1 Turing Machine

1.1 Definition

A **Turing machine** (TM) is defined as a 7-tuple $P = (Q, \Sigma, \Gamma, \delta, q_0.B, F)$, where:

- ullet Q is the finite set of states
- Σ : input symbols (finite set of symbols)
- Γ : tape symbols (finite set of symbols), $\Sigma \in \Gamma$
- $q_0 \in Q$: starting state
- $B \in \Gamma$: blank symbol $(B \notin \Sigma)$
- $F \subseteq Q$: set of accepting states
- $\delta: Q \times \Gamma \to Q \times \Gamma \times D$
 - D is the direction where the head moves (L, R)

Figure 1: A Turing machine

1.2 Instantaneous descriptors

Similarly to PDAs, the instantaneous descriptors (ID) also represent configurations. However, for TMs, we have to represent the entire (non-blank) content of the tape, the position of the head and the state of the TM as well.

Configurations of a TM look like $pa\alpha$, $\alpha pa\beta$ or αpB .

Provide TMs for the following languages:

1.
$$L = \{u101v \mid u, v \in \{0, 1\}^*\}$$

2.
$$L = \{101w \mid w \in \{0, 1\}^*\}$$

3.
$$L = \{w101 \mid w \in \{0, 1\}^*\}$$

Provide TMs for the following languages:

1.
$$L = \{awb \mid w \in \{a, b\}^*\}$$

2.
$$L = \{a^n b^n \mid n \ge 0\}$$

3.
$$L = \{ww^{-1} \mid w \in \{a, b\}^*\}$$

4.
$$L = \{ww \mid w \in \{a, b\}^*\}$$

5.
$$L = \{a^{2n} \mid n \ge 0\}$$

6.
$$L = \{a^{2n}b^n \mid n \ge 0\}$$

7.
$$L = \{a^n b^n c^n \mid n \ge 0\}$$

Provide a 2-tape TM for the following language:

1.
$$L = \{a^m b^n \mid m, n \ge 1, n\%m = 0\}$$