Najkrajša pot z odstranljivimi ovirami

Gašper Terglav

20. junij 2024

Primer problema

Viability graf

Budget: 6, Epsilon: 0.5

Rešitev

Izberemo parameter natančnosti ϵ . Če ima viabilty graf vozlišča $v \in V$, potem ima nov graf vozlišča oblike $v_i \in V$, kjer $i = 0, \epsilon, 2\epsilon, \ldots, \lceil budget/\epsilon \rceil$.

Rešitev

Izberemo parameter natančnosti ϵ . Če ima viabilty graf vozlišča $v \in V$, potem ima nov graf vozlišča oblike $v_i \in V$, kjer $i = 0, \epsilon, 2\epsilon, \ldots, \lceil budget/\epsilon \rceil$.

Budget: 6, Epsilon: 0.5

Rešitev

Napaka algoritma je $1+2\epsilon$ v ceni.

Graph with Obstacles

Za vsak par točk v, u in vsak rob ovire e, pogledam,če \overline{vu} seka e. Če ja, dodam ceno ovire e k ceni \overline{vu} . V graf dodam vse daljice s ceno manj od budgeta.

Za vsak par točk v,u in vsak rob ovire e, pogledam,če \overline{vu} seka e. Če ja, dodam ceno ovire e k ceni \overline{vu} . V graf dodam vse daljice s ceno manj od budgeta. Časovna zahtevnost $O(n^3)$. Zahtevnost celotnega algoritma je potem $O(n^3/\epsilon)$

Za vsak par točk v,u in vsak rob ovire e, pogledam,če \overline{vu} seka e. Če ja, dodam ceno ovire e k ceni \overline{vu} . V graf dodam vse daljice s ceno manj od budgeta. Časovna zahtevnost $O(n^3)$. Zahtevnost celotnega algoritma je potem $O(n^3/\epsilon)$

	n (število oglišč)				
	40	180	360	860	
Čas	0.5s	36s	301s	1ura 16min	

Tabela: Vpliv n na čas iskanja poti

	ϵ			
	0.01	10^{-3}	10^{-4}	10^{-5}
Čas	0.5s	5s	57s	memory full

Tabela: Vpliv vrednosti ϵ na čas iskanja poti

Problem:

Za vsako točko v, ostale točke uredim glede na kot z vodoravno premico in jih nato pregledam po vrsti. Robove ovir shranjujem v AVL drevo.

Za vsako točko v, ostale točke uredim glede na kot z vodoravno premico in jih nato pregledam po vrsti. Robove ovir shranjujem v AVL drevo.

Za vsako točko v, ostale točke uredim glede na kot z vodoravno premico in jih nato pregledam po vrsti. Robove ovir shranjujem v AVL drevo.

Časovna zahtevnost $O(n^3)$. Zahtevnost celotnega algoritma je potem $O(n^3/\epsilon)$

	n (število oglišč)				
	40	180	360	860	
Čas	0.7s	50s	393s	1ura 28min	

Tabela: Vpliv n na čas iskanja poti

	ϵ				
	0.01	10^{-3}	10^{-4}	10^{-5}	
Čas	1s	11s	126s	memory full	

Tabela: Vpliv vrednosti ϵ na čas iskanja poti

• Določimo navpično premico p, ki razdeli točke na dva množici približno enake moči. Za vsako točko v je v' njena projekcija na p.

- Določimo navpično premico p, ki razdeli točke na dva množici približno enake moči. Za vsako točko v je v' njena projekcija na p.
- Poiščemo prvi rob ovire z navpičnim naklonom, ki seka $\overline{vv'}$. Označimo presečišče z x. Če obstaja presečišče roba s p (označimo ga z y). Dodamo v graf \overline{xy} .

- Določimo navpično premico p, ki razdeli točke na dva množici približno enake moči. Za vsako točko v je v' njena projekcija na p.
- Poiščemo prvi rob ovire z navpičnim naklonom, ki seka $\overline{vv'}$. Označimo presečišče z x. Če obstaja presečišče roba s p (označimo ga z y). Dodamo v graf \overline{xy} .
- Ponovimo za prvi negativen rob.

- Določimo navpično premico p, ki razdeli točke na dva množici približno enake moči. Za vsako točko v je v' njena projekcija na p.
- Poiščemo prvi rob ovire z navpičnim naklonom, ki seka $\overline{vv'}$. Označimo presečišče z x. Če obstaja presečišče roba s p (označimo ga z y). Dodamo v graf \overline{xy} .
- Ponovimo za prvi negativen rob.
- Rekurzivno ponovimo na levi in desni strani p.

- Določimo navpično premico p, ki razdeli točke na dva množici približno enake moči. Za vsako točko v je v' njena projekcija na p.
- Poiščemo prvi rob ovire z navpičnim naklonom, ki seka $\overline{vv'}$. Označimo presečišče z x. Če obstaja presečišče roba s p (označimo ga z y). Dodamo v graf \overline{xy} .
- Ponovimo za prvi negativen rob.
- Rekurzivno ponovimo na levi in desni strani p.
- Ponovimo vse do sedaj $\lceil 1/\epsilon \rceil$ -krat, le da vsakič zarotiramo ravnino za kot $2\pi\epsilon$.

Primer:

Za algoritem je treba določiti samo cene navpičnih in vodoravnih poti. Rešitev: persistent search tree.

Časpvna zahtevnost bi morala biti $O(\frac{nh}{\epsilon^2}\log n\log \frac{n}{\epsilon})$.

	ϵ				
	0.5	0.25	0.1	0.01	0.001
Čas	0.01s	0.03s	0.5s	31s	4651

Tabela: Vpliv vrednosti ϵ na čas iskanja poti

	n				
	15	40	180		
Čas	0.37s	24s	905s		

Tabela: Vpliv n na čas iskanja poti ($\epsilon = 0.2$)