MAE 206: Information Engineering: Basics on probability and statistics

Meryem Benammar

ISAE-Supaéro, DEOS

Context

Probability space

Discrete random variables and vector

Continuous random variables and vector

Where is Information? ...

Where is information contained?

- Numerical: digital data, text, DNA string,
- Audio: music (digital or analog), probe signals (rovers)
- Image: camera images, snapshots, paintings
- Video: high motion videos, live streams,

FIGURE - Source : icon-icons.com

Types of information: Semantic or quantitative

We focus on quantitative information!

What is Information Engineering (IE)?

Three families of algorithms

Mathematics behind IE

Where there is uncertainty \Rightarrow there is information!

Randomness (uncertainty): Probabilities and statistics

FIGURE - Source : www.sci-highs.com/

Information measurement : Information theory!

FIGURE - Source : www.rfi.fr/

In this course ...

Problem Based Learning:

- Mini-projects of 5 to 6 students
- PBL forward and return sessions
- Autonomy, rigor, organization, ...

In this course ...

- List and identify basic probability distributions (discrete and continuous)
- Master the operations on probability distributions
- List and analyze basic results from statistics
- Identify the notion of information to a measure of randomness
- Describe basic information engineering tools
- Evaluate information engineering tools from a probabilistic point of view
- Criticize and suggest improvements to these tools

Probability spaces

- Consider an *experiment* for which the output is unknown
- Output belongs to an alphabet set Ω :

Experiment	Alphabet Ω
	$\Omega = \{H, T\}$
	$\Omega = \{1, 2, 3, 4, 5, 6\}$
8 8	$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$

Events as sets: definition

Definition (Alphabet and Events)

- The set of possible outcomes Ω is called an Alphabet
- An event E is a subset of $\Omega : E \subseteq \Omega$
- An event space \mathcal{E} is the set of all possible events

Experiment	Alphabet Ω	Examples of events E	
	$\Omega = \{1, 2, 3, 4, 5, 6\}$	 Result is 1: E₁ = {1} Result is even: E₂ = {2, 4, 6} Result is ≥ 3: E₃ = {3, 4, 5, 6} Result is ≤ 6: E₄ = {1, 2, 3, 4, 5, 6} 	
	$\Omega = \{H,T\}$	 Result is H: E₁ = {H} Result is T: E₂ = {T} Result is whatever: E₃ = {H, T} Coin was lost: E₄ = {∅} 	

Events as sets: axioms

FIGURE - Set and event operations

Operation on event	Operation on sets
Event 1 and Event 2	$E_1 \cap E_2$
Event 1 or Event 2	$E_1 \cup E_2$
Not event 2	$E_2^c = \Omega \setminus E_2$
Event 1 except Event 2	$E_1 \setminus E_2$
Null event	Ø
Trivial event	Ω

Table - Set axioms

Probability measure

Definition (Probability measure)

Let Ω be an alphabet, $\mathcal E$ be its event space. A probability measure $\mathbb P$ is defined as

$$\mathbb{P}: \mathcal{E} \to [0, 1] \\
E \to \mathbb{P}(E)$$

where \mathbb{P} verifies the following axioms

- Exhaustivity : $\mathbb{P}(\Omega) = \sum_{w \in \Omega} \mathbb{P}(w) = 1$
- Additivity: if two events E_1 and E_2 are disjoint, then

$$E_1 \cap E_2 = \emptyset$$
 \Rightarrow $\mathbb{P}(E_1 \cup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2).$

Value $w \in \Omega$	Н	T] .	Event $E \subset \Omega$	$\{H\}$	{ <i>T</i> }	$\{H,T\}$	Ø
$\mathbb{P}(w)$	0.5	0.5	⇒	$\mathbb{P}(E)$	0.5	0.5	1	0

Table - Example : Fair coin toss

Probability measure: axioms

Event complement	$\mathbb{P}(E^c) = 1 - \mathbb{P}(E)$
Union of events	$\mathbb{P}(E_1 \cup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2) - \mathbb{P}(E_1 \cap E_2)$
Exustivity	$\sum_{w \in \Omega} \mathbb{P}(w) = 1$
Null event	$\mathbb{P}(\emptyset) = 0$
Elementary measures	$\mathbb{P}(E) = \sum_{w \in E} \mathbb{P}(w)$
Subsets	$E_1 \subset E_2 \Rightarrow \mathbb{P}(E_1) \leq \mathbb{P}(E_2)$

Probability space

Definition (Probability space)

A probability space $\mathcal{P} = (\Omega, \mathcal{E}, \mathbb{P})$ is defined by three components

- An alphabet set Ω representing a set of all possible outputs
- An event set \mathcal{E} consists in all possible subsets of the alphabet Ω
- A probability measure P

Experiment	Probability measure P	Probability space
Fair coin flip	• $\mathbb{P}_1(H) = 0.5$ • $\mathbb{P}_1(T) = 0.5$	$(\{H,T\},\mathcal{P}(\{H,T\}),\mathbb{P}_1)$
Rigged coin flip	• $\mathbb{P}_2(H) = 0.7$ • $\mathbb{P}_2(T) = 0.3$	$(\{H,T\},\mathcal{P}(\{H,T\}),\mathbb{P}_2)$

Random variables

Definition

Let us the a probability space $\mathcal{P} = (\Omega, \mathcal{E}, \mathbb{P})$ and $(\mathcal{X}, \mathcal{E}_X)$ a new sample. A random variable X is a mapping from Ω to \mathcal{X}

$$X: \Omega \to \mathcal{X}$$
 $w \to X(w).$

• The probability measure \mathbb{P}_X is defined, for all events E_x in \mathcal{E}_X

$$\mathbb{P}_X(E_T) = \mathbb{P}(X^{-1}(E_X)) = \mathbb{P}(\{w \in \Omega, X(w) \in E_T\})$$

• The probability space associated with X is $\mathcal{P}_X = (\mathcal{X}, \mathcal{E}_X, \mathbb{P}_X)$.

Random variables: examples

Consider a fair dice throw with the probability space:

$$\Omega = \{1, ..., 6\}$$
 , $\mathcal{E} = \mathcal{P}(\Omega)$, $\mathbb{P} = \left\{\frac{1}{6}, ..., \frac{1}{6}\right\}$

We can define a variety of random variables $X: w \to X(w)$

Event w	Random variable $X(w)$	Alphabet X	Probability \mathbb{P}_X
Value w	Output w itself: $X(w) = w$	$\mathcal{X} = \Omega$	$\mathbb{P}_X = \left\{ \frac{1}{6}, \dots, \frac{1}{6} \right\}$
Value w	Parity (even/odd) : $X(w) = w[2]$	$\mathcal{X} = \{0, 1\}$	$\mathbb{P}_X = \{0.5, 0.5\}$
Value w	Threshold value : $X(w) = (w \ge 3)$?	$\mathcal{X} = \{0, 1\}$	$\mathbb{P}_X = \{0.33, 0.666\}$
Value w	Square : $X(w) = w^2$	$\mathcal{X} = \Omega^2$	$\mathbb{P}_X = \left\{ \frac{1}{6}, \dots, \frac{1}{6} \right\}$

Contex

Probability space

Discrete random variables and vectors

Continuous random variables and vector

Probability mass function

Definition (Probability mass function (pmf))

The probability mass function of a discrete random variable X with associated probability measure \mathbb{P}_X is defined by

$$P_X: \mathcal{X} \to [0:1]$$

 $x \to P_X(x) = \mathbb{P}_X(X=x) = \mathbb{P}_X(\{x\})$

We have by definition of the pmf that

$$\sum_{x \in \mathcal{X}} P_X(x) = 1.$$

The probability mass function $P_X(\cdot)$ RULES them all!

Classical discrete random variables

1. Bernoulli of parameter p (Bern(p)) : Coin toss with Head probability p

2. Discrete uniform over the interval [1:K] (Unif ([1:K])): Fair dice throw

3. Binomial with parameter (n, p) (Binom(n, p)): number of heads in n coin flips

4. Constant variable equal to K (Const(K)): stale dice at value K

Moments: expectation and variance

Definition (Moments)

To each random variable X with pmf P_X are associated

• An expected (average) value $\mathbb{E}(X)$ (first order moment)

$$\mathbb{E}(X) \triangleq \sum_{x \in \mathcal{X}} x. P_X(x)$$

• A variance (squared standard deviation) V(X) (second order moment)

$$\mathbb{V}(X) \triangleq \mathbb{E}(X^2) - \mathbb{E}^2(X).$$

Examples:

Random law	Expectation $\mathbb{E}(X)$	Variance $\mathbb{V}(X)$
Bern(p)	p	p(1 - p)
Unif $([1:K])$	$\frac{K+1}{2}$	$\frac{K^2-1}{2}$
Const(K)	K	0

Pair of random variables: joint pmf

Let (X,Y) be a pair of random variables resulting from a joint experiment.

Definition (Joint pmf)

The joint pmf $P_{X,Y}$ associated with the pair (X,Y) is given by

$$\mathcal{X} \times \mathcal{Y} \rightarrow [0,1]$$

 $(x,y) \rightarrow P_{X,Y}(x,y) = \mathbb{P}(X = x \text{ and } Y = y)$

Examples: Tossing two coins

Pair of random variables: marginal pmfs

Definition (Marginal pmfs)

To the joint pmf $P_{X,Y}$ are associated two marginal pmfs P_X and P_Y defined by

$$P_X(x) = \sum_{y \in \mathcal{Y}} P_{X,Y}(x,y) , P_Y(y) = \sum_{x \in \mathcal{X}} P_{X,Y}(x,y)$$

Examples: Tossing two coins

Pair of random variables: joint and marginal pmfs

$$\sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} P_{X,Y}(x,y) = 1 \text{ and } \sum_{x\in\mathcal{X}} P_X(x) = \sum_{y\in\mathcal{Y}} P_Y(y) = 1$$

Pair of random variables: conditional pmfs

Definition (Conditional pmfs)

The conditional pmfs associated with $P_{X,Y}$ are defined by

$$P_{X|Y}(x|y) = \frac{P_{X,Y}(x,y)}{P_Y(y)} = \mathbb{P}\left(X = x|Y = y\right)$$

$$P_{Y|X}(y|x) = \frac{P_{X,Y}(x,y)}{P_X(x)} = \mathbb{P}\left(Y = y|X = x\right)$$

Examples: Tossing two coins

Pairs of random variables: conditional pmfs

Conditional pmf $P_{X|Y}$

	1 /1/1		
X		y	
x		$P_{X Y}(x y)$	

$$\sum_{x \in \mathcal{X}} P_{X|Y}(x|y) = 1$$

Bayes' formula

Definition

Let (X,Y) be a pair of random variables with joint pmf $P_{X,Y}$. Assume that we only know P_X and $P_{Y|X}$, then Bayes' formulae write as

$$P_{X|Y}(x|y) = \frac{P_X(x)P_{Y|X}(y|x)}{\sum_{x'} P_X(x')P_{Y|X}(y|x')}$$

Very useful in machine learning, signal processing (estimation, detection), communication engineering....

The joint pmf $P_{X,Y}$ RULES them all!

Random vectors

• A binary stream of n = 10 bits iid Bern(0.5)

$$U^k = (0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1)$$

• A random image of $n = 20 \times 20$ gray-level iid pixels

• n = 100 consecutive iid samples of a random noise Unif[-5:5]

Random vectors: joint pmf

Generalize to a vector of random variables $(X_1, ..., X_n)$.

Definition (Joint and marginal pmfs)

The joint pmf of the vector can be defined as $P_{X_1,...,X_n}$

$$\mathcal{X}_1 \times \dots \mathcal{X}_n \rightarrow [0,1]$$

 $(x_1,\dots,x_n) \rightarrow P_{X_1,\dots,X_n}(x_1,\dots,x_n) = \mathbb{P}(X_1 = x_1,\dots,X_n = x_n)$

To the joint pmf $P_{X_1,...,X_n}$ are associated n marginal pdfs

$$P_{X_i}(x_i) = \sum_{(x_1,\dots,x_n)\backslash x_i} P_{X_1,\dots,X_n}(x_1,\dots,x_n)$$

Example: Throwing a dice n consecutive times

Random vectors: chain rule

Definition (The chain rule)

The joint pmf can be expanded using the so-called chain rule as follows

$$P_{X_1,\dots,X_n}(x_1,\dots,x_n) = \prod_{i=1}^n P_{X_i|X_1,\dots,X_{i-1}}(x_i|x_1,\dots,x_{i-1})$$
$$= \prod_{i=1}^n \frac{P_{X_1,\dots,X_i}(x_1,\dots,x_i)}{P_{X_1,\dots,X_{i-1}}(x_1,\dots,x_{i-1})}$$

Example:

1. A set of variables (X_1, \ldots, X_n) are pairwise independent

$$P_{X_1,...,X_n}(x_1,...,x_n) = \prod_{i=1}^n P_{X_i}(x_i),$$

2. If, further, the variables are identically distributed (iid), i.e., they follow the same law P_X , then

$$P_{X_1,...,X_n}(x_1,...,x_n) = \prod_{i=1}^n P_X(x_i).$$

Continuous random variables and vectors

Probability density function: pdf

A continuous random variables X takes values over an interval \mathcal{X} in \mathbb{R} .

Definition (Probability density function)

Let X be a continous random variable $(X : \omega \to \mathbb{R})$, then the associated probability density function is denoted by f_X and verifies the following properties:

• Positivity:

$$\forall x \in \mathbb{R}, \quad f_X(x) \ge 0$$

• Exhaustivity:

$$\int_{x \in \mathcal{X}} f_X(x) \ dx = 1$$

• Interval probability:

$$\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) \ dx$$

Moments: expectation, variance, ...

Definition (Moments)

To each random variable X with pmf P_X pdf f_X are associated

• An expected value $\mathbb{E}(X)$ (first order moment)

$$\int_{x \in \mathcal{X}} x.f_X(x) \ dx.$$

• A variance V(X) (second order moment)

$$\mathbb{V}(X) \triangleq \mathbb{E}(X^2) - \mathbb{E}^2(X).$$

Properties (Moments)

1. The expectation is linear, i.e.,

$$\mathbb{E}(f(X)) = f\left(\mathbb{E}(X)\right)$$

for any linear transformation f.

2. For any constant α , we have that

$$\mathbb{V}(\alpha.X) = \alpha^2 \mathbb{V}(X).$$

3. For any constant c, we have that

$$\mathbb{V}(X+c) = \mathbb{V}(X).$$

Cumulative distribution function (cdf)

Definition (Cumulative distribution function (cdf))

Let X be a continuous random variable with associated pdf f_X . Then, to X is associated a cumulative distribution function (cdf) F_X defined by

$$F_X(a) = \mathbb{P}(X \le a) = \int_{-\infty}^a f_X(x) \ dx$$

FIGURE - Cumulative distribution function: integration

Cumulative distribution function (cdf)

Properties (Cumulative distribution function (cdf))

1. Exhaustivity

$$F_X(\infty) = 1$$

2. Increasing function

$$a_1 \le a_2 \Rightarrow F_X(a_1) \le F_X(a_2)$$

3. Positivity

$$F_X(-\infty) = 0$$

4. Relation to pdf

$$f_X(x) = \frac{\partial F_X}{\partial x}(x)$$

00000000000

Continuous random variables: examples

• Uniform over an interval [a:b] (\sim Unif [a,b])

• Gaussian with mean μ and variance σ^2 ($\sim \mathcal{N}(\mu, \sigma^2)$)

Continuous random vectors

Definition (Joint and marginal pds)

The joint pdf of the vector can be defined as $f_{X_1,...,X_n}$

$$\mathcal{X}_1 \times \dots \mathcal{X}_n \rightarrow [0,1]$$

 $(x_1,\dots,x_n) \rightarrow f_{X_1,\dots,X_n}(x_1,\dots,x_n)$

To the joint pdf $f_{X_1,...,X_n}$ are associated n marginal pdfs

$$f_{X_i}(x_i) = \int_{(x_1,...,x_n)\setminus x_i} f_{X_1,...,X_n}(x_1,...,x_n) dx_1...dx_n$$

Chain rule

$$f_{X_1,...,X_n}(x_1,...,x_n) = \prod_{i=1}^n f_{X_i|X_1,...,X_{i-1}}(x_i|x_1,...,x_{i-1})$$
$$= \prod_{i=1}^n \frac{f_{X_1,...,X_i}(x_1,...,x_i)}{f_{X_1,...,X_{i-1}}(x_1,...,x_{i-1})}$$

Law of large numbers

Theorem (Law of Large Numbers (LLN))

Let (X_1, \ldots, X_n) be n iid random variables, with pmf $P_X/pdf f_X$, and let $\mu = \mathbb{E}(X)$ be the expectation of X. The empirical mean \bar{X}_n of (X_1, \ldots, X_n) , defined by

$$\bar{X}_n \triangleq \frac{1}{n} \sum_{i=1}^n X_i$$

converges in probability, as n, grow infinite, to μ , i.e.,

$$\mathbb{P}\left(\lim_{n\to\infty}\bar{X}_n=\mu\right)=1.$$

Central limit theorem

Theorem (Central limit theorem (CLT))

Let (X_1, \ldots, X_n) be n iid random variables, with pmf $P_X/pdf f_X$, and let $\mu = \mathbb{E}(X)$ be the expectation of X and σ^2 be its variance. The random variable $Z_n = \sqrt{n}(\bar{X}_n - \mu)$ defined by

$$Z_n = \frac{\sqrt{n}}{n} \sum_{i=1}^n X_i - \mu$$

converges in distribution, as n, grow infinite, to a normal Gaussian distribution

$$\lim_{n \to \infty} \mathbb{P}\left(Z_n \le z\right) = \Phi(z).$$

where $\Phi(z)$ is the cdf of a normal Gaussian distribution.

Kullback-Leibler divergence

Definition (Kullback-Leibler (KL) divergence)

Let P_X and Q_X be two probability distributions on \mathcal{X} . The KL divergence between P_X and Q_X is defined as

$$D_{KL}(P_X||Q_X) \triangleq \sum_{x \in \mathcal{X}} P_X(x) \log \left(\frac{P_X(x)}{Q_X(x)}\right).$$

The KL is extensively used in statistical information engineering

Properties

The KL divergence verifies a certain set of properties:

- 1. Asymmetry: $D_{KL}(P_X||Q_X) \neq D_{KL}(Q_X||P_X)$.
- 2. Null element : $D_{KL}(P_X||P_X) = 0$.
- 3. Positivity: $D_{KL}(P_X||Q_X) > 0$, for all laws (P_X, Q_X) .