Control System Laboratory Report

Name and ID no. of the Student:

ANANTHA SAI SATWIK VYSYARAJU 2019A3PS1323H

Title of the Experiment:

Measurement of servo speed and pendulum moment of inertia

Model/Simulation:

x and y data is taken from the .m file which was provided

This time-domain data is imported into the System Identification toolbox and estimated the Transfer Function of the system.

Results:

Pole	Damping	Frequency (rad/seconds)	Time Constant (seconds)
-1.00e-02 + 4.90e-02i	2.00e-01	5.00e-02	1.00e+02
-1.00e-02 - 4.90e-02i	2.00e-01	5.00e-02	1.00e+02

Conclusive remarks:

The transfer function of the system is obtained using the estimation done by the system identification toolbox from the given time-domain data.

Now comparing the obtained results of the transfer function with the equation:

$$H(s) = \Omega_J (s)/\Omega_{in}(s) = (K/J)/(s^2 + (B/J)*_S + K/J)$$

given B = 1.2 N-m-s/rad.
and K = 15 N-m/rad.
we get B/J = 0.02. => J = 60 Kg.m²
and K/J = 0.0025. => J = 6000 Kg.m²

The value of J can be calculated from both the terms but since B is more dominant than K in an actual real-world situation, the effect of damping friction is more dominating than that of the spring constant, So J is calculated to be 60 Kg.m².

Now comparing the Second-order transfer function obtained using the estimation done by System toolbox Identification, we find w_n i.e. natural frequency of the system, $w_n = 0.05$ rad/sec and also damping ratio(ζ) to be $\zeta = 0.2$ which is an underdamped system.