SUPERHOST CHURN PREDICTION

TEAM 12

MEET OUR TEAM

Roshan Raj Singh

Shourya Chouhan

Shubhankar Sharma

Sohan Sahoo

IDEATION

- Revenue prediction and saturation of Superhosts in a Neighborhood
- o Churn Prediction
- o Optimization of the current dynamics
- Impact on Non Superhost properties if there is an increase in Number of Superhosts

PROBLEM DEFINITION

To predict whether a Superhost in the current evaluation period is going to churn in the next evaluation period, i.e. whether a Superhost is going to lose their Superhost status in the next evaluation period.

BUSINESS PROBLEM

Superhost churn business impact

Rate of net change in Superhost has decreased

PROCESS FLOW

Sample	Explore	Modify	Model	Assess
Choosing the right cities as well as evaluation period for enough and valuable datapoints	Understanding the dataset and exploring dependency of target with predictor variables	Cleaning which involved dealing with missing values and outliers, normalising the data, making it ready for the model	Ran different models and tuning parameters to figure the best fit for the dataset	Assess what factors are causing the superhosts to lose their superhost status

CHALLENGES FACED

Over 30% of the dataset contained missing values

During the data preprocessing phase, diverse columns required aggregation using distinct aggregation methods.

Encountering a substantial imbalance in our dataset, with Class 0 comprising 7185 instances and Class 1 only 1423 instances

To rectify this imbalance, we implemented the Synthetic Minority Over-sampling Technique (SMOTE)

DATA PREPARATION PROCESS

- Established the criteria for selecting Superhost IDs, mapping each ID to its churn status in the upcoming evaluation period
- Determined the optimal evaluation period required for training the model to accurately predict Superhost churn in the subsequent assessment period
- Procedure was executed across eight diverse cities, ensuring an ample and varied dataset for robust model training

10 DATA PREPROCESSING

- · Identified of numerical and categorical columns
- Converted specified columns to string or numeric type

- · Imputed missing values for interval columns using the group median based on 'Airbnb Property ID'
- · Imputed missing values for binary columns using the group mode based on 'Airbnb Property ID'
- Impute missing values for categorical columns with the mode value within each property type based on 'Airbnb Property ID'

· Applied the lower fence imputation function to impute missing values in numerical columns

DATA AGGREGATION

Sum

Prev_revenue

Prev_numreviews

Average

Prev_ratings

Prev_occupancy

MODEL BUILDING PROCESS

- Data Preprocessing
- Variable Selection
- Dataset Partitioning
- Class Imbalance Handling
- Model Exploration
- Hyperparameter Tuning
- Threshold Optimization

MODEL COMPARISION AND SELECTION

- Logistic Regression
- Decision Tree
- Random Forest
- Gradient Boosting
- Neural Network

Without Threshold Optimisation							
Metrics for Comparision	Logistic Regression	Decision Tree	Random Forest	Gradient Boosting	Neural Network		
Accuracy	0.83	0.8	0.85	0.83	0.75		
ROC	0.77	0.64	0.79	0.64	0.63		
Sensitivity	0.04	0.41	0.18	0.33	0.45		
Interpretability of Result	High	High	Low	Low	Very Low		

With Threshold Optimisation Metrics for Comparision Logistic Regression Decision Tree Random Forest **Gradient Boosting** Neural Network 0.8235 0.84 0.68 0.83 Accuracy ROC 0.77 0.64 0.79 0.71 0.77 Sensitivity 0.82 0.41 Interpretability of Result High Very Low Low Lower Sensitivity Not Choosen because of lower Low Choosen because of High Precision and ROC than Random than Logistic Sensitivity, not interpretability and High Sensitivity | No Improveme Regression Result Forest choosen

Cost vs Accuracy

- 234 out of 285 actual churned hosts were correctly identified
- Took a hit on accuracy to decrease the false negative rate
- Allows to correctly capture those hosts with a high propensity to churn than random forest
- High Sensitivity, easy Interpretability

RANDOM FOREST RESULTS

Cost vs Accuracy

- 229 out of 285 actual churned hosts were correctly identified
- Took a hit on accuracy to decrease the false negative rate
- Allows to correctly capture those hosts with a high propensity to churn

16 PREDICTED PROBABILITY OF CHURN

			Probabilities:
Air	bnb Host ID	churn_prob	
441	1314045	0.970245	
3596	105117303	0.863864	
1362	7706697	0.855675	
998	4204562	0.855645	
2018	19962052	0.851194	
3152	62328018	0.812814	
637	2092314	0.772158	
875	3407346	0.766331	
958	3931950	0.761759	
2326	26228378	0.740260	
2534	33163646	0.736711	
1358	7678072	0.716573	
2983	50573299	0.711565	
3167	63383282	0.710371	
3463	93148942	0.701796	
770	2689908	0.692237	
1846	15613411	0.671532	
3516	97513787	0.657037	
1951	18053985	0.656661	
2164	22652051	0.647604	
3509	97022024	0.641047	
1749	13161042	0.637497	

Prediction

- Evaluation period 10 taken into consideration
- Aggregation of data for evaluation period 6, 7, 8 and 9 as suggested previously in data modeling stage
- Predicted churn for different Host IDs with probabilities

Suggested actions that can be taken by Airbnb

- Analyze internal and external factors contributing to churn specific to these host property's location and property type
- Airbnb can proactively push the superhosts to meet the requirements
- Better planning to nullify the churn by converting nonsuperhosts to superhosts

¹⁷ CONCLUSION

Provide operational auditing services to Airbnb superhosts to help them retain their superhost status

Understand which superhosts are going to lose their superhost status in the next evaluation period

Identify the factors that lead to the change in superhost status and how each factor affects the churn rate

Help superhosts by advising them on the said factors to improve on the service and retain their superhost status for the next evaluation period.

EXTRA SLIDES FOR REFERENCE

TOOLS USED

- Excel
- SAS Enterprise Miner
- Tableau
- Jupyter And Colab

DATA AND ITS SUMMARY

Superhost Non Superhost \$4252.83 \$3977.14 Average Revenue Proportion of Hosts 7185 1424 Average Number of 39.66 26.06 Reviews

BACKWARD REGRESSION

The selected model, based on the misclassification rate for the validation data, is the model trained in Step 6. It consists of the following effects:

Intercept Bedrooms Instantbook_Enabled Max_Guests Minimum_Stay Nightly_Rate Number_of_Photos Number_of_Reviews Rating_Overall booked_days_period_city hostRespor numReserv_pastYear numReservedDays_pastYear numReservedDays_pastYear numReviews_pastYear now_streat occupancy_rate prev_Nightly_Rate prev_Rating_Overall prev_available_days prev_nostResponseNumber_pastYear prev_numCancel_pastYear prev_numReserv_pastYear prev_numReviews_pastYear prev_num_5_star_Rev_pastYear prev_postYear prev_postYear prev_postYear prev_numPeriod_city tract_asian_perc tract_black_perc tract_housing_units tract_total_pop tract_white_perc zip_asian_nothispance_prev_prev_postYear_p

Likelihood Ratio Test for Global Null Hypothesis: BETA=0

Pr > ChiSq	DF	Likelihood Ratio Chi-Square	Likelihood Intercept & Covariates	-2 Log Intercept Only
<.0001	49	647.0129	3981.262	4628.275

²² LOGISTIC REGRESSION RESULTS

	coef	std err	2	Po [z]	[0.025	0.975]
const	9.6845	3.329	2.885	0.004	3.080	16.129
rating ave_pastYear	-8.2981	1.164	-8.256	8.798	-2.579	1.982
numReviews pastYear	0.3542	8.841	8.728	0.000	0.275	8.434
numCancel pastYear	0.6129	8,488	1.581	0.133	-8.188	1.413
num 5 star Rev_pastYear	-8.4411	8.848	-9.284	8.888	-8.534	-8.348
prop 5 StarReviews pastYear	-2.1415	1.762	-1.216	0.224	-5.594	
prev_rating_ave_pastYear	-8.8132	0.837	-8.971	0.332	-2.454	0.828
prev_numReviews_pastYear	-0.0781	8.832	-2.418	0.016	-8.142	-8.815
prev_numCancel_pastYear	0.1000	8.181	0.551	8.582	-8.256	
prev_num_5_star_Rev_pastYear	0.1027	8.837	2.779	0.885	8.838	8.175
prev_prop_S_StarReviews_pastYear	0.8737	1.273	0.686	0.492	-1.621	3,368
numReservedDays_pastYear	-0.0028	8.881	-1.485	0.137	-8.885	8.881
numReserv_pastYear	0.0085	0.007	1.256	0.289	-8.805	8.822
prev_numReservedDays_pastYear	0.0004	8.881	8.322	0.747	-8.882	0.003
prev_numReserv_pastYear	-0.0055	0.007	-8.751	0.453	-8.828	8.889
hostResponseNumber_pastYear	-8.0064	8.815	-0.436	0.663	-0.035	0.022
hostResponseAverage_pastYear	-8.8428	0.015	-2.758	0.006	-8.872	-8.812
prev_hostResponseNumber_pastYear	0.0012	8.889	0.125	8.988	-8.817	8.828
prev_hostResponseAverage_pastYear	0.0118	0.013	0.898	0.369	-8.814	0.037
prev_available_days	8.667e-85	5.99e-05	1.447	0.148		0.000
prev_available_days_aveListedPrice	0.0005	8.881	8.482	0.688		0.003
prev_booked_days	-8.8139	8.884	-3.619	8.888	-8.821	-8.885
prev_booked_days_avePrice	0.0006	8.881	8.684	8.494	-8.881	
Bedrooms	0.0233	8.878	0.331	0.741	-8.115	8.161
Bathrooms	-8.0786	0.098	-8.721	0.471	-8.263	8.121
Max Guests	0.0028	0.027	8.874	0.941	-8.858	8.854
Minimum Stay	0.0006	8.881	8.688	0.543		
Number of Photos	-8.8899	0.003	-3.836	0.882	-8.816	-8.884
Instantbook Enabled	0.0881	8.886	8.935	0.350	-8.888	
Nightly Rate	-0.0005	8.881	-8.983	0.366	-8.881	8.881
prev_Nightly Rate	0.0004	8.881	0.553	0.588	-8.881	8.882
Number of Reviews	-0.0075	0.002	-3.895	0.000	-0.011	-8.884
prev_Number of Reviews	0.0003	8.888	8.684	0.546	-8.881	
Rating Overall	-0.0553	8.811	-4.861	0.000	-8.878	
prev_Rating Overall	0.0493	8.813	3.761	0.888	8.824	
revenue	-2.887e-86		-8.262	0.793		
occupancy_rate	0.0322	8.236	0.137	0.891	-8.438	8.494
prev_revenue	9.625e-86	1.73e-05	0.558	0.577	-2.42e-05	4.35e-85
prev_occupancy_rate	1.7715	8.368	4.811	0.000	1.050	2,493

Key variables like 'rating_avg_pastyear', 'numcancel_pastyear', 'prop_5_starreviews', 'prev_bookeddays', 'no_of_photos' were identified based on p value

EGRADIENT BOOSTING RESULTS

Cost vs Accuracy

- Train Test Split of 70:30
- 343 out of 441 actual churned hosts were correctly identified
- Took a hit on precision to decrease the overall accuracy of predicting churned superhosts
- Allows to correctly capture those hosts with a high propensity to churn

NEURAL NETWORK RESULTS

Cost vs Accuracy

- Train Test Split of 70:30
- 318 out of 441 actual churned hosts were correctly identified
- Took a hit on precision to decrease the overall accuracy of predicting churned superhosts
- Allows to correctly capture those hosts with a high propensity to churn

THANK YOU