Deep Learning Autoencoder

Charlotte Pelletier Univ. Bretagne Sud – IRISA Vannes December 14 2021

Content

Introduction

Autoencoder

Principle

Applications

More autoencoders

The scenario:

We have acces to the data $\mathcal{D} = \{\mathbf{x}_1, \cdots, \mathbf{x}_m\}$; but not the labels $\{y_1, \cdots, y_m\}$.

The scenario:

We have acces to the data $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$; but not the labels $\{y_1, \dots, y_m\}$.

Why tackle such a task?

- 1. Extracting interesting information from data
 - clustering: group similar observations together (e.g., k-Means)
 - dimensionality reduction, for example for visualization
 - · discovering interesting trend
 - data compression (for example MP4, JPEG)
- 2. Learning better representations for another supervised task
- 3. Detecting anomalies by learning a likelihood function
- 4. Generating new samples similar to past observations

For complex data (text, image, sound, ...), there are plenty of hidden latent structures we hope to capture:

- image data: find low dimensional semantic representations, independent sources of variation;
- text data: find fixed size, dense semantic representation of data.

For example, **latent space** might be used to help build more efficient human labelling interfaces. \Rightarrow The goal in this case it to reduce labelling cost *via* active learning.

For complex data (text, image, sound, ...), there are plenty of hidden latent structures we hope to capture:

- image data: find low dimensional semantic representations, independent sources of variation;
- text data: find fixed size, dense semantic representation of data.

For example, **latent space** might be used to help build more efficient human labelling interfaces. \Rightarrow The goal in this case it to reduce labelling cost *via* active learning.

Unsupervised representation learning

- Force our representations to better model input distribution
 - not just extracting features for classification
 - asking the model to be good at representing the data and not overfitting to a particular task
 - potentially allowing for better generalization
- Use for initialization of supervised task, especially when we have a lot of unlabeled data and much less labeled examples

Content

Introduction

Autoencoder

Principle

Applications

More autoencoders

An autoencoder is a special type of neural network, which is trained to learn the identity function. It is composed of

- 1. an encoder, which encodes the input \mathbf{x} into a representation \mathbf{h} :
 - $\mathbf{h} = g(W_1\mathbf{x} + b_1)$
- 2. a **decoder**, which decodes the input from the hidden representation **h**: $\hat{\mathbf{x}} = f(W_2\mathbf{h} + b_2)$

An autoencoder is a special type of neural network, which is trained to learn the identity function. It is composed of

- 1. an encoder, which encodes the input \mathbf{x} into a representation \mathbf{h} :
- 2. a decoder, which decodes the input from the hidden representation h:

 $\mathbf{h} = g(W_1\mathbf{x} + b_1)$

The model is trained to minimize a certain loss function (also called the **reconstruction error**) that will ensure that $\hat{\mathbf{x}}$ is close to \mathbf{x} :

$$\ell(\mathbf{x}, \hat{\mathbf{x}}) = ||\hat{\mathbf{x}}^2 - \mathbf{x}||_2^2$$

An autoencoder is a special type of neural network, which is trained to learn the identity function. It is composed of

1. an **encoder**, which encodes the input **x** into a representation **h**:

$$\mathbf{h} = g(W_1\mathbf{x} + b_1)$$

2. a **decoder**, which decodes the input from the hidden representation **h**: $\hat{\mathbf{x}} = f(W_2\mathbf{h} + b_2)$

The model is trained to minimize a certain loss function (also called the **reconstruction error**) that will ensure that $\hat{\mathbf{x}}$ is close to \mathbf{x} :

$$\ell(\mathbf{x}, \hat{\mathbf{x}}) = ||\hat{\mathbf{x}}^2 - \mathbf{x}||_2^2$$

Note: if f, g are linear activation functions and the loss is the squarred loss, this is equivalent to the Principal Component Analysis (PCA).

The hidden layer is also called a **bottleneck** layer. It forces a **compressed** knowledge of the original input.

In practice,

undercomplete autoencoders: if dim(h) < dim(x) and we are able to reconstruct x perfectly from h, it means that h is a loss-free encoding of x. It captures all the important characteristics of x.

In practice,

- undercomplete autoencoders: if dim(h) < dim(x) and we are able to reconstruct x perfectly from h, it means that h is a loss-free encoding of x. It captures all the important characteristics of x.
- complete autoencoders: if $dim(h) \ge dim(x)$, then the autoencoder could learn a trivial encoding by simply copying x into h and copying h into \hat{x} \Rightarrow This identity encoding is useless as it does not really tell us anything about the important characteristics of the data.

Input layer	Hidden layer	Output layer
x_1	h_1	$\hat{x_1}$
(x_2)	h_2	$\hat{x_2}$
(x_3)	h_3	$\hat{x_3}$
(x_4)	h_4	$\hat{\hat{x}}_4$
(x_5)	h_5	$\hat{x_5}$

In practice,

- undercomplete autoencoders: if dim(h) < dim(x) and we are able to reconstruct x perfectly from h, it means that h is a loss-free encoding of x. It captures all the important characteristics of x.
- complete autoencoders: if dim(h) ≥ dim(x), then the autoencoder could learn a trivial encoding by simply copying x into h and copying h into x̂
 ⇒ This identity encoding is useless as it does not really tell us anything about the important characteristics of the data.

We will see that it can be regularized to enforce a sparsity constraint.

Applications

Some applications:

- Dimensionality reduction (when using an undercomplete autoencoders)
- Feature extraction by using the encoding learned by the encoder.
- Denoising

- Compression
- Image colorization

Applications

Some applications:

• Watermak removal

• Image generation

Deep Autoencoder

- Deep nonlinear autoencoder learn to project the data, not onto a subspace, but onto a nonlinear manifold
- This manifold is the image of the decoder.
- This is equivalent to a non-linear dimensionality reduction.

Deep Autoencoder

- Deep nonlinear autoencoder learn to project the data, not onto a subspace, but onto a nonlinear manifold
- This manifold is the image of the decoder.
- This is equivalent to a non-linear dimensionality reduction.

Note: The term *deep autoencoder* is sometimes used interchangeably with *stacked autoencoder*, which is another type of architecture, where we train a first autoencoder, minimised the loss function, then feed the hidden layer as the input of a next autoencoder, and so on. It usually helps the training at the cost of an increase in the training time.

Regularized Autoencoder

The "ideal" autoencoder model balances the following:

- 1. sensitive to the inputs enough to accurately build a reconstruction,
- 2. insensitive enough to the inputs that the model does not simply memorize or overfit the training data.

Regularized Autoencoder

The "ideal" autoencoder model balances the following:

- 1. sensitive to the inputs enough to accurately build a reconstruction,
- 2. insensitive enough to the inputs that the model does not simply memorize or overfit the training data.

This trade-off requires the model to maintain only the variations in the data required to reconstruct the input without holding on to redundancies.

Regularized Autoencoder

The "ideal" autoencoder model balances the following:

- 1. sensitive to the inputs enough to accurately build a reconstruction,
- 2. insensitive enough to the inputs that the model does not simply memorize or overfit the training data.

This trade-off requires the model to maintain only the variations in the data required to reconstruct the input without holding on to redundancies.

This is done by having a loss function with two terms:

- 1. the first term, the reconstruciton loss $\ell(\mathbf{x}_i, \hat{\mathbf{x}}_i)$, encourages the model to be sensitive to the inputs,
- 2. the second term, the regularized term \mathcal{R} , discourages memorization and overfitting by adding a penalization.

$$\mathcal{L} = \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{x}_i, \hat{\mathbf{x}}_i) + \lambda \mathcal{R},$$

where λ is the regularizer trade-off hyperparameter.

Sparse Autoencoder

- It uses a complete autoencoder where there is no reduction in the number of nodes in the the bottleneck layer.
- It adds a regularization term to penalize activations. The network is encouraged to learn an encoding and decoding which relies on only a small number of activations.
- It is forced to selectively activate regions of the network depending on the input data.

⇒ The network's capacity to memorize the input data is limited while the network's capability to extract features from the data is not restrained.

Source: https://www.jeremyjordan.me/autoencoders/

Sparse Autoencoder

How to impose this sparsity constraint?

1. **L1 regularization**: it penalizes the absolute values of the vector of activations *a* in a layer *l*:

$$\mathcal{L} = \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{x}_i, \hat{\mathbf{x}_i}) + \lambda \sum_{i} |a_i^{(l)}|$$

Sparse Autoencoder

How to impose this sparsity constraint?

1. **L1 regularization**: it penalizes the absolute values of the vector of activations *a* in a layer *l*:

$$\mathcal{L} = \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{x}_i, \hat{\mathbf{x}}_i) + \lambda \sum_{i} |a_i^{(l)}|$$

2. **Kullback-Leibler (KL) divergence**: it is a measure of the difference between two probability distributions.

We constrain the average activation of a neuron over a collection of training data.

$$\mathcal{L} = \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{x}_i, \hat{\mathbf{x}}_i) + \lambda \underbrace{KL(\rho||\hat{\rho}_j)}_{},$$

where $\hat{\rho}_j$ is the average activation of a neuron over a collection of samples $\hat{\rho}_j = \frac{1}{m} \sum_i a_i^{(l)}(x)$ for a specific neuron j in layer l (observed distribution); and ρ is the sparsity parameter (the ideal distribution).

Sour

https://www.jeremyjordan.me/

Denoising Autoencoder

In a denoising autoencoder, the input is different from the output:

- **corrupted** input = image + noise ⇒ improves model's generalization
- output: denoised image

Source: https://www.jeremyjordan.me/autoencoders/

Contractive Autoencoder

- Similar inputs should have a similar encoding.
- We want thus to maintain a similar encoded state for small changes of the input

 having small derivatives of the hidden layer activations with respect to the input:

$$\mathcal{L} = \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}) + \lambda \sum_{i,j} ||\nabla_{\mathbf{x}_{i}} a_{j}^{(l)}(\mathbf{x}_{i})||_{F}^{2},$$

where $\nabla_{x_i} a_j^{(l)}(x_i)$ defines the gradient field of the hidden layer activations (in layer *l*) with respect to an input x_i .