САНИТАРНО-ГИГИЕНИЧЕСКОЕ НОРМИРОВАНИЕ КАЧЕСТВА АТМОСФЕРНОГО ВОЗДУХА

Цель - знакомство с санитарно-гигиеническим нормированием качества окружающей среды.

Задача - рассчитать нормативы качества атмосферного воздуха.

Предельно допустимая концентрация (ПДК) загрязняющего вещества в атмосферном воздухе населенных мест - гигиенический норматив, утверждаемый постановлением Главного санитарного врача Российской Федерации по рекомендации Комиссии по государственному санитарно-эпидемиологическому нормированию при Минздраве России.

ПІДК загрязняющего вещества в атмосферном воздухе — это концентрация, не оказывающая в течение всей жизни прямого или косвенного неблагоприятного воздействия на настоящее или будущие поколения, не снижающая работоспособности человека, не ухудшающая его самочувствия и санитарно-бытовых условий жизни.

Лимитирующий (определяющий) показатель вредности

(ЛПВ) характеризует направленность биологического действия вещества: рефлекторное (рефл.) и резорбтивное (рез.). Под рефлекторным действием понимается реакция со стороны рецепторов верхних дыхательных путей ощущение запаха, раздражение слизистых оболочек, задержка дыхания и т.д. Указанные эффекты возникают при кратковременном воздействии вредных веществ, поэтому рефлекторное действие лежит в основе установления максимальной разовой (20-30-минутная) ПДК (ПДК $_{\text{м.р.}}$). Под резорбтивным действием понимают возможность развития общетоксических, эмбриотоксических, мутагенных, канцерогенных и эффектов, других возникновение которых зависит не только от концентрации вещества в воздухе, но и длительности его вдыхания.

Помимо максимальной разовой предельно допустимой концентрации, временной интервал воздействия которой строго ограничен, разработаны также среднесуточная предельно допустимая концентрация (ПДК $_{\rm c.c.}$) и рабочей зоны (ПДК $_{\rm p.3.}$). Предельно допустимая концентрация среднесуточная соответствует такой величине содержания загрязняющего вещества в воздухе населенных мест, при которой не оказывается негативного влияния на

здоровье населения, на все его группы (половые, возрастные, здоровья) при неограниченной длительности вдыхания воздуха, содержащего указанные вещества. В рабочей же зоне находятся люди работоспособного возраста, прошедшие медицинское обследование, что позволяет им без вреда для собственного здоровья переносить более высокие концентрации загрязняющих веществ.

 Таблица 1.1

 ПДК вредных веществ в атмосферном воздухе населенных пунктов

Вещество	Концентрация, мг/м ³			ЛПВ	Класс
	ПДК _{м.р.}	ПДКс.с.	ПДК _{р.з.}		опасности
Азот оксид	0,4	0,06	3,0	рефлекторный	3
Азот диоксид	0,085	0,04	2,0	рефлекторно-	2
				резорбтивный	
Аммиак	0,2	0,04	20,0	рефлекторно-	4
				резорбтивный	
Ацетальдегид	0,01	-	5,0	резорбтивный	3
Бензол	1,5	0,8	5,0	резорбтивный	2
Бенз(а)пирен	-	0,000001	$1,5\cdot 10^4$	резорбтивный	1
Бензин нефтяной	5	1,5		рефлекторно-	4
мелосернистый (в				резорбтивный	
пересчете на С)					
Диоксид серы	0,5	0,05	10,0	рефлекторно-	3
				резорбтивный	
Мазутная зола	-	0,002	0,5	резорбтивный	4
ТЭС в пересчете					
на ванадий					
Пентоксид	-	0,002	0,5	резорбтивный	1
ванадия					
Пыль	0,5	0,15	6,0	резорбтивный	3
нетоксичная					
Ртуть	-	0,0003	0,01	резорбтивный	1
металлическая					
Сероводород	0,008	0,008	10,0	рефлекторный	2
Сероуглерод	0,03	0,005	-	резорбтивный	2
Углерод оксид	5,0	3,0	20,0	резорбтивный	4
Угольная зола	0,05	0,02	-	резорбтивный	2
ТЭС					
Фенол	0,01	0,003	0,3	рефлекторно-	2
				резорбтивный	
Формальдегид	0,035	0,003	0,5	рефлекторно-	2
				резорбтивный	

Фтороводород	0,02	0,005	0,5	рефлекторно-	2
				резорбтивный	
Хлор	0,1	0,03	1,0	рефлекторно-	2
				резорбтивный	
Этанол	5,0	5,0	1000	рефлекторный	4

Оценка степени суммарного загрязнения атмосферы рядом веществ проводится двумя часто используемыми способами: по индексу загрязнения атмосферы I (ИЗА) и комплексному показателю загрязнения атмосферного воздуха (Р).

Расчет ИЗА выполняется, как правило, для пяти веществ, нормированное содержание которых в атмосферном воздухе максимально. Расчет нормированного содержания для одного вещества проводится по формуле

$$I_i = \frac{q_{cpi} \cdot k_i}{\Pi \coprod K_{cci}} \tag{1.1}$$

где q_{cpi} - среднее содержание i-го вещества в атмосферном воздухе в пункте наблюдения, мг/м 3 ;

ПДК $_{cci}$ - предельно допустимая среднесуточная концентрация і-го вещества, мг/м 3 (табл. 1.1);

 $k_{\rm i}$ - безразмерный коэффициент, учитывающий принадлежность к разным классам опасности:

k _i	0,85	1,0	1,3	1,5
Класс опасности	4	3	2	1

Далее отбираются пять веществ с максимальными значениями нормированного параметра $I_{i.}$ Расчет ИЗА проводится по этим веществам в соответствии с формулой

$$\text{ИЗA} = \sum_{i=1}^{5} \frac{q_{cpi} \cdot k_i}{\Pi \text{ДК}_{cci}}$$
 (1.2)

В соответствии со значениями ИЗА устанавливается качественная характеристика загрязнения атмосферного воздуха:

менее 5 - удовлетворительная обстановка,

6-15 - относительно напряженная,

16-50 - существенно напряженная,

51-100 - критическая,

более 100 - катастрофическая обстановка.

Данный способ оценки качества атмосферного воздуха в достаточной степени условен и ориентирован в основном на получение сравнительных характеристик загрязнения.

При загрязнении воздуха чаще проявляется эффект неполной суммации, который следовало бы принимать во внимание при оценке качества воздуха. В расчете значений комплексного показателя загрязнения атмосферного воздуха (P) эффект частичной суммации учитывается с помощью коэффициента \sqrt{n} , где n - число веществ в смеси.

Комплексный показатель Р рассчитывается следующим образом:

$$P = \sqrt{\sum_{i=1}^{n} K_i^2},\tag{1.3}$$

где $\sum K_i$ - сумма квадратов концентраций, нормированных по ПДК и приведенных к концентрациям веществ 3-го класса опасности с использованием коэффициента изоэффективности R_i :

R _i	0,87	1,0	1,3	2,3
Класс опасности	4	3	2	1

При значениях K_i для 1-го класса опасности более 2,5, для 2-го - более 5, для 3-го - более 8 и для 4-го - более 11 приведение к 3-му классу осуществляется с применением других коэффициентов изоэффективности:

R _i	0,7	1,0	1,6	3,2
Класс опасности	4	3	2	1

Значение K_i определяется следующим образом:

$$K_i = \frac{C_i}{\Pi \coprod K_i} R_i, \tag{1.4}$$

где C_i - фактическая концентрация і-го вещества, мг/м³;

 $R_{\rm i}$ - коэффициент изоэффективности i-го вещества.

Степень загрязнения атмосферного воздуха по комплексному показателю оценивается в соответствии с табл. 1.2.

Уровень	Показатель Р в зависимости от числа веществ				
загрязнения	1	2-4	5-9	10-16	16-25
Допустимое	≤ 1	2	3	4	5
Слабое	1-2	2-4	3-6	4-8	8-10
Умеренное	2-4	4-8	6-12	9-16	10-20
Сильное	4-8	8-16	12-24	16-32	20-40
Зона чрезвычайной	8-16	16-32	24-48	32-64	40-80
экологической					
ситуации					
Зона	>16	>32	>48	>64	>80
экологического					
бедствия					

Пример. Рассчитайте ИЗА, если среднее содержание загрязнителей в атмосферном воздухе в пункте наблюдения составило: диоксид азота - 0.056 мг/м³; бенз(а)пирен - 0.0008 мкг/м³; диоксид серы - 2.5 мг/м³; оксид углерода - 2.7 мг/м³; бензол - 0.2 мг/м³; свинец - 3.4-104 мг/м³; пыль - 0.63 мг/м³.

Решение. Рассчитаем нормированное содержание для каждого загрязнителя по формуле (1.1)

$$I_i = \frac{q_{cpi} \cdot k_i}{\Pi \text{ДК}_{cci}}$$

$$I_{NO_2} = \frac{0,056 \cdot 1,3}{0,04} = 1,82; \qquad I_{SO_2} = \frac{2,5 \cdot 1}{0,05} = 50;$$

$$I_{E(A)\Pi} = \frac{0,0008 \cdot 1,5}{0,001} = 1,2; \qquad I_{CO} = \frac{2,7 \cdot 0,85}{3,0} = 0,765;$$

$$I_{CO} = \frac{3,4 \cdot 10^{-4} \cdot 1,5}{3,0 \cdot 10^{-4}} = 1,7;$$

$$I_{ПЫЛЬ} = \frac{0,63 \cdot 1}{0,5} = 1,26.$$

Из рассчитанных нормированных параметров выбираем пять веществ с максимальным значением I, т.е. диоксид серы, свинец, диоксид азота, бензол и пыль, и рассчитываем ИЗА:

ИЗА =
$$I_{SO_2} + I_{Pb} + I_{NO_2} + I_{\text{бензол}} + I_{\text{пыль}} = 50 + 1,9 + 1,82 + 2,6 + 1,26 = 59,58.$$

В соответствии со значением ИЗА состояние загрязнения атмосферного воздуха *критическое*, что отвечает зонам ЧЭС.

Самостоятельная работа.

№ 2:

ИЗА – индекс заргрязнения атмосферы.

$$I_i = rac{q_{cpi}\cdot k_i}{\Pi extstyle \mathsf{H} \mathsf{K}_{cci}}$$
 ИЗА =

№ 3:

$$I_{NO} = 0.47 *1 / 0.06 = 7.833;$$

$$I_{NH3} = 0.000038 * 0.85 / 0.04 = 0.00081;$$

$$I_{SO2} = 1.2 * 1 / 0.05 = 24;$$

$$I_{CO} = 2.7 * 0.85 / 3 = 0.765;$$

$$I_{C6H6} = 0.8 * 1.3 / 0.8 = 1.3;$$

$$I_{\text{пыль}} = 0.61 * 1 / 0.15 = 4.067;$$

$$I_{NO2} = 0.05 * 1.3 / 0.04 = 1.625.$$

И3A = 7,833 + 24 + 1,3 + 4,067 + 1,625 = 38,825 (существенно напряжённая обстановка)

№ 4:

$$I_{NO2} = 0.027 * 1.3 / 0.04 = 0.8775;$$

$$I_{SO2} = 0.057 * 1 / 0.05 = 1.14;$$

$$I_{CO} = 4.2 * 0.85 / 3 = 1.19;$$

$$I_{C20H12} = 0.0005 * 1.5 / 0.000001 = 750;$$

$$I_{Pb} = 4 *10^{-5} * 1,5 / 3 * 10^{-4} = 0,2;$$

$$I_{\text{пыль}} = 1.3 * 1 / 0.15 = 8.667.$$

И3A = 750 + 1,14 + 1,19 + 0,8775 + 8,667 = 761,8745 (катострофическая обстановка)

№ 5:

$$I_{H2S} = 5 *10^{-3} * 1.3 / 0.08 = 0.08125;$$

$$I_{C20H12} = 0.0000002 * 1.5 / 0.000001 = 0.3;$$

$$I_{SO2} = 0.37 * 1 / 0.05 = 7.4;$$

$$I_{NO} = 0.69 * 1 / 0.06 = 11.5;$$

$$I_{C6H6} = 0.8 * 1.3 / 0.8 = 1.3;$$

$$I_{C20H12} = 0.24 * 1 / 0.15 = 1.6$$
.

$$\text{ИЗA} = 0.3 + 7.4 + 11.5 + 1.3 + 1.6 = 22.1$$
 (существенно напряжённая обстановка)

№ 6:

$$I_{SO2} = 0.5 * 1 / 0.05 = \underline{10};$$

$$I_{CO} = 1.2 * 0.85 / 3 = 0.34;$$

$$I_{C6H6} = 0.002 * 1.3 / 0.8 = 0.003;$$

$$I_{Pb} = 0.7 * 10^{-4} * 1.5 / 3 * 10^{-4} = 0.035;$$

$$I_{\text{пыль}} = 1.6 * 1 / 0.15 = \underline{10.67};$$

$$I_{NO2} = 0.006 * 1.3 / 0.04 = 0.195;$$

$$I_{NO} = 0.022 * 1 / 0.06 = 0.367;$$

$$I_{C20H12} = 0.0000003 * 1.5 / 0.000001 = 0.45.$$

И3A = 10,67 + 0,45 + 0,367 + 10 + 0,34 = 21,827 (существенно напряжённая обстановка)

№ 7:

$$I_{\text{пыль}} = 0.82 * 1 / 0.15 = 5.467;$$

$$I_{H2S} = 1 * 10^{-3} 1.3 / 0.08 = 0.01625;$$

$$I_{NO2} = 0.09 * 1.3 / 0.04 = 2.925;$$

$$I_{CO20H12} = 0.000001 * 1.5 / 0.000001 = 1.5;$$

$$I_{SO2} = 1.9 * 1 / 0.05 = 38;$$

$$I_{CO2} = 1.8 * 0.85 / 3 = \underline{0.51};$$

$$I_{C6H6} = 0.01 * 1.3 / 0.8 = 0.01625.$$

ИЗA = 5,467 + 2,925 + 1,5 + 38 + 0,51 = 48,402 (существенно напряжённая обстановка)