

Womanium Quantum+AI 2024 Project Presentation

Conspicuity Detection in Production by Classical-to-Quantum Transfer Learning

Kazuki Tsuoka

< WOMANIUM | QUANTUM >

Problem Statement

 Problem: Image classification of the welding process

Dataset:

Successful welding	10947 images
Unsuccessful welding	22307 images

 Goal: Build a model to determine whether welding is successful from images.

Reference:

D. Bacioiu, G. Melton, M. Papaelias, and R. Shaw, *Automated Defect Classification of Aluminium 5083 TIG Welding Using HDR Camera and Neural Networks*, J. Manuf. Process. **45**, 603 (2019).

< WOMANIUM | QUANTUM >

Model Architecture

Image Preprocessing

Linear layer + Feature rescaling by tanh function

Variational Quantum Circuit

② ResNet18 (Pre-trained Classical Model)

Measurement & Postprocessing

"good weld" == 0

"defective" == 1

Linear layer

< WOMANIUM | QUANTUM >

Result

Best test accuracy:

Classical-quantum hybrid model (This work)	95.4%
Original paper (Convolutional Neural Network)	95.6%

Better than most of the CNN models presented in the original paper!

WOMANIUM | QUANTUM >

Future scope

- The power of quantum computers can only be exploited by using large quantum circuits.
- However, setting the number of qubits > 4 suffered from overfitting of the model.
- It may be beneficial to know how to increase the size of quantum circuits while preventing overfitting.

Thank you for your attention!