Propositional Logic and Inference

Marcus Hughes
CSCI 2824
4 June 2019: Lecture 2

https://xkcd.com/1856/

Mindset

Sudoku as Logic!

Sudoku as Constraint Satisfaction

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1
7				2				6
	6					2	8	
			4	1	9			5 9
				8			7	9

https://en.wikipedia.org/wiki/Sudoku#/media/File:Sudoku_Puzzle_by_L2G-20050714_standardized_layout.svg

Sudoku as Constraint Satisfaction

Sudoku as Constraint Satisfaction

	5	3			7				
	6			1	9	5			
Digits 1-9		9	8					6	
	8				6				3
	4			8		3			1
	7				2				6
		6					2	8	
				4	1	9			5
					8			7	9

Logical Equivalence

Logical Equivalence

Epp Book

Are they equivalent?

 $\sim (p \wedge q)$ $\sim p \wedge \sim q$

p	\boldsymbol{q}	$\sim p$	$\sim q$	$p \wedge q$	$\sim (p \wedge q)$		$\sim p \wedge \sim q$
T	T	F	F	T	F		F
T	F	F	T	F	T	≠	F
F	Т	T	F	F	Т	≠	F
F	F	Т	T	F	T		T

 $\sim (p \land q)$ and $\sim p \land \sim q$ have different truth values in rows 2 and 3, so they are not logically equivalent

Valid?

```
p \to q \lor \sim r
q \to p \land r
\therefore p \to r
```

premises

conclusion

p	\boldsymbol{q}	r	~r	$q \vee \sim r$	$p \wedge r$	$p \rightarrow q \vee \sim r$	$q \rightarrow p \wedge r$	$p \rightarrow r$
T	T	T	F	T	Т	T	Т	T
Т	T	F	T	T	F	Т	F	
T	F	T	F	F	Т	F	Т	
T	F	F	T	T	F	Т	Т	F
F	T	T	F	T	F	Т	F	
F	T	F	T	T	F	T	F	
F	F	T	F	F	F	Т	T	T
F	F	F	T	Т	F	Т	T	T

This row shows that an argument of this form can have true premises and a false conclusion. Hence this form of argument is invalid.

Inference

Modus Ponens	$p \rightarrow q$		Elimination	a. $p \vee q$	b. $p \vee q$
	p			$\sim q$	$\sim p$
	∴ q			∴ <i>p</i>	∴ <i>q</i>
Modus Tollens	$p \rightarrow q$		Transitivity	$p \rightarrow q$	
	$\sim q$			$q \rightarrow r$	
	∴ ~ <i>p</i>			$p \rightarrow r$	
Generalization	a. p	b. q	Proof by	$p \lor q$	
	$\therefore p \vee q$	$p \vee q$	Division into Cases	$p \rightarrow r$	
Specialization	a. $p \wedge q$	b. $p \wedge q$		$q \rightarrow r$	
	∴ <i>p</i>	∴ q		∴ r	
Conjunction	p		Contradiction Rule	$\sim p \rightarrow c$	
	q			∴. <i>p</i>	
	$\therefore p \wedge q$				

Digital Circuits

Circuits and Logic?

(a) Switches in Series

Swit	ches	Light Bulb
P	Q	State
closed	closed	on
closed	open	off
open	closed	off
open	open	off

(b) Switches in Parallel

Swit	ches	Light Bulb	
P	Q	State	
closed	closed	on	
closed	open	on	
open	closed	on	
open	open	off	

What is the formula?

feedback.jmbhughes.com

What did you like? What did you not like?