... albo psikus!

XV OIJ, zawody I stopnia, tura otwarta

27 października – 7 grudnia 2020

W Bajtocji panuje pewna tradycja, nieznana w innych zakątkach świata – na początku jesieni dzieci przebierają się w straszne kostiumy i chodzą od domu do domu, zbierając cukierki od mieszkańców.

Bajtek i Bitosia także planują wybrać się na zbieranie cukierków. Mieszkają oni przy bardzo długiej ulicy, która zawiera N domów mieszczących się po tej samej stronie drogi i ponumerowanych kolejno od 1 do N. Odwiedzali już tę ulicę wcześniej i wiedzą, dla każdego $i=1,2,\ldots,N$, że gdy odwiedzą i-ty dom, dostaną dokładnie C_i cukierków.

Jako że co roku wybuchały między nimi kłótnie o ostatniego cukierka, Bajtek i Bitosia postawili tym razem koniecznie zebrać **parzystą** liczbę cukierków. Ich planowana strategia to wybrać pewne dwa numery domów L i R, po czym odwiedzić wszystkie domy pomiędzy nimi, czyli L, L+1, ..., R-1, R. W ten sposób zbiorą dokładnie $C_L+C_{L+1}+...+C_{R-1}+C_R$. cukierków.

Na ile różnych sposobów Bajtek i Bitosia mogą wybrać domy L i R tak aby zebrać parzystą liczbę cukierków?

Wejście

W pierwszym wierszu wejścia dana jest liczba N ($1 \le N \le 1\,000\,000$), oznaczająca liczbę domów przy ulicy. W kolejnym wierszu dane jest N liczb C_1, C_2, \ldots, C_N ($1 \le C_i \le 10^9$ dla $1 \le i \le N$), gdzie C_i oznacza liczbę cukierków, które dzieci mogą zebrać odwiedzając dom o numerze i.

Wyjście

Wypisz jeden wiersz, zawierający liczbę możliwych par numerów domów (L,R), dla których dzieci zbiorą parzystą liczbę cukierków.

Ocenianie

Poniższa tabela opisuje dodatkowe warunki, które spełniają pewne grupy testów oraz liczbę punktów, którą można otrzymać za rozwiązanie jedynie testów spełniające te warunki.

Dodatkowe ograniczenia	Liczba punktów
$N \le 1000$	40
$C_i \le 1000$	23
wszystkie C_i są nieparzyste	14

Przykłady

Wejście dla testu psi0a:

4
1 2 3 4

Wyjście dla testu psi0a:	
4	

Wyjaśnienie do przykładu: Bajtek i Bitosia mogą odwiedzić następujące domy:

- L=1, R=3, wtedy dzieci zbiorą 1+2+3=6 cukierków,
- L=1, R=4, wtedy dzieci zbiorą 1+2+3+4=10 cukierków,
- L = R = 2, wtedy dzieci zbiorą 2 cukierki,
- L = R = 4, wtedy dzieci zbiorą 4 cukierki.

... albo psikus!

Wejście dla testu psi0b:	Wyjście dla testu psi0b:	
1	0	
5		
Wejście dla testu psi0c:	Wyjście dla testu psi0c:	
4	10	
1000000000 1000000000 1000000000 1000000		

Pozostałe testy przykładowe

- test psiOd: $\mathit{N}=1000$. W domach o numerach parzystych $\mathit{C}_{i}=4$, w pozostałych $\mathit{C}_{i}=5$.
- test psi0e: N=1~000~000. Dla wszystkich $i~(1\leq i\leq n)$: $C_i=999~999$.

... albo psikus! 2/2