▶ A sequence, A_1, A_2, \cdots , is said to be monotone decreasing if

 $A_{n+1} \subset A_n, \ \forall n \pmod{as} \ A_n \downarrow$

▶ A sequence, A_1, A_2, \cdots , is said to be monotone decreasing if

$$A_{n+1} \subset A_n, \ \forall n \pmod{as} \ A_n \downarrow$$

▶ Limit of a monotone decreasing sequence is

$$A_n \downarrow$$
: $\lim_{n \to \infty} A_n = \bigcap_{k=1}^{\infty} A_k$

▶ A sequence, A_1, A_2, \cdots , is said to be monotone decreasing if

$$A_{n+1} \subset A_n, \ \forall n \pmod{as} \ A_n \downarrow$$

▶ Limit of a monotone decreasing sequence is

$$A_n \downarrow$$
: $\lim_{n \to \infty} A_n = \bigcap_{k=1}^{\infty} A_k$

▶ A sequence, A_1, A_2, \cdots , is said to be monotone increasing if

$$A_n \subset A_{n+1}, \ \forall n \pmod{as} \ A_n \uparrow$$

▶ A sequence, A_1, A_2, \cdots , is said to be monotone decreasing if

$$A_{n+1} \subset A_n, \ \forall n \pmod{as} \ A_n \downarrow$$

Limit of a monotone decreasing sequence is

$$A_n \downarrow$$
: $\lim_{n \to \infty} A_n = \bigcap_{k=1}^{\infty} A_k$

▶ A sequence, A_1, A_2, \cdots , is said to be monotone increasing if

$$A_n \subset A_{n+1}, \ \forall n \pmod{as} \ A_n \uparrow$$

▶ Limit of monotone increasing sequence is

$$A_n \uparrow: \lim_{n \to \infty} A_n = \bigcup_{k=1}^{\infty} A_k$$

Recap: Monotone Sequential Continuity

We showed that

$$P\left(\lim_{n\to\infty} A_n\right) = \lim_{n\to\infty} P(A_n)$$

when $A_n \downarrow$ or $A_n \uparrow$

 \blacktriangleright A random variable is a real-valued function on Ω :

 $X:\Omega\to\Re$

- ▶ A random variable is a real-valued function on Ω : $X:\Omega \to \Re$
- ▶ For example, $\Omega = \{H, T\}$, X(H) = 1, X(T) = 0.

- ▶ A random variable is a real-valued function on Ω : $X: \Omega \to \Re$
- ▶ For example, $\Omega = \{H, T\}$, X(H) = 1, X(T) = 0.
- ▶ Another example: $\Omega = \{H, T\}^3$, $X(\omega)$ is numbers of H's.

- ▶ A random variable is a real-valued function on Ω : $X:\Omega \to \Re$
- ▶ For example, $\Omega = \{H, T\}$, X(H) = 1, X(T) = 0.
- ▶ Another example: $\Omega = \{H, T\}^3$, $X(\omega)$ is numbers of H's.
- ▶ A random variable maps each outcome to a real number.

- ▶ A random variable is a real-valued function on Ω : $X: \Omega \to \Re$
- ▶ For example, $\Omega = \{H, T\}$, X(H) = 1, X(T) = 0.
- Another example: $\Omega = \{H, T\}^3$, $X(\omega)$ is numbers of H's.
- A random variable maps each outcome to a real number.
- It essentially means we can treat all outcomes as real numbers.

- ▶ A random variable is a real-valued function on Ω : $X: \Omega \to \Re$
- ▶ For example, $\Omega = \{H, T\}$, X(H) = 1, X(T) = 0.
- Another example: $\Omega = \{H, T\}^3$, $X(\omega)$ is numbers of H's.
- A random variable maps each outcome to a real number.
- It essentially means we can treat all outcomes as real numbers.
- ightharpoonup We can effectively work with \Re as sample space in all probability models

- Let (Ω, \mathcal{F}, P) be our probability space and let X be a random variable defined in this probability space.
- We know X maps Ω into \Re .

- Let (Ω, \mathcal{F}, P) be our probability space and let X be a random variable defined in this probability space.
- We know X maps Ω into \Re .
- ▶ This random variable results in a new probability space:

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

where \Re is the new sample space and $\mathcal{B} \subset 2^{\Re}$ is the new set of events and P_X is a probability defined on \mathcal{B} .

- Let (Ω, \mathcal{F}, P) be our probability space and let X be a random variable defined in this probability space.
- We know X maps Ω into \Re .
- ▶ This random variable results in a new probability space:

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

where \Re is the new sample space and $\mathcal{B} \subset 2^{\Re}$ is the new set of events and P_X is a probability defined on \mathcal{B} .

For now we will assume that any set of \Re that we want would be in $\mathcal B$ and hence is an event.

- Let (Ω, \mathcal{F}, P) be our probability space and let X be a random variable defined in this probability space.
- We know X maps Ω into \Re .
- ▶ This random variable results in a new probability space:

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

where \Re is the new sample space and $\mathcal{B} \subset 2^{\Re}$ is the new set of events and P_X is a probability defined on \mathcal{B} .

- For now we will assume that any set of \Re that we want would be in $\mathcal B$ and hence is an event.
- ▶ P_X is a new probability measure (which depends on P and X) that assigns probability to different subsets of \Re .

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

 \blacktriangleright We define P_X :

$$P_X(B) = P(\{\omega \in \Omega : X(\omega) \in B\}), B \in \mathcal{B}$$

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

• We define P_X :

$$P_X(B) = P(\{\omega \in \Omega : X(\omega) \in B\}), B \in \mathcal{B}$$

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

• We define P_X :

$$P_X(B) = P(\{\omega \in \Omega : X(\omega) \in B\}), B \in \mathcal{B}$$

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

• We define P_X :

$$P_X(B) = P(\{\omega \in \Omega : X(\omega) \in B\}), B \in \mathcal{B}$$

▶ We use the notation

$$[X \in B] = \{ \omega \in \Omega : X(\omega) \in B \}$$

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

• We define P_X :

$$P_X(B) = P(\{\omega \in \Omega : X(\omega) \in B\}), B \in \mathcal{B}$$

▶ We use the notation

$$[X \in B] = \{ \omega \in \Omega : X(\omega) \in B \}$$

► So, now we can write

$$P_X(B) = P([X \in B])$$

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

• We define P_X :

$$P_X(B) = P(\{\omega \in \Omega : X(\omega) \in B\}), B \in \mathcal{B}$$

▶ We use the notation

$$[X \in B] = \{ \omega \in \Omega : X(\omega) \in B \}$$

► So, now we can write

$$P_X(B) = P([X \in B]) = P[X \in B]$$

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

• We define P_X :

$$P_X(B) = P(\{\omega \in \Omega : X(\omega) \in B\}), B \in \mathcal{B}$$

▶ We use the notation

$$[X \in B] = \{ \omega \in \Omega : X(\omega) \in B \}$$

▶ So, now we can write

$$P_X(B) = P([X \in B]) = P[X \in B]$$

▶ For the definition of P_X to be proper, for each $B \in \mathcal{B}$, we must have $[X \in B] \in \mathcal{F}$.

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

• We define P_X :

$$P_X(B) = P(\{\omega \in \Omega : X(\omega) \in B\}), B \in \mathcal{B}$$

▶ We use the notation

$$[X \in B] = \{ \omega \in \Omega : X(\omega) \in B \}$$

▶ So, now we can write

$$P_X(B) = P([X \in B]) = P[X \in B]$$

▶ For the definition of P_X to be proper, for each $B \in \mathcal{B}$, we must have $[X \in B] \in \mathcal{F}$. We will assume that. (This is trivially true if $\mathcal{F} = 2^{\Omega}$).

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

• We define P_X :

$$P_X(B) = P(\{\omega \in \Omega : X(\omega) \in B\}), B \in \mathcal{B}$$

▶ We use the notation

$$[X \in B] = \{ \omega \in \Omega : X(\omega) \in B \}$$

▶ So, now we can write

$$P_X(B) = P([X \in B]) = P[X \in B]$$

- ▶ For the definition of P_X to be proper, for each $B \in \mathcal{B}$, we must have $[X \in B] \in \mathcal{F}$.
- We will assume that. (This is trivially true if $\mathcal{F}=2^{\Omega}$). We can easily verify P_X is a probability measure. It satisfies the axioms.

- Given a probability space (Ω, \mathcal{F}, P) , a random variable X
- \blacktriangleright We define P_X :

$$P_X(B) = P[X \in B] = P(\{\omega \in \Omega : X(\omega) \in B\})$$

- Given a probability space (Ω, \mathcal{F}, P) , a random variable X
- \blacktriangleright We define P_X :

$$P_X(B) = P[X \in B] = P(\{\omega \in \Omega : X(\omega) \in B\})$$

▶ Easy to see: $P_X(B) \ge 0$, $\forall B$ and $P_X(\Re) = 1$

- Given a probability space (Ω, \mathcal{F}, P) , a random variable X
- \blacktriangleright We define P_X :

$$P_X(B) = P[X \in B] = P(\{\omega \in \Omega : X(\omega) \in B\})$$

- ▶ Easy to see: $P_X(B) \ge 0$, $\forall B$ and $P_X(\Re) = 1$
- If $B_1 \cap B_2 = \phi$ then $P_X(B_1 \cup B_2) = P[X \in B_1 \cup B_2] = ?$

- ▶ Given a probability space (Ω, \mathcal{F}, P) , a random variable X
- \blacktriangleright We define P_X :

$$P_X(B) = P[X \in B] = P(\{\omega \in \Omega : X(\omega) \in B\})$$

- ▶ Easy to see: $P_X(B) \ge 0$, $\forall B$ and $P_X(\Re) = 1$
- If $B_1 \cap B_2 = \phi$ then $P_X(B_1 \cup B_2) = P[X \in B_1 \cup B_2] = ?$

- Given a probability space (Ω, \mathcal{F}, P) , a random variable X
- \blacktriangleright We define P_X :

$$P_X(B) = P[X \in B] = P(\{\omega \in \Omega : X(\omega) \in B\})$$

- ▶ Easy to see: $P_X(B) \ge 0$, $\forall B$ and $P_X(\Re) = 1$
- If $B_1 \cap B_2 = \phi$ then $P_X(B_1 \cup B_2) = P[X \in B_1 \cup B_2] = ?$

$$P[X \in B_1 \cup B_2] = P[X \in B_1] + P[X \in B_2] = P_X(B_1) + P_X(B_2)$$

Let us look at a couple of simple examples.

- Let us look at a couple of simple examples.
- Let $\Omega = \{H, T\}$ and P(H) = p.

- Let us look at a couple of simple examples.
- Let $\Omega = \{H, T\}$ and P(H) = p. Let X(H) = 1; X(T) = 0.

- Let us look at a couple of simple examples.
- ▶ Let $\Omega = \{H, T\}$ and P(H) = p. Let X(H) = 1; X(T) = 0.

$$[X \in \{0\}] = \{\omega : X(\omega) = 0\}$$

- Let us look at a couple of simple examples.
- ▶ Let $\Omega = \{H, T\}$ and P(H) = p. Let X(H) = 1; X(T) = 0.

$$[X \in \{0\}] = \{\omega : X(\omega) = 0\} = \{T\}$$

- Let us look at a couple of simple examples.
- ▶ Let $\Omega = \{H, T\}$ and P(H) = p. Let X(H) = 1; X(T) = 0.

$$\begin{split} [X \in \{0\}] &= \{\omega \ : \ X(\omega) = 0\} = \{T\} \\ [X \in [-3.14, 0.552] \] &= \{\omega : -3.14 \le X(\omega) \le 0.552\} \end{split}$$

- Let us look at a couple of simple examples.
- Let $\Omega = \{H, T\}$ and P(H) = p. Let X(H) = 1; X(T) = 0.

$$[X \in \{0\}] = \{\omega : X(\omega) = 0\} = \{T\}$$

$$X \in [-3.14, 0.552] = \{\omega : -3.14 < X(\omega) < 0.552\} = \{T\}$$

$$[X \in [-3.14, 0.552]] = \{\omega : -3.14 \le X(\omega) \le 0.552\} = \{T\}$$

- Let us look at a couple of simple examples.
- ▶ Let $\Omega = \{H, T\}$ and P(H) = p. Let X(H) = 1; X(T) = 0.

$$[X \in \{0\}] = \{\omega : X(\omega) = 0\} = \{T\}$$

$$[X \in [-3.14, 0.552]] = \{\omega : -3.14 \le X(\omega) \le 0.552\} = \{T\}$$

$$[X \in (0.62, 15.5)] = \{\omega : 0.62 < X(\omega) < 15.5\}$$

- Let us look at a couple of simple examples.
- ▶ Let $\Omega = \{H, T\}$ and P(H) = p. Let X(H) = 1; X(T) = 0.

$$\begin{split} [X \in \{0\}] &= \{\omega : X(\omega) = 0\} = \{T\} \\ [X \in [-3.14, 0.552]] &= \{\omega : -3.14 \le X(\omega) \le 0.552\} = \{T\} \\ [X \in (0.62, 15.5)] &= \{\omega : 0.62 < X(\omega) < 15.5\} = \{H\} \end{split}$$

- Let us look at a couple of simple examples.
- ▶ Let $\Omega = \{H, T\}$ and P(H) = p. Let X(H) = 1; X(T) = 0.

$$[X \in \{0\}] = \{\omega : X(\omega) = 0\} = \{T\}$$

$$[X \in [-3.14, 0.552]] = \{\omega : -3.14 \le X(\omega) \le 0.552\} = \{T\}$$

$$[X \in (0.62, 15.5)] = \{\omega : 0.62 < X(\omega) < 15.5\} = \{H\}$$

$$[X \in [-2, 2)] =$$

- Let us look at a couple of simple examples.
- ▶ Let $\Omega = \{H, T\}$ and P(H) = p. Let X(H) = 1; X(T) = 0.

$$[X \in \{0\}] = \{\omega : X(\omega) = 0\} = \{T\}$$

$$[X \in [-3.14, 0.552]] = \{\omega : -3.14 \le X(\omega) \le 0.552\} = \{T\}$$

$$[X \in (0.62, 15.5)] = \{\omega : 0.62 < X(\omega) < 15.5\} = \{H\}$$

$$[X \in [-2, 2)] = \Omega$$

- Let us look at a couple of simple examples.
- ▶ Let $\Omega = \{H, T\}$ and P(H) = p. Let X(H) = 1; X(T) = 0.

$$[X \in \{0\}] = \{\omega : X(\omega) = 0\} = \{T\}$$

$$[X \in [-3.14, 0.552]] = \{\omega : -3.14 \le X(\omega) \le 0.552\} = \{T\}$$

$$[X \in (0.62, 15.5)] = \{\omega : 0.62 < X(\omega) < 15.5\} = \{H\}$$

$$[X \in [-2, 2)] = \Omega$$

▶ Hence we get

$$P_X(\{0\}) = (1-p) = P_X([-3.14, 0.552])$$

- Let us look at a couple of simple examples.
- ▶ Let $\Omega = \{H, T\}$ and P(H) = p. Let X(H) = 1: X(T) = 0.

$$[X \in \{0\}] = \{\omega : X(\omega) = 0\} = \{T\}$$

$$[X \in [-3.14, 0.552]] = \{\omega : -3.14 \le X(\omega) \le 0.552\} = \{T\}$$

$$[X \in (0.62, 15.5)] = \{\omega : 0.62 < X(\omega) < 15.5\} = \{H\}$$

$$[X \in [-2, 2)] = \Omega$$

▶ Hence we get

$$P_X({0}) = (1 - p) = P_X([-3.14, 0.552])$$

$$P_X((0.6237, 15.5)) = p; P_X([-2, 2)) = 1$$

• Let $\Omega = \{H, T\}^3 = \{HHH, HHT, \cdots, TTT\}.$

Let $\Omega = \{H, T\}^3 = \{HHH, HHT, \cdots, TTT\}$. Let P be specified through 'equally likely' assignment. ▶ Let $\Omega = \{H, T\}^3 = \{HHH, HHT, \cdots, TTT\}$. Let P be specified through 'equally likely' assignment. Let $X(\omega)$ be number of H's in ω . Thus, X(THT) = 1. Let $\Omega = \{H, T\}^3 = \{HHH, HHT, \cdots, TTT\}$. Let P be specified through 'equally likely' assignment. Let $X(\omega)$ be number of H's in ω . Thus, X(THT) = 1. (X takes one of the values: 0, 1, 2, or 3)

- Let $\Omega = \{H, T\}^3 = \{HHH, HHT, \cdots, TTT\}$. Let P be specified through 'equally likely' assignment. Let $X(\omega)$ be number of H's in ω . Thus, X(THT) = 1. (X takes one of the values: 0, 1, 2, or 3)
- $\hbox{$\blacktriangleright$ We can once again write down } [X \in B] \hbox{ for different } B \subset \Re$

- Let $\Omega = \{H, T\}^3 = \{HHH, HHT, \cdots, TTT\}$. Let P be specified through 'equally likely' assignment. Let $X(\omega)$ be number of H's in ω . Thus, X(THT) = 1. (X takes one of the values: 0, 1, 2, or 3)
- $\hbox{$\blacktriangleright$ We can once again write down } [X \in B] \hbox{ for different } B \subset \Re$

$$[X\in(0,1]\;]=$$

- Let $\Omega = \{H, T\}^3 = \{HHH, HHT, \cdots, TTT\}$. Let P be specified through 'equally likely' assignment. Let $X(\omega)$ be number of H's in ω . Thus, X(THT) = 1. (X takes one of the values: 0, 1, 2, or 3)
- $\hbox{ We can once again write down } [X \in B] \hbox{ for different } \\ B \subset \Re$

$$[X \in (0,1]] = \{HTT, THT, TTH\};$$

- Let $\Omega = \{H, T\}^3 = \{HHH, HHT, \cdots, TTT\}$. Let P be specified through 'equally likely' assignment. Let $X(\omega)$ be number of H's in ω . Thus, X(THT) = 1. (X takes one of the values: 0, 1, 2, or 3)
- $\hbox{$\blacktriangleright$ We can once again write down } [X \in B] \hbox{ for different } B \subset \Re$

$$[X \in (0,1]] = \{HTT, THT, TTH\};$$

$$[X \in (-1.2, 2.78)] =$$

- Let $\Omega = \{H, T\}^3 = \{HHH, HHT, \cdots, TTT\}$. Let P be specified through 'equally likely' assignment. Let $X(\omega)$ be number of H's in ω . Thus, X(THT) = 1. (X takes one of the values: 0, 1, 2, or 3)
- $\hbox{ We can once again write down } [X \in B] \hbox{ for different } \\ B \subset \Re$

$$[X \in (0,1]] = \{HTT, THT, TTH\};$$

$$[X \in (-1.2, 2.78)] = \Omega - \{HHH\}$$

- Let $\Omega = \{H, T\}^3 = \{HHH, HHT, \cdots, TTT\}$. Let P be specified through 'equally likely' assignment. Let $X(\omega)$ be number of H's in ω . Thus, X(THT) = 1. (X takes one of the values: 0, 1, 2, or 3)
- $\hbox{$\blacktriangleright$ We can once again write down } [X \in B] \hbox{ for different } B \subset \Re$

$$[X \in (0,1]] = \{HTT, THT, TTH\};$$

$$[X \in (-1.2, 2.78)] = \Omega - \{HHH\}$$

Hence

$$P_X((0,1]) = \frac{3}{8}; \ P_X((-1.2,2.78)) = \frac{7}{8}$$

▶ A random variable defined on (Ω, \mathcal{F}, P) results in a new or induced probability space (\Re, \mathcal{B}, P_X) .

- ▶ A random variable defined on (Ω, \mathcal{F}, P) results in a new or induced probability space (\Re, \mathcal{B}, P_X) .
- ▶ The Ω may be countable or uncountable (even though we looked at only examples of finite Ω).

- ▶ A random variable defined on (Ω, \mathcal{F}, P) results in a new or induced probability space (\Re, \mathcal{B}, P_X) .
- ▶ The Ω may be countable or uncountable (even though we looked at only examples of finite Ω).
- ▶ Thus, we can study probability models by taking \Re as sample space through the use of random variables.

- ▶ A random variable defined on (Ω, \mathcal{F}, P) results in a new or induced probability space (\Re, \mathcal{B}, P_X) .
- ▶ The Ω may be countable or uncountable (even though we looked at only examples of finite Ω).
- ▶ Thus, we can study probability models by taking \Re as sample space through the use of random variables.
- ► However there are some technical issues regarding what B we should consider.

- ▶ A random variable defined on (Ω, \mathcal{F}, P) results in a new or induced probability space (\Re, \mathcal{B}, P_X) .
- ▶ The Ω may be countable or uncountable (even though we looked at only examples of finite Ω).
- ▶ Thus, we can study probability models by taking \Re as sample space through the use of random variables.
- ▶ However there are some technical issues regarding what \mathcal{B} we should consider.
- ► We briefly consider this and then move on to studying random variables.

• We want to look at the probability space (\Re, \mathcal{B}, P_X) .

- ▶ We want to look at the probability space (\Re, \mathcal{B}, P_X) .
- ▶ If we could take $\mathcal{B} = 2^{\Re}$ then everything would be simple. But that is not feasible.

- ▶ We want to look at the probability space (\Re, \mathcal{B}, P_X) .
- If we could take $\mathcal{B}=2^{\Re}$ then everything would be simple. But that is not feasible.
- ▶ What this means is that if we want every subset of real line to be an event, we cannot construct a probability measure (to satisfy the axioms).

• Let us consider $\Omega = [0, 1]$.

- Let us consider $\Omega = [0, 1]$.
- \blacktriangleright This is the simplest example of uncountable Ω we considered.

- Let us consider $\Omega = [0, 1]$.
- \blacktriangleright This is the simplest example of uncountable Ω we considered.
- ▶ We also saw that this sample space comes up when we consider infinite tosses of a coin.

- Let us consider $\Omega = [0, 1]$.
- ▶ This is the simplest example of uncountable Ω we considered.
- ▶ We also saw that this sample space comes up when we consider infinite tosses of a coin.
- ▶ The simplest extension of the idea of 'equally likely' is to say probability of an event (subset of Ω) is the length of the event (subset).

- Let us consider $\Omega = [0, 1]$.
- ▶ This is the simplest example of uncountable Ω we considered.
- ▶ We also saw that this sample space comes up when we consider infinite tosses of a coin.
- ▶ The simplest extension of the idea of 'equally likely' is to say probability of an event (subset of Ω) is the length of the event (subset).
- \blacktriangleright But not all subsets of [0,1] are intervals and length is defined only for intervals.

- Let us consider $\Omega = [0, 1]$.
- ▶ This is the simplest example of uncountable Ω we considered.
- ▶ We also saw that this sample space comes up when we consider infinite tosses of a coin.
- ▶ The simplest extension of the idea of 'equally likely' is to say probability of an event (subset of Ω) is the length of the event (subset).
- \blacktriangleright But not all subsets of [0,1] are intervals and length is defined only for intervals.
- We can define length of countable union of disjoint intervals to be sum of the lengths of individual intervals.

- Let us consider $\Omega = [0, 1]$.
- ▶ This is the simplest example of uncountable Ω we considered.
- ▶ We also saw that this sample space comes up when we consider infinite tosses of a coin.
- ▶ The simplest extension of the idea of 'equally likely' is to say probability of an event (subset of Ω) is the length of the event (subset).
- \blacktriangleright But not all subsets of [0,1] are intervals and length is defined only for intervals.
- We can define length of countable union of disjoint intervals to be sum of the lengths of individual intervals.
- ▶ But what about subsets that may not be countable unions of disjoint intervals ?

- Let us consider $\Omega = [0, 1]$.
- ▶ This is the simplest example of uncountable Ω we considered.
- ▶ We also saw that this sample space comes up when we consider infinite tosses of a coin.
- ▶ The simplest extension of the idea of 'equally likely' is to say probability of an event (subset of Ω) is the length of the event (subset).
- \blacktriangleright But not all subsets of [0,1] are intervals and length is defined only for intervals.
- We can define length of countable union of disjoint intervals to be sum of the lengths of individual intervals.
- ▶ But what about subsets that may not be countable unions of disjoint intervals ?
- Well, we say those can be assigned probability by using the axioms.

▶ Thus the question is the following:

- ▶ Thus the question is the following:
- ▶ Can we construct a function $m: 2^{[0,1]} \rightarrow [0,1]$ such that

- ▶ Thus the question is the following:
- ▶ Can we construct a function $m: 2^{[0,1]} \rightarrow [0,1]$ such that
 - 1. $m(A) = \operatorname{length}(A)$ if $A \subset [0,1]$ is an interval

- ▶ Thus the question is the following:
- ► Can we construct a function $m: 2^{[0,1]} \rightarrow [0,1]$ such that
 - 1. m(A) = length(A) if $A \subset [0,1]$ is an interval
 - 2. $m(\bigcup_i A_i) = \sum_i m(A_i)$ where $A_i \cap A_j = \phi$ whenever $i \neq j, \ (A_1, A_2, \dots \subset [0, 1])$

- ▶ Thus the question is the following:
- ▶ Can we construct a function $m: 2^{[0,1]} \rightarrow [0,1]$ such that
 - 1. m(A) = length(A) if $A \subset [0,1]$ is an interval
 - 2. $m(\cup_i A_i) = \sum_i m(A_i)$ where $A_i \cap A_j = \phi$ whenever $i \neq j, \ (A_1, A_2, \dots \subset [0, 1])$
- ► The surprising answer is 'NO'

- ▶ Thus the question is the following:
- ▶ Can we construct a function $m: 2^{[0,1]} \rightarrow [0,1]$ such that
 - 1. m(A) = length(A) if $A \subset [0,1]$ is an interval
 - 2. $m(\cup_i A_i) = \sum_i m(A_i)$ where $A_i \cap A_j = \phi$ whenever $i \neq j, \ (A_1, A_2, \dots \subset [0, 1])$
- ► The surprising answer is 'NO'
- ▶ This is a fundamental result in real analysis.

- ▶ Thus the question is the following:
- ▶ Can we construct a function $m: 2^{[0,1]} \rightarrow [0,1]$ such that
 - 1. m(A) = length(A) if $A \subset [0,1]$ is an interval
 - 2. $m(\cup_i A_i)=\sum_i m(A_i)$ where $A_i\cap A_j=\phi$ whenever $i\neq j,\ (A_1,A_2,\dots\subset [0,1])$
- ► The surprising answer is 'NO'
- This is a fundamental result in real analysis.
- ▶ Hence for the probability space (\Re, \mathcal{B}, P_X) we cannot take $\mathcal{B} = 2^{\Re}$.

- ▶ Thus the question is the following:
- ▶ Can we construct a function $m: 2^{[0,1]} \rightarrow [0,1]$ such that
 - 1. m(A) = length(A) if $A \subset [0,1]$ is an interval
 - 2. $m(\cup_i A_i) = \sum_i m(A_i)$ where $A_i \cap A_j = \phi$ whenever $i \neq j, \ (A_1, A_2, \dots \subset [0, 1])$
- ► The surprising answer is 'NO'
- This is a fundamental result in real analysis.
- ▶ Hence for the probability space (\Re, \mathcal{B}, P_X) we cannot take $\mathcal{B} = 2^{\Re}$.
 - (Recall that for countable Ω we can take $\mathcal{F}=2^{\Omega}$).

- ▶ Thus the question is the following:
- ▶ Can we construct a function $m: 2^{[0,1]} \rightarrow [0,1]$ such that
 - 1. m(A) = length(A) if $A \subset [0,1]$ is an interval
 - 2. $m(\cup_i A_i) = \sum_i m(A_i)$ where $A_i \cap A_j = \phi$ whenever $i \neq j, \ (A_1, A_2, \dots \subset [0, 1])$
- ► The surprising answer is 'NO'
- This is a fundamental result in real analysis.
- Hence for the probability space (\Re, \mathcal{B}, P_X) we cannot take $\mathcal{B} = 2^{\Re}$.
 - (Recall that for countable Ω we can take $\mathcal{F}=2^{\Omega}$).
- Now the question is what is the best \mathcal{B} we can have?

▶ An $\mathcal{F} \subset 2^{\Omega}$ is called a σ -algebra (also called σ -field) on Ω if it satisfies the following:

- ▶ An $\mathcal{F} \subset 2^{\Omega}$ is called a σ -algebra (also called σ -field) on Ω if it satisfies the following:
 - 1. $\Omega \in \mathcal{F}$

- ▶ An $\mathcal{F} \subset 2^{\Omega}$ is called a σ -algebra (also called σ -field) on Ω if it satisfies the following:
 - 1. $\Omega \in \mathcal{F}$
 - 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$

- ▶ An $\mathcal{F} \subset 2^{\Omega}$ is called a σ -algebra (also called σ -field) on Ω if it satisfies the following:
 - 1. $\Omega \in \mathcal{F}$
 - 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
 - 3. $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \cup_i A_i \in \mathcal{F}$

- ▶ An $\mathcal{F} \subset 2^{\Omega}$ is called a σ -algebra (also called σ -field) on Ω if it satisfies the following:
 - 1. $\Omega \in \mathcal{F}$
 - 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
 - 3. $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \cup_i A_i \in \mathcal{F}$
- ▶ Thus a σ -algebra is a collection of subsets of Ω that is closed under complements and countable unions

- ▶ An $\mathcal{F} \subset 2^{\Omega}$ is called a σ -algebra (also called σ -field) on Ω if it satisfies the following:
 - 1. $\Omega \in \mathcal{F}$
 - 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
 - 3. $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \cup_i A_i \in \mathcal{F}$
- ► Thus a σ -algebra is a collection of subsets of Ω that is closed under complements and countable unions (and hence countable intersections

- ▶ An $\mathcal{F} \subset 2^{\Omega}$ is called a σ -algebra (also called σ -field) on Ω if it satisfies the following:
 - 1. $\Omega \in \mathcal{F}$
 - 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
 - 3. $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \cup_i A_i \in \mathcal{F}$
- ► Thus a σ -algebra is a collection of subsets of Ω that is closed under complements and countable unions (and hence countable intersections because $\cap_i A_i = (\cup_i A_i^c)^c$).

- ▶ An $\mathcal{F} \subset 2^{\Omega}$ is called a σ -algebra (also called σ -field) on Ω if it satisfies the following:
 - 1. $\Omega \in \mathcal{F}$
 - 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
 - 3. $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \cup_i A_i \in \mathcal{F}$
- ► Thus a σ -algebra is a collection of subsets of Ω that is closed under complements and countable unions (and hence countable intersections because $\cap_i A_i = (\cup_i A_i^c)^c$).
- Note that 2^{Ω} is obviously a σ -algebra

- ▶ An $\mathcal{F} \subset 2^{\Omega}$ is called a σ -algebra (also called σ -field) on Ω if it satisfies the following:
 - 1. $\Omega \in \mathcal{F}$
 - 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
 - 3. $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \cup_i A_i \in \mathcal{F}$
- ► Thus a σ -algebra is a collection of subsets of Ω that is closed under complements and countable unions (and hence countable intersections because $\cap_i A_i = (\cup_i A_i^c)^c$).
- Note that 2^{Ω} is obviously a σ -algebra
- ▶ In a Probability space (Ω, \mathcal{F}, P) , if $\mathcal{F} \neq 2^{\Omega}$ then we want it to be a σ -algebra.

- ▶ An $\mathcal{F} \subset 2^{\Omega}$ is called a σ -algebra (also called σ -field) on Ω if it satisfies the following:
 - 1. $\Omega \in \mathcal{F}$
 - 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
 - 3. $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \cup_i A_i \in \mathcal{F}$
- ► Thus a σ -algebra is a collection of subsets of Ω that is closed under complements and countable unions (and hence countable intersections because $\cap_i A_i = (\cup_i A_i^c)^c$).
- Note that 2^{Ω} is obviously a σ -algebra
- ▶ In a Probability space (Ω, \mathcal{F}, P) , if $\mathcal{F} \neq 2^{\Omega}$ then we want it to be a σ -algebra. (Why?)

▶ Easy to construct examples of σ -algebras

$$\mathcal{F} = \{\Omega, \phi, A, A^c\}$$
 is a σ -algebra

$$\mathcal{F} = \{\Omega, \phi, A, A^c\}$$
 is a $\sigma\text{-algebra}$

• For example, with $\Omega = \{1, 2, 3, 4, 5, 6\}$,

$$\mathcal{F} = \{\Omega, \phi, \{1, 3, 5\}, \{2, 4, 6\}\}$$
 is a $\sigma\text{-algebra}$

$$\mathcal{F} = \{\Omega, \phi, A, A^c\}$$
 is a σ -algebra

• For example, with $\Omega = \{1, 2, 3, 4, 5, 6\}$,

$$\mathcal{F} = \{\Omega, \phi, \{1, 3, 5\}, \{2, 4, 6\}\}$$
 is a $\sigma\text{-algebra}$

$$\mathcal{F} = \{\Omega, \phi, A, A^c\}$$
 is a $\sigma\text{-algebra}$

• For example, with $\Omega = \{1, 2, 3, 4, 5, 6\}$,

$$\mathcal{F} = \{\Omega, \phi, \{1, 3, 5\}, \{2, 4, 6\}\}$$
 is a $\sigma\text{-algebra}$

$$\{\Omega, \phi, \{1, 2\}, \{3, 4\},$$

$$\mathcal{F} = \{\Omega, \phi, A, A^c\}$$
 is a $\sigma\text{-algebra}$

• For example, with $\Omega = \{1, 2, 3, 4, 5, 6\}$,

$$\mathcal{F} = \{\Omega, \phi, \{1, 3, 5\}, \{2, 4, 6\}\}$$
 is a $\sigma\text{-algebra}$

$$\{\Omega, \phi, \{1, 2\}, \{3, 4\}, \{3, 4, 5, 6\}, \{1, 2, 5, 6\},$$

$$\mathcal{F} = \{\Omega, \phi, A, A^c\}$$
 is a $\sigma\text{-algebra}$

• For example, with $\Omega = \{1, 2, 3, 4, 5, 6\}$,

$$\mathcal{F} = \{\Omega, \phi, \{1, 3, 5\}, \{2, 4, 6\}\}$$
 is a $\sigma\text{-algebra}$

$$\{\Omega, \phi, \{1, 2\}, \{3, 4\}, \{3, 4, 5, 6\}, \{1, 2, 5, 6\}, \{1, 2, 3, 4\}, \}$$

$$\mathcal{F} = \{\Omega, \phi, A, A^c\}$$
 is a $\sigma\text{-algebra}$

• For example, with $\Omega = \{1, 2, 3, 4, 5, 6\}$,

$$\mathcal{F} = \{\Omega, \phi, \{1, 3, 5\}, \{2, 4, 6\}\}$$
 is a $\sigma\text{-algebra}$

$$\{\Omega, \phi, \{1, 2\}, \{3, 4\}, \{3, 4, 5, 6\}, \{1, 2, 5, 6\}, \{1, 2, 3, 4\}, \{5, 6\}\}$$

$$\mathcal{F} = \{\Omega, \phi, A, A^c\}$$
 is a $\sigma\text{-algebra}$

• For example, with $\Omega = \{1, 2, 3, 4, 5, 6\}$,

$$\mathcal{F} = \{\Omega, \phi, \{1, 3, 5\}, \{2, 4, 6\}\}$$
 is a $\sigma\text{-algebra}$

$$\{\Omega, \phi, \{1, 2\}, \{3, 4\}, \{3, 4, 5, 6\}, \{1, 2, 5, 6\}, \{1, 2, 3, 4\}, \{5, 6\}\}$$

$$\mathcal{F} = \{\Omega, \phi, A, A^c\}$$
 is a $\sigma\text{-algebra}$

• For example, with $\Omega = \{1, 2, 3, 4, 5, 6\}$,

$$\mathcal{F} = \{\Omega, \phi, \{1, 3, 5\}, \{2, 4, 6\}\}$$
 is a $\sigma\text{-algebra}$

▶ Suppose on this Ω we want to make a σ -algebra containing $\{1,2\}$ and $\{3,4\}$.

$$\{\Omega, \phi, \{1, 2\}, \{3, 4\}, \{3, 4, 5, 6\}, \{1, 2, 5, 6\}, \{1, 2, 3, 4\}, \{5, 6\}\}$$

▶ This is the 'smallest' σ -algebra containing $\{1,2\}$, $\{3,4\}$

▶ Let $\mathcal{F}_1, \mathcal{F}_2$ be σ -algebras on Ω .

- ▶ Let $\mathcal{F}_1, \mathcal{F}_2$ be σ -algebras on Ω .
- ▶ Then, so is $\mathcal{F}_1 \cap \mathcal{F}_2$.

- ▶ Let $\mathcal{F}_1, \mathcal{F}_2$ be σ -algebras on Ω .
- ▶ Then, so is $\mathcal{F}_1 \cap \mathcal{F}_2$.
- ▶ It is simple to show.

- ▶ Let $\mathcal{F}_1, \mathcal{F}_2$ be σ -algebras on Ω .
- ▶ Then, so is $\mathcal{F}_1 \cap \mathcal{F}_2$.
- It is simple to show.

(E.g.,
$$A \in \mathcal{F}_1 \cap \mathcal{F}_2 \Rightarrow A \in \mathcal{F}_1, A \in \mathcal{F}_2$$

- ▶ Let $\mathcal{F}_1, \mathcal{F}_2$ be σ -algebras on Ω .
- ▶ Then, so is $\mathcal{F}_1 \cap \mathcal{F}_2$.
- ▶ It is simple to show.

(E.g.,
$$A \in \mathcal{F}_1 \cap \mathcal{F}_2 \Rightarrow A \in \mathcal{F}_1, A \in \mathcal{F}_2 \Rightarrow A^c \in \mathcal{F}_1, A^c \in \mathcal{F}_2$$

- ▶ Let $\mathcal{F}_1, \mathcal{F}_2$ be σ -algebras on Ω .
- ▶ Then, so is $\mathcal{F}_1 \cap \mathcal{F}_2$.
- ▶ It is simple to show.

(E.g.,
$$A \in \mathcal{F}_1 \cap \mathcal{F}_2 \Rightarrow A \in \mathcal{F}_1, A \in \mathcal{F}_2 \Rightarrow A^c \in \mathcal{F}_1, A^c \in \mathcal{F}_2 \Rightarrow A^c \in \mathcal{F}_1 \cap \mathcal{F}_2$$
)

- ▶ Let $\mathcal{F}_1, \mathcal{F}_2$ be σ -algebras on Ω .
- ▶ Then, so is $\mathcal{F}_1 \cap \mathcal{F}_2$.
- ▶ It is simple to show. (E.g., $A \in \mathcal{F}_1 \cap \mathcal{F}_2 \Rightarrow A \in \mathcal{F}_1, A \in \mathcal{F}_2 \Rightarrow A^c \in \mathcal{F}_1, A^c \in \mathcal{F}_2 \Rightarrow A^c \in \mathcal{F}_1 \cap \mathcal{F}_2$)
- ▶ Let $G \subset 2^{\Omega}$. We denote by $\sigma(G)$ the smallest σ -algebra containing G.

- ▶ Let $\mathcal{F}_1, \mathcal{F}_2$ be σ -algebras on Ω .
- ▶ Then, so is $\mathcal{F}_1 \cap \mathcal{F}_2$.
- It is simple to show. (E.g., $A \in \mathcal{F}_1 \cap \mathcal{F}_2 \Rightarrow A \in \mathcal{F}_1, A \in \mathcal{F}_2 \Rightarrow A^c \in \mathcal{F}_1, A^c \in \mathcal{F}_2 \Rightarrow A^c \in \mathcal{F}_1 \cap \mathcal{F}_2$)
- ▶ Let $G \subset 2^{\Omega}$. We denote by $\sigma(G)$ the smallest σ -algebra containing G.
- ▶ It is defined as the intersection of all σ -algebras containing G (and hence is well defined).

▶ Let us get back to the question we started with.

- Let us get back to the question we started with.
- ▶ In the probability space (\Re, \mathcal{B}, P) what is the \mathcal{B} we should choose.

- Let us get back to the question we started with.
- ▶ In the probability space (\Re, \mathcal{B}, P) what is the \mathcal{B} we should choose.
- We can choose it to be the smallest σ -algebra containing all intervals

- ▶ Let us get back to the question we started with.
- ▶ In the probability space (\Re, \mathcal{B}, P) what is the \mathcal{B} we should choose.
- We can choose it to be the smallest σ -algebra containing all intervals
- ▶ That is called Borel σ -algebra, \mathcal{B} .

- Let us get back to the question we started with.
- ▶ In the probability space (\Re, \mathcal{B}, P) what is the \mathcal{B} we should choose.
- We can choose it to be the smallest σ -algebra containing all intervals
- ▶ That is called Borel σ -algebra, \mathcal{B} .
- ▶ It contains all intervals, all complements, countable unions and intersections of intervals and all sets that can be obtained through complements, countable unions and/or intersections of such sets and so on.

▶ Let $G = \{(-\infty, x] : x \in \Re\}$

- ▶ Let $G = \{(-\infty, x] : x \in \Re\}$
- We can define the Borel σ -algebra, \mathcal{B} , as the smallest σ -algebra containing G.

- ▶ Let $G = \{(-\infty, x] : x \in \Re\}$
- We can define the Borel σ -algebra, \mathcal{B} , as the smallest σ -algebra containing G.
- We can see that B would contain all intervals.

- ▶ Let $G = \{(-\infty, x] : x \in \Re\}$
- We can define the Borel σ -algebra, \mathcal{B} , as the smallest σ -algebra containing G.
- We can see that B would contain all intervals.
 - 1. $(-\infty, x) \in \mathcal{B}$ because $(-\infty, x) = \bigcup_n (-\infty, x \frac{1}{n}]$

- ▶ Let $G = \{(-\infty, x] : x \in \Re\}$
- We can define the Borel σ -algebra, \mathcal{B} , as the smallest σ -algebra containing G.
- \blacktriangleright We can see that ${\cal B}$ would contain all intervals.
 - 1. $(-\infty, x) \in \mathcal{B}$ because $(-\infty, x) = \bigcup_n (-\infty, x \frac{1}{n}]$
 - 2. $(x, \infty) \in \mathcal{B}$ because $(x, \infty) = (-\infty, x]^c$

- ▶ Let $G = \{(-\infty, x] : x \in \Re\}$
- We can define the Borel σ -algebra, \mathcal{B} , as the smallest σ -algebra containing G.
- \blacktriangleright We can see that ${\cal B}$ would contain all intervals.
 - 1. $(-\infty, x) \in \mathcal{B}$ because $(-\infty, x) = \bigcup_n (-\infty, x \frac{1}{n}]$
 - 2. $(x, \infty) \in \mathcal{B}$ because $(x, \infty) = (-\infty, x]^c$
 - 3. $[x, \infty) \in \mathcal{B}$ because $[x, \infty) = \bigcap_n (x \frac{1}{n}, \infty)$

- ▶ Let $G = \{(-\infty, x] : x \in \Re\}$
- We can define the Borel σ -algebra, \mathcal{B} , as the smallest σ -algebra containing G.
- \blacktriangleright We can see that ${\cal B}$ would contain all intervals.
 - 1. $(-\infty, x) \in \mathcal{B}$ because $(-\infty, x) = \bigcup_n (-\infty, x \frac{1}{n}]$
 - 2. $(x, \infty) \in \mathcal{B}$ because $(x, \infty) = (-\infty, x]^c$
 - 3. $[x, \infty) \in \mathcal{B}$ because $[x, \infty) = \bigcap_n (x \frac{1}{n}, \infty)$
 - 4. $(x, y] \in \mathcal{B}$ because $(x, y] = (-\infty, y] \cap (x, \infty)$

- ▶ Let $G = \{(-\infty, x] : x \in \Re\}$
- We can define the Borel σ -algebra, \mathcal{B} , as the smallest σ -algebra containing G.
- We can see that B would contain all intervals.
 - 1. $(-\infty, x) \in \mathcal{B}$ because $(-\infty, x) = \bigcup_n (-\infty, x \frac{1}{n}]$
 - 2. $(x, \infty) \in \mathcal{B}$ because $(x, \infty) = (-\infty, x]^c$
 - 3. $[x, \infty) \in \mathcal{B}$ because $[x, \infty) = \bigcap_n (x \frac{1}{n}, \infty)$
 - 4. $(x, y] \in \mathcal{B}$ because $(x, y] = (-\infty, y] \cap (x, \infty)$
 - 5. $[x, y] \in \mathcal{B}$ because $[x, y] = \bigcap_n (x \frac{1}{n}, y]$

- ▶ Let $G = \{(-\infty, x] : x \in \Re\}$
- We can define the Borel σ -algebra, \mathcal{B} , as the smallest σ -algebra containing G.
- We can see that B would contain all intervals.
 - 1. $(-\infty, x) \in \mathcal{B}$ because $(-\infty, x) = \bigcup_n (-\infty, x \frac{1}{n}]$
 - 2. $(x, \infty) \in \mathcal{B}$ because $(x, \infty) = (-\infty, x]^c$
 - 3. $[x, \infty) \in \mathcal{B}$ because $[x, \infty) = \bigcap_n (x \frac{1}{n}, \infty)$
 - 4. $(x, y] \in \mathcal{B}$ because $(x, y] = (-\infty, y] \cap (x, \infty)$
 - 5. $[x, y] \in \mathcal{B}$ because $[x, y] = \bigcap_n (x \frac{1}{n}, y]$
 - 6. $[x, y), (x, y) \in \mathcal{B}$, similarly

- ▶ Let $G = \{(-\infty, x] : x \in \Re\}$
- We can define the Borel σ -algebra, \mathcal{B} , as the smallest σ -algebra containing G.
- We can see that B would contain all intervals.
 - 1. $(-\infty, x) \in \mathcal{B}$ because $(-\infty, x) = \bigcup_n (-\infty, x \frac{1}{n}]$
 - 2. $(x, \infty) \in \mathcal{B}$ because $(x, \infty) = (-\infty, x]^c$
 - 3. $[x, \infty) \in \mathcal{B}$ because $[x, \infty) = \bigcap_n (x \frac{1}{n}, \infty)$
 - 4. $(x, y] \in \mathcal{B}$ because $(x, y] = (-\infty, y] \cap (x, \infty)$
 - 5. $[x, y] \in \mathcal{B}$ because $[x, y] = \bigcap_n (x \frac{1}{n}, y]$
 - 6. $[x, y), (x, y) \in \mathcal{B}$, similarly
- ▶ Thus, $\sigma(G)$ is also the smallest σ -algebra containing all intervals.

$$\mathcal{B} = \sigma\left(\left\{\left(-\infty, x\right] : x \in \Re\right\}\right)$$

 \blacktriangleright We have defined \mathcal{B} as

$$\mathcal{B} = \sigma\left(\left\{\left(-\infty, x\right] : x \in \Re\right\}\right)$$

▶ It is also the smallest σ -algebra containing all intervals.

$$\mathcal{B} = \sigma\left(\left\{\left(-\infty, x\right] : x \in \Re\right\}\right)$$

- ▶ It is also the smallest σ -algebra containing all intervals.
- Elements of B are called Borel sets

$$\mathcal{B} = \sigma\left(\left\{\left(-\infty, x\right] : x \in \Re\right\}\right)$$

- ▶ It is also the smallest σ -algebra containing all intervals.
- \blacktriangleright Elements of ${\cal B}$ are called Borel sets
- Intervals (including singleton sets), complements of intervals, countable unions and intersections of intervals, countable unions and intersections of such sets on so on are all Borel sets.

$$\mathcal{B} = \sigma\left(\left\{\left(-\infty, x\right] : x \in \Re\right\}\right)$$

- ▶ It is also the smallest σ -algebra containing all intervals.
- \blacktriangleright Elements of ${\cal B}$ are called Borel sets
- Intervals (including singleton sets), complements of intervals, countable unions and intersections of intervals, countable unions and intersections of such sets on so on are all Borel sets.
- ▶ Borel σ -algebra contains enough sets for our purposes.

$$\mathcal{B} = \sigma\left(\left\{\left(-\infty, x\right] : x \in \Re\right\}\right)$$

- ▶ It is also the smallest σ -algebra containing all intervals.
- \blacktriangleright Elements of ${\cal B}$ are called Borel sets
- Intervals (including singleton sets), complements of intervals, countable unions and intersections of intervals, countable unions and intersections of such sets on so on are all Borel sets.
- ▶ Borel σ -algebra contains enough sets for our purposes.
- ▶ Are there any subsets of real line that are not Borel?

We have defined B as

$$\mathcal{B} = \sigma\left(\left\{\left(-\infty, x\right] : x \in \Re\right\}\right)$$

- ▶ It is also the smallest σ -algebra containing all intervals.
- \blacktriangleright Elements of ${\cal B}$ are called Borel sets
- Intervals (including singleton sets), complements of intervals, countable unions and intersections of intervals, countable unions and intersections of such sets on so on are all Borel sets.
- ▶ Borel σ -algebra contains enough sets for our purposes.
- Are there any subsets of real line that are not Borel?
- ▶ YES!! Infinitely many non-Borel sets would be there!

▶ Given a probability space (Ω, \mathcal{F}, P) , a random variable is a real-valued function on Ω .

- ▶ Given a probability space (Ω, \mathcal{F}, P) , a random variable is a real-valued function on Ω .
- ▶ It essentially results in an induced probability space

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

where \mathcal{B} is the Borel σ -algebra.

- ▶ Given a probability space (Ω, \mathcal{F}, P) , a random variable is a real-valued function on Ω .
- ▶ It essentially results in an induced probability space

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

where \mathcal{B} is the Borel σ -algebra.

▶ We define P_X as: for all Borel sets, $B \subset \Re$,

$$P_X(B) = P[X \in B] = P(\{\omega \in \Omega : X(\omega) \in B\})$$

- ▶ Given a probability space (Ω, \mathcal{F}, P) , a random variable is a real-valued function on Ω .
- ▶ It essentially results in an induced probability space

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

where \mathcal{B} is the Borel σ -algebra.

▶ We define P_X as: for all Borel sets, $B \subset \Re$,

$$P_X(B) = P[X \in B] = P(\{\omega \in \Omega : X(\omega) \in B\})$$

► For X to be a random variable, the following should also hold

$$[X \in B] = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F}, \forall B \in \mathcal{B}$$

- ▶ Given a probability space (Ω, \mathcal{F}, P) , a random variable is a real-valued function on Ω .
- ▶ It essentially results in an induced probability space

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

where \mathcal{B} is the Borel σ -algebra.

▶ We define P_X as: for all Borel sets, $B \subset \Re$,

$$P_X(B) = P[X \in B] = P(\{\omega \in \Omega : X(\omega) \in B\})$$

► For X to be a random variable, the following should also hold

$$[X \in B] = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F}, \forall B \in \mathcal{B}$$

▶ We always assume this.

▶ Let *X* be a random variable.

- ▶ Let X be a random variable.
- It represents a probability model with \Re as the sample space.

- ▶ Let X be a random variable.
- ▶ It represents a probability model with \Re as the sample space.
- ▶ The probability assigned to different events (Borel subsets of \Re) is

$$P_X(B) = P[X \in B] = P(\{\omega \in \Omega : X(\omega) \in B\})$$

- ▶ Let X be a random variable.
- It represents a probability model with \Re as the sample space.
- ▶ The probability assigned to different events (Borel subsets of \Re) is

$$P_X(B) = P[X \in B] = P(\{\omega \in \Omega : X(\omega) \in B\})$$

▶ How does one represent this probability measure

Distribution function of a random variable

▶ Let X be a random variable. It distribution function is $F_X: \Re \to \Re$ defined by

Distribution function of a random variable

▶ Let X be a random variable. It distribution function is $F_X: \Re \to \Re$ defined by

$$F_X(x) = P[X \in (-\infty, x]] = P(\{\omega \in \Omega : X(\omega) \le x\})$$

Distribution function of a random variable

▶ Let X be a random variable. It distribution function is $F_X: \Re \to \Re$ defined by

$$F_X(x) = P[X \in (-\infty, x]] = P(\{\omega \in \Omega : X(\omega) \le x\})$$

▶ We write the event $\{\omega : X(\omega) \le x\}$ as $[X \le x]$.

▶ Let X be a random variable. It distribution function is $F_X: \Re \to \Re$ defined by

$$F_X(x) = P[X \in (-\infty, x]] = P(\{\omega \in \Omega : X(\omega) \le x\})$$

▶ We write the event $\{\omega: X(\omega) \leq x\}$ as $[X \leq x]$. We follow this notation with any such relation statement involving X

$$F_X(x) = P[X \in (-\infty, x]] = P(\{\omega \in \Omega : X(\omega) \le x\})$$

- ▶ We write the event $\{\omega: X(\omega) \leq x\}$ as $[X \leq x]$. We follow this notation with any such relation statement involving X
 - e.g., $[X \neq 3]$ represents the event $\{\omega \in \Omega : X(\omega) \neq 3\}$.

$$F_X(x) = P[X \in (-\infty, x]] = P(\{\omega \in \Omega : X(\omega) \le x\})$$

- We write the event $\{\omega: X(\omega) \leq x\}$ as $[X \leq x]$. We follow this notation with any such relation statement involving X
 - e.g., $[X \neq 3]$ represents the event $\{\omega \in \Omega : X(\omega) \neq 3\}$.
- Thus we have

$$F_X(x) = P[X \le x]$$

$$F_X(x) = P[X \in (-\infty, x]] = P(\{\omega \in \Omega : X(\omega) \le x\})$$

- ▶ We write the event $\{\omega: X(\omega) \leq x\}$ as $[X \leq x]$. We follow this notation with any such relation statement involving X
 - e.g., $[X \neq 3]$ represents the event $\{\omega \in \Omega \ : \ X(\omega) \neq 3\}.$
- ► Thus we have

$$F_X(x) = P[X \le x] = P(\{\omega \in \Omega : X(\omega) \le x\})$$

$$F_X(x) = P[X \in (-\infty, x]] = P(\{\omega \in \Omega : X(\omega) \le x\})$$

- ▶ We write the event $\{\omega: X(\omega) \leq x\}$ as $[X \leq x]$. We follow this notation with any such relation statement involving X
 - e.g., $[X \neq 3]$ represents the event $\{\omega \in \Omega \,:\, X(\omega) \neq 3\}.$
- Thus we have

$$F_X(x) = P[X \le x] = P(\{\omega \in \Omega : X(\omega) \le x\}) = P_X((-\infty, x])$$

▶ Let X be a random variable. It distribution function is $F_X: \Re \to \Re$ defined by

$$F_X(x) = P[X \in (-\infty, x]] = P(\{\omega \in \Omega : X(\omega) \le x\})$$

- ▶ We write the event $\{\omega: X(\omega) \leq x\}$ as $[X \leq x]$. We follow this notation with any such relation statement involving X
 - e.g., $[X \neq 3]$ represents the event $\{\omega \in \Omega \ : \ X(\omega) \neq 3\}.$
- Thus we have

$$F_X(x) = P[X \le x] = P(\{\omega \in \Omega : X(\omega) \le x\}) = P_X((-\infty, x])$$

▶ The distribution function, F_X completely specifies the probability measure, P_X .

▶ The distribution function of *X* is given by

$$F_X(x) = P[X \le x] = P(\{\omega \in \Omega : X(\omega) \le x\})$$

▶ The distribution function of *X* is given by

$$F_X(x) = P[X \le x] = P(\{\omega \in \Omega : X(\omega) \le x\})$$

► This is also sometimes called the cumulative distribution function.

► The distribution function of *X* is given by

$$F_X(x) = P[X \le x] = P(\{\omega \in \Omega : X(\omega) \le x\})$$

- ► This is also sometimes called the cumulative distribution function.
- $ightharpoonup F_X$ is a real-valued function of a real variable.

► The distribution function of *X* is given by

$$F_X(x) = P[X \le x] = P(\{\omega \in \Omega : X(\omega) \le x\})$$

- ► This is also sometimes called the cumulative distribution function.
- $ightharpoonup F_X$ is a real-valued function of a real variable.
- Let us look at a simple example.

► Consider tossing of a fair coin: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.

- Consider tossing of a fair coin: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ Let X(T) = 0 and X(H) = 1. We want to calculate F_X

- Consider tossing of a fair coin: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ Let X(T) = 0 and X(H) = 1. We want to calculate F_X
- ▶ For this we want the event $[X \le x]$, for different x

- Consider tossing of a fair coin: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ Let X(T) = 0 and X(H) = 1. We want to calculate F_X
- ▶ For this we want the event $[X \le x]$, for different x
- Let us first look at some examples:

- Consider tossing of a fair coin: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ Let X(T) = 0 and X(H) = 1. We want to calculate F_X
- ▶ For this we want the event $[X \le x]$, for different x
- Let us first look at some examples:

$$[X \le -0.5] = \{\omega : X(\omega) \le -0.5\} = \phi$$

- ► Consider tossing of a fair coin: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ Let X(T) = 0 and X(H) = 1. We want to calculate F_X
- ▶ For this we want the event $[X \le x]$, for different x
- Let us first look at some examples:

$$[X \le -0.5] = \{\omega : X(\omega) \le -0.5\} = \phi$$

 $[X \le 0.25] = \{\omega : X(\omega) \le 0.25\} = \{T\}$

- Consider tossing of a fair coin: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ Let X(T) = 0 and X(H) = 1. We want to calculate F_X
- ▶ For this we want the event $[X \le x]$, for different x
- Let us first look at some examples:

$$[X \le -0.5] = \{\omega : X(\omega) \le -0.5\} = \phi$$
$$[X \le 0.25] = \{\omega : X(\omega) \le 0.25\} = \{T\}$$
$$[X \le 1.3] = \{\omega : X(\omega) \le 1.3\} = \Omega$$

- Consider tossing of a fair coin: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ Let X(T) = 0 and X(H) = 1. We want to calculate F_X
- ▶ For this we want the event $[X \le x]$, for different x
- Let us first look at some examples:

$$[X \le -0.5] = \{\omega : X(\omega) \le -0.5\} = \phi$$
$$[X \le 0.25] = \{\omega : X(\omega) \le 0.25\} = \{T\}$$
$$[X \le 1.3] = \{\omega : X(\omega) \le 1.3\} = \Omega$$

- ► Consider tossing of a fair coin: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ Let X(T) = 0 and X(H) = 1. We want to calculate F_X
- ▶ For this we want the event $[X \le x]$, for different x
- Let us first look at some examples:

$$[X \le -0.5] = \{\omega : X(\omega) \le -0.5\} = \phi$$
$$[X \le 0.25] = \{\omega : X(\omega) \le 0.25\} = \{T\}$$
$$[X \le 1.3] = \{\omega : X(\omega) \le 1.3\} = \Omega$$

$$[X < x] = \{\omega : X(\omega) < x\}$$

- ► Consider tossing of a fair coin: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- Let X(T) = 0 and X(H) = 1. We want to calculate F_X
- ▶ For this we want the event $[X \le x]$, for different x
- Let us first look at some examples:

$$[X \le -0.5] = \{\omega : X(\omega) \le -0.5\} = \phi$$
$$[X \le 0.25] = \{\omega : X(\omega) \le 0.25\} = \{T\}$$
$$[X \le 1.3] = \{\omega : X(\omega) \le 1.3\} = \Omega$$

$$[X \le x] = \{\omega : X(\omega) \le x\}$$

$$= \begin{cases} \phi & \text{if } x < 0 \end{cases}$$

- ► Consider tossing of a fair coin: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ Let X(T) = 0 and X(H) = 1. We want to calculate F_X
- ▶ For this we want the event $[X \le x]$, for different x
- Let us first look at some examples:

$$[X \le -0.5] = \{\omega : X(\omega) \le -0.5\} = \phi$$

$$[X \le 0.25] = \{\omega : X(\omega) \le 0.25\} = \{T\}$$

$$[X \le 1.3] = \{\omega : X(\omega) \le 1.3\} = \Omega$$

$$\begin{array}{rcl} [X \leq x] & = & \{\omega \ : \ X(\omega) \leq x\} \\ & = & \left\{ \begin{array}{rcl} & \phi & \text{if} \ x < 0 \\ & \Omega & \text{if} \ x \geq 1 \end{array} \right. \end{array}$$

- ► Consider tossing of a fair coin: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ Let X(T) = 0 and X(H) = 1. We want to calculate F_X
- ▶ For this we want the event $[X \le x]$, for different x
- Let us first look at some examples:

$$[X \le -0.5] = \{\omega : X(\omega) \le -0.5\} = \phi$$

$$[X \le 0.25] = \{\omega : X(\omega) \le 0.25\} = \{T\}$$

$$[X \le 1.3] = \{\omega : X(\omega) \le 1.3\} = \Omega$$

$$\begin{split} [X \leq x] &=& \{\omega \ : \ X(\omega) \leq x\} \\ &=& \left\{ \begin{array}{ccc} \phi & \text{if} & x < 0 \\ \Omega & \text{if} & x \geq 1 \\ \{T\} & \text{if} & 0 \leq x < 1 \end{array} \right. \end{split}$$

- We are considering: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- X(T) = 0 and X(H) = 1. We want to calculate F_X

- We are considering: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- X(T) = 0 and X(H) = 1. We want to calculate F_X

- We are considering: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ X(T) = 0 and X(H) = 1. We want to calculate F_X
- We showed

$$[X \leq x] = \{\omega : X(\omega) \leq x\}$$

$$= \begin{cases} \phi & \text{if } x < 0 \\ \{T\} & \text{if } 0 \leq x < 1 \\ \Omega & \text{if } x \geq 1 \end{cases}$$

- We are considering: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ X(T) = 0 and X(H) = 1. We want to calculate F_X
- We showed

$$[X \le x] = \{\omega : X(\omega) \le x\}$$

$$= \begin{cases} \phi & \text{if } x < 0 \\ \{T\} & \text{if } 0 \le x < 1 \\ \Omega & \text{if } x \ge 1 \end{cases}$$

▶ Hence $F_X(x) = P[X \le x]$ is given by

- We are considering: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ X(T) = 0 and X(H) = 1. We want to calculate F_X
- We showed

$$[X \leq x] = \{\omega : X(\omega) \leq x\}$$

$$= \begin{cases} \phi & \text{if } x < 0 \\ \{T\} & \text{if } 0 \leq x < 1 \\ \Omega & \text{if } x \geq 1 \end{cases}$$

▶ Hence $F_X(x) = P[X \le x]$ is given by

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0\\ 0.5 & \text{if } 0 \le x < 1\\ 1 & \text{if } x > 1 \end{cases}$$

- ▶ We are considering: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ X(T) = 0 and X(H) = 1. We want to calculate F_X
- We showed

$$[X \leq x] = \{\omega : X(\omega) \leq x\}$$

$$= \begin{cases} \phi & \text{if } x < 0 \\ \{T\} & \text{if } 0 \leq x < 1 \\ \Omega & \text{if } x \geq 1 \end{cases}$$

▶ Hence $F_X(x) = P[X \le x]$ is given by

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0\\ 0.5 & \text{if } 0 \le x < 1\\ 1 & \text{if } x > 1 \end{cases}$$

Please note that x is a 'dummy variable'

- We are considering: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ightharpoonup X(T) = 0 and X(H) = 1. We want to calculate F_X
- We showed

$$[X \leq x] = \{\omega : X(\omega) \leq x\}$$

$$= \begin{cases} \phi & \text{if } x < 0 \\ \{T\} & \text{if } 0 \leq x < 1 \\ \Omega & \text{if } x \geq 1 \end{cases}$$

▶ Hence $F_X(y) = P[X \le y]$ is given by

$$F_X(y) = \begin{cases} 0 & \text{if } y < 0\\ 0.5 & \text{if } 0 \le y < 1\\ 1 & \text{if } y > 1 \end{cases}$$

▶ A plot of this distribution function:

Let us look at another example.

- Let us look at another example.
- Let $\Omega = [0, 1]$ and take events to be Borel subsets of [0, 1]. (That is, $\mathcal{F} = \{B \cap [0, 1] : B \in \mathcal{B}\}$).

- Let us look at another example.
- Let $\Omega = [0, 1]$ and take events to be Borel subsets of [0, 1]. (That is, $\mathcal{F} = \{B \cap [0, 1] : B \in \mathcal{B}\}$).
- ▶ We take *P* to be such that probability of an interval is its length.

- Let us look at another example.
- Let $\Omega = [0, 1]$ and take events to be Borel subsets of [0, 1]. (That is, $\mathcal{F} = \{B \cap [0, 1] : B \in \mathcal{B}\}$).
- ▶ We take *P* to be such that probability of an interval is its length.
- ▶ This is the 'usual' probability space whenever we take $\Omega = [0, \ 1].$

- Let us look at another example.
- Let $\Omega = [0, 1]$ and take events to be Borel subsets of [0, 1]. (That is, $\mathcal{F} = \{B \cap [0, 1] : B \in \mathcal{B}\}$).
- ▶ We take *P* to be such that probability of an interval is its length.
- ▶ This is the 'usual' probability space whenever we take $\Omega = [0, \ 1].$
- ▶ Let $X(\omega) = \omega$.

- Let us look at another example.
- Let $\Omega = [0, 1]$ and take events to be Borel subsets of [0, 1]. (That is, $\mathcal{F} = \{B \cap [0, 1] : B \in \mathcal{B}\}$).
- ▶ We take *P* to be such that probability of an interval is its length.
- ▶ This is the 'usual' probability space whenever we take $\Omega = [0, \ 1].$
- ▶ Let $X(\omega) = \omega$.
- ▶ We want to find the distribution function of X.

▶ Once again we need to find the event $[X \le x]$ for different values of x.

- ▶ Once again we need to find the event $[X \le x]$ for different values of x.
- Note that the function X takes values in $[0,\ 1]$ and $X(\omega) = \omega.$

- ▶ Once again we need to find the event $[X \le x]$ for different values of x.
- Note that the function X takes values in [0, 1] and $X(\omega) = \omega$.

$$[X \le x] = \{\omega \in \Omega : X(\omega) \le x\}$$

- ▶ Once again we need to find the event $[X \le x]$ for different values of x.
- Note that the function X takes values in [0, 1] and $X(\omega) = \omega$.

$$[X \leq x] \ = \ \{\omega \in \Omega \ : \ X(\omega) \leq x\} = \{\omega \in [0, \ 1] \ : \ \omega \leq x\}$$

- ▶ Once again we need to find the event $[X \le x]$ for different values of x.
- Note that the function X takes values in [0, 1] and $X(\omega) = \omega$.

$$[X \le x] = \{\omega \in \Omega : X(\omega) \le x\} = \{\omega \in [0, 1] : \omega \le x\}$$

$$= \begin{cases} \phi & \text{if } x < 0 \end{cases}$$

- ▶ Once again we need to find the event $[X \le x]$ for different values of x.
- Note that the function X takes values in [0, 1] and $X(\omega) = \omega$.

$$[X \le x] = \{ \omega \in \Omega : X(\omega) \le x \} = \{ \omega \in [0, 1] : \omega \le x \}$$

$$= \begin{cases} \phi & \text{if } x < 0 \\ \Omega & \text{if } x \ge 1 \end{cases}$$

- ▶ Once again we need to find the event $[X \le x]$ for different values of x.
- Note that the function X takes values in [0, 1] and $X(\omega) = \omega$.

$$[X \leq x] = \{\omega \in \Omega : X(\omega) \leq x\} = \{\omega \in [0, 1] : \omega \leq x\}$$

$$= \begin{cases} \phi & \text{if } x < 0 \\ \Omega & \text{if } x \geq 1 \\ [0, x] & \text{if } 0 \leq x < 1 \end{cases}$$

- ▶ Once again we need to find the event $[X \le x]$ for different values of x.
- Note that the function X takes values in $[0,\ 1]$ and $X(\omega)=\omega.$

$$[X \le x] = \{ \omega \in \Omega : X(\omega) \le x \} = \{ \omega \in [0, 1] : \omega \le x \}$$

$$= \begin{cases} \phi & \text{if } x < 0 \\ \Omega & \text{if } x \ge 1 \\ [0, x] & \text{if } 0 \le x < 1 \end{cases}$$

▶ Hence $F_X(x) = P[X \le x]$ is given by

- ▶ Once again we need to find the event $[X \le x]$ for different values of x.
- Note that the function X takes values in $[0,\ 1]$ and $X(\omega)=\omega.$

$$[X \leq x] = \{ \omega \in \Omega : X(\omega) \leq x \} = \{ \omega \in [0, 1] : \omega \leq x \}$$

$$= \begin{cases} \phi & \text{if } x < 0 \\ \Omega & \text{if } x \geq 1 \\ [0, x] & \text{if } 0 \leq x < 1 \end{cases}$$

▶ Hence $F_X(x) = P[X \le x]$ is given by

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 \le x < 1 \\ 1 & \text{if } x > 1 \end{cases}$$

▶ The plot of this distribution function:

$$F_X(x) = P[X \le x] = P(\{\omega : X(\omega) \le x\})$$

▶ The distribution function of random variable *X* is given by

$$F_X(x) = P[X \le x] = P(\{\omega : X(\omega) \le x\})$$

► Any distribution function should satisfy the following:

$$F_X(x) = P[X \le x] = P(\{\omega : X(\omega) \le x\})$$

- Any distribution function should satisfy the following:
 - 1. $0 \le F_X(x) \le 1, \ \forall x$

$$F_X(x) = P[X \le x] = P(\{\omega : X(\omega) \le x\})$$

- Any distribution function should satisfy the following:
 - 1. $0 \le F_X(x) \le 1, \ \forall x$
 - 2. $F_X(-\infty) = 0$; $F_X(\infty) = 1$

$$F_X(x) = P[X \le x] = P(\{\omega : X(\omega) \le x\})$$

- Any distribution function should satisfy the following:
 - 1. $0 < F_X(x) < 1, \ \forall x$
 - 2. $F_X(-\infty) = 0$; $F_X(\infty) = 1$
 - 3. F_X is non-decreasing: $x_1 \leq x_2 \Rightarrow F_X(x_1) \leq F_X(x_2)$

$$F_X(x) = P[X \le x] = P(\{\omega : X(\omega) \le x\})$$

- Any distribution function should satisfy the following:
 - 1. $0 \le F_X(x) \le 1, \ \forall x$
 - 2. $F_X(-\infty) = 0$; $F_X(\infty) = 1$
 - 3. F_X is non-decreasing: $x_1 \le x_2 \Rightarrow F_X(x_1) \le F_X(x_2)$ $x_1 \le x_2 \Rightarrow (-\infty, x_1] \subset (-\infty, x_2]$

$$F_X(x) = P[X \le x] = P(\{\omega : X(\omega) \le x\})$$

- Any distribution function should satisfy the following:
 - 1. $0 \le F_X(x) \le 1, \ \forall x$
 - 2. $F_X(-\infty) = 0$; $F_X(\infty) = 1$
 - 3. F_X is non-decreasing: $x_1 \leq x_2 \Rightarrow F_X(x_1) \leq F_X(x_2)$ $x_1 \leq x_2 \Rightarrow (-\infty, x_1] \subset (-\infty, x_2] \Rightarrow P_X((-\infty, x_1]) \leq P_X((-\infty, x_2]$

$$F_X(x) = P[X \le x] = P(\{\omega : X(\omega) \le x\})$$

- Any distribution function should satisfy the following:
 - 1. $0 \le F_X(x) \le 1, \ \forall x$
 - 2. $F_X(-\infty) = 0$; $F_X(\infty) = 1$
 - 3. F_X is non-decreasing: $x_1 \leq x_2 \Rightarrow F_X(x_1) \leq F_X(x_2)$ $x_1 \leq x_2 \Rightarrow (-\infty, x_1] \subset (-\infty, x_2] \Rightarrow P_X((-\infty, x_1]) \leq P_X((-\infty, x_2] \Rightarrow F_X(x_1) \leq F_X(x_2)$

$$F_X(x) = P[X \le x] = P(\{\omega : X(\omega) \le x\})$$

- Any distribution function should satisfy the following:
 - 1. $0 \le F_X(x) \le 1, \ \forall x$
 - 2. $F_X(-\infty) = 0$; $F_X(\infty) = 1$
 - 3. F_X is non-decreasing: $x_1 \leq x_2 \Rightarrow F_X(x_1) \leq F_X(x_2)$ $x_1 \leq x_2 \Rightarrow (-\infty, x_1] \subset (-\infty, x_2] \Rightarrow P_X((-\infty, x_1]) \leq P_X((-\infty, x_2] \Rightarrow F_X(x_1) \leq F_X(x_2)$
 - 4. F_X is right continuous and has left-hand limits.

▶ Right continuity of F_X : $x_n \downarrow x \Rightarrow F_X(x_n) \to F_X(x)$

- ▶ Right continuity of F_X : $x_n \downarrow x \Rightarrow F_X(x_n) \to F_X(x)$
 - ▶ $x_n \downarrow x$ implies the sequence of events $(-\infty, x_n]$ is monotone decreasing.

- ▶ Right continuity of F_X : $x_n \downarrow x \Rightarrow F_X(x_n) \to F_X(x)$
 - ▶ $x_n \downarrow x$ implies the sequence of events $(-\infty, x_n]$ is monotone decreasing.

- ▶ Right continuity of F_X : $x_n \downarrow x \Rightarrow F_X(x_n) \to F_X(x)$
 - ▶ $x_n \downarrow x$ implies the sequence of events $(-\infty, x_n]$ is monotone decreasing.

• Also, $\lim_n (-\infty, x_n] = \cap_n (-\infty, x_n] = (-\infty, x]$

- ▶ Right continuity of F_X : $x_n \downarrow x \Rightarrow F_X(x_n) \to F_X(x)$
 - ▶ $x_n \downarrow x$ implies the sequence of events $(-\infty, x_n]$ is monotone decreasing.

- Also, $\lim_{n}(-\infty, x_n] = \cap_n(-\infty, x_n] = (-\infty, x]$
- ▶ This implies

$$\lim_{n} P_X((-\infty, x_n]) = P_X(\lim_{n} (-\infty, x_n]) = P_X((-\infty, x])$$

- ▶ Right continuity of F_X : $x_n \downarrow x \Rightarrow F_X(x_n) \to F_X(x)$
 - ▶ $x_n \downarrow x$ implies the sequence of events $(-\infty, x_n]$ is monotone decreasing.

- ▶ Also, $\lim_{n}(-\infty, x_n] = \bigcap_{n}(-\infty, x_n] = (-\infty, x]$
- ▶ This implies

$$\lim_{n} P_X((-\infty, x_n]) = P_X(\lim_{n} (-\infty, x_n]) = P_X((-\infty, x])$$

► This in turn implies

$$\lim_{x_n \downarrow x} F_X(x_n) = F_X(x)$$

- ▶ Right continuity of F_X : $x_n \downarrow x \Rightarrow F_X(x_n) \to F_X(x)$
 - ▶ $x_n \downarrow x$ implies the sequence of events $(-\infty, x_n]$ is monotone decreasing.

- Also, $\lim_{n}(-\infty, x_n] = \bigcap_{n}(-\infty, x_n] = (-\infty, x]$
- This implies

$$\lim_{n} P_X((-\infty, x_n]) = P_X(\lim_{n} (-\infty, x_n]) = P_X((-\infty, x])$$

► This in turn implies

$$\lim_{x_n \downarrow x} F_X(x_n) = F_X(x)$$

▶ Using the usual notation for right limit of a function, we can write $F_X(x^+) = F_X(x), \forall x$.

• F_X is right-continuous at all x.

- $ightharpoonup F_X$ is right-continuous at all x.
- ▶ Next, let us look at the lefthand limits: $\lim_{x_n \uparrow x} F_X(x_n)$

- $ightharpoonup F_X$ is right-continuous at all x.
- ▶ Next, let us look at the lefthand limits: $\lim_{x_n \uparrow x} F_X(x_n)$
- ▶ When $x_n \uparrow x$, the sequence of events $(-\infty, x_n]$ is monotone increasing

- $ightharpoonup F_X$ is right-continuous at all x.
- ▶ Next, let us look at the lefthand limits: $\lim_{x_n \uparrow x} F_X(x_n)$
- ▶ When $x_n \uparrow x$, the sequence of events $(-\infty, x_n]$ is monotone increasing and

$$\lim_{n} (-\infty, x_n] = \bigcup_{n} (-\infty, x_n] = (-\infty, x)$$

- $ightharpoonup F_X$ is right-continuous at all x.
- ▶ Next, let us look at the lefthand limits: $\lim_{x_n \uparrow x} F_X(x_n)$
- ▶ When $x_n \uparrow x$, the sequence of events $(-\infty, x_n]$ is monotone increasing and

$$\lim_{n} (-\infty, x_n] = \bigcup_{n} (-\infty, x_n] = (-\infty, x)$$

By sequential continuity of probability, we have

$$\lim_{n} P_X((-\infty, x_n]) = P_X(\lim_{n} (-\infty, x_n]) = P_X((-\infty, x_n))$$

- $ightharpoonup F_X$ is right-continuous at all x.
- ▶ Next, let us look at the lefthand limits: $\lim_{x_n \uparrow x} F_X(x_n)$
- ▶ When $x_n \uparrow x$, the sequence of events $(-\infty, x_n]$ is monotone increasing and

$$\lim_{n} (-\infty, x_n] = \bigcup_{n} (-\infty, x_n] = (-\infty, x)$$

By sequential continuity of probability, we have

$$\lim_{n} P_X((-\infty, x_n]) = P_X(\lim_{n} (-\infty, x_n]) = P_X((-\infty, x_n))$$

▶ Hence we get

$$F_X(x^-) = \lim_{x_n \uparrow x} F_X(x_n) = \lim_n P_X((-\infty, x_n]) = P_X((-\infty, x_n))$$

- $ightharpoonup F_X$ is right-continuous at all x.
- ▶ Next, let us look at the lefthand limits: $\lim_{x_n \uparrow x} F_X(x_n)$
- ▶ When $x_n \uparrow x$, the sequence of events $(-\infty, x_n]$ is monotone increasing and

$$\lim_{n} (-\infty, x_n] = \bigcup_{n} (-\infty, x_n] = (-\infty, x)$$

By sequential continuity of probability, we have

$$\lim_{n} P_X((-\infty, x_n]) = P_X(\lim_{n} (-\infty, x_n]) = P_X((-\infty, x_n))$$

Hence we get

$$F_X(x^-) = \lim_{x_n \uparrow x} F_X(x_n) = \lim_n P_X((-\infty, x_n]) = P_X((-\infty, x_n))$$

▶ Thus, at every x the left limit of F_X exists.

 $ightharpoonup F_X$ is right-continuous:

$$F_X(x^+) = F_X(x) = P_X((-\infty, x])$$

 $ightharpoonup F_X$ is right-continuous:

$$F_X(x^+) = F_X(x) = P_X((-\infty, x])$$

▶ It has left limits: $F_X(x^-) = P_X(\ (-\infty,\ x)\)$

• F_X is right-continuous:

$$F_X(x^+) = F_X(x) = P_X((-\infty, x])$$

- ▶ It has left limits: $F_X(x^-) = P_X((-\infty, x))$
- ▶ If $A \subset B$ then P(B A) = P(B) P(A)

$$F_X(x^+) = F_X(x) = P_X((-\infty, x])$$

- ▶ It has left limits: $F_X(x^-) = P_X((-\infty, x))$
- ▶ If $A \subset B$ then P(B A) = P(B) P(A)
- We have $(-\infty, x] (-\infty, x) = \{x\}.$

$$F_X(x^+) = F_X(x) = P_X((-\infty, x])$$

- ▶ It has left limits: $F_X(x^-) = P_X((-\infty, x))$
- ▶ If $A \subset B$ then P(B A) = P(B) P(A)
- ▶ We have $(-\infty, x] (-\infty, x) = \{x\}$. Hence

$$P_X((-\infty, x]) - P_X((-\infty, x)) = P_X(\{x\}) = P(\{\omega : X(\omega) = x\})$$

$$F_X(x^+) = F_X(x) = P_X((-\infty, x])$$

- ▶ It has left limits: $F_X(x^-) = P_X((-\infty, x))$
- ▶ If $A \subset B$ then P(B A) = P(B) P(A)
- ▶ We have $(-\infty, x] (-\infty, x) = \{x\}$. Hence

$$P_X((-\infty, x]) - P_X((-\infty, x)) = P_X(\{x\}) = P(\{\omega : X(\omega) = x\})$$

► Thus we get

$$F_X(x^+) - F_X(x^-) = P[X = x] = P(\{\omega : X(\omega) = x\})$$

- F_X is right-continuous:
 - $F_X(x^+) = F_X(x) = P_X((-\infty, x])$
- ▶ It has left limits: $F_X(x^-) = P_X((-\infty, x))$
- ▶ If $A \subset B$ then P(B A) = P(B) P(A)
- ▶ We have $(-\infty, x] (-\infty, x) = \{x\}$. Hence

$$P_X((-\infty, x]) - P_X((-\infty, x)) = P_X(\{x\}) = P(\{\omega : X(\omega) = x\})$$

Thus we get

$$F_X(x^+) - F_X(x^-) = P[X = x] = P(\{\omega : X(\omega) = x\})$$

▶ When F_X is discontinuous at x the height of discontinuity is the probability that X takes that value.

$$F_X(x^+) = F_X(x) = P_X((-\infty, x])$$

- ▶ It has left limits: $F_X(x^-) = P_X((-\infty, x))$
- ▶ If $A \subset B$ then P(B A) = P(B) P(A)
- ▶ We have $(-\infty, x] (-\infty, x) = \{x\}$. Hence

$$P_X((-\infty, x]) - P_X((-\infty, x)) = P_X(\{x\}) = P(\{\omega : X(\omega) = x\})$$

Thus we get

$$F_X(x^+) - F_X(x^-) = P[X = x] = P(\{\omega : X(\omega) = x\})$$

- ▶ When *F_X* is discontinuous at *x* the height of discontinuity is the probability that *X* takes that value.
- ▶ And, if F_X is continuous at x then P[X = x] = 0

▶ Let *X* be a random variable.

- ▶ Let X be a random variable.
- ▶ Its distribution function, $F_X: \Re \to \Re$ is given by $F_X(x) = P[X \le x]$

- ▶ Let X be a random variable.
- ▶ Its distribution function, $F_X: \Re \to \Re$ is given by $F_X(x) = P[X \le x]$
- The distribution function satisfies

- ▶ Let X be a random variable.
- ▶ Its distribution function, $F_X: \Re \to \Re$ is given by $F_X(x) = P[X \le x]$
- The distribution function satisfies
 - 1. $0 \le F_X(x) \le 1, \ \forall x$

- ▶ Let X be a random variable.
- ▶ Its distribution function, $F_X: \Re \to \Re$ is given by $F_X(x) = P[X \le x]$
- The distribution function satisfies
 - 1. $0 \le F_X(x) \le 1, \ \forall x$
 - 2. $F_X(-\infty) = 0$; $F_X(\infty) = 1$

- Let X be a random variable.
- ▶ Its distribution function, $F_X: \Re \to \Re$ is given by $F_X(x) = P[X \le x]$
- The distribution function satisfies
 - 1. $0 \le F_X(x) \le 1, \ \forall x$
 - 2. $F_X(-\infty) = 0$; $F_X(\infty) = 1$
 - 3. F_X is non-decreasing: $x_1 \leq x_2 \Rightarrow F_X(x_1) \leq F_X(x_2)$

- Let X be a random variable.
- ▶ Its distribution function, $F_X: \Re \to \Re$ is given by $F_X(x) = P[X \le x]$
- The distribution function satisfies
 - 1. $0 \le F_X(x) \le 1, \ \forall x$
 - 2. $F_X(-\infty) = 0$; $F_X(\infty) = 1$
 - 3. F_X is non-decreasing: $x_1 \le x_2 \implies F_X(x_1) \le F_X(x_2)$
 - 4. F_X is right continuous and has left-hand limits.

- Let X be a random variable.
- ▶ Its distribution function, $F_X: \Re \to \Re$ is given by $F_X(x) = P[X \le x]$
- The distribution function satisfies
 - 1. $0 \le F_X(x) \le 1, \ \forall x$
 - 2. $F_X(-\infty) = 0$; $F_X(\infty) = 1$
 - 3. F_X is non-decreasing: $x_1 \leq x_2 \Rightarrow F_X(x_1) \leq F_X(x_2)$
 - 4. F_X is right continuous and has left-hand limits.
- We also have $F_X(x^+) F_X(x^-) = P[X = x]$

- ▶ Let X be a random variable.
- ▶ Its distribution function, $F_X: \Re \to \Re$ is given by $F_X(x) = P[X \le x]$
- The distribution function satisfies
 - 1. $0 \le F_X(x) \le 1, \ \forall x$
 - 2. $F_X(-\infty) = 0$; $F_X(\infty) = 1$
 - 3. F_X is non-decreasing: $x_1 \le x_2 \Rightarrow F_X(x_1) \le F_X(x_2)$
 - 4. F_X is right continuous and has left-hand limits.
- We also have $F_X(x^+) F_X(x^-) = P[X = x]$
- Any real-valued function of a real variable satisfying the above four properties would be a distribution function of some random variable.

• $F_X(x) = P[X \le x] = P[X \in (-\infty, x]]$

- ► $F_X(x) = P[X \le x] = P[X \in (-\infty, x]]$
- ▶ Given F_X , we can, in principle, find $P[X \in B]$ for all Borel sets.

- ▶ $F_X(x) = P[X \le x] = P[X \in (-\infty, x]]$
- ▶ Given F_X , we can, in principle, find $P[X \in B]$ for all Borel sets.
- ▶ In particular, for a < b,

$$P[a < X \le b] = P[X \in (a, b]]$$

- ► $F_X(x) = P[X \le x] = P[X \in (-\infty, x]]$
- ▶ Given F_X , we can, in principle, find $P[X \in B]$ for all Borel sets.
- ▶ In particular, for a < b,

$$\begin{array}{rcl} P[a < X \leq b] & = & P[X \in (a, \ b] \] \\ & = & P[X \in (\ (-\infty, \ b] - (-\infty, \ a] \) \] \end{array}$$

- ▶ $F_X(x) = P[X \le x] = P[X \in (-\infty, x]]$
- ▶ Given F_X , we can, in principle, find $P[X \in B]$ for all Borel sets.
- ▶ In particular, for a < b,

$$P[a < X \le b] = P[X \in (a, b]]$$

$$= P[X \in ((-\infty, b] - (-\infty, a])]$$

$$= P[X \in (-\infty, b]] - P[X \in (-\infty, a]]$$

- ► $F_X(x) = P[X \le x] = P[X \in (-\infty, x]]$
- ▶ Given F_X , we can, in principle, find $P[X \in B]$ for all Borel sets.
- ▶ In particular, for a < b,

$$P[a < X \le b] = P[X \in (a, b]]$$

$$= P[X \in ((-\infty, b] - (-\infty, a])]$$

$$= P[X \in (-\infty, b]] - P[X \in (-\infty, a]]$$

$$= F_X(b) - F_X(a)$$

► There are two classes of random variables that we would study here.

- ► There are two classes of random variables that we would study here.
- ► These are called discrete and continuous random variables.

- ► There are two classes of random variables that we would study here.
- These are called discrete and continuous random variables.
- ► There can be random variables that are neither discrete nor continuous.

- There are two classes of random variables that we would study here.
- These are called discrete and continuous random variables.
- There can be random variables that are neither discrete nor continuous.
- ▶ But these two are important classes of random variables that we deal with in this course.

- There are two classes of random variables that we would study here.
- These are called discrete and continuous random variables.
- There can be random variables that are neither discrete nor continuous.
- ▶ But these two are important classes of random variables that we deal with in this course.
- Note that the distribution function is defined for all random variables.

▶ A random variable *X* is said to be discrete if it takes only countably many distinct values.

- ▶ A random variable *X* is said to be discrete if it takes only countably many distinct values.
- Countably many means finite or countably infinite.

- ▶ A random variable *X* is said to be discrete if it takes only countably many distinct values.
- Countably many means finite or countably infinite.
- ▶ If $X : \Omega \to \Re$ is discrete, its (strict) range is countable

- ▶ A random variable *X* is said to be discrete if it takes only countably many distinct values.
- Countably many means finite or countably infinite.
- ▶ If $X : \Omega \to \Re$ is discrete, its (strict) range is countable
- Any random variable that is defined on finite or countable Ω would be discrete.

- A random variable X is said to be discrete if it takes only countably many distinct values.
- Countably many means finite or countably infinite.
- ▶ If $X : \Omega \to \Re$ is discrete, its (strict) range is countable
- Any random variable that is defined on finite or countable Ω would be discrete.
- ► Thus the family of discrete random variables includes all probability models on finite or countably infinite sample spaces.

► Consider three independent tosses of a fair coin.

- Consider three independent tosses of a fair coin.
- $ightharpoonup \Omega = \{H, T\}^3$ and $X(\omega)$ is the number of H's in ω .

- Consider three independent tosses of a fair coin.
- $\Omega = \{H, T\}^3$ and $X(\omega)$ is the number of H's in ω .
- ▶ This rv takes four distinct values, namely, 0, 1, 2, 3.

- Consider three independent tosses of a fair coin.
- $ightharpoonup \Omega = \{H, T\}^3$ and $X(\omega)$ is the number of H's in ω .
- ▶ This rv takes four distinct values, namely, 0, 1, 2, 3.
- We denote this as $X \in \{0, 1, 2, 3\}$

- Consider three independent tosses of a fair coin.
- $\Omega = \{H, T\}^3$ and $X(\omega)$ is the number of H's in ω .
- ▶ This rv takes four distinct values, namely, 0, 1, 2, 3.
- We denote this as $X \in \{0, 1, 2, 3\}$
- Let us find the distribution function of this rv

- Consider three independent tosses of a fair coin.
- $\Omega = \{H, T\}^3$ and $X(\omega)$ is the number of H's in ω .
- ▶ This rv takes four distinct values, namely, 0, 1, 2, 3.
- We denote this as $X \in \{0, 1, 2, 3\}$
- Let us find the distribution function of this rv
- ▶ Let us take some examples of $[X \le x]$

- Consider three independent tosses of a fair coin.
- $\Omega = \{H, T\}^3$ and $X(\omega)$ is the number of H's in ω .
- ▶ This rv takes four distinct values, namely, 0, 1, 2, 3.
- We denote this as $X \in \{0, 1, 2, 3\}$
- Let us find the distribution function of this rv
- ▶ Let us take some examples of $[X \le x]$

$$[X \le 0.72] = \{\omega : X(\omega) \le 0.72\}$$

- Consider three independent tosses of a fair coin.
- $\Omega = \{H, T\}^3$ and $X(\omega)$ is the number of H's in ω .
- ▶ This rv takes four distinct values, namely, 0, 1, 2, 3.
- We denote this as $X \in \{0, 1, 2, 3\}$
- Let us find the distribution function of this rv
- ▶ Let us take some examples of $[X \le x]$

$$[X \le 0.72] = \{\omega : X(\omega) \le 0.72\} = \{\omega : X(\omega) = 0\}$$

- Consider three independent tosses of a fair coin.
- $ightharpoonup \Omega = \{H, T\}^3$ and $X(\omega)$ is the number of H's in ω .
- ▶ This rv takes four distinct values, namely, 0, 1, 2, 3.
- We denote this as $X \in \{0, 1, 2, 3\}$
- Let us find the distribution function of this rv
- ▶ Let us take some examples of $[X \le x]$

$$[X \leq 0.72] = \{\omega : X(\omega) \leq 0.72\} = \{\omega : X(\omega) = 0\} = [X = 0]$$

- Consider three independent tosses of a fair coin.
- $ightharpoonup \Omega = \{H, T\}^3$ and $X(\omega)$ is the number of H's in ω .
- ▶ This rv takes four distinct values, namely, 0, 1, 2, 3.
- We denote this as $X \in \{0, 1, 2, 3\}$
- Let us find the distribution function of this rv
- ▶ Let us take some examples of $[X \le x]$

$$[X \leq 0.72] \ = \ \{\omega \ : \ X(\omega) \leq 0.72\} = \{\omega \ : \ X(\omega) = 0\} = [X = 0]$$

$$[X \le 1.57] = \{\omega : X(\omega) \le 1.57\}$$

- Consider three independent tosses of a fair coin.
- $ightharpoonup \Omega = \{H, T\}^3$ and $X(\omega)$ is the number of H's in ω .
- ▶ This rv takes four distinct values, namely, 0, 1, 2, 3.
- We denote this as $X \in \{0, 1, 2, 3\}$
- Let us find the distribution function of this rv
- ▶ Let us take some examples of $[X \le x]$

$$[X \leq 0.72] \ = \ \{\omega \ : \ X(\omega) \leq 0.72\} = \{\omega \ : \ X(\omega) = 0\} = [X = 0]$$

$$[X \le 1.57] = \{\omega : X(\omega) \le 1.57\}$$

= $\{\omega : X(\omega) = 0\} \cup \{\omega : X(\omega) = 1\}$

- ► Consider three independent tosses of a fair coin.
- $\Omega = \{H, T\}^3$ and $X(\omega)$ is the number of H's in ω .
- ▶ This rv takes four distinct values, namely, 0, 1, 2, 3.
- We denote this as $X \in \{0, 1, 2, 3\}$
- Let us find the distribution function of this rv
- ▶ Let us take some examples of $[X \le x]$

$$[X \le 0.72] = \{\omega : X(\omega) \le 0.72\} = \{\omega : X(\omega) = 0\} = [X = 0]$$

$$\begin{split} [X \leq 1.57] &= \{\omega \ : \ X(\omega) \leq 1.57\} \\ &= \{\omega \ : \ X(\omega) = 0\} \cup \{\omega \ : \ X(\omega) = 1\} = [X = 0 \text{ or } 1] \end{split}$$

• $F_X(x) = P[X \le x]$ (Recall $X \in \{0, 1, 2, 3\}$)

- $F_X(x) = P[X \le x]$ (Recall $X \in \{0, 1, 2, 3\}$)
- ▶ The event $[X \le x]$ for different x can be seen to be

- $F_X(x) = P[X \le x]$ (Recall $X \in \{0, 1, 2, 3\}$)
- ▶ The event $[X \le x]$ for different x can be seen to be

$$[X \le x] = \begin{cases} \phi & x < 0 \end{cases}$$

- $F_X(x) = P[X \le x]$ (Recall $X \in \{0, 1, 2, 3\}$)
- ▶ The event $[X \le x]$ for different x can be seen to be

$$[X \le x] = \begin{cases} \phi & x < 0 \\ \{TTT\} & 0 \le x < 1 \end{cases}$$

- $F_X(x) = P[X \le x]$ (Recall $X \in \{0, 1, 2, 3\}$)
- ▶ The event $[X \le x]$ for different x can be seen to be

$$[X \leq x] = \left\{ \begin{array}{ll} \phi & x < 0 \\ \{TTT\} & 0 \leq x < 1 \\ \{TTT, HTT, THT, TTH\} & 1 \leq x < 2 \end{array} \right.$$

- $F_X(x) = P[X \le x]$ (Recall $X \in \{0, 1, 2, 3\}$)
- ▶ The event $[X \le x]$ for different x can be seen to be

$$[X \le x] = \begin{cases} \phi & x < 0 \\ \{TTT\} & 0 \le x < 1 \\ \{TTT, HTT, THT, TTH\} & 1 \le x < 2 \\ \Omega - \{HHH\} & 2 \le x < 3 \end{cases}$$

- $F_X(x) = P[X \le x]$ (Recall $X \in \{0, 1, 2, 3\}$)
- ▶ The event $[X \le x]$ for different x can be seen to be

$$[X \le x] = \begin{cases} \phi & x < 0 \\ \{TTT\} & 0 \le x < 1 \\ \{TTT, HTT, THT, TTH\} & 1 \le x < 2 \\ \Omega - \{HHH\} & 2 \le x < 3 \\ \Omega & x \ge 3 \end{cases}$$

- $F_X(x) = P[X \le x]$ (Recall $X \in \{0, 1, 2, 3\}$)
- ▶ The event $[X \le x]$ for different x can be seen to be

$$[X \le x] = \begin{cases} \phi & x < 0 \\ \{TTT\} & 0 \le x < 1 \\ \{TTT, HTT, THT, TTH\} & 1 \le x < 2 \\ \Omega - \{HHH\} & 2 \le x < 3 \\ \Omega & x \ge 3 \end{cases}$$

- $F_X(x) = P[X \le x]$ (Recall $X \in \{0, 1, 2, 3\}$)
- ▶ The event $[X \le x]$ for different x can be seen to be

$$[X \leq x] = \begin{cases} \phi & x < 0 \\ \{TTT\} & 0 \leq x < 1 \\ \{TTT, HTT, THT, TTH\} & 1 \leq x < 2 \\ \Omega - \{HHH\} & 2 \leq x < 3 \\ \Omega & x \geq 3 \end{cases}$$

$$F_X(x) = \begin{cases} 0 & x < 0 \\ & \end{cases}$$

- $F_X(x) = P[X \le x]$ (Recall $X \in \{0, 1, 2, 3\}$)
- ▶ The event $[X \le x]$ for different x can be seen to be

$$[X \leq x] = \begin{cases} \phi & x < 0 \\ \{TTT\} & 0 \leq x < 1 \\ \{TTT, HTT, THT, TTH\} & 1 \leq x < 2 \\ \Omega - \{HHH\} & 2 \leq x < 3 \\ \Omega & x \geq 3 \end{cases}$$

$$F_X(x) = \begin{cases} 0 & x < 0\\ \frac{1}{8} & 0 \le x < 1 \end{cases}$$

- $F_X(x) = P[X \le x]$ (Recall $X \in \{0, 1, 2, 3\}$)
- ▶ The event $[X \le x]$ for different x can be seen to be

$$[X \leq x] = \begin{cases} \phi & x < 0 \\ \{TTT\} & 0 \leq x < 1 \\ \{TTT, HTT, THT, TTH\} & 1 \leq x < 2 \\ \Omega - \{HHH\} & 2 \leq x < 3 \\ \Omega & x \geq 3 \end{cases}$$

$$F_X(x) = \begin{cases} 0 & x < 0\\ \frac{1}{8} & 0 \le x < 1\\ \frac{4}{8} & 1 \le x < 2 \end{cases}$$

- $F_X(x) = P[X \le x]$ (Recall $X \in \{0, 1, 2, 3\}$)
- ▶ The event $[X \le x]$ for different x can be seen to be

$$[X \leq x] = \begin{cases} \phi & x < 0 \\ \{TTT\} & 0 \leq x < 1 \\ \{TTT, HTT, THT, TTH\} & 1 \leq x < 2 \\ \Omega - \{HHH\} & 2 \leq x < 3 \\ \Omega & x \geq 3 \end{cases}$$

$$F_X(x) = \begin{cases} 0 & x < 0\\ \frac{1}{8} & 0 \le x < 1\\ \frac{4}{8} & 1 \le x < 2\\ \frac{7}{8} & 2 \le x < 3 \end{cases}$$

- $F_X(x) = P[X \le x]$ (Recall $X \in \{0, 1, 2, 3\}$)
- ▶ The event $[X \le x]$ for different x can be seen to be

$$[X \leq x] = \begin{cases} \phi & x < 0 \\ \{TTT\} & 0 \leq x < 1 \\ \{TTT, HTT, THT, TTH\} & 1 \leq x < 2 \\ \Omega - \{HHH\} & 2 \leq x < 3 \\ \Omega & x \geq 3 \end{cases}$$

$$F_X(x) = \begin{cases} 0 & x < 0\\ \frac{1}{8} & 0 \le x < 1\\ \frac{4}{8} & 1 \le x < 2\\ \frac{7}{8} & 2 \le x < 3\\ 1 & x > 3 \end{cases}$$

▶ This is a stair-case function.

- This is a stair-case function.
- ▶ It has jumps at x = 0, 1, 2, 3, which are the values that X takes. In between these it is constant.

- This is a stair-case function.
- ▶ It has jumps at x = 0, 1, 2, 3, which are the values that X takes. In between these it is constant.
- ▶ The jump at, e.g., x = 2 is 3/8 which is the probability of X taking that value.