

ניתוח מערכת - מדרישות למודלים

'חלק ב

בשבוע שעבר...

- התחלנו את שלב הניתוח בתהליך פיתוח תוכנה
 - 3 גישות ניתוח
 - :דיאגרמות
 - (לא בשימוש כיום) DFD
 - Use Case Diagram -
 - (מודל סוג 1 ERD –
 - Activity Diagram -
 - State Machine Diagram -

מערכת לניהול חשבונות בנק

מערכת לניהול בנקים- סניפים, לקוחות, חשבונות והלוואות:

- בכל בנק יש הרבה סניפים.
- בכל סניף יש הרבה חשבונות.
- חשבון בנק יכול להיות מ-2 סוגים- חשבון חיסכון וחשבון
 עו"ש
 - ללקוח יש חשבון בנק מאחד הסוגים או את שניהם
 - בכל חשבון יכול להיות רשום רק לקוח אחד
- הלוואות משויכות ללקוח ולסניף בנק (בנפרד מחשבונות בנה:)

Class Diagram

- מודל של מבנה המערכת ע"י מידול המחלקות,
 התכונות והפעולות.
 - של UML class diagram הוא תכנית האב של המחלקות הדרושות לבניית התוכנה
- מתכנתים מפתחים את המערכת בהתבסס על מודל
 המחלקות שהוגדר
 - זהו המודל הנפוץ ביותר ב-UML

סימון מחלקה

A simple class:

Multiplicity

- מייד לאחר ציון ה- type של המשתנה ניתן לציין את ה multiplicity שלו.

קשרים בין מחלקות

- Dependency •
- Association -
- Aggregation –
- Composition -

קשר של Dependency

class Utils uses class Math

Association קשר של

Client

+L_name:String

O..*

Has an account in +Id: Int +Address: String

Has an account of O..1

OverdrawnAccounts
generatedOn: Date

refresh()

BankAccount
owner: String
balance: Dollars
deposit (amount: Dollars)
withdrawal (amount: Dollars)

class Bank has class Client

אוניברטיטת ארייאל בשומרון קשרים של Aggregation ו- Composition

הורשה

Doctors				Clients		
+name:String -ld:int				+name:S -ld:int	tring	
+getId():Id				+getId():I	d	
		į				
	Queue					
	-queueNı	-queueNum:String				
	getQueue	getQueueNum(): queueNum				

תיאור Interfaces ומחלקות שמיישמים אותם

Children Clinics

- -ld: Int
- -name:string
- +getId() Int
- +getName() String
- +getDoctorsList() String[]

<<Interface>> Clinics

- -ld: Int
- -name:string
- +getId() Int
- +getName() String
- +getDoctorsList() String[]

lagram Class

https://www.tutorialspoint.com/

Object Diagram

- דיאגרמת אובייקטים מתארת מופע של מודל
 המחלקות, בדומה לתרחישים אמיתיים שעל בסיסם
 בונים את המערכת.
- דיאגרמת אובייקטים היא מודל סטטי (בדומה למודל המחלקות)
- השימוש במודל האובייקטים דומה למודל המחלקות רק
 שהם מאפשרים בניית אב טיפוס של המערכת מנקודת
 מבט מעשית

Object : Class

Property1 = aaa Property2 = 1234 Property3 = relkd Coursection usus

Object : Class

Property1 = aaa Property2 = 1234 Property3 = relkd

Object Diagram

https://www.tutorialspoint.com/

Class Diagram Vs. Object Diagram

Object diagram	Class diagram	
מכיל 2 חלקים: שם ורשימת מאפיינים	מכיל 3 חלקים: שם, רשימת תכונות ורשימת פעולות	מבנה
הפורמט מורכב משם האובייקט + נקודותיים + שם המחלקה (Tom:Employee)	שם המחלקה עומד בפני עצמו בחלק של שם המחלקה	שם המחלקה
מגדיר את הערך הנוכחי של כל תכונה	מגדיר את התכונות של המחלקה	רשימת התכונות
לא כלולות	כלולות	רשימת הפעולות
מוגדר שם הקשר, אבל לא הכמות (לא רלוונטי כשמדברים על ישות בודדת)	מוגדר הקשר בין מחלקות- שם הקשר וכמות הקשר.	קשרים

Sequence Diagram

- תרשים רצף הממחיש את סדר הפעילויות ברצף
 של הזמן.
 - תרשים רשת נכתב בצורה של תרשים דו מימדי
 - נמצאים האובייקטים X–
 - על ציר ה-Y ממוקמות ההודעות שהאובייקטים האלה שולחים
 - לכל פונקציונליות נכין תרשים רצף נפרד

שיטת הסימון

Sequence Diagram

אוניברטיטת Activity Diagram Vs. Sequence Diagram

Activity	Sequence		
דיאגרמת התנהגות	דיאגרמת אינטראקציה		
מתמקד בתהליך של האובייקטים ונותן דגש לרצף ולתנאים שיש בתהליך	מתמקד בהודעות שמועברות בין ישויות במערכת.		
סדר ביצוע הפעולות לא מודגש	נותן דגש לסדר ביצוע הפעולות		
כללי יותר ופחות מדויק	התהליך יותר מדויק ומפורט		

דיאגרמות ה-UML

דיאגרמות ה-UML

חלוקה נוספת:

דיאגרמות סטטיות

ERD

הצגת יישות במודל

Relationship - קשרים בין ישויות

קשר מוגדר כיחס בעל משמעות בין ישויות שונות. פונקציונליות הקשר- מוגדרת כסוג המיפוי הקיים בין הקבוצות המשתתפות בקשר. הפונקציונליות יכולה להיות מסוג- 1:M, M:N M:N

דוגמאות-

- עבור הישויות מרפאה ולקוח קיים קשר- לקוח שייך למרפאה אחת, במרפאה יש הרבה לקוחות.
- עבור הישויות- מזכירה ועמדות עבודה קיים קשר- מזכירה עובדת בעמדת עבודה
 ועמדת עבודה שייכת למזכירה.

קשר חד חד ערכי (1:1)

ישות אחת מתאימה לישות אחת אחרת •

לדוגמא-

לכל לקוח מוגדר אמצעי תשלום יחיד וכל אמצעי תשלום שייכת ללקוח אחד בלבד •

קשר חד רב ערכי (1:M)

ישות אחת מתאימה לכמה ישויות בקבוצה אחרת •

לדוגמא-

• כל לקוח משויך למרפאה אחת ובכל מרפאה יש הרבה לקוחות

קשר רב רב ערכי (M:N)

 ישות אחת מתאימה לכמה ישויות בקבוצה אחרת, וישות בקבוצה האחרת מתאימה לכמה ישויות בקבוצה הראשונה.

-לדוגמא

רופא יכול לעבוד בכמה מרפאות ובכל מרפאה עובדים הרבה רופאים •

קרדינליות הקשר Relationship cardinality

קרדינליות הקשר מוגדרת כמספר הישויות המינימלי והמקסימלי בקבוצת ישויות A הקשורות לישות אחת בקבוצת ישויות B.

לדוגמא-

• רופא משפחה יכול להיות לטפל בעד 100 לקוחות.

תלות קיומית existence dependence

תלות קיומית בין קבוצה A לקבוצה B מוגדרת כמצב שבו קיום ישות בקבוצת ישויות A מותנה בקיום ישות בקבוצת ישויות אחרת B

לדוגמא-

לטבלה "מרשמים ללקוח" אין משמעות כשהלקוח עזב את הקופה וכבר
 לא מבוטח שלה

From m:n to m:1 + n:1

קשר רקורסיבי

לעצמה A לעצמה מוגדר כקשר המחבר בין קבוצה

לדוגמא-

מרפאה מחוזית

ישות על ותת ישות

תת ישות הינה סוג של ישות אשר יורשת את מאפייני **ישות העל**

-לדוגמא

• כל רופא חייב להיות או רופא כללי או רופא מומחה

קשרים, ישויות על ותתי ישויות

קשר של ישות העל הינו גם קשר של תת הישויות. קשר של תת ישות מהווה קשר שלה עצמה בלבד.

-דוגמא

יחס בחירה בין קשרים

יחס בחירה בין מספר קשרים מוגדר כבחירה בקיום קשר אחד בלבד מתוך מס' אפשריים

חיי ישות לאורך זמן

Employees * firstName * lastName # TZ * role

* firstName * lastName # TZ * role EmployeeRoles # TZ # role * beginDate

שלנו ER-שלנו ביצירת מודל ה

בהינתן תיאור המערכת הרצויה / רשימת הדרישות:

- זיהוי הישויות •
- הגדרת הקשרים וסוגי הקשרים בין הישויות
 - הגדרת קרדינליות הקשר
 - זיהוי התכונות וסוג כל תכונה ותכונה
 - ראשוני ERD יצירת •
- בדיקת רמת הנירמול של המודל ותיקונו עד קבלת מודל ברמת הנירמול המבוקשת