

DiRAM™ Architecture Overview

David Chapman VP Marketing

Why 3D? – Expiring Economics

Why 3D? - Apples & Oranges

AMD 2014 3D-ASIP

Conventional 3D Packaging

- Preserves traditional RAM problems
- Adds stacking costs

DiRAM™ True 3D RAM Architecture

Dis-Integrated 3D RAM Architecture

DiRAM4 Stack Internal Architecture

- 64 Gb of Memory in 175 mm²
- 256 fully independent RAMs
- 16 Banks per RAM
- 64 bit Sep I/O Data per RAM
- 22ns tRC (Page Open to Page Open in a Bank)
- 16 Tb/s Data Bandwidth @ Controller Layer
- Competitive Manufacturing Cost

256 Independent RAMs

Each RAM

- 256 Mb Storage
- 64 Gb/s Bandwidth
- 9ns Latency
- 15ns tRC
- 16 Banks

DiRAM4 64C64 Performance

256 Independent RAMs

- 64 Gb Storage
- 64 Ports
- 128 Channels
- 4096 Banks
- > 4 Terabit/s Data Bandwidth
- 9 ns Latency
- 64 Billion Transactions Per Second (Minimum)

DiRAM4 Scale* Drawing

* Almost to scale

Via-Free Wafer Stacking

Aggressive Copper TSV ≈ **5**µ x **50**µ

Tezzaron Tungsten
SuperContact™
<1μ x <10μ

Common, Cheap, Fast and...Dense

5μ Diameter Copper TSVs (Stress driven Pitch) <1µ Diameter
Tungsten SuperContacts
(Alignment driven Pitch)

Tezzaron wins: >66 to 1

Radically Different Manufacturing

Conventional Flow

- Fabricate Wafer
- Probe Test Die
- Thin Wafer
- Singulate Die
- Stack Good Die
- Package Stack
- Burn-In & Test Stack

Tezzaron Flow

- Fabricate Wafer
- Stack Wafers
- Thin Top Wafer
- <mark>–</mark>Repeat
- Probe Test Stacks
- Singulate Stacks
- Package Stacks
- Burn-In & Test Stack

Never Handle A Thin Wafer

The Tezzaron Mantra Bond Two...Grind One ...to make the world's thinnest RAM wafers

Step 1 – Build, Drill, Fill & Metalize

Step 2 – Bond, Thin & Re-metal

Step (n-1) – Rinse and Repeat

Step n – Build I/O Pads

"That can't work..."

"...bonding un-tested die will produce near zero yields, poor reliability and high costs."

Translation

You Tezzaron people are crazy!

Super dense interconnect allows...

Bi-STAR®

Built-in Self Test And Repair

- Controlled by embedded ARM processor
- Enabled by per-cell control interconnect
- Super-fine grained test and repair
- Continuous, in-the-system hard and soft error repair

Bi-STAR™ Does More, Works Better

Bi-STAR Repairs

- Bad memory cells
- Bad line drivers
- Bad sense amps
- Shorted word lines
- Shorted bit-lines
- Leaky bits
- Bad secondary bus drivers

Bi-STAR Tests

- Tests > 300,000 nodes per clock cycle
- Tests > 1,000x faster than external memory tester
- Via SPI port, works with Host to allow continuous scrub / repair

Bi-STAR Repair Improves Yield

Solve 3D Problems with 3D

DiRAM: Efficiency for the Future

- Less aggressive wafers
- Higher array efficiency
- Much lower test cost
- Higher yield
- Longer product life cycles

64C64 Density and Performance

- 64 Gb in 175 mm² footprint
- 64 Ports
- 128 Channels
- 32 Banks per Channel
- 32 bit Sep I/O per Port
- 14 ns Worst Case Latency
- 22 ns tRC
 (Page Open to Page Open in same Bank)
- 4 Tb/s Min Data Bandwidth

RAM is now Singular

DiRAM4™ Changes the Language of System Design...

Table Memory + Packet Buffer

DiRAM4™ in Networking

- High Transaction Rate
- High Bandwidth
- High Density

Local Memory and/or Cache

DiRAM4™ in Computing

- High Bandwidth
- High Density
- Small References

Fast Local Memory

DiRAM4™ in Everything

- Multiple Independent Channels
- High Bandwidth
- High Transaction Rate

The Right I/O for Each Market

DiRAM4
Launches
with
0.7 V CMOS I/O
2.5D Si or Organic

High Performance

Performance Choices

David Chapman

VP Marketing & Technical Sales

512-356-2534

dchapman@tezzaron.com

