Applicant: Fumio Saitoh et al.

Serial No.: 10/627,353 Filed: July 25, 2003 Page: 2 of 16

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1-3 (Canceled)

4. (Currently Amended) A method of producing a film formed of a polybenzazole precursor, the polybenzazole precursor having a repeating unit shown by the following chemical formula (1) or (2),

$$\begin{array}{c|ccccc}
O & H & H & O \\
\parallel & & & \parallel & \parallel \\
C & N & N & C & Ar^2
\end{array}$$
... (1)

$$\begin{array}{c|cccc}
O & H \\
C & N & XH \\
HX & N & C & Ar^2 \\
& & H & O & n
\end{array}$$
... (2)

wherein X is any one selected from the group consisting of a sulfur atom, an oxygen atom, and an imino group; Ar^1 and Ar^2 are selected from aromatic hydrocarbon groups; and n is an integer of 10 to 500, comprising:

preparing a liquid containing the polybenzazole precursor, the concentration of the polybenzazole precursor in the liquid being 2-30% by weight;

Applicant: Fumio Saitoh et al.

Serial No.: 10/627,353 Filed: July 25, 2003 Page: 3 of 16

spreading the liquid in the form of a film;

applying a magnetic or electric field to the spread liquid in such a manner that the polybenzazole precursor in the spread liquid is oriented along a direction of the magnetic or electric field; and

solidifying the spread liquid after the application of the magnetic or electric field.

5. (Currently amended) The method according to claim 4, wherein said liquid either is a solution of the polybenzazole precursor prepared by dissolving the polybenzazole precursor in a solvent or is a molten state of polybenzazole precursor.

6-9 (Canceled)

10. (Currently Amended) A method of producing a film formed of a polybenzazole, comprising:

preparing a liquid containing a polybenzazole precursor, as a precursor of the polybenzazole, the polybenzazole precursor having a repeating unit shown by the following chemical formula (1) or (2),

$$\begin{array}{c|cccc}
O & H & H & O \\
\parallel & | & | & \parallel \\
C & N & N & C & Ar^2
\end{array}$$
... (1)

$$\begin{array}{c|cccc}
O & H \\
C & N & XH \\
HX & N & C & Ar^2 \\
& & H & O & n
\end{array}$$
... (2)

Applicant : Fumio Saitoh et al.

Attorney's Docket No.: 14157Serial No.: 10/627.353

Attorney's Docket No.: 14157011001 / P1P2003102US

Serial No.: 10/627,353 Filed: July 25, 2003

Page : 4 of 16

wherein X is any one of selected from the group consisting of a sulfur atom, an oxygen atom, and an amino group consisting of a sulfur atom, an oxygen atom, and an imino group; Ar¹ and Ar² are selected from aromatic hydrocarbon groups; and n is an integer of 10 to 500, the concentration of the polybenzazole precursor in the liquid being 2-30% by weight;

spreading the liquid in the form of a film;

applying a magnetic or electric field to the spread liquid in such a manner that the polybenzazole precursor in the spread liquid is oriented along a direction of the magnetic or electric field;

chemically converting the polybenzazole precursor in the spread liquid into the polybenzazole after the application of the magnetic or electric field; and

solidifying the spread liquid after the chemical conversion of the polybenzazole precursor into the polybenzazole.

- 11. (Currently amended) The method according to claim 10, wherein said liquid either is a solution of the polybenzazole precursor prepared by dissolving the polybenzazole precursor in a solvent or is a molten state of the polybenzazole precursor.
- 12. (Currently Amended) A method of producing a film formed of a polybenzazole, comprising:

preparing a liquid containing a polybenzazole precursor, as a precursor of the polybenzazole, the polybenzazole precursor having a repeating unit shown by the following chemical formula (1) or (2),

Applicant: Fumio Saitoh et al.

Serial No.: 10/627,353 Filed: July 25, 2003 Page: 5 of 16

 $\begin{array}{c|cccc}
O & H & H & O \\
\parallel & | & | & \parallel \\
C & N & N & C & Ar^2
\end{array}$... (1)

$$\begin{array}{c|cccc}
O & H & & & \\
 & \parallel & \mid & & \\
C & N & XH & & \\
 & & & & \\
HX & N & C & Ar^2 & \\
 & & \parallel & & \\
H & O & & & n
\end{array}$$
... (2)

wherein X is any one selected from the group consisting of a sulfur atom, an oxygen atom, and an imino group; Ar¹ and Ar² are selected from aromatic hydrocarbon groups; and n is an integer of 10 to 500, the concentration of the polybenzazole precursor in the liquid being 2-30% by weight;

spreading the liquid in the form of a film;

applying a magnetic or electric field to the spread liquid in such a manner that the polybenzazole precursor in the spread liquid is oriented along a direction of the magnetic or electric field;

solidifying the spread liquid after the application of the magnetic or electric field so as to produce a precursor film, as a film of the polybenzazole precursor; and

chemically converting the polybenzazole precursor contained in said precursor film into the polybenzazole.

13. (Currently amended) The method according to claim 12, wherein said liquid either is a solution of the polybenzazole precursor prepared by dissolving the polybenzazole precursor in a solvent or is a molten state of the polybenzazole precursor.

 Applicant : Fumio Saitoh et al.
 Attorney's Docket No.: 14157

 Serial No. : 10/627,353
 011001 / P1P2003102US

Serial No.: 10/627,353 Filed: July 25, 2003 Page: 6 of 16

14. (Currently Amended) A method of producing a film formed of a polybenzazole; comprising:

preparing a liquid containing the polybenzazole, the concentration of the polybenzazole precursor in the liquid being 2-30% by weight;

spreading the liquid in the form of a film;

applying a magnetic or electric field to the spread liquid in such a manner that the polybenzazole in the spread liquid is oriented along a direction of the magnetic or electric field; and

solidifying the spread liquid after the application of the magnetic or electric field.

15. (Original) The method according to claim 14, wherein said polybenzazole has a repeating unit shown by the following chemical formula (3) or (4),

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

wherein Y is any one selected form the group consisting of a sulfur atom, an oxygen atom, and an imino group; Ar^1 and Ar^2 are selected from aromatic hydrocarbon groups; and n is an integer of 10 to 500.

Applicant: Fumio Saitoh et al. Attorney's Docket No.: 14157-011001 / P1P2003102US

Serial No.: 10/627,353 Filed

: July 25, 2003

Page

: 7 of 16

16. (Currently amended) The method according to claim 14, wherein the liquid either is a solution of the polybenzazole prepared by dissolving the polybenzazole in a solvent or is a molten state of the polybenzazole.

17. (Canceled)

18. (Previously presented) The method according to claim 4, wherein the magnetic or electric field is applied to improve the anisotropy of the film to be formed.

19. (Canceled)

- 20. (Previously presented) The method according to claim 10, wherein the magnetic or electric field is applied to improve the anisotropy of the film to be formed.
- 21. (Previously presented) The method according to claim 12, wherein the magnetic or electric field is applied to improve the anisotropy of the film to be formed.
- 22. (Previously presented) The method according to claim 14, wherein the magnetic or electric field is applied to improve the anisotropy of the film to be formed.

23. (Canceled)

24. (Previously presented) The method according to claim 4, wherein the polybenzazole precursor is uniaxially oriented by the application of the magnetic or electric field.

25. (Canceled)

Applicant: Fumio Saitoh et al. Attorney's Docket No.: 14157-Serial No.: 10/627,353 011001 / P1P2003102US

Filed : July 25, 2003

Page : 8 of 16

26. (Previously presented) The method according to claim 10, wherein the polybenzazole precursor is uniaxially oriented by the application of the magnetic or electric field.

- 27. (Previously presented) The method according to claim 12, wherein the polybenzazole precursor is uniaxially oriented by the application of the magnetic or electric field.
- 28. (Previously presented) The method according to claim 14, wherein the polybenzazole is uniaxially oriented by the application of the magnetic or electric field.
- 29. (New) The method according to claim 10, wherein the chemical conversion of the polybenzazole precursor is performed by heating the spread liquid at 100 to 450°C.
- 30. (New) The method according to claim 12, wherein the chemical conversion of the polybenzazole precursor is performed by heating the spread liquid at 100 to 450°C.
- 31. (New) The method according to claim 4, wherein the preparation of the liquid includes causing a condensation reaction between a dicarboxylic acid having the following formula (5) or the amide-forming derivative thereof and a compound having the following formula (6) or (7) so as to obtain the polybenzazole precursor,

Applicant: Fumio Saitoh et al.

Serial No.: 10/627,353 Filed: July 25, 2003 Page: 9 of 16

wherein each of R¹, R², R³, and R⁴, independently, is selected from the group consisting of trialkylsilyl groups and hydrogen.

32. (New) The method according to claim 10, wherein the preparation of the liquid includes causing a condensation reaction between a dicarboxylic acid having the following formula (5) or the amide-forming derivative thereof and a compound having the following formula (6) or (7) so as to obtain the polybenzazole precursor,

wherein each of R^1 , R^2 , R^3 , and R^4 , independently, is selected from the group consisting of trialkylsilyl groups and hydrogen.

33. (New) The method according to claim 12, wherein the preparation of the liquid includes causing a condensation reaction between a dicarboxylic acid having the following formula (5) or the amide-forming derivative thereof and a compound having the following formula (6) or (7) so as to obtain the polybenzazole precursor,

Applicant: Fumio Saitoh et al. Attorney's Docket No.: 14157-011001 / P1P2003102US

Serial No.: 10/627,353 Filed : July 25, 2003

Page : 10 of 16

wherein each of R¹, R², R³, and R⁴, independently, is selected from the group consisting of trialkylsilyl groups and hydrogen.

34. (New) The method according to claim 14, wherein the preparation of the liquid includes causing a condensation reaction between a dicarboxylic acid having the following formula (5) or the amide-forming derivative thereof and a compound having the following formula (6) or (7) so as to obtain the polybenzazole precursor,

wherein each of R¹, R², R³, and R⁴, independently, is selected from the group consisting of trialkylsilyl groups and hydrogen.

Applicant : Fumio Saitoh et al.

Serial No. : 10/627,353

Attorney's Docket No.: 14157011001 / P1P2003102US

Serial No.: 10/627,353 Filed: July 25, 2003

Page : 11 of 16

35. (New) The method according to claim 4, wherein the magnetic field where the magnetic flux density is 1 to 30 telsa is applied to the spread liquid.

- 36. (New) The method according to claim 10, wherein the magnetic field where the magnetic flux density is 1 to 30 telsa is applied to the spread liquid.
- 37. (New) The method according to claim 12, wherein the magnetic field where the magnetic flux density is 1 to 30 telsa is applied to the spread liquid.
- 38. (New) The method according to claim 14, wherein the magnetic field where the magnetic flux density is 1 to 30 telsa is applied to the spread liquid.