Formulation of the PDE problem using finite element method

The following PDE describes the spatio-temporal evolution of ethanol concentration in the capillary assay domain:

$$\frac{\partial C}{\partial t} = D\Delta C \text{ in } \Omega, \text{ for } t > 0$$

$$\frac{\partial C}{\partial S} = 0 \text{ on } \partial \Omega, \text{ for } t \ge 0$$

$$C = C_0 \text{ on } \Omega_c, C = 0 \text{ on } \Omega_p, \text{ at } t = 0$$
(1)

Where D is diffusion coefficient of ethanol in water, Ω is the whole computational domain, Ω_c is the capillary domain, Ω_p is the pond domain, and $\partial\Omega$ is the surface of the whole computational domain. Nuemann natural boundary condition is applied to $\partial\Omega$, and ethanol initial concentration is set to C_0 in the capillary and to zero in the pond.

We use finite element method (FEM) to solve the PDE. Ethanol concentration in the domain Ω is approximated by $u \approx C(x, y, z, t)$, which is also referred to as a trial function in FEM context.

Since u varies with time, the straightforward approach is to first discretize the time derivative by a finite difference approximation, which will yield a set of stationary finite element problems. For simplicity and stability, we use Euler's implicit difference:

$$\frac{\partial u^k}{\partial t} \approx \frac{u^k - u^{k-1}}{\Delta t} = D\Delta u^k \tag{2}$$

Rearranging both sides in equation (2) and applying the initial condition I will result in equation (3):

$$u^{0} = I$$

$$u^{k} - \Delta t D \Delta u^{k} = u^{k-1}, k = 1, 2, \dots$$
(3)

Given I, we can then solve for $u \in V$, where V is a functional space.

In order to solve for u, we then turn the problem into variational (weak) form by multiplying equation (3) by a test function $\nu \in \hat{V}$ where \hat{V} is a functional space, and integrate the equations over Ω :

$$\int_{\Omega} u^{0} \nu dx = \int_{\Omega} I \nu dx$$

$$\int_{\Omega} (u^{k} - \Delta t D \Delta u^{k}) \nu dx = \int_{\Omega} u^{k-1} \nu dx$$
(4)

We then integrate the second derivative by parts and apply the boundary condition $\frac{\partial u}{\partial S} = 0$, which will result in the following equation:

$$\int_{\Omega} (u^k \nu + \Delta t D \nabla u^k \cdot \nabla \nu) dx = \int_{\Omega} u^{k-1} \nu dx \tag{5}$$

By introducing u for u^k , we can write equation (5) in the standard notation: $a(u, \nu) = L(\nu)$:

$$a_0(u,\nu) = \int_{\Omega} u\nu dx$$

$$L_0(\nu) = \int_{\Omega} I\nu dx$$

$$a(u,\nu) = \int_{\Omega} (u\nu + \Delta t D\nabla u \cdot \nabla \nu) dx$$

$$L(\nu) = \int_{\Omega} u^{k-1} \nu dx$$
(6)

The goal of the continuous variational problem is to find $u^0 \in V$, such that $a_0(u^0, \nu) = L_0(\nu)$ holds for all $\nu \in \hat{V}$, and to find $u^k \in V$, such that $a(u^k, \nu) = L(\nu)$ holds for all $\nu \in \hat{V}$, k = 1, 2, ...

Approximate continuous solutions are then calculated by restricting V and \hat{V} functional spaces into finite elements in the mesh using linear Continuous Galerkin method.

A custom Python script cap_assay.py is then generated to employ FEniCS computational platform to set up the variational problem and solve it for the solutions. The script is available in scripts/ directory.