Sociologia das Organizações 2017/18

O tema do job scheduling é um dos mais cruciais na gestão da produção

A correcta utilização das máquinas para concluir diversas tarefas conduz a uma maior produtividade e eficiência

Genericamente, considera-se que um certo conjunto de tarefas J tem que ser processado por um certo conjunto de máquinas

É possível considerar um conjunto de critérios, que ajudam a definir o que será um "bom" escalonamento dessas tarefas

Para cada tarefa j, considerem-se as seguintes características:

- Tempo de processamento (p_i)
- Data de disponibilização (r_i)
- Prazo pretendido (d_i)
- Peso/importância (w_i)

Com base nas características da tarefa j, é possível deduzir algumas métricas:

- Tempo de início do processamento (S_i)
- Data de conclusão (C_i)
- Atraso $(L_j = C_j d_j)$
- Tardeza $(T_j = \max(L_j; 0))$
- Folga no instante t $(S_i(t) = \max(d_i p_i t; 0))$
- Tarefa em atraso $(U_i = 1, \text{ se } T_i > 0)$

ESCALONAMENTO

De uma forma geral, é possível considerar que existem *m* máquinas e *n* tarefas a realizar

Um escalonamento pode ser representado com recurso a um diagrama de Gantt

\mathcal{M}_1	J_2	J_3	J_1	M_2	M_3	
M_2	J_1	J_3 J_4	J_2	M_1		
M_3	J_3	J_1	J_3	M_3	M_2	M_1
			J_4			M_2

ESCALONAMENTO — DEFINIÇÕES GERAIS

No quadro genérico do escalonamento (m máquinas, n tarefas), uma afectação entre uma tarefa j e uma máquina i é designada por operação e representada por (i,j)

O tempo de processamento da operação (i,j) é representado por p_{ij} (basta p_{ji} quando só existe uma máquina)

PRECEDÊNCIAS

Uma questão que pode ser importante no escalonamento das tarefas é a eventual existência de precedências

Caso existam precedências, considera-se como definida uma rede de precedências, onde a tarefa j_1 está ligada j_2 , se a segunda só pode ser realizada depois da primeira estar concluída

Esta rede de precedências terá que ser, necessariamente acíclica

ESCALONAMENTO — PROBLEMAS

Os problemas de escalonamento são usualmente representados através da notação $\alpha |\beta| \gamma$

- α fornece informação sobre as máquinas
- β descreve as características das tarefas
- γ dá indicação do critério a considerar no escalonamento

Do ponto de vista das máquinas, consideram-se os seguintes problemas:

- Uma só máquina ($\alpha = 1$)
- Máquinas paralelas (idênticas) ($\alpha = P$ ou Pm)
 - O tempo de processamento da tarefa j é sempre p_i
- Máquinas paralelas uniformes ($\alpha = Q$ ou Qm)
 - As máquinas têm velocidades diferentes (s₁, ..., s_m)
 - Os tempos de processamento são iguais a $p_{ij} = p_j/s_i$

ESCALONAMENTO — PROBLEMAS

- Máquinas paralelas não relacionadas (= R ou Rm)
 - As tarefas são processadas em velocidades diferentes pelas máquinas (s_{ii})
 - Os tempos de processamento são iguais a $p_{ij} = p_j/s_{ij}$
 - Cada tarefa tem que ser processada por uma máquina
- Flow shop (= F ou Fm)
 - m máquinas em série
 - Cada tarefa tem que passar por cada uma das máquinas
- Job shop (= J ou Jm)
 - Cada tarefa tem o seu percurso pelas máquinas pré-definido
 - É possível que uma tarefa não tenha que passar por todas as máquinas
- Open shop (= O ou Om)
 - Cada tarefa tem que ser processada por uma máquina, sem ordem pré-determinada

ESCALONAMENTO COM UMA SÓ MÁQUINA $(1 \mid C_{MAX})$

Caso exista apenas uma máquina para as tarefas a realizar, a data máxima de conclusão (C_{\max}) será sempre igual

• $C_{\text{max}} = \text{max}(C_1, C_2, ..., C_n)$

Isto significa que a minimização de C_{\max} é trivial e irrelevante

ESCALONAMENTO COM UMA SÓ MÁQUINA $(1 \mid C_W)$

Uma questão que pode ser relevante no escalonamento de tarefas com uma só máquina é a data de conclusão ponderada C_W

•
$$C_W = \sum W_j C_j$$

Um caso especial dá-se quando os pesos são todos unitários (w_i =1)

Nesse caso, C_W é igual à soma de todas as datas de conclusão

Para encontrar o escalonamento que minimize C_W nessas condições, basta aplicar a regra SPT (shortest processing time)

ESCALONAMENTO COM UMA SÓ MÁQUINA $(1 \mid C_W)$

Se os pesos atribuídos às tarefas forem distintos (caso sejam todos iguais, é possível reduzir a um caso unitário), é necessário aplicar a regra weighted shortest processing time, em que se escolhe primeiro as tarefas que apresentam menor rácio p_i/w_i

Exemplo:

Tarefas	1	2	3	4
p _j	10	20	40	30
W_j	2	5	8	1
p_j / w_j	5	4	5	30

ESCALONAMENTO COM UMA SÓ MÁQUINA $(1 \mid L_{MAX})$

Se o objectivo for minimizar o atraso máximo (considerando que existem prazos), a regra *Earliest Due Date* fornece a solução óptima, se as datas de disponibilização forem todas iguais (por exemplo, iguais a 0)

Tarefas	1	2	3	4	5
p _j	20	20	50	40	30
d_j	70	180	60	100	90

ESCALONAMENTO COM UMA SÓ MÁQUINA $(1 | PREC | L_{MAX})$

Caso existam precedências estabelecidas entre as tarefas, é possível ainda assim resolver o problema de minimização de $L_{\rm max}$

Para tal, basta considerar ir considerando as tarefas que têm os seus sucessores já calendarizados, e escolher dessas a que tem o menor atraso

Tarefas	1	2	3	4	5
p _j	20	20	50	40	30
d_j	70	180	60	100	90
Prec.	-	4	1	1	2,3

ESCALONAMENTO COM UMA SÓ MÁQUINA $(1 \mid R_J \mid C_{MAX})$

Caso existam datas de disponibilização das tarefas, o problema de minimizar a data máxima de conclusão pode ser convertido num problema de minimização do atraso máximo

Para tal, considere-se uma constante $K>\max\{r_j\}$ e definam-se prazos de conclusão $d_j=K-r_j$

Resolva-se o problema $1 \mid L_{max}$, considerando esses prazos de conclusão

A solução óptima para o problema inicial é dada pela ordem inversa da solução obtida

ESCALONAMENTO COM UMA SÓ MÁQUINA $(1 | R_J | L_{MAX})$

Curiosamente, este problema tem elevada complexidade (NP-hard)

Para resolver este tipo de problemas, é necessário recorrer a processos mais sofisticados, embora o tempo de computação para a obtenção da solução óptima possa ser, em muitos casos, demasiadamente elevado

Um método de resolução está relacionado com outro problema associado

ESCALONAMENTO COM UMA SÓ MÁQUINA — *PREEMPTION* (INTERRUPÇÃO)

Em alguns contextos de escalonamento de tarefas, considera-se possível a interrupção da execução de tarefas, para que se possa avançar com outras por alguma motivo (prioridade)

Essa situação é designada habitualmente por preemption

Quando se admite esta situação, a regra *Earliest Due Date*, devidamente adaptada, resolve bem o problema da miminização do atraso máximo

ESCALONAMENTO COM UMA SÓ MÁQUINA $(1 \mid PMTN, R_J \mid L_{MAX})$

Exemplo:

Tarefas	1	2	3	4
p_j	4	2	6	5
r _j	0	1	3	5
d_j	8	12	11	10

Ordenam-se as tarefas por ordem crescente do prazo de conclusão

Aplica-se a regra *Earliest Due Date* e, sempre que uma tarefa passar a estar disponível, interromper se adequado a que está a ser executada

ESCALONAMENTO COM UMA SÓ MÁQUINA $(1 | R_J | L_{MAX})$

Quando não é permitido interromper tarefas, é necessário recorrer a métodos mais complexos

Um desses métodos é do tipo branch-and-bound

No passo inicial, considera-se que t=0 e que a primeira decisão consiste em decidir qual a primeira tarefa a executar

Seja S o conjunto de tarefas já escalonadas, num certo ponto da árvore de pesquisa

Só deverão ser consideradas as tarefas para pesquisa que verifiquem a seguinte condição:

• $r_k < \min_{j \notin S} \{\max\{t, r_j\} + p_j\}$

ESCALONAMENTO COM UMA SÓ MÁQUINA $(1 | R_J | L_{MAX})$

Em cada ponto da árvore de pesquisa é possível usar como limite inferior a resolução do problema com as tarefas ainda não escalonados de acordo com $1 | \text{pmtn}, r_j | L_{\text{max}}$

Um limite superior geral é dado por uma solução admissível que tenha sido encontrada

O instante t associado a um ponto de pesquisa corresponde sempre ao instante anterior somado com o tempo de processamento da tarefa escalonada

ESCALONAMENTO COM UMA SÓ MÁQUINA $(1 \mid R_J \mid L_{MAX})$

Exemplo:

Tarefas	1	2	3	4
p _j	4	2	6	5
r _j	0	1	3	5
d_j	8	12	11	10

ESCALONAMENTO COM UMA SÓ MÁQUINA $(1 \mid U_J)$

Estrutura de uma solução óptima:

- Conjunto S₁ de tarefas que cumprem o prazo de conclusão
- Conjunto S₂ de tarefas em atraso
- As tarefas de S₁ são escalonadas antes das tarefas de S₂
- As tarefas de S₁ estão escalonadas de acordo com a Earliest Due Date
- As tarefas de S₂ estão escalonadas arbitrariamente

Algoritmo:

- Ordenar as tarefas por ordem crescente do prazo de conclusão
- Escalonar as tarefas sucessivamente e, se uma ficar em atraso, remover a tarefa já escalonada com maior tempo de processamento
- As tarefas removidas ficam em atraso

ESCALONAMENTO COM UMA SÓ MÁQUINA $(1 \mid U_J)$

Exemplo:

Tarefas	1	2	3	4	5
p _j	7	8	4	6	6
d_j	9	17	18	19	21

O problema $(1 | w_i U_i)$ é complexo (NP-hard)

Sugere-se a utilização de uma regra heurística para gerar soluções sub-optimais

Um desses métodos pode ser a aplicação da regra Weighted Shortest Processing Time (tarefas ordenadas por ordem crescente de p_j/w_j)

Esta complexidade verifica-se, mesmo que os prazos de conclusão sejam todos iguais

MÁQUINAS PARALELAS P $M \mid \mathcal{C}_{MAX}$

Caso só existisse uma máquina, a questão de minimizar C_{max} é irrelevante Quando existem máquinas paralelas, o problema passa a ser complexo (NP-hard) O problema corresponde a balancear correctamente a ocupação das máquinas Exemplo:

Tarefas	1	2	3	4	5	
p_{j}	20	20	50	40	30	
			_			
Job 3	Job 4		L	Job 5	Jo	ob 3
b 1 Job 2 .	Job 5		C	Job 4	Job	2 Job 1
20 40 5	 50 70	90	$t \frac{1}{0}$		1 1 30 40	

MÁQUINAS PARALELAS P $M \mid C_{MAX}$

Se as tarefas estiverem todas disponíveis no momento inicial, $r_j = 0$, a regra Longest Processing Time (LPT) fornece habitualmente bons resultados

As soluções obtidas com esta regra nunca estarão mais distantes, em termos do $C_{\rm max}$ gerado, de 33% do valor óptimo

Na realidade, o rácio de entre o valor dado pela solução assim gerada (LPT) e o valor óptimo não ultrapassa 4/3 - 1/(3m)

MÁQUINAS PARALELAS P $M \mid \mathcal{C}_{MAX}$

Para observar um "pior caso", considere-se a seguinte instância, para 4 máquinas

Tarefas	1	2	3	4	5	6	7	8	9
p_j	7	7	6	6	5	5	4	4	4

A regra LPT dá um C_{max} igual a 15, mas é possível obter 12!

MÁQUINAS PARALELAS P $M \mid \sum C_J$

Caso se pretende minimizar o tempo total de conclusão das tarefas (equivalente a minimizar o tempo médio de conclusão), a regra *Shortest Processing Time* (SPT) fornece sempre a solução óptima

Porém, caso o problema seja $Pm \mid \sum w_i C_i$, o problema passa a ser complexo

A regra WSPT (considerando os rácios p_j/w_j) pode fornecer boas soluções, mas só garante estar a 22% do óptimo

FLOW SHOP FM $\mid C_{MAX}$

Nos problemas de *flow shop*, é necessário processar *n* tarefas que têm que atravessar *m* máquinas em série, pela ordem pré-especificada

Embora possa parecer que basta determinar a permutação ideal de tarefas e fazêlas passar sequencialmente pelas máquinas, é possível que uma tarefa "ultrapasse" outra na espera por uma máquina

Caso se dêem essas "ultrapassagens", significa que não terá que se verificar, necessariamente, uma política First Come First Served

FLOW SHOP FM $| C_{MAX}$

Um resultado importante em problemas de flow shop, é que uma solução óptima nunca têm "ultrapassagens" entre as duas primeiras máquinas e entre as duas últimas

Logo, as soluções óptimas dos problemas F2 | $|C_{\max}|$ e F3 | $|C_{\max}|$ nunca têm "ultrapassagens"

Já nos problemas F4 | | $C_{\rm max}$ podem existir "ultrapassagens" da segunda para a terceira máquina

A possibilidade de ultrapassagens é algo que traz muita complexidade ao problema

FLOW SHOP FM $\mid C_{MAX}$

Quando não são permitidas "ultrapassagens" (permutation flow shop), é possível determinar recursivamente o tempo de conclusão de cada tarefas em cada máquina

Dada uma permutação j_1 , ..., j_n das tarefas, as datas de conclusão em cada máquina podem ser calculadas do seguinte modo:

$$\begin{split} C_{i,j_1} &= \sum_{l=1}^i p_{l,j_1}, i = 1, \dots, m \\ C_{1,j_k} &= \sum_{l=1}^k p_{1,j_l}, k = 1, \dots, n \\ C_{i,j_k} &= \max \bigl(C_{i-1,j_k}, C_{i,j_{k-1}} \bigr) + p_{i,j_k}, i = 2, \dots, m, k = 2, \dots, n \end{split}$$

FLOW SHOP FM $| C_{MAX}$

Exemplo:

Tarefas	1	2	3	4	5
	5	5	3	6	3
	4	4	2	4	4
	4	4	3	4	1
	3	6	3	2	5

FLOW SHOP FM $| C_{MAX}$

Exemplo:

Tarefas	1	2	3	4	5
	5	5	3	6	3
	4	4	2	4	4
	4	4	3	4	1
	3	6	3	2	5

FLOW SHOP FM $\mid C_{MAX}$

Um problema de flow shop dual corresponde a construir um outro problema com n tarefas e m máquinas, tal que o tempo de processamento da i-ésima tarefa, num problema, é igual ao da (m+1-i)-ésima, no outro

Tarefas	1	2	3	4	5
	3	6	3	5	5
	4	4	2	4	4
	1	4	3	4	4
	5	2	3	6	3

FLOW SHOP FM $\mid C_{MAX}$

A permutação (j_1,j_2,j_3,j_4) no primeiro problema e a permutação (j_4,j_3,j_2,j_1) no problema dual apresentam o mesmo C_{\max}

Para determinar a melhor permutação no caso $F2 \mid C_{max}$, começa-se por dividir as tarefas em dois conjuntos

No conjunto I colocam-se as tarefas que têm um menor tempo de processamento na máquina 1 $(p_{1j} < p_{2j})$, e as restantes colocam-se no conjunto II

Uma permutação SPT(I)-LPT(II) é óptima para o problema F2 $| C_{max}|$

$JOB SHOP JM \mid C_{MAX}$

No job shop, cada tarefa tem a sua sequência de processamento pré-definida O problema consiste em determinar qual a forma de colocar as tarefas nas máquinas Exemplo:

- $j_1:M1->M2->M3$
- $j_2:M2->M1->M4->M3$
- $j_3:M1->M2->M4$

Tarefas\Máquinas	M1	M2	M3	M4
\dot{J}_1	6	7	2	-
j_2	1	5	5	4
j_3	4	3	-	1

JOB SHOP J2 | | C_{MAX}

Quando existem apenas duas máquinas, é possível resolver o problema em tempo polinomial

Dividam-se as tarefas em dois conjuntos

- $J_{1,2}$ conjunto das tarefas que têm que ser processadas em primeiro lugar pela máquina M1
- $J_{2,1}$ conjunto das tarefas que têm que ser processadas em primeiro lugar pela máquina M2

Resolva-se o problema das tarefas em $J_{1,2}$ como se tratasse de um F2 | $|C_{\text{max}}|$, ou seja, utilizando o método SPT(I)-LPT(II)

Faça-se o mesmo para as tarefas em $J_{2,1}$

$JOB SHOP JM \mid C_{MAX}$

Quando o número de máquinas é superior a 2, o problema torna-se muito complexo Uma alternativa à formulação em programação inteira é a utilização da heurística Shifting bottleneck

Tarefas\Máquinas	M1	M2	M3	M4
\dot{J}_1	6	7	2	-
\dot{J}_2	1	5	5	4
j_3	4	3	-	1