Topic Overview

The final is comprehensive, but will certainly include material from more recent chapters that you have not yet been tested on. As such, all previous study guides will still apply, and I'll just include the latest information here.

• Chapter 12	
\square Extracting pieces of a timestamp, date, or time object	
\Box Creating date, time, or timestamp objects	
☐ Getting local system times or dates	
$\hfill\Box$ Being able to convert a timestamp to another timezone	
• Chapter 13	
\square Using subqueries to generate a single value that can be compared against	t
\Box Creating derived tables for use in other queries	
$\hfill\Box$ Filtering tables based on the output of a subquery	
☐ Using subqueries in SELECT statements	
\square Using derived tables within CTEs	
\square Creating pivot tables or cross-tabulations	
☐ Using CASE statements	
• Chapter 14	
\square Using basic string manipulation functions	
$\hfill\square$ Matching patterns using regular expressions (regular expressions will be acters)	e kept small: < 10 char
$\hfill\Box$ Extracting text from larger strings using regular expressions	
\square Splitting text into arrays or (more likely) rows	
\square Vectorizing a large block of text	
☐ Searching tsvectors for specific tsquerys	
☐ Constructing compound tsquerys	
☐ Creating indexes for tsvector-type columns	
• Chapter 15	
$\hfill\Box$ Creating points and lines using well-known text strings	
$\hfill\Box$ Understand how to specify the used coordinate system	
\square Compare and contrast the geography and geometry data types and known	wn when to use each
$\hfill\Box$ Create geography or geometry objects corresponding to points or lines	and a particular SRID
\square Creating indexes for spatial information	
Compute distances between spatial objects	

Practice Questions

1. Suppose you had the following tables containing information about individuals and their marriages:

Each unique marriage between two individuals gets a single marriage id and anniversary date, and the users table tracks the individuals name and the corresponding marriage id. Note that the users table has a compound primary key, and so an individual name can appear multiple times in the users table. This allows for the same user to be married multiple times, in case of divorce, death, etc. You can assume that no users otherwise have duplicate names: that is, if a name appears twice in the users table, it is because that individual has remarried.

Write a query that would return to you all users who are celebrating the anniversary of their *latest* marriage **today** (whatever day the query happens to be run).

2. I am testing the structural integrity of the color coating on the outside of M&M's. To do so, I drop each from a height of 1 meter and then inspect them for knicks or cracks in the coating. I'm keeping track of all this information in a simple table that has the form:

where the colors would be the classic M&M colors: red, orange, green, blue, yellow, and brown. Each row of the table hold information about another dropped M&M.

I'm interested in seeing if certainly colors of M&M's have a coating that is more resistant to damage. I will call any M&M's with 1 or fewer knicks as "undamaged" and any with more than 1 knick as "damaged". Write a query that would construct a pivot table that contains the counts of tested M&M's that fall into different categories, where the colors of the M&M's are across the horizontal axis and condition of the M&M (damaged or undamaged) is down the vertical axis. So a possible output might look like:

Condition	blue	brown	green	orange	red	yellow
undamaged	10	14	7	34	20	17
damaged	14	8	12	22	10	24

3. You are doing analysis on criminal behavior in the city of Salem. You have managed to get your hands on a pile of crime reports, and you have imported them into a table (called crime_reports) in a raw format, where each line of the table contains information from a single report, but the entirety of each criminal report exists as text within a single column (called raw_text). The text of the criminal report has a varying format, but contains information describing the criminal activity, who reported the crime, who responded to the call, and where the crime occurred (in a consistent (latitude, longitude) format).

Your task is to determine, for crimes involving murder or homicide but not robbery, what the average distance from the police headquarters (located at (44.947138680439984, -123.03630819427937)) was. You can use multiple queries if you like.

This is definitely more complicated than anything that would show up on the test, but is good practice bringing in ideas from both full text searching and geospatial information. If you can reason your way through this, you should be in a great place for any test questions about those concepts.