应用回归分析第一章作业

邵智轩 1400012141 物理学院

习题 1.2

```
library(alr4) #Hooker 的数据在 package 'alr4' 中
attach(Hooker)
# 1.2.1
plot(bp, pres) # 在第四版中, temp 名称改为 bp (boiling point)
L1 = lm(pres ~ bp)
abline(L1)
```


习题 1.2

residualPlot(L1)

粗看起来,拟合的直线与数据匹配得比较密切, $R^2=0.992$ 。但是从 Residual Plot 中能看到明显的 non-random 的 "U 型"pattern,这暗示我们 应该对 pres 做非线性的变换。

```
#1.2.2
plot(bp,lpres)
L2=lm(lpres~bp)
abline(L2)
attach(Forbes)

## The following objects are masked from Hooker:
##
## bp, lpres, pres

lm.Forbes=lm(lpres~bp)
detach(Forbes)
```

abline(lm.Forbes,col='red',lty=2)

习题 1.2 3

与"pres~bp"图相比,线性程度稍好。

1.2.3
kable(summary(L2)\$coef)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-44.3908637	1.4611821	-30.3801	0
bp	0.9063623	0.0076111	119.0838	0

summary 给出了参数估计,t 检验量,相应 P 值。通过 P 值可以充分的理由拒绝 $H_0: \beta_1=0$ 。另外从 summary 中也可看到 $R^2=0.998$ 也说明 $\log(pres)$ 与 bp 满足很好的线性关系。

```
kable(anova(L2))
```

习题 1.2 4

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
bp	1	1882.298253	1882.2982531	14180.96	0
Residuals	29	3.849292	0.1327342	NA	NA

方差分析给出的结果仍是以充足的理由拒绝 $H_0:\beta_1=0$ (与 t 检验等价)。

residualPlot(L2)

与 1.2.1 中的残差图相比, pattern 并不明显, 残差更接近一条水平线。

#1.2.4 kable(confint(L2))# 截距和斜率 95% 的置信区间

	2.5 %	97.5 %
(Intercept)	-47.3793167	-41.4024108
bp	0.8907958	0.9219288

习题 1.2 5

#1.2.5

```
new <- data.frame(bp=c(185,212))
kable(predict.lm(L2,new,interval = 'prediction',level=0.9))</pre>
```

fit	lwr	upr
123.2862	122.6511	123.9212
147.7579	147.0768	148.4390

#1.2.6
kable(summary(lm.Forbes)\$coef)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-42.1377793	3.3401989	-12.61535	0
bp	0.8954937	0.0164518	54.43147	0

kable(predict.lm(lm.Forbes,new,interval = 'prediction',level=0.9))

fit	lwr	upr
123.5285	122.6709	124.3862
147.7069	146.9751	148.4387

将简要对比总结如下表:

	$\hat{eta_0}$	$\hat{eta_1}$	$\hat{\sigma}$
Hooker	-44.4	0.9064	0.364
Forbes	-42.1	0.8955	0.379

对比 Forbes 和 Hooker 的数据的拟合结果,以及在 1.2.2 的图中对比拟合直线,可以发现两者的结果非常接近。而 Forbes 的数据由于有一个可疑的 outlier, 残差估计量比 Hooker 大一些,导致对 1.2.6 中温度预测的 90%

习题 1.4 6

置信区间也宽一些。

习题 1.4

1.4.1

RSS 取最小值的充要条件是:

$$\frac{\partial RSS}{\partial \beta_1} = -2\sum_i (y_i - \beta_1 x_i) x_i = 0$$

解得
$$\hat{\beta}_1 = \frac{\sum x_i y_i}{\sum x_i^2}$$

$$E(\hat{\beta}_1) = \frac{\sum x_i E(Y_i)}{\sum x_i^2} = \frac{\sum x_i (\beta_1 x_i)}{\sum x_i^2} = \beta_1$$

$$Var(\hat{\beta}_1) = \frac{1}{(\sum x_i^2)^2} (\sum x_i^2 \sigma^2) = \frac{1}{(\sum x_i^2)^2} (\sum x_i^2) \sigma^2 = \frac{\sigma^2}{\sum x_i^2}$$

模型中有 1 个估计参数 (β_1) , 所以 $\hat{\sigma}^2$ 的自由度为 n-1, 其表达式为:

$$\hat{\sigma}^2 = \frac{\text{RSS}_0}{n-1}$$

$$RSS_0 = \sum (y_i - \hat{\beta}_1 x_i)^2 = \sum y_i^2 - (\sum x_i y_i)^2 / \sum x_i^2$$

满足 n-1 个自由度的 χ^2 分布,即 $\hat{\sigma}^2 \sim \frac{\sigma^2}{n-1} \chi^2 (n-1)$,且为 σ^2 的无偏估 计。

1.4.2

导出由 (1.21) 给出的较大模型的方差分析表,但用的是 (1.39) 的较小的模型。(由于 $\sum \hat{e_i} \neq 0$,平方和分解公式并不成立。)

Source of	Degree of	Sum of	Mean	
Variation	freedom	squares	squares	F statistic
截距	1	SSint =	SSint/1	$\frac{\text{SSint}}{\text{RSS}/(n-2)}$
		$RSS_0 - RSS =$	=	, , ,
		$\sum [(\tilde{eta}_1 -$		
		$(\hat{\beta}_1)x_i + \tilde{\beta}_0]^2$		

习题 1.4 7

Source of	Degree of	Sum of	Mean	
Variation	freedom	squares	squares	F statistic
全模型残差	n-2	$RSS = \sum_{i} (y_i - \tilde{\beta}_1 x_i - \tilde{\beta}_0)^2$	RSS/(n-2)	
过原点模型	n-1	$RSS_0 =$		
残差		$\sum (y_i - \hat{\beta}_1 x_i)^2$		

假设检验 $H_0: y = \beta_1 x + e$, $H_1: y = \beta_1 x + \beta_0 + e$, 使用 F 检验,

$$F = \frac{\text{SSint}}{\text{RSS}/(n-2)} = \frac{\text{RSS}_0 - \text{RSS}}{\tilde{\sigma}^2}$$

使用 $\beta_0 = 0$ 时的 t 检验

$$T = \frac{\tilde{\beta}_0 - 0}{\operatorname{se}(\tilde{\beta}_0)}$$

$$T^2 = \frac{(\bar{y} - \tilde{\beta}_1 \bar{x})^2}{\tilde{\sigma}^2 (1/n + \bar{x}^2 / \operatorname{SXX})} = (\bar{y} - \tilde{\beta}_1 \bar{x})^2 \frac{n \cdot \operatorname{SXX}}{\tilde{\sigma}^2 \sum x_i^2}$$

将 SXX、SXY、SYY、RSS、RSS₀ 展开成 $\sum x_i^2$ 、 $\sum y_i^2$ 、 $\sum x_i y_i$ 、 \bar{x} 、 \bar{y} 的函数:

$$SYY = \sum (y_i - \bar{y})^2 = \sum y_i^2 - n\bar{y}^2$$

$$SXX = \sum x_i^2 - n\bar{x}^2$$

$$SXY = \sum (x_i - \bar{x})(y_i - \bar{y}) = \sum x_i y_i - n\bar{x}\bar{y}$$

$$RSS = SYY - \frac{SXY^2}{SXX} = \sum y_i^2 - n\bar{y}^2 - \frac{(\sum x_i y_i - n\bar{x}\bar{y})^2}{\sum x_i^2 - n\bar{x}^2}$$

$$RSS_0 = \sum y_i^2 - \frac{(\sum x_i y_i)^2}{\sum x_i^2}$$

$$F = \frac{RSS_0 - RSS}{\tilde{\sigma}^2} = \frac{n(\bar{x} \sum x_i y_i - \bar{y} \sum x_i^2)^2}{\tilde{\sigma}^2 \sum x_i^2 \cdot SXX}$$

习题 1.4

$$T^{2} = \frac{n}{\tilde{\sigma}^{2} \sum x_{i}^{2} \cdot SXX} \cdot (\bar{y} - \frac{SXY}{SXX}\bar{x})^{2}SXX^{2}$$

$$= \frac{n}{\tilde{\sigma}^{2} \sum x_{i}^{2} \cdot SXX} \cdot (SXX \cdot \bar{y} - SXY \cdot \bar{x})^{2}$$

$$= \frac{n}{\tilde{\sigma}^{2} \sum x_{i}^{2} \cdot SXX} \cdot [(\sum x_{i}^{2} - n\bar{x}^{2}) \cdot \bar{y} - (\sum x_{i}y_{i} - n\bar{x}\bar{y}) \cdot \bar{x}]^{2}$$

$$= \frac{n}{\tilde{\sigma}^{2} \sum x_{i}^{2} \cdot SXX} \cdot (\bar{y} \sum x_{i}^{2} - \bar{x} \sum x_{i}y_{i})^{2}$$

$$= F$$

从而 $F = T^2$, 在数值上等价。

1.4.3

```
attach(snake)
m0 < -lm(Y \sim X - 1)
summary(m0)
##
## Call:
## lm(formula = Y \sim X - 1)
## Residuals:
                1Q Median
##
       Min
                                 3Q
                                        Max
## -2.4207 -1.4924 -0.1935 1.6515 3.0771
##
## Coefficients:
     Estimate Std. Error t value Pr(>|t|)
## X 0.52039
                 0.01318
                            39.48
                                    <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.7 on 16 degrees of freedom
## Multiple R-squared: 0.9898, Adjusted R-squared: 0.9892
## F-statistic: 1559 on 1 and 16 DF, p-value: < 2.2e-16
   斜率 \hat{\beta}_1 = 0.5204,标准差估计 \hat{\sigma} = 1.7,量纲均为 [1]。
```

1.4.4

kable(confint(m0))# 斜率的置信区间

	2.5 %	97.5 %
X	0.492451	0.548337

kable(summary(lm(Y~X))\$coef)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.7253804	1.5488161	0.4683451	0.6462711
X	0.4980812	0.0495217	10.0578308	0.0000000

在零假设 $H_0:\beta_0=0$ 下 $P(|T|\geq |\frac{\hat{\beta}_0}{\sec(\hat{\beta}_0)}|)=0.646$,故不拒绝原假设 $H_0:\beta_0=0$ 。

1.4.4

residualPlot(m0)# 作残差关于拟合值的图

1.9

两端的 X 取值偏离直线较多; 残差没有明显的 pattern,可以认为过原点的模型是比较合适的。

sum(mO\$residuals)#验证残差项之和不为 0

[1] 0.9184594

1.9

```
Amazon=read.csv("Amazon.csv",header = TRUE)
attach(Amazon)
#1.9.1
plot(year,high,col='blue',ylim=c(16,28))#作 high 关于 year, low 关于 year 的散点图
points(year,low,col='red',pch=2)
legend('right',col=c('blue','red'),pch=c(1,2),legend=c('high','low'))
```

1.9

#1.9.2
kable(summary(lm(high~year))\$coef)#high 关于 year 的回归

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-330.2123529	78.0331898	-4.231691	0.0007250
year	0.1808824	0.0396106	4.566510	0.0003708

kable(summary(lm(low~year))\$coef)#low 关于 year 的回归

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	35.1069608	151.723912	0.2313871	0.8201408
year	-0.0078922	0.077017	-0.1024730	0.9197387

kable(summary(lm(high~low))\$coef)#high 关于 low 的回归

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	26.4008796	4.0247814	6.5595810	0.0000090
low	-0.0140596	0.2051998	-0.0685166	0.9462794

scatterplotMatrix(Amazon,smooth = F,spread = F)

以上回归系数中, high 关于 year, low 关于 year 的斜率单位都为"m/year",即平均每年水位变化多少米(上升为正,下降为负)。high 关于 low 的回归斜率单位为"m/m",即 low 每上升 1 米, high 平均变化多少米。

通过散点图矩阵和三组回归的 P 值,"low 与 high" 和 "low 与 year" 的 相关性很弱,可以认为不相关。而 "high 与 year" 表现出一定的相关性(P 值显著地小于 0.05),斜率为 0.181 m/year > 0,为亚马逊河径流量增大的假设给予了支持。

1.9.3

假设发展前高水位 High_before~ $N(\mu_1, \sigma_1^2)$,发展后 High_after~ $N(\mu_2, \sigma_2^2)$ 。可以作假设检验: $NH: \mu_1 \geq \mu_2$ vs. $AH: \mu_1 < \mu_2$ 。

1.9

```
##
## Welch Two Sample t-test
##
## data: high[1:8] and high[9:17]
## t = -8.3314, df = 13.014, p-value = 7.095e-07
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf -1.667223
## sample estimates:
## mean of x mean of y
## 25.00500 27.12222
```

有充足的理由接受备择假设,认为发展后(1970年后)的平均水位确实比发展前升高了(接近2米)。

然而,我们无法将水位上升完全归因与森林砍伐。High 对 year 的线性 回归中, $R^2=0.582$ 。也就是说年份的变化(森林的破坏)虽然能解释很大一部分原因,但可能还有其他因素的贡献。