ÄNDERUNGEN/SOFTWAREUPDATES

27.10.2020 Erweiterung SP35a (Änderungen bei SP-42a)
15.10.2020: Änderungen bei SP-42a
15.10.2020: NAP505/550 mit 2 Verstärkungsmöglichkeiten
20.12.2020 Schreib.-/ Lese-Register fehlerhaft, doppelt vergeben
(Sensor-MB-NAP5X_REV1_0, Sensor-MB-NAP5xx_REV1_0,
Sensor-MB-NE4_REV1_0, Sensor-MB-SP42A_REV1_0)
Stefan Müller

BUS-Protokoll für das RA-GAS-Modbus-System

Verwendete Abkürzungen:

Rreg (read) Lese-Register (kann nicht beschrieben werden)

RWreg (read/write) Lese- und Schreibregister (kann auch beschrieben werden, teilweise

mit Speicherung)

Fcode Funktionscode

Adr Adresse Reg Register

Registerbelegung PLATINE (Sensor-MB-NE4_REV1_0)

Tabelle der Lese(Read)-Register

Rreg Nr. (Fcode 0x04)	Wertebereich	Zugeordnete Größe und teilw. Einheit	Messwerteigenschaft	
00	0 65535		Gerätekennung Kunden	
01	0 65535		Arbeitsweise (Sensor)	
02	010000	0 10000 ppm	Gaskonzentration im ppm	
03	0 2500	0 25.00 mA	Berechneter Ausgangsstrom in mA (mit zwei Kommastellen)	
04	-200 600	-20,0 60,0 °C	Interne Leiterplattentemperatur in °C (mit Kommastelle)	
05	0 0xffff		Fehlererkennung (Bit's werden gesetzt)	
32	0 16384		AD-Wert der Temperaturmessung	
33	0 16384		AD-Wert des Potentiometers	
34	0 16384		AD-Wert des Sensors	
35	50 200	0,50 2,00	Verstärkungsfaktor durch Poti (100 = 1,00)	
36	50 200	0,50 2,00	Verstärkungsfaktor durch Temperaturkennlinie (100 = 1,00)	
37	0 16384		Korrigierter AD-Wert des Sensors	
38	0 10000	0 10000 ppm	berechnete Gaskonzentration im ppm	
49	0 31129		Softwaredatum bis 31.12.2029	

Hinweis: der angegebene Wertebereich wiederspiegelt nicht gleichzeitig den Messbereich.

Dieser ist abhängig vom Sensor und der Kalibrierung.

Zusätzliche Erläuterungen zu einigen Rreg-Registern:

Rreg 00: hier befindet sich der Kundencode welcher vom Kunden in Register RWreg 00

geschrieben und gespeichert wurde. (kann z.B. zur Raumnummerierung verwendet

werden.

Rreg 01: Arbeitscode (Sensor)

10 = CO-Sensor (1000)

12 = CO-Sensor (300)

20 = NO-Sensor (250)

30 = NO2 (20)

40 = NH3 (1000)

42 = NH3 (100)

50 = CL2 (10)

60 = H2S (100)

Rreg_02: Berechneter ppm-Wert aus Rreg_38 (mit Nullpunktberuhigung)
Rreg_03: der berechnete Strom für den analogen Stromausgang 4..20mA

Rreg 05: Fehlerregister:

Bit 0 = 1: (Sensorspannung[Endwert – Nullwert]) < 2 digit/ppm

Bit 1 = 1: (Sensorspannung Endwert od. Nullwert) < 50 od. > 16000 digit

Bit 2 = 1: (ungünstiger Kalibrierwert) Berechnung läuft zu < 50 und > 16000 digit

Bit_3 = 1: Sensor-AD-Wert < 50 bzw. > 16000 digit Bit_4 = 1: Ausgangsstrom < 390 bzw. > 2100

Liegt ein Fehler vor, wird dieser durch eine blitzende rote LED dargestellt.

Rreg_37: entspricht Rreg_34 * Rreg_35 * Rreg_36

Rreg 38: Berechneter ppm-Wert aus dem linearen Zusammenhang RWreg 10._13

Rwreg Nr. (Fcode: 0x03, 0x06)	Wertebereich	Zugeordnete Größe und Einheit	Messwerteigenschaft		
00	0 65535 [0]		Kundencode: zur freien Belegung z.B. Raumcode		
02	0 10000 [11111]	0 10000 ppm	Messwertvorgabe für Testzwecke		
03	0 2500 [11111]	0 25,00 mA	Ausgangsstrom vorgeben für Testzwecke		
04	-200 600 [11111]	-20,0 60,0 °C	Temperatur vorgeben für Testzwecke		
10	0 16383		Sensorspannung im Nullpunkt		
11	0	0	Sensorwert Nullpunkt = 0		
12	0 16383		Sensorspannung im Kalibrierpunkt (bei Endwert)		
13	0 10000	0 10000 ppm	Sensorwert im Kalibrierpunkt (bei Endwert)		
15	0 10000 [0]	0 10000 ppm [0 ppm]	Messwert unten für Ausgangsstrom unten		
16	0 2500 [400]	0 25,00 mA [4 mA]	Ausgangsstrom im unteren Punkt		
17	0 10000 [1000]	0 10000 ppm [1000ppm]	Messwert oben für Ausgangsstrom oben		
18	0 2500 [2000]	0 25,00 mA [20 mA]	Ausgangsstrom im oberen Punkt		
33	0 3		Zuschalten vor Hardwareverstärkung 0 (hoch)		
34	0 16000 [11111]		Sensor AD-Wert vorgeben für Testzwecke		
37	1 100		Faktor für Mittelwertbildung		
50	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei -20°C		
51	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 0°C		
52	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 10°C		
53	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 20°C		
54	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 30°C		
55	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 40°C		
56	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 60°C		
66	100 12000 [1500]		Vorgegebener Nullpunktwert		
67	0 1023		Nullpunktparameter [11111 = Nullpunktsuche]		
79	0 65535		Neustart / Grunddaten / entsichern		
80	1 247 [1]		Modbus-Geräteadresse *		
81	0 3 [1]		Modbus Baudrate *		
82	0 4 [0]		Modbus Mode *		
83	10 1000 [180]		Kalibrierwert Ausgangsstrom 4mA *		
84	10 1000 [900]		Kalibrierwert Ausgangsstrom 20mA *		
95	0, 129 256 [0]		Sensornummer für MCS4000 – Mode *		
96	0 65535		Einschaltzähler *		
97	0 65535		Betriebsstunden *		
98	0 65535		Gerätekennung vom Werk *		
99	0 65535		Arbeitsweise vom Werk *		

Hinweise:

- * (**fett**) eingetragene Werte werden auch gespeichert (Achtung: nicht kontinuierlich beschreiben!)
- [x] Wert nach dem Einschalten bzw. bei Voreinstellung (Werkseinstellung)
- [*] Werte nur nach Entsicherung veränderbar

Zusätzliche Erläuterungen zu einigen RWreg-Registern:

RWreg_00: hier kann ein Kundencode für eine Gerätezuordnung eingetragen werden z.B. zur Raumnummerierung

RWreg_02, 03, 04, 46:

für Testzwecke Vorgabe verschiedener Werte. Mit 11111 ist dies inaktiv.

RWreg_10, 11, 12, 13:

Kennlinienpaar für die Umwandlung des Sensor AD_Wertes in die Gaskonzentration (lineare Interpolation mit diesen Werten)

RWreg_15, 16, 17, 18:

Kennlinienpaar für die Umwandlung der Gaskonzentration in den Ausgangsstrom (lineare Interpolation mit diesen Werten)

RWreg_33: Hardwareverstärkung in 4 Stufen (0..3)

RWreg_37: gleitende Mittelwertbildung (1..100 fache Aufsummierung von Messwerten)

RWreg_50 bis _56:

Korrekturwerte entsprechend Vorgabe des Sensorherstellers bzgl. der Temperatur zwischen den Temperaturwerten wird linear interpoliert

RWreg_66: Digit-Wert auf welchen die Nullpunktsuche stattfindet +/- 100digit

RWreg_67: Parameter für die Nullpunkteinstellung [11111 = Suche]

RWreg_79: bei 10 = Reset

bei 20 = Systemneueinstellung und Reset

bei 9876 = entsichert (automatisch mit Systemstecker)

RWreg 81: bei 0 = 2400 baud

bei 1 = 9600 baud

bei 2 = 19200 baud

bei 3 = 38400 baud

RWreg_82: bei 0 = 8 Datenbits, 1 Stoppbit; keine parität

bei 1 = 8 Datenbits, 1 Stoppbit; ungerade Parität

bei 2 = 8 Datenbits, 2 Stoppbit; ungerade Parität

bei 3 = 8 Datenbits, 1 Stoppbit; gerade Parität

bei 4 = 8 Datenbits, 2 Stoppbit; gerade Parität

RWreg_83: zur Kalibrierung des Ausgangsstroms

Beispiel: in RWreg_3 = 400 eintragen; Veränderung des analogen Ausgangstrom (gemessen mit Multimeter) über Werteänderung von RWreg 83 bis 4 mA anliegen

RWreg 84: zur Kalibrierung des Ausgangsstroms

Beispiel: in RWreg_3 = 2000 eintragen; Veränderung des analogen Ausgangstrom (gemessen mit Multimeter) über Werteänderung von RWreg_84 bis 20 mA anliegen.

RWreg_94: Eingabe einer Zahl 129 ... 256 erzeugt ein Umschalten der RS485 Schnittstelle vom MODBUS-Mode in den MCS4000-Mode mit der entsprechenden Sensornummer

Achtung: nur über den Systemstecker ist eine Reaktivierung möglich (automatisch MODBUS auf Systemstecker und Zugriff auf die Register)

Registerbelegung PLATINE (Sensor-MB-NAP5X_REV1_0)

Tabelle der Lese(Read)-Register

Rreg Nr. (Fcode 0x04)	Wertebereich	Zugeordnete Größe und teilw. Einheit	Messwerteigenschaft	
00	0 65535		Gerätekennung Kunden	
01	0 65535		Arbeitsweise (Sensor)	
02	01000	0 100.0 %UEG	Gaskonzentration im ppm	
03	0 2500	0 25.00 mA	Berechneter Ausgangsstrom in mA (mit zwei Kommastellen)	
04	-200 600	-20,0 60,0 °C	Interne Leiterplattentemperatur in °C (mit Kommastelle)	
05	0 0xffff		Fehlererkennung (Bit's werden gesetzt)	
32	0 16384		AD-Wert der Temperaturmessung	
33	0 16384		AD-Wert des Potentiometers	
34	0 16384		AD-Wert des Sensors	
35	50 200	0,50 2,00	Verstärkungsfaktor durch Poti (100 = 1,00)	
36	50 200	0,50 2,00	Verstärkungsfaktor durch Temperaturkennlinie (100 = 1,00)	
37	0 16384		Korrigierter AD-Wert des Sensors	
38	0 1000	0 100.0 %UEG	berechnete Gaskonzentration im ppm	
49	0 31129		Softwaredatum bis 31.12.2029	

Hinweis: der angegebene Wertebereich wiederspiegelt nicht gleichzeitig den Messbereich. Dieser ist abhängig vom Sensor und der Kalibrierung.

Zusätzliche Erläuterungen zu einigen Rreg-Registern:

Rreg_00: hier befindet sich der Kundencode welcher vom Kunden in Register RWreg_00

geschrieben und gespeichert wurde. (kann z.B. zur Raumnummerierung verwendet

werden.

Rreg_01: Arbeitscode (Sensor)

150 = NAP-50 155 = NAP-55 166 = NAP-66

Rreg_02: Berechneter %UEG-Wert aus Rreg_38 (mit Nullpunktberuhigung)

Rreg_03: der berechnete Strom für den analogen Stromausgang 4..20mA

Rreg_05: Fehlerregister:

Bit_0 = 1: (Sensorspannung[Endwert –Nullwert])< 2 digit/ppm

Bit_1 = 1: (Sensorspannung Endwert od. Nullwert) < 50 od. > 16000 digit

Bit 2 = 1: (ungünstiger Kalibrierwert) Berechnung läuft zu < 50 und > 16000 digit

Bit_3 = 1: Sensor-AD-Wert < 50 bzw. > 16000 digit Bit_4 = 1: Ausgangsstrom < 390 bzw. > 2100

Liegt ein Fehler vor, wird dieser durch eine blitzende rote LED dargestellt.

Rreg 37: entspricht Rreg 34 * Rreg 35 * Rreg 36

Rreg 38: Berechneter %UEG-Wert aus dem linearen Zusammenhang RWreg 10.. 13

Rwreg Nr. (Fcode: 0x03, 0x06)	Wertebereich	Zugeordnete Größe und Einheit	Messwerteigenschaft		
00	0 65535 [0]		Kundencode: zur freien Belegung z.B. Raumcode		
02	0 1000 [11111]	0 100.0 % UEG	Messwertvorgabe für Testzwecke		
03	0 2500 [11111]	0 25,00 mA	Ausgangsstrom vorgeben für Testzwecke		
04	-200 600 [11111]	-20,0 60,0 °C	Temperatur vorgeben für Testzwecke		
10	0 16383		Sensorspannung im Nullpunkt		
11	0	0	Sensorwert Nullpunkt = 0		
12	0 16383		Sensorspannung im Kalibrierpunkt (bei Endwert)		
13	0 1000	0 100.0 %UEG	Sensorwert im Kalibrierpunkt (bei Endwert)		
15	0 1000 [0]	0 100.0 %UEG [0]	Messwert unten für Ausgangsstrom unten		
16	0 2500 [400]	0 25,00 mA [4 mA]	Ausgangsstrom im unteren Punkt		
17	0 1000 [1000]	0 100.0 %UEG[1000ppm]	Messwert oben für Ausgangsstrom oben		
18	0 2500 [2000]	0 25,00 mA [20 mA]	Ausgangsstrom im oberen Punkt		
33	0 1		Zuschalten vor Hardwareverstärkung 0 (hoch)		
34	0 16000 [11111]		Sensor AD-Wert vorgeben für Testzwecke		
37	1 100 [10]		Faktor für Mittelwertbildung		
50	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei -20°C		
51	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 0°C		
52	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 10°C		
53	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 20°C		
54	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 30°C		
55	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 40°C		
56	50 200	0,50 2,00	Kennlinie vom Sensorhersteller bei 60°C		
66	100 12000 [2000]		Vorgegebener Nullpunktwert		
67	0 1023 [500]		Nullpunktparameter [11111 = Nullpunktsuche]		
79	0 65535		Neustart / Grunddaten / entsichern		
80	1 247 [1]		Modbus-Geräteadresse *		
81	0 3 [1]		Modbus Baudrate *		
82	0 4 [0]		Modbus Mode *		
83	10 1000 [180]		Kalibrierwert Ausgangsstrom 4mA *		
84	10 1000 [900]		Kalibrierwert Ausgangsstrom 20mA *		
95	0, 129 256 [90]		Sensornummer für MCS4000 - Mode		
96	0 65535		Einschaltzähler *		
97	0 65535		Betriebsstunden *		
98	0 65535		Gerätekennung vom Werk *		
99	0 65535		Arbeitsweise vom Werk *		

Hinweise:

- * (**fett**) eingetragene Werte werden auch gespeichert (Achtung: nicht kontinuierlich beschreiben!)
- [x] Wert nach dem Einschalten bzw. bei Voreinstellung (Werkseinstellung)
- [*] Werte nur nach Entsicherung veränderbar

Zusätzliche Erläuterungen zu einigen RWreg-Registern:

RWreg_00: hier kann ein Kundencode für eine Gerätezuordnung eingetragen werden z.B. zur Raumnummerierung

RWreg_02, 03, 04, 46:

für Testzwecke Vorgabe verschiedener Werte. Mit 11111 ist dies inaktiv.

RWreg_10, 11, 12, 13:

Kennlinienpaar für die Umwandlung des Sensor AD_Wertes in die Gaskonzentration (lineare Interpolation mit diesen Werten)

RWreg_15, 16, 17, 18:

Kennlinienpaar für die Umwandlung der Gaskonzentration in den Ausgangsstrom (lineare Interpolation mit diesen Werten)

RWreg_33: Hardwareverstärkung in 2 Stufen (0..1)

RWreg_37: gleitende Mittelwertbildung (1..100 fache Aufsummierung von Messwerten)

RWreg_50 bis _56:

Korrekturwerte entsprechend Vorgabe des Sensorherstellers bzgl. der Temperatur zwischen den Temperaturwerten wird linear interpoliert

RWreg_66: Digit-Wert auf welchen die Nullpunktsuche stattfindet +/- 100digit

RWreg_67: Parameter für die Nullpunkteinstellung [11111 = Suche]

RWreg 79: bei 10 = Reset

bei 20 = Systemneueinstellung und Reset

bei 9876 = entsichert (automatisch mit Systemstecker)

RWreg 81: bei 0 = 2400 baud

bei 1 = 9600 baud

bei 2 = 19200 baud

bei 3 = 38400 baud

RWreg_82: bei 0 = 8 Datenbits, 1 Stoppbit; keine parität

bei 1 = 8 Datenbits, 1 Stoppbit; ungerade Parität

bei 2 = 8 Datenbits, 2 Stoppbit; ungerade Parität

bei 3 = 8 Datenbits, 1 Stoppbit; gerade Parität

bei 4 = 8 Datenbits, 2 Stoppbit; gerade Parität

RWreg_83: zur Kalibrierung des Ausgangsstroms

Beispiel: in RWreg_3 = 400 eintragen; Veränderung des analogen Ausgangstrom (gemessen mit Multimeter) über Werteänderung von RWreg_83 bis 4 mA anliegen

RWreg_84: zur Kalibrierung des Ausgangsstroms

Beispiel: in RWreg_3 = 2000 eintragen; Veränderung des analogen Ausgangstrom (gemessen mit Multimeter) über Werteänderung von RWreg_84 bis 20 mA anliegen.

RWreg_94: Eingabe einer Zahl 129 ... 256 erzeugt ein Umschalten der RS485 Schnittstelle vom MODBUS-Mode in den MCS4000-Mode mit der entsprechenden Sensornummer

Achtung: nur über den Systemstecker ist eine Reaktivierung möglich (automatisch MODBUS auf Systemstecker und Zugriff auf die Register)

Registerbelegung PLATINE (Sensor-MB-SP42A_REV1_0)

Tabelle der Lese(Read)-Register

Rreg Nr. (Fcode 0x04)	Wertebereich	Zugeordnete Größe und teilw. Einheit	Messwerteigenschaft	
00	0 65535		Gerätekennung Kunden	
01	0 65535		Arbeitsweise (Sensor)	
02	010000	0 10000 ppm	Gaskonzentration im ppm	
03	0 2500	0 25.00 mA	Berechneter Ausgangsstrom in mA (mit zwei Kommastellen)	
04	-200 600	-20,0 60,0 °C	Interne Leiterplattentemperatur in °C (mit Kommastelle)	
05	0 0xffff		Fehlererkennung (Bit's werden gesetzt)	
32	0 16384		AD-Wert der Temperaturmessung	
33	0 16384		AD-Wert des Potentiometers	
34	0 16384		AD-Wert des Sensors	
35	50 200	0,50 2,00	Verstärkungsfaktor durch Poti (100 = 1,00)	
36	50 200	0,50 2,00	Verstärkungsfaktor durch Temperaturkennlinie (100 = 1,00)	
37	0 16384		Korrigierter AD-Wert des Sensors	
38	0 10000	0 10000 ppm	berechnete Gaskonzentration im ppm	
49	0 31129		Softwaredatum bis 31.12.2029	

Hinweis: der angegebene Wertebereich wiederspiegelt nicht gleichzeitig den Messbereich. Dieser ist abhängig vom Sensor und der Kalibrierung.

Zusätzliche Erläuterungen zu einigen Rreg-Registern:

hier befindet sich der Kundencode welcher vom Kunden in Register RWreg 00 Rreg_00:

geschrieben und gespeichert wurde. (kann z.B. zur Raumnummerierung verwendet

werden.

Arbeitscode (Sensor SP42A) Rreg_01:

204 = für GAS R404a [2000]

205 = für GAS R404a [1000]

210 = für GAS R410a [2000]

234 = für GAS R134a [2000]

247 = für GAS R407a [2000]

249 = für GAS R449a [1000]

257 = für GAS R507 [2000]

270 = für GAS R1234ze [1000]

280 = für GAS R1234yt [1000]

290 = für GAS NH3 [35000] (Sensor SP53a)

291 = für GAS NH3 [1000] (Sensor SP53a)

Berechneter ppm-Wert aus Rreg 38 (mit Nullpunktberuhigung) Rreg 02:

Rrea 03: der berechnete Strom für den analogen Stromausgang 4..20mA

Rreg 05: Fehlerregister:

Bit 0 = 1: (Sensorspannung[Endwert –Nullwert])< 2 digit/ppm

Bit 1 = 1: (Sensorspannung Endwert od. Nullwert) < 50 od. > 16000 digit

Bit_2 = 1: (ungünstiger Kalibrierwert) Berechnung läuft zu < 50 und > 16000 digit

Bit 3 = 1: Sensor-AD-Wert < 50 bzw. > 16000 digit

Bit 4 = 1: Ausgangsstrom < 390 bzw. > 2100

Liegt ein Fehler vor, wird dieser durch eine blitzende rote LED dargestellt.

Rreg 37: entspricht Rreg 34 * Rreg 35 * Rreg 36

Berechneter ppm-Wert aus dem Zusammenhang RWreg 10.. 13 mit zusätzlichen Rreg_38:

internen nichtlinearen Koeffizienten (logarithmisch)

Rwreg Nr. (Fcode: 0x03, 0x06)	Wertebereich	Zugeordnete Größe und Einheit	Messwerteigenschaft	
00	0 65535 [0]		Kundencode: zur freien Belegung z.B. Raumcode	
02	0 10000 [11111]	0 1000 ppm	Messwertvorgabe für Testzwecke	
03	0 2500 [11111]	0 25,00 mA	Ausgangsstrom vorgeben für Testzwecke	
04	-200 600 [11111]	-20,0 60,0 °C	Temperatur vorgeben für Testzwecke	
10	0 16383 [1000]		Sensorspannung im Nullpunkt	
11	0	0	Sensorwert Nullpunkt = 0	
12	0 16383 [8000]		Sensorspannung im Kalibrierpunkt (bei Endwert)	
13	0 10000 [2000]	0 1000 ppm	Sensorwert im Kalibrierpunkt (bei Endwert)	
15	0 10000 [0]	0 1000 [0 ppm]	Messwert unten für Ausgangsstrom unten	
16	0 2500 [400]	0 25,00 [4 mA]	Ausgangsstrom im unteren Punkt	
17	0 10000 [1000]	0 1000 [1000ppm]	Messwert oben für Ausgangsstrom oben	
18	0 2500 [2000]	0 25,00 [20 mA]	Ausgangsstrom im oberen Punkt	
33	0 3		Zuschalten vor Hardwareverstärkung 0 (hoch)	
34	0 16000 [11111]		Sensor AD-Wert vorgeben für Testzwecke	
37	1 100 [10]		Faktor für Mittelwertbildung	
50	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei -20°C	
51	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 0°C	
52	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 10°C	
53	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 20°C	
54	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 30°C	
55	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 40°C	
56	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 60°C	
79	0 65535		Neustart / Grunddaten / entsichern	
80	1 247 [1]		Modbus-Geräteadresse *	
81	0 3 [1]		Modbus Baudrate *	
82	0 4 [0]		Modbus Mode *	
83	10 1000 [180]		Kalibrierwert Ausgangsstrom 4mA *	
84	10 1000 [900]		Kalibrierwert Ausgangsstrom 20mA *	
95	0, 129 256 [90]		Sensornummer für MCS4000 - Mode	
96	0 65535		Einschaltzähler *	
97	0 65535		Betriebsstunden *	
98	0 65535		Gerätekennung vom Werk *	
99	0 65535		Arbeitsweise vom Werk *	

Hinweise:

- * (**fett**) eingetragene Werte werden auch gespeichert (Achtung: nicht kontinuierlich beschreiben!)
- [x] Wert nach dem Einschalten bzw. bei Voreinstellung (Werkseinstellung)
- [*] Werte nur nach Entsicherung veränderbar

Zusätzliche Erläuterungen zu einigen RWreg-Registern:

RWreg_00: hier kann ein Kundencode für eine Gerätezuordnung eingetragen werden z.B. zur Raumnummerierung

RWreg_02, 03, 04, 46:

für Testzwecke Vorgabe verschiedener Werte. Mit 11111 ist dies inaktiv.

RWreg_10, 11, 12, 13:

Kennlinienpaar für die Umwandlung des Sensor AD_Wertes in die Gaskonzentration (lineare Interpolation mit diesen Werten)

RWreg_15, 16, 17, 18:

Kennlinienpaar für die Umwandlung der Gaskonzentration in den Ausgangsstrom (lineare Interpolation mit diesen Werten)

RWreg 33: Hardwareverstärkung in 4 Stufen (0..3)

RWreg_37: gleitende Mittelwertbildung (1..100 fache Aufsummierung von Messwerten)

RWreg_50 bis _56:

Korrekturwerte entsprechend Vorgabe des Sensorherstellers bzgl. der Temperatur zwischen den Temperaturwerten wird linear interpoliert

RWreg_66: Digit-Wert auf welchen die Nullpunktsuche stattfindet +/- 100digit

RWreg_67: Parameter für die Nullpunkteinstellung [11111 = Suche]

RWreg_79: bei 10 = Reset

bei 20 = Systemneueinstellung und Reset

bei 9876 = entsichert (automatisch mit Systemstecker)

RWreg 81: bei 0 = 2400 baud

bei 1 = 9600 baud

bei 2 = 19200 baud

bei 3 = 38400 baud

RWreg_82: bei 0 = 8 Datenbits, 1 Stoppbit; keine parität

bei 1 = 8 Datenbits, 1 Stoppbit; ungerade Parität

bei 2 = 8 Datenbits, 2 Stoppbit; ungerade Parität

bei 3 = 8 Datenbits, 1 Stoppbit; gerade Parität

bei 4 = 8 Datenbits, 2 Stoppbit; gerade Parität

RWreg 83: zur Kalibrierung des Ausgangsstroms

Beispiel: in RWreg_3 = 400 eintragen; Veränderung des analogen Ausgangstrom (gemessen mit Multimeter) über Werteänderung von RWreg 83 bis 4 mA anliegen

RWreg_84: zur Kalibrierung des Ausgangsstroms

Beispiel: in RWreg_3 = 2000 eintragen; Veränderung des analogen Ausgangstrom (gemessen mit Multimeter) über Werteänderung von RWreg_84 bis 20 mA anliegen.

RWreg_94: Eingabe einer Zahl 129 ... 256 erzeugt ein Umschalten der RS485 Schnittstelle vom MODBUS-Mode in den MCS4000-Mode mit der entsprechenden Sensornummer

Achtung: nur über den Systemstecker ist eine Reaktivierung möglich (automatisch MODBUS auf Systemstecker und Zugriff auf die Register)

Registerbelegung PLATINE (Sensor-MB-NAP5xx_REV1_0)

Tabelle der Lese(Read)-Register

Rreg Nr. (Fcode 0x04)	Wertebereich	Zugeordnete Größe und teilw. Einheit	Messwerteigenschaft	
00	0 65535		Gerätekennung Kunden	
01	0 65535		Arbeitsweise (Sensor)	
02	010000	0 10000 ppm	Gaskonzentration im ppm (für CO)	
03	0 2500	0 25.00 mA	Berechneter Ausgangsstrom in mA (mit zwei Kommastellen)	
04	-200 600	-20,0 60,0 °C	Interne Leiterplattentemperatur in °C (mit Kommastelle)	
05	0 0xffff		Fehlererkennung CO-Sensor (Bit's werden gesetzt)	
06	010000	0 10000 ppm	Gaskonzentration im ppm (für NO2)	
07	0 2500	0 25.00 mA	Berechneter Ausgangsstrom in mA (mit zwei Kommastellen)	
08	0 0xffff		Fehlererkennung NO2-Sensor (Bit's werden gesetzt)	
32	0 16384		AD-Wert der Temperaturmessung	
33	0 16384		AD-Wert des Potentiometers 1	
34	0 16384		AD-Wert des Sensors (CO)	
35	50 200	0,50 2,00	Verstärkungsfaktor durch Poti (100 = 1,00)	
36	50 200	0,50 2,00	Verstärkungsfaktor durch Temperaturkennl. 1 (100 = 1,00)	
37	0 16384		Korrigierter AD-Wert des Sensors CO	
38	0 10000	0 10000 ppm	berechnete Gaskonzentration im ppm (für CO)	
41	0 16384		AD-Wert des Potentiometers_2	
42	0 16384		AD-Wert des Sensors (NO2)	
43	50 200	0,50 2,00	Verstärkungsfaktor durch Poti (100 = 1,00)	
44	50 200	0,50 2,00	Verstärkungsfaktor durch Temperaturkennl. 2 (100 = 1,00)	
45	0 16384		Korrigierter AD-Wert des Sensors NO2	
46	0 10000	0 10000 ppm	berechnete Gaskonzentration im ppm (für NO2)	
49	0 31129		Softwaredatum bis 31.12.2029	

Hinweis: der angegebene Wertebereich wiederspiegelt nicht gleichzeitig den Messbereich. Dieser ist abhängig vom Sensor und der Kalibrierung.

Zusätzliche Erläuterungen zu einigen Rreg-Registern:

Rreg 00: hier befindet sich der Kundencode welcher vom Kunden in Register RWreg 00

geschrieben und gespeichert wurde. (kann z.B. zur Raumnummerierung

verwendet werden.

Rreg_01: Arbeitscode (Sensor)

430 = NAP505 und NAP550

Rreg_02/06: Berechneter ppm-Wert aus Rreg_38/46 (mit Nullpunktberuhigung)
Rreg_03/07: der berechnete Strom für den analogen Stromausgang_1/2 4..20mA

Rreg_05/08: Fehlerregister:

Bit 0 = 1: (Sensorspannung[Endwert –Nullwert])< 2 digit/ppm

Bit_1 = 1: (Sensorspannung Endwert od. Nullwert) < 50 od. > 16000 digit

Bit 2 = 1: (ungünstiger Kalibrierwert) Berechnung läuft zu < 50 und > 16000 digit

Bit_3 = 1: Sensor-AD-Wert < 50 bzw. > 16000 digit Bit_4 = 1: Ausgangsstrom < 390 bzw. > 2100

Liegt ein Fehler vor, wird dieser durch eine blitzende rote LED dargestellt.

Rreg_37/45: entspricht Rreg_34/42 * Rreg_35/43 * Rreg_36/44

Rreg_38/46: Berechneter ppm-Wert aus dem linearen Zusammenhang

RWreg 10.. 13/20.. 23

Rwreg Nr. (Fcode: 0x03, 0x06)	Wertebereich	Zugeordnete Größe und Einheit	Messwerteigenschaft	
00	0 65535 [0]		Kundencode: zur freien Belegung z.B. Raumcode	
02	0 10000 [11111]	0 1000 ppm	Messwertvorgabe für Testzwecke	
03	0 2500 [11111]	0 25,00 mA	Ausgangsstrom vorgeben für Testzwecke	
04	-200 600 [11111]	-20,0 60,0 °C	Temperatur vorgeben für Testzwecke	
10	0 16383 [1000]		Sensorspannung im Nullpunkt*	
11	0	0	Sensorwert Nullpunkt = 0	
12	0 16383 [8000]		Sensorspannung im Kalibrierpunkt (bei Endwert)	
13	0 10000 [1000]	0 1000 ppm	Sensorwert im Kalibrierpunkt (bei Endwert)	
15	0 10000 [0]	0 1000 [0 ppm]	Messwert unten für Ausgangsstrom unten	
16	0 2500 [400]	0 25,00 [4 mA]	Ausgangsstrom im unteren Punkt	
17	0 10000 [1000]	0 1000 [1000ppm]	Messwert oben für Ausgangsstrom oben	
18	0 2500 [2000]	0 25,00 [20 mA]	Ausgangsstrom im oberen Punkt	
20	0 16383 [1000]		Sensorspannung im Nullpunkt	
21	0	0	Sensorwert Nullpunkt = 0	
22	0 16383 [8000]		Sensorspannung im Kalibrierpunkt (bei Endwert)*	
23	0 10000 [2000]	0 1000 ppm	Sensorwert im Kalibrierpunkt (bei Endwert)	
25	0 10000 [0]	0 1000 [0 ppm]	Messwert unten für Ausgangsstrom unten	
26	0 2500 [400]	0 25,00 [4 mA]	Ausgangsstrom im unteren Punkt	
27	0 10000 [1000]	0 1000 [1000ppm]	Messwert oben für Ausgangsstrom oben	
28	0 2500 [2000]	0 25,00 [20 mA]	Ausgangsstrom im oberen Punkt	
33	0 /1 [0]		Verstärkung CO 0 = hoch, 1 = ca. halb	
34	0 16000 [11111]		Sensor AD-Wert vorgeben für Testzwecke	
37	1 100 [10]		Faktor für Mittelwertbildung (CO)	
41	0 /1 [0]		Verstärkung NO2 0 =hoch, 1 = ca. halb	
42	0 16000 [11111]		Sensor AD-Wert vorgeben für Testzwecke	
45	1 100 [10]		Faktor für Mittelwertbildung (NO2)	
50	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei -20°C	
51	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 0°C	
52	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 10°C	
53	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 20°C	
54	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 30°C	
55	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 40°C	
56	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 60°C	
58	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei -20°C	
59	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 0°C	
60	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 10°C	
61	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 20°C	
62 63	50 200 [100] 50 200 [100]	0,50 2,00 0,50 2,00	Kennlinie vom Sensorhersteller bei 30°C	
64	50 200 [100]	0,50 2,00	Kennlinie vom Sensorhersteller bei 40°C Kennlinie vom Sensorhersteller bei 60°C	
79	0 65535		Neustart / Grunddaten / entsichern	
80	1 247 [1]		Modbus-Geräteadresse *	
81	0 3 [1]		Modbus Baudrate *	
82	0 4 [0]		Modbus Mode *	

83	10 1000 [180]	Kalibrierwert Ausgangsstrom 4mA	
84	10 1000 [900]	Kalibrierwert Ausgangsstrom 20mA *	
95	0, 129 256 [90]	Sensornummer für MCS4000 - Mode	
96	0 65535	Einschaltzähler	
97	0 65535	Betriebsstunden	
98	0 65535	Gerätekennung vom Werk	
99	0 65535	Arbeitsweise vom Werk *	

Hinweise:

- * (fett) eingetragene Werte werden auch gespeichert (Achtung: nicht kontinuierlich beschreiben!)
- [x] Wert nach dem Einschalten bzw. bei Voreinstellung (Werkseinstellung)
- [*] Werte nur nach Entsicherung veränderbar

Zusätzliche Erläuterungen zu einigen RWreg-Registern:

RWreg_00: hier kann ein Kundencode für eine Gerätezuordnung eingetragen werden z.B. zur Raumnummerierung

RWreg 02, 03, 04, 34, 42:

für Testzwecke Vorgabe verschiedener Werte. Mit 11111 ist dies inaktiv.

RWreg 10, 11, 12, 13; 20, 21, 22, 23:

Kennlinienpaar für die Umwandlung des Sensor AD_Wertes in die Gaskonzentration (lineare Interpolation mit diesen Werten)

RWreg_15, 16, 17, 18; 25, 26, 27, 28:

Kennlinienpaar für die Umwandlung der Gaskonzentration in den Ausgangsstrom (lineare Interpolation mit diesen Werten)

RWreg_33/41: Verstärkungsparameter für die Hardwareverstärkung

RWreg_37/45: gleitende Mittelwertbildung (1..100 fache Aufsummierung von Messwerten)

RWreg_50 bis _56 / _58 bis _64:

Korrekturwerte entsprechend Vorgabe des Sensorherstellers bzgl. der Temperatur zwischen den Temperaturwerten wird linear interpoliert

RWreg_79: bei 10 = Reset

bei 20 = Systemneueinstellung und Reset

bei 9876 = entsichert (automatisch mit Systemstecker)

RWreg 81: bei 0 = 2400 baud

bei 1 = 9600 baud

bei 2 = 19200 baud

bei 3 = 38400 baud

RWreg 82: bei 0 = 8 Datenbits, 1 Stoppbit; keine parität

bei 1 = 8 Datenbits, 1 Stoppbit; ungerade Parität

bei 2 = 8 Datenbits, 2 Stoppbit; ungerade Parität

bei 3 = 8 Datenbits, 1 Stoppbit; gerade Parität

bei 4 = 8 Datenbits, 2 Stoppbit; gerade Parität

RWreg_83: zur Kalibrierung des Ausgangsstroms_1

Beispiel: in RWreg_3 = 400 eintragen; Veränderung des analogen Ausgangstrom (gemessen mit Multimeter) über Werteänderung von RWreg_83 bis 4 mA anliegen

RWreg_84: zur Kalibrierung des Ausgangsstroms_1

Beispiel: in RWreg_3 = 2000 eintragen; Veränderung des analogen Ausgangstrom (gemessen mit Multimeter) über Werteänderung von RWreg_84 bis 20 mA anliegen.

RWreg 85: zur Kalibrierung des Ausgangsstroms 2

Beispiel: in RWreg_7 = 400 eintragen; Veränderung des analogen Ausgangstrom (gemessen mit Multimeter) über Werteänderung von RWreg_85 bis 4 mA anliegen

RWreg_86: zur Kalibrierung des Ausgangsstroms_2
Beispiel: in RWreg_7 = 2000 eintragen; Veränderung des analogen Ausgangstrom
(gemessen mit Multimeter) über Werteänderung von RWreg_86 bis 20 mA
anliegen.

RWreg_94: Eingabe einer Zahl 129 ... 256 erzeugt ein Umschalten der RS485 Schnittstelle vom MODBUS-Mode in den MCS4000-Mode mit der entsprechenden Sensornummer

Achtung: nur über den Systemstecker ist eine Reaktivierung möglich (automatisch MODBUS auf Systemstecker und Zugriff auf die Register) HINWEIS:

Es ist nur eine ungerade Sensornummer einstellbar. Das System reagiert auf diese, als auch auf die darauffolgende gerade Nummer. Damit können beide Sensoren in das MCS4000 System eingebunden werden.

Beispiel: RWreg_94 = 129 (Adresse 129 = CO, Adresse 130 = NO2)

Registerbelegung PLATINE (Sensor-MB-CO2_O2_REV1_0)

Tabelle der Lese(Read)-Register

Rreg Nr. (Fcode 0x04)	Wertebereich	Zugeordnete Größe und teilw. Einheit	Messwerteigenschaft	
00	0 65535		Gerätekennung Kunden	
01	0 65535		Arbeitsweise (Sensor)	
02	01000	0 100.0 vol%	Sauerstoffkonzentration im vol%	
03	0 2500	0 25.00 mA	Berechneter Ausgangsstrom in mA (mit zwei Kommastellen)	
04	-200 600	-20,0 60,0 °C	Interne Leiterplattentemperatur in °C (mit Kommastelle)	
05	0 0xffff		Fehlererkennung CO2 -Sensor (Bit's werden gesetzt)	
06	05000	0 50000 ppm	CO2 Gaskonzentration im ppm (Registerwert * 10)	
07	0 2500	0 25.00 mA	Berechneter Ausgangsstrom in mA (mit zwei Kommastellen)	
32	0 16384		AD-Wert der Temperaturmessung	
33	0 16384		AD-Wert des Potentiometers	
34	0 16384		AD-Wert des Sensors (O2)	
35	50 200	0,50 2,00	Verstärkungsfaktor durch Poti (100 = 1,00)	
37	0 16384		Korrigierter AD-Wert des Sensors O2	
38	0 5000		max O2 Wert innerhalb des Kalibrierintervall (7 Tage)	
39	0 5000		CO2 Wert unkorrigiert (Registerwert * 10)	
49	0 31129		Softwaredatum bis 31.12.2029	

Hinweis: der angegebene Wertebereich wiederspiegelt nicht gleichzeitig den Messbereich. Dieser ist abhängig vom Sensor und der Kalibrierung.

Zusätzliche Erläuterungen zu einigen Rreg-Registern:

Rreg_00: hier befindet sich der Kundencode welcher vom Kunden in Register RWreg_00

geschrieben und gespeichert wurde. (kann z.B. zur Raumnummerierung

verwendet werden.

Rreg_01: Arbeitscode (Sensor)

510 = nur O2-Sensor 520 = nur CO2-Sensor

530 = beide Sensoren (kein Stromausgang)

Rreg 02: Berechneter O2-Wert aus dem linearen Zusammenhang RWreg 10.. 13

Rreg 03: der berechnete Strom für den analogen Stromausgang 4..20mA

nur bei Einzelsensoren aktiv

Rreg_05: Fehlerregister:

Bit_2 = 1: CO2- Sensorfehler bei Auslesen Bit_4 = 1: Ausgangsstrom < 390 bzw. > 2100

Liegt ein Fehler vor, wird dieser durch eine blitzende rote LED dargestellt.

Rreg_06: ermittelter CO2-Wert

Rreg_07: der berechnete Strom bei Doppelsensor für CO2 jedoch nicht auf Analogausgang

gelegt

Rreg_35: Verstärkung durch Poti (keine Funktion bei Doppelsensor)

Rreg_37: entspricht Rreg_34 * Rreg_35 * RWreg_35 und Mittelung (RWreg_37)

Rreg_38: Berechneter max O2-Wert aus dem linearen Zusammenhang RWreg_10.._13

Rwreg Nr. (Fcode: 0x03, 0x06)	Wertebereich	Zugeordnete Größe und Einheit	Messwerteigenschaft		
00	0 65535 [0]		Kundencode: zur freien Belegung z.B. Raumcode		
02	0 1000 [11111]	0 100.0 vol%	Messwertvorgabe für Testzwecke		
03	0 2500 [11111]	0 25,00 mA	Ausgangsstrom vorgeben für Testzwecke		
04	-200 600 [11111]	-20,0 60,0 °C	Temperatur vorgeben für Testzwecke		
06	0 5000 [11111]	0 5000 ppm	Messwertvorgabe für Testzwecke		
10	0 16383 [0]		Sensorspannung im Nullpunkt		
11	0	0	Sensorwert Nullpunkt = 0		
12	0 16383 [3300]		Sensorspannung im Kalibrierpunkt (bei Endwert)		
13	0 1000 [209]	20.9 vol%	Sensorwert im Kalibrierpunkt (bei Endwert)		
15	0 10000 [0]	0 1000 [0 ppm]	Messwert unten für Ausgangsstrom unten		
16	0 2500 [400]	0 25,00 [4 mA]	Ausgangsstrom im unteren Punkt		
17	0 10000 [x]	0 10000 [x]	Messwert oben für Ausgangsstrom oben		
18	0 2500 [2000]	0 25,00 [20 mA]	Ausgangsstrom im oberen Punkt		
25	0 10000 [0]	0 1000 [0 ppm]	Messwert unten für Ausgangsstrom unten		
26	0 2500 [400]	0 25,00 [4 mA]	Ausgangsstrom im unteren Punkt		
27	0 10000 [5000]	0 100000 [50000ppm]	Messwert oben für Ausgangsstrom oben		
28	0 2500 [2000]	0 25,00 [20 mA]	Ausgangsstrom im oberen Punkt		
34	0 16000 [11111]		Sensor AD-Wert vorgeben für Testzwecke		
35	1 200 [100]		O2 Verst		
36	1 200 [100]		O2 Verst.neu		
37	1 100 [10]		Faktor für Mittelwertbildung (O2)		
68	0 3 [3]		Automode: Bit_0 für O2 Bit_1 für CO2C		
69	0/1		derzeitiger Mode bei CO2 Sonde (1 = Auto) (nicht besch.)		
70	0/1		Kalibrierung bei CO2 ist eingeschalten (nicht beschreiben)		
71	0 20		Einschaltzeit (ersten 20min) (nicht beschreiben)		
73	0 3 [0]		Kalibr. Starten Bit_0 O2 ; Bit_1 CO2		
75	0 10080		O2 Intervallzaehler 7 Tage (nicht beschreiben)		
76	0 65535		Anzahl der Kalibrierungen O2-Sonde		
79	0 65535		Neustart / Grunddaten / entsichern		
80	1 247 [1]		Modbus-Geräteadresse *		
81	0 3 [1]		Modbus Baudrate *		
82	0 4 [0]		Modbus Mode *		
83	10 1000 [180]		Kalibrierwert Ausgangsstrom 4mA *		
84	10 1000 [900]		Kalibrierwert Ausgangsstrom 20mA *		
90	0 65535		Anzahl der Kalibrierungen CO2-Sonde *		
91	0 65535		Anzahl der Kalibrierungen O2-Sonde *		
95	0, 129 256 [90]		Sensornummer für MCS4000 - Mode		
96	0 65535		Einschaltzähler *		
97	0 65535		Betriebsstunden *		
98	0 65535		Gerätekennung vom Werk *		
99	0 65535		Arbeitsweise vom Werk *		

Hinweise:

• * (**fett**) eingetragene Werte werden auch gespeichert (Achtung: nicht kontinuierlich beschreiben!)

- [x] Wert nach dem Einschalten bzw. bei Voreinstellung (Werkseinstellung)
- [*] Werte nur nach Entsicherung veränderbar
- Kursive Werte nur bei entsprechendem Sensor gültig

Zusätzliche Erläuterungen zu einigen RWreg-Registern:

RWreg_00: hier kann ein Kundencode für eine Gerätezuordnung eingetragen werden z.B. zur Raumnummerierung

RWreg_02, 03, 04, 34:

für Testzwecke Vorgabe verschiedener Werte. Mit 11111 ist dies inaktiv.

RWreg_10, 11, 12, 13:

Kennlinienpaar für die Umwandlung des Sensor AD_Wertes (O2) in die Gaskonzentration (lineare Interpolation mit diesen Werten)

RWreg 15, 16, 17, 18; 25, 26, 27, 28:

Kennlinienpaar für die Umwandlung der Gaskonzentration in den Ausgangsstrom (lineare Interpolation mit diesen Werten)

RWreg_37: gleitende Mittelwertbildung (1..100 fache Aufsummierung von Messwerten)

RWreg 68 bis 76:

Werte für Kontroll- und Kalibrierungszwecke

RWreg 79: bei 10 = Reset

bei 20 = Systemneueinstellung und Reset

bei 9876 = entsichert (automatisch mit Systemstecker)

RWreg 81: bei 0 = 2400 baud

bei 1 = 9600 baud

bei 2 = 19200 baud

bei 3 = 38400 baud

RWreg_82: bei 0 = 8 Datenbits, 1 Stoppbit; keine parität

bei 1 = 8 Datenbits, 1 Stoppbit; ungerade Parität

bei 2 = 8 Datenbits, 2 Stoppbit; ungerade Parität

bei 3 = 8 Datenbits, 1 Stoppbit; gerade Parität

bei 4 = 8 Datenbits, 2 Stoppbit; gerade Parität

RWreg_83: zur Kalibrierung des Ausgangsstroms_1

Beispiel: in RWreg_3 = 400 eintragen; Veränderung des analogen Ausgangstrom (gemessen mit Multimeter) über Werteänderung von RWreg_83 bis 4 mA anliegen

RWreg_84: zur Kalibrierung des Ausgangsstroms_1

Beispiel: in RWreg_3 = 2000 eintragen; Veränderung des analogen Ausgangstrom (gemessen mit Multimeter) über Werteänderung von RWreg_84 bis 20 mA anliegen.

RWreg 90: Anzahl durchgeführter Kalibrierung des CO2 Sensors

RWreg_91: Anzahl durchgeführter Kalibrierung des O2 Sensors

RWreg_94: Eingabe einer Zahl 129 ... 256 erzeugt ein Umschalten der RS485 Schnittstelle vom MODBUS-Mode in den MCS4000-Mode mit der entsprechenden Sensornummer

Achtung: nur über den Systemstecker ist eine Reaktivierung möglich (automatisch MODBUS auf Systemstecker und Zugriff auf die Register)

HINWEIS: bei Kombisensor

Es ist nur eine ungerade Sensornummer einstellbar. Das System reagiert auf diese, als auch auf die darauffolgende gerade Nummer. Damit können beide Sensoren in das MCS4000 System eingebunden werden.

Beispiel: RWreg_94 = 129 (Adresse 129 = O2, Adresse 130 = CO2)

Automatische Kalibrierung (frühestens nach 10min Einschaltzeit):

Bei CO2: Kalibrierung erfolgt bei unter 300ppm CO2 bzw. im Wochenintervall (kleinster Wert entspricht 400ppm)

Bei O2: Kalibrierung erfolgt bei über 21,0vol% bzw im Wochenintervall (größter Wert entspricht 20,9vol%

Handkalibrierung per Tastendruck (3sec):

wird der CO2 Sensor auf 400ppm und der O2 Sensor auf 20,9vol% gesetzt.

Modbus-Übertragungsaufbau

Start	Slave Adresse	Funktion	Daten	Checksumme	Ende
3.5* Zeichenzeit	8 Bit	8 Bit	N* 8 Bit	16 Bit	3.5* Zeichenzeit

Start/Ende:

Befinden sich auf dem Modbus keine Daten bzw. gibt es eine Datenpause von 3,5 * der Zeichenzeit, so wird die Datenerfassung zurückgesetzt.

Ein jetzt neues Zeichen auf dem Bus wird damit als erstes Zeichen (Adresse) erkannt und ausgewertet.

Beispiel: 9600 baud, keine Parität, ein Stoppbit

0,93 ms/Zeichen => ca. 3,3 ms für die Starterkennung

Slave Adresse (8 Bit = 1 Byte):

Die Slave-Adresse (spezifische Geräteadresse) ist im RWreg_50 abgelegt

Diese darf nur einmal im Modbusstrang verwendet werden.

Wird die Slave Adresse ,0' gesendet nehmen alle Geräte welche auf 1 bis 247 geschalten sind den Befehl an (Boardcast; es gibt jedoch keine Rückantwort!)

Funktionscode (8 Bit = 1 Byte):

Folgende Funktionscodes aus dem allgemeinen Modbus-Protokoll sind implementiert.

Code 03: Registerinhalt (16 Bit) lesen (eines Lese- und Schreib-Registers)

Code 04: Registerinhalt (16 Bit) lesen (eines nur Lese-Registers)

Code 06: Register beschreiben (16 Bit) – ein Register

Code 16: Register beschreiben (16 Bit) – mehrere nacheinander folgende Register (max. 10)

Register (16 Bit = 2 Byte):

Beschreibung siehe Kapitel Registeraufbau

Registeranzahl (16 Bit = 2 Byte):

Für eine Begrenzung der Übertragungszeit/Zeichenketten ist die Registeranzahl auf maximal 10 begrenzt [0x0001 bis 0x000a]

Checksumme (16 Bit = 2 Byte):

Die Ermittlung der Checksumme erfolgt nach den Richtlinien eines Modbus-Protokolls. Dabei entsteht ein 16 Bit Wert, der mit dem LO- und HI-Byte der Zeichenkette angehangen wird.

Funktionscode 03 lesen von Lese/Schreib(Read/Write)-Registern (16 Bit)

Anfrage:

Slave Adresse	0x00 0xff
Funktionscode	0x03
Start Register	Register HI
Start Register	Register LO
Registeranzahl	Registeranzahl HI
Registeranzahl	Registeranzahl LO
Checksumme	Check LO
Checksumme	Check HI

Rückantwort:

Slave Adresse	0x00 0xff
Funktionscode	0x03
Anzahl der Bytes	Anzahl [n] der Registerwerte (Bytes = $n * 2$)
1. Registerwert	Wert HI
1. Registerwert	Wert HO
n. Registerwert	Wert HI
n. Registerwert	Wert LO
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhaftem Register (siehe Registerbelegung)

Slave Adresse	0x00 0xff
Funktionscode	0x83
Fehlercode	0x02
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhafter Registeranzahl (>= 0x000a) [max. 10*]

Slave Adresse	0x00 0xff
Funktionscode	0x83
Fehlercode	0x03
Checksumme	Check LO
Checksumme	Check HI

Funktionscode 04 lesen von nur Lese(Read)-Registern (16 Bit)

Anfrage:

Slave Adresse	0x00 0xff
Funktionscode	0x04
Start Register	Register HI
Start Register	Register LO
Registeranzahl	Registeranzahl HI
Registeranzahl	Registeranzahl LO
Checksumme	Check LO
Checksumme	Check HI

Rückantwort:

Slave Adresse	0x00 0xff
Funktionscode	0x04
Anzahl der Bytes	Anzahl [n] der Registerwerte (Bytes = $n * 2$)
1. Registerwert	Wert HI
1. Registerwert	Wert HO
n. Registerwert	Wert HI
n. Registerwert	Wert LO
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhaftem Register (siehe Registerbelegung)

Slave Adresse	0x00 0xff
Funktionscode	0x84
Fehlercode	0x02
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhafter Registeranzahl (>= 0x000a) [max. 10*]

Slave Adresse	0x00 0xff
Funktionscode	0x84
Fehlercode	0x03
Checksumme	Check LO
Checksumme	Check HI

Funktionscode 06 schreiben einfach Register (16 Bit)

Anfrage:

Slave Adresse	0x00 0xff
Funktionscode	0x06
Register	Register HI
Register	Register LO
Register Wert	Wert HI
Register Wert	Wert LO
Checksumme	Check LO
Checksumme	Check HI

Rückantwort:

Slave Adresse	0x00 0xff
Funktionscode	0x06
Register	Register HI
Register	Register LO
Register Wert	Wert HI
Register Wert	Wert LO
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhaftem Register (siehe Registerbelegung)

Slave Adresse	0x00 0xff
Funktionscode	0x86
Fehlercode	0x02
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhaftem Wertebereich

Slave Adresse	0x00 0xff
Funktionscode	0x84
Fehlercode	0x03
Checksumme	Check LO
Checksumme	Check HI

Werden Werte übertragen, die außerhalb des Messbereiches liegen, werden diese auf den Messbereich begrenzt und verwendet. Es wird dennoch die Fehlermeldung (Fehlercode 0x03) gesendet.

Funktionscode 16 schreiben mehrfach Register (16 Bit)

Anfrage:

Slave Adresse	0x00 0xff
Funktionscode	0x10
Start Register	Register HI
Start Register	Register LO
Registeranzahl	Registeranzahl HI
Registeranzahl	Registeranzahl LO
Anzahl der Bytes	Anzahl der Register (n) mal 2
1. Registerwert	Wert HI
1. Registerwert	Wert LO
n. Registerwert	Wert HI
n. Registerwert	Wert LO
Checksumme	Check LO
Checksumme	Check HI

Rückantwort:

Slave Adresse	0x00 0xff
Funktionscode	0x10
Start Register	Register HI
Start Register	Register LO
Registeranzahl	Registeranzahl HI
Registeranzahl	Registeranzahl LO
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhaftem Register (siehe Registerbelegung)

Slave Adresse	0x00 0xff
Funktionscode	0x90
Fehlercode	0x02
Checksumme	Check LO
Checksumme	Check HI

Bei fehlerhafter Registeranzahl (>= 0x000a) [max. 10*] oder fehlerhaften Wertebereich

Slave Adresse	0x00 0xff
Funktionscode	0x90
Fehlercode	0x03
Checksumme	Check LO
Checksumme	Check HI

Werden Werte übertragen, die außerhalb des Messbereiches liegen, werden diese auf den Messbereich begrenzt und verwendet. Es wird dennoch die Fehlermeldung (Fehlercode 0x03) gesendet.

Hinweis: Die Rückantwortzeit nach erfolgter richtiger Anfrage liegt unter 250 ms (meist

kleiner 50 ms).

Anschlussinformation / Bedienelemente

Das Bild zeigt die wichtigsten Elemente zum Anschluss der Platine.

Versorgungsspannung: +UB = 10 - 36V DC

A & B: sind Leitungen einer RS485 OUT: Stromausgang 4 – 20mA

Achtung: max. Lastwiderstand abhängig von +UB

 $R_{last-max} = (+UB - 10V) / 0,02A$

Wird beim Systemstecker PIN_1 (GND) mit Pin_10 verbunden so schaltet das System in einen vorgegebenen Modus.

- Feste Adresse = 247
- Baudrate = 9600
- MODBUS
- Abschalten des A/B Stranges vom System
- Automatisch entsichert
- Zugriff auf RWreg 99

Taster:

- zur Nullpunktkalibrierung: drücken => rote LED blinkt, nach ca. 3sec loslassen
- zur Endpunktkalibrierung: drücken => rote LED blinkt, nach ca. 6sec (beim zweiten Dauerlicht) loslassen

LED grün: blinkt (blitzt) wenn Datenaustausch ok ist LED rot: blitzt bei Fehler im Datenaustausch z.B. Register falsch beschrieben oder bei auftretenden Sensorfehlern siehe Beschreibungen