Assignment 3

Automata & Model Checking

1. Illustrate the application of the CTL model checking algorithm to determine whether the LTS below satisfies the CTL formula $\phi = \forall \Diamond (a \lor \forall \bigcirc c)$, after first converting into existential normal form (ENF):

[10 marks]

- 2. In lectures, you saw nondeterministic finite automata (NFAs) for regular safety properties such as $\Box \neg fail$ and $\Box (a \to \bigcirc b)$. (Recall that the NFA should represent the bad prefixes for the safety property.) Draw an NFA for the regular safety property represented by each of the LTL formulae listed below.
 - (i) □ *a*
 - (ii) $\Box(a \to \bigcirc \Box c)$

[14 marks]

3. Below are an LTS \mathcal{M} and a nondeterministic Büchi automaton (NBA) $\mathcal{A}_{\neg\psi}$ representing the negation of an LTL formula ψ :

- (i) Illustrate the LTL model checking procedure for ψ on \mathcal{M} by constructing and analysing an appropriate LTS-NBA product.
- (ii) Give a suitable LTL formula for ψ and an explanation, in terms of the original LTS \mathcal{M} , why ψ is or is not satisfied.

[16 marks]