BAYESIAN LEARNING - LECTURE 2

LECTURE 2: NORMAL. POISSON. PRIOR ELICITATION.

MATTIAS VILLANI

DEPARTMENT OF STATISTICS
STOCKHOLM UNIVERSITY
AND
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
LINKÖPING UNIVERSITY

LECTURE OVERVIEW

- The Normal model with known variance
- The Poisson model
- **■** Conjugate priors
- **■** Prior elicitation

NORMAL DATA, KNOWN VARIANCE - UNIFORM PRIOR

Model

$$x_1, ..., x_n | \theta, \sigma^2 \stackrel{iid}{\sim} N(\theta, \sigma^2).$$

■ Prior

$$p(\theta) \propto c$$
 (a constant)

■ Likelihood

$$p(x_1, ..., x_n | \theta, \sigma^2) = \prod_{i=1}^n (2\pi\sigma^2)^{-1/2} \exp\left[-\frac{1}{2\sigma^2} (x_i - \theta)^2\right]$$

$$\propto \exp\left[-\frac{1}{2(\sigma^2/n)} (\theta - \bar{x})^2\right].$$

Posterior

$$\theta | x_1, ..., x_n \sim N(\bar{x}, \sigma^2/n)$$

NORMAL DATA, KNOWN VARIANCE - NORMAL PRIOR

■ Prior

$$\theta \sim N(\mu_0, \tau_0^2)$$

Posterior

$$p(\theta|X_1, ..., X_n) \propto p(X_1, ..., X_n|\theta, \sigma^2)p(\theta)$$

$$\propto N(\theta|\mu_n, \tau_n^2),$$

where

$$\frac{1}{\tau_n^2}=\frac{n}{\sigma^2}+\frac{1}{\tau_0^2},$$

$$\mu_{\mathsf{n}} = \mathsf{w}\bar{\mathsf{x}} + (\mathsf{1} - \mathsf{w})\mu_{\mathsf{o}},$$

and

$$W = \frac{\frac{n}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}}.$$

NORMAL DATA, KNOWN VARIANCE - NORMAL PRIOR

$$\theta \sim N(\mu_0, \tau_0^2) \stackrel{x_1, \dots, x_n}{\Longrightarrow} \theta | x \sim N(\mu_n, \tau_n^2).$$

Posterior precision = Data precision + Prior precision

Posterior mean =

DOWNLOAD SPEED

- Data: x = (22.42, 34.01, 35.04, 38.74, 25.15) Mbit/sec.
- Model: $X_1, ..., X_5 \sim N(\theta, \sigma^2)$.
- Assume $\sigma =$ 5 (measurements can vary \pm 10MBit with 95% probability)
- My **prior**: $\theta \sim N(50, 5^2)$.

DOWNLOAD SPEED N=1

DOWNLOAD SPEED N=3

Download speed data: x=(22.42, 34.01, 35.04)

DOWNLOAD SPEED N=5

CANADIAN WAGES DATA

Data on wages for 205 Canadian workers.

10 | 2

CANADIAN WAGES

■ Model

$$X_1, ..., X_n | \theta \sim N(\theta, \sigma^2), \ \sigma^2 = 0.4$$

■ Prior

$$heta \sim N(\mu_{\rm O}, au_{\rm O}^2), \; \mu_{\rm O} =$$
 12 and $au_{\rm O} =$ 10

Posterior

$$\theta | x_1, ..., x_n \sim N\left(\mu_n, \tau_n^2\right)$$
,

where $\mu_n = W\bar{X} + (1 - W)\mu_0$.

■ For the Canadian wage data:

$$w = \frac{\sigma^{-2}n}{\sigma^{-2}n + \tau_0^{-2}} = \frac{2.5 \cdot 205}{2.5 \cdot 205 + 1/100} = 0.999.$$

$$u_n = w\bar{x} + (1 - w)u_0 = 0.999 \cdot 13.489 + (1 - 0.999) \cdot 12 \approx 13.489$$

$$\tau_n^2 = (2.5 \cdot 205 + 1/100)^{-1} = 0.00195$$

CANADIAN WAGES DATA - MODEL FIT

Poisson model

Model

$$y_1, ..., y_n | \theta \stackrel{iid}{\sim} Pois(\theta)$$

Poisson distribution

$$p(y) = \frac{\theta^y e^{-\theta}}{y!}$$

Likelihood from iid Poisson sample $y = (y_1, ..., y_n)$

$$p(y|\theta) = \left[\prod_{i=1}^{n} p(y_i|\theta)\right] \propto \theta^{\left(\sum_{i=1}^{n} y_i\right)} \exp(-\theta n),$$

■ Prior

$$p(\theta) \propto \theta^{\alpha-1} \exp(-\theta \beta) \propto Gamma(\alpha, \beta)$$

which contains the info: $\alpha - 1$ counts in β observations.

POISSON MODEL, CONT.

Posterior

$$p(\theta|y_1, ..., y_n) \propto \left[\prod_{i=1}^n p(y_i|\theta)\right] p(\theta)$$

$$\propto \theta^{\sum_{i=1}^n y_i} \exp(-\theta n) \theta^{\alpha-1} \exp(-\theta \beta)$$

$$= \theta^{\alpha + \sum_{i=1}^n y_i - 1} \exp[-\theta (\beta + n)],$$

which is proportional to the $Gamma(\alpha + \sum_{i=1}^{n} y_i, \beta + n)$ distribution.

■ Prior-to-Posterior mapping

Model:
$$y_1,...,y_n|\theta \stackrel{iid}{\sim} Pois(\theta)$$

Prior: $\theta \sim Gamma(\alpha,\beta)$
Posterior: $\theta|y_1,...,y_n \sim Gamma(\alpha + \sum_{i=1}^n y_i,\beta + n)$.

POISSON EXAMPLE - BOMB HITS IN LONDON

$$n = 576$$
, $\sum_{i=1}^{n} y_i = 229 \cdot 0 + 211 \cdot 1 + 93 \cdot 2 + 35 \cdot 3 + 7 \cdot 4 + 1 \cdot 5 = 537$.

Average number of hits per region= $\bar{y}=537/576\approx 0.9323$.

$$p(\theta|y) \propto \theta^{\alpha+537-1} \exp[-\theta(\beta+576)]$$

$$E(\theta|y) = \frac{\alpha + \sum_{i=1}^{n} y_i}{\beta + n} \approx \bar{y} \approx 0.9323,$$

and

$$SD(\theta|y) = \left(\frac{\alpha + \sum_{i=1}^{n} y_i}{(\beta + n)^2}\right)^{1/2} = \frac{(\alpha + \sum_{i=1}^{n} y_i)^{1/2}}{(\beta + n)} \approx \frac{(537)^{1/2}}{576} \approx 0.0402.$$

if α and β are small compared to $\sum_{i=1}^{n} y_i$ and n.

Poisson bomb hits in London

POISSON EXAMPLE - POSTERIOR INTERVALS

- **Bayesian 95% credible interval**: the probability that the unknown parameter θ lies in the interval is 0.95.
- Approximate 95% **credible interval** for θ (for small α and β):

$$E(\theta|y) \pm 1.96 \cdot SD(\theta|y) = [0.8535; 1.0111]$$

- An exact 95% equal-tail interval is [0.8550; 1.0125] (assuming $\alpha = \beta = 0$)
- **Highest Posterior Density** (**HPD**) interval contains the θ values with highest pdf.
- An exact Highest Posterior Density (HPD) interval is [0.8525; 1.0144]. Obtained numerically, assuming $\alpha = \beta = 0$.

17 | 22

ILLUSTRATION OF DIFFERENT INTERVAL TYPES

Skewed distribution

Skewed monotonous distribution

Bimodal distribution

CONJUGATE PRIORS

- Normal likelihood: Normal prior→Normal posterior.
- Bernoulli likelihood: Beta prior→Beta posterior.
- Poisson likelihood: Gamma prior→Gamma posterior.
- Conjugate priors: A prior is conjugate to a model if the prior and posterior belong to the same distributional family.
- Formal definition: Let $\mathcal{F} = \{p(y|\theta), \theta \in \Theta\}$ be a class of sampling distributions. A family of distributions \mathcal{P} is **conjugate** for \mathcal{F} if

$$p(\theta) \in \mathcal{P} \Rightarrow p(\theta|\mathbf{x}) \in \mathcal{P}$$

holds for all $p(y|\theta) \in \mathcal{F}$.

PRIOR ELICITATION

- The prior should be determined (elicited) by an expert. Typically, expert≠statistician.
- Elicit the prior on a quantity that the expert knows well.

 Convert afterwards.
- Ask probabilistic questions to the expert:
 - $E(\theta) = ?$
 - $SD(\theta) = ?$
 - $Pr(\theta < c) = ?$
 - Pr(y > c) = ?
- **Show some consequences** of the elicitated prior to the expert.
- Beware of psychological effects, such as anchoring.

PRIOR ELICITATION - AR(P) EXAMPLE

■ Autoregressive process or order p

$$y_t = \mu + \phi_1(y_{t-1} - \mu) + ... + \phi_p(y_{t-p} - \mu) + \varepsilon_t, \ \varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$$

- Informative prior on the unconditional mean: $\mu \sim N(\mu_0, \tau_0^2)$.
- "Noninformative" prior on σ^2 : $p(\sigma^2) \propto 1/\sigma^2$
- Assume $\phi_i \sim N(\mu_i, \psi_i)$, i = 1, ..., p are independent a priori.
- Prior on $\phi = (\phi_1, ..., \phi_p)$ centered on persistent AR(1) process: $\mu_1 = 0.8, \mu_2 = ... = \mu_p = 0$
- lacksquare $Var(\phi_i)=rac{c}{i^\lambda}.$ "Longer" lags are more likely to be zero a priori.

DIFFERENT TYPES OF PRIOR INFORMATION

- Real expert information. Combo of previous studies and experience.
- Vague prior information.
- **Reporting priors**. Easy to understand the information they contain.
- **Smoothness priors**. Regularization. Shrinkage. Big thing in modern statistics/machine learning.