EXPERIMENT no. 5

Aim: To find out relative and absolute viscosity of a given liquid by Ostwald's Viscometer.

Apparatus required: Ostwald's viscometer, R.D.bottel, stop watch, rubber tube.

Chemicals: Distilled water, Given liquid (Unknown)

Theory: Coefficient viscosity is the force per unit area required to maintain a velocity difference of unity between two parellel layers in the liquid unit distance apart.

The measurement of viscosity by the Ostwald's Viscometer method-By the equation-

$$\eta = \frac{\pi r4 t P}{8VI}$$

 η = Coefficient of viscosity

P = Hydrostatic pressure of liquid

V = Volume of the liquid

t = Time taken for the flow

r = Radius of the capillary tube

I = Length of the capillary tube

Procedure:

- 1. The viscometer is cleaned with chromic acid (K₂Cr₂O₇ + con.H₂SO₄) ,then wash with distilled water and dried.
- 2. Now attach the rubber tube to the end of the upper bulb .
- 3. Given liquid is poured in the viscometer.
- 4. The liquid is sucked up, it reaches the upper mark of the upper bulb.
- 5. Now liquid is allowed to fall freely from the upper mark to lower mark of the bulb and stop watch is used to measure the time.
- 6. The liquid is now removed and apparatus is cleaned.
- 7. Another unknown liquid is poured and the above process is repeated.
- 8. Both of the liquid is weighed.

Observations -

Liquid samples	Time of flow(sec.)			Mean time(t) in
	1	2	3	sec.
Distilled	21.94	21.37	21.13	t ₁ = 21.48
water(Known)				

Unknown	26.33	25.91	25.75	t ₂ = 25.75
liquid(Ethenol)				

Calculations:

Weight of empty specific gravity bottle $(w_1) = 21.66 g$ Weight of bottle + Distilled water (known) $(w_2) = 45.92 g$ Weight of bottle + Ethenol (Unknown) $(w_3) = 45.31 g$

Density of Ethenol (unknown liquid) = Mass of liquid/ Mass of equal volume of water

Density of ethenol (
$$\rho_2$$
) = $\frac{w_3-w_1}{w_2-w_1}$

 $(\rho - row) \& (\eta - eta)$

$$= \frac{45.31 - 21.66}{45.92 - 21.66}$$

$$\rho_2 = 0.976 \text{ g/ml}.$$

Density of ethenol (ρ_2) = 0.976 g/ml. (we have to calculate this value) Density of water at room temprature (ρ_1) = 0.997 g/ml (This is the standard value)

Viscosity of distilled water = 1 pas.

So, determine the viscosity of distilled water $(\eta_1) \alpha t_1 \rho_1$ determine the viscosity of Ethenol $(\eta_2) \alpha t_2 \rho_2$

$$(\eta_1) = k t_1 \rho_1$$
 (k=constent)
 $(\eta_2) = k t_2 \rho_2$

Where, η_1 = Viscosity distilled water

 η_2 = Viscosity of ethenol

 t_1 = Mean time of flow of water

 t_2 = Mean time of flow of ethanol

 ρ_1 = Density of distilled water

 ρ_2 = Density of Ethenol

So,
$$\frac{\eta 1}{\eta 2} = \frac{t1 \ \rho 1}{t2 \ \rho 2}$$

$$\eta_2 = \frac{t2 \ \rho 2}{t1 \ \rho 1} \ x \ \eta_1$$

$$\eta_2$$
 = $\frac{25.75 \times 0.976}{21.48 \times 0.997} \times 1.0$

 η_2 = 1.15 pas. (Absolute viscosity of the given liquid)

Viscometer (Figure I)

Relative Density Bottle (Figure II)

Result:

The absolute Viscosity of given solution = 1.15 pascal second.

Precautions:

1. Viscometer must be held in vertical position.

No air bubble should be formed while sucking the liquid from tube.

- 2. The viscometer should be cleaned and dry.
- 3. The viscometer should not be disturbed during measurements of time of flow.