-Final Report-Tottenham Hotspur F.C. Scouting Problem

Youngchan Kim, Kunwoo Kim, Woojae Jeon, Taehyun Yang

I. Background: Overview & Problem Definition

Scenes from the movie Moneyball

In the movie *Moneyball* Oakland Athletics' General Manager Billy Beane utilized sabermetrics to evaluate his potential roster by performing data mining on hundreds of individual baseball players, identifying statistics that were highly predictive of how many runs a player would score, a number not typically among those valued by baseball scouts in the day. In doing so, Beane sought lower-cost ballplayers with high on-base percentages, as opposed to high-priced home run hitters with high batting averages. His theory was that players who have a higher on-base percentage would be more valuable, even though they may hit fewer home runs. The efforts proved remarkably effective. Beane was able to utilize predictive analytics to develop a highly successful team despite operating under a tight budget.

Digitization and the pandemic are forcing football clubs to rethink, digitize and improve their scouting processes. Due to the continuously increasing amount of available data and videos, it is nowadays possible to combine a systematic selection with a standardized scouting process, even with limited resources. Data Analytics does not aim to replace scouts. Rather, data analytics provides a valuable complement to the talent identification skills of scouts. A good scouting process consists of several phases and begins with data scouting.

Tottenham Hotspur F.C. is a football club based in London and competes in the Premier League. The club have won the league only twice about 60 years ago and ranked fourth this season(2021-22). Tottenham needs to improve the squad to go higher next year.

Every year after the season, the scouting team needs to find new players to scout and decide which players to release from the original squad. Transfers contain huge risk due to the

information asymmetry. Mr.Tot, the scouting manager, should consider two main points to minimize uncertainty and make the best transfer. 1) Whether the player is under-valuated or not, 2) whether the player's performance can contribute to improving team performance.

Mr.Tot wants to implement data analytics in the scouting process. Let's help out Mr.Tot as a research assistant. The scouting process will go through four big steps. 1) First, you will obtain information about players in the EPL market. This contains valuation, ratings, and other performance statistics. Through obtained information you will find players that are under-valuated. 2) Second, you will analyze the team's games this season and see what factors were the crucial to team's victory. 3) Third, you use linear programming to decide players to scout under certain constraints. 4) Last, you simulate next season with the new squad and estimate next year's victory points.

II. Questions

- 1. First of all, you decided to make a full list of under-valuated players from which you will choose players to scout. Use the given dataset.
 - a. Conduct a multiple linear regression analysis using given data sheet. Dependent variable should be 'valuation in 10 thousand pounds' while all the other variables be independent variables. However, you have to figure out which independent variables are valid predicting the dependent variable. Using 10% confidence level, detect independent variables which are not valid.
 - b. Conduct a multiple linear regression analysis one more time, after removing invalid variables found in (question 1.a.). How much of the variance of dependent variable is explained by the revised model? If the model doesn't explain well, what would be the reason? Briefly explain your thoughts.
 - c. From the regression model built in (b.), calculate each player's predicted value and add it in the list using a new column on the sheet.
 - d. Divide each player's value by their predicted value and add it in the list. Sort the list by V/PV in ascending manner. Wipe out ones whose values are over estimated.
- 2. As a team analyst for Tottenham Hotspur F.C., you would like to know how to improve your team's chances of winning. More specifically, you would like to know which factors in game play the biggest role in winning a game. You are given the data for every Tottenham player's statistics for every game played last season. A portion of the data is shown below:

									Summar	,																		
										Perform	nance				Expected		sc	Α			Total				Short			Medium
ID	Matchweek	Player		Nation	Pos	Age	Min	Gls	Ast	PK	PKatt	Sh	SoT	жG	npxG	хA	SCA	GCA	Cmp	Att	Cmp%	TotDist	PrgDist	Cmp	Att	Cmp%	Cmp	Att
12	1	Japhet Tanganga	25	eng ENG	R8	22	82	0	0	0	0	0	0	0	0	0.3	1	0	29	32	90.6	561	256	16	17	94.1	9	9
13	1	Matt Doherty		ie IRL	RB	29	8	0	0	0	0	0	0	0	0	0	0	0	3	6	50	44	11	1	1	100	1	3
14	1	Hugo Lloris	1	fr FRA	GK	34	90	0	0	0	0	0	0	0	0	0	0	0	17	27	63	847	675	3	3	100	1	1
15	2	Son Heung-min	7	kr KOR	PW	29	71	0	0	0	0	2	1	0.2	0.2	0	1	0	10	18	55.6	122	12	8	8	100	2	6
16	2	Harry Kane	10	eng ENG	FW	28	19	0	0	0	0	1	1	0.3	0.3	0.1	2	0	7	10	70	81	34	5	6	83.3	2	3
17	2	Steven Bergwijn	23	nl NED	LW	23	89	0	0	0	0	2	2	0.1	0.1	0.3	4	0	19	22	86.4	235	53	13	13	100	5	6
18	2	Harry Winks	8	eng ENG	CM	25	1	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0
15	2	Lucas Moura	27	br BRA	RW	29	66	0	0	0	0	0	0	0	0	0	0	0	12	15	80	188	96	6	7	85.7	6	8
20	2	Giovani Lo Celso	18	ar ARG	RW	25	24	0	0	0	0	0	0	0	0	0.1	1	0	10	12	83.3	145	50	6	6	100	3	3
21	2	Dele Alli	20	eng ENG	CM,LW	25	90	1	0	1	1	0	0	0.8	0	0	1	1	26	32	81.3	414	127	13	14	92.9	10	10
22	2	Pierre HĀ Jbjerg	5	dk DEN	CM	26	90	0	0	0	0	1	0	0.1	0.1	0	1	0	42	45	93.3	653	162	24	24	100	15	15
23	2	Oliver Skipp	29	eng ENG	DM	20	90	0	0	0	0	0	0	0	0	0	0	0	36	44	81.8	596	124	20	21	95.2	15	17
24	2	Sergio RegultĂ ^a n	3	es ESP	LB	24	90	0	0	0	0	0	0	0	0	0	1	1	29	44	65.9	461	319	14	15	93.3	14	24
25	2	Eric Dier	15	eng ENG	св	27	90	0	0	0	0	1	1	0.1	0.1	0	0	0	29	38	76.3	691	186	6	7	85.7	18	20
26	2	Davinson SĂinchez	6	co COL	св	25	90	0	0	0	0	0	0	0	0	0	0	0	30	33	90.9	680	253	4	4	100	22	23
27	2	Japhet Tanganga	25	eng ENG	R8	22	90	0	0	0	0	0	0	0	0	0	0	0	20	34	58.8	289	147	14	20	70	4	10
28	2	Hugo Lloris	1	fr FRA	GK	34	90	0	0	0	0	0	0	0	0	0	1	0	19	29	65.5	728	527	3	3	100	6	6
25	3	Harry Kane	10	eng ENG	FW	28	90	0	0	0	0	1	1	0.1	0.1	0.3	3	0	21	26	80.8	367	91	10	10	100	7	9
30	3	Steven Bergwijn	23	nl NED	LW	23	67	0	0	0	0	2	0	0.1	0.1	0	2	1	21	25	84	293	91	14	14	100	5	6
31	3	Lucas Moura	27	br BRA	RW	29	23	0	0	0	0	1	1	0	0	0	0	0	8	12	66.7	126	48	5	8	62.5	3	4
32	3	Son Heung-min	7	kr KOR	RW,LW	29	87	1	0	0	0	3	2	0.2	0.2	0.1	3	0	32	47	68.1	530	113	19	22	86.4	10	13
33	3	Bryan	11	es ESP	LW	20	3	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0

- a. As the team analyst, you would want to know what areas as a team need improvement based on history of previous matches. In order to do so, you want to know the team sum of all the stats for each match. For example, you want to know how many total goals Tottenham scored for match 2 or the total goal creating action (GCA) done by all team members to obtain insight. Create a table that lists total stats per match. (Keep in mind that some stats such as cmp%[% of completed passes], tkl% [%of tackle done successfully] are in %. Also, you can exclude individual stats: Nation, #, Pos, and Age)
- b. You received more data collected by your junior workers (aka student interns) about each match details. A portion of the data is shown below:

1	A	В	С	D	E	F	G	н	ı	J	К	L	М	N	О
1	Date	Time	Round	Venue	Result	GF	GA	Opponent	хG	xGA	Poss	Attendance	Captain	Formation	Referee
2	2021/08/15	(00:30)	1	Home	w	1	0	r City	1.3	1.9	36	58,262	Hugo Lloris	2004/03/03	Taylor
3	2021/08/22	(22:00)	2	Away	w	1	0	Wolves	1.5	1.4	43	30,368	Hugo Lloris	2004/03/03	Attwell
	2021/08/29		3	Home	w	1	0	Watford	0.9	0.6	56	57,672	Hugo Lloris	4-2-3-1	Marriner
5	2021/09/11	(20:30)	4	Away	L	0	3	Palace	0.1	2.4	38	26,000	Hugo Lloris	4-4-2◆	Moss
6	2021/09/19	(00:30)	5	Home	L	0	3	Chelsea	0.7	1.9	47	60,059	Hugo Lloris	4-3-2-1	Tierney
7	2021/09/26	(00:30)	6	Away	L	1	3	Arsenal	1	0.8	54	59,919	Hugo Lloris	2004/03/03	Pawson
8	2021/10/03	(22:00)	7	Home	w	2	1	Aston Villa	1.7	1.1	58	53,076	Hugo Lloris	4-2-3-1	Kavanagh
9	2021/10/17	(00:30)	8	Away	W	3	2	Utd	1.6	0.5	63	52,214	Hugo Lloris	4-2-3-1	Marriner
10	2021/10/24	(22:00)	9	Away	L	0	1	West Ham	0.7	1.2	61	59,924	Hugo Lloris	4-2-3-1	Tierney
11	2021/10/30	(01:30)	10	Home	L	0	3	r Utd	0.7	1.2	58	60,356	Hugo Lloris	4-2-3-1	Attwell
12	2021/11/07	(23:00)	11	Away	D	0	0	Everton	0.8	0.5	56	39,059	Hugo Lloris	2003/04/03	Kavanagh
13	2021/11/21	(01:30)	12	Home	W	2	1	United	2	1.1	43	58,989	Hugo Lloris	2003/04/03	Marriner
14	2022/02/23	(04:30)	13	Away	L	0	1	Burnley	0.9	1.1	64	19,488	Hugo Lloris	2003/04/03	Scott
15	2021/12/02	(04:30)	14	Home	W	2	0	Brentford	2.4	0.3	47	54,202	Hugo Lloris	2003/04/03	Moss

Using this data, calculate the average stats of all matches won and all matches not won (draw and losses). Then calculate the % difference that ranges from -1 to 1 where a positive number indicates a positive correlation of the stat, the higher the chance of the team winning and a negative number indicates a negative correlation of the stat.

- c. Sort the stats in ascending order and provide your insight into how Tottenham generally wins their games, why Tottenham doesn't win some of their games, and how Tottenham can potentially improve their chances of winning. List the 5 most detrimental factors and 5 most helpful factors that Tottenham can possibly work towards increasing their chances of winning.
- 3. To improve the club's performance, the managerial board asks for your advice on which players to scout during transfer season. The club can scout up to 2 players max for the next season, and wishes to primarily scout players that are currently undervalued in the league (found in question 1). Also, the team wishes to scout players that can improve the club's weaknesses (top 5 stats that have negative correlation with winning) and maintain or increase the team's strong points (top 5

stats that have positive correlation with winning). For this question, you will use the answers from question 1 and question 2 to suggest to the managerial board which new players to scout. Assume that Tottenham's goalkeeper Hugo Lloris has a life-long contract, so you can only scout defenders, midfielders, and forwards.

- a. Suppose that you wish to improve the team's core stat derived in question 2, while minimizing the budget. That is, you wish to find the cheapest way to scout players so that upon scouting, the team's aggregate strong stat increases or the team's weakness related stat decreases. There are 2 additional constraints in this problem. 1) You can scout up to 2 players from the undervalued players pool derived in question 1. 2) Tottenham uses a 3-4-3 formation, meaning if you wish to scout a midfielder, you have to let go of an existing midfielder from the club. You cannot change the formation. Which players should Tottenham seek to scout during the transfer season?
- b. Now suppose you get greedy with your improvements. The club wishes to scout players such that all your strong stats improve by 5%, while your weak stat is decreased by 5%. Which players should Tottenham sell and scout to achieve this with the cheapest budget?
- c. Now suppose the club does not care about minimizing budget. You can scout any players from the undervalued players pool. Re-solve the problem to find out the maximum team stat the team can achieve (Note that the 2 additional constraints still hold).
- 4. With the new squad derived in question 3, you will use simulation to predict Tottenham's league points next season. Assume that there are 38 matches per season, and the team/players' individual stats will not change next season (it is safe to use only 2021-22 season data for simulation). Follow these simulation steps.

[Simulation Steps]

- 1) Extract the new squad's players info data to a new spreadsheet. This spreadsheet should contain. The players' info contains each match data of the player. Only extract significant stats derived in question 2. For example, if the new squad contains Harry Kane, you will need to extract 10 columns of Kane's 2021-22 stats per match. Note that not all players appeared in all 38 matches.
- 2) Create a pivot-table to calculate each player's average and standard deviation per significant stat. The pivot-table will contain 10 rows of player names and 20 columns in total for the average and standard deviation of each stat.
- 3) Now aggregate the player's stat info. For example if Harry Kane's Shots on Target was 2 on average and Son's Shots on Target was 4 on average, we can assume that the total squad's Shots on Target is 6, if other player's Shots on Target is 0. Use the SUM function to aggregate the averages, and DEVSQ function to aggregate the standard deviations.
- 4) Simulate 10 columns worth of stat info for 38 games. Use averages and standard deviations calculated in step 3. For negative values, change it to 0.
- 5) Create a pivot-table of Tottenham's teams stat derived in question 2-b, but with only the relevant 10 stats needed. The cells in this pivot-table is the average of each stat per match outcome.
- 6) You wish to use the averages found in the previous step as threshold points to determine the match outcomes. For example, suppose the average of all the 10 stats in games won is 5. You look into the individual games-won info. Won-Game1's stat value is 6 for all 10 stats. Since there are 5 positive correlated stats and 5 negative correlated stats, you can say that Won-Game1 has gone past 5 of the threshold points (For negative correlated stats, you need to go below the team average to say you broke the threshold point). Calculate the number of

- threshold points broken by each game won, and calculate the average of this. Do this for losses as well.
- 7) Determine if the games were won, lost or drawn by using data from step 6 and applying it to step 4. In step 4 you calculated the simulated results of stats in 38 games with the new squad. In step 6, you calculated the threshold points for Tottenham to break in order to win (or lose). If none of the win and lose threshold points were broken, assume that match was drawn.
- 8) Calculate the total league points after 38 games. 3 points are earned when winning, 1 point is earned when drawing and none are earned when losing.
- 9) Simulate the above steps 1000 times. Calculate the average total league points Tottenham earns with the new squad.
- a. Use the simulation steps above with the new squad obtained in question 3-a. Chelsea, the team one standing above Tottenham, had a total of 74 league points during the 2021-22 season. With the new squad, could Tottenham beat Chelsea the next season?

III. Solutions

$1.\overline{c}$	a. In	10% confide	nce level,	MP	and Star	ts cor	ne d	out	to	be i	nvalid.
_4	Α	В	С	D	E	F	G	H	1	J	K
24		Coefficients	Std Err	LCL	UCL	t Stat	p-value	HO (10%)	VIF	TOL	Beta
25	Intercept	-15,200.98	52 3,108.1507	-20,334.6696	-10,067.3007	-4.8907	1.9178E-6	Rejected			
26	Age	-116.56	13 29.4442	-165.1938	-67.9288	-3.9587	0.0001	Rejected	1.0757	0.9296	-0.1850
27	MP	-20.62	63 29.1078	-68.7031	27.4506	-0.7086	0.4793	Accepted	6.3738	0.1569	-0.0806
28	Starts	16.35	65 25.4065	-25.6071	58.3200	0.6438	0.5204	Accepted	6.6792	0.1497	0.0750
29	Gls	196.12	89 32.0745	143.1520	249.1058	6.1148	4.2563E-9	Rejected	1.8314	0.5460	0.3728
30	Ast	163.06	44 51.0059	78.8187	247.3101	3.1970	0.0016	Rejected	1.8573	0.5384	0.1963
31	Cmp%	74.44	83 14.3862	50.6868	98.2098	5.1750	5.0602E-7	Rejected	1.2814	0.7804	0.2639
32	Rating	2,093.23	85 482.3264	1,296.5874	2,889.8895	4.3399	2.1581E-5	Rejected	2.4983	0.4003	0.3090
33	T (10%)	1.65	17								
34	LCL - Lower lin	nit of the 90% confidence inter	ral								
35	UCL - Upper li	mit of the 90% confidence inter	val								

_		
1	h	
- 1	rı	

	А	В	С	D	Е	F	G	Н	1	J	K
7	Regression St	atistics									
8	R		0.7378	R-Squared		0.5444	Adjusted R	-Squared	0.5343		
9	MSE		2,049,237.9242	S		1,431.5160	MAPE		55.8474		
10	Durbin-Watso	n (DW)	2.0444	Log likelihood		-2,011.9798					
11	Akaike inf. crit	terion (AIC)	17.3964	AICc		17.3975					
12	Schwarz criter	ion (BIC)	17.4855	Hannan-Quinn criter	rion (HQC)	17.4323					
13	PRESS		491,121,270.2896	PRESS RMSE		1,454.9577	Predicted I	R-Squared	0.5168		
24		Coefficients	Std Err	LCL	UCL	t Stat	p-value	H0 (10%)	VIF	TOL	Beta
25	Intercept	-16,375.8915	2,541.5016	-20,573.4961	-12,178.2868	-6.4434	########	Rejected			
26	Age	-115.4899	29.2254	-163.7593	-67.2205	-3.9517	0.0001	Rejected	1.0668	0.9374	-0.1833
27	Gls	190.2868	30.6910	139.5968	240.9768	6.2001	2.6528E-9	Rejected	1.6880	0.5924	0.3617
28	Ast	154.4567	49.3339	72.9756	235.9377	3.1308	0.0020	Rejected	1.7492	0.5717	0.1859
29	Cmp%	75.1166	14.2676	51.5519	98.6813	5.2648	3.2607E-7	Rejected	1.2688	0.7882	0.2663
30	Rating	2,232.7088	418.4783	1,541.5400	2,923.8776	5.3353	2.3134E-7	Rejected	1.8932	0.5282	0.3296
31	T (10%)	1.6516									
32	LCL - Lower lin	nit of the 90% confidence interval									
33	UCL - Upper li	mit of the 90% confidence interva	I								

The model explains about 55% the variance of the independent variable, that is quite low. The reason for this may be the nature of player's valuation where non-performance features such as fame or popularity comes into account as much as the performance factors considered in the model.

1.c.-d. Regression model should be "Valuation in 10 thousand pounds = - 16,375.8915 - 115.4899 * Age + 190.2868 * Gls + 154.4567 * Ast + 75.1166 * Cmp% + 2,232.7088 * Rating".

You can feed excel function to calculate PV, predicted value of each players as presented in column P. In turn you can feed another excel function to divide 'Valuation in 10 thousand pounds' column by 'PV' column. Sorting can be done by giving a filter to the headers of the columns.

2.a. Create a table with the same exact labels but excluding the players' names and their individual information. Create a new label for match number and fill the rest of the table with this formula: =SUMIF(\$B\$5:\$B\$535,\$F540,H\$5:H\$535). This formula sums the array (H\$5:H\$535) that contains the stats that you have to sum up, only if the match number (\$B\$5:\$B\$535) is equal to the match number we are looking for (\$F540). Remember that we have to account for data with %. Therefore for datas with % we add a /COUNTIF(\$B\$5:\$B\$535,F540). This divides the total % by number of player ran in each match so that we calculate the mean % of the desired stats. The result will look like the following:

2.b. Using the new data provided, create a new label indicating whether each match was a win or not a win. Using a filter, arrange the games by win/ not wins. Calculate the area of wins by using =AVERAGE(E539:E560) where (E539:E560) is the area of the wins. Do the same for not wins. Then use =(E578-E579)/(MAX(E578:E579)) for the % differences. (E578-E579)

					Perfor	mance				Expected		SC	:A			Total				Short			Medium			Long	
result		Min	Gls	Ast	PK	PKatt	Sh	SoT	хG	npxG	хA	SCA	GCA	Cmp	Att	Cmp%	TotDist	PrgDist	Cmp	Att	Cmp%	Cmp	Att	Cmp%	Cmp	Att	Cmp%
	1	990	1	1	0	0	14	2	1.2	1.2	0.9	21	2	240		74.31429	5030	2070	99		82.87857	92		69.75714	41		47.3285
	2	990	1	0	1	1	7	5	1.6	0.8	0.5	12	2	289	376		5283	2090	136	148		122		73.60714	28		28.4928
	3	990	1	0	0	0	15	8	0.9	0.9	0.6	20	2	438		75.79231	8156	2200	202		84.88462	187		81.23846	46		47.1923
	7	990	1	1	0	0	17	7	1.6	1.6	1.5	33	2	379		80.58462	6873	2495	174		92.50769	158		73.61538	39		49.1153
	8	990	3	3	0	0	14	4	1.7	1.7	1.5	23	6	542		83.63636	9345	3076	266		92.13636	220	252	82.17273	49		64.5454
	12	990	2	1	0	0	13	4	2.2	2.2	1.2	19	3	329		70.39286	6000	2367	138		80.72143	151	180	73.05	37		48.9142
	14	990	1	1	0	0	11	6	2.3	2.3	2	19	2	377		73.27143	7022	2234	162		76.13571	166	201	76.35	43		40.8142
	15	990	3	2	0	0	17	7	1.8	1.8	1.4	27	6	404		81.43571	7491	2356	197	218		135	161	81.22143	65		60.1785
	16	990	2	2	0	0	17	7	2.3	2.3	1	26	3	505		80.10714	8991	2491	243		86.34286	185	212	77.15	64		60.3785
	17	990	3	3	0	0	27	8	3.7	3.7	2.3	43	4	533		85.53571	10492	2794	188		87.69286	258		83.92143	77	99	
	19	990	3	3	0	0	17	6	2.6	2.6	2.3	31	6	571		86.45714	11114	3080	223		89.88571	270		83.61429	70		70.7071
	21	990	1	1	0	0	21	9	1.8	1.8	1.3	33	2	668	772		12241	3682	300		90.17143	287		90.32143	70		65.5571
	22	990	3	1	1	1	15	5	3.2	2.4	1.7	27	3	514		87.00714	10055	2329	196		86.53571	242		92.32857	73		61.1357
	26	990	3	3	0	0	6	5	1.9	1.9	1.8	12	6	258		70.75714	5055	1987	107		77.49286	105		75.32143	40		45.3928
	27	990	4	4	0	0	15	10	2.3	2.3	2.2	26	7	427		81.83571	8368	2930	161		85.74286	195	210	79.55	61	85	
	28	990	4	4	0	0	14	7	3	3	2.8	25	8	591		86.77857	10777	2916	247		92.74286	286	310	88.23571	54		51.7428
	30	990	2	2	0	0	17	4	2.3	2.3	2.3	27	4	555		86.74286	10199	2737	239		87.97857	247	267		66		52.821
	31	990	5	4	0	0	19	6	3.1	3.1	2.6	37	10	554		89.39286	10488	2629	196		95.56429	297		91.73571	53		57.264
	32	990	4	3	0	0	11	5	1	1	0.8	14	7	409	473		7703	2199	184	197		164		68.17857	54		71.657
	35	990	3	3	0	0	13	7	1.4	1.4	0.8	22	6	350		80.15714	7514	2548	116		82.16429	164		87.81429	68		60.335
	37	990	1	0	1	1	20	6	2.1	1.4	1.2	36	2	598		80.46923	12239	3298	210		87.18462	284		74.46154	97		60.330
	38	990	5	4	0	0	19	12	3.6	3.6	3.1	30	7	556		85.82143	10874	2981	212		93.62857	261		88.52143	76		57.935
	4	957	0	0	0	0	2	1	0.1	0.1	0	4	0	245		76.23077	4820	1766	106		75.26923	99		87.29231	36		47.223
	5	990	0	0	0	0	9	2	0.6	0.6	0.3	13	0	406	494	81.92857	7388	2121	179		88.57857	155		89.94286	55		64.164
	6	990	1	1	0	0	10	4	1.1	1.1	0.9	15	2	430	508	83.45	8394	2454	186	199		171		89.64286	65		63.128
	9	990	0	0	0	0	7	4	0.6	0.6	0.7	9	0	561	662	75.15714	10811	2759	208	225	86.17143	293	321	74.66429	58	104	56.071
win average		990		2.090909	0.136364	0.136364	15.40909	6.363636		2.059091	1.627273	25.59091									87.35418						
not win average		987.9375		0.25	0.125		9.5	2.875	1.075	0.975	0.80625	15.875		426.6875		78.14396		2450.25			84.83355	188.875			55.75	90.0625	
% difference		0.002083			0.083333			0.548214			0.504539				0.035242	0.033654	0.06221	0.062334	0.083443	0.065203	0.028855	0.07166	0.062463	-0.00894	0.035012	-0.04359	0.0015
		Formula for	E 578 =AVE	RAGE(E539:	E560)	Formula for	r E579~=AVE	RAGE(E561:	576)	Formula for	E580~=(E5	78-E579)/(N	AX(E578:E5	79))													

represents the win average- loss average and (MAX(E578:E579) will get the bigger number from win or loss. The data will look as such:

2.c. Transpose the data above and ascend the % differences to gain insight in what stats are most important in winning a game vs what stats are detrimental to the team.

-	-	6 differ∈ ↓↑	Performa	PKwon	
Corner			nce	PKWOII	0.3125
Kicks	Str	-0.81818	Long	KP	0.34728
Blocks	ShSv	-0.75758	Carries	CPA	0.36458
Outcome	Int	-0.55669	SCA	SCA	0.37966
Outcome	Blocks	-0.47419	Performanc	Sh	0.38348
Dribbles	Succ%	-0.42553	Dribbles	Megs	0.4375
Body Parts	Head	-0.34065	Expected	хG	0.50315
Pass Types	Dead	-0.28252	Expected	хA	0.50454
Performa nce	PKcon	-0.27273	Long	xΑ	0.50454
Body Parts	TI	-0.26621	Expected	npxG	0.52649
Corner Kicks	Out	-0.20455	Blocks	Err	0.54167
Outcome s	Off	-0.18881	Performanc	SoT	0.54821
Pass Types	FK	-0.17552	Pass Types	ТВ	0.70745
Blocks	Sh	-0.17125	SCA	GCA	0.8075
Carries	Mis	-0.15636			0.6073
Carries	Dis	-0.1342	Long	Ast	0.88043
Long	CrsPA	-0.12727			3.00043
Pressure s	Att 3rd	-0.12377	Performanc	Gls	0.91813
picture	it migh	nt not	Performanc	Ast	0.93487

Here on the left we see the top list of qualities that the more often seen, the lower the chances of the team winning (will be defined as detrimental) vs on the right top list of qualities that have a positive correlation with winning (will be defined as helpful). On the tail end of detrimental attributes are in order, # of straight corner kicks (str), # of times a shot was blocked by a target standing in its path (shsv), # of passes intercepted(int),# of passes Blocked by the opponent who was standing it the path (blocks), and % of dribbles succeeded (succ%). An interesting insight is that the # of straight corner kicks seems to be extremely detrimental to a team's victory. Although used as an offensive tool, corner kicks that are kicked in a straight motion might have to do with the FW's confidence or level of play. Another interesting point is shsv. Although if a Tottenham defender stands in the path of the opponent's shot might be a good thing in isolation, looking at the bigger be a reliable defense strategy. More rigid defense

tactic that pressures the opponent's offense might be a more 'skillful' type of defense that doesn't rely too heavily on the luck factor that comes from simply blocking by standing in its path.

Most helpful 5 stats are number of two offensive actions directly leading to a goal such as passes/dribbles/drawing fouls (Goal creating actions: GCA), # of Long passes that led to an assist (AST), # of Completed pass sent between back defenders into open space (TB), # of shots on target (SoT), actions leading to an opponent's error (Err). Since goals and assists are results of a winning game and these statistics don't provide insight to the game, we excluded them from potential factors. Another interesting insight is # of completed pass sent between back to defenders. Giving a pass to the backspace demonstrates a team's ability to use the field widely and proficiently penetrate through an empty space. This is why TB stats might be so important in winning a game.

3.a. The constraints and objective function are developed below. We let go of Son Heung-Min and Bentancur, and scout Jarrod Bowen and Philipppe Coutinho.

OBJ				Min	35900	=SUMPRODUCT(B26:B163,E26:E163)	
Constraints							
	FW Max	3	=	3		=B26+B27+B33+SUM(B75	:B115)
Squad	MF Max	3	=	3		=SUM(B116:B163)+B28+B	29+B30
	DF Max	4	=	4		=SUM(B36:B74)+B31+B32	+B34+B35
	SoT	159	>=	152.25	145	=SUMPRODUCT(\$B\$26:\$B\$1	.63,L26:L163)*1.05
	Ast	41	>=	36.75	35	=SUMPRODUCT(\$B\$26:\$B	\$163,M26:M163)*1.0
	ТВ	42	>=	37.8	36	=SUMPRODUCT(\$B\$26:\$B	\$163,N26:N163)*1.05
	GCA	91	>=	85.05	81	=SUMPRODUCT(\$B\$26:\$B	\$163,026:0163)*1.05
	Err	0	>=	0	0	=SUMPRODUCT(\$B\$26:\$B	\$163,P26:P163)*1.05
Stat	Succ%	504.9	<=	546		=SUMPRODUCT(\$B\$26:\$B	\$163,Q26:Q163)
	Str	4	<=	4		=SUMPRODUCT(\$B\$26:\$B	\$163,R26:R163)
	Int	325	<=	331		=SUMPRODUCT(\$B\$26:\$B	\$163,526:S163)
	Blocks	297	<=	300		=SUMPRODUCT(\$B\$26:\$B	\$163,T26:T163)
	ShSv	4	<=	4		=SUMPRODUCT(\$B\$26:\$B	\$163,U26:U163)
	MAX 2	2	<=	2		=SUM(B36:B163)	

3.b. The constraints and objective function are developed below. We let go of Emerson and Bergwijn, and scout Rob Holding and Michail Antonio.

OBJ				Min	33000	=SUMPR	RODUCT(B26:B163,E26:E163)	
Constraints								
	FW Max	3	=	3		C5	=B26+B27+B33+SUM(B75:B115)
Squad	MF Max	3	=	3		C6	=SUM(B116:B163)+B28+B29+B3	30
	DF Max	4	=	4		C7	=SUM(B36:B74)+B31+B32+B34-	+B35
	SoT	145	>=	145		C8	=SUMPRODUCT(\$B\$26:\$B\$163,L2	6:L163)
	Ast	37	>=	35		C9	=SUMPRODUCT(\$B\$26:\$B\$163,	M26:M163)
	ТВ	39	>=	36		C10	=SUMPRODUCT(\$B\$26:\$B\$163,	N26:N163)
	GCA	86	>=	81		C11	=SUMPRODUCT(\$B\$26:\$B\$163,	026:0163)
	Err	0	>=	0		C12	=SUMPRODUCT(\$B\$26:\$B\$163,	P26:P163)
Stat	Succ%	519.7	<=	546		C13	=SUMPRODUCT(\$B\$26:\$B\$163,	Q26:Q163)
	Str	4	<=	4		C14	=SUMPRODUCT(\$B\$26:\$B\$163,	R26:R163)
	Int	329	<=	331		C15	=SUMPRODUCT(\$B\$26:\$B\$163,	S26:S163)
	Blocks	296	<=	300		C16	=SUMPRODUCT(\$B\$26:\$B\$163,	T26:T163)
	ShSv	4	<=	4		C17	=SUMPRODUCT(\$B\$26:\$B\$163,	U26:U163)
	MAX 2	2	<=	2		C18	=SUM(B36:B163)	

3.c. The constraints and objective function are developed below. We let go of Pierre Højbjerg and Emerson, and scout Nathan Aké and Mohamed Elneny.

OBJ	Max	-635.1			B2	=SUMPRODUCT(\$B\$26:\$B\$163,L26:L163) +
						SUMPRODUCT(\$B\$26:\$B\$163,M26:M163) +
Constraints						SUMPRODUCT(\$B\$26:\$B\$163,N26:N163) +
	FW Max	3	=	3		SUMPRODUCT(\$B\$26:\$B\$163,026:0163) -
Squad	MF Max	3	=	3		SUMPRODUCT(\$B\$26:\$B\$163,Q26:Q163) -
	DF Max	4	=	4		SUMPRODUCT(\$B\$26:\$B\$163,R26:R163) -
						SUMPRODUCT(\$B\$26:\$B\$163,S26:S163) -
						SUMPRODUCT(\$B\$26:\$B\$163,T26:T163) -
					C5	=B26+B27+B33+SUM(B75:B115)
					C6	=SUM(B116:B163)+B28+B29+B30
					C7	=SUM(B36:B74)+B31+B32+B34+B35

4.a. The solution for each step is below.

1)

Player	Pos	Ast	SoT	GCA	ТВ	Str	Int	Blocks	ShSv	Err	Succ%
Son HeungMin	FW	0	1	0	0	0	0	0	0	0	10
Son HeungMin	FW	0	1	0	0	0	1	1	0	0	10
Son HeungMin	FW	0	2	0	0	0	2	2	0	0	7
Son HeungMin	FW	0	1	0	0	0	1	0	0	0	66.
Son HeungMin	FW	0	2	0	0	0	0	1	0	0	
Son HeungMin	FW	1	1	1	0	0	2	1	0	0	6
Son HeungMin	FW	0	1	0	0	0	1	0	0	0	
Son HeungMin	FW	0	1	0	0	0	1	1	0	0	10
Son HeungMin	FW	0	0	0	0	0	0	4	0	0	5
Son HeungMin	FW	0	0	0	0	0	2	2	0	0	10
Son HeungMin	FW	0	0	0	0	0	2	1	0	0	62.
Son HeungMin	FW	0	2	0	0	0	0	1	0	0	
Son HeungMin	FW	1	1	2	0	0	2	0	0	0	5
Son HeungMin	FW	0	1	0	0	0	1	2	0	0	
Son HeungMin	FW	0	2	0	0	0	1	0	0	0	10
Son HeungMin	FW	0	2	1	1	0	1	5	0	0	10
Son HeungMin	FW	1	1	2	0	0	2	4	0	0	71.4
Son HeungMin	FW	0	1	0	0	0	0	0	0	0	4
Son HeungMin	FW	0	2	0	0	3	3	2	0	0	

2)

Player	r Pool																	
Row Labels 1T	Average of Ast	Average of SoT	Average of GCA	Average of TB	Average of Str	Average of Int	Average of Blocks	Average of ShSv	Average of Err	Average of Succ%2	StdDev of Ast2	StdDev of SoT2	StdDev of GCA2	StdDev of TB2	StdDev of Str2	StdDev of Int2	StdDev of Blocks2	StdDev of ShSv2
Ben Davies	0.034482759	0.24137931	0.137931034	0	0	1.379310345	1.172413793	0.068965517	0	14.36896552	0.185695338	0.43549417	0.350931203	0	0	1.497946049	1.167077104	0.257880715
Dejan Kulusevski	0.375	0.5625	0.75	0	0	0.8125	1.375	0	0	38.53125	0.619139187	0.81394103	1	0	0	1.376892637	1.147460965	0
Emerson	0.032258065	0.129032258	0.129032258	0	0	1.193548387	1.838709677	0	0	30	0.179605302	0.340777101	0.427546137	0	0	1.249516035	1.485412944	0
Eric Dier	0	0.114285714	0.114285714	0.114285714	0	1.028571429	0.457142857	0.028571429	0	0	0	0.322802851	0.322802851	0.322802851	0	1.014185106	0.657215926	0.169030851
Harry Kane	0.243243243	1.378378378	0.567567568	0.513513514	0	1.72972973		0.027027027	0	57.92972973	0.547996624	1.186763839	0.800712896	1.145562007	0	1.465314692	1.382538033	0.164398987
Jarrod Bowen	0.277777778	0.916666667	0.583333333	0.138888889	0.111111111	1.05555556	1.30555556	0	0	32.08055556	0.614636297	0.937321412	0.967323258	0.424451093	0.398409536	1.040451672	1.237957868	0
Philipe Coutinho	0.157894737	0.842105263	0.315789474	0.157894737	0	1.210526316	0.894736842	0	0	49.12631579	0.501459857	0.688247202	0.671038298	0.374634325	0	1.315672509	0.87526103	0
Pierre Højbjerg	0.05555556	0.277777778	0.138888889	0.194444444	0	1.611111111	0.5	0	0	55.09166667	0.232310684	0.51331478	0.424451093	0.524782646	0	1.049565292	0.878310066	0
Ryan Sessegnon	0.133333333	0.066666667	0.266666667	0	0	0.8	1.333333333	0	0	13.88666667	0.351865775	0.25819889	0.457737708	0	0	0.941123948	1.2344268	0
Steven Bergwijn	0.04	0.4	0.12	0.04	0	0.4	0.24	0	0	15.6	0.2	0.645497224	0.331662479	0.2	0	0.645497224	0.435889894	(

3)

, *											
Aggregate AVG											
1.34954547	4.928792035	3.123494937	1.159027298	0.111111111	11.22085287	10.87364882	0.124563973		0 31.4569892		
=SUM(B13:B22)	=SUM(C13:C22)										
	Aggregate SD										
0.419042	348 0.8	07118538	0.625891873	1.157074	64 0.1428	57143 0.6470	082032 0.	.984134518	0.087136102		
=DEVSQ(L13:L2	22) =DEVSQ(N	113:M22)									

4)

	Need to eliminate negative values, assume negative values corresponds to 0											
Game Num		Ast	SoT	GCA	ТВ	Str	Int	Blocks	ShSv	Err	Succ%	
	1	1.521052566	5.128683705	3.280312251	1.87011788	0.063816452	12.01179049	10.5744338	0.17374372	0	48.00297602	
	2	1.370606791	4.165819666	2.692874713	1.640744553	0.09940537	12.05460531	10.65828765	0.138624825	0	-17.02178552	
	3	1.256006522	4.600127552	1.801032474	0.973855192	0.063798118	11.07411732	11.43240539	0.108372039	0	22.31747832	
	4	1.100563635	4.567574956	2.828749856	-0.192881022	-0.052186746	10.93189199	10.58119827	0.137312453	0	20.79226859	
	5	1.508517862	5.606547495	3.482734437	-0.302408834	0.221580637	12.08187723	10.51099181	0.104957849	0	96.02034965	
	6	1.297859446	4.784182984	2.814058906	-0.686877822	0.161369908	11.43792739	10.32460396	0.050624597	0	-35.3673063	
	7	1.546077433	4.335679667	3.5850388	-0.780183075	0.146956743	12.59377793	10.19025753	0.051932841	0	61.66357897	
	8	1.095786527	4.055950875	3.523381121	-1.367267072	-0.015437678	11.24468122	12.13576272	0.077852608	0	50.68366489	
	9	0.76173795	4.584196017	3.299137514	-0.639094751	0.413221764	10.42754567	11.00206589	-0.068219627	0	36.70511426	
	10	1.509806254	5.823433722	3.619692628	3.229935196	0.105228496	11.64664041	11.61022525	0.117716399	0	4.420591332	
	11	1.097290891	3.843085138	3.271969376	0.57153252	0.197142803	10.49179517	11.04151362	0.057764114	0	-41.71076995	
	12	1.324225935	5.401775932	2.926909423	1.459828581	0.367830019	11.52115767	9.26048608	0.160791587	0	46.46892677	
	13	1.170944091	4.518139891	2.808216574	-0.227829067	0.285904496	11.01614819	9.96410756	0.282410076	0	62.69096056	
	14	1.381823333	5.27658812	2.934127052	0.617953656	0.073495444	9.599520636	9.954004922	0.175046297	0	74.3775302	
	15	1.694890111	5.803141437	3.913668589	2.284622354	0.151382902	11.38791819	11.3985357	0.115925638	0	-24.27420322	
	16	1.886783622	5.84314353	3.45690448	0.53476462	-0.053086729	11.71779422	11.78668286	0.124983432	0	5.109701798	
	17	1.319039535	4.71655607	2.879283398	-0.643496417	0.339280424	11.15180696	10.60554073	0.202828135	0	56.48574629	
	18	1.035453441	5.075045559	2.905980522	0.546403693	0.238290098	11.09395892	11.43033633	0.027038415	0	61.21592604	
	19	1.029305336	2.998385133	3.88099165	0.111791598	0.262917118	10.79415021	8.825872875	0.161981169	0	70.49641117	
	20	1.81110564	4.76696427	2.789868633	0.037508897	0.199572876	11.54744673	10.66511246	0.098686966	0	5.877174296	
	21	1.088461957	4.860334099	3.433315623	-1.057888272	0.157183281	11.59563767	12.24940107	0.065185419	0	56.34105951	
	22	1.569014838	5.353890974	2.477872492	1.93577945	0.193616602	10.83747162	9.444938555	0.139833456	0	59.88499185	
	23	0.808171925	4.544704634	3.263901688	2.127113119	0.123320873	10.67092065	10.66034073	0.14141914	0	25.06070375	
	24	1.431470778	4.973410412	2.428057843	1.989027137	0.081255101	11.27512191	12.57766673	0.191382887	0	-16.26257262	
	25	1.781355133	3.962665781	2.929570145	1.692874703	0.209939048	11.10829834	10.51517876	0.317531064	0	33.00204602	
	26	0.74815425	5.391519254	1.313109577	1.988800675	0.017694619	11.07611906	10.20285634	0.286521128	0	-33.85040419	
	27	1.094581224	5.17065716	3.53749204	-0.178573104	0.116427404	11.12878849	9.713485433	0.270489672	0	37.45027797	
	28	0.769142981	5.96039611	1.854174384	1.274066197	0.028491595	10.78012337	11.23616163	0.039112577	0	18.45389656	
	29	1.205817547	5.81115932	2.918267301	0.672108071	0.274197518	10.30975982	11.79593918	0.127890755	0	72.35235645	
	30	1.656703789	5.738241557	3.453667257	0.377204107	0.086343535	11.23863419	11.50322394	0.228568286	0	86.72172635	
	31	1.103016401	5.678440143	2.98777493	2.49786976	0.140649535	12.22004445	10.89718225	0.174144551	0	37.43411286	
	32	0.753541484	6.008401181	2,4553674	2.28237505	0.026510866	11.53736416	12.18161622	0.078873888	0	-2.825681189	
	33	1.504699847	4.752596533	3.145051428	1.839628094	-0.027825891	11.52874344	11.56909519	0.107379416	0	74.86450297	
	34	0.792894978	4.420032909	3.931026349	0.861294954	0.125679277	11.35487463	11.13835699	0.121694975	0	36.03028026	
	35	1.679370669	5.569554407	3.996182732	1.02726565	0.183812062	10.89919599	9.025885876	0.075211032	0	45,47059654	
	36	1.474704942	3.288821601	2.836537927	1.716765845	0.316819296	10.99765364	11.07731823	0.226403389	0	39.60346761	
	37	1.432757328	4.390399891	1.770886181	2.980880833	0.420182297	12.37291326	9.19988656	0.329389271	0	39.88614242	
	38	0.678111017	3.598812675	2.973485401	1.172513269	0.020712271	11.53640407	10.81707562	0.192761111	0	65.14679629	

						gative Values				
Same Num	Ast	SoT	GCA	TB	Str	Int	Blocks	ShSv	Err	Succ%
1	1.521052566	5.128683705	3.280312251	1.87011788	0.063816452	12.01179049	10.5744338	0.17374372	0	48.00297602
2	1.370606791	4.165819666	2.692874713	1.640744553	0.09940537	12.05460531	10.65828765	0.138624825	0	(
3	1.256006522	4.600127552	1.801032474	0.973855192	0.063798118	11.07411732	11.43240539	0.108372039	0	22.31747832
4	1.100563635	4.567574956	2.828749856	0	0	10.93189199	10.58119827	0.137312453	0	20.79226859
5	1.508517862	5.606547495	3.482734437	0	0.221580637	12.08187723	10.51099181	0.104957849	0	96.0203496
6	1.297859446	4.784182984	2.814058906	0	0.161369908	11.43792739	10.32460396	0.050624597	0	
7	1.546077433	4.335679667	3.5850388	0	0.146956743	12.59377793	10.19025753	0.051932841	0	61.6635789
8	1.095786527	4.055950875	3.523381121	0	0	11.24468122	12.13576272	0.077852608	0	50.68366489
9	0.76173795	4.584196017	3.299137514	0	0.413221764	10.42754567	11.00206589	0	0	36.7051142
10	1.509806254	5.823433722	3.619692628	3.229935196	0.105228496	11.64664041	11.61022525	0.117716399	0	4.42059133
11	1.097290891	3.843085138	3.271969376	0.57153252	0.197142803	10.49179517	11.04151362	0.057764114	0	
12	1.324225935	5.401775932	2.926909423	1.459828581	0.367830019	11.52115767	9.26048608	0.160791587	0	46.4689267
13	1.170944091	4.518139891	2.808216574	0	0.285904496	11.01614819	9.96410756	0.282410076	0	62.6909605
14	1.381823333	5.27658812	2.934127052	0.617953656	0.073495444	9.599520636	9.954004922	0.175046297	0	74.377530
15	1.694890111	5.803141437	3.913668589	2.284622354	0.151382902	11.38791819	11.3985357	0.115925638	0	
16	1.886783622	5.84314353	3.45690448	0.53476462	0	11.71779422	11.78668286	0.124983432	0	5.10970179
17	1.319039535	4.71655607	2.879283398	0	0.339280424	11.15180696	10.60554073	0.202828135	0	56.4857462
18	1.035453441	5.075045559	2.905980522	0.546403693	0.238290098	11.09395892	11.43033633	0.027038415	0	61.2159260
19	1.029305336	2.998385133	3.88099165	0.111791598	0.262917118	10.79415021	8.825872875	0.161981169	0	70.4964111
20	1.81110564	4.76696427	2.789868633	0.037508897	0.199572876	11.54744673	10.66511246	0.098686966	0	5.87717429
21	1.088461957	4.860334099	3.433315623	0	0.157183281	11.59563767	12.24940107	0.065185419	0	56.3410595
22	1.569014838	5.353890974	2.477872492	1.93577945	0.193616602	10.83747162	9.444938555	0.139833456	0	59.8849918
23	0.808171925	4.544704634	3.263901688	2.127113119	0.123320873	10.67092065	10.66034073	0.14141914	0	25.0607037
24	1.431470778	4.973410412	2.428057843	1.989027137	0.081255101	11.27512191	12.57766673	0.191382887	0	
25	1.781355133	3.962665781	2.929570145	1.692874703	0.209939048	11.10829834	10.51517876	0.317531064	0	33.0020460
26	0.74815425	5.391519254	1.313109577	1.988800675	0.017694619	11.07611906	10.20285634	0.286521128	0	
27	1.094581224	5.17065716	3.53749204	0	0.116427404	11.12878849	9.713485433	0.270489672	0	37.4502779
28	0.769142981	5.96039611	1.854174384	1.274066197	0.028491595	10.78012337	11.23616163	0.039112577	0	18.4538965
29	1.205817547	5.81115932	2.918267301	0.672108071	0.274197518	10.30975982	11.79593918	0.127890755	0	72.3523564
30	1.656703789	5.738241557	3.453667257	0.377204107	0.086343535	11.23863419	11.50322394	0.228568286	0	86.7217263
31	1.103016401	5.678440143	2.98777493	2.49786976	0.140649535	12.22004445	10.89718225	0.174144551	0	37.4341128
32	0.753541484	6.008401181	2.4553674	2.28237505	0.026510866	11.53736416	12.18161622	0.078873888	0	57.4541120
33	1.504699847	4.752596533	3.145051428	1.839628094	0.020310000	11.52874344	11.56909519	0.107379416	0	74.8645029
34	0.792894978	4.420032909	3.931026349	0.861294954	0.125679277	11.35487463	11.13835699	0.121694975	0	36.0302802
35	1.679370669	5.569554407	3.996182732	1.02726565	0.183812062	10.89919599	9.025885876	0.075211032	0	45.4705965
36	1.474704942	3.288821601	2.836537927	1.716765845	0.316819296	10.99765364	11.07731823	0.226403389	0	39.6034676
37	1.432757328	4.390399891	1.770886181	2.980880833	0.420182297	12.37291326	9.19988656	0.329389271	0	39.8861424
38	0.678111017	3.598812675	2.973485401	1.172513269	0.020712271	11.53640407	10.81707562	0.192761111	0	65.1467962
30	5.070111017	3.330012073	2.575405401	1.1/2313203	0.020/122/1	11.33040407	10.01707302	3.132/01111	J	05.140/502

5)										
Spurs Data										
Row Labels	Average of Ast	Average of SoT	Average of GCA	Average of TB	Average of Str	Average of Int2	Average of Blocks	Average of ShSv	Average of Erra	Average of Succ%
D	0.4	3.6	1.6	1.4	0	15.8	20.2	0.2	0	31.9032967
L	0.181818182	2.545454545	0.545454545	0.272727273	0.363636364	14.54545455	14.72727273	0.181818182	0.090909091	32.80689311
W	2.090909091	6.363636364	4.545454545	2.136363636	0.045454545	14.22727273	15.86363636	0.045454545	0.136363636	25.51452411
Grand Total	1.315789474	4.894736842	3	1.5	0.131578947	14.52631579	16.10526316	0.105263158	0.105263158	28.466101

Tottenham earns 81 points after the new squad. This is higher than Chelsea's points so we can assume Tottenham can have better standings the next season.

Simulation		Points				MIN POINTS				
1	SimTable	80				IVII	N POII	V13		
2	0	74	1							
3	0.001002	78								
4	0.00200401	80								
5	0.00300601	74			01 0					
6	0.00400802	74					4			
7	0.00501002	84				Ο.	┻•┖			
8	0.00601202	82								
9	0.00701403	88								
999	0.998998	76								
1000	1	84								