令和2年度 10月 データベーススペシャリスト試験 解答例

午後Ⅱ試験

問 1

出題趣旨

家電,センサ,太陽光発電機器などの機器をネットワークに接続して制御し,機器の稼働データを収集,蓄積したデータを集計,加工して情報提供を行うサービスが増えている。こうした分刻みに大量発生するデータを扱うシステムでは,特に性能に配慮した設計,テストが求められる。

本問は、ホームエネルギーマネジメントシステムと連携して収集、蓄積したデータを利用した情報提供サービスを例として、物理設計、データ操作、性能チューニングを行う能力を問うものである。具体的には、①論理データモデルを理解し、物理データモデルとして設計する能力、②適切なインデックスを設計し、評価する能力、③テストを計画し実施する能力、④RDBMS における処理性能の基礎数値を取得し、性能の妥当性を評価する能力を評価する。

設問			解答例・解答の要点	備考	
設問 1	(1)	世帯	世帯区分、地域コード		
	(2)	1	a 探索行数		
			b ページ当たり平均行数		
			c 探索行数		
			d 540,000		
			e 6,000		
			f 540,000		
			日別計(住居番号,年月日,電力区分,電力量)		
		3	最小読込みページ数 1		
=0.88.0	(1)		最大読込みページ数 120 cp. e.g.		
設問2	(1)		EROSS 距離		
			AVG(標準発電量) AS 平均標準発電量		
			GROUP BY 住居番号, 年月日, 時		
			SUM(発電量) AS 時間発電量		
	(2)	l			
	(-)		平均使用電力量=[地域コード、階級番号ごとの合計使用電力量の平均]		
		n	W3 の全行を選択		
		0	①の結果と地域を地域コードで内結合		
		р	PARTITION BY 地域コード ORDER BY 合計使用電力量 DESC		
設問3	(1)	1	分散するテーブルは住居番号が分散キーであり、ノード当たりの行数と		
			DB サーバの仕様が同じだから		
		2	・地域当たりの住居数が実データに近い比率で分散するように値を設定す		
			る。		
			・1 地域当たりの住居数が 100 となるように値を設定する。		
	(2)	差	異1 "機器ログ"テーブルは、住居番号、年月日順に行を追加したこと		
		٠. ٠	で、クラスタ率が高くなったこと		
		差	異2 処理2の実行によって、同時に実行される処理3が参照するページが		
			バッファから追い出されたこと		

出題趣旨

概念データモデリングでは、データベースの物理的な設計とは異なり、実装上の制約に左右されずに実務の 視点に基づいて、対象領域から管理対象を正しく見極め、モデル化する必要がある。そのために、業務内容な どの実世界の情報を総合的に理解・整理し、その結果を概念データモデルに反映する能力が求められる。

本問では、機械メーカの調達業務及び調達物流業務を例として、与えられた状況から概念データモデリングを行う能力を問うものである。具体的には、①トップダウンにエンティティタイプ及びリレーションシップを見抜く能力、②ボトムアップにエンティティタイプ及び関係スキーマを分析する能力、③概念データモデル及び関係スキーマを問題解決のために適切に変更する能力、④変更した概念データモデル及び関係スキーマを検証する能力を評価する。

