Subject Code: R232143

KALLAM HARANADHAREDDY INSTITUTE OF TECHNOLOGY (AUTONOMOUS)

II B.Tech. I Semester (R23)

STATISTICAL METHODS FOR DATA SCIENCE Common to CSE(DS) & CSE (AI&DS)

Q. No.		Questions											BTL	Total Marks				
	1	<u> </u>					Unit-I						1	1				
		Following are the heads of income of Railways during 2004 and 2005. 2004									1	2						
	i	Coaching Goods Others Represent th	26 40 4.5				31 39 3.5					1	2					
1	ii	120 students experiences.	Areas Photo Clay 1 Kitche Doll r Book	college letails of wo graphy modell en gard making bindin	were a of thes rk experience with the service of th	asked e optio erience	to opt for ons are No. 6 30 48 12 24	as unde	er.			1	2	10M				
2.	i	The following basketball te Height (inches)	ng data eam. 70	72 190	75 200	78 240	83 218		72 172	64 170		1	2	10M				
	ii												1					
3.	i	Write briefly on principal component analysis. Is the function defined by $f(x) = \begin{cases} 0, x < 2 \\ \frac{1}{18}(2x+3), 2 \le x \le 4 \\ 0, x > 4 \end{cases}$ a probability distribution function. Find the probability that a variate having $f(x)$ as probability distribution will fall in the interval $2 \le x \le 3$.										1	1	10M				
	ii	Find the m probability f $f(x) = \begin{cases} 2e^{-1} \\ 0, x \end{cases}$	unctio	on $f(x)$			randor	n varia	able h	aving t	he	1	1					
4.	i	Suppose 2% probability chanded.	of th	e peop								1	1	10M				

	ii	20% of items probability that in $P(1 < x < 4)$.					•					1	1	
5.	i	Given that the mean height of students in a class is 158cms with standard deviation of 20cms. Find how many students heights lie between 150cms and 170cms if there are 100 students in the class.										1	1	10M
5.	ii	The distribution of life, in hours, of a bulb is known to be exponential with mean life of 600hours. What is the probability that i) it will not last for more than 500hours ii) it will last for 700hours?										1	1	10M
	Unit-II											1 1		ı
6.	i	In a study of an automobile insurance a random sample of 80 body repair costs had a mean of Rs.472.36 and the S.D. of Rs.62.35. If \overline{X} is used as a point estimate to the true average repair costs, with what confidence we can assert that the maximum error doesn't exceed Rs.10.											2	10M
	ii	Find 95% confidence limits for the mean of a normally distributed population from which the following sample 15, 17, 10, 18, 16, 9, 7, 11, 13, 14 was taken.									2	1		
	i	A sample of 64 students have a mean weight of 70kgs. Can this be regarded as a sample from a population with mean weight 56kgs and standard deviation 25kgs.										2	2	
7.	ii	Samples of students were drawn from two universities and from their weights in kilograms, mean and standard deviations are calculated and shown below. Make a large sample text to test the significance of the difference between the means. Mean							ulated	2	4	10M		
	i	University B 57 15 100 Write the procedure for testing of hypothesis.										2	1	
8.	ii	The life time of clarge consignme Item 1 Life in 1.2 1000hrs Can we accept the	electrint gave 2 4.6 ne hyp	ic bull we the 3 3.9	bs for follow 4 4.1	a rand ving d 5 5.2	lom sa lata 6 3.8	7 3.9	8 4.3	9 4.4	10 5.6	2	4	10M
9.	i	4000hrs. Use a 0.05 level of significance. The mean life of a sample of 10 electric bulbs was found to be 1456hours with standard deviation of 423hours. A second sample of 17 bulbs chosen from a different batch showed a mean life of 1280hours with standard deviation of 398hours. Is there a significant difference between the means of two batches?								2	1	10M		
	ii	A random sample a mean of 53 and to 150. Can this having 56 as mean population.	a sun samj	n of so ple be	quares regai	of dev	viatioi is tak	ns from en fro	n the im the	mean o	equals lation	2	4	10111

		To examine the hypothesis that the husbands are more intelligent than													
	i	the wives, an investigator took a sample of 10 couples and													
		administered them a test which measures the I.Q. The results are as													
10		follows:									2	4	10M		
10.		Husbands	117	105	97	105	123	109	86	78	103	107			TOW
		Wives	106	98	87	104	116	95	90	69	108	85			
		Test the hyp	othesi	s with	a rea	asonal	ole tes	t at the	e leve	elof	signif	icance			
		of 0.05.													

Course Advisor		BoS Chairman

II B. Tech I Semester (R23)

STATISTICAL METHODS FOR DATA SCIENCE Common to CSE(DS) & CSE (AI&DS) Short Questions

Q. No.	Questions	CO	BTL	Total Marks
	Unit-I		<u> </u>	IVIAIKS
1	Define the terms i) primary data ii) secondary data.	1	1	2M
2	Define the terms i) frequency distribution ii) probability distribution.	1	1	2M
3	Construct the frequency distribution table for the following data 8,10,15,19,20,15,8,19,16,8,15,10.	1	1	2M
4	Construct the probability distribution table for the number of heads on tossing a coin 2 times.	1	1	2M
5	Find mean of the following data 40,50,55,78,58,60,73,35,43,48.	1	1	2M
6	Find k of the following probability distribution Value of x 1 2 3 4 5 6 7 8 $P(X=x)$ 2 k 4 k 6 k 8 k 10 k 12 k 14 k 4 k	1	1	2M
7	Find mean of the following probability distribution $f(x) = \begin{cases} \frac{1}{4}(x+1), & -1 < x < 1 \\ 0, & \text{elsewhere} \end{cases}$	1	1	2M
8	If mean of the binomial distribution is 4 and variance is 2 then find <i>p</i> .	1	1	2M
9	If a random variable has a poisson distribution such that $P(1)=P(2)$, then find mean of the distribution.	1	1	2M
10	Find the value of $A(1.54) + A(0.27)$.	1	1	2M
	Unit-II			
11	Write the i) 99% and ii) 90% confidence limits for population mean.	2	1	2M
12	Write the formulae of sample size for estimating i) population mean and ii) population proportion.	2	2	2M
13	Determine a 95% confidence interval for the mean of a normal distribution with variance 0.25, using a sample of $n=100$ values with mean 212.3.	2	1	2M
14	State central limit theorem.	2	1	2M
15	Find $Z_{\alpha/2}$, where $\alpha = 99\%$ and $\alpha = 96.\%$	2	1	2M
16	Define the terms i) null hypothesis ii) alternative hypothesis.	2	1	2M
17	Define the terms i) type I error ii) type II error.	2	1	2M
18	Write the test statistics for the test of significance of i) single mean ii) equality of two means.	2	1	2M
19	Write the assumptions for Student's <i>t</i> -test.	2	1	2M
20	Determine i) $t_{0.01}$ with $\nu = 18$ ii) $t_{0.05}$ with $\nu = 12$.	2	4	2M