5

1. Find the equation of the plane such that every point on the plane is equidistant from the points P(1,1,0) and Q(3,5,-2).

HINT: The midpoint of \overline{PQ} is in this plane. Now find a normal vector. Recall that we found in class the equation of plane of all points equidistant from (0,0,0) and (0,3,0).

Solution. The midpoint of \overline{PQ} is R(2,3,-1).

We claim that if S is any point on the plane, then $SR \perp PQ$. Consider the triangles $\triangle SRQ$ and $\triangle SRP$ have a common side, \overline{SR} , and the sides \overline{RP} and \overline{RQ} are equal (since R is the midpoint of \overline{PQ}), and the sides \overline{SP} and \overline{SQ} are equal (since S is equidistant from P and Q). Thus, by Side-Side-Side congruence, the triangles are congruent. In particular the angles $\angle PRS$ and $\angle QRS$ are equal. Since $\angle PRS + \angle QRS$ equals 180° , both $\angle PRS$ and $\angle QRS$ must be right angles.

This shows that \overrightarrow{PQ} is a normal vector for the plane. Note $\overrightarrow{PQ} = 2\vec{\imath} + 4\vec{\jmath} - 2\vec{k}$. So the equation of the plane is

$$2x + 4y - 2z = 2 \cdot 2 + 4 \cdot 3 - 2 \cdot (-1),$$

 $2x + 4y - 2z = 18$
 $x + 2y - z = 9$