Tarea de informática: Uso del solver de la hoja de cálculo

Problema de aplicación

Grado noveno - I.E. Aureliano Florez Cardona

Introducción

Esta actividad busca que el estudiante use, en un problema práctico, el solver de la hoja de cálculo (Excel, LibreOffice Calc, WPS Sheets o la que escoja) a fin de ralizar un ajuste a un modelo dado (igual a como se hizo en clase) y poder realizar una predicción razonable.

El documento ha de ser entregado en formato pdf conteniendo:

- Presentación (portada)
- Introducción
- Desarrollo del problema (detalle de lo realizado en la hoja de cálculo)
- Resultados obtenidos
- Conclusiones

La fecha límite será pactada con el profesor para cada grupo. La cantidad máxima permitida de estudiantes por documento entregado es de 3.

Problema

Un caficultor observa que en una hectárea donde tiene 1500 matas de café plantadas, 5 de ellas presentan síntomas de una nueva plaga. Aísla esta hectárea (a fin de evitar contagios a otros cultivos) y procede a determinar durante los siguientes 30 días cuántas matas de café han sido contagiadas por dicha plaga a fin de estudiar y establecer el patrón de crecimiento de este mal.

La cantidad de matas afectadas para cada día desde que observó la presencia de la plaga (día cero) se detalla a continuación:

t (días)	N (plantas afectadas)
0	5
1	6
2	7
3	9
4	10
5	12
6	15
7	17
8	21
9	25
10	30
11	35
12	42
13	50
14	60
15	71

t (días)	N (plantas afectadas)
16	84
17	100
18	118
19	139
20	164
21	192
22	224
23	260
24	301
25	347
26	397
27	452
28	511
29	573
30	638

Una gráfica sencilla del crecimiento de la plaga en este cultivo se presenta a continuación:

Relación de plantas afectadas por la plaga durante los primeros 30 días

Él es muy instruido y sabe que el crecimiento en un medio limitado no es exponencial sino logístico, donde el modelo matemático que representa dicho crecimiento viene dado la expresión

$$N(t) = \frac{KN_0e^{rt}}{N_0e^{rt} - N_0 + K}$$

donde N(t) es la cantidad de plantas afectadas para un tiempo t, N_0 son las plantas iniciales que resultaron con la plaga (5 en este caso), K es la "capacidad de carga" o máximo total que puede ser afectado (1500 plantas) y r es una constante a hallar que se corresponde con el ritmo de crecimiento de la plaga. De esta manera se tendría que para este problema que

$$N(t) = \frac{(1500)(5)e^{rt}}{5e^{rt} - 5 + 1500} = \frac{7500e^{rt}}{5e^{rt} + 1495}$$

 $(e^{rt}$ equivale al exponencial del producto rt; el exponencial en la hoja de cálculo se consigue con la función $\mathtt{EXP}())$

ACTIVIDAD: Usar el solver para determinar con los datos y mediante mínimos cuadrados (como se hizo en clase) el valor del parámetro r que mejor ajusta a los datos y, una vez hallado, realizar predicciones para los días t=35, t=40, t=45, t=50, t=55 y t=60. (NO se exige gráfica, pues no se ha detallado mucho al respecto en clase; sin embargo, quien la realice correctamente recibirá un premio adicional en nota)

OBSERVACIÓN (AYUDA): El modelo logístico esperado debe ser, en comportamiento, muy similar al que se muestra en la siguiente figura:

