

DHBW Lörrach

Algorithmen und Komplexität TIF 21A/B Dr. Bruno Becker

- 9. Optimierungsprobleme für Graphen
- 9.2. Kürzeste Wege

Kürzeste Wege

- Problemstellung
- Algorithmus von Dijkstra
- Gerichtete Graphen
- Algorithmen in gerichteten Graphen

Problemstellung – kürzeste Wege

 Beispiel: Kürzester Weg von Startknoten (1) zu einem, mehreren oder allen Zielnoten

Definition kürzeste Pfade

- Kantengewichtete Graphen:
 - Gewicht (Länge) eines Pfades = Summe seiner Kantengewichte
- Kürzester Pfad:
 - Gegeben Knoten s und t in einem kantengewichteten Graphen
 - Ein *kürzester Pfad* von *s* nach *t* ist ein Pfad von *s* nach *t*, sodass kein anderer Pfad von *s* nach *t* ein niedrigeres Gewicht hat
 - Notation $\delta(s,t)$ = Gewicht eines kürzesten Pfades von s nach t = Entfernung von s nach t
- Ein kürzester Pfad von s nach t existiert genau dann, wenn
 - Es einen Pfad von s nach t gibt
 - Kein Pfad zwischen s und t hat einen Zyklus mit negativen Kantengewichten

Eigenschaften kürzester Pfade

- Nicht immer eindeutig
- Zyklenfrei (unter der Annahme, dass Kantengewichte positiv)
- Jeder Teilpfad eines kürzesten Pfades ist ein kürzester Pfad
 - Wieso? Beweis durch Widerspruch
 - Angenommen
 - 1. s,...p_i,...v Kürzester Weg von s nach v und
 - 2. $s, \dots p_i$, **Kein** Kürzester Weg von s nach p_i
 - Dann könnte man den kürzesten Pfad von s nach p_i, in den kürzesten Pfad von s nach v einbauen und würde diesen Pfad verkürzen
 - Widerspuch zur Annahme 1 → Annahme 2 stimmt nicht
- Es gibt Baum von s zu allen erreichbaren Knoten mit kürzesten Pfaden

Datenstruktur für kürzeste Pfade

- Speichern für jeden Knoten v:
 - v.dist = Gewicht des kürzesten bisher gefundenen Pfades von s nach v
 - v.vorg = Direkter Vorgänger von v im Pfad
- Ergibt Suchbaum von s zu allen erreichbaren Knoten

Kürzeste Wege

- Problemstellung
- Algorithmus von Dijkstra
- Gerichtete Graphen
- Algorithmen in gerichteten Graphen

Algorithmus von Dijkstra: Grundidee

- Jeder Knoten ist entweder
 - gewählter Knoten: Dann ist kürzester Weg von s zu dem Knoten bekannt
 - Randknoten: Es gibt einen vorläufig kürzesten Weg von s zum Knoten
 - Unerreichter Knoten: Es gibt noch keinen Weg von von s zum Knoten

Basisoperation: Relaxieren einer Kante

- Verbessere Wege zu Knoten w im Rand durch Relaxieren:
 - Betrachte Kante (v,w)
 - Lässt sich der kürzeste bisher gefundene Pfad von s nach w über v abkürzen?;
 d = c (<v,w>)
 - Wenn v.dist + d < w.dist ? Dann: w.dist = v.dist + d; w.vorg = v;

Algorithmus von Dijkstra

Suche kürzeste Wege in G=(V,E,c) mit $c \to R_0^+$ von s zu allen anderen Knoten

- 1. Für alle v außer s // Anfangs sind alle Knoten außer s unerreicht
 - $v.dist = \infty$;
 - v.vorg = nil;
 - v.gewaehlt = false;
- 2. s.vorg = s; s.dist = 0; s.gewaehlt = true; R= {} // Starte mit s
- 3. Ergänze R bei s; // Alle zu s benachbarten Knoten zum Rand R
- 4. Solange R <> {} tue // wähle nächstgelegenen Randknoten
 - Wähle v ε R mit v.dist minimal und entferne v aus R;
 - v.gewaehlt = true;
 - Ergänze R bei v; // Hinzunahme unerreichter Knoten zum Rand, Entfernungen anpassen

Algorithmus von Dijkstra (2)

Ergänze Rand R bei v

- 1. Für alle <v,w> aus E bezogen auf alle Nachbarn w von v
 - 1.1 Falls (w.gewaehlt) = false) und (v.dist + c(<v,w>) < w.dist) dann // w ist kürzer über v erreichbar → Kante relaxieren
 - w.vorg = v;
 - $w.dist = v.dist + c(\langle v, w \rangle);$
 - Vermerke w in R;

Algorithmus von Dijkstra: Aufwandsanalyse

- Initialisieren Schritt 1-3: O(||V)||
- Schleife (Schritt 4): O(|| V) || -mal wird Schleife durchlaufen
 - Operationen innerhalb der Schleife:
 - Einfügen, Minimum Entfernen, Kante relaxieren Entfernung anpassen
 - Datenstruktur für PQ:
 - 1. Array: Einfügen, Kante relaxieren O(1) aber Minimum Entfernen O(||V)||)
 - 2. Heap: In den Heap kommen $O(\|E\|)$ Kanten Alle Einzel-Operationen $O(\log \|V)\|$ d.h. für alle Kanten $O(\|E\| \log (\|E\|)) = O((\|E\| \log (\|V\|))$ Aufwand
- → Gesamtaufwand für G(V,E) mit Array $O(\|V^2\|)$
 - → Gut für dichte Graphen (d.h. sehr viele Kanten)
- → Gesamtaufwand für G(V,E) mit Heap $O((||E|| \log (||V||))$
 - → Gut für dünn besetzte Graphen (d.h. sehr wenige Kanten)
 - \rightarrow Es geht noch besser mit *Fibonacci-Heaps:* **O** (($\parallel E \parallel + \parallel V \parallel \log (\parallel V \parallel)$)

Algorithmus von Dijkstra – Beispiel

Beispiel: Kürzester Weg von Startknoten (1) zu allen Zielnoten

	1	2	3	4	5	6	7	8	9
Vorg.		1	2	3	4	1	2 1	7	4 3
DIST	0	2 ∞	6∞	8 ∝	9∞	9∞	8 15∞	23 ∝	921∞
Gewählt	Х	X	X	X			X		

Init: Nachbarn von 1 in Rand

R:2,6,7

- 1. Minimal 2: Wähle 2, Nachbarn von 2 in R Relaxiere 7, denn 1-2-7 = 8 < 15
- R:,6,7, 3
- 2. Minimal 3: Wähle 3, Nachbarn von 3 in R
- R:,6,7, 4, 9
- 3. Minimal 4 (oder 7): Nachbarn von 4 in R Relaxiere 9, denn 1-2-3-4-9 = 9 < 21
- R:,6,7, 9, 5

4. Minimal 7: Nachbarn von 7 in R

R:,6 9, 5, 8

Algorithmus von Dijkstra – Beispiel

Beispiel: Kürzester Weg von Startknoten (1) zu allen Zielnoten

	1	2	3	4	5	6	7	8	9
Vorg.		1	2	3	4	1	2	5 X	4
DIST	0	2	6	8	9	9	8	12/23	9
Gewählt	X	X	X	X	X	X	X	X	X

R:,69,5,8

R:,6, 9,8,

R: 9,8,

R: 8

- 5. Minimal 5 (oder 6 oder 9):
 Nachbarn von 5 in R keine neuen
 Relaxiere 8: 1-2-3-4-5-8 = 12 < 23
- 6. Minimal 6 keine neuen Nachbarn
- 7. Minimal 9 keine neuen Nachbarn
- 8. Minimal 8 Rand leer fertig

Übung Dijkstra

Gesucht: Kürzester Weg von 1 nach 5

	1	2	3	4	5	6
Vorg.		1	1	3	6	3
DIST	0	7 ∝	9 ∞	20 ∞	20 ∞	11 ∝
Gewählt	Х	X	X		X	X

Kürzester Weg von 1 nach 5: 1->3->6->5 Kosten 20

Kürzeste Wege

- Problemstellung
- Algorithmus von Dijkstra
- Gerichtete Graphen
- Algorithmen in gerichteten Graphen

Gerichtete Graphen

- **Gerichteter Graph (***Digraph, directed graph***)** *G(V,E)* ist Graph mit gerichteten Kanten, d.h. die Kanten können nur in eine Richtung durchlaufen werden.
 - Darstellung mit Pfeilen; zwischen zwei Knoten maximal 2 Kanten
- Gerichteter Pfad von v nach w durchläuft Kanten in der richtigen Richtung
- Zyklus Gerichteter Pfad von v nach v.
- Eingangsgrad/Ausgangsgrad Anzahl der eingehenden/ausgehenden Kanten
- Vorgänger u eines Knotens v Es gibt eingehende Kante <u,v> zu v
- Nachfolger w eines Knotens v Es gibt ausgehende Kante <v,w> von v

Datenstrukturen für gerichtete Graphen

- Analog zu ungerichteten Graphen, aber....
 - In Adjazenzmatrix a_{ij} = 1, falls $\langle i,j \rangle \in E$ (d.h. Kante von i nach j)
 - a_{ii} kann auch 1 sein
- Adjazenzliste
 - In der Liste zu jedem Knoten werden seine *Nachfolger* erfasst
 - Kanten sind nur einmal in der gesamten Adjazenzliste abgespeichert

Zusammenhangskomponenten im gerichteten Graph

- Ein Graph G=(V,E) heißt zusammenhängend hinsichtlich s, wenn jeder Knoten in $V \setminus \{s\}$ von s aus erreichbar ist.
- Zwei Knoten v und w liegen in der selben starken
 Zusammenhangskomponente, wenn es einen gerichteten Pfad von v nach w und von w nach v gibt.
 - Gerichteter Graph wird in starke Zusammenhangskomponenten zerlegt (partitioniert)

Kürzeste Wege

- Problemstellung
- Algorithmus von Dijkstra
- Gerichtete Graphen
- Algorithmen in gerichteten Graphen

Algorithmen für gerichtete Graphen

- Tiefensuche
 - Liefert i.a. keinen vollständigen Baum zu einem Startknoten
 - DFS-Wald statt DFS-Baum
 - Berechnung der starken Zusammenhangskomponente mit modifizierter Tiefensuche
- Breitensuche
 - Findet kürzesten Weg von Startkonten zu Zielknoten, sofern Pfad existiert

Algorithmen für gerichtete, kantengewichtete Graphen

- Kürzeste Wege
 - Single Source Algorithmus von Dijkstra

Übung: Kürzester Weg von Zentrale (0) zu allen Filialen (1-4)

	0	1	2	3	4
Vorgänger	-	0 -3	3-41	0	3
Distanz	0	∞	∞	∞	∞
		10	14	5	7
		8	13		
			9		
Gewählt?	Х	Х	Х	Х	Х

Rand: 1,3 (Nachbarn von 0),

- 1. Minimum 3: 3 aus Rand, 2 und 4 in Rand, Relaxieren 1
- 2. Minimum 4: 4 aus Rand, Relaxieren 2
- 3. Minimum 1: 1 aus Rand, Relaxieren 2
- 4. Minimum 2: 2 aus Rand

Zusammenfassung Kürzeste Wege

- Es gibt kürzesten Weg zwischen zwei Knoten, wenn Pfad existiert und kein Pfad einen Zyklus mit negativen Kantengewichten enthält
- Algorithmus von Dijkstra berechnet für nichtnegative Kantengewichte
 - Kürzesten Weg von einem Startknoten s zu einem Zielknoten t
 - Kürzesten Weg von einem Startknoten s zu allen Knoten
- Suche nach kürzestem Weg für alle Knotenpaare
 - Dijkstra-Algorithmus für alle Knoten als Startknoten → Aufwändig
 - Effizientere Lösung: Algorithmus von Floyd-Warshall (nicht in der Vorlesung)