EHM2141 LOJİK DEVRELER

2024-2025 BAHAR DÖNEMİ

HAFTA 3 – DERS 2 6 Mart 2025

Dr. Sibel ÇİMEN

Boole Fonksiyonları ve Standart Biçimleri

Boole cebrinin VE, VEYA ve DEĞİL işlemleri uygulanarak elde edilen n-değişkenli bir f fonksiyonuna **Boole fonksiyonu** denir.

Boole fonksiyonlarını oluşturan her bir terimde, değişkenlerin tamamının kendisi veya tümleyeninin olması gereken şekline fonksiyonun **kanonik biçimi** denir.

Boole fonksiyonlarının, minimum terimler (minterimler-minterms) kanonik biçimi ve maksimum terimler (maksterimler-maxterms) kanonik biçimi olmak üzere iki temel biçimi vardır. Bu biçimler doğruluk tablosundan doğrudan elde edilebilen ifadelerdir. Bu fonksiyon yazılış şekillleri Boole fonksiyonunun indirgenmiş (minimal) halleri değildir.

İki değişkenli Boole Fonksiyonu için Minimum ve Maksimum terimler

а	b	Minterm	sembolik	Maksterm	sembolik
0	0	ā. b	m_0	a + b	M_0
0	1	_ a ⋅ b	m ₁	$a + \overline{b}$	M ₁
1	0	a· b	m ₂	$\bar{a} + b$	M_2
1	1	a · b	m ₃	$\overline{a} + \overline{b}$	M_3

Minimum terimlerin kanonik biçimi

Minterimlerin toplamından oluşan ifadeye Minimum terimlerin kanonik biçimi adı verilir. Bu ifadede yer alan ifadeler çarpımlardan oluştuğu için bu biçime Çarpımların Toplamı (Sum-of-Products) kanonik biçimi adı da verilir.

а	Ь	C	Minterm	sembolik
0	0	0	$\overline{a} \cdot \overline{b} \cdot \overline{c}$	m_0
0	0	1	$\overline{a} \cdot \overline{b} \cdot c$	m ₁
0	1	0	a·b·c	m ₂
0	1	1	_a.b.c	m ₃
1	0	0	a·b·c	m₄
1	0	1	a · b · c	m ₅
1	1	0	a·b·c	m ₆
1	1	1	a·b·c	m ₇

Örnek: Aşağıda doğruluk tablosu verilmiş üç değişkenli Boole fonksiyonunu, çarpımlar toplamı kanonik biçiminde olacak şekilde yazınız?

X	У	Z	f(x,y,z)	
0	0	0	1	$f(x,y,z) = \bar{x}.\bar{y}.\bar{z} + \bar{x}.\bar{y}.z + \bar{x}.y.\bar{z} + \bar{x}.y.z + x.y.$
0	0	1	1	
0	1	0	1	$f(x, y, z) = m_0 + m_1 + m_2 + m_3 + m_7$
0	1	1	1	
1	0	0	0	
1	0	1	0	$f(x, y, z) = \sum m(0,1,2,3,7)$
1	1	0	0	
1	1	1	1	

 \boldsymbol{Z}

Minimum terimlerin kanonik biçimi

а	b	С	d	F(a,b,c,d)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

Örnek: Yanda doğruluk tablosu verilmiş dört değişkenli Boole fonksiyonunu, çarpımlar toplamı kanonik biçiminde olacak şekilde yazınız?

$$f(a,b,c,d) = \bar{a}.\,\bar{b}.\,\bar{c}.\,d + \bar{a}.\,\bar{b}.\,c.\,\bar{d} + \bar{a}.\,\bar{b}.\,c.\,d + a.\,\bar{b}.\,\bar{c}.\,\bar{d} + a.\,\bar{b}.\,\bar{c}.\,d + a.\,b.\,\bar{c}.\,\bar{d} + a.\,b.\,\bar{c}.\,\bar{d} + a.\,b.\,\bar{c}.\,\bar{d}$$

$$f(x, y, z) = m_1 + m_2 + m_3 + m_8 + m_9 + m_{12} + m_{14}$$

$$f(x, y, z) = \sum m(1,2,3,8,9,12,14)$$

Maksimum terimlerin kanonik biçimi

Maksterimlerin çarpımından oluşan ifadeye Maksimum terimlerin kanonik biçimi adı verilir. Bu ifadede yer alan ifadeler toplamlardan oluştuğu için bu biçime Toplamların Çarpımı (Product-of-Sums) kanonik biçimi adı da verilir.

المستحدات المسترات المساحد المستحدات	Boole Fonksiyon	r imium Mainmiumerum	en sam Mindanianian	
uc dealskenii	DODIE FORKSIVONI	ı icin Milnimur	n ve waksimum	ı terimier
AA APHALLEIIII	BASIE I SIIIISIYYIN	4 (511) (11)		
			<u> </u>	

а	Ь	C	Minterm	sembolik	Maksterm	sembolik
0	0	0	_abc	m_0	a+b+c	M_0
0	0	1	ā b c	m_1	$a+b+\bar{c}$	M_1
0	1	0	a b c	m ₂	$a + \overline{b} + c$	M_2
0	1	1	ā b c	m ₃	$a + \overline{b} + \overline{c}$	M_3
1	0	0	a b c	m₄	$\bar{a} + b + c$	M_4
1	0	1	a b̄ c	m ₅	$\bar{a} + b + \bar{c}$	M_5
1	1	0	a b c	m_6	$\overline{a} + \overline{b} + c$	M_6
1	1	1	a · b · c	m ₇	$\bar{a} + \bar{b} + \bar{c}$	M_7

Maksimum terimlerin kanonik biçimi

Örnek: Aşağıda doğruluk tablosu verilmiş üç değişkenli Boole fonksiyonunu, çarpımlar toplamı kanonik biçiminde olacak şekilde yazınız?

ху	z	f(x,y,z)	$f(x, y, z) = (\bar{x} + y + z).(\bar{x} + y + \bar{z}).(\bar{x} + \bar{y} + z)$
0 0	0	1	f(x, y, z) = (x + y + z). (x + y + z). (x + y + z)
0 0	1	1	
0 1	o	1	$f(x,y,z) = M_4. M_5. M_6$
0 1	1	1	
1 0	o	0	$f(x, y, z) = \prod_{i=1}^{n} M(A \vdash G)$
1 0	1	0	$f(x,y,z) = \prod M(4,5,6)$
1 1	0	0	
1 1	1	1	

Örnek:

а	Ь	С	f(a,b,c)		Minterm	Maksterm
0	0	0		_1	$\bar{a} \cdot \bar{b} \cdot \bar{c}$	-
0	0	1		1	$\overline{a} \cdot \overline{b} \cdot c$	•
0	1	0	/	0	-	$a + \overline{b} + c$
0	1	1		0	-	$a+\overline{b}+\overline{c}$
1	0	0		, 1	$a \cdot \overline{b} \cdot \overline{c}$	•
1	0	1/	I	/ 1	$a \cdot \overline{b} \cdot c$	-
1	1	Ø	I	0	<u> </u>	$\overline{a} + \overline{b} + c$
1	1	1		0		$\overline{a} + \overline{b} + \overline{c}$

$$f(a,b,c) = \sum m(0,1,4,5)$$

$$f(a,b,c) = \prod M(2,3,6,7)$$

$$f(a,b,c) = \overline{a} \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot \overline{b} \cdot c + \overline{a} \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot \overline{b} \cdot c$$

maksimum terimler \

$$f(a,b,c) = (a+\overline{b}+c)\cdot(a+\overline{b}+\overline{c})\cdot(\overline{a}+\overline{b}+c)\cdot(\overline{a}+\overline{b}+\overline{c})$$

Örnek:

Bu örnekte, $f(a,b,c)=a\cdot b+\overline{a\cdot c}$ şeklinde verilen fonksiyonun Minimum Terimler Kanonik Biçimi elde edilecektir. Bu amaçla "Shannon teoremi" yazılarak,

$$f(a,b,c) = \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot f(0,0,0) + \overline{a} \cdot \overline{b} \cdot c \cdot f(0,0,1) + \overline{a} \cdot b \cdot \overline{c} \cdot f(0,1,0) + \overline{a} \cdot b \cdot c \cdot f(0,1,1) + \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot f(1,0,0) + \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot f(1,0,1) + \overline{a} \cdot b \cdot \overline{c} \cdot f(1,1,0) + \overline{a} \cdot b \cdot \overline{c} \cdot f(1,1,1)$$

fonksiyonu göz önüne alınır. Bu fonksiyondaki her bir f değeri aşağıdaki gibi belirlenir.

$$f(0,0,0) = 0.0 + 1.0 = 0+0 = 0$$

 $f(0,0,1) = 0.0 + 1.1 = 0+1 = 1$
 $f(0,1,0) = 0.1 + 1.0 = 0+0 = 0$
 $f(0,1,1) = 0.1 + 1.1 = 0+1 = 1$
 $f(1,0,0) = 1.0 + 0.0 = 0+0 = 0$
 $f(1,0,1) = 1.0 + 0.1 = 0+0 = 0$
 $f(1,1,0) = 1.1 + 0.0 = 1+0 = 1$
 $f(1,1,1) = 1.1 + 0.1 = 1+0 = 1$

f(a,b,c) fonksiyonunda, değeri "1" olan f değerleri olan alınır ve bu terimlerin toplamı Minimum Terimler Kanonik Biçimini oluşturur.

$$f(a,b,c) = \bar{a} \cdot \bar{b} \cdot c + \bar{a} \cdot b \cdot c + a \cdot b \cdot \bar{c} + a \cdot b \cdot c = m_1 + m_3 + m_6 + m_7 = \sum_{i=1}^{n} (1,3,6,7)$$

Örnek:

Bu örnekte, $f(a,b,c)=a\cdot b+a\cdot c$ şeklinde verilen fonksiyonun Maksimum Terimler Kanonik Biçimi elde edilecektir. Bu amaçla "Shannon teoremi" yazılarak,

$$f(a,b,c) = [a+b+c+f(0,0,0)] \cdot [a+b+c+f(0,0,1)] \cdot [a+\overline{b}+c+f(0,1,0)]$$
$$\cdot [a+\overline{b}+\overline{c}+f(0,1,1)] \cdot [\overline{a}+b+c+f(1,0,0)] \cdot [\overline{a}+b+\overline{c}+f(1,0,1)]$$
$$\cdot [\overline{a}+\overline{b}+c+f(1,1,0)] \cdot [\overline{a}+\overline{b}+\overline{c}+f(1,1,1)]$$

fonksiyonu göz önüne alınır. Bu fonksiyondaki her bir f değeri aşağıdaki gibi belirlenir.

$$f(0,0,0) = 0.0 + 1.0 = 0+0 = 0$$

 $f(0,0,1) = 0.0 + 1.1 = 0+1 = 1$
 $f(0,1,0) = 0.1 + 1.0 = 0+0 = 0$
 $f(0,1,1) = 0.1 + 1.1 = 0+1 = 1$
 $f(1,0,0) = 1.0 + 0.0 = 0+0 = 0$
 $f(1,0,1) = 1.0 + 0.1 = 0+0 = 0$
 $f(1,1,0) = 1.1 + 0.0 = 1+0 = 1$
 $f(1,1,1) = 1.1 + 0.1 = 1+0 = 1$

f(a,b,c) fonksiyonunda, değeri "0" olan f değerleri olan alınır ve bu terimlerin çarpımı Maksimum Terimler Kanonik Biçimini oluşturur.

$$f(a,b,c) = [a+b+c] \cdot [a+\overline{b}+c] \cdot [\overline{a}+b+c] \cdot [\overline{a}+b+\overline{c}]$$
$$= M_0 \cdot M_2 \cdot M_4 \cdot M_5 = \prod (0,2,4,5)$$

Kanonik Biçimler Arasındaki Dönüşüm

Çarpımlar toplamı kanonik biçimi ve toplamlar çarpımı kanonik biçimi deMorgan teoremi kullanılarak birbirine dönüştürülebilir. Örneğin;

$$f(x,y,z) = \sum_{} m(0,1,2,3,7)$$

$$f(x,y,z) = m_0 + m_1 + m_2 + m_3 + m_7$$

$$f(x,y,z) = \bar{x}.\bar{y}.\bar{z} + \bar{x}.\bar{y}.z + \bar{x}.y.\bar{z} + \bar{x}.y.z + x.y.z$$

$$\frac{1}{f(x,y,z)} = \overline{(\bar{x}.\bar{y}.\bar{z}) + (\bar{x}.\bar{y}.\bar{z}) + (\bar{x}.\bar{y}.\bar{z}) + (\bar{x}.\bar{y}.z) + (\bar{x}.\bar{y}.z) + (\bar{x}.\bar{y}.\bar{z}) + (\bar{x}.\bar{y}.\bar{y}.\bar{z}) $

Minimum Terimler ile Maksimum Terimler arasındaki dönüşüm, $\overline{m}_i = M_i$ şeklinde gösterilebilir.

Kanonik Biçimler Arasındaki Dönüşüm

Bu örnekte, $f(a,b,c) = \sum (1,3,5,7)$ şeklinde Minimum Terimler Kanonik Biçimi verilen fonksiyonun Maksimum Terimler Kanonik Biçimi elde edilecektir. Bu amaçla öncelikle terimlerin tümleyeni olan fonksiyonu yazılır.

$$\overline{f(a,b,c)} = \sum (0,2,4,6) = m_0 + m_2 + m_4 + m_6$$

Bu ifade, De Morgan Kuralı kullanılarak farklı bir şekilde yazılabilir.

$$f = \overline{(m_0 + m_2 + m_4 + m_6)} = \overline{m_0} \cdot \overline{m_2} \cdot \overline{m_4} \cdot \overline{m_6}$$

Minimum terimlerin tümleyeni yerine Maksimum Terimler yazılır.

$$f = \overline{m}_0 \cdot \overline{m}_2 \cdot \overline{m}_4 \cdot \overline{m}_6 = M_0 \cdot M_2 \cdot M_4 \cdot M_6 = \prod (0,2,4,6)$$

Bu şekilde Maksimum Terimler Kanonik Biçimi elde edilir.

REFERANSLAR:

- 1. 'Lojik Devreler', Tuncay UZUN Ders Notları, http://tuncayuzun.com/Dersnot_LDT.htm, 2020.
- 2. 'Lojik Devre Tasarımı', Taner ASLAN ve Rifat ÇÖLKESEN, Papatya Yayıncılık, 2013.
- 3. M. Morris Mano, Sayısal Tasarım (Çeviri), Literatür Yayıncılık: İstanbul, 2003.