Radiation Heat Transfer

Dr. Sayantan Sengupta
Dept. of Mechanical Engineering
NIT Durgapur

Lecture 1 Introduction

Reference books

- Incropera, F. P., Dewitt, D. P., Bergman, T., & Lavine, A. (2002). Fundamentals of mass and heat transfer. *Australia: John Wiley and Sons*.
- Holman, J. P. (1986). Heat transfer, 1986. Mc Gran–Hill Book Company, Soythern Methodist University.
- Modest, M. F. (2013). Radiative heat transfer. Academic press.

Various Electromagnetic Radiations

$$c = \lambda v$$

$$E = hv$$

Planck's constant

$$h = 6.625 \times 10^{-34} \text{ J. s}$$

Using relativistic relation and quantum statistical thermodynamics

$$E_b = \sigma T^4$$

Stefan-Boltzmann's constant

$$\sigma = 5.67 \times 10^{-8} \,\text{W/m}^2.\,\text{K}^4$$

Microwave

Small microwave oven on a kitchen counter

The <u>parabolic antenna</u> (lower curved surface) of an ASR-9 <u>airport surveillance radar</u> which radiates a narrow vertical fan-shaped beam of 2.7–2.9 GHz (<u>S band</u>) microwaves to locate aircraft in the airspace surrounding an airport

Some of the dish antennas of the <u>Atacama Large</u> <u>Millimeter Array</u> (ALMA) a radio telescope located in northern Chile. It receives microwaves in the <u>millimeter</u> <u>wave</u> range, 31 – 1000 GHz

Infrared radiation (IR)

A comparison of a thermal image (top) and an ordinary photograph (bottom) shows that a trash bag is transparent but glass (the man's spectacles) is opaque in longwavelength infrared.

Thermographic image of a snake eating a mouse

Thermography helped to determine the temperature profile of the Space Shuttle thermal protection system during re-entry

Visible spectrum

Color	Wavelength	Frequency	Photon energy
<u>Violet</u>	380–450 nm	668– 789 THz	2.75–3.26 <u>eV</u>
<u>Blue</u>	450–495 nm	606– 668 THz	2.50–2.75 eV
Green	495–570 nm	526– 606 THz	2.17–2.50 eV
Yellow	570–590 nm	508– 526 THz	2.10–2.17 eV
<u>Orange</u>	590–620 nm	484– 508 THz	2.00–2.10 eV
Red	620–750 nm	400– 484 THz	1.65–2.00 eV

Rainbow

Ultraviolet (UV)

UV damaged <u>polypropylene</u> rope (left) and new rope (right)

9-watt germicidal UV lamp, in compact fluorescent (CF) form factor

UV radiation is also produced by <u>electric arcs</u>. <u>Arc welders</u> must wear <u>eye protection</u> and cover their skin to prevent <u>photokeratitis</u> and serious <u>sunburn</u>

X-Rays

γ-Rays

Gamma rays are emitted during <u>nuclear fission</u> in nuclear explosions

The Electromagnetic Spectrum

• Thermal radiation is confined to the infrared, visible and ultraviolet regions of the spectrum 0.1 < λ < 100 μ m

• The amount of radiation emitted by an opaque surface varies with wavelength, and we may speak of the spectral distribution over all wavelengths or of monochromatic/spectral components associated with particular wavelengths.

Directional Considerations and the Concept of Radiation Intensity

 Radiation emitted by a surface will be in all directions associated with a hypothetical hemisphere about the surface and is characterized by a directional distribution.

• Direction may be represented in a spherical coordinate system characterized by the zenith or polar angle θ and the azimuthal angle ϕ .

• The amount of radiation emitted from a surface, dA_1 , and propagating in a particular direction, θ , ϕ , is quantified in terms of a differential solid angle (d ω) associated with the direction.

$$d\omega \equiv \frac{dA_n}{r^2}$$

 $dA_n \rightarrow$ unit element of surface on a hypothetical sphere and normal to the θ, ϕ direction.

$$dA_n = r^2 \sin\theta \ d\theta \ d\phi$$

$$d\omega = \frac{dA_n}{r^2} = \sin\theta \ d\theta \ d\phi$$

- The solid angle ω has units of steradians (sr).
- The solid angle associated with a complete hemisphere is

$$\omega_{hemi} = \int_0^{2\pi} \int_0^{\pi/2} \sin\theta \ d\theta \ d\phi = 2\pi$$
 (unit: sr)

• Spectral Intensity:

A quantity used to specify the radiant heat flux (W/m^2) within a unit solid angle about a prescribed direction $(W/m^2 \cdot sr)$ and within a unit wavelength interval $(W/m^2 \cdot sr \cdot \mu m)$. about a prescribed wavelength

• The spectral intensity $I_{\lambda,e}$ associated with emission from a dA_1 surface element in the solid angle $d\omega$ about θ, ϕ and the wavelength interval $d\lambda$ about λ is defined as:

$$I_{\lambda,e}(\lambda,\theta,\phi) \equiv \frac{dq}{(dA_1 \cos \theta) \cdot d\omega \cdot d\lambda}$$

Formal definition of $I_{\lambda,e}$

The rate at which radiant energy is emitted at the wavelength λ in the (θ,ϕ) direction, per unit area of the emitting surface normal to this direction, per unit solid angle about this direction, and per unit wavelength interval $d\lambda$ about λ .

Thank you