MAT-255- Number Theory

Spring 2024

IN CLASS WORK FEBRUARY 21

Your Name: _____ Group Members:_

Let p be an odd prime. Use that $\left(\left(\frac{p-1}{2}\right)!\right) \equiv (-1)^{(p+1)/2} \pmod{p}$ to show In-class Problem 1

(a) If
$$p \equiv 1 \pmod{4}$$
, then $\left(\left(\frac{p-1}{2}\right)!\right)^2 \equiv -1 \pmod{p}$

(b) If
$$p \equiv 3 \pmod{4}$$
, then $\left(\left(\frac{p-1}{2}\right)!\right)^2 \equiv 1 \pmod{p}$

Solution: (a) Let p be a prime with $p \equiv 1 \pmod{4}$. Then p = 4k + 1 for some $k \in \mathbb{Z}$. From part (a),

$$\left(\left(\frac{p-1}{2} \right)! \right) \equiv (-1)^{(p+1)/2} \equiv (-1)^{(4k+1+1)/2} \equiv (-1)^{2k+1} \equiv -1 \pmod{p}.$$

(b) Let p be a prime with $p \equiv 3 \pmod{4}$. Then p = 4k + 3 for some $k \in \mathbb{Z}$. From part (a),

$$\left(\left(\frac{p-1}{2} \right)! \right) \equiv (-1)^{(p+1)/2} \equiv (-1)^{(4k+3+1)/2} \equiv (-1)^{2k+2} \equiv 1 \pmod{p}.$$