

AON6504

30V N-Channel AlphaMOS

General Description

- Latest Trench Power AlphaMOS (αMOS LV) technology
- Very Low RDS(on) at 4.5V_{GS}
- Low Gate Charge
- High Current Capability
- RoHS and Halogen-Free Compliant

Product Summary

30V I_D (at V_{GS}=10V) 85A $R_{\text{DS(ON)}}$ (at $V_{\text{GS}}\text{=}10\text{V})$ $< 2.1 \text{m}\Omega$ $R_{DS(ON)}$ (at $V_{GS} = 4.5V$) $< 3.2 \text{m}\Omega$

100% UIS Tested 100% R_g Tested

Application

- DC/DC Converters in Computing, Servers, and POL
- Isolated DC/DC Converters in Telecom and Industrial

DFN5X6 **Top View Bottom View**

		otherwise noted

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	30	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain	T _C =25℃		85		
Current ^G	T _C =100℃	ID	66	A	
Pulsed Drain Current C		I _{DM}	322		
Continuous Drain	T _A =25℃		51	Δ	
Current	T _A =70℃	IDSM	41	A	
Avalanche Current ^C		I _{AS}	60	A	
Avalanche energy L=0.05mH ^C		E _{AS}	90	mJ	
V _{DS} Spike	100ns	V _{SPIKE}	36	V	
	T _C =25℃		83	W	
Power Dissipation ^B	T _C =100℃	$-P_{D}$	33	VV	
	T _A =25℃	В	7.3	W	
Power Dissipation ^A T _A =70℃		P _{DSM}	4.7	VV	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	C	

Thermal Characteristics							
Parameter		Symbol	Тур	Max	Units		
Maximum Junction-to-Ambient ^A	t ≤ 10s	R _{θJA}	14	17	°C/W		
Maximum Junction-to-Ambient AD	Steady-State		40	55	°C/W		
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	1.1	1.5	℃/W		

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC P	PARAMETERS			•	•	
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =30V, V_{GS} =0V T_{I} =55 C			1 5	μΑ
I _{GSS}	Gate-Body leakage current	$V_{DS} = 0V, V_{GS} = \pm 20V$			100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS, I_D}=250\mu A$	1.3	1.7	2.1	V
` '		V _{GS} =10V, I _D =20A		1.75	2.1	0
R _{DS(ON)}	Static Drain-Source On-Resistance	T _J =125℃		2.55	3.15	mΩ
		V _{GS} =4.5V, I _D =20A		2.4	3.2	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =20A		120		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.7	1	V
I _S	Maximum Body-Diode Continuous Current ^G				85	Α
DYNAMIC	PARAMETERS			•	•	•
C _{iss}	Input Capacitance			2719		pF
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz		1204		pF
C_{rss}	Reverse Transfer Capacitance			169		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	0.9	2.0	3	Ω
SWITCHII	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			44	60	nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =20A		21	28	nC
Q_{gs}	Gate Source Charge	VGS-10V, VDS-13V, ID-20A		9		nC
Q_{gd}	Gate Drain Charge			7		nC
Q_{gs}	Gate Source Charge V _{GS} =4.5V, V _{DS} =15V, I			9		nC
Q_{gd}	Gate Drain Charge	VGS= 1.0 V, VDS= 1.0 V, ID=2.0 X		7		nC
t _{D(on)}	Turn-On DelayTime]		9.7		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =0.75 Ω ,		5.2		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		32.5		ns
t _f	Turn-Off Fall Time			10.3		ns
t _{rr}	Body Diode Reverse Recovery Time I _F =20A, dI/dt=500A/μs			19.6		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=500A/μs		42.7		nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R_{0JA} and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.

B. The power dissipation P_D is based on T_{J(MAX)}=150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature T_{J(MAX)}=150° C.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

D. The R_{BUA} is the sum of the thermal impedance from junction to case R_{BUC} and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 14: Single Pulse Power Rating Junction-toAmbient (Note H)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

