Capítulo 13. "Método Simplex"

Oscar S. Dalmau Cedeño dalmau@cimat.mx

25 de septiembre de 2018

Resumen
 Programación Lineal
 Optimalidad y dualidad

El método Simplex Geometría del punto factible El método Simplex

Forma estándar

Forma estándar de un problema de programación lineal (PL).

$$\min \mathbf{c}^T \mathbf{x}, \quad s.a: \quad A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \succeq 0. \tag{1}$$

Problema dual

Cual es el problema dual de

$$\min \mathbf{c}^T \mathbf{x}, \quad s.a: \quad A\mathbf{x} = \mathbf{b}, \quad \mathbf{x} \succeq 0. \tag{2}$$

Condiciones de Optimalidad

Lagrangiano:

$$\mathcal{L}(x,\pi,s) = \boldsymbol{c}^T \boldsymbol{x} - \pi^T (Ax - b) - s^T x. \tag{3}$$

Condiciones KKT.

$$A^T \pi + s = c, (4)$$

$$Ax = b, (5)$$

$$x \geq 0, \tag{6}$$

$$s \geq 0, \tag{7}$$

$$x_i s_i = 0, i = 1, 2, \dots, n.$$
 (8)

Problema Primal-Dual

Problema	$\min c^T x \ s.a: \ Ax = b; \ \boldsymbol{x} \succeq 0.$	$\max b^T \pi \ s.a: \ c-A^T \pi \geq 0.$
Lagrangiano	$\mathcal{L}_P(x, \pi, s) = c^T x - \pi^T (Ax - b) - s^T x$	$\mathcal{L}_D(\pi, x) = -b^T \pi - x^T (c - A^T \pi)$
ККТ	$\nabla_x \mathcal{L}(x, \pi, s) = 0, \Leftrightarrow s = c - A^T \pi,$	$\nabla_{\pi} \mathcal{L}(\pi, x) = 0, \Leftrightarrow Ax = b,$
	Ax = b,	$s \stackrel{def}{=} c - A^T \pi \ge 0,$
	$x \succeq 0$,	$s \ge 0$,
	$s \ge 0$,	$\boldsymbol{x}\succeq 0,$
	$\boldsymbol{x}_i s_i = 0.$	$[c - A^T \pi]_i \boldsymbol{x}_i = s_i \boldsymbol{x}_i = 0.$

Cuadro: Primal - Dual

Teorema de Dualidad

Teorema 13.1: "Teorema de Dualidad de la PL"

- i) Si un problema de PL o su dual tienen una solución con valor finito en la función objetivo, entonces el otro problema también tendrá solución y los valores de la función objetivo son iguales.
- ii) Si un problema de PL o su dual tienen función objetivo no acotada, entonces el otro problema no tiene puntos factibles.

Observaciones

- Sea x^*, π^*, s^* una solucion de las condiciones KKT anteriores entonces el valor de las funciones objetivo del primal y el dual en dicho punto es el mismo, i.e., $c^Tx^*=b^T\pi^*$.
- x^* es una solución global del problema original, $c^T x \ge c^T x^*$ para x factible.
- π^* es una solución global del problema dual, $b^T\pi \leq b^T\pi^*$ para π factible.

En el problema (1) siempre se asumirá que la matriz $A \in \mathbb{R}^{m \times n}$ es de rango completo, luego rango(A) = m Si x es un punto factible con a lo mas 'm' componentes no ceros. Sea además $\mathcal{B}(x)$ un subconjunto de índices de $\{1,2,\ldots,n\}$ de forma tal que:

- $\mathcal{B}(x)$ contiene exactamente m indices;
- $i \notin \mathcal{B}(x) \Rightarrow \mathbf{x}_i = 0$;
- La matriz $B \in \mathbb{R}^{m \times m}$ se define como:

$$B = [A_i]_{i \in \mathcal{B}(x)} \tag{9}$$

en no singular, donde A_i es la i-ésima columna de la matriz A.

- Si x se obtiene segun lo anterior es un punto básico y si ademas cumple las KKTs es un punto básico factible de (1).
- El simplex genera una secuencia de puntos básicos factibles.

Teorema 13.1: "Teorema Fundamental de la PL"

- i) Si existe un punto factible para (1) entonces existe un punto básico factible.
- ii) Si (1) tiene solución, entonces una de estas soluciones es un *punto básico óptimo*.
- iii) Si (1) es factible y acotado, entonces tiene una solución óptima.

Teorema 13.3:

Todos los puntos básicos factibles de (1) son los vértices del polytopo factible $\{x|Ax=b,\ x\succeq 0\}$ y viceversa.

Definición:

Se dice que \mathcal{B} está degenarado si existe un indice $i \in \mathcal{B}$ tal que $x_i = 0$, donde x es una solución básica factible.

Un problema de programación Lineal (PL) se dice degenerado si tiene al menos una base degenerada,

Suponggamos que el problema PL no es degenrado y sea \mathcal{B} definida como en (9), \mathcal{N} el complemento de \mathcal{B} , es decir

$$\mathcal{N} = \{1, 2, \dots, n\} \setminus \mathcal{B} \tag{10}$$

Sea la submatriz $N = [A_i]_{i \in \mathcal{N}}$. Sea también la siguiente partición.

$$x_B = [x_i]_{i \in \mathcal{B}}, \quad x_N = [x_i]_{i \in \mathcal{N}}, \quad s_B = [s_i]_{i \in \mathcal{B}}, \quad s_N = [s_i]_{i \in \mathcal{N}}.$$
(11)

A partir de la KKT1

$$Ax = bx_B + Nx_N = b (12)$$

Haciendo $s_B=0$ y $\boldsymbol{x}_N=0$ se logra que se cumpla la condición de complementariedad.

Si
$${m x}_N=0$$
 entonces ${m x}_B=B^{-1}b$. Supongamos además que ${m x}_B\succeq 0$

Entonces $x \succeq 0$ y $s_B \succeq 0$

Calculemos s_N

De forma análoga, a partir de $s_B=0$ y la primera KKT

$$A^{T}\pi + s = c$$

$$\begin{bmatrix} B^{T} \\ N^{T} \end{bmatrix} \pi + \begin{bmatrix} s_{B} \\ s_{N} \end{bmatrix} = \begin{bmatrix} c_{N} \\ c_{N} \end{bmatrix}$$

y por tanto

$$\pi = B^{-T} \boldsymbol{c}_{N},$$

$$\boldsymbol{s}_{N} = c_{N} - N^{T} \boldsymbol{\pi} = c_{N} - (B^{-1}N)^{T} \boldsymbol{c}_{N}.$$

Si $s_N \succeq 0$ se cumplen todas las KKTs y se llegó a una solución.

- Sin embargo, el caso mas común es que exista algún índice 'q' para el cual $s_q = (s_N)_q < 0$.
- El nuevo *índice de entrada* de \mathcal{B} es seleccionado de alguno de los índices 'q' para el cual $s_q < 0$.

Las ideas para modificar \mathcal{B} , x y s en cada iteración son:

- Hacer que x_q crezca desde cero.
- Fijar el resto de las componentes de x_N a cero.
- Analizar el efecto el de incrementar x_q en la solución actual x_B , teniendo en cuenta que la nueva solución sea factible, es decir, debe cumplir, Ax = b
- Incrementar x_q hasta que una componente de x_B se haga cero (ie. x_p) si existe entonces hay solución, de lo contrario el problema es no acotado.
- Eliminar el índice 'p' de B y añadir el índice 'q'.

Sea x^+ la nueva solución y x la solución actual, entonces

$$A\boldsymbol{x}^+ = A\boldsymbol{x} = \boldsymbol{b}$$

.

Puesto que $x_N=0$, entonces $x_i^+=(x_N^+)_i=0$, para toda $i\in\mathcal{N}\setminus q$, ie, $x_N^+=[0,\cdots,x_q^+,\cdots,0]^T$. Luego

$$b = Ax^{+} = Bx_{B}^{+} + Nx_{N}^{+} = Bx_{B}^{+} + A_{q}x_{q}^{+}$$
 (13)

Por otro lado

$$b = Ax = Bx_B + Nx_N = Bx_B$$
$$x_B = B^{-1}b$$

Luego

$$B\boldsymbol{x}_{B}^{+} + A_{q}\boldsymbol{x}_{q}^{+} = B\boldsymbol{x}_{B} \tag{14}$$

Y por tanto

$$\mathbf{x}_B^+ = \mathbf{x}_B - B^{-1} A_q x_q^+$$

$$\mathbf{x}_N^+ = [0, \cdots, x_q^+, \cdots, 0]^T$$

Nota: Cualquier valor de x_q^+ genera una solucion del sistema Ax=b, pues, en general el sistema Ax=b tiene infinitas soluciones de la forma $\hat{x}_B=B^{-1}(b-N\hat{x}_N)$ para cualquier vector \hat{x}_N .

La idea ahora es encontrar la menor $\lambda=x_q^+$ para la cual exista una componente de \boldsymbol{x}_B^+ que se anule (se hace crecer x_q^+ mientras no se incumplan las restricciones, ie hasta la frontera).

$$egin{array}{lll} oldsymbol{d} \lambda &=& oldsymbol{x}_B \ oldsymbol{d} &:=& B^{-1}A_q \end{array}$$

es decir,

$$\lambda = (\boldsymbol{x}_B)_{p_1}/d_{p_1}$$
 $\lambda = (\boldsymbol{x}_B)_{p_2}/d_{p_2}$
 \dots
 $\lambda = (\boldsymbol{x}_B)_{p_m}/d_{p_m}$

Solo se consideran las entradas positivas de d_i , pues $x_B \succeq 0$ y λ tiene que ser mayor o igual a cero, ie, $x_a^+ \geq 0$.

- De momento consideremos el caso no degenerado, ie, $x_B \succ 0$, pues el caso degenarado se puede ciclar, ver Nocedal o la regla de Bland (Bland's rule) para evitar que se cicle.
- Finalmente

$$\lambda = \min_{i|d_i>0} \frac{(\boldsymbol{x}_B)_i}{d_i}$$

donde d es la solución del sistema $Bd=A_q$ (es decir, $d=B^{-1}A_q$).

• El índice 'p' a intercambiar se calcula mediante $p = \arg \min_{i|d_i>0} \frac{(x_B)_i}{d_i}.$

- Luego, de hace $x_q^+ = \lambda$
- ullet Y encontramos un nuevo punto factible $oldsymbol{x}^+ = [oldsymbol{x}_B^+; oldsymbol{x}_N^+]$, con

$$\boldsymbol{x}_{B}^{+} = \boldsymbol{x}_{B} - B^{-1} A_{q} \boldsymbol{x}_{q}^{+}$$

 $\boldsymbol{x}_{N}^{+} = [0, \cdots, \boldsymbol{x}_{q}^{+}, \cdots, 0]^{T}$

- Obtenemos los indices $\mathcal{B}(x^+) = \mathcal{B}(x) \cup \{q\} \setminus \{p\}$, $\mathcal{N}(x^+) = \mathcal{N}(x) \cup \{p\} \setminus \{q\}$ y las nuevas matrices B, N respectivamente.
- Se calcula

$$\boldsymbol{s}_N = c_N - (B^{-1}N)^T \boldsymbol{c}_N.$$

y se verifica nuevamente si $s_N \succeq 0$. Se repite el proceso hasta encontrar una solución o se encuentra que el problema no es acotado.

Procedimiento 13.1 "Un paso del Simplex "

Dado
$$\mathcal{B}$$
, \mathcal{N} , $\boldsymbol{x}_B = B^{-1}b \succeq 0$, $\boldsymbol{x}_N = 0$;

- Resolver $B^T\pi = c_N$ para λ ;
- Determinar $s_N = c_N N^T \pi$;
- Si s_N ≥ 0 Parar "Se llegó a la solución";
- Seleccionar $q \in \mathcal{N}$ de modo que $s_q < 0$ como el *índice de* entrada;
- Resolver $Bd = A_q$ para t;
- Si d ≤ 0 Parar "El problema es no acotado";
- Calcular $x_q^+=\min_{i|d_i>0}\frac{(x_B)_i}{d_i}$, y $p=\arg\min_{i|d_i>0}\frac{(x_B)_i}{d_i}$ denota el índice de la variable básica donde se alcanza el mínimo;
- Actualizar $x_B^+ = x_B dx_q^+, \ x_N^+ = [0, 0, \dots, x_q^+, \dots, 0, 0]^T;$
- Actualizar \mathcal{B} añadiendo q y quitando p, Actualizar \mathcal{N} .

El Simplex require de un punto básico factible (PBF), existen varias estrategias para inicializar este método.

- Como afecta el procedimiento anterior a la funcion objetivo?
- El valor de la funcion objetivo para la nueva x^+ es

$$\begin{split} \boldsymbol{c}^T \boldsymbol{x}^+ &= \boldsymbol{c}_N^T \boldsymbol{x}_B^+ + c_N^T \boldsymbol{x}_N^+ \\ &= \boldsymbol{c}_N^T (\boldsymbol{x}_B - B^{-1} A_q \boldsymbol{x}_q^+) + c_q \boldsymbol{x}_q^+ \\ &= \boldsymbol{c}_N^T \boldsymbol{x}_B - \boldsymbol{c}_N^T B^{-1} A_q \boldsymbol{x}_q^+ + c_q \boldsymbol{x}_q^+ \\ &= \boldsymbol{c}_N^T \boldsymbol{x}_B - \boldsymbol{\pi}^T A_q \boldsymbol{x}_q^+ + c_q \boldsymbol{x}_q^+ & (\boldsymbol{\pi} = B^{-T} \boldsymbol{c}_N) \\ &= (\boldsymbol{c}_N^T \boldsymbol{x}_B + c_N^T \boldsymbol{x}_N) - (c_q - s_q) \boldsymbol{x}_q^+ + c_q \boldsymbol{x}_q^+ \\ &\qquad \qquad (\text{por KKT1}, \, c_N^T \boldsymbol{x}_N = 0) \\ &= \boldsymbol{c}^T \boldsymbol{x} + s_q \boldsymbol{x}_q^+ \end{split}$$

Luego $\boldsymbol{c}^T\boldsymbol{x}^+ \geq \boldsymbol{c}^T\boldsymbol{x}$ pues $s_qx_q^+ \leq 0$, es decir, la funcion no crece.

Nota que si en

$$\boldsymbol{x}_{B}^{+} = \boldsymbol{x}_{B} - dx_{q}^{+}$$

con $d=B^{-1}A_q$ se tiene que $d\prec 0$, entonces $x_B^+\succeq 0$ para todo $x_q^+\geq 0$. Haciendo $x_q^+\to \infty$ y como $s_q<0$, a partir de

$$\boldsymbol{c}^T \boldsymbol{x}^+ = \boldsymbol{c}^T \boldsymbol{x} + s_q x_q^+$$

entonces $c^Tx^+ \to -\infty$, es decir, el problema es no acotado!

Problemas: https://neos-guide.org/Case-Studies **Ejemplos:** Agregando **variables de holgura**.

$$\min 6x_1 + 4x_2 + 3x_3$$

Sujeto a:

$$4x_1 + 5x_2 + 3x_3 \leq 12$$

$$3x_1 + 4x_2 + 2x_3 \leq 10$$

$$4x_1 + 2x_2 + x_3 \leq 8$$

$$x_1, x_2, x_3 \geq 0$$

El problema se puede representar como:

$$\min a^T y \quad s.a: \quad My \le b, \quad y \ge 0.$$

donde
$$a = [6, 4, 3]^T$$
, $y = [x_1, x_2, x_3]^T$

$$M = \begin{bmatrix} 4 & 5 & 3 \\ 3 & 4 & 2 \\ 4 & 2 & 1 \end{bmatrix}$$

Ahora se transforma su forma estándar, agregando variables de holgura, y se tiene entonces:

$$\min \mathbf{c}^T \mathbf{x} \quad s.a: \quad A\mathbf{x} = \mathbf{b}, \quad \mathbf{x} \succeq 0.$$

$$\begin{array}{l} \mbox{donde } c = [6,4,3,0,0,0]^T = [a|0]^T, \\ x = [x_1,x_2,x_3,x_4,x_5,x_6]^T = [y|z]^T \mbox{ y} \end{array}$$

$$A = \begin{bmatrix} 4 & 5 & 3 & 1 & 0 & 0 \\ 3 & 4 & 2 & 0 & 1 & 0 \\ 4 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$A = [M \mid I]$$

Ahora es fácil hallar un Punto Básico Factible, basta tomar para ello: $\mathcal{N} = \{1,2,3\}$ y $\mathcal{B} = \{4,5,6\}$ luego $\boldsymbol{x}_N = [x_1,x_2,x_3]^T = [0,0,0]^T = 0$ y $\boldsymbol{x}_B = [x_4,x_5,x_6]^T = b = [12,10,8]^T$.

Agregando variables artificiales.

$$\min 6x_1 + 4x_2 + 3x_3$$

Sujeto a:

$$4x_1 + 5x_2 + 3x_3 \leq 12$$

$$3x_1 + 4x_2 + 2x_3 \leq 10$$

$$4x_1 + 2x_2 + x_3 \geq 8$$

$$x_1, x_2, x_3 \geq 0$$

Ahora se transforma su forma estándar, agregando variables de holgura, y se tiene entonces:

$$\min \mathbf{c}^T \mathbf{x} \quad s.a: \quad A\mathbf{x} = \mathbf{b}, \quad \mathbf{x} \succeq 0.$$

donde
$$c = [6,4,3,0,0,0,M]^T$$
 (big M), $x = [x_1,x_2,x_3,x_4,x_5,x_6,x_7]^T = [y|z]^T$ y

$$A = \begin{bmatrix} 4 & 5 & 3 & 1 & 0 & 0 & 0 \\ 3 & 4 & 2 & 0 & 1 & 0 & 0 \\ 4 & 2 & 1 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Ahora es fácil hallar un Punto Básico Factible, basta tomar para ello: $\mathcal{N} = \{1, 2, 3, 6\}$ y $\mathcal{B} = \{4, 5, 7\}$ luego $\boldsymbol{x}_N = [x_1, x_2, x_3, x_6]^T = [0, 0, 0, 0]^T = 0$ y $\boldsymbol{x}_B = [x_4, x_5, x_7]^T = b = [12, 10, 8]^T$.

Note que por cada restricción se introduce una variable de holgura, salvo en el caso de la tercera donde se introduce una variable **artificial** x_7 , lo anterior es equivalente a haber introducido la variable de holgura \widetilde{x}_6 , $\widetilde{x}_6 \geq 0$ y luego haber considerado $\widetilde{x}_6 = \widetilde{x}_6^+ - \widetilde{x}_6^-$ con $\widetilde{x}_6^+ \geq 0$, $\widetilde{x}_6^- \geq 0$ y $\widetilde{x}_6 \geq 0$.

La tercera restricción se escribiría como

$$4x_1 + 2x_2 + x_3 - \widetilde{x}_6 = 8$$
, o lo que es lo mismo, $4x_1 + 2x_2 + x_3 - \widetilde{x}_6^+ + \widetilde{x}_6^- = 8$, es decir $x_6 = \widetilde{x}_6^+$ y $x_7 = \widetilde{x}_6^-$.

Nota: si hubiera una restricción de la forma $4x_1+2x_2+x_3 \leq -8$, también es necesario introducir una variable artificial, pues con una de holgura no es suficiente para encontrar de forma evidente un punto básico factible, luego quedaría: $4x_1+2x_2+x_3+x_6-x_7=-8$, x_6 de holgura, y

 x_7 variable artificial.