Quantified Logic with Identity

LOGIC I Benjamin Brast-McKie November 14, 2023

Logical Terms

Extensions: QL extends SL, but we needn't stop there.

Question 1: How far could we go? What terms could we include?

Logicality: The primitive symbols of SL and QL can be divided in three:

Logical Terms: \neg , \wedge , \vee , \supset , \equiv , $\forall \alpha$, $\exists \alpha$, x_n , y_n , z_n ... for $n \geq 0$.

Non-Logical Terms: a_n, b_n, c_n, \ldots and A^n, B^n, \ldots for $n \ge 0$.

Punctuation: (,)

Extensions: The "meanings" of the non-logical terms are fixed by an interpretation.

Semantics: The "meanings" of the logical terms are fixed by the semantics.

Question 2: How many logical terms are there?

Identity: At least one more, namely identity which we symbolize by '='.

Syntax for QL=

Identity: We include '=' in the primitive symbols of the language.

Well-Formed Formulas: We may define the well-formed formulas (wffs) of QL⁼ as follows:

- 1. $\mathcal{F}^n \alpha_1, \dots, \alpha_n$ is a wff if \mathcal{F}^n is an n-place predicate and $\alpha_1, \dots, \alpha_n$ are singular terms.
- 2. $\alpha = \beta$ is a wff if α and β are singular terms.
- 3. If φ and ψ are wffs and α is a variable, then:
 - (a) $\exists \alpha \varphi$ is a wff;
- (d) $(\varphi \wedge \psi)$ is a wff;
- (b) $\forall \alpha \varphi$ is a wff;
- (e) $(\varphi \lor \psi)$ is a wff;
- (c) $\neg \varphi$ is a wff;
- (f) $(\varphi \supset \psi)$ is a wff; and
- (g) $(\varphi \equiv \psi)$ is a wff.
- 4. Nothing else is a wff.

Atomic Formulas: The wffs defined by (1) and (2) are atomic.

Complexity: $Comp(\mathcal{F}^n\alpha_1, \ldots, \alpha_n) = Comp(\alpha = \beta) = 0.$

 $Comp(\exists \alpha \varphi) = Comp(\forall \alpha \varphi) = Comp(\neg \varphi) = Comp(\varphi) + 1.$

 $Comp(\varphi \wedge \psi) = Comp(\varphi \vee \psi) = \dots = Comp(\varphi) + Comp(\psi) + 1.$

Free Variables

Free Variables: We define the free variables recursively:

- 1. α is free in $\mathcal{F}^n \alpha_1, \ldots, \alpha_n$ if $\alpha = \alpha_i$ for some $1 \le i \le n$ where α is a variable, \mathcal{F}^n is an n-place predicate, and $\alpha_1, \ldots, \alpha_n$ are singular terms.
- 2. α is free in $\beta = \gamma$ if $\alpha = \beta$ or $\alpha = \gamma$ where α is a variable.
- 3. If φ and ψ are wffs and α and β are variables, then:
 - (a) α is free in $\exists \beta \varphi$ if α is free in φ and $\alpha \neq \beta$;
 - (b) α is free in $\forall \beta \varphi$ if α is free in φ and $\alpha \neq \beta$;
 - (c) α is free in $\neg \varphi$ if α is free in φ ;
- 4. Nothing else is a free variable.

Sentences of QL=

Sentences: A sentence of QL⁼ is any wff without free variables.

Interpretation: Only the sentences of QL⁼ will have truth-values on an interpretation independent of an assignment function.

QL⁼ Models

Question 3: What in the semantics will have to change?

Interpretations: \mathcal{I} is an QL⁼ interpretation over \mathbb{D} *iff* both:

- $\mathcal{I}(\alpha) \in \mathbb{D}$ for every constant α in QL⁼.
- $\mathcal{I}(\mathcal{F}^n) \subseteq \mathbb{D}^n$ for every *n*-place predicate \mathcal{F}^n .

Model: $\mathcal{M} = \langle \mathbb{D}, \mathcal{I} \rangle$ is a model of $QL^=$ iff \mathcal{I} is a $QL^=$ interpretation on $\mathbb{D} \neq \emptyset$.

Variable Assignments

Assignments: A variable assignment $\hat{a}(\alpha) \in \mathbb{D}$ for every variable α in QL⁼.

Referents: We may define the referent of α in $\mathcal{M} = \langle \mathbb{D}, \mathcal{I} \rangle$ as follows:

$$\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha) = \begin{cases} \mathcal{I}(\alpha) & \text{if } \alpha \text{ is a constant} \\ \hat{a}(\alpha) & \text{if } \alpha \text{ is a variable.} \end{cases}$$

Variants: A \hat{c} is an α -variant of \hat{a} iff $\hat{c}(\beta) = \hat{a}(\beta)$ for all $\beta \neq \alpha$.

Semantics for QL=

- (A) $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\mathcal{F}^{n}\alpha_{1},\ldots,\alpha_{n})=1$ iff $\langle \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha_{1}),\ldots,\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha_{n})\rangle\in\mathcal{I}(\mathcal{F}^{n}).$
- $(=) \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha=\beta)=1 \ \textit{iff} \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha)=\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\beta).$
- (\forall) $\mathcal{V}_{\mathcal{T}}^{\hat{a}}(\forall \alpha \varphi) = 1$ iff $\mathcal{V}_{\mathcal{T}}^{\hat{c}}(\varphi) = 1$ for every α -variant \hat{c} of \hat{a} .
- $(\exists) \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\exists \alpha \varphi) = 1 \ \textit{iff} \ \mathcal{V}_{\mathcal{I}}^{\hat{c}}(\varphi) = 1 \ \text{for some} \ \alpha\text{-variant} \ \hat{c} \ \text{of} \ \hat{a}.$
- $(\neg) \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\neg \varphi) = 1 \ \textit{iff} \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) \neq 1.$

:

Truth: $\mathcal{V}_{\mathcal{I}}(\varphi) = 1$ *iff* $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) = 1$ for some \hat{a} where φ is a sentence of $\mathrm{QL}^{=}$.

Example

Task 1: Prove that the following argument is valid.

- (1) Hesperus is Phosphorus.
- (2) Phosphorus is Venus.
- . Hesperus is Venus.

Task 2: Prove that $\forall x \forall y \forall z ((x = y \land y = z) \supset x = z)$ is a tautology.

Logical Predicates

Taller-Than: Suppose we were to take 'taller than' (*T*) to be logical.

Question 4: Could we provide its semantics?

(*T*)
$$\mathcal{V}_{\mathcal{T}}^{\hat{a}}(T\alpha\beta) = 1$$
 iff $\mathcal{V}_{\mathcal{T}}^{\hat{a}}(\alpha)$ is taller than $\mathcal{V}_{\mathcal{T}}^{\hat{a}}(\beta)$.

Theory: The semantics would have to rely on a theory of being taller than.

- Providing such a theory lies outside the subject-matter of logic.
- By contrast, identity is something we already grasp.
- Compare our pre-theoretic grasp of negation, conjunction, and the quantifiers.

Question 5: Could we take set-membership \in to be a logical term?

Question 6: What is it to be a logical term?

Existence: Observe that $\exists x(x=x)$ is a tautology.

Question 7: Could we take a term in sentence position to be logical?

$$(\perp)$$
 $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\perp) = 1$ iff $1 \neq 1$.

$$(\top) \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\top) = 1 \ \textit{iff} \ 1 = 1.$$

Assignment Lemmas

Lemma 1: If $\hat{a}(\alpha) = \hat{c}(\alpha)$ for all free variables α in a wff φ , then $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) = \mathcal{V}_{\mathcal{I}}^{\hat{c}}(\varphi)$.

Base: Assume Comp(φ) = 0, so φ = (α = β) or φ = $\mathcal{F}^n \alpha_1, \dots, \alpha_n$.

$$(\alpha = \beta): \text{ So } \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) = \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha = \beta) = 1 \text{ iff } \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha) = \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\beta) \text{ iff } \mathcal{V}_{\mathcal{I}}^{\hat{c}}(\alpha) = \mathcal{V}_{\mathcal{I}}^{\hat{c}}(\beta) \dots$$

$$(\mathcal{F}^n\alpha_1,\ldots,\alpha_n)$$
: So $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) = \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\mathcal{F}^n\alpha_1,\ldots,\alpha_n) = 1$ iff $\langle \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha_1),\ldots,\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha_n) \rangle \in \mathcal{I}(F^n)\ldots$

Lemma 2: For any sentence φ : $\mathcal{V}_{\mathcal{T}}(\varphi) = 1$ iff $\mathcal{V}_{\mathcal{T}}^{\hat{a}}(\varphi) = 1$ for every v.a. \hat{a} over \mathbb{D} .

Lemma 3: For any sentence $\varphi: \mathcal{V}_{\mathcal{I}}(\varphi) \neq 1$ iff $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi) \neq 1$ for some v.a. \hat{a} over \mathbb{D} .

Leibniz's Law

Believes: Regiment the following argument:

- (1) Lois Lane believes that Superman can fly.
- (2) Superman is Clark Kent.
- ... Lois Lane believes that Clark Kent can fly.

Sees: Regiment the following argument:

- (1) Lois Lane sees Superman.
- (2) Superman is Clark Kent.
- ... Lois Lane sees Clark Kent.

Question 8: Are these arguments intuitively valid?

Opacity: Whereas 'sees' admits substitution, 'believes' does not.

Transparency: We may say that 'sees' is transparent and that 'believes' is opaque.

Mathematics: Importantly, mathematics is transparent insofar as it does not include

any opaque contexts.