Ch8. Diagnostics and model building

8.1 Model validation and diagnostics-(i) Residuals

The model is

$$y = X\beta + \epsilon$$

Residuals are defined

$$\hat{\epsilon} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{y} - \hat{\mathbf{Y}} = (\mathbf{I} - \mathbf{H})\mathbf{y} = (\mathbf{I} - \mathbf{H})\epsilon$$

where x is $n \times (p+1)$ and the hat matrix (projection matrix) is

$$\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

In terms of the elements h_{ij} of \mathbf{H} ,

$$\hat{\epsilon}_i = \epsilon_i - \sum_{i=1}^n h_{ij}\epsilon_j, \quad i = 1, 2, ..., n.$$

Model validation and diagnostics-(i) Residuals

Properties

- **I** $E(\hat{\epsilon}) = \mathbf{0}$ (residual mean is the same as the error mean)
- 2 $\mathsf{Cov}(\hat{\boldsymbol{\epsilon}}) = \sigma^2(\mathsf{I} \mathsf{H})$ (residuals are NOT independent)
- 3 $Cov(\hat{\epsilon}, y) = \sigma^2(I H)$ (residuals correlated with the observations)
- 4 $\mathsf{Cov}(\hat{\pmb{\epsilon}},\hat{\mathbf{Y}}) = \mathbf{0}$ (residuals uncorrelated with the predicted values)
- 5 $\bar{\hat{\epsilon}} = \sum_{i=1}^n \hat{\epsilon}_i/n = \hat{\epsilon}' \mathbf{1}/n = 0$
- $\hat{\epsilon}' y = SSE$
- $\hat{\boldsymbol{\epsilon}}'\hat{\mathbf{Y}} = 0$
- $\hat{m{\epsilon}}' m{\mathsf{X}} = m{\mathsf{0}}' \qquad (\hat{m{\epsilon}}' ext{ is orthogonal to each column of } m{\mathsf{X}})$

8.1 Model validation and diagnostics-(i) Residuals

Model in centered form

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i$$

= $\alpha + \beta_1 (x_{i1} - \bar{x}_1) + \dots + \beta_2 (x_{ip} - \bar{x}_p) + \epsilon_i$

In matrix form, the centered model is

$$\mathbf{y} = (\mathbf{1}, \mathbf{X}_c) \begin{pmatrix} \alpha \\ \beta_1 \end{pmatrix} + \epsilon,$$

where $\boldsymbol{\beta}_1 = (\beta_1, \beta_2, ..., \beta_p)'$, and $\boldsymbol{X}_c = (\boldsymbol{I} - \frac{1}{n}\boldsymbol{J}) \boldsymbol{X}_1$. It can be shown from previous notes that the least squares estimators of the parameters are

$$\hat{\alpha} = \bar{y}, \quad \hat{\boldsymbol{\beta}}_1 = (\boldsymbol{X}_c' \boldsymbol{X}_c)^{-1} \boldsymbol{X}_c' \boldsymbol{y}.$$

8.1 Model validation and diagnostics-(i) Residuals

Hence the predicted value is

$$\hat{\mathbf{y}} = \bar{\mathbf{y}}\mathbf{1} + \mathbf{X}_c(\mathbf{X}_c'\mathbf{X}_c)^{-1}\mathbf{X}_c'\mathbf{y} = \left(\frac{1}{n}\mathbf{1}'\mathbf{y}\right)\mathbf{1} + \mathbf{H}_c\mathbf{y} = \left(\frac{1}{n}\mathbf{J} + \mathbf{H}_c\right)\mathbf{y}$$

Since $\hat{\mathbf{y}} = \mathbf{H}\mathbf{y}$, hence

$$H = \frac{1}{n}J + H_c = \frac{1}{n}J + X_c(X'_cX_c)^{-1}X'_c.$$

8.1 Model validation and diagnostics-(i) Residuals

Hat matrix $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' = \{h_{ij}\}$ (Let \mathbf{x} be a matrix with full column rank and with $\mathbf{1}$ as its first column)

Properties

- 1 $1/n \le h_{ii} \le 1$ for i = 1, 2, ..., n.
- $2 .5 \le h_{ij} \le .5$ for all $j \ne i$.
- 3 $h_{ii} = 1/n + (\mathbf{x}_{1i} \bar{\mathbf{x}}_1)'(\mathbf{x}_c'\mathbf{x}_c)^{-1}(\mathbf{x}_{1i} \bar{\mathbf{x}}_1)$, where $\mathbf{x}_{1i}' = (x_{i1}, x_{i2}, ..., x_{ik})$, $\bar{\mathbf{x}}_1' = (\bar{x}_1, \bar{x}_2, ..., \bar{x}_k)$, and $(\mathbf{x}_{1i} \bar{\mathbf{x}}_1)'$ is the ith row of the centered matrix \mathbf{x}_c .
- 4 $tr(\mathbf{H}) = \sum_{i=1}^{n} h_{ii} = p + 1.$

8.1 Model validation and diagnostics—(ii) Residual Analysis

- 1 Variance of the residuals is not constant
 - Studentized residual
 - Studentized deleted residual (externally studentized residual)
- 2 Deleted residuals
- 3 Press (prediction sum of squares)

8.1 Model validation and diagnostics—(iii) Influential Observations

- 1 Leverage h_{ii}
- 2 Cook's distance

$$D_i = \frac{(\hat{\boldsymbol{\beta}}_{(i)} - \hat{\boldsymbol{\beta}})' \boldsymbol{X}' \boldsymbol{X} (\hat{\boldsymbol{\beta}}_{(i)} - \hat{\boldsymbol{\beta}})}{(p+1)\hat{\sigma}^2}$$

Model validation and diagnostics

Example. Ch8-Example-Diagnostics

8.2 Multicollinearity

Multicollinearity in regression refers to the case when one predictor variable in a multiple regression model can be linearly predicted from the others with a substantial degree of accuracy.

Detection

- Significant correlations between pairs of independent variables in the model;
- Nonsignificant t-tests for all (or nearly all) the individual β parameters when the F-test for overall model adequacy $H_0: \beta_1 = \beta_2 = \beta_p = 0$ is significant;
- Opposite signs (from what is expected) in the estimated parameters;

8.2 Multicollinearity - Detection

■ A variance inflation factor (VIF) for a β parameter greater than 10, where

$$(VIF)_j = \frac{1}{1 - R_i^2}, \quad j = 1, \dots, p,$$

and R_j^2 is the multiple coefficient of determination for the model

$$E(x_j) = \alpha_0 + \alpha_1 x_1 + \alpha_{j-1} x_{j-1} + \alpha_{j+1} x_{j+1} + \alpha_p x_p.$$

- Let the ordered eigenvalues of $\boldsymbol{X}'\boldsymbol{X}$ be $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_r$ where r = p + 1.
 - Condition number: $\kappa = \sqrt{\lambda_1/\lambda_r}$;
 - Condition indexes: $\sqrt{\lambda_1/\lambda_i}$ where $j=2,\ldots,r$;
 - lacksquare Multicollinear problem: Condition number or indexes ≥ 30 .
 - Note in some references, condition index is also called condition number.

8.2 Multicollinearity – example

Example. Ch8-Example-Multicollinearity

8.3 Variable selection

- Goal is to develop a model with the best set of independent variables
 - Easier to interpret if unimportant variables are removed,
 - Lower probability of collinearity.
- Stepwise regression procedure: Provide evaluation of alternative models as variables are added (or withdrawn).
- Best-subset approach: Try all combinations and select the best using various criteria, such as the highest adjusted R^2 .
- Other methods: LASSO, Ridge, Elastic Net

8.3 Variable selection – example

Example. Ch8-Example-Variable-selection

8.4 More complex models

- Qualitative independent variables;
- Interaction Model;
- Polynomial Regression Models;
- Summary of First-order and Second-order Models;
- Coefficients of Partial Determination;
- Other regression models.

8.4 More complex models – Qualitative independent variables

- To quantify qualitative predictors, we use indicator variables (dummy variables).
- An indicator variable is a categorical explanatory variable with two levels:
 - yes or no, on or off, male or female
 - coded as 0 or 1
- If more than two levels, the number of indicator variables needed is (number of levels 1)

8.4 Qualitative independent variables: Indicator-Variable Example (with 2 Levels)

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2,$$

Let

■ y: pie sales

 \blacksquare x_1 : price

 $\blacksquare x_2$: holiday

 \blacksquare $X_2 = 1$ if a holiday occurred during the week,

■ $X_2 = 0$ if there was no holiday that week.

8.4 Qualitative independent variables: Indicator-Variable Example (with 2 Levels)

8.4 Qualitative independent variables: Interpreting the Indicator-Variable Example (with 2 Levels)

Example:

Sales = 300 - 30(Price) + 15(Holiday)

Sales: number of pies sold per week

Price: pie price in \$

Holiday: {1 If a holiday occurred during the week 0 If no holiday occurred

b₂ = 15: on average, sales were 15 pies greater in weeks with a holiday than in weeks without a holiday, given the same price

8.4 Qualitative independent variables: Indicator-Variable Example (more than 2 Levels)

- The number of dummy variables is **one less**than the number of levels
- Example:Y = house price ; X₁ = square feet

If style of the house is also thought to matter:

Style = ranch, split level, condo

Three levels, so two dummy variables are needed

8.4 Qualitative independent variables: Indicator-Variable Example (more than 2 Levels)

Let 'condo' be the default category, and let x_2 and x_3 be used for the other two categories:

- \blacksquare Y = house price;
- X_1 = square feet;
- \blacksquare $X_2 = 1$ if ranch, 0 otherwise;
- $X_3 = 1$ if split level, 0 otherwise

The multiple regression equation is:

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3.$$

8.4 Qualitative independent variables: Interpreting the indicator Variable Coefficients (with 3 Levels)

Consider the regression equation:

$$\hat{Y} = 20.43 + 0.045X_1 + 23.53X_2 + 18.84X_3$$

For a condo: $X_2 = X_3 = 0$

$$\hat{Y} = 20.43 + 0.045 X_1$$

For a ranch: $X_2 = 1$; $X_3 = 0$

$$\hat{Y} = 20.43 + 0.045X_1 + 23.53$$

For a split level: $X_2 = 0$; $X_3 = 1$

$$\hat{Y} = 20.43 + 0.045X_1 + 18.84$$

With the same square feet, a ranch will have an estimated average price of 23.53 thousand dollars more than a condo

With the same square feet, a split-level will have an estimated average price of 18.84 thousand dollars more than a condo.

8.4 Interaction Regression Models

- Hypothesizes interaction between pairs of X variables
 - Response to one X variable may vary at different levels of another X variable
- Contains two-way cross product terms

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3
= b_0 + b_1 X_1 + b_2 X_2 + b_3 (X_1 X_2)$$

8.4 Interaction Regression Models

- $lack Given \ \hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 (X_1 X_2)$
- Without interaction term, effect of X_1 on Y is measured by β_1 ;
- With interaction term, effect of X_1 on Y is measured by $\beta_1 + \beta_3 X_2$;
- Effect changes as X_2 changes.

8.4 Interaction Regression Models

Suppose X_2 is a dummy variable and the estimated regression equation is $\hat{Y} = 1 + 2X_1 + 3X_2 + 4X_1X_2$

8.4 Interaction Regression Models: significance of interaction term

- Can perform a partial F-test for the contribution of a variable to see if the addition of an interaction term improves the model;
- Multiple interaction terms can be included:
 - Use a partial F-test for the simultaneous contribution of multiple variables to the model.

8.4 Polynomial regression models

When are polynomial regression models being used?

- When the true curvilinear response function is indeed a polynomial function;
- When the true curvilinear response function is unknown (or complex) but a polynomial function is a good approximation to the true function.

8.4 Polynomial regression models

Example Predictive variable, second order

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i,$$

where $x_i = X_i - \bar{X}$.

- The reason for using a centered predictor variable in the polynomial regression model is that X and X^2 often will be highly correlated.
- Centering the predictor variable often reduces the multicollinearity substantially, and tends to avoid computational difficulties.

8.4 Polynomial regression models: graphs for two quadratic models

8.4 Coefficients of partial determination

```
R_{Yj,(all\ variables\ except\ j)}^{2} = \frac{SSR\ (X_{j}\ | all\ variables\ except\ j)}{SSE(all\ variables\ except\ j)}
```

- Measures the proportion of variation in the dependent variable that is explained by X_j while controlling for (holding constant) the other explanatory variables;
- Coefficients of partial correlation.