Particle spectrograph

Wave operator and propagator

$ au_1^{\#2}$	0	0	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$	
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3 k^2 (r_3 + 2 r_5) + 4 t_3}{(k + 2 k^3)^2 (r_3 + 2 r_5) t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	
${\mathfrak r}_1^{\#1}\!$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#2}_{+}\alpha_{\beta}~\tau_{1}^{\#1}_{+}\alpha_{\beta}$	0	0	0	0	0	0	0	
$\sigma_1^{\#1}{}_+\alpha\beta$	$\frac{1}{k^2 (2r_3+r_5)}$	0	0	0	0	0	0	
,	$_{1}^{\prime +1}+^{lphaeta}$	$_{1}^{\#2}$ $+^{\alpha\beta}$	$^{-#1}_{1}$ $^{+}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} + ^{\alpha}$	$\tau_{1}^{#2} + ^{\alpha}$	

Quadratic (free) action
== S
$\iiint (\frac{1}{6} \left(-4 t_3 \omega^{\alpha \prime}_{\alpha} \omega^{\kappa}_{\prime \kappa} + 6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} + 8 t_3 \omega^{\kappa}_{\alpha \kappa} \partial_{\prime} f^{\alpha \prime} - 8 t_3 \omega^{\kappa}_{\prime \kappa} \right)$
$\partial' f^{\alpha}_{\ \alpha} + 4 t_3 \partial_i f^{\kappa}_{\ \kappa} \partial' f^{\alpha}_{\ \alpha} - 3 r_3 \partial_{\beta} \omega_{\mu}^{\ \theta}_{\ \beta} \partial' \omega^{\alpha \beta}_{\ \alpha} - 3 r_3 \partial_i \omega_{\beta}^{\ \theta}_{\ \beta} \partial' \omega^{\alpha \beta}_{\ \alpha} -$
$3r_3 \partial_{\alpha} \omega^{\alpha \beta \prime} \partial_{\theta} \omega_{\beta}^{\ \ \ \prime} + 6r_3 \partial^{\prime} \omega^{\alpha \beta}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$6 r_3 \partial' \omega^{\alpha \beta}_{\ \alpha} \partial_\theta \omega^{ \theta}_{\ \prime} + 8 r_2 \partial_\beta \omega_{\alpha \prime \theta} \partial^\theta \omega^{\alpha \beta \prime} - 4 r_2 \partial_\beta \omega_{\alpha \theta \prime} \partial^\theta \omega^{\alpha \beta \prime} +$
$4r_2\partial_\beta\omega_{,\theta\alpha}\partial^\theta\omega^{\alpha\beta\prime} - 24r_3\partial_\beta\omega_{,\theta\alpha}\partial^\theta\omega^{\alpha\beta\prime} - 2r_2\partial_\gamma\omega_{\alpha\beta\theta}\partial^\theta\omega^{\alpha\beta\prime} + 2r_2\partial_\theta\omega_{\alpha\beta\prime}$
$\partial^{\theta}\omega^{lphaeta_{1}}$ - 4 r_{2} $\partial_{ heta}\omega_{lpha_{1}eta}$ $\partial^{ heta}\omega^{lphaeta_{1}}$ + 6 r_{5} $\partial_{i}\omega_{eta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$4t_3\partial_{\scriptscriptstyle{i}} f^{\alpha\prime}\partial_{\scriptscriptstyle{k}} f_{\alpha}^{} - 8t_3\partial^{\prime} f^{\alpha}_{}\partial_{\scriptscriptstyle{k}} f_{}^{\prime} - 6r_5\partial_{\alpha} \omega^{\alpha\prime\theta}\partial_{\scriptscriptstyle{k}} \omega_{\scriptscriptstyle{k}}^{\prime} + 12r_5\partial^{\theta} \omega^{\alpha\prime}_{}\partial_{\scriptscriptstyle{k}} \omega_{\scriptscriptstyle{k}}^{\prime} +$
$6 r_5 \partial_lpha \omega^{lpha i} \partial_\kappa \omega_{eta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

											$f_0^{\#1}$	ij-	$2k^{2}t_{3}$	0	
											$\omega_{0}^{\#1}$	<i>t</i> ₃	$i\sqrt{2kt_3}$	0	
ırs									l				f #2 + f	$\omega_{0^-}^{\#1} +$	<u>.</u>
herato	ities										$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2}$
ger	Multiplicities										$\tau_0^{\#2}$	0	0	0	0
/gauge	Mult	1	П	0 3	Ж	3	Ж	2	2	24	${\mathfrak r}_0^{\#1}$	$i \sqrt{2} k / (1 + 2k^2)^2 t_3$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
aints			0 ==	zα == 0						nts:		- <u>i</u> (1+	(1+2)		
Source constraints/gauge generators	SO(3) irreps	0 ==	$-2ik\sigma_{0}^{\#1} =$	$^{\prime}+2ik\sigma_{1}^{\#2}$	0 == ,	0 == _{θ1}	0 == θπ	0 == χ _θ χ	<i>t</i> _β == 0	Total constraints:	$\sigma_{0}^{#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
Sour	SO(3	$\tau_{0}^{\#2} =$	$\tau_{0}^{\#1}$ -	$t_1^{\#2}\alpha$	$\tau_{1}^{\#1\alpha}$	$t_1^{\#1}\alpha\beta$	$\sigma_{1}^{\#2}\alpha\beta$	$\sigma_{2}^{\#1}{}^{\alpha\beta\chi}$	$\tau_2^{\#1}\alpha\beta$	Tota		$\sigma_{0}^{\#1}$ \dagger	$\tau_{0}^{\#1} +$	$\tau_{0}^{\#2} +$	$\sigma_{0}^{\#1}$ †

 $\tau_{2^+}^{\#1}\dagger^{\alpha\beta}$

 $\sigma_2^{\#1}$ † $^{lphaeta\chi}$

 $\sigma_{2^{+}\alpha\beta}^{\#1}\ \tau_{2^{+}\alpha\beta}^{\#1}\ \sigma_{2^{-}\alpha\beta\chi}^{\#1}$

 $\omega_{2^{+}\alpha\beta}^{\#1} \ f_{2^{+}\alpha\beta}^{\#1} \ \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $\omega_{2}^{#1}$ † $^{lphaeta\chi}$

 $\frac{1}{3}\,\bar{l}\,\sqrt{2}\,\,k\,t_3$

 $\omega_{1}^{\#2} +^{\alpha}$

 $\omega_{1}^{\#1} +^{\alpha}$

 $\frac{2k^2t_3}{3}$

2 i k t 3

 $-\frac{2}{3}ikt_3$

 $\sqrt{2} t_3$

 $k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$

 $\omega_{1}^{\#2}{}_{\alpha}$

Massive and massless spectra

(No massive particles)

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$