# Rilevamento quantistico dei bordi

Manuel Di Agostino *Università degli studi di Parma*Parma, Italia
manuel.diagostino@studenti.unipr.it
Leonardo Ongari *Università degli studi di Parma*Cremona, Italia
leonardo.ongari@studenti.unipr.it

Sommario—Il rilevamento dei bordi è un processo fondamentale nell'estrazione delle caratteristiche di un'immagine ed è ampiamente utilizzato per analizzare la struttura degli oggetti rappresentati. Tuttavia, con l'aumento della risoluzione delle immagini, i metodi classici affrontano significative sfide computazionali a causa delle operazioni pixel-per-pixel necessarie. Il Quantum Image Processing (QIP), offre il potenziale per accelerazioni esponenziali in determinati scenari, sfruttando algoritmi e rappresentazioni in forma quantistica. Questo articolo esplora l'applicazione dell'algoritmo Quantum Hadamard Edge Detection (QHED), implementato utilizzando la rappresentazione Quantum Probability Image Encoding (QPIE). Utilizzando i principi quantistici e il framework Qiskit, si analizzano i vantaggi e le prospettive di questo nuovo approccio per il rilevamento dei bordi.

Keywords—Rilevamento dei bordi, Quantum computing, Sobel.

# I. INTRODUZIONE

L'identificazione dei bordi è una tecnica fondamentale nell'elaborazione delle immagini, utilizzata per individuare i contorni degli oggetti e le variazioni di intensità in una scena. Questa metodologia rappresenta una componente cruciale in numerosi ambiti, dalla computer vision alla robotica, fino all'analisi medica delle immagini. Nonostante i progressi significativi nell'elaborazione classica delle immagini, l'aumento della risoluzione e della complessità dei dati visivi ha portato a sfide computazionali sempre maggiori, rendendo spesso i metodi tradizionali onerosi in termini di tempo e risorse.

Nei primi anni '60, i filtri di Sobel [1] e Prewitt furono introdotti come i primi metodi strutturati per il rilevamento dei bordi. Entrambi basati su operatori convolutivi, questi algoritmi utilizzano maschere¹ discrete per approssimare il gradiente di intensità in un'immagine, rilevando così variazioni significative nei livelli di grigio. Sebbene semplici ed efficienti, essi risultano sensibili al rumore e con conseguente difficoltà nel gestire bordi sfumati. Negli anni '80, l'algoritmo di Canny [2] rappresentò una svolta significativa grazie all'introduzione di un approccio più sofisticato al rilevamento dei bordi; ancora oggi, rimane uno tra i metodi più utilizzati. Con l'avanzare della tecnologia e l'aumento della potenza computazionale, il rilevamento dei bordi ha beneficiato dell'utilizzo di tecniche basate sull'intelligenza artificiale, come le *reti neurali convoluzionali* (CNN). Soltanto recentemente l'elaborazione

quantistica delle immagini ha iniziato a emergere come un campo innovativo e promettente, aprendo la strada a potenziali accelerazioni esponenziali.

In questo progetto sarà presentata un'applicazione del *Quantum Hadamard Edge Detection* (QHED) [3]. La Sez. II offre una panoramica sulle attuali tecniche di rappresentazione quantistica delle immagini e una disamina delle tecniche utilizzate nell'esperimento. La Sez. III è invece dedicata all'implementazione della soluzione proposta, utilizzando la libreria Qiskit [4]. In ultimo, sono analizzati i risultati (Sez. IV).

### II. BACKGROUND

#### A. Soluzioni classiche

Le tecniche classiche per la rilevazione dei contorni prevedono l'utilizzo di kernel specifici, che permettono di calcolare nuovi valori di intensità per i pixel dell'immagine. Tra i metodi più famosi vi è sicuramente l'operatore di Sobel, che si può descrivere tramite l'applicazione di 2 kernel all'immagine originale:

$$\mathbf{G_x} = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix}, \ \mathbf{G_y} = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Un'altra opzione, forse tra le più utilizzate al giorno d'oggi, è l'operatore di Canny. Questo metodo ha un funzionamento del tutto analogo al precedente, ma aggiunge meccanismi per la riduzione del rumore nell'immagine [5]. La complessità di queste tecniche è lineare rispetto al numero di pixel totali dell'immagine, dato che è necessaria una visita completa.

Per un'immagine  $M \times L = N$ , si utilizzano n bit per enumerare i pixel dell'immagine in formato binario, dove  $N = 2^n$ , ottenendo una complessità rispetto ai bit esponenziale  $O\left(2^n\right)$ . In questo progetto verrà mostrato come, dopo una prima fase di preparazione, è possibile risolvere il problema in tempo costante  $O\left(1\right)$ .

# III. IMPLEMENTAZIONE IV. RISULTATI

## V. CONCLUSIONE

# RIFERIMENTI BIBLIOGRAFICI

 I. Sobel and G. Feldman, "An isotropic 3x3 image gradient operator," 1968, presented at the Stanford Artificial Intelligence Laboratory (SAIL). [Online]. Available: https://www.researchgate.net/publication/ 281104656\_An\_Isotropic\_3x3\_Image\_Gradient\_Operator

<sup>&</sup>lt;sup>1</sup>Con il termine *maschera* o *kernel* di convoluzione si fa riferimento ad una piccola griglia sovrapposta in maniera iterativa a tutti i pixel dell'immagine, aggiornando i valori in base ai primi vicini.

- [2] J. Canny, "A computational approach to edge detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6,
- pp. 679–698, 1986. [3] X.-W. Yao, H. Wang, Z. Liao, M.-C. Chen, J. Pan, J. Li, K. Zhang, X. Lin, Z. Wang, Z. Luo, W. Zheng, J. Li, M. Zhao, X. Peng, X. Lin, Z. Wang, Z. Luo, W. Zheng, J. Li, M. Zhao, X. Peng, and D. Suter, "Quantum image processing and its application to edge detection: Theory and experiment," *Physical Review X*, vol. 7, no. 3, Sep. 2017. [Online]. Available: http://dx.doi.org/10.1103/PhysRevX.7.031041
  [4] Qiskit Development Team, "Qiskit: An open-source framework for quantum computing," https://qiskit.org/, 2021, accessed: 2025-01-17. [Online]. Available: https://qiskit.org/
  [5] P. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition).
- [5] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition). USA: Prentice-Hall, Inc., 2006.