

NOTES ON GEOGRAPHIC DISTRIBUTION

Check List 19 (3): 399–408 https://doi.org/10.15560/19.3.399

First records from Cape Verde and range extension of *Coniophora eremophila* Lindsey & Gilb. (Basidiomycota, Boletales): a morphological and molecular identification

Margarita Dueñas^{1*}, María P. Martín¹, M. Teresa Telleria¹

- 1 Department of Mycology, Real Jardín Botánico − CSIC, Madrid, Spain MD: mduenas@rjb.csic.es ♠ https://orcid.org/0000-0003-0621-8003 MPM: maripaz@rjb.csic.es ♠ https://orcid.org/0000-0002-1235-4418 MTT: telleria@rjb.csic.es ♠ https://orcid.org/0000-0002-9876-6914
- * Corresponding author

Abstract. In the framework of a research project on corticioid fungi (Basidiomycota) from Cape Verde, we collected several specimens provisionally assigned to *Coniophora* sp. On the basis of morphological and molecular analyses, we identified these specimens as *C. eremophila* Lindsey & Gilb. These records extend the geographical distribution of this species by approximately 8,800 km in a straight line west to east, from its previously known North American locality and 8,700 km southwest to northeast from the other known locality in Chile. The presence of the genus *Coniophora* is reported for the first time in the Cape Verde Archipelago.

Keywords. Corticioid fungi, Fogo Island, geographic distribution, Macaronesia

Academic editor: Meike Piepenbring Received 28 February 2023, accepted 3 April 2023, published 5 June 2023

Dueñas M, Martín MP, Telleria MT (2023) First records from Cape Verde and range extension of *Coniophora eremophila* Lindsey & Gilb. (Basidiomycota, Boletales): a morphological and molecular identification. Check List 19 (3): 399–408. https://doi.org/10.15560/19. 3.399

Introduction

The Cape Verde archipelago is situated in the North Atlantic Ocean between 14°45′N, 022°40′W and 17° 10'N, 025°20'W and together with the Azores, Madeira, and the Canary Islands form the Macaronesian region. Cape Verde is composed of 10 volcanic islands with varying sizes, topography, and altitudes. The archipelago is spread over more than 58,000 km², has a surface of 4,020 km², and is located 570 km off the coast of Senegal, West Africa. The islands are usually classified in three groups: Northern Islands (Santo Antão, São Vicente, Santa Luzia, and São Nicolau), Southern Islands (Santiago, Fogo, and Brava), both characterized by hilly landscapes, and the Eastern group (Sal, Boavista, and Maio) with flat landscapes. The climate is tropical dry to semi-arid, with annual precipitations of 80–300 mm in arid coastal zones to 1,200–1,600 mm in the highlands; the mean annual temperatures range from 23–27 °C at sea level to 18–20 °C at high altitude (Duarte and Romeiras 2009).

There is little information about the mycobiota from Cape Verde. A preliminary list of non-lichenized fungi (Bañares Baudet 2005) recorded 58 species, and only seventeen basidiomycetes were included. Recently, three new species of gasteroid fungi (Crous et al. 2015, 2016; Martín et al. 2015) and two of corticioid fungi (Telleria et al. 2017) have been described from Santiago, Santo Antão, São Vicente, and Fogo Islands.

Coniophora DC. ex Merat is a widespread genus of corticioid fungi (Basidiomycota, Boletales, Coniophorinae; Binder and Hibbett 2006). It is characterized by the following morphology: basidioma resupinate, effused, adnate, and membranaceous; hymenophore smooth to tuberculate and margin with hyphal strands; hyphal system mono-, di- or trimitic, most generative hyphae clampless, however with scattered double or verticillate clamps especially in the wider marginal

hyphae; basidia clavate, cylindrical to utriform, two or four sterigmata, without basal clamps; spores broadly ellipsoid, ellipsoid to ovoid, or subfusiform, apiculate; apical germ pore present, thick-walled, smooth, yellowish to brownish and more or less dextrinoid (Ginns 1982; Hallenberg 1985).

Carlier et al. (2004) included 18 species and two varieties in the genus. Since then, one new species has been described (Boidin and Gilles 2004) and a new combination proposed (Parmasto 2005). The geographic distribution of *Coniophora* species is imperfectly known (Ginns 1982), and from the Macaronesian region, the genus has been reported from the Azores (Telleria et al. 2009), Madeira (Telleria et al. 2008), and the Canary Islands (Beltrán-Tejera et al. 2013, 2015); therefore, the new records reported here are the first time this genus has been found in the Cape Verde Archipelago.

Coniophora eremophila was described by Lindsey & Gilbertson (1975) from the Sonoran Desert of Arizona, USA, where it was associated with brown rot on dead mesquite (Prosopis juliflora (Sw.) DC.) and other fallen debris of Olneya tesota A.Gray, Sambucus mexicana C.Presl ex DC., Chilopsis linearis (Cav.) Sweet, and Juglans major (Torr.) A.Heller. Currently this species is only known from the Sonoran Desert in North America (Lindsey and Gilbertson 1975; Gilbertson et al. 1976) and Punta Arenas, Chile, South America (Ginns 1982).

Methods

The specimens studied in this paper were collected in the Cape Verde archipelago within the framework of a project on the biogeography of corticoid fungi (CGL2009-07231). The field exploration took place on March 2010 on four islands: Santiago, Fogo, São Vicente, and Santo Antão (Figs. 1, 2). The specimens were collected by M. Dueñas (MD) and M.T. Telleria (Tell.) and deposited in the mycological collection (MA-Fungi) of the Real Jardín Botánico Herbarium, Madrid, Spain. This study included type specimens of *Coniophora eremophila* from Arizona (RLG 10925, holotype, BPI) and *C. bimacrospora* Decock, Bitew & G. Castillo from Ethiopia (MUCL 45009, holotype), and additional materials of the ARIZ and MA-Fungi herbaria (Table 1).

The morphological analysis of the species was based on dried specimens; colors of basidioma are given according to ISCC-NBS Centroid Color Charts (Kelly and Judd 1976). Measurement was made from microscopic sections mounted in 3% KOH, Congo red, and Melzer's solutions, and examined at magnifications up to 1,250× using a differential interference contrast Olympus BX51 microscope. The length and width for 30 spores and 10 basidia were measured from each sample, and length/width ratios (Q) were calculated. Drawings were made with a Leica 2500 microscope with the help of a drawing tube.

Figure 1. Distribution of *Coniophora eremophila*. **A.** Yellow circles = previous records, red circles = new records from Cape Verde. **B.** Cape Verde Archipelago map. **C.** New records of *C. eremophila* on Fogo Island.

Figure 2. Caldeira do Fogo, where Coniophora eremophila 19021 Tell. and 19015 Tell. were located (photographs by M.T. Telleria).

DNA extractions, ITS nrDNA amplifications, purifications, and sequencing protocols were performed as indicated by Telleria et al. (2017). Sequences obtained in this study were submitted to GenBank under the accession numbers indicated in Table 1. The newly generated ITS sequences were aligned in Se-Al v. 2.0a11 Carbon (Rambaut 2002) with homologous sequences retrieved from EMB/GenBank/DDBJ databases (Cochrane et al. 2011, 2016) included in Table S1. The maximum-parsimony (MP) and maximum-likelihood (ML) analyses were performed as by Telleria et al. (2017) using PAUP* v. 4.0b10 for Macintosh (Swofford 2003); GTR+I+G was the model selected in PAUP to ML analysis. Two

sequences of *Serpula himanthioides* (Fr.) P. Karst. and *Serpula lacrymans* (Wulfen) J. Schröt. were included as the outgroup.

Results

Coniophora eremophila Lindsey & Gilb. 1975

Mycotaxon 2: 86 (1975)

Figures 3, 4

New records. CAPE VERDE – Fogo • São Filipe, Caldeira do Fogo, Bangaeira; 14°58′40″N, 024°22′03″W; 1666 m alt.; 22.IX.2010; M.T. Telleria leg.; on dead fallen plant debris; 19021Tell., MA-Fungi 86371

Figure 3. *Coniophora eremophila,* 13284MD, MA-Fungi 86372. **A.** Basidioma. **B.** Basidioma with margin detail. Scale bars: A = 5 mm, B = 1 mm. (Photographs by M. Dueñas)

Table 1. Species and specimens used to reconstruct the phylogenetic tree, with their herbarium or isolate numbers, country, substrate and GenBank accession numbers. * = DNA isolated from mycelium; † = from USDA forest products; ‡ = from xylem; no asterisk: isolated from basidioma.

Species/specimen/isolate	Country	Substrate	GenBank no.	Reference
Coniophora arida (Fr.) P. Karst.				
P294 (Fischer 373)	Germany	No data	AJ344113*	Schmidt et al. 2002
P 232 (MUCL 30844)	United Kingdom	Pinus sp.	AJ345007*	Schmidt et al. 2002
MA-Fungi 39709, 8373MD	Spain	Juniperus thurifera	AJ419194	Martín and Raild 2002
MA-Fungi 47708, 14057Tell.	Spain	Castanea sativa	AJ419196	Martín and Raild 2002
MUCL 30844	United Kingdom	Pinus sp.	AM747497*	Kauserud et al. 2007
472	New Zealand	Metrosideros excelsa	AM747498*	Kauserud et al. 2007
FP 105382	USA	Red or white pine	AM747502*	Kauserud et al. 2007
MUCL 40342	Zimbabwe	Pinus sp.	AM747504*	Kauserud et al. 2007
DAOM 52839	Canada	Conifer	AM747511*	Kauserud et al. 2007
FP 104424	USA	Pinus sp.	AM747515*	Kauserud et al. 2007
FP 103793	USA	Hardwood branch	AM747516*	Kauserud et al. 2007
MUCL 31038	Canada	Acer sp.	AM747517*	Kauserud et al. 2007
olrim507	Sweden	Picea abies	AY805608*	Menkis et al. 2004
MUCL 30844 (under <i>C. arida</i> var. <i>suffocata</i>)	United Kingdom	Pinus sp.	GU187511	Binder et al. 2010
CFMR FP-104367	USA	Hardwood	GU187511†	Binder et al. 2010
CFMR HHB-17606	USA	Picea glauca	GU187518†	Binder et al. 2010
MA-Fungi 37397, 10440Tell.	Spain	Unidentified wood	HF921461	This study
MA-Fungi 60590, 10285MD	France	Pinus nigra	HF921462	This study
MA-Fungi 63353, 10320IS (under <i>C. arida</i> var. suffocata),	France	Abies sp.	HF921463	This study
MA-Fungi 11400, 7198Tell.	Norway	Picea sp.	HF921464	This study
VL389	Lithuania	Pinus mugo, xylem	JF440569‡	Lygis et al. (unpublished)
C. bimacrospora Decock, Bitew & G. Castillo				
MUCL 45009, DeCock ET03/072, holotype	Ethiopia	Wood	MK677453	This study
 eremophila Lindsey & Gilb.				
US 0290491	USA	Unidentified wood	HF921465	This study
MA-Fungi 86371, 19021Tell.	Cape Verde, Fogo	Dead fallen plant debris	HG326617	This study
MA-Fungi 86372, 13284MD	Cape Verde, Fogo	Saccharum officinarum	HG326618	This study
AN 000728, 10875 RL Gibertson	USA	Olneya tesota	HK677454	This study
AN 000731, 10812 RL Gilbertson	USA	Olneya tesota	HK677455	This study
AN 000734, 10894 RL Gilbertson	USA	Juglans major	HK677456	This study
AN 000735, 10936 RL Gilbertson	USA	Sambucus caerulea	HK677457	This study
C. fusispora (Cooke & Ellis) Cooke	03/1	Samoueus eacharea	111(077137	This study
MA-Fungi 7302, 1474Tell.	Spain	Pinus pinaster	HF921466	This study
	·	Unidentified wood	HF921467	·
MA-Fungi 57734, 15702Tell.	France	Onidentined wood	ПГ921407	This study
C. hanoiensis Pat.	7:	Diameter and	UE021460	This stands
L. Ryvarden 24995	Zimbadwe	Pinus sp.	HF921468	This study
C. marmorata Desm.				
Isolate P158	Germany	Mining timber	AJ518879*	Schmidt et al. 2002
P 307	United Kingdom	Underside spruce	AJ518880*	Schmidt et al. 2002
FPRL 410, IMI 387582	United Kingdom	Spruce floorboard	AM946632*	Schmidt and Moreth 2008
Isolate PBe10Cm	France	Infected building	GU066836*	Maurice et al. 2011
MUCL 31667	Belgium	House, plaster work	GU187515	Binder et al. 2010
CFMR Braz-6 (under <i>Coniophora</i> sp.)	Brazil	Araucaria angustifolia	GU187517†	Binder et al. 2010
C. mollis Ginns				
PREM 36877, holotype	South Africa	Wood on under- ground limber	HF921469	This study
C. olivacea (Fr.) P. Karst.				
P 297 (Fischer 713)	Germany	No data	AJ345009*	Schmidt et al. 2002
P151	No data	No data	AJ344112*	Schmidt et al. 2002
MUCL 20566	Germany	No data	AM747518*	Kauserud et al. 2007
		No data	AM747519*	Kauserud et al. 2007
P154	Germany	NO data	MIVIT JIJ	Madderda Ctan 2007

Species/specimen/isolate	Country	Substrate	GenBank no.	Reference
FP 100334	USA	Picea engelmannii	AM747523*	Kauserud et al. 2007
FPL 1	United Kingdom	Thuja plicata	AM747530*	Kauserud et al. 2007
P 161	Canada	No data	AM747531*	Kauserud et al. 2007
DAOM 189127	Australia	Eucalyptus marginata	AM747532*	Kauserud et al. 2007
L-9712	USA	Pinus sp.	AM747537*	Kauserud et al. 2007
CFMR FP-104386	USA	Pinus log down	GU187516‡	Binder et al. 2010
CFMR FP-105969 (under C. prasinoides)	USA	Old flooring cf. <i>Pinus</i> palustris	GU187519	Binder et al. 2010
MA-Fungi 26309, 10369Tell.	Portugal	Pinus pinea	HF921471	This study
MA-Fungi 7829, 1453Tell.	Spain	Pinus pinaster	HF921470	This study
MA-Fungi 26138, 11374Tell.	Portugal	Pinus pinaster	HF921472	This study
MA-Fungi 21282-2, 4176MD	Spain	Cupressus sp.	HF921473	This study
MA-Fungi 70495, 10651IS	France	Fagus sylvatica	HF921474	This study
MA-Fungi 26309, 10369Tell.	Portugal	Pinus pinea	HF921471	This study
C. opuntiae Telleria	J	,		,
AH31855	Spain	Opuntia ficus-indica	FJ790314	Blanco et al. 2009
MA-Fungi 6901, 4460 Tell., holotype	Spain	Opuntia sp.	HF921475	This study
C. prasinoides (Bourdot & Galzin) Bourdot & Galz		оринна эр.	111 321 173	This study
MA-Fungi 19417, HH McKay	USA	Pine flooring stored	AJ419197	Martín and Raidl, 2002
C. puteana (Schumach.) P. Karst.	OJA	Tille flooring stored	A3419197	Mai tili alia Nalai, 2002
P 159	Sweden	Timber 1957	AJ249503*	Moreth and Schmidt 2000
P 153 (FPRL 11e)		No data	AJ249303 AJ344110*	Schmidt et al. 2002
	United Kingdom			Martín and Raild 2002
MA-Fungi 10672	Spain	Pinus sp.	AJ419198	Martin and Raild 2002
LISU 1782237 (IM79851)	Spain	Wood	AJ419199	
FP 100258	USA	Picea engelmanii	AM293045*	Kauserud et al. 2007
DAOM 17535	Canada	Picea glauca	AM293054	Kauserud et al. 2007
BamEbw-109	Germany	No data	AM293059*	Kauserud et al. 2007
Isolate 81	New Zealand	Podocarpus spicatus	AM293060*	Kauserud et al. 2007
CCBAS 524	Czech Republic	No data	AM293061*	Kauserud et al. 2007
DAOM52883	India	Pinus excelsa	AM293064*	Kauserud et al. 2007
P167	Germany	Timber	AM946631*	Schmidt and Moreth 2008
Olrim 238	Lithuania	Fraxinus excelsior	AY787668*	Lygis et al. 2005
BI 516 (under <i>Coniophora</i> sp.)	Unknown	No data	EU162050*	Naumann et al. (unpublished)
LMSA1.03.047	Unknown	No data	GU066829	Maurice et al. (unpublished)
Isolate 8 (under <i>C. cerebella</i> = <i>C. puteana</i>)	USA	Conifer	GU187513	Binder et al. 2010
CFMR Isolate MAD-515	USA, Wisconsin	Quercus plank	GU187520†	Binder et al. 2010
MUCL 1000	Germany	No data	GU187521	Binder et al. 2010
BAM Ebw.15	Unknown	No data	EF524034*	Hogger et al. (unpublished)
C1RZ3	Italy	Corylus avellana	EU722763*	Pilotti et al. (unpublished)
MA-Fungi 60730, 15852Tell.	France	Quercus pubescens	HF921476	This study
Coniophora sp.				
Isolate BCP5436, PDD94245 (under <i>Coniophora</i> sp.)	New Zealand	No data	JF714651*	Johnston and Dickie (unpublished)
OUTGROUP				
Serpula himantioides (Fr.) P. Karst.				
P 99 (M213)	USA	No data	AJ245949*	Schmidt and Moreth 2000
· · · · · · · · · · · · · · · · · · ·				
Serpula lacrymans (Wulfen) J. Schröt.				

(GenBank ITS nrDNA HG326617) • São Filipe, Caldeira do Fogo, Bangaeira; 14°58′40″N, 024°22′03″W; 1666 m alt., 22.IX.2010; M.T. Telleria leg.; on *Vitis vinifera*; 19015Tell.; MA-Fungi 98797 • São Filipe, Galinheiros; 15°00′08″N, 024°26′04″W, 319 m alt.; 24.IX.2010; M. Dueñas leg.; on *Saccharum officinarum*; 13284MD; MA-Fungi 86372 (GenBank ITS nrDNA HG326618).

Other material examined. USA - Arizona • Pinal

County, Santa Catalina Mountains, Canyon del Oro; R.L. Gilbertson leg.; RLG 10925; US 0290421, holotype, BPI! (GenBank ITS nrDNA HF921465).

Identification. Basidioma resupinate, widely effused and easily separated; hymenophore smooth, yellowish to olive brown (87. m. Y – 95. m. Ol Br); subiculum thin, white, cottony; margin cream to yellowish, arachnoid, with hyphal strands. Hyphal system monomitic,

Figure 4. *Coniophora eremophila,* 13284MD, MA-Fungi 86372. **A.** Hyphal strands. **B.** Basal hyphae. **C.** Subhymenial hyphae. **D.** Hyphidia. **E.** Basidia. **F.** Basidiospores. Scale bar = 10 μm. (Drawing by M. Dueñas)

generative hyphae without clamps, clamps rare and only present on strands; strand hyphae thin to thick-walled, up to $14\,\mu m$ wide; basal hyphae loosely interwoven, thin-walled, hyaline, $4–7\,\mu m$ wide; subhymenial

hyphae more densely interwoven, short-celled, 8–13 μm wide. Cystidia absent. Hyphidia present, hyaline, up to 3 μm wide. Basidia cylindrical, sometimes pedunculate and sinuous, without basal clamp,

 $(45-)50-70(-100) \times 6-7$ μm, projecting up to 40 μm, four sterigmata up to 5 μm long. Spores ellipsoid, with prominent apiculus, $10-12 \times 6-8$ μm (Q = 1.6), thickwalled, yellowish, and dextrinoid.

The ITS dataset includes 80 sequences of *Coniophora* species, of which 19 were generated in this study. The two sequences obtained from Cape Verde specimens grouped together (Fig. 5), in a well-supported group (MP bs = 87; MLbs = 87%), with the five sequences from Arizona, including the sequence of the *C. eremophila* type, obtained in this work. Both morphological and

molecular analyses confirm that the specimens from Cape Verde belong to *C. eremophila*.

Discussion

Most of the species of *Coniophora* cause brown rot in all kinds of wood, producing economic losses in several ways: e.g. *Coniophora puteana* (Schumach.) P. Karst. is an important destroyer of building timber. Matheron et al. (1992) reported *Coniophora* species associated with brown heartwood rot in branches and trunks on lemon

Figure 5. Phylogenetic tree obtained from the maximum-likelihood analysis of *Coniophora* species. Numbers above branches are parsimony (MPbs >50%) and maximum likelihood (MLbs >50%) bootstrap values. Each sequence with the accessions numbers from GenBank, and country. Newly generated sequences in bold. Clades named according to Index Fungorum and Mycobank.

trees in Arizona, USA, that was identified a few years later as *C. eremophila* (Bigelow et al. 1996). This record was the first of a species of *Coniophora* causing serious lesions in living citrus and other fruit trees. Several studies have been carried out on the biology, control, development, characterization, and molecular biology of this disease (Bigelow et al. 1996, 1998; Gilbertson et al. 1996; Wilcox et al. 1996; Demetriou et al. 2000; Adaskaveg et al. 2001; Matheron et al. 2006).

According to Mauk and Adaskaveg (2000), *C. ere-mophila* may be an opportunistic species disposed to colonize fruit trees weakened by other possible causes; our report offers additional information on this hypothesis, because it is also able to colonize other species of cultivated plants such as vines and sugarcane.

This study is first report of *C. eremophila* from the Cape Verde archipelago (Fig. 1) and extends the geographic distribution of this species by approximately 8,800 km in a straight line west to east from its previously known North American locality (Lindsey and Gilbertson 1975; Gilbertson et al. 1976) and 8,700 km southwest to northeast from the locality in Chile (Ginns 1982).

Acknowledgements

Financial support was provided by DGICT projects CGL2012-35559, CGL2015-67259-P and 202030E059. We are grateful to Mariam Glen for checking the English, to the curators of BPI and ARIZ herbaria and C. Decock for invaluable assistance.

Author Contributions

Conceptualization: MD, MPM, MTT. Data curation: MTT, MD. Formal analysis: MD, MPM, MTT. Funding acquisition: MTT. Investigation: MD, MPM, MTT. Methodology: MPM, MD. Project administration: MTT. Writing – original draft: MTT. Writing – review and editing: MD, MPM, MTT.

References

- Adaskaveg JE, Forster H, Mauk PA, Bigelow DM, Gilbertson (2001) Molecular characterization of *Coniophora* isolates from citrus in Arizona and California. Harvard Papers of Botany 6: 15–23.
- Bañares Baudet A (2005) Hongos (Protozoa, Chromista, Fungi). In: Arechavaleta M, Zurita N, Marrero MC, Martín JL (Eds.) Lista preliminar de especies silvestres de Cabo Verde (hongos, plantas y animales terrestres). Consejería de Medio Ambiente y Ordenación Territorial, Gobierno de Canarias, La Laguna, Santa Cruz de Tenerife, Spain, 23–26.
- Beltrán-Tejera E, Rodríguez-Armas JL, Telleria MT, Dueñas M, Melo I, Díaz-Armas MJ, Salcedo I, Cardoso J (2013) Corticioid fungi from arid and semiarid zones of Canary Islands (Spain). Additional data. 2. Mycotaxon 123: 491–492. https://doi.org/10.5248/123.491
- Beltran-Tejera E, Rodríguez-Armas JL, Telleria MT, Due-

- ñas M, Melo I, Salcedo I, Cardoso J (2015) Corticioid fungi from the western Canary Islands. Chorological additions. Mycotaxon 130: 1213–1214. https://doi.org/10.5248/130.1213
- **Bigelow DM, Matheron ME, Gilbertson RL** (1996) Biology and control of *Coniophora eremophila* on lemon trees in Arizona. Plant Disease 80: 934–939.
- Bigelow DM, Gilbertson RL, Matheron ME (1998) Cultural studies of fungi causing brown rot in heartwood of living trees in Arizona. Mycological Research 102: 257–262. https://doi.org/10.1017/S0953756297004723
- **Binder M, Hibbett DS** (2006) Molecular systematics and biological diversification of Boletales. Mycologia 98: 971–981. https://doi.org/10.1080/15572536.2006.11832626
- Binder M, Larsson KH, Matheny PB, Hibbett DS (2010) Amylocorticiales ord. nov. and Jaapiales ord. nov.: early diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia 102 (4): 865–880. https://doi.org/10.3852/09-288
- Blanco MN, Moreno G, Checa J, Platas G, Pelaez F (2009) Taxonomic and phylogenetic revision of *Coniophora arachnoidea*, *C. opuntiae*, and *C. prasinoides*. Mycotaxon 108: 467–477. https://doi.org/10.5248/108.467
- **Boidin J, Gilles G** (2004) Homobasidiomycètes Aphyllophorales non porés à basides dominantes à 2 (3) stérigmates. Bulletin de la Société Mycologique de France 119(1–2): 1–17.
- Carlier FX, Bitew A, Castillo G, Decock C (2004) Some Coniophoraceae (Basidiomycetes, Boletales) from the Ethiopian highlands: *Coniophora bimacrospora*, sp. nov. and a note on the phylogenetic relationships of *Serpula similis* and *Gyrodontium*. Cryptogamie Mycologie 25: 261–275.
- Cochrane G, Karsch-Mizrachi I, Nakamura Y (2011) The International Nucleotide Sequence Database Collaboration. Nucleis Acid Research 39: 15–18. https://doi.org/10.1093/nar/gkq1150
- Cochrane G, Karsch-Mizrachi I, Nakamura Y (2016) The International Nucleotide Sequence Database Collaboration. Nucleis Acid Research 44: 48–50. https://doi.org/10.1093/nar/gkq1323
- Crous PW, Wingfield MJ, Guarro J, Hernández-Restrepo M, Sutton DA, Acharya K, Barber PA, Boekhout T, Dimitrov RA, Dueñas M, Dutta AK, Gené J, Gouliamova DE, Groenewald M, Lombard L, Morozova OV, Sarkar J, Smith MTh, Stchigel AM, Wiederhold NP, Alexandrova AV, Antelmi I, Armengol J, Barnes I, Cano-Lira JF, Castañeda Ruiz RF, Contu M, Courtecuisse PrR, da Silveira AL, Decock CA, de Goes A, Edathodu J, Ercole E, Firmino AC, Fourie A, Fournier J, Furtado EL, Geering ADW, Gershenzon J, Giraldo A, Gramaje D, Hammerbacher A, He X-L, Haryadi D, Khemmuk W, Kovalenko AE, Krawczynski R, Laich F, Lechat C, Lopes UP, Madrid H, Malysheva EF, Marín-Felix Y, Martín MP, Mostert L, Nigro F, Pereira OL, Picillo B, Pinho DB, Popov ES, Rodas Peláez CA, Rooney-Latham S, Sandoval-Denis M, Shivas RG, Silva V, Stoilova-Disheva MM, Telleria MT, Ullah C, Unsicker SB, van der Merwe NA, Vizzini A, Wagner H-G, Wong PTW, Wood AR, Groenewald JZ (2015)

- Fungal Planet Description Sheets: 320–370. Persoonia 34: 167–266. https://doi.org/10.3767/003158515x688433
- Crous PW, Wingfield MJ, Richardson DM, Le Roux JJ, Strasberg D, Edwards J, Roets F, Hubka V, Taylor PWJ, Heykoop M, Martín MP, Moreno G, Sutton DA, Wiederhold NP, Barnes CW, Carlavilla JR, Gené J. Giraldo A, Guarnaccia V, Guarro J, Hernández-Restrepo M, Kolařík M, Manjón JL, Pascoe IG, Popov ES, Sandoval-Denis M, Woudenberg JC, Acharya K, Alexandrova AV, Alvarado P, Barbosa RN, Baseia IG, Blanchette RA, Boekhout T, Burgess TI, Cano-Lira JF, Cmoková A, Dimitrov RA, Dyakov MYu, Dueñas M., Dutta AK, Esteve-Raventós F, Fedosova AG, Fournier J, Gamboa P, Gouliamova DE, Grebenc T, Groenewald M, Hanse B, Hardy GEStJ, Held BW, Jurjević Ž, Kaewgrajang T, Latha KPD, Lombard L, Luangsa-ard JJ, Lysková P, Mallátová N, Manimohan P, Miller AN, Mirabolfathy M, Morozova OV, Obodai M, Oliveira NT, Ordóñez ME, Otto EC, Paloi S, Peterson SW, Phosri C, Roux J, Salazar WA, Sánchez A, Sarria GA, Shin H-D, Silva BDB, Silva GA, Smith MTh, Souza-Motta CM, Stchigel AM, Stoilova-Disheva MM, Sulzbacher MA, Telleria MT, Toapanta C, Traba JM, Valenzuela-Lopez N, Watling R, Groenewald JZ (2016) Fungal Planet description sheets: 400–468. Persoonia 36: 316–458. https://doi. org/10.3767/003158516x692185
- Demetriou MC, Thompson GA, Wright GC, Taylor KC (2000) A molecular approach for the diagnosis of wood rotting disease in desert citrus. Mycologia 92: 1214–1219. https://doi.org/10.1080/00275514.2000.12061269
- **Duarte MC, Romeiras MR** (2009) Cape Verde Islands. In: Gillespie RG, Clague DA (Eds.) Encyclopedia of islands. Encyclopedias of the natural world. University of California Press, Berkeley, California, USA, 143–148.
- **Gilbertson RL, Burdsall HH, Canfield ER** (1976) Fungi that decay mesquite in southern Arizona. Mycotaxon 3: 487–551.
- Gilbertson RL, Matheron ME, Bigelow DM (1996) Biology and control of *Coniophora* causing decay and decline in Arizona citrus. Citrus Research Report 1996: Series P-105, 370105. http://hdl.handle.net/10150/220551
- **Ginns J** (1982) A monograph of the genus *Coniophora* (Aphyllophorales, Basidiomycetes). Opera Botanica 61: 1–61.
- **Hallenberg N** (1985) The Lachnocladiaceae and Coniophoraceae of North Europe. Fungiflora, Oslo, Sweden, 96 pp.
- **Kauserud H, Shalchian-Tabrizi K, Decock C** (2007) Multilocus sequencing reveals multiple geographically structured lineages of *Coniophora arida* and *C. olivacea* (Boletales) in North America. Mycologia 99 (5): 705–713. https://doi.org/10.1080/15572536.2007.11832534
- Kelly KL, Judd DB (1976) Color. Universal language and dictionary of names. National Bureau of Standards, Special Publication 440. U.S. Government Printing Office, Washington DC, USA, 184 pp.
- **Lindsey JP, Gilbertson RL** (1975) Wood-inhabiting Homobasidiomycetes on Saguaro in Arizona. Mycotaxon 2: 83–103.
- Lygis V, Vasiliauskas R, Larsson K-H, Stenlid J (2005) Wood-inhabiting fungi in stems of *Fraxinus excelsior* in declining ash stands of northern Lithuania, with par-

- ticular reference to *Armillaria cepistipes*. Scandinavian Journal of Forest Research 20: 337–346. https://doi.org/10.1080/02827580510036238
- Martín MP, Cruz RHSF, Dueñas M, Baseia IG, Telleria MT (2015) *Cyathus lignilantanae* sp. nov., a new species of bird's nest fungi (Basidiomycota) from Cape Verde Archipelago. Phytotaxa 236: 161–172. https://doi.org/10.11646/phytotaxa.236.2.5
- **Martín MP, Raidl S** (2002) The taxonomic position of *Rhizopogon melanogastroides* (Boletales). Mycotaxon 84: 221–228.
- Matheron ME, Gilbertson RL, Matejka JC (1992) *Coniophora* sp. implicated in rapid development of wood rot on living branches of lemon trees in Arizona (Abstr.) Phytopathology 92: S52
- **Matheron ME, Porchas M, Bigelow DM** (2006) Factors affecting the development of wood rot on lemon trees infected with *Antrodia sinuosa*, *Coniophora eremophila* and a *Nudulisporium* sp. Plant Disease 90: 554–558. https://doi.org/10.1094/pd-90-0554
- Mauk PA, Adaskaveg JE (2000) Preliminary survey of southern California desert lemon groves for detection of *Coniophora* spp. Citrus Research Board 2000 Annual Report. 3 pp. http://www.agriculturedefensecoalition.org/sites/default/files/pdfs/28T_2000_Arizona_Lemon_Tree_Decline_Arizona_California_2000_Research_Study.pdf. Accessed on: 2023-04-10.
- Maurice S, Le Floch G, Le Bras-Quere M, Barbier (2011) Improved molecular methods to characterise *Serpula lacrymans* and other Basidiomycetes involved in wood decay. Journal of Microbiological Methods 84 (2): 208–215.
- Menkis A, Allmer J, Vasiliauskas R, Lygis V, Stenlid J, Finlay R (2004) Ecology and molecular characterization of dark septate fungi from roots, living stems, coarse and fine woody debris. Mycological Research 108 (8): 965–973.
- **Moreth U, Schmidt O** (2000) Identification of indoor rot fungi by taxon-specific priming polymerase chain reaction. Holzforschung 54: 1–8. https://doi.org/10.1515/hf. 2000.001
- **Parmasto** E (2005) New data on rare species of *Hydnochaete* and *Hymenochaete* (Hymenochaetales). Mycotaxon 91: 137–163.
- **Rambaut A** (2002) Se-Al: Sequences Alignment Editor v2.0a11. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.
- **Schmidt O, Grimm K, Moreth U** (2002) Molecular identity of species and isolates of the *Coniophora* cellar fungi. Holzforschung 56: 563–571. https://doi.org/10.1515/hf. 2002.086
- **Schmidt O, Moreth** (2000) Species-specific PCR primers in the rDNA-ITS region as a diagnostic tool for *Serpula lacrymans*. Mycological Research 104 (1): 69–72. https://doi.org/10.1017/S0953756299001562
- **Schmidt O, Moreth U** (2008) Ribosomal DNA intergenic spacer of indoor wood-decay fungi. Holzforschung 62: 759–764. https://doi.org/10.1515/hf.2008.12
- Swofford DL (2003) PAUP* Phylogenetic analysis using par-

- simony (*and other methods). Version 4. Sinauer Associates, Sunderland, USA.
- Telleria MT, Melo M, Dueñas M, Salcedo I, Cardoso J, Rodríguez-Armas JL, Beltrán-Tejera E (2008) Corticioid fungi (Basidiomycota) from Madeira Island. Mycotaxon 106: 419–422.
- Telleria MT, Melo M, Dueñas M, Rodríguez-Armas JL, Beltrán-Tejera E, Cardoso J, Salcedo I (2009) Diversity and richness of corticioid fungi (Basidiomycota) on Azores Islands: a preliminary survey. Nova Hedwigia 88: 285–308.
- https://doi.org/10.1127/0029-5035/2009/0088-0285
- **Telleria MT, Dueñas M, Martín MP** (2017) Three new species of *Hydnophlebia* (Polyporales, Basidiomycota) from the Macaronesian Islands. MycoKeys 27: 39–64. https://doi.org/10.3897/mycokeys.27.14866
- Wilcox M, Matheron M, Bigelow D, Gilbertson RL (1996) Guidelines for the control of *Coniophora eremophila* on lemon trees in southwestern Arizona. The University of Arizona. http://ag.arizona.edu/pubs/crops/az9622.pdf. Accessed on: 2023-04-10.