$$x^{2} + y^{2} + 2gx + 2fy + c = 0$$
 and the line $ax + by + c = 0$ is
$$x^{2} + y^{2} + 2gx + 2fy + c + k(ax + by + c) = 0$$
 [where $k = constant$].

(7) The position of a point
$$P(x_1, y_1)$$
 w.r.t. the circle $x^2 + y^2 + 2gx + 2fy + c = 0$

If
$$x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c > 0$$
, then outside the circle

= 0, then on the circle

< 0, then inside the circle

(8) (i) The equation of tangent to the circle
$$x^2 + y^2 = a^2$$
 at $P(x_1, y_1)$ is
$$xx_1 + yy_1 = a^2$$
 & its length is
$$\sqrt{x_1^2 + y_1^2 - a^2}.$$

(ii) The equation of tangent to the circle
$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 at $P(x_1, y_1)$ is $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$ & its length is
$$\sqrt{x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c}.$$

(9) (i) The equation of normal to the circle
$$x^2 + y^2 = a^2$$
 at $P(x_1, y_1)$ is $xy_1 - x_1y = 0$.

(ii) The equation of normal to the circle
$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 at $P(x_1, y_1)$ is $(x_1 + g)(y - y_1) = (y_1 + f)(x - x_1)$.

(10) (i) If the circle
$$(x - \alpha)^2 + (y - \beta)^2 = a^2$$
 touches $X - axis$, then its equation will be $(x - \alpha)^2 + (y - a)^2 = a^2$.

(ii) If the circle
$$(x - \alpha)^2 + (y - \beta)^2 = a^2$$
 touches $Y - axis$, then its equation will be $(x - a)^2 + (y - \beta)^2 = a^2$.

(iii) If the circle
$$(x - \alpha)^2 + (y - \beta)^2 = a^2$$
 touches both the axes, then its eqn will be $(x - a)^2 + (y - a)^2 = a^2$.

(11) Two circles will touch each other externally if

the distance between their centres = $r_1 + r_2$.

(12) Two circles will touch each other internally if

the distance between their centres = $r_1 - r_2$.

Parabola

a = distance between vertex to focus & a > 0

<u>Equation</u>	Vertex	<u>Axis</u>	<u>Focus</u>	Length of Latus Rectum	Equation of Directrix	Vertices of Latus Rectum
$y^2 = 4ax$	(0,0)	+ve X - axis	(a, 0)	4 <i>a</i>	x + a = 0	$(a,\pm 2a)$
$y^2 = -4ax$	(0,0)	$-ve\ X - axis$	(-a, 0)	4 <i>a</i>	x-a=0	$(-a,\pm 2a)$