Subjectul 1

Se dă un graf neorientat conex cu n>3 vârfuri, m muchii, m>n și un vârf s.

Să se afișeze muchiile a doi arbori parțiali ai grafului, T1 și T2, dintre care unul, T1, este arbore de distante față de s ($d_{T1}(s, u) = d_G(s, u)$ pentru orice vârf u din G), iar celălalt, T2, nu este arbore de distanțe față de s. Se va afișa în plus un vârf u pentru care $d_{T2}(s, u) \neq d_G(s, u)$.

Complexitate O(m)

Informațiile despre graf se citesc din fișierul *graf.in* cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt câte 2 numere naturale reprezentând extremitățile unei muchii
- pe ultima linie este vârful s

 $(d_G(x,y) = distanța de la x la y în G)$

graf.in	Iesire pe ecran (solutia nu este unica)
45	T1:
12	12
13	13
23	2 4
2 4	T2:
3 4	12
1	2 3
	2 4
	u = 3

Subjectul 2

Se citesc informații despre un graf **orientat** ponderat G din fișierul graf.in. Fișierul are următoarea structură:

- Pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de arce m ale grafului, **m>n**
- Pe următoarele m linii sunt câte 3 numere întregi **pozitive** reprezentând extremitatea inițială, extremitatea finală și costul unui arc din graf
- Pe penultima linie este un număr natural b
- Pe ultima linie este un număr s reprezentând un nod sursă în graf.

În punctul s se află un călător care are bugetul b.

- a) Să se determine un cel mai depărtat nod v din graf la care călătorul poate ajunge din s printr-un drum (elementar) de cost cel mult b, cât să se încadreze în buget (acel vârf pentru care se obține $\max\{d(s,u)|\ d(s,u)\leq b,\ u\ vârf\ în\ V\}$ și să se afișeze un drum de cost minim de la s la v. Dacă sunt mai multe astfel de noduri se va alege cel cu indicele cel mai mic.
- b) Observând că un circuit este format totuși dintr-un drum și un arc, călătorul va mai roagă să determinați în plus dacă poate face un traseu de cost cel mult b care pornește din s și se termina tot în s fără a trece de mai multe ori prin același vârf, altfel spus să determinați dacă există un circuit elementar în G de cost mai mic sau egal cu b care conține s și, în caz afirmativ, să afisati un astfel de circuit. **Complexitate O(mlog(n))**

graf.in	lesire pe ecran
6 10	a)
151	v=3
1 6 10	1543
212	b)
413	1541
5 2 20	
5 4 4	
427	
435	
231	
623	
11	
1	

d(1, 2) = 12
d(1, 3) = 10
d(1, 4) = 5
d(1, 5) = 5
d(1, 6) = 1
d(1, 7) = 10
b = 11 => cele mai mari distanțe mai
mici sau egale cu 11 sunt d(1, 3) și
d(1, 7)

Subjectul 3

- a) Se dau un număr natural n și două șiruri de n numere naturale s_in și s_out. Folosind algoritmul de determinare a unui flux maxim într-o rețea de transport, să se determine, dacă există, un graf orientat G cu secvența gradelor de intrare s_in și cu secvența gradelor de ieșire s out. Se vor afișa arcele grafului dacă acesta există, și un mesaj corespunzător altfel.
- b) În cazul în care graful cerut la G nu există, să determine dacă există doua numere i, j cuprinse între 1 și n (nu neparat distincte) astfel încât se poate construi un graf G' cu secvența gradelor de intrare egală cu șirul obținut din s_in scăzând 1 din elementul i, și cu secvența gradelor de ieșire obținută din s_out scăzând 1 din elementul j. Se vor afișa arcele grafului G' dacă acesta există, și un mesaj corespunzător altfel.
- c) În cazul în care graful cerut la G nu există, determinați dacă există un multigraf orientat G cu secvența gradelor de intrare s_in și cu secvența gradelor de ieșire s_out fără bucle (arce cu extremitățile egale).

Secvențele s_in și s_out se vor citi din fișierul secvente.in cu următoarea structură: pe prima linie este n, pe a doua linie elementele lui s_in separate prin spațiu, iar pe a treia linie elementele lui s_out separate prin spațiu.

Complexitate $O(mn^2)$, unde m este suma numerelor din s_in

secvente.in	lesire pe ecran (solutia nu este unica)
3	a)
103	nu exista
220	b)
	13
	21
	2 3
	(i=3,j=1)
	c)
	13
	13
	21
	23