Lista de Exercícios

Montgomery, D.C., Runger, G.C., Estatística Aplicada e Probabilidade para Engenheiros, Quinta Edição, LTC, 2012.

Capítulo 11

11-7. Um artigo no *Tappi Journal* (março de 1986) apresentou dados sobre a concentração (em gramas por litro) do licor verde de Na₂S e da produção (toneladas por dia) de uma máquina de papel. Os dados (lidos a partir de um gráfico) são mostrados na seguinte tabela:

y	40	42	49	46	44	48	46	43	53	52	54	57	58
x	825	830	890	895	890	910	915	960	990	1010	1012	1030	1050

- (a) Ajuste um modelo de regressão linear simples, relacionando a concentração do licor verde de Na₂S, y, com a produção, x. Encontre uma estimativa de σ^2 . Desenhe um diagrama de dispersão dos dados e do modelo resultante do ajuste pelo método dos mínimos quadrados.
- (b) Encontre o valor ajustado y, correspondente a x = 910 e o resíduo associado.
- (c) Encontre a concentração média de licor verde de Na₂S, quando a taxa de produção for de 950 toneladas por dia.

- (i) Estime os erros-padrão da inclinação e da interseção.
- (ii) Teste H_0 : $\beta_0 = 0$ contra H_1 : $\beta_0 \neq 0$, usando $\alpha = 0.05$.
- (iii) Encontre um intervalo de confiança de 99% para β_0 e β_1 .
- (*iv*) Encontre o intervalo de previsão de 99% para a concentração de Na_2S , quando a produção for x = 910.
- (v) Calcule o R^2 .

11-13. Um artigo no *Journal of Environmental Engineering Division* ["Least Squares Estimates of BOD Parameters" (1980, Vol. 106, pp. 1197-1202)] tomou uma amostra do rio Holston abaixo de Kingsport, Tennessee, durante o mês de agosto de 1977. O teste de demanda bioquímica de oxigênio (DBO) foi conduzido durante um período de tempo dado em dias. Os dados são mostrados a seguir:

Tempo (dias): 1 4 6 8 10 12 14 16 18 20 0,6 0,7 1,5 1,9 2,1 2.6 2.9 3,7 3.5 DBO (mg/litro): 3,7 3,8

- (a) Considerando que um modelo de regressão linear seja apropriado, ajuste o modelo de regressão relacionando DBO (y) com o tempo (x). Qual é a estimativa de σ^2 ?
- (b) Qual é a estimativa do nível esperado de DBO para um tempo de 15 dias?
- (c) Que variação no DBO médio é esperada quando o tempo varia por três dias?
- (d) Suponha que o tempo usado seja de seis dias. Calcule o valor ajustado de y e o resíduo correspondente.

- (i) Estime os erros-padrão da inclinação e da interseção.
- (ii) Teste a hipótese de que $\beta_0 = 0$, usando $\alpha = 0.05$.
- (iii) Encontre um intervalo de confiança de 95% para β_0 e β_1 .
- (iv) Encontre um intervalo de confiança de 95% para a DBO média quando o tempo for igual a 8 dias.
- (v) Calcule o R^2 e forneça uma interpretação prática dessa grandeza.

Capítulo 12

12-15. Um artigo em *Optical Engineering* ["Operating Curve Extraction of a Correlator's Filter" (2004, Vol. 43, pp. 2775-2779)] reportou o uso de um correlator óptico para fazer um experimento, variando o brilho e o contraste. A modulação resultante é caracterizada pela faixa útil de níveis de cinza. Os dados são mostrados a seguir:

Brilho (%):	54	61	65	100	100	100	50	57	54
Contraste (%):	56	80	70	50	65	80	25	35	26
Faixa Útil (mg):	96	50	50	112	96	80	155	144	255

- (a) Ajuste um modelo de regressão linear múltipla a esses dados.
- (b) Estime σ^2 .
- (c) Calcule os erros-padrão dos coeficientes de regressão.
- (d) Preveja a faixa útil, quando o brilho for 80 e o contraste for 75.

- (i) Construa um teste t para cada coeficiente de regressão. Quais conclusões você pode tirar acerca das variáveis nesse modelo? Use $\alpha = 0.05$.
- (ii) Calcule um intervalo de confiança de 99% para cada coeficiente de regressão.
- (iii) Calcule um intervalo de confiança de 99% para a faixa útil média, quando o brilho for 70 e o contraste for 80.
- (iv) Calcule um intervalo de previsão para a faixa útil considerando os mesmos valores dos regressores usados no item anterior.

12-19. Um estudo foi realizado sobre o desgaste de um mancal, y, e sua relação com x_1 = viscosidade do óleo e x_2 = carga. Os dados seguintes foram obtidos:

у	x_1	x_2
293	1,6	851
230	15,5	816
172	22,0	1058
91	43,0	1201
113	33,0	1357
125	40,0	1115

- (a) Ajuste um modelo de regressão linear múltipla a esses dados.
- (b) Estime σ^2 e os erros-padrão dos coeficientes de regressão.
- (c) Use o modelo para prever o desgaste, quando $x_1 = 25$ e $x_2 = 1.000$.

- (i) Construa um teste t para cada coeficiente de regressão. Quais conclusões você pode tirar acerca das variáveis nesse modelo? Use $\alpha = 0.05$.
- (ii) Calcule um intervalo de confiança de 99% para β_1 e β_2 .