2

WHAT IS CLAIMED IS:

1	1. A substrate processing system comprising:
2	a deposition chamber comprising a reaction zone;
3	\
1	a substrate holder that positions a substrate in the reaction zone;
5	said substrate holder comprising a first RF electrode;
	a gas distribution system includes a gas inlet manifold for supplying
6	one or more process gases to said reaction zone;
7	said gas inlet manifold comprising a second RF electrode;
8	a plasma power source for forming a plasma within the reaction zone
9	of said deposition chamber; and
10	an impedance monitor electrically coupled to the deposition chamber to
11	measure an impedance level of said plasma.
1	2. The substrate processing system of claim 1 wherein said
2	substrate holder comprises a first RF electrode, and wherein said gas distribution
3	system includes a gas inlet manifold that comprises a second RF electrode.
1	3. The substrate processing system of claim 1 further comprising
2	a computer processor communicatively coupled to said impedance monitor so that
3	said computer processor receives as an input the measured impedance level of said
4	plasma.
	•
1	4. The substrate processing system of claim 3 further comprising
. <i>2</i> .	a variable capacitor electrically coupled to said chamber and controllably coupled to
77 -	
18	said processor wherein said processor adjusts a capacitance level of said variable
4	capacitor to vary the impedance of said plasma in response to the measured
5	impedance level of said plasma.
1	5. The substrate processing system of claim 3 further comprising

a pressure control system configured to control a pressure level within said chamber

1

2

10.

	•••
3	and controllably coupled to said processor wherein said processor controls said
4	pressure control system to vary the pressure within the chamber in response to the
5	measured impedance level of said plasma.
1	6. The substrate processing system of claim 3 wherein said
2	processor controls said plasma power source to vary the power applied to the plasma
3	in response to the measured impedance level of said plasma.
1	7. A method for depositing a film on a substrate in a substrate
2	processing chamber, said method comprising the steps of:
3	introducing one or more process gases into a reaction zone of the
4	substrate processing chamber;
5	forming a plasma from said one or more process gases;
6	maintaining the reaction zone at deposition conditions suitable to
7	deposit a layer from said one or more process gases;
8	measuring an impedance level of said plasma; and
9	adjusting deposition conditions in the reaction zone in response to said
10	measured impedance level.
1	8. The method of claim 7 wherein the step of adjusting said
2	deposition conditions in the reaction zone comprises the step of adjusting the
3	impedance of plasma by adjusting a capacitance level of a variable capacitor
4	electrically coupled to the processing chamber.
1	9. The method of claim 7 wherein the step of adjusting said
2	deposition conditions in the reaction zone comprises the step of adjusting a pressure
3	level within the reaction zone.

The method of claim 7 wherein the step measuring an

impedance level of said plasma includes the step of inputting the measured level to a

- processor and the step of adjusting said deposition conditions in the reaction zone is 3 4
- controlled by said computer processor.