Homework 3

- **1.** Suppose $W \subset X \times Y$ is closed, and Y is compact.
 - (i) Prove that $\pi_X(W)$ is closed in X.
 - (ii) Show this fails if Y is not compact.
- **2.** Let X be compact, a let $V_1 \supset V_2 \supset \dots$ be a sequence of closed nonempty sets in X. Prove that $\bigcap_{i\geq 1} V_i \neq \emptyset$.
- **3.** Suppose $f:(X,d_X)\to (Y,d_Y)$ is continuous, and suppose X is sequentially compact. Prove that f(X) is bounded.

Definition. For any set A, we define the frontier of A (also called the boundary of A) to be

$$\partial A = \overline{A} \cap \overline{A^{\complement}}.$$

That is, if $x \in \partial A$, then for every open set $U \ni x$, we have $U \cap A \neq \emptyset$ and $U \cap A^{\complement} \neq \emptyset$.

- 4. Prove that
 - (i) A is closed in $X \iff \partial A \subset A$.
 - (ii) $\partial A = \emptyset \iff A$ is both open and closed in X.
 - (iii) X is connected \iff every nonempty proper subset has nonempty frontier.
- **5.** Let $A, B \subset X$ be connected, with $A \cap \overline{B} \neq \emptyset$. Prove that $A \cup B$ is connected.