Probabilistic Sound Localization in Wireless Acoustic Sensor Networks

Alexander Wallar Juan Ye

Dr. Juan Ye School of Computer Science University of St Andrews, UK juan.ye@st-andrews.ac.uk

Process

- (x,y)
- Timestamp
- Sound fingerprint
- Sound pressure level (spl)

- Classify name of sound
- Retrieve reference spl and radius

Localisation

- Identify the area of sound source with
 - Radius
 - Probability

Process

Sound classification

- We use audio fingerprinting
- Similar to what Shazam uses [Wang]
- Fingerprint determination from sound is done on the node (phone)
- Fingerprints are sent to the server for classification

Localization

Localization

$$D_s(r, spl, spl') = r \cdot 10^{\frac{(spl-spl')}{20}}$$
 $D(x, y, n) = \sqrt{(x - n \cdot x)^2 + (y - n \cdot y)^2}$

$$\mathcal{P}(x, y, r, spl, events) = \frac{\sum_{e \in events} \mathcal{N}(D(x, y, e), D_s(r, spl, e.spl), GetSD(e, events))}{|events|}$$

$$\mathcal{L}(r, spl, events) = \underset{x,y}{\operatorname{arg \; min}} \ -\mathcal{P}(x, y, r, spl, events)$$

Interactive display

Locaudio

Home

Upload

Sound: Koel

Potential applications

- Detecting and tracking animals
- Optimize sensor deployment
 - Where to deploy sensors to achieve
 - Minimal number of nodes
 - Cover sufficient areas
 - Maximize localization accuracies

Thank you!

A&Q

<u>aw204@st-andrews.ac.uk</u> http://st-andrews.academia.edu/AlexWallar

Technical details :: Multiple Source

- Bias the gradient decent of the probability function
- Use affinity propagation to cluster local minimas

$$\mathcal{L}_m(r, spl, events, x_g, y_g) = \text{GradientDecent}(-\mathcal{P}, x_g, y_g, r, spl, events)$$

Algorithm 2 Multiple Source Sound Localization

- 1: GetLocations(r, spl, eventList) \rightarrow
- 2: locations ← InitLocationList()
- 3: for all $e \in eventList$ do
- 4: locations.add($\mathcal{L}_m(r, spl, eventList, e.x, e.y)$)
- 5: centers \leftarrow AffinityPropagation(locations) {centers is a list of (x, y, c) points where c is the confidence}
- 6: return centers

Technical details:: Loudness vs. Distance

- Equation seen before: $D_s(r,spl,spl') = r \cdot 10^{\frac{(spl-spl')}{20}}$
- Distance from a sound is related to the sound pressure level
- Given reference data, we can determine the distance from the sound