NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to Lau Tze Siong

MA2101 Linear Algebra II

AY 2005/2006 Sem 1

SECTION A

Question 1

$$\text{(i)} \ \left(\begin{array}{cc} 1-i & i \\ 1 & 1+i \end{array} \right) \in W \text{, but } i \left(\begin{array}{cc} 1-i & i \\ 1 & 1+i \end{array} \right) = \left(\begin{array}{cc} i+1 & -1 \\ i & i-1 \end{array} \right) \not \in W.$$

Hence W is not closed under scalar multiplication in \mathbb{C} , i.e. not a complex subspace of $M_{22}(\mathbb{C})$.

(ii) for any
$$\begin{pmatrix} z + \overline{w} & w \\ z & \overline{z} + w \end{pmatrix}$$
, $\begin{pmatrix} z_1 + \overline{w_1} & w_1 \\ z_1 & \overline{z_1} + w_1 \end{pmatrix} \in W$, and any $r \in \mathbb{R}$, we have

$$\begin{pmatrix} z+\overline{w} & w \\ z & \overline{z}+w \end{pmatrix} + \begin{pmatrix} z_1+\overline{w_1} & w_1 \\ z_1 & \overline{z_1}+w_1 \end{pmatrix} = \begin{pmatrix} z+z_1+\overline{w}+\overline{w_1} & w+w_1 \\ z+z_1 & \overline{z}+\overline{z_1}+w+w_1 \end{pmatrix}$$

$$= \begin{pmatrix} z+z_1+\overline{w+w_1} & w+w_1 \\ z+z_1 & \overline{z+z_1}+w+w_1 \end{pmatrix} \in W.$$

Closure under scalar multiplication:

$$r\left(\begin{array}{cc}z+\overline{w}&w\\z&\overline{z}+w\end{array}\right)=\left(\begin{array}{cc}rz+r\overline{w}&w\\rz&r\overline{z}+w\end{array}\right)=\left(\begin{array}{cc}rz+\overline{rw}&rw\\rz&\overline{rz}+rw\end{array}\right)\in W.$$

Hence W is a real subspace of $M_{22}(\mathbb{C})$.

Claim:
$$S = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} -i & i \\ 0 & i \end{pmatrix}, \begin{pmatrix} i & 0 \\ i & -i \end{pmatrix} \right\}$$
 is a basis for W .

Spanning

For any
$$\begin{pmatrix} z + \overline{w} & w \\ z & \overline{z} + w \end{pmatrix} \in W$$
. Let $z = a + bi$ and $w = c + di$, $a, b, c, d \in \mathbb{R}$.

$$\begin{pmatrix} a+bi+\overline{c+di} & \frac{c+di}{a+bi}+c+di \end{pmatrix} = \begin{pmatrix} a+bi+c-di & c+di \\ a+bi & a-bi+c+di \end{pmatrix}$$

$$= \begin{pmatrix} a+c+(b-d)i & c+di \\ a+bi & (a+c)+(d-b)i \end{pmatrix}$$

$$= c\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + a\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + d\begin{pmatrix} -i & i \\ 0 & i \end{pmatrix} + b\begin{pmatrix} i & 0 \\ i & -i \end{pmatrix}.$$

Linear independence:

Suppose $a, b, c, d \in \mathbb{R}$ such that,

$$a \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + c \begin{pmatrix} -i & i \\ 0 & i \end{pmatrix} + d \begin{pmatrix} i & 0 \\ i & -i \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} a+b-ci+di & a+ci \\ b-di & a+b+c-di \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Solving, we have a, b, c, d = 0. Hence S is linearly independent.

Question 2

(i) Since

$$T(1) = 1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 1 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 1 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 0 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};$$

$$T(x) = 0 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 1 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 1 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 1 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};$$

$$T(x^2) = 2 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 0 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 0 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} - 2 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};$$

we have
$$[T]_{\mathcal{B}_2,\mathcal{B}_1} = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & -2 \end{pmatrix}$$
.

(ii) $a + bx + cx^2 \in \ker(T)$ iff $\begin{pmatrix} a + 2c & a + b \\ a + b & b - 2c \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Hence we have the following set of equations:-

$$a + 2c = 0;$$

 $a + b = 0;$
 $b - 2c = 0.$

Solving, we have $a=a,b=-a,c=-\frac{a}{2}$. Hence $\left\{1-x-\frac{1}{2}x^2\right\}$ is a basis for $\ker(T)$.

Since
$$S = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$$
 is a spanning set for $\mathcal{R}(T)$ and
$$S = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$
 is a linearly independent set that spans $\mathcal{R}(T)$. S is a basis for $\mathcal{R}(T)$.

(iii) Let
$$\mathcal{B}_3 = \{1, x, 1 - x - \frac{1}{2}x^2\}$$
, $\mathcal{B}_4 = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}$
The above \mathcal{B}_3 and \mathcal{B}_4 would give us the required matrix.

Question 3

- (i) The characteristic equation of A is $(x-2)(x+1)^2$. Since (A-2I)(A+I)=0. The minimal polynomial $m_A(x)=(x-2)(x+1)$.
- (ii) Yes. Since the minimal polynomial is a product of distinct linear factors, A is diagonalizable.
- (iii) Since $deg(m_A(x)) = 2$, dim(W) = 2.

Question 4

(i) There are only 2 possible Jordan Canonical Form.

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}.$$

(ii) For either Jordan Canonical Form for T, there are 2 Jordan blocks of eigenvalue 1. Thus we have $\dim(E_1) = |\text{Jordan blocks of eigenvalue 1}| = 2$.

SECTION B

Question 5

(a) Let $a_1, a_2, \ldots, a_n \in F$ such that $a_1v_1 + a_2v_2 + \ldots + a_nv_n = 0_V$. Since T is a linear transformation, we have

$$a_1w_1 + a_2w_2 + \dots + a_nw_n = a_1T(v_1) + a_2T(v_2) + \dots + a_nT(v_n)$$

= $T(a_1v_1 + a_2v_2 + \dots + a_nv_n) = T(0_V) = 0_W.$

Hence we have $a_1 = a_2 = \cdots = a_n = 0_F$, i.e. $\{v_1, v_2, \ldots, v_n\}$ is linearly independent.

(b) Let
$$\mathcal{B}_1 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$
 and $\mathcal{B}_2 = \{1, x, x^2\}$. Hence,

$$[T_1]_{\mathfrak{B}_2,\mathfrak{B}_1} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 0 \end{pmatrix};$$

$$[T_2]_{\mathfrak{B}_2,\mathfrak{B}_1} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & -1 \end{pmatrix};$$

$$[T_3]_{\mathfrak{B}_2,\mathfrak{B}_1} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ -1 & -1 \end{pmatrix};$$

$$[T_4]_{\mathfrak{B}_2,\mathfrak{B}_1} = \begin{pmatrix} 2 & 2 \\ 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

Since $T_1 + T_3 = T_2$ and $2T_1 + T_3 = T_4$, $Span(\{T_1, T_2, T_3, T_4\}) = Span(\{T_1, T_3\})$. And $\{T_1, T_3\}$ is linearly independent. Hence $\{T_1, T_3\}$ is a basis for U. Therefore $\dim(U) = 2$.

Question 6

(i) For any $X, Y \in M_{nn}(\mathbb{R})$ and $a \in \mathbb{R}$. We have

$$T(X + aY) = A(X + aY)$$

$$= AX + aAY$$

$$= T(X) + aT(Y) \in M_{nn}(\mathbb{R}).$$

Hence T is a linear operator.

(ii) Let $V = M_{nn}(\mathbb{R})$. Notice that for all polynomial $p(x) \in \mathbb{R}[x]$, we have $p(T): V \to V$ to be a linear operator such that p(T)(X) = p(A)X for all $X \in V$.

Now for all $X \in V$, $m_A(T)(X) = m_A(A)X = 0_V X = 0_V$, i.e. $m_A(T) = 0_{L(V,V)}$. Thus $m_T(x) \mid m_A(x)$.

Since A is diagonalisable, $m_A(x)$ consist only of distinct linear factors, and thus so is $m_T(x)$, i.e. T is diagonalisable.

Question 7

(i) Let the set of 3×3 skew-symmetric matrix be $S = \{A \in M_{33}(\mathbb{R}) | A^T = -A\}$. (a)

Notice that S is a subspace of V.

Claim: $W^{\perp} = S$.

Proof:

Let $A \in W$ and $X \in S$. From commutativity of inner products, we have $\langle A, X \rangle = \langle X, A \rangle$.

Now since $\operatorname{Tr}(A^TX) = \operatorname{Tr}(AX) = \operatorname{Tr}(XA) = -\operatorname{Tr}(X^TA)$, we have $\langle X, A \rangle = -\langle A, X \rangle$.

Hence $\langle A, X \rangle = -\langle A, X \rangle$, i.e. $\langle A, X \rangle = 0$. Therefore $X \in W^{\perp}$, i.e. $S \subseteq W^{\perp}$.

Since $S \oplus W = V$, we have $\dim(S) = \dim(W^{\perp})$, and so $S = W^{\perp}$.

Since
$$\left\{ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \right\}$$
 is a basis for $S = W^{\perp}$ and

$$\left\langle \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) \right\rangle \ = \ \left\langle \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{array}\right) \right\rangle$$
$$= \ \left\langle \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{array}\right) \right\rangle$$
$$= 0,$$

We only need to normalise each of the elements in the basis. Hence an orthonormal basis for

$$W^{\perp} \text{ is } \left\{ \begin{pmatrix} 0 & 0 & \frac{1}{\sqrt{2}} \\ 0 & 0 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} \right\}.$$

(ii) Let
$$P = \frac{F + F^T}{2}$$
 and $Q = \frac{F - F^T}{2}$.
We have $P + Q = \frac{F + F^T + F - F^T}{2} = F$ and $P^T = \frac{F + F^T}{2} = P$ and $Q^T = \frac{F^T - F}{2} = -Q$.
Hence $P = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 5 \end{pmatrix}$, $Q = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$.

(b) Since the range of T is W, for all $\boldsymbol{w} \in W$ there exists $\boldsymbol{v} \in V$ such that $T(\boldsymbol{v}) = \boldsymbol{w}$. Since $T^2 = T$, we have $T(\boldsymbol{v}) = T(T(\boldsymbol{v}))$, which gives us $T(\boldsymbol{w}) = \boldsymbol{w}$. Hence, for all $\boldsymbol{w} \in W$, we have $T(\boldsymbol{w}) = \boldsymbol{w}$.

Now suppose for some $\mathbf{z} \in W^{\perp}$ there exist $\mathbf{w} \in W \setminus \{0_V\}$ such that $T(\mathbf{z}) = \mathbf{w}$. Let $k \in \mathbb{R}$ be large enough such that $\|\mathbf{v}\| < \sqrt{2k+1} \|\mathbf{w}\|$. Hence we have $T(\mathbf{z} + k\mathbf{w}) = (k+1)\mathbf{w}$. However,

$$\|\boldsymbol{z} + k\boldsymbol{w}\| = \sqrt{\|\boldsymbol{z}\|^2 + k^2 \|\boldsymbol{w}\|^2} < \sqrt{(2k+1)\|\boldsymbol{w}\|^2 + k^2 \|\boldsymbol{w}\|^2} = (k+1)\|\boldsymbol{w}\| = \|T(\boldsymbol{z} + k\boldsymbol{w})\|,$$

contradicting $||T(\mathbf{v})|| \le ||\mathbf{v}||$.

Hence, for any $z \in W^{\perp}$, $T(z) = 0_V$.

Therefore for any $v \in V$, which we can write as v = w + z such that $w \in W$ and $z \in W^{\perp}$, we have T(v) = T(w + z) = T(w) + T(z) = w. Hence T is the orthogonal projection on W.

Page: 5 of 5