CSE-315 Microprocessor

Waqar Hassan Khan

Student ID : 1505107

Contents

1	Cha	apter-9: 8086/8088 specification	3
	1.1	Pin Connection	3
2	Cha	apter-9: 8086/8088 specification	6
	2.1	Minimum Mode Pins	7
3	808	6/8088 hardware specifications	10
	3.1	clock generator-8284A	11
4	Cha	apter-9: $8086/8088$ specification	14
	4.1	internal block diagram of 8284A clock generator	14
	4.2	operation of the RESET section	15
	4.3	Bus buffering and latching	16

1 Chapter-9: 8086/8088 specification

- virtually no differences between these two microprocessors. Both are packaged in 40-pin dual in-line package.
- 8086:16 bit microprocessor with a 16bit data bus(A0-A15)
 8088:16 bit microprocessor with a 8bit data bus(A0-A7)
 major difference between 8086 and 8088.
- Minor differences

 $8086:M/\overline{IO};8088:IO/\overline{M}$

 $PIN34:-8086:\overline{BHE}/S7;8088:SS0$

• power supply requirements:

+5v with a supply voltage tolerance of +-10%

both 32F to 180F

8086 and 8088 have 340 and 360 mA.

figures in the book

1.1 Pin Connection

- AD7-AD0:
 - -8088 address/data bus lines
 - -multiplexed address data bus
 - -rightmost 8 bits of the memory address or I/O port whenever

ALE=1 or ALE=0

-high impedance state during hold acknowledge.

- A15-A8:

- -8088 address bus
- -high impedance state during hold acknowledge.

- AD15-AD8:

- -8086 address/data bus lines.
- -contains address bits when ALE=1
- -high impedance state during hold acknowledge.

- A19/S6-A16/S3:

- -multiplexed address/data bus lines
- -high impedance state during hold acknowledge.
- **S6:** always 0
- S5: indicated the condition of IF flag

S4	S3	indicate segment accessed during current bus cycle
0	0	extra segment
0	1	stack segment
1	0	code or no segment
1	1	data segment

- - \overline{RD} : if it is 0 then the data bus becomes receptive to data from memory or i/o devices connected to the system.
 - -high impedance state during hold acknowledge.

- READY:

- -enters into wait state and remains idle if 0
- -no effect on operations of microprocessor if this pin is in logic state 1.

- INTR:

- -used to request a h/w interrupt.
- -if INTR=1 when IF=1 then microprocessor enters an interrupt acknowledge cycle after completion of current instruction

− NMI:

- -non maskable interrupt pin.
- -similar to INTR except do not check IF flag.

$-\overline{\mathbf{TEST}}$:

- -an input that is tested by **wait** instruction. -if it is 0, the **WAIT** functions as **NOP**.
- -if 1 then **WAIT** waits for $\overline{\mathbf{TEST}}$ to become logic 0.

2 Chapter-9: 8086/8088 specification

• NMI:

- -non-maskable interrupt pin
- -similar to INTR except that NMI does not check IF flag.

• RESET:

- -causes the microprocessor to reset if this pin remains high for a minimum of 4 clocking periods.
- -whenever the microprocessor gets reset, it begins executing instructions at memory location FFFF0H and disables future interrupts by clearing IF.

• CLK:

- -provides the base timing signal to the microprocessor.
- -clock signal must have at least 33% duty cycle (high for $\frac{1}{3}$ rd and low for $\frac{2}{3}$ of the period)

• VCC

- -power supply input
- -provides +5V
- GND:- 2 pins, both must be connected to ground.
- MN/\overline{MX} :-selects either minimum mode or maximum mode operations of microprocessor.
- $\overline{BHE}/\mathbf{S7}$ -both high enable. -use in 8086 to enable the most significant data bus bits(D15-D8) during a read or write

-the state of S7 is always a logic1

2.1 Minimum Mode Pins

– IO/\overline{M} or M/\overline{IO}

-selects memory or i/o -indicates that microprocessors address bus contains either a memory address or an i/o port address.

-high impedance state during a hold acknowledge.

$-\overline{WR}$:

-indicates that microprocessor is outputting data to a memory or io device.

-data bus contains valid data for memory or io during the time, WR remains 0.

$-\overline{INTA}$:

-a response to the INTR input pin.

-used to gate the interrupt vector number onto the data bus in response to an interrupt request.

$-\overline{ALE}$:

- -address latch enable.
- -indicates that the microprocessor address/data bus contains address information.
- -the address can be a memory address or an i/o port.
- -does not float during a hold acknowledge.
- \mathbf{DT}/\overline{R} : data transmit or receive.
 - -indicates that microprocessors data bus is transmitting (DT/overlineR=1)

or receiving (DT/overlineR = (DT/overlineR = 0)) data.

-used to enable external data bus buffers.

- **DEN:**-data bus enable

-activates external data bus buffers.

- HOLD: - requests a direct memory access (DMA).

-if it is logic 1, microprocessor stops executing s/w and places its address, data and control bus at high impedance state.

-if it is a logic 0, the microprocessor executes s/w normally.

- HLDA: - hold acknowledge

-indicates that the microprocessor has entered the hold state.

– $\overline{SS0}$ - equivalent to the S0 pin in the maximum mode operation. -it is combined with IO/ \overline{M} and DT/ \overline{R} to decode function of the current bus cycle.

IO/\overline{M}	DT/\overline{R}	$\overline{SS0}$	function
0	0	0	interrupt acknowledge
0	0	1	memory card
0	1	1	memory write
0	1	1	halt
1	0	0	opcode fetch
1	0	1	I/O read
1	1	0	I/O write
1	1	1	passive/inactive

Table 1: bus cycle status(8088)[minimum mode]

$\overline{IS2}$	$\overline{S1}$	$\overline{S0}$	function
0	0	0	interrupt acknowledge
0	0	1	I/O card
0	1	1	I/O write
0	1	1	halt
1	0	0	opcode fetch
1	0	1	memory read
1	1	0	memory write
1	1	1	passive

Table 2: bus control functions generated by the bus controller $8088[{\rm maximum}\ {\rm mode}]$

3 8086/8088 hardware specifications

Maximum Mode Pins: for using with external co-processors

- $\overline{S2}, \overline{S1}, \overline{S0}$ indicate the function of current bus cycle. -normally decoded 8288 bus controller.
- $\overline{R1}/\overline{GT1}$ and $\overline{R0}/\overline{GT0}$ request/grant pins -requests direct memory access(DMA) -used to both request and grant DMA operation.
- \bullet $\,\overline{LOCK}$ used to lock peripheral off the system.
- \bullet OS1 and OS2 queue status bit.
 - -show status of the internal instruction queue.
 - -accessed by numeric co-processor (8087)

QS1	QSA	Function
0	0	queue is idle
0	1	first byte of opcode
1	0	queue is empty
1	1	subsequent byte of opcode

3.1 clock generator-8284A

Fig1. Pin diagram of the 8284A clock generator

Figure 1: 8284A clock generator

• Basic functions:

- -clock generation
- -RESET synchronization
- -READY synchronization
- -TTL-level peripheral clk signals

• pin functions

- AEN1 and AEN2 (address enable) qualify the bus ready signals RDY1 and RDY2 respectively.
 - -wait states are generated by the READY pin of microprocessor, which is controlled by $\overline{AEN1}$ and $\overline{AEN2}$

- RDY1 and RDY2 Bus ready inputs.
 - -cause wait states in conjunction with $\overline{AEN1}$ and $\overline{AEN2}$ pins.
- **ASYNC** : READY synchronization.
 - -selects either one or two stages of synchronization for RDY1 and RDY2 inputs.
- **READY** an output pin that connects to microprocessors READY input.
 - -synchronized with RDY1 and RDY2 inputs.
- X1 and X2: crystal oscillator pins.
 - -connect to an external crystal which is used as the timing source for the clock generator and all its functions.
- F/\overline{C} : Frequency/crystal select input.
 - chooses the clocking source.
 - if it is held high, an external clock is provided to the EFI pin.
 - if it is held low, the internal crystal oscillator provides the timing signal.
- EFI: External Frequency Input.
 - supplies timing whenever F/\overline{C} is held high.
- CLK: clock output pin, which provides clock input to microprocessor and other components.
 - output signal is $\frac{1}{3}$ of crystal or EFI input freq. and has a duty cycle of 33%(as required by 8086/8088).

- PCLK: peripheral clock.
 - $-\frac{1}{6}$ of the crystal or EFI input freq. and has a 50% duty cycle.
- OSC: oscillator output.
 - at same freq. as the crystal or EFI input.
 - provides an EFI input to other 8284A in a multi-processor system.
- $\overline{\mathbf{RES}}$: reset input.
 - often connected to an RC network that provides power on resetting.
- **RESET:** reset output.
 - connected to microprocessors RESET input pin.
- **CSYNC:** clock synchronization.
 - used whenever the EFI input provides synchronization in a multiprocessor system.
 - -if the internal oscillator is used, this pin must be grounded.

4 Chapter-9: 8086/8088 specification

4.1 internal block diagram of 8284A clock generator

Figure 2: internal block diagram of 8284A clock generator

- if a crystal is attached to X1 and X2, the oscillator generates a square wave signal at the same frequency of the crystal.
- $CLK = \frac{frequency}{3}$; $PCLK = \frac{frequency}{6}$

4.2 operation of the RESET section

Figure 3: RESET operation of 8284A clock generator

- RES goes through a Schmitt Trigger and a D-type flip-flop, which ensures meeting timing requirements of microprocessors RESET input.
- the circuit applies RESET to microprocessor at a negative edge(1-\(\delta\)0) and the microprocessor samples the RESET the signal at the positive edge(0-\(\delta\)1).
- when power is first applied to the system, the RC circuit provides a logic 0 to \overline{RES}
- after a short time $\overline{\mathbf{RES}}$ becomes logic 1, as the capacitor changes to $+5\mathbf{v}$ through the resistor.
- a push button allows the microprocessor to be reset by an operator.
- correct RESET timing requires the RESET input to become a logic 1 no later than 4 clock cycles after the power is applied, and held high for at least 50 micro-seconds.

• RESET goes high in 4 clock by FF. RESET stays high for 50 microseconds by RC.

4.3 Bus buffering and latching

- the address/data bus on the microprocessor is multiplexed(shared) to reduce the # of pins, which, on the other hand, burdens with the task of extracting or de-multiplexing info from these pins.
- Why not leave the buses multiplexed??
 memory and i/o require that the address remains valid and stable throughout a read or write cycle. If the buses are multiplexed, the address can get changed causing read or write in wrong locations.
- All computer systems have 3 types of buses:
 - 1. Address bus: provides memory address or i/o port of #s
 - Data bus: transfers data between microprocessor and memory and i/o.
 - 3. control bus: provides control signals to memory and i/o.