24- Evolution Strategy: individual and population versions.

Single individual metaheuristic **X** \in **I** evolving by mutation only

Metaheuristic for continuous optimization 5 CRd

(1+1) ALGORITHM -> 1 parent and 1 child

- The child is produced by a gaussian mutation of the parent: X' = X(t) + |V(t)|X' is the child, X(t) the parent, and X(t) is the mutation

 The mutation follows a normal distribution

 The child is only accepted if its fitness is better than the parents

 The XE A which means is also a vector X' = X(t) + |V(t)| X' = X(
- → 0 = (0, 02, ..., 0d)
- → Each dimension can have a different U
- → (1+1)-ES is much like a random walk search with hill climbing strategy
- ightharpoonup If we are accepting too many children, we increase \mathcal{T} , to make larger jumps
- → If we accept too few children, we decrease 🎢
- → We should want to be around 1/5 acceptance rate

POPULATION ALGORITHM

The size of the population (nb of solutions) is denoted ${\cal M}$

Each individual is represented as (Y^i, o^i) $i=1, ..., \mathcal{M}$

 $\times^{i} \in \mathbb{C}$ θ^{-i} Is the associated mutation parameter

There are 2 variants of the population approach:

 $(M+\lambda)$ -ES: λ children generated from M parents

 (μ,λ) -ES: in this case λ μ children are generated from the μ parents, μ are selected

This last selection is deterministic, we choose the \mathcal{M}

best individuals

CHILDREN GENERATION

MUTATION

- → Choose 2 parents among the M possible parents
- Apply mutation to that child
- → Repeat > times to generate >

children
$$\begin{cases} x' = x + N(0, \delta) \\ \delta' = \delta + e^{N(0, \Delta \delta)} \\ \delta = 1/\sqrt{2} \end{cases}$$

The aussover is performed both on X and o

one can also use the arithmetic obssover. Let us consider

$$(x^{ckild}, \sigma^{ckild}) = \frac{1}{2}(x^i, \sigma^i) + \frac{1}{2}(x^j, \sigma^i)$$