DIGITAL METHODS FOR ANALYSING TEXTS //

02_Analysing text

Ana Valdivia
Research Associate
King's College London

ROAD MAP//

1. Corpus Preprocessing

2. Representing text

- 2.1. Enter the matrix
- 2.2. Discrete Representations
- 2.3. Distributed Representations
- 5.4. Discrete versus Continuous

How would you manually represent a corpus?

Think like a person would do it, and translate it into code.

Office documents

Features:

Term-matrix documents Embeddings

Docs	amp	brexit	euref	leav	remain	strongerin	vote	voteleav
738102860454498304	2	1	1	0	0	0	1	1
739933062281187329	0	0	1	2	2	0	1	0
745289444006170624	0	0	0	1	1	0	4	0
745501761289355264	0	0	0	0	7	0	0	0
745621915516149760	0	1	1	1	1	0	2	0
745649059231215616	1	0	0	1	1	1	2	0
745875415839965184	2	0	1	0	1	0	2	0
745922585494429697	1	0	1	0	1	1	2	0
745973624142725120	2	0	0	1	1	1	1	0
746108821479821312	0	0	1	0	4	0	1	0
			_					

Document decomposition

Figure 3-2. Document decomposition illustrating the distribution of meaning across paragraphs, sentences, and individual tokens

Features

Discrete features

Represents a feature with a specific meaning. Term-document matrix.

Continuous features

Do not *mean* anything anymore. They can not be interpreted. Word embeddings.

Unicode

Our programs will often need to deal with different languages, and different character sets.

- If you live in the English-speaking world you probably use ASCIIT.
- If you live in Europe you might use one of the extended Latin character sets, containing such characters as:
 - "ø" for Danish and Norwegian,
 - "ő" for Hungarian,
 - "n" for Spanish and Breton, and
 - "ň" for Czech and Slovak.

Unicode

Unicode supports over a million characters. Each character is assigned a number, called a code point.

In Python, code points are written in the form \uXXXX, where XXXX is the number in four-digit hexadecimal form.

Regular Expressions (regexpr)

Many linguistic processing tasks involve pattern matching. For example, we can find words ending with ed using endswith('ed').

Regular expressions give us a more powerful and flexible method for describing the character patterns we are interested in,

Table 3-3. Basic regular expression metacharacters, including wildcards, ranges, and closures

Operator	Behavior
	Wildcard, matches any character
^abc	Matches some pattern abc at the start of a string
abc\$	Matches some pattern abc at the end of a string
[abc]	Matches one of a set of characters
[A-Z0-9]	Matches one of a range of characters
ed ing s	Matches one of the specified strings (disjunction)
*	Zero or more of previous item, e.g., a^* , $[a-z]^*$ (also known as <i>Kleene Closure</i>)
+	One or more of previous item, e.g., $a+$, $[a-z]+$
?	Zero or one of the previous item (i.e., optional), e.g., a ?, $[a-z]$?
{n}	Exactly n repeats where n is a non-negative integer
{n,}	At least <i>n</i> repeats
{,n}	No more than <i>n</i> repeats
{m,n}	At least <i>m</i> and no more than <i>n</i> repeats
a(b c)+	Parentheses that indicate the scope of the operators

Discrete features

N-gran features

Figure 4 Schematic of a bag-of-words representation.

N = 1 : This is a sentence unigrams:	this, is, a, sentence
N = 2: This is a sentence bigrams:	this is, is a, a sentence
N = 3: This is a sentence trigrams:	this is a, is a sentenc

The Term-Document matrix

A document-term matrix is a mathematical matrix that describes the frequency of terms that occur in a collection of documents. In a document-term matrix, rows correspond to documents in the collection and columns correspond to terms.

Figure 3 Frequency distribution of the top 1,000 words in a random sample of tweets, following Zipf's law.

TF-IDF Counts

The term frequencyinverse document
frequency (tf-idf), is
a numerical statistic
that is intended to
reflect how important
a word is to a
document in a
collection or corpus.

LET'S CODE!

WE'LL BE BACK IN 15 MIN...

