Dasar-Dasar Capsule Networks (CapsNet)

Materi diambil dari

Suyanto, "Deep Learning: Modernisasi Machine Learning untuk Big Data", Penerbit Informatika, Bandung, 2019. Bab 4 Capsule Network

Aurélien Géron. Capsule Networks (CapsNets) – Tutorial

Kerangka Bahasan

- 1. Pengantar
- 2. Ide Dasar dan Motivasi CapsNet
- 3. Arsitektur CapsNet
- 4. Algoritma Pembelajaran Routing by Agreement

Pengantar

- CapsNet merupakan pengembangan dari Convolutional Neural Network (disingkat ConvNet atau CNN).
- CapsNet memperbaiki performansi CNN yang memiliki kelemahan dalam mengenali relasi spasial antar komponen spesifik pada objekobjek di dalam citra.

Kerangka Bahasan

- 1. Pengantar
- 2. Ide Dasar dan Motivasi CapsNet
- 3. Arsitektur CapsNet
- 4. Algoritma Pembelajaran Routing by Agreement

Proses Hirarkis

- Pengelihatan manusia memiliki kemampuan untuk memproses citra beresolusi tinggi dengan fitur berdimensi rendah.
- Secara implisit, proses penglihatan manusia bekerja secara hirarkis.
- Terdapat beberapa lapis dalam sistem penglihatan manusia yang memiliki fitur dalam level yang berbeda-beda.
- Setiap lapis merangkum fitur dari lapis sebelumnya sehingga memiliki fitur yang berdimensi lebih rendah.
- Hal ini dalam CNN dimungkinkan dengan adanya pooling layer

Kelemahan CNN

- Hal ini membuat semakin dalam jaringan CNN, semakin kecil fitur yang dihasilkan.
- Misalkan kita memiliki CNN dengan beberapa layer.
- Convolutional layer pertama mengekstrak fitur yang sederhana seperti garis dan tepi dari objek.
- Convolutional layer kedua mengekstrak fitur yang lebih kompleks seperti bentuk-bentuk kecil dari objek.
- Convolutional layer ketiga dan seterusnya mengekstrak fitur yang lebih kompleks lagi sampai pada layer terakhir mengekstrak fitur untuk satu objek utuh.

- Antar setiap convolutional layer diberikan pooling layer yang bertugas untuk merangkum fitur pada area tertentu (misalkan 2 x 2) menjadi fitur yang lebih kompleks dengan dimensi yang lebih kecil.
- Hal ini tentu akan mereduksi kompleksitas pemrosesan pada layerlayer berikutnya.
- Namun, hal ini juga memberikan kelemahan pada CNN. Karena adanya proses perangkuman fitur tersebut, pooling layer mereduksi informasi spasial dari fitur tersebut.

 Kedua gambar memiliki fitur yang lengkap dari entitas wajah: dua mata, dua alis, satu hidung, dan satu mulut.

• Namun, fitur kedua gambar memiliki orientasi yang berbeda

- Mata manusia dapat dengan mudah mengenali bahwa citra sebelah kiri merupakan wajah manusia dan citra sebelah kanan bukan wajah manusia.
- Hal ini disebabkan mata manusia dapat mengenali informasi spasial dari komponen-komponen yang ada pada citra.
- Pooling layer mereduksi informasi spasial tersebut.
- Sehingga, pada proses pengenalan citra wajah, CNN mengenali wajah dari fitur-fitur komponen yang ada wajah tersebut, seperti keberadaan mata kiri dan kanan, garis wajah, bibir dan hidung.
- Namun, CNN tidak dapat mengenali informasi spasial yang ada pada komponen-komponen wajah karena pooling layer mereduksi informasi tersebut.

- Sehingga bagi CNN, posisi dari setiap komponen-komponen tersebut tidak penting.
- Akibatnya, citra sebelah kanan juga akan dianggap sebagai citra wajah.

Kerangka Bahasan

- 1. Pengantar
- 2. Ide Dasar dan Motivasi CapsNet
- 3. Arsitektur CapsNet
- 4. Algoritma Pembelajaran Routing by Agreement

Capsule

- Berbeda dengan arsitektur dari deep neural network pada umumnya yang terdiri dari banyak layer, pada CapsNet kita menambahkan layerlayer tersebut di dalam sebuah layer.
- Atau dapat dikatakan, bahwa CapsNet memiliki layer yang bersarang.
 Satu capsule merupakan satu set layer bersarang.
- Setiap capsule mengeluarkan output berupa vektor yang merepresentasikan nilai probabilitas dari keberadaan sebuah entitas di dalam citra dan orientasi dari vektor merepresentasikan properti dari entitas tersebut.

Routing

- Vektor dari sebuah capsule dikirimkan ke setiap capsule lain yang berperan sebagai parent dari capsule tersebut.
- Untuk setiap parent dari sebuah capsule dapat dihitung sebuah vektor prediksi dari perkalian antara bobot capsule tersebut dengan sebuah matriks bobot.
- Parent yang memiliki hasil perkalian tertinggi, maka ikatannya dengan capsule tersebut akan diperkuat, sedangkan ikatan capsule dengan parent lain akan diperlemah.
- Skema routing ini lebih baik daripada mekanisme pooling yang ada pada CNN yang hanya meneruskan informasi yang dianggap paling "kuat".
- Di dalam CapsNet juga terdapat mekanisme squashing yang merupakan fungsi non-linear.

Routing (cont)

- Fungsi squashing ini dilakukan terhadap vektor output dari setiap capsule.
- Informasi dari posisi setiap entitas pada capsule level rendah dapat dilihat dari capsule mana saja yang aktif.
- Sedangkan informasi posisi pada capsule level lebih tinggi dilihat dari nilai vektor output dari capsule tersebut.

Arsitektur CapsNet

 Contoh sebuah arsitektur sederhana dari CapsNet 3 layer, yg digunakan untuk mengenali data angka tulisan tangan 0 hingga 9 menggunakan data MNIST.

Arsitektur CapsNet (cont)

- Contoh CapsNet tsb hanya terdiri dari dua convolutional layer dan satu fully connected layer.
- Convolutional layer pertama adalah Conv1 yang memiliki kernel berukuran 9 x 9 dengan stride 1 dan fungsi aktivasi RelU.
- Layer ini mengubah nilai intensitas pixel menjadi aktivitas dari fitur lokal yang digunakan sebagai input dari primary capsule.

Graphics

- Primary capsule merupakan level terendah dari entitas multidimensi dan dari sudut pandang inverse graphics, mengaktifkan primary capsule identik dengan membalik proses rendering pada citra.
- Pada proses rendering objek, kita mendefinisikan pose dari objek seperti posisi, ukuran dan orientasi dan membangun objek dari informasi tersebut.
- Inverse rendering adalah kebalikannya.
- Jika diberikan sebuah objek, kita mengekstrak informasi pose tersebut dari objek yang diberikan.

Graphics (cont)

• Contoh sebuah proses rendering pada computer graphics

Graphics (cont)

Contoh sebuah proses inverse rendering

Arsitektur CapsNet

- Primary capsule layer tsb merupakan convolutional capsule layer yang mengandung 32 channel convolutional 8D capsule, dengan setiap primary capsule mengandung 8 unit konvolusi.
- Setiap primary capsule mengambil input dari Conv1 dengan ukuran
 256 x 81 yang overlap dengan lokasi dari bagian tengah dari capsule.
- Primary capsule dapat dianggap sebagai sebuah convolutinal layer dengan fungsi squashing sebagai fungsi aktivasinya.

Arsitektur CapsNet (cont)

 Layer berikutnya adalah DigitCaps memiliki satu capsule per kelas output label, dalam kasus pengenalan angka jumlah label = 10, dengan vektor output berdimensi 16 dan setiap capsule pada DigitCaps menerima input dari setiap capsule pada layer di bawahnya.

Activation Vector

- Sebuah capsule mencoba memprediksi keberadan dan instantiation parameters dari sebuah obyek terterntu di lokasi tertentu.
- Orientation, bisa estimasi pose (misal ratation, ketebalan, tingkat skewed dll). Contoh di sini parameter rotasi.

Activation vector:

Length = estimated probability of presence **Orientation** = object's estimated pose parameters

Activation Vector (cont)

• Capsule bisa berisi lebih banyak dimensi untuk pose, bisa 10 atau bahkan lebih.

Equivariance

Equivariance (cont)

Equivariance (cont)

- Proses downsample Pooling pada CNN bisa menghilangkan informasi lokasi dan pose dan obyek.
- Informasi lokasi dan pose tsb mungkin tdk menjadi masalah kalau kita hendak melakukan klasfikasi atas gambar secara keseluruhan.
- Namun akan menjadi tantangan bila kita hendak melakukan task yg membutuhkan lokasi dan pose yg akurat, seperti misalnya image segmentasi, atau object detection yg detil.

Struktur Hirarkis atas Bagian2

Struktur Hirarkis atas Bagian2

Primary Capsule

Memprediksi Output Layer Berikutnya

 Misalnya ada dua buah capsul pada layer berikutnya, house capsule dan boat capsule.

Memprediksi Output Layer Berikutnya (cont)

Routing by Agreement

Terima kasih

Daftar Istilah

- Capsule. A capsule is a small group of neurons whose activity vector represents the instantiation parameters of a specific type of entity such as an object or an object part.
- Multi-layer capsule
- Layer bersarang
- Routing