Import neccessery libraries

```
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn import preprocessing
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')
```

Problem

Perform Clustering for the crime data and identify the number of clusters formed and draw inferences

Import data

Out[2]:		Unnamed: 0	Murder	Assault	UrbanPop	Rape
	0	Alabama	13.2	236	58	21.2
	1	Alaska	10.0	263	48	44.5
	2	Arizona	8.1	294	80	31.0
	3	Arkansas	8.8	190	50	19.5
	4	California	9.0	276	91	40.6
	5	Colorado	7.9	204	78	38.7
	6	Connecticut	3.3	110	77	11.1
	7	Delaware	5.9	238	72	15.8
	8	Florida	15.4	335	80	31.9
	9	Georgia	17.4	211	60	25.8
	10	Hawaii	5.3	46	83	20.2
	11	Idaho	2.6	120	54	14.2
	12	Illinois	10.4	249	83	24.0
	13	Indiana	7.2	113	65	21.0
	14	lowa	2.2	56	57	11.3
	15	Kansas	6.0	115	66	18.0
	16	Kentucky	9.7	109	52	16.3
	17	Louisiana	15.4	249	66	22.2

	Unnamed: 0	Murder	Assault	UrbanPop	Rape
18	Maine	2.1	83	51	7.8
19	Maryland	11.3	300	67	27.8
20	Massachusetts	4.4	149	85	16.3
21	Michigan	12.1	255	74	35.1
22	Minnesota	2.7	72	66	14.9
23	Mississippi	16.1	259	44	17.1
24	Missouri	9.0	178	70	28.2
25	Montana	6.0	109	53	16.4
26	Nebraska	4.3	102	62	16.5
27	Nevada	12.2	252	81	46.0
28	New Hampshire	2.1	57	56	9.5
29	New Jersey	7.4	159	89	18.8
30	New Mexico	11.4	285	70	32.1
31	New York	11.1	254	86	26.1
32	North Carolina	13.0	337	45	16.1
33	North Dakota	0.8	45	44	7.3
34	Ohio	7.3	120	75	21.4
35	Oklahoma	6.6	151	68	20.0
36	Oregon	4.9	159	67	29.3
37	Pennsylvania	6.3	106	72	14.9
38	Rhode Island	3.4	174	87	8.3
39	South Carolina	14.4	279	48	22.5
40	South Dakota	3.8	86	45	12.8
41	Tennessee	13.2	188	59	26.9
42	Texas	12.7	201	80	25.5
43	Utah	3.2	120	80	22.9
44	Vermont	2.2	48	32	11.2
45	Virginia	8.5	156	63	20.7
46	Washington	4.0	145	73	26.2
47	West Virginia	5.7	81	39	9.3
48	Wisconsin	2.6	53	66	10.8

Data understanding

In [3]: crime_data.shape

(50, 5) Out[3]:

```
In [4]:
          crime_data.isna().sum()
         Unnamed: 0
                         0
 Out[4]:
         Murder
                         \cap
         Assault
                         0
         UrbanPop
         Rape
                         0
         dtype: int64
 In [5]:
          crime data.dtypes
         Unnamed: 0 object
 Out[5]:
         Murder
                       float64
         Assault
                         int64
         UrbanPop
                          int64
         Rape float64
         dtype: object
 In [6]:
          crime data 1 = crime data.copy()
 In [7]:
          crime data 1.columns=['City','Murder' , 'Assault', 'Urbanpop','Rape']
In [10]:
          crime data 1.loc[:,'Total'] = crime data 1.sum(numeric only=True, axis=1)
In [12]:
          crime_data_1.head()
                City Murder Assault Urbanpop Rape Total
Out[12]:
          0
            Alabama
                        13.2
                                236
                                          58
                                               21.2 328.4
          1
              Alaska
                        10.0
                                263
                                           48
                                               44.5 365.5
                                294
         2
             Arizona
                         8.1
                                          80
                                               31.0 413.1
         3 Arkansas
                                190
                                               19.5 268.3
                         8.8
                                           50
         4 California
                         9.0
                                276
                                          91
                                               40.6 416.6
In [14]:
          crime data 1.describe()
Out[14]:
                 Murder
                                                           Total
                           Assault Urbanpop
                                                Rape
          count 50.00000
                         50.000000
                                   50.000000
                                            50.000000
                                                       50.000000
                 7.78800 170.760000
                                   65.540000 21.232000 265.320000
          mean
                 4.35551
                         83.337661
                                   14.474763
                                             9.366385
                                                       98.350844
           std
                 0.80000
                         45.000000 32.000000
                                            7.300000
                                                       93.400000
           min
           25%
                 4.07500
                        109.000000
                                   54.500000 15.075000 187.950000
           50%
                 7.25000 159.000000
                                   66.000000 20.100000
                                                     257.450000
```

75%

11.25000

249.000000

77.750000

max 17.40000 337.000000 91.000000 46.000000 462.300000

26.175000

348.500000

```
In [16]: crime_data_1.shape

Out[16]: (50, 6)

In [87]: plt.scatter(crime_data_1.City, crime_data_1.Murder, color='g')
    plt.scatter(crime_data_1.City, crime_data_1.Assault, color='r')
    plt.scatter(crime_data_1.City, crime_data_1.Urbanpop, color='y')
    plt.scatter(crime_data_1.City, crime_data_1.Rape, color='b')
    plt.xlabel('city')
    plt.ylabel('rate')
    plt.show()
```


Data preprocessing

```
In [44]:
          X = crime data 1[['Murder', 'Assault', 'Rape', 'Urbanpop']]
In [45]:
          #standardize the data to normal distribution
          crime norm = preprocessing.scale(X)
In [46]:
          crime_norm = pd.DataFrame(crime_norm)
In [47]:
          crime norm.head()
Out[47]:
                                   2
         0 1.255179 0.790787 -0.003451 -0.526195
         1 0.513019 1.118060 2.509424 -1.224067
         2 0.072361 1.493817 1.053466
                                     1.009122
         3 0.234708 0.233212 -0.186794 -1.084492
         4 0.281093 1.275635 2.088814
                                     1.776781
```

Finding out the optimal number of clusters

```
In [56]:    plt.figure(figsize=(15, 12))
    wcss = []
    for i in range(1, 15):
        kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
        kmeans.fit(crime_norm)
        wcss.append(kmeans.inertia_)
    plt.plot(range(1, 15), wcss)
    plt.title('The Elbow Method')
    plt.xlabel('Number of clusters')
    plt.ylabel('WCSS')
    plt.show()
```


plot levels off at k=4 and let's use it to determine the clusters

Analysing the data using kmean

```
In [57]:
          k \text{ mean} = KMeans (n clusters = 4, init = 'k-means++', random state = 42)
          y kmean = kmeans.fit predict(crime norm)
In [58]:
          y_kmean
         array([ 0, 10, 4, 12,
                                      2,
                                  2,
                                          1, 3,
                                                   4,
                                                        Ο,
                                                            9,
                                                                    8,
                                                                         3,
                                                                                 3, 12,
                 0, 5, 4, 13,
                                  4, 5,
                                           6, 11, 12,
                                                        5,
                                                            2,
                                                                5, 13,
                                                                         4,
                                                                             8,
                                                                                 6,
                     3, 11, 3,
                                  1,
                                      6,
                                           7, 0,
                                                   8,
                                                        9,
                                                                3, 11,
                                                                                 3])
```

```
In [64]:
           y_kmean_1=y_kmean+1
           cluster = list(y_kmean_1)
In [65]:
           crime data 1['cluster'] = cluster
In [67]:
           kmean_cluster = pd.DataFrame(round(crime_data_1.groupby('cluster').mean(),1
           kmean cluster
                 Murder Assault Urbanpop Rape Total
Out[67]:
          cluster
               1
                     14.8
                           221.0
                                       60.8
                                             24.0 320.6
                           142.0
                                       82.0
                                              9.7 237.0
                     3.4
               3
                     9.7
                           244.0
                                       83.3
                                             41.8 378.8
                            145.0
                                             18.4 237.9
                                       67.6
               5
                    11.7
                           293.8
                                       74.2
                                             31.6 411.2
                     2.7
                           77.6
                                       58.9
                                             12.1 151.2
                     14.5
                           291.7
                                       45.7
                                             18.6 370.4
              7
               8
                     3.1
                            65.0
                                       40.0
                                             10.2 118.3
                           234.7
                                             25.2 354.3
              9
                     11.4
                                       83.0
                     4.2
                           83.0
                                       81.5
                                             21.5 190.3
              10
                     10.0
                                             44.5 365.5
              11
                           263.0
                                       48.0
                            160.7
                                       70.0
                                             27.9 264.5
              12
                     6.0
              13
                     8.2
                           136.0
                                       51.7
                                             17.4 213.2
                     5.9
                                       87.0
                                             17.6 264.4
              14
                            154.0
In [68]:
           kmean_cluster = pd.DataFrame(round(crime_data_1.groupby('cluster').count())
           kmean_cluster
Out[68]:
                 City Murder Assault Urbanpop Rape Total
          cluster
               1
                    4
                            4
                                    4
                                              4
                                                    4
                                                          4
               2
                                                          2
               3
                    3
                            3
                                    3
                                              3
                                                    3
                                                          3
                                                          8
```

5

6

7

5

3

5

3

5

3

5

3

5

7

3

5

7

3

City Murder Assault Urbanpop Rape Total

cluster

9	3	3	3	3	3	3
10	2	2	2	2	2	2
11	1	1	1	1	1	1
12	3	3	3	3	3	3

```
In [77]:
```

```
plt.figure(figsize=(12,8))
sns.scatterplot(x=crime_data_1['Murder'], y = crime_data_1['Urbanpop'],hue=
plt.show()
```



```
In [78]:
    plt.figure(figsize=(12,8))
    sns.scatterplot(x=crime_data_1['Murder'], y = crime_data_1['Assault'], hue=
    plt.show()
```


In [80]: plt.figure(figsize=(12,8))
 sns.scatterplot(x=crime_data_1['Rape'], y = crime_data_1['Assault'], hue=y_l
 plt.show()


```
In [83]:
    stats = crime_data_1.sort_values("Total", ascending=True)
    crime_total= pd.DataFrame(stats)
```

```
In [84]: crime_total.head()
```

Out[84]:		City	Murder	Assault	Urbanpop	Rape	Total	cluster
	44	Vermont	2.2	48	32	11.2	93.4	8
	33	North Dakota	0.8	45	44	7.3	97.1	8
	28	New Hampshire	2.1	57	56	9.5	124.6	6
	14	Iowa	2.2	56	57	11.3	126.5	6
	48	Wisconsin	2.6	53	66	10.8	132.4	6

- 1 Analysing Murder and Assault variables shows a clearer connection between them. Higher the murder rates in a city higer the assaults and vice versa
- 2 = Contrary to murders and assaults, there is much more spread among the clusters when comparing murders and rapes. Some correlation is visible, but low murder rates in a city seem to indicate lower number of rapes and vice versa
- 3 As with murder and assault, also rates of rape and assault show clearer correlations

In []:		