

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平5-96909

(43) 公開日 平成5年(1993)4月20日

(51) Int.Cl.⁵
B 6 0 C 9/22
9/00
// B 6 0 C 11/00

識別記号 庁内整理番号
A 8408-3D
M 8408-3D
F 8408-3D

F I

技術表示箇所

(21) 出願番号 特願平3-285616
(22) 出願日 平成3年(1991)10月4日

(71) 出願人 000183233
住友ゴム工業株式会社
兵庫県神戸市中央区筒井町1丁目1番1号
(72) 発明者 中崎 栄治
兵庫県加古川市加古川町木村629
(74) 代理人 弁理士 苗村 正

(54) 【発明の名称】 空気入りタイヤ

(57) 【要約】

【目的】 タイヤの軽量化と、操縦安定性及び高速耐久性を向上しつつ転動抵抗を減少させる。
【構成】 タイヤ赤道Cに対して70~90度の角度で配されるコードを用いた1枚以上のプライからなるカーカス6と、カーカス6のクラウン部外側に配置されるベルト層7とを具え、ベルト層7はスチールコードをタイヤ周方向に螺旋状に巻回することにより形成され、しかもタイヤ子午線断面において、トレッド面5Aからベルト層7の外面に至る長さLを該ベルト層7の全巾WBに亘り同一としている。

1

2

【特許請求の範囲】

【請求項1】トレッド部からサイドウォール部を通りビードコアのまわりに両端を折返して係止されるとともにタイヤ赤道に対して70～90度の角度で配列されるコードを用いた1枚以上のプライからなるトロイド状のカーカスと、トレッド部の内部かつ該カーカスのクラウン部外側に配置されるベルト層とを具える空気入りタイヤであって、該ベルト層は、スチールコードをタイヤ周方向に螺旋状に巻回することにより形成されるとともに、タイヤ子午線断面において、トレッド面から前記ベルト層の半径方向外面に至る長さを、前記ベルト層の全巾に亘り同一としたことを特徴とする空気入りタイヤ。

【請求項2】前記トレッド面はタイヤ赤道面を中心とする円弧からなり、その円弧の曲率半径は300mm以下であることを特徴とする請求項1記載の空気入りタイヤ。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、タイヤの軽量化と操縦安定性と高速耐久性と向上しかつ転動抵抗を減少しうる空気入りタイヤに関する。

【0002】

【従来の技術】近年、カーカスのクラウン部外側に、強靭なベルト層を配し、トレッド剛性を高めることにより、耐摩耗性、操縦安定性、高速耐久性を向上したラジアルタイヤが広く採用されている。

【0003】このものは、充分なタガ効果と、高いトレッド剛性を得るために、従来ベルト層は、スチールコードを並列してなる多数枚、通常2～4枚のタイヤファブリックをトラス構造に積層することにより形成されている。

【0004】又前記ベルト層は、カーカスのクラウン部に沿って配されているため、トレッド面の輪郭とは異なりトレッド面からベルト層の外面に至る長さは、タイヤ赤道面では小さくトレッド縁に向かって漸増する傾向にあつた。

【0005】

【発明が解決しようとする課題】このような多数枚のタイヤファブリックを用いた従来のベルト層は、端部における剛性段差が大きくしかもコード端はゴム接着性にも劣るため、高速かつ高荷重走行時においてコード端剥離を招きやすく、又トレッドゲージ厚の上昇に伴う内部発熱の増加にも起因して高速耐久性を大きく低下させる。又このものはタイヤ重量の増加を招き燃費性を損ねる他、トレッド部の剛性分布が不均一となり、その結果、トレッド面に偏摩耗を招来し、タイヤ寿命を低下させる。

【0006】しかもベルト層はトラス構造に積層されたファブリックにより形成されるため、最外側のファブリックのコードの傾きの影響を受け、走行時に車両の流れ生じるという欠点もある。

10

20

30

40

50

【0007】他方、トレッド面からベルト層の外面に至る長さ、即ちトレッドゴムの厚さが異なるため、接地面の形状が不均一となり、操縦安定性に欠けるという問題がある。

【0008】本発明は、スチールコードを螺旋に巻回することによりベルト層を形成するとともに、ベルトの略全巾に亘りトレッド面からの距離を等しくすることを基本として、タイヤの軽量化を図るとともに、操縦安定性と、高速耐久性を向上しかつ転動抵抗を減少することによって前記問題点を解決しうる空気入りタイヤの提供を目的としている。

【0009】

【課題を解決するための手段】前記目的を達成するため本発明の空気入りタイヤは、トレッド部からサイドウォール部を通りビードコアのまわりに両端を折返して係止されるとともに、タイヤ赤道に対して70～90度の角度で配列されるコードを用いた1枚以上のプライからなるトロイド状のカーカスと、トレッド部の内部かつ該カーカスのクラウン部外側に配置されるベルト層とを具える空気入りタイヤであって、該ベルト層は、スチールコードをタイヤ周方向に螺旋状に巻回することにより形成されるとともに、タイヤ子午線断面において、トレッド面から前記ベルト層の半径方向外面に至る長さを、前記ベルト層の全巾に亘り同一としたことを特徴とする空気入りタイヤである。

【0010】又、前記トレッド面はタイヤ赤道面を中心とする円弧からなり、その円弧の曲率半径は300mm以下とするのが好ましい。

【0011】

【作用】このように螺旋状に巻回されるスチールコードは、コード芯方向に拘束されるため、外力を効果的に拘持することができ、一枚のプライによって従来の複数枚のファブリックと同程度のトレッド剛性とタガ効果を發揮することができ、タイヤの軽量化とトレッドゲージ厚の低減化を計りうる。しかもスチールコードをタイヤ周方向に螺旋状に巻回したため、傾斜したコードを具える従来のファブリックのように、最外側のファブリックのコードの傾きの影響を受けることがないため、走行の安定性、操縦の安定性を高めうる。

【0012】又プライ端にカットエッジを有さないためゴムとの接着性に優れ、しかも端部での剛性段差も少ないため、トレッドゲージ厚の低減化に伴う内部発熱の抑制とともに、高速耐久性を大巾に向上しうる。又ユニフォーミティーの向上によるころがり抵抗の低下および前記軽量化によって低燃費性の向上にも役立つ。

【0013】加うるに、トレッド面とベルト層外面との間の長さをベルト層の全巾に亘り同一としたため、トレッド面の接地圧の分布が均一に維持され、その操縦安定性が一層高まりかつトレッド面が均一に摩耗することによってタイヤの寿命が向上する。

【0014】

【実施例】以下本発明の一実施例を図面に基づき説明する。図1において、空気入りタイヤ1はピードコア2が通る一对のピード部3、3と該ピード部3から半径方向外向きに延びるサイドウォール部4、4と、その上端を継ぐトレッド部5とを具え、本実施例では、乗用車用ラジアルタイヤとして形成される。

【0015】前記ピード部3、3間に、トレッド部5、サイドウォール部4を通る本体部両端を前記ピードコア2の回りに内側から外側に向かって折り返したトロイド状のカーカス6を架け渡すとともに、トレッド部5の内部にはカーカス6のクラウン部外側に位置してベルト層7を配している。

【0016】さらにカーカス6の本体部と折返し部との間には、硬質ゴムからなるピードエーベックス9が設けられ、タイヤ横剛性を高める一方、ピード部3にはその外面を囲みかつタイヤ外側では上方部が前記カーカス6とクリンチエーベックス13との間で挟まれるリムズレ防止用のチーフア14を設けている。

【0017】前記カーカス6は、本例ではポリエステル繊維からなるカーカスコードをタイヤ赤道に対して70~90度の傾斜角度で配列した1枚のカーカスプライ6A、6Bから形成され、該カーカスのプライ6Aの折返し端はタイヤ最大巾位置近傍で終端してなる。このようにカーカス6はいわゆるハイターンアップ構造に形成されることによって、応力集中を緩和しつつピード部3からサイドウォール部4にかけての剛性を高めている。なおカーカスコードとしては他にナイロン繊維、スチール等も使用条件に応じて採用できる。

【0018】又ベルト層7はトレッド巾WTの70~95%の巾WBを有してカーカス6の外側に配される1層のプライからなり、ベルト層7は前記カーカス6がショルダー部で円弧に湾曲することによりその端部はカーカス6から浮き上がり、この浮き上がり部には、前記クリンチエーベックス13から立上がりサイドウォール部4を形成する硬質ゴムからなる補強層15を介在させている。なおこの浮き上がり部に介在される補強層15の介在部15A外側面はカーカス6のクラウン部外側面とともにベルト層7形成に際して基準となりかつ滑らかに連なる基準面Sを構成し、この基準面S上に1本又は複数のスチールコード16をタイヤ円周方向の向きに螺旋状に巻回することによりベルト層7を形成する。

【0019】このようなスチールコード16は、カーカス6の外周面を連続して覆うため、トレッド部から受け外力を効果的に担持することができ、従来の複数枚のファブリックからなるベルト層と略同程度のタガ効果とトレッド剛性を発揮しうるとともに、途切れ部の低減によってタイヤのユニフォミティを向上しうる。又このものは、プライ端にカットエッジを有さないため、端部でのゴム接着性にも優れ、しかも一層プライによるトレッ

ドゲージ厚の低減化に伴う内部ゴム発熱の抑制と相俟つて高速耐久性を大巾に向上しうる。加うるに、タイヤ重量の低減、及び前記ユニフォミティの向上に伴う転がり抵抗の低下によって低燃費性を高めうる。

【0020】なお前記スチールコード16としては、通常のスチールコードの他、図2(A)、(B)に示すように、天然ゴム等に硫黄をミキシングした未加硫ゴムからなる芯材20のまわりに、例えば70C鋼、JISG3502、WSRS1A等の鋼材を0.1~0.5mmの直徑に伸延した複数のフライメント21…を、各フライメント21、21間に略等しい円周間隙dを有して2~20mmピッチで摺り合わせたものが好適に使用しうる。

【0021】なおフライメント21には、その表面に例えばCu、Sn、Znあるいは、これらにNi、Coを含んだ合金をメッキし、その周囲を被覆することにより、トレッドゴム17との接着性を高める。

【0022】このように芯材20のまわりにフライメント21…を間隙dを隔てて摺り合わせて形成するスチールコード16は、加硫工程に於けるトレッドゴム17の浸透を容易とし、浸透する前記トレッドゴム17が芯材20と癒着することによりフライメント21とゴムとの接着をより確実なものとする。さらに各フライメント21は間隙dを有するため繰返し変形に際し互いにこすればうことなく屈曲でき、該こすればともなう発熱、摩耗、ストレスを排除し、耐久性を向上しうる。

【0023】前記トレッド面5Aはタイヤ赤道面C上に中心を有する円弧によって形成される。本実施例では円弧の曲率半径TRは300mm以下としている。本願ではベルト層7をトレッド面5Aと平行にすることにより、接地圧の均等化が図られ、転り抵抗を減じうる。

【0024】なお本願でいうトレッド面5Aとはタイヤを軸方向に切断した場合のタイヤ外周面の輪郭をいう。従ってトレッド溝の溝形状、サイピング等は含まれないものとする。

【0025】又空気入りタイヤ1はタイヤ子午線断面においてトレッド面から前記ベルト層7の半径方向外に至る長さL、即ちトレッドゴムの厚さを該ベルト層7の全巾WBに亘り同一としている。前記長さLを設定するには前記した基準面Sを予め形成しておくことによって、ベルト層7の外側の規制が容易となる。

【0026】又図3に小型トラック用タイヤとして形成された本発明の他の実施例である空気入りタイヤの断面図を示す。

【0027】図において空気入りタイヤ1は、3枚のカーカスプライからなるカーカス6のクラウン部をサイドウォール4から延びる被覆ゴム層23によって覆い、かつ該被覆ゴム層23のショルダー部上に、バットレス部24からタイヤ軸方向内方に延びる補強層15を積層することにより、該補強層15外側面と、被覆ゴム層23のクラウン部外側面とによって平坦な基準面Sを形成し

ている。

【0028】そして該基準面S上には、例えば3+6構造のスチールコード16が螺旋状に巻回されベルト層7を形成している。

【0029】なおこのようなベルト層7を具えるタイヤはコードの伸長が極めて小さいため、加硫成形時における内圧充填による整形の際、螺旋巻回に先がけ予めスチールコードを波状に蛇行、もしくは過捻りすることが好ましい。

【0030】

【具体例】表1に示す仕様に基づき図1の構造をなす乗用車用タイヤ、乗用車用応急タイヤ、表2、表3に示す仕様に基づき図3の構造をなす重荷重用タイヤ、小型トラック用タイヤについて夫々試作し、タイヤ強度、高速耐久性、及びトレッドの摩耗を夫々ベルト層のみ異なる*

*従来のタイヤと比較した。

【0031】なおタイヤ強度は、トレッド部の破壊強度JIS D 4230に基づくプランジャー試験により測定するとともに、高速耐久性は、標準内圧、標準荷重条件で実車走行を行い、走行速度を10km/h毎にステップアップさせた時の非破壊上限速度で示している。又トレッドの摩耗は前記高速耐久性のテスト時において、km走行したのちのトレッド面の摩耗状態を観察し判定した。操縦安定性については前記実車走行時におけるドライバーのフィーリングによって判定するとともにそれぞれの従来品を100とする指標で示した。数値が大きいほど良好である。

【0032】

【表1】

	実施例品1	実施例品2	従来品1	実施例品3	従来品2
タイヤサイズ	185/70HR14 (乗用車用タイヤ)		135/70R15 Tスペア (乗用車用応急タイヤ)		
タイヤ構成		図1		図1	
カーカス	カーカスコード	2/1500d ポリエステル		2/1500d ポリエステル	
	プライ数	1枚		1枚	
	コード角度	90°		90°	
ベルト層	スチールコード	1×5/0.23		1×5/0.23	
	プライ数	スパイアル1層 並行1層 カットライ2枚	スパイアル1層 カットライ2枚		
	コード角度	~0°~	~0°~	17°	~0°~
トレッド曲率半径 TR (mm)	250	300	310	300	320
トレッド面とベルト層外面との間の長さ (L)	均一	均一	不均一	均一	不均一
タイヤ強度(プランジャーエネルギー: km-cm)	5000	5000	6600	4000	4900
タイヤ重量(指標)	80	80	100	—	—
高速耐久性(km/h)	260	260	240	—	—
トレッドの摩耗	均一	均一	偏摩耗	均一	偏摩耗
操縦安定性(指標)	140	115	100	—	—
耐久性(指標)	120	120	100	—	—

【0033】

【表2】

	実施例品4	従来品3
タイヤサイズ	6.50R1610P (小型トラック用タイヤ)	
タイヤ構成	図3	
カーカス	カーカスコード プライ数 コード角度	2/1000d ポリエステル 3枚 90°
ベルト層	スチールコード プライ数 コード角度	3/0.175 + 6/0.32 スピラル1層 カットプライ3枚 ~0°~ 68° ~16°
トレッド曲率半径 TR (mm)	280	280
トレッド面とベルト層外面との間の長さ (L)	均一	不均一
タイヤ強度 (プランジャーエネルギー; km-cm)	8000	11400
タイヤ重量 (指數)	85	100
高速耐久性 (km/h)	200	180
トレッドの摩耗	均一	偏摩耗
操縦安定性 (指數)	115	100

【0034】

【表3】

	実施例品 5	従来品 4
タイヤサイズ	10.00R20 14P (重荷重用タイヤ)	
タイヤ構成	図3	
カーカス	カーカスコード プライ数 コード角度	7×4/0.175 スチールコード 1枚 90°
ベルト層	スチールコード プライ数 コード角度	3/0.20×6/0.38 スパイラル1層 カットプライ3枚 0° 67°～17°
トレッド曲率半径 TR (mm)	300	300
トレッド面とベルト層外面との間の長さ (L)	均一	不均一
タイヤ強度 (プランジャーエネルギー; km-cm)	35000	41000
タイヤ重量 (指数)		100
高速耐久性 (km/h)	140	120
トレッドの摩耗	均一	偏摩耗
操縦安定性 (指数)	120	100

【0035】表1、表2、表3に示すように、本発明の空気入りタイヤは優れた高速耐久性を具えしかも重量を軽減したのがわかる。

【0036】

【発明の効果】叙上のごとく本発明の空気入りタイヤは、スチールコードを螺旋状に巻回することによってベルト層を形成しているため、一層のプライによって従来の複数枚のファブリックと同程度のトレッド剛性とタガ効果を発揮することができ、タイヤの軽量化とトレッドゲージ厚の低減化を計ることができる。又このものはプライ端部での端部剥離の発生が少なく、従って前記トレッドゲージ厚の低減化と相俟って高速耐久性を大巾に高めるとともに、ユニフォミティの向上、低燃費性の向上にも役立つ。

【0037】加うるにトレッド面からベルト層の半径方向外面に至る長さをベルト層の全巾に亘り同一としたため、接地面における接地圧を均等化でき操縦安定性を高

めかつ偏摩耗の発生を抑え耐摩耗性を高めうる。

【図面の簡単な説明】

【図1】本実施例の一実施例を示す断面図である。

【図2】スチールコードの一例を示し(A)は側面図、(B)は断面図である。

【図3】他の実施例を示す断面図である。

【符号の説明】

- 2 ピードコア
- 3 ピード部
- 4 サイドウォール部
- 5 トレッド部
- 5A トレッド面
- 6 カーカス
- 7 ベルト層
- 16 スチールコード
- TR 曲率半径
- WB 巾

【図1】

【図2】

【図3】

From: イデア特許事務所

+81526780166

2006/09/11 11:14 #079 P.009/018

JP,05-098909,A [CLAIMS]

1/1 ページ

* NOTICES *

JPO and NCIPPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The carcass of the shape of a toroid which consists of ply of one or more sheets using the code arranged at the include angle of 70 – 90 degrees to the tire equator while turning up both ends and being stopped around a bead core through the sidewall section from the tread section, It is a pneumatic tire equipped with the belt layer arranged on the interior of the tread section, and the crown section outside of this carcass. This belt layer The pneumatic tire characterized by having covered the total width of said belt layer and making the same die length from a tread side to the radial external surface of said belt layer in a tire meridian cross section while being formed by winding a steel code around a tire hoop direction spirally.
[Claim 2] It is the pneumatic tire according to claim 1 which said tread side consists of radii centering on a tire equatorial plane, and is characterized by the radius of curvature of the radii being 300mm or less.

[Translation done.]

JP,05-098909,A [DETAILED DESCRIPTION]

1/6 ページ

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] This invention relates to the pneumatic tire which improves lightweight-izing, the driving stability, and the high-speed endurance of a tire, and can decrease in number rolling resistance.

[0002]

[Description of the Prior Art] The radial-ply tire which improved abrasion resistance, driving stability, and high-speed endurance is widely adopted by allotting a tough belt layer to the crown section outside of a carcass, and raising tread rigidity to it in recent years.

[0003] hoops with this enough thing — effectiveness and in order to acquire high tread rigidity, a belt layer comes to stand a steel code in a row conventionally — many — several sheets were formed by usually carrying out the laminating of the tire fabric of 2-4 sheets to trussed structure.

[0004] Moreover, since said belt layer was allotted along with the crown section of a carcass, the die length from a tread side to [unlike the profile of a tread side] the external surface of a belt layer suited the inclination small increased gradually toward a tread edge in the tire equatorial plane.

[0005]

[Problem(s) to be Solved by the Invention] such — many — since a rigid level difference [in / in the conventional belt layer using the tire fabric of several sheets / an edge] is moreover inferior also to a rubber adhesive property in a code edge greatly, it is easy to cause code edge exfoliation at the time of a high speed and the Takani double-feed line, and it originates also in the increment in internal generation of heat accompanying the rise of tread gage thickness, and high-speed endurance is reduced greatly. Moreover, this thing causes tire weight increase, spoils fuel consumption nature, and also rigid distribution of the tread section becomes uneven, consequently invites partial wear to a tread side, and reduces a tire life.

[0006] And since a belt layer is formed of the fabric by which the laminating was carried out to trussed structure, it is influenced of the inclination of the code of an outermost fabric, and also has the fault of a car flowing and being generated at the time of transit.

[0007] On the other hand, since the die length from a tread side to the external surface of a belt layer, i.e., the thickness of tread rubber, differs, the configuration of a ground plane becomes uneven and there is a problem that driving stability is missing.

[0008] This invention aims at offer of the pneumatic tire which can solve said trouble by improving driving stability and high-speed endurance, and decreasing rolling resistance while it attains lightweight-ization of a tire on the basis of covering ***** of a belt and making distance from a tread side equal, while forming a belt layer by winding a steel code spirally.

[0009]

[Means for Solving the Problem] In order to attain said purpose the pneumatic tire of this invention While turning up both ends and being stopped around a bead core through the sidewall section from the tread section The carcass of the shape of a toroid which consists of ply of one or more sheets using the code arranged at the include angle of 70 – 90 degrees to the tire equator, It is a pneumatic tire equipped with the belt layer arranged on the interior of the tread section, and the crown section outside of this carcass. This belt layer While being formed by winding a steel code around a tire hoop direction spirally, in a tire meridian cross section, it is the pneumatic tire characterized by having covered the total width of said belt layer and making the same die length from a tread side to the radial external surface of said belt layer.

[0010] Moreover, said tread side consists of radii centering on a tire equatorial plane, and, as for the radius of curvature of the radii, it is desirable to be referred to as 300mm or less.

[0011]

[Function] since [thus,] the steel code wound spirally is restrained in the direction of the code heart —

JP,05-096909,A [DETAILED DESCRIPTION]

2/6 ペ—:

external force — effective — it can support — the ply of one sheet — tread rigidity comparable as the conventional fabric of two or more sheets, and a hoop — effectiveness can be demonstrated and lightweighting of a tire and reduction—ization of tread gage thickness can be measured. And like [since the steel code was spirally wound around the tire hoop direction] the conventional fabric equipped with the inclined code, since it is not influenced of the inclination of the code of an outermost fabric, the stability of transit and the stability of operation can be raised.

[0012] Moreover, since it does not have a cut edge at a ply edge, it excels in an adhesive property with rubber, and since there are also few rigid level differences in an edge, high-speed endurance may be sharply improved with control of internal generation of heat accompanying reduction—izing of tread gage thickness. Moreover, it is based on improvement in uniformity, rolls, and is useful also to improvement in low-fuel-consumption nature with a fall and said lightweight—izing of resistance.

[0013] When cover ***** at the total width of a belt layer, and write the die length between a tread side and belt layer external surface to it as it is the same, and distribution of the ground pressure of a tread side is maintained by homogeneity, and the driving stability increases further and a tread side is worn out in homogeneity, the life of a tire improves.

[0014]

[Example] One example of this invention is explained based on a drawing below. In drawing 1, a pneumatic tire 1 is equipped with the sidewall sections 4 and 4 prolonged outward [radial] and the tread section 5 which inherits the upper limit from the toes of bead 3 and 3 and this toe of bead 3 of the pair along which the bead core 2 passes, and is formed as a radial-ply tire for passenger cars by this example.

[0015] Between said toe of bead 3 and 3, while building over the carcass 6 of the shape of a toroid which turned up from the inside the body section both ends which pass along the tread section 5 and the sidewall section 4 toward the outside around said bead core 2, it was located in the interior of the tread section 5 on the crown section outside of a carcass 6, and the belt layer 7 is allotted.

[0016] While bead EPEKKUSU 9 which furthermore serves as the body section of a carcass 6 from hard rubber between the sections by return is formed and tire horizontal rigidity is raised, the chafer 14 for rim gap prevention into which the external surface is surrounded to a toe of bead 3, and the upper part section is inserted between said carcasses 6 and clinch EPEKKUSU 13 on the tire outside is formed.

[0017] Said carcass 6 is formed from the carcass plies 6A and 6B of one sheet which arranged the carcass code which consists of polyester fiber by whenever [tilt-angle / of 70 – 90 degrees] to the tire equator, and comes to carry out termination of the cuff edge of ply 6A of this carcass in this example near the tire maximum width location. Thus, by being formed in the so-called high turn rise structure, the carcass 6 is raising the rigidity applied to the sidewall section 4 from a toe of bead 3, easing stress concentration. In addition, as a carcass code, nylon fiber, steel, etc. are employable as others according to a service condition.

[0018] Moreover, the belt layer 7 consists of ply of one layer which has 70 – 95% of width WB of the tread width WT, and is allotted to the outside of a carcass 6, that edge loses touch with a carcass 6, and the belt layer 7 is making the reinforcement layer 15 which consists of hard rubber which starts from said clinch EPEKKUSU 13 and forms the sidewall section 4 placed between these relief sections when said carcass 6 curves in radii in the shoulder section. In addition, with the crown section lateral surface of a carcass 6, it becomes criteria, and the interstitial segment 15A lateral surface of the reinforcement layer 15 by which it is placed between these relief sections constitutes the datum plane S which stands in a row smoothly on the occasion of belt layer 7 formation, and forms the belt layer 7 by winding spirally 1 or two or more steel codes 16 around the sense of a tire circumferential direction on this datum plane S.

[0019] the belt layer which such a steel code 16 can support effectively the external force which receives the peripheral face of a carcass 6 from the tread section continuously for a wrap reason, and consists of the conventional fabric of two or more sheets, and abbreviation — a comparable hoop — while being able to demonstrate effectiveness and tread rigidity, it breaks off and the uniformity of a tire may be improved by reduction of the section. Moreover, since this thing does not have a cut edge at a ply edge, it is excellent also in the rubber adhesive property in an edge, and may improve high-speed endurance sharply conjointly further with control of internal rubber generation of heat accompanying reduction—izing of the tread gage thickness by ply. The fall of the rolling resistance accompanying reduction of tire weight and improvement in said uniformity can raise low-fuel-consumption nature to *****.

[0020] In addition, as said steel code 16, as shown in drawing 2 (A) besides the usual steel code, and (B) Around the core material 20 which becomes natural rubber etc. from the unvulcanized rubber which mixed sulfur For example, what two or more filament 21 — which carried out the distraction of the steel materials, such as 70C steel, JISG3502, and WSRS1A, to the diameter of 0.1–0.5mm is by carrying out between each filament 21 and 21 as for abbreviation etc., has the periphery gap d, and was twisted in 2–20mm pitch can use it suitably.

JP,05-096909,A [DETAILED DESCRIPTION]

3/6 ページ

[0021] In addition, an adhesive property with tread rubber 17 is raised to a filament 21 by plating Cu, Sn, Zn, or the alloy that contained nickel and OQ in these on the front face, and covering the perimeter.

[0022] Thus, the steel code 16 which separates Gap d, twists filament 21 —, and is formed in the surroundings of a core material 20 makes adhesion with a filament 21 and rubber a more positive thing, when osmosis of the tread rubber 17 in a vulcanization process is made easy and said permeating tread rubber 17 adheres to a core material 20. Furthermore, each filament 21 can be crooked without rubbing mutually on the occasion of repetition deformation, since it has Gap d, eliminates generation of heat accompanying this ******, wear, and stress, and may improve endurance.

[0023] Said tread side 5A is formed on the tire equatorial plane C of the radii which have a core. The radius of curvature TR of radii is set to 300mm or less in this example. In this application, by setting the belt layer 7 to tread side 5A at parallel, equalization of ground pressure is attained and **** resistance can be reduced.

[0024] In addition, tread side 5A as used in the field of this application means the profile of the tire peripheral face at the time of cutting a tire to shaft orientations. Therefore, the shape of a quirk of a tread groove, SAIPINGU, etc. shall not contain.

[0025] Moreover, a pneumatic tire 1 covers the total width WB of this belt layer 7, and makes the same thickness of die-length L from a tread side to the radial external surface of said belt layer 7 in a tire meridian cross section, i.e., tread rubber. By forming beforehand the datum plane S described above to set up said die-length L, regulation of the external surface of the belt layer 7 becomes easy.

[0026] Moreover, the sectional view of the pneumatic tire which are other examples of this invention formed in drawing 3 as a tire for light trucks is shown.

[0027] In drawing, the pneumatic tire 1 forms the flat datum level S by this reinforcement layer 15 lateral surface and the crown section lateral surface of the covering rubber layer 23 by carrying out the laminating of the reinforcement layer 15 which covers the crown section of the carcass 6 which consists of carcass ply of three sheets by the covering rubber layer 23 prolonged from a sidewall 4, and is prolonged in the method of the inside of tire shaft orientations from the buttress section 24 on the shoulder section of this covering rubber layer 23.

[0028] And on this datum plane S, the steel code 16 of 3+6 structure is wound spirally, and forms the belt layer 7.

[0029] In addition, since a tire equipped with such a belt layer 7 has very small expanding of a code, it is desirable in the case of the plastic surgery by the internal pressure restoration at the time of vulcanization shaping to move in a zigzag direction or fault twist a steel code beforehand prior to spiral winding at the shape of a wave.

[0030]

[Specific Example(s)] A prototype was built, respectively about the tire for heavy loading and the tire for light trucks which make the structure of drawing 3 based on the specification shown in the tire for passenger cars which makes the structure of drawing 1 based on the specification shown in Table 1, the emergency tire for passenger cars, Table 2, and Table 3, and wear of tire reinforcement, high-speed endurance, and a tread was compared with the conventional tire from which only a belt layer differs, respectively.

[0031] In addition, while measuring tire reinforcement by the blunger trial based on the disruptive strength JISD4230 of the tread section, high-speed endurance performs real vehicle transit by standard internal pressure and standard loading condition, and shows it at the non-destroying upper limit rate at the time of making a travel speed step up every 10 km/h. Moreover, wear of a tread observed and judged the wear condition of the tread side after carrying out km transit at the time of the test of said high-speed endurance. While judging driving stability with the feeling of the driver at the time of said real vehicle transit, the characteristic set to 100 showed elegance conventionally [each]. It is so good that a numeric value is large.

[0032]

[Table 1]

JP,05-096909,A [DETAILED DESCRIPTION]

4/6 ページ

	実施例品 1	実施例品 2	従来品 1	実施例品 3	従来品 2
タイヤサイズ	185/70HR14 (乗用車用タイヤ)		135/70R15 タスペア (乗用車用応急タイヤ)		
タイヤ構成	図1		図1		
カーカス	カーカスコード ブライ数 コード角度	2/1500d ポリエステル 1枚 80°		2/1500d ポリエステル 1枚 80°	
ベルト層	スチールコード	1×5/0.23		1×5/0.23	
	ブライ数	スパイラル1層	スパイラル1層	カットブライ2枚	スパイラル1層
	コード角度	~0°~	~0°~	17°	~0°~
	トレッド曲率半径 TR (mm)	250	300	310	300
	トレッド面とベルト層外周との間の長さ (L)	均一	均一	不均一	均一
	タイヤ強度 (プランジャー エネルギー ; km/cm)	5000	5000	6600	4000
	タイヤ重量 (指數)	80	80	100	—
	高速耐久性 (km/h)	260	200	240	—
	トレッドの摩耗	均一	均一	偏摩耗	均一
	操縦安定性 (指數)	140	115	100	—
	耐久性 (指數)	120	120	100	—

[0033]
[Table 2]

JP,05-096909,A [DETAILED DESCRIPTION]

5/6 ページ

		実施例品 4	従来品 3
タイヤサイズ		6.50R1610P (小型トラック用タイヤ)	
タイヤ構成		図 9	
カーカス	カーカスコード	2/1000d ポリエステル	
	プライ数	3枚	
	コード角度	90°	
ベルト層	スチールコード	3/0.175 +6/0.32	
	プライ数	スパイラル1層	カットプライ3枚
	コード角度	~0°~	68°~16°
トレッド曲率半径 TR (mm)		280	280
トレッド面とベルト層外面との間の長さ (L)		均一	不均一
タイヤ強度 (プランジャーエネルギー; km-cm)		8000	11400
タイヤ重量 (指數)		85	100
高速耐久性 (km/h)		200	180
トレッドの摩耗		均一	偏摩耗
操縦安定性 (指數)		115	100

[0034]
[Table 3]

JP,05-096909,A [DETAILED DESCRIPTION]

6/6 ペー:

		実施例品 5	従来品 4
タイヤサイズ		10.00R20 14P (重荷重用タイヤ)	
タイヤ構成		図 8	
カーカス	カーカスコード	7×4/0.175	スチールコード
	プライ数	1枚	
	コード角度	90°	
ベルト層	スチールコード	3/0.20×6/0.88	
	プライ数	スパイラル1層	カットプライ3枚
	コード角度	0°	67° ~17°
トレッド曲率半径 TR (mm)		800	800
トレッド面とベルト層外面との間の長さ (L)		均一	不均一
タイヤ強度 (プランジャーエネルギー; km-cm)		85000	41000
タイヤ重量 (指数)			100
高速耐久性 (km/h)		140	120
トレッドの摩耗		均一	偏摩耗
操縦安定性 (指数)		120	100

[0035] As shown in Table 1, Table 2, and Table 3, it turns out that it has the outstanding high-speed endurance and the pneumatic tire of this invention could moreover mitigate weight.

[0036]

[Effect of the Invention] since the pneumatic tire of this invention forms the belt layer by winding a steel code spirally like the above statement — much more ply — tread rigidity comparable as the conventional fabric of two or more sheets, and a hoop — effectiveness can be demonstrated and lightweight-izing of a tire and reduction-ization of tread gage thickness can be measured. Moreover, this thing is useful also to improvement in uniformity and improvement in low-fuel-consumption nature while there is little generating of edge exfoliation in a ply edge therefore it can raise high-speed endurance sharply conjointly with reduction-ization of said tread gage thickness.

[0037] The total width of a belt layer is covered, the die length from a tread side to [*****] the radial external surface of a belt layer is written as it is the same, the ground pressure in a ground plane can be equated, driving stability is raised, and generating of partial wear is suppressed and abrasion resistance can be raised.

[Translation done.]

From: イデア特許事務所

+81526780166

2006/09/11 11:16 #079 P.016/018

JP,05-096909,A [DESCRIPTION OF DRAWINGS]

1/1 ペ—:

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the sectional view showing one example of this example.

[Drawing 2] An example of a steel code is shown, (A) is a side elevation and (B) is a sectional view.

[Drawing 3] It is the sectional view showing other examples.

[Description of Notations]

2 Bead Core

3 Toe of Bead

4 Sidewall Section

5 Tread Section

5A Tread side

6 Carcass

7 Belt Layer

16 Steel Code

TR Radius of curvature

WB Width

[Translation done.]

JP,05-096909,A [DRAWINGS]

1/2 ページ

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. *** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

[Drawing 2]

(B)

JP,05-096909,A [DRAWINGS]

2/2 ページ

[Drawing 3]

[Translation done.]

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.