Predicting Adversity in General Hospital Wards – the Cardiac Arrest Case

Zina Ibrahim and James Galloway King's College London

In-Hospital vs Out-of-hospital Cardiac Arrest

OHCA

Aetiology:

- Predominantly cardiac in origin myocardial infarction, sudden arrhythmias
- Other causes: trauma, drowning, drug overdose
- Typically occurs suddenly and unpredictably

Presentation:

- Unmonitored (e.g., public places, homes)
- Delayed access to emergency services

IHCA

Aetiology:

- Non-cardiac causes are common: respiratory failure, sepsis, electrolyte imbalances, medication reactions
- Cardiac causes (e.g., arrhythmias, heart failure) are less frequent compared to OHCA
- Often associated with acute decompensation of chronic illnesses

Presentation:

- Occurs in a monitored and controlled clinical setting (e.g., wards, ICUs)
- Early signs often detected (vital signs, warning scores)
- Immediate access to resuscitation, increasing chances of timely intervention

Predicting IHCA – ICU vs General Hospital Wards

DL for IHCA – ICU vs General Wards¹

IHCA in ICU

DL for IHCA Prognosis

- Incidence: 5.2% of IHCA occur in ICU
- Early Warning: NEWS2 AUC 0.86-0.86

- **Powerful:** Trained on high-throughput streams of **multimodal** data
- **High performance** on most outcomes

IHCA in Wards

- Incidence: 56.6% of IHCA occur in general wards
- **Early Warning:** NEWS2 AUC 0.67-0.75
- Outcome: Overnight and weekend shift lead to poor outcomes (OR 1.83)

DL for IHCA in Wards

- Data-hungry: Sparse ward data; DL prone to:
 - **Statistical bias:** physiological diversity reduces sample availability²
 - **Structural bias**: diagnostic, age³, gender⁴, race⁵ & selection bias⁶

The Generative Al Phase, Foresight

Foresight: GPT-based Forecasting Pipeline

Aim: improve Foresight's ability to serve as a tool for early recognition of IHCA from general wards data.

Aim: improve Foresight's ability to serve as a tool for early

recognition of IHCA from general wards data.

1. Statistical bias: Foresight is good with patients with long trails of documents. If the number of documents for a patient is low (younger patients, patients with less comorbidities, etc..), Foresight's performance plummets

Aim: improve Foresight's ability to serve as a tool for early recognition of IHCA from general wards data.

- 1. Statistical bias: Foresight is good with patients with long trails of documents. If the number of documents for a patient is low (younger patients, patients with less comorbidities, etc..), Foresight's performance plummets
- 2. Model bias: Foresight fundamentally operates with SNOMED code for Medications, Symptoms, Diseases & Procedures. No low-level numerical data e.g. labs & vital signs.

Aim: improve Foresight's ability to serve as a tool for early recognition of IHCA from general wards data.

- 1. Statistical bias: Foresight is good with patients with long trails of documents. If the number of documents for a patient is low (younger patients, patients with less comorbidities, etc..), Foresight's performance plummets
- 2. Model bias: Foresight fundamentally operates with SNOMED code for Medications, Symptoms, Diseases & Procedures. No low-level numerical data e.g. labs & vital signs.
- Structural bias: Foresight's forecasts carry along the clinical and documentation bias within its training data

Our Project Phases

 Model bias: inclusion of vital signs, laboratory tests & other fine-grained patient information

- Statistical bias: overcome the lack of data for some patient demographics
- Structural bias: overcome clinical and documentation bias within the data

Phase 1

Fixing Model bias:

inclusion of vital signs, laboratory tests & other fine-grained patient information

Distribution of Concept Unique Identifiers (CUIs)

Distribution of CUI Streams Per Patient with Foresight

Enriching Foresight with Measurements – the Qualitative Interaction Graph (QIG)

- Mine textual descriptions of vitals and lab test values for the CA cohort from the structured records
- Use the generated text as additional input to Foresight

QIG for One Patient

Events Timeline

	<pre>sample_event * pd.read_csv(os.path.join(patient_event_output_path, f'(sample_patient_id).csv')) sample_event</pre>
1	/ 0.0%

	SUBJECT_ID	ordinal_time_start	VALUENUM	ITEMID	ordinal_time	state	gradient	ordinal_time_end	event	global_start_order	global_end_order	length
0	3	2101-10-20 16:40:00	3.2	CREATININE	0 days 00:00:00	high	constant	2101-10-20 19:12:00	CREATININE-high-constant	0	1	2.533333
1	3	2101-10-20 16:40:00	2.4	MAGNESIUM	0 days 00:00:00	high	constant	2101-10-20 19:26:00	MAGNESIUM-high-constant	0	4	2.766667
2	3	2101-10-20 16:40:00	53.0	BUN	0 days 00:00:00	high	constant	2101-10-20 19:26:00	BUN-high-constant	0	4	2.766667
3	3	2101-10-20 16:40:00	99.0	CHLORIDE	0 days 00:00:00	low	constant	2101-10-20 19:26:00	CHLORIDE-low-constant	0	4	2.766667
4	3	2101-10-20 16:40:00	91.0	GLUCOSE	0 days 00:00:00	low	constant	2101-10-20 19:26:00	GLUCOSE-low-constant	0	4	2.766667
100	100		344	100	444	414		10	in	444	140	10
351	3	2101-10-26 17:00:00	103.0	DBP	6 days 00:20:00	high	increasing	2101-10-27 17:00:00	DBP-high-increasing	171	184	24.000000
352	3	2101-10-26 17:00:00	119.0	MAP	6 days 00:20:00	high	increasing	2101-10-27 17:00:00	MAP-high-increasing	171	184	24.000000
353	3	2101-10-29 04:45:00	73.0	GLUCOSE	8 days 12:05:00	low	decreasing	2101-10-30 04:30:00	GLUCOSE-low-decreasing	172	186	23.750000
354	3	2101-10-30 04:30:00	76.0	GLUCOSE	9 days 11:50:00	low	constant	2101-10-31 04:55:00	GLUCOSE-low-constant	173	188	24.416667
355	3	2101-10-31 04:55:00	88.0	GLUCOSE	10 days 12:15:00	low	increasing	2101-11-01 04:55:00	GLUCOSE-low-increasing	174	189	24.000000

356 rows x 12 columns

Phase 2

Strategy: use existing knowledge to **overcome sparse data** AND steer the model **away from bias**

Use graph knowledge as constraints via Transformer loss function

Thank you

- 1. https://www.resuscitationjournal.com/article/S0300-9572(14)00469-9/fulltext#tbl0020
- 2. https://www.bmj.com/content/361/bmj.k1479
- 3. https://pubmed.ncbi.nlm.nih.gov/20959786/#article-details
- 4. https://www.ahajournals.org/doi/10.1161/JAHA.117.006872
- 5. https://jamanetwork.com/journals/jama/fullarticle/184590
- 6. https://pubmed.ncbi.nlm.nih.gov/29463613/#article-details