Econ 106

Lecture 14 slides derived from:

https://www.tidytextmining.com/tidytext

Reminders

- Lab #4 is due Sunday 11:59pm
- Please submit MS #2 by 11:59pm tonight if you haven't already done so
- Next week is Thanksgiving week:
 - in person lecture on Monday
 - Zoom lecture on Wednesday (or recording, I'll let you know what I decide)

#tidytuesday

https://rpubs.com/Pyll/Friendship_is_magic

Outline

- Text as Data:
 - sentiment analysis
 - word clouds

Overview of Text Analysis in R

Step 1: Tokenize

tidy_lyrics <- taylor_swift_lyrics %>%
unnest_tokens(output=word, input=Lyrics)

Title	‡ Lyrics
Tim McGraw	He said the way my blue eyes shinx Put those Georgia
Picture to Burn	State the obvious, I didn't get my perfect fantasy I rea
Teardrops on my Guitar	Drew looks at me, I fake a smile so he won't see, Wha
A Place in This World	I don't know what I want, so don't ask me 'Cause I'm s
Cold As You	You have a way of coming easily to me And when you
The Outside	I didn't know what I would find When I went lookin' fo
Tied Together With A Smile	Seems the only one who doesn't see your beauty Is th
Stay Beautiful	Cory's eyes are like a jungle He smiles; it's like the ra
Should've Said No	It's strange to think the songs we used to sing The s
Mary's Song	She said "I was seven, and you were nine I looked at y

Step 2: Remove Stop Words

•	Artist [‡]	Album [‡]	Title [‡]	word [‡]
1	Taylor Swift	Taylor Swift	Tim McGraw	he
2	Taylor Swift	Taylor Swift	Tim McGraw	said
3	Taylor Swift	Taylor Swift	Tim McGraw	the
4	Taylor Swift	Taylor Swift	Tim McGraw	way
5	Taylor Swift	Taylor Swift	Tim McGraw	my
6	Taylor Swift	Taylor Swift	Tim McGraw	blue
7	Taylor Swift	Taylor Swift	Tim McGraw	eyes
8	Taylor Swift	Taylor Swift	Tim McGraw	shinx
9	Taylor Swift	Taylor Swift	Tim McGraw	put
10	Taylor Swift	Taylor Swift	Tim McGraw	those
11	Taylor Swift	Taylor Swift	Tim McGraw	georgia
12	Taylor Swift	Taylor Swift	Tim McGraw	stars

_	Artist [‡]	Album [‡]	Title [‡]	word [‡]
1	Taylor Swift	Taylor Swift	Tim McGraw	blue
2	Taylor Swift	Taylor Swift	Tim McGraw	eyes
3	Taylor Swift	Taylor Swift	Tim McGraw	shinx
4	Taylor Swift	Taylor Swift	Tim McGraw	georgia

Step 3: Summarize (Count)

_	word [‡]	n [‡]
1	love	248
2	time	225
3	wanna	158
4	baby	153
5	ooh	127
6	yeah	105
7	stay	100
8	gonna	98
9	night	96
10	bad	80

Step 4: Visualize

https://pollev.com/vsovero

```
ggplot(data=tidy_lyrics_top_ten,
mapping=aes(x= reorder(word, n), y=n))+
geom_col() +
coord_flip()
```


- Word clouds are another method of visualizing word frequencies
- the size and color of the word denote relative frequency

Setup for Word Clouds

- Create a frequency table of word counts using count()
- sort the counts in descending order using arrange(desc())
- keep the top 75 words for the word cloud using slice_head()

```
tidy_lyrics_no_stop %>%
count(word) %>%
arrange(desc( n)) %>%
slice_head(n=75)
```

- we pass the frequency table over to the wordcloud() function using pipes and with()
- wordcloud() arguments:
 - words: name of the variable that contains the words you want to visualize
 - freq: name of the variable that records the frequency of each word

- Output: world cloud where size represents relative frequency
- Note: default is for random subset of words to be visualized when there isn't enough space for all of the words

- we can turn off the random selection of words with the random.order argument
- layout is still random

Word Cloud Adjustments: word scale

 We can adjust the relative scale of the word sizes by adding the scale argument

```
tidy_lyrics_no_stop %>%

count(word) %>%

arrange(desc( n)) %>%

slice_head(n=75) %>%

with(wordcloud(words =word, freq=n,
random.order=FALSE, scale= c(3, 0.25)))
```

```
comingfeeling york wrong lights waiting home stay forever light shake mad stay life door hey darling callmiss world red trouble hope world run hope beautiful heart wanna woods egeline gonna feel mind break walkmeet hands remember should've darling woods play daylight people
```

Word Cloud Adjustments: add color

- We can manually choose the colors using the colors argument
- color order listed will be assigned to words from lowest to highest frequency
- list of color names available here:

http://www.stat.columbia.edu
/~tzheng/files/Rcolor.pdf

```
tidy_lyrics_no_stop %>%

count(word) %>%

arrange(desc( n)) %>%

slice_head(n=75) %>%

with(wordcloud(words =word, freq=n, random.order=FALSE, scale= c(3, 0.25), colors=c('green', 'purple', 'blue')))
```

```
miss dreams waitingtrouble
rain york talkhands lost
head mind eyes dancing treet
wrongday stay yeah daylight
forever
hopered time the beautiful
meet night
blue loye ah stown
light home loye ah town
light home loye ah town
break wanna cargirl people
woods baby ooh heart play
feeling baby ooh heart play
friends
wood hate mine
wood hate mine
```

Exercise

https://pollev.com/vsovero

- tokenize the comments in the rate my professors data frame
- remove stop words, plus 'professor', 'class', 'students', and 'teacher'
- use the following color scale: purple, green, yellow, red

Word Cloud Adjustments: add color

- We can choose a color palette using brewer.pal() from the RColorBrewer package
- Arguments:
 - number of colors (4)
 - name of palette (Dark2)
- Palette names available here:

```
https://r-graph-gallery.com/38-rcolorbrewers-palettes.html
```

```
tidy_lyrics_no_stop %>%

count(word) %>%

arrange(desc( n)) %>%

slice_head(n=75) %>%

with(wordcloud(words =word, freq=n,
random.order=FALSE, scale= c(3, 0.25),

colors= brewer.pal(4,"Dark2")))
```

```
darling beautiful trouble daylight call whoa mad call walk remember fall woods runnight baby break dreams blue red play world rain yeah lights ah forever stay friends york of shands york of shands and ress on the street world shands shall be shal
```

Next: Sentiment Analysis

- What else can we do besides word/stem frequency?
- When you read a text, you can infer whether it expresses a positive or negative emotion:
 - "I'm so happy!"
 - "I feel sad."
- We can use the tools of text mining to analyze the emotional content of text

Sentiment Analysis

- Our approach:
 - tokenize into single words
 - evaluate sentiment scores of individual words
 - summarize: add up the individual sentiment scores for each word in the text
 - visualize

Sentiment Lexicons

- A sentiment lexicon (dictionary) contain many English words and their associated sentiment
- You can load sentiment lexicons using the get_sentiments() function from the tidytext package
- the bing lexicon assigns words as negative or positive

bing_lexicon<-get_sentiments(lexicon="bing")</pre>

_	word [‡]	sentiment [‡]
1	2-faces	negative
2	abnormal	negative
3	abolish	negative
4	abominable	negative
5	abominably	negative
6	abominate	negative
7	abomination	negative
8	abort	negative
9	aborted	negative
10	aborts	negative
11	abound	positive
12	abounds	positive
13	abrade	negative

Downside of single word sentiment analysis

- We will misclassify a sentiment when the word is paired with a negative:
 - "I'm not happy!"
 - "I don't feel sad"

Ok, let's analyze Taylor Swifts Lyrics

- We already have the tokenized version of her lyrics
- We are going to perform an inner join with the bing lexicon (keep words in Taylor Swift lyrics that can be matched to a sentiment)

tidy_lyrics_bing<- inner_join(x=tidy_lyrics, y=bing_lexicon)

Bing Sentiments

tidy_lyrics_bing<- inner_join(x=tidy_lyrics, y=bing_lexicon)</pre>

 Now we have a sentiment column that we can use to analyze Taylor Swift's lyrics

^	Artist [‡]	Album [‡]	Title [‡]	word [‡]	sentiment [‡]
1	Taylor Swift	Taylor Swift	Tim McGraw	shame	negative
2	Taylor Swift	Taylor Swift	Tim McGraw	lie	negative
3	Taylor Swift	Taylor Swift	Tim McGraw	stuck	negative
4	Taylor Swift	Taylor Swift	Tim McGraw	right	positive
5	Taylor Swift	Taylor Swift	Tim McGraw	favorite	positive
6	Taylor Swift	Taylor Swift	Tim McGraw	like	positive
7	Taylor Swift	Taylor Swift	Tim McGraw	happiness	positive
8	Taylor Swift	Taylor Swift	Tim McGraw	like	positive
9	Taylor Swift	Taylor Swift	Tim McGraw	hard	negative
10	Taylor Swift	Taylor Swift	Tim McGraw	bitter	negative
11	Taylor Swift	Taylor Swift	Tim McGraw	sweet	positive
12	Taylor Swift	Taylor Swift	Tim McGraw	nice	positive
13	Taylor Swift	Taylor Swift	Tim McGraw	favorite	positive

Top 10 Positive Words

- Filter for words with a positive sentiment
- count the frequency of each positive word
- sort in descending order
- keep the top 10

```
bing_positive_count <- tidy_lyrics_bing%>%
    filter(sentiment=="positive") %>%
    count(word) %>%
    arrange(desc( n)) %>%
    slice_head(n=10)
```

Top 10 Positive Words

 Because we didn't filter out stop words, "like" has surpassed "love" on our top ten list

```
bing_positive_count <- tidy_lyrics_bing%>%
    filter(sentiment=="positive") %>%
    count(word) %>%
    arrange(desc( n)) %>%
    slice_head(n=10)
```

•	word [‡]	n [‡]
1	like	406
2	love	248
3	right	110
4	good	76
5	better	74
6	best	52
7	beautiful	46
8	smile	45
9	clear	41
10	whoa	36

Class Exercise

https://pollev.com/vsovero

- use the tidy rmp data (don't remove stop words)
- join with the bing lexicon, keep matches
- Make a list of the top 10 negative words used in the rmp comments

Top 10 words with sentiment

- Of the words that have a positive or negative sentiment, what are the most frequent in Taylor Swift's lyrics?
- To keep the sentiment information in our frequency table, we have to add it as an argument in the count() function

Top 10 words with sentiment

• I guess "shake it off" is a negative sentiment?

```
bing_word_count <- tidy_lyrics_bing%>%
     count(word, sentiment) %>%
     arrange(desc( n)) %>%
     slice_head(n=10)
```

^	word [‡]	sentiment [‡]	n [‡]
1	like	positive	406
2	love	positive	248
3	right	positive	110
4	bad	negative	80
5	good	positive	76
6	better	positive	74
7	shake	negative	73
8	break	negative	59
9	best	positive	52
10	mad	negative	48

Top 10 words for each sentiment (single table)

```
bing_word_count <- tidy_lyrics_bing%>%
    group_by(sentiment) %>%
    count(word, sentiment) %>%
    arrange(desc( n)) %>%
    slice_head(n=10)
```

•	sentiment [‡]	word [‡]	n [‡]
1	negative	bad	80
2	negative	shake	73
3	negative	break	59
4	negative	mad	48
5	negative	hate	44
6	negative	fall	43
7	negative	sorry	36
8	negative	lost	33
9	negative	trouble	32
10	negative	miss	31
11	positive	like	406
12	positive	love	248
13	positive	right	110
14	positive	good	76
15	positive	better	74
16	positive	best	52
17	positive	beautiful	46
18	positive	smile	45
19	positive	clear	41
20	positive	whoa	36

Top 10 words for each sentiment

Class Exercise

• Make a top 10 list of the most frequent words with sentiment for the rmp comments. How many are positive?

Top sentiments

- I'm going to take a wild guess here, but Taylor Swift probably uses more words with positive sentiments versus negative sentiments
- Let's check: we will count the frequency of the sentiment

Top sentiments

 More words with positive sentiments, but still a surprisingly number of negative words

^	sentiment [‡]	n [‡]
1	positive	2120
2	negative	1695

Sentiment by Album

 We can also count the number of positive and negative sentiment words by Album

```
bing_album_sentiment <- tidy_lyrics_bing%>%
  group_by(Album)%>%
  count(sentiment) %>%
  arrange(Album, sentiment)
```

*	Album [‡]	sentiment [‡]	n [‡]
1	1989	negative	329
2	1989	positive	340
3	Fearless	negative	161
4	Fearless	positive	230
5	Lover	negative	233
6	Lover	positive	373
7	Red	negative	233
8	Red	positive	326
9	Speak Now	negative	201
10	Speak Now	positive	258
11	Taylor Swift	negative	129
12	Taylor Swift	positive	151
13	folklore	negative	195

Class Exercise

- count the number of positive and negative sentiment words by student_star
- What is the lowest star rating that has more positive than negative words?

Sentiments by Album

- Let's create a bar chart of sentiments by album
- We get proportions instead of counts with the position='fill' argument

Sentiments by Album

- We can add a reference line at .5 to denote the even split of positive/negative sentiments
- makes it easier to see that folklore was more negative than positive, and 1989 was almost evenly split

Net Sentiment

 We can also calculate the net sentiment of an Album by comparing the total number of positive words to the total number of negative words:

net sentiment=#positive-#negative

*	Album [‡]	negative [‡]	positive [‡]	net_sentiment ‡
1	1989	329	340	11
2	Fearless	161	230	69
3	Lover	233	373	140
4	Red	233	326	93
5	Speak Now	201	258	57
6	Taylor Swift	129	151	22
7	folklore	195	153	-42
8	reputation	214	289	75

Net Sentiment by Album

 We already have the count the number of positive and negative sentiment words by Album

```
bing_album_sentiment <- tidy_lyrics_bing%>%
  group_by(Album)%>%
  count(sentiment) %>%
  arrange(Album, sentiment)
```

•	Album [‡]	sentiment [‡]	n [‡]
1	1989	negative	329
2	1989	positive	340
3	Fearless	negative	161
4	Fearless	positive	230
5	Lover	negative	233
6	Lover	positive	373
7	Red	negative	233
8	Red	positive	326
9	Speak Now	negative	201
10	Speak Now	positive	258
11	Taylor Swift	negative	129
12	Taylor Swift	positive	151
13	folklore	negative	195

Net Sentiment by Album

- Next, we use
 pivot_wider() to create
 columns for the positive
 sentiment word count
 and the negative
 sentiment word count
- Arguments:
 - The column to take the variable names from
 - The column to take values from

pivot_wider()

bing_album_sentiment_wider<- bing_album_sentiment %>%
pivot_wider(names_from =sentiment, values_from =n)

•	Album [‡]	sentiment [‡]	n [‡]
1	1989	negative	329
2	1989	positive	340
3	Fearless	negative	161
4	Fearless	positive	230
5	Lover	negative	233
6	Lover	positive	373
7	Red	negative	233
8	Red	positive	326
9	Speak Now	negative	201
10	Speak Now	positive	258
11	Taylor Swift	negative	129
12	Taylor Swift	positive	151
13	folklore	negative	195

^	Album [‡]	negative [‡]	positive [‡]
1	1989	329	340
2	Fearless	161	230
3	Lover	233	373
4	Red	233	326
5	Speak Now	201	258
6	Taylor Swift	129	151
7	folklore	195	153
8	reputation	214	289

Net Sentiment by Album

- Last step: create a variable that calculates the net sentiment
- Bonus: sort the albums by net sentiment (most to least positive)

bing_album_net_sentiment<-bing_album_sentiment_wider%>%
mutate(net_sentiment=positive-negative)%>%
arrange(desc(net_sentiment))

•	Album [‡]	negative [‡]	positive [‡]	net_sentiment $^{\circ}$
1	Lover	233	373	140
2	Red	233	326	93
3	reputation	214	289	75
4	Fearless	161	230	69
5	Speak Now	201	258	57
6	Taylor Swift	129	151	22
7	1989	329	340	11
8	folklore	195	153	-42

Sentiment Lexicons

- the nrc lexicon categorizes words into ten emotions:
 - positive
 - negative
 - anger
 - fear
 - joy
 - disgust
 - anticipation
 - surprise
 - trust
 - sadness
- Note: there is an additional step when loading this lexicon (you have to type "1" when prompted in the console)

nrc_lexicon<-get_sentiments(lexicon="nrc")</pre>

If you use this lexicon, then please cite it.

1: Yes

2: No

Selection: 1

•	word [‡]	sentiment [‡]
1	abacus	trust
2	abandon	fear
3	abandon	negative
4	abandon	sadness
5	abandoned	anger
6	abandoned	fear
7	abandoned	negative
8	abandoned	sadness
9	abandonment	anger
10	abandonment	fear
11	abandonment	negative
12	abandonment	sadness
13	abandonment	surprise

NRC Lexicon loading issue

- some of you might see this error pop up
- If that happens, type the following into your console window:

```
textdata::lexicon_nrc(delete=TRUE)
```

textdata::lexicon_nrc()

```
Console Terminal ×
                     Background Jobs
R 4.3.2 · ~/Desktop/Econ 106/
mputational interrigence, 25(3). 430-403.
article{mohammad13,
author = {Mohammad, Saif M. and Turney, Peter D.},
title = {Crowdsourcing a Word-Emotion Association Lexicon},
journal = {Computational Intelligence},
volume = \{29\},
number = \{3\},
pages = \{436-465\},
doi = \{10.1111/j.1467-8640.2012.00460.x\},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8640.2012.00460.x},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8640.2012.00460.x},
year = \{2013\}
If you use this lexicon, then please cite it.
1: Yes
2: No
Selection: 1
Error: '~/Library/Caches/textdata/nrc/NRC-Emotion-Lexicon/NRC-Emotion-Lexicon-Wordlevel-v0.92.txt' does not exist.
```

Other Sentiments

- Let's use the nrc lexicon to assign an emotion to the words in Taylor Swift's songs
- Note: some words are associated with more than one emotion (you will get a warning about many-to-many matches in R)

```
tidy_lyrics_nrc<-
inner_join(x=tidy_lyrics, y=nrc_lexicon)</pre>
```

^	Artist [‡]	Album	Title [‡]	word [‡]	sentiment [‡]
1	Taylor Swift	Taylor Swift	Tim McGraw	blue	sadness
2	Taylor Swift	Taylor Swift	Tim McGraw	shame	disgust
3	Taylor Swift	Taylor Swift	Tim McGraw	shame	fear
4	Taylor Swift	Taylor Swift	Tim McGraw	shame	negative
5	Taylor Swift	Taylor Swift	Tim McGraw	shame	sadness
6	Taylor Swift	Taylor Swift	Tim McGraw	lie	anger
7	Taylor Swift	Taylor Swift	Tim McGraw	lie	disgust
8	Taylor Swift	Taylor Swift	Tim McGraw	lie	negative
9	Taylor Swift	Taylor Swift	Tim McGraw	lie	sadness
10	Taylor Swift	Taylor Swift	Tim McGraw	truck	trust
11	Taylor Swift	Taylor Swift	Tim McGraw	long	anticipation
12	Taylor Swift	Taylor Swift	Tim McGraw	time	anticipation
13	Taylor Swift	Taylor Swift	Tim McGraw	hope	anticipation

Top 10 Anger Words

```
nrc_anger_count <- tidy_lyrics_nrc%>%
    filter(sentiment=="anger") %>%
    count(word) %>%
    arrange(desc( n)) %>%
    slice_head(n=10)
```

^	word [‡]	n [‡]
1	bad	80
2	mad	48
3	hate	44
4	feeling	36
5	lose	28
6	fight	26
7	crazy	23
8	bout	16
9	screaming	15
10	words	14

Top 10 Anger Words

