Apprentissage par renforcement

Arthur Aubret

Université Clermont Auvergne, Institut Pascal ajp.aubret@gmail.com

10/02/2022

Sommaire

- Apprentissage par renforcement
 - Introduction
 - Modélisation
 - Programmation dynamique
 - Apprentissage par renforcement
- Apprentissage profond par renforcement
 - DQN
 - Policy-based methods
 - Actor-Critic
- Motivation intrinsèque
 - Problèmes du RL

Apprentissage supervisé

Figure: Apprentissage supervisé.

Données + labels en entrée.

Apprentissage non supervisé

Figure: Apprentissage non supervisé.

Données en entrée.

Apprentissage par renforcement

- → Conditionnement opérant de Pavlov.
 - Apprentissage par essai-erreur;
 - Récompenser les bonnes actions: punition ou friandise.

Apprentissage par renforcement (2)

• Faire des actions qui donnent des récompenses.

Succès du RL: Atari

https://www.youtube.com/watch?v=V1eYniJORnk

Succès du RL: Go

• Quelque nouveautés comme l'auto-affrontement.

Possibles applications

- Finances, médecine, smart grids...
- Robotique industrielle, voiture autonome, gestion du traffic...

Figure: MDP et exemple d'environnement

• S ensemble d'états (cases du robot);

Figure: MDP et exemple d'environnement

- S ensemble d'états (cases du robot);
- A ensemble d'actions (droite, gauche, haut, bas);

Figure: MDP et exemple d'environnement

Modélisation

Processus de décision markovien (MDP)

- *S* ensemble d'états (cases du robot);
- A ensemble d'actions (droite, gauche, haut, bas);
- $R: S \times A \times S \rightarrow \mathbb{R}$ fonction de récompense;

Figure: MDP et exemple d'environnement

- *S* ensemble d'états (cases du robot);
- A ensemble d'actions (droite, gauche, haut, bas);
- $R: S \times A \times S \rightarrow \mathbb{R}$ fonction de récompense;
- $T: S \times A \times S \to \mathbb{R}$ fonction de transition, T(s, a, s') = p(s'|a, s);
- ρ_0 distribution initiale d'états.

Figure: MDP et exemple d'environnement

Boucle d'interaction

- **①** Obtient un état initial $s_0 \sim \rho_0(\cdot)$;
- 2 L'agent choisit une action $a \sim \pi(\cdot|s), \ \pi: S \times A \to \mathbb{R};$
- **3** Recoit un nouvel état $s' \sim p(s'|s, a)$ et une récompense r = R(s, a, s').
- Rechoisit une action, etc...
- Jusqu'à état absorbant.

Figure: MDP et exemple d'environnement

Apprentissage par renforcement

Objectif: trouver la politique optimale π^* maximisant:

Récompenses cumulées atténuées, $\gamma \in [0, 1]$ facteur d'atténuation:

(2)

Récompenses cumulées, tâche épisodique: $\mathbb{E}_{\pi}\left[\sum_{t=0}^{T} r_{t}\right]$.

Apprentissage par renforcement

Objectif: trouver la politique optimale π^* maximisant:

Récompenses cumulées atténuées, $\gamma \in [0, 1]$ facteur d'atténuation:

$$\pi^* = \arg\max_{\sigma} R(s_0, a_0, s_1) + \gamma R(s_1, a_1, s_2) + \gamma^2 R(s_2, a_2, s_3) + \dots$$
 (1)

(2)

Récompenses cumulées, tâche épisodique: $\mathbb{E}_{\pi} \left| \sum_{t=0}^{T} r_t \right|$.

Objectif: trouver la politique optimale π^* maximisant:

Récompenses cumulées atténuées, $\gamma \in [0,1]$ facteur d'atténuation:

$$\pi^* = \arg\max_{\pi} R(s_0, a_0, s_1) + \gamma R(s_1, a_1, s_2) + \gamma^2 R(s_2, a_2, s_3) + \dots$$
(1)
$$= \arg\max_{\pi} \mathbb{E}_{\substack{a_t \sim \pi(\cdot | s_t) \\ s_{t+1} \sim \rho(\cdot | s_t, a_t)}} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t, s_{t+1})|_{s_0 \sim d_0(\cdot)} \right]$$

(2)

Récompenses cumulées, tâche épisodique: $\mathbb{E}_{\pi}\left[\sum_{t=0}^{T} r_{t}\right]$.

Objectif: trouver la politique optimale π^* maximisant:

Récompenses cumulées atténuées, $\gamma \in [0,1]$ facteur d'atténuation:

$$\pi^* = \arg \max_{\pi} R(s_0, a_0, s_1) + \gamma R(s_1, a_1, s_2) + \gamma^2 R(s_2, a_2, s_3) + \dots$$
(1)
$$= \arg \max_{\pi} \mathbb{E}_{\substack{a_t \sim \pi(\cdot | s_t) \\ s_{t+1} \sim p(\cdot | s_t, a_t)}} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t, s_{t+1}) |_{s_0 \sim d_0(\cdot)} \right]$$

$$= \arg \max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$

(2)

Récompenses cumulées, tâche épisodique: $\mathbb{E}_{\pi}\left[\sum_{t=0}^{T} r_{t}\right]$.

Comment résoudre ?

ullet Essayer toutes les politiques π^* jusqu'à trouver la meilleure.

Figure: Environnement

Comment résoudre ?

- Essayer toutes les politiques π^* jusqu'à trouver la meilleure.
- Nombre de politiques déterministes possibles: $|A|^{|S|} = 262144$.

Figure: Environnement

Comment résoudre ?

- Essayer toutes les politiques π^* jusqu'à trouver la meilleure.
- Nombre de politiques déterministes possibles: $|A|^{|S|} = 262144$.
- Nombre de politiques stochastiques infini.

Figure: Environnement

Calculer les valeurs optimales d'états

Quel est le maximum de récompenses futures possible depuis un état ?

•
$$Q^*(s,a) = \mathbb{E}_{\pi^*} \sum_{t=0}^{\infty} \left[\gamma^t R(s_t, a_t, s_{t+1}) \right]_{s_0 = s, a_0 = a};$$

•
$$V^*(s) = \mathbb{E}_{\pi^*} \sum_{t=0}^{\infty} \left[\gamma^t R(s_t, a_t, s_{t+1}) \right]_{s_0 = s} = \underset{a \in A}{\operatorname{arg max}} Q^*(s, a);$$

0.81	0.9	1	+1
		0.9	-1
0.9	0.72	0.81	0.72

Calculer les valeurs optimales d'états

Quel est le maximum de récompenses futures possible depuis un état ?

•
$$Q^*(s,a) = \mathbb{E}_{\pi^*} \sum_{t=0}^{\infty} \left[\gamma^t R(s_t, a_t, s_{t+1}) \right]_{s_0 = s, a_0 = a};$$

•
$$V^*(s) = \mathbb{E}_{\pi^*} \sum_{t=0}^{\infty} \left[\gamma^t R(s_t, a_t, s_{t+1}) \right]_{s_0 = s} = \underset{a \in A}{\operatorname{arg max}} Q^*(s, a);$$

 Meilleure action en s: arg max $\sum_{s' \in S} p(s'|s, a) (R(s, a, s') + \gamma V^*(s')).$

0.81	0.9	1	+1
		0.9	-1
0.9	0.72	0.81	0.72

Calculer les valeurs optimales d'états

Quel est le maximum de récompenses futures possible depuis un état ?

- $Q^*(s, a) = \mathbb{E}_{\pi^*} \sum_{t=0}^{\infty} [\gamma^t R(s_t, a_t, s_{t+1})]_{s_0=s, a_0=a}$;
- $V^*(s) = \mathbb{E}_{\pi^*} \sum_{t=0}^{\infty} \left[\gamma^t R(s_t, a_t, s_{t+1}) \right]_{s_0 = s} = \underset{a \in A}{\operatorname{arg max}} Q^*(s, a);$
- Meilleure action en s: arg max $\sum_{s' \in S} p(s'|s, a) (R(s, a, s') + \gamma V^*(s')).$
- Définitions similaires de $V_{\pi}(s)$ et $Q_{\pi}(s,a)$.

0.81	0.9	1	+1
		0.9	-1
0.9	0.72	0.81	0.72

Programmation dynamique

Equation d'optimalité de Bellman

On a
$$V^*(s) = \mathbb{E}_{\pi^*} \sum_{t=0}^{\infty} \left[\gamma^t R(s_t, a_t, s_{t+1}) \right]_{s_0 = s}$$
.

Equation d'optimalité de Bellman permet l'écriture sous forme récursive:

$$V^*(s) = \max_{a} \sum_{s' \in S} p(s'|s, a) (R(s, a, s') + \gamma V^*(s'))$$
(3)

Algorithme de Value Iteration

Trouver V^* , avec états absorbants, actions déterministes, $\gamma = 0.9$:

Initialise aléatoirement toutes les valeurs, et 0 aux états absorbants;

0.5	- 0	0.1	÷1
		0.5	-1
‡1 <	– 0	0,8	⇒1 ⇒

Programmation dynamique

Algorithme de Value Iteration

- Initialise aléatoirement toutes les valeurs, et 0 aux états absorbants;
- $\forall s \in S \colon V(s) \leftarrow \max_{a} \sum_{s' \in S} p(s'|s,a) (R(s,a,s') + \gamma V(s'));$
- Recommencer jusqu'à convergence des valeurs.

0.5	- 0	0.1	→ +1
		0.5	-1
ф1 <	– 0	0,8	⇒1 ⇒

0.45	0.45	1	+1
		0.72	-1
0.9	0.9	0.9	0.9

Programmation dynamique

Algorithme de Value Iteration

- 1 Initialise aléatoirement toutes les valeurs, et 0 aux états absorbants;
- $\forall s \in S \colon V(s) \leftarrow \max_{a} \sum_{s' \in S} p(s'|s,a) (R(s,a,s') + \gamma V(s'));$
- Recommencer jusqu'à convergence des valeurs.

0.5	⊢ 0	0.1	→ +1
		0.5	-1
‡1 <	0	0,8	⇒1 ⇒

ı				_
	0.45	0.45	1	+1
			0.72	-1
	0.9	0.9	0.9	0.9

0.405	0.9	1	+1
		0.9	-1
0.81	0.81	0.81	0.81

Algorithme de Value Iteration

- 1 Initialise aléatoirement toutes les valeurs, et 0 aux états absorbants;
- $\forall s \in S \colon V(s) \leftarrow \max_{a} \sum_{s' \in S} p(s'|s,a) (R(s,a,s') + \gamma V(s'));$
- 3 Recommencer jusqu'à convergence des valeurs.

0.5	⊨ 0	0.1	÷1
		0,5	-1
⇔1 <	0	0,8	⇒1 ⇒

0.45	0.45	1	+1
		0.72	-1
0.9	0.9	0.9	0.9

0.405	0.9	1	+1
		0.9	-1
0.81	0.81	0.81	0.81

0.81	0.9	1	+1
		0.9	-1
0.81	0.72	0.81	0.72

Algorithme de Value Iteration

- 1 Initialise aléatoirement toutes les valeurs, et 0 aux états absorbants;
- $\forall s \in S \colon V(s) \leftarrow \max_{a} \sum_{s' \in S} p(s'|s,a) (R(s,a,s') + \gamma V(s'));$
- 3 Recommencer jusqu'à convergence des valeurs.

0.5	⊨ 0	0.1	>	+1
		0,5		-1
\$1	0	0,8	⇒1	

0.81	0.9	1	+1
		0.9	-1
0.81	0.72	0.81	0.72

0.45	0.45	1	+1
		0.72	-1
0.9	0.9	0.9	0.9

0.81	0.9	1	+1
		0.9	-1
0.63	0.72	0.81	0.72

0.405	0.9	1	+1
		0.9	-1
0.81	0.81	0.81	0.81

Algorithme de Value Iteration (2)

- 1 Initialise aléatoirement toutes les valeurs, et 0 aux états absorbants;
- Pour chaque $s \in S$: $V(s) = \max_{a} \sum_{s' \in S} p(s'|s, a) (R(s, a, s') + \gamma V(s'));$
- Recommencer jusqu'à convergence des valeurs.

0.5	1	0.1	0.11
		-0.5	0.5
0.3	0	1	1

Algorithme de Value Iteration (2)

- 1 Initialise aléatoirement toutes les valeurs, et 0 aux états absorbants;
- Pour chaque $s \in S$: $V(s) = \max_{a} \sum_{s' \in S} p(s'|s, a) (R(s, a, s') + \gamma V(s'));$
- Recommencer jusqu'à convergence des valeurs.

0.5	1	0.1	0.11
		-0.5	0.51
0.3	0	1	1

0.9	0.9	1.09	1.009
		0.9	1.09
0.27	0.9	0.9	0.9

Programmation dynamique

Algorithme de Value Iteration (2)

- 1 Initialise aléatoirement toutes les valeurs, et 0 aux états absorbants;
- Pour chaque $s \in S$: $V(s) = \max_{a} \sum_{s' \in S} p(s'|s, a) (R(s, a, s') + \gamma V(s'));$
- Recommencer jusqu'à convergence des valeurs.

0.5	1	0.1	0.11
		-0.5	0.5
0.3	0	1	1

0.9	0.9	1.09	1.09
		0.9	1.09
0.27	0.9	0.9	0.9

0.81	0.981	1.981	1.98 ¹ 1
		0.981	1.98 ¹ 1
0.81	0.81	0.81	0.981

Algorithme de Value Iteration (2)

Trouver V^* sans états absorbants, actions déterministes, $\gamma = 0.9$:

- 1 Initialise aléatoirement toutes les valeurs, et 0 aux états absorbants;
- Pour chaque $s \in S$: $V(s) = \max_{a} \sum_{s' \in S} p(s'|s, a) (R(s, a, s') + \gamma V(s'));$
- Recommencer jusqu'à convergence des valeurs.

0.5	1	0.1	0.11
		-0.5	0.51
0.3	0	1	1

0.9	0.9	1.09	1.09
		0.9	1.09
0.27	0.9	0.9	0.9

0.81	0.981	1.981	1.981
		0.981	1.98 ¹ 1
0.81	0.81	0.81	0.981

7.2	8.1	9	10 ¹
		8.1	9 ⁻¹
0.81	6.3	7.2	8.1

Apprentissage par renforcement

Algorithme de Value iteration (3)

Trouver V^* états absorbants, transitions stochastiques:

1 Appliquez $\forall s \in S$:

$$V(s) = \max_{a} \sum_{s' \in S} p(s'|s, a) (R(s, a, s') + \gamma V(s'));$$

0.5	1	0.5	+1
1		1	-10
1	0.2	0.5	1

	7101101111	
	0.2	
0		0.6

Action 1

Algorithme de Value iteration (3)

Trouver V^* états absorbants, transitions **stochastiques**:

1 Appliquez $\forall s \in S$:

$$V(s) = \max_{a} \sum_{s' \in S} p(s'|s, a) (R(s, a, s') + \gamma V(s'));$$

0.5	1	0.5	+1
(a)		1	-10
1	0.2	0.5	1

0.7	0.8	1	+1
0.6		0.8	-10
0.84	0.68	0.9	0.9

Récompenses R(s, a, s') et probabilités de transition p(s'|s, a) inconnues:

- Impossible de calculer $\max_{a \in A} \sum_{s' \in S} p(s'|s, a) (R(s, a, s') + \gamma V(s')).$
- L'agent peut expérimenter transitions et récompenses (échantillonnage).

Récompenses R(s, a, s') et probabilités de transition p(s'|s, a) inconnues:

- Impossible de calculer $\max_{a \in A} \sum_{s' \in S} p(s'|s, a) (R(s, a, s') + \gamma V(s')).$
- L'agent peut expérimenter transitions et récompenses (échantillonnage).

Solutions:

Model-based RL: Apprendre p(s'|s,a) et R(s,a,s') en échantillonnant.

Model-free RL: Approximer directement V(s) en échantillonnant.

Model-free RL

Appliquer simultanément ou consécutivement:

- Générer des transitions avec $\pi(a|s)$ et apprendre $Q_{\pi}(s,a)$ et/ou $V_{\pi}(s)$. (Policy evaluation)
- Définir $\pi'(a|s)$ selon $\max_a Q_{\pi}(s,a)$ (Policy improvement).

Model-free RL

Appliquer simultanément ou consécutivement:

- Générer des transitions avec $\pi(a|s)$ et apprendre $Q_{\pi}(s,a)$ et/ou $V_{\pi}(s)$. (Policy evaluation)
- Définir $\pi'(a|s)$ selon max_a $Q_{\pi}(s,a)$ (Policy improvement).

Policy improvement theorem:

If
$$\forall s \in S, \ V_{\pi}(s) \leq Q_{\pi}(s,\pi'(s))$$
, then: $\forall s \in S, V_{\pi}(s) \leq V_{\pi'}(s)$.

Policy evaluation: méthode Monte-Carlo

$$V(s_t) \leftarrow V(s_t) + \alpha \left[\sum_{t'=t}^{\infty} (\gamma^{t'-t} R(s_{t'}, a_{t'}, s_{t'+1})) - V(s_{t'}) \right]$$
 (4)

où α est le taux d'apprentissage.

→ Approximation non biaisée, avec forte variance.

Motivation intrinsèque

Policy evaluation: TD prediction

$$V(s_t) \leftarrow V(s_t) + \alpha[R(s_t, a_t, s_{t+1}) + \gamma V(s_{t+1}) - V(s_t)]$$
 (5)

où α est le taux d'apprentissage.

→ Approximation biaisée, avec faible variance.

Vue unifiée

Q-learning

Choisir un état initial et recommencer, Q converge vers Q^* :

- **1** Choisir $a \sim \pi(\cdot|s) = Cat(Q(s, A))$
- ② Observer r et s'.

A, S	s_1	<i>s</i> ₂	<i>S</i> 3	<i>S</i> ₄
a_1	0.5	0.2	-1	0.2
a ₂	0	0.1	0.5	0.5

Updates:
$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{\substack{a' \in A \ Policy improvement}} Q(s', a') - Q(s, a)].$$

Exemple: $\alpha = 0.5$, $\gamma = 0.9$, politique déterministe:

Updates:
$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{\substack{a' \in A \ Policy improvement}} Q(s', a') - Q(s, a)].$$

Exemple: $\alpha = 0.5$, $\gamma = 0.9$, politique déterministe:

Updates:
$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{\substack{a' \in A \ Policy improvement}} Q(s', a') - Q(s, a)].$$

Exemple: $\alpha = 0.5$, $\gamma = 0.9$, politique déterministe:

Updates:
$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{\substack{a' \in A \ Policy improvement}} Q(s', a') - Q(s, a)].$$

Exemple: $\alpha = 0.5$, $\gamma = 0.9$, politique déterministe:

Updates:
$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{\substack{a' \in A \ Policy improvement}} Q(s', a') - Q(s, a)].$$

Exemple: $\alpha = 0.5$, $\gamma = 0.9$, politique déterministe:

Exemple Q-learning

Updates:
$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{\substack{a' \in A \ Policy improvement}} Q(s', a') - Q(s, a)].$$

Exemple: $\alpha = 0.5$, $\gamma = 0.9$, politique déterministe:

Updates:
$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{\substack{a' \in A \ Policy improvement}} Q(s', a') - Q(s, a)].$$

Exemple: $\alpha = 0.5$, $\gamma = 0.9$, politique déterministe:

Compromis exploration vs exploitation

Exploration ϵ greedy: faire une action aléatoire avec probabilité ϵ .

- $\epsilon = 0.8$, l'agent ne converge pas et l'agent n'explore pas les bons chemins.
- \bullet $\epsilon=0.001$, l'agent n'explore pas suffisamment les mauvais chemins.

Off-policy vs On-policy

Off-policy: Converge peu importe l'exploration utilisée (Q-learning).

On-policy : Utilise l'exploration pour calculer l'opérateur de Bellman (SARSA).

SARSA:
$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma Q(s', a') - Q(s, a)].$$

Exemple d'espace d'état trop grand

Taille de l'espace d'état: $|S| = 255^{84 \times 84 \times 3 \times 2} = 255^{42336}$. Peut-on tirer parti du deep learning pour généraliser ?

Approches

1 Méthodes "Value-based" (DQN): Choix des actions en fonction des valeurs Q(s, a);

Approches

- Méthodes "Value-based" (DQN): Choix des actions en fonction des valeurs Q(s, a);
- **2** Méthodes "Policy-based" (REINFORCE): Paramétrage direct de la politique $\pi_{\theta'}$;

Approches

- Méthodes "Value-based" (DQN): Choix des actions en fonction des valeurs Q(s, a);
- ② Méthodes "Policy-based" (REINFORCE): Paramétrage direct de la politique $\pi_{\theta'}$;
- **3** Méthodes "Actor-critic" (A2C): Modification de π_{θ} en fonction de Q(s, a).

DQN

Deep Q-network (DQN)

• https://www.youtube.com/watch?v=V1eYniJORnk

Deep Q-network (DQN)

Apprentissage par renforcement

- https://www.youtube.com/watch?v=V1eYniJORnk
- $G_{\theta} = [Q_{\theta}(s_t, a_t) (R(s_t, a_t) + \gamma \max_{a} Q_{\theta}(s_{t+1}, a))]^2$

DQN

Deep Q-network (DQN)

- https://www.youtube.com/watch?v=V1eYniJORnk
- $G_{\theta} = \left[Q_{\theta}(s_t, a_t) \left(R(s_t, a_t) + \gamma \max_{a} Q_{\theta}(s_{t+1}, a)\right)\right]^2$
- ullet Minimisation de $G_{ heta}$ via backpropagation du gradient.

DQN

Deep Q-network (DQN)

- https://www.youtube.com/watch?v=V1eYniJORnk
- $G_{\theta} = \left[Q_{\theta}(s_t, a_t) \left(R(s_t, a_t) + \gamma \max_a Q_{\theta}(s_{t+1}, a)\right)\right]^2$
- Minimisation de G_{θ} via backpropagation du gradient.

Problèmes:

1 Q_{θ} (right) dépend aussi de θ , pouvant faire diverger l'algorithme.

Deep Q-network (DQN)

Apprentissage par renforcement

- https://www.youtube.com/watch?v=V1eYniJORnk
- $G_{\theta} = [Q_{\theta}(s_t, a_t) (R(s_t, a_t) + \gamma \max_{a} Q_{\theta}(s_{t+1}, a))]^2$
- Minimisation de G_{θ} via backpropagation du gradient.

Problèmes:

- Q_{θ} (right) dépend aussi de θ , pouvant faire diverger l'algorithme.
- Les exemples sont corrélés, rendant l'apprentissage instable.

DQN

Deep Q-network (DQN) - Astuces

$$\bullet \ \ \textit{G}_{\theta} = \left[\textit{Q}_{\theta}(\textit{s}_{t},\textit{a}_{t}) - \left(\textit{R}(\textit{s}_{t},\textit{a}_{t}) + \gamma \max_{\textit{a}} \hat{\textit{Q}}_{\theta'}(\textit{s}_{t+1},\textit{a})\right)\right]^{2}$$

• Utilisation du target network: $\hat{Q_{\theta'}}$ est modifié graduellement vers Q_{θ} .

DQN

Deep Q-network (DQN) - Astuces

- $\bullet \ \ \textit{G}_{\theta} = \left[\textit{Q}_{\theta}(\textit{s}_{t},\textit{a}_{t}) \left(\textit{R}(\textit{s}_{t},\textit{a}_{t}) + \gamma \max_{\textit{a}} \hat{\textit{Q}}_{\theta'}(\textit{s}_{t+1},\textit{a})\right)\right]^{2}$
- Utilisation du target network: $\hat{Q_{\theta'}}$ est modifié graduellement vers Q_{θ} .
- Utilisation de l'experience replay : stockages des 100 000 (par exemple) dernières interactions.

Deep Q-network (DQN) - Problème

Deep Q-network (DQN) - Problème

Deep Q-network (DQN) - Problème

Deep Q-network (DQN) - Problème

• Le réseau calcule Q(s, a) pour chaque action.

DON

Apprentissage par renforcement

Deep Q-network (DQN) - Problème

- Le réseau calcule Q(s, a) pour chaque action.
- Mais comment faire si les actions sont continues ?

Policy-based methods

Méthodes policy-based

ullet Policy π génère une distibution de probabilité d'actions.

Méthodes policy-based

- Policy π génère une distibution de probabilité d'actions.
- On augmente la probabilité des actions générant de fortes récompenses.

Policy gradient théorème

Objectif: π_{θ} maximise $J(\theta) = \mathbb{E}_{\pi_{\theta}} R(\tau)$.

Policy gradient théorème

Objectif: π_{θ} maximise $J(\theta) = \mathbb{E}_{\pi_{\theta}} R(\tau)$.

Trouvons le gradient: $\nabla_{\theta} J(\theta)$.

$$abla_{ heta} J(heta) =
abla \mathbb{E}_{\pi_{ heta}} R(au)$$

$$egin{aligned}
abla_{ heta} J(heta) &=
abla \mathbb{E}_{\pi_{ heta}} R(au) \ &=
abla \int \pi_{ heta}(au) R(au) d au \end{aligned}$$

$$egin{aligned}
abla_{ heta} J(heta) &=
abla \mathbb{E}_{\pi_{ heta}} R(au) \ &=
abla \int \pi_{ heta}(au) R(au) d au \ &= \int
abla \pi_{ heta}(au) R(au) d au \end{aligned}$$

$$\nabla_{\theta} J(\theta) = \nabla \mathbb{E}_{\pi_{\theta}} R(\tau)$$

$$= \nabla \int \pi_{\theta}(\tau) R(\tau) d\tau$$

$$= \int \nabla \pi_{\theta}(\tau) R(\tau) d\tau$$

$$= \int \pi_{\theta}(\tau) \nabla \log \pi_{\theta}(\tau) R(\tau) d\tau.$$

$$\nabla_{\theta} J(\theta) = \nabla \mathbb{E}_{\pi_{\theta}} R(\tau)$$

$$= \nabla \int \pi_{\theta}(\tau) R(\tau) d\tau$$

$$= \int \nabla \pi_{\theta}(\tau) R(\tau) d\tau$$

$$= \int \pi_{\theta}(\tau) \nabla \log \pi_{\theta}(\tau) R(\tau) d\tau.$$

(6)

$$\pi_{\theta}(\tau) = \rho(s_0) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}, r_{t+1}|s_t, a_t).$$

$$\nabla_{\theta} J(\theta) = \nabla \mathbb{E}_{\pi_{\theta}} R(\tau)$$

$$= \nabla \int \pi_{\theta}(\tau) R(\tau) d\tau$$

$$= \int \nabla \pi_{\theta}(\tau) R(\tau) d\tau$$

$$= \int \pi_{\theta}(\tau) \nabla \log \pi_{\theta}(\tau) R(\tau) d\tau.$$

(6)

$$\pi_{\theta}(\tau) = \rho(s_0) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}, r_{t+1}|s_t, a_t).$$
$$\log \pi_{\theta}(\tau) = C_{\theta} + \sum_{t=1}^{T} \log \pi_{\theta}(a_t|s_t).$$

$$\nabla_{\theta} J(\theta) = \nabla \mathbb{E}_{\pi_{\theta}} R(\tau)$$

$$= \nabla \int \pi_{\theta}(\tau) R(\tau) d\tau$$

$$= \int \nabla \pi_{\theta}(\tau) R(\tau) d\tau$$

$$= \int \pi_{\theta}(\tau) \nabla \log \pi_{\theta}(\tau) R(\tau) d\tau.$$

(6)

$$\pi_{\theta}(\tau) = \rho(s_0) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}, r_{t+1}|s_t, a_t).$$

$$\log \pi_{\theta}(\tau) = C_{\theta} + \sum_{t=1}^{T} \log \pi_{\theta}(a_t|s_t).$$
D'où $\nabla \log \pi_{\theta}(\tau) = \sum_{t=1}^{T} \nabla \log \pi_{\theta}(a_t|s_t).$

$$\nabla_{\theta} J(\theta) = \nabla \mathbb{E}_{\pi_{\theta}} R(\tau)$$

$$= \nabla \int \pi_{\theta}(\tau) R(\tau) d\tau$$

$$= \int \nabla \pi_{\theta}(\tau) R(\tau) d\tau$$

$$= \int \pi_{\theta}(\tau) \nabla \log \pi_{\theta}(\tau) R(\tau) d\tau.$$

(6)

Motivation intrinsèque

$$\begin{aligned} \pi_{\theta}(\tau) &= \rho(s_0) \prod_{1}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}, r_{t+1}|s_t, a_t). \\ \log \pi_{\theta}(\tau) &= C_{\theta} + \sum_{1}^{T} \log \pi_{\theta}(a_t|s_t). \\ \text{D'où } \nabla \log \pi_{\theta}(\tau) &= \sum_{1}^{T} \nabla \log \pi_{\theta}(a_t|s_t). \\ \text{On obtient:} \nabla \mathbb{E}_{\pi_{\theta}} R(\tau) &= \mathbb{E}_{\pi_{\theta}} R(\tau) \sum_{1}^{T} \nabla \log \pi_{\theta}(a_t|s_t). \end{aligned}$$

Interprétation du théorème

• $\nabla_{\theta} J(\theta) = \mathbb{E}_{s_t \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1}) \right].$

Interprétation du théorème

- $\nabla_{\theta} J(\theta) = \mathbb{E}_{s_t \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1}) \right].$
- Seulement besoin des trajectoires et du gradient de la politique.

Interprétation du théorème

- $\nabla_{\theta} J(\theta) = \mathbb{E}_{s_t \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1}) \right].$
- Seulement besoin des trajectoires et du gradient de la politique.
- Estimateur non biaisé!

REINFORCE

• $\nabla_{\theta} J(\theta) = \mathbb{E}_{s_t \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1}) \right].$

REINFORCE

- $\nabla_{\theta} J(\theta) = \mathbb{E}_{s_t \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1}) \right].$
- $\sum_{t'=t}^T R(s_{t'}, a_{t'}, s_{t'+1})$ "pondère" la probabilité de l'action.

REINFORCE

- $\nabla_{\theta} J(\theta) = \mathbb{E}_{s_t \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1}) \right].$
- $\sum_{t'=t}^T R(s_{t'}, a_{t'}, s_{t'+1})$ "pondère" la probabilité de l'action.
- Mais pour de longs épisodes, la variance est très importante.

Architectures Actor-Critic

• $\sum_{t'=t}^{T} \gamma^{t'-t} R(s_{t'}, a_{t'}, s_{t'+1}) = R(s_t, a_t, s_{t+1}) + \gamma V_{\theta'}(s_{t+1}) = Q(s_t, a_t).$

Architectures Actor-Critic

- $\sum_{t'=t}^{T} \gamma^{t'-t} R(s_{t'}, a_{t'}, s_{t'+1}) = R(s_t, a_t, s_{t+1}) + \gamma V_{\theta'}(s_{t+1}) = Q(s_t, a_t).$
- $\nabla_{\theta} J(\theta) = \mathbb{E}_{a,s \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q(s,a)].$

Architectures Actor-Critic

- $\sum_{t'=t}^{T} \gamma^{t'-t} R(s_{t'}, a_{t'}, s_{t'+1}) = R(s_t, a_t, s_{t+1}) + \gamma V_{\theta'}(s_{t+1}) = Q(s_t, a_t).$
- $\bullet \ \nabla_{\theta} J(\theta) = \mathbb{E}_{\mathsf{a},\mathsf{s} \sim \pi_{\theta}} \big[\nabla_{\theta} \log \pi_{\theta}(\mathsf{a}|\mathsf{s}) Q(\mathsf{s},\mathsf{a}) \big].$
- Actor : Calculer $\log \pi_{\theta}(a|s)$.

Architectures Actor-Critic

- $\sum_{t'=t}^{T} \gamma^{t'-t} R(s_{t'}, a_{t'}, s_{t'+1}) = R(s_t, a_t, s_{t+1}) + \gamma V_{\theta'}(s_{t+1}) = Q(s_t, a_t).$
- $\bullet \ \nabla_{\theta} J(\theta) = \mathbb{E}_{\mathsf{a},\mathsf{s} \sim \pi_{\theta}} \big[\nabla_{\theta} \log \pi_{\theta}(\mathsf{a}|\mathsf{s}) Q(\mathsf{s},\mathsf{a}) \big].$
- Actor : Calculer $\log \pi_{\theta}(a|s)$.
- Critic : Calculer $V_{\theta'}(s')$ ou $Q_{\theta'}(s, a)$.

Réduction de la variance

$$abla_{ heta} J(heta) = \mathbb{E}_{\mathsf{a},\mathsf{s},\mathsf{s}' \sim \pi_{ heta}} igl[
abla_{ heta} \log \pi_{ heta}(\mathsf{a}|\mathsf{s})(Q(\mathsf{s},\mathsf{a}) - b(\mathsf{s})) igr]$$

• Baseline b(s) indépendante de l'action pour ne pas biaiser le gradient.

$$abla_{ heta} J(heta) = \mathbb{E}_{\mathsf{a}, \mathsf{s} \sim \pi_{ heta}} ig[
abla_{ heta} \log \pi_{ heta}(\mathsf{a}|\mathsf{s}) (\mathit{Q}(\mathsf{s}, \mathsf{a}) - \mathit{b}(\mathsf{s})) ig]$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\mathsf{a}, \mathsf{s} \sim \pi_{\theta}} \big[\nabla_{\theta} \log \pi_{\theta}(\mathsf{a}|\mathsf{s}) (Q(\mathsf{s}, \mathsf{a}) - b(\mathsf{s})) \big]$$

$$= \nabla_{\theta} J_{\mathsf{prev}}(\theta) - \mathbb{E}_{\mathsf{a}, \mathsf{s} \sim \pi_{\theta}} \nabla_{\theta} \log \pi_{\theta}(\mathsf{a}|\mathsf{s}) b(\mathsf{s})$$

$$\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{a,s \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) (Q(s,a) - b(s)) \right] \\ &= \nabla_{\theta} J_{prev}(\theta) - \mathbb{E}_{a,s \sim \pi_{\theta}} \nabla_{\theta} \log \pi_{\theta}(a|s) b(s) \\ &= \nabla_{\theta} J_{prev}(\theta) - \mathbb{E}_{a,s \sim \pi_{\theta}} b(s) \nabla_{\theta} \log \pi_{\theta}(a|s) \end{split}$$

$$\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{a,s \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) (Q(s,a) - b(s)) \right] \\ &= \nabla_{\theta} J_{prev}(\theta) - \mathbb{E}_{a,s \sim \pi_{\theta}} \nabla_{\theta} \log \pi_{\theta}(a|s) b(s) \\ &= \nabla_{\theta} J_{prev}(\theta) - \mathbb{E}_{a,s \sim \pi_{\theta}} b(s) \nabla_{\theta} \log \pi_{\theta}(a|s) \\ &= \nabla_{\theta} J_{prev}(\theta) - \sum_{s} \mu(s) b(s) \sum_{a} \pi_{\theta}(a|s) \nabla_{\theta} \log \pi_{\theta}(a|s) \end{split}$$

$$\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{a,s \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) (Q(s,a) - b(s)) \right] \\ &= \nabla_{\theta} J_{prev}(\theta) - \mathbb{E}_{a,s \sim \pi_{\theta}} \nabla_{\theta} \log \pi_{\theta}(a|s) b(s) \\ &= \nabla_{\theta} J_{prev}(\theta) - \mathbb{E}_{a,s \sim \pi_{\theta}} b(s) \nabla_{\theta} \log \pi_{\theta}(a|s) \\ &= \nabla_{\theta} J_{prev}(\theta) - \sum_{s} \mu(s) b(s) \sum_{a} \pi_{\theta}(a|s) \nabla_{\theta} \log \pi_{\theta}(a|s) \\ &= \nabla_{\theta} J_{prev}(\theta) - \sum_{s} \mu(s) b(s) \sum_{a} \pi_{\theta}(a|s) \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)} \end{split}$$

Dérivation

Apprentissage par renforcement

$$\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{a,s \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) (Q(s,a) - b(s)) \right] \\ &= \nabla_{\theta} J_{prev}(\theta) - \mathbb{E}_{a,s \sim \pi_{\theta}} \nabla_{\theta} \log \pi_{\theta}(a|s) b(s) \\ &= \nabla_{\theta} J_{prev}(\theta) - \mathbb{E}_{a,s \sim \pi_{\theta}} b(s) \nabla_{\theta} \log \pi_{\theta}(a|s) \\ &= \nabla_{\theta} J_{prev}(\theta) - \sum_{s} \mu(s) b(s) \sum_{a} \pi_{\theta}(a|s) \nabla_{\theta} \log \pi_{\theta}(a|s) \\ &= \nabla_{\theta} J_{prev}(\theta) - \sum_{s} \mu(s) b(s) \sum_{a} \pi_{\theta}(a|s) \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)} \\ &= \nabla_{\theta} J_{prev}(\theta) - \sum_{s} \mu(s) b(s) \nabla_{\theta} 1 \end{split}$$

Dérivation

Apprentissage par renforcement

$$\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{a,s \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) (Q(s,a) - b(s)) \right] \\ &= \nabla_{\theta} J_{prev}(\theta) - \mathbb{E}_{a,s \sim \pi_{\theta}} \nabla_{\theta} \log \pi_{\theta}(a|s) b(s) \\ &= \nabla_{\theta} J_{prev}(\theta) - \mathbb{E}_{a,s \sim \pi_{\theta}} b(s) \nabla_{\theta} \log \pi_{\theta}(a|s) \\ &= \nabla_{\theta} J_{prev}(\theta) - \sum_{s} \mu(s) b(s) \sum_{a} \pi_{\theta}(a|s) \nabla_{\theta} \log \pi_{\theta}(a|s) \\ &= \nabla_{\theta} J_{prev}(\theta) - \sum_{s} \mu(s) b(s) \sum_{a} \pi_{\theta}(a|s) \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)} \\ &= \nabla_{\theta} J_{prev}(\theta) - \sum_{s} \mu(s) b(s) \nabla_{\theta} 1 \\ &= \nabla_{\theta} J_{prev}(\theta) \end{split}$$

A2C: réduire la variance

Apprentissage par renforcement

 $\bullet \ \nabla_{\theta} J(\theta) = \mathbb{E}_{\mathsf{a}, s \sim \pi_{\theta}} \big[\nabla_{\theta} \log \pi_{\theta}(\mathsf{a}|\mathsf{s}) (Q_{\theta'}(\mathsf{s}, \mathsf{a}) - V_{\theta'}(\mathsf{s})) \big].$

A2C: réduire la variance

Apprentissage par renforcement

- $\bullet \ \nabla_{\theta} J(\theta) = \mathbb{E}_{a,s \sim \pi_{\theta}} \big[\nabla_{\theta} \log \pi_{\theta}(a|s) (Q_{\theta'}(s,a) V_{\theta'}(s)) \big].$
- $A(s, a) = Q_{\theta'}(s, a) V_{\theta'}(s)$ fonction avantage.

A2C: réduire la variance

- $\bullet \ \nabla_{\theta} J(\theta) = \mathbb{E}_{\mathsf{a},\mathsf{s} \sim \pi_{\theta}} \big[\nabla_{\theta} \log \pi_{\theta}(\mathsf{a}|\mathsf{s}) (Q_{\theta'}(\mathsf{s},\mathsf{a}) V_{\theta'}(\mathsf{s})) \big].$
- $A(s, a) = Q_{\theta'}(s, a) V_{\theta'}(s)$ fonction avantage.
- A(s, a) > 0 si a est meilleure que la politique actuelle.

A2C: réduire la variance

- $\bullet \ \nabla_{\theta} J(\theta) = \mathbb{E}_{\mathsf{a},\mathsf{s} \sim \pi_{\theta}} \big[\nabla_{\theta} \log \pi_{\theta}(\mathsf{a}|\mathsf{s}) (Q_{\theta'}(\mathsf{s},\mathsf{a}) V_{\theta'}(\mathsf{s})) \big].$
- $A(s, a) = Q_{\theta'}(s, a) V_{\theta'}(s)$ fonction avantage.
- A(s, a) > 0 si a est meilleure que la politique actuelle.
- A(s, a) < 0 si a est moins bonne que la politique actuelle.

A2C: Explorer

• Convergence prématurée.

A2C: Explorer

- Convergence prématurée.
- Ajout d'un terme d'entropie forcant une forte variance.
- $\nabla_{\theta} J(\theta) = \mathbb{E}_{a,s \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) A(s,a) + \nabla_{\theta} H(\pi_{\theta}(a|s))].$

Autres modèles...

Améliorations du DQN:

• Double DQN [Van Hasselt et al., 2016].

Autres modèles...

Améliorations du DQN:

- Double DQN [Van Hasselt et al., 2016].
- Prioritized Experience replay [Schaul et al., 2015].

Autres modèles...

Améliorations du DQN:

- Double DQN [Van Hasselt et al., 2016].
- Prioritized Experience replay [Schaul et al., 2015].
- Dueling DQN [Wang et al., 2015].

Autres modèles...

Améliorations du DQN:

- Double DQN [Van Hasselt et al., 2016].
- Prioritized Experience replay [Schaul et al., 2015].
- Dueling DQN [Wang et al., 2015].
- Distributional DQN [Dabney et al., 2018].

Autres modèles...

Améliorations du DQN:

- Double DQN [Van Hasselt et al., 2016].
- Prioritized Experience replay [Schaul et al., 2015].
- Dueling DQN [Wang et al., 2015].
- Distributional DQN [Dabney et al., 2018].
- Rainbow DQN [Hessel et al., 2018].

Autres modèles...

Améliorations du DQN:

- Double DQN [Van Hasselt et al., 2016].
- Prioritized Experience replay [Schaul et al., 2015].
- Dueling DQN [Wang et al., 2015].
- Distributional DQN [Dabney et al., 2018].
- Rainbow DQN [Hessel et al., 2018].

Modèles Actor-Critic:

• Trust region policy optimization [Schulman et al., 2015].

Autres modèles...

Améliorations du DQN:

- Double DQN [Van Hasselt et al., 2016].
- Prioritized Experience replay [Schaul et al., 2015].
- Dueling DQN [Wang et al., 2015].
- Distributional DQN [Dabney et al., 2018].
- Rainbow DQN [Hessel et al., 2018].

Modèles Actor-Critic:

- Trust region policy optimization [Schulman et al., 2015].
- Proximal policy optimization [Schulman et al., 2017].

Autres modèles...

Améliorations du DQN:

- Double DQN [Van Hasselt et al., 2016].
- Prioritized Experience replay [Schaul et al., 2015].
- Dueling DQN [Wang et al., 2015].
- Distributional DQN [Dabney et al., 2018].
- Rainbow DQN [Hessel et al., 2018].

Modèles Actor-Critic:

- Trust region policy optimization [Schulman et al., 2015].
- Proximal policy optimization [Schulman et al., 2017].
- Deep deterministic policy gradient [Lillicrap et al., 2015].

Autres modèles...

Apprentissage par renforcement

Améliorations du DQN:

- Double DQN [Van Hasselt et al., 2016].
- Prioritized Experience replay [Schaul et al., 2015].
- Dueling DQN [Wang et al., 2015].
- Distributional DQN [Dabney et al., 2018].
- Rainbow DQN [Hessel et al., 2018].

Modèles Actor-Critic:

- Trust region policy optimization [Schulman et al., 2015].
- Proximal policy optimization [Schulman et al., 2017].
- Deep deterministic policy gradient [Lillicrap et al., 2015].
- Soft actor-critic [Haarnoja et al., 2018].

Efficacité computationnelle

• En réalité : pas de simulateurs.

Efficacité computationnelle

- En réalité : pas de simulateurs.
- 200k frames = 1h humaine; 44M = 220h humaines.

Exploration

Figure: Environnement très simple avec des récompenses éparses.

• L'agent n'apprend rien car il ne trouve jamais la récompense.

45/50

Abstraction des décisions

- Nous sommes capable de prendre des décisions de haut niveau.
- Plus facile d'apprendre sur 10 actions haut-niveau que sur 1000 actions bas-niveau [Sutton et al., 1999].

46/50

Motivation intrinsèque

- Issu de la psychologie pour décrire la tendance des bébés à explorer;
- Faire quelque chose pour son inhérente satisfaction;

Motivation intrinsèque

- Issu de la psychologie pour décrire la tendance des bébés à explorer;
- Faire quelque chose pour son inhérente satisfaction;
- RL: intrisic reward vs extrinsic reward.

Apprentissage par renforcement

Curiosité

- Récompenser l'erreur de prédiction des états suivants [Pathak et al., 2017].
 - https://pathak22.github.io/noreward-rl/
- $R(s, a, s') = ||forward(e(s), a) e(s')||^2$.

Apprentissage par renforcement

Curiosité

- Récompenser l'erreur de prédiction des états suivants [Pathak et al., 2017].
 https://pathak22.github.io/noreward-rl/
- $R(s, a, s') = ||forward(e(s), a) e(s')||^2$.
- Récompenser des états loins de ceux en mémoire [Savinov et al., 2018] https://ai.googleblog.com/2018/10/curiosity-and-procrastination-in.html.

Curiosité

- Récompenser l'erreur de prédiction des états suivants [Pathak et al., 2017].
 https://pathak22.github.io/noreward-rl/
- $R(s, a, s') = ||forward(e(s), a) e(s')||^2$.
- Récompenser des états loins de ceux en mémoire
 [Savinov et al., 2018] https://ai.googleblog.com/2018/10/curiosity-and-procrastination-in.html.
- Récompenser l'agent selon la nouveauté des états [Bellemare et al., 2016][Ostrovski et al., 2017].
- $R(s, a, s') = \frac{1}{count(s')}$.

Ressources et références I

Ressources (images):

Apprentissage par renforcement

- https://machinelearnia.com/apprentissage-supervise-4-etapes/
- https://needemand.com/quest-ce-que-le-machine-learning/
- http://karpathy.github.io/2016/05/31/rl/
- https://blog.goodaudience.com/deep-q-learning-a-reinforcementlearning-algorithm-d1a93b754535
- Machine Learning Summer Schools 2020

Références:

- Excellent livre de Sutton gratuit : http://incompleteideas.net/book/the-book.html
- Cours en ligne de David Silver
- Cours de Berkeley

- Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. (2016).
 Unifying count-based exploration and intrinsic motivation.
 - In Advances in Neural Information Processing Systems, pages 1471–1479.
- Dabney, W., Rowland, M., Bellemare, M., and Munos, R. (2018). Distributional reinforcement learning with quantile regression. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32.
- Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018).

 Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor.

 In International Conference on Machine Learning, pages 1861–1870.
 - In *International Conference on Machine Learning*, pages 1861–1870. PMLR.
- Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and Silver, D. (2018).