Lecture 12 **Dimensionality reduction**

Information Systems (Machine Learning) Ivan Smetannikov

06.12.2018

Lecture plan

- Dimensionality Reduction
- Feature Selection
- Feature Extraction
- More feature selection

Lecture plan

- Dimensionality Reduction
- Feature Selection
- Feature Extraction
- More feature selection

What is dimensionality reduction?

- Collected many features?
- Maybe more than you need?
- Simplify the data in a rational and useful way?

Why should we look at dimensionality reduction?

- Speed
- Space
- Quality
- Features nature

Curse of dimensionality:

- The dimensionality increases
- The volume of the space increases so fast
- That the available data become sparse

So what does dimensionality reduction mean?

- Let plot a line
- Take exact example and record position on that line
- So we can present
 x¹ as 1D number

Another example 3D -> 2D

Lecture plan

- Dimensionality Reduction
- Feature Selection
- Feature Extraction
- More feature selection

Goals of feature selection:

- Avoiding retraining and improving the quality of classification
- Best understanding of models
- Boosting of classifying models

Type of elected attributes:

- Redundant attributes do not carry any additional information
- Irrelevant attributes are not generally informative

Evaluation methods of feature selection:

- At various datasets
- With different classifiers (if possible)
- By adding to datasets noise and target vectors

Feature selection types:

- Filter methods
 - a. Univariate
 - b. Multivariate
- Wrapper methods
 - a. Deterministic
 - b. Randomized
- Embedded methods

Filter methods:

- Feature quality measure μ relevance of the feature (or subset of features for multivariate) to the label
- Cutting rule κ decides what features to leave based on the μ

Filter methods:

Filter methods:

Evaluate the quality of certain attributes and remove the worst of them.

- + Simple to compute, easy to scale
- Ignore the relationships between attributes or features used by classifier

Examples of filter methods:

- Univariate:
 - o Euclidian distance
 - Information gain
 - Spearman corellation coefficient
- Multivariate:
 - o CFS
 - o MBF

Spearman corellation coefficient

$$\rho = \frac{\sum_{ij} (x_{ij} - \bar{x}_j)(y_i - \bar{y})}{\sqrt{\sum_{ij} (x_{ij} - \bar{x}_j)^2 \sum_{i} (y_i - \bar{y})^2}} \qquad \rho \in [-1; 1]$$

$$\rho \to 0$$

Python SciPy:

scipy.stats.pearsonr(x, y)

Parameters: Input

 $y:(N_i)$ array_like

 $\mathbf{x}:(N_{i})$ array_like

Input

(Pearson's correlation coefficient,

2-tailed p-value)

Returns:

Weka:

```
ASEvaluation evaluator = new CorrelationAttributeEval();
Ranker ranker = new Ranker();
// ranker.setThreshold(0.05); or ranker.setNumToSelect(10);
AttributeSelection selection = new AttributeSelection();
selection.setInputFormat(heavyInstances);
selection.setEvaluator(evaluator);
selection.setSearch(ranker);
Instances lightInstances = Filter.useFilter(heavyInstances, selection);
```

Wrapper methods:

Wrapper methods:

Get a subset of attributes of the source

- + Higher accuracy than Filtering
- + Consider the relationships between attributes
- + Direct interaction with the classifier
- Long computing time
- The probability of overfitting

Examples of Wrapper methods:

- Deterministic:
 - SFS (sequential forward selection)
 - SBE (sequential backward elimination)
 - o SVM-RFE
- Randomized:
 - Randomized Hill Climbing
 - Genetic Algorithms

SVM-RFE

- Train SVM on training subset
- Rank features by received weights
- Throw out last features
- Repeat until the necessary amount of features will left

SVM-RFE (Python example)

```
X = np.array([[1,2], [5,8], [1.5,1.8], [8,8], [1,0.6], [9,11]])

y = [0,1,0,1,0,1]
```

Let use SVM:

```
clf = svm.SVC(kernel='linear', C = 1.0)
```

Let fit our model:

```
clf.fit(X,y)
```

Let predict predict something:

```
print(clf.predict([0.58, 0.76]))
```

Embedded

- Take into account the particular classifier
- Use individual method for each classifier

Embedded

Random Forest:

Random Forest (Python example):

```
# Import the random forest package
from sklearn.ensemble import RandomForestClassifier
# Create the random forest object which will include all the
parameters for the fit

forest = RandomForestClassifier(n_estimators = 100)
# Fit the training data to the Survived labels and create the
decision trees

forest = forest.fir(train_data[0::, 1::],
    train_data[0::, 0])
# Take the same decision trees and run it on the test data
output = forest.predict(test_data)
```

Random Forest (Weka):

```
int numFolds = 10;
br = new BufferedReader(new FileReader("data.arff"));
    Instances trainData = new Instances(br);
    trainData.setClassIndex(trainData.numAttributes() - 1);
   RandomForest rf = new RandomForest();
   rf.setNumTrees(100);
   rf.buildClassifier(trainData);
    Evaluation evaluation = new Evaluation(trainData);
    evaluation.crossValidateModel(rf, trainData, numFolds, new Random(1));
   System.out.println("F-measure= " + evaluation.fMeasure(0));
```

Lecture plan

- Dimensionality Reduction
- Feature selection
- Feature Extraction
- More feature selection

Motivation:

Collect a large data set (50 dimensions)

			ĺ			Mean	
		Per capita	500		Poverty	household	
	GDP	GDP	Human	Secretary of	Index	income	
	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands	
Country	US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)	
Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	3.41	0.547	64.7	36.8	0.735	
Russia	1.48	19.84	0.755	65.5	39.9	0.72	
Singapore	0.223	`56.69	0.866	80	42.5	67.1	
USA	14.527	46.86	0.91	78.3	40.8	84.3	

Using feature extraction reduction come up with a different feature representation

Country	z_1	z_2
Canada	1.6	1.2
China	1.7	0.3
India	1.6	0.2
Russia	1.4	0.5
Singapore	0.5	1.7
USA	2	1.5

Feature Extraction

- Reducing the amount of resources required to describe a large set of data
- New features
- Linear and nonlinear

PCA tries to find the surface (a straight line in this case) which has the minimum projection error

PCA (Python example) Let use Iris-data and import PCA

```
from sklearn.decomposition import PCA as sklearnPCA
sklearn_pca = sklearnPCA(n_components=2)
Y_sklearn = sklearn_pca.fit_transform(X_std)
```

PCA (Python example) Let plot PCA-results

PCA (Weka)

```
PrincipalComponents pca = new PrincipalComponents();
pca.setInputFormat(trainingData);
pca.setMaximumAttributes(100);
newData = Filter.useFilter(newData, pca);
```

TSNE

- Nonlinear
- Used for visualization
- Tries to save the distance relationships between objects

TSNE

- 1. Builds a probability distribution over all pairs of objects: similar with high, dissimilar with low
- 2. Defines a probability distribution over all pairs of objects in 2d space
- 3. Minimizes the Kullback–Leibler divergence between the two distributions with respect to the locations of the points in the map

TSNE MNIST

Dimensionality reduction

Lecture plan

- Dimensionality Reduction
- Feature selection
- Feature Extraction
- More feature selection

Hybrid

Hybrid

- Combines strengths of different approaches
- Most common case: filter (or set of filters) and then wrapper or embedded

Ensemble (general)

Ensemble (models)

Ensemble (rankings)

Ensemble (measures)

