

# AliSQL 引领开源技术变革之路

数据库事业部-数据库内核-何登成



## 个人简介

### □ 何登成,资深技术专家@Alibaba

✓ 从04年开始从事数据库内核研发达10+年 以上。先后参与并主导过国产神舟Oscar数 据库,网易自研存储引擎NTSE/TNT等数 据库产品的研发。同时也作为数据库总负 责人参与了多年阿里巴巴双11购物狂欢节 蚂蚁新春红包的备战保障工作。有着丰富 的数据库内核研发经验和数据库应用架构 经验。目前负责阿里巴巴数据库内核研发 团队,主导AliSQL的产品研发(AliSQL: 开源MySQL的阿里分支)以及下一代数据 库系统的规划和研发工作。



### □ 联系方式

✓ 微博:@何\_登成





## AliSQL发展历史简要回顾

X-KV:高性能K-V接口

X-Cluster: AliSQL集群解决方案

## AlisQL?

- □Alibaba的MySQL分支
  - ✓ Since 2010
- 口我们为什么发展一个MySQL分支?
  - ✓性能
  - ✓功能
  - ✓可运维性

### AliSQL:成果展示

> 40+ new bugs have been found & fixed

All have been reported to the community

BugFix

40+ new
Features have
been added

New Feature 30+ bottlenecks have been optimized

Performance enhance

□ Colin Charles Charles (2016). <u>AliSQL and some features that have</u> made it into MariaDB Server



## AliSQL:精简架构







## AliSQL:功能 & 可运维性增强





## AliSQL发展历史简要回顾

X-KV:高性能K-V接口

X-Cluster: AliSQL集群解决方案

## □ 什么是X-KV?

- □ X-KV
  - ✓ AliSQL高性能K-V接口, InnoDB Memcached Plugin的扩展

### □ 为什么需要X-KV?

- ✓ Query Performance
- ✓ Data Consistency







# □ X-KV: Data Type支持增强



### ┌─ X-KV:功能增强



## ┌── X-KV:新协议

### □ InnoDB Memcached Plugin存在的问题

✓ 通过指定delimiter来区分每一列: delimiter如何选择?

✓ NULL和空值无法区分: NULL = 空

| PK |   | NAME         |   | WORKING PLACE |   |
|----|---|--------------|---|---------------|---|
| 1  | 1 | He dengcheng | 1 | 阿里巴巴西溪园区8号楼   | 1 |

### □ X-KV:新协议

√ Field = Meta Info + Data

✓ Meta Info

Version|Count|Length1|Length2|Length3...

|   |   |   |     |   | PK | NAME         | WORKING PLACE |
|---|---|---|-----|---|----|--------------|---------------|
| 0 | 3 | 1 | 1 2 | 3 | 1  | He dengcheng | 阿里巴巴西溪园区8号楼   |

## □ X-KV:可运维性优化

- □ InnoDB Memcached Plugin存在的问题
  - ✓ 修改Container表: Uninstall -> Install, 生效
  - ✓ 运维操作对业务有较大影响

- □ X-KV: 运维优化
  - ✓ Container表新增K-V读取配置:直接生效
  - ✓ Container表修改原有配置:通过新协议的Version来生效
  - ✓ DDL,自动重新加载

## □ X-KV:性能优化



### □ 测试场景

✓ 模拟阿里的交易数据库上的Query请求(优化后:网卡和CPU瓶颈)



## AliSQL发展历史简要回顾

X-KV:高性能K-V接口

X-Cluster: AliSQL集群解决方案



## AliSQL/MySQL : Drawback

### **■** Why X-Cluster?

- ✓ 数据一致性
  - 异步复制
  - 半同步复制



✓ 持续高可用

- ✓ 区域化/全球化部署
- ✓ 上下游生态联动



## 

### □设计目标

- ✓ 一体化架构: 运维友好
- ✓ **极致性能**: 同城三副本相对 于单机性能下降在10%以内
- ✓ **可异地部署**: 异地部署,延时增加,但是保持高吞吐
- **✓ 稳定性:** 网络抖动高容忍性
- ✓ 兼容性: 对原有生态100%兼容



### X-Cluster核心组件: X-Paxos





### X-Cluster核心技术: Batching & Pipelining



**□** Tuning paxos for high-throughput with batching and pipelining (ICDCN12)

## X-Cluster核心技术: Batching & Pipelining (续)





## X-Cluster核心技术: Locality Aware Content Distribution





## X-Cluster核心技术:日志实现

### □ 核心技术

- ✓ 插件式X-Paxos的日志
- ✓ 归一化的ConsensusLog代 替Binlog和RelayLog
- ✓ 全局统一的Log Index





# ☐ X-Cluster核心技术: Asynchronously Commit



### X-Cluster: vs MySQL Group Replication





### X-Cluster: vs MySQL Group Replication





# □ X-Cluster生态:超越数据一致性和持续可用





## X-Cluster生态:持续备份

### □ 原有MySQL备份逻辑

- ✓ 定期备份Binlog文件
- ✓ RPO一般比较大,例如:大于5分钟
- ✓ 备份跟MySQL的数据一致性保障困难

### □ X-Cluster: 持续备份

- ✓ 备份节点,作为X-Cluster的一个Learner节点。实时推送X-Cluster上达成多数派的日志
- ✓ RPO < 1秒
- ✓ 由于备份的一定是达成多数派的日志,因此无数据一致性问题



## X-Cluster生态:自动化高可用

### □ 原有MySQL高可用方案

✓ 外部组件依赖:ADHA、ZK



- □ X-Cluster:自动化高可用
  - ✓ Client、Server—体化, No 外部组件依赖





### X-Cluster生态:自动化增量日志消费

### □ 原有MySQL下游日志消费

- ✓ 准实时消费MySQL产生的日志
- ✓ 问题之一:数据一致性
- ✓ 问题之二:数据库主备切换与下游消费端的联动

### □ X-Cluster:自动化增量日志消费

- ✓ 日志消费节点作为X-Cluster的Learner节点
- ✓ 只消费达成多数派的日志:数据一致性
- ✓ X-Cluster自动选主,新Leader自动向日志消费节点推送新日志:彻底解决联动问题



## X-Cluster生态:区域化/全球化部署

### **□ 按需增加Learner节点**

✓ 增加读能力,但是不会带来强同步 开销

### □ 按需增加Loger节点

- ✓ Loger节点只有日志,没有数据。
- ✓ Loger节点可参与选主,但是没有 新增存储开销。低成本节点。
- ✓ 3节点X-Cluster = 2节点MySQL 主备

### □ 权重化体系

✓ 可以指定节点选主权重,控制每个 节点的选主优先级





### X-Cluster实战:实战中踩过的坑,总结

### □ 异常处理

- ✓ 硬件异常
- ✓ 网络异常: Leader Stickiness

### **□** Batching & Pipelining

- ✓ 极大事务
- ✓ 极小事务
- ✓ 不同网络时延下的Batching/Pipelining策略
- ✓ 网络异常情况下的Batching/Pipelining策略

### □ 全球化部署下的优化

- ✓ 权重体系
- ✓ 热点带来的影响

## 🗇 写在最后

### □联系方式

✓ 微博: 何\_登成

✓ Linkedin: he dengcheng

✓ 邮箱: <u>dengcheng.hedc@gmail.com</u>

欢迎大家的骚扰和交流②



