Week 7: Visualising Spatial Data

Visual Data Analytics
University of Sydney

Outline

Choropleth

Motivation

- Many business decisions depend on geospatial data
 - Store locations
 - Investment in real estate
 - Profile customers in different parts of a city Geospatial data used in many other applications.

Packages

- There is an entire field known as Geographical Information Systems (GIS) that we learn over an entire course.
- This is a complicated problem that takes is issues with how coordinates are obtained, how they can be projected in different ways, etc.
- We will be using the geopandas package.
- This has many dependencies and can be fiddly to install

Virtual Environment

- Installation instructions can be found in the geopandas page.
- Since there can be clashes with dependencies, it is probably easiest to create a virtial environment just for working with geospatial data.
- Go the the instructions on Creating a new environment

World map

What is a projection?

- The earth is round.
- There are different ways to project a sphere onto a flat screen.
- All create distortion
- The mercator projection (previous slide) makes areas near the poles look bigger.

Robinson Projection

Does this matter?

- For looking at small countries or cities... no
- For large countries near the North pole... yes
- For the North America it is common to use an Albers projection

North America

North America

What about Australia?

- To see we will actually download data for Australia.
- First we need to download a Shapefile
- A Shape file is actually multiple files that store all the information about borders.
- We will use the SA4 areas of Australia.
- The shapefiles can be downloaded from the Australian Bureau of Statistics.
- Shapefiles are a standard format used globally.

Read in shapefile

```
aus = gpd.read_file('../data/SA4_2021_AUST_SHP_GDA2020')
aus
```

```
##
       SA4 CODE21
                                                                     geometry
                         MULTIPOLYGON (((150.05261 -37.26253, 150.05251...
## 0
               101
## 1
              102
                         MULTIPOLYGON (((151.31497 -33.55578, 151.31496...
## 2
              103
                         POLYGON ((150.14236 -32.34153, 150.14255 -32.3...
## 3
              104
                         MULTIPOLYGON (((153.07639 -30.42982, 153.07645...
## 4
              105
                         POLYGON ((148.67619 -29.50976, 148.67662 -29.5...
## ..
               . . .
                    . . .
## 103
              899
                                                                         None
                    . . .
## 104
              901
                         MULTIPOLYGON (((167.94747 -29.12757, 167.94748...
                    . . .
## 105
              997
                                                                         None
## 106
              999
                                                                         None
## 107
                                                                         None
              ZZZ
##
## [108 rows x 13 columns]
```

Simplify series

These shapefiles are very detailes making plotting slow so we can simplify them.

```
aus.geometry = aus.geometry.simplify(0.001)
```

Australia

```
geoplot.polyplot(aus, geoplot.crs.Mercator())
```


Australia

```
geoplot.polyplot(aus, geoplot.crs.Robinson())
```


Summary

- The Mercator projection looks OK for Australia
- However we don't simply want to plot maps
- We want to add data to these maps.
- This can be done using a choropleth
- We will use data from the Australian Bureau of Statistics on mortgage repayments in Sydney.
- We will merge this with the geopandas data frame

Wrap-up

Data

```
import pandas as pd
mortgage = pd.read_csv('../data/Mortgage.csv')
mortgage
```

```
##
                                            SA4
                                                       Total
## 0
                                 Central Coast
                                                 . . .
                                                      152870
## 1
       Sydney - Baulkham Hills and Hawkesbury
                                                     89466
## 2
                            Sydney - Blacktown
                                                      135540
                                                 . . .
## 3
                Sydney - City and Inner South
                                                 . . .
                                                      178493
## 4
                      Sydney - Eastern Suburbs
                                                      122105
                                                 . . .
                     Sydney - Inner South West
## 5
                                                 . . .
                                                      227887
## 6
                           Sydney - Inner West
                                                      133899
                                                 . . .
            Sydney - North Sydney and Hornsby
## 7
                                                 . . .
                                                      180531
## 8
                     Sydney - Northern Beaches
                                                      105115
                                                 . . .
       Sydney - Outer West and Blue Mountains
## 9
                                                      130809
                                                 . . .
## 10
                     Sydney - Outer South West
                                                 . . .
                                                      104420
                           Sydney - Parramatta
## 11
                                                 . . .
                                                      188066
## 12
                                 Sydney - Ryde
                                                     83400
                                                 . . .
                           Sydney - South West
## 13
                                                 . . .
                                                      155905
## 14
                           Sydney - Sutherland
                                                       90775
```

19

Merge

SAA CODE21

##

```
import pandas as pd
merged = aus.merge(mortgage, how='right',left_on = 'SA4_NAME21', right_on
merged
```

##	SA4_CUDEZI	SA4_IVANEZI	 мог арритсавте
## 0	102	Central Coast	 107844
## 1	115	Sydney - Baulkham Hills and Hawkesbury	 51873
## 2	116	Sydney - Blacktown	 82831
## 3	117	Sydney - City and Inner South	 146248
## 4	118	Sydney - Eastern Suburbs	 97426
## 5	119	Sydney - Inner South West	 167199
## 6	120	Sydney - Inner West	 100829
## 7	121	Sydney - North Sydney and Hornsby	 130327
## 8	122	Sydney - Northern Beaches	 72014
## 9	124	Sydney - Outer West and Blue Mountains	 84896
## 10	123	Sydney - Outer South West	 62085
## 11	125	Sydney - Parramatta	 139866
## 12	126	Sydney - Ryde	 60698
## 13	127	Sydney - South West	 105896

SAA NAME21

Not applicable

Choropleth

merged.plot(column="\$5,000 and over", legend=True)

A word of caution

- The choropleth on the previous slide uses spatially extensive data.
- By this we mean they are raw counts of people that do not take the population of each area into account.
- It is better to use spatially intensive data in a choropleth

Proportion

```
merged["$5,000+ Percentage"] = 100*merged["$5,000 and over"]/merged["To
merged.plot(column="$5,000+ Percentage", legend=True)
```


Making things interactive

Why interactivity?

- Unless you know the location well, it may be hard to tell which regions are which.
- Also urban areas tend to be smaller therefore it helps to be able to zoom in and move around.
- We can also augment the choropleth with individual locations.

Plolty Code

```
import plotly.express as px
merged.index = merged['SA4']
fig = px.choropleth mapbox(merged,
geojson=merged.geometry,
locations = merged.index,
color = "$5,000+ Percentage",
opacity=0.5, mapbox style="carto-positron",
zoom = 7, #Zoom in scale
center = {"lat": -33.7, "lon": 150.75})
fig.add scattermapbox(lat = [-33.89083755569, -33.91648618776671],
lon = [151.18711290919222, 151.23079491201923],
text = ["The University of Sydney", "UNSW"],
marker size=6)
```

```
fig.write_html('plotly_choropleth.html')
```

Interactive

Summary

- There are a rich range of visualisations that you can create with geographic data.
- However you can generally only look at one variable at one moment of time.
- You can construct multiple choropleths and display together but they can also be difficult to interpret.

Misleading choropleths

- In many countries, the population density is not uniform
- This includes Australia, the US and China where most of the population lives on the coast and well as India and France as other examples with less densely populated regions.
- This commonly leads to misinterpratation of election results.

Australian 2010 election

- The 2010 election was very close
- However the map on the right suggests the Coalition (blue) was dominant.
- This map shows land but not voters.

Two alternatives

Discussion

- The alternative on the left is called a cartogram.
 - It can be visually jarring
- The alternative on the right loses precise spatial information.
- All plots and further discussion are from this article
- This issue is not restricted to politics, an example on brand choice may suffer from similar issues.

A word on heatmaps

Heatmaps

- A choropleth is often called a heatmap.
- A heatmap is a similar idea in that areas are shown with different colors. However a heatmap is used to visualise numbers in a matrix.

Data Preparation

```
import seaborn as sns
fl = sns.load_dataset('flights')
fltab = fl.pivot(index = 'year', columns = 'month')
fltab
```

##		passengers											
##	month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec
##	year												
##	1949	112	118	132	129	121	135	148	148	136	119	104	118
##	1950	115	126	141	135	125	149	170	170	158	133	114	140
##	1951	145	150	178	163	172	178	199	199	184	162	146	166
##	1952	171	180	193	181	183	218	230	242	209	191	172	194
##	1953	196	196	236	235	229	243	264	272	237	211	180	201
##	1954	204	188	235	227	234	264	302	293	259	229	203	229
##	1955	242	233	267	269	270	315	364	347	312	274	237	278
##	1956	284	277	317	313	318	374	413	405	355	306	271	306
##	1957	315	301	356	348	355	422	465	467	404	347	305	336
##	1958	340	318	362	348	363	435	491	505	404	359	310	337
##	1959	360	342	406	396	420	472	548	559	463	407	362	405
##	1960	417	391	419	461	472	535	622	606	508	461	390	432 ³⁵

Heatmap

import seaborn as sns
sns.heatmap(fltab)

Correlation heatmap

- With a moderate number of numerical variables we can compute the correlation of all pairs of variables.
- These can be put into a matrix known as the correlation matrix.
- This can also be shown in a heatmap.
- We will do this some numerical variables from the taxis data

Data preparation

```
taxisdat = sns.load_dataset('taxis')
taxisnum = taxisdat[['distance','fare','tip','tolls','total']]
taxiscor = taxisnum.corr()
```

Correlation heatmap

sns.heatmap(taxiscor)

With annotation

sns.heatmap(taxiscor, annot = True)

Wrap-up

Conclusions

- Spatial data can be used to create valuable visualisations. However
 - Think carefully about how population is distributed in geographic regions
 - Do not neglect other visualisation methods

Questions