Post-quantum cryptography II

Geovandro C. C. F. Pereira Institute for Quantum Computing University of Waterloo

Agenda

• Multivariate quadratic Public Key Cryptosystems (MPKC)

Given a system of cubic (or higher degree) equations

Given a system of cubic (or higher degree) equations

• One can always do **degree reduction** or **linearization** by introducing new variables $x_4 = x_2x_3$ and $x_5 = x_3^2$

Given a system of cubic (or higher degree) equations

• One can always do **degree reduction** or **linearization** by introducing new variables $x_4 = x_2x_3$ and $x_5 = x_3^2$

Given a system of cubic (or higher degree) equations

• One can always do **degree reduction** or **linearization** by introducing new variables $x_4 = x_2x_3$ and $x_5 = x_3^2$

• Solve the quadratic system for the new variables and backtrack.

Notation

Let \mathbb{F}_q denote a finite field of q elements where q is a prime power. A generic quadratic map $p:(\mathbb{F}_q)^n\to\mathbb{F}_q$ can be represented by a quadratic polynomial

$$p(x_1, \dots, x_n) = \sum_{1 \le i \le j \le n} \alpha_{ij} x_i x_j + \sum_{1 \le i \le n} \beta_i x_i + \gamma$$

where $\alpha_{ij}, \beta_i, \gamma \in \mathbb{F}_q$.

Notation

• For many MPKC cryptosystems the linear and constant terms of *p* do not contribute to security and therefore can be omitted.

Notation

- For many MPKC cryptosystems the linear and constant terms of *p* do not contribute to security and therefore can be omitted.
 - That means we can use a purely quadratic map f of form:

$$(x_1, \cdots, x_n) \mapsto \sum_{1 \le i \le j \le n} \alpha_{ij} x_i x_j$$

Notation

- For many MPKC cryptosystems the linear and constant terms of *p* do not contribute to security and therefore can be omitted.
 - That means we can use a purely quadratic map f of form:

$$(x_1, \cdots, x_n) \mapsto \sum_{1 \le i \le j \le n} \alpha_{ij} x_i x_j$$

A useful matrix representation can also be used:

$$\begin{bmatrix} x_1, \cdots, x_n \end{bmatrix} \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ 0 & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \sum_{1 \leq i \leq j \leq n} \alpha_{ij} x_i x_j$$

\mathcal{MQ} problem: **NP-hard** [Patarin and Goubin 1997]

• Given a system of m random quadratic equations in n variables over a finite field \mathbb{F}_q of any characteristic

$$\begin{cases} p_1(x_1, \dots, x_n) = y_1 \\ p_2(x_1, \dots, x_n) = y_2 \\ \dots \dots \dots = \dots \\ p_m(x_1, \dots, x_n) = y_m \end{cases}$$

\mathcal{MQ} problem: **NP-hard** [Patarin and Goubin 1997]

• Given a system of m random quadratic equations in n variables over a finite field \mathbb{F}_q of any characteristic

$$\begin{cases} p_1(x_1, \dots, x_n) = y_1 \\ p_2(x_1, \dots, x_n) = y_2 \\ \dots & \dots = \dots \\ p_m(x_1, \dots, x_n) = y_m \end{cases}$$

finding any solution $\mathbf{x} \in (\mathbb{F}_q)^n$ is NP-hard (red. from 3-SAT).

\mathcal{MQ} problem: **NP-hard** [Patarin and Goubin 1997]

• Given a system of m random quadratic equations in n variables over a finite field \mathbb{F}_q of any characteristic

$$\begin{cases} p_1(x_1, \dots, x_n) = y_1 \\ p_2(x_1, \dots, x_n) = y_2 \\ \dots & \dots \\ p_m(x_1, \dots, x_n) = y_m \end{cases}$$

finding any solution $\mathbf{x} \in (\mathbb{F}_q)^n$ is NP-hard (red. from 3-SAT).

 It is believed to be hard on average from experiments, although no reduction exist.

Public key sizes

• Usually, public keys P consist of m quadratic polynomials of shape:

$$p_{i}(x) = [x_{1}, \dots, x_{n}] \begin{bmatrix} \alpha_{11}^{(i)} & \alpha_{12}^{(i)} & \dots & \alpha_{1n}^{(i)} \\ 0 & \alpha_{22}^{(i)} & \dots & \alpha_{2n}^{(i)} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \alpha_{nn}^{(i)} \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$

Public key sizes

• Usually, public keys P consist of m quadratic polynomials of shape:

$$p_{i}(x) = [x_{1}, \dots, x_{n}] \begin{bmatrix} \alpha_{11}^{(i)} & \alpha_{12}^{(i)} & \dots & \alpha_{1n}^{(i)} \\ 0 & \alpha_{22}^{(i)} & \dots & \alpha_{2n}^{(i)} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \alpha_{nn}^{(i)} \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$

• Thus, the number of elements is

$$mn(n+1)/2 \stackrel{m\approx n}{=} O(n^3)$$

Public key sizes

• Usually, public keys P consist of m quadratic polynomials of shape:

$$p_{i}(x) = [x_{1}, \dots, x_{n}] \begin{bmatrix} \alpha_{11}^{(i)} & \alpha_{12}^{(i)} & \dots & \alpha_{1n}^{(i)} \\ 0 & \alpha_{22}^{(i)} & \dots & \alpha_{2n}^{(i)} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \alpha_{nn}^{(i)} \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$

• Thus, the number of elements is

$$mn(n+1)/2 \stackrel{m\approx n}{=} O(n^3)$$

• In general, for degree d polynomials, the size is $O(n^{d+1})$.

Public key sizes

• Usually, public keys P consist of m quadratic polynomials of shape:

$$p_{i}(x) = [x_{1}, \dots, x_{n}] \begin{bmatrix} \alpha_{11}^{(i)} & \alpha_{12}^{(i)} & \dots & \alpha_{1n}^{(i)} \\ 0 & \alpha_{22}^{(i)} & \dots & \alpha_{2n}^{(i)} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \alpha_{nn}^{(i)} \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$

• Thus, the number of elements is

$$mn(n+1)/2 \stackrel{m\approx n}{=} O(n^3)$$

- In general, for degree d polynomials, the size is $O(n^{d+1})$.
 - ightharpoonup \Rightarrow not a good idea to have high degree polynomials.

Public key sizes

• Usually, public keys P consist of m quadratic polynomials of shape:

$$p_{i}(x) = [x_{1}, \dots, x_{n}] \begin{bmatrix} \alpha_{11}^{(i)} & \alpha_{12}^{(i)} & \dots & \alpha_{1n}^{(i)} \\ 0 & \alpha_{22}^{(i)} & \dots & \alpha_{2n}^{(i)} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \alpha_{nn}^{(i)} \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$

• Thus, the number of elements is

$$mn(n+1)/2 \stackrel{m\approx n}{=} O(n^3)$$

- In general, for degree d polynomials, the size is $O(n^{d+1})$.
 - ightharpoonup \Rightarrow not a good idea to have high degree polynomials.
 - ▶ Stick to d = 2.

(Generic) Encryption

• Public key:

$$P = \{p_1(x_1, \dots, x_n), \dots, p_m(x_1, \dots, x_n)\}$$

(Generic) Encryption

• Public key:

$$P = \{p_1(x_1, \dots, x_n), \dots, p_m(x_1, \dots, x_n)\}$$

ullet To encrypt a document $d_1,\cdots,d_n\in(\mathbb{F}_q)^n$, evaluate

$$(c_1,\cdots,c_m)=(p_1(d_1,\cdots,d_n),\cdots,p_m(d_1,\cdots,d_n))$$

(Generic) Encryption

• Public key:

$$P = \{p_1(x_1, \dots, x_n), \dots, p_m(x_1, \dots, x_n)\}$$

ullet To encrypt a document $d_1,\cdots,d_n\in(\mathbb{F}_q)^n$, evaluate

$$(c_1,\cdots,c_m)=(p_1(d_1,\cdots,d_n),\cdots,p_m(d_1,\cdots,d_n))$$

To decrypt, a trapdoor is needed to solve the system for x:

$$x_1, \cdots, x_n = P^{-1}(c_1, \cdots, c_m)$$

(Generic) Signature

• Public key P:

$$P = \{p_1(x_1, \dots, x_n), \dots, p_m(x_1, \dots, x_n)\}$$

(Generic) Signature

• Public key P:

$$P = \{p_1(x_1, \dots, x_n), \dots, p_m(x_1, \dots, x_n)\}$$

• Private key: a trapdoor to compute P^{-1}

(Generic) Signature

• Public key P:

$$P = \{p_1(x_1, \cdots, x_n), \cdots, p_m(x_1, \cdots, x_n)\}$$

- Private key: a trapdoor to compute P^{-1}
- To sign a document $D \in \{0,1\}^*$, compute the hash $\{h_1,\cdots,h_m\}=H(D)$ and

$$\sigma=(x_1,\cdots,x_n)=P^{-1}(h_1,\cdots,h_m)$$

(Generic) Signature

• Public key P:

$$P = \{p_1(x_1, \cdots, x_n), \cdots, p_m(x_1, \cdots, x_n)\}$$

- Private key: a trapdoor to compute P^{-1}
- ullet To sign a document $D\in\{0,1\}^*$, compute the hash $\{h_1,\cdots,h_m\}=H(D)$ and

$$\sigma=(x_1,\cdots,x_n)=P^{-1}(h_1,\cdots,h_m)$$

• To verify σ , recompute $\{h_1, \cdots, h_m\} = H(D)$ and check

$$p_i(\sigma) \stackrel{?}{=} h_i, \quad 1 \leq i \leq m$$

MPKC Trapdoor

• Let $\mathcal{S}: \mathbb{F}_q^n o \mathbb{F}_q^n$ and $\mathcal{T}: \mathbb{F}_q^m o \mathbb{F}_q^m$ be two invertible linear maps

- Let $\mathcal{S}: \mathbb{F}_q^n o \mathbb{F}_q^n$ and $\mathcal{T}: \mathbb{F}_q^m o \mathbb{F}_q^m$ be two invertible linear maps
- ullet Let $\mathcal{F}:\mathbb{F}_q^n o\mathbb{F}_q^m$ an invertible quadratic (central) map

- Let $\mathcal{S}: \mathbb{F}_q^n o \mathbb{F}_q^n$ and $\mathcal{T}: \mathbb{F}_q^m o \mathbb{F}_q^m$ be two invertible linear maps
- ullet Let $\mathcal{F}:\mathbb{F}_q^n o\mathbb{F}_q^m$ an invertible quadratic (central) map
- \bullet The map given by $\mathcal{P}=\mathcal{T}\circ\mathcal{F}\circ\mathcal{S}$ will be the public key

- Let $\mathcal{S}: \mathbb{F}_q^n o \mathbb{F}_q^n$ and $\mathcal{T}: \mathbb{F}_q^m o \mathbb{F}_q^m$ be two invertible linear maps
- ullet Let $\mathcal{F}:\mathbb{F}_q^n o\mathbb{F}_q^m$ an invertible quadratic (central) map
- \bullet The map given by $\mathcal{P}=\mathcal{T}\circ\mathcal{F}\circ\mathcal{S}$ will be the public key

- Let $\mathcal{S}: \mathbb{F}_q^n o \mathbb{F}_q^n$ and $\mathcal{T}: \mathbb{F}_q^m o \mathbb{F}_q^m$ be two invertible linear maps
- ullet Let $\mathcal{F}:\mathbb{F}_q^n o\mathbb{F}_q^m$ an invertible quadratic (central) map
- ullet The map given by $\mathcal{P}=\mathcal{T}\circ\mathcal{F}\circ\mathcal{S}$ will be the public key

MPKC Trapdoor

- Let $\mathcal{S}: \mathbb{F}_q^n o \mathbb{F}_q^n$ and $\mathcal{T}: \mathbb{F}_q^m o \mathbb{F}_q^m$ be two invertible linear maps
- ullet Let $\mathcal{F}:\mathbb{F}_q^n o\mathbb{F}_q^m$ an invertible quadratic (central) map
- ullet The map given by $\mathcal{P}=\mathcal{T}\circ\mathcal{F}\circ\mathcal{S}$ will be the public key

ullet P is random-looking and believed to be hard to invert.

- Let $\mathcal{S}: \mathbb{F}_q^n \to \mathbb{F}_q^n$ and $\mathcal{T}: \mathbb{F}_q^m \to \mathbb{F}_q^m$ be two invertible linear maps
- ullet Let $\mathcal{F}:\mathbb{F}_q^n o\mathbb{F}_q^m$ an invertible quadratic (central) map
- \bullet The map given by $\mathcal{P}=\mathcal{T}\circ\mathcal{F}\circ\mathcal{S}$ will be the public key

- ullet \mathcal{P} is random-looking and believed to be hard to invert.
 - \triangleright S scrambles the variables

- Let $\mathcal{S}: \mathbb{F}_q^n o \mathbb{F}_q^n$ and $\mathcal{T}: \mathbb{F}_q^m o \mathbb{F}_q^m$ be two invertible linear maps
- ullet Let $\mathcal{F}:\mathbb{F}_q^n o\mathbb{F}_q^m$ an invertible quadratic (central) map
- \bullet The map given by $\mathcal{P}=\mathcal{T}\circ\mathcal{F}\circ\mathcal{S}$ will be the public key

- ullet \mathcal{P} is random-looking and believed to be hard to invert.
 - \triangleright S scrambles the variables
 - $ightharpoonup \mathcal{T}$ mixes the polynomials

- Let $\mathcal{S}: \mathbb{F}_q^n \to \mathbb{F}_q^n$ and $\mathcal{T}: \mathbb{F}_q^m \to \mathbb{F}_q^m$ be two invertible linear maps
- ullet Let $\mathcal{F}:\mathbb{F}_q^n o\mathbb{F}_q^m$ an invertible quadratic (central) map
- \bullet The map given by $\mathcal{P}=\mathcal{T}\circ\mathcal{F}\circ\mathcal{S}$ will be the public key

- ullet \mathcal{P} is random-looking and believed to be hard to invert.
 - \triangleright S scrambles the variables
 - $ightharpoonup \mathcal{T}$ mixes the polynomials
- Related to the Isomorphism of Polynomials problem.

Isomorphism of Polynomials Problem (IP-problem)

Two systems of equations/polynomials $\mathcal{U}, \mathcal{V}: \mathbb{F}_q^n \to \mathbb{F}_q^m$ are called **isomorphic** (up to linear transforms) iif \exists linear maps $\mathcal{L}_1, \mathcal{L}_2$ s.t.

$$\mathcal{U} = \mathcal{L}_1 \circ \mathcal{V} \circ \mathcal{L}_2$$

IP is in $NP \cap co-NP$!

Isomorphism of Polynomials Problem (IP-problem)

Two systems of equations/polynomials $\mathcal{U}, \mathcal{V} : \mathbb{F}_q^n \to \mathbb{F}_q^m$ are called **isomorphic** (up to linear transforms) iif \exists linear maps $\mathcal{L}_1, \mathcal{L}_2$ s.t.

$$\mathcal{U} = \mathcal{L}_1 \circ \mathcal{V} \circ \mathcal{L}_2$$

IP is in NP \cap co-NP!

 In practice, the security of MPKC rely on a related problem that captures the concept of equivalent keys:

Isomorphism of Polynomials Problem (IP-problem)

Two systems of equations/polynomials $\mathcal{U}, \mathcal{V}: \mathbb{F}_q^n \to \mathbb{F}_q^m$ are called **isomorphic** (up to linear transforms) iif \exists linear maps $\mathcal{L}_1, \mathcal{L}_2$ s.t.

$$\mathcal{U} = \mathcal{L}_1 \circ \mathcal{V} \circ \mathcal{L}_2$$

IP is in **NP** \cap **co-NP** !

• In practice, the security of MPKC rely on a related problem that captures the concept of equivalent keys:

Extended Isomorphism of Polynomials (EIP-problem)

Given a public key $\mathcal{P}=\mathcal{T}\circ\mathcal{F}\circ\mathcal{S}$, find a map $\overline{\mathcal{F}}$ isomorphic to \mathcal{P} , i.e.,

$$\mathcal{P}=\overline{\mathcal{T}}\circ\overline{\mathcal{F}}\circ\overline{\mathcal{S}}$$

for some invertible $\overline{\mathcal{T}}$ and $\overline{\mathcal{S}}$, and $\overline{\mathcal{F}}$ inherits the trapdoor structure of \mathcal{F}

Important attacks • Direct attacks: try to solve the public system.

- Direct attacks: try to solve the public system.
 - Encryption: given the ciphertext $c \in \mathbb{F}_q^m$, solve

$$\mathcal{P}(\mathbf{x}) = c$$

for the message $x \in \mathbb{F}_q^n$.

- Direct attacks: try to solve the public system.
 - ${ ilde{ ilde{ ilde{\Gamma}}}}$ Encryption: given the ciphertext $c\in\mathbb{F}_q^m$, solve

$$\mathcal{P}(\mathbf{x}) = c$$

for the message $x \in \mathbb{F}_q^n$.

Signature: given the hash $H(M)=h\in \mathbb{F}_q^m$ solve

$$\mathcal{P}(\mathbf{x}) = h$$

for the signature $x \in \mathbb{F}_q^n$.

- Direct attacks: try to solve the public system.
 - Encryption: given the ciphertext $c \in \mathbb{F}_q^m$, solve

$$\mathcal{P}(\mathbf{x}) = c$$

- for the message $x \in \mathbb{F}_q^n$.
- ightharpoonup Signature: given the hash $H(M)=h\in \mathbb{F}_q^m$ solve

$$\mathcal{P}(\mathbf{x}) = h$$

- for the signature $x \in \mathbb{F}_q^n$.
- Attacks are exponential when $m \approx n$

- **Direct attacks**: try to solve the public system.
 - Encryption: given the ciphertext $c \in \mathbb{F}_q^m$, solve

$$\mathcal{P}(\mathbf{x}) = c$$

- for the message $x \in \mathbb{F}_q^n$.
- Signature: given the hash $H(M) = h \in \mathbb{F}_q^m$ solve

$$\mathcal{P}(\mathbf{x}) = h$$

for the signature $x \in \mathbb{F}_q^n$.

- Attacks are exponential when $m \approx n$
- Grobner bases complexity f(q, m, n):

$$f(q, m, n) = O\left(m \cdot \binom{n + d_{reg} - 1}{d_{reg}}\right)^{\omega}$$

where d_{reg} is degree of regularity of the system and $2 < \omega \leq 3$.

(cont. Important attacks · · ·)

• Minrank attacks. Find a low rank quadratic map.

MinRank

Given a set of *n* matrices M_i , find a nontrivial solution $a_1, \dots a_n$ s.t.

$$\sum_{i=1}^{n} a_i M_i$$

is of minimum rank.

Finding a low rank matrix implies that we have less independent equations \Rightarrow more variables per equation can make the system easier to solve.

Encryption: Requires $m \ge n$

$$\mathbf{c} = \mathcal{P}(\mathbf{d}) \in \mathbb{F}_q^m$$

Encryption: Requires $m \ge n$

ullet To encrypt a document $\mathbf{d} \in (\mathbb{F}_q)^n$, evaluate

$$\mathbf{c} = \mathcal{P}(\mathbf{d}) \in \mathbb{F}_q^m$$

To decrypt, compute

Encryption: Requires $m \ge n$

$$\mathbf{c} = \mathcal{P}(\mathbf{d}) \in \mathbb{F}_q^m$$

- To decrypt, compute
 - $\mathbf{x} = \mathcal{T}^{-1}(\mathbf{c}) \in F_q^m$

Encryption: Requires $m \ge n$

$$\mathbf{c} = \mathcal{P}(\mathbf{d}) \in \mathbb{F}_q^m$$

- To decrypt, compute
 - $\mathbf{x} = \mathcal{T}^{-1}(\mathbf{c}) \in F_q^m$
 - $\mathbf{w} = \mathcal{F}^{-1}(\mathbf{x})$

Encryption: Requires $m \ge n$

$$\mathbf{c} = \mathcal{P}(\mathbf{d}) \in \mathbb{F}_q^m$$

- To decrypt, compute
 - $\mathbf{x} = \mathcal{T}^{-1}(\mathbf{c}) \in F_q^m$
 - $\mathbf{w} = \mathcal{F}^{-1}(\mathbf{x})$
 - $\mathbf{z} = \mathcal{S}^{-1}(\mathbf{w})$

Encryption: Requires $m \ge n$

$$\mathbf{c} = \mathcal{P}(\mathbf{d}) \in \mathbb{F}_q^m$$

- To decrypt, compute
 - $\mathbf{x} = \mathcal{T}^{-1}(\mathbf{c}) \in F_q^m$
 - $\mathbf{w} = \mathcal{F}^{-1}(\mathbf{x})$
 - $\mathbf{z} = \mathcal{S}^{-1}(\mathbf{w})$
- If $m \ge n$ (not undetermined) then we ensure that \mathcal{F} is more or less injective and decryption is not mapped to many different plaintexts.

• Define the central map to be

$$\mathcal{F} = \phi \circ \overline{\mathcal{F}} \circ \phi^{-1}$$

• Define the central map to be

$$\mathcal{F} = \phi \circ \overline{\mathcal{F}} \circ \phi^{-1}$$

• $\phi: \mathbb{F}_{q^n} \to \mathbb{F}_q^n$ s.t.

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \mapsto (a_n, a_{n-1}, \cdots, a_0)$$

• Define the central map to be

$$\mathcal{F} = \phi \circ \overline{\mathcal{F}} \circ \phi^{-1}$$

ullet $\phi: \mathbb{F}_{q^n} o \mathbb{F}_q^n$ s.t.

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \mapsto (a_n, a_{n-1}, \cdots, a_0)$$

ullet and $\overline{\mathcal{F}}:\mathbb{F}_{q^n} o\mathbb{F}_{q^n}$ defined by

$$\overline{\mathcal{F}}:X\mapsto X^{q^{\theta}+1}$$

• Define the central map to be

$$\mathcal{F} = \phi \circ \overline{\mathcal{F}} \circ \phi^{-1}$$

ullet $\phi: \mathbb{F}_{q^n} o \mathbb{F}_q^n$ s.t.

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \mapsto (a_n, a_{n-1}, \cdots, a_0)$$

ullet and $\overline{\mathcal{F}}:\mathbb{F}_{q^n} o\mathbb{F}_{q^n}$ defined by

$$\overline{\mathcal{F}}: X \mapsto X^{q^{\theta}+1}$$

• Notice that $X^{q^{\theta}+1}$ is a quadratic transformation since q^{θ} is linear $(q^{\theta}$ -Frobenius).

• Define the central map to be

$$\mathcal{F} = \phi \circ \overline{\mathcal{F}} \circ \phi^{-1}$$

ullet $\phi: \mathbb{F}_{q^n} o \mathbb{F}_q^n$ s.t.

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \mapsto (a_n, a_{n-1}, \cdots, a_0)$$

ullet and $\overline{\mathcal{F}}:\mathbb{F}_{q^n} o\mathbb{F}_{q^n}$ defined by

$$\overline{\mathcal{F}}: X \mapsto X^{q^{\theta}+1}$$

- Notice that $X^{q^{\theta}+1}$ is a quadratic transformation since q^{θ} is linear $(q^{\theta}$ -Frobenius).
- The quadratic transformation takes place in the big "hidden field" \mathbb{F}_{q^n} instead of the vector space over the smaller field, i.e., \mathbb{F}_q^n

Encryption: The Matsumoto-Imai'88 trapdoor

Notice that for the quadratic map

$$\overline{\mathcal{F}}:X\mapsto X^{q^{\theta}+1}$$

to be invertible, the element $q^{\theta}+1$ should be invertible since

$$(X^{q^{\theta}+1})^{(q^{\theta}+1)^{-1}}=X.$$

Encryption: The Matsumoto-Imai'88 trapdoor

Notice that for the quadratic map

$$\overline{\mathcal{F}}:X\mapsto X^{q^{\theta}+1}$$

to be invertible, the element $q^{\theta}+1$ should be invertible since

$$(X^{q^{\theta}+1})^{(q^{\theta}+1)^{-1}} = X.$$

ullet The necessary condition for multiplicative inverses in $\mathbb{F}_{q^n}^*$ is

$$GCD(q^{\theta}+1,q^{n}-1)=1$$

Encryption: The Matsumoto-Imai'88 trapdoor

Notice that for the quadratic map

$$\overline{\mathcal{F}}:X\mapsto X^{q^{\theta}+1}$$

to be invertible, the element $q^{ heta}+1$ should be invertible since

$$(X^{q^{\theta}+1})^{(q^{\theta}+1)^{-1}} = X.$$

ullet The necessary condition for multiplicative inverses in $\mathbb{F}_{q^n}^*$ is

$$GCD(q^{\theta}+1,q^{n}-1)=1$$

 Therefore the quadratic map is invertible. The KeyGen, encryption and decryption for MI are done as generically explained before.

Encryption: The Matsumoto-Imai'88 trapdoor

• Later, MI was shown to be insecure by Patarin using linearization.

Encryption: The Matsumoto-Imai'88 trapdoor

- Later, MI was shown to be insecure by Patarin using linearization.
- Some variants were introduced as attempts to recover security.

Encryption: The Matsumoto-Imai'88 **trapdoor**

- Later, MI was shown to be insecure by Patarin using linearization.
- Some variants were introduced as attempts to recover security.
 - 2000, Patarin suggests Hidden Field Equations (HFE) encryption with a slightly modified trapdoor:

$$X \mapsto \sum_{i,j}^{A} \alpha_{ij} X^{q^i + q^j} + \sum_{i} \beta_i X^i + \gamma$$

Encryption: The Matsumoto-Imai'88 **trapdoor**

- Later, MI was shown to be insecure by Patarin using linearization.
- Some variants were introduced as attempts to recover security.
 - 2000, Patarin suggests Hidden Field Equations (HFE) encryption with a slightly modified trapdoor:

$$X \mapsto \sum_{i,j}^{A} \alpha_{ij} X^{q^i + q^j} + \sum_{i} \beta_i X_i + \gamma$$

Later, Kipnis and Shamir showed that A cannot be too small otherwise minrank+linearization attacks apply.

Encryption: The Matsumoto-Imai'88 **trapdoor**

- Later, MI was shown to be insecure by Patarin using linearization.
- Some variants were introduced as attempts to recover security.
 - 2000, Patarin suggests Hidden Field Equations (HFE) encryption with a slightly modified trapdoor:

$$X \mapsto \sum_{i,j}^{A} \alpha_{ij} X^{q^i + q^j} + \sum_{i} \beta_i X^i + \gamma$$

- Later, Kipnis and Shamir showed that *A* cannot be too small otherwise minrank+linearization attacks apply.
- But if A is increased decryption becomes too slow.

Encryption: The Matsumoto-Imai'88 **trapdoor**

- Later, MI was shown to be insecure by Patarin using linearization.
- Some variants were introduced as attempts to recover security.
 - 2000, Patarin suggests Hidden Field Equations (HFE) encryption with a slightly modified trapdoor:

$$X \mapsto \sum_{i,j}^{A} \alpha_{ij} X^{q^i + q^j} + \sum_{i} \beta_i X^i + \gamma$$

- Later, Kipnis and Shamir showed that *A* cannot be too small otherwise minrank+linearization attacks apply.
- But if A is increased decryption becomes too slow.
- 2003, Faugere and Joux improved the attacks using F4 and made the system impractical.

Signature: The UOV trapdoor, Kipnis, Patarin, and Goubin 1999

• Goal: $\mathcal{F}^{-1}(h) = (x_1, \cdots, x_n)$

Signature: The UOV trapdoor, Kipnis, Patarin, and Goubin 1999

- Goal: $\mathcal{F}^{-1}(h) = (x_1, \cdots, x_n)$
- Let $o, v \in \mathbb{N}$, define n = o + v and m = o

Signature: The UOV trapdoor, Kipnis, Patarin, and Goubin 1999

- Goal: $\mathcal{F}^{-1}(h) = (x_1, \dots, x_n)$
- Let $o, v \in \mathbb{N}$, define n = o + v and m = o
- Write the quadratic polynomials as the following:

$$p(x_1, \dots, x_n) = \underbrace{\sum_{i=1}^{v} \sum_{j=i}^{v} \alpha_{ij} x_i x_j}_{v \times v \text{ terms}} + \underbrace{\sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{ij} x_i x_j}_{v \times o \text{ terms}} + \sum_{i=1}^{n} \gamma_i x_i + \delta$$

where (x_1, \dots, x_v) are the *vinegar* variables and are (x_{v+1}, \dots, x_n) are the **oil** variables.

Signature: The UOV trapdoor, Kipnis, Patarin, and Goubin 1999

- Goal: $\mathcal{F}^{-1}(h) = (x_1, \dots, x_n)$
- Let $o, v \in \mathbb{N}$, define n = o + v and m = o
- Write the quadratic polynomials as the following:

$$p(x_1, \dots, x_n) = \underbrace{\sum_{i=1}^{v} \sum_{j=i}^{v} \alpha_{ij} x_i x_j}_{v \times v \text{ terms}} + \underbrace{\sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{ij} x_i x_j}_{v \times o \text{ terms}} + \sum_{i=1}^{n} \gamma_i x_i + \delta$$

where (x_1, \dots, x_v) are the *vinegar* variables and are (x_{v+1}, \dots, x_n) are the **oil** variables.

• Notice *oil* variables are **not mixed** with themselves. // Easier to see using matrix notation.

How to invert the UOV trapdoor

• To invert guess at random the vinegars $(x_1, \dots, x_v) \in_R \mathbb{F}_q^v$

How to invert the UOV trapdoor

- To invert guess at random the vinegars $(x_1, \dots, x_v) \in_R \mathbb{F}_q^v$
- For 1 < k < o

$$p_k(x_1, \dots, x_n) = \underbrace{\sum_{i=1}^{v} \sum_{j=i}^{v} \alpha_{ij}^{(k)} \mathbf{x}_i \mathbf{x}_j}_{v \times v \text{ terms}} + \underbrace{\sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{ij}^{(k)} \mathbf{x}_i \mathbf{x}_j}_{v \times o \text{ terms}} + \sum_{i=1}^{n} \gamma_i \mathbf{x}_i^{(k)} + \delta^{(k)}$$

which is a linear system of equations on the oils.

How to invert the UOV trapdoor

- To invert guess at random the vinegars $(x_1, \dots, x_v) \in_R \mathbb{F}_q^v$
- For 1 < k < o

$$p_k(x_1, \dots, x_n) = \underbrace{\sum_{i=1}^{v} \sum_{j=i}^{v} \alpha_{ij}^{(k)} \mathbf{x}_i \mathbf{x}_j}_{v \times v \text{ terms}} + \underbrace{\sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{ij}^{(k)} \mathbf{x}_i \mathbf{x}_j}_{v \times o \text{ terms}} + \sum_{i=1}^{n} \gamma_i \mathbf{x}_i^{(k)} + \delta^{(k)}$$

which is a linear system of equations on the oils.

• Solve the system in at most $O(o^3)$ using Gaussian elimination to find $(x_{\nu+1}, \dots, x_n)$.

How to invert the UOV trapdoor

- To invert guess at random the vinegars $(x_1, \dots, x_v) \in_R \mathbb{F}_q^v$
- For 1 < k < o

$$p_k(x_1, \dots, x_n) = \underbrace{\sum_{i=1}^{v} \sum_{j=i}^{v} \alpha_{ij}^{(k)} \mathbf{x}_i \mathbf{x}_j}_{v \times v \text{ terms}} + \underbrace{\sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{ij}^{(k)} \mathbf{x}_i \mathbf{x}_j}_{v \times o \text{ terms}} + \sum_{i=1}^{n} \gamma_i \mathbf{x}_i^{(k)} + \delta^{(k)}$$

which is a linear system of equations on the oils.

- Solve the system in at most $O(o^3)$ using Gaussian elimination to find $(x_{\nu+1}, \dots, x_n)$.
- If the system has no solution, try another guess for (x_1, \dots, x_v)

How to invert the UOV trapdoor

• This system $o \times o$ has a solution with very high probability

$$1 - (\prod_{i=0}^{n-1} (q^o - q^i))^{-1}$$

• This system $o \times o$ has a solution with very high probability

$$1 - (\prod_{i=0}^{n-1} (q^o - q^i))^{-1}$$

• Security note: in practice pick $\mathbf{v} \approx \mathbf{2o}$.

• This system $o \times o$ has a solution with very high probability

$$1 - (\prod_{i=0}^{n-1} (q^o - q^i))^{-1}$$

- Security note: in practice pick $\mathbf{v} \approx \mathbf{2o}$.
 - The case where $o \le v$ (balanced oil and vinegar) was broken by Kipnis and Shamir in 1998.

• This system $o \times o$ has a solution with very high probability

$$1 - (\prod_{i=0}^{n-1} (q^o - q^i))^{-1}$$

- Security note: in practice pick $\mathbf{v} \approx \mathbf{2o}$.
 - The case where $o \le v$ (balanced oil and vinegar) was broken by Kipnis and Shamir in 1998.
 - Complexity of the attack for v > o is $O(q^{v-o} \cdot o^4)$

UOV parameter sizes [from A. Petzoldt, 2017]

security		public key	private key	hash size	signature
level (bit)	scheme	size (kB)	size (kB)	(bit)	(bit)
80	UOV(GF(16),40,80)	144.2	135.2	160	480
	UOV(GF(256),27,54)	89.8	86.2	216	648
100	UOV(GF(16),50,100)	280.2	260.1	200	600
	UOV(GF(256), 34,68)	177.8	168.3	272	816
128	UOV(GF(16),64,128)	585.1	538.1	256	768
	UOV(GF(256),45,90)	409.4	381.8	360	1,080
192	UOV(GF(16),96,192)	1,964.3	1,786.7	384	1,152
	UOV(GF(256),69,138)	1,464.6	1,344.0	552	1,656
256	UOV(GF(16),128,256)	4,644.1	4,200.3	512	1,536
	UOV(GF(256),93,186)	3,572.9	3,252.2	744	2,232

- UOV was proposed in 1999 and has not suffured major attacks.
- Faster than ECDSA to sign. $2-4\times$ faster to sign, $10-20\times$ faster for verifying.
- Signature sizes are less than 1KiB
- Public keys are large: tens or hundreds KiB

Rainbow signature

- Proposed by Ding and Schmidt 2005.
- It is a generalization of UOV.
- Idea: split private quadratic maps into layers.
 - Solve more but smaller systems of equation.
 - Vinegars for the next layer will be the the vinegars + oils from the previous one.

Rainbow signature

• Assume integer chain $0 < v_1 < \cdots < v_u < v_{u+1} = n$

Rainbow signature

- Assume integer chain $0 < v_1 < \cdots < v_u < v_{u+1} = n$
- Let $V_i = \{1, \dots, v_i\}$ and $O_i = \{v_i + 1, \dots, v_{i+1}\}$, $o_i = v_{i+1} v_i$ be sets.

Rainbow signature

- Assume integer chain $0 < v_1 < \cdots < v_u < v_{u+1} = n$
- Let $V_i = \{1, \dots, v_i\}$ and $O_i = \{v_i + 1, \dots, v_{i+1}\}$, $o_i = v_{i+1} v_i$ be sets.
- The central map $\mathcal F$ consists of $m=n-v_1$ polynomials $f^{v_1+1},\,\cdots,\,f^{(n)}$

$$f^{(k)} = \sum_{i,j \in V_{\ell}} \alpha_{ij}^{(k)} x_i x_j + \sum_{i \in V_{\ell}, j \in O_{\ell}} + \beta_{ij}^{(k)} x_i x_j + \sum_{i \in V_{\ell} \cup O_{\ell}} \gamma_i^{(k)} x_i + \delta^{(k)}$$

where ℓ is the only integer s.t. $k \in O_{\ell}$.

Rainbow signature

- Assume integer chain $0 < v_1 < \cdots < v_u < v_{u+1} = n$
- Let $V_i = \{1, \dots, v_i\}$ and $O_i = \{v_i + 1, \dots, v_{i+1}\}$, $o_i = v_{i+1} v_i$ be sets.
- The central map $\mathcal F$ consists of $m=n-v_1$ polynomials $f^{v_1+1},\,\cdots,\,f^{(n)}$

$$f^{(k)} = \sum_{i,j \in V_{\ell}} \alpha_{ij}^{(k)} x_i x_j + \sum_{i \in V_{\ell}, j \in O_{\ell}} + \beta_{ij}^{(k)} x_i x_j + \sum_{i \in V_{\ell} \cup O_{\ell}} \gamma_i^{(k)} x_i + \delta^{(k)}$$

where ℓ is the only integer s.t. $k \in O_{\ell}$.

ullet Choose invertible linear maps $\mathcal{T}:\mathbb{F}_q^m o\mathbb{F}_q^m$ and $\mathcal{S}:\mathbb{F}_q^n o\mathbb{F}_q^n$

Rainbow signature

- Assume integer chain $0 < v_1 < \cdots < v_u < v_{u+1} = n$
- Let $V_i = \{1, \dots, v_i\}$ and $O_i = \{v_i + 1, \dots, v_{i+1}\}$, $o_i = v_{i+1} v_i$ be sets.
- The central map $\mathcal F$ consists of $m=n-v_1$ polynomials $f^{v_1+1},\,\cdots,\,f^{(n)}$

$$f^{(k)} = \sum_{i,j \in V_{\ell}} \alpha_{ij}^{(k)} x_i x_j + \sum_{i \in V_{\ell}, j \in O_{\ell}} + \beta_{ij}^{(k)} x_i x_j + \sum_{i \in V_{\ell} \cup O_{\ell}} \gamma_i^{(k)} x_i + \delta^{(k)}$$

where ℓ is the only integer s.t. $k \in O_{\ell}$.

- ullet Choose invertible linear maps $\mathcal{T}:\mathbb{F}_q^m o\mathbb{F}_q^m$ and $\mathcal{S}:\mathbb{F}_q^n o\mathbb{F}_q^n$
- Public key is $\mathcal{P} = \mathcal{T} \circ \mathcal{F} \circ \mathcal{S}$.

Rainbow central map with 2 layers

• $x_1, \dots, x_{v_1}, x_{v_1+1}, \dots, x_{v_1+o_1}$ will be the vinegars x_1, \dots, x_{v_2} for the second layer.

Rainbow (2 layers): Toy example [from A. Petzoldt, 2017]

- \mathbb{F}_7 , $(v_1, o_1, o_2) = (2, 2, 2)$, $m = n v_1 = 4$
- Central map $\mathcal{F} = (f^{(3)}, f^{(4)}, f^{(5)}, f^{(6)})$ with

$$f^{(3)} = x_1^2 + 3x_1x_2 + 5x_1x_3 + 6x_1x_4 + 2x_2^2 + 6x_2x_3 + 4x_2x_4 + 2x_2 + 6x_3 + 2x_4 + 5$$

$$f^{(4)} = 2x_1^2 + x_1x_2 + x_1x_3 + 3x_1x_4 + 4x_1 + x_2^2 + x_2x_3 + 4x_2x_4 + 6x_2 + x_4$$

$$f^{(5)} = 2x_1^2 + 3x_1x_2 + 3x_1x_3 + 3x_1x_4 + x_1x_5 + 3x_1x_6 + 6x_1 + 4x_2^2 + x_2x_3 + 4x_2x_4 + x_2x_5 + 3x_2x_6 + 3x_2 + 3x_3x_4 + x_3x_5 + 2x_3x_6 + 2x_3 + 3x_4x_5 + x_5 + 6x_6$$

$$f^{(6)} = 2x_1^2 + 5x_1x_2 + x_1x_3 + 5x_1x_4 + 5x_1x_6 + 6x_1 + 5x_2^2 + 3x_2x_3 + 5x_2x_5 + 4x_2x_6 + x_2 + 3x_3^2 + 5x_3x_4 + 4x_3x_5 + 2x_3x_6 + 4x_3 + x_4^2 + 6x_4x_5 + 3x_4x_6 + 4x_4 + 4x_5 + x_6 + 2$$

• Goal: Compute the preimage $\mathbf{x} \in \mathbb{F}_7^6$ for $\mathbf{y} = (6, 2, 0, 5)$ under \mathcal{F} .

Rainbow: Toy example [from A. Petzoldt, 2017] (cont. ...)

• Choose random values for the Vinegar variables x_1 and x_2 , e.g. $(x_1, x_2) = (0, 1)$ and substitute them into the polynomials $f^{(3)}, \ldots, f^{(6)}$.

$$\begin{array}{lll} \tilde{f}^{(3)} & = & 5x_3 + 6x_4 + 2, \tilde{f}^{(4)} = x_3 + 5x_4, \\ \tilde{f}^{(5)} & = & 3x_3x_4 + x_3x_5 + 2x_3x_6 + 3x_3 + 3x_4x_5 + 4x_4 + 2x_5 + 2x_6, \\ \tilde{f}^{(6)} & = & 3x_3^2 + 5x_3x_4 + 4x_3x_5 + 2x_3x_6 + x_4^2 + 6x_4x_5 + 3x_4x_6 + 4x_4 + 2x_5 + 5x_6 + 1. \end{array}$$

- Set $\tilde{f}^{(3)} = y_1 = 6$ and $\tilde{f}^{(4)} = y_2 = 2$ and solve for $x_3, x_4 \Rightarrow (x_3, x_4) = (3, 4)$
- Substitute into $\tilde{f}^{(5)}$ and $\tilde{f}^{(6)}$ $\Rightarrow \tilde{\tilde{f}}^{(5)} = 3x_5 + x_6 + 5, \tilde{\tilde{f}}^{(6)} = 3x_5 + 2x_6 + 1$
- Set $\tilde{f}^{(5)} = y_3 = 0$ and $\tilde{f}^{(6)} = y_4 = 5$, solve for x_5 and $x_6 \Rightarrow (x_5, x_6) = (0, 2)$

A pre image of $\mathbf{y} = (6, 2, 0, 5)$ is given by $\mathbf{x} = (0, 1, 3, 4, 0, 2)$.

Rainbow parameter sizes [from A. Petzoldt, 2017]

(cont. \cdots)

security	parameters	public key	private key	hash size	signature
level (bit)	$\mathbb{F}, v_1, o_1, o_2$	size (kB)	size (kB)	(bit)	(bit)
80	GF(16),17,20,20	33.4	22.3	160	228
	GF(256),19,12,13	25.3	19.3	200	352
100	GF(16),22,25,25	65.9	43.2	200	288
	GF(256), 27,16,16	57.2	44.3	256	472
128	GF(16),28,32,32	136.6	87.6	256	368
	GF(256),36,21,22	136.0	102.5	344	632
192	GF(16),45,48,48	475.9	301.8	384	564
	GF(256),58,33,34	523.5	385.5	536	1,000
256	GF(16),66,64,64	1,194.4	763.9	512	776
	GF(256),86,45,46	1,415.7	1,046.3	728	1,416

References I

Patarin, Jacques and Louis Goubin (1997).

"Trapdoor one-way permutations and multivariate polynomials".

Kipnis, Aviad, Jacques Patarin, and Louis Goubin (1999).

"Unbalanced oil and vinegar signature schemes" $\!\!.$

Ding, Jintai and Dieter Schmidt (2005).

"Rainbow, a new multivariable polynomial signature scheme".