Homework 02 - Deterministic Finite Automata

Gerardo Galván Olvera A01371872

August 22 2017

1. The DFA **R1** accepts $\{\omega \mid \omega \text{ has an even number of 1s}\}:$

Figure 1: The R1 DFA

For R1:

- (a) $Q = \{q_0, q_1\}$
- (b) $\Sigma = \{1, 0\}$

(c)
$$\delta \colon Q \times \Sigma \to Q = \begin{bmatrix} \delta(q_0, 0) = q_0 & \delta(q_0, 1) = q_1 \\ \delta(q_1, 0) = q_1 & \delta(q_1, 1) = q_0 \end{bmatrix}$$

- (d) q_0 (the start state) = $q_0 \in Q$
- (e) $F = \{q_0\}$

2. The DFA $\mathbf{R2}$ accepts

 $\{\omega \mid \omega \text{ contains at least one 1 and an even number of 0s follow the last 1}\}:$

Figure 2: The R2 DFA

For R2:

(a) $Q = \{q_0, q_1, q_2\}$

(b)
$$\Sigma = \{1, 0\}$$

(c)
$$\delta \colon Q \times \Sigma \to Q = \begin{bmatrix} \delta(q_0, 0) = q_0 & \delta(q_0, 1) = q_1 \\ \delta(q_1, 0) = q_2 & \delta(q_1, 1) = q_1 \\ \delta(q_2, 0) = q_1 & \delta(q_2, 1) = q_1 \end{bmatrix}$$

(d) q_0 (the start state) = $q_0 \in Q$

(e)
$$F = \{q_1\}$$

3. The DFA **R3** accepts $\{\omega \mid \omega \text{ is the empty string } \epsilon \text{ or ends in a 0}\}:$

Figure 3: The R3 DFA

For R3:

(a)
$$Q = \{q_0, q_1\}$$

(b)
$$\Sigma = \{1, 0\}$$

(b)
$$\Sigma = \{1, 0\}$$

(c) $\delta \colon Q \times \Sigma \to Q = \begin{bmatrix} \delta(q_0, 0) = q_0 & \delta(q_0, 1) = q_1 \\ \delta(q_1, 0) = q_0 & \delta(q_1, 1) = q_1 \end{bmatrix}$

(d)
$$q_0$$
 (the start state) = $q_0 \in Q$

(e)
$$F = \{q_0\}$$

4. The DFA **R4** accepts $\{\omega \mid \omega \text{ contains at least one 1 and ends with 1}\}:$

Figure 4: The R4 DFA

For R4:

(a)
$$Q = \{q_0, q_1\}$$

(b)
$$\Sigma = \{1,0\}$$

(c)
$$\delta: Q \times \Sigma \to Q = \begin{bmatrix} \delta(q_0, 0) = q_0 & \delta(q_0, 1) = q_1 \\ \delta(q_1, 0) = q_0 & \delta(q_1, 1) = q_1 \end{bmatrix}$$

(d) q_0 (the start state) = $q_0 \in Q$

(e)
$$F = \{q_1\}$$

5. The DFA **R5** accepts $\{\omega \mid \omega \text{ starts and ends with the same symbol}\}:$

Figure 5: The R5 DFA

For R5:

(a)
$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

(b)
$$\Sigma = \{1, 0\}$$

(c)
$$\delta: Q \times \Sigma \to Q = \begin{bmatrix} \delta(q_1, 0) = q_1 & \delta(q_0, 1) = q_2 \\ \delta(q_4, 0) = q_4 & \delta(q_2, 1) = q_2 \\ \delta(q_3, 1) = q_3 & \delta(q_0, 0) = q_1 \\ \delta(q_3, 0) = q_1 & \delta(q_1, 1) = q_3 \\ \delta(q_4, 1) = q_2 & \delta(q_2, 0) = q_4 \end{bmatrix}$$

- (d) q_0 (the start state) = $q_0 \in Q$
- (e) $F = \{q_1, q_2\}$
- 6. The DFA **R6** accepts $\{\omega \mid \omega \text{contains a substring } 001\}$:

Figure 6: The R6 DFA

For R6:

- (a) $Q = \{q_0, q_1, q_2, q_3\}$
- (b) $\Sigma = \{1, 0\}$

(c)
$$\delta: Q \times \Sigma \to Q = \begin{bmatrix} \delta(q_2, 0) = q_2 & \delta(q_0, 1) = q_0 \\ \delta(q_3, 0) = q_3 & \delta(q_3, 1) = q_3 \\ \delta(q_1, 0) = q_2 & \delta(q_1, 1) = q_0 \\ \delta(q_0, 0) = q_1 & \delta(q_2, 1) = q_3 \end{bmatrix}$$

- (d) q_0 (the start state) = $q_0 \in Q$
- (e) $F = \{q_3\}$
- 7. The DFA **R7** accepts tuples of the form (front door switch state, rear door switch state):

Figure 7: The R6 DFA

For R7:

(a) $Q = \{open, closed\}$

(b) $\Sigma =$

 $\{(frontHigh, rearHigh), (frontHigh, rearLow), \}$

(frontLow, rearHigh), (frontLow, rearLow)

$$\delta(closed,(frontHigh,rearLow)) = open \\ \delta(open,(frontLow,rearLow)) = closed \\ \delta(closed,(frontLow,rearHigh)) = closed \\ \delta(closed,(frontLow,rearHigh)) = open \\ \delta(open,(frontLow,rearHigh)) = open \\ \delta(closed,(frontHigh,rearLow)) = open \\ \delta(closed,(frontHigh,rearHigh)) = open \\ \delta(closed,(frontHigh,rearHigh)) = open \\ \delta(closed,(frontLow,rearLow)) = closed \\ \delta(closed,(f$$

- (d) q_0 (the start state) = $closed \in Q$
- (e) F = Q