# Boosting

Myra O'Regan

November 22, 2017

## **Boosting - Adaboost**

- For weak classifiers slightly better than random
- Two very different ways of looking at this
- N observations in the training sets
- Sample with replacement N observations
- Look to see which obs are misclassified
- · Weight the cases which are misclassified more
- Sample again
- Repeat above steps
- Weighted Combination at the end

# **Boosting - Adaboost Original form**

- ullet y is coded as -1 and +1
- Initial compute initial weights  $= w_i^{(0)} = 1/N$
- Let M = no. of trees
- $\bullet$  For m=1 to M  $\{$
- Fit a classifier  $T_m(x)$  to training data with  $w_i^{(m)}$
- Compute  $err_m = \frac{\sum_{i=1}^N w_i^{(m)} I(y_i \neq T_m(x))}{\sum w_i^{(m)}}$
- Compute  $\alpha_m = ln((1 err_m)/err_m)$
- Update weight  $w_i^{m+1} = w_i^m exp[\alpha_m.I(y_i \neq T_m(x))]$
- In some versions weights are normalised to sum to 1
- Output sign $(\sum_{m=1}^{M} \alpha_m. T_m(x))$

2 / 14

# Some points about Boosting

- Compute  $\alpha_m = In((1 err_m)/err_m)$
- A classifier with 50% error is given zero weight
- A classifier with error rate < 50% given a negative weight

# Illustration of boosting



## Illustration of boosting



Weights after a few iterations

5 / 14

## **Generic algorithm for Ensembles**

```
Step 1- Choose \{p_m\}
F_0({\bf x})={\bf 0}
For m=1 to M {
          p_m = \text{argmin}_p \sum \ L(y_i, F_{m-1}(x_i) + T(x_i; p))
                                     i \in S_{n(n)}
                                    T_m(\mathbf{x}) = \mathbf{T}(\mathbf{x_i}; \mathbf{p})
                          F_m(\mathbf{x}) = \mathbf{F_{m-1}}(\mathbf{x}) + \nu \mathbf{T_m}(\mathbf{x})
write \{T_m(x)\}_1^M
```

# **Boosting - Adaboost**

- Second way
- ullet y is coded as +1 and -1
- $L(y, \hat{y}) = exp(y.\hat{y})^2$
- v = 1
- η = N
- $T_m(x)$ : any weak learner
- $c_0 = 0, \{c_m\}_1^M$ ; sequential partial regression coefficients
- Use **gbm** package in R

## Illustration of boosting, bagging and single trees





# Single tree



# 100 bagged trees



## **Boosting after 1 iteration**



## **Boosting after 3 iterations**



## **Boosting after 20 iterations**



## **Boosting after 100 iterations**

