

Evaluating the impact of BMI on Cholesterol

Rachel Gao and Team

Model & Results

	Outcome Variable: Cholesterol Ratio			
	(1)	(2)	(3)	(4)
BMI	0.064*** (0.003)	0.058*** (0.003)	0.055*** (0.003)	0.058*** (0.003)
Glycohemoglobin		0.199*** (0.031)	0.151*** (0.034)	0.131*** (0.033)
Age			0.005*** (0.001)	0.005*** (0.001)
GenderMale				0.510*** (0.034)
Constant	1.908*** (0.071)	1.006*** (0.160)	1.144*** (0.166)	0.924*** (0.164)
Observations	4,401	4,401	4,401	4,401
Adjusted R ² Residual Std. Error	$0.113 \\ 1.144 (df = 4399)$	0.128 $1.135 (df = 4398)$	0.134 $1.131 (df = 4397)$	0.178 $1.102 (df = 4396)$

Note:

 HC_3 robust standard errors in parentheses.

Limitation & Conclusion

Omitted Variables Bias:

Familial hypercholesterolemia, drinking habits, etc.

Reverse Causality Bias:

Individual's cholesterol ratio could affect their glycohemoglobin levels

Inspiration for future research:

The adjusted R-squared was below 20%, indicating there may be other factors, such as genetics and family history, with stronger effects on the cholesterol ratio.