(1) If $0 < \lambda_i < K$, then $\epsilon_i = 0$ and the *i*-th inequality is active, so

$$w^{\top}u_i - b - \delta = 0.$$

This means that u_i is on the blue margin (the hyperplane $H_{w,b+\delta}$ of equation $w^{\top}x = b + \delta$) and is classified correctly.

Similarly, if $0 < \mu_j < K$, then $\xi_j = 0$ and

$$w^{\mathsf{T}}v_i - b + \delta = 0,$$

so v_j is on the red margin (the hyperplane $H_{w,b-\delta}$ of equation $w^{\top}x = b - \delta$) and is classified correctly. See Figure 54.4.

Figure 54.4: When $0 < \lambda_i < K$, u_i is contained within the blue margin hyperplane. When $0 < \mu_i < K$, v_i is contained within the red margin hyperplane.

(2) If $\lambda_i = K$, then the *i*-th inequality is active, so

$$w^{\top}u_i - b - \delta = -\epsilon_i.$$

If $\epsilon_i = 0$, then the point u_i is on the blue margin. If $\epsilon_i > 0$, then u_i is within the open half space bounded by the blue margin hyperplane $H_{w,b+\delta}$ and containing the separating hyperplane $H_{w,b}$; if $\epsilon_i \leq \delta$, then u_i is classified correctly, and if $\epsilon_i > \delta$, then u_i is misclassified (u_i lies on the wrong side of the separating hyperplane, the red side). See Figure 54.5.

Similarly, if $\mu_j = K$, then

$$w^{\mathsf{T}}v_i - b + \delta = \xi_i.$$

If $\xi_j = 0$, then the point v_j is on the red margin. If $\xi_j > 0$, then v_j is within the open half space bounded by the red margin hyperplane $H_{w,b-\delta}$ and containing the