A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 5ED

Bookmark

Show all steps: ON

Problem

Let G be a group. By an *automorphism* of G we mean an isomorphism $f: G \to G$.

By the *center* of *G* we mean the set of all those elements of *G* which commute with every element of G, that is, the set C defined by

$$C = \{a \in G: ax = xa \text{ for every } x \in G\}$$

Prove that $a \in C$ if and only if $axa^{-1} = x$ for every $x \in G$.

Step-by-step solution

Step 1 of 3

Consider the center of any group *G* defined as:

$$C = \{a \in G : ax = xa \text{ for every } x \in G\}.$$

Objective is to prove that $a \in C$ if and only if $axa^{-1} = x$ for every $x \in G$.

First suppose that $a \in C$. Then for all $x \in G$, one have

$$ax = xa$$

Since center C is a subgroup of G, so all the elements in C will be the elements of G. That is,

$$a \in G$$
 also $a^{-1} \in G$.

Post-multiply by a^{-1} in the condition ax = xa yields:

$$axa^{-1} = xaa^{-1}$$

$$axa^{-1} = x$$

for all $x \in G$.

Thus, if $a \in C$ then $axa^{-1} = x$ for every $x \in G$.

Comment

Conversely, le	$axa^{-1} = x$ for every $x \in G$. Post-multiplication by a in this condition yields:	
$axa^{-1} = x$		
$axa^{-1}a = xa$		
axe = xa		
ax = xa		
for all $x \in G$.	This implies that $a \in C$.	
Comment		
Step 3 of 3		

Hence, $a \in C$ if and only if $axa^{-1} = x$ for every $x \in G$.

Comment