Séance 1 - A la découverte de Coq!

Amélie Ledein

Avant de commencer ...

- ► Cette UE = 22h30 de présence
- ► Cette UE = 6 ECTS
- ➤ "La valeur d'un crédit représente environ 25 à 30 heures de travail"

Qu'est-ce que CoQ?

- Un assistant de preuve développé par Inria depuis 1984,
 - Écrire des preuves complètement formelles est fastidieux
 - ▶ Idée : utiliser un ordinateur pour vérifier les raisonnements
 - Les logiciels permettant cette interaction entre l'homme et l'ordinateur sont appelés des assistants de preuve (proof assistant/interactive theorem prover en anglais)
 - Plusieurs outils existent : Coq, Isabelle/HOL, Agda, Mizar, PVS, etc.
- basé sur le Calcul des Constructions Inductives.
- Réussites :
 - ► En mathématiques : théorème des quatre couleurs (2004), théorème de Feit et Thomson (2012)
 - ► En informatique : CompCert un compilateur certifié pour le langage C

Comment vérifier un raisonnement avec un ordinateur ?

On voudrait pouvoir:

- 1. Définir des objets
- 2. Énoncer des théorèmes
- 3. Les prouver

Des langages différents (en première approximation) :

- 1. Un langage fonctionnel pur appelé Gallina
- 2. Une logique d'ordre supérieure
 - On peut quantifier sur des fonctions et des prédicats.
- 3. Un ensemble de tactiques

Tutoriel 1 - Coq, un assistant à la preuve

- Logique propositionnelle :
 - ► Constantes : True, False
 - ightharpoonup Connecteurs : \sim (non), \wedge (et), \vee (ou), \rightarrow (implique)
- Logique des prédicats :
 - Quantificateurs: forall, exists
- Quelques théories :
 - Théorie de l'égalité, par exemple
- Note 1 Certaines tactiques de base ont une correspondance évidente dans le calcul des séquents ou en déduction naturelle.
- Note 2 L'utilisateur peut définir des tactiques (par exemple une tactique qui enchaîne plusieurs tactiques de base).

Tactiques pour manipuler la logique

- intro/intros pour introduire les variables quantifiées universellement
- exists x pour donner la valeur témoin attendue
- split pour détruire un but en plusieurs sous-buts
- ▶ left, right pour choisir une branche d'une disjonction
- reflexivity pour utiliser la réflexivité de l'égalité
- symmetry pour utiliser la symétrie de l'égalité
- ightharpoonup contradiction si les hypothèses contiennent False ou encore (P et \sim P)

Tactiques pour manipuler les hypothèses et le but

- ▶ exact H lorsque l'hypothèse H et le but actuel sont identiques
- assumption pour chercher dans les hypothèses
- apply H pour appliquer H dont la conséquence est la conclusion actuelle
- ► rewrite [←] H pour récrire en utilisant l'égalité H
- replace x with y pour remplacer x par y en prouvant x=y
 subst x pour éliminer x en utilisant les égalités disponibles
- stost x pour eliminer x en utilisant les égalités disponibles
 assert H as Ha pour introduire un lemme intermédiaire H
- pendant la preuve

 specialize (H x) pour appliquer partiellement une
 hypothèse
- pose proof lem as H pour ajouter un théorème aux hypothèses
- simpl pour simplifier des termes
- ▶ unfold f pour remplacer f par sa définition
- admit pour admettre un but afin de faciliter le développement d'une preuve