Exercise 4

Stephen Diadamo

June 10, 2017

Problem 13

Let \mathcal{A} be a commutative Banach algebra, then the following are equivalent:

- 1. \mathcal{A} is semi-simple
- 2. $Rad(A) = \{0\}$
- 3. ΔA separates points on A

Proof. Assume A is a commutative Banach Algebra.

- (1) \Rightarrow (2) : Assume that \mathcal{A} is semi-simple, that is, $\hat{\ }$: $\mathcal{A} \to \hat{\mathcal{A}}$ is injective. Assume that $\operatorname{Rad}(\mathcal{A}) \neq \{0\}$ and therefore $\exists x \in \operatorname{Rad}(\mathcal{A})$, such that $x \neq 0$, since $\operatorname{Rad}(\mathcal{A}) \neq \emptyset$. Since $x \in \operatorname{Rad}(\mathcal{A})$, by definition, we have that $\forall \varphi \in \Delta \mathcal{A}, \varphi(x) = 0$ and thus, $\forall \varphi \in \Delta \mathcal{A}, \hat{x}(\varphi) = \varphi(x) = 0 = \varphi(0) = \hat{0}(\varphi) \Rightarrow \hat{x} = \hat{0}$, but, by assumption, $\hat{\ }$: $\mathcal{A} \to \hat{\mathcal{A}}$ is injective, and therefore x = 0 which is a contradiction.
- (1) \Rightarrow (3) Assume $\hat{}$: $\mathcal{A} \to \hat{\mathcal{A}}$ is injective and let $x, y \in \mathcal{A}, x \neq y$. By assumption of injectivity, $\hat{x} \neq \hat{y}$, therefore, $\exists \varphi \in \Delta \mathcal{A}$ such that $\hat{x}(\varphi) \neq \hat{y}(\varphi) \Rightarrow \varphi(x) \neq \varphi(y)$. Thus $\exists \varphi \in \Delta \mathcal{A}$ that separates x from y. Since x and y were arbitrary, $\Delta \mathcal{A}$ separates points on \mathcal{A} .
- (3) \Rightarrow (1) Assume $\Delta \mathcal{A}$ separates points on \mathcal{A} and let $x, y \in \mathcal{A}$ such that $\hat{x} = \hat{y}$, where $\hat{}: \mathcal{A} \to \hat{\mathcal{A}}$. Then $\hat{x} = \hat{y} \Rightarrow \forall \varphi \in \Delta \mathcal{A}, \hat{x}(\varphi) = \hat{y}(\varphi) \Rightarrow \varphi(x) = \varphi(y)$. From the assumption that $\Delta \mathcal{A}$ separates points, this can only hold if x = y and therefore $\hat{}: \mathcal{A} \to \hat{\mathcal{A}}$ is injective.
- (2) \Rightarrow (1) Assume Rad(\mathcal{A}) = {0}, then by definition, $\forall \varphi \in \Delta \mathcal{A}, \varphi(0) = 0 = \hat{0}(\varphi)$. Since 0 is the only element of Rad(\mathcal{A}), ker($\hat{}$) = {0}, and since $\hat{}$: $\mathcal{A} \to \hat{\mathcal{A}}$ is linear, it is injective.