Analysis Intro hw2

Chengyu Hsieh, B13201053

(1) (i) For any $x, y \in X$,

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)} \ge \frac{0}{1+0} = 0$$

with the equality only holding when x = y.

(ii) For any $x, y \in X$,

$$d'(x,y) = \frac{d(x,y)}{1 + d(x,y)} = \frac{d(y,x)}{1 + d(y,x)} = d'(y,x)$$

(iii) For any $x, y, z \in X$, notice that

$$\begin{split} &(1-\frac{1}{1+d(x,y)}-\frac{1}{1-d(y,z)})+\frac{1}{1+d(x,y)+d(y,z)}\\ &\geq (1-\frac{1}{1+d(x,y)}-\frac{1}{1-d(y,z)})+\frac{1}{1+d(x,y)+d(y,z)+d(x,y)d(y,z)}\\ &=\frac{d(x,y)d(y,z)}{(1+d(x,y)(1+d(y,z)))}\geq 0 \end{split}$$

Hence $\left(1 - \frac{1}{1 + d(x,y)} - \frac{1}{1 - d(y,z)}\right) \ge -\frac{1}{1 + d(x,y) + d(y,z)}$

$$d'(x,z) = \frac{d(x,z)}{1+d(x,z)}$$

$$= 1 - \frac{1}{1+d(x,y)}$$

$$\leq 1 - \frac{1}{1+d(x,y)+d(y,z)}$$

$$\leq 1 + 1 - \frac{1}{1+d(x,y)} - \frac{1}{1-d(y,z)}$$

$$= (1 + \frac{1}{1+d(x,y)} + (1 + \frac{1}{1+d(y,z)})) = d'(x,y) + d'(y,z)$$

Thus d' is a metric on X.

(2) (a) Since B is clearly a subset of C and $\overline{B} = B \cup \partial B$, it suffice to prove that $\partial B \subseteq C$. Assume the opposite, that is, suppose $\exists x \in \partial B$ such that $x \notin C$. Since $x \notin C$, we have $d(x, x_0) > r$. Let $r_0 := d(x, x_0) - r > 0$. Since $x \in \partial B$, $B(x, r_0) \cap B \neq \emptyset$. Let $y \in B(x, r_0) \cap B$. Then $d(y, x_0) < d(x, x_0) - r$ and $d(x_0, y) < r$. Adding the two equations together gives us $d(x_0, y) + d(y, x) < d(x, x_0)$, which contradicts the triangle inequality. Thus $\partial B \subseteq C$ and $\overline{B} \subseteq C$.

(b) Consider the metric space (\mathbb{R}, d) where d is the discrete metric, and let $x_0 = 0, r = 1$. Since d(0, x) = 1 for any $x \neq 0$, we have $B = \{0\}$ and $C = \mathbb{R}$. Now see that for any 0 < r < 1 and $x \neq 0$, we have $d(x, 0) = 1 \not< r$, thus $B(x, r) \cap B = \emptyset$ and $B(0, r) \cap \mathbb{R} \setminus B = \emptyset$. Hence $\partial B = \emptyset$ and $\overline{B} = 0 \neq \mathbb{R} = C$.

(3) (a) Sufficiency:

Suppose E is open in (X, d_2) . Then int(E) = E in (X, d_2) . Thus for any $x \in E$, $\exists r > 0$ such that $B_{(X,d_2)}(x, C_2r) \subseteq E$. Now see that since $C_2d_2(x,y) \ge d_1(x,y)$, we have $B_{(X,d_1)}(x,r) \subseteq B_{(X,d_2)}(x,C_2r) \subseteq E$ for any $x \in E$. Hence int(E) = E $in(X,d_1)$, and so E is open is (X,d_1) .

Necessity:

Suppose E is open in (X, d_1) . Note that $\frac{1}{C_1}d_1(x, y) \geq d_2(x, y)$. The rest of the proof is analogous to that of the sufficiency section.

(b) Sufficiency:

Assume E is closed in (X, d_2) . Then $X \setminus E$ is open. By (a) we know that $X \setminus E$ is also open in (X, d_1) , therefore E is closed in (X, d_1) .

Necessity: The proof is analogous to that of the sufficiency section.

(c) Consider $(\mathbb{R}, d(x, y) := |x - y|)$ and $(\mathbb{R}, d'(x, y) := \min(1, |x - y|))$. Note that d is unbounded while d' is bounded, so they clearly are not Lipschitz equivalent. Now we prove that they are topologically equivalent.

For any $U \subset \mathbb{R}$ that is open in (\mathbb{R}, d) :

 $\forall x \in U, \exists r > 0 \text{ such that } B_d(x,r) \subseteq U.$ Note we may choose r < 1. Then $B'_d(x,r) = B_d(x,r) \subset U$.

Following similar arguments we see that any subset open in (\mathbb{R}, d') is also open in (\mathbb{R}, d) . Hence d and d' are topologically equivalent metrics.

(4) Let $L_C(x) := Cx$ for $x \in \mathbb{R}^n$, where $C \in \mathcal{M}_n$. Then L_C is linear and has the same rank as C.

Claim 1.
$$N(A-B) = \mathbb{R}^n \iff A=B$$

Proof. Assume $N(A-B)=\mathbb{R}^n$. Then $(A-B)x=0 \forall x \in \mathbb{R}^N$. Thus Ax=Bx for any x and hence A=B. Now assume A=B. Then A-B=0 and so $(A-B)x=0 \forall x \in \mathbb{R}^n$. Hence $N(A-B)=\mathbb{R}^n$.

- (i) By Claim 1, $\rho(A, B) = rank(A B) = n nullity(A B) \ge 0$ where the equality only holds when A = B.
- (ii) $\rho(A, B) = rank(A B) = rank(B A) = \rho(B, A)$.
- (iii) Note that $rank(A+B) \le rank(A) + rank(B)$. Hence $\rho(A,C) = rank(A-B+B-C) \le rank(A-B) + rank(B-C) = \rho(A,B) + \rho(B,C)$.

Hence ρ is a metric on \mathcal{M}_n .

(5) (a) $\partial E = X \setminus (int(E) \cup ext(E))$, thus $X \setminus \partial E = int(E) \cup ext(E)$. Suppose that $\exists x \in \partial(\partial E)$ such that $x \notin \partial E$. Since $x \notin \partial E$, $x \in int(E)$ or $x \in ext(E)$. If $x \in int(E)$, then $\exists r > 0$ such that $B(x,r) \subseteq E$. But $x \in \partial(\partial E)$ so $\emptyset \neq B(x,r) \cap ext(E) \subseteq B(x,r) \cap X \setminus E$, arriving at a contradiction. If $x \in ext(E)$, we arrive at a contradiction in a similar manner. Thus $\partial(\partial E) \subseteq \partial E$ and ∂E is closed.

- (b) Note that $\forall x \in \partial E, r > 0$, we have $(B(x,r) \cap E \neq \emptyset)$ and $B(x,r) \cap X \setminus E \neq \emptyset$) \iff $(B(x,r) \cap X \setminus (X \setminus E) \neq \emptyset)$ and $B(x,r) \cap X \setminus E \neq \emptyset$. Hence $\partial E = \partial(X \setminus E)$. Now see that $\overline{E} = \underline{int}(E) \cup \partial E$ and $\overline{X \setminus E} = ext(E) \cup \partial(X \setminus E) = ext(E) \cup \partial E$. From this we obtain $\overline{E} \cap \overline{X \setminus E} = \partial E$.
- (c) E is closed, so $\overline{E} = E$. E is open, so $X \setminus E$ is closed and $\overline{E \setminus X} = E \setminus X$. By (b), we have $\partial E = \overline{E} \cap \overline{X \setminus E} = E \cap (X \setminus E) = \emptyset$.
- (d) We work with the metric d = |x y|. Consider $S = \{1\}$. Then $\partial S = \{1\} \cap ([1, \infty] \cup [-\infty, 1]) = 1$. $\partial(\partial S) = \partial(\{1\}) = \{1\} \neq \emptyset$.
- (6) (a) Clearly, $A \subseteq S \subseteq T$. It suffice to prove that $T \subseteq \overline{A}^T$. Since $\overline{S}^T = T$, $\forall x_0 \in T$, $\forall r_0 > 0$, $B(x_0, r_0) \cap T \cap S \neq \emptyset$. Hence $\exists x_1 \in B(x_0, r_0) \cap T \cap S$. Since $\overline{A}^S = S$, $\forall r_1 > 0$, $B(x_1, r_1) \cap S \cap A \neq \emptyset$. Let $r_1 < r_0 d(x_0, x_1)$. Then $B(x_1, r_1) \subseteq B(x_0, r_0)$. Therefore $B(x_0, r_0) \cap T \cap A \supseteq B(x_1, r_1) \cap T \cap A \neq \emptyset \ \forall x_0 \in T$, $r_0 > 0$. We conclude that $A \subseteq T \subseteq \overline{A}^T$.
 - (b) Since B is open in S, $\forall b \in B \subseteq S$, $\exists r_0 > 0$ such that $B(b, r_0) \cap S \subseteq B$. Note $b \in \overline{A}^S$, so $\forall r > 0$, we have,

$$B(b,r) \cap S \cap A \neq \emptyset$$

Now for $0 < r \le r_0$,

$$\varnothing \neq B(b,r) \cap S \cap A \subseteq B(b,r_0) \cap S \cap A \subseteq B$$

 $\Rightarrow B(b,r) \cap S \cap A \cap B = B(b,r) \cap S \cap A \neq \varnothing$

. For $r > r_0$,

$$\varnothing \neq B(b, r_0) \cap S \cap A \subseteq B(b, r) \cap S \cap A$$

Also, $B(b, r_0) \cap S \cap A \subseteq B$, so $\exists y \in B(b, r) \cap S \cap A \cap B$
 $\Rightarrow B(b, r) \cap S \cap A \cap B \neq \varnothing$
 $\Rightarrow B(b, r) \cap S \cap (A \cap B) \neq \varnothing \ \forall b \in B, r > 0$
 $\Rightarrow B \subseteq \overline{A \cap B}^S$

(c) $A \cap B \subseteq S$ is trivial, so it suffice to show that $S \subseteq \overline{A \cap B}^S$. Note that by (b) we have $B \subseteq \overline{A \cap B}^S$, so it remains to show $S \setminus B \subseteq \overline{A \cap B}^S$. $\forall x_0 \in S \setminus B \subseteq \overline{B}^S$, $r_0 > 0$, we have $B(x_0, r_0) \cap S \cap B \neq \emptyset$. Pick $x_1 \in B(x_0, r_0) \cap S \cap B$. Since B is opened in S, $\exists r_1 > 0$ such that $B(x_1, r_1) \cap S \cap A \subseteq B(x_1, r_1) \cap S \subseteq B$. Note $x_1 \in \overline{A}^S$, so $\forall r > 0$ we have $B(x_1, r) \cap S \cap A \neq \emptyset$. Also $x_1 \neq x_0$. Let $r \leq \min(r_1, r_0 - d(x_0, x_1))$. Then $B(x_1, r) \cap S \cap A \subseteq B(x_1, r_1) \cap S \cap A \subseteq B$ and $B(x_1, r) \cap S \cap A \subseteq B(x_0, r_0) \cap S \cap A$. Hence $B(x_0, r_0) \cap S \cap A \cap B \supseteq B(x_1, r) \cap S \cap A \cap B = B(x_1) \cap S \cap A \neq \emptyset$. Then $x_0 \in \overline{A \cap B}^S$ and $S \setminus B \subseteq \overline{A \cap B}^S$. We conclude that $A \cap B \subseteq S \subseteq \overline{A \cap B}^S$ and S is dense in $A \cap B$.