Побудова лінійної моделі з допомогою псевдообернених операторів

Псевдообернена матриця. Формула Гревіля

Означення псевдооберненої матриці

Нехай задана матриця A розмірності $m \times n$. За означенням Мура - Пенроуза, псевдооберненою матрицею A^+ називається матриця розмірності $n \times m$ вигляду

$$A^{+} = \lim_{\delta^{2} \to 0} \left\{ \left(A^{T} A + \delta^{2} E_{n} \right)^{-1} A^{T} \right\} = \lim_{\delta^{2} \to 0} \left\{ A^{T} \left(A A^{T} + \delta^{2} E_{m} \right)^{-1} \right\}.$$
 (2.1)

Тут E_n – одинична матриця розмірності $n \times n$.

Властивості псевдооберненої матриці

- 1. Якщо матриця A невироджена, то $A^+ = A^{-1}$.
- 2. $A^{+} = (A^{T}A)^{+} A^{T}, A^{+} = A^{T} (AA^{T})^{+}.$
- 3. Якщо матриця $A^{T}A$ невироджена, то

$$A^+ = \left(A^T A\right)^{-1} A^T.$$

Якщо матриця AA^{T} – невироджена, то

$$A^+ = A^T \left(A A^T \right)^{-1}.$$

4. Якщо $a \in \mathbb{R}^n$ – вектор розмірності $n, a \neq 0$, то з означення Мура-Пенроуза (2.1) випливає, що

$$(a^T)^+ = \frac{a}{a^T a}, \ a^+ = \frac{a^T}{a^T a}.$$

Якщо a = 0, то з (2.1) випливає $a^+ = 0$.

- 5. $(A^+)^+ = A$.
- 6. $(A^T)^+ = (A^+)^T$

Теорема 2.1 (характеристична властивість псевдооберненої матриці). Mampuu, A^+ розмірності $n \times m$ є псевдооберненою матрицею до матриці A розмірності $m \times n$ тоді і тільки тоді, якщо виконуються такі умови:

- $\bullet AA^+A = A;$
- $A^+AA^+ = A^+$;
- AA^+ симетрична матриця розмірності $m \times m$;
- A^+A симетрична матриця розмірності $n \times n$.

Проективні матриці

1. Матриця $Z(A) = E - A^+A$ — проектор на ядро $Ker\,A$ матриці A, тобто

$$Z(A)\mathbb{R}^n = Ker A = \{x \in \mathbb{R}^n : Ax = 0\};$$

- 2. Матриця $Z(A^T) = E AA^+ -$ проектор на ядро $Ker A^T$ матриці A^T ;
- 3. Матриця $Y(A) = AA^+$ проектор на область значень матриці A, тобто

$$Y(A)\mathbb{R}^n = Im A = \{ y \in \mathbb{R}^n : y = Ax, x \in \mathbb{R}^n \};$$

4. Матриця $Y(A^T) = A^+A$ – проектор на область значень матриці A^T ;

Знаходження псевдооберненої матриці за допомогою сингулярного розкладу

Теорема 2.2 (про сингулярний розклад матриці). *Будь-яку матрицю* A розмірності $m \times n$ можна єдиним способом представити у вигляді

$$A = U\Lambda V^T$$

де U — унітарна матриця розмірності $m \times m$, V — унітарна матриця розмірності $n \times n$, Λ — матриця розмірності $m \times n$, яка в **лівому** верхньому кутку містить матрицю Λ_0 розмірності $r \times r$, яка є діагональною

$$\Lambda_0 = diag(\lambda_1, \lambda_2, \dots, \lambda_r), \Lambda = \begin{pmatrix} \Lambda_0 & 0 \\ 0 & 0 \end{pmatrix},$$

 $\lambda_1 > \lambda_2 > \dots, \lambda_r > 0$, а решта елементів матриці Λ є нульовими, r = rang A.

Нехай задана матриця A розмірності $m \times n$. Якщо відомий її сингулярний розклад

$$A = U\Lambda V^T$$
,

де позначення відповідають теоремі 2.2, то

$$A^+ = V\Lambda^+ U^T,$$

$$\Lambda^{+} = \begin{pmatrix} \Lambda_{0}^{+} & 0 \\ 0 & 0 \end{pmatrix}, \ \Lambda_{0}^{+} = diag(\lambda_{1}^{-1}, \lambda_{2}^{-1}, \dots, \lambda_{r}^{-1}).$$

Формула Гревіля

Якщо для матриці A відома псевдообернена (обернена) матриця A^+ , то для розширеної матриці $\begin{pmatrix} A \\ a^T \end{pmatrix}$ справедлива формула

$$\begin{pmatrix} A \\ a^T \end{pmatrix}^+ = \begin{cases} \left(A^+ - \frac{Z(A)aa^TA^+}{a^TZ(A)a} \vdots \frac{Z(A)a}{a^TZ(A)a} \right), & if \ a^TZ(A)a > 0 \\ \left(A^+ - \frac{R(A)aa^TA^+}{1+a^TR(A)a} \vdots \frac{R(A)a}{1+a^TR(A)a} \right), & if \ a^TZ(A)a = 0 \end{cases}, \tag{2.2}$$

де $Z(A) = E - A^{+}A$ – проектор на ядро матриці $A, R(A) = A^{+}(A^{+})^{T}$.

Алгоритми знаходження псевдооберненої матриці

Для знаходження псевдооберненої матриці реалізуються такі алгоритми:

І. алгоритм, заснований на означенні Мура-Пенроуза. З означення Мура-Пенроуза (2.1) випливає, що для наближеного визначення псевдооберненої матриці можна застосовувати одну з формул

$$A^{+} \approx \left(A^{T} A + \delta_{0}^{2} E_{n}\right)^{-1} A^{T},$$
 (2.3)

$$A^{+} \approx A^{T} \left(AA^{T} + \delta_{0}^{2} E_{m} \right)^{-1}$$
. (2.4)

Тут $\delta_0^2 > 0$ —число, яке підбирається експерементально. Одна з можливих схем є такою:

- 1. Задається початкове значення $\delta = \delta_0$;
- 2. Розраховується початкове наближення $A_0^+ = A^T (AA^T + \delta_0^2 E_m)^{-1}$;
- 3. На кроці k нове значення $\delta_k = \frac{\delta_{k-1}}{2}$;
- 4. Наближення $A_k^+ = A^T (AA^T + \delta_k^2 E_m)^{-1};$
- 5. Якщо $||A_k^+ A_{k-1}^+|| < \varepsilon$, то зупинитись з $A^+ = A_k^+$, інакше k := k+1 і продовжити з пункту 3.

II. алгоритм на основі формули Гревіля (2.2). Цей алгоритм є рекурентним. Представляємо матрицю A у вигляді

$$A = \begin{pmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_n^T \end{pmatrix}.$$

Для першого кроку алгоритму $(a_1^T)^+ = \frac{a_1}{a_1^T a_1}$, при $a_1 \neq 0$; $(a_1^T)^+ = 0$, якщо $a_1 = 0$. На наступному кроці додаємо до матриці другий рядок і шукаємо псевдообернену матрицю згідно формули Гревіля. Потім знову додаємо рядок і т.д. поки не вичерпаються всі рядки матриці A.

III. алгоритм, що базується на сингулярному розкладі матриці (теорема 2.2).

Застосування псевдооберненої матриці до знаходження загального розв'язку системи лінійних алгебраїчних рівнянь

Нехай задана матриця A розмірності $m \times n, b \in \mathbb{R}^m$ — відомий вектор і розглядається система лінійних алгебраїчних рівнянь

$$Ax = b, (2.5)$$

де $x \in \mathbb{R}^n$ — шуканий вектор. Така система може не мати точних розв'язків. Тоді шукають такі вектори $x \in \mathbb{R}^n$, що розв'язують задачу

$$||Ax - b||^2 \to \min_{x \in \mathbb{R}^n}$$
.

Найменшим за нормою серед таких векторів є вектор

$$\overline{x} = A^+ b,$$

який називається псевдорозв'язком системи (2.5). Загальне представлення множини узагальнених розв'язків системи (2.5) таке

$$\Omega_x = A^+b + kerA = \left\{ A^+b + Z(A)v : v \in \mathbb{R}^n \right\},\,$$

де $Z(A) = E - A^+A$ – проектор на ядро kerA матриці A.

Метод побудови лінійної моделі з допомогою псевдообернених операторів

Будемо вважати, що на вхід системи перетворення, математична модель якої невідома, поступають послідовно дані у вигляді m-1 вимірних векторів x_j . На виході системи спостерігається сигнал у вигляді вектора y_j розмірності p.

Постановка задачі: для послідовності вхідних сигналів $x_j, j = 1, 2, ..., n$ та вихідних сигналів $y_j, j = 1, 2, ...n$ знайти оператор P перетворення вхідного сигналу у вихідний.

Рис. 2.1: Математична модель

Будемо шукати математичну модель оператора об'єкту в класі лінійних операторів

$$Dx_j + b = y_j, j = 1, 2, ..., n.$$
 (2.6)

Тут D –невідома матриця, b – невідомий вектор. Позначимо

$$A = \begin{pmatrix} D \\ b^T \end{pmatrix}.$$

Тоді з (2.6) випливає

$$A\begin{pmatrix} x_j \\ 1 \end{pmatrix} = y_j, j = 1, 2, \dots, n.$$
 (2.7)

Систему (2.7) запишемо у матричній формі

$$A\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ 1 & 1 & \dots & 1 \end{pmatrix} = (y_1, y_2, \dots, y_n),$$

або

$$AX = Y, (2.8)$$

де $X=\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ 1 & 1 & \dots & 1 \end{pmatrix}$ — матриця вхідних сигналів розмірності $m\times n,\ Y=(y_1,\,y_2,\,\dots,\,y_n)$ — матриця вихідних сигналів розмірності $p\times n$. Тоді

$$A = YX^{+} + VZ^{T}(X^{T}), (2.9)$$

де матриця

$$V = \begin{pmatrix} v_{(1)}^T \\ v_{(2)}^T \\ \vdots \\ v_{(p)}^T \end{pmatrix},$$

розмірності $p \times m$, $Z(X^T) = I_m - XX^+$.

Лабораторна робота

Матрицю X будемо інтерпретувати як двовимірне вхідне зображення, а матрицю Y — як вихідне зображення. Потрібно побудувати лінійний оператор перетворення вхідного сигналу X у вихідний сигнал Y на основі формули (2.9).

- 1. Вивчити означення псевдооберненої матриці і її основні властивості.
- 2. Створити програму, яка за заданими двома зображеннями знаходить лінійний оператор переходу між цими зображеннями. Основою для програми є формула (2.9), де V довільна матриця (наприклад, нульова). Псевдообернену матрицю в (2.9) шукати двома методами: на основі формули Мура-Пенроуза (див. (2.3) або (2.4)) і на основі формули Гревіля. Правильність знаходження псавдооберненої матриці перевірити за допомогою теореми 2.1 про характеристичну властивість псевдооберненої матриці.
- 3. Вивести вихідне зображення і образ вхідного зображення при одержаному перетворенні. Зробити порівняння. Проаналізувати одержаний результат.