Authors:

- o Mhd Jawad Al Rahwanji 7038980 mhal00002@stud.uni-saarland.de
- o Christian Singer 7039059 chsi00002@stud.uni-saarland.de

Exercise 5.1 - Newton's Method

a) The taylor series of f(x):

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \dots$$

Using the first 3 terms (2nd order) because that way we'd have a parabola:

$$f(x) \approx f(x_{0}) + f'(x_{0})x - f'(x_{0})x_{0} + \frac{1}{2}f''(x_{0})x^{2} - f''(x_{0})x_{0}x + \frac{1}{2}f''(x_{0})x_{0}^{2}$$

We now take the derivative of the 2nd order approximation of the function and set it equal to 0 to find its minimum.

$$\frac{f(x)}{dx} \approx f'(x_{0}) + f''(x_{0})x - f''(x_{0})x_{0} = 0$$

$$f''(x_{0})x = f''(x_{0})x_{0} - f'(x_{0})$$

$$x = x_{0} - \frac{f'(x_{0})}{f''(x_{0})}$$

Similarly, in the case of a multivariable *f*:

$$x_{t+1} = x_t - f''(x_t)^{-1} f'(x_t)$$
We swap $f''(x_t)^{-1}$ for $H(f(x_t))^{-1}$ and $f'(x_t)$ for $\nabla f(x_t)$:
$$x_{t+1} = x_t - aH(f(x_t))^{-1} \nabla f(x_t)$$

b) We have the following:

$$f(x) = f(x_{1}, x_{2}) = x_{1}^{2} - 3x_{1} + x_{2}^{2} - x_{1}x_{2},$$

 $\epsilon = 0.5, \text{ and}$

$$\nabla f(x) = \nabla f(x_1, x_2) = (2x_1 - x_2 - 3, 2x_2 - x_1)$$

The gradient descent iterations:

Iteration	X	<i>f</i> (x)	$\nabla f(\mathbf{x})$	$L2$ -norm($\nabla f(\mathbf{x})$)
0	(1, 1)	-2	(-2, 1)	2.236
1	(2, 0.5)	-2.75	(0.5, -1)	1.118
2	(1.75, 1)	-2.937	(-0.5, 0.25)	0.559
3	(2, 0.875)	-2.984	(0.125, -0.25)	0.279
4	(1.9375, 1)	-2.996	(-0.125, 0.0625)	0.139

c) We have the following:

$$f(x) = f(x_{1}, x_{2}) = x_{1}^{2} - 3x_{1} + x_{2}^{2} - x_{1}x_{2}, \quad a = 0.5,$$

$$\nabla f(x) = \nabla f(x_{1}, x_{2}) = (2x_{1} - x_{2} - 3, 2x_{2} - x_{1}),$$

$$H(f(x)) = H(f(x_{1}, x_{2})) = [(2, -1), (-1, 2)], \text{ and}$$

$$H(f(x))^{-1} = H(f(x_{1}, x_{2}))^{-1} = [(\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3})]$$

Iteration	X	$f(\mathbf{x})$	$\nabla f(\mathbf{x})$	$L2$ -norm($\nabla f(\mathbf{x})$)
0	(1, 1)	-2	(-2, 1)	2.236
1	(1.5, 1)	-2.75	(-1, 0.5)	1.118
2	(1.75, 1)	-2.937	(-0.5, 0.25)	0.559
3	(1.875, 1)	-2.984	(-0.25, 0.125)	0.279
4	(1.9375, 1)	-2.996	(-0.125, 0.0625)	0.139

H(f(x)) is positive definite therefore f is convex and has a global minimum at $\hat{x} = (2, 1)$ and $f(\hat{x}) = -3$. It is what we get from the Newton method.

d) We have the following:

$$f(x) = 2x^{3} - 5x,$$

$$a = 0.5,$$

$$f'(x) = 6x^{2} - 5,$$

$$f''(x) = 12x, \text{ and}$$

$$f''(x)^{-1} = \frac{1}{12x}$$

When $x_0 = 0$, we get a division by zero problem which makes performing Newton's method impossible. In this case, the convergence, or lack thereof, is entirely dependent on x_0 . On another note, the function has a local minimum and no global minimum since it isn't convex.