Cognoms i Nom: ______ Doc. Identitat: _____

Totes les respostes han d'estar degudament justificades

1) Per poder adreçar la totalitat de la memòria de programa en el PIC18F4550 són necessaris 21 bit. En canvi, segons el diagrama de blocs de la CPU del PIC18F4550 de la figura, el bus per transportar les adreces que van del Program Counter cap al multiplexor que marcarà la posició de memòria de programa que volem adreçar té 20 bits. Explica aquesta circumstancia. (1 punts)

La raó d'aquesta circumstancia es que les instruccions sempre esta adreçades en posicions de memòria parells i per tant el bit menys significatiu és sempre 0. Per optimitzar el número de connexions internes aquest bit, de valor sempre fixe, no es transporta pel bus.

2) Quin és el factor més important que heu de considerar a l'hora de decidir si en el vostre programa f mode d'adreçament Access bank ó Banked memory, per a accedir a la memòria de dades?	areu servir el (1,5 punts)
El factor més important a considerar serà el nombre de variables que utilitzarem. Si la quantitat total (GPR) és inferior o igual a 96 bytes llavors farem servir mode accés bank simplificant el mode d'accés dades ja que no ens caldrà manegar el registre BSR. En cas contrari haurem de fer servir mode Banked	de memòria de
3) En un microcontrolador de les característiques del PIC18F es considera ampliar la memòria RAM fin organitzada en bancs de 1KBytes. Tenint en compte aquesta modificació, responeu de forma justifica preguntes:	•
a) És possible tenir memòria de programa i memòria de dades separades ?	
SI. Aquesta característica té a veure amb que l'arquitectura és tipus Harvard, i és independent de com organitzada la memòria RAM.	estigui
b) És possible mantenir el mecanisme de l'access bank ?	
SI. El fet que el fabricant proposi un mecanisme d'access bank és independent de la dimensió de la me mida de cada banc.	mòria i de la
c) Quin seria el nombre mínim de bits necessaris pel LSFR (adreçament indirecte) ?	
Els registres FSRO, FSR1 i FSR2 adrecen la memòria de dades de forma continua (sense divisions en ba el seu contingut indica de forma única la posició de RAM a la que s'ha d'accedir. Per accedir a una pos memòria de 64KB, calen com a mínim 16 bits.	
d) Quin seria el nombre mínim de bits necessaris pel BSR ?	
Una memòria de 64KB dividida en bancs de 1KB, té 64 bancs. Per tant necessitem com a mínim 6 bits.	
e) Quin seria el nombre mínim de bits necessaris, a incloure en una instrucció, per a indicar la posició a de l'access bank ?	a accedir dintre
Si els bancs són de 1KB, per indicar 1 posició dintre de les 1024 que formen el banc necessitem com a	mínim 10 bits.

Cognoms i Nom: ______ Doc. Identitat: _____

Totes les respostes han d'estar degudament justificades

4) Identifica els possibles errors que no permeten el funcionament correcte del circuit muntat sobre protoboard de la figura (senyal d'entrada binari generat amb un polsador, i visualització del senyal de sortida amb un LED), i per cada cas, quina seria la forma de solucionar el problema. (2 punts)

Resistència superior= 10KΩ Resistència inferior= 220Ω Tensió llindà LED 1,9 V

Error 1. El xip microcontrolador no està alimentat. SOLUCIÓ: Cal connectar els borns + i – de la font d'alimentació als pins Vcc (14) i Vss (5) respectivament.

Error 2. El microcontrolador no té connectat el /MCLEAR. Solució: Connectar una residència de pull-up en el pin 4 (un valor adequat seria $10 \mathrm{K}\Omega$.

Error 3. El LED està mal connectat. SOLUCIÓ: Cal connectar l'ànode al potencial més alt, i el càtode al potencial més baix (és a dir, girar el LED). El LED 's'encén quan el pin de sortida està a "0". SOLUCIÓ ALTERNATIVA: deixar l'ànode connectat al pin 8, i el càtode a la resistència, però l'altre extrem de la residència la connectem a GND enlloc de Vcc. En aquest cas, el LED s'encén quan el pin de sortida està a "1".

5) Segons l'especificació de la instrucció de salt relatiu BRA, entre quins valors pot estar el literal que indiquem com a operand de la instrucció. (1,5 punts)

BRA	Unconditional Branch									
Syntax:	[<i>label</i>] BRA n									
Operation: Status Affected:	$(PC) + 2 + 2n \rightarrow PC$ None									
Encoding:	1101	0nnn	nnnn	nnnn						
Description:	Add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is a two-cycle instruction.									
Words:	1									
Cycles:	2									

6) Indica el valor final de totes les posicions de la memòria de dades i registres de la CPU que modifica l'execució del següent conjunt d'instruccions. A la taula adjunta s'indica el valor de la memòria RAM abans l'execució (descripció parcial).

(2 punts)

....

i EQU 0x0B ; definim etiqueta i amb valor 0x0B

movlb 0x04 ; BSR <- 0x04 Ifsr 0, 0x000 ; FSR0<- 0x000 Ifsr 1, 0x100 ; FSR1<- 0x100 Ifsr 2, 0x200 ; FSR2<- 0x200 movlw 0x03 ; WREG<- 0x03 movwf i,0 ; i<- WREG;

Loop

movf POSTINC1, W, 0 ; WREG<- [FSR1] i FSR1++ (postincrement de FSR1)

addwf POSTDEC2, W, 0 ; WREG<- WREG + [FSR2] i FSR2-- (postdecrement de FSR2)

movwf POSTINCO, 0 ; [FSR0]<- WREG i FSR0++ (postincrement de FSR0)

decfsz i,F,A ; decrementa i (i<-i-1), skip si i=0 goto Loop ; salt incondicional a etiqueta Loop

fi nop ; bucle final

goto fi END

@ RAM	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0x00_	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	FA	FB	FC	FD	FE	FF
0x0F_	00	01	02	03	04	05	06	07	08	09	0A	OB	0C	0D	0E	OF
0x10_	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
0x1F_	30	2F	2E	2D	2C	2B	2A	29	28	27	26	25	24	23	22	21
0x20_	20	31	32	33	34	35	36	37	38	39	3A	3B	3C	3D	3E	3F

Solució:

Nota: Els comentaris del codi en color vermell són part de la solució

Posicions i registres modificats per l'execució del codi indicats en vermell.

@ RAM	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0x00_	30	32	34	F3	F4	F5	F6	F7	F8	F9	FA	00	FC	FD	FE	FF
0x0F_	00	01	02	03	04	05	06	07	08	09	0A	OB	0C	0D	0E	0F
0x10_	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
0x1F_	30	2F	2E	2D	2C	2B	2A	29	28	27	26	25	24	23	22	21
0x20_	20	31	32	33	34	35	36	37	38	39	3A	3B	3C	3D	3E	3F

BSR= 0x04 FSR0= 0x0003 FSR1= 0x0103 FSR2= 0x01FD WREG= 0x34