Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"

CORSO DI LAUREA IN INFORMATICA

Integrazione di processi PowerAutomate all'interno di applicazioni aziendali

Tesi di laurea

Relat	ore	
Prof.	Tullio	Vardanega

Laureando Silvio Nardo

Anno Accademico 2023-2024

Sommario

Il presente documento descrive il lavoro svolto dal laureando Silvio Nardo durante il periodo di stage presso l'azienda Wintech S.p.A. di Padova.

Esso è diviso in quattro capitoli: "Contesto aziendale" descrive l'azienda ospitante, con particolare attenzione ai servizi e prodotti offerti e alle metodologie lavorative; "Progetto di stage" narra il rapporto che l'azienda ha con gli stage universitari, descrivendo i diversi progetti proposti con particolare dettaglio allo stage da me svolto; In "Svolgimento stage" sono contenute le informazioni relative alle attività da me svolte durante il percorso di stage con spiegazione dei risultati raggiunti; "Verifica retrospettiva" infine analizza le conoscenze acquisite durante questo percorso e il loro rapporto con quelle fornite dall'università nel corso di laurea da me frequentato.

Lo stage si è svolto in conclusione del percorso di studi della laurea triennale in Informatica ed ha avuto la durata di circa trecentoventi ore.

L'obiettivo dello stage è stato compiere un'analisi al fine di valutare l'applicabilità delle pratiche DevOps a progetti aziendali realizzati con gli strumenti Power Automate e Power Apps.

Le soluzioni individuare durante le attività di ricerca sono state integrate ai processi aziendali mediante fasi di sviluppo collaborativo e individuale.

Convenzioni tipografiche

Gli acronimi e i termini di uso non comune menzionati vengono definiti nel glossario, situato alla fine del presente documento.

I termini in lingua straniera sono evidenziati con il carattere corsivo.

Indice

1	Svo	lgimen	to stage	1
	1.1	Analis	i	1
		1.1.1	Requisiti	1
		1.1.2	Ambiente di lavoro	1
		1.1.3	Requisiti progettuali	3
		1.1.4	DevOps	5
	1.2	Proget	tazione	5
	1.3	Progra	ummazione	5
	1.4	Verific	a e Validazione	5
	1.5	Risulta	ati raggiunti	5
		1.5.1	Qualitativamente	5
		1.5.2	Quantitativamente	5
$\mathbf{G}^{]}$	ossaı	rio		6
\mathbf{Bi}	bliog	rafia		7

Elenco delle figure

Elenco	delle	tabell	le	

1.1 Moduli formativi per Power Automate.......

Capitolo 1

Svolgimento stage

In questo capitolo vengono descritte tutte le attività da me svolte durante lo *stage*, divise nelle sezioni "Analisi", "Progettazione", "Programmazione" e "Verifica e validazione", in modo da fornire una panoramica chiara e strutturata del lavoro svolto, evidenziando il processo seguito e le competenze acquisite in ciascuna fase.

Esse non sono intese come completamente sequenziali bensì, fin dalla prima fase, sono presenti tutte le attività correlate in modo da coprire l'intero periodo di *stage*.

1.1 Analisi

In questa sezione sono presenti tutte le attività analitiche da me svolte e il suo scopo è descrivere le modalità con cui ho compreso i bisogni e i requisiti del mio progetto di stage.

1.1.1 Requisiti

Gli obiettivi del mio *stage*, come dichiarati nel documento "Progetto Formativo" generato all'inizio del suo svolgimento, sono divisi in categorie:

- O requisiti obbligatori, vincolanti in quanto obiettivi primari richiesti dall'azienda.
- D requisiti desiderabili, non strettamente necessari ma dal riconoscibile valore aggiunto.
- ${\bf F}$ requisiti facoltativi / opzionali, rappresentanti un valore aggiunto non strettamente competitivo.

Essi sono:

1.1.2 Ambiente di lavoro

Durante i primi giorni dello stage sono stato introdotto all'ambiente di lavoro e alle tecnologie di comunicazione e collaborazione.

Conseguentemente ho analizzato e utilizzato il sistema di messaggistica basato su Microsoft Teams e Outlook e ho compreso la struttura di condivisione dei dati, utilizzata

1.1. ANALISI 2

Codice	Descrizione	
O1	Mappatura delle funzionalità possibili tramite l'adozione dei due applicativi Sistemi e Office365.	
O1.1	Analisi approfondita del sistema e delle parti interessate.	
O1.2	Studio delle modalità di lavoro degli utenti.	
O1.3	Produzione di una completa documentazione di uso.	
O2	Personalizzazione e integrazione: individuare le modalità di utilizzo.	
D1	Analisi dei requisiti per l'integrazione aziendale della metodologia DevOps in ambito SISTEMI e Office365.	
D2	Produzione di una completa documentazione progettuale.	
F1	Realizzazione di <i>Proof of concept</i> .	
F2	Presentazione interna.	
F3	Predisposizione della documentazione.	

Tabella 1.1: Tabella degli obiettivi progettuali.

in azienda, basata sullo strumento Microsoft SharePoint.

Esso è una piattaforma software in grado di organizzare dati sottoforma di file e strutture tabellari chiamate "Liste", al fine di gestire il materiale condiviso dall'azienda e dai singoli team tramite un sistema di accessi e autorizzazioni.

Tramite questi strumenti ho studiato i documenti aziendali a me forniti in modo da comprendere i principali processi produttivi di Wintech.

Tali documenti comprendono i "Documenti di sviluppo sicuro" e includono:

- Agile e SCRUM: descrizione delle metodologie Agile e SCRUM, spiegazione dei ruoli necessari e delle cerimonie previste.
- Presentazione sviluppo sicuro: presentazione PowerPoint che descrive i processi aziendali atti a migliorare la qualità dei prodotti realizzati automatizzando fasi ripetitive e rispettando criteri di sicurezza.
- Modelli di sviluppo sicuro: elenco dettagliato dei documenti di sviluppo sicuro i quali descrivono come applicare automazioni processuali (per esempio i processi di build e deploy) in modo sicuro e normato.
- Politiche di sviluppo sicuro: strategie e normative aziendali definite al fine di garantire sicurezza e qualità nei processi e nel ciclo di vita del *software*.
- Piani di progetto degli altri stagisti: piani formativi degli altri due stagisti che nel mio stesso periodo hanno effettuato lo *stage* universitario in Wintech.

Relativamente a quest'ultimo punto, nei primi giorni ho approfondito il lavoro svolto dagli altri stagisti tramite appositi *meeting* nei quali mi hanno descritto i risultati ottenuti fino a quel momento. Essi, avendo iniziato lo svolgimento del progetto circa

1.1. ANALISI 3

una settimana prima, mi hanno esposto, mediante apposite presentazioni PowerPoint, le proprie ricerche riguardanti l'utilizzo dello strumento Git e dello studio avvenuto riguardo la possibilità di integrare tra loro gli strumenti Planner e Taiga.

1.1.3 Requisiti progettuali

Dopo aver compreso le tecnologie e i principali processi aziendali, ho partecipato ad un *meeting* con il *tutor* aziendale al fine di discutere il mio progetto di *stage*. I requisiti scaturiti da tale incontro sono stati:

- Autoapprendimento dello strumento Power Automate.
- Realizzazione di un PoC che testasse la possibilità di realizzare un flusso approvativo Power Automate.
- Testare le funzionalità disponibili con le licenze di utilizzo standard.

Power Automate

Ho pertanto studiato approfonditamente tali tecnologie con l'ausilio delle numerose guide e *tutorial* offerti da Microsoft. Essi sono direttamente accessibili dalla *home* di Power Automate e Power Apps e sono divisi in moduli testuali corredati da immagini, dalla durata e argomenti specifici.

Figura 1.1: Moduli formativi per Power Automate.

Fonte: https:

//learn.microsoft.com/it-it/training/browse/?products=power-automate.

Lo studio di tali moduli mi ha permesso di comprendere il funzionamento e le features principali di Power Automate:

Esso è formato da una pagina web che offre controllo sui flussi di automazione creati: è possibile modificarli e visualizzarne i dettagli, le esecuzioni e le statistiche. È possibile creare dei nuovi flussi partendo da altri progetti pubblici, o a noi condivisi, e modelli offerti da Microsoft da adattare alle proprie esigenze.

1.1. ANALISI 4

La modifica di un flusso non avviene mediante la scrittura di codice tramite un linguaggio di programmazione bensì tramite una composizione "a blocchi" personalizzabili collegati tra loro ciascuno avente proprietà e attributi definiti.

Essi sono selezionabili da una lista di blocchi relativi ciascuno a una funzionalità specifica di un servizio Microsoft.

Tali blocchi possono essere "Trigger" o "Azioni" ed entrambi sono necessari per la creazione e il funzionamento di un flusso.

In ogni flusso è presente uno e un solo Trigger il quale rappresenta il suo punto di partenza nonché la condizione che scaturisce la sua esecuzione.

Esistono tre tipologie principali di Trigger le quali determinano la tipologia stessa di ogni flusso:

- Automatico: per esempio "SharePoint Quando viene creato un elemento".
- Istantaneo: per esempio "Attiva manualmente un flusso".
- Pianificato: per esempio "Ricorrenza", il quale attiva il flusso periodicamente.

Ad ogni Trigger possono essere collegate, in serie o in parallelo, una moltitudine di Azioni, ciascuna responsabile di uno specifico compito, per esempio sono presenti le azioni "Inizializza variabile", "Avvia e attendi un'approvazione", "Teams - Crea una chat" e "OneDrive - Crea file".

Sono inoltre presenti azioni dedicate alla gestione logica dei flussi come "Condizione" e "Do until". La prima rappresenta la struttura di controllo rappresentata nei classici linguaggi di programmazione con "if", responsabile della ramificazione dell'esecuzione del flusso in base a una condizione specifica.

La seconda rappresenta la struttura di controllo rappresentata nei classici linguaggi di programmazione con "Do while", responsabile della ripetizione condizionata di un insieme di azioni garantendone sempre la prima esecuzione.

```
/// immagine esempio di flusso///
```

Successivamente è emersa, da parte del tutor aziendale, la necessità di integrare i flussi Power Automate con il *software* gestionale WOW e gli altri prodotti aziendali al fine di poter integrare le funzionalità desiderate con libertà mantenendo coordinate le diverse parti del prodotto.

Sono emersi quindi due requisiti: il primo, utile per apprendere le tecnologie in oggetto, è relativo alla creazione di un flusso che automatizzi un processo approvativo.

Il secondo, più concreto e integrabile con i prodotti aziendali, è basato sull'applicazione, ai flussi Power Automate, di chiamate $\operatorname{HTTP}(\operatorname{Hypertext\ Transfer\ Protocol})$: in italiano "protocollo di trasferimento ipertestuale" è un protocollo di rete, ovvero un insieme di regole formalmente descritte che definiscono le modalità di comunicazione tra due o più apparecchiature elettroniche, usato come principale sistema per la trasmissione d'informazioni sul web.

Esse permettono la comunicazione e lo scambio di dati tra flussi Power Automate e altri flussi o applicazioni: esiste infatti la possibilità di richiamare lo specifico Trigger "Alla ricezione di una richiesta HTTP" il quale genera un personale URL (Uniform Resource Locator), ovvero una sequenza di caratteri che identifica univocamente l'indirizzo di una risorsa su una rete di *computer*.

In seguito è possibile utilizzare la corrispondente azione "Response" al fine di rispondere al chiamante con l'output della richiesta.

1.1.4 DevOps

Plan

Code

Build

Test

Release

Deploy

Operate

Monitor

1.2 Progettazione

In questa sezione sono presenti tutte le attività progettuali da me svolte e il suo scopo è descrivere le modalità con cui ho individuato le soluzioni ai bisogni progettuali in modo da soddisfarne i requisiti.

1.3 Programmazione

In questa sezione sono presenti tutte le attività da me svolte al fine di sviluppare e implementare le soluzioni individuate in fase di progettazione.

1.4 Verifica e Validazione

In questa sezione sono presenti tutte le attività da me svolte al fine di verificare il corretto funzionamento delle soluzioni sviluppate e il loro soddisfacimento dei requisiti progettuali.

1.5 Risultati raggiunti

1.5.1 Qualitativamente

1.5.2 Quantitativamente

Glossario

- Continuous Deployment (CD) L'adozione di questo approccio consente di rilasciare nuove versioni del software in modo rapido e frequente, garantendo che le funzionalità siano disponibili per gli utenti finali in tempi brevi. Inoltre, il team di sviluppo non è più obbligato ad interrompere lo sviluppo per prepararsi ed effettuare i rilasci. Questi ultimi sono meno rischiosi poiché le modifiche apportate al prodotto sono tipicamente contenute ed è quindi più agevole identificare eventuali problemi. Infine il cliente ha la possibilità di fornire feedback costantemente potendo verificare ogni avanzamento. 6
- Continuous Integration (CI) Ogni integrazione viene verificata automaticamente attraverso l'esecuzione di test per rilevare rapidamente eventuali errori o conflitti nel codice. Il concetto della Continuous Integration è stato originariamente proposto come contromisura preventiva per il problema dell'"integration hell", ovvero le difficoltà dell'integrazione di porzioni di software sviluppati in modo indipendente su lunghi periodi di tempo e che di conseguenza potrebbero essere significativamente divergenti. 6
- DevOps Metodologia che enfatizza l'automazione, la condivisione di responsabilità e il miglioramento continuo, utilizzando strumenti e processi che supportano la Continuous Integration, il Continuous Deployment e il monitoraggio costante dei sistemi. 2
- HyperText Transfer Protocol (HTTP) Protocollo a livello applicativo, ovvero il livello più alto definito dal modello OSI (Open Systems Interconnection), il quale rappresenta uno *standard* architetturale per reti di calcolatori. Tale livello è responsabile della gestione delle comunicazioni tra applicazioni, fornendo i servizi necessari per lo scambio di dati strutturati e significativi tra *client* e *server*. 4
- Sistemi Sistemi S.p.A. è una società italiana partecipata con Wintech S.p.A. Essa possiede tecnologie ed ambienti di sviluppo dedicati al fine di creare soluzioni software gestionali e servizi per professionisti e imprese, soprattutto in ambiti relativi a studi professionali di commercialisti, consulenti del lavoro e avvocati, imprese e associazioni di categoria. 2

Bibliografia

Siti web consultati

```
Atlassian, Scrum. URL: https://www.atlassian.com/it/agile/scrum.

Documentazione Power Automate. URL: https://learn.microsoft.com/en-us/power-automate/.

Sistemi. URL: https://www.sistemi.com/chi-siamo/.

Wikipedia. URL: https://it.wikipedia.org/.

Wintech. URL: https://www.wintech.it/.
```