Uncertainty quantification of numerical errors in geometric integration via random time steps

Assyr Abdulle, Giacomo Garegnani

Tübingen, 6 March 2017

Outline

- Geometric numerical integration
- Stochastic methods for ODEs
 - Additive noise method
 - Random time steps
- 3 Geometric stochastic numerical integration
- Bayesian inverse problems
- Numerical experiments
 - Convergence
 - Geometric properties
 - Bayesian inverse problems

Outline

- Geometric numerical integration
- Stochastic methods for ODEs
 - Additive noise method
 - Random time steps
- Geometric stochastic numerical integration
- Bayesian inverse problems
- 5 Numerical experiments
 - Convergence
 - Geometric properties
 - Bayesian inverse problems

Notation

Autonomous dynamical system, function $f \colon \mathbb{R}^d o \mathbb{R}^d$ and the ODE

$$y' = f(y), \quad y(0) = y_0.$$

Flow of the equation $\varphi_t \colon \mathbb{R}^d \to \mathbb{R}^d$ such that

$$y(t) = \varphi_t(y_0).$$

One-step method: numerical flow Ψ_h such that

$$y_{n+1} = \Psi_h(y_n).$$

Runge-Kutta methods: flow implicitly defined by

$$K_i = y_n + h \sum_{j=1}^s a_{ij} f(K_j),$$

$$\Psi_h(y_n) = y_n + h \sum_{i=1}^s b_i f(K_i).$$

Goal

Develop numerical methods that preserve geometric properties of certain dynamical systems.

First integral of motion $I: \mathbb{R}^d \to \mathbb{R}$

$$I(\varphi_t(y_0)) = I(y_0), \quad \forall t > 0.$$

Example: quadratic first integral, given $S \in \mathbb{R}^{d \times d}$, $v \in \mathbb{R}^d$

$$I(y) = y^{\top} S y + v^{\top} y,$$

conserved by all Gauss collocation methods (e.g., implicit midpoint, ...).

Theorem (Polynomial first integrals)

No Runge-Kutta method can conserve all polynomial first integrals of degree $\mathrm{Deg}(I) \geq 3$.

Goal

Develop numerical methods that preserve geometric properties of certain dynamical systems.

Hamiltonian systems: Given $Q: \mathbb{R}^{2d} \to \mathbb{R}$, define

$$y'(t) = J^{-1} \nabla Q(y), \qquad y(0) = y_0$$

$$J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}, \qquad I \text{ identity in } \mathbb{R}^{d \times d}$$

The flow φ_t is symplectic

$$\varphi_t'(y)^{\top} J \varphi_t'(y) = J \implies$$
 Conservation of volumes

Symplectic numerical methods

$$\Psi_h'(y)^{\top}J\Psi_h'(y)=J$$

Example

Two-body problem (planetary orbits), $y = (p, q)^{\top} \in \mathbb{R}^4$

$$Q(
ho,q)=rac{1}{2}(
ho_1^2+
ho_2^2)-rac{1}{\sqrt{q_1^2+q_2^2}}$$

Example

Two-body problem (planetary orbits), $y = (p,q)^{\top} \in \mathbb{R}^4$

$$Q(
ho,q)=rac{1}{2}(
ho_1^2+
ho_2^2)-rac{1}{\sqrt{q_1^2+q_2^2}}$$

Given Hamiltonian Q(p, q).

Symplectic Euler method – order 1

$$p_{n+1} = p_n - hQ_q(p_{n+1}, q_n),$$

 $q_{n+1} = q_n + hQ_p(p_{n+1}, q_n).$

Störmer-Verlet scheme – order 2

$$egin{aligned} p_{n+1/2} &= p_n - rac{h}{2} Q_q(p_{n+1/2},q_n), \ q_{n+1} &= q_n + rac{h}{2} ig(Q_p(p_{n+1/2},q_n) + Q_p(p_{n+1/2},q_{n+1}) ig), \ p_{n+1} &= p_n - rac{h}{2} Q_q(p_{n+1/2},q_{n+1}). \end{aligned}$$

Given separable Hamiltonian $Q(p,q) = Q_1(p) + Q_2(q)$.

Symplectic Euler method – order 1, explicit

$$p_{n+1} = p_n - hQ'_2(q_n),$$

 $q_{n+1} = q_n + hQ'_1(p_{n+1}).$

Störmer-Verlet scheme - order 2, explicit

$$p_{n+1/2} = p_n - \frac{h}{2} Q_2'(q_n),$$

$$q_{n+1} = q_n + hQ_1'(p_{n+1/2}),$$

$$p_{n+1} = p_n - \frac{h}{2} Q_2'(q_{n+1}).$$

Several examples of separable Hamiltonians (Two-body problem, ...)

Outline

- Geometric numerical integration
- Stochastic methods for ODEs
 - Additive noise method
 - Random time steps
- Geometric stochastic numerical integration
- Bayesian inverse problems
- 5 Numerical experiments
 - Convergence
 - Geometric properties
 - Bayesian inverse problems

Stochastic methods for ODEs

Probabilistic / Bayesian methods for ODEs: fix a prior on y(t) (Gaussian process), update with evaluations of f(y) [Kersting and Hennig, 2016]

Stochastic / Randomised methods for ODEs: random perturbation of deterministic numerical solutions \rightarrow sampling [Conrad et al., 2016]

Stochastic methods for ODEs

Probabilistic / Bayesian methods for ODEs: fix a prior on y(t) (Gaussian process), update with evaluations of f(y) [Kersting and Hennig, 2016]

Stochastic / Randomised methods for ODEs: random perturbation of deterministic numerical solutions \rightarrow sampling [Conrad et al., 2016]

Stochastic process $\{Y_n\}_{n=1,2,...}$ with recurrence

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}.$$

Main assumption: $\{\xi_n\}_{n=0,1,...}$ iid such that for p>1 and $Q\in\mathbb{R}^{d imes d}$

$$\mathbb{E}\,\xi_n(h)=0,\quad \mathbb{E}\,\xi_n(h)\xi_n(h)^T=Qh^{2p+1}.$$

Stochastic process $\{Y_n\}_{n=1,2,...}$ with recurrence

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}.$$

Main assumption: $\{\xi_n\}_{n=0,1,\dots}$ iid such that for p>1 and $Q\in\mathbb{R}^{d imes d}$

$$\mathbb{E}\,\xi_n(h)=0,\quad \mathbb{E}\,\xi_n(h)\xi_n(h)^T=Qh^{2p+1}.$$

Properties

If Ψ_h is of order q and for $\Phi \colon \mathbb{R}^d \to \mathbb{R}$ smooth

Stochastic process $\{Y_n\}_{n=1,2,...}$ with recurrence

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}.$$

Main assumption: $\{\xi_n\}_{n=0,1,...}$ iid such that for p>1 and $Q\in\mathbb{R}^{d\times d}$

$$\mathbb{E}\,\xi_n(h)=0,\quad \mathbb{E}\,\xi_n(h)\xi_n(h)^T=Qh^{2p+1}.$$

Properties

If Ψ_h is of order q and for $\Phi \colon \mathbb{R}^d \to \mathbb{R}$ smooth

- Strong convergence: $\mathbb{E}||y(hn) - Y_n|| \le Ch^{\min\{p,q\}}$,

Stochastic process $\{Y_n\}_{n=1,2,...}$ with recurrence

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}.$$

Main assumption: $\{\xi_n\}_{n=0,1,...}$ iid such that for p>1 and $Q\in\mathbb{R}^{d\times d}$

$$\mathbb{E}\,\xi_n(h)=0,\quad \mathbb{E}\,\xi_n(h)\xi_n(h)^T=Qh^{2p+1}.$$

Properties

If Ψ_h is of order q and for $\Phi \colon \mathbb{R}^d \to \mathbb{R}$ smooth

- Strong convergence: $\mathbb{E}\|y(hn) Y_n\| \le Ch^{\min\{p,q\}}$,
- Weak convergence: $|\Phi(y(hn)) \mathbb{E} \Phi(Y_n)| \le Ch^{\min\{2p,q\}}$,

Stochastic process $\{Y_n\}_{n=1,2,...}$ with recurrence

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}.$$

Main assumption: $\{\xi_n\}_{n=0,1,...}$ iid such that for p>1 and $Q\in\mathbb{R}^{d\times d}$

$$\mathbb{E}\,\xi_n(h)=0,\quad \mathbb{E}\,\xi_n(h)\xi_n(h)^T=Qh^{2p+1}.$$

Properties

If Ψ_h is of order q and for $\Phi \colon \mathbb{R}^d \to \mathbb{R}$ smooth

- Strong convergence: $\mathbb{E}\|y(hn) Y_n\| \le Ch^{\min\{p,q\}}$,
- Weak convergence: $|\Phi(y(hn)) \mathbb{E} \Phi(Y_n)| \le Ch^{\min\{2p,q\}}$,
- Good qualitative behavior in Bayesian inverse problems.

Stochastic process $\{Y_n\}_{n=1,2,...}$ with recurrence

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}.$$

Main assumption: $\{\xi_n\}_{n=0,1,...}$ iid such that for p>1 and $Q\in\mathbb{R}^{d\times d}$

$$\mathbb{E} \xi_n(h) = 0, \quad \mathbb{E} \xi_n(h) \xi_n(h)^T = Q h^{2p+1}.$$

Issues

- Robustness: $\Psi_h(Y_{n-1}) > 0 \implies \mathbb{P}(Y_n < 0) = 0$,

Stochastic process $\{Y_n\}_{n=1,2,...}$ with recurrence

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}.$$

Main assumption: $\{\xi_n\}_{n=0,1,...}$ iid such that for p>1 and $Q\in\mathbb{R}^{d\times d}$

$$\mathbb{E}\,\xi_n(h)=0,\quad \mathbb{E}\,\xi_n(h)\xi_n(h)^T=Qh^{2p+1}.$$

Issues

- Robustness: $\Psi_h(Y_{n-1}) > 0 \implies \mathbb{P}(Y_n < 0) = 0$,
- Geometric properties are not conserved from Ψ_h . For example if $I(y) = y^T S y$ and $I(\Psi_h(y_0)) = I(y_0)$

$$I(Y_1) = I(y_0) + 2\xi_0(h)^T S \Psi_h(y_0) + \xi_0(h)^T S \xi_0(h).$$

Intrinsic noise: Random time-stepping Runge-Kutta (RTS-RK)

$$Y_{n+1} = \Psi_{H_n}(Y_n),$$

Main assumption: $\{H_n\}_{n=0,1,...}$ iid such that for h, C > 0 and p > 1

$$H_n > 0$$
 a.s., $\mathbb{E} H_n = h$, $\operatorname{Var} H_n = Ch^{2p}$.

Example: $H_n \stackrel{\text{iid}}{\sim} \mathcal{U}(h - h^p, h + h^p)$.

Theorem (Weak convergence)

There exists C>0 independent of h such that for all smooth functions $\Phi\colon\mathbb{R}^d\to\mathbb{R}$

$$|\mathbb{E} \Phi(Y_k) - \Phi(y(kh)))| \leq Ch^{\min\{2p-1,q\}},$$

for all k = 1, 2, ..., N.

Theorem (Weak convergence)

There exists C > 0 independent of h such that for all smooth functions $\Phi \colon \mathbb{R}^d \to \mathbb{R}$

$$|\mathbb{E} \Phi(Y_k) - \Phi(y(kh))| \leq Ch^{\min\{2p-1,q\}},$$

for all k = 1, 2, ..., N.

Idea of the proof

- Taylor expansion of Φ and Ψ_h ,
- Bound the one-step error considering the distance between the generators of φ_h and Ψ_{H_0} ,
- Consider the distance between φ_h , Ψ_h and Ψ_{H_0} ,
- Propagate in time (Markov property) to obtain a global estimate.

Theorem (Mean square convergence)

There exists C > 0 independent of h such that

$$(\mathbb{E}||Y_k - y(t_k)||^2)^{1/2} \le Ch^{\min\{p-1/2,q\}},$$

for all k = 1, 2, ..., N.

Theorem (Mean square convergence)

There exists C > 0 independent of h such that

$$(\mathbb{E}||Y_k - y(t_k)||^2)^{1/2} \le Ch^{\min\{p-1/2,q\}},$$

for all k = 1, 2, ..., N.

Idea of the proof

- Bound the one-step error (triangular inequality),
- Analyse the impact of discretisation and randomisation separately.
- Propagate in time to obtain a global estimate.

Theorem (Mean square convergence)

There exists C > 0 independent of h such that

$$(\mathbb{E}||Y_k - y(t_k)||^2)^{1/2} \le Ch^{\min\{p-1/2,q\}},$$

for all k = 1, 2, ..., N.

Idea of the proof

- Bound the one-step error (triangular inequality),
- Analyse the impact of discretisation and randomisation separately.
- Propagate in time to obtain a global estimate.

Consequences

- Reasonable choice p = q + 1/2
- $\mathbb{E}||Y_k y(t_k)|| \le Ch^{\min\{p-1/2,q\}}$ (strong order)

Theorem (Monte Carlo estimators)

For $\Phi: \mathbb{R}^d \to \mathbb{R}$ smooth, Monte Carlo estimators $\hat{Z} = M^{-1} \sum_{i=1}^M \Phi(Y_N^{(i)})$ of $Z = \Phi(Y_N)$ satisfy

 $MSE(\hat{Z}) \le C \Big(h^{2\min\{2p-1,q\}} + \frac{h^{2\min\{p-1/2,q\}}}{M} \Big),$

$$ext{MSE}(\hat{\mathcal{Z}}) = \mathbb{E} \left(\hat{\mathcal{Z}} - \Phi(y(t_N))\right)^2.$$

Theorem (Monte Carlo estimators)

For $\Phi: \mathbb{R}^d \to \mathbb{R}$ smooth, Monte Carlo estimators $\hat{Z} = M^{-1} \sum_{i=1}^M \Phi(Y_N^{(i)})$ of $Z = \Phi(Y_N)$ satisfy

$$MSE(\hat{Z}) \le C\Big(h^{2\min\{2p-1,q\}} + \frac{h^{2\min\{p-1/2,q\}}}{M}\Big),$$

where C is a positive constant independent of h and M and

$$MSE(\hat{Z}) = \mathbb{E}(\hat{Z} - \Phi(y(t_N)))^2.$$

Idea of the proof

Use the "bias-variance" decomposition of the MSE and apply weak and mean-square convergence results.

Theorem (Monte Carlo estimators)

For $\Phi: \mathbb{R}^d \to \mathbb{R}$ smooth, Monte Carlo estimators $\hat{Z} = M^{-1} \sum_{i=1}^M \Phi(Y_N^{(i)})$ of $Z = \Phi(Y_N)$ satisfy

$$MSE(\hat{Z}) \le C\Big(h^{2\min\{2p-1,q\}} + \frac{h^{2\min\{p-1/2,q\}}}{M}\Big),$$

where C is a positive constant independent of h and M and

$$MSE(\hat{Z}) = \mathbb{E}(\hat{Z} - \Phi(y(t_N)))^2.$$

Consequence

For reasonable choice p=q+1/2, ${\sf MSE}(\hat{Z})$ converges independently of M with h (quality of the estimation independent of the number of paths)

Outline

- Geometric numerical integration
- Stochastic methods for ODEs
 - Additive noise method
 - Random time steps
- 3 Geometric stochastic numerical integration
- Bayesian inverse problems
- 5 Numerical experiments
 - Convergence
 - Geometric properties
 - Bayesian inverse problems

Conservation of first integrals – Additive noise

Recall:
$$Y_{n+1} = \Psi_h(Y_n) + \xi_n(h)$$
, with $\mathbb{E} \xi_n(h) \xi_n(h)^\top = h^{2p+1} Q$

Linear first integrals: $I(y) = v^{\top}y$ such that $I(\Psi_h(Y_1)) = I(y_0)$. Then

$$I(Y_1) = v^{\top}(y_0 + \xi_0(h)) \implies \mathbb{E} I(Y_1) = I(y_0) \text{ iff } \mathbb{E} \xi_0(h) = 0.$$

Quadratic first integrals: $I(y) = y^{\top}Sy$ such that $I(\Psi_h(Y_1)) = I(y_0)$. Then

$$I(Y_1) = I(y_0) + 2\xi_0(h)^T S \Psi_h(y_0) + \xi_0(h)^T S \xi_0(h),$$

$$\implies \mathbb{E} I(Y_1) = I(y_0) + \mathbb{Q} : Sh^{2p+1}, \text{ (with } \mathbb{E} \xi_0(h) = 0)$$

Quadratic first integrals are not conserved on average!

Conservation of first integrals – Random time steps

Theorem (Conservation of polynomial invariants)

If the Runge-Kutta scheme defined by Ψ_h conserves an invariant I(y) for an ODE, then the RTS-RK method conserves I(y) for the same ODE.

Proof

If $I(\Psi_h(y)) = I(y)$ for any h, then $I(\Psi_{H_0}(y)) = I(y)$ for any value that H_0 can assume.

Symplecticity – Random time steps

Theorem

If the flow Ψ_h of the deterministic integrator is symplectic, then the flow of the RTS-RK method is symplectic.

Idea of the proof

Adaptive time steps ruin symplectic properties if not carefully selected. Nonetheless, if the time steps are chosen independently of the solution, the flow is symplectic.

Symplecticity – Random time steps

Theorem

If the flow Ψ_h of the deterministic integrator is symplectic, then the flow of the RTS-RK method is symplectic.

Idea of the proof

Adaptive time steps ruin symplectic properties if not carefully selected. Nonetheless, if the time steps are chosen independently of the solution, the flow is symplectic.

Remark

The symplecticity of the flow is not enough to guarantee good approximation of the Hamiltonian for long time spans.

Outline

- Geometric numerical integration
- Stochastic methods for ODEs
 - Additive noise method
 - Random time steps
- 3 Geometric stochastic numerical integration
- Bayesian inverse problems
- Numerical experiments
 - Convergence
 - Geometric properties
 - Bayesian inverse problems

Bayesian inverse problems

Goal

Given $\vartheta \in \mathbb{R}^n$, $f_\vartheta \colon \mathbb{R}^d \to \mathbb{R}^d$ and the ODE

$$y' = f_{\vartheta}(y), \quad y(0) = y_{0,\vartheta} \in \mathbb{R}^d,$$

retrieve the true value ϑ^* from observations of y(t), t>0.

Goal

Given $\vartheta \in \mathbb{R}^n$, $f_\vartheta \colon \mathbb{R}^d \to \mathbb{R}^d$ and the ODE

$$y' = f_{\vartheta}(y), \quad y(0) = y_{0,\vartheta} \in \mathbb{R}^d,$$

retrieve the true value ϑ^* from observations of y(t), t > 0.

Bayesian setting: fix prior $\pi_{\text{prior}}(\vartheta)$, consider $\mathcal{G}: \mathbb{R}^n \to \mathbb{R}^m$ and the observation model

$$\mathcal{Y} = \underbrace{\mathcal{G}(\vartheta^*)}_{\text{forward}} + \underbrace{\eta}_{\text{noise}}, \quad \varepsilon \sim \pi_{\text{noise}},$$

then the posterior distribution (density) is

$$\pi(\vartheta \mid \mathcal{Y}) \propto \pi_{\text{prior}}(\vartheta) \pi_{\text{noise}}(\mathcal{Y} - \mathcal{G}(\vartheta)).$$

Obtaining a sample $\{\vartheta^{(i)}\}_{i=0}^N$ from $\pi(\vartheta \mid \mathcal{Y})$.

Algorithm: Metropolis-Hastings.

```
Given \vartheta^{(0)} \in \mathbb{R}^n, proposal q: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, N \in \mathbb{N}; Compute \pi(\vartheta^{(0)} \mid \mathcal{Y}):
```

Compute $\pi(\vartheta^{(0)} \mid \mathcal{Y})$

for
$$i = 0, ..., N$$
 do

| Draw $\bar{\vartheta}$ from $g(\vartheta^{(i)}, \cdot)$;

Set $\vartheta^{(i+1)} = \bar{\vartheta}$ with probability

$$\alpha(\vartheta^{(i)}, \bar{\vartheta}) = \min \left\{ 1, \frac{\pi(\bar{\vartheta} \mid \mathcal{Y})q(\vartheta^{(i)}, \bar{\vartheta})}{\pi(\vartheta^{(i)} \mid \mathcal{Y})q(\bar{\vartheta}, \vartheta^{(i)})} \right\}$$

otherwise set $\vartheta^{(i+1)} = \vartheta^{(i)}$;

end

Obtaining a sample $\{\vartheta^{(i)}\}_{i=0}^N$ from $\pi(\vartheta \mid \mathcal{Y})$.

Algorithm: Metropolis-Hastings.

```
Given \vartheta^{(0)} \in \mathbb{R}^n, proposal q: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, N \in \mathbb{N}; Compute \pi(\vartheta^{(0)} \mid \mathcal{Y}):
```

for $i = 0, \dots, N$ do

Draw $\bar{\vartheta}$ from $q(\vartheta^{(i)}, \cdot)$; Set $\vartheta^{(i+1)} = \bar{\vartheta}$ with probability

$$\theta^{(1)} = \theta$$
 with probability

$$\alpha(\vartheta^{(i)}, \bar{\vartheta}) = \min \left\{ 1, \frac{\pi(\vartheta \mid \mathcal{Y})q(\vartheta^{(i)}, \vartheta)}{\pi(\vartheta^{(i)} \mid \mathcal{Y})q(\bar{\vartheta}, \vartheta^{(i)})} \right\}$$

otherwise set $\vartheta^{(i+1)} = \vartheta^{(i)}$;

end

The posterior $\pi(\vartheta \mid \mathcal{Y})$ is not computable, approximate with

$$\pi^h(\vartheta \mid \mathcal{Y}) \propto \pi_{\text{prior}}(\vartheta) \pi_{\text{noise}}(\mathcal{Y} - \mathcal{G}^h(\vartheta)).$$

The posterior $\pi(\vartheta \mid \mathcal{Y})$ is not computable, approximate with

$$\pi^h(\vartheta \mid \mathcal{Y}) \propto \pi_{\text{prior}}(\vartheta)\pi_{\text{noise}}(\mathcal{Y} - \mathcal{G}^h(\vartheta)).$$

Properties

If Ψ_h is of order q

- $d_{\mathrm{Hell}}(\pi^h,\pi) o 0$ for h o 0 with rate q [Stuart, 2010]
- fast MH iterations for explicit Ψ_h (and h coarse)
- explores complex posterior distributions

The posterior $\pi(\vartheta \mid \mathcal{Y})$ is not computable, approximate with

$$\pi^h(\vartheta \mid \mathcal{Y}) \propto \pi_{\text{prior}}(\vartheta) \pi_{\text{noise}}(\mathcal{Y} - \mathcal{G}^h(\vartheta)).$$

Issue

- π^h concentrated around values "far" from $\vartheta^* o$ non-predictive posterior

The posterior $\pi(\vartheta\mid \mathcal{Y})$ is not computable, approximate with

$$\pi^{h, \text{RTS}}(\vartheta \mid \mathcal{Y}) \propto \pi_{\text{prior}}(\vartheta) \mathbb{E}^{\mathsf{H}} \pi_{\text{noise}}(\mathcal{Y} - \mathcal{G}^{\mathsf{H}}(\vartheta)),$$

where
$$\mathbf{H} = (H_0, H_1, ...)$$
.

The posterior $\pi(\vartheta \mid \mathcal{Y})$ is not computable, approximate with

$$\pi^{h, \mathrm{RTS}}(\vartheta \mid \mathcal{Y}) \propto \pi_{\mathrm{prior}}(\vartheta) \mathbb{E}^{\mathsf{H}} \pi_{\mathrm{noise}}(\mathcal{Y} - \mathcal{G}^{\mathsf{H}}(\vartheta)),$$

where $\mathbf{H} = (H_0, H_1, ...)$.

Properties

If $\Psi_h \to \varphi_h$ for $h \to 0$

- $d_{\mathrm{Hell}}(\pi^{h,\mathrm{RTS}},\pi) o 0$ for h o 0 (it can be shown)
- "correct" the non-predictive behaviour of deterministic approximations
- explores complex posterior distributions

The posterior $\pi(\vartheta\mid \mathcal{Y})$ is not computable, approximate with

$$\pi^{h, \mathrm{RTS}}(\vartheta \mid \mathcal{Y}) \propto \pi_{\mathrm{prior}}(\vartheta) \mathbb{E}^{\mathsf{H}} \pi_{\mathrm{noise}}(\mathcal{Y} - \mathcal{G}^{\mathsf{H}}(\vartheta)),$$

where
$$\mathbf{H} = (H_0, H_1, ...)$$
.

Issues

- Approximation of $\mathbb{E}^{\mathbf{H}} \pi_{\text{noise}}(\mathcal{Y} \mathcal{G}^{\mathbf{H}}(\vartheta))$ is required
- Employ pseudo-marginal MH ightarrow slow mixing for small noise
- Employ noisy pseudo-marginal MH ightarrow inexact posterior distributions

Outline

- Geometric numerical integration
- 2 Stochastic methods for ODEs
 - Additive noise method
 - Random time steps
- 3 Geometric stochastic numerical integration
- 4 Bayesian inverse problems
- 5 Numerical experiments
 - Convergence
 - Geometric properties
 - Bayesian inverse problems

Consider FitzHug-Nagumo equation (model for neuron activity)

$$y'_1 = c(y_1 - \frac{y_1^3}{3} + y_2),$$
 $y_1(0) = -1,$
 $y'_2 = -\frac{1}{c}(y_1 - a + by_2),$ $y_2(0) = 1,$
 $a = 0.2,$ $b = 0.2$ $c = 3.$

We verify numerically the results of convergence.

Solution with Explicit Euler (h = 0.1, T = 40)

black – deterministic solution, grey – realizations of RTS-RK

Method	Heun				RK4				
q	2				4				
p	1.5	2	2.5	3	3.5	4	4.5	5	
p min $\{q, p-1/2\}$ M.S. order	1	1.5	2	2	3	3.5	4	4	
M.S. order	1.02	1.54	2.01	2.01	3.01	3.56	4.02	4.01	

Method	Heun				RK4				
q	2				4				
р	1.5	2	2.5	3	3.5	4	4.5	5	
$\min\{q,p-1/2\}$	1	1.5	2	2	3	3.5	4	4	
p min $\{q, p-1/2\}$ M.S. order	1.02	1.54	2.01	2.01	3.01	3.56	4.02	4.01	

Method	Heun			RK4				
q	2			4				
p	1	1.5	2	1.5	2	3	4	
$min\{q,2p-1\}$	1	2	2	2	3	4	4	
Weak order $(\Phi = \ \cdot\ ^{1/2})$	0.98	2.06	2.12	1.96	3.01	3.97	4.08	

Convergence of Monte Carlo estimators, sub-optimal case.

Left: Heun method (q = 2) with p = 1.5, $M = 10^3$. Right: RK4 method (q = 4) with p = 2, $M = 10^4$.

Recall: Convergence

$$MSE(\hat{Z}) \le C \Big(h^{2\min\{2p-1,q\}} + \frac{h^{2\min\{p-1/2,q\}}}{M} \Big)$$

Consider the perturbed Kepler equation (model for two-body problem)

$$q'_1 = p_1, \quad p'_1 = -\frac{q_1}{\|q\|^3} - \frac{\delta q_1}{\|q\|^5},$$

 $q'_2 = p_2, \quad p'_2 = -\frac{q_2}{\|q\|^3} - \frac{\delta q_2}{\|q\|^5}.$

The angular momentum is conserved (quadratic first integral)

$$I(p,q) = q_1p_2 - q_2p_1$$

 \rightarrow employ a Gauss method (implicit midpoint rule).

RTS-RK (first row), Additive noise (second row). Time $0 \le t \le 200$ and $200 \le t \le 400$ (left and right)

Conservation of the angular momentum (quadratic first integral)

Consider the harmonic oscillator, Hamiltonian system with energy

$$E(p,q) = \frac{1}{2}(p^2 + q^2).$$

Then the ODE reads for $y = (p, q)^{\top}$

$$y' = J^{-1}\nabla E(y), \quad y(0) = y_0,$$

Energy is separable \rightarrow employ Störmer-Verlet (or symplectic Euler).

Energy evolution in time for RTS-RK (top, mean energy in black) and for deterministic Störmer-Verlet (bottom).

Consider again the FitzHug-Nagumo model

$$y_1' = c(y_1 - \frac{y_1^3}{3} + y_2), \quad y_1(0) = -1,$$

 $y_2' = -\frac{1}{c}(y_1 - a + by_2), \quad y_2(0) = 1,$

with $\vartheta = (a, b, c)^{\top}$ unknown.

Goal

Find $\pi(\vartheta \mid \mathcal{Y})$ from observations \mathcal{Y} of y (zero-mean Gaussian noise η , variance $\Sigma_{\eta} = (0.05)^2 I$).

Marginal posterior distribution over $\vartheta_3 = c$ (truth $c^* = 3$), left explicit Euler (deterministic) right RTS-RK with explicit Euler. For both figures, $h_i = 0.1 \cdot 2^{-i}$.

Consider the Hénon-Heiles system (motion of a star around a galactic center), Hamiltonian with energy

$$E(p,q) = \frac{1}{2} \|p\|^2 + \frac{1}{2} \|q\|^2 + q_1^2 q_2 - \frac{1}{3} q_2^3.$$

Chaotic problem for certain levels of energy.

Goal

Find posterior $\pi((p_0, q_0) \mid \mathcal{Y})$ over the initial condition from a single observation of (p(10), q(10))

Posterior distributions given by deterministic Heun method.

Posterior distributions given by deterministic Störmer-Verlet method.

Posterior distributions given by RTS-RK Störmer-Verlet method.

References I

- [Abdulle and Garegnani, 2018] Abdulle, A. and Garegnani, G. (2018). Random time step probabilistic methods for uncertainty quantification in chaotic and geometric numerical integration.
- [Conrad et al., 2016] Conrad, P. R., Girolami, M., Särkkä, S., Stuart, A., and Zygalakis, K. (2016).
 - Statistical analysis of differential equations: introducing probability measures on numerical solutions.

Stat. Comput.

[Kersting and Hennig, 2016] Kersting, H. and Hennig, P. (2016). Active uncertainty calibration in Bayesian ODE solvers.

In Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI 2016), pages 309–318. AUAI Press.

References II

[Stuart, 2010] Stuart, A. M. (2010). Inverse problems: A Bayesian perspective. *Acta Numer.*, 19:451–559.