HIERARCHICAL MODELING OF HETEROGENEOUS NETWORKS FOR ANIMAL PRODUCTION SYSTEMS

Nora M. Bello, PhD, DVM Professor

Joint work with Kessinee Chitakasempornkul, Guilherme J. Rosa and Abigail Jager

Multiple-Trait Models

$$\begin{bmatrix} y_{1i} \\ y_{2i} \\ y_{3i} \\ y_{4i} \\ y_{5i} \\ y_{6i} \end{bmatrix} =$$

$$\mathbf{b}^* \sim N(\mathbf{0}, \mathbf{B}^* \otimes \mathbf{I}_q)$$

$$\mathbf{e}_{i}^{*} = \left\{ e_{ji}^{*} \right\}_{i=1}^{6} \sim N(\mathbf{0}, \mathbf{R}^{*}) \quad i = 1, ..., n$$

Sorensen and Gianola 2004

Structural Equation Mixed Models

$$\begin{bmatrix} y_{1i} \\ y_{2i} \\ y_{3i} \\ y_{4i} \\ y_{5i} \\ y_{6i} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \lambda_{21} & 0 & 0 & 0 & 0 & 0 & 0 \\ \lambda_{31} & \lambda_{32} & 0 & 0 & 0 & 0 & 0 \\ \lambda_{41} & \lambda_{42} & \lambda_{43} & 0 & 0 & 0 & 0 \\ \lambda_{51} & \lambda_{52} & \lambda_{53} & \lambda_{54} & 0 & 0 \\ \lambda_{61} & \lambda_{62} & \lambda_{63} & \lambda_{64} & \lambda_{65} & 0 \end{bmatrix} \begin{bmatrix} y_{1i} \\ y_{2i} \\ y_{3i} \\ y_{4i} \\ y_{5i} \\ y_{6i} \end{bmatrix} + \begin{bmatrix} \mathbf{z}_{i} \mathbf{b}_{1}^{*} \\ \mathbf{z}_{i} \mathbf{b}_{2}^{*} \\ \mathbf{z}_{i} \mathbf{b}_{3}^{*} \\ \mathbf{z}_{i} \mathbf{b}_{3}^{*} \\ \mathbf{z}_{i} \mathbf{b}_{4}^{*} \\ \mathbf{z}_{i} \mathbf{b}_{5}^{*} \\ \mathbf{z}_{i} \mathbf{b}_{6}^{*} \end{bmatrix} + \begin{bmatrix} e_{1i} \\ e_{2i} \\ e_{3i} \\ e_{4i} \\ e_{5i} \\ e_{6i} \end{bmatrix}$$
Structural coefficients

structure

structure

$$\mathbf{b}^* \sim N(\mathbf{0}, \mathbf{B}^* \otimes \mathbf{I}_q)$$

$$\mathbf{e}_{i}^{*} = \left\{ e_{ji}^{*} \right\}_{j=1}^{6} \sim N(\mathbf{0}, \mathbf{R}^{*}) \quad i = 1, ..., n$$

Sorensen and Gianola 2004

Equivalence: SEM and MTM

$$\mathbf{y}_{i} = \Lambda \mathbf{y}_{i} + \mathbf{X}_{i} \boldsymbol{\beta}^{*} + \mathbf{Z}_{i} \mathbf{u}^{*} + \mathbf{e}_{i}^{*}$$

$$(\mathbf{I} - \Lambda) \mathbf{y}_{i} = \mathbf{X}_{i} \boldsymbol{\beta}^{*} + \mathbf{Z}_{i} \mathbf{u}^{*} + \mathbf{e}_{i}^{*}$$

$$\mathbf{y}_{i} = (\mathbf{I} - \Lambda)^{-1} \mathbf{X}_{i} \boldsymbol{\beta}^{*} + (\mathbf{I} - \Lambda)^{-1} \mathbf{Z}_{i} \mathbf{u}^{*} + (\mathbf{I} - \Lambda)^{-1} \mathbf{e}_{i}^{*}$$

$$\mathbf{y}_{i} = \mathbf{X}_{i} \boldsymbol{\beta} + \mathbf{Z}_{i} \mathbf{u} + \mathbf{e}_{i}$$

$$\mathbf{MTM}$$

MTM SEM

$$\mathbf{X}_{i}\boldsymbol{\beta} = (\mathbf{I} - \boldsymbol{\Lambda})^{-1} \mathbf{X}_{i}\boldsymbol{\beta}^{*}$$

 $\mathbf{Z}_{i}\mathbf{b} = (\mathbf{I} - \boldsymbol{\Lambda})^{-1} \mathbf{Z}_{i}\mathbf{b}^{*}$
 $\mathbf{B} = (\mathbf{I} - \boldsymbol{\Lambda})^{-1} \mathbf{B}^{*} (\mathbf{I} - \boldsymbol{\Lambda})^{-1'}$
 $\mathbf{R} = (\mathbf{I} - \boldsymbol{\Lambda})^{-1} \mathbf{R}^{*} (\mathbf{I} - \boldsymbol{\Lambda})^{-1'}$

SEM as Graphical Models

$$\begin{bmatrix} y_{1i} \\ y_{2i} \\ y_{3i} \\ y_{4i} \\ y_{5i} \\ y_{6i} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \lambda_{21} & 0 & 0 & 0 & 0 & 0 & 0 \\ \lambda_{31} & \lambda_{32} & 0 & 0 & 0 & 0 & 0 \\ \lambda_{41} & \lambda_{42} & \lambda_{43} & 0 & 0 & 0 & 0 \\ \lambda_{51} & \lambda_{52} & \lambda_{53} & \lambda_{54} & 0 & 0 & 0 \\ \lambda_{61} & \lambda_{62} & \lambda_{63} & \lambda_{64} & \lambda_{65} & 0 \end{bmatrix} \begin{bmatrix} y_{1i} \\ y_{2i} \\ y_{3i} \\ y_{4i} \\ y_{5i} \\ y_{6i} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{1i}^{'} \boldsymbol{\beta}_{1}^{*} \\ \mathbf{x}_{2i}^{'} \boldsymbol{\beta}_{2}^{*} \\ \mathbf{x}_{3i}^{'} \boldsymbol{\beta}_{3}^{*} \\ \mathbf{x}_{4i}^{'} \boldsymbol{\beta}_{4}^{*} \\ \mathbf{x}_{5i}^{'} \boldsymbol{\beta}_{5}^{*} \\ \mathbf{x}_{6i}^{'} \boldsymbol{\beta}_{6}^{*} \end{bmatrix} + \begin{bmatrix} \mathbf{z}_{i}^{'} \mathbf{b}_{1}^{*} \\ \mathbf{z}_{i}^{'} \mathbf{b}_{3}^{*} \\ \mathbf{z}_{i}^{'} \mathbf{b}_{3}^{*} \\ \mathbf{z}_{i}^{'} \mathbf{b}_{5}^{*} \\ \mathbf{z}_{i}^{'} \mathbf{b}_{5}^{*} \\ \mathbf{z}_{i}^{'} \mathbf{b}_{5}^{*} \\ \mathbf{z}_{i}^{'} \mathbf{b}_{6}^{*} \end{bmatrix}$$

SEM as Graphical Models

$$\begin{bmatrix} y_{1i} \\ y_{2i} \\ y_{3i} \\ y_{4i} \\ y_{5i} \\ y_{6i} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \lambda_{21} & 0 & 0 & 0 & 0 & 0 & 0 \\ \lambda_{31} & \lambda_{32} & 0 & 0 & 0 & 0 & 0 \\ \lambda_{41} & \lambda_{42} & \lambda_{43} & 0 & 0 & 0 & 0 \\ \lambda_{51} & \lambda_{52} & \lambda_{53} & \lambda_{54} & 0 & 0 & 0 \\ \lambda_{61} & \lambda_{62} & \lambda_{63} & \lambda_{64} & \lambda_{65} & 0 \end{bmatrix} \begin{bmatrix} y_{1i} \\ y_{2i} \\ y_{3i} \\ y_{4i} \\ y_{5i} \\ y_{6i} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{1i}^{'} \boldsymbol{\beta}_{1}^{*} \\ \mathbf{x}_{2i}^{'} \boldsymbol{\beta}_{2}^{*} \\ \mathbf{x}_{3i}^{'} \boldsymbol{\beta}_{3}^{*} \\ \mathbf{x}_{4i}^{'} \boldsymbol{\beta}_{4}^{*} \\ \mathbf{x}_{5i}^{*} \boldsymbol{\beta}_{5}^{*} \\ \mathbf{x}_{6i}^{*} \boldsymbol{\beta}_{6}^{*} \end{bmatrix} + \begin{bmatrix} \mathbf{z}_{i}^{'} \mathbf{b}_{1}^{*} \\ \mathbf{z}_{i}^{'} \mathbf{b}_{2}^{*} \\ \mathbf{z}_{i}^{'} \mathbf{b}_{3}^{*} \\ \mathbf{z}_{i}^{'} \mathbf{b}_{3}^{*} \\ \mathbf{z}_{i}^{'} \mathbf{b}_{5}^{*} \\ \mathbf{z}_{i}^{'} \mathbf{b}_{6}^{*} \end{bmatrix}$$

Pearl 2009

Structural Equation Models: Assumptions

$$\lambda_{jj',i} = \lambda_{jj'}$$
 for $\forall i$

Structural Equation Models: Assumptions

$$\lambda_{jj',i} = \lambda_{jj'}$$
 for $\forall i$

Investigating causal biological relationships between reproductive performance traits in high-performing gilts and sows¹

Kessinee Chitakasempornkul, Mariana B Meneget, Guilherme J M Rosa, Fernando B Lopes, Abigail Jager, Márcio A D Gonçalves, Steve S Dritz, Mike D Tokach, Robert D Goodband, Nora M Bello

✓

Journal of Animal Science, Volume 97, Issue 6, June 2019, Pages 2385–2401, https://doi.org/10.1093/jas/skz115

Published: 10 April 2019 Article history ▼

Objectives

To develop methodological extensions to hierarchical SEM that explicitly accommodate heterogeneous structural coefficients

Infer on heterogeneous functional networks in complex systems

- Simulations
- Data application in a designed experiment in swine reproduction

Structural Equation Models: Extensions

$$\lambda_{jj',i} = oldsymbol{x}'_{jj',i} oldsymbol{\delta}_{jj'} + oldsymbol{z}'_{jj',i} oldsymbol{v}_{jj'}$$
Trt structure Design structure

$$\boldsymbol{v}_{jj'} \sim N(\mathbf{0}, \sigma_{jj'}^2 \boldsymbol{I}_q)$$
 $j = 1, ..., J$ outcomes $j' < j$ $i = 1, ..., n$ subjects

Simulation Study: Data Generation

n = 2,000 q = 100 j = 1,2,3,4 outcomes, j' < ji = 1, ..., n subjects

Scenario 1

$$\lambda_{jj',i} = \lambda_{jj'}$$
 for $\forall i$

Simulation Study: Data Generation

n = 2,000 q = 100 j = 1,2,3,4 outcomes, j' < ji = 1, ..., n subjects

Scenario 1

$$\lambda_{jj',i} = \lambda_{jj'}$$
 for $\forall i$

Scenario 2

$$\lambda_{21,i} = \mathbf{x}'_{21,i} \boldsymbol{\delta}_{21} + \mathbf{z}'_{21,i} \boldsymbol{v}_{21}$$

$$\boldsymbol{v}_{21} \sim N(\mathbf{0}, \sigma_{v_{21}}^2 \boldsymbol{I}_q)$$

$$\lambda_{43,i} = \mathbf{x}'_{43,i} \boldsymbol{\delta}_{43} + \mathbf{z}'_{43,i} \boldsymbol{v}_{43}$$

$$\boldsymbol{v}_{43} \sim N(\mathbf{0}, \sigma_{v_{43}}^2 \boldsymbol{I}_q)$$

10 data replicates per scenario

10 data replicates per scenario

Simulation Study: Alternative Models

$$y = \Lambda y + X\beta + Zb + e$$

Model 0: Multiple-trait model ↔ Fully recursive SEM

$$\mathbf{\Lambda} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ \lambda_{21} & 0 & 0 & 0 \\ \lambda_{31} & \lambda_{32} & 0 & 0 \\ \lambda_{41} & \lambda_{42} & \lambda_{43} & 0 \end{bmatrix}$$

Model 1: SEM with homogeneous $\lambda_{ii'}$

$$\mathbf{\Lambda} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ \lambda_{21} & 0 & 0 & 0 \\ \lambda_{31} & 0 & 0 & 0 \\ 0 & \lambda_{42} & \lambda_{43} & 0 \end{bmatrix}$$

Model 2*: SEM with heterogeneous $\lambda_{21,i}$ and $\lambda_{43,i}$

$$\lambda_{21,i} = \mathbf{x}'_{21,i} \boldsymbol{\delta}_{21} + \mathbf{z}'_{21,i} \boldsymbol{v}_{21} \qquad \boldsymbol{v}_{21} \sim N(\mathbf{0}, \sigma_{v_{21}}^2 \boldsymbol{I}_q) \lambda_{43,i} = \mathbf{x}'_{43,i} \boldsymbol{\delta}_{43} + \mathbf{z}'_{43,i} \boldsymbol{v}_{43} \qquad \boldsymbol{v}_{43} \sim N(\mathbf{0}, \sigma_{v_{43}}^2 \boldsymbol{I}_q)$$

Model 2: SEM with all $\lambda_{ii',i}$ heterogeneous

$$\lambda_{jj',i} = \mathbf{x}'_{jj',i} \boldsymbol{\delta}_{jj'} + \mathbf{z}'_{jj',i} \mathbf{v}_{jj'} \qquad \mathbf{v}_{jj'} \sim N(\mathbf{0}, \sigma^2_{\mathbf{v}_{jj'}} \mathbf{I}_q)$$

Hierarchical Bayesian Framework

$$p(\boldsymbol{\beta}, \boldsymbol{b}, \boldsymbol{\lambda}_{jj'}, \boldsymbol{R}, \boldsymbol{B}|\boldsymbol{y}) \propto p(\boldsymbol{y}|\boldsymbol{\beta}, \boldsymbol{b}, \boldsymbol{\lambda}_{jj'}, \boldsymbol{R})$$
Posterior
Data Likelihood

Data Likelihood

$$p(\boldsymbol{\beta})p(\boldsymbol{\lambda}_{jj'}|\boldsymbol{\delta}_{jj'},\boldsymbol{v}_{jj'})p(\boldsymbol{\delta}_{jj'})$$

Prior Specifications

$$p\left(\boldsymbol{v}_{jj'}|\sigma_{\boldsymbol{v}_{jj'}}^2\right)p(\sigma_{\boldsymbol{v}_{jj'}}^2)p(\boldsymbol{b}|\boldsymbol{B})p(\boldsymbol{B})p(\boldsymbol{R})$$

$$p(\beta) \propto 1$$

$$p(\boldsymbol{b}|\boldsymbol{B}) = N(\boldsymbol{0}, \boldsymbol{B} \otimes \boldsymbol{I}_q)$$

$$p\left(\sigma_{e_j}^2\right) = \chi^{-2}(v_{e_j}, s_{e_j}^2)$$

$$p(\mathbf{B}) = IW(\mathbf{v_{B_0}}, \mathbf{V_{B_0}})$$

Models with

homogeneous $\lambda_{ii'}$

$$p(\lambda_{jj'}) \propto 1$$

Models with

heterogeneous $\lambda_{ii',i}$

$$p(\boldsymbol{\delta}_{jj'}) \propto 1$$

$$p(\boldsymbol{v}_{jj'}|\sigma_{\boldsymbol{v}_{jj'}}^2) = N(\boldsymbol{0}, \sigma_{\boldsymbol{v}_{jj'}}^2 \boldsymbol{I}_q)$$

$$p(\sigma_{\boldsymbol{v}_{jj'}}^2) = \chi^{-2}(\boldsymbol{v}_{\boldsymbol{v}_{jj'}}, \boldsymbol{s}_{\boldsymbol{v}_{jj'}}^2)$$

- Markov Chain Monte Carlo
- 270K iterations after 60K burn-in with thinning 2
- Convergence diagnostics

Simulation Study: Model Fit

i = 1, ..., n subjects j = 1,2,3,4 outcomes j' < j

Scenario 1: Homogeneous $\lambda_{ii'}$

Scenario 2: Heterogeneous $\lambda_{21,i}$, $\lambda_{43,i}$

Simulation Study: Overall Estimation Accuracy

Revisiting...

Investigating causal biological relationships between reproductive performance traits in high-performing gilts and sows¹

Kessinee Chitakasempornkul, Mariana B Meneget, Guilherme J M Rosa, Fernando B Lopes, Abigail Jager, Márcio A D Gonçalves, Steve S Dritz, Mike D Tokach, Robert D Goodband, Nora M Bello ▼

Journal of Animal Science, Volume 97, Issue 6, June 2019, Pages 2385–2401, https://doi.org/10.1093/jas/skz115

Data

Reproductive outcomes:

- 1. Female body weight gain during late gestation (GAIN), kg
- 2. Total number born in a litter(TB)
- 3. Number born alive in a litter (BA)
- 4. Born alive average birth weight (BABW), kg
- 5. Wean-estrous interval (WEI), day
- 6. Subsequent total born (SuTB)

Data generation process:

- Complete records for 440 gilts and 200 sows
- Trt structure: 2 parities x 4 diets
- Design structure: BW blocks 222 and 97

Gonçalves et. al 2016 JAS

Data Descriptives

Sows

Total complete records = 200 Total BW blocks = 97

Gilts

Total complete records = 440 Total BW blocks = 222

Data Application: Heterogeneous Networks?

Sows TB Gain λ_{13} BA BABW WEI

- Nested arrangement?
- Direction of link BA BABW

Data Application:

Alternative Models

M0: Standard Multiple-trait model

$$\mathbf{\Lambda} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ \lambda_{21} & 0 & 0 & 0 & 0 & 0 \\ \lambda_{31} & \lambda_{32} & 0 & 0 & 0 & 0 \\ \lambda_{41} & \lambda_{42} & \lambda_{43} & 0 & 0 & 0 \\ \lambda_{51} & \lambda_{52} & \lambda_{53} & \lambda_{54} & 0 & 0 \\ \lambda_{61} & \lambda_{62} & \lambda_{63} & \lambda_{64} & \lambda_{65} & 0 \end{bmatrix}$$

M1: SEM with homogeneous $\lambda_{ii'}$

M2: SEM with heterogeneous $\lambda_{jj',i}$

$$\lambda_{jj',i} = x'_{jj',i} \delta_{jj'} + z'_{jj',i} v_{jj'} \qquad v_{jj'} \sim N(\mathbf{0}, \sigma^2_{v_{jj'}} I_q)$$
Parity BW blocks

$$\boldsymbol{v}_{jj'} \sim N(\boldsymbol{0}, \sigma_{\boldsymbol{v}_{jj'}}^2 \boldsymbol{I}_q)$$

M3: SEM with heterogeneous $\lambda_{ij',i}$ and $\sigma_{e_{i,i}}^2$

Kizilkaya and Tempelman 2005

Data Application: Model Fit

Models	Network structure	p_D	DIC		
M0: Standard MTM - I	310.4	17075.1			
M1: SEM with	BA ← BABW	298.3	17044.2		
homogeneous $\lambda_{jj'}$	BA → BABW	297.1	17043.7		
M2: SEM with heterogeneous $\lambda_{jj',i}$	BA ← BABW	389.2	17036.4		
	BA → BABW	387.3	17027.4		
M3: SEM with heterogeneous $\lambda_{i i', i}$	BA ← BABW	393.7	17019.1		
and $\sigma_{e_{j,i}}^2$	BA → BABW	392.5	17014.7		

Data Application: Heterogeneous Networks

Structural coefficients	Sows	Gilts	Posterior Prດ (Difference>0)		
λ _{BABW,} Gain (λ ₄₁)	0.07	0.03	0.86		
(g per kg)	[0.02, 1.11]	[- 0.02, 0.57]			
λ _{BABW,BA} (λ ₃₂)	-356.3	-358.1	0.02		
(g per unit)	[-447.5, -267.7]	[-421.7, -291.8]			
$\lambda_{TB,BA}~(\lambda_{42})$ (unit per unit)	0.91 0.86 [0.84, 0.94] [0.80, 0.92]		0.76		
λ _{TB ,BABW} (λ ₄₃)	-0.64	-0.14	0.78		
(unit per 100g)	[-1.64, 0.31]	[-0.22, -0.05]			
λ _{WEI,BABW} (λ ₅₃)	0.01	0.29	0.32		
(day per 100g)	[-0.05, 0.07]	[-0.31, 0.83]			
λ _{SuTB,BABW} (λ ₆₃)	-0.26	-0.39	0.62		
(unit per 100g)	[-0.48, -0.06]	[-0.64, -0.15]			
λ _{SuTB,WEI} (λ ₆₅)	-0.26	0.16	0.98		
(unit per day)	[-0.48, -0.07]	[0.09, 0.23]			

Data Application: Heterogeneous Networks

וט	IC	oge		eoi	u:	5 11	eι '	WU	JΙΚ	S							
WEI		BABW		BABW		BABW		BA		BA		GAIN	From		Direct		
SuTB		SuTB		WEI		TB		TB		BABW		BABW	То		effect		
$\sigma^2_{v_{SuTB,WEI}}$		σ_v^2 SuTB,BABW		$\sigma_{vWEI,BABW}^{2}$		$\sigma_{vTB,BABW}^{2}$		$\sigma_{vTB,BA}^{2}$		$\sigma_{vBABW,BA}^{2}$		$\sigma_{vBABW,GAIN}^{2}$	component	variance	block	Between-	
4.64×10 ⁻³	[7.21×10 ⁻⁷ , 3.44]	0.91	[8.24×10 ⁻⁶ , 0.98]	0.27	[7.05×10 ⁻⁸ , 0.58]	0.17	[2.18×10 ⁻¹¹ , 2.68×10 ⁻⁴]	6.98×10 ⁻⁵	[6.22×10 ⁻¹² , 3.91×10 ⁻⁴]	1.05×10^{-3}	[2.23×10 ⁻¹⁰ , 5.38×10 ⁻⁴]	1.54×10^{-4}	[95% H	Posterior			
(unit per day) ²		(unit per $100g)^2$		(day per 100g) ²		(unit per $100g)^2$		(unit per unit) ²		(g per unit) ²		$(g per kg)^2$	PD]	mean			
±0.13 unit per day		± 1.87 unit per $100\mathrm{g}$		±1.02 day per 100g		±0.81 unit per 100g		± 0.02 unit per unit		±0.06 g per unit		$\pm 0.02~\mathrm{g~per~kg}$	$\left(\pm 1.96 \sqrt{o_{p_{jj'}}^2}\right)$	(1106 =2)	empirical rule =	$\lambda_{jj'}$ based on	Expected range of
	WEI SuTB $\sigma_{vSuTB,WEI}^2$ 4.64×10 ⁻³ (unit per day) ²	WEI SuTB $\sigma_{vSuTB,WEI}^2$	BABW SuTB $\sigma_{vSuTB,BABW}^{2}$ 0.91 (unit per 100g) ² [7.21×10-7, 3.44] WEI SuTB $\sigma_{vSuTB,WEI}^{2}$ 4.64×10-3 (unit per day) ²	BABW SuTB $\sigma_{vSuTB,BABW}^2$ 0.91 (unit per 100g)² WEI SuTB $\sigma_{vSuTB,WEI}^2$ $(7.21 \times 10^{-7}, 3.44)$ (unit per day)²	BABW WEI $\sigma_{v_{WEI,BABW}}^{2}$ 0.27 (day per 100g)² BABW SuTB $\sigma_{v_{SuTB,BABW}}^{2}$ [8.24×10-6, 0.98] (unit per 100g)² BABW SuTB $\sigma_{v_{SuTB,BABW}}^{2}$ 0.91 (unit per 100g)² WEI SuTB $\sigma_{v_{SuTB,WEI}}^{2}$ 4.64×10-3 (unit per day)²	[7.05×10-8, 0.58] BABW WEI $\sigma_{v}^{2}_{WEI,BABW}$ 0.27 (day per 100g) ² [8.24×10-6, 0.98] [8.24×10-6, 0.98] (unit per 100g) ² BABW Sull B. $\sigma_{v}^{2}_{Sull B,BABW}$ 0.91 (unit per 100g) ² WEI Sull B. $\sigma_{v}^{2}_{Sull B,WEI}$ 4.64×10-3 (unit per day) ²	BABW TB $\sigma_{v}^{2}_{TB,BABW}$ 0.17 (unit per 100g) ² BABW WEI $\sigma_{v}^{2}_{WEI,BABW}$ [7.05×10-8, 0.58] (day per 100g) ² BABW SuTB $\sigma_{v}^{2}_{SuTB,BABW}$ [8.24×10-6, 0.98] (unit per 100g) ² BABW SuTB $\sigma_{v}^{2}_{SuTB,BABW}$ 0.91 (unit per 100g) ² WEI SuTB $\sigma_{v}^{2}_{SuTB,WEI}$ 4.64×10-3 (unit per day) ²	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BA TB $\sigma_{vTB,BA}^{2}$ 6.98×10-5 (unit per unit)2 (unit per unit)2 (unit per unit)2 BABW TB $\sigma_{vTB,BABW}^{2}$ 0.17 (unit per 100g)2 BABW WEI $\sigma_{vWEI,BABW}^{2}$ 0.27 (day per 100g)2 BABW SuTB $\sigma_{vSuTB,BABW}^{2}$ 0.91 (unit per 100g)2 WEI SuTB $\sigma_{vSuTB,WEI}^{2}$ 4.64×10-3 (unit per day)2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BA BABW $\sigma_{vBABW,BA}^2$ 1.05×10^{-3} (g per unit)2 BA TB $\sigma_{vTB,BA}^2$ 6.98×10^{-12} , 3.91×10^{-12} , 1.00×10^{-12} (unit per unit)2 BABW TB $\sigma_{vTB,BABW}^2$ 0.17 (unit per 100g)2 BABW WEI $\sigma_{vWEI,BABW}^2$ 0.27 (day per 100g)2 BABW SuTB $\sigma_{vSuTB,BABW}^2$ 0.91 (unit per 100g)2 WEI SuTB $\sigma_{vSuTB,BABW}^2$ 0.91 (unit per 100g)2 WEI SuTB $\sigma_{vSuTB,WEI}^2$ 4.64×10^{-3} , 3.44] (unit per 100g)2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GAIN BABW $\sigma_{vBABW,GAIN}^{2}$ 1.54×10-4 (g per kg) ² [2.23×10 ⁻¹⁰ , 5.38×10 ⁻⁴] BA BABW $\sigma_{vBABW,BA}^{2}$ 1.05×10-3 (g per unit) ² [6.22×10 ⁻¹² , 3.91×10 ⁻⁴] BA TB $\sigma_{vTB,BA}^{2}$ 6.98×10-4 (unit per unit) ² BABW TB $\sigma_{vTB,BABW}^{2}$ 0.17 (unit per unit) ² BABW WEI $\sigma_{vWEI,BABW}^{2}$ 0.27 (day per 100g) ² BABW SuTB $\sigma_{vSuTB,BABW}^{2}$ 0.91 (unit per 100g) ² [7.21×10 ⁻⁷ , 3.44] WEI SuTB $\sigma_{vSuTB,WEI}^{2}$ 4.64×10-3 (unit per day) ²	From To component [95% HPD] GAIN BABW $\sigma_{v BABW,GAIN}^{2}$ 1.54×10-4 (g per kg) ² [2.23×10-10, 5.38×10-4] BA BABW $\sigma_{v BABW,BAI}^{2}$ 1.05×10-3 (g per unit) ² [6.22×10-12, 3.91×10-4] BA TB $\sigma_{v TB,BA}^{2}$ 6.98×10-5 (unit per unit) ² [2.18×10-11, 2.68×10-4] BABW TB $\sigma_{v TB,BABW}^{2}$ 0.17 (unit per unit) ² [7.05×10-8, 0.58] BABW WEI $\sigma_{v WEI,BABW}^{2}$ [7.05×10-8, 0.58] BABW SuTB $\sigma_{v SuTB,BABW}^{2}$ [8.24×10-6, 0.98] BABW SuTB $\sigma_{v SuTB,BABW}^{2}$ [7.21×10-7, 3.44] WEI SuTB $\sigma_{v SuTB,WEI}^{2}$ 4.64×10-3 (unit per day) ²	Variance Posterior mean From To component [95% HPD]	Direct effect block variance Posterior mean From To component [95% HPD] GAIN BABW $\sigma_{vBABW,GAIN}^2$ 1.54×10-4 (g per kg)? BABW $\sigma_{vBABW,GAIN}^2$ 1.05×10-3 (g per unit)? BABW $\sigma_{vBABW,BA}^2$ 1.05×10-3 (g per unit)? BABW TB $\sigma_{vTB,BA}^2$ 6.98×10-4 (unit per unit)? BABW TB $\sigma_{vTB,BABW}^2$ 0.17 (unit per unit)? BABW VEI σ_{vBABW}^2 0.17 (unit per 100g)? BABW σ_{vBABBW}^2 0.27 (day per 100g)? BABW σ_{vBABBW}^2 0.27 (day per 100g)? [8.24×10-5, 0.98] (unit per 100g)? [8.24×10-5, 0.98] (unit per 100g)? [8.24×10-7, 3.44] (unit per 100g)?	Direct effect block variance Posterior mean From To component [95% HPD] GAIN BABW $\sigma_{vBABW,GAIN}^2$ 1.54×10 ⁻⁴ (g per kg) ² BA BABW $\sigma_{vBABW,GAIN}^2$ 1.05×10 ⁻³ (g per unit) ² BA BABW $\sigma_{vBABW,BA}^2$ 1.05×10 ⁻³ (g per unit) ² BA BABW $\sigma_{vTB,BA}^2$ 6.98×10 ⁻⁴] BABW TB $\sigma_{vTB,BABW}^2$ 1.17 (unit per unit) ² [2.18×10 ⁻¹¹ , 268×10 ⁻⁴] BABW TB $\sigma_{vTB,BABW}^2$ 0.17 (unit per unit) ² [3.19×10 ⁻⁴] BABW $\sigma_{vTB,BABW}^2$ 0.17 (unit per unit) ² [3.18×10 ⁻¹¹ , 268×10 ⁻⁴] [3.18×10 ⁻¹¹ , 100g) ² [3.21×10 ⁻³ , 0.58] BABW $\sigma_{vTB,BABW}^2$ 0.27 (day per 100g) ² [3.24×10 ⁻⁵ , 0.98] [3.24×10 ⁻⁵ , 0.98] [3.21×10 ⁻⁷ , 3.44] [4.64×10 ⁻³ , 0.44]

Heterogeneous Networks: Concluding Remarks

- General methodological approach to extend hierarchical SEM for heterogeneous networks
- Structural coefficients specified as functions of systematic and non-systematic sources of variability
- Hierarchical Bayesian framework
 - Easily extendable to other Trt and design structures
 - Other: heterogeneous variances?
 - Designed experiments and observational studies

Heterogeneous Networks: Concluding Remarks

- Simulation study
 - Validation and frequentist properties
 - Diagnosis of network heterogeneity: model fit?
- Data application in an animal production system
 - Inference on heterogeneous reproductive networks for gilts and sows
 - Tailored management of specific subpopulations
 - Enhanced mechanistic understanding of biological processes

Questions? Comments?

- Guilherme Rosa, UW
- Abigail Jager, WUSTL
- Kansas State
 University Dept.

 Statistics and KSRE

For more information: bello.69@osu.edu

PhD Graduate Associateship (GRA) POSITION AVAILABLE Animal Systems Modeling

The successful candidate will be involved in the development and application of quantitative models for efficient and sustainable food production systems. Areas of application are open to any agricultural livestock species and their interphase with cropping systems. The research focus will be interdisciplinary and integrative of scientific domains in alignment with the candidate's interest.

From a methodological standpoint, opportunities for novel and impactful developments relevant to systems modeling include causal inference, networks and graphical models, as well as hierarchical models, structural equations and dynamic modeling, amongst others. The successful candidate will have the opportunity to develop competency in the Bayesian framework of inference, as well as proficiency with big-data analytics and high-performance computing through the Ohio Supercomputer Center. The candidate will have the opportunity to interact regularly with a vibrant interdisciplinary collaborative environment, working on cutting edge problems in the life sciences through the Translational Data Analytics Institute.

