

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO CURSO DE ENGENHARIA DE COMPUTAÇÃO

RELATÓRIO DA Nº EXPERIÊNCIA TÍTULO DA EXPERIÊNCIA

TURMA: GRUPO Nº

NOME COMPLETO 3º ALUNO: Nº MATRÍCULA

FERNANDA MONTEIRO DE ALMEIDA 20160154228

NOME COMPLETO 3º ALUNO: Nº MATRÍCULA

NOME COMPLETO 4º ALUNO: Nº MATRÍCULA

Natal-RN 2016 NOME COMPLETO 1º ALUNO: Nº MATRÍCULA

NOME COMPLETO 2º ALUNO: Nº MATRÍCULA

NOME COMPLETO 3º ALUNO: Nº MATRÍCULA

NOME COMPLETO 4º ALUNO: Nº MATRÍCULA

TÍTULO DA EXPERIÊNCIA

Primeiro Relatório Parcial apresentado à disciplina de Laboratório de Sistemas de Controle, correspondente à avaliação da 1º unidade do semestre 2016.1 do 7º período do curso de Engenharia de Computação e Automação da Universidade Federal do Rio Grande do Norte, sob orientação do **Prof. Fábio Meneghetti Ugulino de Araújo.**

Professor: Fábio Meneghetti Ugulino de Araújo.

Natal-RN 2016

RESUMO

Trata-se da apresentação fiel, breve e concisa dos aspectos mais relevantes do trabalho, apresentando as ideias essenciais, na mesma progressão e no mesmo encadeamento que aparecem no texto. O resumo deve apresentar os objetivos, uma visão geral, ampla e, ao mesmo tempo, clara e objetiva do conteúdo do trabalho.

A norma da ABNT recomenda que se use de 150 a 500 palavras, em espaço simples, e deve-se usar o verbo na voz ativa e na terceira pessoa singular. Logo abaixo, devem ser colocadas as palavras-chave.

Palavras-chave:

LISTA DE SÍMBOLOS

A	Matriz triangular superior com diagonal unitária.
D	Matriz diagonal obtida a partir de W^TW
θ	Vetor de parâmetros.
Ξ	Vetor de resíduos de modelagem.
d	Tempo de retardo de um sistema ou tempo morto.

e(k)

Resíduo (Erro de Estimação mais o Ruído).

LISTA DE ABREVIATURAS E SIGLAS

ARX Matriz triangular superior com diagonal unitária.

ARMAX Matriz diagonal obtida a partir de W^TW

NARX Vetor de parâmetros.

NARMAX Vetor de resíduos de modelagem.

MQ Tempo de retardo de um sistema ou tempo morto.

Lista de Figuras

1	Sistema de tanques	9
2	Malha aberta	10
3	Malha Fechada	10

Sumário

1	INTRODUÇÃO	8
2	REFERENCIAL TEÓRICO	9
	2.1 MODELAGEM	9
	2.2 ANALISE	9
	2.3 SISTEMA EM MALHA ABERTA	10
	2.4 SISTEMA EM MALHA FECHADA	10
	2.5 Seções	10
	2.5.1 Subseções	10
3	METODOLOGIA	11
4	RESULTADOS	12
	4.1 Seções	12
	4.1.1 Subseções	12
5	CONCLUSÃO	13
	Referências bibliográficas14	

1 INTRODUÇÃO

A introdução serve para o leitor ter uma noção genérica do tema que será abordado. Uma boa introdução deve criar uma expectativa positiva no leitor e despertar seu interesse pela leitura do restante do trabalho. Deve apresentar, basicamente, a delimitação do assunto o(s) objetivo(s) do estudo e sua finalidade, o ponto-de-vista sob qual o assunto será tratado, enfim, os elementos necessários para situar o tema do trabalho.

2 REFERENCIAL TEÓRICO

2.1 MODELAGEM

Figura 1: Sistema de tanques

Sabemos que a vazão de entrada é dada por $k_m u(t)$ e a vazão de saida $\sqrt{2gh(t)}a$, onde k_m é a constante da bomba e "a" a área do furo. Assim:

$$\frac{dq}{dt} = qin - qout$$

$$A\frac{dh(t)}{dt} = k_m u(t) - \sqrt{2gh(t)}a$$

$$A\frac{dh(t)}{dt} = k_m u(t) - \sqrt{2gh(t)}a$$

$$\frac{dh(t)}{dt} = \frac{k_m}{A}u(t) - \frac{a\sqrt{2gh(t)}}{A}$$

2.2 ANALISE

Para atingir um certo nivel no tanque estamos interessados no valor de tensão que fará o sistema alcançar esse nivel. Para isso precisamos analisar o regime permanente.

Apos muito tempo a altura praticamente não vai mais variar, então podemos considerar. $\frac{dh(t)}{dt} = 0$ Com isso nossa equação fica:

$$0 = \frac{k_m}{A}u(t) - \frac{a\sqrt{2gh(t)}}{A}$$
$$\frac{k_m}{A}u(t) = \frac{a\sqrt{2gh(t)}}{A}$$

$$u(t) = \frac{a\sqrt{2gh(t)}}{k_m}$$

$$u(t) = k\sqrt{h}$$
(1)

Com a relação do sinal de entrada com o nivel final do tanque, podemos calcular experimentalmente o valor de k, aplicando um sinal de entrada do tipo degrau e observando o seu valor final. Com o valor de k calculado dado um nivel sabemos qual a tensão necessaria para atingilo.

2.3 SISTEMA EM MALHA ABERTA

Figura 2: Malha aberta

No processo em malha aberta não existe nenhum controle o sinal de entrada é a tensão e a saida o nivel do tanque

2.4 SISTEMA EM MALHA FECHADA

No processo em malha fechada o sinal de entrada é o nivel de refencia. A saida do controlador é a diferença do nivel que eu quero com o meu nivel atual somado com a tensão necessaria para o sistema estabilizar naquele nivel, utilizando a equação 1. O periodo de amostragem e controle do sistema é de 100 milisegundos.

Figura 3: Malha Fechada

2.5 Seções

2.5.1 Subseções

3 METODOLOGIA

Neste sistema de controle desenvolvido, foi utilizado a planta da *Quanser*, um sistema com dois tanques com altura de 30cm e diâmetro de 4,45cm cada. Desejava-se controlar o nível dos tanques com a bomba através das tensões enviadas para a uma placa onde havia uma comunicação cliente-servidor. Fez-se um experimento inicial para se ter conhecimento do comportamento do fluxo de água enviado pela bomba, a vazão de saída dos tanques e a leitura dos sensores. Assim como os níveis de equilíbrio entre a vazão de entrada e saída. Após a obtenção desses valores, comparou-se com as constantes obtidas na documentação do fabricante: constante da bomba e constante para conversão dos valores obtidos do sensor para centímetro. Foi adotado, então, a constante do sensor do fabricante na conversão das leituras recebidas do sensor. Não foi necessário a constante da bomba, apenas para simulações feitas sem o uso da planta.

Em seguida, foi feito o planejamento do leiaute do software de controle, os parâmetros de entrada e os valores de saída a serem apresentados nos gráficos, seguindo as especificações do roteiro. O programa foi feito no ambiente Qt Creator utilizando a linguagem C++, pois tinha suporte para interface gráfica. A leitura e escrita não foi paralelizada para evitar alguns conflitos de sincronização.

Após finalizado o sistema, a validação do controle foi feita testando cada função de entrada: degrau, senoidal, dente de serra e aleatório. Variando também os valores de entrada e fazendo a comutação entre malha fechada e aberta.

No caso específico da malha fechada onde seria necessário utilizar as leituras do sensor, foi utilizado a seguinte estratégia: a referência era enviada para a placa e ao receber as leituras do sensor, esses valores eram comparados. Se houvesse alguma diferença, ou erro, era corrigido na referência diminuindo-se o erro.

4 RESULTADOS

Neste capítulo, são apresentados e descritos os resultados obtidos dos experimentos feitos em laboratório. É importante que todos os gráficos e figuras apresentados neste capítulo estejam bem visíveis e com qualidade boa. Este é o capítulo mais importante do trabalho, pois é nele que o aluno irá descrever todos os resultados e observações obtidos no experimento.

4.1 Seções

4.1.1 Subseções

5 CONCLUSÃO

A conclusão, além de guardar uma proporção relativa ao tamanho do trabalho, deve guardar uma proporcionalidade também quanto ao conteúdo. Não deve conter assuntos desnecessários, nem exageros numa linguagem excessivamente técnica e rebuscada. A conclusão deve dar respostas às questões do trabalho, correspondente aos objetivos propostos. Deve ser breve, podendo, se necessário, apresentar sugestões para pesquisas futuras.

Referências

[Mittelbach e Goossens 2004] MITTELBACH, F.; GOOSSENS, M. *The LATEX Companion*. 2. ed. San Francisco, EUA: Addison-Wesley, 2004.