Machine Learning

313704071 HW8

1. Show that the sliced score matching (SSM) loss can also be written as

$$L_{SSM} = \mathbb{E}_{x \sim p(x)} \mathbb{E}_{v \sim p(v)} \Big[\|v^T S(x; \theta)\|^2 + 2v^T \nabla_x \Big(v^T S(x; \theta) \Big) \Big]$$

We know that $\nabla \cdot S(x; \theta) = trace(\nabla S)$.

Hutchinson's trace estimator:

Let $v \in \mathbb{R}^d$ is a random vector, such that $E[vv^T] = 1$, then

$$tr(A) = \mathbb{E}_{v \sim p(v)}(v^T A v)$$

We also know that

$$L_{ISM}(\theta) = \mathbb{E}_{x \sim p(x)}[||S(x;\theta)||^2 + 2\nabla_x \cdot S(x;\theta)]$$

Hence, the $\nabla_x \cdot S(x; \theta)$ in ISM loss can be rewritten as

$$\nabla_{x} \cdot S(x; \theta) = trace(\nabla S) = \mathbb{E}_{v \sim p(v)}(v^{T}(\nabla S)v) = \mathbb{E}_{v \sim p(v)}(v^{T}\nabla(vS))$$

Then, combine it with ISM loss and become SSM loss.

$$\begin{split} L_{SSM} &= \mathbb{E}_{x \sim p(x)} \|S(x;\theta)\|^2 + \mathbb{E}_{x \sim p(x)} \mathbb{E}_{v \sim p(v)} \big(2v^T \nabla (vS) \big) \\ &= \mathbb{E}_{x \sim p(x)} \mathbb{E}_{v \sim p(v)} \big[\|v^T S(x;\theta)\|^2 + 2v^T \nabla_x \big(v^T S(x;\theta) \big) \big] \end{split}$$

2. Briefly explain SDE

The Stochastic Differential Equation:

$$dX_t = f(X_t, t)dt + G(X_t, t)dW_t$$
$$X(0) = X_0$$

where X_t is stochastic process, W_t is standard Brownian motion.

The forward SDE is a process of adding noise, and drift part $f(X_t, t)$ control the average trend, on the other hand, diffusion part $G(X_t, t)$ control the strength of noise.

The figure shows sample paths of a Brownian motion with drift. For any fixed time t, the random variable X(t) is normally distributed with mean μt and variance $\sigma^2 t$.

The empirical histogram across paths at time t approximates this PDF.

3. Unanswered Questions

(1)為什麼需要 $f(X_t,t)$?

GPT: 沒有 f 就沒有系統性的趨勢;只會靠雜訊擴散、均值不動、難以把系統帶往指定區域。

(2)加噪的起點可以不同?

GPT: 影像加噪 (同一張圖內): 每個像素/通道的起點就是它自己的像素值 $x_0[i]$ (彼此通常不同),然後各自加上獨立高斯噪聲沿時間演化。所以起點不同 是正常的。