Zernike Fit Identity Test

February 28, 2019

1 Zernike Fit Identity Test

In which we demonstrate that we live in a rational universe: * create a surface matrix based off a single zernike coefficient * fit zernikes to this surface * then send those (reordered) zernikes to the Active Surface * the Active Surface should command actuators to make a surface identical to our original surface matrix (identity!)

```
In [1]: #%matplotlib notebook
In [2]: import matplotlib.pylab as plt
    import numpy as np
    import opticspy
```

1.1 Simulate surface


```
In [4]: z2m = z2.zernikematrix(l=512) * 100.
    fig = plt.figure()
    ax = fig.gca()
    cax = ax.imshow(z2m)
    fig.colorbar(cax)
    plt.title('bump')
```


1.2 Fit to this surface

If opticspy can't fit the data that it generated in the first place, we need to get our money back.

Zernike Polynomials List

1	Z1		Z2		Z3		Z4		Z5		Z6	1	Z7	Ι	Z8		Z9		Z10	
1	0.000	99	9.540	-(0.000	-	-0.000	 -	0.000	-	-0.000	-	0.000	-	0.099		0.000	-	0.051	
1	Z11		Z12		Z13		Z14		Z15		Z16	1	Z17		Z18		Z19		Z20	
-	-0.000	-(0.000	-(0.000	-	-0.000	-	0.000	-	-0.121	 -	0.000	 -	0.062		0.000	 -	0.062	
1	Z21		Z22		Z23		Z24		Z25		Z26		Z27		Z28		Z29		Z30	
-	-0.000	-(0.000	-(0.000	-	-0.000		0.000		0.000	-	0.000	1	0.000		0.000	-	0.139	
1	Z31	Ι	Z32		Z33		Z34		Z35		Z36	1	Z37							
-	-0.000	-(0.071	-(0.000	-	-0.071		0.000	-	-0.021	I	0.000	I						

1.3 Reorder Zernikes

```
In [6]: from zernikeIndexing import noll2asAnsi, printZs
        # why does the fitlist start with a zero? for ZO?? Anyways, avoid it
        nollZs = fitlist[1:(numZsFit+1)]
        asAnsiZs = noll2asAnsi(nollZs)
        print "nolZs"
        printZs(nollZs)
        print "active surface Zs"
        printZs(asAnsiZs)
nolZs
[0]
[99.54, -0.0]
[-0.0, -0.0, -0.0]
[-0.0, -0.099, 0.0, -0.051]
[-0.0, -0.0, -0.0, -0.0, -0.0]
[-0.121, -0.0, -0.062, 0.0, -0.062, -0.0]
[-0.0, -0.0, -0.0, 0.0, 0.0, -0.0, 0.0]
[0.0, -0.139, -0.0, -0.071, -0.0, -0.071, 0.0, -0.021]
active surface Zs
[0]
[99.54, -0.0]
[-0.0, -0.0, -0.0]
[-0.051, -0.099, -0.0, 0.0]
```

```
[-0.0, -0.0, -0.0, -0.0, -0.0]
[-0.062, -0.062, -0.121, -0.0, 0.0, -0.0]
[-0.0, 0.0, -0.0, -0.0, -0.0, 0.0, -0.0]
[-0.021, -0.071, -0.071, -0.139, 0.0, -0.0, -0.0, 0.0]

In [7]: asAnsiZs[1]
Out[7]: 99.54

In [8]: np.save("/users/pmargani/bumpIdentityZs", asAnsiZs)
```

1.4 Send zernikes to Active Surface

We can't do this from the notebook because it's Sparrow code. But below we analyze the results from the scans we ran.

```
In [9]: from analyzeActiveSurface import *
In [10]: # Scan 17: using a magnitude of 1 for the simulated data
         # Scan 18: using a magnitude of 100
         \# Note how we can't distinguish the ramp with a small amplitude, but at 100 we see the
         path = "/users/pmargani/tmp/simdata/TINT_210219/"
         scans = [17, 18]
         analyzeActiveSurfaceScans(path, scans, details=True)
Scan: 17
FITS: /users/pmargani/tmp/simdata/TINT_210219/ActiveSurfaceMgr/2019_02_22_16:47:39.fits
Zeros enabled: 0
FEM enabled: 0
Random enabled: 0
Zernikes enabled: 0
Thermal Zernikes enabled 1
total indicated: 2209
filtered indicated: 0
Txt: /users/pmargani/tmp/simdata/TINT_210219/ActiveSurfaceMgr/asdata.17.txt
['# Active surface commands at 39.491978\n', '# Zero points are Off, FEM corrections are Off\n']
Smoothed data using 100 x 100 size grid, sigs: 0.100000, 0.100000
```


Scan: 18

 $FITS: \ /users/pmargani/tmp/simdata/TINT_210219/ActiveSurfaceMgr/2019_02_22_16:53:25.fits$

Zeros enabled: 0 FEM enabled: 0 Random enabled: 0 Zernikes enabled: 0

Thermal Zernikes enabled 1 total indicated: 2209 filtered indicated: 2204

Txt: /users/pmargani/tmp/simdata/TINT_210219/ActiveSurfaceMgr/asdata.18.txt

['# Active surface commands at 40.341707\n', '# Zero points are Off, FEM corrections are Off\n']

Smoothed data using 100 x 100 size grid, sigs: 0.100000, 0.100000

['# Active surface commands at $39.491978\n'$, '# Zero points are Off, FEM corrections are Off\n'] ['# Active surface commands at $40.341707\n'$, '# Zero points are Off, FEM corrections are Off\n']

1.5 We have Identity!

The fact that the picture labeled '18' above looks like the zernikemap from the beginning means our identity test worked.

In []: