Rank-73733 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(4)$ is 1498764637

General information

Number of lines	2
Number of points	21
Number of singular points	2
Number of Eckardt points	0
Number of double points	1
Number of single points	8
Number of points off lines	12
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{2}
Type of lines on points	$2, 1^8, 0^{12}$

Singular Points

The surface has 2 singular points:

$$0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0) 1: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 2 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_1 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_1$$

Rank of lines: (16, 356)

Rank of points on Klein quadric: (2, 1)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 1 Double points:

The double points on the surface are:

$$P_2 = (0,0,1,0) = \ell_0 \cap \ell_1$$

Single Points

The surface has 8 single points:

The single points on the surface are:

$$0: P_0 = (1, 0, 0, 0)$$
 lies on line ℓ_0

$$1: P_3 = (0,0,0,1)$$
 lies on line ℓ_1

$$2: P_8 = (1, 0, 1, 0)$$
 lies on line ℓ_0

$$3: P_9 = (2,0,1,0)$$
 lies on line ℓ_0

4:
$$P_{10} = (3, 0, 1, 0)$$
 lies on line ℓ_0

The single points on the surface are:

$5: P_{38} = (0,0,1,1)$ lies on line ℓ_1

6:
$$P_{53} = (0, 0, 2, 1)$$
 lies on line ℓ_1

7:
$$P_{69} = (0,0,3,1)$$
 lies on line ℓ_1

7: $P_{52} = (3, 3, 1, 1)$

 $8: P_{59} = (2, 1, 2, 1)$

9: $P_{64} = (3, 2, 2, 1)$

10: $P_{76} = (3, 1, 3, 1)$

11: $P_{83} = (2, 3, 3, 1)$

Points on surface but on no line

The surface has 12 points not on any line:

The points on the surface but not on lines are:

$$0: P_{12} = (1, 1, 1, 0)$$

1:
$$P_{18} = (3, 2, 1, 0)$$

$$2: P_{21} = (2, 3, 1, 0)$$

$$3: P_{27} = (1, 1, 0, 1)$$

$$4: P_{31} = (1, 2, 0, 1)$$

$$5: P_{35} = (1, 3, 0, 1)$$

$$6: P_{47} = (2, 2, 1, 1)$$

Line Intersection Graph

$$\begin{array}{c|c} 0 \ 1 \\ \hline 0 \ 0 \ 1 \end{array}$$

$$\begin{array}{c|c}
0 & 1 \\
1 & 1 & 0
\end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1
in point	P_2

 ${\bf Line~1~intersects}$

Line	ℓ_0
in point	P_2

The surface has 21 points: The points on the surface are:

$0: P_0 = (1,0,0,0)$	$8: P_{21} = (2,3,1,0)$	$16: P_{59} = (2, 1, 2, 1)$
$1: P_2 = (0,0,1,0)$	$9: P_{27} = (1, 1, 0, 1)$	17: $P_{64} = (3, 2, 2, 1)$
$2: P_3 = (0,0,0,1)$	$10: P_{31} = (1, 2, 0, 1)$	$18: P_{69} = (0, 0, 3, 1)$
$3: P_8 = (1,0,1,0)$	$11: P_{35} = (1,3,0,1)$	19: $P_{76} = (3, 1, 3, 1)$
$4: P_9 = (2,0,1,0)$	$12: P_{38} = (0,0,1,1)$	$20: P_{83} = (2, 3, 3, 1)$
$5: P_{10} = (3, 0, 1, 0)$	13: $P_{47} = (2, 2, 1, 1)$	
$6: P_{12} = (1, 1, 1, 0)$	$14: P_{52} = (3, 3, 1, 1)$	
$7: P_{18} = (3, 2, 1, 0)$	15: $P_{53} = (0,0,2,1)$	