PARKINSON'S DISEASE DIAGNOSIS USING DEEP LEARNING

AUTHOR: MOHAMAD ALISSA

SUPERVISORS: DR MICHAEL LONES & DR MARTA VALLEJO

Head lines

- Data Acquisition
- The project story
- Project Objectives
- Experiments
- Implementation Work flow
 - ✓ Data processing step
 - ✓ Classification step
 - ✓ Evaluation
 - ✓ Discuss the best approach
 - ✓ Results
- Future work

Data Acquisition

Images Datasets

Time-series
Datasets

Time-series Datasets
Pentagon
Cube
Dataset
Dataset

Convolutional neural networks

Convolutional neural networks

58 Patients 29 Healthy

Convolutional neural networks

Convolutional neural networks

12/12/2020 Fig 1 Data sets

Project Objectives

- 1.Examine which of the image datasets (each one related to a different PD drawing test) are more useful for training predictive models.
- 2.Investigate which of the time series datasets are more useful for training predictive models.
- 3.Explore whether imaging datasets or time series datasets are more effective as a basis for discrimination.

Convolutional Neural Networks Experiments

Recurrent Neural Networks Experiments

timestamp	x coordinate	y coordinate	pen angle in x plane	pen angle in y plane	pressure
0	0.60061515525	0.5797397931	0.675101995	-0.495138138	0.052785925
8	0.6006889060	0.5797397931	0.675101995	-0.495138138	0.075268819
9	0.6007874100	0.5797397931	0.669257223	-0.505829691	0.092864125

CNN Experiments

- Experiments with imbalanced datasets.
 - 32x32 pixels
 - 64x64 pixels
 - 128x128 pixels
- Experiments with balanced datasets
 - 32x32 pixels
 - 64x64 pixels
 - 128x128 pixels

CNN Experiments

- Experiments with imbalanced datasets.
 - 32x32 pixels
 - 64x64 pixels
 - 128x128 pixels
- Experiments with balanced datasets
 - 32x32 pixels
 - 64x64 pixels
 - 128x128 pixels

Patients Healthy

CNN Experiments

- Experiments with imbalanced datasets.
 - 32x32 pixels
 - 64x64 pixels
 - 128x128 pixels
- Experiments with balanced datasets
 - 32x32 pixels
 - 64x64 pixels
 - 128x128 pixels

Fig 2 Imbalance VS balance dataset

12/12/2020

Implementation Work Flow

Original dataset

Data processing

Classification step

Evaluation step

Results

Fig 3 Implementation Work Flow

Fig 4 CNN-based experiments' workflow

Implementation Work Flow

Original dataset

Data processing

Classification step

Evaluation step

Results

12/12/2020

Data pre-processing

Image processing

• Data preparation

Fig 5 CNN-based experiments' workflow focused on data processing part

12/12/2020

- Image processing
 - ✓ Augmentation
 - ✓ Resizing Images
 - ✓ Normalisation

Fig 7 CNN-based experiments' workflow focused on image processing part

- Image processing
 - ✓ Augmentation
 - ✓ Resizing Images
 - ✓ Normalisation

Fig 7 CNN-based experiments' workflow focused on image processing part

- Image processing
 - ✓ Augmentation
 - ✓ Resizing Images
 - ✓ Normalisation

Fig 7 CNN-based experiments' workflow focused on image processing part

- Image processing
 - ✓ Augmentation
 - ✓ Resizing Images
 - ✓ Normalisation

 $[0 \rightarrow 255]$ values $\boxed{-1 \rightarrow 1}$ values

Fig 7 CNN-based experiments' workflow focused on image processing part

Data preparation(also called data wrangling)

✓ Put CNN input in the correct format.

✓ Divide the datasets into 90% training & validation and 10% testing sets.

12/12/2020

Implementation Work Flow

Original dataset

Data processing

Classification step

Evaluation step

Results

12/12/2020

Classification step Convolutional Neural Networks

Classification step Convolutional Neural Networks

Fig 10 The Proposed CNN Architecture

Convolutional Neural Networks Experiments

Recurrent Neural Networks Experiments

timestamp	x coordinate	y coordinate	pen angle in x plane	pen angle in y plane	pressure
0	0.60061515525	0.5797397931	0.675101995	-0.495138138	0.052785925
8	0.6006889060	0.5797397931	0.675101995	-0.495138138	0.075268819
9	0.6007874100	0.5797397931	0.669257223	-0.505829691	0.092864125

RNN Experiments

• Experiments without zero-pressure consideration.

• Experiments with zero-pressure consideration.

12/12/2020

RNN Experiments

• Experiments without zero-pressure consideration.

• Experiments with zero-pressure consideration.

RNN Experiments

• Experiments without zero-pressure consideration.

• Experiments with zero-pressure consideration.

Fig 11 without zero-pressure VS with zero-pressure

Implementation Work Flow

Original dataset

Data processing

Classification step

Evaluation step

Results

Implementation Work Flow

Implementation Work Flow

Original dataset

Data processing

Classification step

Evaluation step

Results

Data Processing Recurrent Neural Networks

Data Processing Recurrent Neural Networks

- Data Pre-processing
 - ✓ Data cleansing
 - ✓ Deleting the undesirable features

Fig 14 RNN-based experiments' workflow focused on data pre-processing part

Data Processing Recurrent Neural Networks

- Data preparation(also called data wrangling)
 - ✓ Put RNN input in the correct format.
 - ✓Zero-padding to make all samples the same length.
 - ✓ Divide the datasets into 90% training & validation and 10% testing sets.

Fig 15 RNN-based experiments' workflow focused on data preparation part

Implementation Work Flow

Original dataset

Data processing

Classification step

Evaluation step

Results

Classification step

Recurrent Neural Networks (Long short-term memory)

Classification step

Recurrent Neural Networks (Long short-term memory)

Implementation Work Flow

Original dataset

Data processing

Classification step

Evaluation step

Results

Evaluation plan

Fig 18 All experiments comparisons

Evaluation plan

- Phase 1: Evaluating the Experiments
 - ✓ Mann-Whitney U Test two-tailed
 - ✓Kruskal-Wallis Test
 - ✓ Post hoc test (Tukey test honestly significant difference (HSD))

Fig 19 Box plot, notched box plot, violin, bean plots and statistical summary example

Evaluation

• Phase 2: Evaluating the Models

- ✓ Confusion matrix ✓ Specificity ✓ Sensitivity (Recall) ✓ Precision
- ✓ Classification accuracy ✓ Kappa ✓ Training time ✓ Average precision score
 - ✓ Training accuracy & error VS epoch ✓ Validation accuracy & error VS epoch ✓ Precision-Recall curve
 - Kappa Vs Classification accuracy example

Evaluation

Kappa: 76.92%

Accuracy: 88.89%

Recurrent Neural Networks

Time-series dataset

With zero-presure

Cube

Kappa: 76.92%

Accuracy: 88.89%

Recurrent Neural Networks

Time-series dataset

With zero-presure

Cube

Time-series datasets include many useful features, and normally more good information leads to higher chance to classify patients and control individuals

timestamp	x coordinate	y coordinate	pen angle in x plane	pen angle in y plane	pressure
0	0.60061515525	0.5797397931	0.675101995	-0.495138138	0.052785925
8	0.6006889060	0.5797397931	0.675101995	-0.495138138	0.075268819
9	0.6007874100	0.5797397931	0.669257223	-0.505829691	0.092864125

Kappa: 76.92%

Accuracy: 88.89%

Recurrent Neural Networks

Time-series dataset

With zero-presure

Cube

Time-series datasets include many useful features, and normally more good information leads to higher chance to classify patients and control individuals

timestamp	x coordinate	y coordinate	pen angle in x plane	pen angle in y plane	pressure
0	0.60061515525	0.5797397931	0.675101995	-0.495138138	0.052785925
8	0.6006889060	0.5797397931	0.675101995	-0.495138138	0.075268819
9	0.6007874100	0.5797397931	0.669257223	-0.505829691	0.092864125

Perhaps this is because the subjects spend a long time holding the pen before or after the drawings task which increases the chance to obtain more useful information.

Kappa: 76.92%

Accuracy: 88.89%

Recurrent Neural Networks

Time-series dataset

With zero-presure

Cube

Time-series datasets include many useful features, and normally more good information leads to higher chance to classify patients and control individuals

timestamp	x coordinate	y coordinate	pen angle in x plane	pen angle in y plane	pressure
0	0.60061515525	0.5797397931	0.675101995	-0.495138138	0.052785925
8	0.6006889060	0.5797397931	0.675101995	-0.495138138	0.075268819
9	0.6007874100	0.5797397931	0.669257223	-0.505829691	0.092864125

Perhaps this is because the subjects spend a long time holding the pen before or after the drawings task which increases the chance to obtain more useful information.

Drawing a 3D shape (cube) is harder than drawing a 2D shape (pentagon)

Kappa: 76.92%

Accuracy: 88.89%

Recurrent Neural Networks

Time-series dataset

With zero-presure

Cube

Time-series datasets include many useful features, and normally more good information leads to higher chance to classify patients and control individuals

timestamp	x coordinate	y coordinate	pen angle in x plane	pen angle in y plane	pressure
0	0.60061515525	0.5797397931	0.675101995	-0.495138138	0.052785925
8	0.6006889060	0.5797397931	0.675101995	-0.495138138	0.075268819
9	0.6007874100	0.5797397931	0.669257223	-0.505829691	0.092864125

Perhaps this is because the subjects spend a long time holding the pen before or after the drawings task which increases the chance to obtain more useful information.

Drawing a 3D shape (cube) is harder than drawing a 2D shape (pentagon)

But this approach takes

24.5 Hr training

Implementation Work Flow

Original dataset

Data processing

Classification step

Evaluation step

Results

Results

➤ Effect of image size
64x64 pixels is the most suitable
size to contain the image data
under our CNN configurations.

> Effect of deep learning technique and dataset type

The harder disease exam is more discriminative and effective to distinguish healthy subjects from individuals with PD.

> Effect of augmentation

Datasets with augmentation (i.e. balanced datasets) in all cases lead to better results than the imbalanced datasets.

> Effect of removing zero pressure

Keeping the zero pressure information is meaningful in terms of the differentiation between patients and control subjects.

Future work

•Investigate classifying disease stages.

•Extract knowledge from the trained models.

•We plan to publish a journal paper.

Tips for your future projects

Potential problem	Potential solution			
New techniques for your project	RNN and CNN			
Time series samples have variety of lengths	Zero-padding			
Small imaging dataset	Augmentation			
Imbalance imaging dataset	Augmentation			
Speed up the learning process	Normalisation			
Compare many experiments' results	statistical tests			
Use kappa instead of classification accuracy				

Thank you

Any Question?..