

Content Version 2022

Copyright

SOFiSTiK AG, D-85764 Oberschleißheim, 1990-2021

Dieses Handbuch ist urheberrechtlich geschützt. Kein Teil darf ohne schriftliche Genehmigung der SO-FiSTiK AG in irgendeiner Weise vervielfältigt übersetzt oder umgeschrieben werden. SOFiSTiK behält sich das Recht vor, diese Veröffentlichung jederzeit zu überarbeiten oder inhaltlich zu ändern.

SOFiSTiK versichert, dass Handbuch nach bestem Wissen und Gewissen erstellt wurden, übernimmt jedoch keine Gewähr dafür, dass das Handbuch fehlerfrei ist. Fehler oder Unzulänglichkeiten werden nach Bekanntwerden in der Regel beseitigt.

Warenzeichen:

Windows10, Windows 8.1/8, sind eingetragene Warenzeichen von Microsoft. Autodesk[®] Revit[®] ist ein eingetragenes Warenzeichen der Autodesk, Inc.

Inhalt

Revit Structure Template	4
Allgemein	4
Projektphasen-Konzept	5
Ansichtstyp	5
Planart	6
Projektbrowser	7
Ansichtsvorlagen	13
Filter	16
Filterbeschreibung	16
Beschriftung	18
Standardbauteil-Beschriftung	19
Trägerbeschriftungen	23
Öffnungsbeschriftung	23
Öffnungen	24
Wandöffnung	24
Deckenöffnung	29
Trägeröffnung	34
Höhenkoten	38
Punktkoordinaten	40
Familien-Vorlagen	41
Verwendung Familienvorlagen	41
Beschriftungsfamilienvorlagen	41
2D Profilfamilienvorlagen	42
2D Detailfamilienvorlagen	43
3D Modellfamilien	43
Index	45
Ahhildungsverzeichnis	46

Revit Structure Template

Allgemein

Das Revit Structure Template das Bestandteil der BiMTOOLS ist beinhaltet eine Anpassung der Einstellungen von Revit Structure speziell für den deutschen Markt.

Im weiteren Verlauf werden lediglich die wichtigsten Anpassungen vorgestellt. Damit sollte der geübte Revit Structure Anwender diese Vorlage bestmöglich einsetzen können.

Weiter wurden sämtliche Familien, welche sich in dem Template befinden, überarbeitet. Diese Überarbeitungen selber werden hier nicht näher beschrieben.

i

Projektphasen-Konzept

Jedes klassische Bauprojekt durchläuft in seiner Planung mehrere Phasen.

Diese sind zum Beispiel:

- Positionsplanung (Massivbau)
- Schalplanung (Massivbau)
- Bewehrungsplanung (Massivbau)
- Stahlbauübersichten (Stahlbau)
- Stahlbau-Werkplanung (Stahlbau)

In dem vorliegenden Template wurden daher verschiedene Einstellungen vorgenommen um diese Bauphasen eines Projektes abzubilden.

Hierbei ist für die unterschiedlichen Materialien Stahlbeton, Fertigbeton und Stahl, Folgendes zu Grunde gelegt

Positionsplanung (Massivbau) = Stahlbauübersichten (Stahlbau)

Schalplanung (Massivbau) = Stahlbau-Werkplanung (Stahlbau)

Ansichtstyp

Jede Ansicht von Revit hat einen zusätzlichen Parameter "Ansichtstyp" in der Gruppe "Abhängigkeiten" bekommen. Über diesen Parameter wird der Ansicht eingestellt, welcher Projektphase sie zugeordnet ist. Der Wert des Parameters setzt sich aus einer zweistelligen Zahl und einem erläuternden Text zusammen, damit eine sinnvolle Reihenfolge im Projektbrowser zustande kommt. Folgende Werte sind hierbei voreingestellt:

- 01 Positionsplanung
- 02 Schalplanung
- 03 aufgehende Bauteile
- 04 Bewehrung
- 05 Berechnungsmodell
- 11 Architektur
- 90 Verdeckte Kanten

Diese Nomenklatur setzt sich so an jeder Stelle im Template fort. So auch z.B. bei den Ansichtsvorlagen (s. S. 13)

Bild 1: zusätzlicher Parameter Ansichtstyp bei jeder Revit Ansicht

Planart

Jeder Plan von Revit hat einen zusätzlichen Parameter "Planart" in der Gruppe "Abhängigkeiten" bekommen. Über diesen Parameter wird dem Plan eingestellt, welcher Projektphase er zugeordnet ist. Der Wert des Parameters beinhaltet ausschließlich die Projektphase. Folgende Werte sind hierbei denkbar:

- Positionsplanung
- Schalplanung
- Bewehrung
- Berechnungsmodell
- Architektur

Bild 2: zusätzlicher Parameter Planart bei jedem Revit Plan

Projektbrowser

Ansichten

Im Projektbrowser werden die Ansichten in der Default-Einstellung nach den Kriterien "Familie & Typ" und "Ansichtstyp" gruppiert, sowie nach der verknüpften Ebene Aufsteigend sortiert.

Bild 3: Browser-Ansichten-Typ; Familie & Typ, Ansichtstyp, Ebene

Es gibt noch zwei weitere Browser-Ansichten-Typen die im Template zusätzlich erzeugt wurden:

• Ansichtstyp, Familie & Typ, Ebene

Bild 4: Browser-Ansichten-Typ; Ansichtstyp, Familie & Typ, Ebene

· kein Ansichtstyp

Bild 5: Browser-Ansichten-Typ; kein Ansichtstyp

Die Darstellung des Projektbrowsers in den beschriebenen Browser-Ansichten-Typen:

Bei der Benennung der Ansichten wird nach folgender Benennungs-Syntax vorgegangen:

Ebenen Name / Projektphase (ohne Zahlenkombination)

Beispiel:

• Ebene 0 / Positionsplan

Besonderheiten

Die Ansichten die direkt mit der Ebene verknüpft oder Standardansichten sind, haben keinen Zusatz für die Projektphase, damit die Ebene auch wirklich nur z.B. Ebene 0 heißt und nicht Ebene 0 / Positionsplan. In dem Template sind das die Ansichten unter der Projektphase 02 Schalplan. Diese hängen direkt mit der Ebene zusammen. Sprich wenn der Name der Ebene geändert wird und der Benutzer bei dem auftauchenden Dialogfeld dann auf "Ja" klickt, wird der Name der Ansicht unter 02 Schalplan auch geändert.

Bild 6: Dialogfeld nach dem Umbenennen der Ebene

Pläne

Im Projektbrowser werden die Pläne in der Default-Einstellung nach dem Kriterium "Planart" gruppiert, sowie nach der Plannummer Aufsteigend sortiert.

Bild 7: Browser-Pläne-Typ; Planart

Es gibt noch einen weiteren Browser-Pläne-Typ der im Template zusätzlich erzeugt wurden:

keine Planart

Bild 8: Browser-Pläne-Typ; keine Planart

Die Darstellung des Projektbrowsers in den beschriebenen Browser-Pläne-Typen:

Besonderheiten

Der Wert des Parameters "Planart" beinhaltet nur deren Name zur entsprechenden Projektphase ohne eine zusätzliche Zahlenkombination. Grund hierfür ist, weil der Parameter gleichzeitig im Plankopf erscheint und dort eine Darstellung wie z.B. 01 Positionsplan störend wäre.

Ansichtsvorlagen

In Revit Structure gibt es verschiedene Ansichten bzw. Ansichtsarten wie z.B. Grundrisse, Deckenpläne oder Schnitte. Für jede dieser Ansichten gibt es die passende Ansichtsvorlage.

Name der Ansicht/Ansichtsart	Verfügbare Ansichtsvorlagen
Tragwerkspläne (Deckenpläne)	01 Positionsplan Deckenplan
	02 Schalplan Deckenplan
	03 aufgehende Bauteile Deckenplan
	04 Bewehrung Deckenplan obere Lage
	04 Bewehrung Deckenplan untere Lage
	05 Berechnungsmodell Deckenplan
	90 Verdeckte Kanten Deckenplan
	99 Allgemein Deckenplan
Tragwerkspläne (Fundamente)	01 Positionsplan Fundamente
	02 Schalplan Fundamente
	04 Bewehrung Fundamente obere Lage
	04 Bewehrung Fundamente untere Lage
	05 Berechnungsmodell Fundamente
	90 Verdeckte Kanten Fundamente
	99 Allgemein Fundament
Tragwerkspläne (Grundrisse)	11 Architektur Grundriss
	11 Architektur Lageplan
	99 Allgemein Grundriss
3D-Ansichten	01 Positionsplan 3D
	02 Schalplan 3D
	04 Bewehrung 3D
	05 Berechnungsmodell 3D
	05 Berechnungsmodell 3D Subsystem
	11 Architektur 3D
	90 Verdeckte Kanten 3D
	99 Allgemein 3D
Ansichten (Tragwerkansicht)	Siehe Schnitte
Schnitte	01 Positionsplan Schnitt
	02 Schalplan Schnitt
	04 Bewehrung Schnitt
	05 Berechnungsmodell Schnitt
	11 Architektur Schnitt
	90 Verdeckte Kanten Schnitt
	99 Allgemein Schnitt

Legenden	Keine verfügbare Ansichtsvorlage
Bauteillisten	00 Bauteillisten

Mit den Ansichtsvorlagen werden spezifische Einstellungen wie z.B. Detailierungsgrad, Maßstab, Disziplin, der Parameter Ansichtstyp (s. S. 5), die Sichtbarkeit und Darstellung der Modell- und Beschriftungsobjekte und Filter (s. S. 16) der jeweiligen Ansicht vorgenommen. Eine genauere Beschreibung der getroffenen Einstellungen findet hier nicht statt. Sie können sich jederzeit die Ansichtsvorlagen in einem Revit Structure Projekt detailliert anschauen, indem Sie den Befehl unter "Ansicht - Ansichtsvorlagen - Ansichtsvorlagen verwalten" aufrufen.

Bild 9: Dialogfeld Ansichtsvorlagen: Konfiguration der Ansichtsvorlagen

Besonderheiten

Wird eine weitere beliebige Projektansicht in Revit erzeugt wird diese automatisch so eingestellt wie die jeweilige Ansichtsvorlage für den erzeugten Ansichtstyp die mit "99" beginnt. Beispielsweise erzeugen Sie eine neue Schnittlinie wird dadurch eine Projektansicht "Schnitt" erzeugt, der automatisch die Eigenschaften aus der Ansichtsvorlage "99 Allgemein Schnitt" übertragen werden. Im Projektbrowser befindet sich diese neue Ansicht unter der entsprechenden Rubrik. Da dieser Ansicht noch kein Ansichtstyp (s. S. 7) zugewiesen ist, befindet sich diese Ansicht unterhalb des "????-Registers".

Bild 10: noch keine eindeutige Zuweisung einer Ansichtsvorlage

Weisen Sie nun dieser Ansicht über einen Rechtsklick eine Ansichtsvorlage für die passende Projektphase zu, wird automatisch der Parameter "Ansichtstyp" eingestellt und die Ansicht befindet sich im Projektbrowser in der richtigen Rubrik. Dieser Workflow ist bei jeder Projektansicht von Revit nun gleich.

Zur Darstellung von verdeckten Kanten und zur Anwendung der Ansichtsvorlagen "90 Verdeckte Kanten" beachten Sie bitte das dafür extra erzeugte Handbuch "Verdeckte Kanten".

Empfehlung

Wenn Sie eine neue Ebene über den Befehl "Start - Ebene" erzeugen, entfernen Sie bitte den Haken "Draufsicht erstellen" in der Optionsleiste.

Bild 11: empfohlene Einstellung bei der Erzeugung einer neuen Ebene

Dadurch wird nicht automatisch eine neue Ansicht dieser Ebene erzeugt. Die Ansicht können Sie dann in einem zweiten Schritt wie im vorigen Absatz beschrieben erzeugen.

Die aller erste Ansicht die Sie mit einer Ebene verbinden sollte vom Ansichtstyp ein "Schalplan" sein. Weisen Sie dieser also die Ansichtsvorlage "02 Schalplan Deckenplan" zu. Die Ansicht heißt genau gleich wie die Ebene, ohne Zusatz von "Schalplan" im Ansichtsnamen und stellt somit die "Hauptansicht" dar. Würden Sie eine Ebene umbenennen können Sie nämlich entscheiden, ob die erste verknüpfte Ansicht dieser Ebene ebenfalls umbenannt werden soll oder nicht. Unsere Empfehlung gilt auch hier: "Ja" umbenennen, damit die "Hauptansicht" gleich heißt wie die Ebene. Dieses Vorgehen wurde bei den vorhandenen Ansichten und deren Ebenen ebenfalls eingehalten.

Filter

In diesem Template wurden mehrere Filter für unterschiedliche Zwecke angelegt. Diese wurden zusätzlich in die bestehenden Ansichtsvorlagen (s. S. 13) integriert.

Bild 12: erzeugte Filter im Template

Filterbeschreibung

alle Modellkategorien:

Dieser Filter filtert alle Modellkategorien. In den Ansichtsvorlagen wird dieser benutzt um von allen Objekten die Schnittschraffur auszublenden. Der Filter existiert zwar noch, wird aber nicht mehr automatisch verwendet.

Betonbalken:

Hier wird ausschließlich die Modellkategorie: Skelettbau gefiltert, deren Typenkommentar "Beschreibung" gleich "StB-Träger" gesetzt ist. Dieser Filter wird ebenfalls nicht mehr automatisch benutzt ist aber in der Vorlage noch enthalten.

Bewehrung obere Lage, Bewehrung untere Lage

Dieser Filter wird ausschließlich auf die Bewehrung angewendet, bei der der Parameter "SOFiSTiK Layer" mit "Oben" (Bewehrung obere Lage) oder "Unten" (Bewehrung untere Lage) belegt ist. Die Filter selbst werden bei den Ansichtsvorlagen für " 04 Deckenplan" und " 04 Fundamente" verwendet.

Flächenlasten geteilt:

Mit diesem Filter werden Flächenlasten gefiltert, deren Eigenschaft "SOFiSTiK_LoadDivision" auf "divided" steht. Diese wird automatisch durch das Werkzeug "Flächenlast teilen" erzeugt, welches Bestandteil der SOFiSTiK Revit Extension ist. Der Filter selbst wird bei den "05er" Ansichtsvorlagen verwendet und ist standardmäßig in den Ansichten ausgeschalten. Dies bedeutet, dass die gefilterten Exemplare nicht sichtbar sind.

Flächenlasten original:

Mit diesem Filter werden Flächenlasten gefiltert, deren Eigenschaft "SOFiSTiK_LoadDivision" auf "original" steht. Diese wird automatisch durch das Werkzeug "Flächenlast teilen" erzeugt, welches Bestandteil der SOFiSTiK Revit Extension ist. Der Filter selbst wird bei den "05er" Ansichtsvorlagen verwendet und ist standardmäßig in den Ansichten eingeschalten. Dies bedeutet, dass die gefilterten Exemplare sichtbar sind.

Schnitte 01 Positionsplan, Schnitte 02 Schalplan, Schnitte 03 aufgehende Bauteile, Schnitte 04 Bewehrung, Schnitte 05 Berechnungsmodell, Schnitte 11 Architektur, Schnitte / Ansichten 90 Verdeckte Kanten:

In diesen Filtern wird jeweils ausschließlich die Modellkategorie: Schnitte gefiltert und zusätzlich der Parameter "Ansichtstyp" (s. S. 5). Diese Filter bieten Ihnen die Möglichkeit in einer Schalplanansicht auch nur die Schnittführungen zu sehen, welches selbst Schnitte für Schalpläne sind. In den vorhandenen Ansichtsvorlagen wurden diese Einstellungen bereits getroffen, damit in Schalplansichten auch nur Schalplanschnitte zu sehen sind.

SOFiSTiK_Mounting Part:

Dieser Filter wird von den Befehlen "Kopieren", "Kopieren in Zwischenablage", "Einfügen aus Zwischenablage" und "Kennzeichen Basisbauteil" der App "BiMTOOLS" verwendet. Konfigurieren Sie den Filter so, dass die gewünschten Bauteile damit gefunden werden und in den o.g. Befehlen verwendet werden.

Beschriftung

Alle Beschriftungsfamilien wurden überarbeitet und vom Namen her so angepasst, dass dieser einem stimmigen Konzept folgt.

Bild 13: Alle Beschriftungsfamilien des Templates

Hier wird lediglich auf die speziellen Beschriftungsfamilien bzw. Besonderheiten bei der Beschriftung eingegangen und nicht jede Beschriftung näher erläutert.

Standardbauteil-Beschriftung

Bei den Kategorien Wände und Tragwerksstützen, stehen 4 verschiedene Beschriftungstypen zur Verfügung, die verschiedene Informationen in unterschiedlichen Reihenfolgen aus den Objekten auslesen.

Bild 14: Beispiel Wandbeschriftung

Bei den Kategorien Fundamente, Geschossdecken und Skelettbau stehen 5 verschiedene Beschriftungstypen zur Verfügung, die verschiedene Informationen in unterschiedlichen Reihenfolgen aus den Objekten auslesen.

Bild 15: Beispiel Trägerbeschriftung

Grundsätzlich beschreiben die Typnamen der Beschriftung die Reihenfolge der zu beschriftenden Parameter. Diese Reihenfolge kann durch Sie sehr schnell geändert werden indem Sie einen neuen Beschriftungstyp erzeugen und in den Typeneigenschaften einstellen welche Information in welcher Zeile der Beschriftung stehen soll. Sehen Sie sich dazu folgendes Beispiel an, bei dem ein Beschriftungstyp erzeugt wurde der in der ersten Zeile die Abmessungen und in der zweiten Zeile das Material beschriftet

Bild 16: Neuer Beschriftungstyp für Tragwerksstützen

Folgende Informationen/Parameter werden aus den jeweiligen Kategorien in den Beschriftungen ausgelesen:

Kategorie	Ausgelesener Parameter	Beschreibung der Beschriftung	Beispiel
Tragwerksstützen	Kennzeichen	Positionsnummer	S1
	Tragendes Material	Materialbeschriftung	Beton - C 25/30 (DIN 1045-1)
	Typenkommentar	Abmessungsbeschriftung	B/H = 25 / 25 cm
	Beschreibung	Bauteilbeschreibung	StB-Stütze
	Kommentare	Spezielle Eigenschaft	Sichtbeton
Skelettbau	Kennzeichen	Positionsnummer	T2
	Tragendes Material	Materialbeschriftung	Baustahl - S 235 (DIN 18800)
	Typenkommentar	Abmessungsbeschriftung	HE 100 A
	Beschreibung	Bauteilbeschreibung	Stahl-Träger

	Kommentare	Spezielle Eigenschaft	Feuerverzinkt
	Höhe Oben	Oberkante des Trägers	OK +2.45
	Höhe Unten	Unterkante des Trägers	UK -3.02
Wände	Kennzeichen	Positionsnummer	W1
	Tragendes Material	Materialbeschriftung	Beton - C 25/30 (DIN 1045-1)
	Typenkommentar	Abmessungsbeschriftung	d = 20 cm
	Beschreibung	Bauteilbeschreibung	StB-Wand
	Kommentare	Spezielle Eigenschaft	Sichtbeton
Fundamente	Kennzeichen	Positionsnummer	F1
(Einzel-, Streifenfundamente, Funda-	Tragendes Material	Materialbeschriftung	Beton - C 25/30 (DIN 1045-1)
mentplatten)	Typenkommentar	Abmessungsbeschriftung	L/B/H = 150 / 150 / 150 cm
	Beschreibung	Bauteilbeschreibung	StB-Blockfundament
	Kommentare	Spezielle Eigenschaft	Frosttief gegründet
	Höhe Oben	Oberkante des Fundaments	OKBP +2.45
	Höhe Unten	Unterkante des Fundaments	UKBP -3.02
Geschossdecken	Kennzeichen	Positionsnummer	D102
	Tragendes Material	Materialbeschriftung	Beton - C 25/30 (DIN 1045-1)
	Typenkommentar	Abmessungsbeschriftung	d = 25 cm
	Beschreibung	Bauteilbeschreibung	StB-Decke
	Kommentare	Spezielle Eigenschaft	Fugen spachteln
	Höhe Oben Kern	Oberkante der tragenden Schicht der Geschossdecke	OKRD +2.45
	Höhe Unten Kern	Unterkante der tragenden Schicht der Geschossdecke	UKRD -3.02

Die Geschossdecke kann entweder mit dem Befehl "Beschriften - Nach Kategorie beschriften" oder mit dem Befehl "Beschriften - Spannrichtung" beschriftet werden. Es stehen hier unterschiedliche Familien mit unterschiedlicher Plangrafik zur Verfügung.

Befehl "Spannrichtung"

Befehl "Nach Kategorie beschriften"

Bild 17: Beschriftungsmöglichkeiten einer Geschossdecke

Trägerbeschriftungen

Die Träger können entweder mit dem Befehl "Beschriften – Trägerbeschriftungen" oder mit dem Befehl "Beschriften – Nach Kategorie beschriften" beschriftet werden. Bei dem ersten Befehl wird die OK/UK-Höhe des Trägers als Höhenkote abgesetzt. Hierzu wurden spezielle Höhenkoten-Familientypen mit der Bezeichnung "Trägerbeschriftung (gem. genutzt)" und "Trägerbeschriftung (Projekt)" generiert. Beim zweiten Befehl wird die OK/UK-Höhe des Trägers in der Beschriftungsfamilie des Trägers mit angezeigt. Dadurch ergeben sich unterschiedliche Darstellungen.

Bild 18: Automatisch erzeugte Trägerbeschriftung

Öffnungsbeschriftung

Bei der Beschriftung von Öffnungen (s. S. 24) stehen 7 unterschiedliche Beschriftungstypen zur Verfügung. Sollten Sie auch hier die Reihenfolge der Beschriftung ändern wollen, dann erledigen Sie dies wie bereits vorhin beschrieben ebenfalls über einen zusätzlichen Beschriftungstyp.

Öffnungen

Es stehen grundsätzlich zwei unterschiedliche Formen von Aussparungen in separaten Familien zur Verfügung:

- rechteckig (Sonderfall: quadratisch)
- elliptisch (Sonderfall: rund)

Diese unterschiedlichen Aussparungsformen gibt es für folgende Basisbauteile:

- Wände
- Geschossdecken
- Fläche (Anwendungsfall: Aussparung in Tragwerksstützen und Träger)

Wandöffnung

Für die jeweilige Aussparungsform, rechteckig oder elliptisch, existiert eine Familie (Wandöffnung rechteckig, Wandöffnung elliptisch). Diese Familien besitzen einen Typ "WD" Wanddurchbruch und einen Typ "WS" Wandschlitz. Somit können mit einer Familie ein Durchbruch oder ein Schlitz hergestellt werden.

Bild 19: Darstellung eines Wanddurchbruchs inkl. Beschriftung

Bild 20: Darstellung eines Wandschlitzes inkl. Beschriftung

Besonderheiten

Zusätzlich existieren noch zwei weitere Wandfamilien (Wandöffnung rechteckig (2D), Wandöffnung elliptisch (2D)). Diese liefern nur die Aussparungssymbolik für Grundriss, Ansicht und Schnitt und erzeugen keine Öffnung in der Wand.

Die Platzierung und Verwendung dieser 2 Sonderfamilien der Wandöffnung ist genau gleich wie bei den Familien Wandöffnung rechteckig und Wandöffnung elliptisch. Ein Einsatzbereich dieser Familien wäre die interdisziplinäre Zusammenarbeit, wenn z.B. in der Architektur mit Fenster- und Türobjekten gearbeitet wird, die in der Tragwerksplanung nicht dargestellt werden sollen. Denn dann existiert bereits ein Loch in der Wand aus dem Architekturobjekt, das dann mit Hilfe dieser Sonderfamilien tragwerksplanerisch "richtig" dargestellt werden kann.

In den Ansichten (Grundriss, Ansicht oder Schnitt) sind Symbolgrafiken voreingestellt. Über Exemplarparameter könnte man diese austauschen. Folgende Symbolgrafiken stehen zur Verfügung:

- Schatten, Schatten gefüllt
- Diagonale, Diagonale gefüllt,
- · Kreuz, Kreuz gefüllt, Kreuz gefüllt gedreht
- keine, keine (nur Umrahmung)

Bild 21: einstellbare Symbolgrafik der Aussparung

Die Aussparung ist im Grundriss/Bildstil "Verdeckte Kante" ebenfalls sichtbar, auch wenn diese oberoder unterhalb der Schnittebene liegt. Möglich macht dies ein "virtueller Schnittkörper", der durch die Schnittebene der Ansicht gehen muss. Über die Exemplarparameter "Oberer virtueller Schnittkörper" und "Unterer virtueller Schnittkörper" oder Griffe direkt am 3D Volumen des virtuellen Schnittkörpers lässt sich dieser in der Höhe anpassen. Der virtuelle Schnittkörper ist nur in 3D- und Schnittansichten im Detaillierungsgrad "Grob" sichtbar. Ggf. kann dieser über die Unterkategorie "Virtueller Schnittkörper" der Generischen Modellkategorie ausgeschalten werden.

Bild 22: 3D Darstellung mit Detaillierungsgrad Grob und virtuellem Schnittkörper

Bei einer verwendeten Symbolgrafik "Schatten" oder "Schatten gefüllt" wird die Größe des Schattens automatisch für jede Ansichtsrichtung separat auf 20% der kleinsten Aussparungsseitenlänge eingestellt.

Der Parameter Tiefe Aussparung steht bei einem Wanddurchbruch auf "0". Hier wird automatisch die Wandstärke ermittelt und in der Beschriftung der Wandöffnung dargestellt. Bei einem Wandschlitz tragen Sie die Tiefe der Aussparung in diesem Parameter ein.

Bei den Aussparungen welche eine elliptische Form haben, gibt es einen zusätzlichen Exemplarparameter "Aussparung Rund", der die Sonderform "Kreis" automatisch erzeugt. Ist dieser Parameter aktiviert, steuert sich der Durchmesser der runden Aussparung über den Parameter "Durchmesser X Aussparung". Der Parameter "Durchmesser Y Aussparung" hat hierbei keine Auswirkung auf die Geometrie der Öffnung.

Die Wandaussparung kann im Grundriss strichliert und transparent oder durchgezogen und Undurchsichtig dargestellt werden. Steuerbar wird dies über den Parameter "Aussparung höhenbezogen darstellen". In der gegenüberliegenden Ansicht eines Wandschlitzes ist dieser automatisch strichliert dargestellt.

Der Präfix für die Beschriftung der Aussparung kann über den Typenparameter "Präfix Beschriftung Aussparung" individuell eingestellt werden.

Deckenöffnung

Für die jeweilige Aussparungsform, rechteckig oder elliptisch, existieren zwei Familien (Deckenöffnung rechteckig, Deckenöffnung elliptisch). Diese Familien besitzen einen Typ "DD" Deckendurchbruch und einen Typ "DS" Deckenschlitz. Somit können mit einer Familie ein Durchbruch oder ein Schlitz hergestellt werden.

Bild 23: Darstellung einer Deckenöffnung inkl. Beschriftung

Bild 24: Darstellung eines Deckenschlitzes inkl. Beschriftung

Besonderheiten

Bei den Deckenöffnungen existieren noch zwei weitere Familien (Deckenöffnung rechteckig (2D), Deckenöffnung elliptisch (2D)). Diese wurden nötig, damit das Berechnungsmodell bestmöglich angepasst werden kann. Wir unterscheiden zwischen Aussparungen die irgendwo innerhalb der Geschossdecke liegen und Aussparungen, die von Wänden begrenzt werden.

Sofern die Geschossdeckenaussparung irgendwo innerhalb der Geschossdecke liegt, nehmen wir die Familie "Deckenöffnung rechteckig" oder "Deckenöffnung elliptisch". Das Berechnungsmodell der Geschossdecke ist in diesem Fall gleich der Kante der Aussparung

Grenzt die Deckenaussparung mindestens an eine Wandkante so ist die Familie "Deckenöffnung rechteckig (2D)" oder "Deckenöffnung elliptisch (2D)" für diesen Fall zu verwenden. Bei diesen Familien handelt es sich 3D Familien, die lediglich eine 2D Darstellung der Aussparungen beinhaltet. Das Loch in der Geschossdecke wird dann über die Skizze der Geschossdecke hergestellt. Das Berechnungsmodell kann hier individuell durch die Skizzenlinie der Geschossdecke angepasst werden und bietet somit größtmögliche Flexibilität.

Bild 25: Darstellung einer Aussparung die von Wänden begrenzt ist inkl. Beschriftung

Bild 26: Darstellung Berechnungsmodell von Wand und Decke

In den Ansichten (Grundriss, Ansicht oder Schnitt) sind Symbolgrafiken voreingestellt. Über Exemplarparameter könnte man diese austauschen. Folgende Symbolgrafiken stehen zur Verfügung:

- Schatten, Schatten gefüllt
- Diagonale, Diagonale gefüllt,
- Kreuz, Kreuz gefüllt, Kreuz gefüllt gedreht
- keine, keine (nur Umrahmung)

Bild 27: einstellbare Symbolgrafik der Aussparung

Bei einer verwendeten Symbolgrafik "Schatten" oder "Schatten gefüllt" wird die Größe des Schattens automatisch für jede Ansichtsrichtung separat auf 20% der kleinsten Aussparungsseitenlänge eingestellt.

Der Parameter Tiefe Aussparung steht bei einem Deckendurchbruch auf "0". Hier wird automatisch die Geschossdeckenstärke ermittelt und in der Beschriftung der Deckenöffnung dargestellt. Bei einem Deckenschlitz tragen Sie die Tiefe der Aussparung in diesem Parameter ein.

Bei den Aussparungen welche eine elliptische Form haben, gibt es einen zusätzlichen Exemplarparameter "Aussparung Rund", der die Sonderform "Kreis" automatisch erzeugt. Ist dieser Parameter aktiviert, steuert sich der Durchmesser der runden Aussparung über den Parameter "Durchmesser X Aussparung". Der Parameter "Durchmesser Y Aussparung" hat hierbei keine Auswirkung auf die Geometrie der Öffnung.

Bei einem Deckenschlitz ist die gegenüberliegen Darstellung automatisch strichliert. Im Standardfall beginnt der Deckenschlitz an der Oberkante der Geschossdecke. Mit Hilfe des Schalters "DS von UK Decke" kann der Deckenschlitz an die Unterkante der Geschossdecke gespiegelt werden.

Bild 28: Exemplarparameter DS von UK Decke

Der Präfix für die Beschriftung der Aussparung kann über den Typenparameter "Präfix Beschriftung Aussparung" individuell eingestellt werden.

Trägeröffnung

Für die jeweilige Aussparungsform, rechteckig oder elliptisch, existieren zwei Familien (Trägeröffnung rechteckig, Trägeröffnung elliptisch). Diese Familien besitzen einen Typ "DD" Deckendurchbruch und einen Typ "DS" Deckenschlitz. Somit können mit einer Familie ein Durchbruch oder ein Schlitz hergestellt werden.

Bild 29: Darstellung einer Trägeröffnung inkl. Beschriftung

Bild 30: Darstellung eines Trägerschlitzes inkl. Beschriftung

Besonderheiten

In den Ansichten (Grundriss, Ansicht oder Schnitt) sind Symbolgrafiken voreingestellt. Über Exemplarparameter könnte man diese austauschen. Folgende Symbolgrafiken stehen zur Verfügung:

- · Schatten, Schatten gefüllt
- Diagonale, Diagonale gefüllt,
- Kreuz, Kreuz gefüllt, Kreuz gefüllt gedreht
- keine, keine (nur Umrahmung)

Bild 31: einstellbare Symbolgrafik der Aussparung

Die Aussparung ist im Grundriss/Bildstil "Verdeckte Kante" ebenfalls sichtbar, auch wenn diese oberoder unterhalb der Schnittebene liegt. Möglich macht dies ein "virtueller Schnittkörper", der über den Träger hinausgehen muss. Über die Exemplarparameter "Oberer virtueller Schnittkörper" und "Unterer virtueller Schnittkörper" oder Griffe direkt am 3D Volumen des virtuellen Schnittkörpers lässt sich dieser in der Höhe anpassen. Dieser ist nur in 3D- und Schnittansichten im Detaillierungsgrad "Grob" sichtbar. Ggf. kann dieser über die Unterkategorie "Virtueller Schnittkörper" der Generischen Modellkategorie grundsätzlich ausgeschalten werden.

Bild 32: 3D Darstellung mit Detaillierungsgrad Grob und virtuellem Schnittkörper

Bei einer verwendeten Symbolgrafik "Schatten" oder "Schatten gefüllt" wird die Größe des Schattens automatisch für jede Ansichtsrichtung separat auf 20% der kleinsten Aussparungsseitenlänge eingestellt.

Der Parameter Tiefe Aussparung steuert die Tiefe der Aussparung bzw. die Tiefe des Schlitzes. Bei dieser Aussparung kann die Tiefe nicht automatisch aus dem Basisbauteil abgefragt werden und muss darum immer manuell angepasst werden. Um bei einem Trägerschlitz automatisch auf der gegenüberliegenden Seite eine strichlierte Darstellung zu bekommen, muss der Parameter Tiefe Aussparung für DS Grafik auf die Breite des Trägers eingestellt werden.

Bild 33: Exemplarparameter Tiefe Aussparung für DS Grafik

Bei den Aussparungen welche eine elliptische Form haben, gibt es einen zusätzlichen Exemplarparameter "Aussparung Rund", der die Sonderform "Kreis" automatisch erzeugt. Ist dieser Parameter aktiviert, steuert sich der Durchmesser der runden Aussparung über den Parameter "Durchmesser X Aussparung". Der Parameter "Durchmesser Y Aussparung" hat hierbei keine Auswirkung auf die Geometrie der Öffnung.

Die Trägeraussparung kann im Grundriss strichliert/durchgezogen oder transparent/durchgezogen dargestellt werden. Steuerbar wird dies über die Parameter "Aussparung verdeckt darstellen" und "Aussparung undurchsichtig darstellen".

Der Präfix für die Beschriftung der Aussparung kann über den Typenparameter "Präfix Beschriftung Aussparung" individuell eingestellt werden.

Höhenkoten

Grundsätzlich gibt es zwei verschiedene Höhenkotensymboliken. Einmal die Höhenkotensymbolik für Koten im Grundriss (Grundriss Fertig, Grundriss Roh) und einmal die für Schnittansichten (Schnitt fertig, Schnitt roh). Innerhalb der Grundrisskoten und der Schnittkoten wird zwischen "Projekt" und "gem. genutzt" unterschieden. Bei "Projekt" wird die Höhe bezogen auf den Projektbasispunkt bzw. +0.00 des Projektes und bei "gem. genutzt" wird die Höhe bezogen auf den Vermessungspunkt bzw. die Höhe über N.N.

Bild 34: verfügbare Höhenkotentypen

Bild 35: Darstellung eine Grundrisskote

Bild 36: Darstellung einer Schnittkote

Für die Schnittkoten gibt es noch zusätzlich jeweils die Darstellung "unten". Diese speziellen Kotentypen sind immer dann anzuwenden, wenn die Kote von unten her angebracht werden muss. Bitte beachten Sie hierbei dass sich lediglich die Textposition an der richtigen Stelle befindet und nicht zusätzlich die Symbolgrafik. Die Symbolgrafik können Sie in Revit Structure mit dem Mauszeiger beeinflussen, nachdem Sie den Einfügepunkt der Kote definiert haben. Möglich Symbolpositionen sind hier alle 4 Quadranten.

Bild 37: beispielhafte Darstellung zweier Höhenkoten

Punktkoordinaten

Es stehen 4 unterschiedliche Punktkoordinatentypen zur Verfügung. Diese unterscheiden zum einen nach der Benennung der Koordinatenachsen und zum anderen nach dem Ursprung des Koordinatensystems.

Bild 38: 4 verschiedene Punktkoordinatentypen

Die Punktkoordinatentypen X/Y (Projekt) und X/Y/Z (Projekt) besitzen als Achsenbezeichnungen jeweils X, Y und Z und besitzen als Koordinatenursprung den Projektbasispunkt.

Bild 39: Darstellung Punktkoordinate X/Y/Z (Projekt)

Die Punktkoordinatentypen O/N (gem. genutzt) und O/N/H (gem. genutzt) besitzen als Achsenbezeichnungen Osten, Norden und Höhe über dem Meeresspiegel und besitzen als Koordinatenursprung den Vermessungspunkt.

Osten: 0,036

Norden: 12,174

H.ü.d.M. 2,592

Bild 40: Darstellung Punktkoordinate O/N/H (gem. genutzt)

Familien-Vorlagen

In den BiMTOOLS enthalten sind komplett überarbeitete Familienvorlagen (.rft). Hierbei wurde vor allem darauf geachtet, dass die Übersichtlichkeit innerhalb der Familienvorlagen bestehen bleibt und somit nur die notwendigen Familienvorlagen zur Verfügung stehen.

Verwendung Familienvorlagen

Grundsätzlich stehen diese unterschiedlichen Familienvorlagenarten zur Verfügung:

- Beschriftungsfamilienvorlagen
- 2D Profilfamilienvorlagen
- 2D Detailfamilienvorlagen
- 3D Modellfamilienvorlagen

Innerhalb dieser Familienvorlagenarten gibt es nur die notwendigsten Vorlagedateien damit der Anwender eine übersichtliche Bibliothek vorfindet.

Beschriftungsfamilienvorlagen

Es stehen hier verschiedene Vorlagen wie im Folgenden beschrieben zur Verfügung

Vorlagenname	Verwendung der Familienvorlage
_SOF_Beschriftung allgemein.rft	Bei allen Beschriftungen außer für mehrere Kategorien
_SOF_Beschriftung für mehrere Kategorien.rft	Beschriften von mehreren Kategorien
_SOF_Beschriftung Schnitt.rft	Ausnahmevorlage, da diese Familie etwas komplexer ist; diese Familie könnte man auch durch die Vorlage Beschrif-

tung allgemein erzeugen

Wenn Sie nun z.B. eine Beschriftung für die Kategorie Tragwerksstützen brauchen, dann verwenden Sie zunächst einmal die Familienvorlage "_SOF_Beschriftung allgemein.rft". Danach müssen Sie die Kategorie der Beschriftung umstellen. Dies tun Sie über den Befehl "Start - Familienvorlage- und Parameter". Dort stellen Sie als Kategorie nun Tragwerksstützenbeschriftung ein. Entscheiden Sie nun welche Parameter Sie aus den Tragwerksstützen beschriften wollen, speichern die Familie ab und laden sie in Ihre Projekte.

Bild 41: Dialogfeld zur Einstellung der Familienkategorie- und Parameter

Auf diese Art und Weise können Sie sämtliche weitere Beschriftungsfamilien erzeugen wie z.B. eine neue Ansichtstitel-Familie für Ansichten auf den Plänen. Für eine neue Schnittbeschriftungsfamilie nehmen Sie bitte die bereits vorgegebene Vorlage "_SOF_Beschriftung Schnitt.rft".

2D Profilfamilienvorlagen

Es stehen hier verschiedene Vorlagen wie im Folgenden beschrieben zur Verfügung

Vorlagenname	Verwendung der Familienvorlage
--------------	--------------------------------

_SOF_Profil (Fuge).rft	nur bei einer Fuge in einer Wand
_SOF_Profil (Generisch).rft	überall wo mit Profilen gearbeitet werden kann
_SOF_Profil (Handlauf).rft	nur bei der Geländer-Funktion als Handlauf-Profil
_SOF_Profil (Pfosten).rft	nur bei der Fassaden-Funktion als Fassadenpfosten
_SOF_Profil (Plattenkante).rft	nur bei Geschossdecken
_SOF_Profil (Trapezblechdecke).rft	nur bei Geschossdecken und der Funktion tragende Decken
_SOF_Profil (Unterteilung).rft	nur für Unterteilungen von Bauteilen
_SOF_Profil (Wandprofil).rft	nur bei Wänden mit der Sweeps-Funktion oder bei Wand- Profilierte Wand

Im Prinzip dreht es ich bei den Familien um ein und dieselbe Familie. Lediglich ein Familienparameter wurde geändert und es ist zusätzlicher Beschreibungstext in der Familienvorlage vorhanden der Einfügepunkte und vorhandenen Basisbauteile beschreibt.

2D Detailfamilienvorlagen

Es stehen hier verschiedene Vorlagen wie im Folgenden beschrieben zur Verfügung

Vorlagenname	Verwendung der Familienvorlage
_SOF_Detail (Linie).rft	für linienbezogene Detailfamilien
_SOF_Detail.rft	für punktbezogene Detailfamilien

Der Unterschied dieser beiden Detailfamilien liegt daran, dass die Familienvorlage _SOF_Detail (Linie).rft eine linienbasierende Familie und die _SOF_Detail.rft eine punktbasierende Familie ist. Die linienbasierende Familie kann im Projekt mit einem Anfangs- und Endpunkt definiert werden, während die punktbasierende Familie lediglich einen Einfügepunkt besitzt. Die linienbasierenden Familien gibt es auch z.B. bei den 3D Modellfamilien.

3D Modellfamilien

Es stehen hier verschiedene Vorlagen wie im Folgenden beschrieben zur Verfügung

Vorlagenname	Verwendung der Familienvorlage
_SOF_Adaptives Bauteil.rf	
_SOF_Allgemeines Modell (Dach).rft	für Allgemeine Modelle mit Basisbauteil Dach
_SOF_Allgemeines Modell (Decke).rft	für abgehängte Decken
_SOF_Allgemeines Modell (Fläche).rft	für Allgemeine Modelle mit Basisbauteil Fläche
_SOF_Allgemeines Modell (Geschoss-decke).rft	für Allgemeine Modelle mit Basisbauteil Geschossdecke
_SOF_Allgemeines Modell (Linie).rft	für Allgemeine Modelle die linienbasierend sind. Besitzen also einen Start- und Endpunkt

_SOF_Allgemeines Modell (Wand).rft	für Allgemeine Modelle mit Basisbauteil Wand
_SOF_Allgemeines Modell (zwei Ebenen)	für Allgemeine Modelle mit unterer und oberer Ebe- ne/Abhängigkeit
_SOF_Allgemeines Modell.rft	für Allgemeine Modelle ohne Basisbauteil
_SOF_Fundament.rft	für alle Einzelfundamente
_SOF_Geländer (Füllung).rft	für Füllungen von Geländern
_SOF_Geländer (Pfosten).rft	für Pfosten von Geländern
_SOF_Körper.rft	für Körper
_SOF_Skelettbau (Träger und Diagonale.rft)	für Träger und Diagonalen, als linienbezogenes Element
_SOF_Skelettbau.rft	für Träger und Diagonalen, als punktbezogenes Element
_SOF_Tragwerksstütze.rft	für Tragwerksstützen

Mit diesen Familienvorlagen besitzen Sie alle Vorlagen um die im Ingenieurbau üblichen 3D Bauteile erzeugen zu können. Sie entscheiden letztlich nur noch ob die Familie die Sie erzeugen in ein Basisbauteil eingefügt werden soll oder nicht. Nehmen dann die entsprechende Vorlage und stellen in der Familie die Familienkategorie, wie unter Beschriftungsfamilienvorlagen auf Seite 41 beschrieben, um.

Beispiel:

Sie wollen eine Steife als 3D Bauteil erzeugen, welche im Projekt mit Start- und Endpunkt erzeugt wird. Dann nehmen Sie die Vorlage _SOF_Allgemeines Modell (Linie).rft und stellen die Familienkategorie auf Steifen um.

Index

2D Detailfamilienvorlagen. 36
2D Profilfamilienvorlagen 35
3D Modellfamilien36
Ansichten7
Ansichtstyp5
Ansichtsvorlagen12
Berechnungsmodell26
Beschriftung17
Beschriftungstypen21
Deckenöffnung25

Familien-Vorlagen	34
Filter	15
Filterbeschreibung	15
Grundrisskoten	31
Höhenkoten	31
linienbasierend	36
Öffnungen	22
Öffnungsbeschriftung	21
Planart	6
Pläne	10

Projektbrowser
Projektphasen-Konzept 5
Punktkoordinaten 33
Revit Structure Template 4
Schnittkoten31
Standardbauteil-Beschriftung
Trägerbeschriftungen 21
Trägeröffnung28
Wandöffnung 22

Abbildungsverzeichnis

Bild 1: zusätzlicher Parameter Ansichtstyp bei jeder Revit Ansicht	6
Bild 2: zusätzlicher Parameter Planart bei jedem Revit Plan	6
Bild 3: Browser-Ansichten-Typ; Familie & Typ, Ansichtstyp, Ebene	7
Bild 4: Browser-Ansichten-Typ; Ansichtstyp, Familie & Typ, Ebene	8
Bild 5: Browser-Ansichten-Typ; kein Ansichtstyp	9
Bild 6: Dialogfeld nach dem Umbenennen der Ebene	11
Bild 7: Browser-Pläne-Typ; Planart	11
Bild 8: Browser-Pläne-Typ; keine Planart	12
Bild 9: Dialogfeld Ansichtsvorlagen: Konfiguration der Ansichtsvorlagen	14
Bild 10: noch keine eindeutige Zuweisung einer Ansichtsvorlage	15
Bild 11: empfohlene Einstellung bei der Erzeugung einer neuen Ebene	15
Bild 12: erzeugte Filter im Template	16
Bild 13: Alle Beschriftungsfamilien des Templates	18
Bild 14: Beispiel Wandbeschriftung	19
Bild 15: Beispiel Trägerbeschriftung	19
Bild 16: Neuer Beschriftungstyp für Tragwerksstützen	20
Bild 17: Beschriftungsmöglichkeiten einer Geschossdecke	22
Bild 18: Automatisch erzeugte Trägerbeschriftung	23
Bild 19: Darstellung eines Wanddurchbruchs inkl. Beschriftung	24
Bild 20: Darstellung eines Wandschlitzes inkl. Beschriftung	25
Bild 21: einstellbare Symbolgrafik der Aussparung	26
Bild 22: 3D Darstellung mit Detaillierungsgrad Grob und virtuellem Schnittkörper	27
Bild 23: Darstellung einer Deckenöffnung inkl. Beschriftung	29
Bild 24: Darstellung eines Deckenschlitzes inkl. Beschriftung	30
Bild 25: Darstellung einer Aussparung die von Wänden begrenzt ist inkl. Beschriftung	30
Bild 26: Darstellung Berechnungsmodell von Wand und Decke	31
Bild 27: einstellbare Symbolgrafik der Aussparung	32
Bild 28: Exemplarparameter DS von UK Decke	32
Bild 29: Darstellung einer Trägeröffnung inkl. Beschriftung	34
Bild 30: Darstellung eines Trägerschlitzes inkl. Beschriftung	35
Bild 31: einstellbare Symbolgrafik der Aussparung	35
Bild 32: 3D Darstellung mit Detaillierungsgrad Grob und virtuellem Schnittkörper	36
Bild 33: Exemplarparameter Tiefe Aussparung für DS Grafik	37
Bild 34: verfügbare Höhenkotentypen	38
Rild 35: Darstellung eine Grundrisskote	38

BiMTOOLS Content

Bild 36: Darstellung einer Schnittkote	. 39
Bild 37: beispielhafte Darstellung zweier Höhenkoten	. 39
Bild 38: 4 verschiedene Punktkoordinatentypen	40
Bild 39: Darstellung Punktkoordinate X/Y/Z (Projekt)	40
Bild 40: Darstellung Punktkoordinate O/N/H (gem. genutzt)	. 41
Bild 41: Dialogfeld zur Einstellung der Familienkategorie- und Parameter	42