Discrete Mathematics Lecture 3

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

\mathbb{Z}_n^*

- **DEFINITION:** Let $n \in \mathbb{Z}^+$ and $[b]_n \in \mathbb{Z}_n$. $[s]_n \in \mathbb{Z}_n$ is called an **inverse** of $[b]_n$ if $[b]_n[s]_n = [1]_n$.
 - **division**: If $[b]_n [s]_n = [1]_n$, define $\frac{[a]_n}{[b]_n} = [a]_n \cdot [s]_n$
- **THEOREM**: Let $n \in \mathbb{Z}^+$. $[b]_n \in \mathbb{Z}_n$ has an inverse iff gcd(b, n) = 1
 - Only if: $\exists s \text{ s.t.}[b]_n[s]_n \equiv [1]_n$; $\exists t, bs 1 = nt$; $\gcd(b, n) = 1$
 - If: $\exists s, t \text{ s.t. } bs + nt = 1; bs \equiv 1 \pmod{n}$
- **DEFINITION**: Let $n \in \mathbb{Z}^+$. Define $\mathbb{Z}_n^* = \{[b]_n \in \mathbb{Z}_n : \gcd(b, n) = 1\}$
 - If *n* is prime, then $\mathbb{Z}_n^* = \{1, 2, ..., n-1\}$
 - If *n* is composite, then $\mathbb{Z}_n^* \subset \mathbb{Z}_n$
- **EXAMPLE:** $\mathbb{Z}_5^* = \{1,2,3,4\}; \mathbb{Z}_6^* = \{1,5\}; \mathbb{Z}_8^* = \{1,3,5,7\}$

Euler's Phi Function

QUESTION: How many elements are there in \mathbb{Z}_n^* ?

• $|\mathbb{Z}_n^*|$ is the number of integers $b \in [n]$ ($[n] = \{1, 2, ..., n\}$) s.t. gcd(b, n) = 1

DEFINITION: (Euler's Phi Function) $\phi(n) = |\mathbb{Z}_n^*|, \forall n \in \mathbb{Z}^+$.

- $\phi(n)$ is the number of integers $b \in [n]$ such that gcd(b, n) = 1
- Gauss chose the symbol ϕ for Euler's Phi function

THEOREM: Let p be a prime. Then $\forall e \in \mathbb{Z}^+$, $\phi(p^e) = p^{e-1}(p-1)$.

- Let $x \in \{1, 2, ..., p^e\}$.
- $gcd(x, p^e) \neq 1 \text{ iff } p|x$

iff
$$x = p, 2p, ..., p^{e-1} \cdot p$$

•
$$\phi(p^e) = p^e - p^{e-1} = p^{e-1}(p-1)$$

EXAMPLE: $\phi(3^2) = 3(3-1) = 6$

•
$$\mathbb{Z}_9^* = \{1,2,3,4,5,6,7,8,9\}$$

EXAMPLE: $\phi(p) = p - 1$

•
$$\mathbb{Z}_p^* = \{1, 2, ..., p-1\}$$

Euler's Phi Function

QUESTION: Formula of $\phi(n)$ for general integer n?

THEOREM: If $n = p_1^{e_1} \cdots p_r^{e_r}$ for distinct primes p_1, \dots, p_r and integers $e_1, \dots, e_r \ge 1$, then $\phi(n) = \phi(p_1^{e_1}) \cdots \phi(p_r^{e_r})$. Hence, $\phi(n) = n(1 - p_1^{-1}) \cdots (1 - p_r^{-1})$.

- There are many proofs. We will see in the future.
 - Principle of inclusion-exclusion; Chinese remainder theorem

COROLLARY: If n = pq for two different primes p and q, then $\phi(n) = (p-1)(q-1)$.

EXAMPLE: $\phi(10) = (2-1)(5-1) = 4$; n = 10; p = 2, q = 5

• $\mathbb{Z}_{10}^* = \{1,2,3,4,5,6,7,8,9,10\}$

Euler's Theorem

THEOREM (Euler, 1760) Let $n \ge 1$ and $\alpha \in \mathbb{Z}_n^*$. Then $\alpha^{\phi(n)} = 1$.

- $\alpha^{\phi(n)}$, 1 are both residue classes modulo n
- Suppose that $\alpha = [a]_n$ for $a \in \mathbb{Z}$. Then $\alpha^{\phi(n)} = 1$ is $([a]_n)^{\phi(n)} = [1]_n$
- How to prove?
 - Consider the map $f: \mathbb{Z}_n^* \to \mathbb{Z}_n^* \quad [x]_n \mapsto [a]_n \cdot [x]_n$
 - We show that *f* is injective
 - $f([x]_n) = f([y]_n)$
 - $[a]_n \cdot [x]_n = [a]_n \cdot [y]_n$
 - $[ax]_n = [ay]_n$
 - n|a(x-y)
 - n|(x-y), this is because gcd(n, a) = 1
 - $[x]_n = [y]_n$

Euler's Theorem

THEOREM (Euler, 1760) Let $n \ge 1$ and $\alpha \in \mathbb{Z}_n^*$. Then $\alpha^{\phi(n)} = 1$.

- $\alpha^{\phi(n)}$, 1 are both residue classes modulo n
- Suppose that $\alpha = [a]_n$ for $a \in \mathbb{Z}$. Then $\alpha^{\phi(n)} = 1$ is $([a]_n)^{\phi(n)} = [1]_n$
- How to prove?
 - Consider the map $f: \mathbb{Z}_n^* \to \mathbb{Z}_n^* \quad [x]_n \mapsto [a]_n \cdot [x]_n$
 - Suppose that $\mathbb{Z}_n^* = \{[x_1]_n, \dots, [x_{\phi(n)}]_n\}.$
 - $f([x_1]_n) \cdots f([x_{\phi(n)}]_n) = [x_1]_n \cdots [x_{\phi(n)}]_n$
 - $[ax_1]_n \cdots [ax_{\phi(n)}]_n = [x_1]_n \cdots [x_{\phi(n)}]_n$
 - $\left[a^{\phi(n)} x_1 \cdots x_{\phi(n)} \right]_n^n = \left[x_1 \cdots x_{\phi(n)} \right]_n^n$
 - $n | (a^{\phi(n)} 1) x_1 \cdots x_{\phi(n)}$
 - $n \mid (a^{\phi(n)} 1)$, this is because $gcd(n, x_1 \cdots x_{\phi(n)}) = 1$
 - $[a^{\phi(n)}]_n = [1]_n$, i. e., $([a]_n)^{\phi(n)} = [1]_n$

Fermat's Little Theorem

EXAMPLE: Understand Euler's theorem with $\mathbb{Z}_{10}^* = \{1,3,7,9\}$.

- $n = 10, \phi(n) = 4$,
- $1^4 \equiv 1 \pmod{10} \Rightarrow ([1]_{10})^4 = [1]_{10}$
- $3^4 = 81 \equiv 1 \pmod{10} \Rightarrow ([3]_{10})^4 = [1]_{10}$
- $7^4 = 2401 \equiv 1 \pmod{10} \Rightarrow ([7]_{10})^4 = [1]_{10}$
- $9^4 = 6561 \equiv 1 \pmod{10} \Rightarrow ([9]_{10})^4 = [1]_{10}$
 - Consider the map $f: \mathbb{Z}_{10}^* \to \mathbb{Z}_{10}^* \quad [x]_n \mapsto [9]_n \cdot [x]_n$
 - $f([1]_{10}) = [9]_{10} \cdot [1]_{10} = [9]_{10}; f([3]_{10}) = [7]_{10}; f([7]_{10}) = [3]_{10}, f([9]_{10}) = [1]_{10}$
 - *f* is injective
 - $f([1]_{10})f([3]_{10})f([7]_{10})f([9]_{10}) = [9]_{10}[7]_{10}[3]_{10}[1]_{10}$

Fermat's Little Theorem (Euler, 1736) If p is a prime and

 $\alpha \in \mathbb{Z}_p$. Then $\alpha^p = \alpha$.

- This is a corollary of Euler's theorem for n = p
- By Euler's theorem, $\alpha^{p-1} = 1 \ (\forall \alpha \neq [0]_p)$
 - $\alpha^p = \alpha$