

Thyristor Modules Thyristor/Diode Modules

 $I_{TRMS} = 2x 450 A$ $I_{TAVM} = 2x 250 A$ $V_{RRM} = 1200-1800 V$

V _{RSM} V _{DSM}	V _{RRM} V _{DRM}	Туре	
1300	1200	MCC 255-12io1	MCD 255-12io1
1500	1400	MCC 255-14io1	MCD 255-14io1
1700	1600	MCC 255-16io1	MCD 255-16io1
1900	1800	MCC 255-18io1	MCD 255-18io1

Symbol	Test Conditions	Maximum	Ratings		
I _{TRMS} , I _{FRMS}	$T_{VJ} = T_{VJM}$ $T_{C} = 85^{\circ}C; 180^{\circ} \text{ sine}$		450 250	A A	
I _{TSM} , I _{FSM}	$T_{VJ} = 45^{\circ}C;$ $V_{R} = 0$	t = 10 ms (50 Hz) t = 8.3 ms (60 Hz)	9000 9600	A A	
		t = 10 ms (50 Hz) t = 8.3 ms (60 Hz)	7800 8600	A A	
∫i²dt	$T_{VJ} = 45^{\circ}C$ $V_{R} = 0$	t = 10 ms (50 Hz) t = 8.3 ms (60 Hz)	405 000 382 000	A ² s A ² s	
	$T_{VJ} = T_{VJM}$ $V_{R} = 0$	t = 10 ms (50 Hz) t = 8.3 ms (60 Hz)	304 000 307 000	A ² s A ² s	
(di/dt) _{cr}	$T_{VJ} = T_{VJM}$ f =50 Hz, t _p =200 µs	repetitive, $I_{T} = 860 \text{ A}$	100	A/μs	
	$V_D = 2/3 V_{DRM}$ $I_G = 1 A,$ $di_G/dt = 1 A/\mu s$	non repetitive, $I_T = I_{TAVM}$	500	A/μs	
(dv/dt) _{cr}	$T_{VJ} = T_{VJM}$; $V_{DR} = 2/3$ $R_{GK} = \infty$; method 1 (lii	1000	V/µs		
P _{GM}	$T_{VJ} = T_{VJM}$	$t_p = 30 \mu s$	120	W	
	$I_{T} = I_{TAVM}$	$t_{p} = 500 \ \mu s$	60	W	
P _{GAV} V _{RGM}			20 10	W V	
T _{VJ}			-40+130	°C	
T _{V.IM}			130	°C	
T _{stg}			-40+125	°C	
\mathbf{V}_{ISOL}	50/60 Hz, RMS	t = 1 min	3000	V~	
	$I_{ISOL} \le 1 \text{ mA}$	t = 1 s	3600	V~	
M _d	Mounting torque (M6) Terminal connection	,	4.5-7/40-62 11-13/97-115		
Weight	Typical including scre		750	g	

MCC 3 1 5 4 2

MCD

Features

- International standard package
- Direct copper bonded Al₂O₃-ceramic with copper base plate
- · Planar passivated chips
- Isolation voltage 3600 V~
- UL registered E 72873
- Keyed gate/cathode twin pins

Applications

- Motor control, softstarter
- Power converter
- Heat and temperature control for industrial furnaces and chemical processes
- · Lighting control
- · Solid state switches

Advantages

- · Simple mounting
- Improved temperature and power cycling
- · Reduced protection circuits

Data according to IEC 60747 and refer to a single thyristor/diode unless otherwise stated. IXYS reserves the right to change limits, test conditions and dimensions

Symbol	Test Conditions Chara	cteristic V	Values		
I _{RRM} , I _{DRM}	$T_{VJ} = T_{VJM}$; $V_R = V_{RRM}$; $V_D = V_{DRM}$	40	mA		
V_T, V_F	I _T , I _F = 600 A; T _{VJ} = 25°C	1.36	V		
V _{TO}	For power-loss calculations only (T _{VJ} = 130°C)	0.8 0.68	V mΩ		
$\frac{\mathbf{r}_{T}}{V_{GT}}$	$V_D = 6 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = -40^{\circ}\text{C}$	2 3	V V		
I _{GT}	$V_D = 6 \text{ V};$ $T_{VJ}^{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = -40^{\circ}\text{C}$	150 220	mA mA		
V _{GD} I _{GD}	$ \begin{aligned} T_{VJ} &= T_{VJM}; & V_D &= 2/3 \ V_{DRM} \\ T_{VJ} &= T_{VJM}; & V_D &= 2/3 \ V_{DRM} \end{aligned} $	0.25 10	V mA		
I _L	$T_{VJ} = 25^{\circ}C; t_p = 30 \ \mu s; V_D = 6 \ V$ $I_G = 0.45 \ A; di_G/dt = 0.45 \ A/\mu s$	200	mA		
I _H	$T_{VJ} = 25^{\circ}C; V_{D} = 6 V; R_{GK} = \infty$	150	mA		
t _{gd}	$T_{VJ} = 25^{\circ}C; V_{D} = 1/2 V_{DRM}$ $I_{G} = 1 A; di_{G}/dt = 1 A/\mu s$	2	μS		
t _q	$T_{_{VJ}} = T_{_{VJM}}; \ I_{_{T}} = 300 \ A, \ t_{_{P}} = 200 \ \mu s; \ -di/dt = 10 \ A/\mu s \ V_{_{R}} = 100 \ V; \ dv/dt = 50 \ V/\mu s; \ V_{_{D}} = 2/3 \ V_{_{DRM}}$	yp. 200	μS		
Q _s I _{RM}	$T_{VJ} = 125^{\circ}C; I_{T}, I_{F} = 300 A; -di/dt = 50 A/\mu s$	760 275	μC A		
R _{thJC}	per thyristor (diode); DC current per module other values see Fig. 8/9 per module	0.140 0.07 0.18 0.09	K/W K/W K/W		
d _s d _a a	Creeping distance on surface Creepage distance in air Maximum allowable acceleration	12.7 9.6 50	mm mm m/s²		

Optional accessories for modules

Keyed Gate/Cathode twin plugs with wire length = 350 mm, gate = yellow, cathode = red Type **ZY 180 L** (L = Left for pin pair 4/5) UL 758, style 1385,

Type **ZY 180 R** (R = Right for pin pair 6/7) \int CSA class 5851, guide 460-1-1

1: I_{GT} , $T_{VJ} = 130$ °C 2: I_{GT} , $T_{VJ} = 25$ °C 3: I_{GT} , $T_{VJ} = -40$ °C

 V_{G}

Fig. 2 Gate trigger delay time

0.1

0.01

Dimensions in mm (1 mm = 0.0394")

MCC 255

10

Fig. 3 Surge overload current $I_{\text{TSM}}, I_{\text{FSM}}$: Crest value, t: duration

Fig. 4 $\int i^2 dt$ versus time (1-10 ms)

Fig. 4a Maximum forward current at case temperature

Fig. 5 Power dissipation versus onstate current and ambient temperature (per thyristor or diode)

Fig. 6 Three phase rectifier bridge:
Power dissipation versus direct
output current and ambient
temperature

Fig. 7 Three phase AC-controller:
Power dissipation versus RMS
output current and ambient
temperature

Fig. 8 Transient thermal impedance junction to case (per thyristor or diode)

 $\boldsymbol{R}_{\text{\tiny thJC}}$ for various conduction angles d:

d	R _{thJC} (K/W)
DC	0.139
180°	0.148
120°	0.156
60°	0.176
30°	0.214

Constants for Z_{thJC} calculation:

i	R _{thi} (K/W)	t _i (s)
1	0.0066	0.00054
2	0.0358	0.098
3	0.0831	0.54
4	0.0129	12

Fig. 9 Transient thermal impedance junction to heatsink (per thyristor or diode)

 R_{thJK} for various conduction angles d:

d	R _{thJK} (K/W)
DC	0.179
180°	0.188
120°	0.196
60°	0.216
30°	0.254

Constants for Z_{thJK} calculation:

i	R _{thi} (K/W)	t _i (s)
1	0.0066	0.00054
2	0.0358	0.098
3	0.0831	0.54
4	0.0129	12
5	0.04	12

	0.30			Ш	П		П	Ш			П	Ш			П	Ш			ПП	Ш	7
	K/W																				
Z_{thJk}	0.25			Ш							П	Ш						1	П		
٨	0.20											Ш			#			-		Ш	
ļ												H		\downarrow	+			#	7	Ħ	1
	0.15		+	Н			+				+	#			#				Н	+	1
	0.40													\mathbb{N}	M		30° _				
	0.10		ightharpoonup	Щ	_		1									M	120° 180°				
	0.05			Ш			1				\perp	Ш					DC -				-
							#														
	0.00 10)-3		Ш	10 ⁻²	Ш		1()-1	Ш	Ш	Ш 1	 00	Ш	\perp	ШШ 1	0 ¹	s	Ш	Ш 1] 0 ²
																	_	t			

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com