

V0.4 Data Sheet Aug 2008

DESCRIPTION

The RTC6671 power amplifier (PA) is designed to operate in 5GHz ISM band, compatible with 802.11a wireless LAN system with high power, high gain. The Amplifier consists of 3 gain stages with inter-stage matching, build-in input matching network, and a power detector for close loop power control operation. In 802.11a mode (OFDM 64QAM, 54Mbps), it provides a low EVM (Error-Vector magnitude) of 3% at +18dBm linear output power. The device is packaged in a tiny industry-standard 16-lead surface mount package QFN16 3x3.

FEATURE

- ♦ 3.3V Power Supply
- ♦ Maximum Linear Output Power for 11a usage : +18 dBm (54Mbps OFDM 64 QAM)
- ♦ Small signal gain : 28dB
- ♦ On-chip input matching
- ♦ Operation ambient temperature: -40 ~ +85 °C
- ♦ Lead(Pb)-free, RoHS compliant packaging

APPLICATION

- ◆ IEEE 802.11a Wireless LAN System
- ♦ 5GHz ISM Band Application
- ◆ 5GHz Cordless Phones◆ High Power WLAN applications

PINOUT (top view)

V0.4 Data Sheet Aug 2008

PIN FUNCTION DESCRIPTION

PIN	FUNCTION	DESCRIPTION
1,5,9,13,15	NC	Not connected
2	RFIN	RF input. Input matching network is built on chip.
3	RFIN	Same as pin 2
4	VREF1,2	Bias Control voltage of power stage-1 and stage-2, via R1 to 2.9V. Pin 4,6 can be used to control PA on/off.
6	VREF3	Bias Control voltage of power stage-3, via R2 to 2.9V. Pin 4,6 can be used to control PA on/off.
7	VCCB	Power supply for bias circuit, typically 3.3V
8	PD	Detector output voltage for output power index
10,11,12	RFOUT/VCC3	RF output. Power supply for power stage-3, typically 3.3V
14	VCC2	Power supply for power stage-2, typically 3.3V
16	VCC1	Power supply for power stage-1, typically 3.3V

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNITS
Supply Voltage	-0.5 to +5.0	V
Reference Voltage(Vref)	0.0 to +4.0	V
Input RF Level	+5	dBm
Operating Ambient Temperature	-40 to +85	$^{\circ}$ C
Storage Temperature	-40 to +150	$^{\circ}$

***Caution!** ESD Sensitive Device

V0.4 Data Sheet Aug 2008

DC ELECTRICAL CHRACTERISTICS

T=25°C, Vcc=3.3V

				/	
PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
Supply Voltages					,
VCC1		3.0	3.3	4.2	Volts
VCC2		3.0	3.3	4.2	Volts
VCC3		3.0	3.3	4,2	Volts
VREF1,2	R1=0 ohm		2.9)	Volts
VREF3	R2 =0 ohm		2.9		Volts
Supply Currents		4			
lcc1 + lcc2 + lcc3 (for 802.11A usage)	Quiescent (no RF) Pout= 18 dBm		105 160		mA
loff	Standby current		0.05		uA
Iref1,2	Quiescent (no/RF)		1.2		mA
Iref3	Quiescent (no RF)		1.2		mA

POWER DETECTOR

T=25°C, Vcc=3.3V, Freq=5.4GHz, Vref=2\9\

PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
Vpd	Power detector voltage @ Pout=no RF		0.73		Volts
Vpd	Power detector voltage Pout=12 dBm		1.02		Volts
Vpd	Power detector voltage @ Pout=15 dBm		1.20		Volts
Vpd	Power detector voltage @ Pout=18 dBm		1.45		Volts
PD Resolution	PD Slope @Pout=15dBm		70		mV/dB

V0.4 Data Sheet Aug 2008

AC ELECTRICAL CHRACTERISTICS

T=25°C, Vcc=3.3V, Freq=5.4GHz

			/	
CONDITION	MIN	TYP	MAX	UNITS
	4.9	5.4	5.9	GHz
Measured @ P1dB		33:5)) %
Pin= -20dBm	27.5	28	28.6	dB
1dB Gain compression	<u> </u>	26		dBm
802.11a OFDM 64 QAM EVM = 3%		18	·	dBm
802.11a OFDM 64 QAM		22		dBm
within band		\$2		dB
		> -10		dB
		-10		dB
CW signal, Pout = 18 dBm			-40	dBc
Rise time for 10% to 90% Pout		<100		ns
	Measured @ P1dB Pin= -20dBm 1dB Gain compression 802.11a OFDM 64 QAM EVM = 3% 802.11a OFDM 64 QAM within band CW signal, Pout = 18 dBm	Measured @ P1dB Pin= -20dBm 27.5 1dB Gain compression 802.11a OFDM 64 QAM EVM = 3% 802.11a OFDM 64 QAM within band CW signal, Pout = 18 dBm	4.9 5.4 Measured @ P1dB 33:5 Pin= -20dBm 27.5 28 1dB Gain compression 26 802.11a OFDM 64 QAM EVM = 3% 18 802.11a OFDM 64 QAM within band	4.9 5.4 5.9 Measured @ P1dB 33:5 28 Pin= -20dBm 27.5 28 28.6 1dB Gain compression 26 802.11a OFDM 64 QAM 18 18 802.11a OFDM 64 QAM 22 22 22 24 24 within band ★2 -10 -10 -40 CW signal, Pout = 18 dBm -40 -40

V0.4 Data Sheet Aug 2008

S-PARAMETER

V0.4 Data Sheet Aug 2008

802.11a Spectral Mask (54Mbps OFDM) at Pout = 22 dBm

Gain and Pout vs. Pin (CW)

V0.4 Data Sheet Aug 2008

EVM and ICC vs. Pout(OFDM)

V0.4 Data Sheet Aug 2008

POWER DETECTOR

T=25 $^{\circ}$ C , Vcc=3.3V, Vref=2.9V

V0.4 Data Sheet Aug 2003

9

V0.4 Data Sheet Aug 2008

EVB LAYOUT:

Top Layer MidLayer1 MidLayer2 Bottom Layer

Note: 1. VCC1, VCC2, VCC3 and VCCB are connected together and applied to 3.3V. VREF1, 2 and VREF3 can be connected together and applied to the other 2.9V.

2. The evaluation board is 4-layer PCB using FR4 material. The thickness between top layer and MidLayer1 layer (GND) is 8 mil. If the PCB thickness is changed, $50\,\Omega$ transmission line dimension needs to be re-calculated.

V0.4 Data Sheet Aug 2008

Package

Quad Flat No-Lead Plastic Package (QFN16 3x3)

,	L_{-}	\sim	
/	MID	MIN NOM MAX	NOTES
	A	0.85 0.95 1	1.0 COPLANARITY APPLIES TO LEADS, CORNER LEADS AND DIE ATTACH PAD.
/	X1	0 ø.0,35 0.05	AND DE ATTACH PAD.
	A2	0.85 0.9 0.95	
	b	0.2 0.25 0.3	
	ם	3 BSC	
	Ε	3 BSC	
>	, 8	0.5 BSC	
<	(4)	1.47 1.57 1.67	
) ⋈	1.47 1.57 1.67	
/	$ \mathcal{L} $	0.35 0.4 0.45	
_	P	45' REF	