Homework 9

Mark Petersen

Exercise 1. Let M be a Riemannian manifold with the property: given any two points $p, q \in M$, the parallel transport from p to q does not depend on the curve that joins p to q. Prove that the curvature of M is identically zero, that is, for all $X, Y, Z \in \mathcal{X}(M)$, R(X, Y) Z = 0.

Proof: Usint the hint provided in the book. Consider a parameterized surface $f: U \subseteq \mathbb{R}^2 \to M$, where

$$U = \left\{ (s, t) \in \mathbb{R}^2; -\epsilon < t < 1 + \epsilon, -\epsilon < s < 1 + \epsilon, \epsilon > 0 \right\}$$

and f(s,0)=f(0,0), for all s. Let $V_0 \in T_{f(0,0)}M$ and define a field V along f by: $V(s,0)=V_0$ and, if $t\neq 0$, V(s,t) is the parallel transport of V_0 along the curve $t\to f(s,t)$. Then, from Lemma 4.1,

$$\frac{D}{\partial s}\frac{D}{\partial t}V = 0 = \frac{D}{\partial t}\frac{D}{\partial s}V + R\left(\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right)V.$$

Since parallel transport does not depend on the curve chosen, $V\left(s,1\right)$ is the parallel transport of $V\left(0,1\right)$ along the curve $s \to f\left(s,1\right)$, hence $\frac{D}{\partial s}V\left(s,1\right)=0$. Thus

$$R_{f(0,1)}\left(\frac{\partial f}{\partial t}\left(0,1\right),\frac{\partial f}{\partial s}\left(0,1\right)\right)V\left(0,1\right)=0.$$

Since the surface f and V are arbitrary, then for all $X,Y,Z\in\mathcal{X}\left(M\right)$ we have

$$R(X,Y)Z = 0.$$

Exercise 2. Compute the components R_{ijk}^l of the curvature tensor and the sectional curvature for

- 1) The cylinder, and
- 2) the hyperbolic upper half plane.

For part 1) we can parameterize the surface as $r(u, v) = (\cos(u), \sin(u), v)$. The differential is

$$dr = \begin{bmatrix} -\sin(u) & 0\\ \cos(u) & 0\\ 0 & 1 \end{bmatrix}.$$

Using the differential we compute the metric to be

$$g = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

From the metric we get that the components $R^l_{ijk}=0$ for the cylinder.

For part 2) let $M \subset \mathbb{R}^2$ denote the upper half plane. Then for $(x,y) \in M$, we use the Riemannian metric defined as

$$g = \begin{bmatrix} \frac{1}{y^2} & \\ & \frac{1}{y^2} \end{bmatrix}.$$

Using the metric, we compute the Christoffel symbols and get

$$\begin{split} \Gamma^1_{12} &= \Gamma^1_{21} = -\frac{1}{y} \\ \Gamma^2_{11} &= \frac{1}{y} \\ \Gamma^2_{22} &= -\frac{1}{y} \\ \Gamma^2_{12} &= \Gamma^2_{21} = \Gamma^1_{11} = \Gamma^1_{22} = 0. \end{split}$$

Using the Chrstoffel symbols, the components of $R_{ijk}^l=0$ except for

$$R_{211}^2 = \frac{2}{y^2}$$

$$R_{121}^2 = -\frac{2}{y^2}.$$

Exercise 3. Let $\omega \in \Omega^2(\mathbb{R}^3)$ be given by

$$\omega = e^{xz} dx \wedge dy - \sin(y) z^2 dy \wedge dz.$$

compute $d\omega$.

The first term $e^{xz}dx \wedge dy$ will be zero when taking the derivative w.r.t. x or y and the second term $\sin(y)z^2dy \wedge dz$ will be zero when taking the derivative w.r.t. y or z, so we get

$$d\omega = \frac{\partial e^{xz} dx \wedge dy}{\partial z} - \frac{\partial \sin(y) z^2 dy \wedge dz}{\partial x}$$
$$= xe^{xz} dx \wedge dy \wedge dz - 0$$
$$= xe^{xz} dx \wedge dy \wedge dz$$

Exercise 4. Let V be a finite dimensional vector space. Prove that there is a canonical isomorphism (basis-independent) between the space of bilinear maps of $V \otimes V^*$ and the space of linear maps from $V \to V$ denoted $\operatorname{Hom}(V,V)$.

Proof: Let $A:V\to V$ be a linear map, $f\in T^1_1(V)$ be a bilinear map and g be a metric on V. To the linear transformation A we associate a bilinear map $(v,\varphi)\mapsto \langle Av,\varphi\rangle_g$ on $V\times V^*$ to $\mathbb R$. The metric g is unique and independent of basis, so the association is independent of basis. Let dx_1,\ldots,dx_n be a basis for V, $\partial x_1,\ldots,\partial x_n$ be a basis for V^* , then in local coordinates $A=a_i^jdx^i\otimes \partial x_j,\ f=f_i^jdx^i\otimes \partial x_j$, and $g=g^{ik}\partial x_i\otimes \partial x_j$ be a basis for g. Since g is positive definite, the coefficients g_{ij} in matrix form are invertible. We can now associated to A to f using g as

$$f_i^j dx^i \otimes \partial x_j = g^{jk} a_k^i.$$

Exercise 5. Show that the restriction of $\sigma = x^1 dx^2 - x^2 dx^1 + x^3 dx^4 - x^4 dx^3$ from \mathbb{R}^4 to the sphere S^3 is never zero on S^3 .

Proof: The manifold S^3 is defined as

$$S^{3} = \left\{ \left(x^{1}, x^{2}, x^{3}, x^{4}\right) \in \mathbb{R}^{4} \mid \sqrt{\left(\sum_{i=1}^{4} \left(x^{i}\right)^{2}\right)} = 1 \right\};$$

therefore, the vectors in T_pS mapped into $T_p\mathbb{R}^4$ have the constraint

$$\sum_{i=1}^{4} \dot{x}^i x^i = 0.$$

I can rotate my sphere using a rotation R such that the rotated point of p is

$$Rp = (1, 0, 0, 0)$$
.

At this point, the constraint on the velocity is

$$\dot{x}^1 \cdot 1 + \dot{x}^2 \cdot 0 + \dot{x}^3 \cdot 0 + \dot{x}^4 \cdot 0 = 0$$

thus

$$\dot{r}^1 = 0$$

and

$$\dot{x}^2$$
 and/or \dot{x}^3 and or $\dot{x}^4 \neq 0$.

Let $\dot{x} \in T_p \mathbb{R}^4$ defined as $\dot{x} = \left[\dot{x}^1, \dot{x}^2, \dot{x}^3, \dot{x}^4 \right]^\top$ with the above constraint. The restriction can be written as a tensor in matrix notation as

$$\sigma = \begin{bmatrix} -x^2 & x^1 & -x^4 & x^3 \end{bmatrix},$$

then

$$\sigma(\dot{x}) = -\dot{x}^1 x^2 + \dot{x}^2 x^1 - \dot{x}^3 x^4 + \dot{x}^4 x^3.$$

At the rotated point of p, the restriction simplifies to

$$\sigma(\dot{x}) = \dot{x}^2$$
.

This component of the velocity can be zero with the velocity vector not being zero; therefore $\sigma(\dot{x})$ can be zero with the satisfied constraints. I have shown that the statement is false. So I don't think I completely understand the statement I am trying to prove.

Exercise 6. As in problem (1) of Homework 4, prove that the set of all smooth covector fields on M is a $C^{\infty}(M)$ module over the functions $C^{\infty}(M)$.

Proof: Let $x \in M$, $v \in TM$, $a,b \in C^{\infty}(M)$ and $f,g \in \mathcal{X}^*(M)$. For the set of all smooth covector fields on M to be a module, it must have the following properties.

- 1) $a(f_x(v) + g_x(v)) = af_x(v) + ag_x(v)$
- 2) $(a + b) f_x(v) = a f_x(v) + b f_x(v)$
- 3) $(ab) f_x(v) = a (bf_x(v))$
- 4) $1f_x(v) = f_x(v)$

where the subscript \boldsymbol{x} denotes the covector field evaluated at \boldsymbol{x} .

In local coordinates we can write $f = f^i \partial x_i$, $g = g^i \partial x_i$, thus

- 1) $a(f^i\partial x_i + g^i\partial x_i) = af^i\partial x_i + ag^i\partial x_i$
- 2) $(a+b) f^i \partial x_i = a f^i \partial x_i + b f^i \partial x_i$
- 3) $(ab) f^i \partial x_i = a (b f^i \partial x_i)$
- 4) $1f^i\partial x_i = f^i\partial x_i$

Therefore, the set of all smooth covector fields on M is a $C^{\infty}\left(M\right)$ module.