HIGGS BUNDLES — EXISTENCE OF SOLUTIONS

PEDRO NÚÑEZ

ABSTRACT. In this talk we introduce the stability condition for Higgs bundles and prove the Hitchin–Kobayashi correspondence. The main result is [Hit87, Theorem 4.3]. Relevant literature is [Hit87, §3 and §4] and [Wen14, §2 and §3]. Maybe we will also use [Wen16] every now and then.

This talk is related to Tanuj's talk on *Stable vector bundles*, for which the main reference is [Kob87]. Therefore we will also use [Kob87] as a main reference for generalities on complex vector bundles.

CONTENTS

Notation and	conventions	1
1. Self-duality		2
Appendix A.	Complex vector bundles, connections and	
	curvature	2
Appendix B.	Principal bundles on smooth manifolds	3
References	-	4

NOTATION AND CONVENTIONS

- **Top** is the category of topological spaces.
- **Diff** is the category of smooth manifolds.
- If **C** is a category and $X \in \mathbf{C}$ is an object, then \mathbf{C}/X denotes the category of objects of **C** over X, i.e. the category whose objects are morphisms $f: Y \to X$ in **C** and whose morphisms are commutative triangles in **C** of the form

Date: 7th June 2020.

Supported by the DFG-Graduiertenkolleg GK1821 "Cohomological Methods in Geometry" at the University of Freiburg.

We will often talk about Y instead of $f: Y \to X$, leaving this structure morphism implicit.

- Let \mathbf{C} be a category which has \mathbf{Top} as an underlying category, e.g. \mathbf{Diff} . Let $X \in \mathbf{C}$ and $f \in \mathbf{C}/X$ and let \mathbf{P} be a property of morphisms in \mathbf{C} . We will say that f has some property \mathbf{P} locally on X if every point $x \in X$ has an open neighbourhood $x \in U \subseteq X$ in X such that the morphis $f|_{f^{-1}(U)} \colon f^{-1}(U) \to U$ has the property \mathbf{P} .
- The category of group objects in a category C will be denoted by CGrp.
- Let C be a category and let $X \in \mathbf{C}$ and $G \in \mathbf{CGrp}$. A left action of G on X, denoted $G \odot X$, is a morphism

$$\rho \colon G \times X \to X$$

such that the following diagrams commute:

We can similarly define right actions.

• Let **C** be a category. Let $X \in \mathbf{C}$ and $G \in \mathbf{CGrp}$. Then we say that X is a G-object of **C**. A morphism of G-objects of **C** is a G-equivariant morphism $f: X_1 \to X_2$, meaning that the following diagram commutes:

$$G \times X_1 \xrightarrow{\operatorname{id}_G \times f} G \times X_2$$

$$\downarrow^{\rho_1} \qquad \qquad \downarrow^{\rho_2}$$

$$X_1 \xrightarrow{f} X_2$$

The category of G-objects of \mathbf{C} is denoted G- \mathbf{C} .

1. Self-duality

We consider \mathbb{R}^4 with its standard smooth structure [Lee13, Example 1.22].

Appendix A. Complex vector bundles, connections and curvature

Definition A.1 (Complex vector bundle). Let $M \in \mathbf{Diff}$. A complex vector bundle on M consists of a family $\{E_x\}_{x\in M}$ of complex vector spaces parametrized by M, together with a smooth manifold structure on $E := \sqcup_{x\in M} E_x$ such that

- i) The projection map $\pi \colon E \to M$ taking E_x to x is smooth, and
- ii) For every $x_0 \in M$, there exists an open set U in M containing x_0 and a diffeomorphism

$$\varphi_U \colon \pi^{-1}(U) \to U \times \mathbb{C}^k$$

taking the vector space E_x isomorphically onto $\{x\} \times \mathbb{C}^k$ for each $x \in U$; φ_U is called a trivialization of E over U.

Remark A.2. If M is a complex manifold, we can also talk about holomorphic vector bundles. These are complex vector bundles $\pi \colon E \to M$ together with a structure of complex manifold on E such that we can find around each point a biholomorphic local trivialization φ_U .

Definition A.3 (Complex differential forms). Let $M \in \mathbf{Diff}$ and let T_M be its tangent bundle. Let $E \to M$ be a complex vector bundle on M. Then the bundle of *complex p-forms with values in* E is defined as

$$\Omega_{M,\mathbb{C}}^p(E) := \bigwedge^p \operatorname{Hom}_M(T_M, E).$$

A complex p-form with values in E is then a smooth global section of $\Omega^p_{M,\mathbb{C}}(E)$. The \mathbb{C} -vector space of complex p-forms with values in E will be denoted by $A^p(E)$.

Remark A.4. In the particular case in which $E=M\times\mathbb{C}$ is the trivial complex line bundle on M, we simply talk about the bundle of complex p-forms on M, denoted $\Omega^p_{M,\mathbb{C}}$. Similarly, a smooth global section of $\Omega^p_{M,\mathbb{C}}$ will be simply called a complex p-form on M, and the \mathbb{C} -vector space of complex p-forms on M will be denoted by A^p .

Definition A.5 (Connection). Let $M \in \textbf{Diff}$ and $E \to M$ a complex vector bundle. A *connection* D in E is a \mathbb{C} -linear homomorphism

$$D \colon A^0(E) \to A^1(E)$$

such that

$$D(f\sigma) = \sigma df + f \cdot D\sigma$$

for
$$f \in A^0 = C^{\infty}(M, \mathbb{C})$$
 and $\sigma \in A^0(E) = \Gamma(M, E)$.

APPENDIX B. PRINCIPAL BUNDLES ON SMOOTH MANIFOLDS

In this appendix we recall the basics of principal G-bundles on smooth manifolds, where G is a Lie group.

Definition B.1 (Lie group). A *Lie group* is a group object in the category **Diff** of smooth manifolds.

Remark B.2. $G \in \mathbf{DiffGrp}$ if and only if its underlying set is equipped with a group structure such that the map $G \times G \to G$ given by $(g, h) \to gh^{-1}$ is smooth [Lee13, Proposition 7.1].

Recall that for $M \in \mathbf{Diff}$, the \mathbb{R} -vector space $\mathcal{X}(M)$ of smooth vector fields on M forms a Lie algebra under the Lie bracket [Lee13, Proposition 8.28].

Let $M \in \mathbf{Diff}$ and $G \in \mathbf{DiffGrp}$. Then the projection $\pi \colon M \times G \to M$ has some nice properties, namely:

- $G \odot M \times G$ smoothly and fibrewise via $(x, g) \cdot h \mapsto (x, gh)$.
- For all $x \in M$, $G \ominus \pi^{-1}(x)$ induces $G \cong \{x\} \times G \cong \pi^{-1}(x)$.

The smooth manifold $M \times G$ over M equipped with this right fibrewise action is called the *trivial principal G-bundle* on M. We can encode all this structure by saying that

$$M \times G \in (G\text{-Diff})/M$$
,

where we consider M with the trivial G-action.

Definition B.3 (Principal bundle). Let $M \in \mathbf{Diff}$ and $G \in \mathbf{DiffGrp}$. Consider $M \in G$ -**Diff** with the trivial action. A *principal G-bundle* on M is an object $P \in (G$ -**Diff**)/M which is trivial locally on M.

Example B.4. Let $M \in \mathbf{Diff}$ and $G := \mathrm{GL}(n, \mathbb{R}) \in \mathbf{DiffGrp}$. Then the *frame bundle* of M, denoted $\mathrm{GL}(M)$, is the principal G-bundle whose fibra over $x \in M$ is the set of all frames for the tangent space T_xM .

Example B.5. Let $G \in \mathbf{Diff}$ and $H \subseteq G$ a closed subgroup. Then G is a principal H-bundle over the left coset space G/H.

Some nice properties in the topological category, which probably extend to the smooth category (check!):

- **Proposition B.6.** i) Any morphism of principal G-bundles is an isomorphism.
 - ii) A principal G-bundle is trivial if and only if it admits a section, where trivial means isomorphic to a trivial principal G-bundle.

REFERENCES

- [Hit87] N. J. Hitchin. The self-duality equations on a Riemann surface. *Proc. London Math. Soc.* (3), 55(1):59-126, 1987. $\uparrow 1$
- [Kob87] Shoshichi Kobayashi. Differential geometry of complex vector bundles, volume 15 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ; Princeton University Press, Princeton, NJ, 1987. Kanô Memorial Lectures, 5. ↑ 1

- [Lee13] John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics. Springer, New York, second edition, 2013. ↑ 2, 4
- [Wen14] Richard A. Wentworth. Higgs bundles and local systems on riemann surfaces, 2014. $\uparrow 1$
- [Wen16] Richard Wentworth. Higgs Bundles and Local Systems on Riemann Surfaces, pages 165–219. Springer International Publishing, Cham, 2016. ↑ 1

Pedro Núñez, Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Ernst-Zermelo-Strasse 1, 79104 Freiburg im Breisgau, Germany

Email address: pedro.nunez@math.uni-freiburg.de URL: https://home.mathematik.uni-freiburg.de/nunez