Tunowalność wybranych algorytmów uczenia maszynowego

Katsiaryna Bokhan, Monika Jarosińska

MiNI PW

06.11.2024

Plan prezentacji

Wstęp do eksperymentu

- Wizualizacja otrzymanych wyników
 - Tunowalność SVM, CatBoost, ExtraTrees względem różnych metryk
 - Porównanie z algorytmami o domyślnych hiperparametrach
 - Analiza metod samplingu pod względem liczby iteracji

Test Manna-Whitneya

Zbiory danych - krótki opis

- Zbiór danych 1 (833) syntetyczny, celem jest przewidywanie, czy klient w banku został obsłużony w zależności od stanu kolejki i lokalizacji oddziału banku
- Zbiór danych 2 (44157) informacje o ruchach oczu (liczba fiksacji, czas trwania fiksacji, pozycja wzroku itp) uczestników czytających zdania, aby określić, na ile słowa są istotne dla odpowiedzi na zadane pytanie.
- Zbiór danych 3 (1120) dane służące do klasyfikacji wysokoenergetycznych cząstek gamma i cząstek tła pochodzących z promieni kosmicznych na podstawie obrazów promieniowania Czerenkowa.
- Zbiór danych 4 (45553) zbiór danych dotyczy oceny zdolności kredytowej pożyczkobiorców na podstawie ich profilu finansowego.

Zbiory danych - preprocessing

Zbiór danych (ID)	Liczba rekordów	Rozkład zmiennej objaśnianej	Liczba kolumn
Zbiór danych 1 (833)	8192	31% vs 69%	32
Zbiór danych 2 (44157)	7608	50% vs 50%	23
Zbiór danych 3 (1120)	19020	35% vs 65%	10
Zbiór danych 4 (45553)	9871	48% vs 52%	23

Tabela: Informacje na temat zbiorów danych.

- Żaden zbiór nie zawierał braków danych
- Postanowiono, że wprowadzimy tylko niezbędne zmiany w danych
- Jeden pipeline:
- OneHotEncoder transformacja zmiennych kategorycznych
- MinMaxScaler transformacja zmiennych numerycznych

Wybrane algorytmy i metody samplingu do analizy

Wybrane algorytmy:

- Support Vector Machine
- ExtraTreesClassifier
- CatBoostClassfifier

Wybrane metody samplingu:

- RandomSearch własna klasa RandomSearchWithMetrics
- Bayes Optimization funkcja skopt.BayesSearchCV z biblioteki scikit-optimize

Wybrane metryki do optymalizacji:

- ROC AUC główna metryka
- BrierScore, Accuracy dodatkowo obliczone metryki dla RandomSearch

Ustalone siatki hiperparametrów dla SVM i CatBoost

Hiperparametr	Możliwe wartości	Liczba wartości
kernel	'linear', 'poly', 'rbf', 'sigmoid'	4
C	$2^{-10}, 2^{-9}, \dots, 2^9$	20
gamma	$2^{-10}, 2^{-9}, \dots, 2^9$	20
degree	2, 3, 4, 5	4
Liczba możliwych kombinacji		6400

Tabela: Siatka hiperparametrów dla SVM.

Hiperparametr	Możliwe wartości	Liczba wartości
iterations	2, 3, 4, 5, 6, 7, 8, 9, 11, 13,	27 (log space used)
	15, 18, 21, 25, 29, 34, 40, 47, 56, 65,	
	77, 90, 105, 124, 145, 170, 200	
learning_rate	0.01, 0.1325, 0.255, 0.3775, 0.5	5
depth	1, 3, 5, 7, 9, 11, 13, 16	8
12_leaf_reg	1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0	8
colsample_bylevel	0.1, 0.325, 0.55, 0.775, 1.0	5
Liczba możliwych kombinacji		43200

Tabela: Siatka hiperparametrów dla CatBoostClassifier.

Ustalona siatka hiperparametrów dla ExtraTreesClassifier

Hiperparametr	Możliwe wartości	Liczba wartości
n_estimators	2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14,	46 (log space used)
	16, 19, 21, 25, 29, 33, 38, 44, 51, 58,	
	67, 78, 89, 103, 119, 137, 158,	
	182, 209, 241, 277, 319, 368,	
	424, 488, 562, 647, 745, 858,	
	988, 1137, 1310, 1508, 1737, 2000	
max_depth	None, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19,	16
	21, 23, 25, 27, 30	
min_samples_split	2, 3, 4, 5, 6, 58, 59, 60	59
min_samples_leaf	1, 2, 3, 4, 5,, 58, 59, 60	60
min_weight_fraction_leaf	20 values from 0 to 0.5	20
	uniformly distributed	
max_leaf_nodes	None, 2, 3, 4, , 56, 57, 58, 60	59
max_features	None, "sqrt", "log2",	23
	20 values from 0.1 to 1	
	uniformly distributed	
criterion	'gini', 'entropy'	2
Liczba możliwych kombinacji		141,423,283,200

Tabela: Siatka hiperparametrów dla ExtraTreesClassifier.

Liczba iteracji każdej metody samplingu dla każdego algorytmu

Zbiór danych	RandomSearch		danych RandomSearch BayesOptimiza		ation	
	SVM	CatBoost	ExtraTrees	SVM	CatBoost	ExtraTrees
Zbiór danych 1	449 (2)	449 (1)	449 (5)	100 (1)	100 (1)	100 (1)
Zbiór danych 2	449 (2)	449 (1)	449 (5)	200 (1)	200 (1)	200 (1)
Zbiór danych 3	449 (2)	449 (1)	449 (5)	100 (1)	100 (1)	100 (1)
Zbiór danych 4	449 (2)	449 (1)	449 (5)	100 (1)	100 (1)	100 (1)

Tabela: Liczba iteracji dla metod **BayesOptimization** oraz **RandomSearch**. W nawiasach znajduję się liczba powtórzeń pięciokrotnej kroswalidacji.

Tunowalność SVM, CatBoost, ExtraTrees względem ROC AUC

Boxplots of the tunabilities (ROC_AUC) of different algorithms with respect to optimal defaults (Random Search)

Rysunek: Tunowalność modelu SVM przy użyciu metryki ROC AUC.

Tunowalność **SVM**, **CatBoost**, **ExtraTrees** względem 1–Brier Score

Boxplots of the tunabilities (Brier Score) of different algorithms with respect to optimal defaults (Random Search)

Rysunek: Tunowalność modelu CatBoostClassifier przy użyciu metryki 1-Brier Score.

Tunowalność SVM, CatBoost, ExtraTrees względem Accuracy

Boxplots of the tunabilities (Accuracy) of different algorithms with respect to optimal defaults (Random Search)

Rysunek: Tunowalność modelu ExtraTreesClassifier przy użyciu metryki Accuracy.

Metody BayesOptimization oraz RandomSearch dla SVM

Rysunek: Porównanie wyników metryki *ROC AUC* dla metod **BayesOptimization** oraz **RandomSearch** z domyślnymi wartościami parametrów dla algorytmu **SVM** (czerwone punkty).

Metody BayesOptimization oraz RandomSearch dla CatBoostClassifier

Rysunek: Porównanie wyników metryki *ROC AUC* dla metod **BayesOptimization** oraz **RandomSearch** z domyślnymi wartościami parametrów dla algorytmu **CatBoostClassifier** (czerwone punkty).

Metody **BayesOptimization** oraz **RandomSearch** dla **ExtraTreesClassifier**

Rysunek: Porównanie wyników metryki *ROC AUC* dla metod **BayesOptimization** oraz **RandomSearch** z domyślnymi wartościami parametrów dla algorytmu **ExtraTreesClassifier** (czerwone punkty).

Metody BayesOptimization oraz RandomSearch dla SVM

Rysunek: Różnica między ROC AUC metod BayesOptimization i RandomSearch dla algorytmu SVM.

Metody BayesOptimization oraz RandomSearch dla CatBoostClassifier

Rysunek: Różnica między ROC AUC metod BayesOptimization i RandomSearch dla algorytmu CatBoostClassifier.

Metody BayesOptimization oraz RandomSearch dla ExtraTreesClassifier

Rysunek: Różnica między ROC AUC metod BayesOptimization i RandomSearch dla algorytmu ExtraTreesClassifier.

Liczba iteracji dla SVM

Rysunek: Liczba iteracji względem metryki *ROC AUC* metod **BayesOptimization** i **RandomSearch** dla algorytmu **SVM**.

Liczba iteracji dla CatBoostClassifier

Rysunek: Liczba iteracji względem metryki ROC AUC metod BayesOptimization i RandomSearch dla algorytmu CatBoostClassifier.

Liczba iteracji dla ExtraTreesClassifier

Rysunek: Liczba iteracji względem metryki ROC AUC metod BayesOptimization i RandomSearch dla algorytmu ExtraTreesClassifier.

Zmienność ROC AUC względem iteracji dla SVM - część 1

Rysunek: Zmienność metryki *ROC AUC* względem iteracji metod **BayesOptimization** i **RandomSearch** dla algorytmu **SVM**.

Zmienność ROC AUC względem iteracji dla SVM - część 2

Rysunek: Zmienność metryki *ROC AUC* względem iteracji metod **BayesOptimization** i **RandomSearch** dla algorytmu **SVM**.

Zmienność ROC AUC względem iteracji dla CatBoostClassifier-część 1

Rysunek: Zmienność metryki metryki ROC AUC względem iteracji metod BayesOptimization i RandomSearch dla algorytmu CatBoostClassifier.

Zmienność ROC AUC względem iteracji dla CatBoostClassifier-część 2

Rysunek: Zmienność metryki metryki ROC AUC względem iteracji metod BayesOptimization i RandomSearch dla algorytmu CatBoostClassifier.

Zmienność ROC AUC względem iteracji dla ExtraTreesClassifier - część 1

Rysunek: Zmienność metryki *ROC AUC* względem iteracji metod **BayesOptimization** i **RandomSearch** dla algorytmu **ExtraTreesClassifier**.

Zmienność ROC AUC względem iteracji dla ExtraTreesClassifier - część 2

Rysunek: Zmienność metryki *ROC AUC* względem iteracji metod **BayesOptimization** i **RandomSearch** dla algorytmu **ExtraTreesClassifier**.

Test Manna-Whitneya

Postać testu

Niech F_X oznacza rozkład wartości $ROC\ AUC$ dla metody **RandomSearch**, a F_Y rozkład wartości $ROC\ AUC$ dla metody **BayesOptimization**, wówczas test z jednostronną hipotezą alternatywną ma następującą postać

$$\begin{cases} H_0: F_X = F_Y, \\ H_1: X < Y. \end{cases}$$

Test Manna-Whitneya dla SVM

Zbiór danych	p-wartość	Wniosek
Zbiór danych 1	9.725e-14	$X \stackrel{st}{<} Y$
Zbiór danych 2	9.725e-14	$X \stackrel{st}{<} Y$
Zbiór danych 3	1.02e-12	$X \stackrel{st}{<} Y$
Zbiór danych 4	2.238e-13	$X \stackrel{st}{<} Y$

Tabela: Wyniki testu Manna-Whitneya dla algorytmu SVM.

Test Manna-Whitneya dla CatBoostClassifier

Zbiór danych	p-wartość	Wniosek
Zbiór danych 1	1.106e-02	$X \stackrel{st}{<} Y$
Zbiór danych 2	1.000	$F_X = F_Y$
Zbiór danych 3	1.121e-05	$X \stackrel{st}{<} Y$
Zbiór danych 4	5.301e-01	$F_X = F_Y$

Tabela: Wyniki testu Manna-Whitneya dla algorytmu CatBoost.

Test Manna-Whitneya dla ExtraTreesClassifier

Zbiór danych	p-wartość	Wniosek
Zbiór danych 1	4.324e-34	$X \stackrel{st}{<} Y$
Zbiór danych 2	1.000	$F_X = F_Y$
Zbiór danych 3	1.057e-44	$X \stackrel{st}{<} Y$
Zbiór danych 4	9.256e-42	$X \stackrel{st}{<} Y$

Tabela: Wyniki testu Manna-Whitneya dla algorytmu ExtraTreesClassifier.

Dziękujemy za uwagę!

Tunowalność wybranych algorytmów uczenia maszynowego

Katsiaryna Bokhan, Monika Jarosińska

MiNI PW

06.11.2024

Bibliografia

P.Probst, A.Boulesteix, , Tunability: Importance of Hyperparameters of Machine Learning Algorithms, 2019.