<u>Lecture 3 – Spatial Filtering (空间滤波)</u>

This lecture will cover:

- Spatial domain (空间域)
- Intensity Transformation (灰度变换)
- Histogram (直方图)
- Spatial Filtering(空间滤波器)
 - ✓ Smoothing (平滑)
 - ✓ Sharpening (锐化)

Definition

$$h(r_k) = n_k$$

Where r_k : the kth intensity value in the level range of [0, L-1]

 n_k : the number of pixels in the image with intensity r_k

Normalized Histogram (归一化直方图)

$$p(r_k) = \frac{n_k}{MN}$$

Where $p(r_k)$: the probability of occurrence of intensity r_k in an image

M, N: the row and column dimensions of the image

Basic Image Type

Properties

The histogram of an image

- describe the number or probability of intensity, NO location (spatial) information
- > can be same as other images

$$> \sum_{0}^{L-1} n_k = M \cdot N$$
 or $\sum_{0}^{1} p(r_k) = 1$

 \triangleright If Region C=AUB, A and B are disjoint, $H_C=H_A+H_B$

Basis of Histogram Processing

Given intensity transformation s = T(r), where T(r)

- T(r) is strictly monotonically increasing function (严格单调递增函数, $T(r_2) > T(r_1)$ if $r_2 > r_1$)in the interval $0 \le r \le L 1$
- $0 \le T(r) \le L 1$ for $0 \le r \le L 1$

The inverse transform $r = T^{-1}(s)$

The probability density function (PDF) of s is

$$p_s(s) = p_r(r) \cdot \frac{dr}{ds}$$

Intensity Mapping

Histogram Processing

- ➤ Histogram Equalization (直方图均衡)
- ➤ Histogram Matching (Specification) (直方图匹配/规定化)
- ➤ Local Histogram Processing (局部处理)
- ➤ Histogram Statistics for Image Enhancement (直方图统计)

Histogram Equalization

- > Transformation function : $s = T(r) = (L-1) \int_0^r p_r(w) dw$
- ➤ Uniform Probability density function : $p_s(s) = \frac{1}{L-1}$

Histogram Equalization

$$s = T(r) = (L-1)\sum_{j=0}^{k} p_r(r_j) = (L-1)\sum_{j=0}^{k} \frac{n_j}{MN} = \frac{L-1}{MN}\sum_{j=0}^{k} n_j$$

K	r_k	n_k	p(r _k)	S _k		S _k	p(s _k)
0	0	790	0.19	1.33	1	0	0
1	1	1023	0.25	3.08	3	1	0.19
2	2	850	0.21	4.55	5	2	0
3	3	656	0.16	5.67	6	3	0.25
4	4	329	0.08	6.23	6	4	0
5	5	245	0.06	6.65	7	5	0.21
6	6	122	0.03	6.86	7	6	0.24
7	7	81	0.02	7.00	7	7	0.11

Histogram Equalization

$$s = T(r) = (L-1)\sum_{j=0}^{k} p_r(r_j) = (L-1)\sum_{j=0}^{k} \frac{n_j}{MN} = \frac{L-1}{MN}\sum_{j=0}^{k} n_j$$

				-			
K	r _k	n_k	p(r _k)	S _k		S _k	p(s _k)
0	0	790	0.19	1.33	1	0	0
1	1	1023	0.25	3.08	3	1	0.19
2	2	850	0.21	4.55	5	2	0
3	3	656	0.16	5.67	6	3	0.25
4	4	329	0.08	6.23	6	4	0
5	5	245	0.06	6.65	7	5	0.21
6	6	122	0.03	6.86	7	6	0.24
7	7	81	0.02	7.00	7	7	0.11

Example

Example

Example

Transformation Function

Generate a processed image with a specified histogram

For input :
$$s = T(r) = (L - 1) \int_0^r p_r(w) dw$$

For output :
$$G(z) = (L-1) \int_0^z p_z(t) dt = s$$

Therefore
$$z = G^{-1}(s) = G^{-1}[T(r)]$$

Typical Transformation Function

Probability D	Density Function of Output Image	Transformation Function			
Uniform	$P_g(g) = \frac{1}{g_{\text{max}} - g_{\text{min}}}, g_{\text{max}} \ge g \ge g_{\text{min}}$	$g = [g_{\text{max}} - g_{\text{min}}]C(f) + g_{\text{min}}$			
Exponential	$P_g(g) = \alpha \exp[-\alpha(g - g_{\min})], g \ge g_{\min}$	$g = g_{\min} - \frac{1}{\alpha} \ln[1 - C(f)]$			
Raleigh	$P_g(g) = \frac{g - g_{\min}}{\alpha^2} \exp[-\frac{(g - g_{\min})^2}{2\alpha^2}], g \ge g_{\min}$	$g = g_{\min} + \{2\alpha^2 \ln[\frac{1}{1 - C(f)}]\}^{1/2}$			
Hyperbolic (Cubic)	$P_g(g) = \frac{1}{3} \left[\frac{g^{-\frac{2}{3}}}{g^{\frac{1}{3}} \max - g^{\frac{1}{3}} \min} \right], g_{\text{max}} \ge g \ge g_{\text{min}}$	$g = \{ [g^{1/3}_{\text{max}} - g^{1/3}_{\text{min}}]C(f) + g^{1/3}_{\text{min}} \}^3$			
Hyperbolic (Logarithmic)	$P_g(g) = \frac{1}{g[\ln(g_{\text{max}}) - \ln(g_{\text{min}})]}, g_{\text{max}} \le g \le g_{\text{min}}$	$g = g_{\min} \left[\frac{g_{\max}}{g_{\min}} \right]^{C(f)}$			

r_{k}	$p(r_k)$	s_k	$\mathbf{Z}_{ ext{q}}$	$p(z_q)$	$G(z_q)$	$s_k \rightarrow z_k$	$r_k \rightarrow z_k$	\mathbf{z}_{k}	$p(z_k)$
0	0. 19	1	0	0	0	3	3	0	0
1	0.25	3	1	0	0	4	4	1	0
2	0.21	5	2	0	0	5	5	2	0
3	0. 16	6	3	0. 15	1	6	6	3	0. 19
4	0.08	6	4	0.20	2	6	6	4	0.25
5	0.06	7	5	0.30	5	7	7	5	0.21
6	0.03	7	6	0.20	6	7	7	6	0.24
7	0.02	7	7	0.15	7	7	7	7	0.11

r_k	$p(r_k)$	s_k	$\mathbf{z}_{ ext{q}}$	$p(z_q)$	$G(z_q)$	$s_k \rightarrow z_k$	$r_k \rightarrow z_k$	\mathbf{z}_{k}	$p(z_k)$
0	0. 19	1	0	0	0	3	3	0	0
1	0. 25	3	1	0	0	4	4	1	0
2	0. 21	5	2	0	0	5	5	2	0
3	0. 16	6	3	0.15	1	6	6	3	0. 19
4	0.08	6	4	0.20	2	6	6	4	0.25
5	0.06	7	5	0.30	5	7	7	5	0.21
6	0.03	7	6	0.20	6	7	7	6	0.24
7	0.02	7	7	0. 15	7	7	7	7	0.11

Equalization vs Matching

Equalization vs Matching

Equalization vs Matching

Input intensity

Local Histogram Processing

Histogram Statistics

Average Intensity (平均灰度)

$$m = \sum_{i=0}^{L-1} r_i p(r_i) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)$$

➤ Intensity Variance (灰度方差)

$$\sigma^{2} = \sum_{i=0}^{L-1} (r_{i} - m)^{2} p(r_{i}) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{v=0}^{N-1} [f(x, y) - m]^{2}$$

Histogram Statistics

$$g(x,y) = \begin{cases} E \cdot f(x,y), \\ f(x,y), \end{cases}$$

 $g(x,y) = \begin{cases} E \cdot f(x,y), & \text{if } m_{S_{xy}} \le k_0 m_G \text{ AND } k_1 \sigma_G \le \sigma_{S_{xy}} \le k_2 \sigma_G \\ f(x,y), & \text{otherwise} \end{cases}$

Color Histogram

Color Histogram

