

Deep Learning Methods for Reading Comprehension Question Answering

Nick Landy, Anand Natu, Megan Knight Stanford University

Motivation

- Reading comprehension is a fundamental and multi-faceted problem in AI applied to NLP
- Design a deep learning model for contextintelligent question answering, and examine drivers of performance for specific QA tasks

Problem Definition

The model reads a passage of text...

Passage (Input):

Sandra is in the kitchen. Sandra picked up the football there. Sandra traveled to the hallway. Sandra discarded the football there.

...and answers questions about the contents

Question (Input): Where is the football?

> **Answer (Output):** Hallway

Dataset and Context

Dataset: Facebook bAbl

Baseline Model: Attention-based model with pre-trained GloVe word embeddings and bidirectional GRU for context embedding

Evaluation Metrics: Exact Match (EM) accuracy, cross-entropy loss function, Adam optimizer

Methodology / Model Definition

MemNN: A multi-hop memory network replacing the contextual RNN embedding of our baseline with learning from an external-memory representation

1 Probability of the encoded 2 Output memory question u across inputs $\{m_1, m_2 \dots m_i\}$:

 $p_i = Softmax(u^T m_i)$

 $\widehat{a} = Softmax(W(o + u))$

representation of encoded inputs c_i

$$o = \sum_{i} p_{i}c_{i}$$

- 3 Final prediction and activation:
- 4 K-stacking of "hops" in the memory network:

$$u^{k+1} = u^k + o^k$$

Self-Attention: Based on Microsoft R-Net – "dense" attention calculation for each representation $\{v_1 \dots v_N\}$

- 1 Dot multiplication
- 2 Activation
- $e_i^i = v^T tanh(W_1 v_i + W_2 v_i)$
- $\alpha_i = Softmax(e^i)$

Self-attention output

$$lpha^i = \sum_{j=1}^N lpha^i_j v_j$$

Results and Analysis

QA2 accuracies of ~80% reached at convergence with MemNN-2Hop, but single-hop mostly mirrored baseline

RNN vs. external memory exhibit clear pros and cons depending on task (contextual vs. factual intelligence)

QA Challenge	Baseline	LSTM + Self-Attn	MemNN One-Hop	MemNN Two-Hop
QA1 Single Supporting Fact	42%	51%	99%	99%
QA2 Two Supporting Facts	33%	17%	36%	75%
QA4 Two Argument Relations	79%	70%	67%	68%
QA6 Yes/No Questions	74%	50%	50%	50%
QA7 Counting	76%	57%	80%	83%
QA8 Lists Sets	72%	77%	86%	89%
QA9 Simple Negation	71%	64%	90%	90%
QA10 Indefinite Knowledge	62%	44%	82%	82%