Package 'ENGEP'

April 15, 2023

Title Predicting expression levels of spatially unmeasured genes in a query spatial dataset based on ensemble learning

Version 1.0

Description

ENGEP is an ensemble learning tool for spatially unmeasured genes expression prediction. It integrates the results of different reference datasets and prediction methods, instead of relying on a single reference dataset or method.

R topics documented:

Index

compute_simi	2
engep_predict	2
ensemble_result	3
gene_dataliat	4
imp_new	4
weight_r2	5
	6

2 engep_predict

compute_simi		
--------------	--	--

Description

Function to caculate similarity matrix between spatial and reference data. Distance measures (such as Manhattan distance, Canberra distance, Euclidean distance, and phi_s proportionality measure) are transformed into similarity scores using s = 1/(1+d). The codes are modified from the calculateSimilarity function scclassify.

Usage

```
compute_simi(spcom, sccom, similarity)
```

Arguments

spcom common gene expression matrix of spatial data.

sccom common gene expression matrix of reference data.

similarity a vector indicates the ten similarity measure that are used.

Value

similarity matrix between spatial and reference data.

Description

Function to get expression levels of unmeasured genes predicted by ENGEP.

Usage

```
engep_predict(
  spa_counts,
  ref_list,
  pre_genes,
  nCpus = 6,
  simi_list = NULL,
  parallel = TRUE,
  k_list = NULL,
  get_baes = FALSE,
  get_weight = FALSE
```

ensemble_result 3

Arguments

spa_counts	gene expression matrix of spatial dataset (gene by cell).
ref_list	each element in the list is a gene expression matrix (gene by cell) of an original single reference dataset.
pre_genes	an array contains names of genes to be predicted.
nCpus	number of (maximum) cores to use for parallel execution, default to 6.
simi_list	a vector indicates the ten similarity measure that are used, default is c("pearson", "spearman", "cosine", "jaccard", "weighted_rank", "manhattan", "canberra", "euclidean", "phi_s", "rho_p")
parallel	a logical value to indicate if the process should be run parallelly in multiple threads, default to TURE.
k_list	a list contains different values of \$k\$ (number of neighbors in knn), default is (20,30,40,50).
get_baes	a logical value to indicate whethe to return base results or not, default is FAISE.
get_weight	a logical value to indicate whethe to return weights of different references, default is FAISE.

Value

the predicted expression levels of unmeasured genes.

Description

Function to combine base results by a weighted average ensemble method.

Usage

```
ensemble_result(result_single, get_weight = FALSE)
```

Arguments

 $\begin{tabular}{ll} result_single & a list contains base results predicted by different reference datasets, different similarity measures and different values of k. \\ \end{tabular}$

get_weight a logical value to indicate whethe to return weights of different references, de-

fault is FAISE.

Value

ensembel result.

4 imp_new

Description

Function to randomly partition large reference into small reference. equal-sized sub-datasets.

Usage

```
gene_dataliat(spa_counts, ref_list, pre_genes)
```

Arguments

spa_counts gene expression matrix of spatial dataset (gene by cell).

ref_list each element in the list is a gene expression matrix (gene by cell) of an original

single reference dataset.

pre_genes an array contains names of genes to be predicted.

Value

a list contains equal-sized reference sub-datasets with common genes and predicted genes, and spatial dataset with common genes.

Description

Function to generate base results by using different reference datasets, different similarity measures and different values of k.

Usage

```
imp_new(i, spcom, sccomlist, similist, k.list, sc_implist)
```

Arguments

i	each time one reference expression matrix in the list is used to predict the expression.
spcom	expression matrix of spatial data with common genes.
sccomlist	a list contains expression matrices of different reference datasets with common genes.
similist	a vector indicates the ten similarity measure that are used.
k.list	a list contains different values of k (number of neighbors in knn), default is $(20,30,40,50)$.
sc_implist	a list contains expression matrices of different reference datasets with genes to be predicted.

weight_r2 5

Value

the predicted expression of unmeasured genes and the R-squared sore between the predicted expression and the measured expression of training genes representing predictive power of reference.

Description

Function to convert the predictive power to weight, with a range of values between 0.1 and 0.9.

Usage

weight_r2(r2_vec)

Arguments

r2_vec

R-squared sore which presents the predictive power of reference data.

Value

weight converted from R-squared sore.

Index

```
compute_simi, 2
engep_predict, 2
ensemble_result, 3
gene_dataliat, 4
imp_new, 4
weight_r2, 5
```