Aplicação de Métodos Ativos no Ensino de Análise e Projeto de Sistemas: Um Relato da Avaliação de Desempenho

Vitor de Souza Castro¹, Sandro Ronaldo Bezerra Oliveira¹

¹Programa de Pós-Graduação em Ciência da Computação – Instituto de Ciência Exatas e Naturais – Universidade Federal do Pará (UFPA) – Belém – PA – Brasil

vitor@unifesspa.edu.br, srbo@ufpa.br

Abstract. The objective of this work is to present a statistical study on the performance of the active methods flipped classroom, quizzes, problem-based learning (applied in pairs and groups), hands-on format laboratory, and project-based learning in the Systems Analysis and Design subject included in the curriculum of a computer science course. To achieve this objective, student performances were collected in each of the methods and a statistical analysis was performed to compare the active methods used to determine which one has the best performance. In a general analysis, the project-based learning and flipped classroom methods have superior performance compared to the other methods.

Resumo. O objetivo deste trabalho é apresentar um estudo estatístico de desempenho entre os métodos ativos sala de aula invertida, quiz, aprendizado baseado em problema (aplicada em dupla e grupo), laboratório em formato hands-on e aprendizado baseado em projetos na disciplina de Análise e Projeto de Sistemas. Para atender tal objetivo, foram coletados os desempenhos dos alunos em cada um dos métodos e realizada uma análise estatística de modo a confrontar os métodos utilizados para determinar qual possui maior desempenho. Em uma análise geral, os métodos aprendizado baseado em projeto e sala de aula invertida possuem desempenho superiores frente aos demais métodos.

1. Introdução

Uma das dificuldades encontradas que levam a evasão dos alunos de computação é a didática dos professores [Silva et al. 2021]. Buscar alternativas para melhorar este aspectos perpassa pela inclusão de estratégias e métodos de ensino mais atrativos para os alunos. No entanto, os desafios do professor para aplicação desses métodos incluem: maior tempo de preparação e falta de recursos necessários [AbdelSattar e Labib 2019].

O estudo Lombardi e Shipley (2021) destaca os componentes essenciais para o ecossistema de aprendizagem ativa, sendo: compreensão das práticas de domínio; dados sobre fenômenos; modelos científicos; e direcionamentos de experiências. O professor atua como facilitador para a compreensão dos alunos, que junto com seus pares também experimentam um ambiente de aprendizagem ativa.

Frente às abordagens tradicionais de ensino, onde o professor é o principal ator do processo, restando ao aluno uma posição passiva, as metodologias ativas destacam-se em termo de eficiência de aprendizagem [Elgrably e Oliveira 2022, de Sena Quaresma e Oliveira 2022, Garcia e Oliveira 2022]. No entanto, tais trabalhos não abordam uma

comparação de eficiência entre os métodos ativos, de modo a identificar qual possui maior eficiência em determinado contexto.

Em Witt e Kemczinski (2020) identificou-se o aprendizado baseado em problema como o método com maior incidência dentre os trabalhos pesquisados na área da Computação. No trabalho Castro e Oliveira (2023a) os métodos com maior incidência dentre os trabalhos foram aprendizado baseado em projeto, laboratório no formato *handson*, aprendizado baseado em problema e sala de aula invertida.

A diversidade de métodos ativos permite que o professor tenha um conjunto de métodos para utilizar frente aos conteúdos necessários da formação do aluno. Compreender a forma de aplicação e estudos sobre a eficiência de cada um desses métodos ativos permite ao professor decidir com segurança quais utilizar.

Diante disso, a principal motivação deste trabalho parte da premissa que há um ganho de aprendizagem com os métodos ativos em relação ao ensino tradicional na área de computação, no entanto identificar qual o método ativo possui maior eficiência apresentase como objeto de estudo deste trabalho. Além desta motivação, outro aspecto relevante para o desenvolvimento deste trabalho foi o desenvolvimento do experimento em sala de aula em uma turma de Análise e Projeto de Sistemas (APS) realizado a partir do currículo e plano de ensino direcionados para as estratégias ativas de ensino, que forneceu os dados para a análise estatística apresentada neste trabalho [Castro e Oliveira 2023b].

Inúmeros trabalhos na literatura apresentam estudos sobre a avaliação dos métodos ativos comparando o desempenho com as abordagens tradicionais. Em Bartel et al. (2023) foi avaliada a eficiência do método sala de aula invertida versus a abordagem tradicional de ensino. No trabalho de Sena Quaresma e Oliveira (2022) houve a avaliação de eficiência no aprendizado de uma abordagem ativa contemplando os métodos aprendizado baseado em projeto e sala de aula invertida em relação a uma abordagem tradicional de ensino.

Com base no exposto, o objetivo deste trabalho é apresentar um estudo comparativo quanto à eficiência no uso dentre os métodos ativos sala de aula invertida, *quiz*, aprendizado baseado em problema (aplicada em dupla e grupo), laboratório em formato *hands-on* e aprendizado baseado em projeto na disciplina de APS constante no currículo de um curso de computação. Alinhado ao objetivo, neste trabalho busca-se responder a seguinte questão de pesquisa: Qual método ativo possui maior desempenho no ensino da disciplina de Análise e Projeto de Sistemas?

Além desta seção introdutória, este artigo está organizado da seguinte forma: a Seção 2 apresenta a teoria dos principais assuntos do trabalho; a Seção 3 detalha a metodologia aplicada para a análise comparativa entre os métodos ativos; na Seção 4 é apresentado todo o processo de execução do experimento; a Seção 5 apresenta os resultados obtidos a partir de uma análise estatística; a Seção 6 apresenta as reflexões sobre os resultados e a aplicação do experimento; e, por fim, a Seção 7 apresenta as considerações finais, as limitações e os trabalhos futuros.

2. Referencial Teórico

Esta seção apresenta uma descrição sucinta dos métodos ativos usados neste trabalho.

2.1. Sala de Aula Invertida

A metodologia ativa denominada sala de aula invertida (*Flipped Classroom*) consiste na inversão das ações que ocorrem em sala de aula e fora dela, considerando as discussões, a assimilação e a compreensão dos conteúdos como objetivos centrais protagonizados pelo estudante em sala de aula, na presença do professor, enquanto mediador do processo de aprendizagem [Schneiders 2018].

Em Kato et al. (2021) é definido que na sala de aula invertida o estudante preparase estudando antes para as atividades em sala de aula, durante a aula pratica os conceitos aprendidos e depois revisa o conteúdo e estende seu aprendizado.

A conceituação nos estudos Schneiders (2018) e Kato et al. (2021) seguem na mesma direção e apresentam o espaço da sala de aula como local para discussão, assimilação e prática dos conceitos aprendidos.

Por fim, destaca-se em Lima et al. (2019), Lima et al. (2020) e Castro e Oliveira (2023a) o uso da sala de aula invertida como uma das metodologia mais utilizadas pelos docentes no ensino de Engenharia de Software.

2.2. Aprendizado Baseado em Problema

As definições de aprendizado baseado em problema (*Problem-Based Learning* - PBL) variam. No trabalho Kwan (2009) , seria uma estratégia de educação total baseada no princípio de utilização de problemas do mundo real como ponto de partida para a aquisição e integração de novos conhecimentos. No estudo de van Der Vleuten e Schuwirth (2019) são destacadas as principais características da PBL: 1) o uso de tarefas ou problemas envolventes como ponto de partida para a aprendizagem; 2) aprendizagem autodirigida e autorregulada; 3) trabalho em grupos de alunos realizando essas tarefas; 4) professor como facilitador desse processo.

Os objetivos do PBL incluem a aprendizagem de conteúdos, a aquisição de competências processuais e de resolução de problemas, e a aprendizagem ao longo da vida [Tan 2021]. Além disso, em Tan (2021) é destacada que a abordagem promove o envolvimento ativo, a aprendizagem interdisciplinar e colaborativo, observando um problema da vida real.

Semelhante à sala de aula invertida, a PBL, nos trabalhos Lima et al. (2019), Lima et al. (2020) e Castro e Oliveira (2023a), , apresenta-se como um dos métodos ativos mais utilizados no ensino de Engenharia de Software.

Pela definição e características destacadas, o aprendizado baseado em problema apresenta-se como uma metodologia ativa com potencial para a aplicação nos diversos níveis de ensino e áreas de formação, além de fomentar a aprendizagem colaborativa, bem como a aplicação direcionada para um problema real.

2.3. Aprendizado Baseado em Projeto

A aprendizagem baseada em projetos é um modelo de ensino que consiste em permitir que os alunos confrontem as questões e os problemas do mundo real que consideram significativos, determinando como abordá-los e, então, agindo de forma cooperativa em busca de soluções [Bender 2015].

Em Masson et al. (2012) as principais características dessa metodologia são definidas, a saber: o aluno é o centro do processo; desenvolve-se em grupos tutoriais; e caracteriza-se por ser um processo ativo, cooperativo, integrado e interdisciplinar e orientado para a aprendizagem do aluno. Além dessas características, em Santiago et al. (2023) é destacada a importância da delimitação dos objetivos de aprendizagem, que é o produto da reflexão sobre as habilidades, as competências e os conhecimentos que se espera que o estudante tenha obtido ao final da prática educacional.

A utilização da aprendizagem baseada em projeto na Engenharia de Software apresenta-se como uma das estratégias de ensino mais utilizadas [Castro e Oliveira 2023a]. Além disso, o uso em outras áreas do conhecimento demonstra o potencial da estratégia para o processo de ensino/aprendizagem [Cecílio e Tedesco 2019, dos Santos 2020, Barros et al. 2021, Silva e Salgado 2019].

Diante disso, a inclusão dessa estratégia ao ensino de APS possibilitará a vivência dos alunos em projetos reais, organizados em grupos, de modo a fomentar a cooperação em busca de soluções para o escopo do projeto apresentado. O docente assume o papel de facilitador, orientando os alunos de modo a concentrar os esforços nos objetivos de aprendizagem estabelecidos.

2.4. Quiz

Em Perez e Botino (2020) um *Quiz* pode ser definido como questionários de escolha múltipla com correção automática, cuja finalidade é avaliar de forma rápida e divertida. Essa prática é eficaz e confere ao aluno a capacidade de aprender de forma simples, didática e lúdica.

Nos *quizzes* aplicam-se perguntas e respostas utilizando os dispositivos móveis dos estudantes, nos quais o docente apresenta uma questão (geralmente de múltipla escolha) e os estudantes respondem por meio do aplicativo [Espig e de Souza Domingues 2020].

Em Guimarães et al. (2018) destaca-se que a experiência com uso de *Quiz* pode contribuir para uma melhor relação dos alunos com os seus professores, o que demonstra uma relação estabelecida entre a aprendizagem e novos métodos de ensino.

Existem diversas ferramentas que permitem a aplicação de *quizzes*, tais como *Kahoot!*, *Quizizz*, *Socrative*, *Quizalize* e *Pear Deck* [Perez e Botino 2020]. Nessas ferramentas o docente pode acompanhar o progresso de cada aluno associado aos acertos e erros em cada questão do *Quiz*.

Em Erdogmus e Péraire (2017) houve a aplicação de *quizzes* para conteúdos teóricos e outras abordagens ativas de ensino, tais como sala de aula invertida e sessões de atividades em grupo. No trabalho Vieira e Lukoski (2023) a utilização de *quizzes* foi uma ferramenta para aplicação da aprendizagem baseada em problemas, e os resultados do estudo demonstraram que a técnica utilizada teve um impacto positivo para uma aprendizagem dos estudantes. Em outra forma de aplicação, no estudo de Sousa Pinto e Silva (2017) os autores fizeram uso do *Quiz* na perspectiva da gamificação, sendo o direcionamento do *Quiz* para a revisão de conteúdos, não fazendo uso de ferramentas eletrônicas para o controle das perguntas e respostas.

Diante do exposto, observa-se que o uso do Quiz, como abordagem ativa, busca

fomentar a aprendizagem do aluno e gerar dinâmica de competição em sala de aula.

2.5. Laboratório no Formato Hands-on

No ensino de Engenharia de Software o uso de sessões práticas em laboratório, com o objetivo de incentivar e fortalecer o aprendizado, é uma estratégia de ensino utilizada por inúmeros professores, principalmente para conteúdos que envolvem desenvolvimento de software [Restrepo Naranjo et al. 2018, O'Neill 2018, Cicirello 2017]. Em Wang et al. (2020) foi utilizada a estratégia de ensino em laboratório no formato *Hands-on*, dividindo os conteúdos em 5 temáticas relacionadas aos conteúdos de programação.

No trabalho de Raibulet et al. (2020), o uso de estratégias de ensino em laboratório teve como objetivo possibilitar que os alunos tivessem a vivência na instalação e configuração de programas, tal como Git e SonarQube.

Nota-se pelos trabalhos de Wang et al. (2020) e Raibulet et al. (2020) que a utilização de laboratório possibilita ao aluno uma vivência prática quanto à instalação e utilização de determinada ferramenta, bem como a construção de soluções.

As atividades práticas realizadas em laboratório têm o poder de instigar a curiosidade e, por conseguinte, despertar o interesse do aluno. Essa abordagem *hands-on* não apenas complementa, mas também enriquece a compreensão dos conceitos, permitindo uma assimilação mais profunda dos assuntos estudados em aulas teóricas. [Cristina et al. 2005].

3. Metodologia

De acordo o livro Bailey (2008), um experimento científico deve ser planejado e executado seguindo um conjunto de passos, sendo: consulta, projeto estatístico, coleta de dados, análise dos dados e interpretação.

A fase de consulta define um conjunto de questões e hipóteses levantadas pelo pesquisador sobre o tema a ser abordado, ou seja, deve-se fazer perguntas suficientes para descobrir as principais características do experimento e fornecer um esboço simples que pareça atender ao propósito [Bailey 2008]. No contexto deste trabalho, a questão principal de pesquisa (QP) é:

QP Qual método ativo possui maior desempenho no ensino de análise e projeto de software?

A Figura 1 apresenta o projeto estatístico definido para o experimento, sendo considerado o desempenho de cada aluno em relação às 4 Unidades de Ensino. O primeiro passo é identificar se os dados da amostra possuem comportamento ou não de uma normal. Para essa definição, foi realizada a execução de dois testes de normalidade, Shapiro-Wilk e Kolmogorov-Smirnov, no entanto, devido ao tamanho de amostra limitado (menor que 40), foi incluída a análise gráfica utilizando o gráfico Quantil-Quantil (Q-Q plot). Após a definição se as duas amostras seguiram o comportamento normal ou não, foi executado o teste t-Student para dados com comportamento de uma normal e o teste Mann-Whitney para dados não paramétricos caso os dados da amostra não possuíssem um comportamento de uma normal. Por fim, caso o valor p (*p-value*) encontrado fosse maior que 0.05, a hipótese nula seria aceita, e se o valor p for menor que 0.05, a hipótese alternativa seria aceita.

Figura 1. Projeto estatístico

O planejamento para a avaliação da abordagem, na fase de coleta de dados, foi a aplicação da abordagem ativa na disciplina de APS, conforme será apresentado na Seção 4.

Quanto à análise de dados, foi utilizado a linguagem R, por meio da ferramenta RStudio para a execução dos testes estatísticos visando embasar os resultados que serão apresentados na Seção 5.

4. Contexto do Experimento

O experimento foi realizado na disciplina de Análise e Projeto de Sistemas de uma Instituição Federal de Ensino Superior da região norte do Brasil. A turma era composta por 38 alunos matriculados e 36 com frequência mínima de 75%.

O plano de ensino utilizado nesta disciplina Castro e Oliveira (2023b) apresentou uma abordagem de ensino voltada para o uso de metodologias ativas. A Tabela 1 apresenta as Unidades de Ensino apresentadas.

A avaliação dos alunos aconteceu a partir do uso de notas entre 0 e 10 em todas as atividades previstas no plano de ensino, sendo que o cálculo final para a determinação do conceito na disciplina utilizou as seguintes ponderações: 35% Projeto final; 30% Dinâmicas em sala; 10% *Quiz*; 10% Exercícios; e 10% Participação.

A Tabela 2 apresenta em quais unidades de ensino cada método ativo foi aplicado. Destaca-se que, com exceção da Unidade IV, todas as outras Unidades utilizaram pelo menos dois métodos ativos ou formas diferentes do mesmo método. O método aprendizado baseado em problema foi executado de duas maneiras, sendo em dupla, contendo dois alunos para a atividade, e em grupo, contendo no mínimo 4 e no máximo 6 alunos para a execução da atividade.

5. Resultados

Seguindo os passos definidos na metodologia descrita na Seção 3, foi realizada a avaliação de normalidade por meio dos testes Shapiro-Wilk, Kolmogorov-Smirnov e o gráfico Q-Q.

¹https://www.rstudio.com/

Tabela 1. Estrutura básica do plano de curso para o ensino de APS

Objetivo do curso

Apresentar os conceitos relacionados a atividade de Análise e Projeto de Software, bem como as técnicas de projeto e requisitos de qualidade

Pré-requisitos do curso

Engenharia de Software, Banco de Dados e Programação Orientada a Objetos

Unidades de Ensino

- I Fundamentos de Projeto de Software
- II Estratégias para Projeto de Software
- III Qualidade em Projeto de Software
- IV Análise e Projeto orientado a objetos

Resultados esperados

O aluno deve ser capaz de compreender os conceitos relacionados a projeto de Software. Deve também situar a análise e projeto dentro do ciclo de vida do software, bem como projetar um software utilizando técnicas adequadas

Tabela 2. Métodos ativos por Unidade de ensino

Método	Unidade I	Unidade II	Unidade III	Unidade IV
Sala de Aula Invertida	X			
Quiz	X	X		
Aprendizado baseado em Problema	X	X	X	
(dupla)				
Aprendizado baseado em Problema		X	X	
(grupo)				
Laboratório em formato Hands-on		X		
Aprendizado baseado em Projeto				X

A Tabela 3 apresenta o resumo estatístico e os valores *p-value* para as variáveis utilizadas para efeito de comparação entre os métodos. Realizada a análise do gráfico Q-Q para todos os métodos, foi considerada a normalidade dos dados e em função deste resultado aplicou-se o teste *t-Student* para a comparação entre as amostras, por meio do teste de hipótese.

Tabela 3. Análise de Normalidade

Método	Média	Desvio	Shapiro-Wilk	Kolmogorov-	Gráfico
				Smirnov	Q-Q
Sala de Aula Invertida	7.576	2.483387	0.000000035308	0.00100069	Normal
Quiz	6.148	1.174989	0.0221746	0.690205	Normal
Aprendizado baseado em	6.911	1.287307	0.00902827	0.132351	Normal
Problema (dupla)					
Aprendizado baseado em	6.899	1.423282	0.00809702	0.293864	Normal
Problema (grupo)					
Laboratório em formato	6.688	2.321003	0.00136907	0.2072	Normal
Hands-on					
Aprendizado baseado em	7.910	0.7497685	0.00685421	0.101435	Normal
Projeto					

Para o método sala de aula invertida os testes Shapiro-Wilk, Kolmogorov-Smirnov apresentaram *p-value* menor 0,05. A Figura 2 apresenta o gráfico Q-Q para o método sala de aula invertida. Nota-se que há a maior concentração dos pontos dentro do intervalo

seguindo a reta da normalidade.

Figura 2. Gráfico Q-Q - Sala de aula invertida

5.1. Avaliação Geral

Realizando a análise da aplicação dos métodos ativos de maneira geral para a disciplina, observa-se que o método aprendizado baseado em projetos possui maior desempenho se comparado com os demais métodos.

A Tabela 4 apresenta uma matriz entre os métodos ativos de modo a comparar estatisticamente se o desempenho do método da linha é superior ao desempenho do método da coluna, ou seja, na intercessão entre os métodos foi indicado Hipótese Nula (H0), caso o desempenho do método A (linha) não fosse superior ao método B (coluna), e a Hipótese Alternativa (H1) rejeita a H0, ambas com probabilidade de erro de 5%.

Na Tabela 4 temos 30 hipóteses testadas e o resultado de cada teste apresentado na interseção entre linha e coluna. Cada hipótese desenvolvida seguiu a formulação:

Ma: método ativo indicado na linha

Mb: método ativo indicado na coluna

H1 O desempenho do Ma supera o desempenho do Mb.

Exemplo: O desempenho do método Sala de Aula invertida (Ma) supera o desempenho do método *Quiz* (Mb).

As Tabelas 6, 7 e 8 apresentam o mesmo padrão de formulação de hipótese apresentado para a Tabela 4.

Os resultados apresentados na Tabela 4 representam que se o *p-value* foi maior que 0,05 a H0 é aceita, caso contrário H1 foi aceita. Além disso, nota-se que o aprendizado baseado em projeto possui desempenho semelhante à sala de aula invertida e desempenho superior em relação aos outros métodos ativos. Outro aspecto relevante da Tabela 4 é o aprendizado baseado em problema (dupla ou grupo), que superou o desempenho do *Quiz*.

5.2. Avaliação por Unidade de Ensino

A avaliação por Unidade de Ensino apresenta a análise de desempenho entre os métodos utilizados em uma mesma Unidade de Ensino, devido a diferença de conteúdos e práticas utilizados em cada uma das Unidades de Ensino, como visto na Tabela 2.

A metodologia de análise dos resultados seguiu a utilizada na Seção 5.1, comparando o desempenho entre cada um dos métodos utilizados em cada Unidade de Ensino.

Tabela 4. Comparativo de desempenho - teste t-Student

Método	Sala de Aula In- vertida	Quiz	Aprendizado baseado em Problema (dupla)	Aprendizado baseado em Problema (grupo)	Laboratório em formato <i>Hands-on</i>	Aprendizado baseado em Projeto
Sala de	_	0.001505	0.07975	0.08069 (H0)	0.06059	0.7774 (H0)
Aula Inver-		(H1)	(H0)	,	(H0)	, ,
tida						
Quiz	0.9985	-	0.9947 (H0)	0.9914 (H0)	0.8904 (H0)	1 (H0)
	(H0)					
Aprendizado	0.9203	0.005303	-	0.4853 (H0)	0.4853 (H0)	0.9999 (H0)
baseado em	(H0)	(H1)				
Problema						
(dupla)						
Aprendizado		0.008615	0.5147 (H0)	-	0.3212 (H0)	0.9998 (H0)
baseado em	(H0)	(H1)				
Problema						
(grupo)						
Laboratório	0.9394	0.1096	0.6924 (H0)	0.6788 (H0)	-	0.9978 (H0)
em formato	(H0)	(H0)				
Hands-on						
Aprendizado		0.000086	0.000207	0.000207	0.002218	-
baseado em	(H0)	(H1)	(H1)	(H1)	(H1)	
Projeto						

Tabela 5. Análise de Normalidade por Unidade de ensino

Método	Média	Desvio	Shapiro-Wilk	Kolmogorov-	Gráfico
				Smirnov	Q-Q
		Unidad	e I		
Sala de Aula Invertida	7.576	2.483387	0.000000035308	0.00100069	Normal
Quiz	5.769	1.823688	0.0396615	0.488664	Normal
Aprendizado baseado em Pro-	6.024	1.627284	0.064155	0.866377	Normal
blema (dupla)					
		Unidade	e II		
Quiz	6.528	1.406053	0.0440159	0.760367	Não nor-
					mal
Aprendizado baseado em Pro-	7.622	1.933143	0.00000130269	0.0162322	Não nor-
blema (dupla)					mal
Aprendizado baseado em Pro-	6.434	1.572784	0.0117709	0.51049	Normal
blema (grupo)					
Laboratório em formato	6.688	2.321003	0.00136907	0.2072	Normal
Hands-on					
Unidade III					
Aprendizado baseado em Pro-	7.264	2.581489	0.0000143547	0.0460265	Não nor-
blema (dupla)					mal
Aprendizado baseado em Pro-	7.365	1.663252	0.000363027	0.402907	Normal
blema (grupo)					

A Tabela 5 apresenta o resumo estatístico e os valores *p-value* para as variáveis utilizadas como efeito de comparação entre os métodos por Unidade de Ensino.

A Unidade I tem por objetivo apresentar os principais conceitos sobre projetos de software, bem como relembrar os alunos quanto às etapas do processo de desenvolvi-

mento de um software e a interface entre a Engenharia de Requisitos e a etapa de Análise e Projeto do Sistemas.

A Tabela 6, semelhante a Tabela 4, apresenta o comparativo de desempenho entre os métodos que possuíram avaliação na Unidade I. Nota-se que a sala de aula invertida possui maior desempenho em relação ao *Quiz* e aprendizado baseado em problema (dupla).

Método	Sala de Aula Invertida	Quiz	Exercício em dupla
Sala de Aula Invertida	-	0.000398789	0.00132087 (H1)
		(H1)	
Quiz	0.999601 (H0)	-	0.733936 (H0)
Aprendizado baseado em	0.998679 (H0)	0.266064 (H0)	-
Problema (dunla)			

Tabela 6. Unidade I - Comparativo de desempenho teste t-Student P-value

A Unidade II - Estratégias para Projetos de Software tem como objetivo apresentar as formas de representação de um projeto de software, bem como ferramentas utilizadas neste processo e a documentação de um projeto de software. As atividades nesta Unidade envolveram aplicação dos conteúdos de forma prática.

A Tabela 7 apresenta o comparativo de desempenho entre os métodos que possuíram avaliação na Unidade II. O aprendizado baseado em problema (dupla) obteve melhor desempenho frente aos demais métodos ativos.

Tabela 7. Unidade II - Comparativo de desempenho - teste Mann-Whitney para
dados não paramétricos

Método	Quiz	Exercício	Aprendizado base-	Laboratório em
		em dupla	ado em Problema	formato Hands-
				on
Quiz	-	0.99993	0.419607 (H0)	0.848978 (H0)
		(H0)		
Aprendizado baseado	0.0000733552	-	0.0000824703 (H1)	0.018656 (H1)
em Problema (dupla)	(H1)			
Aprendizado baseado	0.584793	0.999921	-	0.901586 (H0)
em Problema (grupo)	(H0)	(H0)		
Laboratório em for-	0.981853	0.100383	0.100383 (H0)	-
mato Hands-on	(H0)	(H0)		

Após a apresentação dos conteúdos sobre os fundamentos e as estratégias sobre análise e projeto de sistemas, destacando o contexto da arquitetura e a sua aplicação em diferentes ambientes, a Unidade III tem como objetivo a apresentação dos principais modelos de maturidade relacionados ao processo de APS, bem como indicar os atributos de qualidade associados ao projeto de software.

Sobre a análise de desempenho entre o aprendizado baseado em problema, dupla ou grupo, não houve diferença entre as duas aplicações, ou seja, a H0 foi aceita no comparativo entre os dois formatos de aplicação especificamente para Unidade III, como visto na Tabela 8.

A Unidade IV - Análise e Projeto Orientado a Objetos encerra os conteúdos referente à Análise e Projeto de Sistemas. Essa Unidade tem como direcionamento pro-

Tabela 8. Unidade III - Comparativo de desempenho - teste *Mann-Whitney* para dados não paramétricos

Método	Aprendizado base- ado em Problema (dupla)	Aprendizado baseado em Problema (grupo)
Aprendizado baseado em	-	0.689215 (H0)
Problema (dupla)		
Aprendizado baseado em	0.314804 (H0)	-
Problema (grupo)		

porcionar ao estudante a vivência em um projeto com cliente real. Na Unidade IV não houve comparação com outro método, pois nesta unidade apenas o aprendizado baseado em projeto foi utilizado.

6. Discussões

Com base na QP e na Seção 5 pode-se iniciar as discussões sobre o desempenho dos métodos ativos na disciplina de APS. Inicialmente, em uma visão geral sobre o desempenho dos métodos ativos, pode-se destacar o aprendizado baseado em projeto como o método ativo com maior desempenho em relação aos demais métodos utilizados.

No entanto, os conteúdos tratados na Unidade IV foram exclusivamente direcionados para o aprendizado baseado em projeto. Além disso, os alunos foram divididos em grupos de 6 alunos para o desenvolvimento de um projeto para conclusão da disciplina. A ponderação da atividade de projeto foi para o grupo e não individualmente para cada aluno, o que fez com as notas dos alunos fossem iguais entre os membros do grupo.

Ainda na visão geral, o aprendizado baseado em problema e a sala de aula invertida possuíram desempenho superior se comparado ao *Quiz*. Neste contexto, os dois métodos foram desenvolvidos em grupo, com pelo menos dois alunos por grupo, ao contrário do *Quiz* que foi realizado de forma individual. Avaliando esse contexto, há uma tendência de desempenho melhor para as atividades em grupo em relação às individuais.

Em outra perspectiva, podemos analisar o desempenho dos métodos ativos a partir das Unidades de Ensino, com isso pode-se avaliar o desempenho dos métodos para conteúdos correlatos dentro de uma mesma Unidade de Ensino.

Na Unidade I os conteúdos tratados são em sua maioria teóricos, onde o método sala de aula invertida obteve desempenho maior que o *Quiz* e o aprendizado baseado em problema (dupla). Nota-se que, semelhante à analise geral, a atividade em grupo superou o desempenho em relação às atividades individuais.

Para a Unidade II os conteúdos tratados foram em sua maioria práticos, onde o método aprendizado baseado em problema (dupla) obteve desempenho superior em relação aos demais métodos da unidade. Uma hipótese é que para atividades em dupla há uma maior comunicação e interação entre a dupla em prol do desenvolvimento da atividade. Para grupos maiores, que foi utilizado no aprendizado baseado em problema (grupo) e no laboratório em formato *hands-on*, pode ocorrer a concentração de atividades em alguns membros ou a dificuldade do grupo em gerenciar e consolidar as atividades a serem entregues.

Na Unidade III, que tratou de conteúdos teóricos e práticos em proporções iguais, os métodos utilizados obtiveram desempenho semelhante. Uma hipótese para justificar essa igualdade trata-se de conteúdos que exigem dos alunos a capacidade de Analisar e Avaliar, segundo a Taxonomia Revisada de Bloom [Anderson e Krathwohl 2001].

Por fim, na Unidade IV, que abordou aspectos práticos de convergência de todos os conteúdos, foi utilizada apenas o método aprendizado baseado em projeto. Na avaliação de desempenho geral este método foi o que possuiu maior desempenho dentre os demais métodos, exceto a sala de aula invertida.

Em resposta a QP, podemos indicar que o método aprendizado baseado em projetos possui maior desempenho no ensino de APS. No entanto, este resultado deve ser objeto de estudo em outros experimentos, visando não generalizar a afirmação em todos os casos.

7. Considerações Finais

O presente trabalho teve como objetivo a avaliação do desempenho entre métodos ativos na disciplina de APS. A análise quanto ao desempenho levou em consideração a nota dos alunos em cada método, aplicando a essas notas a avaliação de normalidade e avaliação de hipóteses usando o teste *t-Student* ou o teste teste *Mann-Whitney* para dados não paramétricos, com significância de 0.05.

Os resultados direcionam o método aprendizado baseado em projetos como o maior desempenho se relacionado com *Quiz*, aprendizado baseado em problemas, laboratório em formato *hands-on* e sala de aula invertida. No entanto, em análise por Unidade de Ensino, a sala de aula invertida obteve maior desempenho na unidade I, o aprendizado baseado em problemas (dupla) na unidade II, e o aprendizado baseado em problema (dupla e grupo) na unidade III.

Nas discussões do trabalho houve a sinalização de que os métodos ativos em grupo trazem maior desempenho, no entanto, para conteúdos práticos, ou exemplo na unidade II, o aprendizado baseado em problemas (dupla) obteve maior desempenho nesta unidade. Além disso, para conteúdos teóricos a sala de aula invertida alcançou o melhor desempenho na unidade I.

Como limitações deste trabalho destaca-se a obtenção dos dados referentes ao desempenho por método ativos em uma única execução da disciplina de APS. Além disso, na unidade IV não houve outro método ativo para comparação com o aprendizado baseado em projeto.

Por fim, como trabalhos futuros pretende-se avaliar o desempenho dos métodos ativos em outra turma de APS de modo a comparar os resultados estatisticamente e aplicar a mesma análise para outras disciplinas da Engenharia de Software, buscando identificar se o padrão entre os métodos ativos seguem a análise e as discussões apresentadas neste trabalho. Além disso, pretende-se realizar uma revisão sistemática na literatura de modo a confrontar os resultados obtidos nesta pesquisa com os trabalhos encontrados na revisão.

Referências

AbdelSattar, A. e Labib, W. (2019). Active learning in engineering education: Teaching strategies and methods of overcoming challenges. In *Proceedings of the 2019 8th*

- International Conference on Educational and Information Technology, ICEIT 2019, page 255–261, New York, NY, USA. Association for Computing Machinery.
- Anderson, L. W. e Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. Longman.
- Bailey, R. A. (2008). *Design of Comparative Experiments*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press.
- Barros, M. C. V., Morais, M. L. P. V. d., Lima, L. M. d., Ribeiro, A. L. G., Custódio, I. B., Hattori, W. T., Raimondi, G. A., e Paulino, D. B. (2021). Aprendizagem baseada em projetos para o ensino-aprendizagem de saúde coletiva na medicina: relato de experiência. *Interface-Comunicação*, *Saúde*, *Educação*, 25:e200167.
- Bartel, P., Bartel, A., e Hagel, G. (2023). Flipped teaching in software engineering education.: Results of a long-term study. In *Proceedings of the 5th European Conference on Software Engineering Education*, ECSEE '23, page 93–101, New York, NY, USA. Association for Computing Machinery.
- Bender, W. N. (2015). Aprendizagem baseada em projetos: educação diferenciada para o século XXI. Penso Editora.
- Castro, V. d. S. e Oliveira, S. R. B. (2023a). Diversity in software design and construction teaching: A systematic literature review. *Education Sciences*, 13(3):303.
- Castro, V. d. S. e Oliveira, S. R. B. (2023b). Software analysis and design: A course plan using active teaching methods in computer science course. In 20th CONTECSI INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGY MANAGEMENT VIRTUAL.
- Cecílio, W. A. G. e Tedesco, D. G. (2019). Aprendizagem baseada em projetos: relato de experiência na disciplina de geometria analítica. *Revista Docência do Ensino Superior*, 9:1–20.
- Cicirello, V. A. (2017). Student developed computer science educational tools as software engineering course projects. *J. Comput. Sci. Coll.*, 32(3):55–61.
- Cristina, A., Borges, P. A., e Ribeiro, A. C. (2005). A importância das aulas práticas para alunos jovens e adultos: uma abordagem investigativa sobre a percepção dos alunos do proef ii. *Revista Ensaio*.
- de Sena Quaresma, J. A. e Oliveira, S. R. B. (2022). Evaluation and use of a student-centered syllabus for the software process subject in a postgraduate course: A quasi-experiment. *Education Sciences*, 12(12):851.
- de Sousa Pinto, F. e Silva, P. C. (2017). Gamification applied for software engineering teaching-learning process. In *Proceedings of the XXXI Brazilian Symposium on Software Engineering*, SBES '17, page 299–307, New York, NY, USA. Association for Computing Machinery.
- dos Santos, A. C. M. Z. (2020). Contribuições da aprendizagem baseada em projetos: análise da utilização do método em disciplina do curso de administração. *Revista Thema*, 17(1):124–134.

- Elgrably, I. S. e Oliveira, S. R. B. (2022). A quasi-experimental evaluation of teaching software testing in software quality assurance subject during a post-graduate computer science course. *International Journal of Emerging Technologies in Learning*, 17(5).
- Erdogmus, H. e Péraire, C. (2017). Flipping a graduate-level software engineering foundations course. In 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering Education and Training Track (ICSE-SEET), pages 23–32.
- Espig, A. e de Souza Domingues, M. J. C. (2020). Kahoot! no ensino superior: razões para a gamificação das aulas por meio de uma ferramenta digital de quizzes. *Informática na educação: teoria & prática*, 23(2 Mai/Ago).
- Garcia, F. e Oliveira, S. (2022). Aplicação de um plano de ensino para disciplina de algoritmos com metodologias ativas: Um relato de estudo de caso piloto. In *Anais do XXXIII Simpósio Brasileiro de Informática na Educação*, pages 301–310, Porto Alegre, RS, Brasil. SBC.
- Guimarães, F., Leite, M., Reinaldo, F., e Ito, G. (2018). Métodos ativos de ensino aliados com tecnologia para a prática de ensino: um relato de experiência. In *Anais do XXIV Workshop de Informática na Escola*, pages 333–342. SBC.
- Kato, E. R. R., Menotti, R., de França, C. A., e Inoue, R. S. (2021). Sala de aula invertida: aplicação no curso de engenharia na disciplina de lógica digital. *METODOLOGIAS ATIVAS APLICADAS NAS ENGENHARIAS UFSCAR*, page 45.
- Kwan, A. (2009). Problem-based learning. *The Routledge international handbook of higher education*, pages 91–108.
- Lima, J., Júnior, M. A., Moya, A., Almeida, R., Anjos, P., Lencastre, M., Fagundes, R., e Alencar, F. (2019). As metodologias ativas e o ensino em engenharia de software: uma revisão sistemática da literatura. In *Anais do XXV Workshop de Informática na Escola*, pages 1014–1023, Porto Alegre, RS, Brasil. SBC.
- Lima, J. V. V., Silva, C. A. D., de Alencar, F. M. R., e Santos, W. B. (2020). Metodologias ativas como forma de reduzir os desafios do ensino em engenharia de software: diagnóstico de um survey. In *Anais do XXXI Simpósio Brasileiro de Informática na Educação*, pages 172–181. SBC.
- Lombardi, D. e Shipley, T. F. (2021). The curious construct of active learning. *Psychological Science in the Public Interest*, 22(1):8–43.
- Masson, T. J., Miranda, L. F. d., Munhoz Jr, A. H., e Castanheira, A. M. P. (2012). Metodologia de ensino: aprendizagem baseada em projetos (pbl). In *Anais do XL Congresso Brasileiro de Educação em Engenharia (COBENGE), Belém, PA, Brasil*, page 13. sn.
- O'Neill, B. (2018). Curriculum changes to improve software development skills in undergraduates. *J. Comput. Sci. Coll.*, 33(6):86–96.
- Perez, P. L. V. e Botino, C. F. d. S. (2020). Quiz mediado por sistemas de resposta dos estudantes como estratégia de ensino-aprendizado. *Revista da Universidade Federal Fluminense*, 23(1).
- Raibulet, C., Fontana, F. A., e Pigazzini, I. (2020). Teaching software engineering tools to undergraduate students. In *Proceedings of the 11th International Conference on*

- Education Technology and Computers, ICETC '19, page 262–267, New York, NY, USA. Association for Computing Machinery.
- Restrepo Naranjo, J. F., Claudia Rossi, A., Nice Alvez-Souza, S., e Risco Becerra, J. L. (2018). Designing a reference architecture for a collaborative software production and learning environment. In 2018 XIII Latin American Conference on Learning Technologies (LACLO), pages 408–415.
- Santiago, C. P., Menezes, J. W. M., e de Aquino, F. J. A. (2023). Proposta e avaliação de uma metodologia de aprendizagem baseada em projetos em disciplinas de engenharia de software através de uma sequência didática. *Revista Brasileira De Informática Na Educação*, 31:31–59.
- Schneiders, L. A. (2018). O método da sala de aula invertida (flipped classroom). *Laje-ado: ed. da UNIVATES*.
- Silva, R. A. d. S., AF, B. B., Maria de Fátima, P. F., de Sousa Santos, I., e Andrade, R. M. (2021). Evasão em computação na ufc sob a perspectiva dos alunos. In *Anais do XXIX Workshop sobre Educação em Computação*, pages 338–347. SBC.
- Silva, R. M. R. e Salgado, T. D. M. (2019). Aprendizagem baseada em projetos (abp) em curso de engenharia de materiais: o que dizem os discentes? *Revista de Ensino de Engenharia*, 38(1).
- Tan, O.-S. (2021). Problem-based learning innovation: Using problems to power learning in the 21st century. Gale Cengage Learning.
- van Der Vleuten, C. P. e Schuwirth, L. W. (2019). Assessment in the context of problem-based learning. *Advances in Health Sciences Education*, 24(5):903–914.
- Vieira, E. M. e Lukoski, S. D. (2023). Uso de quizzes online como parte de metodologias ativas de ensino-aprendizagem em uma universidade pública da paraíba. *Revista Científica de Iniciación a la investigación*, 8(1).
- Wang, Z., Xu, H., Liu, M., e Xu, X. (2020). Quality-driven and abstraction-oriented software construction course design: To fill the gap between programming and software engineering courses. In *Proceedings of the ACM Turing Celebration Conference China*, ACM TURC '20, page 9–14, New York, NY, USA. Association for Computing Machinery.
- Witt, D. T. e Kemczinski, A. (2020). Metodologias de aprendizagem ativa aplicadas à computação: uma revisão da literatura. *Informática na educação: teoria & prática*, 23(1 Jan/Abr).