- A lattice $\Delta \subset M_{\mathbb{R}}$.
- $P_{\Delta}(t) = \sum_{k>0} \ell(k\Delta) t^k$.
- $\ell(k\Delta) = \#(M \cap k\Delta)$.
- $S_{\Delta} = \bigoplus_{k>0} S_{\Delta}^k$.
- $P_{\Delta}(t) = \frac{\psi_{\Delta}(t)}{(1-t)^{d+1}}$, with $\deg \psi_{\Delta}(t) \leq d$.

Example:

- $\bullet \ \Delta = [0, n].$
- $\ell(k\Delta) = kn + 1$.
- $P_{\Delta}(t) = \sum_{k \ge 0} (kn+1)t^k = \frac{1+(n-1)t}{(1-t)^2}$.

- Similarly, $Q_{\Delta}(t) = \sum_{k>0} \ell^*(k\Delta)t^k$.
- $\ell^*(k\Delta) = \#(\operatorname{Int}(k\Delta) \cap M)$.
- $Q_{\Delta}(t) = \frac{\phi_{\Delta}(t)}{(1-t)^{d+1}}$.
- $\deg(\phi_{Delta}) = d + 1$.

Example:

- $\bullet \ \Delta = [0, n].$
- $Q_{\Delta}(t) = \sum_{k>0} (kn-1)t^k = \frac{t^2 + (n-1)t}{(1-t)^2}$.
- $\phi_{\Delta}(t)$, $\psi_{\Delta}(t)$ are related by $\phi_{\Delta}(t) = t^{d+1}\psi_{\Delta}(t^{-1})$.
- If $\phi_{\Delta}(t) = \sum \phi_i(\Delta)t^i$ and $\psi_{\Delta}(t) = \sum \psi_j(\Delta)t^j$, then $\psi_i(\Delta) = \phi_{d+1-i}(\Delta)$ for all $0 \le i \le d$.
- $\psi_0(\Delta) = 1 = \phi_{d+1}(\Delta)$.
- $\psi_d(\Delta) = \phi_1(\Delta) = \ell^*(\Delta)$.

- Behind all this is the graded Artinian ring $S_f = S_{\Delta}/\langle F_0, \dots, f_d \rangle S_{\Delta}$.
- The Poincare series gives $P(S_f, t) = \phi_{\Delta}(t)$, and $\dim(S_f^i) = \psi_i(\Delta)$.
- We constructed $(\operatorname{Int}(C_{\Delta}) \cap \tilde{M}) = I_{\Delta} \subset S_{\Delta}$.
- I_{Δ} is a canonical ideal.
- Similarly, we consider $I_f = I_{\Delta}/\langle F_0, \dots, F_d \rangle I_{\Delta}$.
- $Q_{\Delta}(t)$ comes from I_{Δ} .

- $\bullet \ \phi_{\Delta}(t) = (1-t)^{d+1} Q_{\Delta}(t).$
- dim $I_f^k = \phi_k(\Delta)$.
- We get a multiplication $S_f \times I_f^{d+1-i} \to I_f^{d+1} \approx K$.
- We get a duality $S_f^i \approx (I_f^{d+i-1})^*$.

Cohomology.

- We are interested in $H^i(Z_f)$ and $H^i_c(Z_f)$ for $Z_f \subset \mathbb{T}^d \approx (\mathbb{C}^*)^d$.
- Assume $d \geq 2$, since d = 1 is uninteresting.
- Bottom and top cohomology: $H^0(Z_f) \approx \mathbb{Z}$ and $H_c^{2(d-1)}(Z_f) \approx \mathbb{Z}$.
- $H^i(Z_f) \times H_c^{2d-2-i}(Z_f) \to H_c^{2(d-1)}(Z_f) \approx \mathbb{Z}.$
- Reminiscent of the case with S_f and I_f .

- Take $Z_f \subset (\mathbb{C}^*)^d$. Then $\sum_i (-1)^i \dim H^i(Z_f) = (-1)^{d-1} \operatorname{Vol}(\Delta) = d! \operatorname{Volume}(\Delta).$
- Recall dim $S_f = \dim I_f = \operatorname{Vol}(\Delta)$.
- Lefschetz Theorem: For $\mathbb{Z}_f \subset \mathbb{T}^d$, the restriction $H^i(\mathbb{T}^d) \to H^i(\mathbb{Z}_f)$ is an isomorphism for $0 \le i \le d-2$, and injective for i = d-1.
- Also, $H^i(\mathbb{T}^d)$ is the exterior algebra.
- Z_f is affine, so $H^i(Z_f) = 0$ for $i \ge d$.

- Middle Cohomology: dim $H^{d-1}(Z_f) = \text{Vol}(\Delta) + d 1$.
- So the restriction $H^{d-1}(\mathbb{T}^d) \to H^{d-1}(Z_f)$ is injective.
- The primitive part dim $PH^{d-1}(Z_f) = \text{Vol}(\Delta) 1$ is the cokernel of the above restriction.

Mixed Hodge Structure:

- We consider $H^i(X)$ and $H^i_c(X)$.
- Deligne: This cohomology has 2 filtrations, the Hodge filtration and the weight filtration, giving the Hodge components or Hodge numbers, $H^{p,q}(X)$.
- Example: $d=2, \mathbb{Z}_f \subset (\mathbb{C}^*)^2$ an affine curve.
- The toric compactification $\overline{Z_f}$ is smooth and projective, so topologically looks like a torus.
- Each side of the corresponding polytope has some lattice points.

•
$$\#(\overline{Z_f}\backslash Z_f) = \#(\partial \Delta \cap M).$$

- Table of ranks:
 - $H^0(\overline{Z_f})$ has rank 1.
 - $H^1(\overline{Z_f})$ has rank 2g.
 - $H^2(\overline{Z_f})$ has rank 1.
- Thus the Euler number is $e(\overline{Z_f}) = 2 2g$.

- If we remove one point, we don't change the top degree.
- So $H^2(Z_f) = 0$, and $\dim H^1(Z_f) = \dim H^1(\overline{Z_f}) + (\#\partial\Delta \cap M 1)$.
- $\dim H^0(Z_f) = 1$.
- This agrees with dim $H^{d-1}(Z_f) = \operatorname{Vol}(\Delta) + (d-1)$, since we have d = 2, and $2g + (\partial \cap M) 1 = \dim H^i(Z_f) = \operatorname{Vol}(\Delta) + 1$.
- The genus is computed by $g = \#\ell^*(\Delta)$.

Example:

• For $H^1(Z_f)$, we consider the Hodge pieces:

Here, horizontal filtration is Hodge, diagonal is weight.

• Similarly for $H_c^1(Z_f)$, we consider the Hodge pieces:

Here, horizontal filtration is Hodge, diagonal is weight.

• So $h^{1,1} = \#(\partial \Delta \cap M) - 1$ is non-trivial.

- $h^{1,0} + h^{1,1} = \ell^*(\Delta) + \partial \Delta \cap M 1 = S_f^1$.
- $h^{0,0} + h^{0,1} = 0 + \ell^*(\Delta) = \dim S_f^2$.
- For any polytope Δ of dimension d, $\operatorname{Gr}_H PH^{d-1}(Z_f) \approx S_f^+ \subset S_f$.
- Also, $\operatorname{Gr}_H PH_c^{d-1}(Z_f) \approx \bigoplus_{i=1}^d I_f$

General Statement:

- $H^*(z_f) \leftarrow H^*(\mathbb{T}^d) \approx \Lambda^* M$.
- Koszul complex F_0, F_1, \ldots, F_d in S_{Δ} .
- We now considered a twisted version:

$$\Delta \subset M_{\mathbb{R}} \supset M \subset M^1 \subset M_{\mathbb{Q}}.$$

- $\bullet f(x) = \sum_{m \in A} a_m x^m.$
- Etale covering: $Z_f^1 \to Z_f$ of degree [M':M].