

Practical Machine Learning

Day 4: SEP23 DBDA

Kiran Waghmare

Agenda

- Regression
- Types of Regression

Linear model

In regression, the relationship between Y and X is modelled in the following form:

$$Y = a + b * X + E$$

where:

- Y is the dependent variable (Income in the example)
- X is the independent variable (IQ in the example)
- a is an intercept
- **b** is the coefficient
- **E** is an error term for each observation (since there is additional variation not explained by income)

Linear Regression Line

 A linear line showing the relationship between the dependent and independent variables is called a **regression line**. A regression line can show two types of relationship:

Positive Linear Relationship:

If the dependent variable increases on the Y-axis and independent variable increases on X-axis, then such a relationship is termed as a Positive linear relationship.

Negative Linear Relationship:

If the dependent variable decreases on the Y-axis and independent variable increases on the X-axis, then such a relationship is called a negative linear relationship.

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

1. R-squared method:

- R-squared is a statistical method that determines the goodness of fit.
- It measures the strength of the relationship between the dependent and independent variables on a scale of 0-100%.
- It can be calculated from the below formula:

Residuals (regression error)

 Residuals or error in regression represents the distance of the observed data points from the predicted regression line

$$residuals = actual\ y(y_i) - predicted\ y\ (\hat{y}_i)$$

Root Mean Square Error (RMSE)

RMSE represents the standard deviation of the residuals. It gives an estimate of the spread
of observed data points across the predicted regression line.

The Model

The model has a deterministic and a probabilistic components

However, house cost vary even among same size houses!

Estimating the Coefficients

- The estimates are determined by
 - drawing a sample from the population of interest,
 - calculating sample statistics.
 - producing a straight line that cuts into the data.

•
$$MeanSquaredError(mse) = \sqrt{(\frac{1}{n})\sum_{i=1}^{n}(y_i - x_i)^2}$$

•
$$MeanAbsoluteError(mae) = (\frac{1}{n}) \sum_{i=1}^{n} |y_i - x_i|$$

Gradient Descent:

- Gradient descent is used to minimize the MSE by calculating the gradient of the cost function.
- A regression model uses gradient descent to update the coefficients of the line by reducing the cost function.
- It is done by a random selection of values of coefficient and then iteratively update the values to reach the minimum cost function.
- Model Performance:
- The Goodness of fit determines how the line of regression fits the set of observations.
- The process of finding the best model out of various models is called optimization.

Sum of squared differences $=(2-1)^2+(4-2)^2+(1.5-3)^2+(3.2-4)^2=6.89$

Let us compare two lines

The second line is horizontal

The smaller the sum of squared differences the better the fit of the line to the data.

Simple Linear Regression

$$y=b_0+b_1x_1$$

Multiple Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$$

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

Correlation

- Measures the relative strength of the linear relationship between two variables
- Unit-less
- Ranges between -1 and 1
- The closer to −1, the stronger the **negative linear** relationship
- The closer to 1, the stronger the **positive linear** relationship
- The closer to 0, the **weaker** any positive linear relationship

Scatter Plots of Data with Various Correlation Coefficients

Linear Correlation

Linear Correlation

•Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall

Linear Correlation

Simple Linear Regression

$$y=b_0+b_1x_1$$

Multiple Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$$

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

Regularization Result

Overfitting Result

Iris dataset

- Many exploratory data techniques are nicely illustrated with the iris dataset.
 - Dataset created by famous statistician Ronald Fisher
 - 150 samples of three species in genus *Iris* (50 each)
 - Iris setosa
 - Iris versicolor
 - Iris virginica
 - Four attributes
 - sepal width
 - sepal length
 - petal width
 - petal length
 - Species is class label

Iris virginica. Robert H. Mohlenbrock. USDA NRCS. 1995. Northeast wetland flora: Field office guide to plant species. Northeast National Technical Center, Chester, PA. Courtesy of USDA NRCS Wetland Science Institute.