Network Intrusion Detection

Sofiane Alhoz

Overview

Goal:

Implement and evaluate the accuracy of different machine learning models for classification tasks using K-Fold Cross-Validation.

- Dataset
- For each model:
 - Perceptron
 - NN3
 - NN5
 - o CNN2
 - o CNN5

We will tackle those points: Model view \rightarrow Hyperparameter Tuning \rightarrow K-Fold evaluation

Conclusion

Dataset

Network intrusion detection involves identifying network flows that carry malicious traffic.

A flow is defined as a sequence of packets sharing the same attributes, such as:

Source IP, Destination IP, Source Port,
Destination Port, Protocol

Flow features refer to the statistical characteristics extracted from these flows.

76 features per file, 5 files

Total: 2830749 samples

```
net_intrusion_detection > MachineLearningCVE > III Tuesday-WorkingHours.pcap_ISCX.csv
161976
161977
161978
          ,0,9,100,15,188,29200,227,6,32,0,0,0,0,0,0,0,0,FTP-Patator
161979
161980
161981
          ,9,105,15,188,29200,227,6,32,0,0,0,0,0,0,0,0,FTP-Patator
161982
          0,0,9,96,15,188,29200,227,6,32,0,0,0,0,0,0,0,0,FTP-Patator
161983
          ,0,0,0,0,9,96,15,188,29200,227,6,32,0,0,0,0,0,0,0,0,FTP-Patator
          0,0,0,9,93,15,188,29200,227,6,32,0,0,0,0,0,0,0,0,FTP-Patator
161984
161985
161986
          ,94,15,188,29200,227,6,32,0,0,0,0,0,0,0,0,FTP-Patator
161987
161988
161989
          ,96,29200,227,3,32,0,0,0,0,0,0,0,0,FTP-Patator
161990
          88,290,272,2,32,0,0,0,0,0,0,0,0,BENIGN
161991
161992
          27.6111111,488,0,0,0,0,0,0,15,1496,18,2297,29200,257,10,32,0,0,0,0,0,0,0,0,0,SSH-Patator
161993
161994
161995
161996
161997
          ,780,0,0,0,0,0,0,0,24,871,33,42384,65535,122,6,32,0,0,0,0,0,0,0,0,0,BENIGN
161998
          0,0,0,0,0,19,871,30,39622,65535,122,6,32,0,0,0,0,0,0,0,0,BENIGN
161999
162000
162001
162002
162003
          7,876,0,0,0,0,0,0,0,27,871,60,86533,65535,122,6,32,0,0,0,0,0,0,0,0,0,BENIGN
162004
162005
```

. 3

Dataset

- Emulated Data
- Imbalanced data
- 76 features (flow statistics)

	Flow Type	Number of flows
1	BENIGN	2,273,097
2	DoS Hulk	231,073
3	PortScan	158,930
4	DDoS	128,027
5	DoS GoldenEye	10,293
6	FTP-Patator	7,938
7	SSH-Patator	5,897
8	DoS slowloris	5,796
9	DoS Slowhttptest	5,499
10	Bot	1,966
11	Web Attack Brute Force	1,507
12	Web Attack XSS	652
13	Infiltration	36
14	Web Attack Sql Injection	21
15	Heartbleed	11
	Total	2,830,743

	48	#We balance data as follows:
	49	#1) oversample small classes so that their population/count is equal to mean_number_of_samples_per_class
	50	#2) undersample large classes so that their count is equal to mean_number_of_samples_per_class
Balance data:	51	<pre>def balance_data(X,y,seed):</pre>
Balarioc data.	52	np.random.seed(seed)
	53	unique,counts = np.unique(y,return_counts=True)
	54	mean_samples_per_class = int(round(np.mean(counts)))
	55	N,D = X.shape #(number of examples, number of features)
3 3 4 .3	56	$new_X = np.empty((0,D))$
balancing the	57 58	<pre>new_y = np.empty((0),dtype=int) for i,c in enumerate(unique):</pre>
O	58 59	temp x = X[y==c]
data helps provide	60	indices = np.random.choice(temp_x.shape[0],mean_samples_per_class) # gets `mean_samples_per_class` indices of class `c`
equal	61	new_X = np.concatenate((new_X,temp_x[indices]),axis=0) # now we put new data into new_X
1	62	temp_y = np.ones(mean_samples_per_class,dtype=int)*c
representation for	63	<pre>new_y = np.concatenate((new_y,temp_y),axis=0)</pre>
-	64	
all classes,	65	# in order to break class order in data we need shuffling
•	66	<pre>indices = np.arange(new_y.shape[0])</pre>
preventing bias	67	np.random.shuffle(indices)
	68	<pre>new_X = new_X[indices,:]</pre>
	69 70	<pre>new_y = new_y[indices]</pre>
		return (new_X,new_y)
	92	# normalization: Features are normalized to have a mean close to zero and comparable variations.
Normalize data:	93	<pre>def normalize(data):</pre>
Mormanize data.	94	<pre>data = data.astype(np.float32)</pre>
	95	
74 4 7	96	eps = 1e-15
normalizing the	97	
	98	mask = data==-1
data standardizes	99	data[mask]=0
the dataset,	100	<pre>mean_i = np.mean(data,axis=0)</pre>
*	101	min_i = np.min(data,axis=0) # to leave -1 (missing features) values as is and exclude in normilizing
improving training	102	<pre>max_i = np.max(data,axis=0)</pre>
1 0	103	
stability and	104	r = max_i-min_i+eps
v	105	<pre>data = (data-mean_i)/r # zero centered</pre>
efficiency	106	March with mission fortunes of
	107	#deal with missing features -1
	108	data[mask] = 0
	109	return data

Perceptron Classifier

```
class Perceptron(nn.Module):
13
          11 11 11
14
15
          Perceptron Regression Model
          111111
16
17
          def __init__(self,input_dim,num_classes,device):
              super(Perceptron, self).__init__()
18
              self.classifier = nn.Linear(input dim, num classes).to(device)
19
20
          def forward(self,x):
21
22
              output= self.classifier(x)
23
              return output
```

Then I tried to identify the best combinations of hyperparameters from a predefined set of values, specifically for **learning rate** and **regularization strength**. These hyperparameters play a crucial role in determining the **convergence speed** and the model's ability to **generalize without overfitting**. By testing different configurations, we can refine the model for better performance in later runs.

Perceptron Classifier

Configurations:

- 1. Batch_size = 1024
- 2. $learning_rates = [,1e-4,1e-2,1e-1]$
- 3. regularizations = [1e-6,1e-4,1e-3]
- 4. Epoch = 25

Training Accuracy on above hyperparameters:

```
[26]
...
(0.0001, 1e-06) -> 60.83
(0.0001, 0.0001) -> 60.38
(0.0001, 0.01) -> 47.48
(0.01, 1e-06) -> 80.50
(0.01, 0.0001) -> 66.94
(0.01, 0.01) -> 54.83
(1.0, 1e-06) -> 78.96
(1.0, 0.0001) -> 67.60
(1.0, 0.01) -> 50.63
```

Results:

Best Learning rate is: [1e-1]

Best Regularization rate is: [1e-6]

KFold Evaluation

Split train 80% / test 20% might be problematic because attacks happens at different and precise moments

=> We need to use KFold Evaluation:

The model is trained **K times**, each time using **K-1 folds for training** and the **remaining fold for testing**.

5Fold Evaluation:

```
Itération 1: [Train | Train | Train | Train | Test ]
Itération 2: [Train | Train | Train | Test | Train]
Itération 3: [Train | Train | Test | Train | Train]
Itération 4: [Train | Test | Train | Train]
Itération 5: [Test | Train | Train | Train]
```

This ensures that every data point is used for both training and testing, leading to better generalization and reducing the risk of overfitting.

Fold #0 TNFO:models:Classifier ini Perceptron Classifier INFO:models:Starting train DEBUG: models: Epoch [1/20], DEBUG: models: Epoch [1/20], Fold #0 DEBUG: models: Epoch [1/20], DEBUG: models: Epoch [1/20], DEBUG: models: Epoch [1/20], balanced test acc: 73.82532672957981 DEBUG: models: Epoch [1/20], DEBUG: models: Epoch [1/20], DEBUG:models:Epoch [2/20], DEBUG: models: Epoch [2/20], Fold #1 DEBUG: models: Epoch [2/20], DEBUG:models:Epoch [2/20], balanced test acc: 79.07317125426042 DEBUG: models: Epoch [2/20], DEBUG:models:Epoch [2/20], DEBUG: models: Epoch [2/20], Fold #2 DEBUG:models:Epoch [2/20], DEBUG: models: Epoch [3/20], DEBUG: models: Epoch [3/20], balanced test acc: 77.87223704729863 DEBUG:models:Epoch [3/20], DEBUG: models: Epoch [3/20], DEBUG: models: Epoch [3/20], Fold #3 DEBUG: models: Epoch [3/20], DEBUG: models: Epoch [3/20], DEBUG: models: Epoch [3/20], balanced test acc: 81,22136833071558 DEBUG: models: Epoch [9/20], DEBUG:models:Epoch [9/20], DEBUG: models: Epoch [10/20] Fold #4 WARNING: models: No improvem Output is truncated. View as a sci balanced test acc: 69.37087913280486 Loaded MachineLearningCVE/ balanced test acc: 73,825

NN3 architecture

144

return x

```
107
      class Net3(nn.Module):
108
109
          A neural network model consisting of multiple layers, used for classification tasks.
110
111
          Args:
          - input_dim (int): The dimensionality of the input data.
112
113
          - num classes (int): The number of classes in the classification problem.
          - device (str): The device to be used for running the computations.
114
115
116
          Attributes:
          - input dim (int): The dimensionality of the input data.
117
          - num classes (int): The number of classes in the classification problem.
118
119
          - device (str): The device to be used for running the computations.
120
121
          Methods:
122
          - forward(x): Defines the forward pass of the model, taking in an input tensor x and returning the output tensor.
123
124
          def __init__(self,input_dim,num_classes,device):
125
              super(Net3, self). init ()
126
127
              # kernel
              print('building NN3')
128
129
              self.input_dim = input_dim
              self.num classes = num classes
130
131
132
              lavers = []
133
              layers.append(nn.Dropout(p=0.1))
              layers.append(nn.Linear(self.input dim, 128))
134
135
              layers.append(nn.BatchNorm1d(num_features=128))
              layers.append(nn.Dropout(p=0.3))
136
              layers.append(nn.Linear(128, 128))
137
              layers.append(nn.BatchNorm1d(num features=128))
138
              layers.append(nn.Linear(128, self.num_classes))
139
              self.classifier = nn.Sequential(*layers).to(device)
140
141
          def forward(self, x):
142
              x = self.classifier(x)
143
```

NN3: Hyperparameter Tuning 1st run

Results:

- Need more epochs: Because, as we can see for example in the loss curves, the model has not yet completed its learning process.
- 2. plot: Best val accuracy: 88.74
- 3. plot: Best parameters:(1e-3,1e-5)

NN3: 2nd run with batchnorm

Settings:

- 1. learning_rates = [1e-3]
- 2. regularizations = [1e-5]
- 3. Num_epochs = 10
- 4. Use of batchnorm

Results:

- Best val accuracy:88.98, small improvement
- 2. Graph feedback: It is still learning. Need more epochs

NN3: 3rd run with batchnorm + dropout

Settings:

- learning_rates = [1e-3]
- 2. regularizations = [1e-5]
- 3. Use of batchnorm
- 4. Use of dropout (0.1,0.3)
- 5. num_epochs=20

Results:

 Best val accuracy:89.22, small improvement

NN3: 5-Fold evaluation

Settings:

- 1. learning rates = [1e-3]
- 2. regularizations = [1e-5]
- 3. Use batchnorm
- 4. Use dropout (0.1,0.3)
- 5. num epochs=20

Results of the 5 fold::

Balanced Test acc: 85.61

```
DEBUG:models:Epoch [1/20], Step [200/398], Loss: 0.4320
DEBUG:models:Epoch [1/20], Step [250/398], Loss: 0.4075
DEBUG:models:Epoch [1/20], Step [300/398], Loss: 0.3748
DEBUG:models:Epoch [1/20], Step [350/398], Loss: 0.3616
DEBUG:models:Epoch [2/20], Step [1/398], Loss: 0.3724
DEBUG:models:Epoch [2/20], Step [51/398], Loss: 0.3449
DEBUG:models:Epoch [2/20], Step [101/398], Loss: 0.3204
DEBUG:models:Epoch [2/20], Step [151/398], Loss: 0.3445
DEBUG:models:Epoch [2/20], Step [201/398], Loss: 0.3468
DEBUG:models:Epoch [2/20], Step [251/398], Loss: 0.3178
DEBUG:models:Epoch [2/20], Step [301/398], Loss: 0.3099
DEBUG:models:Epoch [2/20], Step [351/398], Loss: 0.2928
DEBUG:models:Epoch [3/20], Step [2/398], Loss: 0.3019
DEBUG:models:Epoch [3/20], Step [52/398], Loss: 0.2696
DEBUG:models:Epoch [3/20], Step [102/398], Loss: 0.2973
DEBUG:models:Epoch [3/20], Step [152/398], Loss: 0.2940
DEBUG:models:Epoch [3/20], Step [202/398], Loss: 0.2739
DEBUG:models:Epoch [3/20], Step [252/398], Loss: 0.2703
DEBUG:models:Epoch [3/20], Step [302/398], Loss: 0.2526
DEBUG: models: Epoch [3/20], Step [352/398], Loss: 0,2712
DEBUG:models:Epoch [4/20], Step [3/398], Loss: 0.2667
DEBUG:models:Epoch [4/20], Step [53/398], Loss: 0.2632
DEBUG:models:Epoch [7/20], Step [306/398], Loss: 0.2246
DEBUG:models:Epoch [7/20], Step [356/398], Loss: 0.2239
DEBUG:models:Epoch [8/20], Step [7/398], Loss: 0.2439
WARNING: models: No improvement in accuracy for 10 iterations.
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...
Loaded MachineLearningCVE/runs/nn3/Kfold-4th run/optim Adam lr 0.001 reg 1e-05 bs 5120
balanced test acc: 86.24194198056313
85.73
```

INFO:models:Classifier initialized with method nn3, input_dim 76, num_classes 15, num_

Fold #4

building NN3

INFO:models:Starting training process...

DEBUG:models:Epoch [1/20], Step [50/398], Loss: 1.0672 DEBUG:models:Epoch [1/20], Step [100/398], Loss: 0.6369 DEBUG:models:Epoch [1/20], Step [150/398], Loss: 0.5170

5 layer NN architecture

return self.model(x)

188

```
class Net5(nn.Module):
148
149
          A neural network model with 4 fully connected layers, using batch normalization and dropout for regularization.
150
          Args:
151
          - input dim (int): the number of input features
152
          - num classes (int): the number of output classes
153
          - device (torch.device): the device on which to run the model
154
          Attributes:
          - input dim (int): the number of input features
155
156
          - num classes (int): the number of output classes
          - model (nn.Sequential): the neural network architecture consisting of 4 fully connected layers
157
158
          def __init__(self,input_dim,num_classes,device):
159
160
              super(Net5, self). init ()
161
              # kernel
162
              self.input dim = input dim
163
              self.num classes = num classes
164
              lavers = []
165
              layers.append(nn.Linear(input_dim,128))
166
167
              layers.append(nn.BatchNorm1d(128))
168
              layers.append(nn.ReLU(True))
169
              layers.append(nn.Linear(128,256))
170
171
              layers.append(nn.BatchNorm1d(256))
172
              layers.append(nn.Dropout(p=0.3))
173
              layers.append(nn.ReLU(True))
174
              layers.append(nn.Linear(256,256))
175
176
              layers.append(nn.BatchNorm1d(256))
177
              layers.append(nn.Dropout(p=0.4))
178
              layers.append(nn.ReLU(True))
179
              layers.append(nn.Linear(256,128))
180
181
              layers.append(nn.BatchNorm1d(128))
              layers.append(nn.Dropout(p=0.5))
182
183
              layers.append(nn.ReLU(True))
              layers.append(nn.Linear(128,num_classes))
184
185
186
              self.model = nn.Sequential(*layers).to(device)
187
          def forward(self. x):
```

NN5: Hyperparameter Tuning: 1st run: Dropout higher layers

Configurations:

- 1. learning_rates = [3e-2,1e-3,3e-4,1e-4]
- 2. regularizations = [1e-6,1e-5,1e-4]
- 3. Batchnorm
- 4. Dropout prob: (0, 0, .3, .4, .5)
- 5. Epoch = 20

Results:

1. Val acc: 90.67

Feedback:

- Bigger reg
- 2. Bigger Ir
- 3. Larger epoch

NN5: Run 2: Dropout higher layers

Configurations:

- 1. $learning_rates = [1e-3,3e-3,1e-2,3e-2,1e-1,3e-1]$
- 2. regularizations = [3e-4,1e-3]
- 3. Batchnorm
- 4. Dropout prob: (0, 0, .3, .4, .5)
- 5. Epoch = 60

Results:

1. Val acc: 90.27

Feedback:

- 1. Search does not have to be dense
- 2. Bigger reg range
- 3. smaller lr
- 4. Conflicting to previous run, it could be because of small epoch number previously

NN5: Run 3: Dropout higher layers

Configurations:

- 1. learning_rates = [1e-5,1e-4,3e-4]
- 2. regularizations = [1e-6, 1e-5, 1e-4, 1e-3]
- 3. Batchnorm
- 4. Dropout prob: (0, 0, .3, .4, .5)
- 5. Epoch = 60

Results:

1. Val acc: 91.14,

Feedback:

1. Best param Ir,reg = (1e-4,1e-5)

5-fold Evaluation: NN5

Settings

- 1. Best param lr,reg = (1e-4,1e-5)
- 2. Epochs = 60

Results:

1. 5-Fold Balanced Test acc: 85.63

CNN2 architecture

```
26
     class CNN2(nn.Module):
27
28
         2-layer Convolutional Neural Network Model
29
         def __init__(self,input_dim,num_classes,device):
30
31
             super(CNN2, self). init ()
             # kernel
32
33
             self.input_dim = input_dim
             self.num classes = num classes
34
35
             conv_layers = []
36
37
             conv layers.append(nn.Conv1d(in channels=1,out channels=64,kernel size=3,padding=1)) # ;input dim,64
38
             conv layers.append(nn.BatchNorm1d(64))
39
             conv_layers.append(nn.ReLU(True))
40
41
             conv_layers.append(nn.Conv1d(in_channels=64,out_channels=128,kernel_size=3,padding=1)) #(input_dim,128)
42
             conv_layers.append(nn.BatchNorm1d(128))
43
             conv_layers.append(nn.ReLU(True))
44
45
             self.conv = nn.Sequential(*conv_layers).to(device)
46
             fc layers = []
47
48
             fc layers.append(nn.Linear(input dim*128,num classes))
49
             self.classifier = nn.Sequential(*fc_layers).to(device)
50
         def forward(self, x):
51
52
             batch_size, D = x.shape
53
             x = x.view(batch_size,1,D)
54
             x = self.conv(x)
55
             x = torch.flatten(x,1)
56
             x = self.classifier(x)
57
58
             return x
```

CNN2: run 1

Config::

- 1. num_epochs = 60
- 2. $learning_rates = [3e-2, 1e-3, 3e-4, 1e-4]$
- 3. regularizations = [1e-6,1e-5,1e-4]

acc:

1. Val:91.53

Feedback:

1. Lr 1e-3 is best, maybe need smaller reg

CNN2: run 2

Configs:

- 1. $num_epochs = 60$
- 2. learning_rates = [1e-3]
- 3. regularizations = [1e-8, 1e-7, 1e-6]

acc:

1. Val:91.76

Feedback:

1. Best reg is 1e-6

5-fold Evaluation: CNN2

Settings:

- 1. num_epochs = 60
- 2. learning_rates = [1e-3]
- 3. regularizations = [1e-6]

Results:

1. 5-Fold acc: 88.14%

CNN5 architecture

102

return x

```
class CNN5(nn.Module):
61
 62
          5-layer Convolutional Neural Network Model
 63
 64
          def __init__(self,input_dim,num_classes,device):
 65
              super(CNN5, self). init ()
 66
              # kernel
 67
              self.input_dim = input_dim
 68
              self.num classes = num classes
 69
70
              conv_layers = []
71
              conv layers.append(nn.Conv1d(in channels=1,out channels=64,kernel size=3,padding=1)) # ;input dim,64
72
              conv_layers.append(nn.BatchNorm1d(64))
73
              conv layers.append(nn.ReLU(True))
74
75
              conv_layers.append(nn.Conv1d(in_channels=64,out_channels=128,kernel_size=3,padding=1)) #(input_dim,128)
76
              conv layers.append(nn.BatchNorm1d(128))
77
              conv_layers.append(nn.ReLU(True))
78
79
              conv layers.append(nn.Conv1d(in channels=128,out channels=256,kernel size=3,padding=1)) #(input dim,128)
 80
              conv lavers.append(nn.BatchNorm1d(256))
 81
              conv_layers.append(nn.ReLU(True))
 82
 83
              conv_layers.append(nn.Conv1d(in_channels=256,out_channels=256,kernel_size=3,padding=1)) #(input_dim,128)
 84
              conv_layers.append(nn.BatchNorm1d(256))
 85
              conv_layers.append(nn.ReLU(True))
 86
 87
              conv layers.append(nn.Conv1d(in channels=256,out channels=128,kernel size=3,padding=1)) #(input dim,128)
 88
              conv layers.append(nn.BatchNorm1d(128))
 89
              conv_layers.append(nn.ReLU(True))
 90
 91
              self.conv = nn.Sequential(*conv_layers).to(device)
 92
              fc_layers = []
 93
              fc layers.append(nn.Linear(input dim*128,num classes))
 94
              self.classifier = nn.Sequential(*fc_layers).to(device)
 95
 96
          def forward(self, x):
 97
              batch\_size, D = x.shape
 98
              x = x.view(batch_size, 1, D)
              x = self.conv(x)
 99
100
              x = torch.flatten(x.1)
101
              x = self.classifier(x)
```

5-fold Evaluation: CNN5

Settings:

- 1. num_epochs = 60
- 2. learning_rates = [1e-3]
- 3. regularizations = [1e-6]

Results:

1. 5-Fold acc: 88.18%

Conclusion

Classifier	5-fold Accuracy
Perceptron	76.27
NN3	85.73
NN5	85.61
CNN2	88.14
CNN5	88.18

CNN5 achieved the best results

The Perceptron results confirm that **linear classification is insufficient** for complex intrusion detection tasks.

Also, the results shows that depth increase doesn't make a big difference, contrary to the change from NN to CNN, which makes a big difference.