Source:

1 | find taylor series

1.1 $|y = \cos(x)|$

$$P_n(x) = f(0) + \frac{d}{dx}f(0)x + \frac{\frac{d^2}{d^2x}f(0)}{2!}x^2 + \frac{\frac{d^3}{d^3x}f(0)}{3!}x^3 + \cdots$$

$$= \cos(0) - \sin(0)x + \frac{-\cos(0)}{2!}x^2 + \frac{\sin(0)}{3!}x^3 + \cdots$$

$$= 1 -0x - \frac{1}{2!}x^2 + \frac{0}{3!}x^3 + \cdots$$

$$= 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \cdots$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!}x^{2k}$$

1.2 | $y = e^x$

$$P_n(x) = f(0) + \frac{d}{dx}f(0)x + \frac{\frac{d^2}{d^2x}f(0)}{2!}x^2 + \frac{\frac{d^3}{d^3x}f(0)}{3!}x^3 + \cdots$$

$$= e^0 + e^0x + \frac{e^0}{2!}x^2 + \frac{e^0}{3!}x^3 + \cdots$$

$$= 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!}x^k$$

1.3 | TODO $y = \sqrt{x}$ centered at x = 1

$$P_n(x) = f(1) + \frac{d}{dx}f(1)(x-1) + \frac{\frac{d^2}{d^2x}f(1)}{2!}(x-1)^2 + \frac{\frac{d^3}{d^3x}f(1)}{3!}(x-1)^3 + \cdots$$

$$= 1 + \frac{1}{2}(x-1) + \frac{\frac{1}{2}\frac{-1}{2}}{2!}(x-1)^2 + \frac{\frac{1}{2}\frac{-1}{2}\frac{-3}{2}}{3!}(x-1)^3 + \cdots$$

2 | prove approximations

2.1
$$\left| \frac{1}{1-x} \right| = 1 + x + x^2 + x^3 + \cdots$$

Proof by geometric series

$$2.2 \mid \frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots$$

Plug -x for x in the previous equation.

$$2.3 \mid \frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \cdots$$

Plug x^2 for x in the previous equation.

3 | more finding of polynomial

$3.1 \mid TODO \$ y = In (1+x)\$$

$$3.2 \,|\, TODO \, y = \tan^- x$$

$$3.3 \mid y = (1+x)^k$$

$$P_{n}(x) = f(0) + \frac{d}{dx}f(0)x + \frac{\frac{d^{2}}{d^{2}x}f(0)}{2!}x^{2} + \frac{\frac{d^{3}}{d^{3}x}f(0)}{3!}x^{3} + \cdots$$

$$= 1 + k(1)^{k} + k(k-1)(1)^{k-1}x + \frac{k(k-1)(k-2)(1)^{k-2}}{2!}x^{2} + \frac{k(k-1)(k-2)(k-3)(1)^{k-3}}{3!}x^{3} + \cdots$$

$$= 1 + k + k(k-1)x + \frac{k(k-1)(k-2)}{2!}x^{2} + \frac{k(k-1)(k-2)(k-3)}{3!}x^{3} + \cdots$$

$$= 1 + k + \frac{k!}{(k-1)!}x + \frac{\frac{k!}{(k-2)!}}{2!}x^{2} + \frac{\frac{k!}{(k-3)!}}{3!}x^{3} + \cdots$$

$$= 1 + k + \frac{k!x}{(k-1)!} + \frac{k!}{(k-2)!2!}x^{2} + \frac{k!}{(k-3)!3!}x^{3} + \cdots$$

$$= \binom{k}{0} + \binom{k}{1}x + \binom{k}{2}x^{2} + \binom{k}{3}x^{3} + \cdots$$

$$= \sum_{i=0}^{k} \binom{k}{i}x^{i}$$

Exr0n · 2020-2021 Page 2