Wi

Równanie kwadratowe: jeżeli $ax^2 + bx + c = 0$, to $2ax = -b \pm (b^2 - 4ac)^{1/2}$. **Sześcienne** (metoda Viete'a): w równaniu $z^3 + az^2 + bz + c = 0$ można podstawić z = x - a/3 (kasuje wyraz z z^2 , do $x^3 + px = q$) i x = w - p/3w, co po przemnożeniu przez $t = w^3$ daje $t^2 - qt - (p/3)^3 = 0$. Istnieją też mniej wygodne rachunkowo wzory Cardano. Dla równania stopnia czwartego: wzory Ferrari, wyżej brak ogólnych rozwiązań (ze względu na teorię Galois i kłopotliwe $x^5 + x + 1 = 0$).

Każdy ciąg zstępujących przedziałów $[a_n, b_n]$ długości dążącej do zera (**gnieżdżący się**) wyznacza pewną liczbę rzeczywistą. Przykłady: pierwiastek z a_0b_0 i $a_{n+1}=H(a_n,b_n)$, $b_{n+1}=A(a_n,b_n)$; średnia arytmetyczno-geometryczna. **Ciąg liczbowy**: odwzorowanie $\mathbb{N} \to \mathbb{C}$. Jeśli $a_n > 0$ i $a_{n+1}/a_n \to a$, to n-ty pierwiastek z a_n też dąży do a. **Dzielenie mnożeniem**: $x_{n+1} = x_n(2 - ax_n)$ zbiega kwadratowo do 1/a dla $0 < ax_0 < 2$. Podobnie można szukać pierwiastka z a (x_n zbiega kwadratowo, y_n : sześciennie). **Tw. o kanapce**: jeśli $a_n \le x_n \le b_n$, a przy tym a_n oraz b_n mają wspólną granicę s, to również x_n dąży do tej liczby.

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) \bullet y_{n+1} = \frac{y_n^3 + 3ay_n}{3y_n^2 + a}$$

$$b_{n+1} - a_{n+1} \leq_{\mathsf{HA}} \frac{\left(b_n - a_n \right)^2}{4a} \bullet b_{n+1} - a_{n+1} \leq_{\mathsf{GA}} \frac{\left(b_n - a_n \right)^2}{8a}$$
 Ciąg jest zbieżny (w dowolnie małym otoczeniu pewnego punktu znajdują się prawie wszystkie wyrazy) \Leftrightarrow jest **ciągem Cauchy'ego**: jego

dalekie wyrazy leżą dowolnie blisko siebie, $(\forall \varepsilon > 0)(\exists M)(\forall n, m \ge M)(|a_n - a_m| < \varepsilon)$, gdyż $\mathbb R$ jest zupełną p. topologiczną. Ograniczony, monotoniczny ⇒ zbieżny ⇔ jeden punkt skupienia ⇒ ograniczony. Tw. Bolzano-Weierstraßa: ograniczone ciągi mają podciągi zbieżne, nie tylko w \mathbb{R} czy \mathbb{C} , ale też \mathbb{R}^n . Najmniejszy punkt skupienia: **granica dolna** (lim inf), największy: **górna** (lim sup). Dla każdego ciągu: khm-1, dla dodatniego: khm-2, uogólnienie **tw. Stolza** (jeśli b_n rośnie do nieskończoności, to $\lim_n (\Delta a_n/\Delta b_n) = \lim_n (a_n/b_n)$, o ile pierwsza granica istnieje) Mamy $\liminf_{n \to \infty} x_n \coloneqq \lim_{n \to \infty} \inf_{m \ge n} x_m = \sup_{n \ge 0} \inf_{m \ge n} x_m$, analogicznie granica górna. Punkt skupienia: granica podciągu.

inf
$$a_n \le \lim \inf_{n \to \infty} a_n := \lim_{n \to \infty} \lim_{m \ge n} a_m = \sup_{n \ge 0} \lim_{m \ge n} a_m$$
, analogicznic granica gorna. Tunkt skupicina: granica pouciągu:
$$\inf a_n \le \lim \sup_{n \to +\infty} a_n \le \lim \sup_{n \to +\infty} \frac{a_{n+1}}{a_n} \le \lim \sup_{n \to +\infty} \sqrt[n]{a_n} \le \lim \sup_{n \to +\infty} \sqrt[n]{a_n} \le \lim \sup_{n \to +\infty} \frac{a_{n+1}}{a_n}$$
Dla **szeregów** zbieżność absolutna $(\sum |a_n|) \Rightarrow$ bezwarunkowa $(\sum_{\sigma} a_n)$ [w \mathbb{R}^n nawet \Leftrightarrow]. Sum odwrotności liczb całkowitych, które nie

zawierają ustalonego infiksu (długości k), jest zbieżna (szereg Kempnera, 1914), mniej więcej do $10^k \log 10$. Parz artykuł R. Bailliego.

Cauchy: $\sum_n a_n$ zbieżny \Leftrightarrow dla każdej $\varepsilon > 0$ oraz dużych m,n jest $|a_m + \cdots + a_n| < \varepsilon$, wtedy $a_n \to 0$ (**zerowe**).

Tylko dla dodatnich " a_n "! **Haupt**: zbieżność \Leftrightarrow ograniczoność sum częściowych. **Leibniz**: a_n maleje do $0 \Rightarrow$ naprzemienny $\sum_n (-1)^n a_n$ zbiega. **Grenzwert**: $\lim_n a_n : b_n = c > 0$ sprawia, że $\sum_n a_n$ zbiega jak $\sum_n b_n$. **Wurzel**: jeśli L < 1, to $\sum_n a_n$ zbiega bezwzględnie, jeśli L > 1, to nie zbiega ($L = \limsup |a_n|^{1:n}$) **d'Alembert**: to samo dla $q = \lim |a_{n+1}/a_n|$]. **Raabe**: $r_n \ge r > 1 \Rightarrow \sum_n a_n$ zbiega [$r_n = n(a_n : a_{n+1} - 1)$], dla $r_n \to 1$ brak informacji, $r_n < 1$: brak zbieżności. **Kummer**: ciąg $c_n \in \mathbb{N}$ jest taki, że $\sum_n 1 : c_n$ rozbiega, niech $k_n = c_n a_n : a_{n+1} - c_{n+1}$. Jeśli $k_n \ge \delta > 0$, to szereg zbiega, jeśli $k_n \le 0$, to nie. Dla $c_n = 1$ d'Alembert, dla $c_n = n$ Raabe, dla $c_n = n \log n$ Bertrand: dla $b_n = \log n(r_n - 1) \to b$ (być może $b=\infty$): jeśli b>1, to szereg zbiega, jeśli b<1, to nie. **Gauß**: a_n spełniają równość dla $\lambda>1$ i ograniczonych $\tau_n\Rightarrow\sum a_n$ zbiega \Leftrightarrow $\alpha > 1$. **Integral**. [malejąca $f \ge 0$] $\sum_{n \ge p} f(n)$ sumowalny $\Leftrightarrow f$ całkowalna nad $[p, \infty)$. **Ermakow**: [malejąca $f \ge 0$] jeśli dla dużych x prawdą jest $f(e^x)e^x : f(x) \le q < 1$, to $\sum_n f(n)$ zbiega, jeśli ... ≥ 1 , to szereg rozbiega. **Verdichtung**: a_n maleje do $0 \Rightarrow \sum_n a_n$ jest jak $\sum_n 2^n a_{2^n}$. $\frac{a_n}{a_{n+1}} = 1 + \frac{\alpha}{n} + \frac{\tau_n}{n^{\lambda}} \bullet \sum_{n=p+1}^{\infty} f(n) \le \int_p^{\infty} f(x) \, dx \le \sum_{n=p}^{\infty} f(n)$

$$\frac{a_n}{a_{n+1}} = 1 + \frac{\alpha}{n} + \frac{\tau_n}{n^{\lambda}} \bullet \sum_{n=p+1}^{\infty} f(n) \le \int_p^{\infty} f(x) \, dx \le \sum_{n=p}^{\infty} f(n)$$

Abel: $\sum_n b_n$ zbieżny, a_n monotoniczny i ograniczony $\Rightarrow \sum_n a_n b_n$ zbieżny. **Dirichlet**: a_n zbieżny do zera, sumy częściowe b_n ograniczone $\Rightarrow \sum_n a_n b_n$ zbieżny. **Majorantowe** [$A = \sum_n a_n$, $B = \sum_n b_n$, $|a_n| \le b_n$]: B zbieżny $\Rightarrow A$ też (bezwzględnie). **Schlömilch**: szeregi $\sum_n x_n$ oraz $\sum_n (g_{n+1} - g_n) x(g_n)$ są tak samo zbieżne, gdy g_n jest ściśle rosnący, z temperowanym wzrostem $(g_{n+1} - g_n \le M(g_n - g_{n-1}))$, zaś x_n ściśle malejący, dodatni. Schlömilch ⇒ zagęszczanie, Raabe. Kummer ⇒ Gauß, Bertand ⇒ Raabe ⇒ d'Alembert.

Specjalne twierdzenia. Landau (1906): szereg $\sum_{n\geq 1}a_n:n^x$ (Dirichleta) zbiega dla $x\notin -\mathbb{N}$ dokładnie wtedy, gdy $\sum_{n\geq 1}n!a_n:[x\cdot\ldots(x+n)]$ zbiega. Knopp: jeśli szereg $\sum_n a_n$ zbiega, to $\sum_n a_n x^n:(1-x^n)$ też, dla wszystkich x o module różnym od 1. Jeżeli nie, to dokładnie tam, gdzie $\sum_n a_n x^n$ zbiega i $|x|\neq 1$ (sam szereg jest Lamberta). Produkt $\prod_{n\geq 1}a_n$ zbiega, gdy ciąg iloczynów częściowych ma niezerową granicę. Dla $a_n=1+p_n$ (i być może zespolonych p_n) jest to równoważne zbieżności $\sum_n p_n$, o ile $\sum_n |p_n|^2 < \infty$.

Przyspieszanie zbieżności: ciąg s_n zbieżny do s zastępujemy przez s'_n (o tej samej granicy), tak że khm-1. **Przekształcenie Eulera**: khm-2, gdzie operator różnicy do przodu zadany jest wzorem khm-3. **Przekształcenie Kummera**: jeśli mamy zbieżny szereg $\sum_{k\geq 0} a_k$ i zbieżny szereg $c=\sum_{k\geq 0} c_k$, że $\lim_k a_k: c_k=\lambda\neq 0$, to khm-4. **Proces** Δ^2 -**Aitkena**: zamiast x_n patrzymy na $(Ax)_n=x_n-(\Delta x_n)^2:\Delta^2 x_n$, czasem działa. $\lim_{n\to\infty} \frac{s_n'-s}{s_n-s}=0 \bullet \sum_{n=0}^{\infty} (-1)^n a_n=\sum_{n=0}^{\infty} (-1)^n \frac{\Delta^n a_0}{2^{n+1}} \bullet \Delta^n a_0=\sum_{k=0}^n (-1)^k \binom{n}{k} a_{n-k} \bullet \sum_{k=0}^{\infty} a_k=\lambda c+\sum_{k=0}^{\infty} \left(1-\lambda \frac{c_k}{a_k}\right) a_k$ Tutaj I jest niepustym zbiorem z funkcją $a:I\to C$ (rodzina l. zespolonych a jest indeksowana przez I) i E(I), rodziną jego skończonych

$$\lim_{n \to \infty} \frac{s'_n - s}{s_n - s} = 0 \bullet \sum_{n=0}^{\infty} (-1)^n a_n = \sum_{n=0}^{\infty} (-1)^n \frac{\Delta^n a_0}{2^{n+1}} \bullet \Delta^n a_0 = \sum_{k=0}^{n} (-1)^k \binom{n}{k} a_{n-k} \bullet \sum_{k=0}^{\infty} a_k = \lambda c + \sum_{k=0}^{\infty} \left(1 - \lambda \frac{c_k}{a_k}\right) a_k$$

podzbiorów. Kładziemy $a_J := \sum_{i \in J} a_i$ (suma częściowa), $|a|_J := \sum_{i \in J} |a_i|$. Rodzina $(a_i)_{i \in I}$ jest **sumowalna**, gdy istnieje liczba $s \in \mathbb{C}$ (**suma**), że każdemu $\varepsilon > 0$ odpowiada skończony I_{ε} , dla którego $I_{\varepsilon} \subseteq J \in E(I)$ pociąga $|s - a_J| \le \varepsilon$. Sumowalność $(a_i)_{i \in I} \Leftrightarrow \{|a|_J : J \in E(I)\}$ jest ograniczony w \mathbb{R} . Permutacje nie zmieniają sumowalności, a przy tym sumowalność dla $I=\mathbb{N}$ to bezwzględna zbieżność (wniosek: pierwsza linijka w 6.X, "Umordnungsatz"). Wielkie prawo przestawień: rodzina $(a_i)_I$ sumowalna, I_k dla $k \in K$ stanowią rozbicie $I \Rightarrow$ khm-1. Prawo **podwójnych szeregów**: khm-2 dla bezwzględnie sumowalnej $(a_{ik})_{I\times K}$. **Iloczyn Cauchy'ego** (dyskretny splot) absolutnie zbieżnych szeregów też taki jest. Tw. Mertensa: wystarczy jeden absolutnie zbieżny czynnik, ale wtedy produkt jest tylko zbieżny.

$$\sum_{i \in I} a_i = \sum_{k \in K} s_k = \sum_{k \in K} \sum_{i \in I_k} a_i \bullet \sum_{(i,k) \in I \times K} a_{ik} = \sum_{i \in I} \sum_{k \in K} a_{ik} = \sum_{k \in K} \sum_{i \in I} a_{ik} \bullet \left(\sum_{n=0}^{\infty} a_n\right) \cdot \left(\sum_{n=0}^{\infty} b_n\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

Tw. Riemanna: wyrazy szeregu zbieżnego warunkowo można przestawić tak, by nowy szereg miał inną granicę lub był rozbieżny. Tw. **Steinitza**: uogólnienie powyższego z \mathbb{R} do \mathbb{R}^n , zbiór możliwych granic jest podprzestrzenią afiniczną w \mathbb{R}^n . W przypadku ∞ -wymiarowych p. Banacha przestaje to być prawdą, zawsze żyje w nich szereg o dwóch (możliwych) granicach (Kadets, 1989?).

Szereg potęgowy: jest ciągły w kole zbieżności. Dla |z| < r: zbieżny bezwzględnie, dla |z| > r: rozbieżny. $r = 1/(\limsup \sqrt[n]{a_n})$ (Cauchy, Hadamard); $r = 1/(\lim |a_{n+1}/a_n|)$, o ile granica istnieje (Euler). **Tw. Abela**: jeśli $f(x) = \sum a_n x^n$ jest zbieżny na końcu przedziału zbieżności, to f(x) jest tam jednostronnie ciągła. Jeśli nie wszystkie a_n = 0, to istnieje otoczenie zera bez zer szeregu potęgowego.

Szeregi rozbieżne $\sum_{n\geq 0}a_n$ można wysumować alternatywnymi metodami, jeżeli te są liniowe oraz nie zmieniają wartości już zbieżnych szeregów. Niech $A_n = \sum_{k \le n} a_k$. Średnie (khm-3), "pociągają" Abela-Poissona (khm-2, granica i szereg dla |x| < 1 istnieją, "prawdziwych" dla

khm-1 (**Tauber**)) z tą samą granicą. Woronoj: khm-4, regularny
$$\Leftrightarrow p_n: P_n \to 0$$
. Borel: khm-5.
$$\sum_{k \le n} \frac{k}{n} a_k \to 0 \bullet \lim_{x \to 1} \sum_n a_n x^n \bullet \lim_{n \to \infty} \frac{1}{n} \sum_{k \le n} A_k \bullet \lim_{n \to \infty} \sum_{k \le n} A_k p_{n-k} : P_n \bullet \lim_{x \to \infty} e^{-x} \sum_{n \ge 0} \frac{A_n}{n!} x^n$$

Königsberger, lipiec 1990 strona 1 z ??

Ciągłość funkcji $f: \mathbb{C} \to \mathbb{C}$: **zwykła** (każdym $\varepsilon > 0$ i x odpowiada $\delta > 0$, że $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$), **jednostajna** (każdemu $\varepsilon > 0$ odpowiada $\delta > 0$, że $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$), **Lipschitza** (istnieje L > 0, że $|f(x) - f(y)| \le L|x - y|$; dla L < 1: f to **kontrakcja**) oraz **Höldera** (istnieją C > 0 i 0 < a < 1, że $|f(x) - f(y)| \le C|x - y|^a$). Suma, produkt i złożenie ciągłych funkcji są ciągłe. Odwrotna do injekcji z przedziału [a,b] też. **Tw. o wartości średniej**: ciągła funkcja $f:[a,b] \to \mathbb{R}$ przyjmuje wszystkie wartości między f(a) i f(b) co najmniej raz.

Ciagla funkcja ($(K \subseteq_k \mathbb{C}) \to \mathbb{R}$) jest ograniczona (Weierstraß), jednostajnie ciągla (Heine, Cantor) i osiąga swoje kresy. **Tw. szlabanowe**: różalna funkcja na przedziale o ograniczonej pochodnej jest lipschitzowska. **Tw. Aleksandrowa**: jeśli $(U \subset \mathbb{R}^n) \to \mathbb{R}^m$ jest wypukła, to jej druga pochodna istnieje p.w. Tw. Rademachera: jeśli $(U \subseteq_o \mathbb{R}^n) \to \mathbb{R}^m$ jest Lipschitza, to nie jest różalna na Le-zerowym zbiorze.

Ciąg funkcyjny f_n zbiega do f (punktowo), gdy $f_n(x)$ dąży do f(x) dla wszystkich argumentów z dziedziny. Ograniczone funkcje mają skończoną normę supremum, $||f|| := \sup\{|f(x)| : x \in D\}$. Szereg $\sum_{n=1}^{\infty} f_n$ zbiega normalnie, gdy f_n są ograniczone oraz $\sum_{n=1}^{\infty} ||f_n|| < \infty$. Jeśli składniki f_n są ciągłe, to cała suma także; zatem szeregi potęgowe definiują ciągłe funkcje w kole zbieżności.

Jeśli $z_n \to z \in \mathbb{C}$, to mamy khm-1, **eksponensę** $\mathbb{C} \to \mathbb{C}$. Rozwiązaniem układu f(z+w) = f(z)f(w), $\lim_{z\to 0} \frac{1}{z}[f(z)-1] = c$ ($\mathbb{C} \to \mathbb{C}$) jest funkcja $\exp(cz)$. Eksponensa jest nieujemna i rosnąca na $\mathbb R$, rośnie szybciej od dowolnego wielomianu. **Logarytm** to funkcja odwrotna do eksponensy, rośnie wolniej od pierwiastków. Potęgowanie: $x^y = \exp(y \ln x)$. W B_s i $L, x \in (-1, 1)$. Mamy: $\lim_{s\to 0} \frac{1}{s} [B_s(z) - 1] = L(z)$ i $B_sB_t=B_{s+t}$. Trygonometria: $2i\sin z=\exp iz-\exp -iz$, $2\cos x=\exp iz+\exp -iz$. Najmniejsze dodatnie miejsce zerowe dla $\cos:\mathbb{R}\to\mathbb{R}$ to $\pi/2$. Logarytm $w=|w|\exp i\varphi$ to $\ln|w|+i\varphi$ (cięcie wzdłuż $(-\infty,0]$). Jeśli $\Re w_1$, $\Re w_2>0$, to $\ln w_1w_2=\ln w_1+\ln w_2$.

$$\exp z := \sum_{k=0}^{\infty} \frac{z^k}{k!} = \lim_{n \to \infty} \left(1 + \frac{z_n}{n} \right)^n \bullet B_s(x) = \sum_{n=0}^{\infty} \binom{s}{n} \cdot x^n = (1+x)^s \bullet L(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n = \log(1+x)$$

Hiperboliczne: wykresem $\cosh^2 x - \sinh^2 x = 1$ jest hiperbola. Krzywa łańcuchowa: $a \cosh(x/a)$, łańcuch wiszący na dwóch punktach. 8.12 **Reguła Osborna**: wziąć tożsamość trygonometryczną dla całkowitych potęg $\sin x$, $\cos x$, zamienić je na funkcje hiperboliczne i odwrócić znak

iloczynów
$$4k+2$$
 funkcji sinh. Dla zespolonych x , trzeba się trochę namęczyć z odwrotnymi hiperbolicznymi.
$$\sinh x = \frac{e^x - e^{-x}}{2} \bullet \cosh x = \frac{e^x + e^{-x}}{2} \bullet \sinh x = \ln(x + \sqrt{x^2 + 1}) \bullet \operatorname{acosh} x = \ln(x + \sqrt{x^2 - 1}) \bullet \operatorname{atanh} x = \frac{1}{2} \ln \frac{1 + x}{1 - x}$$

Różniczkowalność (istnieje $f'(x_0) = \lim_{x \to x_0} [f(x) - f(x_0)]/(x - x_0)$) \Rightarrow ciągłość. Równanie stycznej: $y = f'(x_0)(x - x_0) + f(x_0)$. Warunek konieczny dla lokalnego ekstremum: f'(x) = 0 (jeśli istnieje). Gładka: pochodne wszystkich rzędów, analityczna: gładka i zgodna z rozwinięciem Taylora. Tw. Rolle'a: Lagrange'a, f(a) = f(b). Tw. Lagrange'a: Cauchy'ego, g(x) = x. Tw. Cauchy'ego: ciągle $f, g: [a, b] \to \mathbb{R}$ mają pochodne w (a,b) i $g'(x) \neq 0$ tamże. **Reguła szpitalna**: dla "nieoznaczoności" $0/0, \infty/\infty$ mamy $\lim f(x)/g(x) = \lim f'(x)/g'(x)$, o ile prawa strona istnieje. Poniżej: twierdzenie Cauchy'ego, reguły różniczkowania.

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)} \text{ dla pewnego } c \bullet (fg)' = fg' + f'g \bullet \left[\frac{f}{g}\right]' = \frac{f'g - g'f}{g^2} \bullet (f \circ g)' = (f' \circ g)g' \bullet (f^{-1})' = \frac{1}{f' \circ f^{-1}}$$
Różniczkowalność szeregu funkcyjnego. Wersja I: $f_n: I \to \mathbb{C}$ różalne, $\sum_n f_n$ zbiega punktowo, zaś $\sum_n f'_n$ normalnie: $f = \sum_n f_n$ można

różniczkować wyraz po wyrazie. Wersja 2: f_n różalne w x_0 , $\sum_n f_n$ zbiega punktowo, $\sum_n f'_n(x_0)$ zbiega, f_n są Lipschitza (ze stałymi L_n tak, że szereg $\sum_n L_n$ też zbiega): ten sam wniosek w x_0 . Zatem szeregi potęgowe można różniczkować do woli. Weierstraß 1872, Hardy 1916: dla 0 < a < 1 i $ab \ge 1$ funkcja $\sum_{n\ge 0} a^n \cos b^n \pi x$ jest wszędzie ciągła, ale nigdzie nie ma pochodnej. Jeśli $f_n \colon I \to \mathbb{C}$ są różalne, zaś szeregi $\sum_n f_n$, $\sum_n f_n'$ zbiegają normalnie, to $f'/f = \sum_{n=1}^\infty f_n'/(1+f_n)$ dla $f_n(x) \ne -1$ i $f = \prod_{n\ge 1} (1+f_n)$.

Funkcja jest **wypukła** (wklęsła: ≤→≥), jeśli dowolny łuk wykresu funkcji leży pod (nad) cięciwą wyznaczoną przez końce tego łuku. Jeżeli 9.7 pochodna w przedziałe (a, b) istnieje, to musi rosnąć (jest tak np. gdy $f'' \ge 0$). Tam, gdzie zmienia się "wypukłość", jest **punkt przegięcia**. Ogólnie: dla $0 \le \lambda \le 1$ jest $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$. Jensen i towarzysze. **Funkcja pierwotna** dla $f: I \to \mathbb{C}$: ciagla $F: I \to \mathbb{C}$, której pochodna to prawie wszędzie f. Każdy szereg potęgowy ma pierwotną w kole zbieżności ("całka" wyraz po wyrazie).

Funkcja schodkowa: $\varphi: [a, b] \to \mathbb{C}$, "stała na przedziałach". Całka z takiej to suma pól prostokątów; jest liniowa i monotoniczna. Funkcja **regałowa**: $f:[a,b] \to \mathbb{C}$, gdy ma wszędzie obustronne granice. Dla funkcji ze zwartego przedziału (równoważnie): dla każdej $\varepsilon > 0$ istnieje f. schodkowa φ , taka że $\|f - \varphi\| \le \varepsilon$. Monotoniczna \Rightarrow regałowa \Rightarrow p.w. ciągła. Regał o zwartej dziedzinie jest ograniczony. Jeśli $f: [a,b] \to \mathbb{C}$ jest regałem, to **całką** z niego jest granica całek z φ_n , jeśli $||f - \varphi_n|| \to 0$. Zawsze istnieje i nie zależy od ciągu φ_n . Jeśli $f: [a, b] \to \mathbb{R}$ jest ciągła, zaś $p: [a, b] \to \mathbb{R}$ nieujemnym regałem, to wartość całki z f(x)p(x) pokrywa się z $f(\xi)$ -krotnością całki z p(x) dla pewnego $a \le \xi \le b$ (tw. o wartości średniej); p często nazywa się funkcją ciężaru. Nieujemny regał całkujący się do zera jest zerem tam, gdzie jest ciągły (p.w.).

Hauptsatz: dla regalowej $f: I \to \mathbb{C}$ z ustalonym $a \in I$, funkcja F jest pierwotną: jednostronne pochodne F pokrywają się z jednostronnymi granicami f. Całka z f nad [a,b] to $\Phi(b)-\Phi(a)$, $(\Phi: download pierwotna f)$. Całkowanie czosnkowe: jeśli $u,v:I\to\mathbb{C}$ są p.w. ciągle różalne (pierwotne jakiejś regałowej), to uv też i $\int uv' = uv - \int u'v$. **Przez podstawienie**: jeśli G jest pierwotną regałowej $g: I \to \mathbb{C}$, $t: [a, b] \to I$ ciągle różalna i rosnąca, to $G \circ t$ jest pierwotną dla $(g \circ t) \cdot t'$ i khm-2. Khm-3: $I_k \subseteq \mathbb{R}$ to przedziały, $f: I_1 \to I_2$ ciągła, odwracalna, z pierwotną

$$F \text{ (tw. Laisanta, 1905, bez założenia o różniczkowalności } f^{-1} \text{ czy } f!).$$

$$F(x) = \int_a^x f(t) \, \mathrm{d}t \bullet \int_a^b g(t(x)) \cdot t'(x) \, \mathrm{d}x = \int_{t(a)}^{t(b)} g(t) \, \mathrm{d}t \bullet \int f^{-1}(y) \, \mathrm{d}y = y f^{-1}(y) - F(f^{-1}(y)) + C$$

Do scałkowania elementów $\mathbb{R}(x)$ wystarczą funkcje wymierne, logarytmy i arkus tangens. Zalecane podstawienia:

- 1. dla $R(x, (ax+b)^{1/n})$ jest to $t = (ax+b)^{1/n}$;
- 2. dla $R(\exp ax)$: $t = \exp ax$;
- 3. dla $R(\cos\theta, \sin\theta)$: $t = \tan(\theta : 2)$, wtedy $\cos\theta = (1 t^2)(1 + t^2)^{-1}$, $\sin\theta = 2t(1 + t^2)^{-1}$, $d\theta = 2(1 + t^2)^{-1}$ dt. 4. całkę z $R(x, (ax^2 + 2bx + c)^{1/2})$, gdzie ($\Delta = 4(a^2 bc) \neq 0$), można uprościć za Eulerem (po prostych przekształceniach):

$$(a,b,c) = (1,0,1) & x = \sinh u & \sqrt{t^2 + 1} = \cosh u & dt = \cosh u \, du$$

$$(a,b,c) = (1,0,-1) & x = \pm \cosh u & \sqrt{t^2 - 1} = \sinh u & dt = \sinh u \, du$$

$$(a,b,c) = (-1,0,1) & x = \pm \cos u & \sqrt{1 - t^2} = \sin u & dt = \mp \sin u \, du$$

Całka eliptyczna: z R(x,y), gdzie y to pierwiastek z P, \mathbb{R} -wielomianu stopnia 3 lub 4 bez wielokrotnych pierwiastków.

- 1. Funkcję R(x,y) doprowadzamy do postaci (A+By):(C+Dy), a potem do $R_1+R_2:y$, gdzie $R_1,R_2\in\mathbb{R}(x)$.
- 2. Drugi składnik (R_2) rozbijamy na wielomian i część ułomną, to znaczy kombinację I_n oraz J_m .
- 3. (dla P stopnia 3) $\frac{d}{dx}(x^ny) = (nx^{n-1}P + \frac{1}{2}x^nP') : y$, w prawym nawiasie żyje $a_nx^{n+2} + b_nx^{n+1} + c_nx^n + d_nx^{n-1}$ ($a_n \ne 0$, $d_n = nP(0)$).

Königsberger, lipiec 1990 strona 2 z ??

7.1

7.5

8.1

9.3

11.1

11.2

11.3

11.6

11.7

11.9

15.3

<u>16.2</u>

- 4. Skoro tak, możemy podzielić przez y i scałkować dla $n \ge 1$: $a_nI_{n+2} + b_nI_{n+1} + c_nI_n + d_nI_{n-1} = x^ny$, $a_0I_2 + b_0I_1 + c_0I_0 = y$.
- 5. Wynika stąd, że I_k dla $k \ge 2$ jest kombinacją I_0 , I_1 i $x^a y$ dla $a \ge 0$, podobnie: J_k jest kombinacją J_1 , I_0 , I_1 , $y: (x-c)^b$, $b \ge 1$.
- 6. Jeżeli P był czwartego stopnia, podstawowymi budulcami są I_0 , I_1 , I_2 , J_1 .
- Redukujemy P do normalnej formy. Jeśli $\deg P=3$, istnieje podstawienie x=at+b, że Q(t):=P(at+b) ma postać $4t^3-g_2t-g_3$.
- 8. Tak sprowadza się I_0 , I_1 , J_1 do **normalnej formy Weierstraßa**: całek z dt: \sqrt{Q} , tdt: \sqrt{Q} i dt: $[(t-c)\sqrt{Q}]$
- Jeśli deg P=4 i jego współczynniki są dodatnie, istnieje wielomian $Q(t)=(1-t^2)(1-k^2t^2)$ i podstawienie x=(at+b):(ct+d), że d $x: P(x)^{1/2} = \alpha dt: Q(t)^{1/2}$ dla pewnej stałej α . Liczba k to dwustosunek rosnących miejsc zerowych P i zwie się **modułem** całki.
- 10. Całkę z $t:Q^{1/2}$ można uprościć przez $u=t^2$, pozostałe trzy dają normalną formę Legendre'a.
- 11. Kończymy żmudny proces przez $t = \sin \varphi$. Definiujemy trzy całki: F (1. rodzaju), E (2. rodzaju), $K(k) = F(\pi : 2, k)$ (1. zupełna).
- 12. Każda spełnia swoje równanie różniczkowe i **relację Legendre'a**: $K(k)E(k')+E(k)K(k')-K(k)K(k')=\pi:2$, gdzie $k'=(1-k^2)^{1/2}$.

$$I_n = \int \frac{x^n}{\sqrt{P}} dx \bullet J_m = \int \frac{dx}{(x-c)^m \sqrt{P}} \bullet F(\varphi,k) = \int_0^{\varphi} \frac{d\xi}{\sqrt{1-k^2 \sin^2 \xi}} \bullet E(\varphi,k) = \int_0^{\varphi} \sqrt{1-k^2 \sin^2 \xi} d\xi$$

Normalnie zbieżny szereg funkcyjny na zwartym odcinku (składniki: regały) sam jest regałem i można całkować go wyraz po wyrazie. Suma riemannowska: $\sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1})$, gdzie $x_{k-1} \le \xi_k \le x_k$, x_k to punkty podziału Z dla [a,b] ($f:[a,b] \to \mathbb{C}$). Jeśli f jest regałem, to każdy $\varepsilon>0$ ma $\delta>0$, że suma riemannowska dla podziału drobniejszego niż δ różni się od całki z f nad $\lceil a,b \rceil$ o mniej niż ε . **Niewłaściwa** całka: całka z f nad niezwartym przedziałem to stosowna granica nad coraz większymi zbiorami: $[a, \beta]$ dla $\beta \uparrow b$ zamiast [a, b), [c, b) i (a, c]zamiast (a,b) (jeżeli ma sens dla jednego c, to dla każdego). Gdy całka z regału g nad [a,b) istnieje i $|f| \le g$, to z (regału!) f też.

Prosty wzór Eulera, $\sum_{j=1}^{n} f(j) = \int_{1}^{n} f(x) dx + [f(1) + f(n)]/2 + \int_{1}^{n} (Hf')(x) dx$, działa dla ciągle różalnej $f:[1,n] \to \mathbb{C}$. Funkcja H jest określona wzorem x - [x] - 1/2 dla $x \in \mathbb{R} \setminus \mathbb{Z}$, $H[\mathbb{Z}] = \{0\}$. Potrzebujemy całej rodziny $H_k: \mathbb{R} \to \mathbb{R}$: $H_1 = H$, zaś H_k to pierwotna dla H_{k-1} całkująca się do zera nad [0,1] o okresie 1, wystarczy przyjąć $H_k = \frac{1}{k!}B_k$ dla $x \in (0,1)$: to daje **trudny** wzór Eulera $(k \ge 1, f \in \mathcal{C}^{2k+1})$. $\sum_{j=1}^{n} f(j) = \int_{1}^{n} f(x) dx + \frac{f(1) + f(n)}{2} + \sum_{m=1}^{k} H_{2m}(0) f^{(2m-1)} \Big|_{1}^{n} + \int_{1}^{n} H_{2k+1} f^{(2k+1)} dx$

$$\sum_{j=1}^{n} f(j) = \int_{1}^{n} f(x) \, \mathrm{d}x + \frac{f(1) + f(n)}{2} + \sum_{m=1}^{k} H_{2m}(0) f^{(2m-1)} \bigg|_{1}^{n} + \int_{1}^{n} H_{2k+1} f^{(2k+1)} \, \mathrm{d}x$$

Wielomian Taylora (khm-1) dla n-różalnej funkcji f z błędem $R_{n+1} = f - T_n f$, jeśli f można jeszcze raz zróżniczkować, to khm-2. Khm-3 to **reszta Lagrange'a** dla ξ między a i x. **Szereg Taylora**: ${}_nT_\infty f(x;a)$ ". Składanie szeregów: jeśli $g(w) = \sum_{n=0}^\infty c_n w^n$ zbiega dla $|w| < R_g$, zaś $f(z) = \sum_{n=0}^\infty a_k z^k$ dla $|z| < R_f$ oraz $|a_0| < R_g$, to $g \circ f$ rozwija sięw szereg potęgowy blisko zera (zbiega na dysku $K_r(0)$, że $\sum_{k=0}^\infty |a_k| r^k < R_g$). Szereg potęgowy z ${}_nf(0) \neq 0$ " można odwrócić (i rozwinąć). Szereg w dużym kole można rozwinąć na nowo w każdym mniejszym. $T_n f(x;a) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} \cdot (x-a)^k \bullet R_{n+1}(x) = \int_a^x \frac{f^{(n+1)}(t)}{n!} \cdot (x-t)^n \, dt \bullet R_{n+1}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot (x-a)^{n+1}$

$$T_n f(x;a) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} \cdot (x-a)^k \bullet R_{n+1}(x) = \int_a^x \frac{f^{(n+1)}(t)}{n!} \cdot (x-t)^n dt \bullet R_{n+1}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot (x-a)^{n+1}$$

Ważniejsze rozwinięcia: $(1-x)^{-1} = \sum_{n\geq 0} x^n$, $(1+x)^{1/2} = \sum_{n\geq 0} [(-1/4)^n (2n)! x^n]/[(1-2n)(n!)^2]$ oraz pięć poniższych. Są one

Wazniejsze rozwinięcia:
$$(1-x)^{-1} = \sum_{n\geq 0} x^n$$
, $(1+x)^{-r/2} = \sum_{n\geq 0} [(-1/4)^n(2n)!x^n]/[(1-2n)(n!)^2]$ oraz pięc ponizszych. Są one prawdziwe dla $|x| < 1$ (1), $|x| < 1$ lub $x = 1$ (2), $|2x| < \pi$ (3).
$$\log 1 + x = 2\sum_{n\geq 1} \frac{(-x)^n}{-n} \bullet \log \frac{1+x}{1-x} = \sum_{n\geq 0} \frac{2x^{2n+1}}{2n+1} \bullet \sin x = \sum_{n\geq 0} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \bullet \cos x = \sum_{n\geq 0} \frac{(-x^2)^n}{(2n)!} \bullet \tan x = 3\sum_{n\geq 1} \frac{B_{2n}(1-4^n)}{(2n)!(-1/4)^n} x^{2n-1}$$
Napiszmy $f(z) = z/(e^z - 1) = \sum_{k=0}^{\infty} B_k z^k/k!$ (liczby Bernoulliego). Dla każdego $w \in \mathbb{C}$ funkcja $z \mapsto \exp(wz) f(z)$ rozwija się w szereg blisko $0, \sum_{k=0}^{\infty} B_k(w) z^k/k!$; $B_k(w) = \sum_{m=0}^k C_m^k B_m w^{k-m}$ (wielomiany).
$$\sum_{t=1}^n t^k = [B_{k+1}(n+1) - B_{k+1}]/(k+1).$$
 Funkcje zespolone f_n o wspólnej dziedzinie zbiegają jednostajnie do funkcji f , gdy norma supremum $f_n - f$ dąży do zera. Szereg zbieżny

Funkcje zespolone f_n o wspólnej dziedzinie zbiegają **jednostajnie** do funkcji f, gdy norma supremum $f_n - f$ dąży do zera. Szereg zbieżny normalnie \Rightarrow jednostajnie (jako ciąg), równoważności nie ma: $\log(1+x) = -\sum_{k\geq 1} (-x)^k : k$ na [0,1]. Jednostajna granica funkcji ciągłych (albo regałów) jest ciągła (regałem) Jeżeli $f_n:I o\mathbb{C}$ są cięgle różalne, zbiegają punktowo i mają jednostajnie zbieżne pochodne, to można ciągle zróżniczkować granicę: $f'(x) = \lim_n f'_n(x)$.

Cauchy: f_n zbiega jednostajnie \Leftrightarrow $(\forall \varepsilon > 0)(\exists N)$, $m, n \ge N \Rightarrow ||f_n - f_m|| \le \varepsilon$. Dirichlet: $f_n : D \to \mathbb{R}$, $a_n : D \to \mathbb{C}$, $f_n(x)$ jest n-malejący, $f_n \Rightarrow 0$ i $\|\sum_{k=1}^n a_k\|_D$ są ograniczone: $\sum_{n=1}^\infty a_n f_n$ zbiega jednostajnie. Szczególny przypadek: $a_n = (-1)^n$. **Abel**: f_n, a_n te same, $f_n(x)$ jest n-malejący, $\|f_n\|$ wspólnie ograniczone, $\sum_{n=1}^\infty a_n$ zbiega jednostajnie na D: $\sum_{n=1}^\infty a_n f_n$ też. Potęgowy **wniosek Abela**: jeżeli szereg potęgowy f(x) zbiega dla x=R, to na [0,R] jest funkcją ciągłą i zbiega tamże jednostajnie. **Weierstraß:** $\sum_n c_n < \infty, |f_n(x)| \le c_n$: $\sum_n f_n$ jednozbiega. **Dini** (1878?): monotoniczny ciąg funkcji ciągłych $X \to \mathbb{R}$ (X: zwarta) ma ciągłą granicę punktową \Rightarrow zbiega do niej jednostajnie.

Ciąg regałów $\delta_k: \mathbb{R} \to \mathbb{R}$ jest **ciągiem Diraca**, gdy $\delta_k \ge 0$ całkują się do 1 oraz każde $\varepsilon > 0$ i r > 0 mają N, że $k \ge N$ pociąga khm-1+2. Taki jest $\delta_k = \frac{k}{2}$ na [-1/k, 1/k] albo ciąg **jąder Landaua**, $(1-t^2)^k: c_k$ na [-1, 1], gdzie c_k to całka z $(1-t^2)^k$ nad [-1, 1]. **Aproksymacyjne** tw.: jeśli $f: \mathbb{R} \to \mathbb{C}$ jest ciągła, ograniczona, zaś δ_k to ciąg Diraca i wszystkie δ_k lub f są zwarcie niesione, to $f_k = f * \delta_k$ dąży punktowo do f(jednostajnie, jeśli f jest jednostajnie ciągła). Tw. aproksymacyjne Weierstraßa: każda ciągła funkcja na zwartym odcinku jest jednostajną granicą pewnych wielomianów. Stone znacznie je uogólnił (do zwartych przestrzeni, $\mathbb C$, kwaternionów albo C^* algebr), patrz: topologia.

$$\int_{-r}^{r} \delta_k(t) \, \mathrm{d}t > 1 - \varepsilon \bullet \left| \int_{-r}^{r} \delta_k(t) \, \mathrm{d}t - 1 \right| < \varepsilon$$

Wielomian trygonometryczny to skończona kombinacja funkcji e_k : $\mathbb{R} \to \mathbb{C}$, $e_k(x) = \exp(ikx)$ dla $k \in \mathbb{Z}$. Jądro Dirichleta, $D_n = \sum_{k=-n}^n e_k$ oraz **Fejera**, $\frac{1}{n}\sum_{k=0}^{n-1}D_k$. Lokalnie I jest odcinkiem długości 2π , zaś \mathcal{R} przestrzenią wektorową 2π -okresowych regałów. Wtedy * jest **splotem**; splot z e_k prowadzi do współczynników Fouriera. Splot z F_n to wielomian Fejera σ_n , z D_n : Fouriera S_n . Dla ciągłego regału 2π -okresowego

split
$$Z \in k$$
 provided to with the provided $Z = f$ and $Z = f$ to with the provided $Z = f$ to with t

Tutaj funkcja f jest 2π -okresowa. **Szereg Fouriera** Sf: punktowa granica $S_n f$, jeśli istnieje $(\frac{1}{2}a_0 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx))$, opis a_k , b_k niżej). **Tw. Dirichleta**: jeżeli f ma obie pochodne jednostronne w x, to $Sf(x) = \frac{1}{2}[f(x-) + f(x+)]$. **Tw. Carlesona** (1964): szereg Fouriera ciągłej funkcji f zbiega do niej prawie wszędzie. **Lemat Riemanna-Lebesgue'a**: jeżeli F: $[a,b] \to \mathbb{C}$ jest regałem, to khm-3. **Iloczyn skalarny**, całka z $f \cdot \overline{g} : (2\pi)$ nad $[-\pi,\pi]$, daje normę L^2 . Skoro $\|f - S_n f\|_2^2 = \|f\|_2^2 - \sum_{|k| \le n} |\widehat{f}(k)|^2 < \|f - T\|_2^2$ dla $T \neq S_n f$, to wielomiany Fouriera są najlepszym trygonometrycznym przybliżeniem. **Nierówność Bessela**: khm-4 dla $f \in \mathcal{R}$, poprawi się wkrótce do równości. **Tw. Hunta (1968)** uogólnia wynik Carlesona: szereg Fouriera okresowej funkcji $f \in L^p$ zbiega do f prawie wszędzie, gdy p > 1.

$$a_k = \int_{-\pi}^{\pi} \frac{f(x)}{\pi} \cos kx \, \mathrm{d}x \bullet b_k = \int_{-\pi}^{\pi} \frac{f(x)}{\pi} \sin kx \, \mathrm{d}x \bullet \lim_{p \to \infty} \int_a^b F(x) \sin px \, \mathrm{d}x = 0 \bullet \sum_{-\infty}^{\infty} |\widehat{f}(k)|^2 = \sum_{-\infty}^{\infty} |\langle f \mid e_k \rangle|^2 \le ||f||_2^2$$

Königsberger, lipiec 1990 strona 3 z ??

16.6

16.7

16.8

16.9

16.10

17.2

17.3

Regula pochodnej: jeśli $f \in \mathcal{R}$ jest pierwotną dla $\varphi \in \mathcal{R}$, to $\widehat{\varphi}(k) = ik \widehat{f}(k)$ (szereg Fouriera dla f można różniczkować wyraz po wyrazie). Szereg Fouriera p.w. ciągle różniczkowalnej $f \in \mathcal{R}$ zbiega do niej normalnie na \mathbb{R} ; zaś przedziałami ciągle różniczkowalnej – jednostajnie, ale tylko na przedziałach [a,b] bez punktów nieciągłości f. **Fenomen Gibbsa**: jeżeli $f:\mathbb{R} \to \mathbb{R}$ jest przedziałami ciągła i $f(x_0^+) - f(x_0^-) = a \neq 0$, to $\lim_{n\to\infty} S_n f(x_0 \pm \pi : n) = f(x_0^{\pm}) \pm a \cdot 0.0894898722360836351160144229 \dots$ (przy założeniu, że f jest nadal 2π okresowa).

Ciąg regałów f_n na przedziale [a,b] zbiega **w średniej kwadratowej** do regału f, jeśli $||f_n - f||_2 \to 0$. Nie pociąga zbieżności punktowej (przez układ Haara), ale jest pociągane przez jednostajną. Wielomiany Fouriera $S_n f$ zbiegają na $[-\pi,\pi]$ do f w średniej kwadratowej, gdy $f \in \mathcal{R}$. Równoważna z tym jest **równość Parsevala** (khm-1), która uogólnia się do khm-2. "Problem izoperymetryczny".

$$||f||_2^2 = \sum_{n=-\infty}^{\infty} |\widehat{f}(n)|^2 \Leftrightarrow \int_{-\pi}^{\pi} \frac{|f(x)|^2}{\pi} dx = \frac{|a_0|^2}{2} + \sum_{k=1}^{\infty} (|a_k|^2 + |b_k|^2) \bullet \langle f, g \rangle = \frac{1}{2\pi} \int_{\mathbb{T}} f(t) \overline{g(t)} dt = \sum_{n=-\infty}^{\infty} \widehat{f}(n) \overline{\widehat{g}(n)}$$

Funkcja $\vartheta(x,t) = 1 + 2\sum_{n=1}^{\infty} \exp(-\pi n^2 t) \cos(2\pi n x)$ opisuje przewodnictwo cieplne: $u_{xx} = 4\pi u_t$ i spełnia $t^{1/2}\vartheta(0,t) = \vartheta(0,t^{-1})$.

Analogonem ciągu współczynników Fouriera dla nieokresowej $f: \mathbb{R} \to \mathbb{C}$ jest transformata Fouriera (khm-1). Sumacyjny wzór Poissona: jeśli f jest ciagła i spełnia razem ze swoją transformatą warunek ucichania (khm-2, $x \neq 0$, $\varepsilon > 0$), to dla t > 0, $t = 2\pi$, mamy khm-3. Inaczej: jedyny unitarny "intertwiner" dla symplektycznej i euklidesowej reprezentacji Schrödingera grupy Heisenberga to transformata Fouriera. $\widehat{f}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \exp(-ixt) \, \mathrm{d}t \, \bullet \, |f(x)| \leq \frac{c}{|x|^{1+\varepsilon}} \, \bullet \, t^{1/2} \sum_{n \in \mathbb{Z}} f(nt) = \widehat{t}^{1/2} \sum_{k \in \mathbb{Z}} \widehat{f}(k\widehat{t})$ Punktowa granica $G: \mathbb{C} \to \mathbb{C}$ funkcji $G_n(z)$ jest ciągła i ma zera w -n $(n \in \mathbb{N}_0)$. Dla $k \in \mathbb{N}$, $z \neq 0$ jest zG(z+1) = G(z), (k-1)!G(k) = 1.

$$\widehat{f}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \exp(-ixt) dt \bullet |f(x)| \le \frac{c}{|x|^{1+\varepsilon}} \bullet t^{1/2} \sum_{n \in \mathbb{Z}} f(nt) = \widehat{t}^{1/2} \sum_{k \in \mathbb{Z}} \widehat{f}(k\widehat{t})$$

Funkcja Gamma, $\Gamma(z)=1:G(z)$ (poza zerami), spełnia prawo uzupełnień: $\Gamma(x)\Gamma(1-x)=\pi/\sin(\pi x)$ ($x\in\mathbb{R}\setminus\mathbb{N}$) i jest logarytmicznie wypukła na $(0,\infty)$ (ma wypukły logarytm). Tw. Bohra-Mollerupa (1922): jeśli logarytmicznie wypukła $F:(0,\infty)\to\mathbb{R}_+$ spełnia F(1)=1, F(x+1) = xF(x), to $F \equiv \Gamma$. Khm-2: calkowe przedstawienie Eulera, x > 0. Khm-4: prawo **podwajania Legendre'a**, x > 0. Wzór Stirlinga

$$G_n(z) = \frac{z^{n+1}}{n!n^z} \bullet \Gamma(x+1) = \int_0^\infty \frac{t^x}{e^t} \, \mathrm{d}t = \sqrt{2\pi x} \cdot \frac{x^x}{e^x} \left(1 + \frac{n^{-1}}{12} + \frac{n^{-2}}{288} - \frac{139n^{-3}}{51840} - \ldots\right) \bullet \frac{\Gamma(x)}{\Gamma(2x)} \Gamma(x+1/2) = \frac{\sqrt{\pi}}{2^{2x-1}}$$

$$Malejący ciąg \gamma_n = H_n - \ln n \text{ zbiega do stałej Eulera-Mascheroniego. Alternatywne definicje: $\lim_{z\to 0} 1/z - \Gamma(z)$ albo poniższe. Formuła$$

khm-4 to specjalny przypadek wzoru Hadjicostasy.

$$\gamma = \sum_{m=2}^{\infty} \frac{\zeta(m)}{(-1)^m \cdot m} = \ln \frac{4}{\pi} + 2 \sum_{m=2}^{\infty} \frac{\zeta(m)}{(-2)^m m} = -\int_0^{\infty} e^{-x} \ln x \, dx = \int_0^1 \int_0^1 \frac{x-1}{(1-xy) \log xy} \, dx \, dy$$

Königsberger, lipiec 1990 strona 4 z ??