Санкт-Петербургский государственный электротехнический университет "ЛЭТИ"им. В. И. Ульянова (Ленина) (СПБГЭТУ "ЛЭТИ")

Направление: Профиль: Факультет: Кафедра:	Управление и информаци	4.04 - Управление в технических системах онные технологии в технических системах омпьютерных технологий и информатики Автоматики и процессов управления
К защите допустить Зав. кафедрой		Шестопалов М. Ю.
ВЫПУСКІ	НАЯ КВАЛИФИ! МАГИС	КАЦИОННАЯ РАБОТА ТРА
-		вание дельта-робота и решение вления рабочим органом
Студент		О.Е. Медовиков
Руководитель	К. Т. Н.	С. Е. Абрамкин

ЗАДАНИЕ НА ВЫПУСКНУЮ КВАЛИФИКАЦИОННУЮ РАБОТУ

	Утверждаю Заф. кафедры АПУ Шестопалов М. Ю. «»2020 г.
координатного управление рабоч Исходные данные (технические т	гребования): раметрического моделирования дельта-робота равления дельта-роботом
Перечень отчетных материалов: материал, приложение. Дополнительные разделы:	пояснительная записка, иллюстративный
Дата выдачи задания «»2020 г.	Дата предоставления ВКР к защите «»2020 г.
Студент Руководитель к. т	О.Е. Медовиков с. н С. Е. Абрамкин

КАЛЕНДАРНЫЙ ПЛАН ВЫПОЛНЕНИЯ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАбОТЫ

2	тверждаю
Заф. каф	едры АПУ
Шестопа	лов М. Ю.
«»	2020 г.

Студент Медовиков О. Е.

Группа 4391

Тема работы:

Параметрическое проектирование дельта-робота и решение задачи координатного управление рабочим органом.

$N_{\overline{0}}$	Наименование работ	Срок выполнения
Π/Π		
1	Обзор литературы по теме работы	10.12-01.02
2	Проектирование виртуальной модели в	10.12 - 26.03
	Zencad	
3	Создание физического прототипа робота	01.02 - 05.04
4	Написание прошивки для микроконтрол-	
	лера Arduio	
5	Создание интерфейса для управления	
	роботом	

Студент		О.Е. Медо)ВИКОВ
Руководитель	К. Т. Н.	С. Е. Абр	амкин

РЕФЕРАТ

Пояснительная записка 00 стр., 00 рис., 00 табл., 00 ист., 00 прил.

Ключевые слова: параметрическое моделирование, 3д печать, дельта-робот, сортировка.

Объект исследования: кинематика дельта-робота.

Цель работы:

Основное содержание работы.

ABSTRACT

speak from my heart

СОДЕРЖАНИЕ

Bı	веде	ние	7
1	Ки	нематика дельта-робота	8
	1.1	Конструкция и устройство	8
	1.2	Задача прямой кинематики дельта-робота	9
	1.3	Обратная кинематика	12
2	Mo,	делирование робота	14
	2.1	База	14
38	клю	очение	15
$\mathbf{C}_{\mathbf{I}}$	писо	${f K}$	16

введение

Меня зовут дундук

1 Кинематика дельта-робота

1.1 Конструкция и устройство

Основанием робота является база, жёстко фиксируемая в пространстве над рабочем полем. Габариты базы очерчиваются равносторонним треугольником со стороной равной f. Середины сторон треугольника обозначают координаты осей вращения рычагов и таким образом, расстояние от центра базы до оси вращения каждого рычага равно r - радиусу вписанной окружности равностороннего треугольника. Это расстояние легко находится через соотношение:

$$f = \frac{\sqrt{3}}{2} r$$

В дальнейшей работе, при описании моделирования, будут использоваться переменные с другими названиями, например, переменная rad соответствует радиусу вписанной окружности. Это связано с удобством написания кода, так как невозможно поиском найти переменную, обозначенную одним символом, а также это неправильно, с точки зрения читаемости кода.

Рис. 1: Схематическое представление Дельта-робота

Начало координат располагается в центре базы, таким образом, чтобы Z координата высоты равнялась нулю для точек осей вращения рычагов, так как конечное расположение рабочего органа робота будет рассчитываться относительно

этих координат. Три рычага нумеруются определённым образом. Первый рычаг двигается в плоскости YZ и направлен в противоположную оси Y сторону. Второй рычаг повернут относительно оси Z на 120 градусов, а третий на -120 градусов. Поворот делается по правилу правой руки, где большой палец совпадает с направлением оси Z, а согнутые пальцы показывают направление вращения. Так как робот в целом абсолютно симметричен, ошибки с нумерацией рычагов закономерны, необходимо на всех этапах строго придерживаться единому правилу обозначения рычагов.

Жёстко закреплённые каждый в своей плоскости рычаги обозначаются r_{fi} , а угол на который они поворачиваются обозначают через θ_i . Точка оси вращения рычагов обозначается как F_i , а конечная точка рычага - J_i . На конце рычага находится крепление с двумя карданными шарнирами, которое всегда параллельно стороне равностороннего треугольника, обозначающего габариты рабочего органа. Две взаимно параллельные направляющие соединяются через шарниры с вершинами треугольника, образуя параллелограмм. Из-за этого, данный робот также называют разновидностью параллельного робота.

Для математического описания робота карданные шарниры и параллельные направляющие не нужны, их заменяют рычагами обозначаемыми как r_{ei} . Рычаги r_{ei} крепятся к серединам сторон треугольника, обозначающего габариты каретки, в которой закреплен рабочий орган. Габариты обозначаются, как и в случае с базой, равносторонним треугольником, длина стороны которого обозначается буквой е. Координаты точек крепления карданных шарниров к каретки называют E_i , а точкой E_0 обозначается центр каретки, то-есть координата рабочего органа.

1.2 Задача прямой кинематики дельта-робота

Решение прямой задачи кинематики дельта-робота заключается в определении координаты центра каретки E_0 при известных углах θ_i . Решение данной задачи необходима мне для определения координат расположения различных узлов машины, во время создания компьютерной модели. Сама идея решения достаточна проста. Так как рычаги, соединенные с двигателем, двигаются в одной плоскости, без возможности отклониться, это значит, что можно рассчитать координаты вершины рычага, зная координату оси вращения, длину рычага и угол поворота рычага. Координата конца рычагов обозначается буквой J_i . Подобным образом посчитать угол шарнира, соединяющего конец рычага и сторону каретки не представляется возможным, так как он вращается не вдоль одной плоскости, а в трёх измерениях.

Если допустить, что каретка не имеет размеров и представляет собой точку, то можно представить три сферы с центрами в J_i и радиусами r_{ei} . Сферы показывают область, в которой могут теоретически могут вращаться шарниры, при данных значениях углов θ_i . Если внести поправки на размеры каретки, точка пересечения

трех сфер - будет решением, искомой координатой каретки.

Рис. 2: Схема расчета координат рычагов

Расчет координат J_1 для первого рычага упрощается выбором системы координат. Первый рычаг параллелен оси Y и движется в плоскости YZ, поэтому координата X всегда будет равна 0. При этом Z координата оси вращения тоже равна 0, что было оговорено ранее. Значит координата F_1 будет состоять только из Y и будет равна минус радиус вписанной окружности. В этом месте нужно взять поправку на радиус каретки, и вычесть радиус каретки из радиуса базы. Таким образом, мы сможем рассчитать точки J_i' - центры сфер, с общей точкой в E_0 .

$$t = r_{base} - r_{karet}$$

$$J'_{1} = (x_{1}; y_{1}; z_{1})$$

$$J'_{2} = (x_{2}; y_{2}; z_{2})$$

$$J'_{3} = (x_{3}; y_{3}; z_{3})$$

$$\begin{cases} x_1 = 0 \\ y_1 = -(t - r_f cos(\theta_1)) \\ z_1 = -r_f cos(\theta_1) \end{cases}$$

$$\begin{cases} x_2 = [t + r_f cos(\theta_2)] cos(30^\circ) \\ y_2 = [t + r_1 cos(\theta_2)] sin(30^\circ) \\ z_2 = -r_f sin(\theta_2) \end{cases}$$

$$\begin{cases} x_3 = [t + r_f cos(\theta_3)] cos(30^\circ) \\ y_3 = [t + r_1 cos(\theta_3)] sin(30^\circ) \\ z_3 = -r_f sin(\theta_3) \end{cases}$$

Теперь для нахождения координаты каретки, нужно решить систему из трех уравнений сфер с координатами центров в J_i' и радиусами r_e .

$$E_0 = (x, y, z) (x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2 = r_e^2$$

Подставим координаты J'_i , полученные ранее и получим систему уравнений вида:

$$\begin{cases} x^2 + (y - y_1)^2 + (z - z_1)^2 = r_e^2 \\ (x - x_2)^2 + (y - y_2)^2 + (z - z_2)^2 = r_e^2 \\ (x - x_3)^2 + (y - y_3)^2 + (z - z_3)^2 = r_e^2 \end{cases}$$

Теперь раскроем скобки и немного сгруппируем переменные:

$$\begin{cases} x^2 + y^2 + z^2 - 2y_1y - 2z_1z = r_e^2 - y_1^2 - z_1^2 \\ x^2 + y^2 + z^2 - 2x_2x - 2y_2y - 2z_1z = r_e^2 - x_2^2 - y_2^2 - z_2^2 \\ x^2 + y^2 + z^2 - 2x_3x - 2y_3y - 2z_1z = r_e^2 - x_3^2 - y_3^2 - z_3^2 \end{cases}$$

Теперь можно сделать подстановку и формируем новые три уравнения, вычитая из первого сначала второе, потом третье и из второго - третье.

$$\omega_i = x_i^2 + y_i^2 + z_i^2$$

$$\begin{cases} x_2x + (y_1 - y_2)y + (z_1 - z_2)z = (\omega_1 - \omega_2)/2 \\ x_3x + (y_1 - y_3)y + (z_1 - z_3)z = (\omega_1 - \omega_3)/2 \\ (x_2 - x_3)x + (y_2 - y_3)y + (z_2 - z_3)z = (\omega_2 - \omega_3)/2 \end{cases}$$

Следующим шагом вычитаем второе уравнение из первого, частично сократив y выразив x через z. Аналогично вычитаем из второго третье, частично сокращая x и выражая y через z. Так как выражения получаются очень длинными, для компактной записи вводится подстановка a_i, b_i, d .

$$x = a_1 z + b_1$$
 $y = a_2 z + b_2$

$$a_1 = \frac{1}{d}[(z_2 - z_1)(y_3 - y_1) - (z_3 - z_1)(y_2 - y_1)]$$

$$b_1 = -\frac{1}{2d}[(\omega_2 - \omega_1)(y_3 - y_1) - (\omega_3 - \omega_1)(y_2 - y_1)]$$

$$a_2 = -\frac{1}{d}[(z_2 - z_1)x_3 - (z_3 - z_1)x_2]$$

$$b_2 = \frac{1}{2d}[(\omega_2 - \omega_1)x_3 - (\omega_3 - \omega_1)x_2]$$

$$d = (y_2 - y_1)x_3 - (y_3 - y_1)x_2$$

Теперь, имея x и y, выраженные через z, предстоит подставить их в уравнение сферы (например, первой) с центром в J_1 , раскрыть скобки, упростить и получить:

$$(a_1^2 + a_2^2 + 1)z^2 + 2(a_1 + a_2(b_2 - y_1) - z_1)z + (b_1^2 + (b_2 - y_1)^2 + z_1^2 - r_e^2) = 0$$

В конечном итоге задача свелась к решению квадратного уравнения, через дискриминант, корни которого будут равны Z координате каретки. На данном этапе проводится проверка параметров дельта-робота. Человек произвольно задающий радиусы базы и каретки, длины рычагов и шарниров должен подобрать их в определённом соотношении, которое позволит роботу физически функционировать. Иначе, шарниры будут слишком короткими и не дотянутся до каретки. Решение уравнения выше позволяет определить физическую возможность создания робота при данных параметрах. Если дискриминант равен отрицательному числу, значит, что шарниры не дотягиваются до каретки и поэтому выбор параметров робота неверен. Если дискриминант равен 0 в рабочей области робота это приводит к неустойчивому равновесию. Эта координата называется точкой сингулярности параллельного робота, так как в её окрестностях находятся координаты с двумя равнозначными и очень близкими решениями. В окрестностях точки сингулярности управление роботом практически невозможно, так как движение вверх или вниз по оси Z будет случайным. Некоторые конструкции параллельных роботов, проходя точку сингулярности, "защёлкиваются" в положение, из которого не могут выйти самостоятельно. Для правильной работы робота дискриминант должен быть большим числом, в случае моей симуляции числа достигают значений 10^{23} и даже больше.

1.3 Обратная кинематика

Задача обратной кинематики дельта-робота заключается в нахождении углов поворота рычагов θ_i , при известной координате каретки $E_0=(x_0,y_0,z_0)$. Данное решение основано на нахождении координат деталей первого шарнира и рычага, и вывода решения для угла θ_1 в общем виде для первого рычага с учётом правильного расположения осей координат. Два оставшихся угла будут рассчитаны аналогично, с применением вращения оси координат на 120° и -120° соответственно.

Первым шагом необходимо найти координаты крепления шарнира к каретке. Эта точка находится на стороне равностороннего треугольника и смещена от точки E_0 на величину радиуса вписанной окружности.

$$E_1(x_0, y_0 - \frac{e}{2\sqrt{3}}, z_0)$$

Так как в общем виде каретка будет иметь некое смещение по оси X, а это значит, что шарнир и рычаг не будут лежать в одной плоскости YZ. Для решения

необходимо найти проекцию шарнира на плоскость YZ. Верхняя точка проекции шарнира совпадает с координатой конца рычага J_1 , а нижняя точка обозначается E'_0 .

$$E_1'(0, y_0 - \frac{e}{2\sqrt{3}}, z_0)$$

Соответственно длинна проекции шарнира находится по теореме Пифагора:

$$E_1'J_1 = \sqrt{(E_1J_1)^2 - (E_1E_1')^2}$$

Так как гипотенуза равна длине шарнира, а меньший катет - смещению каретки по X, то:

$$E_1'J_1 = \sqrt{r_e^2 - x_0^2}$$

Напомню, что координата оси вращения первого рычага F_1 смещена от центра координат на радиус вписанной окружности, таким же образом, как и крепление шарнира каретки.

$$F_1(0,\frac{-f}{2\sqrt{3}},0)$$

Теперь есть все необходимое, для нахождения координаты соединения рычага с шарниром J_1 . Вращаясь рычаг описывает окружность с радиусом r_f и центром в F_1 . Проекция шарнира вращаясь описывает окружность с найденным выше радиусом $E_1'J_1$ и центром в E_1' . Найдя точки пересечения этих двух окружностей, мы получим две физически возможные координаты точки соединения рычага и шарнира, одна из которых ложная, а вторая (наименьшая по Y) истинная. Общие точки находятся путём решения решения системы уравнений двух окружностей.

$$\begin{cases} (y_{J_1} - y_{F_1})^2 + (Z_{J_1} - z_{F_1})^2 = r_f^2 \\ (y_{J_1} - y_{E_1'})^2 + (Z_{J_1} - z_{E_1'})^2 = r_e^2 - x_0 \end{cases}$$

Подставляем известные координаты центров окружностей:

$$\begin{cases} (y_{J_1} + \frac{f}{2\sqrt{3}})^2 + z_{J_1}^2 = r_f^2 \\ (y_{J_1} - y_0 + \frac{e}{2\sqrt{3}})^2 + (z_{J_1} - z_0)^2 = r_e^2 - x_0 \end{cases}$$

В данном случае, так как мы работаем с окружностями и игнорируем ось X, получается система из двух уравнений с двумя неизвестными. Если раскрыть скобки и вычесть из первого уравнения второе, то можно выразить z через y и подставить во второе уравнение, получив квадратное уравнение.

$$\frac{x_0^2 + y_0^2 + z_0^2 + r_e^2 + r_f^2 - y_{F_1}^2}{2z_0} y^2 - \frac{y_{F_1} - y_0}{z_0} y = 0$$

2 Моделирование робота

2.1 База

бла бла

ЗАКЛЮЧЕНИЕ

Бла-бла-бла просто гений

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. какая-то статья