

Sample no.	Points	Cluster 1 (2, 10)	Cluster 2 (5, 8)	Cluster 3 (1, 2)	Clusters
1	(2, 10)				
2	(2, 5)				
3	(8, 4)				
4	(5, 8)				
5	(7, 5)				
6	(6, 4)				
7	(1, 2)				
8	(4, 9)				

Let's calculate **Euclidean Distance** for sample number 1 to each distance means.

• Distance from Cluster 1
$$\sqrt{(2-2)^2 + (10-10)^2} = 0$$

• Distance from Cluster 2
$$\sqrt{(5-2)^2+(8-10)^2} = 3.60$$

• Distance from Cluster 3
$$\sqrt{(1-2)^2+(2-10)^2} = 8.06$$

Sample no.	Points	Cluster 1 (2, 10)	Cluster 2 (5, 8)	Cluster 3 (1, 2)	Clusters
1	(2, 10)	0	3.60	8.06	1
2	(2, 5)				
3	(8, 4)				
4	(5, 8)				
5	(7, 5)				
6	(6, 4)				
7	(1, 2)				
8	(4, 9)				

Similarly, we calculate the **Euclidean distance** for all the Sample numbers and **fill up** the table.

Iteration 1

Sample no.	Points	Cluster 1 (2, 10)	Cluster 2 (5, 8)	Cluster 3 (1, 2)	Clusters
1	(2, 10)	0	3.60	8.06	1
2	(2, 5)	5	4.24	3.16	3
3	(8, 4)	8.48	5	7.28	2
4	(5, 8)	3.60	0	7.21	2
5	(7, 5)	7.07	3.60	6.7	2
6	(6, 4)	7.21	4.12	5.38	2
7	(1, 2)	8.06	7.21	0	3
8	(4, 9)	2.23	1.41	7.61	2

Cluster 2

Cluster 3

STEP 2

- Re-compute the centres of the new clusters.
- We do so, by taking mean of all points in each cluster.

Cluster 2

Cluster 3

Mean = (2, 10)

• Since, we have only **one point** in Cluster 1 so the center remains the same.

New, updated centroids

Mean =
$$(2, 10)$$

Mean =
$$((8+5+7+6+4)/5, (4+8+5+4+9)/5$$

= $(6, 6)$

Mean =
$$((2+1)/2, (5+2)/2$$

= $(1.5, 3.5)$

Iteration 2

Sample no.	Points	Cluster 1 (2, 10)	Cluster 2 (6, 6)	Cluster 3 (1.5, 3.5)	Clusters
1	(2, 10)	0	5.65	6.51	1
2	(2, 5)	5	4.12	1.58	3
3	(8, 4)	8.48	2.82	6.51	2
4	(5, 8)	3.60	2.23	5.70	2
5	(7, 5)	7.07	1.41	5.70	2
6	(6, 4)	7.21	2	4.52	2
7	(1, 2)	8.06	6.40	1.58	3
8	(4, 9)	2.23	3.60	6.04	1

STEP 3

- We re-compute the centres of the new clusters.
- We do so, by taking mean of all points in each cluster.
- We keep doing these iterations until we get the same mean value.

After two more iterations the updated centroids and the points

Final Figure

AGENDA

- What is Clustering?
- Unsupervised Learning
- Why Clustering?
- Types of Clustering
 - > Partitioning Clustering
- K Means Clustering
- Challenges in K Means Clustering
- Flbow Method
- Euclidean Distance

- Illustration of K Means algorithm
- Applications of K Means

References

- Hierarchical Clustering
 - > Agglomerative Clustering
 - Divisive Clustering
- Applications
- Density Based Clustering
- Distance metrics
 - Manhattan
 - Minkowski
 - Mahalanobis

Illustration

K = 10

<u>Illustrating the relocating of centroids</u>

AGENDA

- What is Clustering?
- Unsupervised Learning
- Why Clustering?
- Types of Clustering
 - > Partitioning Clustering
- K Means Clustering
- Challenges in K Means Clustering
- Flbow Method
- Euclidean Distance
- Illustration of K Means algorithm

Applications of K Means

References

- Hierarchical Clustering
 - > Agglomerative Clustering
 - Divisive Clustering
- Applications
- Density Based Clustering
- Distance metrics
 - Manhattan
 - Minkowski
 - Mahalanobis