ניסוי 5: בניסוי זה מימשנו מעבד piplined MIPS עם יחידת stall עם יחידת piplined MIPS. flush.

לפנינו פירוט של כל בלוק:

לפנינו דוגמת קוד בדיקה שהרצנו, ואחריה תוצאות הtestbench בmodelsim ב

```
xori $t4,$t3,5
.data
       i: .word 1
                                             slti $t4,$t3,1
                                            add $t5,$t3,$t4
       j: .word 2
                                     TWO:
       g: .word 3
                                            jal IF
                                     ONE:
       h: .word 4
                                             j THREE
       f: .word 5
                                             add $t5,$t3,$t4
.text
                                     IF:
                                            move $t5,$t3
       lw $t1,0
                                             jr $ra
       lw $t2,4
                                     THREE: bne $t0,$t1,END
       lw $t3,8
                                    ELSE: sub $t5,$t3,$t4
       lw $t4,12
                                    END: sw $t5,f
       slt $t0,$t1,$t2
       sub $t4, $t3, $t2
       mul $t4, $t3, $t2
       lui $t6, 100
       and $t4,$t3,$t2
       or $t4,$t3,$t2
       xor $t4,$t3,$t2
       sl1 $t4,$t3,3
       srl $t4,$t2,2
       sw $t4,12
      addi $t4,$t3,5
       andi $t4,$t3,5
       ori $t4,$t3,5
```


/mips_tb/reset	0							
/mips_tb/clock	1							
+> /mips_tb/Instruction_ID_out	012	000B60C0	000A6082	AC0C000C	216C0005	316C00	05 (356C0	0005
→ /mips_tb/Instruction_EX_out ———————————————————————————————————	8C0	016A6026	(000B60C0	000A6082	AC0C000C	216C00	05 316C0	0005
/mips_tb/Instruction_MEM_out	8C0	016A6025	016A6026	(000B60C0	000A6082	AC0C00	0C (216C0	0005
/mips_tb/instruction_WB_out	8C0	016A6024	016A6025	016A6026	000B60C0	000A60	82 (AC0C)	000C
+	000	00000000			00000003			
	000	00000003	00000002	(0000 (0000000	1 (00000018	00000000	
 → /mips_tb/write_data_ID_out	000	00000002	00000003	00000001	00000018	(000000	00000	000C
/mips_tb/Branch_ID_out	0							
/mips_tb/RegWrite_ID_out	1							
	000	00000001	00000018	00000000	0000000C	(000000	08 (00000	0001
	000	00000003	00000000			(000000	03	
	000	00000002	00000003	00000002	0000000C	(000000	05	
/mips_tb/Zero_EX	0							
/mips_tb/MemWrite_ID_out	0							
	000	00000002		(00000003	00000002	(000000	01 (00000	0018
+ /mips_tb/read_data_MEM_out	000	00000001		(0000000) (00000001		(0
+ /mips_tb/address_MEM_out	000	00000003	00000001	00000018	00000000	(000000	oc (00000	8000
/mips_tb/MemtoReg_WB_out	1							
+ /mips_tb/CLKCNT_out	0005	000C	I 000D	1000E	000F	10010	10011	
+- /mips tb/STCNT out	00	00						
- / /mips_tb/FHCNT_out	00	00						
		-						

וכן הלאה...

כעת צרבנו את הקוד לבקר באמצעות הquartus.

לפנינו תמונה מהSignal-Tap לאותו קוד אסמבלי שהרצנו בmidelsim:

האברכת הוא: של המערכת הוא:

	Fmax	Restricted Fmax	Clock Name	Note
1	37.59 MHz	37.59 MHz	clock	
2	65.17 MHz	65.17 MHz	altera_reserved_tck	

וה-logic usage report הוא:

•	< <filter>></filter>						
	Compilation Hierarchy Node	Combinational ALUTs	Dedicated Logic Registers	Pins	1em) Blo	Virtual Pins
1	▼ MIPS	2707 (58)	8005 (40)	10		2	464
1	▶ Execute:EXE	566 (451)	105 (105)	0	0	2	0
2	Idecode:ID	847 (847)	1032 (1032)	0	0	0	0
3	▶ Ifetch:IFE	51 (51)	8 (8)	0		0	0
4	control:CTL	15 (15)	O (O)	0	0	0	0
5	▶ dmemory:MEM	5 (5)	104 (104)	0		0	0
6	▶ sld_hub:auto_hub	91 (1)	90 (0)	0	0	0	0
7	 sld_signaltap:auto_signaltap_0 	1042 (2)	6523 (946)	0		0	0
8	writeback:WB	32 (32)	103 (103)	0	0	0	0

נסתכל על RTL viewer של כל רכיב:

:MIPS

:IFETCH

:IDECODE

:EXECUTE

:DMEMORY

:WRITEBACK

כעת נבחן את המסלול הקריטי:

כפי שניתן לראות, המסלול הקריטי הוא המסלול המבצע פעולה עם הזיכרון (sw או lw). הדבר הגיוני מכיוון שפעולה זו עוברת בכל שכבות המעבד ונכנסת לזיכרון הRAM ולכן היא הארוכה ביותר.

המסלול הקצר ביותר:

נבחן גם את המסלול הקריטי במעבד הsingle cycle:

:ה-fmax הוא

	Fmax	Restricted Fmax	Clock Name	Note
1	29.19 MHz	29.19 MHz	clock	
2	58.94 MHz	58.94 MHz	alteraed_tck	

והמסלול הקריטי הוא:

גם כאן זהו המסלול הנכנס לזיכרון, וככל הנראה קשור לפקודת sw או לפקודת.