THE INTERNATINONAL UNIVERSITY (IU) - VIETNAM NATIONAL UNIVERSITY - HCMC

Final Examination

Date: January 21, 2018

Duration: 120 minutes

SUBJECT: Electromagnetic Theory	
Dean of School of Electrical Engineering	Lecturer
Signature:	Signature:
Full name: Tran Van Su	Full name: Tran Van Su

INTRODUCTIONS:

- 1. One sheet, A4-size paper, with your own hand-writing characters is allowed (Books are prohibited)
- 2. Laptop and communications devices are not allowed except calculators
- 3. Answer all questions

Question 1 (20 Marks)

An infinite plane sheet of current density $\overrightarrow{J_S} = -J_S(t)\widehat{x}$ (A/m), where $J_S(t)$ is as shown in *Figure* below, lie in the z = 0 in free space. Find and sketch:

- a) E_x versus t in the z = 300m plane (10 Marks)
- b) E_x versus z for $t = 1 \mu s$ (10 Marks)

(Note: Students must give calculations and explanations to support the answers)

Question 2 (15 Marks)

The magnetic field of a uniform plane wave in free space is given by

$$\vec{H} = (120\pi)^{-1} \cos(6\pi \times 10^8 t + \beta y)\hat{x}$$

- a) Find the unit vector along the direction of propagation of the wave (5 Marks)
- b) Find β (5 Marks)
- c) What is the electric field \vec{E} at t = 0, y = 1/8 m? (5 Marks)

Question 3 (15 Marks)

For each of the following values of the displacement flux density at a point on the surface of a perfect conductor, find the surface charge density at points:

- a) $\vec{D} = D_o (\hat{x} + 2\hat{y} + 2\hat{z})$ and pointing away from the surface (5 Marks)
- b) $\vec{D} = D_o (0.8\hat{x} + 0.6\hat{y})$ and pointing toward the surface (5 Marks)
- c) If the surface charge density at a point on the surface is zero, find D_o (5 Marks)

Assume D_o to be positive for questions a, b and c

Question 4 (20 Marks)

The parameters of the medium are given as follows:

$$\sigma = 10^{-4} \text{S/m}, \, \varepsilon = 4 \varepsilon_o, \, \mu = \mu_o \text{ and } f = 10^6 \text{Hz} \quad (\varepsilon_o = 8.85 \times 10^{-12} \text{ F/m}, \, \mu_o = 4 \pi \times 10^{-7} \text{ H/m})$$

- a) Compute the attenuation constant, phase constant and intrinsic impedance (5 Marks)
- b) If the magnitude of the electric field is E_o , what is the magnitude of the magnetic field? (5 Marks)
- c) What is the phase different between electric and magnetic fields? (5 Marks)
- d) Compute the expression of the magnetic field

$$\vec{H} = E_o ? \cos(? t - ?z - ?)\hat{x}$$
 (5 Marks)

Question 5 (25 Marks)

For the Transmission line of the following Figure

- a) Calculate and sketch the bounce diagram of the voltages for $0 < t < 4\mu s$ (10 Marks)
- b) Find R_L if the voltage at the middle of the line at 2.8 μ s is 52/9 (V) (10 Marks)

Question 6 (10 Marks)

Find I_B at $t = 1 \mu s$ and I_L at $t = 2 \mu s$

