### Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Jakub Bujak

Nr albumu: 370737

## Logika separacji dla języka programowania Jafun

Praca magisterska na kierunku INFORMATYKA

Praca wykonana pod kierunkiem dr hab. Aleksego Schuberta, prof. UW

#### Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

#### Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora pracy

#### Streszczenie

W pracy zdefiniowano logikę separacji dla języka Jafun, przedstawiono jej formalizację w systemie Coq i udowoniono jej poprawność względem semantyki języka. Logika separacji pozwala na podział sterty na rozłączne fragmenty. Upraszcza to wnioskowanie o programach, pozwalając na dowodzenie własności podwyrażeń na prostszych fragmentach sterty.

#### Słowa kluczowe

Logika separacji, Jafun, weryfikacja

Dziedzina pracy (kody wg programu Socrates-Erasmus)

11.3 Informatyka

Klasyfikacja tematyczna

# Spis treści

| W         | prowadzenie                                  | Ę  |
|-----------|----------------------------------------------|----|
| 1.        | Podstawowe pojęcia i definicje               | 7  |
| 2.        | Jafun2.1. Składnia i semantyka2.2. Ewaluacja | Ć  |
| 3.        | Składnia i semantyka                         | 11 |
| 4.        | Reguły wnioskowania                          | 13 |
| <b>5.</b> | Własności ewaluacji                          | 17 |
| 6.        | Poprawność                                   | 19 |
| 7.        | Formalizacja w systemie Coq                  | 21 |
| 8.        | Podsumowanie                                 | 23 |
| Bi        | bliografia                                   | 25 |

# Wprowadzenie

# Podstawowe pojęcia i definicje

### Jafun

Jafun to zorientowany obiektowo język programowania podobny do Javy. Jego szczegółowy opis znajduje się w pracy [1]. Poniżej przedstawiam te aspekty języka, które są istotne dla prezentowanej logiki.

#### 2.1. Składnia i semantyka

#### 2.2. Ewaluacja

Ewaluacją konfiguracji (h, st) będziemy nazywać dowolny ciąg par  $confs = (h_1, st_1), \ldots, (h_n, st_n)$ , taki że  $h_1 = h$ ,  $st_1 = st$  oraz  $(h_i, st_i) \to (h_{i+1}, st_{i+1})$  dla  $1 \le i < n$ .

Ewaluacją wyrażenia e na stercie h będziemy nazywać taką ewaluację konfiguracji  $(h, \llbracket e \rrbracket_{\phi})$ , że  $st_n = \llbracket l \rrbracket_A$  dla pewnych l, A. Jeśli taka ewaluacja istnieje, będziemy to oznaczać jako  $(h, e) \stackrel{confs}{\leadsto} (h_n, A, l)$ 

### Składnia i semantyka

Prezentowana logika separacji dla języka Jafun jest logiką z kwantyfikatorami egzystencjalnymi pierwszego rzędu, trójkami Hoare'a, operatorem  $\hookrightarrow$ , pozwalającym na opisywanie zawartości sterty i operatorami separacji \* i \*.

Iris, na którym wzorowana jest niniejsza logika, jest afiniczną logiką separacyjną, to znaczy własność spełniania termu przez stertę jest domknięta ze względu na rozszerzanie sterty. W celu zachowania zarówno afiniczności, jak i poprawności względem semantyki języka, prezentowana logika nie zawiera kwantyfikatora ogólnego, a kwantyfikator egzystencjalny jest ograniczony do termów najwyższego poziomu (Rysunek 3.1).

Używane będzie także oznaczenie  $v_1 \neq v_2$  jako skrót dla  $v_1 = v_2 \Rightarrow {\tt False}$ .

```
\begin{split} \mathbf{P} &::= \exists x : C. \mathbf{P} \quad | \quad \mathbf{P} \wedge \mathbf{P} \quad | \quad P \vee \mathbf{P} \quad | \quad P \\ P &::= \mathsf{True} \quad | \quad \mathsf{False} \quad | \quad P \wedge P \quad | \quad P \vee P \quad | \quad P \Rightarrow P \quad | \quad v = v \quad | \\ v &\hookrightarrow x = v \quad | \quad \{P\}e\{x.P\}_A \quad | \quad P * P \quad | \quad P \twoheadrightarrow P \\ v &::= x \quad | \quad \mathsf{null} \quad | \quad \mathsf{this} \\ A &::= C \quad | \quad \phi \\ x &::= \langle identifier \rangle \quad (variable/field \ name) \\ C &::= \langle identifier \rangle \quad (class \ name) \\ e &::= \langle Jafun \ expression \rangle \end{split}
```

Rysunek 3.1: Składnia logiki

Środowisko to funkcja częściowa przypisująca identyfikatorom lokacje na stercie lub null. Semantyka logiki (Rysunek 3.2) jest standardowa dla kwantyfikatora i operatorów logicznych. Dla uproszczenia zapisu notacja  $\llbracket \cdot \rrbracket$  została użyta do opisu semantyki obu poziomów termów ( $\mathbf{P}$  i P). To, do którego poziomu się odnosi, wynika z kontekstu.

Sterta spełnia trójkę Hoare'a  $\{P\}e\{x.Q\}_A$ , jeśli dla każdej sterty spełniającej P, wyrażenie e zostanie obliczone bez błędu, zwróci wyjątek typu A (czyli być może żaden), a wynikowa sterta będzie spełniała Q, w którym za x podstawiony zostanie wynik obliczenia.

Sterta spełnia term P\*Q, jeśli można ją podzielić na dwa rozłączne fragmenty, z których jeden spełnia P, a drugi Q. Operator  $\twoheadrightarrow$  to pewnego rodzaju odwrotność operatora \* – sterta spełnia  $P \twoheadrightarrow Q$ , jeśli po połączeniu jej z dowolną rozłączną stertą spełniającą P, otrzymana sterta spełnia Q.

Uwaga: e[/env] oznacza wyrażenie powstałe przez podstawienie env[x] w miejsce x dla każdej zmiennej wolnej x w e.

Rysunek 3.2: Semantyka logiki

### Reguły wnioskowania

Osądy w prezentowanej logice są postaci  $\Gamma|P \vdash Q$ , gdzie  $\Gamma$  to środowisko typów, przypisujące zmiennym odpowiadające im typy (czyli nazwy klas), a P i Q to termy logiki. Intuicyjnie, osąd  $\Gamma|P \vdash Q$  oznacza że Q wynika z P, a więc że każda sterta spełniająca P spełnia też Q.

Dla poprawienia czytelności, jeśli  $\Gamma$  jest wspólne dla wszystkich osądów występujących w danej regule, to jest ono pomijane.

Rysunek 4.1: Reguły wnioskowania dla tradycyjnych operatorów logicznych

Weak 
$$P * Q \vdash P$$
 Sep-assoc  $P * (Q * R) \dashv \vdash (P * Q) * R$  Sep-sym  $P * Q \vdash Q * P$ 

$$*I \frac{P_1 \vdash Q_1 \quad P_2 \vdash Q_2}{P_1 * Q_1 \vdash P_2 * Q_2} \quad *I \frac{R * P \vdash Q}{R \vdash P \twoheadrightarrow Q} \quad *E \frac{R_1 \vdash P \twoheadrightarrow Q}{R_1 * R_2 \vdash Q}$$

Rysunek 4.2: Reguły wnioskowania dla operatorów separacyjnych

#### Reguły strukturalne dla trójek Hoare'a

$$\frac{S \vdash \{P\}e\{v.Q\}_A \qquad S \text{ jest trwaly}}{S \vdash \{P*R\}e\{v.Q*R\}_A} \qquad \qquad \text{Ht-ret} \ \overline{S \vdash \{\texttt{True}\}w\{v.v=w\}_\phi}$$

$$\frac{\Gamma|S \vdash P \Rightarrow P' \qquad \Gamma|S \vdash \{P'\}e\{v.Q'\}_A \qquad \Gamma, v:C|S \vdash Q' \Rightarrow Q \qquad S \text{ jest trwały}}{S \vdash \{P\}e\{v.Q\}_A}$$

$$\underset{\text{Ht-disj}}{\text{Ht-disj}} \frac{S \vdash \{P\}e\{v.Q\}_A \qquad S \vdash \{Q\}e\{v.Q\}_A}{S \vdash \{P \lor Q\}e\{v.Q\}_A}$$

Нт-рег  
s
$$\frac{S \wedge R \vdash \{Q\}e\{v.Q\}_A}{S \vdash \{Q \wedge R\}e\{v.Q\}_A}$$
jeśli R trwały

#### Reguły dla trójek Hoare'a opisujących konstrukcje języka

$$\frac{\text{Ht-new-null}}{S \vdash \{\text{True}\} \mathbf{new} \ C(\overline{v}) \{w.w \neq \mathbf{null}\}_{\phi}}$$

$$\frac{\mathrm{flds}(C) = f_1, \dots, f_n}{S \vdash \{\mathsf{True}\} \mathbf{new} \ C(v_1, \dots, v_n) \{w.w \hookrightarrow f_i = v_i\}_{\phi}}$$

$$\frac{\Gamma|S \vdash \{P\}E_1\{x.Q\}_{\phi} \qquad \Gamma, x: C|S \vdash \{Q\}E_2\{w.R\}_A}{\Gamma|S \vdash \{P\} \mathbf{let} \ C \ x = E_1 \ \mathbf{in} \ E_2\{w.R\}_A} \mathbf{jeśli} \ \mathbf{S} \ \mathbf{trwały}$$

$$\frac{\text{Ht-field-set}}{S \vdash \{x \neq \text{null}\}x.f = v\{ ..x \hookrightarrow f = v\}_{\phi}}$$

$$\frac{\text{Ht-null-set}}{S \vdash \{x = \mathtt{null}\} x. f = v \{w.w = \mathtt{npe}\}_{\mathtt{NPE}}}$$

$$\frac{\text{Ht-field-get}}{S \vdash \{x \hookrightarrow f = v\} x. f\{w. w = v\}_{\phi}}$$

$$\frac{}{S \vdash \{x = \mathtt{null}\}x.f\{w.w = \mathtt{npe}\}_{\mathtt{NPE}}}$$

Rysunek 4.3: Reguły wnioskowania dla trójek Hoare'a

$$\text{H\tiny T-IF} \frac{S \vdash \{P \land v_1 = v_2\}E_1\{w.Q\}_A \qquad S \vdash \{P \land v_1 \neq v_2\}E_2\{w.Q\}_A}{S \vdash \{P\} \text{if } v_1 = v_2 \text{ then } E_1 \text{ else } E_2\{w.Q\}_A}$$

$$\{P'\} \cdot \{w.Q'\}_A \in \mathtt{invariants}(C,m)$$
 
$$+ \frac{\Gamma \vdash x : C}{S \land \{P'\}x.m(\overline{v})\{w.Q'\}_A \vdash \{P\}x.m(\overline{v})\{w.Q\}_A}{S \vdash \{P\}x.m(\overline{v})\{w.Q\}_A}$$

$$\frac{\text{Ht-null-invoke}}{S \vdash \{x = \mathtt{null}\} x. m(\overline{v}) \{w.w = \mathtt{npe}\}_{\mathtt{NPE}}}$$

$$\frac{\Gamma \vdash x : C}{S \vdash \{x \neq \mathtt{null}\} \mathbf{throw} \ x\{w.w = x\}_C}$$

$$\frac{\text{Ht-null-throw } T \vdash \{x = \texttt{null}\} \textbf{throw } x \{w.w = \texttt{npe}\}_{\texttt{NPE}}}{S \vdash \{x = \texttt{null}\} \textbf{throw } x \{w.w = \texttt{npe}\}_{\texttt{NPE}}}$$

$$\frac{S \vdash \{P\}E_1\{w.Q\}_{\phi}}{S \vdash \{P\}\mathbf{try} \ E_1 \ \mathbf{catch} \ (C \ x) \ E_2\{w.Q\}_{\phi}}$$

$$\text{H\tiny T-CATCH-EX} \frac{\Gamma|S \vdash \{P\}E_1\{x.Q\}_C' \qquad \Gamma, x:C'|S \vdash \{Q\}E_2\{w.R\}_A \qquad C' \leq C}{\Gamma|S \vdash \{P\}\text{try } E_1 \text{ catch } (C \ x) \ E_2\{w.R\}_A} \text{ jeśli S trwały }$$

HT-CATCH-PASS 
$$\frac{S \vdash \{P\}E_1\{w.Q\}'_C \qquad C' \not\leq C}{S \vdash \{P\}\text{try } E_1 \text{ catch } (C \ x) \ E_2\{w.Q\}'_C}$$

Rysunek 4.4: Reguły wnioskowania dla trójek Hoare'a - c.d.

### Własności ewaluacji

Pokażę teraz twierdzenia o własności ewaluacji, które będą później użyte do udowodnienia poprawności reguł dla trójek Hoare'a.

#### 5.1. Łączenie ewaluacji

Podatwowym twierdzeniem, pozwalającym mówić o ewaluacji złożonych wyrażeń, jest twierdzenie o łączeniu ewaluacji.

**Twierdzenie 1** (O łączeniu ewaluacji). Niech (h, st), (h', st'), (h'', st'') będą konfiguracjami, a confs i confs' – ciągami konfiguracji, takimi że  $(h, st) \stackrel{confs}{\leadsto} (h', st')$  i  $(h', st') \stackrel{confs'}{\leadsto} (h'', st'')$ . Wtedy  $(h, st) \stackrel{confs++confs'}{\leadsto} (h'', st'')$ .

Dowód. TODO □

#### 5.2. Ewaluacja przy rozszerzonym stosie i kontekście

### 5.3. Ewaluacja zależy tylko od zmiennych wolnych

Twierdzenie o zależności ewaluacji od zmiennych wolnych jest kluczowe w dowodzie poprawności dla reguł WEAK i HT-FRAME. Mówi ono, że jeśli dwie sterty zgadzają się na lokacjach odpowiadających zmiennym wolnym w pewnym wyrażeniu E, to ewaluacje wyrażenia E na tych dwóch stertach będą w pewnym sensie równoważne.

Równoważnośc ta nie będzie niestety trywialna, bo nowo zaalokowane lokacje na obu sterach mogą się różnić. Zgodnie z semantyką języka, lokacja zwracana przez operator **new** to (maximum z lokacji na stercie) + 1. Stąd, ponieważ nie zakładamy niczego o lokacjach innych niż te odpowiadające zmiennym wolnym, wartość zwracana przez operator **new** może się różnić pomiędzy stertami. Nowo zaalokowane lokacje mogą następnie zostać zapisane w polach obiektów znajdujących się pod lokacjami odpowiadającymi zmiennym wolnym, co oznacza że nawet te obiekty, początkowo równe na obu stertach, mogą zacząć się różnić w czasie ewaluacji.

Żeby obejść ten problem, zdefiniujemy *izomorfizm stert* jako bijekcję między lokacjami na tych stertach, zachowującą null i kompozycję.

#### Definicja 5.3.1 (izomorfizm stert).

Niech  $h_1, h_2$ : Heap. Funkcję  $f: \mathrm{Dom}(h_1) \cup \{\mathrm{null}\} \to \mathrm{Dom}(h_2) \cup \{\mathrm{null}\}$  nazwiemy izomorfizmem między tymi stertami, jeśli:

- 1. f jest bijekcją
- 2. f(null) = null
- 3. fzachowuje kompozycję, to znaczy dla dowolnych lokacji  $l_1, l_2$ i pola $\boldsymbol{x}$ zachodzi

$$h_1(l_1) \hookrightarrow x = l_2 \iff h_2(f(l_2)) \hookrightarrow x = f(l_2)$$

Jeśli taka funkcja f istnieje, powiemy że sterty  $h_1$  i  $h_2$  są izomorficzne.

Ostatecznie będziemy chcieli pokazać, że jeśli wyrażenie E nie zawiera zmiennych wolnych, a sterty  $h_1,h_2$  są równe na wszystkich lokacjach występujących w E, to ewaluacje E na stertach  $h_1$  i  $h_2$  są równoważne z dokładnością do izomorfizmu.

To oznacza, że potrzebujemy mówić o izomorfizmach konfiguracji (czyli ciągów par (sterta, stos wywołań)), a zatem należy zdefiniować także izomorfizmy między stosami wywołań. Służy temu kolejnych kilka definicji.

# Poprawność

# Formalizacja w systemie Coq

## Podsumowanie

## Bibliografia

- [1] J. Chrząszcz and A. Schubert. Function definitions for compound values in object- oriented languages. In *Proc. of the 19th International Symposium on Principles and Practice of Declarative Programming*, PPDP '17, pp. 61–72. ACM, 2017.
- [2] J. Chrząszcz and A.Schubert. Formalisation of a frame stack semantics for a Java-like language. 2018