Constraint

max run-length: ρ

local-balance: (ℓ,δ) ℓ : even

 $\left| w(\boldsymbol{x}_i^{i+\ell-1}) - \frac{\ell}{2} \right| \le \delta$

IDS channel

 $p_{
m i}, p_{
m d}, p_{
m s}$: ins/del/sub probability

 $d_{\min} \! < \! 0$: drift min $d_{\max} \! > \! 0$: drift max

 $\mathcal{D} = \{ d \in \mathbb{Z} | d_{\min} \le d \le d_{\max} \}$

Constrained coding + Synchronization

block length: N (symbol) $N\nu$ (bit)

[inner code] $\mathcal{C} \subset \mathbb{B}^{\nu} \ (|\mathcal{C}| = M)$

code length: $\nu \ (\leq \ell)$ (even) balanced: $w(x) = \nu/2 \ (\forall x \in \mathcal{C})$

 $\forall i \in [\nu]_e, -2\delta \leq \tilde{w}(x_i^{\nu-1}) \leq 2\delta$

 $[\forall i \in [\nu]_o, -2\delta + 1 \le \tilde{w}(\boldsymbol{x}_i^{\nu-1}) \le 2\delta + 1] \lor [\forall i \in [\nu]_o, -2\delta - 1 \le \tilde{w}(\boldsymbol{x}_i^{\nu-1}) \le 2\delta - 1]$

 $\text{run-length:} \qquad \leq \rho \quad \text{(right-most RL)} \leq \rho - 1$

invertible: $x \in \mathcal{C} \to \overline{x} \in \mathcal{C} \ (\forall x \in \mathcal{C})$

reset symbol: $(01)^{\frac{\nu}{2}}, (10)^{\frac{\nu}{2}} \in \mathcal{C}$

 $[\text{example}] \quad \text{even } i \!\in\! [\nu]$

 $(2\delta = 2)$

odd $i \in [\nu]$

[encoding]
$$\phi = \phi_0 \circ \phi_1$$
 (lossy)

$$egin{aligned} \phi_0: \mathbb{Z}_M &
ightarrow \mathcal{C} & ext{(encoding)} \ m{v}_i &= \phi_0(m{u}_i) \in \mathcal{C} & (m{u}_i \!\in\! \mathbb{Z}_M) \end{aligned}$$

$$\phi_1:\mathcal{C}^{l_0}\! imes\!\mathcal{C} o\mathcal{C}$$
 (constraint)

$$\begin{split} \boldsymbol{x}_i &= \phi_1(\boldsymbol{x}_{i-l_0}^{i-1}, \boldsymbol{v}_i) & \text{(priority)} \\ &= \begin{cases} \boldsymbol{v}_i & (\mathbbm{1}_{\rho,\ell,\delta}[\boldsymbol{x}_{i-l_0}^{i-1}, \boldsymbol{v}_i] = 1) \\ \overline{\boldsymbol{v}}_i & (\mathbbm{1}_{\rho,\ell,\delta}[\boldsymbol{x}_{i-l_0}^{i-1}, \overline{\boldsymbol{v}}_i] = 1) \\ (\overline{\boldsymbol{v}}\boldsymbol{v})^{\frac{\nu}{2}} & (\mathbbm{1}_{\rho,\ell,\delta}[\boldsymbol{x}_{i-l_0}^{i-1}, (\overline{\boldsymbol{v}}\boldsymbol{v})^{\frac{\nu}{2}}] = 1) \\ (\boldsymbol{v}\overline{\boldsymbol{v}})^{\frac{\nu}{2}} & (\mathbbm{1}_{\rho,\ell,\delta}[\boldsymbol{x}_{i-l_0}^{i-1}, (\boldsymbol{v}\overline{\boldsymbol{v}})^{\frac{\nu}{2}}] = 1) \end{cases} \end{split}$$

 $l_0 \!=\! \left\lceil rac{\ell-1}{
u}
ight
ceil$ v: first bit of $oldsymbol{v}_i$

Example $(\nu = 6, \rho = 3, \binom{6}{3} = 20)$

	(1)	(2)	(3)	
000111	-	-	-	0+1+2+3+2+1
001011	0	0	0	0+1+2+1+2+1
001101	1	1	1	0+1+2+1 0+1
001110	2	-	_	0+1+2+1 0-1
010011	3	2	2	0+1 0+1+2+1
010101	4	3	3	0+1 0+1 0+1
010110	5	4	4	0+1 0+1 0-1
011001	6	5	5	0+1 0-1 0+1
011010	7	6	6	0+1 0-1 0-1
011100	8	7	_	0+1 0-1-2-1
100011	9	8	_	0-1 0+1+2+1
100101	10	9	7	0-1 0+1 0+1
100110	11	10	8	0-1 0+1 0-1
101001	12	11	9	0-1 0-1 0+1
101010	13	12	10	0-1 0-1 0-1
101100	14	13	11	0-1 0-1-2-1
110001	15	_	_	0-1-2-1 0+1
110010	16	14	12	0-1-2-1 0-1
110100	17	15	13	0-1-2-1-2-1
111000	-	-	-	0-1-2-3-2-1

SL-FBA

Performance measure

Baseline

Constrained coding + Synchronization

$$\mathcal{C} \subset \mathbb{B}^{\nu} \ (|\mathcal{C}| \leq 2^b) \longleftarrow \text{Inner code (not bijective)}$$

$$\phi: \mathbb{B}^b \to \mathcal{C} \qquad \text{length: } \nu \text{ (even)}$$

$$d_i \in \mathbb{B}^b \qquad \text{balanced: } w(u) = \nu/2$$

$$\mathbf{u}_i = \phi(d_i) \in \mathcal{C} \qquad \text{invertible: } \mathbf{u} \in \mathcal{C} \to \overline{\mathbf{u}} \in \mathcal{C}$$

$$l_0 = \lceil \frac{\ell-1}{\nu} \rceil \qquad (\forall \mathbf{u} \in \mathcal{C})$$

$$f_i^0 = \begin{cases} 1 & ((\mathbf{x}_{i-l_0}^{i-1}, \mathbf{u}_i) \text{ satisfy the constraints)} \\ 0 & (\text{otherwise}) \end{cases}$$

$$f_i^1 = \begin{cases} 1 & ((\mathbf{x}_{i-l_0}^{i-1}, \overline{\mathbf{u}}_i) \text{ satisfy the constraints)} \\ 0 & (\text{otherwise}) \end{cases}$$

RunL[cw] RunR[cw] WtL[cw][idx] WtR[cw][idx]

$$f^0(\boldsymbol{v}) = \begin{cases} 1 & ((\boldsymbol{x}_{i-l_0}^{i-1}, \boldsymbol{v}) \text{ satisfy the constraints}) \\ 0 & (\text{otherwise}) \end{cases}$$

Constraint

 $\begin{array}{ll} \text{run-length:} & \rho \\ \text{local-balance:} & (\ell,\delta) \\ \ell: \text{even} \\ \left| w(\boldsymbol{x}_i^{i+\ell-1}) - \frac{\ell}{2} \right| \leq \delta \end{array}$

Rate

baseline: constraint only

IDS only

decoding: SL-FBA outer code: NB-LDPC (?) performance: code rate

AIR