ECON GA 2101: Econometrics II

Tim Christensen

Spring 2019, second half

An econometric model is a probability distribution over observables indexed by parameters. The model imposes restrictions on the distribution of observables. This half of the course introduces methods which use these restrictions to estimate model parameters and perform statistical inference. The first part introduces extremum estimation as a general framework, and discusses M-estimation (which includes Maximum Likelihood estimation, quantile regression and nonlinear regression as special cases), generalized method of moments (GMM), simulated method of moments (SMM), and minimum distance (MD) procedures in some detail. The second part deals with inference and implementation issues, including using the bootstrap and quasi-Bayesian methods.

Contents

1	Introduction 4					
	1.1	Structural estimation	4			
	1.2	Motivating examples	4			
	1.3	General approach to structural estimation	8			
	1.4	Preliminaries	8			
	1.5	Identification	11			
2	Extremum estimation 12					
	2.1	Introduction	12			
	2.2	Consistency	19			
	2.3	Asymptotic normality	30			
3	M-estimation 32					
	3.1	Additional details for asymptotic normality	32			
	3.2	Estimating standard errors	35			
	3.3	Maximum likelihood in more detail	37			
4	GMM 43					
	4.1	Additional details for asymptotic normality	43			
	4.2	Estimating standard errors	46			
	4.3	One-step correction	48			
	4.4	Testing over-identifying restrictions	49			
	4.5	Continuously-updated GMM	50			
5	Sim	nulated Method of Moments	52			
	5.1	Relation with calibration	52			
	5.2	Additional details for asymptotic normality	53			
	5.3	Estimating standard errors	56			
	5.4	Boosting precision without increasing the number of draws	57			
6	Minimum distance 59					
	6.1	Additional details for asymptotic normality	59			
	6.2	Estimating standard errors	60			
7	Hypothesis testing 61					
	7.1	Introduction	61			
	7 2	Wald LM and OLB tests	62			

	7.3	Asymptotic theory	65			
8	Quasi-Bayesian estimation 68					
	8.1	Bayesian estimation	68			
	8.2	Quasi-Bayesian estimation	69			
	8.3	Inference under partial identification	71			
	8.4	Penalization via priors	72			
	8.5	Being more Bayesian: Bayesian bootstrap	74			
9	Bootstrap 77					
	9.1	Introduction	77			
	9.2	Types of bootstrap	7 9			
	9.3	Consistency of the bootstrap	81			
	9.4	Bootstrap confidence intervals	85			
	9.5	Bootstrapping test statistics	89			
	9.6	Where do refinements come from?	91			
10	Siev	re estimation 9	92			
	10.1	Introduction	92			
	10.2	Bias-variance tradeoff	97			
	10.3	Identification	97			
	10.4	Consistency	97			
	10.5	Inference	99			
11	Non	parametric Bayes procedures 1	01			
	11.1	Introduction	01			
	11.2	Negative results	01			
	11.3	Somewhat positive results	03			
	11.4	Positive results	04			
A	Supplemental results 10					
	A.1	Useful results	07			
	A.2	Asymptotic normality of extremum estimators with non-differentiable objective func-				
		tion	07			
Ri	hlion	ranhy 1	19			