Usa corrector de Ingles!

Initial Guess

Renzo Miguel Caballero Rosas

March 13, 2020

Quadratic mean minimization

We consider the transition $\Delta V_i = V_{i+1} - V_i$ with $\Delta t = t_{i+1} - t_i$. $(V_{i+1}|V_i)$ is a random variable which mean can be approximated by the solution of the system $dE[V] dt = -theta \ t \ E[V] dt$

Text
$$\begin{cases} dV = -\theta_t V dt \\ V(t_i) = V_i, \end{cases}$$

evaluated in t_{i+1} (i.e., $V(t_{i+1})$). Then, the random variable $(V_{i+1} - V(t_{i+1}))$ has approximately zero mean.

If we assume that $\theta_t = \theta_0$ for all $t \in [t_i, t_{i+1}]$, then $V(t_{i+1}) = V_i e^{-\theta_0 \Delta t}$. If we have a total of n transitions, then:

$$heta_0^* pprox \arg\min_{ heta_0} \left| \sum_{i=1}^n \left(V_{i+1} - V_i e^{-\theta_0 \Delta t} \right)^2 \right|.$$
 (1)

Quadratic mean minimization

We take the first order approximation w.r.t. θ_0

$$e^{- heta_0 \Delta t} = 1 - heta_0 \Delta t + \mathscr{O}(heta_0^2),$$

and introduce it in equation (1). We get

$$heta_0^* pprox rg \min_{ heta_0} \underbrace{\left[\sum_{i=1}^n \left(V_{i+1} - V_i (1 - heta_0 \Delta t) \right)^2 \right]}_{:=f(heta_0)}.$$

As $f(\theta_0)$ is convex in θ_0 , solving (2) (finding θ_0^*) is equivalent to solving $\frac{\partial f}{\partial \theta_0}(\theta_0^*) = 0$.

Quadratic mean minimization

$$\frac{\partial f}{\partial \theta_0} = \sum_{i=1}^n 2(-V_i)(-\Delta t)(V_{i+1} - V_i(1 - \theta_0 \Delta t))
= \sum_{i=1}^n 2V_i \Delta t(V_{i+1} - V_i(1 - \theta_0 \Delta t))
= \sum_{i=1}^n 2V_{i+1}V_i \Delta t - 2V_i^2 \Delta t + 2V_i^2 \Delta t^2 \theta_0.$$

Then, θ_0^* satisfies

$$\theta_0^* \approx \frac{\sum_{i=1}^n V_i \Delta t (V_i - V_{i+1})}{\sum_{i=1}^n (V_i \Delta t)^2}.$$
 (3)

Notice that θ_0^* has dimension **time**⁻¹.

Quadratic variation

One more time, we approximate the SDE by its E-M scheme. In particular, we approximate the Itô quadratic variation with the discrete one:

- ltô process quadratic variation: $[V]_t = \int_0^t \sigma_s^2 ds$.
- lacktriangle Discrete process quadratic variation: $[V]_t = \sum_{0 < s \le t} (\Delta V_s)^2$.

Then, considering Δt the time between measurements, we approximate:

$$\theta_0^* \alpha^* \approx \frac{\sum_{i=1}^n (\Delta V_i)^2}{2\Delta t \sum_{i=1}^n (V_i + p_i)(1 - V_i - p_i)}.$$
(4)

Initial parameters

We first approximate $\theta_0^*\alpha^*$ from (4). Then, using all the data, assuming $\theta_t=\theta_0$ and equation (3), we can approximate θ_0^* . However, as we have $\theta_0^*\alpha^*$, we can check for which days the assumption $\theta_t=\theta_0$ was wrong, and remove that days from all the data.

We repeat the process until the assumption is correct.

Boundedness of θ_t

We have that

$$heta_t = \max\left(heta_0, rac{lpha heta_0 + |2\dot{p}_t|}{2\min(1-p_t, p_t)}
ight).$$

Then, if $p_t \in [\delta, 1-\delta]$ for some $0 < \delta < \frac{1}{2}$ and all $t \in [0, T]$, then $\theta_t < M(\delta) < \infty$ for all $t \in [0, T]$. So, using the corrected forecast

$$p_t^\delta = egin{cases} \delta & ext{if} & p_t < \delta \ p_t & ext{if} & \delta \leq p_t < 1 - \delta \ 1 - \delta & ext{if} & p_t > 1 - \delta, \end{cases}$$

we guaranty the boundedness of θ_t for all $t \in [0, T]$.