« Forward Non-relational Infinitary Static Analysis »

Patrick Cousot

Jerome C. Hunsaker Visiting Professor Massachusetts Institute of Technology Department of Aeronautics and Astronautics

> cousot@mit.edu www.mit.edu/~cousot

Course 16.399: "Abstract interpretation"

http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

Proving the correctness of static analyzers

- The abstract interpretation theory provides a formal basis for proving the soundness (and sometimes the completeness) of static analyzers (abstract semantics)
- The principle is to proceed by induction on the syntax of programs, which yields a proof for the whole programming language
- This structural proof will be formalized independently of any particular programming language

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

- The proof relies on the use of a quite general form of collecting semantics, abstraction and abstract semantics as formalized by concretization functions (or abstract functions or Galois connections in case of existence of best abstractions)
- It is based on the use of fixpoint definitions for monotone operators on cpos (complete lattices)
- In absence of ACC, monotony is lost due to the use of widening/narrowing (and indeed monotony must be lost to enforce convergence)

- In this case, despite non-monotony, the structural argument remains valid, replacing fixpoints by convergent iterations with convergence acceleration through widening/narrowing
- Even if the abstract is non-monotone, soundness follows from monotony in the concrete

An abstract formalization of

finitary structural analysis

by abstract interpretation

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

An abstract definition of abstract syntax

- The abstract syntax defines a collection $\{Com_i \mid i \in A\}$ \triangle of syntactic categories and a well-founded relation
- For example, $\{Com_i \mid i \in \Delta\} = \{A, B, C\}$ where A are arithmetic expressions, B are boolean expressions, and C is a set of commands. Then \prec is defined by the grammar defining A, B, C.

Course 16,399; "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

© P. Cousot, 2005

- In general we have:
 - Syntactic categories:

$$C_i \in \operatorname{Com}_i, \ i \in \Delta$$

- Immediate subcomponent relation:

$$\langle \bigcup_{i \in \Lambda} \operatorname{Com}_i, \prec \rangle \text{ is well } - \text{ founded}$$

- Example:

$$C = \text{while } B \text{ do } C' \text{ od } B \prec C, T(\neg(B)) \prec C, C' \prec C$$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

An abstract definition of the structural concrete (collecting) semantics

- Concrete domains: define the semantics information associated to each syntactic category Com_i , $i \in \Delta$. For each $i \in \Delta$ and $C_i \in \operatorname{Com}_i$:

 $\langle \mathcal{D}_{C_i}, \sqsubseteq_{C_i}, \perp_{C_i}, \sqcup_{C_i} \rangle$ is a poset (cpo, complete lattice, . . .)

Course 16,399; "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

The collecting semantics transformer is defined in the form:

$$\mathcal{F}_i \llbracket C_i
rbracket (S_1, \ldots, S_n) \stackrel{ ext{def}}{=} e \llbracket \mathcal{D}_{C_i}
rbracket [S_1 : \mathcal{D}_{C_1'}, \ldots, S_n : \mathcal{D}_{C_n'}])$$

where $\{C' \mid C' \prec C_i\} = \{C'_1, \dots, C'_n\}$ and the right-hand side is an expression written according to the following attribute grammar, where we are given

- $S = S_1 : \mathcal{D}_{C'_1}, \dots, S_n : \mathcal{D}_{C'_n}$: the collecting semantics of components
- $X = X_{n+1} : \mathcal{D}'_{n+1}, \dots, X_m : \mathcal{D}'_m$: fixpoint variables
- $\langle \mathcal{D}, \sqsubseteq, \perp, \sqcup \rangle$: the domain of the result

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 11 —

@ P Courset 20

- Concrete (aka collecting) semantics:

$$\mathcal{C}_i \in [C_i \in \mathsf{Com}_i \mapsto \mathcal{D}_{C_i}]$$

is defined, by structural induction, as

$$\mathcal{C}_i \llbracket C_i
rbracket \stackrel{ ext{def}}{=} \mathcal{F}_i \llbracket C_i
rbracket \Big(\prod_{C_j' \prec C_i} \mathcal{C}_j \llbracket C_j'
rbracket \Big)$$

where

$$\mathcal{F}_i \llbracket C_i
rbracket \in \left(\prod_{C_j' \prec C_i} \mathcal{D}_{C_j'}
ight) \mapsto \mathcal{D}_{C_i}$$

is the collecting semantics transformer

Course 16.399: "Abstract interpretation". Tuesday May 5th, 2005

© P. Cousot, 2005

The attribute grammar of expressions is as follows:

$$\begin{split} e[\![\mathcal{D}]\!][S](X) &::= \\ \mid d \\ \mid S_j \\ \mid X_k \\ \mid f_{\mathcal{D}_{j_1} \dots \mathcal{D}_{j_\ell} \mathcal{D}}(e_1[\![\mathcal{D}_{j_1}]\!][S](X)), \dots, e_\ell[\![\mathcal{D}_{j_\ell}]\!][S](X)) \\ \mid & \mathsf{lfp}_{\sqsubset}^{\perp} \lambda Y \cdot e[\![\mathcal{D}]\!][S](X,Y:\mathcal{D})^{\, \mathrm{\scriptscriptstyle T}} \end{split}$$

where

- $d \in \mathcal{D}$ is a constant
- $S_j,\ j\in [1,n]$ is the semantics of an immediate component of C_i such that $\mathcal{D}_j=\mathcal{D}$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

¹ Y must be a new fresh variable

- X_k , $k \in [n+1, m]$ appears inside a fixpoint definition and $\mathcal{D}'_{h} = \mathcal{D}$
- $f_{\mathcal{D}_{j_1}...\mathcal{D}_{j_\ell}\mathcal{D}}\in \left(\prod_{j=j_1}^{j_\ell}\mathcal{D}_j\right)\mapsto \mathcal{D}$ is a constant function such as $f(x,y) = x \sqcup y$, $x \cap y$, $x \circ y$, x(y), etc).
- The existence of the fixpoint definition should be ensured (by def. of the poset $\langle \mathcal{D}, \, \square, \, \bot, \, \sqcup \rangle$ and properties of the function $\lambda Y e[\mathcal{D}][S](X,Y:\mathcal{D})$ (such as monotony, continuity, extensivity, etc).
- In particular Ifp need not be a fixpoint and can be defined as the limit of an iteration process, a solution of constraints, etc.

Course 16,399; "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

Notes on typing the structural concrete semantics

- language:

- We have a set Δ of indexes i of syntactic categories Com_i
- The language is $\langle \bigcup_{i \in \Lambda} \operatorname{Com}_i, \prec \rangle$ where "\lambda" is the well-founded "immediate component" relation

- types:

- We can consider a set T of base types
- The set \mathbb{T} of types is then defined inductively as $\forall t \in$ $T: t \in \mathbb{T}$ and if $t_i \in \mathbb{T}$, $i = 1, \ldots, n+1$ then $t_1 \times$ $\ldots \times t_n \to t_{n+1} \in \mathbb{T}$

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

- $Y \notin \{X_{n+1}, \dots, X_m\}$ is a fresh variable and (X, Y): \mathcal{D}) is short for $X_{n+1}: \mathcal{D}'_{n+1}, \ldots, X_m: \mathcal{D}'_m, Y: \mathcal{D}$.
- Note that for given S and X, we have $\lambda Y \cdot e[\mathcal{D}][S](X,Y)$: $\mathcal{D})\in\mathcal{D}\mapsto\mathcal{D}$

- abstract domains:

- For each type $t \in T$, the (concrete or abstract) semantic domain is $\langle \mathcal{D}_t, \sqsubseteq \rangle_t, \perp_t, \perp_t \rangle$
- typing program component:
 - A base type $t_i \in T$ is associated to each program component Com_i , which is written $Com_i^{t_i}$
 - The intention is that the domain $\langle \mathcal{D}_{t_i}, \sqsubseteq \rangle_{t_i}, \perp_{t_i}, \perp_{t_i} \rangle$ describes the possible behaviors of program component Comi

- typing semantic expressions:
 - All expressions are typed:

$$e^t[S_1^{t_1},\ldots,S_n^{t_n}](X_{n+1}^{t_{n+1}},\ldots,X_m^{t_m})$$

- These expressions are interpreted as functions:

$$\mathcal{D}_{t_1} imes \ldots imes \mathcal{D}_{t_n} imes \mathcal{D}_{t_{n+1}} imes \ldots imes \mathcal{D}_{t_m} \mapsto \mathcal{D}_t$$

- typing rules for semantic expressions:
 - The typing rules for expressions are as follows:
 - $d^t \in \mathcal{D}_t$, S^t and X^t have type t
 - · f has type $t_1 \times \ldots \times t_n \to t$ (written $f^{t_1 \times \ldots \times t_n \to t}$) if, whenever e_i has type t_i , i = 1, ..., n, then $f(e_1, ..., e_n)$ has type t

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

- type soundness for semantic equational definitions:
 - It follows, by structural induction, that $C[C_t^t] \in \mathcal{D}_t$,
- If the implementation is in a typed functional language (such as OCaml), this typing is done by the compiler. Otherwise, that may have to be done by hand.

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

- \cdot If F has type $t_1 imes \ldots imes t_n o t$ then Ifp $_{\square_1}^{\perp_t} F$ has type $t_1 \times \ldots \times t_n \to t$
- typing rule for semantic expressions:
 - It follows, by structural induction, that

$$e^{t}[S_1^{t_1},\ldots,S_n^{t_n}](X_{n+1}^{t_{n+1}},\ldots,X_m^{t_m})$$

belongs to

$$\mathcal{D}_{t_1} \times \ldots \times \mathcal{D}_{t_n} \times \mathcal{D}_{t_{n+1}} \times \ldots \times \mathcal{D}_{t_m} \mapsto \mathcal{D}_t$$

- type soundness for semantic equational definitions:
 - In the definition $C_i^t \llbracket C_i \rrbracket \stackrel{\text{def}}{=} F_{C_i} (\prod_{C_j' \prec C_i} C_j \llbracket C_j'^{t_j'} \rrbracket)$, it is required that F_{C_i} has type $\prod {C'_j} \prec C_i t'_j
 ightarrow t$.

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

Example of structural concrete semantics: forward collecting semantics of arithmetic expressions

- $-X \in \mathbb{V}$, variables $A ::= n \mid X \mid uA' \mid A_1 b A_2, A \in Aexp, arithmetic$ expressions
- Faexp \in Aexp $\mapsto \mathcal{D}_{\mathsf{Aexp}}$ $ext{Faexp} \llbracket A
 Vert \stackrel{ ext{def}}{=} \{ v \mid \exists
 ho \in R :
 ho dash A
 ightleftharpoons v \}^2$
- $-\mathbb{I} \stackrel{\text{def}}{=} [\min_{\text{int, max_int}}], \text{ machine integers}$

 $[\]frac{1}{2}$ where $\rho \vdash A \Rightarrow v$, as defined by the operational semantics, holds whenever evaluation of A in environment


```
-\mathbb{E}\stackrel{\mathrm{def}}{=}\{\Omega_{\dot{1}},\Omega_{\mathtt{a}}\},\,\mathrm{errors}
```

$$-\mathbb{I}_{\Omega}\stackrel{\text{def}}{=} \mathbb{I} \cup \mathbb{E}$$
, machine values

$$-\mathbb{R}\stackrel{\mathrm{def}}{=}\mathbb{V}\mapsto\mathbb{I}_{\Omega}$$
, environments

$$-\mathcal{D}_{\operatorname{Aexp}} \stackrel{\operatorname{def}}{=} \wp(\mathbb{R}) \stackrel{\sqcup}{\longmapsto} \wp(\mathbb{I}_{\Omega})$$
 (same for all $A \in \operatorname{Aexp}$), properties

$$-\operatorname{Faexp}[\![n]\!] = \mathcal{F}_{\operatorname{Aexp}}[\![n]\!]() \tag{a}$$

$$\mathcal{F}_{Aexp}[n]() \stackrel{\text{def}}{=} \lambda R \{\underline{n}\}$$
 constant of \mathcal{D}_{Aexp}

$$-\operatorname{Faexp}[X] = \mathcal{F}_{\operatorname{Aexp}}[X]() \tag{b}$$

$$\mathcal{F}_{\operatorname{Aexp}}[\![\mathtt{X}]\!]() \stackrel{\operatorname{def}}{=} \lambda R \cdot R(\mathtt{X}) = \lambda R \cdot \{
ho(\mathtt{X}) \mid
ho \in R \}$$
 constant of $\mathcal{D}_{\operatorname{Aexp}}$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

21 — © P. Cousot. 2

where
$$\underline{\mathtt{b}}^{\mathcal{C}} \in \mathcal{D}_{\mathrm{Aexp}} imes \mathcal{D}_{\mathrm{Aexp}} \mapsto \mathcal{D}_{\mathrm{Aexp}}$$
 and $\underline{\mathtt{b}}^{\mathcal{C}}(S_1, S_2) \stackrel{\mathrm{def}}{=} \lambda R \cdot \{v_1 \, \underline{\mathtt{b}} \, v_2 \mid \exists \rho \in R : v_1 \in S_1(\{\rho\}) \land v_2 \in S_2(\{\rho\})\}$ so that $\mathtt{Faexp} \llbracket A_1 \, \underline{\mathtt{b}} \, A_2
rbracket \stackrel{\mathrm{def}}{=} \lambda R \cdot \underline{\mathtt{b}}^{\mathcal{C}} \text{ (Faexp} \llbracket A_1
rbracket, Faexp} \llbracket A_2
rbracket) R$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

$$-\operatorname{Faexp}[?] = \mathcal{F}_{\operatorname{Aexp}}[?]() \tag{c}$$

$$\mathcal{F}_{ ext{Aexp}} \llbracket ?
rbracket () \stackrel{ ext{def}}{=} \lambda R \cdot R(X) = \mathbb{I}$$
 constant of $\mathcal{D}_{ ext{Aexp}}$

$$-\operatorname{Faexp}[\![\mathrm{u}A]\!] = \mathcal{F}_{\operatorname{Aexp}}[\![\mathrm{u}A]\!](\operatorname{Faexp}[\![A]\!]) \tag{d}$$

$$\mathcal{F}_{\operatorname{Aexp}}[\![\mathrm{u}A]\!](S) = f_{\operatorname{II}A}(S) = \mathrm{u}^{\mathcal{C}} \circ S$$

where
$$f_{ ext{u}A} \in \mathcal{D}_{ ext{Aexp}} \mapsto \mathcal{D}_{ ext{Aexp}}$$
 and $\underline{ ext{u}}^\mathcal{C}(V) \stackrel{ ext{def}}{=} \{ ext{u}(v) \mid v \in V \}$

so that:

$$\operatorname{Faexp}[uA] = \lambda R \cdot \underline{u}^{\mathcal{C}}(\operatorname{Faexp}[A]R)$$

$$- \hspace{0.1cm} \mathtt{Faexp} \llbracket A_1 \mathtt{b} A_2 \rrbracket = \mathcal{F}_{\mathtt{Aexp}} \llbracket A_1 \mathtt{b} A_2 \rrbracket (\mathtt{Faexp} \llbracket A_1 \rrbracket, \mathtt{Faexp} \llbracket A_2 \rrbracket)$$

$$\mathcal{F}_{\mathsf{Aexp}} \llbracket A_1 \ \mathsf{b} \ A_2
rbracket (S_1, S_2) \stackrel{\mathrm{def}}{=} ar{\mathsf{b}}^\mathcal{C}(S_1, S_2)$$

© P. Cousot, 2005

Example of structural concrete semantics: boolean expressions

- $B ::= true \mid false \mid A_1 c A_2 \mid B_1 \& B_2 \mid B_1 \mid B_2$, $B \in Bexp$, boolean expressions
- $Cbexp[B] \in Bexp \mapsto \mathcal{D}_{Bexp}$ $Cbexp[B] \stackrel{\text{def}}{=} \lambda R \cdot \{ \rho \in R \mid \rho \vdash B \Rightarrow tt \}^3$
- $-\mathcal{D}_{\mathsf{Bexp}} \stackrel{\mathrm{def}}{=} \wp(\mathbb{R}) \stackrel{\sqcup}{\longmapsto} \wp(\mathbb{R})$
- $-\operatorname{Cbexp}[\operatorname{true}] \stackrel{\operatorname{def}}{=} \lambda R \cdot R$ constant of $\mathcal{D}_{\operatorname{Bexp}}$
- $-\operatorname{Cbexp}[\![\operatorname{false}]\!]\stackrel{\operatorname{def}}{=}\lambda R.\emptyset$

constant of $\mathcal{D}_{\mathsf{Bexp}}$

3 where ρ ⊢ B ⇒ tt is defined by the operational semantics as holding in environment ρ when B is true and without runtime error.

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

Example of structural concrete semantics: commands, sequences and programs

- $\begin{array}{ll} \ C ::= \mathrm{skip} \mid X := \mathsf{A} & C \in \mathsf{Com}, \, \mathsf{commands} \\ \mid \mathsf{if} \ B \ \mathsf{then} \ S \ \mathsf{else} \ S \ \mathsf{fi} \\ \mid \mathsf{while} \ B \ \mathsf{do} \ S \ \mathsf{od} \\ S ::= C \ ; \ S \mid C \qquad S \in \mathsf{Seq}, \, \mathsf{sequences} \ \mathsf{of} \ \mathsf{commands} \\ P ::= S \ ; \qquad \qquad P \in \mathsf{Prog}, \, \mathsf{programs} \end{array}$
- For all $I\in {
 m Com}\cup {
 m Seq}\cup {
 m Prog},$ we have ${
 m Rcom}[\![I]\!]\in {\cal D}_{{
 m Com}}[\![I]\!]$ where

$$\mathcal{D}_{\operatorname{Com}}\llbracket I
rbracket \stackrel{\operatorname{def}}{=} \wp(\mathbb{R}) \stackrel{\sqcup}{\longmapsto} (\operatorname{in}_P\llbracket I
rbracket \to \wp(\mathbb{R}))$$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

D Council 200

```
\vdash \tau^{\star} \llbracket C \rrbracket \rbrace reachable states (according to the operational semantics defined in lecture 5)
-\operatorname{Rcom} \llbracket \operatorname{skip} \rrbracket = \lambda R \cdot \lambda \ell \cdot R \quad \text{(constant of $\mathcal{D}_{\operatorname{Com}} \llbracket \operatorname{skip} \rrbracket)} \rbrace
-\operatorname{Rcom} \llbracket X := A \rrbracket = \mathcal{F}_{\operatorname{Com}} \llbracket X := A \rrbracket (\operatorname{Faexp} \llbracket A \rrbracket) \rbrace
\mathcal{F}_{\operatorname{Com}} \llbracket X := A \rrbracket (S) = f_{X := A}(S)
f_{X := A} \in \mathcal{D}_{\operatorname{Aexp}} \mapsto \mathcal{D}_{\operatorname{Com}} \llbracket X := A \rrbracket
f_{X := A}(S) \stackrel{\text{def}}{=} \lambda R \cdot \lambda \ell \cdot = \operatorname{match} \ell \text{ with}
|\operatorname{at}_{P} \llbracket X := A \rrbracket \to R
|\operatorname{after}_{P} \llbracket X := A \rrbracket \to \{ \rho [X := i] \mid \rho \in R \land i \in (S(\{\rho\})) \cap \mathbb{I} \}
```

 $-\operatorname{Rcom}\llbracket I\rrbracket R\ell \stackrel{\mathrm{def}}{=} \lambda R \cdot \lambda \ell \cdot \{\rho \mid \exists \rho' \in R : \langle \langle \operatorname{at}_{P}\llbracket C \rrbracket, \ \rho' \rangle, \ \langle \ell, \ \rho \rangle \rangle$

```
so that
```

```
\begin{split} &\operatorname{Rcom}[\![\mathtt{X}:=A]\!]R\ell = \operatorname{match} \ell \text{ with } \\ &|\operatorname{at}_P[\![\mathtt{X}:=A]\!] \to R \\ &|\operatorname{after}_P[\![\mathtt{X}:=A]\!] \to \{\rho[\mathtt{X}:=i] \mid \rho \in R \land i \in (\operatorname{Faexp}[\![A]\!]\{\rho\}) \cap \mathbb{I}\} \\ &- \operatorname{Rcom}[\![C]\!] \qquad \text{where } C = \operatorname{if } B \text{ then } S_t \text{ else } S_f \text{ fi} \\ &= \mathcal{F}_{\operatorname{Com}}[\![C]\!](\operatorname{Cbexp}[\![B]\!], \operatorname{Cbexp}[\![T(\neg(B))]\!], \operatorname{Rcom}[\![S_t]\!], \operatorname{Rcom}[\![S_f]\!]) \\ &\mathcal{F}_{\operatorname{Com}}[\![C]\!](B_1, B_2, S_1, S_2) \overset{\operatorname{def}}{=} f_C(B_1, B_2, S_1, S_2) \\ & \text{where } \\ &f_C \in \mathcal{D}_{\operatorname{Bexp}} \times \mathcal{D}_{\operatorname{Bexp}} \times \mathcal{D}_{\operatorname{Com}}[\![S_t]\!] \times \mathcal{D}_{\operatorname{Com}}[\![S_f]\!] \mapsto \mathcal{D}_{\operatorname{Com}}[\![C]\!] \end{split}
```

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

29 — © P. Cousot, 2005

```
 \begin{array}{ll} -\operatorname{Rcom}\llbracket C\rrbracket & \text{where } C = \text{while } B \text{ do } S \text{ od} \\ = \mathcal{F}_{\operatorname{Com}}\llbracket C\rrbracket (\operatorname{Cbexp}\llbracket B\rrbracket, \operatorname{Cbexp}\llbracket T(\neg(B))\rrbracket, \operatorname{Rcom}\llbracket S\rrbracket) \\ \mathcal{F}_{\operatorname{Com}}\llbracket C\rrbracket (B_1, B_2, S_1) \stackrel{\mathrm{def}}{=} f_C(B_1, B_2, S_1, \operatorname{Ifp}_{\emptyset}^{\sqsubseteq} \lambda X \cdot f_S(B_1, S_1, X)) \\ \text{where} & f_S \in \mathcal{D}_{\operatorname{Bexp}} \times \mathcal{D}_{\operatorname{Com}}\llbracket S\rrbracket \times \mathcal{D}_{\operatorname{Com}}\llbracket C\rrbracket \mapsto \mathcal{D}_{\operatorname{Com}}\llbracket C\rrbracket \\ f_S(B_1, S_1, X) \stackrel{\mathrm{def}}{=} \lambda R \cdot R \cup S_1(B_1(X)) (\operatorname{after}_P\llbracket S\rrbracket) \\ f_C \in \mathcal{D}_{\operatorname{Bexp}} \times \mathcal{D}_{\operatorname{Com}}\llbracket S\rrbracket \times \mathcal{D}_{\operatorname{Com}}\llbracket C\rrbracket \mapsto \mathcal{D}_{\operatorname{Com}}\llbracket C\rrbracket \\ f_C(B_1, B_2, S_1, F_1) \stackrel{\mathrm{def}}{=} \lambda R \cdot \lambda \ell \cdot \operatorname{match} \ell \text{ with} \\ |\operatorname{at}_P\llbracket C\rrbracket \to I \\ |\operatorname{in}_P\llbracket S\rrbracket \to S_1(B_1(F_1(R)))(\ell) \\ |\operatorname{after}_P\llbracket C\rrbracket \to B_2(F_1(R)) \end{array}
```

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

so that

$$\begin{split} \operatorname{Rcom}[\![C]\!]R\ell & \text{ where } C = \operatorname{while } B \text{ do } S \text{ od } = \\ \operatorname{let } I = \operatorname{Ifp}_{\emptyset}^{\subseteq} \lambda X \cdot R \cup \operatorname{Rcom}[\![S]\!](\operatorname{Cbexp}[\![B]\!]X)(\operatorname{after}_{P}[\![S]\!]) \text{ in } \\ \operatorname{match } \ell & \text{ with } \\ | \operatorname{at}_{P}[\![C]\!] \to I \\ | \operatorname{in}_{P}[\![S]\!] \to \operatorname{Rcom}[\![S]\!](\operatorname{Cbexp}[\![B]\!]I)(\ell) \\ | \operatorname{after}_{P}[\![C]\!] \to \operatorname{Cbexp}[\![T(\neg(B))]\!]R)I \end{split}$$

- Note that to prove equivalence, we need the following result:

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

THEOREM. Let $\langle L, \, \Box, \, \bot, \, \sqcup \rangle$ be a cpo, $F \in E \mapsto (L \stackrel{\text{m}}{\longmapsto})$ *L*). Then $\forall R \in E$:

$$\mathsf{lfp}_{\perp}^{\sqsubseteq} \lambda X \cdot F(R,X) = ig(\mathsf{lfp}_{\dot{\perp}}^{\dot{\sqsubseteq}} \lambda Y \cdot \lambda R \cdot F(R,Y(R))ig)(R)$$

PROOF. – Let X^{δ} , $\delta \in \mathbb{O}$ be the iterates of If $\mathfrak{p}_{\perp}^{\sqsubseteq} \lambda X \cdot F(R,X)$ with rank ϵ

- Let Y^δ , $\delta\in\mathbb{O}$ be the iterates of If $\mathfrak{p}_+^\sqsubseteq\lambda Y\cdot\lambda R\cdot F(R,Y(R))$ with rank ϵ'
- We prove by transfinite induction that $X^{\delta} = Y^{\delta}(R)$.
 - $-X^{0} = \perp = \dot{\perp}(R) = Y^{0}(R)$
- If $X^\delta = Y^\delta(R)$ then

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

@ P Couset 2005

$$= \bigsqcup_{\beta < \lambda} Y^{\beta})(R)$$

$$= Y^{\lambda}(R) \qquad \text{(def. iterates)}$$
- It follows that $\operatorname{Ifp}_{\perp}^{\sqsubseteq} \lambda X \cdot F(R, X) = X^{\epsilon} = X^{\max(\epsilon, \epsilon')} = Y^{\max(\epsilon, \epsilon')(R)}$

$$= Y^{\epsilon'}(R) = \left(\operatorname{Ifp}_{\perp}^{\sqsubseteq} \lambda Y \cdot \lambda R \cdot F(R, Y(R))\right)(R)$$

$$- \operatorname{Rcom}[C ; S] = \mathcal{F}_{\operatorname{Com}}[C ; S](\operatorname{Rcom}[C], \operatorname{Rcom}[S])$$

 $\mathcal{F}_{\operatorname{Com}}\llbracket C \; ; \; S
rbracket(C_1,S_1) \stackrel{\operatorname{def}}{=} f_{C \; ; \; S}(C_1,S_1)$ $f_{C \cdot S} \in \mathcal{D}_{\operatorname{Com}}\llbracket C \rrbracket imes \mathcal{D}_{\operatorname{Com}}\llbracket S \rrbracket \mapsto \mathcal{D}_{\operatorname{Com}}\llbracket C \; ; \; S \rrbracket$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 © P. Cousot, 2005

```
X^{\delta+1} = F(R, X^{\delta})
                                                                                   7 def. iterates \
      = F(R, Y^{\delta}(R))
                                                                                       ind. hyp.
      = \lambda R' \cdot F(R', Y^{\delta}(R'))(R)
      = \lambda Y \cdot (\lambda R' \cdot F(R', Y(R'))(R))(Y^{\delta})
            Y^{\delta+1}(R)
                                                                                   7 def. iterates \
   - It \lambda is a limit ordinal and \forall \beta < \lambda : X^{\beta} = Y^{\beta}(R) then
      X^{\lambda} = | | X^{\beta}
                                                                                   ?def. iterates \
                                                                                       ?ind. hyp. \
      = \qquad (\lambda R' \cdot \bigsqcup Y^{\beta}(R'))(R)
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
```

 $f_{C \cdot S}(C_1, S_1) \stackrel{\text{def}}{=}$ λR . $\lambda \ell$ match ℓ with $\operatorname{in}_P \llbracket C \rrbracket \to C_1(R) \ell$ $\operatorname{in}_P \llbracket S
rbracket o S_1(C_1(R)(\operatorname{after}_P \llbracket C
rbracket))\ell$ so that we get $\mathrm{Rcom} \llbracket C \; ; \; S
rbracket{R\ell} = \mathsf{match} \; \ell \; \mathsf{with}$ $\operatorname{in}_P \llbracket C
rbracket o \operatorname{Rcom} \llbracket C
rbracket R\ell$ $\lim_{P} \|S\| \to \operatorname{Rcom} \|S\| (\operatorname{Rcom} \|C\| R(\operatorname{after}_P \|C\|)) \ell$ $-\operatorname{Rcom}[S;] = \mathcal{F}_{\operatorname{Com}}[S;](\operatorname{Rcom}[S])$ $\mathcal{F}_{Com}[S :](S_1) = S_1$ so that we get Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 @ P Couset 2005

$$\operatorname{Rcom}[S] : R\ell = \operatorname{Rcom}[S]R\ell$$

- This concludes the proof that the forward collecting semantics of a command (as introduced in lecture 16) is of the general form on which we reason afterwards.

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

Well-definedness of structural semantics

THEOREM. If fixpoints exist then the structural semantic definition is well-defined.

PROOF. By structural induction.

- For expressions $e[\mathcal{D}][S](X) \in \mathcal{D}$, by cases:
 - Basis
 - · $d \in \mathcal{D}$, by hypothesis
 - $\cdot S_i \in \mathcal{D}_i = \mathcal{D}$ by hypothesis
 - $X_k \in \mathcal{D}_k = \mathcal{D}$ by hypothesis
 - Induction step
 - · For all $k=1,\ldots,\ell,\ e_k[\![\mathcal{D}_{j_k}]\!][S](X)\in\mathcal{D}_{j_k}$ by induction hypothesis and $f_{\mathcal{D}_{j_1}...\mathcal{D}_{j_\ell}\mathcal{D}} \in \left(\prod_{j=j_1}^{j_\ell} \mathcal{D}_j\right) \mapsto \mathcal{D}$ by hypothesis, proving that $f_{\mathcal{D}_{j_1}\dots\mathcal{D}_{j_e}\mathcal{D}}(e_1\llbracket\mathcal{D}_{j_1}
 rbracket[S](X)),\dots,e_\ell\llbracket\mathcal{D}_{j_\ell}
 rbracket[S](X))$

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

Fixpoint existence

In the structural definition of the semantics, all elements are welldefined but, may be, the fixpoints.

DEFINITION (FIXPOINT EXISTENCE).

- We say that the fixpoints exist if and only if all fixpoints appearing in the structural definition exist.
- A fixpoint If p = F (where $F \in L \mapsto L$, $\langle L, \Box, \bot, \sqcup \rangle$ is a poset) exists whenever the transfinite iteration sequence $X^0 = a$, $X^{\delta+1}=F(X^{\delta}),~X^{\lambda}=\bigsqcup_{eta<\lambda}X^{eta}$ for limit ordinals is welldefined (i.e. the lub | | does exist), ultimately stationary at rank ϵ (so that $\forall \delta \geq \epsilon : X^{\delta} = X^{\epsilon}$ in which case we let $\mathsf{lfp}_a^{\vdash} F \stackrel{\mathsf{def}}{=}$ X^{ϵ} .

is well-defined and belongs to $\mathcal D$

- By induction hypothesis $\lambda Y \cdot e[\mathcal{D}][S](X,Y:\mathcal{D}) \in \mathcal{D} \mapsto \mathcal{D}$, and fixpoints exist. By transfinite induction, all iterates belong to \mathcal{D} , whence for the fixpoint $\mathsf{lfp}_{\vdash}^{\perp} \lambda Y \cdot e \llbracket \mathcal{D} \rrbracket [S](X,Y:\mathcal{D}) \in \mathcal{D}$
- For semantics $C_i \in [C_i \in \text{Com}_i \mapsto \mathcal{D}_{C_i}]$, we proceed by structural induction
 - For the basis, C_i has no C_i' such that $C_i' \prec C_i$ whence $C_i \llbracket C_i \rrbracket = \mathcal{F}_i \llbracket C_i \rrbracket ()$ $=e[\![\mathcal{D}_{C_i}]\!][S_1:\mathcal{D}_{C_1'},\ldots,S_n:\mathcal{D}_{C_n'}]()$ is well-defined and belongs to \mathcal{D}_{C_i}
 - For the induction step, $\mathcal{C}_j\llbracket\mathcal{C}_j^r\rrbracket\in\mathcal{D}_{\mathcal{C}_i'}$ by induction hypothesis and so
 $$\begin{split} \mathcal{C}_i \llbracket C_i \rrbracket &= \mathcal{F}_i \llbracket C_i \rrbracket \left(\prod_{C'_j \prec C_i} \mathcal{C}_j \llbracket C'_j \rrbracket \right) = e \llbracket \mathcal{D}_{C_i} \rrbracket [\mathcal{C}_1 \llbracket C'_1 \rrbracket : \mathcal{D}_{C'_1}, \ldots, \mathcal{C}_n \llbracket C'_n \rrbracket : \mathcal{D}_{C'_n}] () \\ \text{where } \{C' \mid C' \prec C_i\} &= \{C'_1, \ldots, C'_n\} \text{ is well-defined and belongs to } \mathcal{D}_{C_i} \end{aligned}$$

Monotonic structural semantics

DEFINITION. The structural semantics is said to be monotonic whenever all $f_{\mathcal{D}_{j_1}...\mathcal{D}_{j_\ell}\mathcal{D}}\in\left(\prod_{j=j_1}^{j_\ell}\mathcal{D}_j\right)\mapsto\mathcal{D}$ are monotonic on the poset $\langle \mathcal{D}, \sqsubseteq \rangle$, that is: $\forall k = 1, \ldots, \ell : \forall X_{j_k}, X'_{j_k} \in$ $\langle \mathcal{D}_{j_k}, \sqsubseteq_{j_k} \rangle$:

$$X_{j_k} \sqsubseteq_{j_k} X'_{j_k}$$

$$\Longrightarrow f_{\mathcal{D}_{j_1} \dots \mathcal{D}_{j_\ell} \mathcal{D}} (\prod_{k=1}^{\ell} X_{j_k}) \sqsubseteq f_{\mathcal{D}_{j_1} \dots \mathcal{D}_{j_\ell} \mathcal{D}} (\prod_{k=1}^{\ell} X'_{j_k})$$

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

- Induction step
 - · For all $k=1,\ldots,\ell,\,e_k[\![\mathcal{D}_{j_k}]\!][S](X)\in\mathcal{D}_{j_k}$ is well-defined and monotone by induction hypothesis and $f_{\mathcal{D}_{j_1}...\mathcal{D}_{j_\ell}\mathcal{D}} \in \left(\prod_{i=j_1}^{j_\ell} \mathcal{D}_i\right) \stackrel{\mathrm{m}}{\longmapsto} \mathcal{D}$ by hypothesis, proving that if $Y \subseteq Y'$ then $e[\mathcal{D}][S](X,Y:\mathcal{D}) \subseteq e[\mathcal{D}][S'](X',Y':\mathcal{D})$ \mathcal{D}) so that the function $\mathcal{F} \stackrel{\text{def}}{=} \lambda Y \cdot e \mathbb{D}[S](X,Y:\mathcal{D}) \in \mathcal{D} \stackrel{\text{m}}{\longmapsto} \mathcal{D}$ is monotonic in its Y parameter. By the constructive version of Tarski's theorem, $\mathbf{lfp} \vdash \mathcal{F}$ does exist on the cpo $\langle \mathcal{D}, \, \Box, \, \bot, \, \sqcup \rangle$ and is an element

Moreover if we let

$$\mathcal{F} \stackrel{\mathrm{def}}{=} \lambda Y \cdot e \llbracket \mathcal{D} \rrbracket [S](X,Y:\mathcal{D})$$
 and $\mathcal{F}' \stackrel{\mathrm{def}}{=} \lambda Y \cdot e \llbracket \mathcal{D} \rrbracket [S'](X',Y:\mathcal{D})$

then $\mathcal{F} \stackrel{.}{\sqsubseteq} \mathcal{F}'$ pointwise and to $\mathsf{lfp}^{\sqsubseteq} \mathcal{F} \sqsubseteq \mathsf{lfp}^{\sqsubseteq} \mathcal{F}'$, proving monotony.

- An immediate consequence is that the functions $\mathcal{F}_i[\![C_i]\!](S_1,\ldots,S_n)=$ $e[\mathcal{D}_{C_i}][S_1:\mathcal{D}_{C_1'},\ldots,S_n:\mathcal{D}_{C_n'}]()$ are monotonic in $S_1,\ldots,\tilde{S_n}$:

 $\mathcal{F}_i \llbracket C_i
rbracket \in ig(\prod_{C'
ightarrow C_i} \mathcal{D}_{C'_i} \stackrel{ ext{m}}{\longmapsto} \mathcal{D}_{C_i} ig)$

- Since fixpoints exist, the structural semantics is well-defined

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005

and well-defined

© P. Cousot. 2005

П

Well-definedness of monotonic structural semantics

THEOREM. In a monotonic structural semantics, all expressions are monotonic, whence the fixpoints exist on cpos, so the semantics is well-defined on cpos.

PROOF. – For expressions if $\langle \mathcal{D}_i, \, \sqsubseteq_i, \, \bot_i, \, \sqcup_i \rangle$ and $\langle \mathcal{D}, \, \sqsubseteq, \, \bot, \, \sqcup \rangle$ are cpos then $\prod_{i=1}^n \mathcal{D}_i$ and $\prod_{i=n+1}^{\bar{m}} \mathcal{D}_i$ are cpos for the componentwise orderings $\sqsubseteq_{1,n}$ and $\sqsubseteq_{n+1,m}$. Assume $S \sqsubseteq_{1,n} S'$, $X \sqsubseteq_{n+1,m} X'$. We prove by structural induction on expression e that $e[\mathcal{D}][S](X) \sqsubseteq e[\mathcal{D}][S'](X')$ and the expression is welldefined in \mathcal{D}

- Basis
 - $d \sqsubseteq d$ by reflexivity and $d \in \mathcal{D}$, by hypothesis
 - $\cdot S_i \sqsubseteq_i S_i'$ by def. componentwise ordering and $\sqsubseteq_i = \sqsubseteq$ with $S_i, S_i' \in$ $\mathcal{D}_i = \mathcal{D}$ by hypothesis
 - $X_k \sqsubseteq_k X_k'$ by def. componentwise ordering and $\sqsubseteq_k = \sqsubseteq$ with $X_k \in \mathcal{D}_k = \bigcup_{k \in \mathcal{K}} X_k'$ \mathcal{D} by hypothesis

Structural abstract semantics

The abstract semantics is in the same structural form as the collecting semantics. More precisely:

- Abstract domains: define the abstract information associated to each syntactic category Com_i , $i \in \Delta$. For each $i \in \Delta$ and $C_i \in \operatorname{Com}_i$:

$$\langle \overline{\mathcal{D}}_{C_i}, \ \overline{\sqsubseteq}_{C_i}, \ \overline{\sqcup}_{C_i} \rangle$$
 is a poset (cpo, complete lattice, . . .)

(The nature of the correspondence between the abstract domains and the corresponding concrete ones will be considered later).

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

The abstract transformer is defined in the form:

$$\overline{\mathcal{F}}_{i}\llbracket C_{i}\rrbracket(S_{1},\ldots,S_{n})\stackrel{\mathrm{def}}{=}\overline{e}\llbracket\overline{\mathcal{D}}_{C_{i}}\rrbracket[\overline{S}_{1}:\overline{\mathcal{D}}_{C_{1}'},\ldots,\overline{S}_{n}:\overline{\mathcal{D}}_{C_{n}'}]()$$

where $\{C' \mid C' \prec C_i\} = \{C'_1, \dots, C'_n\}$ and the right-hand side is an expression written according to the following attribute grammar, where we are given

- $\overline{S} = \overline{S}_1 : \overline{\mathcal{D}}_{C'_1}, \dots, \overline{S}_n : \overline{\mathcal{D}}_{C'_n}$: the abstract semantics of components
- $\overline{X} = \overline{X}_{n+1} : \overline{\mathcal{D}}'_{n+1}, \dots, \overline{X}_m : \overline{\mathcal{D}}'_m$: fixpoint variables
- $-\langle \overline{\mathcal{D}}, \overline{\sqsubseteq}, \overline{\perp}, \overline{\sqcup} \rangle$: the abstract domain of the result

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 47 —

C P. Cousot,

- Abstract semantics:

$$\overline{\mathcal{C}_i} \in [C_i \in \mathtt{Com}_i \mapsto \overline{\mathcal{D}}_{C_i}]$$

is defined, by structural induction, as

$$\overline{\mathcal{C}}_i \llbracket C_i
rbracket \stackrel{ ext{def}}{=} \overline{\mathcal{F}}_i \llbracket C_i
rbracket \Big(\prod_{C_j' \prec C_i} \overline{\mathcal{C}}_j \llbracket C_j'
rbracket \Big)$$

where

$$\overline{\mathcal{F}}_i \llbracket C_i
rbracket \in \left(\prod_{C_j' \prec C_i} \overline{\mathcal{D}}_{C_j'}
ight) \mapsto \overline{\mathcal{D}}_{C_i}$$

is the abstract transformer

Course 16.399: "Abstract interpretation", Tuesday May 5th, 20

© P. Cousot, 2005

The attribute grammar of expressions is as follows:

$$\begin{split} & \overline{e} [\![\overline{\mathcal{D}}]\!] [\overline{S}] (\overline{X}) ::= \\ & \mid \overline{d} \\ & \mid \overline{S}_j \\ & \mid \overline{X}_k \\ & \mid \overline{f}_{\overline{\mathcal{D}}_{j_1} \dots \overline{\mathcal{D}}_{j_\ell}} \overline{\mathcal{D}} (e_1 [\![\overline{\mathcal{D}}_{j_1}]\!] [\overline{S}] (\overline{X})), \dots, e_\ell [\![\overline{\mathcal{D}}_{j_\ell}]\!] [\overline{S}] (\overline{X})) \\ & \mid \mathsf{lfp}_{\bot}^{\overline{\square}} \lambda \overline{Y} \cdot \overline{e} [\![\overline{\mathcal{D}}]\!] [\overline{S}] (\overline{X}, \overline{Y} : \overline{\mathcal{D}})^4 \end{split}$$

where, by hypothesis:

- $\overline{d} \in \overline{\mathcal{D}}$ is a constant

Course 16.399: "Abstract interpretation", Tuesday May 5th, 20

 $[\]overline{Y}
ot \in \{\overline{X}_{n+1}, \ldots, \overline{X}_m\}$ must be a new fresh variable

- \overline{S}_j , $j \in [1, n]$ is the abstract semantics of an immediate component of C_i such that $\overline{\mathcal{D}}_i = \overline{\mathcal{D}}$
- \overline{X}_k , $k \in [n+1, m]$ appears inside a fixpoint definition and $\overline{\mathcal{D}}'_h = \overline{\mathcal{D}}$
- $\overline{f}_{\overline{\mathcal{D}}_{j_1}...\overline{\mathcal{D}}_{j_\ell}\overline{\mathcal{D}}} \in \left(\prod_{j=j_1}^{j_\ell} \overline{\mathcal{D}}_j\right) \mapsto \overline{\mathcal{D}}$ is a constant function
- The fixpoints exist.

Course 16,399: "Abstract interpretation". Tuesday May 5th, 2005

@ P. Cousot. 2005

Local abstraction

DEFINITION. We say that the abstract domains

$$\langle \overline{\mathcal{D}}_{C_i}, \ \overline{\sqsubseteq}_{C_i}, \ \overline{\sqcup}_{C_i}, \ \overline{\sqcup}_{C_i} \rangle, \ i \in \Delta \ \text{and} \ C_i \in \operatorname{Com}_i$$
 are *local abstractions* of the concrete domains

$$\langle \mathcal{D}_{C_i}, \sqsubseteq_{C_i}, \perp_{C_i}, \perp_{C_i} \rangle$$
, $i \in \Delta$ and $C_i \in \text{Com}_i$

whenever there exists a concretization function γ_{C_s} which is monotone:

$$\gamma_{C_i} \in \overline{\mathcal{D}}_{C_i} \stackrel{\mathrm{m}}{\longmapsto} \mathcal{D}_{C_i}$$
 (LA1)

such that in the definitions of the corresponding structurally identical expressions $e[\mathcal{D}][S](X)$ and $\overline{e}[\overline{\mathcal{D}}][\overline{S}](\overline{X})$, we have

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

Local abstraction hypotheses on the correspondence between concrete and abstract semantics

- Observe that the concrete and abstract semantics have the same structural form (and so are stated to be structurally identical)
- So, intuitively, if the ingredients of the abstract semantics are upper-upproximations of their concrete counterparts, then the abstract semantics should be an upper-approximation of the concrete semantics
- This is made precise and proved in what follows

- $d \sqsubseteq \overline{d}$ when $d \in \mathcal{D}_{C_d}$ and $\overline{d} \in \overline{\mathcal{D}}_{C_d}$ (LA2)

- If $\forall k = 1, \ldots, \ell$: $X_k \sqsubseteq_{j_k} \gamma_{j_k}(\overline{X}_k)$ then

$$f_{\mathcal{D}_{j_{1}}...\mathcal{D}_{j_{\ell}}\mathcal{D}}(X_{1},...,X_{\ell}) \sqsubseteq \gamma(\overline{f}_{\overline{\mathcal{D}}_{j_{1}}...\overline{\mathcal{D}}_{j_{\ell}}\overline{\mathcal{D}}}(\overline{X}_{1},...,\overline{X}_{\ell}))$$
(LA3)

- Remark 1: $\perp_{C_i} \sqsubseteq_{C_i} \gamma_{C_i}(\overline{\perp}_{C_i})$ by def. infimum (otherwise this should be assumed as an additional hypothesis)
- Remark 2: when lubs exist $\bigsqcup_{C_i} \{ \gamma_{C_i}(X_i) \mid i \in \Delta \} \sqsubseteq_{C_i}$ $\gamma_{C_i}(\overline{\bigsqcup}_{C_i}\{X_i\mid i\in\Delta\})$ by monotony of γ_{C_i}

- Remark 3: in case of a Galois connection based abstractions

$$\langle \mathcal{D}_{C_i}, \sqsubseteq_{C_i} \rangle \stackrel{\gamma_{C_i}}{\longleftarrow_{\alpha_{C_i}}} \langle \overline{\mathcal{D}}_{C_i}, \sqsubseteq_{C_i} \rangle$$

the usual soundness requirement that

$$\alpha \circ f_{\mathcal{D}_{j_1} \dots \mathcal{D}_{j_\ell} \mathcal{D}}(\gamma_{j_1}(\overline{X}_1), \gamma_{j_\ell}(\dots, \overline{X}_\ell)) \sqsubseteq \overline{f}_{\overline{\mathcal{D}}_{j_1} \dots \overline{\mathcal{D}}_{j_\ell} \overline{\mathcal{D}}}(\overline{X}_1, \dots, \overline{X}_\ell)$$

implies (LA3) when $f_{\mathcal{D}_{j_1}...\mathcal{D}_{j_\ell}\mathcal{D}}$ is monotone

Course 16,399: "Abstract interpretation". Tuesday May 5th, 2005

© P. Cousot. 2005

A soundness of the correspondence between expressions

THEOREM. If e and \overline{e} are structurally identical, (LA1), (LA2) and (LA3) hold, concrete and abstract fixpoints exist, and

$$-S_j \sqsubseteq_j \gamma_i(\overline{S}_j), j = 1, \dots, n$$
 (a)

$$-X_k\sqsubseteq_{ki}\gamma_i(\overline{X}_k),\, k=n+1,\ldots,m$$
 (b)

then

$$e[\![\mathcal{D}]\!][S](X) \sqsubseteq \gamma(\overline{e}[\![\overline{\mathcal{D}}]\!][\overline{S}](\overline{X}))$$

PROOF. By structural induction on expressions.

Course 16.399; "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

A soundness theorem on the correspondence between a concrete semantics and its local abstraction

- Given an abstract semantics which is a local abstraction of a structurally identical concrete semantics, we prove that this abstract semantics is a sound upperapproximation of the concrete semantics
- We proceed by structural induction on the considered programming language

 $-d \sqsubseteq (\overline{d})$ by (LA2)

 $-S_i \sqsubseteq_i \gamma_i(\overline{S}_i) = \gamma(\overline{S}_i)$ by (a) and $\mathcal{D} = \mathcal{D}_i, \overline{\mathcal{D}} = \overline{\mathcal{D}}_i, j = 1, \ldots, n$

 $-X_{k,i} \sqsubseteq_k \gamma_k(\overline{X}_k) = \gamma(\overline{X}_k)$ by (b) and $\mathcal{D} = \mathcal{D}_k$, $\overline{\mathcal{D}} = \overline{\mathcal{D}}_k$, $k = n + 1, \ldots, m$

- By induction hypothesis, we have:

$$e_k \llbracket \mathcal{D}_{j_k}
rbracket [S](X) \sqsubseteq_{jk} \gamma_{jk} (\overline{e}_k \llbracket \overline{\mathcal{D}}_{j_k}
rbracket [S](X)), \quad k=1,\ldots,\ell$$

and so by (LA3):

$$f_{\mathcal{D}_{j_1}...\mathcal{D}_{j_\ell}\mathcal{D}}(\prod_{k=1}^\ell e_k \llbracket \mathcal{D}_{j_k} \rrbracket[S](X)) \ \overline{\sqsubseteq} \ \gamma(\overline{f}_{\overline{\mathcal{D}}_{j_1}...\overline{\mathcal{D}}_{j_\ell}\overline{\mathcal{D}}}(\prod_{k=1}^\ell \overline{e}_k \llbracket \overline{\mathcal{D}}_{j_k} \rrbracket[S](X)))$$

- let

$$\begin{array}{ccc} \mathcal{F} \stackrel{\mathrm{def}}{=} \lambda Y \cdot e \llbracket \mathcal{D} \rrbracket [S](X,Y:\mathcal{D}) \\ \mathrm{and} \ \ \overline{\mathcal{F}} \stackrel{\mathrm{def}}{=} \lambda Y \cdot \overline{e} \llbracket \mathcal{D} \rrbracket [\overline{S}](\overline{X},\overline{Y}:\overline{\mathcal{D}}) \end{array}$$

If $Y \subseteq \gamma(\overline{Y})$ then, by induction hypothesis on the identical structures of e and \overline{e} , we have,

Course 16,399: "Abstract interpretation". Tuesday May 5th, 2005

$$\begin{array}{c} \mathcal{F}(Y)\sqsubseteq\gamma(\overline{\mathcal{F}}(\overline{Y}))\\ \text{for all }Y\in\mathcal{D}\text{ and }\overline{Y}\in\overline{\mathcal{D}} \end{array} \tag{c}$$

- Let us now consider the iterates $\langle X^{\delta}, \delta \in \mathbb{O} \rangle$ of \mathcal{F} and $\langle Y^{\delta}, \delta \in \mathbb{O} \rangle$ of $\overline{\mathcal{F}}$ which are respectively stationary at ϵ and ϵ' , by fixpoint existence hypoth-
 - $X^0\stackrel{\mathrm{def}}{=} ot \Box \gamma(\overline{ot})\stackrel{\mathrm{def}}{=} Y^0$
 - If $X^{\delta} \sqsubseteq \gamma(Y^{\delta})$ by induction hypothesis, then $X^{\delta+1} = \mathcal{F}(X^{\delta}) \sqsubseteq \gamma(\overline{\mathcal{F}}(Y^{\delta}))$ by (c) proving that $X^{\delta+1} \sqsubseteq \gamma(Y^{\delta+1})$ since $Y^{\delta+1} = \overline{\mathcal{F}}(Y^{\delta})$
 - If λ is a limit ordinal and $\forall \beta < \lambda : X^{\beta} \sqsubseteq \gamma(Y^{\beta})$ then $X^{\lambda} = \bigsqcup_{\beta < \lambda} X^{\beta}$ $\sqsubseteq \bigsqcup_{\beta < \lambda} \gamma(Y^{\beta}) \sqsubseteq \gamma(\overline{\bigsqcup_{\beta < \lambda}} Y^{\beta}) = \gamma(Y^{\lambda}) \text{ (which are well-defined by fixpoint)}$ existence)
 - It follows that $\mathsf{Ifp}_{\perp}^{\sqsubseteq}\mathcal{F} = X^{\epsilon} = X^{\max(\epsilon,\epsilon')} \sqsubseteq \gamma(Y^{\max(\epsilon,\epsilon')}) = \gamma(Y^{\epsilon'}) = \gamma(\mathsf{Ifp}_{\perp}^{\sqsubseteq}\overline{\mathcal{F}})$

 $= \mathcal{F}[C_i](\prod \mathcal{C}[C_i])$ $= e \llbracket \mathcal{D}_{C_i} \rrbracket [\prod_{\substack{C'_j \prec C_i \\ C'_j \prec C_i}}^{C'_j \prec C_i} \mathcal{C} \llbracket C'_j \rrbracket : \mathcal{D}_{C'_j} \rrbracket ()$ $\sqsubseteq_{C_i} \gamma_{C_i}(\overline{e}[\![\overline{\mathcal{D}}_{C_i}]\!][\prod \overline{C}[\![C_j']\!]:\overline{\mathcal{D}}_{C_j'}]))$ $= \quad \gamma_{C_i}(\overline{\mathcal{F}}\llbracket C_i \rrbracket (\prod^{C'_j \prec C_i} \overline{\overline{\mathcal{C}}}\llbracket C'_j \rrbracket))$

 $\mathcal{C}\llbracket C_i
rbracket$

Course 16,399; "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

П

Soundness of the correspondence between a concrete and abstract semantics

THEOREM. If (LA1), (LA2) and (LA3) do hold, concrete and abstract fixpoints exist, then for all $i \in \Delta$ and $C_i \in$ Com_i , we have

$$\mathcal{C}\llbracket C_i
rbracket \sqsubseteq_{C_i} \gamma_{C_i}(\overline{\mathcal{C}}\llbracket C_i
rbracket)$$

PROOF. By structural induction on the well-founded relation $\langle \bigcup_{i \in \Lambda} \operatorname{Com}_i, \prec \rangle$. Given any $i \in \Delta$ and $C_i \in \text{Com}_i$, assume by induction hypothesis that

$$orall C_j' \prec C_i : \mathcal{C}\llbracket C_j'
rbracket \sqsubseteq_{C_i'} \gamma_{C_i} (\overline{\mathcal{C}}\llbracket C_j'
rbracket)$$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

An abstract formalization of infinitary structural analysis by abstract interpretation

Hypotheses on widenings

Given a poset $\langle L, \sqsubseteq \rangle$, a widening operator on L is $\nabla \in L \times L \mapsto L$ satisfying

- (W1) $y \sqsubseteq x \nabla y$
- (W2) For all sequences x^0, x^1, \ldots in L^{ω} , the sequence defined by

$$egin{array}{ll} y^0 \stackrel{ ext{def}}{=} x^0 \ y^{n+1} \stackrel{ ext{def}}{=} y^\ell & ext{if } \exists \ell \leq n : x^\ell \sqsubseteq y^\ell \ \stackrel{ ext{def}}{=} y^n \, orall \, x^n & ext{otherwise} \end{array}$$

is not strictly increasing.

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

- 61 — © P. Cousot, 2005

Theorem. The sequence $\langle y^k, k \in \mathbb{N} \rangle$ is strictly increasing up to a least $\ell \in \mathbb{N}$ such that $x^\ell \sqsubseteq y^\ell$ and the sequence is stationary at ℓ onwards.

PROOF. The sequence $\langle y^k, \ k \in \mathbb{N} \rangle$ cannot by strictly increasing by (W2). So there is a least ℓ such that $y^\ell \not\sqsubseteq y^{\ell+1}$. We cannot have $y^{\ell+1} = x^\ell \nabla y^\ell$ since by (W1), thus would imply that $y^\ell \sqsubseteq x^\ell \nabla y^\ell = y^{\ell+1}$. Hence, by definition of the sequence $\langle y^k, \ k \in \mathbb{N} \rangle$, we must have $y^{\ell+1} \stackrel{\text{def}}{=} y^k$ where $k \leq \ell$ and $x^k \sqsubseteq y^k$. We cannot have $k < \ell$ since for the smallest such k we would have $x^k \sqsubseteq y^k$ whence $y^{k+1} = y^k$ whence, by reflexivity, $y^k \sqsubseteq y^{k+1}$ in contradiction with the hypothesis that ℓ is the smallest natural with that property. It follows that $k = \ell$ and so by (W2): $y^{\ell+1} = y^\ell$ and $x^\ell \sqsubseteq y^\ell$. For all $n \geq \ell$, we have $\exists \ell \leq n : x^\ell \sqsubseteq y^\ell$ whence $y^{n+1} \stackrel{\text{def}}{=} y^\ell$ proving that the sequence is stationary at

Note: $\langle x^k, \ k \in \mathbb{N} \rangle$ not assumed to be increasing.

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

Structural abstract semantics with widening

The abstract semantics with widening is in the same structural form as the collecting semantics. More precisely:

- Abstract domains: For each $i \in \Delta$ and $C_i \in \operatorname{Com}_i$: $\langle \overline{\mathcal{D}}_{C_i}, \ \overline{\sqsubseteq}_{C_i}, \ \overline{\sqcup}_{C_i}, \ \overline{\sqcup}_{C_i} \rangle$ is a poset
- Widenings: For each $i\in \Delta$ and $C_i\in \operatorname{Com}_i$:

$$\nabla_{C_i} \in \overline{\mathcal{D}}_{C_i} \times \overline{\mathcal{D}}_{C_i} \mapsto \overline{\mathcal{D}}_{C_i}$$
 is a widening satisfying (W1) and (W2)

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

- 63 **—**

© P. Cousot, 2005

- Abstract semantics with widening:

$$\overline{\mathcal{C}_i} \in [C_i \in \operatorname{\mathsf{Com}}_i \mapsto \overline{\mathcal{D}}_{C_i}]$$

is defined, by structural induction, as

$$\overline{\mathcal{C}}_i \llbracket \mathcal{C}_i
rbracket \stackrel{ ext{def}}{=} \overline{\mathcal{F}}_i \llbracket \mathcal{C}_i
rbracket \Big(\prod_{\mathcal{C}'_j \prec \mathcal{C}_i} \overline{\mathcal{C}}_j \llbracket \mathcal{C}'_j
rbracket \Big)$$

where

$$\overline{\mathcal{F}}_i \llbracket C_i
rbracket \in \left(\prod_{C_j' \prec C_i} \overline{\mathcal{D}}_{C_j'}
ight) \mapsto \overline{\mathcal{D}}_{C_i}$$

is the abstract transformer

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

 —
 © P. Cousot, 2005

The abstract transformer is defined in the form:

$$\overline{\mathcal{F}}_i\llbracket C_i \rrbracket(S_1,\ldots,S_n) \stackrel{\text{def}}{=} \overline{e}\llbracket \overline{\mathcal{D}}_{C_i} \rrbracket [\overline{S}_1:\overline{\mathcal{D}}_{C_1'},\ldots,\overline{S}_n:\overline{\mathcal{D}}_{C_n'}]()$$

where $\{C' \mid C' \prec C_i\} = \{C'_1, \dots, C'_n\}$ and the righthand side is an expression written according to the following attribute grammar, where we are given

- $\overline{S} = \overline{S}_1 : \overline{\mathcal{D}}_{C'_1}, \dots, \overline{S}_n : \overline{\mathcal{D}}_{C'_n}$: the abstract semantics of components
- $\overline{X} = \overline{X}_{n+1} : \overline{\mathcal{D}}'_{n+1}, \ldots, \overline{X}_m : \overline{\mathcal{D}}'_m$: fixpoint variables
- $-\langle \overline{\mathcal{D}}, \overline{\sqsubseteq}, \overline{\perp}, \overline{\sqcup} \rangle$: the abstract domain of the result

Course 16,399; "Abstract interpretation", Tuesday May 5th, 2005

where, by hypothesis:

- $\overline{d} \in \overline{\mathcal{D}}$ is a constant.
- \overline{S}_{j} , $j \in [1, n]$ is the abstract semantics of an immediate component of C_i such that $\overline{\mathcal{D}}_i = \overline{\mathcal{D}}$
- \overline{X}_k , $k \in [n+1, m]$ appears inside a fixpoint definition and $\overline{\mathcal{D}}'_{k} = \overline{\mathcal{D}}$
- $\overline{f}_{\overline{D}_j,...\overline{D}_{j_e}\overline{D}} \in \left(\prod_{j=j_1}^{j_\ell} \overline{D}_j\right) \mapsto \overline{\mathcal{D}}$ is a constant function
- $\nabla \in \overline{\mathcal{D}} \times \overline{\mathcal{D}} \mapsto \overline{\mathcal{D}}$ is a widening
- If $\mathbf{p}_{\perp}^{\sqsubseteq}F$ is a shorthand for the limit X^{ϵ} of the transfinite iteration sequence $X^0 = \bot$, $X^{\delta+1} = F(X^{\delta})$ and $X^{\lambda} = \bigsqcup_{\beta < \lambda} X^{\beta}$, λ limit ordinal, $\forall \delta \geq \epsilon : X^{\delta} = X^{\epsilon}$,

whenever it exists.

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

The attribute grammar of expressions is as follows:

$$\begin{split} \overline{e} [\![\overline{\mathcal{D}}]\!] [\overline{S}] (\overline{X}) &::= \\ | \, \overline{d} \\ | \, \overline{S}_j \\ | \, \overline{X}_k \\ | \, \overline{f}_{\overline{\mathcal{D}}_{j_1} \dots \overline{\mathcal{D}}_{j_\ell}} \overline{\mathcal{D}} (e_1 [\![\overline{\mathcal{D}}_{j_1}]\!] [\overline{S}] (\overline{X})), \dots, e_\ell [\![\overline{\mathcal{D}}_{j_\ell}]\!] [\overline{S}] (\overline{X})) \\ | \, \mathrm{let} \\ \overline{\mathcal{F}} &= \lambda \overline{Y} \cdot \overline{e} [\![\overline{\mathcal{D}}]\!] [\overline{S}] (\overline{X}, \overline{Y} : \overline{\mathcal{D}}) \text{ and } \\ \overline{\mathcal{G}} &= \lambda X \cdot \mathrm{let} \ Y = \overline{\mathcal{F}} (X) \text{ in } (Y \sqsubseteq X ? X * X \overline{Y} Y) \\ \mathrm{in} \\ \mathrm{lfp}_{-}^{\square} \, \overline{\mathcal{G}} \end{split}$$

Well-definedness of the structural abstract semantics with widening

THEOREM. Any structural abstract semantics with widening satisfying (W1) and (W2) is well-defined.

@ P Couset 2005

PROOF. By structural induction on the inductive definition of the abstract

- For expressions $\overline{e}[\overline{\mathcal{D}}][\overline{S}](\overline{X}) \in \overline{\mathcal{D}}$, by cases:

 - $\overline{d} \in \overline{\mathcal{D}}$, by hypothesis
 - $\overline{S}_i \in \overline{\mathcal{D}}_i = \overline{\mathcal{D}}$ by hypothesis
 - $\overline{X}_k \in \overline{\mathcal{D}}_k = \overline{\mathcal{D}}$ by hypothesis
 - Induction step
 - · For all $k=1,\ldots,\ell, \overline{e}_k ||\overline{\mathcal{D}}_{i_k}|||\overline{S}|(\overline{X}) \in \overline{\mathcal{D}}_{i_k}$ by induction hypothesis and $\overline{f}_{\overline{\mathcal{D}}_{j_1}...\overline{\mathcal{D}}_{j_\ell}\overline{\mathcal{D}}} \in \left(\prod_{j=j_1}^{j_\ell} \overline{\mathcal{D}}_j\right) \mapsto \overline{\mathcal{D}} \text{ by hypothesis, proving that } \overline{f}_{\overline{\mathcal{D}}_{j_1}...\overline{\mathcal{D}}_{j_\ell}\overline{\mathcal{D}}}(\overline{e}_1[[\overline{\mathcal{D}}_{j_1}][\overline{S}](\overline{X})), \ldots, \overline{e}_\ell[[\overline{\mathcal{D}}_{j_\ell}][\overline{S}](\overline{X}))$

Course 16,399; "Abstract interpretation", Tuesday May 5th, 2005

@ P. Cousot. 2005

By the theorem on widening (on page 62), The sequence $\langle Z^n, n \in \mathbb{N} \rangle$ is strictly increasing up to a least $\ell \in \mathbb{N}$ such that $\overline{\mathcal{F}}(Z^{\ell}) \sqsubseteq Z^{\ell}$ and the sequence is stationary at ℓ onwards. By definition of lubs, the transfinite extension of the sequence is well-defined and stationary at ℓ . By transfinite induction, all iterates belong to \mathcal{D} , whence for the fixpoint $\mathsf{lfp}_{\scriptscriptstyle{-}}^{^{\perp}} \lambda Y \cdot e \llbracket \mathcal{D} \rrbracket [S](X,Y:\mathcal{D}) = Z^{\ell} \in \mathcal{D}$

- For the abstract semantics $\overline{C}_i \in [C_i \in \text{Com}_i \mapsto \overline{\mathcal{D}}_{C_i}]$, we proceed by structural induction
 - For the basis, C_i has no C_i' such that $C_i' \prec C_i$ whence $\overline{C}_i \llbracket C_i \rrbracket = \overline{\mathcal{F}}_i \llbracket C_i \rrbracket ()$ $=\overline{e}[\overline{\mathcal{D}}_{C_i}][S_1:\overline{\mathcal{D}}_{C_i'},\ldots,S_n:\overline{\mathcal{D}}_{C_n'}]()$ is well-defined and belongs to $\overline{\mathcal{D}}_{C_i}$

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

is well-defined and belongs to $\overline{\mathcal{D}}$

· If $Y \in \overline{\mathcal{D}}$ then, by induction hypothesis, $\overline{e}[\![\overline{\mathcal{D}}]\!][\overline{S}](\overline{X}, Y : \overline{\mathcal{D}})$ is welldefined and belongs to $\overline{\mathcal{D}}$, so that the locally defined function $\overline{\mathcal{F}}$ $\lambda \overline{Y} \cdot \overline{e} \| \overline{\mathcal{D}} \| \overline{S} \| \overline{X}, \overline{Y} : \overline{\mathcal{D}}$ is well-defined and belongs that $\overline{\mathcal{D}} \mapsto \overline{\mathcal{D}}$. Since, by hypothesis, $\nabla \in \overline{\mathcal{D}} \times \overline{\mathcal{D}} \mapsto \overline{\mathcal{D}}$, it follows that for all $X \in \overline{\mathcal{D}}$, $\overline{\mathcal{G}}(X)$ is well-defined and belongs to $\overline{\mathcal{D}} \mapsto \overline{\mathcal{D}}$. Let us now consider the iterates $\langle Z^n, \delta \in \mathbb{N} \rangle$ of $\overline{\mathcal{G}}$ starting from $\overline{\perp} \in \overline{\mathcal{D}}$. They are defined as:

$$Z^0 \stackrel{ ext{def}}{=} \overline{\bot}$$
 $Z^{n+1} \stackrel{ ext{def}}{=} Z^n \qquad \text{if } \overline{\mathcal{F}}(Z^n) \overline{\sqsubseteq} Z^n$
 $\stackrel{ ext{def}}{=} Z^n \overline{\bigvee} \overline{\mathcal{F}}(Z^n) \quad \text{otherwise}$

Let $\ell \in \mathbb{N}$ be the smallest n, if any, such that $\overline{\mathcal{F}}(Z^{\ell}) \subset Z^{\ell}$ then by recurrence, $\forall k \geq \ell : \overline{\mathcal{F}}(Z^k) \sqsubseteq Z^k$ and so the above $\langle Z^n, n \in \mathbb{N} \rangle$ can be defined in the equivalent form

- For the induction step, $\overline{\mathcal{C}}_j[\![\mathcal{C}'_j]\!] \in \overline{\mathcal{D}}_{\mathcal{C}'_j}$ by induction hypothesis and so $\overline{\mathcal{C}}_i\llbracket\mathcal{C}_i\rrbracket = \overline{\mathcal{F}}_i\llbracket\mathcal{C}_i\rrbracket\left(\prod_{\mathcal{C}_i' \prec \mathcal{C}_i} \overline{\mathcal{C}}_j\llbracket\mathcal{C}_j'\rrbracket\right) = \overline{e}\llbracket\overline{\mathcal{D}}_{\mathcal{C}_i}\rrbracket\left[\overline{\mathcal{C}}_1\llbracket\mathcal{C}_1'\rrbracket : \overline{\mathcal{D}}_{\mathcal{C}_1'}, \ldots, \overline{\mathcal{C}}_n\llbracket\mathcal{C}_n'\rrbracket : \overline{\mathcal{D}}_{\mathcal{C}_n'}\right]()$ where $\{C' \mid C' \prec C_i\} = \{C'_1, \dots, C'_n\}$ is well-defined and belongs to $\overline{\mathcal{D}}_{C_i}$

A soundness theorem on the correspondence between concrete semantics and its local abstraction by a structural abstract semantics with widening

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

PROOF. By structural induction on expressions.

- $-d \sqsubseteq (\overline{d})$ by (LA2)
- $-S_j \sqsubseteq_j \gamma_i(\overline{S}_j) = \gamma(\overline{S}_j)$ by (a) and $\mathcal{D} = \mathcal{D}_j$, $\overline{\mathcal{D}} = \overline{\mathcal{D}}_i, \ i = 1, \dots, n$
- $-X_{kj} \sqsubseteq_k \gamma_k(\overline{X}_k) = \gamma(\overline{X}_k)$ by (b) and $\mathcal{D} = \mathcal{D}_k$, $\overline{\mathcal{D}} = \overline{\mathcal{D}}_k$, $k = n + 1, \ldots, m$
- By induction hypothesis, we have:

$$e_k[\![\mathcal{D}_{j_k}]\!][S](X) \sqsubseteq_{jk} \gamma_{jk}(\overline{e}_k[\![\overline{\mathcal{D}}_{j_k}]\!][S](X)), \quad k=1,\ldots,\ell$$

and so by (LA3):

$$f_{\mathcal{D}_{j_1}...\mathcal{D}_{j_\ell}\mathcal{D}}(\prod_{k=1}^\ell e_k \llbracket \mathcal{D}_{j_k} \rrbracket[S](X)) \ \overline{\sqsubseteq} \ \boldsymbol{\gamma}(\overline{f}_{\overline{\mathcal{D}}_{j_1}...\overline{\mathcal{D}}_{j_\ell}\overline{\mathcal{D}}}(\prod_{k=1}^\ell \overline{e}_k \llbracket \overline{\mathcal{D}}_{j_k} \rrbracket[S](X)))$$

- In the case of a fixpoint definition with widening, we let

$$\mathcal{F} \stackrel{\text{def}}{=} \lambda Y \cdot e \llbracket \mathcal{D} \rrbracket [S](X,Y:\mathcal{D})$$

If $Y \subseteq \gamma(\overline{Y})$ then, by induction hypothesis on the identical structures of e and \overline{e} , we have

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 75 —

© P. Cousot, 2005

THEOREM. If e and \overline{e} are structurally identical, (LA1), (LA2) and (LA3) hold, concrete fixpoints exist, (W1) and (W2) hold, and

$$-S_j \sqsubseteq_j \gamma_i(\overline{S}_j), j=1,\ldots,n$$
 (a)

$$-X_k\sqsubseteq_{ki}\gamma_i(\overline{X}_k),\,k=n+1,\ldots,m$$
 (b)

then

$$e[\![\mathcal{D}]\!][S](X)\sqsubseteq\gamma(\overline{e}[\![\overline{\mathcal{D}}]\!][\overline{S}](\overline{X}))$$

 $\mathcal{F}(Y)\sqsubseteq\gamma(\overline{\mathcal{F}}(\overline{Y}))$ for all $Y\in\mathcal{D}$ and $\overline{Y}\in\overline{\mathcal{D}}$ (a)

- Since the concrete fixpoint $lfp^{\sqsubseteq}_{\ \ }\mathcal{F}$ is well-defined, the corresponding iterates $\langle X^{\delta}, \delta \in \mathbb{O} \rangle$ of \mathcal{F} are stationary at rank $\epsilon \in \mathbb{O}$
- We have seen in the well-defined theorem proof that the iterates for $\mathsf{lfp}^{\sqsubseteq}_{-}\mathcal{G}$ are defined as:

$$Z^0 \stackrel{\mathrm{def}}{=} \overline{\bot}$$
 $Z^{n+1} \stackrel{\mathrm{def}}{=} Z^n \qquad \text{if } \overline{\mathcal{F}}(Z^n) \overline{\sqsubseteq} Z^n \qquad \qquad \text{(b)}$
 $\stackrel{\mathrm{def}}{=} Z^n \overline{\nabla} \overline{\mathcal{F}}(Z^n) \quad \text{otherwise} \qquad \qquad \text{(c)}$

and proved using (W1), (W2) that they are ultimately stationery at rank $\epsilon' < \omega$ and that $\forall \delta \geq \epsilon' : Z^{\delta} = Z^{\epsilon} = \mathsf{lfp}_{-}^{\sqsubseteq} \mathcal{G}$. We have:

-
$$X^0\stackrel{\mathrm{def}}{=} \bot \sqsubseteq \gamma(\overline{\bot})\stackrel{\mathrm{def}}{=} Z^0$$

- Assume that $X^{\delta} \sqsubseteq \gamma(Z^{\delta})$ by induction hypothesis.
- · In case (b), we have

$$\begin{array}{c} \overline{\mathcal{F}}(Z^{\delta}) \ \overline{\sqsubseteq} \ Z^{\delta} & \text{(by (b))} \\ \Longrightarrow \gamma(\overline{\mathcal{F}}(Z^{\delta})) \ \sqsubseteq \ \gamma(Z^{\delta}) & \text{(γ monotone)} \\ \Longrightarrow \mathcal{F}(X^{\delta}) \ \sqsubseteq \ \gamma(Z^{\delta}) & \text{(by (a))} \\ \Longrightarrow X^{\delta+1} \ \sqsubseteq \ \gamma(Z^{\delta}) & \text{(by def. iterates)} \\ \Longrightarrow X^{\delta+1} \ \sqsubseteq \ \gamma(Z^{\delta+1}) & \text{(by (b))} \end{array}$$

· In case (c), we have:

$$\begin{split} Z^{\delta+1} &= Z^{\delta} \, \overline{\mathcal{F}}(Z^{\delta}) & \text{(by (c))} \\ \Longrightarrow & \overline{\mathcal{F}}(Z^{\delta}) \sqsubseteq Z^{\delta+1} & \text{(by (W1))} \\ \Longrightarrow & \mathcal{F}(X^{\delta}) \sqsubseteq \gamma(Z^{\delta}) & \text{(γ is monotone)} \\ \Longrightarrow & X^{\delta+1} \sqsubseteq \gamma(Z^{\delta}) & \text{(by induction hypothesis, (a) and transitivity)} \end{split}$$

Course 16.399; "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

THEOREM. If (LA1), (LA2) and (LA3) do hold, concrete fixpoints exist, (W1) and (W2) hold, then for all $i \in \Delta$ and $C_i \in \text{Com}_i$, we have

$$\mathcal{C}\llbracket C_i
rbracket \sqsubseteq_{C_i} \gamma_{C_i}(\overline{\mathcal{C}}\llbracket C_i
rbracket)$$

PROOF. By structural induction on the well-founded relation $\langle \bigcup_{i \in \Lambda} \operatorname{Com}_i, \prec \rangle$. Given any $i \in \Delta$ and $C_i \in \text{Com}_i$, assume by induction hypothesis that

$$orall C_j' \prec C_i : \mathcal{C}\llbracket C_j'
rbracket \sqsubseteq_{C_j'} \gamma_{C_i}(\overline{\mathcal{C}}\llbracket C_j'
rbracket)$$

then

 $C[C_i]$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 79 —

© P. Cousot. 2005

- $\Longrightarrow X^{\delta+1} \sqsubseteq \gamma(Z^{\delta+1})$ 7 by def. iterates
- If λ is a limit ordinal and $\forall \beta < \lambda : X^{\beta} \sqsubseteq \gamma(Z^{\beta})$ then $X^{\lambda} = | \cdot |_{\beta < \lambda} X^{\beta} \sqsubseteq$ $\bigsqcup_{eta<\lambda}\gamma(Z^eta)=\gamma(\operatornamewithlimits{\overline{\bigsqcup}}_{eta<\lambda}Z^eta)=\gamma(Z^\lambda) ext{ since } \langle Z^\delta,\ \delta\in\mathbb{O}
 angle ext{ is stationary at rank}$
- By transfinite induction, it follows that $\mathsf{Ifp}_{\perp}^{\sqsubseteq} \mathcal{F} = X^{\epsilon} = X^{\max(\epsilon,\epsilon')} \sqsubseteq \gamma(Z^{\max(\epsilon,\epsilon')})$ $=\gamma(Z^{\epsilon'})=\gamma(\mathsf{lfp}_{+}^{\overline{\sqsubseteq}}\,\overline{\mathcal{G}})$

$$= \mathcal{F}[\![C_i]\!] \left(\prod_{C'_j \prec C_i} \mathcal{C}[\![C'_j]\!] \right)$$

$$= e[\![\mathcal{D}_{C_i}]\!] \left[\prod_{C'_j \prec C_i} \mathcal{C}[\![C'_j]\!] : \mathcal{D}_{C'_j}\!] \right] \left(\right)$$

$$\sqsubseteq_{C_i} \gamma_{C_i} \left[\overline{e}[\![\overline{\mathcal{D}}_{C_i}]\!] \left[\prod_{C'_j \prec C_i} \overline{\mathcal{C}}[\![C'_j]\!] : \overline{\mathcal{D}}_{C'_j}\!] \right] \right) \right)$$

$$= \gamma_{C_i} \left[\overline{\mathcal{F}}[\![C_i]\!] \left(\prod_{C'_j \prec C_i} \overline{\mathcal{C}}[\![C'_j]\!] \right) \right)$$

$$= \gamma_{C_i} \left[\overline{\mathcal{C}}[\![C_i]\!] \right)$$

Hypotheses on narrowings

Given a poset $\langle L, \, \Box \rangle$, a narrowing operator on L is $\Delta \in$ $L \times L \mapsto L$ satisfying

- (N1) $\forall u \vdash x : u \vdash x \land u \vdash x$
- (N2) For all sequences x^0, x^1, \ldots in L^{ω} , the sequence defined by

$$y^0 \stackrel{\mathrm{def}}{=} x^0$$
 $y^{n+1} \stackrel{\mathrm{def}}{=} y^n \, \Delta \, x^n \qquad ext{if } x^n \sqsubset y^n$
 $\stackrel{\mathrm{def}}{=} y^n \qquad ext{otherwise}$

is not strictly increasing (although it is decreasing by (N1)).

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

$$\begin{split} \overline{e} [\![\overline{\mathcal{D}}]\!] [\![\overline{S}] (\overline{X}) &::= \dots \\ | \text{ let } \\ \overline{\mathcal{F}} &= \lambda \overline{Y} \cdot \overline{e} [\![\overline{\mathcal{D}}]\!] [\![\overline{S}] (\overline{X}, \overline{Y} : \overline{\mathcal{D}}) \text{ and } \\ \overline{\mathcal{G}} &= \lambda X \cdot \text{let } Y = \overline{\mathcal{F}} (X) \text{ in } (Y \sqsubseteq X ? X * X \nabla Y) \text{ and } \\ \overline{A} &= \text{Ifp}_{\bot}^{\sqsubseteq} \overline{\mathcal{G}} \text{ and } \\ \overline{\mathcal{H}} &= \lambda X \cdot \text{let } Y = \overline{\mathcal{F}} (X) \text{ in } (Y \sqsubseteq X ? X \triangle Y * X) \\ \text{ in } \\ \text{gfp}_{\overline{A}}^{\sqsubseteq} \overline{\mathcal{H}}^5 \end{split}$$

b where $\mathfrak{gfp}_{\pm}^{\sqsubseteq}$ is (partially) defined as the limit X^{ϵ} of the transfinite iteration sequence $X^0 = \top$, $X^{\delta+1} = F(X^{\delta})$ and $X^{\lambda} = \prod_{\beta \in \lambda} X^{\beta}$ when λ is a limit ordinal in case this sequence is well-defined and ultimately stationary at rank ϵ .

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

Structural abstract semantics with widening/narrowing

- The structural definition is essential the same as the abstract semantics with widening (page 63), except for the use of a narrowing operator
- Narrowing: For each $i \in \Delta$ and $C_i \in \text{Com}_i$: $\Delta_{C_i} \in \overline{\mathcal{D}}_{C_i} imes \overline{\mathcal{D}}_{C_i} \mapsto \overline{\mathcal{D}}_{C_i}$ is a narrowing satisfying (N1) and (N2)
- For fixpoints in the attribute grammar of expressions, we now have:

Well-definedness of the structural abstract semantics with widening/narrowing

THEOREM. A structural definition with widenings and narrowings respectively satisfying hypotheses (W1), (W2) and (N1), (N2) is well-defined.

PROOF. - The proof, by structural induction, is essentially the same as in the previous case of "structural abstract semantics with widening", but for the case of fixpoints

– For fixpoints, we have already shown in this proof that $\overline{A}=\mathsf{lfp}^{\sqsubseteq}_{-}\overline{\mathcal{G}}$ is welldefined as the limit of an increasing chain stabilizing, in a finite number of steps, at a postfixpoint: $\overline{\mathcal{F}}(\overline{A}) \sqsubseteq \overline{A}$.

- If follows that the iterates $\langle X^{\delta}, \delta \in \mathbb{O} \rangle$ of $\mathsf{gfp}_{\overline{\omega}}^{\overline{\omega}} \overline{\mathcal{H}}$ are of the following form:
 - (a) $X^0 = \overline{A}$, where $\overline{\mathcal{F}}(\overline{A}) \sqsubseteq \overline{A}$
 - (b) $X^{\delta+1} = X^{\delta} \triangle \overline{\mathcal{F}}(X^{\delta})$, if $\overline{\mathcal{F}}(X^{\delta}) \sqsubset X^{\delta}$
 - (c) $X^{\delta+1} = X^{\delta}$, otherwise
 - (d) $X^{\lambda} = \prod_{\beta < \lambda} X^{\beta}$ when λ is a limit ordinal
- Observe that by def. of $\overline{\mathcal{F}} = \lambda \overline{Y} \cdot \overline{e} [\![\overline{\mathcal{D}}]\!] (\overline{S}) (\overline{X}, \overline{Y} : \overline{\mathcal{D}}), \overline{\mathcal{F}}$ is well-defined by induction hypothesis
- By its def., the sequence $\langle X^{\delta}, \delta < \omega \rangle$ is a decreasing chain, which is obvious in cases (c) and follow from (N1) in case (b)
- By (N2), the decreasing chain $\langle X^{\delta}, \delta < \omega \rangle$ is not strictly decreasing so its is ultimately stationary at some rank $\epsilon < \omega$
- Because $\epsilon < \omega$, the chain $\langle X^{\delta}, \delta < \mathbb{O} \rangle$ is well-defined since $\lambda > \epsilon$ in case (d) implies that $\prod_{\beta<\lambda}X^{\beta}$ is well-defined and indeed equal to $X^{\overline{\lambda}}=X^{\epsilon}$. So, by transfinite induction, $\langle X^{\delta}, \, \delta < \mathbb{O} \rangle$ is also well-defined and ultimately stationary at rank ϵ and so $\mathsf{gfp}_{\overline{}}^{\overline{\mathbb{L}}} \overline{\mathcal{H}} = X^{\epsilon}$ is well-defined.

Course 16.399; "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

П

PROOF. - The proof is similar to the case of expressions with widenings (on page 73), except for the use of narrowings

- From this proof, we already know that by letting

$$\mathcal{F} \stackrel{\mathrm{def}}{=} \lambda Y \cdot e \llbracket \mathcal{D} \rrbracket [S](X,Y:\mathcal{D})$$

we have $\operatorname{lfp}^{\sqsubseteq} \mathcal{F} \sqsubseteq \gamma(\overline{A})$.

- Let $\langle X^{\delta}, \delta < \mathbb{O} \rangle$ be the iterates for $\overline{\mathcal{H}}$. We have shown that they are welldefined and ultimately stationary at rank ϵ such that $\mathbf{gfp}^{\sqsubseteq}\overline{\mathcal{H}}=X^{\epsilon}$.
- We have

$$orall \delta \in \mathbb{O}: \mathsf{lfp}^{\sqsubseteq}_{{}_{\perp}} \mathcal{F} \sqsubseteq \gamma(X^{\delta})$$

The proof is by transfinite induction.

- We have $\operatorname{\sf lfp}^\sqsubseteq \mathcal{F} \sqsubseteq \gamma(\overline{A})$ whence $\operatorname{\sf lfp}^\sqsubseteq \mathcal{F} \sqsubseteq \gamma(X^0)$ since $X^0 = \overline{A}$

Course 16,399; "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

A soundness theorem on the correspondence between a concrete semantics and its local abstraction by a structural abstract semantics with widening/narrowing

THEOREM. If e and \overline{e} are structurally identical, (LA1), (LA2) and (LA3) hold, concrete fixpoints exist, (W1), (W2), (N1) and (N2) hold, and

$$-S_j\sqsubseteq_j\gamma_i(\overline{S}_j),\,j=1,\ldots,n$$
 (a)

$$-X_k \sqsubseteq_{ki} \gamma_i(\overline{X}_k), \ k=n+1,\ldots,m$$
 (b)

then

$$e[\mathcal{D}][S](X) \sqsubseteq \gamma(\overline{e}[\overline{\mathcal{D}}][\overline{S}](\overline{X}))$$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

- If $\operatorname{lfp}^{\sqsubseteq} \mathcal{F} \sqsubseteq \gamma(X^{\delta})$ by induction hypothesis, then

 \cdot if $\overline{\mathcal{F}}(X^{\delta}) \overline{\sqsubseteq} X^{\delta}$ then $X^{\delta+1} = X^{\delta} \Delta \overline{\mathcal{F}}(X^{\delta})$, whence by (N1) $X^{\delta} \overline{\sqsubseteq} X^{\delta+1}$ whence $\gamma(X^{\delta}) \sqsubseteq \gamma(X^{\delta+1})$ and so $\mathsf{lfp}^{\sqsubseteq}_{+} \mathcal{F} \sqsubseteq \gamma(X^{\delta+1})$ by transitivity

· otherwise, $X^{\delta+1}=X^{\delta}$ and so $\mathsf{lfp}^{\sqsubseteq}\mathcal{F}\sqsubseteq\gamma(X^{\delta+1})$

- If λ is a limit ordinal then we know that $X^{\lambda} = X^{\epsilon}$ where $\epsilon < \omega < \lambda$ and so $\mathsf{lfp}^{\vdash}_{\perp} \mathcal{F} \sqsubseteq \gamma(X^{\lambda})$

– We conclude that $\operatorname{lfp}^{\sqsubseteq}_{\perp}\mathcal{F}\sqsubseteq\gamma(X^{\epsilon})=\gamma(\operatorname{gfp}^{\sqsubseteq}_{\overline{\perp}}\overline{\mathcal{H}})$ whence $e[\![\mathcal{D}]\!][S](\overline{X})=\operatorname{lfp}^{\sqsubseteq}_{\perp}\mathcal{F}$ $\sqsubseteq \gamma(\mathsf{gfp}_{\perp}^{\sqsubseteq}\overline{\mathcal{H}}) = \overline{e}[\![\overline{\mathcal{D}}]\!][\overline{S}](\overline{X})$ in that case. П THEOREM. If (LA1), (LA2) and (LA3) do hold, concrete fixpoints exist, (W1), (W2), (N1) and (N2) hold, then for all $i \in \Delta$ and $C_i \in \text{Com}_i$, we have

$$\mathcal{C}\llbracket C_i
rbracket \sqsubseteq_{C_i} \gamma_{C_i}(\overline{\mathcal{C}}\llbracket C_i
rbracket)$$

PROOF. Same as in the "structural abstract semantics with widening" case.

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

On monotony

- The abstract structural definitions are not assumed to be monotone (because of the presence of widenings which are essentially not monotone)
- Nevertheless, they have been shown to be
 - well-defined
 - sound abstractions

using "local abstraction conditions" only

- The proof is by structural induction on the programming language syntax, but formulated independently of any particular programming language

Course 16.399: "Abstract interpretation". Tuesday May 5th. 2005

© P. Cousot, 2005

On the use of widening/narrowing

- In lattices satisfying the ACC, one can chose $x \nabla y =$ $x \cup y$ and $x \triangle y = x \cap y$
- In case of monotony and iteration form a pre/postfixpoint, one prefers $x \nabla y = y$ and $x \Delta y = y$

An abstract formalization of structural verification by abstract interpretation

Structural safety specification

- We consider a language $\langle \mathcal{L} = \bigcup_{i \in \Lambda} \operatorname{Com}_i, \prec \rangle$ with syntactic components $C_i \in \operatorname{Com}_i$ and well-founded "immediate subcomponent relation" ≺
- The concrete semantics is given for all $i \in \Delta$, $C_i \in$ Com_i by
 - $-\langle \mathcal{D}_{C_i}, \sqsubseteq_{C_i}, \bot_{C_i}, \sqcup_{C_i} \rangle$ concrete semantic domain (a)
 - $\mathcal{C}\llbracket C_i
 rbracket \in \mathcal{D}_{C_i}$ concrete semantics (b)
- A safety specification is

$$\mathcal{S}: C_i \in \operatorname{\mathsf{Com}}_i \mapsto \mathcal{D}_{C_i}, \, i \in \Delta$$
 (c)

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

© P. Cousot, 2005

Structural abstract safety specification and proof

- An abstract safety specification is
 - $\langle \widehat{\mathcal{D}}_{C_i}, \ \widehat{\sqsubseteq}_{C_i}, \ \widehat{\bot}_{C_i}, \ \widehat{\sqcup}_{C_i} \rangle$ abstract domains (e)
 - $\widehat{\mathcal{S}}\llbracket C_i
 rbracket \in \widehat{\mathcal{D}}_{C_i}$ abstract spec. (f)
 - $\widehat{\gamma}_{C_i} \in \widehat{\mathcal{D}}_{C_i} \stackrel{ ext{m}}{\longmapsto} \mathcal{D}_{C_i}$ spec. concretization (g)
- An abstract safety proof is the proof that

$$orall i \in \Delta : orall C_i \in \operatorname{Com}_i : \mathcal{C}\llbracket C_i
rbracket \sqsubseteq_{C_i} \widehat{\gamma}_{C_i}(\widehat{\mathcal{S}}\llbracket C_i
rbracket)$$
 (d)

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

Structural safety proof

- A safety proof is the proof that $orall i \in \Delta: orall C_i \in \operatorname{Com}_i: \mathcal{C}\llbracket C_i
 rbracket \sqsubseteq_{C_i} \mathcal{S}\llbracket C_i
 rbracket$ (d)
- Informally: the semantics of commands satisfies their specification

Abstract semantics

- An abstract safety verification by abstract interpretation consists in designing an abstract semantics for all $i \in \Delta$, $C_i \in$
 - $\langle \overline{\mathcal{D}}_{C_i}, \, \overline{\sqsubseteq}_{C_i}, \, \overline{\bot}_{C_i}, \, \overline{\sqcup}_{C_i} \rangle$ abstract semantic domain (i)
 - $\overline{\mathcal{C}}\llbracket C_i
 rbracket \in \overline{\mathcal{D}}_{C_i}$ abstract semantics
 - $\overline{\gamma}_{C_i} \in \overline{\mathcal{D}}_{C_i} \stackrel{ ext{m}}{\longmapsto} \mathcal{D}_{C_i}$ concretization (k)

which are sound, in that

 $orall i \in \Delta: orall C_i \in \operatorname{Com}_i: \mathcal{C}\llbracket C_i
rbracket \overline{\gamma}_{C_i}(\overline{\mathcal{C}}\llbracket C_i
rbracket)$ (ℓ)

and effectively computable (thanks to the choice of computer representable abstract domains, transfer functions and widening/narrowing)

Choice of the abstractions

- The abstract domains $\langle \overline{\mathcal{D}}_{C_i}, \, \overline{\sqsubseteq}_{C_i}, \, \overline{\sqcup}_{C_i}, \, \overline{\sqcup}_{C_i} \rangle$ are chosen to be more precise than the abstract specification domains $\langle \widehat{\mathcal{D}}_{C_i}, \widehat{\sqsubseteq}_{C_i}, \widehat{\perp}_{C_i}, \widehat{\perp}_{C_i} \rangle$
- This can be formalized by the existence of concretizations:

$$\widehat{\overline{\gamma}}_{C_i} \in \widehat{\mathcal{D}}_{C_i} \overset{ ext{m}}{\longmapsto} \overline{\mathcal{D}}_{C_i}$$
 (m)

satisfying

$$\widehat{\gamma}_{C_i} \stackrel{\dot{}}{\supseteq}_{C_i} \overline{\gamma}_{C_i} \circ \widehat{\overline{\gamma}}_{C_i} \tag{n}$$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

Soundness of the abstract safety specification

THEOREM. An abstract structural safety verification is sound.

PROOF. By the abstract check (o), we have $\overline{C}[\![C_i]\!] \sqsubseteq_{C_i} \widehat{\overline{\gamma}}_{C_i}(\widehat{S}[\![C_i]\!])$ whence by monotony (m) $\overline{\gamma}_{C_i}(\overline{C}[\![C_i]\!]) \subseteq_{C_i} \overline{\gamma}_{C_i} \circ \widehat{\overline{\gamma}}_{C_i}(\widehat{S}[\![C_i]\!])$ and so by (n) and transitivity, $\overline{\gamma}_{C_i}(\overline{\mathcal{C}}[\![C_i]\!]) \sqsubseteq_{C_i} \widehat{\gamma}_{C_i}(\widehat{\mathcal{S}}[\![C_i]\!])$ whence, by soundness (ℓ) of the abstraction, we conclude $C[C_i] \sqsubseteq_{C_i} \widehat{\gamma}_{C_i}(\widehat{S}[C_i])$, proving soundness.

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

Abstract structural safety verification

- The abstract safety verification consists in checking that:

$$\overline{C}[\![C_i]\!] \, \overline{\sqsubseteq}_{C_i} \, \widehat{\overline{\gamma}}_{C_i}(\widehat{\mathcal{S}}[\![C_i]\!]) \tag{o}$$

Example of structural safety specification for arithmetic expressions: absence of runtime errors

- The execution of an arithmetic expression A in any environment $\rho \in R \subset (\text{Var}[\![P]\!] \mapsto \mathbb{I}_{\Omega})$ is without any runtime error if and only if

$$\begin{aligned} & \operatorname{Faexp}[\![A]\!]R \cap \mathbb{E} = \emptyset \\ & \iff & \operatorname{Faexp}[\![A]\!]R \subseteq \mathbb{I} \end{aligned}$$

where Faexp is the forward collecting semantics of arithmetic expressions.

– If we define $\widehat{\mathcal{D}}_A\stackrel{\mathrm{def}}{=}\stackrel{\dot{\mathbb{I}}_{\Omega}}{\stackrel{\cdot}{=}}$ with $\widehat{\gamma}_A(\dot{\mathbb{I}_{\Omega}})=\lambda R\cdot\mathbb{I}_{\Omega}$ and

 $\widehat{\gamma}_A(\dot{\mathbb{I}}) = \lambda R \cdot \mathbb{I}$ then the abstract safety proof is (c), (h):

$$\widehat{\mathcal{S}}\llbracket A
rbracket = \dot{\mathbb{I}}$$
 Faexp $\llbracket A
rbracket \subseteq \widehat{\gamma}_A(\widehat{\mathcal{S}}\llbracket A
rbracket)$

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005

@ P. Cousot, 2005

Example of concrete structural safety specification for arithmetic expressions: proper initialization

- The execution of an arithmetic expression A in any environment $\rho \in R \subset (\text{Var}[P] \mapsto \mathbb{I}_Q)$ is without any initialization error if and only if

$$\operatorname{Faexp}[\![A]\!]R \cap \{\Omega_1\} = \emptyset$$
 $\iff \operatorname{Faexp}[\![A]\!]R \subseteq \mathbb{I} \cup \{\Omega_a\}$

where Faexp is the forward collecting semantics of arithmetic expressions, so we define in that case the concrete specification

 $\stackrel{\mathrm{def}}{=} \lambda R \cdot (\mathcal{P}(R) ? \mathbb{I} \cup \{\Omega_{\mathtt{a}}\} : \mathbb{I}_{\Omega})$

if we want to check absence initialization error under

the hypothesis that some condition $\mathcal{P}(R)$ holds on the

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005 — 103 —

 $\mathcal{S} \llbracket A
Vert \stackrel{\mathrm{def}}{=} \lambda R \cdot \mathbb{I} \cup \{\Omega_{\mathtt{a}}\}$

© P. Cousot, 2005

Example of too imprecise abstraction

- Observe that this cannot be checked with the initialization and simple sign abstraction:

$$egin{array}{ll} \gamma(exttt{BOT}) \stackrel{ ext{def}}{=} \{\Omega_{ exttt{A}}\} & \gamma(exttt{INI}) \stackrel{ ext{def}}{=} \mathbb{I} \cup \{\Omega_{ exttt{A}}\}, \ \gamma(exttt{NEG}) \stackrel{ ext{def}}{=} [\min_{i=1}^{n}, -1] \cup \{\Omega_{ exttt{A}}\} & \gamma(exttt{ERO}) \stackrel{ ext{def}}{=} \{\Omega_{ exttt{A}}, \Omega_{ exttt{A}}\} \ \gamma(exttt{TOP}) \stackrel{ ext{def}}{=} [1, \max_{i=1}^{n}] \cup \{\Omega_{ exttt{A}}\} \end{array}$$

since defining $\widehat{\gamma}_A$ satisfying (m) and (n) is impossible since $\Omega_{\rm a} \not\in \widehat{\gamma}_A(\dot{\mathbb{I}})(R)$

- We can only strengthen the analysis by refining the abstraction or weaken the specification

precondition R

Example of abstract structural safety specification for arithmetic expressions: proper initialization

- An abstract safety specification is
 - $$\begin{split} &\overset{\mathsf{T}\dot{\mathsf{O}}\mathsf{P}}{-} \widehat{\mathcal{D}}_A = & | \\ & & | \\ & & | \\ & & | \\ -\widehat{\gamma}_A(\check{\mathsf{T}\dot{\mathsf{O}}\mathsf{P}}) = \lambda R \cdot \mathbb{I}_{\Omega}, \, \widehat{\gamma}_A(\check{\mathsf{I}}\dot{\mathsf{N}}\check{\mathsf{I}}) = \lambda R \cdot \mathbb{I} \cup \{\Omega_\mathtt{a}\} \\ -\widehat{\mathcal{S}}[\![A]\!] = \check{\mathsf{I}}\dot{\mathsf{N}}\check{\mathsf{I}} \end{split}$$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

erpretation", Tuesday May 5", 2005 — 105 —

- The abstract safety verification condition is:

$$\begin{aligned} & \operatorname{Faexp}^{\text{\tiny{$}}} \llbracket A \rrbracket \stackrel{\dot{\sqsubseteq}}{\sqsubseteq} \stackrel{\widehat{\gamma}^{\text{\tiny{$}}}}{}_{A} (\widehat{\mathcal{S}} \llbracket A \rrbracket) \\ & \iff & \operatorname{Faexp}^{\text{\tiny{$}}} \llbracket A \rrbracket \stackrel{\dot{\sqsubseteq}}{\sqsubseteq} \lambda R \cdot \operatorname{INI} \end{aligned}$$

which implies

$$\gamma^{ riangle}(\operatorname{\sf Faexp}^{ riangle} \llbracket A
riangle) \stackrel{.}{\subseteq} \gamma^{ riangle}(\lambda R \cdot \operatorname{\sf INI})$$

whence

$$\forall R : \operatorname{Faexp} \llbracket A \rrbracket R \subseteq \mathbb{I} \cup \{\Omega_{\mathsf{a}}\}\$$

as required

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

- 107 —

© P. Cousot. 2005

- We have shown the abstract interpretation of arithmetic expressions to be sound $\operatorname{Faexp}^{\triangleright}[\![A]\!] \stackrel{:}{\supseteq} \alpha^{\triangleright}(\operatorname{Faexp}[\![A]\!])$ or equivalently $\operatorname{Faexp}[\![A]\!] \stackrel{.}{\subseteq} \gamma^{\triangleright}(\operatorname{Faexp}^{\triangleright}[\![A]\!])$
- We define

$$\widehat{\gamma}^{\triangleright}_{A}(exttt{TOP}) \stackrel{ ext{def}}{=} \lambda R \cdot exttt{TOP} \ \widehat{\widehat{\gamma}^{\triangleright}}_{A}(exttt{INI}) \stackrel{ ext{def}}{=} \lambda R \cdot ext{INI}$$

so that

$$\widehat{\gamma}_A = \gamma^{ riangle} \circ \widehat{\gamma^{ riangle}}_{A}$$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

Why choosing abstract specifications?

- The objective is to check the conformance of a semantics to a specification:

$$Sem \sqsubseteq Spec \qquad (a)$$

- We want to perform the check in the abstract:

$$\operatorname{Sem}^{\sharp} \sqsubseteq \operatorname{Spec}^{\flat} \tag{b}$$

so that it implies in the concrete:

$$\overline{\gamma}(\operatorname{Sem}^{\sharp}) \overline{\sqsubseteq} \overline{\gamma}(\operatorname{Spec}^{\flat})$$
 (c)

- For (c) to imply (a) we need both:

$$\operatorname{Sem} \sqsubseteq \overline{\gamma}(\operatorname{Sem}^{\sharp}) \text{ and } \overline{\gamma}(\operatorname{Spec}^{\flat}) \sqsubseteq \operatorname{Spec} \tag{1}$$

- Sem $\sqsubseteq \overline{\gamma}(Sem^{\sharp})$ is an approximation from above, which is pretty well studied
- $-\overline{\gamma}(\operatorname{Spec}^{\flat}) \subseteq \operatorname{Spec}$ is an approximation from below for which only finite abstractions are known to be automatizable, while specifications are most often infinite!

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

- By choosing abstract specifications only, we solve the problem by choosing

$$\operatorname{\mathsf{Spec}} = \overline{\gamma}(\operatorname{\mathsf{Spec}}^{lat})$$

but we are left with the problem of finding adequate machine representations of the specifications as abstract domain

- Progress is necessary in the abstraction of specifications from below!

Why choosing an abstract semantics more refined than an abstract specifications?

- The fact that the abstract semantics should be more refined than the abstract specification is similar the proof of theorem requiring stringer arguments in the proof
- For example, with Floyd's method

$$\mathsf{lfp}_{ot}^{\sqsubseteq} F \sqsubseteq P \ \iff \exists I : F(I) \sqsubseteq I \land I \sqsubseteq P$$

P is *invariant* while the proof requires to find a stronger inductive invariant (while, in general $F(P) \not \sqsubseteq P$)

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 111 —

- Similarly we can always choose the abstraction $\overline{\mathcal{D}}_A =$ $\widehat{\mathcal{D}}_A$ as a starting point, but in general refinements are needed
- While in Floyd's method or abstract model checking this refinement is done for a particular program, the difficulty in this refinement must be done for a language

Principle of a structural static analyzer/verifier

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

Error abstraction

- Takes initialization and arithmetic errors into account

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

Example of abstract domain: Error analysis

- The abstract properties are $\langle E, \sqsubseteq_E \rangle$ where $E \stackrel{\text{def}}{=} \{\text{NER}, \text{ }$ AER, IER, ERR} and the partial order is defined by the Hasse diagram
- Concretization:

$$egin{aligned} & \gamma_E(\mathtt{NER}) \stackrel{\mathrm{def}}{=} \mathbb{I} \ & \gamma_E(\mathtt{AER}) \stackrel{\mathrm{def}}{=} \mathbb{I} \cup \{ \Omega_\mathtt{a} \} \ & \gamma_E(\mathtt{IER}) \stackrel{\mathrm{def}}{=} \mathbb{I} \cup \{ \Omega_\mathtt{i} \} \ & \gamma_E(\mathtt{ERR}) \stackrel{\mathrm{def}}{=} \mathbb{I} \cup \{ \Omega_\mathtt{i}, \Omega_\mathtt{a} \} = \mathbb{I}_{arOmega} \end{aligned}$$

The error complete lattice

The finite lattice

is obviously a complete lattice, with

- Partial ordering: NER \square_E NER AER \square_E AER ERR \square_E ERR and NER \sqsubseteq_E IER \sqsubseteq_E IER \sqsubseteq_E ERR
- lub: $x \sqcup_E x = x$ $AER \sqcup_E IER = ERR$ $\operatorname{NER} \sqcup_E x = x$ $x \sqcup_E y = y \sqcup_E x$ $\operatorname{ERR} \sqcup_E x = \operatorname{ERR}$
- glb: $x \sqcap_E x = x$ $AER \sqcap_E IER = NER$ $NER \sqcap_E x = NER \quad x \sqcap_E y = y \sqcap_E x$ $ERR \sqcap_E x = x$
- infimum: NER.

III upremum: ERR erpretation". Tuesday May 5th, 2005

© P. Cousot. 2005

PROOF. To prove $\alpha(x) \sqsubseteq_E y \iff x \subseteq \gamma_E(y)$, we consider 4 cases for y = NER, y = AER, y = IER and y = ERR. Since all cases are very similar and the proof is tedious, we consider only the case y = AER and prove $\alpha(x) \sqsubseteq_{F} AER \iff$ $x \subseteq \gamma_E(AER)$.

- If $\alpha(x) \sqsubseteq_E \text{AER}$ then either $\alpha(x) = \text{NER}$ or $\alpha(x) = \text{AER}$
 - If $\alpha(x) = \mathtt{NER}$ then $x \subseteq \mathbb{I} = \gamma_E(\mathtt{NER})$
 - Else $\alpha(x)=$ AER and then $x\subseteq\mathbb{I}\cup\{\Omega_{\mathtt{A}}\}=\gamma_{E}(\mathtt{AER})$
- Reciprocally, if $x \subseteq \gamma_E(AER)$ then $x \subseteq \mathbb{I} \cup \{\Omega_a\}$.
 - If $x \subseteq \mathbb{I}$ then $\alpha(x) = \texttt{NER} \sqsubseteq_E \texttt{AER}$
 - Otherwise $\alpha(x) = AER \sqsubseteq_E AER$

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

П

The error abstraction

We have defined

 $\gamma_E(\mathtt{NER}) \stackrel{ ext{def}}{=} \mathbb{I}$ $\gamma_E(ext{AER}) \stackrel{ ext{def}}{=} \mathbb{I} \cup \{\Omega_\mathtt{a}\} \ \gamma_E(ext{IER}) \stackrel{ ext{def}}{=} \mathbb{I} \cup \{\Omega_\mathtt{i}\}$ $\gamma_E(\text{ERR}) \stackrel{\text{def}}{=} \mathbb{I} \cup \{\Omega_1, \Omega_2\} = \mathbb{I}_{\Omega}$

we let

$$lpha_E(X) \stackrel{\mathrm{def}}{=} (X \subseteq \mathbb{I} ? \mathtt{NER} \ \| X \subseteq \mathbb{I} \cup \{\Omega_\mathtt{a}\} ? \mathtt{AER} \ \| X \subseteq \mathbb{I} \cup \{\Omega_\mathtt{i}\} ? \mathtt{IER} \ \mathbb{ERR})$$

and we have

$$\langle \wp(\mathbb{I}_{\varOmega}), \; \subseteq
angle \stackrel{\gamma_E}{ \stackrel{}{\longleftarrow} \alpha_E} \langle E, \; \sqsubseteq_E
angle$$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

The error analysis abstract domain

```
1 (* avalues.ml *)
2 open Values
3 (* abstraction of sets of machine integers by errors *)
4 (* complete lattice *)
5 type t = NER | AER | IER | ERR
6 (* gamma(NER) = [min_int,max_int]
7 (* gamma(AER) = [min_int,max_int] U \{0_(a)
8 (* gamma(IER) = [min_int,max_int] U \{0(i)\}
9 (* gamma(ERR) = [min_int, max_int] U \{_0(a), _0(i)\} *)
10 (* infimum *)
11 let bot () = NER
12 (* bottom is emptyset? *)
```

13 let isbotempty () = false 14 (* uninitialization *)

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

```
15 let initerr () = IER
16 (* supremum *)
17 let top () = ERR
18 (* least upper bound *)
19 let nat_of_lat u =
20
          match u with
21
         | NER -> 0
22
         | AER -> 1
         | IER -> 2
23
         | ERR -> 3
25 let select t u v = t.(nat_of_lat u).(nat_of_lat v)
26 let join_table =
27 (*
                NER AER IER ERR
28 (*NER*)[|[| NER ; AER ; IER ; ERR ; |];
29 (*AER*) [| AER ; AER ; ERR ; ERR ; |];
30 (*IER*) [| IER : ERR : IER : ERR : |]:
31 (*ERR*) [| ERR ; ERR ; ERR ; ERR ; |]|]
32 let join u v = select join_table u v
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                             © P. Cousot, 2005
```

```
51 (* included in errors? *)
52 let in_errors v = (leg v ERR)
53 (* printing *)
54 let print u = match u with
55 | NER -> print_string "{}"
56 | AER -> print string "{ O a}"
57 | IER -> print_string "{_0_i}"
58 | ERR -> print string "{ 0 a. 0 i}"
59 (* forward abstract semantics of arithmetic expressions *)
60 (* f_NAT s = \alpha({(machine_int_of_string s)})
61 let f NAT s =
      match (machine_int_of_string s) with
    | (ERROR NAT INITIALIZATION) -> IER
    | (ERROR_NAT ARITHMETIC) -> AER
   | (NAT i) -> NER.
66 (* f RANDOM () = alpha([min int. max int]) *)
67 let f_RANDOM () = NER
68 (* f_UMINUS a = alpha({ (machine_unary_minus x) | x \in gamma(a)} }) *)
Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005
                                              — 123 —
                                                            © P. Cousot, 2005
```

```
33 (* greatest lower bound *)
34 let meet_table =
35 (*
               NER AER IER ERR
36 (*NER*)[|[| NER ; NER ; NER ; NER ; |];
37 (*AER*) [| NER; AER; NER; AER; |];
38 (*IER*) [| NER; NER; IER; IER; |];
39 (*ERR*) [| NER ; AER ; IER ; ERR ; |]|]
40 let meet u v = select join_table u v
41 (* approximation ordering *)
42 let leq_table =
43 (*
                       AER
                               IER
                                       ERR
               NER
44 (*NER*)[|[| true; true; true; true; |];
45 (*AER*) [| false : true : false : true : |]:
46 (*IER*) [| false; false; true; true; |];
47 (*ERR*) [| false : false : false : true : |]|]
48 let leq u v = select leq_table u v
49 (* equality *)
50 let eq u v = (u = v)
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                           © P. Cousot, 2005
```

```
69 let f_UMINUS a =
       match a with
     | NER -> AER (* a can be min int *)
    I AER -> AER
    | IER -> IER
73
    | ERR -> ERR
75 (* f_{UPLUS} a = alpha(gamma(a)) *)
76 let f UPLUS a = a
77 (* f_BINARITH a b = alpha({ (machine_binary_binarith i j) | }) | *)
                                      i in gamma(a) /\ j \in gamma(b)} *)
79 let f_BINARITH a b =
       match a with
       | NER -> (match b with
                 | NER. -> AER.
83
                 | AER -> AER
                 | IER -> IER
                 | ERR -> ERR)
       I AER -> AER
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                               © P. Cousot, 2005
```

```
| IER -> IER
     | ERR. -> ERR.
 89 let f_{PLUS} = f_{BINARITH}
 90 let f MINUS = f BINARITH
 91 let f_TIMES = f_BINARITH
 92 let f DIV = f BINARITH
 93 let f_MOD = f_BINARITH
 94 (* forward abstract semantics of boolean expressions *)
 95 (* Are there integer values in gamma(u) equal to values in gamma(v)? *)
 96 let f EQ u v = true
 97 (* Are there integer values in gamma(u) less than or equal to (<=) *)
 98 (* integer values in gamma(v)?
 99 let f_LT u v = true
100 (* widening *)
101 let widen v w = w
102 (* narrowing *)
103 let narrow v w = w
104 (* backward abstract semantics of arithmetic expressions *)
 Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005
                                                             © P. Cousot, 2005
```

```
123 let b_MOD q1 q2 p = NER, NER
124 (* backward abstract interpretation of boolean expressions
125 (* a_EQ p1 p2 = let p = p1 cap p2 cap [min_int, max_int] in <p, p> *)
126 let a_EQ p1 p2 = NER, NER
127 (* a_LT p1 p2 = alpha(\{ < i1, i2 > | 
                                                                       *)
128 (*
                  i1 in gamma(p1) cap [min_int, max_int] /\
                                                                       *)
129 (*
                  i2 in gamma(p1) cap [min_int, max_int] / i1 <= i2}) *)
130 let a LT p1 p2 = NER. NER
```

```
105 (* b_NAT s v = (machine_int_of_string s) in gamma(v) cap I? *)
106 let b_NAT s p =
        match (machine_int_of_string s) with
107
        | (ERROR_NAT INITIALIZATION) -> false
109
      | (ERROR NAT ARITHMETIC) -> false
      | (NAT i) -> true
111 (* b_RANDOM p = gamma(p) cap I <> emptyset *)
112 let b_RANDOM p = true
113 (* b_UOP q p = alpha({i in gamma(q) | UOP(i) \in gamma(p) cap *)
                                                  [min int. max int]}) *)
115 let b_UMINUS q p = NER
116 let b_UPLUS q p = NER
117 (* b_BOP q1 q2 p = alpha2(\{<i1,i2> in gamma2(<q1,q2>) |
                   BOP(i1, i2) \in gamma(p) cap [min_int, max_int]}) *)
119 let b_PLUS q1 q2 p = NER, NER
120 let b_MINUS q1 q2 p = NER, NER
121 let b_TIMES q1 q2 p = NER, NER
122 let b_DIV q1 q2 p = NER, NER
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                              © P. Cousot, 2005
```

Example of abstract domain: Parity analysis

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

The parity analysis abstract domain

```
1 (* avalues.ml *)
 2 open Values
 3 (* abstraction of sets of machine integers by parity *)
 4 (* complete lattice *)
 5 type t = BOT | ODD | EVEN | TOP
 6 (*
                         TOP
                         /\
                       ODD EVEN
10 (*
                        \ /
11 (*
                            \/
12 (*
                         BOT
13 (* \gamma(BOT) = \{ 0 (a) \}
14 (* \gamma(ODD) = { 2n+1 \in [\min_{i=1}^{n} int_{\max_{i=1}^{n} int_{i}}] \mid n \in Z } U {_0_(a)} *)
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                                      © P. Cousot, 2005
```

```
else if (w = TOP) then v
34 else if (v = w) then w
35 else BOT
36 (* approximation ordering *)
37 let leg v w =
   if (v = BOT) then true
   else if (w = TOP) then true
   else v = w
41 (* equality *)
42 let eq u v = (u = v)
43 (* included in errors? *)
44 let in errors u = (u = BOT)
45 (* printing *)
46 let print u =
        match u with
        | BOT -> print string " | "
     | ODD -> print_string "o"
      | EVEN -> print_string "e"
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                             © P. Cousot, 2005
```

```
15 (*\gamma(EVEN) = { 2n\in[\min_int,\max_int] \mid n\in Z \} \cup \{_0_(a)\} *
16 (* \gamma(TOP) = [min_int, max_int] U {_{0}(a), _{0}(i)}
17 let bot () = BOT
18 (* bottom is emptyset? *)
19 let isbotempty () = false (* \gamma = (BOT) = \{0_a\} <> mptyset *)
20 (* uninitialization *)
21 let initerr () = TOP
22 (* supremum *)
23 let top () = TOP
24 (* least upper bound *)
25 let join v w =
26 if (v = BOT) then w
27 else if (w = BOT) then v
28 else if (v = w) then w
29 else TOP
30 (* greatest lower bound *)
31 let meet v w =
      if (v = T\Omega P) then w
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                              © P. Cousot, 2005
```

```
| TOP -> print_string "T"
52 (* forward abstract semantics of arithmetic expressions *)
53 (* f_NAT s = \alpha({(machine_int_of_string s)})
54 let rec pry_of_intstring i s =
      let 1 = (String.length s) in
55
        if 1 = 0 then
          (if (i mod 2) = 0 then EVEN else ODD)
57
58
        else
59
         let v = (10 * i) + (int_of_string (String.sub s 0 1)) in
            if v < i then (* overflow *)</pre>
61
              BOT (* = \alpha(\{0_(a)\}) *)
              pry_of_intstring v (String.sub s 1 (1-1))
64 let parity_of_intstring i = pry_of_intstring 0 i
65 let f_NAT i = parity_of_intstring i
66 (* f_RANDOM () = alpha([min_int, max_int]) *)
67 let f_RANDOM() = TOP
68 (* f_UMINUS a = alpha({ (machine_unary_minus x) | x \in gamma(a)} }) *)
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                              © P. Cousot, 2005
```

```
69 let f UMINUS u = u
70 (* f_{UPLUS} a = alpha(gamma(a)) *)
71 let f_{UPLUS} a = a
72 (* f_BINARITH a b = alpha({ (machine_binary_binarith i j)| }) | *)
73 (*
                                   i in gamma(a) /\ j \in gamma(b)} *)
74 let nat of lat u =
75 match u with
76 | BOT -> 0
77 | ODD -> 1
78 | EVEN -> 2
79 | TOP -> 3
80 let select t u v = t.(nat_of_lat u). (nat_of_lat v)
81 let f PLUS table =
82 (* + BOT ODD EVEN TOP *)
83 (*BOT*)[|[| BOT ; BOT ; BOT ; BOT |];
84 (*ODD*) [| BOT : EVEN : ODD : TOP |]:
85 (*EVEN*) [| BOT ; ODD ; EVEN ; TOP |];
86 (*TOP*) [| BOT ; TOP ; TOP |]|]
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                          © P. Cousot. 2005
```

```
105 (* Are there integer values in gamma(u) equal to values in gamma(v)? *)
106 let f_EQ u v = (u = TOP) || (v = TOP) || ((u = v) & (u != BOT))
107 (* Are there integer values in gamma(u) less than or equal to (<=) *)
108 (* integer values in gamma(v)?
109 let f_{LT} u v = ((u != BOT) & (v != BOT))
110 (* widening *)
111 let widen v w = w
112 (* narrowing *)
113 let narrow v w = w
114 (* backward abstract semantics of arithmetic expressions *)
115 (* b_NAT s v = (machine_int_of_string s) in gamma(v) cap I? *)
116 exception Error_b_NAT of string
117 let b NAT n p =
118 match (String.get n (String.length n - 1)) with
119 | '0' -> leg EVEN p
120 | '1' -> leg ODD p
121 | '2' -> leq EVEN p
122 | '3' -> leg ODD p
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                             © P. Cousot, 2005
```

```
87 let f_PLUS u v = select f_PLUS_table u v
88 let f_MINUS = f_PLUS
89 let f_TIMES_table =
90 (* * BOT ODD
                           EVEN TOP *)
91 (*BOT*)[|[| BOT ; BOT ; BOT |];
92 (*ODD*) [| BOT; ODD; EVEN; TOP |];
93 (*EVEN*) [| BOT ; EVEN ; EVEN ; TOP |];
94 (*TOP*) [| BOT ; TOP ; TOP |]|]
95 let f_TIMES u v = select f_TIMES_table u v
96 let f DIV table =
97 (* / BOT ODD EVEN TOP *)
98 (*BOT*)[|[| BOT ; BOT ; BOT ; BOT |];
99 (*ODD*) [| BOT : TOP : TOP : TOP |]:
100 (*EVEN*) [| BOT ; TOP ; TOP ; TOP |];
101 (*TOP*) [| BOT : TOP : TOP : TOP |]|]
102 let f_DIV u v = select f_DIV_table u v
103 let f_MOD = f_DIV
104 (* forward abstract semantics of boolean expressions *)
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                          @ P. Cousot. 2005
```

```
123 | '4' -> leg EVEN p
124 | '5' -> leg ODD p
125 | '6' -> leg EVEN p
126 | '7' -> leg ODD p
    | '8' -> leq EVEN p
127
    | '9' -> leg ODD p
    -> raise (Error_b_NAT "not a digit")
130 (* b_RANDOM p = gamma(p) cap I <> emptyset *)
131 let b_RANDOM p =
132 match p with
133 | BOT -> false
134 | -> true
135 (* backward abstract semantics of arithmetic expressions
136 (* b_NAT s v = (machine_int_of_string s) in gamma(v) cap
137 (*
                                               [min int, max int]? *)
138 let b_UMINUS q p = meet q p
139 let b_UPLUS q p = meet q p
140 (* b_BOP q1 q2 p = alpha2(\{<i1,i2> in gamma2(<q1,q2>) |
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                           © P. Cousot, 2005
```

```
141 (*
                                BOP(i1, i2) \in gamma(p) cap
142 (*
                                               [min_int, max_int]}) *)
143 exception Error_b_PLUS of string
144 let nat of lat' u =
145
      match u with
     | ODD -> 0
147
     | EVEN -> 1
     | TOP -> 2
148
    | _ -> raise (Error_b_PLUS "impossible selection")
150 let select' t u v = t.(nat of lat' u).(nat of lat' v)
151 let b PLUS ODD table =
                    ODD
                                 EVEN
153 (*ODD*)[|[| (BOT,BOT) ; (ODD,EVEN) ; (ODD,EVEN) |];
154 (*EVEN*) [| (EVEN,ODD); (BOT,BOT); (EVEN,ODD) |];
155 (*TOP*) [| (EVEN,ODD); (ODD,EVEN); (TOP,TOP) |]|]
156 let b PLUS EVEN table =
157 (*
                    ODD
                                EVEN
                                                       *)
158 (*ODD*)[|[| (ODD,ODD) ; (BOT,BOT) ; (ODD,ODD) |];
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005 — 137 —
                                                            © P. Cousot, 2005
```

```
177 (*ODD*)[|[| (BOT.BOT) : (ODD.EVEN) : (ODD.EVEN) |]:
178 (*EVEN*) [| (EVEN,ODD) ; (EVEN,EVEN) ; (EVEN,TOP) |];
179 (*TOP*) [| (EVEN,ODD); (TOP,EVEN); (TOP,TOP) |]|]
180 exception Error_b_TIMES of string
181 let b_TIMES q1 q2 p =
       if (a1=BOT)||(a2=BOT)||(p=BOT) then
       (BOT,BOT)
183
    else if (p=TOP) then
184
       (q1,q2)
185
186
       else if p = ODD then select' b_TIMES_ODD_table q1 q2
       else if p = EVEN then select' b_TIMES_EVEN_table q1 q2
187
       else raise (Error_b_TIMES "impossible case")
189 let b_DIV q1 q2 p =
    if (q1=BOT) | | (q2=BOT) | | (p=BOT) then
191 (BOT, BOT)
192
       else
193
          (q1, q2)
194 let b_MOD = b_DIV
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                              © P. Cousot, 2005
```

```
159 (*EVEN*) [| (BOT, BOT) ; (EVEN, EVEN) ; (EVEN, EVEN) |];
160 (*TOP*) [| (ODD,ODD); (EVEN,EVEN); (TOP,TOP) |]|]
161 let b_PLUS q1 q2 p =
     if (q1=BOT)||(q2=BOT)||(p=BOT) then
163
      (BOT.BOT)
     else if (p=TOP) then
165
      (q1,q2)
     else if p = ODD then select' b_PLUS_ODD_table q1 q2
167 else if p = EVEN then select' b_PLUS_EVEN_table q1 q2
     else raise (Error_b_PLUS "impossible case")
169 let b_MINUS = b_PLUS
170 let b TIMES ODD table =
171 (*
                    ODD
                                 EVEN
                                              TOP
                                                       *)
172 (*ODD*)[|[| (ODD,ODD) ; (BOT,BOT) ; (ODD,ODD) |];
173 (*EVEN*) [| (BOT.BOT) : (BOT.BOT) : (BOT.BOT) |]:
174 (*TOP*) [| (ODD,ODD) ; (BOT,BOT) ; (ODD,ODD) |]|]
175 let b_TIMES_EVEN_table =
176 (*
                                 F.V.F.N
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                              @ P. Cousot, 2005
```

```
195 (* backward abstract interpretation of boolean expressions
196 (* a_EQ p1 p2 = let p = p1 cap p2 cap [min_int, max_int] in \langle p, p \rangle *)
197 let a_EQ p1 p2 =
let p = (meet p1 (meet p2 (f_RANDOM ()))) in
199
         (p,p)
200 (* a_LT p1 p2 = alpha({<i1, i2> | i1 in gamma(p1) cap [min_int,
201 (* max_int] /\ i2 in gamma(p1) cap [min_int, max_int] /\ i1 <= i2}) *)
202 let a LT table =
203 (*
         <
                              ODD
                                        EVEN
                                                              *)
                   BOT
204 (*BOT*)[|[| (BOT,BOT); (BOT,BOT); (BOT,BOT) ; (BOT,BOT) |];
205 (*ODD*) [| (BOT,BOT); (ODD,ODD); (ODD,EVEN); (ODD,TOP) |];
206 (*EVEN*) [| (BOT,BOT); (EVEN,ODD); (EVEN,EVEN); (EVEN,TOP) |];
207 (*TOP*) [| (BOT,BOT); (TOP,ODD); (TOP,EVEN); (TOP,TOP) |]|]
208 let a_LT u v = select a_LT_table u v
```

© P. Cousot, 2005

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

Parity analysis example

```
** Input file:
% example02.sil %
x := -1073741823 -1;
y := x - 1;;
\{ x:T; y:T \}
  x := (-1073741823 - 1);
  y := (x - 1)
{ x:e; y:o }
```

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

Design of the abstract properties

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

Example of abstract domain: Interval analysis

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

- In the traditional lattice for interval analysis [1], a supremum $+\infty$ and an infimum $-\infty$ are added to reason on the complete lattice $\langle \mathbb{Z} \cup \{-\infty, +\infty\}, < \rangle$ [1]
- This is appropriate for mathematical, machine-independent reasoning only
- In practice we have $+\infty = \max$ int and $-\infty = \min$ int to take the finite machine representation of integers into account: $\langle \{z \in \mathbb{Z} \mid -\infty \le z \le +\infty \}, \le \rangle$ that is $\langle \mathbb{I}, < \rangle$
- The abstract properties are $I \stackrel{\text{def}}{=} \{\bot\} \cup \{[a,b] \mid a,b \in A\}$ $\mathbb{I} \wedge -\infty \leq a \leq b \leq +\infty$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

@ P. Cousot, 2005

Error and interval abstraction

- Combine interval and error information
- The lattice of program properties is $I \times E$
- The concretization is

$$\gamma(\langle i,\, e
angle)\stackrel{ ext{def}}{=} (\gamma_i(i)\cup\{arOmega_1,arOmega_2\})\cap\gamma_E(e)$$

- Intervals bring no information of errors
- Errors bring no range information
- The combination provide both range and error information
- This is an example of reduced product

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

- The meaning of abstract properties is

$$egin{aligned} oldsymbol{\gamma}_i(oldsymbol{oldsymbol{oldsymbol{oldsymbol{\gamma}}}}_i([a,b]) \stackrel{ ext{def}}{=} \{z \in \mathbb{I} \mid a \leq z \leq b\} \end{aligned}$$

- This also works for floating points (care must be taken to over-estimate the bounds in case of roundings [2, 3])

- [1] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In Conf. Rec. Fourth Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pages 238-252, Los Angeles, CA, 1977. ACM Press.
- [2] Antoine Miné. "Relational abstract domains for the detection of floating-point run-time errors". In ESOP 2004 — European Symposium on Programming, D. Schmidt (editor), Mar. 27 — Apr. 4, 2004, Barcelona, Lecture Notes in Computer Science 2986, pp. 3-17, © Springer.
- [3] Antoine Miné. "Weakly relational numerical abstract domains". PhD thesis, École polytechnique, 6 December 2004.

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

The partial order of intervals

- For intervals we let $+\infty = \max$ int and $-\infty = \min$ int so that $\forall i \in \mathbb{I} : -\infty < i < +\infty$
- The Hasse diagram defines the interval abstract prop- $+\infty$
- The Hasse diagram defines the interval partial order \Box_{T} as

$$orall x \in I: ot \sqsubseteq_I i \ orall [a,b], [c,d] \in I: ([a,b] \sqsubseteq_I [c,d]) \iff (a \leq c \leq d \leq b)$$

THEOREM. $\langle I, \, \Box_I \rangle$ is a partial order.

PROOF. – By def. of \square_I and reflexivity of <, \square_I is reflexive

- If $i \sqsubseteq_{\mathsf{T}} i$ and $i \sqsubseteq_{\mathsf{T}} k$ then
 - If $i = \bot$ then $i = \bot \Box_I k$
 - Else i = [a, b] so j = [c, d] so k = [e, f]. By def. of \square_I , $i \square_I j$ implies c < a < b < d and $j \sqsubseteq_T k$ implies e < c < d < f so that by transitivity of \leq , we get $e \leq a \leq b \leq f$ proving $i \sqsubseteq_I k$

In both cases $i \sqsubseteq_I k$ proving transitivity

- If $i \sqsubseteq_I j$ and $j \sqsubseteq_I i$ then
- if $i = \bot$ then $j \sqsubseteq_I \bot$ implies $j = \bot$ by def. of \sqsubseteq_I so i = j
- if i = [a, b] then j = [c, d] since $i \sqsubseteq_I j$ by def. of \sqsubseteq_I . This implies c < a < b < d. $i \sqsubseteq_t i$ implies a < b < d < b so by antisymmetry of <, we get $a = c \sqsubseteq_I b = d$ so i = j.

In both cases i = j proving antisymmetry.

- We conclude that \Box_I is a partial order on I

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

П

- PROOF. Let S be any subset of I and $\ell = | \cdot |_I S$. Then $\ell \in I$.
- To prove that it is an upper bound, either S is empty so $\ell = \bot$ is the infimum whence the lub of the empty set or, there exists $s \in S$. If $s = \bot$ then ℓ is an upper bound. Otherwise s = [a, b]. Let $S' = \{s \in S \mid s \neq \bot\}$. It is of the form $S' = \{[a_j, b_j] \mid j \in \Delta\}$ and $s \in S'$. By def. of $| \cdot |_{I}$, we have $\bigsqcup_I S = \bigsqcup_I S' = [\min_I a_i, \max_I b_i]$ and so $\min_I a_i \le a \le b \le \max_I b_i$ proving that $s \mid I_I S$ by def. \square_I
- Let u be any other upper bound of S. Let $S' = \{s \in S \mid s \neq \bot\}$ so that $| \mid_{I} S = | \mid_{I} S' \text{ and } \bot \not\in S'.$
 - If S' is empty, then $| \mid_I S = | \mid_I S' = \bot \sqsubseteq_I u$, by def. \sqsubseteq_I
 - Otherwise, $S' = \{ [a_i, b_i] \mid j \in \Delta \}$. By def. \bigcup_I , we have $\bigcup_I S = \bigcup_I S' = \bigcup_I S'$ $[\min_I a_i, \max_I b_i]$. Since u is an upper bound of S whence S', we have $\forall j \in \Delta : [a_j, b_j] \sqsubseteq_I u = [a_u, b_u], \text{ whence } a_u \leq a_j \leq b_i \leq b_u, \text{ by def. } \sqsubseteq_I. \text{ It}$ follows, that $a_u \leq \min_{j \in \Delta} a_j \leq \max_{j \in \Delta} b_j \leq b_u$ proving that $\bigsqcup_I S = \bigsqcup_I S' \sqsubseteq_I$ u, by def. \square_I

In both cases, we conclude that $| |_{t} S$ is the lub of $| |_{t} S$

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005 — 151 —

© P. Cousot, 2005

The complete lattice of intervals

- $-\langle I, \sqsubseteq_I, \bot, [-\infty, \infty], \sqcup_I, \sqcap_I \rangle$ is a complete lattice, where:
 - $\bigsqcup_I i_j \stackrel{ ext{def}}{=} \bigsqcup_I \{i_j \mid j \in \Delta \wedge i_j
 eq ot\}$ $i\in\Delta$
 - $\mid \mid_{\tau} \emptyset = \bot$
 - $\bigsqcup_{I} [a_{j}, b_{j}] \stackrel{\text{def}}{=} [\min_{I} a_{j}, \max_{I} b_{j}]$ where min and max $i\in\Delta$

are extended on \mathbb{I} to $-\infty$ and $+\infty$ in the natural way

THEOREM. \sqcup_{I} is the lub.

By existence of lubs, it follows that the poset $\langle I, \, \Box_I \rangle$ is a complete lattice $\langle I, \square_I, \bot, [-\infty, \infty], \sqcup_I, \sqcap_I \rangle$. We have:

- $-[-\infty, +\infty]$ is the top
- The glb \sqcap_I is defined as follows:
 - if $\bot \in S$ then $\bigcap_I S = \bot$
 - If $\bot \not\in S$ then $S = \{[a_j, b_j] \mid j \in \Delta\}$ and then

$$egin{aligned} \cdot igcap_I S &= igsquare & ext{if } \min_I a_j < \max_{j \in \Delta} I \, b_j \ \cdot igcap_I S &= [\max_{j \in \Delta} a_j, \min_I b_j] & ext{if } \max_{j \in \Delta} a_j \leq \min_{j \in \Delta} b_j \ & ext{if } \max_{j \in \Delta} a_j \leq \min_{j \in \Delta} b_j \end{aligned}$$

PROOF. – By def. \square_I , we have $\bot \square_I [-\infty, +\infty]$ and for all $a, b \in \mathbb{I} : -\infty \le$ $a < b < +\infty$ and so $[a,b] \sqsubseteq_I [-\infty,+\infty]$, proving $[-\infty,+\infty]$ to be the supremum

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

- If $\prod_{I} S = \bot$, the obviously $\prod_{I} S$ is a lower bound of S
- Otherwise, $S = \{[a_i, b_i] \mid j \in \Delta\}$ and $\max_I a_i \leq \min_I b_i$. The for all elements of S, i.e. $i \in \Delta$, we have $a_i < \max_I a_i < \min_I b_i < b_i$ whence $\prod_I S$ $= [\max_I a_i, \min_I b_i] \sqsubseteq_I [a_i, b_i], \text{ proving } \prod_I S \text{ to be a lower bound of } S$
- Let ℓ be another lower bound of S. If $\ell = \bot$ then immediately $\ell \sqsubseteq_I \bigcap_I S$. Otherwise $\ell=[a_\ell,b_\ell]$ and $\forall i\in \Delta: [a_\ell,b_\ell]\sqsubseteq_I [a_i,b_i]$ so $a_i\leq a_\ell\leq b_\ell\leq b_i$ proving $\max_I a_j \leq a_\ell \leq b_\ell \leq \min_I b_j$ whence $[a_\ell, b_\ell] \sqsubseteq_I [\max_I a_j, \min_I b_j] =$ $\bigcap_{t} S$, proving $\bigcap_{t} S$ to be the glb of S.

PROOF. We prove that $\alpha_i(x) \sqsubseteq_I y \iff x \subseteq \gamma_i(y)$.

- If x is \emptyset then $\alpha_i(\emptyset) \stackrel{\text{def}}{=} \bot \sqsubseteq_I y$ and $x = \emptyset \subseteq \gamma(y)$ is true for all $y \in I$.
- If y is \bot then $\alpha_i(x) \sqsubseteq_I y$ implies $\alpha_i(x) = \bot$ whence $x = \emptyset$ by def. α_i and so $x = \emptyset \subseteq \emptyset = \gamma_i(\bot).$

Reciprocally, if $x \subseteq \gamma_i(y)$ then $x \subseteq \emptyset$ so $x = \emptyset$ proving $\alpha_i(x) = \bot \sqsubseteq_T y$ by def. \square_I

- If x is not \emptyset and y is not \bot then y = [a, b] with $-\infty < a < b < +\infty$ by def. I. If $\alpha_i(x) \sqsubseteq_I y$ then $[\min_I x, \max_I x] \sqsubseteq_I [a, b]$ so $a < \min_I x < \max_I x < b$ by def. \square_I , probing $x \subseteq \{z \in \mathbb{I} \mid a \le z \le b\} = \gamma_i([a,b]) = \gamma_i(y)$.

Reciprocally, $x \sqsubseteq_I y$ implies $x \subseteq \{z \in \mathbb{I} \mid a < z < b\}$ which implies $a < \min_I x < \max_I x < b \text{ that is } [\min_I x, \max_I x] \sqsubseteq_I [a, b] \text{ i.e. } \alpha(x) \sqsubseteq_I y.$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

@ P. Cousot, 2005

П

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

Interval abstraction

- We have defined $\gamma_i \in I \mapsto \wp(\mathbb{I})$ as

$$egin{aligned} \gamma_i(ot) & \stackrel{ ext{def}}{=} \emptyset \ \gamma_i([a,b]) & \stackrel{ ext{def}}{=} \{z \in \mathbb{I} \mid a \leq z \leq b\} \end{aligned}$$

- Given $X \subseteq \mathbb{I}$, we define

$$egin{aligned} lpha_i(\emptyset) &\stackrel{ ext{def}}{=} \perp \ lpha_i(X) &\stackrel{ ext{def}}{=} [\min_I x, \min_I x], \qquad X
eq \emptyset \end{aligned}$$

- We have the Galois connection:

$$\langle \wp(\mathbb{I}), \subseteq \rangle \stackrel{\gamma_i}{\longleftarrow} \langle I, \sqsubseteq_I \rangle$$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

The interval abstraction revisited (to ignore errors)

- Define $\alpha_e \stackrel{\mathrm{def}}{=} \wp(\mathbb{I}_{\Omega}) \mapsto \wp(\mathbb{I})$ by $\alpha_e(x) = x \cap \mathbb{I}$. We have shown that $\langle \wp(\mathbb{I}_{\Omega}), \subseteq \rangle \xrightarrow{\gamma_e} \langle \wp(\mathbb{I}_{\Omega}), \subseteq \rangle$ where $\gamma_e(y) = y \cup \{\Omega_a, \Omega_i\}$
- We have shown that $\langle \wp(\mathbb{I}), \subseteq \rangle \xrightarrow{\gamma_i} \langle I, \sqsubseteq_I \rangle$
- By composition $\alpha_I = \alpha_i \circ \underset{\gamma_I}{\alpha_e}$ and $\gamma_I = \gamma_e \circ \gamma_i$, we get: $\langle \wp(\mathbb{I}_{\Omega}), \sqsubseteq \rangle \xrightarrow{\alpha_I} \langle I, \sqsubseteq_I \rangle$

- By definition, we have immediately:

$$egin{aligned} \gamma_I(ot) &= \{\Omega_\mathtt{a}, \Omega_\mathtt{i}\} \ \gamma_I([a,b]) &= \{x \in I \mid a \leq x \leq b\} \cup \{\Omega_\mathtt{a}, \Omega_\mathtt{i}\} \ lpha_I(X) &= (X \subseteq \{\Omega_\mathtt{a}, \Omega_\mathtt{i}\} \ ? ot \ [\min_I x \setminus \{\Omega_\mathtt{a}, \Omega_\mathtt{i}\}, \max_I x \setminus \{\Omega_\mathtt{a}, \Omega_\mathtt{i}\}] \end{aligned}$$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

- 159 —

© P. Cousot, 2005

The reduced product of abstractions

If

- $-\langle L, \sqsubseteq, \sqcup \rangle$ is a meet semilattice,
- $-\langle L, M\rangle \stackrel{\gamma_1}{\underset{\alpha_1}{\longleftarrow}} \langle M_1, \leq_1\rangle$
- $-\langle L, M \rangle \stackrel{\gamma_2}{\longleftarrow} \langle M_2, \leq_2 \rangle$

then their reduced product [4] is

$$\langle L,\ M
angle \stackrel{\gamma}{ \underset{lpha}{\longleftarrow}} \langle M,\ \leq
angle$$

where

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

__ 158 -

© P. Cousot, 2005

PROOF. – the definition of $\gamma([\langle x,\ y\rangle]_{\equiv})$ is obviously independent of the choice of the representant $\langle x,\ y\rangle$ of the equivalence class $[\langle x,\ y\rangle]_{\equiv}\stackrel{\mathrm{def}}{=} \{\langle x_1,\ x_2\rangle\ |\ \gamma(\langle x,\ y\rangle)=\gamma(\langle x_1,\ x_2\rangle)\}.$ This remark is also valid for the definition of \leq .

$$\alpha(X) \leq [\langle x, \ y \rangle]_{\equiv}$$

$$\Longrightarrow [\langle lpha_1(X), \ lpha_2(X)
angle]_{\equiv} \leq [\langle x, \ y
angle]_{\equiv}$$
 (def. $lpha$)

$$\Longrightarrow \exists \langle x_1,\ y_1\rangle \in [\langle \alpha_1(X),\ \alpha_2(X)\rangle]_{\equiv}: \exists \langle x_2,\ y_2\rangle \in [\langle x,\ y\rangle]_{\equiv}: x_1 \leq_1 x_2 \wedge y_1 \leq_2 y_2$$
 \(\rangle \text{def.} < \gamma\)

$$\Longrightarrow \exists \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \ : \ \gamma(\langle x_1, y_1 \rangle) \ = \ \gamma(\langle \alpha_1(X), \alpha_2(X) \rangle) \ \land \ \gamma(\langle x_2, y_2 \rangle) \ = \ \gamma(\langle x, y \rangle) \land x_1 \leqslant_1 x_2 \land y_1 \leqslant_2 y_2$$

$$? \det[\ \langle x, y \rangle]_{=} \land$$

$$\gamma(\langle x, y \rangle) \wedge x_1 \leq_1 x_2 \wedge y_1 \leq_2 y_2$$
 (def. $[\langle x, y \rangle]_{\equiv}$) $\Rightarrow \exists \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle : \gamma_1(x_1) \sqcap \gamma_2(y_1) = \gamma_1 \circ \alpha_1(X) \sqcap \gamma_2 \circ \alpha_2(X) \wedge \gamma_1(x_2) = \gamma_1 \circ \alpha_1(X) \cap \gamma_2 \circ \alpha_2(X) \wedge \gamma_1(x_2) = \gamma_1 \circ \alpha_1(X) \cap \gamma_2 \circ \alpha_2(X) \wedge \gamma_1(x_2) = \gamma_1 \circ \alpha_1(X) \cap \gamma_2 \circ \alpha_2(X) \wedge \gamma_1(x_2) = \gamma_1 \circ \alpha_1(X) \cap \gamma_2 \circ \alpha_2(X) \wedge \gamma_1(x_2) = \gamma_1 \circ \alpha_1(X) \cap \gamma_2 \circ \alpha_2(X) \wedge \gamma_1(x_2) = \gamma_1 \circ \alpha_1(X) \cap \gamma_2 \circ \alpha_2(X) \wedge \gamma_1(x_2) = \gamma_1 \circ \alpha_1(X) \cap \gamma_2 \circ \alpha_2(X) \wedge \gamma_1(x_2) = \gamma_1 \circ \alpha_1(X) \cap \gamma_2 \circ \alpha_2(X) \wedge \gamma_1(x_2) = \gamma_1 \circ \alpha_1(X) \cap \gamma_2 \circ \alpha_2(X) \wedge \gamma_1(x_2) = \gamma_1 \circ \alpha_1(X) \cap \gamma_2(X) \cap \gamma_2(X) = \gamma_1 \circ \alpha_1(X) \cap \gamma_2(X) \cap \gamma_2(X) \cap \gamma_2(X) = \gamma_1 \circ \alpha_1(X) \cap \gamma_2(X) \cap \gamma_2(X) \cap \gamma_2(X) = \gamma_1 \circ \alpha_1(X) \cap \gamma_2(X) \cap \gamma_2(X) \cap \gamma_2(X) = \gamma_1 \circ \alpha_1(X) \cap \gamma_2(X) \cap \gamma_2(X) \cap \gamma_2(X) \cap \gamma_2(X) = \gamma_1 \circ \alpha_1(X) \cap \gamma_2(X) \cap \gamma$

$$\gamma_1(x) \wedge \gamma_2(y_2) = \gamma_2(y) \wedge x_1 \leq_1 x_2 \wedge y_1 \leq_2 y_2$$
 (def. γ)
 $\gamma_1(x_1) = \gamma_1(x_2) = \gamma_1(x_1) = \gamma_1(x_2) = \gamma_1(x_1) = \gamma_1(x_2) = \gamma_1(x_1) = \gamma_1(x_2) = \gamma_1(x_1) = \gamma_1(x_1$

$$\gamma_2(y_2) = \gamma_2(y) \text{ so that } \gamma_1(x_1) \sqsubseteq \gamma_1(x_2) = \gamma_1(x) \text{ and } \gamma_1(x_1) \sqcup \gamma_2(y_1) \sqsubseteq \gamma_1(x) \sqcup \gamma_2(y))$$

$$\gamma_1 \circ \alpha_1(X) \sqcup \gamma_2 \circ \alpha_2(X) \sqsubseteq \gamma_1(x) \sqcup \gamma_2(y)$$

$$\implies \qquad (\gamma_1 \circ \alpha_1 \text{ and } \gamma_2 \circ \alpha_2 \text{ are extensive so that } X \sqsubseteq \gamma_1 \circ \alpha_1(X) \sqcap \gamma_2 \circ \alpha_2(X)$$
 and transitivity \(\)

$$X \sqsubseteq \gamma_1(x) \sqcap \gamma_2(y)$$

$$\Longrightarrow X \sqsubseteq \gamma([\langle x, y \rangle]_{\equiv})$$
 (def. γ Q.E.D.)

Reciprocally:

$$\begin{array}{l} X \sqsubseteq \gamma([\langle x,\,y\rangle]_{\equiv}) \\ \Longrightarrow X \sqsubseteq \gamma_1(x) \sqcap \gamma_2(y) & \text{(def. γ)} \\ \Longrightarrow \alpha_1(X) \leq_1 x \land \alpha_2(X) \leq_2 y & \text{(def. Galois connection)} \\ \Longrightarrow [\langle \alpha_1(X),\,\alpha_2(X)\rangle]_{\equiv} \leq [\langle x,\,y\rangle]_{\equiv} & \text{(def. \leq)} \\ \Longrightarrow \alpha(X) < [\langle x,\,y\rangle]_{\equiv} & \text{(def. α)} \end{array}$$

____ Reference

[4] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 269-282, San Antonio, Texas, 1979. ACM Press, New York, NY, U.S.A.

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

The error/interval abstraction

We define the interval and error abstraction as the reduced product of the interval and error abstractions:

$$\langle \wp(\mathbb{I}_{\Omega}), \subseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle I \times E, \sqsubseteq \rangle$$

where

$$-\gamma(\langle i,\, e
angle)\stackrel{\mathrm{def}}{=}\gamma_I(i)\cup\gamma_E(e)$$

$$-\alpha(X)\stackrel{\mathrm{def}}{=}\langle \alpha_I(X), \ \alpha_E(X)\rangle$$

$$-\langle i_1,\,e_1
angle\sqsubseteq\langle i_2,\,e_2
angle\stackrel{\mathrm{def}}{=}i_1\sqsubseteq_I i_2\wedge e_1\sqsubseteq_E e_2$$

PROOF.

$$\langle i,\ e
angle \equiv \langle i',\ e'
angle$$

Course 16.399: "Abstract interpretation". Tuesday May 5th, 2005

© P. Cousot. 2005

Sign and parity

 $\gamma_1(1) = \lambda_x false$, $\gamma_1(0) = \lambda_x (x=0)$, $\gamma_1(1) = \lambda_x (x \ge 0)$, $\gamma_1(1) = \lambda_x (x \ge 0)$ $\begin{array}{lll} \gamma_1(1)=& \lambda_1/\pi (\log n, \gamma_1(0))=& \lambda_1/\pi (\log n, \gamma_1(1))=& \lambda_1/$

$$\iff \gamma(\langle i, e \rangle) = \gamma(\langle i', e' \rangle) \qquad \qquad \text{(def. $\equiv \S$)}$$

$$\iff \gamma_I(i) \cap \gamma_E(e) = \gamma_I(i') \cap \gamma_E(e') \qquad \qquad \text{(def. $\gamma \S$)}$$

$$\iff \gamma_i(i) = \gamma_i(i') \wedge \gamma_E(e) = \gamma_E(e') \qquad \qquad \text{(def. γ_I, γ_i and $\gamma_E\S$)}$$

$$\iff i = i' \wedge e = e' \qquad \qquad \text{(γ_i and γ_E injective}$$$

$$\iff \langle i, e \rangle = v \langle i', e' \rangle \qquad \qquad \text{(def. pairs)}$$

It follows that \equiv is equality and so $[\langle i, e \rangle]_{\equiv} = \{\langle i, e \rangle\}$ whence $(I \times E)/_{\equiv}$ is $I \times E$ up to the isomorphism $\{\langle i, e \rangle\} \mapsto \langle i, e \rangle$. The definition of α and of the ordering □ follows immediately from this remark.

The interval abstraction as the reduced product of the minimum and maximum abstractions

- We have seen that if $\langle S, \leq, -\infty, +\infty, \max, \min \rangle$ is a complete lattice, $\langle \wp(S), \subseteq \rangle \xrightarrow{\gamma_M} \langle S, \leq \rangle$ where $lpha_M(X) = \max X \text{ and } \gamma_M(s) = \{x \in S \mid x < s\}$
- By duality, $\langle \wp(S), \subseteq \rangle \stackrel{\gamma_m}{\longleftarrow} \langle S, \ge \rangle$ where $\alpha_m(X) =$ $\min X$ and $\gamma_m(s) = \{x \in \widetilde{S} \mid x > s\}$
- Let us consider the reduced product of these two abstractions

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

- The classes $[\langle a, b \rangle]_{=}$ where a < b is $\{\langle a, b \rangle\}$ whence can be represented as $\langle a, b \rangle \in S \times S$
- The classes $[\langle a, b \rangle]_{=}$ where a > b are $\{\emptyset\}$ whence can be represented by some new element $\bot \not \in S \times S$
- The reduced product is now, up to an isomorphism:

```
\langle \wp(S), \; \subseteq 
angle \stackrel{\gamma}{ \Longleftrightarrow} \langle \{\langle a, \; b 
angle \; | \; a \leq b\} \cup \{\bot\}, \; \sqsubseteq 
angle
```

PROOF. Trivial.

Implementation of the complete lattice of intervals — (1) Abstract properties

```
(* avalues ml *)
open Values
(* abstraction of sets of machine integers by intervals *)
(* complete lattice *)
(* ABSTRACT VALUES *)
type t = int * int
(* gamma (a.b)
(* = [a,b] \cup \{0_(a), 0_(i)\} \text{ when min_int } <= a <= b <= max_int *)
(* = \{_0_(a), _0_(i)\}
                                    when a = max int > min int = b
(* infimum: alpha({})
                                                                           *)
let bottom = (max int. min int)
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                                  © P. Cousot, 2005
```

```
(* infimum: bot () = alpha({}) *)
let bot () = bottom
(* isbottom a = (a = bot ()) *)
let isbottom (x, y) = y < x
(* isbotempty () = gamma(bot ()) = {}?
let isbotempty () = false (* gamma([max_int, min_int]) =
                           (* \{_0_(a), _0_(i)\} \iff emptyset
(* uninitialization: initerr () = alpha(\{_0_i\}) *)
let initerr () = bottom
(* supremum: top () = alpha({_O_i, _O_a} U [min_int,max_int]) *)
let top () = (min_int, max_int)
(* least upper bound join: p q = alpha(gamma(p) U gamma(q)) *)
let min x y = if (x \le y) then x else y
let max x y = if (x < y) then y else x
let join (v,w) (x,y) = ((min v x), (max w y))
(* greatest lower bound meet p q = alpha(gamma(p) cap gamma(q)) *)
let meet (v,w) (x,y) = ((max v x), (min w y))
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
```

П

```
(* approximation ordering: leq p q = gamma(p) subseteq gamma(q) *)
let leg (v,w) (x,v) = (isbottom (v,w)) || ((x <= v) && (w <= v))
(* equality: eq p q = gamma(p) = gamma(q) *)
let ea u v = (u = v)
(* errors = alpha(\{_0_i, _0_a\}) *)
let errors = bottom
(* included in errors?: in_errors p = gamma(p) subseteq {_0_i, _0_a} *)
let in_errors (x, y) = isbottom (x, y)
(* printing *)
let print_int x =
   if x = min_int then print_string "min_int"
else if x = - max_int then print_string "-max_int"
else if x = max_int then print_string "max_int"
else print_int x
let print (x, y) = if (isbottom (x, y)) then print_string "[]" else
   (print_string "["; print_int x; print_string ","; print_int y;
    print string "]")
Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005
                                                             @ P. Cousot, 2005
```

Design of the abstract transformers: forward integer constant

```
f_NAT s = \alpha(\{machine int of strings\})
                                                           where:
(* values.ml *)
type error_type = INITIALIZATION | ARITHMETIC
type machine_int = ERROR_NAT of error_type | NAT of int
type machine_bool = ERROR_BOOL of error_type | BOOLEAN of bool
exception Incorrect_Nat of string
let rec int_of_intstring i s =
  let 1 = (String.length s) in
     if 1 = 0 then (NAT i)
     else let v = (10 * i) + (int_of_string (String.sub s 0 1)) in
            if v<i then (* overflow *)</pre>
               (ERROR NAT ARITHMETIC)
            else
              int_of_intstring v (String.sub s 1 (1-1))
Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005
                                              — 171 —
                                                             © P. Cousot, 2005
```

Design of the abstract transformers (samples)

```
let machine_int_of_string s =
  int_of_intstring 0 s
The lexer (lexer.mll) is:
rule token = parse
  [' ', '\t' '\n' '\r'] { token lexbuf }
| ['0'-'9']+
                     { (T_NAT (Lexing.lexeme lexbuf)) }
| '('
                     { T_LPAR }
The parser (parser.mly) is:
%token <string> T_NAT
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                        © P. Cousot, 2005
```

```
n_Aexp:
                       { Abstract Syntax.RANDOM
 T RANDOM
I T NAT
                       { (Abstract_Syntax.NAT $1)
| T_VAR { (Abstract_Syntax.VAR (Symbol_Table.add_symb_table $1)) }
| n_Aexp T_MINUS n_Aexp { (Abstract_Syntax.MINUS ($1, $3))
| n_Aexp T_TIMES n_Aexp { (Abstract_Syntax.TIMES ($1, $3))
| n_Aexp T_DIV
               n_Aexp { (Abstract_Syntax.DIV ($1, $3))
I n Aexp T MOD
             n Aexp { (Abstract Syntax.MOD ($1. $3))
| T_PLUS n_Aexp %prec T_UPLUS { (Abstract_Syntax.UPLUS $2)
| T_MINUS n_Aexp %prec T_UMINUS { (Abstract_Syntax.UMINUS $2)
| T LPAR n Aexp T RPAR
                          { $2
```

This ensures that s is a finite non-empty string of digits: $s = d_n d_{n-1} \dots d_1 d_0$ where n > 0, $d_i \in [0, 9]$, $i = 1, \dots, n$ Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005 - 173 - © P. Cousot, 2005

PROOF. By recurrence on n:

- if n = -1 that is |s| = 0 whence (String.length s) = 0, then by symbolic execution, we get (NAT i) as requested
- if n = 0 then, by symbolic execution

```
int of intstring i "d_0"
= let v = (10 \otimes i) \oplus (\text{int of string "} d_0") \text{ in}
    (v < i) (ERROR NAT ARITHMETIC) sint of intstring v ""
= (((10 \otimes i) \oplus d<sub>0</sub>) < i? (ERROR NAT ARITHMETIC) : (NAT (10 \otimes i) \oplus d<sub>0</sub>))
         Notice that \otimes and \oplus are modulo arithmetic in [-max int -
          1, max int] where max int > 9 and so ((10 \otimes i) \oplus d_0) < i \iff
          ((10 \otimes i) \oplus d_0) > \max int since i, d_0 > 0. Moreover (10 \otimes i) \oplus d_0 = 0
          (10 \times i) + d_0) when ((10 \times i) + d_0) < \text{max} int. Finally d_0 = d_0 =
          s so that we get: \
= ((10^{1} \times i) + s) > \text{max} int ? (ERROR NAT ARITHMETIC) : (NAT (10^{1} \times i) + s)
           Q.E.D.
```

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 © P. Cousot. 2005

Recall that we have defined (in decimal notation):

$$\underline{s} \stackrel{\text{def}}{=} d_n.10^n + d_{n-1}.10^{n-1} + \dots + d_1.10^1 + d_0.10^0$$

= $d_n.10^n + d_{n-1}.10^{n-1} + \dots + d_1.10 + d_0$

LEMMA. If i is a non-negative integer and s a string of digits, " $d_n \dots d_0$ " (which may be empty) then

```
int of intstring is
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          if n = -1 (|s| = 0)
           = (NAT i)
           = (NAT 10^{n+1} \times i + s) if 10^{n+1} \times i + s \leq \max_{i=1}^{n+1} \sum_{j=1}^{n+1} \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} \sum_{j=1}^{n+1} \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} \sum_{j=1}
              = (ERROR NAT ARITHMETIC)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         otherwise
```

- if n > 0 then

```
= let v = (10 \otimes i) \oplus (\text{int of string "} d_n") in
    ( v < i ? (ERROR NAT ARITHMETIC) sint of intstring v "d_{n-1} \ldots d_0")
= let v = (10 \otimes i) \oplus d_n in
    ( v < i ? (ERROR NAT ARITHMETIC) : int of intstring v "d_{n-1} \ldots d_0")
          ? Notice that ((10 \otimes i) \oplus d_n) < i iff ((10 \times i) + d_n) > \max int since i,
           d_n > 0
= ((10 \times i) + d_n) > \max \text{ int } ? \text{ (ERROR NAT ARITHMETIC)}
   int of intstring ((10 \times i) + d_n) "d_{n-1} \dots d_0"
          by induction hypothesis?
= ((10 \times i) + d_n > \max \text{ int } ? \text{(ERROR NAT ARITHMETIC)} | 10^n \times ((10 \times i) + i)
   (10 \times i) + d_{n-1} \dots d_0 < max int (10 \times i) + d_n + d_n + d_n + d_n
    (ERROR NAT ARITHMETIC))
         Notice that 10^n \times ((10 \times i) + d_n) + "d_{n-1} \dots d_0" = 10^{n+1} \cdot i + 10^n \cdot d_n + d_{n-1} \cdot 10^{n-1} + \dots + d_1 \cdot 10 + d_0 = 10^{n+1} \cdot i + "d_n d_{n-1} \dots d_0"
```

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

int of intstring i " $d_n d_{n-1} \dots d_0$ "

```
= ((10 \times i) + d_n > \texttt{max\_int} ? (\texttt{ERROR\_NAT ARITHMETIC}) | 10^{n+1}.i + \\ "d_n d_{n-1} \dots d_0" \leq \texttt{max\_int} ? (\texttt{NAT} \ 10^{n+1}.i + \\ "d_n d_{n-1} \dots d_0") = \\
      (ERROR NAT ARITHMETIC))
               ? Observe that (10 \times i) + d_n > \max int \implies 10^{n+1} \cdot i + "d_n d_{n-1} \dots d_0" > i
= (10^{n+1}.i + "d_nd_{n-1}\dots d_0") \leq \max_{\text{int}} ? 10^{n+1}.i + "d_nd_{n-1}\dots d_0" = (\text{ERROR NAT ARITHMETIC}) Q.E.D.)
```

LEMMA. Let $s = "d_n \dots d_0"$ where n > 0. Then

```
machine int of string s
                             if s \le \max int
= (NAT s)
                             otherwise
 = (ERROR NAT ARITHMETIC)
```

PROOF. By symbolic execution:

Course 16,399; "Abstract interpretation", Tuesday May 5th, 2005

— 177 —

© P. Cousot, 2005

```
f NAT s
\stackrel{\text{def}}{=} \alpha_i(\{(\text{NAT }\underline{s})\})
= \langle s, s \rangle
Otherwise s > \max int and then
     f NAT s
\stackrel{\text{def}}{=} \alpha_i(\{(\text{ERROR NAT ARITHMETIC})\})
= |
```

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 179 —

© P. Cousot, 2005

П

```
machine int of string s
= int of intstring 0 s
       by previous lemma
= (NAT s)
                                                           \inf \underline{s} \leq \max \inf \S
= (ERROR NAT ARITHMETIC)
                                                                 /otherwise \
```

We now have: THEOREM.

$$f_{NAT} s = [\underline{s}, ; \underline{s}] \text{ if } \underline{s} \leq \text{max_int}$$
 $= \bot \text{ otherwise}$

PROOF. If $\underline{s} \leq \max$ int then

Course 16.399: "Abstract interpretation". Tuesday May 5th. 2005 — 178 —

© P. Cousot, 2005

The implementation follows (the impossible case (ERROR NAT INITIALIZATION) could have been signalled as a design error by the analyzer):

```
(* f_NAT s = alpha({(machine_int_of_string s)})
                                                       *)
let f_NAT s =
   match (machine_int_of_string s) with
   | (ERROR_NAT INITIALIZATION) -> bottom
   | (ERROR NAT ARITHMETIC) -> bottom
   | (NAT i) -> (i,i)
```

Design of the abstract transformers: backward integer constant

- The backward collecting semantics of arithmetic expressions was defined in lecture (17) as:

$$\operatorname{Baexp}\llbracket A
rbracket(R)P\stackrel{\operatorname{def}}{=} \{
ho\in R\mid \exists i\in P\cap \mathbb{I}:
ho\vdash A \Longrightarrow i\}$$
 (2)

and their backward abstract interpretation was defined as:

$$\operatorname{Baexp}^{\triangleleft} \llbracket A \rrbracket \stackrel{\sim}{=} \alpha^{\triangleleft}(\operatorname{Baexp} \llbracket A \rrbracket) \tag{3}$$

and we have proved that:

Course 16.399; "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

```
b NAT s v
     (machine int of strings) \in \gamma(v) \cap [\min \text{ int, max int}]
 = \text{let } v = [\overline{a}, b] \text{ in } (\overline{s} > \text{max int } ? \text{ ff } : a < s < b)
     PROOF. Assume that v = [a, b] where b < a for bottom. We have:
         b NAT s[a,b]
     = (machine int of string s) \in \gamma([a,b]) \cap [\min \text{ int, max int}]
              /by lemma on machine_int_of_string
     = (s < \max int ? (INT s) : (ERROR NAT ARITHMETIC)) \in \gamma([a,b]) \cap
         [min int, max int]
     = (s < max int? (INT s): (ERROR NAT ARITHMETIC)) \in ((a < b? ([a,b] \cup
         \{\Omega_1,\Omega_a\}) \cap [min_int, max_int] \cap (\{\Omega_1,\Omega_a\}) \cap [min_int, max_int])))
  Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005 — 183 —
```

$$\mathsf{Baexp}^{\triangleleft} \llbracket A \rrbracket (\lambda \mathsf{Y} \cdot \bot) p \stackrel{\mathsf{def}}{=} \lambda \mathsf{Y} \cdot \bot \qquad \text{if } \gamma(\bot) = \emptyset \quad \textbf{(4)}$$

$$\operatorname{Baexp}^{\triangleleft} \llbracket \mathbf{n} \rrbracket (r) p \stackrel{\operatorname{def}}{=} (\mathbf{n}^{\triangleleft} (p) ? r : \lambda Y \cdot \bot)$$
 (5)

where:

$$\operatorname{n}^{\triangleleft}(p) \stackrel{\operatorname{def}}{=} (\underline{\operatorname{n}} \in \gamma(p) \cap \mathbb{I}) \tag{6}$$

- Therefore, for the implementation, we define ⁶

```
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
```

```
© P. Cousot, 2005
```

$$= \ (\underline{s} \leq \texttt{max_int} \ ? \ (\texttt{INT} \ s) \ \texttt{!`} \ (\texttt{ERROR_NAT ARITHMETIC})) \in (a \leq b \ ? \ [a,b] \ \texttt{!`} \ \emptyset) \\ = \ (\underline{s} > \texttt{max_int} \ ? \ \texttt{ff} \ \| \ a \leq b \ ? \ a \leq \underline{s} \leq b \ \texttt{!'} \ \texttt{ff}) \\ = \ (\underline{s} > \texttt{max} \ \ \texttt{int} \ ? \ \texttt{ff} \ \texttt{!`} \ a \leq \underline{s} \leq b)$$

which directly yields the implementation:

```
(* b_NAT s v = (machine_int_of_string s) in
                                   gamma(v) cap [min_int, max_int]? *)
let b_NAT s (a, b) =
match (machine_int_of_string s) with
| (ERROR NAT INITIALIZATION) -> false
| (ERROR_NAT ARITHMETIC) -> false
| (NAT i) -> (a <= i) && (i <= b)
```

П

⁶ For short, up to a machine representation (NAT i) for i, (ERROR_NAT INITIALIZATION) for Ω_i and (ERROR NAT ARITHMETIC) for Ω_2 .

Design of the abstract transformers: forward integer addition

- The forward abstract semantics of a binary operator is (from lecture 16):

$$\operatorname{\mathsf{Faexp}}^{\scriptscriptstyle{
ho}} \llbracket A_1 \operatorname{\mathsf{b}} A_2
rbracket^{\operatorname{def}} \operatorname{\mathsf{b}}^{\scriptscriptstyle{
ho}} (\operatorname{\mathsf{Faexp}}^{\scriptscriptstyle{
ho}} \llbracket A_1
rbracket^r r, \operatorname{\mathsf{Faexp}}^{\scriptscriptstyle{
ho}} \llbracket A_2
rbracket^r r)$$

where:

$$egin{aligned} \operatorname{b}^{^{
ho}}(p_1,p_2) &\supseteq lpha(\{v_1 \ \underline{\mathrm{b}} \ v_2 \mid v_1 \in \gamma(p_1) \land v_2 \in \gamma(p_2)\}) \end{aligned}$$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 185 —

$$egin{aligned} oldsymbol{\gamma}([u,v]) &= \{\Omega_\mathtt{1},\Omega_\mathtt{a}\} & ext{if } v < u \ oldsymbol{\gamma}([u,v]) &= [u,v] \cup \{\Omega_\mathtt{1},\Omega_\mathtt{a}\} & ext{if } v \geq u \end{aligned}$$

and

```
let add int x v =
 if (x >= 0) & (y >= 0) then
    (if x <= (max_int - y) then (NAT (x+y)) else (ERROR_NAT ARITHMETIC))
  else if (x \le 0) & (y \le 0) then
    (if (min_int - x) <= y then (NAT (x+y)) else (ERROR_NAT ARITHMETIC))
  else (NAT (x+v))
let machine_binary_plus a b = match a with
| ERROR_NAT e -> (ERROR_NAT e)
| NAT a' -> match b with
 | ERROR NAT e' -> (ERROR NAT e')
 | NAT b' -> (add_int a' b')
© P. Cousot, 2005
```

- Therefore, up to the computer representation

$$egin{cases} oxedsymbol{oxed} oxedsymbol{eta}_i
ightarrow (ext{max_int,min_int}) \ \Omega_i
ightarrow (ext{ERROR_NAT INITIALIZATION}) \ \Omega_a
ightarrow (ext{ERROR_NAT ARITHMETIC}) \ [a,b]
ightarrow (a,b) \end{cases}$$

we define

f_PLUS
$$x$$
 y \supseteq $lpha(\{ ext{machine_binary_plus}\ i\ j\ |\ i\in\gamma(x)\land j\in\gamma(y)\})$

where

Course 16,399: "Abstract interpretation". Tuesday May 5th, 2005

© P. Cousot, 2005

LEMMA.

$$egin{add_int} ext{add_int} & x & y = x + y & ext{if min_int} \leq x + y \leq ext{max_int} \\ & = \Omega_{ ext{a}} & ext{otherwise} \\ \end{array}$$

PROOF. By cases

- if $x > 0 \land y > 0$ then, by symbolic execution, if $0 < x + y < \max$ int (or equivalently $x \leq \max \text{ int} - y$, which avoids overflows) then add int x y =x+y else x+y>qmax int and then add int $xy=\Omega_{a}$
- if $x < 0 \land y < 0$ then, by symbolic execution, if min int < x + y < 0 (or equivalently min int -x < y, which avoids overflows) then add int x y =x+y else $x+y<\min$ int and add int $x\ y=\Omega_{ ext{a}}$
- Otherwise x and y are of opposite signs. Assume $x \in [\max]$ int -1,0]and $y \in [0, \max]$ int] (the other case beign symmetric). We have $x + y \in$ $[-\max \text{ int} - 1, \max \text{ int}] = [\min \text{ int}, \max \text{ int}] \text{ and add int } x y = x + y$ as required.

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 188 —

Notice that the proof implies the absence of overflows when computing $\operatorname{add_int} x\ y$ and so the modulo arithmetic of OCaml can be used in place of the mathematical arithmetic operations

```
Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005
```

```
© P. Cousot, 2005
```

© P. Cousot, 2005

```
 \begin{split} &= \; \alpha(\{\texttt{machine\_binary\_plus}\; i\; j \mid i \in \{\Omega_1, \Omega_\mathtt{a}\} \land j \in \gamma(b)\}) \\ &= \; \alpha(\{\Omega_\mathtt{a} \mid j \in \gamma(b)\} \cup \{\Omega_1 \mid j \in \gamma(b)\}) \\ &\qquad \qquad (\gamma(b) \; \text{is not empty}) \\ &= \; \alpha(\{\Omega_\mathtt{a}, \Omega_1\}) \\ &= \; \bot \end{split}
```

- The case of $b = \bot$ is handled in the same way, so that f PLUS $a \bot = \bot$.
- Otherwise $a=(u,v) \neq \bot \land b=(w,x) \neq \bot$ in which case, we have $u \leq v$ and $w \leq x$. We calculate

```
\texttt{f\_PLUS}\;(u,v)\;(w,x)
```

- $= \ \alpha(\{\texttt{machine_binary_plus}\ i\ j\mid i\in\gamma((u,v))\land j\in\gamma((w,x))\})$
- $= \ \alpha(\{\texttt{machine_binary_plus}\ i\ j\mid i\in\{i'\mid u\leq i'\leq v\}\cup\{\varOmega_\mathtt{i},\varOmega_\mathtt{a}\}\land j\in\{j'\mid w\leq j'\leq x\}\}\cup\{\varOmega_\mathtt{i},\varOmega_\mathtt{a}\})$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 191 — © P. Cousot, 2005

```
THEOREM.
```

```
\begin{array}{l} \texttt{f\_PLUS} \perp b = \bot \\ \texttt{f\_PLUS} \; a \perp = \bot \\ \texttt{f\_PLUS} \; (u,v) \; (w,x) = \bot & \texttt{if} \; u+w > \texttt{max\_int} \\ = \bot & \texttt{if} \; v+x < \texttt{min\_int} \\ = (\texttt{min\_int},\texttt{max\_int}) \; \texttt{if} \; u+w < \texttt{min\_int} \land v+x > \texttt{max\_int} \\ = (\texttt{min\_int},u+w) & \texttt{if} \; u+w < \texttt{min\_int} \land v+x \leq \texttt{max\_int} \\ = (u+w,\texttt{max\_int}) & \texttt{if} \; u+w \geq \texttt{min\_int} \land v+x \geq \texttt{max\_int} \\ = (u+w,v+x) & \texttt{if} \; u+w \geq \texttt{min\_int} \land v+x \leq \texttt{max\_int} \end{array}
```

PROOF. For the definition of f_PLUS a b, we proceed by cases

- if a is bottom, that is a = (u, v) with v < u so that (isbottom (u, v)) holds, we have

```
\begin{array}{ll} \texttt{f\_PLUS} \perp b \\ = & \alpha(\{\texttt{machine\_binary\_plus} \ i \ j \mid i \in \gamma(\bot) \land j \in \gamma(b)\}) \\ \blacksquare & \\ \blacksquare & \\ \blacksquare & \\ \texttt{Course 16.399: "Abstract interpretation", Thesday May 5th, 2005} & -190 - \\ \end{array}
```

```
 \{\text{Dy symbolic execution of machine\_binary\_plus in cases } i \in \{\Omega_{1},\Omega_{a}\}, \ j \in \{\Omega_{1},\Omega_{a}\}, \ i+j \in [\min\_\inf,\max\_\inf] \land i+j \not\in [\min\_\inf,\max\_\inf] \land i+j \not\in [\min\_\inf,\max_i] \} \\ = \alpha(\{\Omega_{1},\Omega_{a}\} \cup \{i+j \mid \min\_\inf \leq i+j \leq \max\_\inf \land u \leq i \leq v \land w \leq j \leq x\}) \\ = \alpha(\{\Omega_{1},\Omega_{a}\} \cup \{i+j \mid \max(\min\_\inf,u+w) \leq i+j \leq \min(\max\_\inf,v+x)\}) \\ \text{We proceed by cases:} \\ -\text{If } u+w > \max\_\inf, \text{ then } \max(\min\_\inf,u+w) = u+w \text{ and } \min(\max\_\inf,v+x) \\ = \max\_\inf \ i \text{ for } v+x \geq u+w \text{ so in this case} \\ = \alpha(\{\Omega_{1},\Omega_{a}\} \cup \{i+j \mid \max\_\inf < i+j \leq \max\_\inf\}) \\ = \alpha(\{\Omega_{1},\Omega_{a}\}) \\ = \bot \\ -\text{ If } v+x < \min\_\inf, \text{ then } u+w \leq v+x < \min\_\inf < \max\_\inf \text{ so } \max(\min\_\inf,u+w) = u+x, \text{ so that in this case} \\ \text{ in this case}
```

© P. Cousot, 2005

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 192 —

$$= \alpha(\{\Omega_{\texttt{i}}, \Omega_{\texttt{a}}\} \cup \{i+j \mid \texttt{min_int} < i+j \le v+x < \texttt{min_int}\})$$

$$= \alpha(\{\Omega_{\texttt{i}}, \Omega_{\texttt{a}}\})$$

$$= \square$$

- Otherwise, we have $u+w \le v+x$, $u+w \le \max$ int and min int $\le v+x$. There remain four cases:
- if $u + w < \min$ int then $\max(\min int, u + w) = \min$ int with two subcases:
- if $v+x>\max$ int then $\min(\max int, v+x)=\max$ int so that in that case:

$$= \alpha(\{\Omega_{i}, \Omega_{a}\} \cup \{i+j \mid \min_int \le i+j \le \max_int\})$$

= (min int, max int)

- otherwise $v+x \leq \max$ int and then $\min(\max int, v+x) = v+x$ so that in that case:

$$= \ \alpha(\{\Omega_{\mathtt{l}},\Omega_{\mathtt{a}}\} \cup \{i+j \mid \mathtt{min_int} \leq i+j \leq u+w \leq \mathtt{max_int}\})$$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 193 —

© P. Cousot, 2005

Observe that all sums are in the [min int, max int] interval whence produce no overflow and can be computed with OCaml modulo arithmetic.

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

```
= (min int, u + w)
```

- otherwise $u + w > \min$ int and so $\max(\min int, u + w) = u + w$, with two subcases, as above:
 - if $v+x>\max$ int then $\min(\max int, v+x)=\max$ int so that in that

$$= \alpha(\{\Omega_1, \Omega_a\} \cup \{i+j \mid \min_int \le u+w \le i+j \le \max_int\})$$
$$= (u+w, \max int)$$

- otherwise $v + x \le \max$ int then $\min(\max int, v + x) = v + x$ so that in

$$= \alpha(\{\Omega_{\texttt{i}}, \Omega_{\texttt{a}}\} \cup \{i+j \mid \texttt{min_int} \leq u+w \leq i+j \leq v+x \leq \texttt{max_int}\})$$

= $(u+w, v+x)$

The only potential problem are the test x + y < 0min int $\wedge x + y > \max$ int which can be easily proved to be equivalent to the following functions which produce no overflow whence can be implemented with modulo arithmetic:

```
let is_sum_lt_min_int x y =
(* x + y < min_int *)
if (x < 0) & (y < 0) then
(x < min_int - y)
else false
let is_sum_gt_max_int x y =
(* x + y > max_int *)
if (x > 0) && (y > 0) then
(x > max int - v)
else false
```

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

@ P. Cousot, 2005

П

From the calculational derivation of the definition of f_PLUS as shown above, we immediately obtain the following implementation, by just considering all possible cases:

Course 16,399: "Abstract interpretation". Tuesday May 5th, 2005

— 197 — © P. Cousot. 2005

$$b^{\triangleleft}(q_1, q_2, p) \supseteq^{2} \qquad (9)$$

$$\alpha^{2}(\{\langle i_1, i_2 \rangle \in \gamma^{2}(\langle q_1, q_2 \rangle) \mid i_1 \underline{b} i_2 \in \gamma(p) \cap \mathbb{I}\})$$

 We consider the case of the binary addition +, up to the encoding

$$egin{cases} oxedsymbol{oxed} oxedsymbol{eta}_1
ightarrow (exttt{max_int,min_int}) \ \Omega_1
ightarrow (exttt{ERROR_NAT INITIALIZATION}) \ \Omega_2
ightarrow (exttt{ERROR_NAT ARITHMETIC}) \ [a,b]
ightarrow (a,b) \end{cases}$$

- Recall that we have

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 199 — © P. Cousot, 2005

Design of the abstract transformers: backward integer addition

- The generic backward/bottom-up non-relational abstract semantics of arithmetic expressions was shown to be of the form

$$\begin{aligned} \operatorname{Baexp}^{\triangleleft} \llbracket A_1 \operatorname{b} A_2 \rrbracket(r) p &\stackrel{\operatorname{def}}{=} \\ \operatorname{let} \langle p_1, \ p_2 \rangle &= \operatorname{b}^{\triangleleft} (\operatorname{Faexp}^{\triangleright} \llbracket A_1 \rrbracket r, \operatorname{Faexp}^{\triangleright} \llbracket A_2 \rrbracket r, p) \text{ in} \\ \operatorname{Baexp}^{\triangleleft} \llbracket A_1 \rrbracket(r) p_1 & \dot{\sqcap} \operatorname{Baexp}^{\triangleleft} \llbracket A_2 \rrbracket(r) p_2 \end{aligned} \tag{8}$$

where

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

```
(* gamma (a.b)
(* = [a,b] U \{_0(a), _0(i)\}  when min_int <= a <= b <= max_int *)
(* = \{ 0 (a), 0 (i) \} when a = max int > min int = b
(* infimum: alpha({})
let bottom = (max_int, min_int)
(* infimum: bot () = alpha({}) *)
let bot () = bottom
(* isbottom a = (a = bot) *)
let isbottom (x, y) = y < x
(* isbotempty () = gamma(bot ()) = {}?
                                                                     *)
let isbotempty () = false (* gamma([max_int, min_int]) =
                           (* \{_0_(a), _0_(i)\} <> emptyset
(* errors = alpha(\{_0_i, _0_a\}) *)
let errors = bottom
(* included in errors?: in_errors p = gamma(p) subseteq {_0_i, _0_a} *)
let in_errors (x, y) = isbottom (x, y)
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005 — 200 —
                                                             © P. Cousot, 2005
```

```
    We define
```

b_PLUS
$$q_1$$
 q_2 $p \stackrel{\mathrm{def}}{=} \alpha^2(\{\langle i_1,\ i_2 \rangle \mid i_1 \in \gamma(q_1) \wedge i_2 \in \gamma(q_2) \ \wedge (\mathsf{machine_binary_plus}\ i_1\ i_2) \in \gamma(p) \cap \mathbb{I}\})$
We have $q_1 = (a,b),\ q_2 = (c,d)$ and $p = (e,f)$ with $(x,y) = \bot$ (bottom) whenever $y < x$.

Theorem.

b_PLUS $q_1\ q_2\ p = \bot$ if $q_1,\ q_2\ \mathrm{or}\ p = \bot$

b_PLUS $(a,b)\ (c,d)\ (e,f) =$

let $\ell_1 = \max(a,(e-d < \min_\mathrm{int}\ \#\mathrm{min_int}\ \#\mathrm{f}-c))$ in and $u_1 = \min(b,(f-c) = \max_{a=1}^{\infty} (a,(e-b) < \min_{a=1}^{\infty} (a,(e-b)))$ in and $u_2 = \min(d,(e-b) > \max_{a=1}^{\infty} (a,(e-b)))$ in and $u_3 = \min(d,(e-a) > \max_{a=1}^{\infty} (a,(e-b)))$ in

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

and $q_1' = (\ell_1 \leq u_1 ? [\ell_1, u_1] : \bot)$ in

and $q_2' = (\ell_2 \leq u_2 ? [\ell_2, u_2] : \bot)$ in $\langle q_1', q_2' \rangle$

© P. Cousot. 2005

```
b PLUS (a,b) (c,d) (e,f)
```

- $= \alpha^2(\{\langle i_1, i_2 \rangle \mid i_1 \in \gamma((a,b)) \land i_2 \in \gamma((c,d)) \land (\mathsf{machine} \;\; \mathsf{binary} \;\; \mathsf{plus} \; i_1 \; i_2) \in \mathcal{C}$ $\gamma((e,f)) \cap \mathbb{I}\}$
- $= \alpha^2(\{\langle i_1,i_2\rangle \mid i_1 \in \{i_1' \in \mathbb{I} \mid a \leq i_1' \leq b\} \cup \{\Omega_1,\Omega_2\} \land i_2 \in \{i_2' \in \mathbb{I} \mid c \leq i_2' \leq a\})$ $d\} \cup \{\Omega_1, \Omega_2\} \land (\text{machine binary plus } i_1, i_2) \in \{r \in \mathbb{I} \mid e < r < f\}\})$ by def. machine binary plus, we cannot have $i_1 \in \{\Omega_1, \Omega_2\}$ or $i_2 \in \{\Omega_1, \Omega_2\}$ and $i_1 + i_2$ cannot overflow since otherwise (machine binary plus i_1 i_2) = Ω_a } $\notin \mathbb{I}$
- $= \alpha^2(\{\langle i_1, i_2 \rangle \mid a \leq i_1 \leq b \wedge c \leq i_2 \leq d \wedge \min \text{ int } \leq i_1 + i_2 \leq \max \text{ int } \wedge e \leq i_2 \leq d \wedge \min \text{ or } \leq i_1 \leq i_2 \leq d \wedge \min \text{ or } \leq i_2 \leq d \wedge$
- min(max int, f)

Because of commutativity in absence of overflow, the cases of i_1 and i_2 are symmetric, and so we consider only i_1 . We have:

$$\max(\min int, e) - i_2 \le i_1 \le \min(\max int, f) - i_2$$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

PROOF. We first consider the cases of bottom arguments

- If $q_1 = \bot$, then $i_1 \in \gamma(q_1) = \{\Omega_1, \Omega_2\}$ so, by definition of (machine binary plus (in values.ml):

```
let machine_binary_plus a b = match a with
| ERROR_NAT e -> (ERROR_NAT e)
| NAT a' -> match b with
 | ERROR NAT e' -> (ERROR NAT e')
 | NAT b' -> (add_int a' b')
```

we have (machine binary plus i_1 $i_2 = i_1 \notin \mathbb{I}$ so $i_1 \notin \gamma(p) \cap \mathbb{I}$. In that case the result is therefore $\alpha^2(\emptyset) = \langle \bot, \bot \rangle$.

- If $q_2 = \bot$, then the same reasoning yields $\langle \bot, \bot \rangle$.
- If $p = \bot$ then $\gamma(p) \cap \mathbb{I} = \{\Omega_1, \Omega_2\} \cap \mathbb{I} = \emptyset$ and so, once again, the result is $\alpha^2(\emptyset) = \langle \bot, \bot \rangle.$
- In the remaining cases, none of $q_1=(a,b),\,q_2=(c,d)$ and p=(e,f) is \perp so that we can assume a < b, c < d and e < f. In that case we have:

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

@ P. Cousot. 2005

 $-d \leq -i_2 \leq -c$ and $\max(\min \ \operatorname{int}, e) - d \leq i_1 \leq \min(\max \ \operatorname{int}, f) - c$ SO $a < i_1 < b$ and $\max(a, \max(\min int, e) - d) < i_1 < \min(b, \min(\max int, f) - c)$ SO $\max(a, \min \text{ int } -d, e-d) \leq i_1 \leq \min(b, \max \text{ int } -c, f-c)$ i.e. min int- $< a < i_1 < b < \max$ int but $\max(a, \min \text{ int, min int} - d, e - d) < i_1 < \min(b, \max \text{ int, max int} - c, f - c)$ If d > 0 then min int > min int -d while if d < 0 then min int < e <d < 0 so min int -d < e - d whence max(a, min int, min int <math>-d, e - d) = 0 $\max(a, \min int, e-d)$. Then same way we have $\min(b, \max int, \max int$ $c, f - c) = \min(b, \max int, f - c)$ and so $\max(a, \min \text{ int}, e - d) < i_1 < \min(b, \max \text{ int}, f - c)$ which can also be written in the form: $\max(a, (e-d < \min \text{ int } ? \min \text{ int } e-d)) < i_1 < \min(b, (f-c > i_1))$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

max int? max int: $\overline{f} - c$).

The case of i_2 is symmetrical

The test can be implemented using the following function which can easily be shown to be respectively equivalent to $(e - d < \min)$ and $f - c > \max$ int while avoiding overflows:

```
let is_difference_lt_min_int x y =
(* x - y < min_int *)
if (x < 0) && (v > 0) then
(x < min_int + y)
else false
let is_difference_gt_max_int x y =
(* x - v > max int *)
if (x > 0) \&\& (y < 0) then
(x > max_int + y)
else false
```

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

Design of the abstract transformers: forward integer comparison

- For the generic forward/top-down nonrelational abstract semantics of boolean expressions, we have defined (in lecture 16):

```
\operatorname{Abexp}[A_1 \subset A_2][r] = \check{\operatorname{c}}(\operatorname{Faexp}^{\triangleright}[A_1][r], \operatorname{Faexp}^{\triangleright}[A_2][r])
          where
\check{\mathtt{c}}(p_1,p_2)r\ \dot{\sqsupset}\ (\exists v_1\in\gamma(p_1):\exists v_2\in\gamma(p_2)\cap\mathbb{I}:v_1\ \mathtt{c}\ v_2=\mathtt{tt}\ ?\ r:\dot{\bot})
     - Therefore, we define f LT p q such that
(\exists i \in \gamma(p) \cap \mathbb{I} : \exists j \in \gamma(q) \cap \mathbb{I} : \mathtt{machine\_lt} \ i \ j) \Longrightarrow (\mathtt{f} \ \mathtt{LT} \ p \ q)
     Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005 — 207 —
                                                                                                                © P. Cousot, 2005
```

The symbolic execution of b PLUS q_1 q_2 p yields the expected result as defined above:

```
(* b_BOP q1 q2 p = alpha2({<i1,i2> in gamma2(<q1,q2>)} |
               BOP(i1, i2) \in gamma(p) cap [min_int, max_int]}) *)
let b_PLUS (a, b) (c, d) (e, f) =
   if (in_errors (a, b)) || (in_errors (c, d)) then errors, errors
   else if (in_errors (e, f)) then bottom, bottom
   else let lq1 = max a (if (is_difference_lt_min_int e d)
                         then min_int else (e - d))
        and uq1 = min b (if (is_difference_gt_max_int f c)
                 then max_int else (f - c))
  and lq2 = max c (if (is_difference_lt_min_int e b)
                  then min_int else (e - b))
  and ug2 = min d (if (is_difference_gt_max_int f a)
                   then max int else (f - a))
```

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

where (from values.ml)

```
let machine lt a b = match a with
| ERROR_NAT e -> (ERROR_BOOL e)
| NAT a' -> match b with
  | ERROR_NAT e' -> (ERROR_BOOL e')
 | NAT b' -> (BOOLEAN (a' < b'))
```

THEOREM.

$$\begin{array}{c} \texttt{f_LT} \perp q = \bot \\ \texttt{f_LT} \ p \perp = \bot \\ \texttt{f_LT} \ (x,y) \ (x',y') = (x < y') \end{array}$$

PROOF. - Observe that if $p = \bot$ or $q = \bot$ then $\gamma(p) \cap \mathbb{I} = \emptyset$ or $\gamma(q) \cap \mathbb{I} = \emptyset$ so that we have f LT $\perp q = \perp$ and f LT $p \perp = \perp$

- Otherwise we let p = (x, y) and q = (x', y') where x < y and x' < y'. We have

```
(\exists i \in \gamma((x,y)) \cap \mathbb{I} : \exists j \in \gamma((x',y')) \cap \mathbb{I} : machine\_lt \ i \ j)
y'} \cup {\Omega_1, \Omega_2}) \cap \mathbb{I} : machine_lt i j)
= (\exists i, j \in \mathbb{I} : x \leq i \leq y \land x' \leq j \leq y' \land machine\_lt \ i \ j)
= (\exists i, j \in \mathbb{I} : x < i < y \land x' < j < y' \land i < j)
\implies (\exists i, j \in \mathbb{I} : x < i < j < y')
\implies (x < y')
so when p = (x, y) \neq \bot and q = (x', y') \neq \bot, we define f LT (x, y) (x', y') =
(x < y').
```

Design of the abstract transformers: forward integer comparison, revisited version

- When considering the improved abstract interpretation of boolean expressions using the backward abstract interpretation of arithmetic subexpressions (course 17), we have defined:

$$egin{aligned} \operatorname{Abexp}\llbracket A_1 \in A_2
rbracket r & \operatorname{def}
rbracket \\ \operatorname{let} \ \langle p_1, \ p_2
angle = \check{\operatorname{c}}(\operatorname{Faexp}^{ riangle} \llbracket A_1
rbracket r, \operatorname{Faexp}^{ riangle} \llbracket A_2
rbracket r) & \operatorname{in}
bracket \\ \operatorname{Baexp}^{ riangle} \llbracket A_1
rbracket (r) p_1 \ \dot{\sqcap} \ \operatorname{Baexp}^{ riangle} \llbracket A_2
rbracket (r) p_2 \end{aligned}$$

where

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 211 —

© P. Cousot, 2005

This immediately leads to the following implementation:

```
(* Are there integer values in gamma(u) equal to values in gamma(v)?
(* f_LT p q = exists i in gamma(p) cap [min_int,max_int]:
           exists j in gamma(q) cap [min_int,max_int]: machine_eq i j *)
let f_EQ(x, y)(x', y') =
  if (isbottom (x, y)) || (isbottom (x', y')) then false
   else (\min y y') \le (\max x x')
```

$$reve{c}(p_1,p_2) \sqsupseteq^2 lpha^2(\{\langle i_1,\ i_2
angle \mid i_1 \in \gamma(p_1) \cap \mathbb{I} \ \wedge i_2 \in \gamma(p_2) \cap \mathbb{I} \wedge i_1 \subseteq i_2 = \mathsf{tt}\})$$

- Up to the machine representation of abstract values, we define:

a_LT
$$p$$
 $q=lpha^2(\{\langle i_1,\ i_2
angle\ |\ i_1\in\gamma(p_1)\cap\mathbb{I}\wedge i_2\in\gamma(p_2)\cap\mathbb{I}\ \wedge\ i_1< i_2\})$

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

THEOREM.

a_LT
$$\perp q = \langle \perp, \perp \rangle$$

a_LT $p \perp = \langle \perp, \perp \rangle$
a_LT (a,b) $(c,d) = \langle \perp, \perp \rangle$ if $a \geq d$
 $= \langle [a, \min(b,d-1)], [\max(a+1,c),d] \rangle$
if $a < d$

PROOF. - If $p = \bot$ or $q = \bot$ then $\gamma(p) \cap \mathbb{I}$ or $\gamma(q) \cap \mathbb{I}$ is \emptyset so a LT $\bot q = \langle \bot, \bot \rangle$ and a LT $p \perp = \langle \perp, \perp \rangle$

- Otherwise p = [a, b] and q = (c, d) with min int a < b < b max int and \min int $\leq c \leq d \leq \max$ int
- We have

Course 16,399; "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

```
= ((a, \min(b, d-1)), (\max(a+1, c), d))
```

which is of the same form than in the previous bottom case.

The two cases can be grouped together in the implementation:

```
(* a_LT p1 p2 = alpha2({<i1, i2>} |
                       i1 in gamma(p1) cap [min_int, max_int] /\ *)
                      i2 in gamma(p1) cap [min_int, max_int] /\ *)
                       i1 < i2
let a_LT (a, b) (c, d) =
if (isbottom (a, b)) || (isbottom (c, d)) || (a \ge d) then
  (bottom, bottom) else ((a, min b (d - 1)), (max (a + 1) c, d))
```

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 215 —

© P. Cousot, 2005

```
a LT (a,b) (c,d)
lpha^2(\{\langle i_1,\ i_2
angle\ |\ i_1\in\gamma(a,b))\cap\mathbb{I}\wedge i_2\in\gamma((c,d))\cap\mathbb{I}\wedge i_1< i_2\})
\alpha^2(\{\langle i_1, i_2 \rangle \mid a \le i_1 \le b \land c \le i_2 \le d \land i_1 < i_2 \})
```

Now, we consider three cases:

- If d < a, then we get $\alpha^2(\emptyset) = \langle \bot, \bot \rangle$. In this case
 - $(a, \min(b, d-1)) = (a, d-1)$ since d < a < bsince d-1 < a
 - $(\max((a+1),c),d) = (a+1,d)$ since c < d < a < a+1= 1 since d < a + 1
- Otherwise a < d, in which case:

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 214 —

© P. Cousot, 2005

Implementation of the abstract transformers

```
1 (* avalues.ml *)
2 open Values
3 (* abstraction of sets of machine integers by intervals *)
4 (* complete lattice *)
7 (* ABSTRACT TRANSFORMERS *)
9 (* forward abstract semantics of arithmetic expressions *)
10 (* f_NAT s = alpha({(machine_int_of_string s)})
11 let f NAT s =
      match (machine_int_of_string s) with
    | (ERROR_NAT INITIALIZATION) -> bottom
13
     | (ERROR_NAT ARITHMETIC) -> bottom
```

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

```
15
      | (NAT i) -> (i i)
16 (* f_RANDOM () = alpha([min_int, max_int]) *)
17 let f_RANDOM () = (min_int, max_int)
18 (* f_UMINUS a = alpha({ (machine_unary_minus x) | x \in gamma(a)} }) *)
19 let f_{UMINUS}(x, y) = if (isbottom (x, y)) then bottom
       else if (x = min int) then (-v. max int)
21
      else (-v, -x)
22 (* f UPLUS a = alpha(gamma(a)) *)
23 let f_UPLUS x = x
24 (* f_BINARITH a b = alpha({ (machine_binary_binarith i j) |
25 (*
                                     i in gamma(a) /\ j \in gamma(b)} *)
26 let is_sum_lt_min_int x y =
(* x + v < min int *)
    if (x < 0) & (y < 0) then
       (x < min_int - y)
29
      else false
31 let is_sum_gt_max_int x y =
   (* x + y > max_int *)
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                               — 217 —
                                                            © P. Cousot, 2005
```

```
(x > max int + v)
51
       else false
53 let f MINUS (a, b) (c, d) =
       if (isbottom (a. b)) | (isbottom (c. d)) then bottom
55
       else if (is_difference_gt_max_int a d) then bottom
56
       else if (is difference lt min int b c) then bottom
57
       else let lb = if (is difference lt min int a d) then min int
58
                      else a - d
            and ub = if (is_difference_gt_max_int b c) then max_int
59
60
                        else h - c
61
            in (lb. ub)
62 let sign x = if (x >= 0) then 1 else -1
64 exception Error_abs of string
65 let abs x = if (x \ge 0) then x
                else if (x = min int) then
67
                    raise (Error abs "Incoherence: abs(min int)")
                else (-x)
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                              © P. Cousot, 2005
```

```
33
          if (x > 0) && (y > 0) then
34
             (x > max_int - y)
          else false
36 let f_PLUS (a, b) (c, d) =
    if (isbottom (a, b)) | (isbottom (c, d)) then bottom
    else if (is_sum_gt_max_int a c) then bottom
    else if (is_sum_lt_min_int b d) then bottom
      else let lb = if (is sum lt min int a c) then min int else a + c
41
           and ub = if (is_sum_gt_max_int b d) then max_int else b + d
           in (lb. ub)
43 let is_difference_lt_min_int x y =
       (* x - y < min_int *)
45
       if (x < 0) && (v > 0) then
          (x < min_int + y)
47
       else false
48 let is_difference_gt_max_int x y =
     (* x - y > max_int *)
       if (x > 0) \&\& (y < 0) then
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                              © P. Cousot, 2005
```

```
69
70 let times_int x y =
     if (x = 0) or (y = 0) then 0
72 else if x = min_int then
      (if y = 1 then min_int else if y < 0 then max_int else min_int)
73
      else if y = min_int then
75
      (if x = 1 then min_int else if x < 0 then max_int else min_int)
      else if (sign x) * (sign y) > 0 then
77
       (if (abs x) \leq (max_int/(abs y)) then (x*y) else max_int)
      else if (abs x) = 1 then (x*y)
79
      else
        (if (abs y) \leq (min_int/(-(abs x))) then (x*y) else min_int)
82 let f_TIMES (x, y) (x', y') =
       if (isbottom (x, v)) | (isbottom (x', v')) then bottom
       else let a = times_int x x'
85
            and b = times_int x y'
            and c = times_int y x'
Course 16.399; "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                              © P. Cousot, 2005
```

```
and d = times int v v' in
 87
 88
                ((\min (\min a, b) (\min c, d)), (\max (\max a, b) (\max c, d)))
 89
 90 let rec f_DIV (x, y) (x', y') =
        if (isbottom (x, y)) | (isbottom (x', y')) | ((x' = 0) \&\& (y' = 0))
 92
        else if x' = 0 then f_DIV(x, y)(1, y')
 93
        else if v' = 0 then f DIV (x, v) (x', 1)
        else let a = x/x
 96
             and b = x/v
 97
             and c = v/x
 98
             and d = v/v, in
                ((\min (\min a b) (\min c d)), (\max (\max a b) (\max c d)))
100 let rec f_MOD (x, y) (x', y') =
        if (isbottom (x, y)) || (isbottom (x', y')) || (y < 0) || (y' < 1)
101
102
103
        else if x' < 0 then f_MOD(x, y)(0, y')
        else if y' \le 0 then f_MOD(x, y)(x', 1)
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005 — 221 —
                                                                © P. Cousot, 2005
```

```
else (v' > x)
123
124 . . .
125 (* backward abstract semantics of arithmetic expressions
126 (* b NAT s v = (machine int of string s) in
127 ("
                                         gamma(v) cap [min_int, max_int]? *)
128 let b NAT s (a. b) =
       match (machine_int_of_string s) with
      | (ERROR NAT INITIALIZATION) -> false
130
131
      | (ERROR NAT ARITHMETIC) -> false
132 | (NAT i) -> (a <= i) && (i <= b)
133 (* b_RANDOM p = gamma(p) cap [min_int, max_int] <> emptyset *)
134 let b_RANDOM p = not (isbottom p)
135 (* b_UOP q p = alpha(\{i \text{ in } gamma(q) \mid
                                                                        *)
                         UOP(i) \in gamma(p) cap [min_int, max_int]}) *)
136 (*
137 let b_UMINUS q (a, b) = meet q (-b, -a)
138 let b_UPLUS q p = meet q p
139 (* b_BOP q1 q2 p = alpha2(\{<i1,i2> in gamma2(<q1,q2>) |
                    BOP(i1, i2) \in gamma(p) cap [min_int, max_int]}) *)
140 (*
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005 — 223 —
                                                              © P. Cousot. 2005
```

```
105
        else let a = x \mod x
106
          and b = x \mod v
107
          and c = y \mod x
108
          and d = v \mod v, in
             ((min (min a b) (min c d)), (max (max a b) (max c d)))
109
110 (* forward abstract semantics of boolean expressions
111 (* Are there integer values in gamma(u) equal to values in gamma(v)? *)
112 (* f_LT p q = exists i in gamma(p) cap [min_int,max_int]:
113 (*
               exists j in gamma(q) cap [min_int,max_int]: machine_eq i j *)
114 let f_EQ(x, y)(x', y') =
        if (isbottom (x, y)) || (isbottom (x', y')) then false
115
        else (\min y y') \le (\max x x')
117 (* Are there integer values in gamma(u) strictly less than (<)
118 (* integer values in gamma(v)?
119 (* f_LT p q = exists i in gamma(p) cap [min_int,max_int]:
120 (* exists j in gamma(q) cap [min_int,max_int]: machine_lt i j *)
121 let f_{LT}(x, y)(x', y') =
        if (isbottom (x, y)) || (isbottom (x', y')) then false
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                              © P. Cousot, 2005
```

```
141 let b_{PLUS} (a, b) (c, d) (e, f) =
        if (in_errors (a, b)) || (in_errors (c, d)) then errors, errors
        else if (in_errors (e, f)) then bottom, bottom
143
144
        else let lq1 = max a (if (is_difference_lt_min_int e d)
145
                               then min int else (e - d))
             and ug1 = min b (if (is_difference_gt_max_int f c)
146
147
                             then max_int else (f - c))
             and lq2 = max c (if (is_difference_lt_min_int e b)
148
149
                               then min_int else (e - b))
             and ug2 = min d (if (is_difference_gt_max_int f a)
150
151
                               then max_int else (f - a))
152
             in (if (lq1 <= uq1) then (lq1, uq1) else bottom),
153
                (if (lg2 \le ug2) then (lg2, ug2) else bottom)
154 let b_{MINUS} (a, b) (c, d) (e, f) =
        if (in errors (a, b)) | (in errors (c, d)) then errors, errors
155
        else if (in_errors (e, f)) then bottom, bottom
156
        else b_PLUS (a, b) (-d, -c) (e, f)
158 let b_{TIMES} (a, b) (c, d) (e, f) =
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                               © P. Cousot, 2005
```

```
159
        if (in errors (a, b)) | (in errors (c, d)) then errors, errors
160
        else if (in_errors (e, f)) then bottom, bottom
161
        else (a, b), (c, d)
162 let b_DIV (a, b) (c, d) (e, f) =
163
        if (in_errors (a, b)) || (in_errors (c, d)) then errors. errors
164
        else if (in errors (e, f)) then bottom, bottom
        else (a, b), (c, d)
166 let b MOD (a, b) (c, d) (e, f) =
        if (in_errors (a, b)) || (in_errors (c, d)) then errors, errors
167
        else if (in_errors (e, f)) then bottom, bottom
        else (a, b), (c, d)
169
170 (* backward abstract interpretation of boolean expressions *)
171 (* a_EQ p1 p2 = let p = p1 cap p2 cap [min_int, max_int] I in <p, p> *)
172 let a_EQ p1 p2 = let p = meet p1 p2 in (p, p)
173 (* a_LT p1 p2 = alpha2(\{<i1, i2> |
                             i1 in gamma(p1) cap [min int. max int] /\ *)
175 (*
                             i2 in gamma(p1) cap [min_int, max_int] /\ *)
176 (*
                             i1 < i2})
 Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005
                                                              © P. Cousot, 2005
```

Design of the abstract convergence accelerators

```
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
```

- The widening is defined with thresholds (including min int and max int by default):

Widening (with thresholds)

```
180 (* widening *)
181 (* let thresholds = [| |] (* only min_int and max_int *) *)
182 (* widening with thresholds
183 let cmp i j = if i < j then -1 else if i = j then 0 else 1
184 let thresholds = let data = [| -1; 0; 1; |] in
                          (Array.sort cmp data; data)
186 let widen (x, y) (x', y') =
      if (isbottom (x, y)) then (x', y')
      else if (isbottom (x', y')) then (x, y)
188
      else let lastindex = (Array.length thresholds) - 1 in
        let a = if x' >= x then x
190
            else let i = ref lastindex in
```

```
177 let a_{L}T (a, b) (c, d) =
178 if (isbottom (a, b)) || (isbottom (c, d)) || (a \ge d) then
     (bottom, bottom) else ((a, min b (d - 1)), (max (a + 1) c, d))
```

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

```
(while (!i \geq= 0) & (x' < thresholds.(!i)) do
192
                 i := !i - 1
193
194
               done:
195
               if (!i < 0) then min int else thresholds.(!i)
196
        and b = if v' \le v then v
197
           else let i = ref 0 in
              (while (!j <= lastindex) & (v' > thresholds.(!j)) do
198
                  j := !j + 1
199
200
               done:
201
               if (!i > lastindex) then max int else thresholds.(!i))
202
        in a. b
```

Course 16,399; "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

```
let i = ref lastindex in
   while (!i \ge 0) & (x' < thresholds.(!i)) do
     i ·= li - 1
```

A simple Floyd-Naur Hoare invariance argument shows that there are two cases:

- if $x' < t_0 < t_1 < \ldots < t_n$ then !i = -1 in which case $a = \min$ int
- otherwise $t_0 < \ldots < t_{!i} < x' < t_{!i+1} < \ldots < t_n$ in which case $a = t_{1i} < x'$
- The condition $\max(y, y') < b$ follows by duality on <
- The proof that $q \sqsubseteq p \nabla q$ can be handled by a very similar argument which is left to the reader
- Finally, we must prove that for all infinite sequences x^0, x^1, \ldots , the sequence

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 231 —

© P. Cousot, 2005

THEOREM. widen is a widening operator.

PROOF. – We first prove that $p \sqsubseteq p \lor q$

- if p=ot then $p=ot\sqsubseteq q=p\ igvee q$
- if $a = \bot$ then $p \sqsubseteq p = p \nabla a$
- Otherwise p = (x, y), q = (x', y') such that x < y and x' < y'. Then $p \nabla q = (a, b)$. We must show that $a \leq \min(x, x')$.
 - \cdot if $x' \geq x$ then $a = \min(x, x') = x$
 - · otherwise x' < x in which case we must prove that $a < x' = \min(x, x')$. We consider two cases
 - if thresholds = [||] is empty then Array.length thesholds) = 0 so lastindex = -1 whence !i = -1 < 0 and a = min int which satisfies a < x'
 - Otherwise thresholds = $[|t_0; \ldots; t_n|]$ with n > 0 is not empty. So lastindex = textttArray.length the sholds) - 1 = n. Then the following loop is executed.

$$y^0 = x^0 \tag{a}$$

$$egin{array}{ll} y^0 &= x^0 & ext{(a)} \ y^{\delta+1} &= y^\delta & ext{if } x^\delta \sqsubseteq y^\delta & ext{(b)} \end{array}$$

$$= y^{\delta} \nabla x^{\delta}$$
 otherwise (c)

is not strictly increasing. The proof is by reductio ad absurdum.

Assume that $y^0 \sqsubset y^1 \sqsubset \ldots \sqsubset y^\delta \sqsubset \ldots$ then (b) is never used. It follows that $\forall \delta > 0 : u^{\delta+1} = u^{\delta} \nabla x^{\delta}$. The only \perp element can be y^0 , which can be eliminated by considering x^1, x^2, \ldots and y_1, y_2, \ldots with all $y^i \neq \bot$ and without changing the final result. Moreoever the x^i cannot be \perp since in that case $y^{\delta+1} = y^{\delta} \nabla \perp = y^{\delta}$ in contradiction with $y^{\delta} \sqsubset y^{\delta+1}$. Therefore we have $x^{\delta}=(a^{\delta},b^{\delta}), \ \delta\geq 1$ with min int $\leq a^{\delta}\leq b^{\delta}\leq \max$ int such that the sequence $y^{\delta} = (c^{\delta}, d^{\delta}), \delta > 1$ with min int $< c^{\delta} < d^{\delta} < \max$ int is strictly increasing, with

$$(c^{\delta+1},d^{\delta+1})=(c^{\delta},d^{\delta}) \ orall \ (a^{\delta},b^{\delta}), \ \delta \geq 1$$

- Because

$$(c^\delta,d^\delta) \sqsubset (c^{\delta+1},d^{\delta+1})$$

$$c^{\delta+1} < c^\delta) ee (d^\delta < d^\delta + 1)$$

by definition of □

- In case $c^{\delta+1} < c^{\delta}$, we have by definition of ∇ that

$$egin{aligned} c^{\delta+1} &= a^\delta & ext{if } a^\delta \geq c^\delta \ &= t_i, 0 < i < n & ext{when thresholds} = [\,|\,t_0;\ldots;t_n\,|\,] \end{aligned}$$

Observe that the first case is indeed impossible since $c^{\delta+1} < c^{\delta}$ implies $\neg (c^{\delta+1} = a^{\delta} > c^{\delta})$ so $c^{\delta+1} = t_i$

- In case $d^{\delta} < d^{\delta+1}$, a similar reasoning shows that $d^{\delta+1} = t^j$, $j \in [0, n]$
- So we have a decreasing chain of elements of "thesholds" for $\langle c^{\delta}, \delta > 2 \rangle$ and an increasing chain of elements of "the sholds" for $\langle d^{\delta}, \delta > 2 \rangle$, one of them strictly increasing for each δ , which is impossible since "the sholds" is finite, which provides the desired contradiction.

Course 16,399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

© P. Cousot, 2005

П

- otherwise, p = (x, y), q = (x', y') with min int $\langle x \langle y \rangle$ max int and min int $\leq x' \leq y' \leq \max$ int and $(x', y') \sqsubseteq (x, y)$. By cases:
- \cdot if $x = \min$ int then
- if $y = \max$ int then, by symbolic execution, $(x', y') \sqsubseteq (x', y') =$ $(x,y) \triangle (x',y') \sqsubseteq (x,y)$
- else $(x',y') \sqsubseteq (x',y) = (x,y) \triangle (x',y') \sqsubseteq (x,y)$ since $x' \le x$ by $(x',y') \sqsubseteq$ (x, y)
- · otherwise $x \neq \min$ int, and then
- if $y = \max$ int then, by symbolic execution, $(x', y') \sqsubseteq (x', \max \text{ int}) =$ $(x,y) \triangle (x',y') \sqsubseteq (x,y)$ since x' < y by $(x',y') \sqsubseteq (x,y)$ and y =
- otherwise $y \neq \max$ int and then $(x', y') = (x, y) \triangle (x', y') \square (x, y)$
- We must also show that for all sequences p^0, p^1, \ldots the sequence defined bv

Course 16.399; "Abstract interpretation". Tuesday May 5th, 2005

© P. Cousot. 2005

Narrowing

- The narrowing is defined as follows:

```
203 (* narrowing *)
204 let narrow (x, y) (x', y') =
       if (isbottom (x, y)) | (isbottom (x', y')) then bottom
205
       else ((if (x = min_int) then x' else x),
206
                        (if (y = max_int) then y' else y))
207
```

THEOREM. narrow is a narrowing operator.

PROOF. Let us show that this definition satisfies the hypotheses on narrowings.

- Assuming $q \sqsubseteq p$, we must show that $q \sqsubseteq p \triangle q \sqsubseteq p$.
- the case $p = \bot$ is excluded by $q \vdash p$
- the case $q = \bot$ yields $\bot \Box \triangle q = \bot \Box p$

 $q^0 = p^0$ $q^{\delta+1} = q^{\delta} \triangle p^{\delta}$ if $p^{\delta} \sqsubset q^{\delta}$ $= a^{\delta}$ otherwise

is not stritly increasing.

The proof is by reductio ad absurdum. Assume that $\langle a^{\delta}, \delta > 0 \rangle$ is strictly decreasing. The case (c) can never be chosen since we would have the contradiction that $q^{\delta+1}=q^{\delta}$ for some $\delta\geq 0$. So they sequence $\langle q^{\delta}, \delta \geq 0 \rangle$ is defined using (a) and (b) only that is (b) only for $\langle q^{\delta}, \delta \geq 1 \rangle$. Let $q^{\delta} = (a^{\delta}, b^{\delta})$ and $p^{\delta} = (c^{\delta}, d^{\delta})$ for all $\delta > 1$. We have:

$$(c^{\delta},d^{\delta}) \sqsubset (a^{\delta},b^{\delta}) \ ext{and} \ (a^{\delta+1},b^{\delta+1}) = (a^{\delta},b^{\delta}) igtriangle (c^{\delta},d^{\delta}) \ ext{and} \ (a^{\delta+1},b^{\delta+1}) \sqsubset (a^{\delta},b^{\delta})$$

After $\delta \geq 1$, all elements of $\langle q^{\delta}, \ \delta \geq 1 \rangle$ are not \perp . We must have $a^{\delta+1} < a^{\delta}$ (or $b^{\delta+1}>b^{\delta}$ which is handled in the same way). By definition of Δ , if $a^{\delta}=\min_{}$ int then $a^{\delta+1}=c^{\delta}\leq a^{\delta}$ else $a^{\delta+1}=a^{\delta}$ which is impossible. So $a^{\delta}=\min_{}$ int at the next step $a^{\delta+2}< a^{\delta+1}=c^{\delta}\leq a^{\delta}=\min_{}$ int whic is impossible. This yields the contradiction proving that Δ enforces convergence.

Making the non-relational forward analyzer generic

- The global structure of the analyzer is the same whichever is the abstract domain chosen to approximate sets of values:
- Up to the use of widening/narrowing when no convergence acceleration is needed (e.g. finite domains, domains satisfying the ACC with rapid convergence)
- For non-relational analyzes, the structure of the abstract domain approximating sets of environements only depends on the abstract doamin for sets of values

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot. 2005

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

@ P. Cousot, 2005

П

Generic abstract interpreter: A first implementation

- The algebraic structure can be represented by the modular structure of OCaml programs (thanks to file aliases in this first implementation or better thanks to module functors)
- It is then easy to modify the static analyzer to perform experimentations on the abstract domains:
 - \rightarrow by changing the abstract domain of values
 - → by changing the abstract interpretation of arithmetic/boolean expressions or commands
 - → without having to change the global structure of the analyzer

Principle of a generic equational static analyzer/verifier

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 @ P. Cousot, 2005

A first implementation using the modular structure of OCAML and aliases of module files

Generic-FW-Abstract-Interpreter % make Forward non-relational static analysis:

make help : this help

1) reset:

· erase all mode choices make reset

2) choose tracing mode:

make trace : tracing all

: tracing arithmetic expressions make traceaexp make tracebexp : tracing boolean expressions

: tracing commands make tracecom

make tracered : tracing ternary reductions

make notrace : no tracing

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

Principle of a generic structural static analyzer/verifier

3) choose abstract interpreter mode: 3a) relational/non-relational analysis:

make r : relational abstract interpretor (not implemented)

make nr : non-relational abstract interpretor

3b) boolean expressions:

make fbool : forward analysis

make fbbool : forward/backward analysis

make fbrbool : forward/backward reductive analysis

3c) arithmetic expressions:

: forward analysis make fassign

make fbassign : forward/backward analysis 4) choose static analysis and compile analyzer:

make err : error analysis

: initialization and simple sign analysis make iss

: interval analysis make int

```
|- abstract_Syntax.ml
5) analyze:
./a.out
                : analyze (the standard input)
                                                                                    |- acom.ml -> acom fba.ml
./a.out file.sil : analyze (the file "file.sil")
                                                                                  l l- acom mli
make examples
                : analyze all examples
                                                                                  | |- acom fa.ml
6) clean:
                                                                                  | |- acom fba.ml
                                                                                    |- aenv.ml -> ../Non-Relational/aenv.ml
make clean
                : remove auxiliary files
                                                                                  l l-aenv.mli
                                                                                  | |- avalues.ml -> ../Non-Relational/03-Intervals/avalues.ml
                                                                                   |- avalues.mli -> ../Non-Relational/avalues.mli
                                                                                  | |- baexp.ml
                                                                                  | |- baexp.mli
                                                                                  | |- fixpoint.ml
                                                                                 | |- fixpoint.mli
                                                                                 | |- labels ml
                                                                                    |- labels.mli
Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005
                                                                                 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                         © P. Cousot, 2005
                                                                                                                                          © P. Cousot, 2005
```

File structure of the generic forward static analyzer

```
|- Examples
    |- example00.sil
I I- . . .
| |- example73.sil
   '- makefile
|- Generic-FW-Abstract-Interpreter
   |- Generic-FW-Abstract-Interpreter.tgz
| |- aaexp.ml
| |- aaexp.mli
| |- abexp.ml -> abexp_fbr.ml
   |- abexp.mli
   - abexp_f.ml
| |- abexp_fb.ml
   |- abexp_fbr.ml
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                               © P. Cousot, 2005
```

```
|- lexer.mll
  l- main.ml
 | |- makefile
  |- parser.mly
| |- pretty_Print.ml
| |- pretty_Print.mli
    |- program_To_Abstract_Syntax.ml
   |- program_To_Abstract_Syntax.mli
| |- red12.mli
 | |- red123.ml
 | |- red123.mli
 | |- red13.mli
| |- red23.mli
| |- symbol_Table.ml
| |- trace.ml
| |- trace.mli
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                          © P. Cousot, 2005
```

```
|- typescript
   |- values.ml
  l- values mli
  l- variables ml
   '- variables.mli
|- Non-Relational
  |- 01-Initialization-Simple-Sign
  | |- avalues.ml
   I- 02-Errors
   | |- avalues.ml
   |- 03-Intervals
    | |- avalues ml
    | |- avalues.mli
   |- 04-Parity
   | |- avalues.ml
  l- aenv ml
   |- avalues.mli
'- laenv.ml
Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005
```

Creating a specific instance of the generic analyzer

The creation of a specific instance of the analyzer consists in creating aliases of the specific instanciated files before recompiling.

```
% pwd
.../Generic-FW-Abstract-Interpreter
% make reset
Remove instanciated files
% make notrace
Tracing mode off
% make nr
"Non-relational" static analysis
% make fbrbool
Forward/backward analysis of boolean expressions with reduction
```

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 251 —

© P. Cousot, 2005

All files are shared by all instances, but:

- aenv.ml (and avalues.mli common to all non-relational abstractions)
- avalues.ml implementing each specific non-relational abstract domain (errors, intervals, ...)

% make fbassign Forward/backward analysis of assignments % make int ocamlyacc parser.mly ocamllex lexer.mll 62 states, 3001 transitions, table size 12376 bytes ocamlc trace.mli trace.ml symbol_Table.mli symbol_Table.ml variables.mli variables.ml abstract_Syntax.ml concrete_To_Abstract_Syntax.mli concrete_To_Abstract_Syntax.ml labels.mli labels.ml parser.mli parser.ml lexer.ml program_To_Abstract_Syntax.mli program_To_Abstract_Syntax.ml pretty_Print.mli pretty_Print.ml values.mli values.mli avalues.ml aenv.mli aenv.ml aaexp.mli aaexp.ml baexp.mli baexp.ml fixpoint.mli fixpoint.ml abexp.mli abexp.ml acom.mli acom.ml main.ml "Interval" static analysis

For example for interval analysis, the aliases will be created as follows:

```
% tree
...
|- abexp.ml -> abexp_fbr.ml
...
|- acom.ml -> acom_fba.ml
...
|- aenv.ml -> ../Non-Relational/aenv.ml
...
|- avalues.ml -> ../Non-Relational/03-Intervals/avalues.ml
...
|- avalues.mli -> ../Non-Relational/avalues.mli
...
```

Course 16,399; "Abstract interpretation". Tuesday May 5th, 2005

```
16 concrete_To_Abstract_Syntax.ml \
17 labels.mli \
18 labels.ml \
19 parser.mli \
20 parser.ml \
21 lexer.ml \
22 program_To_Abstract_Syntax.mli \
23 program_To_Abstract_Syntax.ml \
24 pretty_Print.mli \
25 pretty_Print.ml \
26 values.mli \
27 values ml \
28 avalues.mli \
29 avalues.ml \
30 aenv.mli \
31 aenv.ml \
32 aaexp.mli \
33 aaexp.ml \
34 baexp.mli \
35 baexp.ml \
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005 — 255 —
                                                                       © P. Cousot, 2005
```

Generating an instance of the generic forward static analyzer

— 253 —

```
36 fixpoint.mli \
37 fixpoint.ml \
38 abexp.mli \
39 abexp.ml \
40 acom.mli \
41 acom.ml \
42 main.ml
44 SOURCES BINARY REDUCED PRODUCT = \
45 trace.mli \
46 trace.ml \
47 symbol_Table.mli \
48 symbol_Table.ml \
49 variables.mli \
50 variables.ml \
51 abstract_Syntax.ml \
52 concrete_To_Abstract_Syntax.mli \
53 concrete_To_Abstract_Syntax.ml \
54 labels.mli \
55 labels.ml \
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005 — 256 —
                                                                        © P. Cousot, 2005
```

```
56 parser.mli \
57 parser.ml \
58 lexer.ml \
59 program_To_Abstract_Syntax.mli \
60 program_To_Abstract_Syntax.ml \
61 pretty_Print.mli \
62 pretty_Print.ml \
63 values.mli \
64 values.ml \
65 avalues1.mli \
66 avalues1.ml \
67 avalues2 mli \
68 avalues2.ml \
69 red12.mli \
70 red12.ml \
71 avalues.mli \
72 avalues.ml \
73 aenv.mli \
74 aenv ml \
75 aaexp.mli \
Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005
                                               — 257 —
                                                                    © P. Cousot, 2005
```

```
96 concrete_To_Abstract_Syntax.ml \
 97 labels.mli \
 98 labels.ml \
 99 parser.mli \
100 parser.ml \
101 lexer.ml \
102 program_To_Abstract_Syntax.mli \
103 program_To_Abstract_Syntax.ml \
104 pretty_Print.mli \
105 pretty_Print.ml \
106 values.mli \
107 values ml \
108 avalues1.mli \
109 avalues1.ml \
110 avalues2.mli \
111 avalues2.ml \
112 avalues3.mli \
113 avalues3.ml \
114 red12 mli \
115 red12.ml \
  Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005 — 259 —
                                                                        © P. Cousot. 2005
```

```
76 aaexp.ml \
77 baexp.mli \
78 baexp.ml \
79 fixpoint.mli \
80 fixpoint.ml \
81 abexp.mli \
82 abexp.ml \
83 acom.mli \
84 acom.ml \
85 main.ml
87 SOURCES TERNARY REDUCED PRODUCT = \
88 trace.mli \
89 trace.ml \
90 symbol_Table.mli \
91 symbol_Table.ml \
92 variables.mli \
93 variables.ml \
94 abstract_Syntax.ml \
95 concrete_To_Abstract_Syntax.mli \
Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005 — 258 —
                                                                       © P. Cousot, 2005
```

```
116 red23.mli \
117 red23.ml \
118 red13.mli \
119 red13.ml \
120 red123.mli \
121 red123.ml \
122 avalues.mli \
123 avalues.ml \
124 aenv.mli \
125 aenv.ml \
126 aaexp.mli \
127 aaexp.ml \
128 baexp.mli \
129 baexp.ml \
130 fixpoint.mli \
131 fixpoint.ml \
132 abexp.mli \
133 abexp.ml \
134 acom.mli \
135 acom.ml \
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005 — 260 —
                                                                         © P. Cousot, 2005
```

```
136 main.ml
137
     .PHONY : help
139 help:
        @echo ""
140
        @echo "Forward non-relational static analysis:"
141
        Qecho "make help
                                : this help"
        Qecho "(1) reset:"
143
        Qecho "make reset
                                 : erase all mode choices"
        Qecho "(2) choose tracing mode:"
145
146
        @echo "make trace
                                 : tracing all"
147
        @echo "make traceaexp : tracing arithmetic expressions"
148
        @echo "make tracebexp : tracing boolean expressions"
        Qecho "make tracecom
                                : tracing commands"
149
150
        Qecho "make tracered
                                : tracing ternary reductions"
        @echo "make notrace
                                : no tracing"
152
        @echo "(3) choose abstract interpreter mode:"
153
        @echo "(3a) relational/non-relational analysis:"
        @echo "make r
                                : relational abstract interpretor"
154
        @echo "make nr
                                : non-relational abstract interpretor"
       Course 16,399; "Abstract interpretation", Tuesday May 5th, 2005
                                                         — 261 —
                                                                         © P. Cousot, 2005
```

```
Qecho './a.out file.sil : analyze (the file "file.sil")'
        @echo "make examples : analyze all examples"
177
        Qecho "(6) clean:"
178
179
        @echo "make clean
                                : remove auxiliarv files"
180
        @echo ""
181
     .PHONY : trace
     trace : traceaexp tracebexp tracecom tracered
184
185
     .PHONY : traceaexp
     traceaexp :
        -@/bin/rm -f trace_aexp || true
187
        @echo "" > trace aexp
188
        @echo "Tracing arithmetic expressions"
190
191 .PHONY : tracebexp
192 tracebexp:
193
        -@/bin/rm -f trace bexp || true
194
        @echo "" > trace bexp
        @echo "Tracing boolean expressions"
 Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005
                                                         — 263 —
                                                                         © P. Cousot. 2005
```

```
156
        @echo "(3b) boolean expressions:"
        @echo "make fbool
                                : forward analysis"
157
        @echo "make fbbool
                                : forward/backward analysis"
158
        @echo "make fbrbool
                                : forward/backward reductive analysis"
159
160
        @echo "(3c) arithmetic expressions:"
        @echo "make fassign
                                : forward analysis"
161
                               : forward/backward analysis"
162
        @echo "make fbassign
163
        @echo "(4) choose static analysis and compile analyzer:"
164
        @echo "make err
                                : error analysis"
        @echo "make iss
                                : initialization and simple sign analysis"
        @echo "make int
                                : interval analysis"
166
                                : parity analysis"
167
        @echo "make par
        @echo "make err-int
                                : error x interval analysis"
168
                                : initialization and simple sign x interval analysis"
169
        Qecho "make iss-int
170
        @echo "make par-int
                                : parity x interval analysis"
                                : parity x initialization and simple sign analysis"
        @echo "make par-iss
172
        @echo "make par-iss-int : parity x initialization and simple sign analysis x"
        @echo "
                                  interval"
173
        @echo "(5) analyze:"
174
175
        @echo "./a.out
                                : analyze (the standard input)"
       Course 16.399: "Abstract interpretation". Tuesday May 5th, 2005
                                                  — 262 —
                                                                         © P. Cousot, 2005
```

```
196
197 .PHONY : tracecom
198 tracecom:
        -@/bin/rm -f trace com || true
199
        @echo "" > trace com
201
        @echo "Tracing commands"
202
203 .PHONY : tracered
204 tracered:
        -@/bin/rm -f trace red || true
206
        @echo "" > trace red
207
        @echo "Tracing ternary reductions"
208
209
     .PHONY : notrace
211 notrace:
212
        -@/bin/rm -f trace * || true
213
        @echo "Tracing mode off"
214
215 .PHONY : fbool
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005 — 264 —
                                                                          © P. Cousot, 2005
```

```
216 fbool :
        @/bin/rm -f abexp.ml || true
218
        @ln -s abexp_f.ml abexp.ml
219
        @echo "Forward analysis of boolean expressions'
220
     .PHONY : fbbool
221
222 fbbool :
        @/bin/rm -f abexp.ml || true
        @ln -s abexp_fb.ml abexp.ml
225
        @echo "Forward/backward analysis of boolean expressions"
226
227
     .PHONY : fbrbool
228 fbrbool:
       @/bin/rm -f abexp.ml || true
230
       @ln -s abexp_fbr.ml abexp.ml
        @echo "Forward/backward analysis of boolean expressions with reduction"
232
233 .PHONY : fassign
234 fassign:
        @/bin/rm -f acom.ml || true
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                         — 265 —
                                                                          © P. Cousot, 2005
```

```
256
257 .PHONY : err
259
        ocamlyacc parser.mly
260
       ocamllex lexer mll
        @/bin/rm -f avalues.ml || true
261
        Qln -s ../Non-Relational/02-Errors/avalues.ml avalues.ml
263 # ocamlc -i ${SOURCES_SINGLE_DOMAIN} # to print types
        ocamlc ${SOURCES_SINGLE_DOMAIN}
265
        @echo '"Error" static analysis'
266
267 .PHONY : iss
268 iss:
        ocamlyacc parser.mly
270
       ocamllex lexer.mll
271
       @/bin/rm -f avalues.ml || true
       @ln -s ../Non-Relational/01-Initialization-Simple-Sign/avalues.ml avalues.ml
273 # ocamlc -i ${SOURCES_SINGLE_DOMAIN} # to print types
       ocamlc ${SOURCES_SINGLE_DOMAIN}
       @echo '"Initialization and simple sign" static analysis'
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                                         © P. Cousot, 2005
```

```
@ln -s acom_fa.ml acom.ml
237
        @echo "Forward analysis of assignments"
239 .PHONY : fbassign
240 fbassign:
        @/bin/rm -f acom.ml || true
241
242
        Qln -s acom fba.ml acom.ml
243
        @echo "Forward/backward analysis of assignments"
244
     .PHONY : r
245
246 r: nr
        @echo '"Relational" static analysis not implemented'
247
248
249 .PHONY : nr
250
        @/bin/rm -f aenv.ml || true
252
        @ln -s ../Non-Relational/aenv.ml aenv.ml
      @/bin/rm -f avalues.mli || true
253
      @ln -s ../Non-Relational/avalues.mli avalues.mli
        @echo '"Non-relational" static analysis'
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                          — 266 —
                                                                          © P. Cousot, 2005
```

```
277 .PHONY : int
278 int:
279
       ocamlyacc parser.mly
       ocamllex lexer.mll
280
281
       Q/bin/rm -f avalues.ml || true
        @ln -s ../Non-Relational/03-Intervals/avalues.ml avalues.ml
282
283 # ocamlc -i ${SOURCES_SINGLE_DOMAIN} # to print types
       ocamlc ${SOURCES_SINGLE_DOMAIN}
285
       @echo '"Interval" static analysis'
286
287 .PHONY : par
288
    par :
        ocamlyacc parser.mly
289
       ocamllex lexer.mll || true
       @/bin/rm -f avalues.ml
       @ln -s ../Non-Relational/04-Parity/avalues.ml avalues.ml
293 # ocamlc -i ${SOURCES_SINGLE_DOMAIN} # to print types
       ocamlc ${SOURCES_SINGLE_DOMAIN}
295
       @echo '"Parity" static analysis'
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                                          © P. Cousot, 2005
```

```
296
297
     .PHONY : err-int
298
299
     err-int :
        ocamlyacc parser.mly
300
        ocamllex lexer.mll
301
        @/bin/rm -f avalues1.mli || true
        @ln -s avalues.mli avalues1.mli
304
        @/bin/rm -f avalues1.ml || true
305
        Qln -s ../Non-Relational/O2-Errors/avalues.ml avalues1.ml
306
        @/bin/rm -f avalues2.mli || true
307
        Oln -s avalues mli avalues2 mli
308
        0/bin/rm -f avalues2 ml | true
        Qln -s ../Non-Relational/03-Intervals/avalues.ml avalues2.ml
        @/bin/rm -f red12.ml || true
        @ln -s ../Non-Relational/05-Prod-Red/red-Errors-Intervals12.ml red12.ml
        @/bin/rm -f avalues.ml || true
       @ln -s ../Non-Relational/05-Prod-Red/avalues12.ml avalues.ml
314 # ocamlc -i ${SOURCES_BINARY_REDUCED_PRODUCT} # to print types
        ocamlc ${SOURCES_BINARY_REDUCED_PRODUCT}
 Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005
                                                                         © P. Cousot, 2005
```

```
Qecho 'Reduced "initialization and simple sign" and "interval" static analysis'
337
338 .PHONY : par-int
339 par-int :
        ocamlyacc parser.mly
        ocamllex lexer.mll
        @/bin/rm -f avalues1.mli || true
        @ln -s avalues.mli avalues1.mli
        @/bin/rm -f avalues1.ml || true
        @ln -s ../Non-Relational/04-Parity/avalues.ml avalues1.ml
345
346
        @/bin/rm -f avalues2.mli || true
347
        @ln -s ../Non-Relational/03-Intervals/avalues.mli avalues2.mli
348
        @/bin/rm -f avalues2.ml || true
        @ln -s ../Non-Relational/03-Intervals/avalues.ml avalues2.ml
350
        @/bin/rm -f red12.ml || true
351
        @ln -s ../Non-Relational/05-Prod-Red/red-Parity-Intervals12.ml red12.ml
352
        @/bin/rm -f avalues.ml || true
        @ln -s ../Non-Relational/05-Prod-Red/avalues12.ml avalues.ml
354 # ocamlc -i ${SOURCES_BINARY_REDUCED_PRODUCT} # to print types
        ocamlc ${SOURCES_BINARY_REDUCED_PRODUCT}
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                         — 271 —
                                                                         © P. Cousot, 2005
```

```
@echo 'Reduced "error" and "interval" static analysis'
317
318 .PHONY : iss-int
319 iss-int:
        ocamlyacc parser.mly
       ocamllex lexer.mll
321
        @/bin/rm -f avalues1.mli || true
322
323
        @ln -s avalues.mli avalues1.mli
        @/bin/rm -f avalues1.ml || true
        @ln -s ../Non-Relational/01-Initialization-Simple-Sign/avalues.ml avalues1.ml
        @/bin/rm -f avalues2.mli || true
326
        @ln -s ../Non-Relational/03-Intervals/avalues.mli avalues2.mli
327
328
        @/bin/rm -f avalues2.ml || true
        @ln -s ../Non-Relational/03-Intervals/avalues.ml avalues2.ml
329
        @/bin/rm -f red12.ml || true
        @ln -s ../Non-Relational/05-Prod-Red/red-ISS-Intervals12.ml red12.ml
        @/bin/rm -f avalues.ml || true
        @ln -s ../Non-Relational/05-Prod-Red/avalues12.ml avalues.ml
334 # ocamlc -i ${SOURCES_BINARY_REDUCED_PRODUCT} # to print types
        ocamlc ${SOURCES_BINARY_REDUCED_PRODUCT}
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                                         © P. Cousot, 2005
```

```
@echo 'Reduced "parity" and "interval" static analysis'
357
358 .PHONY : par-iss
    par-iss :
359
360
        ocamlyacc parser.mly
361
        ocamllex lexer.mll
        @/bin/rm -f avalues1.mli || true
362
363
        @ln -s avalues.mli avalues1.mli
364
        @/bin/rm -f avalues1.ml || true
365
        @ln -s ../Non-Relational/04-Parity/avalues.ml avalues1.ml
366
        @/bin/rm -f avalues2.mli || true
367
        @ln -s avalues.mli avalues2.mli
368
        @/bin/rm -f avalues2.ml || true
        @ln -s ../Non-Relational/01-Initialization-Simple-Sign/avalues.ml avalues2.ml
369
        @/bin/rm -f red12.ml || true
371
        @ln -s ../Non-Relational/05-Prod-Red/red-Parity-ISS12.ml red12.ml
372
        @/bin/rm -f avalues.ml || true
        @ln -s ../Non-Relational/05-Prod-Red/avalues12.ml avalues.ml
374 # ocamlc -i ${SOURCES_BINARY_REDUCED_PRODUCT} # to print types
       ocamlc ${SOURCES_BINARY_REDUCED_PRODUCT}
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                                         © P. Cousot, 2005
```

```
@echo 'Reduced "parity" and "Initialization and simple sign" static analysis'
377
     .PHONY : par-iss-int
     par-iss-int :
        ocamlyacc parser.mly
        ocamllex lexer.mll
381
        @/bin/rm -f avalues1.mli || true
        @ln -s avalues.mli avalues1.mli
        @/bin/rm -f avalues1.ml || true
        @ln -s ../Non-Relational/04-Parity/avalues.ml avalues1.ml
386
        @/bin/rm -f avalues2.mli || true
387
        @ln -s avalues.mli avalues2.mli
388
        @/bin/rm -f avalues2.ml || true
        @ln -s ../Non-Relational/01-Initialization-Simple-Sign/avalues.ml avalues2.ml
        @/bin/rm -f avalues3.mli || true
        @ln -s ../Non-Relational/03-Intervals/avalues.mli avalues3.mli
        @/bin/rm -f avalues3.ml || true
       @ln -s ../Non-Relational/03-Intervals/avalues.ml avalues3.ml
        @/bin/rm -f red12.ml || true
        @ln -s ../Non-Relational/05-Prod-Red/red-Parity-ISS12.ml red12.ml
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                                         © P. Cousot, 2005
```

```
416 reset :
417
        -@/bin/rm -f abexp.ml acom.ml aenv.ml avalues.ml avalues.mli avalues1.ml avalues1.ml
418
       @echo "Remove instanciated files"
419
```

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

```
@/bin/rm -f red23.ml || true
397
        @ln -s .../Non-Relational/05-Prod-Red/red-ISS-Intervals23.ml red23.ml
        @/bin/rm -f red13.ml || true
        @ln -s ../Non-Relational/05-Prod-Red/red-Parity-Intervals13.ml red13.ml
        @/bin/rm -f avalues.ml || true
        @ln -s ../Non-Relational/05-Prod-Red/avalues123.ml avalues.ml
402 # ocamlc -i ${SOURCES_TERNARY_REDUCED_PRODUCT} # to print types
        ocamlc ${SOURCES_TERNARY_REDUCED_PRODUCT}
        @echo 'Reduced "parity", "initialization and simple sign" and "interval" static ana
     include ${EXAMPLES}/makefile
406
407
     .PHONY : clean
408
409
     clean :
        -@/bin/rm -f *.cmi *.cmo *~ a.out lexer.ml parser.mli parser.ml || true
        -@/bin/rm -f examples/*~ ../Non-Relational/*~ trace_* || true
        -@/bin/rm -f ../Non-Relational/*/*~ || true
        @echo "Remove auxiliary files"
413
414
415 .PHONY : reset
 Course 16.399: "Abstract interpretation", Tuesday May 5<sup>th</sup>, 2005
                                                                          © P. Cousot, 2005
```

Examples of instantiation of the generic forward static analyzer

```
% pwd
.../Generic-FW-Abstract-Interpreter
 % make reset
Remove instanciated files
% make notrace
Tracing mode off
% make nr
"Non-relational" static analysis
 % make fbrbool
Forward/backward analysis of boolean expressions with reduction
% make fbassign
Forward/backward analysis of assignments
```


Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

```
% make err
"Error" static analysis
 % ./a.out ../Examples/example25.sil
{ x:\{0_i\}; y:\{0_i\}; z:\{0_i\} \}
0:
  x := 0:
  y := ?;
  if ((x + y) = 0) then
      z := (x + y)
  else \{(((x + y) < 0) | (0 < (x + y)))\}
      z := 0
  fi
\{ x: \{\}; y: \{\}; z: \{_0_a\} \}
```

Course 16,399; "Abstract interpretation", Tuesday May 5th, 2005

© P. Cousot, 2005

© P. Cousot, 2005

Bibliography

- [5] P. Cousot. "The Calculational Design of a Generic Abstract Interpreter". In M. Broy and R. Steinbrüggen (eds.): Calculational System Design. NATO ASI Series F. Amsterdam: IOS Press, 1999.
- "The Marktober-[6] P. Consot. dorf'98 Generic Abstract Interpreter". http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml.

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005 — 279 —

© P. Cousot, 2005

```
% make int
"Interval" static analysis
% ./a.out ../Examples/example25.sil
{ x:[]; y:[]; z:[] }
  x := 0;
  v := ?;
  if ((x + y) = 0) then
      z := (x + y)
  else \{(((x + y) < 0) | (0 < (x + y)))\}
      z := 0
  fi
{ x:[0,0]; y:[min_int,max_int]; z:[0,0] }
 % make clean
```

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005

THE END

My MIT web site is http://www.mit.edu/~cousot/

The course web site is http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/.

Course 16.399: "Abstract interpretation", Tuesday May 5th, 2005