Math 397

Homework 1

Name: Gianluca Crescenzo

Exercise 1. Let V be a vector space, and suppose $\{W_i\}_{i\in I}$ is a family of subspaces of V.

- (1) Show that $\bigcap_{i \in I} W_i$ is the largest subspace of V contained in every W_i .
- (2) Show that:

$$\sum_{i \in I} W_i = \left\{ \sum_{i \in F} w_i \mid w_i \in W_i, F \subseteq I \text{ finite} \right\}$$

is the smallest subspace containing each W_i .

- (3) We say that V is the internal direct sum of the family $\{W_i\}_{i\in I}$ and we write $V=\bigoplus_{i\in I}W_i$ if:
 - (i) $V = \sum_{i \in I} W_i$;
 - (ii) For each $j \in I$, $W_j \cap \sum_{i \neq j} W_i n\{0\}$.

If $V = \bigoplus_{i \in I} W_i$, show that every $v \in V$ has a unique expression $v = \sum_{i \in F} w_i$ where $F \subseteq I$ is finite and $0 \neq w_i$ for each $w_i \in W_i$.

Proof. (1) Let U be a subspace of V with $U \subseteq W_i$ for each $i \in I$. Then clearly $U \subseteq \bigcap_{i \in I} W_i$.

- (2) Let $W = \sum_{i \in I} W_i$ and let U be a subspace of V with $U \supseteq W_i$ for each $i \in I$. If $x \in W$, then $x = \sum_{i \in I} w_i$. But since W_i is a subspace, it is closed under addition. Whence $x \in W_i$ for each $i \in I$. By inclusion then, $x \in U$. Hence $W \subseteq U$.
- (3) By the definition of internal direct sums $V = \sum_{i \in I} W_i$, whence each $v \in V$ can be written as $v = \sum_{i \in F} w_i$. It remains to show that this expression is unique. Suppose $v = \sum_{i \in F} w_i = \sum_{i \in F} u_i$ with $w_i, u_i \in W_i$. For each j we have:

$$w_j - u_j = \sum_{\substack{i \in F \\ i \neq j}} (w_i - u_i)$$

But notice that $w_j - u_j \in W_j$ and $\sum_{i \in F, i \neq j} (w_i - u_i) \in \sum_{i \neq j} W_i$. So $w_j - u_j \in W_j \cap \sum_{i \neq j} W_i$. By the definition of internal direct sums this gives $w_j - u_j = 0$, which simplifies to $w_j = u_j$.

Exercise 3. Let V be a vector space with subspaces $W_i \subseteq V$ for i = 1, 2. If $W_1 \cup W_2 \subseteq V$ is a subspace, show that $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Proof. Suppose towards contradiction $W_1 \nsubseteq W_2$ and $W_2 \nsubseteq W_1$. Then there exists $w_1 \in W_1 \setminus W_2$ and $w_2 \in W_2 \setminus W_1$. Let $v = w_1 + w_2$. Then $v \in W_1 \cup W_2$. But this means $w_2 = v - w_1 \in W_2$. Whence $w_1 \in W_2$, which is a contradiction.

Exercise 4. Let V be a vector space over F and suppose $W \subset V$ is a subspace.

(1) Show that the quotient space $V/W = \{ [v]_w \mid v \in V \}$ is a vector space with operations:

$$[u]_W + [v]_W = [u + v]_W; \quad \alpha[v]_W = [\alpha v]_W.$$

(2) Suppose $\|\cdot\|$ is a norm on V. Show that:

$$\|[v]_W\|_{V/W} := \inf_{w \in W} \|v - w\|$$

is a seminorm.

Proof. (1) Since V is an abelian group and $W \subseteq V$ is normal, V/W is an abelian group. It only remains to show that $\alpha[v]_W = [\alpha v]_W$ satisfies the vector space axioms. We have that:

$$\alpha([u]_W + [v]_W) = \alpha[u + v]_W$$

$$= [\alpha(u + v)]_W$$

$$= [\alpha u + \alpha v]_W$$

$$= [\alpha u]_W + [\alpha v]_W,$$

$$\alpha(\beta[v]_W) = \alpha[\beta v]_W$$

$$= [\alpha(\beta v)]_W$$

$$= [(\alpha\beta)v]_W$$

$$= (\alpha\beta)[v]_W,$$

$$1_F[v]_W = [1_Fv]_W$$

$$= [v]_W.$$

Whence V/W is a vector space.

(2) We must first show that $\|\cdot\|_{V/W}: V/W \to F$ is well-defined. Let $[\nu_1]_W = [\nu_2]_W$. Then $\nu_2 - \nu_1 \in W$. Observe that:

$$\begin{split} \|[v_1]_W\|_{V/W} &= \inf_{w \in W} \|v_1 - w\| \\ &= \inf_{w - (v_2 - v_1) \in W} \|v_1 - (w - (v_2 - v_1))\| \\ &= \inf_{w - (v_2 - v_1) \in W} \|v_1 - w + v_2 - v_1\| \\ &= \inf_{w \in W} \|v_2 - w\| \\ &= \|[v_2]_W\|_{V/W} \,. \end{split}$$

We also have that:

$$\begin{split} \|\alpha[v]_{W}\|_{V/W} &= \|[\alpha v]_{W}\|_{V/W} \\ &= \inf_{w \in W} \|\alpha v - w\| \\ &= \inf_{w' \in W} \|\alpha v - \alpha w'\| \\ &= \inf_{w' \in W} \|\alpha(v - w')\| \\ &= |\alpha| \inf_{w' \in W} \|v - w'\| \\ &= |\alpha| \|[v]_{W}\|_{V/W} \,. \end{split}$$

Whence $\|\cdot\|_{V/W}$ is homogenous. Finally, we can see that:

$$\begin{aligned} \|[u]_W + [v]_W\|_{V/W} &= \|[u + v]_W\|_{V/W} \\ &= \inf_{w \in W} \|u + v - w\| \\ &= \inf_{w, w' \in W} \|u + v - (w + w')\| \\ &= \inf_{w, w' \in W} \|u - w + v - w'\| \\ &\leq \inf_{w, w' \in W} (\|u - w\| + \|v - w'\|) \\ &= \inf_{w \in W} \|u - w\| + \inf_{w' \in W} \|v - w'\| \\ &= \|[u]_W\|_{V/W} + \|[v]_W\|_{V/W}. \end{aligned}$$

Thus $\|\cdot\|_{V/W}$ is a seminorm.

Exercise 5. Show that the quantity:

$$||f||_1 := \int_0^1 |f(t)| dt$$

defines a norm on C([0,1]) with $\|f\|_1 \le \|f\|_u$. Are $\|\cdot\|_1$ and $\|\cdot\|_u$ equivalent norms?

Proof. $\|\cdot\|_1$ is homogenous because:

$$\|\alpha f\|_1 = \int_0^1 |(\alpha f)(t)| dt$$
$$= \int_0^1 |\alpha f(t)| dt$$
$$= |\alpha| \int_0^1 |f(t)| dt$$
$$= |\alpha| \|f\|_1.$$

Note that $|f(t) + g(t)| \le |f(t)| + |g(t)|$. Integrating both sides gives:

$$\int_{0}^{1} |f(t) + g(t)| dt = \int_{0}^{1} |(f + g)(t)| dt$$

$$= ||f + g||_{1}$$

$$\leq \int_{0}^{1} (|f(t)| + |g(t)|) dt$$

$$= \int_{0}^{1} |f(t)| dt + \int_{0}^{1} |g(t)| dt$$

$$= ||f||_{1} + ||g||_{1}.$$

Whence our norm satisfies the triangle inequality. Now suppose $\|\cdot\|_1=0$. Then $\int_0^1|f(t)|dt=0$. Suppose $f\geqslant 0$ on [0,1]. Since f is continuous, it is continuous at f(c) for some $c\in [0,1]$. If f(c)>0,

then there exists $\delta > 0$ such that $f(t) \ge \frac{f(c)}{2} > 0$ for all $t \in V_{\delta}(c)$. This gives:

$$0 = \int_{0}^{1} f(t)dt \geqslant \int_{c-\delta}^{c+\delta} f(t)dt \geqslant \int_{c-\delta}^{c+\delta} \frac{f(c)}{2} = f(c) > 0.$$

This is a contradiction. Since $c \in [0,1]$ was arbitrary, it must be that f=0, satisfying positive-definiteness. Moreover, note that $|f(t)| \leq \sup_{t \in [0,1]} |f(t)|$. We have that $\int_0^1 |f(t)| dt \leq \int_0^1 \sup_{t \in [0,1]} |f(t)| dt$, which is equivalent to $||f||_1 \leq \int_0^1 ||f||_u dt = ||f||_u$.

Suppose that $\|\cdot\|_1$ and $\|\cdot\|_u$ are equivalent. Then $\|f\|_u \le c \|f\|_1$. Consider $g(t) = t^N$, where N > c. Then:

$$1 = \sup_{t \in [0,1]} |t^{N}|$$

$$\leq \int_{0}^{1} |t^{N}| dt$$

$$= \frac{c}{N}$$

$$< 1,$$

This is a contradiction, hence $\|\cdot\|_1$ and $\|\cdot\|_{\mathfrak{u}}$ are not equivalent.

Exercise 6. Show that all the p-norms $\|\cdot\|_p$ $(1 \le p \le \infty)$ on F^n are equivalent and if $1 \le p \le q \le \infty$, then $\ell_p \subseteq \ell_q$.

Proof. Let $x \in F^n$. We have that:

$$\begin{split} \|x\|_{p} &= \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{n} \left(\max_{i=1}^{n} |x_{i}|\right)^{p}\right)^{\frac{1}{p}} = \left(\sum_{i=1}^{n} \|x\|_{\infty}^{p}\right)^{\frac{1}{p}} = n^{p} \|x\|_{\infty}. \\ \|x\|_{\infty} &= \left(\left(\max_{i=1}^{n} |x_{i}|\right)^{p}\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}} = \|x\|_{p}. \\ \|x\|_{\infty} &= \max_{i=1}^{n} |x_{i}| \leqslant \sum_{i=1}^{n} |x_{i}| = \|x_{i}\|_{1}. \\ \|x\|_{1} &= \sum_{i=1}^{n} |x_{i}| \leqslant \sum_{i=1}^{n} \max_{i=1}^{n} |x_{i}| = n \max_{i=1}^{n} |x_{i}| = n \|x\|_{\infty}. \end{split}$$

From this, and since equivalent norms form an equivalence relation, all norms on \mathbb{F}^n are equivalent. Suppose $\mathfrak{p}=1$ and $\mathfrak{q}=\infty$. Let $(x_n)_n\in\ell_1$. Then clearly $\sup_{i=1}^\infty|x_i|\leqslant\sum_{i=1}^\infty|x_i|<\infty$. Whence $\ell_1\subseteq\ell_\infty$. Now suppose $\mathfrak{p},\mathfrak{q}<\infty$ with $\mathfrak{p}\leqslant\mathfrak{q}$. Let $(x_n)_n\in\ell_\mathfrak{p}$. Then $\sum_{n=1}^\infty|x_n|^p<\infty$. In particular, $(x_n)_n\to 0$, which implies that $(|x_n|)_n\to 0$. From this, there exists $K\in\mathbb{N}$ large such that for all $n\geqslant K$, we have $0\leqslant x_n<1$. It then follows that the tail $\sum_{n\geqslant K}|x_n|^p$ converges. Whence:

$$\sum_{n>K} |x_n|^q \leqslant \sum_{n>K} |x_n|^p < \infty.$$

Thus $\sum_{n=1}^{\infty} |x_n|^q < \infty$, establishing that $(x_n)_n \in \ell_q$.

Exercise 7. Let $M_{m,n}(\mathbb{C})$ denote the linear space of all $m \times n$ matrices with coefficients from \mathbb{C} . For $A \in M_{m,n}(\mathbb{C})$, set:

$$\|A\|_{\mathrm{op}} := \sup_{\xi \in B_{\ell_2^n}} \|A\xi\|_{\ell_2^m} \,.$$

Show that $\|\cdot\|_{op}$ is a norm on $M_{m,n}(\mathbb{C})$.

Proof. Observe that:

$$\begin{split} \|\alpha A\|_{op} &= \sup_{\xi \in B_{\ell_2^n}} \|(\alpha A)\xi\|_{\ell_2^n} \\ &= \sup_{\xi \in B_{\ell_2^n}} \|\alpha (A\xi)\|_{\ell_2^n} \\ &= |\alpha| \sup_{\xi \in B_{\ell_2^n}} \|A\xi\|_{\ell_2^n} \\ &= \alpha \|A\|_{op} \,. \end{split}$$

Thus $\|\cdot\|_{op}$ is homogenous. We also have:

$$\begin{split} \|A + B\|_{op} &= \sup_{\xi \in B_{\ell_2^n}} \|(A + B)\xi\|_{\ell_2^n} \\ &= \sup_{\xi \in B_{\ell_2^n}} \|A\xi + B\xi\|_{\ell_2^n} \\ &\leq \sup_{\xi \in B_{\ell_2^n}} \left(\|A\xi\|_{\ell_2^n} + \|B\xi\|_{\ell_2^n} \right) \\ &= \sup_{\xi \in B_{\ell_2^n}} \|A\xi\|_{\ell_2^n} + \sup_{\xi \in B_{\ell_2^n}} \|B\xi\|_{\ell_2^n} \\ &= \|A\|_{op} + \|B\|_{op} \,. \end{split}$$

Hence $\|\cdot\|_{op}$ satisfies the triangle inequality. Now suppose $\|A\|_{op} = 0$. Then $\sup_{\xi \in B_{\ell_2^n}} \|A\xi\|_{\ell_2^n} = 0$. Since $\|\cdot\|_{\ell_2^n}$ is positive definite, the set $\{\|A\xi\|_{\ell_2^n} \mid \xi \in B_{\ell_2^n}\}$ must only contain positive real numbers. Whence if the supremum of this set equals 0, it must be that $\|A\xi\|_{\ell_2^n} = 0$ for all $\xi \in B_{\ell_2^n}$. Again, by the positive-definiteness of $\|\cdot\|_{\ell_2^n}$, we have that $A\xi = 0$ for all $\xi \in B_{\ell_2^n}$. Whence A = 0. This gives that $\|\cdot\|_{op}$ is a norm.

Exercise 10. Let p be a semi-norm on a vector space V.

- (1) Show that $N_p = \{ w \in V \mid p(w) = 0 \}$ is a subspace of V.
- (2) We form the quotient vector space V/N_p . Show that

$$\|[v]_{N_p}\|_p := p(v)$$

defines a norm on V/N_p .

(3) If $(E, \|\cdot\|)$ is a normed space and $T: V \to E$ is a linear map, show that $p(v) := \|T(v)\|$ is a semi-norm on V. In this case what is N_p ?

Proof. (1) Let $w_1, w_2 \in N_p$ and $\alpha \in F$. Then:

$$p(w_1 + \alpha w_2) \le p(w_1) + |\alpha| p(w_2) = 0.$$

Since $w_1 + \alpha w_2 \in N_p$, N_p is a subspace.

(2) We must first show that $\|\cdot\|_p$ is well-defined. Let $[v_1]_{N_p} = [v_2]_{N_p}$. Then $v_1 = v_2 + w$ for some $w \in N_p$. Then:

$$\begin{aligned} \|[v_1]_{N_p}\|_p &= p(v_1) \\ &= p(v_1 + w) \\ &\leq p(v_2) + p(w) \\ &= p(v_2) \\ &= \|[v_2]_{N_p}\|_p \end{aligned}$$

So $\|[v_1]_{N_p}\|_p \le \|[v_2]_{N_p}\|_p$. But note that we also have $v_2 = v_1 + w$ for some $w \in N_p$. This will give $\|[v_2]_{N_p}\|_p \le \|[v_1]_{N_p}\|_p$, whence by antisymmetry $\|[v_1]_{N_p}\|_p = \|[v_2]_{N_p}\|_p$. Now let $\alpha \in F$. Observe that:

$$\begin{aligned} \left\| \alpha[\nu]_{N_p} \right\|_p &= \left\| [\alpha \nu]_{N_p} \right\|_p \\ &= p(\alpha \nu) \\ &= |\alpha| p(\nu) \\ &= |\alpha| \left\| [\nu]_{N_p} \right\|_p . \end{aligned}$$

Thus $\left\| \cdot \right\|_p$ satisfies homogeneity. The triangle inequality is also satisfied because:

$$\begin{aligned} \|[v]_{N_{p}} + [w]_{N_{p}}\|_{p} &= \|[v + w]_{N_{p}}\|_{p} \\ &= p(v + w) \\ &\leq p(v) + p(w) \\ &= \|[v]_{N_{p}}\|_{p} + \|[w]_{N_{p}}\|_{p} .\end{aligned}$$

Suppose $\|[\nu]_{N_p}\|_p = 0$. Then $p(\nu) = 0$. But this means $\nu \in N_p$, whence $[\nu]_{N_p} = [0]_{N_p}$. Hence $\|\cdot\|_p$ is a norm.

(3) We have that:

$$p(\alpha v) = ||T(\alpha v)||$$

$$= ||\alpha T(v)||$$

$$= |\alpha| ||T(v)||$$

$$= |\alpha|p(v).$$

Thus p satisfies homogeneity. We also get:

$$p(v + w) = ||T(v + w)||$$

$$= ||T(v) + T(w)||$$

$$\leq ||T(v)|| + ||T(w)||$$

$$= p(v) + p(w).$$

Thus p is a semi-norm. Observe that:

$$\begin{split} N_p &= \{ \nu \in V \mid p(\nu) = 0 \} \\ &= \{ \nu \in V \mid \| T(\nu) \| = 0 \} \\ &= \{ \nu \in V \mid T(\nu) = 0 \} \\ &= \ker(T). \end{split}$$

7