1.维数的定义

到目前为止,我们一直讨论着有限维向量空间,却始终没有明确地定义向量空间的维数. 一个合理的维数的定义,至少从直观上来看,应该使 \mathbb{F}^n 的维数为n.

注意到 \mathbb{F}^n 的标准基

$$(1,0,\cdots,0),(0,1,\cdots,0),\cdots,(0,\cdots,0,1)$$

的长度恰好为n. 于是,我们想把维数定义为基的长度.然而在这之前,我们需要明确这样的定义不会带来歧义,即首先要证明一个有限维向量空间的任意两个基的长度相等.

1.1 基的长度不依赖于基的选取

一个有限维向量空间的任意两个基的长度相等.

Proof.

假设V是有限维的, B_1 , B_2 是V的两个基.于是

- (a) B_1 在V中线性无关, B_2 张成V,于是 B_1 的长度不大于 B_2 的长度.
- (b) B_2 在V中线性无关, B_1 张成V,于是 B_2 的长度不大于 B_1 的长度.

综上,B1与B2的长度相等,命题得证.

于是基于上述想法的定义不会产生矛盾.如此,我们便可以给出维数的正式定义了.

1.2 定义:维数, $\dim V$

一个有限维向量空间的维数是这个向量空间的任意一个基的长度,记为 $\dim V$.

基于前面的证明,我们知道有限维向量空间的子空间也一定是有限维的.它们之间的维数实际上满足如下定理.

1.3 子空间的维数

如果U是有限维向量空间V的子空间,那么 $\dim U \leq \dim V$.

Proof.

假定U是有限维向量空间V的子空间, B_1 , B_2 分别为U,V的一组基.

那么 B_1 是V中的线性无关组, B_2 是V的一个张成组.于是 B_1 的长度不大于 B_2 ,即dim $U \leq \dim V$.

这里有一点是需要说明的.向量空间的维数与 \mathbb{P} 的选取密切相关. \mathbb{C} 作为 \mathbb{R} 上的向量空间,其维数为2,标准基为(1, i); 而 \mathbb{C} 作为 \mathbb{C} 上的向量空间时,其维数为1,标准基为1. 事实上,这与我们定义向量空间的标量乘法时选取的标量 λ 的

取值密切相关.

2.用维数判断基

我们已经知道,为了确定V中一个向量组是V的基,根据定义必须确定该向量组线性无关且张成V.下面的两个结论表明,在确定V的维数之后,有更简单的条件判断基.

2.1 长度恰当的线性无关组是一个基

假设V是有限维的,那么V中每个长度为 $\dim V$ 的线性无关的向量组都是V的一个基.

Proof.

我们知道每个V中的线性无关组都可以被扩充为V的一个基.然而,V中的每个基的长度均为 $\dim V$. 于是这里的扩充是平凡情况下的,即没有向量被加进向量组,从而该向量组是V的一个基.

2.2 长度恰当的张成组是一个基

假设V是有限维的,那么V中每个长度为 $\dim V$ 的张成组都是V的一个基.

Proof.

我们知道每个V中的张成组都可以被削减为V的一个基.然而,V中的每个基的长度均为 $\dim V$.于是这里的削减是平凡情况下的,即没有向量从向量组中被剔除,从而该向量组是V的一个基.

根据2.1的结论,我们很容易有如下的推论.

2.3 空间中与其维数相等的子空间等于该空间

假设V是有限维的,U是V的子空间且 $\dim U = \dim V$,那么U = V.

 $\phi u_1, \dots, u_n$ 是U的基,那么 $n = \dim U$,根据前提条件又有 $n = \dim V$.

显然 u_1, \dots, u_n 在V中线性无关,又 $n = \dim V$,于是根据**2.1**可知 u_1, \dots, u_n 是V的基. 于是我们有 $U = V = \mathrm{span}\;(u_1, \dots, u_n)$,从而命题成立.

3.子空间的维数

我们有如下计算子空间之和的维数公式.

3.1 子空间之和的维数公式

如果V1和V2是一个有限维向量空间的子空间,那么

 $\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$

令 v_1, \dots, v_m 是 $V_1 \cap V_2$ 的一个基,于是它在 V_1 中线性无关,因此可被扩充为 V_1 的一个基 $v_1, \dots, v_m, u_1, \dots, u_j$. 同理它也可以被扩充为 V_2 的一个基 $v_1, \dots, v_m, w_1, \dots, w_k$.

下面证明 $v_1, \dots, v_m, u_1, \dots, u_i, w_1, \dots, w_k$ 是 $V_1 + V_2$ 的一个基.

不难发现span $(v_1, \dots, v_m, u_1, \dots, u_j, w_1, \dots, w_k) = V_1 + V_2$.

我们只需证明 $v_1, \dots, v_m, u_1, \dots, u_j, w_1, \dots, w_k$ 线性无关即可.假定

$$\mathbf{0} = a_1 v_1 + \dots + a_m v_m + b_1 u_1 + \dots + b_j u_j + c_1 w_1 + \dots + c_k w_k$$

其中各a,b,c均为标量.我们将上式移项可得

$$c_1w_1 + \cdots + c_kw_k = -a_1v_1 - \cdots - a_mv_m - b_1u_1 - \cdots - b_iu_i$$

这表明 $c_1w_1 + \cdots + c_kw_k \in V_1$.又因为各w均在 V_2 中,于是 $c_1w_1 + \cdots + c_kw_k \in V_1 \in V_1 \cap V_2$. 由于 v_1, \cdots, v_m 是 $V_1 \cap V_2$ 的基,于是存在一组标量 d_1, \cdots, d_m 使得

$$c_1w_1 + \dots + c_kw_k = d_1v_1 + \dots + d_mv_m$$

又因为 $v_1, \dots, v_m, w_1, \dots, w_k$ 线性无关,于是上式中各c, d均只能为0.进而我们有

$$\mathbf{0} = a_1 v_1 + \dots + a_m v_m + b_1 u_1 + \dots + b_j u_j$$

又因为 $v_1, \dots, v_m, u_1, \dots, u_i$ 线性无关,于是上式中各a, b均只能为0.

于是 $v_1, \dots, v_m, u_1, \dots, u_i, w_1, \dots, w_k$ 线性无关,进而我们有

$$\dim(V_1 + V_2) = m + j + k$$

= $(m + j) + (m + k) - m$
= $\dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$

以及,我们有接下来的一些例题.

Example 1.

设 v_1, \dots, v_m 在V中线性无关, $w \in V$,证明

$$\dim \operatorname{span}(v_1+w,\cdots,v_m+w) \geqslant m-1$$

注意到对于任意 $2 \le k \le m$ 有

$$v_k - v_1 = (v_k + w) - (v_1 + w)$$

于是 $v_k - v_1 \in \text{span}(v_1 + w, \dots, v_m + w)$.

又 v_1, \dots, v_m 在V中线性无关,故 $v_2 - v_1, \dots, v_m - v_1$ 在V中线性无关.

从而我们有dim span $(v_1 + w, \dots, v_m + w) \ge m - 1$,命题得证.

Example 2.

设 $m \in \mathbb{N}^*$,对于 $0 \le k \le m$,定义

$$p_k(x) = x^k (1 - x)^{m-k}$$

证明: p_0, \dots, p_m 是 $\mathcal{P}_m(\mathbb{F})$ 的一组基.

Proof.

我们先来证明对于 $m \in \mathbb{N}^*, f_0, \dots, f_m \in \mathcal{P}_m(\mathbb{F})$,其中 f_k 是次数为k的多项式,那么 f_0, \dots, f_m 是 $\mathcal{P}_m(\mathbb{F})$ 的一组基.

不妨设 $f_k = a_{k,0}x^0 + \cdots + a_{k,k}x^k$.于是存在一组 b_0, \cdots, b_m 使得

$$\mathbf{0}(x) = b_0 f_0(x) + \dots + b_m f_m(x)$$

当且仅当每个 x^k 的系数为0时,上式才成立.于是我们有方程组

$$\begin{cases} b_m a_{m,m} = 0 \\ b_m a_{m,m-1} + b_{m-1} a_{m-1,m-1} = 0 \\ b_m a_{m,m-2} + b_{m-1} a_{m-1,m-2} + b_{m-2} a_{m-2,m-2} = 0 \\ \dots \\ b_m a_{m,0} + \dots + b_0 a_{0,0} = 0 \end{cases}$$

又 $a_{k,k} \neq 0$.于是从上到下依次解每个方程,可知方程组的唯一解是 $b_m = \cdots = b_0 = 0$,进而用 f_0, \cdots, f_m 线性表出 $\mathbf{0}(x)$ 的方式是唯一的,于是 f_0, \cdots, f_m 线性无关.

又 $\dim \mathcal{P}_m(\mathbb{F}) = m + 1$,根据**2.1**可知, f_0, \dots, f_m 是 $\mathcal{P}_m(\mathbb{F})$ 的一个基.

特别地,题设的 p_0, \dots, p_m 自然也是 $\mathcal{P}_m(\mathbb{F})$ 的一个基.

Example 3.

设 V_1, V_2, V_3 是有限维空间V的子空间, $\sum_{i=1}^3 \dim V_i > 2 \dim V$. 试证明: $\bigcap_{i=1}^3 V_i \neq \{\mathbf{0}\}$.

不妨设 v_1, \dots, v_n 为V的一个基.

自然地,对于任意 V_i ,向量组 v_1, \dots, v_n 都可以被视作 V_i 的张成组而被削减为 V_i 的基.

即我们可以在 v_1, \cdots, v_n 任意地选取一些元素使得它们构成 V_i 的基.

我们一共需要选 $\sum_{i=1}^{3} \dim V_i$ 个元素,又 $\sum_{i=1}^{3} \dim V_i > 2 \dim V$,于是根据容斥原理,必然存在一个 v_k 被选择了三次,即 $\exists v_k$,s.t. $v_k \in V_1 \cap V_2 \cap V_3$,从而命题得证.

Example 4.

设U是有限维向量空间V的子空间且 $U \neq V$.令 $n = \dim V$, $m = \dim U$.试证明:V存在这样的n - m个子空间,其中每个子空间维数都为n - 1而它们的交集为U.

Proof.

设 u_1, \cdots, u_m 为U的一个基,于是 v_1, \cdots, v_m 在V中线性无关,因而可以被扩充为V的一个基

$$u_1, \cdots, u_m, v_1, \cdots, v_{n-m}$$

于是我们设V的子空间 W_k 的基为上面的基除去 v_k 后的组.

这样的 W_k 一共有n-m个,且dim $W_k=n-1$.我们只需证明 $\bigcap_{i=1}^{n}W_i=U$ 即可.

对于V中的元素w,存在唯一的一组标量 $a_1, \cdots, a_m, b_1, \cdots, b_{n-m}$ 使得

$$w = a_1 u_1 + \dots + a_m u_m + b_1 v_1 + \dots + b_{n-m} v_{n-m}$$

当且仅当 $b_1 = \cdots = b_{n-m} = 0$ 时 $w \in \bigcap_{i=1}^k W_i$.

否则, 若 $b_k \neq 0$, 则必然有 $w \notin W_k$.

又U为任意 W_k 的子空间,于是 $U \subseteq \bigcap_{i=1}^k W_i$.

综上,存在这样的n-m个子空间 W_1, \dots, W_{n-m} 使得 $\bigcap_{i=1}^k W_i = U$,命题成立.

Example 5.

假定 V_1, V_2, V_3 是有限维向量空间V的子空间.试证明

$$\dim(V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3$$

$$- \frac{\dim(V_1 \cap V_2) + \dim(V_1 \cap V_3) + \dim(V_2 \cap V_3)}{3}$$

$$- \frac{\dim((V_1 + V_2) \cap V_3) + \dim((V_1 + V_3) \cap V_2) + \dim((V_2 + V_3) \cap V_1)}{3}$$

我们知道

$$\dim(V_1 + V_2 + V_3) = \dim(V_1 + V_2) + \dim V_3 - \dim((V_1 + V_2) \cap V_3)$$

$$= \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_1 \cap V_2) - \dim((V_1 + V_2) \cap V_3)$$

同理可知

$$\dim(V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_1 \cap V_3) - \dim((V_1 + V_3) \cap V_2)$$

$$\dim(V_1+V_2+V_3) = \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_2\cap V_1) - \dim((V_2+V_3)\cap V_1)$$

将上面三式相加之后即得题中的结果.