08장 이미지를 분류합니다 — 합성곱 신경망

합성곱 곱하는 배열을 뒤집은 다음 원본 배열에 미끄러지듯 점 곱을 수행하여 더함

원본 배열이 합성곱 연산에 참여하는 정도?

풀 패딩(full padding) 모든 원본 배열의 원소가 연산에 참여

세임 패딩(same padding) 출력 배열의 길이가 원본 배열의 길이와 같아지도록 만듬

스트라이드(stride) 곱하는 배열의 미끄러지는 정도를 조정

2차원 배열의 합성곱

밸리드 패딩, 스트라이드 = 1

합성곱 신경망의 전체 구조 풀링층 추가

[풀링]

[특성맵] 합성곱층과 풀링층에서 만들어진 결과

물 <mark>물 링</mark> 특성 맵을 스캔하며 최댓값 또는 평균값을 계산하는 것

최대 풀링(max pooling) 특성 맵을 스캔하며 최댓값을 고름

평균 풀링(average pooling) 특성 맵을 스캔하며 평균값을 계산

렐루 함수 합성곱 신경망에 사용할 활성화 함수

렐루 함수의 도함수 x=0일 때의 미분은 0으로 생각(그렇게 해도 실전에서 잘 동작함)

$$y = \begin{cases} 1 & (x > 0) \\ 0 & (x \le 0) \end{cases}$$

이미지의 색상을 표현하기 위한 채널 이미지의 색상은 RGB로 표현

합성곱 신경망은 이미지의 2차원 형태를 입력으로 그대로 사용

- → 이미지를 한 줄로 펼칠 필요가 없음
- → 이미지 정보가 손상되지 않음.

합성곱 층의 연산 이해 첫 번째 합성곱

합성곱 층의 연산 이해 전체 합성곱

풀링층을 포함한 전체 연산의 이해

풀링층을 거친 특성맵을 펼쳐 완전 연결층에 주입

08-4 합성곱 신경망을 만들고 훈련합니다

합성곱 신경망의 전체 구조

케라스로 합성곱 신경망 만들기

Conv2D: 케라스의 합성곱층 클래스

MaxPooling2D : 케라스의 최대풀링 클래스

Flatten : 케라스에서 특성맵을 일렬로 펼칠 때 사용

Dense 등 클래스를 임포트한다.

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

필요한 클래스 임포트

케라스로 합성곱 신경망 만들기 합성곱층, 풀링층 쌓기 > 특성 맵 펼치기

```
conv1 = tf.keras.Sequential()
conv1.add(Conv2D(10, (3, 3), activation='relu', padding='same', input_shape=(28, 28, 1)))

conv1.add(MaxPooling2D((2, 2))) 풀링층 쌓기

conv1.add(Flatten()) 특성 맵 펼치기
```

케라스로 합성곱 신경망 만들기 완전 연결층 쌓고 모델 구조 살펴보기

```
conv1.add(Dense(100, activation='relu'))
conv1.add(Dense(10, activation='softmax'))
```

완전 연결층 쌓기

```
conv1.summary()
Model: "sequential"

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 28, 28, 10) 100

max_pooling2d (MaxPooling2D) (None, 14, 14, 10) 0
```

모델 구조 살펴보기

드롭 아웃 무작위로 뉴런을 비활성화 시켜 전체 뉴런이 고르게 훈련할 수 있도록 만듦(과대적합 down)

텐서플로의 드롭 아웃

드롭아웃 비율만큼 뉴런의 출력을 높임

- -드롭아웃층에는 학습되는 가중치가 없음.
- -단순히 일부 뉴런의 출력을 무작위로 0으로 만들고, 나머지 뉴런의 출력을 드롭되지 않은 비율로 나누어 증가시킨다.

09장 텍스트를 분류합니다 — 순환 신경망

순차 데이터 샘플이 서로 연관되어 있는 경우(순서가 있는 경우) 순차 데이터로 분류

31 41 51 ... 20°C 23°C 22°C ... Hello Deep Learning

시계열 데이터(시간)

문장 데이터(순서)

순환 신경망 뉴런의 출력을 순환시키는 구조를 가진 신경망(순차 데이터를 잘 처리)

셀 = 순환 신경망의 뉴런

- 입력 X에 곱해지는 가중치 Wx
- 이전 타임 스텝의 은닉 상태 Hp에 곱해지는 가중치 Wh
- 그리고 절편 b를 함께 표시

순환 신경망의 정방향 계산

순환층의 정방향 계산	출력층의 정방향 계산
$\mathbf{Z}_1 = \mathbf{X}\mathbf{W}_{1x} + \mathbf{H}_{p}\mathbf{W}_{1h} + \boldsymbol{b}_1$	$\mathbf{Z}_2 = \mathbf{H}\mathbf{W}_2 + \boldsymbol{b}_2$
$\mathbf{H} = \tanh(\mathbf{Z}_1)$	$\mathbf{A}_2 = \operatorname{sigmoid}(\mathbf{Z}_2)$