Data Mining as Exploratory Data Analysis

Zachary Jones

The Problem(s)

presumptions

- social systems are complex (i.e., not linear, additive, or static)
- causal identification is difficult/impossible with many data sources
- theory not generally predictively reliable (may be exceptions to this)

conclusions

- confidence in assumptions (assumed joint distribution, causal structure, etc.) is low
- many theoretical guarantees do not apply
- analysis is exploratory/descriptive and/or predictive
- ability to discover unexpected patterns is desirable (i.e., data driven discovery)

Data Mining

Not a bad thing.

- \triangleright estimation of f(X) under minimal assumptions
- minimize expected prediction error
- adapt to data (within a representation class)

however, $\hat{f}(X)$ is often not (directly) interpretable!

Supervised Learning (I)

if
$$(X, Y) \sim \mathbb{P}_{\mathcal{X} \times \mathcal{Y}}$$
 estimate $f: X \to Y$ using (\mathbf{x}, \mathbf{y})

rather than specifying in detail what f looks like assume f is approximated by some class of functions $\mathcal F$ and find the member of that class closest to f (which may not be in $\mathcal F$) according to the risk function

 $\mathcal F$ and find the closest $f^*\in\mathcal F$ to f (not necessarily in $\mathcal F$) as measured by a risk function, which is the expected cost or loss over $\mathbb P_{\mathcal X\times\mathcal Y}$

$$R(f) = \mathbb{E}_{\mathbb{P}}[L(Y, f(X))]$$

Supervised Learning (II)

- Consistency for f is hard! (but some algorithms are provably consistent)
- ▶ In general learning theory is (seems) quite difficult
- Estimation/learning is often heuristic (i.e., not globally optimal) because the problem is higher dimensional (goodbye intuitions!) and not (necessarily) well-behaved (good behavior comes at the cost of assumptions)
- Some examples...

Decision Trees (I)

Idea: approximate f by recursively splitting ${\bf y}$ into bins until ${\bf y}$ is sufficiently homogenous in said bins: predict by using a constant function of ${\bf y}$ in each bin

The result is a regression/classification where on i

- ▶ Pros: interpretability, fitting/evaluation speed
- Cons: overadaptation, variance (sharp boundaries), greedy (some work on global optimality though, see evtree)

Decision Trees (II)

Figure 1:Predicting partisanship from age and ideology (simulated).

Decision Trees (III)

Figure 2: \hat{f} learned from $\sin(x), x \sim U(-4, 4)$ with a decision tree.

Ensembles of Decision Trees

aggregation (bagging) - sampling from \mathbf{x} , training on the psuedosamples, and aggregating the predictions reduces the variance of \hat{f} by decreasing the correlation between the predictions made by the trees grown on different psuedosamples

meta-learning (boosting) - gradient descent in function space \equiv forward stagewise additive modelling (e.g., Buhlmann and Hothorn 2007, ESL 10)

randomization (random forests) - a further decrease in variance beyond aggregation by randomly sampling the available features at each split

Random Forests (I)

Nice for exploratory data analysis for:

- computational reasons (in progress: edarf)
- usability for many tasks (i.e., regression, classification, survival, and multivariate combinations thereof)
- some (studied) methods for interpretation (e.g., Strobl et. al. 2007, 2008, Louppe 2014)
- low number of tuning/hyperparameters (features available at each node, depth)
- good empirical performance
- some theory (Brieman 2001, Biau et. al. 2008, Biau 2012, Wager et. al. 2014, etc.)

Random Forests (II)

Figure 3: \hat{f} learned from $\sin(x), x \sim U(-4, 4)$ with a randomized, bagged, ensemble of decision trees.

Supervised Learning for Description/EDA

Since most machine learning methods are designed for prediction their generalization error (i.e., risk) is low (because they are attempting to make the optimal bias/variance tradeoff, see, e.g., Fariss and Jones (2015) or any machine learning textbook)

Predicting a complex phenomena reliably gives us some basis on which to interpret \hat{f} (though obviously this is not a causal inference)

But what did \hat{f} learn about f by using X?

Interpreting Black Box Functions (I)

The Marginal Distribution (A)

$$X = X_S \cup X_C$$

S we care about and C we do not (at the moment)

The marginal distribution summarizes how \hat{f} depends on X_s .

$$\hat{f}_S(X_S) = \mathbb{E}_{X_C} \hat{f}(X_S, X_C)$$

The expectation, variance, multiple moments, or the full marginal distribution can then be used.

Interpreting Black Box Functions (I)

The Marginal Distribution (B)

Ideas from Friedman (2001), ESL, and Goldstein et. al. (2015)

We have a function which we can evaluate, so functions of the learned joint distribution are easy!

$$\hat{f}_{S}(\mathbf{x}_{S}) = \hat{\mathbb{E}}_{X_{C}}(\hat{f}(\mathbf{x})) = \frac{1}{N} \sum_{i=1}^{N} \hat{f}(\mathbf{x}_{S}, \mathbf{x}_{C}^{(i)})$$

$$\hat{f}_{S}(\mathbf{x}_{S}^{(i)}) = \hat{\mathbb{E}}_{X_{C}}^{(i)}(\mathbf{x}^{(i)}) = \hat{f}(\mathbf{x}_{s}, \mathbf{x}_{c}^{(i)})$$

Interpreting Black Box Functions (II)

Derivatives

If \hat{f} is additive in (X_S, X_C) then:

$$\frac{\partial \hat{f}}{\partial X_S} = g(X_S)$$

If not then:

$$\frac{\partial \hat{f}}{\partial X_S} = g(X_S)h(X_C)$$

Numerical differentiation can be applied if \hat{f} continuous and in estimating the derivative of the individual conditional expectation function we can get an idea of whether or not \hat{f} is additive in (X_S, X_C) .

Interpretation of Black Box Functions (III)

Feature/Variable Importance

How important is X_S in achieving $R(\hat{f})$?

If the theoretical joint distribution $\mathbb{P}(Y, X_S, X_C) = \mathbb{P}(Y, X_C)\mathbb{P}(X_S)$ then permuting X_S won't increase the prediction error.

$$I_{X_S} = \frac{1}{N} \sum_{i=1}^{N} C(\mathbf{x}_{S\pi}^{(i)}, \mathbf{x}_{C}^{(i)})$$

$$I_{X_S^{(i)}} = C(\mathbf{x}_{S\pi}^{(i)}, \mathbf{x}_C^{(i)})$$

By using the individual (i) importance rather than the expectation combined with a density estimator, we can estimate the density of the cost function under $\mathbf{x}_{S\pi}$ for different points in the distribution of Y (as estimated from \mathbf{y}).

Future Work on Interpretation

All of this will be in MLR!

- extrapolation detection
- more variance estimation
- functional ANOVA decomposition (e.g., best additive decomposition of \hat{f} , c.f., Giles Hooker's work)
- local feature importance and density estimation

Future Work on Learning/Estimation

- dependent data! (coming to MLR)
- conditional independence not generally different (i.e., include structure as features)
- estimation of latent variables
- resampling methods
- preprocessing/filtering

Relevant Papers/Writing on Interpretation

- ► ESL (10.13.2)
- ► Freidman (2001)
- ► Roosen (1995)
- ► Hooker (2004, 2007)
- ▶ Goldstein et. al. (2015)

Implementations

- ▶ mlr: Machine Learning with R (contributor, first via GSoC)
- edarf: Exploratory Data Analysis using Random Forests (my package)
- ► ICEbox: Individual Conditional Expectation plot toolbox (Goldstein et. al. 2015)

On to the demonstration! (eda.R)

On my website under "Talks."