Practice Problems

I will try to update this file from time to time throughout the semester to add new problems and some solutions (if I have enough time for that). There might be too many typos and mistakes in the solutions, or even in the problems. Please let me know if you spot a very big mistake.

This is the last update August 9, 2022

- 1. For which integers n, the expression $\frac{5n^2+6n+4}{3n+2}$ is an integer?
- **2.** Prove that if the integers a, b, c satisfy $9 \mid a^3 + b^3 + c^3$, then they also satisfy $3 \mid abc$.
- **3.** Let g > 0 and s be given integers. Prove that there exist integers x and y satisfying gcd(x,y) = g and xy = s if and only if $g^2 \mid s$.
- **4.** Using Euclid's algorithm, find gcd(1378, 1259) and integers x, y satisfying 1378x + 1259y = gcd(1378, 1259).
- **5.** Find all the possible values of gcd(2n-1,9n+4) for integer n.
- **6.** Find $gcd(2^{19} + 1, 2^{96} + 1)$.
- 7. Show that n! + 1 and (n + 1)! + 1 are coprime for integers $n \ge 1$.
- **8.** Find all integer solutions to the linear diophantine equation 1990x + 173y = 11.
- **9.** Find all integer solutions to the linear diophantine equation 6x + 10y 15z = 1.
- 10. Let a and b be coprime positive integers. Prove that the linear diophantine equation ax + by = c has a solution in non-negative integers for every integer $c \ge (a-1)(b-1)$.
- 11. For which integer(s) n both of the numbers n and $n^2 + 2$ are primes?
- 12. Find the smallest positive integers a and b satisfying $2a^2 = 3b^3$.
- 13. Find the integer values of n for which n(n+17) is the square of an integer.
- 14. Prove that there are infinitely many primes of the form 3k+2.
- **15.** A positive integer n is called *powerful* if for every prime p dividing n, p^2 also divides n. Prove that a positive integer n is powerful if and only if it can be expressed as $n = a^2b^3$ for some positive integers a and b.
- **16.** Prove for the positive integers a, b, c that

$$gcd(a, b, c) \cdot lcm[ab, bc, ca] = abc.$$

- 17. Let n be a positive integer. Prove that there are infinitely many primes p with the sum of its digits larger than n.
- **18.** The last k digits of 2^n are equal. Prove that $k \leq 3$.

- **19.** Let $n \ge 0$ be an integer, then prove that $2^{n+2} ||5^{2^n} 1$.
- **20.** Let p(x) be a polynomial with integer coefficients.
 - (a) Prove for distinct integers a and b that $a b \mid p(a) p(b)$.
 - (b) Suppose three distinct integers a, b, c satisfy p(a) = p(b) = p(c) = 1. Prove for every integer n that $p(n) \neq 0$.
- **21.** For a real number x, let $\lfloor x \rfloor$ denote the largest integer less than or equal to x. Let n be a positive integer and p be a prime such that $p^e || n!$, then prove that

$$e = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \cdots$$

- **22.** Find all prime numbers p such that $|p^4 86|$ is also a prime.
- **23.** Prove that the equation $a_1^4 + a_2^4 + \cdots + a_{14}^4 = 160015$ has no integer solutions $(a_1, a_2, \cdots, a_{14})$.
- **24.** Find all integer solutions to $x^2 + y^2 = 3z^2$ (Hint: Start with cancelling out gcd(x, y, z) if it is not equal to 1 already).
- **25.** Prove that $a \equiv b \mod n \Longrightarrow \gcd(a, n) = \gcd(b, n)$.
- **26.** Let a, b, n, and k be positive integers such that gcd(a, n) = 1. Prove that

$$a^k \equiv b^k \pmod{n}$$
 and $a^{k+1} \equiv b^{k+1} \pmod{n} \Longrightarrow a \equiv b \pmod{n}$.

Would it be still true without gcd(a, n) = 1?

- **27.** Prove for every integer n that $30 \mid n^5 n$.
- **28.** Find an integer n such that all of the last three digits of n^2 are equal to 4. Is there an integer n such that all of the last four digits of n^2 are equal to 4?
- **29.** Find the three smallest positive integer values of x satisfying all of the congruences

$$n \equiv 2 \pmod{3}$$

 $n \equiv 4 \pmod{5}$
 $n \equiv 6 \pmod{7}$

$$n \equiv 0 \pmod{t}$$

 $n \equiv 10 \pmod{11}$.

- **30.** How many solutions does the congruence $x^3 \equiv 1 \pmod{273}$ has in \mathbb{Z}_{273} ?
- **31.** Some integers $a_1, a_2, \dots, a_{1013}$ are given. Prove that we can always find some $i \neq j$ such that $a_i \equiv a_j \pmod{2022}$ or $a_i = -a_j \pmod{2022}$.
- **32.** Let m be a positive integer. A set of m integers, containing one representative from each of the m congruence classes in \mathbb{Z}_m is called a *complete set of residues modulo* m. Suppose $\{r_0, r_1, \dots, r_{m-1}\}$ is a complete residue system modulo m. Prove that

$$r_0 + r_1 + \dots + r_{m-1} \equiv \begin{cases} 0 \pmod{m} & \text{if m is odd} \\ \frac{m}{2} \pmod{m} & \text{if m is even.} \end{cases}$$

- **33.** Let c be a positive integer and $\{r_0, r_1, \dots, r_{m-1}\}$ be a complete residue system modulo m. Prove that $\{cr_0, cr_1, \dots, cr_{m-1}\}$ is also a complete residue system modulo m if and only $\gcd(c, m) = 1$.
- **34.** Recall that (a, n) depends only on the congrunce class of a in \mathbb{Z}_n (for example, see Question 25).
 - (a) For a prime p and a positive integer k, prove that $gcd(a, p^k) = 1$ for exactly $p^{k-1} \cdot (p-1)$ values of a in \mathbb{Z}_{p^k} .
 - (b) Let $n \geq 2$ be a positive integer with the prime factorisation $n = \prod_{i=1}^k p_i^{\alpha_i}$. Using the previous part and the Chinese Remainder Theorem, deduce that the number of the integers $1 \leq a \leq n$ satisfying $\gcd(a, n) = 1$ is

$$\phi(n) = \prod_{i=1}^{k} p_i^{\alpha_i - 1} \cdot (p_i - 1).$$

- **35.** Let p be a prime and n is an arbitrary positive integer. Prove that $n^p + n \cdot (p-1)!$ is divisible by p.
- **36.** Find $0 \le a \le 6$ such that

$$10^{10^0} + 10^{10^1} + 10^{10^2} + \dots + 10^{10^{10}} \equiv a \pmod{7}.$$

- **37.** Prove that if 7 divides the 2022-digit integer $\overline{a_1 a_2 \cdots a_{2022}}$, then it also divides $\overline{a_{2022} a_1 a_2 \cdots a_{2021}}$.
- **38.** Find all positive integers n such that $n^5 + 5^n \equiv 0 \pmod{11}$.
- **39.** Let p be a prime. Prove that $(p-2)! \equiv 1 \pmod{p}$ and $(p-3)! \equiv \frac{p-1}{2} \pmod{p}$.
- **40.** Suppose q is a prime such that $7 \cdot 23 \cdot q$ is a Carmichael number. Find q.
- **41.** Prove that 25 passes base 7-test, i.e. $7^{25} \equiv 7 \pmod{25}$.
- **42.** Suppose an integer n passes the base a-test and the base b-test, prove that it also passes the base ab-test.
- **43.** Suppose an integer n passes the base a-test while failing the base b-test, prove that it also fails the base ab-test if gcd(a, n) = 1. Give a counter-example for the case $gcd(a, n) \neq 1$.
- 44. Solve the congruence

$$x^3 + 3x^2 + x + 3 \equiv 0 \pmod{25}$$

in \mathbb{Z}_{25} .

- **45.** Let $n \geq 2$. Prove that the number of the units of \mathbb{Z}_n is even unless n = 2.
- **46.** Find all positive integers n satisfying $\phi(n) = 20$.
- **47.** Prove that there is no n satisfying $\phi(n) = 14$.
- **48.** Prove for any odd integer n that $n^{33} \equiv n \pmod{4080}$.
- **49.** Prove that every positive integer n with gcd(n, 10) = 1 divides infinitely many terms of the sequence

- **50.** Find all primitive roots of \mathbb{Z}_{17} .
- **51.** Let p be an odd prime and g be primitive root modulo p. Show that -g is a primitive root modulo p if and only if $p \equiv 1 \pmod{4}$.
- **52.** Let n be a positive integer. Prove that $n \mid \phi(2^n 1)$
- **53.** Let p be a prime. If $\operatorname{ord}_p(u) = 3$, then show that $u^2 + u + 1 \equiv 0 \pmod{p}$ and that $\operatorname{ord}_p(1+u) = 6$.
- **54.** Let p be prime and g be a primitive root modulo p^2 . Show that g is also a primitive root modulo p.
- **55.** Let n be a positive integer such that \mathbb{Z}_n has a primitive root and let a be a unit modulo n. Show that the congruence $x^k \equiv a \pmod{n}$

has a solution if and only if

$$a^{\frac{\phi(n)}{\gcd(k,\phi(n))}} \equiv 1 \pmod{n}.$$

- **56.** Find the number of the solutions to the congruence $x^4 \equiv 61 \pmod{117}$ in \mathbb{Z}_{117} .
- **57.** (a) Which primes p satisfy $\left(\frac{-2}{p}\right) = 1$?
 - (b) Which primes satisfy $\left(\frac{7}{p}\right) = 1$?
- **58.** Compute the Legendre symbol $\left(\frac{814}{2003}\right)$.
- **59.** (a) Prove for prime p > 3 that the sum of all quadratic residues of \mathbb{Z}_p is equivalent to 0 (mod p).
 - (b) Prove for prime $p \neq 2$ that the product of all quadratic residues of \mathbb{Z}_p is equivalent to $(-1)^{\frac{p+1}{2}} \pmod{p}$.
- **60.** Let $p \equiv 3 \pmod{4}$ and n is a positive integer. Show that $\frac{p+1}{4} + n(n+1)$ is either divisible by p or it is a quadratic residue modulo p.
- **61.** Let p be a prime. Prove that if the congruence

$$x^2 - x + 3 \equiv 0 \pmod{p}$$

has a solution, then so is the congruence

$$y^2 - y + 25 \equiv 0 \pmod{p}.$$

- **62.** (a) Show that a prime divisor p of $4n^2 + 3$ is either p = 3 or $p \equiv 1 \pmod{3}$.
 - (b) Prove that there are infinitely many primes of the form 3k + 1.
- **63.** Is 43 quadratic residue modulo 923? If yes, then find the number of solutions to the congruence $x^2 \equiv 43 \pmod{923}$ in \mathbb{Z}_{923} .
- **64.** (This is hard) Let $p \neq 2$ be a prime. Prove that there exists an integer a such that $1 \leq a \leq 1 + \sqrt{p}$ and $\left(\frac{a}{p}\right) = -1$, in other words the smallest quadratic non-residue modulo p cannot be larger than $1 + \sqrt{p}$.

4