EXPT – 2 - : Loan Amount Prediction using Linear Regression REPORT BY GOPIKA GANESAN

AIM:

Apply Linear Regression to predict the loan amount sanctioned to users using the dataset provided.

LIBRARIES USED:

NumPy, pandas, scikit learn, seaborn, matplotlib

OBJECTIVE:

Visualize and interpret the linear regression results to gain insights into the model performance.

MATHEMATICAL DESCRIPTION:

Linear Regression is a supervised machine learning algorithm used to predict a continuous target variable. The predicted value is expressed as a linear combination of the input features.

$$H\phi(x) = \phi 0 + \phi 1x$$

x – independent feature

 $\emptyset 0$ – intercept

 $\phi 1 - slope$

The cost function for Linear Regression is the error between the predicted values and the actual values.

$$J(\emptyset 0, \emptyset 1) = 1/2m \sum (h \emptyset(x)^{(i)} - y^{(i)})^2$$

We use a convergence algorithm to minimise the above cost function.

Using gradient descent,

$$\emptyset j = \emptyset j - \alpha \mathfrak{g} J(\emptyset j) / \mathfrak{g} \emptyset j$$

Where α is the learning rate which controls the speed at which convergence should take place.

CODE WITH PLOT:

```
_{30s}^{\checkmark} [1] from google.colab import drive
         drive.mount('/content/drive')

→ Mounted at /content/drive
                                                                                                                                              ↑ ↓ ♦ © ■ $ ☑ Ⅲ :
import numpy as np
          import matplotlib.pyplot as plt
         from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
         from sklearn.preprocessing import StandardScaler,OneHotEncoder from sklearn.compose import ColumnTransformer
         from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
          from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score
[3] df=pd.read_csv('/content/drive/MyDrive/loan.csv')
      df.isnull().sum()
      target = 'Loan Sanction Amount (USD)'
      categorical_features=df.select_dtypes(include=['object']).columns.tolist()
       numerical_features=df.select_dtypes(include=['int64','float64']).columns.tolist()
      numerical_features=[col for col in numerical_features if target!=col]
      numeric_pipeline=Pipeline([
            ('imputer',SimpleImputer(strategy='mean')),
('scaler',StandardScaler())
      categorical_pipeline=Pipeline([
            ('imputer',SimpleImputer(strategy='most_frequent')),
('onehot',OneHotEncoder(drop='first',handle_unknown='ignore'))
      preprocessor=ColumnTransformer([
            ('num',numeric_pipeline,numerical_features),
           ('cat',categorical_pipeline,categorical_features)
      # Drop rows where the target value is missing
df = df.dropna(subset=['Loan Sanction Amount (USD)'])
```

```
↑ ↓ ◆ ⊖ 目 ♥ Ы Ш :
X=df.drop(columns=target)
y=df[target]
X_train,X_temp,y_train,y_temp=train_test_split(X,y,random_state=42,test_size=0.3)
X_test,X_val,y_test,y_val=train_test_split(X,y,random_state=42,test_size=0.5)
model=Pipeline([
     ('preprocessor', preprocessor).
     ('regressor',LinearRegression())
1)
model.fit(X_train,y_train)
y_test_pred=model.predict(X_test)
y_val_pred=model.predict(X_val)
def evaluate(y_true,y_pred):
    print('MSE',mean_squared_error(y_true,y_pred))
  print('MAE',mean_absolute_error(y_true,y_pred))
  print('r2',r2_score(y_true,y_pred))
print('test')
evaluate(y_test, y_test_pred)
print('validation')
evaluate(y_val, y_val_pred)
     test
                                                                                                                                 ↑ ↓ ♦ 🖘 🗏 🗓 🗓 :
MSE 183.77354619623188

The MAE 3.1224452197002073
     r2 0.9999999232337329
     validation
MSE 596521885.5033314
     MAE 12956.97249947
r2 0.7355852444481442
     /usr/local/lib/python3.11/dist-packages/sklearn/preprocessing/_encoders.py:246: UserWarning: Found unknown categories in columns [0, 1, 4] during tr
       warnings.warn(
[4] plt.figure(figsize=(6,4))
      sns.histplot(df[target], kde=True, bins=30)
      plt.title('Distribution of Loan Amount')
      plt.show()
      # Correlation Heatmap
      numeric_df = df.select_dtypes(include=['number'])
      # Plot heatmap
      plt.figure(figsize=(10, 8))
      sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm')
      plt.title('Correlation Heatmap')
      plt.show()
     # Actual vs Predicted
plt.figure(figsize=(6,6))
      plt.scatter(y_test, y_test_pred, alpha=0.6, color='blue')
     plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--')
plt.xlabel('Actual Loan Amount')
plt.ylabel('Predicted Loan Amount')
plt.title('Actual vs Predicted')
     plt.show()
      # Residual Plot
     residuals = v test - v test pred
     plt.figure(figsize=(6,4))
      sns.histplot(residuals, kde=True)
      plt.title('Residuals Distribution')
     plt.show()
      # Boxplots of numerical features
      for col in numerical_features:
          plt.figure(figsize=(5,3))
           sns.boxplot(x=df[col])
           plt.title(f'Boxplot of {col}')
          plt.show()
```

```
# 1. Remove any rows with NaNs in target
df_clean = df.dropna(subset=['Loan Sanction Amount (USD)'])
# 2. Define target and features
X = df_clean.drop(['Loan Sanction Amount (USD)'], axis=1)
y = df_clean['Loan Sanction Amount (USD)']
# Ensure y is numeric and has no NaNs
y = pd.to_numeric(y, errors='coerce')
X = X.reset_index(drop=True)
y = y.reset_index(drop=True)
# 3. Apply KFold CV
kf = KFold(n_splits=5, shuffle=True, random_state=42)
# Store metrics
mae_list = []
mse_list = []
rmse_list = []
r2_list = []
fold = 1
results = []
for train_index, test_index in kf.split(X):
    X_train_cv, X_test_cv = X.iloc[train_index], X.iloc[test_index]
   y_train_cv, y_test_cv = y.iloc[train_index], y.iloc[test_index]
```

```
# Create and train pipeline
 model = Pipeline([
     ('preprocessor', preprocessor),
      ('regressor', LinearRegression())
 model.fit(X_train_cv, y_train_cv)
 y_pred_cv = model.predict(X_test_cv)
 # Compute metrics
 mae = mean_absolute_error(y_test_cv, y_pred_cv)
 mse = mean_squared_error(y_test_cv, y_pred_cv)
 rmse = np.sart(mse)
 r2 = r2_score(y_test_cv, y_pred_cv)
 # Save to lists
 mae_list.append(mae)
 mse_list.append(mse)
 rmse_list.append(rmse)
 r2_list.append(r2)
 results.append([f"Fold {fold}", round(mae, 2), round(mse, 2), round(rmse, 2), round(rc, 2)])
 fold += 1
```


Roxbiot of income (APA)

Boxplot of Loan Amount Request (USD)

RESULTS TABLES

FOLD	MAE	MSE	RMSE	R2
1	21578.16	1.018970e+09	31921.31	0.55
2	21665.83	9.744059e+08	31215.47	0.57
3	21459.55	1.065990e+09	32649.50	0.54
4	21508.81	9.190246e+08	30315.42	0.62
5	21757.48	9.953794e+08	31549.63	0.58
avg	21593.97	9.947540e+08	31530.27	0.57

Description			
Dataset Size (after preprocessing)	29660		
Train/Test Split Ratio	80:20		
Feature(s) Used for Prediction	Income (USD), Credit Score,		
	Age, Type of Employment, etc.		
Model Used	Linear Regression		
Cross-Validation Used? (Yes/No)			
	Yes		
If Yes, Number of Folds (K)	5		
Reference to CV Results Table	Table 1		
Mean Absolute Error (MAE) on	3.1224452197002073		
Test Set			
Mean Squared Error (MSE) on	183.77354619623188		
Test Set			
Root Mean Squared Error	13.56		
(RMSE) on Test Set			
R2 Score on Test Set	1.0000		
Adjusted R2 Score on Test Set	1.0000		
Most Influential Feature(s)	Credit Score, Income (USD), No. of Defaults		
Observations from Residual Plot	Residuals are randomly scattered around zero; no strong pattern observed, indicating good linearity assumption.		
Interpretation of Predicted vs	predictions are close to actual		
Actual Plot	values with some variance.		
Any Overfitting or Underfitting	No		
Observed?			
If Yes, Brief Justification (e.g.,	Train and test R ² scores are close;		
training vs test error, residual	residuals show no major bias.		
patterns)			

SVR:

```
      SVR Cross-Validation Results Table:

      Fold
      MAE
      MSE
      RMSE
      R2 Score

      0
      Fold 1
      21001.15
      1.211807e+09
      34811.02
      0.47

      1
      Fold 2
      21413.82
      1.208246e+09
      34759.84
      0.47

      2
      Fold 3
      21214.21
      1.207789e+09
      34753.27
      0.48

      3
      Fold 4
      21270.16
      1.214370e+09
      34847.81
      0.50

      4
      Fold 5
      21363.55
      1.252735e+09
      35393.99
      0.47

      5
      Average
      21252.58
      1.218989e+09
      34913.18
      0.48
```

BOOSTING:

3O	OSTIN	IG:			
Gra	adient B	oosting Cro	ss-Validation	Results Tab	ole:
	Fold	MAE	MSE	RMSE	R2 Score
0	Fold 1	12750.13	5.713971e+08	23903.91	0.75
1	Fold 2	13196.62	5.768728e+08	24018.18	0.75
2	Fold 3	12563.73	4.965877e+08	22284.25	0.78
3	Fold 4	12744.45	5.120416e+08	22628.34	0.79
4	Fold 5	12973.80	5.733550e+08	23944.83	0.76
5	Average	12845.74	5.460508e+08	23355.90	0.76
		-	•		
X	Boost C	ross-Validat	tion Results T	able:	
	Fold	d MAE	MSE	RMSE	R2 Score
0	Fold :	1 12498.38	5.573444e+08	23608.14	0.75
1	Fold 2	2 12711.05	5.632942e+08	23733.82	0.75
2	Fold 3	3 12020.17	4.776799e+08	21855.89	0.79
3	Fold 4	4 12373.77	5.003515e+08	22368.54	0.79
4	Fold 5	5 12744.27	5.579686e+08	23621.36	0.76
5	Average	e 12469.53	5.313277e+08	23037.55	0.77
Ad	aBoost C	ross-Valida	tion Results T	able:	
	Fold	l MAE	MSE	RMSE	R2 Score
0	Fold 1	. 26494.54	1.126522e+09	33563.71	0.50
1	Fold 2	26650.91	1.110048e+09	33317.38	0.51
2	Fold 3	26450.61	1.106553e+09	33264.89	0.52
3	Fold 4	26272.18	1.095463e+09	33097.78	0.55
4	Fold 5	26974.91	1.155263e+09	33989.17	0.51
5	Average	26568.63	1.118770e+09	33446.59	0.52

BEST PRACTICES:

- Missing values in numerical and categorical columns were handled using appropriate imputers (mean and most_frequent).
- Features were standardized using StandardScaler to ensure uniform scaling for the regression model.
- Categorical variables were encoded using OneHotEncoder with drop='first' to prevent multicollinearity.
- The entire workflow was organized using Pipeline and ColumnTransformer for clean and reusable code.

• Model performance was evaluated using multiple metrics and validated using K-Fold cross-validation.

LEARNING OUTCOMES:

- Understood the mathematical and practical working of Linear Regression models.
- Learned how to preprocess data efficiently using Scikit-learn pipelines.
- Gained experience with evaluation metrics like MAE, MSE, RMSE, R², and Adjusted R².
- Learned how to validate models using K-Fold cross-validation and interpret residual plots.
- Developed skills in interpreting feature importance and diagnosing model fit visually.