Boron carbide

Boron carbide (chemical formula approximately B₄C) is an extremely hard boron–carbon ceramic and covalent material used in tank armor, bulletproof vests, engine sabotage powders,^[1] as well as numerous industrial applications. With a Vickers hardness of >30 GPa, it is one of the hardest known materials, behind cubic boron nitride and diamond.^[2]

Boron carbide

Names

IUPAC name

Boron carbide

Other names

Tetrabor

Identifiers				
CAS Number	12069-32-8 (https://commonchemistry.cas.org/d etail?cas_rn=12069-32-8) ✓			
3D model (JSmol)	Interactive image (https://chemapps.stolaf.edu/jmol/jmol.php?model=B12B3B4B1C234)			
ChemSpider	109889 (https://www.chemspider.com/Chemical- Structure.109889.html) ✓			
ECHA InfoCard	100.031.907 (https://echa.europa.eu/substance-information/-/substanceinfo/100.031.907)			
PubChem CID	123279 (https://pubchem.ncbi.nlm.nih.gov/compound/123279)			
UNII	T5V24LJ508 (https://fdasis.nlm.nih.gov/srs/srsdirect.jsp?regno=T5V24LJ508)			
CompTox Dashboard (EPA)	DTXSID4051615 (https://comptox.epa.gov/dashboard/chemical/details/DTXSID4051615)			

InChl

InChI=1S/CB4/c2-1-3(2)5(1)4(1)2 ✓ Key: INAHAJYZKVIDIZ-UHFFFAOYSA-N ✓

InChI=1/CB4/c2-1-3(2)5(1)4(1)2 Key: INAHAJYZKVIDIZ-UHFFFAOYAS

SMILES				
B12B3B4B1C234				
Properties				
Chemical formula	B ₄ C			
Molar mass	55.255 g/mol			
Appearance	dark gray or black powder, odorless			
Density	2.52 g/cm ³ , solid.			
Melting point	2,763 °C (5,005 °F; 3,036 K)			
Boiling point	3,500 °C (6,330 °F; 3,770 K)			
Solubility in water	insoluble			
Structure				
Crystal structure	Rhombohedral			
Hazards				
Safety data sheet (SDS)	External MSDS (http://www.logitech.uk.com/MSD S/Files%5C0C0N-024%20to%20028.pdf)			
Related compounds				
Related compounds	Boron nitride			
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).				
✓ verify (https://en.wikipedia.org/w/index.php?title=Special:ComparePages&rev1=430790006&page2= Boron+carbide) (what is ✓ ?)				
Infobox references				

History

Boron carbide was discovered in the 19th century as a by-product of reactions involving metal borides, but its chemical formula was unknown. It was not until the 1930s that the chemical composition was estimated as B_4C .^[3] Controversy remained as to whether or not the material

had this exact 4:1 stoichiometry, as, in practice the material is always slightly carbon-deficient with regard to this formula, and X-ray crystallography shows that its structure is highly complex, with a mixture of C-B-C chains and B_{12} icosahedra.

These features argued against a very simple exact B_4C empirical formula.^[4] Because of the B_{12} structural unit, the chemical formula of "ideal" boron carbide is often written not as B_4C , but as $B_{12}C_3$, and the carbon deficiency of boron carbide described in terms of a combination of the $B_{12}C_3$ and $B_{12}CBC$ units.

Crystal structure

Unit cell of B_4C . The green sphere and icosahedra consist of boron atoms, and black spheres are carbon atoms. [5]

Fragment of the B₄C crystal structure.

Boron carbide has a complex crystal structure typical of icosahedron-based borides. There, B_{12} icosahedra form a rhombohedral lattice unit (space group: $R\overline{3}m$ (No. 166), lattice constants: a=0.56 nm and c=1.212 nm) surrounding a C-B-C chain that resides at the center of the unit cell, and both carbon atoms bridge the neighboring three icosahedra. This structure is layered: the B_{12} icosahedra and bridging carbons form a network plane that spreads parallel to the c-plane and stacks along the c-axis. The lattice has two basic structure units – the B_{12} icosahedron and the B_6 octahedron. Because of the small size of the B_6 octahedra, they cannot interconnect. Instead, they bond to the B_{12} icosahedra in the neighboring layer, and this decreases bonding strength in the c-plane. [5]

Because of the B_{12} structural unit, the chemical formula of "ideal" boron carbide is often written not as B_4C , but as $B_{12}C_3$, and the carbon deficiency of boron carbide described in terms of a combination of the $B_{12}C_3$ and $B_{12}C_2$ units.^{[4][6]} Some studies indicate the possibility of incorporation of one or more carbon atoms into the boron icosahedra, giving rise to formulas such as $(B_{11}C)CBC = B_4C$ at the carbon-heavy end of the stoichiometry, but formulas such as $B_{12}(CBB) = B_{14}C$ at the boron-rich end. "Boron carbide" is thus not a single compound, but a family of compounds of different compositions. A common intermediate, which approximates a commonly found ratio of elements, is $B_{12}(CBC) = B_{6.5}C$.^[7] Quantum mechanical calculations

have demonstrated that configurational disorder between boron and carbon atoms on the different positions in the crystal determines several of the materials properties - in particular, the crystal symmetry of the B_4C composition^[8] and the non-metallic electrical character of the $B_{13}C_2$ composition.^[9]

Properties

Boron carbide is known as a robust material having extremely high hardness (about 9.5 up to 9.75 on Mohs hardness scale), high cross section for absorption of neutrons (i.e. good shielding properties against neutrons), stability to ionizing radiation and most chemicals. [10] Its Vickers hardness (38 GPa), Elastic Modulus (460 GPa)[11] and fracture toughness (3.5 MPa·m^{1/2}) approach the corresponding values for diamond (1150 GPa and 5.3 MPa·m^{1/2}). [12]

As of 2015, boron carbide is the third hardest substance known, after diamond and cubic boron nitride, earning it the nickname "black diamond". [13][14]

Semiconductor properties

Boron carbide is a semiconductor, with electronic properties dominated by hopping-type transport. The energy band gap depends on composition as well as the degree of order. The band gap is estimated at 2.09 eV, with multiple mid-bandgap states which complicate the photoluminescence spectrum. The material is typically p-type.

Preparation

Boron carbide was first synthesized by Henri Moissan in 1899,^[6] by reduction of boron trioxide either with carbon or magnesium in presence of carbon in an electric arc furnace. In the case of carbon, the reaction occurs at temperatures above the melting point of B_4C and is accompanied by liberation of large amount of carbon monoxide:^[15]

$$2 B_2 O_3 + 7 C \rightarrow B_4 C + 6 CO$$

If magnesium is used, the reaction can be carried out in a graphite crucible, and the magnesium byproducts are removed by treatment with acid.^[16]

Applications

Boron carbide is used for inner plates of ballistic vests

For its hardness:

- Padlocks
- Personal and vehicle anti-ballistic armor plating
- Grit blasting nozzles
- High-pressure water jet cutter nozzles
- · Scratch and wear resistant coatings
- Cutting tools and dies
- Abrasives
- Metal matrix composites
- In brake linings of vehicles

For other properties:

- Neutron absorber in nuclear reactors (see below)
- High energy fuel for solid fuel ramjets

Nuclear Applications

The ability of boron carbide to absorb neutrons without forming long-lived radionuclides makes it attractive as an absorbent for neutron radiation arising in nuclear power plants^[17] and from anti-personnel neutron bombs. Nuclear applications of boron carbide include shielding, name=w330>Weimer, p. 330</ref>

See also

· List of compounds with carbon number 1

References

- Gray, Theodore (2012-04-03). The Elements: A Visual Exploration of Every Known Atom in the Universe (ht tps://books.google.com/books?id=IOY-8hxTJVAC&q=boron+carbide+sabotage+powder&pg=PT24)
 Black Dog & Leventhal Publishers. ISBN 9781579128951. Retrieved 6 May 2014.
- 2. "Rutgers working on body armor" (http://www.app.com/article/20120811/NJNEWS/308110051/Rutgers-working-on-body-armor) . Asbury Park Press. Asbury Park, N.J. August 11, 2012. Retrieved 2012-08-12. "... boron carbide is the third-hardest material on earth."
- 3. Ridgway, Ramond R "Boron Carbide" (http://v3.espacenet.com/publicationDetails/biblio?CC=CA&NR=339 873&KC=&FT=E) , European Patent CA339873 (A), publication date: 1934-03-06
- 4. Balakrishnarajan, Musiri M.; Pancharatna, Pattath D.; Hoffmann, Roald (2007). "Structure and bonding in boron carbide: The invincibility of imperfections" (http://www.rsc.org/Publishing/Journals/nj/Hotarticles/B618493F_Hoffmann.asp) . New J. Chem. **31** (4): 473. doi:10.1039/b618493f (https://doi.org/10.1039%2Fb618493f) .
- 5. Zhang FX, Xu FF, Mori T, Liu QL, Sato A, Tanaka T (2001). "Crystal structure of new rare-earth boron-rich solids: REB28.5C4". J. Alloys Compd. **329** (1–2): 168–172. doi:10.1016/S0925-8388(01)01581-X (https://doi.org/10.1016%2FS0925-8388%2801%2901581-X) .
- 6. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 149. ISBN 978-0-08-037941-8.
- 7. Domnich, Vladislav; Reynaud, Sara; Haber, Richard A.; Chhowalla, Manish (2011). "Boron Carbide: Structure, Properties, and Stability under Stress" (https://web.archive.org/web/20141227081802/http://n anotubes.rutgers.edu/PDFs/Domnich.2011.JACerS.pdf) (PDF). J. Am. Ceram. Soc. 94 (11): 3605–3628. doi:10.1111/j.1551-2916.2011.04865.x (https://doi.org/10.1111%2Fj.1551-2916.2011.04865.x) . Archived from the original (http://nanotubes.rutgers.edu/PDFs/Domnich.2011.JACerS.pdf) (PDF) on 27 December 2014. Retrieved 23 July 2015.
- 8. Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Alling, B. (2014). "First-principles study of configurational disorder in B₄C using a superatom-special quasirandom structure method". Phys. Rev. B. 90 (2): 024204. arXiv:1508.07786 (https://arxiv.org/abs/1508.07786) . Bibcode:2014PhRvB..90b4204E (https://ui.adsabs.harvard.edu/abs/2014PhRvB..90b4204E) . doi:10.1103/PhysRevB.90.024204 (https://doi.org/10.1103%2FPhysRevB.90.024204) . S2CID 39400050 (https://api.semanticscholar.org/CorpusID:39400050) .

- Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Alling, B. (2015). "Configurational order-disorder induced metal-nonmetal transition in B₁₃C₂ studied with first-principles superatom-special quasirandom structure method". Phys. Rev. B. 92 (1): 014202. arXiv:1508.07848 (https://arxiv.org/abs/1508.07848) . Bibcode:2015PhRvB..92a4202E (https://ui.adsabs.harvard.edu/abs/2015PhRvB..92a4202E) . doi:10.1103/PhysRevB.92.014202 (https://doi.org/10.1103%2FPhysRevB.92.014202) . S2CID 11805838 (https://api.semanticscholar.org/CorpusID:11805838) .
- 10. Weimer, p. 330
- 11. Sairam, K.; Sonber, J.K.; Murthy, T.S.R.Ch.; Subramanian, C.; Hubli, R.C.; Suri, A.K. (2012). "Development of B4C-HfB2 composites by reaction hot pressing". Int.J. Ref. Met. Hard Mater. **35**: 32–40. doi:10.1016/j.ijrmhm.2012.03.004 (https://doi.org/10.1016%2Fj.ijrmhm.2012.03.004)
- 12. Solozhenko, V. L.; Kurakevych, Oleksandr O.; Le Godec, Yann; Mezouar, Mohamed; Mezouar, Mohamed (2009). "Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamondlike BC5" (http://bib-pubdb1.desy.de/record/87949/files/GetPDFServlet.pdf) (PDF). Phys. Rev. Lett. 102 (1): 015506. Bibcode:2009PhRvL.102a5506S (https://ui.adsabs.harvard.edu/abs/2009PhRvL.102a5506S) doi:10.1103/PhysRevLett.102.015506 (https://doi.org/10.1103%2FPhysRevLett.102.015506) . PMID 19257210 (https://pubmed.ncbi.nlm.nih.gov/19257210)
- 13. "Boron Carbide" (https://web.archive.org/web/20150620124737/http://www.precision-ceramics.co.uk/boron-carbide.htm) . Precision Ceramics. Archived from the original (http://www.precision-ceramics.co.uk/boron-carbide.htm) on 2015-06-20. Retrieved 2015-06-20.
- 14. A. Sokhansanj; A.M. Hadian (2012). "Purification of Attrition Milled Nano-size Boron Carbide Powder". 2nd International Conference on Ultrafine Grained & Nanostructured Materials (UFGNSM). International Journal of Modern Physics: Conference Series. 5: 94–101. Bibcode:2012IJMPS...5...94S (https://ui.adsabs.harvard.edu/abs/2012IJMPS...5...94S) . doi:10.1142/S2010194512001894 (https://doi.org/10.1142%2FS2010194512001894) .
- 15. Weimer, p. 131
- 16. Patnaik, Pradyot (2002). Handbook of Inorganic Chemicals. McGraw-Hill. ISBN 0-07-049439-8
- 17. Fabrication and Evaluation of Urania-Alumina Fuel Elements and Boron Carbide Burnable Poison Elements (https://books.google.com/books?id=czTi4G6-Hq8C&pg=PA311&lpg=PA311&dq=Carborundum+B4C+nuclear&source=bl&ots=Hc8OPQTMsR&sig=ACfU3U3Qe5IZtR99SlCfRuKKTpro3mlebw&hl=en&sa=X&ved=2ahUKEwiexfnYtPziAhUjxVkKHT6KCb4Q6AEwGHoECDAQAQ#v=onepage&q=Carborundum%20B4C%20nuclear&f=false), Wisnyi, L. G. and Taylor, K.M., in "ASTM Special Technical Publication No. 276: Materials in Nuclear Applications", Committee E-10 Staff, American Society for Testing Materials, 1959

Bibliography

Alan W. Weimer (1997). Carbide, Nitride and Boride Materials Synthesis and Processing (https://books.google.com/books?id=PC4f40ETjeUC&pg=PA330). Chapman & Hall (London, New

External links

- National Pollutant Inventory Boron and compounds (https://web.archive.org/web/20060209 040519/http://www.npi.gov.au/database/substance-info/profiles/15.html)
- NIST Chemistry Database Entry for Boron Carbide (http://webbook.nist.gov/cgi/cbook.cgi?ID= C12069328&Units=SI&Mask=2#Thermo-Condensed)

Retrieved from

"https://en.wikipedia.org/w/index.php? title=Boron_carbide&oldid=1074827425"

Last edited 6 months ago by 219.91.199.110

