PAWS: Elliptic Curves and Abelian Varieties

Nir Elber

Fall 2023

CONTENTS

How strange to actually have to see the path of your journey in order to make it.

—Neal Shusterman, [Shu16]

Contents		2
_	Homeworks 1.1 Homework 1	3
Bi	ibliography	8

THEME 1 HOMEWORKS

1.1 Homework 1

Problem 1.1.1. Go to https://www.lmfdb.org/Variety/Abelian/Fq/ and familiarize yourself with the database. Most of the words are probably unfamiliar right now, but by the end of PAWS you should have a pretty good idea of what most of them mean. Here are some questions to make this interesting:

- (a) How many isogeny classes of elliptic curves defined over finite fields does the LMFDB currently contain?
- (b) What percentage of these classes of curves are supersingular?^a
- (c) How many isogeny classes of elliptic curves defined over finite fields in the LMFDB have exactly 1 rational point?
- (d) Write down all elliptic curves defined over \mathbb{F}_2 .
 - (i) How many of these are supersingular?
 - (ii) How many rational points do they have?
 - (iii) One of these curves should have exactly one rational point. What is the characteristic polynomial of its Frobenius endomorphism?
 - (iv) Compare it to the L-polynomial of the isogeny class found in item (c).

^a See [Sil09, Chapter 5] for the definition of ordinary/supersingular elliptic curves.

Problem 1.1.2. Let E be the elliptic curve over $\mathbb Q$ defined by the Weierstrass equation $y^2z=x^3+17z^3$. Note that the following points are on $E(\mathbb Q)$:

$$P = [-2:3:1], \quad Q = [4:9:1].$$

- (a) Find at least five points on $E(\mathbb{Q})$ that are integer linear combinations^a of P and Q.
- (b) If you did item (a) by hand, check your calculations using your favorite computer algebra system.^b
- (c) Look up this curve in the LMFDB.

Problem 1.1.3. Let E be the elliptic curve over $\mathbb Q$ defined by

$$y^2z = x^3 - xz^2.$$

- (a) Using the group law defined in the lecture notes, compute the set of 2-torsion points $E[2](\overline{\mathbb{Q}})$.
- (b) Compute the 3-torsion points $E[3](\overline{\mathbb{Q}})$.
- (c) Verify that this is a minimal Weierstrass equation over \mathbb{Q} , in the sense of [Sil09, Chapter VII]. Show that in characteristic 2, the same equation above defines a singular curve. In particular, conclude that E has bad reduction at 2.
- (d) Verify that the same equation defines an elliptic curve \bar{E} over \mathbb{F}_3 . Compute the set of 3-torsion points $\bar{E}[3](\overline{\mathbb{F}}_3)$, and determine whether \bar{E} is ordinary or supersingular.
- (e) $(\star \star \star)$ Show that $(x,y) \mapsto (-x,iy)$ defines an endomorphism of $\bar{E}_{\mathbb{F}_{3^2}}$. Here i is a root of $x^2 + 1 \in \mathbb{F}_3[x]$. Can you use this to determine the endomorphism ring of $\bar{E}_{\mathbb{F}_{3^2}}$?

Problem 1.1.4. Let $q=p^r$ be a power of p, and assume p>3. Let E/\mathbb{F}_q be an elliptic curve with Weierstrass equation $E:y^2z=x^3+Axz^2+Bz^3$, with $A,B\in\mathbb{F}_q$. Define the p-Frobenius twist $E^{(p)}$ of E to be the curve defined by the Weierstrass equation $E^{(p)}:y^2z=x^3+A^px^2z+B^pxz^2$. We define the p-Frobenius morphism $\phi_p:E\to E^{(p)}$ to be the morphism given by $\phi_p:[x_0:y_0:z_0]\mapsto [x_0^p:y_0^p:z_0^p]$ on $\overline{\mathbb{F}_q}$ -points.

- (a) Show that $\Delta(E^{(p)}) = \Delta(E)^p$ and $j(E^{(p)}) = j(E)^p$. Conclude that $E^{(p)}$ is an elliptic curve.
- (b) Verify that ϕ_p is an isogeny. That is, verify that it is a morphism of abelian varieties which is surjective on $\overline{\mathbb{F}}_q$ -points and has finite kernel.

Now, define the q-Frobenius endomorphism by $\phi_q := \phi_p^r$. Note that $\phi_q([x_0:y_0:z_0]) = [x_0^q:y_0^q:z_0^q]$.

- (a) Show that ϕ_q is an endomorphism of E that commutes with any other endomorphism of E.
- (b) Show that the \mathbb{F}_q -rational points of E are exactly the $\overline{\mathbb{F}_q}$ -points of E fixed by ϕ_q . More generally, we have $E(\mathbb{F}_q n)$ is the set of fixed points of $\phi_{q^n} : E(\mathbb{F}_q b) \to E(\mathbb{F}_q b)$.

^a In fact, we can obtain every point in $E(\mathbb{Q})$ in this way!

^b For the relevant commands in SAGE, see this link.

^a Hint: 3P = 0 implies that 2P = -P.

^b Hint: consider the *p*-Frobenius, c.f. below.

^a This is to show that $E^{(p)}$ is a nonsingular plane cubic with a rational point O. You can use the fact that a plane cubic is nonsingular if and only if its discriminant is non-zero. For formulas of $\Delta(E)$ and j(E), see [Sil09, Section III.1].

Problem 1.1.5. Let n be a square-free positive integer and let E be the elliptic curve $y^2 = x^3 - n^2x$. Let q be a power of a prime p, such that p does not divide 2n, and $q \equiv 3 \pmod{4}$. Show that

$$\#E(\mathbb{F}_q) = q + 1.$$

Problem 1.1.6. Let X_1 and X_2 be varieties over a field k.

- (a) If X_1 and X_2 are given the structure of a group variety, show that their product $X_1 \times X_2$ naturally inherits the structure of a group variety.
- (b) Suppose $Y := X_1 \times X_2$ carries the structure of an abelian variety. Show that X_1 and X_2 each have a unique structure of an abelian variety such that $Y = X_1 \times X_2$ as abelian varieties.

Proof. Here we go. Let (X_1, e_1, i_1, μ_1) and (X_2, e_2, μ_2) be our needed abelian varieties throughout.

(a) This is direct. Note that the object $X_1 \times X_2$ continues to be a geometrically integral projective variety because all these adjectives are preserved by base change and composition, allowing us to run around the following square.

$$\begin{array}{ccc} X_1 \times X_2 & \longrightarrow & X_1 \\ \downarrow & & \downarrow \\ X_2 & \longrightarrow & \operatorname{Spec} k \end{array}$$

Now, we define $e \colon \operatorname{Spec} k \to X_1 \times X_2$ as $e := (e_1, e_2)$. We define $\mu \colon (X_1 \times X_2)^2 \to (X_1 \times X_2)$ via the composite

$$(X_1 \times X_2)^2 \cong X_1^2 \times X_2^2 \xrightarrow{(\mu_1, \mu_2)} X_1 \times X_2.$$

Lastly, we define $i := (i_1, i_2)$ to be the inversion map $X_1 \times X_2 \to X_2 \times X_2$.

We would like to check that all of our diagrams commute. This is essentially immediate. For example, to check that

$$(X_1 \times X_2)^3 \xrightarrow{(\mu,1)} (X_1 \times X_2)^2$$

$$\downarrow^{(1,\mu)} \qquad \qquad \downarrow^{\mu}$$

$$(X_1 \times X_2)^2 \xrightarrow{\mu} X_1 \times X_2$$

commutes, it is enough to check that it commutes on S-points for any scheme S (in particular, one can take $S=(X_1\times X_2)^3$ and then plug in the point id_S), but then this will directly follow from the construction and some group theory. I won't write this out.

(b) Note that there is an inclusion map $\iota_{\bullet}\colon X_{\bullet} \to Y$ by $\iota_{\bullet}(x) \coloneqq (x,e_2)$; rigorously, this is the map $(\mathrm{id}_{X_{\bullet}},e_2)$; similarly, there are projection maps $\pi_{\bullet}\colon Y \to X_{\bullet}$ given by $\pi_{\bullet}(x_1,x_2) \coloneqq x_{\bullet}$.

Now, for uniqueness, note that having $Y=X_1\times X_2$ implies that $\mu_Y=(\mu_1,\mu_2)$ and $i_Y=(i_1,i_2)$ and $e_Y=(e_1,e_2)$. Thus, we can recover e_\circ as $\pi_\bullet\circ e_Y$, we can recover i_\bullet as $\pi_\bullet\circ i_Y\circ \iota_\bullet$, and we can recover μ_\bullet as $\pi_\bullet\circ \mu_Y\circ (\iota_\bullet,\iota_\bullet)$.

Now, for existence

Problem 1.1.7. Let A_1, A_2, B_1, B_2 be abelian varieties over a field k. Show that

 $\operatorname{Hom}(A_1 \times A_2, B_1 \times B_2) \cong \operatorname{Hom}(A_1, B_1) \times \operatorname{Hom}(A_1, B_2) \times \operatorname{Hom}(A_2, B_1) \times \operatorname{Hom}(A_2, B_2).$

Proof. We will actually show that $A \times B$ is a biproduct in the category of abelian varieties, using the maps i_A , i_B , π_A , and π_B all defined in the previous problem. The result will then follow from general category theory.

Problem 1.1.8. A ring variety over a field k is a commutative group variety (X, +, 0) over k, together with a ring multiplication morphism $X \times X \to X$ written as $(x, y) \mapsto x \cdot y$, and a k-rational point $1 \in X(k)$, such that the ring multiplication is associative, distributive with respect to addition, and 1 is a 2-sided identity element. Show that the only connected complete ring variety is a point.

Problem 1.1.9. Let G be a group variety over a field k.

- (a) Show that there exists a unique irreducible component N containing the identity element e.
- (b) Show that N is a normal subgroup of finite index in G.
- (c) Show that irreducible components of G are exactly connected components of G. Conclude that if G is connected, then G is irreducible.
- (d) Show that each open subgroup of G contains N.
- (e) Show that each closed subgroup of finite index in G contains N.
- (f) Conclude that if G is connected, then G is the only open subgroup and is the only closed subgroup of finite index.

Problem 1.1.10. Let X be a variety over a field k. Write $k[\epsilon] := k[t]/(t^2)$ for the ring of dual numbers over k, and let $S := \operatorname{Spec}(k[\epsilon])$. Write $\operatorname{Aut}^1(X_S/S)$ for the group of automorphisms of X_S over S which reduce to the identity on the special fiber $X \hookrightarrow X_S$.

- (a) Let x be a k-valued point of X. Show that the tangent space $(T_X)_x := (\mathfrak{m}_x/\mathfrak{m}_x^2)^\vee$ is in natural bijection with the space of $k[\epsilon]$ -valued points of X which reduce to x modulo ϵ . (cf. [Har77, Chapter II, Exercise 2.8].)
- (b) Suppose $X = \operatorname{Spec}(A)$ is affine. Then we have:

$$H^0(X, \mathcal{T}_{X/k}) \cong \operatorname{Hom}(\Omega^1_{A/k}, A) \cong \operatorname{Der}_k(A, A)$$

Show that $H^0(X, \mathcal{T}_{X/k}) \cong \operatorname{Aut}^1(X_S/S)$. We denote this isomorphism as $h: H^0(X, \mathcal{T}_{X/k}) \to \operatorname{Aut}^1(X_S/S)$. Then for a group variety X that is not affine, we can take an affine cover of X and get the isomorphism $h: H^0(X, \mathcal{T}_{X/k}) \to \operatorname{Aut}^1(X_S/S)$.

(c) Suppose X is a group variety over k. Let $\tau:S\to X$ be a tangent vector at e, the identity section. Let t_{τ} be the right translation by τ morphism, so it is an element in $\operatorname{Aut}^1(X_S/S)$. Show that the associated global vector field $\zeta:=h^{-1}(t_{\tau})$ is invariant under the right-translation map. That is, $t_y^*\zeta=\zeta$ for all $y\in X(k)$. Here, $t_y(x)=m(x,y)$ is the right translation by y morphism. ^a

Problem 1.1.11. Show that every morphism from the projective line to an abelian variety is constant.^a

^a You can check [EVM12][Proposition 15, pg. 8] for a more explicit description of the associated vector field ζ . It turns out that the vector field is not preserved under the left translation. Can you see why?

^a Hint: The canonical bundle of an abelian variety is trivial.

Problem 1.1.12. Show that -dimensional abelian varieties have genus one. In particular, we can define an elliptic curve to be a 1-dimensional abelian variety.

BIBLIOGRAPHY

- [Har77] Robin Hartshorne. *Algebraic geometry*. Vol. No. 52. Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1977, pp. xvi+496. ISBN: 0-387-90244-9.
- [Sil09] Joseph H. Silverman. *The arithmetic of elliptic curves*. Second. Vol. 106. Graduate Texts in Mathematics. Springer, Dordrecht, 2009, pp. xx+513. ISBN: 978-0-387-09493-9. DOI: 10.1007/978-0-387-09494-6. URL: https://doi.org/10.1007/978-0-387-09494-6.
- [EVM12] Bas Edixhoven, Gerard Van der Geer, and Ben Moonen. *Abelian varieties*. Available at http://van-der-geer.nl/~gerard/AV.pdf. 2012.
- [Shu16] Neal Shusterman. Scythe. Arc of a Scythe. Simon & Schuster, 2016.