Théorème de Castigliano

On part de la formule de Clapeyron :

$$U = \frac{1}{2} \sum_{i=1}^{n} F_i \delta_i = \frac{1}{2} \sum_{i=1}^{n} F_i \left(\sum_{j=1}^{n} u_{ij} \right) = \frac{1}{2} \sum_{i=1}^{n} F_i \left(\sum_{j=1}^{n} a_{ij} F_j \right) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} F_i F_j.$$

On isole les 2n-1 termes qui dépendent de la force F_k :

$$U = \frac{1}{2} \sum_{\stackrel{i=1}{i \neq k}}^n a_{ik} F_i F_k + \frac{1}{2} \sum_{\stackrel{j=1}{j \neq k}}^n a_{kj} F_k F_j + \frac{1}{2} a_{kk} (F_k)^2 + \overline{\overline{U}} \quad \text{indépendante de } F_k$$

$$\Rightarrow \frac{\partial U}{\partial F_k} = \frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^n a_{ik} F_i + \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^n a_{kj} F_j + a_{kk} F_k.$$

On réintègre le dernier terme dans les deux premiers :

$$\frac{\partial U}{\partial F_k} = \frac{1}{2} \sum_{i=1}^n a_{ik} F_i + \frac{1}{2} \sum_{j=1}^n a_{kj} F_j.$$

On utilise le théorème de Maxwell-Betti ($a_{ki}=a_{ik}$) :

$$\frac{\partial U}{\partial F_k} = \frac{1}{2} \sum_{i=1}^n a_{ki} F_i + \frac{1}{2} \sum_{j=1}^n a_{kj} F_j = \frac{1}{2} \delta_k + \frac{1}{2} \delta_k = \delta_k.$$

55

Théorème de Castigliano :

La dérivée partielle de l'énergie de déformation par rapport à une force $\overrightarrow{F_i}$ appliquée à la poutre est égale au déplacement δ_i du point d'application de cette force suivant sa ligne d'action : $\delta_i = \frac{\partial U}{\partial F_i}$

De même, la dérivée partielle de l'énergie de déformation par rapport un couple $\overrightarrow{C_\ell}$ est égale à la rotation ω_ℓ de la poutre au point de la section droite où s'applique ce couple : $\omega_\ell = \frac{\partial U}{\partial C_\ell}$

Rqs:

- Le théorème de Castigliano **ne permet** de calculer les déplacements **qu'aux points où les charges sont appliquées** et **selon leur direction d'application**.
- Les forces doivent être indépendantes.

Si deux forces extérieures appliquées ont même intensité F, il est alors nécessaire de les renommer F_1 et F_2 par exemple (à priori différentes), de calculer les δ_i puis de remplacer dans les résultats obtenus $F_1=F_2=F$

Exple d'application du théorème de Castigliano :

On considère une poutre de longueur ℓ , encastrée en x=0 soumise à une force ponctuelle $-F\overrightarrow{y}$ en x=a et à un couple $\Gamma\overrightarrow{z}$ à son extrémité $x=\ell$

Calculer le déplacement vertical au point A ainsi que la rotation de la section droite au point B en utilisant le théorème de Castigliano.

24

On néglige dans le calcul de l'énergie de déformation les effets dûs à l'effort tranchant et comme d'autre part l'effort normal est nul sur toute la poutre, on nécessite alors de **calculer uniquement le moment fléchissant** autour de l'axe $(G\vec{z})$.

D'après la **méthode des coupures** où l'on considère les deux domaines suivants :

$a < x \le \ell$ (domaine2)

On coupe le domaine 2 en un point G_2 d'abscisse x On isole la partie droite (\biguplus)

On étudie l'équilibre de la portion $[G_2B]$ (théorème du moment en G_2)

$$-\overrightarrow{\mathcal{M}}^{2}(x) + \Gamma \overrightarrow{z} = \overrightarrow{0} \quad \Longrightarrow \quad \overrightarrow{\mathcal{M}}^{2}(x) = M_{z}^{2}(x) \overrightarrow{z} = \Gamma \overrightarrow{z} \quad \text{ soit } \quad M_{z}^{2}(x) = \Gamma$$

$0 \le x < a \pmod{1}$

On coupe le domaine ① en un point G_1 d'abscisse x On isole la partie droite (+)

On étudie l'équilibre de la portion $[G_1B]$ (théorème du moment en G_1)

$$-\overrightarrow{\mathcal{M}}^{(1)}(x) + \overrightarrow{G_1 A} \wedge (-F\overrightarrow{y}) + \Gamma \overrightarrow{z} = \overrightarrow{0}$$

$$\implies \overrightarrow{\mathcal{M}}^{\textcircled{1}}(x) = M_z^{\textcircled{1}}(x)\overrightarrow{z} = \Gamma \overrightarrow{z} + (a-x)\overrightarrow{x} \wedge (-F\overrightarrow{y})$$

soit
$$M_z^{\textcircled{1}}(x) = \Gamma + F(x-a)$$

26

En appliquant le **théorème de Castigliano**, on peut calculer le déplacement vertical v_A (suivant $-\overrightarrow{y}$ car $\overrightarrow{F}=-F\overrightarrow{y}$) au point A:

$$v_A = \frac{\partial U}{\partial F}$$

avec
$$U = \frac{1}{2} \int_0^\ell \frac{(M_z(x))^2}{EI_{Gz}} \ dx = \frac{1}{2} \int_0^a \frac{(M_z^{\textcircled{1}}(x))^2}{EI_{Gz}} \ dx + \frac{1}{2} \int_a^\ell \frac{(M_z^{\textcircled{2}}(x))^2}{EI_{Gz}} \ dx$$

$$\Rightarrow v_A = \frac{\partial U}{\partial F} = \frac{\partial}{\partial F} \left[\frac{1}{2} \int_0^a \frac{(M_z^{\textcircled{1}}(x))^2}{EI_{Gz}} dx \right] + \frac{\partial}{\partial F} \left[\frac{1}{2} \int_a^\ell \frac{(M_z^{\textcircled{2}}(x))^2}{EI_{Gz}} dx \right]$$

Le matériau étant homogène, on peut sortir le terme EI_{Gz} des intégrales

$$v_A = \frac{1}{EI_{Gz}} \int_0^a M_z^{\textcircled{1}}(x) \frac{\partial M_z^{\textcircled{1}}(x)}{\partial F} dx + \frac{1}{EI_{Gz}} \int_a^\ell M_z^{\textcircled{2}}(x) \frac{\partial M_z^{\textcircled{2}}(x)}{\partial F} dx$$

avec
$$M_z^{\textcircled{2}}(x) = \Gamma \Longrightarrow \frac{\partial M_z^{\textcircled{2}}(x)}{\partial F} = 0$$
 et $M_z^{\textcircled{1}}(x) = \Gamma + F(x-a) \Longrightarrow \frac{\partial M_z^{\textcircled{1}}(x)}{\partial F} = (x-a)$

$$v_A = \frac{1}{EI_{Gz}} \int_0^a \left[F(x-a)^2 + \Gamma(x-a) \right] dx \stackrel{X=x-a}{=} \frac{1}{EI_{Gz}} \left\{ F\left[\frac{X^3}{3} \right]_{-a}^0 + \Gamma\left[\frac{X^2}{2} \right]_{-a}^0 \right\}$$

$$v_A = rac{a^2}{6EI_{Cz}}\left(2aF - 3\Gamma
ight)$$
 suivant $-\overrightarrow{y}$

En appliquant le **théorème de Castigliano**, on peut également calculer la rotation de la section droite (autour de \overrightarrow{z}) au point B:

$$\omega_B = \frac{\partial U}{\partial \Gamma} = \frac{1}{EI_{Gz}} \int_0^a M_z^{\textcircled{1}}(x) \frac{\partial M_z^{\textcircled{1}}(x)}{\partial \Gamma} dx + \frac{1}{EI_{Gz}} \int_a^\ell M_z^{\textcircled{2}}(x) \frac{\partial M_z^{\textcircled{2}}(x)}{\partial \Gamma} dx$$

$$\text{avec } M_z^{\textcircled{2}}(x) = \Gamma \quad \text{et} \quad M_z^{\textcircled{1}}(x) = \Gamma + F(x-a) \qquad \Longrightarrow \qquad \frac{\partial M_z^{\textcircled{1}}(x)}{\partial \Gamma} = \frac{\partial M_z^{\textcircled{2}}(x)}{\partial \Gamma} = 1$$

$$\mathrm{d'où}: \ \omega_B = \frac{1}{EI_{Gz}} \int_0^a \left[F(x-a) + \Gamma \right] \ dx + \int_a^\ell \Gamma \ dx \stackrel{X=x-a}{=} \frac{1}{EI_{Gz}} \left\{ F\left[\frac{X^2}{2}\right]_{-a}^0 + \Gamma a + \Gamma(\ell-a) \right\}$$

$$\Longrightarrow$$
 $\omega_B = rac{1}{2EI_{Gz}} \left(2\Gamma\ell - a^2F
ight)$ suivant \overrightarrow{z}

58

Théorème de la charge fictive (théorème de Bertrand de Fontviolant)

Théorème de la charge fictive :

On considère une poutre soumise à n charges $\overrightarrow{F_i}$ $(1\leq i\leq n)$ appliquées aux points P_i . On applique en un point non chargé P une force fictive Φ de direction \overrightarrow{n} fixée.

Si $U(\Phi,F_1,...,F_n)$ désigne l'énergie de déformation, alors le déplacement du point P (selon la direction \overrightarrow{n}) est égal à :

$$\delta = \lim_{\Phi \to 0} \frac{\partial U}{\partial \Phi}(\Phi, F_i) = \frac{\partial U}{\partial \Phi}(\Phi, F_i) \Big|_{\Phi = 0}$$

Rqs:

- Même raisonnement pour l'application d'un couple fictif \overrightarrow{Cn} en P. La rotation de la section droite en P autour de la direction \overrightarrow{n} est alors :

$$\omega = \lim_{\mathbf{C} \to 0} \frac{\partial U}{\partial \mathbf{C}}(\mathbf{C}, F_i) = \frac{\partial U}{\partial \mathbf{C}}(\mathbf{C}, F_i) \Big|_{\mathbf{C} = 0}$$

- Pratique pour calculer les flèches et rotations des sections droites **aux points où les chargements ponctuels ne sont pas appliqués** ou bien pour le cas de poutres soumises à des **charges réparties**.

Exple d'application du théorème de la charge fictive :

On considère une poutre console de longueur ℓ , encastrée en x=0 soumise à des charges transversales uniformément réparties de densité $-p\overrightarrow{y}$ constante et libre d'efforts à son extrémité $x=\ell$.

Calculer le déplacement vertical et la rotation de la section droite au point B en utilisant le théorème de la charge fictive.

30

Il suffit alors de rajouter une force fictive $\Phi \overrightarrow{y}$ et un couple fictif $\mathbf{C}\overrightarrow{z}$ en B . Le nouveau problème à résoudre est le suivant :

Dans le **cadre linéaire** (HPP et élasticité linéaire), il est souvent judicieux de décomposer un problème plus complexe en plusieurs problèmes plus simples pour lesquels les solutions sont connues ou plus faciles à calculer. On pourra alors appliquer le **théorème de superposition** pour déterminer la solution de notre problème initial.

On **néglige** dans le calcul de l'énergie de déformation les **effets dûs à l'effort tranchant**

On doit donc calculer uniquement le moment fléchissant autour de l'axe $(G\overrightarrow{z})$.

$$\operatorname{Pour}\left(I\right)\colon\ M_z^{(I)}(x)=-\frac{p}{2}(x-\ell)^2$$

Pour (II) avec la méthode des coupures :

$$M_z^{(II)}(x) = -\Phi(x-\ell) + \mathbf{C}$$

Le théorème de superposition nous permet donc d'écrire:

$$M_z(x) = M_z^{(I)}(x) + M_z^{(II)}(x) = -\frac{p}{2}(x-\ell)^2 - \Phi(x-\ell) + C.$$

En appliquant le théorème de la charge fictive, on obtient :

$$v_{B} = \frac{\partial U}{\partial \Phi}\Big|_{(\Phi=0,\mathbf{c}=0)} = \frac{\partial U}{\partial \Phi}\Big|_{\dagger}$$

$$= \frac{1}{EI_{Gz}} \int_{0}^{\ell} M_{z}(x)\Big|_{\dagger} \frac{\partial M_{z}(x)}{\partial \Phi}\Big|_{\dagger} dx$$

$$= \frac{1}{EI_{Gz}} \int_{0}^{\ell} \left(-\frac{p}{2}(x-\ell)^{2}\right) \cdot (-(x-\ell)) dx \stackrel{X=x-\ell}{=} \frac{p}{2EI_{Gz}} \left[\frac{X^{4}}{4}\right]_{-\ell}^{0}$$

$$= \frac{p\ell^{4}}{8EI_{Gz}} \quad (\text{suivant } \vec{y})$$

de même

$$\omega_{B} = \frac{\partial U}{\partial \mathbf{C}}\Big|_{(\Phi=0,\mathbf{C}=0)} = \frac{\partial U}{\partial \mathbf{C}}\Big|_{\dagger}$$

$$= \frac{1}{EI_{Gz}} \int_{0}^{\ell} M_{z}(x)\Big|_{\dagger} \frac{\partial M_{z}(x)}{\partial \mathbf{C}}\Big|_{\dagger} dx$$

$$= \frac{1}{EI_{Gz}} \int_{0}^{\ell} \left(-\frac{p}{2}(x-\ell)^{2}\right) \cdot (1) dx \stackrel{X=x-\ell}{=} -\frac{p}{2EI_{Gz}} \left[\frac{X^{3}}{3}\right]_{-\ell}^{0}$$

$$= \frac{p\ell^{3}}{6EI_{Gz}} \quad (\text{suivant } \vec{z})$$

Théorème de Menabrea (Théorème du potentiel minimal)

On peut appliquer le théorème de Castigliano aux systèmes hyperstatiques en procédant de la façon suivante :

- (i) On supprime les liaisons surabondantes (réactions et/ou moments de liaison) du système hyperstatique pour le "rendre" isostatique.
- (ii) On applique à ce système isostatique, **en plus des chargements extérieurs** les réactions et/ou moments surabondants comme des forces et des couples extérieurs.

 \Longrightarrow choix des inconnues hyperstatiques X_R

(iii) Par l'application du théorème de Castigliano à l'action de contact d'un appui sans frottement (ou encastrement), on calcule les déplacements et/ou les rotations du système rendu isostatique.

Théorème de Menabrea :

Les valeurs des **réactions hyperstatiques** correspondant à l'équilibre du système rendent **minimale** (stationnaire) l'énergie de déformation U:

$$\frac{\partial U}{\partial X_R} = 0$$

avec X_R les inconnues hyperstatiques

34

Exple d'application du théorème de Menabrea :

On considère une poutre de longueur ℓ , encastrée en O(x=0) et sous appui simple glissant en $A(x=\ell)$ soumise à des charges transversales uniformément réparties de densité $-p\overrightarrow{y}$ constante.

Déterminer la (les) inconnue(s) hyperstatique(s) de notre problème en utilisant le théorème de Menabrea.

(i) Calcul du degré d'hyperstatisme de la poutre et choix des inconnues hyperstatiques :

Pour une structure plane $h_{2D}=r-3$ où r représente le nb d'inconnues de liaison

ici
$$r=4$$
 \Longrightarrow $h_{2D}=4-3=1$ (poutre hyperstatique de degré 1)

Choix de prendre R_A comme inconnue hyperstatique (seule inconnue qui est isolée à l'extrémité droite).

 R_A considérée par la suite comme un **chargement extérieur** pour rendre le système isostatique. Le nouveau problème (système équivalent) à résoudre est le suivant \sim :

36

(ii) Calcul des éléments de réduction du torseur de cohésion pour notre système équivalent :

Les effets de l'effort tranchant seront négligés dans le calcul de l'énergie de déformation. Besoin de connaître uniquement le moment fléchissant autour de l'axe $(G\overrightarrow{z})$:

Par analogie auec les calculs faits à l'exemple précédent on trouve :

$$M_z(x) = -\frac{p}{2}(x-\ell)^2 - R_A(x-\ell).$$

(iii) Théorème de Menabrea :

$$0 = \frac{\partial U}{\partial R_A} = \frac{1}{EI_{Gz}} \int_0^\ell M_z(x) \frac{\partial M_z(x)}{\partial R_A} dx$$

$$= \frac{1}{EI_{Gz}} \int_0^\ell \left(-\frac{p}{2} (x - \ell)^2 - R_A(x - \ell) \right) \cdot (-(x - \ell)) dx \Longrightarrow \left[R_A = \frac{3p\ell}{8} \right]_{-\ell}^{-\ell} = \frac{1}{EI_{Gz}} \left\{ \frac{p}{2} \left[\frac{X^4}{4} \right]_{-\ell}^0 + R_A \left[\frac{X^3}{3} \right]_{-\ell}^0 \right\} = \frac{1}{EI_{Gz}} \left\{ \frac{-p\ell^4}{8} + \frac{R_A\ell^3}{3} \right\}.$$

En remplaçant R_A dans les eléments de réduction du torseur de cohésion on pourra calculer les déplacements ou les rotations en n'importe quels points de la poutre.