МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Высшая школа общей и прикладной физики

Отчет по лабораторной работе № 116 «Маятник Обербека»

Выполнил:

студент 1 курса ВШ ОПФ

Тарханов Андрей Алексеевич

Экспериментальная часть

Экспериментально определим момент инерции маятника, при различном положении грузов для этого:

Определим по шкале наименьшую отметку, которую достигает подвешенный груз. Зафиксировали высоту h (h=150см), с которой он будет отпускаться.

Измерили промежутки времени от начала спуска до нижнего положения (t_1) и до подъёма (t_2) , а так же высоту подъёма (h') по три раза для каждого из положений грузов

Измерили радиус шкива и расстояния от грузов до его оси

Затем воспользуемся формулой:

$$I_0 = \frac{mgr(t_2 - t_1)^2}{\phi_2 - \phi_1(1 - (\frac{t_2}{t_1} - 1)^2)} - mr^2$$

где m — масса груза, раскручивающего маятник, r — радиус шкива, t_1 — время падения груза до нижней точки, t_2 — полное время падения и подъёма груза, $\phi_1 = \frac{h}{r}$ — угол поворота маятника за t_1 , $\phi' = \frac{h'}{r}$ — угол поворота маятника за время подъёма груза, $\phi_2 = \phi_1 + \phi'$ — угол поворота маятника за t_2 .

Положен ие грузов	№ п/п	R, см	r, см	h, см	t ₁ , c	h [′] , см	t ₂ , см	φ1= h/r	φ'= h'/r	φ2= φ1+ φ'	I, г см ²	I _{ср} , г см ²
Без грузов	1	0	1,75	150	4,9	106,5	8,9	85,7	60,9	146,6	41939	42508
	2				4,8	107	9,2		61,1	146,8	43324	
	3				4,8	106,5	9,0		60,9	146,6	42261	
Грузы у основани я	1	3,2			5,4	107	9,6		61,1	146,8	54013	48748 105178 272573
	2				6,3	107,5	9,6		61,4	147,1	44421	
	3				4,9	108	9,0		61,7	147,4	47812	
Грузы на середине	1	10,7			7,7	118	14,1		67,4	153,1	110470	
	2				7,6	115	13,7		65,7	151,4	105053	
	3				7,8	118	13,6		67,4	153,1	100012	
Грузы на концах спиц	1				11,8	123	22,4		70,3	156,0	276025	
	2				12,0	121,5	22,1		69,4	155,1	268583	
	3				12,4	122	22,4		69,7	155,4	273112	

Сравним полученные моменты инерции грузов с теоретическими. Момент инерции цилиндра относительно оси, проходящей через боковую грань цилиндра по диаметру, вычисляется по формуле

$$I = \frac{Mr_0^2}{4} + \frac{Ml^2}{12} + \frac{M(\frac{l}{2})^2}{12}$$

где $M=152,0\pm0,5$ г — масса груза, $r_0=1,6$ см. — радиус, l=2,1 см — высота.

Тогда полный момент инерции системы относительно оси вращения маятника

$$I_{\text{reop}} = 4 \times (I + MR^2)$$

здесь R — расстояние от оси вращения до центра масс цилиндра.

$$I_{1 \text{ теор}} = 7203 \ \Gamma * cm^2$$

$$I_{2 \text{ Teop}} = 70584 \text{ г} * \text{см}^2$$

$$I_{3 \text{ Teop}} = 249062 \text{ r} * \text{cm}^2$$

Для того, чтобы посчитать потерю энергии маятника при переходе через нижнее положение груза, для четырех случаев находим ω_0 и ω_1 угловые скорости блока непосредственно до рывка и после него по формулам: $\omega_0 = 2\frac{\varphi_2 - \varphi_1}{t_2 - t_1}, \omega_1 = 2\frac{\varphi_1}{t_1}$. А потом,

принимая, что
$$E_{\kappa u \mu} = \frac{I\omega^2}{2}$$
, находим разность $\Delta E_{\kappa u \mu} = E_{\kappa u \mu 1} - E_{\kappa u \mu 0} = \frac{I}{2} \left(\omega_1^2 - \omega_0^2\right)$ - это и будет потеря кинетической энергии при переходе тела через нижнее положение.

Работу силы трения ищем из соотношения, что общая потеря энергии, определяемая из формулы $Ep_1 - Ep_2 = mg(h_2 - h_1)$ будет складываться из потери энергии при рывке внизу (которую мы определили ранее) и, собственно, работы, затрачиваемой на преодоление силы трения.

Без грузов:

$$\omega_0 = 2 \frac{\varphi_2 - \varphi_1}{t_2 - t_1} = 30,1, \omega_1 = 2 \frac{\varphi_1}{t_1} = 34,9$$
 (рад/с)

 $\Delta E_{_{\text{КИИ}}} = 0.71 \; \text{Дж} - \text{потеря кин.}$ энергии маятника при рывке

 $\Delta E_p = 0.87 \ Дж - общая потеря пот. энергии$

А_{трения}=0,16 Дж

Грузы у основания:

$$\omega_0=2rac{arphi_2-arphi_1}{t_2-t_1}=29, 1, \omega_1=2rac{arphi_1}{t_1}=32, 3$$
 (рад/с)

 $\Delta E_{\mbox{\tiny \it Kuh}} = 0{,}42~\mbox{Дж} - \mbox{потеря кин.}$ энергии маятника при рывке

 $\Delta E_p = 0.78 \ Дж - общая потеря пот. энергии$

Атрения=0,36 Дж

Грузы на середине:

$$\omega_0=2rac{arphi_2-arphi_1}{t_2-t_1}=2$$
1,1, $\omega_1=2rac{arphi_1}{t_1}=2$ 2,3 (рад/с)

 $\Delta E_{\mbox{\tiny {\it Kuh}}} = 0,\!27$ Дж
 — потеря кин. энергии маятника при рывке

 $\Delta E_p = 0,64 \ Дж - общая потеря пот. энергии$

А_{трения}=0,37 Дж

Грузы на концах:

$$\omega_0=2rac{arphi_2-arphi_1}{t_2-t_1}=13,\!3,\omega_1=2rac{arphi_1}{t_1}=14,\!5$$
 (рад/с)

 $\Delta E_{_{\it KUH}} = 0.45~{\rm Дж} - {\rm потеря}~{\rm кин.}$ энергии маятника при рывке

 $\Delta E_p = 0.55 \ Дж - общая потеря пот. энергии$

 $A_{\text{трения}} = 0,1 \ Дж$

Построим графики зависимости $\phi(t)$ и $\omega(t)$. Для этого измерим, насколько поворачивается маятник, пока груз опускается и поднимается, и с какой угловой скоростью это происходит

		Груз о	пускаетс	Я		Груз поднимается						
h, см		t, c			φ=H/r	h, см	t, c			tcp, c	φ=H/r	
15	3,35	3,13	3,3	3,26	8,57	175	13,22	13,31	13,58	13,4	100	
25	4,43	4,21	4,52	4,39	14,3	195	14,26	14,33	14,60	14,4	111	
35	5,31	5,16	5,63	5,37	20	215	15,36	15,52	15,71	15,5	123	
45	6,22	6,13	6,35	6,23	25,7	235	17,37	16,81	16,96	17	134	
65	7,33	7,26	7,59	7,39	37,1	255	18,70	18,77	18,97	18,8	146	
85	8,80	8,56	8,86	8,74	48,6	265	20,14	20,28	20,40	20,3	151	
105	9,80	9,69	9,90	9,8	60,1							
125	10,81	10,63	19,88	10,8	71,4							
150	11,89	11,76	11,93	11,9	85,7							

Продифференцировав график $\phi(t)$ имеем, что зависимость $\omega(t)$ на каждом из участков будет линейной, значит наши предположения о том, что момент силы трения постоянные, а движение маятника равноускоренно верны.

Покажем вывод уравнения (13) (при движении груза вверх).

Третий закон Ньютона: -ma = mg - T

уравнение моментов: $I \frac{d\omega}{dt} = M_{mg} + M_{тр}$

$$a = \frac{d\omega}{dt}r$$

Тогда имеем:
$$T = mg + m\frac{d\omega}{dt}r$$
 и $I\frac{d\omega}{dt} = -Tr - M_0 = -(mg + m\frac{d\omega}{dt}r)r - M_0$

$$\frac{d\omega}{dt}(I + mr^2) = -mgr - M_0$$

$$\frac{d\omega}{dt} = -\frac{mgr + M_0}{I + mr^2}.$$

При условии, что момент силы трения прямо пропорционален угловой скорости, получим зависимость $\omega(t)$.

$$M_{rp} = \alpha \omega$$
, где $\alpha = const;$

Получим
$$\frac{d\omega}{dt} = \frac{mgr - \alpha \omega}{I + mr^2}$$

$$\frac{I+mr^2}{mgr-\alpha\,\omega}d\omega=\,dt$$

$$t = (I + mr^{2}) \int_{0}^{\omega} \frac{d\omega}{mgr - \alpha \omega} = \frac{I + mr^{2}}{\alpha} ln \left(\frac{mgr}{mgr - \alpha \omega} \right)$$

$$\omega = \frac{mgr}{\alpha} \Big(1 - exp \, \left(-\frac{t\alpha}{I + mr^2} \right) \Big)$$

Вывод: В данной работе было изучено движение маятника Обербека, и экспериментальным путём был определён его момент инерции. Полученные в результате проведения работы данные дали удовлетворительный результат, о чём свидетельствует графический анализ построенных зависимостей. Кроме того, была оценена потеря энергии при растяжении нити и работа силы трения, а также посчитаны зависимости $\phi(t)$ и $\omega(t)$.