Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение Высшего образования

«Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа 2 по вычислительной математике

Численное решение нелинейных уравнений и систем Вариант №10

Преподаватель: Малышева Татьяна Алексеева

Выполнил: Состанов Тимур Айратович

Группа: Р3214

Г. Санкт-Петербург

Оглавление

Цель работы	3
Вычислительная реализация задачи	15
Решение нелинейного уравнения	15
Решение системы нелинейных уравнений	17
Программная реализация задачи	18
Метод Ньютона	
Метод хорд	19
Метод простых итераций	
Результат работы программы	
Вывод	

Цель работы

Изучить численные	методы решения	нелинейных	уравнений и их	систем,	найти корни	заданного	нелинейного
уравнения/системы	нелинейных урав	нений, выпо.	лнить программ	ную реа	лизацию мет	одов.	

Порядок выполнения работы

Вычислительная реализация задачи:

Решение нелинейного уравнения:

- 1. Отделить корни заданного нелинейного уравнения графически.
- 2. Определить интервалы изоляции корней.
- 3. Уточнить корни нелинейного уравнения с точностью ϵ =10⁻²
- 4. Вычисления оформить в виде таблиц в зависимости от заданного метода. Для всех значений в таблице удержать 3 знака после запятой. Для метода простой итерации проверить условие сходимости метода на выбранном интервале.
- 5. Заполненные таблицы отобразить в отчете.

Решение системы нелинейных уравнений:

- 1. Отделить корни заданной системы нелинейных уравнений графически.
- 2. Используя указанный метод, решить систему нелинейных уравнений с точностью до 0,01. Для метода простой итерации проверить условие сходимости метода.
- 3. Подробные вычисления привести в отчете.

Программная реализация задачи:

Для нелинейных уравнений:

- 1. Все численные методы должны быть реализованы в виде отдельных подпрограмм/методов/классов.
- 2. Пользователь выбирает уравнение, корень/корни которого требуется вычислить (3-5 функций, в том числе и трансцендентные), из тех, которые предлагает программа.
- 3. Предусмотреть ввод исходных данных (границы интервала/начальное приближение к корню и погрешность вычисления) из файла или с клавиатуры по выбору конечного пользователя.
- 4. Выполнить верификацию исходных данных. Необходимо анализировать наличие корня на введенном интервале. Если на интервале несколько корней или они отсутствуют выдавать соответствующее сообщение. Программа должна реагировать на некорректные введенные данные.
- 5. Для методов, требующих начальное приближение к корню (методы Ньютона, секущих, хорд с фиксированным концом, простой итерации), выбор начального приближения (а или b) вычислять в программе.
- 6. Для метода простой итерации проверять достаточное условие сходимости метода на введенном интервале.
- 7. Предусмотреть вывод результатов (найденный корень уравнения, значение функции в корне, число итераций) в файл или на экран по выбору конечного пользователя.
- 8. Организовать вывод графика функции, график должен полностью отображать весь исследуемый интервал (с запасом).

Для систем нелинейных уравнений:

- 1. Пользователь выбирает предлагаемые программой системы двух нелинейных уравнений (2-3 системы).
- 2. Организовать вывод графика функций.
- 3. Начальные приближения ввести с клавиатуры.
- 4. Для метода простой итерации проверить достаточное условие сходимости.
- 5. Организовать вывод вектора неизвестных: x_1, x_2 .
- 6. Организовать вывод количества итераций, за которое было найдено решение.
- 7. Организовать вывод вектора погрешностей: $|x_i^{(k)} x_i^{(k-1)}|$.
- 8. Проверить правильность решения системы нелинейных уравнений.

Рабочие формулы используемых методов

Для нелинейных уравнений:

Метод половинного деления

Идея метода: начальный интервал изоляции корня делим пополам, получаем начальное приближение к корню:

$$x_0 = \frac{a_0 + b_0}{2}$$

Вычисляем $f(x_0)$. В качестве нового интервала выбираем ту половину отрезка, на концах которого функция имеет разные знаки: $[a_0, x_0]$ либо $[b_0, x_0]$. Другую половину отрезка $[a_0, b_0]$, на которой функция f(x) знак не меняет, отбрасываем. Новый интервал вновь делим пополам, получаем очередное приближение к корню: $x_1 = (a_1 + b_1)/2$. и т.д.

Рабочая формула метода: $x_i = \frac{a_i + b_i}{2}$

$$x_i = \frac{a_i + b_i}{2}$$

Приближенное значение корня: $x^* = \frac{a_n + b_n}{2}$ или $x^* = a_n$ или $x^* = b_n$

Критерии окончания итерационного процесса

Сходимость итерационного процесса фиксируется следующими способами:

- 1. Сходимость по аргументу: $|x_n x_{n-1}| \leq \varepsilon$
- 2. Сходимость по функции: $|f(x_n)| \leq \varepsilon$

Для метода половинного деления можно рассматривать еще один критерий окончания итерационного процесса:

$$|a_n-b_n|\leq \varepsilon$$

Блок-схема метода половинного деления

Метод хорд

<u>Идея метода:</u> функция y = f(x) на отрезке [a, b] заменяется хордой и в качестве приближенного значения корня принимается точка пересечения хорды с осью абсцисс.

Уравнение хорды, проходящей через точки A(a, f(a)) и B(b, f(b)):

$$\frac{y - f(a)}{f(b) - f(a)} = \frac{x - a}{b - a}$$

Точка пересечения хорды с осью абсцисс (y = 0): $x = a - \frac{b-a}{f(b)-f(a)}f(a)$

Алгоритм метода:

 $\underline{0}$ шаг: Находим интервал изоляции корня $[a_0,b_0]$

1 шаг: Вычисляем
$$x_0$$
: $x_0 = a_0 - \frac{b_0 - a_0}{f(b_0) - f(a_0)} f(a_0)$

2 шаг: Вычисляем $f(x_0)$.

<u>3 шаг:</u> В качестве нового интервала выбираем ту половину отрезка, на концах которого функция имеет разные знаки: $[a_0, x_0]$ либо $[b_0, x_0]$.

<u>4 шаг:</u> Вычисляем x_1 и т.д (повторяем 1-3 шаги).

Рабочая формула метода:

$$x_i = \frac{a_i f(b_i) - b_i f(a_i)}{f(b_i) - f(a_i)}$$

Критерии окончания итерационного процесса: $|x_n-x_{n-1}|\leq \varepsilon$ или $|a_n-b_n|\leq \varepsilon$ или $|f(x_n)|\leq \varepsilon$ Приближенное значение корня: $x^*=x_n$

Семейство хорд может строиться:

а) при фиксированном левом конце $xop\partial$, тогда x_0 =b (рис. 1a)

Рабочая формула метода:

$$x_{i+1} = x_i - \frac{a - x_i}{f(a) - f(x_i)} f(x_i)$$

б) при фиксированном правом конце хорд, тогда $x_0=a$ (рис. 16)

Рабочая формула метода:

$$x_{i+1} = x_i - \frac{b - x_i}{f(b) - f(x_i)} f(x_i)$$

В этом случае НЕ надо определять на каждой итерации новые значения a, b

Рис. 1а

Рис. 16

Метод Ньютона (касательных)

Идея метода: функция y = f(x) на отрезке [a, b] заменяется касательной и в качестве приближенного значения корня принимается точка пересечения касательной с осью абсцисс.

Пусть $x_0 \in [a,b]$ - начальное приближение. Запишем уравнение касательной к графику функции y = f(x)в этой точке:

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Найдем пересечение касательной с осью x: $_{f(x_0)}$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Рабочая формула метода:

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

Критерий окончания итерационного процесса:

$$|x_n - x_{n-1}| \le \varepsilon$$
 или $|\frac{f(x_n)}{f'(x_n)}| \le \varepsilon$ или $|f(x_n)| \le \varepsilon$

Приближенное значение корня: $x^* = x_n$

Условия сходимости метода Ньютона

Сходимость метода Ньютона зависит от того, насколько близко к корню выбрано начальное приближение. Тогда скорость сходимости велика.

Метода Ньютона эффективен, если выполняются условия сходимости:

- производные f'(x) и f''(x) сохраняют знак на отрезке [a;b],
- производная $f'(x) \neq 0$.

Выбор начального приближения $x_0 \in [a; b]$:

Метод обеспечивает быструю сходимость, если выполняется условие:

$$f(x_0) \cdot f''(x_0) > 0$$

(тот конец интервала, для которого знаки функции и второй производной совпадают)

$$x_0 = egin{cases} a_0, & ext{ если } f(a_0) \cdot f''(a_0) > 0 \ b_0, & ext{ если } f(b_0) \cdot f''(b_0) > 0 \end{cases}$$

Метод секущих

Упростим метод Ньютона, заменив f'(x) разностным приближением:

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

Рабочая формула метода:

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$
 $i = 1, 2 \dots$

Метод секущих является $\underline{\partial \mathit{вухшаговым}}$, т.е. новое приближение x_{i+1} определяется двумя предыдущими итерациями x_i и x_{i-1} .

Выбор x_0 определяется как и в методе Ньютона, x_1 - выбирается рядом с начальным самостоятельно.

Критерий окончания итерационного процесса:

$$|x_n - x_{n-1}| \le \varepsilon$$
 или $|f(x_n)| \le \varepsilon$

Приближенное значение корня: $x^* = x_n$

Метод простой итерации

Уравнение f(x) = 0 приведем к эквивалентному виду: $x = \varphi(x)$, выразив x из исходного уравнения.

Зная начальное приближение: $x_0 \in [a, b]$, найдем очередные приближения:

$$x_1 = \varphi(x_0) \rightarrow x_2 = \varphi(x_1) \dots$$

Рабочая формула метода: $x_{i+1} = \varphi(x_i)$

Условия сходимости метода простой итерации определяются следующей теоремой.

Теорема. Если на отрезке локализации [a,b] функция $\varphi(x)$ определена, непрерывна и дифференцируема и удовлетворяет неравенству:

 $|\varphi'(x)| < q$, где $0 \le q < 1$, то независимо от выбора начального приближения $x_0 \in [a,b]$ итерационная последовательность $\{x_n\}$ метода будет сходится к корню уравнения.

Достаточное условие сходимости метода:

 $|\varphi'(x)| \le q < 1$, где q – некоторая константа (коэффициент Липшица или коэффициент сжатия) $q = \max_{[a,b]} |\varphi'(x)|$

При $q \approx 0$ - скорость сходимости высокая,

При $q \approx 1\,$ - скорость сходимости низкая,

При q > 1 - нет сходимости.

Чем меньше q, тем выше скорость сходимости.

Критерий окончания итерационного процесса:

$$|x_n - x_{n-1}| \le \varepsilon$$
 (при $0 < q \le 0.5$)

$$|x_n - x_{n-1}| < rac{1-q}{q} arepsilon$$
 (при $0.5 < q < 1)$

Можно ограничиться: $|x_n - x_{n-1}| \le \varepsilon$

Для систем нелинейных уравнений:

РЕШЕНИЕ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД НЬЮТОНА.

К основе метода лежит использование разложения функций $F_i(x_1, x_2, ..., x_n)$ в ряд Тейлора в окрестности некоторой фиксированной точки, причем члены, содержащие вторые (и более высоких порядков) производные, отбрасываются.

Пусть начальные приближения неизвестных системы (1) получены и равны соответственно a_1,a_2,\dots , a_n . Задача состоит в нахождении приращений (поправок) к этим значениям $\Delta x_1,\Delta x_2,\dots$, Δx_n , благодаря которым решение системы запишется в виде

$$x_1 = a_1 + \Delta x_1$$
, $x_2 = a_2 + \Delta x_2$, ..., $x_n = a_n + \Delta x_n$ (2)

Проведем разложение левых частей уравнений (1) с учетом (2) в ряд Тейлора, ограничиваясь лишь линейными членами относительно приращений:

Поскольку в соответствии с (1) левые части этих выражений должны обращаться в нуль, то приравняем к нулю и правые части. Получим следующую систему линейных алгебраических уравнений относительно приращений:

$$\begin{cases} \frac{\partial F_1}{\partial x_1} \Delta x_1 + \frac{\partial F_1}{\partial x_2} \Delta x_2 + \dots + \frac{\partial F_1}{\partial x_n} \Delta x_n = -F_1 \\ \frac{\partial F_2}{\partial x_1} \Delta x_1 + \frac{\partial F_2}{\partial x_2} \Delta x_2 + \dots + \frac{\partial F_2}{\partial x_n} \Delta x_n = -F_2 \\ \dots \\ \frac{\partial F_n}{\partial x_1} \Delta x_1 + \frac{\partial F_n}{\partial x_2} \Delta x_2 + \dots + \frac{\partial F_n}{\partial x_n} \Delta x_n = -F_n \end{cases}$$
(3)

Значения F_1, F_2, \dots, F_n и их производные вычисляются при $x_1 = a_1, x_2 = a_2, \dots, x_n = a_n$. Определителем системы (3) является **якобиан**:

$$J = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \dots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_1} & \dots & \frac{\partial F_2}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial F_n}{\partial x_1} & \dots & \frac{\partial F_n}{\partial x_n} \end{bmatrix}$$

Итерационный процесс решения систем нелинейных уравнений методом Ньютона состоит в определении приращений Δx_1 , Δx_2 , ..., Δx_n к значениям неизвестных на каждой итерации.

Критерий окончания итерационного процесса: $max|\Delta x_i \leq \varepsilon|$.

В методе Ньютона:

- 1. Важен удачный выбор начального приближения для обеспечения хорошей сходимости.
- 2. Сходимость ухудшается с увеличением числа уравнений системы.

РЕШЕНИЕ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД ПРОСТОЙ ИТЕРАЦИИ.

Приведем систему уравнений к эквивалентному виду:

$$\begin{cases} F_1(x_1, x_2, \dots, x_n) = 0 \\ F_2(x_1, x_2, \dots, x_n) = 0 \\ \dots \\ F_n(x_1, x_2, \dots, x_n) = 0 \end{cases} \begin{cases} x_1 = \varphi_1(x_1, x_2, \dots, x_n) \\ x_2 = \varphi_2(x_1, x_2, \dots, x_n) \\ \dots \\ x_n = \varphi_n(x_1, x_2, \dots, x_n) \end{cases}$$

Или, в векторной форме:
$$X=m{arphi}(X)$$
 $\qquad m{arphi}(X)=\begin{pmatrix} arphi_1(X) \\ arphi_2(X) \\ \dots \\ arphi_n(X) \end{pmatrix}$

Если выбрано начальное приближение: $\boldsymbol{X}^{(0)} = x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)},$ получим первые приближения к корням:

$$\begin{cases} x_1^{(1)} = \varphi_1(x_1^0, x_2^0, \dots, x_n^0) \\ x_2^{(1)} = \varphi_2(x_1^0, x_2^0, \dots, x_n^0) \\ \dots \dots \dots \dots \dots \dots \\ x_n^{(1)} = \varphi_n(x_1^0, x_2^0, \dots, x_n^0) \end{cases}$$

Последующие приближения находятся по формулам:

$$\begin{cases} x_1^{(k+1)} = \varphi_1(x_1^k, x_2^k, \dots, x_n^k) \\ x_2^{(k+1)} = \varphi_2(x_1^k, x_2^k, \dots, x_n^k) \\ \dots \\ x_n^{(k+1)} = \varphi_n(x_1^k, x_2^k, \dots, x_n^k) \end{cases} \qquad k = 0, 1, 2, \dots$$

Сходятся ли эти последовательности?

Пусть задача отделения корней уже решена и определена достаточно малая область изоляции G, в которой находится подлежащий уточнению корень.

Пусть в этой окрестности функции $\varphi_i(x_1^k, x_2^k, ..., x_n^k)$ дифференцируемы:

$$\varphi'(x) = \begin{bmatrix} \frac{\partial \varphi_1}{\partial x_1} & \frac{\partial \varphi_1}{\partial x_2} & \dots & \frac{\partial \varphi_1}{\partial x_n} \\ \frac{\partial \varphi_2}{\partial x_1} & \frac{\partial \varphi_2}{\partial x_2} & \dots & \frac{\partial \varphi_2}{\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial \varphi_n}{\partial x_1} & \frac{\partial \varphi_n}{\partial x_2} & \dots & \frac{\partial \varphi_n}{\partial x_n} \end{bmatrix}$$

Достаточное условие сходимости итерационного процесса:

$$\max_{[x \in G]} |\varphi'(x)| \le q < 1$$
 или $\max_{[x \in G]} \max_{[i]} \sum_{j=1}^n \left| \frac{\partial \varphi_i(x)}{\partial x_j} \right| \le q < 1$

$$\begin{split} \left| \frac{\partial \varphi_1}{\partial x_1} \right| + \left| \frac{\partial \varphi_1}{\partial x_2} \right| + \dots + \left| \frac{\partial \varphi_1}{\partial x_n} \right| < 1 \\ \left| \frac{\partial \varphi_2}{\partial x_1} \right| + \left| \frac{\partial \varphi_2}{\partial x_2} \right| + \dots + \left| \frac{\partial \varphi_2}{\partial x_n} \right| < 1 \\ \dots \dots \dots \\ \left| \frac{\partial \varphi_n}{\partial x_1} \right| + \left| \frac{\partial \varphi_n}{\partial x_2} \right| + \dots + \left| \frac{\partial \varphi_n}{\partial x_n} \right| < 1 \end{split}$$

Если $X^{(0)}$ и все последовательные приближения: $X^{(k+1)} = \varphi(X^k)$, k = 0, 1, 2 ... принадлежат ограниченной замкнутой области G, тогда итерационный процесс сходится к единственному решению уравнения $X = \varphi(X)$

Критерий окончания итерационного процесса:

$$\max_{1 < i < n} \left| x_i^{(k+1)} - x_i^k \right| \le \varepsilon$$

Вычислительная реализация задачи

Решение нелинейного уравнения

$$x^3 - 3{,}125x^2 - 3{,}5x + 2{,}458$$

Интервалы изоляции корней:

- 1) [-2; -1]
- 2) [0;1]
- 3) [3;4]

Для уточнения значения корней воспользуемся:

- 1) Метод половинного деления
- 2) Метод простой итерации
- 3) Метод Ньютона

Уточняем крайний левый корень:

			Метод поло	винного д	целения		
№ шага	а	b	Х	f(a)	f(b)	f(x)	$ b_n - a_n \le \varepsilon$
				-			
0	-2,000	-1,000	-1,500	11,042	1,833	-2,698	1
1	-1,500	-1,000	-1,250	-2,698	1,833	-0,003	0,5
2	-1,250	-1,000	-1,125	-0,003	1,833	1,017	0,25
3	-1,250	-1,125	-1,1875	-0,003	1,017	0,533	0,125
4	-1,250	-1,1875	-1,21875	-0,003	0,533	0,272	0,0625
5	-1,250	-1,21875	-1,234375	-0,003	0,272	0,136	0,03125
6	-1,250	-1,234375	-1,2421875	-0,003	0,136	0,067	0,015625
7	-1,250	-1,2421875	<mark>-1,24609375</mark>	-0,003	0,067	0,032	0,0078125

Уточняем средний корень:

$$f'(x) = 3x^2 - 6,25x - 3,5$$

$$f'(0) = -3,5$$

$$f'(1) = -6,75$$

$$f'[0,1] < 0, \text{поэтому}$$

$$\lambda = \frac{1}{6,75} = 0,148$$

$$x = x + 0,148(x^3 - 3,125x^2 - 3,5x + 2,458)$$

$$\varphi(x) = 0,148x^3 - 0,463x^2 + 0,482x + 0,364$$

Условие сходимости:

$$\phi'(x) = 0,444x^2 - 0,926x + 0,482$$

$$\phi'(0) = 0,482$$

$$\phi'(1) = 0$$

Условие сходимости выполняется

	Me	год прос	той итераці	ии	
№ шага	Х	X _{k+1}	f(x _k +1)	$[X_{k+1}-X_k]$	
0	1,000	0,531	-0,132		0,469
1	0,531	0,512	-0,019		0,019
2	0,512	0,509	-0,0013		0,003

Уточняем крайний правый корень:

$$f'(x) = 3x^2 - 6,25x - 3,5$$
$$f''(x) = 6x - 6,25$$

$f(a_0)$	-9,167
$f(b_0)$	2,458
$f''(a_0)$	11,75
$f''(b_0)$	17,75

		Me	тод Ньютон	ıa		
№ шага	X _k	f(x _k)	f'(X _k)	X_{k+1}	$X_{k+1} - X_k$	
1	4,000	2,458	19,5	3,874		0,126
2	3,874	0,140	17,311	3,866		0,008

Решение системы нелинейных уравнений

$$\begin{cases} \sin(x + 0.5) - y = 1\\ \cos(y - 2) + x = 0 \end{cases}$$

Решение уравнений находится в области

$$\begin{cases}
0.5 < x < 1 \\
-0.5 < y < 0
\end{cases}$$

Выразим $\varphi(x)$

$$\begin{cases} x = -\cos(y - 2) \\ y = \sin(x + 0.5) - 1 \end{cases}$$

Проверяем условие сходимости

$$\frac{\partial \varphi_1}{\partial x} = 0$$
 $\frac{\partial \varphi_1}{\partial y} = \sin(y - 2)$

$$\frac{\partial \varphi_2}{\partial x} = \cos(x + 0.5) \qquad \frac{\partial \varphi_2}{\partial y} = 0$$

$$|\sin(y-2)| < \sin(2) < 1$$

$$|cos(x + 0.5)| < cos(1) < 1$$

 $max(\sin(2);\cos(1)) = \sin(2) < 1 => Процесс сходящийся$

Начальное приближение: x = 0.5, y = -0.1

			Мет	од итерац	ий	
№ шага	X _k	y _k	X _{k+1}	y _{k+1}	X _{k+1} - X _k	y _{k+1} - y _k
0	0,500	-0,100	0,506	-0,158	0,006	0,058
1	0,506	-0,158	0,554	-0,155	0,048	0,030
2	0,554	-0,155	0,552	-0,131	0,002	0,024
3	0,552	-0,131	0,531	-0,132	0,021	0,001
4	0,531	-0,132	0,532	-0,142	0,001	0,010
5	0,532	-0,142	0,541	-0,142	0,009	0,000

Программная реализация задачи

Метод Ньютона

```
x_i = x_0
                                                                           A3 A1 ★29 ^
table = [["VТерация", "x_i", "f(x_i)", "f'(x_i)", "x_i(i + 1)", "|x_i(i + 1) - |x_i["]]
while True:
   if iterations >= max_iterations:
        print("Достигнуто максимальное количество итераций. Решение не найдено.")
        return None
   f_x_i = equation(x_i)
    f_{prime_x_i} = derivative(x_i)
   f_double_prime_x_i = second_derivative(x_i)
   x_i_plus_1 = x_i - (f_x_i / f_prime_x_i)
   difference = abs(x_i_plus_1 - x_i)
   table.append([iterations + 1, x_i, f_x_i, f_prime_x_i, x_i_plus_1, difference])
    if abs(f_x_i) <= epsilon or difference <= epsilon:</pre>
        print("Метод Ньютона завершен после", iterations + 1, "итераций.")
        print("Приближенное значение корня:", x_i_plus_1)
        print(tabulate(table, headers="firstrow", tablefmt="fancy_grid"))
        return x_i_plus_1
    if f_double_prime_x_i == 0:
        print("Производная второго порядка равна нулю. Метод Ньютона не применим.")
        return None
   x_i = x_i_plus_1
   iterations += 1
```

```
A 3 × 16
b = interval_end
iterations = 0
table = [["Итерация", "a", "b", "x_i", "f(a)", "f(b)", "f(x_i)"]]
while True:
    if iterations >= max_iterations:
        print("Достигнуто максимальное количество итераций. Решение не найдено.")
        return None
   x_i = a - (b - a) * equation(a) / (equation(b) - equation(a))
   table.append([iterations+1, a, b, x_i, equation(a), equation(b), equation(x_i)])
    if abs(equation(x_i)) <= epsilon:</pre>
        print("Метод хорд завершен после", iterations+1, "итераций.")
        print("Приближенное значение корня:", x_i)
        print(tabulate(table, headers="firstrow", tablefmt="fancy_grid"))
        return x_i
    if np.sign(equation(a)) * np.sign(equation(x_i)) < 0:</pre>
       b = x_i
    else:
       a = x_i
   iterations += 1
```

Метод простых итераций

```
max_abs_derivative = max(abs(derivative(a)), abs(derivative(b)))

lmbda = 1 / max_abs_derivative * ((-1) if (derivative(a) >= 0 and derivative(b) >= 0) else 1)

± tsostanov

def phi(x):
    return x + lmbda * equation(x)

# YCNOBUE CXOMMOCTU

max_phi_derivative = max(abs(derivative_by_definition(phi, a)), abs(derivative_by_definition(phi, b)))

if max_phi_derivative >= 1:
    # print("Merog простой итерации не гарантирует сходимость на данном интервале.")

# return None

pass

iteration_data = []

while True:
    if iterations > max_iterations:
        print("Достигнуто максимальное количество итераций. Решение не найдено.")
        return None

f_x = equation(initial_guess)
        next_x = initial_guess + lmbda * f_x
```

```
iteration_data.append({
    "₩ итерации": iterations,
    "x_i": initial_guess,
    "φ(x_i)": phi(initial_guess),
    "f(x_i)": f_x,
    "|x_i+1 - x_i|": abs(next_x - initial_guess)
})

if abs(next_x - initial_guess) <= epsilon:
    print("Метод завершен после", iterations, "итераций.")
    print("Приближенное значение корня:", next_x)

headers = "keys"
    print(tabulate(iteration_data, headers=headers, tablefmt="fancy_grid"))
    return next_x

initial_guess = next_x
iterations += 1</pre>
```

```
def newton_solver(equation_system, x_quess, y_quess):
    max_iterations = 100
    tolerance = 1e-6
    data = []
    for iteration in range(max_iterations):
        equations = equation_system(x_guess, y_guess)
        if equation_system.__name__ == "first_system":
             jacobi_matrix = np.array([
                 first_jacobi_for_first(x_guess, y_guess),
                 second_jacobi_for_first(x_guess, y_guess)
             ])
        else:
             jacobi_matrix = np.array([
                 first_jacobi_for_second(x_quess, y_quess),
                 second_jacobi_for_second(x_guess, y_guess)
             1)
        deltas = np.linalg.solve(jacobi_matrix, -np.array(equations))
        x_guess += deltas[0]
        y_guess += deltas[1]
     data.append([iteration, x_guess, y_guess, deltas[0], deltas[1]])
     if max(abs(i) for i in deltas) < tolerance:</pre>
        print("Решение найдено:")
        print("x =", x_guess)
        print("y =", y_guess)
        break
 else:
     print("Достигнуто максимальное количество итераций. Решение не найдено.")
 headers = ['Итерация', 'x', 'y', 'Δx', 'Δy']
 print(tabulate(data, headers=headers, tablefmt='pretty'))
```

Результат работы программы

Для нелинейных уравнений:


```
Выберите уравнение для решения:
1. Кубическое уравнение: y = x ** 3 - 3.125 * x ** 2 - 3.5 * x + 2.458
2. Уравнение с тригонометрическими функциями: y = cos(x ** 2) + sin(x)
3. Еще одно уравнение с тригонометрическими функциями: y = sin(x ** 2) + cos(x)
Введите номер уравнения (1, 2 или 3): 1
Выберите источник ввода данных:
1. Ввод с клавиатуры
2. Чтение данных из файла
Выберите источник данных (1 - ввод с клавиатуры, 2 - ввод из файла): 1
Введите начало интервала: -2
Введите конец интервала: -1
Введите начальное приближение к корню (ноль, если начальное приближение не требуется): -2
Введите погрешность вычисления: 0.001
Выбранное уравнение: cubic_equation
Интервал: -2.0 - -1.0
Начальное приближение к корню: -2.0
Погрешность вычисления: 0.001
Производная функции сохраняет знак на интервале, что гарантирует наличие только одного корня.
Выберите метод решения уравнения:
1. Метод Ньютона
2. Метод хорд
3. Метод простых итераций
Введите номер метода (1, 2 или 3): 3
Метод завершен после 9 итераций.
Приближенное значение корня: -1.250772372758154
```

N° итерации	x_i	φ(x_i)	f(x_i)	x_i+1 - x_i
0	-2	-1.47419	-11.042	0.52581
1	-1.47419	-1.36098	-2.37747	0.113213
2	 -1.36098 	-1.30918	-1.08778	0.0517989
3	-1.30918	-1.28252	-0.559832	0.0266587
4	-1.28252	-1.2681	-0.302925	0.014425
5	-1.2681	-1.26009	-0.168052	0.00800246
6	-1.26009	-1.25559	-0.0944738	0.00449875
7	-1.25559	-1.25305	-0.053499	0.00254757
8	-1.25305	-1.2516	-0.0304194	0.00144854
9	-1.2516	-1.25077	-0.0173362	0.000825534

Process finished with exit code $\boldsymbol{\theta}$


```
Выберите систему уравнений:
Первая система уравнений:
/\sin(x + 0.5) - y = 0
Вторая система уравнений:
/\cos(x + 0.5) - y = 0
Введите номер системы (1 или 2): 1
Первая система уравнений:
\cos(y - 2) + x = 0
Выбранная система: first_system
Введите начальное приближение для переменной х: 1
Введите начальное приближение для переменной у: 1
Начальное приближение для х: 1.0
Начальное приближение для у: 1.0
Решение найдено:
x = -0.026657227832235595
y = 0.45586405918632056
```

Итерация	-+- 	x	-+ y	Δχ	+ Δy
+	-+-		· -+		+
0		-0.4517796878904705	0.8948001540446715	-1.4517796878904705	-0.10519984595532855
1		-0.050564825581120354	0.44895012790288125	0.40121486230935016	-0.44585002614179026
2		-0.02672389900729022	0.455930216254222	0.023840926573830135	0.006980088351340736
] 3		-0.026657228399053694	0.4558640596948876	6.667060823652501e-05	-6.615655933439551e-05
1 4		-0.026657227832235595	0.45586405918632056	5.668180994383211e-10	-5.085670159279799e-10

Исходный код: https://github.com/tsostanov/CompMath2.

https://github.com/tsostanov/CompMath2.2

Вывод

В ходе работы были изучены численные методы решения нелинейных уравнений и систем нелинейных уравнений. В результате работы были найдены корни заданных уравнений и систем с использованием различных численных методов, а также были построены графики функций и были написана программа для автоматического нахождения корней в заданной области