Evolution and conceptual spaces

Robert van Rooij

Universiteit van Amsterdam

Language and Games 2017

Conventional meaning of Predicates: Sim-max games

Evolution of Vagueness: Bounded Rationality

3 Stereotypes: Picking games

1: Conventional Meaning of Predicates

Simmax games

Philosophical interest

(sparse) Natural properties versus (abundant) Sets

- Natural properties important for
 - Natural Laws (Goodman's new riddle)
 - Meaning (Putnam's paradox)
 - Rules (Kripke's Wittgenstein)
- Sets closed under complementation, union
 Ptys not
- vFraassen, Stalnaker: Meanings modelled on structured state space
- Gardenfors (2000): natural properties modelled as convex sets
- Why?

Signalling games and Evolution

Lewis' signaling games

- David Lewis (1969): Language use is interactive ⇒ Game theory
- Signalling games: senders and receivers

Evolutionary games (Brian Skyrms)

- Lewis requires common knowledge, perfect rationality,
 and does not explain how conventions arise
- Hopeless for us, certainly for animals
 - ⇒ Convention due to evolution (inheritance)

 or (best response, or reinforcement) learning

Strategic communication: signaling games

- sequential game:
 - lacktriangle nature chooses a type T
 - ullet out of a pool of possible types T
 - ullet according to a certain probability distribution P

 - $oldsymbol{3}$ S chooses a message m out of a set of possible signals M
 - f Q S transmits m to the receiver $\bf R$
 - **5** R chooses an action a, based on the sent message.
- ullet Both S and R have preferences regarding R's action, depending on t.
- ullet S might also have preferences regarding the choice of m (to minimize signaling costs).

Basic example

utility matrix

 $\begin{array}{c|cccc}
 & a_1 & a_2 \\
\hline
 & t_1 & 1, 1 & 0, 0 \\
 & t_2 & 0, 0 & 1, 1
\end{array}$

Basic example: Equilibrium 1

utility matrix

 $\begin{array}{c|cccc}
 & a_1 & a_2 \\
\hline
 t_1 & 1, 1 & 0, 0 \\
 t_2 & 0, 0 & 1, 1
\end{array}$

Basic example: Equilibrium 2

utility matrix

 $\begin{array}{c|cccc}
 & a_1 & a_2 \\
\hline
 & 1, 1 & 0, 0 \\
 & t_2 & 0, 0 & 1, 1
\end{array}$

Equilibria and meaning

Equilibria

- two strict Nash equilibria $\langle \sigma, \rho \rangle$
- these are the only 'reasonable' equilibria:
 - they are evolutionarily stable (self-reinforcing under iteration)
 - they are Pareto optimal (cannot be outperformed)

Meaning derived from $\langle \sigma, \rho \rangle$

- Pure Speaker strategy $\sigma \in T \times M \to \{0,1\}$
- $\Rightarrow [[m]]^s = \{t \in T : \sigma(t)(m) = 1\}$

Descriptive meaning

- Pure Hearer strategy $\rho \in M \times A \rightarrow \{0,1\}$
- \Rightarrow $[[m]]^h =$ action with highest expected utility

Imperative meaning

Euclidean meaning space: Sim-max games

Utility function

General format

$$u_{s/r}(t, m, t') = \sin(t, t')$$

• sim(x, y) is strictly monotonically decreasing in Euclidean distance ||x - y||

In this talk, we assume a **Gaussian** similarity function

$$\sin(x,y) \doteq \exp(-\frac{\|x-y\|^2}{2\sigma}).$$

Euclidean meaning space: equilibrium

Simulations

- two-dimensional circular meaning space
- finitely many pixels (meanings)
- uniform distribution over meanings
- Descriptive meanings partition meaning space
- cells are convex sets
- give rise to prototype

2: Evolution of Vagueness: Bounded Rationality

Vagueness

- many evolutionarily stable/Pareto optimal equilibria
- all are strict (except for a null set at category boundaries)
- a vague language would be one where the sender plays a mixed strategy

Vagueness is not rational

Rational players will never prefer a vague language over a precise one in a signaling game. (Lipman 2009)

 similar claim can be made with regard to evolutionary stability (as corollary to a more general theorem by Reinhard Selten)

Vagueness is not evolutionarily stable

In a signaling game, a vague language can never be evolutionarily stable.

Vagueness and bounded rationality

- Lipman's result depends on assumption of perfect rationality
- we experimented (toyed around?) with three deviations from perfect rationality that support vagueness:
 - Learning: players have to make decisions on basis of limited experience
 - Stochastic decision: players are imperfect/non-deterministic decision makers
 - Noisy decision makers
 - Imperfect reinforcement learning (O'Connor)

Stochastic choice (Luce, 1965)

- real people are not perfect utility maximizers
- they make mistakes → sub-optimal choices
- still, high utility choices are more likely than low-utility ones

Rational choice: best response

$$P(a_i) = \begin{cases} \frac{1}{|\arg_j \max u_i|} & \text{if } u_i = \max_j u_j \\ 0 & \text{else} \end{cases}$$

Stochastic choice: (logit) quantal response

$$P(a_i) = \frac{\exp(\lambda u_i)}{\sum_j (\lambda \exp u_j)}$$

Quantal response

- \bullet λ measures degree of rationality
- \bullet $\lambda = 0$:
 - completely irrational behavior
 - all actions are equally likely, regardless of expected utility
- \bullet $\lambda \to \infty$
 - convergence towards behavior of rational choice
 - probability mass of sub-optimal actions converges to 0
- if everybody plays a quantal response (for fixed λ), play is in **quantal** response equilibrium (QRE)
- asl $\lambda \to \infty$, QREs converge towards Nash equilibria

QRE and vagueness

$\lambda \leq 4$

only babbling equilibrium

QRE and vagueness

$\lambda > 4$

- separating equilibria
- smooth category boundaries
- prototype locations follow bell-shaped distribution

From Language to Thought?

- We don't have to think of signaling as a 2-person game:
 One person observing, representing, and acting of/on world is enough
- \bullet Given our non-perfect $\lambda,$ this suggest that our thoughts/beliefs are vague as well
- ⇒ it is not that we have precise thoughts that we only vaguely communicate
 but we have only vague thoughts that we want to communicate in language
- ⇒ it is irrational to make our language precise
- That's why language is and should be vague!
- From Wittgenstein to Fodor?

Use of contradictions (Alxatib & Pelletier, Ripley)

Use of contradictions (Alxatib & Pelletier, Ripley)

• V: Is 2 tall? A: no. V: Is 2 not tall? A: no.

Use of contradictions (Alxatib & Pelletier, Ripley)

- V: Is 2 tall? A: no. V: Is 2 not tall? A: no.
- V: is 2 tall and not tall? A: yes.

From (equilibrium) use to compositional meaning

- Derive meaning in dynamic process of evolution of basic messages
- $V_s(m) = \frac{\sigma^{-1}(s)(m)}{\max_{t \in T} \sigma^{-1}(t)(m)}$
- Derive meaning in process of evolution of complex messages via truth rules
 - $V_s(\neg \phi) = 1 V_s(\phi)$
 - $V_s(\phi \wedge \psi) = min\{V_s(\phi), V_s(\psi)\}$
 - $V_s(\phi \vee \psi) = max\{V_s(\phi), V_s(\psi)\}$
- Look at meanings in evolved equilibrium state
- Standard opinion: fuzzy logic not good, because we say $T(x) \wedge \neg T(x)$ for borderline case, even though this can have at most value $\frac{1}{2}$. Cannot be!

Set up

• Start with set of states (P is prior) + utility based on similarity

- Set of messages: 'Tall(x)' and '¬ Tall(x)' and
- Best response dynamics, constrained by semantic meanings
- Not Quantal, but Noisy best response

Only 'Tall' with tautology (als dummy)

Only 'Tall' with contradiction (semantic impact)

Conclusions

• Natural Properties: evolve in structured meaning space

 Vagueness evolves if learning, observation, decision making ... non-perfect

Contradictions evolve as well....

3: Stereotypes: Picking games

• Real men don't eat Quiche!

- Real men don't eat Quiche!
- What is the stereotypical or 'real' man?

- Real men don't eat Quiche!
- What is the stereotypical or 'real' man? The average one? (what some call the 'prototype')

- Real men don't eat Quiche!
- What is the stereotypical or 'real' man? The average one? (what some call the 'prototype')
- Ask Google!

Stereotypes or prototypes?

- Real men don't eat Quiche!
- What is the stereotypical or 'real' man? The average one? (what some call the 'prototype')
- Ask Google!

• How to model, or what are concepts or properties?

• How to model, or what are concepts or properties?

Age old discussion in Philosophy (Universals) and Psychology

• How to model, or what are concepts or properties?

• Age old discussion in Philosophy (Universals) and Psychology

• How do we best represent them?

Efficient representation: average or ideal?

• Representation of property by typical representative

- Representation of property by typical representative
 - central tendency
- e.g. Gärdenfors

- Representation of property by typical representative
 - central tendency
- e.g. Gärdenfors
- Ideal or extreme object
- Plato, much empirical evidence

- Representation of property by typical representative
 - central tendency e.g. Gärdenfors
 - Ideal or extreme object Plato, much empirical evidence
- Barsalou (1985): typical members of goal-derived categories are those best satisfying the goal.

- Representation of property by typical representative
 - central tendency e.g. Gärdenfors
 - Ideal or extreme object Plato, much empirical evidence
- Barsalou (1985): typical members of goal-derived categories are those best satisfying the goal.
- Others: extreme representatives important if categories are defined in terms of contrasts with others.

- Representation of property by typical representative
 - central tendency e.g. Gärdenfors
 - Ideal or extreme object Plato, much empirical evidence
- Barsalou (1985): typical members of goal-derived categories are those best satisfying the goal.
- Others: extreme representatives important if categories are defined in terms of contrasts with others.
- Stereotypes important also for interpretation of generic statements and interpretation of absolute adjectives

- Representation of property by typical representative
 - central tendency e.g. Gärdenfors
 - Ideal or extreme object Plato, much empirical evidence
- Barsalou (1985): typical members of goal-derived categories are those best satisfying the goal.
- Others: extreme representatives important if categories are defined in terms of contrasts with others.
- Stereotypes important also for interpretation of generic statements and interpretation of absolute adjectives
- Why extreme values?

Goal of this talk: answer Why-questions

Why convex meanings?

- Sim-max games
- Picking games

Why pick out typical representative?

- Utility in terms of similarity
- Utility in terms of highest chance of successful communication

• Standard replicator dynamics is not enough

- Standard replicator dynamics is not enough
- Is the average what you want for focal colors?

- Standard replicator dynamics is not enough
- Is the average what you want for focal colors?

• I want you to pick up Mr X at the central station

- I want you to pick up Mr X at the central station
- I know there are k other men, I don't know who

- I want you to pick up Mr X at the central station
- I know there are k other men, I don't know who
- I know his length, but you only see relative length

- I want you to pick up Mr X at the central station
- I know there are k other men, I don't know who
- I know his length, but you only see relative length
- I can only say m_1 or m_2

- I want you to pick up Mr X at the central station
- I know there are k other men, I don't know who
- I know his length, but you only see relative length
- I can only say m_1 or m_2
- What are descriptive and imperative meanings of messages?

• T set of (individuals with different) lengths

- T set of (individuals with different) lengths
- S wants to communicate $t \in T$: Strategies: $[T \to M]$

- T set of (individuals with different) lengths
- S wants to communicate $t \in T$: Strategies: $[T \to M]$
- Comparison class k other men, S doesn't know, R does

- T set of (individuals with different) lengths
- ullet S wants to communicate $t\in T$: Strategies: [T o M]
- ullet Comparison class k other men, S doesn't know, R does
- ullet R picks individual in each comparison class: [C o T]

- T set of (individuals with different) lengths
- ullet S wants to communicate $t\in T$: Strategies: [T o M]
- ullet Comparison class k other men, S doesn't know, R does
- R picks individual in each comparison class: $[C \to T]$ In each comparison class R picks the ith tallest man

- ullet T set of (individuals with different) lengths
- ullet S wants to communicate $t\in T$: Strategies: [T o M]
- ullet Comparison class k other men, S doesn't know, R does
- ullet R picks individual in each comparison class: [C o T] In each comparison class R picks the ith tallest man
- $U(t,f) = \sum_{c \in C_t} P(c/t) \times [1, \text{ if } t = f(c), \text{ 0 otherwise}]$

- T set of (individuals with different) lengths
- S wants to communicate $t \in T$: Strategies: $[T \to M]$
- Comparison class k other men. S doesn't know. R does
- R picks individual in each comparison class: $[C \to T]$ In each comparison class R picks the ith tallest man
- $U(t,f) = \sum_{c \in C_t} P(c/t) \times [1, \text{ if } t = f(c), \text{ 0 otherwise}]$
- Equilibria $\langle \sigma, \rho \rangle$: static (Nash) and evolutionary (ESS)

- T set of (individuals with different) lengths
- ullet S wants to communicate $t\in T$: Strategies: $[T\to M]$
- ullet Comparison class k other men, S doesn't know, R does
- ullet R picks individual in each comparison class: [C o T] In each comparison class R picks the ith tallest man
- $\bullet \ U(t,f) = \sum_{c \in C_t} P(c/t) \times [1, \text{ if } t = f(c), \text{ 0 otherwise}]$
- Equilibria $\langle \sigma, \rho \rangle$: static (Nash) and evolutionary (ESS)
- Descriptive meaning: $[[m]] = \sigma^{-1}(m) = \{t \in T : \sigma(t) = m\}$

- T set of (individuals with different) lengths
- S wants to communicate $t \in T$: Strategies: $[T \to M]$
- Comparison class k other men. S doesn't know. R does
- R picks individual in each comparison class: $[C \to T]$ In each comparison class R picks the ith tallest man
- $U(t,f) = \sum_{c \in C_t} P(c/t) \times [1, \text{ if } t = f(c), \text{ 0 otherwise}]$
- Equilibria $\langle \sigma, \rho \rangle$: static (Nash) and evolutionary (ESS)
- Descriptive meaning: $[[m]] = \sigma^{-1}(m) = \{t \in T : \sigma(t) = m\}$
- Imper. meaning: $I(m) = \rho(m) \quad \forall c$ picking the ith largest man in c

Results for Picking games

Results for Picking games

ullet If flat distribution P-distribution over T

- If flat distribution P-distribution over T
- Many Nash equilibria, but only one type of evolutionary equilibrium

- If flat distribution P-distribution over T
- Many Nash equilibria, but only one type of evolutionary equilibrium
 - for small T, C and $M = \{m_1, m_2\}$: analytic results

- If flat distribution P-distribution over T
- Many Nash equilibria, but only one type of evolutionary equilibrium
 - **1** for small T, C and $M = \{m_1, m_2\}$: analytic results
 - 2 For larger setups: simulation and or only maximal expected utility

- ullet If flat distribution P-distribution over T
- Many Nash equilibria, but only one type of evolutionary equilibrium
 - for small T, C and $M = \{m_1, m_2\}$: analytic results
 - For larger setups: simulation and or only maximal expected utility
- If $T = \{t_1, \dots t_n\}$ with if i < j, then $t_i < t_j$

- If flat distribution P-distribution over T
- Many Nash equilibria, but only one type of evolutionary equilibrium
 - for small T, C and $M = \{m_1, m_2\}$: analytic results
 - For larger setups: simulation and or only maximal expected utility
- If $T = \{t_1, \dots t_n\}$ with if i < j, then $t_i < t_j$ $[[m_1]] = \{t_1, \dots, t_i\} \text{ and } [[m_2]] = \{t_{i+1}, \dots, t_n\} \Rightarrow$ Convex

- If flat distribution P-distribution over T
- Many Nash equilibria, but only one type of evolutionary equilibrium
 - for small T, C and $M = \{m_1, m_2\}$: analytic results
 - 2 For larger setups: simulation and or only maximal expected utility
- If $T=\{t_1,\cdots t_n\}$ with if i< j, then $t_i< t_j$ $[[m_1]]=\{t_1,\cdots,t_i\} \text{ and } [[m_2]]=\{t_{i+1},\cdots,t_n\} \Rightarrow \text{Convex}$
- $I(m_1) = \text{pick shortest individual}$ $I(m_2) = \text{pick tallest individual}$

- If flat distribution P-distribution over T
- Many Nash equilibria, but only one type of evolutionary equilibrium
 - **1** for small T, C and $M = \{m_1, m_2\}$: analytic results
 - 2 For larger setups: simulation and or only maximal expected utility
- If $T=\{t_1,\cdots t_n\}$ with if i< j, then $t_i< t_j$ $[[m_1]]=\{t_1,\cdots,t_i\} \text{ and } [[m_2]]=\{t_{i+1},\cdots,t_n\} \Rightarrow \text{Convex}$
- $I(m_1) = \text{pick shortest}$ individual $I(m_2) = \text{pick tallest}$ individual
- ⇒ Imperative meaning is stereotype: extreme representative.

Generalizations I

Generalizations II

• Natural Properties: evolve in meaning spaces

- Natural Properties: evolve in meaning spaces
- Game theoretical analysis

- Natural Properties: evolve in meaning spaces
- Game theoretical analysis
- Sim-max games versus Picking games

- Natural Properties: evolve in meaning spaces
- Game theoretical analysis
- Sim-max games versus Picking games
- Can account for prototypes and stereotypes

- Natural Properties: evolve in meaning spaces
- Game theoretical analysis
- Sim-max games versus Picking games
- Can account for prototypes and stereotypes
- Stereotypes is the one to go for

- Natural Properties: evolve in meaning spaces
- Game theoretical analysis
- Sim-max games versus Picking games
- Can account for prototypes and stereotypes
- Stereotypes is the one to go for
 - · · · also for colours