SZAKDOLGOZAT

Varga Marcell

Pannon Egyetem Matematika Tanszék Mérnök informatikus BSc szak

SZAKDOLGOZAT

Képfeldolgozást támogató keretrendszer és modulok készítése

Varga Marcell

Témavezető: Lipovits Ágnes

Ide jön az eredeti vagy a fénymásolt feladatkiírás.

Nyilatkozat

Alulírott Varga Marcell diplomázó hallgató kijelentem, hogy a szakdolgozatot a Pannon Egyetem Matematika Tanszékén készítettem Mérnök informatikus BSc szak (BSc in Computer Engineering) megszerzése érdekében.

Kijelentem, hogy a szakdolgozatban lévő érdemi rész saját munkám eredménye, az érdemi részen kívül csak a hivatkozott forrásokat (szakirodalom, eszközök, stb.) használtam fel.

Tudomásul veszem, hogy a szakdolgozatban foglalt eredményeket a Pannon Egyetem, valamint a feladatot kiíró szervezeti egység saját céljaira szabadon felhasználhatja.

Veszprém, 2014. május 02.

Aláírás

Alulírott Lipovits Ágnes témavezető kijelentem, hogy a szakdolgozatot Varga Marcell a Pannon Egyetem Matematika Tanszékén készítette Mérnök informatikus BSc szak (BSc in Computer Engineering) megszerzése érdekében.

Kijelentem, hogy a szakdolgozat védésre bocsátását engedélyezem.

Veszprém, 2014. május 02.

Aláírás

Köszönetnyilvánítás

Köszönet!

TARTALMI ÖSSZEFOGLALÓ

 ${\bf E}$ szakdolgozat témája ...

Kulcsszavak: szoftverarchitektúra, képfeldolgozás, adatszerkezetek, adatkezelés, $\mathrm{Qt},\,\mathrm{c}++,\,\mathrm{OpenCV}$

ABSTRACT

The topic of this thesis is to ...

Keywords: software-architecture, image processing, data structure, data processing, Qt, c++, OpenCV

Todo list

USECASE		 ٠	٠		٠		•	٠	٠	٠									(
Licencelési infók		_	_		_						_	_	_					_	۶

Tartalomjegyzék

1.	A fela	dat összefoglalása
2.	Hason	ó célú rendszerek
	2.1.	Összehasonlítási szempontok
		2.1.1. Általános tulajdonságok:
		2.1.2. Képfeldolgozási képességek
	2.2.	Választott szoftverek
	2.3.	Összefoglalás
3.	Rends	zertervek
	3.1.	Szószedet
	3.2.	Követelmény analízis
		3.2.1. Funkcionális követelmények
		3.2.2. Nem funkcionális követelmények 6
	3.3.	Választott technológiák
		3.3.1. Qt
		3.3.2. OpenCV
	3.4.	Architektúra
	3.5.	Felület terv
4.	Irodal	omjegyzék
5.	Mellél	letek
	5.1.	Hasonló célú rendszerek összehasonlítása táblázat
	5.2.	Szószedet táblázat
	5.3.	Teljes usecase
	5 4	CD melléklet.

1. A FELADAT ÖSSZEFOGLALÁSA

1. A feladat összefoglalása

Témám egy olyan képfeldolgozást támogató keretrendszer tervezése és fejlesztése, amely alkalmas képek egyedi vizsgálatára és kötegelt feldolgozásra. A feldolgozást végző algoritmusok a dinamikusan betölthető modulokban foglalnak helyet.

A rendszer fő haszonélvezője a Pannon Egyetem Képfeldolgozás Kutatólaboratóriuma lesz, de célom, hogy kellően általános rendszer jöjjön létre amelyet bárki könnyen és egyszerűen használhat, illetve bővítheti saját modulokkal.

2. Hasonló célú rendszerek

Munkám első részeként megvizsgáltam, hogy milyen hasonló célú szoftverek, illetve szoftver csomagok találhatóak a piacon. Erre azért volt szükség, hogy pontosabb képet kapjak a jelenleg fellelhető megoldásokról, és munkám során az így tapasztalt pozitív és negatív tapasztalatokat felhasználva jó minőségű szoftvert fejleszthessek.

Különböző összehasonlítási szempontokat állítottam fel, melyek lentebb olvashatóak. Az összehasonlítás során a személyes benyomáson túl, külsős véleményeket is megtekíntettem (legyen az a kiadó cégnek az ajánlása, vagy független publikáció, újságcikk).

2.1. Összehasonlítási szempontok

2.1.1. Általános tulajdonságok:

Platform: Milyen környezetben és operációs rendszeren használható? Milyen program nyelvvel fejlesztették?

Licence: Milyen licenc alatt került publikálásra?

Cél csoport: A szoftver kinek az igényeinek teljesítésére törekszik?

Támogató: Van hivatalos támogatottságga? (cég, alapítvány)

Felhasználói közösség: Fórum, levelező listák?

Plugin rendszer: Plugin betöltésre van lehetőségünk? Saját plugin?

2. HASONLÓ CÉLÚ RENDSZEREK

Kötegelt feldolgozási lehetőség: Feldolgozhatunk egyszerre nagy mennyiségű képet?

Automatizálási lehetőségek: Automatizálhatjuk a feldolgozást? pl.: makrók

Fejlesztői eszközök: Rendelkezik hivatalos fejlesztői eszközökkel?

Támogatott bemeneti formátumok köre

Megjelenítési, vizualizációs lehetőségek listája

2.1.2. Képfeldolgozási képességek

- Képjavító eljárások, pl.: élesítés, kontrasztkiegyenlítés
- Geometriai műveletek, pl.: átméretezés, forgatás, tükrözés
- Analizálás, pl.: eltérések detektálása, alacsony szintű képleírók
- Szerkesztési műveletek, pl.: logikai, szöveg, alakzatok elhelyezése
- Színterek közötti konverzió, pl.: RGB \to HSL, csatornák külön kezelése stb

2.2. Választott szoftverek

• ImageJ[1]

Képfeldolgozást és analizálást végző rendszer, amely a National Institutes of Health fejlesztése. A program első indulásakor látható, hogy itt egy professzionális orvostechnológiai eszközről van szó. Támogatottsága jelentős mind közösségi, mind bővíthetőségi szempontból. Fegyvertárában olyan eszközöket is felvonultat mint Z és T funkciók.[2]

A Z funkciók segítségével pl.: MRI-vel készített sorozatos metszeti képeket kezelhetünk könnyedén, lehetőségeinket tovább növeli, hogy térbeli szervezés mellett még időbeli struktúra felépítésére és kezelésére is lehetőséget ad a program (T funkciók).

ImBatch[3]

Képfeldolgozást végző rendszer. Célcsoportja a egyértelműen egy félprofesszionális felhasználói szint. Tehát itt eleve nem is várunk professzionális analitikai funkciókat. Cserébe kapunk egy szép, letisztult, egyszerű grafikus felhasználói

2. HASONLÓ CÉLÚ RENDSZEREK

felületet, és egy pár használatot segítő funkciót: pl.: Windows helyérzékeny menü intergrációt.

• OriginLab - Image Processing[4]

Az OriginLab szoftver csomag része, amely első sorban tudományos és ipari célközöséget szolgál ki. [5] A korábban tárgyalt rendszerekkel ellentétben ez a szoftver fizetős (21 napos teszt verzió igényelhető). Ára hozza az iparban szokásos szoftver árakat [6], amely személyes felhasználásra kissé borsos, azonban funkcionalitása kárpótolja a felhasználót. Rentgeteg elemzési lehetőség mellett még OriginC-ben saját algoritmusainkat is megvalósíthatunk, a LabView támogatás már majdnem, hogy csak hab a tortán.

2.3. Összefoglalás

A részletes összehasonlítás a 1.1. táblázatból olvasható ki a 9. oldalon. Az adatsorokból megállapíthatjuk, hogy a fejleszteni kívánt szoftverünkkel szemben több fontos követelmény és megállaptás is felírható:

- Hordozható legyen több platformra. Hiszen egy laboratóriumban több féle architektúra elő fordul. (Ideális esetben tehát a szoftverünk legyen crossplatform.)
- Nyitott legyen a további fejlesztésekre. Hiszen az csak utópisztikus álom, hogy egyszer valaki elkészíti az funkciót és onnantól mindenki boldogan használja őket a világ végezetéig... Röviden a felhasználónak adjuk meg a lehetőséget, hogy testre szabja a szoftverünket, vagy dinamikusan külön modulokkal, pluginekkel bővíthesse azt.
- A célcsoport kiválasztása alapvetően meghatározza a beépített funktciókat
 és a felhasználói interfészt. Ha több nézetet tervezünk a programba a
 célközönséget szélesíthetjük.
- Szerepeljenek automatizálási lehetőségek. Senki nem fog egyesével nem hogy 50.000 de még 500 képet sem feldolgozni.
- A szoftvert gyakorlatilag bármilyen bemeneti formátum kezelésére fel kell készíteni.

3. RENDSZERTERVEK

 Már gyárilag nagy mennyiségű képjavító, feldolgozó, szerkesztő, elemző és analizáló funkcionalitással érkezzen a szoftver.

Összegezve láthatjuk, hogy eléggé könnyen lehet már előkészített rendszereket választani a szoftverpiac palettájáról. Ilyenkor jogosan felmerül a kérdés, hogy ez a projekt miben ad többet, mint a jelenlegi lehetőségek?

Célom, hogy egy egyszerű felhasználó számára is könnyen kezelhető nyitott bővíthető rendszer hozzak létre, ahol többszintű képfeldolgozást is egyszerűen végezhetjük. Egy blokkos jellegű grafikus felületet készíteni (mint pl.: Labview blockdiagrammjai [8], vagy UDK4 BluePrint Editorja[9]).

3. Rendszertervek

A rendszer tervezését több fő folyamatra osztottam:

- 1. Követelményrendszer felírása (funkcionális és nem funkcionális követelmények)
- 2. Megfelelő technológiák kiválasztása követelményrendszer és egyéb szempontok alapján
- 3. Alap rendszerarchitektúra elkészítése (modulok megtervezése)
- 4. Felület tervek

3.1. Szószedet

A tervezési munka során természetesen szükségessé vált több különböző objektum, folyamat deffiniálása és elenevezése. A szószedet 1.2. táblázatban található a 9. oldalon.

3.2. Követelmény analízis

A követelmény analízist a RUP (Rational Unified Process) metodika FURPS+ rendszere alapján végeztem.

Így minden olyan tulajdonság és jellemző feltüntetésre került amely szükséges, hogy a szoftver megoldja az adott problémát. [16] Ezek a követelmények jellemzőjüket tekíntve lehetnek funkcionális követelmények, és nem funkcionális követelmények.

3. RENDSZERTERVEK

3.2.1. Funkcionális követelmények

Funkcionális követelményeknek tekíntünk minden olyan követelményt, amely a fő termékünkbe valamilyen képességet biztosít. pl.: Adott objektum megjelenítése [17]

A 1. ábrán megfigyelhető a sematikus usecase diagrammja. (A teljes diagramm a 2. ábrán és a 3. ábrán tekínthető meg a 12. oldalon.

1. ábra. A BIMG sematikus usecase diagrammja

Az egy logikai csoportba tartozó funkciókat csoportokba szerveztem. Így a következő csoportok kerültek felírásra:

3. RENDSZERTERVEK

- Input kezelés: itt történik az input hozzáadása, törlése, szerkesztése, az input elemek sorrendjének megváltoztatása, továbbá a bemeneti elemek megjelenítése.
- Plugin kezelés: itt történik a pluginek a rendszerbe töltése, ki/be kapcsolása,
 és tartlamuk böngészése is.
- Process Chain kezelés: a feldolgozás szíve, ez a modul veszi át az input listát, és végzi a feldolgozást
- IMP Node kezelés: Itt történik a Process Chain elemeinek a deffiniálása és az elemek közötti relációknak a beállítása.

Ezek a logikai csoportok reprezentálnak egyben egy modult is a rendszerben. A teljes usecase kifejtve a mellékletben olvasható.

3.2.2. Nem funkcionális követelmények

3.3. Választott technológiák

A megfelelő technológiák kiválasztása során több tényező is befolyásolta a döntésemet. Ezekeből két nagy csoportot írtam fel: követelményrendszerből illetve szubjektív nézőpontból kiemelt fontosságú tényezők. A követelményrendszerből adódóakat a korábbi két alpontban bőségesen részleteztem, ezért a következőkben csak a szubjektív pontokat vázolnám fel.

- Egyszerű és gyors, minőségi fejlesztés
- Könnyű dokumentálhatóság
- Legyen korábbi munkáimból rutinom az adott technológiák alkalmazásában
- Képfeldolgozási függvénykönyvtárakkal legyenek jól ellátottak a kiválasztott technológiák (nem szeretném újra feltalálni a kereket)

A fenti szempontokból a következő fegyvertár került összeállításra:

A program alap szerkezete Qt-val, a képfeldolgozásért felelős komponensek OpenCv-vel kerültek megvalósításra. A verziókövetést Git-el végeztem, a dokumentáció és dolgozat elkészítéséhez pedig Latex-et, Gummi-t, és Yed-et használtam.

4. IRODALOMJEGYZÉK

3.3.1. Qt

Egyike a legmeghatározóbb multiplatform c++-ra épülő alkalmazás keretrendszerenek. [10] Korábban már több másik projektben is sikeresen dolgoztam vele. A részletes dokumentáció és aktív felhasználói/fejlesztői bázis sokat segített a fejlesztésben. [11] [12][13] Licencelése kedvező, elérhető OpenSource és Enterprise verziója is. Olyan nagy cégek is használják mint a BlackBerry, Michelin vagy a Panasonics.[14] Jelen dolgozat tárgyát képező alkalmazás az 5.1.1es (GCC 4.6.3 32bit) verzióval készült.

3.3.2. OpenCV

Open Source Computer Vision Library, nyíltforrású képfeldolgozást és gépi tanulást megvalósító függvénykönyvtár. Natív c++-ban implementált és erősen támaszkodik azt stl tárolókra. Egy vékony wrapper elkészítésével könnyen összekapcsolható Qt-val. Funkcionalitásával széleskörű feladatok megoldására kivállóan alkalmas és dokumentációja is megfelelő. Jelen program a 2.4.6.1-os verzióval került implementálásra.

- 3.4. Architektúra
- 3.5. Felület terv
- 4. Irodalomjegyzék
- [1] http://imagej.nih.gov/ij/ ImageJ Image Process and Analysis in Java
- [2] Tony J. Collinsm, ImageJ for microscopy BioTechniques 43:S25-S30 (July 2007)
- [3] http://www.highmotionsoftware.com/products/imbatch ImBatch - Batch Image Processing Software
- [4] http://www.originlab.com/index.aspx?go=Products/Origin/DataAnalysis/ImageProcessi OriginLab - Image Processing
- [5] http://www.originlab.com/index.aspx?go=COMPANY/AboutUs OriginLab - About Us

- [6] http://www.originlab.hu/Originv9_USD_NEW_20121022_WEB.pdf OriginLab - Licences
- [7] http://www.ibm.com/developerworks/rational/library/4706.htmlIBM Capturing Architectural Requirements
- [8] http://zone.ni.com/reference/en-XX/help/371361J-01/lvconcepts/blockdiagram/
 NI LabVIEW 2012 Help Block Diagram
- [9] https://docs.unrealengine.com/latest/INT/Engine/Blueprints/Editor/index.html UDK4 Blueprint Editor Reference
- [10] http://qt.digia.com/About-Us/ QT About
- [11] http://qt-project.org/doc/ QT Doc
- [12] http://qt-project.org/forums QT Forums
- [13] http://lists.qt-project.org/mailman/listinfo QT MailingLists
- [14] http://qt.digia.com/Qt-in-Use/ QT Digia In Use
- [15] http://opencv.org/about.html OpenCV About
- [16] http://www.math.unipd.it/tullio/IS-1/2007/Approfondimenti/SWEBOK.pdf Guide to the Software Engineering Body of Knowledge, Chapter 2 -SOFTWARE R EQUIREMENTS
- $[17] \ http://www.ibm.com/developerworks/rational/library/4706.html \#N10098$ $IBM Capturing \ Architectural \ Requirements, \ Functional \ Requirements$
- 5. Mellékletek

5.1. Hasonló célú rendszerek összehasonlítása táblázat

	ImageJ	ImBatch	OriginLab
Platform	Multi (Java)	Win (C#)	Win (C/C++)
Licence	Public Domain	@TODO	@TODO
Cél csoport	professzionális (orvosi)	félprofesszionális (általános)	professzionális (tudományos, ipari)
Támogató	National Institutes of Health	High Motion Software	OriginLab
Felhasználói közösség	wiki, leírások, fejlesztői dokumtáció, levlista, fórum	gyik, leírások, oktató videók	gyik, wiki, leírások, fejlesztői dokumentáció, fórum
Plugin rendszer	igen	igen	igen
Kötegelt feldolgozás	igen (Z-T funkciók)	igen (akár helyérzékeny menü)	igen
Automatizálás	makrók	${ m r\'eszben}$	$\operatorname{originC}$
Fejlesztői eszközök	igen	igen	igen
Bemeneti formátumok	széleskörű (orvosi irány)	széleskörű (általános irány)	széleskörű (ipari irány)
Megjelenítés, GUI	$_{ m komplex}$	egyszerű letisztult	komplex
Képjavító eljárások	igen	${ m igen}$	igen
Geometriai műveletek	igen	igen	igen
Analizálás	${ m igen}$	nem	igen
Szerkesztési műveletek	${\it igen}$	igen	igen
Színterek közötti konverzió	igen	igen	igen

1.1. táblázat. Hasonló célú rendszerek összehasonlítása

5.2. Szószedet táblázat

Elnevezés	Deffiníció							
Bimg	A főprogramnak az elnevezése (képzése a Batch Image							
	szavakból történt szóösszerántással).							
Modul	BIMG-n belüli logikai egység.							
Plugin	BIMG dinamikus kiterjesztése, az IMP blockok lelőhelye							
IMP Block	Image Process Block, képfeldolgozási alapegységnek							
	tekínthetjük, egy IMP általában egy jól körülhatárol							
	művelet elvégzésére alkalmas							
IMP Parameter	Megkülönböztetünk: bemeneti paramétereket (pl.: IMP							
	bemeneti kép), kimeneti paramétereket (pl.: IMP							
	eredménykép) és konfigurációs paramétereket (pl.:							
	konstans, mátrix).							
IMP Connection	Kettő darab azonos típusú IMP Parameter között							
	kapcsolat hozható létre. Ezt a kapcsolatot nevezzük IMP							
	Connection-nek. Kapcsolat csak kimeneti és bemeneti							
	paraméterek között jöhet létre. Az irány kötelezően: Ki-							
	Be.							
IMP Node	Egy IMP Blockot tartalmaz. Feladata, hogy megfelelő							
	interfészt biztosítson az IMP Block fölé.							
IMP Connector	Egy IMP Parameter-t tartalmaz. Feladata, hogy							
	megfelelő interfészt biztosítson az IMP Parameter fölé.							
IMP Connector	Egy IMP Connection-t tartalmaz. Feladata, hogy							
Connection	megfelelő interfészt biztosítson az IMP Connection fölé.							
BimgImage	Be- és kimeneti adatsort tartalmaz. (Ez a legtöbb							
	esetben kép.)							
Process Chain	IMP Node-okat tartalmaz, innen indul a feldolgozás							

1.2. táblázat. Szószedet

5.3. Teljes usecase

5.4. CD melléklet

A szakdolgozat CD mellékletének könyvtárszerkezete:

/VargaMarcell-DVLKHU-szakdolgozat.pdf /szakdolgozat-forraskod /diagramok

/szakdolgozat.tex

```
/rendszer-forraskod /src /Szakdolgozat /internetes-hivatkozasok /1_osszehasonlitas /2_kovetelmenyanalizis
```


2. ábra. A BIMG teljes usecase diagrammja (1. rész)

3. ábra. A BIMG teljes usecase diagrammja (2. rész)