Simultane Diagonalisierbarkeit

Jendrik Stelzner

10. Juni 2016

1 Endlich viele Endomorphismen

Zunächst wollen wir Notation einführen.

Definition 1. Es sei V ein K-Vektorraum.

1. Für jeden Endomorphismus $f:V\to V$ und Skalar $\lambda\in K$ sei

$$V(f, \lambda) := \{ v \in V \mid f(v) = v \}$$

der Eigenraum von f zum Eigenwert λ . Ein Element $v \in V(f,\lambda)$ mit $v \neq 0$ heißt Eigenvektor von f zum Eigenwert λ .

2. Für Endomorphismen $f_1, \ldots, f_n \colon V \to V$ und paarweise verschiedene Skalare $\lambda_1, \ldots, \lambda_n \in K$ sei

$$V(f_1, \lambda_1; \dots; f_n, \lambda_n) := \{v \in V \mid f_i(v) = \lambda_i v \text{ für alle } i = 1, \dots, n\}$$

der gemeinsame Eigenraum der Endomorphismen f_1,\ldots,f_n zu den (paarweise verschiedenen) Eigenwerten $\lambda_1,\ldots,\lambda_n$. Ein Element $v\in V(f_1,\lambda_1;\ldots;f_n,\lambda_n)$ mit $v\neq 0$ heißt gemeinsamer Eigenvektor der Endomorphismen f_1,\ldots,f_n zu den Eigenwerten $\lambda_1,\ldots,\lambda_n$.

Proposition 2. Es sei V ein endlichdimensionaler K-Vektorraum und $f_1, \ldots, f_n \colon V \to V$ Endomorphismen. Dann sind die folgenden beiden Aussagen äquivalent:

- 1. Es gibt eine Basis \mathcal{B} von V, so dass jeder Endomorphismus f_i bezüglich \mathcal{B} durch eine Diagonalmatrix dargestellt wird.
- 2. Es gibt eine Basis \mathcal{B} von V aus gemeinsamen Eigenvektoren der Endomorphismen f_1, \ldots, f_n .
- 3. Es ist

$$V = \bigoplus_{\lambda_1, \dots, \lambda_n \in K} V(f_1, \lambda_1; \dots; f_n, \lambda_n).$$

Bemerkung 3. Die Endlichdimensionalität in Proposition 2 wird zur Existenz von Basen benötigt. Nutzt man, dass nach dem Auswahlaxiom jeder Vektorraum eine Basis besitzt, so gilt die Aussage auch für unendlichdimensionale Vektorräume.

Lemma 4. Es sei V ein K-Vektorraum.

1. Ist $(f_i)_{i\in I}$ eine Familie von Endomorphismen $f_i\colon V\to V$ und $g\colon V\to V$ ein Endomorphismus, der mit jedem der f_i kommutiert (also $f_ig=gf_i$ für alle $i\in I$ erfüllt), so ist für jede Familie $(\lambda_i)_{i\in I}$ von Skalaren $\lambda_i\in K$ der gemeinsame Eigenraum $V((f_i)_{i\in I},(\lambda_i)_{i\in I})$ invariant unter g.

Definition 5. Es sei V ein K-Vektorraum.

- 1. Ein Endomorphismus $f: V \to V$ heißt diagonalisierbar falls $V = \bigoplus_{\lambda \in K} V(f, \lambda)$.
- 2. Mehrere Endomorphismen $f_1, \ldots, f_n \colon V \to V$ heißen simultan diagonalisierbar, falls $V = \bigoplus_{\lambda_1, \ldots, \lambda_n} V(f_1, \lambda_1; \ldots; f_n, \lambda_n)$.

Theorem 6. Es sei V ein K-Vektorraum und es seien $f_1, \ldots, f_n \colon V \to V$ Endomorphismen. Dann sind die folgenden beiden Aussagen äquivalent:

- 1. Die Endomorphismen f_1, \ldots, f_n sind simultan diagonalisierbar.
- 2. Jeder Endomorphismus f_i ist (einzeln) diagonalisierbar, und die Endomorphismen f_1, \ldots, f_n kommutieren paarweise miteinander (d.h. es ist $f_i f_j = f_j f_i$ für alle $1 \leq i, j \leq n$).

Korollar 7. Für einen endlichdimensionalen K-Vektorraum V und Endomorphismen $f_1, \ldots, f_n \colon V \to V$ sind die folgenden Bedingungen äquivalent:

- 1. Es gibt eine Basis \mathcal{B} von V, so dass jeder Endomorphismus f_i bezüglich \mathcal{B} durch eine Diagonalmatrix dargestellt wird.
- 2. Es gibt eine Basis $\mathcal B$ aus gemeinsamen Eigenvektoren von f_1,\ldots,f_n .
- 3. Es ist $V = \bigoplus_{\lambda_1, \dots, \lambda_n \in K} V(f_1, \lambda_1; \dots; f_n, \lambda_n)$.
- 4. Jeder der Endomorphismen f_i ist (einzeln) diagonalisierbar, und die Endomorphismen f_1, \ldots, f_n kommutieren paarweise miteinander.

2 Unendlich viele Endomorphismen

Definition 8. Es sei V ein K-Vektorraum und $(f_i)_{i \in I}$ eine Familie von Endomorphismen $f_i \colon V \to V$. Für eine Familie $(\lambda_i)_{i \in I}$ von Skalaren $\lambda_i \in K$ ist

$$V((f_i)_{i\in I},(\lambda_i)_{i\in I})=\{v\in V\mid f_i(v)=\lambda_i v \text{ für alle } i\in I\}$$

der gemeinsame Eigenraum der Endomorphismen $(f_i)_{i\in I}$ zu den Eigenwerten $(\lambda_i)_{i\in I}$. Ein Element $v\in V((f_i)_{i\in I},(\lambda_i)_{i\in I})$ mit $v\neq 0$ heißt gemeinsamer Eigenvektor der Endomorphismen $(f_i)_{i\in I}$ zu den Eigenwerten $(\lambda_i)_{i\in I}$.

Bemerkung 9. Für endlich viele Endomorphismen $f_1, \ldots, f_n \colon V \to V$ und Skalare $\lambda_1, \ldots, \lambda_n \in K$ ist

$$V((f_1,\ldots,f_n),(\lambda_1,\ldots,\lambda_n))=V(f_1,\lambda_1;\ldots;f_n,\lambda_n).$$

Definition 10. Es sei V ein K-Vektorraum und $H \subseteq \operatorname{End}_K(V)$ ein Untervektorraum. Für jedes $\lambda \in H^*$ sei

$$V_{\lambda} := \{ v \in V \mid f(v) = \lambda(f)v \text{ für alle } f \in H \}$$

der weight space von V bezüglich λ .