Разработка и оптимизация оценочной функции для учета межмолекулярных взаимодействий в белковых комплексах

Даниил Никулин

Государственный университет «Дубна»
Институт системного анализа и управления
Кафедра распределенных информационно-вычислительных систем

Постановка задачи

Кинетический Монте-Карло

- белок-белок взаимодействия
- ▶ белки как «твердые» тела
- поступательные и вращательные движения
- оценка энергии связывания

Проблемы применения инструментов

- ориентированность на молекулярную динамику
- вычислительная сложность

Оценочная функция

- нековалентные взаимодействия
- ▶ силовое поле CHARMM
- неявный растворитель EEF1
- $F_{score} = E_{vdw} + E_{coulomb} + E_{solvent}$

Потенциал Леннарда-Джонса

$$E_v = \sum_{i,j} \left(\varepsilon_{ij} \left[\left(\frac{R_{ij}}{d_{ij}} \right)^{12} - 2 \left(\frac{R_{ij}}{d_{ij}} \right)^6 \right] \right), \ R_{ij} = \frac{R_i}{2} + \frac{R_j}{2}, \ \varepsilon_{ij} = \sqrt{\varepsilon_i \varepsilon_j}$$

- d_{ij} евклидово расстояние между центрами атомов
- $ightharpoonup R_i$ и R_j расстояния, на которых потенциал становится равным 0
- $ightharpoonup arepsilon_i$ и $arepsilon_i$ глубины потенциальных ям

Потенциал Кулона

$$E_c = \sum_{i,j} \left(\frac{1}{4\pi\varepsilon_r} \frac{q_i q_j}{d_{ij}} \left[\frac{d_{ij}^2}{k^2} - \frac{2d_{ij}}{k} + 1 \right] \right)$$

- $lacktriangledown d_{ij}$ евклидово расстояние между центрами атомов
- $ightharpoonup q_i$ и q_j фиксированные частичные атомные заряды
- $ightharpoonup arepsilon_r$ диэлектрическая константа
- ightharpoonup k коэффициент отсечения 14 Å

Неявный растворитель

$$E_s = \sum_{i} \Delta G_i + \sum_{i,j} \left(\frac{1}{2\pi\sqrt{\pi}} \left[-\Delta G_i e^{-\left(\frac{d_{ij} - R_i'}{\lambda_i}\right)^2} - \Delta G_j e^{-\left(\frac{d_{ij} - R_j'}{\lambda_j}\right)^2} \right] \right)$$

- lacktriangledown dij евклидово расстояние между центрами атомов
- $ightharpoonup \lambda_i$ и λ_j размеры гидратных оболочек атомов
- $lacktriangledown R_i^{'}$ Ван-Дер-Ваальсовы радиусы атомов, которые соответствуют половине расстояния в потенциале Леннард-Джонса
- lacktriangledown ΔG_i и ΔG_j энергии гидратации в зависимости от типа атома

Реализация оценочной функции

Алгоритм прямого перебора – $O(n^2 \cdot k \cdot (k-1)/2)$

- ▶ k количество цепей
- ightharpoonup n количество атомов в одной цепи

Алгоритм с использованием k-d дерева – $O(k^2 \cdot n \cdot build)$

- ▶ k количество цепей
- ightharpoonup n количество атомов в цепи, по которой будет построено k-d-дерево
- ightharpoonup build $O(n \cdot \log_2 n)$

В общем случае, сложность поиска всех соседей в k-d-дереве составляет $O(\log_2 n + k)$, где n – количество точек в дереве, а k – количество найденных соседей в заданном радиусе сферы взаимодействия атома.

Результаты оптимизации с использованием k-d дерева

Верификация выполняемых оценок

Верификация выполняемых оценок

$$\mathsf{F}_{\mathsf{s}} = F_s^{AB} - \left[F_s^A + F_s^B \right]$$

 $ightharpoonup F_s^{AB}$, F_s^A и F_s^B найдены с помощью разработанной оценочной функции значения.

Заключение

Результаты:

- ► Разработана и реализована оценочная функция с использованием набора параметров силового поля CHARMM в рамках библиотеки PSM.
- ► Выполнена оптимизация процедуры поиска взаимодействующих пар атомов с помощью применения структуры данных k-d-дерево.
- Проведены различные численные эксперименты, демонстрирующие приемлемую высокую корреляцию оценок с результатами силовых полей СНАRMM и Rosetta.
- ▶ На примере двух белков продемонстрировано преимущество применения структуры данных k-d-дерево для поиска взаимодействующих пар атомов.

Спасибо за внимание!