MATEMÁTICA DISCRETA I – 2ºC 2018 – FaMAF Práctico 6: grafos

- 1. ¿Cuántas aristas tiene el grafo completo K_n ?
- 2. Encuentre un isomorfismo entre los grafos dados por las siguientes listas. (Ambas listas especifican versiones de un famoso grafo conocida como grafo de Petersen.)

a	b	c	d	e	f	g	h	i	j	0	1	2	3	4	5	6	7	8	9
b	a	b	c	d	a	b	c	d	e	1	2	3	4	5	0	1	0	2	6
e	c	d	e	a	h	i	j	f	g	5	0	1	2	3	4	4	3	5	7
f	g	h	i	j	i	j	f	g	h	7	6	8	7	6	8	9	9	9	8

- 3. a) Encuentre todos los grafos de 5 vértices y 2 aristas no isomorfos entre sí.
 - b) ¿Cuál es el máximo número de aristas que puede tener un grafo de 5 vértices?
- 4. Para cada una de las siguientes secuencias, encuentre un grafo que tenga exactamente las valencias indicadas o demuestre que tal grafo no existe:
 - a) 3, 3, 1, 1,

- c) 3, 3, 2, 2, 1, 1,
- e) 7, 3, 3, 3, 2, 2,

b) 3, 2, 2, 1,

- d) 4, 1, 1, 1, 1,
- f) 4, 1, 1, 1.
- 5. Demuestre que los siguientes pares de grafos son isomorfos (encuentre un isomorfismo):

- 6. Sean G = (V, E) y G' = (V', E') dos grafos y sea $\alpha : V \mapsto V'$ una función biyectiva tal que $\delta(v) = \delta(\alpha(v)) \ \forall v \in V$.
 - a) ¿Puede afirmar que α es un isomorfismo?
 - b) ¿Puede afirmarlo si |V|=3ó 4?
- 7. Encuentre una biyección del grafo A al B que preserve valencias. ¿Es un isomorfismo?

8. Pruebe que si G es un grafo con más de un vértice, entonces existen dos vértices con la misma valencia.

9. a) Halle el complemento de los siguientes grafos:

- b) Sea G = (V, E) un grafo, con $V = \{v_1 \dots v_n\}$ y $\delta(v_i) = d_i$ para $i = 1, \dots, n$. Calcule las valencias del grafo complemento.
- 10. Pruebe que los siguientes grafos no son isomorfos:

11. Dados los siguientes grafos:

- a) Determine en cada caso si existen subgrafos completos de más de 2 vértices.
- b) Para el grafo (1), dé todos los caminos que unen a con b.
- c) Dé caminatas eulerianas que unan c con e en los grafos (4), (5) y (6).
- d) Para (1) y (2), decir si existen ciclos hamiltonianos partiendo de e.
- e) Determinar cuales de los siguientes pares de grafos son isomorfos:
 - 1) (9) y (2),
- 2) (5) y (6),
- 3) (4) y (8).
- f) Halle las componentes conexas del grafo (7).

- 12. Sea G=(V,E) un grafo conexo y sea $e\in E$. Pruebe que $G'=(V,E\setminus\{e\})$ es conexo sí y sólo si e forma parte de algún ciclo.
- 13. Sea G = (V, E) un grafo conexo y sea $e \in E$. Se dice que e es un *puente* si al quitarle a G la arista e el grafo deja de ser conexo. Considere los siguientes grafos:

Determine todos los puentes en A y B.

14. Dado el siguiente grafo

0	1	2	3	4	5	6	7	8
1	0	1	0	3	0	1	0	1
3	2	3	2	5	4	5	2	3
5	6	7	4		6	7	6	5
7	8		8		8		8	7

encuentre un ciclo hamiltoniano (si existe). Determine si existe una caminata euleriana y en caso de ser así encuentre una.

- 15. Un ratón intenta comer un $3 \times 3 \times 3$ cubo de queso. Él comienza en una esquina y come un subcubo de $1 \times 1 \times 1$, para luego pasar a un subcubo adyacente. ¿Podrá el ratón terminar de comer el queso en el centro?
- 16. Dé todos los árboles de 6 vértices no isomorfos.
- 17. a) Aplicar el algoritmo greedy al grafo G_1 usando los siguientes órdenes en los vértices: i) $v_1, v_5, v_2, v_6, v_3, v_7, v_4, v_8$. ii) $v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8$.
 - b) Para el grafo G_2 encontrar un orden de los vértices tal que el algoritmo greedy dé una coloración con 4 colores.

- 18. Encontrar los números cromáticos de los siguientes grafos:
 - a) K_n , (grafo completo de n vértices).
 - b) C_n , (ciclo de n vértices).
 - c) Los siguientes tres grafos:

