Fachbereich Mathematik und Informatik Freie Universität Berlin Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

8. Übung zur Vorlesung COMPUTERORIENTIERTE MATHEMATIK I WS 2015/2016

Abgabe: 7.1.2016

1. Aufgabe (10 PP + 3 TP)

Wir wollen die Laufzeiten verschiedener Algorithmen zur Bestimmung von ggT(a,b) zweier positiver natürlicher Zahlen a, b testen. Schreiben Sie dazu \mathtt{matlab} -Programme $\mathtt{ggt_naiv(a,b)}$, $\mathtt{ggt_rw(a,b)}$ und $\mathtt{ggt_euklid(a,b)}$, die den größten gemeinsamen Teiler von a und b berechnen. Dabei sollen der naive Algorithmus, der Rückwärts-Algorithmus bzw. der Euklidische Algorithmus verwendet werden.

Erzeugen Sie mit rand jeweils n=1000 gleichverteilte Zufallszahlen $a_i \in [100, 1000] \cap \mathbb{N}$, $b_i \in [100, 1000] \cap \mathbb{N}$ für $i=1,\ldots,n$. Führen Sie nun Ihre drei Programme mit den Zahlenpaaren (a_i,b_i) aus, wobei Sie für jedes Verfahren jeweils die Anzahl k_i der Divisionen zählen.

- Geben Sie für jedes der drei Verfahren scharfe (theoretische) obere und untere Schranken für $\max k_i$ und $\min k_i$ an.
- Berechnen Sie $\max k_i$, $\min k_i$ sowie den Mittelwert $\bar{k} = \frac{1}{n} \sum_{i=1}^{n} k_i$ Ihrer Zufallsstichprobe für jedes der drei Verfahren. Plotten Sie darüber hinaus die Häufigkeit, mit der die k_i auftreten, in einem Histogramm (matlab-Befehl hist oder bar).

2. Aufgabe (4 TP)

Sei ggT(a,b) der größte gemeinsame Teiler zweier positiver natürlicher Zahlen a und b. Zeigen Sie dass

$$ggT(a, b) = ggT(b, a \mod b).$$

3. Aufgabe (4 TP)

Zeigen Sie:

- a) $\log(n) = o(n)$ für $n \to \infty$
- b) $n^k = o(2^n)$ für $n \to \infty$ (k fest)
- c) $\log_2(x) = \Theta \log_{10}(x)$ für $x \to \infty$
- d) Zu $f(x)=x^2$ existiert eine Funktion $g: \mathbf{R} \to \mathbf{R}$, so dass f(x)=o(g(x)) für $x \to \infty$ und zugleich $g(\varepsilon)=o(f(\varepsilon))$ für $\varepsilon \to 0$ gilt.