

AGH University of Science and Technology

Managing data availability and integrity in federated cloud storage

Krzysztof Styrc

Department of Computer Science AGH

Supervisor:

Marian Bubak

Consultancy:

Piotr Nowakowski, ACC Cyfronet AGH

Reviewer:

Dawid Kurzyniec, Google Kraków

Agenda

1. Introduction

- Motivation
- VPH-Share project background
- Objectives of the thesis

2. State of the art

- Overview of methods for data integrity
- Proof of Retrievability (POR)
- Data integrity proof (DIP)

3. Design and implementation

- Data validation algorithm
- Design of Data Reliability and Integrity (DRI) service
- Example of DRI service operation

4. Summary and future work

Motivation

Cloud storage problems

- data stored on external resources of (untrusted) cloud provider
- best-effort SLAs definition, return of costs otherwise
- cloud vendor lock-in effect
- numerous cloud storage failures and security flaws [1]
 - deleted emails, millions of blocked accounts in Gmail service
 - multiple Amazon S3 downtimes reports
 - unauthorized access to files in GoogleDocs

Cloud storage data integrity challenges

- network latency and bandwidth limits
 - fine-grained access pattern overhead
 - WAN networks (Internet) bandwidth outages
- costs of [2]
 - data storage (per volume)
 - data transfer (per # of requests, per volume)
- simplified API, no computation available without retrieval

VPH-Share project background [1]

Data in VPH-Share

- mostly static and sensitive, biomedical data
- stored in federation of cloud storage providers to
 - avoid vendor lock-in effect
 - provide fault tolerance against provider failures
- storage entity defined as dataset (simply, a set of files)

Data integrity requirements

- Periodical monitoring of data availability and integrity
- Network-efficient data validation
 - reduce whole-file retrieval overhead
 - reduce costs
- Replication of datasets in cloud federation

Described as...

Objectives

The aim of this thesis is to develop a method to efficiently monitor the availability and integrity of data stored in federation of cloud storages.

Detailed objectives of this work

- literature research on efficient cloud storage validation algorithm
- design of network-efficient data validation algorithm
- design and implementation of validation web service prototype
- integration with VPH-Share platform

Overview of methods for data integrity

Data integrity building blocks

- Hash functions (MD5, SHA-1, SHA-256)
- Message authentication code (MAC) integrity and authenticity assurance
- Error correcting code (ECC) corruption detection and correction

Popular approaches

- MD5/SHA-1 software package checksumming
- integrity checksums of messages in networking
- Widespread use of ECCs in hardware solutions

Existing methods fail in cloud storage model due to

- huge amount of data
- stored on external resources

Proof of Retrievability

Data integrity proof

Prepare for data validation

- 1) divide a file F into n blocks and select randomly k bits from every block using key generator
- 2) concatenate all selected bits and encrypt them
- 3) append encrypted bits to the end of file

Perform data validation

- 1) select the same bits and concatenate
- 2) compare with the originals

S. Kumar and A. Saxena: Data integrity proofs in cloud storage, COMNETS, 2011

Data validation algorithm

Prepare for data validation

- 1) divide file F into n equal chunks
- 2) compute MAC checksum for every chunk and store

Perform data validation

- 1) randomly select k out of n chunks
- 2) compute MAC checksum of selected chunks and compare with the originals

Metric	our approach	whole-file approach
E_{det}	<u>k</u> n	1
Nover	$\sim F \times \frac{k}{n}$	$\sim F$
T_{exec}	$\sim k \times (\frac{F}{n \times speed} + latency)$	$\sim \frac{F}{speed} + latency$

 E_{det} – error detection rate

 $N_{over.}$ – network overhead

 T_{exec} – time complexity

F-file sizze

Design of Data Reliability and Integrity (DRI)

DRI service

- stateless REST web service in VPH-Share cloud environment
- periodical and on-request probabilistic data validation of data in federation of cloud storages
- datasets and validation metadata stored in AIR registry
- 4) notifying scientific users via Notification service
- 5) asynchronous calls and batch execution

Implementation technologies

- JClouds library generic cloud storage abstraction
- Quartz task scheduling
- JAX-RS REST web service
- Java, Guice, Guava, Tomcat

DRIService

- + registerDataset(dataset : ManagedDatasetDescription) : ManagedDatasetID
- + unregisterDataset(id : ManagedDatasetID)
- + replicateDatasetToResource(id : ManagedDatasetID, source : DataSourceID)
- + dereplicateDatasetFromResource(id : ManagedDatasetID, source : DataSourceID)
- + datasetChanged(id : ManagedDatasetID, dataset : ManagedDatasetDescription)
- + validateDataset(id : ManagedDatasetID) : Message
- + setManagementPolicy(policy: ManagementPolicy)
- + getManagementPolicy(id : ManagedDatasetID) : ManagementPolicy

DRI Notification Service

Dataset name	Notification status	Execu	ition time	Time scheduled	
test_dataset	Integrity errors detected	2s		8/10/13 12:52 PM	
The dataset test_da	taset is INVALID				
Below is the detaile	d validation report:				
Logical data identifier			Integrity status		
moon.jpg			INVALID		
earth.jpg			INVALID		
time-machine.txt		UNAVAILABLE			
test_dataset	Integrity errors detected	2s		8/10/13 12:51 PM	
test_dataset The dataset test_da		2s		8/10/13 12:51 PM	
The dataset test_da		2s		8/10/13 12:51 PM	
The dataset test_da	taset is INVALID	2 s	Integrity sta		
The dataset test_da	taset is INVALID	2s	Integrity sta		
The dataset test_da Below is the detaile Logical data ident	taset is INVALID ed validation report:	2s		tus	
The dataset test_da Below is the detaile Logical data iden moon.jpg	taset is INVALID ed validation report:	2s 2s	INVALID	tus	

Summary and future work

Results

- proposed a network-efficient algorithm for data validation in the cloud
- proposed methodology how to address the problem of providing data reliability and integrity in the cloud
- enabled VPH-Share project users to monitor data integrity and notify in case offailures

Future work

- investigate how to combine DRI monitoring service with federated cloud storage data access layer
- extract DRI functionality and provide it as a reusable component outside of the VPH-Share project
- investigate further improvements of data validation algorithm

Acknowledgement

More at http://dice.cyfronet.pl/VPH-Share

This thesis was realized partially in the framework of the following projects:

Virtual Physiological Human: Sharing for Healthcare (VPH-Share) – partially funded by the European Commission under the Information Communication Technologies Programme (contract number 269978)

