Лекция 7

1. Предел функции.

Определение 1 (предела функции по Коши). Пусть функция f определена на некотором множестве $D \subset \mathbb{R}$ и пусть a предельная для D точка. Число A называтся пределом функции f в точке a (по множеству D), если для каждого $\varepsilon > 0$ найдется такое $\delta > 0$, что |f(x)-A|<arepsilon для каждого $x\in D\cap B'_\delta(a)$. Используют обозначения $\lim_{n\to\infty}f(x)=A$ или $f(x) \to A$ при $x \to a$.

С помощью кванторов определние можно записать так: $\lim f(x) = A$, если

$$\forall \varepsilon > 0 \,\exists \delta > 0 \colon \forall x \in D \cap B'_{\delta}(a) |f(x) - A| < \varepsilon.$$

Пример 2. Пусть $f(x)=x^2$, тогда $\lim_{x\to 1}f(x)=1$. Действительно, при $|x-1|<\delta$ выполнено $|f(x)-1|=|x+1||x-1|<(\delta+2)\delta.$ Поэтому при $\delta:=\min\{1,arepsilon/3\}$ выполнено |f(x)-1|<arepsilonпри каждом x, для которого $|x-1| < \delta$.

Если множество D не ограничено сверху (снизу), то можно определить предел функции в «точке» $+\infty$ $(-\infty)$. Для этого по определению будем считать, что $B'_{\varepsilon}(+\infty):=(\varepsilon^{-1},+\infty)$ и $B'_{\varepsilon}(-\infty) := (-\infty, -\varepsilon^{-1}).$

Можно также дать «конкурирующее» определение:

Определение 3 (предела функции по Гейне). Пусть функция f определена на некотором множестве $D \subset \mathbb{R}$ и пусть a предельная для D точка. Число A называтся **пределом** функции f в точке a (по множеству D), если для каждой последовательности точек $x_n \in$ $D \setminus \{a\}, x_n \to a$, выполнено $f(x_n) \to A$ при $n \to \infty$.

Покажем, что два «конкурирующих» определения дают одно и то же.

Теорема 4. Определения по Коши и по Гейне равносильны.

Доказательство. Пусть $\lim_{x\to a} f(x) = A$ в смысле Коши. Рассмотрим последовательность точек $x_n \in D \setminus \{a\}$, сходящуюся к точке a. Для каждого $\varepsilon > 0$ найдется $\delta > 0$, для которого $|f(x)-A|<\varepsilon$ при $x\in D\cap B'_\delta(a)$. Найдется номер N, для которого $x_n\in B_\delta(a)$ при n>N. Т.к. при n>N точки $x_n\in D\setminus\{a\}$ и $x_n\in B_\delta(a)$, то при n>N выполнено $|f(x_n)-A|<arepsilon$. Это и означает, что $f(x_n) o A$ при $n o\infty$. Таким образом, число Aявляется пределом функции f в точке a в смысле Гейне.

Пусть число A не является пределом функции f в точке a в смысле Коши. Это означает, что нашлось такое $\varepsilon > 0$, что для каждого $\delta > 0$ есть точка $x_{\delta} \in D \cap B'_{\delta}(a)$, для которой $|f(x_{\delta})-A|\geq \varepsilon$. Для последовательности точек $x_{1/n}\in D\setminus\{a\}$ выполнено $x_{1/n}\to a$, но последовательность точек $f(x_{1/n})$ не сходится к A. Таким образом, число A не является пределом функции f в точке a в смысле Гейне.

Сформулируем теперь основные свойства предела функции.

Теорема 5. Пусть функции f, g, h определены на некотором множестве $D \subset \mathbb{R}$ и пусть a предельная для D точка. Тогда

- 1) $ecnu \lim f(x) = A \ u \lim f(x) = B, \ mo \ A = B;$

- 1) $ecnu \lim_{x \to a} f(x) = A \ u \lim_{x \to a} f(x) = B, \ mo \ A = B,$ 2) $ecnu \lim_{x \to a} f(x) = A \ u \lim_{x \to a} g(x) = B, \ mo \lim_{x \to a} (\alpha f(x) + \beta g(x)) = \alpha A + \beta B \ \forall \ \alpha, \beta \in \mathbb{R};$ 3) $ecnu \lim_{x \to a} f(x) = A \ u \lim_{x \to a} g(x) = B, \ mo \lim_{x \to a} (f(x) \cdot g(x)) = A \cdot B;$ 4) $ecnu \lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B \neq 0 \ u \ g(x) \neq 0 \ npu \ x \in D, \ mo \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B};$ 5) $ecnu \ \exists \varepsilon > 0: \ f(x) \leq g(x) \ npu \ x \in D \cap B'_{\varepsilon}(a) \ u \lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B, \ mo \ A \leq B;$

- 6) $ecnu \exists \varepsilon > 0$: $f(x) \leq h(x) \leq g(x) npu x \in D \cap B'_{\varepsilon}(a) u \lim_{x \to a} f(x) = \lim_{x \to a} g(x) = A, mo \lim_{x \to a} h(x) = A;$
- $x \to a$ $x \to$
 - 8) если $\lim_{x\to a} f(x) = A \neq 0$, то найдется такое $\delta > 0$, что $|f(x)| > \frac{|A|}{2}$ при $x \in D \cap B'_{\delta}(a)$.

Доказательство. Свойства 1)-6) следуют из аналогичных свойств для предела последовательности и определния предла функции по Гейне.

- 7) Найдется такое $\delta > 0$, что |f(x) A| < 1 при $x \in D \cap B'_{\delta}(a)$. Таким образом, при $x \in D \cap B'_{\delta}(a)$ выполнено |f(x)| < 1 + |A|.
- 8) Найдется такое $\delta > 0$, что $|f(x) A| < \frac{|A|}{2}$ при $x \in D \cap B'_{\delta}(a)$. Таким образом, при $x \in D \cap B'_{\delta}(a)$ выполнено $|f(x)| > \frac{|A|}{2}$.

Первый замечательный предел:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Действительно, при $x \in (0, \pi/2)$, сравнивая площади сектора с площадами двух треугольников, получаем

$$\frac{1}{2} \cdot 1 \cdot \sin x \le \frac{1}{2} \cdot 1^2 \cdot x \le \frac{1}{2} \cdot 1 \cdot \operatorname{tg} x,$$

откуда, в силу четности, при $x \in (-\pi/2, \pi/2), x \neq 0$, выполнено

$$\cos x \le \frac{\sin x}{x} \le 1.$$

Утверждение теперь следует из теоремы о пределе зажатой функции.

Второй замечательный предел:

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e.$$

Пусть $f(x) := \left(1 + \frac{1}{[x]+1}\right)^{[x]}$ и $g(x) := \left(1 + \frac{1}{[x]}\right)^{[x]+1}$. Тогда $f(x) \le \left(1 + \frac{1}{x}\right)^x \le g(x)$. Кроме того, т.к. $\lim_{n \to +\infty} \left(1 + \frac{1}{n+1}\right)^n = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^{n+1} = e$, то и $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = e$. Утверждение теперь следует из теоремы о пределе зажатой функции.

2. Критерий Коши.

Теорема 6 (Критерий Коши). Пусть $f \colon D \to \mathbb{R}$ и a- предельная точка D. Предел $\lim_{x \to a} f(x)$ существует тогда и только тогда, когда для каждого $\varepsilon > 0$ найдется такое $\delta > 0$, что для каждих $x,y \in B'_{\delta}(a) \cap D$ выполнено $|f(x) - f(y)| < \varepsilon$.

Доказательство. Если $\lim_{x\to a} f(x) = A$, то для каждого $\varepsilon>0$ найдется такое $\delta>0$, что для произвольной точки $x\in B'_\delta(a)\cap D$ выполнено $|f(x)-A|<\varepsilon/2$. Тогда для произвольных точек $x,y\in B'_\delta(a)\cap D$ выполнено $|f(x)-f(y)|\leq |f(x)-A|+|A-f(y)|<\varepsilon$.

Предположим, что выполнено условие Коши. Тогда для произвольной последовательности точек $x_n \in D \setminus \{a\}$, $x_n \to a$, последовательность $\{f(x_n)\}$ является фундаментальной, а значит сходится. Пусть $\lim_{n\to\infty} f(x_n) = A$. Если есть другая последовательность точек $y_n \in D \setminus \{a\}$, $y_n \to a$, то рассматрим новую последовательность $x_1, y_1, x_2, y_2, \ldots \subset D \setminus \{a\}$. Эта последовательность также сходится к a, поэтому последовательность образов $f(x_1), f(y_1), f(x_2), f(y_2), \ldots$ снова оказывается фундаментальной, а потому сходится.

В силу того, что предел подпоследовательности сходящейся последовательности совпадает с пределом всей последовательности, получаем, что $\lim_{n\to\infty} f(y_n) = A$. Таким образом, доказано существование предела по Гейне.