Lucy Y. Pao Lecture 2 Page 1 ECEN 5458

Analysis of Discrete-Time Systems

- Linear difference equations
 - Solving linear constant coefficient difference equations
- Z-transform
 - Properties
- Inverse Z-transform
 - Long-division
 - Partial fraction expansion
 - Inverse Z-transform integral

Lucy Y. Pao Lecture 2 Page 2 ECEN 5458

Linear Difference Equations

Consider treatment of signals inside a digital computer

• Suppose output at time k depends on input signal up to time k and output signal up to time k-1.

 If <u>linear</u>, and assume dependence on <u>finite</u> number of past input and output values

Linear constant difference equation

Lucy Y. Pao Lecture 2 Page 3 ECEN 5458

Solving Linear Constant Coefficient Difference Equations

- Given equation and initial conditions (I.C.s), how do we solve?
- Consider difference equation approximation to compute integral:

• Assume have approximation for integral from time to time (k-1)T

Approximate area under curve over each interval using a trapezoid.

Area of trapezoid

Recursive formula/solution

Lecture 2

Page 5

Example

- Suppose e(t) = t
- What is u_k ?

Lucy Y. Pao Lecture 2 Page 6 ECEN 5458

• In this case, u_k is the <u>exact</u> integral since each trapezoid is the <u>exact</u> area of each increment.

- In this case, not too difficult to solve for u_{ν} absolutely.
- In general, more difficult though . . .
- Often easier to solve by Z-transform.
- Similar to solving linear constant coefficient ordinary differential equations using Laplace transforms.

Re(z)

such that

Z-Transform

If a signal has discrete values $e_0, e_1, \ldots, e_k, \ldots$,

Z-transform of the signal is

$$E(z) = Z[e_k] = \sum_{k=\infty}^{\infty} e_k z^{-k}, \quad r_0 < |z| < R_0$$

where r_0 and R_0 are bounds on |z| the series converges.

Example:
$$e_k = e(k) = r^k 1(k)$$

where $1(k) = \begin{bmatrix} 1, & k \ge 0 \\ 0, & k < 0 \end{bmatrix}$

 $^{1}Im(z)$

Lucy Y. Pao Lecture 2 Page 9 ECEN 5458

Properties of the *Z***-Transform**

Linearity

If
$$f_1(k) \stackrel{Z}{\longleftarrow} F_1(z)$$
 and $f_2(k) \stackrel{Z}{\longleftarrow} F_2(z)$ then $Z[\alpha f_1(k) + \beta f_2(k)] = \alpha F_1(z) + \beta F_2(z)$

Convolution of time sequences

If
$$f_1(k) \stackrel{Z}{\longleftarrow} F_1(z)$$

and $f_2(k) \stackrel{Z}{\longleftarrow} F_2(z)$
then $Z \stackrel{\square}{\sqsubseteq} \sum_{\ell=\infty}^{\infty} f_1(\ell) f_2(k-\ell) \stackrel{\square}{\sqsubseteq} = F_1(z) F_2(z)$

Time shift

If
$$f(k) \stackrel{Z}{\longleftarrow} F(z)$$

then
$$Z[f(k+n)] = z^n F(z)$$
 for any integer n .

Lucy Y. Pao Lecture 2 Page 12 ECEN 5458

If G(s) is time invariant, is a sampled-data system with G(s) time-invariant?

Scaling in the z-plane

If
$$f(k) \stackrel{Z}{\longleftarrow} F(z)$$

then
$$Z\left|r^{-k}f(k)\right| = F(rz)$$

Lucy Y. Pao Lecture 2 Page 14 ECEN 5458

Final Value Theorem

If F(z) converges for |z|>1 and all poles of (z-1)F(z) are inside the unit circle, then

$$\lim_{k\to\infty}f(k)=\lim_{z\to 1}(z-1)F(z)$$

Conditions on $F(z) \Rightarrow$ only pole not strictly inside the unit circle is a simple pole at z = 1, which is removed in (z - 1)F(z).

The fact that F(z) converges as the magnitude of z gets arbitrarily large ensures that f(k)=0 for k<0.

All components of $f(k) \rightarrow 0$ as $k \rightarrow$ infinity, with the possible exception of a constant term due to a pole at z = 1.

Lucy Y. Pao Lecture 2

Page 15

ECEN 5458

Inverse Z-Transform

• Given the Z-transform F(z), how do we compute the sequence f(k) that F(z) is the Z-transform of?

Two-sided *Z*-Transform:

$$F(z) = \sum_{k=-\infty}^{\infty} f(k)z^{-k}, \quad r_0 < |z| < R_0$$

In this course, we will mainly be concerned withme-

$$\frac{\text{sided } Z - T_{k=0}^{\infty} \text{nsforms};}{F(z) = \sum_{k=0}^{\infty} f(k)z}; \quad |z| > r_0$$

Lucy Y. Pao Lecture 2 Page 16 ECEN 5458

• Can find inverse Z-transform by a number of techniques:

- Long-division
- Partial fraction expansion
- Inverse Z-transform integral
- Long-division
 - If F(z) is a ratio of polynomials in z^{-1} , perform long-division of the numerator by the denominator. In the result, the coefficient of z^{-k} is the sequence value f(k).
 - Example

Lucy Y. Pao Lecture 2 Page 17 ECEN 5458

- Partial fraction expansion
 - Compute and tabulate F(z) for several basic f(k)'s.
 - Then when given a new F(z), decompose F(z) by partial fraction expansion and look-up the components of the sequence f(k) in the previously prepared table.

Lucy Y. Pao Lecture 2

Page 18

ECEN 5458

In general:

$$F(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_m z^{-m}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-n}}$$

$$= \frac{z^{n-m}(b_0z^m + b_1z^{m-1} + \dots + b_m)}{z^n + a_1z^{n-1} + a_2z^{n-2} + \dots + a_n}$$

- Assuming all poles are distinct and $m \le n$

$$F(z) = c_0 + \frac{c_1 z}{z - p_1} + \frac{c_2 z}{z - p_2} + \dots + \frac{c_n z}{z - p_n}$$

where

$$c_0 = F(z) \bigg|_{z=0} \quad \text{and} \quad$$

$$c_i = (z - p_i) \frac{F(z)}{z} \bigg|_{z=p_i}$$

Lucy Y. Pao Lecture 2

Page 20

– If there are repeated poles:

Suppose p_1 is repeated 3 times:

$$F(z) = \frac{()()()() \cdots}{(z-p_1)^3(z-p_4)(z-p_5)() \cdots}$$

$$= \frac{c_1 z}{z - p_1} + \frac{c_2 z}{(z - p_1)^2} + \frac{c_3 z}{(z - p_1)^3} + \frac{c_4 z}{z - p_4} + \frac{c_5 z}{z - p_5} + \cdots$$

where

Lucy Y. Pao

$$c_i = (z - p_i) \frac{F(z)}{z}$$
 for $i = 4, 5, ...$ (distinct poles)

$$c_3 = (z - p_1)^3 \frac{F(z)}{z} \Big|_{z=p_1}$$

$$c_2 = \frac{d}{dz} \begin{bmatrix} (z - p_1)^3 \frac{F(z)}{z} \end{bmatrix}_{z=p_1}$$

$$c_{1} = \frac{1}{2} \frac{d^{2}}{dz^{2}} \left[(z - p_{1})^{3} \frac{F(z)}{z} \right]_{z=p_{1}}$$

Lucy Y. Pao Lecture 2 Page 22 ECEN 5458

In general, if a pole p has multiplicity , then

$$c_{\ell-i} = \frac{1}{i!} \frac{d^i}{dz^i} \left[(z-p)^{\ell} \frac{F(z)}{z} \right]_{z=n}^{\ell}, \qquad i=0, 1, \dots, \ell-1$$

are the coefficients associated with the pole p.

Inverse Z-transform integral

is the closed, complex integral:

$$f(k) = \frac{1}{2\pi j} \int F(z) z^k \frac{dz}{z}$$

where the contour is a circle in the region of convergence of F(z).

We will primarily use Partial Fraction Expansions in this course.