# Computational Methods for Astrophysical Applications

#### lleyk El Mellah & Jon Sundqvist



Centre for mathematical Plasma Astrophysics Instituut voor Sterrenkunde KU Leuven

#### Lesson 2:

Finite Volume Approximation for linear hyperbolic PDE

#### Finite volume approximation

Mesh, cell centers and interfaces Integral form of the conservation equations

#### Reconstruction

Piecewise linear reconstruction Slope limiters TVD schemes

#### The Riemann problem

?

Building block for hyperbolic PDE Local Lax-Friedrichs Boundary conditions Linearized Euler system

## 2<sup>nd</sup> order upwind schemes

Lax-Wendroff Runge-Kutta ?

- Finite volume approximation
  - Mesh, cell centers & interfaces
  - Integral form of the conservative equations
- Reconstruction
  - Piecewise linear reconstruction
  - Slope limiters
  - TVD schemes
- The Riemann problem
  - '
  - Building blocks for hyperbolic PDE
  - Local Lax-Friedrichs
  - Boundary conditions
  - Linearized Euler system
- 4 2<sup>nd</sup> order upwind schemes
  - Lax-Wendroff
  - Runge-Kutta

### Mehs

Balsara 2.2, Leveque1 12.1, Leveque2 4.1



Take a 1D conservation law without source terms :

$$\partial_t u + \partial_x f = 0 \tag{1}$$

## Conservative form

- Average variables u over cell to get  $U: \frac{1}{\Delta x} \int_{\text{cell}} (1)$ 
  - ⇒ 1<sup>st</sup> order forward in time then gives :

$$\frac{U_{i}^{n+1}-U_{i}^{n}}{\Delta t}=-\frac{F_{i+1/2}^{n+1/2}-F_{i-1/2}^{n-1/2}}{\Delta x}$$
 where 
$$\begin{cases} U_{i}^{n}=\frac{1}{\Delta x}\int_{x_{i-1/2}}^{x_{i+1/2}}u\left(x,t^{n}\right)\Delta x\\ F_{i+1/2}^{n+1/2}=\text{flux @ interface i+1/2}\longrightarrow \text{unknown} \end{cases}$$

- $\Rightarrow \sum$  over all cells => fluxes cancel out => conservative
- Key-question: how do you reconstruct the fluxes @ interfaces?

## Slab representation



Figure 3.3: Finite-volume interpretation of an upwind scheme applied to a linear advection equation with v > 0 (the flow is moving to the right). The bottom graph represents the piecewise constant function at  $t^n$  and the upper one yields, if averaged over each cell, the piecewise function at  $t^{n+1}$ . In-between are represented the characteristics which monitor the advance of the steps. From LeVeque (2002).

- Finite volume approximation
  - Mesh, cell centers & interfaces
  - Integral form of the conservative equations
- Reconstruction
  - Piecewise linear reconstruction
  - Slope limiters
  - TVD schemes
- The Riemann problem

  - Building blocks for hyperbolic PDE
  - Local Lax-Friedrichs
  - Boundary conditions
  - Linearized Euler system
- 4 2<sup>nd</sup> order upwind schemes
  - Lax-Wendroff
  - Runge-Kutta

## MinMod

## MC

## Van Leer

# Superbee

## Harten's theorem

## **Definition of TV**

## TVD regions of slope limiters

- Finite volume approximation
  - Mesh, cell centers & interfaces
  - Integral form of the conservative equations
- Reconstruction
  - Piecewise linear reconstruction
  - Slope limiters
  - TVD schemes
- The Riemann problem
  - 1
  - Building blocks for hyperbolic PDE
  - Local Lax-Friedrichs
  - Boundary conditions
  - Linearized Euler system
- 4 2<sup>nd</sup> order upwind schemes
  - Lax-Wendrof
  - Runge-Kutta

#### end order upwind schemes

- Finite volume approximation
  - Mesh, cell centers & interfaces
  - Integral form of the conservative equations
- Reconstruction
  - Piecewise linear reconstruction
  - Slope limiters
  - TVD schemes
- The Riemann problem

  - Building blocks for hyperbolic PDE
  - Local Lax-Friedrichs
  - Boundary conditions
  - Linearized Euler system
- 2<sup>nd</sup> order upwind schemes
  - Lax-Wendroff
  - Runge-Kutta

Lax-Wendroff