Midterm Answer

(2) proof:
$$(\Rightarrow)$$
 let $n = 2k + 1, k \in \mathbb{Z}$

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$$
 is odd

 (\Leftarrow) We have that n^2 is odd

Claim: n is odd

Suppose not, $n = 2k, k \in \mathbb{Z}$ is even

$$n^2 = 4k^2 \rightarrow \leftarrow \text{ to } n^2 \text{ is odd}$$

Hence, n is odd.

- (3) (b) $\because \forall x \exists y = x + 1 \text{ such that } x < 2y$
- $(4) (\exists x)(\forall y)(x \ge 2y)$
- (5) (a) $1 \neq 3$ and f(1) = f(3)

(6)

P: Tom finishes his work

Q: Tom can go home tonight

•					
P	Q	$\sim P$	$\sim Q$	$\sim P \rightarrow \sim Q$	
Τ	Т	F	F	Τ	
Т	F	F	Т	Т	
F	Т	Т	F	F	
F	F	Т	Т	Τ	

- $(7) (b) \overline{(d)}$
- $(8)\ (1)\{2,3,4,5\}\ (2)\{1,2,3,4,5,6,7\}\ (3)\{1\}$
- (9) (c)(d)(f)(g)(i)(j)
- (10) (a) $\{3\}$ (b) $\{\frac{3}{2},3\}$ (c) $\{\pm\sqrt{2},\frac{3}{2},3\}$ (d) $\{\pm i,\pm\sqrt{2},\frac{3}{2},3\}$
- (11) (b)

(12) (
$$\subseteq$$
) Given $x \in (A \cup B) - (A \cap B)$
 $\Rightarrow x \in A \text{ or } B \text{ but } x \notin A \cap B$
 $\Rightarrow \text{ If } x \in A, \text{ but } x \notin A \cap B \Rightarrow x \in A \text{ but } x \notin B \Rightarrow x \in A - B$
If $x \in B, \text{ but } x \notin A \cap B \Rightarrow x \in B \text{ but } x \notin A \Rightarrow x \in B - A$
 $\Rightarrow x \in (A - B) \cup (B - A)$
(\supseteq) Given $x \in (A - B) \cup (B - A)$
 $\Rightarrow \text{ If } x \in A, \text{ but } x \notin B$
 $x \in A \Rightarrow x \in A \cup B \text{ and } x \notin B \Rightarrow x \notin A \cap B$
 $x \in (A \cup B) - (A \cap B)$
If $x \in B \text{ but } x \notin A$
 $x \in B \Rightarrow x \in A \cup B \text{ and } x \notin A \Rightarrow x \notin A \cap B$
 $x \in (A \cup B) - (A \cap B)$

- (13) Converse: If 2 < 5, then $\sqrt{2} < \sqrt{5}$ Contrapositive: If $2 \ge 5$, then $\sqrt{2} \ge \sqrt{5}$
- (14) (a)(b)(c)
- (15) True, Given $x \in A \cap C \Rightarrow x \in A$ and $x \in C$, then $x \in A \subseteq B \Rightarrow x \in B$ and $x \in C \subseteq D \Rightarrow x \in D$ $\therefore x \in B \cap D$ Hence $A \cap C \subseteq B \cap D$