SAMBA (Statistical Apparatus for Micronutrient Biomarker Analysis) User Manual

SAMBA development team

Introduction to the SAMBA R package (I)

- SAMBA:
 - -Statistical Apparatus

for Micronutrient Biomarker Analysis

- SAMBA is an easy-to-use and "all-in-one" R package
 - -R is a free and powerful software for statistical computing and graphics. No additional costs on software purchase required;
- Co-developed by
 - —UC Davis/BRINDA: Hanqi Luo;
 - -GAIN: Ty Beal;
 - -BRINDA: Yaw Addo, Madeleine Zeiler, Jiaxi Geng, E Rochelle Werner, Parminder Suchdev, Melissa Young;
 - -MAPS:Tineka Blake
- With support from USAID Advancing Nutrition

Introduction to the SAMBA R package (II)

- An "all-in-one" R package
 - —Can estimate **prevalence** of any measured micronutrient deficiency and the associated standard errors/confidence intervals.
 - Can estimate mean, geometric means, and percentiles of multiple biomarkers and the associated standard errors/confidence intervals;
 - —Can be used to analyze multiple datasets simultaneously;
 - Can provide both unadjusted and adjusted biomarker values for inflammation (BRINDA method);
 - Can be used to analyze both single-site studies and studies/surveys with complex survey designs;
 - —Can provide a summary of results and a clean dataset with standardized variable names and units.

Introduction to the SAMBA R package (III)

- Flexibility (without modifying the R package)
 - —Users can modify the cutoff values for micronutrient deficiencies;
 - -Users can use the same package to analyze additional variables (such as HDL, cholesterol, & blood pressure).

Analysis procedure using SAMBA

Unpacked the Blackbox of SAMBA

Step 1: Fill in the biomarker dataset template

Step 2: review (or modify) the cutoff value template

Users can define a micronutrient deficiency being smaller or greater than a user-specified cutoff

Cutoff values vary by population (male, female, and pregnant women) and age

1	nutrients	biomarker	relationship	cutoff	unit	population	lower_age	upper_age
22	iron	serum_ferritin	<	12	μg/l	male	0	4
23	iron	serum_ferritin	<	12	μg/l	female	0	4
24	iron	serum_ferritin	<	15	μg/l	male	5	120
25	iron	serum_ferritin	<	15	μg/l	female	5	120
26	iron	serum_ferritin	<	15	μg/l	pregnant women	13	49
27	iron	transferrin_receptor	>	8.3	mg/L	male	0	4
28	iron	transferrin_receptor	>	8.3	mg/L	female	0	4
29	iron	transferrin_receptor	>	8.3	mg/L	male	5	120
30	iron	transferrin_receptor	>	8.3	mg/L	female	5	120
31	iron	transferrin_receptor	>	8.3	mg/L	pregnant women	13	49

Step 3: Execute the SAMBA R package
Micronutrient biomarker analysis

SAMBA R package Clean the workstation rm(list = ls()) environment gc() source("~/git/2billion/R/biochem/code_hanqi/samba.R") Load SAMBA R package # execute the SAMBA R package samba(biomarker_dataset_template = "~/git/2billion/R/biochem/code_ha 1. Where you have saved the biomarker_cutoff_template = "~/qit/2billion/R/biochem/code_han biomarker dataset template ✓ no_biodata = 3, save_directory = "~/git/2billion/data/biochem/final_data", results_name = "nhanes_kenya") 2. Where you have saved the biomarker cutoff template 3. How many biomarker datasets you want to analyze 4. Where you want to store 5. the output dataset name the results

Step 4: Check result datasets

Output I: result file

country_code	country	survey_year	study_design	nutrient	unit	subgroup_name	subgroup	n	deficiency	deficiency_se	mean	mean_se
KEN	Kenya	2010	single-site study	retinol_binding_protein	umol/l	overall	overall	843	29.54	1.57	0.86	0.01
KEN	Kenya	2010	single-site study	retinol_binding_protein	umol/l	age_group	1	457	29.54	2.14	0.86	0.01
KEN	Kenya				umol/l	age_group	2	386	29.53	2.32	0.86	0.01
KEN	Kenya	2010	single-site study	retinol_binding_protein_adj	umol/l	overall	overall	843	9.02	0.99	1.1	0.01
KEN	Kenya	2010	single-site study	retinol_binding_protein_adj	umol/l	age_group	1	457	7.66	1.24	1.1	0.01
KEN	Kenya	2010	single-site study	retinol_binding_protein_adj	umol/l	age_group	2	386	10.62	1.57	1.11	0.02
KEN	Kenya	2010	single-site study	serum_ferritin	ug/l	overall	overall	843	19.22	1.36	57.77	2.22
KEN	Kenya	2010	single-site study	serum_ferritin	ug/l	age_group	1	457	23.19	1.98	52.91	2.89
KEN	Kenya	2010	single-site study	serum_ferritin	ug/l	age_group	2	386	14.51	1.79	63.51	3.41
KEN	Kenya	2010	single-site study	serum_ferritin_adj	ug/l	overall	overall	843	50.42	1.72	15.93	0.49
KEN	Kenya	2010	single-site study	serum_ferritin_adj	ug/l	age_group	1	457	54.92	2.33	14.93	0.66
KEN	Kenya	2010	single-site study	serum_ferritin_adj	ug/l	age_group	2	386	45.08	2.53	17.11	0.74

The result file also provides

- Estimated mean, prevalence of deficiencies, 10th, 25th, 50th, 75th, and 90th percentiles and the standard errors and confidence intervals;
- Estimated geometric means and the confidence intervals.

 Due to limited space, results from NHANES analysis and the estimates of percentiles are not shown here.

Output 2 to Output n: cleaned datasets

Cleaned datasets with standardized variable names and units and adjusted biomarker values for inflammation for each study subject

retinol_binding_protein	serum_ferrit	transferrin_receptor	crp	agp	retinol_bind	serum_ferrit	transferrin_r	crp_unit	agp_unit	male	np_female
0.74	23.2	32.68	3.89	1.4	umol/l	ug/l	mg/l	mg/l	g/l	1	. 0
0.61	118.4	14.42	22.49	2.02	umol/l	ug/l	mg/l	mg/l	g/I	1	. 0
1	7.01	15.91	3.09	1.05	umol/l	ug/l	mg/l	mg/l	g/l	1	. 0
0.89	38.12	7.22	1.12	1.58	umol/l	ug/l	mg/l	mg/l	g/I	1	. 0
0.78	21.39	25.2	0.36	0.69	umol/l	ug/l	mg/l	mg/l	g/I	1	. 0
0.79	6.59	20.03	1.05	1.31	umol/I	ug/l	mg/l	mg/l	g/l	1	. 0
0.59	172.35	14.95	40	1.67	umol/l	ug/l	mg/l	mg/l	g/l	1	. 0
0.92	9.4	14.65	0.58	1.14	umol/l	ug/l	mg/l	mg/l	g/l	1	. 0
0.65	1.71	21.45	0.2	0.51	umol/I	ug/l	mg/l	mg/l	g/l	1	. 0
1.14	56.32	11.94	0.79	1.16	umol/l	ug/l	mg/l	mg/l	g/l	1	. 0
0.89	149.95	18.25	22.8	1.55	umol/I	ug/l	mg/l	mg/l	g/I	1	. 0
0.93	7.4	12.92	0.05	0.71	umol/l	ug/l	mg/l	mg/l	g/l	1	. 0
0.81	38.29	7.68	1.25	1.06	umol/l	ug/l	mg/l	mg/l	g/l	1	. 0
1	7.79	17.35	2.83	1.2	umol/l	ug/l	mg/l	mg/l	g/l	1	. 0
0.85	120.34	6.52	10.64	1.01	umol/l	ug/l	mg/l	mg/l	g/I	1	. 0
0.82	26.29	10.73	4.05	1.04	umol/l	ug/l	mg/l	mg/l	g/l	1	. 0
1.02	19.75	8.74	0.2	0.63	umol/l	ug/l	mg/l	mg/l	g/l	1	. 0
0.4	16.56	12.39	27.21	1.34	umol/l	ug/l	mg/l	mg/l	g/l	1	. 0