2022-2023 MP2I

à chercher pour lundi 06/03/2023, corrigé

TD 20:

Exercice 5. Analyse : on pose $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ où $a,b,c,d \in \mathbb{Z}$ solution. On remarque alors en multipliant par X à gauche que :

$$X^3 + X = X \times \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

En multipliant l'équation de départ par X à droite, on obtient également $X^3 + X = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \times X$. On en déduit en égalisant les deux expressions que X commute avec $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

On a
$$X \times \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a+b & a+b \\ c+d & c+d \end{pmatrix}$$
 et $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \times X = \begin{pmatrix} a+c & b+d \\ a+c & b+d \end{pmatrix}$. On en déduit donc que :

On a donc $X=\begin{pmatrix} a & b \\ b & a \end{pmatrix}$. On a alors $X^2=\begin{pmatrix} a^2+b^2 & 2ab \\ 2ab & a^2+b^2 \end{pmatrix}$. L'équation est alors équivalente au système :

$$\begin{cases} a^2 + b^2 + a = 1 \\ 2ab + b = 1 \\ 2ab + b = 1 \\ a^2 + b^2 + a = 1 \end{cases}$$

On a donc finalement le système $\begin{cases} a^2+b^2+a=1\\ 2ab+b=1 \end{cases}$. En soustrayant les deux lignes, on obtient $(a-b)^2+a-b=0 \Leftrightarrow (a-b)(a-b+1)=0.$ On a donc soit a=b, soit b=a+1.

Si a = b, on a alors $2a^2 + a = 1$, ce qui donne après résolution a = -1 ou $a = \frac{1}{2}$. Puisque $a \in \mathbb{Z}$, on a alors a = -1 (et donc b = -1).

Si b = a + 1, on doit alors résoudre $a^2 + (1 + a)^2 + a = 1$, soit $2a^2 + 3a = 0$, soit a = 0 (et alors b = 1) ou a = -3 (et alors b = -2).

On trouve donc 3 matrices possibles :
$$\begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $\begin{pmatrix} -3 & -2 \\ -2 & -3 \end{pmatrix}$.

Synthèse : on vérifie les solutions et uniquement les deux premières conviennent. On a donc uniquement deux solutions : $\begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix}$ et $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

1

Exercice 17. Soit
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
.

1) Posons $B = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$. On a $A = I_3 + B$. Puisque l'identité commute avec toutes les matrices, on peut utiliser le binôme de Newton. On a donc pour tout $N \in \mathbb{N}$:

$$A^{N} = \sum_{k=0}^{N} {N \choose k} B^{k} I_{3}^{N-k}$$
$$= \sum_{k=0}^{N} {N \choose k} B^{k}.$$

Or, on a $B^2=\begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et B^3 est égale à la matrice nulle! On en déduit alors que pour $N\geq 2$, on a :

$$A^N = I_3 + \binom{N}{1}B + \binom{N}{2}B^2.$$

La formule est encore valable pour N=0 et N=1 si on considère que les coefficients binomiaux $\binom{N}{k}$ sont nuls pour N< k. On en déduit que pour tout $N\in\mathbb{N}$:

$$A^{N} = I_3 + NB + \frac{N(N-1)}{2}B^2.$$

On a donc
$$A^N = \begin{pmatrix} 1 & 2N & (3N + 2N(N-1)) \\ 0 & 1 & 2N \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2N & (2N^2 + N) \\ 0 & 1 & 2N \\ 0 & 0 & 1 \end{pmatrix}.$$

2) A est inversible car elle est triangulaire avec des coefficients non nuls sur la diagonale. Pour déterminer l'inverse, on résoud le système linéaire AX = Y (qui est triangulaire). On est ramené à la résolution du système :

$$\begin{cases} x_1 + 2x_2 + 3x_3 = y_1 \\ x_2 + 2x_3 = y_2 \\ x_3 = y_3 \end{cases}.$$

On trouve alors directement $\left\{ \begin{array}{l} x_1=y_1-2y_2+y_3\\ x_2=y_2-2y_3\\ x_3=y_3 \end{array} \right.$ On en déduit que (on vérifie les calculs en effectuant le produit avec A) :

$$A^{-1} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}.$$

3) On reprend la méthode de la première question en écrivant $A^{-1}=I_3+C$ où $C^3=0$. On en déduit alors que pour $N\in\mathbb{N}$:

$$A^{-N} = I_3 + N \begin{pmatrix} 0 & -2 & 1 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix} + \frac{N(N-1)}{2} \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & -2N & 2N^2 - N \\ 0 & 1 & -2N \\ 0 & 0 & 1 \end{pmatrix}.$$

Exercice 20. La matrice $F \times \overline{F}$ est carrée et pour $i, j \in [1, n]$, on a (en utilisant $\overline{\omega} = \frac{1}{\omega}$):

$$(F\overline{F})_{i,j} = \sum_{k=1}^{n} \omega^{(i-1)(k-1)} \times \frac{1}{\omega^{(k-1)(j-1)}} = \sum_{k=1}^{n} \omega^{(k-1)(i-1-(j-1))} = \sum_{k=1}^{n} \omega^{(k-1)(i-j)}.$$

On remarque alors que $(F\overline{F})_{i,j} = \sum_{k=1}^{n} (\omega^{i-j})^{k-1} = \sum_{k=0}^{n-1} (\omega^{(i-j)})^k$. On a donc une somme géométrique de raison ω^{i-j} .

Si i = j (coefficient diagonal), on a $\omega^{i-j} = 1$ et la somme vaut n.

Si $i \neq j$, on a $1 \leq i, j \leq n$ donc $-(n-1) \leq i - j \leq n - 1$. On en déduit que $i - j \not\equiv 0$ [n] (puisque la seule valeur possible est 0 et que $i \neq j$) et on a donc $\omega^{i-j} \neq 1$ (puisque $e^{\frac{2ik\pi}{n}} = 1 \Leftrightarrow k \equiv 0$ [n]). On peut donc utiliser la formule sur les sommes géométrique et :

$$(F\overline{F})_{i,j} = \sum_{k=0}^{n-1} (\omega^{(i-j)})^k = \frac{1 - \omega^{n(i-j)}}{1 - \omega^{i-j}} = 0$$

puisque $\omega^n = 1$. On a donc finalement que :

$$F \times \overline{F} = nI_n$$
.

Ceci entraine que F est inversible à droite d'inverse $\frac{1}{n}\overline{F}$ et par critère d'inversibilité des matrices carrées, elle est donc inversible d'inverse $\frac{1}{n}\overline{F}$.

TD 21:

Exercice 1.

1) Le numérateur est équivalent à n^2 et le numérateur à n. On en déduit que :

$$u_n \sim \frac{n^2}{n} \sim n.$$

2) En multipliant par la quantité conjuguée :

$$u_n = (\sqrt{n+1} - \sqrt{n-1}) \times \frac{\sqrt{n+1} + \sqrt{n-1}}{\sqrt{n+1} + \sqrt{n-1}}$$

$$= \frac{(n+1) - (n-1)}{\sqrt{n+1} + \sqrt{n-1}}$$

$$= \frac{1}{\sqrt{n}} \times \frac{2}{\sqrt{1 + \frac{1}{n}} + \sqrt{1 - \frac{1}{n}}}.$$

Ceci montre que $u_n \sim \frac{1}{\sqrt{n}}$ puis $\lim_{n \to +\infty} \frac{1}{\sqrt{1 + \frac{1}{n}} + \sqrt{1 - \frac{1}{n}}} = \frac{2}{2} = 1$.

3) En mettant au même dénominateur :

$$u_n = \frac{(n+1) - (n-1)}{(n-1)(n+1)}$$
$$= \frac{2}{n^2 - 1}$$
$$\frac{2}{n^2}.$$

4) Par composition de limites, on a $u_n \to \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$. Puisque $\frac{1}{\sqrt{3}} \neq 0$ et qu'une suite qui tend vers une limite non nulle est équivalente à sa limite, on en déduit que $u_n \sim \frac{1}{\sqrt{3}}$.

5) On a
$$\frac{1}{n^2} \to 0$$
 donc $\sin\left(\frac{1}{n^2}\right) \sim \frac{1}{n^2}$. On en déduit par produit d'équivalents que $u_n \sim \frac{1}{n}$.

6) En regroupant les logarithmes, on trouve :

$$u_n = \ln\left(\frac{n+1}{n}\right) = \ln\left(1 + \frac{1}{n}\right).$$

En utilisant $\ln(1+x)$ $_0x$, on en déduit que $u_n \sim \frac{1}{n}$.

Exercice 2. On a le droit de faire des produits d'équivalents et d'élever un équivalent à une puissance fixée (indépendante de n). On en déduit que :

$$\begin{pmatrix} 2n \\ n \end{pmatrix} = \frac{(2n)!}{(n!)^2}$$

$$\sim \frac{\frac{(2n)^{2n}}{e^{2n}} \sqrt{2\pi(2n)}}{\left(\frac{n^n}{e^n} \sqrt{2\pi n}\right)^2}$$

$$\sim \frac{2^{2n} n^{2n} \sqrt{4\pi n}}{e^{2n}} \times \frac{e^{2n}}{n^{2n} 2\pi n}$$

$$\sim \frac{2^{2n}}{\sqrt{\pi n}}$$

$$\sim \frac{4^n}{\sqrt{\pi n}}.$$

Exercice 4. posons $v_n = \sum_{k=1}^n k!$.

Tout d'abord, puisque (v_n) est une somme de termes positifs, on a $n! \leq v_n$. On a alors :

$$\frac{v_n}{n!} = \frac{n! + (n-1)! + \sum_{k=1}^{n-2} k!}{n!}$$

$$\leq 1 + \frac{1}{n} + \frac{\sum_{k=1}^{n-2} (n-2)!}{n!}$$

$$\leq 1 + \frac{1}{n} + \frac{(n-2)(n-2)!}{n!}$$

$$\leq 1 + \frac{1}{n} + \frac{1}{n}.$$

On en déduit alors que $1 \le \frac{v_n}{n!} \le 1 + \frac{2}{n}$. Le terme de droite tend vers 1. D'après le théorème des gendarmes, on en déduit que $\frac{v_n}{n!} \to 1$, c'est à dire que $v_n \sim n!$.