Produits dérivés de change

Richard Guillemot

DIFIQ

27 Mars 2016

EUR/USD=1.1162

EUR/USD=1.1162

1 euro vaut 1.1162 dollar.

1 euro vaut 1.1162 dollar.

EUR (euro) est la devise étrangère ou devise 1.

1 euro vaut 1.1162 dollar.

EUR (euro) est la devise étrangère ou devise 1. **USD (dollar)** est la devise domestique ou devise 2.

Taux de change - Jargon

On considère 5 chiffres significatifs dans un taux de change.

Taux de change - Jargon

$$_{\text{EUR/USD}=1.1}\mathbf{1}_{\scriptscriptstyle{62}}$$

Le 3ème chiffre en partant de la gauche est appelé "Big Figure".

Taux de change - Jargon

$$_{\text{EUR/USD}=1.116}2$$

Le 5^{ème} chiffre en partant de la gauche est appelé "pips".

Taux de change & Taux d'intérêts

FX			IR	BS
EURUSD	1.1162	EUR	-0.27%	-0.29%
GBPUSD	1.4142	USD	0.81%	
USDCHF	0.9767	GBP	0.61%	-0.14%
USDJPY	112.64	CHF	-0.84%	-0.26%
USDCNY	6.5125	JPY	-0.08%	-0.56%
		CNY		3.78%

Historique EURUSD

	C apitalisation	A ctualisation
Taux Linéaire		
Taux Actuariel		
Taux Continu		

	C apitalisation	A ctualisation
Taux Linéaire	$1 + \delta R^L$	
Taux Actuariel		
Taux Continu		

	Capitalisation	A ctualisation
Taux Linéaire	$1 + \delta R^L$	$\frac{1}{1+\delta R^L}$
Taux Actuariel		,
Taux Continu		

	Capitalisation	A ctualisation
Taux Linéaire	$1 + \delta R^L$	$rac{1}{1+\delta R^L}$
Taux Actuariel	$(1+rac{\delta}{N}R^A)^N$	
Taux Continu		

	Capitalisation	A ctualisation
Taux Linéaire	$1 + \delta R^L$	$rac{1}{1+\delta R^L}$
Taux Actuariel	$(1+rac{\delta}{N}R^A)^N$	$\frac{\frac{1}{1}}{(1+\frac{\delta}{N}R^A)^N}$
Taux Continu		,,

	Capitalisation	A ctualisation
Taux Linéaire	$1 + \delta R^L$	$rac{1}{1+\delta R^L}$
Taux Actuariel	$(1+rac{\delta}{N}R^A)^N$	$\frac{1}{(1+\frac{\delta}{N}R^A)^N}$
Taux Continu	$e^{\delta R^C}$, N

	Capitalisation	A ctualisation
Taux Linéaire	$1 + \delta R^L$	$rac{1}{1+\delta R^L}$
Taux Actuariel	$(1+rac{\delta}{N}R^A)^N$	$\frac{1}{(1+\frac{\delta}{N}R^A)^N}$
Taux Continu	$e^{\delta R^C}$	$e^{-\delta R^{c}}$

	C apitalisation	A ctualisation
Taux Linéaire	$1 + \delta R^L$	$\frac{1}{1+\delta R^L}$
Taux Actuariel	$(1+rac{\delta}{N}R^A)^N$	$\frac{1}{(1+\frac{\delta}{N}R^A)^N}$
Taux Continu	$e^{\delta R^C}$	$e^{-\delta R^{c}}$

$$R^C < R^A < R^L$$

Comment garantir un taux de change à une date future T? Et à quel taux X.

Prêt en t de $\frac{1}{1+\delta R^{EUR}}$ euros. Remboursé en T avec les intérêts, c'est à dire 1 euro.

Change $\frac{1}{1+\delta R^{EUR}}$ euros contre $\frac{S}{1+\delta R^{EUR}}$ dollars.

Emprunt en t de $\frac{S}{1+\delta R^{EUR}}$ dollars

Remboursé en T avec les intérêts, c'est à dire $S \frac{1+\delta R^{USD}}{1+\delta R^{EUR}}$ dollars.

$$X = S \frac{1 + \delta R^{USD}}{1 + \delta R^{EUR}}$$

Notation	Description	Formule	Valeur
δ R^{EUR}			
R ^{USD}			
5			
X			

Notation	Description	Formule	Valeur
δ R ^{EUR} R ^{USD} S X	Maturité du forward	T-(t+2D)	1 an = 365 jours

Notation	Description	Formule	Valeur
δ R ^{EUR} R ^{USD}	Maturité du forward Taux euro.	T-(t+2D)	1 an = 365 jours -0.27%
X			

Notation	Description	Formule	Valeur
δ R^{EUR}	Maturité du forward	T-(t+2D)	1 an = 365 jours
R ^{USD}	Taux euro. Taux dollar.		-0.27% 0.81%
S	raux donar.		0.0170
X			

Notation	Description	Formule	Valeur
δ	Maturité du forward	T-(t+2D)	1 an = 365 jours
R ^{EUR}	Taux euro.		-0.27%
R ^{USD}	Taux dollar.		0.81%
5	Taux de change spot.		1.1162
X			

Notation	Description	Formule	Valeur
δ	Maturité du forward	T-(t+2D)	1 an = 365 jours
R ^{EUR}	Taux euro.		-0.27%
R ^{USD}	Taux dollar.		0.81%
5	Taux de change spot.		1.1162
X	Forward de change.	$S_{1+\delta R^{USD}}^{1+\delta R^{USD}}$??

Notation	Description	Formule	Valeur
δ	Maturité du forward	T-(t+2D)	1 an = 365 jours
R ^{EUR}	Taux euro.		-0.27%
R ^{USD}	Taux dollar.		0.81%
S	Taux de change spot.		1.1162
X	Forward de change.	$S \frac{1+\delta R^{USD}}{1+\delta R^{EUR}}$??

$$X =$$

Notation	Description	Formule	Valeur
δ	Maturité du forward	T-(t+2D)	1 an = 365 jours
R ^{EUR}	Taux euro.		-0.27%
R ^{USD}	Taux dollar.		0.81%
S	Taux de change spot.		1.1162
X	Forward de change.	$S rac{1+\delta R^{USD}}{1+\delta R^{EUR}}$??

$$X = 1.1162 \times \frac{1 + 0.81\%}{1 - 0.27\%}$$

Notation	Description	Formule	Valeur
δ	Maturité du forward	T-(t+2D)	1 an = 365 jours
R ^{EUR}	Taux euro.		-0.27%
R ^{USD}	Taux dollar.		0.81%
S	Taux de change spot.		1.1162
X	Forward de change.	$S rac{1+\delta R^{USD}}{1+\delta R^{EUR}}$??

$$X = 1.1162 \times \frac{1 + 0.81\%}{1 - 0.27\%} = 1.1283$$

Taux de change "Forward" - Récapitulatif

As of 24 March 2016:

Notation	Description	Formule	Valeur
δ	Maturité du forward	T-(t+2D)	1 an = 365 jours
R ^{EUR}	Taux euro.		-0.27%
R ^{USD}	Taux dollar.		0.81%
5	Taux de change spot.		1.1162
X	Forward de change.	$S \frac{1+\delta R^{USD}}{1+\delta R^{EUR}}$??

$$X = 1.1162 \times \frac{1 + 0.81\%}{1 - 0.27\%} = 1.1283$$

Soit 121 points de base d'écart positif par rapport au taux spot.

Quizz

Si on vend 100 millons euro dans 1 an au taux spot au lieu d'utiliser le taux foward précedemment calculé :

- a) On perd 1077 kEUR
- b) On gagne 107,7 kEUR
- c) On perd 10.77 millions d'euros.
- d) On gagne 107,7 kEUR.

Quizz

Si on vend 100 millons euro dans 1 an au taux spot au lieu d'utiliser le taux foward précedemment calculé :

- a) On perd 1077 kEUR VRAI
- b) On gagne 107,7 kEUR **FAUX**
- c) On perd 10.77 millions d'euros. FAUX
- d) On gagne 107,7 kEUR. FAUX

On emprunte à 0.81% en dollars et on prête à -0.27% en euros!!!

Le taux monétaire, dépôt ou money market

Voici l'échéancier de l'EURIBOR 6M :

Le taux monétaire est défini comme :

$$R = L(t, T_{\mathsf{start}}, T_{\mathsf{end}}) = \frac{1}{\delta} \left(\frac{B(t, T_{\mathsf{start}})}{B(t, T_{\mathsf{end}})} - 1 \right)$$

La période est caculée avec la convention Act 360 :

$$\delta = \frac{T_{\mathsf{end}} - T_{\mathsf{start}}}{360}$$

Soit un emprunt à taux fixe qui démarre dans le futur. Nous allons le répliquer par 2 emprunts qui démarrent aujourd'hui.

On prête aujourd'hui $B(t, T_{start})$ qui sera remboursé avec les intérêts en T_{start} par un flux de 1.

On emprunte aujourd'hui $(1 + \delta K)B(t, T_{end})$ qui nous sera remboursé avec les intérêts en T_{end} par un flux de $1 + \delta K$.

Il n'y a maintenant plus de flux futurs nous allons donc calculer le taux fixe K^* qui égalise les flux aujourd'hui :

$$K^* = R(t, T_{\textit{start}}, T_{\textit{end}}) = rac{1}{\delta} \left(rac{B(t, T_{\textit{start}})}{B(t, T_{\textit{end}})} - 1
ight)$$

On calcule la valeur de l'obligation à taux variable :

$$P = \sum_{i=1}^{n} \delta_i \times R(T_{i-1}, T_i) \times B(t, T_i) + B(t, T_n)$$

On estime la valeur actuelle du taux variable en utilisant le taux forward.

$$P = \sum_{i=1}^{n} \delta_i \times \frac{1}{\delta_i} \left(\frac{B(t, T_{i-1})}{B(t, T_i)} - 1 \right) \times B(t, T_i) + B(t, T_n)$$

$$P = \sum_{i=1}^{n} (B(t, T_{i-1}) - B(t, T_i)) + B(t, T_n)$$

$$P = 1 - B(t, T_n) + B(t, T_n)$$

$$P = 1 - \underline{B(t, T_n)} + \underline{B(t, T_n)}$$

$$P = 1$$

La valeur d'une obligation à taux variable (sans marge) est insensible au niveau des taux (les jours de paiement de ses coupons).

On considère l'échéancier d'un swap standard.

On échange en t+2D ouvrés N^{USD} avec sa contrevaleur N^{EUR} . On fera l'échange inverse à la maturité du swap T.

On reçoit une jambe variable euro en contrepartie d'une jambe variable dollar.

En pratique il faut retirer la marge de basis m à la jambe EUR pour mettre le swap au pair (valeur nulle).

Un swap de devises d'un seule période est un foward de change de nominal $N^{EUR}(1 + \delta(L^{EUR} - \mathbf{m}))$.

Taux de change Forward et marge de basis.

$$X = S \frac{1 + \delta R^{USD}}{1 + \delta (R^{EUR} - \mathbf{m})}$$

As of 24 March 2016:

$$m=29$$
 bps

Delta de change et position de change

- Le **delta de change** est la sensibilité ou la dérivée au taux de change de la valeur d'un portefeuille en devise domestique.

$$\Delta_{FX} = \frac{\partial \prod^d}{\partial S}$$

La position de change correspond au nominaux Nⁱ
équivalents au portefeuille dans chacune des devises. Elle
indique la taille des opérations de change "Spot" nécessaires
pour neutraliser le risque.

Delta de change et position de change

Illustration avec les 2 devises euro et dollar :

Taux de change	5	= EUR/USD
Valeur du portefeuille en dollar	∏ ^{USD}	$= N^{EUR} \times S + N^{USD}$
Delta de change	Δ_{EURUSD}	$= N^{EUR}$
Position de change		(N^{EUR}, N^{USD})

Exercice

On reprend les données du premier exemple la marge de basis m est égale à 29 points de base :

- Opération 1 : Une banque française doit recevoir de son client 113 millions de dollars contre 100 millions d'euros dans 1 an.
- **Opération 2** : Sa filliale américaine doit recevoir de son client 89 millions d'euros contre 100 millions de dollars dans 1 an.

Pour chacune des 2 opérations et pour le portefeuille total de la banque :

- Quel est le Profit & Loss (PNL) pour la banque?
- Quels sont les Delta FX et la position de change?
- Quelles sont la sensibilités à un mouvement de 1 point de base des taux euro, dollar et de la marge de basis?
- Quelles opérations doit réaliser la banque pour neutraliser son risque de change?

Exercice - Solution

	Cas 1	Cas 2	TOTAL	
PNL EUR	-142	728	491	kEUR
PNL USD	-158	706	546	kUSD
Delta FX	-100.56	89.50	-11.06	Mios EUR
Sensi taux EUR	10.05	-8.85	1.11	kEUR/bp
Sensi taux USD	-11.21	9.92	-1.29	kUSD/bp
Sensi basis	-10.05	8.85	-1.11	kEUR/bp
NEUR	-100.56	89.50	-11.07	Mios EUR/bp
NUSD	112.09	-99.20	12.90	Mios USD/bp

Pour se couvrir,

Exercice - Solution

	Cas 1	Cas 2	TOTAL	
PNL EUR	-142	728	491	kEUR
PNL USD	-158	706	546	kUSD
Delta FX	-100.56	89.50	-11.06	Mios EUR
Sensi taux EUR	10.05	-8.85	1.11	kEUR/bp
Sensi taux USD	-11.21	9.92	-1.29	kUSD/bp
Sensi basis	-10.05	8.85	-1.11	kEUR/bp
NEUR	-100.56	89.50	-11.07	Mios EUR/bp
NUSD	112.09	-99.20	12.90	Mios USD/bp

Pour se couvrir, il faut vendre 12.90 millions de dollars.

