PHYS 20323/60323: Fall 2020 - LaTeX Example

1. Consider a particle confined in a two-dimensional infinite square well

$$V(x,y)=0, if0 \le x \le a, 0 < y < a$$

 $\infty, otherwise$

The eigenfunctions have the form:

$$\psi(x,y) = \frac{2}{a} \sin \frac{(n\pi x)}{a} \sin \frac{(m\pi y)}{a}$$

with the corresponding energies being given by:

$$E_{nm} = (n^2 + m^2) \frac{\pi^2 h^2}{2ma^2}$$

- (a) (5 points) What are the levels of degeneracy of the five lowest energy values?
- (b) (5 points) Consider a perturbation given by:

$$H' = a^2 V_0 \delta(x - \frac{a}{2}) \delta(y - \frac{a}{2})$$

Calculate the first order correction to the ground state energy

2. The following questions refer to stars in the Table below

Note: There may be multiple answers

Name	Mass	Luminosity	Lifetime	Temperature	Radius
Zeta	60. M _{sun}	$10^6 L_{sun}$	$8.0x10^5$ years		
Epsilon	$6.0~\mathrm{M}_{sun}$	$10^3 L_{sun}$		20,000 K	
Delta	$2.0~\mathrm{M}_{sun}$		$5.0 \times 10^{8} \text{ years}$		$2~\mathrm{R}_{sun}$
Beta	$1.3~\mathrm{M}_{sun}$	$3.5 L_{sun}$			
Alpha	$1.0~\mathrm{M}_{sun}$				$1 R_{sun}$
Gamma	$0.7~\mathrm{M}_{sun}$		4.5 x 10 ¹⁰ years	5000 K	

- (a) (4 points) Which of these stars will produce a planetary nebula at the end of their life.
- (b) (4 points) Elements heavier than *Carbon* will be produced in which stars.