ESO212 Fluid Mechanics & Rate Processes

July-Nov 2011

Quiz 3

Paper **B**

30 minutes; 10 points

• 2 marks for a correct answer. *Negative marking*: 0.5 marks will be deducted per wrong answer.

- 1. A line vortex is located at x = 3, y = 3, and the velocity component v_{θ} at x = 0, y = 0 is $\frac{1}{3}m/s$. The values of v_r and v_{θ} (in m/s) at x = 1, y = 1 are respectively given by:
 - (a) 0, 2 (b) 1/2, 0 (c) 0, 1/2 (d) 0, 0
- 2. For uniform, 2-D, potential flow past a circular cylinder (as shown in figure 1), the velocity components at points A and B are given by:
 - (a) Point A: $v_r = 2U, v_\theta = 0$ Point B: $v_r = 0, v_\theta = 0$.
 - (b) Point A: $v_r = 0, v_\theta = 0$ Point B: $v_r = 0, v_\theta = 2U$
 - (c) Point A: $v_r = 0$, $v_\theta = 0$ Point B: $v_r = -2U$, $v_\theta = -2U$
 - (d) Point A: $v_r = 0$, $v_\theta = 0$ Point B: $v_r = 0$, $v_\theta = -2U$

Figure 1: Problem 2 and 3

- 3. For uniform, 2-D, potential flow past a circular cylinder (as shown in figure 1), the pressures at various points (as shown in the figure) satisfy:
 - (a) $p_A > p_B, p_C < p_B$
 - (b) $p_A > p_B, p_C > p_D$
 - (c) $p_C > p_B, p_D > p_B$
 - (d) $p_A < p_C, p_B > p_D$

- 4. Which of the following statements are **TRUE** for 2-D potential flows:
 - (P) Vorticity is nonzero in a potential flow.
 - (Q) The zero normal velocity condition can be satisfied by the velocity field on solid surfaces.
 - (R) Streamlines and equipotentials are orthogonal.
 - (S) Streamlines and equipotentials are parallel.
 - (a) P and S (b) R and Q (c) P and Q (d) R and P
- 5. Consider the two configurations shown in figure 2, wherein three identical plates (of infinitesimal thickness, length L and width W) are joined along the width (in arrangement A) and along the length (in arrangement B). There is steady, uniform, boundary-layer flow **over the top** surface of these two arrangements (hatched surfaces in the figure) with identical uniform velocity outside the boundary layer. The drag forces F_A (for arrangement A) and F_B (for arrangement B) are related as:

Figure 2: Problem 4