MATHEMATICAL METHODS OF QUANTUM MECHANICS SUMMARY

YANNIS BÄHNI

Abstract.

Contents

Postulates of Quantum Mechanics	. 1
Unbounded Operators	. 2
The Spectral Theorem	
Projection Valued Measures	
Functional Calculus	. 3
Existence	. 4
The Schrödinger Equation	

Postulates of Quantum Mechanics

Quantum mechanical system	separable Hilbert space ${\mathcal H}$
State	$\psi \in \mathcal{H}, \ \psi\ = 1$
Observables	Self-adjoint operators on ${\mathcal H}$
Expected Value of an observable A in the state ψ	$\langle \psi, A \psi \rangle$
Variance of an observable A in the state ψ	$\Delta A_{\psi} := \langle \psi, A^2 \psi \rangle - \langle \psi, A \psi \rangle^2$

Lemma 1.1 (Heisenberg Uncertainity Principle). Let A and B two self-adjoint operators on a Hilbert space \mathcal{H} . Then for any state ψ

$$\Delta A_{\psi} \Delta B_{\psi} \ge \frac{1}{4} \left| \langle \psi, [A, B] \psi \rangle \right|^{2}.$$

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

Unbounded Operators

Definition 1.1 (Linear Operator). Let \mathcal{H} be a Hilbert space. A (linear) operator on \mathcal{H} is simply a linear map $A:D(A)\to\mathcal{H}$, where D(A) is a linear subspace of \mathcal{H} . **Examples 1.1.**

- (a) (*Multiplication operator*) Let $\mathcal{H} := L^2(\mathbb{R})$ and consider $\widehat{x} : D(\widehat{x}) \to L^2(\mathbb{R})$ defined by $(\widehat{x}\psi)(x) := x\psi(x)$ (or $(\widehat{f}\psi)(x) := f(x)\psi(x)$ for any complex valued measurable function f).
- (b) (*Differential operator*) Let $\mathcal{H} := L^2(\mathbb{R})$ and consider $\nabla : C^{\infty}(\mathbb{R}) \to L^2(\mathbb{R})$.

Definition 1.2 (Closed Operator). An operator A on \mathcal{H} is said to be **closed**, iff Γ_A is closed in $\mathcal{H} \times \mathcal{H}$.

Definition 1.3 (Closable Operator). An operator A on \mathcal{H} is said to be **closable**, iff $\overline{\Gamma}_A$ is a linear graph, i.e. $(0, y) \in \Gamma_A$ implies y = 0. The corresponding operator associated to $\overline{\Gamma}_A$ is denoted by \overline{A} and called the **closure** of A. Clearly $A \subseteq \overline{A}$.

Definition 1.4 (Adjoint). Let A be a densly defined operator on \mathcal{H} . Set

$$D(A^*) := \{ \psi \in \mathcal{H} : \exists \eta \in \mathcal{H} \text{ s.t. } \forall \varphi \in D(A) \langle A\varphi, \psi \rangle = \langle \varphi, \eta \rangle \},$$

and $A^*\psi := \eta$. The operator A^* is called the **adjoint** of A.

Theorem 1.1. Let A be a densly defined operator on \mathcal{H} . Then:

- (a) A^* is closed.
- (b) A is closable if and only if $D(A^*)$ is dense.
- (c) If A is closable, then $(\overline{A})^* = A^*$.

Definition 1.5 (Symmetric Operator). A density defined operator A is said to be **symmetric**, iff $A \subseteq A^*$.

Definition 1.6 (Self-adjoint Operator). A densly defined operator is said to be **self-adjoint**, iff $A = A^*$.

Example 1.1. Let A_f denote the multiplication operator. Then $A_f^* = A_{\bar{f}}$.

Definition 1.7 (Essentially Self-adjoint Operator). A symmetric operator A is said to be **essentially self-adjoint**, iff \overline{A} is self-adjoint.

Example 1.2. Let $\mathcal{H} := L^2[0, 2\pi]$ and consider the operator A defined by $A := -i \frac{d}{dx}$ with $D(A) := \{ \psi \in C^1[0, 2\pi] : \psi(0) = \psi(2\pi) \}.$

Theorem 1.2. Let A be a symmetric operator. Then the following statements are equivalent:

- (a) A is self-adjoint.
- (b) A is closed and $ker(A^* \pm i) = \{0\}.$

(c) $\operatorname{im}(A \pm i) = \mathcal{H}$.

Lemma 1.2 (Weyl Lemma). Let A be a closed density defined operator such that there exists a sequence $(\psi_n)_{n\in\omega}$ in D(A) with $\|\psi_n\|=1$ for all $n\in\omega$ and $\|(A-z)\psi_n\|\to 0$ for some $z\in\mathbb{C}$. Then $z\in\sigma(A)$ (the sequence $(\psi_n)_{n\in\omega}$ is called a **Weyl sequence**).

Theorem 1.3. Let A be a symmetric closed operator. Then A is self-adjoint if and only if $\sigma(A) \subseteq \mathbb{R}$.

The Spectral Theorem

Projection Valued Measures.

Definition 1.8 (Projection Valued Measure). Let \mathcal{H} be a Hilbert space. A function

$$P:\mathcal{B}(\mathbb{R})\to\mathcal{L}(\mathcal{H})$$

is said to be a projection valued measure, iff

- (i) For all $\Omega \in \mathcal{B}(\mathbb{R})$, $P(\Omega)$ is an orthogonal projection, i.e. $P(\Omega)^2 = P(\Omega) = P(\Omega)^*$.
- (ii) $P(\mathbb{R}) = \mathrm{id}_{\mathcal{H}}$.
- (iii) If $(\Omega_n)_{n \in \omega}$ is a sequence of pairwise disjoint elements of $\mathcal{B}(\mathbb{R})$, then

$$P(\Omega)\psi = \sum_{n \in \omega} P(\Omega_n)\psi,$$

for all $\psi \in \mathcal{H}$.

Definition 1.9 (Resolution of the Identity). *Let* \mathcal{H} *be a Hilbert space and* P *a projection valued measure. The function* $p : \mathbb{R} \to \mathcal{L}(\mathcal{H})$ *defined by*

$$p(\lambda) := P(-\infty, \lambda],$$

is called the resolution of the identity associated to a projection valued measure.

Functional Calculus. Let $P: \mathcal{B}(\mathbb{R}) \to \mathcal{L}(\mathcal{H})$ be a projection valued measure. Then for any simple function $f:=\sum_{k=1}^n \alpha_k \chi_{\Omega_k}$ we define

$$P(f) := \int_{\mathbb{R}} f(\lambda) dp(\lambda) := \sum_{k=1}^{n} \alpha_k P(\Omega_k).$$

Since the simple functions are dense in the space of *bounded Borel functions* (with respect to $\|\cdot\|_{\infty}$) \mathcal{M}_b , we can extend above definition to \mathcal{M}_b . Actually, this defines a C^* -algebra homomorphism.

Consider now f just a Borel function. Then we get an operator $P(f):D(P(f))\to \mathcal{H}$ where

$$D(P(f)) := \{ \psi \in \mathcal{H} : f \in L^2(\mathbb{R}, d\mu_{\psi}) \},$$

defined by

$$P(f)\psi := \lim_{n\to\infty} P(f_n)\psi,$$

where $f_n := f \chi_{|f| \le n}$. We write

$$P(f) = \int_{\mathbb{R}} f(\lambda) dp(\lambda).$$

Existence. Existence is guaranteed by Herglotz or Nevanlinna functions.

Theorem 1.4 (Spectral Theorem). Let A be a self-adjoint operator. Then there exists a unique projection valued measure P^A such that $D(A) = \{ \psi \in \mathcal{H} : \int |\lambda|^2 d\mu_{\psi}^A(\lambda) < \infty \}$ and

$$A = \int \lambda dp^A(\lambda).$$

Theorem 1.5. Let A be a self-adjoint operator with projection valued measure P^A . Then

$$\sigma(A) = \{ \lambda \in \mathbb{R} : \forall \varepsilon > 0 \ P^A (\lambda - \varepsilon, \lambda + \varepsilon) \neq 0 \} .$$

Definition 1.10 (Spectral Basis). Let A be a self-adjoint operator. A family $(\psi_t)_{t \in I}$ in \mathcal{H} is said to be a **spectral basis** of \mathcal{H} , iff $\mathcal{H}_{\psi_i} \perp \mathcal{H}_{\psi_i}$ for all $i \neq j$, where

$$H_{\psi_i} := \left\{ f(A)\psi_i \in \mathcal{H} : f \in L^2(\mathbb{R}, d\mu_{\psi_i}) \right\},\,$$

and $\mathcal{H} = \bigoplus_{\iota \in I} \mathcal{H}_{\psi_{\iota}}$.

Now for any self-adjoint operator there exists a at most countable spectral basis $(\psi_{\iota})_{\iota \in I}$ and a unitary operator $U: \mathcal{H} \to \bigoplus_{\iota \in I} L^2(\mathbb{R}, d\mu_{\psi_{\iota}})$ such that $Uf(A)U^* = f$, where f acts as a multiplication operator on each coordinate. Thus any self-adjoint operator is unitarly equivalent to a multiplication operator.

Moreover, for any Borel measure μ we have a decomposition

$$L^{2}(\mathbb{R}, d\mu) = L^{2}(\mathbb{R}, d\mu_{\mathrm{ac}}) \oplus L^{2}(\mathbb{R}, d\mu_{\mathrm{pp}}) \oplus L^{2}(\mathbb{R}, d\mu_{\mathrm{sc}}).$$

The Schrödinger Equation.

Theorem 1.6. Let \mathcal{H} be a Hilbert space and $H:D(H)\to\mathcal{H}$ be self adjoint. Moreover, set $U(t):=\exp(-iHt)$ for $t\in\mathbb{R}$. Then:

- (a) U(t) is a strongly continuous one parameter unitary group.
- (b) The limit

$$\lim_{t \to 0} \frac{U(t) - 1}{t} \psi$$

exists if and only if $\psi \in D(H)$. Then

$$\lim_{t \to 0} \frac{U(t) - 1}{t} \psi = -iH\psi.$$

(c)
$$U(t)D(H) = D(H)$$
 and $[U(t), H] = 0$ on $D(H)$.

(d) Let $\psi_0 \in D(H)$. Then $U(t)\psi_0$ uniquely solves the initial value problem

$$\begin{cases} i \, \partial_t \psi(t) = H \psi(t) \\ \psi(0) = \psi_0, \end{cases} \tag{1}$$

called the Schrödinger equation.