DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

PH2140 Mathematics on the Computer

Assignment 3

1 September 2017

(1) Electrostatic potential of a line charge

Consider a line charge with density $\lambda(z)C/m$ and length L=1m, placed along the z-axis, symmetrically about z=0.

- (i) Let $\lambda = \lambda_0 = \text{constant}$. Use the Integrate command to evaluate the potential V(x, y, z) everywhere (you may set it to be zero at infinity). Plot the equi-potential lines in the x-z plane (You may consider using the ContourPlot command for this).
- (ii) Use the NIntegrate command to evaluate the potential V(x, y, z) everywhere (you may set it to be zero at infinity) and plot the equi-potential lines on the x-z plane, when,
 - (a) $\lambda(z) \propto z$
 - (b) $\lambda(z) \propto \exp(-(z/a)^2)$, where a is a constant. You may consider the specific cases a = 0.5m and a = 2m.

(2)Simple Pendulum

Consider a simple pendulum of length L in the constant gravitational acceleration g of the earth. Let T be the time-period of this pendulum and let $T_0 = 2\pi\sqrt{\frac{L}{g}}$ be the time-period of small amplitude oscillations.

Plot T/T_0 for the pendulum as a function of the amplitude A_0 .