Vorlesungsskript

LinA I* WiSe 23/24

Inhaltsverzeichnis

1.	Motivation und mathematische Grundlagen	. 1
	1.1. Mengen	
	1.2. Relationen	
	1.3. Abbildungen	

1. Motivation und mathematische Grundlagen

Was ist lineare Algebra bzw. analytische Geometrie?

- analytische Geometrie:
 Beschreibung von geometrischen Fragen mit Hilfe von Gleichungen, Geraden, Ebenen sowie die Lösungen von Gleichungen als geometrische Form
- lineare Algebra: die Wissenschaft der linearen Gleichungssysteme bzw der Vektorräume und der linearen Abbildungen zwischen ihnen

Wozu braucht man das?

- mathematische Grundlage für viele mathematische Forschung z.B. in der algebraischen Geometrie, Numerik, Optimierung
- viele Anwendungen z.B. Page-Rank-Algorithmus, lineare Regression
- oder Optimierung:

linear: Beschreibung zulässiger Punkte als Lösung von (Un)-Gleichungen nichtlinear: notwendige Optimalitätsbedingungen

1.1. Mengen

Der Mengenbegriff wurde von Georg Cantor (dt. Mathematiker, 1845-1918) eingeführt.

Definition 1.1: Mengen

Unter einer **Menge** verstehen wir jede Zusammenfassung M von bestimmten, wohlunterschiedenen Objekten x unsere Anschauung order unseres Denkens, welche **Elemente** von M genannt werden, zu einem Ganzen.

Bemerkungen:

Für jedes Objekt x kann man eindeutig feststellen, ob es zu einer Menge M gehört oder nicht.

 $x \in M \to x$ ist Element von M $x \notin M \to x$ ist nicht Element von M

Beispiel 1.2: Beispiel für Mengen

- {rot, gelb, grün}
- {1, 2, 3, 4}
- $\mathbb{N} = \{1, 2, 3, \ldots\}, \mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$
- $\mathbb{Z} = \{..., -1, 0, 1, ...\}$
- $\mathbb{Q} = \left\{ x \mid x = \frac{a}{b} \text{ mit } a \in \mathbb{Z} \text{ und } b \in \mathbb{N} \right\}$
- $\mathbb{R} = \{x \mid x \text{ ist reelle Zahl}\}$
- \emptyset bzw. $\{\}$ $\widehat{=}$ leere Menge

Definition 1.3: Teilmenge

Seien M, N Mengen.

- 1. M heißt **Teilmenge** von N, wenn jedes Element von M auch Element von N ist. Notation: $M \subseteq N$
- 2. M und N heißen gleich, wenn $M \subseteq N$ und $N \subseteq M$ gilt.

Notation M = N

Falls das nicht gilt, schreiben wir $M \neq N$

M heißt **echte Teilmenge** von N, wenn $M \subseteq N$ und $M \neq N$ gilt.

Notation: $M \subset N$

Nutzt man die Aussagenlogik, kann man diese Definitionen Umformulieren zu:

- $M \subseteq N \iff (\forall x : x \in M \implies x \in N)$
- $M = N \iff (M \subseteq N \land N \subseteq M)$
- $M \subset N \iff (M \subseteq N \land M \neq N)$

Kommentare:

- ⇔ heißt "genau dann, wenn"
- ∀ heißt "für alle"
- ∧ heißt "und"
- : heißt "mit der Eigenschaft"

Satz 1.4: Für jede Menge M gilt:

1)
$$M \subseteq M$$

2)
$$\emptyset \subset M$$

2)
$$\emptyset \subseteq M$$
 3) $M \subseteq \emptyset \Longrightarrow M = \emptyset$

Beweis:

zu 1) Direkter Beweis (verwenden der Definitionen um Aussage zu folgern). Die Aussage:

$$x \in M \Longrightarrow x \in M$$

folgt aus Def. 1.1. Daraus folgt aus Def 1.3, 1, dass $M \subseteq M$.

zu 2) Widerspruchsbeweis

Beweis der Aussage durch Annahme des Gegenteils und Herleitung eines Widerspruchs. Annahme: Es existiert eine Menge M, sodass $\emptyset \subseteq M$. Dann gilt: es existiert ein $x \in \emptyset$ mit $x \notin M$.

Aber: Die leere Menge enthält keine Elemente $\Longrightarrow \ \ \$ Es existiert keine Menge M mit $\emptyset \not\subseteq M \Longrightarrow$ Behauptung

zu 3) Nach 2. $\emptyset \subseteq M$, wir wissen $M \subseteq \emptyset$. Nach Def. 1.3, $2 \Longrightarrow M = \emptyset$

Beispiel 1.5: Ob ein Objekt ein Element oder eine Teilmenge einer Mengen ist, ist vom Kontext abhängig. Betrachten wir folgende Menge:

$$M := \{ \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R} \}$$

D.h. die Elemente dieser Menge M sind die natürlichen, ganzen, rationalen und reellen Zahlen. Damit gilt $\mathbb{N} \in M$ aber $\mathbb{N} \subset \mathbb{Z}$ und $\mathbb{N} \subset \mathbb{Q}$.

Definition 1.6: Mengenoperationen

Seien M, N Mengen.

1. Man bezeichnet dei Menge der Elemente, die sowhol in M als auch in N enthalten sind, als **Durchschnitt** von M und N

$$M \cap N = \{x \mid (x \in M) \land (x \in N)\}$$

2. Man bezeichnet die Menge der Elemente, die entweder in M oder in N enthalten sind oder in beiden enthalten sind, als **Vereinigung** von M und N

$$M \cup N = \{x \mid (x \in M) \lor (x \in N)\}$$

3. Man bezeichnet die Menge der Elemente, die in M aber nicht in N enthalten sind, als **Differenz** von M und N

$$M \setminus N = \{x \mid (x \in M) \land (x \notin N)\}$$
$$= \{x \in M \mid x \notin N\}$$

Beispiel 1.7:

Für $-\mathbb{N} := \{-n \mid n \in \mathbb{N}\}$ gilt:

- $\mathbb{N} \cup -\mathbb{N} = \mathbb{Z} \setminus \{0\}$
- $\mathbb{N} \cap -\mathbb{N} = \emptyset$

Wichtiges Beispiel für Mengen sind Intervalle reeller Zahlen

$$[a, b] := \{x \in \mathbb{R} \mid a \le x \le b\}, a, b \in \mathbb{R}, a \le b\}$$

Dies nennt man ein abgeschlossenes Intervall (die Grenzen sind enthalten). Sei jetzt $a,b\in\mathbb{R},a\leq b$

$$[a, b[:= \{x \in \mathbb{R} \mid a \le x < b\} \text{ oder }]a, b] := \{x \in \mathbb{R} \mid a < x \le b\}$$

Diese Intervalle nennt man halboffene Intervalle (genau eine der Grenzen ist enthalten). Das Intervall

$$|a, b| := \{x \in \mathbb{R} \mid a < x < b\}$$

heißt offenes Intervall (keine der Grenzen ist enthalten).

Für $M := \{4, 6, 8\}$ und $N := \{8, 10\}$ gilt:

- $M \cup N = \{4, 6, 8, 10\}$
- $M \cap N = \{8\}$
- $M \setminus N = \{4, 6\}$
- $N \setminus M = \{10\}$

Satz 1.8: Für zwei Mengen M, N gelte $M \subseteq N$. Dann sind folgende Aussagen Äquivalent:

1)
$$M \subset N$$

2)
$$N \setminus M \neq \emptyset$$

Beweis:

Behauptung: $1) \iff 2$

zu zeigen:
$$1) \Longrightarrow 2)$$
 und $2) \Longrightarrow 1)$

- 1) \Longrightarrow 2): Es gilt: $M \neq N$. Dann existiert $x \in N$ mit $x \notin M$. Dann gilt $x \in N \setminus M$. Also $N \setminus M \neq \emptyset$.
- 2) \Longrightarrow 1): Es gilt $N \setminus M \neq \emptyset$. Dann existiert ein $x \in N$ mit $x \notin M$. Daher gilt $N \neq M$. Es gilt außerdem: $M \subseteq N$. Daraus folgt $M \subset N$.

Satz 1.9: Seien M, N, L Mengen. Dann gelten Folgende Aussagen:

- 1. $M \cap N \subseteq M$ und $M \subseteq M \cup N$
- 2. $M \setminus N \subseteq M$
- 3. Kommutativgesetze:

$$M \cap N = N \cap M$$
 und $M \cup N = N \cup M$

4. Assoziativgesetze:

$$M \cap (N \cap L) = (M \cap N) \cap L$$

$$M \cup (N \cup L) = (M \cup N) \cup L$$

5. Distributivgesetze:

$$\begin{split} M \cup (N \cap L) &= (M \cup N) \cap (M \cup L) \\ M \cap (N \cup L) &= (M \cap N) \cup (M \cap L) \\ M \setminus (N \cap L) &= (M \setminus N) \cup (M \setminus L) \\ M \setminus (N \cup L) &= (M \setminus N) \cap (M \setminus L) \end{split}$$

Beweis: Es gilt $x \in M \cap N$ genau dann, wenn $x \in M \land x \in N$. Die Konjunktion zweier Aussagen ist symmetrisch bezüglich der Aussage. D.h. $A \land B \iff B \land A$. Es gilt also

$$(x \in M) \land (x \in N) \iff (x \in N) \land (x \in M)$$

Verwenden wir die Definition der Schnittmenge (1.6) so erhalten wir

$$(x \in N) \land (x \in M) \iff x \in N \cap M$$

Aus der Kette der Äquivalenzumformungen folgt $M \cap N = N \cap M$.

Etwas kompakter für das erste Distributivgesetz:

$$\begin{split} x \in M \cup (N \cap L) &\iff (x \in M) \vee (x \in N \cup L) \\ &\iff (x \in M) \vee ((x \in N) \wedge (x \in L)) \\ &\iff (x \in M \vee x \in N) \wedge (x \in M \vee x \in L) \\ &\iff (x \in M \cup N) \wedge (x \in M \cup L) \\ &\iff x \in (M \cup N) \cap (M \cup L) \end{split}$$

Damit ist $M \cup (N \cap L) = (M \cup N) \cap (M \cup L)$.

Die übrigen Aussagen zeigt man analog. Übung

Damit ist $M \cup N \cup L$ für die Mengen M, N, L wohldefiniert. Dies kann auf "viele" Mengen verallgemeinert werden:

Ist $I \neq \emptyset$ eine Menge und ist für jedes $i \in I$ eine Menge M_i gegeben, dann sind:

$$\bigcup_{i \in I} M_i \coloneqq \{x \mid \exists i \in I \text{ mit } x \in M_i\}$$

$$\bigcap_{i\in I} M_i \coloneqq \{x \mid \forall i \in I \text{ mit } x \in M_i\}$$

Die Menge I heißt auch **Indexmenge**. Für $I = \{1, ..., n\}$ verwendet man auch die Notation

$$\bigcup_{i=1}^n M_i \coloneqq \{x \mid \exists i \in I \text{ mit } x \in M_i\}$$

$$\bigcap_{i=1}^n M_i \coloneqq \{x \mid \forall i \in I \text{ mit } x \in M_i\}$$

Definition 1.10: Kardinalität, Potenzmenge

Sei M eine endliche Menge, d.h. M enthält endlich viele Elemente.

Die **Mächtigkeit** oder **Kardinalität** von M, bezeichnet mit |M| oder #M ist die Anzahl von Elementen in M.

Die **Potenzmenge** von M, bezeichnet mit $\mathcal{P}(M)$ ist die Menge aller Teilmengen von M. D.h.

$$\mathcal{P}(M) := \{ N \mid N \subset M \}$$

Beispiel 1.11:

Die leere Menge \emptyset hat die Kardinalität Null. Es gilt $\mathcal{P}(\emptyset) = \{\emptyset\}, |\mathcal{P}(\emptyset)| = 1$.

Für
$$M = \{2, 4, 6\}$$
 gilt $|M| = 3$. $\mathcal{P}(M) = \{\emptyset, \{2\}, \{4\}, \{6\}, \{2, 4\}, \{2, 6\}, \{4, 6\}, \{2, 4, 6\}\}$.

Man kann zeigen: $|\mathcal{P}(M)|=2^{|M|}$. Deswegen wird auch die Notation 2^M für die Potenzmenge von M verwendet.

1.2. Relationen

Definition 1.12: Kartesisches Produkt

Sind M und N zwei Mengen, so heißt die Menge

$$M \times N := \{(x, y) \mid x \in M \land y \in N\}$$

das **kartesische Produkt** von M und N.

Sind n Mengen $M_1,...,M_n$ gegeben, so ist deren kartesisches Produkt gegeben druch:

$$M_1\times\ldots\times M_n\coloneqq\{(x_1,...,x_n)\mid x_1\in M_1\wedge\ldots\wedge x_n\in M_n\}$$

Das n-fache kartesische Produkt einer Menge von M ist:

$$M^n \coloneqq M \times \ldots \times M \coloneqq \{(x_1,...,x_n) \mid x_i \in M \text{ für } i=1,...,n\}$$

Ein Element $(x,y)\in M\times N$ heißt geordnetes Paar und eine Element $(x_1,...,x_n)\in M_1\times...\times M_n$ heißt (geordnetes) n-Tupel.

Ist mindestens eine der auftretenden Mengen leer, so ist auch das resultierende kartesische Produkt leer, d.h. die leere Menge. Das kartesische Produkt wurde nach Rene Decartes benannt. Rene Decartes war ein französische Mathematiker (1596-1650) und ein Begründer der analytischen Geometrie.

Beispiel 1.13: Das kartesische Produkt zweier Intervalle.

Seien $[a,b]\subset\mathbb{R}$ und $[c,d]\subset\mathbb{R}$ zwei abgeschlossene Intervalle von reellen Zahlen. Dann ist das kartesische Produkt beider Intervalle gegeben durch:

$$[a, b] \times [c, d] := \{(x, y) \mid x \in [a, b] \land y \in [c, d]\}$$

Das kartesische Produkt ist nicht kommutativ. Beweis durch Gegenbeispiel.

Definition 1.14: Relationen

Seien M und N nichtleere Mengen. Eine Menge $R\subseteq M\times N$ heißt **Relation** zwischen M und N. Ist M=N, so nennt man R **Relation auf** M. Für $(x,y)\in R$ schreibt man $x\sim_R y$ oder $x\sim y$, wenn die Relation aus dem Kontext klar ist. Ist mindestens eine der beiden Mengen leer, dann ist auch jede Relation zwischen den beiden Mengen die leere Menge.

Beispiel 1.15: Sei $M = \mathbb{N}$ und $N = \mathbb{Z}$. Dann ist

$$R := \{(x, y) \in M \times N \mid x + y = 1\}$$

eine Relation zwischen M und N. Es gilt

$$R = \{(1,0), (2,-1), (3,-2), \ldots\} = \{(n,-n+1) \mid n \in \mathbb{N}\}\$$

Definition 1.16: reflexiv, symmetrisch, antisymmetrisch, transitiv

Es sei M eine nicht leere Menge. Eine Relation auf M heißt:

1. reflexiv:

$$\forall x \in M : x \sim x$$

2. symmetrisch:

$$\forall x, y \in M : x \sim y \Longrightarrow y \sim x$$

3. antisymmetrisch:

$$\forall x, y \in M : x \sim y \land y \sim x \Longrightarrow x = y$$

4. transitiv:

$$\forall x,y,z \in M: x \sim y \land y \sim z \Longrightarrow x \sim z$$

Falls die Relation R reflexiv, transitiv und symmetrisch ist, so nennt man R eine **Äquivalen-zrelation** auf M. Ist R reflexiv, transitiv und antisymmetrisch, so nennt man R eine **partielle Ordnung** auf M.

Beispiel 1.17: $M = \mathbb{R}$

- Die Relation < auf $M=\mathbb{R}$ ist transitiv, aber weder reflexiv noch symmetrisch und auch nicht antisymmetrisch.
- Die Relation \leq auf $M=\mathbb{R}$ ist reflexiv, antisymmetrisch und transitiv. Sie ist nicht symmetrisch. \leq ist somit eine partielle Ordnung.
- Die Relation = auf \mathbb{R} ist reflexiv, symmetrisch und transitiv. Also ist = eine Äquivalenzrelation. (Äquivalenzrelationen können auch antisymmetrisch sein)

Beispiel 1.18: Interpretiert man "Pfeile" als Objekte mit gleicher Orientierung und Länge, erhält man die Äquivalenzrelation

$$x \sim y : \iff x$$
 und y haben die gleiche Länge und Orientierung

Auf Grund der Transitivität sind somit alle Pfeile einer vorgegebenen Orientierung und Länge äquivalent zu dem Pfeil, der im Koordinatenursprung startet und die gleiche Länge sowie Orientierung besitzt. Somit können wir Vektor $x=(x_1,x_2)\in\mathbb{R}^2$ als Repräsentant einer ganzen Klasse von Pfeilen interpretieren. Alle zueinander äquivalente Pfeile haben gemeinsam, dass die Differenz zwischen End- und Anfangspunkt genau den Vektor x ergeben.

Als Formalisierung erhält man:

Definition 1.19: Äquivalenzklassen, Quotientenmenge

Sei \sim eine Äquivalenz
relation auf einer nichtleeren Menge M. Die Äquivalenzklasse eines Element $\overline{a} \in M$ ist definiert durch:

$$[\overline{a}] := \{ a \in M \mid a \sim \overline{a} \}$$

Ist die Relation nicht aus dem Kontext klar, schreibt man $[\overline{a}]$.

Elemente einer Äquivalenzklasse werden als **Vertreter** oder **Repräsentanten** der Äquivalenzklasse bezeichnet. Die Menge aller Äquivalenzklassen einer Äquivalenzrelation \sim in einer Menge M, d.h.

$$M/\sim := \left\{ \left[a\right]_{\sim} \mid a \in M \right\}$$

wird als Faktormenge oder Quotientenmenge bezeichnet.

Beispiel 1.20: (Vortsetzung von Beispiel 1.18)

Die Menge aller Pfeile gleicher Länge und Orientierung bilden eine solche Äquivalenzklasse, welche durch den Vektor $x=(x_1,x_2)\in\mathbb{R}^2$ repräsentiert wird. Die Menge der Vektoren $x=(x_1,x_2)\in\mathbb{R}^2$ bilden die Quotientenklasse.

Beispiel 1.21: Für eine gegebene Zahl $x \in \mathbb{N}$ ist die Menge:

$$R_n := \{(a, b) \in \mathbb{Z}^2 \mid a - b \text{ ist ohne Rest durch } n \text{ teilbar} \}$$

eine Äquivalenzrelation auf \mathbb{Z} , denn

- reflexiv: $a \sim a, (a, a) \in R_n : \iff a a = 0 \checkmark$
- symmetrie:

$$a \sim b \Longrightarrow (a,b) \in R_n \Longrightarrow a-b \text{ ist ohne Rest teilbar} \Longrightarrow a-b=k \cdot n$$

$$\Longrightarrow b-a=-k \cdot n \Longrightarrow (b,a) \in R_n \Longrightarrow b \sim a \checkmark$$

• transitiv: zz: $a \sim b \wedge b \sim c \Longrightarrow a \sim c$

$$a \sim b \Longrightarrow a - b = k \cdot n$$

 $b \sim c \Longrightarrow b - c = l \cdot n$

Gleichungen addieren: $a-c=n(k+l)\Longrightarrow a\sim c$ \checkmark

Für a wird die Äquivalenzklasse [a] auch die Restklasse von a modulo n genannt.

$$[a] = a + n \cdot z = \{a + nz \mid z \in \mathbb{Z}\}$$

Die Äquivalenzrelation R_n definiert auch eine Zerlegung der Menge $\mathbb Z$ in disjunkte Teilmengen, nähmlich

$$[0] \cup [1] \cup \dots \cup [n-1] = \bigcup_{a=0}^{n-1} [a] = \mathbb{Z}$$

Es gilt allgemein: Ist \sim eine Äquivalenzrelation auf M, so ist M die Vereinigung aller Äquivalenzklassen.

• "⊂":

$$M = \bigcup_{a \in M} \{a\} \subseteq \bigcup_{a \in M} [a] \checkmark$$

$$[a] \subset M \Longrightarrow \bigcup_{a \in M} [a] \subseteq M \checkmark$$

Satz 1.22: Ist R eine Äquivalenzrelation auf der Menge M und sind $a, b \in M$, dann sind folgende Aussagen äquivalent:

1)
$$[a] = [b]$$

2)
$$[a] \cap [b] \neq \emptyset$$
 3) $a \sim b$

3)
$$a \sim b$$

Beweis: Durch Ringschluss

zu zeigen: $1 \Longrightarrow 2, 2 \Longrightarrow 3, 3 \Longrightarrow 1$

 $1 \Longrightarrow 2$:

Wegen
$$a \sim a \Longrightarrow a \in [a] = [b] \Longrightarrow a \in [a] \cap [b] \Longrightarrow [a] \cap [b] \neq \emptyset$$

 $2 \Longrightarrow 3$:

Aus $[a] \cap [b] \neq \emptyset \Longrightarrow$ es existiert $c \in [a] \cap [b]$. Nach Definition gilt dann $c \sim a$ wegen der Symmetrie von $a \sim c$. Nach Definition auch $c \sim b$. Wegen der Transitivät der Relation gilt dann auch $a \sim b$

 $3 \Longrightarrow 1$:

Es gilt
$$a \sim b$$
. Sei $c \in [a] \Longrightarrow c \sim a$. Wegen der Transitivät folgt $c \sim b \Longrightarrow c \in [b] \Longrightarrow [a] \subseteq [b]$. Analog folgt $[b] \subseteq [a]$.

Aus Satz 1.22 2) folgt, dass die Äquivalenzklassen eine disjunkte Zerlegung der Menge Mdarstellen.

Definition 1.23:

Sei M eine Menge und sei für jedes Element $m \in M$ eine weitere Menge S_m gegeben. Für $\mathcal{S}\coloneqq \{S_m\mid m\in M\}$ ist die Teilmengenrelation \subseteq eine partielle Ordnung. Die Menge \mathcal{S} heißt dann partiell geordnet. Eine Menge $\hat{S} \in \mathcal{S}$ heißt maximales Element von \mathcal{S} (bezüglich \subseteq), wenn aus $S \in \mathcal{S}$ und $\hat{S} \in \mathcal{S}$ folgt, dass $S = \hat{S}$ ist. Eine nichtleere Teilmenge $\mathcal{K} \subseteq \mathcal{S}$ heißt **Kette** (bezüglich \subseteq), wenn für alle $K_1,K_2\in\mathcal{K}$ gilt, dass $K_1\subseteq K_2$ oder $K_2\subseteq K_1.$ Ein Element $\widehat{K} \in \mathcal{S}$ heißt **obere Schranke** der Kette \mathcal{K} , wenn $K \subseteq \widehat{K}$ für alle $K \in \mathcal{K}$ gilt.

Beispiel 1.24: Sei $S = P(\{2, 4, 6, 8, 10\})$

Dann ist

$$\mathcal{K} = \{\emptyset, \{2\}, \{2, 6\}, \{2, 6, 10\}\} \subseteq \mathcal{S}$$

Die Menge $K=\{2,6,10\}$, das maximale Elem
nt von $\mathcal S$ ist $\hat S=\{2,4,6,8,10\}.$

Gibt es immer ein maximales Element?

Lemma 1.25: Zornsche Lemma

Sei M eine Menge und sei $\mathcal{S} \subseteq \mathcal{P}(M)$ eine nichtleere Menge mit der Eigenschaft, dass für jede Kette $\mathcal{K} \subseteq \mathcal{S}$ auch ihre Vereinigunsmenge in \mathcal{S} liegt, d.h.

$$\bigcup_{A \in \mathcal{K}} A \in \mathcal{S}$$

Dann besitzt \mathcal{S} ein maximales Element.

Beweis: Das Zornsche Lemma ist ein fundamentales Resultat aus der Mengenlehre, hier ohne Beweis

Lemma 1.26: Sei M eine Menge und $\mathcal{K}\subseteq\mathcal{P}(M)$ eine Kette. Dann gibt es zu je endlich vielen $A_1,...,A_n\in\mathcal{K}$ ein $\hat{i}\in\{1,...,n\}$ mit $A_i\subseteq A_{\hat{i}}$ für alle $i\in\{1,...,n\}$.

Beweis: Durch vollständige Induktion über n.

Induktionsanfang: n = 1

D.h. wir haben $A_1 \in \mathcal{K}$ und für $\hat{i} = 1$ gilt $A_1 \subseteq A_{\hat{i}} = A_1 \ \checkmark$

Induktionsschritt: $n-1\mapsto n$

Für $A_1,...,A_{n-1}\in\mathcal{K}$ exisitert ein $\hat{j}\in\{1,...,n-1\}$ mit $A_i\subseteq A_{\hat{j}}$ für alle $i\in\{1,...,n-1\}$. Mit

$$\hat{i} \coloneqq \begin{cases} \hat{j} \text{ für } A_n \subseteq A_{\hat{j}} \\ n \text{ für } A_{\hat{j}} \subseteq A_n \end{cases}$$

folgt die Behautpung.

1.3. Abbildungen

Definition 1.27: Abbildungen

Es Seien X und Y beliebig, nichtleere Mengen. Eine **Abbildung** von X nach Y ist eine Vorschrift f, die jedem Element $x \in X$ genau ein Element $f(x) \in Y$ zuordnet. Man schreibt

$$f: X \to Y, \ x \mapsto y = f(x)$$

Die Menge X heißt **Definitionsbereich** von f, die Menge Y heißt **Wertebereich** von f

<u>Achtung:</u> Jede Abbildung besteht aus drei "Teilen". Angabe des Definitionsbereichs, Angabe des Wertebereichs, Angabe der Zuordnungsvorschrift.

Beispiel 1.28: Sei *M* eine nichtleere Menge. Dann ist

$$f: M \to N, \ x \mapsto x = f(x)$$

eine Abbildung f Identität von M mit der Notation I_m/Id_m .

Sei $X=Y=\mathbb{R}$, dann ist $f:\mathbb{R}\to\mathbb{R},\ x\mapsto f(x):=7x+2$ eine Abbildung.

Definition 1.29: Bild, Urbild

Seien X,Y beliebige nichtleere Mengen und $f:X\to Y$. Es gelte $M\subseteq X$ und $N\subseteq Y$. Dann heißen die Mengen:

$$f(M) := \{f(x) \in Y \mid x \in M\} \subseteq Y \text{ das Bild von } M \text{ unter } f.$$

$$f^{-1}(N) := \{x \in X \mid f(x) \in N\} \subseteq X \text{ das Urbild von } N \text{ under } f.$$

 $\text{Ist }\emptyset \neq M\subseteq X\text{, dann heißt }f_{|M}:M\rightarrow Y,\ x\mapsto f(x)\text{, die }\mathbf{Einschränkung}\ \text{von }f\ \text{auf }M.$

Beispiel 1.30: Sei $X=Y=\mathbb{R}$ und $x\mapsto f(x)=x^4$. Dann ist \mathbb{R} Definitions- und Wertebereich von f.