Estimation of Penguin Mass using a Kalman Filter

JN Hansen, J Pead, Dept. of Electrical Engineering, University of Cape Town, South Africa

Background

- African penguin population declined 95% since pre-industrial era = endangered species
- Accurate and reliable data required to determine factors affecting penguins to prevent extinction
- Mass is a significant parameter = indicates availability & variability in food sources and ecosystem changes
- Kalman filter (KF) applied to
 - judge feasibility in handling noise and nonlinearities
 - produce accurate, reliable and repeatable results

Results

KF estimated states vs true states for linear pendulum motion

EKF estimated states vs true states for nonlinear pendulum motion

Isolated Penguin Crossing Events from pre-processor & EKF estimated mass states

Approach

- KF designed & applied to track simulated motion of linearized pendulum
- Extended Kalman filter (EKF) designed & applied to track simulated motion of nonlinear pendulum
- EKF, pre-and post-processor designed & applied to estimate the mass of a penguin

Final estimated mass from EKF & standard deviation within set after post-processing

Conclusions

- Feasible to use EKF to estimate the mass of a penguin
- Provides reliable and repeatable results
- EKF can be generalized for multiple penguins but flexible to unique conditions
- EKF handles process & sensor noise and nonlinearities easily
- EKF provide in-built performances indicators
- Requires good pre-processing to isolate penguin crossing events
- Requires post-processing to analyze EKF output in statistical manner

