C12 - 5.1 - Sin Cos and Tan Graphs HW

Draw y = sinx

X	у
0	
$\frac{\pi}{2}$	
π	
$\frac{3\pi}{2}$	
2π	

Draw y = cosx

X	у
0	
$\frac{\pi}{2}$	
π	
$\frac{3\pi}{2}$	
2π	

Draw y = tanx

X	у
0	
$\frac{\pi}{4}$	
$\frac{\pi}{2}$	
$\frac{3\pi}{4}$	
π	

C12 - 5.2 - "a" Find Equation WS

Determine a, and the equation y = asinx

Determine a, and the equation $y = a\cos x$

C12 - 5.2 - "a" Graphing WS

Determine a_i and graph the equation y = asinx

Determine a, and graph the equation $y = a\cos x$

C12 - 5.2 - "b" Find Equation WS

Determine b, and the equation y = sinbx

$$p = \frac{2\pi}{b}$$

$$b = \frac{2\pi}{p}$$

$$b = \frac{2\pi}{p}$$

Determine b, and the equation y = cosbx

C12 - 5.2 - "b" Graphing WS

Determine b, and graph the equation y = sinbx

Determine b, and graph the equation y = cosbx

C12 - 5.3 - "d" Find Equation WS

Determine b, and the equation y = sinx + d

Determine b, and the equation y = cosx + d

C12 - 5.3 - "d" Graphing WS

Determine b, and graph the equation y = sin x + d

Determine b, and graph the equation y = cosx + d

C12 - 5.3 - "c" Find Equation WS

Determine c, and graph the equation $y = sin(x \pm c)$

Determine b, and graph the equation $y = cos(x \pm c)$

C12 - 5.3 - "c" Graphing WS

Determine c, and the equation y = sin(x - c)

$$y = \sin(x - \pi)$$

Determine c, and the equation y = cos(x - c)

C12 - 5.3 - Graph Homework

$$y = 3\sin(2x) + 1$$

$$y = 3\sin\left(x + \frac{\pi}{3}\right) - 2$$

$$y = 3\cos(x - \pi) + 1$$

$$y = 3\cos\left(\frac{1}{2}(x - \frac{\pi}{2})\right) + 1$$

C12 - 5.4 - Ferris Wheel WS

A Ferris wheel with radius 12 m is 2 m off the ground. It takes 20 seconds for one complete revolution. Draw a diagram of the Ferris wheel, graph the height of a passenger starting at the bottom with a table of values and write the equation. How high at 6 second in. How long above 18m in one cycle.