

HW #04: Hive

Deadline: 15.07.2019, 08:00

1. Описание задания.	1
2. Критерии оценивания.	1
3. Описание данных	2
4. Задача #1: создание таблиц в Hive.	4
5.1. Задача #2 (вариант 1): горячий денек.	5
5.2. Задача #2 (вариант 2): поиск аномалий в работе НТТР.	5
5.3. Задача #2 (вариант 3): Market Research.	6
6.1. Задача #3 (вариант 1): Male vs Female popularity per region.	6
6.2. Задача #3 (вариант 2): identify browser sex.	7
6.3. Задача #3 (вариант 3): identify gender-related HTTP errors.	8
7. Сроки сдачи и правила оформления задания.	8

1. Описание задания.

В данном ДЗ нужно решить **3 задачи**. Решение надо выполнить с помощью Hive. Задача 1 - общая для всех. В задачах 2,3 вариант определяются ID (см. <u>таблицу с оценками</u>) с помощью следующей формулы:

ID % 3 + 1

2. Критерии оценивания.

Балл за задачу складывается из:

• 60% - правильное решение задачи

- **20%** поддерживаемость и читаемость кода (Clean Code, см. например <u>Google</u> <u>Python Style Guide</u>)
- 20% эффективность решения

Штрафы:

- 10% за несоответствие правилам оформления задания
- 30% за просрочку дедлайн

Веса задач:

- 1. 33.3%
- 2. 33.3%
- 3. 33.3%

3. Описание данных

3.1. Логи запросов пользователей новостных сайтов.

user_logs:

- Путь на кластере: полный датасет /data/user_logs/user_logs_M
- Семпл (для тестирования): /data/user_logs/user_logs_S
- Формат: текст
- В каждой строке находятся следующие поля, разделенные знаком табуляции (иногда не одним):
 - 1. STRING ір-адрес, с которого пришел запрос,
 - 2. STRING (TIMESTAMP) время запроса,
 - 3. STRING пришедший с ір-адреса http-запрос,
 - 4. INT размер переданной клиенту страницы в байтах,
 - 5. INT http-статус запроса.
 - 6. STRING User Agent, информация о клиентском приложении, с которого осуществлялся запрос на сервер, в том числе, информация о браузере.

Пример:

135.124.143.193 20150601013300 http://newsru.com/4712386 235 412 Firefox/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0)n

Важно:

- разделитель между IP и временем запроса состоит из 3 символов табуляции;
- Будем считать, что браузере содержится в начале 6-ого поля лога символы с нулевой позиции до позиции первого пробельного символа.
 - о пример User Agent:

- Chrome/5.0 (compatible; MSIE 9.0; Windows NT 8.0; WOW64; Trident/5.0; .NET CLR 2.7.40781; .NET4.0E; en-SG)
- ∘ тогда браузером будет: Chrome/5.0

Подсказка:

• поскольку нас не интересует оставшаяся часть User Agent, то получить тип браузера пользователя можно с помощью правильного регулярного выражения в период чтения logs_raw.

3.2. Информация о пользователях.

user_data:

- Путь на кластере: полный датасет /data/user_logs/user_data_M
- Семпл (для тестирования): /data/user_logs/user_data_S
- Формат: текст
- В каждой строке находятся следующие поля, разделенные знаком табуляции:
 - 1. STRING IP-адрес, с которого пользователь выходит в интернет;
 - 2. STRING браузер пользователя;
 - 3. STRING пол (male / female);
 - 4. INT возраст.

Пример:

```
197.72.248.141 Opera/12.0 male 30
```

3.3. Геобаза - информация о соответствии ір-адресов регионам.

ip_data:

- Путь на кластере: полный датасет /data/user_logs/ip_data_M
- Семпл (для тестирования): /data/user_logs/ip_data_S
- Формат: текст
- В каждой строке находятся следующие поля, разделенные знаком табуляции:
 - 1. STRING IP-адрес;
 - 2. STRING регион.

Пример:

33.49.147.163 Kemerovo Oblast 197.72.248.141 Belgorod Oblast 135.124.143.193 Krasnoyarsk Krai

tel: + 7 920 149 40 50 mail-to: info@bigdatateam.org

4. Задача #1¹: создание таблиц в Hive.

Создайте внешние (EXTERNAL) таблицы по исходным данным:

- 1. logs_raw логи пользователей;
- 2. users таблица с информацией о пользователях;
- 3. **ip_regions** таблица с IP и регионами;

Из таблицы логов перенесите данные в другую таблицу, партицированную по датам – одна партиция на каждый день:

4. **logs** - партиционированная таблица с логами.

Условия:

- 1. Название базы данных должно иметь вид mf <username>, например mf dral;
- 2. Таблицы должны называться ровно так, как указано в описании задачи.
- 3. Сериализация и десериализация данных должна осуществляться с использованием регулярных выражений, см.:
 - org.apache.hadoop.hive.serde2.RegexSerDe

Проверить правильность создания таблиц можно с помощью простых SELECT-запросов:

SELECT * FROM LIMIT 10

Рекомендации:

- предлагается начать с простых таблиц, а потом двигаться к сложным, например: ip_regions \rightarrow users \rightarrow logs_raw \rightarrow logs;
- для создания таблиц ip_regions и users рекомендуется воспользоваться следующей конструкцией:
 - ROW FORMAT delimited
 - Документация по полям, разделяющим колонки доступны в документации по <u>адресу</u>. Вам необходимо найти способ указать разделить <tab> вместо <space> (пробела).

Подсказки как сделать партиционированную таблицу logs:

- 1. Чтобы выделить день в формате "YYYYMMDD" достаточно воспользоваться функцией для работы со строками SUBSTR.
- 2. Посчитайте, сколько уникальных (DISTINCT) дней в "сырых" логах (logs_raw). Это число должно получиться более 100 на датасете размера " M".

4

¹ Внутренний ID задачи (для проверяющих) - 411

- 3. Используйте это число, чтобы задать переменную окружения Hive, которая позволит запустить динамическое создание партиций²:
 - o set hive.exec.max.dynamic.partitions.pernode=***;
- 4. После этого можно написать запрос:
 - INSERT OVERWRITE TABLE logs PARTITION(date) SELECT ... FROM logs_raw

На партиционированной таблице `logs` и нужно будет выполнять запросы в следующих задачах.

5.1. Задача #2 (вариант 1)³: горячий денек.

Напишите запрос, который считает какое количество посещений новостных сайтов было в разрезе дней. Полученные результаты отсортируйте (ORDER BY) по убыванию популярности. На экран выведите TOP-10 самых "горячих" дней с точки зрения нагрузки на инфраструктуру новостных сервисов.

Пример вывода:

20140308 96

20140409 94

20140318 89

. . .

5.2. Задача #2 (вариант 2)⁴: поиск аномалий в работе HTTP.

Напишите запрос, который считает какое количество **различных** HTTP-статусов возвращали новостные сайтов в разрезе дней. Полученные результаты отсортируйте (**ORDER BY**) по убыванию популярности. На экран выведите TOP-10 самых "подозрительных" дней.

Пример вывода:

20140207 46

mail-to: info@bigdatateam.org

tel: + 7 920 149 40 50

https://bigdatateam.org

² Подробную документацию по dynamic partitioning см. здесь: https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-Dynamic PartitionInserts

³ Внутренний ID задачи (для проверяющих) - 421

⁴ Внутренний ID задачи (для проверяющих) - 422

20140126 44 20140112 42

5.3. Задача #2 (вариант 3)⁵: Market Research.

Постройте гистограмму использования браузеров пользователями новостных сайтов на основе таблицы logs. Полученные результаты отсортируйте (**ORDER BY**) по убыванию популярности. На экран выведите TOP-10 самых популярных браузеров.

Пример вывода:

```
Firefox/5.0 25
Opera/5.0 21
```

6.1. Задача #3 (вариант 1)⁶: Male vs Female popularity per region.

Напишите запрос, считающий популярность новостных ресурсов в регионах среди мужчин и женщин. Выведите произвольные 10 записей (LIMIT 10) в формате:

• регион <tab> посещаемость мужчинами <tab> посещаемость женщинами

Пример вывода:

```
Tver 66968157 29097223
Voronezh 60445347 26333509
...
```

Подсказки:

- для решения задачи рекомендуется воспользоваться оператором IF, примеры его использования см. в официальной документации Hive (см. <u>здесь</u>) или в слайдах занятия.
- для решения этой задачи нужно сделать join трех таблиц. Сложность заключается в том, что: по умолчанию, из-за небольшого объема данных Hive преобразует этот запрос в Map-Side Join, HO у него **может** не хватит оперативной памяти, чтобы выполнить эту задачу, поэтому:

tel: + 7 920 149 40 50

mail-to: info@bigdatateam.org https://bigdatateam.org

⁵ Внутренний ID задачи (для проверяющих) - 423

⁶ Внутренний ID задачи (для проверяющих) - 441

- 1. Нужно отключить авто-конвертацию join в оптимизированный вид join. см. опцию:
 - set hive.auto.convert.join
- 2. По умолчанию, опять же из-за небольшого объема данных, Hive попробует запустить все вычисления в рамках Reduce-Side Join на одном редьюсере. Чтобы этого избежать необходимо изменить число редьюсеров с помощью флага:
 - set mapreduce.job.reduces (укажите например 8 редьюсеров, чтобы дождаться результатов вычислений в течение 30 минут).

6.2. Задача #3 (вариант 2)7: identify browser sex.

Напишите запрос, который считает число употреблений браузера мужчинами и женщинами. Группируем браузеры из таблицы **logs**. Выведите **произвольные** 10 записей (LIMIT 10) в формате:

• браузер <tab> посещаемость мужчинами <tab> посещаемость женщинами

Пример вывода:

```
Firefox/5.0 1419872 621124
Opera/5.0 1426114 623333
```

Подсказки:

- для решения задачи рекомендуется воспользоваться оператором IF, примеры его использования см. в официальной документации Hive (см. <u>здесь</u>) или в слайдах занатия
- для решения этой задачи нужно сделать join двух таблиц. Сложность заключается в том, что: по умолчанию, из-за небольшого объема данных Hive преобразует этот запрос в Map-Side Join, HO у него **может** не хватит оперативной памяти, чтобы выполнить эту задачу, поэтому:
 - 1. Нужно отключить авто-конвертацию join в оптимизированный вид join. см. опцию:
 - set hive.auto.convert.join
 - 2. По умолчанию, опять же из-за небольшого объема данных, Hive попробует запустить все вычисления на одном редьюсере (если вы воспользовались первой рекомендацией, то это будет Reduce-Side Join). Чтобы этого избежать необходимо изменить число редьюсеров с помощью флага:

_

⁷ Внутренний ID задачи (для проверяющих) - 442

set mapreduce.job.reduces

6.3. Задача #3 (вариант 3)⁸: identify gender-related HTTP errors.

Напишите запрос, который считает сколько раз мужчины и женщины сталкивались с разными кодами возврата HTTP. Выведите **произвольные** 10 записей (LIMIT 10) в формате:

• HTTP-код <tab> встретилось у мужчин <tab> встретилось у женщин

Пример вывода:

511 90675090 39459549 412 87782696 38146030 ...

Важно: не стоит беспокоиться, что в выводе будут **несуществующие** HTTP-коды возврата, это результат обфусцирования данных.

Подсказки:

- для решения задачи рекомендуется воспользоваться оператором IF, примеры его использования см. в официальной документации Hive (см. <u>здесь</u>) или в слайдах занятия.
- для решения этой задачи нужно сделать join двух таблиц. Сложность заключается в том, что: по умолчанию, из-за небольшого объема данных Hive преобразует этот запрос в Map-Side Join, HO у него **может** не хватит оперативной памяти, чтобы выполнить эту задачу, поэтому:
 - 1. Нужно отключить авто-конвертацию join в оптимизированный вид join. см. опцию:
 - set hive.auto.convert.join
 - 2. По умолчанию, опять же из-за небольшого объема данных, Hive попробует запустить все вычисления на одном редьюсере (если вы воспользовались первой рекомендацией, то это будет Reduce-Side Join). Чтобы этого избежать необходимо изменить число редьюсеров с помощью флага:
 - set mapreduce.job.reduces

7. Сроки сдачи и правила оформления задания.

_

⁸ Внутренний ID задачи (для проверяющих) - 443

Deadline: 15.07.2019, 08:00

Оформление задания:

- Код задания (Short name): **HW4:Hive**.
- Решения задач должны содержаться в одной папке.
- HQL-скрипты для запуска решений следует называть по номеру задачи и варианта task_<#task>_<#variant>.hql:
 - например решение задачи #2 для 3го варианта должно называться task_2_3.hql и его можно запустить с помощью команды:
 - hive -f task 2 3.hql
 - о скрипт выводит на экран (STDOUT) указанное в задание число строк в нужном формате
- Вывод STDOUT задач просьба написать в соответствующие файлы, например task_2_3.out.
- Выполненное ДЗ запакуйте в архив **MF2019Q2_<фамилия>_HW#.zip**, к примеру -- **MF2019Q2_Ivanov_HW3.zip**. Например, ваше решение лежит в папке my_solution_folder, тогда чтобы на Linux и Mac OS создать архив под названием hw.zip и пожать его с помощью zip выполните команду⁹:
 - o zip -r hw.zip my_solution_folder/

 На Windows 7/8/10: необходимо нажать правую кнопку мыши на директорию my_solution_folder/, выбрать в открывшемся меню "Отправить >", затем "Сжатая ZIP-папка". Теперь можно переименовать архив.
- Присылайте выполненное задание на почту <u>bigdata_mf2019q2@bigdatateam.org</u> с темой письма "Short name. ФИО.". Например: "**HW4:Hive**. Иванов Иван Иванович."
- Перед отправкой письма, оставьте, пожалуйста, отзыв о домашнем задании по сссылке: http://rebrand.ly/mf2019q2_feedback_hw04. Это позволит нам скорректировать учебную нагрузку по следующим заданиям (в зависимости от того, сколько часов уходит на решение ДЗ), а также ответить на интересующие вопросы.

Любые вопросы / комментарии / предложения можно писать:

- в телеграм-канале: http://rebrand.ly/mf2019q2 telegram join
- На почту: <u>bigdata mf2019q2@bigdatateam.org</u>

Всем удачи!

8. Дорешка.

⁹ Флаг -г значит, что будет совершен рекурсивный обход по структуре директории

Решения после получения фидбека на решение ДЗ можно улучшить. Разрешается одна досылка в течение 1й недели после окончания дедлайна за ДЗ. Соответственно, фидбек за дорешенные ДЗ вы получите в течение 24 часов после окончания deadline следующего ДЗ.

Дорешивать неработающие задания - нельзя. Это позволит исправить дисбаланс между присланными **работающими** заданиями **после** deadline

VS

присланными **НЕработающими** заданиями **до** deadline