Lecture 5 & 6 Review Question (Solution):

Question 10

Consider the following distribution problem for Ace Widgets:

	Shipping Costs to Warehouses									
Depot	W1	W2	W3	W4						
P1	2	6	4	12	100					
P2	7	3	10	11	250					
P3	5	8	9	13	300					
Demand	50	150	200	250						

a) Apply the North-west corner method to determine a starting solution. Compute the total cost.

		K1=	K2=		K3=		K4=		K5=			
				Destination								
	Source	W1	W	/2	W:	3	W4	1			SUPF	PLY
R1=	P1	2	 6		4		12				100	50
		<i>50</i>	<i>50</i>									
R2=	P2	7	 3		10	~~~~~	11				250	150
			100		150		- i					
R3=	P3	5	8		9		13				300	
					50		250				[
R4=												
							Ī		[:		
	DEMAND	50	150	100	200	50	250					

Total cost =
$$2 \times 50 + 6 \times 50 + 3 \times 100 + 10 \times 150 + 9 \times 50 + 13 \times 250 = \$5,900$$

b) Using the solution obtained in part (a), determine the new shipping schedule according to the closed-loop path (MODI method). Compute the total cost.

MODI: 1	st Iteration											
		K1=	2	K2=	6	K3=	13	K4=	17	K5=		
						Desti	nation					
	Source	W	/1	V	/2	V	/3	V	/4			SUPPLY
R1=	P1	2		6	100	4	+	12				100
0		<i>50</i>				<i>50</i>	-9		-5		:	
R2=	P2	7		3	+	10	-	11			:	250
-3			8	150		100			-3			
R3=	P3	5		8		9		13				300
-4			7		6	<i>50</i>		250				
R4=												
	DEMAND	50		150		200		250				

MODI: 2nd Iteration

		K1=	2	K2=	-3	K3=	4	K4=	8	K5=		
			Destination									
_	Source	W1		W	12	V	/3	V	/4	D5		SUPPLY
R1=	P1	2		6		4		12				100
	0	<i>50</i>				<i>50</i>			4			
R2=	P2	7		3		10	-	11	+			250
	6		-1	150				100	-3			
R3=	P3	5		8		9	+	13	1			300
	5		-2		6	150		150				
R4=												
	DEMAND	50		150		200		250				

MODI: 3rd Iteration

iteration												•	
·		K1=	2	K2=	0	K3=	4	K4=	8	K5=			
			Destination										
	Source	W	W1 W2				/3	W	1			SUPPLY	
R1=	P1	2	-	6		4	+	12				100	
0		50			6	50 +50			4				
R2=	P2	7		3		10		11				250	
3			2	150			3	100					
R3=	P3	5	+	8		9	-	13				300	
5		+50	-2		3	150	100	150					
R4=													
	DEMAND	50	•	150	•	200		250	•				

MODI: Final

	_	K1=	0	K2=	0	K3=	4	K4=	8	K5=	
						Destin	ation				
	Source	W	1	V	/2	W	3	W	ļ		SUPPLY
R1=	P1	2		6		4		12			100
0			2		6	100			4		
R2=	P2	7		3		10		11			250
3			4	150			3	100			
R3=	P3	5		8		9		13			300
5		50			3	100		150			
R4=											
·	DEMAND	50		150		200		250			

c) Draw a network model to depict this problem.

d) Formulate an LP formulation for Ace Widgets.

ANSWER:

Let X_{ij} be the trip from Depot (i) to Warehouse (j); where i = P1, P2, P3 and j = W1, W2, W3, W4 C_{ij} be the cost from Depot (i) to Warehouse (j)

MIN: $\sum C_{ij}X_{ij}$

ST:
$$X_{11} + X_{12} + X_{13} + X_{14} = 100$$
 (or you can write $\sum X_{1j} = 100$)

$$\sum X_{2j} = 250$$

$$\sum X_{3j} = 300$$

$$\sum X_{i1} = 50$$

$$\sum X_{i2} = 150$$

$$\sum X_{i3} = 200$$

$${\textstyle\sum} X_{i4} = 250$$

Question 11:

The following is a distribution schedule for Ace Widgets warehouses and customers in the Western region:

	S			
Warehouse	C1	C2	C3	Capacity
W1	7	2	8	30
W2	5	3	1	50
W3	4	6	7	50
Demand	60	40	20	

a) Using the Vogel's Approximation Method (VAM) determine a starting solution for this problem. Compute the total cost.

Note: As Capacity (Supply) > Demand, you need to add a dummy column (for demand)

Total cost = $2 \times 30 + 5 \times 10 + 3 \times 10 + 1 \times 20 + 4 \times 50 = 360

b) Using the solution obtained in part (a), determine the new shipping schedule according to the closed-loop path (MODI method). Compute the total cost.

MODI: 1st Iteration

IVIODI. I	si neralion											
		K1=	4	K2=	2	K3=	0	K4=	-1	K5=		
			Destination									
	Source	С	:1	С	2	С	3	Du	mmy			SUPPLY
R1=	W1	7		2		8		0				30
0			3	<i>30</i>			8	**********	1			
R2=	W2	5		3		1		0				50
1		10		10		20		10				
R3=	W3	4		6		7		0				50
0		<i>50</i>			4		7		1			
R4=												
	DEMAND	60		40		20		10)			

As there are no negative Cij – (Ri + Kj) values, the solution is already optimal. So, it is the same as the VAM technique: Total cost = $2 \times 30 + 5 \times 10 + 3 \times 10 + 1 \times 20 + 4 \times 50 = \360

c) Draw a network diagram to depict Ace Widgets Distribution in the Western region.

d) Formulate an LP for this problem.

ANSWER:

Let X_{ij} be the trip from Warehouse (i) to Customers (j); where i = W1, W2, W3 and j = C1, C2, C3, C4

C_{ij} be the cost from Warehouse (i) to Customers (j)

MIN: $\sum C_{ij}X_{ij}$

ST: $X_{11} + X_{12} + X_{13} + X_{14} = 30$ (or you can write $\sum X_{1j} = 30$)

$$\sum\!X_{2j}=50$$

$$\sum X_{3j} = 50$$

$$\sum X_{i1} = 60$$

$$\sum\!X_{i2}=40$$

$$\sum X_{i3} = 20$$

 $\sum X_{i4} = 10$ (this is dummy demand)