Китайская теорема об остатках

Пусть n_1, n_2, \ldots, n_k — попарно взаимно простые числа, а x_1, x_2, \ldots, x_k — произвольные целые числа. Рассмотрим сравнения $x \equiv x_1 \pmod{n_1}, x \equiv x_2 \pmod{n_2}, \ldots, x \equiv x_k \pmod{n_k}$.

- 1. Двойной подсчёт. Докажите, что такое число x однозначно с точностью до кратного $N=n_1n_2\dots n_k$ задаётся набором (x_1,x_2,\dots,x_k) остатков, а различных наборов остатков существует столько же, сколько чисел от 1 до N.
- 2. Интерполяция. Докажите, что такое число x можно найти в виде $x = a_1 \cdot \frac{N}{n_1} + a_2 \cdot \frac{N}{n_2} + \ldots + a_k \cdot \frac{N}{n_k}$, где a_1, a_2, \ldots, a_k некоторые целые числа.
- 3. Найдите остаток от деления 2^{2025} на 2025.
- 4. В библиотеке лежат книги. Известно, что, если их связывать в пачки по 5 или 11 книг, то будут оставаться 4 и 6 книг, соответственно, а если их связывать в пачки по 6 или 7 книг, то в обоих случаях останутся 3 книги. Найдите наименьшее возможное количество книг в библиотеке.
- 5. Генерал хочет построить для парада своих солдат в одинаковые квадратные колонны (один солдат не колонна), но он не знает, сколько солдат от (1 до 37) находится в лазарете. Докажите, что у генерала может быть такое количество солдат, что независимо от заполненности лазарета он сумеет выполнить своё намерение.
- 6. Даны натуральное число c и последовательность (a_n) натуральных чисел, при всех $n \in \mathbb{N}$ удовлетворяющая двойному неравенству $a_n < a_{n+1} < a_n + c$. Докажите, что множество $\mathfrak P$ простых чисел, не делящих ни один из членов последовательности (a_n) , конечно и найдите наибольшее возможное количество элементов $\mathfrak P$.
- 7. Существуют ли натуральные числа a, b, c, и d такие, что числа $a^2 < b^3 < c^4 < d^5$ образуют арифметическую прогрессию?

Китайская теорема об остатках

- 8. Существуют ли 17 последовательных натуральных чисел таких, что любое из этих чисел не взаимно просто с хотя бы одним из остальных?
- 9. Докажите, что для любого натурального числа n найдутся n последовательных натуральных чисел, ни одно из которых не является степенью простого числа.
- 10. Натуральные числа a и b таковы, что $b^n + n : a^n + n$ для всех $n \in \mathbb{N}$. Докажите, что a = b.
- 11. Докажите, что для любого натурального числа n найдутся попарно взаимно простые натуральные числа $k_0, k_1, k_2, \ldots, k_n$, бо́льшие единицы, такие, что число $k_0k_1 \ldots k_n-1$ представимо в виде произведения двух взаимно простых чисел.
- 12. Назовём множество, состоящее из натуральных чисел, $xpyn\kappa u m$, если оно состоит не менее, чем из двух элементов, и каждый его элемент имеет общий простой делитель хотя бы с одним из остальных элементов этого множества. Пусть $P(n)=n^2+n+1$. Найдите наименьшее натуральное число b, для которого найдётся натуральное a, такое, что множество $\{P(a+1), P(a+2), \ldots, P(a+b)\}$ хрупкое.
- 13. Найдите все натуральные числа n>1, для которых найдутся натуральные числа $b_1,\,b_2,\,\ldots,\,b_n$ (некоторые из них могут быть равны между собой, но не все) такие, что при всех $k\in\mathbb{N}$ произведение $(b_1+k)(b_2+k)\ldots(b_n+k)$ является степенью натурального числа. (Основание и показатель степени зависят от k и превышают 1.)
- 14. Значения многочлена $P \in \mathbb{Z}[n]$ при всех $n \in \mathbb{N}$ кратны хотя бы одному из чисел множества $\{a_1, \ldots, a_m\}$. Докажите, что найдётся i такой, что $P(n) : a_i$ при всех $n \in \mathbb{N}$.