Symbol	Name	Formula	Description / Example
Homograp hy			
$ ilde{X_i^c}$	Image coordinates	$\tilde{X}_i^c \sim \tilde{H}_b^c \cdot \tilde{p}_i^b$	
K_c	Calibration matrix, Camera matrix	$K_c = \left[\begin{array}{ccc} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{array} \right]$	If $c_x = c_y = 0$ the camera produces centerd images
\tilde{x}	homogenous transformation	$\tilde{x} = K_c * \left[\begin{array}{c} x \\ y \\ z \end{array} \right]$	for direction of light rays f.e.
$ ilde{p}_i^b$	Object point		Coordinates on the planar object
E^c_b	Camera extrinsic matrix	$E_b^c = \left[\begin{array}{ccc} R_b^c & t_{cb}^c \\ \left[\begin{array}{ccc} 0 & 0 & 0 \end{array} \right] & 1 \end{array} \right]$	Relative pose between object and camera
E_c^g	Inverse rigid motion matrix	$E_c^g = (E_g^c)^{-1} = \begin{bmatrix} R_g^c & t_{cg}^c \\ \overrightarrow{0} & 1 \end{bmatrix} = \begin{bmatrix} R_c^g & -R_c^g t_{cg}^c \\ \overrightarrow{0} & 1 \end{bmatrix}$	
R_b^c	Rotation matrix	$R_b^c = \left[\begin{array}{ccc} r_x & r_y & r_z \end{array} \right]$	
t^c_{cb}	Translation vector	$t_c^b = p^c - R_b^c * p^b$	
\overrightarrow{E}_g	Coordinate frame basis	$\vec{E}_g = \left[\vec{e}_{g, x} \vec{e}_{g, y} \vec{e}_{g, z} \right]$	A coordinate frame consists of a basis and and an origin
\overrightarrow{o}_g	Origin of the coordinate frame	\overrightarrow{o}	
\overrightarrow{p}	Point in the coordinate frame	$\vec{p} = \vec{e}_{g, x} \cdot p_x^g + \vec{e}_{g, y} \cdot p_y^g + \vec{e}_{g, z} \cdot p_z^g + \vec{o}_g$	
\overrightarrow{p}	Point in the coordinate frame	$\vec{p} = \vec{E}_g \cdot p^g + \vec{o}_g$	
H^c_b	Homography matrix	$H_b^c \sim K_c \cdot \left[\begin{array}{ccc} r_{b, x}^c & r_{b, y}^c & t_{cb}^c \end{array} \right]$	
$r_{b, x}^{c}$	Rotation vector x	$r_{b, x}^{c} = \left[\begin{array}{ccc} 0 & -t_{cb, z}^{c} & t_{cb, y}^{c} \end{array} \right]$	

Symbol	Name	Formula	Description / Example
	Object point to image point	$\begin{bmatrix} x_{s,i} \\ y_{s,i} \\ 1 \end{bmatrix} = H_b^c \cdot \tilde{p}_i^b$	
Hough tra			
x_i, y_i	Image space coordinates	$y_i = m \cdot x_i + c \Leftrightarrow c = -m \cdot x_i + y_i$	Converted to parameter space, lines
θ	Angle of point	heta	angle between x and line in parameter space
ρ	Proper Line Parametrization	$\rho = x\cos(\theta) + y\sin(\theta)$	length of line
ρ		$\rho = \left[\begin{array}{c} \chi \\ y \end{array} \right]^t \cdot n$	Test if a point is on a line
n	normal vector	$n = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$	Defined by the θ angle
RANSAC p robabilitie s			
ϵ	Probability of picking an outlier	$\epsilon = \frac{N_{outliers}}{N_{inliers} + N_{outliers}}$	with $N = \text{no of}$, $s = \text{points}$, $n = \text{no. of trials}$
	probability of picking individual inlier	$p = 1 - \epsilon$	
	probability of picking ^s inliers in sequence	$p = (1 - \epsilon)^s$	
	probability of not picking <i>s</i> inliers in sequence	$p = 1 - (1 - \epsilon)^s$	
	probability of not picking s inliers in sequence of n trials		

Symbol	Name	Formula	Description / Example
	probability of picking at least in one of <i>n</i> trials <i>s</i> inliers in sequence	$p_{success} = 1 - (1 - (1 - \epsilon)^s)^n$	for lines 2 , for circles 3 points are needed
	expected number of trials needed	$n = \frac{log(1 - p_{success})}{log(1 - (1 - \epsilon)^s)}$	
Geometric transform ation			
\tilde{x}	Intersection of two lines	$\tilde{x} = \tilde{I}_1 \times \tilde{I}_2$	cross product of two lines defines their intersection
Ĩ	two points lie on the line	$\tilde{I} = \tilde{x_1} \times \tilde{x_2}$	cross product of two points define their collective line
Matrix basics			
E	unit matrix	$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$	
R^{-1}	Inverse rotational matrix	$R^{-1} = R^T$	
R_{χ}	Rotational matrix around x	$R_{x} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos & -\sin \\ 0 & \sin & \cos \end{array} \right]$	
R_y	Rotational matrix around x	$R_{y} = \begin{bmatrix} \cos & 0 & \sin \\ 0 & 1 & 0 \\ -\sin & 0 & \cos \end{bmatrix}$	
R_z	Rotational matrix around x	$R_z = \begin{bmatrix} \cos & -\sin & 0\\ \sin & \cos & 0\\ 0 & 0 & 1 \end{bmatrix}$	

Symbol	Name	Formula	Description / Example
Camera calculatio ns			
F	Focal length in [mm]	$F = \frac{L * x_{chip}}{2 * W}$	L = Length from sensor to object, $W = $ Width from sensor to object, all in $[mm]$
f_x	Focal length in $\left[\frac{pixel}{mm}\right]$	$f_x = \frac{F * x_{pixel}}{x_{chip}}$	x_{pixel} = pixel in x-direction x_{chip} = length of sensor chip in x-direction, analog for f_y with y_{pixel} and y_{chip}
f_x , f_y	Focal length (Assumption)	$f_x = f_y = f$	In some calcuations just assume: focal length is the same in both directions
c_x , c_y	image center coordinates	$c_{x} = \frac{x_{pixel}}{2}$	optical axis pointing perpendicularly through sensor chip center, analog for f_y with y_{pixel} and y_{chip}