## EC504 ALGORITHMS AND DATA STRUCTURES FALL 2020 MONDAY & WEDNESDAY 2:30 PM - 4:15 PM

Prof: David Castañón, dac@bu.edu

GTF: Mert Toslali, toslali@bu.edu

Haoyang Wang: <a href="mailto:haoyangw@bu.edu">haoyangw@bu.edu</a>

Christopher Liao: <a href="mailto:cliao25@bu.edu">cliao25@bu.edu</a>

### Graphs

### in the "real world"

- Networks are graphs
  - Information: WWW, citation, ...
  - Social: co-actor, dating, messenger, communities, ...
  - Technological: Internet, power grids, airline routes, ...
  - Biological: Neural networks, food web, blood vessels, ...
- Object hierarchies are graphs
- Circuit layouts are graphs
- Computer programs are graphs

#### **Graph Traversals**

- Traversals of graphs are also called *searches*
- We can use either breadth-first or depth-first traversals
  - Breadth-first requires a queue
  - Depth-first requires a stack
- We each case, we will have to track which vertices have been visited requiring  $\Theta(|V|)$  memory
- The time complexity cannot be better than and should not be worse than  $\Theta(|V| + |E|)$ 
  - Connected graphs simplify this to  $\Theta(|E|)$
  - Worst case:  $\Theta(|V|^2)$

### **Applications**

#### Applications of tree traversals include:

- Determining connectedness and finding connected sub-graphs
- Determining the path length from one vertex to all others
- Testing if a graph is bipartite
- Branch and bound search
- Topological Sort

**–** ...

### **Strongly-Connected Components**

- o Kosaraju's Algorithm
  - o Perform DFS on graph G = (V, E),
    - o Number vertices according to their finishing time in DFS of G
  - Perform DFS on Gr = (V,Er), where Er are reverse of edges in E, selecting nodes in decreasing order of finishing time in previous DFS
  - Strongly connected components = reachable trees obtained in last DFS







Reverse graph with distance labels



Reverse graph reachable trees

### **Strongly-Connected Components**

#### o Correctness

- o If v and w are in a strongly-connected component
- o Then there is a path from v to w and a path from w to v
- o Therefore, there will also be a path between v and w in G and Gr

#### o Running time

- Two executions of DFS
- o O(|E|+|V|)

## Weighted Graphs

- A weighted graph G=(V,E) is a graph along with a weight function  $w:E\to\Re$
- Weighted graphs can be directed or undirected



# **Spanning Trees**

- A **spanning tree** of an undirected graph is
  - edge subset forming a tree that spans every vertex
  - #V 1 edges



## Minimum Spanning Trees

A minimum spanning tree (MST) of an undirected weighted graph (V, E) with weights  $w(\cdot)$ :

Connected subgraph (V, E') which is a tree and for which  $\sum_{i} w(i, j)$  is minimized

 $\{i,j\}\in E'$ 



### **MST Problem**

- Given a weighted graph G, we want a subgraph G' = (V, E'),  $E' \subseteq E$ , such that all vertices are connected on G' Subgraph G' = (V, E'),  $E' \subseteq E$  total weight  $\sum_{(x,y) \in E'} w(x,y)$  is minimized
- Spanning tree: a tree containing all vertices in G
- Question: Find a spanning tree with minimum weight.
  - The problem is thus called Minimum Spanning Tree (MST)



### **MST: Problem and Motivation**

- Suppose we have n computers, connected by wires as given in the graph
- Each wire has a renting cost
- We want to select some wires, such that all computers are connected (i.e. every two can communicate)
- Algorithmic question: How to select a subset of wires with the minimum renting cost?
- Answer to this graph?



# **Applications**

- Networks
  - electric, computer, water, transportation
- Computer vision
  - Facial recognition
  - Handwriting recognition
  - Image segmentation
- Low-density parity check codes (LDPC)

## Minimum Spanning Tree Algorithms

Kruskal's algorithm (1956)

#### ON THE SHORTEST SPANNING SUBTREE OF A GRAPH AND THE TRAVELING SALESMAN PROBLEM

JOSEPH B. KRUSKAL, JR.

Several years ago a typewritten translation (of obscure origin) of [1] raised some interest. This paper is devoted to the following theorem: If a (finite) connected graph has a positive real number attached to each edge (the *length* of the edge), and if these lengths are all distinct, then among the spanning<sup>1</sup> trees (German: Gerüst) of the graph there is only one, the sum of whose edges is a minimum; that is, the shortest spanning tree of the graph is unique. (Actually in [1] this theorem is stated and proved in terms of the "matrix of lengths" of the graph, that is, the matrix  $||a_{ij}||$  where  $a_{ij}$  is the length of the edge connecting vertices i and j. Of course, it is assumed that  $a_{ij} = a_{ji}$  and that  $a_{ii} = 0$  for all i and j.)

The proof in [1] is based on a not unreasonable method of constructing a spanning subtree of minimum length. It is in this construction that the interest largely lies, for it is a solution to a problem (Problem 1 below) which on the surface is closely related to one version (Problem 2 below) of the well-known traveling salesman problem.



## Minimum Spanning Tree Algorithms

Prim-Jarnik Algorithm

#### **PRÁCE**

MORAVSKÉ PŘÍRODOVĚDECKÉ SPOLEČNOSTI SVAZEK VI., SPIS 4. 1930 SIGNATURA: F 50

BRNO, ČESKOSLOVENSKO.

ACTA SOCIETATIS SCIENTIARUM NATUR TOMUS VI., FASCICULUS 4: SIGNATURA: F 50: BRNO



VOJTĚCH JARNÍK:

problému min

opisu panu O. BORŮVI



By R. C. PRIM

(Manuscript received May 8, 1957)

The basic problem considered is that of interconnecting a given set of terminals with a shortest possible network of direct links. Simple and practical procedures are given for solving this problem both graphically and computationally. It develops that these procedures also provide solutions for a much broader class of problems, containing other examples of practical interest.



# Preliminary ideas

- Build minimal spanning trees incrementally
- Show by induction that algorithm is correct at each step
- Concept: A set of edges  $T \subset E$  is **promising** if it is a subset of a a minimal spanning tree (V, E')
  - Let  $B = \{v \in V : v \in e \text{ for some } e \in T\}$
  - ▶ Then, (B, T) is a subgraph of (V, E) which is a tree

# Graph Cuts

lackbox A cut is any partition of the vertices into two groups, B and V-B



with edges b and e joining the partitions

### **Useful Property**

- **Lemma**: Let  $T \subset E$ , and  $B \subset V, B \neq V$ . Assume T is a promising set of edges for the MST problem in (V,E), and no edge in T leaves B (no edge across cut (B, V-B)). Let  $e^*$  be the smallest weight edge in E such that  $e^* = \{i, j\}, i \in B, j \notin B$ . Then,  $T' = T \cup \{e^*\}$  is a promising set.
- Allows us to grow a promising set! (Induction)

Proof.

(B, V-B) form a partition of V: a cut

Edge  $e^* = \{i, j\}, i \in B, j \notin B$  has the smallest weight among all edges that cross the cut.

### Case 1: MST includes $e^*$

- ▶ Let MST (G, E') where  $T \subset E'$  be such that  $e^* \in E'$
- ▶ Simple: then  $T \cup \{e^*\} \subset E'$  is promising



### Case2: MST does not includes e

- ▶ Let MST (G, E') where  $T \subset E'$  be such that  $e^* \notin E'$
- ▶ Hard: Look at cycle including e. Swap b for  $e^*$  in E', total weight must not increase, hence have MST  $(V, E' \cup \{e^*\} \{b\})$



### **Proof of Correctness**

#### Lemma: Proof (cont)

Since T is promising, let MT = minimum spanning tree  $(V, E'), T \subset E'$ .

If  $e^* \in E'$ , then  $T' = T \cup \{e^*\} \subset E'$  has no cycles, and is thus a promising set of edges, proving the theorem.

If  $\{i, j\} \notin E'$ , then  $E' \cup \{e^*\}$  has one cycle that includes  $e^*$ , as it has #V edges and a tree must have at most #V-1 edges

In that cycle, there exists edge b that leaves B, hence  $b \notin T$ 

Note  $w(b) \ge w(e^*)$  by how we selected  $e^*$ 

Note:  $E' \cup \{e^*\} - \{b\}$  leaves graph connected, and has number of edges = #V-1, and its total weight is no greater than the weight of E'

Hence,  $(V, E' \cup \{e^*\} - \{b\})$  is also MST, and  $T' = T \cup \{e^*\} \subset E' \cup \{e^*\} - \{b\}$  so T' is a promising subset

# Kruskal's Algorithm

- Sort edges by weight in ascending order
- Start with empty set T (note: it is promising)
- For each edge e in sorted list
  - ▶ If adding edge e to T does not create cycle in  $(V, T \cup e)$
  - ...add it to MST:  $T = T \cup \{e\}$
  - Claim: T is now promising set with one more edge
- Stop when you have #V 1 edges in T

### **Proof of Correctness**

- At any stage in algorithm, T is a forest (no cycles can be created)
- At any stage in algorithm, T is a promising set
  - True initially when  $T = \emptyset$
  - If at a stage in algorithm, vertex  $e^*$  is the lowest weight edge remaining, and it does not form a cycle with T, then:
    - Let  $\{a,b\} = e^*$ ; let B be vertices in T connected to a
    - Then, no edge in T leaves B and  $e^*$  is minimum weight edge among edges that leave B
    - ▶ By lemma,  $T \cup \{e^*\}$  is promising set
- Thus, algorithm converges to MST

### Kruskal

- How can we tell if adding edge will create cycle?
- Start by giving each vertex its own "cloud", which consists of all connected vertices in current T (Disjoint Sets)
- If both ends of lowest-cost edge are in same cloud
  - we know that adding the edge will create a cycle!
- When edge is added to MST
  - merge clouds of the endpoints

# Kruskal Pseudo-Code

```
function kruskal(G):
    // Input: undirected, weighted graph G
    // Output: list of edges in MST
    for vertices v in G:
        makeCloud(v) // put every vertex into it own set
    MST = []
    Sort all edges
    for all edges (u,v) in G sorted by weight:
        if u and v are not in same cloud:
            add (u,v) to MST
            if size(MST) = |V| - 1:
                 break
            merge clouds containing u and v
    return MST
```



edges = [(C,E),(D,F),(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]



edges = [(C,E),(D,F),(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]



edges = [(D,F),(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]



edges = [(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]



edges = [(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]



edges = 
$$[(B,D),(A,B),(A,D),(B,E),(B,F)]$$



edges = 
$$[(A,B),(A,D),(B,E),(B,F)]$$



edges = 
$$[(A,D),(B,E),(B,F)]$$

# Merging Clouds Efficiently (Naive way)

- ▶ Keep track of clouds using disjoint sets (Union-Find)
  - Edge forms a cycle if both ends of the edge belong to the same disjoint set (have the same root!)
  - Checking that an edge forms a cycle has amortized complexity  $O(\log^*(|V|)) \approx O(1)$

#### Kruskal Runtime

- O(|V|) for iterating through vertices
- O(|E|log|E|) for sorting edges
- O(|E|×1) for iterating through edges and merging clouds with path compression
- $\rightarrow$  O(|V|+|E|log|E|+|E|×1)
  - $\rightarrow$  = O(|V|+|E|log|E|)
- → O(|V|+|E|log|E|)
  - Better than simple  $O(|V|^3)$  without disjoint sets

Disjoint components:

1 2 3 4 5 6 7 8 9

1) Add {3,6}

Disjoint components:

3 1 2 4 5 7 8 9

6

2) Add {4,6}

3 1 2 5 7 8 9

/\

6 4

Minimum Spanning Tree

**Empty** 

Minimum Spanning Tree

3--6

3--6--4



Sorted edges

#### Disjoint components:

3) Add {7,9}

3 7 1 2 5 8

/\

6 4 9

4) Add {8,9}

3 7 1 2 5

/\ /\

6 4 9 8

Minimum Spanning Tree

3--6--4 7--9





### Sorted edges

Disjoint components:

5) Discard {3,4} (cycle); add {6,7}

1 2 5 3

/ | \

6 4 7

/\

9 8

6) Add {2,5}

3

/ | \

6 4 7 5

/\

9 8

Minimum Spanning Tree

3--6--4

3--6--4

7--9--8

1 2

7--9--8

2--5



Sorted edges

Disjoint components:

Minimum Spanning Tree

7) Add {2,4}

8) Discard {5,6},{7,8}, {2,7}. Select arc {1,2}. DONE



Sorted edges

### Different MST Algorithm: Prim-Jarnik

- Traverse G = (V,E) starting at any node
  - Maintain priority queue of nodes (e.g. binary heap, Fibonacci heap)
  - set priority to weight of the cheapest edge that connects them to MST
- ▶ Un-added nodes start with priority ∞
- At each step
  - Add the node with lowest cost to MST
  - Update ("relax") neighbors as necessary
- Stop when all nodes added to MST

### Different MST Algorithm: Prim-Jarnik

- Traverse G = (V,E) starting at any vertex v
- Form priority queue PQ of nodes (e.g. binary heap, Fibonacci heap)
  - Set v.dist = 0, v'.dist =  $\infty$ , v' different from v. dist will be the key used in the priority queue
  - Set parent of all vertices, v.pred to NULL; set  $T = \emptyset$
- At each step:
  - Remove min from priority queue: call it v. If v.pred not null, add {v,v.pred} to T
  - For all neighbors v' of v: if v' is in PQ and w(v, v') < v'.dist:
    - Decrease v'.dist to w(v, v'), update v'.pred = v
- Stop when PQ is empty

### Pseudo-code

```
function prim(G):
   // Input: weighted, undirected graph G with vertices V
   // Output: list of edges in MST
   for all v in V:
      v.cost = ∞
      v.prev = null
   s = a random v in V // pick a random source s
   s.cost = 0
   MST = []
   PQ = PriorityQueue(V) // priorities will be v.cost values
   while PQ is not empty:
      v = PQ.removeMin()
      if v.prev != null:
         MST.append((v, v.prev))
      for all incident edges (v,u) of v such that u is in PQ:
         if u.cost > (v,u).weight:
            u.cost = (v,u).weight
            u.prev = v
            PQ.decreaseKey(u, u.cost)
  return MST
```



$$PQ = [(0,A),(\infty,B),(\infty,C),(\infty,D),(\infty,E),(\infty,F)]$$



$$PQ = [(4,B),(5,D),(\infty,C),(\infty,E),(\infty,F)]$$



$$PQ = [(4,C),(4,D),(6,E),(8,F)]$$



$$PQ = [(2,E),(4,D),(8,F)]$$









### **Proof of Correctness**

- Let T be current tree at iteration step
- Claim: T is promising set
  - True initially, as  $T = \emptyset$
  - ▶ Define B = vertices in T: t any stage, T is a tree over a subset of nodes  $B \subset V$
  - Let v be min vertex in PQ; then {v.parent, v} leaves B
    - v has parent in B, and v is still in PQ, so it is not in B
    - If v in PQ, v.dist is set by min weight edge leaving B
  - Thus, {v.pred, v} is min-weight edge leaving B
  - ▶ Hence,  $T \cup \{\{v.pred, v\}\}$  is promising set after remove min extracts v

### **Runtime Analysis**

- ▶ Initializing nodes with distance and previous pointers is O(|V|); putting nodes in PQ is O(|V|)
- While loop runs |V| times
  - removing vertex from PQ is O(log|V|)
  - So O(|V|log|V|)
- For loop (in while loop) runs |E| times in total
  - Determining whether v' is in PQ: O(1) if we build index into PQ (need to find location; not easy!)
  - Decreasing vertex's key in the PQ is log|V| (binary heap), or amortized to O(1) if we use Fibonacci or rank-pairing heaps
  - So O(|E|) in complex data or O(|E| log|V|)
- Overall runtime
  - → O(|V| + |V|log|V| + |E|)
    - $\rightarrow$  = O(|E| + |V|log|V|) best

Priority Q
(1,0)
(2,M) (3,M)
(4,M) (5,M) (6,M) (7,M)
(8,M) (9,M)
1) Scan 1, reduce key of 2, 3; remove 1
(2,8)
(9,M) (3,12)
(4,M) (5,M) (6,M) (7,M)
(8,M)



Sorted edges
{3,6}, {4,6},{7,9},{8,9},{3,4},{6,7},
{2,5},{2,4}{5,6},{7,8}, {2,7},{1,2},
{6,8},{5,9},{1,3}

221

1

2) Scan 2, reduce key of 4,5,7. Remove 2.

Priority Q

(5,5)

(4,6) (7,7)

(9,M) (8,M) (6,M) (3,12)

3) Scan 5, reduce key of 6, 9; remove 5

(4,6)

(9,9) (6,6)

(3,12) (8,M) (7,7)



### Sorted edges

1-2-5



Priority Q

(6,2)

(3,5) (7,7)

(9,9) (8,M)

5) Remove 6, reduce key of 3, 7, 8;

(3,2)

(9,9) (7,5)

(8,8)

Minimum Spanning Tree

1—2—5





### Sorted edges

{3,6}, {4,6},{7,9},{8,9},{3,4},{6,7}, {2,5},{2,4}{5,6},{7,8}, {2,7},{1,2}, {6,8},{5,9},{1,3}

\_\_

6) Remove 3.

Priority Q

(7,5)

(9,9)

(8,8)

5) Remove 7, reduce key of 8,9;

(9,3)

(8,6)

6) Remove 9, reduce key of 8

(8,4)

7) Remove 8. DONE

Minimum Spanning Tree



1-2-5

| *|*—7

4 - 6 - 3

1-2-5

4 - 6 - 3



### Summary

- → Initializing nodes with distance and previous pointers is O(|V|); putting nodes in PQ is O(|V|)
- While loop runs |V| times
  - removing vertex from PQ is O(log|V|)
  - So O(|V|log|V|)
- For loop (in while loop) runs |E| times in total
  - Determining whether v' is in PQ: O(1) if we build index into PQ (need to find location; not easy!)
  - Decreasing vertex's key in the PQ is log|V| (binary heap), or amortized to O(1) if we use Fibonacci or rank-pairing heaps
  - So O(|E|) in complex data or O(|E| log|V|)
- Overall runtime
  - → O(|V| + |V|log|V| + |E|)
    - $\rightarrow$  = O(|E| + |V|log|V|) best