Cambridge (CIE) A Level Chemistry

Proton (1H) NMR Spectroscopy

Contents

- * Proton (1H) NMR Spectroscopy
- * Tetramethylsilane (TMS) & Deuterated Solvents

Proton (1H) NMR Spectroscopy

Interpreting & Explaining Proton (1H) NMR Spectra

- Nuclear Magnetic Resonance (NMR) spectroscopy is used for analysing organic compounds
- Atoms with odd mass numbers usually show signals on NMR
- In ¹H NMR, the magnetic field strengths of protons in organic compounds are measured and recorded on a spectrum
- Protons on different parts of a molecule (in different molecular environments) emit different frequencies when an external magnetic field is applied
- All samples are measured against a reference compound Tetramethylsilane (TMS)
 - TMS shows a single sharp peak on NMR spectra, at a value of zero
 - Sample peaks are then plotted as a 'shift' away from this reference peak
 - This gives rise to 'chemical shift' values for protons on the sample compound
 - Chemical shifts are measured in parts per million (ppm)

Features of an NMR spectrum

- NMR spectra show the intensity of each peak against its chemical shift
- The area under each peak gives information about the number of protons in a particular environment
- The height of each peak shows the intensity/absorption from protons
- A single sharp peak is seen to the far right of the spectrum
 - This is the reference peak from TMS
 - Usually at chemical shift 0 ppm

Low resolution 1H NMR for ethanol

The key features of this spectrum are the number and position of the peaks

Molecular environments

- Hydrogen atoms of an organic compound are said to reside in different molecular environments
 - E.g. Methanol has the molecular formula CH₃OH
 - There are 2 molecular environments: -CH₃ and -OH
- The hydrogen atoms in these environments will appear at 2 different chemical shifts
- Different types of protons are given their own range of chemical shifts

Worked Example

How many different ¹H chemical environments occur in 2-methylpropane?

Answer:

- Two different ¹H chemical environments occur in 2-methylpropane
- The three methyl groups are in the same ¹H environment
 - The lone hydrogen is in its own ¹H environment

Chemical shift values for 'H molecular environments table

Environment of proton	Example	Chemical shift range, δ / ppm	
alkane	-CH ₃ , -CH ₂ -, >CH-	0.9 - 1.7	
alkyl next to C=O	CH ₃ -C=O, -CH ₂ -C=O, >CH-C=O	2.2 - 3.0	
alkyl next to aromatic ring	CH_3 -Ar, - CH_2 -Ar, > CH_2 -Ar	2.3 - 3.0	
alkyl next to electronegative atom	CH ₃ -O, CH ₂ -O, CH ₂ -Cl	3.2 - 4.0	
attached to alkene	=C H R	4.5 - 6.0	
attached to aromatic ring	H –Ar	6.0 - 9.0	
aldehyde	H COR	9.3 - 10.5	
alcohol*	RO H	0.5 - 6.0	
phenol*	Ar-OH	4.5 - 7.0	
carboxylic acid	RCOO H	9.0 - 13.0	
alkyl amine*	R-N H -	1.0 - 5.0	
aryl amine*	Ar-N H ₂	3.0 - 6.0	
amide	RCON H R	5.0 - 12.0	

 $\star \delta$ values for O-H protons and N-H protons vary depending on the solvent and concentration

- Protons in the same chemical environment are chemically equivalent
 - 1,2-dichloroethane, CI-CH₂-CH₂-CI has one chemical environment as these four hydrogens are all exactly equivalent
- Each individual peak on a ¹H NMR spectrum relates to protons in the same environment
 - Therefore, 1,2-dichloroethane would produce one single peak on the NMR spectrum as the protons are in the same environment

Identifying molecular environments in 1,2-dichloroethane

All four protons in the 1,2-dichloroethane molecule are equivalent

Low resolution 1H NMR

- Peaks on a low resolution NMR spectrum refer to molecular environments of an organic compound
 - E.g. Ethanol has the molecular formula CH₃CH₂OH
 - This molecule as 3 separate environments: -CH₃, -CH₂, -OH
 - So 3 peaks would be seen on its spectrum at 1.2 ppm (-CH₃), 3.7 ppm (-CH₂) and 5.4 ppm (-OH)

Low resolution NMR spectrum of ethanol

The low resolution NMR spectrum of ethanol shows 3 peaks for the 3 molecular environments

High resolution H NMR

- More structural details can be deduced using high resolution NMR
- The peaks observed on a high resolution NMR may sometimes have smaller peaks clustered together
- The splitting pattern of each peak is determined by the number of protons on neighbouring environments

The number of peaks a signal splits into = n + 1

• (Where n = the number of protons on the adjacent carbon atom)

Predicting Shifts & Splitting Patterns Spin-Spin Splitting

- A high resolution ¹H NMR spectrum can show you the structure of the molecule but also the peaks can be split into sub-peaks or splitting patterns
- These are caused by a proton's spin interacting with the spin states of nearby protons that are in different environments
 - This can provide information about the number of protons bonded to adjacent carbon atoms
 - The splitting of a main peak into sub-peaks is called spin-spin splitting or spin-spin coupling

High resolution HNMR spectrum of ethanol

The high resolution ¹H NMR spectrum of ethanol showing the splitting patterns of each of the 3 peaks. Using the n+1, it is possible to interpret the splitting pattern

Examiner Tips and Tricks

- It is very rare that the spin-spin splitting of equivalent protons is covered in teaching because it is so rarely asked in exams
- Equivalent protons do **not** cause spin-spin splitting
 - The simplest example of this is benzene
 - In benzene, all of the protons are equivalent
 - This means that they are seen as one singlet in the high resolution ¹H NMR spectrum of benzene

The n+1 rule

- The number of sub-peaks is one greater than the number of adjacent protons causing the splitting
 - For a proton with *n* protons attached to an adjacent carbon atom, the number of sub-peaks in a splitting pattern = n+1
- When analysing spin-spin splitting, it shows you the number of hydrogen atoms on the adjacent carbon atom
- These are the splitting patterns that you need to be able to recognise from a ¹H spectra:

¹H NMR peak splitting patterns table

Number of adjacent protons (n)	Splitting pattern using the n+1 rule the peak will split into	Relative intensities in splitting pattern	Shape
0	1, singlet		
1	2, doublet	1:1	
2	3, triplet	1:2:1	
3	4, quartet	1:3:3:1	

- Splitting patterns must occur in pairs because each proton splits the signal of the other
- There are some common splitting pairs you will see in a spectrum however you don't need to learn these but can be worked out using the n+1 rule

• You will quickly come to recognise the triplet / quartet combination for a CH₃CH₂ because it is so common

Common pair of splitting patterns

- A quartet and a triplet in the same spectrum usually indicate an ethyl group, CH₃CH₂-
- The signal from the CH₃ protons is split as a triplet by having two neighbours
- The signal from the CH₂ protons is split as a quartet by having three neighbours
- Here are some more common pairs of splitting patterns

Common pairs of splitting patterns

¹H NMR spectrum of propane

- The CH₂ signal in propane (blue) is observed as a heptet because it has six neighbouring equivalent H atoms (n+1 rule), three on either side in two equivalent CH₃ groups
- The CH₃ groups (red) produce identical triplets by coupling with the CH₂ group

Worked Example

For the compound $(CH_3)_2CHOH$, predict the following:

- 1. The number of peaks
- 2. The type of proton and chemical shift
- 3. The relative peak areas
- 4. The splitting pattern

Answers:

- 1. The number of peaks
 - 3 peaks
- 2. The type of proton and chemical shift
 - (CH₃)₂CHOH at 0.9 1.7 ppm
 - (CH₃)₂C**H**OH at 3.2 4.0 ppm
 - (CH₃)₂CHO**H** at 0.5 6.0 ppm
- 3. The relative peak areas
 - Ratio 6:1:1
- 4. The splitting pattern
 - (CH₃)₂CHOH split into a doublet (1+1=2)
 - (CH₃)₂C**H**OH split into a heptet (6+1=7)

Tetramethylsilane (TMS) & Deuterated Solvents

Use of Tetramethylsilane (TMS)

- In NMR spectroscopy, tetramethylsilane (TMS) is used as a reference compound
- The organic compound is dissolved in TMS before being introduced to the magnetic field of the spectrometer
- It is an ideal chemical to use as a reference
 - TMS is inert and volatile
 - This reduces undesirable chemical reactions with the compound to be analysed
 - It also mixes well with most organic compounds
- TMS gives a single sharp peak on the NMR spectrum and is given a value of zero
- The molecular formula of TMS is Si(CH₃)₄
 - There are 12 hydrogens in this molecule
 - All of the protons are in the same molecular environment. Therefore gives rise to just one peak
 - This peak has a very high intensity as it accounts for the absorption of energy from 12

The structure of tetramethylsilane

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{I} \\ \mathsf{H_3C-Si-CH_3} \\ \mathsf{I} \\ \mathsf{CH_3} \end{array}$$

Tetramethylsilane (TMS) - Si(CH₃)₄

- When peaks are recorded from the sample compound, they are measured and recorded by their shift away from the sharp TMS peak
- This gives rise to the **chemical shift** values for different ¹H environments in a molecule

The 'H NMR spectrum for tetramethylsilane

¹H NMR spectrum for TMS showing its signal at 0 ppm

Deuterated Solvents in Proton NMR

- When samples are analysed through NMR spectroscopy, they must be dissolved in a solvent
- Tetramethylsilane (TMS) is a commonly used solvent in NMR as it gives one sharp reference peak on NMR spectra
- However, the proton atoms can still interfere with peaks of a sample compound
- To avoid this interference, solvents containing deuterium can be used instead, e.g. CDCl₃
 - Deuterium (²H) is an isotope of hydrogen (¹H)
- Deuterium nuclei absorb radio waves in a different region to the protons analysed in organic compounds
- Therefore, the reference solvent peak will not interfere with those of the sample

Identifying the -OH or -NH signal in an NMR spectrum

- In ¹H NMR, samples are dissolved in a solvent to help separate molecules and prevent them from interacting
- The solvent must:
 - Be a good solvent for organic molecules
 - Not contain any hydrogen (1H) atoms, so it does not interfere with the NMR signals

Deuterated and non-deuterated solvents

■ Carbon tetrachloride, CCl₄:

- This solvent does not contain hydrogen, so it does not produce ¹H NMR signals.
- It is suitable for ¹H NMR but does not dissolve all molecules well.
- Deuterated solvents are often used in ¹H NMR spectroscopy because deuterium (2H) is an isotope of hydrogen with no nuclear spin, which does not affect NMR results

- This is often preferred because it contains **deuterium** (²H) instead of hydrogen, so it does not interfere with the proton NMR spectrum
- Deuterium oxide / Heavy water, D₂O:
 - The deuterium atoms exchange reversibly with the protons in the -OH and -NH groups, allowing these signals to be identified in the NMR spectrum

Identifying -OH and -NH signals

- Protons in -OH (hydroxyl) and -NH (amine) groups give singlet peaks in ¹H NMR, but these signals can be tricky:
 - They are **broad** or sometimes fall outside normal chemical shift ranges
 - The proton in these groups exchanges quickly with protons from water or acids, so only one peak appears
 - Their chemical shift ranges may overlap with other types of protons, making them difficult to interpret
- To identify these groups more clearly, proton exchange with **deuterium oxide (D₂O)** is used:
 - The deuterium atoms in D₂O exchange reversibly with the protons in the -OH or -NH groups

$$-OH + D_2O \Rightarrow -OD + HOD$$

$$-NH-CO-+D_2O \rightleftharpoons -ND-CO+HOD$$

- Since deuterium does not absorb in the same region as protons in the NMR spectrum, the signal for -OH or -NH disappears after D_2O is added
- This confirms the presence of -OH or -NH groups in the molecule
 - If a peak disappears after adding D_2O_1 , it must have been due to the exchange of a proton from an -OH or -NH group
- This technique is particularly useful because -OH and -NH peaks can be broad and difficult to assign confidently without D_2O exchange

