Speech Separation

李宏毅

HUNG-YI LEE

Some slides are from 楊靖平

Speech Separation

 Humans can focus on the voice produced by a single speaker in a crowded and noisy environments.

Speech Separation

• Speech Enhancement: speech-nonspeech separation

Speech Separation

• Speaker Separation: multi-speaker talking

Speaker Separation

Input and output have the same length

Seq2seq is not needed

- Focusing on Single microphone
- Speaker independent: training and testing speakers are completely different

Training Data:

It is easy to generate training data.

X is speech signal (vector) here

Signal-to-noise ratio (SNR)

$$SNR = 10 \log_{10} \frac{\|\hat{X}\|^2}{\|E\|^2}$$

output of model

$$E = \hat{X} - X$$

ground truth

Simply larger the output can increase SNR?

X is speech signal (vector) here

Scale invariant signal-to-distortion ration (SI-SDR)

X is speech signal (vector) here

Scale invariant signal-to-distortion ration (SI-SDR)

X is speech signal (vector) here

SI-SDR improvement: SI-SDR_i = SI-SDR₂ - SI-SDR₂

- Perceptual evaluation of speech quality (**PESQ**) was designed to evaluate the **quality**, and the score ranges from -0.5 to 4.5.
- Short-time objective intelligibility (STOI) was designed to compute intelligibility, and the score ranges from 0 to 1.

Permutation Issue

To achieve speaker independent training, the training data contain many different speakers.

Permutation Issue

Cluster by Gender? Pitch? Energy?

Deep Clustering

Masking

Mask can be binary or continuous.

Speaker Separation

Ideal Binary Mask (IBM)

感謝吳元魁同學提供實驗結果

Each audio is represented by its spectrogram.

Ideal Binary Mask (IBM)

Each audio is represented by its spectrogram.

Deep Clustering – Training

- The grids for different speakers are far way.
- The grids belonging to the same speakers are close to each other.

It is possible to train with two speakers, but test on three speakers (K=3 during k-means)! [Hershey, et al., ICASSP'16]

Permutation
Invariant
Training (PIT)

Permutation Invariant Training (PIT)

Given a speaker separation model θ^i , we can determine the permutation

But we need permutation to train speaker separation model ...

P T [Kolbæk, et al., TASLP'17]

At the beginning, the assignment is not stable.

Training Speaker Separation Network Determine Label Assignment

P T [Kolbæk, et al., TASLP'17]

[Yang, et al., ICASSP'20]

TasNet — Time-domain Audio Separation Network [Luo, et al., TASLP'19]

mask generation

- If repeat 3, the model considers 1.53s
- Depthwise Separable Convolution

Ref:

https://youtu.be/L0TOXINpCJ8

Fig. 4. (A): SDRi of an example mixture separated using LSTM-TasNet and causal Conv-TasNet as a function of the starting point in the mixture. The performance of Conv-TasNet is considerably more consistent and insensitive to the start point. (B): Standard deviation of SDRi across all the mixtures in the WSJ0-2mix test set with varying starting points.

Table 2. SI-SDR and SDR improvements (dB) on WSJ0-2mix.

Model	ΔSI-	ΔSDR
	SDR	
Deep Clustering (Isik et al., 2016)	10.8	-
uPIT-blstm-st (Kolbaek et al., 2017)	_	10.0
Deep Attractor Net. (Chen et al., 2017)	10.5	-
Anchored Deep Attr. (Luo et al., 2018)	10.4	10.8
Grid LSTM PIT (Xu et al., 2018)	_	10.2
ConvLSTM-GAT (Li et al., 2018)	_	11.0
Chimera++ (Wang et al., 2018b)	11.5	12.0
WA-MISI-5 (Wang et al., 2018c)	12.6	13.1
blstm-TasNet (Luo & Mesgarani, 2018)	13.2	13.6
Conv-TasNet (Luo & Mesgarani, 2019)	15.3	15.6
Conv-TasNet+MBT (Lam et al., 2019)	15.5	15.9
DeepCASA (Liu & Wang, 2019)	17.7	18.0
FurcaNeXt (Zhang et al., 2020)	_	18.4
DualPathRNN (Luo et al., 2019)	18.8	19.0
Wavesplit	19.0	19.2
Wavesplit + Dynamic mixing	20.4	20.6

source of results: https://arxiv.org/pdf/2002.08933.pdf

Are all the problems solved?

感謝 Taiwan Al Labs Machine Learning Engineer 林資偉 同學提供實驗結果

More ...

Unknown number of speakers

[Takahashi, et al., INTERSPEECH'19]

recursively separating a speaker

Source of image: https://arxiv.org/pdf/1904.03065.pdf

Multiple Microphones

[Luo, et al., ASRU'19]

Source of image: https://arxiv.org/pdf/1909.13387.pdf

Task-oriented Optimization

Who would listen to the results of speech enhancement or speaker separation?

for human

Quality Intelligibility

Optimizing STOI, PESQ
Non-differentiable
[Fu, et al., ICML'19]

for machine

ASR Speaker Verification

Optimizing system performance

[Shon, et al., INTERSPEECH'19]

Visual Information

https://ai.googleblog.com/2018/04/looking-to-listen-audio-visual-speech.html

Visual Information

[Ephrat, et al., SIGGRAPH'18]

Source of image: https://arxiv.org/pdf/1804.03619.pdf

To learn more

- Denoise Waynet [Rethage, et al., ICASSP'18]
- Chimera++ [Wang, et al., ICASSP'18]
- Phase Reconstruction Model [Wang, et al., ICASSP'19]
- Deep Complex U-Net: Complex masking [Choi, et al., ICLR'19]
- Deep CASA: Make CASA great again! [Liu, et al., TASLP'19]
- Wavesplit: state-of-the-art on benchmark corpus WSJ0-2mix [Zeghidour, et al., arXiv'20]

Reference

- [Hershey, et al., ICASSP'16] John R. Hershey, Zhuo Chen, Jonathan Le Roux, Shinji Watanabe, Deep clustering: Discriminative embeddings for segmentation and separation, ICASSP, 2016
- [Kolbæk, et al., TASLP'17] Morten Kolbæk, Dong Yu, Zheng-Hua Tan, Jesper Jensen, Multi-talker Speech Separation with Utterance-level Permutation Invariant Training of Deep Recurrent Neural Networks, TASLP, 2017
- [Yang, et al., ICASSP'20] Gene-Ping Yang, Szu-Lin Wu, Yao-Wen Mao, Hung-yi Lee, Lin-shan Lee, Interrupted and cascaded permutation invariant training for speech separation, ICASSP, 2020
- [Ephrat, et al., SIGGRAPH'18] Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali
 Dekel, Kevin Wilson, Avinatan Hassidim, William T. Freeman, Michael Rubinstein,
 Looking to Listen at the Cocktail Party: A Speaker-Independent Audio-Visual
 Model for Speech Separation, SIGGRAPH, 2018

Reference

- [Luo, et al., ASRU'19] Yi Luo, Enea Ceolini, Cong Han, Shih-Chii Liu, Nima Mesgarani, FaSNet: Low-latency Adaptive Beamforming for Multi-microphone Audio Processing, ASRU, 2019
- [Zeghidour, et al., arXiv'20] Neil Zeghidour, David Grangier, Wavesplit: End-to-End Speech Separation by Speaker Clustering, arXiv, 2020
- [Liu, et al., TASLP'19] Yuzhou Liu, DeLiang Wang, Divide and Conquer: A Deep CASA Approach to Talker-Independent Monaural Speaker Separation, in IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019
- [Choi, et al., ICLR'19] Hyeong-Seok Choi, Jang-Hyun Kim, Jaesung Huh, Adrian Kim, Jung-Woo Ha, Kyogu Lee, Phase-aware Speech Enhancement with Deep Complex U-Net, ICLR, 2019
- [Luo, et al., TASLP'19] Yi Luo, Nima Mesgarani, Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation, TASLP, 2019
- [Rethage, et al., ICASSP'18] Dario Rethage, Jordi Pons, Xavier Serra, A Wavenet for Speech Denoising, ICASSP, 2018
- [Wang, et al., ICASSP'18] Zhong-Qiu Wang, Jonathan Le Roux, John R. Hershey, Alternative Objective Functions for Deep Clustering, ICASSP, 2018

Reference

- [Wang, et al., ICASSP'19] Zhong-Qiu Wang, Ke Tan, DeLiang Wang, Deep Learning Based Phase Reconstruction for Speaker Separation: A Trigonometric Perspective, ICASSP, 2019
- [Fu, et al., ICML'19] Szu-Wei Fu, Chien-Feng Liao, Yu Tsao, Shou-De Lin, MetricGAN: Generative Adversarial Networks based Black-box Metric Scores Optimization for Speech Enhancement, ICML, 2019
- [Shon, et al., INTERSPEECH'19] Suwon Shon, Hao Tang, James Glass, VoiceID Loss: Speech Enhancement for Speaker Verification, INTERSPEECH, 2019
- [Takahashi, et al., INTERSPEECH'19] Naoya Takahashi, Sudarsanam Parthasaarathy, Nabarun Goswami, Yuki Mitsufuji, Recursive speech separation for unknown number of speakers, INTERSPEECH, 2019