Contents

12	Magnetismus
	12.1 Diamagnetismus
	12.1.1 Diamagnetismus freier Elektronen: Landau-Diamagnetismus
	12.2 Paramagnetismus
	12.2.1 Paramagnetismus von Ionen
	12.3 Kühlung durch adiabatische Entmagnetisierung

Chapter 12

Magnetismus

Die Magnetisierung \vec{M} ist das magnetische Moment pro Volumen. $\vec{M}=n\vec{\mu}$; μ ist mittleres Dipolmoment.

Magnetische Suszeptibilität: $[\chi]$ Tensor

$$[\chi] \equiv \chi = \frac{\vec{M}}{\vec{H}} = \mu_0 \frac{\vec{M}}{\vec{B}}$$

Skalar (Vereinfacht) $\chi=\frac{M}{H};~\chi<0$: diamagnetische festkörper; $\chi>0$: paramagnetische Festkörper

Lenz-Regel $I \propto \frac{d\phi}{dt}$

12.1 Diamagnetismus

Diamagnetismus ist eine Schwächung des äußeren Feldes. Klassische (Langevin) und quantenmechanische Behandlung. Beide kommen zu gleichen Resultaten.

$$\chi_d|_{\mathrm{Atome}} \propto 10^{-6} \mathrm{\ bis}\ 10^{-7}$$

$$\chi_a|_{\rm Atome} = -\frac{h\mu_0 e^2}{6m_e} Z\langle r^2 \rangle$$

mit Z Elektronenzahl und $\langle r^2 \rangle$ mittlerer abstandsquadrat der e-nen

12.1 Diamagnetismus freier Elektronen: Landau-Diamagnetismus

1930 Landau-Quantisierung $\frac{\hbar(k_x^2+k_y^2)}{2m_e}=(l+\frac{1}{2})\hbar\omega_c;\ l=0,1,2,3...$ B-Feld in z-Richtung. mit $\chi=-\frac{\partial^2 F}{\partial H^2}$

$$F = k_B T l n \sum_{\text{alle Zustände}} e^{-\frac{iE}{k_B T}}$$

$$\chi_d|_{\rm Landau} = -\frac{1}{3}\mu_B^2 \mu_0 D(E_F) = -\frac{1}{3}\mu_B^2 \mu_0 \frac{3}{2} \frac{n}{E_F} = -\frac{n}{2E_F} \mu_0 \mu_B^2 \propto 2 \cdot 10^{-7}$$

mit dem Borsches Magneton $\mu_B=\frac{e\hbar}{2m_e}$ und Zustandsdichte $D(E_F)$

12.2 Paramagnetismus

Paramagnetismus freier e-nen ist allgemein bekannt als Paulische Spin Suszeptibilität.

Roter Bereich δn kommt dazu, es gibt insgesammt mehr Elektronen

$$\delta n = \frac{1}{2}D(E_F)2\mu_B B$$

$$M = \delta n \mu_B = \mu_B^2 B D(E_F)$$

$$\chi_P|_{\text{Pauli}} = \mu_B \frac{M}{B} = \mu_0 \mu_B^2 d(E_F) = -3\chi_d|_{\text{Landauu}}$$

$$\chi_P|_{\text{Landau}} = -\frac{1}{3}\chi_d|_{\text{Pauli}}$$

12.2 Paramagnetismus von Ionen

Aus der Atomphysik: $\vec{\mu}=-g\mu_B\vec{J}'$ mit g Lande-Faktor $\vec{J}'\hbar\vec{J}$ Gesamtdrehimpuls des Atoms

$$\hat{J} = \hat{L} + \hat{S}$$

$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$

 $L\mbox{-Bahndrehimpulsquantenzahl}$ und $S\mbox{-Spinquantenzahl}$ Quantentheorie (nur für Zwei-Niveau-Spinsystem)

$$V = -\vec{\mu}\vec{B} = \underbrace{m_J g \mu_B}_{"} B$$

mit $m_J=\pm\frac{1}{2};\ g=2;\ V=\pm\mu_B B$ Im Gleichgewicht für $T\neq 0;$ Faktor $x=\frac{\mu B}{k_B T}$

$$\frac{n_{\uparrow}}{n} = \frac{e^x}{e^x + e^{-x}}$$

$$\frac{n_{\downarrow}}{n} = \frac{e^{-x}}{e^x + e^{-x}}$$

Magnetisierung $M = (n_{\uparrow} - n_{\downarrow})\mu = n\mu \tanh(x)$

für $x \ll 1$ (hohe T) $tanh(x) \propto x$

$$M\approx n\mu\frac{\mu B}{k_BT}$$

Curie-Gesetz:

$$\chi_{pa} \approx \frac{n\mu^2}{k_B T} \mu_0 \approx \frac{1}{T}$$

Ein Atom mit Gesamtdrehimpulsquantenzahl J besitzt in einem Magnetfeld (2J+1) äquidistante Energieniveaus

$$M = ngJ\mu_B B_J(x)$$

mit $B_J(x)$ Brillouin-Funktion für x << 1

$$\chi_{pi} = \mu_0 \frac{\mu}{B} = nJ(J+1) \frac{g^2 \mu_B}{3k_B T} \propto \frac{C}{T}$$

12.3 Kühlung durch adiabatische Entmagnetisierung

von Debye 1926 vorgeschlagen und 7 Jahre später realisiert.

a - gute Wärmekontakt bis mKb - Probe von Umgebung isoliert $\approx 10 \mu K$ Bei Cu Kernentmagnetisierung