Zestaw 1 — Teoria mnogości

Część A

1. Niech

$$A = \{x \in \mathbb{R} : (x-1)^2 \le 1\}, \quad B = \{x \in \mathbb{R} : |x-3| > 2\}, \quad C = \{-1, 0\}$$

Wyznacz $(A \cup B) \setminus C$, $(B \setminus C) \cap A$ i $A \setminus (B \setminus C)$, $(A \setminus C) \triangle B$.

- 2. Wyznacz zbiór potęgowy dla zbiorów:
 - a) $\{1, 2, 3\},\$
 - b) ∅,
 - c) $\{\emptyset\}$,
 - d) $\{\emptyset, \{\emptyset\}\}$.
- **3.** Wyznacz iloczyn kartezjański $A \times B$ dla zbiorów:
 - a) $A = \{0, 1\}, B = \{1, 2\},\$
 - b) $A = \{0, 1, 2\}, B = \{2, 3\},\$
 - c) $A = \emptyset, B = \{1, 2, 3\}.$
- **4.** Wyznacz zbiory $A \times (B \times C)$, $(A \times B) \times C$, $A \times B \times C$, przy czym $A = \{0,1\}$, $B = \{1\}$, $C = \{2,3\}$.
- 5. Podaj warunek równoważny równości

$$A \times B = B \times A$$
.

Część B

- **6.** Udowodnij, że dla dowolnych zbiorów A, B, C, D zachodzą równości:
 - a) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$,
 - b) $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$,
 - c) $(A \setminus B) \cup C = [(A \cup C) \setminus B] \cup (B \cap C),$
 - d) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$,
 - e) $(A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cup D)$,
 - f) $A \triangle (B \triangle C) = (A \triangle B) \triangle C$,
 - g) $A \triangle B = A^c \triangle B^c$.
- 7. Wykaż, że dla dowolnych zbiorów A, B, C, D:
 - a) Jeśli $A \subset B$ oraz $C \subset D$, to $A \setminus D \subset B \setminus C$,
 - b) Jeśli $A \triangle B$ i $B \triangle C$ są zbiorami skończonymi, to $A \triangle C$ jest zbiorem skończonym.
- 8. Uzasadnij, że dla dowolnych zbiorów A i B mamy
 - a) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$,
 - b) $\mathcal{P}(A \cup B) = \{C : C = A' \cup B' \text{ dla pewnych zbiorów } A' \in \mathcal{P}(A) \text{ i } B' \in \mathcal{P}(B)\}.$
- 9. Naszkicuj na płaszczyźnie zbiory $A \times B$ i $B \times A$ dla:
 - a) $A = \{ y \in \mathbb{R} : -1 < y < 1 \}, B = \{ x \in \mathbb{R} : 0 < x \le 1 \},$
 - b) $A = \mathbb{Z}, B = (1, 2),$
 - c) $A = \{x \in \mathbb{R} : x^2 + x 2 \ge 0\}, B = \{b \in \mathbb{N} : 2^b < 11\}.$
- 10. Sprawdź, czy podane równości są prawdziwe:
 - a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$,
 - b) $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$.

- **11.** Niech A_1, \ldots, A_n będą dowolnymi zbiorami. Zdefiniujmy \mathcal{A} jako najmniejszy zbiór, dla którego:
 - a) $A_k \in \mathcal{A}$ dla dowolnego $k \in \{1, \dots, n\}$,
 - b) jeżeli $X \in \mathcal{A}$ oraz $Y \in \mathcal{A}$, to ich suma $X \cup Y$ również należy do \mathcal{A} .

Ile maksymalnie elementów ma zbiór A? Podaj przykład takiego zbioru.

Część C

- **12.** Niech A_1, \ldots, A_n będą dowolnymi zbiorami. Zdefiniujmy \mathcal{A} jako najmniejszy zbiór, dla którego:
 - a) $A_k \in \mathcal{A}$ dla dowolnego $k \in \{1, \dots, n\}$,
- b) jeśli $X \in \mathcal{A}$ oraz $Y \in \mathcal{A}$, to ich suma $X \cup Y$ oraz różnica $X \setminus Y$ również należą do \mathcal{A} . Ile maksymalnie elementów ma zbiór \mathcal{A} ? Podaj przykład takiego zbioru.

Część D

- 13. Napisz program, który dla zadanej liczy naturalnej n wypisze wszystkie podzbiory zbioru $\{1,2,\ldots,n\}.$
- **14.** Napisz program, który dla zadanej liczby naturalnej n oraz liczy $k \in \{1, ..., n\}$ wypisze wszystkie podzbiory k-elementowe zbiory $\{1, ..., n\}$.
- **15.** Napisz program, który dla zadanej liczby naturalnej n wypisze wszystkie permutacje zbioru $\{1, \ldots, n\}$, to znaczy wszystkie sposoby uporządkowania elementów tego zbioru.