Lecture 4. Hamilton Paths and Circuits (Section 10.5) ¹

¹This terminology comes from a game, called the Icosian puzzle, invented in 1857 by the Irish mathematician Sir William Rowan Hamilton.

Does a path or circuit exist that uses every vertex exactly once?

Does a path or circuit exist that uses every vertex exactly once?

- A Hamilton path in a graph *G* is a simple path containing every vertex of *G* exactly once. That is, a Hamilton path is a path that visits every vertex exactly once (allowing for revisiting edges).
- A Hamilton circuit in a graph *G* is a Hamilton path that starts and ends on the same vertex.

Example 4.1. Which graphs have a Hamilton circuit or, if not, a Hamilton path?

Example 4.1. Which graphs have a Hamilton circuit or, if not, a Hamilton path?

Solution: G_1 has a Hamilton circuit: a,b,c,d,e,a. There is no Hamilton circuit in G_2 (this can be seen by noting that any circuit containing every vertex must contain the edge $\{a,b\}$ twice), but G_2 does have a Hamilton path, namely, a,b,c,d. G_3 has neither a Hamilton circuit nor a Hamilton path, because any path containing all vertices must contain one of the edges $\{a,b\}$, $\{e,f\}$, and $\{c,d\}$ more than once.

Question: Is there a simple way to determine whether a graph has a Hamilton circuit or path?

Question: Is there a simple way to determine whether a graph has a Hamilton circuit or path? Ansewr is "No".

Finding efficient algorithm = unltimate computer science glory.

The best algorithms known so far for finding a Hamilton circuit in a graph, or determining that no such circuit exists, have exponential worst-case time complexity (in the number of vertices of the graph), which is incredibly slow for sufficiently large graphs.

Finding an algorithm that solves this problem with polynomial worst-case time complexity would be a major accomplishment, and you would probably be given every single computer science award in existence.

• A graph with a vertex of degree one cannot have a Hamilton circuit, because in a Hamilton circuit, each vertex is incident with two edges in the circuit.

- A graph with a vertex of degree one cannot have a Hamilton circuit, because in a Hamilton circuit, each vertex is incident with two edges in the circuit.
- If a vertex in the graph has degree two, then both edges that are incident with this vertex must be part of any Hamilton circuit.

- A graph with a vertex of degree one cannot have a Hamilton circuit, because in a Hamilton circuit, each vertex is incident with two edges in the circuit.
- If a vertex in the graph has degree two, then both edges that are incident with this vertex must be part of any Hamilton circuit.
- When a Hamilton circuit is being constructed and this circuit has passed through a vertex, then all remaining edges incident with this vertex, other than the two used in the circuit, can be removed from consideration.

- A graph with a vertex of degree one cannot have a Hamilton circuit, because in a Hamilton circuit, each vertex is incident with two edges in the circuit.
- If a vertex in the graph has degree two, then both edges that are incident with this vertex must be part of any Hamilton circuit.
- When a Hamilton circuit is being constructed and this circuit has passed through a vertex, then all remaining edges incident with this vertex, other than the two used in the circuit, can be removed from consideration.

Example 4.2. Use the above properties to explain why the following graphs don't have Hamilton circuits.

Activity 4.3. [Group Discussion in Class] For what values of m and n does the