P1 Chapter 9: Trigonometric Ratios

Chapter Practice

Key Points

1 This version of the cosine rule is used to find a missing side if you know two sides and the angle between them:

$$a^2 = b^2 + c^2 - 2bc \cos A$$

2 This version of the cosine rule is used to find an angle if you know all three sides:

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

3 This version of the sine rule is used to find the length of a missing side:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

4 This version of the sine rule is used to find a missing angle:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

5 The sine rule sometimes produces two possible solutions for a missing angle:

$$\sin \theta = \sin (180^{\circ} - \theta)$$

6 Area of a triangle = $\frac{1}{2}ab \sin C$.

Key Points

- 7 The graphs of sine, cosine and tangent are **periodic**. They repeat themselves after a certain interval.
 - The graph of $y = \sin \theta$: repeats every 360° and crosses the x-axis at ..., -180°, 0, 180°, 360°, ...
 - has a maximum value of 1 and a minimum value of −1.
 - The graph of $y = \cos \theta$: repeats every 360° and crosses the x-axis at ..., -90°, 90°, 270°, 450°, ...
 - has a maximum value of 1 and a minimum value of -1
 - The graph of $y = \tan \theta$: repeats every 180° and crosses the x-axis at ... -180°, 0°, 180°, 360°, ...
 - · has no maximum or minimum value
 - has vertical asymptotes at $x = -90^{\circ}$, $x = 90^{\circ}$, $x = 270^{\circ}$, ...

Give non-exact answers to 3 significant figures.

- 1 Triangle ABC has area 10 cm^2 . AB = 6 cm, BC = 8 cm and $\angle ABC$ is obtuse. Find:
 - a the size of $\angle ABC$
 - **b** the length of AC
- 2 In each triangle below, find the size of x and the area of the triangle.

a

b

c

- 3 The sides of a triangle are 3 cm, 5 cm and 7 cm respectively. Show that the largest angle is 120°, and find the area of the triangle.
- 4 In each of the figures below calculate the total area.

b

- 5 In $\triangle ABC$, AB = 10 cm, $BC = a\sqrt{3}$ cm, $AC = 5\sqrt{13}$ cm and $\angle ABC = 150^{\circ}$. Calculate:
 - a the value of a
 - **b** the exact area of $\triangle ABC$.

- 6 In a triangle, the largest side has length 2 cm and one of the other sides has length $\sqrt{2}$ cm. Given that the area of the triangle is 1 cm², show that the triangle is right-angled and isosceles.
- 7 The three points A, B and C, with coordinates A(0, 1), B(3, 4) and C(1, 3) respectively, are joined to form a triangle.
 - a Show that $\cos \angle ACB = -\frac{4}{5}$ (5 marks)
 - **b** Calculate the area of $\triangle ABC$. (2 marks)
- 8 The longest side of a triangle has length (2x 1) cm. The other sides have lengths (x 1) cm and (x + 1) cm. Given that the largest angle is 120° , work out
 - a the value of x (5 marks)
 - b the area of the triangle. (3 marks)
- 9 A park is in the shape of a triangle ABC as shown.
 - A park keeper walks due north from his hut at A until he reaches point B. He then walks on a bearing of 110° to point C.
 - a Find how far he is from his hut when at point C.Give your answer in km to 3 s.f. (3 marks)
 - b Work out the bearing of the hut from point C.
 Give your answer to the nearest degree. (3 marks)
 - c Work out the area of the park. (3 marks)

10 A windmill has four identical triangular sails made from wood. If each triangle has sides of length 12 m, 15 m and 20 m, work out the total area of wood needed. (5 marks)

- 11 Two points, A and B are on level ground. A church tower at point C has an angle of elevation from A of 15° and an angle of elevation from B of 32°. A and B are both on the same side of C, and A, B and C lie on the same straight line. The distance $AB = 75 \,\mathrm{m}$. Find the height of the church tower. (4 marks)
- 12 Describe geometrically the transformations which map:
 - a the graph of $y = \tan x$ onto the graph of $\tan \frac{1}{2}x$
 - **b** the graph of $y = \tan \frac{1}{2}x$ onto the graph of $3 + \tan \frac{1}{2}x$
 - c the graph of $y = \cos x$ onto the graph of $-\cos x$
 - **d** the graph of $y = \sin(x 10)$ onto the graph of $\sin(x + 10)$.
- 13 a Sketch on the same set of axes, in the interval $0 \le x \le 180^\circ$, the graphs of $y = \tan(x 45^\circ)$ and $y = -2\cos x$, showing the coordinates of points of intersection with the axes. (6 marks)
 - **b** Deduce the number of solutions of the equation $\tan(x-45^\circ) + 2\cos x = 0$, in the interval $0 \le x \le 180^{\circ}$. (2 marks)
- **14** The diagram shows part of the graph of y = f(x). It crosses the x-axis at $A(120^{\circ}, 0)$ and B(p, 0). It crosses the y-axis at C(0, q) and has a maximum value at D, as shown.

Given that $f(x) = \sin(x + k)$, where k > 0, write down

b the coordinates of D

c the smallest value of k

d the value of q.

(1 mark)

(1 mark)

(1 mark)

(1 mark)

15 Consider the function $f(x) = \sin px$, $p \in \mathbb{R}$, $0 \le x \le 360^{\circ}$.

The closest point to the origin that the graph of f(x) crosses the x-axis has x-coordinate 36°.

a Determine the value of p and sketch the graph of y = f(x).

(5 marks)

b Write down the period of f(x).

(1 mark)

- 16 The graph below shows $y = \sin \theta$, $0 \le \theta \le 360^{\circ}$, with one value of $\theta(\theta = \alpha)$ marked on the axis.
 - **a** Copy the graph and mark on the θ -axis the positions of $180^{\circ} \alpha$, $180^{\circ} + \alpha$, and $360^{\circ} \alpha$.
 - **b** Verify that: $\sin \alpha = \sin (180^\circ \alpha) = -\sin (180^\circ + \alpha) = -\sin (360^\circ \alpha).$

- 17 a Sketch on separate sets of axes the graphs of $y = \cos \theta$ ($0 \le \theta \le 360^{\circ}$) and $y = \tan \theta$ ($0 \le \theta \le 360^{\circ}$), and on each θ -axis mark the point (α , 0) as in question 16.
 - **b** Verify that:

i
$$\cos \alpha = -\cos (180^{\circ} - \alpha) = -\cos (180^{\circ} + \alpha) = \cos (360^{\circ} - \alpha)$$

- ii $\tan \alpha = -\tan (180^{\circ} \alpha) = \tan (180^{\circ} + \alpha) = -\tan (360^{\circ} \alpha)$
- 18 A series of sand dunes has a cross-section which can be modelled using a sine curve of the form $y = \sin(60x)^\circ$ where x is the length of the series of dunes in metres.
 - a Draw the graph of $y = \sin(60x)^{\circ}$ for $0 \le x \le 24^{\circ}$.

(3 marks)

b Write down the number of sand dunes in this model.

(1 mark)

c Give one reason why this may not be a realistic model.

(1 mark)

Chapter Answers

a 155°

b 13.7 cm

2 **a** $x = 49.5^{\circ}$, area = 1.37 cm²

b $x = 55.2^{\circ}$, area = $10.6 \,\mathrm{cm}^2$ $x = 117^{\circ}$, area = 6.66 cm²

 6.50 cm^2

a 36.1 cm² **b** 12.0 cm²

b $\frac{25\sqrt{3}}{2}$ cm²

area = $\frac{1}{2}ab\sin C$

$$1 = \frac{1}{2} \times 2\sqrt{2} \sin C$$

$$\frac{1}{\sqrt{2}} = \sin C \Rightarrow C = 45^{\circ}$$

Use the cosine rule to find the other side:

$$x^{2} - 2^{2} + (\sqrt{2})^{2} - 2 \times 2\sqrt{2} \cos C \Rightarrow x = \sqrt{2} \text{ cm}$$

So the triangle is isosceles, with two 45° angles, thus is also right-angled.

a $AC = \sqrt{5}$, $AB = \sqrt{18}$, $BC = \sqrt{5}$

$$\cos \angle ACB = \frac{AC^2 + BC^2 - AB^2}{2 \times AC \times BC}$$

$$=\frac{5+5-18}{2\times\sqrt{5}\times\sqrt{5}}$$

$$=-\frac{8}{10}=-\frac{4}{5}$$

b $1\frac{1}{2}$ cm²

b
$$\frac{15\sqrt{3}}{4}$$
 (6.50) cm²

a 1.50 km

b 241°

c 0.789 km²

10 359 m²

11 35.2 m

12 a A stretch of scale factor 2 in the x direction.

b A translation of +3 in the *y* direction.

c A reflection in the x-axis.

d A translation of -20 in the x direction.

13 a

There are no solutions.

14 a 300

b (30, 1)

c 60

Chapter Answers

- b 72°
- 16 a The four shaded regions are congruent.

b $\sin \alpha$ and $\sin (180^{\circ} - \alpha)$ have the same y value, (call it k)

so
$$\sin \alpha = \sin (180^{\circ} - \alpha)$$

 $\sin (180^{\circ} - \alpha)$ and $\sin (360^{\circ} - \alpha)$ have the same y value, (which will be -k)

so
$$\sin \alpha = \sin (180^{\circ} - \alpha)$$

- $= -\sin(180^{\circ} + \alpha)$
- $= -\sin(360^{\circ} \alpha)$

17 a

- **b** i From the graph of $y = \cos \theta$, which shows four congruent shaded regions, if the y value at α is k, then y at $180^{\circ} \alpha$ is -k, y at $180^{\circ} \alpha = -k$ and y at $360^{\circ} \alpha = +k$ so $\cos \alpha = -\cos (180^{\circ} \alpha)$
 - $= -\cos(180^{\circ} + \alpha)$
 - $= \cos (360^{\circ} \alpha)$
 - ii From the graph of $y = \tan \theta$, if the y value at α is k, then at $180^{\circ} \alpha$ it is -k, at $180^{\circ} + \alpha$ it is +k and at $360^{\circ} \alpha$ it is -k, so $\tan \alpha = -\tan (180^{\circ} \alpha)$ = $+\tan (180^{\circ} + \alpha)$ = $-\tan (360^{\circ} \alpha)$

Chapter Answers

b 4

c The dunes may not all be the same height.

Challenge

Using the sine rule:

sin (180° –
$$\angle ADB$$
 – $\angle AEB$) = $\frac{5\left(\frac{1}{\sqrt{5}}\right)}{\sqrt{10}} = \frac{1}{\sqrt{2}}$
180° – $\angle ADB$ – $\angle AEB$ = 135° (obtuse)
so $\angle ADB$ + $\angle B$ = 45° = $\angle ACB$