

Complete Course on Computer Organization & Architecture for GATE 2024 & 2025

Instruction Cycle & Addressing Modes

By: Vishvadeep Gothi

Effective Address

Address of operand in a computation-type instruction or The target address in a branch-type instruction.

No change in pc

Branch Instruction

Type of Branch Instruction

branch teken always

PC = Tanget add.

Instruction Cycle

Inst executed in 6 phases

Instruction Cycle

1. Instruction Fetch

2. Instruction Decode

3. Effective Address Calculation

4. Operand Fetch

5. Execution

6. Write Back Result

Fetch Cycle & Execution Cycle

Instⁿ fetch

decode to back result

Computation vs Branch Type Instruction

Inst" fetch de co de E.A. Calculation openand letch Execut cerite back

fetch of insta & oc increment opcode decode => operation operand decode -> E.A. fitch operands till ALU computation performed Result copied back to destinat

fetch of insth & PC inc. opcode decode => operat calculate ranget add. condit's check & PC update

Why Addressing Modes

Addressing Modes

It specifies how and from where the operands are obtained for an instruction

Implied Mode

The opcode definition itself defines the operand

Immediate Mode

The address field of instruction specifies the operand value

Direct Mode Absolute

The address field of instruction specifies the effective address

Indirect Mode

The address field of instruction specifies the address of effective address

Register Mode

The address field of instruction specifies a register which holds operand

Register Indirect Mode

The address field of instruction specifies a register which holds operand

Assume (PU with 64 Reg. => Reg. reference = (-hits
memory 9dd. => 32 bits

Frect

oprode mode add.

32 (20 +32) bits

Reg. Indirect

opode mode ad1.

(x+y+1) bits

Time to get operand

= 1 mem access

-1 Reg. a cress
+
1 mem.
acress

more Reg. _____ 001 011

R1 <--

modez Imm. mide R1 = #3 Lirect mode RI (M[3] Reg. mode RI = R3 Reg. Indiret RI ~ M[R3] Indirect RI = M[MC3]

Autoincrement/Autodecrement Mode

 Variant of register indirect mode, in which content of register is automatically incremented or decremented to access a table of content sequentially.

Arount of incument on decrement depends on size of data item accessed.

=> autoircrement mode => post increment autodecrement mode => pre decrement

Indexed Mode

Address part of instruction (base address) is added to index register value to get the effective address

Opcode	Mode	Address
In	dex Registe	er

Memory

PC-Relative Mode

Address part of instruction (offset) is added to PC register value to get the effective address

Opcode	Mode	Address
]
	PC	

Memory

Base Register Mode

Address part of instruction (offset) is added to Base register value to get the effective address

Opcode	Mode	Address
		1
Ba	ise Registe	r

Memory

Example

	Метогу			
200	Opcode	Mode		
201	Address = 5	Address = 500		
202	Next Instruct	Next Instruction		
399	450			
400	700	700		
500	800			
600	900			
000	500			
702				
800	300			

			•	•
-		7-7		

R500 = 400

XR = 100

AC

Mode	Effective Address	Operand
1. Immediate Mode		
2. Direct Mode		
3. Indirect Mode		
4. Register Mode		
5. Register Indirect Mode		
6. Autodecrement Mode		
7. Indexed Mode	-	
8. PC- Relative Mode		

Happy Learning.!

