RL with Continuous Action Sets

Chen-Yu Wei

3 main challenges in online RL: Exploration, Generalization, (Temporal) Credit Assignment

PPO / PG / A2C in Discrete / Continuous Action Sets

Discrete actions

Continuous actions

Algorithms involving a policy and value network where the value is used in the policy update are called **actor-critic** algorithms.

PPO / PG / A2C in Continuous Action Sets

$$\theta_{k+1} \leftarrow \operatorname{argmax} \left\{ \sum_{i=1}^{N} \left(\frac{\pi_{\theta}(a_i|s_i)}{\pi_{\theta_k}(a_i|s_i)} A_i - \frac{1}{\eta} \operatorname{KL} \left(\pi_{\theta}(\cdot|s_i), \pi_{\theta_k}(\cdot|s_i) \right) \right) \right\}$$

$$\theta_{k+1} \leftarrow \theta_k + \eta \left. \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(a_i | s_i) \right|_{\theta = \theta_k} A_i$$

where A_i is a weighted average of the following (GAE):

$$\begin{split} r_{i} + \gamma V_{\phi}(s_{i+1}) - V_{\phi}(s_{i}) \\ r_{i} + \gamma r_{i+1} + \gamma^{2} V_{\phi}(s_{i+2}) - V_{\phi}(s_{i}) \\ r_{i} + \gamma r_{i+1} + \gamma^{2} r_{i+2} + \gamma^{3} V_{\phi}(s_{i+3}) - V_{\phi}(s_{i}) \end{split}$$

...

3 main challenges in online RL: Exploration, Generalization, (Temporal) Credit Assignment

Two Types of Actor-Critic Algorithms

PPO/PG/A2C

Update θ with

$$\frac{\pi_{\theta}(a_i|s_i)}{\pi_{\theta_k}(a_i|s_i)} \left(r_i + \gamma V_{\phi}(s_{i+1}) - V_{\phi}(s_i) \right)$$

Idea more aligned with

Policy-based bandits (forming unbiased reward estimator)

Policy Iteration (policy improvement based on $Q^{\pi}(s, a)$)

Training type

On-policy

DDPG/TD3/SAC

$$\sum_{a} \pi_{\theta}(a|s_i) Q_{\phi}(s_i, a)$$

Value-based bandits (forming reward estimator from regression)

Policy Iteration or Value Iteration (policy improvement based on $Q^*(s,a)$) – e.g. DQN

On-policy or off-policy (using data collected from previous policies)

DDPG

Deep Deterministic Policy Gradient (DDPG)

For k = 1, 2, ...

Use $\mu_{\theta}(s) + \mathcal{N}(0, \sigma^2)$ to collect samples and place them in **replay buffer**

Sample a batch $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$ from the replay buffer

$$\phi \leftarrow \phi - \lambda \nabla_{\phi} \sum_{i=1}^{n} \left(Q_{\phi}(s_{i}, a_{i}) - r_{i} - \gamma Q_{\overline{\phi}}(s'_{i}, \mu_{\overline{\theta}}(s'_{i})) \right)^{2}$$

$$\theta \leftarrow \theta + \eta \sum_{i=1}^{n} \nabla_{\theta} Q_{\phi}(s_{i}, \mu_{\theta}(s_{i}))$$

$$\bar{\phi} \leftarrow \tau \phi + (1 - \tau)\bar{\phi}, \quad \bar{\theta} \leftarrow \tau \theta + (1 - \tau)\bar{\theta}$$

The bandit version of this algorithm: Page 11 here

Lillicrap et al., Continuous control with deep reinforcement learning. 2015.

TD3

Further Stabilizing DDPG (1/3): Twin Delayed DDPG

Double Q-learning

Double Q-learning: When training ϕ_1 , instead of using $Q_{\overline{\phi}_1}$ to evaluate the regression target, use $\chi_{\overline{\phi}_2}$

TD3: min $\left\{Q_{\overline{\phi}_1}, Q_{\overline{\phi}_2}\right\}$

Double Q-learning: Use independent samples to train ϕ_1 and ϕ_2

TD3: Use the same set of samples

(the independence between ϕ_1 and ϕ_2 only comes from random initialization)

Further Stabilizing DDPG (2/3): Twin Delayed DDPG

Target policy smoothing

DDPG: use $Q_{\overline{\theta}}(s', \mu_{\overline{\theta}}(s'))$ as the regression target

TD3: sample $a' = \mu_{\overline{\theta}}(s') + \mathcal{N}(0, \sigma^2)$ use $Q_{\overline{\phi}}(s', a')$ as the regression target

Further Stabilizing DDPG (3/3): Twin Delayed DDPG

 Delayed policy updates: running multiple steps of value updates before running one step of policy update

Remark: all three changes make it harder for the policy $\mu_{\theta}(s)$ to exploit the error of the Q function $Q_{\phi}(s, a)$

Twin Delayed DDPG (TD3)

For
$$k=1,\ 2,\ldots$$
Use $\mu_{\theta}(s)+\mathcal{N}(0,\sigma^2)$ to collect samples and place them in replay buffer Sample a batch $\{(s_i,a_i,r_i,s_i')\}_{i=1}^n$ from the replay buffer For each sample i , draw $a_i'\sim \mu_{\overline{\theta}}(s_i')+\mathcal{N}(0,\sigma^2I)$

$$\phi_j\leftarrow\phi_j-\lambda\nabla_{\phi_j}\sum_{i=1}^n\left(Q_{\phi_j}(s_i,a_i)-r_i-\gamma\min_{\ell=1,2}Q_{\overline{\phi}_\ell}(s_i',a_i')\right)^2\qquad\forall j=1,2$$
If $k\bmod M=0$:
$$\theta\leftarrow\theta+\eta\sum_{i=1}^n\nabla_{\theta}Q_{\phi_1}(s_i,\mu_{\theta}(s_i))$$

$$\bar{\theta}\leftarrow\tau\theta+(1-\tau)\bar{\theta}$$

$$\bar{\phi}_j\leftarrow\tau\phi_j+(1-\tau)\bar{\phi}_i\qquad\forall j=1,2$$

Fujimoto et al., Addressing Function Approximation Error in Actor-Critic Methods. 2018.

SAC

Soft Actor-Critic (SAC)

- TD3 / DDPG: modeling $\mu_{\theta}(s)$ + additional noise for exploration
- SAC: modeling $\mu_{\theta}(s)$ and $\sigma_{\theta}(s)$ + adding entropy as an exploration bonus

Entropy Bonus (≈ Boltzmann Exploration)

Bandit
$$\pi = \left[\underset{\pi}{\operatorname{argmax}} \sum_{a} \pi(a) R(a) + \alpha H(\pi) \right] + \underset{\pi}{\operatorname{argmax}} \mathbb{E}_{a \sim \pi} [R(a) - \alpha \log \pi(a)]$$

$$\mathcal{R}(a) \propto \exp\left(\frac{1}{\alpha}\mathcal{R}(a)\right)$$

$$\pi = \underset{\pi}{\operatorname{argmax}} \ \mathbb{E}^{\pi} \left[\sum_{h=0}^{\infty} \gamma^{h} \left(\sum_{a} \pi(a|s_{h}) R(s_{h}, a) + \alpha \ H(\pi(\cdot|s_{h})) \right) \right]$$
$$= \underset{\pi}{\operatorname{argmax}} \ \mathbb{E}^{\pi} \left[\sum_{h=0}^{\infty} \gamma^{h} \left(R(s_{h}, a_{h}) - \alpha \log \pi(a_{h}|s_{h}) \right) \right]$$

Bellman Equation with Entropy Bonus

$$\begin{array}{lll}
\mathbb{Z}(S,\alpha) & \stackrel{\triangle}{=} & \stackrel{\longleftarrow}{\mathbb{E}} \left(\begin{array}{c} \mathbb{Z} \\ \mathbb{Z} \\ \mathbb{Z} \end{array} \right)^{h-1} R(S_{h},\alpha_{h}) & \left(S_{1},\alpha_{1} \right) = (S,\alpha) \\
\mathbb{Z}(S,\alpha) & = R(S,\alpha) + \mathbb{E}^{\mathbb{Z}} \left(\begin{array}{c} \mathbb{Z} \\ \mathbb{Z} \\ \mathbb{Z} \end{array} \right)^{h-2} R(S_{h},\alpha_{h}) & = R(S,\alpha) + \mathbb{E}^{\mathbb{Z}} \mathbb{Z} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') \\
\mathbb{Q}^{\mathbb{Z}}(S,\alpha) & = R(S,\alpha) + \mathbb{E}^{\mathbb{Z}} \left(\mathbb{Z}(S,\alpha) + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') \\
\mathbb{Q}^{\mathbb{Z}}(S,\alpha) & = R(S,\alpha) + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') \\
\mathbb{Q}^{\mathbb{Z}}(S,\alpha) & = \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') \\
\mathbb{Q}^{\mathbb{Z}}(S,\alpha) & = \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') \\
\mathbb{Q}^{\mathbb{Z}}(S,\alpha) & = \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') \\
\mathbb{Q}^{\mathbb{Z}}(S,\alpha) & = \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') \\
\mathbb{Q}^{\mathbb{Z}}(S,\alpha) & = \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') \\
\mathbb{Q}^{\mathbb{Z}}(S,\alpha') & = \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Z}(S',\alpha') + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') \mathbb{Q}^{\mathbb{Z}}(S',\alpha') + \mathbb{E}^{\mathbb{Z}} \mathbb{Z}(\alpha'|S') +$$

TD3 vs. SAC

Value update

TD3: Sample $a' \sim \mu_{\theta}(s') + \mathcal{N}(0, \sigma^2)$ Use $Q_{\overline{\phi}}(s', a')$ as the regression target

SAC: Sample $a' \sim \pi_{\theta}(\cdot | s') = \mu_{\theta}(s') + \mathcal{N}(0, \sigma_{\theta}^{2}(s'))$ Use $Q_{\overline{\phi}}(s', a') - \alpha \log \pi_{\theta}(a' | s')$ as the regression target

Soft Actor-Critic (SAC)

For k = 1, 2, ...

Use $\mu_{\theta}(s) + \mathcal{N}(0, \sigma_{\theta}^2(s))$ to collect samples and place them in replay buffer

Sample a batch $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$ from the replay buffer

For each sample *i*, draw $a_i' \sim \mu_{\theta}(s_i') + \mathcal{N}(0, \sigma_{\theta}^2(s_i'))$

$$\phi_j \leftarrow \phi_j - \lambda \nabla_{\phi_j} \sum_{i=1}^n \left(Q_{\phi_j}(s_i, a_i) - r_i - \gamma \left(\min_{\ell=1,2} Q_{\overline{\phi}_{\ell}}(s_i', a_i') + \alpha \log \pi_{\theta}(a_i'|s_i') \right) \right)^2 \quad \forall j = 1, 2$$

Perform Policy (θ) Update (to be specified later)

$$\bar{\phi}_j \leftarrow \tau \phi_j + (1 - \tau) \bar{\phi}_j \quad \forall j = 1,2$$

Haarnoja et al., Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. 2018.

TD3 vs. SAC

Policy update

TD3: Do not view $-\alpha \log \pi_{\theta} (a|s)$ as part of the reward Only train $\mu_{\theta}(s)$

$$\theta \leftarrow \theta + \eta \nabla_{\theta} Q_{\phi}(s, \mu_{\theta}(s))$$

SAC: View $-\alpha \log \pi_{\theta}$ (a|s) as part of the reward Train both $\mu_{\theta}(s)$ and $\log \sigma_{\theta}(s)$

Sample
$$a_{\theta}(s) = \mu_{\theta}(s) + \epsilon \sigma_{\theta}(s)$$
 where $\epsilon \sim \mathcal{N}(0,1)$
 $\theta \leftarrow \theta + \eta \nabla_{\theta} (Q_{\phi}(s, a_{\theta}(s)) - \alpha \log \pi_{\theta}(a_{\theta}(s)|s))$

Soft Actor-Critic (SAC)

Further using
$$\pi_{\theta}(a|s) = \frac{1}{(2\pi\sigma_{\theta}(s)^2)^{d/2}} \exp\left(-\frac{\|a-\mu_{\theta}(s)\|^2}{\sigma_{\theta}(s)^2}\right)$$

For k = 1, 2, ...

Use $\mu_{\theta}(s) + \mathcal{N}(0, \sigma_{\theta}^{2}(s))$ to collect samples and place them in replay buffer

Sample a batch $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$ from the replay buffer

For each sample i, draw $a_i' \sim \mu_{\theta}(s_i') + \mathcal{N}(0, \sigma_{\theta}^2(s_i'))$

$$\phi_{j} \leftarrow \phi_{j} - \lambda \nabla_{\phi_{j}} \sum_{i=1}^{n} \left(Q_{\phi_{j}}(s_{i}, a_{i}) - r_{i} - \gamma \left(\min_{\ell=1,2} Q_{\overline{\phi}_{\ell}}(s'_{i}, a'_{i}) + \alpha \log \pi_{\theta}(a'_{i}|s_{i}') \right) \right)^{2} \quad \forall j = 1,2$$

Let
$$a_{\theta}(s_i) = \mu_{\theta}(s_i) + \epsilon \sigma_{\theta}(s_i)$$
 where $\epsilon \sim \mathcal{N}(0, I)$

Let
$$a_{\theta}(s_i) = \mu_{\theta}(s_i) + \epsilon \sigma_{\theta}(s_i)$$
 where $\epsilon \sim \mathcal{N}(0, I)$

$$\theta \leftarrow \theta + \eta \sum_{i=1}^{n} \nabla_{\theta} (Q_{\phi_1}(s, a_{\theta}(s_i)) - \alpha \log \pi_{\theta}(a_{\theta}(s_i)|s_i))$$

$$\bar{\phi}_j \leftarrow \tau \phi_j + (1 - \tau) \bar{\phi}_j \quad \forall j = 1,2$$

Haarnoja et al., Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. 2018.