RECURRENCES LINEAIRES D'ORDRE 2 MP 21-22

Soit $(a,b) \in \mathbb{C} \times \mathbb{C}^*$. On note $E = \{ u \in \mathbb{C}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, \ u_{n+2} = a u_{n+1} + b u_n \}$.

Remarque: L'application $E \longrightarrow$ est un isomorphisme d'espaces vectoriels et ainsi $u \longrightarrow (u_0, u_1)$

 $\dim E = 2$.

Soit $u \in E$. On pose $\forall n \in \mathbb{N}, \ U_n = \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}$.

Ainsi, si l'on pose $A=\begin{pmatrix}0&1\\b&a\end{pmatrix}$, on obtient $\forall n\in\mathbb{N},\ U_{n+1}=A\,U_n$. On en déduit $\forall n\in\mathbb{N},\ U_n=A^n\,U_0$. Il s'agit de calculer les puissances successives de A qui est la transposée d'une matrice compagnon et $\chi_A=X^2-a\,X-b$. Notons λ_1,λ_2 les racines de χ_A dans \mathbb{C} : ayant $b \neq 0$, on a $\lambda_1 \lambda_2 \neq 0$.

- Supposons A diagonalisable : cela signifie que λ_1 et λ_2 sont distinctes (au fait pourquoi ?). Il existe $P,P\in GL_2\left(\mathbb{C}\right)$, telle que $A=P\left(\begin{array}{cc}\lambda_1&0\\0&\lambda_2\end{array}\right)P^{-1}$ puis $\forall n\in\mathbb{N},\ A^n=P\left(\begin{array}{cc}\lambda_1^n&0\\0&\lambda_2^n\end{array}\right)P^{-1}$. Par conséquent $E\subset\mathrm{vect}\left((\lambda_1^n)_{n\in\mathbb{N}},(\lambda_2^n)_{n\in\mathbb{N}}\right)$ et par un argument de dimension, on a en fait $E=\mathrm{vect}\left((\lambda_1^n)_{n\in\mathbb{N}},(\lambda_2^n)_{n\in\mathbb{N}}\right)$. Ainsi il existe $(\alpha,\beta)\in\mathbb{C}^2$ tel que $\forall n\in\mathbb{N},\ u_n=\alpha\,\lambda_1^n+\beta\,\lambda_2^n$.
- Supposons A non diagonalisable, c'est-à-dire $\lambda_1 = \lambda_2$.

La matrice A est trigonalisable et il existe $P, P \in GL_2(\mathbb{C})$, telle que $A = P\begin{pmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{pmatrix}P^{-1}$ puis

 $\forall n \in \mathbb{N}, \ A^n = P \left(\begin{array}{cc} \lambda_1^n & n \, \lambda_1^{n-1} \\ 0 & \lambda_1^n \end{array} \right) P^{-1}.$

Par conséquent $E\subset\mathrm{vect}\left((\lambda_1^n)_{n\in\mathbb{N}}\,,(n\,\lambda_1^n)_{n\in\mathbb{N}}\right)$ et par un argument de dimension, on a en fait $E = \text{vect}\left(\left(\lambda_1^n\right)_{n \in \mathbb{N}}, \left(n \lambda_1^n\right)_{n \in \mathbb{N}}\right)$. Ainsi il existe $(\alpha, \beta) \in \mathbb{C}^2$ tel que $\forall n \in \mathbb{N}, \ u_n = (\alpha + \beta n) \ \lambda_1^n$.

Méthode pratique :

On considère l'équation $x^2 - ax - b = 0$ dite caractéristique associée à E et on note λ_1, λ_2 ses racines dans C.

Si ces racines sont distinctes : $\exists (\alpha, \beta) \in \mathbb{C}^2 : \forall n \in \mathbb{N}, \ u_n = \alpha \lambda_1^n + \beta \lambda_2^n$.

Si ces racines sont égales : $\exists (\alpha, \beta) \in \mathbb{C}^2 : \forall n \in \mathbb{N}, \ u_n = (\alpha + \beta n) \ \lambda_1^n$.

Si besoin, on peut déterminer (α, β) à partir de la donnée des conditions initiales (u_0, u_1) .

Dans le cas de suites réelles et si λ_1, λ_2 sont complexes non réelles conjuguées, on a $\alpha = \overline{\beta}$.

Exercice: Déterminer le terme général des suites réelles vérifiant :

- $\forall n \in \mathbb{N}, \ u_{n+2} = 2u_{n+1} + u_n$
- $\forall n \in \mathbb{N}, \ u_{n+2} = 4u_{n+1} 4u_n$
- $\forall n \in \mathbb{N}, \ u_{n+2} = 2u_{n+1} 2u_n$