The Astroparticle Road to New Physics

Pat Scott

Department of Physics, McGill University

February 19 2013

A story of complementarity...

Existing data give us some constraints

A story of complementarity...

Existing data give us some constraints

A story of complementarity...

- Existing data give us some constraints
- Direct searches for dark matter constrain cross-sections with nuclei

A story of complementarity...

- Existing data give us some constraints
- Direct searches for dark matter constrain cross-sections with nuclei
- Accelerator searches rule out lighter masses

A story of complementarity...

- Existing data give us some constraints
- Direct searches for dark matter constrain cross-sections with nuclei
- Accelerator searches rule out lighter masses
- Indirect searches for dark matter constrain annihilation cross-sections (+ some nuclear cross-sections)

A story of complementarity...

- Existing data give us some constraints
- Direct searches for dark matter constrain cross-sections with nuclei
- Accelerator searches rule out lighter masses
- Indirect searches for dark matter constrain annihilation cross-sections (+ some nuclear cross-sections)

"Astroparticle road to new physics" = finding/constraining new physics with astro AND particle data as co-navigators

A story of complementarity...

- Existing data give us some constraints
- Direct searches for dark matter constrain cross-sections with nuclei
- Accelerator searches rule out lighter masses
- Indirect searches for dark matter constrain annihilation cross-sections (+ some nuclear cross-sections)

"Astroparticle road to new physics" = finding/constraining new physics with astro AND particle data as co-navigators

This example is a gross simplification – the devil is in the detail.

Many talk about complementarity, far fewer walk the walk quantitatively → global BSM fits

Global fits in the current era

Lots of data flowing from LHC, direct and indirect dark matter detection experiments

 \rightarrow new "Implications of $\langle \textit{data X} \rangle$ for supersymmetry" fit update every few months

Issues with current global fit codes:

- Strongly wedded to a few theories (e.g. constrained minimal SUSY Standard Model)
- Strongly wedded to a few theory calculators
- All datasets and observables basically hardcoded
- Rough or non-existent treatment of most experiments (astroparticle + collider especially)
- Sub-optimal statistical methods / search algorithms
- ⇒ already hitting the wall on theories, data & computational methods

GAMBIT: a *second-generation* global fit code

GAMBIT: Global And Modular BSM Inference Tool

Overriding principles of GAMBIT: flexibility and modularity

- General enough to allow fast definition of new datasets and theoretical models
- Plug and play scanning, physics and likelihood packages
- Extensive model database not just small modifications to constrained MSSM (NUHM, etc), and not just SUSY!
- Extensive observable/data libraries (likelihood modules)
- Many statistical options Bayesian/frequentist, likelihood definitions, scanning algorithms
- A smart and fast LHC likelihood calculator
- Massively parallel
- Full open-source code release

The GAMBIT Collaboration

23 Members, 12 Institutes

8 Experiments, 3 major theory codes

Fermi-LAT P. Scott, J. Conrad, J. Edsjö, G. Martinez

IceCube P. Scott, J. Edsjö, C. Savage

ATLAS A. Buckley, C. Clement, P. Jackson, A. Saavedra, M. White

CMS C. Rogan,

HESS J. Conrad, H. Dickinson

AMS-02 A. Putze

CTA T. Bringmann, J. Conrad, H. Dickinson

DARWIN J. Conrad

Theory P. Scott, C. Balázs, T. Bringmann, L.-A. Dal, J. Edsjö,

B. Farmer, A. Krislock, A. Kvellestad, N. Mahmoudi,

A. Raklev, C. Savage, C. Weniger

The GAMBIT Collaboration – the future

28 Members, 14 Institutes

10 Experiments, 3 major theory codes

Fermi-LAT P. Scott, J. Conrad, J. Edsjö, G. Martinez

IceCube P. Scott, J. Edsjö, C. Savage

ATLAS A. Buckley, C. Clement, P. Jackson, A. Saavedra, M. White

CMS C. Rogan, +2 (Imperial)
HESS J. Conrad, H. Dickinson

AMS-02 A. Putze

CTA T. Bringmann, J. Conrad, H. Dickinson

DARWIN J. Conrad

Theory P. Scott, C. Balázs, T. Bringmann, L.-A. Dal, J. Edsjö,

B. Farmer, A. Krislock, A. Kvellestad, N. Mahmoudi,

A. Raklev, C. Savage, C. Weniger

LUX/LZ +1 (Imperial)

LHCb 2 members approached

The GAMBIT Collaboration – the future

```
28 Members, 14 Institutes, 6 UK members
```

10 Experiments, 3 major theory codes

Fermi-LAT P. Scott, J. Conrad, J. Edsjö, G. Martinez

IceCube P. Scott, J. Edsjö, C. Savage

ATLAS A. Buckley, C. Clement, P. Jackson, A. Saavedra, M. White

CMS C. Rogan, +2 (Imperial)
HESS J. Conrad, H. Dickinson

AMS-02 A. Putze

CTA T. Bringmann, J. Conrad, H. Dickinson

DARWIN J. Conrad

Theory P. Scott, C. Balázs, T. Bringmann, L.-A. Dal, J. Edsjö,

B. Farmer, A. Krislock, A. Kvellestad, N. Mahmoudi,

A. Raklev, C. Savage, C. Weniger

LUX/LZ +1 (Imperial)

LHCb 2 members approached (one UK)

Plans – GAMBIT and the Rutherford Fellowship

The point is not just to write code – but to *use* it...

- Aiming for first comprehensive 25-parameter MSSM global analysis
- Extensive SUSY-breaking model comparison
- Global fits to many non-SUSY models (2 Higgs Doublet, extra dimensions, isospin-violating dark matter, etc)
- Model comparison of different BSM scenarios
- Each physics module, + scanner module, will have dedicated paper and code release
- GAMBIT code will become the go-to package, and GAMBIT papers the go-to results, for combined interpretation of BSM physics searches in the future