Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- ☐ Measuring Data Similarity and Dissimilarity

Summary

Similarity, Dissimilarity, and Proximity

- Similarity measure or similarity function
 - A real-valued function that quantifies the similarity between two objects
 - Measure how two data objects are alike: The higher value, the more alike
 - Often falls in the range [0,1]: 0: no similarity; 1: completely similar
- □ **Dissimilarity** (or **distance**) measure
 - Numerical measure of how different two data objects are
 - In some sense, the inverse of similarity: The lower, the more alike
 - Minimum dissimilarity is often 0 (i.e., completely similar)
 - Range [0, 1] or [0, ∞), depending on the definition
- □ **Proximity** usually refers to either similarity or dissimilarity

Similarity measure (จะสร้างฟังก์ชันขึ้นมา แล้วดูว่า เหมือนกันยังไง)

- ถ้ามันขึ้น o แปลว่า ไม่เหมือนกันเลย
- ถ้ามันขึ้น 1 แปลว่า เหมือนกันเป๊ะเลย

<u>Dissimilarity</u> ไม่เหมือน

- ระยะห่างระหว่าง จุดสองจุดห่างกันมาก แปลว่า ต่างกันมาก
- [0,1] เหมือนกันเปะเลย
- [0. อินฟินิตี้) ต่างกัน

Proximity

Data Matrix and Dissimilarity Matrix

- Data matrix
- ☐ A data matrix of n data points with *I* dimensions

- Dissimilarity (distance) matrix
 - n data points, but registers only the distance d(i, j) (typically metric)
 - ☐ Usually symmetric, thus a triangular matrix
 - Distance functions are usually different for real, boolean, categorical, ordinal, ratio, and vector variables
 - Weights can be associated with different variables based on applications and data semantics

วัดความเหมือน หรือ ต่างของ Data

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
x1	1	2
x2	h 3	5
<i>x3</i>	2	0
x4	4	5

Dissimilarity Matrix (by Euclidean Distance)

	x1	x2	x3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Standardizing Numeric Data

$$Arr$$
 Z-score: $z = \frac{x - \mu}{\sigma}$

- Z-score: $z=\frac{x-\mu}{\sigma}$ X: raw score to be standardized, μ : mean of the population, σ : standard deviation
- □ the distance between the raw score and the population mean in units of the standard deviation
- □ negative when the raw score is below the mean, "+" when above
- ☐ An alternative way: Calculate the mean absolute deviation

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

where

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + ... + x_{nf})$$

- $z_{if} = \frac{x_{if} m_f}{s_f}$ □ standardized measure (*z-score*):
- Using mean absolute deviation is more robust than using standard deviation

ถ้าค่าใน column ไม่เท่ากันควรปรับ scale ให้เท่ากันก่อน ไม่งั้นจะเกิดการไปเชื่อค่าใน column ใดอันหนึ่ง

Distance on Numeric Data: Minkowski Distance

☐ Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p}$$

where $i = (x_{i1}, x_{i2}, ..., x_{il})$ and $j = (x_{j1}, x_{j2}, ..., x_{jl})$ are two *l*-dimensional data objects, and p is the order (the distance so defined is also called L-p norm)

- Properties
 - \Box d(i, j) > 0 if i \neq j, and d(i, i) = 0 (Positivity)
 - d(i, j) = d(j, i) (Symmetry)
 - □ $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric
- Note: There are nonmetric dissimilarities, e.g., set differences

Special Cases of Minkowski Distance

- p = 1: (L₁ norm) Marihattan (or city block) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors $d(i,j) = |x_{i1} x_{i1}| + |x_{i2} x_{i2}| + \dots + |x_{ij} x_{ij}|$
- \Box p = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

- $\ \square\ p \to \infty$: (L_{max} norm, L_{∞} norm) "supremum" distance
- ☐ The maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p} = \max_{f=1}^l |x_{if} - x_{jf}|$$

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x3	2	0
x4	4	5

Manhattan (L ₁)					
L	x1	x2	x3	x4	
x1	0				
x2	5	0			
x3	3	6	0		
x4	6	1	7	0	

Euclidean (L ₂)					
L2	x1	x2	х3	x4	
x1	0				
x2	3.61	0			
x3	2.24	5.1	0		
x4	4.24	1	5.39	0	

Supremum (L _∞)				
L_{∞}	x1	x2	х3	x4
x1	0			
x2	3	0		
x3	2	5	0	
x4	3	1	5	0

ตัวอย่าง

	point	attribute 1	attribute 2	1 4 0 0 1
	x1	1	2	= B
	x2	3	5	
	x3	2	0	- h'
	x4	4	5	9
4	x ₁	x ₃	3	12 norm - 518 La = 3

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x3	2	0
x4	4	5

$$\chi = 2$$

$$L_2 ho \mu = \sqrt{29} \left(\sqrt{25}, \sqrt{4} \right)$$

$$L_{00} = 5(max)$$

ระยะห่างระหว่างเส้น A + เส้น B จะมากกว่า ระยะห่างเส้น C เสมอ