

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(21) International Application Number: PCT/US96/14098 (81) Designated States: AL, AU, BB, BG, BR, CA, CN GE, HU, IL, IS, JP, KP, KR, LC, LK, LR, LT, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK,	
UA, UZ, VN, ARIPO patent (KE, LS, MW, SD, Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, European patent (AT, BE, CH, DE, DK, SE, FI, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (TI)(72) Applicant and Inventor: BLUM, Ronald, D. [US/US]; 5320 Silver Fox Road, Roanoke, VA 24014 (US). (74) Agents: WELLS, William, K., Jr. et al.; Kenyon & Kenyon, 1025 Connecticut Avenue, N.W., Washington, DC 20036 (US).	LV, MC, TR, TT, SZ, UG, TJ, TM, FR, GE, t (BF, B), TG).

(57) Abstract

A curing method for ophthalmic lenses or semi-finished lens blanks wherein a curable resin is first exposed to radiation in the wavelength range of 400-800 nm and subsequently subjected to heat or radiation of different wavelength or intensity than that used in the first step. The polymerizable resin preferably comprises: (1) a first photoinitiator that is activated by radiation in the wavelength range of 400-800 nm and (2) a thermal initiator which is activated by heat, or a second photoinitiator which is activated by radiation of different wavelength or intensity than that used to activate the first photoinitiator.

LOK THE PURPOSES OF INFORMATION OULY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

msN taiV	NA.	Mauritania	MR	Сароп	СV	
Usbekistan	ZΩ	BilognoM	NW	30 IEI4	FR	
United States of America	SΩ	ilsM	WL	basinii	ŁI	
sbringU	ອດ	Madagascar	MG	nisq2	EZ	
Ukraine	AU	Republic of Moldova	WD	ainote	EE	
ogsdoT bas bsbinitT	LL	Monaco	ЭW	Denmark	DK	
Tajikistan	LT.	Latvia	ΓΛ	Осиналу	DE	
ogoT	ÐТ	Luxembourg	ΓΩ	Czech Republic	ZO	
Chad	Q.T	sinsurbi.J	LI	Czechoslovakia	SO	
bnsfixev2	ZS	Liberia	TE TE	China	CN	
Senegal	NS	Sri Lanka	ГK	Cameroon	CM	
Slovakia	2K	Liechtenstein	M	Côte d'Ivoire	IJ	
Slovenia	IS	Kazakhstan	ZЖ	bristiwa	CH	
Stogsgnic	ÐS	Republic of Korea	KE	Ogno	SO	
Sweden	as se	of Korea		Central African Republic	CE	
neba2	as	Democratic People's Republic	КЪ	Canada	CV	
Russian Federation	ия	Kyrgystan	KC	នបានទៀងពី	BA	
sinsmoA	ОЯ	Кспуа	KE	fizar a	ВК	
Portugal	14	asqsl	ď	Beain	BJ	
basio9	74	Viail	TI	Bulgaria	BC	
Mew Zealand	ZN	reland	IE	Burkina Faso	48	
Vewton	ON	Hungary	UH	Belgium	BE	
Metherlands	IN	Second	GE	Barbados	BB	
Niger	AIE	Guinea	NĐ	ailsrituA	ΠV	
coixaM	XM	Georgia	CE	sitiznA	TA	
IMRIRIAI	AA YAT	Onned Armedom	go.	vincins	TATES .	

METHOD AND COMPOSITION FOR THE MANUFACTURE OF OPHTHALMIC LENSES

FIELD OF THE INVENTION:

This invention relates to improved methods by which plastic resins can be cured to form ophthalmic lenses, semifinished blanks and optical preforms. Ophthalmic lenses often have complex geometries, with certain prescriptions having variations in thicknesses across the optic area of greater than an order of magnitude. Since the curing process is accompanied by shrinkage, a key objective of curing process development efforts is to be able to accommodate shrinkage without unduly increasing the cure time. I have developed a curing method for ophthalmic lenses that uses visible light to initiate cure, while nevertheless creating a colorless product.

15

BACKGROUND:

Curing of organic polymerizable resins to form ophthalmic lenses and semifinished blanks has traditionally involved the use of thermal polymerization initiators as described, for example, in US Patent

3,038,210, issued to Hungerford, et al., and US Patent 3,222,432, issued to Grandparret. More recently, photocuring processes have been disclosed involving the use of ultraviolet initiators, for example, US Patent 4,166,088, issued to Neefe, and US Patent Nos. 5,364,256 and 4,879,318 to Lipscomb. Photocuring processes have allowed the development of cure cycles that are considerably shorter than standard thermal curing cycles.

- In all cases, it is necessary to ensure that the cure profile, which determines the rate of shrinkage, allows the cure of the bulk resin to take place in a controlled fashion while the surface still retains substantial adhesion to the mold. In this way, the lens does not undergo a prerelease, does not develop optical aberrations caused by the formation of local heterogeneities in the resin mass due to uneven flow, and does not develop surface defects or cracks due to resin shrinkage.
- 20 In U.S. Patent No. 4,919,850, issued to me, I disclose a two stage cure process involving the use of ultraviolet polymerization initiators that allow the resin to gel under a low level of ultraviolet illumination. In this way, the initial cure rate is 25 maintained at a low level, until the resin mass becomes a gel and mass flow ceases within the curing lens. is important, because the risk of developing optical aberrations is highest at the initial stages of the curing process when local exotherms can induce optical 30 aberrations through resin flow. After the material has undergone gelation, the cure rate is accelerated by increasing ultraviolet light intensity. Increasing light intensity also serves to maintain the pace of curing as the initiator becomes depleted.
- 35 Alternatively, the cure rate is also accelerated in the second stage by using UV light of a shorter wavelength.

3,038,210, issued to Hungerford, et al., and US Patent 3,222,432, issued to Grandparret. More recently, photocuring processes have been disclosed involving the use of ultraviolet initiators, for example, US Patent 4,166,088, issued to Neefe, and US Patent Nos. 5,364,256 and 4,879,318 to Lipscomb. Photocuring processes have allowed the development of cure cycles that are considerably shorter than standard thermal curing cycles.

- In all cases, it is necessary to ensure that the cure profile, which determines the rate of shrinkage, allows the cure of the bulk resin to take place in a controlled fashion while the surface still retains substantial adhesion to the mold. In this way, the lens does not undergo a prerelease, does not develop optical aberrations caused by the formation of local heterogeneities in the resin mass due to uneven flow, and does not develop surface defects or cracks due to resin shrinkage.
- 20 In U.S. Patent No. 4,919,850, issued to me, I disclose a two stage cure process involving the use of ultraviolet polymerization initiators that allow the resin to gel under a low level of ultraviolet illumination. In this way, the initial cure rate is 25 maintained at a low level, until the resin mass becomes a gel and mass flow ceases within the curing lens. is important, because the risk of developing optical aberrations is highest at the initial stages of the curing process when local exotherms can induce optical 30 aberrations through resin flow. After the material has undergone gelation, the cure rate is accelerated by increasing ultraviolet light intensity. Increasing light intensity also serves to maintain the pace of curing as the initiator becomes depleted.
- 35 Alternatively, the cure rate is also accelerated in the second stage by using UV light of a shorter wavelength.

4

skill in the art upon reading the description and claims set forth below.

Unless indicated to the contrary, each reference cited herein is incorporated by reference in its entirity.

DETAILED DESCRIPTION OF THE INVENTION:

I have developed a cure process that utilizes room light in a first stage to initiate cure and reach the gel state. A second stage of the cure process can subsequently be completed, by application of thermal energy, by application of UV light, or both. The initial curing stage may take place either directly under room light, or in chambers employing visible light bulbs.

Since polymerization initiators which are activated by visible light are generally highly colored, it may appear at first sight that their use would be incompatible with the proposed application (i.e., to make an ophthalmic lens which is preferably colorless, or water white). Recently, a new class of photopolymerization initiators has been commercialized which begin as a colored species and are activated by visible light, but upon activation form colorless photodissociation products. I discovered that such photoinitiators can be used to develop cure processes for ophthalmic lenses and semi-finished blanks.

A preferred photoinitiator is BAPO, available from Ciba Geigy Corp. This photopolymerization initiator is actually a mixture of two photoinitiators, Bisdimethoxybenzoyl Trimethylpentyl Phosphine Oxide (25%, by weight) and 2-Hydroxy 2-Methyl 1-Phenyl Propanone (75% by weight). The phosphine oxide derivative absorbs visible light in the wavelength range 400-450 NM range, and initiates polymerization of resins incorporating acrylic, methacrylic, vinylic or allylic derivatives.

5

Under normal room illumination, the cure rate is slow. Therefore, the mold assemblies do not require cooling or other temperature control to undergo gelation. Nevertheless, precise temperature control does produce a more uniform product and improves product consistency and yield. If temperature control mechanisms are provided, they should be employed to control the temperature at or near room temperature, i.e., at about 15°C to 35°C.

- While not wishing to be bound by any particular theory, it is believed that this photoinitiator works in the following fashion. The phosphine oxide derivative is activated and undergoes photodissociation under room light, leaving the acetophenone derivative unaffected.
- The phosphine oxide derivative undergoes bleaching on photodissociation, so that the polymerizing resin mass becomes less colored as polymerization progresses. Once the resin has undergone gelation, the mold assembly is placed in a chamber equipped with ultraviolet light
- bulbs emitting radiation in the wavelength range of 300-380 NM. The near ultraviolet radiation activates the acetophenone derivative, causing the curing process to become accelerated. At the same time, the dissociation of the phosphine oxide derivative is completed,
- completing the bleaching process. A residual faint yellow hue can be corrected by an addition of a small amount of a bluing additive, such as TINOPAL (available from Ciba Geigy Corp.) to the resin formulation.

When UV photoinitiators (such as the acetophenone derivative) are used during the second stage of cure, the mold assembly may be heated along a preestablished temperature profile, ultimately reaching a final temperature in the range of about 90°-150°C, to complete the cure process and to obtain a final lens product with a glass transition temperature in the range of about 100°-175°C. If no heat is applied and the temperature

maintained at or near room temperature, the final

6

product has a lower glass transition temperature (e.g., in the range of about 30°-50°C). In all cases, the cure process should be completed. The extent of the cure process can be monitored, for example, by a differential scanning calorimetric analysis of the material after cure. Whether heating is necessary to complete the cure generally depends on the monomers used in the resin formulation. Thus, if monomers used in the formulation can form homopolymers which have glass transition temperatures considerably above the room temperature (15°-30°C), then an elevated temperature is desirable to complete the cure process.

Alternatively, a phosphine oxide derivative may be used which initiates cure under visible light as before.

However, a thermal polymerization initiator, such as a peroxide, a peracetate, a percarbonate or an azo derivative may be used to complete the second stage (post-gel cure) by placing the mold assembly in a thermal curing oven, typically a convection oven.

The two stage polymerization process described above may be carried out in glass molds, in metal molds or in a combination thereof. Metal molds with reflective inner surfaces may be especially useful in reflecting radiation back into the resin mass and conducting excess heat away from the resin mass. Metal molds may also be made thinner, and thus can have a lower thermal mass than glass molds. Alternatively, glass molds with metallized surfaces may be employed for resin formulations which require a metal mold for adhesion and thus prevent prerelease during cure.

The two stage polymerization method can be employed to produce lenses from resin formulations covering a wide range of chemical reactivities, functionalities, shrinkage properties, and thermal expansion

35 characteristics. Both monomers and oligomers may be employed, and polymeric or small molecular weight additives can be included to alter physical properties

7

of the resin formulation, such as viscosity and surface energy, as well as chemical properties of the formulation, such as oxidative and photothermal or hydrolytic stability.

8

CLAIMS

What is claimed is:

1	1.	A	curing	method	for	ophthalmic	lenses	or	semi-
---	----	---	--------	--------	-----	------------	--------	----	-------

- 2 finished lens blanks comprising:
- 3 (A) providing a mold and a polymerizable resin, said
- 4 polymerizable resin comprising
- 5 (1) a first photoinitiator that is activated by
- 6 radiation in the wavelength range 400-800 NM
- 7 and
- 8 (2) an initiator selected from the group consisting
- 9 of (a) a thermal initiator which is activated
- by heat and (b) a second photoinitiator which
- is activated by radiation of different
- 12 wavelength or intensity than that used to
- 13 activate the first photoinitiator;
- 14 (B) exposing the curable resin to radiation in the
- wavelength range of 400-800 NM; and
- 16 (C) subsequently subjecting the curable resin to a
- 17 curing environment selected from (1) heat and (2)
- radiation of different wavelength or intensity than
- 19 that used in step (B).
- 1 2. The method of claim 1, further comprising heat
- 2 treating subsequent to step (C).
- 1 3. The method of claim 1, in which light delivered by
- 2 incandescent light bulbs is used to provide said
- 3 radiation in the wavelength range of 400-800 NM.
- 1 4. The method of claim 1, in which light delivered by
- 2 fluorescent light bulbs is used to provide said
- 3 radiation in the wavelength range of 400-800 NM.
- 5. The method of claim 1, in which step (B) further
- 2 comprises control of temperature in the range 15°C-45°C.

9

- 1 6. The method of claim 1, in which said first
- 2 photoinitiator is Bisdimethoxybenzoyl Trimethylpentyl
- 3 Phosphine Oxide.
- 1 7. The method of claim 1, in which said second
- 2 photoinitiator is selected as the initiator.
- 1 8. The method of claim 7, in which said second
- 2 photoinitiator is .2-Hydroxy 2-Methyl 1-Phenyl Propane.
- 1 9. The method of claim 1, in which said thermal
- 2 initiator is selected as the initiator.
- 1 10. The method of claim 11, in which said thermal
- 2 initiator is selected from the group consisting of a
- 3 peroxide, a peracetate, a percarbonate and an azo
- 4 derivative.

INTERNATIONAL SEARCH REFORT

International application No. PCT/US96/14098

A. Classification of subject matter IPC(6) :B29D 11/00					
US CL : 264/1.36, 1.38, 1.7, 1.8 According to International Patent Chasification (IFC) or to both national chasification and IFC					
	DS SEARCHIED				
	ocumentation ocarched (classification system followed	by classification symbols)			
	264/1.36, 1.3B, 1.7, 1.8				
0.0.	SOVIEW 1 200 111 2 210				
Documentat	Documentation searched other than minimum documentation to the entent that such documents are included in the fields searched				
Electronic data base consulted during the international search (some of data base and, where practicable, search terms used)					
C. DOC	uments considered to be relevant				
Category	Citation of document, with indication, where app	repriate, of the relevant passages Relevant to claim No.			
Y	US 4,919,850 A (BLUM ET AL) 2 document	4 April 1990, see whole 1-10			
,					
,		•			
Fus	her documents are listed in the continuation of Box C.	. See patent family annex.			
Concession .	parini empletia of cital decrement:	"T" har door sent published ofter the interminent filling date or priority			
°A° &	communitation in general cres of the cut which is not considered to of particular relaymence	detis end unt in conflict with the explication but eited to understand the pointiple or throny underlying the lawerina			
"E. c	and pails less cores at rate to co bedildus teamond with	 X° decomment of positively relevance; the chimsel invention consent be engineered errors to be considered to involve as inventive cap when the decomment is believe their. 			
	escussar which many threw doubto as priority chim(s) or which is had to exhibith the publication date of conter circus or other pacial recurs (as specified)	"Y" description of goritouhr relavance; the chieved invention council be			
•o• a	coursest referring to an end discharge, was, embibilism or other securi	considered to involve on inventive one when the document is constitued with one or more other such documents, such combination being covince to a person dulited in the ord			
°P° d	coursest published prior to the interactional filing date has been then as priority date chimned	*&* decreased member of the cases person fracily			
	Date of the actual completion of the international search Date of mailing of the international search report				
20 NOV	EMBER 1996	2 7 DEC 1996			
	mailing address of the ISA/US oner of Potento and Trademarko	Authorized officer Libble Tibonas MATHIELD. VARGOTOPOT			
Warhingt	on, D.C. 20231 No. (703) 305-3230	Telephone No. (703) 308 0551			
I Magazini's	mm //1141 4115-4/461	1 EREINGRE INC. (1931 300 VO31			