▼ DATA VISUALIZATION

→ STEP 1: Import Libraries

```
import seaborn as sns
import matplotlib.pyplot as plt
```

→ STEP 2: Load DataSet

```
iris=sns.load_dataset("iris")
iris.head()
```

₽		sepal_length	sepal_width	petal_length	petal_width	species	1
	0	5.1	3.5	1.4	0.2	setosa	
	1	4.9	3.0	1.4	0.2	setosa	
	2	4.7	3.2	1.3	0.2	setosa	
	3	4.6	3.1	1.5	0.2	setosa	
	4	5.0	3.6	1.4	0.2	setosa	

→ STEP 3: Draw a Graph

```
sns.lineplot(x="sepal_length",y="sepal_width", data=iris)
plt.xlim(2)
plt.ylim(3)
plt.title("GRAPH")
```


▼ Bar plot

▼ Box plot

sns.boxplot(x="species",y="sepal_width", data=iris)

<Axes: xlabel='species', ylabel='sepal_width'>

→ Scatter plot

sns.scatterplot(x="sepal_length",y="sepal_width", data=iris)

→ Cat plot

sns.catplot(x="species",y="sepal_width", data=iris,color="orange")

<seaborn.axisgrid.FacetGrid at 0x781abd5d3070>


```
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_theme(style="dark")
# Simulate data from a bivariate Gaussian
n = 10000
mean = [0, 0]
```

```
cov = [(2, .4), (.4, .2)]
rng = np.random.RandomState(0)
x, y = rng.multivariate_normal(mean, cov, n).T
# Draw a combo histogram and scatterplot with density contours
f, ax = plt.subplots(figsize=(6, 6))
sns.scatterplot(x=x, y=y, s=5, color=".15")
sns.histplot(x=x, y=y, bins=50, pthresh=.1, cmap="mako")
sns.kdeplot(x=x, y=y, levels=5, color="w", linewidths=1)
```


√ 9s completed at 10:55 PM