# Анализ сайта «СберАвтоподписка»

анализ и предсказание целевых действий пользователей

Цели и задачи

#### Разведочный анализ данных



Ознакомление с данными



Оценка полноты и чистоты



Базовая чистка дубликатов, пропусков



👯 Оценка распределений и отношений

#### Создать и обучить модель для

Предсказания целевых действий



і́ Целевая метрика **ROC-AUC > 0.65** 

#### Упаковать модель в сервис





👰 И возвращающий **0 или 1**, где

1 - пользователь совершил целевое действие

# Реализация проекта

#### На входе файлы с сессиями и событиями на сайте

**ga\_sessions.csv** - сессии:

1.8 млн объектов

18 признаков

4 колонки дают численные признаки

3 переменные бесполезны

11 категориальных признаков

ga\_hits.csv - события:

15.7 млн объектов

11 признаков

event\_action -> целевая переменная

2.7% сессий с целевыми действиями

# Когда целевых действий больше?

- Днём
- В начале недели
- При повторных посещениях
- Не из социальных сетей
- С органического трафика
- С компьютера
- Из Москвы и области

# Целевые действия по посещениям:

| 4+ | 4.4% |
|----|------|
| 3  | 3.8% |
| 2  | 3.2% |
| 1  | 2.4% |

#### Дополнительные признаки

Из даты и времени

день недели, час

Органический трафик

Трафик из соцсетей

Из размера экрана

ширина, площадь экрана

Для городов

московская область

Расстояние до Москвы

# Корреляция численных признаков

| 1000                 | 1.00        | 0.03   | -0.02              | -0.01          | 0.00            | 0.01              | 0.12                | 0.04                 | 0.10               | 0.13                | -0.04             |
|----------------------|-------------|--------|--------------------|----------------|-----------------|-------------------|---------------------|----------------------|--------------------|---------------------|-------------------|
| visit_number         | 1.00        | 0.03   | -0.02              | -0.01          | 0.00            | 0.01              | 0.12                | 0.04                 | 0.10               | 0.13                | -0.04             |
| target               | 0.03        | 1.00   | -0.01              | 0.00           | -0.00           | -0.03             | 0.01                | 0.01                 | 0.00               | 0.00                | -0.01             |
| visit_date_weekday   | -0.02       | -0.01  | 1.00               | -0.05          | -0.02           | 0.04              | -0.07               | -0.05                | -0.07              | -0.06               | 0.01              |
| visit_date_day       | -0.01       | 0.00   | -0.05              | 1.00           | -0.01           | 0.03              | 0.01                | -0.00                | 0.00               | 0.01                | -0.02             |
| visit_time_hour      | 0.00        | -0.00  | -0.02              | -0.01          | 1.00            | 0.02              | -0.01               | 0.00                 | -0.01              | -0.02               | -0.09             |
| visit_time_minute    | 0.01        | -0.03  | 0.04               | 0.03           | 0.02            | 1.00              | -0.08               | -0.04                | -0.07              | -0.07               | 0.08              |
| device_screen_width  | 0.12        | 0.01   | -0.07              | 0.01           | -0.01           | -0.08             | 1.00                |                      | 0.94               | 0.90                | -0.12             |
| device_screen_height | 0.04        | 0.01   | -0.05              | -0.00          | 0.00            | -0.04             |                     | 1.00                 | 0.76               | 0.20                | -0.07             |
| device_screen_area   | 0.10        | 0.00   | -0.07              | 0.00           | -0.01           | -0.07             | 0.94                | 0.76                 | 1.00               |                     | -0.11             |
| device_screen_ratio  | 0.13        | 0.00   | -0.06              | 0.01           | -0.02           | -0.07             | 0.90                | 0.20                 | 0.72               | 1.00                | -0.12             |
| geo_city_distance    | -0.04       | -0.01  | 0.01               | -0.02          | -0.09           | 0.08              | -0.12               | -0.07                | -0.11              | -0.12               | 1.00              |
|                      | Wsit_number | target | visit_date_weekday | visit_date_day | visit_time_hour | visit_time_minute | device_screen_width | device_screen_height | device_screen_area | device_screen_ratio | geo_city_distance |

#### Подготовка данных

• Создание признаков

Численные преобразования

Категориальные преобразования

• Выбор признаков

```
('indexer', FunctionTransformer(set_index)),
('imputer', FunctionTransformer(fill_missings)),
('engineer', FunctionTransformer(create_features)),
('dropper', DropFeatures([...])),
('normalization', YeoJohnsonTransformer()),
('outlier_remover', Winsorizer()),
('scaler', StandardScaler()),
('rare_encoder', RareLabelEncoder(tol=0.05, replace_with='rare')),
('onehot_encoder', OneHotEncoder(drop_last_binary=True)),
('bool_converter', FunctionTransformer(converse_types)),
('constant_dropper', DropConstantFeatures(tol=0.99)),
('duplicated_dropper', DropDuplicateFeatures()),
('correlated_dropper', DropCorrelatedFeatures(threshold=0.8)),
```

## LightGBM - лучше

- Высокий ROC-AUC
- Быстрое обучение
- Интерпретируемая
- Предсказывает вероятность

| Модель                  | ROC-AUC |
|-------------------------|---------|
| Гистограммный бустинг   | 0.7070  |
| LightGBM                | 0.7066  |
| CatBoost                | 0.7062  |
| Нейронная сеть          | 0.70    |
| XGBoost                 | 0.69    |
| Логистическая регрессия | 0.67    |
| Классификатор Байеса    | 0.65    |
| Случайный лес           | 0.63    |
| Метод опорных векторов  | 0.62    |
| Дерево решений          | 0.52    |

### Оптимизация модели

- 4700 деревьев
- 16 листьев в дереве
- 0.04 скорость обучения
- GBDT тип бустинга

#### Создание сервиса

- Сервис в отдельном модуле
- Создание модели отдельно
- FastAPI + Uvicorn + Pydantic
- Упакован в Docker



Результаты проекта

#### Метрики модели

ROC-AUC 0.715

ROC-AUC (classes) 0.653

ACCURACY 0.563

PRECISION 0.045

RECALL 0.748

F1 0.085

Порог вероятностей 0.0239

Переобучение незначительно

Матрица ошибок:





### Результаты обработки данных

- 62 признака (ещё 16 удалены)
- 9 из них численные
- 175 тыс. дубликатов
- Нет корреляций с целевой переменной

# Самые важные созданные признаки



#### Важность оригинальных признаков



#### Работа сервиса

- Работает через uvicorn или docker
- Предсказание за 1-2 секунды
- Возвращает статус и метаданные
- Предсказание класса или вероятности
- Для одного объекта и для множества

#### http://127.0.0.1:8000/predict\_many

#### http://127.0.0.1:8000/status

```
"Сервис работает."
```

#### http://127.0.0.1:8000/version

```
"name": "SberAutopodpiska: target event prediction",
 "description": "Модель по предсказанию совершения пользователем одного из
целевых действий \"Заказать звонок\" или \"Оставить заявку\" на сайте сервис
 СберАвтоподписка.",
 "version": 1,
  "author": "Nikolai Borziak",
 "model type": "LGBMClassifier",
 "training_datetime": "2022-11-25 07:54:19.080034",
  "threshold": 0.026015066085760746,
  "metrics": {
   "roc auc": 0.7160244331913947,
   "roc_auc_by_class": 0.6541750943426337,
   "accuracy": 0.59894,
   "precision": 0.04672047702152414,
   "recall": 0.7125693160813309,
   "f1": 0.08769136279884442
```

## Как улучшить модель?

- Больше данных
- Ребалансировка классов
- Поиск лучших гиперпараметров
- Больше новых признаков
- Более сложные модели

#### Выводы

- ≪ ROC-AUC = 0.715
- Анализ и чистка данных проведены
- Проведена генерация новых признаков
- Важность признаков проанализирована