STAT 3011 Discussion 015

Week 11: Two-Sample Comparisons

Talha Hamza

University of Minnesota College of Science and Engineering

Spring 2025

Two-Sample Comparison Framework

Independent Samples	Matched Pairs
Compare μ_1 vs μ_2 $ar{x}_1 - ar{x}_2$	Compare μ_D (pair differences) $ar{x}_D$ (mean of differences)
Example : Test scores from two different classrooms	Example : Twins assigned to different treatments

Key Distinction

- Independent: Two completely separate groups with no pairing
- Paired: Individuals paired by characteristics (age, weight, etc.)

Note

Matched pairs could be the same subject measured twice

Assumptions

Independent Samples	Matched Pairs
1. Two independent random samples 2. Both populations normal OR $n_1, n_2 \ge 30$	 Random sample of pairs Differences normally distributed OR large enough sample size

Confidence Intervals for Two-Sample Comparisons

Independent Samples	Matched Pairs
$egin{aligned} (ar{x}_1 - ar{x}_2) \pm t_{lpha/2} \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}} \ ext{df} &= \min(n_1 - 1, n_2 - 1) \end{aligned}$	$ar{x}_D \pm t_{lpha/2} rac{s_D}{\sqrt{n_D}} \ ext{df} = n_D - 1$

Intuitive Interpretation

- **CI excludes 0**: The true difference is unlikely to be zero ("statistically significant")
 - Example: If 95% CI (1.2, 3.4) kg for weight loss \implies Effective treatment
- Cl includes 0: No evidence of difference ("null plausible")
 - Example: If 95% CI (-0.5, 1.5) kg \implies Might just be random variation

Hypothesis Testing for Two Samples

Independent Samples

Hypotheses:

- $H_0: \mu_1 = \mu_2$
- $H_a: \mu_1 \neq \mu_2$ (two-tailed)
- $H_a: \mu_1 < \mu_2$ (left-tailed)
- $H_a: \mu_1 > \mu_2$ (right-tailed)

Test Statistic:

$$t^* = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Matched Pairs

Hypotheses:

- $H_0: \mu_D = 0$
- $H_a: \mu_D \neq 0$ (two-tailed)
- H_a : μ_D < 0 (left-tailed)
- $H_a: \mu_D > 0$ (right-tailed)

Test Statistic:

$$t^* = rac{ar{x}_D}{s_D/\sqrt{n_D}}$$

p-values and Conclusions

Calculating p-values

- Left-tailed: pt(t*, df, lower.tail=TRUE)
- Right-tailed: pt(t*, df, lower.tail=FALSE)
- Two-tailed: 2*pt(abs(t*), df, lower.tail=FALSE)

Conclusion

- if p-value $\leq \alpha \implies$ Reject H_0 and Accept H_a
- if p-value $> \alpha \implies$ Fail to reject H_0

Crucial Nuance

• We never **accept** H_0 - we only fail to reject it

R Commands

Independent Samples

t.test(group1, group2, var.equal=FALSE)

Paired Samples

t.test(group1, group2, paired=TRUE)

Output Includes

- Confidence interval
- Test statistic
- p-value

Questions?

Scenario:

A researcher randomly samples four patients with high blood pressure and measures their blood pressure initially. The researcher then assigned the patients to walk briskly for half an hour a day. A month later, those patients' blood pressure was measured again.

Scenario:

A researcher randomly samples four patients with high blood pressure and measures their blood pressure initially. The researcher then assigned the patients to walk briskly for half an hour a day. A month later, those patients' blood pressure was measured again.

Answer: Matched Pairs

Explanation:

Each patient's blood pressure is measured before and after treatment. Same subjects measured twice = matched pairs design.

Scenario:

A STAT 3011 student compares textbook prices at Amazon vs. Barnes Noble. She randomly selects 10 textbooks used that term and records the price of each book at both sites.

Scenario:

A STAT 3011 student compares textbook prices at Amazon vs. Barnes Noble. She randomly selects 10 textbooks used that term and records the price of each book at both sites.

Answer: Matched Pairs

Explanation:

Each book has two prices — one from each site — so prices can be directly matched by textbook. If she had sampled different books from each site, it would be independent.

Scenario:

A researcher is studying smoking and lung capacity. Participants are paired — one smoker and one non-smoker — matched on age, gender, and BMI. Each participant's lung capacity is measured.

Scenario:

A researcher is studying smoking and lung capacity. Participants are paired — one smoker and one non-smoker — matched on age, gender, and BMI. Each participant's lung capacity is measured.

Answer: Matched Pairs

Explanation:

Participants are deliberately paired based on similar characteristics. This creates matched pairs suitable for paired analysis.

Scenario:

In an experiment, researchers either stared or didn't stare at drivers at a stop sign, then timed how long it took the drivers to cross. They want to test whether staring affects crossing time.

Data:

No-stare group: 14 observations

Stare group: 13 observations

Scenario:

In an experiment, researchers either stared or didn't stare at drivers at a stop sign, then timed how long it took the drivers to cross. They want to test whether staring affects crossing time.

Data:

No-stare group: 14 observations Stare group: 13 observations

Answer: Independent Samples

Explanation:

There's no way to meaningfully match drivers between the two groups. Also, sample sizes differ. This is a classic two-sample independent design.