Formális módszerek VIMIMA26 Áttekintés – 2023. tavasz

dr. Majzik István

BME Méréstechnika és Információs Rendszerek Tanszék

Alapvető információk

Tudnivalók és adatok:

- Tárgy weblap: Kari Moodle
 - https://edu.vik.bme.hu
 - Segédanyagok (diasorok, modellek)
 - Zárthelyi információk
 - Házi feladat tájékoztató, beadás
- Kapcsolattartás: MS Teams
 - Bejelentések
 - Online alkalmak (ha szükséges)

Elérhetőségek:

- Tárgyfelelős, előadó:
 - Majzik István (I.B.421): Email <u>majzik@mit.bme.hu</u>, Teams chat
- Házi feladat konzulensek: Ld. majd a tárgy weblapon

Jegyzetek

Pataricza András (szerk.):

Formális módszerek az informatikában (2010)

www.interkonyv.hu/konyvek/?isbn=978-963-9548-90-9

Bartha Tamás, Majzik István: Biztonságra tervezés és biztonságigazolás formális módszerei (2019)

mersz.hu/kiadvany/534

Egyetemi IP címről szabadon olvasható

Tárgykövetelmények

Követelmények: Félévközi jegy

- 2 zárthelyi
 - ZH1: Alapszintű modellek, temporális logikák, modellellenőrzés
 - ZH2: Magasabb szintű formalizmusok: szoftver modellek, Petri-hálók
- 1 házi feladat
 - HF: Formális modell készítése és modellellenőrzés
- 1 szorgalmi feladat (opcionális)
 - SZF: Modellezés Petri-hálókkal

A félévközi jegy meghatározása:

- Zárthelyi jegyek: 35%-35% súllyal számítanak be
- Házi feladat jegy: 30% súllyal számít be
- Mindegyik legalább elégséges szintű teljesítése szükséges
- Szorgalmi feladat jegye 20% súllyal pluszként számít

Zárthelyik

• 1. zárthelyi:

- Időpont: 8. hét: április 19. szerda, 18:15

Témakör:
7. héttel bezárólag előadott anyag

• 1. zárthelyi pótlása:

- Időpont: 10. hét: május 3. szerda, 18:15

Témakör: Az 1. zárthelyi anyagával egyezik

• 2. zárthelyi:

- Időpont: 14. hét: május 31. szerda, 18:15

Témakör:
8. héttől a 13. héttel bezárólag előadott anyag

2. zárthelyi pótlása:

Időpont: Pótlási időszak: június 8. csütörtök

Témakör: A 2. zárthelyi anyagával egyezik

- Sikeres zárthelyi javítása is lehetséges (előző eredményt felülírja)
- Pót-pótzárthelyi nincs

Házi feladat

Kötelező házi feladat: Modellezés és verifikáció

Kiadás:
4. hét (március 24. péntek)

Konzultáció: 10-11. hét (május 2-től), opcionális

Beadás: 12. hét (május 19. péntek éjfélig)

Szorgalmi feladat (opcionális): Modellezés Petri-hálókkal

Jelentkezés: 13. hét (május 26. péntek, ld. tárgy weblap)

Elkészítés: 14. hét (május 31. szerda, az előadás idején)

- Feladatbeadás: Elektronikusan (ld. majd tárgy weblapon)
- Házi feladat bemutatás:
 - Kérés esetén személyesen (13. vagy 14. héten)
- Házi feladat pótbeadás és bemutatás:
 - Pótbeadási határidő: június 9. péntek éjfél (pótlási időszak vége)
 - A pótbeadás 20% (egy jegy) levonással jár

A tárgy felépítése

Mérnöki modellek

Magasabb szintű modellek: SC, PN, CPN, SPN

Alapszintű modellek és formalizmusok: KS, LTS, KTS, XTA

Áttekintés: A félév első része

- Modellezés: Alapszintű formális modellek
- Követelmények formalizálása: Temporális logikák
- Formális verifikáció: Modellellenőrzés

Áttekintés: A félév második része

Szoftverek modellezése és verifikációja

Automaták és absztrakció

Konkurens rendszerek modellezése és analízise

Petri-hálók

Adatfeldolgozás modellezése és analízise

Színezett Petri-hálók

Extra-funkcionális tulajdonságok analízise

Sztochasztikus Petri-hálók

Modellezési formalizmusok + verifikációs eszközök

Formális módszereket alkalmazó (ingyenes) eszközök

Eszköz	Ajánlott használat
UPPAAL uppaal.org	Időfüggő viselkedésű vezérlők modellezése, szinkron kommunikáció
SPIN spinroot.com	Aszinkron, üzenetekkel kommunikáló processzek protokolljai, algoritmusai
NuSMV nusmv.fbk.eu	Megosztott változókat használó komponensek algoritmusai, hardver
CBMC, JBMC www.cprover.org/software	C és C++ programok, Java bájtkód korlátos ellenőrzése
CPAchecker cpachecker.sosy-lab.org	C programok helyességének ellenőrzése (assertion, invariánsok)
PetriDotNet petridotnet.inf.mit.bme.hu	Konkurens rendszerek modellezése, extra-funkcionális tulajdonságok analízise