PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

#### DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2017

#### MAT 1620 - Cálculo II

### Solución Interrogación 2

1. Los dos catetos de un triángulo rectángulo miden 5 m y 12 m, y el error posible en la medición es de cuanto mucho 0,2 cm en cada uno. Use diferenciales para estimar el error máximo en el valor calculado del área del triángulo.

**Solución.** El área de del triángulo es  $A(x,y) = \frac{xy}{2}$  donde x e y son las medidas de los catetos del triángulo rectángulo. Entonces,

$$dA = \frac{\partial A}{\partial x}dx + \frac{\partial A}{\partial y}dy = \frac{1}{2}ydx + \frac{1}{2}xdy$$

y  $|\Delta x| \leq 0,002, |\Delta y| \leq 0,002$ . Luego el error máximo en el calculo del área es

$$dA = 6 \cdot (0,002) + \frac{5}{2} \cdot (0,002) = 0,017 \text{m}^2$$
.

### Puntaje Pregunta 1.

- 2 puntos por dar la función área del triángulo
- 2 puntos por calcular la diferencial del área.
- 2 puntos por estimar el error.

#### 2. Dada la función

$$f(x,y) = \begin{cases} \arctan\left(\frac{x^4 + y^4}{x^2 + y^2}\right) & \text{si } (x,y) \neq (0,0) \\ A & \text{si } (x,y) = (0,0) \end{cases}$$

Calcule el valor de A para que la función f sea continua en (0,0).

**Solución.** Usando coordenadas polares  $x = r \cos \theta$ ,  $y = r \sin \theta$  se obtiene que

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \arctan\left(\frac{x^4 + y^4}{x^2 + y^2}\right)$$

$$= \lim_{r\to 0} \arctan\left(\frac{r^4 \cos^4 \theta + r^4 \sin^4 \theta}{r^2 \cos^2 \theta + r^2 \sin^2 \theta}\right)$$

$$= \lim_{r\to 0} \arctan\left(\frac{r^4 (\cos^4 \theta + \sin^4 \theta)}{r^2 (\cos^2 \theta + \sin^2 \theta)}\right)$$

$$= \lim_{r\to 0} \arctan\left(r^2 (\cos^4 \theta + \sin^4 \theta)\right)$$

$$= \arctan(0) = 0$$

Se sigue que f es continua en (0,0) si A=0.

# Puntaje Pregunta 2.

- $\bullet$  2 puntos por concluir que  $A=\lim_{(x,y)\to(0,0)}f(x,y).$
- 1 punto por utilizar coordenadas polares.
- $\blacksquare$  3 puntos por calcular  $\lim_{(x,y)\to(0,0)} f(x,y).$

3. Considere la función  $f(x,y)=bx^{\alpha}y^{\beta}$ , donde  $b,\alpha,\beta$  son constantes reales. Calcule el valor de

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} - (\alpha + \beta)f(x, y)$$
.

Solución. Tenemos que

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} - (\alpha + \beta)f(x, y) = x\left(b\alpha x^{\alpha - 1}y^{\beta}\right) + y\left(b\beta x^{\alpha}y^{\beta - 1}\right) - (\alpha + \beta)(bx^{\alpha}y^{\beta})$$
$$= b\alpha x^{\alpha}y\beta + b\beta x^{\alpha}y^{\beta} - \alpha bx^{\alpha}y^{\beta} - \beta bx^{\alpha}y^{\beta} = 0$$

# Puntaje Pregunta 3.

- 1,5 puntos por calcular  $f_x$
- 1,5 puntos por calcular  $f_y$
- 3 puntos por reemplazar y obtener que la expresión es igual a cero.

- 4. Suponga que en una cierta región del espacio el potencial eléctrico V está definido por  $V(x, y, z) = 5x^2 3xy + xyz$ .
  - a) Determine la razón de cambio del potencial en P(3,4,5) en la dirección del vector  $\vec{x} = i + j k$ .
  - b) ¿En qué dirección cambia V con mayor rapidez en P?
  - c) ¿Cuál es la razón máxima de cambio de P?

**Solución.** Tenemos que  $\nabla V(x, y, z) = (10x - 3y + yz, xz - 3x, xy)$ , y  $\nabla V(3, 4, 5) = (38, 6, 12)$ .

a) La razón de cambio es

$$D_v V(3,4,5) = \nabla V(3,4,5) \cdot \frac{v}{|v|} = (38,6,12) \cdot \frac{1}{\sqrt{3}}(1,1,-1) = \frac{32}{\sqrt{3}}$$

- b) La dirección en que V cambia con mayor rapidez en P ocurre cuando  $v = \nabla V(3,4,5) = (38,6,12)$ .
- c) La razón máxima de cambio de en P es  $|\nabla V(3,4,5)| = \sqrt{38^2 + 6^2 + 12^2} = \sqrt{1624}$ .

## Puntaje Pregunta 4.

- 2 puntos por obtener correctamente la derivada direccional  $D_vV(3,4,5)$ .
- 2 puntos indicar que la dirección en que V cambia con mayor rapidez en P es  $\nabla V(3,4,5)$ .
- 2 puntos por obtener correctamente la razón máxima de cambio.

5. Si las derivadas parciales de segundo orden de z = f(x, y) son continuas y  $x = r^2 + s^2$  y y = 2rs. Calcule  $\frac{\partial^2 z}{\partial r^2}$ 

Solución. La regla de la cadena da

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial z}{\partial x} (2r) + \frac{\partial z}{\partial y} (2s) .$$

Al aplicar la regla del producto a la expresión anterior se obtiene

$$\frac{\partial^2 z}{\partial r^2} = \frac{\partial}{\partial r} \left( 2r \frac{\partial z}{\partial x} + 2s \frac{\partial z}{\partial y} \right)$$
$$= 2\frac{\partial z}{\partial x} + 2r \frac{\partial}{\partial r} \left( \frac{\partial z}{\partial x} \right) + 2s \frac{\partial}{\partial r} \left( \frac{\partial z}{\partial y} \right).$$

Aplicamo la regla de la cadena una vez más para obtener

$$\frac{\partial}{\partial r} \left( \frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial x} \left( \frac{\partial z}{\partial x} \right) \frac{\partial x}{\partial r} + \frac{\partial}{\partial y} \left( \frac{\partial z}{\partial x} \right) \frac{\partial y}{\partial r} = \frac{\partial^2 z}{\partial x^2} (2r) + \frac{\partial^2 z}{\partial y \partial x} (2s)$$

$$\frac{\partial}{\partial r} \left( \frac{\partial z}{\partial y} \right) = \frac{\partial}{\partial x} \left( \frac{\partial z}{\partial y} \right) \frac{\partial x}{\partial r} + \frac{\partial}{\partial y} \left( \frac{\partial z}{\partial y} \right) \frac{\partial y}{\partial r} = \frac{\partial^2 z}{\partial x \partial y} (2r) + \frac{\partial^2 z}{\partial y \partial x} (2s)$$

Sustituyendo estas expresiones obtenemos que

$$\begin{split} \frac{\partial^2 z}{\partial r^2} &= 2\frac{\partial z}{\partial x} + 2r\frac{\partial}{\partial r}\left(\frac{\partial z}{\partial x}\right) + 2s\frac{\partial}{\partial r}\left(\frac{\partial z}{\partial y}\right) \\ &= 2\frac{\partial z}{\partial x} + 2r\left(2r\frac{\partial^2 z}{\partial x^2} + 2s\frac{\partial^2 z}{\partial y\partial x}\right) + 2s\left(2r\frac{\partial^2 z}{\partial x\partial y} + 2s\frac{\partial^2 z}{\partial y^2}\right) \\ &= 2\frac{\partial z}{\partial x} + 4r^2\frac{\partial^2 z}{\partial x^2} + 8rs\frac{\partial^2 z}{\partial x\partial y} + 4s^2\frac{\partial^2 z}{\partial y^2} \,. \end{split}$$

#### Puntaje Pregunta 5.

- 1,5 puntos por calcular  $\partial z/\partial r$ .
- 1,5 puntos por obtener la igualdad  $\frac{\partial^2 z}{\partial r^2} = 2\frac{\partial z}{\partial x} + 2r\frac{\partial}{\partial r}\left(\frac{\partial z}{\partial x}\right) + 2s\frac{\partial}{\partial r}\left(\frac{\partial z}{\partial y}\right).$
- 1 punto por calcular  $\frac{\partial}{\partial r} \left( \frac{\partial z}{\partial x} \right)$ .
- 1 punto por calcular  $\frac{\partial}{\partial r} \left( \frac{\partial z}{\partial y} \right)$ .
- 1 punto por concluir que  $\frac{\partial^2 z}{\partial r^2} = 2\frac{\partial z}{\partial x} + 4r^2\frac{\partial^2 z}{\partial x^2} + 8rs\frac{\partial^2 z}{\partial x \partial y} + 4s^2\frac{\partial^2 z}{\partial y^2}$ .

6. Determine las ecuaciones de la recta normal y el plano tangente en el punto (-2, 1, -3) al elipsoide  $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$ .

Solución. El elipsoide es la superficie de nivel de

$$F(x, y, z) = \frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$$
.

Tenemos que

$$F_x(x,y,z) = \frac{x}{2} \qquad F_y(x,y,z) = 2y \qquad F_z(x,y,z) = \frac{2z}{9}$$
  
$$F_x(-2,1,-3) = -1 \qquad F_y(-2,1,-3) = 2 \qquad F_z(-2,1,-3) = -\frac{2}{3}$$

Entonces, la ecuación del plano tangente en (-2, 1, -3) es

$$-1(x+2) + 2(y-1) - \frac{2}{3}(z+3) = 0 \Longleftrightarrow 3x - 6y + 2z = 18.$$

Finalmente, las ecuaciones de la recta normal son:

1 Forma: Simétrica (o cartesiana)

$$\frac{x+2}{-1} = \frac{y-1}{2} = \frac{z+3}{-\frac{2}{2}} \ .$$

2 Forma: Vectorial

$$x = -t - 2$$
,  $y = 2t + 1$ ,  $z = -\frac{2}{3}t - 3$ 

# Puntaje Pregunta 6.

- $\blacksquare$  2 puntos por obtener las derivadas de primer orden de F en el punto (-2,1,-3)
- 2 puntos por obtener la ecuación del plano tangente.
- 2 puntos por obtener la ecuación de la recta normal (cualquiera de las dos formas).

7. Se forma un pentágono con un triángulo isósceles y un rectángulo, como se ilustra en la figura. Si el pentágono tiene un perímetro fijo P, determine las longitudes de los lados del pentágono que maximice el área de la figura.

### Solución. Considere la siguiente figura



Se tiene que la altura del triángulo es  $h=z \, {\rm sen} \, \theta$  y la función área de la figura es  $f(x,y,z)=xy+\frac{1}{2}({\rm sen} \, \theta)xz$ . Usando el teorema de Pitágoras, vemos que  $h^2+(\frac{1}{2}x)^2=z^2 \Longleftrightarrow z^2 \, {\rm sen}^2 \, \theta+\frac{1}{4}x^2=z^2$  despejando la función seno se obtiene que  ${\rm sen} \, \theta=\frac{\sqrt{4z^2-x^2}}{2z}$  se obtiene que la función área es

$$f(x, y, z) = xy + \frac{1}{2}xz \cdot \frac{\sqrt{4z^2 - x^2}}{2z} = xy + \frac{1}{4}x\sqrt{4z^2 - x^2}$$
.

Como el perímetro es fijo P, debemos maximizar f sujeto a la restricción g(x, y, z) = x + 2y + 2z = P. Usando multiplicadores de Lagrange, resolvemos el sistema

$$\nabla f = \lambda \nabla g \iff \begin{aligned} y + \frac{1}{4} \sqrt{4z^2 - x^2} - \frac{1}{4} \frac{x^2}{\sqrt{4z^2 - x^2}} &= \lambda \\ x &= 2\lambda \\ \frac{xz}{\sqrt{4z^2 - x^2}} &= 2\lambda \end{aligned}$$

Si sustituimos la segunda ecuación en la tercera ecuación nos da:

$$\frac{xz}{\sqrt{4z^2 - x^2}} = x \Longrightarrow z = \sqrt{4z^2 - x^2} \Longrightarrow 4z^2 - x^2 = z^2 \Longrightarrow x = \sqrt{3}z$$

Similarmente, como  $\sqrt{4z^2-x^2}=z$  y  $\lambda=\frac{1}{2}x$  nos da  $y+\frac{z}{4}-\frac{x^2}{4z}=\frac{x}{2}$  y como  $x=\sqrt{3}z$  obtenemos  $-\frac{z}{2}-\frac{\sqrt{3}z}{2}=-y\Longrightarrow y=\frac{z}{2}(1+\sqrt{3}).$  Sustituyendo estos valores en la restricción nos da

$$2z + z(1+\sqrt{3}) + \sqrt{3}z = P \Longrightarrow 3z + 2\sqrt{3}z = P \Longrightarrow \boxed{z = \frac{P}{3+2\sqrt{3}} = \frac{2\sqrt{3}-3}{3}P}$$

$$y y = \frac{(2\sqrt{3} - 3)(1 + \sqrt{3})}{6} P = \frac{3 - \sqrt{3}}{6} P y x = (2 - \sqrt{3})P.$$

#### Puntaje Pregunta 7.

- 1 punto por plantear la restricción.
- 1 punto por obtener la relación sen  $\theta = \sqrt{4z^2 x^2}/2z$ .
- 1 punto por obtener la función área.

- 1 puntos por obtener el sistema  $\nabla f = \lambda \nabla g$ .
- 2 puntos por resolver el sistema.

8. Mediante multiplicadores de Lagrange, encuentre los valores máximo y mínimo de la función f(x, y, z) = yz + xy sujeta a las restricciones xy = 1,  $y^2 + z^2 = 1$ .

**Solución.** Sean g(x, y, z) = xy y  $h(x, y, z) = y^2 + z^2$ . Usando multiplicadores de Lagrange, basta resolver el sistema lo cual es equivalente a:

$$\nabla f = \lambda \nabla g + \mu \nabla h \Longleftrightarrow (y, z + x, y) = \lambda(y, x, 0) + \mu(0, 2y, 2z) \Longleftrightarrow \begin{array}{rcl} y & = & \lambda y \\ z + x & = & \lambda x + 2\mu y \\ y & = & 2\mu z \end{array}$$

De la primera ecuación obtenemos que  $\lambda = 1$  de lo contrario y = 0, pero y = 0 no satisface la restricción xy = 1. Sustituyendo este valor para  $\lambda$  en la segunda ecuación se obtiene  $z = 2\mu y \Longleftrightarrow 2\mu = \frac{z}{y}$ .

Sustituyendo este valor en la tercera ecuación nos da  $y^2 = z^2$ 

Sustituyendo esta relación en la restricción  $y^2+z^2=1$  nos da:  $y=\pm\frac{1}{\sqrt{2}}, z=\pm\frac{1}{\sqrt{2}}$ . Como xy=1 entonces  $x=\pm\sqrt{2}$ . Hemos obtenido los puntos  $\left(\pm\sqrt{2},\pm\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$  y  $\left(\pm\sqrt{2},\pm\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ . Por lo tanto, f alcanza un máximo bajo las

restricción en  $f\left(\pm\sqrt{2},\pm\frac{1}{\sqrt{2}},\pm\frac{1}{\sqrt{2}}\right) = \frac{3}{2}$  y alcanza un mínimo en  $f\left(\pm\sqrt{2},\pm\frac{1}{\sqrt{2}},\mp\frac{1}{\sqrt{2}}\right) = \frac{1}{2}$ .

# Puntaje Pregunta 8.

- 2 puntos por plantear el sistema  $\nabla f = \lambda \nabla g + \mu \nabla h$ .
- 3 puntos por resolver el sistema.
- 1 puntos por mostrar cuáles son los valores máximos y mínimos.