WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro **PCT** INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

WO 96/15173 (11) Internationale Veröffentlichungsnummer:

C08G 63/20, 63/60, 18/42

(43) Internationales Veröffentlichungsdatum:

23. Mai 1996 (23.05.96)

(21) Internationales Aktenzeichen:

PCT/EP95/02491

A1

(22) Internationales Anmeldedatum:

27. Juni 1995 (27.06.95)

(30) Prioritätsdaten:

P 44 40 858.7

15. November 1994 (15.11.94) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): WARZELHAN, Volker [DE/DE]; Südtiroler Ring 32, D-67273 Weisenheim (DE). SCHORNICK, Gunnar [DE/DE]; Dr.-Konrad-Adenauer-Strasse 8, D-67271 Neuleiningen (DE). BRUCHMANN, Bernd [DE/DE]; Giselherstrasse 79, D-67069 Ludwigshafen (DE). SEELIGER, Ursula [DE/DE]; Kaiser-Wilhelm-Strasse 20, D-67059 Ludwigshafen (DE). YAMAMOTO, Motonori [JP/DE]; Lassallestrasse 6, D-68199 Mannheim (DE). BAUER, Peter [DE/DE]; Erich-Kästner-Strasse 13, D-67071 Ludwigshafen (DE).
- (74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: AU, BG, BR, BY, CA, CN, CZ, FI, HU, JP, KR, KZ, MX, NO, NZ, PL, RU, SG, SK, UA, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

- (54) Title: BIODEGRADABLE POLYMERS, PROCESS FOR THEIR PRODUCTION AND THEIR USE IN PRODUCING BIODEGRADABLE MOULDINGS
- (54) Bezeichnung: BIOLOGISCH ABBAUBARE POLYMERE, VERFAHREN ZU DEREN HERSTELLUNG SOWIE DEREN VER-WENDUNG ZUR HERSTELLUNG BIOABBAUBARER FORMKÖRPER

(57) Abstract

Biodegradable polyesters P1 obtainable by the reaction of a mixture consisting essentially of (a1) a mixture essentially of 35 to 95 mol% adipic acid or ester-forming derivatives thereof or mixtures thereof, 5 to 65 mol% terephthalic acid or ester-forming derivatives thereof or mixtures thereof, and 0 to 5 mol% of a sulphonate group-containing compound in which the sum of the individual mol percentages is 100, and (a2) a dihydroxy compound selected from the group consisting of C2-C6 alkane diols and C5-C10 cycloalkane diols, in which the molar ratio of (a1) and (a2) is in the range from 0.4:1 to 1.5:1, provided that the polyester P1 have a molecular weight (Mn) in the range from 5000 to 50,000 g/mol, a viscosity index in the range from 30 to 350 g/ml (measured in o-dichlorobenzole/phenol (in a ratio by weight of 50/50) at a concentration of 0.5 wt.% polyester P1 at a temperature of 25 °C) and a melting point in the range from 50 to 170 °C, and with the further proviso that from 0.01 to 5 mol% in relation to the molar quantity of the component (a1) used of compound D with at least three groups capable of forming esters are used to produce the polyesters PI, and other biodegradable polymers and thermoplastic moulding compounds and adhesives, biodegradable mouldings, foams and blends with starch obtainable from the polymers or moulding compounds of the invention.

(57) Zusammenfassung

Biologisch abbaubare Polyester P1, erhältlich durch Reaktion einer Mischung, bestehend im wesentlichen aus (a1) einer Mischung, bestehend im wesentlichen aus 35 bis 95 mol-% Adipinsäure oder esterbildende Derivate davon oder Mischungen davon, 5 bis 65 mol-% Terephthalsäure oder esterbildende Derivate davon oder Mischungen davon, und 0 bis 5 mol-% einer sulfonatgruppenhaltigen Verbindung, wobei die Summe der einzelnen Molprozentangaben 100 mol-% beträgt, und (a2) einer Dihydroxyverbindung, ausgewählt aus der Gruppe bestehend aus C2-C6-Alkandiolen und C3-C10-Cycloalkandiolen, wobei man das Molverhältnis von (a1) zu (a2) im Bereich von 0,4:1 bis 1,5:1 wählt, mit der Maßgabe, daß die Polyester P1 ein Molekulargewicht (Mn) im Bereich von 5000 bis 50000 g/mol, eine Viskositätszahl im Bereich von 30 bis 350 g/ml (gemessen in o-Dichlorbenzol/Phenol (Gew.-Verhältnis 50/50) bei einer Konzentration von 0,5 Gew.% Polyester P1 bei einer Temperatur von 25 °C) und einen Schmelzpunkt im Bereich von 50 bis 170 °C aufweisen, und mit der weiteren Maßgabe, daß man von 0,01 bis 5 mol-%, bezogen auf die Molmenge der eingesetzten Komponente (a1), einer Verbindung D mit mindestens drei zur Esterbildung befähigten Gruppen zur Herstellung der Polyester P1 einsetzt sowie weitere biologisch abbaubare Polymere und thermoplastische Formmassen, Verfahren zu deren Herstellung, deren Verwendung zur Herstellung biologisch abbaubarer Formkörper sowie Klebstoffe, biologisch abbaubare Formkörper, Schäume und Blends mit Stärke, erhältlich aus den erfindungsgemäßen Polymeren bzw. Formmassen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	GA	Gabon	MR	Mauretanien
AU	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungam	NZ	Neusceland
BJ	Benin	IE	Irland	PL	Polen
BR	Brasilien	IT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumanien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	ΤJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam

1

Biologisch abbaubare Polymere, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung bioabbaubarer Formkörper

5 Beschreibung

Die vorliegende Erfindung betrifft biologisch abbaubare Polyester P1, erhältlich durch Reaktion einer Mischung, bestehend im wesentlichen aus

10

'n

(a1) einer Mischung, bestehend im wesentlichen aus

35 bis 95 mol-% Adipinsaure oder esterbildende Derivate davon oder Mischungen davon,

15

5 bis 65 mol-% Terephthalsäure oder esterbildende Derivate davon oder Mischungen davon, und

0 bis 5 mol-% einer sulfonatgruppenhaltigen Verbindung,

20

wobei die Summe der einzelnen Molprozentangaben 100 mol-% beträgt, und

(a2) einer Dihydroxyverbindung, ausgewählt aus der Gruppe bestehend aus C_2 - C_6 -Alkandiolen und C_5 - C_{10} -Cycloalkandiolen,

wobei man das Molverhältnis von (a1) zu (a2) im Bereich von 0,4:1 bis 1,5:1 wählt, mit der Maßgabe, daß die Polyester P1 ein Molekulargewicht (M_n) im Bereich von 5000 bis 50000 g/mol, eine

- 30 Viskositätszahl im Bereich von 30 bis 350 g/ml (gemessen in o-Dichlorbenzol/Phenol (Gew.-Verhältnis 50/50) bei einer Konzentration von 0,5 Gew.-% Polyester Pl bei einer Temperatur von 25°C) und einen Schmelzpunkt im Bereich von 50 bis 170°C aufweisen, und mit der weiteren Maßgabe, daß man von 0,01 bis 5 mol-%, bezogen
- 35 auf die Molmenge der eingesetzten Komponente (a1), eine Verbindung D mit mindestens drei zur Esterbildung befähigten Gruppen zur Herstellung der Polyester P1 einsetzt.

Des weiteren betrifft die Erfindung Polymere und biologisch.
40 abbaubare thermoplastische Formmassen gemäß Unteransprüche, Verfahren zu deren Herstellung, deren Verwendung zur Herstellung biologisch abbaubarer Formkörper sowie Klebstoffe, biologisch abbaubar Formkörper, Schäume und Blends mit Stärke, erhältlich aus den erfindungsgemäßen Polymeren bzw. Formmassen.

2

Polymere, die biologisch abbaubar sind, d.h. die unter Umwelteinflüssen in einer angemessenen und nachweisbaren Zeitspanne zerfallen, sind seit einiger Zeit bekannt. Der Abbau erfolgt dabei
in der Regel hydrolytisch und/oder oxidativ, zum überwiegenden

5 Teil jedoch durch die Einwirkung von Mikroorganisman wie Bakterien, Hefen, Pilzen und Algen. Y.Tokiwa und T. Suzuki (Nature,
Bd. 270, S. 76-78, 1977) beschreiben den enzymatischen Abbau von
aliphatischen Polyestern, beispielsweise auch Polyester auf der
Basis von Bernsteinsäure und aliphatischer Diole.

10

In der EP-A 565,235 werden aliphatische Copolyester, enthaltend [-NH-C(O)O-]-Gruppen ("Urethan-Einheiten"), beschrieben. Die Copolyester der EP-A 565,235 werden durch Umsetzung eines Präpolyesters – erhalten durch Umsetzung von im wesentlichen

- 15 Bernsteinsäure und eines aliphatischen Diols mit einem Diisocyanat, bevorzugt Hexamethylendiisocyanat, erhalten. Die Umsetzung mit dem Diisocyanat ist gemäß der EP-A 565,235 erforderlich, da durch die Polykondensation alleine nur Polymere mit solchen Molekulargewichten erhalten werden, die keine befriedigenden me-
- 20 chanischen Eigenschaften aufweisen. Von entscheidendem Nachteil ist die Verwendung von Bernsteinsäure oder deren Esterderivate zur Herstellung der Copolyester, weil Bernsteinsäure bzw. deren Derivate teuer und in nicht genügender Menge auf dem Markt verfügbar sind. Außerdem werden bei Verwendung von Bernsteinsäure
- 25 als einziger Säurekomponente die daraus hergestellten Polyester nur extrem langsam abgebaut.

Aus der WO 92/13019 sind Copolyester auf Basis überwiegend aromatischer Dicarbonsäuren und aliphatischer Diole bekannt, wobei
30 mindestens 85 mol-% des Polyesterdiolrestes aus einem Terephthalsäurerest bestehen. Durch Modifikationen wie den Einbau von bis zu 2,5 Mol-% Metallsalze der 5-Sulfoisophthalsäure oder kurzkettigen Etherdiol-Segmenten wie Diethylenglycol wird die Hydrophilie des Copolyesters gesteigert und die Kristallinität vermindert. Hierdurch soll gemäß der WO 92/13019 ein biologischer Abbau der Copolyester ermöglicht werden. Nachteilig an diesen Copolyestern ist jedoch, daß ein biologischer Abbau durch Mikroorganismen nicht nachgewiesen wurde, sondern lediglich das Verhalten gegenüber Hydrolyse in kochendem Wasser oder in manchen Fällen auch 40 mit Wasser von 60°C durchgeführt wurde.

Nach Angaben von Y.Tokiwa und T.Suzuki (Nature, Bd. 270, 1977, S. 76-78 oder J. of Appl. Polymer Science, Bd. 26, S. 441-448, 1981) ist davon auszug hen, daß Polyester, die weitgehend aus 45 aromatischen Dicarbonsäure-Einheiten und aliphatischen Diolen aufgebaut sind, wie PET (Polyethylenterephthalat) und PBT (Polybutylenterephthalat), enzymatisch nicht abbaubar sind. Dies gilt

3

auch für Copolyester, die Blöcke, aufgebaut aus aromatischen Dicarbonsäureeinheiten und aliphatischen Diolen, enthalten.

Witt et al. (Handout zu einem Poster auf dem International Work5 shop des Royal Institute of Technology, Stockholm, Schweden, vom
21.bis 23.04.94) beschreiben biologisch abbaubare Copolyester auf
der Basis von 1,3-Propandiol, Terephthalsäureester und Adipinoder Sebazinsäure. Nachteilig an diesen Copolyestern ist, daß daraus hergestellte Formkörper, insbesondere Folien, unzureichende
10 mechanische Eigenschaften aufweisen.

Aufgabe der vorliegenden Erfindung war es daher, biologisch, d.h. durch Mikroorganismen, abbaubare Polymere bereitzustellen, die diese Nachteile nicht aufweisen. Insbesondere sollten die

- 15 erfindungsgemäßen Polymere aus bekannten und preiswerten Monomerbausteinen herstellbar und wasserunlöslich sein. Des weiteren sollte es möglich sein, durch spezifische Modifikationen wie Kettenverlängerung, Einbau von hydrophilen Gruppen und verzweigend wirkenden Gruppen, maßgeschneiderte Produkte für die ge-
- 20 wünschten erfindungsgemäßen Anwendungen zu erhalten. Dabei sollte der biologische Abbau durch Mikroorganismen nicht auf Kosten der mechanischen Eigenschaften erreicht werden, um die Zahl der Anwendungsgebiete nicht einzuschränken.
- 25 Demgemäß wurden die eingangs definierten Polymere und thermoplastischen Formmassen gefunden.

Des weiteren wurden Verfahren zu deren Herstellung, deren Verwendung zur Herstellung biologisch abbaubarer Formkörper und Kleb-

30 stoffe sowie biologisch abbaubare Formkörper, Schäume, Blends mit Stärke und Klebstoffe, erhältlich aus den erfindungsgemäßen Polymeren und Formmassen, gefunden.

Die erfindungsgemäßen Polyester Pl sind charakterisiert durch ein 35 Molekulargewicht (M_n) im Bereich von 5000 bis 50000, vorzugsweise von 6000 bis 45000, besonders bevorzugt von 8000 bis 35000 g/mol, eine Viskositätszahl im Bereich von 30 bis 350, vorzugsweise von 50 bis 300 g/ml (gemessen in o-Dichlorbenzol/Phenol (Gew.-Verhältnis 50/50) bei einer Konzentration von C,5 Gew.-% Polyester

40 Pl bei einer Temperatur von 25°C) und einen Schmelzpunkt im Bereich von 50 bis 170, vorzugsweise von 60 bis 160°C.

Die Polyester Pl erhält man erfindungsgemäß, indem man eine Mischung, bestehend im wesentlichen aus

4

(al) einer Mischung, bestehend im wesentlichen aus

35 bis 95, vorzugsweise von 45 bis 80 mol-% Adipinsäure oder esterbildende Derivate davon, insbesondere die Di-C1-C6-alkylester wie Dimethyl-, Diethyl-, Dipropyl-, Dibutyl-, Dipentyl- und Dihexyladipat, oder deren Mischungen, bevorzugt Adipinsäure und Dimethyladipat, oder Mischungen davon,

5 bis 65, vorzugsweise 20 bis 55 mol-%, Terephthalsäure oder esterbildende Derivate davon, insbesondere die Di-C1-C6-alkylester wie Dimethyl-, Diethyl-, Dipropyl-, Dibutyl-, Dipentyl- oder Dihexylterephthalat, oder deren Mischungen, bevorzugt Terephthalsäure und Dimethylterephthalat, oder Mischungen davon, und

0 bis 5, vorzugsweise von 0 bis 3, besonders bevorzugt von 0,1 bis 2 mol-% einer sulfonatgruppenhaltigen Verbindung,

20

wobei die Summe der einzelnen Molprozentangaben 100 mol-% beträgt, und

einer Dihydroxyverbindung, ausgewählt aus der Gruppe bestehend aus C_2 - C_6 -Alkandiolen und C_5 - C_{10} -Cycloalkandiolen,

wobei man das Molverhältnis von (a1) zu (a2) im Bereich von 0,4:1 bis 1,5:1, vorzugsweise von 0,6:1 bis 1,1:1 wählt, zur Reaktion bringt.

30

Als sulfonatgruppenhaltige Verbindung setzt man üblicherweise ein Alkali- oder Erdalkalimetallsalz einer sulfonatgruppenhaltigen Dicarbonsäure oder deren esterbildende Derivate ein, bevorzugt Alkalimetallsalze der 5-Sulphoisophthalsäure oder deren 35 Mischungen, besonders bevorzugt das Natriumsalz.

Als Dihydroxyverbindungen (a2) setzt man erfindungsgemäß eine Verbindung, ausgewählt aus der Gruppe bestehend aus C_2 - C_6 -Alkandiolen und C_5 - C_{10} -Cycloalkandiolen, wie Ethylenglykol, 1,2-,

40 1,3-Propandiol, 1,2-, 1,4-Butandiol, 1,5-Pentandiol oder 1,6-Hexandiol, insbesondere Ethylenglykol, 1,3-Propandiol und 1,4-Butandiol, Cyclopentandiol, 1,4-Cyclohexandiol, 1,2-Cyclohexandimethanol, 1,4-Cyclohexandimethanol, sowie Mischungen daraus, ein. 5

Des weiteren verwendet erfindungsgemäß man von 0,01 bis 5, vorzugsweise von 0,05 bis 4 mol-%, bezogen auf die Komponent (a1), mindestens eine Verbindung D mit mindestens drei zur Esterbildung befähigten Gruppen.

Die Verbindungen D enthalten bevorzugt drei bis zehn funktionelle Gruppen, welche zur Ausbildung von Esterbindungen fähig sind. Besonders bevorzugte Verbindungen D haben drei bis sechs funktionelle Gruppen dieser Art im Molekül, insbesondere drei bis sechs 10 Hydroxylgruppen und/oder Carboxylgruppen. Beispielhaft seien genannt:

Weinsäure, Citronensäure, Apfelsäure; Trimethylolpropan, Trimethylolethan;

15 Pentaerythrit;
 Polyethertriole;
 Glycerin;

Trimesinsäure;

Trimellitsäure, -anhydrid;

20 Pyromellitsäure, -dianhydrid und Hydroxyisophthalsäure.

Beim Einsatz von Verbindungen D, die einen Siedepunkt unterhalb von 200°C aufweisen, kann bei der Herstellung der Polyester P1 ein

- 25 Anteil vor der Reaktion aus dem Polykondensationsgemisch abdestillieren. Es ist daher bevorzugt, diese Verbindungen in einer frühen Verfahrensstufe wie der Umesterungs- bzw. Veresterungsstufe zuzusetzen, um diese Komplikation zu vermeiden und um die größtmögliche Regelmäßigkeit ihrer Verteilung innerhalb des Poly-30 kondensats zu erzielen.
 - Im Falle höher als 200°C siedender Verbindungen D können diese auch in einer späteren Verfahrensstufe eingesetzt werden.
- 35 Durch Zusatz der Verbindung D kann beispielsweise die Schmelzviskosität in gewünschter Weise verändert, die Schlagzähigkeit erhöht und die Kristallinität der erfindungsgemäßen Polymere bzw. Formmassen herabgesetzt werden.
- 40 Die Herstellung der biologisch abbaubaren Polyester P1 ist grundsätzlich bekannt (Sorensen und Campbell, "Preparative Methods of Polymer Chemistry", Interscience Publishers, Inc., New York, 1961, Seiten 111 bis 127; Encyl. of Polym. Science and Eng., Bd. 12, 2. Ed., John Wiley & Sons, 1988, S. 1 bis 75; Kunststoff-
- 45 Handbuch, Band 3/1, Carl Hanser Verlag, München, 1992, S. 15 bis 23 (Herstellung von Polyest rn); WO 92/13019; EP-A 568,593;

6

EP-A 565,235; EP-A 28,687), so daß sich nähere Angaben hierüber erübrigen.

So kann man beispielsweise die Umsetzung von Dimethylestern der 5 Komponente al mit der Komponente a2 ("Umesterung") bei Temperaturen im Bereich von 160 bis 230°C in der Schmelze bei Atmosphärendruck vorteilhaft unter Inertgasatmosphäre durchführen.

Vorteilhaft wird bei der Herstellung des biologisch abbaubaren 10 Polyesters Pl ein molarer Überschuß der Komponente a2, bezogen auf die Komponente a1, verwendet, beispielsweise bis zum 2 1/2fachen, bevorzugt bis zum 1,67fachen.

Ublicherweise erfolgt die Herstellung des biologisch abbaubaren
15 Polyesters Pl unter Zugabe von geeigneten, an sich bekannten
Katalysatoren wie Metallverbindungen auf der Basis folgender Elemente wie Ti, Ge, Zn, Fe, Mn, Co, Zr, V, Ir, La, Ce, Li, und Ca,
bevorzugt metallorganische Verbindungen auf der Basis dieser Metalle wie Salze organischer Säuren, Alkoxide, Acetylacetonate und
20 ähnliches, insbesondere bevorzugt auf Basis von Zink, Zinn und
Titan.

Bei Verwendung von Dicarbonsäuren oder deren Anhydride als Komponente (a1) kann deren Veresterung mit Komponente (a2) vor,

- 25 gleichzeitig oder nach der Umesterung stattfinden. In einer bevorzugten Ausführungsform verwendet man das in der DE-A 23 26 026 beschriebene Verfahren zur Herstellung modifizierter Polyalkylenterephthalate.
- 30 Nach der Umsetzung der Komponenten (a1) und (a2) wird in der Regel unter vermindertem Druck oder in einem Inertgasstrom, beispielsweise aus Stickstoff, bei weiterem Erhitzen auf eine Temperatur im Bereich von 180 bis 260°C die Polykondensation bis zum gewünschten Molekulargewicht durchgeführt.
- 35 Um unerwünschte Abbau- und/oder Nebenreaktionen zu vermeiden, kann man in dieser Verfahrensstufe gewünschtenfalls auch Stabilisatoren zusetzen. Solche Stabilisatoren sind beispielsweise die in der EP-A 13 461, US 4,328,049 oder in B. Fortunato et al., Polymer Vol. 35, Nr. 18, S. 4006 bis 4010, 1994, Butterworth-Hei-
- 40 nemann Ltd., beschriebenen Phosphor-Verbindungen. Diese können zum Teil auch als Deaktivatoren der oben beschriebenen Katalysatoren wirken. Beispielhaft seien genannt: Organophosphite, phosphonige Säure und phosphorige Säure. Als Verbindungen, die nur als Stabilisatoren wirken seien beispielhaft genannt:
- 45 Trialkylphosphite, Triphenylphosphit, Trialkylphosphate, Tri-

7

phenylphosphat und Tocopherol (Vitamin E; beispielsweise als Uvinul® 2003AO (BASF) erhältlich).

Bei der Verwendung der erfindungsgemäßen biologisch abbaubaren 5 Copolymere, beispielsweise im Verpackungsbereich z.B. für Nahrungsmittel, ist es in der Regel wünschenswert, den Gehalt an eingesetztem Katalysator so gering als möglich zu wählen sowie keine toxischen Verbindungen einzusetzen. Im Gegensatz zu anderen Schwermetallen wie Blei, Zinn, Antimon, Cadmium, Chrom etc. sind 10 Titan- und Zinkverbindungen in der Regel nicht toxisch ("Sax Toxic Substance Data Book", Shizuo Fujiyama, Maruzen, K.K., 360 S. (zitiert in EP-A 565,235), siehe auch Römpp Chemie Lexikon Bd. 6, Thieme Verlag, Stuttgart, New York, 9. Auflage, 1992, S. 4626 bis 4633 und 5136 bis 5143). Beispielhaft seien genannt: Dibutoxydia-tetoacetoxytitan, Tetrabutylorthotitanat und Zink(II)-acetat.

Das Gewichtsverhältnis von Katalysator zu biologisch abbaubaren Polyester P1 liegt üblicherweise im Bereich von 0,01:100 bis 3:100, vorzugsweise von 0,05:100 bis 2:100, wobei bei hochaktiven 20 Titanverbindungen auch kleinere Mengen eingesetzt werden können wie 0,0001:100.

Der Katalysator kann gleich zu Beginn der Reaktion, unmittelbar kurz vor der Abtrennung des überschüssigen Diols oder 25 gewünschtenfalls auch in mehreren Portionen verteilt während der Herstellung der biologisch abbaubaren Polyester P1 eingesetzt

werden. Gewünschtenfalls können auch verschiedene Katalysatoren oder auch Gemische davon eingesetzt werden.

- 30 Die erfindungsgemäßen biologisch abbaubaren Polyester P2 sind charakterisiert durch ein Molekulargewicht (Mn) im Bereich von 5000 bis 80000, vorzugsweise von 6000 bis 45000, besonders vorzugsweise von 10000 bis 40000 g/mol, eine Viskositätszahl im Bereich von 30 bis 450, vorzugsweise von 50 bis 400 g/ml (gemessen in o-Dichlorbenzol/Phenol (Gew.-Verhältnis 50/50) bei einer Konzentration von 0.5 Gew.-% Polyester P2 bei einer Temperatur
 - in o-Dichlorbenzol/Phenol (Gew.-Verhältnis 50/50) bei einer Konzentration von 0,5 Gew.-% Polyester P2 bei einer Temperatur von 25°C) und einen Schmelzpunkt im Bereich von 50 bis 235, vorzugsweise von 60 bis 235°C aufweisen.
- **40** Die biologisch abbaubaren Polyester P2 erhält man erfindungsgemäß, indem man eine Mischung zur Reaktion bringt, bestehend im wesentlichen aus

8

(b1) einer Mischung, bestehend im wesentlichen aus

20 bis 95, bevorzugt von 25 bis 80, besonders bevorzugt von 30 bis 70 mol-% Adipinsäure oder esterbildende Derivate davon oder Mischungen davon,

5 bis 80, bevorzugt von 20 bis 75, besonders bevorzugt von 30 bis 70 mol-% Terephthalsäure oder esterbildende Derivate davon oder Mischungen davon, und

10

5

0 bis 5, bevorzugt von 0 bis 3, besonders bevorzugt von 0,1 bis 2 mol-% einer sulfonatgruppenhaltigen Verbindung,

wobei die Summe der einzelnen Molprozentangaben 100 mol-% be-15 trägt,

(b2) Dihydroxyverbindung (a2),

wobei man das Molverhältnis von (b1) zu (b2) im Bereich von 0,4:1 20 bis 1,5:1, vorzugsweise von 0,6:1 bis 1,1:1 wählt,

(b3) von 0,01 bis 100, vorzugsweise von 0,1 bis 80 Gew.-%, bezogen auf Komponente (b1), einer Hydroxycarbonsäure B1, und

25

- (b4) von 0 bis 5, vorzugsweise von 0 bis 4, besonders bevorzugt von 0,01 bis 3,5 mol-%, bezogen auf Komponente (b1), Verbindung D,
- 30 wobei die Hydroxycarbonsaure Bl definiert ist durch die Formeln Ia oder Ib

in der p eine ganze Zahl von 1 bis 1500, vorzugsweise von 1 bis 40 1000 und r 1, 2, 3 oder 4, vorzugsweise 1 und 2, bedeuten, und G für einen Rest steht, der ausgewählt ist aus der Gruppe bestehend aus Phenylen, -(CH₂)_n-, wobei n eine ganze Zahl von 1, 2, 3, 4 oder 5, vorzugsweise 1 und 5, bedeutet, -C(R)H- und -C(R)HCH₂, wobei R für Methyl oder Ethyl steht.

45

Die Herstellung der biologisch abbaubaren Polyester P2 erfolgt zweckmäßig analog zur Herstellung der Polyester P1, wobei die Zugabe der Hydroxycarbonsäure B1 sowohl zu Anfang der Umsetzung als auch nach der Veresterungs- bzw. Umesterungsstufe erfolgen kann.

In einer bevorzugten Ausführungsform setzt man als Hydroxycarbonsäure Bl ein: Glycolsäure, D-, L-, D,L-Milchsäure, 6-Hydroxyhexansäure, deren cyclische Derivate wie Glycolid (1,4-Dioxan-2,5-dion), D-, L-Dilactid (3,6-dimethyl-1,4-

- 10 dioxan-2,5-dion), p-Hydroxybenzoesäure sowie deren Oligomere und Polymere wie 3-Polyhydroxybuttersäure, Polyhydroxyvaleriansäure, Polylactid (beispielsweise als EcoPLA® (Fa. Cargill) erhältlich) sowie eine Mischung aus 3-Polyhydroxybuttersäure und Polyhydroxyvaleriansäure (letzteres ist unter dem Namen Biopol® von Zeneca
- 15 erhältlich), besonders bevorzugt für die Herstellung von Polyester P2 die niedermolekularen und cyclischen Derivate davon.

Die erfindungsgemäßen biologisch abbaubaren Polyester Ql sind charakterisiert durch ein Molekulargewicht (Mn) im Bereich von 20 5000 bis 100000, vorzugsweise von 8000 bis 80000, durch eine Viskositätszahl im Bereich von 30 bis 450, vorzugsweise von 50 bis 400 g/ml (gemessen in o-Dichlorbenzol/Phenol (50/50 Gew.%) bei einer Konzentration von 0,5 Gew.% Polyester Ql bei einer Temperatur von 25°C), und einen Schmelzpunkt im Bereich von 50 bis 235, vorzugsweise von 60 bis 235°C.

Die Polyester Q1 erhält man erfindungsgemäß, indem man eine Mischung zur Reaktion bringt, bestehend im wesentlichen aus

- 30 (c1) Polyester P1 und/oder einem Polyester PWD,
 - (c2) 0,01 bis 50, vorzugsweise von 0,1 bis 40 Gew.-%, bezogen auf (c1), Hydroxycarbonsäure B1,

35 und

5

- (c3) 0 bis 5, vorzugsweise von 0 bis 4 mol-%, bezogen auf Komponente (a1) aus der Herstellung von P1 und/oder PWD, Verbindung L.
- Der biologisch abbaubare Polyester PWD ist im allgemeinen erhältlich durch Reaktion von im wesentlichen den Komponenten (al) und
 (a2), wobei man das Molverhältnis von (a1) zu (a2) im Bereich von
 0,4:1 bis 1,5:1, vorzugsweise von 0,6:1 bis 1,25:1 wählt, mit der
 45 Maßgabe, daß die Polyester PWD ein Molekulargewicht (Mn) im Bereich von 5000 bis 50000, vorzugsweise von 6000 bis 35000 g/mol,
 eine Viskositätszahl im Bereich von 30 bis 350, vorzugsweise von

10

50 bis 300 g/ml (gemessen in o-Dichlorbenzol/Phenol (Gew.-Verhältnis 50/50) bei einer Konzentration von 0,5 Gew.-% Poly ster PWD bei einer Temperatur von 25°C) und einen Schmelzpunkt im Bereich von 50 bis 170, vorzugsweise von 60 bis 160°C aufweisen.

5

Die Umsetzung der Polyester P1 und/oder PWD mit der Hydroxycarbonsäure B1 gewünschtenfalls in Gegenwart der Verbindung D erfolgt vorzugsweise in der Schmelze bei Temperaturen im Bereich von 120 bis 260°C unter Inertgasatmosphäre, gewünschtenfalls auch 10 unter vermindertem Druck. Man kann sowohl diskontinuierlich als auch kontinuierlich, beispielsweise in Rührkesseln oder (Reaktions-)Extrudern, arbeiten.

Die Umsetzung kann gewünschtenfalls durch Zugabe an sich bekann-15 ter Umesterungskatalysatoren (siehe die weiter oben bei der Herstellung der Polyester P1 beschriebenen) beschleunigt werden.

Eine bevorzugte Ausführungsform betrifft Polyester Q1 mit Blockstrukturen gebildet aus den Komponenten P1 und B1: bei Verwendung cyclischer Derivate von B1 (Verbindungen Ib) können bei der Umsetzung mit dem biologisch abbaubaren Polyester P1 durch eine sogenannte "ringöffnende Polymerisation", ausgelöst durch die Endgruppen von P1, in an sich bekannter Weise Polyester Q1 mit Blockstrukuren erhalten werden (zur "ringöffnenden Polymerisation" siehe Encycl. of Polym. Science and Eng. Bd. 12, 2.Ed., John Wiley & Sons, 1988, S. 36 bis 41). Die Reaktion kann man gewünschtenfalls unter Zusatz üblicher Katalysatoren wie den bereits weiter oben beschriebenen Umesterungskatalysatoren durchführen, insbesondere bevorzugt ist Zinn-octanoat (siehe auch Encycl. of Polym. Science and Eng. Bd. 12, 2.Ed., John Wiley & Sons, 1988, S. 36 bis 41).

Bei Verwendung von Komponenten Bl mit höheren Molekulargewichten, beispielsweise mit einem p von größer als 10 (zehn), können durch 35 Umsetzung mit den Polyestern Pl in Rührkesseln oder Extrudern, die gewinschten Blockstrukturen durch die Wahl der Reaktionsbedingungen wie Temperatur, Verweilzeit, Zusatz von Umesterungskatalysatoren wie den oben genannten erhalten werden. So ist aus J. of Appl. Polym. Sci., Vol. 32, S. 6191 bis 6207, John Wiley & Sons, 1986 sowie aus Makromol. Chemie, Vol. 136, S. 311 bis 313, 1970 bekannt, daß bei der Umsetzung von Polyestern in der Schmelze aus einem Blend durch Umesterungsreaktionen zunächst Blockcopolymere und dann statistische Copolymere erhalten werden können.

W 96/15173

11

Die erfindungsgemäßen biologisch abbaubaren Polyester Q2 sind charakterisiert durch ein Molekulargewicht (Mn) im Bereich von 6000 bis 60000, vorzugsweise von 8000 bis 50000, besonders bevorzugt von 10000 bis 40000 g/mol, durch eine Viskositätszahl im Be-5 reich von 30 bis 350, vorzugsweise von 50 bis 300 g/ml (gemessen in o-Dichlorbenzol/Phenol (50/50 Gew.%) bei einer Konzentration von 0,5 Gew.% Polyester Q2 bei einer Temperatur von 25°C), und einen Schmelzpunkt im Bereich von 50 bis 170 °C, vorzugsweise von 60 bis 160 °C.

10

Die Polyester Q2 erhält man erfindungsgemäß, indem man eine Mischung zur Reaktion bringt, bestehend im wesentlichen aus

- von 95 bis 99,9, vorzugsweise von 96 bis 99,8, besonders (d1) bevorzugt von 97 bis 99,65 Gew.-% Polyester Pl und/oder 15 Polyester PWD gemäß Anspruch 3,
 - von 0,1 bis 5, vorzugsweise 0,2 bis 4, besonders bevor-(d2) zugt von 0,35 bis 3 Gew.-% eines Diisocyanats C1 und

20

- von 0 bis 5, vorzugsweise von 0 bis 4 mol-%, bezogen auf (d3) Komponente (a1) aus der Herstellung von P1 und/oder PWD, Verbindung D.
- 25 Als Diisocyanat C1 kann man nach bisherigen Beobachtungen alle üblichen und kommerziell erhältlichen Diisocyanate einsetzen. Bevorzugt setzt man ein Diisocyanat ein, das ausgewählt ist aus der Gruppe, bestehend aus Toluylen-2,4-diisocyanat, Toluylen-2,6-diisocyanat, 4,4'- und 2,4'-Diphenylmethandiiso-
- 30 cyanat, Naphthylen-1,5-diisocyanat, Xylylen-diisocyanat, Hexamethylendiisocyanat, Isophorondiisocyanat und Methylen-bis(4-isocyanatocyclohexan), besonders bevorzugt Hexamethylendiisocyanat.

Prinzipiell kann man auch trifunktionelle Isocyanat-Verbindungen, 35 die Isocyanurat- und/oder Biuretgruppen mit einer Funktionalität nicht kleiner als drei enthalten können, einsetzen oder die Diisocyanat-Verbindungen Cl partiell durch Tri- oder Polyisocyanate ersetzen.

40 Die Umsetzung der Polyester Pl und/oder PWD mit dem Diisocyanat C1 erfolgt vorzugsweise in der Schmelze, wobei darauf zu achten ist, daß möglichst keine Nebenreaktionen auftreten, die zu einer Vernetzung oder Gelbildung führen können. In ein r besonder n Ausführungsform führt man die Reaktion üblicherweise bei Tempera-45 turen im Bereich von 130 bis 240, vorzugsweise von 140 bis 220°C

12

durch, wobei die Zugabe des Diisocyanats vorteilhaft in mehreren Portionen oder kontinuierlich erfolgt.

Gewünschtenfalls kann man die Umsetzung der Polyesters Pl und/
5 oder PWD mit dem Diisocyanat Cl auch in Gegenwart von gängigen inerten Lösemitteln wie Toluol, Methylethylketon oder Dimethylformamid ("DMF") oder deren Mischungen durchführen, wobei man die Reaktionstemperatur in der Regel im Bereich von 80 bis 200, vorzugsweise von 90 bis 150°C wählt.

10

Die Umsetzung mit dem Diisocyanat C1 kann diskontinuierlich oder kontinuierlich beispielsweise in Rührkesseln, Reaktionsextrudern oder über Mischköpfe durchgeführt werden.

- 15 Man kann bei der Umsetzung der Polyester P1 und/oder PWD mit den Diisocyanaten C1 auch gängige Katalysatoren einsetzen, die aus dem Stand der Technik bekannt sind (beispielsweise die in der EP-A 534,295 beschriebenen) oder die bei der Herstellung von den Polyestern P1 und Q1 einsetzbar sind bzw. eingesetzt wurden und,
- 20 falls man bei der Herstellung von Polyester Q2 so verfährt, daß man die Polyester P1 und/oder PWD nicht isoliert, nun weiterbenutzt werden können.
- Beispielhaft seien genannt: tert. Amine wie Triethylamin,
 Dimethylcyclohexylamin, N-Methylmorpholin, N,N'-Dimethylpiperazin, Diazabicyclo-[2.2.2-]octan und ähnliche sowie insbesondere organische Metallverbindungen wie Titanverbindungen,
 Eisenverbindungen, Zinnverbindungen, z.B. Dibutoxydiacetoacetoxytitan, Tetrabutylorthotitanat, Zinndiacetat, -dioctoat, -dilaurat
 oder die Zinndialkylsalze aliphatischer Carbonsäuren wie Dibutylzinndiacetat, Dibutylzinndilaurat oder ähnliche, wobei wiederum
 darauf zu achten ist, daß möglichst keine toxischen Verbindungen
 eingesetzt werden sollten.
- 35 Obwohl das theoretische Optimum für die Reaktion von Pl und/oder PWD mit Diisocyanaten Cl bei einem Molverhältnis der Isocyanat-Funktion zu Pl-(bzw. PWD-)Endgruppe (bevorzugt sind Polyester Pl und/oder PWD mit überwiegend Hydroxy-Endgruppen) von 1:1 liegt, kann die Umsetzung ohne technische Probleme auch bei Molverhält-
- 40 nissen von 1:3 bis 1,5:1 durchgeführt werden. Bei Molverhältnissen von >1:1 kann gewünschtenfalls während der Umsetzung oder
 auch nach der Umsetzung die Zugabe eines Kettenverlängerungsmittels, ausgewählt aus den Komponenten (a2), bevorzugt in
 C2-C6-Diol, erfolgen.

13

Die erfindungsgemäßen biologisch abbaubaren Polym re T1 sind charakterisiert durch ein Molekulargewicht (Mn) im Bereich von 10000 bis 100000, vorzugsweise von 11000 bis 80000, vorzugsweise von 11000 bis 50000 g/mol, eine Viskositätszahl im Bereich von 30 bis 450, vorzugsweise von 50 bis 400 g/ml (gemessen in o-Dichlorbenzol/Phenol (Gew.-Verhältnis 50/50) bei einer Konzentration von 0,5 Gew.-% Polymer T1 bei einer Temperatur von 25°C) und einen Schmelzpunkt im Bereich von 50 bis 235, vorzugsweise von 60 bis 235°C.

10

Die biologisch abbaubaren Polymere T1 erhält man erfindungsgemäß, indem man einen Polyester Q1 gemäß Anspruch 3 mit

- (e1) 0,1 bis 5, vorzugsweise von 0,2 bis 4, besonders bevor15 zugt von 0,3 bis 2,5 Gew.-%, bezogen auf den Polyester
 Q1, Diisocyanat C1 sowie mit
- (e2) 0 bis 5, vorzugsweise von 0 bis 4 mol-%, bezogen auf Komponente (a1) aus der Herstellung von P1 und/oder PWD sowie Polyester Q1, Verbindung D zur Reaktion bringt.

Auf diese Weise wird üblicherweise eine Kettenverlängerung erreicht, wobei die erhaltenen Polymerketten vorzugsweise eine Blockstruktur aufweisen.

25

Die Umsetzung erfolgt in der Regel analog zur Herstellung der Polyester ${\tt Q2}$.

Die erfindungsgemäßen biologisch abbaubaren Polymere T2 sind cha30 rakterisiert durch ein Molekulargewicht (Mn) im Bereich von 10000
bis 100000, vorzugsweise von 11000 bis 80000, besonders bevorzugt
von 11000 bis 50000 g/mol, mit einer Viskositätszahl im Bereich
von 30 bis 450, vorzugsweise von 50 bis 400 g/ml (gemessen in oDichlorbenzol/Phenol (Gew.-Verhältnis 50/50) bei einer Konzen35 tration von 0,5 Gew.-% Polymer T2 bei einer Temperatur von 25 °C)

5 tration von 0,5 Gew.-* Polymer T2 bel einer Temperatur von 25 °C, und einem Schmelzpunkt im Bereich von 50 bis 235, vorzugsweise von 60 bis 235°C.

Die biologisch abbaubaren Polymere T2 erhält man erfindungsgemäß 40 durch Umsetzung des Polyesters Q2 mit

(f1) 0,01 bis 50, vorzugsweise von 0,1 bis 40 Gew.-%, bezogen auf den Polyester Q2, der Hydroxycarbonsäure B1 sowie mit

14

(f2) 0 bis 5, vorzugsweise von 0 bis 4 mol-%, bezogen auf Komponente (a1) aus der Herstellung von P1 und/oder PWD sowie des Polyesters Q2, Verbindung D,

5 wobei man zweckmäßig analog zur Umsetzung von Polyester Pl mit Hydroxycarbonsäure Bl zu Polyester Ql verfährt.

Die erfindungsgemäßen biologisch abbaubaren Polymere T3 sind charakterisiert durch ein Molekulargewicht (Mn) im Bereich von 10000 10 bis 100000, vorzugsweise von 11000 bis 80000 g/mol, eine Viskositätszahl im Bereich von 30 bis 450, vorzugsweise von 50 bis 400 g/ml (gemessen in o-Dichlorbenzol/Phenol (Gew.-Verhältnis 50/50) bei einer Konzentration von 0,5 Gew.-% Polymer T3 bei einer Temperatur von 25°C) und einem Schmelzpunkt im Bereich von 15 50 bis 235, vorzugsweise von 60 bis 235°C.

Die biologisch abbaubaren Polymere T3 erhält man erfindungsgemäß, indem man (g1) Polyester P2, oder (g2) einer Mischung bestehend im wesentlichen aus Polyester P1 und 0,01 bis 50, vorzugsweise 20 von 0,1 bis 40 Gew.-%, bezogen auf den Polyester P1, Hydroxy-carbonsäure B1, oder (g3) einer Mischung, bestehend im wesentlichen aus Polyestern P1, die eine unterschiedliche Zusammensetzung voneinander aufweisen. mit

25 0.1 bis 5. vorzugsweise von 0.2 bis 4. besonders bevorzugt von 0.3 bis 2.5 Gew.-%, bezogen auf die Menge der eingesetzten Polyester, Diisocyanat C1 sowie

mit 0 bis 5, vorzugsweise von 0 bis 4 mol-%, bezogen auf die je30 weiligen Molmengen an Komponente (al), die zur Herstellung der eingesetzten Polyester (gl) bis (g3) eingesetzt wurden, Verbindung D, zur Reaktion bringt, wobei man die Umsetzungen zweckmäßig analog zur Herstellung der Polyester Q2 aus den Polyestern Pl und/oder PWD und den Diisocyanaten C1 vornimmt.

In einer bevorzugten Ausführungsform setzt man Polyester P2 ein, deren wiederkehrende Einheiten statistisch im Molekül verteilt sind.

35

40 Man kann jedoch auch Polyester P2 einsetzen, deren Polymerketten Blockstrukturen aufweisen. Solche Polyester P2 sind im allgemeinen zugänglich durch entsprechende Wahl, insbesondere des Molekulargewichts, der Hydroxycarbonsäure B1. So erfolgt nach bisherigen Beobachtungen im allgemeinen bei Verwendung einer hochmoleku-45 laren Hydroxycarbonsäure B1, insbesondere mit einem p von größer

als 10, nur eine unvollständige Umesterung, beispielsweise auch in Gegenwart der oben beschriebenen Deaktivatoren (siehe J.of

15

Appl. Polym. Sc. Vol. 32, S. 6191 bis 6207, John Wiley & Sons, 1986, und Makrom. Chemie, Vol. 136, S. 311 bis 313, 1970).

Gewünschtenfalls kann man die Umsetzung auch in Lösung mit den bei der Herstellung der Polymeren T1 aus den Polyestern Q1 und 5 den Diisocyanaten C1 genannten Lösungsmitteln durchführen.

Die biologisch abbaubaren thermoplastischen Formmassen T4 erhält man erfindungsgemäß, indem man in an sich bekannter Weise, bevorzugt unter Zusatz üblicher Additive wie Stabilisatoren, Verarbeitungshilfsmitteln, Füllstoffen etc. (siehe J. of Appl. Polym. Sc., Vol. 32, S. 6191 bis 6207, John Wiley & Sons, 1986; WO 92/0441; EP 515,203; Kunststoff-Handbuch, Bd. 3/1, Carl Hanser Verlag München, 1992, S. 24 bis 28)

- 99,5 bis 0,5 Gew.-% Polyester P1 gemäß Anspruch 1 oder Polyester Q2 gemäß Anspruch 4 oder Polyester PWD gemäß Anspruch 3 mit
 - (h2) 0,5 bis 99,5 Gew.-% Hydroxycarbonsäure B1 mischt.

In einer bevorzugten Ausführungsform setzt man hochmolekulare Hydroxycarbonsäuren B1 wie Polycaprolacton oder Polylactid oder Polyglykolid oder Polyhydroxyalkanoate wie 3-Polyhydroxybuttersäure mit einem Molekulargewicht (Mn) im Bereich von 10000 bis 150000, vorzugsweise von 10000 bis 100000 g/mol, oder eine Mischung aus 3-Polyhydroxybuttersäure und Polyhydroxyvaleriansäure ein.

Aus WO 92/0441 und EP-A 515,203 ist es bekannt, daß hochmolekula30 res Polylactid ohne Zusätze von Weichmachern für die meisten Anwendungen zu spröde ist. In einer bevorzugten Ausführungsform
kann man ein Blend ausgehend von 0,5 bis 20, vorzugsweise von 0,5
bis 10 Gew.-% Polyester P1 gemäß Anspruch 1 oder Polyester Q2 gemäß Anspruch 4 oder Polyester PWD gemäß Anspruch 3 und 99,5 bis
35 80, vorzugsweise von 99,5 bis 90 Gew.-% Polylactid herstellen,
das eine deutliche Verbesserung der mechanischen Eigenschaften,
beispielsweise eine Erhöhung der Schlagzähigkeit, gegenüber reinem Polylactid aufweist.

- 40 Eine weitere bevorzugte Ausführungsform betrifft ein Blend, erhältlich durch Mischen von 99,5 bis 40, vorzugsweise von 99,5 bis 60 Gew.-% Polyester P1 gemäß Anspruch 1 oder Polyester Q2 gemäß Anspruch 4 oder Polyester PWD gemäß Anspruch 3 und von 0,5 bis 60, vorzugsweise von 0,5 bis 40 Gew.-% einer hochmolekularen
- 45 Hydroxycarbonsäure B1, besonders bevorzugt Polylactid, Polyglycolid, 3-Polyhydroxybuttersäure und Polycaprolacton. Solche Blends können vollständig biologisch abgebaut werden und weisen

16

nach den bisherigen Beobachtungen sehr gute mechanische Eigenschaften auf.

Nach bisherigen Beobachtungen erhält man die erfindungsgemäßen 5 thermoplastischen Formmassen T4 bevorzugt dadurch, daß man kurze Mischzeiten einhält, beispielsweise bei einer Durchführung des Mischens in einem Extruder. Durch Wahl der Mischparameter, insbesondere der Mischzeit und gewünschtenfalls der Verwendung von Deaktivatoren, sind auch Formmassen zugänglich, die überwiegend 10 Blendstrukturen aufweisen, d.h., daß der Mischvorgang so gesteuert werden kann, daß zumindest teilweise auch Umesterungsreaktionen stattfinden können.

In einer weiteren bevorzugten Ausführungsform kann man O bis 50,

15 vorzugsweise O bis 30 Mol-% der Adipinsäure, oder ihrer esterbildende Derivate oder deren Mischungen, durch mindestens eine
andere aliphatische C₄-C₁₀- oder cycloaliphatische C₅-C₁₀-Dicarbonsäure oder Dimerfettsäure wie Bernsteinsäure, Glutarsäure,
Pimelinsäure, Korksäure, Azelainsäure oder Sebazinsäure oder ein

20 Esterderivat wie deren Di-C₁-C₆-alkylester oder deren Anhydride
wie Bernsteinsäureanhydrid, oder deren Mischungen, ersetzen, bevorzugt Bernsteinsäure, Bernsteinsäureanhydrid, Sebacinsäure, Dimerfettsäure und Di-C₁-C₆-alkylester wie Dimethyl-, Diethlyl-, Din-propyl-, Diisobutyl-, Di-n-pentyl-, Dineopentyl-, Di-n-hexylester davon, insbesondere Dimethylbernsteinsäureester.

Eine besonders bevorzugte Ausführungsform betrifft den Einsatz als Komponente (a1) die in der EP-A 7445 beschriebene Mischung aus Bernsteinsäure, Adipinsäure und Glutarsäure sowie deren C_1-C_6 -Alkylester, insbesondere der Dimethylester und Diisobutylester.

In einer weiteren bevorzugten Ausführungsform kann man O bis 50, vorzugsweise O bis 40 Mol-% der Terephthalsäure oder ihrer ester35 bildende Derivate, oder deren Mischungen durch mindestens eine andere aromatische Dicarbonsäure wie Isophthalsäure, Phthalsäure oder 2,6-Naphthalindicarbonsäure, bevorzugt Isophthalsäure, oder ein Esterderivat wie einen Di-C1-C6-alkylester, insbesondere den Dimethylester, oder deren Mischungen, ersetzen.

Allgemein sei angemerkt, daß man die unterschiedlichen erfindungsgemäßen Polymere wie üblich aufarbeiten kann, indem man die Polymere isoliert, oder, insbesondere, wenn man die Polyester P1, P2, Q1 und Q2 weiter umsetzen möchte, indem man die Polymere nicht isoliert, sondern gleich weiterverarbeitet.

Die erfindungsgemäßen Polymere kann man durch Walzen, Streichen, Spritzen oder Gißen auf B schichtungsunterlagen aufbringen. Bevorzugte Beschichtungsunterlagen sind solche, die kompostierbar sind oder verrotten wie Formkörper aus Papier, Cellulose oder 5 Stärke.

Die erfindungsgemäßen Polymere können außerdem zur Herstellung von Formkörpern verwendet werden, die kompostierbar sind. Als Formkörper seien beispielhaft genannt: Wegwerfgegenstände wie 10 Geschirr, Besteck, Müllsäcke, Folien für die Landwirtschaft zur Ernteverfrühung, Verpackungsfolien und Gefäße für die Anzucht von Pflanzen.

Des weiteren kann man die erfindungsgemäßen Polymere in an sich bekannter Weise zu Fäden verspinnen. Die Fäden kann man gewünschtenfalls nach üblichen Methoden verstrecken, streckzwirnen, streckspulen, streckschären, streckschlichten und strecktexturieren. Die Verstreckung zu sogenanntem Glattgarn kann dabei in ein und demselben Arbeitsgang (fully drawn yarn oder fully oriented yarn), oder in einem getrennten Arbeitsgang erfolgen. Das Streckschären, Streckschlichten und die Strecktexturierung führt man im allgemeinen in einem vom Spinnen getrennten Arbeitsgang durch. Die Fäden kann man in an sich bekannter Weise zu Fasern weiterverarbeiten. Aus den Fasern sind dann Flächengebilde durch 25 Weben, Wirken oder Stricken zugänglich.

Die oben beschriebenen Formkörper, Beschichtungsmittel und Fäden etc. können gewünschtenfalls auch Füllstoffe enthalten, die man während des Polymerisationsvorganges in irgendeiner Stufe oder nachträglich, beispielsweise in eine Schmelze der erfindungsgemäßen Polymere einarbeiten kann.

Bezogen auf die erfindungsgemäßen Polymere kann von 0 bis 80
Gew.-% Füllstoffe zusetzen. Geeignete Füllstoffe sind beispiels35 weise Ruß, Stärke, Ligninpulver, Cellulosefasern, Naturfasern wie Sisal und Hanf, Eisenoxide, Tonmineralien, Erze, Calciumcarbonat, Calciumsulfat, Bariumsulfat und Titandioxid. Die Füllstoffe können zum Teil auch Stabilisatoren wie Tocopherol (Vitamin E), organische Phosphorverbindungen, Mono-, Di- und Polyphenole, Hydro40 chinone, Diarylamine, Thioether, UV-Stabilisatoren, Nukleierungsmittel wie Talkum sowie Gleit- und Formtrennmittel auf Basis von Kohlenwasserstoffen, Fettalkoholen, höheren Carbonsäuren, Metallsalzen höherer Carbonsäuren wie Calcium- und Zinkstearat, und Montanwachsen enthalten. Solche Stabilisatoren etc. sind in
45 Kunststoff-Handbuch, Bd. 3/1, Carl Hanser Verlag, München, 1992, S. 24 bis 28 ausführlich beschrieben.

Die erfindungsgemäßen Polymere können außerdem durch den Zusatz von organischen oder anorganischen Farbstoffen beliebig eingefärbt werden. Die Farbstoffe können im weitesten Sinne auch als Füllstoff angesehen werden.

5

Ein besonderes Anwendungsgebiet der erfindungsgemäßen Polymere betrifft die Verwendung als kompostierbare Folie oder einer kompostierbaren Beschichtung als Außenlage von Windeln. Die Außenlage der Windeln verhindert wirksam den Durchtritt von Flüssig-

- 10 keiten, die im Innern der Windel vom Fluff und Superabsorbern, bevorzugt von bioabbaubaren Superabsorbern, beispielsweise auf Basis von vernetzter Polyacrylsäure oder vernetztem Polyacrylamid, absorbiert werden. Als Innenlage der Windel kann man ein Faservlies aus einem Cellulosematerial verwenden. Die Außenlage
- 15 der beschriebenen Windeln ist biologisch abbaubar und damit kompostierbar. Sie zerfällt beim Kompostieren, so daß die gesamte Windel verrottet, während mit einer Außenlage aus beispielsweise Polyethylen versehene Windeln nicht ohne vorherige Zerkleinerung oder aufwendige Abtrennung der Polyethylenfolie kompostiert wer-
- 20 den können.

Eine weitere bevorzugte Verwendung der erfindungsgemäßen Polymere und Formmassen betrifft die Herstellung von Klebstoffen in an sich bekannter Weise (siehe beispielsweise Encycl. of Polym. Sc.

- 25 and Eng. Vol.1, "Adhesive Compositions", S. 547 bis 577). Analog zur Lehre der EP-A 21042 kann man die erfindungsgemäßen Polymere und Formmassen auch mit geeigneten klebrigmachenden thermoplastischen Harzen, bevorzugt Naturharzen, nach dort beschriebenen Methoden verarbeiten. Analog zur Lehre der DE-A
- 30 4,234,305 kann man die erfindungsgemäßen Polymere und Formmassen auch zu lösungsmittelfreien Klebstoffsystemen wie Hot-melt-Folien weiterverarbeiten.

Ein weiteres bevorzugtes Anwendungsgebiet betrifft die Herstel35 lung vollständig abbaubarer Blends mit Stärkemischungen (bevorzugt mit thermoplastischer Stärke wie in der WO 90/05161 beschrieben) analog zu dem in der DE-A 42 37 535 beschriebenen Verfahren. Die erfindungsgemäßen Polymere kann man dabei sowohl als Granulat als auch als Polymerschmelze mit Stärkemischungen

- da sich hierbei ein Verfahrensschritt (Granulierung) einsparen läßt (Direktkonfektionierung). Die erfindungsgemäßen Polymere und thermoplastischen Formmassen lassen sich nach bisherigen Beobachtungen auf Grund ihrer hydrophoben Natur, ihren mechanischen Ei-
- **45** genschaften, ihrer vollständigen Bioabbaubarkeit, ihrer guten Verträglichkeit mit thermoplastischer Stärke und nicht zuletzt

19

wegen ihrer günstigen Rohstoffbasis vorteilhaft als synthetische Bl ndkomponente einsetzen.

Weitere Anwendungsgebiete betreffen beispielsweise die Verwendung 5 der erfindungsgemäßen Polymere in landwirtschaftlichem Mulch, Verpackungsmaterial für Saatgut und Nährstoffe, Substrat in Klebefolien, Babyhöschen, Taschen, Bettücher, Flaschen, Kartons, Staubbeutel, Etiketten, Kissenbezüge, Schutzkleidung, Hygieneartikel, Taschentücher, Spielzeug und Wischer.

10

Eine weitere Verwendung der erfindungsgemäßen Polymere und Formmassen betrifft die Herstellung von Schäumen, wobei man im allgemeinen nach an sich bekannten Methoden vorgeht (siehe EP-A 372,846; Handbook of Polymeric foams and Foam Technology, Hanser Publisher, München, 1991, S. 375 bis 408). Üblicherweise wird dabei das erfindungsgemäße Polymere bzw. Formmasse zunächst aufgeschmolzen, gewünschtenfalls unter Zugabe von bis zu 5 Gew.-% Verbindung D, bevorzugt Pyromellitsäuredianhydrid und Trimellitsäureanhydrid, dann mit einem Treibmittel versetzt und die so erhaltene Mischung durch Extrusion vermindertem Druck ausgesetzt, wobei die Schäumung entsteht.

Die Vorteile der erfindungsgemäßen Polymere gegenüber bekannten bioabbaubaren Polymere liegen in einer günstigen Rohstoffbasis 25 mit gut verfügbaren Ausgangsstoffen wie Adipinsäure, Terephthalsäure und gängigen Diolen, in interessanten mechanischen Eigenschaften durch Kombination von "harten" (durch die aromatischen Dicarbonsäuren wie beispielsweise Terephthalsäure) und "weichen" (durch die aliphatischen Dicarbonsäuren, wie beispielsweise 30 Adipinsäure) Segmenten in der Polymerkette und der Variation der Anwendungen durch einfache Modifizierungen, in einem guten Abbauverhalten durch Mikroorganismen, besonders im Kompost und im Boden, und in einer gewissen Resistenz gegenüber Mikroorganismen in wäßrigen Systemen bei Raumtemperatur, was für viele Anwendungsbe-35 reiche besonders vorteilhaft ist. Durch den statistischen Einbau der aromatischen Dicarbonsäuren der Komponenten (al) in verschiedenen Polymeren wird der biologische Angriff ermöglicht und damit die gewünschte biologische Abbaubarkeit erreicht.

40 Besonders vorteilhaft an den erfindungsgemäßen Polymere ist, daß durch maßgeschneiderte Rezepturen sowohl biologisches Abbauverhalten und mechanische Eigenschaften für den jeweiligen Anwendungszweck optimiert werden können.

20

Des weiteren können je nach Herstellverfahren vorteilhaft Polymere mit überwiegend statistisch verteilten Monomerbausteinen, Polymere mit überwiegend Blockstrukturen sowie Polymere mit überwiegend Blendstruktur oder Blends erhalten werden.

5

Beispiele

Enzym-Test

10 Die Polymere wurden in einer Mühle mit flüssigem Stickstoff oder Trockeneis gekühlt und fein gemahlen (je größer die Oberfläche des Mahlguts, desto schneller der enzymatische Abbau). Zur eigentlichen Durchführung des Enzym-Tests wurden 30 mg fein gemahlenes Polymerpulver und 2 ml einer 20 mmol wäßrigen K₂HPO₄/

15 KH₂PO₄-Pufferlösung (PH-Wert: 7,0) in ein Eppendorfreagenzgefäß (2 ml) gegeben und 3 h bei 37°C auf einem Schwenker equilibriert Anschließend wurden 100 units Lipase aus entweder Rhizopus arrhizus, Rhizopus delemar oder Pseudomonas pl. zugesetzt und 16 h bei 37°C unter Rühren (250 rpm) auf dem Schwenker inkubiert. Danach

20 wurde die Reaktionsmischung durch eine Millipore®-Membran (0,45 μm) filtriert und der DOC (dissolved organic carbon) des Filtrats gemessen. Analog dazu wurden je eine DOC-Messung nur mit Puffer und Enzym (als Enzymkontrolle) und eine nur mit Puffer und Probe (als Blindwert) durchgeführt.

25

Die ermittelten ADOC-Werte (DOC (Probe + Enzym) - DOC (Enzymkon-trolle) - DOC (Blindwert)) können als Maß für die enzymatische Abbaubarkeit der Proben angesehen werden. Sie sind jeweils im Vergleich zu einer Messung mit Pulver von Polycaprolacton[®] Tone 30 P 787 (Union Carbide) dargestellt. Bei der Bewertung ist darauf zu achten, daß es sich nicht um absolut quantifizierbare Daten handelt. Auf den Zusammenhang zwischen Oberfläche des Mahlguts und Schnelligkeit des enzymatischen Abbaus wurde weiter oben bereits hingewiesen. Des weiteren können auch die Enzymaktivitäten schwanken.

Die Durchlässigkeit und Permeabilität gegenüber Sauerstoff wurde gemäß DIN 53380 diejenige gegenüber Wasserdampf gemäß DIN 53122 bestimmt.

40

45

Die Molekulargewichte wurden mittels Gelpermeationschromatographie (GPC) gemessen:

stationäre Phase:

5 MIXED B-Polystyrolgelsäulen (7,5x300 mm, PL-gel 10 μ) der Fa. Polymer Laboratories; Temperierung: 35°C.

21

mobile Phase: Tetrahydrofuran (Fluß: 1,2 ml/min)

Eichung: Molgewicht 500-10000000 g/mol mit PS-Eichkit der Fa. Polymer Laboratories.

Im Oligomerbereich Ethylbenzol/1,3-Diphenylbutan/1,3,5-Triphenylhexan/1,3,5,7-Tetraphenyloktan/1,3,5,7,9-Pentaphenyldekan

Detektion: RI (Brechungsindex) Waters 410

10 UV (bei 254 nm) Spectra Physics 100

Die Bestimmungen der Hydroxyl-Zahl (OH-Zahl) und Säure-Zahl (SZ) erfolgten nach folgenden Methoden:

15 (a) Bestimmung der scheinbaren Hydroxyl-Zahl Zu ca. 1 bis 2 g exakt eingewogener Prüfsubßtanz wurden 10 ml Toluol und 9,8 ml Acetylierungsreagenz (s.u.) gegeben und 1 h bei 95°C unter Rühren erhitzt. Danach wurden 5 ml dest. Wasser zugeführt. Nach Abkühlen auf Raumtemperatur wurden 50 ml Tetrahydrofuran (THF) zugesetzt und mit ethanolischer KOH-Maßlösung gegen Wendepunkt potentiographisch titriert.

Der Versuch wurde ohne Prüfsubstanz wiederholt (Blindprobe).

25 Die scheinbare OH-Zahl wurde dann aufgrund folgender Formel ermittelt:

scheinb. OH-Zahl $c \cdot t \cdot 56, 1 \cdot (V2-V1)/m$ (in mg KOH/g) wobei c = Stoffmengenkonzentration der ethanol. KOH-Maßlösung in mol/l,

t = Titer der ethanol. KOH-Maßlösung

m = Einwaage in mg der Prüfsubstanz

V1 = Verbrauch der Maßlösung mit Prüfsubstanz in ml

V2 = Verbrauch der Maßlösung ohne Prügsubstanz in ml

bedeuten.

30

35

Verwendete Reagenzien:
ethanol. KOH-Maßlösung, c = 0,5 mol/l, Titer 0,9933

(Merck, Art.Nr. 1.09114)
Essigsäureanhydrid p.A. (Merck, Art.Nr. 42)
Pyridin p.A. (Riedel de Haen, Art.-Nr 33638)
Essigsäure p.A. (Merck, Art.Nr. 1.00063)
Acetylierungsreagenz: 810 ml Pyridin, 100 ml

45 Essigsäureanhydrid und 9 ml Essigsäure

Wasser, deionisiert

22

THF und Toluol

(b) Bestimmung der Säurezahl (SZ)

Ca. 1 bis 1,5 g Prüfsubstanz wurden exakt eingewogen und mit 10 ml Toluol und 10 ml Pyridin versetzt und anschließend auf 95°C erhitzt. Nach dem Lösen wurde auf Raumtemperatur abgekühlt, 5 ml Wasser und 50 ml THF zugegeben und mit 0,1 N ethanol. KOHMaßlösung titriert.

Die Bestimmung wurde ohne Prüfsubstanz wiederholt (Blindprobe)

Die Säure-Zahl wurde dann aufgrund folgender Formel ermittelt:

15

20

SZ = c·t·56,1·(V1-V2)/m (in mg KOH/g)
wobei c = Stoffmengenkonzentration der ethanol. KOHMaßlösung in mol/l,

t = Titer der ethanol. KOH-Maßlösung
m = Einwaage in mg der Prüfsubstanz

W = Einwaage in mg der Prüfsubstanz
V1 = Verbrauch der Maßlösung mit Prüfsubstanz in ml
V2 = Verbrauch der Maßlösung ohne Prüfsubstanz in ml

bedeuten.

25 Verwendete Reagenzien:

ethanol. KOH-Maßlösung, c = 0,1 mol/l, Titer = 0,9913 (Merck, Art.Nr. 9115)

Pyridin p.A. (Riedel de Haen, Art.Nr. 33638)

Wasser, deionisiert THF und Toluol

(c) Bestimmung der OH-Zahl

Die OH-Zahl ergibt sich aus der Summe der scheinbaren OH-Zahl

35 und der SZ:

OH-Zahl = scheinb. OH-Zahl + SZ

Verwendete Abkürzungen:

40 DOC: dissolved organic carbon

DMT: Dimethylterephthalat

PCL: Polycaprolacton® Tone P 787 (Union Carbide)

PMDA: Pyrromellitsäuredianhydrid

SZ: Säurezahl

45 TBOT: Tetrabutylorthotitanat

23

VZ: Viskositätszahl (gemessen in o-Dichlorbenzol/Phenol (Gew.-Verhältnis 50/50) bei einer Konzentration von 0,5 Gew.-% Polymer bei einer Temperatur von 25°C

Tm: "Schmelztemperatur" = Temperatur, bei der ein

5 maximaler endothermer Wärmefluß auftritt (Extremum der

DSC-Kurven)

T_g: Glasübergangstemperatur (midpoint der DSC-Kurven)

Die DSC-Messungen wurden mit einem DSC-Gerät 912+Thermal Analyzer 10 990 der Fa. DuPont durchgeführt. Die Temperatur- und Enthalpiekalibrierung erfolgte in üblicher Weise. Die Probeneinwaage betrug typischerweise 13 mg. Heiz- und Kühlraten betrugen – außer wenn anders vermerkt – 20 K/min. Die Proben wurden unter folgenden Bedingungen vermessen: 1. Aufheizender Lauf an Proben im Anlieferungszustand, 2. Schnelles Abkühlen aus der Schmelze, 3. Aufheizender Lauf an aus der Schmelze abgekühlten Proben (Proben aus 2). Die jeweils zweiten DSC-Läufe dienten dazu, nach Einprägen einer einheitlichen thermischen Vorgeschichte, einen Vergleich zwischen den verschiedenen Proben zu ermöglichen.

20

Herstellung der Polyester P1

Beispiel 1

25 4672 kg 1,4 Butandiol, 7000 kg Adipinsäure und 50 g Zinn-dioctoat wurden in einer Stickstoffatmosphäre bei einer Temperatur im Bereich von 230 bis 240°C zur Reaktion gebracht. Nach Abdestillieren der Hauptmenge des bei der Umsetzung gebildeten Wassers, wurden 10 g TBOT zur Reaktionsmischung gegeben. Nachdem die Säurezahl 30 unter den Wert 1 gesunken ist, wurde unter vermindertem Druck überschüssiges 1,4-Butandiol solange abdestilliert, bis eine OHZahl von 56 erreicht war.

Beispiel 2

35

- 360,4 g des in Beispiel 1 hergestellten Polymers, 227,2 g DMT, 340 g 1,4-Butandiol und 1 g TBOT wurden in einer Stickstoff-atmosphäre unter langsamen Rühren auf 180°C erhitzt. Dabei wurde das während der Umesterungsreaktion gebildete Methanol ab-
- 40 destilliert. Innerhalb von 2 h wurde auf 230°C erhitzt, dann 6,54 g Pyromellitsäuredianhydrid zugegeben und nach einer weiteren Stunde 0,4 g einer 50 gew.-%igen wäßrigen Lösung von phosphoriger Säure. Danach wurd innerhalb von 1 h der Druck auf 5 mbar abgesenkt und bei 240°C noch eine weitere Stunde bei einem Druck unter
- 45 2 mbar gehalten, wobei das im Überschuß eingesetzte 1,4-Butandiol abdestilliert wurde.

24

OH-Zahl: 16 mg KOH/g SZ-Zahl: <1 mg KOH/g VZ: 134,5 g/ml

 T_m : 94 °C (DSC, Anlieferungszustand) 5 T_g : -41°C (DSC, Anlieferungszustand)

Enzym-Test mit Rhizopus arrhizus, $\Delta DOC: 571 \text{ mg/l}$

zum Vergleich mit PCL: \DOC: 4044 mg/l

Beispiel 3

10

Analog zu Beispiel 2 wurden 372,4 g des Polymers von Beispiel 1, 215,6 g DMT, 340 g 1,4 Butandiol, 5,8 g 1,2,4-Benzoltricarbonsäure-1,2anhydrid, 1,0 g TBOT und 0,4 g einer 50 gew.-%igen wäßrigen Lösung von phosphoriger Säure umgesetzt, wobei die 15 Zugabe von 1,2,4-Benzoltricarbonsäure-1,2-anhydrid bereits zu Anfang der Umsetzung erfolgte.

0H-Zahl: 16 mg KOH/g SZ-Zahl: 0,8 mg K0H/g 20 VZ: 71,4 g/ml

> T_m : 89 C (DSC, Anlieferungszustand) T_q : -43°C (DSC, Anlieferungszustand)

Beispiel 4

25

Analog zu Beispiel 3 wurden 372,4 g des Polymers von Beispiel 1, 215,6 g DMT, 340 g 1,4 Butandiol, 6,3 g 1,3,5-Benzoltricarbonsäure, 1,0 g TBOT und 0,4 g einer 50 gew.-%igen wäßrigen Lösung von phosphoriger Säure umgesetzt.

30

OH-Zahl: 18 mg KOH/g SZ-Zahl: 1,3 mg KOH/g VZ: 61,3 g/ml

T_m: 89°C (DSC, Anlieferungszustand)

35 T_q : -43,50C (DSC, Anlieferungszustand)

40

WO 96/15173

25

Beispiel 5

Analog zu Beispiel 3 wurden 360,4 g des Polymers von Beispiel 1, 221,4 g DMT, 340 g 1,4 Butandiol, 11,5 g 1,2,4-Benzoltricarbon-5 säure-1,2-anhydrid, 1,0 g TBOT und 0,4 g einer 50 gew.-%igen wäßrigen Lösung von phosphoriger Säure umgesetzt.

18 mg KOH/g OH-Zahl: SZ-Zahl: 1,3 mg KOH/g

80,4 g/ml 10 V2:

89°C (DSC, Anlieferungszustand) T_m : -42 °C (DSC, Anlieferungszustand) $T_{q}:$

Beispiel 6

15

Analog zu Beispiel 3 wurden 360 g des Polymers von Beispiel 1, 233 g DMT, 340 g 1,4-Butandiol, 4,1 g einer Mischung aus 85 bis 92 Gew.-% Pentaerythrit und 8 bis 15 Gew.-% Dipentaerythrit, 1,0 g TBOT, und 0,4 g einer 50 gew.-%igen wäßrigen Lösung von phosp-20 horiger Säure umgesetzt.

22 mg KOH/g OH-Zahl: SZ-Zahl: 0,8 g KOH/g 68,24 g/ml VZ:

88,5°C (DSC, Anlieferungszustand) 25 Tm: -44°C (DSC, Anlieferungszustand)

 T_{α} :

Beispiel 7

30 Analog zu Beispiel 3 wurden 360 g des Polymers von Beispiel 1, 340 g 1,4-Butandiol, 8 g Sulfoisophthalsäure-Natriumsalz, 0,65 g PMDA, 1,0 g TBOT, und 0,4 g einer 50 gew.-%igen wäßrigen Lösung von phosphoriger Säure umgesetzt, wobei die Zugabe des Sulfoisophthalsäure-Natriumsalzes bereits zu Anfang der Umsetzung er-35 folgte.

10 mg KOH/g OH-Zahl: 2,4 g KOH/g SZ-Zahl: 64,56 g/ml VZ:

92°C (DSC, Anlieferungszustand) 40 Tm: 40°C (DSC, Anlieferungszustand) T_q :

Beispiel 8

45 341,2 g DMT, 646 g 1,4-Butandiol, 0,65 g PMDA, 1,0 g TBOT wurden in einen Dreihalskolben gegeben und unter Stickstoffatmosphäre unter langsamem Rühren auf 180° c erhitzt. Dabei wurde das während

PCT/EP95/02491

der Umsetzungsreaktion gebildete Methanol abdestilliert. Nach Zugabe von 313 g Adipinsäure wurde inn rhalb von 2 h unter Erhöhung der Rührgeschwindigkeit auf 23°C erhitzt, wobei das während der Umsetzung gebildete wasser abdestilliert wurde. Nach einer wei-

26

5 teren Stunde wurden noch 0,4 g einer 50 gew.-%igen wäßrigen phosphorigen Säure zugegeben. Danach wurde innerhalb von 1 h der Druck auf 5 mbar gesenkt und bei 240°C noch 1 h bei einem Druck < 2 mbar erhitzt, wobei das im Überschuß eingesetzte 1,4-Butandiol abdestilliert wurde.

10

WO 96/15173

OH-Zahl: 19 mg KOH/g SZ: 0,2 g KOH/g VZ: 48,6 g/ml

T_m: 109,5°C (DSC, Anlieferungszustand)

15 T_g: -28°C (DSC, Anlieferungszustand)

Beispiel 9 - Herstellung eines Polyesters P2

372 g Ethylenglykol, 388 g DMT, 1,0 g TBOT und 12 g Sulfoisoph20 thalsäure-Natriumsalz wurden in einen Dreihalskolben gegeben und
unter Stickstoffatmosphäre unter langsamem Rühren auf 180°C erhitzt. Dabei wurde das während der Umesterungsreaktion gebildete
Methanol abdestilliert. Dann wurden 75 g Adipinsäure und 43,5 g
einer 91 gew.-%igen wäßrigen Milchsäurelösung zugegeben. Inner-

25 halb von 2 h wurde unter Erhöhung der Rührgeschwindigkeit auf 200°C erhitzt. Danach wurde der Druck stufenweise auf 5 mbar gesenkt und bei 210°C noch 1 h bei einem Druck < 2 mbar erhitzt, wobei das während der Kondensationsreaktion gebildete Wasser und das im Überschuß eingesetzte Ethylenglykol abdestilliert wurden.

30

OH-Zahl: 13 mg KOH/g SZ: 2,6 g KOH/g

T_m: 176,4°C (DSC, von 250°C schnell abgekühlt)

35 Beispiel 10

(a) Analog zu Beispiel 2 wurden 362 g des Polymers von Beispiel 1, 234 g DMT, 340 g 1,4-Butandiol, 1 g TBOT und 0,4 g einer 50 gew.-%igen wäßrigen phosphorigen Säure umgesetzt,

40

OH-Zahl: 20 mg KOH/g SZ: 0,8 g KOH/g VZ: 42 g/ml

45 (b) 120 g des Polymers von Beispiel 10(a) wurden mit 60 g Polylactid und 0,75 g PMDA unter Stickstoffatmosphäre auf 180°C erhitzt und 2 gerührt. Anschließend wurden innerhalb von 15

PCT/EP95/02491

W 96/15173

27

min 1,68 g Hexamethylendiisocyanat ("HDI") zugegeben und noch weitere 30 min weitergerührt.

Produkt vor HDI-Zugabe:

5 48 g/ml VZ:

Produkt nach HDI-Zugabe:

65 g/ml

95,5°C, 143°C, 151,8°C \mathbf{T}_{m} :

10 (DSC, von 200°C schnell abgekühlt)

> -30°C, 48,5°C (DSC, von 200°C schnell abgekühlt) T_{α} :

Beispiel 11

15 30 g des Polymeren von Beispiel 10(a) wurden mit 120 g Polycaprolacton und 0,75 g Pyromellitsäuredianhydrid unter Stickstoffatmosphäre auf 180°C aufgeheizt und 2 Stunden gerührt. Anschließend wurden innerhalb von 15 min 1,74 g Hexamethylendiisocyanat zugegeben und noch 30 min weitergerührt.

20

Produkt vor HDI-Zugabe:

76 g/ml VZ:

Produkt nach HDI-Zugabe:

25 VZ: 213 g/l

> -48°C (DSC, Anlieferungszustand) $\mathbf{T}_{\mathbf{q}}$:

53,3°C, 91,5°C (DSC, Anlieferungszustand) T_m :

Beispiel 12

30

- 1,81 kg des Polymers von Beispiel 1, 1,17 kg DMT, 1,7 kg 1,4-Butandiol, 4,7 g TBOT, 6,6 g PMDA, und 1,9 g 50 %ige wäßrige phosphorige Säure wurden analog zu Beispiel 2 umgesetzt, wobei nach Beendigung der Umsetzung die Schmelze unter Rühren und unter
- 35 Stickstoffatmosphäre auf 200°C abgekühlt wurde. Dann erfolgte die Zugabe von 15 g Hexamethylendiisocyanat in 4 Portionen innerhalb von 40 min. Der Polyester konnte granuliert und zu Blasfolien verarbeitet werden.
- **40** OH-Zahl: 2 mg KOH/g

5,5 mg KOH/g

GPC: $M_n = 14320$, $M_w = 98350$ (UV-Detektor, 254 nm, Spectra Physics 100)

 T_m : 98°C, T_g : -31°C (DSC, von 190°C schnell abgekühlt)

45 Enzym-Test mit Rhizopus arrhizus: ΔDOC: 264 mg/l (Folie)/ΔDOC-(PCL-Pulver):2588 mg/l

28

Folieneigenschaften:

Foliendicke: ca. 50 μm, Aufblasverhältnis: 1:2

- Reißfestigkeit (DIN 53455) längs: 27,9/quer: 28,2 N/mm²

Reißdehnung (DIN 53455) längs: 733 %/quer: 907 %

5

	Probe Nr.	Foliendicke µm	H ₂ O-Durchlässig- keit	H ₂ O-Permeabilität
10		·	q in $\frac{q}{m^2 \cdot d}$	P in <u>g·100 μm</u> m²·d
			23°C / 85 %	→ 0 % r.F.
	1 2	37 42	366 304	135 128

L	2
	_

	Probe Nr.	Foliendicke µm	O ₂ -Durchlässig- keit	H ₂ -O-Permeabili- tät
20			q in <u>cm³</u> m²·d·bar	P in cm ³ ·100 μm m ² ·d·bar
	3 4	49 48	23°C / 0 % r.F. 1500 1560	23°C / 0 % r.F. 735 749

25 r.F. = relative Feuchtigkeit

Beispiel 13

16,52 kg des Polymers von Beispiel 1 13,1 kg DMT, 17 kg
30 1,4-Butandiol, 47 g TBOT, 16,5 g PMDA, und 19 g 50 %ige wäßrige phosphorige Säure wurden analog Beispiel 2 umgesetzt, wobei nach Beendigung der Umsetzung die Schmelze unter Rühren und unter Stickstoffatmosphäre auf 200°C abgekühlt wurde. Dann erfolgte die Zugabe von 290 g Hexamethylendiisocyanat in 5 Portionen innerhalb von 40 min. Der Polyester konnte granuliert werden.

OH-Zahl: 2 mg KOH/g SZ: 4,1 mg KOH/g

40 GPC: $M_n = 17589$, $M_w = 113550$ (UV-Detektor, 254 nm, Spectra Physics 100)

T_m: 108,3°C

Tg: -25,6°C (DSC, von 190°C schnell abgekühlt)

45

Beispi 1 14

Die Herstellung eines Blends aus Stärke und dem Polyester aus Beispiel 13 erfolgte in einem gleichsinnig drehenden Zweiwellen5 extruder (L/D-Verhältnis: 37) mit ca. 30 kg/h Durchsatz bei 50-220°C. Zunächst wurde die native Kartoffelstärke mit Glycerin plastifiziert und die erhaltene destrukturierte, thermoplastische Stärke entgast. Durch Zumischung des Polymeren aus Beispiel 13 als Granulat über einen gleichsinnig drehenden zweiwelligen
10 Seitenextruder (L/D-Verhältnis: 21) wurde ein Stärkeblend erhal-

ten, der granuliert und zu Blasfolien verarbeitet werden konnte.

Zusammensetzung Stärkeblend:

- 15 10 kg/h Perfectamyl D 6 (Fa. AVEBE; native Kartoffelstärke mit einem Wassergehalt von 6-10 Gew.-%)
 - 6 kg/h Glycerin
 - 14 kg/h Polymer aus Beispiel 13
 - 0,15 kg/h Erucasäureamid
- 20 0,15 kg/h Loxiol G 31

Loxiol G 31: flüssiger neutraler Fettsäureester, Stockpunkt < 19°C,

Dichte: 0,853-0,857 g/cm3 (20°C), Fa. Henkel

25

Folieneigenschaften:

- Foliendicke: ca. 100 μm, Aufblasverhältnis: ca. 1:2
- Reißfestigkeit (DIN 53455) längs: 16,6/quer: 10,0 N/mm²
- 30 Reißdehnung (DIN 53455) längs: 789 %/quer: 652 %

Probe Nr.	Foliendicke µm	H ₂ O-Durchlässig- keit	H ₂ O-Permeabilität
		q in $\frac{q}{m^2 \cdot d}$	P in g·100 μm m²·d
		23℃ / 85 %	→ 0 % r.F.
5 6	97 106	275 211	267 224
		μm	μm keit q in g m ² ·d 23°C / 85 % 5 97 275

30

	Probe Nr.	Foliendicke µm	O ₂ -Durchlässig- keit	H ₂ -O-Permeabili- tät
5			q in <u>cm³</u> m²·d·bar	P in cm ³ ·100 μm m ² ·d·bar
	7 8	105 103	23°C / 0 % r.F. 78 77	23°C / 0 % r.F. 82 79

Beispiel 15

120 kg des Polymeren aus Beispiel 1 77,68 kg DMT, 112,5 kg
1,4-Butandiol und 311 g TBOT wurden in einen Reaktor gegeben und
unter Stickstoffatmosphäre mit langsamen Rühren auf 180°C erhitzt.
Dabei wurde das während der Umesterungsreaktion gebildete
Methanol abdestilliert. Innerhalb von 2 h wurde unter Erhöhung
der Rührgeschwindigkeit auf 230°C erhitzt, 110 g Pyromellitsäuredianhydrid zugegeben und nach einer weiteren Stunde noch 125 g
50 gew.-%ige wäßrige phosphorige Säure. Innerhalb von 1,5 h wurde
der Druck auf 5 mbar abgesenkt und bei 240°C noch 2 h < 2 mbar
gehalten, wobei das im Überschuß eingesetzte 1,4-Butandiol
abdestilliert wurde. Nach Beendigung der Umsetzung wurde die
Schmelze unter Rühren und unter Stickstoffatmosphäre auf 200°C
abgekühlt. Dann erfolgte die Zugabe von 2,3 kg Hexamethylendiisocyanat kontinuierlich innerhalb von 60 min. Nach weiteren
30 min wurde der Polyester ausgefahren.

OH-Zahl: 3 mg KOH/G SZ: 3,7 mg/KOH/g

GPC: M_n = 15892, M_w = 77920 (UV-Detektor, 254 nm, Spectra Physics 100)

35 T_m : 97,6°C T_q : -29,3°C (DSC, von 190°C schnell abgekühlt)

Beispiel 16

30

Die Herstellung eines Blends aus Stärke und dem Polymer aus Beispiel 15 erfolgte in einem gleichsinnig drehenden Zweiwellenextruder (L/D-Verhältnis: 37) mit ca. 30 kg/h Durchsatz bei 50-220°C. Zunächst wurde die native Kartoffelstärke mit der Glycerin-MSA-Mischung plastifiziert und die erhaltene destrukturierte, thermoplastische Stärke entgast. Durch direkte Zumischung des Polymers aus Beispiel 15 als Polymerschmelze (ohne vorherige Isolierung als Granulat etc.) über einen gleichsinnig drehenden zweiwelligen Seitenextruder (L/D-Verhältnis: 22, Temperatur-

31

führung: 50-150°C) wurde ein Stärkeblend erhalten, der granuliert und zu Blasfolien verarbeitet werden konnte.

Vorteile: Einsparung von einem Verfahrensschritt, besonders hohe Wasserresistenz der Folie durch Morphologie des Blends

5

Zusammensetzung Stärkeblend:

- 10 kg/h Perfectamyl D 6 (Fa. AVEBE; native Kartoffelstärke mit einem Wassergehalt von 6-10 Gew.-%)
- 10 6 kg/h Mischung: Glycerin + 0,5 Gew.-% Maleinsäureanhydrid
 - 14 kg/h Polymer von Beispiel 15
 - 0,15 kg/h Erucasäureamid
 - 0,15 kg/h Loxiol G 31

15

20

25

30

35

40

45

WO 96/15173

15

25

Patentansprüche

- Biologisch abbaubare Polyester Pl, erhältlich durch Reaktion
 einer Mischung, bestehend im wesentlichen aus
 - (al) einer Mischung, bestehend im wesentlichen aus
- 35 bis 95 mol-% Adipinsäure oder esterbildende

 10 Derivate davon oder Mischungen davon.

5 bis 65 mol-% Terephthalsäure oder esterbildende Derivate davon oder Mischungen davon, und

0 bis 5 mol-% einer sulfonatgruppenhaltigen Verbindung,

wobei die Summe der einzelnen Molprozentangaben 100 mol-% beträgt, und

(a2) einer Dihydroxyverbindung, ausgewählt aus der Gruppe bestehend aus C_2 - C_6 -Alkandiolen und C_5 - C_{10} -Cycloalkandiolen,

wobei man das Molverhältnis von (a1) zu (a2) im Bereich von 0,4:1 bis 1,5:1 wählt, mit der Maßgabe, daß die Polyester P1 ein Molekulargewicht (Mn) im Bereich von 5000 bis 50000 g/mol, eine Viskositätszahl im Bereich von 30 bis 350 g/ml (gemessen in o-Dichlorbenzol/Phenol (Gew.-Verhältnis 50/50) bei einer Konzentration von 0,5 Gew.-% Polyester P1 bei einer Temperatur von 25°C) und einen Schmelzpunkt im Bereich von 50 bis 170°C aufweisen, und mit der weiteren Maßgabe, daß man von 0,01 bis 5 mol-%, bezogen auf die Molmenge der eingesetzten Komponente (a1), einer Verbindung D mit mindestens drei zur Esterbildung befähigten Gruppen zur Herstellung der Polyester P1 einsetzt.

- Biologisch abbaubare Polyester P2, erhältlich durch Reaktion
 einer Mischung, bestehend im wesentlichen aus
 - (b1) einer Mischung, bestehend im wesentlichen aus
- 20 bis 95 mol-% Adipinsaure oder esterbildende 45 Derivate davon oder Mischungen davon,

33

5 bis 80 mol-% Ter phthalsaure oder esterbildende Derivate davon oder Mischungen davon, und

5 0 bis 5 mol-% einer sulfonatgruppenhaltigen Verbindung,

wobei die Summe der einzelnen Molprozentangaben 100 mol-% beträgt,

10

(b2) Dihydroxyverbindung (a2),

wobei man das Molverhältnis von (b1) zu (b2) im Bereich von 0,4:1 bis 1,5:1 wählt,

15

- (b3) von 0,01 bis 100 Gew.-%, bezogen auf Komponente (b1), einer Hydroxycarbonsäure B1, und
- (b4) von 0 bis 5 mol-%, bezogen auf Komponente (b1), Verbindung D,

wobei die Hydroxycarbonsäure B1 definiert ist durch die Formeln Ia oder Ib

25
HO-[--C(0)--G--0-]_pH [-C(0)--G--0-]_r

Ia Ib

30

35

40

in deren p eine ganze Zahl von 1 bis 1500 und r eine ganze Zahl von 1 bis 4 bedeuten, und G für einen Rest steht, der ausgewählt ist aus der Gruppe bestehend aus Phenylen, $-(CH_2)_n$, wobei n eine ganze Zahl von 1 bis 5 bedeutet, -C(R)H- und $-C(R)HCH_2$, wobei R für Methyl oder Ethyl steht,

wobei die Polyester P2 ein Molekulargewicht (M_n) im Bereich von 5000 bis 80000 g/mol, eine Viskositätszahl im Bereich von 30 bis 450 g/ml (gemessen in o-Dichlorbenzol/Phenol (Gew.-Verhältnis 50/50) bei einer Konzentration von 0,5 Gew.-% Polyester P2 bei einer Temperatur von 25°C) und einen Schmelzpunkt im Bereich von 50 bis 235°C aufweisen.

Biologisch abbaubare Polyester Q1, erhältlich durch Reaktion
 einer Mischung bestehend im wesentlichen aus

		34
	(c1)	Polyester P1 und/oder einem Polyester PWD,
_	(c2)	0,01 bis 50 Gew%, bezogen auf (c1), Hydroxy-carbonsaure B1, und
5		
	(c3)	0 bis 5 mol-%, bezogen auf Komponente (a1) aus der Herstellung von Pl und/oder PWD, Verbindung D, wobei der Polyester PWD erhältlich ist durch Reaktion von im wesentlichen den Komponenten
10		(a1) und (a2), wobei man das Molverhältnis von (a1) zu (a2) im Bereich von 0,4:1 bis 1,5:1 wählt, mit der Maßgabe, daß die Polyester PWD ein Molekulargewicht $(M_{\rm n})$ im Bereich von 5000 bis 50000 g/mol, eine Viskositätszahl im Bereich
15		von 30 bis 350 g/ml (gemessen in o-Dichlorben- zol/Phenol (Gew Verhältnis 50/50) bei einer Konzentration von 0,5 Gew% Polyester PWD bei einer Temperatur von 25°C) und einen Schmelz-
20		punkt im Bereich von 50 bis 170°C aufweisen, wobei die Polyester Q1 ein Molekulargewicht (M_n) im Bereich von 5000 bis 100000 g/mol, eine Viskositätszahl im Bereich von 30 bis 450 g/ml (gemessen in o-Dichlorbenzol/Phenol $(50/50 \text{ GewVerhältnis})$ bei einer Konzentration von 0,5
25		Gew% Polyester Q1 bei einer Temperatur von 25°C) und einen Schmelzpunkt im Bereich von 50 bis 235°C aufweisen.
4. 30	(M _n) im Bere zahl im Bere benzol/Pheno Gew% Polye	bbaubare Polyester Q2 mit einem Molekulargewicht ich von 6000 bis 60000 g/mol, einer Viskositäts- eich von 30 bis 350 g/ml (gemessen in o-Dichlor- el (50/50 Gew%) bei einer Konzentration von 0,5 ester Q2 bei einer Temperatur von 25°C) und einem
35	Reaktion ein	im Bereich von 50 bis 170°C, erhältlich durch er Mischung bestehend im wesentlichen aus
	(d1)	von 95 bis 99,9 Gew% Polyester Pl und/oder Polyester PWD gemäß Anspruch 3,
40	(d2)	von 0,1 bis 5 Gew% eines Diisocyanats Cl und
	(d3)	von 0 bis 5 mol-%, bezogen auf Komponente (a1) aus der Herstellung von Pl und/oder PWD, Verbindung D.

35

5. Biologisch abbaubare Polymere T1 mit einem Molekulargewicht (Mn) im Bereich von 10 000 bis 100 000 g/mol, mit einer Viskositätszahl im Bereich von 30 bis 450 g/ml (gemessen in o-Dichlorbenzol/Phenol (Gew.-Verhältnis 50/50) bei einer Konzentration von 0,5 Gew.-% Polymer T1 bei einer Temperatur von 25°C) und einem Schmelzpunkt im Bereich von 50 bis 235°C, erhältlich durch Umsetzung des Polyesters Q1 gemäß Anspruch 3 mit (el) 0,1 bis 5 Gew.-%, bezogen auf den Polyester Q1, Diisocyanat C1 sowie mit (e2) 0 bis 5 mol-%, bezogen auf Komponente (a1) aus der Herstellung von Polyester Q1 über den Polyester P1 und/oder PWD, Verbindung D.

6. Biologisch abbaubare Polymere T2 mit einem Molekulargewicht (Mn) im Bereich von 10.000 bis 100.000 g/mol, mit einer Viskositätszahl im Bereich von 30 bis 450 g/ml (gemessen in o-Dichlorbenzol/Phenol (Gew.-Verhältnis 50/50) bei einer Konzentration von 0,5 Gew.-% Polymer T2 bei einer Temperatur von 25°C) und einem Schmelzpunkt im Bereich von 50 bis 235°C, erhältlich durch Umsetzung des Polyesters Q2 mit

20
(f1) 0,01 bis 50 Gew.-%, bezogen auf Polyester Q2,
Hydroxycarbonsäure B1 sowie mit

- (f2) 0 bis 5 mol-%, bezogen auf Komponente (a1) aus der Herstellung von Polyester Q2 über den Polyester P1 und/oder PWD, Verbindung D.
- Biologisch abbaubare Polymere T3 mit einem Molekulargewicht
 (M_n) im Bereich von 10.000 bis 100.000 g/mol, mit einer
 Viskositätszahl im Bereich von 30 bis 450 g/ml (gemessen in o-Dichlorbenzol/Phenol (Gew.-Verhältnis 50/50) bei einer
 Konzentration von 0,5 Gew.-% Polymer T3 bei einer Temperatur
 von 25°C) und einem Schmelzpunkt im Bereich von 50 bis 235°C,
 erhältlich durch Umsetzung von

(g1) Polyester P2, oder

- einer Mischung bestehend im wesentlichen aus Polyester Pl und 0,01 bis 50 Gew.-%, bezogen auf Polyester Pl, Hydroxycarbonsäure Bl, oder
 - (g3) einer Mischung bestehend im wesentlichen aus Polyestern P1, die eine unterschiedliche Zusammensetzung voneinander aufweisen,

45

36

mit 0,1 bis 5 Gew.-%, bezogen auf die Menge der eingesetzten Polyester, Diisocyanat C1 sowie

- mit 0 bis 5 mol-%, bezogen auf die jeweiligen Molmengen an Komponente (a1), die zur Herstellung der eingesetzten Polyester (g1) bis (g3) eingesetzt wurden, Verbindung D.
- 8. Biologisch abbaubare thermoplastische Formmassen T4, erhältlich durch Mischen in an sich bekannter Weise von

- (hl) 99,5 bis 0,5 Gew.-% Polyester P1 gemäß Anspruch 1 oder Polyester Q2 gemäß Anspruch 4 oder Polyester PWD gemäß Anspruch 3 mit
- 15 (h2) 0,5 bis 99,5 Gew.-% Hydroxycarbonsäure B1.
- Verfahren zur Herstellung der biologisch abbaubaren Polyester Pl gemäß Anspruch 1 in an sich bekannter Weise, dadurch gekennzeichnet, daß man eine Mischung, bestehend im wesentlichen aus
 - (al) einer Mischung, bestehend im wesentlichen aus
- 35 bis 95 mol-% Adipinsäure oder esterbildende
 25

 Derivate davon oder Mischungen davon,
 5 bis 65 mol-% Terephthalsäure oder esterbildende Derivate davon oder Mischungen davon,
 und
- 0 bis 5 mol-% einer sulfonatgruppenhaltigen Verbindung,
 - wobei die Summe der einzelnen Molprozentangaben 100 mol-% beträgt, und
- einer Dihydroxyverbindung, ausgewählt aus der Gruppe bestehend aus C_2 - C_6 -Alkandiolen und C_5 - C_{10} -Cycloalkandiolen,
- wobei man das Molverhältnis von (a1) zu (a2) im Bereich von 0,4:1 bis 1,5:1 wählt, und von 0,01 bis 5 mol-%, bezogen auf die Molmenge der eingesetzten Komponente (a1), einer Verbindung D mit mindestens drei zur Esterbildung befähigten Gruppen zur Reaktion bringt.

37

10. Verfahren zur Herstellung der biologisch abbaubaren Polyester P2 gemäß Anspruch 2 in an sich bekannter W ise, dadurch gekennzeichnet, daß man eine Mischung, bestehend im wesentlichen aus

5 (b1) einer Mischung, bestehend im wesentlichen aus

20 bis 95 mol-% Adipinsaure oder esterbildende Derivate davon oder Mischungen davon,

5 bis 80 mol-% Terephthalsäure oder esterbildende Derivate davon oder Mischungen davon, und

0 bis 5 mol-% einer sulfonatgruppenhaltigen Verbindung,

wobei die Summe der einzelnen Molprozentangaben 100 mol-% beträgt,

20 (b2) Dihydroxyverbindung (a2),

wobei man das Molverhältnis von (b1) zu (b2) im Bereich von 0,4:1 bis 1,5:1 wählt,

von 0,01 bis 100 Gew.-%, bezogen auf Komponente (b1), einer Hydroxycarbonsäure B1, und

(b4) von 0 bis 5 mol-%, bezogen auf Komponente (b1),
Verbindung D,

wobei die Hydroxycarbonsäure Bl definiert ist durch die Formeln Ia oder Ib

in der p eine ganze Zahl von 1 bis 1500 und r eine ganze Zahl von 1 bis 4 bedeuten, und G für einen Rest steht, der ausgewählt ist aus der Gruppe bestehend aus Phenylen, -(CH₂)_n-, wobei n eine ganze Zahl von 1 bis 5 bedeutet, -C(R)H- und -C(R)HCH₂, wobei R für Methyl oder Ethyl steht, zur Reaktion bringt.

38

11. Verfahren zur H rstellung der biologisch abbaubaren Poly ster Q1 gemäß Anspruch 3 in an sich bekannter Weise, dadurch gekennzeichnet, daß man eine Mischung, bestehend im wesentlichen aus

5

- (c1) Polyester P1 und/oder einem Polyester PWD,
- (c2) 0,01 bis 50 Gew.-%, bezogen auf (c1), Hydroxy-carbonsäure B1, und

10

- (c3) 0 bis 5 mol-%, bezogen auf Komponente (a1) aus der Herstellung von P1 und/oder PWD, Verbindung D,
- zur Reaktion bringt.
- 12. Verfahren zur Herstellung der biologisch abbaubaren Polyester Q2 gemäß Anspruch 4 in an sich bekannter Weise, dadurch gekennzeichnet, daß man eine Mischung, bestehend im wesentlichen aus
 - (d1) von 95 bis 99,9 Gew.-% Polyester P1 und/oder Polyester PWD gemäß Anspruch 3,
- 25 (d2) von 0,1 bis 5 Gew.-% eines Diisocyanats C1 und
 - von 0 bis 5 mol-%, bezogen auf Komponente (a1) aus der Herstellung von Pl und/oder PWD, Verbindung D

30

zur Reaktion bringt.

13. Verfahren zur Herstellung der biologisch abbaubaren Polymeren Tl gemäß Anspruch 5 in an sich bekannter Weise, dadurch gekennzeichnet, daß man Polyester Ql gemäß Anspruch 3 mit (el) 0,1 bis 5 Gew.-%, bezogen auf den Polyester Ql, Diisocyanat Cl sowie mit (e2) 0 bis 5 mol-%, bezogen auf Komponente (a1) aus der Herstellung von Polyester Ql über Polyester Pl und/oder PWD, Verbindung D zur Reaktion bringt.

- 14. Verfahren zur Herstellung der biologisch abbaubaren Polymeren T2 gemäß Anspruch 6 in an sich bekannter Weise, dadurch gekennzeichnet, daß man
- 45 Polyester Q2 mit

39

- (f1) 0,01 bis 50 Gew.-%, bezogen auf Polyester Q2, Hydroxycarbonsaure B1 sowi mit

zur Reaktion bringt.

- 10 15. Verfahren zur Herstellung der biologisch abbaubaren Polymeren T3 gemäß Anspruch 7 in an sich bekannter Weise, dadurch gekennzeichnet, daß man
 - (g1) Polyester P2, oder

15

30

- (g2) eine Mischung, bestehend im wesentlichen aus Polyester P1 und 0,01 bis 50 Gew.-%, bezogen auf Polyester P1, Hydroxycarbonsaure B1, oder
- 20 (g3) eine Mischung, bestehend im wesentlichen aus Polyestern P1, die eine unterschiedliche Zusammensetzung voneinander aufweisen,
- mit 0,1 bis 5 Gew.-%, bezogen auf die Menge der eingesetzten 25 Polyester, Diisocyanat C1 sowie

mit 0 bis 5 mol-%, bezogen auf die jeweiligen Molmengen an Komponente (a1), die zur Herstellung der eingesetzten Polyester (g1) bis (g3) eingesetzt wurden, Verbindung D, zur Reaktion bringt.

- Verfahren zur Herstellung der biologisch abbaubaren thermoplastischen Formmassen T4 gemäß Anspruch 8 in an sich bekannter Weise, dadurch gekennzeichnet, daß man 99,5 bis 0,5 Gew.-% Polyester P1 gemäß Anspruch 1 oder Polyester Q2 gemäß Anspruch 4 oder Polyester PWD gemäß Anspruch 3 mit 0,5 bis 99,5 Gew.-% Hydroxycarbonsäure B1 mischt.
- 17. Verwendung der biologisch abbaubaren Polymere gemäß den Ansprüchen 1 bis 7 oder der thermoplastischen Formmassen gemäß Ansprüche 8 oder hergestellt gemäß den Ansprüchen 9 bis 16 zur Herstellung von kompostierbaren Formkörpern.

40

18. V rwendung der biologisch abbaubaren Polymere gemäß den Ansprüchen 1 bis 7 der der thermoplastischen Formmassen gemäß Ansprüch 8 oder hergestellt gemäß den Ansprüchen 9 bis 16 zur Herstellung von Klebstoffen.

5

- 19. Kompostierbare Formkörper, erhältlich durch die Verwendung gemäß Anspruch 17.
- 10 20. Klebstoffe, erhältlich durch die Verwendung gemäß Anspruch 18.
- Verwendung der biologisch abbaubaren Polymere gemäß den Ansprüchen 1 bis 7 oder der thermoplastischen Formmassen gemäß
 Ansprüchen 8 oder hergestellt gemäß den Ansprüchen 9 bis 16 zur Herstellung von biologisch abbaubaren Blends, enthaltend im wesentlichen die erfindungsgemäßen Polymere und Stärke.
- 22. Biologisch abbaubare Blends, erhältlich durch die Verwendung gemäß Anspruch 21.
 - 23. Verfahren zur Herstellung biologisch abbaubarer Blends gemäß Anspruch 22 in an sich bekannter Weise, dadurch gekennzeichnet, daß man Stärke mit den erfindungsgemäßen Polymeren mischt.
- 24. Verwendung der biologisch abbaubaren Polymere gemäß den Ansprüchen 1 bis 7 oder der thermoplastischen Formmassen gemäß Ansprüchen 8 oder hergestellt gemäß den Ansprüchen 9 bis 16 zur Herstellung von biologisch abbaubaren Schäumen.
 - 25. Biologisch abbaubare Schäume, erhältlich durch die Verwendung gemäß Anspruch 24.

35

25

int onal Application No PCT/EP 95/02491

IPC 6	IFICATION OF SUBJECT MATTER COBG63/20 COBG63/60 COBG18/		
	to International Patent Classification (IPC) or to both national class	Sileston and IPC	
B. FIELDS	S SEARCHED focumentation searched (classification system followed by classific	ation symbols)	
IPC 6	COSG		
Documenta	non searched other than minimum documentation to the extent tha	t such documents are included in the fields s	searched
Electronic o	tata base consulted during the international search (name of data b	ase and, where practical, search terms used)	
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
X	EP,A,O 569 143 (SHOWA HIGHPOLYME LTD) 10 November 1993 see claims 1,10-14	ER CO.,	1,4,7,9, 12,15, 17,19
	US,A,3 763 079 (M. FRYD) 2 Octob	non 1973	4,7,12,
X	see column 2, line 18 - column 3		15, 17, 19
		-/	
X Furt	her documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
"A" docum conside "E" earlier filing "L" docum which custio "O" docum other	ent which may throw doubts on priority claim(s) or is cated to establish the publication date of another in or other special reason (as specified) sent referring to an oral disclosure, use, such bition or means ent published prior to the international filing date but	"I" later document published after the into or priority date and not in conflict wiched to understand the principle or distribution of particular relevance; the cannot be considered novel or cannot involve an inventive step when the description of particular relevance; the cannot be considered to involve an indectment is combined with one or ments, such combination being obvious the art. "A" document member of the same patent.	the teappictuon to the claimed invention to the considered to be considered to be considered to be considered in taken alone claimed invention the core other such documents to a person skilled
<u> </u>	han the priority date claimed	Date of mailing of the international st	
	actual completion of the international search 8 November 1995	29. 12. 9	
	mailing address of the ISA European Patent Office, P.B. 5818 Patentiann 2 NL - 2230 HV Rijswejk Tel. (+31-70) 340-2040, Tz. 31 651 epo nl, Fax (+31-70) 340-3016	Authorized officer Decocker, L	

In sonal Application No
PCT/EP 95/02491

		PCT/EP 95/02491	
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
(CHEMICAL ABSTRACTS, vol. 105, no. 20, 17 November 1986 Columbus, Ohio, US; abstract no. 173699z, ISHIGURO, MICHIHIRO ET AL. 'Polyurethanes' page 46; see abstract & JP,A,61 081 419 (KURARAY CO., LTD.)	4,7,12, 15,17,19	
	DATABASE WPI Week 9410 Derwent Publications Ltd., London, GB; AN 94-079832 & JP,A,06 032 357 (SHOWA HIGH POLYMER CO., LTD), 8 February 1994 see abstract	4,7,12, 15,17,19	
	WO,A,91 02015 (THE PENNSYLVANIA RESEARC CORPORATION) 21 February 1991 see claims 1-11	1,9,17, 19	
	EP,A,O 028 687 (CHEMISCHE WERKE HULS AG) 20 May 1981 cited in the application see claims 1-5	1-20	

information on patent family members

In ional Application No
PCT/EP 95/02491

	Information on patent family men		PCT/EP	95/02491
Patent document cited in search report	Publication date	Patent fam member(s		Publication date
EP-A-569143	10-11-93	JP-A- JP-A- JP-A- JP-A- JP-A- JP-A- JP-A- JP-A- EP-A- EP-A- EP-A- EP-A- EP-A- EP-A- US-A- US-A- JP-A- US-A- JP-A- US-A-	7090715 7011515 7011516 7011517 5248516 5248510 7048768 0569145 0569145 0569147 0569149 0569151 0569152 0569153 0569154 6246767 5391644 6248767 5391644 6248767 6391644 6248767 6391644 6248767 6391644 6248106 6172578 6349028 7047599 5314969 6314969	04-04-95 13-01-95 13-01-95 13-01-95 06-09-94 06-09-94 21-02-95 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-94 21-02-95 24-05-94 21-02-95 24-05-94 06-09-94 21-06-94 14-06-94 08-11-94 06-09-94 21-06-94 06-09-94 21-06-94 06-09-94 21-06-94 01-11-94 21-06-94

Information on patent family members

Ir tional Application No PCT/EP 95/02491

Patent document cited in search report	Publication date	Patent memi		Publication date 21-06-94 28-06-94
EP-A-569143		JP-A- US-A-	6170941 5324794	
US-A-3763079	02-10-73	NONE		
WO-A-9102015	21-02-91	AU-B- EP-A-	6338590 0496737	11-03-91 05-08-92
EP-A-28687	20-05-81	DE-A- US-A-	2945729 4328059	21-05-81 04-05-82

int onaies Aktenzeichen
PCT/EP 95/02491

				3, 0E 131
A. KLAS IPK 6	ssifizierung des anmeldungsgegenstandes C08G63/20 C08G63/60 C08G18	3/42		
Nach der I	Internationalen Patentidassifikation (IPK) oder nach der nationale	n Klassifikation und der IPK		•
B. RECH	ERCHIERTE GEBIETE			
	erter Mindestprüfstoff (Klassifikationssystem und Klassifikationssy COBG	ymbole)		
	N IV -3F-M			
	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichunger			
Während o	er internationalen Recherche konsultierte elektronische Datenhank	(Name der Datenbank und	evil. verwendete	· Suchbegriffe)
C. ALS W	ESENTLICH ANGESEHENE UNTERLAGEN			
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter An	gabe der in Betracht kommer	nden Teile	Betr. Anspruch Nr.
X	EP,A,D 569 143 (SHOWA HIGHPOLYM LTD) 10.November 1993	ER CO.,		1,4,7,9, 12,15, 17,19
	siehe Ansprüche 1,10-14			17,13
x	US,A,3 763 079 (M. FRYD) 2.Oktob	per 1973		4,7,12,
	siehe Spalte 2, Zeile 18 - Spalt 75; Anspruch 1	te 3, Zeile		15,17,19
		-/		
}				
	·			
X Weiter	re Veröffentlichungen and der Fortsetzung von Feld C zu innen	Siche Anhang Pate	ntfamilie	
	Kategorien von angegebenen Veröffentlichungen : vörchung, die den allgemeinen Stand der Technik definiere,	oder dem Prioritätsdata	nn veröffentlicht	internationalen Anmeldedatum worden ist und mit der
aber nic E° älteres D	ht als besonders bedeutsam anzusehen ist Okument, das jedoch erst am oder nach dem internationalen	Anmeldung meht kollid	iert, sondern nu	r zumVerständnis des der der der ihr zugrundeliegenden
Anmeld L' Veröffen	iedatum veröffentlicht worden ist dichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- syn besem-oder dieselb die des Veröffentlichtingsdetten eines	"X" Veröffentlichung von be kann allein aufgrund die	eser Veröffentlich	ung, die beanspruchte Erfindung hung micht als neu oder auf hier werden
anderen soll oder	im Recherchenbericht genannten Veröffentlichung belegt werden r die aus einem anderen besonderen Grund angegeben ist (wie	"Y" Veröffentlichung von be kann nicht als auf erfind	sonderer Bedeut	ung; die beanspruchte Erfindung
ausgefüh		werden, wenn die Veröf	fentlichung mit	tiner oder mehreren anderen Verbindung gebracht wird und
eine Ben P' Veröffen	nutzung, eine Ausstellung oder andere Maßnahmen bezieht dichung, die vor dem internationalen Anmeldedatum, aber nach inspruchten Prioritätsdatum veröffentlicht worden ist	diese Verbindung für ein *A* Veröffendichung, die Mi	oen Fachmann n	aheliegend ist
	bschlusses der internationalen Recherche	Absendedatum des intern		
28	.November 1995	2	9.12.95	
iame und Po	stansthrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patendaan 2	Bevollmächtigter Bedien	steter	
	NL - 2230 HV Ripwijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fan (+ 31-70) 340-3014	Decocker.	L	

Into onales Aktenzeichen
PCT/EP 95/02491

	PCI/EP :	95/02491
C.(Fortsetz	mg) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	CHEMICAL ABSTRACTS, vol. 105, no. 20, 17.November 1986 Columbus, Ohio, US; abstract no. 173699z, ISHIGURO, MICHIHIRO ET AL. 'Polyurethanes' Seite 46; siehe Zusammenfassung & JP,A,61 081 419 (KURARAY CO., LTD.)	4,7,12, 15,17,19
X	DATABASE WPI Week 9410 Derwent Publications Ltd., London, GB; AN 94-079832 & JP,A,06 032 357 (SHOWA HIGH POLYMER CO., LTD), 8.Februar 1994 siehe Zusammenfassung	4,7,12, 15,17,19
A	WO,A,91 02015 (THE PENNSYLVANIA RESEARC CORPORATION) 21.Februar 1991 siehe Ansprüche 1-11	1,9,17,
A	EP,A,O 028 687 (CHEMISCHE WERKE HÜLS AG) 20.Mai 1981 in der Anmeldung erwähnt siehe Ansprüche 1-5	1-20

Angaben zu Veröffentli gen, die zur seiben Patentfamilie gehoren

In ponales Aktenzeichen
PCT/EP 95/02491

Angaben zu Veröffentli "gei		enoren	PC1/EP	95/02491
Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied Patenti		Datum der Veröffentlichung
EP-A-569143	10-11-93	JP-A- JP-A- JP-A- JP-A- JP-A- JP-A- EP-A- EP-A- EP-A- EP-A- EP-A- EP-A- US-A-	7090715 7011515 7011516 7011517 6248516 6248510 7048768 0569144 0569145 0569146 0569147 0569148 0569149 0581410 0569150 0569151 0569152 0569153 0569154 6246767 5391644 6246767 5391644 6248767 5310872 5349028 7047599 5310872 5349028 7047598 5314969 6246810 6172578 5321052 5362765 6248509 5348700 6248106 6171050 5360663 6172621	04-04-95 13-01-95 13-01-95 13-01-95 06-09-94 06-09-94 21-02-95 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-93 10-11-94 21-02-95 24-05-94 06-09-94 21-06-94 14-06-94 08-11-94 06-09-94 21-06-94 06-09-94 21-06-94 06-09-94 21-06-94 06-09-94 21-06-94

Angaben zu Veröffentls gen, die zur selben Patentfamilie gehören

nonales Aktenzeichen PCT/EP 95/02491

Im Recherchenbericht geführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP-A-569143		JP-A- US-A-	6170941 5324794	21-06-94 28-06-94
US-A-3763079	02-10-73	KEINE		
WO-A-9102015	21-02-91	AU-B- EP-A-	6338590 0496737	11-03-91 05-08-92
EP-A-28687	20-05-81	DE-A- US-A-	2945729 4328059	21-05-81 04-05-82

Formblatt PCT/ISA/218 (Anhang Patentfamilie)(Juli 1992)