- 1. An integer $1 \le p \le |w|$ is called a period of a word w when w[i] = w[i+p] for every $1 \le i \le |w| p$. Prove that p is a period of w if and only if |w| p is a border of w.
- 2. Show that p being a period of a word w is equivalent to the following conditions:
 - 1. w is a subword of some x^k with |x| = p and k > 0,
 - 2. w may be written as $(uv)^k u$ with |uv| = p, nonempty v and k > 0,
 - 3. for some x, y and z, w = xy = yz with |x| = |z| = p.
- 3. Prove that if p and q are both periods of w such that $p + q \le |w|$ then gcd(p, q) is also a period of w.
- (2 points) 4. Prove that if p and q are both periods of w such that $p + q \le |w| + \gcd(p, q)$ then $\gcd(p, q)$ is also a period of w.
 - 5. Consider a modification of the failure function π known as the strong failure function π' . It is defined as follows: for each $i=1,2,\ldots,|w|-1$ we choose $\pi'[i]$ to be the longest proper border of w[1..i] such that $w[\pi'[i]+1]\neq w[i+1]$. If there is no such border, $\pi'[i]=-1$. Show how to (quickly) compute the values of π' given the values of π .
- 2 points) 6. Show that, if $\pi'[i] \neq -1$ and $\pi'[\pi'[i]] \neq -1$, then $i \geq \pi'[i] + \pi'[\pi'[i]] + 2$. Now consider the following procedure: start with j = i and then, as long as $\pi'[j] \neq -1$, set $j = \pi'[j]$. What is the maximum number of iterations of this process?
 - 7. Explain how to evaluate $\sum_{k=1}^n \alpha_i r^{n-k} \bmod q$ in O(n) time.
 - 8. Recall the definition of the fingerprint of a string S[1..n]:

$$\varphi_r(S) = \sum_{k=1}^{|S|} S[k] r^{|S|-k} \bmod q.$$

Explain how to compute $\phi_r(xy)$ from $\phi_r(x)$ and $\phi_r(y)$. Similarly, explain how to compute $\phi_r(x)$ from $\phi_r(xy)$ and $\phi_r(y)$. Extend the definition of a fingerprint so that such operations can be implemented in O(1) time.