Due: Aug 27th

- 1. Do Exercise S-3.51 (c), that is, Evaluate the limit $\lim_{x\to 2} \frac{x^2-4}{x-2}$, first by using the definition and then by using theorems on limits.
- 2. Do Exercise S-3.55, that is, Prove that $\lim_{x\to 3} 10^{-1/(x-3)^2} = 0$ using the definition.
- 3. Do Exercise S-3.59 (b), that is, Explain exactly what is meant by

$$\lim_{x \to 0^+} (1 - e^{1/x}) = -\infty.$$

4. Let $f(x,y) = x^{-1}\sin(xy)$ for $x \neq 0$. How should you define $f(0,y), y \in \mathbb{R}$, to make f continuous on all of \mathbb{R}^2 ?

Extra Credit: Prove that your answer does make f continuous on all of \mathbb{R} . You may assume that $\lim_{z\to 0}\sin(z)/z=1$.