1. Conjuntos acotados

En este curso trabajaremos con el eje real extendido. Esto es,

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}.$$

Los símbolos $+\infty$ y $-\infty$ se llaman "más infinito" y "menos infinito", respectivamente. Extendemos el orden usual de \mathbb{R} (<) a $\overline{\mathbb{R}}$ mediante las siguientes relaciones:

$$\forall x \in \mathbb{R}, \quad x < +\infty;$$

$$\forall x \in \mathbb{R}, \quad x > -\infty.$$

Definición 1. $Sea X \subseteq \overline{\mathbb{R}}$.

1. Decimos que X es un conjunto acotado por arriba si existe $M \in \mathbb{R}$ tal que para cada $x \in X$,

$$x \leq M$$
.

En este caso, decimos que M es cota superior de X.

2. Decimos que X es un conjunto acotado por abajo si existe $m \in \mathbb{R}$ tal que para cada $x \in X$,

$$m < x$$
.

En este caso, decimos que m es cota inferior de X.

Si~X~es~acotado~por~arriba~y~por~abajo,~solo~decimos~que~X~es~acotado.

Definición 2 (Conjuntos de cotas superiores e inferiores). Sea $A \subseteq \mathbb{R}$ acotado. Definimos el conjunto de cotas superiores de A como

$$\mathrm{CS}(A) \coloneqq \{ M \in \overline{\mathbb{R}} \colon \ \forall x \in A, \ x \le M \}.$$

Definimos el conjunto de cotas inferiores de A como

$$CI(A) := \{ m \in \overline{\mathbb{R}} : \ \forall x \in A, \ m \le x \}.$$

Un modo equivalente de entender la definición 1 en términos de CS y CI es:

Definición 3. Sea $X \subseteq \overline{\mathbb{R}}$. Decimos que X es un conjunto acotado por arriba si se satisface $CS(X) \cap \mathbb{R} \neq \emptyset$.

Ejemplo 4. Sea A = [4, 9). Entonces, $0, -1, \pi \in LB(A)$ y $9, 3\pi, 10 \in CS(A)$.

Ejemplo 5. \mathbb{N} no tiene cotas superiores, pues para cada M > 0 podemos encontrar $n \in \mathbb{N}$ tal que n > M.

Lema 6 (Monotonía de las cotas superiores). Sean $A, B \subseteq \mathbb{R}$ tales que $A \subseteq B$. Entonces, $UB(B) \subseteq CS(A)$.

Demostración. Sea $b \in UB(B)$ y $x \in A$. Como $A \subseteq B$, $x \in B$ y $x \leq b$. Debido a que x fue arbitrario, se satisface que para cada $x \in A$, $x \leq b$. Por lo tanto, $b \in CS(A)$. Como b fue elegido de manera arbitraria en CS(B), concluimos que $CS(B) \subseteq CS(A)$.

Definición 7 (Máximo de un conjunto). Sean $A \subseteq \mathbb{R}$ $y \ b \in \mathbb{R}$. Decimos que b es máximo de A si $b \in A$ $y \ b \in \mathrm{CS}(A)$. En este caso escribiremos

$$b = \max A$$
 δ $b = \max_{x \in A} x$.

Proposición 8. Sea $A \subseteq \overline{\mathbb{R}}$. Si A tiene máximo, es único.

Demostración. Ejercicio.

2. Supremo e ínfimo de un conjunto

Definición 9. Sea $A \subseteq \overline{\mathbb{R}}$, $A \neq \emptyset$ y acotado. Definimos el supremo de A como la mínima cota superior de A. Es decir,

$$\sup(A) := \min_{M \in \mathrm{CS}(A)} M.$$

Definimos el ínfimo de A como la máxima cota inferior de A. Es decir,

$$\inf(A) \coloneqq \max_{m \in \mathrm{LB}(A)} m.$$

Proposición 10. Sea $A \subseteq \overline{\mathbb{R}}$, $A \neq \emptyset$ y acotado. Entonces, $\sup(A)$ es úninco.

Demostración. Ejercicio.

Proposición 11. Sean $A \subseteq \mathbb{R}$ y $b \in \mathbb{R}$ tales que A es acotado y $A \neq \emptyset$. Entonces,

$$\sup(A) \le b \iff b \in \mathrm{CS}(A).$$

 $Demostración. \Longrightarrow)$ Supongamos que $\sup(A) \leq b$. Sea $a \in A$. Como $\sup(A)$ es una cota superior de A, se satisface $a \leq \sup(A) \leq b$. Como a fue arbitrario, se satisface

$$\forall x \in A, \ x \leq b.$$

Por lo tanto, $b \in CS(A)$.

 \iff Supongamos que $b \in UB(A)$. Utilizando la definición 9, tenemos

$$\sup(A) = \min_{M \in \mathrm{CS}(A)} M \le b.$$

Proposición 12. Sean $A \subseteq \mathbb{R}$ y $b \in \mathbb{R}$, tales que $A \neq \emptyset$ y acotado y $b \in \mathrm{UB}(A)$. Entonces, $b = \sup(A)$ si y solo si, para cada c < b existe $a \in A$ tal que c < a.

- $Demostración. \Longrightarrow)$ Supongamos que $b = \sup(A)$. Sea $c \in \mathbb{R}$ tal que c < b. Supongamos que $c \in \mathrm{UB}(A)$. Entonces, para cada $x \in A$, $x \leq c$. Como b es la mínima cota superior, $b \leq c$; lo cual no es posible. Por lo tanto, $c \notin \mathrm{UB}(A)$. Es decir, existe $a \in A$ tal que c < a.
- ⇐⇒) Supongamos que para cada c < b existe $a \in A$ tal que c < a. Como $b \in UB(A)$, por la definición 9 se tiene la desigualdad $\sup(A) \leq b$. Supongamos que $\sup(A) < b$. Por hipótesis, existe $a \in A$ tal que $\sup(A) < a$. Esto no es posible, pues $\sup(A) \in UB(A)$. Por lo tanto, $\sup(A) = b$.

Proposición 13. Sean $A, B \subseteq \mathbb{R}$ tales que $A, B \neq \emptyset$, A es acotado $y B \subseteq A$. Entonces, $\sup(B) \leq \sup(A)$.

Demostración. Por el lema 6, UB(A) \subseteq UB(B). En particular, $\sup(A) \in$ UB(A), por lo que $\sup(A) \in$ UB(B). Es decir, para cada $x \in B$, $x \leq \sup(A)$. Por la proposición 11, concluimos que $\sup(B) \leq \sup(A)$.

Corolario 14. Sean $A \subseteq \mathbb{R}$ $y \ b \in \mathbb{R}$, tales que $A \neq \emptyset$ y acotado $y \ b \in \mathrm{UB}(A)$. Entonces, $b = \sup(A)$ si y solo si, para cada $\varepsilon > 0$ existe $a \in A$ tal que $b - \varepsilon < a$.

2.1. Ejercicios

- 1. En cada uno de los siguientes incisos, describir $\mathrm{CS}(A)$ y $\mathrm{CI}(A)$:
 - a) A = [0, 1].
 - b) $A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}.$
 - c) $[-3,0] \bigcup (1,5]$.
- 2. Demostrar la proposición 8.
- 3. Demostrar la proposición 10.
- 4. Escribir con cuantificadores lógicos la afirmación "b no es cota superior de A".
- 5. ¿Cuál es el supremo del conjunto vacío?

- 6. Enunciar y demostrar proposiciones de esta sección análogas para el ínfimo de un conjunto.
- 7. Demostrar que el supremo del conjunto [0,1] es 1 de dos formas distintas: utilizando CS([0,1]) y utilizando el corolario 14.
- 8. Sean $A, B \subseteq \mathbb{R}$ acotados. Demostrar que $\sup(A \cup B) = \max(\sup(A), \sup(B))$.
- 9. Sean $A, B \subseteq \mathbb{R}$ acotados. ¿Qué se puede afirmar sobre $\sup(A \cap B)$?
- 10. Sean $A \subseteq \overline{\mathbb{R}}$ y $b \in \overline{\mathbb{R}}$ tales que para cada $a \in A, a < b$. ¿Qué relación se puede establecer entre b y $\sup(A)$? ¿Porqué?
- 11. Sean $A\subseteq \overline{\mathbb{R}}$ y $b\in \overline{\mathbb{R}}$ tales que para cada $a\in A,\ a>b.$ ¿Qué relación se puede establecer entre b y $\sup(A)$? ¿Porqué?
- 12. Enunciar y demostrar proposiciones análogas a las de esta sección para el ínfimo de un conjunto.