ЗАДАЧІ З ГЕОМЕТРІЇ

I Маркери плану

Définition n°1.

- Ми говоримо, що площина оснащена маркером, коли в цій площині зафіксовано дві градуйовані осі, що перетинаються в їх початку.
- Ми говоримо, що система координат ортогональна, якщо дві осі перпендикулярні.
- Система координат називається ортонормальною, якщо вона ортогональна І якщо одиниці довжини однакові на обох осях.

Remarque n°1.

В інших випадках ми говоримо про декартове посилання (або будь-яке інше).

Remarque n°2.

У кадрі (O; I; J) за визначенням ми маємо:

$$O(0;0)$$
; $I(1;0)$ i $J(0;1)$

Si le repère se nomme, par exemple, (C; A; E) alors :

$$C(0;0)$$
 ; $A(1;0)$ i $E(0;1)$

Propriété n°1.

Вирівнювання

бути $A(x_A\;;\;y_A)$, $M(x_M\;;\;y_M)$ et $B(x_B\;;\;y_B)$ три точки площини, на яку поставлено відлік $(O\;;\;I\;;\;J)$.

Les points A, M et B sont alignés si et seulement $det(\overline{AM}; \overline{AB})=0$

Remarque n°3.

Toute combinaison de ces points fonctionne...

Propriété n°2. Координати середини відрізка

бути $A(x_A; y_A)$ et $B(x_B; y_B)$ дві точки на площині, на яку поставлено посилання (O; I; J).

чи $M(x_M; y_M)$ є серединою відрізка [AB], тоді $x_M = \frac{x_A + x_B}{2}$ і $y_M = \frac{y_A + y_B}{2}$

Propriété n°3. Довжина відрізка в ортонормальній системі відліку.

бути $A(x_A; y_A)$ et $B(x_B; y_B)$ дві точки на площині з позначкою ORTHONORM (O; I; J).

$$AB = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$$
 Де $AB^2 = (x_A - x_B)^2 + (y_A - y_B)^2$

Propriété n°4. Площа паралелограма

Якщо ABCD — паралелограм, то його площа дорівнює відстані до нуля $det(\overrightarrow{AB}~;~\overrightarrow{AD})$

II Відстань від точки до прямої

Ми розміщуємо себе в плані (9)

Définition n°2. Ортогональна проекція

Нехай A — точка, а (d) — пряма.

Ортогональна проекція A на (d) є підніжжям перпендикуляра до (d), що проходить через A.

Exemple n°1.

Точка H ϵ ортогональною проекцією точки A на пряму (d).

Figure 1

Propriété n°5.

Якщо точка $H \in \text{ ортогональною проекцією } A$ на пряму (d), то для будьякої точки M d, відмінної від H, маємо: AH < AM

preuve:

За визначенням точки H трикутник AHM ϵ прямокутним у H. Тоді теорема Піфагора да ϵ нам:

$$AM^2 = AH^2 + HM^2 > AH^2$$
 (car $HM^2 > 0$).

Définition n°3. Відстань від точки до прямої

Якщо точка H ϵ ортогональною проекцією A на пряму (d), то відстань від точки A до прямої (d) називається довжиною .

Définition n°4. Дотична до кола

Це ϵ A un point d'un cercle (\mathcal{C}) з центром O і радіусом r.

Дотична до (\mathcal{C}) у точці A — пряма, що проходить через A і перпендикулярна до (OA).

Figure 2

Propriété n°6.

Коло має одну спільну точку з дотичною в одній із своїх точок.

preuve:

Нехай (d) — дотична до кола (\mathcal{C}) у точках A і M точка (d). Відповідно до властивості № 1, OM > OA Так $M \notin (\mathcal{C})$.

III Тригонометрія в прямокутному трикутнику

V цьому абзаці нам задано прямокутний трикутник ABC у точці B .

Figure 3

Définition n°5.

- [AC] гіпотенузою.
 [AB] сторона, прилегла до кута \$\hat{BAC}\$.
 [BC] сторона, протилежна куту \$\hat{BAC}\$.

Définition n°6.

cosinus, sinus, tangente

У трикутнику ABC, прямокутнику в B.

- $\cos(\widehat{BAC}) = \frac{AB}{AC}$ (« косинус дорівнює прилеглій стороні гіпотенузи »)
- $\sin(\widehat{BAC}) = \frac{BC}{AC}$ (« синус дорівнює протилежній стороні гіпотенузи »)
- $\tan\left(\widehat{BAC}\right) = \frac{BC}{AB}$ («дотична рівна сторона, прикріплена до суміжної сторони »)

Remarque n°4.

 \widehat{BCA} , просто поміняйте місцями літери A і C у всіх Для кута вищезазначених.

Remarque n°5.

Не забуваємо вказувати кожен, в якому саме прямокутному трикутнику ми працюємо.

Propriété n°7.

Si
$$x$$
 est la mesure d'un angle aigu alors : $tan(x) = \frac{sin(x)}{cos(x)}$

preuve:

Soit x la mesure d'un angle aigu, alors il existe un triangle rectangle en B tel que la mesure de l'angle \overline{ABC} égale x. (La *figure 3* illustre cette situation)

Nous avons les égalités suivantes :

$$\frac{\sin(x)}{\cos(x)} = \frac{\frac{BC}{AC}}{\frac{AB}{AC}} = \frac{BC}{AC} \times \frac{AC}{AB} = \frac{BC}{AB} = \tan(x)$$

Propriété n°8.

Якщо
$$x \in \text{мірою гострого кута, то: } (\cos(x))^2 + (\sin(x))^2 = 1$$

preuve:

Нехай $x \in \text{мірою гострого кута, тоді існує трикутник } ABC$, прямокутник у В такий, що міра кута \widehat{ABC} дорівнює x

(Малюнок 3 ілюструє цю ситуацію)

Маємо такі рівності:

$$(\cos(x))^2 + (\sin(x))^2 = \left(\frac{AB}{AC}\right)^2 + \left(\frac{BC}{AC}\right)^2 = \frac{AB^2}{AC^2} + \frac{BC^2}{AC^2} = \frac{AB^2 + BC^2}{AC^2} = \frac{AC^2}{AC^2} = 1$$

передостання рівність обтрунтовується теоремою Піфагора.

IV Le résumé du cours

(O; I; J) est un repère orthogonal

(O; I; J) est un repère orthonormé (OI = OJ)

Les points A, M et B sont alignés si et seulement $det(\overline{AM}; \overline{AB}) = 0$

Repère

M milieu du segment [AB] alors

$$x_M = \frac{x_A + x_B}{2}$$

$$y_M = \frac{y_A + y_B}{2}$$

Tous

$$AB = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$$

ou
$$AB^2 = (x_A - x_B)^2 + (y_A - y_B)^2$$

Uniquement ORTHONORME

Si ABCD est un parallélogramme, alors son aire vaut la distance à zéro de $det(\overrightarrow{AB}; \overrightarrow{AD})$

Le point H s'appelle le **projeté orthogonal du** point A sur la droite (d) car $(AH)\bot(d)$

Il y a un seul point commun entre la tangente et le cercle.

Dans le triangle ABC, rectangle en B.

 $-\cos(\widehat{BAC}) = \frac{AB}{AC}$

(« cosinus égale côté adjacent sur hypoténuse »)

 $= \sin(\widehat{BAC}) = \frac{BC}{AC}$

(« sinus égale côté opposé sur hypoténuse »)

(« sinus égale côté apposé sur côté adjacent »)

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$(\cos(x))^2 + (\sin(x))^2 = 1$$