Постановка

Существует алфавит размера m. Сколько можно построить строк длины n, чтобы любая подстрока длины k являлась палиндромом. Подстрока - это палиндромом, если она одинаково читается как слева направо, так и справа налево.

Входные данные

Строка, содержащая три целых числа: n,m,k.

Выходные данные

Число равное количеству строк.

Пример 1

Входные данные	Выходные данные
1 1 1	1

Входные данные	Выходные данные
5 2 4	2

Постановка

В классе учатся n учеников. Учитель физкультуры поставил учеников в ряд. Силовые показвтели i-ого ученика равны a_i . Группа - не пустой непрерывный отрезок этого ряда. Силой группы является минимальный силовой показатель ученика в этой группе.

Учителю нужно узнать максимальную силу группы размером x, для всех $x \le n$.

Входные данные

В первой строке ввода записано целое число n, количество учеников. Во второй строке записано n целых чисел $a_1, a_2, ..., a_n$ — силовых показателей.

Выходные данные

Выведите n целых чисел - максимальных сил групп для заданных значений x.

Входные данные	Выходные данные
$\begin{bmatrix} 10 \\ 1 \ 2 \ 3 \ 4 \ 5 \ 4 \ 3 \ 2 \ 1 \ 6 \end{bmatrix}$	6 4 4 3 3 2 2 1 1 1

Постановка

Дана последовательность длиной n. Найдите подпоследовательность длины k ($k \le n$) с минимальной ценой. Цена подпоследовательности определяется как минимум между:

- Максимумом по числам, стоящим на нечетных позициях.
- Максимумом по числам, стоящим на четных позициях.

Входные данные

В первой строке записаны два ценлых числа n - длина последовательности и k - длина подпоследовательности. Во второй строке записано n целых чисел $a_1, a_2, ..., a_n$ - элементы последовательности.

Выходные данные

Выведите минимальную цену подпоследовательности размера k.

Пример 1

Входные данные	Выходные данные
4 2	1
1 2 3 4	

Пример 2

Входные данные	Выходные данные
$\begin{bmatrix} 6 & 4 \\ 5 & 3 & 50 & 2 & 4 & 5 \end{bmatrix}$	3

Входные данные	Выходные данные
4 3	9
1 2 3 4	

Постановка

В электрической цепи последовательно установлены n ключей. Ключ изначально имеет одно из состояний: разомкнут (0) или замкнут (1).

Дано k подмножеств $A_1, A_2, ..., A_k$ множества ключей, таких что пересечение любых трех подмножеств будет пустым множеством.

Можно взять одно из k подмножеств и изменить состояние всех ключей из этого подмножества на противоположное. Гарантируется, что для данных подмножеств можно совершить несколько операций так, чтобы цепь замкнулась (все ключи будут в состоянии 1).

Обозначим за m_i минимальное количество операций, которое вы должны совершить, чтобы первые i ключей оказались замкнутыми. Обратите внимание, что при этом состояние других ключей(с номерами между i+1 и n) может быть любым.

Необходимо посчитать минимальное количество операций которое нужно совершить, чтобы первые i ключей оказались замкнутыми для всех i ($1 \le i \le n$)

Входные данные

B первой строке n и k.

Во второй строке записаны начальные состояния всех ключей.

Далее следуют описания k подмножеств:

- В первой строке находится целое число $c\ (1 \le c \le n)$ количество элементов в подмножестве.
- Во второй строке находитсяc целых чисел x_1, \ldots, x_c $(1 \le x_i \le n)$ элементы подмножества.

Выходные данные

Необходимо через пробел вывести минимальные количества операций необходимых для того чтобы включить лампы от 1 до i для всех i.

Входные данные	Выходные данные
7 3	
0011100	
3	
1 4 6	$\begin{bmatrix} 1 & 2 & 3 & 3 & 3 & 3 & 3 \end{bmatrix}$
3	1233333
3 4 7	
2	
2 3	

Входные данные	Выходные данные
5 3	
00011	
3	
1 2 3	
1	11111
4	
3	
3 4 5	

Входные данные	Выходные данные
19 5	
1001001001100000110	
2	
2 3	
2	
5 6	0 1 1 1 2 2 2 3 3 3 3 4 4 4
2	4 4 4 4 5
8 9	
5	
12 13 14 15 16	
1	
19	