

过滤器的使用

郎永江 技术经理 科学技术服务部 颇尔过滤器(北京)有限公司

Continuously Improving Bioprocesses

This presentation is the work product of Pall Corporation and no portion of this presentation may be copied, published, performed, or redistributed without the express written authority of a Pall corporate officer. © 2018 Pall Corporation.

目录

- •过滤器基本结构与材质
- •过滤器的基本操作
- •过滤器灭菌

过滤器基本结构与材质

一个典型的滤芯结构包括10~15个部件

滤芯结构

打褶结构

- 十英寸(254mm)滤芯的典型膜面积为 0.5 ~ 2.0m²
- 大面积 - 更高流速、更低△p 和更长寿命

打褶结构

特点:耐受正向压力,不耐受反向压力

过滤器的基本操作

滤芯贮存

- **)滤芯必须完整**
- **) 运输时须有保护包装**
- **户贮存时须有保护包装**
- **)保存在干净和干燥环境**
- **)安装前才拆开包装袋**
- ▶ 使用前无外观损伤

滤芯拆包操作

滤芯安装(1)

- ▶警告 确保滤壳没有带压
- **)排尽滤壳中残留液体**
- **)按滤壳操作说明操作**
- **卜检查滤壳花盘**
- ▶ 检查 O 型圈和垫片

滤芯安装(2)

- **)按滤芯操作说明操作**
-) 确认正确的滤芯型号
- 从滤芯开口端打开包装袋
- · 不要用尾翼顶或刺开包装袋
- **)安装时连同包装袋操作**
- ▶ 滤芯安装到滤壳中后取下包装袋

滤芯安装(3)

- ▶ 浸泡或冲洗以润湿 O型圈
- **)使用产品相容的溶液**
- ▶ e.g. 水,溶液,甘油
- · 不要使用低沸点溶液
- ▶e.g. 不要使用酒精
-)消毒时O型圈之间的高蒸汽压会导致端头破损

滤芯安装(3)

- ・ 垂直插入卡槽
- 双手握住靠近滤芯接口的部位
- 顺时针旋转

滤芯安装(3)

滤壳花盘不锈钢内壁

121°C温度下,IPA蒸汽压力达到:

4 bar !

滤芯安装(4)

- ▶ 按操作说明安装滤壳
- ▶ 排尽残留空气使充满全部过滤面积
- **> 关闭出口阀门,间歇开关排气阀**
- **)缓慢充满以排出空气**
- 关闭排气阀,开放出口阀门

滤芯安装(5)

) 建议先期冲洗

> 滤芯制造时经预冲洗

冲洗整个装置以清除下游颗粒和减少溶出物

除菌级过滤器完整性检测

- > 安装检测 灭菌前
- > 灭菌后检测 过滤前
- ▶ 过滤后检测

除菌过滤灭菌关键点(1/2)

•灭菌

- 湿热灭菌, 如饱和蒸汽
 - *最好使用在线蒸汽灭菌(SIP)*(不锈钢系统)
 - 高压锅灭菌 (不锈钢或一次性系统)
- 电离辐射, 如γ射线
 - 最好使用在线辐射灭菌 (一次性系统)
- 气体灭菌, 如过氧化氢蒸汽, 环氧乙烷

除菌过滤灭菌关键点(2/2)

- 避免下游无菌连接
 - 确保过滤后产品无菌性
- 确保过滤器完整性
 - -保证无菌过滤
 - 过滤器很耐用但并非不可破坏的

高压锅灭菌

主要优点

- 灵活,适用于不锈钢连接部件或一次性囊式
- 与SIP相比,对过滤器损坏较小

主要缺点

- 适合小型设备
- 需要完成无菌连接

缓慢排气 (液体模式)

推荐(PDA TR26)

- 出口连接处正确包裹
- 直立放置,利于冷凝水排放
- 不要把其他物品靠在过滤器旁
- 管道长度不宜过长
- 过滤器进口和出口都开放
- 使用预先抽真空(利于空气排出和蒸汽穿透)和缓慢排气(防止冷却过程过大压差)
- 控制温度 <140°C
- 灭菌结束后尽快拿出过滤器

过高温度破坏

聚丙烯在160°C熔融 (~74 psig 蒸汽) 最大推荐 135-140°C (~37 psig 蒸汽)

在线灭菌 (SIP)

在线蒸汽灭菌是对装配在滤壳中的过滤器在蒸汽压力为15~30 psi(1~2 bar)的条件下,进行通蒸汽灭菌的方法。

主要优点

- 系统预先组装
- 蒸气灭菌后无需对连接进一步操作

主要缺点

- 材料和系统在一定压力必须能耐受蒸气
 - 典型应用于不锈钢系统
 - 塑料材质的囊式过滤器不能耐受 SIP, NovaSip® 囊式滤器除外
 - -整个过程可能较长

SIP指导原则 (PDA TR26)

- "…过滤器上游及下游必须安装压力表",并在灭菌过程中监控和调节压差。在高温下不能超过过滤器生产商所推荐的最大耐受压差,通常300mbar(即4.3psi)
- 在冷却阶段,可能需要引入空气或者其它适当的气体以防止过高的反向压差。
- 通气冷却比液体冷却更好。

压差控制不当

过高正向压差

可能原因:

湿滤芯上产生压差: >5 psi

过高反向压差

可能原因: 冷却过程控制不适当

灭菌过程中过滤器关注点1

- 湿热灭菌过程中过滤器损坏的最大因素: 过高 压差
- 干燥滤芯: 确保过滤器在SIP以及冷却过程中不 会润湿; 确保靠近过滤器处有低位冷凝水排放
- 湿润滤芯: SIP,通常推荐双向通入蒸汽(从过滤器上游及下游)

通入蒸汽前,超过泡点进行气体吹扫;

打开排气、排污口;低压力下正向引入蒸汽,用蒸汽加热过滤器并蒸发掉润湿液体,液体被蒸发后再逐渐升高温度;

如可能,可双向通入蒸汽

灭菌过程中过滤器关注点2

- 反向压差会损坏过滤器,压力密封泄露或容器损坏坏
 - 冷却过程中, 1000L蒸汽形成1L水=99.9%体积减少
- 蒸汽灭菌完成后,须引入空气或氮气以替代蒸汽
 - 气体须无油,无水,无颗粒
 - 压差须< 300 mbar (~5 psid)

其他:过滤器安装

•过滤器安装以利于冷凝水排放

常见滤芯损坏

滤芯打褶结构在反向压力作用下,滤膜、支撑层向外部膨出,形成特定的松散构造。

 Presence of radial and /or axial cracks in the endcap and/or filter core can indicate damage resulting from external impacts.

 Bending of the open end adaptor locking tabs, typically occurring with Polypropylene Code 7 hardware.

 Bending of the open end adaptor locking tabs, typically occurring with Polypropylene Code 7 hardware.

损坏滤芯分析 (POR)

Thank You

Continuously Improving Bioprocesses