Векторна алгебра. Вектори в системі координат.

1. Координати, довжина і напрямні косинуси вектора.

Для того щоб операції над векторами звести до операції над числами, розглядатимемо вектори в системі координат.

1. Координати вектора. Нехай в прямокутній системі координат Oxyz задано вектор \vec{a} . Це означає, що в ортонормованому базисі \vec{i} , \vec{j} , \vec{k} , який задає обрану систему координат, вектор $\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$, де числа a_x, a_y, a_z – координати вектора \vec{a} в цьому базисі. Але з властивостей проекції випливає, що

$$a_x = np_{Qx}\vec{a}$$
, $a_y = np_{Qy}\vec{a}$, $a_z = np_{Qz}\vec{a}$. (1)

Отже, координати вектора в системі координат *Охуг* це його проекції на осі координат.

2. Довжина вектора. Вектор \vec{a} ϵ діагоналлю прямокутного паралелепіпеда (рис.1) з вимірами $|a_x|, |a_y|, |a_z|,$ тому довжина цього вектора дорівню ϵ

Якщо початок вектора $\vec{a} = \overrightarrow{AB}$ (рис. 2) міститься в точці $A(x_1; y_1; z_1)$, а кінець – в точці $B(x_2; y_2; z_2)$, то

$$\overrightarrow{AB} = (x_2 - x_1; y_2 - y_1; z_2 - z_1).$$
 (3)

Тоді з формули (3) знаходимо довжину вектора \overrightarrow{AB} :

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$
 (4)

Цією формулою користуються для знаходження відстані між точками А і В.

3. Напрямні косинуси вектора. Напрям довільного вектора $\vec{a} = (a_x; a_y; a_z)$ визначається кутами α , β , γ , які утворює вектор \vec{a} з осями координат (рис.1):

$$\alpha = (\overrightarrow{a}, \overrightarrow{i}), \qquad \beta = (\overrightarrow{a}, \overrightarrow{j}), \qquad \gamma = (\overrightarrow{a}, \overrightarrow{k}), \qquad 0 \le \alpha, \beta, \gamma \le \pi$$

Косинуси цих кутів називаються *напрямними косинусами*. Формули для напрямних косинусів

$$\cos \alpha = \frac{a_x}{|\vec{a}|}, \cos \beta = \frac{a_y}{|\vec{a}|}, \cos \gamma = \frac{a_z}{|\vec{a}|}$$
 (5)

Підносячи обидві частини кожної з рівностей (5) до квадрата і підсумовуючи дістанемо

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1, \tag{6}$$

тобто сума квадратів напрямних косинусів довільного вектора дорівнює одиниці.

Приклади:

1. Задано точки A(0; -1; 2) і B(-1; 1; 4). Знайти координати, довжину та напрямні косинуси вектора \overrightarrow{AB} 3 формули (4) і (5) маємо:

$$\left| \overrightarrow{AB} \right| = (-1; 2; 2);$$
 $\left| \overrightarrow{AB} \right| = \sqrt{1 + 4 + 4} = 3;$ $\cos \alpha = -\frac{1}{3},$ $\cos \beta = \cos \gamma = \frac{2}{3}.$

2. Чи може вектор утворювати з осями координат кути $\alpha = \beta = 60^\circ$, $\gamma = 30^\circ$? $\cos^2 60^\circ + \cos^2 60^\circ + \cos^2 30^\circ = \frac{5}{4} \neq 1$.

тому згідно з формулою (6) дістанемо на це негативну відповідь.

2. Лінійні дії з векторами. Рівність і колінеарність векторів.

1. Лінійні дії з векторами. Якщо відомі координати векторів, то лінійним діям з векторами відповідають відповідні арифметичні дії над їхніми координатами.

Нехай задано вектори $\vec{a} = (a_x; a_y; a_z), \ \vec{b} = (b_y; b_y; b_z)$ і дійсне число λ , тоді:

$$\overrightarrow{\lambda \alpha} = (\lambda \alpha_{x}; \lambda \alpha_{y}, \lambda \alpha_{z}), \quad \overrightarrow{a} \pm \overrightarrow{b} = (a_{x} \pm b_{x}; a_{y} \pm b_{y}; a_{z} \pm b_{z};).$$

2. *Рівність векторів.* Нехай вектори $\vec{a} = (a_x; a_y; a_z)$, та $\vec{b} = (b_x; b_y; b_z)$ рівні, тобто мають однакові довжини і напрям, тоді

$$a_x = b_x, a_y = b_y, a_z = b_z.$$

3. Колінеарність векторів. Необхідною і достатньою умовою того, що вектори $\vec{a} = (a_x; a_y; a_z)$ та $\vec{b} = (b_x; b_y; b_z)$ колінеарні, є пропорціональність їхніх проекцій: $a = a_x = a_y$

 $\frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z}.$

3. Поділ відрізка в даному відношенні. Координати центра мас.

Нехай задано відрізок AB точками $A(x_1; y_1; z_1)$ і $B(x_2; y_2; z_2)$. Знайдемо на відрізку таку точку M(x; y; z), яка ділить цей відрізок у відношенні λ , тобто

$$\left| \overrightarrow{AM} \right| : \left| \overrightarrow{MB} \right| = \lambda$$

Введемо радіуси-вектори $\vec{r} = \overrightarrow{OA}_1 = (x_1; y_1 z_1), \ \vec{r} = \overrightarrow{OM} = (x; y; z), \ \vec{r_2} = \overrightarrow{OB} = (x_2; y_2; z_2)$ (рис.3). Оскільки $\overrightarrow{AM} = \vec{r} - \vec{r}_1, \ \overrightarrow{MB} = \vec{r_2} - \vec{r}, \ i$ за умовою $\overrightarrow{AM} = \lambda \overrightarrow{MB}, \ \text{то} \ \vec{r} - \vec{r}_1 = \lambda (\vec{r_2} - \vec{r}),$ звідки

 $\vec{r} = \frac{\vec{r_1} + \lambda \vec{r_2}}{1 + \lambda}.$

Порівнюючи проекції обох частин цієї рівності на осі координат, маємо:

$$x = \frac{x_1 + \lambda x_2}{1 + \lambda}.$$
 $y = \frac{y_1 + \lambda y_2}{1 + \lambda}.$ $z = \frac{z_1 + \lambda z_2}{1 + \lambda}.$ (7)

Зокрема, координати точки, яка ділить відрізок AB навпіл (λ =1), знаходять за формулами

$$x = \frac{x_1 + x_2}{2}, \qquad y = \frac{y_1 + y_2}{2}, \qquad z = \frac{z_1 + z_2}{2}.$$
 (8)

4. Скалярний добуток двох векторів

Означення, геометричний та механічний зміст скалярного добутку.

Скалярним добутком двох векторів \vec{a} і \vec{b} називається число $\vec{a} \cdot \vec{b}$, що дорівнює добутку довжин цих векторів на косинус кута між ними:

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \varphi, \tag{9}$$

3 фізики відомо, що робота A сили \vec{F} при переміщенні матеріальної точки з початку в кінець вектора \vec{S} , який утворює з вектором \vec{F} кут α (рис. 4), дорівнює $A = \left| \vec{F} \right| \left| \vec{S} \right| \cos \alpha$, або $A = \vec{F} \cdot \vec{S}$. (30)

Отже, робота дорівнює скалярному добутку вектора сили на вектор переміщення. В цьому суть механічного змісту скалярного добутку.

Властивості скалярного добутку

У векторному численні величину $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\vec{a}, \vec{b})$ називають скалярним добутком векторів \vec{a} та \vec{b} тому, що, по-перше, ця величина є скалярна і, подруге, має деякі алгебраїчні властивості звичайного добутку чисел.

Розглянемо три алгебраїчні властивості скалярного добутку.

1⁰. Комунікативна властивість множення:

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
.

 2^{0} . Асоціативна властивість відносно множення на число λ :

$$(\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b}).$$

3⁰. Дистрибутивна властивість відносно додавання векторів:

$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$
.

- 4^0 . Якщо $\vec{a} \neq 0$ і $\vec{b} \neq 0$, то $\vec{a} \cdot \vec{b} > 0$, коли кут (\vec{a}, \vec{b}) гострий, і $\vec{a} \cdot \vec{b} < 0$, коли кут $\varphi = (\vec{a}, \vec{b})$ тупий.
- 5^{0} . Скалярний добуток двох ненульових векторів дорівнює нулю тоді і лише тоді, коли ці вектори взаємно перпендикулярні.
 - 6°. Скалярний квадрат вектора дорівнює квадрату його довжини

$$\overrightarrow{a^2} = \left| \overrightarrow{a} \right|^2, \tag{10}$$

звідки

$$\left| \vec{a} \right| = \sqrt{\vec{a}^2} \,. \tag{11}$$

Приклади

1. Знайти скалярний добуток векторів $\vec{m} = \overrightarrow{2a} - \overrightarrow{3b}$ і $\vec{n} = \overrightarrow{4a} + \overrightarrow{5b}$, якщо $|\vec{a}| = 1$, $|\vec{b}| = 2$, $(\vec{a}, \vec{b}) = \frac{\pi}{3}$. Користуючись властивостями $1^0 - 3^0$, маємо

$$\vec{m} \cdot \vec{n} = (2\vec{a} - 3\vec{b}) \cdot (4\vec{a} + 5\vec{b}) = 8\vec{a}^2 + 10\vec{a} \cdot \vec{b} - 12\vec{a} \cdot \vec{b} - 15\vec{b}^2 = 8\vec{a}^2 - 2\vec{a} \cdot \vec{b} - 15\vec{b}^2.$$

Застосовуючи формули (9) і (10), знаходимо

$$\vec{m} \cdot \vec{n} = 8 \cdot 1^2 - 2 \cdot 1 \cdot 2 \cdot \frac{1}{2} - 15 \cdot 2^2 = -54.$$

2. Знайти довжину вектора $\vec{c} = \overrightarrow{2a} - \overrightarrow{3b}$, якщо $|\vec{a}| = 1$, $|\vec{b}| = 4$, $(\overrightarrow{a}, \overrightarrow{b}) = \frac{\pi}{3}$.

За формулою (11) дістанемо

$$|\vec{c}| = \sqrt{\vec{c^2}} = \sqrt{(2\vec{a} - 3\vec{b})^2} = \sqrt{4\vec{a^2} - 12\vec{a} \cdot \vec{b} + 9\vec{b^2}} = \sqrt{124} = 2\sqrt{31}.$$

Вираз скалярного добутку через координати. Кут між векторами.

Нехай задано два вектори $\vec{a}=(a_x;a_y;a_z)$, та $\vec{b}=(b_x;b_y;b_z)$. Знайдемо їхній скалярний добуток. Використовуючи властивості 1^0 і 3^0 скалярного добутку, дістанемо

$$\vec{a} \cdot \vec{b} = (a_x \vec{i} + a_y \vec{j} + a_z \vec{k}) \cdot (b_x \vec{i} + b_y \vec{j} + b_z \vec{k}) = a_x b_x \vec{i}^2 + a_x b_y \vec{i} \cdot \vec{j} + a_x b_z \vec{i} \cdot \vec{k} + a_y b_x \vec{i} \cdot \vec{j} + a_z b_z \vec{k} \cdot \vec{i} + a_z b_z \vec{k} \cdot \vec{i} + a_z b_z \vec{k}^2.$$

Оскільки $\vec{a}, \vec{j}, \vec{k}$ — попарно ортогональні орти, то $\vec{i}^2 = \vec{j}^2 = \vec{k}^2 = 1$, $\vec{i} \cdot \vec{j} = \vec{i} \cdot \vec{k} = \vec{j} \cdot \vec{k} = 0$, тому

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z. \tag{12}$$

Отже, скалярний добуток двох векторів, заданий координатами в прямокутній системі координат, дорівнює сумі добутків їхніх відповідних координат.

Кут $\phi = (\vec{a}, \vec{b})$ між векторами $\vec{a} = (a_x; a_y; a_z)$, та $\vec{b} = (b_x; b_y; b_z)$ визначається рівністю

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \sqrt{b_x^2 + b_y^2 + b_z^2}}$$
(13)

5. Векторний добуток двох векторів

Означення і властивості векторного добутку

Векторним добутком вектора $\vec{a} \times \vec{b}$ називається вектор \vec{c} , який визначається такими трьома умовами:

- 1) довжина вектора \vec{c} дорівнює $|\vec{c}| = |\vec{a}||\vec{b}|\sin \varphi$, де $\phi = (\vec{a}, \vec{b})$;
- 2) вектор \vec{c} перпендикулярний до кожного з векторів \vec{a} і \vec{b} ;
- 3) якщо $\vec{c} \neq 0$, то вектори \vec{a} \vec{b} , \vec{c} утворюють праву трійку векторів Векторний добуток позначають одним із символів:

$$\vec{c} = \vec{a} \times \vec{b} = \begin{bmatrix} \vec{a}\vec{b} \end{bmatrix} = \begin{bmatrix} \vec{a} \times \vec{b} \end{bmatrix}.$$

Розглянемо алгебраїчні властивості векторного добутку.

 1^{0} . Антикомутативність множення: $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$.

тобто від перестановки множників векторний добуток змінює знак.

 2^{0} . Асоціативність відносно скалярного множника λ :

$$(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b}); \quad \vec{a} \times \lambda \vec{b} = \lambda (\vec{a} \times \vec{b}).$$

3⁰. Дистрибутивність відносно додавання векторів:

$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}.$$

- 4^{0} . Векторний добуток двох векторів дорівнює нулю тоді і лише тоді, коли ці вектори колінеарні.
- 5^{0} . Модуль $|\vec{a} \times \vec{b}|$ векторного добутку неколінеарних векторів дорівнює площині S паралелограма, побудованого на векторах \vec{a} і \vec{b} , віднесених до спільного початку, тобто

 $S = |\vec{a} \times \vec{b}|. \tag{14}$

 6° . Векторні добутки ортів задовольняють такі рівності:

$$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = 0; \quad \vec{i} \times \vec{j} = \vec{k}, \quad \vec{j} \times \vec{k} = \vec{i},$$

 $\vec{k} \times \vec{i} = \vec{j}; \quad \vec{j} \times \vec{i} = -\vec{k}, \quad \vec{k} \times \vec{j} = -\vec{i} \quad \vec{i} \times \vec{k} = -\vec{j}.$

Приклад

Обчислити
$$\left| (\vec{3}\vec{a} - \vec{b}) \times (\vec{a} - 2\vec{b}) \right|$$
, якщо $\left| \vec{a} \right| = 3$, $\left| \vec{b} \right| = 4$, $(\vec{a}, \vec{b}) = \frac{\pi}{2}$.
$$\left| (\vec{3}\vec{a} - \vec{b}) \times (\vec{a} - 2\vec{b}) \right| = 3(\vec{a} \times \vec{a}) - 6(\vec{a} \times \vec{b}) - (\vec{b} \times \vec{a}) + 2(\vec{b} \times \vec{b}) = -6(\vec{a} \times \vec{b}) + \vec{a} \times \vec{b} = -5(\vec{a} \times \vec{b});$$
$$\left| -5(\vec{a} \times \vec{b}) \right| = 5\left| \vec{a} \right| \left| \vec{b} \right| \sin \frac{\pi}{2} = 5 \cdot 3 \times 4 \cdot 1 = 60.$$

Векторний добуток двох векторів, заданих координатами.

Нехай в прямокутній системі координат задано $\vec{a}=(a_x;a_y;a_z),\$ i $\vec{b}=(b_x;b_y;b_z)$ векторний добуток а \vec{b} визначається за формулою

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}.$$
 (15)

Приклади

1. Знайти площу трикутника, заданого вершинами A (1; 2; 0), B (0; -2; 1), C (-1; 0; 2). Площа трикутника ABC дорівнює половині площі паралелограма, побудованого на векторах \overrightarrow{AB} і \overrightarrow{AC} . Оскільки \overrightarrow{AB} =(-1; -4; 1), \overrightarrow{AC} =(-2; -2; 2) і за формулою (15)

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & -4 & 1 \\ -2 & -2 & 2 \end{vmatrix} = -\overrightarrow{6i} - \overrightarrow{6k},$$

то площа
$$S_{\triangle ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \sqrt{6^2 + 6^2} = 3\sqrt{2}.$$

6. Мішаний добуток векторів

Означення і обчислення мішаного добутку

При множенні двох векторів \vec{a} і \vec{b} вище було визначено два види добутків: скалярний, результатом якого $\vec{\epsilon}$ число $\vec{a} \cdot \vec{b}$, і векторний, результатом якого $\vec{\epsilon}$ вектор $\vec{a} \times \vec{b}$.

Множення трьох векторів \vec{a} , \vec{b} і \vec{c} можна виконувати різними способами. Зокрема, можна утворити такі добутки:

$$(\vec{a} \cdot \vec{b}) \cdot \vec{c}, \qquad (\vec{a} \times \vec{b}) \times \vec{c}, \qquad (\vec{a} \times \vec{b}) \cdot \vec{c}.$$

Перший з цих добутків відповідає множення скаляра $\vec{a} \cdot \vec{b}$ на вектор \vec{c} і не розглядається. Те саме стосується добутків $(\vec{a} \cdot \vec{c}) \cdot \vec{b}$ та $(\vec{b} \cdot \vec{c}) \cdot \vec{a}$.

Результатом другого добутку ϵ вектор, який називається **подвійним** векторним або векторно-векторним добутком даних трьох векторів: $\vec{d} = (\vec{a} \times \vec{b}) \times \vec{c}$.

Добуток $(\vec{a} \times \vec{b}) \cdot \vec{c}$ називається мішаним добутком векторів.

Знайдемо мішаний добуток векторів \vec{a} , \vec{b} , \vec{c} , заданих координатами:

$$\vec{a} = (a_x; a_y; a_z), \ \vec{1} \ \vec{b} = (b_x; b_y; b_z) \ \vec{c} = (c_x; c_y; c_z)$$
$$(\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}.$$

Властивості мішаного добутку.

 1^{0} . Якщо в мішаному добутку поміняти місцями які-небудь два множники, то мішаний добуток змінить знак, наприклад:

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = -\vec{c} \cdot (\vec{b} \times \vec{a}).$$

 2^{0} . При циклічній перестановці множників мішаний добуток не зміниться:

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = (\vec{c} \times \vec{a}) \cdot \vec{b}.$$

 3^{0} . У мішаному добутку знаки векторного і скалярного добутків можна міняти місцями:

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c}).$$

Рис. 5

- 4^{0} . Модуль мішаного добутку $\vec{a} \, \vec{b} \, \vec{c}$, дорівнює об'єму паралелепіпеда, побудованого на векторах \vec{a} , \vec{b} , \vec{i} \vec{c} , віднесених до спільного початку:
- 5^{0} . Якщо мішаний добуток \vec{a} \vec{b} \vec{c} додатний, то вектори \vec{a} , \vec{b} , \vec{c} утворюють праву трійку, а якщо від'ємний, то ліву.
- 6^{0} . Вектори \vec{a} , \vec{b} , \vec{c} компланарні тоді і тільки тоді, коли їхній мішаний добуток дорівнює нулю.

Приклад

Довести що точки A (0; 1; 2), B (-2; 0; -1), C(-1; 5; 8,), D (1; 6; 11) лежать в одній площині.

Точки A, B, C, D лежать в одній площині, якщо вектори \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , компланарні. Знаходимо вектори \overrightarrow{AB} =(-2; -1; -3), \overrightarrow{AC} =(-1; 4; 6), \overrightarrow{AD} =(1; 5; 9).

Оскільки мішаний добуток

$$\overrightarrow{AB} \cdot \overrightarrow{AC} \cdot \overrightarrow{AD} = \begin{vmatrix} -2 & -1 & -3 \\ -1 & 4 & 6 \\ 1 & 5 & 9 \end{vmatrix} = 0,$$

то за властивістю 6^0 вектори \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , компланарні, тому задані точки лежать в одній площині.