RFinalHYu

Haozhe (Jerry) Yu

2023-04-27

Data Import

Read in Raw Data

Read in the raw data directly form the url.

```
rawhouse <- read.csv("https://www4.stat.ncsu.edu/~online/ST308/Data/hyu23_house.csv")
```

Data Subsetting

Create a tibble from the read in data table with the following modifications:

- 1. Remove any observations where
 - the SaleType variable takes the value "Other" or
 - the ${\tt BedroomAbvGr}$ variable takes on a value less than or equal to 2
- 2. Create a new variable with a name of your choosing that is the SalePrice variable divided by 100000.
- 3. The ${\tt GarageArea}$ and ${\tt MSZoning}$ variables are removed

```
House <- rawhouse %>%
  filter(SaleType != "Other") %>%
  filter(BedroomAbvGr > 2) %>%
  mutate(SalePrice100k = SalePrice/100000) %>%
  select(-GarageArea, -MSZoning)
```

Now print out the first 10 observations and first 6 variables of House.

```
House %>%
select(SalePrice, BsmtUnfSF, OverallQual, OpenPorchSF, BedroomAbvGr, YrSold) %>%
slice(1:10) %>%
kable()
```

SalePrice	BsmtUnfSF	OverallQual	OpenPorchSF	BedroomAbvGr	YrSold
208500	150	7	61	3	2008
181500	284	6	0	3	2007
223500	434	7	42	3	2008
140000	540	7	35	3	2006
250000	490	8	84	4	2008
307000	317	8	57	3	2007
200000	216	7	204	3	2009
279500	1494	7	33	3	2007
159000	468	5	102	3	2008
139000	525	5	0	3	2009

Output Creation Steps

Contingency Tables

Create a 2 way contingency table between ${\tt BsmtFinType2}$ and LotShap.

The upper most value of 29 is the number of observations where ${\tt BsmtFinType2}$ equals "Other" and LotShap euglas "IR1".