Opis tworzenia przykładowych systemów programem Micro Saint

Uruchomienie programu

Program Micro Saint służy do symulacji procesów dyskretnych. Działa w środowisku systemu Windows i w związku z tym ogólny sposób posługiwania się programem jest zgodny ze standardami Windows. Program można uruchomić wywołując plik **saint.exe**. W trakcie korzystania z programu dostępna jest pomoc dla użytkownika (polecenie *Help*).

Definiowanie modelu

᠕

Definiowanie modelu przebiega w dwu fazach. W fazie pierwszej należy zdefiniować topologię modelu, w fazie drugiej - jego parametry. Topologię modelu definiuje się budując schemat blokowy (korzystając z paska narzędzi znajdującego się u góry arkusza) składający się z następujących obiektów:

Task - obiekt reprezentujący np. stanowisko obsługi klientów, maszynę, na której wykonywane są operacje.

Queue - kolejka, bufor, itp. umieszczany na wejściu obiektu Task.

Path - połączenie między obiektami typu Task, określające kolejność obsługi klientów, kolejność wykonywania operacji, itp.

Decision node - obiekt decyzyjny, umieszczany automatycznie na rozgałęzieniu ścieżek.

Po zdefiniowaniu topologii modelu należy określić parametry funkcjonalne poszczególnych obiektów oraz zdefiniować zmienne, które będą występować w wyrażeniach sterujących symulacją procesu. Wprowadzenie parametrów danego obiektu (*Task, Queue, Decision node*) jest możliwe po wskazaniu kursorem obiektu i podwójnym kliknięciu lewym przyciskiem myszy.

Przykładowy Problem

Rozważany jest system obsługi typu (M|M|c). Klienci zgłaszają się do systemu zgodnie z rozkładem Poissona (długość czasu między zgłoszeniami ma rozkład wykładniczy). Średni czas między zgłoszeniami wynosi $1/\lambda$ =6. Czas obsługi klienta na stanowisku ma rozkład wykładniczy, przy czym średni czas obsługi wynosi $1/\mu$ =5. Wyznaczyć średni czas oczekiwania klienta na obsługę w systemie składającym się z jednego stanowiska oraz w systemie składającym się z 2 równoległych, identycznych stanowisk obsługi. Zbadać, jak często następuje odmowa obsługi, jeżeli pojemność bufora na wejściu do systemu o jednym stanowisku wynosi 5.

Schemat systemu utworzonego za pomocą programu Micro Saint:

Deklaracje zmiennych

Deklaracje zmie	nnych			
nazwa zmiennej	wartość początkowa	Тур	opis	
clock	0.0	Real	zmienna systemowa - aktualny czas symulacji	
duration	0.0	Real	zmienna systemowa - aktualny czas obsługi klienta lub czas oczekiwania klienta w kolejce	
run	0	Integer	zmienna systemowa - numer przebiegu symulacji	
seed	564	Integer	zmienna systemowa - strumień generatora pseudolosowego	
tag	0	Integer	zmienna systemowa - numer aktualnego klienta	
stan	1 lub 2	Integer	podczas symulacji systemu o jednym stanowisku należy przyjąć stan=1, natomiast podczas symulacji systemu składającego się z 2 równoległych stanowisk, należy przyjąć stan=2	
kol	0	Integer	liczba zgłoszeń oczekujących aktualnie w kolejce	
czas_czek	0	Real	czas oczekiwania zgłoszenia na obsługę	
wy	0	Integer	liczba obsłużonych zgłoszeń	

Tworzenie generatora zgłoszeń

1 Wolzenie generatora zgroszen					
nazwa pola	wpisywane wyrażenie	opis, wynik działania			
Name	Generator zgłoszeń	nazwa obiektu			
Time Distribution	Exponential	rozkład prawdopodobieństwa, według którego generowany jest czas między zgłoszeniami			
Mean Time	6;	średni czas między zgłoszeniami			
Release Condition	1;				
Ending Effect	tag:=tag+1;	zwiększenie liczby wygenerowanych zgłoszeń			

Opis rozgałezienia ścieżek

nazwa pola	wpisywane wyrażenie	opis, wynik działania
Decision Type	Multiple	generowanie wielu zgłoszeń
What Happens Next: if		
1	tag < 1000;	jeżeli liczba zgłoszeń jest mniejsza od 1000, to generowane jest nowe zgłoszenie
2	kol<5;	wygenerowane zgłoszenie jest przesyłane do kolejki przed stanowiskiem, jeżeli mniej niż 5
		zgłoszeń oczekuje na obsługę

Tworzenie kolejki

nazwa pola	wpisywane wyrażenie	opis, wynik działania
Name	Kolejka	nazwa kolejki
Sorting Order	FIFO	zadania wykonywane są w kolejności zgłaszania się
Entering Effect	kol:=kol+1;	zgłoszenie wchodzi do kolejki
Departing Effect	czas_czek:=czas_czek+duration/1000;	zmienna czas_czek zwiększana jest o czas oczekiwania każdego klienta na obsługę, przez podzielenie przez liczbę zgłoszeń otrzymywany jest średni czas oczekiwania
		klienta w kolejce
	kol:=kol-1;	zgłoszenie wychodzi z kolejki

Tworzenie stanowiska obsługi

nazwa pola	wpisywane wyrażenie	opis, wynik działania
Name	Stanowisko	nazwa obiektu
Time Distribution	Exponential	rozkład prawdopodobieństwa, według którego generowany jest czas obsługi klienta
Mean Time	5;	średni czas obsługi klienta
Release Condition	stan>=1;	stanowisko zaczyna obsługiwać klienta, jeżeli jest wolne
Beginnig Effect	stan:=stan-1;	wynik rozpoczęcia obsługi klienta
Ending Effect	stan:=stan+1;	wynik zakończenia obsługi klienta
	wy:=wy+1;	zliczanie obsłużonych zgłoszeń

Uruchomienie symulacji i tworzenie statystyk

Uruchomienie symulacji następuje po wywołaniu polecenia Execute/Go. Wykonanie zadanej liczby przebiegów symulacji i zapisanie do pliku ich wyników odbywa się przez wywołanie Execute/Go po włączeniu opcji Execute/Settings/Snapshots of Variables oraz ustawieniu w polu Number of Times to Run the Model zadanej liczby przebiegów. Wartości zmiennych określonych w Display/Snapshots zostaną wówczas zapisane do podanych plików; w oknie Display/Snapshots należy: podać nazwę pliku wynikowego, odpowiednio ustawić pole Trigger Type (np. End of Run, jeżeli chcemy zapisać wartość zmiennej po zakończeniu przebiegu symulacji), w polu Variables to Store należy podać nazwy zmiennych, których wartości chcemy zapamiętać (np. czas_czek).

Aby obejrzeć wyniki zapisane w pliku po przeprowadzeniu symulacji, należy otworzyć odpowiedni plik (File/Open) z rozszerzeniem .res. Aby wyznaczyć średnie wartości zapisanych wielkości, należy wybrać Analyze/Statistics.

Wzory umożliwiające obliczanie wielkości operacyjnych dla systemu (MIMIc).

- λ średnia liczba zgłoszeń przybywających w jednostce czasu
- $1/\lambda$ średnia długość czasu między zgłoszeniami
- μ średnia liczba zgłoszeń, które mogłyby zostać obsłużone na jednym stanowisku w jednostce czasu
- $c\,$ liczba identycznych równoległych stanowisk obsługi

wielkość	ozna- czenie	wartość dla systemu o jednym stanowisku (c=1)	wartość dla systemu o dowolnej liczbie identycznych równoległych stanowisk
średni czas obsługi		$1/\mu$	$1/c\mu$
intensywność ruchu	ρ	λ/μ	$\lambda/c\mu$
prawdopodobieństwo, że w systemie nie ma żadnego zgłoszenia	Π_0	1-ρ	$\left[\frac{\left(c\rho\right)^{c}}{c!(1-\rho)} + \sum_{n=0}^{c-1} \frac{\left(c\rho\right)^{n}}{n!}\right]^{-1}$
średnia długość kolejki	L_q	$\frac{\rho^2}{1-\rho}$	$\frac{\rho (c\rho)^c \Pi_0}{c! (1-\rho)^2}$
średnia liczba klientów w systemie	L	$\frac{\rho}{1-\rho}$	$L_q + \frac{\lambda}{\mu}$
średni czas oczekiwania w kolejce	W_q	$\frac{\rho}{\mu (1-\rho)}$	$\frac{(c\rho)^c \Pi_0}{c! c\mu \left(1-\rho\right)^2}$
średni czas przebywania klienta w systemie	W	$\frac{1}{\mu \ (1-\rho)}$	$W_q + \frac{1}{\mu}$