DQN Tricks

Experience Replay

 Stores experiences (actions, state transitions, and rewards) and creates mini-batches from them for the training process

Fixed Target Network

 Error calculation includes the target function depends on network parameters and thus changes quickly. Updating it only every 1,000 steps increases stability of training process.

$$Q(s_t, a) \leftarrow Q(s_t, a) + lpha \left[r_{t+1} + \gamma \max_p Q(s_{t+1}, p) - Q(s_t, a)
ight]$$

target Q function in the red rectangular is fixed

Replay	0	0	×	×
Target	0	×	0	×
Breakout	316.8	240.7	10.2	3.2
River Raid	7446.6	4102.8	2867.7	1453.0
Seaquest	2894.4	822.6	1003.0	275.8
Space Invaders	1088.9	826.3	373.2	302.0

Dueling DQN (DDQN)

• Decompose Q(s,a)

$$Q(s,a) = A(s,a) + V(s)$$

- V(s): the value of being at that state
- A(s,a): the advantage of taking action a in state s versus all other possible actions at that state
- · Use two streams:
 - one that estimates the state value V(s)
 - one that estimates the advantage for each action A(s,a)
- Useful for states where action choice does not affect Q(s,a)

Advantage Actor-Critic (A2C)

- Combine DQN (value-based) and REINFORCE (policy-based)
- Two neural networks (Actor and Critic):
 - Actor is policy-based: Samples the action from a policy
 - Critic is value-based: Measures how good the chosen action is

Policy Update:
$$\Delta \theta = lpha *
abla_{ heta} * (log \pi(S_t, A_t, heta)) * R(t)$$

New update:
$$\Delta heta = lpha *
abla_{ heta} * (log \ \pi(S_t, A_t, heta)) * Q(S_t, A_t)$$

Update at each time step - temporal difference (TD) learning

Asynchronous Advantage Actor-Critic (A3C)

- Both use parallelism in training
- A2C syncs up for global parameter update and then start each iteration with the same policy

Actor-Critic Algorithm

Initialize policy parameters θ , critic parameters ϕ For iteration=1, 2 ... do Sample m trajectories under the current policy $\Delta\theta \leftarrow 0$ For i=1, ..., m do For t=1, ..., T do $A_t = \sum \gamma^{t'-t} r_t^i - V_\phi(s_t^i)$ $\Delta \theta \leftarrow \Delta \theta + A_t \nabla_{\theta} \log(a_t^i | s_t^i)$ $\Delta \phi \leftarrow \sum_{i} \sum_{t} \nabla_{\phi} ||A_{t}^{i}||^{2}$ $\theta \leftarrow \alpha \Delta \theta$ $\phi \leftarrow \beta \Delta \phi$

End for

REINFORCE in action: Recurrent Attention Model (RAM)

Objective: Image Classification

Take a sequence of "glimpses" selectively focusing on regions of the image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far

Action: (x,y) coordinates (center of glimpse) of where to look next in image

Reward: 1 at the final timestep if image correctly classified, 0 otherwise

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE Given state of glimpses seen so far, use RNN to model the state and output next action

More policy gradients: AlphaGo

Overview:

- Mix of supervised learning and reinforcement learning
- Mix of old methods (Monte Carlo Tree Search) and recent ones (deep RL)

How to beat the Go world champion:

- Featurize the board (stone color, move legality, bias, ...)
- Initialize policy network with supervised training from professional go games, then continue training using policy gradient (play against itself from random previous iterations, +1 / -1 reward for winning / losing)
- Also learn value network (critic)
- Finally, combine combine policy and value networks in a Monte Carlo Tree
 Search algorithm to select actions by lookahead search

Lactura 11

[Silver et al., Nature 2016

hi im gi is: C0 sublic dor

Deepmind Atari Agent57

https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark?fbclid=lwAR3WCnx10wQMo1uu35pcmiQN1MFQrrZnhGVkOkOsidCpEqjqkoTSawcW-Ao