

2431 - Binary Stirling Numbers

Europe - Southwestern - 2001/2002

The Stirling number of the second kind S(n, m) stands for the number of ways to partition a set of n things into m nonempty subsets. For example, there are seven ways to split a four-element set into two parts:

There is a recurrence which allows to compute S(n, m) for all m and n.

$$S(0, 0) = 1$$
; $S(n, 0) = 0$ for $n > 0$; $S(0, m) = 0$ for $m > 0$; $S(n, m) = m S(n - 1, m) + S(n - 1, m - 1)$, for $n, m > 0$.

Your task is much "easier". Given integers n and m satisfying $1 \le m \le n$, compute the parity of S(n, m), i.e. $S(n, m) \mod 2$.

Example

 $S(4, 2) \mod 2 = 1$.

Task

Write a program which for each data set:

- reads two positive integers n and m,
- computes S(n, m) mod 2,
- writes the result.

Input

The first line of the input contains exactly one positive integer d equal to the number of data sets, $1 \le d \le 200$. The data sets follow.

Line i + 1 contains the i-th data set - exactly two integers n_i and m_i separated by a single space, $1 \le m_i \le n_i \le 10^9$.

Output

The output should consist of exactly d lines, one line for each data set. Line i, $1 \le i \le d$, should contain 0 or 1, the value of $S(n_i, m_i)$ mod 2.

Sample Input

1 4 2

Sample Output

1

Southwestern 2001-2002