Package 'QBMS'

September 18, 2024

```
Type Package
Title Query the Breeding Management System(s)
Version 1.5.0
Date 2024-09-19
Author Khaled Al-Shamaa [aut, cre],
         Mariano Omar Crimi [ctb],
         Zakaria Kehel [ctb],
         Johan Aparicio [ctb],
         ICARDA [cph]
Maintainer Khaled Al-Shamaa <k.el-shamaa@cgiar.org>
Description This R package assists breeders in linking data systems with their analytic pipelines,
         a crucial step in digitizing breeding processes. It supports querying and retrieving
         phenotypic and genotypic data from systems like 'EBS' <a href="https:">https:</a>
         //ebs.excellenceinbreeding.org/>,
         'BMS' <a href="https://bmspro.io">https://breedbase.org</a>, and
         'GIGWA' <a href="https://github.com/SouthGreenPlatform/Gigwa2">https://github.com/SouthGreenPlatform/Gigwa2</a> (using 'BrAPI' <a href="https://github.com/SouthGreenPlatform/Gigwa2">https://github.com/SouthGreenPlatform/Gigwa2</a> (using 'BrAPI')
         //brapi.org> calls).
         Extra helper functions support environmental data sources, including
         'TerraClimate' <a href="https://www.climatologylab.org/terraclimate.html">https://www.climatologylab.org/terraclimate.html</a> and 'FAO'
         'HWSDv2' <a href="https://gaez.fao.org/pages/hwsd">https://gaez.fao.org/pages/hwsd</a> soil database.
License GPL (>= 3)
URL https://icarda-git.github.io/QBMS/
BugReports https://github.com/icarda-git/QBMS/issues
Depends R (>= 3.1.0)
Imports httr2, jsonlite, tcltk, utils, RNetCDF, stats, terra, RSQLite,
         DBI, future, future.apply
Suggests knitr, rmarkdown, remotes
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation no
```

2 Contents

RoxygenNote 7.3.1 **Repository** CRAN

Date/Publication 2024-09-18 12:40:02 UTC

Contents

orapi_get_can
brapi_headers
brapi_map
brapi_post_search_allelematrix
brapi_post_search_call
build_pedigree_table
calc_biovars
debug_qbms
get_async_page
get_async_pages
get_brapi_url
get_germplasm_attributes
get_germplasm_data
$get_germplasm_id \dots \dots$
get_germplasm_list
get_hwsd2
get_login_details
get_parents
get_pedigree_table
get_program_studies
get_program_trials
get_qbms_connection
get_study_data
get_study_info
get_terraclimate
get_trial_data
get_trial_obs_ontology
gigwa_get_allelematrix
gigwa_get_markers
gigwa_get_metadata
gigwa_get_samples
gigwa_get_sequences
gigwa_get_variants
gigwa_list_dbs
gigwa_list_projects
gigwa_list_runs
gigwa_set_db
gigwa_set_project
gigwa_set_run
ini_hwsd2
ini terraclimate 38

brapi_get_call	3
Diapi gu can	J

list_cro	ps							 39
list_loc	ations							 40
list_pro	grams							 41
list_stu	dies							 41
list_tria	ls							 42
login_b	ms							 43
login_b	reedbase							 44
login_g	igwa							 45
login_o	auth2							 46
rbindlis	tx							 46
rbindx								 47
scan_bi	api_endpoint	s						 47
set_cro	p							 48
set_pro	gram							 49
set_qbn	ns_config .							 50
set_qbn	ns_connection	n						 51
set_stud	ly							 52
set_tok	en							 53
set_tria	1							 53
Index								55
brapi_get_ca	 all	Interno	ıl Fun	ction fe	or Core	BrAPI Gi	ET Calls	

Description

Fetches data from an API endpoint, handles pagination by retrieving all pages, and consolidates the results into a single data frame.

Usage

```
brapi_get_call(call_url, nested = TRUE)
```

Arguments

call_url Character string specifying the base URL of the API endpoint to request.

nested Logical value indicating whether to flatten nested lists in the JSON responses.

Defaults to TRUE.

Details

This function performs the following steps:

- 1. Fetches the first page synchronously to determine the total number of pages.
- 2. If multiple pages exist, it asynchronously fetches the remaining pages using get_async_pages().
- 3. Consolidates the data from all pages into a single data frame.
- 4. Updates global state variables with pagination information.

It relies on global variables from qbms_globals to manage state and configuration.

brapi_headers

Value

A list containing the consolidated data and associated metadata from the API response.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

brapi_headers

Generate Common HTTP Headers for API Requests

Description

This function constructs a list of standard HTTP headers required for making API requests, ensuring proper authentication and encoding. These headers are typically included with each API call to provide necessary information such as authorization tokens and content acceptance types. The function is designed to work with authenticated APIs, including BrAPI.

Usage

brapi_headers()

Value

A named list of common HTTP headers, including the authorization token (Bearer), content encoding, and accepted content types.

A named list containing key HTTP headers, including:

- Authorization: Bearer token used for authenticated API access.
- Accept-Encoding: Specifies supported compression types such as gzip and deflate.
- Accept: Specifies that the client accepts responses in JSON format.

Note

Ensure that the global state contains a valid authorization token before making API requests. This function retrieves the token from 'qbms_globals\$state\$token', which should be set after a successful login or authentication process.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

brapi_map 5

brapi_map	BrAPI Mapping Table	

Description

This internal table maps QBMS function names to corresponding BrAPI calls for different versions of the BrAPI standard. It is used internally by the QBMS system to translate function calls into BrAPI-compliant API requests.

Usage

brapi_map

Format

An object of class data. frame with 31 rows and 3 columns.

Details

This table supports both BrAPI v1 and v2 endpoints. It is regularly updated to reflect changes in the BrAPI standard and the inclusion of new API calls.

```
brapi_post_search_allelematrix

Internal Function Used for Core BrAPI POST Calls (Allele Matrix
Search)
```

Description

This function is used internally to execute POST calls for retrieving the allele matrix via BrAPI. It handles the post request, waits for the results asynchronously if required, and processes the results.

Usage

```
brapi_post_search_allelematrix(call_url, call_body, nested = TRUE)
```

Arguments

call_url	BrAPI URL for the POST request.
call_body	The request body to send with the POST request.
nested	Logical indicating whether to flatten the nested structure. Default is TRUE.

Value

A list of results obtained from the BrAPI POST call.

6 build_pedigree_table

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

```
brapi_post_search_call
```

Internal Function Used for Core BrAPI POST Calls

Description

This function is used internally to execute POST calls to BrAPI endpoints and retrieve the results while handling pagination and long-running tasks.

Usage

```
brapi_post_search_call(call_url, call_body, nested = TRUE)
```

Arguments

call_url BrAPI URL for the POST request.

call_body The request body to send with the POST request.

nested Logical indicating whether to flatten the nested structure. Default is TRUE.

Value

A list of results obtained from the BrAPI POST call.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

```
build_pedigree_table Building Pedigree Table Recursively
```

Description

Recursively builds a pedigree table by extracting and tracking parents for each genotype/germplasm in the provided list. The function handles backcross cases and updates the pedigree data frame with parent information for multiple generations.

Usage

```
build_pedigree_table(
  geno_list = NULL,
  pedigree_list = NULL,
  pedigree_df = NULL
)
```

calc_biovars 7

Arguments

geno_list A character vector of genotype/germplasm names.

pedigree_list A character vector of associated pedigree strings, corresponding to the geno-

types in geno_list.

pedigree_df A data frame of pedigrees from a previous iteration, used to accumulate pedigree

data. If NULL, a new data frame is created.

Value

A data frame with three columns: - 'Variety': The identifier for the individual genotype. - 'Female': The identifier for the female parent. - 'Male': The identifier for the male parent. The pedigree is built recursively, with individuals listed before any appearance as a parent.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

calc_biovars

Calculate the Bioclimatic Variables

Description

This function calculates the 19 standard bioclimatic variables derived from monthly temperature and precipitation data. Bioclimatic variables are often used in ecological modeling and species distribution modeling to capture biologically meaningful patterns in climate data, including annual trends, seasonality, and extreme environmental factors.

The bioclimatic variables represent metrics such as the annual mean temperature, temperature seasonality, and precipitation patterns (e.g., wettest or driest quarter). These metrics help to model species distributions and analyze ecological dynamics.

The bioclimatic variables are coded as follows:

- **BIO1** = Annual Mean Temperature
- **BIO2** = Mean Diurnal Range (Mean of monthly (max temp min temp))
- **BIO3** = Isothermality (BIO2/BIO7) (* 100)
- **BIO4** = Temperature Seasonality (standard deviation * 100)
- **BIO5** = Max Temperature of Warmest Month
- **BIO6** = Min Temperature of Coldest Month
- **BIO7** = Temperature Annual Range (BIO5 BIO6)
- **BIO8** = Mean Temperature of Wettest Quarter
- **BIO9** = Mean Temperature of Driest Quarter
- **BIO10** = Mean Temperature of Warmest Quarter
- **BIO11** = Mean Temperature of Coldest Quarter

8 calc_biovars

- **BIO12** = Annual Precipitation
- **BIO13** = Precipitation of Wettest Month
- **BIO14** = Precipitation of Driest Month
- **BIO15** = Precipitation Seasonality (Coefficient of Variation)
- **BIO16** = Precipitation of Wettest Quarter
- **BIO17** = Precipitation of Driest Quarter
- **BIO18** = Precipitation of Warmest Quarter
- **BIO19** = Precipitation of Coldest Quarter

These variables are computed using temperature and precipitation data in a standard format, and are critical for understanding species habitats and the effects of climate on ecosystems.

This work is derived from the dismo R package.

Usage

```
calc_biovars(data)
```

Arguments

data

A data frame containing monthly climate data. The data frame must include:

- year: The year for each set of monthly data.
- ppt: Monthly precipitation values (in mm).
- tmin: Monthly minimum temperature values (in degrees Celsius).
- tmax: Monthly maximum temperature values (in degrees Celsius).

The data should contain 12 rows (one for each month from January to December) per year, with the columns sorted in the order of year, ppt, tmin, and tmax.

Value

A data frame with 19 columns representing the bioclimatic variables (BIO1 to BIO19) and an additional column for the year. The output data frame provides one row per year, with each column corresponding to one of the bioclimatic variables described above.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org> Robert Hijmans, Museum of Vertebrate Zoology, UC Berkeley

References

Nix, 1986. A biogeographic analysis of Australian elapid snakes. In: R. Longmore (ed.). Atlas of elapid snakes of Australia. Australian Flora and Fauna Series 7. Australian Government Publishing Service, Canberra.

debug_qbms 9

debug_qbms

Debug Internal QBMS Status Object

Description

Retrieves the internal QBMS status object for debugging purposes. This object contains the current configuration and state of the QBMS session, including connection settings and active tokens.

Usage

```
debug_qbms()
```

Value

An environment object that holds the current QBMS configuration and state.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

Examples

```
if (interactive()) {
  obj <- debug_qbms()
  obj$config
  obj$state
}</pre>
```

get_async_page

Asynchronously Fetch a Single API Page

Description

Sends an asynchronous HTTP GET request to fetch data from a single API page.

Usage

```
get_async_page(full_url, nested)
```

Arguments

full_url Character string specifying the full URL of the API endpoint to request.

nested Logical value indicating whether to flatten nested lists in the JSON response.

10 get_async_pages

Details

This function uses future::future() to perform the HTTP GET request asynchronously. It retrieves the content from the specified URL, checks for HTTP errors, and parses the JSON response.

Value

A future representing the asynchronous operation, which will resolve to a list containing the parsed JSON response.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

get_async_pages

Asynchronously Fetch Multiple API Pages

Description

Sends asynchronous HTTP GET requests to fetch data from multiple API pages concurrently.

Usage

```
get_async_pages(pages, nested)
```

Arguments

pages Character vector of full URLs specifying the API endpoints to request.

nested Logical value indicating whether to flatten nested lists in the JSON responses.

Details

This function uses future.apply::future_lapply() to perform concurrent HTTP GET requests for multiple pages. It retrieves and parses the JSON responses from each URL provided.

Value

A list of parsed JSON responses from each page.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

get_brapi_url 11

get_brapi_url

Get the BrAPI Endpoint URL for a given QBMS function

Description

Constructs the BrAPI endpoint URL for a given QBMS function based on the configured server, crop, and BrAPI version. The function name is mapped to the corresponding BrAPI call using internal mapping.

Usage

```
get_brapi_url(func_name)
```

Arguments

func_name

(string) The name of the QBMS function for which the BrAPI endpoint URL is required.

Value

A string representing the BrAPI endpoint URL.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

```
get_germplasm_attributes
```

Retrieve Attributes for a Specified Germplasm

Description

Retrieves a detailed list of attributes for a given germplasm, such as its origin, donors, and taxonomic information.

Usage

```
get_germplasm_attributes(germplasm_name = "")
```

Arguments

germplasm_name The name of the germplasm.

Value

A data frame containing the attributes associated with the specified germplasm.

12 get_germplasm_data

Author(s)

Johan Steven Aparicio, <j.aparicio@cgiar.org>

See Also

```
login_bms, set_crop, get_germplasm_data
```

Examples

```
if (interactive()) {
   set_qbms_config("https://bms.icarda.org/ibpworkbench")
   login_bms()
   set_crop("wheat")
   germplasm_attributes <- get_germplasm_attributes("Jabal")
}</pre>
```

get_germplasm_data

Retrieve Observations Data for a Specified Germplasm.

Description

Retrieves all available observations data for the given germplasm in the current active crop. This data is aggregated across all trials in the crop database.

Usage

```
get_germplasm_data(germplasm_name = "")
```

Arguments

 ${\tt germplasm_name} \quad The \ name \ of \ the \ germplasm.$

Value

A data frame containing all available observations data for the specified germplasm.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

```
login_bms, set_crop, get_germplasm_attributes
```

get_germplasm_id

Examples

```
if (interactive()) {
    set_qbms_config("https://bms.icarda.org/ibpworkbench")
    login_bms()
    set_crop("wheat")
    germplasm_observations <- get_germplasm_data("Jabal")
    head(germplasm_observations)
}</pre>
```

get_germplasm_id

Get Germplasm ID for a Specified Germplasm Name

Description

Retrieves the unique germplasm ID associated with the specified germplasm name for the current active crop.

Usage

```
get_germplasm_id(germplasm_name = "")
```

Arguments

germplasm_name The name of the germplasm.

Value

A string representing the germplasm's unique ID (germplasmDbId).

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

```
\verb|set_crop|, \verb|get_germplasm_data|, \verb|get_germplasm_attributes||
```

14 get_germplasm_list

get_germplasm_list

Get the Germplasm List of the Current Active Study

Description

Retrieves the list of germplasm (genetic material) used in the currently active study, which must be set using the set_study function.

Usage

```
get_germplasm_list()
```

Value

A data frame containing the germplasm list for the active study.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

See Also

login_bms, set_crop, set_program, set_trial, set_study for related operations on crops and studies.

```
if (interactive()) {
    set_qbms_config("https://bms.icarda.org/ibpworkbench")
    login_bms()
    set_crop("wheat")
    set_program("Wheat International Nurseries")
    set_trial("IDYT39")
    set_study("IDYT39 Environment Number 9")
    germplasm <- get_germplasm_list()
    head(germplasm)
}</pre>
```

get_hwsd2 15

Description

Queries the HWSD v2 database to retrieve soil information for specific locations based on their coordinates. For each location, the function extracts the Soil Mapping Unit (SMU) code and retrieves soil attributes based on the specified sequence (soil dominance) and depth layer. The function returns the input data frame augmented with soil data from the HWSDv2 dataset.

The HWSD2_SMU table contains general information for each of the soil units occurring in any given SMU code (dominant soil unit and up to 11 associated soils).

The SEQUENCE column refers to the sequence in which soil units within the SMU are presented (in order of percentage share). The dominant soil has sequence 1. The sequence can range between 1 and 12.

The SHARE column refers to the share of the soil unit within the mapping unit in percentage. Shares of soil units within a mapping unit always sum up to 100 percent.

The HWSD2_LAYERS table provides soil attributes per depth layer for each of the seven depth layers (D1 to D7) separately (represented in the LAYER column in the HWSD2_LAYERS table). The depth of the top and bottom of each layer is defined in the TOPDEP and BOTDEP columns, respectively.

Usage

```
get_hwsd2(df, con, x = "longitude", y = "latitude", sequence = 1, layer = "D1")
```

Arguments

df	A data frame containing location information, including longitude and latitude in decimal degrees.
con	The HWSDv2 object returned by the ini_hwsd2() function, containing the raster and SQLite connection.
X	The column name in the data frame representing longitude (default is 'Longitude').
У	The column name in the data frame representing latitude (default is 'Latitude').
sequence	Integer indicating the soil unit's dominance order within the SMU (default is 1 for the dominant soil). Valid values range from 1 to 12.
layer	String indicating the depth layer for which soil attributes should be retrieved (default is 'D1', with layers ranging from 'D1' to 'D7').

Value

A data frame with the original location data augmented by soil attributes for the specified sequence and layer. The data frame includes additional columns such as 'smu_id', 'SEQUENCE', 'LAYER', and other soil attributes.

16 get_login_details

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

See Also

```
ini_hwsd2
```

Examples

get_login_details

Login Pop-Up Window

Description

Opens a GUI pop-up window using Tcl/Tk to prompt the user for their username and password. The window title and prompt message adapt based on the type of server being used (e.g., BMS, GIGWA).

Usage

```
get_login_details()
```

Value

A vector containing the inserted username and password, with names 'usr' and 'pwd' respectively.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

get_parents 17

get_parents

Get Direct Parents

Description

Utility function to split a given pedigree string and retrieve the pedigrees of the direct parents (female and male). The function handles different formats of cross representations, such as single slashes (/), double slashes (//), or numbered crosses (e.g., /3/). It extracts the highest cross order when available and returns the sub-pedigree for the immediate parents.

Usage

```
get_parents(pedigree)
```

Arguments

pedigree

A string providing the parentage through which a cultivar was obtained.

Value

A vector of two items representing the direct female and male parents. If parent information is unavailable or unknown, 'NA' is returned for the respective parent.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

get_pedigree_table

Get the Pedigree Table

Description

Retrieves a comprehensive pedigree table for the given dataset, which contains genotype names and pedigree strings. The function recursively traces parentage across generations and builds a pedigree table where each row corresponds to an individual, with columns for the female and male parents. It also handles cases of similar genotype names by standardizing them.

Usage

```
get_pedigree_table(
  data,
  geno_column = "germplasmName",
  pedigree_column = "pedigree"
)
```

18 get_pedigree_table

Arguments

data A data frame containing genotype/germplasm data, including names and pedi-

gree strings.

geno_column The name of the column that identifies the genotype/germplasm names.

pedigree_column

The name of the column that contains the pedigree strings.

Value

A data frame with three columns: - 'Variety': The identifier for the individual genotype. - 'Female': The identifier for the female parent. - 'Male': The identifier for the male parent. The pedigree table is sorted such that individuals appear before any row where they are listed as a parent. For founders (i.e., individuals with no parent information), 'NA' is used for the parental columns.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

```
if (interactive()) {
 set_qbms_config("https://bms.icarda.org/ibpworkbench")
 login_bms()
 set_crop("wheat")
 set_program("Wheat International Nurseries")
 set_trial("IDYT39")
 set_study("IDYT39 Environment Number 9")
 germplasm <- get_germplasm_list()</pre>
 pedigree_table <- get_pedigree_table(germplasm, "germplasmName", "pedigree")</pre>
 # nadiv package way
 # library(nadiv)
 # Get additive relationship matrix in sparse matrix format
 # A <- nadiv::makeA(pedigree_table)</pre>
 # Get A inverse matrix using base R function
 # AINV <- solve(as.matrix(A))</pre>
 ##############################
 # ASReml-R package way
 # library(asreml)
 # Represent A inverse matrix in an efficient way using i, j index and Ainverse value
 # Actual genotype names of any given index are in the attr(ainv, "rowNames")
 # ainv <- asreml::ainverse(pedigree_table)</pre>
 # Dummy data set for testing
 test <- data.frame(genotype = c("X", "Y"),</pre>
```

get_program_studies 19

```
pedigree = c("A//B/D/2/C", "B/C/3/A//B/C/2/D"))
pedigree_table <- get_pedigree_table(test, "genotype", "pedigree")
}</pre>
```

get_program_studies

Get the List of Trials, Studies, and Locations Information for the Current Selected Program

Description

Retrieves comprehensive information about the trials, studies, and environments/locations within the current active breeding program, as configured in the internal state object using the set_program function. This includes test and check entry counts for each study.

Usage

```
get_program_studies()
```

Value

A data frame containing detailed information for each study within the program's trials, including trial names, study names, location information, and entry counts.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

```
login_bms, set_crop, set_program
```

```
if (interactive()) {
    set_qbms_config("https://bms.icarda.org/ibpworkbench")
    login_bms()
    set_crop("wheat")
    set_program("Wheat International Nurseries")
    program_studies <- get_program_studies()
    head(program_studies)
}</pre>
```

20 get_qbms_connection

get_program_trials

Retrieve the List of Trials for the Active Breeding Program

Description

This internal function retrieves the list of trials for the currently active breeding program and crop combination. The crop and program must be set using set_crop and set_program prior to calling this function.

Usage

```
get_program_trials()
```

Value

A data frame containing information on trials for the active breeding program.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

```
login_bms, set_crop, set_program, list_trials
```

get_qbms_connection

Get the QBMS Connection

Description

Retrieves the current QBMS connection object, which contains the server's configuration and state, including any active sessions and tokens. This can be used to save and restore connections between sessions.

Usage

```
get_qbms_connection()
```

Value

A list containing the current QBMS configuration and state.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

get_study_data 21

See Also

```
set_qbms_connection
```

Examples

```
if(interactive()) {
 set_qbms_config("https://bms.icarda.org/ibpworkbench")
 login_bms()
 set_crop("wheat")
 set_program("Wheat International Nurseries")
 df1 <- get_germplasm_data("Jabal")</pre>
 con1 <- get_qbms_connection()</pre>
 set_qbms_config("https://gigwa.southgreen.fr/gigwa/", engine = "gigwa", no_auth = TRUE)
 gigwa_set_db("DIVRICE_NB")
 gigwa_set_project("refNB")
 gigwa_set_run("03052022")
 df2 <- gigwa_get_metadata()</pre>
 con2 <- get_qbms_connection()</pre>
 set_qbms_connection(con1)
 df3 <- get_germplasm_attributes("Jabal")</pre>
}
```

get_study_data

Get the Observations Data of the Current Active Study

Description

Retrieves the observations data (e.g., measurements, variables) for the active study, which must be set using the set_study function.

Usage

```
get_study_data()
```

Value

A data frame containing the observation data for the active study, or NULL if no data is available.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

get_study_info

See Also

login_bms, set_crop, set_program, set_trial, set_study for related study operations.

Examples

```
if (interactive()) {
    set_qbms_config("https://bms.icarda.org/ibpworkbench")
    login_bms()
    set_crop("wheat")
    set_program("Wheat International Nurseries")
    set_trial("IDYT39")
    set_study("IDYT39 Environment Number 9")
    data <- get_study_data()
    head(data)
}</pre>
```

get_study_info

Get the Details/Metadata of the Current Active Study

Description

Retrieves detailed metadata for the currently active study. The study must be set using the set_study function, and its details will be fetched from the BrAPI server.

Usage

```
get_study_info()
```

Value

A data frame containing the metadata of the active study. Returns NULL if no study metadata is available.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

login_bms, set_crop, set_program, set_trial, set_study for related crop and study management. get_terraclimate 23

Examples

```
if (interactive()) {
    set_qbms_config("https://bms.icarda.org/ibpworkbench")
    login_bms()
    set_crop("wheat")
    set_program("Wheat International Nurseries")
    set_trial("IDYT39")
    set_study("IDYT39 Environment Number 9")
    info <- get_study_info()
}</pre>
```

get_terraclimate

Get TerraClimate Data for a Given Coordinate(s)

Description

This function allows you to extract climate variables from the TerraClimate dataset for specific geographic coordinates. TerraClimate is a global dataset of monthly climate data covering the years 1958-present. The function retrieves climate variables directly from the hosting server provided by the University of Idaho, avoiding the need to download large raster files in netCDF format. Additionally, the function calculates bioclimatic variables using the calc_biovars function, derived from the dismo R package.

The TerraClimate dataset is compared with WorldClim in several aspects:

- TerraClimate: 1958-present vs. WorldClim: 1970-2000
- 14 climate variables vs. 7 climate variables in WorldClim
- Spatial resolution: ~4 km (TerraClimate) vs. ~1 km (WorldClim)
- Need to calculate bioclimatic variables (TerraClimate) vs. pre-calculated (WorldClim)

Usage

```
get_terraclimate(
  lat,
  lon,
  from = "1958-01-01",
  to = "2022-12-31",
  clim_vars = NULL,
  month_mask = NULL,
  offline = FALSE,
  data_path = "./data/"
)
```

24 get_terraclimate

Arguments

lat	Vector of Latitude(s) in decimal degree format. Each entry corresponds to a location of interest.
lon	Vector of Longitude(s) in decimal degree format. Each entry corresponds to a location of interest.
from	Start date as a string in 'YYYY-MM-DD' format. Defines the beginning of the time range for data extraction.
to	End date as a string in 'YYYY-MM-DD' format. Defines the end of the time range for data extraction.
clim_vars	List of climate variables to extract. Valid options include: <i>aet, def, pet, ppt, q, soil, srad, swe, tmax, tmin, vap, ws, vpd, and PDSI</i> . Default is NULL, which retrieves all variables.
month_mask	A vector specifying the months of interest, e.g., for specific seasons (e.g., planting season: c(10:12, 1:5)). Default is NULL, which retrieves data for all months.
offline	Logical value indicating whether to extract TerraClimate data from pre-downloaded netCDF files. Default is FALSE, meaning data is fetched from the remote server.
data_path	String specifying the directory path where downloaded netCDF files are stored when working offline. Default is './data/'.

Value

A list of two data frames for each coordinate pair (latitude and longitude):

- climate: A data frame containing the requested climate variables for each month and location.
- **biovars:** A data frame with calculated bioclimatic variables, based on the extracted climate data.

Each data frame is in a format ready for further analysis in R.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

References

Abatzoglou, J., Dobrowski, S., Parks, S. *et al.* TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. *Sci Data* **5**, 170191 (2018). doi:10.1038/sdata.2017.191

See Also

ini_terraclimate, calc_biovars

get_trial_data 25

Examples

get_trial_data

Get the Observations Data of the Current Active Trial

Description

Retrieves the combined observations data (including all studies) for the current active trial, as configured in the internal state object using the set_trial function. This function iterates over all studies within the active trial and aggregates their observation data.

Usage

```
get_trial_data()
```

Value

A data frame containing the combined observations data from all studies in the active trial.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

```
login_bms, set_crop, set_program, set_trial
```

```
if (interactive()) {
    set_qbms_config("https://bms.icarda.org/ibpworkbench")
    login_bms()
    set_crop("wheat")
    set_program("Wheat International Nurseries")
    set_trial("IDYT39")
    MET <- get_trial_data()
    head(MET)
}</pre>
```

```
get_trial_obs_ontology
```

Get the Traits Ontology/Metadata of the Current Active Trial

Description

Retrieves the traits ontology or metadata for the current active trial, which includes detailed information about the observation variables used in the trial.

Usage

```
get_trial_obs_ontology()
```

Value

A data frame containing the traits ontology or metadata, filtered by the observation variables used in the current trial.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

See Also

login_bms, set_crop, set_program, set_trial, get_study_data for retrieving study observations.

```
if (interactive()) {
    set_qbms_config("https://bms.icarda.org/ibpworkbench")
    login_bms()
    set_crop("wheat")
    set_program("Wheat International Nurseries")
    set_trial("IDYT39")
    ontology <- get_trial_obs_ontology()
}</pre>
```

gigwa_get_allelematrix 27

```
gigwa_get_allelematrix
```

Get Markers Matrix in the Selected GIGWA Run

Description

Retrieve a two-dimensional matrix of genotype data from the selected GIGWA run. This matrix is returned based on filters for regions, samples, or variants. The data can be simplified to use numeric coding for genotypes, or returned in its raw VCF-like format.

Usage

```
gigwa_get_allelematrix(
  samples = NULL,
  start = 0,
  end = "",
  chrom = NULL,
  snps = NULL,
  snps_pageSize = 10000,
  samples_pageSize = 100,
  simplify = TRUE
)
```

Arguments

samples	A list of sample names to include (optional). If NULL, all samples will be included.			
start	Start position of the query region (zero-based, inclusive).			
end	End position of the query region (zero-based, exclusive).			
chrom	Reference sequence name (e.g., chromosome or contig).			
snps	A list of variant names to filter (optional).			
<pre>snps_pageSize</pre>	Number of variants to fetch per page (default is 10,000).			
samples_pageSize				
	Number of samples to fetch per page (default is 100).			
simplify	Whether to simplify the returned data using numeric coding (default is TRUE).			

Value

A data frame with rows representing SNP markers and columns representing samples. Values are numeric codings (0: reference allele, 1: heterozygous, 2: alternative allele).

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

28 gigwa_get_markers

Examples

gigwa_get_markers

Get Markers Map in the Selected GIGWA Run

Description

Retrieve a filtered list of SNP variants from the selected run. This function allows users to query variants based on chromosomal regions and return results in simplified format.

Usage

```
gigwa_get_markers(start = NULL, end = NULL, chrom = NULL, simplify = TRUE)
```

Arguments

start Start position of the query region (zero-based, inclusive).
end End position of the query region (zero-based, exclusive).

chrom Reference sequence name (e.g., chromosome).

simplify Logical, if TRUE (default) returns data in a simplified HapMap-like format with

columns for rs#, alleles, chromosome, and position.

Value

A data frame of SNP markers, optionally simplified to include rs#, alleles, chromosome, and position.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

gigwa_get_metadata 29

Examples

gigwa_get_metadata

Get the Metadata of the Current Active GIGWA Run

Description

Retrieve metadata associated with the samples in the current active run, set using the 'gigwa_set_run()' function. The metadata provides additional information about the samples in the selected run.

Usage

```
gigwa_get_metadata()
```

Value

A data frame containing metadata attributes for each sample in the active run.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

```
set_qbms_config, gigwa_set_run
```

gigwa_get_samples

Get the Samples List of the Current Active GIGWA Project

Description

Retrieve the list of samples associated with the currently active GIGWA project, set using 'gigwa_set_project()'.

Usage

```
gigwa_get_samples()
```

Value

A vector of sample names in the selected project.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

```
set_qbms_config, gigwa_set_project
```

Examples

gigwa_get_sequences

Get the Sequences of the Current Active GIGWA Project

Description

Retrieve the list of sequences (e.g., chromosomes) associated with the currently active project in GIGWA, which has been set using the 'gigwa_set_project()' function.

Usage

```
gigwa_get_sequences()
```

gigwa_get_variants 31

Value

A vector of sequence names (e.g., chromosome names) for the selected project.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

```
set_qbms_config, gigwa_set_project
```

Examples

gigwa_get_variants

Get Available Variants in the Selected GIGWA Run

Description

Retrieve variant data (e.g., SNP markers) for the selected GIGWA run based on filtering criteria, including minor allele frequency, missing data threshold, and sample subset.

Usage

```
gigwa_get_variants(
  max_missing = 1,
  min_maf = 0.5,
  samples = NULL,
  start = NULL,
  end = NULL,
  referenceName = NULL
)
```

Arguments

max_missing	The maximum allowable missing data ratio, between 0 and 1 (default is 1, meaning up to 100% missing data).
min_maf	Minimum Minor Allele Frequency (MAF) between 0 and 0.5 (default is 0).
samples	A list of sample names to include in the query (optional). If NULL, all samples will be included.

32 gigwa_list_dbs

start Start position of the query region (zero-based, inclusive).
end End position of the query region (zero-based, exclusive).
referenceName The reference sequence name (e.g., chromosome).

Value

A data frame where the first 4 columns describe the SNP (rs# variant name, alleles, chrom, pos), and subsequent columns contain numerical genotyping information (0 for reference allele, 1 for heterozygous, and 2 for minor allele).

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

Examples

gigwa_list_dbs

List GIGWA Databases

Description

Retrieve the list of available databases from the connected GIGWA server. An active connection is required. If not connected, the function will throw an error.

Usage

```
gigwa_list_dbs()
```

Value

A list of databases available on the connected GIGWA server.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

gigwa_list_projects 33

See Also

```
set_qbms_config
```

Examples

gigwa_list_projects

Get the List of All Projects in the Selected GIGWA Database

Description

Retrieve the list of projects available in the currently active GIGWA database, set using 'gigwa_set_db()'. If no database is selected, the function will throw an error.

Usage

```
gigwa_list_projects()
```

Value

A list of project names in the selected database.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

See Also

```
set_qbms_config, gigwa_set_db
```

34 gigwa_set_db

Description

Retrieve the list of available runs in the currently active GIGWA project, set using 'gigwa_set_project()'. If no project is selected, an error will be raised.

Usage

```
gigwa_list_runs()
```

Value

A list of run names associated with the selected project.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

See Also

```
set_qbms_config, gigwa_set_project
```

Examples

gigwa_set_db

Set the Current Active GIGWA Database by Name

Description

Select a GIGWA database as the active database for subsequent operations. This updates the internal configuration object and resets any previously selected projects or runs.

Usage

```
gigwa_set_db(db_name)
```

gigwa_set_project 35

Arguments

db_name

The name of the database to set as active.

Value

No return value. Updates the internal configuration with the selected database.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

```
set_qbms_config, gigwa_list_dbs
```

Examples

gigwa_set_project

Set the Current Active GIGWA Project

Description

Select a project from the active GIGWA database and set it as the current active project in the internal state. This selection is used for retrieving related data, such as runs or samples.

Usage

```
gigwa_set_project(project_name)
```

Arguments

project_name The name of the project to set as active.

Value

No return value. Updates the internal state with the selected project.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

36 gigwa_set_run

See Also

```
set_qbms_config, gigwa_set_db, gigwa_list_projects
```

Examples

gigwa_set_run

Set the Current Active GIGWA Run

Description

Select a run from the active GIGWA project and set it as the current active run in the internal state, enabling further data retrieval operations.

Usage

```
gigwa_set_run(run_name)
```

Arguments

run_name

The name of the run to set as active.

Value

No return value. Updates the internal state with the selected run.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

```
set_qbms_config, gigwa_set_project, gigwa_list_runs
```

ini_hwsd2

ini_hwsd2 Download and Setup HWSD v2.0 Data Files fline	es to Extract their Data Of-
---	------------------------------

Description

Downloads and sets up the HWSD v2.0 data files required to extract soil data offline. The function retrieves the HWSD raster soil unit map and the SQLite database containing soil attributes. If the files already exist in the specified directory, they are used directly. The function returns an object with the raster and SQLite connection for further queries.

Usage

```
ini_hwsd2(data_path = "./data/", timeout = 300)
```

Arguments

data_path String specifying the directory path where HWSD v2.0 data files are stored or

should be downloaded (default is './data/').

timeout Timeout in seconds for downloading each HWSD v2.0 data file (default is 300).

Value

A list object ('con') containing two items: - 'raster': HWSDv2 raster object for spatial queries. - 'sqlite': Connection to the HWSDv2 SQLite database.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

```
get_hwsd2
```

```
if (interactive()) {
  hwsd2 <- ini_hwsd2(data_path = 'C:/Users/Kel-shamaa/Downloads/HWSD v2/')
}</pre>
```

38 ini_terraclimate

ini_terraclimate	Download TerraClimate netCDF Data Files to Extract their Data Of-
	fline

Description

This function facilitates the download of TerraClimate netCDF files for a specified time period and climate variables. TerraClimate data provides monthly climate data for global terrestrial surfaces, and this function allows you to store the data locally for offline extraction and analysis without the need to download the entire dataset.

Users can specify a range of climate variables such as precipitation, temperature, evapotranspiration, soil moisture, and more. The downloaded files are saved in netCDF format, making them accessible for subsequent offline analysis.

Usage

```
ini_terraclimate(
   from = "2019-09-01",
   to = "2022-06-30",
   clim_vars = c("ppt", "tmin", "tmax"),
   data_path = "./data/",
   timeout = 300
)
```

Arguments

from	Start date as a string in the 'YYYY-MM-DD' format. This defines the beginning of the time period for which you want to download the climate data.
to	End date as a string in the 'YYYY-MM-DD' format. This defines the end of the time period for which you want to download the climate data.
clim_vars	A list of climate variables to download. Valid options include: <i>aet</i> (Actual Evapotranspiration), <i>def</i> (Climate Water Deficit), <i>pet</i> (Potential Evapotranspiration), <i>ppt</i> (Precipitation), <i>q</i> (Runoff), <i>soil</i> (Soil Moisture), <i>srad</i> (Solar Radiation), <i>swe</i> (Snow Water Equivalent), <i>tmax</i> (Maximum Temperature), <i>tmin</i> (Minimum Temperature), <i>vap</i> (Vapor Pressure), <i>ws</i> (Wind Speed), <i>vpd</i> (Vapor Pressure Deficit), and <i>PDSI</i> (Palmer Drought Severity Index). If NULL (default), all available variables will be downloaded.
data_path	A string containing the directory path where the downloaded netCDF files will be stored. The default path is './data/'.
timeout	Timeout in seconds for downloading each netCDF raster file. The default value is 300 seconds.

Value

No explicit return value. The downloaded netCDF files are saved to the specified directory for offline use with the get_terraclimate function to extract data for a given coordinate or set of coordinates.

list_crops 39

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

See Also

```
get_terraclimate
```

Examples

```
if (interactive()) {
 # Initialize TerraClimate data download for specific climate variables between two dates
 ini_terraclimate('2018-09-01', '2019-06-30', c('ppt', 'tmin', 'tmax'))
 # Coordinates for the location(s) of interest
 x < -c(-6.716, 35.917, 76.884)
 y < -c(33.616, 33.833, 23.111)
 # Extract TerraClimate data for the specified coordinates (online mode)
 a <- get_terraclimate(y, x, '2018-09-01', '2019-06-30', c('ppt', 'tmin', 'tmax'))
 # View the extracted climate data and bioclimatic variables
 View(a$climate[[1]])
 View(a$biovars[[1]])
 # Extract TerraClimate data for the specified coordinates (offline mode)
 b <- get_terraclimate(y, x, '2018-09-01', '2019-06-30', c('ppt', 'tmin', 'tmax'), offline = TRUE)
 # View the offline-extracted data
 View(b$climate[[1]])
 View(b$biovars[[1]])
}
```

list_crops

Retrieve Supported Crops from the Server

Description

Retrieves the list of crops supported by the connected server. If the crop list is cached in the internal state, it returns the cached data; otherwise, it sends a BrAPI GET request to fetch the crop list.

Usage

```
list_crops()
```

Value

A character vector containing the names of supported crops.

40 list_locations

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

login_bms, set_crop to configure and set the current active crop.

Examples

```
if (interactive()) {
   set_qbms_config("https://bms.icarda.org/ibpworkbench")
   login_bms() # Log in to the server
   list_crops() # Retrieve list of supported crops
}
```

list_locations

Get the List of Locations Information of the Current Selected Crop

Description

Retrieves a list of locations associated with the current active crop, as configured in the internal state object using the set_crop function.

Usage

```
list_locations()
```

Value

A data frame containing information about locations relevant to the current crop.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

login_bms, set_crop for related crop operations.

list_programs 41

list_programs

Retrieve Breeding Programs for the Active Crop

Description

Retrieves the list of breeding programs available for the currently selected crop. The crop must be set using the set_crop function prior to calling this.

Usage

```
list_programs()
```

Value

A data frame containing the names of breeding programs available for the active crop.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

login_bms, set_crop, list_crops for managing server connection and crop selection.

Examples

```
if (interactive()) {
   set_qbms_config("https://bms.icarda.org/ibpworkbench")
   login_bms() # Log in to the server
   set_crop("wheat") # Set "wheat" as the active crop
   list_programs() # Retrieve breeding programs for the active crop
}
```

list_studies

Get the List of Studies in the Current Active Trial

Description

Retrieves a list of studies (and associated locations) for the currently active trial, as configured using the set_trial function.

Usage

```
list_studies()
```

42 list_trials

Value

A data frame containing study names and associated location names. If no studies are available, an error is thrown.

Note

This function must be called after a trial has been set using set_trial.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

login_bms, set_crop, set_program, set_trial for related operations on crops, programs, and trials.

Examples

```
if (interactive()) {
    set_qbms_config("https://bms.icarda.org/ibpworkbench")
    login_bms()  # Log in to the server
    set_crop("wheat")  # Set crop
    set_program("Wheat International Nurseries")  # Set breeding program
    set_trial("IDYT39")  # Set trial
    list_studies()  # List studies
}
```

list_trials

List Trials in the Current Active Breeding Program

Description

Retrieves the list of trials for the current active breeding program. Optionally, filters trials by their starting year if specified.

Usage

```
list_trials(year = NULL)
```

Arguments

year

Numeric. An optional parameter to filter trials by their starting year. If not provided, all trials for the active program are returned.

login_bms 43

Value

A data frame containing the names of trials for the active breeding program. If no trials match the query, a warning is issued, and NA is returned.

Note

The year filter is only supported for BMS databases.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

login_bms, set_crop, set_program for related operations involving crop and program selection.

Examples

```
if (interactive()) {
    set_qbms_config("https://bms.icarda.org/ibpworkbench")
    login_bms()  # Log in to the server
    set_crop("wheat")  # Set crop
    set_program("Wheat International Nurseries")  # Set breeding program
    list_trials()  # List trials
    list_trials(2022)  # List trials starting in 2022
}
```

login_bms

Login to the Server

Description

Connects to the BMS or related server using a username and password. If these are not provided, a pop-up window will prompt the user to enter their credentials. The function handles authentication and stores the resulting access token internally for subsequent requests.

Usage

```
login_bms(username = NULL, password = NULL, encoding = "json")
```

Arguments

username	The username (optional, default is NULL). If not provided, the pop-up window is triggered.
password	The password (optional, default is NULL). If not provided, the pop-up window is triggered.
encoding	Specifies how the request body should be encoded: 'form' (application/x-www-form-urlencoded), 'multipart' (multipart/form-data), or 'json' (application/json). Default is "json".

44 login_breedbase

Value

No return value. The access token is stored internally for future use.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

Examples

```
if(interactive()) {
   set_qbms_config("https://bms.icarda.org/ibpworkbench")
   login_bms()
}
```

login_breedbase

Login to the BreedBase Server

Description

Logs in to the BreedBase server using a username and password. If credentials are not provided, a pop-up window will prompt the user. The function is a wrapper around the 'login_bms()' function, with encoding set to 'form'.

Usage

```
login_breedbase(username = NULL, password = NULL)
```

Arguments

username The username (optional, default is NULL).

password The password (optional, default is NULL).

Value

No return value. The access token is stored internally for future use.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

login_gigwa 45

login_gigwa

Login to the GIGWA Server

Description

Connect to the GIGWA server. If the 'username' or 'password' parameters are missing, a login window will be triggered to capture these details.

All connection settings (server URL, port, API path, and protocol) are read from the 'qbms_config' list. The function will request an authentication token from the server and update the 'qbms_state' list with the token.

Usage

```
login_gigwa(username = NULL, password = NULL)
```

Arguments

username The GIGWA username (optional, default is NULL).

password The GIGWA password (optional, default is NULL).

Value

No return value. The authentication token will be stored internally.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

```
if (interactive()) {
    set_qbms_config("http://localhost:59395/gigwa/index.jsp", time_out = 300, engine = "gigwa")

# Login using your GIGWA account (interactive mode)
    login_gigwa()

# You can pass GIGWA username and password as parameters (batch mode)
    # login_gigwa("gigwadmin", "nimda")
}
```

46 rbindlistx

login_oauth2

Login using OAuth 2.0 Authentication

Description

Performs OAuth 2.0 authentication by sending the user to the authorization URL and exchanging the authorization code for an access token. This function supports caching of tokens for subsequent requests.

Usage

```
login_oauth2(
  authorize_url,
  access_url,
  client_id,
  client_secret = NULL,
  redirect_uri = "http://localhost:1410"
)
```

Arguments

authorize_url The URL where the client is redirected for user authorization.

access_url The URL used to exchange an authorization code for an access token.

client_id The client ID (consumer key) provided by the authorization server.

client_secret The client secret provided by the authorization server (optional).

redirect_uri The URL where the user will be redirected after authorization (default is http://localhost:1410).

Value

No return value. Updates the internal state with the access token and additional details.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

rbindlistx

Make One Data. Table from a List of Many

Description

Performs the equivalent of do.call("rbind", x) on data.frames, but much faster.

Usage

```
rbindlistx(x)
```

rbindx 47

Arguments

Χ

A list containing data.table, data.frame, or list objects.

Value

An unkeyed data.table containing a concatenation of all the items passed in.

rbindx

Combine Data Frames by Row, Filling in Missing Columns

Description

Combines a list of data frames by row, filling in missing columns with NA.

Usage

```
rbindx(..., dfs = list(...))
```

Arguments

... The first argument data frame.

dfs Input data frames to row bind together.

Value

A single data frame.

Description

Scans the available BrAPI endpoints on the configured source server and checks their accessibility. This function allows users to verify which BrAPI endpoints are available based on the provided IDs.

Usage

```
scan_brapi_endpoints(programDbId = 0, trialDbId = 0, studyDbId = 0)
```

Arguments

programDbId	(numeric) The programDbId to scan specific program-related endpoints (default is 0).
trialDbId	(numeric) The trialDbId to scan specific trial-related endpoints (default is 0).
studyDbId	(numeric) The studyDbId to scan specific study-related endpoints (default is 0).

48 set_crop

Value

A data frame listing the QBMS function, BrAPI endpoint URL, and availability status for each endpoint.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

set_crop

Set the Current Active Crop

Description

Updates the internal configuration to set the selected crop as the active one. This must be called before performing crop-specific operations such as retrieving breeding programs.

Usage

```
set_crop(crop_name)
```

Arguments

crop_name

A string specifying the name of the crop to set as active.

Value

No return value. The function updates the global state with the selected crop.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

login_bms, list_crops to validate and retrieve the list of supported crops.

```
if (interactive()) {
   set_qbms_config("https://bms.icarda.org/ibpworkbench")
   login_bms() # Log in to the server
   set_crop("wheat") # Set "wheat" as the active crop
}
```

set_program 49

set_program

Set the Current Active Breeding Program

Description

Updates the internal state to set the selected breeding program as active using the associated programDbId. This allows subsequent operations to be carried out within the context of this program.

Usage

```
set_program(program_name)
```

Arguments

program_name A string specifying the name of the breeding program to set as active.

Value

No return value. The internal state is updated with the selected program.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

login_bms, set_crop, list_programs for related operations in the crop and program selection process.

```
if (interactive()) {
    set_qbms_config("https://bms.icarda.org/ibpworkbench")
    login_bms() # Log in to the server
    set_crop("wheat") # Set crop
    set_program("Wheat International Nurseries") # Set breeding program
}
```

set_qbms_config

set_qbms_config

Configure BMS Server Settings

Description

Configures the BMS server connection settings, including URL, API path, page size, and timeout. This function allows you to set up the connection for different server backends like BMS, Gigwa, EBS, and Breedbase, and choose the appropriate BrAPI version.

Usage

```
set_qbms_config(
  url = "http://localhost",
  path = NULL,
  page_size = 1000,
  time_out = 120,
  no_auth = FALSE,
  engine = "bms",
  brapi_ver = "v1",
  verbose = TRUE
)
```

Arguments

url	The URL of the BMS login page or API base (default is "http://localhost").
path	The API path to use (default is NULL, which sets a path based on the engine).
page_size	The number of records per page when making API calls (default is 1000).
time_out	The maximum number of seconds to wait for a response (default is 120).
no_auth	Logical, whether the server requires authentication (default is FALSE).
engine	The backend system (default is "bms"). Options include "bms", "gigwa", "breedbase", "ebs".
brapi_ver	The version of BrAPI to use, either "v1" or "v2" (default is "v1").
verbose	Logical, indicating whether to display progress information when making API calls (default is TRUE).

Value

No return value.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

```
set_qbms_config("https://bms.icarda.org/ibpworkbench")
```

set_qbms_connection 51

set_qbms_connection

Set the QBMS Connection

Description

Sets the QBMS connection object in the current environment, allowing users to restore a saved connection, including configuration settings and session tokens.

Usage

```
set_qbms_connection(env)
```

Arguments

env

A list containing the saved connection configuration and state.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

See Also

```
get_qbms_connection
```

```
if(interactive()) {
 set_qbms_config("https://bms.icarda.org/ibpworkbench")
 login_bms()
 set_crop("wheat")
 set_program("Wheat International Nurseries")
 df1 <- get_germplasm_data("Jabal")</pre>
 con1 <- get_qbms_connection()</pre>
 set_qbms_config("https://gigwa.southgreen.fr/gigwa/", engine = "gigwa", no_auth = TRUE)
 gigwa_set_db("DIVRICE_NB")
 gigwa_set_project("refNB")
 gigwa_set_run("03052022")
 df2 <- gigwa_get_metadata()</pre>
 con2 <- get_qbms_connection()</pre>
 set_qbms_connection(con1)
 df3 <- get_germplasm_attributes("Jabal")</pre>
}
```

set_study

set_study

Set the Current Active Study

Description

Updates the internal state to set the selected study as the current active study using the associated studyDbId. This allows operations to be performed within the context of the selected study.

Usage

```
set_study(study_name)
```

Arguments

study_name

A string specifying the name of the study to set as active.

Value

No return value. The internal state is updated with the selected study.

Author(s)

```
Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>
```

See Also

login_bms, set_crop, set_program, set_trial, list_studies for related operations on crops, programs, trials, and studies.

```
if (interactive()) {
    set_qbms_config("https://bms.icarda.org/ibpworkbench")
    login_bms()  # Log in to the server
    set_crop("wheat")  # Set crop
    set_program("Wheat International Nurseries")  # Set breeding program
    set_trial("IDYT39")  # Set trial
    set_study("IDYT39 Environment Number 9")  # Set study
}
```

set_token 53

|--|

Description

Stores the access token and associated details (such as username and expiration time) in the internal state. The token is typically retrieved from the server during login and used for subsequent API requests.

Usage

```
set_token(token, user = "", expires_in = 3600)
```

Arguments

token The access token string issued by the authorization server.

user The username associated with the token (optional).

expires_in The lifetime of the access token in seconds (optional, default is 3600 seconds).

Value

No return value. Updates the internal state with the token info.

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

set_trial	Set the Current Active Trial	

Description

Updates the internal state to set the selected trial as the current active trial using the associated trialDbId. This enables operations to be carried out within the context of the selected trial.

Usage

```
set_trial(trial_name)
```

Arguments

 $trial_name$ A string specifying the name of the trial to set as active.

Value

No return value. The internal state is updated with the selected trial.

set_trial

Author(s)

Khaled Al-Shamaa, <k.el-shamaa@cgiar.org>

See Also

login_bms, set_crop, set_program, list_trials for operations involving crops, programs, and trials

```
if (interactive()) {
    set_qbms_config("https://bms.icarda.org/ibpworkbench")
    login_bms()  # Log in to the server
    set_crop("wheat")  # Set crop
    set_program("Wheat International Nurseries")  # Set breeding program
    set_trial("IDYT39")  # Set trial
}
```

Index

* datasets brapi_map, 5	gigwa_list_projects, 33, 36 gigwa_list_runs, 34, 36 gigwa_set_db, 33, 34, 36
<pre>brapi_get_call, 3</pre>	gigwa_set_project, 30, 31, 34, 35, 36
brapi_headers, 4	gigwa_set_run, 29, 36
brapi_map, 5	
<pre>brapi_post_search_allelematrix, 5</pre>	ini_hwsd2, <i>16</i> , <i>37</i>
<pre>brapi_post_search_call, 6</pre>	ini_terraclimate, 24, 38
<pre>build_pedigree_table, 6</pre>	20 41 40
	list_crops, 39, 41, 48
calc_biovars, 7, 23, 24	list_locations, 40
	list_programs, 41, 49
debug_qbms, 9	list_studies, 41, 52
	list_trials, 20, 42, 54
get_async_page, 9	login_bms, 12, 14, 19, 20, 22, 25, 26, 40–43,
get_async_pages, 10	43, 48, 49, 52, 54
get_brapi_url, 11	login_breedbase, 44
get_germplasm_attributes, 11, 12, 13	login_gigwa, 45
get_germplasm_data, <i>12</i> , <i>12</i> , <i>13</i>	login_oauth2,46
<pre>get_germplasm_id, 13</pre>	whindlinty 16
<pre>get_germplasm_list, 14</pre>	rbindlistx, 46
get_hwsd2, 15, <i>37</i>	rbindx, 47
<pre>get_login_details, 16</pre>	scan_brapi_endpoints,47
get_parents, 17	set_crop, 12–14, 19, 20, 22, 25, 26, 40–43,
<pre>get_pedigree_table, 17</pre>	48, 49, 52, 54
get_program_studies, 19	set_program, <i>14</i> , <i>19</i> , <i>20</i> , <i>22</i> , <i>25</i> , <i>26</i> , <i>42</i> , <i>43</i> ,
<pre>get_program_trials, 20</pre>	49, 52, 54
get_qbms_connection, 20, 51	set_qbms_config, 29-31, 33-36, 50
get_study_data, 21, 26	set_qbms_connection, 21, 51
<pre>get_study_info, 22</pre>	set_study, 14, 21, 22, 52
get_terraclimate, 23, 38, 39	set_token, 53
<pre>get_trial_data, 25</pre>	set_trial, 14, 22, 25, 26, 41, 42, 52, 53
<pre>get_trial_obs_ontology, 26</pre>	000_00.101,17,22,20,20,71,72,02,00
gigwa_get_allelematrix,27	
gigwa_get_markers, 28	
gigwa_get_metadata, 29	
<pre>gigwa_get_samples, 30</pre>	
gigwa_get_sequences, 30	
gigwa_get_variants, 31	
gigwa_list_dbs, 32, 35	