosen over the GDI for its better fit for our analysis.
- Democracy Index The Economist

Our World in Data

Data cleaning

Process:

- 1. Remove unrelated sections of the questionnaire (ex. trade, energy policy...)
- 2. When more than I version of the same variable was available (ex. age, political ideology): choose the best one using visualizations vs target variable (still 200+)
- 3. Creating new measure by aggregating questions together to reduce dimensionality without losing too much information

```
data <- data |>
  mutate(across(starts_with("qc15"), ~ if_else(.x == 5, NA, .x))) |>
  mutate(antilgbtq_rights = round(rowMeans(cbind(qc15_1, qc15_2, qc15_3), na.rm = TRUE), 2)) |>
  select(-starts_with("qc15"))
# Scale of 1 to 4, 1 = supportive, 4 = homophobic
```

Variable creation for attitudinal questions

We created general variables to group attitudes across questions. For example:

- Discrimination scores for religion/minority groups
 Combined between q12 and q13 response
- Anti LGBTQ+ discrimination score: qc15_1, qc15_2, qc15_3
- Social alienation: d72_1, d72_2

Later, we aggregate further due to very high collinearity to reduce dimensionality.

Missing data

- In general, refusals and DK's were recoded to NA.
- Identified all factor variables -> convert values to factor label

```
# Converting them to factors and assign them their labels automatically
data <- data |>
  mutate(across(all_of(factor_variables), labelled::to_factor))
```

- Then each "DK" code was consistent (vs 7,97,99)
- Our exception:
 - Spontaneous refusal to question on whether you had transgender friends.
- Imputation through MICE.

Individual Factors:

- Gender: women tend to be more favorable
- Age: Literature suggests less support from older individuals; EDA shows a nuanced picture with age affecting response rates.
- Religion: religious fundamentalism proved to be a significant factor; non-believers most accepting (Kanamori & Xu, 2020).
- Political Ideology: Left-wing more inclined to endorse transgender rights.

Social factors:

- Contact with transgender individuals strongly influences support (Aguirre-Sánchez-Beato, 2020).
- Education level shows ambiguous impact.
- Perceived social class has a positive correlation with support, something not so prominent in previous studies.

Correlations with target - many interesting relations

Perceived social class

Friends with any transgender person?

Distribution of discrimination variables - LGBTI+, transgender and intersex slightly higher in general than race and religion.

10.0

Country-Level Factors

- Democracy & LGBT Policy: Positive relationship with support for trans rights.
- Gender Inequality Index: Negative relationship—more gender equality in a country leads to higher support.
- GDP per Capita: Non-linear relationship with diminishing returns beyond a certain threshold.

Relationship between country-level variables and trans support

Survey Paradata

Longer interview duration and better survey engagement correlated with higher support for transgender right

Robustness checks - modelling NA predictability

Signficant variables

Treated NAs as binary outcome. We undersample and apply this logistic model.

- Women (+20%)
- Working class
- Anti-LGBTQ+ rights (+13%)
- Less than daily internet use

Paradata

Interview cooperation score (p5) significant.

Compared to the "excellent" cooperation rating:

- Fair -> 42% more likely to NA
- Average -> 74% more likely to NA
- Bad -> 349% more likely to NA resp

Explanatory models: our approach

Logistic regression with all the variables

Base individual data model. Higher support includes:

- older people
- women
- people who were self-employed
- unmarried (single) people
- non-believers (religious)
- people with a landline and mobile
- people who use the internet everyday/almost everyday
- people who reported being more left wing
- people who had friends in minority groups.

Dimensionality reduction models

Stepwise + lasso regularisation

Final variable selection

Linear mixed models - approach

Mixed model 1 - null model country level random effects only

Mixed model 2 - adding in individual-level fixed effects

Mixed model 3 - adding in country-level fixed effects

Mixed model 4 - adding in cross-level interactions and random slopes

Linear Mixed models: performance

The best model was the full model with cross level interactions.

• However the improvements from the individual level effects are marginal.

Full model performance:

76% accuracy but better at identifying No (83.11%) than support (68.65%). This can be slightly improved by redcucing the threshold from 0.5 to 0.4

Cross-level effects

right_wing × lgbt_policy_index (negative)
genderWoman × lgbt_policy_index (positive)
non_believer × democracy_index (negative)
non_believer × gender_inequality_index
(negative)

Predictive models - approach

Aggregating individual level data to country-level

Predictive model 1 - Linear regression with Elastic Net

Predictive model 2 - Random Forest

Predictive model 3 - Gradient boosting

Predictive models: comparison and findings

Performance metrics

	R squared	RMSE	MAE
Benchmark	0.00000	0.20707	0.17419
ElasticNet	0.94691	0.04771	0.04012
Random Forest	0.96040	0.04121	0.03413
Gradient Boosting	0.99996	0.00126	0.00061

Model fit by country

Comparing predictive models regression results

Final considerations

- Most of the variability of our mixed model was explained by individual level factors.
- High predictive power within the sample of our predictive models
- Low generalizability outside the sample due to the nature of the data
- All of our models found similar important variables.
 - Factors that were related to supporting the policy included:
 - being a woman
 - knowing a transgender person
 - being non-religious
 - being an everyday internet user
 - Factors related to opposing the policy included:
 - expressing anti-LGBTQ+ views
 - expressing more discriminatory views against minorities
 - having lower life satisfaction
 - expressing a more right wing ideology

Thank you!