Design and Analysis of Algorithms 6.046J/18.401J

LECTURE 14

Network Flow I

- Flow networks
- Maximum-flow problem
- Flow notation
- Properties of flow
- Cuts
- Residual networks
- Augmenting paths

Definition. A *flow network* is a directed graph G = (V, E) with two distinguished vertices: a *source s* and a *sink t*. Each edge $(u, v) \in E$ has a nonnegative *capacity* c(u, v). If $(u, v) \notin E$, then c(u, v) = 0.

Definition. A *flow network* is a directed graph G = (V, E) with two distinguished vertices: a *source s* and a *sink t*. Each edge $(u, v) \in E$ has a nonnegative *capacity* c(u, v). If $(u, v) \notin E$, then c(u, v) = 0.

Definition. A *positive flow* on *G* is a function *p*

- : $V \times V \rightarrow \mathbb{R}$ satisfying the following:
- Capacity constraint: For all $u, v \in V$, $0 \le p(u, v) \le c(u, v)$.
- *Flow conservation:* For all $u \in V \{s, t\}$,

$$\sum_{v \in V} p(u, v) - \sum_{v \in V} p(v, u) = 0.$$

Definition. A *positive flow* on *G* is a function *p*

- : $V \times V \rightarrow \mathbb{R}$ satisfying the following:
- Capacity constraint: For all $u, v \in V$,

$$0 \le p(u, v) \le c(u, v).$$

• *Flow conservation:* For all $u \in V - \{s, t\}$,

$$\sum_{v \in V} p(u,v) - \sum_{v \in V} p(v,u) = 0.$$

The *value* of a flow is the net flow out of the source:

$$\sum_{v\in V}p(s,v)-\sum_{v\in V}p(v,s).$$

A flow on a network

A flow on a network

Flow conservation (like Kirchoff's current law):

- Flow into u is 2 + 1 = 3.
- Flow out of *u* is 0 + 1 + 2 = 3.

The value of this flow is 1 - 0 + 2 = 3.

The maximum-flow problem

Maximum-flow problem: Given a flow network *G*, find a flow of maximum value on *G*.

The value of the maximum flow is 4.

Flow cancellation

Without loss of generality, positive flow goes either from u to v, or from v to u, but not both.

Net flow from *u* to *v* in both cases is 1.

The capacity constraint and flow conservation are preserved by this transformation.

Intuition: View flow as a *rate*, not a *quantity*.

A notational simplification

IDEA: Work with the net flow between two vertices, rather than with the positive flow.

Definition. A *(net) flow* on G is a function f

- : $V \times V \rightarrow \mathbb{R}$ satisfying the following:
- Capacity constraint: For all $u, v \in V$, $f(u, v) \le c(u, v)$.
- *Flow conservation:* For all $u \in V \{s, t\}$,

$$\sum_{v \in V} f(u, v) = 0.$$

• *Skew symmetry:* For all $u, v \in V$,

$$f(u, v) = -f(v, u).$$

A notational simplification

IDEA: Work with the net flow between two vertices, rather than with the positive flow.

Definition. A *(net) flow* on G is a function f

- : $V \times V \rightarrow \mathbb{R}$ satisfying the following:
- Capacity constraint: For all $u, v \in V$, $f(u, v) \le c(u, v)$.
- *Flow conservation:* For all $u \in V \{s, t\}$,

$$\sum_{v \in V} f(u, v) = 0. \leftarrow One summation instead of two.$$

• *Skew symmetry:* For all $u, v \in V$,

$$f(u, v) = -f(v, u).$$

Equivalence of definitions

Theorem. The two definitions are equivalent.

Equivalence of definitions

Theorem. The two definitions are equivalent.

Proof.
$$(\Rightarrow)$$
 Let $f(u, v) = p(u, v) - p(v, u)$.

- Capacity constraint: Since $p(u, v) \le c(u, v)$ and $p(v, u) \ge 0$, we have $f(u, v) \le c(u, v)$.
- Flow conservation:

$$\sum_{v \in V} f(u, v) = \sum_{v \in V} (p(u, v) - p(v, u))$$
$$= \sum_{v \in V} p(u, v) - \sum_{v \in V} p(v, u)$$

Skew symmetry:

$$f(u, v) = p(u, v) - p(v, u)$$

= -\((p(v, u) - p(u, v))\)
= -f(v, u).

Proof (continued)

(**⇐**) Let

$$p(u, v) = \begin{cases} f(u, v) & \text{if } f(u, v) > 0, \\ 0 & \text{if } f(u, v) \le 0. \end{cases}$$

- *Capacity constraint:* By definition, $p(u, v) \ge 0$. Since $f(u, v) \le c(u, v)$, it follows that $p(u, v) \le c(u, v)$.
- *Flow conservation:* If f(u, v) > 0, then p(u, v) p(v, u) = f(u, v). If $f(u, v) \le 0$, then p(u, v) p(v, u) = -f(v, u) = f(u, v) by skew symmetry. Therefore,

$$\sum_{v \in V} p(u,v) - \sum_{v \in V} p(v,u) = \sum_{v \in V} f(u,v). \quad \Box$$

Notation

Definition. The *value* of a flow f, denoted by |f|, is given by

$$|f| = \sum_{v \in V} f(s, v)$$
$$= f(s, V).$$

Implicit summation notation: A set used in an arithmetic formula represents a sum over the elements of the set.

• Example — flow conservation: f(u, V) = 0 for all $u \in V - \{s, t\}$.

Simple properties of flow

Lemma.

- $\bullet f(X,X)=0,$
- $\bullet f(X, Y) = -f(Y, X),$
- $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ if $X \cap Y = \emptyset$.

Simple properties of flow

Lemma.

- $\bullet f(X,X)=0,$
- $\bullet f(X, Y) = -f(Y, X),$
- $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ if $X \cap Y = \emptyset$.

Theorem.
$$|f| = f(V, t)$$
.

Proof.

$$|f| = f(s, V)$$

= $f(V, V) - f(V-s, V)$ Omit braces.
= $f(V, V-s)$
= $f(V, t) + f(V, V-s-t)$
= $f(V, t)$.

Flow into the sink

$$|f| = f(s, V) = 4$$

$$f(V, t) = 4$$

Cuts

Definition. A *cut* (S, T) of a flow network G = (V, E) is a partition of V such that $s \in S$ and $t \in T$. If f is a flow on G, then the *flow across the cut* is f(S, T).

$$f(S, T) = (2 + 2) + (-2 + 1 - 1 + 2)$$

= 4

Another characterization of flow value

Lemma. For any flow f and any cut (S, T), we have |f| = f(S, T).

Another characterization of flow value

Lemma. For any flow f and any cut (S, T), we have |f| = f(S, T).

$$f(S, T) = f(S, V) - f(S, S)$$

= $f(S, V)$
= $f(S, V) + f(S-S, V)$
= $f(S, V)$
= $|f|$.

Capacity of a cut

Definition. The *capacity of a cut* (S, T) is c(S, T).

$$c(S, T) = (3 + 2) + (1 + 2 + 3)$$

= 11

Upper bound on the maximum flow value

Theorem. The value of any flow is bounded above by the capacity of any cut.

•

Upper bound on the maximum flow value

Theorem. The value of any flow is bounded above by the capacity of any cut.

$$|f| = f(S,T)$$

$$= \sum_{u \in S} \sum_{v \in T} f(u,v)$$

$$\leq \sum_{u \in S} \sum_{v \in T} c(u,v)$$

$$= c(S,T).$$

Residual network

Definition. Let f be a flow on G = (V, E). The residual network $G_f(V, E_f)$ is the graph with strictly positive residual capacities

$$c_f(u, v) = c(u, v) - f(u, v) > 0.$$

Edges in E_f admit more flow.

Residual network

Definition. Let f be a flow on G = (V, E). The residual network $G_f(V, E_f)$ is the graph with strictly positive residual capacities

$$c_f(u, v) = c(u, v) - f(u, v) > 0.$$

Edges in E_f admit more flow.

Example:

Residual network

Definition. Let f be a flow on G = (V, E). The residual network $G_f(V, E_f)$ is the graph with strictly positive residual capacities

$$c_f(u, v) = c(u, v) - f(u, v) > 0.$$

Edges in E_f admit more flow.

Example:

Lemma.
$$|E_f| \leq 2|E|$$
.

Augmenting paths

Definition. Any path from s to t in G_f is an aug- $menting\ path$ in G with respect to f. The flow value can be increased along an augmenting path p by $c_f(p) = \min_{(u,v) \in p} \{c_f(u,v)\}.$

Augmenting paths

Definition. Any path from s to t in G_f is an *augmenting path* in G with respect to f. The flow value can be increased along an augmenting path p by $c_f(p) = \min_{(u,v) \in p} \{c_f(u,v)\}.$

Flow and Residual Network

L20.30

Residual Network and Augmenting Paths

$$p = s, u, x, y, t$$
 $c_f(p) = 1$
 $Also q = s, u, x, v, t$ $c_f(q) = 1$

Max-flow, min-cut theorem

Theorem. The following are equivalent:

- 1. f is a maximum flow.
- 2. G_f contains no augmenting paths. 3. |f| = c(S, T) for some cut (S, T) of G.

Max-flow, min-cut theorem

Theorem. The following are equivalent:

- 1. f is a maximum flow.
- 2. G_f contains no augmenting paths. 3. |f| = c(S, T) for some cut (S, T) of G.

Proof (and algorithms). Next time.

