

Departamento de Matemática y Ciencia de la Computación

Tarea 1 - SAT Lineal

Miguel Olivares Morales miguel.olivares@usach.cl

Benjamín Riveros Landeros benjamin.riveros.l@usach.cl

Lógica Computacional - 22625 Licenciatura en Ciencia de la Computación Semestre Otoño 2025

1 Introducción

El problema de determinar si las variables de una fórmula booleana pueden ser reemplazadas con valores \mathbf{T} o \mathbf{F} de tal forma que la fórmula de como resultado \mathbf{T} se denomina problema de satisfacibilidad booleana o SAT. Si al evaluar la fórmula esta da como resultado \mathbf{T} , entonces se dice que es satisfactoria.

2 Procedimiento

Las fórmulas que serán analizadas primero tendrán que ser codificadas según la siguiente gramatica:

$$\phi ::= p \mid (\neg \phi) \mid (\phi \land \phi)$$

Para esto usamos el siguiente esquema de traducción:

$$T(p) = p$$

$$T(\neg \phi) = \neg T(\phi)$$

$$T(\phi_1 \land \phi_2) = T(\phi_1) \land T(\phi_2)$$

$$T(\phi_1 \to \phi_2) = \neg (T(\phi_1) \land \neg T(\phi_2))$$

$$T(\phi_1 \to \phi_2) = \neg (T(\phi_1) \land \neg T(\phi_2))$$

Esto quiere decir que se analizarán fórmulas compuestas por proposiciones atómicas, negaciones de otras fórmulas y conjunciones de dos fórmulas.

Luego de codificar se tiene que transformar a su notación postfix o también llamada notación polaca inversa con la cual facilitará la creación de un parse tree para asignar valores \mathbf{T} o \mathbf{F} a cada nodo. Al tener el parse tree correspondiente a la fórmula que se evalúa asignamos \mathbf{T} al nodo que encabeza el árbol. Esto implica asumir que la fórmula completa es verdadera y a partir de ello se puede extender esta asignación hacia los nodos hijos del árbol aplicando reglas semánticas de los conectores lógicos.

Si el nodo principal es una conjunción $\phi \wedge \psi$ entonces ϕ y ψ deben ser verdaderas. Por el contrario, si el nodo es una negación $\neg \phi$ quiere decir que la subfórmula ϕ es falsa. Este procedimiento se aplica recursivamente hasta llegar a los nodos hoja, los cuales corresponden a átomos proposicionales.

De esta forma se obtiene una asignación de valores de verdad que satisface la fórmula. En caso que las asignaciones conduzcan a una contradicción (por ejemplo, se tiene $p \equiv \mathbf{T}$ y $\neg p \equiv \mathbf{T}$) se descarta el camino recorrido o incluso puede significar que la fórmula es *insatisfacible*.

Adicionalmente para una mayor eficiencia en espacio y tiempo, detectar y reutilizar átomos proposicionales podemos construir en cambio un DAG (Directed Acyclic Graph).

2.1 Ejemplo

Dada la siguiente fórmula:

$$((p \to q) \land (\neg r \lor p))$$

El primer paso es aplicar la codificación mencionada anteriormente

$$\begin{split} \phi &= ((p \to q) \land (\neg r \lor p)) \\ T(\phi) &= T(((p \to q) \land (\neg r \lor p))) \\ &= T(p \to q) \land T(\neg r \lor p) \\ &= \neg (T(p) \land \neg T(q)) \land \neg (\neg T(\neg r) \land \neg T(p)) \\ T(\phi) &= \neg (p \land \neg q) \land \neg (\neg \neg r \land \neg p) \end{split}$$

El siguiente paso es transformar la fórmula codificada a su notación postfix, para esto hay que descomponer la fórmula en *tokens* de la siguiente manera:

$$[\neg, (, p, \land, \neg, q,), \land, \neg, (, \neg, \neg, r, \land, \neg, p,)]$$

Para transformas a su notación postfix se tiene que saber que se evalúan los operadores según la precedencia, en donde la negación tiene la mayor precedencia por lo que se evalúa primero y despúes la conjunción.

Token	Acción	Salida	Stack
	Apilar operador		
(Apilar paréntesis		¬, (
p	Agregar a salida	p	¬, (
\wedge	Apilar operador	p	¬, (, ∧
	Apilar operador	p	\neg , (, \wedge , \neg
q	Agregar a salida	p q	\neg , $($, \wedge , \neg
)	Desapilar hasta ($p q \neg \wedge$	「「
\wedge	Apilar operador	$p q \neg \wedge$	\neg , \land
	Apilar operador	$p q \neg \wedge$	\neg , \land , \neg
(Apilar paréntesis	$p q \neg \wedge$	\neg , \land , \neg , (
	Apilar operador	$p q \neg \wedge$	\neg , \land , \neg , $($, \neg
	Apilar operador	$p q \neg \wedge$	\neg , \land , \neg , $($, \neg , \neg
r	Agregar a salida	$p q \neg \wedge r$	\neg , \land , \neg , $($, \neg , \neg
\wedge	Apilar operador	$p q \neg \wedge r$	\neg , \land , \neg , $($, \neg , \neg , \land
	Apilar operador	$p q \neg \wedge r$	\neg , \wedge , \neg , $($, \neg , \neg , \wedge , \neg
p	Agregar a salida	$p q \neg \wedge r p$	\neg , \wedge , \neg , $($, \neg , \neg , \wedge , \neg
)	Desapilar hasta ($p q \neg \wedge r p \neg \wedge \neg \neg$	\neg , \wedge , \neg
	Vaciar pila	$p q \neg \wedge r p \neg \wedge \neg \neg \neg \wedge \neg$	

3 Algoritmo

$$(p_1 \to p_2) \lor (p_3 \land p_4) \to (p_5 \to p_6) \lor (p_7 \land p_8) \to (p_9 \to p_{10}) \lor (p_{11} \land p_{12}) \to (p_{13} \to p_{14}) \lor (p_{15} \land p_{16}) \to (p_{17} \to p_{18}) \lor (p_{19} \land p_{20})$$

- 4 Implementación
- 5 Conclusiones