

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Bayesian Statistics and Data Analysis Lecture 7

Måns Magnusson Department of Statistics, Uppsala University Thanks to Aki Vehtari, Aalto University

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Section 1

Hierarchical models

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Hierarchical model

- Example: Treatment effectiveness
 - in hospital j the survival probability is θ_j
 - observations y_{ij} tell whether patient i survived in hospital

Hierarchical models

- Rats example
- Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Hierarchical model

- Example: Treatment effectiveness
 - in hospital j the survival probability is θ_j
 - observations y_{ij} tell whether patient i survived in hospital

• sensible to assume that θ_i are similar

- natural to think that θ_j have common population distribution
- θ_j is not directly observed and the population distribution is unknown

Hierarchical model: terms

Lvl 1: observations given parameters $p(y_{ii}|\theta_i)$

- Hierarchical models
 - Rats example - Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

Joint posterior

$$p(\theta, \tau|y) \propto p(y|\theta, \tau)p(\theta, \tau)$$

 $\propto p(y|\theta)p(\theta|\tau)p(\tau)$

• Hierarchical models

- Rats example
- Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Hierarchical model: terms

Lvl 1: observations given parameters $p(y_{ij}|\theta_j)$

Lvl 2: parameters given hyperparameters $p(\theta_j|\tau)$

Joint posterior

$$p(\theta, \tau|y) \propto p(y|\theta, \tau)p(\theta, \tau)$$

 $\propto p(y|\theta)p(\theta|\tau)p(\tau)$

Hierarchical models

- Rats example
- Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Comparisons

• "Separate model" (model with separate/independent effects) a a

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Comparisons

• "Separate model" (model with separate/independent effects) θ_1 θ_2 \dots θ_n

• "Joint/pooled model" (model with a common effect / pooled model) θ

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Comparisons

• "Separate model" (model with separate/independent effects) θ_1 θ_2 \dots θ_n

• "Joint/pooled model" (model with a common effect / pooled model) θ

Hierarchical model

Hierarchical models

- Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Predictive distributions for hiearchical models

- Two types of predictive distributions
 - 1. A new observation in an existing group
 - 2. A new observation in a new group

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

- Medicine testing
- Type F344 female rats in control group given placebo
 - count how many get endometrial stromal polyps
 - familiar binomial model example

- · Hierarchical models
 - Rats example
 - Factory example
 8 schools example
- Exchangeability
- Computational aspects

- Medicine testing
- Type F344 female rats in control group given placebo
 - count how many get endometrial stromal polyps
 - familiar binomial model example
- Experiment has been repeated 71 times

	0/20	0/20	0/20	0/20	0/20	0/20	0/20	0/19	0/19	0/19
	0/19	0/18	0/18	0/17	1/20	1/20	1/20	1/20	1/19	1/19
	1/18	1/18	2/25	2/24	2/23	2/20	2/20	2/20	2/20	2/20
	2/20	1/10	5/49	2/19	5/46	3/27	2/17	7/49	7/47	3/20
	3/20	2/13	9/48	10/50	4/20	4/20	4/20	4/20	4/20	4/20
	4/20	10/48	4/19	4/19	4/19	5/22	11/46	12/49	5/20	5/20
	6/23	5/19	6/22	6/20	6/20	6/20	16/52	15/46	15/47	9/24
	4/14				,					,

- Hierarchical models
 - Rats example
 - Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

• Hierarchical binomial model for rats prior parameters α and β are unknown

$$\theta_j | \boldsymbol{\alpha}, \boldsymbol{\beta} \sim \mathsf{Beta}(\theta_j | \boldsymbol{\alpha}, \boldsymbol{\beta})$$

$$y_j|n_j,\theta_j\sim \text{Bin}(y_j|n_j,\theta_j)$$

- Joint posterior $p(\theta_1, \dots, \theta_J, \alpha, \beta|y)$
 - multiple parameters

- Hierarchical models
 - Rats example
 - Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

• Hierarchical binomial model for rats prior parameters α and β are unknown

$$\theta_j | \alpha, \beta \sim \mathsf{Beta}(\theta_j | \alpha, \beta)$$

$$y_j|n_j,\theta_j \sim \text{Bin}(y_j|n_j,\theta_j)$$

- Joint posterior $p(\theta_1, \dots, \theta_J, \alpha, \beta|y)$
 - multiple parameters
 - factorize $\prod_{i=1}^{J} p(\theta_i | \alpha, \beta, y) p(\alpha, \beta | y)$

· Hierarchical models

- Rats example
- Factory example
- 8 schools example
- Exchangeability
- Computational aspects

- Population prior Beta $(\theta_i | \alpha, \beta)$
- Hyperprior $p(\alpha, \beta)$?
 - α, β both affect the location and scale
 - BDA3 (p. 110) has (vague) $p(\alpha, \beta) \propto (\alpha + \beta)^{-5/2}$

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- ullet Exchangeability
- Computational aspects

- Population prior Beta $(\theta_i | \alpha, \beta)$
- Hyperprior $p(\alpha, \beta)$?
 - α, β both affect the location and scale
 - BDA3 (p. 110) has (vague) $p(\alpha, \beta) \propto (\alpha + \beta)^{-5/2}$
- What type of predicitive distributions can we have?

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

The marginal of α and β

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

- Hierarchical models
 - Rats example
 - Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Separate model

Hierarchical model

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Hierarchical model

Population distribution (prior) for $\boldsymbol{\theta}_j$

- Hierarchical models
 - Rats example
 - Factory example
 8 schools example
- Exchangeability
- Computational aspects

- Factory has 6 machines which quality is evaluated
- Assume hierarchical model
 - each machine has its own (average) quality θ_j and common variance σ^2

• Can be used to predict the future quality produced by each machine and quality produced by a new similar machine

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

- Factory has 6 machines which quality is evaluated
- Assume hierarchical model
 - each machine has its own (average) quality θ_j and own variance σ_i^2

 $\sigma_j^2 | \sigma_0^2,
u_0 \sim {\sf Inv}$

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

- Factory has 6 machines which quality is evaluated
- Assume hierarchical model
 - each machine has its own (average) quality θ_j and own variance σ_i^2

• What type of predicitive distributions can we have?

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

- Factory has 6 machines which quality is evaluated
- Assume hierarchical model
 - each machine has its own (average) quality θ_j and own variance σ_i^2

- What type of predicitive distributions can we have?
- Can be used to predict the future quality produced by each machine and quality produced by a new similar machine

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

- Example: SAT coaching effectiveness
 - in USA commonly used Scholastic Aptitude Test (SAT) is designed so that short term practice should not improve the results significantly
 - schools have anyway coaching courses
 - test the effectiveness of the coaching courses

- Hierarchical models
 - Rats example
 - Factory example
 8 schools example
- Exchangeability
- Exchangeability
- Computational aspects

- Example: SAT coaching effectiveness
 - in USA commonly used Scholastic Aptitude Test (SAT) is designed so that short term practice should not improve the results significantly
 - schools have anyway coaching courses
 - test the effectiveness of the coaching courses
- SAT
 - standardized multiple choice test
 - mean about 500 and standard deviation about 100
 - most scores between 200 and 800
 - different topics, e.g., V=Verbal, M=Mathematics
 - pre-test PSAT

- Hierarchical models
 - Rats example
 - Factory example
 8 schools example
- Exchangeability
- Computational aspects

- Effectiveness of the SAT coaching
 - students had made pre-tests PSAT-M and PSAT-V
 - part of students were coached
 - linear regression was used to estimate the coaching effect y_j for the school j (could be denoted with $\bar{y}_{,j}$, too) and variances σ_i^2
 - y_i approximately normally distributed, with variances assumed to be known based on about 30 students per school
 - data is group means and variances (not personal results)

- Hierarchical models
 - Rats example
 - Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

- Effectiveness of the SAT coaching
 - students had made pre-tests PSAT-M and PSAT-V
 - part of students were coached
 - linear regression was used to estimate the coaching effect y_j for the school j (could be denoted with $\bar{y}_{,j}$, too) and variances σ_i^2
 - y_j approximately normally distributed, with variances assumed to be known based on about 30 students per school
 - data is group means and variances (not personal results)

• Data: School
$$\begin{vmatrix} A & B & C & D & E & F & G & H \\ y_j & 28 & 8 & -3 & 7 & -1 & 1 & 18 & 12 \\ \sigma_j & 15 & 10 & 16 & 11 & 9 & 22 & 20 & 28 \end{vmatrix}$$

- Hierarchical models
 - Rats example
 - Factory example
 8 schools example
- Exchangeability
- Computational aspects

Hierarchical normal model for group means

• J experiments, unknown θ_i and known σ^2

$$y_{ij}|\theta_j \sim \mathcal{N}(\theta_j, \sigma^2), \quad i = 1, \dots, n_j; \quad j = 1, \dots, J$$

• Group *j* sample mean and sample variance

$$\bar{y}_{.j} = \frac{1}{n_j} \sum_{i=1}^{n_j} y_{ij}$$

$$\sigma_j^2 = \frac{\sigma^2}{n_j}$$

- Hierarchical models
 - Rats example
 - Factory example
 8 schools example
- Exchangeability
- Computational aspects

Hierarchical normal model for group means

• J experiments, unknown θ_j and known σ^2

$$y_{ij}|\theta_j \sim \mathcal{N}(\theta_j, \sigma^2), \quad i = 1, \ldots, n_j; \quad j = 1, \ldots, J$$

• Group *j* sample mean and sample variance

$$\bar{y}_{.j} = \frac{1}{n_j} \sum_{i=1}^{n_j} y_{ij}$$

$$\sigma_j^2 = \frac{\sigma^2}{n_i}$$

• Use model

$$\bar{y}_{.j}|\theta_j \sim \mathcal{N}(\theta_j, \sigma_i^2)$$

this model can be generalized so that, σ_j^2 can be different from each other for other reasons than n_i

Hierarchical normal model for group means

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

$$\theta_j | \mu, au \sim \mathcal{N}(\mu, au)$$

$$ar{y}_{.j}| heta_j \sim \mathcal{N}(heta_j, \sigma_j^2)$$

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

- Hierarchical models
 - Rats example
 - Factory example
 8 schools example
- Exchangeability
- Exchangeability
- Computational aspects

Hierarchical normal model: 8 schools

Pooled model

- Hierarchical models
 - Rats example
 - Factory example - 8 schools example
- Exchangeability
- Computational aspects

Hierarchical normal model: 8 schools

Pooled model

Hierarchical model

- Rats example
- Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Hierarchical normal model: 8 schools

- Hierarchical models
 - Rats example
 - Factory example
 8 schools example
- E 1 100
- ullet Exchangeability
- Computational aspects

Hierarchical normal model: 8 schools

- Hierarchical models
 - Rats example
 Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Hierarchical normal model: 8 schools

Conditional standard deviations $sd[\theta_i|\tau,y]$

- Hierarchical models
 - Rats example
 - Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

Section 2

Exchangeability

- Hierarchical models
 - Rats example
 - Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

Exchangeability

- Justifies why we can use
 - a joint model for data
 - a joint prior for a set of parameters
- Less strict than independence (IID)
- IID implies exchangeability

- Rats example
- Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Exchangeability

• Exchangeability
Random variables $\theta_1, \ldots, \theta_J$ (or y_1, \ldots, y_J) are
exchangeable if the joint distribution p is invariant to the permutation of indices
i.e

$$p(\theta_1, \theta_2, \theta_3) = p(\theta_{\pi(1)}, \theta_{\pi(2)}, \theta_{\pi(3)})$$

for any permutation π of the indicies. E.g.

$$p(\theta_1, \theta_2, \theta_3) = p(\theta_2, \theta_3, \theta_1)$$

- Hierarchical models
 - Rats example
 - Factory example
 8 schools example
- Exchangeability
- Exchangeability
- Computational aspects

Exchangeability

• Exchangeability
Random variables $\theta_1, \ldots, \theta_J$ (or y_1, \ldots, y_J) are
exchangeable if the joint distribution p is invariant to the permutation of indices
i.e

$$p(\theta_1, \theta_2, \theta_3) = p(\theta_{\pi(1)}, \theta_{\pi(2)}, \theta_{\pi(3)})$$

for any permutation π of the indicies. E.g.

$$p(\theta_1, \theta_2, \theta_3) = p(\theta_2, \theta_3, \theta_1)$$

Can we come up with a situation where this doesn't hold?

- Rats example
- Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Exchangeability

• Exchangeability
Random variables $\theta_1, \ldots, \theta_J$ (or y_1, \ldots, y_J) are
exchangeable if the joint distribution p is invariant to the permutation of indices
i.e

$$p(\theta_1, \theta_2, \theta_3) = p(\theta_{\pi(1)}, \theta_{\pi(2)}, \theta_{\pi(3)})$$

for any permutation π of the indicies. E.g.

$$p(\theta_1, \theta_2, \theta_3) = p(\theta_2, \theta_3, \theta_1)$$

Can we come up with a situation where this doesn't hold? E.g. when we have a trend over indicies (like in time series data)

UNIVERSITET

- Hierarchical models
 Rats example
 - Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

Exchangeability

• Exchangeability
Random variables $\theta_1, \ldots, \theta_J$ (or y_1, \ldots, y_J) are
exchangeable if the joint distribution p is invariant to the permutation of indices
i.e

$$p(\theta_1, \theta_2, \theta_3) = p(\theta_{\pi(1)}, \theta_{\pi(2)}, \theta_{\pi(3)})$$

for any permutation π of the indicies. E.g.

$$p(\theta_1, \theta_2, \theta_3) = p(\theta_2, \theta_3, \theta_1)$$

Can we come up with a situation where this doesn't hold? E.g. when we have a trend over indicies (like in time series data)

• Exchangeability implies symmetry: If there is no information which can be used a priori to separate θ_j form each other, we can assume exchangeability. ("Ignorance implies exchangeability")

- Hierarchical models
 - Rats example
 - Factory example
 8 schools example
- Exchangeability
- Computational aspects

Exchangeability: DeFinettis theorem

Let $(x_n)_{n=1}^{\infty}$ to be an infinite sequence of exchangeable random variables. De Finetti's theorem then says that there is some random variable θ so that x_j are conditionally independent given θ , and joint density for x_1, \ldots, x_J can be written in the *iid mixture* form

$$p(x_1,\ldots,x_J) = \int \left[\prod_{j=1}^J p(x_j|\theta)\right] p(\theta)d\theta$$

• Exchangeability: the data behave as if they were i.i.d., once we account for some unknown parameter θ

- Hierarchical models
 - Rats example
 - Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

- Suppose we're observing coin flips, but we're not sure about the bias θ
 - We think the flips are 'the same kind of thing' (no reason to treat flip 1 differently from flip 2): Exchangeability
 - But we might not believe they are strictly independent because were uncertain about the bias: they share information through the unknown θ

- Hierarchical models
 - Rats example
 - Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

Example

- Suppose we're observing coin flips, but we're not sure about the bias θ
 - We think the flips are 'the same kind of thing' (no reason to treat flip 1 differently from flip 2): Exchangeability
 - But we might not believe they are strictly independent because were uncertain about the bias: they share information through the unknown θ
- Given θ the flips are i.i.d.
- Without conditioning on θ , the flips are only exchangeable, not iid.

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Exchangeability

- Exchangeability does not mean that the results of the experiments could not be different
 - e.g. if we know that the experiments have been in two different laboratories, and we know that the other laboratory has better conditions for the rats, but we do not know which experiments have been made in which laboratory
 - a priori experiments are exchangeable
 - model could have unknown parameter for the laboratory with a conditional prior for rats assumed to come form the same place (clustering model)

- Hierarchical models
 - Rats example
 - Factory example
 8 schools example
- Exchangeability
- Computational aspects

Exchangeability and additional information

- Example: bioassay
 - y_i number of dead animals are not exchangeable alone

- Rats example
- Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Exchangeability and additional information

- Example: bioassay
 - y_i number of dead animals are not exchangeable alone
 - x_i dose is additional information

- Rats example
- Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Exchangeability and additional information

- Example: bioassay
 - yi number of dead animals are not exchangeable alone
 - x_i dose is additional information
 - (x_i, y_i) exchangeable and logistic regression was used

$$p(\alpha, \beta|y, n, x) \propto \prod_{i=1}^{n} p(y_i|\alpha, \beta, n_i, x_i) p(\alpha, \beta)$$

- Hierarchical models
 - Rats example
 - Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

- Example: hierarchical rats example
 - all rats not exchangeable

- Rats example
- Factory example
- 8 schools example
- Exchangeability
- Computational aspects

- Example: hierarchical rats example
 - all rats not exchangeable
 - in a single laboratory rats exchangeable

- Hierarchical models
 - Rats example
 - Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

- Example: hierarchical rats example
 - all rats not exchangeable
 - in a single laboratory rats exchangeable
 - laboratories exchangeable

- Hierarchical models
 - Rats example
 - Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

- Example: hierarchical rats example
 - all rats not exchangeable
 - in a single laboratory rats exchangeable
 - laboratories exchangeable

- Rats example
- Factory example
- 8 schools example
- Exchangeability
- Computational aspects

- Example: hierarchical rats example
 - all rats not exchangeable
 - in a single laboratory rats exchangeable
 - laboratories exchangeable
 - \rightarrow hierarchical model can be used

- Rats example
- Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Partial or conditional exchangeability

- Conditional exchangeability
 - if y_i is connected to an additional information x_i, so that y_i are not exchangeable, but (y_i, x_i) exchangeable use joint model or conditional model (y_i|x_i).

- Rats example
- Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Partial or conditional exchangeability

- Conditional exchangeability
 - if y_i is connected to an additional information x_i , so that y_i are not exchangeable, but (y_i, x_i) exchangeable use joint model or conditional model $(y_i|x_i)$.
- Partial exchangeability
 - if the observations can be grouped (a priori), then we can use a hierarchical model

- Hierarchical models
 - Rats example
 Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

Section 3

Computational aspects

- Hierarchical models
 - Rats example
 - Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

The funnel posterior

- Hiearchical models
 - Group-level or global parameters, e.g.

$$au \sim p(au)$$

• Local or individual-level parameters

$$\theta_i \sim \mathcal{N}(0, \tau)$$

- Creates a "funnel-like" posterior geometry:
- Comes from the variance in the different layers:
 - When τ is small, the θ_i 's are concentrated around 0
 - When τ is large, the θ_i 's are widely dispersed

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Why problematic?

- 1. Pathological geometry: difficult to explore efficiently
- 2. Divergences: HMC will risk divergencies (also a good diagnostic)

Betancourt (2020)

demo

- Hierarchical models
 - Rats example
 - Factory example
 - 8 schools example
- Exchangeability
- Computational aspects

Handling the funnel

- 1. Reduce step size (adapt_delta closer to 1)
- 2. Reparametrize using non-centered parametrization
 - 2.1 Centered parametrization

$$\theta_i \sim N(\mu, \tau)$$

- Hierarchical models
 - Rats example
 - Factory example
- 8 schools example
- Exchangeability
- Computational aspects

Handling the funnel

- 1. Reduce step size (adapt_delta closer to 1)
- 2. Reparametrize using non-centered parametrization
 - 2.1 Centered parametrization

$$\theta_i \sim N(\mu, \tau)$$

2.2 Non-centered parametrization

$$\eta_i \sim N(0,1)$$

$$\theta_{\it i} = \mu + \tau \eta_{\it i}$$

