Time-of-arrival estimation and phase unwrapping of head-related transfer functions with integer linear programming

Chin-Yun Yu, Johan Pauwels, and György Fazekas Centre for Digital Music, Queen Mary University of London

Chin-Yun Yu

- Experiences
 - Bachelor of computer science, NCTU, Taiwan (2014~2018)
 - Engineer at HTC Vive (2019~2020)
 - Backend engineer at Rayark Inc. (2020~2022)
 - PhD student, C4DM, Queen Mary University of London (2022~)
- Voice synthesis, DSP, generative models, spatial audio
- GitHub/Twitter: @yoyololicon

Introduction

Head-related Transfer Function (HRTF)

Time-of-arrival (TOA)

HRTF Phase Response

- Time-of-arrival of different frequencies
- Method: Phase unwrapping (PU)

Image: https://www.weisang.com/en/documentation/phaseunwrap_en/

Motivation: A General Approach

Methodology

Sampling a Continuous Function f

$$f(heta), heta \in \mathcal{M}$$

A four-point Toy Example

Relative difference $f(\theta_i) - f(\theta_i) \rightarrow \bigcirc$

The Residuals **K**

$$\Gamma_{i,j} = \left(f(heta_j) - f(heta_i)
ight) + K_{i,j}$$
Measured

Expressing as Matrix Equation

$$egin{bmatrix} 1 & 0 & -1 & 0 \ -1 & 1 & 0 & 0 \ 0 & -1 & 1 & 0 \ 0 & 1 & 0 & -1 \ 0 & 0 & 1 & -1 \ \end{bmatrix} egin{bmatrix} f(A) \ f(B) \ f(C) \ f(D) \end{bmatrix} + egin{bmatrix} K_{C,A} \ K_{A,B} \ K_{B,C} \ K_{D,B} \ K_{D,C} \end{bmatrix} = egin{bmatrix} \Gamma_{C,A} \ \Gamma_{A,B} \ \Gamma_{B,C} \ \Gamma_{D,B} \ \Gamma_{D,C} \end{bmatrix}$$

Variables Measurements

A. Piyush Shanker and Howard Zebker, "Edgelist phase unwrapping algorithm for time series InSAR analysis," J. Opt. Soc. Am. A 27, 605-612 (2010).

Solution with Linear Programming (LP)

$$\min_{\mathbf{k}} \mathbf{w}^T | \mathbf{k} |, \ \mathbf{k} = egin{bmatrix} K_{C,A} \ K_{A,B} \ K_{B,C} \ K_{D,B} \ K_{D,C} \end{bmatrix}$$

Comparing to Prior Work

Reijniers et al.
$$\min_{\mathbf{k},f(\theta_*)} \underline{\mathbf{k}^T \mathrm{diag}(\mathbf{w})\mathbf{k}} + \lambda \sum_{i=1}^N f(\theta_i)$$
Ours $\min_{\mathbf{k}} \underline{\mathbf{w}^T |\mathbf{k}|}$

Reijniers, J., Partoens, B., and Peremans, H., "Noise-resistant correlation-based alignment of head-related transfer functions for high-fidelity spherical harmonics representation," in AES International Conference on Spatial and Immersive Audio, 2023.

Applications: Time-of-Arrival Estimation

$$\mathcal{M} \equiv \mathbb{S}^2 imes \{ ext{Left, Right}\} \ \Gamma_{i,j} \equiv rg \max_t h_i[t] \star h_j[t]$$

Left Right

S²

S²

Correlation indexes are integers!

Applications: Phase Unwrapping

$$\mathcal{M}\equiv\mathbb{S}^2 imes[0,\pi]$$

$$\Gamma_{i,j} \equiv rac{ ext{wrap}(\psi_j - \psi_i)}{2\pi}$$

Phase jumps are integers!

Evaluations

Feature Compression with Spherical Harmonics

- Interaural time delays (ITD)
- Aligned HRIRs

		AACHEN		ARI		CIPIC		RIEC	
10	Algorithm	△ITD	LSD	△ITD	LSD	△ITD	LSD	△ITD	LSD
d	EDGY	12.26	3.80	17.68	4.08	13.06	3.34	13.22	3.35
	SIMP	12.30	3.80	17.70	4.08	13.09	3.34	13.26	3.35
	LS	11.32	3.96	17.22	4.20	12.42	3.51	12.65	3.46

Proposed

- \downarrow ITD distortion (μ s) \rightarrow smoother TOA
- ↓LSD (dB) → better alignment

ITD Noise Robustness

Phase Unwrapping

Summary

- One method solves two problems!
- More accurate and noise robust TOA
- Smoother HRTF phase response due to considering both dimensions

Future work

