PHI 201 Lecture 3: Reductio ad Absurdum

Hans Halvorson

Reductio ad Absurdum

Introduction

- Idea behind Reductio ad Absurdum: we can show that something is **not** the case by showing that it leads, via logically valid reasoning, to a contradiction.
- There is no real controversy about RA, but there is controversy about whether DN-elimination can then be used to establish a **positive** conclusion.

$\sqrt{2}$ is not a rational number

Proof. Assume for reductio ad absurdum that $\sqrt{2}$ is rational, i.e. that $\sqrt{2} = \frac{a}{b}$ with integers a, b in lowest terms (gcd(a, b) = 1, $b \neq 0$). Then

$$2=\frac{a^2}{b^2} \Rightarrow a^2=2b^2.$$

Hence a^2 is even, so a is even; write a = 2k. Substituting,

$$(2k)^2 = 2b^2 \implies 4k^2 = 2b^2 \implies b^2 = 2k^2,$$

so b^2 is even and therefore b is even.

Thus both a and b are even, contradicting that $\frac{a}{b}$ is in lowest terms. Therefore, $\sqrt{2}$ is irrational. \Box

Law of Excluded Middle

(1)	$\neg(P \lor \neg P)$	Α
(2)	P	Α
(3)	$P \vee \neg P$	2 VI
(4)	$(P \vee \neg P) \wedge \neg (P \vee \neg P)$	$3,1 \land I$
(5)	$\neg P$	2,4 RA
(6)	$P \lor \lnot P$	5 VI
(7)	$(P \vee \neg P) \wedge \neg (P \vee \neg P)$	$6,1 \land I$
(8)	$\neg\neg(P\vee\neg P)$	1,7 RA
(9)	$P \vee \neg P$	8 DN
	(2) (3) (4) (5) (6) (7) (8)	(2) P (3) $P \vee \neg P$ (4) $(P \vee \neg P) \wedge \neg (P \vee \neg P)$ (5) $\neg P$ (6) $P \vee \neg P$ (7) $(P \vee \neg P) \wedge \neg (P \vee \neg P)$ (8) $\neg \neg (P \vee \neg P)$

DeMorgan's Laws

Material Conditional

Show
$$\neg(\neg P \lor Q) \vdash \neg(P \to Q)$$

1 (1) $\neg(\neg P \lor Q)$ A
2 (2) $P \to Q$ A
1 (3) $\neg \neg P$ see previous proof
1 (4) P 3 DN
1,2 (5) Q 2,4 MP
1,2 (6) $\neg P \lor Q$ 5 \lor I
1,2 (7) $(\neg P \lor Q) \land \neg(\neg P \lor Q)$ 6,1 \land I
1 (8) $\neg(P \to Q)$ 2.7 RA

Law of Non-Contradiction

1 (1)
$$P \wedge \neg P$$
 A
(2) $\neg (P \wedge \neg P)$ 1,1 RA

Ex Falso Quodlibet (EFQ)

It is **not** required that the assumption occurs in the dependencies of the contradiction.

Disjunctive Syllogism

$$P \lor Q, \neg P :\vdash Q$$

$$\begin{array}{cccc}
1 & (1) & P \lor Q \\
2 & (2) & \neg P \\
3 & (3) & P \\
2,3 & (4) & Q \\
5 & (5) & Q \\
1,2 & (6) & Q
\end{array}$$

DeMorgan's Laws

DeMorgan's Laws

$$\neg P, \neg Q \vdash \neg (P \lor Q)$$

Strategy: First use DS to get $\neg P, P \lor Q \vdash Q$. Then use the contrapositive maneuver to get $\neg P, \neg Q \vdash \neg (P \lor Q)$

(8)

(9)

(10)

(11)

 $Q \wedge \neg Q$

 $\neg (P \lor Q)$

1,2

2,4

1,2,4

Redundancies in Our System

- With RA, Modus Tollens (MT) and DN-Intro can be eliminated.
- Example: simulate MT using RA.

A A A 1,3 MP 4,2 ∧I 3,5 RA

Simulating DN-Intro

```
\begin{array}{cccc}
1 & (1) & P \\
2 & (2) & \neg P \\
1,2 & (3) & P \land \neg P \\
1 & (4) & \neg \neg P
\end{array}
```

Without RA

RA itself can be simulated with other rules.

Suppose $\Gamma, P \vdash Q \land \neg Q$. Then:

- $\Gamma \vdash P \rightarrow Q$ and $\Gamma \vdash P \rightarrow \neg Q$.
- By contraposition: $\Gamma \vdash \neg Q \rightarrow \neg P$.
- Hence $\Gamma \vdash P \rightarrow \neg P$.
- But $P \rightarrow \neg P \vdash \neg P$.

So $\Gamma \vdash \neg P$. Still, RA feels more natural and symmetric.

More difficult proofs

To show:
$$\vdash (P \rightarrow Q) \lor (Q \rightarrow P)$$

- Strategy 1: Assume $\neg((P \to Q) \lor (Q \to P))$ and derive contradiction.
- Strategy 2: Derive $P \vee \neg P$, then argue by cases.

More difficult proofs

To show:
$$P \rightarrow (Q \lor R) \vdash (P \rightarrow Q) \lor (P \rightarrow R)$$

- Strategy 1: Assume negation of conclusion, apply DeMorgans. The result is two negated conditions, which are equivalent to conjunctions.
- Strategy 2: Derive $P \vee \neg P$, then argue by cases. Recall that $\neg P \vdash P \rightarrow Q$.

Important Sequents

- **DeMorgans:** $\neg(\phi \lor \psi)$ and $\neg \phi \land \neg \psi$ are inter-derivable.
- Material Conditional: $\phi \to \psi$ and $\neg \phi \lor \psi$ are inter-derivable.
- Excluded Middle: $\vdash \phi \lor \neg \phi$
- Disjunctive Syllogism: $\phi \lor \psi, \neg \phi \vdash \psi$

Truth tables

How to check an argument for validity?

- If you prove $\Gamma \vdash \varphi$, then that argument should be valid (assuming that I designed the proof rules well).
- But if you fail to prove $\Gamma \vdash \varphi$, that doesn't show that it's not provable.
- If you show that $\Gamma \vdash \varphi$ is not truth-preserving, then there cannot possibly be a correctly written proof of $\Gamma \vdash \varphi$.

Classification of argument forms

- An argument is **semantically invalid** if there is a scenario where that argument's premises are true but its conclusion is false.
 - A **counterexample** to the validity of an argument is an assignment of truth values to the atomic sentences that makes that argument's premises true and its conclusion false.
- We write $\Gamma \vDash \varphi$ to indicate that the argument from Γ to φ is semantically valid.

Scenarios, aka Ways Things Could Be

Ρ	Q	R
1	1	1
1	1	0
1	0	1
1	0	0
0	1	1
0	1	0
0	0	1
0	0	0

Truth Tables

Conjunction \land

Ρ	Q	$P \wedge Q$
1	1	1
1	0	0
0	1	0
0	0	0

Disjunction \vee

$$\begin{array}{c|cccc} P & Q & P \lor Q \\ \hline 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ \end{array}$$

Negation ¬

$$\begin{array}{c|c} P & \neg P \\ \hline 1 & 0 \\ 0 & 1 \end{array}$$

Conditional \rightarrow

$$\begin{array}{c|cccc} P & Q & P \to Q \\ \hline 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ \end{array}$$

Detailed truth table for $(P \land \neg Q) \rightarrow R$

Ρ	Q	R	(Ρ	\wedge	\neg	Q)	\rightarrow	R
1	1	1				0	1		1	1
1	1	0		1	0	0	1		1	0
1	0	1		1		1	0		1	1
1	0	0		1	1	1	0		0	0
0	1	1		0	0	0	1		1	1
0	1	0		0	0	0	1		1	0
0	0	1		0	0	1	0		1	1
0	0	0		0	0	1	0		1	0

This sentence is a **contingency**: true in some scenarios and false in other scenarios

Affirming the Consequent is Invalid

Р	Q	P o Q
1	1	1
1	0	0
0	1	1
0	0	1

In row 3, both premises $(P \to Q \text{ and } Q)$ are true, but the conclusion P is false. Therefore the argument form is **invalid**.

Negative Paradox is Valid

Ρ	Q	$\neg P$	P o Q
1	1	0	1
1	0	0	0
0	1	1	1
0	0	1	1

In every case where the premise $\neg P$ is true, the conclusion $P \to Q$ is also true.

Ex Falso Quodlibet: $P, \neg P :: Q$

Ρ	Q	$\neg P$	Premises all true?	Conclusion Q
1	1	0	no	1
1	0	0	no	0
0	1	1	no	1
0	0	1	no	0

The premises P and $\neg P$ can never both be true. So there is no row where all premises are true and the conclusion false. Hence the argument form is **valid**.

Using truth tables to guide proofs

Is there a correctly written proof with line fragments like this?

 $\begin{array}{ccc} 1 & (1) & P \\ & \vdots \\ 1 & (\mathsf{n}) & P \lor Q \end{array}$

Is there a correctly written proof with line fragments like this?

1 (1)
$$P$$
 A
:
1 (n) $P \lor Q$

No there cannot be. Line (n) says that $P \vee Q$ follows from P, i.e. that $P \vdash P \vee Q$.

Soundness

Fact: If there is a correctly written proof that ends with $\Gamma \vdash \varphi$, then $\Gamma \vDash \varphi$.

Consequently, if $\Gamma \not\models \varphi$, then there cannot be a correctly written proof that ends with $\Gamma \vdash \varphi$.

In other words, if there is a truth-table counterexample, then there is no proof.

Is there a correctly written proof with line fragments like this?

Completeness

Fact: If $\Gamma \vDash \varphi$, then the sequent $\Gamma \vdash \varphi$ can be proven.

In other words: if the argument is truth-table valid, then there is a proof.

We show that $P \to (Q \lor R) \vDash (P \to Q) \lor (P \to R)$.

Consider a row in the truth table where $(P \to Q) \lor (P \to R)$ is false.

Both $P \rightarrow Q$ and $P \rightarrow R$ are false on this row.

P is true on this row while both Q and R are false on this row.

But then $P \to (Q \lor R)$ is false on this row.

Therefore, in every row where $(P \to Q) \lor (P \to R)$ is false, $P \to (Q \lor R)$ is also false.

Summary

- With RA, we have completed the set of inference rules for propositional logic.
- These rules are provably **sound**: they do not permit a proof of something that has a truth-table counterexample.
- These rules are provably **complete**: anything semantically valid can be proven.