OPTICAL DISK

Patent number:

JP2000322774

Publication date:

2000-11-24

Inventor:

YOSHIMIZU TAKUHAKU; INAI SHINICHIRO; MATSUKI YOTA;

OTSUKA TAKAHIRO; OTSUKA KOICHI

Applicant:

HITACHI MAXELL

Classification:

- international:

(IPC1-7): G11B7/24

- european:

Application number: JP19990374208 19991228

Priority number(s): JP19990374208 19991228; JP19990062281 19990309

Report a data error here

Abstract of JP2000322774

PROBLEM TO BE SOLVED: To sufficiently secure contrast ratio after recording and to prevent characteristic degradation by reducing generation of recesses and reducing gap amount between a center of a recess and a center of a groove. SOLUTION: In the disk-shaped optical disk in which a recording layer 2 is formed by spin-coating on a preformat of a transparent substrate 1 having the preformat in which grooves 4 and lands 5 are alternatively formed in concentric circular shape or in spiral shape on a surface thereof, flanks of both sides of the groove 4 are provided by respectively inclining to a virtual face X being parallel to the land 5 of the transparent substrate 1, average taper angle &theta 1 of the flank of disk inner peripheral side of the groove 4 to the virtual face X is made to be larger than average taper angle &theta 2 of flank 4b of disk outer peripheral side of the groove 4 to the virtual face X.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-322774

(P2000 - 322774A)

(43)公開日 平成12年11月24日(2000.11.24)

(51) Int.Cl.7

酸別記号

FΙ

テーマコート*(参考)

G11B 7/24

561

G 1 1 B 7/24

561E 5D029

審査請求 未請求 請求項の数9 OL (全 9 頁)

(21)出願番号

特願平11-374208

(22)出願日

平成11年12月28日(1999.12.28)

(31)優先権主張番号 特願平11-62281

(32)優先日

平成11年3月9日(1999.3.9)

(33)優先権主張国

日本 (JP)

(71)出願人 000005810

日立マクセル株式会社

大阪府淡木市丑寅1丁目1番88号

(72)発明者 吉水 拓博

大阪府茨木市丑寅一丁目1番88号 日立マ

クセル株式会社内

(72) 発明者 井内 信一郎

大阪府淡木市丑寅一丁目1番88号 日立マ

クセル株式会社内

(74)代理人 100078134

弁理士 武 顕次郎

最終頁に続く

(54) 【発明の名称】 光ディスク

(57)【要約】

【課題】 窪み(凹み)の発生を小さくし、かつ窪み (凹み)の中心とグループの中心のずれ量を小さくする ことにより、記録後のコントラスト比を十分確保し、特 性低下を防止する。

【解決手段】 表面にグルーブ4とランド5を交互に同 心円状または螺旋状に形成したブリフォーマットを有す - る透明基板 1 の前記プリフォーマット上にスピンコート により記録層2を形成するディスク形の光ディスクにお いて、前記透明基板1のランド5と平行な仮想面Xに対 してグルーブ4の両側の側面がそれぞれ傾斜して設けら れ、そのグループ4のディスク内周側の側面4aの前記 仮想面Xに対する平均テーパ角θ1が、そのグルーブ4 のディスク外周側の側面4bの前記仮想面Xに対する平 均テーバ角 θ 2よりも大きい(θ 1> θ 2) ことを特徴 とする。

40

【特許請求の範囲】

【請求項1】 表面にグルーブとランドを交互に同心円 状または螺旋状に形成したプリフォーマットを有する透 明基板の前記プリフォーマット上にスピンコートにより 記録層を形成する光ディスクにおいて、

1

前記グループを透明基板の径方向に沿って断面したとき にグループの溝の両側面が、透明基板のランドと平行な 仮想面に対してそれぞれ傾斜しており、その溝における 内周側の側面の前記仮想面に対する平均テーバ角 θ 1 が、その溝における外周側の側面の前記仮想面に対する 10 平均テーバ角 θ 2 よりも大きい(θ 1 > θ 2)ことを特 徴とする光ディスク。

【請求項2】 請求項1記載の光ディスクにおいて、前記 θ 1に対する θ 2の比率である θ 2/ θ 1の値が、0. $3 \le \theta$ 2/ θ 1<1の範囲内にあることを特徴とする光ディスク。

【請求項3】 請求項1記載の光ディスクにおいて、前記 θ 1に対する θ 2の比率である θ 2/ θ 1の値が、0.75 \leq θ 2/ θ 1 \leq 0.9の範囲内にあるととを特徴とする光ディスク。

【請求項4】 請求項1ないし3のいずれか記載の光ディスクにおいて、前記ディスクの内側領域から外側領域 にいくに従って θ 2/ θ 1の値が徐々に小さくなっていることを特徴とする光ディスク。

【請求項5】 請求項1ないし3のいずれか記載の光ディスクにおいて、前記ディスクの内側領域から外側領域にかけて複数のゾーンに分かれており、最外周側ゾーンの前記 θ 2 θ 1の値が最内周側ゾーンの前記 θ 2 θ 1の値よりも小さいことを特徴とする光ディスク。

【請求項6】 請求項1ないし3のいずれか記載の光デ 30 $_{4}$ スクにおいて、前記ディスクの内側領域から外側領域 にかけて複数のゾーンに分かれており、前記 $_{6}$ $_{2}$ $_{6}$ $_{1}$ の値が内周側ゾーンから外周側ゾーンにかけて段階的に 小さくなっていることを特徴とする光ディスク。

【請求項7】 請求項1ないし6のいずれか記載の光ディスクにおいて、トラックピッチが0.8μm以下であることを特徴とする光ディスク。

[請求項8] 請求項1ないし6のいずれか記載の光ディスクにおいて、トラックピッチが0.74μm以下であることを特徴とする光ディスク。

[請求項9] 請求項1ないし8のいずれか記載の光ディスクにおいて、前記記録層が有機色素を含有している ことを特徴とする光ディスク。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は光ディスクに係り、特に表面にグループとランドを交互に同心円状または螺旋状に形成したプリフォーマットを有する透明基板と、、その透明基板の前記プリフォーマットの上にスピンコートで形成した記録層とを有する光ディスクに関する。

[0002]

【従来の技術】近年、光記録用レーザ技術の進歩やコストの低減に伴い、光ディスクにレーザ光を照射して、情報の記録、再生を行なう光記録システムが開発されている。

【0003】との光ディスクの一つとして、有機色素を用いた追記形光ディスクであるCD-R(コンパクトディスクレコーダブル)等が商品化されている。この光ディスクは、有機色素を含有する記録材料を溶剤に溶かし、スピンコート法により透明基板上に記録層を塗布形成することが可能で、スパッタリングや蒸着などで記録層を形成する光ディスクに比べて、製造時間が短く、しかも製造コストが低いという利点を有している。【0004】

【発明が解決しようとする課題】記録材料として有機色素を含有したCD-R等の追記形光ディスクの基板は、螺旋状のグループが形成され、この螺旋状のグループの間にランドがあり、ディスクの径方向に沿ってグループとランドが交互に設けられて、プリフォーマットを形成している。

[0005]透明基板1の中心部に記録材料の溶液を滴下し、透明基板1を高速回転して遠心力によりグループ4とランド5を交互に設けた透明基板1上で前記溶液を径方向外側に引き延ばして記録層2を形成するスピンコート法においては、図7に示すように、形成された記録層2はグループ4の上では凹状となり、ランド5の上では相対的に凸状となり、グループ4の上の記録層2に窪み(凹み)6が生じる。なお図中の3は金属からなる光反射層、7は記録ピットである。

【0006】スピンコート法によりディスクの内周側より記録材料を塗布するので、窪み(凹み)6の中心とグルーブ4の中心との間にずれ量d0が生じ、窪み(凹み)6の中心はグルーブ4の中心より外周側に偏ってしまう。

【0007】中心ずれ量d0が大きくなると、図8 (a)の従来のトラッキング信号は、GND(グランド)に対して(+)側と(-)側の振幅量が異なり、トラッキング信号のずれ量〔|a(+)-a(-)|]をトラッキング信号振幅Aで規格化した価であるPush-Pull(b)中心のGNDからのオフセット率〔|a(+)-a(-)|×100/A〕が大きくなり、グルーブの外周側をトラッキングしながら記録ピット7をグルーブの外周側に形成してしまい、十分な特性が得られず、記録再生が不可能となることがある。

【0008】今後、記録材料として有機色素を含有した CD-R等の追記形光ディスクは、高密度化のための狭 トラックヒッチ化、および原価低減の観点よりタクトア ップによるスピンコートの高速回転化傾向にあり、窪み (凹み)6の中心とグループ4の中心との間のずれ量 d 50 0がさらに大きくなり、前述のような弊害が顕著に現れ る。

【0009】また近年、光ディスクの記録容量をより一層増大させることが要望されており、これを実現する方法として、記録再生に使用されるレーザ光の波長を短くしてビームスポット径を小さくすることにより、記録密度を高める方法が提案されている。この方法に従う高密度記録の光ディスクとして、DVD(デジタルバーサタイルディスク)や、この追記型としてDVD-R(デジタルバーサタイルディスクレコーダブル)が提案されている。このDVD-Rの記録再生に使用されるレーザ光 10の波長は630nm~660nmである。

【0010】DVD-Rのグルーブのトラックピッチは 0.7 μ m~0.8 μ m、最小記録ピットは 0.40 μ m~0.44 μ m~0.45 μ m~0.80 μ m、最小記録ピット0.83 μ mに比べると極めて短くなっている。このように高密度化および高性能化によりトラックピッチ、記録ピットがさらに狭小化すると、前述の窪み(凹み)6の影響がさらに顕著になる。

【0011】本発明者らはこの窪み(凹み)6の形成について種々検討した結果、透明基板1の表面に形成され 20 るグルーブ4の形状に問題があることを解明した。すなわち従来の光ディスクは図7に示すようにグルーブ4の 溝の両側面が傾斜しているが、その溝のディスク内周側の側面4aのテーパ角 θ 1と、ディスク外周側の側面4bのテーバ角 θ 2が等しくなっている(θ 1= θ 2 θ 2/ θ 1=1)。

目の012】そのため、ターンテーブル上に固定した透明基板1のほぼ中央部に記録材料の溶液を滴下し、透明基板1を高速回転して前記液状記録材料を中央部から外周部側に向けて流延、固化しながら記録層2を形成する 30 ある。際、前記液状記録材料はグルーブ4に流れ込んで一時的に溜まりながら、遠心力でさらにその外周側のランド5 6のにならびにグルーブ4へと流動するが、そのときの記録材料のグルーブ4への流れ込み状態とディスク外周側の側面4bのところでのせり上がり状態から、比較的深い程 6のにみ (凹み) 6が形成されることを解明した。 $4 \mu \pi$

[0013] 本発明の目的は、このような従来技術の欠点を解消し、前記窪み(凹み)を小さくし、かつ窪み(凹み)の中心とグループの中心のずれ量を小さくすることにより、記録後のコントラスト比を十分確保し、特性低下を防止することのできる、特に高密度記録に適した光ディスクを提供することにある。

[0014]

【課題を解決するための手段】前記目的を達成するために、本発明は、表面にグループとランドを交互に同心円状または螺旋状に形成したプリフォーマットを有する透明基板の前記プリフォーマット上にスピンコートにより記録層を形成する光ディスクを対象とするものである。 【0015】そして本発明の第1の手段は、前記グルー の溝の両側面が、透明基板のランドと平行な仮想面に対してそれぞれ傾斜しており、その溝における内周側の側面の前記仮想面に対する平均テーパ角 θ 1が、その溝における外周側の側面の前記仮想面に対する平均テーパ角 θ 2よりも大きい(θ $1>\theta$ 2)ことを特徴とするものである

 $[0\ 0\ 1\ 6]$ 本発明の第2の手段は、前記第 $1\ 0$ 手段に おいて、前記 $\theta\ 1$ に対する $\theta\ 2$ の比率である $\theta\ 2/\theta\ 1$ の値が、 $0\ .\ 3 \le \theta\ 2/\theta\ 1 < 1$ の範囲内にあることを 特徴とするものである。

[0017]本発明の第3の手段は、前記第1の手段に おいて、前記 θ 1に対する θ 2の比率である θ 2/ θ 1 の値が、 $0.75 \le \theta$ 2/ θ 1 \le 0.9の範囲内にある ことを特徴とするものである。

[0018] 本発明の第4の手段は、前記第1ないし第3のいずれかの手段において、前記ディスクの内側領域から外側領域にいくに従って θ 2/ θ 1の値が徐々に小さくなっていることを特徴とするものである。

【0019】本発明の第5の手段は、前記第1ないし第3のいずれかの手段において、前記ディスクの内側領域から外側領域にかけて複数のゾーンに分かれており、最外周側ゾーンの前記 $\theta2/\theta1$ の値よりも小さいことを特徴とするものである。

【0020】本発明の第6の手段は、前記第1ないし第3のいずれかの手段において、前記ディスクの内側領域から外側領域にかけて複数のソーンに分かれており、前記 62/61の値が内周側ゾーンから外周側ゾーンにかけて段階的に小さくなっていることを特徴とするものである。

【0021】本発明の第7の手段は、前記第1ないし第6のいずれかの手段において、トラックピッチが0.8 μm以下であることを特徴とするものである。

【0022】本発明の第8の手段は、前記第1ないし第6のいずれかの手段において、トラックピッチが0.74μm以下であることを特徴とするものである。

【0023】なお、 $\theta2/\theta1$ の値が1になると従来の光ディスクに相当し、前述したように窪み(凹み)6の中心とグルーブ4の中心との間のずれ量d0が大きくなる。一方、 $\theta2/\theta1$ の値が0、3未満になると、形成された記録層2のグルーブ4上での凹部とグランド5上での凸部が相対的に平坦化され、ランドとグルーブの境が曖昧になり、トラッキングがかかり難くなるという問題がある。従って $\theta2/\theta1$ の値は、 $0.3 \le \theta2/\theta1$
1<1の範囲内に規制する必要がある。

[0024]

明基板の前記プリフォーマット上にスピンコートにより 【発明の実施の形態】以下、本発明の実施の形態を図面 記録層を形成する光ディスクを対象とするものである。 に基づいて説明する。図2に、ガラス基板9の上にフォ 【0015】そして本発明の第1の手段は、前記グルー トレジスト8を塗布した原盤に露光ビーム10を照射し ブを透明基板の径方向に沿って断面したときにグループ 50 てプリフォーマットバターンをカッティングする際、原

盤の表面に対して露光ビーム10を角度θ0にて入射さ せて、プリフォーマットパターン (グルーブ) 部位を露 光したときの、原盤に対する露光ビーム10の入射状 態、露光強度分布、グルーブ溝のディスク内周側と外周 側のテーパ角をそれぞれ示す。

【0025】同図(a1)に示すように、露光ピーム1 0を入射角度θ0=90°、つまり対物レンズ11を介 して原盤に露光ビーム10を垂直に入射させ、フォトレ ジスト8を感光させると、同図(a2)に示すように焦 点を中間にして内周側と外周側の露光強度分布が同じに 10 なる。そのため同図(a3)に示すように、現像後の内 周側のテーパ角 θ 1と外周側のテーパ角 θ 2は等しくな る。

【0026】これに対して同図(b1)に示すように入 射角度 θ 0<90°、つまり対物レンズ11を介して原 盤に露光ビーム10を若干傾けて入射させ、フォトレジ スト8を感光させると、同図(b2)に示すように焦点 を間にして内周側と外周側の露光強度分布が異なり、露 光範囲は内周側の方が外周側よりも狭い。そのため同図 (b3) に示すように、溝の内周側のテーパ角 1 を外 20 C(CH₃), -、-S-、-O-、-CH=CH-を 周側のテーパ角 θ 2よりも大きくできる(θ 1> θ

【0027】同図(b1)、(b2)、(b3)に示す ように原盤を露光し、現像した後、原盤にニッケルなど を公知技術にてメッキしてスタンパを作成した。

【0028】とのスタンパを用い、射出成形法によりボ リカーボネート樹脂の透明基板1を作成する。透明基板 1の材料としてポリカーボネート樹脂以外の例えばエポ キシ樹脂などの他の透明な樹脂材料を用いることも可能 である。このようにして作成した透明基板1は、スタン パのブリフォーマットパターンを転写している。

【0029】 このプリフォーマットパターンのうちのプ リグループ4は図1に示すように、透明基板1のランド 5と平行な仮想面Xに対して溝の両側の側面4a、4b が互いに上側に向けて広角になるように傾斜して設けら れている。そしてグルーブ4のディスク内周側の側面4 aの平均テーバ角θ 1 が、ディスク外周側の側面4 bの 平均テーパ角 θ 2よりも大きく形成されている(θ 1> θ 2)。この平均テーパ角 θ 1, θ 2については、後で 具体的に説明する。

【0030】本発明において前記仮想面Xの位置は、グ ループ4の溝の深さ方向の中間位置(すなわちし1=し 2)を通る位置とした。図7に示すようにグルーブ4の 溝底面あるいはランド5の表面を通る仮想面にした場 合、グルーブ4の溝底面と側面4a,4bが交わる部分 あるいはランド5の表面と側面4a, 4bが交わる部分 が、微小的に見ると欠けたりあるいは丸みが付いたりし て正確な角度が出ない懸念があるため、仮想面Xは、グ ループ4の溝の深さ方向の中間位置を通る仮想面とし 12.

【0031】この透明基板1のプリフォーマットバター ン形成面上に、有機色素を含有した記録層2をスピンコ ート法により成膜した。有機色素としては、シアニン 系、フタロシアニン系、アゾ系染料などを用いることが できる。特に次の〔化1〕、〔化2〕の一般構造式で表 せる有機色素が好適である。

[0032]

(化1)

式中、RまたはR'は同じかまたは異なってもよく、そ れぞれは水素原子、アルキル基、アルコキシル基、アル コヒドロキシ基、アラルキル基、アルケニル基、アルキ ルカルボキシル基、アルキルスルホニル基を示す。Yま たはY'は同じかまたは異なってもよく、それぞれは一 示す。AまたはA'は同じかまたは異なってもよく、そ れぞれは芳香環あるいはベンゼン環を示す。Xは対イオ ンを示し、ハロゲンおよびハロゲン化物イオンもしくは 金属錯体を示す。乙は水素原子、ハロゲン原子、アルキ ル基を示す。nは0~2の整数を示す。

[0033]

【化2】

50

式中、R、、R、、R、およびR、は同じかまたは異な ってもよく、それぞれは水素原子、水酸基、フッ化アル キル基、アミン、アルキル基、アルコキシル基、アルキ ルヒドロ基、アラルキル基、アルケニル基、アルキルカ ルボキシル基、アルキルスルホニル基もしくはこれらの 官能基をもつ芳香環を示す。Xは陰イオンを示し、nは 化合物のイオン価を示し1または2である。

【0034】なお、数種類の有機色素を組み合わせても よく、また耐食性の向上などの目的によりクエンチャ 一、赤外線吸収剤を添加することが可能で、添加剤とし てはアミニウムやイモジウムなどを用いることができ

【0035】この記録層2の上に、Au、Ag、Alな どの金属もしくはAu、Ag、Alなどを含有する合金 をスパッタリングや蒸着により成膜した反射層3を形成 した。この反射層3の上に、アクリル系の紫外線硬化樹 脂の保護層を積層して追記型光ディスクを作成した。

【0036】次に具体的な実施例について説明する。

7

(例1)透明基板を複製するためにガラス原盤を用い、 とのガラス原盤は原盤露光装置を使用して次のようにし て作成した。まず研磨したガラス基板9を用意し、その 上に屈折率1.65のクレゾールノボラック樹脂とナフ トキノンジアジドの感光剤からなるフォトレジスト8を 0.13μmの膜厚になるように塗布した。

【0037】次に図2に示すように、このガラス基板9をターンテーブル上で回転させながらフォトレジスト8上に露光ビーム10を図4に示す θ 0の角度を付けて内周から外周へと照射した。最内周から最外周まで θ 0=60'に固定し、トラックピッチ(TP)1.6 μ mの断面形状が台形の連続溝となるように露光した。

【0038】この露光後のガラス基板9を回転させながら、アルカリ性現像液を用いて露光したフォトレジスト8の上に塗布して現像し、フォトレジスト8にグルーブに相当する連続溝を形成する。このガラス基板9の表面にニッケルメッキを施してスタンパを作成し、このスタンパを用いて射出成形によりポリカーボネート樹脂の透明基板1を作成した。

【0039】 この透明基板1のグルーブ4におけるディ 20 スク内周側の側面4aの平均テーパ角 θ 1とディスク外 周側の側面4bの平均テーパ角 θ 2を測定し、その結果 を図4に示した。

【0040】本発明における平均テーバ角 θ 1、 θ 2は、作成した透明基板を切断し、そのグループの切断面のテーバ角を原子間力顕微鏡(AFM)を用いてそれぞれランダムに10個所測定し、その平均値を算出して平均テーバ角 θ 1、 θ 2とした。また図4中のゾーン1~4は、図3に示すように透明基板1を内周側から外周側にかけてほぼ等間隔に4つのゾーンに分けて、内周側から外周側にかけてほぼ等間隔に4つのゾーンに分けて、内周側か30ら外周側に向かってゾーン1を符号12、ゾーン2を符号13、ゾーン3を符号14、ゾーン4を符号15として表している。

[0041] この図4の結果から明らかなように、最内間から最外間まで θ 0=60° を固定することにより、各ゾーン1~4とも平均テーバ角 θ 1は74°、平均テーバ角 θ 2は67°で、テーバ角 θ 1の方がテーバ角 θ 2よりも大きく、また図5から明らかなように各ゾーン1~4とも θ 2/ θ 1の値は0.9となり、0.3 \leq θ 2/ θ 1<1の範囲内にある。

[0042] この透明基板1のプリピットパターン上に、次の構造式[化3]を有するインドール系シアニン色素と、アミニウム塩を溶媒に溶かし、スピンコート法により厚さ160μmの記録層2を形成した。

[0043]

[化3]

との記録層の上に金からなる厚さ100nmの光反射層3を形成し、さらにこの記録層2および光反射層3をオーバーコートするように、アクリル系の紫外線硬化樹脂10からなる厚さ10μmの保護層を積層して追記型光ディスクを作成した。

【0044】との光ディスクに対して、波長 λ =780 μ mのレーザービームを用い、NA=0.50の光学レンズを使用して、再生パワー0.1mW、線速1.2m/sで再生を行なった。そのときのPush-Pull(b)中心のGNDからのオフセット率は図6に示す例 3(後述)とほぼ同様であるので図示は省略した。図8(b)は、この例による光ディスクのトラッキング信号の波形図である。

 0 【0045】(例2)トラックピッチ0.8μmとし、 θ0=60 に固定して例1と同様にスタンパを作成 し、そのスタンパを用いて射出成形によりポリカーボネート樹脂製の透明基板を作成した。

[0046]最内周から最外周まで $\theta0=60^{\circ}$ で露光するととにより、図4から明らかなように、各ゾーン1~4とも平均テーバ角 $\theta1$ は 74° 、平均テーバ角 $\theta2$ は 67° で、テーバ角 $\theta1$ の方がテーバ角 $\theta2$ よりも大きく、また図5から明らかなように各ゾーン $1\sim4$ とも $\theta2/\theta1$ の値は0.9となり、 $0.3 \leq \theta2/\theta1$ <1の範囲内にある。

【0047】との透明基板1のブリピットパターン上に、次の構造式〔化4〕を有するシアニン色素と、アミニウム塩を溶媒に溶かし、スピンコート法により厚さ160μmの記録層2を形成した。

[0048]

(1t4)

この記録層の上に金からなる厚さ 100nmの光反射層 3を形成し、さらにこの記録層 2 および光反射層 3をオーバーコートするように、アクリル系の紫外線硬化樹脂 からなる厚さ 10μ mの保護層を積層して追記型光ディスクを作成した。

【0049】との光ディスクに対して、波長λ=780 μmのレーザービームを用い、NA=0.50の光学レ 50 ンズを使用して、再生パワー0.1mW、線速1.2m /sで再生を行なった。そのときのPush-Pull (b) 中心のGNDからのオフセット率を測定した結果 を図6に示す。

【0050】(例3)トラックピッチ0.8μmとし、 図3に示すようにゾーン1(符号12)とゾーン2(符 号13)は80=60°とし、ゾーン3(符号14)と ゾーン4 (符号15) は00=70° として例1と同様 にスタンパを作成し、そのスタンパを用いて射出成形に よりポリカーボネート樹脂製の透明基板を作成した。

θ 2 を測定すると図 4 のように、ゾーン 1 , 2 の平均テ ーパ角θ1は74°、平均テーパ角θ2は67°であ り、ゾーン3, 4の平均テーパ角θ1は81°、平均テ ーバ角θ2は65°であり、各ゾーンともテーパ角θ1 の方がテーパ角 82よりも大きい。

【0052】また図5から明らかなようにゾーン1,2 の θ 2/ θ 1の値は0. 9、ゾーン3, 4の θ 2/ θ 1 の値は0.8で、各ゾーンとも θ 2 $/\theta$ 1の値は0.3≦θ2/θ1<1の範囲内にあるが、ディスクの外側領 域に相当するゾーン3, 4の 0 2 / 0 1 値が、内側領域 20 に相当するゾーン1, 2の θ 2 $/\theta$ 1 値よりも段階的に 小さくなっている。

【0053】この透明基板1のプリピットパターン上 に、前記構造式〔化4〕を有するシアニン色素と、アミ ニウム塩を溶媒に溶かし、スピンコート法により厚さ1 60 µmの記録層2を形成した。

【0054】この記録層の上に金からなる厚さ100n mの光反射層3を形成し、さらにこの記録層2および光 反射層3をオーバーコートするように、アクリル系の紫 追記型光ディスクを作成した。

[0055] この光ディスクに対して、波長 \ = 635 μmのレーザービームを用い、ΝΑ=0.60の光学レ ンズを使用して、再生パワー0. 1mW、線速1. 2m /sで再生を行なった。そのときのPush-Pull (b) 中心のGNDからのオフセット率を測定した結果 を図6に示す。

【0056】(例4)トラックピッチ0.74µmと し、各ゾーン1~4とも00=60 に固定して例1と 同様にスタンパを作成し、そのスタンパを用いて射出成 40 形によりポリカーボネート樹脂製の透明基板を作成し

[0057] との透明基板の各ゾーンのにおける $\theta1$ と θ 2 を測定すると図4のように、各ゾーンとも平均テー パ角 θ 1は74°、平均テーパ角 θ 2は67°であり、 また図5から明らかなように各ゾーンとも θ 2 $/\theta$ 1の 値は0.9であった。

【0058】との透明基板1のプリピットパターン上 に、前記構造式〔化4〕を有するシアニン色素と、アミ ニウム塩を溶媒に溶かし、スピンコート法により厚さ 1 50 し、ゾーン 1 は θ 0 = 6 0 、ゾーン 2 は θ 0 = 6 5

60 µmの記録層2を形成した。

【0059】との記録層の上に金からなる厚さ100n mの光反射層3を形成し、さらにこの記録層2および光 反射層3をオーバーコートするように、アクリル系の紫 外線硬化樹脂からなる厚さ 10μmの保護層を積層して 追記型光ディスクを作成した。

【0060】 この光ディスクに対して、波長 \ = 635 μ m のレーザービームを用い、ΝΑ=0.60の光学レ ンズを使用して、再生パワー0.1mW、線速1.2m (b) 中心のGNDからのオフセット率を測定した結果 を図6に示す。

> 【0061】(例5)トラックピッチ0. 74μmと し、図3に示すようにゾーン1(符号12)とゾーン2 (符号13) は θ 0 = 60° とし、ゾーン3(符号1 4)とゾーン4(符号15)は00=70°として例1 と同様にスタンパを作成し、そのスタンパを用いて射出 成形によりポリカーボネート樹脂製の透明基板を作成し

【0062】この透明基板の各ゾーンのにおける01と θ2を測定すると図4のように、ゾーン1,2の平均テ -バ角 θ 1は74°、平均テーバ角 θ 2は67°であ り、ゾーン3,4の平均テーパ角*θ* I は 8 1°、平均テ ーパ角θ2は65°であり、各ゾーンともテーパ角θ1 の方がテーパ角 82よりも大きい。

【0063】また図5から明らかなようにゾーン1、2 の $\theta 2/\theta 1$ の値は0.9、ゾーン3.4の $\theta 2/\theta 1$ の値は0.8で、各ゾーンとも θ 2 $/\theta$ 1の値は0.3 $\leq \theta$ 2 $\neq \theta$ 1 < 1 の範囲内にあるが、ディスクの外側領 外線硬化樹脂からなる厚さ 10μ mの保護層を積層して 30 域に相当するゾーン 304000 40000 10000 に相当するゾーン1, 2の θ 2 $/\theta$ 1値よりも段階的に 小さくなっている。

> 【0064】との透明基板1のプリピットパターン上 に、前記構造式〔化4〕を有するシアニン色素と、アミ ニウム塩を溶媒に溶かし、スピンコート法により厚さ1 60 µmの記録層2を形成した。

> 【0065】この記録層の上に金からなる厚さ100n mの光反射層3を形成し、さらにこの記録層2および光 反射層3をオーバーコートするように、アクリル系の紫 外線硬化樹脂からなる厚さ 10μmの保護層を積層して 追記型光ディスクを作成した。

> 【0066】 この光ディスクに対して、波長 \ = 635 μ m のレーザービームを用い、Ν A = 0. 6 0 の光学レ ンズを使用して、再生パワーO. 1mW、線速1. 2m /sで再生を行なった。そのときのPush-Pull (b) 中心のGNDからのオフセット率を測定した結果 は図6に示す例6(後述)とほぼ同様であるので、図示 を省略した。

【0067】(例6)トラックピッチ0. 74µmと

゛、ゾーン3はθ0=70゜、ゾーン4はθ0=75° として例1と同様にスタンパを作成し、そのスタンパを 用いて射出成形によりポリカーボネート樹脂製の透明基 板を作成した。

【0068】この透明基板の各ゾーンのにおける81と θ 2 を測定すると図4のように、ゾーン1の θ 1=74 ° でθ2=67°、ゾーン2のθ1=78° でθ2=6 6°、ゾーン3の θ 1=81°で角 θ 2=65°、ゾー ン4の01=83°で02=62°となっており、各ゾ ーンともテーパ角θ 1 の方がテーパ角θ 2 よりも大き £3_

[0069]また図5から明らかなように $\theta2/\theta1$ 値。 はゾーン1で0.9、ゾーン2で0.85、ゾーン3で 0.8、ゾーン4で0.75となっており、各ゾーンと $b\theta 2/\theta 1$ 値は $0.3 \le \theta 2/\theta 1 < 1$ の範囲内にあ るが、ディスクの内側領域から外側領域にいくに従って $\theta 2 / \theta 1$ 値が徐々に小さくなっている。

【0070】この透明基板1のプリピットパターン上 に、前記構造式〔化4〕を有するシアニン色素と、アミ ニウム塩を溶媒に溶かし、スピンコート法により厚さ 1 60 umの記録層2を形成した。

【0071】この記録層の上に金からなる厚さ100 n mの光反射層3を形成し、さらにこの記録層2および光 反射層3をオーバーコートするように、アクリル系の紫 外線硬化樹脂からなる厚さ10 µmの保護層を積層して 追記型光ディスクを作成した。

【0072】 この光ディスクに対して、波長 \ = 635 μmのレーザービームを用い、ΝΑ=0.60の光学レ ンズを使用して、再生パワー0. 1mW、線速1. 2m /sで再生を行なった。そのときのPush-Pull (b) 中心のGNDからのオフセット率を測定した結果 は図6に示す。

【0073】前記実施例では透明基板上をゾーン1~4 に分割し、各ゾーンの径方向の長さをほぼ同じにした が、本発明はこれに限定されるものではなく、ゾーンの 分割数も各ゾーンの径方向の長さも、必要に応じて適宜 変更できる。

[0074]

【発明の効果】図5の右側に各トラックピッチ(TP) でのオフセット特性の評価を示している。同図に示すよ 40 うに例1の如くTPが1. 6μmと比較的大きい場合 は、各ゾーンの 82/81値がディスクの全領域におい て同じであってもオフセット率は低いため、評価は最良 の©である。例2、3の如くTPが0.8μmとやや狭 くなると、例2よりも例3のようにθ2/θ1値をディ スク内周側領域よりも外周側領域の方を小さくした方が オフセット率は低くなり、評価は最良の◎である。さら にTPが0.74μmと狭小化すると、例4よりも例5 または06のように02/01値をディスク内周側領域 よりも外周側領域の方を段階的にあるいは徐々に小さく 50 8 フォトレジスト層

した方がオフセット率は低く、評価は最良の◎である。 【0075】本発明は前述のように、表面にグループと ランドを交互に同心円状または螺旋状に形成したプリフ ォーマットを有する透明基板の前記プリフォーマット上 にスピンコートにより記録層を形成する光ディスクにお いて、前記グルーブを透明基板の径方向に沿って断面し たときにグループの溝の両側面が、透明基板のランドと 平行な仮想面に対してそれぞれ傾斜しており、その溝に おける内周側の側面の前記仮想面に対する平均テーバ角 10 日1が、その溝における外周側の側面の前記仮想面に対 する平均テーパ角 θ 2よりも大きい(θ 1> θ 2) こと を特徴とするものである。

【0076】とのような構成にすることにより、記録層 の窪み(凹み)の中心とグルーブの中心のずれ量を小さ くまたは零にすることができ、すなわちトラッキングの 中心と記録ビットの中心のずれ量が抑制され、記録後の コントラスト比を十分確保し、特性低下を防止すること ができ、特に高密度記録に好適な光ディスクを提供する ことができる。

20 【図面の簡単な説明】

【図1】本発明の実施形態に係る光ディスクの一部拡大 断面図である。

【図2】ガラス基板に対する露光ビームの入射角、露光 強度、グループ溝側面の傾斜角との関係を示す説明図で ある。

【図3】透明基板上におけるゾーン1~4を示す説明図

【図4】本発明の各例における透明基板上の各ゾーンの θ 0, θ 1, θ 2とトラックピッチ (TP) を示した図 30 である。

【図5】本発明の各例における各ゾーンの θ 2/ θ 1 値、トラックピッチ(TP)、評価結果を示した図であ る。

【図6】本発明の各例におけるオフセット率を示す特性 図である。

【図7】従来の光ディスクの一部拡大断面図である。

【図8】本発明の実施例と従来例のそれぞれのPush - Pull(b)中心のGNDからのオフセット率を説 明するためのトラッキング信号の波形図である。

【符号の説明】

- 1 透明基板
- 2 記錄層
- 3 反射層
- 4 グループ
- 4 a グループのディスク内周側の側面
- 4 b グルーブのディスク外周側の側面
- 5 ランド
- 6 窪み(凹み)
- 7 記録ピット

9 ガラス基板

10 露光ビーム

.11 対物レンズ

12 ゾーン1

13 ゾーン2

14 ゾーン3

*15 ゾーン4

X ランドと平行な仮想面層

θ 1 グループのディスク内周側の側面の仮想面に対す

る平均テーパ角

θ2 グループのディスク外周側の側面の仮想面に対す

* る平均テーバ角

【図1】

13

[図3]

【図2】

【図4】

	12		13			14							
	ソーン1			ソーン2			ソーン3			ソーン4			TP
	80	91	92	80	81	92	80	91	82	80	81	82	
931	60	74	67	60	74	67	60	74	67	60	74	67	1.6
FR2	60	74	67	60	74	67	60	74	67	60	74	57	0.8
例3	80	74	67	60	74	67	70	81	6.5	70	81	65	0.6
例4	60	74	67	60	74	67	60	74	67	60	74	67	0.74
97/5	60	74	67	60	74	87	70	81	65	70	81	65	0,74
91 6	60	74	67	65	78	65	70	81	65	75	83	62	0.74

【図5】

	ソーン1	ソーン2	ソーン3	ソーン4	TP	押備
BUS	0.9	0.9	0.9	0.9	1.6	0
9 12	0.9	0.9	0.9	0.9	0.8	0
6 13	0.9	0.9	0.8	0.8	0.8	9
6 14	0.9	0.9	0.9	0.9	0.74	0
9)5	0.9	0.9	0.8	0.8	0.74	0
例6	0.9	0.85	0.8	0.75	0.74	0

【図6】

【図7】

[図8]

フロントページの続き

(72)発明者 松木 陽太 大阪府茨木市丑寅一丁目 1 番88号 日立マ クセル株式会社内 (72)発明者 大塚 隆裕

大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内

(72)発明者 大塚 幸一

大阪府茨木市丑寅一丁目 1 番88号 日立マクセル株式会社内

Fターム(参考) 5D029 JA04 WB03 WD10 WD11 WD19