Devoir surveillé n° 08 Version 1

Durée: 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $f \in \mathscr{C}^0([0,1],\mathbb{R})$ telle que $\int_0^1 f(t) dt = \frac{1}{2}$. Montrer qu'il existe $a \in]0,1[$ telle que f(a) = a.

II. Étude d'un endomorphisme.

On note $\mathscr{E} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et f l'application

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 2x + y - z \\ x + 2y + z \\ -x + y + 2z \end{pmatrix}.$$

- 1) Montrer que $f \in \mathcal{L}(\mathbb{R}^3)$ et déterminer les vecteurs $f(e_1)$, $f(e_2)$ et $f(e_3)$.
- 2) Déterminer une base et la dimension du noyau de f. L'application f est-elle injective?
- 3) a) Résoudre l'équation f(x, y, z) = (1, -1, 1) dans \mathbb{R}^3 .
 - b) En déduire que Im $f \neq \mathbb{R}^3$.
 - c) Soit $v_1 = f(e_1)$ et $v_2 = f(e_2)$. Montrer que (v_1, v_2) est une base de Im f.
 - d) Vérifier que $\operatorname{Im} f$ est stable par f.
- 4) Montrer que Im f et Ker f sont supplémentaires dans \mathbb{R}^3 .
- 5) Soit v_3 un vecteur non nul de Ker f. Montrer que (v_3) est une base de Ker f et que $\mathscr{B} = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .
- **6)** Écrire $f(v_1)$, $f(v_2)$ et $f(v_3)$ en fonction de v_1 , v_2 et v_3 .

On appelle p la projection sur F = Im f parallèlement à G = Ker f.

- 7) Soit u un vecteur de \mathbb{R}^3 de coordonnées (a,b,c) dans la base \mathscr{B} .
 - a) Écrire les coordonnées de p(u) dans la base \mathscr{B} .
 - b) Écrire les coordonnées de f(u) dans la base \mathscr{B} .
- 8) En déduire que f est la composée de p et d'une homothétie h dont on déterminera le rapport. Montrer que $f = p \circ h = h \circ p$.
- 9) Démontrer que pour tout $n \in \mathbb{N}^*$, $f^n = h^n \circ p = p \circ h^n$.

III. Étude d'une fonction définie par une intégrale.

— Première partie —

Soit la fonction φ définie par : $\varphi(x) = \frac{\ln(1+x)}{x}$.

- 1) Déterminer l'ensemble de définition de φ .
- 2) Montrer que φ est dérivable sur son ensemble de définition et déterminer sa dérivée.
- 3) Etudier le signe de $\varphi'(x)$.
- 4) Déterminer les limites de φ aux bornes de son ensemble de définition.
- 5) Montrer que φ peut être prolongée par continuité en 0 en une fonction que l'on notera également φ . Montrer que cette fonction ainsi prolongée est de classe \mathcal{C}^1 sur son ensemble de définition.
- 6) Déterminer le tableau de variation de φ et tracer sa courbe représentative.

— Deuxième partie —

Soit f une fonction définie continue et **positive** sur $\left[0,\frac{\pi}{2}\right]$. Soit la fonction g définie par :

$$g(x) = \int_0^{\pi/2} \frac{f(t)}{1 + x \sin t} dt.$$

- 1) Montrer que g est définie sur $]-1,+\infty[$.
- 2) On suppose dans cette question que : $\forall t \in \left[0, \frac{\pi}{2}\right], \ f(t) = \cos t$. Calculer g(x).
- 3) On suppose dans cette question que : $\forall t \in \left[0, \frac{\pi}{2}\right], \ f(t) = \sin(2t)$. Calculer g(x).
- 4) Soit a un réel supérieur strictement à -1. Montrer que l'on peut trouver un réel K tel que : $\forall (x,y) \in]a, +\infty[^2, |g(x)-g(y)| \leq K|x-y|$. En déduire que la fonction g est continue sur $]-1, +\infty[$.
- 5) Montrer, sans utiliser la dérivabilité, que g est décroissante sur $]-1,+\infty[$.
- 6) Montrer que la fonction f est majorée sur $\left[0, \frac{\pi}{2}\right]$.
- 7) Soit M un majorant de f sur $\left[0, \frac{\pi}{2}\right]$ et $b \in \left]0, \frac{\pi}{2}\right]$. En écrivant que $\int_0^{\frac{\pi}{2}} = \int_0^b + \int_b^{\frac{\pi}{2}}$, montrer que :

$$\forall x > 0, \ g(x) \le Mb + \frac{M\pi}{2(1+x\sin b)}.$$

- 8) En déduire la limite de la fonction g en $+\infty$.
- 9) Montrer que g admet une limite L finie ou infinie en -1. On illustrera chacun des deux cas avec un exemple.

— FIN —