Project Instruction CSE 40647/60647 Data Science

Professor-in-charge:

Dr. Meng Jiang, mjiang2@nd.edu

Office: 326C Cushing Hall Phone: (574) 631-7454

Teaching Assistant (TA):

Qi Li, qli8@nd.edu

Project goal:

For the course project, students will be expected to collect a dataset (online or otherwise), formulate a question of interest, and perform aspects of data science to address that question by using whatever tools they find appropriate. The project will involve a **proposal**, **milestone**, and **final term paper** with **oral presentations** of the project.

Project introduction:

- The students may work in **team of 2 4 (minimum 2 members are required)** for the class project.
- The class project may involve some or all stages of the **knowledge discovery** process, depending on the chosen project. All project topics should be preapproved by the professor.
- The class project will require a **proposal and milestone assessment** during the semester with respect to the data science process.
 - **Proposal and milestone** will be presented and evaluated as **on-going term paper** and **oral presentation**.
- The students will be required to write a **term paper** and make a **class presentation** (poster required, oral encouraged) on their project.
 - o The **term paper** will go through a **peer review process** among the classmates.
 - The term paper must be in PDF format and formatted according to the new Standard ACM Conference Proceedings Template.
 - The term paper should include sections about Introduction, Related Work, Problem Definition, Methodology, Experiments, Discussion, Conclusion and Future Work.
 - There is no page limit.
 - For LaTeX users: unzip acmart.zip, make, and use samplesigconf.tex as a template; Additional information about formatting and style files is available online at: https://www.acm.org/publications/proceedings-template
 - For Word users: export into PDF format.

Grading policy: (30% of the final score)

Students are required to submit their data and code package + "readme" (.ZIP) and term paper (.PDF).

Students are encouraged to **implement** algorithms such as Apriori, FP-Growth, Decision Trees, Naïve Bayes, SVM, and K-Means Clustering by themselves instead of calling Python packages. Students are also encouraged to **use Python packages** (e.g., Numpy and Scipy) when they use **advanced techniques** (e.g., Neural Networks, word2vec) to address challenging problems.

Graders should have **higher expectations on graduates** than undergraduates – not only on the project results but also on writing (a workshop-quality paper of strong reasoning). Undergraduates will be applied with a uniform grading policy no matter what majors they have.

The project final due (final term paper) is **05/03/2018 (11:59 pm)**. There will be absolutely NO extension!!!

Grading distribution: (100 points)

- Proposal paper (10 points)
- Milestone presentation/paper (15 points)
- Final term oral presentation (25 points)
- Final term paper (25 points)
- Code package and data (25 points)

The **project proposal** (proposal paper) will be graded as follows:

Title of Project:	5%	What's the title of the project?	
Project Plan:	30%	What do you plan to do?	
Data Sources:	20%	What data do you plan to use? From where will this data come?	
		How do you plan to evaluate your proposed method? How will you	
Proposed Evaluation:	30%	determine whether the method is successful?	
Writing Quality:	15%	Clarity of expression (5%), organization (5%), and grammar (5%).	

The **project presentation** (milestone presentation, final oral presentation) will be graded as follows:

0			
Introduction:	15%	Provide context. What questions are being addressed?	
Solution/Method:	30%	What did you do? Why did you choose this method? What tools and techniques did you use?	
Data and			
Experiments:	10%	What data did you use? Are your experimental methods reliable?	
Evaluation and			
Results:	30%	What evaluation did you do? Do your conclusions match your results?	
Presentation Quality:	15%	Clarity of speaking (5%), organization (5%), and visuals (5%).	

The **project paper** (milestone paper, final term paper) will be graded as follows:

The project puper (innestance puper) must term puper) will be graded as follows:				
Introduction:	15%	Provide context and motivation. What questions are being addressed? Why are these questions interesting or important?		
Related Work:	10%	What other methods have addressed these or similar questions? How do these methods differ from your method?		
Solution/Method:	25%	What did you do? What tools and techniques did you use? Was any innovation attempted?		
Data and Experiments:	10%	What data did you use? Are your experimental methods reliable? What preprocessing was done the data?		
Evaluation and Results:	25%	Did you properly evaluate your experiments? Did you test for statistical significance? Do your conclusions match your results?		
Writing Quality:	15%	Clarity of writing (5%), organization (5%), and grammar (5%).		

Academic Dishonesty:

- The CSE and du lac honor code will be strictly followed.
- All assignments are individual unless instructed. You can discuss the assignment at a high level, but you should independently and individually write down the answers and/or the program. The sharing and copying of homework solutions or programs or functions or exams will be considered cheating.
- All the references and sources should be carefully provided and cited.
- Entering Notre Dame you were required to study the on-line edition of the Academic Code of Honor, to pass a quiz on it, and to sign a pledge to abide by it. The full Code and a Student Guide to the Academic code of Honor are available at: http://honorcode.nd.edu.
- Perhaps the most fundamental sentence is the beginning of section IV-B: "The pledge to uphold the Academic Code of Honor includes an understanding that a student's submitted work, graded or ungraded examinations, draft copies, papers, homework assignments, extra credit work, etc. must be his or her own."

Schedule:

Date	Lecture#	Topic	Goals
01-16 (T)	1	Introduction	Understand what is data science research Know project grading policy and schedule Start looking for your teammates and find them ASAP Start looking for interesting and doable topics ASAP
02-06 (T)	7	Proposal: Teaming and proposal	Write down your teammate names in HW1 (due Feb. 6) and proposal paper (due Feb. 5) Submit your proposal paper: • What is your project topic/research problem? • How will you find your dataset? • What may be your proposed method? You will listen to proposals from your classmates. This
03-06 (T)	14	QA	In case that you need to discuss about your project and you don't have time to come to office hours, we offer a great chance for you to briefly introduce your idea in class – everybody in the class will be happy to help you! Keep in mind: In two days, you'll submit your milestone paper and give a presentation.
03-08 (R)	15	Milestone	Submit your milestone paper: • Your topic, dataset, and method • Milestone progress: Some preliminary results • Challenges and proposed solutions • Plan for the next two months You will give milestone presentations in class. Believe me: Audience will help you, not argue with you.
04-26 (R)	26	Oral 1 (up to 20% additional credits)	Every team gives an oral presentation. Classmates, instructor, and invited faculty will evaluate your presentation.
05-01 (T) 05-03 (R)	27	Oral 2	Project final paper due: You have to submit your code package, data, and term paper at 11:59PM this date.

Data Portals:

- Kaggle: https://www.kaggle.com/
- DATA.GOV: https://www.data.gov/
- City of Chicago Data Portal: https://data.cityofchicago.org/
- City of South Bend Open Data: http://data-southbend.opendata.arcgis.com/
- Index of Complex Networks: https://icon.colorado.edu/
- The Koblenz Network Collection: http://konect.uni-koblenz.de/
- Stanford Large Network Dataset Collection: http://snap.stanford.edu/data/

Other Resources

Data Sources

<u>KDnuggets Data Repositories List</u> — Data repository list maintained by KDnuggets, a popular data mining website

<u>UCI Datasets</u> — The UC Irvine Machine Learning Repository, a popular source of machine learning datasets

mldata.org — A public repository for machine learning data

<u>Wikipedia Database</u> — Webpage for access to complete Wikipedia database dumps

<u>IMDb Datasets</u> — Webpage for access to IMDb datasets

<u>Last.fm Datasets</u> — Webpage for access to Last.fm datasets

<u>Census.gov</u> — US government source of data about the nation's people and economy

<u>Data.gov</u> — Source of machine readable datasets generated by the US government

<u>UK's Office for National Statistics</u> — Source of datasets generated by the UK's Office for National Statistics

<u>UK's Met Office Data</u> — Climate station records from the UK's National Weather Service

<u>CDC Data</u> — Medical data from the Centers for Disease Control and Prevention

<u>World Bank Catalog</u> — World Bank data

<u>RealClimate Data</u> — Aggregator for selected sources of code and data related to climate science

<u>Google Public Data Explorer</u> — Google's public data portal to explore, visualize, and communicate large datasets

<u>Dataverse Network</u> — Repository for research datasets

<u>Linked Data</u> — Linkage site for distributed data

<u>Datamob</u> — Aggregator for public datasets

<u>Quandl</u> — Search engine for financial, economic, and social datasets

<u>Data Market</u> — Portal for shared business data

<u>CKAN</u> — Open-source data portal platform

<u>Hilary Mason (bitly) Data Links</u> — Hilary Mason's bookmarked research-quality datasets

<u>Peter Skomoroch (LinkedIn) Data Links</u> — Peter Skomoroch's bookmarked machine learning data resources

<u>Jake Hofman Data Links</u> — Jake Hofman's bookmarked computational social science data resources

<u>Reddit Open Data</u> — Forum on the social news site reddit for open APIs and datasets

<u>Guardian DataBlog</u> — Data journalism and data visualization from the Guardian

<u>Free SVG Maps</u> — Website for free geographic maps

<u>StateMaster</u> — Reference site for data on US states

Wolfram | Alpha — Computational knowledge engine or answer engine

Data Visualization Resources

<u>Many Eyes</u> — Web community that connects visualization experts, practitioners, academics, and enthusiasts

<u>Visual Complexity</u> — Resource space for anyone interested in the visualization of complex networks

<u>Thumbs Up Viz</u> — Collection of elegant, efficient, and (above all) effective data visualizations

WTF Visualizations — Visualizations that make no sense

Python

<u>Python.org</u> — The Official Python Website

<u>The Python Tutorial</u> — The Python.org Python tutorial

<u>Learn Python in X Minutes</u> — Whirlwind tour of Python programming

<u>Learn Python the Hard Way</u> — Teaches Python by slowly building and establishing skills through practice and application

<u>Learn Python</u> (interactive) — Engaging Python tutorials

<u>Google's Python Class</u> — Teaches Python via written materials, lecture videos, and lots of code exercises

<u>pyvideo.org</u> — Python-related video index

<u>yhat Data Science in Python Tutorial</u> — Uses IPython to teach data science

<u>Anaconda Python Distribution</u> — Free Python distribution for large-scale data processing and predictive analytics

<u>The Python Package Index</u> — Repository of Python software

 $\underline{\text{pip}}$ — Tool for installing and managing Python packages

<u>NumPy</u> — Python package for scientific computing

<u>SciPy Library</u> — Python package for mathematics, science, and engineering

<u>Matplotlib</u> — Python package for 2D plotting

<u>pandas</u> — Python package for high-performance, easy-to-use data structures and data analysis tools

<u>IPython</u> — Architecture for interactive computing with Python

scikit-learn — Python package for machine learning