



### Основные концепции

Сергей Аксёнов, к.т.н., доцент кафедры Теоретических основ информатики ТГУ

# Обучение с учителем

### Проектирование модели



## Обучение с учителем. Классификация. Пример

**Цель обучения**: разделить пространство признаков на регионы, в которых располагаются объекты принадлежащие только одному классу.

Разделение пространства признаков (длина и ширина лепестка ириса) разными алгоритмами



Классы объектов



virginica



versicolor

## Оценка качества моделей классификации

#### Основные критерии:

1. Матрица ошибок/несоответствий (Confusion matrix)

|                                        |                        | Истинная метка |                |  |  |
|----------------------------------------|------------------------|----------------|----------------|--|--|
|                                        |                        | Положит. класс | Отрицат. класс |  |  |
| Пред<br>сказ<br>анна<br>я<br>метк<br>а | Положительный<br>класс | TP             | FP             |  |  |
|                                        | Отрицательный<br>класс | FN             | TN             |  |  |

2. Верность: 
$$ACC = \frac{TP+TN}{TP+FP+TN+FN}$$

3. Точность: 
$$Precision = \frac{TP}{TP+FP}$$

4.Полнота: 
$$Recall = \frac{TP + TN}{TP + FN}$$



### Пример оценки модели класстфикации

#### accuracy: 96.00%

|                       | true Iris-setosa | true Iris-versicolor | true Iris-virginica | class precision |
|-----------------------|------------------|----------------------|---------------------|-----------------|
| pred. Iris-setosa     | 25               | 0                    | 0                   | 100.00%         |
| pred. Iris-versicolor | 0                | 23                   | 1                   | 95.83%          |
| pred. Iris-virginica  | 0                | 2                    | 24                  | 92.31%          |
| class recall          | 100.00%          | 92.00%               | 96.00%              |                 |

Матрица несоответствий для задачи с ирисами

Если классов больше чем два для получения точности и полноты применяется методика OvR (One versus Rest).

Для случаев трех классов: 1-й класс(+) против 2-й и 3-й классы(-), 2-й(+) против 1-й и 3-й классы(-), 3-й класс(+) против 1-й и 2-й классы(-)

## Обучение с учителем. Регрессия. Пример

Цель обучения: получить выражение зависимости типа Y=f(X), где Y- целевая переменная, а X- входные признаки.

Пример из <a href="https://archive.ics.uci.edu/ml/datasets/Auto+MPG">https://archive.ics.uci.edu/ml/datasets/Auto+MPG</a>

Выборка моделей автомобилей. Задача построить модель позволяющую оценить показатель Mpg (сколько миль проезжает автомобиль на галлоне топлива), т.е. 1/расход топлива



#### Набор входных параметров:

1. cylinders: Кол-во цилиндров двигателя

2. displacement: Объём двигателя

3. horsepower: Мощность двигателя

4. weight: Масса автомобиля

5. acceleration: Ускорение

6. model year: Год выпуска

7. car name: Наименование модели



Построение модели в среде Rapid Miner Studio

### Оценка качества модели регрессии. Пример

### 1.Среднеквадратичная ошибка

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widetilde{y}_i)^2$$

#### 2.Средняя абсолютная ошибка

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widetilde{y}_i|$$

### 3. Коэффициент детерминации

$$R2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \widetilde{y}_i)^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2}$$

 $y_i$  - Истинное значение

- Среднее значение

 $\widetilde{y}_i$  - Предсказанное значение





Истинное значение

MSE = 3.48R2 = 0.881

# Обучение с учителем

Меток класса нет. Метод используется для изучения данных.

Особенность: Субъективность кластеризации.

Задача: Разложить объекты на две группы





## Оценка качества обучения с учителем

Индексы качества кластеризации.

Оценка производится методом сравнения нескольких структур

- Нескольких запусков одного и того же алгоритма
- Запуск алгоритма с разными параметрами
- Запуск разных алгоритмов

Критерии оценки качества:

Компактность - элементы из одного кластера должны быть как можно ближе друг к другу. Отделимость — элементы из разных кластеров должны быть как можно дальше друг от друга.



#### Пример кластеризации



### Примеры индексов

### Индекс Данна

$$D = \min_{i,j \in \{1...c\}, i \neq j} \left\{ \frac{d(c_i, c_j)}{\max_{k \in \{1...c\}} diam(c_k)} \right\}$$
$$d(c_i, c_j) = \min_{x \in c_i, y \in c_j} ||x - y||$$
$$diam(c_i) = \max_{x, y \in c_i} ||x - y||$$

### Индекс Дэвиса-Болдуина

$$DB = \frac{1}{c} \sum_{i=1}^{c} R_{i}$$

$$R_{i} = \max_{i,j \in \{1 \dots c\}, i \neq j} (R_{ij}) \qquad R_{ij} = \frac{S_{i} + S_{j}}{d_{ij}}$$

$$S_{i} = \left\{ \frac{1}{n_{c_{i}}} \sum_{x \in c_{i}} \|x - v_{i}\|^{q} \right\}^{\frac{1}{q}} d_{ij} = \left\{ \sum_{k=1}^{dim} |v_{i}^{k} - v_{j}^{k}|^{p} \right\}^{\frac{1}{p}}$$

#### Обозначения

Х кластеризуемое множество

N количество элементов в X

с число кластеров

 $n_{C_i}$  число элементов в кластере  $c_i$ 

центр кластера  $c_i$ :  $v_i = \frac{\sum_{x \in c_i} x}{n_{c_i}}$ 

