Prova del 16/09/2016

Traccia A

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica e la media geometrica;
- b) la mediana e la moda;
- c) la varianza.

X	f	X*f	f/X	χ^2	X ² *f
2	10	20	5,00	4	40
4	25	100	6,25	16	400
7	34	238	4,86	49	1666
11	31	341	2,82	121	3751
	100	699	18.93		5857

a) Calcolo della media aritmetica, della mediana e della moda:

$$M(X) = \frac{\sum X * f}{\sum f} = \frac{699}{100} = 6,9900$$

 $X50^{\circ} = < mediana = < X51^{\circ} : me = 7$

moda = 7

b) Calcolo dello scarto quadratico medio:

$$V(X) = M(X^2) - m(X)^2 = 5857/100 - 6,99^2 = 9,7099$$

 $\sigma(X) = RADQ(V(X)) = 3,1161$

c) Calcolo del coefficiente Skewness di Pearson:

 $Sk = (M(X)-moda)/\sigma(X) = -0,003209$

La distribuzione presenta una asimmetria a sinistra.

Χ	Υ	X * Y	χ^2	Y^2
5	35	175	25	1225
6	27	162	36	729
8	20	160	64	400
12	12	144	144	144
31	94	641	269	2498

Sui dati presentati in tabella calcolare:

- a) i parametri della retta interpolante Y'=a+bX;
- b) il coefficiente di correlazione lineare, commentandolo brevemente;
- c) giudicare la bontà di accostamento.

a) Calcolo dei parametri della retta interpolante Y'=a+bX :

Calcolo attraverso le formule dirette (ma si poteva anche sviluppare il sistema):

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} \qquad a = M(Y) - bM(X)$$

$$M(X) = \frac{31}{4} = 7,75$$

$$M(Y) = \frac{94}{4} = 23,5$$

$$Cov(X;Y) = M(X*Y) - M(X)*M(Y) = \frac{641}{4} - 7,75 * 23,5 = -21,8750$$

$$V(X) = M(X^2) - M(X)^2 = \frac{269}{4} - 7,75^2 = 7,1875$$

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} = \frac{-21,875}{7,1875} = -3,0435$$

b) Calcolo del coefficiente di correlazione lineare e suo breve commento:

23,5 - (-3,0435) * 7,75 =

c) Giudicare la bontà di accostamento:

M(Y) - bM(X) =

a =

Per giudicare la bontà di accostamento del modello teorico, calcolo il coefficiente di determinazione:

$$r^2 = (-0.9599)^2 = 0.9215$$

Il modello teorico spiega in maniera ottima la variabilità delle frequenze osservate.

```
Lo schema da utilizzare è quello della v.c. di Poisson con parametro: m = 1,7
```

La distribuzione di probabilità quindi è la seguente:

```
X P(X)
0 0,1827
1 0,3106
2 0,2640
3 0,1496
4 0,0636
5 e oltre 0,0296
1

Media = m = 1,7
```

Varianza = m = 1,7

ESERCIZIO 4 (LABORATORIO)

```
# CREO I VETTORI CON I DATI:
X=c(5, 6, 8, 12)
Y=c(35, 27, 20, 12)
# DISEGNO IL GRAFICO DEI PUNTI:
plot(X, Y)
# EFFETTUO LA REGRESSIONE LINEARE:
retta=Im(Y~X)
# AGGIUNGO LA RETTA DELLA REGRESSIONE AL GRAFICO
abline(retta, col="blue")
# DISEGNO I SEGMENTI FRA LA RETTA INTERPOLANTE E I PUNTI:
segments(X, fitted(retta), X, Y, lty=2)
# AGGIUNGO UN TITOLO:
title(main="Regressione lineare fra X e Y")
# VISUALIZZO I RISULTATI DELLA REGRESSIONE LINEARE
summary (retta)
# I PARAMETRI TROVATI SONO a=47.0870 E b=-3.0435
# QUINDI IL MODELLO TEORICO SARA':
# Y' = 47.08706 - 3.0435 * X
# EFFETTO L'ANALISI DEI RESIDUI
plot(fitted(retta), residuals(retta))
abline(0, 0)
# L'ANALISI DEI RESIDUI CONFERMA CHE QUESTI SI DISTRIBUISCONO IN MANIERA UNIFORME E
APPARENTEMENTE CASUALE ATTORNO ALL'ASSE ZERO, QUINDI SI PUÒ CONFERMARE L'IPOTESI DI
DISTRIBUZIONE CASUALE DEGLI STESSI, CON MEDIA NULLA E INCORRELAZIONE.
# CALCOLO IL COEFFICIENTE DI CORRELAZIONE LINEARE:
R=cor(X, Y)
R
# R E' PARI A -0.9599314 E CONFERMA CHE C'E' UNA FORTE RELAZIONE LINEARE INDIRETTA FRA LE DUE VARIABILI
# CALCOLO IL COEFFICIENTE DI DETERMINAZIONE:
R2=R^2
R2
```

R2 E' PARI A 0.9214683 QUINDI IL MODELLO TEORICO USATO SI ADATTA MOLTO BENE AI VALORI OSSERVATI

CREO IL VETTORE DELLE X: k=c(0:5)

CALCOLO I VALORI DELLA VARIABILE DI POISSON: valori=dpois(k, 1.7)

Prova del 16/09/2016

Traccia B

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica e la media geometrica;
- b) la mediana e la moda;
- c) la varianza.

X	f	X*f	f/X	χ^2	X ² *f
3	43	129	14,33	9	387
6	42	252	7,00	36	1512
10	36	360	3,60	100	3600
11	79	869	7,18	121	9559
	200	1610	32,12		15058

a) Calcolo della media aritmetica, della mediana e della moda:

$$M(X) = \frac{\sum X * f}{\sum f} = \frac{1610}{200} = 8,0500$$

X100° =< mediana =< X101° : me = 10

moda = 11

b) Calcolo dello scarto quadratico medio:

$$V(X) = M(X^2) - m(X)^2 = 15058/200 - 8,05^2 =$$
10,4875
 $\sigma(X) = RADQ(V(X)) =$ **3,2384**

c) Calcolo del coefficiente Skewness di Pearson:

$$Sk = (M(X)-moda)/\sigma(X) = -0.910932$$

La distribuzione presenta una asimmetria a sinistra.

X	Y	X * Y	χ^2	Y ²
6	42	252	36	1764
8	36	288	64	1296
10	30	300	100	900
13	20	260	169	400
37	128	1100	369	4360

Sui dati presentati in tabella calcolare:

- a) i parametri della retta interpolante Y'=a+bX;
- b) il coefficiente di correlazione lineare, commentandolo brevemente;
- c) giudicare la bontà di accostamento.

a) Calcolo dei parametri della retta interpolante Y'=a+bX:

Calcolo attraverso le formule dirette (ma si poteva anche sviluppare il sistema):

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} \qquad a = M(Y) - bM(X)$$

$$M(X) = \frac{37}{4} = 9,25$$

$$M(Y) = \frac{128}{4} = 32$$

$$Cov(X;Y) = M(X*Y) - M(X)*M(Y) = \frac{1100}{4} - 9,25 * 32 = 4$$

$$V(X) = M(X^2) - M(X)^2 = \frac{369}{4} - 9,25^2 = 6,6875$$

$$b = \frac{Cov(X;Y)}{V(X)} = \frac{-21}{6,6875} = -3,1402$$

$$a = M(Y) - bM(X) = 32 - (-3,1402) * 9,25 = 61,0467$$

b) Calcolo del coefficiente di correlazione lineare e suo breve commento:

$$r = \frac{\text{Cov}(X;Y)}{\sigma(X) \, \sigma(Y)}$$

$$V(Y) = \frac{4360}{4} - 32^2 = 66,0000$$

$$\sigma(Y) = \text{RADQ}(66) = 8,1240$$

$$\sigma(X) = \text{RADQ}(6,6875) = 2,5860$$

$$r = \frac{-21}{8,124 \times 2,586} = -0,9996 \quad \text{Si registra una forte relazione lineare indiretta}$$

c) Giudicare la bontà di accostamento:

Per giudicare la bontà di accostamento del modello teorico, calcolo il coefficiente di determinazione:

$$r^2 = (-0.9996)^2 = 0.9992$$

Il modello teorico spiega in maniera ottima la variabilità delle frequenze osservate.

-21,0000

```
Lo schema da utilizzare è quello della v.c. di Poisson con parametro: m = 1,3
```

La distribuzione di probabilità quindi è la seguente:

```
X P(X)
0 0,2725
1 0,3543
2 0,2303
3 0,0998
4 0,0324
5 e oltre 0,0107
1

Media = m = 1,3
```

Varianza = m = 1,3

ESERCIZIO 4 (LABORATORIO)

```
# CREO I VETTORI CON I DATI:
X=c(6, 8, 10, 13)
Y=c(42, 36, 30, 20)
# DISEGNO IL GRAFICO DEI PUNTI:
plot(X, Y)
# EFFETTUO LA REGRESSIONE LINEARE:
retta=Im(Y~X)
# AGGIUNGO LA RETTA DELLA REGRESSIONE AL GRAFICO
abline(retta, col="blue")
# DISEGNO I SEGMENTI FRA LA RETTA INTERPOLANTE E I PUNTI:
segments(X, fitted(retta), X, Y, lty=2)
# AGGIUNGO UN TITOLO:
title(main="Regressione lineare fra X e Y")
# VISUALIZZO I RISULTATI DELLA REGRESSIONE LINEARE
summary (retta)
# I PARAMETRI TROVATI SONO a=61.04673 E b=-3.14019
# QUINDI IL MODELLO TEORICO SARA':
# Y' = 61.04673 - 3.14019 * X
# EFFETTO L'ANALISI DEI RESIDUI
plot(fitted(retta), residuals(retta))
abline(0, 0)
# L'ANALISI DEI RESIDUI CONFERMA CHE QUESTI SI DISTRIBUISCONO IN MANIERA UNIFORME E
APPARENTEMENTE CASUALE ATTORNO ALL'ASSE ZERO, QUINDI SI PUÒ CONFERMARE L'IPOTESI DI
DISTRIBUZIONE CASUALE DEGLI STESSI, CON MEDIA NULLA E INCORRELAZIONE.
# CALCOLO IL COEFFICIENTE DI CORRELAZIONE LINEARE:
R=cor(X, Y)
R
# R E' PARI A -0.9995751 E CONFERMA CHE C'E' UNA FORTE RELAZIONE LINEARE INDIRETTA FRA LE DUE VARIABILI
# CALCOLO IL COEFFICIENTE DI DETERMINAZIONE:
R2=R^2
R2
```

#R2 E' PARI A 0.9991504 QUINDI IL MODELLO TEORICO USATO SI ADATTA MOLTO BENE AI VALORI OSSERVATI

CREO IL VETTORE DELLE X: k=c(0:5)

CALCOLO I VALORI DELLA VARIABILE DI POISSON: valori=dpois(k, 1.3)

Prova del 16/09/2016

Traccia C

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica e la media geometrica;
- b) la mediana e la moda;
- c) la varianza.

X	f	X*f	f/X	χ^2	X ² *f
1	67	67	67,00	1	67
4	68	272	17,00	16	1088
6	120	720	20,00	36	4320
9	45	405	5,00	81	3645
	300	1464	109.00		9120

a) Calcolo della media aritmetica, della mediana e della moda:

$$M(X) = \frac{\sum X * f}{\sum f} = \frac{1464}{300} = 4,8800$$

X150° =< mediana =< X151° : **me** = **6**

moda = 6

b) Calcolo dello scarto quadratico medio:

$$V(X) = M(X^2) - m(X)^2 = 9120/300 - 4,88^2 =$$
 6,5856 $\sigma(X) = RADQ(V(X)) =$ **2,5662**

c) Calcolo del coefficiente Skewness di Pearson:

 $Sk = (M(X)-moda)/\sigma(X) = -0,436436$

La distribuzione presenta una asimmetria a sinistra.

Χ	Υ	X * Y	χ^2	Y^2
2	15	30	4	225
4	29	116	16	841
7	50	350	49	2500
11	76	836	121	5776
24	170	1332	190	9342

Sui dati presentati in tabella calcolare:

- a) i parametri della retta interpolante Y'=a+bX;
- b) il coefficiente di correlazione lineare, commentandolo brevemente;
- c) giudicare la bontà di accostamento.

a) Calcolo dei parametri della retta interpolante Y'=a+bX :

Calcolo attraverso le formule dirette (ma si poteva anche sviluppare il sistema):

$$b = \frac{\text{Cov}(X;Y)}{V(X)} \qquad a = M(Y) - bM(X)$$

$$M(X) = \frac{24}{4} \qquad = \qquad 6$$

$$M(Y) = \frac{170}{4} \qquad = \qquad 42,5$$

$$\text{Cov}(X;Y) = M(X*Y) - M(X)*M(Y) = \qquad 1332$$

Cov(X;Y) = M(X*Y) - M(X)*M(Y)=
$$\frac{1332}{4}$$
 - 6 * 42,5 = $\frac{78,0000}{4}$

V(X) = M(X²) - M(X)² = $\frac{190}{4}$ - 6^2 = $\frac{11,5000}{4}$

b = $\frac{\text{Cov}(X;Y)}{\text{V}(X)}$ = $\frac{78}{11,5}$ = $\frac{6,7826}{11,5}$

a = M(Y) - bM(X) = $\frac{42,5 - (6,7826) * 6}{4}$ = $\frac{1,8043}{4}$

b) Calcolo del coefficiente di correlazione lineare e suo breve commento:

$$r = \frac{\text{Cov}(X;Y)}{\sigma(X) \, \sigma(Y)}$$

$$V(Y) = \frac{9342}{4} - 42,5^2 = 529,2500$$

$$\sigma(Y) = \text{RADQ}(529,25) = 23,0054$$

$$\sigma(X) = \text{RADQ}(11,5) = 3,3912$$

$$r = \frac{78}{23,0054 \times 3,3912} = 0,9998 \quad \text{Si registra una forte relazione lineare diretta}$$

c) Giudicare la bontà di accostamento:

Per giudicare la bontà di accostamento del modello teorico, calcolo il coefficiente di determinazione:

$$r^2 = (0.9998)^2 = 0.9996$$

Il modello teorico spiega in maniera ottima la variabilità delle frequenze osservate.

```
Lo schema da utilizzare è quello della v.c. di Poisson con parametro: m = 2,9
```

La distribuzione di probabilità quindi è la seguente:

```
X P(X)

0 0,0550

1 0,1596

2 0,2314

3 0,2237

4 0,1622

5 e oltre 0,1682

1

Media = m = 2,9
```

Varianza = m = 2,9

ESERCIZIO 4 (LABORATORIO)

```
# CREO I VETTORI CON I DATI:
X=c(2, 4, 7, 11)
Y=c(15, 29, 50, 76)
# DISEGNO IL GRAFICO DEI PUNTI:
plot(X, Y)
# EFFETTUO LA REGRESSIONE LINEARE:
retta=Im(Y~X)
# AGGIUNGO LA RETTA DELLA REGRESSIONE AL GRAFICO
abline(retta, col="blue")
# DISEGNO I SEGMENTI FRA LA RETTA INTERPOLANTE E I PUNTI:
segments(X, fitted(retta), X, Y, lty=2)
# AGGIUNGO UN TITOLO:
title(main="Regressione lineare fra X e Y")
# VISUALIZZO I RISULTATI DELLA REGRESSIONE LINEARE
summary (retta)
# I PARAMETRI TROVATI SONO a=1.80435 E b=6.78261
# QUINDI IL MODELLO TEORICO SARA':
# Y' = 1.80435 + 6.78261 * X
# EFFETTO L'ANALISI DEI RESIDUI
plot(fitted(retta), residuals(retta))
abline(0, 0)
# L'ANALISI DEI RESIDUI CONFERMA CHE QUESTI SI DISTRIBUISCONO IN MANIERA UNIFORME E
APPARENTEMENTE CASUALE ATTORNO ALL'ASSE ZERO, QUINDI SI PUÒ CONFERMARE L'IPOTESI DI
DISTRIBUZIONE CASUALE DEGLI STESSI, CON MEDIA NULLA E INCORRELAZIONE.
# CALCOLO IL COEFFICIENTE DI CORRELAZIONE LINEARE:
R=cor(X, Y)
R
# R E' PARI A 0.9998049 E CONFERMA CHE C'E' UNA FORTE RELAZIONE LINEARE DIRETTA FRA LE DUE VARIABILI
# CALCOLO IL COEFFICIENTE DI DETERMINAZIONE:
R2=R^2
R2
```

R2 E' PARI A 0.9996098 QUINDI IL MODELLO TEORICO USATO SI ADATTA MOLTO BENE AI VALORI OSSERVATI

CREO IL VETTORE DELLE X: k=c(0:5)

CALCOLO I VALORI DELLA VARIABILE DI POISSON: valori=dpois(k, 2.9)

Prova del 16/09/2016

Traccia D

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica e la media geometrica;
- b) la mediana e la moda;
- c) la varianza.

X	f	X*f	f/X	χ^2	X ² *f
2	130	260	65,00	4	520
6	118	708	19,67	36	4248
10	109	1090	10,90	100	10900
15	43	645	2,87	225	9675
	400	2703	98.43		25343

a) Calcolo della media aritmetica, della mediana e della moda:

$$M(X) = \frac{\sum X * f}{\sum f} = \frac{2703}{400} = 6,7575$$

X200° =< mediana =< X201° : **me** = **6**

moda = 2

b) Calcolo dello scarto quadratico medio:

$$V(X) = M(X^2) - m(X)^2 = 25343/400 - 6,7575^2 =$$
17,6937 $\sigma(X) = RADQ(V(X)) =$ **4,2064**

c) Calcolo del coefficiente Skewness di Pearson:

 $Sk = (M(X)-moda)/\sigma(X) = 1,1310181$

La distribuzione presenta una asimmetria a destra.

Χ	Υ	X * Y	χ^2	Y^2
3	15	45	9	225
4	20	80	16	400
9	43	387	81	1849
10	50	500	100	2500
26	128	1012	206	4974

Sui dati presentati in tabella calcolare:

- a) i parametri della retta interpolante Y'=a+bX;
- b) il coefficiente di correlazione lineare, commentandolo brevemente;
- c) giudicare la bontà di accostamento.

a) Calcolo dei parametri della retta interpolante Y'=a+bX:

Calcolo attraverso le formule dirette (ma si poteva anche sviluppare il sistema):

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} \qquad a = M(Y) - bM(X)$$

$$M(X) = \frac{26}{4} \qquad = 6,5$$

$$M(Y) = \frac{128}{4} \qquad = 32$$

$$\text{Cov}(X;Y) = M(X*Y) - M(X)*M(Y) = 1012$$

Cov(X;Y) = M(X*Y) - M(X)*M(Y)=
$$\frac{1012}{4}$$
 - 6,5 * 32 = $\frac{45,0000}{4}$
V(X) = M(X²) - M(X)² = $\frac{206}{4}$ - 6,5^2 = $\frac{9,2500}{4}$
b = $\frac{\text{Cov}(X;Y)}{\text{V}(X)}$ = $\frac{45}{9,25}$ = $\frac{4,8649}{9,25}$
a = M(Y) - bM(X) = $\frac{32 - (4,8649) * 6,5 = 0,3784}{4}$

b) Calcolo del coefficiente di correlazione lineare e suo breve commento:

$$r = \frac{\text{Cov}(X;Y)}{\sigma(X) \, \sigma(Y)}$$

$$V(Y) = \frac{4974}{4} - 32^2 = 219,5000$$

$$\sigma(Y) = \text{RADQ}(219,5) = 14,8155$$

$$\sigma(X) = \text{RADQ}(9,25) = 3,0414$$

$$r = \frac{45}{14,8155 * 3,0414} = 0,9987 \quad \text{Si registra una forte relazione lineare diretta}$$

c) Giudicare la bontà di accostamento:

Per giudicare la bontà di accostamento del modello teorico, calcolo il coefficiente di determinazione:

$$r^2 = (0.9987)^2 = 0.9974$$

Il modello teorico spiega in maniera ottima la variabilità delle frequenze osservate.

Lo schema da utilizzare è quello della v.c. di Poisson con parametro: m = 2,4

La distribuzione di probabilità quindi è la seguente:

```
X
             P(X)
   0
            0.0907
   1
            0,2177
   2
            0,2613
            0,2090
   3
            0,1254
   4
5 e oltre
            0,0959
               1
Media = m = 2,4
```

Varianza = m = 2,4

R=cor(X, Y)

R2=R^2 R2

R

ESERCIZIO 4 (LABORATORIO)

```
# CREO I VETTORI CON I DATI:
X=c(3, 4, 9, 10)
Y=c(15, 20, 43, 50)
# DISEGNO IL GRAFICO DEI PUNTI:
plot(X, Y)
# EFFETTUO LA REGRESSIONE LINEARE:
retta=Im(Y~X)
# AGGIUNGO LA RETTA DELLA REGRESSIONE AL GRAFICO
abline(retta, col="blue")
# DISEGNO I SEGMENTI FRA LA RETTA INTERPOLANTE E I PUNTI:
segments(X, fitted(retta), X, Y, lty=2)
# AGGIUNGO UN TITOLO:
title(main="Regressione lineare fra X e Y")
# VISUALIZZO I RISULTATI DELLA REGRESSIONE LINEARE
summary (retta)
# I PARAMETRI TROVATI SONO a=0.3784 E b=4.8649
# QUINDI IL MODELLO TEORICO SARA':
# Y' = 0.3784 + 4.8649 * X
# EFFETTO L'ANALISI DEI RESIDUI
plot(fitted(retta), residuals(retta))
abline(0, 0)
# L'ANALISI DEI RESIDUI CONFERMA CHE QUESTI SI DISTRIBUISCONO IN MANIERA UNIFORME E
APPARENTEMENTE CASUALE ATTORNO ALL'ASSE ZERO, QUINDI SI PUÒ CONFERMARE L'IPOTESI DI
DISTRIBUZIONE CASUALE DEGLI STESSI, CON MEDIA NULLA E INCORRELAZIONE.
```

CALCOLO IL COEFFICIENTE DI CORRELAZIONE LINEARE:

CALCOLO IL COEFFICIENTE DI DETERMINAZIONE:

R E' PARI A 0.9986755 E CONFERMA CHE C'E' UNA FORTE RELAZIONE LINEARE DIRETTA FRA LE DUE VARIABILI

R2 E' PARI A 0.9973527 QUINDI IL MODELLO TEORICO USATO SI ADATTA MOLTO BENE AI VALORI OSSERVATI

CREO IL VETTORE DELLE X: k=c(0:5)

CALCOLO I VALORI DELLA VARIABILE DI POISSON: valori=dpois(k, 2.4)