TD1: courbes algébriques planes

Dans la suite les courbes sont définies sur un corps k quelconque sauf précision supplémentaire.

Exercice 1. La courbe $x^2 + y^2 = 1$ a-t-elle des points à l'infini sur \mathbb{F}_q ?

Exercice 2. On considère la courbe algébrique affine $x^2 - 2y^2 = 1$ sur un corps k de caractéristique différente de 2 .

- 1. Est-elle lisse?
- 2. Quels sont ses points à l'infini sur \mathbb{R} , \mathbb{C} et \mathbb{F}_p ?
- 3. La courbe projective est-elle lisse aux points à l'infini?

Exercice 3. Mêmes questions pour la courbe $x^2 - 3y^2 = 1$.

Exercice 4. [Folium] Soit $a \in k$, avec $car(k) \neq 3$. On considère la courbe algébrique

$$x^3 + y^3 - 3axy = 0$$

Est-elle lisse? A-t-elle des points à l'infini (en fonction du corps k)?

Exercice 5. Expliquer pourquoi la courbe affine d'équation $y^2 = 3(1 - (x^2 - 1)(x^2 - 2)(x^2 - 4))$ n'a aucun point sur \mathbb{F}_7 .

Exercice 6. Montrer qu'une courbe de genre 0 ou 1 projective lisse sur \mathbb{F}_p possède toujours au moins un point.

Exercice 7. Déterminer la fonction zêta de l'espace affine et projectif de dimension *d*. Que peut-on dire en relation avec les conjectures de Weil?

Exercice 8. Déterminer la fonction zêta de la courbe affine $\mathscr C$ d'équation affine xy=0, puis de la courbe projective associée $\widetilde{\mathscr C}$. Que peut-on dire en relation avec les conjectures de Weil?

Exercice 9. Déterminer la fonction zêta de la droite projective privée des deux points (0 : 1) et (1 : 0). Que peut-on dire en relation avec les conjectures de Weil?

Exercice 10. Déterminer la fonction zêta de la courbe affine $y^2 = x^3 \operatorname{sur} \mathbb{F}_q$, avec q > 3. Que remarqueton?