RECOMMENDER SYSTEMS COLLABORATIVE FILTERING

AUTHORS

AMIR HOSSEIN BINESH, SHAHRYAR SHAHBAZI, MOHAMMAD MAHDI SABER MAHANI

SUPERVISOR

DR MAZLAGHANI

CONTENTS

INTRODUCTION

CF CONCEPTS

CHALLENGES

APPROACHES

CF ALCORITHMS

EVALUATION

• INTRODUCTION: What is a recommender system

Seeks to predict the "rating" a user would give to an item A subclass of information filtering

INTRODUCTION: Why to use them

- Information overload
- Adaptive web
- Limited user attention
- Limited screen space

• INTRODUCTION: How they help us

- as users
 - Less time searching
 - Easier decision making
 - High quality items
 - Find new items a user may like
 - Advising on an item to a user

- as service providers
 - More revenue
 - User satisfaction
 - Increase user retention

INTRODUCTION: How they work

APPROACHES: Preview

• APPROACHES: Content based vs. Collaborative

APPROACHES: Content based filtering

- Domain dependent
- Based on analysis attributes of items
- Extracts features of items a user has rated

APPROACHES: Content based filtering(cont.)

Pros and cons

- Can recommend items with no rating
- Depends on items metadata

+ Can adopt to changing tastes

Needs knowledge of item features

User privacy

No serendipity

APPROACHES: Collaborative filtering

- Domain independent
- Based on user-item matrix
- Finds neighbors for users

APPROACHES: Collaborative filtering(cont.)

Pros and cons

- Provides serendipitous
- + Doesn't require content
- + Domain independent

- Cold-start problem, community
- Scalability
- Trust

• CF CONCEPTS: Intuition

	Item 1	Item 2	Item 3	Item 4
User 1	4	5	?	2
User 2	1		4	3
User 3	4	5	2	1
User 4	2	2		5

$$userSim(u, u') = \frac{u \cdot u'}{|u| \cdot |u'|}$$
 $pred(u, i) = avg(rating \ of \ similar \ users)$

CF CONCEPTS: Domain properties

- Data distribution
 - Many items
 - Many ratings per item

- Data persistence
 - Items persist
 - Taste persists

CF CONCEPTS: Domain properties(cont.)

- Underlying meaning
 - Similar users exist for each user
 - Item evaluation requires personal taste
 - Items are homogenous

CF ALGORITHMS: Preview

In real world applications, pure model based or hybrid methods are used

CF ALGORITHMS: User based

Generate predictions based on ratings from similar users A naïve formula for prediction:

$$pred(u,i) = \frac{\sum_{n \subset neighbors(u)} r_{ni}}{number \ of \ neighbors}$$

This does not consider amount of similarity

$$pred(u,i) = \frac{\sum_{n \subset neighbors(u)} userSim(u,n).r_{ni}}{\sum_{n \subset neighbors(u)} userSim(u,n)}$$

CF ALGORITHMS: User based(cont.)

Users vary in their use of scale, so we adjust using mean rating; for example some optimistic users may give a movie between 4 of 5 but a pessimistic user may gives it 3.

$$pred(u,i) = \overline{r_u} + \frac{\sum_{n \subset neighbors(u)} userSim(u,n).(r_{ni} - \overline{r})}{\sum_{n \subset neighbors(u)} userSim(u,n)}$$

CF ALGORITHMS: User based(cont.)

For userSim(), we can use Pearson correlation

Pearson correlation differs between -1 and 1

It compares ratings for all items that are rated by both users (co-rated)

$$userSim(u,n) = \frac{\sum_{i \subset CR_{u,n}} (r_{ui} - \overline{r_u}) \cdot (r_{ni} - \overline{r_n})}{\sqrt{\sum_{i \subset CR_{u,n}} (r_{ui} - \overline{r_u})^2} \cdot \sqrt{\sum_{i \subset CR_{u,n}} (r_{ni} - \overline{r_n})^2}}$$

CR denotes the set of co-rated items between two users

CF ALGORITHMS: User based challenges

- Pairs of users with little co-rated items are prone to skewed correlation
- Pearson correlation fails to incorporate agreement of whole about an item

- It scales linearly with the number of users and items. To reduce processing time and memory consumption:
 - Subsampling
 - Clustering

CF ALGORITHMS: Item based

Generates predictions based on similarities between items

$$pred(u,i) = \frac{\sum_{j \in ratedItems(u)} itemSim(i,j).r_{uj}}{\sum_{j \in ratedItems(u)} itemSim(i,j)}$$

Average correcting is not needed, since all the ratings are from one user

CF ALGORITHMS: Item based(cont.)

For *itemSim(*) adjusted cosine similarity can be used:

$$itemSim(i,j) = \frac{\sum_{u \subset RB_{i,j}} (r_{ui} - \overline{r_u}) \cdot (r_{uj} - \overline{r_u})}{\sqrt{\sum_{u \subset RB_{i,j}} (r_{ui} - \overline{r_u})^2} \cdot \sqrt{\sum_{u \subset BR_{i,j}} (r_{uj} - \overline{r_u})^2}}$$

 $RB_{i,j}$ denotes the set of users who have rated both items i and j It compares the ratings for all users who rated both movies (co-rating)

* It's like Pearson correlation but average adjusting is performed with respect to the user, not the item

CF ALGORITHMS: Item based challenges

Size of model can be as large as square of the number of items

- But it makes it difficult to predict for any given item
- Items with few co-ratings can let skewed correlations dominate a prediction

CF ALGORITHMS: Association rule mining

Build models based on commonly occurring patterns in rating matrix

• Example: Users who rated item 1 highly, often rate item 2 highly

$$Rule \ r : Liking \ item \ 1 \rightarrow Liking \ item \ 2$$

$$Support(r) = \frac{\# \ users \ who \ liked \ item \ 1 \ and \ item \ 2}{total \ \# \ users}$$

$$Confidence(r) = \frac{\# \ users \ who \ liked \ item \ 1}{\# \ users \ who \ like \ both \ item \ 1 \ and \ item \ 2}$$

CF ALGORITHMS: Association rule mining challenges

- We lose any notion of the numeric relationship between ratings
 To solve this
 - Divide ratings into two bins: high and low
 - Only consider ratings above a user's average
 - Treat all ratings as identical when building rules
- Too slow for CF domain due to the extremely high dimensionality

CF ALGORITHMS: Probabilistic algorithms

Calculate p(r|u,i) for a given user u and an item I Expected rating:

$$E(r|u,i) = \sum_{r} r.p(r|u,i)$$

Most popular probabilistic frameworks

- Bayesian network: derive probabilistic dependencies among users or items
- Decision trees

Can also compute likelihood of a prediction being correct(confidence)

CF ALGORITHMS: Probabilistic algorithms(cont.)

Decision Trees

A separate tree is constructed for each recommended item

CHALLENGES: Few ratings

Items and users with few ratings can bias CF results Approaches

In user based, discard neighbors with fewer than k common rated items Will decrease coverage

CHALLENGES: Few ratings(cont.)

- 2 Adjust calculations for rarely-rated items
 - Pull them closer to an expected mean

 Pearson similarities with few co-ratings may be adjusted closer to 0
- 3 Incorporate a prior belief
 - Match user's rating distribution to a probability distribution p
 Use k artificial co-rated items

• CHALLENGES: Explicit vs. Implicit

EXPLICIT

Accurate
Additional work from user
May not be enough

IMPLICIT

Imprecise
Little of no cost to user

More ratings leads to the ability to handle uncertainty

CHALLENGES: Explicit ratings collection

In order to succeed, CF needs relatively small number of "early adopters" who rate frequently and continuously.

Users rate because

- Feeling of contribution to advance a community
- Gratification from having one's opinion voiced and valued

Also using incentives like "site points" or t-shirts can encourage users to rate

CHALLENGES: Rating Scales

The finer grained the scale:

- + The more information CF can have
- More complex user interface
- Increase uncertainty if too fine grained

Rating Scales

Rating scale	Description
Unary	Good or "don't know", Heart
Binary	Good or bad, Like/Dislike
Scalar	Stars, 1-5, 1-10 or ordinal

CHALLENGES: Cold start issue

A situation in which a recommender system is unable to make good recommendations due to an initial lack of ratings.

Three scenarios

- 1 New user
 - Having a user rate some initial items before they can use the service
 - Displaying non-personalized recommendations (population averages) until the user has rated enough
 - Asking the user to describe their taste

CHALLENGES: Cold start issue

2 New item

If there may be many "sleepers" (unrated good items)

- Recommending new items using non-CF techniques such as content-based filtering
- Randomly selecting items with few or no rating and asking users to rate them

• CHALLENGES: Cold start issue

- 3 New community
 - Provide rating incentives to a small "bootstrap" subset of the community
 - Maintain users' interest using non-CF methods
 - Start with a set of ratings from another source

EVALUATION: Accuracy

Magnitude of error predicted rating and the true rating

$$mean\ absolute\ error = \sum_{i \subset PR} \frac{|rate(u,i) - pred(u,i)|}{|PR|}$$

Where PR is a set of items both predicted by recommender system (and recommended) and rated by a user for each user

EVALUATION: Accuracy

Mean absolute error does not differentiate between errors at the top and errors at the bottom of recommendation list

Using half-life utility metric, mistakes at the top of the ranked list are weighted exponentially grater than mistakes further down the list

Precision: Fewer false positives, less coverage

Recall: More coverage, More false positives

EVALUATION: Beyond accuracy

Novelty

Recommend items that the user was not already aware of Example: does not recommend news that I've seen already

Serendipity

Recommend items in new categories

Example: recommends news topics that I have never read before

Coverage

Percentage of items that have the potential of being recommended

CONCLUSION

- Content based filtering can be effective in limited circumstances
- Machines can not automatically recognize subtleties of information that are important (at least for now)
- So we need to include people in the loop using Collaborative filtering methods

• REFERENCES

Schafer, Ben & J, Ben & Frankowski, Dan & Dan, & Herlocker, & Jon, & Shilad, & Sen, Shilad. (2007). Collaborative Filtering Recommender Systems.

F.O. Isinkaye, Y.O. Folajimi, B.A. Ojokoh (2015), Recommendation systems: Principles, methods and evaluation

https://www.monsoonblockchainstorage.com/data-growth/

https://visualbi.com/

- THANKS -