# Kaggle API setup

```
In [3]:
          !pip install kaggle
         Requirement already satisfied: kaggle in /usr/local/lib/python3.7/site-packages (1.5.12)
         Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.7/site-packages (from
         kaggle) (1.15.0)
         Requirement already satisfied: tqdm in /usr/local/lib/python3.7/site-packages (from kagg
         le) (4.62.1)
         Requirement already satisfied: python-dateutil in /usr/local/lib/python3.7/site-packages
         (from kaggle) (2.8.2)
         Requirement already satisfied: requests in /usr/local/lib/python3.7/site-packages (from
         kaggle) (2.25.1)
         Requirement already satisfied: python-slugify in /usr/local/lib/python3.7/site-packages
         (from kaggle) (5.0.2)
         Requirement already satisfied: certifi in /usr/local/lib/python3.7/site-packages (from k
         aggle) (2021.5.30)
         Requirement already satisfied: urllib3 in /usr/local/lib/python3.7/site-packages (from k
         aggle) (1.26.6)
         Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.7/site-pack
         ages (from python-slugify->kaggle) (1.3)
         Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/site-packages (f
         rom requests->kaggle) (2.10)
         Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.7/site-packag
         es (from requests->kaggle) (4.0.0)
         WARNING: Running pip as the 'root' user can result in broken permissions and conflicting
         behaviour with the system package manager. It is recommended to use a virtual environmen
         t instead: https://pip.pypa.io/warnings/venv
         WARNING: You are using pip version 21.2.4; however, version 21.3.1 is available.
         You should consider upgrading via the '/usr/local/bin/python -m pip install --upgrade pi
         p' command.
In [19]:
          !pip install pandoc
         Collecting pandoc
           Downloading pandoc-1.1.0-py3-none-any.whl (27 kB)
         Collecting plv
           Downloading ply-3.11-py2.py3-none-any.whl (49 kB)
                                        49 kB 2.2 MB/s eta 0:00:01
         Collecting plumbum
           Downloading plumbum-1.7.0-py2.py3-none-any.whl (116 kB)
                                      116 kB 4.9 MB/s eta 0:00:01
         Installing collected packages: ply, plumbum, pandoc
         Successfully installed pandoc-1.1.0 plumbum-1.7.0 ply-3.11
         WARNING: Running pip as the 'root' user can result in broken permissions and conflicting
         behaviour with the system package manager. It is recommended to use a virtual environmen
         t instead: https://pip.pypa.io/warnings/venv
         WARNING: You are using pip version 21.2.4; however, version 21.3.1 is available.
         You should consider upgrading via the '/usr/local/bin/python -m pip install --upgrade pi
         p' command.
 In [4]:
          ! pwd
         /root/shared/Courses/AML526/I526 AML Student/Assignments/Unit-Project-Home-Credit-Defaul
```

t-Risk/HCDR\_Phase\_1\_baseline\_submission

```
In [5]: !mkdir ~/.kaggle
!cp /root/shared/Downloads/kaggle.json ~/.kaggle
!chmod 600 ~/.kaggle/kaggle.json

mkdir: cannot create directory '/root/.kaggle': File exists
```

In [6]:

! kaggle competitions files home-credit-default-risk

```
name
                                    size creationDate
bureau balance.csv
                                         2019-12-11 02:55:35
                                   358MB
POS CASH balance.csv
                                   375MB 2019-12-11 02:55:35
previous application.csv
                                   386MB 2019-12-11 02:55:35
application test.csv
                                    25MB 2019-12-11 02:55:35
HomeCredit columns description.csv 37KB 2019-12-11 02:55:35
credit_card_balance.csv
                                   405MB 2019-12-11 02:55:35
installments payments.csv
                                   690MB
                                          2019-12-11 02:55:35
bureau.csv
                                   162MB 2019-12-11 02:55:35
application train.csv
                                   158MB 2019-12-11 02:55:35
sample_submission.csv
                                   524KB 2019-12-11 02:55:35
```

### Downloading the files via Kaggle API

```
In [4]: DATA_DIR = "/root/shared/Data/home-credit-default-risk" #same Level as course repo in
#DATA_DIR = os.path.join('./ddddd/')
!mkdir $DATA_DIR
```

mkdir: cannot create directory '/root/shared/Data/home-credit-default-risk': File exists

```
In [8]: 11
```

```
!ls -l $DATA_DIR
```

```
total 3326068
-rwxrwxrwx 1 root root 37383 Dec 11 2019 HomeCredit_columns_description.csv
-rwxrwxrwx 1 root root 392703158 Dec 11 2019 POS_CASH_balance.csv
-rwxrwxrwx 1 root root 26567651 Dec 11 2019 application_test.csv
-rwxrwxrwx 1 root root 166133370 Dec 11 2019 application_train.csv
-rwxrwxrwx 1 root root 170016717 Dec 11 2019 bureau.csv
-rwxrwxrwx 1 root root 375592889 Dec 11 2019 bureau_balance.csv
-rwxrwxrwx 1 root root 424582605 Dec 11 2019 credit_card_balance.csv
-rw-r--r-- 1 root root 721616255 Nov 13 03:36 home-credit-default-risk.zip
-rwxrwxrwx 1 root root 723118349 Dec 11 2019 installments_payments.csv
-rwxrwxrwx 1 root root 404973293 Dec 11 2019 previous_application.csv
-rwxrwxrwx 1 root root 536202 Dec 11 2019 sample_submission.csv
```

In [10]:

! kaggle competitions download home-credit-default-risk -p  $DATA_DIR$  --force

```
Downloading home-credit-default-risk.zip to /root/shared/Data/home-credit-default-risk 100%| | 688M/688M [05:34<00:00, 1.21MB/s] | 688M/688M [05:34<00:00, 2.15MB/s]
```

## **Imports**

```
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
```

```
import os
import zipfile
from sklearn.base import BaseEstimator, TransformerMixin
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear model import LogisticRegression
from sklearn.model selection import train test split
from sklearn.model selection import KFold
from sklearn.model selection import cross val score
from sklearn.model selection import GridSearchCV
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import Pipeline, FeatureUnion
from pandas.plotting import scatter matrix
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import OneHotEncoder
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
import os
import zipfile
from sklearn.base import BaseEstimator, TransformerMixin
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.model selection import train test split
from sklearn.model selection import KFold
from sklearn.model selection import cross val score
from sklearn.model selection import GridSearchCV
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import Pipeline, FeatureUnion
from pandas.plotting import scatter matrix
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import OneHotEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, ShuffleSplit, cross_val_score
from sklearn.metrics import roc curve,roc auc score,accuracy score
from scipy import stats
import warnings
%matplotlib inline
warnings.filterwarnings('ignore')
```

#### **Data Loads**

#### Application\_Train data load

```
def load_data(in_path, name):
    df = pd.read_csv(in_path)
    print(f"{name}: shape is {df.shape}")
    print(df.info())
    display(df.head(5))
    return df

datasets={} # Lets store the datasets in a dictionary so we can keep track of them eas
```

```
ds_name = 'application_train'
datasets[ds_name] = load_data(os.path.join(DATA_DIR, f'{ds_name}.csv'), ds_name)

datasets['application_train'].shape
```

application\_train: shape is (307511, 122)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307511 entries, 0 to 307510

Columns: 122 entries, SK\_ID\_CURR to AMT\_REQ\_CREDIT\_BUREAU\_YEAR

dtypes: float64(65), int64(41), object(16)

memory usage: 286.2+ MB

None

|   | SK_ID_CURR | TARGET | NAME_CONTRACT_TYPE | CODE_GENDER | FLAG_OWN_CAR | FLAG_OWN_REALTY |
|---|------------|--------|--------------------|-------------|--------------|-----------------|
| 0 | 100002     | 1      | Cash loans         | М           | N            | Υ               |
| 1 | 100003     | 0      | Cash loans         | F           | N            | N               |
| 2 | 100004     | 0      | Revolving loans    | М           | Υ            | Υ               |
| 3 | 100006     | 0      | Cash loans         | F           | N            | Υ               |
| 4 | 100007     | 0      | Cash loans         | М           | N            | Υ               |
|   |            |        |                    |             |              |                 |

5 rows × 122 columns

(307511, 122)

Out[5]:

## Application\_Test data load

```
In [7]:
    ds_name = 'application_test'
    datasets[ds_name] = load_data(os.path.join(DATA_DIR, f'{ds_name}.csv'), ds_name)
```

application\_test: shape is (48744, 121)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48744 entries, 0 to 48743

Columns: 121 entries, SK\_ID\_CURR to AMT\_REQ\_CREDIT\_BUREAU\_YEAR

dtypes: float64(65), int64(40), object(16)

memory usage: 45.0+ MB

None

|   | SK_ID_CURR | NAME_CONTRACT_TYPE | CODE_GENDER | FLAG_OWN_CAR | FLAG_OWN_REALTY | CNT_CHI |
|---|------------|--------------------|-------------|--------------|-----------------|---------|
| 0 | 100001     | Cash loans         | F           | N            | Υ               |         |
| 1 | 100005     | Cash loans         | М           | N            | Υ               |         |
| 2 | 100013     | Cash loans         | М           | Υ            | Υ               |         |
| 3 | 100028     | Cash loans         | F           | N            | Υ               |         |
| 4 | 100038     | Cash loans         | М           | Υ            | N               |         |
|   |            |                    |             |              |                 |         |

5 rows × 121 columns

#### Other Datasets load

application\_train: shape is (307511, 122)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307511 entries, 0 to 307510

Columns: 122 entries, SK ID CURR to AMT REQ CREDIT BUREAU YEAR

dtypes: float64(65), int64(41), object(16)

memory usage: 286.2+ MB

None

|   | SK_ID_CURR | TARGET | NAME_CONTRACT_TYPE | CODE_GENDER | FLAG_OWN_CAR | FLAG_OWN_REALTY |
|---|------------|--------|--------------------|-------------|--------------|-----------------|
| 0 | 100002     | 1      | Cash loans         | М           | N            | Υ               |
| 1 | 100003     | 0      | Cash loans         | F           | N            | N               |
| 2 | 100004     | 0      | Revolving loans    | М           | Υ            | Υ               |
| 3 | 100006     | 0      | Cash loans         | F           | N            | Υ               |
| 4 | 100007     | 0      | Cash loans         | М           | N            | Υ               |

5 rows × 122 columns

```
application_test: shape is (48744, 121)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48744 entries, 0 to 48743

Columns: 121 entries, SK ID CURR to AMT REQ CREDIT BUREAU YEAR

dtypes: float64(65), int64(40), object(16)

memory usage: 45.0+ MB

None

|   | SK_ID_CURR | NAME_CONTRACT_TYPE | CODE_GENDER | FLAG_OWN_CAR | FLAG_OWN_REALTY | CNT_CHI |
|---|------------|--------------------|-------------|--------------|-----------------|---------|
| 0 | 100001     | Cash loans         | F           | N            | Υ               |         |

| 1 | 100005 | Cash loans | М | N | Υ |
|---|--------|------------|---|---|---|
| 2 | 100013 | Cash loans | М | Υ | Υ |
| 3 | 100028 | Cash loans | F | N | Υ |
| 4 | 100038 | Cash loans | М | Υ | N |

5 rows × 121 columns

bureau: shape is (1716428, 17)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1716428 entries, 0 to 1716427

Data columns (total 17 columns):

| # | Column        | Dtype  |
|---|---------------|--------|
|   |               |        |
| 0 | SK_ID_CURR    | int64  |
| 1 | SK_ID_BUREAU  | int64  |
| 2 | CREDIT_ACTIVE | object |

3 CREDIT CURRENCY object 4 DAYS CREDIT int64 5 CREDIT\_DAY\_OVERDUE int64 6 DAYS CREDIT ENDDATE float64 7 DAYS\_ENDDATE\_FACT float64 8 AMT CREDIT MAX OVERDUE float64 9 CNT CREDIT PROLONG int64 10 AMT CREDIT SUM float64 11 AMT CREDIT SUM DEBT float64 12 AMT\_CREDIT\_SUM\_LIMIT float64 13 AMT CREDIT SUM OVERDUE float64 14 CREDIT TYPE object 15 DAYS CREDIT UPDATE int64 16 AMT ANNUITY float64 dtypes: float64(8), int64(6), object(3)

memory usage: 222.6+ MB

None

|   | SK_ID_CURR | SK_ID_BUREAU | CREDIT_ACTIVE | CREDIT_CURRENCY | DAYS_CREDIT | CREDIT_DAY_OVERDU |
|---|------------|--------------|---------------|-----------------|-------------|-------------------|
| 0 | 215354     | 5714462      | Closed        | currency 1      | -497        |                   |
| 1 | 215354     | 5714463      | Active        | currency 1      | -208        |                   |
| 2 | 215354     | 5714464      | Active        | currency 1      | -203        |                   |
| 3 | 215354     | 5714465      | Active        | currency 1      | -203        |                   |
| 4 | 215354     | 5714466      | Active        | currency 1      | -629        |                   |

bureau\_balance: shape is (27299925, 3)
<class 'pandas.core.frame.DataFrame'>

RangeIndex: 27299925 entries, 0 to 27299924

Data columns (total 3 columns):

# Column Dtype
--- 0 SK\_ID\_BUREAU int64
1 MONTHS\_BALANCE int64
2 STATUS object
dtypes: int64(2), object(1)
memory usage: 624.8+ MB

None

|   | SK_ID_BUREAU | MONTHS_BALANCE | STATUS |
|---|--------------|----------------|--------|
| 0 | 5715448      | 0              | С      |
| 1 | 5715448      | -1             | С      |
| 2 | 5715448      | -2             | С      |
| 3 | 5715448      | -3             | С      |
| 4 | 5715448      | -4             | С      |

credit\_card\_balance: shape is (3840312, 23)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3840312 entries, 0 to 3840311

Data columns (total 23 columns):

# Column Dtype

0 SK ID PREV int64 1 SK ID CURR int64 2 MONTHS\_BALANCE int64 3 AMT\_BALANCE float64 4 AMT CREDIT LIMIT ACTUAL int64 5 AMT DRAWINGS ATM CURRENT float64 6 AMT DRAWINGS CURRENT float64 7 AMT DRAWINGS OTHER CURRENT float64 8 AMT\_DRAWINGS\_POS\_CURRENT float64 9 float64 AMT INST MIN REGULARITY 10 AMT PAYMENT CURRENT float64 11 AMT PAYMENT TOTAL CURRENT float64 12 AMT RECEIVABLE PRINCIPAL float64 13 AMT RECIVABLE float64 14 AMT\_TOTAL\_RECEIVABLE float64 15 CNT DRAWINGS ATM CURRENT float64 16 CNT DRAWINGS CURRENT int64 17 CNT DRAWINGS OTHER CURRENT float64 18 CNT DRAWINGS POS CURRENT float64 19 CNT INSTALMENT MATURE CUM float64 20 NAME\_CONTRACT\_STATUS object int64 21 SK DPD 22 SK DPD DEF int64 dtypes: float64(15), int64(7), object(1) memory usage: 673.9+ MB

None

#### SK\_ID\_PREV SK\_ID\_CURR MONTHS\_BALANCE AMT\_BALANCE AMT\_CREDIT\_LIMIT\_ACTUAL AMT\_DRA 0 2562384 378907 -6 56.970 135000 2582071 363914 -1 63975.555 45000 2 1740877 371185 -7 31815.225 450000 3 1389973 337855 236572.110 225000 1891521 126868 -1 453919.455 450000

5 rows × 23 columns

```
installments payments: shape is (13605401, 8)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13605401 entries, 0 to 13605400
Data columns (total 8 columns):
     Column
                              Dtype
     SK ID PREV
 0
                              int64
 1
     SK ID CURR
                              int64
 2
     NUM INSTALMENT VERSION float64
 3
     NUM INSTALMENT NUMBER
                              int64
 4
     DAYS INSTALMENT
                              float64
 5
     DAYS ENTRY PAYMENT
                              float64
 6
     AMT INSTALMENT
                              float64
 7
     AMT PAYMENT
                              float64
dtypes: float64(5), int64(3)
memory usage: 830.4 MB
None
```

SK\_ID\_PREV SK\_ID\_CURR NUM\_INSTALMENT\_VERSION NUM\_INSTALMENT\_NUMBER DAYS\_INSTALMI

| S                              | K_ID_PREV                         | SK_ID_CURR                                                  | NUM_INST                          | ALMENT_VERSION                      | NUM_INSTA          | LMENT_NUMBER | DAYS_INSTALMI |
|--------------------------------|-----------------------------------|-------------------------------------------------------------|-----------------------------------|-------------------------------------|--------------------|--------------|---------------|
| 0                              | 1054186                           | 161674                                                      |                                   | 1.0                                 |                    | 6            | -11{          |
| 1                              | 1330831                           | 151639                                                      |                                   | 0.0                                 |                    | 34           | -21!          |
| 2                              | 2085231                           | 193053                                                      |                                   | 2.0                                 |                    | 1            | -(            |
| 3                              | 2452527                           | 199697                                                      |                                   | 1.0                                 |                    | 3            | -24           |
| 4                              | 2714724                           | 167756                                                      |                                   | 1.0                                 |                    | 2            | -13{          |
| 4                              |                                   |                                                             |                                   |                                     |                    |              | <b>&gt;</b>   |
| <cla<br>Rang<br/>Data</cla<br> | ss 'panda<br>eIndex: 1<br>columns | ication: sha<br>s.core.frame<br>670214 entr<br>(total 37 co | e.DataFramies, 0 to :<br>olumns): | e'><br>1670213                      |                    |              |               |
| #                              | Column                            |                                                             | 1                                 | Non-Null Count                      | , ,                |              |               |
| 0                              | SK_ID_PR                          | ΕV                                                          |                                   | <br>1670214 non-nul]                | <br>int64          |              |               |
| 1                              | SK_ID_CU                          |                                                             |                                   | 1670214                             |                    |              |               |
| 2                              |                                   | TRACT_TYPE                                                  |                                   | 1670214 non-null                    |                    |              |               |
| 3                              | AMT_ANNU                          |                                                             |                                   | 1297979 non-nul]                    | •                  |              |               |
| 4                              | AMT APPL                          |                                                             |                                   | 1670214 non-nul]                    |                    |              |               |
| 5                              | AMT_CRED                          |                                                             |                                   | 1670213 non-null                    |                    |              |               |
| 6                              |                                   | _PAYMENT                                                    |                                   | 774370 non-null                     | float64            |              |               |
| 7                              | AMT_GOOD                          |                                                             | :                                 | 1284699 non-nul]                    | float64            |              |               |
| 8                              | WEEKDAY_                          | APPR_PROCESS                                                | S_START                           | 1670214 non-null                    | object             |              |               |
| 9                              | HOUR_APP                          | R_PROCESS_S                                                 | ΓART                              | 1670214 non-null                    | int64              |              |               |
| 10                             | FLAG_LAS                          | T_APPL_PER_0                                                | CONTRACT                          | 1670214 non-null                    | object             |              |               |
| 11                             |                                   | ST_APPL_IN_                                                 |                                   | 1670214 non-null                    |                    |              |               |
| 12                             | _                                 | IN_PAYMENT                                                  |                                   | 774370 non-null                     | float64            |              |               |
| 13                             |                                   | EREST_PRIMA                                                 |                                   | 5951 non-null                       | float64            |              |               |
| 14                             |                                   | EREST_PRIVII                                                |                                   | 5951 non-null                       | float64            |              |               |
| 15                             |                                   | H_LOAN_PURP                                                 |                                   | 1670214 non-null                    | •                  |              |               |
| 16                             |                                   | TRACT_STATUS                                                |                                   | 1670214 non-null                    | •                  |              |               |
| 17                             | DAYS_DEC                          |                                                             |                                   | 1670214 non-null                    |                    |              |               |
| 18                             | _                                 | MENT_TYPE                                                   |                                   | 1670214 non-null                    | •                  |              |               |
| 19<br>20                       |                                   | ECT_REASON                                                  |                                   | 1670214 non-nul]<br>849809 non-null | l object<br>object |              |               |
| 21                             | NAME_TYP                          | ENT_TYPE                                                    |                                   | 1670214 non-null                    | _                  |              |               |
| 22                             |                                   | DS_CATEGORY                                                 |                                   | 1670214 non-nul]                    | -                  |              |               |
| 23                             | NAME_POR                          |                                                             |                                   | 1670214 non-nul]                    | •                  |              |               |
| 24                             |                                   | DUCT_TYPE                                                   |                                   | 1670214 non-null                    | -                  |              |               |
| 25                             | CHANNEL_                          |                                                             |                                   | 1670214 non-nul                     | -                  |              |               |
| 26                             |                                   | ACE_AREA                                                    |                                   | 1670214 non-nul]                    | -                  |              |               |
| 27                             |                                   | LER_INDUSTR                                                 |                                   | 1670214 non-nul]                    |                    |              |               |
| 28                             | CNT_PAYM                          | IENT                                                        | :                                 | 1297984 non-null                    | float64            |              |               |
| 29                             | NAME_YIE                          | LD_GROUP                                                    |                                   | 1670214 non-nul]                    | object             |              |               |
| 30                             |                                   | COMBINATION                                                 |                                   | 1669868 non-null                    | •                  |              |               |
| 31                             |                                   | ST_DRAWING                                                  |                                   | 997149 non-null                     | float64            |              |               |
| 32                             | DAYS_FIR                          |                                                             |                                   | 997149 non-null                     | float64            |              |               |
| 33                             |                                   | T_DUE_1ST_VI                                                |                                   | 997149 non-null                     | float64            |              |               |
| 34                             | DAYS_LAS                          |                                                             |                                   | 997149 non-null                     | float64            |              |               |
| 35<br>36                       |                                   | MINATION                                                    |                                   | 997149 non-null                     | float64            |              |               |
| 36                             |                                   | SURED_ON_API<br> 64(15) inte                                |                                   | 997149 non-null                     | float64            |              |               |

dtypes: float64(15), int64(6), object(16)

memory usage: 471.5+ MB

None

SK\_ID\_PREV SK\_ID\_CURR NAME\_CONTRACT\_TYPE AMT\_ANNUITY AMT\_APPLICATION AMT\_CREDIT

|   | SK_ID_PREV | SK_ID_CURR | NAME_CONTRACT_TYPE | AMT_ANNUITY | AMT_APPLICATION | AMT_CREDIT |
|---|------------|------------|--------------------|-------------|-----------------|------------|
| 0 | 2030495    | 271877     | Consumer loans     | 1730.430    | 17145.0         | 17145.0    |
| 1 | 2802425    | 108129     | Cash loans         | 25188.615   | 607500.0        | 679671.0   |
| 2 | 2523466    | 122040     | Cash loans         | 15060.735   | 112500.0        | 136444.5   |
| 3 | 2819243    | 176158     | Cash loans         | 47041.335   | 450000.0        | 470790.0   |
| 4 | 1784265    | 202054     | Cash loans         | 31924.395   | 337500.0        | 404055.0   |
|   |            |            |                    |             |                 |            |

5 rows × 37 columns

```
POS CASH balance: shape is (10001358, 8)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10001358 entries, 0 to 10001357
Data columns (total 8 columns):
 #
     Column
                             Dtype
 0
     SK ID PREV
                             int64
     SK ID CURR
 1
                             int64
 2
     MONTHS_BALANCE
                             int64
 3
     CNT INSTALMENT
                            float64
     CNT_INSTALMENT_FUTURE float64
 5
     NAME CONTRACT STATUS
                            object
 6
     SK DPD
                             int64
     SK DPD DEF
 7
                            int64
dtypes: float64(2), int64(5), object(1)
memory usage: 610.4+ MB
None
```

|   | 2K_ID_PREV | SK_ID_CURK | MON1H2_BALANCE | CN1_INSTALMENT | CNI_INSTALMENT_FUTURE | NAIVIE_  |
|---|------------|------------|----------------|----------------|-----------------------|----------|
| 0 | 1803195    | 182943     | -31            | 48.0           | 45.0                  |          |
| 1 | 1715348    | 367990     | -33            | 36.0           | 35.0                  |          |
| 2 | 1784872    | 397406     | -32            | 12.0           | 9.0                   |          |
| 3 | 1903291    | 269225     | -35            | 48.0           | 42.0                  |          |
| 4 | 2341044    | 334279     | -35            | 36.0           | 35.0                  |          |
| 4 |            |            |                |                |                       | <b>•</b> |

CPU times: user 45.9 s, sys: 7.47 s, total: 53.4 s

Wall time: 1min 30s

### **EDA**

### Missing data for application train

percent = (datasets["application\_train"].isnull().sum()/datasets["application\_train"].i
sum\_missing = datasets["application\_train"].isna().sum().sort\_values(ascending = False)
missing\_application\_train\_data = pd.concat([percent, sum\_missing], axis=1, keys=['Perc
missing\_application\_train\_data.head(20)

Out[9]: Percent Train Missing Count

|                          | Percent | Train Missing Count |
|--------------------------|---------|---------------------|
| COMMONAREA_MEDI          | 69.87   | 214865              |
| COMMONAREA_AVG           | 69.87   | 214865              |
| COMMONAREA_MODE          | 69.87   | 214865              |
| NONLIVINGAPARTMENTS_MODE | 69.43   | 213514              |
| NONLIVINGAPARTMENTS_AVG  | 69.43   | 213514              |
| NONLIVINGAPARTMENTS_MEDI | 69.43   | 213514              |
| FONDKAPREMONT_MODE       | 68.39   | 210295              |
| LIVINGAPARTMENTS_MODE    | 68.35   | 210199              |
| LIVINGAPARTMENTS_AVG     | 68.35   | 210199              |
| LIVINGAPARTMENTS_MEDI    | 68.35   | 210199              |
| FLOORSMIN_AVG            | 67.85   | 208642              |
| FLOORSMIN_MODE           | 67.85   | 208642              |
| FLOORSMIN_MEDI           | 67.85   | 208642              |
| YEARS_BUILD_MEDI         | 66.50   | 204488              |
| YEARS_BUILD_MODE         | 66.50   | 204488              |
| YEARS_BUILD_AVG          | 66.50   | 204488              |
| OWN_CAR_AGE              | 65.99   | 202929              |
| LANDAREA_MEDI            | 59.38   | 182590              |
| LANDAREA_MODE            | 59.38   | 182590              |
| LANDAREA_AVG             | 59.38   | 182590              |

# Missing data for application test

In [10]:

percent = (datasets["application\_test"].isnull().sum()/datasets["application\_test"].isn
sum\_missing = datasets["application\_test"].isna().sum().sort\_values(ascending = False)
missing\_application\_train\_data = pd.concat([percent, sum\_missing], axis=1, keys=['Perc
missing\_application\_train\_data.head(20)

Out[10]:

|                          | Percent | <b>Test Missing Count</b> |
|--------------------------|---------|---------------------------|
| COMMONAREA_AVG           | 68.72   | 33495                     |
| COMMONAREA_MODE          | 68.72   | 33495                     |
| COMMONAREA_MEDI          | 68.72   | 33495                     |
| NONLIVINGAPARTMENTS_AVG  | 68.41   | 33347                     |
| NONLIVINGAPARTMENTS_MODE | 68.41   | 33347                     |
| NONLIVINGAPARTMENTS_MEDI | 68.41   | 33347                     |

|                       | Percent | Test Missing Count |
|-----------------------|---------|--------------------|
| FONDKAPREMONT_MODE    | 67.28   | 32797              |
| LIVINGAPARTMENTS_AVG  | 67.25   | 32780              |
| LIVINGAPARTMENTS_MODE | 67.25   | 32780              |
| LIVINGAPARTMENTS_MEDI | 67.25   | 32780              |
| FLOORSMIN_MEDI        | 66.61   | 32466              |
| FLOORSMIN_AVG         | 66.61   | 32466              |
| FLOORSMIN_MODE        | 66.61   | 32466              |
| OWN_CAR_AGE           | 66.29   | 32312              |
| YEARS_BUILD_AVG       | 65.28   | 31818              |
| YEARS_BUILD_MEDI      | 65.28   | 31818              |
| YEARS_BUILD_MODE      | 65.28   | 31818              |
| LANDAREA_MEDI         | 57.96   | 28254              |
| LANDAREA_AVG          | 57.96   | 28254              |
| LANDAREA_MODE         | 57.96   | 28254              |

### Distribution of the target column





# Correlation with the target column

```
correlations = datasets["application_train"].corr()['TARGET'].sort_values()
print('Most Positive Correlations:\n', correlations.tail(10))
print('\nMost Negative Correlations:\n', correlations.head(10))
Most Positive Correlations:
```

FLAG\_DOCUMENT\_3
REG\_CITY\_NOT\_LIVE\_CITY

0.044346 0.044395

```
FLAG EMP PHONE
                                0.045982
REG CITY NOT WORK CITY
                                0.050994
DAYS ID PUBLISH
                                0.051457
DAYS LAST PHONE CHANGE
                                0.055218
REGION_RATING_CLIENT
                                0.058899
REGION RATING CLIENT W CITY
                                0.060893
DAYS BIRTH
                                0.078239
TARGET
                                1.000000
Name: TARGET, dtype: float64
Most Negative Correlations:
 EXT SOURCE 3
                               -0.178919
EXT SOURCE 2
                              -0.160472
EXT SOURCE 1
                              -0.155317
DAYS EMPLOYED
                              -0.044932
FLOORSMAX_AVG
                              -0.044003
FLOORSMAX MEDI
                              -0.043768
FLOORSMAX MODE
                              -0.043226
AMT GOODS PRICE
                              -0.039645
REGION_POPULATION_RELATIVE
                              -0.037227
ELEVATORS AVG
                              -0.034199
Name: TARGET, dtype: float64
```

```
sns.countplot(data = app_train, x ='CODE_GENDER')
plt.title('Distribution of Gender')
plt.show()
```



It looks like we have more female Applicants when compared to male

```
app_train['AGE'] = app_train['DAYS_BIRTH']/-365
fig = sns.FacetGrid(app_train, col='TARGET', hue='TARGET', height=4)
fig.map(sns.histplot, 'AGE', bins=30, kde=False)
plt.show()
```



It can be observed that most of the defaulters are approximately 27-40 yrs old.

```
In [32]:
# replace the incorrect values of Days_Employed
import numpy as np

# Create an error flag column
app_train['DAYS_EMPLOYED_ERROR'] = app_train["DAYS_EMPLOYED"] == 365243
app_test['DAYS_EMPLOYED_ERROR'] = app_test["DAYS_EMPLOYED"] == 365243 # do the same for

# Replace the error values with nan
app_train['DAYS_EMPLOYED'].replace({365243: np.nan}, inplace = True)

app_train['Employment_years'] = app_train['DAYS_EMPLOYED']/-365
fig = sns.FacetGrid(app_train, col='TARGET', hue='TARGET', height=4)
fig.map(sns.histplot, 'Employment_years', bins=30, kde=False)
plt.show()
```



Applicants with less than 2 years of employment are less likely to repay the loan.

```
In [34]:
    sns.countplot(data = app_train, x ='NAME_CONTRACT_TYPE', hue = 'CODE_GENDER')
    plt.title('Distribution of Contract Types')
    plt.show()
```



It can be seen that in general people mostly go for Cash loans as compared to revolving loans and both type of contracts are dominated by females.

```
sns.countplot(data = app_train, x ='FLAG_OWN_REALTY', hue = 'TARGET')
plt.title('Distribution of real estate owners')
plt.show()
```



Generally people who own a realty are more likely to go for loans as compared to people who don't own one.

```
sns.countplot(data = app_train, x = 'NAME_INCOME_TYPE', hue = 'TARGET')
plt.title('Distribution of Income Sources ')
plt.xticks(rotation = 90)
plt.show()
```



It can be observed that most of the defaulters belong to the working class followed by Commercial associates. A state servant is the least likely to fail repaying the loan amount

```
In [40]:
    sns.countplot(data = app_train, x ='OCCUPATION_TYPE', hue = 'TARGET')
    plt.title('Occupation types ')
    plt.xticks(rotation = 90)
    plt.show()
```



People who do not provide their occupation details and those who are labourers are more likely to fail paying back the loan.

```
ig, ax = plt.subplots(figsize=(15, 6))
ax = sns.boxplot(y = "OCCUPATION_TYPE", x = "AMT_INCOME_TOTAL", orient = "h", data = ap
plt.xlim([0, 1e6])
plt.show()
```



# **Processing Pipeline**

```
class DataFrameSelector(BaseEstimator, TransformerMixin):
    def __init__(self, attribute_names):
        self.attribute_names = attribute_names

def fit(self, X, y=None):
    return self

def transform(self, X):
    return X[self.attribute_names].values
```

```
In [71]:
          def previous app():
              df_pa = datasets['previous_application']
              #df pa.drop('SK ID PREV', axis = 1, inplace = True)
              numcols = df pa.select dtypes(exclude= 'object').columns
              catcols = df_pa.select_dtypes(include= 'object').columns
              num = df_pa[numcols]
              cat = df pa[catcols]
              num.index = num['SK_ID_CURR']
              cat.index = num['SK ID CURR']
              catind = cat.index
              num.drop('SK_ID_CURR', inplace= True, axis = 1)
              num = num.groupby('SK_ID_CURR').agg([np.sum, np.mean,max,min])
              num.columns = num.columns.map('_'.join)
              mdl = StandardScaler().fit(num)
              num = pd.DataFrame(mdl.transform(num),index = num.index, columns = num.columns)
```

```
cat = SimpleImputer(strategy='constant').fit_transform(cat)
mdl = OneHotEncoder().fit(cat)

cat = pd.DataFrame(mdl.transform(cat).toarray(), index = catind, columns = mdl.get_
cat = cat.groupby('SK_ID_CURR').agg(np.mean)
final = num.merge(cat, how = 'left', on = 'SK_ID_CURR')
return final
```

```
In [66]:
          def load train():
              df_train = app_train
              selected_features = ['SK_ID_CURR','AMT_INCOME_TOTAL', 'AMT_CREDIT','DAYS_EMPLOYED'
                               'EXT_SOURCE_2', 'EXT_SOURCE_3', 'CODE_GENDER', 'FLAG_OWN_REALTY', 'FLA
                                'NAME_CONTRACT_TYPE','NAME_EDUCATION_TYPE','OCCUPATION_TYPE','NAME
              df train['DAYS EMPLOYED'].replace({365243: np.nan}, inplace = True)
              df train['DAYS BIRTH'] = df train['DAYS BIRTH']/-365
              X_train= df_train[selected_features]
              y train = df train['TARGET']
              X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train, test_size=0
              X_val_ind = X_valid['SK_ID_CURR']
              X train, X test, y train, y test = train test split(X train, y train, test size=0.1
              X train ind = X train['SK ID CURR']
              X test ind = X test['SK ID CURR']
              X_valid.drop('SK_ID_CURR', inplace = True , axis = 1)
              X_train.drop('SK_ID_CURR', inplace = True , axis = 1)
              X_test.drop('SK_ID_CURR', inplace = True , axis = 1)
              return X_train, y_train, X_valid, y_valid, X_test, y_test, X_train_ind, X_val_ind,
```

#### **Baseline Model**

```
In [48]:
          def BaselineApproach(fitted_models,expLog, X_train,X_valid, X_test,y_train,y_test,y_val
              models = [LogisticRegression(n jobs = -1, solver = 'lbfgs')
                    ,RandomForestClassifier(n_jobs = -1,n_estimators = 100)]
              models_name = ['Logistic','RandomForest']
              ctr = 0
              p_value = 0
              for model in models:
                  cv = ShuffleSplit(n splits=30, test size=0.3, random state=0)
                  np.random.seed(42)
                  model.fit(X train, y train)
                  exp_name = f"Model_{models_name[ctr]}_features_{X_train.shape[1]}"
                  fitted models.append(model)
                  if ctr == 0:
                      logit scores = cross val score(model, X train, y train, cv=cv)
                  else:
                      best_train_scores = cross_val_score(model, X_train, y_train, cv=cv)
                      (t_stat, p_value) = stats.ttest_rel(logit_scores, best_train_scores)
                  expLog.loc[len(expLog)] = [f"{exp name}"] + list(np.round(
                              [accuracy_score(y_train, model.predict(X_train)),
                              accuracy score(y valid, model.predict(X valid)),
                              accuracy_score(y_test, model.predict(X_test)),
                              roc auc score(y train, model.predict proba(X train)[:, 1]),
                              roc auc score(y valid, model.predict proba(X valid)[:, 1]),
                              roc auc score(y test, model.predict proba(X test)[:, 1]),p value],
                              4))
                  ctr += 1
              return logit_scores
```

## Merge data from Previous Application file

```
def merge_df(X_train, X_valid, X_test, df_pv_app):
    X_train = X_train.merge(df_pv_app, how = 'left', on = 'SK_ID_CURR')
    X_valid = X_valid.merge(df_pv_app, how = 'left', on = 'SK_ID_CURR')
    X_test = X_test.merge(df_pv_app, how = 'left', on = 'SK_ID_CURR')
```

```
X_train.fillna(0, inplace = True)
X_valid.fillna(0, inplace = True)
X_test.fillna(0, inplace = True)

return X_train, X_valid, X_test
```

#### **Baseline model with Previous Application**

```
In [51]:
          def BaselinPlusPvApp(logit scores,fitted models,expLog, X train,X valid, X test,y train
              models = [LogisticRegression(n jobs = -1, solver = 'lbfgs')
                        ,RandomForestClassifier(n_jobs = -1,n_estimators = 100)]
              models_name = ['Logistic_Prev_app','RandomForest_prev_app']
              ctr = 0
              p value = 0
              for model in models:
                  cv = ShuffleSplit(n splits=30, test size=0.3, random state=0)
                  np.random.seed(42)
                  model.fit(X_train, y_train)
                  exp_name = f"Model_{models_name[ctr]}_features_{X_train.shape[1]}"
                  fitted models.append(model)
                  best train scores = cross val score(model, X train, y train, cv=cv)
                  (t stat, p value) = stats.ttest rel(logit scores, best train scores)
                  expLog.loc[len(expLog)] = [f"{exp_name}"] + list(np.round(
                              [accuracy_score(y_train, model.predict(X_train)),
                              accuracy_score(y_valid, model.predict(X_valid)),
                              accuracy score(y test, model.predict(X test)),
                              roc_auc_score(y_train, model.predict_proba(X_train)[:, 1]),
                              roc auc score(y valid, model.predict proba(X valid)[:, 1]),
                              roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]),p_value],
                              4))
                  ctr += 1
```

#### **Performance Metrics**

```
In [60]:
          fitted_models = []
          expLog = pd.DataFrame(columns=["exp name",
                                          "Train Acc"
                                          "Valid Acc",
                                          "Test Acc",
                                          "Train AUC",
                                          "Valid AUC"
                                          "Test AUC",
                                          "P Value"
          #Loading & Transforming Train
          X train, y train, X valid, y valid, X test, y test, X train ind, X val ind, X test ind
          full_pipeline, X_train, X_valid, X_test = transform_train(X_train, X_valid, X_test, X_t
          #BaselIne Model
          logit scores baseline = BaselineApproach(fitted models,expLog, X train,X valid, X test,
          expLog
```

Out[60]:

|   | exp_name                       | Train<br>Acc | Valid<br>Acc | Test<br>Acc | Train<br>AUC | Valid<br>AUC | Test<br>AUC | P_Value |
|---|--------------------------------|--------------|--------------|-------------|--------------|--------------|-------------|---------|
| 0 | Model_Logistic_features_48     | 0.9191       | 0.9192       | 0.9196      | 0.7357       | 0.7407       | 0.7450      | 0.0000  |
| 1 | Model_RandomForest_features_48 | 0.9999       | 0.9194       | 0.9194      | 1.0000       | 0.7100       | 0.7169      | 0.1024  |



In [72]:
 df\_pv\_app = previous\_app()
 X\_train, X\_valid, X\_test = merge\_df(X\_train, X\_valid, X\_test, df\_pv\_app)
 BaselinPlusPvApp(logit\_scores\_baseline,fitted\_models,expLog, X\_train,X\_valid, X\_test,y\_expLog

| UUL   / Z   . | $\cap$ | + I | 7 | ' つ ' | 1 . |
|---------------|--------|-----|---|-------|-----|
|               | υu     | 니   | / |       | ١.  |

|   | exp_name                                 | Train<br>Acc | Valid<br>Acc | Test<br>Acc |        |        | Test<br>AUC | P_Value |  |
|---|------------------------------------------|--------------|--------------|-------------|--------|--------|-------------|---------|--|
| 0 | Model_Logistic_features_48               | 0.9191       | 0.9192       | 0.9196      | 0.7357 | 0.7407 | 0.7450      | 0.0000  |  |
| 1 | $Model\_RandomForest\_features\_48$      | 0.9999       | 0.9194       | 0.9194      | 1.0000 | 0.7100 | 0.7169      | 0.1024  |  |
| 2 | Model_Logistic_Prev_app_features_269     | 0.9193       | 0.9194       | 0.9196      | 0.7567 | 0.7584 | 0.7601      | 0.0068  |  |
| 3 | Model_RandomForest_prev_app_features_269 | 1.0000       | 0.9194       | 0.9195      | 1.0000 | 0.7168 | 0.7197      | 0.0000  |  |

In [70]:

datasets['previous\_application'].describe()

| ٦., | + | Γ7 | a. | 1 . |
|-----|---|----|----|-----|
| Ju  | L | /  | U  |     |

|       | SK_ID_CURR   | AMT_ANNUITY  | AMT_APPLICATION | AMT_CREDIT   | AMT_DOWN_PAYMENT | AMT_G |
|-------|--------------|--------------|-----------------|--------------|------------------|-------|
| count | 1.670214e+06 | 1.297979e+06 | 1.670214e+06    | 1.670213e+06 | 7.743700e+05     | 1     |
| mean  | 2.783572e+05 | 1.595512e+04 | 1.752339e+05    | 1.961140e+05 | 6.697402e+03     | 2     |
| std   | 1.028148e+05 | 1.478214e+04 | 2.927798e+05    | 3.185746e+05 | 2.092150e+04     | 3     |
| min   | 1.000010e+05 | 0.000000e+00 | 0.000000e+00    | 0.000000e+00 | -9.000000e-01    | (     |
| 25%   | 1.893290e+05 | 6.321780e+03 | 1.872000e+04    | 2.416050e+04 | 0.000000e+00     | Ę     |
| 50%   | 2.787145e+05 | 1.125000e+04 | 7.104600e+04    | 8.054100e+04 | 1.638000e+03     | 1     |
| 75%   | 3.675140e+05 | 2.065842e+04 | 1.803600e+05    | 2.164185e+05 | 7.740000e+03     | 2     |

|     | SK_ID_CURR   | AMT_ANNUITY  | AMT_APPLICATION | AMT_CREDIT   | AMT_DOWN_PAYMENT | AMT_G |
|-----|--------------|--------------|-----------------|--------------|------------------|-------|
| max | 4.562550e+05 | 4.180581e+05 | 6.905160e+06    | 6.905160e+06 | 3.060045e+06     | 6     |
| 4   |              |              |                 |              |                  | •     |

### **Preparing Submission Data**

```
In [80]:

def test_sub(full_pipeline,df_pv_app,fitted_models):
    df_test = app_test

    tst_ind = df_test['SK_ID_CURR']
    test = pd.DataFrame(full_pipeline.transform(df_test), index = tst_ind)
    test = test.merge(df_pv_app, how = 'left', on = 'SK_ID_CURR')
    test.fillna(0,inplace = True)
    pred = fitted_models[3].predict_proba(test)[:,1]
    sub = pd.DataFrame(tst_ind)
    sub['TARGET'] = pred
    sub.to_csv('submission.csv', index = False)

In [82]:

test_sub(full_pipeline,df_pv_app,fitted_models)
```

#### **Kaggle Submission**

### Write-up

#### **Abstract**

The course project is based on the Home Credit Default Risk (HCDR) Kaggle Competition. Our goal is to create a machine learning model that is well optimized and performs efficiently to asses this risk for lender. There are many factors in a person's life that lenders can use to assess this risk such as previous credit history, occupation, age, location, credit card usage, and others. We will be studying these factors when trying to assess a loan application and provides them with the decision-making guidance they need for a sustainable business operation.

Entire project will be implemented in 3 phases. In Phase 1, We experimented with classification algorithms like Logistic regression and Random Forest as our baseline models with features from 3 out of the 8 available datasets. We have conducted 4 experiments in total in this phase using the above mentioned models and we will walk you through the results in coming sections of this presentation. We hope to produce a model that will allow Home Credit to successfully predict the likelihood of repayment so that more people can have access to much needed loans.

### **Project Description**

### **Back ground Home Credit Group**

Many people struggle to get loans due to insufficient or non-existent credit histories. And, unfortunately, this population is often taken advantage of by untrustworthy lenders.

#### **Home Credit Group**

Home Credit strives to broaden financial inclusion for the unbanked population by providing a positive and safe borrowing experience. In order to make sure this underserved population has a positive loan experience, Home Credit makes use of a variety of alternative data--including telco and transactional information--to predict their clients' repayment abilities.

While Home Credit is currently using various statistical and machine learning methods to make these predictions, they're challenging Kagglers to help them unlock the full potential of their data. Doing so will ensure that clients capable of repayment are not rejected and that loans are given with a principal, maturity, and repayment calendar that will empower their clients to be successful.

#### Background on the dataset

Home Credit is a non-banking financial institution, founded in 1997 in the Czech Republic.

The company operates in 14 countries (including United States, Russia, Kazahstan, Belarus, China, India) and focuses on lending primarily to people with little or no credit history which will either not obtain loans or became victims of untrustworthly lenders.

Home Credit group has over 29 million customers, total assests of 21 billions Euro, over 160 millions loans, with the majority in Asia and almost half of them in China (as of 19-05-2018).

While Home Credit is currently using various statistical and machine learning methods to make these predictions, they're challenging Kagglers to help them unlock the full potential of their data. Doing so will ensure that clients capable of repayment are not rejected and that loans are given with a principal, maturity, and repayment calendar that will empower their clients to be successful.

#### Data files overview

There are 7 different sources of data:

• application\_train/application\_test: the main training and testing data with information about each loan application at Home Credit. Every loan has its own row and is identified by the feature SK\_ID\_CURR. The training application data comes with the TARGET indicating 0: the loan was repaid or 1: the loan was not repaid. The target variable defines if the client had payment difficulties meaning he/she had late payment more than X days on at least one of the first Y installments of the loan. Such case is marked as 1 while other all other cases as 0.

- **bureau:** data concerning client's previous credits from other financial institutions. Each previous credit has its own row in bureau, but one loan in the application data can have multiple previous credits.
- **bureau\_balance:** monthly data about the previous credits in bureau. Each row is one month of a previous credit, and a single previous credit can have multiple rows, one for each month of the credit length.
- **previous\_application:** previous applications for loans at Home Credit of clients who have loans in the application data. Each current loan in the application data can have multiple previous loans. Each previous application has one row and is identified by the feature SK\_ID\_PREV.
- POS\_CASH\_BALANCE: monthly data about previous point of sale or cash loans clients have had with Home Credit. Each row is one month of a previous point of sale or cash loan, and a single previous loan can have many rows.
- credit\_card\_balance: monthly data about previous credit cards clients have had with Home
   Credit. Each row is one month of a credit card balance, and a single credit card can have many rows.
- **installments\_payment:** payment history for previous loans at Home Credit. There is one row for every made payment and one row for every missed payment.



#### **Project Phases and Activities**

| Completed           |                              |                                  |
|---------------------|------------------------------|----------------------------------|
| Phase 1             | Phase 2                      | Phase 3                          |
| Data download       | Feature Engineering          | Implement Neural network         |
|                     |                              | Compare the results of the       |
| Data Load           | Hyperparameter Tuning        | expermients from previous phases |
| Perform EDA         | Additional Feature Selection | Final Report out                 |
| Modelling Pipelines | Ensemble Methods             |                                  |
| Baseline Models     |                              |                                  |
| Analyze the results |                              |                                  |

### **Feature Engineering and transformers**

Feature engineering is a process that can include both feature creation (adding new features to existing data) and feature selection (identifying only the most significant features or using other dimensionality reduction techniques). We may utilize a variety of ways to both build and pick features. Applied group\_by and grouped the data, taking SK\_ID\_CURR as a key, and aggregated using aggerate functions and using some features from the previous\_application data set.

We have performed correlation analysis in section 4.4 and picked up the highly correlated features for the experiments in this phase.

We have used the following Features

Selected features = ['SK\_ID\_CURR','AMT\_INCOME\_TOTAL',
'AMT\_CREDIT','DAYS\_EMPLOYED','DAYS\_BIRTH','EXT\_SOURCE\_1',
'EXT\_SOURCE\_2','EXT\_SOURCE\_3','CODE\_GENDER', 'FLAG\_OWN\_REALTY','FLAG\_OWN\_CAR',
'NAME\_CONTRACT\_TYPE','NAME\_EDUCATION\_TYPE','OCCUPATION\_TYPE','NAME\_INCOME\_TYPE']

num\_attribs = ['AMT\_INCOME\_TOTAL',

'AMT\_CREDIT','DAYS\_EMPLOYED','DAYS\_BIRTH','EXT\_SOURCE\_1', 'EXT\_SOURCE\_2','EXT\_SOURCE\_3']

cat\_attribs = ['CODE\_GENDER', 'FLAG\_OWN\_REALTY','FLAG\_OWN\_CAR','NAME\_CONTRACT\_TYPE', 'NAME\_EDUCATION\_TYPE','OCCUPATION\_TYPE','NAME\_INCOME\_TYPE']

#### **Pipelines**

**Build Numeric Pipeline** 

Identify the numeric features we wish to consider.

Create a pipeline for the numeric features.

Use DataFrameSelector() to select the desired numeric features

Use SimpleImputer() for missing data: there are quite a few missing values in the dataset. Missing values will be imputed using the feature mean.

Use StandardScaler() to standardize the data

The numeric pipeline will look like as follows:

```
num_pipeline =Pipeline([
   ('selector', DataFrameSelector(num_attribs)),
   ('imputer', SimpleImputer(strategy="median")),
   ('std_scaler', StandardScaler()),
   ])
```

**Build Categorical Pipeline:** 

Identify the categorical features we wish to consider.

Identify the range of expected values for the categorical features.

Create a pipeline for the categorical features.

Use SimpleImputer() for missing data: there are quite a few missing values in the dataset. Missing values will be imputed using constant values.

Then use One Hot Encoding

The numeric pipeline will look like as follows:

```
cat_pipeline = Pipeline([
   ('selector', DataFrameSelector(cat_attribs)),
   ('imputer', SimpleImputer(strategy='most_frequent')),
   ('ohe', OneHotEncoder(sparse=False, handle_unknown="ignore"))
])
```

Union numeric pipeline and categorical pipeline:

The codes will looks like as follows:

```
data_prep_pipeline= FeatureUnion(transformer_list=[
   ("num_pipeline", num_pipeline),
   ("cat_pipeline", cat_pipeline),
   ])
```

full\_pipeline = Pipeline([("preparation", data\_prep\_pipeline)])

#### **Experimental results**

|   | exp_name                                 | Train Acc | Valid Acc | Test Acc | Train AUC | Valid AUC | Test AUC | P_Value |
|---|------------------------------------------|-----------|-----------|----------|-----------|-----------|----------|---------|
| 0 | Model_Logistic_features_48               | 0.9191    | 0.9192    | 0.9196   | 0.7357    | 0.7407    | 0.7450   | 0.0000  |
| 1 | Model_RandomForest_features_48           | 0.9999    | 0.9194    | 0.9194   | 1.0000    | 0.7100    | 0.7169   | 0.1024  |
| 2 | Model_Logistic_Prev_app_features_269     | 0.9193    | 0.9194    | 0.9196   | 0.7567    | 0.7584    | 0.7601   | 0.0068  |
| 3 | Model_RandomForest_prev_app_features_269 | 1.0000    | 0.9194    | 0.9195   | 1.0000    | 0.7168    | 0.7197   | 0.0000  |

Initially, we got the test AUC of 0.74 and 0.71 with Logistic Regression and Random Forest, respectively, and after merging with the previous application\_data we could see a small increase in AUC in the Logistic Regression, but it had no effect in the Random Forest Model.

#### Discussion

We have conducted 4 different experiments in this Phase using Logistic regression and Random Forrest algorithms. We have first conducted the experiment with teh data only from Application Train and Application Test data set with out including supporting datasets. We have observed that we got 74% AUC with logistic regression and 71% with Random forrest. We have then added additional features from Previous application data and observed that AUC for logist regression increased to 76% and haven't seen any improvement with Random forrest.

#### Conclusion

By adding features from previous application data set, we have seen that accuracy improved from 74% to 76% for our baseline Logistic regression model. We haven't seen the improvement with the Random forest model. This shows the importance of doing EDA on other supporting datasets to find out the right features and use that in our models.

We followed a machine learning project's general outline:

- Recognize the issue and the data.
- •Cleaning and formatting of data (this was mostly done for us)
- •Examine exploratory data
- •Model to start with: Baseline model
- •Improved model
- •Interpretation of the model (just a little)

Our focus in the coming phases will be on

Exploring new features

Hyperparameter tuning

Implement/explore other models like Gradient Boost and AdaBoost

# **Kaggle Submission**

