Finite Volume Methods for Hyperbolic Problems

Accuracy, Consistency, Stability, CFL Condition

- Order of accuracy, local and global error
- Consistent numerical flux functions
- Stability
- CFL Condition

For more details see e.g. Chapter 10 of Finite Difference Methods for ODEs and PDEs

Finite differences vs. finite volumes

Finite difference Methods

- Pointwise values $Q_i^n \approx q(x_i, t_n)$
- Approximate derivatives by finite differences
- Assumes smoothness

Finite volume Methods

- Approximate cell averages: $Q_i^n \approx \frac{1}{\Delta x} \int_{x}^{x_{i+1/2}} q(x, t_n) dx$
- Integral form of conservation law,

$$\frac{\partial}{\partial t} \int_{x_{i-1/2}}^{x_{i+1/2}} q(x,t) dx = f(q(x_{i-1/2},t)) - f(q(x_{i+1/2},t))$$

leads to conservation law $q_t + f_x = 0$ but also directly to numerical method.

Upwind method for advection $q_t + uq_x = 0$ with u > 0:

$$Q_i^{n+1} = Q_i^n - \frac{u\Delta t}{\Delta x}(Q_i^n - Q_{i-1}^n)$$

Written in form that mimics PDE:

$$\left(\frac{Q_i^{n+1} - Q_i^n}{\Delta t}\right) + u\left(\frac{Q_i^n - Q_{i-1}^n}{\Delta x}\right) = 0$$

Upwind method for advection $q_t + uq_x = 0$ with u > 0:

$$Q_i^{n+1} = Q_i^n - \frac{u\Delta t}{\Delta x}(Q_i^n - Q_{i-1}^n)$$

Written in form that mimics PDE:

$$\left(\frac{Q_i^{n+1}-Q_i^n}{\Delta t}\right)+u\left(\frac{Q_i^n-Q_{i-1}^n}{\Delta x}\right)=0$$

Local truncation error:

Insert true solution u(x,t) into difference equation

$$\tau(x,t) = \left(\frac{q(x_i, t_{n+1}) - q(x_i, t_n)}{\Delta t}\right) + u\left(\frac{q(x_i, t_n) - q(x_{i-1}, t_n)}{\Delta x}\right)$$

Upwind method for advection $q_t + uq_x = 0$ with u > 0:

$$Q_i^{n+1} = Q_i^n - \frac{u\Delta t}{\Delta x}(Q_i^n - Q_{i-1}^n)$$

Written in form that mimics PDE:

$$\left(\frac{Q_i^{n+1}-Q_i^n}{\Delta t}\right)+u\left(\frac{Q_i^n-Q_{i-1}^n}{\Delta x}\right)=0$$

Local truncation error:

Insert true solution u(x,t) into difference equation

$$\tau(x,t) = \left(\frac{q(x_i,t_{n+1}) - q(x_i,t_n)}{\Delta t}\right) + u\left(\frac{q(x_i,t_n) - q(x_{i-1},t_n)}{\Delta x}\right)$$

Assume smoothness and expand in Taylor series:

$$q(x_i, t_{n+1}) = q(x_i, t_n) + \Delta t q_t(x_i, t_n) + \frac{1}{2} \Delta t^2 q_{tt}(x_i, t_n) + \cdots$$
$$q(x_{i-1}, t_n) = q(x_i, t_n) - \Delta x q_x(x_i, t_n) + \frac{1}{2} \Delta x^2 q_{xx}(x_i, t_n) + \cdots$$

Insert Taylor series into

$$\tau(x,t) = \left(\frac{q(x_i, t_{n+1}) - q(x_i, t_n)}{\Delta t}\right) + u\left(\frac{q(x_i, t_n) - q(x_{i-1}, t_n)}{\Delta x}\right)$$

gives (with everything evaluated at (x_i, t_n)):

$$\tau(x_i, t_n) = \left(\frac{\Delta t q_t + \frac{1}{2} \Delta t^2 q_{tt} + \cdots}{\Delta t}\right) + u \left(\frac{\Delta x q_x + \frac{1}{2} \Delta x^2 q_{xx} + \cdots}{\Delta x}\right)$$
$$= (q_t + u q_x) + \frac{1}{2} (\Delta t q_{tt} - u \Delta x q_{xx}) + \mathcal{O}(\Delta x^2, \Delta t^2)$$

Insert Taylor series into

$$\tau(x,t) = \left(\frac{q(x_i, t_{n+1}) - q(x_i, t_n)}{\Delta t}\right) + u\left(\frac{q(x_i, t_n) - q(x_{i-1}, t_n)}{\Delta x}\right)$$

gives (with everything evaluated at (x_i, t_n)):

$$\tau(x_i, t_n) = \left(\frac{\Delta t q_t + \frac{1}{2} \Delta t^2 q_{tt} + \cdots}{\Delta t}\right) + u \left(\frac{\Delta x q_x + \frac{1}{2} \Delta x^2 q_{xx} + \cdots}{\Delta x}\right)$$
$$= (q_t + u q_x) + \frac{1}{2} (\Delta t q_{tt} - u \Delta x q_{xx}) + \mathcal{O}(\Delta x^2, \Delta t^2)$$

Since q is the exact solution, $q_t + uq_x = 0$ and $q_{tt} = u^2q_{xx}$, so

$$\tau(x_i, t_n) = \frac{1}{2} \Delta x \left(\frac{u \Delta t}{\Delta x} - 1 \right) u q_{xx} + \mathcal{O}(\Delta x^2)$$

Local truncation error:

$$\tau(x_i, t_n) = \frac{1}{2} \Delta x \left(\frac{u \Delta t}{\Delta x} - 1 \right) u q_{xx} + \mathcal{O}(\Delta x^2)$$

Assuming $\Delta t/\Delta x$ is constant as we refine the grid.

The method is said to be first order accurate.

Local truncation error:

$$\tau(x_i, t_n) = \frac{1}{2} \Delta x \left(\frac{u \Delta t}{\Delta x} - 1 \right) u q_{xx} + \mathcal{O}(\Delta x^2)$$

Assuming $\Delta t/\Delta x$ is constant as we refine the grid.

The method is said to be first order accurate.

Can show that if the method is also stable as $\Delta x \to 0$ then the global error will also be first order for smooth enough solutions.

$$E(x,t) \equiv Q(x,t) - q(x,t) = \mathcal{O}(\Delta x)$$

where we fix (x,t) and let Q(x,t) denote the numerical approximation at this point as the grid is refined.

Global error:
$$E(x,t) \equiv Q(x,t) - q(x,t)$$

Discontinuous solutions?

If q(x,t) has a discontinuity then we cannot expect convergence pointwise or in the max-norm

$$||E(\cdot,t)||_{\infty} = \max_{a \le x \le b} |E(x,t)|.$$

The numerical method is almost always smeared out.

Global error: $E(x,t) \equiv Q(x,t) - q(x,t)$

Discontinuous solutions?

If q(x,t) has a discontinuity then we cannot expect convergence pointwise or in the max-norm

$$||E(\cdot,t)||_{\infty} = \max_{a \le x \le b} |E(x,t)|.$$

The numerical method is almost always smeared out.

Best we can hope for is convergence in some norm like

$$||E(\cdot,t)||_1 = \int_a^b |E(x,t)| dx \approx \Delta x \sum_i |Q_i^n - q(x_i,t_n)|.$$

For upwind on discontinuous data, we expect

$$||E(\cdot,t)||_1 = \mathcal{O}(\Delta x^{1/2}).$$

Advection tests

 $q_t+q_x=0$ with periodic BCs Solution at t=1 should agree with initial data.

Initial data with 200 cells:

\$CLAW/apps/fvmbook/chap6/compareadv

Advection tests

 $q_t+q_x=0$ with periodic BCs Solution at t=1 should agree with initial data.

Upwind solution with 200 cells:

\$CLAW/apps/fvmbook/chap6/compareadv

Advection tests

 $q_t+q_x=0$ with periodic BCs Solution at t=1 should agree with initial data.

Upwind solution with 400 cells:

\$CLAW/apps/fvmbook/chap6/compareadv

Consistency

A method is consistent if $\tau \to 0$ as Δt , $\Delta x \to 0$.

The one-step error is $\Delta t \tau$:

$$\Delta t \, \tau = q(x, t + \Delta t) - \left(q(x, t) - \frac{u\Delta t}{\Delta x} (q(x, t) - q(x - \Delta x, t)) \right).$$

An error of this magnitude is made in each of $T/\Delta t$ time steps.

This suggests
$$E \approx (T/\Delta t)(\Delta t \, \tau) = T\tau$$
:

$$\tau = O(\Delta x^p + \Delta t^p) \implies \text{global error is } O(\Delta x^p + \Delta t^p)$$

The method is pth order accurate

Consistency

A method is consistent if $\tau \to 0$ as Δt , $\Delta x \to 0$.

The one-step error is $\Delta t \tau$:

$$\Delta t \, \tau = q(x, t + \Delta t) - \left(q(x, t) - \frac{u\Delta t}{\Delta x} (q(x, t) - q(x - \Delta x, t)) \right).$$

An error of this magnitude is made in each of $T/\Delta t$ time steps.

This suggests
$$E \approx (T/\Delta t)(\Delta t \tau) = T\tau$$
:

$$\tau = O(\Delta x^p + \Delta t^p) \implies \text{global error is } O(\Delta x^p + \Delta t^p)$$

The method is pth order accurate

This is valid provided the method is stable!

Consistency + stability = convergence

For $q_t + f(q)_x = 0$, consider a method in conservation form,

$$Q_i^{n+1} = Q_i^n + \frac{\Delta t}{\Delta x} (F_{i+1/2}^n - F_{i-1/2}^n).$$

The method is consistent with the PDE if

$$F_{i-1/2} = \mathcal{F}(Q_{i-1}, Q_i)$$
 with $\mathcal{F}(\bar{q}, \bar{q}) = f(\bar{q})$

and the numerical flux function is Lipschitz continuous,

$$|\mathcal{F}(q_{\ell}, q_r) - f(\bar{q})| \le C \max(|q_{\ell} - \bar{q}|, |q_r - \bar{q}|).$$

for all q_{ℓ}, q_r in a neighborhood of \bar{q} .

For $q_t + f(q)_x = 0$, consider a method in conservation form,

$$Q_i^{n+1} = Q_i^n + \frac{\Delta t}{\Delta x} (F_{i+1/2}^n - F_{i-1/2}^n).$$

The method is consistent with the PDE if

$$F_{i-1/2} = \mathcal{F}(Q_{i-1}, Q_i) \quad \text{with } \mathcal{F}(\bar{q}, \bar{q}) = f(\bar{q})$$

and the numerical flux function is Lipschitz continuous,

$$|\mathcal{F}(q_{\ell}, q_r) - f(\bar{q})| \le C \max(|q_{\ell} - \bar{q}|, |q_r - \bar{q}|).$$

for all q_{ℓ}, q_r in a neighborhood of \bar{q} .

Example: $\mathcal{F}(q_{\ell}, q_r) = uq_{\ell}$ for upwind, with C = u.

$$Q_i^{n+1} = Q_i^n + \frac{\Delta t}{\Delta x} (\mathcal{F}(Q_i^n, Q_{i+1}^n) - \mathcal{F}(Q_{i-1}^n, Q_i^n))$$

Consistent if $\mathcal{F}(\bar{q},\bar{q})=f(\bar{q})$ and Lipschitz continuous.

Upwind for u > 0: f(q) = uq, $\mathcal{F}(q_{\ell}, q_r) = uq_{\ell}$, with C = u.

$$Q_i^{n+1} = Q_i^n + \frac{\Delta t}{\Delta x} (\mathcal{F}(Q_i^n, Q_{i+1}^n) - \mathcal{F}(Q_{i-1}^n, Q_i^n))$$

Consistent if $\mathcal{F}(\bar{q},\bar{q})=f(\bar{q})$ and Lipschitz continuous.

Upwind for
$$u>0$$
: $f(q)=uq, \ \ \mathcal{F}(q_\ell,q_r)=uq_\ell,$ with $C=u.$

For nonlinear problems, C can depend on \bar{q} , e.g.

Burgers':
$$f(q)=\frac{1}{2}q^2, \quad \mathcal{F}(q_\ell,q_r)=\frac{1}{2}q_\ell^2, \text{ can take } C=\bar{q}+\epsilon.$$

$$Q_i^{n+1} = Q_i^n + \frac{\Delta t}{\Delta x} (\mathcal{F}(Q_i^n, Q_{i+1}^n) - \mathcal{F}(Q_{i-1}^n, Q_i^n))$$

Consistent if $\mathcal{F}(\bar{q},\bar{q})=f(\bar{q})$ and Lipschitz continuous.

Upwind for u > 0: f(q) = uq, $\mathcal{F}(q_{\ell}, q_r) = uq_{\ell}$, with C = u.

For nonlinear problems, C can depend on \bar{q} , e.g.

Burgers': $f(q)=\frac{1}{2}q^2, \ \ \mathcal{F}(q_\ell,q_r)=\frac{1}{2}q_\ell^2,$ can take $C=\bar{q}+\epsilon.$

Godunov's method (upwind) for $q_t + Aq_x = 0$:

$$\mathcal{F}(q_{\ell}, q_r) = A^+ q_{\ell} + A^- q_r \implies \mathcal{F}(\bar{q}, \bar{q}) = A^+ \bar{q} + A^- \bar{q} = A\bar{q} = f(\bar{q})$$

$$Q_i^{n+1} = Q_i^n + \frac{\Delta t}{\Delta x} (\mathcal{F}(Q_i^n, Q_{i+1}^n) - \mathcal{F}(Q_{i-1}^n, Q_i^n))$$

Consistent if $\mathcal{F}(\bar{q},\bar{q})=f(\bar{q})$ and Lipschitz continuous.

Upwind for
$$u > 0$$
: $f(q) = uq$, $\mathcal{F}(q_{\ell}, q_r) = uq_{\ell}$, with $C = u$.

For nonlinear problems, C can depend on \bar{q} , e.g.

Burgers':
$$f(q) = \frac{1}{2}q^2$$
, $\mathcal{F}(q_\ell, q_r) = \frac{1}{2}q_\ell^2$, can take $C = \bar{q} + \epsilon$.

Godunov's method (upwind) for $q_t + Aq_x = 0$:

$$\mathcal{F}(q_{\ell}, q_r) = A^+ q_{\ell} + A^- q_r \implies \mathcal{F}(\bar{q}, \bar{q}) = A^+ \bar{q} + A^- \bar{q} = A\bar{q} = f(\bar{q})$$

Centered flux:
$$\mathcal{F}(q_\ell,q_r)=\frac{1}{2}A(q_\ell+q_r)$$

Centered flux for $q_t+f(q)_x=0$: $\mathcal{F}(q_\ell,q_r)=\frac{1}{2}(f(q_\ell)+f(q_r))$

Consistent provided f(q) is Lipschitz, but unstable!

Fundamental Theorem

Consistency + Stability = Convergence

Fundamental Theorem

Consistency + Stability = Convergence

ODE: zero-stability, stability on q'(t) = 0 is enough. Dahlquist Theorem.

Linear PDE: Lax-Richtmyer stability Uniform power boundedness of a family of matrices Lax equivalence Theorem.

Fundamental Theorem

Consistency + Stability = Convergence

ODE: zero-stability, stability on q'(t) = 0 is enough. Dahlquist Theorem.

Linear PDE: Lax-Richtmyer stability Uniform power boundedness of a family of matrices Lax equivalence Theorem.

Scalar conservation law: total variation stability, entropy stability

Systems of conservation laws: few convergence proofs

Stability of the upwind method

Upwind method for advection $q_t + uq_x = 0$ with u > 0:

$$Q_i^{n+1} = Q_i^n - \frac{u\Delta t}{\Delta x}(Q_i^n - Q_{i-1}^n)$$

The quantity

$$\frac{u\Delta t}{\Delta x}$$

is called the Courant number or the CFL number after Courant, Friedrichs, and Lewy (1928 paper on existence and uniqueness of PDE solutions).

Stability of the upwind method

Upwind method for advection $q_t + uq_x = 0$ with u > 0:

$$Q_i^{n+1} = Q_i^n - \frac{u\Delta t}{\Delta x}(Q_i^n - Q_{i-1}^n)$$

The quantity

$$\frac{u\Delta t}{\Delta x}$$

is called the Courant number or the CFL number after Courant, Friedrichs, and Lewy (1928 paper on existence and uniqueness of PDE solutions).

Godunov method interpretation: this is the fraction of a grid cell that the wave moves through in one time step.

Stability of the upwind method

Upwind method for advection $q_t + uq_x = 0$ with u > 0:

$$Q_i^{n+1} = Q_i^n - \frac{u\Delta t}{\Delta x}(Q_i^n - Q_{i-1}^n)$$

The quantity

$$\frac{u\Delta t}{\Delta x}$$

is called the Courant number or the CFL number after Courant, Friedrichs, and Lewy (1928 paper on existence and uniqueness of PDE solutions).

Godunov method interpretation: this is the fraction of a grid cell that the wave moves through in one time step.

Can prove that the upwind method is stable provided

$$0 \le \frac{u\Delta t}{\Delta x} \le 1.$$

Then the method converges in the 1-norm as $\Delta x \to 0$.

The CFL Condition (Courant-Friedrichs-Lewy)

Domain of dependence: The solution q(X,T) depends on the data q(x,0) over some set of x values, $x \in \mathcal{D}(X,T)$.

Advection: q(X,T) = q(X - uT,0) and so $\mathcal{D}(X,T) = \{X - uT\}$.

The CFL Condition: A numerical method can be convergent only if its numerical domain of dependence contains the true domain of dependence of the PDE, at least in the limit as Δt and Δx go to zero.

Note: Necessary but not sufficient for stability!

Numerical domain of dependence

With a 3-point explicit method:

On a finer grid with $\Delta t/\Delta x$ fixed:

For the method to be stable, the numerical domain of dependence must include the true domain of dependence.

For advection, the solution is constant along characteristics,

$$q(x,t) = q(x - ut, 0)$$

For a 3-point method, CFL condition requires $\left|\frac{u\Delta t}{\Delta x}\right| \leq 1$.

If this is violated:

For the method to be stable, the numerical domain of dependence must include the true domain of dependence.

For advection, the solution is constant along characteristics,

$$q(x,t) = q(x - ut, 0)$$

For a 3-point method, CFL condition requires $\left|\frac{u\Delta t}{\Delta x}\right| \leq 1$.

If this is violated:

For the method to be stable, the numerical domain of dependence must include the true domain of dependence.

For advection, the solution is constant along characteristics,

$$q(x,t) = q(x - ut, 0)$$

For a 3-point method, CFL condition requires $\left|\frac{u\Delta t}{\Delta x}\right| \leq 1$.

If this is violated:

For the method to be stable, the numerical domain of dependence must include the true domain of dependence.

For advection, the solution is constant along characteristics,

$$q(x,t) = q(x - ut, 0)$$

For a 3-point method, CFL condition requires $\left|\frac{u\Delta t}{\Delta x}\right| \leq 1$.

If this is violated:

Stencil

CFL Condition

$$0 \le \frac{u\Delta t}{\Delta x} \le 1$$

$$-1 \le \frac{u\Delta t}{\Delta x} \le 0$$

$$-1 \le \frac{u\Delta t}{\Delta x} \le 1$$

$$0 \le \frac{u\Delta t}{\Delta x} \le 2$$

$$-\infty < \frac{u\Delta t}{\Delta x} < \infty$$

Parabolic equations

Examples: Heat equation $q_t = \beta q_{xx}$, Advection-diffusion equation $q_t + uq_x = \beta q_{xx}$, Fluid dynamics with viscosity

Domain of dependence for any point (x,t) with t>0 is: Entire axis $-\infty < x < \infty$ for Cauchy problem, All initial and boundary data up to time t for IBVP.

Parabolic equations

- Examples: Heat equation $q_t = \beta q_{xx}$, Advection-diffusion equation $q_t + uq_x = \beta q_{xx}$, Fluid dynamics with viscosity
- Domain of dependence for any point (x,t) with t>0 is: Entire axis $-\infty < x < \infty$ for Cauchy problem, All initial and boundary data up to time t for IBVP.
- Example: Heat equation with $q(x,0)=\delta(x)$. Solution to Cauchy problem is $q(x,t)=\frac{1}{\sqrt{4\pi t}}\exp\left(-x^2/4t\right)$.

Parabolic equations

- Examples: Heat equation $q_t = \beta q_{xx}$, Advection-diffusion equation $q_t + uq_x = \beta q_{xx}$, Fluid dynamics with viscosity
- Domain of dependence for any point (x,t) with t>0 is: Entire axis $-\infty < x < \infty$ for Cauchy problem, All initial and boundary data up to time t for IBVP.
- Example: Heat equation with $q(x,0)=\delta(x)$. Solution to Cauchy problem is $q(x,t)=\frac{1}{\sqrt{4\pi t}}\exp\left(-x^2/4t\right)$.

CFL condition requires either:

Implicit method, or Explicit method with $\Delta t/\Delta x \to 0$ as grid is refined, e.g. $\Delta t = (\Delta x)^2$.

Linear hyperbolic systems

Linear system of m equations: $q(x,t) \in \mathbb{R}^m$ for each (x,t) and

$$q_t + Aq_x = 0, \quad -\infty < x, \infty, \quad t \ge 0.$$

A is $m \times m$ with eigenvalues λ^p and eigenvectors r^p , for $p=1,\ 2,\ ,\ldots,\ m$:

$$Ar^p = \lambda^p r^p$$
.

Combining these for $p = 1, 2, \ldots, m$ gives

$$AR = R\Lambda$$

where

$$R = [r^1 \ r^2 \ \cdots \ r^m], \qquad \Lambda = \operatorname{diag}(\lambda^1, \ \lambda^2, \ \ldots, \ \lambda^m).$$

The system is hyperbolic if the eigenvalues are real and R is invertible. Then A can be diagonalized:

$$R^{-1}AR = \Lambda$$

Stencil

CFL Condition

$$0 \le \frac{\lambda_p \Delta t}{\Delta x} \le 1, \quad \forall p$$

$$-1 \le \frac{\lambda_p \Delta t}{\Delta x} \le 0, \quad \forall p$$

$$-1 \le \frac{\lambda_p \Delta t}{\Delta x} \le 1, \quad \forall p$$

$$0 \le \frac{\lambda_p \Delta t}{\Delta x} \le 2, \quad \forall p$$

$$-\infty < \frac{\lambda_p \Delta t}{\Delta x} < \infty, \quad \forall p$$