Mathematics for Computing Science (CS2013)

Regular Expressions

Regular expressions

- Goal: specify languages in a compact fashion
 - The specification should be usable by computer systems
- FSA as mean to specify languages not ideal
 - Formal description: difficult to write, lengthy and error-prone
 - Graphical format: easy to humans to follow, hard to process by computers
- We need a simpler notation to describe unambiguously a language
 - Text-like (not graphic...) and processed like text
 - With a very small set of operations/conventions
- Constructs like
 - "zero or more occurrences of a symbol" followed by
 - "at least one occurrence of a symbol" followed by
 - "one or more occurrences of a or b"
- We have one such notation: regular expressions (REs)

Formal definition of regular expressions

- A regular expression over $T = \{a_1, a_2, ..., a_m\}$ is any string of the form
 - i. λ (lambda)
 - ii. \emptyset (empty set)
 - iii. If $a_i \in T$ then \mathbf{a}_i is a regular expression (symbol in boldface)
 - iv. If R and E are regular expressions then (R+E) is a regular expression
 - v. If R and E are regular expressions then (RE) is a regular expression
 - vi. If R and E are regular expressions then (R^*) is a regular expression
- The syntax of REs is as above the "semantics" will be next
 - Definition is inductive (cases iv-vi) we can go on an on
- Example REs from $T = \{0, 1\}$:
 - (0) and (1) are REs; ((0)+(1)) is an RE (case iv)
 - ((0)+(1)) and (0) are REs; (((0)+(1))(0)) is an RE (case v)
 - ((0)+(1)) is an RE so (((0)+(1))*) is an RE (case vi)

Formal definition of regular expressions (cont'd)

- What do regular expressions mean? What's their "semantics"?
 - In mathematics, the meaning of (2+1)5 is $(3)5 = 3 \times 5 = 15$
- Function S (for semantics) mapping REs to a language $L \subseteq T^*$
 - i. $S(\lambda) = {\lambda}$
 - ii. $S(\emptyset) = \emptyset$
 - iii. $S(a_i) = \{a_i\}$
 - iv. $S((R+E)) = S(R) \cup S(E)$ (union of languages S(R) and S(E))
 - v. S(RE) = S(R)S(E) (concatenation of strings from S(R) with strings from S(E))
 - vi. $S(R^*) = S(R)^*$ (strings from $S(R) \cup \{\lambda\}$ concatenated any number of times)
- N.B.: Concatenation and star operations defined in previous set of slides

Formal definition of regular expressions (cont'd)

- Example REs from $T = \{0, 1\}$:
 - $S((\mathbf{0})) = \{0\}$
 - $S((1)) = \{1\}$
 - $S(((\mathbf{0})+(\mathbf{1}))) = S((\mathbf{0})) \cup S((\mathbf{1})) = \{0\} \cup \{1\} = \{0, 1\}$
 - $S((((\mathbf{0})+(\mathbf{1}))(\mathbf{0}))) = S(((\mathbf{0})+(\mathbf{1})))S((\mathbf{0})) = \{0, 1\} \{0\} = \{00, 10\}$
 - $S((((\mathbf{0})+(\mathbf{1}))^*)) = S(((\mathbf{0})+(\mathbf{1})))^* = \{0, 1\}^* = \{\lambda, 0, 1, 00, 100, 000, ...\}$
- Parentheses can be omitted if we assume precedence
 - Star operator * has precedence over concatenation
 - Concatenation has precedence over union +
 - (((0)+(1))*) becomes (0+1)*
 - (((1)*)((0)+(1))) becomes 1*0+11

Regular languages

• $L \subseteq T^*$ is a **regular language** if there is a regular expression R such that S(R) = L

Computing regular expressions

- What's the language $L \subseteq \{a, b, c, d\}^*$ of the RE $\mathbf{a}^*(\mathbf{b}+\mathbf{c}+\mathbf{d})$?
 - $S(a^*(b+c+d)) = S(a^*)S(b+c+d) = \{a\}^*(\{b\} \cup \{c\} \cup \{d\}) = \{a\}^*\{b, c, d\}$
 - $S(\mathbf{a}^*(\mathbf{b}+\mathbf{c}+\mathbf{d})) = {\lambda, a, aa, aaa, aaaa, ...} {b, c, d}$
 - $S(\mathbf{a}^*(\mathbf{b}+\mathbf{c}+\mathbf{d})) = {\lambda b, \lambda c, \lambda d, ab, ac, ad, aab, aac, aad, aaab, aaac, aaad, ...}$
 - $S(\mathbf{a}^*(\mathbf{b}+\mathbf{c}+\mathbf{d})) = \{b, c, d, ab, ac, ad, aab, aac, aad, aaab, aaac, aaad, ...\}$
 - N.B.: $\lambda w = w\lambda = w$
- In English:
 - All words beginning with zero or more occurrences of symbol a followed by exactly one occurrence of symbol b, c, or symbol d

Computing regular expressions (cont'd)

- What's the language $L \subseteq \{a, b\}^*$ of the RE $(a+b)^*a$?
 - $S((a+b)^*a) = S((a+b)^*)S(a) = ({a} \cup {b})^*{a}$
 - $S((a+b)^*a) = \{a, b\}^*\{a\}$
 - $S((\mathbf{a}+\mathbf{b})^*\mathbf{a}) = {\lambda, a, b, ab, ba, aa, bb,...}{a} = {\lambda a, aa, ba, aba, baa, aaa, bba,...}$
 - $S((\mathbf{a}+\mathbf{b})^*\mathbf{a}) = \{a, aa, ba, aba, baa, aaa, bba,...\}$
- In English:
 - All words beginning with zero or more occurrences of symbols a or b ending with exactly one occurrence of symbol a
- N.B.: $\lambda \notin S((\mathbf{a}+\mathbf{b})^*\mathbf{a})$

Computing regular expressions (cont'd)

- What's the language $L \subseteq \{a, b\}^*$ of the RE $(a+b)^*(a+b)$?
 - $S((a+b)^*(a+b)) = S((a+b)^*)S((a+b)) = (\{a\} \cup \{b\})^*(\{a\} \cup \{b\}))$
 - $S((\mathbf{a}+\mathbf{b})^*(\mathbf{a}+\mathbf{b})) = \{a, b\}^*\{a, b\} = \{\lambda, a, b, ab, ba, aa, bb,...\}\{a, b\}$
 - $S((\mathbf{a}+\mathbf{b})^*(\mathbf{a}+\mathbf{b})) = {\lambda a, \lambda b, aa, ab, ba, bb, aaa, aab, ...}$
 - $S((\mathbf{a}+\mathbf{b})^*(\mathbf{a}+\mathbf{b})) = \{a, b, aa, ab, ba, bb, aaa, aab, ...\}$
- In English:
 - All strings of a's and b's, with at least one character/symbol a or b

Computing regular expressions (cont'd)

- What's the language $L \subseteq \{a, b\}^*$ of the RE $(a+bb)(ab)^*$? • $S((a+bb)(ab)^*) = S(a+bb)S(ab)^* = (S(a) \cup S(bb))(S(ab))^*$ • $S((a+bb)(ab)^*) = (\{a\} \cup (S(b)S(b)))(S(a)S(b))^*$ • $S((a+bb)(ab)^*) = (\{a\} \cup (\{b\}\{b\}))(\{a\}\{b\})^*$ • $S((a+bb)(ab)^*) = (\{a\} \cup \{bb\})(\{ab\})^*$ • $S((a+bb)(ab)^*) = \{a, bb\}(\{ab\})^*$ • $S((\mathbf{a+bb})(\mathbf{ab})^*) = \{\mathbf{a}, \mathbf{bb}\}\{\lambda, \mathbf{ab}, \mathbf{abab}, \mathbf{ababab}, \mathbf{abababab}, \ldots\}$ • $S((\mathbf{a}+\mathbf{bb})(\mathbf{ab})^*) = \{a\lambda, bb\lambda, aab, bbab, aabab, bbabab, aababab, bbababab, ...\}$ • $S((\mathbf{a}+\mathbf{bb})(\mathbf{ab})^*) = \{a, bb, aab, bbab, aabab, bbabab, aababab, bbababab, ...\}$
- In English:
 - All strings of pairs of ab's starting with a or bb

Designing regular expressions

- We can put our definitions to work by "reversing" the problem
 - Provide a regular expression to capture a language
- Provide an RE for $L \subseteq \{a, b\}^*$ with exactly one occurrence of symbol a:
 - Solution: b*ab*
 - Need persuasion? Compute S(b*ab*)!
- Provide an RE for $L \subseteq \{0, 1\}^*$ with substring 00:
 - Solution: (0+1)*00(0+1)*
 - Need persuasion? Compute $S((0+1)^*00(0+1)^*)!$
- Provide an RE for $L \subseteq \{0, 1\}^*$ with substring 00 or 111:
 - Solution: (0+1)*(00+111)(0+1)*
 - Need persuasion? Compute $S((0+1)^*(00+111)(0+1)^*)!$

Designing regular expressions

- Provide an RE for $L \subseteq \{0, 1\}^*$ for all strings with one 1 and two 0s:
 - Solution: **100+001+010**
 - We have to specify all cases
- Provide an RE for $L \subseteq \{0, 1\}^*$ for all strings with the same number of 0s and 1s:
 - Solution: (01)*? No, because 0011 not represented... (and it should)
 - Solution: (0+1)*? No, because 00 represented (and it shouldn't)
 - There is no RE for this language...
 - This is not a coincidence!
- Regular expressions and FSAs are closely connected
 - They have the same expressive power

Properties of regular languages

- If L_1 and L_2 are regular languages then the following are also regular languages:
 - $L_1 \cup L_2$ the union of regular languages is a regular language
 - $L_1 \cap L_2$ the intersection of regular languages is a regular language
 - \bullet $\overline{L_1}$ the complement of a regular language is a regular language
 - L_1L_2 the concatenation of regular languages is a regular language
 - L_1^* the Kleene closure of a regular language is a regular language
- Any finite language is regular

Further notation

- We use R⁺ as a shorthand for RR^{*}
 - $S(R^+) = S(R)^+$
- We use Rⁿ as a shorthand for RR...RR (n times)
 - $S(R^n) = S(R)S(R) \dots S(R)S(R)$
- These do not extend expressiveness of REs

Interesting/useful results

- $\varnothing \neq \{\lambda\}$ empty set **not the same** as set with empty string
- $\emptyset^* = {\lambda}$ Kleene closure of the empty set is set with empty string
- $\lambda^* = {\lambda}$ Kleene closure of empty string is set with empty string
- $\varnothing R = R\varnothing = \varnothing$ empty set concatenated with any regular expression R is the empty set

Summary

- Regular expressions: syntax and meaning
- How to compute the language of a regular expression
- How to design a regular expression to represent a language

Further reading

- Chapter 1 of "Introduction to the theory of computation", by Michael Sipser (there are copies in the library)
- Chapter 3 of "An Introduction to Formal Languages and Automata", by Peter Linz (PDF available on-line)

Summary

- Formal definition of FSA
- How definition enable us to check if a string belongs to a language
- Graphical representation of FSA
- Non-determinism vs. determinism
- Important results (theorems)