Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Спецкурс: системы и средства параллельного программирования.

Отчёт № 3. Умножение матрицы на матрицу (Параллельный алгоритм)

Работу выполнил **Козлов М. В.**

Постановка задачи и формат данных.

Задача: Разработать параллельную программу с использованием технологии MPI, реализующую алгоритм умножения плотной матрицы на матрицу AB=C . Тип данных – double. Провести исследование эффективности разработанной программы на системе Blue Gene/P.

Формат командной строки: <исполняемый файл> <матрица A> <матрица B> <матрица C>

Описание алгоритма.

Математическая постановка: Умножение матрицы на матрицу. Матрицы A и B считываются параллельно в каждом процессе (номер блоков вычисляется по номеру процесса).

Анализ времени выполнения: Время вычислялось с помощью функции clock(), таймер включался только на время вычислений и ввода вывода, после чего брался максимум по всем процессам.

Результаты выполнения.

Таблица времени вычислений (сек)

M	N	map	1	8 = 2^3	64 = 4 ^ 3	125 = 5 ^ 3
1024	1024	standart	77.14	9.55	1.19	0.26
2048	2048	standart	1156	77.15	9.55	2.03
4096	4096	standart	NaN	1155.99	77.15	24.43
8192	8192	standart	NaN	NaN	1156	320.61

Таблица времени вычислений и ввода-вывода (сек)

M	N	map	1	8 = 2^3	64 = 4 ^ 3	125 = 5 ^ 3
1024	1024	standart	77.63	9.86	2.18	1.35
2048	2048	standart	1157.06	78.2	12.34	4.82
4096	4096	standart	NaN	1160.84	86.1	33.16
8192	8192	standart	NaN	NaN	1189.23	353

Таблица времени вычислений (сек)

M	N	map	125 = 5 ^ 3
1024	1024	random	0.26
2048	2048	random	2.04
4096	4096	random	24.43
8192	8192	random	320.6

Таблица времени вычислений и ввода-вывода (сек)

M	N	map	125 = 5 ^ 3
1024	1024	random	1.76
2048	2048	random	4.97
4096	4096	random	32.91
8192	8192	random	350.45

Таблица ускорения вычислений (A = T(p1) / T(pn))

M	N	map	1	8 = 2^3	64 = 4 ^ 3	125 = 5 ^ 3	
1024	1024	standart	1	8.007	64.82	296.69	
2048	2048	standart	1	14.98	121.04	569.45	
4096	4096	standart	NaN	NaN	NaN	NaN	
8192	8192	standart	NaN	NaN	NaN	NaN	

Таблица эффективности вычислений (Е = А / р)

M	N	map	1	8 = 2^3	64 = 4 ^ 3	125 = 5 ^ 3
1024	1024	standart	1	1.009	1.012	2.373
2048	2048	standart	1	1.872	1.891	4.555
4096	4096	standart	NaN	NaN	NaN	NaN
8192	8192	standart	NaN	NaN	NaN	NaN

Программа работает быстрее при увелечении числа процессоров, так как матрицы делятся на более маленькие блоки и умножение происходит быстрее (время выполениня программы высчитывается как максимум времени по процессам).

На одном процессоре не удалось посчитать некоторые матрицы: невозможно выделить достаточно памяти для больших матриц или не хватате времени на умножение. Из-за этого таблицы и графики построены не для всех размеров матриц.

