Trade Gravity Equations

Tiago Tavares¹

¹CIE ITAM

September 25, 2017

1/7

Tiago Tavares September 25, 2017

Gravity equations

Newton's law of universal gravitation: used to explain the force intensity between two bodies (F_{ij}) as a function of their masses (m_i, m_j) , and distance (r_{ij})

$$F_{ij} = G \frac{m_i m_j}{r_{ii}^2}$$

where G is a constant

Gravity model of trade used to explain the value of trade between country i and j (T_{ij}) as a function of their GDP (Y_i, Y_j) and distance (D_{ij}) :

$$T_{ij} = A \frac{Y_i Y_j}{D_{ij}}$$

where A is a constant

Some data on gravity equations (Krugman et al 2012)

The size of EU economies and the value of trade with the US - note that larger economies have higher trade intensity

Some data on gravity equations (Krugman et al 2012)

The size of EU economies and the value of trade with the US - note that closer economies have higher trade intensity

Some data on gravity equations (Head and Mayer, 2014)

The same relationship happens for other countries as well

Trade is Proportional to Size; (a) Japan's Exports to EU, 2006; (b) Japan's Imports from EU, 2006. GRC: Greece

Tiago Tavares

Some data on gravity equations (Head and Mayer, 2014)

The same relationship happens for other countries as well

Trade is Inversely Proportional to Distance; (a) France's Exports (2006); (b) France's Imports (2006)

Tiago Tavares September 25, 2017

A simple Armington model provides the theory for the gravity equation

$$\underbrace{x_{\mathit{fh}}p_{\mathit{fh}}}_{\mathit{imports home}} = \underbrace{X_{\mathit{f}}X_{\mathit{h}}\left(\tau_{\mathit{fh}}\right)^{1-\sigma}}_{\mathit{gravity}} \cdot \underbrace{\frac{P_{\mathit{h}}^{\sigma-1}\alpha_{\mathit{fh}}}{\alpha_{\mathit{ff}}\left(\frac{\tau_{\mathit{ff}}}{P_{\mathit{f}}}\right)^{1-\sigma}X_{\mathit{f}} + \alpha_{\mathit{fh}}\left(\frac{\tau_{\mathit{fh}}}{P_{\mathit{h}}}\right)^{1-\sigma}X_{\mathit{h}}}_{\mathit{general equilibrium}}$$

- $x_{fh}p_{fh}$ is our T_{ii} trade variable
- X_f, X_h is our $Y_i Y_j$ GDP variable
- $extbf{ iny } au_{fh}$ is our D_{ij} distance variable

4 D > 4 P > 4 E > 4 E > E 9 Q C

7 / 7

Tiago Tavares September 25, 2017