

计算方法

令 丹

数学与统计学院

邮箱: danling@xjtu.edu.cn

令 丹 (数学与统计学院) 计 算 方 法 1/125

第三章

解线性方程组的迭代法

迭代法

针对大型稀疏线性方程组, 常用于迭代法求解.

- 迭代法特点:存储量小、算法简单、收敛速度快
- 迭代法的思想:对原线性方程组 Ax = b 作某种等价变形

$$x = Bx + g$$

由此构造迭代格式. 给定初始点 $x^{(0)}$,

$$x^{(k+1)} = Bx^{(k)} + g$$

得到迭代序列 $\{x^{(k)}\}$, 逐步逼近方程组的精确解.

令 丹 (数学与统计学院) 计算 方 法 3/125

主要内容

- 1. 向量及矩阵序列的极限
- 2. 基本迭代法
- 3. 迭代法的收敛性
- 4. 共轭梯度法
- 5. Krylov 子空间方法

1. 向量及矩阵序列的极限

向量序列的极限

定义

设 $\{x^{(k)}\}$ 是 \mathbf{R}^n 中的向量序列, 其中 $x^{(k)} = (x_1^{(k)}, \cdots, x_n^{(k)})^T$. 若 $\{x^{(k)}\}$ 的每一个分量 $x_i^{(k)}$ 都收敛于 x_i^* , 即

$$\lim_{k \to \infty} x_i^{(k)} = x_i^*, \quad i = 1, \cdots, n$$

则称向量序列 $\{x^{(k)}\}$ 收敛于向量 $x^*=(x_1^*,\cdots,x_n^*)^T$, 或者说 x^* 为向量序列 $\{x^{(k)}\}$ 的极限, 记为 $\lim_{k\to\infty}x^{(k)}=x^*$.

矩阵序列的极限

定义

设 $\{A^{(k)}\}$ 是 $\mathbf{R}^{n\times n}$ 中的矩阵序列, 其中 $A^{(k)}=\left(a_{ij}^{(k)}\right)_{n\times n}$. 若 $\{A^{(k)}\}$ 的每一个元素 $a_{ij}^{(k)}$ 都收敛于 a_{ij} , 即

$$\lim_{k \to \infty} a_{ij}^{(k)} = a_{ij}, \quad i, j = 1, \cdots, n$$

则称矩阵序列 $\{A^{(k)}\}$ 收敛于 $A=\left(a_{ij}\right)_{n\times n}$, 或者说 A 为矩阵序列 $\{A^{(k)}\}$ 的极限, 记为 $\lim_{k\to\infty}A^{(k)}=A$.

令 丹 (数学与统计学院) 计 算 方 法 6/125

向量序列和矩阵序列的收敛性

定理

(1) \mathbf{R}^n 中的向量序列 $\{x^{(k)}\}$ 收敛于向量 x^* 的<mark>充分必要条件</mark>是

$$\lim_{k \to \infty} \|x^* - x^{(k)}\| = 0.$$

(2) $\mathbf{R}^{n\times n}$ 中的矩阵序列 $\{A^{(k)}\}$ 收敛于矩阵 A 的<mark>充分必要条件</mark>是

$$\lim_{k \to \infty} ||A - A^{(k)}|| = 0.$$

矩阵序列的收敛性

定理

设 $A \in \mathbf{R}^{n \times n}$, 则 $\lim_{k \to \infty} A^k = 0$ 的充分必要条件是 $\rho(A) < 1$.

定理

设
$$A \in \mathbf{R}^{n \times n}$$
, 则 $\lim_{k \to \infty} A^k = 0$ 的充分必要条件是

$$\lim_{k \to \infty} A^k x = 0, \quad \forall x \in \mathbf{R}^n.$$

定理 (Gelfand 公式)

$$\rho(A) = \lim_{k \to \infty} \|A^k\|^{\frac{1}{k}}, \quad A \in \mathbf{R}^{n \times n}.$$

令 丹 (数学与统计学院) 计 算 方 法 8/125

2. 基本迭代法

迭代法的一般格式

设有方程组 $Ax = b (|A| \neq 0, b \neq 0)$, 将 Ax = b 等价变形为

$$x = Bx + g.$$

构造迭代格式

$$x^{(k+1)} = Bx^{(k)} + g, \quad k = 0, 1, 2, \cdots$$

给定初始向量 $x^{(0)}$, 由迭代格式产生迭代序列 $\{x^{(k)}\}$. 设 $\{x^{(k)}\}$ 收敛于 x^* , 两边令 $k\to\infty$ 取极限, 得到

$$\lim_{k \to \infty} x^{(k+1)} = \lim_{k \to \infty} \left(Bx^{(k)} + g \right) \quad \Longrightarrow \quad x^* = Bx^* + g.$$

由此可知, x^* 满足 $Ax^* = b$, 即为方程组 Ax = b 的解.

设
$$Ax = b$$
, $|A| \neq 0$, $b \neq 0$, $a_{ii} \neq 0$,

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n. \end{cases}$$

上述方程组可改写为

$$\begin{cases} x_1 = (b_1 - a_{12}x_2 - a_{13}x_3 - \dots - a_{1n}x_n)/a_{11}, \\ x_2 = (b_2 - a_{21}x_1 - a_{23}x_3 - \dots - a_{2n}x_n)/a_{22}, \\ \dots \\ x_i = (b_i - a_{i1}x_1 - \dots - a_{i,i-1}x_{i-1} - a_{i,i+1}x_{i+1} - \dots - a_{in}x_n)/a_{ii}, \\ \dots \\ x_n = (b_n - a_{n1}x_1 - a_{n2}x_2 - \dots - a_{n,n-1}x_{n-1})/a_{nn}. \end{cases}$$

令 丹 (数学与统计学院) 计 算 方 法 10 /125

$$\begin{cases} x_1^{(k+1)} = \left(b_1 - a_{12}x_2^{(k)} - a_{13}x_3^{(k)} - \dots - a_{1n}x_n^{(k)}\right)/a_{11}, \\ x_2^{(k+1)} = \left(b_2 - a_{21}x_1^{(k)} - a_{23}x_3^{(k)} - \dots - a_{2n}x_n^{(k)}\right)/a_{22}, \\ \dots \\ x_i^{(k+1)} = \left(b_i - a_{i1}x_1^{(k)} - \dots - a_{i,i-1}x_{i-1}^{(k)} - a_{i,i+1}x_{i+1}^{(k)} - \dots - a_{in}x_n^{(k)}\right)/a_{ii}, \\ \dots \\ x_n^{(k+1)} = \left(b_n - a_{n1}x_1^{(k)} - a_{n2}x_2^{(k)} - \dots - a_{n,n-1}x_{n-1}^{(k)}\right)/a_{nn}. \end{cases}$$

$$\begin{cases}
x_1^{(k+1)} = \left(b_1 - a_{12}x_2^{(k)} - a_{13}x_3^{(k)} - \dots - a_{1n}x_n^{(k)}\right)/a_{11}, \\
x_2^{(k+1)} = \left(b_2 - a_{21}x_1^{(k)} - a_{23}x_3^{(k)} - \dots - a_{2n}x_n^{(k)}\right)/a_{22}, \\
\dots \\
x_i^{(k+1)} = \left(b_i - a_{i1}x_1^{(k)} - \dots - a_{i,i-1}x_{i-1}^{(k)} - a_{i,i+1}x_{i+1}^{(k)} - \dots - a_{in}x_n^{(k)}\right)/a_{ii}, \\
\dots \\
x_n^{(k+1)} = \left(b_n - a_{n1}x_1^{(k)} - a_{n2}x_2^{(k)} - \dots - a_{n,n-1}x_{n-1}^{(k)}\right)/a_{nn}.
\end{cases}$$

Jacobi 迭代:
$$x_i^{(k+1)} = \left(b_i - \sum_{\substack{j=1 \ j \neq i}}^n a_{ij} x_j^{(k)}\right) / a_{ii}, \quad i = 1, 2, \cdots, n$$

令 丹 (数学与统计学院) 11 /125

给定初始向量 $x^{(0)} = \left(x_1^{(0)}, x_2^{(0)}, \cdots, x_n^{(0)}\right)^T$ 后, 产生迭代序列 $\{x^{(k)}\}$, 写成矩阵形式如下:

$$x^{(k+1)} = Bx^{(k)} + g,$$

其中

$$B = \begin{pmatrix} 0 & -\frac{a_{12}}{a_{11}} & -\frac{a_{13}}{a_{11}} & \cdots & -\frac{a_{1n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & -\frac{a_{23}}{a_{22}} & \cdots & -\frac{a_{2n}}{a_{22}} \\ -\frac{a_{31}}{a_{33}} & -\frac{a_{32}}{a_{33}} & 0 & \cdots & -\frac{a_{3n}}{a_{33}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\frac{a_{n1}}{a_{nn}} & -\frac{a_{n2}}{a_{nn}} & -\frac{a_{n3}}{a_{nn}} & \cdots & 0 \end{pmatrix}, g = \begin{pmatrix} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ \frac{b_3}{a_{33}} \\ \vdots \\ \frac{b_n}{a_{nn}} \end{pmatrix}.$$

令 丹 (数学与统计学院) 12 /125

例 1: 给定 $x^{(0)} = (0,0,0)^T$, 求解

$$\begin{cases} 10x_1 - x_2 - 2x_3 = 72, \\ -x_1 + 10x_2 - 2x_3 = 83, \\ -x_1 - x_2 + 5x_3 = 42. \end{cases}$$

解 由题可知

$$A = \begin{pmatrix} 10 & -1 & -2 \\ -1 & 10 & -2 \\ -1 & -1 & 5 \end{pmatrix}, \quad b = \begin{pmatrix} 72 \\ 83 \\ 42 \end{pmatrix}.$$

于是

$$B = \begin{pmatrix} 0 & \frac{1}{10} & \frac{2}{10} \\ \frac{1}{10} & 0 & \frac{2}{10} \\ \frac{1}{5} & \frac{1}{5} & 0 \end{pmatrix}, \quad g = \begin{pmatrix} \frac{72}{10} \\ \frac{83}{10} \\ \frac{42}{5} \end{pmatrix}.$$

迭代格式: 考讨

$$x^{(k+1)} = Bx^{(k)} + g \implies \begin{cases} x_1^{(k+1)} = (x_2^{(k)} + 2x_3^{(k)} + 72)/10, \\ x_2^{(k+1)} = (x_1^{(k)} + 2x_3^{(k)} + 83)/10, \\ x_3^{(k+1)} = (x_1^{(k)} + x_2^{(k)} + 42)/5. \end{cases}$$

准确解: $x_1 = 11$, $x_2 = 12$, $x_3 = 13$

\overline{k}	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	k	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$
0	0.0000	0.0000	0.0000	6	10.9834	11.9834	12.9804
1	7.2000	8.3000	8.4000	7	10.9944	11.9944	12.9933
2	9.7100	10.7000	11.5000	8	10.9981	11.9981	12.9978
3	10.5700	11.5710	12.4820	9	10.9994	11.9994	12.9992
4	10.8535	11.8534	12.8282	10	10.9998	11.9998	12.9997
5	10.9510	11.9510	12.9414	11	10.9999	11.9999	12.9999

用最新的迭代值代替

E Jacobi 迭代法中, 计算
$$x_i^{(k+1)}$$
 时 $x_1^{(k+1)},\cdots,x_{i-1}^{(k+1)}$ 均已算出.

在 Jacobi 迭代法中, 计算 $x_i^{(k+1)}$ 时 $x_1^{(k+1)}, \dots, x_{i-1}^{(k+1)}$ 均已算出. 因此可用 $x_1^{(k+1)}, \dots, x_{i-1}^{(k+1)}$ 替代 $x_i^{(k+1)}$ 表达式中的 $x_1^{(k)}, \dots, x_{i-1}^{(k)}$,

得到

$$\begin{cases} x_1^{(k+1)} = \left(b_1 - a_{12}x_2^{(k)} - a_{13}x_3^{(k)} - \dots - a_{1n}x_n^{(k)}\right)/a_{11}, \\ x_2^{(k+1)} = \left(b_2 - a_{21}x_1^{(k+1)} - a_{23}x_3^{(k)} - \dots - a_{2n}x_n^{(k)}\right)/a_{22}, \\ \dots \dots \\ x_i^{(k+1)} = \left(b_i - a_{i1}x_1^{(k+1)} - \dots - a_{i,i-1}x_{i-1}^{(k+1)} - a_{i,i+1}x_{i+1}^{(k)} - \dots - a_{in}x_n^{(k)}\right)/a_{ii}, \\ \dots \dots \\ x_n^{(k+1)} = \left(b_n - a_{n1}x_1^{(k+1)} - a_{n2}x_2^{(k+1)} - \dots - a_{n,n-1}x_{n-1}^{(k+1)}\right)/a_{nn}. \end{cases}$$

Gauss-Seidel 迭代:

$$\begin{cases} x_1^{(k+1)} = \left(b_1 - \sum_{j=2}^n a_{1j} x_j^{(k)}\right) / a_{11}, \\ x_i^{(k+1)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}\right) / a_{ii}, \quad i = 2, \cdots, n \end{cases}$$

令 丹 (数学与统计学院) 计算方法 16 / 125

例 2: 用 Gauss-Seidel 迭代法求解例 1 中的方程组.

例 2: 用 Gauss-Seidel 迭代法求解例 1 中的方程组.

解 Gauss-Seidel 迭代格式:

$$\begin{cases} x_1^{(k+1)} = \left(x_2^{(k)} + 2x_3^{(k)} + 72\right)/10, \\ x_2^{(k+1)} = \left(x_1^{(k+1)} + 2x_3^{(k)} + 83\right)/10, \\ x_3^{(k+1)} = \left(x_1^{(k+1)} + x_2^{(k+1)} + 42\right)/5. \end{cases}$$

准确解: $x_1 = 11$, $x_2 = 12$, $x_3 = 13$

\overline{k}	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	k	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_3^{(k)}$
0	0.0000	0.0000	0.0000	4	10.9913	11.9947	12.9972
1	7.2000	9.0200	11.6440	5	10.9989	11.9993	12.9996
2	10.4308	11.6719	12.8205	6	10.9999	11.9999	13.0000
3	10.9313	11.9572	12.9777				

逐次超松弛 (SOR) 迭代法

对 Gauss-Seidel 迭代方法进行改写. 得到

$$\begin{cases} x_1^{(k+1)} = x_1^{(k)} + \left(b_1 - \sum_{j=1}^n a_{1j} x_j^{(k)}\right) / a_{11}, \\ x_i^{(k+1)} = x_i^{(k)} + \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^n a_{ij} x_j^{(k)}\right) / a_{ii}, \quad i = 2, \dots, n \end{cases}$$

计算方法 18 / 125

逐次超松弛 (SOR) 迭代法

定义第 k+1 步迭代的<mark>残向量</mark>如下:

$$r_1^{(k+1)} = b_i - \sum_{j=1}^n a_{ij} x_j^{(k)},$$

$$r_i^{(k+1)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^n a_{ij} x_j^{(k)}, \quad i = 2, \dots, n,$$

$$r^{(k+1)} \triangleq \left(r_1^{(k+1)}, r_2^{(k+1)}, \dots, r_n^{(k+1)}\right)^T.$$

于是

$$x_i^{(k+1)} = x_i^{(k)} + r_i^{(k+1)}/a_{ii}, \quad i = 1, \dots, n.$$

显然, 当 $\{x_i^{(k+1)}\}$ 收敛时, 有 $r_i^{(k+1)} \to 0 \ (k \to \infty)$.

 令 丹 (数学与统计学院)
 计 算 方 法

逐次超松弛 (SOR) 迭代法

为了得到更快的收敛速度, 引入参数 ω ($\omega > 0$, <mark>松弛因子</mark>)

$$\begin{split} x_i^{(k+1)} &= x_i^{(k)} + \omega r_i^{(k+1)} / a_{ii} \\ &= x_i^{(k)} + \omega \bigg(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^n a_{ij} x_j^{(k)} \bigg) / a_{ii} \\ &= (1-\omega) x_i^{(k)} + \omega \overline{\bigg(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \bigg) / a_{ii}} \\ &= \operatorname{Gauss-Seidel} \mathfrak{H} \mathfrak{H} \mathfrak{H} \mathfrak{A} \mathfrak{A} \end{split}$$

SOR 迭代: $x_i^{(k+1)} = (1-\omega)x_i^{(k)} + \omega \ x_{i.\text{G-S}}^{(k+1)}, \quad i = 1, 2, \cdots, n$

令 丹 (数学与统计学院) 计 算 方 法

3. 迭代法的收敛性

三种迭代法的统一迭代格式:

$$x^{(k+1)} = Bx^{(k)} + q$$
, $B \longrightarrow$ **迭代矩阵**.

对线性方程组的系数矩阵 A 作分解

$$A = D - E - F,$$

其中

$$D = \mathsf{diag}(a_{11}, a_{22}, \cdots, a_{nn}),$$

$$E = \begin{pmatrix} 0 & & & \\ -a_{21} & 0 & & \\ \vdots & & \ddots & \\ -a_{n1} & -a_{n2} & \cdots & 0 \end{pmatrix}, F = \begin{pmatrix} 0 & -a_{12} & -a_{13} & \cdots & -a_{1n} \\ & 0 & -a_{23} & \cdots & -a_{2n} \\ & & \ddots & & \vdots \\ & & 0 & -a_{n-1,n} \\ & & & 0 \end{pmatrix}$$

 令 丹 (数学与统计学院)
 计 算 方 法

21/125

(1) Jacobi 迭代法:

$$x_i^{(k+1)} = \left(b_i - \sum_{\substack{j=1\\j\neq i}}^n a_{ij} x_j^{(k)}\right) / a_{ii}, \quad i = 1, 2, \dots, n$$
$$x^{(k+1)} = D^{-1} \left(b + (E+F)x^{(k)}\right)$$
$$= D^{-1}b + D^{-1}(E+F)x^{(k)}$$

因此

$$B = D^{-1}(E + F), \quad g = D^{-1}b$$

 令 丹 (数学与统计学院)
 计 算 方 法

(2) Gauss-Seidel 迭代法:

$$x_1^{(k+1)} = \left(b_1 - \sum_{j=2}^n a_{1j} x_j^{(k)}\right) / a_{11}$$

$$x_i^{(k+1)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}\right) / a_{ii}, \ i = 2, \dots, n$$

$$x^{(k+1)} = D^{-1} \left(b + Ex^{(k+1)} + Fx^{(k)}\right)$$

$$= D^{-1}b + D^{-1}Ex^{(k+1)} + D^{-1}Fx^{(k)}$$

$$x^{(k+1)} = (D - E)^{-1}Fx^{(k)} + (D - E)^{-1}b.$$

因此

$$B = (D - E)^{-1}F$$
, $g = (D - E)^{-1}b$

令 丹 (数学与统计学院) 23 /125 th 算 方 法 23 /125 th 23 /125 th 23 /125 th 25 /125 th 2

(3) SOR 迭代法:

$$\begin{aligned} x_i^{(k+1)} &= (1-\omega)x_i^{(k)} + \omega \ x_{i,\mathsf{G-S}}^{(k+1)}, \quad i = 1, 2, \cdots, n \\ x^{(k+1)} &= (1-\omega)x^{(k)} + \omega \ x_{\mathsf{G-S}}^{(k+1)} \\ &= (1-\omega)x^{(k)} + \omega \frac{D^{-1} \left(b + Ex^{(k+1)} + Fx^{(k)}\right)}{\left(1 - \omega\right)I + \omega D^{-1}F\right)x^{(k)} + \omega D^{-1}b + \omega D^{-1}Ex^{(k+1)}} \\ x^{(k+1)} &= (D - \omega E)^{-1} \left((1-\omega)D + \omega F\right)x^{(k)} + \omega (D - \omega E)^{-1}b \end{aligned}$$

因此

$$B = (D - \omega E)^{-1} ((1 - \omega)D + \omega F), \quad g = \omega (D - \omega E)^{-1}b.$$

「定理 ^{给定范数}

若迭代矩阵 B 的范数 ||B|| < 1, 则对任意给定的初始向量 $x^{(0)}$, 由迭代格式

$$x^{(k+1)} = Bx^{(k)} + g, \quad k = 0, 1, \cdots$$

产生的迭代序列 $\left\{x^{(k)}\right\}$ 都收敛于方程组 x=Bx+g 的解 x^* , 并且有误差估计式

$$||x^* - x^{(k)}|| \le \frac{||B||}{1 - ||B||} ||x^{(k)} - x^{(k-1)}||,$$
$$||x^* - x^{(k)}|| \le \frac{||B||^k}{1 - ||B||} ||x^{(1)} - x^{(0)}||.$$

 $||B|| < 1 \longrightarrow$ 迭代法收敛的充分条件

令 丹 (数学与统计学院) 计 算 方 法 25 /125

证 (1) 收敛性. 由题设, $x^* = Bx^* + g$, 同时有 收敛性只和 B 有关, 和 g无关 $x^{(k+1)} = Bx^{(k)} + g$.

两式相减得到

$$x^* - x^{(k+1)} = B(x^* - x^{(k)}).$$

因此有

$$x^* - x^{(k)} = B(x^* - x^{(k-1)}) = \dots = B^k(x^* - x^{(0)}),$$

由此得到

$$||x^* - x^{(k)}|| \le ||B||^k ||x^* - x^{(0)}||$$
. Hore

两边令 $k \to \infty$ 取极限

$$\lim_{k \to \infty} ||x^* - x^{(k)}|| \le \lim_{k \to \infty} ||B||^k ||x^* - x^{(0)}|| = 0,$$

即 $\lim_{k\to\infty} \|x^*-x^{(k)}\|=0$,所以 $\lim_{k\to\infty} x^{(k)}=x^*$.

(2) 误差估计式. 对任意的 $n \ge 1, n = 1, 2, \dots$

$$||x^{(k+n)} - x^{(k)}|| = ||x^{(k+n)} - x^{(k+n-1)} + x^{(k+n-1)} - x^{(k+n-2)} + \dots + x^{(k+1)} - x^{(k)}||$$

$$= ||x^{(k+n)} - x^{(k+n-1)}|| + \dots + ||x^{(k+1)} - x^{(k)}||$$

$$= \sum_{i=1}^{n} ||x^{(k+i)} - x^{(k+i-1)}||,$$

$$\leq \|B\| \|x^{(k+i-1)} - x^{(k+i-2)}\|$$

$$\leq ||B||^{i-1}||x^{(k+1)} - x^{(k)}||.$$

令 丹 (数学与统计学院) 计算方法 27 / 125

于是

$$||x^{(k+n)} - x^{(k)}|| \le \sum_{i=1}^{n} ||B||^{i-1} ||x^{(k+1)} - x^{(k)}|| = \frac{1 - ||B||^n}{1 - ||B||} ||x^{(k+1)} - x^{(k)}||.$$

<mark>两边令 $n \to \infty$ 取极限,</mark> 由迭代序列的收敛性及 ||B|| < 1 可知

$$x^{(k+n)} \to x^*, ||B||^n \to 0, n \to \infty.$$

因此

$$||x^* - x^{(k)}|| \le \frac{1}{1 - ||B||} ||x^{(k+1)} - x^{(k)}||$$

$$= \frac{1}{1 - ||B||} ||Bx^{(k)} - Bx^{(k-1)}||$$

$$\le \frac{||B||}{1 - ||B||} ||x^{(k)} - x^{(k-1)}||$$

$$\le \dots \le \frac{||B||^k}{1 - ||B||} ||x^{(1)} - x^{(0)}||.$$

由误差估计式 (1) 知, 当 $\|B\|$ 不太接近 1 时, 若事先给定误差精度 ε , 则可用 $\|x^{(k)} - x^{(k-1)}\| \le \varepsilon$

作为迭代终止的条件, 即在迭代过程中, 若 $||x^{(k)} - x^{(k-1)}|| \le \varepsilon$, 则可取 $x^{(k)}$ 为近似解.

由误差估计式 (2) 可事先估计迭代次数. 令

$$\frac{\|B\|^k}{1 - \|B\|} \|x^{(1)} - x^{(0)}\| \leqslant \varepsilon \implies \|B\|^k \leqslant \frac{\varepsilon (1 - \|B\|)}{\|x^{(1)} - x^{(0)}\|},$$

两边取对数,得到

$$k \geqslant \frac{\ln (\varepsilon(1 - ||B||)) - \ln ||x^{(1)} - x^{(0)}||}{\ln ||B||}.$$

令 丹 (数学与统计学院) 计 算 方 法 29 /125

定理

对任意给定的初始向量 $x^{(0)}$, 由迭代格式

$$x^{(k+1)} = Bx^{(k)} + g, \quad k = 0, 1, \cdots$$

产生的迭代序列 $\{x^{(k)}\}$ 都收敛的<mark>充分必要条件</mark>是以下两条件之一成立:

- (1) $B^k \to 0 \ (k \to \infty)$;
- (2) **迭代矩阵** *B* 的谱半径 $\rho(B) < 1$. 常用

谱半径是矩阵范数的下确界

证 (1) 设 x^* 是方程组的解, 满足 $x^* = Bx^* + g$, 因此

$$x^* - x^{(k)} = B(x^* - x^{(k-1)}) = \dots = B^k(x^* - x^{(0)}).$$

必要性: 设 $x^{(k)} \to x^* (k \to \infty)$, 对上式两端取范数有

$$||x^* - x^{(k)}|| = ||B^k(x^* - x^{(0)})||.$$

令 $k \to \infty$ 两边取极限, 由 $x^{(0)}$ 的任意性可知 $x^* - x^{(0)} \neq 0$, 于是

$$\lim_{k \to \infty} B^k = 0.$$

充分性: 若 $B^k \to 0 \ (k \to \infty)$, 则

$$\lim_{k \to \infty} ||x^* - x^{(k)}|| \le \lim_{k \to \infty} ||B^k|| ||x^* - x^{(0)}|| = 0,$$

因此

$$\lim_{k \to \infty} ||x^* - x^{(k)}|| = 0 \implies x^{(k)} \to x^* \ (k \to \infty).$$

(2) 设 λ 是 B 的特征值, ξ 为特征向量, 则 $B\xi = \lambda \xi$, $B^k \xi = \lambda^k \xi$. 由于 $x^{(k)} \to x^* \ (k \to \infty)$ 等价于 $B^{(k)} \to 0 \ (k \to \infty)$, 因此只需证 (1) (2) 等价即可.

若 $B^k \to 0 \ (k \to \infty)$, 则有 $\lambda^k \to 0$. 于是有 $|\lambda| < 1, \ \rho(B) < 1$. 若 $\rho(B) < 1$, 由定理 3.1.2 知 $B^k \to 0 \ (k \to \infty)$.

 令 丹 (数学与统计学院)
 计 算 方 法

32 /125

推论

逐次超松弛迭代法收敛的必要条件是 $0 < \omega < 2$.

证 SOR 的迭代矩阵

$$B = (D - \omega E)^{-1} \left[(1 - \omega)D + \omega F \right].$$

设 λ_i $(i=1,2,\cdots,n)$ 是矩阵 B 的特征值,则

$$|B| = \lambda_1 \lambda_2 \cdots \lambda_n = \left| (D - \omega E)^{-1} \right| \left| (1 - \omega)D + \omega F \right|$$

$$= \frac{\left| (1 - \omega)D + \omega F \right|}{\left| D - \omega E \right|}$$

$$= \frac{(1 - \omega)^n a_{11} a_{22} \cdots a_{nn}}{a_{11} a_{22} \cdots a_{nn}} = (1 - \omega)^n.$$

若 SOR 迭代收敛,则由定理 3.3.2 可知,

$$\rho(B) = \max_{1 \le i \le n} |\lambda_i| < 1.$$

于是

$$|\lambda_1 \lambda_2 \cdots \lambda_n| = \left| 1 - \omega \right|^n < 1,$$

因此

$$|1 - \omega| < 1 \implies 0 < \omega < 2.$$

引理

设 A 是严格对角占优矩阵, $0 < \omega \le 1$, 当 $|\lambda| > 1$ 时, 矩阵

$$(\lambda + \omega - 1)D - \lambda \omega E - \omega F$$

是严格对角占优矩阵,从而是非奇异矩阵.

证 先证严格对角占优.

$$|(\lambda + \omega - 1)a_{ii}| - \sum_{j=1}^{i-1} |\lambda \omega a_{ij}| - \sum_{j=i+1}^{n} |\omega a_{ij}|$$

$$\geq (|\lambda| - (1 - \omega))|a_{ii}| - |\lambda|\omega \sum_{j=1}^{i-1} |a_{ij}| - \sum_{j=i+1}^{n} \omega |a_{ij}|$$

令 丹 (数学与统计学院) 35 /125

$$> (|\lambda| - (1 - \omega)) \left(\sum_{j=1}^{i-1} |a_{ij}| + \sum_{j=i+1}^{n} |a_{ij}| \right)$$

$$- |\lambda| \omega \sum_{j=1}^{i-1} |a_{ij}| - \omega \sum_{j=i+1}^{n} |a_{ij}|$$

$$= (|\lambda| - (1 - \omega) - |\lambda| \omega) \sum_{j=1}^{i-1} |a_{ij}| + (|\lambda| - 1) \sum_{j=i+1}^{n} |a_{ij}|$$

$$= (|\lambda| - 1)(1 - \omega) \sum_{j=1}^{i-1} |a_{ij}| + (|\lambda| - 1) \sum_{j=i+1}^{n} |a_{ij}|$$

$$\ge 0, \qquad i = 1, 2, \dots, n.$$

因此, $(\lambda + \omega - 1)D - \lambda \omega E - \omega F$ 是严格对角占优矩阵, 由线性代数知识可知, $(\lambda + \omega - 1)D - \lambda \omega E - \omega F$ 是非奇异矩阵.

令 丹 (数学与统计学院) 计 算 方 法 36 /125

推论

设线性方程组的系数矩阵 A 是严格对角占优矩阵, 则对任意给定的初始向量 $x^{(0)}$, Jacobi、Gauss-Seidel 和 $0 < \omega \le 1$ 的 SOR 迭代方法收敛.

设 A 是严格对角占优矩阵, $0 < \omega \le 1$, 当 $|\lambda| > 1$ 时, 矩阵

$$(\lambda + \omega - 1)D - \lambda \omega E - \omega F$$

是严格对角占优矩阵, 从而是非奇异矩阵.

推论

设线性方程组的系数矩阵 A 是严格对角占优矩阵, 则对任意给定的初始向量 $x^{(0)}$, Jacobi、Gauss-Seidel 和 $0 < \omega \le 1$ 的 SOR 迭代方法收敛.

证 (1) Jacobi 迭代法的迭代矩阵是

$$B = D^{-1}(E + F),$$

则

$$|\lambda I - B| = |\lambda I - D^{-1}(E + F)| = |D^{-1}||\lambda D - (E + F)|.$$

由于 A 是严格对角占优且 A=D-E-F, 因此 $|\lambda|\geqslant 1$ 时, $\lambda D-(E+F)$ 是严格对角占优矩阵, 从而非奇异.

因此 $|\lambda D - (E+F)| \neq 0$. 故当 $|\lambda| \geqslant 1$ 时, $|\lambda I - B| \neq 0$. 反之, $|\lambda I - B| = 0$ 必有 $|\lambda| < 1$.

据此, B 的特征值 $|\lambda| < 1 \implies \rho(B) < 1$, 因此 Jacobi 迭代收敛.

由于 A 是严格对角占优且 A = D - E - F, 因此 $|\lambda| \ge 1$ 时, $\lambda D - (E + F)$ 是严格对角占优矩阵, 从而非奇异.

因此 $|\lambda D - (E+F)| \neq 0$. 故当 $|\lambda| \geqslant 1$ 时, $|\lambda I - B| \neq 0$. 反之, $|\lambda I - B| = 0$ 必有 $|\lambda| < 1$.

据此, B 的特征值 $|\lambda| < 1 \implies \rho(B) < 1$, 因此 Jacobi 迭代收敛.

(2) SOR 方法的迭代矩阵为

$$B = (D - \omega E)^{-1} \left[(1 - \omega)D + \omega F \right],$$

$$\begin{aligned} |\lambda I - B| &= \left| \lambda I - (D - \omega E)^{-1} [(1 - \omega)D + \omega F] \right| \\ &= \left| (D - \omega E)^{-1} \right| |\lambda (D - \omega E) - (1 - \omega)D - \omega F| \\ &= \left| (D - \omega E)^{-1} \right| |(\lambda + \omega - 1)D - \lambda \omega E - \omega F| \,. \end{aligned}$$

由引理 3.3.1, 当 $0 < \omega \le 1$ 且 $|\lambda| \ge 1$ 时, 有

$$|(\lambda + \omega - 1)D - \lambda \omega E - \omega F| \neq 0.$$

又因为

$$|(D - \omega E)^{-1}| = \frac{1}{a_{11}a_{22}\cdots a_{nn}} \neq 0,$$

从而 $|\lambda I - B| \neq 0$.

据此可知, 对于 $0 < \omega \le 1$, 只有当 $|\lambda| < 1$ 时有 $|\lambda I - B| = 0$. 即 B 的特征值 $|\lambda| < 1 \implies \rho(B) < 1$, 因此 SOR 迭代收敛.

特别地. $\omega = 1$ 时. SOR 即 Gauss-Seidel, 故 Gauss-Seidel 迭代收敛.

今 丹 (数学与统计学院) 计算方法 39 /125

推论

设线性方程组的系数矩阵 A 对称正定,则对任意给定的初始向量 $x^{(0)}$, Jacobi 迭代方法收敛的充分必要条件是 2D-A 是对称正定矩阵.

证 设 Jacobi 迭代收敛, 由 A 对称知,

$$A = D - E - F = D - E - E^{T} = D - (E + E^{T}),$$

则迭代矩阵

$$B = D^{-1}(E+F) = D^{-1}(E+E^{T}) = D^{-1}(D-A)$$
$$= I - D^{-1}A = D^{-\frac{1}{2}} \left(I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}\right)D^{\frac{1}{2}},$$

因此 $B = I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ 相似, 有相同的特征值.

令 丹 (数学与统计学院) 40 /125

必要性: 设 $D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ 的特征值为 μ , 则 $I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ 的特征值为 $1 - \mu$. 故 B 的特征值为 $1 - \mu$. 由 Jacobi 收敛可知,

$$\rho(B) < 1 \implies |1 - \mu| < 1 \implies 0 < \mu < 2,$$

故 $2I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ 的特征值为 $(2 - \mu) \in (0, 2)$. 所以 $2I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$

是正定矩阵, 由此

$$2D - A = D^{\frac{1}{2}} (2I - D^{-\frac{1}{2}} A D^{-\frac{1}{2}}) D^{\frac{1}{2}}$$

是正定矩阵.

令 丹 (数学与统计学院) 计 算 方 法 41 /125

充分性: 设 2D-A 是正定矩阵, 由于 A 对称正定可知 $D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ 对称正定. 设其特征值为 μ ($\mu>0$), 则 B 的特征值 $\lambda=1-\mu$. 由 $\mu>0$ 知 $\lambda=1-\mu<1$.

另一方面,

$$-B = -D^{-\frac{1}{2}}(I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}})D^{\frac{1}{2}}$$
$$= D^{-\frac{1}{2}}\left(I - D^{-\frac{1}{2}}(2D - A)D^{-\frac{1}{2}}\right)D^{\frac{1}{2}},$$

由此可知, -B 的特征值与 $I-D^{-\frac{1}{2}}(2D-A)D^{-\frac{1}{2}}$ 相同, 由 2D-A 对称正定可知, $D^{-\frac{1}{2}}(2D-A)D^{-\frac{1}{2}}$ 对称正定.

令 丹 (数学与统计学院) 42 /125

设其特征值为 $\overline{\mu}$ ($\overline{\mu} > 0$), 而 $I - D^{-\frac{1}{2}}(2D - A)D^{-\frac{1}{2}}$ 的特征值为 $1 - \overline{\mu}$. 所以有

$$-\lambda = 1 - \overline{\mu} < 1 \implies \lambda > -1,$$

因此有

$$|\lambda| < 1 \implies \rho(B) < 1 \implies$$
 Jacobi 迭代收敛.

令 丹 (数学与统计学院) 计 算 方 法 43 /125

推论

设线性方程组的系数矩阵 A 是对称正定矩阵, 则对任意给定的 初始向量 $x^{(0)}$, SOR 迭代方法收敛的充分必要条件是 $0 < \omega < 2$.

复数域的特征值、特征向量

证 由 A 对称正定矩阵可知, SOR 的迭代矩阵可写为

$$B = (D - \omega E)^{-1} ((1 - \omega)D + \omega F) = (D - \omega E)^{-1} ((1 - \omega)D + \omega E^T),$$

 $\underline{\mathbf{U}} \ \lambda \ \underline{\mathbf{E}} \ B \ \mathbf{0}$ 的特征值, $\underline{y} \ \underline{\mathbf{E}} \ \underline{\mathbf{H}} \ \underline{\mathbf{D}} \ \mathbf{0}$ 特征向量, $\underline{\mathbf{U}} \ \overline{y} \ \underline{\mathbf{E}} \ \underline{y} \ \mathbf{0}$ 共轭向量, 则有

$$[(1 - \omega)D + \omega E^T]y = \lambda (D - \omega E)y,$$

从而有

$$(1 - \omega)\overline{y}^T D y + \omega \overline{y}^T E^T y = \lambda (\overline{y}^T D y - \omega \overline{y}^T E y).$$

令 丹 (数学与统计学院) 44 /125

设 $\overline{y}^TEy=a+ib$, 则 $\overline{y}^TE^Ty=a-ib$. 由 A 对称正定可知, 其对角元全大于 0, 故 D 是对称正定矩阵, 所以 $\overline{y}^TDy=d>0$,

$$\lambda = \frac{d(1-\omega) + \omega(a-ib)}{d - \omega(a+ib)} \triangleq \frac{s}{t}.$$

$$|s|^2 - |t|^2 = (d(1-\omega) + \omega a)^2 + \omega^2 b^2 - (d - \omega a)^2 - \omega^2 b^2$$

$$= d^2 (1 + \omega^2 - 2\omega - 1) + 2(1 - \omega)\omega da + 2\omega da$$

$$= d^2 (\omega^2 - 2\omega) + 2\omega da(2 - \omega)$$

$$= \omega d(2 - \omega)(2a - d).$$

另一方面, 由于 A 对称正定, 所以有

$$\overline{y}^T A y = \overline{y}^T (D - E - E^T) y = \overline{y}^T D y - \overline{y}^T E y - \overline{y}^T E^T y$$
$$= d - (a + ib) - (a - ib) = d - 2a > 0.$$

令 丹 (数学与统计学院) 45 /125

必要性: 若 SOR 迭代收敛, 则 $\rho(B) < 1$, 即有 $|\lambda| < 1$,

$$|\lambda| = \frac{|s|}{|t|} < 1 \implies |s|^2 - |t|^2 < 0,$$

于是

$$\omega d(2-\omega)(2a-d) < 0 \implies 0 < \omega < 2.$$

充分性: 若 $0<\omega<2$, 则有 $|\lambda|=\frac{|s|}{|t|}<1$, 因此

 $\rho(B) < 1$ \Longrightarrow SOR 迭代收敛.

令 丹 (数学与统计学院) 46 /125

SOR 迭代收敛的快慢取决于 ω 的选取, 自然选取最佳松弛因子 ω , 使得 SOR 有较快的收敛速度, 目前尚无可供计算 ω 的实用方法.

A 对称正定且三对角时, Young (1950) 提出建立最佳松弛因子的计算方式

$$\omega = \frac{2}{1 + \sqrt{1 - \rho^2(B_J)}},$$

其中 B_J 为 Jacobi 迭代矩阵.

令 丹 (数学与统计学院) 计 算 方 法 47 /125

迭代矩阵B、谱半径<1

例 1:对如下给定的 A,讨论 Ax = b的三种迭代法的收敛性.

$$(1) \ A = \left(\begin{array}{ccc} 1 & -1 & 2 \\ -1 & 3 & 0 \\ 2 & 0 & 7 \end{array} \right); \quad (2) \ A = \left(\begin{array}{ccc} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{array} \right).$$

正定: 二次型判断

解 (1) A 对称正定, 2D - A 对称正定, Jacobi 收敛.

 $0 < \omega < 2$ 时, SOR 收敛, Gauss-Seidel 收敛.<= w=1

(2) 2D - A 不正定, Jacobi 发散.

A 对称正定, $0 < \omega < 2$ 时, SOR 收敛, Gauss-Seidel 收敛.

 令 丹 (数学与统计学院)
 48 /125

例 2: 设线性方程组 Ax = b 的系数矩阵

$$A = \left(\begin{array}{cc} 1 & a \\ a & 1 \end{array}\right).$$

若要 Jacobi、Gauss-Seidel 迭代法收敛, 请给出 a 的取值范围.

解 对于 Jacobi 迭代, 其迭代矩阵

$$B = D^{-1}(E+F) = \begin{pmatrix} 0 & -a \\ -a & 0 \end{pmatrix},$$

$$\det(\lambda I - B) = \lambda^2 - a^2 = 0 \implies \lambda = \pm |a|.$$

因此, 当 $\rho(B) = |a| < 1$ 时, Jacobi 迭代收敛.

spectral radius

对于 Gauss-Seidel 迭代方法.

$$B = (D - E)^{-1}F = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 & -a \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ -a & 1 \end{pmatrix} \begin{pmatrix} 0 & -a \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -a \\ 0 & a^2 \end{pmatrix}.$$

$$\det(\lambda I - B) = \lambda(\lambda - a^2) = 0 \implies \rho(B) = a^2 < 1,$$

即 |a| < 1 时, Gauss-Seidel 收敛.

例 3: 方程组 $\begin{cases} 3x_1 - 10x_2 = 7 \\ 9x_1 - 4x_2 = 5 \end{cases}$, 写出两种收敛格式, 并说明为什么收敛.

解 选主元得

$$\begin{cases} 9x_1 - 4x_2 = 5 \\ 3x_1 - 10x_2 = 7 \end{cases} \implies A = \begin{pmatrix} 9 & -4 \\ 3 & -10 \end{pmatrix},$$

A 严格对角占优, 所以 Jacobi 迭代收敛, $0 < \omega \le 1$ 的 SOR 迭代收敛.

令 丹 (数学与统计学院) 计 算 方 法 51/125

Jacobi 迭代
$$\begin{cases} x_1^{(k+1)} = \frac{1}{9} \big(5 + 4x_2^{(k)}\big), \\ x_2^{(k+1)} = \frac{1}{10} \big(-7 + 3x_1^{(k)}\big). \end{cases}$$
 SOR 迭代
$$\begin{cases} x_1^{(k+1)} = \frac{\omega}{9} \big(5 + 4x_2^{(k)}\big) + (1 - \omega)x_1^{(k)}, \\ x_2^{(k+1)} = \frac{\omega}{10} \big(-7 + 3x_1^{(k+1)}\big) + (1 - \omega)x_2^{(k)}. \end{cases}$$

4. 共轭梯度法

共轭梯度法

大型稀疏<mark>对称正定矩阵</mark> $Ax = b \longrightarrow$ 共轭梯度法

 $Ax = b \quad \Longleftrightarrow \quad \min_{x \in \mathbf{R}^n} f(x)$

令 丹 (数学与统计学院) 计 算 方 法 53 /125

$$n$$
 元函数的梯度: $\nabla f(x) = \operatorname{grad} f(x) = \left(\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n}\right)^T$.

例 1: 求 n 元二次函数 $f(x) = \frac{1}{2}x^TAx - b^Tx$ 的梯度, 其中为 A 为 n 阶对称正定矩阵.

解 设
$$A = (a_{ij})_{n \times n}, \ x = (x_1, x_2, \dots, x_n)^T, \ b = (b_1, \dots, b_n)^T.$$
于是有

$$f(x) = \frac{1}{2}x^{T}Ax - b^{T}x = \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}x_{i}x_{j} - \sum_{i=1}^{n}b_{i}x_{i}.$$

由 A 是对称矩阵知, $a_{jk} = a_{kj}$. 对 f(x) 关于 x_k 求偏导数得

$$\frac{\partial f(x)}{\partial x_k} = \frac{1}{2} \left(\sum_{i=1}^n a_{ik} x_i + \sum_{j=1}^n a_{kj} x_j \right) - b_k$$
$$= \frac{1}{2} \left(\sum_{j=1}^n a_{jk} x_j + \sum_{j=1}^n a_{kj} x_j \right) - b_k$$
$$= \sum_{i=1}^n a_{kj} x_j - b_k, \quad k = 1, 2, \dots, n$$

由此得

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^n a_{1j} x_j \\ \sum_{j=1}^n a_{2j} x_j \\ \vdots \\ \sum_{j=1}^n a_{nj} x_j \end{pmatrix} - \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = Ax - b$$

计算方法 56 / 125

定理

设 $A \in n$ 阶对称正定矩阵, 则 x^* 是方程组 Ax = b 的解的<mark>充分 必要条件</mark>是 x^* 是二次函数 $f(x) = \frac{1}{2}x^TAx - b^Tx$ 的极小点, 即

$$Ax^* = b \quad \Longleftrightarrow \quad f(x^*) = \min_{x \in \mathbf{R}^n} f(x).$$

证 必要性: 设 x^* 是 Ax = b 的解, 即 $Ax^* = b$. 注意到 A 为对称正定矩阵, 故 $\forall x \in \mathbf{R}^n$, 有

$$f(x) - f(x^*) = \frac{1}{2}x^T A x - b^T x - \frac{1}{2}(x^*)^T A x^* + b^T x^*$$
$$= \frac{1}{2}(x^T A x - (x^*)^T A x^*) - b^T (x - x^*)$$

令 丹 (数学与统计学院) 计 算 方 法

$$= \frac{1}{2} (x^T A x - x^T A x^* + x^T A x^* - (x^*)^T A x^*) - (x^*)^T A (x - x^*)$$

$$= \frac{1}{2} (x^T A (x - x^*) + (x - x^*)^T A x^*) - (x^*)^T A (x - x^*)$$

$$= \frac{1}{2} (x^T A (x - x^*) + (x^*)^T A (x - x^*)) - (x^*)^T A (x - x^*)$$

$$= \frac{1}{2} (x^T A (x - x^*) - (x^*)^T A (x - x^*))$$

$$= \frac{1}{2} (x^T A (x - x^*) - (x^*)^T A (x - x^*))$$

$$= \frac{1}{2} (x - x^*)^T A (x - x^*) \ge 0$$

即 x^* 是 f(x) 的极小点.

令 丹 (数学与统计学院) 计 算 方 法 58 /125

$$= \frac{1}{2} (x^{T} A x - x^{T} A x^{*} + x^{T} A x^{*} - (x^{*})^{T} A x^{*}) - (x^{*})^{T} A (x - x^{*})$$

$$= \frac{1}{2} (x^{T} A (x - x^{*}) + (x - x^{*})^{T} A x^{*}) - (x^{*})^{T} A (x - x^{*})$$

$$= \frac{1}{2} (x^{T} A (x - x^{*}) + (x^{*})^{T} A (x - x^{*})) - (x^{*})^{T} A (x - x^{*})$$

$$= \frac{1}{2} (x^{T} A (x - x^{*}) - (x^{*})^{T} A (x - x^{*}))$$

$$= \frac{1}{2} (x - x^{*})^{T} A (x - x^{*}) \ge 0$$

即 x^* 是 f(x) 的极小点.

充分性: 设 x^* 为 f(x) 的极小点, 由于 $\nabla f(x)$ 存在, 则有

$$\nabla f(x^*) = Ax^* - b = 0,$$

即 x^* 是 Ax = b 的解.

共轭梯度法

如何求解二次函数 $f(x) = \frac{1}{2}x^TAx - b^Tx$ 的极小点 x^* ?

最速下降法: 由一点 $x^{(0)}$ 出发, 找到下降的方向 $p^{(0)}$, 在下降的方向上做一定的步长下降,

$$x^{(1)} = x^{(0)} + \alpha_0 p^{(0)},$$

使得 $f(x^{(1)}) \leqslant f(x^{(0)})$.

一般地, 由一点 $x^{(k)}$ 出发, 找到下降的方向 $p^{(k)}$, 在下降的方向上做一定的步长下降

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)},$$

使得 $f(x^{(k+1)}) \leqslant f(x^{(k)})$.

最速下降法

Q1: 如何确定步长 α_k ?

在直线 $x = x^{(k)} + \alpha_k p^{(k)}$ 上确定 α_k , 使得 f(x) 在

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$$

处达到极小. 设 $\varphi(\alpha) = f(x^{(k)} + \alpha p^{(k)})$, 于是有

$$\varphi'(\alpha) = \alpha p^{(k)T} A p^{(k)} + (A x^{(k)} - b)^T p^{(k)}.$$

令 $\varphi'(\alpha) = 0$, 得到

$$\alpha = \frac{\left(b - Ax^{(k)}\right)^T p^{(k)}}{p^{(k)T} A p^{(k)}} \triangleq \alpha_k.$$

最速下降法

当靠近极小值时,收敛变慢,出现"之字形"下降,因为

$$\alpha_k = \arg\min f(x^{(k)} + \alpha r^{(k)})$$

$$\frac{\partial f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{r}^{(k)})}{\partial \alpha} = \boldsymbol{r}^{(k)T} \nabla f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{r}^{(k)T}) \approx \boldsymbol{r}^{(k)T} \boldsymbol{r}^{(k+1)}$$

近似正交.

负梯度方向从局部看是最佳搜索方向,但从整体来看并非最佳.如何寻找更好的下降方向?

共轭梯度法

共轭向量

与复数的共轭相区分, 共轭与正交

定义

设 $A \in \mathbb{R}^n$ 阶对称正定矩阵, 若 \mathbb{R}^n 中的一组非零向量 $d^{(0)}$, $d^{(1)}, \dots, d^{(n)}$ 满足

$$\left(d^{(i)}, Ad^{(j)}\right) = 0, \quad i \neq j$$

则称 $d^{(i)}, d^{(j)}$ 是关于矩阵 A 的共轭向量, $d^{(0)}, d^{(1)}, \dots, d^{(m)}$ 为关于矩阵 A 的共轭向量组.

当 A = I 时, 共轭向量组即正交向量组.

共轭向量

定理

关于矩阵 A 的共轭向量 $d^{(0)}, d^{(1)}, \cdots, d^{(m)}$ 线性无关.

证 设
$$c_0d^{(0)} + c_1d^{(1)} + \cdots + c_md^{(m)} = 0$$
, 对两边用 $Ad^{(i)}$ $(i = 0, 1, \cdots, m)$ 作内积, 有

$$\left(Ad^{(i)}, \sum_{j=0}^{m} c_j d^{(j)}\right) = c_i \left(Ad^{(i)}, d^{(i)}\right) = 0, \quad i = 0, 1, 2, \dots, m$$

由于 A 是对称正定矩阵, 及 $d^{(i)} \neq 0$ 知

$$\left(Ad^{(i)}, d^{(i)}\right) > 0 \implies c_i = 0$$

即向量组 $d^{(0)}, d^{(1)}, \dots, d^{(m)}$ 线性无关.

给定初始点 $x^{(0)}$, 由迭代格式

$$x^{(k+1)} = x^{(k)} + \boldsymbol{\alpha_k d^{(k)}},$$

产生迭代序列 $x^{(1)}, x^{(2)}, \dots$, 求得 f(x) 的最小点, 也就是方程 组 Ax = b 的解.

共轭梯度法中的关键两点:

- (1) 最佳步长 α_k ($\alpha \geqslant 0$)
- (2) 搜索方向 $d^{(k)}$

① 确定最佳步长 α_k

给定迭代点 $x^{(k)}$ 和搜索方向 $d^{(k)}$, 选取非负实数 α_k 使得 $f\left(x^{(k)}+\alpha_k d^{(k)}\right)$ 最小,即选择 α_k 满足

$$f(x^{(k)} + \alpha_k d^{(k)}) = \min_{\alpha \geqslant 0} f(x^{(k)} + \alpha d^{(k)}).$$

设

$$\varphi(\alpha) = f(x^{(k)} + \alpha d^{(k)})
= \frac{1}{2} (x^{(k)} + \alpha d^{(k)})^T A(x^{(k)} + \alpha d^{(k)}) - b^T (x^{(k)} + \alpha d^{(k)}),
\varphi'(\alpha) = \alpha d^{(k)T} A d^{(k)} + (Ax^{(k)} - b)^T d^{(k)}
= (Ax^{(k)} + \alpha A d^{(k)} - b)^T d^{(k)}
= \nabla f(x^{(k)} + \alpha d^{(k)})^T d^{(k)}.$$

令
$$\varphi'(\alpha) = 0$$
, 得到

$$(Ax^{(k)} - b + \alpha Ad^{(k)})^T d^{(k)} = 0,$$

记
$$r^{(k)} = b - Ax^{(k)}$$
, 即 $(\alpha Ad^{(k)} - r^{(k)})^T d^{(k)} = 0$. 于是有

$$\alpha(Ad^{(k)}, d^{(k)}) = r^{(k)T}d^{(k)} \implies \alpha = \frac{r^{(k)T}d^{(k)}}{d^{(k)T}Ad^{(k)}}.$$

计算方法 66 / 125

② 确定搜索方向 d_k 下降方法的选择

给定初始向量 $x^{(0)}$ 后, 由于负梯度方向是函数下降最快的方向, 故第 1 次迭代搜索方向

$$d^{(0)} = r^{(0)} = -\nabla f(x^{(0)}) = b - Ax^{(0)}.$$

令

$$x^{(1)} = x^{(0)} + \alpha_0 d^{(0)}, \quad \alpha_0 = \frac{r^{(0)T} d^{(0)}}{d^{(0)T} A d^{(0)}}.$$

第 2 次迭代时, 从 $x^{(1)}$ 出发的搜索方向不再取 $r^{(1)}$, 而是选取 $d^{(1)}=r^{(1)}+\beta_0d^{(0)}$, 使得 $d^{(1)}$ 与 $d^{(0)}$ 是关于 A 的共轭向量, 即要求 $d^{(1)}$ 满足

$$(d^{(1)}, Ad^{(0)}) = 0 \implies \beta_0 = -\frac{r^{(1)T}Ad^{(0)}}{d^{(0)T}Ad^{(0)}}.$$

然后从 $x^{(1)}$ 出发, 沿方向 $d^{(1)}$ 进行搜索得

$$x^{(2)} = x^{(1)} + \alpha_1 d^{(1)}, \quad \alpha_1 = \frac{r^{(1)T} d^{(1)}}{d^{(1)T} A d^{(1)}}.$$

一般地, 设已经求出 $x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$, 计算

$$r^{(k+1)} = b - Ax^{(k+1)}.$$

令 $d^{(k+1)}=r^{(k+1)}+\beta_k d^{(k)}$, 选取 β_k 使得 $d^{(k+1)}$ 与 $d^{(k)}$ 是关于 A 的共轭向量, 即要求

$$(d^{(k+1)}, Ad^{(k)}) = 0 \implies \beta_k = -\frac{r^{(k+1)T}Ad^{(k)}}{d^{(k)T}Ad^{(k)}},$$

这就确定了搜索方向 $d^{(k+1)}$.

共轭梯度法的计算公式:

$$\begin{cases} d^{(0)} = r^{(0)} = b - Ax^{(0)} \\ \alpha_k = \frac{r^{(k)T}d^{(k)}}{d^{(k)T}Ad^{(k)}} \\ x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)} \\ r^{(k+1)} = b - Ax^{(k+1)} \\ \beta_k = -\frac{r^{(k+1)T}Ad^{(k)}}{d^{(k)T}Ad^{(k)}} \\ d^{(k+1)} = r^{(k+1)} + \beta_k d^{(k)} \end{cases}$$

定理

设 $r^{(i)}$, $d^{(i)}$ $(i = 0, 1, \dots, n-1)$ 分别是共轭梯度法中产生的非 零残差向量和搜索方向,则

- (1) $(r^{(k)}, d^{(k-1)}) = 0.$
- (2) $(r^{(k)}, d^{(k)}) = (r^{(k)}, r^{(k)}).$
- (3) $r^{(0)}, r^{(1)}, \dots, r^{(k)}$ $(k \le n-1)$ 是正交向量组; $d^{(0)}, d^{(1)}, \dots, d^{(k)}$ $(k \le n-1)$ 是关于 A 的共轭向量组.

今 丹 (数学与统计学院) 计算方法 70 /125

证 (1) 由于

$$\begin{split} r^{(k)} &= b - Ax^{(k)} = b - A\left(x^{(k-1)} + \alpha_{k-1}d^{(k-1)}\right) \\ &= b - Ax^{(k-1)} - \alpha_{k-1}Ad^{(k-1)} \\ &= r^{(k-1)} - \alpha_kAd^{(k-1)}. \end{split}$$

故

$$(r^{(k)}, d^{(k-1)}) = (r^{(k-1)}, d^{(k-1)}) - \alpha_{k-1}(Ad^{(k-1)}, d^{(k-1)}).$$

由于

$$\alpha_{k-1} = \frac{r^{(k-1)T}d^{(k-1)}}{d^{(k-1)T}Ad^{(k-1)}} = \frac{\left(r^{(k-1)},d^{(k-1)}\right)}{\left(Ad^{(k-1)},d^{(k-1)}\right)},$$

因此得到

$$(r^{(k)}, d^{(k-1)}) = 0.$$

(2) 已知
$$d^{(k)} = r^{(k)} + \beta_{k-1}d^{(k-1)}$$
, 由 (1) 得

$$(r^{(k)}, d^{(k)}) = (r^{(k)}, r^{(k)}) + \beta_{k-1}(r^{(k)}, d^{(k-1)}) = (r^{(k)}, r^{(k)}).$$

(2) 已知 $d^{(k)} = r^{(k)} + \beta_{k-1} d^{(k-1)}$, 由 (1) 得

$$(r^{(k)}, d^{(k)}) = (r^{(k)}, r^{(k)}) + \beta_{k-1}(r^{(k)}, d^{(k-1)}) = (r^{(k)}, r^{(k)}).$$

(3) 数学归纳法.

① 证当 m=1 时, $r^0, r^{(1)}$ 正交, $d^{(0)}, d^{(1)}$ 关于 A 共轭.

$$(r^{(0)}, r^{(1)}) = (r^{(0)}, b - Ax^{(0)}) = (r^{(0)}, b - A(x^{(0)} + \alpha_0 d^{(0)}))$$

$$= (r^{(0)}, r^{(0)} - \alpha_0 Ad^{(0)}) = (r^{(0)}, r^{(0)}) - \alpha_0 (r^{(0)}, Ad^{(0)}).$$

代入 α_0 , 利用 $r^{(0)}=d^{(0)}$, 得到 $\left(r^{(0)},r^{(1)}\right)=0$.

另一方面,

$$(d^{(0)}, Ad^{(1)}) = (d^{(0)}, A(r^{(1)} + \beta_0 d^{(0)}))$$

= $(r^{(0)}, Ar^{(1)}) + \beta_0 (d^{(0)}, Ad^{(1)}).$

代入 β_0 , 得到 $(d^{(0)}, Ad^{(1)}) = 0$.

另一方面.

$$(d^{(0)}, Ad^{(1)}) = (d^{(0)}, A(r^{(1)} + \beta_0 d^{(0)}))$$

= $(r^{(0)}, Ar^{(1)}) + \beta_0 (d^{(0)}, Ad^{(1)}).$

代入 β_0 , 得到 $(d^{(0)}, Ad^{(1)}) = 0$.

② 假定当 m = k 时结论成立, 即 $r^{0}, r^{(1)}, \dots, r^{(k)}$ 是正交向量组, $d^{(0)}, d^{(1)}, \dots, d^{(k)}$ 是关于 A 的共轭向量组.

令 丹 (数学与统计学院) 计算方法 73 / 125

另一方面.

$$(d^{(0)}, Ad^{(1)}) = (d^{(0)}, A(r^{(1)} + \beta_0 d^{(0)}))$$

= $(r^{(0)}, Ar^{(1)}) + \beta_0 (d^{(0)}, Ad^{(1)}).$

代入 β_0 , 得到 $(d^{(0)}, Ad^{(1)}) = 0$.

- ② 假定当 m = k 时结论成立, 即 $r^{0}, r^{(1)}, \dots, r^{(k)}$ 是正交向量组. $d^{(0)}, d^{(1)}, \dots, d^{(k)}$ 是关于 A 的共轭向量组.
- ③ 证明当 m = k + 1 时结论也成立, 即证 $r^{0}, r^{(1)}, \dots, r^{(k+1)}$ 是正 交向量组. $d^{(0)}, d^{(1)}, \dots, d^{(k+1)}$ 是关于 A 的共轭向量组.

计算方法 73 / 125

由于
$$r^{(0)} = d^{(0)}$$
, 则有

$$(r^{k+1}, r^{(0)}) = (b - A(x^{(k)} + \alpha_k d^{(k)}), r^{(0)})$$
$$= (r^{(k)} - \alpha_k A d^{(k)}, r^{(0)})$$
$$= (r^{(k)}, r^{(0)}) - \alpha_k (A d^{(k)}, d^{(0)}) = 0.$$

而对 $i = 1, 2, \cdots, k - 1$, 由

$$d^{(i)} = r^{(i)} + \beta_{i-1}d^{(i-1)} \quad \Longrightarrow \quad r^{(i)} = d^{(i)} - \beta_{i-1}d^{(i-1)},$$

可得

$$(r^{(k+1)}, r^{(i)}) = (r^{(k)} - \alpha_k A d^{(k)}, r^{(i)}) = (r^{(k)}, r^{(i)}) - \alpha_k (A d^{(k)}, r^{(i)})$$

$$= (r^{(k)}, r^{(i)}) - \alpha_k (A d^{(k)}, d^{(i)} - \beta_{i-1} d^{(i-1)})$$

$$= (r^{(k)}, r^{(i)}) - \alpha_k (A d^{(k)}, d^{(i)}) + \alpha_k \beta_{i-1} (A d^{(k)}, d^{(i-1)})$$

$$= 0.$$

当 i = k 时,

$$(r^{(k+1)}, r^{(k)}) = (r^{(k)}, r^{(k)}) - \alpha_k (Ad^{(k)}, d^{(k)})$$
$$= (r^{(k)}, d^{(k)}) - \alpha_k (Ad^{(k)}, d^{(k)}) = 0,$$

即 $r^{(0)}, r^{(1)}, \cdots, r^{(k+1)}$ 是正交向量组.

当 i = k 时,

$$(r^{(k+1)}, r^{(k)}) = (r^{(k)}, r^{(k)}) - \alpha_k (Ad^{(k)}, d^{(k)})$$
$$= (r^{(k)}, d^{(k)}) - \alpha_k (Ad^{(k)}, d^{(k)}) = 0,$$

即 $r^{(0)}, r^{(1)}, \cdots, r^{(k+1)}$ 是正交向量组.

下面证
$$(d^{(k+1)}, Ad^{(i)}) = 0, i = 0, 1, \dots, k.$$

由于 $d^{(k+1)} = r^{(k+1)} + \beta_k d^{(k)}$, 则有

$$(d^{(k+1)}, Ad^{(i)}) = (r^{(k+1)}, Ad^{(i)}) + \beta_k(d^{(k+1)}, d^{(i)})$$

当
$$i = 0, 1, \dots, k-1$$
 时, 由 $r^{(i+1)} = r^{(i)} - \alpha_i Ad^{(i)}$ 可得

$$Ad^{(i)} = (r^{(i)} - r^{(i+1)})/\alpha_i, \quad \alpha_i > 0.$$

代入, 并由 $\{r^{(i)}\}$ 的正交性及前面假设得

$$(d^{(k+1)}, Ad^{(i)}) = (r^{(k+1)} + \beta_k d^{(k)}, \frac{r^{(i)} - r^{(i+1)}}{\alpha_i})$$
$$= \frac{1}{\alpha_i} (r^{(k+1)}, r^{(i)} - r^{(i+1)}) + \beta_k (d^{(k)}, Ad^{(i)}) = 0.$$

当 i = k 时,

$$(d^{(k+1)}, Ad^{(k)}) = (r^{(k+1)} + \beta_k d^{(k)}, Ad^{(k)})$$

= $(r^{(k+1)}, Ad^{(k)}) + \beta_k (d^{(k)}, Ad^{(k)}) = 0,$

即 $d^{(0)}, d^{(1)}, \dots, d^{(k)}, d^{(k+1)}$ 是关于矩阵 A 的共轭向量组, 即结论在 m = k+1 时也成立. 根据归纳法, 结论得证.

根据上述定理, 可以将 α_k 和 β_k 的表达式化简为

$$\alpha_k = \frac{r^{(k)T}d^{(k)}}{d^{(k)T}Ad^{(k)}} = \frac{r^{(k)T}r^{(k)}}{d^{(k)T}Ad^{(k)}} = \frac{\|r^{(k)}\|_2^2}{d^{(k)T}Ad^{(k)}},$$

$$\begin{split} \beta_k &= -\frac{r^{(k+1)T}Ad^{(k)}}{d^{(k)T}Ad^{(k)}} = -\frac{r^{(k+1)T}\left(r^{(k)} - r^{(k+1)}\right)}{\alpha_k d^{(k)T}Ad^{(k)}} \\ &= \frac{r^{(k+1)T}r^{(k+1)}}{\alpha_k d^{(k)T}Ad^{(k)}} \xrightarrow{\text{$\frac{\#\lambda \ \alpha_k}{\|r^{(k)}\|_2^2}$}} \frac{r^{(k+1)T}r^{(k+1)}}{\|r^{(k)}\|_2^2} = \frac{\|r^{(k+1)}\|_2^2}{\|r^{(k)}\|_2^2}. \end{split}$$

计算方法 今 丹 (数学与统计学院) 77 /125

注意到

$$r^{(k)} = b - Ax^{(k)} = -\nabla f(x^{(k)}).$$

若 $r^{(k)} \neq 0$, 由上述定理的结论 (2) 有

$$\left(-\nabla f(x^{(k)}), d^{(k)}\right) = \left(r^{(k)}, d^{(k)}\right) = \left(r^{(k)}, r^{(k)}\right) > 0.$$

这说明 $d^{(k)}$ 是 f(x) 在 $x^{(k)}$ 处的下降方向, 即有

$$f(x^{(k+1)}) < f(x^{(k)}),$$

因此是 $\{f(x^{(k)})\}$ 是单调下降数列,共轭梯度法是一个下降算法.

 令 丹 (数学与统计学院)
 计 算 方 法

定理

设 $A \in \mathbb{R}$ 阶对称正定矩阵, 用共轭梯度法求解线性方程组 Ax = b, 或等价地求二次函数

$$f(x) = \frac{1}{2}x^T A x - b^T x$$

的极小点, 若计算过程中无舍入误差, 则最多迭代 n 次就可得到方程组 Ax = b 的解或二次函数的最小点.

证 在共轭梯度法的迭代过程中,若某个 $r^{(k)}=b-Ax^{(k)}=0$ $(0 \le k \le n-1)$, 则 $x^{(k)}$ 是方程组的准确解.

若 $r^{(k)} \neq 0$ $(k = 0, 1, \dots, n-1)$, 则有 $r^{(n)} = b - Ax^{(n)}$. 假设 $r^{(n)} \neq 0$, 则 $r^{(0)}, r^{(1)}, \dots, r^{(n)}$ 是正交向量组, 即 \mathbf{R}^n 中存在 n+1 个线性无关的向量, 而在 \mathbf{R}^n 空间中最多有 n+1 个相互正交的向量, 故产生矛盾.

因此必然有 $r^{(n)} = b - Ax^{(n)} = 0$, 即 $x^{(n)}$ 是方程组的准确解.

定理

设 $\{x^{(k)}\}$ 是用共轭梯度法求得的迭代序列, 则有误差估计

$$||x^{(k)} - x^*||_A \le 2\left(\frac{\sqrt{K} - 1}{\sqrt{K} + 1}\right)^k ||x^{(0)} - x^*||_A,$$

其中范数 $||x||_A = \sqrt{x^T A x}$, $K = Cond_2(A)$.

定理

设 $\{x^{(k)}\}$ 是用共轭梯度法求得的迭代序列,则有误差估计

$$||x^{(k)} - x^*||_A \le 2\left(\frac{\sqrt{K} - 1}{\sqrt{K} + 1}\right)^k ||x^{(0)} - x^*||_A,$$

其中范数 $||x||_A = \sqrt{x^T A x}$, $K = Cond_2(A)$.

证 由于

$$\begin{split} x^{(k)} &= x^{(k-1)} + \alpha_{k-1} d^{(k-1)} = \dots = x^{(0)} + \sum_{j=0}^{k-1} \alpha_j d^{(j)}, \\ \overline{\mathbf{m}} \ d^{(0)} &= r^{(0)}, \ d^{(j)} = r^{(j)} + \beta_{j-1} d^{(j-1)}, j = 1, 2, \cdots, k-1, \ \mathbf{于是有} \\ \forall j = 0, 1, \cdots, k-1, \quad d_j \in \mathrm{span}\{r^{(0)}, \cdots, r^{(j)}\}. \end{split}$$

令 丹 (数学与统计学院) 81 /125

因此

$$\begin{split} x \in & \ x^{(0)} + \operatorname{span}\{r^{(0)}, r^{(1)} \cdots, r^{(k-1)}\} \\ & = x^{(0)} + \operatorname{span}\{r^{(0)}, Ar^{(0)}, \cdots, A^{k-1}r^{(0)}\}, \end{split}$$

即有

$$x^{(k)} = x^{(0)} + \sum_{j=0}^{k-1} \gamma_j A^j r^{(0)} = x^{(0)} + \sum_{j=0}^{k-1} \gamma_j A^j (b - Ax^{(0)})$$

$$= x^{(0)} + \sum_{j=0}^{k-1} \gamma_j A^{j+1} (A^{-1}b - x^{(0)})$$

$$= x^{(0)} + \sum_{j=0}^{k-1} \gamma_j A^{j+1} (x^* - x^{(0)}).$$

计算方法 令 丹 (数学与统计学院) 82 / 125

$$\begin{split} x^{(k)} - x^* &= x^{(0)} - x^* - \sum_{j=0}^{k-1} \gamma_j A^{j+1} \big(x^{(0)} - x^* \big) \\ &= \bigg(I - \sum_{j=0}^{k-1} \gamma_j A^{j+1} \bigg) \big(x^{(0)} - x^* \big) = p_k(A) \big(x^{(0)} - x^* \big), \end{split}$$
 其中 $p_k(\xi) = 1 - \sum_{j=0}^{k-1} \gamma_j \xi^{j+1}$ 为 k 次多项式.

$$x^{(k)} - x^* = x^{(0)} - x^* - \sum_{j=0}^{k-1} \gamma_j A^{j+1} (x^{(0)} - x^*)$$
$$= \left(I - \sum_{j=0}^{k-1} \gamma_j A^{j+1} \right) (x^{(0)} - x^*) = p_k(A) (x^{(0)} - x^*),$$

其中 $p_k(\xi) = 1 - \sum_{j=0}^{k-1} \gamma_j \xi^{j+1}$ 为 k 次多项式.

由于 A 对称正定, 则存在正交矩阵 Q 使得 $A = Q^T \Lambda Q$, 其中

$$\Lambda = \mathsf{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n),$$

而 $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$ 为 A 的特征值, 因此

$$p_k(A) = I - \sum_{j=0}^{k-1} \gamma_j A^{j+1} = I - \sum_{j=0}^{k-1} \gamma_j Q^T \Lambda^{j+1} Q = Q^T p_k(\Lambda) Q.$$

令 丹 (数学与统计学院) 计 算 方 法

$$\begin{split} & \mathbf{\mathcal{P}}_k^{0,1} = \{ p \in \mathbb{P}_k : \ p(0) = 1 \}, \, \mathbf{\mathcal{I}} \mathbf{\mathcal{I}} \\ & \| x^{(k)} - x^* \|_A^2 = \left(x^{(k)} - x^* \right)^T Q^T \Lambda Q \big(x^{(k)} - x^* \big) \\ &= \min_{p_k \in \mathbb{P}_k^{0,1}} \left(x^{(0)} - x^* \right)^T p_k^T (A) Q^T \Lambda Q p_k (A) \big(x^{(0)} - x^* \big) \\ &= \min_{p_k \in \mathbb{P}_k^{0,1}} \left(x^{(0)} - x^* \right)^T Q^T p_k (\Lambda) \Lambda p_k (\Lambda) Q \big(x^{(0)} - x^* \big) \\ &= \min_{p_k \in \mathbb{P}_k^{0,1}} \left(x^{(0)} - x^* \right)^T Q^T \mathrm{diag} \big(\lambda_i p_k^2 (\lambda_i) \big) Q \big(x^{(0)} - x^* \big) \\ &\leqslant \min_{p_k \in \mathbb{P}_k^{0,1}} \max_{1 \leqslant i \leqslant n} p_k^2 (\lambda_i) \cdot \left(x^{(0)} - x^* \right)^T Q^T \Lambda Q \big(x^{(0)} - x^* \big) \\ &= \min_{p_k \in \mathbb{P}_k^{0,1}} \max_{1 \leqslant i \leqslant n} p_k^2 (\lambda_i) \cdot \| x^{(0)} - x^* \|_A^2, \end{split}$$

于是

$$||x^{(k)} - x^*||_A \leqslant \min_{p_k \in \mathbb{P}_k^{0,1}} \max_{1 \leqslant i \leqslant n} |p_k(\lambda_i)| \cdot ||x^{(0)} - x^*||_A$$

$$\leqslant \min_{p_k \in \mathbb{P}_k^{0,1}} \max_{\lambda_n \leqslant t \leqslant \lambda_1} |p_k(t)| \cdot ||x^{(0)} - x^*||_A,$$

即选择多项式 $q_k(t) \in \mathbb{P}_k^{0,1}$ 使得

$$\max_{\lambda_n\leqslant t\leqslant \lambda_1}|q_k(t)|=\min_{p_k\in\mathbb{P}_k^{0,1}}\max_{\lambda_n\leqslant t\leqslant \lambda_1}|p_k(t)|.$$

由逼近论相关知识, 可知

$$q_k(t) = rac{T_k \left(rac{\lambda_1 + \lambda_n - 2t}{\lambda_1 - \lambda_n}
ight)}{T_k \left(rac{\lambda_1 + \lambda_n}{\lambda_1 - \lambda_n}
ight)}$$
, 其中 $T_k(t)$ 为 k 次 Chebyshev 多项式.

令 丹 (数学与统计学院) 计 算 方 法

由 Chebyshev 多项式性质,

$$\max_{\lambda_n \leqslant t \leqslant \lambda_1} |q_k(t)| = \frac{1}{T_k \left(\frac{\lambda_1 + \lambda_n}{\lambda_1 - \lambda_n}\right)} = \frac{2\left(\frac{\lambda_1 + \lambda_n}{\lambda_1 - \lambda_n} - \sqrt{\left(\frac{\lambda_1 + \lambda_n}{\lambda_1 - \lambda_n}\right)^2 - 1}\right)^k}{1 + \left(\frac{\lambda_1 + \lambda_n}{\lambda_1 - \lambda_n} - \sqrt{\left(\frac{\lambda_1 + \lambda_n}{\lambda_1 - \lambda_n}\right)^2 - 1}\right)^{2k}},$$

其中

$$\begin{split} &\frac{\lambda_1 + \lambda_n}{\lambda_1 - \lambda_n} - \sqrt{\left(\frac{\lambda_1 + \lambda_n}{\lambda_1 - \lambda_n}\right)^2 - 1} \\ &= \frac{\lambda_1 + \lambda_n}{\lambda_1 - \lambda_n} - \frac{\sqrt{4\lambda_1 \lambda_n}}{\lambda_1 - \lambda_n} = \frac{\left(\sqrt{\lambda_1} - \sqrt{\lambda_n}\right)^2}{\lambda_1 - \lambda_n} \\ &= \frac{\sqrt{\lambda_1} - \sqrt{\lambda_n}}{\sqrt{\lambda_1} + \sqrt{\lambda_n}} = \frac{\sqrt{\frac{\lambda_1}{\lambda_n}} - 1}{\sqrt{\frac{\lambda_1}{\lambda_n}} + 1} = \frac{\sqrt{K} - 1}{\sqrt{K} + 1}, \end{split}$$

因此

$$||x^{(k)} - x^*||_A \leqslant \frac{2\left(\frac{\sqrt{K}-1}{\sqrt{K}+1}\right)^k}{1 + \left(\frac{\sqrt{K}-1}{\sqrt{K}+1}\right)^{2k}} ||x^{(0)} - x^*||_A$$
$$\leqslant 2\left(\frac{\sqrt{K}-1}{\sqrt{K}+1}\right)^k ||x^{(0)} - x^*||_A.$$

因此

$$\begin{split} \|x^{(k)} - x^*\|_A &\leqslant \frac{2\big(\frac{\sqrt{K}-1}{\sqrt{K}+1}\big)^k}{1 + \big(\frac{\sqrt{K}-1}{\sqrt{K}+1}\big)^{2k}} \|x^{(0)} - x^*\|_A \ \ _{\mathbf{Z}}$$
 条件数K越大, 越 ill-posed
$$&\leqslant 2\bigg(\frac{\sqrt{K}-1}{\sqrt{K}+1}\bigg)^k \|x^{(0)} - x^*\|_A. \end{split}$$

计算经验表明, 对于不是十分病态的问题,共轭梯度法的收敛较快, 迭代次数低于矩阵的阶数 n. 对于病态问题, 只要进行足够多次迭代 (大约为 n 的 $3\sim5$ 倍) 后, 一般也能得到满意的结果. 因此, 共轭梯度法是求解高阶稀疏线性方程组的一个常用有效方法.

例 2: 给定 $x^{(0)} = (0,0,0)^T$, 用共轭梯度法求解对称正定方程组

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}.$$

例 2: 给定 $x^{(0)} = (0,0,0)^T$, 用共轭梯度法求解对称正定方程组

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}.$$

解 取
$$d^{(0)} = r^{(0)} = b - Ax^{(0)} = (3, 1, 3)^T$$
, 则

$$||r^{(0)}||_2^2 = 19, \quad d^{(0)T}Ad^{(0)} = 55,$$

故

$$\alpha_0 = \frac{\|r^{(0)}\|_2^2}{d^{(0)T}Ad^{(0)}} = \frac{19}{55}.$$

于是得到

$$x^{(1)} = x^{(0)} + \alpha_0 d^{(0)} = \frac{19}{55} (3, 1, 3)^T,$$

$$r^{(1)} = b - Ax^{(1)} = \frac{6}{55} (-1, 6, -1)^T.$$

于是得到

$$x^{(1)} = x^{(0)} + \alpha_0 d^{(0)} = \frac{19}{55} (3, 1, 3)^T,$$

$$r^{(1)} = b - Ax^{(1)} = \frac{6}{55} (-1, 6, -1)^T.$$

因此有

$$||r^{(1)}||_{2}^{2} = \frac{38 \times 36}{55^{2}}, \quad \beta_{0} = \frac{||r^{(1)}||_{2}^{2}}{||r^{(0)}||_{2}^{2}} = \frac{72}{55^{2}},$$

$$d^{(1)} = r^{(1)} + \beta_{0}d^{(0)} = \frac{6 \times 19}{55^{2}}(-1, 18, -1)^{T},$$

$$d^{(1)T}Ad^{(1)} = \frac{(6 \times 19)^{2} \times 6}{55^{3}}, \quad \alpha_{1} = \frac{||r^{(1)}||_{2}}{d^{(1)T}Ad^{(1)}} = \frac{55}{57},$$

$$x^{(2)} = x^{(1)} + \alpha_{1}d^{(1)} = (1, 1, 1)^{T}, \quad r^{(2)} = b - Ax^{(2)} = (0, 0, 0)^{T},$$

即迭代两次求得方程组的解.

令 丹 (数学与统计学院) 计 算 方 法

5. Krylov 子空间方法

迭代加速方法, 预条件方法

对于大型非对称线性方程组

$$Ax = b, |A| \neq 0, A \in \mathbf{R}^{n \times n}, b \in \mathbf{R}^n.$$

给定 $x^{(0)} \in \mathbf{R}^n$, 令 $x = x^{(0)} + z$, 则

$$Ax = b \iff Ax^{(0)} + Az = b \iff Az = r^{(0)} \triangleq b - Ax^{(0)}.$$

若求得 $z=z^{(m)}$, 则有 $x^{(m)}=x^{(0)}+z^{(m)}$ 是原方程组的解.

Q: 如何求解 $Az = r^{(0)}$?

Galerkin 原理

设 \mathbf{R}^n 中两个 m 维子空间 K_m, L_m 的基分别是 $\{v_i\}_{i=1}^m$ 和 $\{w_i\}_{i=1}^m$,则

$$\begin{split} K_m &= \operatorname{span}\{v_1, v_2, \cdots, v_m\}, \\ L_m &= \operatorname{span}\{w_1, w_2, \cdots, w_m\}. \end{split}$$

Galerkin 原理: 在空间 K_m 中寻找方程组 $Az = r^{(0)}$ 的解 $z^{(m)}$, 使得 $r^{(0)} - Az^{(m)}$ 与 L_m 中的所有向量正交, 即求 $z^{(m)} \in K_m$ 使得

$$(r^{(0)} - Az^{(m)}, w_i) = 0, \quad i = 1, 2, \dots, m.$$

Galerkin 原理的矩阵表示

设

$$V_m = (v_1, v_2, \cdots, v_m) \in \mathbf{R}^{n \times m},$$

$$W_m = (w_1, w_2, \cdots, w_m) \in \mathbf{R}^{n \times m}.$$

由 $z^{(m)} \in K_m$ 知

$$z^{(m)} = y_1 v_1 + y_2 v_2 + \dots + y_m v_m = V_m y^{(m)},$$

其中
$$y^{(m)} = (y_1, y_2, \dots, y_m)^T$$
. 于是有 $w_i^T (r^{(0)} - AV_m y^{(m)}) = 0, \quad i = 1, 2, \dots, m$

即

$$W_m^T (r^{(0)} - AV_m y^{(m)}) = 0 \implies (W_m^T A V_m) y^{(m)} = W_m^T r^{(0)}.$$

若
$$W_m^T A V_m$$
 可逆, 则 $y^{(m)} = \left(W_m^T A V_m\right)^{-1} W_m^T r^{(0)}$, 从而有
$$z^{(m)} = V_m y^{(m)} = V_m \left(W_m^T A V_m\right)^{-1} W_m^T r^{(0)}.$$

选取不同的子空间 K_m 和 L_m 及它们的基 $\{v_i\}_{i=1}^m$, $\{w_i\}_{i=1}^m$, 便得到基于 Galerkin 原理求解方程组的不同算法.

Krylov 子空间:由 A 与 $r^{(0)}$ 生成,

$$\mathrm{span}\left\{r^{(0)}, Ar^{(0)}, \cdots, A^{m-1}r^{(0)}\right\}.$$

Krylov 子空间法: $K_m = \text{span} \{r^{(0)}, Ar^{(0)}, \dots, A^{m-1}r^{(0)}\}$

① 如何选取 L_m 使得 $W_m^TAV_m$ 可逆?

- ① 如何选取 L_m 使得 $W_m^T A V_m$ 可逆?
- ② 当 m = n 时,由于 $r^{(0)} Az^{(m)}$ 与 L_m 中所有向量正交,即 $r^{(0)} Az^{(m)}$ 与 \mathbf{R}^n 中所有向量正交.因此有 $r^{(0)} = Az^{(m)}$,即 有 $z^{(m)}$ 是 $Az = r^{(0)}$ 的精确解 z^* .

- ① 如何选取 L_m 使得 $W_m^T A V_m$ 可逆?
- ② 当 m=n 时,由于 $r^{(0)}-Az^{(m)}$ 与 L_m 中所有向量正交,即 $r^{(0)}-Az^{(m)}$ 与 \mathbf{R}^n 中所有向量正交.因此有 $r^{(0)}=Az^{(m)}$,即 有 $z^{(m)}$ 是 $Az=r^{(0)}$ 的精确解 z^* .

当 m < n 时, 如何估计 $||z^{(m)} - z^*||_2$?

- ① 如何选取 L_m 使得 $W_m^T A V_m$ 可逆?
- ② 当 m = n 时, 由于 $r^{(0)} Az^{(m)}$ 与 L_m 中所有向量正交, 即 $r^{(0)} - Az^{(m)}$ 与 \mathbf{R}^n 中所有向量正交. 因此有 $r^{(0)} = Az^{(m)}$. 即 有 $z^{(m)}$ 是 $Az = r^{(0)}$ 的精确解 z^* .

当 m < n 时, 如何估计 $||z^{(m)} - z^*||_2$?

★ 完全正交方法 (Arnoldi): $L_m = K_m$ 正投影 ★ 广义极小残差法 (GMRES): $L_m = AK_m$ $_{\mbox{AH2}}$

今 丹 (数学与统计学院) 计算方法 94 /125

Arnoldi 过程:利用 Gram-Schmidt 正交化方法,

由 $r^{(0)}, Ar^{(0)}, \dots, A^{m-1}r^{(0)}$ 构造 K_m 的一组标准正交基.

Arnoldi 过程:利用 Gram-Schmidt 正交化方法,

由 $r^{(0)}, Ar^{(0)}, \cdots, A^{m-1}r^{(0)}$ 构造 K_m 的一组标准正交基.

设 $r^{(0)}, Ar^{(0)}, \cdots, A^{m-1}r^{(0)}$ 线性无关,

(1)
$$\diamondsuit v_1 = \frac{r^{(0)}}{\|r^{(0)}\|_2}$$

Arnoldi 过程:利用 Gram-Schmidt 正交化方法,

由
$$r^{(0)}, Ar^{(0)}, \cdots, A^{m-1}r^{(0)}$$
 构造 K_m 的一组标准正交基.

设 $r^{(0)}, Ar^{(0)}, \cdots, A^{m-1}r^{(0)}$ 线性无关,

(1)
$$\Leftrightarrow v_1 = \frac{r^{(0)}}{\|r^{(0)}\|_2}$$

(2) 取 $\tilde{v}_2 = Av_1 - h_{11}v_1$, 要求 $\tilde{v}_2 \perp v_1$, 由

$$(\widetilde{v}_2, v_1) = (Av_1, v_1) - h_{11}(v_1, v_1) = 0 \implies h_{11} = \frac{(Av_1, v_1)}{\|v_1\|_2^2}.$$

记
$$h_{21} = \|\widetilde{v}_2\|_2$$
, \diamondsuit $v_2 = \frac{\widetilde{v}_2}{\|\widetilde{v}_2\|_2} = \frac{\widetilde{v}_2}{h_{21}}$.

 令 丹 (数学与统计学院)
 计 算 方 法

(3) 取
$$\tilde{v}_3 = Av_2 - h_{22}v_2 - h_{12}v_1$$
, 要求 $\tilde{v}_3 \perp v_1, \tilde{v}_3 \perp v_2$, 则

$$\begin{aligned} (\widetilde{v}_3, v_1) &= (Av_2, v_1) - h_{22}(v_2, v_1) - h_{12}(v_1, v_1) \\ &= (Av_2, v_1) - h_{12} \|v_1\|_2^2 = 0, \\ (\widetilde{v}_3, v_2) &= (Av_2, v_2) - h_{22}(v_2, v_2) - h_{12}(v_1, v_2) \\ &= (Av_2, v_2) - h_{22} \|v_2\|_2^2 = 0. \end{aligned}$$

于是得到

$$h_{12} = \frac{(Av_2, v_1)}{\|v_1\|_2^2} = (Av_2, v_1), \quad h_{22} = \frac{(Av_2, v_2)}{\|v_2\|_2^2} = (Av_2, v_2).$$

记
$$h_{32} = \|\widetilde{v}_3\|_2$$
, 会 $v_3 = \frac{\widetilde{v}_3}{\|\widetilde{v}_3\|_2} = \frac{\widetilde{v}_3}{h_{32}}$.

(4) 一般地, 对于 $k = 1, 2, \dots, m-1$ 取 $\widetilde{v}_{k+1} = Av_k - \sum_{i=1}^k h_{ik}v_i$, 要求 $\widetilde{v}_{k+1} \perp v_i \ (i = 1, 2, \dots, k)$, 则 $(\widetilde{v}_{k+1}, v_i) = (Av_k, v_i) - (\sum_{i=1}^k h_{ik}v_i, v_i)$ $= (Av_k, v_i) - h_{ik}(v_i, v_i)$

于是得到

$$h_{ik} = \frac{(Av_k, v_i)}{\|v_i\|_2^2} = (Av_k, v_i), \quad i = 1, 2, \dots, k.$$

 $= (Av_k, v_i) - h_{ik} ||v_i||_2^2 = 0.$

记
$$h_{k+1,k} = \|\widetilde{v}_{k+1}\|_2$$
, 令 $v_{k+1} = \frac{\widetilde{v}_{k+1}}{\|\widetilde{v}_{k+1}\|_2} = \frac{\widetilde{v}_{k+1}}{h_{k+1,k}}$.

(5) 当 k = m 时,

取
$$\widetilde{v}_{m+1} = Av_m - \sum_{i=1}^m h_{im}v_i$$
, 要求 $\widetilde{v}_{m+1} \perp v_i \ (i = 1, 2, \cdots, m)$, 则
$$(\widetilde{v}_{m+1}, v_i) = (Av_m, v_i) - \left(\sum_{i=1}^m h_{im}v_i, v_i\right)$$

$$= (Av_m, v_i) - h_{im}(v_i, v_i)$$

$$= (Av_m, v_i) - h_{im}||v_i||_2^2 = 0,$$

于是得到

$$h_{im} = \frac{(Av_m, v_i)}{\|v_i\|_2^2} = (Av_m, v_i), \quad i = 1, 2, \dots, m.$$

记 $h_{m+1,m}=\|\widetilde{v}_{m+1}\|_2$,当 $h_{m+1,m}\neq 0$,令 $v_{m+1}=\frac{\widetilde{v}_{m+1}}{h_{m+1,m}}$,否则 $v_{m+1}=0$.

令 丹 (数学与统计学院) 计 算 方 法

定理

设 m < n, 向量组 $r^{(0)}, Ar^{(0)}, \cdots, A^{m-1}r^{(0)}$ 线性无关, 则由 Arnoldi 过程产生的向量组 $\{v_i\}_{i=1}^m$ 是 Krylov 子空间 K_m 的一组标准正交基, 并且有

$$v_{m+1} \perp K_m = span\{r^{(0)}, Ar^{(0)}, \cdots, A^{m-1}r^{(0)}\}.$$

Arnoldi 过程的矩阵表示:

由
$$\widetilde{v}_{k+1} = Av_k - \sum_{i=1}^k h_{ik}v_i \ (k=1,2,\cdots,m)$$
 及 $v_{k+1} = \widetilde{v}_{k+1}/h_{k+1,k}$ 得

$$Av_k = \widetilde{v}_{k+1} + \sum_{i=1}^k h_{ik}v_i = \sum_{i=1}^{k+1} h_{ik}v_i \quad (k = 1, 2, \dots, m)$$

即

$$Av_{1} = h_{11}v_{1} + h_{21}v_{2},$$

$$Av_{2} = h_{12}v_{1} + h_{22}v_{2} + h_{32}v_{3},$$

$$\vdots$$

$$Av_{m} = h_{1m}v_{1} + h_{2m}v_{2} + \dots + h_{mm}v_{m} + h_{m+1,m}v_{m+1}.$$

$$H_{m} = \begin{pmatrix} h_{11} & h_{12} & \cdots & h_{1,m-1} & h_{1m} \\ h_{21} & h_{22} & \cdots & h_{2,m-1} & h_{2m} \\ & h_{32} & \cdots & h_{3,m-1} & h_{3m} \\ & & \ddots & \vdots & \vdots \\ & & & h_{m,m-1} & h_{mm} \end{pmatrix}$$

则有

$$AV_m = V_m H_m + h_{m+1,m} v_{m+1} e_m^T, \quad e_m = (0, 0, \dots, 1)^T \in \mathbf{R}^m.$$

 H_m : 上 Hessenberg 矩阵. 下次对角线下方元素全为 0

计算方法 令 丹 (数学与统计学院) 101 / 125

给定适当的初始向量 $x^{(0)}$ 和正整数 m, 使得向量组

$$r^{(0)}, Ar^{(0)}, \cdots, A^{m-1}r^{(0)}$$

线性无关. 取子空间

$$L_m = K_m = \operatorname{span}\left\{r^{(0)}, Ar^{(0)}, \cdots, A^{m-1}r^{(0)}\right\}.$$

给定适当的初始向量 $x^{(0)}$ 和正整数 m, 使得向量组

$$r^{(0)}, Ar^{(0)}, \cdots, A^{m-1}r^{(0)}$$

线性无关. 取子空间

$$L_m = K_m = \operatorname{span}\left\{r^{(0)}, Ar^{(0)}, \cdots, A^{m-1}r^{(0)}\right\}.$$

由 $L_m = K_m$ 知 $V_m = W_m$. 在式

$$AV_m = V_m H_m + h_{m+1,m} v_{m+1} e_m^T$$

两端左乘 V_m^T , 注意到 $V_m^T V_m = I$ 及 v_{m+1} 与 V_m 列向量正交, 得

$$V_m^T A V_m = V_m^T V_m H_m + h_{m+1,m} V_m^T v_{m+1} e_m^T = H_m.$$

令 丹 (数学与统计学院) 102 /125

又因为 $V_m = W_m$ 且

$$V_m^T r^{(0)} = \begin{pmatrix} v_1^T \\ \vdots \\ v_m^T \end{pmatrix} (\|r^{(0)}\|_2 v_1) = \|r^{(0)}\|_2 e_1 = \beta e_1, \quad \beta = \|r^{(0)}\|_2.$$

于是

$$(W_m^T A V_m) y^{(m)} = W_m^T r^{(0)} \implies H_m y^{(m)} = V_m^T r^{(0)} = \beta e_1.$$

若 H_m 非奇异, 则可唯一求解出 $y^{(m)}$, $z^{(m)} = V_m y^{(m)}$.

若 H_m 奇异, 则算法恶性中断.

令 丹 (数学与统计学院) 计 算 方 法 103 /125

定理

对于给定的 m>0, 设 $y^{(m)}$ 是方程组 $H_m y^{(m)}=\beta e_1$ 的唯一解,

$$z^{(m)} = V_m y^{(m)}$$
, 贝

$$||r^{(0)} - Az^{(m)}||_2 = h_{m+1,m}|e_m^T y^{(m)}|.$$

定理

对于给定的 m>0, 设 $y^{(m)}$ 是方程组 $H_m y^{(m)}=\beta e_1$ 的唯一解, $z^{(m)}=V_m y^{(m)}$, 则

$$||r^{(0)} - Az^{(m)}||_2 = h_{m+1,m}|e_m^T y^{(m)}|.$$

证
$$r^{(0)} - Az^{(m)} = r^{(0)} - AV_m y^{(m)}$$

$$= r^{(0)} - \left(V_m H_m + h_{m+1,m} v_{m+1} e_m^T\right) y^{(m)}$$

$$= r^{(0)} - V_m H_m y^{(m)} - h_{m+1,m} v_{m+1} e_m^T y^{(m)}$$

$$= r^{(0)} - \beta V_m e_1 - h_{m+1,m} v_{m+1} e_m^T y^{(m)}$$

$$= r^{(0)} - \beta v_1 - h_{m+1,m} v_{m+1} e_m^T y^{(m)}$$

$$= -h_{m+1,m} v_{m+1} e_m^T y^{(m)} .$$

当 $h_{m+1,m} \neq 0$ 时,

$$||r^{(0)} - Az^{(m)}||_2 = h_{m+1,m}|e_m^T y^{(m)}|||v_{m+1}||_2 = h_{m+1,m}|e_m^T y^{(m)}|.$$

当 $h_{m+1,m}=0$ 时,有 $r^{(0)}-Az^{(m)}=0$,因此

$$||r^{(0)} - Az^{(m)}||_2 = 0 = h_{m+1,m}|e_m^T y^{(m)}|.$$

因此结论成立.

当 $h_{m+1,m} \neq 0$ 时,

$$||r^{(0)} - Az^{(m)}||_2 = h_{m+1,m}|e_m^T y^{(m)}|||v_{m+1}||_2 = h_{m+1,m}|e_m^T y^{(m)}|.$$

当 $h_{m+1,m}=0$ 时,有 $r^{(0)}-Az^{(m)}=0$,因此

$$||r^{(0)} - Az^{(m)}||_2 = 0 = h_{m+1,m}|e_m^T y^{(m)}|.$$

因此结论成立.

对于某个 m>0, H_m 非奇异, 而 $\widetilde{v}_{m+1}=0$, 这时有 $r^{(0)}=Az^{(m)}$, 即 $z^{(m)}=V_my^{(m)}$ 是方程组 $r^{(0)}=Az$ 的准确解 z^* .

 令 丹 (数学与统计学院)
 计 算 方 法
 105 /125

原理型 Arnoldi 算法: 给定 $\varepsilon>0$, 不断增大 m, 确定 $z^{(m)}$, 使得 $\|r^{(0)}-Az^{(m)}\|_2<\varepsilon$.

- ① 给定 $\varepsilon > 0$, $x^{(0)} \in \mathbf{R}^n$, 取 m = 1.
- ② 计算 $r^{(0)} = b Ax^{(0)}$.
- ③ 由 Arnoldi 过程求出 $\{v_i\}_{i=1}^m$ 及 v_{m+1} . 若 H_m 奇异, 则算法产生中断, 更换 $x^{(0)}$, 转 ②. 若 H_m 非奇异, 解 $H_m y = \beta e_1$ 得到 $y^{(m)}$, $z^{(m)} = V_m y^{(m)}$.
- ④ 若 $v_{m+1}=0$, 则 $x^*=x^{(0)}+z^{(m)}$, 停止. 若 $v_{m+1}\neq 0$, $\|r^{(0)}-Az^{(m)}\|_2<\varepsilon$, 取 $x^*\approx x^{(0)}+z^{(m)}$, 停止. 若 $v_{m+1}\neq 0$, $\|r^{(0)}-Az^{(m)}\|_2\geqslant \varepsilon$, 取 m=m+1, 转 ③.

令 丹 (数学与统计学院) 106 /125

循环型 Arnoldi 算法: 固定 m, 不断迭代.

- ① 给定 $m << n, \ \varepsilon > 0, \ x^{(0)} \in \mathbf{R}^n$, 计算 $r^{(0)} = b Ax^{(0)}$, 取 k = 0.
- ② 由 Arnoldi 算法求解 $z^{(m)} = V_m y^{(m)}$. 令 $x^{(k+1)} = x^{(k)} + z^{(m)}$.
- ③ 若 $\|r^{(0)} Az^{(m)}\|_2 < \varepsilon$, 取 $x^* \approx x^{(k+1)}$, 停止. 否则, 令 $r^{(0)} = b Ax^{(k+1)}$, 取 k = k+1, 转 ②.

对称 Lanczos 算法: 若 A 对称, 则由 $V_m^T A V_m = H_m$ 知 H_m 对称, 此时的 Arnoldi 算法又称为对称 Lanczos 算法.

由 H_m 是上 Hessenberg 矩阵, 知 H_m 是对称的三对角矩阵, 即

令 丹 (数学与统计学院) 计 算 方 法

注意到 $h_{ik} = h_{ki}$, 记 $\alpha_k = h_{kk}$, $\beta_k = h_{k,k-1} = h_{k-1,k}$, 用 T_m 表

议时

$$Av_k = \sum_{i=1}^{k+1} h_{ik} v_i, \quad k = 1, 2, \dots, m$$

可简化为
$$\begin{cases} \beta_1=0,\\ \beta_{k+1}v_{k+1}=Av_k-\alpha_kv_k-\beta_kv_{k-1}, & k=1,2,\cdots,m \end{cases}$$

对称 Lanczos 算法:

- ① 给定 $\varepsilon > 0$, $x^{(0)} \in \mathbf{R}^n$.
- ② 计算 $r^{(0)} = b Ax^{(0)}, \beta = ||r^{(0)}||, v_1 = r^{(0)}/\beta, \mathbf{W} = 1.$
- ③ 由 Arnoldi 过程求解 $\alpha_i, \beta_i \ (i=1,2,\cdots,m)$ 及 $\{v_i\}_{i=1}^m$. 如果 T_m 奇异, 更换 $x^{(0)}$, 转 ②.
- ④ 用追赶法解三对角方程组 $T_m y = \beta e_1$, 得到 $y^{(m)}$, 计 算 $z^{(m)} = V_m y^{(m)}$.
- ⑤ 若 $||r^{(0)} Az^{(m)}||_2 < \varepsilon$, 取 $x^* = x^{(0)} + z^{(m)}$, 停止. 否则, 取 m = m + 1, 转 ③.

令 丹 (数学与统计学院) 计 算 方 法 110 /125

大型非对称稀疏线性方程组

$$Az = r^{(0)}, |A| \neq 0$$

选取 $m, x^{(0)} \in \mathbf{R}^n$, 使得 $r^{(0)}, Ar^{(0)}, \cdots, A^{m-1}r^{(0)}$ 线性无关. 由于 A 非奇异, 故 $Ar^{(0)}, A^2r^{(0)}, \cdots, A^mr^{(0)}$ 也线性无关.

令 丹 (数学与统计学院) 计 算 方 法 111 /125

大型非对称稀疏线性方程组

$$Az = r^{(0)}, |A| \neq 0$$

选取 $m, x^{(0)} \in \mathbf{R}^n$, 使得 $r^{(0)}, Ar^{(0)}, \cdots, A^{m-1}r^{(0)}$ 线性无关. 由于 A 非奇异, 故 $Ar^{(0)}, A^2r^{(0)}, \cdots, A^mr^{(0)}$ 也线性无关.

广义极小残差算法 (Generalized Minimal Residual, GMRES):

$$\begin{split} K_m &= \operatorname{span}\{r^{(0)}, Ar^{(0)}, \cdots, A^{m-1}r^{(0)}\}, \\ L_m &= \operatorname{span}\{Ar^{(0)}, A^2r^{(0)}, \cdots, A^mr^{(0)}\}. \end{split}$$

记 $L_m = AK_m$, 取 $z^{(m)} \in K_m$ 使得 $(r^{(0)} - Az^{(m)}) \perp L_m$.

定理

对于给定的 $x^{(0)} \in \mathbf{R}^n$ 和正整数 $m, z^{(m)} \in K_m$ 使

得 $(r^{(0)} - Az^{(m)}) \perp L_m$ 的充分必要条件是

$$||r^{(0)} - Az^{(m)}||_2 = \min_{z \in K_m} ||r^{(0)} - Az||_2.$$

证 必要性. 设 $z^{(m)} \in K_m$ 使得 $\left(r^{(0)} - Az^{(m)}\right) \perp L_m$, 则对任意的 $z \in K_m$ 有

$$||r^{(0)} - Az||_2^2 = ||r^{(0)} - Az^{(m)} - A(z - z^{(m)})||_2^2$$
$$= ||r^{(0)} - Az^{(m)}||_2^2 + ||A(z - z^{(m)})||_2^2$$
$$- 2(r^{(0)} - Az^{(m)}, A(z - z^{(m)})),$$

由 $z, z^{(m)} \in K_m$ 知 $z - z^{(m)} \in K_m$, $A(z - z^{(m)}) \in AK_m = L_m$.

又由
$$r^{(0)} - Az^{(m)} \perp L_m$$
 知,

$$(r^{(0)} - Az^{(m)}, A(z - z^{(m)})) = 0,$$

因此

$$||r^{(0)} - Az||_2^2 = ||r^{(0)} - Az^{(m)}||_2^2 + ||A(z - z^{(m)})||_2^2$$

$$\geqslant ||r^{(0)} - Az^{(m)}||_2^2.$$

又由 $r^{(0)} - Az^{(m)} \perp L_m$ 知.

$$(r^{(0)} - Az^{(m)}, A(z - z^{(m)})) = 0,$$

因此

$$||r^{(0)} - Az||_2^2 = ||r^{(0)} - Az^{(m)}||_2^2 + ||A(z - z^{(m)})||_2^2$$
$$\geqslant ||r^{(0)} - Az^{(m)}||_2^2.$$

充分性: 若 $\|r^{(0)} - Az^{(m)}\|_2 = \min_{z \in K_m} \|r^{(0)} - Az\|_2$, 则对任意

的 $v \in K_m$, $\alpha \in \mathbf{R}$, 都有

$$||r^{(0)} - A(z^{(m)} + \alpha v)||_2^2 \ge ||r^{(0)} - Az^{(m)}||_2^2.$$

记
$$q(\alpha) = \|r^{(0)} - A(z^{(m)} + \alpha v)\|_{2}^{2}$$
$$= \|r^{(0)} - Az^{(m)}\|_{2}^{2} - 2\alpha(r^{(0)} - Az^{(m)}, Av) + \alpha^{2}\|Av\|_{2}^{2}.$$

由假定知 $\alpha=0$ 时, $q(\alpha)$ 达到最小, 即 $\alpha=0$ 为 $q(\alpha)$ 的极小值点.

$$q'(\alpha) = -2(r^{(0)} - Az^{(m)}, Av) + 2\alpha ||Av||_2^2,$$

于是有

$$q'(0) = -2(r^{(0)} - Az^{(m)}, Av) = 0.$$

由 $v \in K_m$ 及 $\alpha \in \mathbf{R}$ 的任意性, 可知 $r^{(0)} - Az^{(m)} \perp AK_m$, 即

$$r^{(0)} - Az^{(m)} \perp L_m.$$

由假定知 $\alpha=0$ 时, $q(\alpha)$ 达到最小, 即 $\alpha=0$ 为 $q(\alpha)$ 的极小值点.

$$q'(\alpha) = -2(r^{(0)} - Az^{(m)}, Av) + 2\alpha ||Av||_2^2,$$

于是有

$$q'(0) = -2(r^{(0)} - Az^{(m)}, Av) = 0.$$

由 $v \in K_m$ 及 $\alpha \in \mathbf{R}$ 的任意性, 可知 $r^{(0)} - Az^{(m)} \perp AK_m$, 即

$$r^{(0)} - Az^{(m)} \perp L_m$$
.

GMRES: 求 $z^{(m)}$ 等价于求解极小化问题 $\min_{z \in K_m} ||r^{(0)} - Az||_2$

利用 Arnoldi 过程建立 K_m 中的一组标准正交基 $\{v_i\}_{i=1}^m$ 及 v_{m+1} . 记

$$\overline{H}_m = \begin{pmatrix} H_m \\ h_{m+1,m} e_m^T \end{pmatrix}, \quad \mathbf{\sharp} \mathbf{P} \ e_m = (0, 0, \cdots, 0, 1)^T \in \mathbf{R}^m,$$

则

$$AV_m = V_m H_m + h_{m+1,m} v_{m+1} e_m^T$$

$$= (V_m, v_{m+1}) \begin{pmatrix} H_m \\ h_{m+1,m} e_m^T \end{pmatrix}$$

$$= V_{m+1} \overline{H}_m.$$

记 $z \in K_m$, 则存在唯一的 $y \in \mathbf{R}^m$, 使得 $z = V_m y$.

当 $v_{m+1} \neq 0$ 时, 注意到 $V_{m+1}^T V_{m+1} = I$, 因此

$$||r^{(0)} - Az||_{2} = ||r^{(0)} - AV_{m}y||_{2} = ||r^{(0)} - V_{m+1}\overline{H}_{m}y||_{2}$$

$$= ||V_{m+1}V_{m+1}^{T}r^{(0)} - V_{m+1}\overline{H}_{m}y||_{2}$$

$$= ||V_{m+1}\beta\overline{e}_{1} - V_{m+1}\overline{H}_{m}y||_{2}$$

$$= ||V_{m+1}(\beta\overline{e}_{1} - \overline{H}_{m}y)||_{2}$$

$$= ||\beta\overline{e}_{1} - \overline{H}_{m}y||_{2}, \quad \overline{e}_{1} = (1, 0, \dots, 0)^{T} \in \mathbf{R}^{m+1}.$$

当 $v_{m+1} \neq 0$ 时, 注意到 $V_{m+1}^T V_{m+1} = I$, 因此

$$||r^{(0)} - Az||_{2} = ||r^{(0)} - AV_{m}y||_{2} = ||r^{(0)} - V_{m+1}\overline{H}_{m}y||_{2}$$

$$= ||V_{m+1}V_{m+1}^{T}r^{(0)} - V_{m+1}\overline{H}_{m}y||_{2}$$

$$= ||V_{m+1}\beta\overline{e}_{1} - V_{m+1}\overline{H}_{m}y||_{2}$$

$$= ||V_{m+1}(\beta\overline{e}_{1} - \overline{H}_{m}y)||_{2}$$

$$= ||\beta\overline{e}_{1} - \overline{H}_{m}y||_{2}, \quad \overline{e}_{1} = (1, 0, \dots, 0)^{T} \in \mathbf{R}^{m+1}.$$

当 $v_{m+1}=0$ 时, 有 $AV_m=V_mH_m$, 因此

$$||r^{(0)} - Az||_2 = ||r^{(0)} - AV_m y||_2 = ||r^{(0)} - V_m H_m y||_2$$
$$= ||V_m (\beta e_1 - H_m y)||_2$$
$$= ||\beta e_1 - H_m y||_2, \quad e_1 = (1, 0, \dots, 0)^T \in \mathbf{R}^m.$$

令 丹 (数学与统计学院) 计 算 方 法

因此

$$||r^{(0)} - Az^{(m)}||_2 = \min_{z \in K_m} ||r^{(0)} - Az||_2 = \min_{y \in \mathbf{R}^m} ||\beta \overline{e}_1 - \overline{H}_m y||_2.$$

于是问题转化为求解最小二乘问题

$$\min_{y \in \mathbf{R}^m} \|\beta e_1 - \overline{H}_m y\|_2, \quad e_1 \in \mathbf{R}^{m+1}.$$

计算方法 117 / 125

因此

$$||r^{(0)} - Az^{(m)}||_2 = \min_{z \in K_m} ||r^{(0)} - Az||_2 = \min_{y \in \mathbf{R}^m} ||\beta \overline{e}_1 - \overline{H}_m y||_2.$$

于是问题转化为求解最小二乘问题

$$\min_{y \in \mathbf{R}^m} \|\beta e_1 - \overline{H}_m y\|_2, \quad e_1 \in \mathbf{R}^{m+1}.$$

精确解:
$$\beta e_1 - \overline{H}_m y = 0$$
, $\overline{H}_m \in \mathbf{R}^{m+1,m}$,

$$\beta \overline{H}_m^T e_1 = \overline{H}_m^T \overline{H}_m y \implies y^{(m)} = \beta (\overline{H}_m^T \overline{H}_m)^{-1} \overline{H}_m^T e_1.$$

因此 GMRES 不会发生恶性中断现象.

原理型 GMRES 算法:不断增大 m 使得 $||r^{(0)} - Az^{(m)}||_2 < \varepsilon$.

- ① 给定 $\varepsilon > 0$. $x^{(0)} \in \mathbf{R}^n$. 取 m = 1.
- ② 计算 $r^{(0)} = b Ax^{(0)}$, $\beta = ||r^{(0)}||_2$.
- ③ 由 Arnoldi 过程求出 $\{v_i\}_{i=1}^m, v_{m+1}$ 及 H_m .
- ④ 求解最小二乘问题 $\min_{y \in \mathbf{R}^m} \|\beta e_1 \overline{H}_m y\|_2$ 得到 $y^{(m)}$.
- $(5) z^{(m)} = V_m y^{(m)}.$ 若 $||r^{(0)} - Az^{(m)}||_2 < \varepsilon$. 取 $x^* \approx x^{(0)} + z^{(m)}$. 停止. 若 $||r^{(0)} - Az^{(m)}||_2 \ge \varepsilon$, 取 m = m + 1, 转 ③.

令 丹 (数学与统计学院) 计算方法 118 / 125

循环型 GMRES 算法: 固定 m. 不断迭代.

- ① 给定 $\varepsilon > 0$, 选取适当的 $m \ (m << n)$ 及 $x^{(0)} \in \mathbf{R}^n$.
- ② 计算 $r^{(0)} = b Ax^{(0)}$, $\beta = ||r^{(0)}||_2$.
- ③ 由 Arnoldi 过程求出 $\{v_i\}_{i=1}^m$, v_{m+1} 及 \overline{H}_m .
- ④ 求解最小二乘问题 $\min_{y \in \mathbf{R}^m} \|\beta e_1 \overline{H}_m y\|_2$ 得到 $y^{(m)}$.
- ⑤ $z^{(m)} = V_m y^{(m)}$, 令 $x^{(m)} = x^{(0)} + z^{(m)}$, 计算 $r^{(m)} = b Ax^{(m)}$.
- ⑥ 若 $||r^{(m)}||_2 < \varepsilon$, 取 $x^* \approx x^{(m)}$, 停止. 否则 $x^{(0)} = x^{(m)}$, $r^{(0)} = r^{(m)}$, $\beta = ||r^{(0)}||_2$, 转 ③.

令 丹 (数学与统计学院) 计算方法 119 /125

定理

设线性方程组 Ax = b 的系数矩阵 A 是对称正定矩阵, 则对任意给定的 $m \ge 1$ 和任意的 $x^{(0)}$, GMRES (m) 收敛.

定理

设线性方程组 Ax = b 的系数矩阵 A 是对称正定矩阵. 则对任 意给定的 $m \ge 1$ 和任意的 $x^{(0)}$, GMRES (m) 收敛.

定理

设线性方程组 Ax = b 的系数矩阵 A 可对角化. 即存在非奇异 矩阵 X 使得 $A = X^{-1}\Lambda X$, 其中 $\Lambda = \text{diag } (\lambda_1, \lambda_2, \dots, \lambda_n)$, $\lambda_i \ (i=1,2,\cdots,n)$ 为 A 的特征值, 则当 m 充分大时, 对任意 的 $x^{(0)}$, GMRES (m) 收敛.

计算方法 今 丹 (数学与统计学院) 120 / 125

最小二乘问题
$$\min_{y \in \mathbf{R}^m} \|\beta e_1 - \overline{H}_m y\|_2$$
 的求解:

由 $\operatorname{rank}(V_m) = m$ 及 A 可逆知 $\operatorname{rank}(AV_m) = m$.

再由 $AV_m = V_m \overline{H}_m$ 知 $\mathrm{rank}(\overline{H}_m) = m$.

最小二乘问题 $\min_{y \in \mathbf{R}^m} \|\beta e_1 - \overline{H}_m y\|_2$ 的求解:

由 $\operatorname{rank}(V_m)=m$ 及 A 可逆知 $\operatorname{rank}(AV_m)=m.$

再由 $AV_m = V_m \overline{H}_m$ 知 $\mathrm{rank}(\overline{H}_m) = m$.

由于 \overline{H}_m 是 $(m+1)\times m$ 阶上 Hessenberg 矩阵, 对 \overline{H}_m 和 βe_1 同时作 Givens 变换有

$$P\overline{H}_m = \begin{pmatrix} R \\ 0^T \end{pmatrix}, \quad P(\beta e_1) = (c_1, c_2, \cdots, c_{m+1})^T,$$

其中 P 为 (m+1) 阶正交矩阵, R 为可逆的上三角矩阵.

令 丹 (数学与统计学院) 计 算 方 法 121/125

因此

$$\|\beta e_1 - \overline{H}_m y\|_2^2 = \|P(\beta e_1 - \overline{H}_m y)\|_2^2$$

$$= \left\| \begin{pmatrix} c_1 \\ \vdots \\ c_m \\ c_{m+1} \end{pmatrix} - \begin{pmatrix} R \\ 0^T \end{pmatrix} y \right\|^2$$

$$= \left\| \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} - Ry \right\|^2 + c_{m+1}^2.$$

由此可知, $\min_{y \in \mathbf{R}^m} \|\beta e_1 - \overline{H}_m y\|_2$ 的解 $y^{(m)}$ 是上三角方程组

$$Ry = (c_1, c_2, \cdots, c_m)^T$$

的唯一解,且 $\|\beta e_1 - \overline{H}_m y^{(m)}\|_2 = |c_{m+1}|$. 因此

$$||b - Ax^{(m)}||_2 = ||r^{(0)} - Az^{(m)}||_2$$

$$= \min_{y \in \mathbf{R}^m} ||\beta e_1 - \overline{H}_m y||_2$$

$$= ||\beta e_1 - \overline{H}_m y^{(m)}||_2 = |c_{m+1}|.$$

可将迭代终止准则 $||b - Ax^{(m)}||_2 < \varepsilon$ 改为 $|c_{m+1}| < \varepsilon$, 更简便.

 令 丹 (数学与统计学院)
 计 算 方 法
 123 /125

迭代法 (大型稀疏矩阵): $x^{(k+1)} = Bx^{(k)} + g$, $k = 0, 1, \cdots$

$$egin{array}{l} egin{array}{l} egin{array$$

本章总结

只涉及矩阵与向量乘积、向量内积运算 共轭梯度法 理论上最多 n 次可得准确解 (A 对称正定) 良态问题迭代次数少 原理型 Arnoldi 算法 Arnoldi 算法 〈循环型 Arnoldi 算法 对称 Lanczos 算法 Krylov 子空间法 (Galerkin 原理) 原理型 GMRES 算法 循环型 GMRES 算法 最小二乘问题的求解