

Final Project

□ General information

- Can be individual or 2-people group
- Each group need to write a short proposal describing their plans
- Choose an algorithm and implement it.
- Graduate student only: Need to implement graphic output to visualize your results

■ Deliverables: (30% of final score)

- Your packaged source code (10%)
- A 2-3 page scientific report in IEEE format (10%)
 - Similar to a paper review process
- Present and demonstrate your tool in front of class (10%)
 - Will be in the last week of this course
 - Graded by your classmates

Project Topic

- □ For each topic, maximum of two teams are allowed
- □ For each team, maximum of two members are allowed
- Difficulty level
 - Each undergrad counts as level 1 and graduate student as level 2.
 - Must choose a topic with a level higher than the total level of team
 - Level 1: i. FM partition ii. Cluster growth iii. RMST WL model for placement iv. Polish Expression floorplan evaluation v. fixed module ILP floorplanning
 - Level 2: i. Sequence pair floorplan evaluation ii. Rotatable module ILP floorplanning iii. BPRIM and BCBR routing iv. Hall placement
 - Level 3: i. Gordian placement ii. Steiner routing
 - Level 4: i. Sequence pair SA floorplan ii. Min-cut placement
 - Other topics may be added later, depending on needs

