UPPSALA UNIVERSITET

FÖRELÄSNINGSANTECKNINGAR

Fourieranalys

Rami Abou Zahra

Contents

1. Background 2

1. Bakgrund

Låt oss betrakta $f:[0,\pi]\to\mathbb{R}$ så att $f(0)=f(\pi)=0$

När kan vi skriva denna funktion f(x) som en analytisk funktion (potensserie), det vill säga:

(1)
$$f(x) = \sum_{n=1}^{\infty} a_n \cdot \sin(n \cdot x)$$

Där $a_n \in \mathbb{R}$ är konstanter.

Inte alla funktioner tillfredställer att intervallet $[0, \pi]$ ger en konvergerande potensserie för f, frågan man kan ställa sig är när kan vi skriva f som en serie av trigonometriska funktioner?

Vi kommer inse att $om\ f$ går att skriva som en potensserie av trigonometriska funktioner, så behöver vi hitta våra koefficienter. I fallet med MacLaurin serier så kom de (a_n) från derivatan. I detta fall kommer det från:

$$a_n = \frac{1}{n} \int_0^{\pi} f(x) \sin(nx) dx$$

I någon mening kommer analys-delen av denna kurs från att vi studerar funktioner utifrån integraler, såsom den ovan.

Integralen ovan är integral-transform.

Vi kan även skriva:

$$f(x) = \sum_{n=0}^{\infty} a_n \sin(nx) + b_n \cos(nx)$$

Något mer vi kommer undersöka, är om vår fourierserie konvergerar, och om den konvergerar mot vår funktion (detta är inte alltid uppenbart)