Information & System Security

Cryptographic Hash Functions

List of some Hash functions

The usual (non-cryptographic) hash functions:

- Summing (SUM8, SUM16, SUM24, SUM32, XOR8)
- CRC series (CRC16, CRC32, CRC64)

The cryptographic (secure) hash functions:

- MD series (MD2, MD4, MD5)
- SHA series (SHA, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512)
- RIPEMD series (RIPEMD-128, RIPEMD-160, RIPEMD-320)
- HAVAL
- Tiger

12-1 INTRODUCTION

- A cryptographic hash function takes a message of arbitrary length and creates a message digest of fixed length.
- The ultimate goal of this chapter is to discuss the details of the two most promising cryptographic hash algorithms— Whirlpool and SHA-512.

Topics discussed in this section:

- 12.1.1 Iterated Hash Function
- 12.1.2 Two Groups of Compression Functions

12.1.1 Iterated Hash Function

Merkle-Damgard Scheme

12.1.2 Two Groups of Compression Functions

1. The compression function is made from scratch.

Message Digest (MD), Secure Hash Algorithm (SHA)

2. A symmetric-key block cipher serves as a compression function.

Whirlpool

Rabin Scheme

Based on Merkle-Damgard scheme

- Compression function is a block cipher (DES, AES)
- Key is *n*-bits block of data
- Plaintext is the previous Ciphertext (message digest).
- Size of the message digest is the size of plaintext of the cipher.

Davies-Meyer Scheme

 Same as Rabin scheme except that it uses forward feed to protect against meet-in-the-middle attack.

Matyas-Meyer-Oseas Scheme

- Is a dual version of the Davies-Meyer scheme: the message block is used as the key to the cryptosystem.
- Used when size of data block and the key are of same size.

Miyaguchi-Preneel Scheme

- Is an extended version of the Matyas-Meyer-Oseas scheme.
- The plaintext, ciphertext, and the key are all ex-ored to create the new digest.
- Used in Whirlpool hash function.

12-2 WHIRLPOOL

- Whirlpool is an iterated cryptographic hash function, based on the Miyaguchi-Preneel scheme, that uses a symmetric-key block cipher in place of the compression function.
- The block cipher is a modified AES cipher that has been tailored for this purpose.

Topics discussed in this section:

- 12.2.1 Whirlpool Cipher
- **12.2.2 Summary**
- 12.2.3 Analysis

12-2 Continued

Whirlpool hash function

12.2.1 Whirlpool Cipher

Block and state in the Whirlpool cipher

Structure of Each Round in the Whirlpool cipher uses four transformations.

SubBytes Like in AES, SubBytes provide a nonlinear transformation.

SubBytes transformations in the Whirlpool cipher

SubBytes transformation table (S-Box)

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0	18	23	C6	E8	87	B8	01	4F	36	A6	D2	F5	79	6F	91	52
1	16	BC	9B	8E	A3	0C	7B	35	1D	E0	D7	C2	2E	4B	FE	57
2	15	77	37	E5	9F	F0	4A	CA	58	C9	29	0A	B1	A0	6B	85
3	BD	5D	10	F4	CB	3E	05	67	E4	27	41	8B	A7	7D	95	C8
4	FB	EF	7C	66	DD	17	47	9E	CA	2D	BF	07	AD	5A	83	33
5	63	02	AA	71	C8	19	49	C9	F2	E3	5B	88	9A	26	32	B0
6	E9	0F	D5	80	BE	CD	34	48	FF	7A	90	5F	20	68	1A	AE
7	B4	54	93	22	64	Fl	73	12	40	08	C3	EC	DB	A1	8D	3D
8	97	00	CF	2B	76	82	D6	1B	B5	AF	6A	50	45	F3	30	EF
9	3F	55	A2	EA	65	BA	2F	C0	DE	1C	FD	4D	92	75	06	8A
A	B2	E6	0E	1F	62	D4	A8	96	F9	C5	25	59	84	72	39	4C
В	5E	78	38	8C	C1	A5	E2	61	В3	21	9C	1E	43	C7	FC	04
C	51	99	6D	0D	FA	DF	7E	24	3B	AB	CE	11	8F	4E	В7	EB
D	3C	81	94	F7	9B	13	2C	D3	E7	6E	C4	03	56	44	7E	A9
E	2A	BB	C1	53	DC	0B	9D	6C	31	74	F6	46	AC	89	14	E1
F	16	3A	69	09	70	B6	C0	ED	CC	42	98	A4	28	5C	F8	86

ShiftColumns transformation in the Whirlpool cipher

MixRows

MixRows transformation in the Whirlpool cipher

AddRoundKey

AddRoundKey transformation in the Whirlpool cipher

Key
expansion
in the
Whirlpool
cipher

Round constant for the ith round is given by

 $RC_{i}[row,column] = SubBytes[8(i-1) + column]$

	עו	ŁU	ש/	C_2	2 E	4B	FE	3/
	00	00	00	00	00	00	00	00
	00	00	00	00	00	00	00	00
0 G PC -	00	00	00	00	00	00	00	00
e.g., RC ₃ -	00	00	00	00	00	00	00	00
	00	00	00	00	00	00	00	00
	00	00	00	00	00	00	00	00
e.g., RC ₃ =	00	00	00	00	00	00	00	00

12.1.2 Summary

Table Main characteristics of the Whirlpool cipher

Block size: 512 bits

Cipher key size: 512 bits

Number of rounds: 10

Key expansion: using the cipher itself with round constants as round keys

Substitution: SubBytes transformation

Permutation: ShiftColumns transformation

Mixing: MixRows transformation

Round Constant: cubic roots of the first eighty prime numbers

12.1.3 Analysis

- Although Whirlpool has not been extensively studied or tested, it is based on a robust scheme (Miyaguchi-Preneel), and for a compression function uses a cipher that is based on AES, a cryptosystem that has been proved very resistant to attacks.
- In addition, the size of the message digest is the same as for SHA-512.
- Therefore it is expected to be a very strong cryptographic hash function.

References

Chapter 12 - Behrouz A Forouzan, Debdeep Mukhopadhyay, Cryptography and Network Security, Mc Graw Hill, 3rd Edition, 2015.

Chapter 12 - William Stallings, Cryptography and Network Security Principles and Practices, 7th Edition, Pearson Education, 2017.