UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA

Terceira lista complementar de Eletromagnetismo 1 Maio de 2025

Prof. João Torres de Mello Neto Monitores: Mirela Beatriz e Pedro Khan

Problema 1

Dois planos condutores aterrados ao longo dos eixos x e y se interceptam na origem, conforme mostrado na figura. Uma carga q é colocada a uma distância b acima do eixo b e a uma distância b direita do eixo b. Determine a força sobre a carga.

Sugestão: as cargas imagens devem fazer com que as condições de contorno sejam mantidas nos dois planos simultaneamente.

Problema 2

Uma distribuição de carga elétrica produz o campo elétrico

$$\mathbf{E} = c \left(1 - e^{-\alpha r} \right) \frac{\hat{\mathbf{r}}}{r^2}$$

onde c e α são constantes. Encontre a carga total dentro do raio $r=\frac{1}{\alpha}$.

Problema 3

Uma haste fina e não condutora de comprimento l carrega uma carga Q uniformemente distribuída e está orientada conforme mostrado na figura

- (a) Determine o potencial V devido à haste carregada para qualquer ponto sobre o eixo z, com z > l/2.
- (b) Encontre $V(r, \theta, \varphi)$ para todos os pontos com $|\mathbf{r}| > l/2$, onde r, θ, φ são as coordenadas esféricas usuais.

Sugestão para a parte b: A solução geral da equação de Laplace em coordenadas esféricas com simetria azimutal é dada por

$$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$
 Griffiths, 3.65

Problema 4

Considere uma esfera de raio a contendo uma densidade de carga uniforme ρ no seu interior, e sem carga no exterior. Deseja-se determinar o potencial eletrostático $V(\mathbf{r})$ e o campo elétrico $\mathbf{E}(\mathbf{r})$ em todo o espaço, assumindo que $V \to 0$ quando $r \to \infty$. Determine o campo elétrico dentro e fora da esfera. Resolva a equação de Poisson para dentro e fora da esfera.

Obs: esse problema foi resolvido muitas vezes desde Física 3 por meio da lei de Gauss na formulação integral.

Problema 5

Considere um tubo retangular de dimensões $0 \le x \le b$ e $0 \le y \le a$, infinito na direção z. As fronteiras em x = 0, x = b e y = a estão mantidas a potencial nulo (V = 0), enquanto a fronteira em y = 0 está mantida a um potencial constante V_0 . Determinar o potencial eletrostático V(x,y) dentro do tubo.

Problema 6

Em um dispositivo unidimensional, a densidade volumar de carga é dada por

$$\rho_v(x) = \rho_0 \frac{x}{a}$$

Sabendo que o campo elétrico E=0 em x=0 e o potencial V=0 em x=a, determinar as expressões para V(x) e $\mathbf{E}(x)$.

Problema 7

Considere duas cargas pontuais iguais e opostas, +q e -q, localizadas nos vetores de posição \mathbf{r}_+ e \mathbf{r}_- , conforme mostra a figura. Mostre que em geral o termo de quadrupolo é diferente de zero. Mostre que para um dipolo "puro" na origem o termo de quadrupolo se anula.

Problema 8

Dois cones condutores infinitos formam um sistema coaxial, separados por um isolante infinitesimal em r=0. Um cone está na direção $\theta=\theta_1$ e o outro em $\theta=\theta_2$, com $\theta_1<\theta_2$. Os cones são mantidos a potenciais constantes: V=0 para $\theta=\theta_1$ e $V=V_0$ para $\theta=\theta_2$. Encontrar o potencial $V(\theta)$ e o campo elétrico $\mathbf{E}(\theta)$ entre os cones.

Problema 9

Duas placas condutoras planas e infinitas são paralelas ao plano xy. Uma está localizada em z=0 e mantida a potencial constante V_0 . A outra, mantida a potencial constante V_d , está em z=d. A região entre elas contém uma densidade volumétrica de carga dada por:

$$\rho(z) = \rho_0 \left(\frac{z}{d}\right)^2$$

Resolver a equação de Poisson para obter o potencial V(z) no intervalo $0 \le z \le d$, e determinar a densidade superficial de carga em cada uma das placas.