CS 59300 – Algorithms for Data Science Classical and Quantum approaches

Lecture 10 (10/07)

Sum-of-Squares (III)

https://ruizhezhang.com/course fall 2025.html

What is quantum optimization?

Algorithm Quantum Classical

Classical optimization

Classical approaches for quantum Hamiltonians (DMRG, mean-field methods, everything else)

Quantum approaches for discrete optimization (AQC, QAOA for quantum Hamiltonians)

Quantum approaches for continuous optimization

Classical

Quantum approaches for quantum Hamiltonians (e.g. AQC, QAOA for quantum Hamiltonians)

Quantum

Problem

(Classical) Max Cut

Given a graph G(V, E), find a partition $f: V \rightarrow \{+1, -1\}$ maximizing

$$\sum_{ij\in E} \left(\frac{1-f(i)f(j)}{2}\right)$$

$$"f(i) \neq f(j)"$$

- One of Karp's 21 NP-complete problems
- 0.878-approximation by Goemans and
 Williamson using SDP and randomized rounding

Max-cut = 8

Interlude: Approximation algorithm

An α -approximation algorithm runs in polynomial time, and for any instance I, delivers an approximate solution such that:

$$\frac{\text{Value}(\text{Approximation}_I)}{\text{Value}(\text{Optimal}_I)} \ge \alpha$$

Approximation algorithm = Relaxation + Rounding

The approximation ratio can be lower bounded by:

$$\rho \coloneqq \min_{I} \frac{\text{Value}(\text{Approximation}_{I})}{\text{fValue}(\text{Relaxation}_{I})} \le \alpha$$

Integrality gap (barrier of the specific relaxation proof)

$$\min_{I} \frac{\text{Value}(\text{Optimal}_{I})}{\text{fValue}(\text{Relaxation}_{I})} \ge \rho$$

Goemans-Williamson algorithm

Relaxation:

For each vertex $i \in V$, assign $v_i \in \mathbb{R}^d$

$$\max \sum_{(i,j)\in E} (1 - \langle v_i, v_j \rangle)/2$$

Gaussian rounding:

- Sample a unit vector $g \in \mathbb{R}^d$
- $\sigma_i \leftarrow \text{sign}(\langle g, v_i \rangle) \ \forall i \in V$

Solving SDP:

$$\max \langle -A_G/2, X \rangle$$

$$s. t. X_{ii} = 1 \ \forall i \in V$$

$$X \geqslant 0$$

Cholesky decomposition:

$$X = \begin{bmatrix} - & v_1^{\mathsf{T}} & - \\ - & v_2^{\mathsf{T}} & - \\ \vdots & \vdots & - \\ - & v_n^{\mathsf{T}} & - \end{bmatrix} \cdot \begin{bmatrix} | & | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | \end{bmatrix}$$

(Classical) Max Cut

Given a graph G(V, E), find a partition $f: V \rightarrow \{+1, -1\}$ maximizing

$$\sum_{ij\in E} \left(\frac{1-f(i)f(j)}{2}\right)$$

$$f(i) \neq f(j)$$

- One of Karp's 21 NP-complete problems
- 0.878-approximation by Goemans and
 Williamson using SDP and randomized rounding

Max-cut = 8

What is the quantum version of Max Cut?

Pauli matrices

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad Y = \begin{bmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{bmatrix}, \qquad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

- $\{I, X, Y, Z\}$ is a basis for 2×2 Hermitian matrices
- $X^2 = Y^2 = Z^2 = I$
- Commutator and anticommutator: $[A,B]\coloneqq AB-BA$ and $\{A,B\}\coloneqq AB+BA$ $[X,Y]=2\mathbf{i}Z, \qquad [Y,Z]=2\mathbf{i}X, \qquad [Z,X]=2\mathbf{i}Y$ $\{X,Y\}=\{Y,Z\}=\{Z,X\}=0 \qquad \text{"swap flips the sign"}$
- Each of X, Y, Z has one eigenvalue +1 and one eigenvalue -1 (their eigenvectors are called X-basis, Y-basis, Z-basis)

X-basis:
$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}, \qquad |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

Pauli matrices (multiple qubits)

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad Y = \begin{bmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{bmatrix}, \qquad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

• For an n-qubit system, we use σ_i for $\sigma \in \{X, Y, Z\}$ to denote applying σ to the i-th qubit:

$$I \otimes \cdots \otimes I \otimes \sigma \otimes I \otimes \cdots \otimes I \in \mathbb{C}^{2^n \times 2^n}$$

Pauli polynomial

- A monomial $\tau = \sigma_1 \sigma_2 \cdots \sigma_n$ with $\sigma_i \in \{I, X_i, Y_i, Z_i\}$
- $\deg(\tau) = |\{i \in [n]: \sigma_i \neq I\}|$
- $\mathcal{P}_n(k)$ is the set of monomials of degree at most k
- A Pauli polynomial is a real linear combination of monomials; its degree is the maximal degree over its terms

 Hermitian operator

- Let G = (V, E) be a graph
- QMC is a special case of 2-local Hamiltonian problem:

Compute
$$\lambda_{\max}(H)$$
 $H = \sum_{ij \in E} h_{ij}$, where $h = \frac{1}{4} \cdot (I - XX - YY - ZZ)$

$$= \frac{1}{2} \cdot (|01\rangle - |10\rangle)(\langle 01| - \langle 10|)$$

$$|0\rangle \qquad \qquad 00 \qquad 01 \qquad 10 \qquad 11$$

$$00 \qquad 01 \qquad 0 \qquad 1 \qquad -1 \qquad 1$$

$$00 \qquad 01 \qquad 1 \qquad -1 \qquad 1$$

$$10 \qquad 11 \qquad 0 \qquad 0$$
(classical) Max-Cut

(classical) Max-Cut

- Let G = (V, E) be a graph
- QMC is a special case of 2-local Hamiltonian problem:

Compute
$$\lambda_{\max}(H)$$
 $H = \sum_{ij \in E} h_{ij}$, where $h = \frac{1}{4} \cdot (I - XX - YY - ZZ)$

where
$$h = \frac{1}{4} \cdot (I - XX - YY - ZZ)$$

$$=\frac{1}{2}\cdot(|01\rangle-|10\rangle)(\langle 01|-\langle 10|)$$

$$\frac{|01\rangle - |10\rangle}{\sqrt{2}}$$

quantum Max-Cut

"Entangled assignment" gets max value

- Let G = (V, E) be a graph
- QMC is a special case of 2-local Hamiltonian problem:

Compute
$$\lambda_{\max}(H)$$
 $H = \sum_{ij \in E} h_{ij}$, where $h = \frac{1}{4} \cdot [I - XX - YY - ZZ)$
$$= \frac{1}{2} \cdot (|01\rangle - |10\rangle)(\langle 01| - \langle 10|)$$

quantum Max-Cut

Term 1: does nothing

- Let G = (V, E) be a graph
- QMC is a special case of 2-local Hamiltonian problem:

Compute
$$\lambda_{\max}(H)$$
 $H = \sum_{ij \in E} h_{ij}$, where $h = \frac{1}{4} \cdot (I - XX - YY - ZZ)$
$$= \frac{1}{2} \cdot (|01\rangle - |10\rangle)(\langle 01| - \langle 10|)$$

quantum Max-Cut

Term 1: does nothing

Term 2: measure in X basis

- -1 if same (+ + or -)
- +1 if same (+ or +)

- Let G = (V, E) be a graph
- QMC is a special case of 2-local Hamiltonian problem:

Compute
$$\lambda_{\max}(H)$$
 $H = \sum_{ij \in E} h_{ij}$, where $h = \frac{1}{4} \cdot (I - XX - YY - ZZ)$
$$= \frac{1}{2} \cdot (|01\rangle - |10\rangle)(\langle 01| - \langle 10|)$$

quantum Max-Cut

Term 1: does nothing

Term 2: should be different in *X*-basis

- Let G = (V, E) be a graph
- QMC is a special case of 2-local Hamiltonian problem:

Compute
$$\lambda_{\max}(H)$$
 $H = \sum_{ij \in E} h_{ij}$, where $h = \frac{1}{4} \cdot (I - XX - YY - ZZ)$
$$= \frac{1}{2} \cdot (|01\rangle - |10\rangle)(\langle 01| - \langle 10|)$$

quantum Max-Cut

Term 1: does nothing

Term 2: should be different in X-basis

Term 3: should be different in *Y*-basis

- Let G = (V, E) be a graph
- QMC is a special case of 2-local Hamiltonian problem:

Compute
$$\lambda_{\max}(H)$$
 $H = \sum_{ij \in E} h_{ij}$, where $h = \frac{1}{4} \cdot (I - XX - YY - ZZ)$

where
$$h = \frac{1}{4} \cdot (I - XX - YY - ZZ)$$

$$=\frac{1}{2}\cdot(|01\rangle-|10\rangle)(\langle 01|-\langle 10|)$$

quantum Max-Cut

Like (classical) Max-Cut in X, Y, and Z basis

Term 1: does nothing

Term 2: should be different in X-basis

Term 3: should be different in *Y*-basis

Term 4: should be different in Z-basis

Interlude: Quantum Lasserre hierarchy (ncSoS)

- Also called non-commutative sum-of-squares hierarchy
- Introduced by Navascués, Pironio, and Acin (NPA hierarchy)

Pseudo-density

- A k-positive pseudo-density $\tilde{\rho} \in \mathbb{C}^{2^n \times 2^n}$ is a $2^n \times 2^n$ Hermitian matrix
- $\operatorname{tr}[\tilde{\rho}] = 1$
- $\operatorname{tr}[\tilde{\rho}P^2] \geq 0$, \forall Pauli polynomial P of degree $\leq k$

We use $\widetilde{\mathcal{D}}_n(k)$ to denote the set of k-positive pseudo-density operators

• Level k of the quantum Lasserre hierarchy finds an optimal k-positive pseudo-density matrix:

$$v_k(H) \coloneqq \max_{\widetilde{\rho} \in \widetilde{\mathcal{D}}_k(n)} \operatorname{tr}[H\widetilde{\rho}] \ge \lambda_{\max}(H)$$

• Convergence: $v_k(H) \ge v_{k+1}(H) \ge \cdots \ge v_n(H) = \lambda_{\max}(H)$

"tighter and tighter upper-bound"

Quantum Lasserre hierarchy

- Let $\tilde{\rho}$ be the optimal pseudo-density solution to \mathcal{L}_k (level k Quantum Lasserre)
- For each Pauli monomial τ , define its relaxed value to be

$$\langle \tau \rangle \coloneqq \operatorname{tr}[\tilde{\rho}\tau]$$
 "pseudoexpectation"

• For QMC, $v_k(H)$ can be written as:

$$v_k(H) = \sum_{ij \in E} \frac{1}{4} \left(1 - \langle X_i X_j \rangle - \langle Y_i Y_j \rangle - \langle Z_i Z_j \rangle \right)$$

Solve quantum Lasserre hierarchy

Pseudoexpectation program

$$v_k(H) \coloneqq \max \sum_{\phi \in \mathcal{P}_n(2k)} c(\phi) \langle \phi \rangle$$

Variables: $\{\langle \tau \rangle : \tau \in \mathcal{P}_n(2k)\}$

Constraints:

- $\langle I \rangle = 1$
- $\mathcal{M}_k \in \mathbb{C}^{n^{\mathcal{O}(k)} \times n^{\mathcal{O}(k)}} : \mathcal{M}_k(\sigma, \tau) \coloneqq \langle \sigma \tau \rangle \text{ for any } \\ \sigma, \tau \in \mathcal{P}_n(k)$

$$\mathcal{M}_k \geq 0$$

Other symmetries

Vector program

$$v_k(H) \coloneqq \max \sum_{\phi \in \mathcal{P}_n(2k)} c(\phi) \langle \phi \rangle$$

Variables: $\{|\tau\rangle \in \mathbb{C}^d : \tau \in \mathcal{P}_n(k)\}$ (any $d \geq |\mathcal{P}_n(k)|$)

Constraints:

- $\langle \tau | \tau \rangle = 1$
- $\langle \tau | \sigma \rangle = \langle \tau \sigma \rangle$
- They yield the same SDP
- Vector version is more convenient for rounding

Parallels between MC and QMC: relaxation

Max Cut

$$v_{MC} \coloneqq \max \sum_{ij \in E} \frac{1 - \langle Z_i | Z_j \rangle}{2}$$
 $s.t. \quad \langle Z_i | Z_i \rangle = 1 \quad \forall i \in V$
 $|Z_i \rangle \in \mathbb{R}^d \quad \forall i \in V$

Quantum Max Cut (\mathcal{L}_1)

$$v_{QMC} \coloneqq \max \sum_{ij \in E} \frac{1 - \langle X_i | X_j \rangle - \langle Y_i | Y_j \rangle - \langle Z_i | Z_j \rangle}{4}$$

$$s.t. \quad \langle \tau_i | \tau_i \rangle = 1 \quad \forall i \in V, \tau \in \{X, Y, Z\}$$

$$\langle \tau_i | \sigma_i \rangle = 0 \quad \forall i \in V, \tau, \sigma \in \{X, Y, Z\}, \tau \neq \sigma$$

$$|\tau_i \rangle \in \mathbb{R}^d \quad \forall i \in V, \tau \in \{X, Y, Z\}$$

$$v_{SQMC} \coloneqq \max \sum_{ij \in E} \frac{1 - 3\langle W_i | W_j \rangle}{4}$$
s.t. $\langle W_i | W_j \rangle = 1 \quad \forall i \in V$
 $|W_i \rangle \in \mathbb{R}^d \quad \forall i \in V$

Parallels between MC and QMC: rounding algorithms

Max Cut

Input: $|Z_i\rangle \in \mathbb{R}^d$ for each $i \in V$

- Sample $|r\rangle \sim \mathcal{N}(0, I)$
- Output $u_i := \operatorname{sgn}(\langle Z_i | r \rangle) \in \{\pm 1\}$

Goemans-Williamson

Quantum Max Cut (\mathcal{L}_1)

Input: $|W_i\rangle \in \mathbb{R}^d$ for each $i \in V$

- 1. Sample $|r_{\chi}\rangle$, $|r_{\gamma}\rangle$, $|r_{z}\rangle \sim \mathcal{N}(0, I)$
- Output $u_i := \text{Unit}(\langle W_i | r_x \rangle, \langle W_i | r_y \rangle, \langle W_i | r_z \rangle)$

$$\rho_i = \frac{1}{2} (I + (u_i)_1 X_i + (u_i)_2 Y_i + (u_i)_3 Z_i)$$

 $(\rho_i$ is a pure state)

$$\rho = \bigotimes_{i \in [n]} \rho_i$$

product state

Max Cut

Input: $|Z_i\rangle \in \mathbb{R}^d$ for each $i \in V$

- 1. Sample $|r\rangle \sim \mathcal{N}(0, I)$
- 2. Output $u_i \coloneqq \text{Unit}(\langle Z_i | r \rangle) \in \{\pm 1\}$

$$fval = (1 - \langle Z_i | Z_j \rangle)/2$$

$$val = (1 - u_i u_j)/2$$

$$\mathbb{E}_r[u_i u_j] = \mathbb{E}\left[\frac{\langle Z_i | r \rangle}{|\langle Z_i | r \rangle|} \cdot \frac{\langle Z_i | r \rangle}{|\langle Z_i | r \rangle|}\right]$$

Quantum Max Cut (\mathcal{L}_1)

Input: $|W_i\rangle \in \mathbb{R}^d$ for each $i \in V$

- 1. Sample $|r_x\rangle$, $|r_y\rangle$, $|r_z\rangle \sim \mathcal{N}(0, I)$
- Output $u_i := \text{Unit}(\langle W_i | r_x \rangle, \langle W_i | r_y \rangle, \langle W_i | r_z \rangle)$

$$fval = (1 - 3\langle W_i | W_i \rangle)/4$$

$$val = (1 - \langle u_i, u_j \rangle)/4$$

$$\mathbb{E}_{R=(r_x \, r_y \, r_z)}[\langle u_i, u_j \rangle] = \mathbb{E}\left[\left\langle \frac{R|W_i\rangle}{\|R|W_i\rangle\|}, \frac{R|W_j\rangle}{\|R|W_j\rangle\|}\right\rangle\right]$$

Max Cut

Input: $|Z_i\rangle \in \mathbb{R}^d$ for each $i \in V$

- 1. Sample $|r\rangle \sim \mathcal{N}(0, I)$
- 2. Output $u_i := \text{Unit}(\langle Z_i | r \rangle) \in \{\pm 1\}$

Quantum Max Cut (\mathcal{L}_1)

Input: $|W_i\rangle \in \mathbb{R}^d$ for each $i \in V$

- 1. Sample $|r_x\rangle$, $|r_y\rangle$, $|r_z\rangle \sim \mathcal{N}(0, I)$
- 2. Output $u_i := \text{Unit}(\langle W_i | r_x \rangle, \langle W_i | r_y \rangle, \langle W_i | r_z \rangle)$

Lemma (Briët et al. '14). Let u, v be unit vectors in \mathbb{R}^d and let $R \in \mathbb{R}^{k \times d}$ be a random matrix whose entries are *i.i.d.* Gaussian $\mathcal{N}(0,1)$. Then,

$$\mathbb{E}\left[\left\langle\frac{Ru}{\|Ru\|},\frac{Rv}{\|Rv\|}\right\rangle\right] = F(k,\langle u,v\rangle)$$

Some hypergeometric function (explicitly computable)

Max Cut

Input: $|Z_i\rangle \in \mathbb{R}^d$ for each $i \in V$

- 1. Sample $|r\rangle \sim \mathcal{N}(0, I)$
- 2. Output $u_i \coloneqq \text{Unit}(\langle Z_i | r \rangle) \in \{\pm 1\}$

$$fval = (1 - \langle Z_i | Z_j \rangle)/2$$

$$\mathbb{E}_r[\text{val}] = \frac{1 - F(1, \langle Z_i | Z_j \rangle)}{2}$$

Quantum Max Cut (\mathcal{L}_1)

Input: $|W_i\rangle \in \mathbb{R}^d$ for each $i \in V$

- 1. Sample $|r_x\rangle$, $|r_y\rangle$, $|r_z\rangle \sim \mathcal{N}(0, I)$
- Output $u_i := \text{Unit}(\langle W_i | r_x \rangle, \langle W_i | r_y \rangle, \langle W_i | r_z \rangle)$

$$fval = (1 - 3\langle W_i | W_j \rangle)/4$$

$$\mathbb{E}_{r_x,r_y,r_z}[\text{val}] = \frac{1 - F(3,\langle W_i | W_j \rangle)}{4}$$

Max Cut

Input: $|Z_i\rangle \in \mathbb{R}^d$ for each $i \in V$

- 1. Sample $|r\rangle \sim \mathcal{N}(0, I)$
- 2. Output $u_i := \text{Unit}(\langle Z_i | r \rangle) \in \{\pm 1\}$

$$fval = (1 - \langle Z_i | Z_j \rangle)/2$$

$$\alpha = \frac{\mathbb{E}_r[\text{val}]}{\text{fval}} \ge \min_{t \in [-1,1]} \frac{1 - F(1,t)}{1 - t}$$

$$\approx 0.878$$

Quantum Max Cut (\mathcal{L}_1)

Input: $|W_i\rangle \in \mathbb{R}^d$ for each $i \in V$

- 1. Sample $|r_x\rangle$, $|r_y\rangle$, $|r_z\rangle \sim \mathcal{N}(0, I)$
- Output $u_i := \text{Unit}(\langle W_i | r_x \rangle, \langle W_i | r_y \rangle, \langle W_i | r_z \rangle)$

$$fval = (1 - 3\langle W_i | W_j \rangle)/4$$

$$\alpha = \frac{\mathbb{E}_{r_x, r_y, r_z}[\text{val}]}{\text{fval}} \ge \min_{t \in [-1, 1/3]} \frac{1 - F(3, t)}{1 - 3t}$$

$$\approx 0.498$$

Can we do better?

Classical max cut: No.

- Khot-Kindler-Mossel-O'Donnell '07: Assuming *Unique Game Conjecture*, it is NP-hard to achieve $(0.878+\epsilon)$ -approximation for MC
- Raghavendra '08, Raghavendra-Steurer '09: Degree-2 SoS (level 1 SDP) is the best approximation algorithm for all constraints satisfaction problems (CSPs), assuming UGC

Quantum max cut: possible!

• If only using product state, the approximation ratio upper bound is 0.5 > 0.498

opt = 1

val =
$$(1 - \langle u_i, u_j \rangle)/4 \le 0.5$$

Towards better approximation

 $\gamma \coloneqq -0.919 \dots$ is a critical point

Edges with $\langle W_i | W_i \rangle > \gamma$ have approximation ratio $\geq \frac{1}{2}$

Partial rounding

Case 1: "small" edges

Fact. The small edges form a matching in the graph

Fact. The small edges form a matching in the graph

Fact. The small edges form a matching in the graph

We round a vertex only it does not adjacent to any small edge

We round a large edge only if it does not intersect with any small edge

- Two qubits i and j are not entangled
- $\rho_i = I$ (i.e. $|0\rangle$ w.p. 0.5 and $|1\rangle$ w.p. 0.5)
- Then, no matter what ρ_j is,

$$val = tr[h_{ij}\rho_i \otimes \rho_j] = 1/4$$

We need to show that the SDP value fval < 1/2 for this edge:

Lemma. If an edge ik has $\langle W_i | W_k \rangle < \gamma$, then any adjacent edge ij has $\langle W_i | W_j \rangle > -1/3$

- \rightarrow fval = $(1 3\langle W_i | W_j \rangle)/4 < 1/2$
- The small edges form a matching

Full algorithm

- 1. Solve the level 2 quantum Lasserre hierarchy \mathcal{L}_2 for H
- 2. Let *S* be the set of small edges
- 3. Let $B := \{i \in V : \forall j, ij \notin S\}$
- 4. Gaussian rounding for $i \in B$, and let ρ_i be the resulting state
- 5. Output the state

$$\rho = \bigotimes_{i,j \in L} \left(\frac{I - Z_i Z_j}{4} \right) \bigotimes_{k \in B} \rho_k$$
 (mixed) product state

Theorem (Parekh-Thompson '22).

There exists an efficient classical algorithm that approximates QMC using product states and achieves the optimal 1/2-approximation ratio

Lemma. If an edge ij has $\langle W_i | W_j \rangle < \gamma$, then any adjacent edge ik has $\langle W_i | W_k \rangle > -1/3$

Physical intuition: Monogamy of entanglement

Lemma. If an edge ij has $\langle W_i | W_j \rangle < \gamma$, then any adjacent edge ik has $\langle W_i | W_k \rangle > -1/3$

Definition 17 (Quantum Lasserre hierarchy). We are given as input $H = \sum_{\phi \in \mathcal{P}_n(2k)} c(\phi)\phi$, with $H \in \mathcal{H}_n$. Level k of the Quantum Lasserre hierarchy, denoted \mathcal{L}_k , is defined by the following vector program:

$$\nu_{k}(H) := \max \sum_{\phi \in \mathcal{P}_{n}(2k)} c(\phi) \langle \phi \rangle
s.t. \qquad \langle \tau | \tau \rangle = 1 \qquad \forall \tau \in \mathcal{P}_{n}(k)
\langle \tau | \sigma \rangle = \langle \tau \sigma \rangle \quad \forall \tau, \sigma \in \mathcal{P}_{n}(k)
| \tau \rangle \in \mathbb{C}^{d} \qquad \forall \tau \in \mathcal{P}_{n}(k),$$
(19)

for any integer $d \geq |\mathcal{P}_n(k)|$.

• Unitary SWAP operator: $S_{ij} = (I + X_iX_j + Y_iY_j + Z_iZ_j)/2$

• $\langle W_i | W_j \rangle = (\langle X_i X_j \rangle + \langle Y_i Y_j \rangle + \langle Z_i Z_j \rangle)/3 = (2\langle S_{ij} \rangle - 1)/3$

Lemma. If an edge ij has $\langle W_i | W_j \rangle < \gamma$, then any adjacent edge ik has $\langle W_i | W_k \rangle > -1/3$

- Unitary SWAP operator: $S_{ij} = (I + X_iX_j + Y_iY_j + Z_iZ_j)/2$
- $\langle W_i | W_j \rangle = (\langle X_i X_j \rangle + \langle Y_i Y_j \rangle + \langle Z_i Z_j \rangle)/3 = (2\langle S_{ij} \rangle 1)/3$
- $\langle W_i | W_j \rangle < \gamma$ is equivalent to $\langle S_{ij} \rangle < (3\gamma + 1)/2$
- $\langle W_i | W_k \rangle > -1/3$ is equivalent to $\langle S_{ik} \rangle > 0$

If $\langle S_{ij} \rangle < (3\gamma + 1)/2$, then any adjacent edge ik has $\langle S_{ik} \rangle > 0$

Consider the Gram matrix of $|I\rangle$, $|S_{12}\rangle$, $|S_{13}\rangle$, $|S_{23}\rangle$:

$$\widetilde{M}(P,Q) \coloneqq \langle P|Q \rangle \quad \forall \ P,Q \in \{I,S_{12},S_{13},S_{23}\}$$

- By the PSD constraint in \mathcal{L}_2 , $\widetilde{M} \geqslant 0$
- Define $M := (\widetilde{M} + \widetilde{M}^{\mathsf{T}})/2 \in \mathbb{R}^{4 \times 4}, M \geq 0$
- $M(P,P) = (\langle P^2 \rangle + \langle P^2 \rangle)/2 = \langle I \rangle = 1$
- $M(S_{ij}, I) = \langle S_{ij} \rangle$
- $M(S_{ij}, S_{ik}) = (\langle S_{ij} \rangle + \langle S_{ik} \rangle + \langle S_{jk} \rangle \langle I \rangle)/2$

Identity for SWAP operator:

$$S_{ij}S_{ik} + S_{ik}S_{ij} = (S_{ij} + S_{ik} + S_{jk} - I)/2$$

$$M = \begin{pmatrix} 1 & p & q & r \\ p & 1 & \frac{s-1}{2} & \frac{s-1}{2} \\ q & \frac{s-1}{2} & 1 & \frac{s-1}{2} \\ r & \frac{s-1}{2} & \frac{s-1}{2} & 1 \end{pmatrix}$$

$$p = \langle S_{12} \rangle, q = \langle S_{13} \rangle, r = \langle S_{23} \rangle,$$

 $s = p + q + r$

Claim 1. $M \ge 0$ is equivalent to:

$$0 \le p + q + r \le 3$$
$$p^2 + q^2 + r^2 + 2(p + q + r) - 2(pq + pr + qr) \le 3$$

Schur complement:

For any symmetric matrix M of the form

$$M = \begin{pmatrix} 1 & b^{\mathsf{T}} \\ b & C \end{pmatrix}$$

 $M \ge 0$ if and only if:

1.
$$C \geq 0$$

$$2. (I - CC^+)b = 0$$

3.
$$1 - b^{\mathsf{T}} C^{\mathsf{+}} b \ge 0$$

$$M = \begin{pmatrix} 1 & p & q & r \\ p & 1 & \frac{s-1}{2} & \frac{s-1}{2} \\ q & \frac{s-1}{2} & 1 & \frac{s-1}{2} \\ r & \frac{s-1}{2} & \frac{s-1}{2} & 1 \end{pmatrix}$$

Lemma. If $\langle S_{ij} \rangle < (3\gamma + 1)/2$, then any adjacent edge ik has $\langle S_{ik} \rangle > 0$

Proof.

Solving the inequalities:

$$0 \le p + q + r \le 3$$
$$p^2 + q^2 + r^2 + 2(p + q + r) - 2(pq + pr + qr) \le 3$$

- We get that if $p \le -\sqrt{3}/2$, then $q \ge 0$ (equality attained with $p = -\sqrt{3}/2$, q = 0, $r = \sqrt{3}/2$)
- Since $(3\gamma + 1)/2 < -0.878 < -\frac{\sqrt{3}}{2} \approx -0.866$, we are done

Approximation algorithms for quantum max cut

Reference	Ratio	Remark
[GP19]	0.498	General graphs, outputs product state
[PT22]	1/2	General graphs, outputs product state
[HTPG24]	0.526	General graphs, uses SOC instead of SDP
[AGM20]	0.531	General graphs
[PT21]	0.533	General graphs
[Lee 22]	0.562	General graphs
[LP24]	0.595	General graphs
$[JKK^+24]$	0.599	General graphs, improved analysis of [LP24]
Thm. 3.11	0.603	General graphs, improved analysis of [LP24]
[Kin 23]	0.582	Triangle-free graphs
Thm. 4.5	0.61383	Triangle-free graphs
[Kin 23]	$\frac{1}{\sqrt{2}} \approx 0.707$	Bipartite graphs
Thm. 5.6	0.8162	Bipartite graphs

(Gribling-Sinjorgo-Sotirov '25)