

AIR FORCE

AD-A227 710

ESTIMATING THE GENERAL COGNITIVE COMPONENT OF THE ARMED SERVICES VOCATIONAL APTITUDE BATTEPY (ASVAE): THREE FACES OF g

U M A N

DTIC ELECTE 0CT 11 1990

Malcolm James Ree James A. Earles

RESOURC

ES

MANPOWER AND PERSONNEL DIVISION Brooks Air Force Base, Texas 78235-5601

September 1990

Interim Technical Report for Period July 1989 to March 1990

Approved for public release; distribution is unlimited.

LABORATORY

AIR FORCE SYSTEMS COMMAND BROOKS AIR FORCE BASE, TEXAS 78235-5601

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

WILLIAM E. ALLEY, Technical Director Manpower and Personnel Division

HAROLD G. JENSEN, Colonel, USAF Commander

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments requiring this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, in burden, the badquarters Services, Directorate for information operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE	3. REPORT TYPE AND DAT	ES COVERED
	September 1990	Interim Report - July 19	989 - March 1990
4. TITLE AND SUBTITLE		5. FUNDI	NG NUMBERS
Estimating the General Cogni	tive Component of the Armed	Services PR -	7719
Vocational Aptitude Battery (A	ASVAB): Three Faces of g	TA -	
		WU -	67
6. AUTHOR(S)			
Malcolm James Ree			
James A. Earles			
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		DRMING ORGANIZATION
Manpower and Personnel Div	vision	REPO	RT NUMBER
Air Force Human Resources	Laboratory	AFHRL	TR-90-38
Brooks Air Force Base, Texas	78235-5601		
9. SPONSORING/MONITOHING AC	ENCY NAMES(S) AND ADDRESS(ISORING/MONITORING AGENCY ORT NUMBER
		, ner	AT NOMBER
		ļ	
		ļ	
11. SUPPLEMENTARY NOTES			
AFHRL/SC Study Number 98	06		i
, a migos orday mambor oc			
12a. DISTRIBUTION/AVAILABILITY	STATEMENT	12b. DIS	TRIBUTION CODE
Approved for public release;	distribution is unlimited.		
		1	
		<u></u>	
13. ABSTRACT (Maximum 200 words		ii	
- Multiple methods were use Armed Services Vocational Ap	ed to estimate g (general cognit	ave ability) from a representati	ve multiple-aptitude testthe
principal factors, and hierarch			
normative sample and interco			
other sets of variables which o			
	, , , , , , , , , , , , , , , , , , ,	. .	
l I			
A COLD WOT TERMS			ACAUMINED OF DARRO
14. SUBJECT TERMS	navohomatrio a		15. NUMBER OF PAGES 26
factor analysis general cognitive ability	psychometric g		
multiple-aptitude test			16 PRICE CODE
<u> </u>			
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRAC	
Unclassified	Unclassified	Unclassified	UL

SUMMARY

Multiple methods were used to estimate **g** (general cognitive ability) from a representative multiple-aptitude test, the Armed Services Vocational Aptitude Battery (ASVAB). These methods included unrotated principal components, unrotated principal factors, and hierarchical factor analysis. Several variants of the hierarchical factor analyses were used, ranging from 3 to 8 factors. Fourteen estimates of **g** were made and computed on the normative sample for ASVAB. The correlations of these estimates were high, ranging from .930 to .999. For the ASVAB, and any other set of variables which display positive manifold, it is argued that the methods are equivalent.

PREFACE

This research and development effort, conducted under Work Unit 7719-18-67, contributes to a better understanding of the constructs underlying the aptitude test used to select enlisted personnel for the Air Force. The nature of the joint services Armed Services Vocational Aptitude Battery is important for its use in selecting and classifying those individuals applying for enlistment in the Air Force. A full understanding of the constructs being measured is needed for proper assignment, classification, retraining and retention.

Many people within the Air Force Human Resources Laboratory (AFHRL) contributed to this effort. Foremost among them is William Tirre, who is owed special thanks for making the necessity of the study clear. Linda Sawin, Lonnie D. Valentine, Jr., Thomas Watson, and William E. Alley contributed to this effort and gave their time freely. Their critical reviews were very helpful. Sgt David Tucker is thanked for his expertise in the computer analyses.

TABLE OF CONTENTS

		Page
i.	INTRODUCTION	. 1
	Principal Components	. 2
11.	METHOD	. 2
	Cubjects	. 2
III.	RESULTS AND DISCUSSION	. 3
	Principal Components Principal Factors Hierarchical Factor Analysis Relationships Among the Estimates of g	. 4 . 5
REFE	RENCES	. 18
Table	LIST OF TABLES	Page
1	Subtests of the ASVAB	-
2	Intercorrelations of ASVAB Subtests in the Normative Sample	. 4
3	Unrotated Principal Components Loadings	. 4
4	Unrotated Principal Factors Loadings Using Iterated	
	Squared Multiple Correlations	. 5
5	Squared Multiple Correlations	
5 6	Obliquely Rotated Factor Pattern for 8 Factors from the	. 6
-	Obliquely Rotated Factor Pattern for 8 Factors from the Principal Components Solution and Hierarchical Solution	. 6
6	Obliquely Rotated Factor Pattern for 8 Factors from the Principal Components Solution and Hierarchical Solution	. 6

LIST OF TABLES (Concluded)

fablo		Page
10	Obliquely Rotated Factor Pattern for 3 Factors from the Principal Components Solution and Hierarchical Sclution	. 11
11	Obliquely Rotated Factor Pattern for 8 Factors from the Principal Factors Solution and Hierarchical Solution	. 12
12	Obliquely Rotated Factor Pattern for 7 Factors from the Principal Factors Solution and Hierarchical Solution	. 13
13	Obliquely Rotated Factor Pattern for 6 Factors from the Principal Factors Solution and Hierarchical Solution	. 14
14	Obliquely Rotated Factor Pattern for 5 Factors from the Principal Factors Solution and Hierarchical Solution	. 15
15	Obliquely Rotated Factor Pattern for 4 Factors from the Principal Factors Solution and Hierarchical Solution	. 16
16	Obliquely Rotated Factor Pattern for 3 Factors from the Principal Factors Solution and Hierarchical Solution	. 17
17	Intercorrelations of the Estimates of g	. 17

ESTIMATING THE GENERAL COGNITIVE COMPONENT OF THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY (ASVAB): THE THREE FACES OF g

I. INTRODUCTION

Much of early psychological testing began with the assessment of \mathbf{g} or general ability (Spearman, 1904, 1927). The topic has become of interest to researchers again. One issue is how to estimate \mathbf{g} from a set of cognitive variables. Frequently these variables are the subtests of a test battery, and \mathbf{g} is estimated from the variable covariance or correlation matrix.

In practice there are three generally accepted methods of estimating ${\bf g}$ from the data (Jensen, 1987):

- 1. the unrotated first principal component,
- 2. the unrotated first principal factor, and
- 3. the first factor from a hierarchical factor analysis.

The three methods all make use of the intercorrelations of a matrix, and each treats the data with a slightly different model of the relationship between **g** and the observed data. The three models will be discussed here in the order of increasing mathematical complexity. This ordering also turns out to be in increasing order of number of decisions to be made in applying the model and in decreasing order of expected uniformity of results from different investigators.

Each method can produce an estimate of **g**, each has advantages and disadvantages, and each is based on a set of assumptions. Jensen (1987) stated that all three produced similar results for the data sets he investigated. These sets included an individual intelligence test and what he called "real tests." There were no studies on the effects of the methods on multiple-aptitude batteries.

In the present report, all three methods will be applied to a representative multiple-aptitude battery and the **g** estimates compared. Humphreys (1989) implied that the three methods may not give the same results when the variables do not have positive manifold, but this is not an issue for the representative test battery.

Principal Components

Hotelling (1933a, 1933b) developed the principal components method as a way of reorienting the reference axes of a set of data. It analyzes the unreduced correlation matrix (1.0 in each of the diagonal entries) and forms a set of linearly independent component variables from which the original variables can be reproduced. If there are **n** variables in the original matrix, then **n** components can be computed to account for all of the variance in the correlation matrix. The principal components methodology requires no decisions and provides a completely determined result. Component scores may be computed directly, and the first of these is the estimate of **g**. The solution is not rotated as that would distribute a portion of the first component variance among the remaining components.

Principal Factors

The principal or common factors method is similar to the principal components method. It analyzes a reduced matrix with some measure of communality in the diagonal (Mulaik, 1972) and reproduces only the common variance. At least one decision is required and that is the estimation of communality. This may be done in several ways, among which are: squared multiple correlations, iterated squared multiple correlations, highest correlation of the variable in the matrix, or the reliability of the variable. Occasionally the communality may be estimated above 1.0 for the iterated squared multiple correlations, creating what have become known as the Heywood cases (Harman, 1967, pp. 117-118). In practice, this is not an insurmountable problem and iterated squared multiple correlations are used successfully. Again, to retain **g** in the tirst principal factor, the solution is not rotated.

Hierarchical Factor Analysis

For a hierarchical factor analysis, the factorial model can be either principal components or principal factors (or any other factor extraction method); but an oblique rotation and refactoring of the intercorrelations of the matrix of factors is performed. This can be continued until the number of higher-order factors is two or one, at which stage a further factoring is impossible. The first or only factor serves as the estimate of **g**. Although the lower factors can be residualized by the method of Schmid and Leiman (1957), it will have no effect on the factor which estimates **g**. Hierarchical factor analysis will not reproduce all the variance in the matrix. Several decisions are required: the method of factoring at each stage, communality estimation, number of factors at each stage, and angle of oblique rotation. These decisions could lead to different estimates of **g** in hierarchical analyses.

As these three different methods may yield different ${\bf g}$ estimates, the goal of the present investigation was to apply each of the methods (with a number of variants of hierarchical factor analysis) to a single data set to examine the relations among the ${\bf g}$ estimates for a representative multiple-aptitude test battery: the Armed Services Vocational Aptitude Battery (ASVAB).

II. METHOD

Subjects

The subjects were examinees in the normative sample for the ASVAB (Maier & Sims, 1986). Data on this sample were collected in the summer and fall of 1980 and are weighted to be nationally representative of the 18- to 23-year-old American youth population. Unweighted the sample consists of 9,173 cases. In weighted form, the sample represents 25,409,193 men and women and serves as the normative base for reporting ASVAB scores. It represents American youth in the age range of military enlistment.

The Armed Services Vocation: Aptitude Battery (ASVAB)

The ASVAB is the only enlistment qualification test used by the United States armed services and is therefore one of the most frequently administered tests.

The content of the ASVAB (Table 1) is the result of agreement among the services and represents both empirical and rational judgments as to importance for military testing. There

are 10 separately timed subtests; eight are power tests and two are speeded (Ree, Mullins, Mathews, & Massey, 1982). The ASVAB is both reliable (Palmer, Hartke, Ree, Welsh, & Valentine 1988) and valid (Wilbourn, Valentine, & Ree, 1984), and has been the subject of continuing research for more than 20 years (see, for example, Welsh et al., 1990).

Table 1. Subtests of the ASVAB

	Number of	
Subtest	items	Time
General Science (GS)	25	11
Arithmetic Reasoning (AR)	30	36
Word Knowledge (WK)	35	11
Paragraph Comprehension (PC)	15	13
Numerical Operations (NO)	50	3
Coding Speed (CS)	£: 4	7
Auto and Shop Information (AS)	25	11
Mathematics Knowledge (MK)	25	24
Mechanical Comprehension (MC)	25	19
Electronics Information (EI)	20	9

Procedure

The intercorrelations of ASVAB subtests were computed using the weighted normative sample, and **g** was estimated by the three methods. The principal components were computed. The principal factors were computed with communalities estimated by iterated squared multiple correlations. Howard and Cartwright (1962) have shown this to be the most accurate estimate of communality in most cases. Hierarchical factor analyses were conducted using principal components and principal factors for the initial factoring. In each case, six different first-order factor solutions extracting from 3 to 8 factors were computed. The Oblimin (Carroll, 1960) oblique factor rotation method was used in the first-order factor analyses. All higher-order factor analyses were principal components. The reason for this approach is that investigators using principal components for the first-order analysis would not be likely to reduce dimensionality by using principal factors in the hierarchical analyses. Investigators using principal factors analysis in the first-order factor analyses have already reduced the matrix to its common elements; therefore, they would not be expected to reduce it further with a hierarchical analysis based on principal factors. A total of 12 hierarchical factor analyses were performed.

Scores on each of the 14 estimates of \mathbf{g} were computed for each subject in the sample. The standard scores of the ASVAB subtests were weighted by the score coefficients of the principal components and principal factors. For the hierarchical estimates, the first-order factor scores were computed and weighted in standardized form by the higher-order factor-score coefficients. The 14 estimates of \mathbf{q} were then correlated.

III. RESULTS AND DISCUSSION

Table 2 shows the matrix of correlations of ASVAB subtest scores computed in the weighted normative sample. All of the correlations were positive and moderate to high, ranging from .225 to .827 with 80% above .500. The highest correlation was between Mathematics Knowledge

and Arithmetic Reasoning, two quantitative measures. The lowest correlation was between Coding Speed and Auto and Shop Information, a speeded subtest and a subtest of specialized knowledge. On average, Coding Speed had the lowest correlations with other subtests.

Table 2. Intercorrelations of ASVAB Subtests in the Normative Sample

	GS	AR	WK	PC	NO	cs	AS	MK	MC	El
GS		722	801	689	524	452	637	695	695	760
AR	722		708	672	627	515	533	827	684	658
WK	801	708	***	803	617	550	529	670	593	684
PC	689	672	803		608	561	423	637	521	573
NO	524	627	617	608		701	306	617	408	421
CS	452	515	550	561	701		225	520	3ამ	342
AS	637	533	529	423	306	225		415	741	745
MK	695	827	670	637	617	520	415		600	585
MC	695	684	593	521	408	336	741	600		743
El	760	658	684	573	421	342	745	585	743	

Note. Decimals omitted.

Principal Components

Table 3 shows the unrotated loadings of the subtests on the principal components. The first component is the ${\bf g}$ estimate.

Table 3. Unrotated Principal Components Loadings

		Principal component										
	1	2	3	4	5	6	7	8	9	10		
GS	.88	-,14	11	14	.05	24	22	.11	.07	18		
AR	.87	.04	20	.27	.00	.07	.12	.05	24	∙.15		
WK	.87	.08	11	32	02	05	07	.03	19	.22		
PC	.81	.21	16	36	.00	.29	.10	03	.13	08		
NO	.72	.49	.22	.12	39	03	08	06	.03	01		
CS	.63	.57	.39	.01	.32	04	.04	.02	.00	.00		
AS	.69	55	.31	.00	09	.05	.13	.26	.04	.03		
MK	.82	.15	32	.32	.05	07	.06	.06	.18	.16		
MC	79	39	.11	.20	.10	.24	25	- 14	.00	.04		
EI	.82	38	.07	06	.00	21	.19	29	.01	01		

Principal Factors

Table 4 shows the unrotated loadings of the subtests on the principal factors. The first factor is the estimate of ${\bf g}$.

Table 4. Unrotated Principal Factors Loadings Using Iterated Squared Multiple Correlations

	Principal factor										
	1	2	3	4	5	6	7	8	9	10	
GS	.87	13	.10	13	13	.07	05	.03	.00	01	
AR	.87	.06	29	09	.07	08	.00	.03	01	.00	
WK	.87	.09	.28	-,17	.02	02	03	02	02	.01	
PC	.79	.20	.20	14	.13	.00	.04	.00	.02	.00	
NO	.70	.45	01	.24	03	06	04	02	.00	02	
CS	.61	.47	.06	.25	01	.07	.04	.02	.00	.01	
AS	.68	51	.05	.21	.02	04	05	.01	.01	.02	
MK	.81	.16	32	16	- 06	.02	.00	02	.01	.01	
MC	.78	36	12	.12	.10	.11	.00	02	01	01	
EI	.81	35	.06	.03	11	06	.10	.00	.00	.00	

Hierarchical Factor Analysis

Tables 5 through 10 show the obliquely rotated factor pattern matrices of the ASVAB subtests for the 8-factor through 3-factor solutions using principal components factor extraction. The factor intercorrelations are also shown.

Tables 11 through 16 show the obliquely rotated factor pattern matrices of the ASVAB subtests from 8 through 3 factors using the principal factors method. Factor correlations are also shown. Using the rule of extracting as many factors as values in the eigenvector equal to or greater than 1.0, the higher-order factor analyses of the 8-, 7-, and 6-factor solutions for both the principal components and principal factors yielded two second-order factors. The first factors in these solutions were responsible for a majority of the factor variance. The other six analyses yielded a single second-order factor. In each case, the first (or only) factor was the estimate of **g**. These hierarchical factor solutions are also found in Tables 5 through 16.

Relationships Among the Estimates of g

Table 17 shows the intercorrelations of the estimates of **g**. The highest correlation was between the estimates from the unrotated first principal component and unrotated first principal factor (.999). The lowest correlation in the matrix was .930 between the **g** estimates based on hierarchical factors from the 3- and 8-factor principal factors solutions. The usual solution for ASVAB (Ree et al., 1982) is a 4-factor principal factors analysis. The intercorrelations of **g** estimated from the hierarchical solution of this 4-factor analysis and the principal components and principal factors **g** were .996 and .994, respectively. Though all the solutions did not yield exactly the same estimates, the magnitudes of the correlations (nearly 1.0) indicated that they would all rank individuals in almost the same order. Thus, the solutions could be used interchangeably in practice.

The Wilks (1938) theorem makes these results predictable and to a limited degree generalizable to most measures of human cognitive aptitude which display positive manifold.

Table 5 Obliquely Rotated Factor Pattern for 8 Factors from the Principal Components Solution and Hierarchical Solution

					·			
			-	Fa	ctors			
	1	2	3	4	5	6	7	8
14	65()	04	12	15	03	04	- 15	08
AH	0.8	0.1	12	80	()4	. 10	- 04	01
√×	3.7	(1.1	05	00	13	47	.01	11
FC	02	03	00	03	00	93	03	.00
NO	0.1	()()	()()	00	1 00	- 01	.00	.00
$\cap S$	Co	1 -0()	()()	00	00	00	00	.00
AS	Oυ	00	98	00	00	- 01	.00	.00
MK	06	03	06	96	00	03	.00	01
MC	00	00	00	00	00	.00	99	.00
E!	01	00	00	00	00	00	00	-1.01
Factor				Corr	elations			
1	1.00		•					
;}	29	1.00						
10	37	22	1 00					
IV	47	52	45	i 00				
V	33	70	31	63	1 00			
VΙ	49	54	40	62	- 59	1 00		
VII	40	- 34	- 73	- 64	41	.49	1 00	
VIII	53	35	- 74	62	44	- 56	74	1.00
	Hiera	rchical						
Factor		dings						
ı	63	10						
II	64	59						
10	71	53						
IV	83	12						
V	73	50						
٧I	78	22						
VII	80	37						
VIII	84	35						
• • • • •	-	~~						

<u>Table 6.</u> Obliquely Rotated Factor Pattern For 7 Factors from the Principal Components Solution and Hierarchical Solution

				Factors			
	1	2	3	4	5	6	7
G\$.58	.04	.13	.10	09	.11	23
AR	09	.00	.11	.75	07	.12	08
WK	.36	.04	.09	01	.15	.53	03
PC	03	.03	0}	.04	00	.96	.00
NO	.00	.02	01	.02	95	01	.02
CS	02	1.00	.00	01	.00	.00	.00
AS	- 08	02	.83	,1()	08	.03	22
MK	.06	.04	04	.90	04	01	03
MC	.06	.04	.06	.11	.00	.02	83
ΕI	.17	.07	.80	.19	.04	.02	.10
Factor			,	Correlatio	ris		
- · -	1.00						
H	.26	1.00					
HI	40	.23	1 60				
IV	.45	.51	.45	1.00			
V	- 28	69	32	59	1.00		
VI	.46	.55	.46	.62	59	1.00	
VII	·.24	24	69	49	.33	42	1.00
	Hiera	archical					
Factor	loa	dings					
1	.50	.07	-				
П	.66	43					
111	.69	.57					
IV	.77	05					
V	74	37					
Vi	77	- 10					
VII	62	39					

Table 7. Obliquely Rotated Factor Pattern For 6 Factors from the Principal Components Solution and Hierarchical Solution

			Fa	ctors		
	1	2	3	4	5	6
GS	.44	.09	.20	.29	.03	.27
AR	.05	.00	.15	.71	13	.11
WK	.28	.06	.03	.06	.08	.65
PC	08	.01	01	01	01	1.00
NO	03	.06	.02	.08	88	.03
CS	.00	1.01	01	03	02	.00
AS	.08	02	.95	13	11	.01
MK	.06	.05	06	.90	08	.00
MC	16	.10	.77	.29	.10	.07
El	.39	.05	.55	.15	02	.05
Factor			Corre	elations		
Ī	1.00					
11	.14	1.00				
Ш	.36	.25	1.00			
IV	.24	.49	.49	1.00		
V	17	65	24	46	1.00	
VI	.34	.57	.48	.63	54	1.00
	Hiera	archical				
Festor	loa	dings				
1	.45	.66				
11	.75	44				
111	.63	.50				
iV	.80	.02				
V	74	.42				
VI	.85	.01				

Table 8. Obliquely Rotated Factor Pattern for 5 Factors from the Principal Components Solution and Hierarchical Solution

		Factors								
	1	2	3	4	5					
GS	.57	.03	.30	.21	.07					
RA	.08	.00	.12	.73	14					
WK	.83	.03	.08	.03	06					
PC	.89	.06	09	.01	05					
NO	.03	.07	.04	.10	86					
CS	.01	.99	01	03	02					
AS	.02	02	.97	11	11					
MK	.07	.03	07	.89	07					
MC	07	.14	.70	.35	.08					
ΕI	.31	.00	.65	.09	.02					
Factor			Correlati	ons						
1	1.00									
Л	.53	1.00								
Ш	.51	.23	1.00							
١٧	.64	.47	.50	1.00						
٧	50	63	19	44	1.00					
	Hierarchica	ıi								
Factor	loadings									
ı	.85									
H	.76									
Ш	.61									
1V	.81									
V	73									

Table 9. Obliquely Rotated Factor Pattern for 4 Factors from the Principal Components Solution and Hierarchical Solution

	Factors							
	1	2	3	4				
GS	.58	06	.31	.19				
AR	.08	.09	.13	.74				
WK	.84	.06	.08	.02				
PC	.91	.08	09	.02				
NO	.02	.7 7	.00	.19				
CS	.02	.96	.02	08				
AS	.01	.05	.97	11				
MK	.08	.06	05	.89				
MC	08	.04	.74	.32				
ΕI	.31	04	.66	.07				

Factor		Correia	ations	
1	1.00			
11	.58	1.00		
Ш	.52	.25	1.00	
IV	.64	.52	.50	1.00

Factor	Hierarchical Ioadings
ı	.88
il	.73
HI	.70
١٧	.85

Table 10. Obliquely Rotated Factor Pattern for 3 Factors from the Principal Components Solution and Hierarchical Solution

		Factors	}
	1	2	3
GS	.64	01	.36
AR	.81	.03	.11
WK	.68	. 15	.15
PC	.74	.18	02
NO	.20	.76	01
CS	06	.97	.02
AS	14	.05	1.01
MK	.96	01	08
MC	.23	.00	.73
Εl	.29	01	.70

Factor		Correlatio	ns
	1.00		
П	.61	1.00	
Ш	.59	.29	1.00

	Hierarchical	
Factor	loadings	
ı	.91	_
11	.77	
111	.76	

Table 11. Obliquely Rotated Factor Pattern for 8 Factors from the Principal Factors Solution and Hiera chical Solution

				Fa	ctors			
	1	2	3	4	5	6	7	8
GS	.25	.05	23	01	35	.10	.11	.10
AR	.05	.00	84	.02	.02	.05	.01	.06
WK	.91	.00	.04	05	07	.02	.02	01
PC	.80	.04	06	06	.06	.00	.00	.01
NO	.03	.78	11	.11	.01	.00	01	01
CS	.00	.83	.05	06	.00	.01	.01	.00
AS	02	.03	.05	.12	04	.57	.22	.15
MK	.00	.08	70	03	- 09	.03	.09	13
MC	.03	.01	06	02	.00	.86	02	03
ΕI	.03	.00	03	.00	.00	.01	. 33	.00
Factor				Corre	elations			
Ī	1.00							
11	.74	1.00						
111	76	68	1.00					
IV	01	03	03	1.00				
V	53	21	.39	08	1.00			
VI	.61	.39	67	.23	45	1.00		
VII	.72	.43	66	.29	61	.90	1.00	
VIII	.16	- 07	.15	.31	.00	.43	.43	1.00
	Hiera	rchical						
Factor	ioa	dings						
1	.88	22						
11	.68	45						
111	83	.36						
IV	.19	.64						
٧	62	.02						
VI	.86	.28						
VII	.92	.27						
VIII	.26	.80						

Table 12. Obli juely Rotated Factor Pattern for 7 Factors from the Principal Factors Solution and Hierarchical Solution

				Factors			
	1	2	3	4	5	6	7
GS	.40	.01	13	.00	26	.20	.12
AR	.13	.03	65	.06	.06	.17	.05
WK	.88	.00	.00	.05	08	.00	.01
PC	.85	.03	~.02	04	.07	.00	.00
NO	.00	.80	11	.10	.00	.00	01
CS	.02	.82	.06	07	.00	.01	.01
AS	.01	.02	.12	.13	02	.69	.18
MK	.02	.11	71	05	08	· .00	.12
MC	.02	.02	13	06	01	.82	02
EI	.02	.00	04	.00	.00	.02	.83
Factor			(Correlatio	กร		
	1.00						
11	.74	1.00					
111	68	64	1.00				
۱V	.05	02	.06	1.00			
٧	38	11	.23	09	1.00		
VI	.60	.36	52	.29	34	1.00	
VII	.73	.43	55	.32	- 51	.90	1.00
	Hiera	archical					
Factor		dings					
1	.89	21	-				
11	.70	49					
{	77	.38					
IV	.20	.76					
V	50	31					
VI	.83	.29					
VII	.91	.30					

<u>Table 13.</u> Obliquely Rotated Factor Pattern for 6 Factors from the Principal Factors Solution and Hierarchical Solution

			Fa	ctors		
	1	2	3	4	5	6
GS	.31	.08	19	03	28	.31
AR	.16	.01	71	.02	.09	.15
WK	.84	.01	.00	.04	10	.05
PC	.86	.04	01	03	.05	03
NO	01	.78	14	.09	.01	.02
CS	.04	.82	.07	06	01	.00
AS	01	.02	.08	.06	.00	.94
MK	.00	.10	81	04	09	02
MC	.00	.02	-,17	14	.04	.76
ΕI	.14	.00	10	.02	14	.63
Factor			Corr	elations		
1	1.00					
11	.73	1.00				
111	73	65	1.00			
IV	09	09	.23	1.00		
V	47	13	.26	03	1.00	
VI	.62	.35	59	01	37	1.00
	Hiera	archical				
Factor	loa	dings				
1	.93	.04				
П	.77	21				
111	87	.20				
١٧	17	.81				
V	50	- 53				
VI	.75	.21				

Table 14. Obliquely Rotated Factor Pattern for 5 Factors from the Principal Factors Solution and Hierarchical Solution

			Factor	8	
	_1	2	3	4	5
GS	.31	.03	21	.29	28
AR	.19	.04	65	.17	.09
WK	.84	.02	.01	.05	10
PC	.87	.03	02	03	.06
NO	02	.82	07	.03	.00
CS	.02	.82	.04	02	.00
AS	- 01	.03	.10	.95	.00
MK	.01	.11	81	02	08
MC	.00	.00	24	.70	.03
EI	.14	.00	10	.63	14
Factor			Correlati	ons	
1	1.00				·
H	.75	1.00			
111	72	65	1.00		
IV	.61	.37	57	1.00	
V	48	16	.26	39	1.00
	Hierarchi	cal			
Factor	leading	S			
1	.93				
ij.	.78				
111	85				
IV	.75				
V	53				

Table 15. Obliquely Rotated Factor Pattern for 4 Factors from the Principal Factors Solution and Hierarchical Solution

		Fac	tors	
	1	2	3	4
GS	.53	05	- 21	.29
AR	.05	.11	69	.14
WK	.94	.02	.02	.01
PC	.67	.16	08	.03
NO	01	.80	09	.03
CS	.04	.80	.03	.00
AS	.00	.05	.10	.93
MK	.06	.05	86	05
MC	03	.03	28	.67
El	.29	04	10	.61

Factor	

Correlations

I 1.00

11 .69 1.00

III -.73 -.65 1.00

IV .61 .31 -.57 1.00

Hierarchical

Factor	leadings
	.91
11	.79
111	89
IV	.73

Table 16. Obliquely Rotated Factor Pattern for 3 Factors from the Principal Factors Solution and Hierarchical Solution

		3351 .37 782722 771511 76 .04 .17			
_	1	2	3		
GS	.42	57	06		
Αħ	.33	51	.37		
WK	.78	27	22		
PC	.77	15	11		
NO	.76	.04	.17		
CS	.77	.13	.10		
AS	09	.89	06		
MK	.41	.37	.36		
MC	02	.87	.13		
EI	.12	.81	06		

Factor	Correlations 5 4 1					
1	1.00					
11	585	1.00				
Ш	.342	060	1.000			

	Hierarchical							
Factor	loadings							
	.90	-						
11	79							
111	.50							

Table 17. Intercorrelations of the Estimates of g

	P8	P7	P6	P5	P4	P3	F8	F7	F6	F5	F4	F3	Pg	Fg
P8														
P7	995													
P6	984	994												
P5	974	989	996											
P4	992	998	994	990										
P3	994	997	994	990	995									
F8	988	974	953	934	968	969								
F7	991	980	963	945	977	974	998							
F6	988	992	984	973	992	981	974	983						
F5	990	992	984	971	990	982	980	987	998					
F4	991	996	991	986	998	991	972	980	994	994				
F3	962	974	971	977	983	967	930	945	971	964	982			
Pg	998	996	985	977	996	992	985	990	993	993	996	973		
Fg	996	994	983	973	994	989	986	991	994	995	996	973	999	

Note. P indicates principal components factor analysis and F indicates principal factors analysis. The number indicates the number of factors in the lower-order factor analysis. For example, F8 is an 8 first-factor principal factors analysis. Pg and Fg are the unrotated first principal component and principal factor, respectively. Decimal points omitted.

REFERENCES

- Carroll, J.B. (1960). *IBM 704 program for generalized analytic rotation solution in factor analysis*. Unpublished manuscript.
- Harman, H.H. (1967). Modern factor analysis (2nd ed. rev.). Chicago: The University of Chicago Press.
- Hotelling, H. (1933a). Analysis of a complex of statistical variables into principal components. *Journal of Educational Psychology*, 24, 417-441.
- Hotelling, H. (1933b). Analysis of a complex of statistical variables into principal components. *Journal of Educational Psychology*, 24, 498-520.
- Howard, K.I., & Cartwright, D.S. (1962). An empirical note on the communality problem in factor analysis. *Psychological Reports*, 10, 797-798.
- Humphreys, L.G. (1989). The first factor extracted is an unreliable estimate of Spearman's "g": The case of discrimination reaction time. *Intelligence*, 13, 319-323.
- Jensen, A.R. (1987). The g beyond factor analysis. In R.R. Ronning, J.A., Glover, J.C. Conoley, & J.C. Dewitt (Eds.), *The influence of cognitive psychology on testing and measurement*. Hillsdale, NJ: Erlbaum.
- Maier, M.H., & Sims, W.H. (1986). *The ASVAB score scales: 1980 and World War II* (CNR 116). Alexandria, VA: Center for Naval Analyses.
- Mulaik, S.A. (1972). The foundations of factor analysis. New York: McGraw-Hill Book Company.
- Palmer, P., Hartke, D.D., Ree, M.J., Welsh, J.R., & Valentine, L.D., Jr. (1988). Armed Services Vocational Aptitude Battery (ASVAB): Alternate forms reliability (Forms 8, 9, 10, and 11) (AFHRL-TR-87-48, AD-A191 658). Brooks AFB,TX: Manpower and Personnel Division, Air Force Human Resources Laboratory.
- Ree, M.J., Mullins, C.J., Mathews, J.J., & Massey, R.H. (1982). *Armed Services Vocational Aptitude Battery: Item and factor analyses of Forms 8, 9, and 10* (AFHRL-TR-81-55, AD-A113 465). Brooks AFB, TX: Manpower and Personnel Division, Air Force Human Resources Laboratory.
- Schmid, J., & Leiman, J.M. (1957). The development of hierarchical factor solutions. *Psychometrika*, <u>22</u>, 53-61.
- Spearman, C. (1904). "General Intelligence," objectively determined and measured. *American Journal of Psychology*, 15, 201-293.
- Spearman, C. (1927). The abilities of man. London: McMillan.
- Welsh, J.R., Trent, L., Nakastne, R., Fairbank, B., Kucinkas, S., & Sawin, L. (1990). *Annotated bibliography of the ASVAB*. Unpublished manuscript.

- Wilbourn, J.M., Valentine, L.D., Jr., & Ree, M.J. (1984). Relationships of the Armed Services Vocational Aptitude Battery (ASVAB): Forms 8, 9, and 10 to Air Force technical school final grades (AFHRL-TP-84-8, AD-A144 213). Brooks AFB, TX: iManpower and Personnel Division, Air Force Human Resources Laboratory.
- Wilks, S.S. (1938). Weighting systems for linear functions of correlated variables when there is no dependent variable. *Psychometrika*, 3, 23-40.