Engineering Management

EE470

Learning Objectives

At the end of this module you will have learned:

- To recognise different types of engineering projects and the associated project frameworks and methodologies to use
- Common pitfalls on why projects (and managers) fail and how to avoid them
- Theory of key project management skills including
 - Six Sigma DMAIC 12 Step Process
 - · Change Acceleration Process (CAP) for leading effective change and stakeholder management
 - Business case development
 - Goal setting and project tracking
 - Project finance basics
 - Project presentation and communication skills
 - Organising for success: GRPI Project planning and resourcing tools
 - Project ethics
- Theory & tools for Engineering Management
 - A day in the life of an Engineering Manager
 - Environmental, Health & Safety (EHS) management
 - KPI management & operating rhythm
 - Supply chain management
 - Performance management & industrial relations
 - ESG (Environmental, Social, Governance) principles
 - Managing cyber security risk
- Application of key project management skills
 - Complete a Six Sigma DMAIC project incorporating project management theory learned in class

Engineering Management

- What falls under Engineering Management?
- Projects / Business / Operations / People / Finance / Ethics / Contracts
- What type of projects?
 - Problem Solving
 - Solution Delivery
 - New Product Introduction
 - Process Improvement
 - Product Design

Teaching Methodology

- Course Material
- Project (30%)
- Class Participation (10%)
- End Exam (60%)
- Course will be delivered as a mixture of on-line and in-person classes
- 2 x guest speakers; experts in Engineering Management. Advanced notice will be given. In-person attendance requested.

Course Layout (1-5)

Session	Theory	Tools	Case Studies	Project
1	Introduction: Module DMAIC CAP		Six Sigma at GE	Discussion on potential projects
2	DEFINE: Step o & 1 CAP: Leading Change	Project Charter Continuous Data GRPI	Stable Operations: "Free Chemical Plant"	Project Selection
3	MEASURE: Step 2 & 3 CAP: Creating Shared Need	GR&R Stakeholder Analysis	"Wing to Wing"	Review Step o & 1
4	MEASURE: Step 4 & 5 CAP: Shaping a Vision	Minitab	Revolving Credit	Review Step 2 & 3
5	ANALYSE: Step 6 & 7 & 8 CAP: Mobilising Commitment	Probability Plots ARMI	Absenteeism in Manufacturing Plant	Review Step 4 & 5

Course Layout (6-10)

Session	Theory	Tools	Case Studies	Project
6	IMPROVE: Step 9 & 10 & 11 CAP: Making Change Last Project Finance Project Ethics	ROI FMEA	Hakker Rollen	Review Step 6 & 7 & 8
7	CONTROL: Step 12 CAP: Monitoring Progress Presentation Skills	PowerPoint	TBC	Review Step 9 & 10 & 11
8	CAP: Changing Systems & Structures Organising for Success	GRPI	TBC	Review Step 12
9	Module Review			Final Project Review
10	Exam Preparation			

Why Projects Fail

Discussion

Managing for success

"Define"

 "If I had an hour to solve a problem I'd spend 55 minutes thinking about the problem and five minutes thinking about solutions."

Mutterstick.com - 1120615468

Effective Change

$$-0*A=E$$

Six Sigma DMAIC Methodology

- DEFINE
- MEASURE
- ANALYSE
- IMPROVE
- CONTROL

https://www.youtube.com/watch?v=aNMULFcLuIM

Six Sigma at GE

Six Sigma DMAIC 12 Steps

26 January 2025 Engineering Management LA V3.0

Change Acceleration Process (CAP)

Simplified Video Explanation!

26 January 2025 Engineering Management LA V3.0

Appendices

Companion Text Book

What is Six Sigma?

Generally, Six Sigma is a set of techniques and tools that help businesses improve their processes. It's a problem-solving methodology that helps enhance business and organizational operations. It can also be defined in a number of other ways:

- •A quality level of 3.4 defects per million opportunities
- •A rate of improvement of 70 percent or better
- •A data-driven, problem-solving methodology of Define-Measure-Analyze-Improve-Control
- •An initiative taken on by organizations to create bottom-line breakthrough change

Six Sigma principles

Six Sigma is based on a handful of basic principles, and these principles create the entire Six Sigma arrangement. Here are Six Sigma's fundamental principles:

- • $Y=f(X) + \varepsilon$: All outcomes and results (theY) are determined by inputs (theXs) with some degree of uncertainty (å).
- •To change or improve results (the Y), you have to focus on the inputs (the Xs), modify them, and control them.
- •Variation is everywhere, and it degrades consistent, good performance. Your job is to find it and minimize it!
- •Valid measurements and data are required foundations for consistent, breakthrough improvement.
- •Only a critical few inputs have significant effect on the output. Concentrate on the critical few.
- •Every decision and conclusion has risk (ε), which must be weighed against the context of the decision.

Course Layout

- Project Definition
- Project Frameworks
 - Hard Skills
 - Soft Skills
- Stakeholder Management
- Organising for Success
- Team Management
- Finance for Non-Finance Managers
- Communication and Presentation Skills

Engineering Management

- Management vs Leadership
- Knowledge and understanding of basic engineering management principles relevant to the branch of engineering and an ability to apply these to one's own work
- Indicative graduate attributes include: (i) basic knowledge and understanding of organisational structures, commercial governance and relevant legal principles and contractual arrangements; (ii) basic knowledge and understanding of the management of resources; (iii) knowledge and understanding of work planning and monitoring tools.

The three pillars of ESG

- Environmental this has to do with an organisation's impact on the planet.
- Social this has to do with the impact an organisation has on people, including staff and customers and the community.
- Governance this has to do with how an organisation is governed. Is it governed transparently?

•