What is claimed is:

1	1. /	A method for	detecting	presence	of a	user a	at a
			a o to o tii i a	DI COCITO	\sim	400.0	••

- telecommunication terminal, comprising the steps of:
- 3 testing acoustic paths communicating audio
- information from and back to the telecommunication terminal;
- 5 and
- determining the presence of the user based on
- 7 changes in the acoustic paths.
- 2. The method of claim 1 wherein the step of
- 2 testing comprises the steps of forming a model of the
- 3 acoustic paths;
- detecting modifications in the acoustic paths to
- 5 update the model of the acoustic paths; and

the step of determining comprises the step of using the detected modifications to determine changes in the acoustic paths.

- 3. The method of claim 2 wherein the step of
- 2 detecting comprises the steps of applying audio information
- 3 transmitted from the telecommunication terminal to the
- 4 model of the acoustic paths;
- receiving the transmitted audio information back by
- 6 the telecommunication terminal via the acoustic paths;
- 7 determining a difference between an output of the
- 8 model of acoustic paths from the received audio information;
- 9 and
- calculating a correction to the model of the acoustic
- paths using the difference and transmitted audio information.

1

2

3

4

1

2

- 4. The method of claim 1 wherein the audio information is at one of within human hearing, above human hearing and below human hearing.
- 5. The method of claim 1 wherein the step of
 determining the presence comprises the steps of developing
 the model of the acoustic paths with the user presence and
 not presence at the telecommunication terminal; and
 calculating a threshold of changes in the model of
 the acoustic paths that represents the presence or nonpresence of the user at the telecommunication terminal.
 - 6. The method of claim 1 further comprises the step of performing telecommunication operations by the telecommunication terminal in responsive to the presence or non-presence of the user at the telecommunication terminal.
 - 7. The method of claim 6 wherein the telecommunication operations are send-all-calls.
- 8. The method of claim 1 further comprises the 1 steps of controlling the telecommunication terminal by a 2 telecommunication switching system; 3 signaling the telecommunication switching system by the telecommunication terminal of the presence or non-5 presence of the user at the telecommunication terminal; and 6 performing telecommunication operations by the 7 telecommunication switching system in response to the 8 presence or non-presence of user at the telecommunication 9 terminal. 10

1	9. An apparatus for detecting presence of a user at
2	a telecommunication terminal, comprising:
3	a transmitter for transmitting audio information;
4	a receiver for receiving the transmitted audio
5	information via acoustic paths;
6	a model of the acoustic paths for using the audio
7	information before transmission and for producing an audio
8	output;
9	a comparator for determining a difference between
10	the audio output and received audio information;
11	a modifier for iteratively generating modifications for
12	the model of the acoustic paths in responsive to the
13	difference and audio information before transmission; and
14	a controller responsive to the modifications for
15	detecting the presence or non-presence of the user at the
16	telecommunication terminal.
1	10. The apparatus of claim 9 wherein the controller
2	further configured for determining modifications when the
3	user is presence and when the user is not presence; and
4	the controller calculating a threshold from the
5	determined modifications indicating the presence or non-
6	presence of the user.
1	11. The apparatus of claim 9 wherein the audio
2	information is at one of within human hearing, above human
3	hearing and below human hearing.
1	12. The apparatus of claim 11 wherein the type of

the audio information is controlled by the controller.

1	13. An apparatus for detecting presence of a user
2	at a telecommunication terminal, comprising:
3	an echo canceller for canceling echoes caused by
4	acoustic paths to audio information from and back to the
5	echo canceller; and
6	a controller responsive to changes in the echo
7	canceller for determining the presence and non-presence of
8	the user at the telecommunication terminal.
1	14. The apparatus of claim 13 wherein the audio
2	information is at one of within human hearing, above human
3	hearing and below human hearing.
1	15. The apparatus of claim 14 wherein the type of
2	the audio information is controlled by the controller.
1	16. The apparatus of claim 13 wherein the echo
2	canceller comprises a model of the acoustic paths;
3	a modifier for generating modifications to the model
4	based on changes to the acoustic paths; and
5	the controller responsive to the generated
6	modifications for determining the presence or non-presence
7	of the user at the telecommunication terminal.
1	17. The apparatus of claim 16 wherein the modifier
2	responsive to a difference in an output of the model of the
3	acoustic paths to audio information before transmission from
4	the echo canceller and received audio information via the
5	acoustic paths for generating the modification based on the

- 6 difference and the audio information before transmission.
- 18. An apparatus for determining presence of a
- 2 user at a telecommunication terminal, comprising:
- an echo detector for detecting echoes caused by
- 4 acoustic paths to audio information from and back to the
- 5 echo detector; and
- a controller responsive to changes in the echo
- 7 detector for determining the presence and non-presence of
- 8 the user at the telecommunication terminal.
- 1 19. The apparatus of claim 18 wherein the audio
- 2 information is at one of within human hearing, above human
- 3 hearing and below human hearing.
- 1 20. The apparatus of claim 19 wherein the type of
- the audio information is controlled by the controller.
- 1 21. The apparatus of claim 18 wherein the echo
- 2 detector comprises a model of the acoustic paths;
- a modifier for generating modifications to the model
- 4 based on changes to the acoustic paths; and
- 5 the controller responsive to the generated
- 6 modifications for determining the presence or non-presence
- 7 of the user at the telecommunication terminal.
- 1 22. The apparatus of claim 21 wherein the modifier
- 2 responsive to a difference in an output of the model of the
- 3 acoustic paths to audio information before transmission from
- the echo detector and received audio information via the

- acoustic paths for generating the modification based on the
- 6 difference and the audio information before transmission.
- 23. A method detecting presence of a user at a
- telecommunication terminal, comprising the steps of:
- 3 testing for human heat being radiated to the
- 4 telecommunication terminal; and
- 5 determining the presence of the user based on
- 6 changes in the radiated human heat.
- 1 24. The method of claim 23 wherein the step of
- 2 determining the presence comprises the steps of detecting
- 3 human heat with the user presence and not presence at the
- 4 telecommunication terminal; and
- 5 calculating a threshold of changes in the human
- 6 that represent the presence or non-presence of the user at
- 7 the telecommunication terminal.
- 1 25. The method of claim 24 further comprises the
- step of performing telecommunication operations by the
- 3 telecommunication terminal in responsive to the presence or
- 4 non-presence of the user at the telecommunication terminal.
- 1 26. The method of claim 25 wherein the
- telecommunication operations are send-all-calls.
- 1 27. The method of claim 24 further comprises the
- 2 steps of controlling the telecommunication terminal by a
- 3 telecommunication switching system;
- signaling the telecommunication switching system

6

8

- by the telecommunication terminal of the presence or non-5 presence of the user at the telecommunication terminal; and 6 performing telecommunication operations by the 7 telecommunication switching system in response to the 8 presence or non-presence of user at the telecommunication 9 terminal. 10 28. An apparatus for detecting presence of a user 1 at a telecommunication terminal, comprising: 2 a heat sensor for detecting human heat; and 3 a controller responsive to changes in the human 4 heat for determining the presence and non-presence of the 5
- 29. The apparatus of claim 28 wherein the 1 controller further configured for determining changes in 2 human heat when the user is presence and when the user is 3 not presence; and 4 the controller calculating a threshold from the 5 determined changes indicating the presence or non-6 presence of the user. 7

user at the telecommunication terminal.

30. A processor-readable medium for detecting 1 presence of a user at a telecommunication terminal, 2 comprising processor-executable instructions configured for: 3 testing acoustic paths communicating audio 4 information from and back to the telecommunication terminal; 5 and 6 determining the presence of the user based on 7 changes in the acoustic paths.

1	31. The processor-readable medium of claim 30
2	wherein the testing comprises forming a model of the
3	acoustic paths;
4	detecting modifications in the acoustic paths to
5	update the model of the acoustic paths; and
	the determining comprises using the detected modifications to determine changes in the acoustic paths.
1	32. The processor-readable medium of claim 31
2	wherein the detecting comprises applying audio information
3	transmitted from the telecommunication terminal to the
4	model of the acoustic paths;
5	receiving the transmitted audio information back by
6	the telecommunication terminal via the acoustic paths;
7	determining a difference between an output of the
8	model of acoustic paths from the received audio information;
9	and
10	calculating a correction to the model of the acoustic
11	paths using the difference and transmitted audio information
1	33. The processor-readable medium of claim 30
2	wherein the audio information is at one of within human
3	hearing, above human hearing and below human hearing.
1	34. The processor-readable medium of claim 30
2	wherein the determining the presence comprises developing
3	the model of the acoustic paths with the user presence and
4	not presence at the telecommunication terminal; and
5	calculating a threshold of changes in the model of
6	the acoustic paths that represents the presence or non-

- 7 presence of the user at the telecommunication terminal.
- 1 35. The processor-readable medium of claim 30
- 2 further comprises the performing telecommunication
- 3 operations by the telecommunication terminal in responsive
- 4 to the presence or non-presence of the user at the
- 5 telecommunication terminal.
- 1 36. The processor-readable medium of claim 35
- wherein the telecommunication operations are send-all-calls.
- 1 37. The processor-readable medium of claim 30
- 2 further controlling the telecommunication terminal by a
- 3 telecommunication switching system;
- 4 signaling the telecommunication switching system
- 5 by the telecommunication terminal of the presence or non-
- 6 presence of the user at the telecommunication terminal; and
- 7 performing telecommunication operations by the
- 8 telecommunication switching system in response to the
- 9 presence or non-presence of user at the telecommunication
- 10 terminal.