

Introducció

ilustrativos

Modelo TF-IDF

Procesamiento de Lenguaje Natural Vectores Semánticos

Mauricio Toledo-Acosta mauricio toledo@unison.mx

Departamento de Matemáticas Universidad de Sonora

Introducción

Ejemplos ilustrativos

Modelo TF-IDF

Section 1 Introducción

Introducción

Ejemplos ilustrativos

Modelo TF-IDF

Section 2

Ejemplos ilustrativos

La matriz term-document

Procesamiento de Lenguaje Natural

Introducciór

ilustrativos Modelo TF-IDF LSA

- La Revolución Francesa fue un período de grandes cambios políticos y sociales en Europa.
- El Imperio Romano dominó gran parte de Europa durante siglos, expandiéndose por toda Europa.
- La paella es un plato tradicional de España que lleva arroz, mariscos y verduras.
- El sushi es una comida japonesa hecha con arroz y pescado crudo, acompañado de algas.

Texto	Europa	cambios	arroz	pescado
1	1	1	0	0
2	2	0	0	0
3	0	0	1	0
4	0	0	1	1

Modelo BOW

Procesamiento de Lenguaje Natural

Texto	Europa	cambios	arroz	pescado
1	1	1	0	0
2	2	0	0	0
3	0	0	1	0
4	0	0	1	1

El modelo BOW asigna a cada documento el vector correspondiente a la fila. El vector de cada palabra es su columna.

Ejercicio BOW

Procesamiento de Lenguaje Natural

Documentos:

- El gato come ratones y juega con el perro. El perro duerme al lado y come.
- El gato come pescado.
- El perro ladra fuerte y come.
- El código tiene un error.
- El programa ejecuta código.

Palabras consideradas:

- gato
- come
- ratones
- juega
- perro

- duerme
- lado
- pescado
- ladra
- fuerte

- código
- error
- programa
- ejecuta

Modelo TF-IDF

Subsection 1

Modelo TF-IDF

La matriz TF-IDF

Procesamiento de Lenguaje Natural

Ejemplos

Modelo TF-IDF

- La Revolución Francesa fue un período de grandes cambios políticos y sociales en Europa.
- El Imperio Romano dominó gran parte de Europa durante siglos, expandiéndose por toda Europa.
- La paella es un plato tradicional de España que lleva arroz, mariscos y verduras.
- El sushi es una comida japonesa hecha con arroz y pescado crudo, acompañado de algas.

Texto	Europa	cambios	arroz	pescado
1	0.301	0.602	0	0
2	0.602	0	0	0
3	0	0	0.301	0
4	0	0	0.301	0.602

Los valores TF-IDF ponderan la importancia de cada término según su frecuencia en el documento y su rareza en el corpus.

Cálculo del TF-IDF

Procesamiento de Lenguaje Natural

TF-IDF = TF * IDF

- TF (Term Frequency): Frecuencia del término en el documento
- IDF (Inverse Document Frequency): Rareza del término en el corpus

$$TF(t,d) = \frac{\text{frecuencia del término } t \text{ en documento } d}{\text{total de términos en documento } d}$$

$$IDF(t) = \log \left(\frac{\text{total de documentos}}{\text{documentos que contienen término } t} \right)$$

$$TF\text{-}IDF(t,d) = TF(t,d) * IDF(t)$$

Ejemplo de *Europa* en Texto 2:

- TF = 2/7 = 0.286 (aparece 2 veces de 7 palabras totales)
- IDF = $\log(4/2) = \log(2) = 0.301$
- TF-IDF = 0.286 * 0.301 = 0.086

Section 3

LSA

Latent Semantic Analysis

Procesamiento de Lenguaje Natural

Introducció

ilustrativos Modelo TF-IDF

1 C A

LSA (Latent Semantic Analysis)

Técnica de procesamiento de lenguaje natural usada en Topic Modelling para descubrir temas en textos, es decir, identificar temas ocultos en un conjunto de documentos.

Fundamentos teóricos

Procesamiento de Lenguaje Natural

Introducció

ilustrativos Modelo TF-IDF

- Matriz Término-Documento: Representación numérica de textos, tipicamente BOW o TF-IDF.
- SVD: Reducción de dimensionalidad para capturar relaciones semánticas.
- **Espacio semántico latente**: Representación compacta de palabras y documentos.

SVD (Descomposición en Valores Singulares)

Procesamiento de Lenguaje Natural

Introducció

Ejemplos ilustrativos Modelo TF-IDF

LSA

- Propósito: Reducir la dimensionalidad conservando la estructura semántica.
- Ecuación:

$$A_{m\times n}=U_{m\times m}\Sigma_{m\times n}V_{n\times n}^{T}$$

- **Proceso**: Se calculan las matrices simétricas AA^T y A^TA .
- Componentes: U son vectores propios de AA^T , V son vectores propios de A^TA , Σ contiene $\sqrt{\lambda_i}$.
- **Reducción**: Se conservan solo los k valores singulares más grandes: $A \approx U_k \Sigma_k V_k^T$.

Espacio semántico latente

Procesamiento de Lenguaje Natural

Introducció

ilustrativos Modelo TF-IDF

- Concepto: Representación de palabras y documentos en un espacio de menor dimensión.
- Ventaja: Captura relaciones semánticas entre términos y documentos.
- **Ejemplo**: Palabras como "coche" y "automóvil" estarán cerca.

Proceso de LSA

Procesamiento de Lenguaje Natural

Introducció

lustrativos Modelo TF-IDF

- Preprocesamiento: Tokenización, eliminación de stopwords, etc.
- Matriz Término-Documento: Creación y ponderación (TF-IDF).
- SVD: Aplicación y reducción de dimensionalidad.
- Interpretación: Identificación de temas latentes.

Ventajas de LSA

Procesamiento de Lenguaje Natural

- Captura relaciones semánticas entre palabras.
- Reduce el ruido en grandes conjuntos de datos.
- Simple y fácil de implementar.

Limitaciones de LSA

Procesamiento de Lenguaje Natural

Introducció

ilustrativos

Modelo I F-I

- Dificultad para interpretar temas explícitamente.
- Depende del preprocesamiento y parámetros.

Aplicaciones de LSA

Procesamiento de Lenguaje Natural

Introducció

ilustrativos

IVIOGEIO I F-II

- Recuperación de información.
- Clasificación de textos.
- Análisis de sentimientos.
- Recomendación de contenido.

Comparación con otras técnicas

Procesamiento de Lenguaje Natural

Introducció

ilustrativo: Modelo TF-ID

Modelo TF-ID

• LSA/NMF: Basado en álgebra lineal (SVD).

• LDA: Basado en probabilidad (distribuciones de temas).

• Clustering: Basados en geometría y distancias.