3.1 可测函数的定义

定义. 设 $E \in \mathbb{R}^n$ 中的可测集, f 是定义在 E 上的实值函数, 若对 $\forall a \in \mathbb{R}$

$$\{x\in E|f(x)>a\}$$

是可测集,则称 f 是 E 上的 Lebesgue 可测函数,或称 f 在 E 上可测.

注. (1) 以下若无特别说明, 所提到的集合E 均指 \mathbb{R}^n 中的可测集.

(2) 以下将 $\{x \in E | f(x) > a\}$ 简写成E(f > a).

定义. 定义集合 A 的特征函数为

$$\chi_A(x) = \left\{egin{array}{ll} 1, & x \in A \ 0, & x
otin A \end{array}
ight.$$

定理3.1.1. 设 f 是定义在 E 上的函数,则以下 (1)~(5) 是等价的:

- (1) $f \in E$ 上的可测函数;
- (2) $\forall a \in \mathbb{R}^1$, $E(f \geq a)$ 是可测集;
- (3) $\forall a \in \mathbb{R}^1$, E(f < a) 是可测集;
- $(4) \forall a \in \mathbb{R}^1, E(f \leq a)$ 是可测集;
- (5) $\forall A \in \mathscr{B}(\mathbb{R}^1)$, $f^{-1}(A)$ 是可测集, 并且 $E(f = +\infty)$ 是可测集.

证明:

 $(1) \to (2)$:

$$E(f \geq a) = igcap_{k=1}^{\infty} E(f > a - rac{1}{k})$$

由于对任意 $k \in \mathbb{N}^+$, $E(f > a - \frac{1}{k})$ 是可测集,且可列个可测集的并是可测集,因此 $E(f \ge a)$ 可测.

 $(2) \to (3)$:

E(f < a) 是 $E(f \ge a)$ 的补集, 可测集的补集仍是可测集, 因此 E(f < a) 可测.

 $(3) \to (4)$:

$$E(f \leq a) = igcap_{k=1}^{\infty} E(f < a - rac{1}{k})$$

同 $(1) \rightarrow (2)$ 的证法, 可知 $E(f \le a)$ 可测.

 $(4) \to (1)$:

同 (2) \rightarrow (3) 的证法, 可知 E(f < a) 可测.

因此 (1) ~ (4) 等价.

- $(1) \iff (5)$:
- (1) \to (5): 设集类 $\mathscr{F} = \{A \in \mathbb{R}^1 | f^{-1}(A) \text{ 是可测集} \}$, 由原像的性质:

$$f^{-1}(igcup_{n=1}^{\infty} A_n) = igcup_{n=1}^{\infty} f^{-1}(A_n)$$

$$f^{-1}(A^C) = (f^{-1}(A))^C$$

可知 \mathscr{F} 是 σ -代数. 令 \mathscr{C} 是直线上半开方体的全体, 可知对任意 $(a,b] \in \mathscr{C}$, 有

$$f^{-1}((a,b]) = E(a < f \le b) = E(f > a) - E(f > b)$$

可测集的差仍为可测集, 因此 $f^{-1}((a,b])$ 是可测集, 因此 $\mathscr{C} \subset \mathscr{F}$. 所以 $\sigma(\mathscr{C}) \subset \mathscr{F}$. 由定理 1.4.7 可知, $\sigma(\mathscr{C}) = \mathscr{B}(\mathbb{R}^1)$, 对任意 $A \in \mathscr{B}(\mathbb{R}^1)$, $f^{-1}(A)$ 是可测集, 由于

$$E(f=+\infty)=igcap_{k=1}^\infty E(f>k)$$

可知 $E(f = +\infty)$ 是可测集.

 $(5) \to (1)$:

$$E(f > a) = E(a < f < \infty) = f^{-1}((a, \infty)) \cup E(f = \infty)$$

 (a,∞) 是 Borel 集, 因此 $f^{-1}((a,\infty))$ 为可测集, 因为可测集的并集仍可测, 所以 E(f>a) 可测.

定理3.1.2. (1) $f(x) \equiv c$ 是 E 上的常值函数, 则 f 在 E 上可测.

- (2) 设 $A \subset \mathbb{R}^n$, χ_A 是 A 的特征函数, χ_A 是可测函数当且仅当 A 是可测集.
- (3) 设f是E上的连续函数,则f在E上可测.
- (4) 设 f 是 [a,b] 上的单调函数,则 f 在 [a,b] 上可测.
- (5) Dirichlet 函数:

$$D(x) = \left\{egin{array}{cc} 1, & x$$
 是有理数 $0, & x$ 是无理数

是可测的.

- (6) 设 f 在 E 上可测, E_1 是 E 的可测子集, 则 f 在 E_1 上可测.
- (7) 设 f 在 E_1 和 E_2 上可测, f 在 $E_1 \cup E_2$ 上可测.

证明: (1) 对任意实数 a, 有

$$E(f > a) = \left\{egin{array}{ll} E, & a < c \ \emptyset, & a \geq c \end{array}
ight.$$

(2)

$$E(\chi_A>a)=\left\{egin{array}{cc} \mathbb{R}^n, & a<0 \ A, & 0\leq a< c \ \emptyset, & a>1 \end{array}
ight.$$

因此对任意实数 a, $E(\chi_A > a)$ 是可测集当且仅当 A 是可测集.

- (3) 根据定理 1.1.16, 对于任意实数 a, 存在 \mathbb{R}^n 中的开集 G, 使得 $E(f > a) = E \cap G$, 而开集 是可测集, 因此 f 是可测的.
- (4) 由于 f 是单调的, 容易知道 E(f>c) 是区间, 单点集或者空集. 总之, E(f>c) 是可测集, 因此 f 是可测集.
- (5) $D(x) = \chi_Q(x)$, 而 Q 是可测集, 根据 (2), $\chi_Q(x)$ 可测.
- (6) $E_1(f > a) = E(f > a) \cap E_1$ 是可测集,则 f 在 E_1 上可测.
- (7) $E(f > a) = E_1(f > a) \cup E_2(f > a)$ 是可测集,则 f 在 $E_1 \cup E_2$ 上可测.

3.2 可测函数的性质

引理3.2.1. 若 $a,b \in \mathbb{R}$, a+b>c 的充分必要条件是存在有理数 q, 使得 a>q 且 b>c-q.

证明: 充分性显然, 下面证明必要性: 设 $a+b=c+\epsilon, \epsilon>0$. 由有理数的稠密性, 可知存在 $q\in\mathbb{Q}$, 使得 a>q, 且 $a-q\leq\frac{\epsilon}{2}$

$$b-(c-q)=c+\epsilon-a-(c-q)=\epsilon-(a-q)>\epsilon-rac{\epsilon}{2}>0$$

证毕.

定理3.2.1.设 f 和 g 在 E 上可测,则函数 cf (c 是实数), f+g, fg 和 |f| 都在 E 上可测.

证明: 当 $c \neq 0$ 时, 显然 cf 可测. 当 $c \neq 0$ 时,

$$E(cf>a)=\left\{egin{array}{ll} E(f>rac{a}{c}), & c>0 \ E(f<rac{a}{c}), & c<0 \end{array}
ight.$$

显然 E(cf > a) 是可测集, 因此 cf(x) 可测.

由引理3.2.1, 当 f(x), g(x) 不取符号相反的 ∞ 时, 设有理数集合为 $\{r_n\}$, f(x)+g(x)>a 等价于存在有理数 r_n , 使得 $f(x)>r_n$, $g(x)>a-r_n$, 因此

$$E(f+g>a)=igcup_{n=1}^{\infty}ig(E(f>r_n)\cap E(g>a-r_n)ig)$$

由上式可知, E(f+g>a) 是可测集, 因此 f+g 可测. 考虑 f(x), g(x) 取符号相反的 ∞ 时, 记

$$A = [E(f = +\infty) \cap E(q = -\infty)] \cup [E(f = +\infty) \cap E(q = -\infty)]$$

因为 f, g 是可测函数, 所以 A 是可测集, 因为可测集对差运算封闭, 所以 E-A 是可测集, 由定理3.1.2, f 和 g 在 A 和 E-A 上可测, 此时

$$E(f+g>a) = \{x \in E - A | f(x) + g(x) > a\} \cup \{x \in A | f(x) + g(x) > a\}$$

当 $x \in A$ 时, f(x) + g(x) = 0, 显然

$$\{x\in A|f(x)+g(x)>a\}=\left\{egin{array}{cc} A,&a<0\ \emptyset,&a\geq0 \end{array}
ight.$$

因此 $\{x \in A | f(x) + g(x) > a\}$ 始终是可测集. 综上可知, E(f + g > a) 是可测集.

先证明 $f^2(x)$ 可测: 由于

$$E(f^2>a)=\left\{egin{array}{cc} E, & a<0 \ E(f>\sqrt{a})\cup E(f<-\sqrt{a}), & a\geq 0 \end{array}
ight.$$

因此 $E(f^2 > a)$ 是可测集, 所以 $f^2(x)$ 可测. 由

$$fg = rac{1}{4}[(f+g)^2 - (f-g)^2]$$

可得, fg 可测.

$$E(|f|>a)=\left\{egin{array}{cc} E, & a<0 \ E(f>a)\cup E(f<-a), & a\geq 0 \end{array}
ight.$$

由此可知 E(|f| > a) 是可测集, 因此 |f| 可测.

定理3.2.1表明可测性对线性运算和乘法运算封闭.

定义. f 是定义在 E 上的函数, 定义 $f^+(x) = \max\{f(x), 0\}, f^-(x) = \max\{-f(x), 0\},$ 即

$$f^+(x) = \left\{egin{array}{ll} f(x), & f(x) \geq 0 \ 0, & f(x) < 0 \end{array}
ight.$$

$$f^-(x) = \left\{egin{array}{ll} 0, & f(x) \geq 0 \ -f(x), & f(x) < 0 \end{array}
ight.$$

分别称 f^+ 和 f^- 为 f 的正部和负部. 易证 f^+ 和 f^- 都是非负值函数, 并且

$$f(x) = f^{+}(x) - f^{-}(x), \ \forall x \in E$$

$$|f(x)|=f^+(x)+f^-(x),\ orall x\in E$$

定理3.2.2. 若 f 在 E 上可测, 则 f^+ 和 f^- 都在 E 上可测.

证明:对任意实数 a, 我们有

$$E(f^+>a)=\left\{egin{array}{cc} E(f>a), & a\geq 0\ E, & a<0 \end{array}
ight.$$

$$E(f^->a)=\left\{egin{array}{ll} E(f<-a), & a\geq 0\ 0, & a<0 \end{array}
ight.$$

由此可知 $E(f^+ > a)$ 和 $E(f^- > a)$ 都是可测集, 因此 f^+ 和 f^- 都是 E 上的可测函数.

定义.
$$\overline{\lim}_{n\geq 1} f_n = \sup\{\inf_{n\geq 1} f_n\}$$
, $\underline{\lim}_{n>1} f_n = \inf\{\sup_{n\geq 1} f_n\}$

定理**3.2.3**. 设 $\{f_n\}$ 是 E 上的可测函数列, 则函数 $\sup_{n\geq 1} f_n$, $\inf_{n\geq 1} f_n$, $\overline{\lim_{n\geq 1}} f_n$, $\overline{\lim_{n\geq 1}} f_n$ 可测.

证明: 对任意 $x \in E$ 和实数 a, $\sup_{n \ge 1} f_n(x) > a$ 当且仅当存在正整数 n, 使得 $f_n(x) > a$, $\inf_{n \ge 1} f_n(x) < a$ 当且仅当存在正整数 n, 使得 $f_n < a$, 因此

$$E(\sup_{n\geq 1}f_n>a)=igcup_{n=1}^\infty E(f_n>a)$$

$$E(\inf_{n \geq 1} f_n > a) = igcup_{n=1}^\infty E(f_n < a)$$

由于 $\{f_n\}$ 在 E 上可测, 对任意 $n \in \mathbb{N}^+$, $E(f_n > a)$ 和 $E(f_n < a)$ 是可测集, 进而 $E(\sup_{n \geq 1} f_n > a)$ 和 $E(\inf_{n \geq 1} f_n > a)$ 是可测集, $\sup_{n \geq 1} f_n$, $\inf_{n \geq 1} f_n$ 是可测函数. 由于

$$\overline{\lim_{n\geq\infty}}f_n=\inf_{n\geq1}\sup_{k\geq n}f_n$$

$$\lim_{n \geq \infty} f_n = \inf_{n \geq 1} \sup_{k > n} f_n$$

其中 $\sup_{n\geq 1} f_n$, $\inf_{n\geq 1} f_n$ 是可测函数, 根据刚刚证明的结论, $\overline{\lim_{n\geq 1}} f_n$, $\underline{\lim_{n\geq 1}} f_n$ 是可测函数.

定理3.2.3表明可测函数列的极限可测.

定理3.2.4. 若 f, g 都在 E 上可测, 且 g(x) 处处不等于 0, 则 $\frac{f}{g}$ 在 E 上可测.

证明:由于可测函数的乘积可测,因此只需证明 $\frac{1}{a}$ 可测.

$$E(rac{1}{g}>a) = \left\{egin{array}{ll} E(g<rac{1}{a}), & a>0 \ E(g>rac{1}{a}), & a<0 \ E(g>0), & a=0 \end{array}
ight.$$

显然无论哪种情况 $E(\frac{1}{g} > a)$ 都是可测集, 因此 $\frac{1}{g}$ 可测.

定理3.2.4表明可测性对除法运算封闭.

定理3.2.5. (1) 若 f(x) 是 $E \subseteq \mathbb{R}^n$ 上的可测函数, 对任意 $h \in \mathbb{R}^n$, 函数 f(x+h) 是 E 上的可测函数. (2) 若 f(x) 是 $E \subseteq \mathbb{R}^n$ 上的可测函数, 对任意 $a \in \mathbb{R}^1$, 函数 f(ax) 是 E 上的可测函数.

证明: (1) 证明对任意实数 a, 有 $\{x \in \mathbb{R}^n | f(x+h) > a\} = \{x \in \mathbb{R}^n | f(x) > a\} - h$:

若 $x \in \{x \in \mathbb{R}^n | f(x+h) > a\}$, 则 $y = (x+h) \in \{x \in \mathbb{R}^n | f(x) > a\}$, x = y-h, 因此 $\{x \in \mathbb{R}^n | f(x+h) > a\} \subset \{x \in \mathbb{R}^n | f(x) > a\} - h$.

若 $x \in \{x \in \mathbb{R}^n | f(x) > a\}$, 则 $y = (x - h) \in \{x \in \mathbb{R}^n | f(x) > a\}$, x = y + h, 因此 $\{x \in \mathbb{R}^n | f(x + h) > a\} \supseteq \{x \in \mathbb{R}^n | f(x) > a\} - h$.

由于可测集的平移后仍是可测集, f(x+h) 是 E 上的可测函数.

(2) 易证, 当 $a \neq 0$ 时, $\{x \in \mathbb{R}^n | f(ax) > c\} = a^{-1} \{x \in \mathbb{R}^n | f(x) > c\}$, 由于可测集的伸缩后仍是可测集, 因此 f(ax) 是 E 上的可测函数.

定理**3.2.6**. 若 f(x) 是 [a,b] 上的可导函数,则 f'(x) 是 [a,b] 上的可测函数.

证明: 对 f(x) 进行研拓: 当 x > b 时, f(x) = f(b). 考虑函数列 $\{f_n\}$

$$f_n(x) = n[f(x+rac{1}{n}) - f(x)], \ orall x \in [a,b]$$

易证 $\{f_n\}$ 是可测函数列且一致收敛于 f'(x), 进而 f'(x) 是 [a,b] 上的可测函数.

定理3.2.7. 若 f 是可测集 E 上的可测函数, 函数 g = f a.e. 于 E, 则 g 在 E 上可测.

证明: 由 g = f a.e. 于 E 可知, 存在一个零测度集 E_0 , 在 $E - E_0$ 上, f(x) = g(x), 因此, 对于任意的实数 a,

$$E(g>a) = \{x \in E - E_0 | g(x) > a\} \cup \{x \in E_0 | g(x) > a\} \ = \{x \in E - E_0 | f(x) > a\} \cup \{x \in E_0 | g(x) > a\}$$

由于 E 和 E_0 都是可测集, 所以 $E - E_0$ 是 E 的可测子集, 进而 f 在 $E - E_0$ 上也是可测的, 因此 $\{x \in E - E_0 | f(x) > a\}$ 是可测的; $\{x \in E_0 | g(x) > a\}$ 是零测度集 E_0 的子集, 因此是可测的, 综上可知 E(g > a) 是可测的.

3.3 可测函数的简单函数逼近

3.3.1 简单函数的定义

定义. 设 f 是定义在 \mathbb{R}^n 中的可测集 E 上的函数. 若存在 E 的一个可测分割 $\{E_1, E_2, \ldots, E_k\}$ (即 $\bigcup_{i=1}^k E_i = E$, 且 $E_i \cap E_j = \emptyset$, $\forall i, j, i \neq j$) 和实数 a_1, a_2, \ldots, a_k , 使得当 $x \in E_i$ 时, $f(x) = a_i$,则称 f 为 E 上的简单函数,此时 f 可以表示为

$$f(x) = \sum_{i=1}^k a_i \chi_{E_i}(x)$$

由于可测集的特征函数是可测函数,因此简单函数作为可测函数的线性加和是可测函数.

3.3.2 简单函数的性质

定理**3.3.1**. 设 f 和 g 都是简单函数,则:

- (1) cf(c 是实数), f+g 是简单函数.
- (2) 设 ϕ 是 \mathbb{R}^1 上的实值函数,则复合函数 $\phi(f)$ 是简单函数.

证明: (1) 显然 cf 是简单函数, 设

$$f(x) = \sum_{i=1}^p a_i \chi_{A_i}(x)$$

$$g(x) = \sum_{i=1}^q b_i \chi_{B_i}(x)$$

其中 $\{A_1,\ldots,A_p\}$ 和 $\{B_1,\ldots,B_q\}$ 是 E 的可测分割,易证 $\{A_i\cap B_j|1\leq i\leq p,1\leq j\leq q\}$ 也是 E 的一个可测分割,并且当 $x\in A_i\cap B_j$ 时, $f(x)+g(x)=a_i+b_j$,因此 f(x)+g(x) 是简单函数.

(2) 设
$$f(x)=\sum\limits_{i=1}^k a_i\chi_{A_i}(x)$$
,则

$$\phi(f(x)) = \sum_{i=1}^k \phi(a_i) \chi_{A_i}(x)$$

因此 $\phi(f(x))$ 是简单函数.

3.3.3 可测函数的简单函数逼近

定义. 设 $\{f_n\}$ 是一列定义在 E 上的函数. 若对每个 $x \in E$, 总有

$$f_1(x) \le f_2(x) \le \dots \le f_n(x) \le f_{n+1}(x)$$

则称函数列 $\{f_n\}$ 是单调递增的,记为 $f_n \uparrow$. 若 $\{f_n\}$ 是单调递增的函数列,并且 $\lim_{n\to\infty} f_n(x) = f(x), \forall x\in E,$ 则记为 $f_n \uparrow f, (n\to\infty)$.

注意:函数列是单调递增的并不意味着函数本身是单调递增的,注意区分函数列单调递增和函数单调递增这两个不同的概念:

定理3.3.2. (1)设 f 是 E 上的非负可测函数,则存在 E 上单调递增的非负简单函数列 $\{f_n\}$,

$$\lim_{n o\infty}f_n(x)=f(x)\quad orall x\in E$$

(即 $f_n \uparrow f$), 若 f 在 E 上还是有界的, 则 { f_n } 收敛于 f 是一致的.

(2) 设 $f \in E$ 上的可测函数,则存在 E 上的简单函数列 $\{f_n\}$,使得

$$\lim_{n o\infty}f_n(x)=f(x),\ orall x\in E$$

并且 $|f_n| \leq |f|$. 若 f 在 E 上还是有界的, 则上述收敛是一致的.

- (3) 设 f 是定义在 E 上的函数,则 f 可测的充要条件是存在简单函数列 $\{f_n\}$ 处处收敛于 f(x).
- (4) 设 f 是定义在 E 上的实值可测函数, g 是 \mathbb{R}^1 上的连续函数, 则复合函数 g(f(x)) 在 E 上 \mathbb{R}^1

证明: (1) 定义一种对函数进行离散化的方法: 把区间 [0,n] 分割成 $n \cdot 2^n$ 个长度为 $\frac{1}{2^n}$ 的小区间, 令

$$f_n(x) = \left\{egin{array}{ll} rac{i-1}{2^n}, & x \in E(rac{i-1}{2^n} \leq f < rac{i}{2^n}), \ i=1,\ldots,n\cdot 2^n \ n, & x \in E(f \geq n) \end{array}
ight.$$

由于 f 是 E 上的可测函数, $E(\frac{i-1}{2^n} \le f < \frac{i}{2^n})$, $i=1,\ldots,n\cdot 2^n$ 和 $E(f\ge n)$ 是可测集,因此 $f_n(x)$ 是非负简单函数,显然 $f_n(x)$ 是单调递增的. 对于任意 $x\in E$,若 $f(x)<\infty$,则必然存在 N>f(x),对于 $f_n(x)$,n>N, $|f_n(x)-f(x)|<\frac{1}{2^n}$,因此 $\lim_{n\to\infty}f_n(x)=f(x)$,若 $f(x)=\infty$, $f_n(x)=n$, $n=1,\ldots,n$,因此也有 $\lim_{n\to\infty}f_n(x)=\infty=f(x)$.

(2) 由于 f(x) 可测, 由定理3.3.2, f^+ 和 f^- 都是可测函数, 由 (1) 中的结论, 存在单调递增的简单函数列 $\{f_n^+\}$ 和 $\{f_n^-\}$ 一致收敛于 f, 令 $f_n = f_n^+ - f_n^-$, 则 f_n 是简单函数列, 且一致收敛于 f(x), 因为:

$$|f_n(x)-f(x)|=|f_n^+(x)-f_n^-(x)-(f^+(x)-f^-(x))|\leq |f_n^+(x)-f^+(x)|+|f_n^-(x)-f^-(x)| \ |f_n(x)|=|f_n^+(x)-f_n^-(x)|\leq |f_n^+(x)-f_n^-(x)|\leq |f_n^+(x)-f_n^-(x)|.$$

- (3) 必要性由 (2) 可知, 对于充分性, 因为 $f_n(x)$ 是可测函数, 由定理2.2.5可知, $\{f_n\}$ 的极限函数是可测函数.
- (4) 因为 $f \in E$ 上的可测函数, 所以存在简单函数列 $\{f_n\}$ 处处收敛于 f, 根据定理3.3.1, $\{g(f_n(x))\}$ 是简单函数列, 由于 g 在 \mathbb{R}^1 上连续, 因此

$$\lim_{n\to\infty}g(f_n(x))=g(f(x))$$

即 g(f(x)) 是一个简单函数列的极限,由于简单函数是可测函数,易知简单函数列的极限是可测函数,所以 g(f(x)) 是 E 上的可测函数.

3.4 可测列函数的收敛性

3.4.1 几乎处处收敛, 依测度收敛, 几乎一致收敛

定义. 设 $\{f_n\}$ 是可测集 E 上的可测函数列, f 是 E 上的可测函数.

- (1) 若存在 E 的一个零测度集 E_0 , 使得当 $x \in E E_0$ 时 $\lim_{n \to \infty} f_n(x) = f(x)$, 则称 $\{f_n\}$ 在 E 上几乎处处收敛于 f, 记为 $f_n \to f$ a.e. 于 E.
- (2) 若对于 $\forall \epsilon > 0$, 满足

$$\lim_{n o\infty} mig(E(|f_n(x)-f(x)|\geq\epsilon)ig)=0$$

则称 $\{f_n\}$ 在 E 上依测度收敛于 f, 记为在 E 上 $f_n \stackrel{\text{m}}{\longrightarrow} f$.

 $f_n \xrightarrow{\mathrm{m}} f$ 等价于: 对于 $\forall \epsilon > 0$, $\forall \delta > 0$, 存在 $N_{\epsilon,\delta}$, 使得当 $n \geq N_{\epsilon,\delta}$ 时, $m\big(E(|f_n(x) - f(x)| \geq \epsilon)\big) \leq \delta$.

(3) 若对于 $\forall \delta > 0$, 存在 E 的可测子集 E_{δ} , $m(E_{\delta}) \leq \delta$, 使得在 $E - E_{\delta}$ 上一致收敛于 f, 则称 记为 $f_n \to f$ a.un. (a.un. 是 almost uniformly 的缩写) 于 E.

注:
$$\{f_n(x)\}$$
 不收敛于 $f(x)$ 的点的集合为:
$$\{x \in E | f_k(x) \rightarrow f(x)\} = \bigcup_{p=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E(|f_k - f| \ge \frac{1}{p})$$

证明: $x \in \{x \in E | f_k(x) \rightarrow f(x)\}$ 的充要条件是: 存在 $\epsilon > 0$,使得对任意正整数 n,存在 $k \geq n$,使得 $| f_k(x) - f(x)| \geq \epsilon$. 若 $x \in \{x \in E | f_k(x) \rightarrow f(x)\}$,一定存在正整数 p,使得 $\frac{1}{p} < \epsilon$,此时对任意正整数 n,存在 $k \geq n$,使得 $| f_k(x) - f(x)| \geq \frac{1}{p}$,进而 $x \in \bigcup_{n=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E(|f_k - f| \geq \frac{1}{p})$;反向的包含关系显然成立,证毕.

3.4.2 几种收敛的关系

引理**3.4.1**. 若 $m(E) < \infty$, $f_n \to f$ a.e. 于 E, 则对于 $\forall \epsilon > 0$, 满足

$$\lim_{n o\infty} mig(igcup_{k=n}^\infty E(|f_k-f|\geq\epsilon)ig)=0$$

证明: 对于任意 $x \in E$, 在 x 处 $f_n(x)$ 不收敛于等价于存在 $\epsilon > 0$, 满足: 对任意 $n \ge 1$, 存在 $k \ge n$, 使得 $|f_k(x) - f(x)| \ge \epsilon$. 因此, 对任意 $\epsilon > 0$, 若对任意 $n \ge 1$, 存在 $k \ge n$, 使得 $|f_k(x) - f(x)| \ge \epsilon$, 则说明 x 不是收敛点, 但反过来不一定成立.

$$igcap_{n=1}^{\infty}igcup_{k=n}^{\infty}E(|f_k-f|\geq\epsilon)\subseteq Eig(f_k(x)
top f(x)ig)$$

由于 $f_n \to f$ a.e. 于 E, 因此 $E(f_k(x) \nrightarrow f(x))$ 是零测度集. 因此

$$mig(igcap_{n=1}^{\infty}igcup_{k=n}^{\infty}E(|f_k-f|\geq\epsilon)ig)=0$$

由于 $m(E)<\infty$, 集列 $\Big\{\bigcup_{k=n}^{\infty} E(|f_k-f|\geq\epsilon)\Big\}$ 是一列单调递减的可测集, 所以由测度的上连续性, 我们有

$$mig(igcap_{n=1}^\inftyigcup_{k=n}^\infty E(|f_k-f|\geq\epsilon)ig)=\lim_{n o\infty}mig(igcup_{k=n}^\infty E(|f_k-f|\geq\epsilon)ig)$$

进而有 $\lim_{n \to \infty} m \big(\bigcup_{k=n}^{\infty} E(|f_k - f| \ge \epsilon) \big) = 0$, 证毕.

定理**3.4.1**. (Ergoroff) 当 $m(E)<\infty$ 时, 若 $f_n o f$ a.e. 于 E, 则 $f_n o f$ a.un. 于 E.

证明: 即证对任意 $\delta > 0$, 存在 E 的可测子集 E_{δ} , $m(E_{\delta}) \leq \delta$, $\{f_n\}$ 在 $E - E_{\delta}$ 上一致收敛于 f.

因为 $m(E) < \infty$, 所以可应用引理3.4.1, 得到: $\lim_{n \to \infty} m\left(\bigcup_{k=n}^{\infty} E(|f_k - f| \ge \epsilon)\right) = 0$, $\forall \epsilon > 0$. 这 等价于对于 $\forall \epsilon' > 0$, $\forall \delta' > 0$, 存在 N, 使得当 $n \ge N$ 时, $m\left(\bigcup_{k=n}^{\infty} E(|f_k - f| \ge \epsilon')\right) \le \delta'$. 特别地, 对于 $\epsilon' = \frac{1}{p}$, $\delta' = \frac{\delta}{2^p}$, $\forall p \in \mathbb{N}^+$, 存在 n_p , 使得当 $k \ge n_p$ 时, 有 $m\left(\bigcup_{k=n}^{\infty} E(|f_k - f| \ge \frac{1}{p})\right) \le \frac{\delta}{2^p}$. 定义 $E_{\delta} = \bigcup_{p=1}^{\infty} \bigcup_{k=n_p}^{\infty} E(|f_k - f| \ge \frac{1}{p})$, 易证 E_{δ} 是 E 的可测子 \mathbb{R} , $m(E_{\delta}) \le \sum_{p=1}^{\infty} \frac{\delta}{2^p} = \delta$, $E - E_{\delta} = \bigcap_{p=1}^{\infty} \bigcap_{k=n_p}^{\infty} E(|f_k - f| < \frac{1}{p})$, 即 $x \in E - E_{\delta} \iff$ 对于 $\forall p \in \mathbb{N}^+$, 存在 n_p , 使得当 $k \ge n_p$ 时, $|f_k - f| < \frac{1}{p}$. 所以在 $E - E_{\delta}$ 上 $f_n \to f$. 证毕.

定理**3.4.2.** 当 $m(E) < \infty$ 时, 若 $f_n \to f$ a.e. 于 E, 则 $f_n \stackrel{\mathrm{m}}{\longrightarrow} f$ 于 E.

证明: 因为 $m(E) < \infty$, 所以可应用引理3.4.1, 得到: 对于 $\forall \epsilon > 0$, 有

$$\lim_{n o\infty} mig(igcup_{k-n}^\infty E(|f_k-f|\geq\epsilon)ig)=0$$

$$mig(igcup_{k=n}^{\infty} E(|f_k-f| \geq \epsilon)ig) \geq mig(E(|f_n-f| \geq \epsilon)ig)$$
,进而有

$$\lim_{n \to \infty} m \big(E(|f_n(x) - f(x)| \ge \epsilon) \big) = 0$$

$$f_n(x) = \left\{egin{array}{ll} 1, & x \in [0,n] \ 0, & x \in (n,\infty) \end{array}
ight.$$

显然 $\{f_n(x)\}$ 在 $[0,\infty)$ 上处处收敛于 f(x)=1, 但是当 $n\to\infty$ 时,

$$mig(E(|f_n-1|\geq rac{1}{2})ig)=mig((n,\infty)ig)=\infty$$

因此 $\{f_n(x)\}$ 在 $[0,\infty)$ 上并不依测度收敛于 f(x).

定理**3.4.3**. (F. Riesz) 若 $f_n \stackrel{\text{m}}{\longrightarrow} f$ 于 E, 则存在 $\{f_n\}$ 的子列 $\{f_{n_k}\}$, 使得 $f_{n_k} \to f$ a.e. 于 E.

证明: 由 $f_n \stackrel{\mathrm{m}}{\longrightarrow} f$ 的定义可知, 对任意 $\epsilon = \frac{1}{k}, \delta = \frac{1}{2^k}, k = 1, 2, \ldots$, 存在 n_k , 使得

$$m\big(E(|f_{n_k}-f|\geq \frac{1}{k})\big)\leq \frac{1}{2^k}$$

进而可以得到函数列 $\{f_{n_k}\}$. 接下来我们证明 $\{f_{n_k}\}\to f$, a.e. 于 E, 也就是除了一个零测度 集之外, $\{f_{n_k}(x)\}$ 收敛于 f: 令

$$E_0 = igcap_{n=1}^\infty igcup_{k=n}^\infty E(|f_{n_k} - f| \geq rac{1}{k})$$

$$m(E_0) = \lim_{n \to \infty} m\big(\bigcup_{k=n}^{\infty} E(|f_{n_k} - f| \geq \frac{1}{k})\big) \leq \lim_{n \to \infty} \sum_{k=n}^{\infty} m\big(E(|f_{n_k} - f| \geq \frac{1}{k})\big) \leq \lim_{n \to \infty} \sum_{k=n}^{\infty} \frac{1}{2^k} = \lim_{n \to \infty} \frac{1}{2^{n-1}} = 0$$

 $E-E_0=igcup_{n=1}^\infty\bigcap_{k=n}^\infty E(|f_{n_k}-f|<rac{1}{k})$,显然 $x_0\in E-E_0$ 等价于: 存在正整数 n,使得对任意 k>n, $|f_{n_k}(x_0)-f(x_0)|<rac{1}{k}$. 对任意 $\epsilon>0$,存在 n, $rac{1}{n}<\epsilon$,当 $k\geq n$ 时, $|f_{n_k}(x_0)-f(x_0)|<rac{1}{k}<rac{1}{n}<\epsilon$,因此 $\{f_{n_k}(x)\}$ 在 x_0 处收敛于 f(x),证毕.

Reisz 定理的成立条件没有 $m(E) < \infty$.

依测度收敛不能推出几乎处处收敛,例如,对每个正整数n,将区间[0,1]等分为n个小区间。记

$$A_n^i = \left[\frac{i-1}{n}, \frac{i}{n}\right], \ i = 1, \dots, n$$

将 A_n^i 按照如下的顺序编排, 得到 $\{E_n\}$:

$$A_1^1, A_2^1, A_2^2, A_3^1, A_3^2, A_3^3, \dots$$

定义 $f_n(x) = \chi_{E_n}(x)$, $x \in [0,1]$, 接下来证明 $\{f_n\}$ 依测度收敛于 f(x) = 0, $x \in [0,1]$. 对任意 $0 < \epsilon < 1$, 当 $n \to \infty$ 时,

$$mig(E(|f_n|>\epsilon)ig)=m(E_n) o 0$$

证毕. 而对于任意 $x_0 \in [0,1]$, 必然存在无限个 E_n 包含 x_0 , 也就是说有无限多个 $f_n(x)$ 使得 $f_n(x_0) = 1$, 因此对于任意 $0 < \epsilon < 1$, 满足: 对任意n, 存在k > n 使得 $|f_k(x_0) - f(x_0)| > \epsilon$, 所以 $\{f_n(x)\}$ 在 x_0 处不收敛于f(x).

定理**3.4.4.** 当 $m(E) < \infty$ 时, $f_n \stackrel{\text{m}}{\longrightarrow} f$ 的充要条件是对于 $\{f_n\}$ 的任一子列 $\{f_{n_k}\}$, 都存在其子列 $\{f_{n_k}\}$ 使得 $f_{n_k} \to f$ a.e. 于 E.

证明: 必要性: 显然 $\{f_n\}$ 的任意子列都依测度收敛于 f, 根据 Riesz 定理, 对 $\{f_n\}$ 的任一子 列 $\{f_{n_k}\}$, 都存在其子列 $\{f_{n_{\nu}}\}$ 使得 $f_{n_{\nu}}\to f$ a.e. 于 E.

充分性: 反证法. 若 $\{f_n\}$ 不依测度收敛于 f, 则存在 $\epsilon > 0$, 使得 $m(E(|f_n - f| \ge \epsilon))$ 不收敛于 0. 于是存在 $\delta > 0$ 使得对任意 n, 存在 k > n 使得 $m(E(|f_k - f| \ge \epsilon)) \ge \delta$. 由此可构造 $\{f_n\}$ 的一个子列 $\{f_{n_k}\}$, 使得

$$mig(E(|f_{n_k}-f|\geq\epsilon)ig)\geq\delta,\ orall k\in\mathbb{N}^+$$

显然, f_{n_k} 的任一子列都不可能依测度收敛于 f. 由己知条件, 必然存在 $\{f_{n_k}\}$ 的一个子列 $\{f_{n_{k'}}\}$, 使得 $f_{n_{k'}} \to f$ a.e. 于 E. 由定理3.4.2可知, $f_{n_{k'}} \xrightarrow{\text{m}} f$, 产生矛盾.

因为必要性的证明只运用了Riesz 定理, 所以成立条件没有 $m(E) < \infty$, 但充分性的证明运用到了定理3.4.2, 因此成立条件包括 $m(E) < \infty$.

定理**3.4.5**. 当 $m(E) < \infty$ 时,f 和 f_n $(n \ge 1)$ 是 E 上的实值可测函数, ψ 是 \mathbb{R}^1 上的连续函数,若在 E 上有 $f_n \stackrel{\text{m}}{\longrightarrow} f$,则在 E 上 $\psi(f_n) \stackrel{\text{m}}{\longrightarrow} \psi(f)$.

证明: 由定理3.4.4, 对 $\{f_n\}$ 的任一子列 $\{f_{n_k}\}$, 都存在其子列 $\{f_{n_{k'}}\}$ 使得 $f_{n_{k'}} \to f$ a.e. 于 E. 由于 ψ 是连续的, 因此有 $\psi(f_{n_{k'}}) \to \psi(f)$, a.e., 这表明对 $\psi(f_n)$ 的任一子列, 都存在其子列 $\psi(f_{n_{k'}})$ 使得 $\psi(f_{n_{k'}}) \to \psi(f)$ a.e. 再次应用定理3.4.4, 可知 $\psi(f_n) \stackrel{\text{m}}{\longrightarrow} \psi(f)$, 证毕.

定理**3.4.6**. (1) 若 $f_n \rightarrow f$ a.un. 于 E, 则 $f_n \rightarrow f$ a.e. 于 E.

(2) 若 $f_n \to f$ a.un. 于 E, 则 $f_n \stackrel{\text{m}}{\longrightarrow} f$. 于 E.

3.4.3. 几种收敛极限的性质

定理3.4.7. 三种极限都具有唯一性.

证明: 先证明对几乎处处收敛成立: 若 $f_n \to f$ a.e. 于 $E, f_n \to g$ a.e. 于 E, g a.e. 于 E.

存在零测度集 E_0 和 G_0 , 在 $E - E_0$ 和 $F - F_0$ 上有 $f_n \to f$, $f_n \to g$, 则 f = g, $x \in E - (E_0 \cup F_0)$, 而 $E_0 \cup F_0$ 是零测度集, 因此 f = g a.e. 于 E.

几乎一致收敛一定几乎处处收敛,因此也满足唯一性. 下面证明依测度收敛满足唯一性: 若 $f_n \stackrel{\mathrm{m}}{\longrightarrow} f, f_n \stackrel{\mathrm{m}}{\longrightarrow} g,$ 则 f = g a.e. 于 E.

 $|f-g| \leq |f-f_n| + |g-f_n|, \forall \exists \forall \epsilon > 0,$

$$E(|f-f_n|+|f_n-g|\geq \epsilon)\subseteq E(|f-f_n|\geq \epsilon/2)\cup E(|g-f_n|\geq \epsilon/2)$$

由依测度收敛的定义易得,对于 $\forall \delta$,存在 N, 当 $n \geq N$ 时, $m\big(E(|f-f_n| \geq \epsilon/2)\big) \leq \delta/2$, $m\big(E(|g-f_n| \geq \epsilon/2)\big) \leq \delta/2$, 进而 $m\big(E(|f-f_n| + |f_n-g| \geq \epsilon)\big) \leq \delta$, $m\big(E(|f-g| \geq \epsilon)\big) \leq \delta$, 由 ϵ 和 δ 的任意性可知 f=g a.e. 于 E.

定理**3.4.8**.设 $f_n \rightarrow f$ a.e. 于 $E, g_n \rightarrow g$ a.e. 于 E, 则:

- (1) $|f_n| \rightarrow |f|$ a.e. $\mp E$.
- (2) $cf_n \to cf$ a.e. $\mp E$.
- (3) $f_n + g_n \rightarrow f + g$ a.e. $\mp E$.
- (4) $f_n q_n \to f q$ a.e. $\mp E$.

证明: 存在零测度集 E_0 , 使得在 $E - E_0 \perp f_n \to f$, 进而 $|f_n| \to |f|$, $cf_n \to cf$, $f_n + g_n \to f + g$, 因此(1), (2), (3)得证. 存在零测度集 G_0 , 使得在 $E - G_0 \perp g_n \to g$, 在 $E - E_0 - G_0 \perp f_n g_n \to fg$, 而 $E_0 \cup G_0$ 是零测度集, 因此(4)得证.

因为几乎一致收敛一定几乎处处收敛,因此也满足这些性质.

定理**3.4.9**. 设 $f_n \stackrel{\text{m}}{\longrightarrow} f \mp E$, $g_n \stackrel{\text{m}}{\longrightarrow} g \mp E$, $m(E) < \infty$, 则:

- $(1) |f_n| \stackrel{\mathrm{m}}{\longrightarrow} |f|.$
- $(2) \ cf_n \stackrel{\mathrm{m}}{\longrightarrow} cf.$
- (3) $f_n + g_n \stackrel{\mathrm{m}}{\longrightarrow} f + g$.
- $(4) \ f_n g_n \stackrel{\mathrm{m}}{\longrightarrow} fg.$

证明: (1) 对于 { $|f_n|$ } 的任意子列 { $|f_{n_k}|$ }, 由定理3.4.4可知, 相应地对于 { f_n } 的子列 { f_{n_k} }, 存在其子列 { $f_{n_{k'}}$ } 使得 $f_{n_{k'}}$ → f a.e. 于 E, 此时有 $|f_{n_{k'}}|$ → |f| a.e. 于 E, 再次应用定理 3.4.4, 可知 $|f_n| \stackrel{\text{m}}{\longrightarrow} |f|$. (2), (3), (4) 可用相同方法证明.

参考: https://wenku.baidu.com/view/544042fb3286bceb19e8b8f67c1cfad6195fe9e2.html

3.5 可测函数的连续性

引理**3.5.1.**设 F_1, F_2, \ldots, F_k 是 \mathbb{R}^n 中的 k 个互不相交的闭集, $F = \bigcup_{i=1}^k F_i$, 则简单函数 $f(x) = \sum_{i=1}^k a_i \chi_{F_i}(x)$ 是 F 上的连续函数.

证明: 对于 $\forall x_0 \in F$, 存在 i_0 使得 $x_0 \in F_{i_0}$. 由于 F_1, F_2, \ldots, F_k 是 \mathbb{R}^n 中的 k 个互不相交的 闭集, 故 $x_0 \not\in \bigcup_{i \neq i_0} F_i$, 易证 $\bigcup_{i \neq i_0} F_i$ 是闭集, $\left(\bigcup_{i \neq i_0} F_i\right)^C$ 是开集, 因此存在 $\delta > 0$, 使得 $U(x_0, \delta) \subset \left(\bigcup_{i \neq i_0} F_i\right)^C$. 对于 $\forall \epsilon > 0$, 当 $d(x, x_0) \leq \delta$, 并且 $x \in F$ 时, 必有 $x \in F_{i_0}$. 于是

$$|f(x)-f(x_0)|=|a_{i_0}-a_{i_0}|=0\leq \epsilon$$

故 f(x) 在 x_0 处连续, 证毕.

定理**3.5.1.** (Lusin) 设 $E \in \mathbb{R}^n$ 中的可测集, $f \in E$ 上 a.e. 有界的可测函数, 则对 $\forall \delta > 0$, 存 在 E 的子集 E_{δ} , 满足 $m(E_{\delta}) \leq \delta$, 且 $E - E_{\delta}$ 是闭集, 使得 f 在 $E - E_{\delta}$ 上是连续函数.

证明: (1) 设 f 是简单函数,则 f(x) 可以表示为 $f(x) = \sum_{k=1}^{K} a_k \chi_{E_k}(x)$,其中 E_1, \ldots, E_K 是 E 的一个可测分割. 由定理2.2.2可知,对任意 E_k ,存在闭集 $F_k \subset E_k$, $m(E_k - F_k) \leq \frac{\delta}{K}$. 定义 $F = \bigcup_{k=1}^{K} F_k$,易证 F 是闭集,且 $m(E - F) = m(\bigcup_{k=1}^{K} (E - F_k)) \leq \sum_{k=1}^{K} m(E - F_k) \leq \delta$,将 f 限制在 F 上,得到简单函数 $f(x) = \sum_{k=1}^{K} a_k \chi_{F_k}(x)$,由引理3.5.1可知,它是 F 上的连续函数.

(2) 若 $f(x) < \infty$, $\forall x \in E$, 由定理3.3.2, 存在 E 上的简单函数列 $\{f_n\}$, 使得

$$\lim_{n o\infty}f_n(x)=f(x),\ orall x\in E$$

并且 $|f_n| \leq |f|$. 由 (1) 中的结论可知, 对于任意 f_n , 存在闭集 F_n , 且 $m(E - F_n) < \frac{\delta}{2^n}$. 定义 $F = \bigcap_{n=1}^{\infty} F_n$, 则对任意 $n \in \mathbb{N}^+$, f_n 在 F 上是连续函数, 易证 f 在 F 上也是连续函数, 并且

$$egin{aligned} m(E-F) &= m(E-igcap_{n=1}^{\infty}F_n) \ &= m(E\cap (igcup_{n=1}^{\infty}F_n^C)) \ &= m(igcup_{n=1}^{\infty}(E\cap F_n^C)) \ &\leq \sum_{n=1}^{\infty}m(E-F_n^C) < \sum_{n=1}^{\infty}rac{\delta}{2^n} = \delta \end{aligned}$$

证毕.

(3) 若 f(x) 可能取到 ∞ , 由于 f 是 E 上 a.e. 有界的可测函数, 因此存在零测度集 E_0 , 使得 $f(x) < \infty$, $\forall x \in E - E_\delta$, 根据 (2) 中的结论, 存在 $E - E_0$ 的子集 E_δ , 满足 $m(E_\delta) \le \delta$, 且 $E - E_0 - E_\delta$ 是闭集, 使得 f 在 $E - E_0 - E_\delta$ 上是连续函数. 易验证 $E_\delta \cup E_0$ 满足条件, 证 毕.

引 理 **3.5.2**. 若 A 是 闭集,则对于任意一点 x, d(x,A) = 0 当且仅当 $x \in A$.

证明: 充分性显然, 下面证明必要性: 若 $x \notin A$, 则 $x \in A^C$, 由于 A 是闭集, 所以 A^C 是开集, 则存在邻域 $U(x,\epsilon) \subset A^C$, $\epsilon > 0$, 此时 $d(x,A) \neq 0$, 因此必然有 d(x,A) = 0.

定理3.5.2. 设 $A, B \subset \mathbb{R}^n$ 是 2 个闭集, 并且 $A \cap B = \emptyset$. 又设 a 和 b 是实数, 并且 a < b, 则存在 \mathbb{R}^n 上的一个连续函数 f, 使得 $f|_A = a$, $f|_B = b$, 并且 $a \leq f(x) \leq b$, $\forall x \in \mathbb{R}^n$.

证明: 定义 f(x):

$$f(x) = rac{ad(x,B) + bd(x,A)}{d(x,B) + d(x,A)}$$

显然 d(x,A) 和 d(x,b) 在 \mathbb{R}^n 中连续. 由引理3.5.2, 因为 A,B 是闭集, 因此 d(x,A)=0 (d(x,B)=0) 当且仅当 $x\in A$ ($x\in B$). 因此 $f|_A=a,f|_B=b$. 当 $x\not\in A\cup B$, $f(x)=a+(b-a)\frac{d(x,A)}{d(x,B)+d(x,A)}=b-(b-a)\frac{d(x,B)}{d(x,B)+d(x,A)}\in [a,b].$

定理3.5.3. (Tietze) 设 F 是 \mathbb{R}^n 中的闭集, f 是定义在 F 上的连续函数, 则存在定义在 \mathbb{R}^n 上的连续函数 g, 使得 $g(x) = f(x) \forall x \in F$, 并且

$$\sup_{x\in \mathbb{R}^n} |g(x)| = \sup_{x\in F} |f(x)|$$

证明: (1) 若 f 在 \mathbb{R}^n 上有界, 记 $\sup_{x \in F} |f(x)| = M$, 定义

$$A_1 = F(-M \leq f(x) \leq -\frac{M}{3})$$

$$B_1 = F(\frac{M}{3} \leq f(x) \leq M)$$

根据定理3.5.2, 存在 \mathbb{R}^n 上的连续函数 $g_1(x)$, 满足 $g_1|_{A_1}=-\frac{M}{3}, g_1|_{B_1}=\frac{M}{3},$ $-\frac{M}{3}\leq g_1(x)\leq \frac{M}{3}$ $(x\in\mathbb{R}^n)$, 容易验证 $|f(x)-g_1(x)|\leq \frac{2M}{3}, \forall x\in F.$ 对函数 $f(x)-g_1(x)$ 按照同样的方式定义和 A_2 , B_2 和 \mathbb{R}^n 上的连续函数 $g_2(x)$, 满足: $g_2|_{A_2}=-\frac{1}{3}\cdot\frac{2}{3}M,$ $g_2|_{B_2}=\frac{1}{3}\cdot\frac{2}{3}M,-\frac{1}{3}\cdot\frac{2}{3}M\leq g_2(x)\leq \frac{1}{3}\cdot\frac{2}{3}M$ $(x\in\mathbb{R}^n)$, 容易验证 $|f(x)-g_1(x)-g_2(x)|\leq (\frac{2}{3})^2M, \forall x\in F,$ 这样无限进行下去,得到 $\{A_n\}$, $\{B_n\}$ 和 \mathbb{R}^n 上的连续函数列 $\{g_n(x)\}$, 对于任意的 g_n 满足 $g_n|_{A_n}=-\frac{1}{3}(\frac{2}{3})^{n-1}M, g_n|_{B_n}=\frac{1}{3}(\frac{2}{3})^{n-1}M,$

$$-rac{1}{3}(rac{2}{3})^{n-1}M \leq g_n(x) \leq rac{1}{3}(rac{2}{3})^{n-1}M, \ orall x \in \mathbb{R}^n$$

$$|f(x)-\sum_{i=1}^kg_i(x)|\leq (rac{2}{3})^kM,\ orall x\in F$$

由此可知在 $F \perp \{\sum_{i=1}^n g_i(x)\}$ 一致收敛于 f(x),记 $g(x) = \sum_{i=1}^\infty g_i(x)$,则 g(x) = f(x), $\forall x \in F$. 因为每个 $g_n(x)$ 是 \mathbb{R}^n 上的连续函数,由数学分析的知识可知 g(x) 是连续函数,此外, $|g(x)| = |\sum_{i=1}^\infty g_i(x)| \leq \frac{1}{3} \sum_{i=1}^\infty (\frac{2}{3})^{i-1} M = M$,因此已验证 g(x) 满足条件,证毕.

(2) 若 f 无界, 定义 $u(x) = \arctan(f(x))$, $\forall x \in F$, 则 $|u(x)| \leq \frac{\pi}{2}$, 存在 \mathbb{R}^n 上的连续函数 v(x), 使得当 $x \in F$ 时 v(x) = u(x). 令 $g(x) = \tan(v(x))$, 则 $g \in \mathbb{R}^n$ 上的连续函数, 且当 $x \in F$ 时

$$g(x) = \tan(v(x)) = \tan(u(x)) = f(x)$$

证毕.

结合 Lusin 定理和 Tietze 定理, 可以得到如下结论:

定理**3.5.4.** (Lusin) 设 $E \in \mathbb{R}^n$ 中的可测集, $f \in E$ E E a.e. 有界的可测函数, 则对于 $\forall \delta > 0$, 存在 \mathbb{R}^n 上的连续函数 g, 满足 $\sup_{x \in \mathbb{R}^n} |g(x)| = \sup_{x \in F} |f(x)|$ 和 E 的闭子集 F, 满足 $m(E - F) \leq \delta$, 使得 f(x) = g(x), $\forall x \in F$.

推论. 设 E 是 \mathbb{R}^n 中的可测集, f 是 E 上 a.e. 有界的可测函数, 则对于 $\forall \delta > 0$, 存在 \mathbb{R}^n 上的 连续函数 g, 满足 $\sup_{x \in \mathbb{R}^n} |g(x)| = \sup_{x \in F} |f(x)|$, 使得

$$mig(E(f
eq g)ig)\leq \delta$$

证明: 存在 \mathbb{R}^n 上的连续函数 g, 满足 $\sup_{x \in \mathbb{R}^n} |g(x)| = \sup_{x \in F} |f(x)|$ 和 E 的闭子集 F, 满足 $m(E-F) \leq \delta$, 使得 f(x) = g(x), $\forall x \in F$. 显然, $E(f \neq g) \subseteq E-F$, 由此可知 $m(E(f \neq g)) \leq \delta$.

定义. f 是定义在 \mathbb{R}^n 上的实值函数, 若存在一个有界集 A, 使得当 $x \in A^C$ 时, f(x) = 0, 则称 f 具有紧支集.

若限定 E 是有界集, 还可以得到如下结论:

定理**3.5.5**. 设 E 是 \mathbb{R}^n 中的有界可测集, f 是 E 上 a.e. 有界的可测函数, 则对于 $\forall \delta > 0$, 存在 在 \mathbb{R}^n 上具有紧支集的连续函数 g, 满足 $\sup_{x \in \mathbb{R}^n} |g(x)| = \sup_{x \in F} |f(x)|$ 和 E 的闭子集 F, 满足 $m(E - F) \leq \delta$, 使得 f(x) = g(x), $\forall x \in F$.

证明: 若 E 是有界可测集,则存在闭球 $\overline{U(0,r_1)}$ 和开球 $U(0,r_2)$,使得 $E \subset \overline{U(0,r_1)} \subset U(0,r_2)$. 由定理3.5.2可知,存在 \mathbb{R}^n 上的连续函数 ψ ,使得 $\psi|_{\overline{U(0,r_1)}} = 1$, $\psi_{U(0,r_2)} = 0$,且 $0 \le \psi(x) \le 1$. 同定理3.5.4的证明,可知存在 \mathbb{R}^n 上的连续函数 g,满足 $\sup_{x \in \mathbb{R}^n} |g(x)| = \sup_{x \in \mathbb{R}^n} |f(x)|$ 和 E 的闭子集 F,满足 $m(E-F) \le \delta$,使得 f(x) = g(x), $\forall x \in F$. 定义 $g' = g\psi$,易证 g' 是 \mathbb{R}^1 上具有紧支集的连续函数,且满足其他条件,证毕.

推论. 设 $E \in \mathbb{R}^n$ 中的有界可测集, $f \in E$ 上 a.e. 有界的可测函数, 则对于 $\forall \delta > 0$, 存在在 \mathbb{R}^n 上具有紧支集的连续函数 g, 满足 $\sup_{x \in \mathbb{R}^n} |g(x)| = \sup_{x \in F} |f(x)|$, 使得

$$mig(E(f
eq g)ig)\leq \delta$$

证明:同定理3.5.4的推论.