GBT cheat sheet

The term boosting tree corresponds to an aggregation of tree models ("tree") adaptive to each other ("boosting"). Why do we speak of gradient boosting trees?

Theory:

We want to build a model $h_{_{M}}$ such as :

$$h_{M}(x) = h_{M-1}(x) + \alpha \cdot \delta_{M}(x) = \sum_{t=1}^{M} \alpha \cdot \delta_{t}(x)$$
 (1)

with the objective of minimizing $E(L(h_M(X), Y))$ with La continuous, differentiable and strictly convex cost function and δ a tree model.

Let $\{(x_i, y_i)\}_{i=1,\dots,n}$ be realization of the couple (X, Y) and let $h_{m-1}(x)$ be posed.

Knowing that $h_m(x) = h_{m-1}(x) + \alpha$. $\delta_m(x)$ with α a constant, we are looking for $\delta_m(x)$ a tree model such as :

$$\sum_{i=1}^{n} L(y_{i}, h_{m}(x_{i})) < \sum_{i=1}^{n} L(y_{i}, h_{m-1}(x_{i}))$$
 (2)

which is equivalent to:

$$\sum_{i=1}^{n} L(y_{i}, h_{m-1}(x_{i}) + \alpha. \delta_{m}(x)) < \sum_{i=1}^{n} L(y_{i}, h_{m-1}(x_{i}))$$
(3)

 $x \to L(y, x)$ being L2 and strictly convex, we have (This can be easily demonstrated with a development of taylor to order 1):

$$L(y, x - h.\nabla_x L(y, x)) < L(y, x)$$
 $\forall x \neq x_{min}$ and h small enough (4)

By replacing x by $h_{m-1}(x_i)$ and h by α we obtain :

$$\sum_{i=1}^{n} L(y_{i'}, h_{m-1}(x_{i}) + \alpha. g_{i}) < \sum_{i=1}^{n} L(y_{i'}, h_{m-1}(x_{i}))$$
(5)

with

$$g_i = -\nabla_{h_{m-1}(x_{i})} L(y_i, h_{m-1}(x_i))$$
 for $x \neq x_{min}$ and α small enough.

The g_i are called negative gradient or residuals. As the g_i are dependant from the y_i , we need to approximate them from the x_i observations with a tree model within the meaning of the L2 norm to keep true the inequality (5). So we just have to build a regression tree δ_m from the x_i observations to fit the negative gradient g_i .

So we can therefore develop an algorithm where we initialize $h_0(x)$ for example by the average of the realizations y_i in a regression problem, and then we fit at each step k the regression trees δ_k on the

negative gradients $g_i = -\nabla \sum_{h_{k-1}(x_i)} L(y_i, h_{k-1}(x_i))$. We will choose a fairly small α and the strict convexity

property of L ensures the convergence of the algorithm towards a global minimum as long as the inequality (5) can be held valid by the approximation of the negative gradient from the regression trees $\delta_{
u}$.

Algorithm:

Input: α small, $h_0(x) = c$ (we can take $argmin_c \sum_{i=1}^n L(y_{i'}c)$)

for k = 1 **to** m **do** :

- compute the negative gradients $g_i = -\nabla L(y_i, h_{k-1}(x_i)), \quad i = 1,...,n$
- $\begin{array}{l} \text{fit } \delta_k(x) \text{ on the } (g_i)_{i=1,\dots,n} \\ \\ \text{compute } h_k(x_i) \ = \ h_{k-1}(x_i) \ + \ \alpha.\,\delta_k. \end{array}$

done

It is possible to optimize the descent step α by resolving the one dimensional optimization problem:

$$\alpha_{k} = \operatorname{argmin}_{\alpha} \sum_{i=1}^{n} L(y_{i}, h_{m-1}(x_{i}) + \alpha \cdot \delta_{m}(x))$$

This is the algorithm describe in wikipedia page:

Input: training set $\{(x_i,y_i)\}_{i=1}^n$, a differentiable loss function L(y,F(x)) , number of iterations MAlgorithm:

1. Initialize model with a constant value:

$$F_0(x) = rg \min_{\gamma} \sum_{i=1}^n L(y_i, \gamma).$$

- - 1. Compute so-called pseudo-residuals:

$$r_{im} = -iggl[rac{\partial L(y_i, F(x_i))}{\partial F(x_i)}iggr]_{F(x) = F_{m-1}(x)} \quad ext{for } i = 1, \dots, n.$$

- 2. Fit a base learner (or weak learner, e.g. tree) $h_m(x)$ to pseudo-residuals, i.e. train it using the training set $\{(x_i, r_{im})\}_{i=1}^n$.
- 3. Compute multiplier γ_m by solving the following one-dimensional optimization problem:

$$\gamma_m = rg \min_{\gamma} \sum_{i=1}^n L\left(y_i, F_{m-1}(x_i) + \gamma h_m(x_i)
ight).$$

4. Update the model:

$$F_m(x) = F_{m-1}(x) + \gamma_m h_m(x).$$

3. Output $F_M(x)$.

Go further

To avoid overfitting, XGBoost proposes a penalization of trees, and starting from a Taylor expansion of order 2 of (2) we end up with an approximate solution of original trees.