

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

> ESE 22nd Nov 2019

Max. Marks: 60

Class: T.E. (V) Computers/IT Course Code: CE55/IT54

Duration: 180 min.

Time: 10 am -1 pm

Name of the Course: Theoretical Computer Science

Instructions:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Q. No.		Max Marks
Q.1 a	Pumping lemma 3 rules Proof of each rule for given Language	3 Marks 3 Marks
Q.1 b	Tuple information STF (State Function) MAF(Machine Function) Transition Diagram Validation using example	1 Mark 1 Mark 1 Mark 2 Marks 1 Mark
Q.2 a	Correct NFA for (00 + 1)* Correct NFA for 1 (0 + 1) Correct NFA for (00 + 1)* 1 (0 + 1)	1 Mark 1 Mark 1 Mark
Q.2 b	For correct equations Applying Arden's theorem Correct regular Expression	0.5 Mark 1.5 Mark 1 Mark
Q.2 c	Removal of state which is not reachable from start state Box Representation Transition check for unmatched cell Transition diagram of Minimized DFA	1 Mark 1 Mark 2 Mark 2 Mark
	Correct Tuple information(Mealy) State function Transition diagram Transition diagram of moore machine	1 Mark 1 Mark 2 Mark 2 Mark
Q.3 a	Removal Of null Productions Removal of Unit productions Converting simplified grammar in CNF Define G' in CNF	1 Mark 1 Mark 3 Marks 1 Mark

	Removal Of null Productions Removal of Unit productions Removal of Useless variables	2 Marks 2 Marks 2 Marks
Q.3 b	Define the grammar G with GNF condition for given problem Converting the CFG to GNF	2 Marks 4 Marks
Q.4 a	Diagram of Chomsky hierarchy of formal languages. Explanation of Four types of grammar with condition and Examples	2 marks 4 Marks
Q.4 b	Define Recursively Enumerable languages Recursive languages with example.	3 marks 3 Marks
Q.5 a	Define Post correspondence problem condition. Solution for given Post correspondence problem	2 Marks 4 Marks
Q.5 b	Define M= $\{Q, \sum, \Gamma, \delta, q0, z0, F\}$ with respect to solution. Write transition function δ . Transition diagram.	2 Marks 3 Marks 1 mark
	OR	
	Convert the given CFG to GNF Define $M=\{Q, \sum, \Gamma, \delta, q0, z0, F\}$ with respect to solution. Write transition function δ .	2 Marks 1 Mark 3 marks

STATE FROM A SHIPLE THE STATE OF THE STATE O