Processos importantes - Autorregressivos (AR)

Wilmer Yecid Córdoba Camacho

Unicap

2025

Conteúdo

- ① AR(1)
- 2 AR(2)

3 Exemplos

Importância do Processo AR

- Modelo básico e intuitivo: descreve a evolução de uma variável no tempo a partir dos seus próprios valores passados.
- Base para modelos mais complexos: como ARMA, ARIMA, SARIMA.
- Capacidade de previsão: eficiente para previsões de curto prazo.
- Captura de dependência temporal: modela a correlação serial.
- Versatilidade: aplicado em economia, finanças, engenharia, ciências sociais e ambientais.

Por que "Autorregressivo"?

- Auto: porque a variável depende de si mesma em momentos anteriores.
- Regressivo: porque essa dependência é expressa por uma regressão linear dos valores passados sobre o valor presente.

Definição Formal

Um processo AR de ordem p é dado por:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \epsilon_t$$

onde:

- y_t: valor atual da série temporal;
- ϕ_i : coeficientes autorregressivos;
- ϵ_t : ruído branco (erro aleatório).

Resumo

Essência do AR

O valor presente de uma série é uma regressão linear dos seus próprios valores passados mais um termo de ruído.

Considere o processo

$$y_t = c + \phi y_{t-1} + \varepsilon_t$$

em que ε_t é um ruído branco. Esse processo é chamado de autorregressivo de ordem 1 ou AR(1).

Ele é (fracamente) estacionário?? Depende das condições!!

- (i) Valor esperado constante
- (ii) Variância constante
- (iii) Covariância dependente somente do intervalo

Propriedades do AR(1) - Valor esperado

O valor esperado é constante: Já aprendemos a calcular a solução desta equação em diferenças

$$y_t = c \sum_{j=0}^{t-1} \phi^j + \phi^t y_0 + \sum_{j=0}^{t-1} \phi^j \varepsilon_{t-j}$$

O valor esperado não condicional desta equação é

$$E(y_t) = E\left[c\sum_{j=0}^{t-1}\phi^j + \phi^t y_0 + \sum_{j=0}^{t-1}\phi^j \varepsilon_{t-j}\right]$$

Pela linearidade da esperança:

$$E(y_t) = c \sum_{j=0}^{t-1} \phi^j + \phi^t y_0 + \sum_{j=0}^{t-1} \phi^j E(\varepsilon_{t-j})$$

<ロ > ← □ > ← □ > ← 亘 > ← 亘 → りへ(^)

Simplificando a Expressão

Como $E(\varepsilon_{t-j}) = 0$ para todo j (ruído branco):

$$\sum_{j=0}^{t-1} \phi^j E(\varepsilon_{t-j}) = 0$$

Portanto:

$$E(y_t) = c \sum_{i=0}^{t-1} \phi^i + \phi^t y_0$$

O valor esperado não condicional do processo AR(1) é:

$$E(y_t) = c \sum_{i=0}^{t-1} \phi^i + \phi^t y_0$$

Propriedades do AR(1) - Valor esperado

Qual o valor esperado de y_{t+s} ? Esse processo é dado por

$$y_{t+s} = c + \phi y_{t+s-1} + \varepsilon_{t+s}$$

Resolvendo e encontrando o valor esperado temos

$$E(y_{t+s}) = c \sum_{j=0}^{t+s-1} \phi^j + \phi^{t+s} y_0$$

Note, portanto que

$$E(y_t) \neq E(y_{t+s})$$

e, portanto, os valores esperados dependem de t e não são constantes.

Propriedades do AR(1) - Valor esperado

Note, no entanto, que quando $|\phi| < 1$ e t grande, ocorre o que já vimos em equações em diferenças

$$\lim_{t \to \infty} y_t = \frac{c}{1 - \phi} + \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j}$$

E o valor esperado não condicional é então

$$E(y_t) = \frac{c}{1 - \phi} = \mu$$

O valor esperado de y_{t+s}

$$\lim_{t \to \infty} y_{t+s} = \frac{c}{1 - \phi} + \sum_{j=0}^{\infty} \phi^{j} \varepsilon_{t+s-j}$$

E o valor esperado não condicional é então

$$E(y_{t+s}) = \frac{c}{1-\phi} = \mu$$

Propriedades do AR(1) - Variância

A variância é finita e independe do tempo

$$E[(y_t - \mu)^2] = E[(\sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j})^2] =$$

$$= E[(\varepsilon_t + \phi \varepsilon_{t-1} + \phi^2 \varepsilon_{t-2} + \ldots)(\varepsilon_t + \phi_{t-1} + \phi^2 \varepsilon_{t-2} + \ldots)]$$

Os únicos elementos dessa multiplicação que terão valor esperado diferente de zero são os termos de erro contemporâneos ao quadrado

$$E[\varepsilon_t^2 + \phi^2 \varepsilon_{t-1}^2 + \phi^4 \varepsilon_{t-2}^2 + \ldots] = \frac{\sigma^2}{1 - \phi^2}$$

Cálculo da Variância

Substituindo a representação de média móvel infinita:

$$\mathsf{Var}(y_t) = E\left[\left(\sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j}\right)^2\right]$$

Expandindo o quadrado:

$$= E\left[(\varepsilon_t + \phi \varepsilon_{t-1} + \phi^2 \varepsilon_{t-2} + \ldots) (\varepsilon_t + \phi \varepsilon_{t-1} + \phi^2 \varepsilon_{t-2} + \ldots) \right]$$

Desenvolvendo o Produto

O produto resulta em:

$$E[\varepsilon_t^2 + \phi^2 \varepsilon_{t-1}^2 + \phi^4 \varepsilon_{t-2}^2 + \ldots + 2\phi \varepsilon_t \varepsilon_{t-1} + 2\phi^3 \varepsilon_{t-1} \varepsilon_{t-2} + \ldots]$$

Propriedades do ruído branco:

- $E(\varepsilon_t \varepsilon_s) = 0$ para $t \neq s$ (não autocorrelacionado)
- $E(\varepsilon_t^2) = \sigma^2$ (variância constante)

Termos com Valor Esperado Não Nulo

Apenas os termos quadráticos têm valor esperado diferente de zero:

$$E[\varepsilon_t^2] = \sigma^2$$

$$E[\phi^2 \varepsilon_{t-1}^2] = \phi^2 \sigma^2$$

$$E[\phi^4 \varepsilon_{t-2}^2] = \phi^4 \sigma^2$$

$$\vdots$$

Todos os termos cruzados são zero:

$$E[\varepsilon_t \varepsilon_{t-1}] = 0, \quad E[\varepsilon_t \varepsilon_{t-2}] = 0, \quad \dots$$

Somatório da Variância

Portanto:

$$Var(y_t) = \sigma^2 + \phi^2 \sigma^2 + \phi^4 \sigma^2 + \phi^6 \sigma^2 + \dots$$

Colocando σ^2 em evidência:

$$Var(y_t) = \sigma^2(1 + \phi^2 + \phi^4 + \phi^6 + ...)$$

Série Geométrica

Temos uma série geométrica com razão ϕ^2 (e $|\phi| < 1 \Rightarrow |\phi^2| < 1$):

$$1 + \phi^2 + \phi^4 + \phi^6 + \ldots = \sum_{j=0}^{\infty} (\phi^2)^j = \frac{1}{1 - \phi^2}$$

Variância final:

$$Var(y_t) = \sigma^2 \cdot \frac{1}{1 - \phi^2} = \frac{\sigma^2}{1 - \phi^2}$$

Verificação das Propriedades

Variância Finita

$$\operatorname{Var}(y_t) = \frac{\sigma^2}{1 - \phi^2} < \infty \quad \text{pois } |\phi| < 1$$

Independente do Tempo

A expressão $\frac{\sigma^2}{1-\phi^2}$ não depende de t, portanto:

$$Var(y_t) = Var(y_{t-s})$$
 para qualquer s

Caso com Constante

Se o processo inclui constante:

$$y_t = c + \phi y_{t-1} + \varepsilon_t$$

A média é $\mu = \frac{c}{1-\phi}$, mas a variância é a mesma:

$$Var(y_t) = E[(y_t - \mu)^2] = \frac{\sigma^2}{1 - \phi^2}$$

Isso ocorre porque a constante afeta apenas a média, não a variância.

Exemplo Numérico

Seja $\phi = 0.8 \text{ e } \sigma^2 = 1$:

$$\mathsf{Var}(y_t) = \frac{1}{1 - (0.8)^2} = \frac{1}{1 - 0.64} = \frac{1}{0.36} \approx 2.78$$

Se $\phi = 0.5$ e $\sigma^2 = 1$:

$$\mathsf{Var}(y_t) = \frac{1}{1 - (0.5)^2} = \frac{1}{1 - 0.25} = \frac{1}{0.75} \approx 1.33$$

Observação: Quanto maior $|\phi|$, maior a variância do processo.

Convergência da Série

A condição $|\phi| < 1$ é crucial para a convergência:

- Se $|\phi| \ge 1$: a série geométrica diverge
- Exemplo: $\phi = 1$ (passeio aleatório):

$$1+1^2+1^4+\ldots=1+1+1+\ldots\to\infty$$

• A variância seria infinita (processo não-estacionário)

Propriedades do AR(1) - Autocovariâncias

Autocovariâncias são finitas e independentes do tempo

$$E[(y_t - \mu)(y_{t-s} - \mu)] = E[(\sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j})(\sum_{j=0}^{\infty} \phi^j \varepsilon_{t-s-j})] =$$

$$= E[(\varepsilon_t + \phi \varepsilon_{t-1} + \phi^2 \varepsilon_{t-2} + \dots)(\varepsilon_{t-s} + \phi \varepsilon_{t-s-1} + \phi^2 \varepsilon_{t-s-2} + \dots)] =$$

$$= \sigma^2 \phi^s [1 + \phi^2 + \phi^4 + \dots] = \frac{\sigma^2 \phi^s}{1 - \phi^2}$$

Se $|\phi|<1$ podemos usar o operador defasagem e transformar o AR(1) em um MA(∞) (MA = Moving Average (Média Móvel).), que é estacionário

$$y_t = c + \phi y_{t-1} + \varepsilon_t$$

Definindo $Ly_t = y_{t-1}$, podemos reescrever:

$$(1 - \phi L)y_t = c + \varepsilon_t$$

Isolando y_t :

$$y_t = \frac{1}{1 - \phi L} (c + \varepsilon_t)$$

Condição de Estacionariedade, Se $|\phi| < 1$, podemos expandir:

$$\frac{1}{1 - \phi L} = 1 + \phi L + \phi^2 L^2 + \phi^3 L^3 + \dots$$

Isto é uma série geométrica em potências de ϕL . Aplicando a expansão:

$$y_t = (1 + \phi L + \phi^2 L^2 + \dots)(c + \varepsilon_t)$$

Separando termos:

$$\underbrace{(1+\phi+\phi^2+\dots)c}_{\frac{c}{1-\phi}} + \underbrace{(\varepsilon_t+\phi\varepsilon_{t-1}+\phi^2\varepsilon_{t-2}+\dots)}_{\sum_{j=0}^{\infty}\phi^{j}\varepsilon_{t-j}}$$

$$y_t = \frac{c}{1 - \phi} + \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j}$$

Interpretação

O processo AR(1), sob $|\phi| < 1$, pode ser representado como um processo MA(∞), estacionário. O valor atual depende de uma média ponderada infinita dos choques passados.

DPropriedades do AR(1) - Autocorrelação

A autocorrelação no lag j é definida como:

$$\rho_j = \frac{\mathsf{Cov}(y_t, y_{t-j})}{\mathsf{Var}(y_t)}.$$

Para o processo autorregressivo de ordem 1:

$$y_t = \phi y_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim iid(0, \sigma^2),$$

temos:

$$\rho_j = \phi^j.$$

Propriedades do AR(1) - Autocorrelaçãoo

$$\mathsf{Cov}(y_t, y_{t-j}) = \sigma^2 \frac{\phi^J}{1 - \phi^2},$$
 $\mathsf{Var}(y_t) = \frac{\sigma^2}{1 - \phi^2}.$

Portanto:

$$\rho_j = \frac{\sigma^2 \frac{\phi^j}{1 - \phi^2}}{\frac{\sigma^2}{1 - \phi^2}} = \phi^j.$$

Propriedades do AR(1) - Autocorrelação

- $\rho_1 = \phi$, $\rho_2 = \phi^2$, em geral $\rho_i = \phi^j$.
- Decaimento exponencial da ACF.
- Se $\phi > 0$: autocorrelação positiva.
- Se $\phi < 0$: autocorrelação alterna o sinal.

Propriedades do AR(1) - Autocorrelação

A variância do processo é:

$$\mathsf{Var}(y_t) = \frac{\sigma^2}{1 - \phi^2}.$$

- Quanto maior o $|\phi|$, maior a variância.
- O gráfico de autocorrelação mostra o decaimento:

$$\rho_1 = \phi, \ \rho_2 = \phi^2, \ \rho_3 = \phi^3, \dots$$

Propriedades do AR(1) - Autocorrelação

A autocorrelação é dada por

$$\rho_j = \frac{\sigma^2 \phi^j}{\frac{1 - \phi^2}{\sigma^2}} \cdot \frac{1 - \phi^2}{1 - \phi^2}$$

Que é simplesmente

$$\rho_j = \phi^j$$

Note ainda que

- Como $var = \frac{\sigma^2}{1-\phi^2}$, quanto maior o $|\phi|$ maior a variância;
- Ao plotar a autocorrelação vamos observar um decaimento exponencial já que a primeira autocorrelação é ϕ , a segunda, ϕ^2 , a terceira ϕ^3 e assim por diante.

Verificação para Casos Particulares

- Para j=0: $\rho_0=\phi^0=1$ (correlação perfeita consigo mesmo)
- Para j = 1: $\rho_1 = \phi^1 = \phi$
- Para j = 2: $\rho_2 = \phi^2$

Exemplo numérico: Se $\phi = 0.8$:

$$\rho_0 = 1$$
 $\rho_1 = 0.8$
 $\rho_2 = 0.64$
 $\rho_3 = 0.512$
 $\rho_4 = 0.4096$
 \vdots

Propriedades da Autocorrelação

Decaimento Exponencial

$$\rho_i = \phi^j \quad \text{com } |\phi| < 1$$

- Decai exponencialmente para zero
- Nunca corta completamente (teoricamente)
- Sinal alterna se $\phi < 0$

Comportamento Assintótico

$$\lim_{j\to\infty}\rho_j=\lim_{j\to\infty}\phi^j=0$$

Quanto mais distante no tempo, menor a correlação.

Relação entre ϕ e a Variância

Lembrando que:

$$\mathsf{Var}(y_t) = \gamma_0 = \frac{\sigma^2}{1 - \phi^2}$$

- Quando $|\phi| \to 1$: $1 \phi^2 \to 0$ Variância $\to \infty$
- Quando $|\phi| \to 0$: $1 \phi^2 \to 1$ Variância $\to \sigma^2$

Interpretação

Quanto maior $|\phi|$, maior a persistência do processo e maior a variância.

Representação Gráfica da FAC

Figura: Função de Autocorrelação do AR(1)

Propriedades do AR(2) - Equações de Yule-Walker

O AR(2) é dado por

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t$$
 $\varepsilon_t \sim RB$

O processo é estacionário se as raízes da equação característica estiverem dentro do círculo unitário. Se for estacionário, podemos escrever o processo com o operador defasagem como já temos feito e usar o operador valor esperado para concluir que

$$E(y_t) \equiv \mu = \frac{c}{1 - \phi_1 - \phi_2}$$

Propriedades do AR(2) - Equações de Yule-Walker

Vamos calcular as autocovariâncias e a variância

$$y_t - \mu = y_t - \frac{c}{1 - \phi_1 - \phi_2}$$

Substituindo o y_t por sua forma funcional

$$y_t - \mu = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t - \frac{c}{1 - \phi_1 - \phi_2}$$

Calculando $c-\frac{c}{1-\phi_1-\phi_2}$ e lembrando que $\mu=\frac{c}{1-\phi_1-\phi_2}$ podemos reescrever a equação anterior como

$$y_t - \mu = \phi_1(y_{t-1} - \mu) + \phi_2(y_{t-2} - \mu) + \varepsilon_t$$

Propriedades do AR(2) - Equações de Yule-Walker

Multiplicando ambos os lados da equação anterior por $(y_{t-j} - \mu)$ e depois usando o operador valor esperado encontramos a covariância

$$(y_t - \mu)(y_{t-j} - \mu) = \phi_1(y_{t-1} - \mu)(y_{t-j} - \mu) + \phi_2(y_{t-2} - \mu)(y_{t-j} - \mu) + \varepsilon_t(y_{t-j} - \mu)$$

E agora encontrando a esperança disso

$$E[(y_t - \mu)(y_{t-j} - \mu)] = \phi_1 E[(y_{t-1} - \mu)(y_{t-j} - \mu)] + \phi_2 E[(y_{t-2} - \mu)(y_{t-j} - \mu)] + E[(y_t - \mu)(y_{t-j} - \mu)(y_{t-j} - \mu)] + E[(y_t - \mu)(y_{t-j} - \mu)(y_{t-j} - \mu)] + E[(y_t - \mu)(y_{t-j} - \mu)(y_{t-j} - \mu)(y_{t-j} - \mu)] + E[(y_t - \mu)(y_{t-j} - \mu)(y_{t-j} - \mu)(y_{t-j} - \mu)(y_{t-j} - \mu)] + E[(y_t - \mu)(y_{t-j} - \mu)(y_{t-j$$

Ou seja,

$$\gamma_i = \phi_1 \gamma_{i-1} + \phi_2 \gamma_{i-2}$$

Propriedades do AR(2) - Equações de Yule-Walker

A variância é dada por $\gamma_0=\phi_1\gamma_1+\phi_2\gamma_2+\sigma^2$ (por quê??) Para calcular as autocorrelações, basta dividir a equação de γ_j por γ_0

$$\rho_j = \phi_1 \rho_{j-1} + \phi_2 \rho_{j-2}$$

Essas equações são chamadas de equações de Yule-Walker e com elas podemos calcular a função de autocorrelação para qualquer defasagem de um AR(2).

Propriedades do AR(2) - Equações de Yule-Walker

A primeira autocorrelação (j=1) é

$$\rho_1 = \phi_1 \rho_0 + \phi_2 \rho_1 \Leftrightarrow \rho_1 = \frac{\phi_1}{1 - \phi_2}$$

A segunda (j = 2)

$$\rho_2 = \phi_1 \rho_1 + \phi_2 \rho_0 \Leftrightarrow \rho_2 = \frac{\phi_1^2}{1 - \phi_2} + \phi_2$$

A s-ésima (j = s)

$$\rho_{\mathsf{s}} = \phi_1 \rho_{\mathsf{s}-1} + \phi_2 \rho_{\mathsf{s}-2}$$

Propriedades do AR(p)

O AR(p) é dado por

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t =$$

$$= c + \sum_{j=1}^p \phi_j y_{t-j} + \varepsilon_t$$

Se as raízes da equação característica estiverem dentro do círculo unitário o processo é estacionário. Se o processo for estacionário, podemos reescrevê-lo como um $MA(\infty)$

$$y_t = \mu + \Psi(L)\varepsilon_t$$

Em que

$$\mu = \frac{c}{1 - (\phi_1 + \phi_2 + \ldots + \phi_p)} \quad \text{e} \quad \Psi(L) = (1 - \phi_1 L - \phi_2 L^2 - \ldots - \phi_p L^p)^{-1}$$

Propriedades do AR(p)

Seguindo os mesmos passos do AR(2): subtraímos μ em ambos os lados, multiplicamos $(y_{t-j} - \mu)$ e usamos o operador valor esperado em ambos os lados, encontramos as equações de Yule-Walker. Para $j=1,2,\ldots$

$$\gamma_j = \phi_1 \gamma_{j-1} + \phi_2 \gamma_{j-2} + \dots + \phi_p \gamma_{j-p}$$

Para j = 0

$$\gamma_0 = \phi_1 \gamma_1 + \phi_2 \gamma_2 + \dots + \phi_p \gamma_p + \sigma^2$$

e as autocorrelações para $j=1,2,\ldots,p$ são dadas por

$$\rho_j = \phi_1 \rho_{j-1} + \phi_2 \rho_{j-2} + \dots + \phi_p \rho_{j-p}$$

AR(1) – Inflação Mensal

Modelo:

$$\pi_t = c + \phi \pi_{t-1} + \varepsilon_t$$

Componentes:

- π_t : inflação no mês t
- c: nível médio de inflação
- φ: persistência da inflação passada
- ε_t : choque aleatório (ruído)

Por que AR(1) é adequado:

- Persistência dos choques: inflação depende do mês anterior
- Estacionariedade: inflação oscila em torno de uma média estável
- Simplicidade: permite calcular média, variância, covariâncias e autocorrelações

Interpretação econômica:

- c representa o nível médio de inflação
- ullet ϕ indica a influência da inflação passada sobre a atual
- captura choques inesperados, como política monetária ou precos

AR(1) - Inflação Mensal

Modelo:

$$\pi_t = c + \phi \pi_{t-1} + \varepsilon_t$$

Parâmetros numéricos:

$$c = 0.2, \quad \phi = 0.7, \quad \sigma = 0.5$$

Passo 1 - Média:

$$\mu = E[\pi_t] = \frac{c}{1 - \phi} = \frac{0.2}{1 - 0.7} = 0.667$$

Passo 2 – Variância:

$$\gamma_0 = Var(\pi_t) = \frac{\sigma^2}{1 - \phi^2} = \frac{0.5^2}{1 - 0.7^2} = 0.612$$

AR(1) – Inflação Mensal (Passo a Passo)

Passo 3 – Covariâncias:

$$\gamma_j = \phi^j \gamma_0$$

$$\gamma_1 = 0.7 \cdot 0.612 = 0.428, \quad \gamma_2 = 0.7^2 \cdot 0.612 = 0.3, \quad \gamma_3 = 0.7^3 \cdot 0.612 = 0.21$$

Passo 4 – Autocorrelações:

$$\rho_j = \frac{\gamma_j}{\gamma_0} = \phi^j$$

$$\rho_1 = 0.7$$
, $\rho_2 = 0.49$, $\rho_3 = 0.343$

Aplicação econômica: previsão da inflação mensal e análise da persistência de choques monetários.

AR(2) – PIB Trimestral

Modelo:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t$$

Componentes:

- y_t : PIB no trimestre t
- c: nível médio de crescimento econômico
- ϕ_1, ϕ_2 : persistência dos dois trimestres anteriores
- ε_t : choque aleatório (ruído)

Por que AR(2) é adequado:

- Efeitos retardados: o PIB depende de dois trimestres anteriores
- Oscilações cíclicas: AR(2) captura picos e quedas no crescimento
- Persistência moderada: influência menor que em séries mensais, mas significativa

Interpretação econômica:

- c representa o nível médio de crescimento
- \bullet ϕ_1 indica influência do trimestre imediatamente anterior
- os indica influência do trimestre com defasagem de dois períodos Wilmer Yecid Córdoba Camacho (Unicap Processos importantes Autorregressivos 2025

AR(2) – PIB Trimestral (Passo a Passo)

Modelo:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t$$

Parâmetros numéricos:

$$c = 0.1$$
, $\phi_1 = 0.5$, $\phi_2 = 0.3$, $\sigma = 0.4$

Passo 1 - Média:

$$\mu = E[y_t] = \frac{c}{1 - \phi_1 - \phi_2} = \frac{0.1}{1 - 0.5 - 0.3} = 0.143$$

Passo 2 – Covariâncias: Usamos as equações de Yule-Walker:

$$\gamma_0 = \phi_1 \gamma_1 + \phi_2 \gamma_2 + \sigma^2$$
$$\gamma_1 = \phi_1 \gamma_0 + \phi_2 \gamma_1$$
$$\gamma_2 = \phi_1 \gamma_1 + \phi_2 \gamma_0$$

Substituindo os números (aproximação numérica):

$$\gamma_0 \approx 0.279$$
, $\gamma_1 \approx 0.18$, $\gamma_2 \approx 0.22$

AR(2) – PIB Trimestral (Passo a Passo)

Passo 3 – Autocorrelações:

$$\rho_j = \frac{\gamma_j}{\gamma_0}$$

$$\rho_1 = \frac{0.18}{0.279} \approx 0.645, \quad \rho_2 = \frac{0.22}{0.279} \approx 0.79$$

Aplicação econômica: permite modelar efeitos retardados e oscilações no crescimento do PIB trimestral.

AR(3) – Taxa de Câmbio Diária

Modelo:

$$x_{t} = c + \phi_{1}x_{t-1} + \phi_{2}x_{t-2} + \phi_{3}x_{t-3} + \varepsilon_{t}$$

Componentes:

- x_t: taxa de câmbio no dia t
- c: nível médio da taxa de câmbio
- ϕ_1, ϕ_2, ϕ_3 : persistência dos três dias anteriores
- ε_t : choque aleatório (ruído)

Por que AR(3) é adequado:

- Influência de múltiplos dias: o valor atual depende dos três dias anteriores
- Oscilações de curto prazo: captura movimentos rápidos e reversões diárias
- Persistência limitada: efeitos de dias passados decaem rapidamente, mas ainda são relevantes

2025

AR(3) - Taxa de Câmbio Diária

Modelo:

$$x_t = c + \phi_1 x_{t-1} + \phi_2 x_{t-2} + \phi_3 x_{t-3} + \varepsilon_t$$

Interpretação econômica:

- c representa o nível médio da taxa de câmbio
- ϕ_1, ϕ_2, ϕ_3 mostram a influência dos três dias anteriores
- ε_t captura choques inesperados, como notícias econômicas ou decisões de bancos centrais

AR(p) – Taxa de Câmbio Diária (p=3) (Passo a Passo)

Modelo:

$$x_{t} = c + \phi_{1}x_{t-1} + \phi_{2}x_{t-2} + \phi_{3}x_{t-3} + \varepsilon_{t}$$

Parâmetros numéricos:

$$c = 0, \quad \phi = [0.4, 0.2, 0.1], \quad \sigma = 0.3$$

Passo 1 - Média:

$$\mu = \frac{c}{1 - (\phi_1 + \phi_2 + \phi_3)} = \frac{0}{1 - (0.4 + 0.2 + 0.1)} = 0$$

AR(p) – Taxa de Câmbio Diária (p=3) (Passo a Passo)

Passo 2 – Covariâncias: Usando as equações de Yule-Walker para AR(3):

$$\gamma_0 = \phi_1 \gamma_1 + \phi_2 \gamma_2 + \phi_3 \gamma_3 + \sigma^2
\gamma_1 = \phi_1 \gamma_0 + \phi_2 \gamma_1 + \phi_3 \gamma_2
\gamma_2 = \phi_1 \gamma_1 + \phi_2 \gamma_0 + \phi_3 \gamma_1
\gamma_3 = \phi_1 \gamma_2 + \phi_2 \gamma_1 + \phi_3 \gamma_0$$

Substituindo os números (aproximação numérica):

$$\gamma_0 \approx 0.082$$
, $\gamma_1 \approx 0.033$, $\gamma_2 \approx 0.019$, $\gamma_3 \approx 0.01$

Passo 3 – Autocorrelações:

$$\rho_j = \frac{y}{\gamma_0}$$

$$\rho_1 = \frac{0.033}{0.082} \approx 0.40, \quad \rho_2 = \frac{0.019}{0.082} \approx 0.23, \quad \rho_3 = \frac{0.01}{0.082} \approx 0.12$$

Aplicação econômica: previsão de taxa de câmbio diária e análise de

cenários de flutuação cambial

2025

Resumo Comparativo

Modelo	Variável	Média	Covariâncias	Autocorrelações
AR(1)	Inflação	0.667	0.428, 0.3, 0.21	0.7, 0.49, 0.343
AR(2)	PIB	0.143	0.18, 0.22	0.645, 0.79
AR(3)	Câmbio	0	0.033, 0.019, 0.01	0.40, 0.23, 0.12

Conclusão

- AR(1) captura persistência simples de choques econômicos.
- AR(2) permite efeitos retardados e oscilações, útil para PIB.
- AR(p) generaliza para múltiplas defasagens, essencial para séries financeiras complexas.
- As propriedades (média, variância, covariâncias, autocorrelações) são fundamentais para previsão e simulação.

Atividade – Modelagem de Séries Temporais com AR

Objetivo:

- Aplicar modelos AR(1), AR(2) e AR(p) em séries econômicas.
- Calcular propriedades teóricas: média, variância, covariâncias e autocorrelações.
- Simular séries temporais e interpretar resultados economicamente.

Parte 1 – AR(1) – Inflação Mensal

Modelo:

$$\pi_t = c + \phi \pi_{t-1} + \varepsilon_t$$

Parâmetros: $c = 0.2, \phi = 0.7, \sigma = 0.5$

- Calcule: média, variância, covariâncias $\gamma_1, \gamma_2, \gamma_3$ e autocorrelações ρ_1, ρ_2, ρ_3
- Simule 50 meses de inflação e compare com os valores teóricos
- Interprete a persistência de choques monetários

Parte 2 – AR(2) – PIB Trimestral

Modelo:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t$$

Parâmetros: $c = 0.1, \phi_1 = 0.5, \phi_2 = 0.3, \sigma = 0.4$

- Calcule: média, covariâncias e autocorrelações
- Simule 50 trimestres de PIB e compare com os valores teóricos
- Observe efeitos retardados e oscilações

Parte 3 – AR(3) – Taxa de Câmbio Diária

Modelo:

$$x_{t} = c + \phi_{1}x_{t-1} + \phi_{2}x_{t-2} + \phi_{3}x_{t-3} + \varepsilon_{t}$$

Parâmetros: $c = 0, \phi = [0.4, 0.2, 0.1], \sigma = 0.3$

- Calcule: média, covariâncias e autocorrelações
- Simule 50 dias de taxa de câmbio
- Analise influência de dias anteriores e choques econômicos

Parte 4 – AR(1) Alternativo – Taxa de Juros Selic Mensal

Modelo:

$$r_t = c + \phi r_{t-1} + \varepsilon_t$$

Parâmetros: $c = 0.05, \phi = 0.8, \sigma = 0.2$

- Calcule propriedades teóricas e simule 50 meses
- Analise a persistência e impactos de políticas monetárias

Parte 5 – AR(2) Alternativo – Desemprego Trimestral

Modelo:

$$u_t = c + \phi_1 u_{t-1} + \phi_2 u_{t-2} + \varepsilon_t$$

Parâmetros: $c = 0.1, \phi_1 = 0.6, \phi_2 = 0.2, \sigma = 0.3$

- Calcule propriedades teóricas e simule séries
- Observe efeitos retardados no desemprego e interpretação econômica

Parte 6 – Discussão Geral

- Compare persistência e dinâmica de diferentes séries econômicas
- Analise a escolha do modelo AR(1), AR(2) ou AR(p) para cada série
- Interprete choques ε_t e relevância econômica de cada parâmetro