语言模型

杨沐昀

语言技术研究中心 哈尔滨工业大学

语言模型

- □语言模型 (Language Model, LM)
 - □描述一段自然语言的概率或给定上文时下一个词出现的概率
 - $\square P(w_1, ..., w_l), P(w_{l+1}|w_1, ..., w_l)$
 - □以上两种定义等价(链式法则)
- □广泛应用于多种自然语言处理任务
 - □机器翻译 (词排序)
 - $\square P$ (the cat is small) > P(small the is cat)
 - □语音识别 (词选择)
 - $\square P(\text{there are four cats}) > P(\text{there are for cats})$

2

N元语言模型

□N元语言模型假设下一词出现的概率只与前n-1个词有关

$$P(w_t|w_1w_2...w_{t-1}) \approx P(w_t|w_{t-(n-1):t-1})$$

$$P(w_1 w_2 \dots w_l) = \prod_{t=1}^l P(w_t | w_{t-(n-1):t-1}) = \prod_{t=1}^l \frac{C(w_{t-(n-1):t})}{C(w_{t-(n-1):t-1})}$$

- □该假设被称为**马尔可夫假设**(Markov Assumption)
 - □当n=1时,下一个词的出现独立于其历史,相应的一元语法通常记作 unigram
 - □当n=2时,下一个词只依赖于前1个词,对应的二元语法记作bigram。二元语法模型也被称为一阶马尔可夫链(Markov Chain)
 - □三元语法假设(n=3)也被称为二阶马尔可夫假设,相应的三元语法记作 trigram

N元语言模型的平滑

- □当n过大,或者测试句子中的词不在词表中,会出现零概率问题
- □折扣法平滑 (Smoothing) 的思想是损有余而补不足,调整概率 估计结果
 - □加1平滑(拉普拉斯平滑)

$$P(w_i|w_{i-1}) = \frac{C(w_{i-1}w_i) + 1}{\sum_{w} (C(w_{i-1}w) + 1)} = \frac{C(w_{i-1}w_i) + 1}{C(w_{i-1}) + |V|}$$

□加 δ (0< δ <1)平滑(训练数据较小时,加1平滑会给出过高的估计) ,对于 δ 的选取,通过比较不同取值下模型的困惑度评价,选取最优取值

$$P(w_i|w_{i-1}) = \frac{C(w_{i-1}w_i) + \delta}{\sum_{w} (C(w_{i-1}w) + \delta)} = \frac{C(w_{i-1}w_i) + \delta}{C(w_{i-1}) + \delta|V|}$$

前馈神经网络语言模型

□使用前馈神经网络 (FFN) 估计条件概率

$$P(w_t|w_{1:t-1}) \approx P(w_t|w_{t-n+1:t-1})$$

5

循环神经网络语言模型

□使用循环神经网络 (RNN) 估计条件概率

$$P(w_t|w_{1:t-1}) \approx P(w_t|w_{1:t-1})$$

6

Transformer语言模型

□使用Transformer估计条件概率

$$P(w_t|w_{1:t-1}) \approx P(w_t|w_{t-n+1:t-1})$$

Features				
position: 1		2	3	4
Example:	robot	must	obey	orders
2	robot	must	obey	orders
3	robot	must	obey	orders
4	robot	must	obey	orders

Labels

obey
orders
<eos>

参考: http://jalammar.github.io/illustrated-gpt2/

Transformer语言模型

■Mask操作示例

Scores (before softmax)

0.11	0.00	0.81	0.79
0.19	0.50	0.30	0.48
0.53	0.98	0.95	0.14
0.81	0.86	0.38	0.90

Apply Attention Mask

Masked Scores (before softmax)

0.11	-inf	-inf	-inf
0.19	0.50	-inf	-inf
0.53	0.98	0.95	-inf
0.81	0.86	0.38	0.90

>>> mask = torch.tril(torch.ones(4, 4))					
tensor([[1., 0., 0., 0.],					
[1., 1., 0., 0.],					
[1., 1., 1., 0.],					
[1., 1., 1., 1.]])					
>>> attn = torch.rand(4, 4)					
tensor([[0.6975, 0.3628, 0.9422, 0.6832],					
[0.2625, 0.9714, 0.1903, 0.2832],					
[0.8398, 0.2345, 0.4797, 0.5564],					
[0.4052, 0.7003, 0.9535, 0.5096]])					
>>> attn = attn.masked_fill(mask == 0, float('-inf'))					
tensor([[0.6975, -inf, -inf, -inf],					
[0.2625, 0.9714, -inf, -inf],					
[0.8398, 0.2345, 0.4797, -inf],					
[0.4052, 0.7003, 0.9535, 0.5096]])					

Masked Scores (before softmax)

0.11	-inf	-inf	-inf
0.19	0.50	-inf	-inf
0.53	0.98	0.95	-inf
0.81	0.86	0.38	0.90

Softmax (along rows)

Scores

1	0	0	0
0.48	0.52	0	0
0.31	0.35	0.34	0
0.25	0.26	0.23	0.26

参考: http://jalammar.github.io/illustrated-gpt2/

语言模型的性能评价

- □基于具体应用的外部评价(最接近实际应用需求,但代价高)
- □基于困惑度 (Perplexity, PPL) 的内部评价
 - □将数据划分成两个不相交的数据集合,分别作为训练集和测试集,检测模型的泛化能力
- □测试集的概率

$$P(\mathbb{D}^{\text{test}}) = P(w_1 w_2 \dots w_N) = \prod_{i=1}^{N} P(w_i | w_{1:i-1})$$

□困惑度:模型分配给测试集中每个词的概率的几何平均值的倒数

$$PPL(\mathbb{D}^{test}) = \left(\prod_{i=1}^{N} P(w_i|w_{1:i-1})\right)^{-\frac{1}{N}}$$

□为了避免下溢,转化为指数对数形式

$$PPL(\mathbb{D}^{\text{test}}) = 2^{-\frac{1}{N}\sum_{i=1}^{N} \log_2 P(w_i|w_{1:i-1})}$$

谢谢!

语言技术紫丁香

微信扫描二维码, 关注我的公众号