CS286 homework2

Problem 1 (20 points) Instructor: Jie Zheng (SIST)

Oct,2020

Requirements:

- The following are theory problems, so that you don't need coding. (Of course you can coding to verify your answers).
- Please write down the key derivation and calculation steps, because only the answer will not be accepted.
- This part we only accept solutions in **pdf** format, but do not accept figure with handwriting. If you cannot handle LATEXwell, you can write it with **Word** first and then convert it into a **pdf** file.
- Please name your file in the format of name_student_id_hw2.
- 1. Convolutional Neural Network (10 points).
 - (1) Let input x be a matrix with shape of $64 \times 64 \times 3$,

layer L_1 with 10 4 × 4 filters with stride=2, no padding, dilation=1;

layer L_2 with 20 3 × 3 filters with stride=4, padding=2, dilation=1;

layer L_3 with 10 3 × 3 filters with stride=2, no padding, dilation=2.

Denote $x_1 = L_1(x)$, $x_2 = L_2(x_1)$ and $x_3 = L_3(x_2)$.

Compute the shapes of x_1, x_2, x_3 and the numbers of parameters of layer L_1, L_2 and L_3 . You must consider about bias (5 points).

Solution: According to the definition, we can get: $w_{\text{out}} = \frac{w_{\text{in}} + 2* \text{ padding } - K}{\text{stride}} + 1$

where $K = kernel + (kernel - 1) \cdot (dilation - 1)$

Shape of x_1 :

 $w_1 = 31$ and $n_1 = 10$

$$L_1 = (4 \times 4 \times 3 + 1) \times 10 = 490$$

Shape of x_2 :

 $\therefore w_2 = 9 and n_2 = 20$

$$L_2 = (3 \times 3 \times 10 + 1) \times 20 = 1820$$

Shape of x_3 :

 $w_3 = 3$ and $u_3 = 10$

$$L_3 = (3 \times 3 \times 20 + 1) \times 10 = 1810$$

2 3 -1 0 -3 6 4 (2) Given a tensor x =5 -2 0 3 as input, 3 7 4 5 -2 -1 3 4

layer L_1 with kernel $\begin{bmatrix} -1 & 2 \\ 3 & 1 \end{bmatrix}$, dilation=2,no padding, stride=1;

Solution: Considering the influence of dilation, L_1 's kernel should be $\begin{bmatrix} -1 & 0 & 2 \\ 0 & 0 & 0 \\ \hline 3 & 0 & 1 \end{bmatrix}$

$$\therefore x_1 = \begin{bmatrix} -2 & 13 & 4 \\ 17 & 25 & 15 \\ -11 & -5 & 12 \end{bmatrix}$$

$$\therefore x_2 = \begin{bmatrix} 82 & 41 \\ 63 & 96 \end{bmatrix}$$

 $\therefore \boldsymbol{x_3} = \overline{96}$

Compute c_t and h_t based on standard LSTM structure, preserving 4 decimal places in your result. (**Hint:** You can refer to this link.)

Solution:

Solution:
$$f_{t} = \sigma(W_{f} \times [h_{t-1}^{T}, x_{t}^{T}]^{T} + b_{f}) = \sigma(\begin{bmatrix} 1 & 2 & 4 & 5 \\ -1 & 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.4 \\ -0.2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \end{bmatrix}) = \sigma(\begin{bmatrix} 5 \\ -2.8 \end{bmatrix} = \begin{bmatrix} 0.9933 \\ 0.0573 \end{bmatrix})$$

$$i_{t} = \sigma(W_{i} \times [h_{t-1}^{T}, x_{t}^{T}]^{T} + b_{i}) = \sigma(\begin{bmatrix} -1 & 2 & 0 & 1 \\ 1 & -2 & 3 & -1 \end{bmatrix} \begin{bmatrix} 0.4 \\ -0.2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix}) = \sigma(\begin{bmatrix} -1.8 \\ 4.8 \end{bmatrix}) = \begin{bmatrix} 0.1419 \\ 0.9918 \end{bmatrix}$$

$$\tilde{C}_{t} = \tanh(\begin{bmatrix} 1 & -2 & 3 & -1 \\ 2 & 4 & 1 & -3 \end{bmatrix} \begin{bmatrix} 0.4 \\ -0.2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}) = \tanh\begin{bmatrix} 3.8 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.9990 \\ 0.7616 \end{bmatrix}$$

$$C_{t} = \begin{bmatrix} 0.9933 \\ 0.0573 \end{bmatrix} \times \begin{bmatrix} -0.5 \\ 0.3 \end{bmatrix} + \begin{bmatrix} 0.1419 \\ 0.9918 \end{bmatrix} \times \begin{bmatrix} 0.9990 \\ 0.7616 \end{bmatrix} = \begin{bmatrix} -0.3549 \\ 0.7725 \end{bmatrix}$$

$$O_{t} = \sigma(\begin{bmatrix} 2 & 4 & 1 & -3 \\ 1 & 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} 0.4 \\ -0.2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0.5 \\ -0.1 \end{bmatrix}) = \sigma(\begin{bmatrix} 1.5 \\ 3.9 \end{bmatrix}) = \begin{bmatrix} 0.8176 \\ 0.9802 \end{bmatrix}$$

$$\therefore h_{t} = O_{t} \times \tanh(C_{t}) = \begin{bmatrix} -0.3407 \\ 0.6484 \end{bmatrix}$$

3. Variational Autoencoder (5 points). Denote $P_1 \sim \mathcal{N}(\mu, \sigma^2)$, $P_2 \sim \mathcal{N}(0, 1)$, prove that

$$KL(P_1||P_2) = \frac{1}{2} (\mu^2 + \sigma^2 - \log \sigma^2 - 1),$$

where $\mathcal{N}()$ is the Gaussian distribution, and KL is the function of Kullback-Leibler divergence.

Solution:

According to the definition:

$$\begin{split} \textbf{\textit{KL}}(\textbf{\textit{P}}_{1}||\textbf{\textit{P}}_{2}) &= \int_{x} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} \log \frac{\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}}{\frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}}} dx \\ &= \int_{x} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} \left[\log \frac{1}{\sigma} - \frac{(x-\mu)^{2}}{2\sigma^{2}} + \frac{x^{2}}{2} \right] dx \\ &= \log \frac{1}{\sigma} \int_{x} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx - \frac{1}{2\sigma^{2}} \int_{x} (x-\mu)^{2} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx + \frac{1}{2} \int_{x} x^{2} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx \\ &= \log \frac{1}{\sigma} - \frac{1}{2\sigma^{2}} \times D(X-\mu) + \frac{1}{2} EX^{2} \\ &= \log \frac{1}{\sigma} - \frac{1}{2\sigma^{2}} \times \sigma^{2} + \frac{1}{2} (DX + E^{2}X) \\ &= \log \frac{1}{\sigma} - \frac{1}{2} + \frac{\sigma^{2} + \mu^{2}}{2} \end{split}$$

Proved.