

# **Alzheimer's Disease Detection using Deep Learning**

By:

**S Arvind** (BT18CSE004)

Tarun Saxena (BT18CSE050)

Praneetha Yekkaluru (BT18CSE051)

Supervisor:

Dr. Nishat A. Ansari

Assistant Professor

Indian Institute of Information

Technology, Nagpur



### **INDEX**

| • | Introduction         | 3          |
|---|----------------------|------------|
| • | Dataset              | 4          |
| • | Proposed Methodology | 5          |
| • | Block Diagram        | . <b>7</b> |
| • | Preliminary Results  | . 8        |
| • | Next Steps           | . 9        |



#### INTRODUCTION





#### **DATASET**



The dataset to be used is Alzheimer's Disease Neuroimaging Initiative (ADNI).

We are majorly classifying into 5 classes:

- 1. AD (Alzheimer's Disease)
- 2. MCI (Mild Cognitive Impairment)
- 3. LMCI (Late Mild Cognitive Impairment)
- 4. EMCI (Early Mild Cognitive Impairment)
- 5. CN (Control Normal)

A total of 1296 images were oversampled and class-balanced to 2900 images.



#### PROPOSED METHODOLOGY

- Propose a custom CNN model for classifying the images into 5 categories (AD, MCI, LMCI, EMCI, NC)
- 2. Train the model using the data from ADNI dataset.
- 3. Obtain various output parameters of the model like accuracy, loss, AuC, f1-score for the training and validation data.
- 4. Calculate scores like precision, recall, F1-score of the model for different classes using the testing data.
- 5. Generate a heatmap for visualising the scores of predicted vs actual classification.
- 6. Compare the results with other results published in papers.



#### PROPOSED METHODOLOGY





#### **BLOCK DIAGRAM**









#### PRELIMINARY RESULTS

Training Accuracy: 83.78%

Validation Accuracy: 62.07%

Testing Accuracy: 61.90%





## **NEXT STEPS**

Improving results by either:

- 1. Increasing sample size.
- 2. Adjusting layers of the model.
- 3. Trying different optimizers and activation layers.



# THANK YOU