Report

1. Scrapping - I have used beautifulsoup for scrapping the wallet addresses of 7 different currencies namely bitcoin, 'litecoin', 'bitcoin cash', 'dogecoin', 'dash', 'bitcoin gold', 'vertcoin'.

Scrapping is done using https://bitinfocharts.com/top-100-richest-{ct}-addresses-{i}.html

2. Pre processing - After that character level dictionary has been made using the addresses. Then addresses are tokenized and necessary padding is done. Labels were converted to numerical representation using sklearn label encoder.

After that using sklearn the data is splitted into train and validation split.

- 3. Dataset Then a custom dataset is made to convert the training and validation set to torch data.
- 4. Model LSTM model is chosen in order to exploit the character level dependencies in the wallet address. Length of wallet address is taken into account and concatenated with the output of the LSTM and then put through the MLP layer.
- 5. Train loop Training has been done for 300 epochs using adam optimizer, cross entropy loss and cosine annealing scheduler.
- 6. Report Classification report is generated using sklearn's classification report.

Epoch 300/300, tr Loss: 0.14286, val loss 0.15793

for training

	0	1	2	3	4
precision	0.983888	0.774804	0.997693	0.999614	0.999486
recall	0.713167	0.987939	1.000000	0.999228	0.998587
f1-score	0.826935	0.868486	0.998845	0.999421	0.999036
support	7792.0000	7794.0000	7785.0000	7772.0000	7786.000000
	5	6	accuracy	macro avg w	eighted avg
precision	5 0.999229	6 0.998833	accuracy 0.956478	macro avg w 0.964792	eighted avg 0.964714
precision recall	_	-	•	•	•
•	0.999229	0.998833	0.956478	0.964792	0.964714

for val

	0	1		2		3	4	Ę	5
precision	0.8058	346 0.681	291	0.99793	37	1.0	1.00		.0
recall	0.6006	622 0.854	621	1.00000	00	1.0	0.998449	1	1.0
f1-score	0.6882	62 0.758	176	0.99896	67	1.0	0.999224		1.0
support	1928.0	00 1926.	000	1935.0	00	1948.0	1934.00	•	1919.0
	6	accuracy	ma	acro avg	we	ighted a	vg		
precision	1.0	0.922619	0.	926439	0.	927090			
recall	1.0	0.922619	0.	921956	0.	922619			
f1-score	1.0	0.922619	0	.920661	0.	921349			
support	2018.0	0.922619	13	3608.000	1;	3608.00	0000		