Практическая работа №8

«ОТДЕЛЬНЫЕ ВОПРОСЫ АЛГОРИТМИЗАЦИИ»

Часть 8.2. Реализация алгоритмов на основе сокращения числа переборов

Задание

- 1. Разработать алгоритм решения задачи с применением метода, указанного в варианте и реализовать программу.
- 2. Оценить количество переборов при решении задачи стратегией «в лоб» грубой силы. Сравнить с числом переборов при применении метода.
- 3. Оформить отчет в соответствии с требованиями документирования разработки ПО: Постановка задачи, Описание алгоритмов и подхода к решению, Код, результаты тестирования, Вывод.

№ _	Задача	Метод
1	Посчитать число последовательностей нулей и единиц длины n , в которых не встречаются две идущие подряд единицы.	Динамическое программирование
2	Дана последовательность целых чисел. Необходимо найти ее самую длинную строго возрастающую подпоследовательность.	Динамическое программирова- ние
3	Дана строка из заглавных букв латинского алфавита. Найти длину наибольшего палиндрома, который можно получить вычеркиванием некоторых букв из данной строки.	Динамическое программирование
4	Имеется рюкзак с ограниченной вместимостью по массе; также имеется набор вещей с определенным весом и ценностью. Необходимо подобрать такой набор вещей, чтобы он помещался в рюкзаке и имел максимальную ценность (стоимость).	Динамическое программирование

№	Задача	Метод
5	Дано прямоугольное поле размером $n*m$ клеток. Можно совершать шаги длиной в одну клетку вправо или вниз. Посчитать, сколькими способами можно попасть из левой верхней клетки в правую нижнюю.	Динамическое программирование
6	Дано прямоугольное поле размером $n*m$ клеток. Можно совершать шаги длиной в одну клетку вправо, вниз или по диагонали вправо-вниз. В каждой клетке записано некоторое натуральное число. Необходимо попасть из верхней левой клетки в правую нижнюю. Вес маршрута — это сумма чисел всех посещенных клеток. Найти маршрут с минимальным весом.	Динамическое программирова- ние
7	Вычисление значения определенного интеграла с применением численных методов. «Вычислить значение определенного интеграла с заданной точностью определенным методом трапеции. Реализовать следующие подзадачи в виде функций: - вычисление значения подинтегральной функции в заданной точке х; - вычисление значения интеграла установленным методом на заданном отрезке интегрирования при п разбиениях; - вычисление интеграла установленным методом с заданной точностью.	Динамическое программирова- ние
8	Черепашке нужно попасть из пункта A в пункт B. Поле движения разбито на квадраты. Известно время движения вверх и вправо в каждой клетке (улицы). На каждом углу она может поворачивать только на север или только на восток. Найти минимальное время, за которое черепашка может попасть из A в B.	Динамическое программирование

№	Задача	Метод
9	Треугольник имеет вид, представленный на рисунке. Напишите программу, которая вычисляет наибольшую сумму чисел, расположенных на пути от верхней точки треугольника до его основания.	Динамическое программирование
10	Из листа клетчатой бумаги вырезали фигуру точно по границам клеток. Разработать программу вычисления площади вырезанной фигуры.	метод ветвей и границ
11	Разработать программу расстановки на 64-клеточной шахматной доске 8 ферзей так, чтобы ни один из них не находился под боем другого».	метод ветвей и границ
12	Разработать программу поиска и вывода всех гамильтоновых циклов в произвольном графе.	метод ветвей и границ
13	Пронумеровать позиции в матрице размером 5*5 следующим образом: если номер і (1 ≤ і ≤ 25) соответствует позиции (x,y), то номер і+1 может соответствовать позиции с координатами (z,w), вычисляемыми по одному из следующих правил: 1) (z,w)=(x±3,y) 2) (z,w)=(x,y±3) 3) (z,w)=(x±2,y±2) 1) Написать программу, которая последовательно нумерует позиции матрицы при заданных координатах позиции, в которой содержится номер 1. 2) Вычислить число всех возможных расстановок номеров для всех начальных позиций, расположенных под главной диагональю.	метод ветвей и границ

№	Задача	Метод
14	Замок имеет прямоугольную форму и разделен на М*N клеток (М<=50; N>=50). Каждая клетка может иметь от 0 до 4 стен, отделяющих комнаты. Определить: - количество комнат в замке; - площадь наибольшей комнаты; - какую стену следует удалить, чтобы получить комнату наибольшей площади. Пример плана замка: 1 2 3 4 5 6 7 1 2 3 4 5 6 7	метод ветвей и границ
15	Автозаправка. Вдоль кольцевой дороги расположено М городов. В каждом городе есть автозаправка. Известна стоимость Z[i] заправки горючим в городе с номером i b стоимость C[i] проезда по дороге, соединяющей i-ый и (i+1)-й города и стоимость проезда между первым и М-ым городами. Города пронумерованы по часовой стрелке. Определить для жителей каждого города тот город в котором им выгодно заправляться, и направление «по часовой стрелке» или «против часовой стрелки»	
16	В массиве размером М*N, заполненном нулями и единицами найти квадратный блок, состоящий из одних нулей.	метод ветвей и границ
17	Монетная система некоторого государства состоит из монет достоинством $a_1=1< a_2< < a_n$. Требуется выдать сумму наименьшим возможным количеством монет.	Жадный алго- ритм

№	Задача	Метод
18	Разработать процедуру оптимального способа рас-	Жадный алго-
	становки скобок в произведении последовательно-	ритм
	сти матриц, размеры которых равны	
	(5,10,3,12,5,50,6), чтобы количество скалярных	
	умножений стало минимальным (максимальным).	
19	Решить задачу о раскраске вершин графа. Приме-	Жадный алго-
	нить к задаче управления светофорами на сложном	ритм
	перекрестке. (См. Ахо А., Хопкрофт Д., Ульман	
	Дж. Структуры данных и алгоритмы).	
20	Задача о коммивояжере	метод ветвей
		и границ