

Übungen zur Differentialrechung

KA 17

ANR

Aufgabe 1 (Binary Choice)

Sei $f(x) = ax^3 + bx^2 + cx + d$ mit $a \neq 0$ eine kubische Funktion. Kreuzen Sie jeweils an, ob die Aussage entweder wahr oder falsch ist.

Aussage	wahr	falsch
$x = -\frac{b}{3a}$ ist Wendestelle von f .		
f hat mindestens eine Nullstelle.		
f hat mindestens eine Extremstelle.		
Es gilt $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x)$.		
Wenn $b = d = 0$, dann ist f punktsymmetrisch.		
Wenn $b = d = 0$, dann gilt für alle $x \in D_f : f(x) = -f(-x)$.		
Wenn $c = d = 0$, dann hat f einen Berührpunkt im Ursprung.		
Wenn $a < 0$, dann $\lim_{x \to -\infty} f(x) = +\infty$.		

Aufgabe 2 (Wirkstoffkonzentration)

Eine Wirkstoffkonzentration im Blut eines Patienten werde beschrieben durch $W(t) = -\frac{1}{16}t^2(t-8)$, wobei W(t) die Konzentration in $\frac{mg}{L}$ und $t \ge 0$ die Zeit in Stunden seit Einnahme angibt.

A. Geben Sie die Wirkstoffkonzentration nach 4 Stunden an.

- (a) -16
- (b) 4
- (c) $\frac{8}{3}$
- (d) 12

B. Bestimmen Sie, nach wie vielen Stunden der Wirkstoff vollständig abgebaut worden ist.

- (a) 0
- (b) 2
- (c) 4
- (d) 8

C. Ermitteln Sie, wann die maximale Wirkstoffkonzentration anliegt.

- (a) t = 0
- (b) t = 8
- (c) $t = \frac{16}{3}$
- (d) $t = \frac{3}{16}$

Aufgabe 3 (Kurvendiskussion)

Sei $f(x) = x^4 - 4x^3$.

A. Geben Sie die Anzahl der Nullstellen von f an.

- (a) 0
- (b) 1
- (c) 2
- (d) 4

Mathematik

Übungen zur Differentialrechung

KA 17

ANR

B. Bestimmen Sie, an welchen Stellen f Wendestellen besitzt.

- (a) x = 0, x = 2
- (b) x = -1, x = 2
- (c) x = 0, x = 4
- (d) x = 1, x = -4

Aufgabe 4 (Scheitelpunkt)

Zeigen Sie, dass der Scheitelpunkt der Funktion $f(x)=x^2+px+q$ mit $p,q\in\mathbb{R}$ bei $x=-\frac{p}{2}$ liegt.

Mathematik

 \ddot{U} bungen zur Differentialrechung

KA 17

 \mathbf{ANR}

Lösungen

Aufgabe 1

W, W, F, F, W, W, W, W

Aufgabe 2

- A. (b)
- B. (d)
- C. (c)

Aufgabe 3

- A. (c)
- B. (a)

Aufgabe 4

Es gilt f'(x) = 2x + p. Notwendig für Extremstelle $2x + p = 0 \Leftrightarrow x = -\frac{p}{2}$. Da $f''(x) \neq 0$ für alle $x \in \mathbb{R}$, liegt tatsächlich eine Extremstelle vor.