Angular efficiencies of semileptonic W pair decay at the ILC

FLC group presentation

Matthew Koster^{1,2}

Supervisor: Jakob Beyer 1,3

¹DESY Hamburg

²University of Cambridge

³Universität Hamburg

September 2, 2019

W pair production and chiral structures

Chiral structure of weak interaction

 $\blacktriangleright \ \ {\rm initial \ state} \ e_L^- e_R^+$

Neutrino and ISR Corrections The hard collision

The final state

- Visible 4-momenta $p^{\mu} = (E, p_x, p_y, p_z)$
- Neutrino 4-momenta $p^{\mu}_{\nu} = (E_{\nu}, p_{x,\nu}, p_{y,\nu}, p_{z,\nu})$
- ► ISR Photon 4-momenta $p^{\mu}_{\gamma} = (E_{\gamma}, 0, 0, p_{\gamma})$

Neutrino and ISR Corrections ISR energy

 $\begin{array}{c} {\sf Energy\ conservation} \\ + \\ {\sf momentum\ conservation} \end{array}$

ISR energy equation

$$E_{\gamma} = \frac{\left(\sqrt{s} - E\right)^2 - p^2}{2\sqrt{s} - 2E \mp 2p_z}$$

$$\sqrt{s} = 500~{\rm GeV}$$

Neutrino and ISR Corrections $E_{\gamma} = 0$ solution

Only considering muon signal

Neutrino and ISR Corrections Reconstruction evaluation

Only considering muon signal

Angle Extractions Angle definitions

Angle Extractions Consistent with previous results

Angle Efficiencies Cut Flow

Angle Efficiencies Applying the Cuts

Angle Efficiencies $E_{\gamma} < 1$ GeV

Back Up Slides Cut Flow table

Order	Cut description	Efficiency [%]			
		My Results			Ivan's Results
		n = 2129	n = 99419		n = 107233
			no cheat	cheat	
0	muon signal	100.00	100.00	100.00	100.00
1	track multiplicity $n_{tracks} \geq 10$	97.13	97.01	96.23	99.996
2	center of mass energy $\sqrt{s}>100~{\rm GeV}$	92.29	91.69	84.35	97.96
3	total transverse momentum $P_T>5~{\rm GeV}$	91.16	90.47	83.28	96.69
4	total energy $E_{SUM} < 500 \; \mathrm{GeV}$	89.66	89.28	82.70	95.36
5	$\ln(y_+) \in [-12, -3]$ (*)	88.69	88.08	82.47	95.01
6	1 lepton found (*)	80.65	80.77	81.50	78.75
7	pre ISR correction $m_W^{lep} \in [20,250] \; \mathrm{GeV}$	78.23	77.94	77.84	76.61
8	tau discrimination	76.05	75.60	75.73	74.07
9	charged lepton (*)	76.05	75.60	75.73	73.51
10	isolation variable $\Delta\Omega_{iso}>0.5$	76.01	75.58	75.72	73.42
11	post ISR correction $m_W^{lep} \in [40,120] \; \mathrm{GeV}$	72.90	72.77	72.33	70.13
12	post ISR correction $m_W^{had} \in [40,120] \; \mathrm{GeV}$	63.21	62.92	70.52	66.93
13	$\cos \theta_W > -0.95$	63.02	62.65	70.21	66.78

Back Up Slides Cut definitions

 $ightharpoonup \Delta\Omega_{iso}$ defined as,

$$(\phi_{lep} - \phi_{had}) < \pi \to \Delta\Omega_{iso} = \sqrt{(\theta_{lep} - \theta_{had})^2 + (\phi_{lep} - \phi_{had})^2}$$
 (1)

$$(\phi_{lep} - \phi_{had}) \ge \pi \to \Delta\Omega_{iso} = \sqrt{(\theta_{lep} - \theta_{had})^2 + (2\pi - |\phi_{lep} - \phi_{had}|)^2}.$$
 (2)

ightharpoonup au_{discr} defined by

$$\tau_{discr} = \left(\frac{2E_{lep}}{\sqrt{s}}\right)^2 + \left(\frac{m_W^{lep}}{m_W^{true}}\right)^2 \tag{3}$$

Back Up Slides Number of Isolated leptons found

Back Up Slides Logarithmic mass plots

Back Up Slides MC ISR invariant mass

Back Up Slides Negative Energy

$$E_{\gamma} = \frac{(500 - E)^2 - p^2}{1000 - 2E \mp 2p_z}$$

- $ightharpoonup E_{\gamma} < 0$ in \sim 20% of events
- $ightharpoonup m_{inv}^2 < 0$

Back Up Slides Lortenz boost

The e[−]e⁺ collision is not in the center of mass frame

$$p^{\mu} = (500 \sin{(\frac{0.014}{2})}, 0, 0, 500) \, GeV.$$
 (4)

Back Up Slides Beam background cheating

► Try cheat beam background using TrueJet

Back Up Slides ISR invarient mass

Invarient mass of the neutrino and ISR photon is nolonger assumed zero.

Full energy equation

$$E_{\gamma} = \frac{\lambda(500 - E) \pm p_z \sqrt{\lambda^2 - [(500 - E)^2 - p_z^2]m_{\gamma}^2}}{(500 - E)^2 - p_z^2}$$
 (5)

Where for convenience I have defined lambda,

$$\lambda = \frac{1}{2} [(500 - E)^2 - p^2 + m_{\gamma}^2 - m_{\nu}^2].$$
 (6)

Back Up Slides ISR invarient mass

 $ightharpoonup m_
u = 0$ and m_γ from MC

Back Up Slides Cut Flow

Back Up Slides New ISR Energy Plots

Back Up Slides 1 lepton found in 1st cut

