A few formulas

Euler

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2} \quad \sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2}$$

Summations, geometric series

$$\sum_{k=n_1}^{\infty} a^k = \frac{a^{n_1}}{1-a} \quad |a| < 1 \quad \sum_{k=n_1}^{n_2} a^k = \frac{a^{n_1} - a^{n_2 + 1}}{1-a} \quad a \neq 1$$

$$\sum_{k=0}^{\infty} a^k = \frac{1}{1-a} \quad |a| < 1 \quad \sum_{k=0}^{n_1} a^k = \frac{1-a^{n_1+1}}{1-a} \quad a \neq 1$$

Even and odd parts

$$x_e(t) = \frac{1}{2}x(t) + \frac{1}{2}x(-t)$$
 $x_o(t) = \frac{1}{2}x(t) - \frac{1}{2}x(-t)$

$$x_e[n] = \frac{1}{2}x[n] + \frac{1}{2}x[-n]$$
 $x_o[n] = \frac{1}{2}x[n] - \frac{1}{2}x[-n]$

Convolutions

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

h(t) response for differential equations describing LTI systems (single order roots)

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

$$h(t) = \sum_{k=0}^{N-1} A_k e^{s_k t} u(t) + \sum_{k=0}^{M-N} B_k \frac{d^k \delta(t)}{dt^k}$$

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = x(t) \quad h'(t) = \sum_{k=0}^{N-1} A_k e^{s_k t} u(t) \text{ (simpl. sys.)}$$

h[n] response for difference equations describing LTI systems (single order roots)

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

$$h[n] = \sum_{k=0}^{N-1} A_k \alpha_k^n u[n] + \sum_{k=0}^{M-N} B_k \delta[n-k]$$

$$\sum_{k=0}^{N} a_k y[n-k] = x[n] \qquad h'[n] = \sum_{k=0}^{N-1} A_k \alpha_k^n u[n] \text{ (simpl. sys.)}$$

LTI systems and eigenfunctions

$$e^{st} \xrightarrow{LTI(cont.)} H(s)e^{st}$$

$$z^{n} \xrightarrow{LTI(discr.)} H(z)z^{n}$$

$$e^{j\omega t} \xrightarrow{LTI(cont.)} H(j\omega)e^{j\omega t}$$

$$e^{j\omega n} \xrightarrow{LTI(discr.)} H(e^{j\omega})e^{j\omega n}$$

$$\cos(\omega t) \xrightarrow{LTI(cont.)} |H(j\omega)|\cos(\omega t + \Box H(j\omega))$$

$$\cos(\omega n) \xrightarrow{LTI(discr.)} |H(e^{j\omega})|\cos(\omega n + \Box H(e^{j\omega}))$$

Standard first and second order low-pass systems, continuous time

$$H(j\omega) = \frac{1}{1+j\omega\tau} \quad H(j\omega) = \frac{{\omega_n}^2}{(j\omega)^2 + 2\zeta\omega_n(j\omega) + {\omega_n}^2}$$

Standard first and second order recursive systems, discrete time

$$H(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}} \quad |a| < 1$$

$$H(e^{j\omega}) = \frac{1}{1 - 2r\cos\theta e^{-j\omega} + r^2 e^{-j2\omega}} \quad 0 \le r < 1, \ 0 \le \theta \le \pi$$

Continuous time sampling

$$x_p(t) = x(t) \times p(t)$$
 $x_d[n] = x(nT)$

$$X_p(j\omega) = f_S \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$$
 $\omega_s = \frac{2\pi}{T} = 2\pi f_s$

$$X_d(e^{j\omega}) = X_p(j\omega f_s)$$

$$H_0(j\omega) = e^{-j\pi\omega/\omega_s} 2\sin(\pi\omega/\omega_s)/\omega$$
 (sample & hold)

Other formulas

$$A\cos(\phi+\theta) = A\sin(\phi+\theta+\pi/2) = B\cos\phi - C\sin\phi$$

$$(B = A\cos\theta \quad C = A\sin\theta \quad A^2 = \sqrt{B^2 + C^2} \quad \theta = \tan^{-1}\left(\frac{C}{B}\right)$$

$$ae^{j\phi} + a^*e^{-j\phi} = 2\operatorname{Re}\{ae^{j\phi}\} = 2|a|\cos(\phi + \Box a)$$

$$\cos x \cos y = \frac{1}{2} \left[\cos(x - y) + \cos(x + y) \right]$$

$$\sin x \cos y = \frac{1}{2} \left[\sin(x - y) + \sin(x + y) \right]$$

$$\sin x \sin y = \frac{1}{2} \left[\cos(x - y) - \cos(x + y) \right]$$

$$\int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1) + c$$

$$\frac{d \arctan(x)}{dx} = \frac{d \arctan^{-1}(x)}{dx} = \frac{1}{1+x^2}$$

Properties – Continuous time Fourier series (C.T.F.S.)

Definitions:

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt \qquad x(t) = \sum_{k = -\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$a_0 = \frac{1}{T} \int_T x(t) dt$$

x(t) periodic with period T sec.,

Fundam. angular frequency $\omega_0 = 2\pi f_0 = 2\pi/T$ rad./sec.

$$x(t) \xleftarrow{C.T.F.S.} a_k \quad y(t) \xleftarrow{C.T.F.S.} b_k$$

If
$$x(t) \xrightarrow{LTI} y(t)$$
 then $b_k = a_k H(j\omega)|_{\omega = k\omega_0}$

Linearity:
$$Ax(t) + By(t) \xleftarrow{C.T.F.S.} A a_k + B b_k$$

Shifting:
$$x(t-t_0) \xleftarrow{C.T.F.S.} e^{-jk\omega_0 t_0} a_k$$

Scaling:
$$x(\alpha t) \xleftarrow{C.T.F.S.} a_k$$

$$(\alpha > 0, \text{ period } T/\alpha)$$

Flipping:
$$x(-t) \stackrel{C.T.F.S.}{\longleftrightarrow} a_{-k}$$

Conjugate:
$$x^*(t) \xleftarrow{C.T.F.S.} a_{-k}^*$$

$$x^*(-t) \xleftarrow{C.T.F.S.} a_k^*$$
Symmetries:

if
$$x(t)$$
 is real: $a_k = a_{-k}^*$, $|a_k| = |a_{-k}|$, $\angle a_k = -\angle a_{-k}$

$$x(t)$$
 real and even : a_k real and even $a_k = a_{-k}$

$$x(t)$$
 real and odd: a_k imaginary and odd $a_k = -a_{-k}$

Periodic convolution:

$$\int_T x(\tau)y(t-\tau)d\tau \xleftarrow{C.T.F.S.} T a_k b_k$$

Modulation:
$$x(t)y(t) \xleftarrow{C.T.F.S.} a_k * b_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l}$$

$$e^{jm\omega_0 t} x(t) \longleftrightarrow C.T.F.S. \to a_{k-m}$$

Differentiation:
$$\frac{dx(t)}{dt} \leftarrow C.T.F.S. \rightarrow jk\omega_0 a_k$$

Integration:
$$\int_{\tau=-\infty}^{t} x(\tau)d\tau \xleftarrow{C.T.F.S.} \frac{a_k}{jk\omega_0} \text{ (if } a_0 = 0 \text{)}$$

Parseval:
$$\frac{1}{T} \int_{T} |x(t)|^{2} dt = \sum_{k=-\infty}^{\infty} |a_{k}|^{2}$$

Table of continuous time Fourier series (C.T.F.S.)

x(t) periodic,	Fourier series
period $T = \frac{2\pi}{\omega_0} = \frac{1}{f_0}$ sec.	coefficients a_k
$e^{j\omega_0 t}$	$a_1 = 1$
	$a_k = 0$ elsewhere
$\cos(\omega_0 t)$	$a_1, a_{-1} = 1/2$
	$a_k = 0$ elsewhere
$\sin(\omega_0 t)$	$a_1, a_{-1} = 1/(2j)$
	$a_k = 0$ elsewhere
$ \begin{cases} 1 & t < T_1 \\ 0 & T_1 < t < T/2 \end{cases} $	$a_k = \frac{\sin\left(k\omega_0 T_1\right)}{k\pi} k \neq 0$
(periodic T)	$a_k = \frac{2T_1}{T} = \frac{T_1 \omega_0}{\pi}$
	k = 0
1	$a_0 = 1$
	$a_k = 0$ elsewhere
$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$a_k = \frac{1}{T}$

Properties – Discrete time Fourier series (D.T.F.S.)

Definitions:

$$a_{k} = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-j(k\frac{2\pi}{N})n} \qquad x[n] = \sum_{k = \langle N \rangle} a_{k} e^{j(k\frac{2\pi}{N})n}$$

$$a_{0} = \frac{1}{N} \sum_{n = \langle N \rangle} x[n]$$

x[n] periodic with period N samples (fundamental angular frequency $\omega_0 = \frac{2\pi}{N}$ rad./sample)

$$x[n] \xleftarrow{D.T.F.S.} a_k \quad y[n] \xleftarrow{D.T.F.S.} b_k$$

If
$$x[n] \xrightarrow{LTI} y[n]$$
 then $b_k = a_k H(e^{j\omega}) \Big|_{\omega = k \frac{2\pi}{N}}$

Periodicity: $x[n] \xleftarrow{D.T.F.S.} a_k = a_{k+N}$

Linearity: $Ax[n] + By[n] \xleftarrow{D.T.F.S.} Aa_k + Bb_k$

Shifting: $x[n-n_0] \longleftrightarrow e^{-jk\frac{2\pi}{N}n_0} a_k$

Flipping: $x[-n] \xleftarrow{D.T.F.S.} a_{-k}$ Conjugate: $x^*[n] \xleftarrow{D.T.F.S.} a_{-k}^*$ $x^*[-n] \xleftarrow{D.T.F.S.} a_k^*$ Symmetries:

if
$$x[n]$$
 is real: $a_k = a_{-k}^*$, $|a_k| = |a_{-k}|$, $\angle a_k = -\angle a_{-k}$

x[n] real and even : a_k real and even $a_k = a_{-k}$

x[n] real and odd: a_k imaginary and odd $a_k = -a_{-k}$

Periodic convolution:

$$\sum_{m=< N>} x[m]y[n-m] \longleftrightarrow D.T.F.S. \to N \ a_k \ b_k$$

Modulation: $x[n]y[n] \longleftrightarrow \sum_{l=\langle N \rangle} a_l b_{k-l}$

$$e^{jm\frac{2\pi}{N}n}x[n] \longleftrightarrow a_{k-n}$$

 $e^{jm\frac{2\pi}{N}n}x[n] \xleftarrow{D.T.F.S.} a_{k-m}$ Accumulation: $\sum_{m=-\infty}^{n}x[m] \xleftarrow{D.T.F.S.} \frac{1}{\left(1-e^{-jk\frac{2\pi}{N}}\right)}a_k$

(if
$$a_0 = 0$$
)

Parseval: $\frac{1}{N} \sum_{n = < N >} |x[n]|^2 = \sum_{k = < N >} |a_k|^2$

Duality: if $x[n] \longleftrightarrow a_k$ then $a[n] \longleftrightarrow \frac{DTFS}{N} x_{-k}$

Table of discrete time Fourier series (D.T.F.S.)		
x[n] periodic,	Fourier series coefficients a_k	
period N samples	(periodic with period N)	
$e^{j\omega_0 n}$	If $x[n]$ periodic with $\omega_0 = \frac{2\pi m}{N}$:	
	$a_k = 1$ $k = m, m \pm N, m \pm 2N, \dots$	
	$a_k = 0$ elsewhere	
$\cos(\omega_0 n)$	If $x[n]$ periodic with $\omega_0 = \frac{2\pi m}{N}$:	
	$a_k = 1/2$	
	$k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots$	
	$a_k = 0$ elsewhere	
$\sin(\omega_0 n)$	If $x[n]$ periodic with $\omega_0 = \frac{2\pi m}{N}$:	
	$a_k = 1/(2j)$	
	$k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots$	
	$a_k = 0$ elsewhere	
$\begin{cases} 1 & n \le N_1 \\ 0 & N_1 < n \le N/2 \end{cases}$	$a_k = \frac{\sin\left(\frac{2\pi}{N}k(N_1 + 1/2)\right)}{N\sin(\frac{\pi}{N}k)}$	
(periodic N ,	$N\sin(\frac{\pi}{2}k)$	
N even)	N $k \neq 0, \pm N, \pm 2N, \dots$	
	$a_k = (2N_1 + 1)/N \ k = 0, \pm N, \pm 2N, \dots$	
1	$a_k = 1$ $k = 0, \pm N, \pm 2N,$	
	$a_k = 0$ elsewhere	
$\sum_{m=-\infty}^{\infty} \delta[n-mN]$	$a_k = \frac{1}{N}$	

Properties – Continuous time Fourier transform (C.T.F.T.)

Definitions:

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt \qquad x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega)e^{j\omega t}d\omega$$

 ω in rad./sec.

$$X(j\omega) = \sum_{k=-\infty}^{+\infty} 2\pi \ a_k \delta(\omega - k\omega_0)$$
 if $x(t)$ periodic

$$x(t) \xleftarrow{CTFT} X(j\omega) \quad y(t) \xleftarrow{CTFT} Y(j\omega)$$

Linearity:
$$ax(t) + by(t) \xleftarrow{CTFT} aX(j\omega) + bY(j\omega)$$

Shifting:
$$x(t-t_0) \longleftrightarrow e^{-j\omega t_0} X(j\omega)$$

Scaling:
$$x(at) \longleftrightarrow \frac{CTFT}{|a|} X(\frac{j\omega}{a})$$

Flipping:
$$x(-t) \xleftarrow{CTFT} X(-j\omega)$$

Conjugate:
$$x^*(t) \xleftarrow{CTFT} X^*(-j\omega)$$

$$x^*(-t) \stackrel{CTFT}{\longleftrightarrow} X^*(j\omega)$$

Symmetries:

if
$$x(t)$$
 is real: $X(j\omega) = X^*(-j\omega)$,

$$|X(j\omega)| = |X(-j\omega)|, \ \angle X(j\omega) = -\angle X(-j\omega)$$

$$x(t)$$
 real and even : $X(j\omega)$ real and even $X(j\omega) = X(-j\omega)$

$$x(t)$$
 real and odd: $X(j\omega)$ imag., odd $X(j\omega) = -X(-j\omega)$

Convolution:

$$x(t) * y(t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau \overset{CTFT}{\longleftrightarrow} X(j\omega)Y(j\omega)$$

Modulation:

$$x(t)y(t) \overset{CTFT}{\longleftrightarrow} \frac{1}{2\pi} X(j\omega) * Y(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\theta) Y(j(\omega - \theta)) d\theta$$

$$e^{j\omega_0 t} x(t) \xleftarrow{CTFT} X(j(\omega - \omega_0))$$

$$\cos(\omega_0 t) x(t) \longleftrightarrow \frac{CTFT}{2} X(j(\omega - \omega_0)) + \frac{1}{2} X(j(\omega + \omega_0))$$

Differentiation:
$$\frac{dx(t)}{dt} \xleftarrow{CTFT} j\omega X(j\omega)$$

Integration:
$$\int_{-\infty}^{t} x(\tau) d\tau \xleftarrow{CTFT} \frac{1}{j\omega} X(j\omega) + \pi X(j0) \delta(\omega)$$

Differentiation in freq.: $tx(t) \xleftarrow{CTFT} j \frac{dX(j\omega)}{d\omega}$

Integration in freq.:

$$-\frac{1}{jt}x(t) + \pi x(0)\delta(t) \longleftrightarrow \int_{-\infty}^{\infty} X(j\eta)d\eta$$

Parseval:
$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 d\omega$$

Duality: if
$$x(t) \stackrel{CTFT}{\longleftrightarrow} X(j\omega)$$
 then

$$X(t) \xleftarrow{CTFT} 2\pi \ x(-j\omega)$$

Table of continuous time Fourier transforms (C.T.F.T.)

right r(t) typ appried v(t) typ appried			
signal $x(t)$ typ. aperiodic	$X(j\omega)$ (ω in rad./sec.)		
if $x(t)$ is periodic, with	$2\pi \sum_{k=0}^{+\infty} a_k \delta(\omega - k\omega_0)$		
period $T = \frac{2\pi}{\omega_0} = \frac{1}{f_0}$ sec.	k=-∞		
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$		
$\cos(\omega_0 t)$	$\pi\delta(\omega-\omega_0)+\pi\delta(\omega+\omega_0)$		
$\sin(\omega_0 t)$	$\frac{\pi}{j}\delta(\omega - \omega_0) - \frac{\pi}{j}\delta(\omega + \omega_0)$ $2\sum_{k=-\infty}^{+\infty} \frac{\sin(k\omega_0 T_1)}{k}\delta(\omega - k\omega_0)$		
$ t < T_1$	$\sum_{n=0}^{+\infty} \sin(k\omega_0 T_1) s(\omega_n k\omega_n)$		
$ \begin{vmatrix} 1 & t < T_1 \\ 0 & T_1 < t < T/2 \end{vmatrix} $	$\sum_{k=-\infty}^{\infty} $		
(periodic T)	$k \neq 0$		
	$\frac{4\pi T_1}{T}\delta(\omega) = 2T_1\omega_0\delta(\omega)$		
1	k=0		
1	$2\pi\delta(\omega)$		
$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$\omega_{s} \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_{s}) \omega_{s} = \frac{2\pi}{T}$		
$\int 1 t < T_1$	$\frac{2\sin(\omega T_1)}{2\sin(\omega T_1)}$		
$\left \begin{array}{c c} 0 & t > T_1 \end{array} \right $	ω		
$\frac{\sin(Wt)}{}$ $W > 0$	$\int 1 \omega \leq W$		
πt	$ \begin{cases} 1 & \omega \le W \\ 0 & \omega > W \end{cases} $		
$\delta(t)$	1		
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$		
$e^{-at}u(t) \qquad \text{Re}\{a\} > 0$	$\frac{1}{a+j\omega}$		
$-e^{-at}u(-t) \qquad \operatorname{Re}\{a\} < 0$	$\frac{1}{a+j\omega}$		
t^{n-1} -at $(x) \to 0$	1		
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t) \operatorname{Re}\{a\} > 0$	$(a+j\omega)^n$		
$-\frac{t^{n-1}}{(n-1)!}e^{-at}u(-t) \operatorname{Re}\{a\} < 0$	1		
$-\frac{-(n-1)!}{(n-1)!}e^{-u(-t)}\operatorname{Re}\{a\}<0$	$\overline{\left(a+j\omega\right)^n}$		
$e^{-at}\sin(\omega_0 t)u(t)$	$-\frac{\omega_0}{2}$		
$a > 0$ $\omega_0 \ge 0$ a, ω_0 real	$(j\omega + a)^2 + \omega_0^2$		
$e^{-at}\cos(\omega_0 t)u(t)$	$j\omega + a$		
$a > 0$ $\omega_0 \ge 0$ a, ω_0 real	$(j\omega + a)^2 + \omega_0^2$		
$-e^{-at}\sin(\omega_0 t)u(-t)$	$\frac{\omega_0}{\left(j\omega+a\right)^2+{\omega_0}^2}$		
$a < 0$ $\omega_0 \ge 0$ a, ω_0 real			
$-e^{-at}\cos(\omega_0 t)u(-t)$	$\frac{j\omega + a}{\left(j\omega + a\right)^2 + {\omega_0}^2}$		
$a < 0$ $\omega_0 \ge 0$ a, ω_0 real	$\left(j\omega + a\right)^2 + \omega_0^2$		
· · · · · · · · · · · · · · · · · · ·	l		

Properties – Discrete time Fourier transform (D.T.F.T.)

Definitions:

 $x[n] = x(nT) = x(t)|_{t=nT}$, where $T = 1/f_s = 2\pi/\omega_s$ is the sampling period in sec., and n is an integer, results in:

$$X_p(j\omega) = f_s \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s)), \quad X(e^{j\omega}) = X_p(j\omega f_s)$$

where $X(j\omega)$ is the original CTFT of x(t), and $X(e^{j\omega})$ is the DTFT of x[n] defined as:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \qquad x[n] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(e^{j\omega})e^{j\omega n}d\omega$$

Periodicity:
$$x[n] \stackrel{DTFT}{\longleftrightarrow} X(e^{j\omega}) = X(e^{j(\omega+2\pi)})$$

Linearity:
$$ax[n] + by[n] \longleftrightarrow aX(e^{j\omega}) + bY(e^{j\omega})$$

Shifting:
$$x[n-n_0] \leftarrow DTFT \rightarrow e^{-j\omega n_0} X(e^{j\omega})$$
 n_0 integer

Expansion, insertion of zeros:

$$x_{(k)}[n] \xleftarrow{DTFT} X(e^{jk\omega})$$
 where k is a positive integer $x_{(k)}[n] = x[n/k]$ if n is a multiple of k

$$x_{(k)}[n] = 0$$
 elsewhere

Flipping: $x[-n] \xleftarrow{DTFT} X(e^{-j\omega})$

Conjugate:
$$x^*[n] \longleftrightarrow X^*(e^{-j\omega})$$

$$x^*[-n] \stackrel{DTFT}{\longleftrightarrow} X^*(e^{j\omega})$$

Symmetries:

if
$$x[n]$$
 is real: $X(e^{j\omega}) = X^*(e^{-j\omega})$,
 $\left| X(e^{j\omega}) \right| = \left| X(e^{-j\omega}) \right|, \ \angle X(e^{j\omega}) = -\angle X(e^{-j\omega})$

x[n] real and even : $X(e^{j\omega})$ real, even $X(e^{j\omega}) = X(e^{-j\omega})$

x[n] real, odd $X(e^{j\omega})$ imag., odd $X(e^{j\omega}) = -X(e^{-j\omega})$

Convolution:

$$x[n] * y[n] = \sum_{k=-\infty}^{\infty} x[k]y[n-k] \overset{DTFT}{\longleftrightarrow} X(e^{j\omega})Y(e^{j\omega})$$

Modulation:
$$x[n]y[n] \longleftrightarrow \frac{DTFT}{2\pi} \int_{2\pi} X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$$

$$e^{j\omega_0 n}x[n] \longleftrightarrow X(e^{j(\omega-\omega_0)})$$

Accumulation:

$$\sum_{m=-\infty}^{n} x[m] \overset{DTFT}{\longleftrightarrow} \frac{1}{1-e^{-j\omega}} \, X(e^{j\omega}) + \pi X(e^{j0}) \sum_{m=-\infty}^{+\infty} \delta(\omega - m2\pi)$$

Differentiation in freq.: $nx[n] \leftarrow DTFT \rightarrow j \frac{dX(e^{j\omega})}{d\omega}$

Parseval:
$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega$$

Duality: If
$$x[n] \xleftarrow{DTFT} X(e^{j\omega})$$
 then $X(t) \xleftarrow{CTFS} x_{-k}$

Table of discrete time Fourier transforms (D.T.F.T.)

Table of discrete time Fourier transforms (D.T.F.T.)				
signal $x[n]$ typ. aperiodic	$X(e^{j\omega})$ (periodic 2π , ω in rad./sample)			
if $x[n]$ is periodic, with period N samples	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta(\omega - k \frac{2\pi}{N})$			
$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{\infty} \delta(\omega - \omega_0 - l2\pi)$			
$\cos(\omega_0 n)$	$\pi \sum_{l=-\infty}^{\infty} \delta(\omega - \omega_0 - l2\pi)$			
	$+\pi\sum_{l=-\infty}^{\infty}\delta(\omega+\omega_0-l2\pi)$			
$\sin(\omega_0 n)$	$\frac{\pi}{j} \sum_{l=-\infty}^{\infty} \delta(\omega - \omega_0 - l2\pi)$			
	$-\frac{\pi}{j} \sum_{l=-\infty}^{\infty} \delta(\omega + \omega_0 - l2\pi)$			
1	$2\pi \sum_{l=-\infty}^{\infty} \delta(\omega - l2\pi)$			
$\sum_{m=-\infty}^{\infty} \delta[n-mN]$	$\frac{2\pi}{N} \sum_{m=-\infty}^{+\infty} \delta(\omega - m \frac{2\pi}{N})$			
$ \begin{cases} 1 & n \le N_1 \\ 0 & n > N_1 \end{cases} $	$\sin(\omega(N_1 + \frac{1}{2})) / \sin(\frac{\omega}{2})$			
$\frac{\sin(Wn)}{\pi n} 0 < W < \pi$	$\begin{cases} 1 & 0 \le \omega \le W \\ 0 & W < \omega \le \pi \end{cases} \text{ period. } 2\pi$			
$\delta[n]$	1			
u[n]	$\frac{1}{1 - e^{-j\omega}} + \pi \sum_{k = -\infty}^{\infty} \delta(\omega - k2\pi)$			
$a^n u[n]$ $ a < 1$	$1/(1-ae^{-j\omega})$			
$-a^n u[-n-1]$ $ a > 1$	$1/(1-ae^{-j\omega})$			
$\left \frac{(n+r-1)!}{n!(r-1)!} a^n u[n] a < 1 \right $	$\frac{1}{\left(1-ae^{-j\omega}\right)^r}$			
$\frac{-(n+r-1)!}{n!(r-1)!}a^{n}u[-n-1] a > 1$	$\frac{1}{\left(1-ae^{-j\omega}\right)^r}$			
$r^{n} \sin(\omega_{0}n)u[n]$ $0 \le r < 1 0 \le \omega_{0} \le \pi$	$\frac{r\sin(\omega_0)e^{-j\omega}}{1-2r\cos(\omega_0)e^{-j\omega}+r^2e^{-j2\omega}}$			
$r^n \cos(\omega_0 n) u[n]$	$1-r\cos(\omega_0)e^{-j\omega}$			
$0 \le r < 1 0 \le \omega_0 \le \pi$	$1 - 2r\cos(\omega_0)e^{-j\omega} + r^2e^{-j2\omega}$			
$-r^n\sin(\omega_0 n)u[-n-1]$	$r\sin(\omega_0)e^{-j\omega}$			
$r > 1$ $0 \le \omega_0 \le \pi$	$\frac{1 - 2r\cos(\omega_0)e^{-j\omega} + r^2e^{-j2\omega}}{1 - 2r\cos(\omega_0)e^{-j\omega} + r^2e^{-j2\omega}}$			
$-r^{n}\cos(\omega_{0}n)u[-n-1]$ $r>1 0 \le \omega_{0} \le \pi$	$\frac{1 - r\cos(\omega_0)e^{-j\omega}}{1 - 2r\cos(\omega_0)e^{-j\omega} + r^2e^{-j2\omega}}$			
	·			

Properties - bilateral (two-sided) Laplace transform

D	efir	niti	ion	s:

$$X(s) = \int_{-\infty}^{+\infty} x(t)e^{-st}dt \qquad x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st}ds$$

$$x(t) \stackrel{LT}{\longleftrightarrow} X(s) \quad ROC_x \quad y(t) \stackrel{LT}{\longleftrightarrow} Y(s) \quad ROC_y$$

Linearity: $ax(t) + by(t) \stackrel{LT}{\longleftrightarrow} aX(s) + bY(s)$
 $ROC_x \cap ROC_y$

Shifting:
$$x(t-t_0) \xleftarrow{LT} e^{-st_0} X(s)$$
 ROC_x unchanged

Scaling:
$$x(at) \longleftrightarrow \frac{1}{|a|} X(\frac{s}{a})$$

$$ROC_x$$
 dilated factor $|a|$ or compressed factor $\frac{1}{|a|}$,

and ROC_x inversed if a < 0

Flipping:
$$x(-t) \xleftarrow{LT} X(-s)$$
 ROC_x inversed

Flipping:
$$x(-t) \xleftarrow{LT} X(-s)$$
 ROC_x inversed

Conjugate: $x^*(t) \xleftarrow{LT} X^*(s^*)$ ROC_x unchanged

Symmetry: if
$$x(t)$$
 real: $X(s) = X^*(s^*)$, $|X(s)| = |X(s^*)|$

Convolution:

$$x(t) * y(t) = \int_{-\infty}^{\infty} x(\tau) y(t - \tau) d\tau \overset{LT}{\longleftrightarrow} X(s) Y(s)$$

$$ROC_x \cap ROC_y$$

Modulation:
$$e^{s_0 t} x(t) \xleftarrow{LT} X(s - s_0)$$

$$ROC_x$$
 shifted to right by $Re\{s_0\}$

Differentiation:
$$\frac{dx(t)}{dt} \longleftrightarrow s \ X(s) \ ROC_x \text{ unchanged}$$

Integration:
$$\int_{-\infty}^{t} x(\tau) d\tau \xleftarrow{LT} \frac{1}{s} X(s)$$

$$ROC_x \cap (\operatorname{Re}\{s\} > 0)$$

$$ROC_{x} \cap \left(\operatorname{Re}\{s\} > 0\right)$$
Differentiation in freq.: $-tx(t) \xleftarrow{LT} \frac{dX(s)}{ds}$

 ROC_x unchanged

Table of bilateral (two-sided) Laplace transforms

Table of bilateral (two-sided) Laplace transforms			
Signal $x(t)$	Laplace	ROC	
	transform $X(s)$		
$\delta(t)$	1	$\forall s$	
u(t)	1/s	$Re\{s\} > 0$	
-u(-t)	1/s	$Re\{s\} < 0$	
$e^{-at}u(t)$	$\frac{1}{s+a}$	$Re\{s\} > -a$	
$-e^{-at}u(-t)$	$\frac{1}{s+a}$	$Re\{s\} < -a$	
t^{n-1}	1	$Re\{s\} > -a$	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	$\overline{\left(s+a\right)^n}$		
$-\frac{t^{n-1}}{(n-1)!}e^{-at}u(-t)$	$\frac{1}{\left(s+a\right)^n}$	$Re\{s\} < -a$	
$e^{-at}\sin(\omega_0 t)u(t)$	$\underline{\hspace{1cm}}$ ω_0	$Re\{s\} > -a$	
$\omega_0 \ge 0$ a, ω_0 real	$\frac{\omega_0}{\left(s+a\right)^2+{\omega_0}^2}$		
$e^{-at}\cos(\omega_0 t)u(t)$	$\underline{\hspace{1cm}}$ $s+a$	$Re\{s\} > -a$	
$\omega_0 \ge 0$ $a, \omega_0 \text{ real}$	$\left(s+a\right)^2+\omega_0^2$		
$-e^{-at}\sin(\omega_0 t)u(-t)$	$\underline{\hspace{1cm}}^{\omega_0}$	$Re\{s\} < -a$	
$\omega_0 \ge 0$ a, ω_0 real	$\frac{\omega_0}{\left(s+a\right)^2+{\omega_0}^2}$		
$-e^{-at}\cos(\omega_0 t)u(-t)$	$\underline{\hspace{1cm}}$ $s+a$	$Re\{s\} < -a$	
$\omega_0 \ge 0$ a, ω_0 real	$\left(s+a\right)^2+\omega_0^2$		