



ATAQUES DE INYECCIÓN Y MANIPULACIÓN DE DATOS



### Objetivos de Aprendizaje



#### Objetivos de Aprendizaje

Comprender los ataques por inyección y manipulación de datos permite identificar técnicas como SQLi, inyección de comandos y envenenamiento de logs. Además, se busca aplicar herramientas especializadas para detectar vulnerabilidades y ensayar su explotación en entornos seguros, adoptando prácticas de mitigación efectivas en escenarios reales y simulados.





# Riesgo de Entradas Inseguras



### Riesgo de Entradas Inseguras

Las aplicaciones que no validan ni sanitizan las entradas del usuario permiten la ejecución arbitraria de código, modifican la lógica interna del sistema, y abren canales para persistencia, elevación de privilegios o evasión de controles. Este tipo de fallos representa un riesgo estructural crítico.





# Inyección SQL (SQLi) y Código Malicioso



### Inyección SQL (SQLi) y Código Malicioso

La inyección SQL consiste en manipular sentencias SQL a través de entradas como formularios o URLs, afectando procesos de autenticación y acceso a datos. Por otro lado, la inyección de código malicioso explota comandos del sistema o la carga de archivos para ejecutar scripts en el servidor. Herramientas como SQLMap, Commix o Burp Suite automatizan estos ataques.





### Envenenamiento de Logs



### Envenenamiento de Logs

El log poisoning se basa en insertar scripts maliciosos en los registros de auditoría o monitoreo de la aplicación. Esto afecta la integridad de los reportes, dificulta la trazabilidad de incidentes y puede abrir la puerta a ejecuciones retardadas, especialmente si los logs son visualizados desde interfaces vulnerables.





# Herramientas Éticas de Explotación



### Herramientas Éticas de Explotación

Las herramientas más utilizadas para explotación controlada incluyen: **SQLMap** (automatiza SQLi), **Burp Suite** (intercepción y manipulación de tráfico), **Commix** (detección de inyecciones de comandos) y **Metasploit** (framework completo de explotación). Todas permiten pruebas bajo entornos simulados respetando los principios éticos del pentesting.





## Práctica en Entornos Controlados



#### Práctica en Entornos Controlados

Plataformas como **DVWA** o **Metasploitable** permiten simular ataques reales de forma segura. Estas prácticas ayudan a **entender el comportamiento de las vulnerabilidades**, **verificar la eficacia de las mitigaciones** y generar **informes técnicos reproducibles**, sin comprometer sistemas reales.





### Mitigación Según Buenas Prácticas



### Mitigación Según Buenas Prácticas

Las técnicas recomendadas incluyen: sanitización y validación de entradas, uso de consultas parametrizadas, aplicación de principios de mínimo privilegio, y una gestión proactiva de logs con alertas y análisis continuo. Estas acciones deben integrarse desde el diseño del sistema para prevenir fallos estructurales.





# Reflexión Final y Conclusión



### Reflexión Final y Conclusión

**Explotar no es atacar**, sino comprender fallos para **fortalecer la seguridad**. Las técnicas de inyección siguen siendo amenazas vigentes, pero su mitigación depende de un diseño robusto, **conocimiento profundo** y una **práctica ética constante**. Documentar, corregir y anticipar son las claves para una protección real y sostenible.



Energiza!