PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:
C12N 9/16, 15/00, C12Q 1/68
C12Q 1/42, A61K 39/00, 37/54

(11) International Publication Number: WO 93/18139

(43) International Publication Date: 16 September 1993 (16.09.93)

US

(21) International Application Number: PCT/US93/02172

(22) International Filing Date: 10 March 1993 (10.03.93)

10 March 1992 (10.03.92)

(71) Applicant: LA JOLLA CANCER RESEARCH FOUNDATION [US/US]; 10901 North Torrey Pines Road, La Jolla, CA 92037 (US).

(72) Inventor: MILLAN, Jose, L.; 10858 Caminito Alto, San Diego, CA 92131 (US).

(74) Agents: CAMPBELL, Cathryn et al.; Campbell & Flores, 4370 La Jolla Village Drive, Suite 700, San Diego, CA 92122 (US). (81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.
With amended claims and statement.

(54) Title: RECOMBINANT CALF INTESTINAL ALKALINE PHOSPHATASE

(57) Abstract

(30) Priority data:

07/849,219

The invention relates to isolated nucleic acids encoding recombinant calf intestinal alkaline phosphatase. Expression vectors and host cells transformed or transfected with such vectors are also provided. The invention further provides multifunctional polypeptides containing amino acid sequences encoding for calf intestinal alkaline phosphatase and a second amino acid sequence encoding a reagent having specific reactivity with a ligand. The recombinant calf intestinal alkaline phosphatase or its active fragments and the multifunctional polypeptides can be used in the methods for determining the presence or concentration of a ligand.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT AU BB BE BF BG CA CF CG CH CI CM CS CZ DE DK ES FI	Austria Australia Barbados Belgium Burkina Faso Bulgaria Benin Brazil Canada Central African Republic Congo Switzerland C'ôte d'Ivoire Cameroon Czechoslovakia Czech Republic Germany Denmark Spain Finland	FR GA GB GN GR HU IE IT JP KP KR LU MC MC MI MN	France Gabon United Kingdom Guinea Greece Hungary Ireland Italy Japan Democratic People's Republic of Korea Republic of Korea Kazakhstan Liechtenstein Sri Lanka Luzembourg Monaco Madagasear Mali Mongolia	MR MW NL NO NZ PL PT RO RU SD SE SK SN TD TG UA US VN	Mauritania Malawi Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Slovak Republic Senegal Soviet Union Chad Togo Ukraine United States of America Viet Nam
---	---	---	---	---	---

RECOMBINANT CALF INTESTINAL ALKALINE PHOSPHATASE

BACKGROUND OF THE INVENTION

The present invention relates to recombinant calf intestinal alkaline phosphatase and more particularly to isolated nucleic acids encoding the recombinant form of calf intestinal alkaline phosphatase.

Alkaline phosphatases (APs) are a family of functionally related enzymes named after the tissues in which they predominately appear. Such enzymes carry out hydrolase/transferase reactions on phosphate-containing substrates at a high pH optimum. The exact role of APs in biological processes remains poorly defined.

In humans and other higher animals, the AP family contains four members that are each encoded by a separate gene locus as reviewed in Millan, Anticancer Res. 8:995-1004 (1988) and Harris, Clin. Chem. Acta 186:133-150 (1989). The alkaline phosphatase family includes the tissue specific APs (placental AP, germ cell AP and intestinal AP) and the tissue non-specific AP found predominately in the liver, bone and kidney.

Intestinal alkaline phosphatase (IAP) derived from humans has been extensively characterized. As with all known APs, human IAP appears as a dimer, which is referred to as p75/150 in Latham & Stanbridge, P.N.A.S.

25 (USA) 87:1263-1267 (1990). A cDNA clone for human adult IAP has been isolated from a \$\frac{1}{2}\$gtll expression library. This cDNA clone is 2513 base pairs in length and contains an open reading frame that encodes a 528 amino acid polypeptide as described in Henthorn et al., P.N.A.S. (USA)

30 84:1234-1238 (1987). IAP has also been found in other species, such as mice, cows, and fish as reported in McComb et al., Alkaline Phosphatases (Plenum, New York, 1989).

2

Generally, alkaline phosphatases are useful diagnostically in liver and bone disorders as described in McComb et al., supra, or for certain cancers as reviewed in Millan, Prog. Clin. Biol. Res., 344:453-475 (1990). APs are also useful as reagents in molecular biology. Of the known APs, bovine IAP has the highest catalytic activity. This property has made bovine IAP highly desirable for such biotechnological applications as enzyme-conjugates for use as diagnostics reagents or dephosphorylation of DNA, for example.

The isozymes of bovine IAP (b.IAP), including calf IAP, adult bovine IAP, and a tissue non-specific isozyme extracted from the small intestines, have been characterized by Besman & Coleman, J. Biol. Chem., 260:1190-1193 (1985). Although it is possible to purify naturally-occurring calf IAP extracted from intestinal tissues, it is technically very difficult to obtain an enzyme preparation of reproducible quality and purity. Generally, the enzymes are extracted from bovine intestines obtained from slaughter houses. Since the sacrificed animals are not of the same age, the proportion of the known b.IAP isozymes will vary significantly among the purified extracts.

Moreover, the intestine is known to contain high 25 amounts of peptidases and glycosidases that degrade the naturally occurring IAP. Since the time from slaughter to enzyme extraction varies greatly, the amount of degradation will also vary greatly, resulting in a mixture of intact and several degradation products. Accordingly, the known 30 methods of purifying IAP from naturally-occurring sources microheterogeneity in the purified IAP produce preparations. These partially degraded IAP molecules are technically difficult to separate from the native intact IAP molecules.

3

Due in part to the technical problems of separating intact b.IAP from degraded or partially processed calf IAP and the minute quantities of purified intact b.IAP that can be obtained from naturally-occurring sources, it has been difficult to determine the amino acid sequence encoding calf IAP. In addition, attempts to crystalize the IAP protein to determine the three-dimensional structure from the natural source has been hampered because of such microheterogeneity of the enzyme obtained from natural sources. It has only been possible to obtain small crystals of the natural enzyme, which are of insufficient quality for crystallographic studies.

Thus, a need exists for a homogeneous source of calf intestine alkaline phosphatase. Such a source would ideally provide an ample supply of pure, intact calf IAP for research and commercial use without time-consuming and labor intensive procedures. The present invention satisfies this need and provides related advantages as well.

20

25

SUMMARY OF THE INVENTION

The present invention generally relates to recombinant calf intestinal alkaline phosphatase (calf IAP) having an amino acid sequence substantially the same as naturally occurring calf IAP or its active fragments. The invention further provides isolated nucleic acids encoding such polypeptides. Vectors containing these nucleic acids and recombinant host cells transformed or transfected with such vectors are also provided.

Nucleic acid probes having nucleotide sequences
30 complementary to a portion of the nucleotide sequence
encoding calf IAP are also provided. Such probes can be
used for the detection of nucleic acids encoding calf IAP
or active fragments thereof.

The present invention further provides a multifunctional polypeptide containing an amino acid sequence of calf IAP and a second amino acid sequence having specific reactivity with a desired ligand. The second amino acid sequence can encode, for example, an antibody sequence when the desired ligand is an antigen.

The pure recombinant polypeptides of the present invention, including the multifunctional polypeptides, are particularly useful in methods for detecting the presence of antigens or other ligands in substances, such as fluid samples and tissues. Such diagnostic methods can be used for in vitro detection of such ligands.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 (SEQ ID NO: 9) shows the full length 15 genomic sequence of calf IAP and the deduced amino acid sequence.

Figure 2 shows the restriction map of the entire calf IAP gene and the full length cDNA.

Figure 3 (SEQ ID NOS: 10-13) shows a comparison 20 of IAPs from calf (b.IAP), rat (r.IAP), mouse (m.IAP), and human (h.IAP).

Figure 4 shows the results of studies relating to the heat inactivation of purified and recombinant calf IAP.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to the elucidation of the calf intestinal alkaline phosphatase gene. More specifically, the invention relates to the nucleotide sequence of the region of the gene encoding the enzyme.

5

Previous attempts to produce a full length cDNA or a complete genomic clone for calf IAP have been unsuccessful. RNA extracted from bovine intestinal tissues are not fully processed (i.e., incompletely spliced RNA) or are quickly degraded after death. As such, only fragments of the genome coding region could be obtained.

It was through the extensive experimentation as set forth in the examples below that the full length cDNA clone of calf IAP was determined. Accordingly, the present invention is directed to isolated nucleic acids comprising the nucleotide sequence encoding calf IAP or an active fragment thereof having the enzymatic activity of the intact calf IAP. The nucleic acids can be DNA, cDNA or RNA.

The nucleic acid can have the nucleotide sequence substantially the same as the sequence identified in Figure 1, which shows the complete coding region of the genomic sequence of calf IAP. This nucleic acid (5.4 kb) contains 11 exons separated by 10 small introns at positions identical to those of other members of the tissue-specific AP family. Additionally, a 1.5 kb of the 5' sequence contains putative regulatory elements having homology to human and mouse IAP promoter sequences.

As used herein, the term "substantially the sequence" means the described nucleotide or amino acid sequence or other sequences having one or more additions, deletions or substitutions that do not substantially affect the ability of the sequence to encode a polypeptide having a desired activity, such as calf IAP or its active fragments. Thus, modifications that do not destroy the encoded enzymatic activity are contemplated.

As used herein, an active fragment of calf IAP refers to portions of the intact enzyme that substantially

6

retains the enzymatic activity of the intact enzyme. The retention of activity can be readily determined using methods known to those skilled in the art.

.

The terms "isolated" and "substantially purified"

are used interchangeably and mean the polypeptide or nucleic acid is essentially free of other biochemical moieties with which it is normally associated in nature. Recombinant polypeptides are generally considered to be substantially purified.

10 The present invention further relates to expression vectors into which the coding region of the calf IAP gene can be subcloned. "Vectors" as used herein are capable of expressing nucleic acid sequences when such sequences are operationally lined to other sequences capable of effecting their expression. 15 These expression vectors must be replicable in the host organisms either as episomes or as an integral part of the chromosomal DNA. Lack of replicability would render them effectively inoperable. In general, useful vectors in recombinant DNA 20 techniques are often in the form of plasmids, which refer to circular double stranded DNA loops which are not bound to the chromosome in their vector form. expression vectors can be plasmids such as, for example, pcDNA1 (Invitrogen, San Diego, CA).

25 A number of procaryotic expression vectors are known in the art, such as those disclosed, for example, in Patent Nos. 4,440,859; 4,436,815; 4,431,740; 4,431,739; 4,428,941; 4,425,437; 4,418,149; 4,411,994 and 4,342,832, all incorporated herein by reference. 30 Eucaryotic systems and yeast expression vectors can also be used as described, for example, in U.S. Patent Nos. 4,446,235; 4,443,539; and 4,430,428, all incorporated herein by reference.

10

35

The vectors can be used to transfect or transform suitable host cells by various methods known in the art, such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, NY (1989). Such host cells can be either eucaryotic or procaryotic cells. Examples of such hosts include chinese hamster ovary (CHO) cells, E.Coli and baculovirus infected insect cells. As used herein, "host cells" or "recombinant host cells" refer not only to the particular subject cell but to the progeny or potential progeny of such cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

15 The present invention further relates to recombinant proteins or polypeptides produced by the recombinant host cells of the present invention. recombinant calf IAP protein has been characterized in terms its heat stability up to about electrophoretic and isoelectric focusing (IEF) behavior and 20 kinetic parameters. The recombinant calf IAP protein of present invention demonstrated displayed kinetic properties comparable to commercially available purified calf IAP, while showing less heterogenicity than the commercial enzymes in polyacrylamide gel electrophoresis and IEF, as described in the examples below.

Methods for obtaining or isolating recombinant calf IAP or active fragments are also provided. Such methods include culturing the recombinant host cells in a suitable growth medium. The protein or active fragments can thereafter be isolated from the cells by methods known in the art. If the expression system secretes calf IAP protein into growth media, the protein can be purified directly from cell-free media. If the protein is not secreted, it can be isolated from cell lysates. The

8

selection of the appropriate growth conditions and recovery methods are within the knowledge of one skilled in the art. Recombinant calf IAP or active fragments thereof can be unglycosylated or have a different glycosylation pattern than the native enzyme depending on the host that is used to prepare it.

The present invention further provides isolated nucleic acids containing a nucleotide sequence encoding calf IAP or an active fragment thereof and a second nucleotide sequence encoding a polypeptide having specific 10 reactivity with a ligand. Such nucleic acids encode a chimeric or multifunctional polypeptide in which a region of the polypeptide has enzymatic activity conferred by the calf IAP sequence attached to a second region having 15 specific reactivity with a particular ligand. multifunctional polypeptides are particularly useful in diagnostic assays for determining the presence or concentration of a particular ligand in a sample. ligand can be, for example, a cancer marker, allergen, drug or other moiety having an ability to specifically bind with 20 antibody antibody-like an or agent encoded multifunctional polypeptide of the present invention. For instance, the second nucleotide sequence can encode an anti-CEA antibody when the target ligand (carcinoembryonic antigen). 25 The ligand can also be a fragment of DNA or other nucleic acids.

Nucleic acid probes specific for a portion of nucleotides that encode calf IAP can be used to detect nucleic acids specific to calf IAP for diagnostic purposes. Nucleic acid probes suitable for such purposes can be prepared from the cloned sequences or by synthesizing oligonucleotides that hybridize only with the homologous sequence under stringent conditions. The oligonucleotides can be synthesized by any appropriate method, such as by an automated DNA synthesizer.

30

35

The oligonucleotides can be used to detect DNA and mRNA or to isolate cDNA clones from libraries. The particular nucleotide sequences selected are chosen so as to correspond to the codons encoding a known amino acid sequence from the protein. Generally, an effective length of a probe is recognized in the art is about 14 to about 20 bases. Longer probes of about 25 to about 60 bases can also used. A probe can be labelled, using labels and methods well known in the art, such as a radionucleotide or biotin, using standard procedures.

The purified recombinant calf IAP or its active fragments can be used for diagnostic purposes to determine the presence or concentration of a ligand in a sample. The sample can be a fluid or tissue specimen obtained, for example, from a patient suspected of being exposed to a particular antigen or DNA fragment. Those skilled in the art will recognize that any assay capable of using an enzyme-catalyzed system can be used in the detection methods of the present invention.

- In the detection methods of the present invention:
- (a) a sample is contacted with the recombinant calf IAP or an active fragment thereof attached to a reagent specifically reactive with the ligand to be
 25 detected;
 - (b) the sample is contacted with a detectable agent catalyzed by calf IAP; and
- (c) the binding of the sample to the reagent is detected, where binding indicates the presence of the 30 ligand in the sample.

The methods can also be used to determine the concentration of a ligand in the sample by relating the amount of binding to the concentration of the ligand. To determine the concentration, the amount of binding can be

10

compared to known concentrations of the ligand or to standardized measurements, such as slopes, determined from known concentrations of the ligand.

A variety of ligands can be detected by the 5 present methods. The ligand can be, for example, a protein or polypeptide having antigenic properties or a nucleic acid, such as DNA or RNA.

Reagents reactive with such ligands can be antibodies or reactive fragments of such antibodies when the ligand is an antigen or antigen-like molecule. The reagent can also be a nucleotide probe that hybridizes or binds to a specific nucleic acid, such as DNA or RNA. Such probes can be oligonucleotides that are complementary to cDNA or genomic fragments of a ligand.

Procedures for attaching the enzymes to various reagents are well known in the art. Techniques for coupling enzymes to antibodies, for example, are described in Kennedy et al., Clin. Chim. Acta 70:1 (1976), incorporated herein by reference. Reagents useful for such coupling include, for example, glutaraldehyde, p-toluene disocyanate, various carbodiimide reagents, p-benzoquinone m-periodate, N,N'-o-phenylenediamalemide and the like. Alternatively, the multifunctional polypeptides of the present invention can be used.

Suitable substrates for the biochemical detection of ligands according to the methods of the present invention include, for example, p-nitrophenylphosphate.

The recombinant form of calf IAP is also useful for the development of calf IAP having greater heat 30 stability. By site directed mutagenesis, it is possible to modify the nucleic acid sequence encoding for the

11

recombinant protein to obtain a heat stable calf IAP comparable to human placental IAP, which is known to be stable at about 65°C. Greater heat stability would allow the use of such a modified calf IAP in procedures requiring higher heating, such as Southern blotting, for example, which generally denatures many enzymes.

The following examples are intended to illustrate but not limit the invention.

EXAMPLE I

10 <u>Libraries and Screening Procedures</u>

Initially, a λ gtll cDNA library prepared from adult bovine intestine (Clontech Laboratories, Palo Alto, CA) was screened using a mouse IAP cDNA fragment described in Manes et al., <u>Genomics</u> 8:541-554 (1990) as a probe. 2.1 kb unprocessed cDNA fragment and a 1.1 kb processed cDNA fragment, both isolated from this library, were used to screen a genomic library prepared from adult cow liver in EMBL3 SP6/T7 (Clontech Laboratories, Palo Alto, CA). Radiolabelling of probes with 32P and identification and isolation of positive clones was done as described in Manes 20 et al., supra, which is incorporated herein by reference. Large-scale phage DNA preparation was performed described in Sambrook et al., supra, incorporated herein by reference.

Initially, one positive cDNA clone was obtained upon screening the λgtll cDNA library with the mouse IAP cDNA fragment. Sequencing from the ends of the 2.1 kb cDNA fragment (R201) revealed an incomplete cDNA encoding exons VI through XI of an alkaline phosphatase gene as identified by sequence comparison to known AP genes. This cDNA fragment included all introns and revealed several STOP codons as well as two frameshifts in the putative coding region of the gene.

12

Although further sequence information of R201 suggested that it is possibly transcribed from a pseudogene, it was used as a probe for further screening of the Agt11 library. Two additional cDNA clones were subsequently isolated and identified as transcripts of another alkaline phosphatase gene. Again, one fragment of 0.8 kb length (BB203) turned out to be reverse transcribed from an incomplete and unprocessed RNA, whereas the other one, a cDNA fragment of 1.1 kb length (BB204), was derived from a partial but processed mRNA, extending from the end of exon V through exon XI, lacking a putative polyadenylation site and a poly-A tail.

EXAMPLE II

Characterization of Genomic Clones and Sequence Analysis

15 Genomic DNA was isolated from adult cow liver and Southern blot analysis was performed using standard described in Sambrook et protocols as Restriction enzymes were obtained from Gibco BRL. Boehringer Mannheim, and New England Biolabs. Twenty μq of 20 genomic DNA were used per reaction. The blots were probed with the 2.1 kb unprocessed cDNA fragment, and washed under high stringency conditions (0.1 x SSC at 65°C).

as fragments derived from the b.IAP gene. The only other non-human mammalian genome investigated extensively for tissues specific (TSAP) genes so far has been the murine genome, as reported in Manes et al., supra. Two murine TSAP genes, one termed embryonic AP (EAP), the other coding for IAP, and a pseudogene were cloned. In previous studies, it was shown that there are two TSAP genes expressed in the bovine genome according to Culp et al., Biochem. Biophys. Acta 831:330-334 (1985) and Besman & Coleman, supra. Similarly, two APs have been found expressed in the adult intestine of mice as reported in

Hahnel et al., <u>Development</u> 110:555-564 (1990). Expression of AP in rat intestine appears to be even more complex (Ellakim et al., <u>Am. J. Physiol.</u> 159, 1.1:G93-98 (1990)). Identification of the b.IAP gene was possible by comparison of its deduced amino acid sequence with N-terminal sequences reported for both TSAP isozymes.

Since further screening of the cDNA library revealed no additional positive clones, both R201 and BB204 were used to screen an EMBL3 SP6/T7 genomic library. Three positive clones were obtained and analyzed by Southern blotting. Subsequent sequencing of several fragments from two of the clones showed that one contained the entire coding region for the b.IAP gene as identified by comparison of deduced amino acid sequence with sequences previously determined in Culp et al., supra and Besman & Coleman, supra. A 5.4 kb sequence from overlapping Hind III and BamH1 fragments of the clone containing the b.IAP gene are presented in Figure 1. The other clone contained sequences identical (except for a few basepair changes) with R201.

Genomic clones were characterized and sequences were determined as described in Manes et al., <u>supra</u>. Nucleic acid and protein sequences were assembled and analyzed using the MacVector sequence analysis program (IBI, New Haven, CT).

25

EXAMPLE III

PCR Mutagenesis and Subcloning into pcDNA

A 23-mer primer ("MKNHE" (SEQ ID NO: 1):5'GCTAGCCATGCAGGGGGCCTGCG-3' (SEQ ID NO: 2)) was used to
30 amplify base pairs 1497-1913 of the b.IAP gene which had
been subcloned as a Hind III/BamHl fragment into
Bluescript-KS+ (Stratagene, San Diego, CA). MKNHE (SEQ ID
NO: 1) had been designed to create a new Nhe I site by

altering the three 5' nucleotides of the primer sequence compared to the genomic sequence to allow the easy The subcloning into different expression vectors. universal SK primer was used as complementary reverse primer in the performed polymerase chain reaction (PCR). The plasmid was heat denatured, annealed to the primers and subjected to 30 cycles of PCR amplification in an Automatic Thermocycler (MJ Research, Piscataway, NJ). Times and temperatures were set as follows: annealing at 40°C for 30 10 seconds, extension for 3 minutes at 72°C and denaturing at 95°C for 30 seconds. The amplified fragment was directly subcloned into the "T-modified" EcoRV site of Bluescript as described in Marchuk et al., Nucl. Acids Res. 19:1154 incorporated herein by reference, in the (1990), 15 orientation of b-galactosidase transcription.

EXAMPLE IV Sequencing of the Amplified Fragment

The amplified fragment was sequenced using the universal T3 and T7 primers in the Sanger dideoxy chain termination procedure as described in Sanger et al., Proc.Natl. Acad. Sci. U.S.A. 74:5463-5467 (1977), which is incorporated herein by reference, to exclude the possibility of secondary mutations. The Hind III/BamHl fragment was used together with a 3.2 kb BamHl/Smal fragment of the b.IAP gene for directional subcloning into a Hind III/EcoRV opened pcDNA 1 expression vector (Invitrogen, San Diego, CA).

EXAMPLE V

Recombinant Expression of b.IAP

The b.IAP gene subcloned into pcDNA 1 was transfected into Chinese hamster ovary (CHO) cells, ATCC No. CCL61, by means of Ca²⁺ coprecipitation as described in Hummer and Millan, Biochem. J. 274:91-95 (1991), which is

incorporated herein by reference. The recombinant protein was extracted with butanol after incubating for 2 days.

The b.IAP gene presented in Figure 1 includes an open reading frame (ORF) of 2946 bp, containing 11 exons 5 and 10 introns of very compact nature. Exon and intron borders were determined by comparison with BB204 and other known AP genes described in Manes et al., supra, Hernthorn et al., <u>J. Biol. Chem.</u> 263:12011-12019 (1988), Knoll et al., J. Biol. Chem. 263:12020-12027 (1988), and Millan & 10 Manes, Proc. Natl. Acad. Sci. USA 85:3025-3028 (1988). translation initiation codon ATG was identified by sequence comparison to known TSAP genes and is preceded by an inframe STOP codon 48 bp upstream. The ORF, which is terminated by the STOP codon TAA, codes for a peptide of 15 533 amino acids in length. The mature protein of 514 amino acids with a calculated M_{r} of 64,400 Da is preceded by a hydrophobic signal peptide as is the case for all known APs.

The predicted amino acid sequence of the b.IAP 20 protein is highly homologous to other known IAPs as shown in Figure 3. As shown in Figure 3 there is identity in those parts corresponding to the partial amino acid sequences previously determined for b.IAP (Culp et al., supra; Besman and Coleman, supra). Besman & Coleman 25 determined N-terminal amino acid sequences for differentially expressed AP isozymes. The 16 N-terminal amino acids determined for the isozyme found only in newborn calves differ in three or four residues from the Nterminus of the enzyme exclusively expressed in adults.

30

EXAMPLE VI Reverse Transcriptase-PCR

In order to construct a full length cDNA, reverse transcriptase-PCR (RT-PCR) was performed as follows: total

30

RNA from a stable transfected CHO-cell clone (M2) was isolated by acid guanidium thiocyanate-phenol-chloroform extraction as described in Chomozynski & Sacchi, Anal. Biochem. 162:156-159 (1987), incorporated herein by reference. The reverse transcriptase reaction was conducted according to the protocol of the manufacturer (Promega, Wisconsin) using 10 µg of RNA.

The reaction mixture was extracted with phenolchloroform, precipitated with ethanol and resuspended in
10 Taq polymerase buffer. The subsequent PCR was performed
over 35 cycles of amplification following an initial
denaturation at 94°C for 5 minutes, annealing at 55°C for
30 seconds and extension at 72°C for 5 minutes. The Taq
Polymerase was added to the reaction mixture after
15 denaturation only. The subsequent PCR settings were:
denaturation at 94°C for 45 seconds, annealing at 55°C for
1 minute and extension at 72°C for 4 minutes. The primers
used for this reaction were MKNHE (SEQ ID NO: 1) and
sequencing primer UP6: TCGGCCGCCTGAAGGAGC (SEQ ID NO: 3)
20 (see Figure 2).

The sequencing strategy as well as a restriction map and the genomic structure of the b.IAP gene are shown in Figure 2. The strategies for subcloning the coding region of the gene into an expression vector using PCR and for construction of a full length cDNA by means of RT-PCR are indicated in Figure 2. A single fragment of approximately 830 bp length had been obtained from RT-PCR as could be expected from the genomic sequence.

EXAMPLE VIII

Characterization of Recombinant Calf IAP

The sequence for the calf intestinal AP gene was determined as described above. A full length cDNA was constructed using a partial cDNA clone (BB204) and a

fragment obtained by RT-PCR.

A cDNA fragment clone (R201) and a corresponding genomic clone were obtained, which resemble properties of a putative pseudogene. Both clones contain STOP codons within the coding region and several frameshifts. corresponding to the putative pseudogene could only be identified upon hybridizing with a mouse TNAP cDNA which gave a distinct pattern. This result suggests that the bands correspond to TSAP genes only, and that 10 pseudogene is more related to TNAP. In contrast, the murine pseudogene has been found to resemble more homology to the mouse EAP gene (Manes et al., supra).

The sequence and genomic structure of the b.IAP gene show high homology to all known TSAP genes. 15 smallest exon, exon VII, is only 73 bp long while the longest exon, exon XI, is approximately 1.1 kb long. exact length of exon 11 cannot be determined since no cDNA with a poly-A tail had been isolated. The estimate given is based on the identification of a putative poly-20 adenylation site AATAAA (bp 5183-5188) in the 3' non-coding region of the gene (underlined in Figure 1). The introns are among the smallest introns reported (Hawkins, Nucl. Acids Res. 16:9893-9908 (1988)) as was found in the case of other TSAP genes as well (Manes et al., supra; Hernthorn et 25 al., supra; Knoll et al., supra; Millan and Manes, supra). The largest one, splitting exon V and exon VI, is only 257 All exon-intron junctions conform to the GT-AG (Breathnach et al., Proc. Natl. Acad. Sci. USA 75:4853-4857 (1978)) and also conform well to the consensus 30 sequences (C/A)AG/GT(A/G)AGT (SEQ ID NO: 4) $(T/C)_nN(C/T)AG/G$ (SEQ ID NO: 5) for donor and acceptor sites, respectively (Mount, Nucl. Acids Res. 10:459-473 (1982).

Interestingly, the entire coding region of exon

XI shows a high G/C content of over 60 to 80% compared to a rather equal ratio of G/C to A/T throughout the whole structural gene. Other regions of biased GC content were found at bp 270 to bp 490 with a high A/T content and in a region preceding the poly adenylation site, which again shows a high G/C content.

A putative TATA-box has been identified in the 1.5 kb of sequence preceding the coding region (bp 1395-1400, underlined in Figure 1). It shows the same variant 10 ATTTAA sequence embedded in a conserved region of 25 bp as was previously reported for the mouse TSAP genes (Manes et al., supra) and two human TSAP genes (Millan, Nucl. Acids Res. 15:10599 (1987); Millan and Manes, supra)).

The sequence GGGAGGG has been shown to be part of
the putative mouse TSAP promoters (Manes et al., <u>supra</u>) as
well as of two human TSAP promoters (Millan, (1987), <u>supra</u>;
Millan and Manes, <u>supra</u>). This sequence is also present in
the putative promoter region of the b.IAP gene.

The sequence CACCC or its complementary reverse is repeated 6 times in the region of bp 1182-1341, 24 times in the entire structural gene and 31 times throughout the whole sequence shown here. However, only one less conserved CACCC box (Myers et al., Science 232:613-618 (1986)) was identified.

Since it was shown for dog IAP that the enzyme can be induced by cortico steroid hormone (Sanecki et al., Am. J. Vet. Res. 51, 12:1964-1968 (1990)), hormone responsive elements in the genomic sequence of b.IAP were identified. Palindromic and direct repeats, known to be binding sites for dimeric nuclear factors as described in O'Malley, Mol. Endocrinol. 5:94-99 (1990), were identified in the 1.5 kb upstream of the initiation codon. A long, imperfect palindromic repeat (CACACCTCCTGCCCAG-N₂-

CTGGTGAGGAGCTGAG) (SEQ ID NO: 6) extends from bp 899 to bp 937. A direct repeat of the sequence GGGCAGG spaced by three nucleotides starts at bp 1311.

Several regions of high homology to mouse (Manes et al., <u>supra</u>) and human (Millan, (1987), <u>supra</u>) IAP genes have been identified in the putative promoter region. However, one stretch of 10 bp (AGCCACACCC) (SEQ ID NO: 7) was found to be identical with a sequence in the same region upstream of the TATA box of the human \$\beta\$-globin gene 10 (Myers et al., <u>supra</u>).

Another region of interest precedes the putative adenylation site at bp 5016. ACAGAGAGGAGA (SEQ ID NO: 8) is imperfectly repeated, spaced inverted repeat overlapping the last adenine nucleotide (ACAG-T-GACA). 15 The presented 1.5 kb of the presumed promoter of the b.IAP gene contain several additional putative regulatory elements. A short stretch of 14 alternating thymines and guanines, intercepted by one adenine was found at position 601 of the sequence. Interestingly, this sequence is identical to a part of a 20 slightly longer stretch with the same characteristics beginning at bp 2713 within the intron splitting exon V and Another stretch of 36 alternating pyridines and purines is found at position 732 being mainly composed of 25 cytosin and adenine nucleotides. Identical structures are reported for the human germ cell AP gene (Millan and Manes, supra) and are thought to form Z-DNA structures, which may play a role in the regulation of gene expression (Nordheim and Rich, Nature (London) 303:674-678 (1983)).

As shown in Figure 3, the deduced amino acid sequence of b.IAP is highly homologous to all known IAPs. Identical residues and conservative amino acid substitutions are found within structurally important regions, as is the case for the other TSAPs as well,

whereas variability is almost exclusively found at the C-terminus and in the highly variable loops (Millan, (1988), supra).

Asp⁴⁸⁷ of b.IAP resides within a conserved sequence
of 4 amino acids in the same region of the human intestinal
gene (indicated in Figure 3) as well as of human PLAP
(Millan, J. Biol. Chem. 261:3112-3115 (1986)). This
residue was shown for PLAP to be the attachment site of a
phosphatidyl-inositol membrane anchor (Micanovic et al.,

Proc. Natl. Acad. Sci. USA 87:157-161 (1990)). Evidence
has been presented previously that b.IAP is also anchored
to the plasma membrane in such a fashion. There appears to
be a spatial regulated release of IAP into the lumen
without cleavage of the anchor in a variety of species
(Hoffmann-Blume et al., Eur. J. Biochem. 199:305-312
(1991)).

EXAMPLE IX

Comparison of Purified and Recombinant Forms of Calf IAP

Values for K_m and K₁ for L-Phe were determined for the recombinant enzyme as well as for purified protein from calf intestine as described in Hummer and Millan, <u>supra</u>, and Wilkinson, <u>Biochem. J.</u> 8:324-332 (1961), incorporated herein by reference. Both the purified b.IAP from natural sources and the recombinant b.IAP show identical values for K_m (within standard deviations), and only slightly different values of K₁. K_m was determined as 0.77 = 0.12 for the recombinant enzyme and as 0.86 ± 0.17 for the purified natural enzyme. K₁ for L-Phe were found to be 15.2 ± 1.8 and 11.2 ± 1.0 for the recombinant and purified enzymes, respectively. Thus, the results of these findings indicate that the natural and recombinant forms of calf IAP have comparable properties and activities.

Two possible glycosylation sites appear to be

conserved between the human and the bovine IAP. Three other possible sites within other IAP sequences were not found in the b.IAP. The high degree of heterologous glycosylation of the purified enzyme was demonstrated by isoelectric focusing (IEF). IEF was performed using the Resolve-ALP system (Isolab, Akron, OH) as described in Griffiths & Black, Clinn. Chem. 33:2171-2177 (1987). Samples of recombinant and purified enzyme were run either treated with neuraminidase or untreated to compare the amount of glycosylation.

10

A smeary band was obtained upon IEF of untreated purified enzyme in contrast to a more distinct band for the recombinant b.IAP protein. After treatment with neuraminidase, both bands dissolve into several sharp bands, in which the purified enzyme showed considerably more diversity than the recombinant enzyme.

EXAMPLE X <u>Heat Inactivation of Calf IAP</u>

The heat stabilities of purified calf IAP and 20 recombinant calf IAP were determined at 56°C. First, the samples were diluted in 1 ml of DEA buffer containing 1 M DEA diethanolamine (pH 9.8) containing 0.5 mM MgCl $_2$ and 20 μ M ZnCl $_2$. The solution was heated at 56°C for the fixed time intervals indicated in Table I. μ l of the enzyme solution were removed and pipetted into a 25 microtiter well and stored on ice until the end of the longest incubation period. At the end of the experiment, the residual activity was measured by the addition of 200 μ l of DEA buffer containing p-nitrophenylphosphate (10 mM) 30 in DEA buffer. For comparison, a sample of recombinant enzyme was pretreated with 0.2 units/ml of neuriminidase for 16 hours at room temperature, followed by the same heat inactivation treatment. The results of inactivation studies are shown in Figure 4.

TABLE I
Heat Inactivation of Intestinal AP

22

					(minut		
		0'	<u>6′</u>	12'	18′_	24'	<u>30′</u>
5			<u>Re</u>	sidual	activi	ty (%)	
	Calf IAP (intestinal extract)	100	87	65.6	48.7	36	23.4
	Recombinant IAP	100	80.6	59.5	39.6	28.5	18.5
10	Recombinant IAP upon Neuriminidase	100	80.8	55.9	38.1	27.1	20.3

The foregoing description of the invention is exemplary for purposes of illustration and explanation. It should be understood that various modifications can be made without departing from the spirit and scope of the invention. Accordingly, the following claims are intended to be interpreted to embrace all such modifications.

SEQUENCE LISTING

```
(1) GENERAL INFORMATION:
           (i) APPLICANT:
                (A) NAME: La Jolla Cancer Research Foundation
  5
                (B) STREET: 10901 North Torry Pines Road
                (C) CITY: La Jolla
                (D) STATE: California
                (E) COUNTRY: USA
                (F) POSTAL CODE (ZIP): 92037
 10
                (G) TELEPHONE: (619) 455-6480
(H) TELEFAX: (619) 455-0181
          (ii) TITLE OF INVENTION: RECOMBINANT CALF INTESTINAL ALKALINE
                  PHOSPHATASE
         (iii) NUMBER OF SEQUENCES: 13
15
          (iv) COMPUTER READABLE FORM:
                (A) MEDIUM TYPE: Floppy disk
                (B) COMPUTER: IBM PC compatible
                (C) OPERATING SYSTEM: PC-DOS/MS-DOS
20
                (D) SOFTWARE: PatentIn Release #1.0, Version 1.25 (EPO)
         (Vi) PRIOR APPLICATION DATA:
                (A) APPLICATION NUMBER: US 07/849,219
                (B) FILING DATE: 10-MAR-1992
     (2) INFORMATION FOR SEQ ID NO:1:
25
          (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 5 amino acids
               (B) TYPE: amino acid
               (D) TOPOLOGY: linear
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
30
          Met Lys Asn His Glu
     (2) INFORMATION FOR SEQ ID NO:2:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 23 base pairs
35
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
         (Xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
     GCTAGCCATG CAGGGGGCCT GCG
                                                                             23
40
     (2) INFORMATION FOR SEQ ID NO:3:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 18 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
45
               (D) TOPOLOGY: linear
```

PCT/US93/02172

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
     TCGGCCGCCT GAAGGAGC
                                                                              18
     (2) INFORMATION FOR SEQ ID NO:4:
          (i) SEQUENCE CHARACTERISTICS:
 5
                (A) LENGTH: 6 base pairs
                (B) TYPE: nucleic acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
         (ix) FEATURE:
10
                (A) NAME/KEY: misc feature
                (B) LOCATION: complement (1)
                (D) OTHER INFORMATION: /note= "N=C OR A"
         (ix) FEATURE:
                (A) NAME/KEY: misc feature
15
                (B) LOCATION: complement (2)
                (D) OTHER INFORMATION: /note= "N=AG OR GT"
         (ix) FEATURE:
               (A) NAME/KEY: misc feature
                (B) LOCATION: complement (3)
20
                (D) OTHER INFORMATION: /note= "N=A OR G"
         (X1) SEQUENCE DESCRIPTION: SEQ ID NO:4:
     NNNAGT
                                                                               6
     (2) INFORMATION FOR SEQ ID NO:5:
          (i) SEQUENCE CHARACTERISTICS:
25
               (A) LENGTH: 4 base pairs(B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
         (ix) FEATURE:
30
               (A) NAME/KEY: misc_feature
               (B) LOCATION: complement (1)
               (D) OTHER INFORMATION: /note= "Y=T OR C"
         (ix) FEATURE:
               (A) NAME/KEY: misc feature
35
               (B) LOCATION: complement (3)
               (D) OTHER INFORMATION: /note= "Y=C OR T"
         (ix) FEATURE:
               (A) NAME/KEY: misc feature
               (B) LOCATION: complement (4)
40
               (D) OTHER INFORMATION: /note= "Y=AG OR G"
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
     YNYY
```

	(2) INFORMATION FOR SEQ ID NO:6:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
	CACACCTCCT GCCCAGNNNN NNNCTGGTGA GGAGCTGAG	39
	(2) INFORMATION FOR SEQ ID NO:7:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
	AGCCACACCC	
	(2) INFORMATION FOR SEQ ID NO:8:	10
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(X1) SEQUENCE DESCRIPTION: SEQ ID NO:8: ACAGAGAGGA GA	
25		12
30	(2) INFORMATION FOR SEQ ID NO:9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5399 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: join(15011567, 16471763, 18781993, 21792353, 24332605, 28642998, 30843156, 32573391, 34753666, 38793995, 41014402))
	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
	AAGCTTTCAC CTTCTCTGAA AACAGAGAGA CAGTCCTCAG CCCCAGTCCT CACCCTTCCT	
	ACCTCCCTGC CTGATGCCCA GGCAATCATC TGGTGGCGTG TCACCTCCCT CTGTCCCATG	60
40	AGTTCCACTA GATGTGGCCC TCAAGAAAAA GGGCTTCCCT GTTGGCTCAG CTGGTAAAGA	.20
	GGGCTTCCCT GTTGGCTCAG CTGGTAAAGA]	80

	ATCCTCCAGC AATGTAGGAG ACCTGGGTTC GATCCCTGGG TTGGGAGGAT ACCCTGGAGA	240
	AGGGAATGGC TACCCACTCC AGTATTCTTG CCTGGATAAT CCCATGGACA GAGGAGTCTG	300
	GCAGGCTGCA GACCATAAGG TAGAAAGAGT CAGACATGAC TGAGCAACTA AGCACAATAT	360
	TCCACTGGAT ATATCATACT TTGTTCATCC ATTTGTCTGC TGTGGATGGT TGAGTGGCTT	420
5 .	GTGCCTCTTG GCTACTGTGA GTAATGCTAC TAAAATGTGA GTGTGCAAAT ACCTCTTATA	480
	GATCTTGATT TCAATTATTG GGGATACACA CCCAGAAGGC GGATTGTTGG ATGTGAGAAT	540
	GCCTTTTTGA ACCCCAACCT GGGGTTACTG AAACCCTAGC TCCTTATCAG AAGCTGTTCC	600
	TGTGAGTGTG TGTGGCCTGT GGAGAGAAGA GACTCACCTC TGCCTTCCAT TTACCTCTCC	660
	AATGGAGCAG AGGTTGCAAA CTTCAGTTAA TGGGCACTGG GCCCACGCCT GTCGACCCGT	720
10	TACAGGCACC TTACACACAC ACACACACA ACACACACA ACAAACAGCA CTGCAGACCC	780
	AGCTCTTCAG TAACTGAAGA CACAGACAAG GCCCCCGCTC TGCTGTCACC TCCAGTCCCA	840
	TCCTTCTCCA CAGCAGAAGC TGGGCCCAGG CTCCCATGTG CCCCACTAG CCCAGTGCCC	900
	ACACCTCCTG CCCAGGTCAA GTCTGGTGAG GAGCTGAGCA GGGGGCAGGG CAGACAGGCC	960
	TCCCCGTGGA TCTCTGTCTC AGGGCGCCAG GGAACTAACC CAGGCCCCTG GCCAGGCTGT	1020
15	GTCCCTAAGC ACTGGGAACC AAACCAGGCC AAGGCTGAGT CTCAGAAAAC ACTGAACACG	1080
	TGAAGGAAGG AGAGATGGTT CTCCCACAGG ACTTGGTGAG CAGAGGGCTG GGAGGAGCCT	1140
	CAGTCAGGAC CTTGAAAACG TTCCTCAGGC CTAGACATCT GCACCCTAAT CCCCACCCCA	1200
	CCCTGAGGAG ACAGCTGGGA CCATCCTGGG AGGGAGGGAC CTGAATCCTC AGGACCCCTA	1260
	CTGCTAAGCC ACACCCACCA CATGCCCCTG GCAACAGGGC TCAAAGTCAT AGGGCAGGTG	1320
20	AGGGGCAGGG TGTGGCCACC CGGGGAACCT GGGATGGACA AGGAGACTTT AATAGCAGGG	1380
	ACAAAGTCTA TCTAGATTTA AGCCCAGCAG GCCAAGCTGC AGCCGGTCCC TGGTGTCCCA	1440
	GCCTTGCCCT GAGACCCGGC CTCCCCAGGT CCCATCCTGA CCCTCTGCCA TCACACAGCC	1500
25	ATG CAG GGG GCC TGC GTG CTG CTG CTG GGC CTG CAT CTA CAG CTC Met Gln Gly Ala Cys Val Leu Leu Leu Gly Leu Ris Leu Gln Leu 1 5 10 15	1548
	TCC CTA GGC CTC GTC CCA G GTAATCAGGC GGCTCCCAGC AGCCCCTACT Ser Leu Gly Leu Val Pro 20	1597
30	CACAGGGGCG GCTCTAGGCT GACCTGACCA ACACTCTCCC CTTGGGCAG TT GAG Val Glu	1651
	GAG GAA GAC CCC GCC TTC TGG AAC CGC CAG GCA GCC CAG GCC CTC GAT Glu Glu Asp Pro Ala Phe Trp Asn Arg Gln Ala Ala Gln Ala Leu Asp 25 30 35	1699
35	GTG GCT AAG AAG CTG CAG CCC ATC CAG ACA GCC GCC AAG AAT GTC ATC Val Ala Lys Lys Leu Gln Pro Ile Gln Thr Ala Ala Lys Asn Val Ile 45 50 55	1747
40	CTC TTC TTG GGG GAT G GTGAGTACAT GAGGCCAGCC CACCCCCTGT Leu Phe Leu Gly Asp 60	1793

	CCCCTGACAG GCCTGGAACC CTGTGATGCC GGCTGACCCA GGTTGGCCCC AGAAACTCGG	1853
	ACCTGAGACA CTGTGTACCT TCAG GG ATG GGG GTG CCT ACG GTG ACA GCC Gly Met Gly Val Pro Thr Val Thr Ala	1903
5	ACT CGG ATC CTA AAG GGG CAG ATG AAT GGC AAA CTG GGA CCT GAG ACA Thr Arg Ile Leu Lys Gly Gln Met Asn Gly Lys Leu Gly Pro Glu Thr 75 80 85	1951
10	CCC CTG GCC ATG GAC CAG TTC CCA TAC GTG GCT CTG TCC AAG Pro Leu Ala Met Asp Gln Phe Pro Tyr Val Ala Leu Ser Lys 90 95 100	1993
	GTAAGGCCAA GTGGCCTCAG GGTGGTCTAC ACCAGAGGGG TGGGTGTGGG CCTAGGGAGC	2053
	AGGGTAGGAG GGAAACCCAG GAGGGCTAGG GGCTGAGATA GGGGCTGGGG GCTGTGAGGA	2113
	TGGGCCCAGG GCTGGGTCAG GAGCTGGGTG TCTACCCAGC AGAGCGTAAG GCATCTCTGT	2173
	CCCAG ACA TAC AAC GTG GAC AGA CAG GTG CCA GAC ACG GGA GGG	•
15	105 Ash val Asp Arg Gin Val Pro Asp Ser Ala Gly Thr	2220
	GCC ACT GCC TAC CTG TGT GGG GTC AAG GGC AAC TAC AGA ACC ATT GGT Ala Thr Ala Tyr Leu Cys Gly Val Lys Gly Asn Tyr Arg Thr Ile Gly 125	2268
20	GTA AGT GCA GCC GCC CGC TAC AAC CAG TGC AAA ACG ACA CGT GGG AAT Val Ser Ala Ala Arg Tyr Asn Gln Cys Lys Thr Thr Arg Gly Asn 135 140 145	2316
25	GAG GTC ACG TCT GTG ATG AAC CGG GCC AAG AAA GCA G GTGGGCTTGG Glu Val Thr ser Val Met Asn Arg Ala Lys Lys Ala 150 155	2363
	GCGTCAGCTT CCTGGGCAGG GACGGGCTCA GAGACCTCAG TGGCCCACCG TGACCTCTGC	2423
	CACCCTCAG GG AAG TCC GTG GGA GTG GTG ACC ACC AGG GTG CAG Gly Lys Ser Val Gly Val Val Thr Thr Arg Val Gln	2470
30	CAT GCC TCC CCA GCC GGG GCC TAC GCG CAC ACG GTG AAC CGA AAC TGG His Ala Ser Pro Ala Gly Ala Tyr Ala His Thr Val Asn Arg Asn Trp 175 180 170 170	2518
35	TAC TCA GAC GCC GAC CTG CCT GCT GAT GCA CAG ATG AAT GGC TGC CAG TYR Ser Asp Ala Asp Leu Pro Ala Asp Ala Gln Met Asn Gly Cys Gln 190 195 200	2566
	GAC ATC GCC GCA CAG CTG GTC AAC AAC ATG GAT ATT GAC GTGCGACATG Asp Ile Ala Ala Gln Leu Val Asn Asn Met Asp Ile Asp 205 215	2615
	TTGGGCACAG GGCGGGCTG GGCACAGGTG GTGGGGCACA CTCGCAACAC AGTCGTAGGT	2675
40	AACCTCCAGC CTGCGGTGTT TCAGGGTTTT CATGGGTTTG TGTGTGTGTG TATGTGTGGT	2735
	GGGGTGGCAC CATGTAGGAG GTGGGGACAG GCCTTTCCCA CAGACCTGGT GGGGGAGGTA	2795
	GGGGCTGTGT GAGAGGAGTA AAGGGCCAGC CAGGCCCCTA ACCCACCTGC CTAACTCTCT	2855
45	GGCTCCAG GTG ATC CTG GGT GGA GGC CGA AAA TAC ATC TTTT	2905

	ACC CCA GAC CCT GAA TAC CCA GAT GAT GCC AGT GTG AAT GGA GTC CGG Thr Pro Asp Pro Glu Tyr Pro Asp Asp Ala Ser Val Asn Gly Val Arg 235 240 245	2953
5	AAG CGA AAG CAG AAC CTG GTG CAG GCA TGG CAG GCC AAG CAC CAG Lys Arg Lys Gln Asn Leu Val Gln Ala Trp Gln Ala Lys His Gln 250 255 260	2998
	GTAATGGGGG CTCACGGATG TGGGGGTACA GTGGGGCTGG GCCTGGGGTG TCGGCTATGG	3058
10	CTGAGGCCTG GTTCTGCCCT CCCAG GGA GCC CAG TAT GTG TGG AAC CGC ACT Gly Ala Gln Tyr Val Trp Asn Arg Thr 265 270	3110
	GCG CTC CTT CAG GCG GCC GAT GAC TCC AGT GTA ACA CAC CTC ATG Ala Leu Leu Gln Ala Ala Asp Asp Ser Ser Val Thr His Leu Met 275 280 285	3156
	GTAACGACTC CACCCACCCT CACTGTCCTC CCCAGGAATG GGTGCCATGG GCCACCCCTG	3216
15	TCCTCAGCTT GAGGGTCACC ACTGCTCCCC TTTCCCACAG GC CTC TTT GAG CCG Gly Leu Phe Glu Pro 290	3270
20	GCA GAC ATG AAG TAT AAT GTT CAG CAA GAC CAC ACC AAG GAC CCG ACC Ala Asp Met Lys Tyf Asn Val Gln Gln Asp His Thr Lys Asp Pro Thr 295 300 305	3318
	CTG CAG GAA ATG ACA GAG GTG GCC CTG CGA GTC GTA AGC AGG AAC CCC Leu Gln Glu Met Thr Glu Val Ala Leu Arg Val Val Ser Arg Asn Pro 310 315 320	3366
25	AGG GGC TTC TAC CTC TTT GTG GAG G GTGAGTGGCA GCCCCTTGGT Arg Gly Phe Tyr Leu Phe Val Glu 325 330	3411
	GAACAGAGGT GTGATGAGGG CCATCAGGGT GGGTTTGGTA TCTTATATGT GACTTATCTG	3471
30	CAG GA GGC CGC ATT GAC CAC GGT CAC CAT GAT GAC AAA GCT TAT ATG Gly Gly Arg Ile Asp His Gly His His Asp Asp Lys Ala Tyr Met 335 340 345	3518
	GCA CTG ACC GAG GCG GGT ATG TTT GAC AAT GCC ATC GCC AAG GCT AAT Ala Leu Thr Glu Ala Gly Met Phe Asp Asn Ala Ile Ala Lys Ala Asn 350 355 360	3566
35	GAG CTC ACT AGC GAA CTG GAC ACG CTG ATC CTT GTC ACT GCA GAC CAC Glu Leu Thr Ser Glu Leu Asp Thr Leu Ile Leu Val Thr Ala Asp His 365 370 375	3614
	TCT CAT GTC TTC TCT TTT GGT GGC TAT ACA CTG CGT GGG ACC TCC ATT Ser His Val Phe Ser Phe Gly Gly Tyr Thr Leu Arg Gly Thr Ser Ile 380 385 390	3662
40	TTT G GTAAGCCCAG GGAGAGTGGC AGGTCGTTGC CCCTAAGTTA CGAGGCACAA Phe	3716
	CTCGTCTGAG CCAGTTCCTC TATCTGTCTA GTGGGGTAGT ACAGCACACT GCCTGCTACG	3776
	CTCTGGTGAG GATTGTCACT GACAGACAGA CTGGCCATGG CTCTGCACAC AGGGGAGCAC	3836
45	AAGCTAGGTC AGTGTGATCA CGGGGTCCCC TCTTCCCTGA AG GT CTG GCC CCC Gly Leu Ala Pro 395	3889

	AGC AAG GCC TTA GAC AGC AAG TCC TAC ACC TCC ATC CTC TAT GGC AAT Ser Lys Ala Leu Asp Ser Lys Ser Tyr Thr Ser Ile Leu Tyr Gly Asn 400 405 410	3937
5	GGC CCA GGC TAT GCG CTT GGC GGG GGC TCG AGG CCC GAT GTT AAT GAC Gly Pro Gly Tyr Ala Leu Gly Gly Gly Ser Arg Pro Asp Val Asn Asp 420 425 430	3985
	AGC ACA AGC G GTAAGTGTAG TAGGTGGGGC GCTGGGAGGT GGGGACCCTG Ser Thr Ser	4035
10	GCCAGAAATT GTGGGGAGGG GAAGGCTGCC TCCCTTGTCA CATTAACTTC CCTTCTTCTG	4095
	GCCAG AG GAC CCC TCG TAC CAG CAG GCG GCC GTG CCC CAG GCT Glu Asp Pro Ser Tyr Gln Gln Ala Ala Val Pro Gln Ala 435 440 445	4141
15	AGC GAG ACC CAC GGG GGC GAG GAC GTG GCG GTG TTC GCG CGC GGC CCG ser Glu Thr His Gly Gly Glu Asp Val Ala Val Phe Ala Arg Gly Pro 450 455 460	4189
	CAG GCG CAC CTG GTG CAC GGC GTC GAG GAG GAG ACC TTC GTG GCG CAC Gln Ala His Leu Val His Gly Val Glu Glu Thr Phe Val Ala His 465 470 475	4237
20	ATC ATG GCC TTT GCG GGC TGC GTG GAG CCC TAC ACC GAC TGC AAT CTG Ile Met Ala Phe Ala Gly Cys Val Glu Pro Tyr Thr Asp Cys Asn Leu 480 485 490 495	4285
25	CCA GCC CCC ACC ACC GCC ACC AGC ATC CCC GAC GCC GCG CAC CTG GCG Pro Ala Pro Thr Thr Ala Thr Ser Ile Pro Asp Ala Ala His Leu Ala 500 505 510	4333
	GCC AGC CCG CCT CCA CTG GCG CTG CTG GCT GGG GCG ATG CTG CTG Ala Ser Pro Pro Leu Ala Leu Leu Ala Gly Ala Met Leu Leu Leu 515 520	4381
30	CTG GCG CCC ACC TTG TAC TAACCCCCAC CAGTTCCAGG TCTCGGGATT Leu Ala Pro Thr Leu Tyr 530	4429
	TCCCGCTCTC CTGCCCAAAA CCTCCCAGCT CAGGCCCTAC CGGAGCTACC ACCTCAGAGT	4489
	CCCCACCCG AAGTGCTATC CTAGCTGCCA CTCCTGCAGA CCCGACCCGG CCCCACCACC	4549
	AGAGTTTCAC CTCCCAGCAG TGATTCACAT TCCAGCATTG AAGGAGCCTC AGCTAACAGC	4609
35	CCTTCAAGGC CCAGCCTATA CCGGAGGCTG AGGCTCTGAT TTCCCTGTGA CACGCGTAGA	4669
	CCTACTGCCC GACCCCAACT TCGGTGGCTT GGGATTTTGT GTTCTGCCAC CCTGAACCTC	4729
	AGTAAGGGG CTCGGACCAT CCAGACTGCC CCTACTGCCC ACAGCCCACC TGAGGACAAA	4789
	GCTGGCACGG TCCCAGGGGT CCCAGGCCCG GCTGGAACCC ACACCTTGCC TTCAGCGACC	4849
		4909
40	ACGTGCTCGC CTGAACCAAC CTGTGTACAC TGGCCAGGAA TCACGGCCAC CAGAGCTCGG	4969
		5029
	GTGACACAGA GGAGAGGAGA CTTGTCCCAG GTCCCTCAGC TGCTGTGAGG GCGGCCCTGG	5089
	TGCCCCTTCC AGGCTGGGCA TCCCAGTAGC AGCAGGGGAC CCGGGGGTGG GGACACAGGC	5149
	CCCGCCCTCC CTGGGAGGCA GGAAGCAGCT CTCAAATAAA CTGTTCTAAG TATGATACAG	5209

30

GAGTGATACA	TGTGTGAAGA	GAAGCCCTTA	GGTGGGGGCA	CAGAGTGTCT	GGGTGAGGGG	5269
GGTCAGGGTC	ACATCAGGAG	GTTAGGGAGG	GGTTGATGAA	GGGCTGACGT	TGAGCAAAGA	5329
CCAAAGGCAA	CTCAGAAGGA	CAGTGGTGCA	GGACTGGGTG	TGGTCAGCAG	GGGGACTGGT	5389
TGGGGGATCC						5399

5 (2) INFORMATION FOR SEQ ID NO:10:

30

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 533 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: Met Gln Gly Ala Cys Val Leu Leu Leu Gly Leu His Leu Gln Leu
- Ser Leu Gly Leu Val Pro Val Glu Glu Glu Asp Pro Ala Phe Trp Asn 15
 - Arg Gln Ala Ala Gln Ala Leu Asp Val Ala Lys Lys Leu Gln Pro Ile 40
- 20 Gln Thr Ala Ala Lys Asn Val Ile Leu Phe Leu Gly Asp Gly Met Gly
 - Val Pro Thr Val Thr Ala Thr Arg Ile Leu Lys Gly Gln Met Asn Gly
- 25 Lys Leu Gly Pro Glu Thr Pro Leu Ala Met Asp Gln Phe Pro Tyr Val
 - Ala Leu Ser Lys Thr Tyr Asn Val Asp Arg Gln Val Pro Asp Ser Ala 100
 - Gly Thr Ala Thr Ala Tyr Leu Cys Gly Val Lys Gly Asn Tyr Arg Thr 115
- Ile Gly Val Ser Ala Ala Ala Arg Tyr Asn Gln Cys Lys Thr Thr Arg 35 130 135 140
 - Gly Asn Glu Val Thr Ser Val Met Asn Arg Ala Lys Lys Ala Gly Lys 155

	Se.	r Vai	l Gly	y Val	l Val 165	Thr	Thr	Thi	c Arg	7 Val	l Glr)	n His	s Ala	a Ser	175	Ala
5	Gly	y Ala	а Туз	180	His	Thr	· Val	. Asr	185	Asr	Trp	Tyr 	Ser	190	Ala	Asp
	Lei	1 Pro) Ala 195	a Asp	Ala	Gln	Met	Asn 200	Gly	Cys	Gln	Asp	1le 205	Ala	Ala	Gln
10	Let	1 Val 210	. Asn	Asn	Met	Asp	Ile 215	Asp	Val	Ile	Leu	Gly 220	Gly	Gly	Arg	Lys
	Туг 225	Met	Phe	Pro	Val	Gly 230	Thr	Pro	Asp	Pro	Glu 235	Tyr	Pro	Asp	Asp	Ala 240
15	Ser	: Val	Asn	Gly	Val 245	Arg	Lys	Arg	Lys	Gln 250	Asn	Leu	. Val	Gln	Ala 255	Trp
20	Gln	Ala	Lys	His 260	Gln	Gly	Ala	Gln	Tyr 265	Val	Trp	Asn	Arg	Thr 270	Ala	Leu
	Leu	Gln	Ala 275	Ala	Asp	Asp	ser	Ser 280	Val	Thr	His	Leu	Met 285	Gly	Leu	Phe
25 .	Glu	Pro 290	Ala	Asp	Met	Lys	Tyr 295	Asn	Val	Gln	Gln	Asp 300	His	Thr	Lys	Asp
				Gln		210					315					320
30				Gly	32 3					330					335	
	Gly	His	His	Asp 340	Asp	Lys	Ala	Tyr	Met 345	Ala	Leu	Thr	Glu	Ala 350	Gly	Met
35	Phe	Asp	Asn 355	Ala	Ile .	Ala	Lys	Ala 360	Asn	Glu	Leu	Thr	ser 365	Glu	Leu	Asp
40	Thr	Leu 370	Ile	Leu	Val '	Thr .	Ala . 375	Asp	His ;	Ser	His	Val 380	Phe .	Ser :	Phe	Gly

	Gly 385	Tyr	Thr	Leu	Arg	Gly 390	Thr	ser	Ile	Phe	Gly 395	Leu	Ala	Pro	Ser	Lys 400
	Ala	Leu	Asp	Ser	Lys 405	ser	Tyr	Thr	ser	Ile 410	Leu	Tyr	Gly	Asn	Gly 415	Pro
5																
	Gly	Tyr	Ala	Leu 420	Gly	Gly	Gly	Ser	Arg 425	Pro	Asp	Val	Asn	Asp 430	Ser	Thr
10	ser	Glu	Asp 435	Pro	ser	Tyr	Gln	Gln 440	Gln	Ala	Ala	Val	Pro 445	Gln	Ala	Ser
	Glu	Thr 450	His	Gly	Gly	Glu	Asp 455	Val	Ala	Val	Phe	Ala 460	Arg	Gly	Pro	Gln
15	Ala 465		Leu	Val	His	Gly 470	Val	Glu	Glu	Glu	Thr 475	Phe	Val	Ala	His	Ile 480
	Met	Ala	Phe	Ala	Gly 485	Cys	Val	Glu	Pro	Tyr 490	Thr	Asp	Сув	Asn	Leu 495	Pro
20	Ala	Pro	Thr	Thr 500		Thr	ser	Ile	Pro 505		Ala	Ala	His	Leu 510	Ala	Ala
25	Ser	Pro	Pro 515		Leu	Ala	Leu	Leu 520		Gly	Ala	Met	Leu 525	Leu	Leu	Leu
	Ala	Pro 530	Thr	Leu	Tyr							•				
	(2) INFO															
30	(i)	(A (B	UENC) LE) TY) TO	NGTH PE:	: 54 amin	o ac	ino id	s: acid	s							
	(xi)	SEÇ	UENC	E DE	SCRI	PTIC	n: s	EQ I	D NC	:11:						
35	Met 1	: Glr	Gly	Asp	Trp 5	Val	Leu	Lev	Leu	Leu 10	Leu	Gly	Leu	Arg	Ile 15	His
	Leu	ı _. Ser	Phe	Gly 20	val	. Ile	Pro	val	. Glu 25	ı Glu	Glu	l Asn	Pro	Val 30	. Phe	Trp
40	Ası	n Glr	Lys	. Ala	Lys	s Glu	ı Ala	Let	ı As <u>ı</u>	val	. Ala	Lys	Lys 45	Leu	Gln	Pro

	Ile	6 Gl 50	Thr	: Ser	: Ala	a Lys	Asn 55	l Let	ılle	e Leu	Phe	Leu 60	ı Gly	/ Asp	Gly	Met
5	Gly 65	Va]	l Pro	Thr	Val	70	Ala	Thr	: Arg	, Ile	Leu 75	Lys	Gly	Gln	Leu	Gly 80
	Gly	His	Leu	Gly	Pro 85	Glu	Thr	Pro	Leu	Ala 90	Met	Asp	His	Phe	Pro 95	Phe
10	Thr	Ala	Leu	Ser 100	Lys	Thr	туг	Asn	Val 105	Asp	Arg	Gln	Val	Pro 110	Asp	ser
15	Ala	Gly	Thr 115	Ala	Thr	Ala	Tyr	Leu 120	Сув	Gly	Val	Lys	Ala 125	Asn	Tyr	Lys
	Thr	Ile 130	Gly	Val	Ser	Ala	Ala 135	Ala	Arg	Phe	Asn	Gln 140	Cys	Asn	Ser	Thr
20	Phe 145	Gly	Asn	Glu	Val	Phe 150	Ser	Val	Met	His	Arg 155	Ala	Lys	Lys	Ala	Gly 160
	Lys	Ser	Val	Gly	Val 165	Val	Thr	Thr	Thr	Arg 170	Val	Gln	His	Ala	ser 175	Pro
25	Ala	Gly	Thr	Туг 180	Ala	His	Thr	Val	Asn 185	Arg	Asp	Trp	Tyr	ser 190	Ąsp	Ala
	Asp	Met	Pro 195	Ser	ser	Ala	Leu	Gln 200	Glu	Gly	Сув	Lys	Asp 205	Ile	Ala	Thr
30	Gln	Leu 210	Ile	Ser	Asn	Met	Asp 215	Ile	Asp	Val	Ile	Leu 220	Gly	Gly	Gly	Arg
	Lys 225	Phe	Met	Phe	Pro	Lys 230	Gly	Thr	Pro	Asp	Pro 235	Glu	Tyr	Pro	Gly	Asp 240
35	Ser	Asp	Gln	ser	Gly 245	Val	Arg	Leu	Asp	ser 250	Arg .	Asn	Leu	Val	Glu 255	Glu
10	Trp	Leu	Ala	Lys 260	Tyr	Gln	Gly	Thr	Arg 265	Tyr	Val '	Trp	Asn	Arg 270	Glu	Gln .

	Leu	Met	Gln 275	Ala	Ser	Gln	Asp	Pro 280	Ala	Val	Thr	Arg	Leu 285	Met	Gly	Leu
5	Phe	Glu 290	Pro	Thr	Glu	Met	Lys 295	Tyr	Asp	Val	Asn	Arg 300	Asn	Ala	Ser	Ala
	Asp 305	Pro	ser	Leu	Ala	Glu 310	Met	Thr	Glu	Val	Ala 315	Val	Arg	Leu	Leu	Ser 320
10	Arg	Asn	Pro	Gln	Gly 325	Phe	Tyr	Leu	Phe	Val 330	Glu	Gly	Gly	Arg	Ile 335	Asp
	Gln	Gly	His	His 340	Ala	Gly	Thr	Ala	Tyr 345	Leu	Ala	Leu	Thr	Glu 350	Ala	Val
15	Met	Phe	Asp 355	ser	Ala	Ile	Glu	Lys 360	Ala	ser	Gln	Leu	Thr 365	Asn	Glu	Lys
	Asp	Thr 370	Leu	Thr	Leu	Ile	Thr 375	Ala	Asp	His	Ser	His 380	Val	Phe	Ala	Phe
20	Gly	Gly	Tyr	Thr	Leu	Arg	Gly	Thr	Ser	Ile	Phe	Gly	Leu	Ala	Pro	Leu
	385		_			39Ō					395	_	Tyr			400
25	ASII	nia	GIM	zap	405	цуs	Ser	+3-		410	110	Deu	1,1	GLY	415	QL)
	Pro	Gly	Tyr	Val 420	Leu	Asn	Ser	Gly	Asn 425	Arg	Pro	Asn	Val	Thr 430	Asp	Ala
30	Glu	ser	Gly 435	Asp	Val	Asn	Tyr	Lys 440	Gln	Gln	Ala	Ala	Val 445	Pro	Leu	ser
	Ser	Glu 450		His	Gly	Gly	Glu 455		Val	Ala	Ile	Phe 460	Ala	Arg	Gly	Pro
35	Gln 465		His	Leu	Val	His 470		Val	Gln	Glu	Gln 475		Tyr	Ile	Ala	His 480
	Val	Met	Ala	Phe	Ala 485		Сув	Leu	Glu	Pro 490		Thr	Asp	Cys	Gly 495	
40	Ala	Pro	Pro	Ala		Glu	Asn	Arg	Pro		Thr	Pro	Val	Gln 510		Ser

	Al	a Il	e Th. 51	r Me 5	t As	in As	n Va	l Le 52	u Le 0	u Se	r Le	u Gl	n Le 52	u Le 5	u Va	l Ser
	Me	t Le 53	u Le 0	u Le	u Va	l Gl	y Th 53	r Al 5	a Le	u Va	l Va	1 Se: 54				
(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO:1	2:								
	(i)	(. ()	A) L B) T	engt: Ype:	H: 5	CTER: 59 an no ao line	nino	CS: aci	ds							
	(xi)	SE	QUEN	CE DI	ESCR	IPTIC	ON: S	SEQ :	ID NO	:12	:					
	Met 1	Gl:	n Gly	y Pro	Tr _j 5	p Val	L Let	ı Leı	ı Let	1 Let 10	ı Gly	/ Let	ı Arç	j Lev	Glr 15	l Leu
	Ser	: Leı	ı Sei	va] 20	Ile	e Pro	Val	l Glu	Glu 25	ı Glu	l Ası	Pro	Ala	Phe 30	Trp) Asn
	Lys	Lys	Ala 35	. Ala	Glu	ı Ala	Leu	Asp 40	Ala	Ala	Lys	Lys	Leu 45	Gln	Pro	Ile
	Gln	Thr 50	Ser	' Ala	Lys	Asn	Leu 55	Ile	Ile	Phe	Leu	Gly 60	Asp	Gly	Met	Gly
	Val 65	Pro	Thr	Val	Thr	Ala 70	Thr	Arg	Ile	Leu	Lys 75	Gly	Gln	Leu	Glu	Gly 80
	His	Leu	Gly	Pro	Glu 85	Thr	Pro	Leu	Ala	Met 90	Asp	Arg	Phe	Pro	Tyr 95	Met
	Ala	Leu	Ser	Lys 100	Thr	Tyr	ser	Val	Asp 105	Arg	Gln	Val _.	Pro	Asp 110	Ser	Ala
	ser	Thr	Ala 115	Thr	Ala	Tyr	Leu	Cys 120	Gly	Val	Lys	Thr	Asn 125	Tyr	Lys	Thr
	Ile	Gly 130	Leu	Ser	Ala	Ala	Ala 135	Arg	Phe	Asp	Gln	Cys 140	Asn	Thr	Thr	Phe
•	Gly 145	Asn	Glu	Val	Phe	ser 150	Val	Met	Tyr	Arg	Ala 155	Lys	Lys	Aļa	Gly	Lys 160

36

	Ser	Val	Gly	Val	Val 165	Thr	Thr	Thr	Arg	Val 170	Gln	His	Ala	ser	Pro 175	Ser
5	Gly	Thr	Tyr	Val 180	His	Thr	Val	Asn	Arg 185	Asn	Trp	Tyr	Gly	Asp 190	Ala	Asp
	Met	Pro	Ala 195	ser	Ala	Leu	Arg	Glu 200	Gly	Cys	Lys	Asp	Ile 205	Ala	Thr	Gl n
10	Leu	Ile 210	ser	Asn	Met	Asp	Ile 215	Asn	Val	Ile	Leu	Gly 220	Gly	Gly	Arg	Lys
	Tyr 225	Met	Phe	Pro	Ala	Gly 230	Thr	Pro	Asp	Pro	Glu 235	Tyr	Pro	Asn	Asp	Ala 240
15	Asn	Glu	Thr	Gly	Thr 245	Arg	Leu	Asp	Gly	Arg 250	Asn	Leu	Val	Gln	Glu 255	Trp
20	Leu	Ser	Lys	His 260	Gln	Gly	ser	Gln	туr 265	Val	Trp	Asn	Arg	Glu 270	Gln	Leu
	Ile	Gln	Lys 275	Ala	Gln	Asp	Pro	Ser 280	Val	Thr	Tyr	Leu	Met 285	Gly	Leu	Phe
25	Glu	Pro 290	Val	Asp	Thr	Lys	Phe 295	Asp	Ile	Gln	Arg	Asp 300	Pro	Leu	Met	Asp
	Pro 305	ser	Leu	Lys	Asp	Met 310	Thr	Glu	Thr	Ala	Val 315	Lys	Val	Leu	ser	Arg 320
30	Asn	Pro	Lys	Gly	Phe 325	Tyr	Leu	Phe	Val	Glu 330	Gly	Gly	Arg	Ile	Asp 335	Arg
	Gly	His	His	Leu 340	Gly	Thr	Ala	Tyr	Leu 345	Ala	Leu	Thr	Glu	Ala 350	Val	Met
35	Phe	Asp	Leu 355	Ala	Ile	Glu	Arg	Ala 360	Ser	Gln	Leu	Thr	ser 365	Glu	Arg	Asp
	Thr	Leu 370	Thr	Ile	Val	Thr	Ala 375	Asp	His	Ser	His	Val 380	Phe	Ser	Phe	Gly
40						_										

	3	31y 885	Tyr	Thr	Leu	Arg	Gly 390	Thr	Ser	Ile	Phe	Gly 395	Leu	Ala	Pro	Leu	Asn 400
	2	la	Leu	Asp	Gly	Lys 405	Pro	Tyr	Thr	Ser	Ile 410	Leu	Tyr	Gly	Asn	Gly 415	Pro
5																	
	G	ly	Tyr	Val	Gly 420	Gly	Thr	Gly	Glu	Arg 425	Pro	Asn	Val	Thr	Ala 430	Ala	Glu
10	s	er	Ser	Gly 435	Ser	Ser	Tyr	Arg	Arg 440	Gln	Ala	Ala	Val	Pro 445	Val	Lys	ser
	G	lu	Thr 450	His	Gly	Gly	Glu	Asp 455	Val	Ala	Ile	Phe	Ala 460	Arg	Gly	Pro	Gln
15	A 4	la 165	His	Leu	Val	His	Gly 470	Val	Gln	Glu	Gln	Asn 475	Tyr	Ile	Ala	His	Val 480
	M	let	Ala	Ser	Ala	Gly 485	Сув	Leu	Glu	Pro	Tyr 490	Thr	Asp	Cys	Gly	Leu 495	Ala
20	P	ro	Pro	Ala	Asp 500	Glu	Ser	Gln	Thr	Thr 505	Thr	Thr	Thr	Arg	Gln 510	Thr	Thr
	r	le	Thr	Thr 515	Thr	Thr	Thr	Thr	Thr 520	Thr	Thr	Thr		Thr 525	Pro	Val	His
25																	
	A	.sn	Ser 530	Ala	Arg	Ser	Leu	Gly 535	Pro	Ala	Thr	Ala	Pro 540	Leu	Ala	Leu	Ala
30	L 5	eu 45	Leu	Ala	Gly	Met	Leu 550	Met	Leu	Leu	Leu	Gly 555	Ala	Pro	Ala	Glu	
	(2) IN	FOF	LTAM	ON E	OR S	EQ]	D NO	0:13:	}								
35			SEQU (A) (B)	JENCE	CHI IGTH: PE: 8	RACI 528	TERIS 3 ami 5 aci	STICS ino a	S:	3							
	(x	i)	SEQU	ENCE	DES	CRIE	PTION	N: SE	Q II	NO:	13:						
	M 1	et	Gln	Gly	Pro	Trp 5	Val	Leu	Leu	Leu	Leu 10	Gly	Leu	Arg	Leu	Gln 15	Leu
40	S	er	Leu	Gly	Val 20	Ile	Pro	Ala	Glu	Glu 25	Glu	Asn	Pro	Ala	Phe 30	Trp	Asn

	Arg	Gln	Ala 35	Ala	Glu	Ala	Leu	Asp 40	Ala	Ala	Lys	Lys	Leu 45	Gln	Pro	Ile
5	Gln	Lys 50	Val	Ala	Lys	Asn	Leu 55	Ile	Leu	Phe	Leu	Gly 60	Asp	Gly	Leu	Gly
	Val 65	Pro	Thr	Val	Thr	Ala 70	Thr	Arg	Ile	Leu	Lys 75	Gly	Gln	Lys	Asn	Gly 80
10	Lys	Leu	Gly	Pro	Glu 85	Thr	Pro	Leu	Ala	Met 90	Asp	Arg	Phe	Pro	Tyr 95	Leu
15	Ala	Leu	Ser	Lys 100	Thr	Tyr	Asn	Val	Asp 105	Arg	Gln	Val	Pro	Asp 110	Ser	Ala
15	Ala	Thr	Ala 115	Thr	Ala	Tyr	Leu	Cys 120	Gly	Val	Lys	Ala	Asn 125	Phe	Gln	Thr
20	Ile	Gly 130	Leu	ser	Ala	Ala	Ala 135	Arg	Phe	Asn	Gln	Cys 140	Asn	Thr	Thr	Arg
	Gly 145	Asn	Glu	Val	Ile	ser 150	Val	Met	Asn	Arg	Ala 155	Lys	Gln	Ala	Gly	Lys 160
25	Ser	Val	Gly	Val	Val 165	Thr	Thr	Thr	Arg	Val 170	Gln	His	Ala	Ser	Pro 175	Ala
	Gly	Thr	Tyr	Ala 180	His	Thr	Val	Asn	Arg 185	Asn	Trp	Tyr	Ser	Asp 190	Ala	Asp
30	Met	Pro	Ala 195	Ser	Ala	Arg	Gln	Glu 200	Gly	Cys	Gln	Asp	Ile 205	Ala	Thr	Gln
35	Leu	Ile 210	Ser	Asn	Met	Asp	Ile 215	Asp	Val	Ile	Leu	Gly 220	Gly	Gly	Arg	Lys
	Tyr 225	Met	Phe	Pro	Met	Gly 230	Thr	Pro	Asp	Pro	Glu 235	Tyr	Pro	Ala	Asp	Ala 240
	ser	Gln	Asn	Gly	Ile 245	Arg	Leu	Asp	Gly	Lys 250	Asn	Leu	Val	Gln	Glu 255	Trp
40																

	Le	u Al	la Ly	's Hi 26	s Gl: O	n Gl	y Al	a Tr _l	26	r Va 5	l Trį	p As:	n Ar	g Thi 27	r Gl	u Leu
5	Me	t Gl	u Al 27	a Se: 5	r Leı	ı Ası	9 Glı	n Sei 280	. Va.	l Thi	r His	3 Let	u Met 285	t Gly	, Te	u Phe
	Gl	u Pr 29	o Gly	y Asl	T hi	Lys	295	Glu S	ı Ile	e His	a Arg	J Asp 300	Pro	Thr	: Le	u Asp
10	Pro 30!	o Se 5	r Lei	u Met	: Glu	Met 310	: Thr	Glu	Ala	Ala	Leu 315	Arg	, Leu	Leu	Sei	Arg 320
	Ası	n Pr	o Ar	g Gly	7 Phe 325	Tyr	Leu	Phe	Val	. Glu 330	Gly	Gly	' Arg	Ile	Asp 335	His
15	Gly	7 His	s His	340	Gly	Val	Ala	Tyr	Gln 345	Ala	Leu	Thr	Glu	Ala 350	Val	. Met
20	Phe	Ası	Asp 355	Ala	Ile	Glu	Arg	Ala 360	Gly	Gln	Leu	Thr	Ser 365	Glu	Glu	Asp
	Thr	1 Leu 370	Thr	Leu	Val	Thr	Ala 375	Asp	His	Ser	His	Val 380	Phe	ser	Phe	Gly
25			Thr			550					395					400
	Ala	Gln	Asp	Ser	Lys 405	Ala	Tyr	Thr	Ser	Thr 410	Leu	Tyr	Gly	Asn	Gly 415	Pro
30	Gly	Tyr	Val	Phe 420	Asn	ser	Gly	Val	Arg 425	Pro	Asp	Val	Asn	Glu 430	Ser	Glu
	Ser	Gly	Ser 435	Pro	Asp	Tyr	Gln	Gln 440	Gln	Ala	Ala		Pro 445	Leu	Ser	Ser
35	Glu	Thr 450	His	Gly	Gly	Glu .	Asp 455	Val .	Ala	Val	Phe .	Ala 460	Arg	Gly :	Pro	Gln
	Ala 465	His	Leu	Val	His ·	Gly 470	Val •	Gln (Glu (Gln :	Ser 1 475	Phe '	Val :	Ala	His	Val 480
10	Met	Ala	Phe	Ala .	Ala 485	Cys :	Leu (Glu 1	Pro !	Tyr 9	Thr 1	Ala	Cys :		Leu 195	Ala

40

Pro Pro Ala Cys Thr Thr Asp Ala Ala His Pro Val Ala Ala Ser Leu 500 505 510

5 Pro Leu Leu Ala Gly Thr Leu Leu Leu Gly Ala Ser Ala Ala Pro 515 520 525

I claim:

- 1. An isolated nucleic acid comprising a nucleotide sequence encoding a substantially purified calf intestinal alkaline phosphatase or an active fragment thereof.
- 2. The isolated nucleic acid of claim 1 having a nucleotide sequence substantially the same as the nucleotide sequence of Figure 1.
 - 3. The isolated nucleic acid of claim 1, wherein said nucleic acid is cDNA.
- 4. The isolated nucleic acid of claim 1, wherein said nucleic acid is RNA.
 - 5. The isolated nucleic acid of claim 1, further comprising a second nucleotide sequence encoding a polypeptide having specific reactivity with a ligand.
- 6. A vector comprising the nucleic acid of claim 1.
 - 7. The vector of claim 6, wherein said vector is a plasmid.
- 8. A recombinant host cell comprising the vector of claim 6.
 - 9. A recombinant polypeptide produced by the recombinant host cell of claim 8.

25

- 10. A method of obtaining recombinant calf intestinal alkaline phosphatase or an active fragment thereof, comprising culturing said recombinant host cell of claim 8 and isolating said calf intestinal alkaline phosphatase or active fragment thereof from said culture.
 - 11. A cell culture comprising the recombinant host cell of claim 8 cultured in a suitable medium.
- 12. A nucleic acid probe comprising a nucleotide sequence complementary to a portion of a nucleotide 10 sequence specific to calf intestinal alkaline phosphatase.
- 13. A multifunctional polypeptide comprising an amino acid sequence of calf intestinal alkaline phosphatase or an active fragment thereof and a second amino acid sequence of a reagent having specific reactivity with a desired ligand.
 - 14. The multifunctional polypeptide of claim 13, wherein said reagent encoded by the second amino acid sequence is an antibody.
- 15. A method for determining the presence of a 20 ligand in a sample, comprising:
 - (a) contacting said sample with a substantially purified calf intestinal alkaline phosphatase and a reagent that specifically binds to said ligand, said reagent attached to said recombinant calf intestinal alkaline phosphatase;
 - (b) contacting said sample with a detectable substrate catalyzed by the recombinant polypeptide; and
- (c) detecting the binding of said sample to the reagent, wherein binding indicates the presence of said 30 ligand in the sample.

- 16. The method of claim 15, further comprising the step of (d) determining an amount of binding of said sample to the reagent, wherein the amount of binding relates to the concentration of said ligand in the sample.
- 5 17. The method of claim 15, wherein said reagent is an anti-ligand antibody.
 - 18. The method of claim 15, wherein said reagent and recombinant calf IAP or active fragment thereof are attached as a multifunctional polypeptide.
- 19. The method of claim 15, wherein said reagent is an oligonucleotide.
 - 20. The method of claim 19, wherein said ligand is a cDNA or genomic DNA fragment.

AMENDED CLAIMS

[received by the International Bureau on 9 July 1993 (09.07.93); original claims 1-20 replaced by amended claims 1-25 (4 pages)]

- 1. An isolated nucleic acid comprising:
- (a) the nucleotide sequence shown in Figure 1 encoding calf intestinal alkaline phosphatase;
- (b) substantially the same nucleotide sequence as the sequence shown in Figure 1, encoding calf intestinal alkaline phosphatase; or
- (c) a nucleotide sequence encoding an active fragment of a calf intestinal alkaline phosphatase encoded by a portion of a nucleotide sequence of (a) or 10 (b).
 - 2. The isolated nucleic acid of claim 1, wherein the nucleotide sequence is the coding sequence shown in Figure 1.
- 3. An isolated nucleic acid sequence,
 15 comprising a nucleotide sequence encoding the amino acid
 sequence of calf intestinal alkaline phosphatase of
 Figure 1.
 - 4. The nucleic acid of claim 1 wherein the nucleic acid is cDNA.
- 5. An isolated RNA molecule encoding the amino acid sequence of calf intestinal alkaline phosphatase of Figure 1, or an active fragment of the calf intestinal alkaline phosphatase of Figure 1.
- 6. The isolated nucleic acid of claim 1,
 25 further comprising a second nucleotide sequence encoding a polypeptide having specific reactivity with a ligand.
 - 7. A vector comprising the isolated nucleic acid of claim 1.

- 8. The vector of claim 7, wherein the vector is a plasmid.
- 9. A host cell comprising the vector of claim7.
- 5 10. A recombinant polypeptide produced by the host cell of claim 9.
- A method of obtaining recombinant calf intestinal alkaline phosphatase or an active fragment thereof, comprising culturing the host cell of claim 9
 and isolating the calf intestinal alkaline phosphatase or active fragment thereof from the culture.
 - 12. A cell culture comprising the host cell of claim 9 and a suitable medium.
- 13. A nucleic acid probe comprising a

 15 nucleotide sequence complementary to a portion of the
 nucleotide sequence of the coding region of the sequence
 shown in Figure 1.
- 14. A composition comprising recombinant calf intestinal alkaline phosphatase or an active fragment20 thereof attached to a reagent specifically reactive to a ligand to be detected.
- 15. The composition of claim 14, wherein the alkaline phosphatase or an active fragment thereof attached to a reagent comprises a multifunctional polypeptide.
 - 16. The composition of claim 14, wherein the alkaline phosphatase or an active fragment thereof is chemically coupled to the reagent.

- 17. The composition of any of claims 14-16, wherein the reagent comprises an antibody or a reactive fragment thereof.
- 18. The composition of claim 17, wherein the 5 reagent has specific reactivity with a cancer marker, allergen or drug.
 - 19. The composition of claim 17, wherein the reagent has specific reactivity with a nucleic acid.
- 20. A method for determining the presence of a 10 ligand in a sample, comprising:
- (a) contacting the sample with recombinant calf intestinal alkaline phosphatase or an active fragment thereof, wherein the recombinant calf intestinal alkaline phosphatase or an active fragment is attached to
 15 a reagent specifically reactive with said ligand;
 - (b) contacting the sample with a detectable agent catalyzed by calf intestinal alkaline phosphatase; and
- (c) detecting the binding of the sample to the 20 reagent, wherein binding indicates the presence of said ligand in the sample.
 - 21. The method of claim 20, further comprising the step of:
- (d) relating the amount of binding to the 25 concentration of the ligand.
 - 22. The method of claim 20, wherein the reagent is an anti-ligand antibody.
- 23. The method of claim 20, wherein the reagent and recombinant calf intestinal alkaline
 30 phosphatase or active fragment thereof are attached as a multifunctional polypeptide.

- 24. The method of claim 20, wherein the reagent specifically reacts with an oligonucleotide.
- 25. The method of claim 24, wherein the reagent specifically reacts with a cDNA or genomic DNA fragment.

48

STATEMENT UNDER ARTICLE 19

Amended claims 1-3 and 5 find support on page 5.

Amended claim 13 finds support on page 8, lines 25-33.

Amended claims 14-18 find support on page 8, lines 8-9 and 20-23, page 9, lines 22-25, and page 10, lines 15-22. Amended claims 20 and 21 find support on page 9, lines 11-34.

Other amendments, such as replacing "said" with -- the--, are clerical in nature.

1/11 FIGURE 1A AAGCTTTCAC CTTCTCTGAA AACAGAGAGA CAGTCCTCAG CCCCAGTCCT CACCCTTCCT 60 ACCTCCCTGC CTGATGCCCA GGCAATCATC TGGTGGCGTG TCACCTCCCT CTGTCCCATG 120. AGTTCCACTA GATGTGGCCC TCAAGAAAAA GGGCTTCCCT GTTGGCTCAG CTGGTAAAGA 180 ATCCTCCAGC AATGTAGGAG ACCTGGGTTC GATCCCTGGG TTGGGAGGAT ACCCTGGAGA 240 AGGGAATGGC TACCCACTCC AGTATTCTTG CCTGGATAAT CCCATGGACA GAGGAGTCTG 300 GCAGGCTGCA GACCATAAGG TAGAAAGAGT CAGACATGAC TGAGCAACTA AGCACAATAT 360 TCCACTGGAT ATATCATACT TTGTTCATCC ATTTGTCTGC TGTGGATGGT TGAGTGGCTT 420 GTGCCTCTTG GCTACTGTGA GTAATGCTAC TAAAATGTGA GTGTGCAAAT ACCTCTTATA 480 GATCTTGATT TCAATTATTG GGGATACACA CCCAGAAGGC GGATTGTTGG ATGTGAGAAT 540 GCCTTTTTGA ACCCCAACCT GGGGTTACTG AAACCCTAGC TCCTTATCAG AAGCTGTTCC 600 TGTGAGTGTG TGTGGCCTGT GGAGAGAAGA GACTCACCTC TGCCTTCCAT TTACCTCTCC 660 AATGGAGCAG AGGTTGCAAA CTTCAGTTAA TGGGCACTGG GCCCACGCCT GTCGACCCGT 720 TACAGGCACC TTACACACAC ACACACACA ACACACACA ACAAACAGCA CTGCAGACCC 780 AGCTCTTCAG TAACTGAAGA CACAGACAAG GCCCCCGCTC TGCTGTCACC TCCAGTCCCA 840 TCCTTCTCCA CAGCAGAAGC TGGGCCCAGG CTCCCATGTG CCCCACTAG CCCAGTGCCC 900 ACACCTCCTG CCCAGGTCAA GTCTGGTGAG GAGCTGAGCA GGGGGCAGGG CAGACAGGCC 960 TCCCCGTGGA TCTCTGTCTC AGGGCGCCAG GGAACTAACC CAGGCCCCTG GCCAGGCTGT 1020 GTCCCTAAGC ACTGGGAACC AAACCAGGCC AAGGCTGAGT CTCAGAAAAC ACTGAACACG 1080 TGAAGGAAGG AGAGATGGTT CTCCCACAGG ACTTGGTGAG CAGAGGGCTG GGAGGAGCCT 1140 1200 CCCTGAGGAG ACAGCTGGGA CCATCCTGGG AGGGAGGGAC CTGAATCCTC AGGACCCCTA 1260 CTGCTAAGCC ACACCCACCA CATGCCCCTG GCAACAGGGC TCAAAGTCAT AGGGCAGGTG 1320 AGGGGCAGGG TGTGGCCACC CGGGGAACCT GGGATGGACA AGGAGACTTT AATAGCAGGG 1380 ACAAAGTCTA TCTAGATTTA AGCCCAGCAG GCCAAGCTGC AGCCGGTCCC TGGTGTCCCA 1440 GCCTTGCCCT GAGACCCGGC CTCCCCAGGT CCCATCCTGA CCCTCTGCCA TCACACAGCC 1500 ATG CAG GGG GCC TGC GTG CTG CTG CTG GGC CTG CAT CTA CAG CTC Met Gln Gly Ala Cys Val Leu Leu Leu Gly Leu His Leu Gln Leu 1548 TCC CTA GGC CTC GTC CCA G GTAATCAGGC GGCTCCCAGC AGCCCCTACT Ser Leu Gly Leu Val Pro 1597 CACAGGGGCG GCTCTAGGCT GACCTGACCA ACACTCTCCC CTTGGGCAG TT GAG 1651 Val Glu GAG GAA GAC CCC GCC TTC TGG AAC CGC CAG GCA GCC CAG GCC CTC GAT Glu Glu Asp Pro Ala Phe Trp Asn Arg Gln Ala Ala Gln Ala Leu Asp 1699

Figure 1B 2/// GTG GCT AAG AAG CTG CAG CCC ATC CAG ACA GCC GCC AAG AAT GTC ATC Val Ala Lys Lys Leu Gln Pro Ile Gln Thr Ala Ala Lys Asn Val Ile 1747 CTC TTC TTG GGG GAT G GTGAGTACAT GAGGCCAGCC CACCCCCTGT 1793 Leu Phe Leu Gly Asp CCCCTGACAG GCCTGGAACC CTGTGATGCC GGCTGACCCA GGTTGGCCCC AGAAACTCGG 1853 ACCTGAGACA CTGTGTACCT TCAG GG ATG GGG GTG CCT ACG GTG ACA GCC 1903 Gly Met Gly Val Pro Thr Val Thr Ala ACT CGG ATC CTA AAG GGG CAG ATG AAT GGC AAA CTG GGA CCT GAG ACA 1951 Thr Arg Ile Leu Lys Gly Gln Met Asn Gly Lys Leu Gly Pro Glu Thr 80 CCC CTG GCC ATG GAC CAG TTC CCA TAC GTG GCT CTG TCC AAG Pro Leu Ala Met Asp Gln Phe Pro Tyr Val Ala Leu Ser Lys 1993 GTAAGGCCAA GTGGCCTCAG GGTGGTCTAC ACCAGAGGGG TGGGTGTGGG CCTAGGGAGC 2053 AGGGTAGGAG GGAAACCCAG GAGGGCTAGG GGCTGAGATA GGGGCTGGGG GCTGTGAGGA TGGGCCCAGG GCTGGGTCAG GAGCTGGGTG TCTACCCAGC AGAGCGTAAG GCATCTCTGT 2173 CCCAG ACA TAC AAC GTG GAC AGA CAG GTG CCA GAC AGC GCA GGC ACT 2220 Thr Tyr Asn Val Asp Arg Gln Val Pro Asp Ser Ala Gly Thr GCC ACT GCC TAC CTG TGT GGG GTC AAG GGC AAC TAC AGA ACC ATT GGT Ala Thr Ala Tyr Leu Cys Gly Val Lys Gly Asn Tyr Arg Thr Ile Gly 2268 120 125 GTA AGT GCA GCC GCC TAC AAC CAG TGC AAA ACG ACA CGT GGG AAT Val ser Ala Ala Ala Arg Tyr Asn Gln Cys Lys Thr Thr Arg Gly Asn 2316 140 GAG GTC ACG TCT GTG ATG AAC CGG GCC AAG AAA GCA G GTGGGCTTGG Glu Val Thr Ser Val Met Asn Arg Ala Lys Lys Ala 2363 155 GCGTCAGCTT CCTGGGCAGG GACGGGCTCA GAGACCTCAG TGGCCCACCG TGACCTCTGC 2423 CACCCTCAG GG AAG TCC GTG GGA GTG GTG ACC ACC ACC AGG GTG CAG Gly Lys Ser Val Gly Val Val Thr Thr Thr Arg Val Gln 2470 CAT GCC TCC CCA GCC GGG GCC TAC GCG CAC ACG GTG AAC CGA AAC TGG His Ala Ser Pro Ala Gly Ala Tyr Ala His Thr Val Asn Arg Asn Trp 2518 180 TAC TCA GAC GCC GAC CTG CCT GCT GAT GCA CAG ATG AAT GGC TGC CAG Tyr Ser Asp Ala Asp Leu Pro Ala Asp Ala Gln Met Asn Gly Cys Gln 2566 195 GAC ATC GCC GCA CAG CTG GTC AAC AAC ATG GAT ATT GAC GTGCGACATG Asp Ile Ala Ala Gln Leu Val Asn Asn Met Asp Ile Asp 2615 205 210 TTGGGCACAG GGCGGGCTG GGCACAGGTG GTGGGGCACA CTCGCAACAC AGTCGTAGGT 2675 AACCTCCAGC CTGCGGTGTT TCAGGGTTTT CATGGGTTTG TGTGTGTGT TATGTGTGGT 2735 GGGGTGGCAC CATGTAGGAG GTGGGGACAG GCCTTTCCCA CAGACCTGGT GGGGGAGGTA 2795

Figure 1c 3///

Figure 1c 3///	·
GGGGCTGTGT GAGAGGAGTA AAGGGCCAGC CAGGCCCCTA ACCCACCTGC CTAACTCTCT	2855
GGCTCCAG GTG ATC CTG GGT GGA GGC CGA AAA TAC ATG TTT CCT GTG GGG Val lle Leu Gly Gly Gly Arg Lys Tyr Met Phe Pro Val Gly 220 225 230	2905
ACC CCA GAC CCT GAA TAC CCA GAT GAT GCC AGT GTG AAT GGA GTC CGG Thr Pro Asp Pro Glu Tyr Pro Asp Asp Ala Ser Val Asn Gly Val Arg 235 240 245	2953
AAG CGA AAG CAG AAC CTG GTG CAG GCA TGG CAG GCC AAG CAC CAG Lys Arg Lys Gln Asn Leu Val Gln Ala Trp Gln Ala Lys His Gln 250 260	2998
GTAATGGGGG CTCACGGATG TGGGGGTACA GTGGGGCTGG GCCTGGGGTG TCGGCTATGG	3058
CTGAGGCCTG GTTCTGCCCT CCCAG GGA GCC CAG TAT GTG TGG AAC CGC ACT Gly Ala Gln Tyr Val Trp Asn Arg Thr 265	3110
GCG CTC CTT CAG GCG GCC GAT GAC TCC AGT GTA ACA CAC CTC ATG Ala Leu Leu Gln Ala Ala Asp Asp Ser Ser Val Thr His Leu Met 275	3156
GTAACGACTC CACCCACCCT CACTGTCCTC CCCAGGAATG GGTGCCATGG GCCACCCCTG	3216
TCCTCAGCTT GAGGGTCACC ACTGCTCCCC TTTCCCACAG GC CTC TTT GAG CCG Gly Leu Phe Glu Pro 290	3270
GCA GAC ATG AAG TAT AAT GTT CAG CAA GAC CAC ACC AAG GAC CCG ACC Ala Asp Met Lys Tyr Asn Val Gln Gln Asp His Thr Lys Asp Pro Thr 295 300 305	3318
CTG CAG GAA ATG ACA GAG GTG GCC CTG CGA GTC GTA AGC AGG AAC CCC Leu Gln Glu Met Thr Glu Val Ala Leu Arg Val Val Ser Arg Asn Pro 310 315 320	3366
AGG GGC TTC TAC CTC TTT GTG GAG G GTGAGTGGCA GCCCCTTGGT Arg Gly Phe Tyr Leu Phe Val Glu 325 330	3411
GAACAGAGGT GTGATGAGGG CCATCAGGGT GGGTTTGGTA TCTTATATGT GACTTATCTG	3471
CAG GA GGC CGC ATT GAC CAC GGT CAC CAT GAT GAC AAA GCT TAT ATG Gly Gly Arg Ile Asp His Gly His His Asp Asp Lys Ala Tyr Met 335 340 345	3518
GCA CTG ACC GAG GCG GGT ATG TTT GAC AAT GCC ATC GCC AAG GCT AAT Ala Leu Thr Glu Ala Gly Met Phe Asp Asn Ala Ile Ala Lys Ala Asn 350 360	3566
GAG CTC ACT AGC GAA CTG GAC ACG CTG ATC CTT GTC ACT GCA GAC CAC Glu Leu Thr Ser Glu Leu Asp Thr Leu Ile Leu Val Thr Ala Asp His 365 370 375	3614
TCT CAT GTC TTC TCT TTT GGT GGC TAT ACA CTG CGT GGG ACC TCC ATT Ser His Val Phe Ser Phe Gly Gly Tyr Thr Leu Arg Gly Thr Ser Ile 380 385 390	3662
TTT G GTAAGCCCAG GGAGAGTGGC AGGTCGTTGC CCCTAAGTTA CGAGGCACAA	3716
CTCGTCTGAG CCAGTTCCTC TATCTGTCTA GTGGGGTAGT ACAGCACACT GCCTGCTACG	
CTCTGGTGAG GATTGTCACT GACAGACAGA CTGGCCATGG CTCTGCACAC AGGGGAGCAC	3776
OF CHURCACAC AGGGGAGCAC	3836

Figure 1D 4///	
AMECTAGGTC AGTGTGATCA CGGGGTCCCC TCTTCCCTGA AG GT CTG GCC CCC Gly Leu Ala Pro 395	3889
AGC AAG GCC TTA GAC AGC AAG TCC TAC ACC TCC ATC CTC TAT GGC AAT Ser Lys Ala Leu Asp ser Lys Ser Tyr Thr ser Ile Leu Tyr Gly Asn 400 405	3937
GEC CCA GGC TAT GCG CTT GGC GGG GGC TCG AGG CCC GAT GTT AAT GAC Gly Pro Gly Tyr Ala Leu Gly Gly Gly Ser Arg Pro Asp Val Asn Asp 420 425 430	3985
AGC ACA AGC G GTAAGTGTAG TAGGTGGGGC GCTGGGAGGT GGGGACCCTG Ser Thr ser	4035
GCCAGAAATT GTGGGGAGGG GAAGGCTGCC TCCCTTGTCA CATTAACTTC CCTTCTTCTG	4095
GCCAG AG GAC CCC TCG TAC CAG CAG GCG GCC GTG CCC CAG GCT Glu Asp Pro Ser Tyr Gln Gln Ala Ala Val Pro Gln Ala 435	4141
AGC GAG ACC CAC GGG GGC GAG GAC GTG GCG GTG TTC GCG CGC GGC CCG Ser Glu Thr His Gly Gly Glu Asp Val Ala Val Phe Ala Arg Gly Pro 450 455 460	4189
CAG GCG CAC CTG GTG CAC GGC GTC GAG GAG GAG ACC TTC GTG GCG CAC Gln Ala His Leu Val His Gly Val Glu Glu Glu Thr Phe Val Ala His 465	4237
ATC ATG GCC TTT GCG GGC TGC GTG GAG CCC TAC ACC GAC TGC AAT CTG Ile Met Ala Phe Ala Gly Cys Val Glu Pro Tyr Thr Asp Cys Asn Leu 480 480 490 495	4285
500 The Ala Thr Ser Ile Pro Asp Ala Ala His Leu Ala 500 505 510	4333
515 FO FIG	4381
CTG GCG CCC ACC TTG TAC TAACCCCCAC CAGTTCCAGG TCTCGGGATT Leu Ala Pro Thr Leu Tyr 530	4429
TCCCGCTCTC CTGCCCAAAA CCTCCCAGCT CAGGCCCTAC CGGAGCTACC ACCTCAGAGT	4489
CCCACCCG AAGTGCTATC CTACCTGCCA CTCCTGCCACA	
AGAGTTTCAC CTCCCAGCAG TGATTCACAT TGGAGGGGGGGGGG	4549
CCTTCAAGGC CCAGCCTATA CCCCAGCCTC AGGCTCTCAG	4609
CCTACTGCCC GACCCCAACT TCCCTCCCTT CCCTCCTT	4669
AGTAAGGGGG CTCGGACCAT CCACACTCCC COTTACTCCC	4729
GETGGCACGG TCCCACGGGT CCCACGGGG CCTTGCACGGG	4789
TGGACTCTGG GTTCGGAGAG TGCCTTCGGG ACCCCTGGTT TGGAGAGAG	4849
ACGTGCTCGC CTGAACCAAC CTGTGTACAC MCCGCAGGAA	4909
ACCTGACAGA GCCCTCAGCA GCCCCTCCTA CAGGAAGGTA	4969
GNEACACAGA GGAGAGGAGA CHINGTOGGAGA CANADA	5029

			Figure lE	5/11		
TCCCCTTCC	AGGCTGGGCA	TCCCAGTAGC	AGCAGGGGAC	CCGGGGGTGG	GGACACAGGC	5149
CCCGCCCTCC	CTGGGAGGCA	GGAAGCAGCT	CTCAAATAAA	CTGTTCTAAG	TATGATACAG	5209
				CAGAGTGTCT		5269
				GGGCTGACGT		5329
CCAAAGGCAA	CTCAGAAGGA	CAGTGGTGCA	GGACTGGGTG	TGGTCAGCAG	GGGGACTGGT	5389
I GGGGGATCC						5399

7/11

FIG.3A

G X I X 000 ا ا ا Y S S |>| **4** 9 1 122 1 11 11 I = I9 1-, I S ، این WI I 100 ا اف \circ \times \times 9 **9** × × × Σ \square 2 3 X 9 8 9 D A A H ZIQI

				Щ
b.IAP h.IAP r.IAP m.IAP	b.IAP h.IAP r.IAP m.IAP	b.IAP h.IAP r.IAP m.IAP	b.IAP h.IAP r.IAP m.IAP	b.IAP h.IAP r.IAP m.IAP
45 45 45 45	104 104 104 104	166 166 166 166	228 228 228 228	290 290 290 290
N R Q A A Q A L D V A K K L Q P I Q T A A K N V I L F L G D E A K V L - Q K - K E S L	PYVALSKTYNVDRQVPDSAGTATAYLCGVKJL	K A G K S V G V V T T T R V Q H A S P A G A Y A H T V N R Q	L G G G R K Y M F P V G T P D P E Y P D D A S V N G V R K A Q I - L F K G - S D Q S L A A L	V T H L M G L F E P A D M K Y N V Q Q D H T K D P T L Q E
3 1 1 1	14 1 1 1	X 1 1 1	> ; ; ;	N Q G G

-1G.3C

```
9
    @ ×
           9
9
                       9
              ı
           S
           ᆂ
                       о о с
С
```

10/11

2 b.IAP 2 h.IAP 2 r.IAP 2 m.IAP	4 b.IAP 4 h.IAP 4 r.IAP 3 m.IAP	6 b.IAP 6 h.IAP 6 r.IAP 5 m.IAP	4 b.IAP 9 h.IAP 0 r.IAP 0 m.IAP
352 352 352 352 352	411 411 411 411	476 476 476 475	514 509 520 540
			ليا
			Ø
\neg \vdash \vdash \vdash	\circ \circ \circ	<u> </u>	۵
 1 1 1	— шшш	Z A D D	A
⊢ 1 1 1	SSAA	\circ	9
	ош I A	DAII	ب
\neg \square \times \bowtie	2	⊢ 1 1 1	
LT 1 LT	>	> 1 1 1	ــا
SIZI		<u> </u>	Σ
⊢ 1 1 1	<u>α Ι Ι Ι</u>	шііі	
_	\simeq 1 1 1	>	Σ
шооо	\circ > \sim \square	0 1 1 1	9
NOON	9 1 1 1	D A 1	A
4 1 1 1	9 S S H	V	
\times \times 1 $\overset{\sim}{\sim}$	5 Z Z *	шιις	
А ШШШ	— ш і б	4	A
H 1 1 1	<>>>	ΣΙΙΙ	
V I I	>	\vdash > > >	V
Z A S J	9 1 1 1	エ । । ।	
		V	<u> </u>
H. 1 1 1	9 1 1 1	> 1	SA
Σ	2 1 1 1		> -
5 > > >	9 1 1 1	L S Z Z	> 4
V	>	шааа	
		шііі	V .
⊢ 1 1 1		П О О	<i>></i>
	S 1 1 1		- C
		9 1 1 1	F > X
>	S A 1 G	>	A P L L L S
	2111		NLAP
	N 1 9 9		I S E H
2/			

11/11

: INTERNATIONAL SEARCH REPORT

International application No. PCT/US93/02172

IPC(5)	SSIFICATION OF SUBJECT MATTER :C12N 9/16, 15/00; C12Q 1/68,1/42; A61K 39/00,		
	:435/196, 7.1, 6, 21, 172.3, 935/47, 424/85.8, 94.6 international Patent Classification (IPC) or to both		
		national classification and IPC	
	LDS SEARCHED		
Minimum d	ocumentation searched (classification system followed	d by classification symbols)	
U.S. :	435/196, 7.1, 6, 21, 172.3, 935/47, 424/85.8, 94.6		
Documentat	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched
Electronic o	data base consulted during the international search (na	ume of data hase and, where practicable	search terms used)
APS		, , , , , , , , , , , , , , , , , , , ,	, search 197 1117 2005,
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
Y	US,A, 4,707,438 (Keydar) 17 Novemb	er 1987, see entire document.	1-20
Y	PROQ. CLIN. BIOL. RES., Volume 3 "Oncodevelopmental Alkaline Phosp Function", pages 453-475, see especia	phatases: In Search for a	1-20
Y	BIOCHEMICA ET BIOPHYSICA A 1985, J. Culp et al., "The active-site a sequence of bovine intestinal alkaline page entire document.	nd amino-terminal amino acid	1-20
X Furth	er documents are listed in the continuation of Box C	. See patent family annex.	
i '	ecial categories of cited documents:	"T" later document published after the inte date and not in conflict with the applic	
"A" do	cument defining the general state of the art which is not considered be part of particular relevance	principle or theory underlying the inv	
"E" car	lier document published on or after the international filing date	"X" document of particular relevance; the	e claimed invention cannot be
"L" doc	cument which may throw doubts on priority claim(s) or which is and to establish the publication date of another citation or other	when the document is taken alone	morotto me mitenti en p
	cial reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive	
	cument referring to an oral disclosure, use, exhibition or other ans	combined with one or more other such being obvious to a person skilled in the	h documents, such combination
P doc	rument published prior to the international filing date but later than priority date claimed	"&" document member of the same patent	family
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report
22 April 1	993	04MAY 199	13//
	nailing address of the ISA/US	Authorized officer	1 V /
Box PCT	ner of Patents and Trademarks	KEITH D. HENDRICKS	Jame /
	a, D.C. 20231	Telephone No. (702) 200 0106	· l m

INTERNATIONAL SEARCH REPORT

International application No. PCT/US93/02172

		PC1/0393/021									
C (Continua	C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT										
Category*	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No								
Y	GENOMICS, Volume 8, issued 1990, T. Manes et al. structure and comparison of mouse tissue-specific alkal phosphatase genes", pages 541-554.	, "Genomic line	1-20								
Y	THE JOURNAL OF BIOLOGICAL CHEMISTRY, Volumber 20, issued 15 September 1985, M. Besman et "Isozymes of Bovine Intestinal Alkaline Phosphatase", 11190-11193, see entire document.	al.,	1-20								
-											

THIS PAGE BLANK (USPTO)