THE SPECTRUM OF THE CESÀRO-HARDY OPERATOR ON THE HILBERT-PÓLYA SPACE

CHAOCHAO SUN

ABSTRACT. By considering the spectrum of the Cesàro-Hardy operator on the Hilbert-Pólya space, we proved the Riemann hypothesis for Riemann zeta function and Dirichlet L-function.

1. Introduction

Denote $\mathbb{R}_+^{\times} = (0, \infty)$. Let $L^2(\mathbb{R}_+^{\times})$ be the complex Hilbert space with the usual inner product, i.e.,

$$\langle f(x), g(x) \rangle = \int_0^\infty f(x) \overline{g(x)} dx.$$

Here we view $L^2(\mathbb{R}_+^{\times})$ as a Hilbert space in the meaning of quotient space, i.e., each $f \in L^2(\mathbb{R}_+^{\times})$ with $\int_0^{\infty} |f(x)|^2 dx = 0$ is equivalent to the zero function on \mathbb{R}_+^{\times} .

The Cesàro-Hardy operator \mathcal{C} on $L^2(\mathbb{R}_+^{\times})$ is defined by

$$C(f)(x) = \frac{1}{x} \int_0^x f(t)dt,$$

where $f(x) \in L^2(\mathbb{R}_+^{\times})$ is a locally integrable function. Then \mathcal{C} is a bounded operator on $L^2(\mathbb{R}_+^{\times})$ by Hardy inequality. In [3], Brown, Halmos and Shields showed that the spectrum of \mathcal{C} on $L^2(\mathbb{R}_+^{\times})$ is the circle

$$\sigma(C, L^2) = \{ z \in \mathbb{C} : |1 - z| = 1 \}.$$

This result has been generalized by D. W. Boyd [4] to L^p space. If we consider the operator $\mathcal{C}-1$, then we will find that it is a unitary operator on $L^2(\mathbb{R}_+^\times)$. A well known result which says the spectrum of unitary operator is contained in the unit circle $\{z \in \mathbb{C} : |z| = 1\}$

The adjoint of the Cesàro-Hardy operator C is C^* , which is defined by

$$\langle \mathcal{C}f, q \rangle = \langle f, \mathcal{C}^*q \rangle,$$

for $f, g \in L^2(\mathbb{R}_+^{\times})$. The explicit form of \mathcal{C}^* is

$$C^*f(x) = \int_x^\infty \frac{f(t)}{t} dt.$$

Motivated by Alain Connes's spectral interpretation for the zeros of L-functions, Ralf Meyer[15] proved that the eigenvalues of the transpose D_{-}^{t} (see [21, §2.1]) of the operator D_{-} (induced by D on some function space) acting on a nuclear Fréchet

Date: August 21, 2024.

 $^{2020\} Mathematics\ Subject\ Classification.$ Primary 47A10 ; Secondary 11M26.

Key words and phrases. zeros of zeta function, spectrum of operators.

The research was supported by NSFC (No.11601211).

space are exactly the nontrivial zeros of $\zeta(s)$. Later, Xian-Jin Li [12] proved that every nontrivial zero of the zeta function is indeed an eigenvalue of D_- . His method has been generalized to Dirichlet L-function and L-function associated with newforms by Dongsheng Wu[23]. Liming Ge, Xian-Jin Li, Dongsheng Wu and Boqing Xue in [9] proved that the correspondence between the set of eigenvalues of D_- acting on $\mathcal H$ and the set of nontrivial zeros of $\zeta(s)$ is one-to-one.

Inspired by the above results, we construct the Hilbert–Pólya space of operator \mathcal{C} . The idea to prove Rieman hypothesis is as follows: We take Riemann zeta function as an example. First, we construct an invariant space V_{ζ} (Definition5.2) of \mathcal{C} and \mathcal{C}^* in $L^2(\mathbb{R}_+^{\times})$. For each nontrivial zero ρ of $\zeta(s)$, we construct a function F_{ρ} (Equation(5.3)). Let $\overline{V_{\zeta}}$ be the closure of V_{ζ} in $L^2(\mathbb{R}_+^{\times})$. The key result is to show $F_{\rho} \notin \overline{V_{\zeta}}$ (Theorem6.15). Then the Riemann hypothesis can be deduced from the property of spectrum \mathcal{C} on $L^2(\mathbb{R}_+^{\times})$ (Theorem7.7).

In this view, the Riemann hypothesis comes from the symmetry of the Cesàro-Hardy operator. The adjoint operator C^* and the operator D_- are inverse in some way, which is similar to the case of elliptic function and its inverse function. However, it is better to consider C^* than D_- , because the first one is bounded.

2. Some properties of operators $\mathcal{C}, \mathcal{C}^*$ and \mathcal{Z}

Let $C^{\infty}(\mathbb{R}_{+}^{\times})$ be the set of smooth complex valued functions on \mathbb{R}_{+}^{\times} and \mathbb{N} be the set of nonnegative integers. The following notations are from [23]:

$$\mathcal{H}_0 = \{ f \in C^{\infty}(\mathbb{R}_+^{\times}) \mid \lim_{x \to \infty} x^m f^{(n)}(x) = 0 \text{ and } f^{(n)}(0) := \lim_{x \to 0^+} f^{(n)}(x) \text{ exists}, \forall m, n \in \mathbb{N} \}.$$

$$\mathcal{H}_{\cap} := \{ f \in \mathcal{H}_0 \mid \int_0^\infty f(x) dx = 0, f(0) = 0, \text{ and } f^{(2n+1)}(0) = 0, \ \forall n \in \mathbb{N} \}.$$

$$\mathcal{H}_{-} := \{ f \in \mathcal{H}_0 \mid f^{(n)}(0) = 0 \text{ for } n \in \mathbb{N} \}.$$

Here, the above definitions of \mathcal{H}_{\cap} coincide with Meyer's original construction (see [23, §1.2]). In fact, if f(x) is an even Schwartz function over \mathbb{R} , then $f^{(2n+1)}(x)$ is an odd function, hence $f^{(2n+1)}(0) = 0$.

By L'Hôspital's rule, we have

$$\lim_{x \to 0^+} x^{-m} f^{(n)}(x) = 0, \quad \forall m, n \in \mathbb{N}, \ \forall f(x) \in \mathcal{H}_-.$$

Let χ be a nontrivial primitive Dirichlet character. Define

$$\mathcal{H}_{\cap}^{\chi} := \{ f \in \mathcal{H}_0 \mid f^{(2n+1)}(0) = 0 \text{ if } \chi(-1) = 1, f^{(2n)}(0) = 0 \text{ if } \chi(-1) = -1, \forall n \in \mathbb{N} \}.$$

If χ be a trivial primitive Dirichlet character. Define

$$\mathcal{H}_{\cap}^{\chi} := \{ f \in \mathcal{H}_{0} \mid \int_{0}^{\infty} f(x) dx = 0, f(0) = f^{(2n+1)}(0) = 0, \forall n \in \mathbb{N} \}.$$

Remark 2.1. In [23], he does not distinguish the trivial character and nontrivial character. They are different for L-function. If χ is a trivial character, then the L-function has a simple pole at s=1. If χ is a nontrivial character, then the L-function is an entire function. The conditions here $\int_0^\infty f(x)dx = 0$ are designed to eliminate the effects of poles of L-function when considering the Mellin transform of the function $\mathcal{Z}_{\chi}f(\text{See}$ below for the operator $\mathcal{Z}_{\chi})$.

Since \mathcal{H}_0 is a subspace of $L^2(\mathbb{R}_+^{\times})$, \mathcal{H}_0 is a unitary space, i.e., a complex space with inner product. We define two operators \mathcal{D} , \mathcal{M} on \mathcal{H}_0 by

$$\mathcal{D}f(x) = -f'(x), \quad \mathcal{M}f(x) = xf(x).$$

It is easy to check that

$$\mathcal{M}\mathcal{D} - \mathcal{D}\mathcal{M} = 1.$$

For $f \in \mathcal{H}_{-}$, we can "formally "defined

$$\mathcal{D}^{-1}f(x) = -\int_0^x f(t)dt, \quad \mathcal{M}^{-1}f(x) = \frac{f(x)}{x}.$$

But the action of \mathcal{D}^{-1} is not closed on \mathcal{H}_{-} . We just "formally" view the operator \mathcal{C} as the inverse of $-\mathcal{D}\mathcal{M}$ by

$$(-\mathcal{DM})^{-1}f = \mathcal{M}^{-1}(-\mathcal{D})^{-1}f = \mathcal{M}^{-1}\int_0^x f(t)dt = \frac{1}{x}\int_0^x f(t)dt = \mathcal{C}f.$$

For $f \in \mathcal{H}_{\cap}$, define the operator \mathcal{Z} by

$$(\mathcal{Z}f)(x) = \sum_{n=1}^{\infty} f(nx)$$

and for $f \in \mathcal{H}^{\chi}_{\cap}$, define the operator \mathcal{Z}_{χ} by

$$(\mathcal{Z}_{\chi}f)(x) = \sum_{n=1}^{\infty} \chi(n)f(nx).$$

Then we have \mathcal{ZH}_{\cap} , $\mathcal{Z}_{\chi}\mathcal{H}_{\cap}^{\chi} \subset \mathcal{H}_{-}(\text{see [23, Thm.2.9], [15, Thm.3.3], §6 in [15])}$. Denote

$$\eta(x) = 8\pi x^2 (\pi x^2 - \frac{3}{2})e^{-\pi x^2}, \text{ for } \zeta(s);$$

For character χ , let

$$\eta_{\chi}(x) = \begin{cases} 8\pi x^2 (\pi x^2 - \frac{3}{2})e^{-\pi x^2}, & \text{for } L(\chi, s) \text{ when } \chi(-1) = 1\\ xe^{-\pi x^2}, & \text{for } L(\chi, s) \text{ when } \chi(-1) = -1. \end{cases}$$

Then we have $\mathcal{Z}\eta, \mathcal{Z}_{\chi}\eta_{\chi} \in \mathcal{H}_{-}$.

For $f(x) \in \mathcal{H}_0$, its Mellin transform is

$$\widehat{f}(s) = \int_0^\infty f(x) x^{s-1} dx.$$

Then $\hat{f}(s)$ admits a meromorphic extension to the whole complex plane and its only singularities are simple poles at a subset of non-positive integers (see [23, Lem2.1]).

Proposition 2.2. $\mathcal{ZH}_{\cap} \nsubseteq \mathcal{H}_{\cap}$.

Proof. let $\eta(x) = 8\pi x^2(\pi x^2 - \frac{3}{2})e^{-\pi x^2} \in \mathcal{H}_{\cap}$. For Re(s) > 1, considering the Mellin transformation of $\mathcal{Z}\eta$, we have

$$\widehat{\mathcal{Z}}\eta(s) = \zeta(s)\widehat{\eta}(s) = s(s-1)\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s).$$

Since $\mathcal{Z}\eta(x) \in \mathcal{H}_-$, we have $\widehat{\mathcal{Z}\eta}(s)$ is an entire function. Hence,

$$\widehat{\mathcal{Z}}\eta(1) = \pi^{-\frac{1}{2}}\Gamma\left(\frac{1}{2}\right) = 1,$$

i.e.,
$$\int_0^\infty \mathcal{Z}\eta(x)dx = 1$$
.

Remark 2.3. A fault" proof" of Proposition 2.2: First, we have $\mathcal{ZH}_{\cap} \subseteq \mathcal{H}_{-}$. On the other hand, for $f \in \mathcal{H}_{\cap}$, we have

$$\int_0^\infty \sum_{n=1}^\infty f(nx) dx = \sum_{n=1}^\infty \int_0^\infty f(nx) dx = \sum_{n=1}^\infty \int_0^\infty \frac{1}{n} f(x) dx = 0.$$

Hence, $\mathcal{Z}f \in \mathcal{H}_{\cap}$.

The main problem is that the sum and the integral does not commute in this case.

Proposition 2.4. $\mathcal{CH}_{\cap} \nsubseteq \mathcal{H}_{\cap}$.

Proof. The action of \mathcal{C} on \mathcal{H}_{\cap} is not closed. For example, let $\eta(x) = x^2(\pi x^2 - \frac{3}{2})e^{-\pi x^2} \in \mathcal{H}_{\cap}$. A direct calculation shows that

$$\mathcal{C}\eta(x) = -\frac{x^2}{2}e^{-\pi x^2} \notin \mathcal{H}_{\cap}.$$

Let \mathcal{C}^* be the adjoint operator of \mathcal{C} on $L^2(\mathbb{R}_+^{\times})$. Then

Lemma 2.5. For $f(x) \in \mathcal{H}_0$, we have

$$C^*f(x) = \int_x^\infty \frac{f(t)}{t} dt$$

Proof. For each $f, g \in \mathcal{H}_0$, there is

$$\begin{split} \langle \mathcal{C}f,g\rangle &= \int_0^\infty \frac{1}{x} \int_0^x f(t)dt \cdot \overline{g(x)} dx \\ &= \int_0^\infty \int_0^x f(t)dt \cdot \overline{\left(\frac{g(x)}{x}\right)} dx \\ &= -\int_0^\infty \int_0^x f(t)dt d\int_x^\infty \overline{\left(\frac{g(t)}{t}\right)} dt \\ &= -\int_0^x f(t)dt \cdot \int_x^\infty \overline{\left(\frac{g(t)}{t}\right)} dt \Big|_0^\infty + \int_0^\infty \int_x^\infty \overline{\left(\frac{g(t)}{t}\right)} dt d\int_0^x f(t)dt \\ &= \int_0^\infty f(x) \int_x^\infty \overline{\left(\frac{g(t)}{t}\right)} dt dx \\ &= \langle f, \mathcal{C}^*g \rangle. \end{split}$$

By the definition of integral, we have

$$\overline{\mathcal{C}^*g(x)} = \int_x^\infty \overline{\left(\frac{g(t)}{t}\right)} dt = \overline{\int_x^\infty \frac{g(t)}{t} dt}.$$

Hence, $C^*f(x) = \int_x^\infty \frac{f(t)}{t} dt$.

Theorem 2.6. The operator $C^* - 1$ and C - 1 are unitary on $L^2(\mathbb{R}_+^{\times})$.

Proof. There exist the following norm equalities (see [13, Example1.6]): For $f \in L^2(\mathbb{R}_+^\times)$,

$$\|(\mathcal{C}-1)f\| = \|(\mathcal{C}^*-1)f\| = \|f\|,$$

where $\mathcal{C}^* - 1 = (\mathcal{C} - 1)^*$ is the adjoint operator of $\mathcal{C} - 1$. This means the bounded operator $\mathcal{C} - 1$ and $(\mathcal{C} - 1)^*$ are isometry on $L^2(\mathbb{R}_+^{\times})$. By [7, Thm4.5.15], we have $(\mathcal{C} - 1)^*(\mathcal{C} - 1) = (\mathcal{C} - 1)(\mathcal{C} - 1)^* = 1$. This means $\mathcal{C}^* - 1$ and $\mathcal{C} - 1$ are unitary. \square

Corollary 2.7. C^* and C are commutative on $L^2(\mathbb{R}_+^{\times})$.

Proof. In fact, from the equation $(\mathcal{C}-1)^*(\mathcal{C}-1)=(\mathcal{C}-1)(\mathcal{C}-1)^*=1$, we have $\mathcal{C}^*\mathcal{C}=\mathcal{C}\mathcal{C}^*=\mathcal{C}+\mathcal{C}^*$.

3. The Hilbert space $L^2(\mathbb{R}_+^{\times}, dx)$ and Hardy space $H^2(\Omega)$

For the multiplicative group \mathbb{R}_+^{\times} , the corresponding Haar measure is $\frac{dx}{x}$. Let $L^2(\mathbb{R}_+^{\times}, \frac{dx}{x})$ (resp. $L^2(\mathbb{R}_+^{\times}, dx)$) be the complex Hilbert space of square integral function on \mathbb{R}_+^{\times} with respect to the measure $\frac{dx}{x}$ (resp. dx).

function on \mathbb{R}_+^{\times} with respect to the measure $\frac{dx}{x}$ (resp. dx). Consider the pairing $\mathbb{R}_+^{\times} \times \mathbb{R}i \to S^1$, $(r,ti) \mapsto r^{-ti}$. Under this pairing, $\mathbb{R}i$ can be viewed as the character group of \mathbb{R}_+^{\times} . Denote $\widehat{\mathbb{R}}_+^{\times}$ the character group of \mathbb{R}_+^{\times} , i.e.,

$$\widehat{\mathbb{R}}_+^\times := \{ \psi : \mathbb{R}_+^\times \to S^1 \mid \psi \text{ is continuous group homomorphism.} \}$$

A natural topology on $\widehat{\mathbb{R}}_+^{\times}$ is compact open topology. Under this topology, we have an topological group isomorphism

$$\widehat{\mathbb{R}}_{+}^{\times} \simeq \mathbb{R}i, \quad \psi_{ti} \mapsto ti,$$

where $\psi_{ti}(x) = x^{-ti}$ Similarly, we have $\widehat{\mathbb{R}i} \simeq \mathbb{R}_+^{\times}$.

Definition 3.1. (see [20, §3.3]) Let $f \in L^1(\mathbb{R}_+^{\times}, \frac{dx}{x})$. Then we define $\widehat{f} : \widehat{\mathbb{R}}_+^{\times} \to \mathbb{C}$, the Fourier transform of f, by the formula

$$\widehat{f}(\psi) = \int_{\mathbb{R}_{+}^{\times}} f(x) \overline{\psi}(x) \frac{dx}{x}.$$

Theorem 3.2. Under the isomorphism $\widehat{\mathbb{R}}_{+}^{\times} \simeq \mathbb{R}i$, $\psi_{ti} \mapsto ti$, the Fourier transform of $f \in L^1(\mathbb{R}_{+}^{\times}, \frac{dx}{x})$ is the Mellin transform which restricts on the line $\mathbb{R}i$.

Proof. Since $\psi_{ti}(x) = x^{-ti}$, we have $\overline{\psi}_{ti}(x) = x^{ti}$. Denote s = ti. View ψ_s as s. Then Fourier transform of f is

$$\widehat{f}(\psi_s) = \int_0^\infty f(x) \overline{\psi}_s(x) \frac{dx}{x} = \int_0^\infty f(x) x^{s-1} dx.$$

This is just the Mellin transform on $\mathbb{R}i$.

Denote $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}$ the multiplicative group of \mathbb{C} . Consider the pairing

$$\mathbb{R}_+^{\times} \times \mathbb{C} \to \mathbb{C}^{\times}, \quad (r, s) \mapsto r^{-s}.$$

We use $\widehat{\mathbb{R}_{+}^{\times}}$ denoting the set of quasi-characters of \mathbb{R}_{+}^{\times} . A quasi-character ϕ of \mathbb{R}_{+}^{\times} is a continuous homomorphism $\phi: \mathbb{R}_{+}^{\times} \to \mathbb{C}^{\times}$. Since \mathbb{R}_{+}^{\times} has no nontrivial compact open subgroup, each quasi-character of \mathbb{R}_{+}^{\times} is unramified (see [14, XIV,§2]), also called principal by Weil(see [22, VII,§3]).

Theorem 3.3. Each quasi-character ϕ of \mathbb{R}_{+}^{\times} is of the form

$$\phi(x) = x^{-s},$$

where s is uniquely determined by ϕ . Hence, ϕ can be written by ϕ_s Thus $\widehat{\mathbb{R}_+^{\times}} \simeq \mathbb{C}$. Proof. See [14, XIV,§2,Prop.1], [22, VII,§3, Cor.1], [20, §7.1]. **Definition 3.4.** Given the pairing $\langle , \rangle : \mathbb{R}_+^{\times} \times \mathbb{C} \to \mathbb{C}^{\times}, \ (x,s) \mapsto \langle x,s \rangle = x^{-s}$. The quasi-character $\phi_s \in \widehat{\mathbb{R}_+^{\times}}$ is defined by

$$\phi_s(x) = \langle x, s \rangle = x^{-s}.$$

The involution ϕ_s^{-1} of ϕ_s is defined by

$$\phi_s^{-1}(x) = x^s$$
.

Similarly, we have the Fourier transform for quasi-characters.

Definition 3.5. Let $f \in L^1(\mathbb{R}_+^{\times}, \frac{dx}{x})$ and $\widehat{\mathbb{R}_+^{\times}}$ be the quasi-character group. Then we define $\widehat{f}: \widehat{\mathbb{R}_+^{\times}} \to \mathbb{C}$, the Fourier transform of f, by the formula

$$\widehat{f}(\phi) = \int_{\mathbb{R}_+^{\times}} f(x)\phi^{-1}(x) \frac{dx}{x}.$$

As in Theorem3.2, we have

Theorem 3.6. Under the isomorphism $\widehat{\mathbb{R}_+^{\times}} \simeq \mathbb{C}$, $\phi_s \mapsto s$, the Fourier transform of $f \in L^1(\mathbb{R}_+^{\times})$ is the Mellin transform $\widehat{f}(s)$, which is convergent in some region of \mathbb{C} .

Next, we construct the Fourier inversion formula, which essentially is the inverse Mellin transform. Consider the commutative diagram

$$\mathbb{R}_{+}^{\times} \times \mathbb{R}i \xrightarrow{\langle,\rangle} S^{1} \downarrow \qquad \downarrow \qquad \downarrow$$

$$\mathbb{R}_{+}^{\times} \times (\sigma + \mathbb{R}i) \longrightarrow \mathbb{R}_{+}^{\times} \times \mathbb{C} \xrightarrow{\langle,\rangle} \mathbb{C}^{\times}.$$

$$\mathbb{R}_{+}^{\times} \times \widehat{\mathbb{R}_{+}^{\times}}$$

where $\sigma \in \mathbb{R}$.

Definition 3.7. Consider the pairing \langle , \rangle restricting on $\mathbb{R}_+^{\times} \times (\sigma + \mathbb{R}i)$. Define $\widehat{\sigma + \mathbb{R}i}$ the set of maps $\langle x, \rangle : \sigma + \mathbb{R}i \to \mathbb{C}^{\times}$, where $x \in \mathbb{R}_+^{\times}$. Define $\widehat{\sigma \mathbb{R}_+^{\times}}$ the set of maps $\langle s, s \rangle : \mathbb{R}_+^{\times} \to \mathbb{C}^{\times}$, where $s \in \sigma + \mathbb{R}i$.

 $\widehat{\sigma} + \mathbb{R}i$ can be viewed as the line \mathbb{R}_+^{\times} , because there is a one-to-one correspondence between them. Similarly, $\widehat{\sigma}\widehat{\mathbb{R}}_+^{\times}$ can be viewed as the line $\sigma + \mathbb{R}i$.

Let V(G) denote the complex span of the continuous functions of positive type(see [20, §3.2]) on the locally compact group G. Define

$$V^1(G) = V(G) \cap L^1(G).$$

Theorem 3.8. (The inverse Mellin transform)

Consider the pairing $\langle , \rangle : \mathbb{R}_+^{\times} \times \mathbb{C} \to \mathbb{C}^{\times}$. Let $\phi_s = \langle , s \rangle \in \widehat{\mathbb{R}_+^{\times}}$ be a quasi-character. The Haar measure on $\widehat{\mathbb{R}_+^{\times}}$ is $d\phi$. Denote the restriction of ϕ on the line $\sigma + \mathbb{R}i$ by ϕ^{σ} . The measure $d\phi$ restricting on $\sigma + \mathbb{R}i$ is denoted by $d\phi^{\sigma}$. Then for all $f \in V^1(\mathbb{R}_+^{\times})$,

$$f(x) = \int_{\widehat{\alpha \mathbb{R}}_{+}^{\times}} \widehat{f}(\phi) \phi(x) d\phi^{\sigma} = \frac{1}{2\pi i} \int_{\sigma + \mathbb{R}i} \widehat{f}(s) x^{-s} ds.$$

If f(x) is analytic on \mathbb{R}_{+}^{\times} and satisfies the asymptotic conditions

$$f(x) = O(x^{-\alpha}), \quad x \to 0,$$

 $f(x) = O(x^{-\beta}), \quad x \to \infty,$

where $\alpha < \beta$. Then the Mellin transform $\widehat{f}(s)$ is analytic in the strip $\alpha < \text{Re}s < \beta$. For example, for $f(x) = \frac{1}{x+1} \in L^2(\mathbb{R}_+^{\times}, dx)$, its Mellin transform $\widehat{f}(s)$ is analytic in the strip 0 < Re(s) < 1; for $g(x) = \frac{\sqrt{x}}{x+1} \in L^2(\mathbb{R}_+^{\times}, \frac{dx}{x})$, its Mellin transform $\widehat{g}(s)$ is analytic in the strip $-\frac{1}{2} < \text{Re}(s) < \frac{1}{2}$.

Proposition 3.9. Denote $I=(1,\infty)$. Under the isomorphisms $e^x: \mathbb{R}_+^{\times} \to I$, $\log x: I \to \mathbb{R}_+^{\times}$, the space $L^2(\mathbb{R}_+^{\times}, dx)$ is isometric to $L^2(I, \frac{dx}{x})$, a subspace of $L^2(\mathbb{R}_+^{\times}, \frac{dx}{r})$. We denote this isometry by

(3.1)
$$\mathcal{E}: L^2(\mathbb{R}_+^{\times}, dx) \to L^2(I, \frac{dx}{x})$$

Proof. Let $f \in L^2(I, \frac{dx}{x})$. We can view f as an element \widetilde{f} of $L^2(\mathbb{R}_+^{\times}, \frac{dx}{x})$ by

$$\widetilde{f} = \begin{cases} f, & \text{if } x > 1, \\ 0, & \text{if } 0 < x \le 1. \end{cases}$$

Then $L^2(I, \frac{dx}{x})$ is a subspace of $L^2(\mathbb{R}_+^{\times}, \frac{dx}{x})$. Take $g(x) \in L^2(\mathbb{R}_+^{\times}, dx)$ and $f(x) \in L^2(I, \frac{dx}{x})$. Then we have

$$\int_0^\infty |g(x)|^2 dx = \int_1^\infty |g(\log y)|^2 \frac{dy}{y};$$
$$\int_1^\infty |f(x)|^2 \frac{dx}{x} = \int_0^\infty |f(e^y)|^2 dy.$$

The above equalities show that $L^2(\mathbb{R}_+^{\times}, dx)$ is isometric $L^2(I, \frac{dx}{x})$.

Denote the strip $\Omega_{(0,\frac{1}{2})}:=\{z\in\mathbb{C}\mid 0<\mathrm{Re}(z)<\frac{1}{2}\}.$ If there is no confusion, we write Ω for $\Omega_{(0,\frac{1}{2})}$. Denote the half-plane

$$\Omega_{>0} = \{ z \in \mathbb{C} \mid 0 < \operatorname{Re}(z) \},\$$

$$\Omega_{<\frac{1}{2}} = \{ z \in \mathbb{C} \mid \text{Re}(z) < \frac{1}{2} \}.$$

The Hardy space for up half-plane is classical. The summary of basic properties for Hardy space for up half-plane can be found in [2]. The theory for right or left half-plane is similar, because these planes can be obtained from half-plane by times -i or i. Recall that the Hardy space $H^2(\Omega_{>0})$ for half-plane is the space of analytic function $f: \Omega_{>0} \to \mathbb{C}$, for which

$$||f||_{H^2(\Omega_{>0})} = \sup_{0 < x} \left(\frac{1}{2\pi} \int_{-\infty}^{+\infty} |f(x+yi)|^2 dy \right)^{\frac{1}{2}} < \infty.$$

For convenience, we use the notation $||f||_{\Omega_{>0}}$ for $||f||_{H^2(\Omega_{>0})}$. Suppose $f \in H^2(\Omega_{>0})$. Then f satisfies the growth condition

$$|f(z)|^2 \le \frac{C \|f\|_{\Omega_{>0}}^2}{\text{Re}(z)}, \quad z \in \Omega_{>0},$$

where C is the constant. The limit $\lim_{x\to 0} f(x+yi)$ exists for almost every y in \mathbb{R} , and we may define the boundary function on $\mathbb{R}i$, denoted by f^* , i.e.,

$$f^*(z) = \lim_{x \to 0} f(x + yi).$$

This function is square-integrable and

$$||f||_{\Omega_{>0}}^2 = \frac{1}{i} \int_{-\infty i}^{+\infty i} |f^*(z)|^2 dz$$

Then we have an isometry

$$\iota: H^2(\Omega_{>0}) \to L^2(\mathbb{R}i), \ f \mapsto \iota(f) = f^*.$$

The Hardy space for $H^2(\Omega_{<\frac{1}{2}})$ is similar.

Let \mathcal{M}^{-1} be the inverse Mellin transform and \mathscr{F} be the Fourier transform. We have the diagram

The map

$$H^2(\Omega) \xrightarrow{\mathscr{M}^{-1}} L^2(\mathbb{R}_+^{\times}, dx)$$

will be studied in the next section.

Theorem 3.10. Let $f \in H^2(\Omega_{>0})$. Then $f \in H^2(\Omega)$. Moreover, $||f||_{\Omega_{>0}}^2 = ||f||_{\Omega}^2$.

Proof. Since $f \in H^2(\Omega_{>0})$, the norm equality is obtained by

$$|| f^* ||_{L^2(\mathbb{R}i)} = || f ||_{\Omega_{>0}}^2 \ge || f ||_{\Omega}^2 \ge || f^* ||_{L^2(\mathbb{R}i)}.$$

The last inequality is from [24, Thm.2].

Theorem 3.11. The Fourier transform $\mathscr{F}: L^2(\mathbb{R}_+^{\times}, \frac{dx}{x}) \to L^2(\mathbb{R}i)$ and the inverse Fourier transform $\mathscr{F}^{-1}: L^2(\mathbb{R}i) \to L^2(\mathbb{R}_+^{\times}, \frac{dx}{x})$ are isometries.

Proof. Since \mathbb{R}_+^{\times} and \mathbb{R}_i are dual to each other, the theorem follows from [20, Thm.3-26].

Theorem 3.12. The Hardy space $H^2(\Omega_{>0})$ is isometric to a subspace of $L^2(\mathbb{R}_+^{\times}, \frac{dx}{x})$ by $\mathscr{F}^{-1}\iota$.

4. Theorem of Paley and Wiener for Mellin Transform

The theorem of Paley and Wiener for holomorphic Fourier transform constructs unitary operator between $L^2(\mathbb{R}_+^{\times}, dx)$ and the Hardy space $H^2(\mathbb{H})$, where $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ is the upper half-plane(see [19, §19.1-2]). Its explicit form can

be found in [19, Thm.19.2], which says that there exist a surjective isometry from $L^2(\mathbb{R}_+^{\times}, dx)$ to $H^2(\mathbb{H})$. We write this isometry by

$$\mathscr{F}: L^2(\mathbb{R}_+^{\times}, dx) \to H^2(\mathbb{H}), \quad F(x) \mapsto \mathscr{F}F(z) = \int_0^{\infty} F(x)e^{ixz}dx \qquad (z \in \mathbb{H}).$$

Denote $\Omega_{<0}$ the left half-plane of \mathbb{C} . Then the canonical isometry between $H^2(\mathbb{H})$ and $H^2(\Omega_{<0})$ is

$$\mathcal{I}: H^2(\mathbb{H}) \to H^2(\Omega_{<0}), \ f(z) \mapsto f(-is).$$

The canonical isometry between $H^2(\mathbb{H})$ and $H^2(\Omega_{>0})$ is

$$\mathcal{I}: H^2(\mathbb{H}) \to H^2(\Omega_{>0}), \ f(z) \mapsto f(is).$$

The integral is

$$\int_{-\infty}^{+\infty} |f(x+ia)|^2 dx = \int_{-\infty+ai}^{+\infty+ai} |f(z)|^2 dz$$

$$= \int_{a+i\infty}^{a-i\infty} |f(is)|^2 d(is) \quad \text{(where } z = is\text{)}$$

$$= \frac{1}{i} \int_{a-i\infty}^{a+i\infty} |f(is)|^2 ds$$

We have the following theorem commutative diagram

Theorem 4.1. There is a commutative diagram as follows

$$H^{2}(\mathbb{H}) \xrightarrow{\mathcal{I}} H^{2}(\Omega_{<0})$$

$$\downarrow_{\mathscr{F}^{-1}} \qquad \qquad \iota$$

$$L^{2}(\mathbb{R}_{+}^{\times}, dx) \xrightarrow{\mathcal{E}} L^{2}(\mathbb{R}_{+}^{\times}, \frac{dx}{x}) \xrightarrow{\mathscr{M}} L^{2}(\mathbb{R}i).$$

Proof. For $f(z) \in H^2(\mathbb{H})$, there exists an $F(x) \in L^2(\mathbb{R}_+^{\times}, dx)$ such that

$$f(z) = \int_0^\infty F(t)e^{izt}dt.$$

Thus $\mathscr{F}^{-1}f = F(t)$. Since

$$\mathcal{E}(F(t)) = \begin{cases} F(\log x), & \text{if } x > 1\\ 0, & \text{otherwise,} \end{cases}$$

one has $\mathcal{M}(\mathcal{E}(F(t))) = \int_1^\infty F(\log x) x^{s-1} dx$, where $s \in \mathbb{R}i$. Let iz = s. We have, for $s \in \Omega_{<0}$,

$$\mathcal{I}(f)(s) = f(-is)$$

$$= \int_0^\infty F(t)e^{st}dt$$

$$= \int_1^\infty F(\log y)y^s d\log y$$

$$= \int_1^\infty F(\log y)y^{s-1}dy.$$

Thus $\iota \mathcal{I}(f) = \lim_{x \to 0^-} \int_1^\infty F(\log y) y^{s-1} dy$, where s = x + iy. Since for $s \in \Omega_{<0}$,

$$\iota \mathcal{I}(f) = \int_{1}^{\infty} F(\log y) y^{s-1} dy = \mathscr{M} \mathcal{E} \mathscr{F}^{-1}(f)$$

Thus they are equal on $s \in \mathbb{R}i$. Hence, we get the commutative diagram.

Similar to Theorem4.1, we have

Theorem 4.2. There is a commutative diagram as follows

$$H^{2}(\mathbb{H}) \xrightarrow{\mathcal{I}} H^{2}(\Omega_{>0})$$

$$\downarrow_{\mathscr{F}^{-1}} \qquad \qquad \iota$$

$$L^{2}(\mathbb{R}_{+}^{\times}, dx) \xrightarrow{\mathcal{E}} L^{2}(\mathbb{R}_{+}^{\times}, \frac{dx}{x}) \xrightarrow{\mathscr{M}} L^{2}(\mathbb{R}i).$$

We follow the theorem of Paley and Wiener to prove the case of Mellin transform.

Theorem 4.3. Denote $\Omega_a = \{z \in \mathbb{C} \mid 0 < Re(z) < a\}$, where $a \leq \infty$. Let $H^2(\Omega_a)$ be the Hardy space on Ω_a and

$$\sup_{0 < x < a} \frac{1}{2\pi} \int_{-\infty}^{+\infty} |f(x+iy)|^2 dy = C < \infty.$$

Then there exists an $F \in L^2(\mathbb{R}_+^\times, dx)$ such that

$$f(s) = \int_0^\infty F(x)x^{s-1}dx, \quad s \in \Omega_a,$$

and

$$\int_0^\infty |F(x)|^2 dx \le C.$$

If $a = \infty$, we have $\int_0^\infty |F(x)|^2 dx = C$.

Proof. Fix x, 0 < x < a. Take a constant $c \in (0, a)$. For each $\alpha > 0$, let Γ_{α} be the rectangular path with vertices at $c \pm \alpha i$ and $x \pm \alpha i$. By Cauchy's theorem, we have

(4.1)
$$\int_{\Gamma_{\alpha}} f(s)t^{-s}ds = 0,$$

where $t \in \mathbb{R}_{+}^{\times}$.

Let I be the interval

$$I = \begin{cases} [c, x], & \text{if } c < x \\ [x, c], & \text{if } x < c. \end{cases}$$

For $\beta \in \mathbb{R}$, denote $\Phi(\beta)$ the integral

$$\Phi(\beta) = \int_{c+i\beta}^{x+i\beta} f(s)t^{-s}ds.$$

Then

$$(4.2) \qquad |\Phi(\beta)|^2 = \left|\int_I f(u+i\beta)t^{-(u+i\beta)}du\right|^2 \leq \int_I |f(u+i\beta)|^2 du \cdot \int_I t^{-2u}du.$$

Let

$$\Lambda(\beta) = \int_I |f(u+i\beta)|^2 du.$$

Since $\sup_{0 \le x \le a} \frac{1}{2\pi} \int_{-\infty}^{+\infty} |f(x+iy)|^2 dy = C < \infty$, by Fubini's theorem,

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} \Lambda(\beta) d\beta \le C \cdot |c - x|.$$

Hence, there is a sequence $\{\alpha_i\}$ such that $\alpha_i \to \infty$ and

$$\Lambda(\alpha_j) + \Lambda(-\alpha_j) \to 0, \quad (j \to \infty).$$

By equation (4.2), this shows that

(4.3)
$$\Phi(\alpha_j) \to 0, \quad \Phi(-\alpha_j) \to 0, \quad (as \ j \to \infty).$$

Note that this holds for every $t \in \mathbb{R}_+^{\times}$ and the sequence $\{\alpha_j\}$ doesn't depend on t. Define

$$g_j(x,t) = \frac{1}{2\pi i} \int_{-\alpha_j}^{\alpha_j} f(x+iy)t^{-yi}dyi.$$

Then by equations (4.1), (4.3), we deduce that

(4.4)
$$\lim_{j \to \infty} [t^{-x} g_j(x, t) - t^{-c} g_j(c, t)] = 0, \quad (t \in \mathbb{R}_+^{\times}).$$

Write $f_x(y) = f(x+iy)$. Then $f_x \in L^2(\mathbb{R})$. The Plancherel theorem for locally compact group(see [20, Thm.3-26]) asserts that

$$\lim_{j \to \infty} \int_{-\infty}^{+\infty} |\widehat{f}_x(t) - g_j(x, t)|^2 dt = 0.$$

where

$$\widehat{f_x}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f_x(y) t^{-yi} dy$$

is the Fourier transform of f_x about the pairing

$$\mathbb{R} \times \mathbb{R}_+^{\times} \to S^1, \quad (x,t) \mapsto t^{ix}.$$

Then for almost all t, a subsequence of $\{g_j(x,t)\}$ converges pointwise to $\widehat{f}_x(t)$ ([19, Thm.3.12]). Define

$$(4.5) F(t) = t^{-c}\widehat{f_c}(t).$$

Then by (4.4), we have

$$(4.6) F(t) = t^{-x}\widehat{f}_x(t).$$

Note that (4.5) does not involve x and that (4.6) holds for every $x \in (0, a)$. Thus

$$F(t) = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} f(s)t^{-s}ds.$$

This is just the inverse Mellin transform of $f(s) \in H^2(\Omega_a)$. Then the Mellin transform of F(t) gives

$$f(s) = \int_0^\infty F(x)x^{s-1}dx, \quad s \in \Omega_a.$$

By Plancherel theorem for locally compact group, one has

(4.7)
$$\int_0^\infty t^{2x} |F(t)|^2 dt = \int_0^\infty |\widehat{f}_x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |f_x(y)|^2 dy \le C.$$

Let $x \to 0$. One obtains,

$$\int_0^\infty |F(t)|^2 dt \le C.$$

When $a = \infty$, the equality $\int_0^\infty |F(t)|^2 dt = C$ can be obtained by the commutative diagram in Theorem 4.2, in which all the maps are isometries.

Corollary 4.4. For each Hardy space $H^2(\Omega_a)$, there is an injection

$$\mathcal{M}^{-1}: H^2(\Omega_a) \to L^2(\mathbb{R}_+^\times, dx).$$

Moreover, \mathcal{M}^{-1} is a bounded operator.

Proof. Let $f \in H^2(\Omega_a)$. Then $F(t) = \mathcal{M}^{-1}f$. Since

$$\|\mathcal{M}^{-1}f\|^2 = \|F(t)\|^2 \le C = \|f\|^2,$$

we have \mathcal{M}^{-1} is a bounded operator.

5. An invariant space of $\mathcal C$ and $\mathcal C^*$

Let H be a Hilbert space and A is a bounded operator on H. Suppose V is an invariant closed subspace of A in H. We have a canonical decomposition (see [7, Thm.3.6.6]):

$$H = V \oplus V^{\perp}$$
.

where V^{\perp} is the orthogonal complement of V in H. Of course, we have a canonical isomorphism

$$H/V \cong V^{\perp}$$
.

However, there is a big difference between H/V and V^{\perp} , that is, H/V is an invariant space of A but V^{\perp} is not an invariant space of A in general(see [10]). The properties of a morphism of quotient Hilbert space has been studied in [16].

Theorem 5.1. Let C^* be the adjoint of Cesàro-Hardy operator on the Hilbert space $H = L^2(\mathbb{R}_+^{\times})$. Suppose $V \neq H$ is an invariant subspace of C^* . Denote $\overline{C^*}$ the operator on the quotient space H/V induced by C^* . If V^{\perp} is an invariant subspace of C^* , then $\overline{C^*} - 1$ is a unitary operator on H/V.

Proof. First, V is also an invariant subspace of \mathcal{C}^*-1 . Moreover, under the canonical isomorphism

$$H/V \simeq V^{\perp}, \ x + V \mapsto x_v^{\perp},$$

H/V is a Hilbert space. Here, x_v^{\perp} is the projection of x on V^{\perp} , and it does not depend on the choice $x \in x + V$. Let $x = x_v + x_v^{\perp}$. Then we have

$$(\mathcal{C}^* - 1)x = (\mathcal{C}^* - 1)x_v + (\mathcal{C}^* - 1)x_v^{\perp}.$$

Since V^{\perp} is an invariant subspace of C^* , it is also an invariant subspace of $C^* - 1$. Thus $(C^* - 1)x_n^{\perp} \in V^{\perp}$. Therefore, we have the norm equalities

$$\|x+V\| = \|x_v^{\perp}\|$$
 by definition
$$= \|(\mathcal{C}^* - 1)x_v^{\perp}\|$$
 by isometry
$$= \|(\mathcal{C}^* - 1)x_v^{\perp} + V\|$$
 since $(\mathcal{C}^* - 1)x_v^{\perp} \in V^{\perp}$
$$= \|(\mathcal{C}^* - 1)x + V\|$$

This means $\overline{C^*} - 1$ is isometric on H/V, i.e., $\overline{C^*} - 1$ is injective (See [7, Thm.4.5.15]). Consider the commutative diagram

$$\begin{array}{ccc} H & \stackrel{\mathcal{C}^*-1}{\longrightarrow} H \\ \downarrow & & \downarrow \\ H/V & \stackrel{\overline{\mathcal{C}^*}-1}{\longrightarrow} H/V. \end{array}$$

From the commutative diagram, $\overline{C^*} - 1$ is surjective, hence $\overline{C^*} - 1$ is unitary.

Denote

(5.1)
$$\eta(x) = 8\pi x^2 (\pi x^2 - \frac{3}{2})e^{-\pi x^2}, \quad \text{for } \zeta(s);$$

For character χ , let

(5.2)
$$\eta_{\chi}(x) = \begin{cases} 8\pi x^2 (\pi x^2 - \frac{3}{2})e^{-\pi x^2}, & \text{for } L(\chi, s) \text{ when } \chi(-1) = 1\\ xe^{-\pi x^2}, & \text{for } L(\chi, s) \text{ when } \chi(-1) = -1. \end{cases}$$

Because \mathcal{C} and \mathcal{C}^* are commutative, we have the following definition

Definition 5.2. Define the subspace V_{ζ} for $\zeta(s)$ which is linearly generated over \mathbb{C} by

$$\{\mathcal{C}^m \mathcal{C}^{*n} \mathcal{Z} \eta \mid m, n \in \mathbb{N}, m+n \neq 0\};$$

the subspace $V_{\zeta}^{\mathcal{C}^*}$ is linearly generated over \mathbb{C} by $\{\mathcal{C}^{*n}\mathcal{Z}\eta\mid n\in\mathbb{N}, n\neq 0\}$, and the subspace $V_{\zeta}^{\mathcal{C}}$ is linearly generated over \mathbb{C} by $\{\mathcal{C}^m \mathbb{Z}\eta \mid m \in \mathbb{N}, m \neq 0\}$. Define the subspace V_{χ} for $L(s,\chi)$ which is linearly generated over \mathbb{C} by

$$\{\mathcal{C}^m \mathcal{C}^{*n} \mathcal{Z}_{\chi} \eta_{\chi} \mid m, n \in \mathbb{N}, m+n \neq 0\};$$

 $V_{\chi}^{\mathcal{C}^*}$ is linearly generated over \mathbb{C} by $\{\mathcal{C}^{*n}\mathcal{Z}_{\chi}\eta_{\chi}\mid n\in\mathbb{N}, n\neq 0\}$, and $V_{\chi}^{\mathcal{C}}$ is linearly generated over \mathbb{C} by $\{\mathcal{C}^{m}\mathcal{Z}_{\chi}\eta_{\chi}\mid m\in\mathbb{N}, m\neq 0\}$.

Proposition 5.3. The spaces V_{ζ}, V_{χ} are invariant spaces of C and C^* . Moreover,

$$V_{\zeta} = V_{\zeta}^{\mathcal{C}} + V_{\zeta}^{\mathcal{C}^*}, \quad V_{\chi} = V_{\chi}^{\mathcal{C}} + V_{\chi}^{\mathcal{C}^*}.$$

Proof. The first statement is clear, this is because \mathcal{C} and \mathcal{C}^* are commutative. We prove these equations by induction on the monomial term $\mathcal{C}^m\mathcal{C}^{*n}$. First, $\mathcal{C}\mathcal{C}^*$ $\mathcal{C} + \mathcal{C}^*$. Suppose that for $m + n \leq N - 1$,

$$C^m C^{*n} = f(C) + g(C^*),$$

where f(X), g(X) are polynomials of the form $f(X) = \sum_{i=1}^{m} a_i X^i$, $g(X) = \sum_{i=1}^{n} b_j X^j$.

Then when m + n = N, we have

$$C^m C^{*n} = C C^{m-1} C^{*n} = C (f_1(C) + g_1(C^*)),$$

where $\deg f_1(X) \leq m-1$, $\deg g_1(X) \leq n$. Using the induction again, we have $\mathcal{C}g_1(\mathcal{C}^*) = a_1\mathcal{C} + g(\mathcal{C}^*)$. Denote $f(X) = Xf_1(X) + a_1X$. Therefore,

$$\mathcal{C}^m \mathcal{C}^{*n} = f(\mathcal{C}) + g(\mathcal{C}^*).$$

Thus the equations for V_{ζ}, V_{χ} follow from the above equality.

Remark 5.4. C may be irreducible on some Hilbert space H, that is, there are no nontrivial closed subspaces M of H such that $CM \subseteq M$ and $C^*M \subseteq M$. For example, see [18, §12].

Let ρ be a nontrivial zero of $\zeta(s)$ (resp. $L(\chi, s)$ with character χ). Denote

(5.3)
$$\begin{cases} F_{\rho}(x)_{\zeta} = \int_{1}^{\infty} \mathcal{Z}\eta(tx)t^{\rho-1}dt, & \text{if } \zeta(\rho) = 0\\ F_{\rho}(x)_{\chi} = \int_{1}^{\infty} \mathcal{Z}_{\chi}\eta_{\chi}(tx)t^{\rho-1}dt, & \text{if } L(\chi,\rho) = 0. \end{cases}$$

Then

$$F_{\rho}(x)_{\zeta} = \int_{1}^{\infty} \mathcal{Z}\eta(tx)t^{\rho-1}dt = x^{-\rho} \int_{T}^{\infty} \mathcal{Z}\eta(t)t^{\rho-1}dt.$$

It is easy to see

$$F_{\rho}(x)_{\zeta} = x^{-\rho} \mathcal{C}^*(x^{\rho} \mathcal{Z} \eta).$$

Lemma 5.5. Let $f \in C^{\infty}(\mathbb{R}_{+}^{\times})$. Denote F(x) = -xf'(x). Suppose f(x) decays rapidly when $x \to \infty$ and $f(x) = O((\log x)^n)$ $(n \in \mathbb{N})$ when $x \to 0$. Let $\widehat{F}(s)$ be the Mellin transform of F(x). For the operator C^* , when Re(s) > 0, there is

$$\widehat{\mathcal{C}^*F}(s) = \frac{\widehat{F}(s)}{s}.$$

Denote G(x) = (xf(x))'. Suppose $f(x) = O\left(\frac{(\log x)^n}{x}\right)$ when $x \to \infty$ and f(0) = 0 when $x \to 0$. Let $\widehat{G}(s)$ be the Mellin transform of G(x). For the operator \mathcal{C} , when 0 < Re(s) < 1, we have

$$\widehat{\mathcal{CG}}(s) = \frac{\widehat{G}(s)}{1 - s}.$$

Proof. First, $C^*F(x) = \int_x^\infty \frac{F(t)}{t} dt = \int_x^\infty \frac{-tf'(t)}{t} dt = f(x)$. Then $\widehat{C^*F}(s) = \widehat{f}(s)$. On the other hand, for $\operatorname{Re}(s) > 0$,

$$\widehat{F}(s) = \int_0^\infty F(x)x^{s-1}dx$$

$$= -\int_0^\infty x^s f'(x)dx$$

$$= -\int_0^\infty x^s df(x)$$

$$= -x^s f(x)\Big|_0^\infty + s \int_0^\infty f(x)x^{s-1}dx$$

$$= s\widehat{f}(s).$$

Thus $\widehat{\mathcal{C}^*F}(s) = \frac{\widehat{F}(s)}{s}$.

It is easy to see CG(x) = f(x). Therefore, $\widehat{CG}(s) = \widehat{f}(s)$. Moreover, when 0 < Re(s) < 1,

$$\begin{split} \widehat{G}(s) &= \int_0^\infty G(x) x^{s-1} dx \\ &= \int_0^\infty x^{s-1} d(x f(x)) \\ &= x^s f(x) \Big|_0^\infty - \int_0^\infty x f(x) dx^{s-1} \\ &= (1-s) \int_0^\infty f(x) x^{s-1} dx \\ &= (1-s) \widehat{f}(s). \end{split}$$

Hence, $\widehat{\mathcal{C}G}(s) = \frac{\widehat{G}(s)}{1-s}$.

Lemma 5.6. For positive integer j, $C^{*j}\mathcal{Z}\eta$ decays rapidly when $x \to \infty$ and $|\mathcal{C}^{*j}\mathcal{Z}\eta| = O((-\log x)^{j-1})$ when $x \to 0$. However, $|\mathcal{C}^j\mathcal{Z}\eta| = O\left(\frac{(\log x)^{j-1}}{x}\right)$ when $x \to \infty$ and $C^j \mathcal{Z} \eta(0) = 0$ when $x \to 0$.

Proof. First, $\mathcal{Z}\eta \in \mathcal{H}_-$. Suppose $\mathcal{C}^{*j-1}\mathcal{Z}\eta$ decays rapidly when $x \to \infty$. Then, by induction.

$$\lim_{x \to \infty} x^n \mathcal{C}^{*j} \mathcal{Z} \eta = \lim_{x \to \infty} \frac{\int_x^{\infty} \frac{\mathcal{C}^{*j-1} \mathcal{Z} \eta}{t} dt}{x^{-n}}$$

$$= \lim_{x \to \infty} \frac{-\mathcal{C}^{*j-1} \mathcal{Z} \eta(x)}{-nx^{-n}}$$

$$= 0.$$

Hence, $C^{*j}\mathcal{Z}\eta$ decays rapidly when $x \to \infty$. When $x \to 0$, $C^*\mathcal{Z}\eta(0) = \int_0^\infty \frac{\mathcal{Z}\eta}{t} dt$ is finite. Suppose $|C^{*j}\mathcal{Z}\eta| \le -M(\log x)^{j-1}$. for sufficiently small x and for some positive constant. Then for sufficiently small c > 0,

$$\begin{split} \left| \mathcal{C}^{*j+1} \mathcal{Z} \eta(x) \right| &\leq \int_{x}^{\infty} \left| \frac{\mathcal{C}^{*j} \mathcal{Z} \eta}{t} \right| dt \\ &= \int_{x}^{c} \left| \frac{\mathcal{C}^{*j} \mathcal{Z} \eta}{t} \right| dt + \int_{c}^{\infty} \left| \frac{\mathcal{C}^{*j} \mathcal{Z} \eta}{t} \right| dt \\ &\leq \int_{x}^{c} \frac{M (\log t)^{j-1}}{t} dt + \int_{c}^{\infty} \left| \frac{\mathcal{C}^{*j} \mathcal{Z} \eta}{t} \right| dt \\ &= -\frac{M}{j} (\log x)^{j} + \frac{M}{j} (\log c)^{j} + \int_{c}^{\infty} \left| \frac{\mathcal{C}^{*j} \mathcal{Z} \eta}{t} \right| dt. \end{split}$$

Thus, when $x \to 0$, $|\mathcal{C}^{*j}\mathcal{Z}\eta| = O((-\log x)^{j-1})$.

By L'Hôspital's rule, it is easy to see $C^j \mathcal{Z} \eta(0) = 0$ when $x \to 0$. When $x \to 0$ ∞ , $|\mathcal{C}\mathcal{Z}\eta| \leq \frac{1}{x} \int_0^x |\mathcal{Z}\eta| dt \leq \frac{1}{x} \int_0^\infty |\mathcal{Z}\eta| dt$. Suppose $|\mathcal{C}^j \mathcal{Z}\eta| \leq M \frac{(\log x)^{j-1}}{x}$ for some positive constant M and for sufficiently large x. Then for sufficiently large N > 0,

$$\begin{split} \left| \mathcal{C}^{j+1} \mathcal{Z} \eta(x) \right| &\leq \frac{1}{x} \int_0^x \left| \mathcal{C}^j \mathcal{Z} \eta \right| dt \\ &= \frac{1}{x} \int_0^N \left| \mathcal{C}^j \mathcal{Z} \eta \right| dt + \frac{1}{x} \int_N^x \left| \mathcal{C}^j \mathcal{Z} \eta \right| dt \\ &\leq \frac{1}{x} \int_0^N \left| \mathcal{C}^j \mathcal{Z} \eta \right| dt + \frac{1}{x} \int_N^x M \frac{(\log t)^{j-1}}{t} dt \\ &= \frac{1}{x} \int_0^N \left| \mathcal{C}^j \mathcal{Z} \eta \right| dt + \frac{M}{j} \frac{(\log x)^j}{x} - \frac{M}{j} \frac{(\log N)^j}{x}. \end{split}$$

Thus, $|\mathcal{C}^j \mathcal{Z} \eta| = O\left(\frac{(\log x)^{j-1}}{x}\right)$ when $x \to \infty$.

Theorem 5.7. Let ρ be a nontrivial zero of $\zeta(s)$ (resp. $L(\chi, s)$ with character χ). The function $F_{\rho}(x)$ is as in equation(5.3). Then $F_{\rho}(x) \notin V_{\zeta}$ (resp. $F_{\rho}(x) \notin V_{\chi}$).

Proof. We prove the theorem for $\zeta(s)$. The other case is similar. Suppose $F_{\rho}(x) \in V_{\zeta}$. Then by Proposition 5.3, $F_{\rho}(x)$ can be expressed by

$$F_{\rho}(x) = \sum_{j=1}^{m} a_{j} \mathcal{C}^{*j} \mathcal{Z} \eta + \sum_{k=1}^{n} b_{k} \mathcal{C}^{k} \mathcal{Z} \eta,$$

where $a_j, b_k \in \mathbb{C}$. Consider its Mellin transform. By Lemmas 5.5,5.6, when 0 < Re(s) < 1, we have

$$\widehat{F}_{\rho}(s) = \sum_{j=1}^{m} a_{j} \widehat{\mathcal{C}^{*j}} \widehat{\mathcal{Z}} \eta + \sum_{k=1}^{n} b_{k} \widehat{\mathcal{C}^{k}} \widehat{\mathcal{Z}} \eta$$

$$= \sum_{j=1}^{m} a_{j} \frac{\widehat{\mathcal{Z}} \eta}{s^{j}} + \sum_{k=1}^{n} b_{k} \frac{\widehat{\mathcal{Z}} \eta}{(1-s)^{k}}$$

$$= \widehat{\mathcal{Z}} \eta \left(\sum_{j=1}^{m} \frac{a_{j}}{s^{j}} + \sum_{k=1}^{n} \frac{b_{k}}{(1-s)^{k}} \right)$$

Since $\widehat{\mathcal{Z}\eta} = s(s-1)\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s)$ is entire and $\widehat{\mathcal{Z}\eta}(0) = \widehat{\mathcal{Z}\eta}(1) = 1$, the sum $\widehat{\mathcal{Z}\eta}\left(\sum_{j=1}^m \frac{a_j}{s^j} + \sum_{k=1}^n \frac{b_k}{(1-s)^k}\right)$ is meromorphic function on $\mathbb C$ with at least a pole at s=0,1.

Since

$$\begin{split} -xF_{\rho}'(x) &= -x \left(-\rho x^{-\rho-1} \int_{x}^{\infty} \mathcal{Z} \eta(t) t^{\rho-1} dt - x^{-\rho} \mathcal{Z} \eta(x) x^{\rho-1} \right) \\ &= \rho x^{-\rho} \int_{x}^{\infty} \mathcal{Z} \eta(t) t^{\rho-1} dt + \mathcal{Z} \eta(x) \\ &= \rho F_{\rho}(x) + \mathcal{Z} \eta(x), \end{split}$$

the Mellin transform is

$$\widehat{F}_{\rho}(s) = \frac{\widehat{Z\eta}(s)}{s - \rho} = \frac{s(s - 1)\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s)}{s - \rho}.$$

Thus, $\widehat{F}_{\rho}(s)$ is a holomorphic function on \mathbb{C} . This is a contradiction. Hence, $F_{\rho}(x) \notin V_{\zeta}$.

6. The Hilbert-Pólya spaces

We can intuitively see that for each $f(x) \in V_{\zeta}$ or V_{χ} , its Mellin transform $\widehat{f}(s)$ has a pole at s=0,1. If $\overline{f}(x) \in \overline{V_{\zeta}}$, then there exist a convergent sequence $\{f_n(x)\} \in V_{\zeta} \subset L^2(\mathbb{R}_+^{\times}, dx)$ such that $\lim_{n \to \infty} f_n(x) = \overline{f}(x)$ and its Mellin transform $\widehat{\overline{f}}(s)$ should have singularities at s=0,1. Since each $\widehat{f_n}(s)$ has poles at s=0,1, we expect that its limit also has poles or essential singularities at s=0,1. When we talk about limits, we should put the sequence $\{\widehat{f_n}(s)\}$ into a topological space. Some suitable topological spaces are Hardy space. We can also view $\widehat{f_n}(s)$ as elements in the formal power series field $\mathbb{C}[[s,\frac{1}{s}]]$. Then the sequence $\{\widehat{f_n}(s)\}$ in these space should have a limit. Now let's implement those ideas.

For each $0 < \varepsilon < 1$, denote the strip

$$\Delta_{\varepsilon} = \{ z \in \mathbb{C} : \ \varepsilon < \operatorname{Re}(z) < 1 - \varepsilon \}.$$

Let $H^2(\Delta_{\varepsilon})$ be the Hardy space on the strip.

Theorem 6.1. For each $0 < \varepsilon < 1$, the Mellin transform

$$\widehat{\mathcal{Z}\eta}(s), \widehat{\mathcal{Z}_{\chi}\eta_{\chi}}(s) \in H^2(\Delta_{\varepsilon}),$$

where $\mathcal{Z}\eta$, $\mathcal{Z}_{\chi}\eta_{\chi}$ are as in §5.

Proof. We do the case for $\mathcal{Z}\eta$. The case for $\mathcal{Z}_{\chi}\eta_{\chi}$ is similar. Since $\mathcal{Z}\eta\in\mathcal{H}_{-}\subset\mathcal{H}_{0}$, we have $\widehat{\mathcal{Z}}\eta(s)$ is essentially bounded function over $\mathbb{C}(\text{see }[23, \text{ Thm.2.2}])$. Then there exists a constant $c_{1}>0$ such that on the region $\Delta_{\varepsilon}\cap\{z\in\mathbb{C}:|\text{Im}(z)|\geq1\}$ one has

$$|s\widehat{\mathcal{Z}\eta}(s)|^2 \le c_1.$$

On the other hand, $\widehat{\mathcal{Z}\eta}$ is analytic. Hence, $|s\widehat{\mathcal{Z}\eta}(s)|^2$ is bounded on the region $\Delta_{\varepsilon} \cap \{z \in \mathbb{C} : |\mathrm{Im}(z)| \leq 1\}$. Thus there exists a constant $c_2 > 0$ such that

$$|s\widehat{\mathcal{Z}\eta}(s)|^2 \le c_2$$

on the strip Δ_{ε} .

For each $\sigma \in (\varepsilon, 1 - \varepsilon)$, one has

$$\frac{1}{i} \int_{\sigma - i\infty}^{\sigma + i\infty} |\widehat{\mathcal{Z}\eta}(s)|^2 ds \le \frac{1}{i} \int_{\sigma - i\infty}^{\sigma + i\infty} \frac{c_2}{|s|^2} ds$$

$$= c_2 \int_{-\infty}^{+\infty} \frac{1}{\sigma^2 + y^2} dy$$

$$\le c_2 \int_{-\infty}^{+\infty} \frac{1}{\varepsilon^2 + y^2} dy$$

$$= \frac{c_2 \pi}{\varepsilon}.$$

Thus $\sup_{\varepsilon < \sigma < 1 - \varepsilon} \frac{1}{i} \int_{\sigma - i\infty}^{\sigma + i\infty} |\widehat{\mathcal{Z}\eta}(s)|^2 ds < \infty$. Therefore, $\widehat{\mathcal{Z}\eta}(s) \in H^2(\Delta_{\varepsilon})$.

Theorem 6.2. Let V_{ζ}, V_{χ} be as in Definition 5.2. Denote \mathscr{M} the Mellin transform. Then one has

$$\mathcal{M}(V_{\zeta}), \mathcal{M}(V_{\chi}) \subset H^2(\Delta_{\varepsilon}).$$

Proof. We show the case for V_{ζ} . It is clear that we just need to prove for the monomial term $\widehat{C^{m}Z\eta}, \widehat{C^{*n}Z\eta} \in H^{2}(\Delta_{\varepsilon})$.

First, by Lemmas 5.55.6, we have $\widehat{C^m \mathcal{Z} \eta} = \frac{\widehat{\mathcal{Z} \eta}}{(1-s)^m}$, $\widehat{C^{*n} \mathcal{Z} \eta} = \frac{\widehat{\mathcal{Z} \eta}}{s^n}$. We show that

$$\frac{1}{(1-s)^m}, \frac{1}{s^n} \in H^2(\Delta_{\varepsilon}).$$

For each $\varepsilon < \sigma < 1 - \varepsilon$, there are

$$\begin{split} \frac{1}{i} \int_{\sigma - i\infty}^{\sigma + i\infty} \frac{1}{|s|^{2n}} ds &\leq \frac{1}{i} \int_{\sigma - i\infty}^{\sigma + i\infty} \frac{1}{|s|^{2n}} ds \\ &= \int_{-\infty}^{+\infty} \frac{1}{(\sigma^2 + y^2)^n} dy \\ &\leq \int_{-\infty}^{+\infty} \frac{1}{(\varepsilon^2 + y^2)^n} dy \\ &= \int_{-\infty}^{-1} \frac{dy}{(\varepsilon^2 + y^2)^n} + \int_{1}^{\infty} \frac{dy}{(\varepsilon^2 + y^2)^n} + \int_{-1}^{1} \frac{dy}{(\varepsilon^2 + y^2)^n} \\ &\leq \int_{-\infty}^{+\infty} \frac{dy}{\varepsilon^2 + y^2} + \int_{-1}^{1} \frac{dy}{\varepsilon^{2n}} \\ &= \frac{\pi}{\varepsilon} + \frac{2}{\varepsilon^{2n}}. \end{split}$$

Hence $\sup_{\varepsilon < \sigma < 1-\varepsilon} \frac{1}{i} \int_{\sigma-i\infty}^{\sigma+i\infty} |\frac{1}{s^n}|^2 ds < \infty$. Therefore, $\frac{1}{s^n} \in H^2(\Delta_\varepsilon)$. Similarly, we have $\frac{1}{(1-s)^m} \in H^2(\Delta_\varepsilon)$. Then by Cauchy-Bunyakovsky-Schwarz inequality

$$\left(\frac{1}{i} \int_{\sigma - i\infty}^{\sigma + i\infty} \left| \frac{\widehat{\mathcal{Z}} \eta}{s^n} \right| ds \right)^2 \le \frac{1}{i} \int_{\sigma - i\infty}^{\sigma + i\infty} |\widehat{\mathcal{Z}} \eta|^2 ds \cdot \frac{1}{i} \int_{\sigma - i\infty}^{\sigma + i\infty} \frac{ds}{|s^n|^2},$$

which implies $\frac{\widehat{\mathcal{Z}\eta}}{s^n} \in H^2(\Delta_{\varepsilon})$. Similarly, $\frac{\widehat{\mathcal{Z}\eta}}{(1-s)^m} \in H^2(\Delta_{\varepsilon})$.

Conjecture 6.3. The map $\mathcal{M}^{-1}: H^2(\Delta_{\varepsilon}) \to L^2(\mathbb{R}_+^{\times}, dx)$ is continuous.

Definition 6.4. Denote $\Omega_{<0}$ the left half-plane of \mathbb{C} . Define the PW-transform \mathscr{S} by

$$\mathscr{S}: L^2(\mathbb{R}_+^{\times}, dx) \to H^2(\Omega_{<0}), \ f(x) \mapsto (\mathscr{S}f)(s) = \int_1^{\infty} f(\log x) x^{s-1} dx.$$

Theorem 6.5. The transform \mathscr{S} is unitary operator.

Proof. This is essentially a version of theorem of Paley and Wiener. Let $f(x) \in L^2(\mathbb{R}_+^\times, dx)$. Then $\mathscr{F}f(z) = \int_0^\infty f(x)e^{izx}dx \in H^2(\mathbb{H})$. Let iz = s. We have

$$\mathscr{F}f(-is) = \int_0^\infty f(x)e^{sx}dx = \int_1^\infty f(\log x)x^{s-1}dx.$$

Thus $(\mathscr{S}f)(s) = \mathscr{F}f(-is)$ is in $H^2(\Omega_{<0})$.

Lemma 6.6. Let $f \in C^{\infty}(\mathbb{R}_{+}^{\times})$. Denote F(x) = -xf'(x), where f(x) decays rapidly when $x \to \infty$. Let $\widehat{F}(s)$ be the transform of F(x) by

$$\widehat{F}(s) = \int_{1}^{\infty} F(x)x^{s-1}dx.$$

For the operator C^* , we have

$$\widehat{\mathcal{C}^*F}(s) = \frac{\widehat{F}(s) - \mathcal{C}^*F(1)}{s}, \quad s \in \mathbb{C}.$$

Denote G(x) = (xf(x))', where f(x) decays rapidly when $x \to \infty$. For the operator C, we have

$$\widehat{\mathcal{CG}}(s) = \frac{\widehat{G}(s) + \mathcal{CG}(1)}{1 - s}, \quad s \in \mathbb{C}.$$

Proof. First, $C^*F(x) = \int_x^\infty \frac{F(t)}{t} dt = \int_x^\infty \frac{-tf'(t)}{t} dt = f(x)$. Then $\widehat{C^*F}(s) = \widehat{f}(s)$.

$$\begin{split} \widehat{F}(s) &= \int_{1}^{\infty} F(x) x^{s-1} dx \\ &= -\int_{1}^{\infty} x^{s} f'(x) dx \\ &= -\int_{1}^{\infty} x^{s} df(x) \\ &= f(1) + s \int_{1}^{\infty} f(x) x^{s-1} dx \\ &= \mathcal{C}^{*} F(1) + s \widehat{f}(s). \end{split}$$

Thus $\widehat{\mathcal{C}^*F}(s) = \frac{\widehat{F}(s) - \mathcal{C}^*F(1)}{s}$. It is easy to see $\mathcal{C}G(x) = f(x)$. Therefore, $\widehat{\mathcal{C}G}(s) = \widehat{f}(s)$. Moreover,

$$\begin{split} \widehat{G}(s) &= \int_{1}^{\infty} G(x) x^{s-1} dx \\ &= \int_{1}^{\infty} x^{s-1} d(x f(x)) \\ &= -f(1) - \int_{1}^{\infty} x f(x) dx^{s-1} \\ &= -\mathcal{C}G(1) + (1-s) \int_{1}^{\infty} f(x) x^{s-1} dx \\ &= -\mathcal{C}G(1) + (1-s) \widehat{f}(s). \end{split}$$

Hence, $\widehat{\mathcal{CG}}(s) = \frac{\widehat{G}(s) + \mathcal{CG}(1)}{1-s}$

Theorem 6.7. Each function $f(s) \in \mathcal{S}(V_{\zeta}) \subset H^2(\Omega_{<0})$ is of the form

$$f(s) = \mathscr{SZ}\eta(s) \left(\sum_{j=1}^{n} \frac{a_j}{s^j} + \sum_{k=1}^{m} \frac{b_k}{(1-s)^k} \right) + \left(\sum_{j=1}^{n-1} \frac{c_j}{s^j} + \sum_{k=1}^{m-1} \frac{d_k}{(1-s)^k} \right),$$

where n is some positive integer and $a_j, b_k, c_j, d_k \in \mathbb{C}$. Similarly, each function $g(s) \in \mathcal{S}(V_\chi) \subset H^2(\Omega_{<0})$ is of the form

$$g(s) = \mathscr{S} \mathcal{Z}_{\chi} \eta_{\chi}(s) \left(\sum_{j=1}^{n} \frac{a_{j}}{s^{j}} + \sum_{k=1}^{m} \frac{b_{k}}{(1-s)^{k}} \right) + \left(\sum_{j=1}^{n-1} \frac{c_{j}}{s^{j}} + \sum_{k=1}^{m-1} \frac{d_{k}}{(1-s)^{k}} \right).$$

Proof. By Proposition 5.3, we just need to consider the monomial term $\mathscr{S}(\mathcal{C}^m \mathcal{Z}\eta)$ and $\mathscr{S}(\mathcal{C}^{*n}\mathcal{Z}\eta)$. We prove the case of $\mathscr{S}(\mathcal{C}^{*n}\mathcal{Z}\eta)$, the other one is similar.

First, by Lemma6.6, let $F(x) = \mathcal{Z}\eta(\log(x))$, we have

$$\mathscr{SC}^*\mathcal{Z}\eta(s) = \frac{\mathscr{SZ}\eta(s) - \mathscr{C}^*\mathcal{Z}\eta(0)}{s}.$$

Suppose

$$\mathscr{S}(\mathcal{C}^{*n}\mathcal{Z}\eta) = \frac{\mathscr{S}\mathcal{Z}\eta(s) - s\mathcal{C}^*\mathcal{Z}\eta(0) - \cdots - s^{n-1}\mathcal{C}^{*n}\mathcal{Z}\eta(0)}{s^n}.$$

Then

$$\mathcal{S}(\mathcal{C}^{*n+1}\mathcal{Z}\eta) = \frac{\mathcal{S}(\mathcal{C}^{*n}\mathcal{Z}\eta) - \mathcal{C}^{*n+1}\mathcal{Z}\eta(0)}{s}$$
$$= \frac{\mathcal{S}\mathcal{Z}\eta(s) - s\mathcal{C}^*\mathcal{Z}\eta(0) - \dots - s^n\mathcal{C}^{*n+1}\mathcal{Z}\eta(0)}{s^{n+1}}.$$

Hence, for $\sum_{j=1}^{n} a_j \mathcal{C}^{*j} \mathcal{Z} \eta$, we have

$$\mathscr{S}\left(\sum_{j=1}^{n} a_{j} \mathcal{C}^{*j} \mathcal{Z} \eta\right) = \mathscr{S} \mathcal{Z} \eta(s) \sum_{j=1}^{n} \frac{a_{j}}{s^{j}} + \sum_{j=1}^{n-1} \frac{b_{j}}{s^{j}},$$

where $b_j \in \mathbb{C}$. Then the theorem follows from the above equation.

Theorem 6.8. Let η and η_{χ} be as in (5.1)(5.2). Then for $\mathcal{Z}\eta, \mathcal{Z}_{\chi}\eta_{\chi}$, the PW transform $\mathscr{S}\mathcal{Z}\eta(s), \mathscr{S}\mathcal{Z}_{\chi}\eta_{\chi}(s)$ are holomorphic functions on \mathbb{C} . Moreover,

$$\mathscr{S}\mathcal{Z}\eta(0) = 1, \quad \mathscr{S}\mathcal{Z}\eta(1) = \int_0^\infty \mathcal{Z}\eta(x)e^x dx \neq 0.$$

Proof. We prove the case of η . The other one is similar. First

$$\mathscr{SZ}\eta(s) = \int_0^\infty \mathcal{Z}\eta(x)e^{sx}dx$$

is holomorphic on the left half-plane. Consider the function $\mathcal{Z}\eta(x)e^{sx}$. Then

$$\begin{aligned} |\mathcal{Z}\eta(x)e^{sx}| &= 8\pi \left| \sum_{n=1}^{\infty} (nx)^2 \left(\pi(nx)^2 - \frac{3}{2} \right) e^{-\pi(nx)^2} e^{sx} \right| \\ &\leq 8\pi \sum_{n=1}^{\infty} (nx)^2 \left(\pi(nx)^2 + \frac{3}{2} \right) e^{-\pi(nx)^2 + \operatorname{Re}(s)x} \\ &\leq 8\pi \sum_{n=1}^{\infty} (nx)^2 \left(\pi(nx)^2 + \frac{3}{2} \right) e^{-\pi(nx)^2 + \operatorname{Re}(s)nx} \\ &= \mathcal{Z} \left(8\pi x^2 \left(x^2 + \frac{3}{2} \right) e^{-\pi x^2 + \operatorname{Re}(s)x} \right). \end{aligned}$$

Since $f(x) := 8\pi x^2 \left(x^2 + \frac{3}{2}\right) e^{-\pi x^2 + \text{Re}(s)x}$ is a Schwartz function, then $\mathcal{Z}f(x)$ decay rapidly when $x \to \infty$ (see [6, Lem.6.1]). Thus $\mathscr{S}\mathcal{Z}\eta(s)$ is holomorphic on \mathbb{C} .

When s = 0, there is

$$\mathscr{SZ}\eta(0) = \int_0^\infty \mathcal{Z}\eta(x)dx = 1.$$

When s = 1, there is

$$\mathscr{SZ}\eta(1) = \int_0^\infty \mathcal{Z}\eta(x)e^x dx \approx 1.92628,$$

where the coarse estimation is obtained by SageMath. The codes are as follows: $\sup = 0$

for k in [1..1000]:

$$sun+=8*pi*exp(x)*k^2*x^2*(pi*k^2*x^2-3/2)*exp(-pi*k^2*x^2)$$
 numerical_integral(sun,0, +Infinity)

Theorem 6.9. Let $F_{\rho}(x)$ be as in (5.3). Then we have

(6.1)
$$\begin{cases} \mathcal{C}^* F_{\rho}(x)_{\zeta} = \frac{1}{\rho} F_{\rho}(x)_{\zeta} - \frac{1}{\rho} \mathcal{C}^* \mathcal{Z} \eta(x), & \text{for } \zeta(s) \\ \mathcal{C}^* F_{\rho}(x)_{\chi} = \frac{1}{\rho} F_{\rho}(x)_{\chi} - \frac{1}{\rho} \mathcal{C}^* \mathcal{Z}_{\chi} \eta_{\chi}(x), & \text{for } L(\chi, s). \end{cases}$$

Proof. We prove the case for $\zeta(s)$. Since

$$-xF'_{\rho}(x) = \rho F_{\rho}(x) + \mathcal{Z}\eta(x),$$

dividing by x, we have

$$-F'_{\rho}(x) = \rho \frac{F_{\rho}(x)}{x} + \frac{Z\eta(x)}{x}.$$

Integrating on the equation, we obtain

$$-\int_{x}^{\infty} F_{\rho}'(t)dt = \rho \int_{x}^{\infty} \frac{F_{\rho}(t)}{t}dt + \int_{x}^{\infty} \frac{\mathcal{Z}\eta(t)}{t}dt,$$

that is,

$$\mathcal{C}^* F_{\rho}(x) = \frac{1}{\rho} F_{\rho}(x) - \frac{1}{\rho} \mathcal{C}^* \mathcal{Z} \eta(x).$$

Theorem 6.10. Let $\mathscr S$ be PW-transform and $F_{\rho}(x)$ be as in (5.3). Then $\mathscr SF_{\rho}(s)$ is holomorphic as s=0,1.

Proof. We just show the case for $\zeta(s)$. By equation (6.1), we have

$$\mathscr{SC}^*F_{\rho}(s) = \frac{1}{\rho}\mathscr{SF}_{\rho}(s) - \frac{1}{\rho}\mathscr{SC}^*\mathcal{Z}\eta(s).$$

Take $F(x) = F_{\rho}(\log x)$ in Lemma6.6. Then we have

$$\frac{\mathscr{S}F_{\rho}(s)-\mathcal{C}^{*}F_{\rho}(0)}{s}=\frac{1}{\rho}\mathscr{S}F_{\rho}(s)-\frac{1}{\rho}\frac{\mathscr{S}\mathcal{Z}\eta(s)-\mathcal{C}^{*}\mathcal{Z}\eta(0)}{s}.$$

Therefore,

$$\mathscr{S}F_{\rho}(s) = \frac{\rho \mathcal{C}^*F_{\rho}(0) + \mathcal{C}^*\mathcal{Z}\eta(0) - \mathscr{S}\mathcal{Z}\eta(s)}{\rho - s},$$

which implies that $\mathscr{S}F_{\rho}(s)$ is holomorphic at s=0,1 by Theorem6.8.

Recall the definition of normal families of meromorphic functions. If $z,w\in\mathbb{C},$ the spherical distance is

$$d_S(z, w) = \frac{|z - w|}{\sqrt{1 + |z|^2} \sqrt{1 + |w|^2}}$$
$$d_S(z, \infty) = \frac{2}{\sqrt{1 + |z|^2}}$$

Let $\mathbb{P}^1_{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ be the Riemann sphere. A meromorphic function $f: \mathbb{P}^1_{\mathbb{C}} \to \mathbb{P}^1_{\mathbb{C}}$ is that whose poles are in some discrete closed set of $\mathbb{P}^1_{\mathbb{C}}$.

Definition 6.11. A family \mathcal{F} of meromorphic functions on a domain $D \subseteq \mathbb{C}$ is normal if whenever $\{f_n\}$ is a sequence in \mathcal{F} , there exists a subsequence $\{f_{n_j}\}$ and $f: D \to \mathbb{P}^1_{\mathbb{C}}$ such that for all compact $K \subseteq D$,

$$\sup_{K} d_S(f_{n_j}(z) - f(z)) \to 0.$$

Remark 6.12. We allow the function f to be ∞ .

In 1979, Gu[8] proved the following well-known normality criterion, which was a conjecture of Hayman[11]. That is the following theorem

Theorem 6.13. Let \mathcal{F} be a family of meromorphic functions defined in $D \subseteq \mathbb{C}$, and let k be a positive integer. If, for every function $f \in \mathcal{F}$, $f \neq 0$, $f^{(k)} \neq 1$, then \mathcal{F} is normal.

Lemma 6.14. If $\{f_n\}$ is meromorphic on a domain $D \subseteq \mathbb{C}$,

$$\sup_{K} d_{S}(f_{n}(z) - f(z)) \to 0$$

for all compact $K \subseteq D$, then f is meromorphic on D or $f = \infty$.

Now we can prove a stronger result.

Theorem 6.15. Let $\overline{V_{\zeta}}$ (resp. $\overline{V_{\chi}}$) be the closure of V_{ζ} (resp. V_{χ}) in $L^{2}(\mathbb{R}_{+}^{\times}, dx)$. Then $F_{\rho}(x) \notin \overline{V_{\zeta}}$ (resp. $F_{\rho}(x) \notin \overline{V_{\chi}}$).

Proof. We only prove the case of $\zeta(s)$. First, $F_{\rho}(x) \notin V_{\zeta}$. Suppose there exists a convergent sequence $\{f_n(x)\}\in V_{\zeta}$ such that $\lim_{n\to\infty}f_n(x)=F_{\rho}(x)$. Then by Theorem6.5, in $H^2(\Omega_{<0})$, there exists a convergent sequence under norm topology

$$\lim_{n\to\infty} \mathscr{S} f_n(s) = \mathscr{S} F_{\rho}(s).$$

Then for almost all $s \in \Omega_{<0}$, there exists a subsequence $\{\mathscr{S}f_{n_j}(s)\}$ of $\{\mathscr{S}f_n(s)\}$ converges pointwise to $\mathscr{S}F_{\rho}(s)$ ([19, Thm.3.12]). From Theorems6.7, 6.13, the sequence $\{\mathscr{S}f_{n_j}(s)\}$ is normal on \mathbb{C} . By Lemma 6.14, for some convergent pointwise subsequence of $\{\mathscr{S}f_{n_j}(s)\}$, there exists the limit function

$$f(s) := \lim_{n_j \to \infty} \mathscr{S} f_{n_j}(s)$$

is meromorphic on \mathbb{C} .

Since f(s) and $\mathscr{S}F_{\rho}$ are meromorphic functions and they are a.e. identity in $\Omega_{<0}$, we have $f(s)=\mathscr{S}F_{\rho}$ for all $s\in\mathbb{C}$. By Theorems6.7,6.8, each $\mathscr{S}f_n(s)$ has at least one pole only at s=0,1. Hence, the meromorphic function $f(s)=\lim_{n\to\infty}\mathscr{S}f_{n_j}(s)$ has a pole or essential singularity at s=0,1. However, $\mathscr{S}F_{\rho}(s)$ is holomorphic at s=0,1. This is a contradiction. Hence, $F_{\rho}(x)\notin\overline{V_{\zeta}}$.

Now we can give the definition of Hilbert-Pólya space.

Definition 6.16. The quotient Hilbert space $L^2(\mathbb{R}_+^{\times}, dx)/\overline{V_{\zeta}}$ (resp. $L^2(\mathbb{R}_+^{\times}, dx)/\overline{V_{\chi}}$) is called Hilbert-Pólya space of the operator \mathcal{C} with respect to Riemann zeta function(resp. Dirichlet L-function).

7. The spectrum of $\mathcal C$ and $\mathcal C^*$ on Hilbert-Pólya space

This section, we prove the Riemann hypothesis for Riemann zeta function and Dirichlet L-function, which is inspired by Connes' work[5], Meyer's paper[15], Li's result[12] and Wu's work[23].

Lemma 7.1. $\overline{V_{\zeta}}$ and $\overline{V_{\chi}}$ are invariant spaces of C and C^* .

Proof. First, V_{ζ} and V_{χ} are invariant spaces of \mathcal{C} and \mathcal{C}^* . Let $\{f_n\}$ be a convergent sequence in $\overline{V_{\zeta}}$, where $f_n \in V_{\zeta}$. Denote $\lim_{n \to \infty} f_n = f \in \overline{V_{\zeta}}$. Since \mathcal{C} is bounded on $L^2(\mathbb{R})_+^{\times}$, i.e., continuous, we have $\mathcal{C}f = \lim_{n \to \infty} \mathcal{C}f_n \in \overline{V_{\zeta}}$ under norm topology. Thus $\overline{V_{\zeta}}$ is an invariant space of \mathcal{C} . Similar, it is an invariant space of \mathcal{C}^* . The discussion for $\overline{V_{\chi}}$ is similar.

Theorem 7.2. Let ρ be a nontrivial zero of $\zeta(s)$ (resp. $L(\chi, s)$). Then $\frac{1-\rho}{\rho}$ is an eigenvalue of $C^* - 1$ on $L^2(\mathbb{R}_+^{\times}, dx)/\overline{V_{\zeta}}$ (resp. $L^2(\mathbb{R}_+^{\times}, dx)/\overline{V_{\chi}}$).

Proof. We just prove the case for Riemann zeta function $\zeta(s)$. The case for Dirichlet L-function is similar. Let ρ be a nontrivial zero of $\zeta(s)$. Then $1-\rho$ is also a nontrivial zero. By equation(6.1), there is

$$\mathcal{C}^* F_{\rho}(x) = \frac{1}{\rho} F_{\rho}(x) - \frac{1}{\rho} \mathcal{C}^* \mathcal{Z} \eta(x).$$

Hence,

(7.1)
$$(\mathcal{C}^* - 1)F_{\rho}(x) = \frac{1 - \rho}{\rho}F_{\rho}(x) - \frac{1}{\rho}\mathcal{C}^*\mathcal{Z}\eta(x).$$

Thus, $\frac{1-\rho}{\rho}$ is an eigenvalue of $\mathcal{C}^* - 1$ on $L^2(\mathbb{R}_+^{\times}, dx)/\overline{V_{\zeta}}$.

Theorem 7.3. $C^* - 1$ is a unitary operator on $L^2(\mathbb{R}_+^{\times}, dx)/\overline{V_{\zeta}}$ and $L^2(\mathbb{R}_+^{\times}, dx)/\overline{V_{\chi}}$.

Proof. We prove the case for $\zeta(s)$. Since $\overline{V_{\zeta}}$ is an invariant subspace of $\mathcal{C}-1$, for each $x \in \overline{V_{\zeta}}^{\perp}$, $y \in \overline{V_{\zeta}}$, we have

$$\langle (\mathcal{C}^* - 1)x, y \rangle = \langle x, (\mathcal{C} - 1)y \rangle = 0.$$

Hence, $(\mathcal{C}^* - 1)x \in \overline{V_{\zeta}}^{\perp}$, i.e., $\overline{V_{\zeta}}^{\perp}$ is an invariant subspace of $\mathcal{C}^* - 1$. Then by Theorem5.1, $\mathcal{C}^* - 1$ is a unitary operator on $L^2(\mathbb{R}_+^{\times}, dx)/\overline{V_{\zeta}}$.

Theorem 7.4. The Riemann hypothesis is true for Riemann zeta function and Dirichlet L-function.

Proof. By Theorem7.3, the bounded operator $C^* - 1$ is a unitary operator on $L^2(\mathbb{R}_+^\times, dx)/\overline{V_\zeta}$, whose spectrum is in the unite circle $\{z \in \mathbb{C} : |z| = 1\}$. Therefore, the Riemann hypothesis follows by Theorem7.2. Similarly, it is true for Dirichlet L-function.

The eigenvalue of Cesàro-Hardy operator is related with the Hilbert space. For example, for the space $L^2[0,1]$, the set of eigenvalue of Cesàro-Hardy is $\{s \in \mathbb{C} : |s-1| < 1\}$ (see [1]). However, the set of eigenvalue of Cesàro-Hardy operator on the Hilbert space ℓ^2 is empty and the set of eigenvalue of the adjoint of Cesàro-Hardy operator on it is $\{s \in \mathbb{C} : |s-1| < 1\}$ (see [3]).

Theorem 7.5. Let $f(x) \in L^2(\mathbb{R}_+^{\times}, dx)$ such that its Mellin transform $\widehat{f}(s)$ is analytic function on some strip of \mathbb{C} . Then f(x) can not be an eigenvector of Cesàro-Hardy operator or its adjoint.

Proof. Let \mathcal{C} be the Cesàro-Hardy operator on $L^2(\mathbb{R}_+^{\times}, dx)$. Take $f(x) \in L^2(\mathbb{R}_+^{\times}, dx)$. Suppose

$$Cf = \lambda f$$
,

for some $\lambda \in \mathbb{C}$. Then by Lemma 5.5, we have

$$\widehat{\mathcal{C}f}(s) = \frac{\widehat{f}(s)}{1-s} = \lambda \widehat{f}(s).$$

Thus $\hat{f}(s)(\lambda(1-s)-1)=0$ on some strip. This means $\hat{f}(s)=0$. Hence, f(x)=0. The case for adjoint operator is similar.

Theorem 7.6. Let ρ be a nontrivial zero of $\zeta(s)$ or $L(\chi, s)$. Then $\frac{1}{\rho}$ is an eigenvalue of C and C^* .

Proof. We just prove the case of \mathcal{C}^* . Since $\frac{1}{\rho}$ is an eigenvalue of \mathcal{C}^* on $L^2(\mathbb{R}_+^{\times}, dx)/\overline{V_{\zeta}}$, from the isomorphim

$$L^2(\mathbb{R}_+^{\times}, dx)/\overline{V_{\zeta}} \simeq \overline{V_{\zeta}}^{\perp} \subset L^2(\mathbb{R}_+^{\times}, dx),$$

it is also an eigenvalue of C^* on $L^2(\mathbb{R}_+^\times, dx)$.

We can also prove directly. Notice that

(7.2)
$$\mathcal{C}^* F_{\rho}(x) = \frac{1}{\rho} F_{\rho}(x) - \frac{1}{\rho} \mathcal{C}^* \mathcal{Z} \eta(x).$$

Let

(7.3)
$$F_{\rho}(x) = f_{\rho}(x) + g_{\rho}(x)$$

where $f_{\rho}(x) \in \overline{V_{\zeta}}^{\perp}$, $g_{\rho}(x) \in \overline{V_{\zeta}}$. Here $f_{\rho}(x) \neq 0$, otherwise we have $F_{\rho}(x) = g_{\rho}(x) \in \overline{V_{\zeta}}$, a contradiction.

Putting the equality (7.3) in the equation (7.2), we obtain

$$\mathcal{C}^* f_{\rho}(x) - \frac{1}{\rho} f_{\rho}(x) = -\mathcal{C}^* g_{\rho}(x) + \frac{1}{\rho} g_{\rho}(x) - \frac{1}{\rho} \mathcal{C}^* \mathcal{Z} \eta(x).$$

Thus $C^* f_{\rho}(x) - \frac{1}{\rho} f_{\rho}(x) \in \overline{V_{\zeta}}^{\perp} \cap \overline{V_{\zeta}}$, we have

$$C^* f_{\rho}(x) = \frac{1}{\rho} f_{\rho}(x).$$

Thus $\frac{1}{\rho}$ is an eigenvalue of \mathcal{C}^* on $L^2(\mathbb{R}_+^\times, dx)$ with eigenvector f_ρ .

Combining with the property of spectrum of \mathcal{C} on $L^2(\mathbb{R}_+^{\times}, dx)$, we again obtain the Riemann hypothesis

Theorem 7.7. (Another method) The Riemann hypothesis is true for Riemann zeta function and Dirichlet L-function.

Proof. For each nontrivial zero ρ of zeta function, $\frac{1}{\rho}$ is an eigenvalue of \mathcal{C} on $L^2(\mathbb{R}_+^\times, dx)$. Since the spectrum of \mathcal{C} on $L^2(\mathbb{R}_+^\times, dx)$ is the circle

$$\sigma(C, L^2) = \{ z \in \mathbb{C} : |1 - z| = 1 \},$$

the Riemann hypothesis follows from this result.

At last, we propose the following conjecture

Conjecture 7.8. The spectrum of C and C^* on $L^2(\mathbb{R}_+^\times, dx)$ except 0 are both of point spectrum.

ACKNOWLEDGEMENT

Thanks to my teacher Kejian Xu, from whom I learned about Alian Connes's work when I was a graduate student. Thanks for the discussion with Xin Zhang, Yuanbo Liu, Qingyan Wu and Yunbo Tian, I have corrected the problems in the previous manuscript. Thanks to Zhenming Ma for providing me the codes of Sagemath.

DECLARATIONS

Conflict of interest The author states that there is no conflict of interest.

References

- J. Agler and J. E. McCarthy, Beurling's theorem for the Hardy operator on L²[0, 1], Acta Sci. Math.,89(2023), 573-592.
- A. G. Arvanitidis, A. G. Siskakis, Cesàro Operators on the Hardy Spaces of the Half-Plane, Canad. Math. Bull. Vol. 56 (2), (2013), 229-240.
- A. Brown, P.R. Halmos, A.L. Shields, Cesàro operator, Acta Sci. Math., 26(1965), 125-137.
 1,
 23
- 4. D. W. Boyd, The spectrum of the Cesàro operator, Acta Sci. Math., 29 (1968), 31-34. online 1
- 5. A. Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Selecta Math., 5(1), (1999), 29-106. 23
- A.Connes, C. Consani, Spectral triples and zeta-cycles, Enseign. Math. (2) 69 (2023), 93-148.
- L. Debnath, P. Mikusiński, Hilbert spaces with aplications, Elsevier Academic Press, 2005. 4, 12, 13
- Y. X. Gu, A normal criterion of meromorphic families, Scientia Sinica, Math., 1 (1979), 267-274.
- L. Ge, X. Li, D. Wu, B. Xue, Eigenvalues of a differential operator and zeros of the zeta function, Anal. Theory Appl., 36(3), (2020), 283-294.
- R. Goodman, Invariant Subspaces for Normal Operator, Journal of Mathematics and Mechanics, Vol.15, No.1 (1966),123-128.
- W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math., (2)70 (1959), 9-42.
- X. Li, On spectral theory of the Riemann zeta function. Sci. China Math. 62(2019), 2317-2330
 2, 23
- 13. N. Kaiblinger, L. Maligranda, L.-E. Persson, Norms in weighted L^2 -spaces and Hardy operators. In: Function Spaces (Poznán, 1998), volume 213 of Lecture Notes in Pure and Appl. Math., pp. 205–216. Dekker, New York (2000) 4
- 14. S. Lang, Algebraic number theory, Springer Science. GTM110, 2nd edition, 1994. 5
- 15. R. Meyer, A spectral interpretation for the zeros of the Riemann zeta function. In: Mathematisches Institut, Georg-August-Universität Seminars Winter Term. Göttingen: Universitätsdrucke Göttingen, 2005, 117–137. arXiv:math/0412277 [math.NT]. 1, 3, 23
- 16. S., Nădăban, On the spectrum of a morphism of quotient Hilbert space, Surveys in Mathematics and its Applications 1 (2006): 13-22. 12
- D. Raban, Math 246A Lecture 26 Notes, https://pillowmath.github.io/Math%20246A/Lec26.pdf
- 18. W. T. Ross, The Cesàro operator, arXiv:2210.08091v1 [math.FA] 13
- 19. W. Rudin, Real and complex analysis, 1987, McGraw-Hill Company, Inc. 8, 9, 11, 22
- D. Ramakrishnan, R.J. Valenza, Fourier analysis on number fields, Springer-Verlag New York, Inc., 1999.
 6, 8, 11
- 21. B. Simon, Operator theory, AMS, 2015. 1

- 22. A. Weil, $Basic\ number\ theory$, Springer-Verlag, 1974. 5
- 23. D. Wu, Eigenvalues of Differential Operators and nontrivial zeros of L-functions, Thesis, 2020. Online 2, 3, 17, 23
- 24. L. Zhen, G. Deng, The Hardy space in a strip, Journal of Beijing normal university (nature science), ${\bf 47}(6), (2011), 558-562.~8$

Chaochao Sun, School of Mathematics and Statistics, Linyi University, Linyi, China $276005\,$

 $Email\ address: {\tt sunuso@163.com}$