Announcements for Thursday, 03OCT2024

- Office Hours are cancelled today
- Week 5 Homework Assignments available on eLearning
 - Graded and Timed Quiz 5 "Periodic Trends" due Tuesday, 08OCT2024, at 6:00 PM (EDT)

ANY GENERAL QUESTIONS? Feel free to see me after class!

Ionic Compound Formulas

- formula unit = the basic unit of an ionic compound
 - the smallest, electrically neutral collection of ions
 - NaCl, K₂O, AgNO₃ ...etc.
- ionic compounds are NOT made of molecules

Writing Formulas for Ionic Compounds

- ionic compounds are electrically neutral
- the sum of all the positive charge = the sum of all the negative charge
- subscripts always expressed in *smallest whole-number ratios*

Ionic Compound Nomenclature

- most important step is being able to identify a compound as ionic (as opposed to molecular)
- usually consists of metal(s) + nonmetal(s)
 - beware of the polyatomic cation NH₄⁺
- name the cation and then the anion
 - lots of little details to be familiar with

Naming Ionic Compounds

Naming Cations

monatomic cations

- 1. elements whose ion charges are predictable
 - name of parent atom + "ion"
 - no need to specify the charge of the cation in the name

Sr	Sr ²⁺	Strontium	2A
Ва	Ba ²⁺	Barium	2A
Al	Al ³⁺	Aluminum	3A
Zn	Zn ²⁺	Zinc	*
Sc	Sc ³⁺	Scandium	*
Ag**	Ag ⁺	Silver	*

^{*}The charge of these metals cannot be inferred from their group number.

Metals Whose Charge Is Invariant from One Compound to Another

Metal	Ion	Name	Group Number
Li	Li ⁺	Lithium	1A
Na	Na ⁺	Sodium	1A
K	K ⁺	Potassium	1A
Rb	Rb ⁺	Rubidium	1A
Cs	Cs ⁺	Cesium	1A
Be	Be ²⁺	Beryllium	2A
Mg	Mg ²⁺	Magnesium	2A
Ca	Ca ²⁺	Calcium	2A

© 2018 Pearson Education, Inc.

^{**}Silver sometimes forms compounds with other charges, but these are rare. © 2018 Pearson Education, Inc.

Naming Cations (continued)

- elements whose ion charges are not predictable from group number and can vary
 - more than one charge possible
 - charge must be given in the name to distinguish it from other charges
 - name of parent atom + (charge in roman numerals) + "ion"

polyatomic cations

- "poly-" = many; two or more atoms bound together as unit where the unit carries an overall charge
 - $NH_4^+ = ammonium ion$
 - H_3O^+ = hydronium ion
 - Hg_2^{2+} = mercury(I) ion

TABLE 4.3 Some Metals That Form Cations with Different Charges

Metal	Ion	Name
Chromium	Cr ²⁺	Chromium(II)
	Cr ³⁺	Chromium(III)
Iron	Fe ²⁺	Iron(II)
	Fe ³⁺	Iron(III)
Cobalt	Co ²⁺	Cobalt(II)
	Co ³⁺	Cobalt(III)
Copper	Cu ⁺	Copper(I)
	Cu ²⁺	Copper(II)
Tin	Sn ²⁺	Tin(II)
	Sn ⁴⁺	Tin(IV)
Mercury	Hg ₂ ²⁺	Mercury(I)
	Hg ²⁺	Mercury(II)
Lead	Pb ²⁺	Lead(II)
	Pb ⁴⁺	Lead(IV)

Naming Monatomic Anions

- monatomic anions
 - main group elements whose ion charges are predictable
 - main groups 5A, 6A, and 7A
- name of parent atom base + "-ide" + "ion"

TABLE 4.2 Some Common Monoatomic Anions

Nonmetal	Symbol for Ion	Base Name	Anion Name
Fluorine	F ⁻	fluor	Fluoride
Chlorine	CI ⁻	chlor	Chloride
Bromine	Br ⁻	brom	Bromide
lodine	<u> </u> -	iod	lodide
Oxygen	O ²⁻	ox	Oxide
Sulfur	S ²⁻	sulf	Sulfide
Nitrogen	N ³⁻	nitr	Nitride
Phosphorus	P ³⁻	phosph	Phosphide

Naming Polyatomic Ions

- mostly anions
 - bonding within the ion is covalent
- many names end in "-ate" or "-ite"
- oxyanions
 - polyatomic ions with oxygens bound to other elements
- look for patterns in naming
 - "-ite" form always has 1 less oxygen than "-ate" form, but same charge
 - oxyanions with more than 2 forms use prefixes "per-" and "hypo-"
 - adding H⁺ changes the name and the charge of the oxyanion
- MEMORIZE ★★★

Name	Formula	Name	Formula
Acetate	$C_2H_3O_2^-$	Hypochlorite	CIO ⁻
Carbonate	CO ₃ ²⁻	Chlorite	CIO ₂
Hydrogen carbonate (or bicarbonate)	HCO ₃ ⁻	★ Chlorate	CIO ₃
Hydroxide	OH ⁻	★ Perchlorate	CIO ₄
Nitrite	NO ₂ ⁻	★ Permanganate	MnO ₄ ⁻
Nitrate	NO ₃	Sulfite	SO ₃ ²⁻
Chromate	CrO ₄ ²⁻	Hydrogen sulfite (or bisulfite)	HSO ₃ ⁻
Dichromate	Cr ₂ O ₇ ²⁻	★Sulfate	SO ₄ ²⁻
Phosphate	PO ₄ ³⁻	Hydrogen sulfate (or bisulfate)	HSO ₄ ⁻
Hydrogen phosphate	HPO ₄ ²⁻	★ Cyanide	CN ⁻
Dihydrogen phosphate	H ₂ PO ₄	Peroxide	O ₂ ²⁻
Ammonium	NH ₄ ⁺		

Naming Ionic Compounds

bring it all together:

name the cation and name the anion without using the words "ion"

MgF₂

magnesium ion + fluoride ion = "magnesium fluoride"

CrPO₄

• chromium(III) ion + phosphate ion = "chromium(III) phosphate"

(NH₄)₂SO₃

• ammonium ion + sulfite ion = "ammonium sulfite"

Cu_3N_2

copper(II) ion + nitride ion = "copper(II) nitride"

Give the formula for **lead(IV)** sulfide

• lead(IV) ion = Pb^{4+} + sulfide ion = S^{2-} so PbS_2

Give the formula for **iron(II)** hydrogen phosphate

• iron(II) ion = Fe^{2+} + hydrogen phosphate ion = HPO_4^{2-} so $FeHPO_4$

Naming Hydrates

- hydrates = ionic compounds in which the formula unit has a certain number of water molecules associated with it
- numbers of water molecules designated by prefixes
- ionic compound name · prefix + "hydrate"

MgSO₄ · 7H₂O magnesium sulfate heptahydrate

CoCl₂ · 6H₂O cobalt(II) chloride hexahydrate

 $CuSO_4 \cdot 5H_2O$ copper(II) sulfate pentahydrate

© 2018 Pearson Education. Inc.

prefix	number
hemi-	1/2
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

Binary Molecular Compounds: Formulas and Names

- binary = two elements
- unlike ionic compounds, the formula of a molecular compound cannot always be determined from its elements

Naming Molecular Compounds

- 1. name the first nonmetal and use the proper prefix to designate number if it's 2 or more
 - never use "mono-" for the first element
- 2. name the second nonmetal and use the proper prefix to designate number
 - when a prefix ends in "a" or "o" and the element's name begins with "o", drop the "a" or "o" from the prefix
- 3. binary molecular compounds end in "-ide"

prefix	number
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

Try These On Your Own

Give the formula or the name of the following:

- iodine heptachloride
- dihydrogen monoxide
- nitrogen trihydride
- xenon tetrafluoride

- As₄O₁₀
- N₂O₅
- P_2I_4
- NH₄NO₃