ELIMINATION DES LIGNES CACHÉES

Plusieurs algorithmes d'élimination de lignes cachées

- dans l'espace "objet" (object space coordonnées du monde réel). Grande précision (celle de la machine): Roberts
- dans l'espace "image" ("bit map" coordonnées de l'écran) Précision faible:
 - 1. algorithme de l'horizon flottant
 - 2. Warnock

Probème principal des algorithmes d'élimination des lignes (ou faces) cachées: le tri

ALGORITHME DE ROBERTS

Hypothèses

- les objets sont modélisés par des polyèdres *convexes*. On dispose d'une représentation qui permette de passer facilement des extrémités aux arêtes et aux faces.
- chaque face est définie par une équation du type:

$$ax + by + cz + d = 0$$

où (a, b, c) est un vecteur normal orienté vers l'*intérieur* du polyèdre (déterminer le barycentre).

• une projection orthogonale est fixée et son point de vision se situe à l'infini dans la direction des z positifs dans un repère "main droite"

Problème

ullet déterminer les segments visibles ou partiellement visibles à partir de l'infini vers les z positifs

Méthode

- pour chaque polyèdre, déterminer ses arêtes cachées par lui-même
- comparer chaque polyèdre à tous les autres pour déterminer les points d'intersection

RAPPELS

1. Equation d'un plan défini par un de ses points $P_0 = (x_0, y_0, z_0)$ et un vecteur normal $\vec{u} = (a, b, c)$. Un point P = (x, y, z) appartient au plan si et seulement si le produit scalaire $PP_0 \cdot \vec{u}$ est nul:

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

2. Deux points $P_0 = (x_0, y_0, z_0)$, $P_1 = (x_1, y_1, z_1)$ sont de part et d'autre d'un plan d'équation

$$f(x, y, z) = ax + by + cz + d = 0$$

si et seulement si

$$f(\mathbf{P}_0)f(\mathbf{P}_1) = f(x_0, y_0, z_0)f(x_1, y_1, z_1) < 0$$

3. Deux vecteurs $\vec{u}_0 = (a_0, b_0, c_0), \vec{u}_1 = (a_1, b_1, c_1)$ font un angle aigu (inférieure à 90^0) si et seulement si leur produit scalaire est positif ou nul

$$\vec{u}_0 \vec{u}_1 = a_0 a_1 + b_0 b_1 + c_0 c_1 \ge 0$$

UN POLYÈDRE SEUL

Première étape: pour chaque polyèdre, détermination les arêtes cachées par lui-même.

Equation d'une face

$$ax + by + cz + d = 0$$

On distingue

- face avant (front faces): le point de vision se trouve du côté opposé à celui indiqué par la normale: c < 0
- face arrière (back faces): le point de vision se trouve du même côté que celui indiqué par la normale: c > 0

Notion de visibilité d'une arête par rapport à une face F

- un point A = (x, y, z) est *visible* par rapport à une face F s'il n'existe pas de point (x, y, z') de la face F tel que z' > z
- une arête est visible si tous ses points, sauf éventuellement une ou deux extrémités sont visibles
- une arête est *invisible* si tous ses points, sauf éventuellement une ou deux extrémités sont invisibles
- ullet une arête est $partiellement\ visible\ dans\ les\ autres\ cas$

Une arête est visible si au moins l'une des deux faces auxquelles elle appartient est avant. Elle est invisible dans le cas contraire.

POLYÈDRES ENTRE EUX

Deuxième étape: pour chaque polyèdre, comparer toutes ses arêtes restées visibles après la première étape, avec le volume des autres polyèdres et déterminer leur partie visible.

Tout se ramène à l'opération:

étant donnée une face avant d'équation F(x,y,z)=0 et un segment AB déterminer si AB est

- visible
- invisible
- partiellement visible

Remarque: on suppose que la face n'est pas parallèle au plan y, z. Sinon AB est visible sauf s'il est dans le plan de la face (cas semblable à celui illustré dans le test 4, voir infra).

Méthode:

- faire subir au segment AB quatre tests couvrant toutes les situations possibles
- arrêter la procédure dès que l'un des tests permet de conclure
- ordonner ces tests du moins coûteux vers le plus coûteux

NOTATIONS

• la face F (polygone convexe): P_1, \ldots, P_n d'équation

$$F(x, y, z) = 0$$

• les extrémités de l'arête:

$$\mathbf{A} = (x_A, y_B, z_A), \mathbf{B} = (x_B, y_A, z_B)$$

• équation du plan parallèle à l'axe z et passant par le côté P_iP_{i+1} du polygone, pour $i=1,\ldots,n$:

$$H_i(x, y, z) = 0$$

• équation du plan parallèle à l'axe z passant par AB (identique à l'équation de la droite qui est la projection de AB sur x, y):

$$Q(x, y, z) = x(y_B - y_A) - y(x_B - x_A) - x_A(y_B - y_A) + y_A(x_B - x_A) = 0$$

TEST 1

Les points A et B se trouvent devant le plan de la face:

$$F(\mathbf{A}) \leq 0$$
 et $F(\mathbf{B}) \leq 0$?

Si oui, AB est visible

TEST 2

Le plan Q(x,y,z)=0 passant par l'arête AB ne coupe pas la face ?

Si oui, AB est visible.

CALCUL DU TEST 2

- le test équivaut à: tous les sommets P_i de la face sont strictement du même côté du plan à l'exception éventuellement de l'un d'entre eux qui est sur la plan.
- point de vue pratique: à tout sommet P_i de la face on associe l'entier

$$s(\mathbf{P}_i) = \begin{cases} 1 & \mathbf{si} \ Q(\mathbf{P}_i) > 0 \\ 0 & \mathbf{si} \ Q(\mathbf{P}_i) = 0 \\ -1 & \mathbf{si} \ Q(\mathbf{P}_i) < 0 \end{cases}$$

Alors AB est visible si

$$\sum_{1 \le i \le n} s(\mathbf{P}_i) = -n, -n+1, n-1 \text{ ou } n$$

TEST 3

Cas restants à cette étape

visible ou partiellement visible

Dans tous les cas le plan passant par AB intersecte le cylindre d'axe parallèle aux z, s'appuyant sur la face du polyèdre.

On donne

- \bullet P_iP_{i+1} une arête
- $H_i(x, y, z) = 0$ l'équation du plan Π_i passant par $\mathbf{P}_i \mathbf{P}_{i+1}$ et parallèle à l'axe z
- ullet P un sommet quelconque de la face, distinct de \mathbf{P}_i et de \mathbf{P}_{i+1}
- A un point quelconque.

Le point A est

- extérieur au cylindre par rapport au plan Π_i si $H_i(\mathbf{A})H_i(\mathbf{P})$ 0 où
- intérieur au cylindre par rapport au plan Π_i si $H_i(\mathbf{A})H_i(\mathbf{P})$
- ullet sur le cylindre dans les autres cas

Est-il vrai que pour tout plan Π_j les deux points A et B sont intérieurs ou sur Π_j ?

Si oui, le segment est invisible

Existe-t'il un plan Π_j pour lequel l'un des points, disons A est extérieur et l'autre B est soit extérieur soit sur Π_j ? Si oui, le segment est visible

TEST 4

A cette étape, ou bien

- ou bien il existe un $i=1,\ldots,n$ AB pour lequel le segment AB et $\mathbf{P}_i\mathbf{P}_{i+1}$ sont dans un même plan parallèle à l'axe des z
- ou bien le segment AB coupe le cylindre en 1 ou 2 points

Equations paramétriques de la droite AB

$$\mathbf{R}(t) = \mathbf{A} + t\mathbf{A}\mathbf{B}$$

Equations paramétriques de l'arête P_iP_{i+1} pour $i=1,\ldots,n$:

$$\mathbf{S}(s) = \mathbf{P}_i + s\mathbf{P}_i\mathbf{P}_{i+1}$$

Cas particulier: AB et P_iP_{i+1} sont dans un même plan parallèle à l'axe des z:

Pour chaque i = 1, ..., n faire

- 1. Déterminer si le segment AB intersecte le plan $H_i(x, y, z) = 0$
 - valeur du paramètre t_i correspondant au point d'inters $\mathbf{R}(t_i) = \mathbf{R}_i$ de la droite support de AB avec le plan $H_i(x, y, z) = 0$
 - l'intersection est entre A et B si et seulement si $0 \le t_i \le 1$
- 2. Déterminer si l'arête P_iP_{i+1} intersecte le plan passant par AB et parallèle à l'axe z
 - valeur du paramètre s_i correspondant au point d'inters $\mathbf{S}(t_i) = \mathbf{S}_i$ de l'arête $\mathbf{P}_i \mathbf{P}_{i+1}$ avec le plan passant par AB parallèle à l'axe z
 - l'intersection est entre P_i et P_{i+1} si et seulement si $0 \le s_i \le 1$
- 3. Remarque: les points R_i et S_i sont sur une même droite de direction z

Trois cas

- pour un certain i = 1, ..., n on a $0 \le t_i \le 1$ et le point \mathbf{R}_i est devant le plan de la face $(F(\mathbf{R}_i) < 0)$: le segment AB est lui-même devant la face, donc visible.
- sinon pour un unique $1 \le i \le n$ on a $0 \le t_i \le 1$ et le point \mathbf{R}_i est derrière le plan de la face $(F(\mathbf{R}_i) > 0)$. Si A est invisible $(H_i(\mathbf{A})H_i(\mathbf{P}) < 0$ où $\mathbf{P} \ne \mathbf{P}_i, \mathbf{P}_{i+1})$ alors la partie visible correspond à $t_i \le t \le 1$
- sinon (pour 2 valeurs $1 \le i \ne j \le n$ on a $0 \le t_i < t_j \le 1$) et la partie visible est constituée des deux segments AR_i et R_jB

ACCROÎTRE LA PERFORMANCE

- But: éviter de comparer une arête à des faces qui de toute évidence ne la cachent pas
- Moyens: utiliser un quadrillage de la fenêtre de l'espace objet et réaliser l'algorithme des lignes cachées dans chaque pavé de ce quadrillage

MISE EN ŒUVRE

Limiter la partie intéressant de la scène au rectangle

et considérer N^2 pavés de largeur et de hauteur

$$\Delta_x = \frac{xmax - xmin}{N}, \Delta_y = \frac{ymax - ymin}{N}$$

On applique l'algorithme des lignes cachées seulement à l'intérieur de chaque pavé qu'elle intersecte.

On utilise comme struture de données un tableau Objet $[0 \dots N + 1]$ dont l'entrée (i, j) consiste en

- l'ensemble des faces dont la projection sur la fenêtre intersecte le pavé de coordonnées (i,j)
- la face la plus proche qui recouvre le pavé

Calcul effectif du tableau Objet

```
pour tout polygone faire début pour toute droite verticale d'abscisse i intersectant le polygone faire début calculer les ordonnées j_1 et j_2 des deux points d'intersection pour tout j_1 \leq j \leq j_2 faire ranger le polygone dans \texttt{Obj}[\texttt{i},\texttt{j}] fin fin
```

En fait on détermine les deux points d'intersection en appliquant une procédure semblable à celle de Bresenham. Pour chaque polygone on fait

```
soit S_{1,g} le sommet d'abscisse minimale le plus bas soit S_{1,d} le sommet d'abscisse maximale le plus bas soit S_{2,g} le sommet d'abscisse minimale le plus haut soit S_{2,d} le sommet d'abscisse maximale le plus bas
```

parcourir la "moitié" inférieure $S_{1,g}S_{1,d}$ du polygone dans le sens inverse des aiguilles d'une montre et pour chaque [i,j], coordonnées du point courant faire $Bas[i]\!:=\!j$

parcourir la "moitié" supérieure $S_{2,g}S_{2,d}$ du polygone dans le sens des aiguilles d'une montre et pour chaque [i,j], coordonnées du point courant faire Haut[i]:=j

pour tout Bas[i] \le k \le Haut[i] faire
ranger le polygone dans Objet[i,k]