BRUTE UDESC

Eliton Machado da Silva, Enzo de Almeida Rodrigues, Eric Grochowicz, João Vitor Frölich, João Marcos de Oliveira e Rafael Granza de Mello

3 de janeiro de 2024

Índice

1	Esti	ruturas de Dados	7
	1.1	Disjoint Set Union	8
		1.1.1 DSU Completo	8
		1.1.2 DSU com Rollback	10
		1.1.3 DSU Simples	11
		1.1.4 DSU Bipartido	11
	1.2	Operation Queue	12
	1.3	Interval Tree	13
	1.4	Segment Tree	14
	1.5	Operation Stack	26
	1.6	Fenwick Tree	26
	1.7	LiChao Tree	27
	1.8	KD Fenwick Tree	29
	1.9	Ordered Set	29
	1.10	MergeSort Tree	30
	1.11	Sparse Table	33
		1.11.1 Disjoint Sparse Table	33
		1.11.2 Sparse Table	34
2	Gra	\mathbf{fos}	35
	2.1	Matching	36
	2.2	Stoer-Wagner	37
	2.3	LCA	37
	2.4	Heavy-Light Decomposition (hld.cpp)	36
	2.5	Kruskal	40
	2.6	Bridge (pontes)	41
	2.7	Shortest Paths (caminhos mínimos)	42
		2.7.1 Dijkstra	42
		2.7.2 Shortest Path Fast Algorithm (SPFA)	43

4 ÍNDICE

	2.8	Binary Lifting	44
	2.9	Fluxo	46
	2.10	Inverse Graph	49
	2.11	2-SAT	50
	2.12	Graph Center	51
3	Stri	ng	53
J	3.1	Aho-Corasick	53
	3.2	Patricia Tree ou Patricia Trie	55
	3.3	Prefix Function	55
	3.4	Hashing	57
	3.5	Trie	58
	3.6	Algoritmo de Manacher	58
	3.7	Lyndon Factorization	59
	3.8	Suffix Array	60
	3.0	Sumx Array	00
4	Para	adigmas	63
	4.1	Mo	63
	4.2	Exponenciação de Matriz	66
	4.3	Busca Binária Paralela	68
	4.4	Divide and Conquer	69
	4.5	Busca Ternária	71
	4.6	DP de Permutação	72
	4.7	Convex Hull Trick	72
	4.8	All Submask	73
5	Mat	semática	75
	5.1	Soma do floor (n/i)	76
	5.2	Primos	76
	5.3	Numeric Theoric Transformation	77
	5.4	Eliminação Gaussiana	79
	5.5	Máximo divisor comum	81
	5.6	Fatoração	82
	5.7	Teorema do Resto Chinês	83
	5.8	Transformada Rápida de Fourier	84
	5.9	Exponenciação modular rápida	85
		Totiente de Euler	85

ÍNDICE	5
5.11 Modular Inverse	86

6 ÍNDICE

Capítulo 1

Estruturas de Dados

Disjoint Set Union

Estrutura que trata conjuntos.

Operation Queue

Fila que armazena o resultado do operatório dos itens.

Interval Tree

Estrutura que trata intersecções de intervalos.

Segment Tree

Consultas e atualizações em intervalos.

Operation Stack

Pilha que armazena o resultado do operatório dos itens.

Fenwick Tree

Consultas e atualizações de soma em intervalo.

LiChao Tree

Uma árvore de Funções. Retorna o F(x) máximo em um ponto X.

Kd Fenwick Tree

Fenwick Tree em K dimensoes.

Ordered Set

Set com operações de busca por ordem e índice.

MergeSort Tree

Árvore que resolve queries que envolvam ordenação em range.

Sparse Table

Consultas em intervalos com complexidade de tempo O(1).

1.1 Disjoint Set Union

Estrutura que trata conjuntos.

1.1.1 DSU Completo

DSU com capacidade de adicionar e remover vértices.

EXTREMAMENTE PODEROSO!

Funciona de maneira off-line, recebendo as operações e dando as respostas das consultas no retorno da função solve()

Roda em 0,6ms para $3*10^5$ queries e nodos com printf e scanf.

Possivelmente aguenta 10⁶ em 3s

```
struct full dsu {
1
2
        struct change {
3
            int node, old_size;
4
5
        struct query {
6
            \mathbf{int} \ l \ , \ r \ , \ u \ , \ v \ , \ type \ ;
7
        };
8
        stack<change> changes;
9
        map<pair<int, int>, vector<query>> edges;
10
        vector < query > queries;
        vector < int > parent, size;
11
12
        int number of sets, time;
13
        full dsu(int n) {
14
            time = 0;
15
16
             size.resize(n + 5, 1);
17
            number of sets = n;
            loop(i, 0, n + 5) parent.push back(i);
18
19
20
        int get(int a) { return (parent[a] == a ? a : get(parent[a])); }
21
22
        bool same(int a, int b) { return get(a) = get(b); }
23
        void checkpoint() { changes.push(\{-2, 0\}); }
24
25
        void join(int a, int b) {
26
            a = get(a);
27
            b = get(b);
              if (a == b) \{ return; \} 
28
29
             if (size[a] > size[b]) \{ swap(a, b); \}
            changes.push({a, size[b]});
30
31
            parent[a] = b;
32
             size[b] += size[a];
            —number of sets;
33
34
        }
35
36
        void rollback() {
37
            while (!changes.empty()) {
38
                 auto ch = changes.top();
```

```
changes.pop();
39
40
                if (ch.node = -2) \{ break; \}
                size[parent[ch.node]] = ch.old\_size;
41
42
                parent [ch.node] = ch.node;
43
                ++number of sets;
44
            }
45
        }
46
        void ord(int &a, int &b) {
47
48
            if (a > b) { swap(a, b); }
49
50
        void add(int u, int v) {
51
52
            ord(u, v);
53
            edges[\{u, v\}].push back(\{time++, (int)1e9, u, v, 0\});
54
        }
55
        void remove(int u, int v) {
56
57
            ord(u, v);
58
            edges[\{u, v\}].back().r = time++;
59
60
61
        // consulta se dois vertices estao no mesmo grupo
62
        void question(int u, int v) {
63
            ord(u, v);
            queries.push_back({time, time, u, v, 1});
64
65
            ++time;
        }
66
67
        // consulta a quantidade de grupos distintos
68
69
        void question() {
70
            queries.push back({time, time, 0, 0, 1});
71
            ++time;
        }
72
73
        vector<int> solve() {
74
75
            for (auto [p, v] : edges) \{ queries.insert(queries.end(), all(v)); \}
76
            vector < int > vec(time, -1), ans;
77
            run(queries, 0, time, vec);
78
            for (int i : vec) {
                if (i != -1) { ans.push back(i); }
79
80
81
            return ans;
82
        }
83
84
        void run(const vector<query> &qrs, int 1, int r, vector<int> &ans) {
85
            if (l > r) { return; }
86
            checkpoint();
87
            vector<query> qrs_aux;
            for (auto &q : qrs) {
88
89
                if (!q.type \&\& q.l <= l \&\& r <= q.r) {
90
                     join(q.u, q.v);
91
                else if (r < q.l | l > q.r) 
92
                     continue;
93
                } else {
                     qrs_aux.push_back(q);
94
95
96
            if (1 == r) {
97
98
                for (auto &q : qrs) {
99
                     if (q.type && q.l == 1) {
```

```
100
                                          ans[1] = number of sets; // numero de grupos nesse tempo
101
                                          // \operatorname{ans}[1] = \operatorname{same}(q.u, q.v); // \operatorname{se} u \in v \operatorname{estao} \operatorname{no} \operatorname{mesmo} \operatorname{grupo}
102
103
104
                            rollback();
105
                            return;
106
107
                     int m = (1 + r) / 2;
                     \operatorname{run}(\operatorname{qrs}_{\operatorname{aux}}, 1, m, \operatorname{ans});
108
109
                     run(qrs aux, m + 1, r, ans);
110
                     rollback();
111
              }
112
       };
```

1.1.2 DSU com Rollback

Desfaz as últimas K uniões

É possivel usar um checkpoint, bastando chamar rollback() para ir até o último checkpoint.

O rollback não altera a complexidade, uma vez que $K \le q$ ueries.

Só funciona sem compressão de caminho

```
1
   struct rollback dsu {
2
        struct change {
3
            int node, old size;
4
5
        stack<change> changes;
6
        vector<int> parent, size;
7
        int number_of_sets;
8
9
        rollback dsu(int n) {
10
            size.resize(n + 5, 1);
11
            number of sets = n;
12
            for (int i = 0; i < n + 5; ++i) { parent.push back(i); }
13
        }
14
15
        int get(int a) { return (a == parent[a]) ? a : get(parent[a]); }
16
        bool same(int a, int b) { return get(a) = get(b); }
17
        void checkpoint() { changes.push(\{-2, 0\}); }
18
19
        void join(int a, int b) {
20
            a = get(a);
21
            b = get(b);
22
            if (a == b) {
23
                changes.push(\{-1, -1\});
24
                return;
25
26
            if (size[a] > size[b]) \{ swap(a, b); \}
27
            changes.push(\{a, size[b]\});
28
            parent[a] = b;
29
            size[b] += size[a];
30
            -number_of_sets;
31
        }
```

```
32
33
        void rollback(int qnt = 1 \ll 31) {
            for (int i = 0; i < qnt; ++i) {
34
35
                 auto ch = changes.top();
36
                 changes.pop();
37
                 if (ch.node = -1) \{ continue; \}
38
                 if (ch.node == -2) {
39
                     if (qnt = 1 \ll 31) \{ break; \}
40
                     —i:
                     continue;
41
42
                 size [parent [ch.node]] = ch.old_size;
43
                 parent [ch.node] = ch.node;
44
45
                ++number_of_sets;
46
            }
47
        }
48
   };
```

1.1.3 DSU Simples

Verifica se dois itens pertencem a um mesmo grupo.

Une grupos.

```
struct DSU {
 1
         {\tt vector}{<} {\tt int}{>} \ {\tt pa} \, , \ \ {\tt sz} \, ;
 2
        DSU(int \ n) : pa(n + 1), sz(n + 1, 1) \{ iota(pa.begin(), pa.end(), 0); \}
 3
        int root(int a) \{ return pa[a] = (a == pa[a] ? a : root(pa[a])); \}
 4
 5
        bool find (int a, int b) { return root(a) = root(b); }
 6
         void uni(int a, int b) {
 7
             int ra = root(a), rb = root(b);
 8
             if (ra = rb) \{ return; \}
 9
             if (sz[ra] > sz[rb]) \{ swap(ra, rb); \}
10
             pa[ra] = rb;
             sz[rb] += sz[ra];
11
12
         }
13
    };
```

1.1.4 DSU Bipartido

DSU para grafo bipartido, é possível verificar se uma aresta é possível antes de adicioná-la.

Para todas as operações:

```
1 struct bipartite_dsu {
2    vector<int> parent;
3    vector<int> color;
4    int size;
```

```
5
        bipartite dsu(int n) {
6
            size = n;
7
            color.resize(n + 5, 0);
8
            for (int i = 0; i < n + 5; ++i) { parent.push_back(i); }
9
        }
10
11
        pair<int, bool> get(int a) {
12
            if (parent[a] = a) \{ return \{a, 0\}; \}
            auto val = get(parent[a]);
13
14
            parent[a] = val.fi;
15
            color[a] = (color[a] + val.se) \% 2;
16
            return {parent[a], color[a]};
17
        }
18
19
        bool same color(int a, int b) {
20
            get (a);
21
            get(b);
22
            return color[a] == color[b];
23
        bool same group(int a, int b) {
24
25
            get (a);
26
            get (b);
27
            return parent [a] = parent [b];
28
        bool possible_edge(int a, int b) { return !same_color(a, b) || !same_group(a,
29
           b); }
30
31
        void join(int a, int b) {
32
            auto val a = get(a), val b = get(b);
33
            parent [val a.fi] = val b.fi;
34
            color[val a.fi] = (val a.se + val b.se + 1) \% 2;
35
        }
36
   };
```

1.2 Operation Queue

Fila que armazena o resultado do operatório dos itens.

- * Complexidade de tempo (Push): O(1)
- * Complexidade de tempo (Pop): O(1)

```
1
   template <typename T> struct op_queue {
2
       stack<pair<T, T>> s1, s2;
3
       T result;
4
       T op(T a, T b)  {
            return a; // TODO: op to compare
5
            // min(a, b);
6
7
            // gcd(a, b);
            // lca(a, b);
8
9
       T get() {
10
11
            if (s1.empty() || s2.empty()) {
12
                return result = s1.empty() ? s2.top().second : s1.top().second;
```

1.3. INTERVAL TREE

```
13
            } else {
                return result = op(s1.top().second, s2.top().second);
14
15
16
        void add(T element) {
17
18
            result = s1.empty() ? element : op(element, s1.top().second);
            s1.push({element, result});
19
20
        void remove() {
21
22
            if (s2.empty()) {
                 while (!s1.empty()) {
23
24
                     T \text{ elem} = s1.top().first;
                     s1.pop();
25
26
                     T result = s2.empty()? elem : op(elem, s2.top().second);
27
                     s2.push({elem, result});
28
29
30
            T remove elem = s2.top().first;
31
            s2.pop();
32
        }
33
    };
```

1.3 Interval Tree

Por Rafael Granza de Mello

Estrutura que trata intersecções de intervalos.

Capaz de retornar todos os intervalos que intersectam [L, R]. L e R inclusos

Contém funções insert(L, R, ID), erase(L, R, ID), overlaps(L, R) e find(L, R, ID).

É necessário inserir e apagar indicando tanto os limites quanto o ID do intervalo.

Podem ser usadas as operações em Set:

```
#include <ext/pb ds/assoc container.hpp>
 1
   #include <ext/pb_ds/tree_policy.hpp>
 2
   using namespace __gnu_pbds;
 3
 4
   struct interval {
 5
       long long lo, hi, id;
 6
       bool operator < (const interval &i) const {
 7
            return lo < i.lo || (lo == i.lo && hi < i.hi) || (lo == i.lo && hi == i.hi
 8
               \&\& id < i.id);
9
        }
10
   template <class CNI, class NI, class Cmp Fn, class Allocator> struct
11
       intervals node update {
12
       typedef long long metadata type;
13
        int sz = 0;
14
        virtual CNI node\_begin() const = 0;
15
        virtual CNI node\_end() const = 0;
16
        inline vector < int > overlaps (const long long 1, const long long r) {
17
```

```
18
            queue < CNI> q;
19
            q.push(node_begin());
20
            vector < int > vec;
21
            while (!q.empty()) {
22
                CNI it = q.front();
23
                q.pop();
24
                if (it == node_end()) { continue; }
                if (r >= (*it) -> lo \&\& l <= (*it) -> hi) { vec.push_back((*it) -> id); }
25
                CNI l it = it.get l child();
26
                long long l_max = (l_it == node_end()) ? -INF : l_it.get_metadata();
27
                if (l_max >= l) { q.push(l_it); }
28
29
                if ((*it) \rightarrow lo \ll r) { q.push(it.get r child()); }
30
31
            return vec;
32
        }
33
34
        inline void operator()(NI it, CNI end_it) {
            const long long l max = (it.get_l_child() == end_it) ? -INF :
35
                it.get_l_child().get metadata();
36
            const long long r_max = (it.get_r_child() == end_it) ? -INF :
                it.get_r_child().get_metadata();
            const cast<long long &>(it.get metadata()) = max((*it)->hi, max(l max,
37
               r max));
        }
38
39
   typedef tree<interval , null_type , less<interval >, rb_tree_tag ,
40
       intervals node update> interval tree;
```

1.4 Segment Tree

Consultas e atualizações em intervalos.

Seg Tree

Implementação padrão de Seg Tree

Seg Tree Lazy

Implementação padrão de Seg Tree com lazy update

Sparse Seg Tree

Seg Tree Esparsa:

Persistent Seg Tree

Seg Tree Esparsa com histórico de Updates:

Seg Tree Beats

Seg Tree que suporta update de maximo e query de soma

Seg Tree Beats Max and Sum update

Seg Tree que suporta update de maximo, update de soma e query de soma.

Utiliza uma fila de lazy para diferenciar os updates

```
#include <bits/stdc++.h>
 1
2
   using namespace std;
3
4
   #define 11 long long
   #define INF 1e9
5
6
7
   struct Node {
8
        int m1 = INF, m2 = INF, cont = 0, lazy = 0;
9
        11 \text{ soma} = 0;
10
        void set(int v) {
11
12
            m1 = v;
13
            cont = 1;
14
            soma = v;
15
16
        void merge(Node a, Node b) {
17
18
            m1 = min(a.m1, b.m1);
19
            m2 = INF;
20
            if (a.m1 != b.m1) \{ m2 = min(m2, max(a.m1, b.m1)); \}
            if (a.m2 != m1) { m2 = min(m2, a.m2); }
21
            if (b.m2 != m1) { m2 = min(m2, b.m2); }
22
            cont = (a.m1 = m1 ? a.cont : 0) + (b.m1 = m1 ? b.cont : 0);
23
24
            soma = a.soma + b.soma;
25
        }
26
27
        void print() { printf("%d %d %d %lld %d\n", m1, m2, cont, soma, lazy); }
28
   };
29
30
   int n, q;
31
   vector < Node > tree;
32
33
   int le(int n) \{ return 2 * n + 1; \}
34
   int ri(int n) \{ return 2 * n + 2; \}
35
36
   void push(int n, int esq, int dir) {
37
        if (tree[n].lazy \le tree[n].m1) \{ return; \}
        tree[n].soma += (ll)abs(tree[n].ml - tree[n].lazy) * tree[n].cont;
38
39
        tree[n].m1 = tree[n].lazy;
        if (esq != dir) {
40
            tree[le(n)].lazy = max(tree[le(n)].lazy, tree[n].lazy);
41
            tree[ri(n)]. lazy = max(tree[ri(n)]. lazy, tree[n]. lazy);
42
43
44
        tree[n].lazy = 0;
45
46
47
    void build(int n, int esq, int dir, vector<int> &v) {
48
        if (esq = dir) {
49
            tree[n].set(v[esq]);
50
        } else {
51
            int mid = (esq + dir) / 2;
52
            build(le(n), esq, mid, v);
            build(ri(n), mid + 1, dir, v);
53
54
            tree[n].merge(tree[le(n)], tree[ri(n)]);
        }
55
56
   void build (vector \leq int> &v) { build (0, 0, n - 1, v); }
57
58
59
   // ai = max(ai, mi) em [1, r]
60
   void update(int n, int esq, int dir, int l, int r, int mi) {
```

```
61
        push(n, esq, dir);
62
         if (esq > r \mid | dir < l \mid | mi \le tree[n].m1) { return; }
63
         if (1 \le esq \&\& dir \le r \&\& mi < tree[n].m2) {
64
              tree[n]. lazy = mi;
65
              push(n, esq, dir);
66
         } else {
              int mid = (esq + dir) / 2;
67
68
              update(le(n), esq, mid, l, r, mi);
              update(ri(n), mid + 1, dir, l, r, mi);
69
              tree \left[ n \right]. merge \left( \, tree \left[ \, le \left( n \right) \, \right], \ tree \left[ \, ri \left( n \right) \, \right] \right);
70
71
         }
72
73
    void update(int l, int r, int mi) { update(0, 0, n - 1, l, r, mi); }
74
75
    // soma de | l , r |
76
    int query(int n, int esq, int dir, int l, int r) {
77
        push(n, esq, dir);
         if (esq > r \mid \mid dir < 1) \{ return 0; \}
78
79
         if (l \le esq \&\& dir \le r) \{ return tree[n].soma; \}
         int mid = (esq + dir) / 2;
80
81
         return query (le(n), esq, mid, l, r) + query (ri(n), mid + 1, dir, l, r);
82
    int query(int l, int r) { return query(0, 0, n-1, l, r); }
83
84
85
    int main() {
86
         cin >> n;
87
         tree.assign(4 * n, Node());
88
```

```
|\#include <bits/stdc++.h>
2
   using namespace std;
3
   #define ll long long
5
   #define INF 1e9
   #define fi first
7
   |\# \mathbf{define}| se second
9
   typedef pair<int, int> ii;
10
   struct Node {
11
12
        int m1 = INF, m2 = INF, cont = 0;
        11 \text{ soma} = 0;
13
        queue<ii>> lazy;
14
15
16
        void set(int v) {
            m1 \,=\, v\,;
17
            cont = 1;
18
19
            soma = v;
20
21
22
        void merge(Node a, Node b) {
23
            m1 = min(a.m1, b.m1);
24
            m2 = INF;
25
            if (a.m1 != b.m1) \{ m2 = min(m2, max(a.m1, b.m1)); \}
26
            if (a.m2 != m1) \{ m2 = min(m2, a.m2); \}
27
            if (b.m2 != m1) \{ m2 = min(m2, b.m2); \}
28
            cont = (a.m1 = m1 ? a.cont : 0) + (b.m1 = m1 ? b.cont : 0);
29
            soma = a.soma + b.soma;
30
        }
```

```
31
32
        void print() { printf("%d %d %d %lld\n", m1, m2, cont, soma); }
33
    };
34
    int n, q;
35
36
    vector < Node > tree;
37
38
    int le(int n) \{ return 2 * n + 1; \}
39
    int ri(int n) \{ return 2 * n + 2; \}
40
    void push(int n, int esq, int dir) {
41
         while (!tree[n].lazy.empty()) {
42
43
             ii p = tree[n].lazy.front();
             tree[n].lazy.pop();
44
45
             int op = p.fi, v = p.se;
46
             if (op = 0) {
47
                  if (v \le tree[n].m1) \{ continue; \}
                  tree[n].soma += (ll)abs(tree[n].m1 - v) * tree[n].cont;
48
49
                  tree[n].m1 = v;
                  if (esq != dir) {
50
51
                       tree [le(n)]. lazy. push (\{0, v\});
52
                       tree [ri(n)]. lazy.push(\{0, v\});
53
             \} else if (op == 1) {
54
55
                  tree[n].soma += v * (dir - esq + 1);
                  tree[n].m1 += v;
56
57
                  tree[n].m2 += v;
                  if (esq != dir) {
58
59
                       tree [le(n)]. lazy.push(\{1, v\});
60
                       tree [ri(n)]. lazy.push(\{1, v\});
61
                  }
             }
62
         }
63
64
65
66
    void build (int n, int esq, int dir, vector <int> &v) {
         if (esq = dir) {
67
             tree [n]. set (v[esq]);
68
69
         } else {
70
             int mid = (esq + dir) / 2;
             build(le(n), esq, mid, v);
71
             build (ri(n), mid + 1, dir, v);
72
             tree \left[ n \right]. merge \left( \, tree \left[ \, le \left( n \right) \, \right], \quad tree \left[ \, ri \left( n \right) \, \right] \right);
73
74
75
76
    void build (vector \leq int> \&v) { build (0, 0, n - 1, v); }
77
    // ai = max(ai, mi) em [l, r]
78
    void update(int n, int esq, int dir, int l, int r, int mi) {
79
80
        push(n, esq, dir);
         if (esq > r \mid \mid dir < l \mid \mid mi \le tree[n].m1) { return; }
81
82
         if (1 \le esq \&\& dir \le r \&\& mi < tree[n].m2) {
             tree[n].soma += (ll)abs(tree[n].m1 - mi) * tree[n].cont;
83
84
             tree[n].m1 = mi;
85
             if (esq != dir) {
                  tree [le(n)].lazy.push({0, mi});
86
                  tree[ri(n)].lazy.push({0, mi});
87
88
89
         } else {
90
             int mid = (esq + dir) / 2;
91
             update(le(n), esq, mid, l, r, mi);
```

```
92
                 update(ri(n), mid + 1, dir, l, r, mi);
 93
                 tree[n].merge(tree[le(n)], tree[ri(n)]);
 94
           }
 95
      void update(int l, int r, int mi) { update(0, 0, n - 1, l, r, mi); }
 96
 97
 98
      // soma v em [1, r]
 99
      void upsoma(int n, int esq, int dir, int l, int r, int v) {
100
           push(n, esq, dir);
           \textbf{if} \hspace{0.1cm} (\hspace{0.1cm} \mathbf{esq} \hspace{0.1cm} > \hspace{0.1cm} \mathbf{r} \hspace{0.1cm} |\hspace{0.1cm} | \hspace{0.1cm} \mathbf{dir} \hspace{0.1cm} < \hspace{0.1cm} \mathbf{l} \hspace{0.1cm}) \hspace{0.2cm} \hspace{0.1cm} \{ \hspace{0.1cm} \textbf{return} \hspace{0.1cm} ; \hspace{0.1cm} \}
101
            if (1 \le esq \&\& dir \le r)  {
102
103
                 tree [n]. soma += v * (dir - esq + 1);
104
                 tree[n].m1 += v;
105
                 tree[n].m2 += v;
106
                 if (esq != dir) {
107
                       tree [le(n)]. lazy.push(\{1, v\});
108
                       tree[ri(n)].lazy.push({1, v});
                 }
109
           } else {
110
111
                 int mid = (esq + dir) / 2;
112
                 upsoma(le(n), esq, mid, l, r, v);
                 upsoma(ri(n), mid + 1, dir, l, r, v);
113
114
                 tree[n].merge(tree[le(n)], tree[ri(n)]);
           }
115
116
      \mathbf{void} \ \operatorname{upsoma}(\mathbf{int} \ 1, \ \mathbf{int} \ r, \ \mathbf{int} \ v) \ \left\{ \ \operatorname{upsoma}(0, \ 0, \ n-1, \ 1, \ r, \ v); \ \right\}
117
118
119
      // soma de [1, r]
120
      int query(int n, int esq, int dir, int l, int r) {
121
           push(n, esq, dir);
122
           if (esq > r \mid | dir < 1) { return 0; }
           if (1 \le esq \&\& dir \le r) \{ return tree[n].soma; \}
123
124
           int mid = (esq + dir) / 2;
           return query (le(n), esq, mid, l, r) + query(ri(n), mid + 1, dir, l, r);
125
126
127
      int query(int l, int r) { return query(0, 0, n-1, l, r); }
128
129
      int main() {
130
           cin >> n;
131
           tree.assign(4 * n, Node());
132
           build(v);
133
```

```
1
   const int SEGMAX = 8e6 + 5; // should be Q * log(DIR-ESQ+1)
   const ll ESQ = 0, DIR = 1e9 + 7;
2
3
4
   struct seg {
5
        11 tree [SEGMAX];
        {f int} R[SEGMAX], L[SEGMAX], {f ptr}=2; // 0 is NULL; 1 is First Root
6
7
        11 op(11 a, 11 b) { return (a + b) % MOD; }
8
        int le(int i) {
9
            if (L[i] == 0) \{ L[i] = ptr++; \}
10
            return L[i];
11
12
        int ri(int i) {
13
            if (R[i] == 0) \{ R[i] = ptr++; \}
14
            return R[i];
15
16
        ll = query(ll l, ll r, int n = 1, ll esq = ESQ, ll dir = DIR)
```

```
17
              if (r < esq \mid | dir < 1)  { return 0; }
18
              if (1 \le esq \&\& dir \le r) \{ return tree[n]; \}
19
              11 \quad \text{mid} = (\text{esq} + \text{dir}) / 2;
              return op (query (l, r, le(n), esq, mid), query (l, r, ri(n), mid + 1, dir));
20
21
22
         void update(ll x, ll v, int n = 1, ll esq = ESQ, ll dir = DIR) {
23
              if (esq = dir) {
24
                   tree[n] = (tree[n] + v) \% MOD;
25
              } else {
26
                   11 \quad \text{mid} = (\text{esq} + \text{dir}) / 2;
27
                    \mathbf{if} \ (\mathbf{x} \leq \mathbf{mid}) \ \{
28
                        update(x, v, le(n), esq, mid);
29
                   } else {
30
                        update(x, v, ri(n), mid + 1, dir);
31
32
                   tree[n] = op(tree[le(n)], tree[ri(n)]);
33
              }
         }
34
35
    };
```

```
const int MAX = 2505;
3
    int n, m, mat[MAX][MAX], tree[4 * MAX][4 * MAX];
 4
    int le(int x) \{ return 2 * x + 1; \}
 5
 6
    int ri(int x) \{ return 2 * x + 2; \}
7
8
    void build y(int nx, int lx, int rx, int ny, int ly, int ry) {
9
         if (ly = ry) {
              if (lx = rx) {
10
                   tree[nx][ny] = mat[lx][ly];
11
              } else {
12
13
                   tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
14
         } else {
15
16
              \mathbf{int} \ \mathbf{my} = (1\mathbf{y} + \mathbf{ry}) \ / \ 2;
              \operatorname{build}_{y}(\operatorname{nx}, \operatorname{lx}, \operatorname{rx}, \operatorname{le}(\operatorname{ny}), \operatorname{ly}, \operatorname{my});
17
              build y(nx, lx, rx, ri(ny), my + 1, ry);
18
              tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
19
20
21
22
    void build x(int nx, int lx, int rx) {
23
         if (lx != rx) {
24
              int mx = (1x + rx) / 2;
25
              build x(le(nx), lx, mx);
26
              build_x(ri(nx), mx + 1, rx);
27
28
         build y(nx, lx, rx, 0, 0, m-1);
29
30
    void build() { build x(0, 0, n-1); }
31
32
    void update y(int nx, int lx, int rx, int ny, int ly, int ry, int x, int y, int v)
         if (ly = ry) {
33
              if (lx = rx) {
34
35
                   tree |nx| |ny| = v;
36
              } else {
37
                   tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
38
```

```
} else {
39
40
              int my = (ly + ry) / 2;
41
              \mathbf{if} \quad (\mathbf{y} \leq \mathbf{my}) \quad \{
42
                    update y(nx, lx, rx, le(ny), ly, my, x, y, v);
43
              } else {
44
                   update_y(nx, lx, rx, ri(ny), my + 1, ry, x, y, v);
45
46
              tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
47
         }
48
    void update x(int nx, int lx, int rx, int x, int y, int v) {
49
50
         if (lx != rx) {
51
              int mx = (1x + rx) / 2;
52
              if (x \ll mx) 
53
                   update x(le(nx), lx, mx, x, y, v);
54
55
                    update_x(ri(nx), mx + 1, rx, x, y, v);
56
57
58
         update y(nx, lx, rx, 0, 0, m-1, x, y, v);
59
    void update(int x, int y, int v) { update x(0, 0, n-1, x, y, v); }
60
61
62
    int sum_y(int nx, int ny, int ly, int ry, int qly, int qry) {
63
         if (ry < qly \mid | ly > qry) \{ return 0; \}
64
         if (qly \le ly \&\& ry \le qry) \{ return tree[nx][ny]; \}
65
         int my = (ly + ry) / 2;
         66
              qly, qry);
67
68
    int sum x(int nx, int lx, int rx, int qlx, int qrx, int qly, int qry) {
69
         if (rx < qlx \mid | lx > qrx) \{ return 0; \}
70
         if (qlx \le lx \& rx \le qrx) \{ return sum y(nx, 0, 0, m-1, qly, qry); \}
71
         \mathbf{int} \ \mathbf{mx} = (1\mathbf{x} + \mathbf{rx}) \ / \ 2;
72
         \mathbf{return} \ \operatorname{sum}_{\mathbf{x}}(\operatorname{le}(\operatorname{nx}), \ \operatorname{lx}, \ \operatorname{mx}, \ \operatorname{qlx}, \ \operatorname{qrx}, \ \operatorname{qly}, \ \operatorname{qry}) + \operatorname{sum}_{\mathbf{x}}(\operatorname{ri}(\operatorname{nx}), \ \operatorname{mx} + 1, \ \operatorname{rx}, \ \operatorname{qrx})
              qlx, qrx, qly, qry);
73
    int sum(int lx, int rx, int ly, int ry) { return sum x(0, 0, n-1, lx, rx, ly,
74
        ry); }
```

```
namespace seg {
1
2
        const int MAX = 2e5 + 5;
3
        int n;
4
        11 \text{ tree} [4 * MAX];
5
        ll merge(ll a, ll b) { return a + b; }
6
        int le(int n) \{ return 2 * n + 1; \}
7
        int ri(int n) { return 2 * n + 2; }
        void build(int n, int esq, int dir, const vector<ll> &v) {
8
9
            if (esq = dir) {
10
                tree[n] = v[esq];
11
            } else {
12
                int mid = (esq + dir) / 2;
13
                build(le(n), esq, mid, v);
14
                build(ri(n), mid + 1, dir, v);
15
                tree[n] = merge(tree[le(n)], tree[ri(n)]);
16
17
18
        void build(const vector<ll> &v) {
19
            n = v.size();
```

```
20
                 build (0, 0, n - 1, v);
21
22
           ll query(int n, int esq, int dir, int l, int r) {
23
                 if (esq > r \mid | dir < 1) { return 0; }
                 \label{eq:if_def} \textbf{if} \ \ (\texttt{l} <= \operatorname{esq} \ \&\& \ \operatorname{dir} <= \ r) \ \ \{ \ \ \textbf{return} \ \ \operatorname{tree} [\, n \,] \, ; \ \ \}
24
25
                 int mid = (esq + dir) / 2;
                 \mathbf{return} \ \operatorname{merge}(\operatorname{query}(\operatorname{le}(n), \operatorname{esq}, \operatorname{mid}, 1, r), \operatorname{query}(\operatorname{ri}(n), \operatorname{mid} + 1, \operatorname{dir}, 1,
26
27
           ll query(int l, int r) { return query(0, 0, n - 1, l, r); }
28
           void update(int n, int esq, int dir, int x, ll v) {
29
30
                 if (esq > x \mid \mid dir < x) \{ return; \}
31
                 if (esq = dir) {
32
                       \,t\,r\,e\,e\,\left[\,n\,\right] \;=\; v\,;
33
                 } else {}
34
                       int mid = (esq + dir) / 2;
35
                       if (x \le mid) {
36
                             update(le(n), esq, mid, x, v);
                       } else {
37
38
                             update(ri(n), mid + 1, dir, x, v);
39
                       tree[n] = merge(tree[le(n)], tree[ri(n)]);
40
41
42
43
           void update(int x, ll v) { update(0, 0, n - 1, x, v); }
44
```

```
1
   namespace seg {
2
        const int MAX = 1e5 + 5;
 3
        int n;
        11 \text{ tree} [4 * MAX];
 4
        11 merge(11 a, 11 b) { return max(a, b); }
 5
 6
        int le(int n) { return 2 * n + 1; }
7
        int ri(int n) \{ return 2 * n + 2; \}
        void build(int n, int esq, int dir, const vector<ll> &v) {
8
9
            if (esq = dir) {
10
                 tree[n] = v[esq];
            } else {
11
                 int mid = (esq + dir) / 2;
12
13
                 build(le(n), esq, mid, v);
14
                 build(ri(n), mid + 1, dir, v);
15
                 tree[n] = merge(tree[le(n)], tree[ri(n)]);
            }
16
17
        void build (const vector < ll > &v) {
18
19
            n = v.size();
20
            build (0, 0, n - 1, v);
21
        }
22
        // find fist index greater than k in [l, r]
23
        ll query(int n, int esq, int dir, int l, int r, ll k) {
24
            if (esq > r \mid | dir < 1) { return -1; }
25
            if (1 \le esq \&\& dir \le r) 
26
                 if (tree[n] < k) { return -1; }
27
                while (esq != dir) {
                     int mid = (esq + dir) / 2;
28
29
                     if (tree[le(n)] >= k) {
                         n = le(n), dir = mid;
30
31
                     } else {
32
                         n = ri(n), esq = mid + 1;
```

```
33
                      }
34
                 }
35
                 return esq;
36
37
             int mid = (esq + dir) / 2;
38
             int res = query(le(n), esq, mid, l, r, k);
39
             if (res != -1) \{ return res; \}
40
             return query (ri(n), mid + 1, dir, l, r, k);
41
42
        ll query(int l, int r, ll k) { return query(0, 0, n - 1, l, r, k); }
        void update(int n, int esq, int dir, int x, ll v) {
43
44
             if (esq > x \mid | dir < x) \{ return; \}
45
             if (esq = dir) {
46
                 tree[n] = v;
47
             } else {
48
                 int mid = (esq + dir) / 2;
49
                 if (x \le mid) {
50
                      update\left(\,l\,e\,(\,n\,)\;,\;\;esq\;,\;\;mid\,,\;\;x\,,\;\;v\,\right);
                 } else {
51
52
                      update(ri(n), mid + 1, dir, x, v);
53
54
                 tree[n] = merge(tree[le(n)], tree[ri(n)]);
             }
55
56
57
        void update(int x, ll v) { update(0, 0, n - 1, x, v); }
58
```

```
struct SegTree {
1
2
        int n;
3
        vector<int> tree;
4
        SegTree(int n) : n(n) { tree.assign(4 * n, 0); }
5
6
7
        int le(int n) \{ return 2 * n + 1; \}
8
        int ri(int n) \{ return 2 * n + 2; \}
9
10
        int query(int n, int esq, int dir, int l, int r) {
11
            if (esq > r \mid | dir < 1) { return 0; }
12
             if (1 \le esq \&\& dir \le r) \{ return tree[n]; \}
            int mid = (esq + dir) / 2;
13
14
            return max(query(le(n), esq, mid, l, r), query(ri(n), mid + 1, dir, l, r));
15
        int query(int l, int r) { return query(0, 0, n - 1, l, r); }
16
17
18
        void update(int n, int esq, int dir, int x, int v) {
19
            if (esq > x \mid | dir < x) \{ return; \}
20
            if (esq = dir) {
21
                 tree[n] = v;
22
            } else {
23
                 int mid = (esq + dir) / 2;
24
                 \mathbf{if} \ (\mathbf{x} \leq \mathbf{mid}) \ \{
25
                     update(le(n), esq, mid, x, v);
26
27
                     update(ri(n), mid + 1, dir, x, v);
28
29
                 tree[n] = max(tree[le(n)], tree[ri(n)]);
30
31
32
        void update(int x, int v) { update(0, 0, n - 1, x, v); }
```

```
33 | };
```

```
namespace seg {
 1
 2
         const int MAX = 1e5 + 5;
 3
         struct node {
 4
              ll pref, suff, sum, best;
 5
 6
         node new_node(ll v) { return node{v, v, v, v}; }
 7
         const node NEUTRAL = \{0, 0, 0, 0\};
         node tree [4 * MAX];
 8
 9
         node merge (node a, node b) {
10
              11 \text{ pref} = \max(a.\text{pref}, a.\text{sum} + b.\text{pref});
11
              11 \quad suff = max(b.suff, b.sum + a.suff);
12
              11 \text{ sum} = a.\text{sum} + b.\text{sum};
13
              11 best = max(a.suff + b.pref, max(a.best, b.best));
              return node{pref, suff, sum, best};
14
         }
15
16
17
         int n;
         int le(int n) \{ return 2 * n + 1; \}
18
19
         int ri(int n) \{ return 2 * n + 2; \}
20
         void build(int n, int esq, int dir, const vector<ll> &v) {
21
              if (esq = dir) {
                   tree[n] = new_node(v[esq]);
22
23
24
                   int mid = (esq + dir) / 2;
25
                   build(le(n), esq, mid, v);
26
                   build (ri(n), mid + 1, dir, v);
27
                   tree[n] = merge(tree[le(n)], tree[ri(n)]);
28
              }
29
         void build (const vector < ll > &v) {
30
31
              n = v.size();
32
              build (0, 0, n - 1, v);
33
34
         node query (int n, int esq, int dir, int l, int r) {
              if (esq > r || dir < 1) { return NEUTRAL; }
35
              \mathbf{if} \ (\ l \ <= \ esq \ \&\& \ \operatorname{dir} \ <= \ r \,) \ \ \{ \ \ \mathbf{return} \ \ \operatorname{tree} [\ n \ ] \, ; \ \ \}
36
37
              int mid = (esq + dir) / 2;
38
              return merge (query (le(n), esq, mid, l, r), query (ri(n), mid + 1, dir, l,
                  r));
39
         ll query(int l, int r) { return query(0, 0, n - 1, l, r).best; }
40
41
         void update(int n, int esq, int dir, int x, ll v) {
42
              if (esq > x \mid | dir < x) \{ return; \}
43
              if (esq = dir) {
                   tree[n] = new_node(v);
44
              } else {
45
46
                   int mid = (esq + dir) / 2;
47
                   \mathbf{if} \ (\mathbf{x} \le \mathbf{mid}) \ \{
48
                        update(le(n), esq, mid, x, v);
49
                   } else {
50
                        update(ri(n), mid + 1, dir, x, v);
51
                   tree[n] = merge(tree[le(n)], tree[ri(n)]);
52
53
54
         \mathbf{void} \ \operatorname{update}(\mathbf{int} \ x, \ ll \ v) \ \left\{ \ \operatorname{update}(0, \ 0, \ n-1, \ x, \ v); \ \right\}
55
56 | }
```

```
1
   namespace seg {
2
        const int MAX = 2e5 + 5;
3
        const 11 NEUTRAL = 0; // merge(a, neutral) = a
4
        ll merge(ll a, ll b) { return a + b; }
5
        int sz; // size of the array
6
        11 \text{ tree} \left[4 * \text{MAX}\right], \text{ lazy} \left[4 * \text{MAX}\right];
7
        int le(int n) \{ return 2 * n + 1; \}
8
        int ri(int n) \{ return 2 * n + 2; \}
9
        void push(int n, int esq, int dir) {
10
             if (lazy[n] = 0) \{ return; \}
             tree[n] += lazy[n] * (dir - esq + 1);
11
12
             if (esq != dir) {
13
                 lazy[le(n)] += lazy[n];
14
                 lazy[ri(n)] += lazy[n];
15
16
            lazy[n] = 0;
17
18
        void build (span < const ll > v, int n, int esq, int dir) {
19
            if (esq = dir) {
20
                 tree[n] = v[esq];
21
             } else {}
22
                 int mid = (esq + dir) / 2;
23
                 build(v, le(n), esq, mid);
24
                 build(v, ri(n), mid + 1, dir);
                 tree[n] = merge(tree[le(n)], tree[ri(n)]);
25
26
             }
27
28
        void build (span < const ll > v) {
29
            sz = v.size();
30
             build (v, 0, 0, sz - 1);
31
32
        ll query(int l, int r, int n = 0, int esq = 0, int dir = sz - 1) {
33
            push(n, esq, dir);
34
             if (esq > r || dir < 1) { return NEUTRAL; }
35
             if (1 \le esq \&\& dir \le r) \{ return tree[n]; \}
36
            int mid = (esq + dir) / 2;
37
            return merge (query (1, r, le(n), esq, mid), query (1, r, ri(n), mid + 1,
                dir));
38
39
        void update(int 1, int r, 11 v, int n = 0, int esq = 0, int dir = sz - 1) {
40
            push(n, esq, dir);
             if (esq > r \mid \mid dir < 1) \{ return; \}
41
42
             if (1 \le esq \&\& dir \le r)  {
43
                 lazy[n] += v;
44
                 push(n, esq, dir);
45
             } else {
46
                 int mid = (esq + dir) / 2;
                 update(1\,,\ r\,,\ v\,,\ le(n)\,,\ esq\,,\ mid)\,;
47
48
                 update(l, r, v, ri(n), mid + 1, dir);
49
                 tree[n] = merge(tree[le(n)], tree[ri(n)]);
50
            }
51
        }
52
```

```
2
                    const 11 ESQ = 0, DIR = 1e9 + 7;
  3
                    struct node {
                              11 \ v = 0;
  4
  5
                              node *l = NULL, *r = NULL;
  6
                              node() { }
 7
                              node(11 \ v) : v(v) \{ \}
                              node(node *l, node *r) : l(l), r(r) \{ v = l \rightarrow v + r \rightarrow v; \}
  8
  9
                              void apply() {
                                        if (1 == NULL) { 1 = new node(); }
10
                                         if (r = NULL) \{ r = new node(); \}
11
12
13
                    };
14
                    vector<node *> roots;
                    void build() { roots.push_back(new node()); }
15
16
                    void push(node *n, int esq, int dir) {
17
                              if (esq != dir) { n->apply(); }
18
                    }
                    // sum v on x
19
                    node *update(node *n, int esq, int dir, int x, int v) {
20
21
                              push(n, esq, dir);
22
                              if (esq = dir) \{ return new node(n->v+v); \}
23
                              int mid = (esq + dir) / 2;
24
                              \mathbf{if} \ (\mathbf{x} \leq \mathbf{mid}) \ \{
25
                                        return new node(update(n\rightarrowl, esq, mid, x, v), n\rightarrowr);
26
                              } else {
                                        return new node (n->1, update(n->r, mid + 1, dir, x, v));
27
28
29
30
                    int update(int root, int pos, int val) {
31
                              node *novo = update(roots[root], ESQ, DIR, pos, val);
32
                              roots.push back(novo);
33
                              return roots. size () - 1;
34
                    }
                     // sum in [L, R]
35
                    ll query(node *n, int esq, int dir, int l, int r) {
36
37
                              push(n, esq, dir);
38
                              if (esq > r \mid | dir < 1) { return 0; }
39
                              if (1 \le esq \&\& dir \le r) \{ return n = v; \}
40
                              int mid = (esq + dir) / 2;
                              return query (n\rightarrow l, esq, mid, l, r) + query (n\rightarrow r, mid + 1, dir, l, r);
41
42
                    ll query(int root, int l, int r) { return query(roots[root], ESQ, DIR, l, r); }
43
44
                    // kth min number in [L, R] (l_root can not be 0)
45
                   int kth(node *L, node *R, int esq, int dir, int k) {
46
                              push(L, esq, dir);
47
                              push(R, esq, dir);
                              if (esq = dir) \{ return esq; \}
48
                              int mid = (esq + dir) / 2;
49
                              int cont = R -> l -> v - L -> v;
50
51
                              if (cont >= k) {
52
                                        return kth(L\rightarrow l, R\rightarrow l, esq, mid, k);
53
                              } else {
54
                                        return kth(L\rightarrow r, R\rightarrow r, mid + 1, dir, k - cont);
55
                              }
56
57
                    int kth(int \mid root, int \mid r root, int \mid k) \{ return \mid kth(roots \mid 1 \mid root - 1 \mid, kth(roots \mid 1 \mid root, kth(
                             roots | r root | , ESQ, DIR, k); }
58
```

1.5 Operation Stack

Pilha que armazena o resultado do operatório dos itens.

- * Complexidade de tempo (Push): O(1)
- * Complexidade de tempo (Pop): O(1)

```
template <typename T> struct op stack {
1
2
        stack < pair < T, T >> st;
3
        T result;
4
        T op(T a, T b)  {
5
            return a; // TODO: op to compare
6
               \min(a, b);
7
               gcd(a, b);
8
             // lca(a, b);
9
        \acute{\mathbf{T}} get() { return result = st.top().second; }
10
11
        void add(T element) {
             result = st.empty() ? element : op(element, st.top().second);
12
13
             st.push({element, result});
14
15
        void remove() {
            T removed_element = st.top().first;
16
17
             st.pop();
18
        }
19
    };
```

1.6 Fenwick Tree

Consultas e atualizações de soma em intervalo.

O vetor precisa obrigatoriamente estar indexado em 1.

- * Complexidade de tempo (Pre-processamento): O(N * log(N))
- * Complexidade de tempo (Consulta em intervalo): O(log(N))
- * Complexidade de tempo (Update em ponto): O(log(N))
- * Complexidade de espaço: 2 * N = O(N)

```
struct FenwickTree {
    int n;
    vector < int > tree;
    FenwickTree(int n) : n(n) { tree.assign(n, 0); }
    FenwickTree(vector < int > v) : FenwickTree(v.size()) {
        for (size_t i = 1; i < v.size(); i++) { update(i, v[i]); }
    }
    int lsONE(int x) { return x & (-x); }</pre>
```

1.7. LICHAO TREE

```
9
        int query(int x) {
10
            int soma = 0;
            for (; x > 0; x = lsONE(x)) \{ soma += tree[x]; \}
11
12
13
        int query(int l, int r) { return query(r) - query(l-1); }
14
        void update(int x, int v) {
15
            for (; x < n; x += lsONE(x)) \{ tree[x] += v; \}
16
17
        }
18
    };
```

1.7 LiChao Tree

Uma árvore de Funções. Retorna o F(x) máximo em um ponto X.

Para retornar o minimo deve-se inserir o negativo da função e pegar o negativo do resultado.

Está pronta para usar função linear do tipo F(x) = mx + b.

Funciona para funções com a seguinte propriedade, sejam duas funções f(x) e g(x), uma vez que f(x) ganha/perde de g(x), f(x) vai continuar ganhando/perdendo de g(x),

ou seja f(x) e g(x) se intersectam apenas uma vez.

- * Complexidade de consulta : O(log(N))
- * Complexidade de update: O(log(N))

LiChao Tree Sparse

O mesmo que a superior, no entanto suporta consultas com $|x| \le 1e18$.

- * Complexidade de consulta : O(log(tamanho do intervalo))
- * Complexidade de update: O(log(tamanho do intervalo))

```
typedef long long 11;
 1
 2
   const 11 MAXN = 1e5 + 5, INF = 1e18 + 9;
 3
 4
 5
    struct Line {
 6
        11 a, b = -INF;
 7
        ll operator()(ll x) { return a * x + b; }
 8
    } tree [4 * MAXN];
 9
    int le(int n) { return 2 * n + 1; }
10
    int ri(int n) \{ return 2 * n + 2; \}
11
12
    {f void} insert (Line line, {f int} n = 0, {f int} l = 0, {f int} r = MAXN) {
13
14
        \mathbf{int} \ \mathrm{mid} = (1 + \mathrm{r}) \ / \ 2;
        bool bl = line(1) < tree[n](1);
15
16
        bool bm = line(mid) < tree[n](mid);
17
        if (!bm) \{ swap(tree[n], line); \}
18
        if (l = r) \{ return; \}
19
        if (bl != bm) {
20
             insert (line, le(n), l, mid);
```

```
21
           } else {
22
                 insert(line, ri(n), mid + 1, r);
23
24
    }
25
26
     11 query(\mathbf{int} \ \mathbf{x}, \mathbf{int} \ \mathbf{n} = 0, \mathbf{int} \ \mathbf{l} = 0, \mathbf{int} \ \mathbf{r} = \mathbf{MAXN}) {
27
          if (l = r) { return tree [n](x); }
28
          int \ mid = (1 + r) / 2;
29
           if (x < mid) 
30
                return max(tree[n](x), query(x, le(n), l, mid));
31
           } else {
32
                return \max(\text{tree}[n](x), \text{query}(x, \text{ri}(n), \text{mid} + 1, \text{r}));
33
34
```

```
typedef long long 11;
 3
    const 11 MAXN = 1e5 + 5, INF = 1e18 + 9, MAXR = 1e18;
 5
    struct Line {
 6
          11 a, b = -INF;
 7
            = int128 \ \mathbf{operator}()(11 \ x) \ \{ \ \mathbf{return} \ (\_int128)a * x + b; \ \}
 8
      tree [4 * MAXN];
9
    int idx = 0, L[4 * MAXN], R[4 * MAXN];
10
    \mathbf{int} \ \operatorname{le}\left(\mathbf{int} \ n\right) \ \{
11
12
          \mathbf{if} \quad (!L[n]) \quad \{ L[n] = ++\mathrm{idx}; \}
13
          return L[n];
14
15
    int ri(int n) {
16
          if (!R[n]) { R[n] = ++idx; }
17
          return R[n];
18
19
     {f void} insert (Line line, {f int} n = 0, ll l = -MAXR, ll r = MAXR) {
20
          11\ mid\ =\ (1\ +\ r\,)\ /\ 2\,;
21
          \mathbf{bool} \ bl = line(l) < tree[n](l);
22
23
          bool bm = line(mid) < tree[n](mid);
24
          if (!bm) \{ swap(tree[n], line); \}
25
          if (1 == r) { return; }
26
          if (bl != bm) {
27
                insert(line, le(n), l, mid);
28
          } else {
29
                insert(line, ri(n), mid + 1, r);
30
          }
31
    }
32
     \_\_int128 \text{ query}(\mathbf{int} \ \mathrm{x}, \ \mathbf{int} \ \mathrm{n} = 0, \ \mathrm{ll} \ \mathrm{l} = -\!\mathrm{MAXR}, \ \mathrm{ll} \ \mathrm{r} = \mathrm{MAXR}) \ \{
33
34
          if (l = r) { return tree [n](x); }
          11 \mod = (1 + r) / 2;
35
36
          \mathbf{if} \ (\mathbf{x} < \mathbf{mid}) \ \{
37
                return max(tree[n](x), query(x, le(n), l, mid));
38
39
                return \max(\text{tree}[n](x), \text{query}(x, \text{ri}(n), \text{mid} + 1, r));
40
          }
41
```

1.8 KD Fenwick Tree

Fenwick Tree em K dimensoes.

- * Complexidade de update: $O(log^k(N))$.
- * Complexidade de query: $O(log^k(N))$.

```
const int MAX = 10;
 1
 2
    11 tree [MAX] [MAX] [MAX] [MAX] [MAX] [MAX] [MAX] [MAX]; // insira a quantidade necessaria
        de dimensoes
 3
    int lsONE(int x) \{ return x & (-x); \}
 4
 5
 6
    ll query (vector < int > s, int pos) {
 7
         11 \text{ sum} = 0;
         while (s[pos] > 0) {
 8
              if (pos < s.size() - 1)  {
 9
10
                   sum += query(s, pos + 1);
                else {
11
12
                   sum += tree[s[0]][s[1]][s[2]][s[3]][s[4]][s[5]][s[6]][s[7]];
13
              s [pos] = lsONE(s[pos]);
14
15
16
         return sum;
17
18
    void update(vector<int> s, int pos, int v) {
19
20
         while (s [pos] < MAX + 1) {
21
              if (pos < s.size() - 1)  {
22
                   update(s, pos + 1, v);
23
              } else {}
                   tree\,[\,s\,[\,0\,]\,]\,[\,s\,[\,1\,]\,]\,[\,s\,[\,2\,]\,]\,[\,s\,[\,3\,]\,]\,[\,s\,[\,4\,]\,]\,[\,s\,[\,5\,]\,]\,[\,s\,[\,6\,]\,]\,[\,s\,[\,7\,]\,] \ +=\ v\,;
24
25
26
27
              s[pos] += lsONE(s[pos]);
28
         }
29
```

1.9 Ordered Set

Set com operações de busca por ordem e índice.

Pode ser usado como um set normal, a principal diferença são duas novas operações possíveis:

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/trie_policy.hpp>
using namespace __gnu_pbds;
```

```
typedef tree<int, null type, less<int>, rb tree tag,
        tree_order_statistics_node_update> ordered_set;
6
 7
    ordered set X;
   X.insert(1);
8
9
   |X.insert(2);
10
   X.insert(4);
   |X.insert(8);
12
   X. insert (16);
13
    cout \ll X. find by order(1) \ll endl; // 2
14
    cout <<\!\!*X.\,find\_by\_order\,(\,2\,)\!<\!\!<\!\!endl\,;\ //\ 4
15
16
    cout << *X. find_by_order (4) << endl; // 16
    cout << (end(X) = X. find_by_order(6)) << endl; // true
17
18
19
    cout \ll X. order of key (-5) \ll endl;
20
   | cout \ll X.order\_of\_key(1) \ll endl;
    cout \ll X.order of key(3) \ll endl;
21
    cout << X. order_of_key (4) << endl;
cout << X. order_of_key (400) << endl;
22
23
```

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/trie_policy.hpp>

using namespace __gnu_pbds;

template <typename T> typedef tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update> ordered_set;
```

1.10 MergeSort Tree

Árvore que resolve queries que envolvam ordenação em range.

MergeSort Tree com Update Pontual

Resolve Queries que envolvam ordenação em Range. (COM UPDATE)

1 segundo para vetores de tamanho $3*10^5$

```
#include <ext/pb_ds/assoc_container.hpp>
1
   |#include <ext/pb_ds/tree_policy.hpp>
3
4
   using namespace __gnu_pbds;
   namespace mergesort {
7
       typedef tree<ii, null_type, less<ii>, rb_tree_tag,
           tree_order_statistics_node_update> ordered_set;
8
       const int MAX = 1e5 + 5;
9
10
       int n;
       ordered_set mgtree[4 * MAX];
11
12
       vi values;
```

```
13
14
         int le(int n) \{ return 2 * n + 1; \}
         int ri(int n) \{ return 2 * n + 2; \}
15
16
17
         ordered_set join(ordered_set set_l, ordered_set set_r) {
18
              for (auto v : set_r) { set_l.insert(v); }
19
              return set_l;
20
         }
21
22
         void build(int n, int esq, int dir) {
23
              if (esq = dir) {
                    mgtree[n].insert(ii(values[esq], esq));
24
25
              } else {
26
                   int mid = (esq + dir) / 2;
27
                    build (le(n), esq, mid);
28
                    build(ri(n), mid + 1, dir);
29
                   mgtree[n] = join(mgtree[le(n)], mgtree[ri(n)]);
30
              }
31
         void build(vi &v) {
32
33
              n = v.size();
34
              values = v;
35
              build (0, 0, n-1);
36
         }
37
         int less (int n, int esq, int dir, int l, int r, int k) {
38
39
              if (esq > r \mid | dir < l) { return 0; }
40
               \textbf{if} \hspace{0.2cm} (\hspace{.05cm} 1 \mathrel{<=}\hspace{0.2cm} \operatorname{esq} \hspace{0.2cm} \& \hspace{0.2cm} \operatorname{dir} \mathrel{<=\hspace{0.2cm}} r) \hspace{0.2cm} \{ \hspace{0.2cm} \textbf{return} \hspace{0.2cm} \operatorname{mgtree} [\hspace{.05cm} n \hspace{.05cm}] \hspace{0.2cm} . \hspace{0.2cm} \operatorname{order\_of\_key} (\{\hspace{.05cm} k \hspace{.05cm}, \hspace{.05cm} -1\}) \hspace{.05cm} ; \hspace{0.2cm} \} 
              int mid = (esq + dir) / 2;
41
              42
43
         int less (int l, int r, int k) { return less (0, 0, n-1, l, r, k); }
44
45
         void update(int n, int esq, int dir, int x, int v) {
46
47
              if (esq > x \mid | dir < x) \{ return; \}
48
              if (esq = dir) {
                   mgtree[n].clear(), mgtree[n].insert(ii(v, x));
49
50
                   int mid = (esq + dir) / 2;
51
52
                    if (x \le mid) 
53
                         update(le(n), esq, mid, x, v);
54
55
                         update(ri(n), mid + 1, dir, x, v);
56
57
                   mgtree[n].erase(ii(values[x], x));
58
                   mgtree[n].insert(ii(v, x));
59
              }
60
         void update(int x, int v) {
61
62
              update(0, 0, n - 1, x, v);
63
              values[x] = v;
64
         }
65
66
            ordered set debug query(int n, int esq, int dir, int l, int r) {
                  if \ (\, esq \, > \, r \ \mid \, \mid \ dir \, < \, l \,) \ return \ ordered\_set \, (\,) \, ;
67
                  if (1 \le esq \&\& dir \le r) return mgtree[n];
68
                  int mid = (esq + dir) / 2;
69
70
                  return join (debug_query(le(n), esq, mid, l, r), debug_query(ri(n),
             mid+1, dir, l, r);
71
         // }
72
         // ordered_set debug_query(int l, int r) {return debug_query(0, 0, n-1, l, r);}
```

```
73
74
            int greater (int n, int esq, int dir, int l, int r, int k) {
                   \text{if } (\operatorname{esq} > r \ || \ \operatorname{dir} < 1) \ \operatorname{return} \ 0; \\
75
76
                  if (1 \le esq \&\& dir \le r) return (r-l+1) - mgtree[n]. order of key(\{k, r\})
             1e8);
77
                  int mid = (esq + dir) / 2;
78
                  return greater (le(n), esq, mid, l, r, k) + greater (ri(n), mid+1, dir,
79
80
         // int greater(int 1, int r, int k) \{\text{return greater}(0, 0, n-1, 1, r, k);\}
81
    };
```

```
1
   namespace mergesort {
2
        const int MAX = 1e5 + 5;
3
4
        int n;
5
        vi mgtree [4 * MAX];
6
7
        int le(int n) \{ return 2 * n + 1; \}
8
        int ri(int n) \{ return 2 * n + 2; \}
9
10
        void build (int n, int esq, int dir, vi &v) {
            mgtree[n] = vi(dir - esq + 1, 0);
11
12
            if (esq = dir) {
13
                 mgtree[n][0] = v[esq];
14
            } else {
15
                int mid = (esq + dir) / 2;
16
                 build(le(n), esq, mid, v);
17
                 build (ri(n), mid + 1, dir, v);
18
                merge (mgtree [le (n)].begin (),
19
                       mgtree[le(n)].end()
20
                       mgtree [ri(n)]. begin(),
21
                       mgtree[ri(n)].end(),
22
                       mgtree[n].begin());
23
            }
24
25
        void build(vi &v) {
26
            n = v.size();
27
            build (0, 0, n - 1, v);
28
29
30
        int less (int n, int esq, int dir, int l, int r, int k) {
31
            if (esq > r \mid \mid dir < 1) \{ return 0; \}
32
            if (1 <= esq && dir <= r) { return lower bound(mgtree[n].begin(),
                mgtree[n].end(), k) - mgtree[n].begin();
33
            int mid = (esq + dir) / 2;
            return less(le(n), esq, mid, l, r, k) + less(ri(n), mid + 1, dir, l, r, k);
34
35
        int less(int l, int r, int k) { return less(0, 0, n-1, l, r, k); }
36
37
38
           vi debug query(int n, int esq, int dir, int l, int r) {
39
               if (esq > r \mid | dir < l) return vi();
40
               if (1 \le esq \&\& dir \le r) return mgtree[n];
               int mid = (esq + dir) / 2;
41
               auto vl = debug_query(le(n), esq, mid, l, r);
42
               auto \ vr = debug\_query(\,ri\,(n)\,,\ mid+1,\ dir\,,\ l\,,\ r\,)\,;
43
44
               vi ans = vi(vl.size() + vr.size());
45
               merge(vl.begin(), vl.end(),
46
                    vr.begin(), vr.end(),
```

1.11. SPARSE TABLE 33

1.11 Sparse Table

Consultas em intervalos com complexidade de tempo O(1).

1.11.1 Disjoint Sparse Table

Resolve query de range para qualquer operação associativa em O(1).

Pré-processamento em $O(n \log n)$.

```
struct dst {
 2
        const int neutral = 1;
3
   \#define comp(a, b) (a | b)
 4
        vector < vector < int >> t;
        dst(vector < int > v) {
5
6
            int n, k, sz = v.size();
7
            for (n = 1, k = 0; n < sz; n <<= 1, k++)
8
9
            t.assign(k, vector < int > (n));
            for (int i = 0; i < n; i++) { t[0][i] = i < sz ? v[i] : neutral; }
10
            for (int j = 0, len = 1; j \le k; j++, len \iff 1) {
11
                for (int s = len; s < n; s += (len << 1)) {
12
13
                    t[j][s] = v[s];
14
                    t[j][s-1] = v[s-1];
                    for (int i = 1; i < len; i++) {
15
16
                         t[j][s + i] = comp(t[j][s + i - 1], v[s + i]);
                         t[j][s-1-i] = comp(v[s-1-i], t[j][s-i]);
17
18
                }
19
            }
20
21
22
        int query(int 1, int r) {
23
            if (l = r) \{ return t[0][r]; \}
24
            int i = 31 - builtin clz(l \hat{r});
25
            return comp(t[i][1], t[i][r]);
26
        }
27
```

1.11.2 Sparse Table

Read in [English](README.en.md)

Responde consultas de maneira eficiente em um conjunto de dados estáticos.

Realiza um pré-processamento para diminuir o tempo de cada consulta.

Exemplo de operações com sobreposição amigável: max(), min(), gcd(), f(x, y) = x

```
1
    struct SparseTable {
2
        int n, e;
3
        vector < vector < int >> st;
        SparseTable(vector < int > &v) : n(v.size()), e(floor(log2(n))) 
 4
 5
             st.assign(e + 1, vector < int > (n));
             \mbox{for } (\mbox{int } i = 0; \ i < n; \ i++) \ \{ \ st [0][i] = v[i]; \ \}
 6
             for (int i = 1; i \le e; i++) {
 7
                  \mbox{for } (\mbox{int } j = 0; \ j + (1 << i) <= n; \ j++) \ \{ \ st [i][j] = min(st [i-1][j],
 8
                     st[i-1][j+(1 << (i-1))]; 
             }
9
10
         // O(log(N)) Query for non overlap friendly operations
11
        int logquery(int 1, int r) {
12
13
             int res = 2e9;
             for (int i = e; i >= 0; i ---) {
14
15
                 if ((1 << i) <= r - 1 + 1) {
                      res = min(res, st[i][1]);
16
17
                      1 += 1 << i;
18
                 }
19
             }
20
            return res;
21
        // O(1) Query for overlab friendly operations
22
23
        // \exp : \max(), \min(), \gcd(), f(x, y) = x
24
        int query(int 1, int r) {
25
             // if (l > r) return 2e9;
26
             int i = ilogb(r - l + 1);
             return \min(st[i][1], st[i][r - (1 << i) + 1]);
27
28
        }
29
    };
```

Capítulo 2

Grafos

Matching

Algoritmos de Matching em grafos.

Stoer-Wagner minimum cut

Algortimo de Stoer-Wagner para encontrar o corte mínimo de um grafo.

LCA

Algoritmo de Lowest Common Ancestor usando EulerTour e Sparse Table

HLD

Técnica usada para otimizar a execução de operações em árvores.

Kruskal

Algoritimo para encontrar a MST (minimum spanning tree) de um grafo.

Bridge

Algoritmo que acha pontes utilizando uma dfs

Shortest Paths

Algoritmos para encontrar caminhos mínimos em grafos.

Binary Lifting

Usa uma sparse table para calcular o k-ésimo ancestral de u.

Fluxo

Conjunto de algoritmos para calcular o fluxo máximo em redes de fluxo.

Inverse Graph

Algoritmo que encontra as componentes conexas quando se é dado o grafo complemento.

2 SAT

Resolve problema do 2-SAT.

Graph Center

Encontra o centro e o diâmetro de um grafo

2.1 Matching

Algoritmos de Matching em grafos.

Resolve o problema de Matching para uma matriz A[n][m], onde $n \leq m$.

A implementação minimiza os custos, para maximizar basta multiplicar os pesos por -1.

A matriz de entrada precisa ser indexada em 1 !!!

O vetor result guarda os pares do matching.

Complexidade de tempo: $O(n^2 * m)$

```
1
   const 11 \text{ INF} = 1e18 + 18;
2
3
   vector<pair<int, int>> result;
4
    11 hungarian(int n, int m, vector<vector<int>> &A) {
5
6
        vector < int > u(n + 1), v(m + 1), p(m + 1), way(m + 1);
7
        for (int i = 1; i \le n; i++) {
8
            p[0] = i;
9
            int j0 = 0;
10
            vector < int > minv(m + 1, INF);
11
            vector < char > used(m + 1, false);
12
            do {
                 used[j0] = true;
13
14
                 11 i0 = p[j0], delta = INF, j1;
15
                 for (int j = 1; j \le m; j++) {
16
                     if (!used[j]) {
17
                          int cur = A[i0][j] - u[i0] - v[j];
18
                          if (cur < minv[j]) \{ minv[j] = cur, way[j] = j0; \}
19
                          if (minv[j] < delta) \{ delta = minv[j], j1 = j; \}
                     }
20
21
22
                 for (int j = 0; j <= m; j++) {
23
                     if (used[j]) {
                          u[p[j]] \leftarrow delta, v[j] -= delta;
24
25
26
                          minv[j] -= delta;
27
28
29
                 j0 = j1;
30
            } while (p[j0] != 0);
31
            do {
32
                 int j1 = way[j0];
33
                 p[j0] = p[j1];
34
                 j0 = j1;
35
            } while (j0);
36
        for (int i = 1; i \le m; i++) { result.emplace back(p[i], i); }
37
38
        return -v[0];
39
```

2.2. STOER-WAGNER 37

2.2 Stoer-Wagner

Algortimo de Stoer-Wagner para encontrar o corte mínimo de um grafo.

O algoritmo de Stoer-Wagner é um algoritmo para resolver o problema de corte mínimo em grafos não direcionados com pesos não negativos. A ideia essencial deste algoritmo é encolher o grafo mesclando os vértices mais intensos até que o grafo contenha apenas dois conjuntos de vértices combinados

Complexidade de tempo: $O(V^3)$

```
const int MAXN = 555, INF = 1e9 + 7;
 1
 2
 3
   int n, e, adj [MAXN] [MAXN];
 4
   vector<int> bestCut;
 5
 6
   int mincut() {
        int bestCost = INF;
 7
        vector < int > v[MAXN];
8
9
        for (int i = 0; i < n; i++) { v[i]. assign (1, i); }
10
        int w[MAXN], sel;
        bool exist [MAXN], added [MAXN];
11
12
        memset(exist, true, sizeof(exist));
        for (int phase = 0; phase < n - 1; phase++) {
13
14
            memset(added, false, sizeof(added));
15
            memset(w, 0, sizeof(w));
            for (int j = 0, prev; j < n - phase; j++) {
16
17
                 sel = -1;
                 for (int i = 0; i < n; i++) {
18
                     if (exist[i] \&\& !added[i] \&\& (sel == -1 || w[i] > w[sel])) { sel = }
19
                        i; }
20
                 if (j = n - phase - 1) {
21
                     if (w[sel] < bestCost) {</pre>
22
                         bestCost = w[sel];
23
24
                         bestCut = v[sel];
25
26
                     v[prev].insert(v[prev].end(), v[sel].begin(), v[sel].end());
                     for (int i = 0; i < n; i++) { adj[prev][i] = adj[i][prev] +=
27
                        adj [sel][i]; }
28
                     exist[sel] = false;
29
                 } else {
30
                     added[sel] = true;
                     for (int i = 0; i < n; i++) { w[i] += adj[sel][i]; }
31
32
                     prev = sel;
                }
33
34
            }
35
36
        return bestCost;
37
```

2.3 LCA

Algoritmo de Lowest Common Ancestor usando EulerTour e Sparse Table

Complexidade de tempo:

Complexidade de espaço: O(Nlog(N))

```
1
          \#include <bits/stdc++.h>
  2
          using namespace std;
  3
         #define INF 1e9
         #define fi first
         #define se second
 8
          typedef pair <int, int> ii;
 9
10
          vector < int > tin, tout;
11
           vector < vector < int >> adj;
12
           vector<ii> prof;
13
           vector < vector < ii >> st;
14
15
          int n, timer;
16
          void SparseTable(vector<ii> &v) {
17
18
                       int n = v.size();
                       int e = floor(log2(n));
19
                       st.\,assign\left(\,e\,\,+\,\,1\,,\,\,vector\!<\!ii>\!(n)\,\right);
20
                       \mbox{for $($ int $i$ = 0; $i < n; $i++) { st [0][i] = v[i]; }}
21
                        \  \, \textbf{for} \  \, (\textbf{int} \  \, i \, = \, 1; \  \, i \, <= \, e\,; \  \, i +\!\!\!\! +) \, \, \, \{ \,
22
23
                                     \mbox{for $($ int $j=0$; $j+(1<\!\!< i)<\!\!= n$; $j++$) $\{$ st[i][j] = min(st[i-1][j], $] $ \mbox{ } \mbox{$($ int $j=0$) } \mbox{$($ int
                                              st[i - 1][j + (1 << (i - 1))]); }
24
                       }
25
           }
26
          \mathbf{void} \ \mathrm{et\_dfs}\left(\mathbf{int} \ \mathrm{u} \,, \ \mathbf{int} \ \mathrm{p} \,, \ \mathbf{int} \ \mathrm{h}\right) \ \{
27
28
                       tin[u] = timer++;
29
                        prof.emplace_back(h, u);
30
                       for (int v : adj[u]) {
31
                                    if (v != p) {
32
                                                et dfs(v, u, h + 1);
33
                                                 prof.emplace back(h, u);
34
                                    }
35
36
                       tout[u] = timer++;
37
38
39
          void build(int root = 0) {
40
                       tin.assign(n, 0);
41
                       tout.assign(n, 0);
42
                       prof.clear();
43
                       timer = 0;
44
                       et_dfs(root, root, 0);
45
                       SparseTable(prof);
46
47
48
          int lca(int u, int v) {
                       int l = tout[u], r = tin[v];
49
50
                       if (1 > r) \{ swap(1, r); \}
51
                       int i = floor(log2(r - l + 1));
52
                       return \min(st[i][1], st[i][r - (1 << i) + 1]).se;
53
54
        | int main() {
```

```
56
        cin >> n;
57
58
        adj.assign(n, vector < int > (0));
59
60
        for (int i = 0; i < n - 1; i++) {
61
             int a, b;
62
             cin \gg a \gg b;
63
             adj[a].push back(b);
             adj[b].push back(a);
64
65
66
        build();
67
68
```

2.4 Heavy-Light Decomposition (hld.cpp)

Técnica usada para otimizar a execução de operações em árvores.

```
1
    namespace hld {
 2
        const int MAX = 2e5 + 5;
 3
        int t, sz [MAX], pos [MAX], pai [MAX], head [MAX];
 4
        bool e = 0;
 5
        11 merge(11 a, 11 b) { return max(a, b); } // how to merge paths
 6
        void dfs_sz(int u, int p = -1) {
 7
             sz[u] = 1;
             for (int &v : adj[u]) {
 8
 9
                  if (v != p) {
10
                      dfs_sz(v, u);
                      sz[u] += sz[v];
11
                       if \ (sz\,[v]\,>\,sz\,[\,adj\,[u\,][\,0\,]] \ || \ adj\,[u\,][\,0\,] == p) \ \{\ swap\,(v\,,\ adj\,[u\,][\,0\,])\,;
12
13
                  }
             }
14
15
        void dfs hld(int u, int p = -1) {
16
             pos[u] = t++;
17
             for (int v : adj[u]) {
18
19
                  if (v != p) {
20
                      pai[v] = u;
                      head[v] = (v = adj[u][0] ? head[u] : v);
21
22
                      dfs_hld(v, u);
                  }
23
24
             }
25
        void build(int root) {
26
27
             dfs sz(root);
28
             t = 0;
29
             pai[root] = root;
             head[root] = root;
30
31
             dfs hld(root);
32
        void build(int root, vector<ll> &v) {
33
             build (root);
34
```

```
35
              vector<ll> aux(v.size());
36
              for (int i = 0; i < (int)v.size(); i++) { aux[pos[i]] = v[i]; }
37
              seg::build(aux);
38
39
         void build (int root, vector < i3 > &edges) { // use this if weighted edges
40
              build (root);
41
              e = 1;
               vector<ll> aux(edges.size() + 1);
42
              for (auto [u, v, w] : edges) {
43
                    if (pos[u] > pos[v]) { swap(u, v); }
44
                    aux[pos[v]] = w;
45
46
              seg::build(aux);
47
48
49
         11 query(int u, int v) {
               if (pos[u] > pos[v]) \{ swap(u, v); \}
50
               \mathbf{if} \ (\mathrm{head}[\mathtt{u}] = \mathrm{head}[\mathtt{v}]) \ \{
51
52
                    return seg :: query(pos[u] + e, pos[v]);
53
               } else {
54
                    11 \text{ qv} = \text{seg} :: \text{query}(\text{pos}[\text{head}[\text{v}]], \text{pos}[\text{v}]);
55
                    11 \text{ qu} = \text{query}(u, \text{pai}[\text{head}[v]]);
56
                    return merge(qu, qv);
               }
57
58
59
         void update(int u, int v, ll k) {
               if (pos[u] > pos[v]) { swap(u, v); }
60
               if (head[u] = head[v])  {
61
62
                    seg::update(pos[u] + e, pos[v], k);
63
              } else {
64
                    seg::update(pos[head[v]], pos[v], k);
65
                    update(u, pai[head[v]], k);
66
               }
67
         int lca(int u, int v) {
68
               if (pos[u] > pos[v]) { swap(u, v); }
69
70
              \mathbf{return} \ (\mathbf{head}[\mathbf{u}] = \mathbf{head}[\mathbf{v}] \ ? \ \mathbf{u} : \mathbf{lca}(\mathbf{u}, \ \mathbf{pai}[\mathbf{head}[\mathbf{v}]]));
71
72
         ll query subtree(int u) { return seg::query(pos[u], pos[u] + sz[u] - 1); }
73
```

2.5 Kruskal

Algoritimo para encontrar a MST (minimum spanning tree) de um grafo.

Utiliza [DSU](../../Estruturas%20de%20Dados/DSU/dsu.cpp) - (disjoint set union) - para construir MST - (minimum spanning tree)

```
7
   int cost;
8
9
   struct DSU {
10
        vector < int > pa, sz;
11
       DSU(int n) {
12
            sz.assign(n + 5, 1);
13
            for (int i = 0; i < n + 5; i++) { pa.push_back(i); }
14
        int root(int a) { return pa[a] = (a == pa[a] ? a : root(pa[a])); }
15
16
       bool find (int a, int b) { return root(a) = root(b); }
        void uni(int a, int b) {
17
18
            int ra = root(a), rb = root(b);
19
            if (ra = rb) \{ return; \}
20
            if (sz[ra] > sz[rb]) { swap(ra, rb); }
21
            pa|ra| = rb;
22
            sz[rb] += sz[ra];
23
        }
24
   };
25
26
   void kruskal(int m, int n) {
27
       DSU dsu(n);
28
        sort(edges.begin(), edges.end());
29
30
31
        for (Edge e : edges) {
            if (!dsu.find(e.u, e.v)) {
32
33
                cost += e.w;
                result.push\_back(e); // remove if need only cost
34
35
                dsu.uni(e.u, e.v);
36
37
        }
38
```

2.6 Bridge (pontes)

Algoritmo que acha pontes utilizando uma dfs

Complexidade de tempo: O(N + M)

```
12
                                                                if (v = p) \{ continue; \}
    int n;
 1
                                  // number of
                                                  13
                                                                if (visited[v]) {
        nodes
                                                  14
                                                                    low[u] = min(low[u],
 2
    vector < vector < int >> adj; // adjacency
                                                                        tin [v]);
        list of graph
                                                               } else {
                                                  15
 3
                                                  16
                                                                     dfs(v, u);
 4
    vector < bool > visited;
                                                  17
                                                                    low[u] = min(low[u],
 5
    vector < int > tin , low;
                                                                        low [v]);
 6
    int timer;
                                                  18
                                                                    \quad \textbf{if} \ (\log [v] > \, \tan [u]) \ \{
 7
                                                  19
                                                                         // edge UV is a bridge
    void dfs (int u, int p = -1) {
 8
                                                  20
                                                                         // do something(u, v)
 9
         visited[u] = true;
                                                  21
                                                                    }
10
         tin[u] = low[u] = timer++;
                                                  22
                                                               }
         for (int v : adj[u]) {
11
                                                  23
                                                           }
```

```
30 |
24
  |}
                                                      low.assign(n, -1);
25
                                              31
                                                      for (int i = 0; i < n; ++i) {
26
                                              32
                                                           if (!visited[i]) { dfs(i); }
   void find_bridges() {
27
        timer = 0;
                                              33
28
        visited.assign(n, false);
                                              34
29
        tin.assign(n, -1);
```

2.7 Shortest Paths (caminhos mínimos)

Algoritmos para encontrar caminhos mínimos em grafos.

2.7.1 Dijkstra

Computa o menor caminho entre nós de um grafo.

Dado dois nós u e v, computa o menor caminho de u para v.

Complexidade de tempo: O((E + V) * log(E))

Dado um nó u, computa o menor caminho de u para todos os nós.

Complexidade de tempo: O((E + V) * log(E))

Computa o menor caminho de todos os nós para todos os nós

Complexidade de tempo: O(V * ((E + V) * log(E)))

```
const int MAX = 505, INF = 1e9 + 9;
 1
2
3
    vector < ii > adj [MAX];
    int dist[MAX][MAX];
5
6
    void dk(int n) {
7
         for (int i = 0; i < n; i++) {
8
              for (int j = 0; j < n; j++) { dist[i][j] = INF; }
9
10
         for (int s = 0; s < n; s++) {
11
               priority queue<ii, vector<ii>, greater<ii>>> fila;
               dist[s][s] = 0;
12
               \label{eq:fila_semplace} \mbox{fila.emplace} \left( \mbox{ dist} \left[ \mbox{ s} \right] \left[ \mbox{ s} \right], \mbox{ s} \right);
13
14
               while (!fila.empty()) {
                    auto [d, u] = fila.top();
15
                    fila.pop();
16
                    if (d != dist[s][u]) { continue; }
17
18
                    for (auto [w, v] : adj[u]) {
```

```
auto [d, u] = fila.top();
    \overline{\text{const int MAX}} = 1e5 + 5, \text{ INF} = 1e9 + 9; \overline{13}
 1
                                                                          fila.pop();
 2
                                                                          if (d != dist[u]) { continue; }
                                                          14
 3
    vector < ii > adj [MAX];
                                                                         \quad \textbf{for} \ (\textbf{auto} \ [\textbf{w}, \ \textbf{v}] \ : \ \textbf{adj} \, [\textbf{u}]) \ \{
                                                          15
    int dist[MAX];
 4
                                                                               if (dist[v] > d + w)  {
                                                          16
 5
                                                                                     dist[v] = d + w;
                                                          17
 6
    void dk(int s) {
                                                                                     fila.emplace(dist[v],
                                                          18
 7
          priority queue<ii, vector<ii>,
                                                                                         v);
              greater<ii>>> fila;
                                                          19
                                                                               }
 8
          fill (begin (dist), end (dist), INF);
                                                          20
                                                                         }
 9
          dist[s] = 0;
                                                          21
                                                                    }
          fila.emplace(dist[s], s);
10
                                                          22
11
          while (!fila.empty()) {
```

```
fila.pop();
    \mathbf{const} \ \ \mathbf{int} \ \ \mathbf{MAX} = \, 1\,\mathbf{e5} \, + \, 5 \, , \ \ \mathbf{INF} \, = \, 1\,\mathbf{e9} \, + \, 9 \, ;_{14}
 1
                                                                        if (u = t) { return dist[t]; }
 2
                                                        15
                                                                        if (d != dist[u]) \{ continue; \}
 3
    vector < ii > adj [MAX];
                                                        16
                                                                       for (auto [w, v] : adj[u]) {
    int dist [MAX];
 4
                                                                             \mathbf{if} (dist[v] > d + w) {
                                                        17
 5
                                                        18
                                                                                  dist[v] = d + w;
 6
    int dk(int s, int t) {
                                                        19
                                                                                  fila.emplace(dist[v],
 7
          priority_queue<ii, vector<ii>,
                                                                                      v);
              greater<ii>>> fila;
                                                        20
 8
          fill (begin (dist), end (dist), INF);
                                                        21
                                                                       }
 9
          dist[s] = 0;
                                                        22
          fila.emplace(dist[s], s);
10
                                                        23
                                                                  return -1;
          while (!fila.empty()) {
11
                                                        24
12
               auto [d, u] = fila.top();
```

2.7.2 Shortest Path Fast Algorithm (SPFA)

Encontra o caminho mais curto entre um vértice e todos os outros vértices de um grafo.

Detecta ciclos negativos.

Complexidade de tempo: O(|V| * |E|)

```
1 const int MAX = 1e4 + 4;
const 11 INF = 1e18 + 18;
```

```
vector < ii > adj [MAX];
    ll dist[MAX];
5
6
   void spfa(int s, int n) {
 7
8
        fill(dist, dist + n, INF);
9
        vector < int > cnt(n, 0);
10
        vector < bool > inq(n, false);
11
        queue < int > fila;
12
        fila.push(s);
13
        inq[s] = true;
        dist[s] = 0;
14
        while (!fila.empty()) {
15
16
             int u = fila.front();
             fila.pop();
17
18
             inq[u] = false;
19
             for (auto [w, v] : adj[u]) {
                 11 \ newd = (dist[u] = -INF ? -INF : max(w + dist[u], -INF));
20
21
                 if (newd < dist[v]) {
                      dist[v] = newd;
22
23
                      if (!inq[v]) {
24
                           fila.push(v);
25
                           inq[v] = true;
26
                           \operatorname{cnt}[v]++;
27
                           if (cnt[v] > n) { // negative cycle}
                               dist[v] = -INF;
28
29
30
                      }
31
                 }
32
             }
33
        }
34
   }
```

2.8 Binary Lifting

Usa uma sparse table para calcular o k-ésimo ancestral de u.

Pode ser usada com o algoritmo de EulerTour para calcular o LCA.

Complexidade de tempo:

Complexidade de espaço: O(Nlog(N))

```
1
   namespace st {
2
       int n, me, timer;
3
        vector < int > tin, tout;
        vector<vector<int>>> st;
4
5
        void et dfs(int u, int p) {
6
            tin[u] = ++timer;
            st[u][0] = p;
7
8
            for (int i = 1; i \le me; i++) { st[u][i] = st[st[u][i-1]][i-1]; }
9
            for (int v : adj[u]) {
10
                if (v != p) \{ et_dfs(v, u); \}
11
12
            tout[u] = ++timer;
```

2.8. BINARY LIFTING 45

```
13
14
        void build(int _n, int root = 0) {
15
            n = _n;
16
            tin.assign(n, 0);
17
            tout.assign(n, 0);
18
            timer = 0;
19
            me = floor(log2(n));
20
            st.assign(n, vector < int > (me + 1, 0));
            et_dfs(root, root);
21
22
        bool is ancestor(int u, int v) { return tin[u] \ll tin[v] && tout[u] >=
23
            tout[v]; }
24
        int lca(int u, int v) {
25
            if (is_ancestor(u, v)) { return u; }
26
            if (is_ancestor(v, u)) { return v; }
27
            for (int i = me; i >= 0; i---) {
28
                 if (!is\_ancestor(st[u][i], v)) { u = st[u][i]; }
29
            return st [u][0];
30
31
32
        int ancestor (int u, int k) \{ // \text{ k-th ancestor of u} \}
            for (int i = me; i >= 0; i---) {
33
                 if ((1 \ll i) \& k) \{ u = st[u][i]; \}
34
35
36
            return u;
37
        }
38
```

```
1
   namespace st {
2
        \mathbf{int} \ n\,, \ me\,;
 3
        vector < vector < int>> st;
 4
        void bl_dfs(int u, int p) {
             st[u][0] = p;
 5
             for (int i = 1; i \le me; i++) { st[u][i] = st[st[u][i-1]][i-1]; }
 6
 7
             for (int v : adj[u]) {
                 if (v != p) \{ bl dfs(v, u); \}
 8
9
10
        void build (int n, int root = 0) {
11
12
            n = n;
13
            me = floor(log2(n));
             st.assign(n, vector < int > (me + 1, 0));
14
             bl_dfs(root, root);
15
16
        int ancestor (int u, int k) \{ // \text{ k-th ancestor of u} \}
17
18
             for (int i = me; i >= 0; i ---) {
19
                 if ((1 \ll i) \& k) \{ u = st[u][i]; \}
20
21
            return u;
22
        }
23
```

2.9 Fluxo

Conjunto de algoritmos para calcular o fluxo máximo em redes de fluxo.

Muito útil para grafos bipartidos e para grafos com muitas arestas

Complexidade de tempo: $O(V^2 * E)$, mas em grafo bipartido a complexidade é $O(\operatorname{sqrt}(V) * E)$

Útil para grafos com poucas arestas

Complexidade de tempo: $O(V * E^2)$

Computa o fluxo máximo com custo mínimo

Complexidade de tempo: $O(V^2 * E^2)$

```
const long long INF = 1e18;
1
 2
3
   struct FlowEdge {
 4
        int u, v;
5
        long long cap, flow = 0;
6
        FlowEdge(int u, int v, long long cap) : u(u), v(v), cap(cap) { }
7
    };
8
9
   struct EdmondsKarp {
10
        int n, s, t, m = 0, vistoken = 0;
11
        vector < Flow Edge > edges;
12
        vector < vector < int >> adj;
13
        vector < int > visto;
14
15
        EdmondsKarp(int n, int s, int t) : n(n), s(s), t(t) {
16
             adj.resize(n);
17
             visto.resize(n);
18
        }
19
20
        void add edge(int u, int v, long long cap) {
21
             edges.emplace_back(u, v, cap);
22
             edges.emplace_back(v, u, 0);
23
             adj [u].push_back(m);
24
             adj[v].push back(m + 1);
25
            m += 2;
26
        }
27
        int bfs() {
28
29
             vistoken++;
30
             queue < int > fila;
31
             fila.push(s);
32
             vector < int > pego(n, -1);
33
             while (!fila.empty()) {
34
                 int u = fila.front();
35
                 \mathbf{if} \ (\mathbf{u} = \mathbf{t}) \ \{ \ \mathbf{break}; \ \}
36
                 fila.pop();
37
                 visto[u] = vistoken;
38
                 for (int id : adj[u]) {
39
                      if (edges[id].cap - edges[id].flow < 1) { continue; }
```

2.9. FLUXO 47

```
40
                     int v = edges[id].v;
41
                     if (visto[v] = -1) \{ continue; \}
42
                     fila.push(v);
43
                     pego[v] = id;
                }
44
45
            if (pego[t] = -1) \{ return 0; \}
46
47
            long long f = INF;
            for (int id = pego[t]; id != -1; id = pego[edges[id].u]) { f = min(f, f)
48
                edges[id].cap - edges[id].flow); }
            for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
49
                edges[id].flow += f;
50
51
                edges[id ^1].flow = f;
52
53
            return f;
54
        }
55
       long long flow() {
56
57
            long long maxflow = 0;
58
            while (long long f = bfs()) { maxflow += f; }
59
            return maxflow;
60
        }
61
   };
```

```
1
    struct MinCostMaxFlow {
 2
        int n, s, t, m = 0;
        11 \text{ maxflow} = 0, \text{ mincost} = 0;
3
 4
        vector<FlowEdge> edges;
 5
        vector < vector < int >> adj;
 6
        MinCostMaxFlow(int n, int s, int t) : n(n), s(s), t(t) { adj.resize(n); }
 7
 8
 9
        void add_edge(int u, int v, ll cap, ll cost) {
10
            edges.emplace_back(u, v, cap, cost);
             edges.emplace\_back(v, u, 0, -cost);
11
12
            adj[u].push back(m);
            adj[v].push_back(m + 1);
13
            m += 2;
14
15
        }
16
17
        bool spfa() {
18
            vector < int > pego(n, -1);
19
             vector < ll > dis(n, INF);
20
             vector < bool > inq(n, false);
21
            queue < int > fila;
22
             fila.push(s);
23
             dis[s] = 0;
24
            inq[s] = 1;
25
             while (!fila.empty()) {
26
                 int u = fila.front();
27
                 fila.pop();
28
                 inq[u] = false;
                 for (int id : adj[u]) {
29
                     if (edges[id].cap - edges[id].flow < 1) { continue; }
30
31
                     int v = edges | id | .v;
32
                     if (dis[v] > dis[u] + edges[id].cost)  {
33
                          dis[v] = dis[u] + edges[id].cost;
34
                          pego[v] = id;
35
                          if (!inq[v]) {
```

CAPÍTULO 2. GRAFOS

```
36
                              inq[v] = true;
37
                              fila.push(v);
38
                         }
                     }
39
40
                }
41
            }
42
            if (pego[t] = -1) \{ return 0; \}
43
            11 	ext{ f} = INF:
44
45
            for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
                 f = min(f, edges[id].cap - edges[id].flow);
46
47
                 mincost += edges[id].cost;
48
49
            for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
50
                 edges[id].flow += f;
51
                 edges [id ^1]. flow = f;
52
53
            maxflow += f;
54
            return 1;
55
        }
56
57
        11 flow() {
            while (spfa())
58
59
60
            return maxflow;
61
        }
62
    };
```

```
1
   typedef long long ll;
2
3
   const 11 \text{ INF} = 1e18;
4
5
   struct FlowEdge {
6
        int u, v;
7
        11 \text{ cap}, \text{ flow} = 0;
8
        FlowEdge(int u, int v, ll cap) : u(u), v(v), cap(cap) { }
9
   };
10
11
   struct Dinic {
12
        vector < FlowEdge> edges;
13
        vector < vector < int >> adj;
14
        int n, s, t, m = 0;
15
        vector<int> level, ptr;
16
        queue<int> q;
17
        Dinic(int n, int s, int t) : n(n), s(s), t(t) 
18
19
             adj.resize(n);
20
             level.resize(n);
21
             ptr.resize(n);
22
        }
23
24
        void add edge(int u, int v, 11 cap) {
             edges.emplace_back(u, v, cap);
25
26
             edges.emplace back(v, u, 0);
27
            adj[u].push back(m);
28
            adj[v].push back(m + 1);
29
            m += 2;
30
        }
31
```

2.10. INVERSE GRAPH 49

```
32
        bool bfs() {
33
            while (!q.empty()) {
34
                int u = q. front();
35
                q.pop();
                36
37
                    if (edges[id].cap - edges[id].flow < 1) { continue; }
                    int v = edges[id].v;
38
39
                    if (level[v] != -1) \{ continue; \}
                    level[v] = level[u] + 1;
40
41
                    q.push(v);
42
43
            return level [t] != -1;
44
45
        }
46
47
        ll dfs (int u, ll f) {
48
            if (f = 0) \{ return 0; \}
            if (u == t) { return f; }
49
            for (int &cid = ptr[u]; cid < (int)adj[u].size(); cid++) {
50
51
                int id = adj[u][cid];
52
                int v = edges[id].v;
                if (level[u] + 1 != level[v] || edges[id].cap - edges[id].flow < 1) {
53
                    continue; }
                11 tr = dfs(v, min(f, edges[id].cap - edges[id].flow));
54
                if (tr = 0) \{ continue; \}
55
                edges[id].flow += tr;
56
                edges [id ^1]. flow = tr;
57
                return tr;
58
59
60
            return 0;
61
        }
62
63
        11 flow() {
            11 \text{ maxflow} = 0;
64
65
            while (true) {
66
                fill(level.begin(), level.end(), -1);
                level[s] = 0;
67
                q.push(s);
68
                if (! bfs()) { break; }
69
                fill (ptr.begin(), ptr.end(), 0);
70
                while (ll f = dfs(s, INF)) { maxflow += f; }
71
72
73
            return maxflow;
74
        }
75
   };
```

2.10 Inverse Graph

Algoritmo que encontra as componentes conexas quando se é dado o grafo complemento.

Resolve problemas em que se deseja encontrar as componentes conexas quando são dadas as arestas que não pertencem ao grafo

```
|\#include <bits/stdc++.h>
   using namespace std;
3
4
   set < int > nodes;
    vector<set<int>> adj;
6
7
   void bfs(int s) {
8
        queue < int > f;
9
        f.push(s);
10
        nodes.erase(s);
11
        set < int > aux;
12
        while (!f.empty()) {
13
             int x = f.front();
14
             f.pop();
15
             for (int y : nodes) {
                 if (adj[x].count(y) == 0) \{ aux.insert(y); \}
16
17
18
             for (int y : aux) {
19
                 f.push(y);
20
                 nodes.erase(y);
21
22
            aux.clear();
23
        }
```

2.11 2-SAT

Resolve problema do 2-SAT.

N é o número de variáveis e M é o número de cláusulas.

A configuração da solução fica guardada no vetor *assignment*.

Em relaçõa ao sinal, tanto faz se 0 liga ou desliga, apenas siga o mesmo padrão.

```
1
    struct sat2 {
 2
          int n;
 3
          vector < vector < int >> g, gt;
 4
          vector < bool > used;
 5
          vector < int > order, comp;
 6
          vector <bool> assignment;
 7
 8
          // number of variables
 9
          sat2(int _n) {
10
               n = 2 * (n + 5);
11
               g.assign(n, vector < int > ());
12
               gt.assign(n, vector < int > ());
13
          void add_edge(int v, int u, bool v_sign, bool u_sign) {
14
15
               g\left[2\ *\ v\ +\ v\_sign\right].\ push\_back\left(2\ *\ u\ +\ !\ u\_sign\right);
               g\left[2\ *\ u\ +\ u\_sign\right].\ push\_back\left(2\ *\ v\ +\ !\ v\_sign\right);
16
               gt \, [2 \ * \ u \ + \ ! \, u\_sign \,] \, . \, push\_back \, (2 \ * \ v \ + \ v\_sign \,) \, ;
17
18
               gt[2 * v + !v\_sign].push\_back(2 * u + u\_sign);
          }
19
```

2.12. GRAPH CENTER 51

```
20
           void dfs1(int v) {
21
                 used[v] = true;
22
                 \quad \mathbf{for}\ (\mathbf{int}\ u\ :\ g\,[\,v\,]\,)\ \{
23
                      if (!used[u]) \{ dfs1(u); \}
24
25
                 order.push_back(v);
26
27
           void dfs2(int v, int cl) {
28
                comp[v] = cl;
                 \quad \mathbf{for} \ \left( \mathbf{int} \ u \ : \ \mathrm{gt} \left[ v \right] \right) \ \left\{ \right.
29
                       if (comp[u] = -1) \{ dfs2(u, cl); \}
30
31
32
           bool solve() {
33
34
                 order.clear();
35
                 used.assign(n, false);
36
                 for (int i = 0; i < n; ++i) {
                       if (!used[i]) { dfs1(i); }
37
38
39
40
                comp.assign(n, -1);
                 for (int i = 0, j = 0; i < n; ++i) {
41
                      int v = order[n - i - 1];
42
43
                       if (comp[v] = -1) \{ dfs2(v, j++); \}
44
45
46
                 assignment.assign(n / 2, false);
                 \  \  \, \textbf{for} \  \  \, (\, \textbf{int} \  \  \, \textbf{i} \ = \  \, 0\,; \  \, \textbf{i} \ < \, \textbf{n}\,; \  \, \textbf{i} \ +\!\!\!\! = \  \, 2\,) \  \, \{\,
47
                       if (comp[i] = comp[i + 1]) { return false; }
48
                      assignment [i / 2] = comp[i] > comp[i + 1];
49
50
51
                return true;
52
           }
53
     };
```

2.12 Graph Center

Encontra o centro e o diâmetro de um grafo

Complexidade de tempo: O(N)

```
1
   const int INF = 1e9 + 9;
 2
 3
   vector < vector < int >> adj;
4
   struct GraphCenter {
 5
 6
        int n, diam = 0;
 7
        vector < int > centros, dist, pai;
 8
        int bfs(int s)  {
9
             queue<int> q;
10
             q. push(s);
11
             dist.assign(n + 5, INF);
12
             pai.assign (n + 5, -1);
13
             dist[s] = 0;
```

CAPÍTULO 2. GRAFOS

```
int maxidist = 0, maxinode = 0;
14
15
            while (!q.empty()) {
16
                int u = q.front();
17
                q.pop();
18
                if (dist[u] >= maxidist) \{ maxidist = dist[u], maxinode = u; \}
19
                for (int v : adj[u]) {
20
                     if (dist[u] + 1 < dist[v]) {
                         dist[v] = dist[u] + 1;
21
22
                         pai[v] = u;
23
                         q.push(v);
24
                     }
25
                }
26
27
            diam = max(diam, maxidist);
28
            return maxinode;
29
30
        GraphCenter(int st = 0) : n(adj.size()) 
31
            int d1 = bfs(st);
32
            int d2 = bfs(d1);
33
            vector < int > path;
34
            for (int u = d2; u != -1; u = pai[u]) { path.push\_back(u); }
35
            int len = path.size();
            if (len \% 2 == 1) {
36
37
                centros.push_back(path[len / 2]);
38
39
                centros.push_back(path[len / 2]);
                centros.push_back(path[len / 2 - 1]);
40
41
            }
42
       }
43
   };
```

Capítulo 3

String

Aho Corasick

Constrói uma estrutura de dados semelhante a um trie com links adicionais e, em seguida, constrói uma máquina de estados finitos (autômato). Útil para pattern matching de um set de strings em um texto.

Patricia Tree

Estrutura de dados que armazena strings e permite consultas por prefixo.

Prefix Function

Para cada prefixo k de uma dada string s, calcula o maior prefixo que tambem é sufixo de k.

Hashing

Hashing para testar igualdade de duas strings.

Trie

Estrutura que guarda informações indexadas por palavra.

Manacher

Encontra todos os palindromos de uma string.

Lyndon

Strings em decomposição única em subcadeias que são ordenadas lexicograficamente e não podem ser mais reduzidas.

Suffix Array

Estrutura que conterá inteiros que representam os índices iniciais de todos os sufixos ordenados de uma determinada string.

3.1 Aho-Corasick

Constrói uma estrutura de dados semelhante a um trie com links adicionais e, em seguida, constrói uma máquina de estados finitos (autômato). Útil para pattern matching de um set de strings em um texto.

Complexidade de tempo: O(|S|+|T|), onde |S| é o somatório do tamanho das strings e |T| é o tamanho do texto

```
1
    const int K = 26;
 2
 3
    struct Vertex {
         \mathbf{int} \ \ \mathrm{next} \left[ K \right], \ \ p \ = \ -1, \ \ \mathrm{link} \ = \ -1, \ \ \mathrm{exi} \ = \ -1, \ \ \mathrm{go} \left[ K \right], \ \ \mathrm{cont} \ = \ 0;
 4
 5
         bool term = false;
 6
         vector < int > idxs;
 7
         char pch;
         Vertex(\mathbf{int} p = -1, \mathbf{char} ch = '\$') : p(p), pch(ch) 
8
9
              fill (begin (next), end (next), -1);
10
              fill(begin(go), end(go), -1);
11
         }
12
    };
13
    vector < Vertex > aho(1);
14
    void add_string(const string &s, int idx) {
15
         int v = 0;
         for (char ch : s) {
16
              int c = ch - 'a';
17
18
              if (aho[v].next[c] = -1) {
19
                   aho[v].next[c] = aho.size();
20
                   aho.emplace back(v, ch);
21
22
              v = aho[v].next[c];
23
24
         aho[v].term = true;
25
         aho[v].idxs.push back(idx);
26
27
    int go(int u, char ch);
28
    int get link(int u) {
29
         if (aho[u].link = -1) {
              if (u = 0 | | aho[u].p = 0)  {
30
31
                   aho[u]. link = 0;
32
              } else {}
33
                   aho[u].link = go(get_link(aho[u].p), aho[u].pch);
34
35
         return aho[u].link;
36
37
38
    int go(int u, char ch) {
39
         int c = ch - 'a';
         if (aho[u].go[c] = -1) {
40
41
              if (aho[u].next[c] != -1) {
42
                   aho[u].go[c] = aho[u].next[c];
43
              } else {}
                   aho[u].go[c] = u == 0 ? 0 : go(get_link(u), ch);
44
45
46
47
         return aho[u].go[c];
48
49
    int exi(int u) {
50
         if (aho[u]. exi != -1) \{ return aho[u]. exi; \}
51
         int v = get link(u);
52
         return aho [\mathbf{u}]. exi = (\mathbf{v} = 0 \mid | \text{aho}[\mathbf{v}]. term ? \mathbf{v} : exi(\mathbf{v}));
53
54
    void process (const string &s) {
55
         int st = 0;
56
         for (char c : s) {
              st = go(st, c);
57
58
              for (int aux = st; aux; aux = exi(aux)) { aho[aux].cont++; }
         }
59
```

```
60
        for (int st = 1; st < aho sz; st++) {
61
            if (!aho[st].term) { continue; }
            for (int i : aho[st].idxs) {
62
63
                // Do something here
                // idx i ocurs + aho[st].cont times
64
65
                h[i] += aho[st].cont;
            }
66
67
        }
68
```

3.2 Patricia Tree ou Patricia Trie

Estrutura de dados que armazena strings e permite consultas por prefixo.

Implementação PB-DS, extremamente curta e confusa:

TODAS AS OPERAÇÕES EM O(|S|)

NÃO ACEITA ELEMENTOS REPETIDOS

3.3 Prefix Function

Para cada prefixo k de uma dada string s, calcula o maior prefixo que tambem é sufixo de k.

Seja n o tamanho do texto e m o tamanho do padrão.

KMP

String matching em O(n + m).

Autômato de KMP

String matching em O(n) com O(m) de pré-processamento.

Prefix Count

Dada uma string s, calcula quantas vezes cada prefixo de s aparece em s com complexidade de tempo de O(n).

```
1
   vector<int> pi(string &s) {
2
       vector < int > p(s.size());
3
       for (int i = 1, j = 0; i < s.size(); i++) {
           while (j > 0 \&\& s[i] != s[j]) \{ j = p[j-1]; \}
4
5
           if (s[i] = s[j]) \{ j++; \}
6
           p[i] = j;
7
8
       return p;
9
```

```
1
    vector < int > pi (string &s) {
2
        vector < int > p(s.size());
3
        for (int i = 1, j = 0; i < s.size(); i++) {
4
             while (j > 0 \&\& s[i] != s[j]) \{ j = p[j-1]; \}
5
             if (s[i] = s[j]) \{ j++; \}
6
            p[i] = j;
7
        }
8
        return p;
9
10
11
   vector < int > kmp(string &s, string t) {
12
        t += '$';
13
        vector < int > p = pi(t), match;
        \mbox{for (int $i=0$, $j=0$; $i< s.size()$; $i++) { \{ }}
14
            while (j > 0 \&\& s[i] != t[j]) \{ j = p[j-1]; \}
15
16
             if (s[i] == t[j]) { j++; }
17
             if (j = t.size() - 1) { match.push back(i - j + 1); }
18
19
        return match;
20
```

```
1
   vector < int > pi (string s) {
2
       vector < int > p(s.size());
3
       for (int i = 1, j = 0; i < s.size(); i++) {
4
           while (j > 0 \&\& s[i] != s[j]) \{ j = p[j-1]; \}
5
           if (s[i] == s[j]) { j++; }
6
           p[i] = j;
7
8
       return p;
9
10
11
   vector < int > prefixCount (string s) {
12
       vector < int > p = pi(s + '\#');
13
       int n = s.size();
14
       vector < int > cnt(n + 1, 0);
       for (int i = 0; i < n; i++) { cnt[p[i]]++; }
15
       16
       for (int i = 0; i \le n; i++) { cnt[i]++; }
17
18
       return cnt;
19
```

```
1 struct AutKMP {
2 vector<vector<int>>> nxt;
3
```

3.4. HASHING 57

```
4
        vector < int > pi (string &s) {
 5
            vector < int > p(s.size());
            for (int i = 1, j = 0; i < s.size(); i++) {
 6
                while (j > 0 \&\& s[i] != s[j]) \{ j = p[j-1]; \}
 7
                if (s[i] = s[j]) \{ j++; \}
8
9
                p[i] = j;
10
11
            return p;
12
13
        void setString(string s) {
14
15
            s += '#';
            nxt.assign(s.size(), vector < int > (26));
16
17
            vector < int > p = pi(s);
            for (int c = 0; c < 26; c++) { nxt[0][c] = ('a' + c == s[0]); }
18
19
            for (int i = 1; i < s.size(); i++) {
20
                for (int c = 0; c < 26; c++) { nxt[i][c] = ('a' + c == s[i]) ? i + 1:
                    nxt[p[i - 1]][c];
            }
21
        }
22
23
        vector<int> kmp(string &s, string &t) {
24
25
            vector < int > match;
26
            for (int i = 0, j = 0; i < s.size(); i++) {
                j = nxt[j][s[i] - 'a'];
27
                if (j = t.size()) { match.push_back(i - j + 1); }
28
29
30
            return match;
31
32
   } aut;
```

3.4 Hashing

Hashing para testar igualdade de duas strings.

A função *range(i, j)* retorna o hash da substring nesse range.

Pode ser necessário usar pares de hash para evitar colisões.

- * Complexidade de tempo (Construção): O(N)
- * Complexidade de tempo (Consulta de range): O(1)

```
struct hashing {
 1
 2
           const long long LIM = 1000006;
 3
           long long p, m;
 4
           vector < long long > pw, hsh;
           hashing(long long _p, long long _m) : p(_p), m(_m) {
 5
 6
                 pw.resize(LIM);
 7
                 hsh.resize(LIM);
                pw[0] = 1;
 8
                  \  \, \textbf{for} \  \, (\textbf{int} \  \, i \, = \, 1; \  \, i \, < \, LIM\,; \  \, i++) \, \, \{ \  \, pw[\,i\,\,] \, = \, (pw[\,i\,\,-\,\,1] \, * \, p) \, \, \% \, \, m; \, \, \} 
 9
10
           void set string(string &s) {
11
```

```
12
            hsh[0] = s[0];
            for (int i = 1; i < s.size(); i++) { hsh[i] = (hsh[i-1] * p + s[i]) % m;
13
14
15
       long long range (int esq, int dir) {
16
            long long ans = hsh[dir];
            if (esq > 0) \{ ans = (ans - (hsh[esq - 1] * pw[dir - esq + 1] \% m) + m) \%
17
18
            return ans;
19
        }
20
   };
```

3.5 Trie

Estrutura que guarda informações indexadas por palavra.

Útil encontrar todos os prefixos inseridos anteriormente de uma palavra específica.

- * Complexidade de tempo (Update): O(|S|)
- * Complexidade de tempo (Consulta de palavra): O(|S|)

```
struct trie {
1
2
        map<char, int> trie[100005];
3
        int value [100005];
4
        int n nodes = 0;
5
        void insert (string &s, int v) {
6
            int id = 0;
7
            for (char c : s) {
                 if (! trie[id].count(c)) \{ trie[id][c] = ++n nodes; \}
8
9
                 id = trie[id][c];
10
11
            value[id] = v;
12
13
        int get value(string &s) {
14
            int id = 0;
15
            for (char c : s) {
                 if (! trie[id].count(c)) \{ return -1; \}
16
17
                 id = trie[id][c];
18
19
            return value [id];
20
        }
21
   };
```

3.6 Algoritmo de Manacher

Encontra todos os palindromos de uma string.

Dada uma string s de tamanho n, encontra todos os pares (i,j) tal que a substring s

i...j

seja um palindromo.

* Complexidade de tempo: O(N)

```
1
    struct manacher {
 2
         long long n, count;
 3
         vector < int > d1, d2;
 4
         long long solve (string &s) {
              n = s.size(), count = 0;
 5
 6
              solve odd(s);
 7
              solve even(s);
 8
              return count;
 9
10
         void solve odd(string &s) {
11
              d1. resize(n);
12
              for (int i = 0, l = 0, r = -1; i < n; i++) {
                   int k = (i > r) ? 1 : min(d1[l + r - i], r - i + 1);
13
                   while (0 \le i - k \&\& i + k \le n \&\& s[i - k] == s[i + k]) \{ k++; \}
14
                   count \hspace{0.1cm} + \hspace{-0.1cm} = \hspace{0.1cm} d1\hspace{0.1cm}[\hspace{1mm} i\hspace{1mm}] \hspace{1mm} = \hspace{1mm} k--;
15
                   if (i + k > r) {
16
17
                        1 = i - k;
18
                        r = i + k;
19
                   }
              }
20
21
22
         void solve_even(string &s) {
23
              d2.resize(n);
              for (int i = 0, l = 0, r = -1; i < n; i++) {
24
                   int k = (i > r) ? 0 : min(d2[l + r - i + 1], r - i + 1);
25
26
                   while (0 \le i - k - 1 \&\& i + k < n \&\& s[i - k - 1] == s[i + k]) \{ k++; \}
27
                   count += d2[i] = k--;
28
                   if (i + k > r)  {
29
                        1 = i - k - 1;
30
                        r = i + k;
31
              }
32
33
         }
34
    } mana;
```

3.7 Lyndon Factorization

Strings em decomposição única em subcadeias que são ordenadas lexicograficamente e não podem ser mais reduzidas.

Duval

Gera a Lyndon Factorization de uma string

* Complexidade de tempo: O(N)

Min Cyclic Shift

Gera a menor rotação circular da string original que pode ser obtida por meio de deslocamentos cíclicos dos caracteres.

* Complexidade de tempo: O(N)

```
} else {
    string min cyclic shift(string s) {
1
                                                 12
                                                                       k++;
 2
        s += s;
                                                 13
 3
        int n = s.size();
                                                 14
 4
        int i = 0, ans = 0;
                                                 15
                                                              }
 5
        while (i < n / 2) {
                                                 16
                                                              while (i \le k) \{ i + j - k; \}
 6
             ans \; = \; i \; ;
                                                 17
 7
             int j = i + 1, k = i;
                                                 18
                                                         return s.substr(ans, n / 2);
             while (j < n \&\& s[k] <= s[j]) \{19 \|\}
 8
9
                  if (s[k] < s[j]) {
10
                      k = i;
```

```
vector<string> duval(string const &s) {
1
 2
        int n = s.size();
 3
        int i = 0;
 4
        vector < string > factorization;
        \mathbf{while} \ (i < n) \ \{
 5
 6
             int j = i + 1, k = i;
 7
             while (j < n \&\& s[k] <= s[j]) {
 8
                  if (s[k] < s[j]) {
9
                       k = i;
10
                    else {
11
                       k++;
12
13
                  j++;
14
15
             \mathbf{while} (i \leq k) {
16
                  factorization.push\_back(s.substr(i, j - k));
17
                  i += j - k;
18
19
20
        return factorization;
21
```

3.8 Suffix Array

Estrutura que conterá inteiros que representam os índices iniciais de todos os sufixos ordenados de uma determinada string.

Tambem Constroi a tabela LCP(Longest common prefix).

- * Complexidade de tempo (Pré-Processamento): O(|S|*log(|S|))
- * Complexidade de tempo (Contar ocorrencias de S em T): O(|S|*log(|T|))

3.8. SUFFIX ARRAY 61

```
pair<int, int> busca(string &t, int i, pair<int, int> &range) {
 1
 2
         int esq = range.first, dir = range.second, L = -1, R = -1;
 3
         while (esq \le dir) {
             int mid = (esq + dir) / 2;
 4
             if (s[sa[mid] + i] == t[i]) \{ L = mid; \}
 5
             if (s[sa[mid] + i] < t[i]) {
 6
 7
                  esq = mid + 1;
 8
             } else {
 9
                  dir = mid - 1;
10
11
12
        esq = range.first, dir = range.second;
13
         \mathbf{while} \ (\mathbf{esq} \le \mathbf{dir}) \ \{
             int mid = (esq + dir) / 2;
14
             if \ (s \, [\, sa \, [\, mid \, ] \ + \ i \, ] \ = \ t \, [\, i \, ]) \ \{ \ R = mid \, ; \ \}
15
16
             if (s[sa[mid] + i] <= t[i]) {
17
                  esq = mid + 1;
18
             } else {
19
                  dir = mid - 1;
20
21
22
        return {L, R};
23
24
    // count ocurences of s on t
25
    int busca_string(string &t) {
         pair < int, int > range = \{0, n - 1\};
26
27
         for (int i = 0; i < t.size(); i++) {
             range = busca(t, i, range);
28
29
             if (range.first = -1) \{ return 0; \}
30
31
        return range.second - range.first + 1;
32
```

```
const int MAX N = 5e5 + 5;
1
 2
3
   struct suffix array {
4
        string s;
        int n, sum, r, ra [MAX N], sa [MAX N], auxra [MAX N], auxsa [MAX N], c [MAX N],
 5
           lcp [MAX N];
 6
        void counting_sort(int k) {
            memset(c, 0, sizeof(c));
 7
            for (int i = 0; i < n; i++) { c[(i + k < n) ? ra[i + k] : 0]++; }
 8
 9
            for (int i = sum = 0; i < \max(256, n); i++) { sum += c[i], c[i] = sum -
               c[i]; }
            for (int i = 0; i < n; i++) { auxsa[c[sa[i] + k < n ? ra[sa[i] + k] :
10
               [0]++] = sa[i];
            for (int i = 0; i < n; i++) { sa[i] = auxsa[i]; }
11
12
13
       void build sa() {
            for (int k = 1; k < n; k <<= 1) {
14
                counting sort(k);
15
16
                counting sort(0);
                auxra[sa[0]] = r = 0;
17
                for (int i = 1; i < n; i++) {
18
19
                    auxra[sa[i]] = (ra[sa[i]] = ra[sa[i-1]] && ra[sa[i]+k] =
                       ra[sa[i - 1] + k]) ? r : ++r;
20
21
                for (int i = 0; i < n; i++) { ra[i] = auxra[i]; }
```

```
22
                if (ra[sa[n-1]] = n-1) { break; }
           }
23
24
       void build_lcp() {
25
26
           for (int i = 0, k = 0; i < n - 1; i++) {
27
                int j = sa[ra[i] - 1];
28
                while (s[i + k] = s[j + k]) \{ k++; \}
29
                lcp[ra[i]] = k;
30
                if (k) { k--; }
31
            }
32
33
       void set_string(string _s) {
34
           s = _s + '$';
35
           n = s.size();
            for (int i = 0; i < n; i++) { ra[i] = s[i], sa[i] = i; }
36
37
            build_sa();
38
           build_lcp();
39
            // for (int i = 0; i < n; i++) printf("%2d: %s\n", sa[i], s.c str() +
40
41
       int operator[](int i) { return sa[i]; }
42
```

Capítulo 4

Paradigmas

Mo

Resolve Queries Complicadas Offline de forma rápida.

Exponenciação de Matriz

Otimização para DP de prefixo quando o valor atual está em função dos últimos K valores já calculados.

Busca Binaria Paralela

Faz a busca binária para múltiplas consultas quando a busca binária é muito pesada.

Divide and Conquer

Otimização para DP de prefixo quando se pretende separar o vetor em K subgrupos.

Busca Ternaria

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas).

DP de Permutacao

Otimização do problema do Caixeiro Viajante

Convex Hull Trick

Otimização de DP onde se mantém as retas que formam um Convex Hull em uma estrutura que permite consultar qual o melhor valor para um determinado \mathbf{x} .

All Submasks

Percorre todas as submáscaras de uma máscara.

4.1 Mo

Resolve Queries Complicadas Offline de forma rápida.

É preciso manter uma estrutura que adicione e remova elementos nas extremeidades de um range (tipo janela).

Mo com Update

Resolve Queries Complicadas Offline de forma rápida.

Permite que existam UPDATES PONTUAIS!

É preciso manter uma estrutura que adicione e remova elementos nas extremidades de um range (tipo janela).

```
typedef pair<int, int> ii;
1
   int block sz; // Better if 'const';
3
4
   namespace mo {
        struct query {
5
6
            int l, r, idx;
7
            bool operator < (query q) const {
                 \mathbf{int} \ \ \_l = \ l \ \ / \ \ \mathbf{block\_sz} \, ;
8
9
                 int _ql = q.l / block_sz;
10
                 return ii(_l, (_l & 1 ? -r : r)) < ii(_ql, (_ql & 1 ? -q.r : q.r));
            }
11
12
        };
13
        vector < query > queries;
14
15
        void build(int n) {
            block sz = (int) sqrt(n);
16
             // TODO: initialize data structure
17
18
        inline void add_query(int 1, int r) { queries.push_back({1, r,
19
            (int) queries . size() }); }
20
        inline void remove(int idx) {
21
            // TODO: remove value at idx from data structure
22
23
        inline void add(int idx) {
24
            // TODO: add value at idx from data structure
25
26
        inline int get answer() {
27
            // TODO: extract the current answer of the data structure
28
            return 0;
29
        }
30
31
        vector<int> run() {
32
            vector < int > answers (queries.size());
33
            sort(queries.begin(), queries.end());
34
            int L = 0;
35
            int R = -1;
36
            for (query q : queries) {
37
                 while (L > q.l) \{ add(--L); \}
38
                 while (R < q.r) \{ add(++R); \}
39
                 while (L < q.1) { remove (L++); }
40
                 while (R > q.r) { remove (R--); }
                 answers[q.idx] = get answer();
41
42
43
            return answers;
44
        }
45
46
   };
```

```
typedef pair<int, int> ii;
typedef tuple<int, int, int> iii;
int block_sz; // Better if 'const';
vector<int> vec;
namespace mo {
```

4.1. MO 65

```
struct query {
 6
 7
               int 1, r, t, idx;
 8
               bool operator < (query q) const {
                    \begin{array}{lll} \textbf{int} & \_l = 1 \ / \ block\_sz\,;\\ \textbf{int} & \_r = r \ / \ block\_sz\,; \end{array}
 9
10
                    \mathbf{int} \ \ \underline{\phantom{a}} q l \, = \, q \, . \, l \ \ / \ \ block \underline{\phantom{a}} sz \, ;
11
                     \mathbf{int} \ \ \underline{\phantom{a}} \mathbf{qr} \, = \, \mathbf{q.r} \ / \ \ \mathbf{block\_sz} \, ;
12
13
                     return iii (_l, (_l & 1 ? -_r : _r), (_r & 1 ? t : -t)) <
                              iii(_ql, (_ql \& 1 ? -_qr : _qr), (_qr \& 1 ? q.t : -q.t));
14
15
          };
16
          vector <query> queries;
17
18
          vector<ii> updates;
19
20
          void build(int n) {
21
               block sz = pow(1.4142 * n, 2.0 / 3);
22
               // TODO: initialize data structure
23
          inline void add query(int 1, int r) { queries.push back({1, r,
24
              (int) updates. size(), (int) queries. size()); }
25
          inline void add_update(int x, int v) { updates.push_back({x, v}); }
26
          inline void remove(int idx) {
27
               // TODO: remove value at idx from data structure
28
29
          inline void add(int idx) {
               // TODO: add value at idx from data structure
30
31
          inline void update(int 1, int r, int t) {
32
33
               auto &[x, v] = updates[t];
34
               if (1 \le x \&\& x \le r) \{ remove(x); \}
35
               swap(vec[x], v);
36
               if (1 \le x \&\& x \le r) \{ add(x); \}
37
          inline int get answer() {
38
39
               // TODO: extract the current answer from the data structure
40
               return 0;
          }
41
42
43
          vector<int> run() {
44
               vector < int > answers (queries.size());
45
               sort(queries.begin(), queries.end());
46
               int L = 0;
47
               int R = -1;
               int T = 0;
48
49
               for (query q : queries) {
50
                     \mathbf{while} \ (\mathrm{T} < \mathrm{q.t}) \ \left\{ \ \mathrm{update}(\mathrm{L}, \ \mathrm{R}, \ \mathrm{T}\!\!+\!\!+\!\!}); \ \right\}
51
                     while (T > q.t) { update (L, R, -T); }
                     while (L > q.l) \{ add(--L); \}
52
                     \mathbf{while} \ (R < q.r) \ \{ \ \mathrm{add}(+\!\!+\!\!R) \, ; \ \}
53
54
                     while (L < q.1) { remove (L++); }
55
                     while (R > q.r) { remove (R--); }
56
                     answers[q.idx] = get answer();
57
               return answers;
59
60
    };
```

4.2 Exponenciação de Matriz

Otimização para DP de prefixo quando o valor atual está em função dos últimos K valores já calculados.

* Complexidade de tempo: $O(log(n) * k^3)$

É preciso mapear a DP para uma exponenciação de matriz.

DP:

$$dp[n] = \sum_{i=1}^{k} c[i] \cdot dp[n-i]$$

Mapeamento:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ c[k] & c[k-1] & c[k-2] & \dots & c[1] & 0 \end{pmatrix}^n \times \begin{pmatrix} dp[0] \\ dp[1] \\ dp[2] \\ \dots \\ dp[k-1] \end{pmatrix}$$

Exemplo de DP:

$$dp[i] = dp[i-1] + 2 \cdot i^2 + 3 \cdot i + 5$$

Nesses casos é preciso fazer uma linha para manter cada constante e potência do índice.

Mapeamento:

$$\begin{pmatrix} 1 & 5 & 3 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{pmatrix}^{n} \times \begin{pmatrix} dp[0] \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{array}{c} mantm \ dp[i] \\ mantm \ i \\ mantm \ i \\ mantm \ i \end{pmatrix}$$

Exemplo de DP:

$$dp[n] = c \times \prod_{i=1}^{k} dp[n-i]$$

Nesses casos é preciso trabalhar com o logaritmo e temos o caso padrão:

$$\log(dp[n]) = \log(c) + \sum_{i=1}^{k} \log(dp[n-i])$$

Se a resposta precisar ser inteira, deve-se fatorar a constante e os valores inicias e então fazer uma exponenciação para cada fator primo. Depois é só juntar a resposta no final.

```
11 dp [100];
 1
 2
   mat T;
 3
   #define MOD 1000000007
 4
 5
 6
   mat mult(mat a, mat b) {
 7
        mat res(a.size(), vi(b[0].size()));
 8
        {f for} \ ({f int} \ i = 0; \ i < a. \, {
m size}\,(); \ i++) \ \{
 9
             \mbox{for (int } j = 0; \ j < b [0]. \, \mbox{size()}; \ j++) \ \{
10
                  for (int k = 0; k < b.size(); k++) {
                       res[i][j] += a[i][k] * b[k][j] % MOD;
11
12
                       res[i][j] %= MOD;
13
14
             }
15
16
        return res;
17
18
19
    mat exp mod(mat b, ll exp) {
20
        mat res(b.size(), vi(b.size()));
        for (int i = 0; i < b.size(); i++) { res[i][i] = 1; }
21
22
23
        while (exp) {
             if (\exp \& 1) \{ res = mult(res, b); \}
24
25
             b = mult(b, b);
26
             \exp /= 2;
27
28
        return res;
29
30
    // MUDA MUITO DE ACORDO COM O PROBLEMA
31
32
       LEIA COMO FAZER O MAPEAMENTO NO README
33
    ll solve(ll exp, ll dim) {
34
        if (\exp < \dim) \{ \operatorname{return} \operatorname{dp} [\exp]; \}
35
36
        T. assign (dim, vi (dim));
37
         // TO DO: Preencher a Matriz que vai ser exponenciada
        T[0][1] = 1;
T[1][0] = 1;
38
39
40
         // T[1][1] = 1;
41
42
        mat prod = exp_mod(T, exp);
43
44
        mat vec;
        vec.assign(dim, vi(1));
45
         for (int i = 0; i < dim; i++) {
46
47
             vec[i][0] = dp[i]; // Valores iniciais
48
49
50
        mat ans = mult(prod, vec);
51
        return ans [0][0];
52
```

4.3 Busca Binária Paralela

Faz a busca binária para múltiplas consultas quando a busca binária é muito pesada.

```
1
2
   namespace parallel binary search {
 3
        typedef tuple < int, int, long long, long long > query; // {value, id, l, r}
 4
        vector < query > queries [1123456];
                                                                       // pode ser um mapa se
            for muito esparso
 5
        long long ans [1123456];
                                                                       // definir pro tamanho
            das queries
6
        long long l, r, mid;
 7
        int id = 0;
8
        void set lim search(long long n) {
9
             1 = 0;
10
             r = n;
11
             mid = (1 + r) / 2;
12
        }
13
        void add query(long long v) { queries[mid].push back({v, id++, 1, r}); }
14
15
        void advance_search(long long v) {
16
17
             // advance search
        }
18
19
20
        bool satisfies (long long mid, int v, long long 1, long long r) {
21
             // implement the evaluation
22
23
24
        bool get_ans() {
25
             // implement the get ans
26
27
28
        void parallel binary search (long long l, long long r) {
29
30
             bool go = 1;
31
             while (go) {
32
                 go = 0;
33
                  int i = 0; // outra logica se for usar um mapa
34
                  for (auto &vec : queries) {
35
                      advance_search(i++);
                       \mathbf{for} \ (\mathbf{auto} \ \mathbf{q} \ : \ \mathbf{vec}) \ \{
36
37
                           auto [v, id, l, r] = q;
38
                           if (1 > r) { continue; }
39
                           go = 1;
40
                           // return while satisfies
                           if (satisfies(i, v, l, r)) {
41
42
                                ans[i] = get_ans();
                                \mathbf{long} \ \mathbf{long} \ \mathrm{mid} = \left( \mathrm{i} \ + \ 1 \right) \ / \ 2;
43
44
                                queries[mid] = query(v, id, l, i - 1);
45
46
                                long long mid = (i + r) / 2;
47
                                queries[mid] = query(v, id, i + 1, r);
48
49
50
                      vec.clear();
51
                 }
52
             }
53
        }
```

```
\begin{bmatrix} 54 \\ 55 \end{bmatrix} // namespace name
```

4.4 Divide and Conquer

Otimização para DP de prefixo quando se pretende separar o vetor em K subgrupos.

É preciso fazer a função query(i, j) que computa o custo do subgrupo

i, j

.

* Complexidade de tempo: O(n * k * log(n) * O(query))

Divide and Conquer com Query on demand

```
<!- *Read in [English](README.en.md)* ->
```

Usado para evitar queries pesadas ou o custo de pré-processamento.

 $\acute{\mathrm{E}}$ preciso fazer as funções da estrutura **janela**, eles adicionam e removem itens um a um como uma janela flutuante.

* Complexidade de tempo: O(n * k * log(n) * O(update da janela))

```
1
   namespace DC {
 2
        vi dp_before, dp_cur;
        void compute(int 1, int r, int optl, int optr) {
 3
 4
            if (1 > r) { return; }
 5
            int mid = (1 + r) >> 1;
            pair < ll, int > best = \{0, -1\}; // \{INF, -1\}  se quiser minimizar
 6
            for (int i = optl; i \le min(mid, optr); i++) {
 7
                best = max(best, \{(i ? dp\_before[i - 1] : 0) + query(i, mid), i\}); //
 8
                    min() se quiser minimizar
9
10
            dp cur[mid] = best.first;
11
            int opt = best.second;
            compute(l, mid - 1, optl, opt);
12
13
            compute(mid + 1, r, opt, optr);
        }
14
15
        ll solve(int n, int k) {
16
            dp before.assign (n + 5, 0);
17
            dp_cur.assign(n + 5, 0);
18
19
            for (int i = 0; i < n; i++) { dp_before[i] = query(0, i); }
20
            for (int i = 1; i < k; i++) {
21
                compute (0, n - 1, 0, n - 1);
22
                dp before = dp_cur;
23
24
            return dp before [n-1];
25
        }
```

```
1
   namespace DC {
2
        struct range { // eh preciso definir a forma de calcular o range
3
             vi freq;
             11 \text{ sum} = 0;
 4
 5
             int l = 0, r = -1;
6
             void back_l(int v) { // Mover o 'l' do range para a esquerda
7
                 sum += freq[v];
8
                 freq[v]++;
9
10
             void advance r(int v) { // Mover o 'r' do range para a direita
11
12
                 sum += freq[v];
13
                 freq[v]++;
14
                 r++;
15
             void advance l(int v) { // Mover o 'l' do range para a direita
16
17
                 freq[v]--;
18
                 sum = freq[v];
19
                 1++;
20
             }
21
             void back r(int v) { // Mover o 'r' do range para a esquerda
22
                 freq[v]--;
23
                 sum = freq[v];
24
25
26
             void clear(int n) { // Limpar range
27
                 1 = 0;
28
                 r = -1;
29
                 sum = 0;
30
                 freq.assign(n + 5, 0);
31
             }
32
        } s;
33
34
        vi dp before, dp cur;
35
        void compute(int 1, int r, int optl, int optr) {
36
             if (l > r) \{ return; \}
37
             int mid = (1 + r) \gg 1;
             pair < ll, int > best = \{0, -1\}; // \{INF, -1\}  se quiser minimizar
38
39
40
             while (s.l < optl) \{ s.advance_l(v[s.l]); \}
41
             while (s.l > optl) \{ s.back_l(v[s.l - 1]); \}
42
             while (s.r < mid) \{ s.advance_r(v[s.r + 1]); \}
43
             while (s.r > mid) { s.back r(v[s.r]); }
44
45
             vi removed;
             \mathbf{for} \ (\mathbf{int} \ i = \mathrm{optl}; \ i <= \min(\mathrm{mid}, \ \mathrm{optr}); \ i++) \ \{
46
47
                 best = \min(\text{best}, \{(i ? dp\_\text{before}[i-1] : 0) + \text{s.sum}, i\}); // \min() \text{ se}
                     quiser minimizar
                 removed.push\_back(v[s.l]);
48
49
                 s.advance l(v[s.1]);
50
51
             for (int rem : removed) { s.back l(v[s.l-1]); }
52
             dp cur[mid] = best.first;
53
54
             int opt = best.second;
55
             compute(1, mid - 1, optl, opt);
56
             compute(mid + 1, r, opt, optr);
57
        }
58
59
        ll solve(int n, int k) {
```

4.5. BUSCA TERNÁRIA 71

```
60
            dp before.assign(n, 0);
61
            dp_cur.assign(n, 0);
62
            s.clear(n);
63
            for (int i = 0; i < n; i++) {
                s.advance_r(v[i]);
64
65
                dp\_before[i] = s.sum;
66
67
            for (int i = 1; i < k; i++) {
68
                s.clear(n);
69
                compute (0, n - 1, 0, n - 1);
70
                dp before = dp cur;
71
72
            return dp_before[n-1];
73
        }
74
   };
```

4.5 Busca Ternária

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas).

Busca Ternária em Espaço Discreto

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas).

Versão para espaços discretos.

```
12
 1
                                                   13
                                                                 // minimizing. To maximize use
 2
    double eval (double mid) {
                                                                     >= to compare
 3
         // implement the evaluation
                                                                 if (eval(mid_1) \le eval(mid_2))
                                                   14
 4
 5
                                                   15
                                                                      r = mid 2;
 6
    double ternary_search(double 1, double
                                                   16
                                                                 } else {
        r) {
                                                   17
                                                                      1 = mid 1;
 7
        int k = 100;
                                                   18
 8
         while (k--) {
                                                   19
 9
              double step = (1 + r) / 3;
                                                   20
                                                            return 1;
10
              \mathbf{double} \ \mathrm{mid} \underline{1} = 1 + \mathrm{step};
                                                   21
              double mid 2 = r - step;
11
```

```
long long eval(long long mid) {
    // implement the evaluation
}

long long discrete_ternary_search(long long l, long long r) {
    long long ans = -1;
    r--; // to not space r
    while (l <= r) {</pre>
```

```
10
            long long mid = (1 + r) / 2;
11
12
            // minimizing. To maximize use >= to compare
13
            if (eval(mid) \le eval(mid + 1)) {
                ans = mid;
14
15
                r = mid - 1;
16
            } else {
17
                 1 = mid + 1;
18
19
20
        return ans;
21
```

4.6 DP de Permutação

Otimização do problema do Caixeiro Viajante

* Complexidade de tempo: $O(n^2 * 2^n)$

Para rodar a função basta setar a matriz de adjacência 'dist' e chamar solve(0,0,n).

```
1
    const int \lim = 17;
                                   // setar para o maximo de itens
   long double dist[lim][lim]; // eh preciso dar as distancias de n para n
 3
   long double dp[\lim][1 \ll \lim];
   int limMask = (1 \ll lim) - 1; // 2**(maximo de itens) - 1
6
   long double solve(int atual, int mask, int n) {
7
        if (dp[atual][mask] != 0) { return dp[atual][mask]; }
        if (mask = (1 << n) - 1) {
8
             return dp[atual][mask] = 0; // o que fazer quando chega no final
9
10
11
12
        long double res = 1e13; // pode ser maior se precisar
13
        for (int i = 0; i < n; i++) {
             if (!(mask & (1 << i))) {
14
                 \textbf{long double} \ \ aux \ = \ solve\left(i \ , \ \ mask \ \mid \ \left(1 \ << \ i \ \right), \ n \right);
15
16
                 if (mask) \{ aux += dist[atual][i]; \}
17
                 res = min(res, aux);
             }
18
19
20
        return dp[atual][mask] = res;
21
```

4.7 Convex Hull Trick

Otimização de DP onde se mantém as retas que formam um Convex Hull em uma estrutura que permite consultar qual o melhor valor para um determinado x.

4.8. ALL SUBMASK 73

Só funciona quando as retas são monotônicas. Caso não forem, usar LiChao Tree para guardar as retas Complexidade de tempo:

```
\mathbf{const} \ 11 \ INF = 1e18 \ + \ 18;
 1
 2
   bool op(ll a, ll b) {
 3
        return a >= b; // either >= or <=
 4
5
   struct line {
        ll a, b;
6
        ll get(ll x) \{ return a * x + b; \}
7
        11 intersect(line 1) {
8
            return (1.b - b + a - 1.a) / (a - 1.a); // rounds up for integer only
9
10
        }
11
    };
12
   deque<pair<line, ll>> fila;
   void add_line(ll a, ll b) {
13
        line nova = \{a, b\};
14
        if (!fila.empty() && fila.back().first.a == a && fila.back().first.b == b) {
15
           return; }
        while (!fila.empty() && op(fila.back().second,
16
           nova.intersect(fila.back().first))) { fila.pop back(); }
17
        11 x = fila.empty() ? -INF : nova.intersect(fila.back().first);
18
        fila.emplace back(nova, x);
19
   11 get_binary_search(11 x) {
20
21
        int esq = 0, dir = fila.size() - 1, r = -1;
22
        while (esq \ll dir) {
23
            int mid = (esq + dir) / 2;
24
            if (op(x, fila[mid].second)) {
25
                 esq = mid + 1;
26
                 r = mid;
27
            } else {
28
                 dir = mid - 1;
29
30
31
        return fila [r]. first.get(x);
32
33
   // O(1), use only when QUERIES are monotonic!
   11 \operatorname{get}(11 x)  {
34
        while (fila.size() \ge 2 \&\& op(x, fila[1].second)) \{ fila.pop_front(); \}
35
        return fila.front().first.get(x);
36
37
```

4.8 All Submask

Percorre todas as submáscaras de uma máscara.

* Complexidade de tempo: $O(3^N)$

Capítulo 5

Matemática

Sum of floor(n div i))

Computa $\sum_{i=1}^{n} \lfloor \frac{n}{i} \rfloor$

Primos

Algortimos relacionados a números primos.

NTT

Computa a multiplicação de polinômios com coeficientes inteiros módulo um número primo.

Eliminação Gaussiana

Método de eliminação gaussiana para resolução de sistemas lineares.

GCD

Algoritmo Euclides para computar o Máximo Divisor Comum (MDC em português; GCD em inglês), e variações.

Fatoração

Algortimos para fatorar um número.

Teorema do Resto Chinês

Algoritmo que resolve o sistema $x \equiv a_i \pmod{m_i}$, onde m_i são primos entre si.

FFT

Algoritmo que computa a transformada rápida de fourier para convolução de polinômios.

Exponenciação Modular Rápida

Computa $(base^{exp})\%mod$.

Totiente de Euler

Código para computar o totiente de Euler.

Inverso Modular

Algoritmos para calcular o inverso modular de um número. O inverso modular de um inteiro a é outro inteiro x tal que $a \cdot x \equiv 1 \pmod{MOD}$

5.1 Soma do floor (n/i)

Computa $\sum_{i=1}^{n} \lfloor \frac{n}{i} \rfloor$

Computa o somatório de n dividido de 1 a n (divisão arredondado pra baixo).

```
const int MOD = 1e9 + 7;
 2
3
   long long sumoffloor(long long n) {
        long long answer = 0, i;
 4
        for (i = 1; i * i <= n; i++) {
 5
 6
             answer += n / i;
7
             answer %= MOD;
 8
9
        \mbox{for (int } j \ = \ 1; \ n \ / \ (j \ + \ 1) \ >= \ i \ ; \ j++) \ \{
10
             answer += (((n / j - n / (j + 1)) \% MOD) * j) \% MOD;
11
             answer %= MOD;
12
13
14
        return answer;
15
```

5.2 Primos

Algortimos relacionados a números primos.

Crivo de Eratóstenes

Computa a primalidade de todos os números até N, quase tão rápido quanto o crivo linear.

Demora 1 segundo para LIM igual a $3 * 10^7$.

Miller-Rabin

Teste de primalidade garantido para números menores do que 2^64 .

Teste Ingênuo

Computa a primalidade de um número N.

```
1
    vector < bool > sieve (int n) {
 2
         vector < bool > is_prime(n + 5, true);
 3
         is_prime[0] = false;
        is_prime[1] = false;
 4
 5
        long long sq = sqrt(n + 5);
 6
         for (long long i = 2; i \le sq; i++) {
 7
             if (is_prime[i]) {
 8
                  \overline{\mathbf{for}} (long long j = i * i; j < n; j += i) { is prime[j] = \mathbf{false}; }
 9
10
11
        return is_prime;
12
```

```
long long power (long long base, long long e, long long mod) {
 1
 2
        long long result = 1;
        base %= mod;
 3
        while (e) {
 4
            5
 6
            base = (\_int128)base * base \% mod;
7
            e >>= 1;
 8
 9
        return result;
10
11
   bool is composite (long long n, long long a, long long d, int s) {
12
13
        \mathbf{long} \ \mathbf{long} \ \mathbf{x} = \mathbf{power}(\mathbf{a}, \ \mathbf{d}, \ \mathbf{n});
14
        if (x = 1 \mid | x = n - 1) \{ return false; \}
        for (int r = 1; r < s; r++) {
15
            x = (\_int128)x * x \% n;
16
17
            if (x = n - 1) { return false; }
18
19
        return true;
20
   }
21
22
   bool miller_rabin(long long n) {
23
        if (n < 2) { return false; }
24
        int r = 0;
25
        long long d = n - 1;
26
        while ((d \& 1) == 0) \{ d >>= 1, ++r; \}
        for (int a: \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37\}) {
27
28
            if (n = a) { return true; }
29
            if (is composite(n, a, d, r)) { return false; }
30
31
        return true;
32
```

5.3 Numeric Theoric Transformation

Computa a multiplicação de polinômios com coeficientes inteiros módulo um número primo.

Computa multiplicação de polinômino; Somente para inteiros.

Constantes finais devem ser menor do que 10^9 .

Para constantes entre 10^9 e 10^{18} é necessário codar também [big_convolution](big_convolution.cpp).

```
typedef long long ll;
typedef vector<ll> poly;
```

```
11 \mod [3] = \{998244353LL, 1004535809LL, 1092616193LL\};
    11 \text{ root} [3] = \{102292LL, 12289LL, 23747LL\};
    11 \ \operatorname{root\_1[3]} \ = \ \{116744195 \mathrm{LL}, \ 313564925 \mathrm{LL}, \ 642907570 \mathrm{LL}\};
6
7
    11 root pw[3] = \{1LL \ll 23, 1LL \ll 21, 1LL \ll 21\};
8
9
    11 modInv(11 b, 11 m) {
10
        11 e = m - 2;
11
        11 \text{ res} = 1;
12
        while (e) {
13
             if (e & 1) { res = (res * b) \% m; }
             e /= 2;
14
             b = (b * b) \% m;
15
16
17
        return res;
18
    }
19
20
    void ntt(poly &a, bool invert, int id) {
21
         11 \ n = (11) a. size(), m = mod[id];
22
        for (11 i = 1, j = 0; i < n; ++i) {
23
             ll bit = n \gg 1;
24
             for (; j >= bit; bit >>= 1) { j -= bit; }
25
             j += bit;
26
             if (i < j) \{ swap(a[i], a[j]); \}
27
28
        for (ll len = 2, wlen; len \langle = n; len \langle = 1 \rangle {
29
             wlen = invert ? root_1[id] : root[id];
30
             \mathbf{for} \ (ll \ i = len; \ i < root_pw[id]; \ i <<= 1) \ \{ \ wlen = (wlen * wlen) \% m; \ \}
31
             for (ll i = 0; i < n; i += len) {
32
                  11 \ w = 1;
33
                  for (11 j = 0; j < len / 2; j++) {
34
                       11 u = a[i + j], v = (a[i + j + len / 2] * w) \% m;
35
                      a[i + j] = (u + v) \% m;
                      a[i + j + len / 2] = (u - v + m) \% m;
36
37
                      w = (w * wlen) \% m;
38
                  }
39
             }
40
        if (invert) {
41
42
             11 \text{ inv} = \text{modInv}(n, m);
             for (11 i = 0; i < n; i++) { a[i] = (a[i] * inv) % m; }
43
44
        }
45
46
47
    poly convolution (poly a, poly b, int id = 0) {
        11 n = 1LL, len = (1LL + a.size() + b.size());
48
49
        while (n < len) \{ n \neq 2; \}
50
        a.resize(n);
51
        b.resize(n);
52
        ntt(a, 0, id);
        ntt(b, 0, id);
53
54
        poly answer(n);
55
        for (ll i = 0; i < n; i++) { answer[i] = (a[i] * b[i]); }
56
        ntt (answer, 1, id);
57
        return answer;
58
```

```
4
                                    if (!b) {
                                                     x = 1;
    5
                                                      y = 0;
    6
    7
                                                      return a;
    8
                                    } else {
                                                       11 g = ext_gcd(b, a \% b, y, x);
   9
10
                                                      y = a / b * x;
11
                                                      return g;
12
                                    }
13
14
                 // convolution mod 1,097,572,091,361,755,137
15
16
                 poly big_convolution(poly a, poly b) {
17
                                    poly r0, r1, answer;
18
                                    r0 = convolution(a, b, 1);
19
                                    r1 = convolution(a, b, 2);
20
                                    11 \, s, r, p = mod[1] * mod[2];
21
22
                                    ext gcd \pmod{1}, mod[2], r, s);
23
24
                                    answer.resize(r0.size());
25
                                   for (int i = 0; i < (int) answer.size(); i++) {
                                                      answer[i] = (mod mul((s * mod[2] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p) \% p, r0[i], p) + mod mul((r * mod[1] + p)
26
                                                                     + p) \% p, r1[i], p) + p) \% p;
27
28
                                   return answer;
29
```

5.4 Eliminação Gaussiana

Método de eliminação gaussiana para resolução de sistemas lineares.

Dica: Se os valores forem apenas 0 e 1 o algoritmo [gauss mod2](gauss mod2.cpp) é muito mais rápido.

```
const double EPS = 1e-9;
   const int INF = 2; // it doesn't actually have to be infinity or a big number
 2
 3
   int gauss (vector < vector < double >> a, vector < double > & ans) {
 4
 5
       int n = (int)a.size();
       int m = (int)a[0].size() - 1;
6
7
8
        vector < int > where (m, -1);
 9
        for (int col = 0, row = 0; col < m && row < n; ++col) {
10
            int sel = row;
            for (int i = row; i < n; ++i) {
11
                if (abs(a[i][col]) > abs(a[sel][col])) { sel = i; }
12
13
            if (abs(a[sel][col]) < EPS) { continue; }
14
            for (int i = col; i \le m; ++i) { swap(a[sel][i], a[row][i]); }
15
            where [col] = row;
16
17
18
            for (int i = 0; i < n; ++i) {
19
                if (i != row) {
20
                    double c = a[i][col] / a[row][col];
```

```
21
                     for (int j = col; j <= m; ++j) { a[i][j] -= a[row][j] * c; }
22
                }
23
            }
24
            ++row;
25
        }
26
27
        ans. assign (m, 0);
28
        for (int i = 0; i < m; ++i) {
29
            if (where[i] != -1) \{ ans[i] = a[where[i]][m] / a[where[i]][i]; \}
30
31
        for (int i = 0; i < n; ++i) {
32
            double sum = 0;
33
            for (int j = 0; j < m; ++j) { sum += ans[j] * a[i][j]; }
34
            if (abs(sum - a[i][m]) > EPS) \{ return 0; \}
35
        }
36
37
        for (int i = 0; i < m; ++i) {
38
            if (where [i] = -1) { return INF; }
39
40
        return 1;
41
```

```
1
    const int N = 105;
2
   const int INF = 2; // tanto faz
3
    // n \rightarrow numero de equações, m \rightarrow numero de variaveis
4
5
    // a[i][j] para j em [0, m - 1] \rightarrow coeficiente da variavel j na iesima equação
    // a[i][j] para j == m -> resultado da equação da iesima linha
6
7
    // ans -> bitset vazio, que retornara a solucao do sistema (caso exista)
   int gauss (vector < bitset < N> a, int n, int m, bitset < N> & ans) {
8
9
        vector < int > where (m, -1);
10
11
        for (int col = 0, row = 0; col < m && row < n; col++) {
12
             for (int i = row; i < n; i++) {
13
                 if (a[i][col]) {
14
                      swap(a[i], a[row]);
15
                      break;
16
                 }
17
             if (!a[row][col]) { continue; }
18
             \mathrm{where}\,[\,\mathrm{col}\,] \ = \ \mathrm{row}\,;
19
20
21
             for (int i = 0; i < n; i++) {
22
                 if (i != row && a[i][col]) { a[i] ^= a[row]; }
23
             }
24
            row++;
25
        }
26
27
        for (int i = 0; i < m; i++) {
28
             if (where[i] != -1) \{ ans[i] = a[where[i]][m] / a[where[i]][i]; \}
29
        for (int i = 0; i < n; i++) {
30
31
             int sum = 0;
32
             for (int j = 0; j < m; j++) { sum += ans[j] * a[i][j]; }
33
             if (abs(sum - a[i][m]) > 0) {
34
                 return 0; // Sem solucao
35
             }
36
        }
37
```

5.5 Máximo divisor comum

Algoritmo Euclides para computar o Máximo Divisor Comum (MDC em português; GCD em inglês), e variações.

Read in [English](README.en.md)

Algoritmo de Euclides

Computa o Máximo Divisor Comum (MDC em português; GCD em inglês).

Mais demorado que usar a função do compilador C++ __gcd(a,b).

Algoritmo de Euclides Estendido

Algoritmo extendido de euclides que computa o Máximo Divisor Comum e os valores x e y tal que a * x + b * $y = \gcd(a, b)$.

```
1 \hspace{0.1cm} \textbf{long long gcd(long long a, long long b)} \hspace{0.1cm} \{ \hspace{0.1cm} \textbf{return } \hspace{0.1cm} (b == 0) \hspace{0.1cm} ? \hspace{0.1cm} a \hspace{0.1cm} : \hspace{0.1cm} gcd(b, \hspace{0.1cm} a \hspace{0.1cm} \% \hspace{0.1cm} b); \hspace{0.1cm} \}
```

```
tie(y, y1) = make tuple(y1, y -
  int extended gcd(int a, int b, int &x,
1
                                                              q * y1);
      int &y) {
                                                           tie(a, b) = make tuple(b, a - q)
2
       x = 1, y = 0;
                                                               * b);
       int x1 = 0, y1 = 1;
3
                                               9
4
       while (b) {
                                              10
                                                      return a;
5
           int q = a / b;
                                              11 \parallel \}
6
           tie(x, x1) = make\_tuple(x1, x)
               q * x1);
```

```
11 g = extended_gcd(b, a \% b,
   ll extended_gcd(ll a, ll b, ll &x, ll
1
                                                             y, x);
      &y) {
                                              8
                                                         y = a / b * x;
2
       if (b = 0) {
                                              9
                                                         return g;
3
           x = 1;
                                             10
                                                     }
           y = 0;
4
                                             11
5
           return a;
       } else {
```

5.6 Fatoração

Algortimos para fatorar um número.

Fatoração Simples

Fatora um número N.

Crivo Linear

Pré-computa todos os fatores primos até MAX.

Utilizado para fatorar um número N menor que MAX.

Fatoração Rápida

Utiliza Pollar-Rho e Miller-Rabin (ver em Primos) para fatorar um número N.

Pollard-Rho

Descobre um divisor de um número N.

```
vector<int> factorize(int n) {
1
                                              8
       vector<int> factors;
2
                                              9
                                                     if (n != 1) { factors.push back(n);
3
       for (long long d = 2; d * d \ll n;
          d++) {}
                                             10
                                                     return factors;
4
           while (n \% d == 0) {
                                             11
5
                factors.push back(d);
6
               n /= d;
```

```
1
    namespace sieve {
 2
          const int MAX = 1e4;
 3
          int lp [MAX + 1], factor [MAX + 1];
          vector < int > pr;
 4
 5
         void build() {
 6
               for (int i = 2; i \le MAX; ++i) {
 7
                    if (lp[i] == 0) {
                         lp[i] = i;
 8
 9
                         pr.push back(i);
10
                    \mbox{ for } (\mbox{ int } j = 0; \mbox{ } i \mbox{ } * \mbox{ pr} [\mbox{ } j \mbox{ }] <= \mbox{MAX}; \mbox{ } +\!\!\!+\!\!\! j \,) \mbox{ } \{
11
12
                         lp[i * pr[j]] = pr[j];
13
                          factor[i * pr[j]] = i;
14
                          if (pr[j] = lp[i]) \{ break; \}
15
                    }
16
               }
17
18
          vector < int > factorize (int x) {
19
               if (x < 2) { return {}; }
20
               vector < int > v;
21
               for (int lpx = lp[x]; x >= lpx; x = factor[x]) { v.emplace back(lp[x]); }
22
               return v;
23
          }
24
```

```
long long mod mul(long long a, long long b, long long m) { return ( int128)a * b
       % m; }
2
 3
   long long pollard rho(long long n) {
        auto f = [n](long long x) {
4
5
            \mathbf{return} \ \operatorname{mod\_mul}(x, \ x, \ n) \ + \ 1;
 6
7
        long long x = 0, y = 0, t = 30, prd = 2, i = 1, q;
        while (t++\% 40 | | \_gcd(prd, n) == 1)  {
8
9
             if (x == y) \{ x = ++i, y = f(x); \}
             if ((q = mod mul(prd, max(x, y) - min(x, y), n))) \{ prd = q; \}
10
11
             x = f(x), y = f(f(y));
12
13
        return _{gcd}(prd, n);
14
```

```
if (miller rabin(n)) { return {n}; }
     usa miller rabin.cpp!! olhar em
1
                                             7
                                                    long long x = pollard rho(n);
      matematica/primos
                                                    auto l = factorize(x), r =
                                             8
2
     usa pollar_rho.cpp!! olhar em
                                                       factorize (n / x);
      matematica/fatoracao
                                             9
                                                    l.insert(l.end(), all(r));
3
                                            10
                                                    return 1:
  vector<long long> factorize (long long
4
                                            11
       if (n = 1) \{ return \{ \}; \}
5
```

5.7 Teorema do Resto Chinês

Algoritmo que resolve o sistema $x \equiv a_i \pmod{m_i}$, onde m_i são primos entre si.

```
ll extended_gcd(ll a, ll b, ll &x, ll &y) {
 1
 2
        if (b = 0)  {
 3
            x = 1;
 4
            y = 0;
 5
            return a;
        } else {
 6
7
             11 g = extended_gcd(b, a \% b, y, x);
8
            y = a / b * x;
            return g;
9
10
        }
11
12
13
    ll crt(vector<ll> rem, vector<ll> mod) {
14
        int n = rem. size();
        if (n = 0) { return 0; }
15
16
         _{\_}int128 ans = rem[0], m = mod[0];
17
        for (int i = 1; i < n; i++) {
18
             11 x, y;
             11 g = \text{extended } \gcd(\text{mod}[i], m, x, y);
19
```

```
20 | if ((ans - rem[i]) % g != 0) { return -1; }
21 | ans = ans + (__int128)1 * (rem[i] - ans) * (m / g) * y;
22 | m = (__int128)(mod[i] / g) * (m / g) * g;
23 | ans = (ans % m + m) % m;
24 | }
25 | return ans;
26 |}
```

5.8 Transformada Rápida de Fourier

Algoritmo que computa a transformada rápida de fourier para convolução de polinômios.

Computa convolução (multiplicação) de polinômios.

Garante que não haja erro de precisão para polinômios com grau até $3 * 10^5$ e constantes até 10^6 .

```
\mathbf{typedef} \hspace{0.1cm} \mathbf{complex} {<} \mathbf{double} {>} \hspace{0.1cm} \mathbf{cd} \hspace{0.1cm} ;
    typedef vector < cd > poly;
3
   const double PI = acos(-1);
    void fft (poly &a, bool invert = 0) {
5
        \mathbf{int} \ n = \mathtt{a.size} \, () \, , \ \log \_ n \, = \, 0;
6
7
        while ((1 << \log n) < n) \{ \log n++; \}
8
         for (int i = 1, j = 0; i < n; ++i) {
9
10
             int bit = n >> 1;
             for (; j >= bit; bit >>= 1) \{ j == bit; \}
11
12
             j += bit;
13
             if (i < j) { swap(a[i], a[j]); }
14
        }
15
16
        double angle = 2 * PI / n * (invert ? -1 : 1);
17
         poly root (n / 2);
         for (int i = 0; i < n / 2; ++i) { root[i] = cd(cos(angle * i), sin(angle *
18
             i)); }
19
20
         for (long long len = 2; len \leq n; len \leq 1) {
21
             long long step = n / len;
22
             long long aux = len / 2;
23
             for (long long i = 0; i < n; i += len) {
24
                  for (int j = 0; j < aux; ++j) {
25
                       cd\ u = a[i + j],\ v = a[i + j + aux] * root[step * j];
26
                       a[i + j] = u + v;
27
                       a[i + j + aux] = u - v;
28
                  }
             }
29
30
31
         if (invert) {
32
             for (int i = 0; i < n; ++i) { a[i] /= n; }
33
         }
34
35
    vector<long long> convolution(vector<long long> &a, vector<long long> &b) {
36
37
        int n = 1, len = a.size() + b.size();
```

```
38
        while (n < len) \{ n <<= 1; \}
39
       a.resize(n);
40
       b.resize(n);
41
        poly fft_a(a.begin(), a.end());
        fft (fft_a);
42
43
        poly fft_b(b.begin(), b.end());
        fft (fft_b);
44
45
46
        poly c(n);
47
        for (int i = 0; i < n; ++i) { c[i] = fft a[i] * fft b[i]; }
48
        fft(c, 1);
49
50
        vector < long long > res(n);
51
        for (int i = 0; i < n; ++i) {
            res[i] = round(c[i].real()); // res = c[i].real(); se for vector de double
52
53
54
        // while(size(res) > 1 \&\& res.back() == 0) res.pop_back(); // apenas para
           quando os zeros direita nao importarem
       return res;
56
```

5.9 Exponenciação modular rápida

Computa $(base^{exp})\%mod$.

5.10 Totiente de Euler

Código para computar o totiente de Euler.

Totiente de Euler (Phi) para um número

Computa o totiente para um único número N.

Totiente de Euler (Phi) entre 1 e N

Computa o totiente entre 1 e N.

```
for (int i = 0; i <= n; i++) { phi[i] = i; }

for (int i = 2; i <= n; i++) {
    if (phi[i] == i) {
        for (int j = i; j <= n; j += i) { phi[j] /= phi[j] / i; }
}

return phi;
}
</pre>
```

5.11 Modular Inverse

Algoritmos para calcular o inverso modular de um número. O inverso modular de um inteiro a é outro inteiro x tal que $a \cdot x \equiv 1 \pmod{MOD}$

The modular inverse of an integer a is another integer x such that a * x is congruent to 1 (mod MOD).

Modular Inverse

Calculates the modular inverse of a.

Uses the $[\exp_mod](/Matemática/Exponenciação\%20Modular\%20Rápida/exp_mod.cpp)$ algorithm, thus expects MOD to be prime.

- * Time Complexity: O(log(MOD)).
- * Space Complexity: O(1).

Modular Inverse by Extended GDC

Calculates the modular inverse of a.

Uses the [extended_gcd](/Matemática/GCD/extended_gcd.cpp) algorithm, thus expects MOD to be coprime with a.

Returns -1 if this assumption is broken.

- * Time Complexity: O(log(MOD)).
- * Space Complexity: O(1).

Modular Inverse for 1 to MAX

Calculates the modular inverse for all numbers between 1 and MAX.

expects MOD to be prime.

* Time Complexity: O(MAX).

* Space Complexity: O(MAX).

Modular Inverse for all powers

Let b be any integer.

Calculates the modular inverse for all powers of b between b^0 and b^MAX.

Needs you calculate beforehand the modular inverse of b, for 2 it is always (MOD+1)/2.

expects MOD to be coprime with b.

- * Time Complexity: O(MAX).
- * Space Complexity: O(MAX).

```
1 | ll inv(ll a) { return exp_mod(a, MOD - | 2); }
```