

ERRATA

- p. viii, line 6
- p. 2, lines 1 through 4

change to Wing Upper Surface

delete; add "During the IPSA portion of the NAIL program, surface static pressures were measured as follows on both the inboard and outboard engine installations:

- Internal and external inlet surfaces
- Engine core cowling
- Pylon
- Neighboring upper and lower wing surfaces

A data base at these locations was acquired at Mach numbers 0.77, 0.80, 0.86, and 0.91 through three test flights."

p. 3, line 7

- p. 6, line 11
- p. 9, line 26
- p. 10, insert

free stream value

change 499 to 557 and 322 to 380

change $(W_A \sqrt{\theta_T} / \delta_T)$ to $W_A \sqrt{\theta_T} / \delta_T$

change NASI to NASI

- angle of attack
- θ_{T_2} total temperature ratio at engine face, T_2 T_2/T_{SLS}
- ρ air density, slug/ft³
- θ circumferential position, degrees
- δ_{T₂} total pressure ratio at engine face, P_{T₂}/P_{SLS} add SUBSCRIPTS after T₂ and before f

change "pylon-core cowl intersection" to "pylon-fan cowl intersection"

change "pylon-fan cowl intersection" to "pylon-core cowl intersection"

at top of photograph, obliterated callouts are WBL 809, 834, and 870, reading left to right

callouts reading from top to bottom in lower lefthand corner are Inboard aileron Trailing-edge flaps

p. 10, line 20

p. 10, line 22

pp. 11 & 12, line 1

p. 16, figure 5

p. 16, figure 6

p. 25, figure 9

p. 28, line 2

p. 28, line 10

p. 28, line 17

p. 29, table 4

in table for outboard engine (No. 4) change the Point T NAC STA value from 216.12 to 206.10

delete "Side View" from over bulleted items

in upper right hand corner, change "20" callout to "2-deg pitch-up"

change to "...up to 2 deg relative to the WRP

change to "...WLT for each engine using distances given in figure 9."

add after "...or WBL 834 outboard."-"This reference nacelle station is labeled NAC STA in figure 9."

in table, change 301.07 cm (118.53 in) to 301.056 cm (118.526 in)

under r_{EXT}/L_k (first part of table) change values to

0.2869

0.2859

0.2829

0.2812

0.2799

0.2781

0.2765

0.2747

0.2730

0.2708

0.2696

0.2662

0.2638

and in second column r_{EXT}/L_k change 0.2329 to 0.2330

p. 35, table 7

change callout M to G (upper left-hand corner)

change $C_m = 206.080$ cm (81.134 in) to $C_g = 206.080$ cm (81.134 in)

X,Y = 0 @ m to X,Y = 0 at G

change first line of table to

 $X/C_g Y/C_g \pm Z/C_g$

in INBOARD and OUTBOARD tables interchange Y/C_n and Z/C_n headings

p. 36, table 8

p. 37, table 9	in INBOARD and OUTBOARD tables interchange Y/C_n and Z/C_n headings
p. 38a, b, table 10	replace with two new pages
p. 39, table 11	delete 0.2750 and 0.4750 under WBL 445, UPPER and close up
p. 41, table 13	change NAC WL 180 to NAC WL 155 and change NAC WL 155 to NAC WL 180
p. 53, figure 21	change title to Accelerometer Installation (Thrust Link)
p. 61, figure 33	line 14, add "Surge valve bleed position" in second column
p. 69, line 8	change M_C and V_C to read M_D and V_D
p. 73, table 19	replace
p. 88, line 22	change 10 ft/s to 5 ft/s
	APPENDIX A
A-6, table A-2	delete Engine 4 callout and boxed data
A-26, table A-22, line 4	change CONDITION 117, 1.5g to CONDITION 117, 1.6g
A-28, table A-24, line 4	change CONDITION 121, 1.5g to CONDITION 121, 1.6g
A-85, figure A-56	replace
A-87, figure A-58	replac e
A-89, figure A-51	replace
A-97, figure A-68	replace
A-98, figure A-69	replace
	APPENDIX B
B-10, figure B-1	delete data point at 1.25 on 090-deg plot
	delete data point between 1.25 and 1.50 on 150-deg plot
B-11, figure B-1	delete data points between 1.25 and 1.75

B-12, figure B-1	delete data points between 1.25 and 1.75
B-13, figure B-1	delete data points between 1.00 and 1.50
B-29, figure B-2	delete data points between 1.25 and 1.75
B-30, figure B-2	delete data points between 1.25 and 1.50 on 090-deg plot
	delete data points between 1.25 and 1.50 on 150-deg plot
B-31, figure B-2	delete data points between 1.50 and 1.75
B-32, figure B-2	delete data points between 1.00 and 1.75
B-33, figure B-2	delete data points between 1.00 and 1.75
B-49, figure B-3	delete data points between 1.25 and 1.75
B-50, figure B-3	delete data point at 1.25
B-51, figure B-3	delete data points between 1.00 and 1.50
B-52, figure B-3	delete data points between 1.25 and 1.75
B-53, figure B-3	delete data points between 1.00 and 1.75
B-54, figure B-3	delete data points between 1.00 and 1.75
B-85 through B-87, figure B-5	delete local Mach = 0.0 data points
B-89, figure B-5	replace graph
B-91, figure B-5	WBL 870, replace graph
B-101 through B-103, figure B-5	delete local Mach = 0.0 data points
B-106, figure B-5	WBL 870, replace graph
B-116 through B-118, figure B-7	delete local Mach = 0.0 data points
B-121, figure B-7	WBL 870, replace graph
B-135, figure B-8	WBL 870, replace graph

MICROFICHE

Replaced entirely

NACELLE AERODYNAMIC AND INERTIAL LOADS (NAIL) PROJECT

C

TEST REPORT

Contract NAS1-15325 MAY 1981

BUEING COMMERCIAL AIRPLANE COMPANY

FOREWORD

This document constitutes the test report of work conducted under NASA contract NAS1-15325 from October 1979 through November 1980. The contract was managed by the NASA Energy Efficient Transport Office (EETPO), headed by Mr. R. V. Hood—a part of the Aircraft Energy Efficiency (ACEE) program organization at the Langley Research Center. Mr. D. 3. Middleton and Mr. K. W. Heising were the technical monitors for the contract. The work was performed within the Vice-President-Engineering and the Vice-President-Flight Operations organizations of the Boeing Commercial Airplane Company. Key contractor personnel responsible for the contract work were:

G. W. Hanks

Program Manager

R. L. Martin

Project Manager

K. H. Dickenson

Structures Technology

W. R. Lambert

Propulsion Technology

W. F. Wilson

Flight Test Operations

B. W. Farquhar

Propulsion Technology

F. J. Davenport

Structures Technology

F. W. McIlroy

Flight Test Instrumentation

C. D. Beard

Flight Test Instrumentation

E. L. Wallace

Flight Test Analysis

R. D. LaBounty

Industrial Engineering Flight Test Support

B. G. Skelton

Flight Test and Crew Training Support

Results of the total program, including analysis of the test data contained in this report, will be provided in a separate NASA contractor report.

The test effort was conducted in cooperation with the Pratt and Whitney Aircraft Company, who were supported by the NASA Lewis Research Center under Contract NAS3-20632.

Principal measurements and calculations used during these studies were in customary units.

			CONTENTS UNIGHTAL PAGE E) OF POOR QUALITY	
			- Pi	age
1.0		MARY		1
2.0			TION	3
	2.1	Object	ives	3
	2.2	Ų	ound	4
	2.3	Approa	ach	5
3.0	SYM	BOLS A	ND ABBREVIATIONS	7
4.0	TES1	T DESC	RIPTION AND RESULTS	13
	4.1	Test D	escription	13
		4.1.1	Test Vehicle	13
			4.1.1.1 Flight Loads	13
			4.1.1.2 Installed Propulsion System Aerodynamics	13
		4.1.2	Instrumentation	32
			4.1.2.1 Flight Loads	32
			4.1.2.2 Installed Propulsion System Aerodynamics	62
		4.1.3	Test Conditions and Procedures	65
			4.1.3.1 Flight Loads	65
			4.1.3.2 Installed Propulsion System Aerodynamics	71
		4.1.4	Test Data Format	72
	4.2	Test R	esults	75
		4.2.1	Aerodynamic and Inertial Loads	75
			4.2.1.1 Aerodynamic Loads	75
			4.2.1.2 Inertial Loads	88
		4.2.2	Installed Propulsion System Aerodynamics	89
5.0	REF	ERENC	ES	91
	ENDI			A-1
	ENDI			B-1
			motaned respectively section reconstruction in the construction of	J. 1
міс	ROFIG	CHE	Pressure Coefficient and Mach Number Tables	2
			Pressure Coefficient Plots	80
				220 220

(0)

T	A	В	L	E	S
---	---	---	---	---	---

ORIGINAL PAGE IS OF POOR QUALITY

		Page
1	Wing Coordinates	18
2	Engine 3 Pylon Coordinates	26
3	Engine 4 Pylon Coordinates	27
4	Engines 3 and 4 Core Cowl Coordinates	29
5	Engines 3 and 4 Inlet Coordinates	30
6	Engines 3 and 4 Fan Cowl Coordinates	33
7	Engines 3 and 4 Pylon-Fan Cowl Intersection	35
8	Engine 3 Wing-Fylon Intersection	36
9	Engine 4 Wing-Pylon Intersection	. 37
10	Pylon-Core Cowl Intersection	38
11	Wing Pressure Orifice Locations	39
12	Engine 3 Pylon Pressure Orifice Locations	40
13	Engine 4 Pylon Pressure Orifice Locations	41
14	Engine 3 Inlet Pressure Orifice Locations	42
15	Engine 4 Inlet Pressure Orifice Locations	43
16	Engines 3 and 4 Core Cowl Pressure Orifice Locations	44
17	Lateral Offset of Wing Pressure Belt Pressure Orifices From Wing Buttock Line	66
18	Test Conditions Flown	70
19	Inboard Aileron	73
20	Pressure Coefficient	76
21	Summary of Measurements of Engine Performance	77
22	Engine Fuel-Flow Data	78
23	Measurements for Engine Clearance	79
24	Measurements of Turbine Case Temperature	80
25	Engine 3 A-Flange Resultants	83
A-1	Engine 3 Pressure Port Locations	A-3
A-2	Pressure Corrections for Instrumentation Problems	A-6
A-3	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 101 (612K)	A-7
A-4	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 101 (538K)	A-8
A-5	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 101 (647K)	A-9

TABLES (Concluded)

original page is of poor quality

		Page
A-6	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 118	A-10
A-7	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 102	A-11
A-8	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 103	A-12
A-9	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 104	A-13
A-10	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 105	A-14
A-11	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 106	A-15
A-12	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 107	A-16
A-13	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 108	A-17
A-14	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 109	A-18
A-15	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 110	A-19
A-16	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 111	A-20
A-17	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 112	A-21
A-18	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 113	A-22
A-19	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 114	A-23
A-20	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 115	A-24
A-21	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 116	A-25
A-22	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 117	A-26
A-23	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 120	A-27
A-24	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 121	A-28
A-25	Fourier-Bessel Coefficients for Engine 3 Pressures, Condition 123	A-29
B-1	Summary of Selected Test Condition Averages	B-3
B-2	Tabulated Data for Test 273-09, Condition 1.00.137.001	B-4

	FIGURES ORIGINAL PAGE IS OF POOR QUALITY	
		Page
l	RA001 Test Airplane	14
2	Inboard Engine Buildup	14
3	Inboard Inlet Removal	15
+	Inboard Engine Removal	15
5	Pressure Orifice Configuration	16
5	Upper Wing Surface	16
7	747 Elastic Wing Twist	23
3	Wing Coordinate System	24
9	Nacelle Coordinate System	25
10	Inboard Engine Pressure Taps	45
11	Inboard Inlet Pressure Taps	45
12	Pressure Transducer	47
13	Pressure Transducer Installation	47
14	Pressure Transducer Box	48
15	Cowl Door Pressure Taps	48
16	Outboard Engine Pressure Taps	49
17	Inertial Data Sensors	49
18	Q-FLEX Accelerometer	50
19	Rate Gyro	50
20	Accelerometer and Rate Gyro	51
21	Accelerometer Installation (Thrust Link)	53
22	Clearance Monitoring System	53
23	Laser Generator Boxes	54
24	Fan Video Camera Installation	56
25	Turbine Video Camera Installation	56
26	Fan Laser Probe	57
27	Turbine Laser Probe	58
28	Turbine Laser Probe Installed	58
29	Laser Proximity Probe Locations	59
30	Laser System Video Monitors and Controls	60
31	Laser Video Tape Recorder	60
32	Nitrogen System	61
22	Evnanded Engine Performance	61

FIGURES (Continued)

	FIGURES (Continued)	CORRESPONDED FOR THE	
	Page 15	COF HOOR CONTINUE	
OF POOF	? QUALITY		Page
34	Typical Cross-Section of Wing Pressure Belt .		64
35	Acceptance Flight Profile		68
36	View of Pressure Ports		70
37	Airborne Data Analysis and Monitoring System		74
38	Test Airplane Interior View		74
39	Sign Convention for Steady-State Loads, Engine	3	82
40	Inlet Pitching Moment Time History, 538 000 lb Weight Takeoff		84
41	Inlet Airload Moment Time History, 647 000 lb Weight Takeoff		86
42	Airload Moment Time History, Stall Warning M Flaps 10		87
A-1	Pressure Data Coordinate Conventions	• 5 • • • • • •	A-30
A-2	Engine No. 3 Inlet Pressures, Condition 101, 612 Takeoff (Flaps 20)		A-31
A-3	Engine No. 3 Cowl Pressures, Condition 101, 61 Takeoff (Flaps 20)		A-32
A-4	Engine No. 3 Inlet Pressures, Condition 101, 533 Takeoff (Flaps 10)		A-33
A-5	Engine No. 3 Cowl Pressures, Condition 101, 53 Takeoff (Flaps 10)		A-34
A-6	Engine No. 3 Inlet Pressures, Condition 101, 64 Takeoff (Flaps 10)		A-35
A-7	Engine No. 3 Cowl Pressures, Condition 101, 64 Takeoff (Flaps 10)	7K GW	A-36
A-8	Engine No. 3 Inlet Pressures, Condition 118, 78 Simulated Takeoff (FLaps 10)	0K GW	A-37
A-9	Engine No. 3 Cowl Pressures, Condition 118, 78 Simulated Takeoff (Flaps 10)	OK GW	A-38
A-10	Engine No. 3 Inlet Pressures, Condition 102, Lo	w Climb	A-39
A-11	Engine No. 3 Cowl Pressures, Condition 102, Lo	ow Climb	A-40
A-12	Engine No. 3 Inlet Pressures, Condition 103, Mi	d Climb	A-41
A-13	Engine No. 3 Cowl Pressures, Condition 103, M.		A-42
A-14	Engine No. 3 Inlet Pressures, Condition 104, Hi		A-43
A-15	Engine No. 3 Cowl Pressures, Condition 104, Hi		A-44
A-16	Engine No. 3 Inlet Pressures, Condition 105, Lo		A-45
A-17	Engine No. 3 Cowl Pressures, Condition 105, Lo	ow M Cruise	A-46

FIGURES (Continued)

ORIGINAL PAGE IS OF POOR QUALITY

		Page
A-18	Engine No. 3 Inlet Pressures, Condition 106, Maximum M	A-47
A-19	Engine No. 3 Cowl Pressures, Condition 106, Maximum M	A-48
A-20	Engine No. 3 Inlet Pressures, Condition 107, Inflight Relight	A-49
A-21	Engine No. 3 Cowl Pressures, Condition 107, Inflight Relight	A-50
A-22	Engine No. 3 Inlet Pressures, Condition 108, Maximum q	A-51
A-23	Engine No. 3 Cowl Pressures, Condition 108, Maximum q	A-52
A-24	Engine No. 3 Inlet Pressures, Condition 109, Stall Warning (Flaps Up)	A-53
A-25	Engine No. 3 Cowl Pressures, Condition 109, Stall Warning (Flaps Up)	A-54
A-26	Engine No. 3 Inlet Pressures, Condition 110, Stall Warning (Flaps 10)	A-55
A-27	Engine No. 3 Cowl Pressures, Condition i10, Stall Warning (Flaps 10)	A-56
A-28	Engine No. 3 Inlet Pressures, Condition 111, Stall Warning (Flaps 30)	A- <i>5</i> 7
A-29	Engine No. 3 Cowl Pressures, Contition 111, Stall Warning (Flaps 30)	A-58
A-30	Engine No. 3 Inlet Pressures, Condition 112, Idle Descent	A-59
A-31	Engine No. 3 Cowl Pressures, Condition 112, Idle Descent	A-60
A-32	Engine No. 3 Inlet Pressures, Condition 113, Approach	A-61
A-33	Engine No. 3 Cowl Pressures, Condition 113, Approach	A-62
A-34	Engine No. 3 Inlet Pressures, Condition 114, Touch and Go	A-63
A-35	Engine No. 3 Cowl Pressures, Condition 114, Touch and Go	A-64
A-36	Engine No. 3 Inlet Pressures, Condition 115, Thrust Reverse	A-65
A-37	Engine No. 3 Cowl Pressures, Condition 115, Thrust Reverse	A-66
A-38	Engine No. 3 Inlet Pressures, Condition 116, 2.0g Left Turn (Flaps Up)	A-67
A-39	Engine No. 3 Cowl Pressures, Condition 116, 2.0g Left Turn (Flaps Up)	A-68
A-40	Engine No. 3 Inlet Pressures, Condition 117, 1.6 Left Turn (Flaps 30)	A-69
A-41	Engine No. 3 Cowl Pressures, Condition 117, 1.6 Left Turn (Flaps 30)	A-70
A-42	Engine No. 3 Inlet Pressures, Condition 120, 2.0g Right Turn (Flaps Up)	A-71

FIGURES (Continued)

	ORIGINAL PAGE IS OF POOR QUALITY	Page
A-43	Engine No. 3 Cowl Pressures, Condition 120, 2.0g Right Turn (Flaps Up)	A-72
A-44	Engine No. 3 Inlet Pressures, Condition 121, 1.6g Right Turn (Flaps 30)	A-73
A-45	Engine No. 3 Cowl Pressures, Condition 121, 1.6g Right Turn (Flaps 30)	A-74
A-46	Engine No. 3 Inlet Pressures, Condition 123, Airplane Stall	A-75
A-47	Engine No. 3 Cowl Pressures, Condition 123, Airplane Stall	A-76
A-48	Engine No. 4 Inlet Pressures, Condition 101, 612K Gross Weight Takeoff	A-77
A-49	Engine No. 4 Inlet Pressures, Condition 101, 538K Gross Weight Takeoff	A-78
A-50	Engine No. 4 Inlet Pressures, Condition 101, 647K Gross Weight Takeoff	A-79
A-51	Engine No. 4 Inlet Pressures, Condition 118, 780K Gross Weight Simulated Takeoff	A-80
A-52	Engine No. 4 Inlet Pressures, Condition 102, Low Climb	A-81
A-53	Engine No. 4 Inlet Pressures, Condition 103, Mid Climb	A-82
A-54	Engine No. 4 Inlet Pressures, Condition 104, High M Cruise	A-83
A-55	Engine No. 4 Inlet Pressures, Condition 105, Low M Cruise	A-84
A-56	Engine No. 4 Inlet Pressures, Condition 106, Maximum M	A-85
A- <i>5</i> 7	Engine No. 4 Inlet Pressures, Condition 107, Inflight Relight	A-86
A-58	Engine No. 4 Inlet Pressures, Condition 108, Maximum q	A-87
A-59	Engine No. 4 Inlet Pressures, Condition 109, Stall Warning (Flaps Up)	A-88
A-60	Engine No. 4 Inlet Pressures, Condition 110, Stall Warning (Flaps 10)	A-89
A-61	Engine No. 4 Inlet Pressures, Condition 111, Stall Warning (Flaps 30)	A-90
A-62	Engine No. 4 Inlet Pressures, Condition 112, Idle Descent	A-91
A-63	Engine No. 4 Inlet Pressures, Condition 113, Approach	A-92
A-64	Engine No. 4 Inlet Pressures, Condition 114, Touch and Go	A-93
A-65	Engine No. 4 Inlet Pressures, Condition 115, Thrust Reverse	A-94
A-66	Engine No. 4 Inlet Pressures, Condition 116, 2.0g Left Turn (Flaps Up)	A-95
A-67	Engine No. 4 Inlet Pressures, Condition 117, 1.6g Left Turn (Flaps 30)	A-96

FIGURES (Concluded)

ORIGINAL PAGE IS OF POOR QUALITY

		Page
A-68	Engine No. 4 Inlet Pressures, Condition 120, 2.0g Right Turn (Flaps Up)	A-97
A-69	Engine No. 4 Inlet Pressures, Condition 121, 1.6g Right Turn (Flaps Up)	A-98
A-70	Engine No. 4 Inlet Pressures, Condition 123, Airplane Stall	A-99
A-71	Airplane Center-of-Gravity Accelerations, Mild Gust	A-100
A-72	Engine No. 3 Wing/Strut Accelerations, Mild Gust	A-101
A-73	Engine No. 4 Wing/Strut Accelerations, Mild Gust	A-102
A-74	Engine Angular Rates, Mild Gust	A-103
A-75	Engine No. 3 Accelerations, Mild Gust	A-104
A-76	Engine No. 4 Accelerations, Mild Gust	A-105
A-77	Airplane Center-of-Gravity Normal Acceleration, Hard Landing	A-106
A-78	Airplane Center-of-Gravity Angular Rates, Hard Landing	A-107
A-79	Engine No. 3 Wing/Strut Accelerations, Hard Landing	A-108
A-80	Engine No. 4 Wing/Strut Accelerations, Hard Landing	A-109
A-81	Engine Angular Rates, Hard Landing	A-110
A-82	Engine No. 3 Accelerations, Hard Landing	A-111
A-83	Engine No. 4 Accelerations, Hard Landing	A-112
B-1	Sample of Pressure Coefficient Data (Test 273-12, Condition 1.00.137.001.1)	B-5
B-2	Sample of Pressure Coefficient Data (Test 273-12, Condition 1.00.137.002)	B-25
B-3	Sample of Pressure Coefficient Data (Test 273-12, Condition 1.00.137.003)	B-45
B-4	Sample of Pressure Coefficient Data (Test 273-12, Condition 1.00.137.004)	B-66
B-5	Sample of Local Mach Number Data (Test 273-12, Condition 1.00.137.001.1)	B-81
B-6	Sample of Local Mach Number Data (Test 273-12, Condition 1.00.137.002)	B-97
B-7	Sample of Local Mach Number Data (Test 273-12, Condition 1.00.137.003)	B-112
B-8	Sample of Local Mach Number Data (Test 273-15, Condition 1.00.137.004)	B-127

1.0 SUMMARY

The Nacelle Aerodynamics and Inertial Loads (NAIL) program comprised a series of test flights that produced an in-flight measured data base of the aerodynamic and inertial loads imposed on right-hand inboard and outboard JT9D engines installed on the Boeing 747 RA001 test bed aircraft. Wing and engine installed performance data were also obtained. In this report the aerodynamic and inertial loads portion of the test program is referred to as the flight loads, and the wing and engine installed performance portion is referred to as the installed propulsion system aerodynamics (IPSA).

During the flight loads portion of the test program, surface static pressures were measured on the:

- Internal and external surfaces of the inboard inlet
- External surface of the fan cowl doors of the inboard nacelle
- External surface of the fan exhaust sleeve of the inboard nacelle
- Internal and external surfaces of the outboard inlet

Linear accelerations and pitch and yaw rates were also measured on both inboard and outboard nacelle and pylon installations.

The following measurements were made simultaneously with the surface static pressure measurements:

- Engine clearance changes on both inboard and outboard engines
- Turbine case temperature on the inboard engine
- Engine performance on both inboard and outboard engines

The resulting data were correlated with the flight loads. These measurements-

- Duplicated a portion of the airplane flight acceptance test profile
- Demonstrated the effects of variations in takeoff gross weight
- Illustrated the effects of high-g maneuvers

During the IPSA portion of the NAIL program, surface static pressures were measured on the nacelle, pylon, and neighboring wing surfaces on engines 3 and 4 (inboard and outboard). A data base was acquired at Mach numbers 0.77, 0.80, 0.86, and 0.91 through three flights of the RA001.

Pressure coefficient and local Mach number distributions were plotted for each row of pressure orifices. A geometrical description of the surfaces and pressure orifice locations on the nacelle, pylon, and wing is provided. The IPSA data base, derived from a full-scale flight vehicle, should assist in verification and development of analytical models and eventually provide the ability to predict wing-mounted propulsion system performance.

2.0 INTRODUCTION

The test program recommended in the feasibility study (ref. 1) describes a flight test in which flight loads and engine clearance changes can be measured simultaneously on the 747/JT9D engine installation. NASA-Langley and NASA-Lewis Research Centers authorized and jointly funded this program under separate contracts for Boeing Commercial Airplane Company (BCAC) and Pratt & Whitney Aircraft (P&WA). The BCAC effort, Nacelle Aerodynamic and Inertial Loads (NAIL) project, was funded by NASA-Langley under Task 4.3 of contract NASI-15325. The P&WA effort was funded by NASA-Lewis under Task V, JT9D Engine Diagnostic Flight Loads Test program, contract NAS3-20632. Subsequently, the BCAC contract was revised to include the installed propulsion system aerodynamics (IPSA) effort. The successful completion of this joint test program was only possible through the continuous and extensive coordination between BCAC and P&WA and the excellent cooperation of the NASA-Langley and NASA-Lewis Research Centers. This document reports the BCAC effort during the test program and represents early release of flight test data.

The testing was conducted on the Boeing-owned 747 RA001 test bed airplane during the concurrent 767/JT9D-7R4 engine development program. Following a functional check flight conducted from Boeing Field International (BFI) on 3 October 1980, the airplane and test personnel were ferried to Valley Industrial Park (GSG) near Glasgow, Montana, on 7 October 1980. The combined NAIL and 767/JT9D-7R4 test flights were conducted at the Glasgow remote test site, and the airplane was returned to Seattle on 26 October 1980.

2.1 OBJECTIVES

Objectives of the NAIL flight test program were to:

- o Measure flight loads (aerodynamic and inertial) typical of acceptance test and revenue service
- o Explore the effects of gross weight, sink rate, pitch rate, and various maneuvers on nacelle loads
- o Measure simultaneously engine clearance closures and engine performance changes

- Provide a data base for designing improved propulsion systems (performance retention)
- Provide a data base of pressures measured on wing, pylon, and nacelle surfaces of both inboard and outboard propulsion installations of commercial transport-sized aircraft and to gather information on airflow patterns surrounding the powerplant installations using static pressure surveys

2.2 BACKGROUND

Since introduction of the jet engine into commercial transport service, historical data have indicated that deterioration of engine specific fuel consumption (SFC) occurs over the life of installed engines. Until recent shortages in fuel and the resulting high fuel costs, increases in fuel consumption were considered to be a nuisance rather than a technical problem requiring a solution. Motivated by fuel shortages and costs, the NASA Engine Component Improvement (ECI) program (part of the NASA Aircraft Energy Efficiency program) was made responsible for determining the cause of and potential solutions to installed engine SFC deterioration. As part of the ECI program, BCAC assisted P&WA under their NASA-Lewis contract NAS3-20632 during evaluation of the problem. It was found that the SFC of engines increased from 0.5% to 6% from the time of removal from the acceptance test stand followed by installation and operation on the airplane for a given period of time. Measurement of rotor blades at the outer diameter and inspection of the inner surface of engine cases indicated that definite interference occurred between the blades and the case. This interference resulted in increased clearance and gas flow leakage between the blades and the outside case. The study found that 87% of the increase in SFC was due to flight loads occurring within the first 50 flight cycles.

Factors contributing significantly to engine performance losses are divided into engine loads and flight loads, as follows:

- Engine loads (those loads not related to the flight environment)
 - Internal engine pressures
 - Thermal loads due to temperature differentials
 - Thrust loads—fore and aft
 - Centrifugal loads

- o Flight loads (those loads imposed by the flight environment)
 - Aerodynamic pressures
 - o Inertial forces

A finite element model analysis using these factors predicted a 1% increase in SFC at sea level due to the aircraft acceptance flight test.

Aircraft fuel consumption is proportional to aircraft drag. Thus to reduce fuel consumption, drag should be minimized. Most mechanisms of drag production are understood and are predictable to some degree, with the exception of a component termed "interference drag." This drag results from disruption of the flow over the wing caused by the wing-mounted propulsion system in the vicinity of the propulsion system. interruption interferes with the wing performance. Current techniques for estimating and minimizing interference drag rely heavily on comprehensive test programs that independently vary a set of parameters believed to significantly influence interference. Current analytical technology is sufficiently advanced so that transonic potential flows around arbitrary three-dimensional bodies can be accurately predicted. However, the development of analytical techniques depends extensively on experimental results for comparison of the predicted results. Development of analytical techniques to model the physics of flow about propulsion systems installed near wings has been initiated and some of the techniques are nearing completion. However, the comprehensive data base to which these predictions could be compared is lacking.

2.3 APPROACH

Recommendations and conclusions of previous studies prescribed a feasible cost-effective approach to the NASA-funded NAIL/JT9D Flight Loads flight test program. This joint program involved BCAC and P&WA, funded by NASA-Langley and by NASA-Lewis, respectively.

A 15-hour flight test program covering portions of the acceptance flight profile, variations in takeoff and landing conditions, and high-g turns was chosen to measure simultaneously the flight loads (cause) and engine clearance changes (effect) associated with engine performance deterioration. The flight test program used the Boeing-owned 747 RA001 aircraft.

Aerodynamic loads were measured by 252 static pressure ports on the inboard nacelle (engine 3) and 45 static pressure ports on the outboard nacelle (engine 4).

Inertial loads were measured by six accelerometers and two rate gyros on both the inboard and outboard engines. The pylon and strut interface of both engines was equipped with an additional six accelerometers. The resulting engine clearance changes were measured by laser proximity probes on the fan of both engines and on the high-pressure turbine of the inboard engine. The expanded engine performance instrumentation and 20 high-pressure turbine thermocouples provided additional data on the inboard engine for resolving clearance and performance changes.

The IPSA pressure data were obtained in the neighborhood of both engines by a total of 499 static pressure orifices; 322 of these were arranged in rows above and below the wing and on each side of both pylons and core cowls. The remaining data, on both inlets and fan cowls, were acquired from part of the aerodynamic loads instrumentation.

3.0 SYMBOLS AND ABBREVIATIONS

Fourier-Bessel coefficient for nth cosine harmonic An AC axial acceleration ACCEL acceleration airborne data analysis and monitor system **ADAMS** engine front flange at nacelle station 100 A-flange A_{x} acceleration in x-direction acceleration in y-direction acceleration in z-direction Fourier-Bessel coefficient for nth sine harmonic Bn **BCAC** Boeing Commercial Airplane Company BFI Boeing Field International, Seattle, Washington CG center of gravity c_{p} pressure coefficient degrees deg ECI engine component improvement program **EPR** engine pressure ratio E3 engine position 3 E4 engine position 4 ft feet **FLTRD** filtered FS front spar FT flight test force in the x-direction $\mathbf{F}_{\mathbf{y}}$ force in the y-direction force in the z-direction

g GSG acceleration of gravity

Valley Industrial Park, northeastern Montana

GW

airplane gross weight

 H_{p}

pressure altitude

HPC IGV POS

high-pressure compressor inlet guide vane position

HPT

high-pressure turbine

HWLDG

heavyweight landing

Hz

hertz (cycles per second)

IGDA

interactive graphics data analysis

in

inch

in-kip

1000 inch-pounds

INLET STA

inlet station, value increases moving aft

along inlet centerline

IPSA

installed propulsion system aerodynamics

IRIG

inter-range instrumentation group master clock

kn, KTS

knots

kcas

knots calibrated airspeed, indicated airspeed corrected

for position error (calibrated airspeed equals true

airspeed in standard atmosphere at sea level)

LAST

final formated tape produced by the flight test data system

lb

pound

LH

left hand

Ibm

pounds mass

M

Mach number, ratio of true airspeed to the

velocity of sound

Mc

design cruise Mach number

 $M_{\mathbf{x}}$

moment about the x-axis

My

moment about the y-axis

 M_z

moment about the z-axis

min

minutes

NAC BL

nacelle buttock line, value increases moving outboard in the nacelle coordinate system

NAC STA nacelle station, value increases moving aft

in the nacelle coordinate system

NAC WL nacelle waterline, value increases moving

up in the nacelle coordinate system

NAIL nacelle aerodynamics and inertial loads

NASA National Aeronautics and Space Administration

NASTRAN NASA structural analysis
NI low-pressure rotor speed

N2 high-pressure rotor speed

OCLK clock position ORIGINAL PAGE IN OF POOR QUALITY

P pressure

PC pressure coefficient

POS position

PSI (lb/in²) pounds per square inch

 P_{S} static pressure

PS3 low-pressure compressor discharge static pressure

PS4 high-pressure compressor discharge static pressure

P_T total pressure

PT2.5 fan stream total pressure at exit guide vane

PT3 low-pressure compressor discharge total pressure

PT7 low-pressure turbine discharge total pressure

PWR LVR ANG power lever angle

P&WA Pratt & Whitney Aircraft

q,Q dynamic pressure, $\frac{1}{2} \rho V^2$

RA001 Boeing-owned 747-100 research aircraft 1

RH right hand

rms root mean square

RWA referred engine airflow, $(W_A \sqrt{\theta_{T_2}/\delta_{T_2}})$

sec seconds

S arc length along surface from highlight

S_{nom} nominal arc length along surface

SFC	specific fuel consumption
SLS	sea level standard
TO	takeoff
TR	thrust reverse
$\tau_{\underline{\tau}}$	total temperature
TT3	low-pressure compressor discharge total temperature
TT4.5	high-pressure compressor discharge total temperature
TT6	high-pressure turbine discharge total temperature
ТТ7	low-pressure turbine discharge total temperature
V .	true airspeed, feet per second
v _C	design cruise speed
v _S	stalling speed or the minimum steady flight speed
	at which airplane is controllable
WA	engine airflow
WBL	wing buttock line, value increases by moving outboard
W _f	fuel flow rate
WFS	wing front spar
WRP	wing reference plane
WUT	windup turn, a level turn produced by increasing the angle
	of bank at a prescribed rate
	free stream value
•	angle of attack
T ₂	total temperature ratio at engine face, T _{T2} /T _{SLS}
	air density, slug/ft ³
	circumferential position, degrees
T ₂	total pressure ratio at engine face, P _{T2} /P _{SLS}
\mathbf{f}	fan cowl
g	pylon-core cowi intersection
h	highlight
1	inlet
k	core cowl
1	engine 4 wing-pylon intersection

m n s pylon-fan cowl intersection
engine 3 wing-pylon intersection
pylon (strut)
wing

w

4.0 TEST DESCRIPTION AND RESULTS

4.1 TEST DESCRIPTION

The Boeing-owned 747 RA001 test bed aircraft (fig. 1) was the basis of the Nacelle Aerodynamic and Inertial Load (NAIL) flight test program, which comprised two basic studies and data collection systems divided into the flight loads and installed propulsion system aerodynamics (IPSA) programs. Where necessary, discussion of the flight loads and IPSA portions are separated for clarity. However, airplane and performance data were used by both programs, and some of the flight loads pressure data were used by the IPSA program.

4.1.1 Test Vehicle

4.1.1.1 Flight Loads

The NAIL program required fabrication and installation effort to provide the means to collect, control, and maintain the quality and quantity of data obtained. The flight loads portion of the program required instrumentation of the inboard and outboard engines (i.e., positions 3 and 4). Highest emphasis was placed on engine 3, which is shown on the wing during the buildup period (fig. 2).

Likewise, during the postflight test phase, refurbishment was necessary to prepare the aircraft for the next program. Inlet 3 (fig. 3) was removed followed by engine 3 (fig. 4), which was shipped to Pratt and Whitney Aircraft (P&WA) for further static testing followed by an analytical teardown and refurbishment.

4.1.1.2 Installed Propulsion System Aerodynamics

Description of the basic B-747 test vehicle pertinent to the IPSA program requires a geometrical definition of the fan inlet, fan cowl, pylon, and core cowl for an inboard and an outboard engine installation and requires neighboring wing geometry for each engine. This description is provided by defining the local geometry with relative positions and contours of pressure orifice rows and wing-pylon, pylon-nacelle intersections. Figures 5 and 6 describe the location and nomenclature for the pressure orifice rows.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 1. RA001 Test Airplane

Figure 2. Inboard Engine Buildup

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 3. Inboard Inlet Removal

Figure 4. Inboard Engine Removal

2520

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 5. Pressure Orifice Configuration

Figure 6. Upper Wing Surface

16

Wing Geometry-Coordinates defining the wing cross-sectional profiles (table 1) are measured along and perpendicular to the wing reference plane (WRP). The WRP is an untwisted plane with 7-deg dihedral and +2-deg angle of incidence to the aircraft body centerline. The coordinates given in table 1 orient the wing profiles as they are in the noload or jig position, so that the wing leading edges are not necessarily on WRP. See figure 7 for a plot of the jig wing twist. The in-flight wing twist, measured at 50% chord, varies with airplane Mach number and gross weight. In figure 7, the elastic wing twist is plotted for a Mach number of 0.86 at two representative airplane gross weights.

The spanwise location of each wing cross-sectional profile is denoted by a wing buttock line (WBL), which defines a plane perpendicular to the WRP (fig. 8). The relative fore and aft location of the wing cross-sectional profile at each WBL due to wing sweep is also shown in figure 8. Here, the leading-edge sweep angle is identified inboard and outboard of WBL 470 (inboard engine) and WBL 834 (outboard engine).

The leading-edge sweep angle is measured in the WRP relative to a line that is perpendicular to each WBL (470 and 834) and passes through the intersection of the WBL plane and the projection of the wing leading edge in the WRP (fig. 8). The wing leading-edge sweep is constant between WBL 445 and 834. However, it changes outboard of WBL 834 (outboard engine).

Also at WBL 834, a fairing extends from the outboard strut over the wing leading edge. Fairing coordinates given in table 1 are along the intersection of the WBL 834 plane and the fairing surface.

Engine Nacelle and Pylon Geometry—Coordinates defining engine nacelle and pylon geometry are given in a second coordinate system, the nacelle, which is shown in relation to the WRP in figures 8 and 9.

Pylon cross-sectional coordinates (tables 2 and 3) are measured along and perpendicular to the nacelle buttock line (NAC BL) 0.0, which defines a plane perpendicular to the WRP that is toed inboard 2-deg relative to the WBL plane (fig. 8). Depending on engine location, the origin of this 2-deg toe-in is at the intersection of the WBL 470/834 plane and the WRP at the projection of the WBL 470/834 wing profile leading edge. These profile leading edges are labeled T (figs. 8 and 9). A side view of the pylon and engine nacelle (fig. 9) shows that the pylon coordinates (tables 2 and 3) are contained in nacelle

ORIGINAL PAGE IS OF POOR QUALITY

Table 1. Wing Coordinates

Xw = 0 @ WING & EADING EDGE

WBL 445		
C _w	YUPPER	YLOWER
Cw	C _w	C _w
0.00	-0.00205	0.00205
0.01	0.00901	0.00695
0.02	0.01414	0.00837
0.03	0.01791	0.00965
0.05	0.02333	0.01196
0.10	0.03198	0.01665
0.15	0.03790	0.02058
0.20	0.04234	0.02393
0.25	0.04550 0.04783	0.02682 0.02910
0.30 0.35	0.04783	0.03067
0.40	0.04993	0.03103
0.45	0.05032	0.03103
0.50	0.04902	0.03004
0.55	0.04712	0.02951
0.60	0.04401	0.02701
0.65	0.03996	0.02369
0.70	0.03493	0.01987
0.75	0.02915	0.01691
0.80	0.02338	0.01398
1.00	0.0	0.0
1.00		3.3
	•	

18

ORIGINAL PAGE IS OF POOR QUALITY

Table 1. Wing Coordinates (Continued)

x_{w}	YUPPER	YLOWER
X _w	C _w	Cw
	-0.00125	0.00125
0.00		0.00125 0.00578
0.01	0.00928	0.00578
0.02	0.01429 0.01796	0.00594
0.03		0.00797
0.05	0.02331	
0.10	0.03210	0.01386
0.15	0.03828	0.01742
0.20	0.04289	0.02063
0.25	0.04622	0.02362
0.30	0.04870	0.02624
0.35	0.05060	0.02820
0.40	0.05180	0.02909
0.45	0.05208	0.02912
0.50	0.05154	0.02840
0.55	0.05023	0.02687
0.60	0.04779	0.02488
U.35	0.04429	0.02251
0.70	0.03999	0.01983
0.75	0.03488	0.01636
0,80	0.02877	0.01265
1.00	0.0	0.0
	[÷
	1	• •
•		
·		
		•

E200.24.16

Table 1. Wing Coordinates (Continued)

WBL 470	C _w = 952cm (374.94 in)
Xw/cw	Y _{UPPER} / C _W
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.00	-0.00171 0.03190 0.04246 0.04803 0.05078 0.04990 0.04539 0.03689 0.02528

WBL 834 C	w = 619.49cm (243.89 in)
Xw/cw	Y _{UPPER} /C _W
0.00 0.10	0.0 0.03801
0.20 0.30	0.04797 0.05289
0.40 0.50	0.05551 0.05416
0.60 0.70 0.80	0.04937 0.04125
1.00	0.03009 0.0

FAIRING	
-0.129	-0.029
-0.087	-0.015
-0.025	0.005
0.037	0.015

ORIGINAL PAGE IS OF POOR QUALITY

Table 1. Wing Coordinates (Continued)

X _w	YUPPER	YLOWER
C _w	C _w	C _w
. 0.00	0.0	0.0
0.01	0.01135	0.00464
0.02	0.01674	0.00536
0.03	0.02142	0.00599
0.05	0.02701	0.00722
0.10	0.03705	0.01043
0.15	0.04296	0.01377
0.20	0.04717	0.01706
0.25	0.05014	0.02011
0.30	0.05228	0.02269
0.35	0.05371	0.02440
0.40	0.05458	0.02511
0.45	0.05470	0.02491
0.50	0.05387	0.02400
0.55	0.05201	0.02249
0.60	0.04919	0.02023
0.65	0.04554	0.01817
0.70	0.04114	0.01558
0.75	0.03598	0.01297
0.80	0.03003	0.01037
1.00	0.0	0.0
	•	
e de la compansa de l		

125209-24-171

Table 1. Wing Coordinates (Concluded)

x_w	YUPPER	YLOWER
C _w	C _w	C _w
		0.004.00
0.00	-0.00140	0.00140
0.01	0.01034 0.01591	0.00617
0.02		0.00689
0.03 0.05	0.02008 0.02723	0.00753 0.00881
	0.02723	0.00881
0.10	0.03685	0.01204
0.15	0.04298	0.01528
0.20 0.25	0.05017	0.01842
0.30	0.05234	0.02126
0.35	0.05234	0.0256
0.40	0.05476	0.02577
0.45	0.05498	0.02519
0.45 0.50	0.05417	0.02404
0.55	0.05238	0.02404
0.60	0.04966	0.02238
0.65	0.04608	0.02025
0.70	0.04183	0.01499
0.75	0.03685	0.01226
0.80	0.03093	0.00953
1.00	0.00140	-0.00140
1.00	5,657,6	4.551.15

22

η - SPANWISE LOCATION

Figure 7. 747 Elastic Wing Twist

Engine	RS	ST	Ħ	т	
Inboard (No. 3)	242.11 (95.32)	102.92 (40.52)	32.66 (12.86)	NAC STA NAC WL NAC BL	216.12 192.86 0.0
Outboard (No. 4)	225.45 (88.76)	94.13 (37.06)	22.86 (9.00)	NAC STA NAC WL NAC BL	216.10 189.00 0.0

Figure 9. Nacelle Coordinate System

Table 2. Engine 3 Pylon Coordinates

X _s	±Z
Cs	Cs
0.0	0.0
0.0163	0.01160
0.0336	0.01596
0.0508	0.01889
0.0681	0.02110
0.1199	0.02549
0.2063	0.03046
0.3099	0.03447
0.3962	0.03658
0.4826	0.03768
0.5344	0.03785
0.5689	0.03782
0.6725 0.7589	0.03271
0.8970	0.02601
1.0	0.01140 0.0
1.0	0.0
•	

NAC WL 180 C _s = 72	22.91cm (284.61 in)	
X _s	± Z C _s	
0.0 0.0155 0.0330 0.0506 0.0857 0.1033 0.1209 0.1560 0.2087 0.2614 0.2966 0.3493 0.4722 0.5074 0.6479 0.7885 1.0	0.00 0.01511 0.02161 0.02582 0.03380 0.03672 0.03925 0.04343 0.04778 0.05035 0.05109 0.05119 0.05035 0.04887 0.03738 0.02245 0.0	25209-24-173

Xs		<u>+</u> Z
Cs		Cs
		
0.0	. 1	0.0
0.0361	1	0.01715
0.0546		0.02030
0.0732	- 1	0.02268
0.1289		0.02739
0.2217		0.03274
0.3330		0.03704
0.4258		0.03931
0.5186		0.04050
0.6300		0.03890
0.6671		0.03615
0.7228		0.03062
0.8156		0.02153
0.8898		0.01344
1.0	1	0.0
	· · · · · · · · · · · · · · · · · · ·	
	1	
	1	

NAC WL 180	C _s = 608.46cm (239.55 in)	
X _s	+Z	-Z
Cs	Cs	Cs
0.0	-0.01536	0.01536
0.0458	0.02150	0.03515
0.0666	0.02818	0.03707
0.0875	0.03323	0.03903
0.1084	0.03720	0.04099
0.1501	0.04396	0.04513
0.1710	0.04671	0.04721
0.2754	0.05677	0.05677
0.3380	0.05982	0.05982
0.3797	0.06070	0.06070
0.5884	0.04959	0.04959
0.6302	0.04483	0.04483
0.8180	0.02204	0.02204
0.9642	0.00434	0.00434
0.9999	0.0	0.0
	*	

water line (NAC WL) planes, which are perpendicular to the NAC BL 0.0 plane and pitched up to 2 deg relative to the WRP.

The proper orientation of each NAC WL plane containing the coordinates in tables 2 and 3 is achieved by first locating the reference NAC WL T plane (fig. 9) which passes through the wing leading edge at WBL 470/834. The leading-edge point may be located relative to the WRP by using coordinates given in table 1. This reference NAC WL corresponds to NAC WL 192.86 for the inboard engine and NAC WL 189.00 for the outboard engine. Coordinates defining the pylon cross-sectional profile are given for both engine pylons at NAC WL 155 and NAC WL 180. These NAC WLs can be located from the reference NAC WL for each engine (fig. 9).

Each nacelle coordinate system is an isolated coordinate system. To provide for the proper position of each engine NAC WL relative to the other, the reference NAC WL plane must be positioned to account for the difference in elevation between the inboard and outboard engine installations due to WRP dihedral.

The fore and aft positions of NAC WL 155 and 180 profiles on each pylon are found by locating a reference nacelle station (NAC STA) passing through the wing leading-edge point at WBL 470 (inboard) or WBL 834 (outboard). Lines representing NAC STA are perpendicular to the intersection of a NAC WL plane and NAC BL 0.0 plane; distances between NAC STA are measured parallel to the intersection. At point T, the NAC STA reference for the inboard pylon is 216.12; for the outboard pylon, 206.10 (fig. 9).

The outboard pylon pressure port row at NAC WL 180 has an unsymmetric profile (table 3). The contour of the fairing at WBL 834 shifts the pylon leading edge to the inboard side of NAC BL 0.0.

The inlet, fan cowl, and core cowl surface geometries are the same on both engines. Each engine centerline is coincident with NAC WL 100. The core cowl is a body of revolution between 30 and 330 deg (table 4). This cowl is defined by radii measured from NAC WL 100 at points between NAC STA 152 and NAC STA 270.526. The inlet and fan cowl profiles are given along constant inlet angles measured about the inlet centerline, which lies in the NAC BL 0.0 plane, pitched down (drooped) 4 deg relative to the engine centerline at NAC STA 97.23 (fig. 9). The fan inlet cross-sectional profile coordinates (table 5) are measured along and perpendicular to the inlet axis for five circumferential

(_)

Table 4. Engines 3 and 4 Core Cowl Coordinates

X _k L _k	FEXT L.	X _k L _k	rEXT Lk
	/ K	/ K	+ · · · · · · · · · · · · · · · · · · ·
0.0	0.2867	0.6834	0.2602
0.0338	0.2858	0.6918	0.2592
0.1519	0.2829	0.7003	0.2582
0.2362	0.2811	0.7425	0.2528
0.2953	0.2799	0.7762	0.2481
0.3797	0.2782	0.8100	0.2429
0.4472	0.2764	0.8353	0.2388
0.4978	0.2746	0.8690	0.2329
0.5315	0.2708	0.9028	0.2267
0.5653	0.2696	0.9196	0.2235
0.5822	0.2697	0.9534	0.2168
0.6243	0.2696	0.9956	0.2080
0.6497	0.2638	1.0000	0.2070

Table 5. Engines 3 and 4 Inlet Coordinates

θ _i = 30	
R _{EXT} /R _h	RINTRh
	0.8957
	0.8991
	0.9094
	0.9217
	0.9461
	0.9786
1.0000	1.0000
1.0158	
1.0303	
1.0493	
1.0714	
1.0877	
1.1061	
1.1200	
	1.0000 1.0158 1.0303 1.0493 1.0714 1.0877 1.1061

θ _i = 60			
x _i / _{Rh}	R _{EXT} /R _h	R _{INT} /R _h	
1.2874		1.0000	
1.1222		1.0072	
0.7813		0.9546	
0.5563		0.9158	
0.4019		0.8998	
0.2651		0.8957	
0.1196		0.9094	
0.0302		0.9461	
0.0	1.0000	1.0000	
0.0647	1.0493		
0.1379	1.0714		
0.3448	1.1061		
0.4963	1.1200		
		·	

Table 5. Engines 3 and 4 Inlet Coordinates (Concluded)

θ _i = 90		
Xi/Rh	REXTRh	RINTR
0.2651		0.8957
0.1853		0.8991
0.1196	1	0.9094
0.0776		0.9217
0.0302	·	0.9461
0.0037		0.9786
0.0	1.0000	1.0000
0.0069	1.0158	
0.0248	1.0303	
0.0647	1.0493	1
0.1379	1.0714	
0.2155	1.0877	
0.3448	1.1061	
0.4963	1.1200	
		1
	1	

θ _i = 150				
X _i /R _h	R _{EXT} R _h	RINTRh		
0.2651 0.1853 0.1196 0.0776 0.0302 0.0037 0.0 0.0069 0.0248 0.0647 0.1379 0.2155 0.3448 0.4963	1.0000 1.0158 1.0303 1.0493 1.0714 1.0877 1.1061 1.1200	0.8957 0.9004 0.9126 0.9261 0.9518 0.9829 1.0000		

θ _i = 180				
x _i / _{Rh}	R _{EXT} /R _h	R _{INT} /R _h		
1.1822		1.0044		
1.1222		1.0072		
0.7813		0.9546		
0.5563		0.9158		
0.4019		0.8998		
0.2651		0.8957		
0.1196		0.9126		
0.0302		0.9518		
0.0	1.0000	1.0000		
0.0647	1.0493			
0.1379	1.0714			
0.3448	1.1061			
0.4963	1.1200			

25209-24-176

angles measured about the inlet centerline. At these same inlet angles, the fan cowl cross-sectional profiles are defined relative to the engine centerline. Coordinates in table 6 give the angle about the engine centerline for each point with the distance to the surface measured along and perpendicular to NAC WL 100.

Pylon-fan cowl, pylon-core cowl, and wing-pylon intersections are defined along axes of the nacelle coordinate system (tables 7 through 10). These tables include the information necessary to locate these intersections. The pylon-core cowl intersection is separated into three sections between NAC STA 220 and 270.526 to define a pylon-core cowl fairing surface (table 10).

The pressure orifice positions on the defined profiles are given in tables 11 through 16. A pressure orifice is found in the profile plane at the intersection of the aircraft surface and a line normal to the X direction at the nondimensional position given by X/C or X/L.

4.1.2 Instrumentation

The NAIL program was an ambitious undertaking in terms of number of measurements obtained. There were 693 pressure measurements, 30 accelerometers, 7 rate gyros, 12 blade clearance measurements, and 20 thermocouples for required test data. Numerous thermocouples were used to provide temperature information on heat-sensitive instrumentation. Finally, expanded engine performance data were provided by an additional 68 measurement channels. The quantity and quality of the data obtained were excellent.

Instrumentation placed on or near the numbers 3 and 4 engine and pylon was designed to further the understanding of the flight loads (cause) and engine clearance changes (effect) associated with engine deterioration and to provide information on the flight environment of the engine and wing interface.

4.1.2.1 Flight Loads

Pressure Instrumentation—Most of the pressure instrumentation was placed on the inlet of engine 3 (figs. 10 and 11). It was believed that the inboard engine was subject to higher angles of attack than the outboard engine because wing bending reduced the incidence of the outboard nacelle and because the outboard nacelle was less affected by upflow induced by the wing flaps. Therefore, the inboard nacelle sustained greater loads and was chosen for a more detailed survey using 252 pressure taps.

Table 6. Engines 3 and 4 Fan Cowl Coordinates

 $X_f = 0$ at NAC STA 61.86 $L_f = 228.96$ cm (90.14 in)

X _f	R _f
0.0	0.5540
0.1125	0.5663
0.2123	0.5732
0.3821	0.5771
0.5851	0.5675
0.7892	0.5447
0.8669	0.5358
1.0000	0.5148
	0.1125 0.2123 0.3821 0.5851 0.7892 0.8669

θ _i = 60				
θf	θ _f X _f L _f			
62.262 61.634 60.020 60.001 55.843	0.0147 0.1125 0.2123 0.3821 1.0000	0.5641 0.5727 0.5781 0.5802 0.5148		

Table 6. Engines 3 and 4 Fan Cowl Coordinates (Concluded)

θ ;= 90				
θf	X _f	R _f		
92.483 91.929 91.234 90.071 88.642	0.0349 0.1125 0.2123 0.3821 0.5851	0.5771 0.5816 0.5846 0.5835 0.5685		
87.080 86.449 85.265	0.7892 0.8669 1.0000	0.5446 0.5358 0.5148		

θ _i = 150				
θf	X _f L _f	R _f		
151.141 150.997 150.665 150.096 149.383 148.603 148.289 147.700	0.0697 0.1125 0.2123 0.3821 0.5851 0.7892 0.8669 1.0000	0.5973 0.5974 0.5957 0.5865 0.5687 0.5446 0.5358 0.5148		

θ _i = 180					
θf	X _f	R _f L _f			
180,000 180,000 180,000 180,000 180,000	0.0771 0.1125 0.2123 0.3821 1.0000	0.6001 0.6000 0.5975 0.5867 0.5148			

Table 7. Engines 3 and 4 Pylon-Fan Cowl Intersection

()

C _m = 206.08	0 cm (81,134 in)	X, Y = 0 @ m	Z = 0 @ NAC BL 0
	X/C _m	Y/C _m	<u>+</u> Z/C _m
	0.0 0.1661	0.0 0.00801	0.0 0.0620

Table 8. Engine 3 Wing-Pylon Intersection

OUTBOARD						
X/C _n Y/C _n Z/C _n						
0.0000	-0.0751	0.0000				
0.0075	-0.0297	0.0051				
0.0553	0.0703	0.0133				
0.1167	0.1369	0.0167				
0.2195	0.2123	0.0181				
0.3304	0.2762	0.0171				
0.4909	0.3451	0.0133				
0.6923	0.4117	0.0068				
1.0077	0.4813	-0.0038				
1.8171	0.5455	-0.0324				
4.5412	0.4772	-0.0922				
5.3294	0.4120	-0.0802				
6.1500	0.3400	-0.0485				
6.9789	0.2748	0.0024				
8.0122	0.2014	0.0830				
8.9315	0.1359	0.1648				
9.5572	0.0679	0.2284				
10.0000	0.0000	0.2745				
·	· ·					

INBOARD				
X/C _n	Y/C _n	Z/C _n		
0.0000	-0.0751	0.0000		
0.0109	-0.1375	-0.0089		
0.0536	-0.2048	-0.0205		
0.1403	-0.2751	-0.0348		
0.2823	-0.3458	-0.0509		
0.4909	-0.4120	-0.0690		
0.8462	-0.4793	-0.0915		
1.7044	-0.5318	-0.1260		
3.5137	-0.5179	-0.1526		
4.2818	-0.4803	-0.1417		
5.2533	-0.4100	-0.1048		
6.0623	-0.3441	-0.0608		
6.9789	-0.2758	0.0048		
8.0122	-0.2038 0.0884			
8.9315	-0.1379 0.1703			
9.5572	-0.0690	0.2311		
10.000	0.0000	0.2745		
		·		
	. •	[]		
	. •			
1		I		

125209-26-182

OUTBOARD						
X/C _L Y/C _L Z/C _L						
0.0000	-0.0411	0.0000				
0.0049	0.0000	0.0000				
0.0458	0.0855	0.0024				
0.1275	0.1654	0.0086				
0.1275	0.2342	0.0086				
0.4411	0.3275	0.0094				
0.6920	0.4114	0.0049				
1.0048	0.4891	-0.0004				
1.5318	0.5747	-0.0004				
2.5910	0.6337	-0.0391				
3.5804	0.5967	-0.0546				
4.0138	0.5653	-0.0509				
4.8597	0.4883	-0.0216				
5.6588	0.4077	-0.0269				
6.4273	0.3340	0.0863				
7.3498	0.2484	0.1682				
8.2727	0.1637	0.2501				
9.1952	0.0786	0.3319				
10.0000	0.0045	0.4036				
	and the second					

INBOARD				
X/C _ℓ	Y/C _£	Z/C _L		
0.0000 0.0053 0.0525 0.1592 0.3063 0.5441 0.8590 1.4096 2.5093 3.8724 4.9143 5.6588 6.5813 7.5038 8.2727 9.1952 9.9943	-0.0411 -0.0819 -0.1637 -0.2484 -0.3234 -0.4085 -0.4863 -0.5698 -0.6256 -0.5735 -0.4863 -0.4134 -0.3258 -0.2391 -0.1666 -0.0823 -0.0053	0.0000 -0.0029 -0.0090 -0.0171 -0.0261 -0.0383 -0.0521 -0.0729 -0.0949 -0.0644 -0.0069 0.0452 0.1197 0.1959 0.2598 0.3364 0.4032		

Table 10. Pylon-Core Cowl Intersection (To Be Submitted in Final Report)

Table 10. Pylon-Core Cowl Intersection

FORWARD SECTION			
× _m /c _m	m/cm Ym/cm		
0.0000	0.279 7	0.0636	
0.0377	0.2786	0.0638	
0.0697	0.2780	0.0640	
0.1336	0.2773	0.0643	
0.1976	0.2771	0.0647	
0.2296	0.2771	0.0649	
0.2935	0.2771	0.0651	
0.357 5	0.2770	0.0653	
0.3894	0.2769	0.0653	
0.4454	0.2764	0.0653	

0.2754

0.2738

0.0650

0.0631

0.4909

0.5402

Table 10. Pylon-Core Cowl Intersection (Concluded)

TYPICAL CRÖSS SECTION IN AFT SECTION OF STRUT-CORE COWL INTERSECTION

 $C_m = 301.056 \text{ cm } (118.526 \text{ in}) \quad X, Y = 0 \text{ at M} \quad Z = 0 \text{ at NAC BL 0}$

	AFT SECTION					
	UPPER MIDDLE		MIDDLE LOWER		VER	
x _m /c _m	Y _m /C _m	±Z _m /C _m	Y _m /C _m	±Z _m /C _m	Y _m /C _m	±Z _m /C _m
0.5737	0.2775	0.0621	0.2724	0.0639	0.2685	0.0709
0.6159	0.2834	0.0604	0.2696	0.0657	0.2618	0.0782
0.6581	0.28 95	0.0582	0.2652	0.0672	0.2551	0.0827
0.7003	0.29 5 5	0.055 5	0.2594	0.0683	0.2484	0.0849
0.7159	0.2972	0.0543	0.2574	0.0681	0.2459	0.0851
0.7333	0.2980	0.0534	0.25 50	0.0676	0.2432	0.0854
0.7425	0.29 85	0.0532	0.2540	0.0672	0.2418	0.0852
0.7845	0.29 39	0.0495	0.2480	0.06 41	0.2348	0.0837
0.8268	0.2887	0.0458	0.2415	0.05 97	0.22 84	0.0807
0.8690	0.27 86	0.0475	0.2349	0.0540	0.2218	0.0756
0.9112	0.2663	0.0354	0.2276	0.0473	0.2151	0.0690
0.9534	0.25 42	0.0300	0.2194	0.0405	0.2082	0.0611
0.9956	0.2410	0.0247	0.2109	0.0337	0.2012	0.0528
1.0000	0.23 94	0.0240	0.2096	0.0332	0.2013	0.0485

X MEASURED ALONG CHORD LINE X_W/C_W TOLERANCE ± 0.0005

WBL 445	WBL 470	WBI	L 510	WE	L 809	WBL 834	WBL	870
Xw/ Ow	XW/CW	Xw	/ CW	иX	I/ CW	Xw/Qw	XW	CW
UPPER LOWER	UPPER	UPPER	LOWER	UPPER	LOWER	UPPER	UPPER	LOWER
FLUSH 0.0100 0.0090 0.0200 0.0223 0.0300 0.0300 0.0487 0.0750 0.1000 0.1500 0.1500 0.1500 0.2250 0.2453 0.2500 0.2953 0.2750 0.3453 0.3543 0.4454 0.4037 0.4954 0.4538 0.5455 0.4750 0.5955 0.5060 0.5250 0.5554 0.6049 0.6551 0.7049 0.7552 0.8049	FLUSH 0.1090 BELT 0.2000 0.3000 0.4000 0.5000 0.6000	FLUSH 0.0100 0.0200 0.0300 0.0500 0.0750 0.1000 0.1500 BELT 0.2000 0.2250 0.2500 0.2750 0.3000 0.4500 0.4500 0.4500 0.5500 0.5500 0.6500 0.6500 0.7000	FLUSH 0.0100 0.0207 0.0300 0.0500 0.1000 0.1472 BELT 0.1972 0.2472 0.2972 0.3472 0.3972 0.4472 0.5472 0.5972 0.6472	FLUSH 0.0100 0.0190 0.0300 0.0500 0.0750 0.1000 0.1500 BELT 0.2000 0.2250 0.2466 0.3000 0.4500 0.4500 0.5500 0.6500 0.6500 0.7500 0.7500 0.8000	FLUSH 0.0100 0.0165 0.0300 0.0500 0.1015 0.1500 BELT 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5500 0.6000 0.6500	FLUSH 0.1200 BELT 0.2405 0.3000 0.4000 0.5000 0.6000	FLUSH 0.0100 0.0200 0.0300 0.0500 0.0734 0.1000 0.1500 BELT 0.2000 0.2250 0.2500 0.3000 0.3500 0.4000 0.4500 0.4750 0.5000 0.5250 0.5500 0.6000 0.6500	FLUSH 0.0089 0.0189 0.0284 0.0489 0.0723 0.1000 0.1500 BELT 0.2043 0.2543 0.3043 0.4043 0.4543 0.5043 0.5543 0.6043 0.6543

X MEASURED ALONG NAC BL 0.0 X_S/C_S TOLERANCE ±0.0005

NAC WL 155	NAC WL 180
X _S / C _S	X _S / C _S
INBD AND OUTBD	INBD AND OUTBD
0.0163 0.0349 0.0508 0.0750 0.1234 0.2146 0.3043 0.3938 0.4865 0.5392 0.5724 0.6207 0.6725 0.7589	0.0169 0.0330 0.0506 0.0752 0.9898 0.1279 0.1600 0.2136 0.2614 0.2966 0.3493 0.4757 0.6514 0.7885
0.8279 0.9005	

(4)

4

ORIGINAL PAGE IS OF POOR QUALITY

X MEASURED ALONG NAC BL 0.0 $\rm X_S/C_S$ TOLERANCE ± 0.0005

NAC WL 180	NAC WL 155
X _S / C _S	X _S / C _S
INBD AND OUTBD	INBD AND OUTBD
0.0175	0.0474
0.0375	0.0666
0.0546	0.0875
0.0806	0.1092
0.1326	0.1460
0.2306	0.1793
0.3321	0.2169
0.4295	0.2837
0.5229	0.3371
0.5762	0.3785
0.6237	0.4423
0.6671	0.5901
0.7228	0.8158
0.8156	0.9641
0.8898	
0.9677	

Table 14. Engine 3 Inlet Pressure Orifice Locations

θ : = 30° θ; = 90° θ; = 150° θ;= 270° $\theta_i = 210^\circ$ $\theta i = 330^{\circ}$ <u>х/ с</u> X/c X/ X/c X/c X/ C С 0.077* 0.079* 0.080* 0.080* 0.081* 0.079* 0.051* 0.053* 0.050* 0.050* 0.055* 0.051* 0.034* 0.033* 0.034* 0.034* 0.037* 0.034* 0.014* 0.014* 0.014* 0.014* 0.014* 0.014* 0.002* 0.002* 0.002* 0.002* 0.002 0.002* 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.005 0.005 0.004 0.004 0.010 0.011 0.012 0.012 0.011 0.010 0.025 0.028 0.030 0.030 0.028 0.026 0.056 0.061 0.063 0.062 0.062 0.056 0.086 0.091 0.095 0.095 0.090 0.086 0.122 0.128 0.146 0.146 0.128 0.122 0.174 0.168 0.183 0.181 0.172 0.178 0.227 0.212 0.227 0,224 0.218 0.214 0.261 0.277 0.277 0.275 0.267 0.262 0.336 0.348 0.345 0.343 0.339 0.337 0.457 0.463 0.458 0.455 0.453 0.454 0.572 0.576 0.571 0.569 0.567 0.570 0.645 ü.647 0.639 0.639 0.639 0.645 0719 0.718 0.710 0.708 0.711 0.718 0.824 0.824 0.813 0.810 0.816 0.827 0.994 0.997 0.994 0.991 0.990 0.994

Table 15. Engine 4 Inlet Pressure Orifice Locations

0 i = 60°	θ _i = 180°	⊖ i = 300°
×/c	X/ c	x/c
0.441*	0.426*	0.424*
0.322*	0.318*	0.322*
0.232*	0.244*	0.228*
0.167*	0.178*	0.164*
0.104*	0.107*	0.101*
0.050*	0.052*	0.048*
0.021*	0.021*	0.021*
0.000	0.000	0.000
0.026	0.064	0.027
0.060	0.098	0.057
0.125	0.135	0,125
0.170	0.178	0.171
0.263	0.272	0.264
0.327	0.345	0.330
0.432	0.455	0.434
• •		
•		

CORE COWL REAR VIEW

θ_{k} = 30° AND 330° $X_{k}/L_{k} \pm 0.0007$		
0.0363	0.6817	
0.1552	0.6918	
0.2405	0.7024	
0.2928	0.7410	
0.3797	0.7745	
0.4472	0.8085	
0.4995	0.8380	
0.5315	0.8672	
0.5703	0.9010	
0.5822	0.9205	
0.6277	0.9545	
0.6497	0.9947	

OF POOR QUALITY

Figure 10. Inboard Engine Pressure Taps

Figure 11. Inboard Inlet Pressure Taps

The greatest deviations from ambient pressure and most rapid variations of pressure with distance occur near the inlet lip. Contribution of the lip area to the overall force and moment is very large. Because of this contribution, 144 taps in 12 rows, 30 deg apart, were located in the lip area. Aft of the lip, 60-deg circumferential spacing of the rows provided adequate definition.

Each pressure tap was connected to an Endevco pressure transducer (fig. 12) by approximately 8 ft of 0.061-in inside diameter copper tubing to ensure that lag effects were equalized. The transducers were mounted in temperature controlled boxes in groups of 22 (figs. 13 and 14). Each transducer measured differential pressure between the tap and a reference pressure.

Further pressure measurements were obtained on the fan cowl doors of engine 3 (fig. 15). The arrangement was two rows of pressure taps, one on each side of both cowl doors, 30 deg from the top. Each pressure tap was connected to its individual transducer by copper tubing except at the hinges of the fan cowl doors, where a small section of copper tubing was replaced by a piece of flexible clear polymer. This flexible section enabled the doors to function throughout the test program.

The pressure instrumentation on engine 4 was designed to substantiate a finding of the feasibility study (ref. 1), which suggested that engine deterioration was independent of position. Therefore, engine 4 inlet was instrumented with three rows of 15 pressure taps each spaced 120 deg apart (fig. 16) for a total of 45 measurements. These measurements were sufficient to indicate relative load levels between inboard and outboard inlets.

Inertial Loads Instrumentation—Instrumentation for inertial loads consisted of accelerometers and rate gyros located on the engine and pylon (fig. 17) and the aircraft center of gravity. Linear accelerations were measured by Q-FLEX accelerometers (fig. 18). These instruments were used on both test engines and at their fore and aft wing and pylon interface. For angular accelerations two axes of a three-axis Northrop rate gyro mounted on the two test engines (figs. 19 and 20) were used.

Location of accelerometers and rate gyros is referenced by clock position, looking aft. Accelerometers were placed on the engines so that lateral accelerations were measured in the lateral direction at NAC STA 46 at 3 o'clock and at NAC STA 100 at 6 o'clock. Vertical accelerations were measured at NAC STA 46 at 6 o'clock, NAC STA 100 at

Figure 12. Pressure Transducer

Figure 13. Pressure Transducer Installation

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 14. Pressure Transducer Box

Figure 15. Cowl Door Pressure Taps

Figure 16. Outboard Engine Pressure Taps

49

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 18. Q-FLEX Accelerometer

Figure 19. Rate Gyro

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 20. Accelerometer and Rate Gyro

the lateral direction at NAC STA 46 at 3 o'clock and at NAC STA 100 at 6 o'clock. Vertical accelerations were measured at NAC STA 46 at 6 o'clock, NAC STA 100 at 3 o'clock, and NAC STA 100 at 9 o'clock, and longitudinal acceleration was at NAC STA 100 at 6 o'clock. Rate gyros were placed at NAC STA 100 at 3 o'clock and were used to measure pitch and yaw rate. A total of six accelerometers and one rate gyro per engine permitted calculation of the translational and angular accelerations at the engine center of gravity.

Accelerations were also measured at the pylon/wing interfaces. The lateral accelerations were measured at the wing front spar and the rear thrust link attach point (fig. 21). The vertical accelerations were measured inboard and outboard of the front spar attach point and on the rear thrust link attach point. In the longitudinal direction, accelerations were measured only at the front spar. Each interface had a total of six linear accelerometers.

Basic airplane information was also recorded, including pitch, yaw, and roll angles, along with side-slip and angle of attack. Angular accelerations about all three axes were measured at the aircraft center of gravity.

Clearance Measurement System—Engine clearance change measurements were made by P&WA simultaneously with flight load application. Measurements were made on the fan and first-stage high-pressure turbine on the inboard engine and the fan stage of the outboard engine by a laser proximity system for each stage. Each clearance monitoring system consisted of: (1) the laser assembly (four lasers per box), (2) the input fiber optic assembly, (3) video camera assembly, (4) laser probe assembly (four probes per stage), (5) video monitor, and (6) video tape recorder (fig. 22).

In accordance with the interface agreement between the two companies, P&WA provided all clearance monitoring system components and made the necessary engine preparations. Operation and maintenance of the system during testing were also the responsibility of P&WA. P&WA provided to BCAC the equipment necessary for installation in the airplane during the layup period prior to testing.

Laser assemblies were installed in a rack inside the airplane cabin (fig. 23). Four laser assemblies of four laser generators per box were installed in the rack, which provided one spare box to facilitate changeover in flight should a laser generator malfunction.

BLACK AND WHITE PHOTOGRAPH

Figure 21. Acceleron Installation (Thrust Link)

Figure 22. Clearance Monitoring System

(A)

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 23. Laser Generator Boxes

5209-18

Video cameras were installed in the "dog house" (fig. 24) for the fans on the inboard and outboard engines and in the "kneecap" (fig. 25) of the wing and pylon intersection for the turbine of the inboard engine. The input fiber optic leads were divided in the camera box installation into four separate leads and routed to each laser probe assembly. A fan laser probe assembly is shown in figure 26 and a turbine laser probe assembly is shown in figures 27 and 28. The fan and turbine probe radial locations, which are essentially 90 deg apart, are shown in figure 29.

Reflected light from the engine blades was transmitted back through the probe and through the coherent output fiber optic to the video camera. At the video camera the reflected light was converted to a video signal and transmitted through a cable to the airplane cabin. In the cabin, clearance values were read on the video monitors (fig. 30) and were recorded on a video tape recorder (fig. 31).

In addition to the aforementioned components to the laser system, a gaseous nitrogen system was required to cool and purge the high-pressure turbine laser probes. BCAC provided the system, which was located in the forward cargo hold (fig. 32). Components of the gaseous nitrogen system included storage racks for 56 nitrogen bottles, the nitrogen bottles, the high-pressure manifolds and regulators, control valves, pressure sensors, probe temperature sensors and readout, tubing, and the flow-controlling orifice that is built into the high-pressure turbine probes. The system was configured to provide nitrogen for approximately 13 hours of operation without resupply.

Expanded Engine Performance—Expanded engine performance data (fig. 33) were required for the P&WA effort to correlate measured engine Glearance changes or closures with performance losses. Primary emphasis was on engine 3, which had complete instrumentation (fig. 33). Minimum instrumentation to define engine speed and engine airflow and power level was provided for engine 4. Instrumentation for engine 3 was typical of that used for a performance engine test program and was compatible with that used during the pre- and postprogram base engine calibrations at the P&WA Middletown test facility. To better correlate data, the Boeing-owned flight high- and low-rotor speed tachometers (N2 and N1, respectively) and the fuel flow meter were calibrated by P&WA and were used during the pre- and postcalibration at P&WA. The tachometers and flow meter were used on this engine throughout the entire NAIL program.

Figure 24. Fan Video Camera Installation

Figure 25. Turbine Video Camera Installation

21-6076

5209-2

BEACH TO SHOW THE STANFORM OF THE STANFORM OF

Figure 26. Fan Laser Probe

Figure 27. Turbine Laser Probe

Figure 28. Turbine Laser Probe Installed

Figure 29. Laser Proximity Probe Locations

Figure 30. Laser System Video Monitors and Controls

Figure 31. Laser Video Tâpe Recorder

2000

Figure 32. Nitrogen System

N2	High-pressure (H.P.) rotor speed
N1	Low-pressure (L.P.) rotor speed
TT7	L.P. turbine discharge total temperature
TT4.5	H.P. compressor discharge total temperature
TT3	L.P. compressor discharge total temperature
TT6	H.P. turbine discharge total temperature
PT7	L.P. turbine discharge total pressure
PT3	L.P. compressor discharge total pressure
PT2.5	Fan stream total pressure at exit guide vane
PS3	L.P. compressor discharge static pressure
PS4	H.P. compressor discharge static pressure
HPC IGV POS	H.P. compressor inlet guide vane position
PWR LVR ANG	Power lever angle
Surge bleed valve POS	
Pylon valve POS	Pylon airbleed shut-off valve position
Air control valve, HPC	Pressure regulator
Wf	Fuel flow rate (computed)
Elapsed fuel	Total fuel burned

Figure 33. Expanded Engine Performance

4.1.2.2 Installed Propulsion System Aerodynamics

Instrumentation—Selection of the pressure measurement system used for this program was guided by the need to obtain pressure measurements on the wing, pylon, and core cowl only during quasi-steady-state airplane operating conditions. Accordingly, in these areas, a 24-port scanivalve pressure sampling system, which samples 12 ports per second, was compatible with the normal time frame for maintaining quasi-steady-state airplane operating conditions. The option of using individual transducers for each measurement, as on the inlet and fan cowl, thereby allowing a simultaneous sampling of each pressure, was not overlooked. Not enough transducers could be purchased from appropriate manufacturers in the time frame available to complete the test program.

A Gould Statham Model PM 131TC (±17.2 kPa[±2.5 lb/in²a]) differential-pressure transducer was used in all scanivalve modules. Specifications for the transducer were as follows: combined nonlinearity and hysteresis of less than ±0.75% full scale, thermal sensitivity shift less than 0.01%/°F from -65°F to +250°F (-54°C to +121°C), and thermal zero shift less than 0.01% full scale/°F from -65°F to +250°F (-54°C to +121°C). The natural frequency of the transducer diaphragm was 3500 Hz. The transducer output resulting from an acceleration stimulus applied perpendicular to the plane of the diaphragm was 0.2% of full scale per g for vibration frequencies to approximately 20% of the diaphragm natural frequency. Above the natural frequency, the response increased in accordance with the behavior of an undamped single-degree-of-freedom system.

Each scanivalve transducer housing was fitted with a thermostatically controlled heater jacket, which maintained a 10° C (50° F) operating environment for the transducer given ambient temperatures below 10° C (50° F). The heater system, however, did not maintain a 10° C (50° F) environment if the ambient temperatures were above 10° C (50° F). This condition seemed likely to occur only in the scanivalve assemblies mounted in the engine pylon where engine bleed air ducts transfer heat into the pylon bays. To monitor the temperature at each scanivalve location, a thermocouple was installed on each scanivalve assembly.

The impact of airplane- or engine-induced vibration on the installed pressure transducers was assessed during the ferry flight to the remote test site. It was assumed that the highest vibration levels would be encountered in scanivalve installation in the engine pylon. Piezoelectric accelerometers were bonded onto the installed scanivalve assembly

and g-levels were measured in a direction perpendicular to the plane of the transducer diaphragm during cruise conditions approximating the required test conditions. The highest measured acceleration level was approximately 0.9g rms at 230 Hz that would produce an output of 0.18% of full scale, based on the transducer acceleration sensitivity.

Other sources of measurement error involved signal gain, analog-to-digital conversion stability, and sampling speed. Testing transducers showed nonlinearity and hysteresis to be $\pm 0.82\%$ at worst and $\pm 0.30\%$ on an average. Based on pre- and postflight system calibrations and monitored in-flight operating conditions, the analog-to-digital conversion error was $\pm 2\%$. Scanivalve sampling speed was found to be significant only in shock areas. A 6.9 kPa (1 lb/in²) pressure drop between the first 12 ports and the last 12 ports introduced a $\pm 1\%$ error. The accuracy of measured pressures was estimated to be $\pm 3\%$ in low-pressure gradient areas and $\pm 4\%$ in shock areas.

Static pressure orifices were installed on the pylon and core cowl of inboard and outboard engines 3 and 4 and on the wing in the vicinity of both engines. Three rows of surface-static pressures on the upper surface of the wing and two rows on the lower surface were installed near both engines, (figs. 5 and 6). Two rows of surface static pressures on each side of the engine pylon were installed on engines 3 and 4 (fig. 6). Finally, two rows of surface static pressures were installed on each side of the engine core cowl of engines 3 and 4 (fig. 6).

Surface-static pressure orifices were installed flush to the local wing, pylon, and core cowl surface except for the wing-pressure orifices, which were located over or aft of the wing fuel tanks. In these areas, pressure belts were bonded to the wing surface and faired into the surface (fig. 34). The location of the transition from flush orifices to pressure belt orifices is documented for each wing pressure measurement row (see table 1).

To improve the accuracy of actually locating a position of the pressure orifice on the wing, pylon, or core cowl, computer-generated surface-profile templates marked with the desired orifice location were used in regions experiencing large changes in surface curvature. The actual location of installed pressure orifices deviated in some cases from the desired location because of interference with, for example, structural members and anti-icing ducts. Actual locations were checked again after installation. Orifice positions tabulated in tables 11 to 16 represent the actual installed pressure orifice position plus or minus the tolerance indicated with each group of coordinates.

Figure 34. Typical Cross-Section of Wing Pressure Belt

Orifice positions on the engine 3 fan inlet and cowl did not deviate from the angular position of the profile. Engine 4 fan inlet and cowl orifices deviated from the angular position of the profiles a maximum of ± 2 deg. The other significant deviation occurred on both engines 3 and 4 NAC WL 155 and 180 pressure orifice rows. The NAC WL values were within ± 1.78 cm (0.7 in).

Additional clarification of locations for those pressure orifices located in the upper and lower surface wing pressure belts is necessary. For belt-located pressure orifices, one pressure orifice was allocated to one belt tube. Because the belt tubes were arranged laterally to provide a low profile, the orifice locations gradually deviated laterally due to tube width, resulting in increasing orifice distance from the start of the pressure belt. Table 17 presents the manner and amount of deviation for each pressure belt orifice at a given WBL.

4.1.3 Test Conditions and Procedures

4.1.3.1 Flight Loads

Testing for performance degradation was accomplished in several well defined stages. Such testing was necessary to measure engine clearance changes resulting from various flight maneuvers. Once the installation and fabrication on the test bed aircraft was completed, an engine ground calibration was performed prior to the functional check flight. This calibration enabled comparison with the test stand calibrations by P&WA and provided a data base line for the flight test program.

It was suspected that the first 1% loss in performance due to engine clearance changes occurred during the production flight test acceptance profile (fig. 35). Therefore, this profile was chosen as the basis of the first test flight and was followed by a second ground calibration. Subsequent flights contained high-g turns and variations in takeoff gross weight. Under the test plan, each series of tests required a ground calibration after the particular series. Using these calibrations, performance deterioration was determined for each series of tests. The final ground calibration was performed after completing all flight testing. In all, five ground calibrations were conducted during the NAIL flight test program.

ORIGINAL PAGE IS OF POOR QUALITY

Table 17. Lateral Offset of Wing Pressure Belt Pressure Orifices From Wing Buttock Line

	WBL	445		WBL 510							
UPPER S	URFACE	LOWER	SURFACE	UPPER S	SURFACE	LOWER SURFACE					
Xw/Cw OFFSET X 0.1588 cm (1/16")		Xw /Cw	OFFSET X 0.1588 cm (1/16")	Xw/Cw	OFFSET X 0.1588 cm X w/C (1/16")		OFFSET X 0.1588 cm (1/16")				
0.2000	0	0.1950	0	0.2000	0	0.1972	0				
0.2250	-3	0.2453	-3	0.2250	-3	0.2472	-3				
0.2500	-6	0.2953	-6	0.2500	-6	0.2972	-6				
0.2750	-9	9 0.3453 -9		0.2750	-9	0.3472	-9				
0.3043	-12	0.3953	-12	0.3000	-12 0.397	0.3972	-12				
0.3543	-15	0.4454 -15		0.3500	-15	0.4472	-15				
0.4037	-18	0.4954	-18	0.4000	-18	0.4972	3				
0.4538	-21	0.5455	3	0.4500	-21	0.5472	6				
0.4750	-24	0.5955	6	0.4750	3	0.5972	9				
0.5060	-27	0.6455	9	0.5000	6	0.6472	12				
0.5250	3			0.5250	9		 .				
0.5554	6		1	0.5500	12						
0.6049	9		1	0.6000	15		ļ.				
0.6551	12	1		0.6500	18]				
0.7049	15			0.7000	21		ļ .				
0.7552	18										
0.8049	, 21.										
						, ·					

WBL 470										
UPPER SURFACE										
Xw/Qv	OFFSET X 0.1588 cm (1/16")									
0.2000	0									
0.3000	-3									
0.4000	-6									
0.5000	3									
0.6000	6									

ORIGINAL PAGE IS OF POOR QUALITY

Table 17. Lateral Offset of Wing Pressure Belt Pressure Orifices From Wing Buttock Line (Concluded)

	WBL	. 809		WBL 870							
UPPER S	SURFACE	LOWER S	SURFACE	UPPER SURFACE LOWER SURFACE							
Xw /Cw OFFSET X 0.1588 cm (1/16")		Xw/Cw	OFFSET X 0.1588 cm (1/16")	Xw/Cw OFFSET X 0.1588 cm (1/16") Xw/C		Xw/Cw	OFFSET X 0.1588 cm (1/16")				
											
0.2000	Ö	0.2000	0	0.2000	0	0.2043	0				
0.2250	-3	0.2500	-3	0.2250	-3	0.2543	-3				
0.2466	-6	0.3000	-6	0.2560	-6	0.3043	-6				
0.3000	-9	0.3500	-9	0.3000	-9	0.3543	-9				
0.3500	-12	0.4000	-12	0.3500	-12	0.4043	-12				
0.4000	-15	0.4500	-15	0.4000	-15	0.4543	-15				
0.4500	-18	0.5000	-18	0.4500	-18	0.5043	3				
0.5000	-21	0.5500	3	0.4750	-21	0.5543	6				
0.5250	3	0.6000	6	0.5000	3	0.6043	9				
0.5500	6	0.6500	9	0.5250	6	0.6543	12				
0.6000	9]	0.5500	9]					
0.6500	12		1	0.6000	12						
0.7000	15			0.6500	15						
0.7500	18			0.7000	18		[
0.8000	21	·					·				

WBL 834										
UPPER SURFACE										
X w/Cw	OFFSET X 0.1588 cm (1/16")									
0.2405	0									
0.3000	-3									
0.4000	-6									
0.5000	3									
0.6000	6									
L	<u> </u>									

ORIGINAL PAGE IS OF POOR QUALITY

Figure 35. Acceptance Flight Profile

The final test conditions (table 18) of the NAIL program resulted from compromise and various flight restrictions. Originally NAIL was to be a standalone flight program. However, the flight test was conducted concurrently with the 767/JT9D-7R4 test program, which imposed certain flight restrictions on RA001. The most notable restrictions were to remain within the 767 design cruise speed and Mach number (V_C and M_C) limits of 360 kcas and M=0.86 until the completion of all JT9D-7R4 test conditions and to limit nacelle loads to 80% of the design limit. Upon completion of the JT9D-7R4 program, the 767 design envelope V_C and M_C limits of 420 kcas and M=0.91 were applied to the NAIL program.

a Par Indiani Taka Bun bi

Several restrictions were imposed on the NAIL program—not because of the NAIL flight test profile but because of inclement weather (i.e., rain, snow, hail, fog, high wind, and wide variations in temperature). Moisture caused problems for the RA001 in that only engine 1 had thermal anti-ice protection. Therefore, no flights were conducted into known or suspected icing conditions. The pressure instrumentation (fig. 36) was not to be exposed to visible moisture to ensure that water did not enter the lines and freeze.

Use of laser probes for detection of engine clearance changes dictated adherence to three conditions: that the nitrogen purge and cooling system operate whenever engine 3 was used, that nitrogen cooling be required for the camera environmental housings when ambient ground conditions dictated, and that the aircraft heading prevent sunlight from entering the inlet and interfering with laser readings.

Because a functional check flight and a ferry flight to the remote test site were required prior to any NAIL data collection effort, it was necessary to restrict the level of power to prevent performance losses in the analytically built engine 3. Therefore, all flights prior to the first data flight were limited to an engine pressure ratio (EPR) of 1.18 with no bleeds during takeoff and maintained a locked throttle climb to 10 000 ft at which time normal operation resumed.

As a result of the concurrent testing programs, data were taken over approximately 33 hours of flight time instead of over the initially planned 15-hour maximum. The increased flight time resulted in a substantially larger quantity of data to survey and select from for analysis and provided additional conditions for analysis. The result of this concurrent testing was that additional data were obtained, yet flight hours charged to the NASA program were considerably fewer than planned.

Table 18. Test Conditions Flown

	Test condition	Test no.	Event time	Pressure altitude, ft	М
101	612K gross weight takeoff (flaps 20)	273-7	6:41:44	2 553	0.250
101	538K gross weight takeoff (flaps 10)	273-10	9:44:10	2 667	0.239
101	647K gross weight takeoff (flaps 10)	273-11	10:13:52	2 634	0.254
118	780K gross weight simulated takeoff	273-15	8:13:18	3 646	0.296
	(flaps 10)				
102	Low climb	273-10	9:46:00	5 861	0.367
103	Mid climb	273-7	7:28:44	17 187	0.599
104	High M cruise	273-7	7:49:26	35 481	0.859
105	Low M cruise	273-7	7:56:40	35 512	0.772
106	Max M	273-15	12:09:27	36 978	0.906
107	Inflight relight	273-7	8:12:53	27 859	0.721
108	Maximum q	273-15	11:39:00	24 513	0.836
109	Stall warning (flaps up)	273-7	8:18:58	16 964	0.391
110	Stall warning (flaps 10)	273-7	8:22:26	16 239	0.347
111	Stall warning (flaps 30)	273-7	8:24:52	17 049	0.270
112	Idle descent	273-7	8:28:56	8 450	0.439
113	Approach	273-7	8:34:27	6 003	0.265
114	Touch and go	273-7	8:40:36	2 561	0.263
115	Thrust reverse	273-7	8:46:00	2 561	0.179
116	2.0g left turn (flaps up)	273-10	13:33:58	8 397	0.487
117	1.6g left turn (flaps 30)	273-10	13:41:07	8 202	0.260
120	2.0g right turn (flaps up)	273-15	11:04:03	8 240	0.476
121	1.6g right turn (flaps 30)	273-15	11:07:25	8 278	0.266
123	Airplane stall	273-10	13:26:17	9 000	0.207

25209-20-107

Figure 36. View of Pressure Ports

4.1.3.2 Installed Propulsion System Aerodynamics

Four test conditions were flown during the IPSA program. The test conditions included level flight at M = 0.77, 0.80, and 0.86 and at M = 0.91, a condition that required the airplane to be put into a shallow dive. The test conditions flown at M = 0.77, 0.86, and 0.91 satisfied the contract commitment and were coincident with flight load conditions. All test conditions were flown at a representative cruise altitude.

Preflight and postflight calibrations of the pressure measuring system were performed for each test flight. During a test flight, seven flight condition parameters were monitored online with a multichannel pen recorder. These parameters included flight Mach number, ambient total temperature, angle of attack, heading, pressure altitude, sideslip, and inboard aileron position. These parameters were used collectively to determine the stability of the airplane prior to and during the recording of measured pressure data. In each parameter, the deviations allowed for approximately a 30-sec period during which measured data were recorded; these deviations are:

Mach number	<u>+</u> 0.001
Ambient total temperature	<u>+</u> 0.1°C
Angle of attack	<u>+</u> 0.25 deg
Heading	<u>+</u> 0.2 deg
Pressure alvitude	<u>+</u> 3.048m (<u>+</u> 10 ft)
Sideslip	<u>+</u> 0.25 deg
Aileron position	<u>+</u> 1 deg

All test conditions were flown with the airplane autopilot engaged and in the altitude hold mode.

Because all measured pressure data were acquired during cruise conditions, no wing leading- or trailing-edge devices that would alter the basic wing geometry described in table 1 were deployed with the exception of the inboard aileron. In cruise, the inboard aileron provided small amounts of roll control and was combined with various amounts of midspan spoiler deployment for larger rolling moment inputs. During data recordings, some small aileron deflections, well below those levels causing limited spoiler deployment, were required to maintain level flight. Accordingly, this small amount of inboard aileron deflection effectively changed the local wing camber at WBLs 445, 470, and 510.

For reference, the geometrical arrangement of the inboard aileron at WBLs of 445 and 510 including the wing line location is presented in table 19. The outboard aileron was locked out during cruise and therefore was an inactive control surface at 0-deg deflection.

4.1.4 Test Data Format

The data collected during the NAIL program required careful use of the airborne data analysis and monitor system (ADAMS) and of the final data system. Of particular concern was the ability to assess real-time data quality for flight decisions, because 1023 channels of measurements were being made during the combined test program and no ground-based analysis system was available at the remote site. It was necessary to send the flight tape to Seattle shortly after completion of the day's testing. This requirement did not allow rerunning the tape on the ADAMS. Therefore, essentially all decisions were based upon real-time data obtained from the ADAMS during flight. Further development of the onboard ADAMS and the combined use of the final data system in conjunction with the flight test interactive graphics data analysis (IGDA) site aided in coping with this problem.

The basic ADAMS (fig. 37) could not handle the volume of data required by the JT9D-7R4 and NAIL programs. The expanded data handling capabilities of the analysis groups doubled that of the basic system by using a second ADAMS on the RA001. The quantity of data collected during the program required system modification in order to minimize testing and preflight delays. These modifications to the onboard flight test system (fig. 38) provided adequate remote-base support to the flight test program. Several hardware and software changes to the basic ADAMS were implemented to accomplish this support.

Two other significant hardware changes were made to the basic ADAMS. First, a fixed head disk for program and measurement information storage was used. The fixed head disk eliminated loading of information through Cartrifiles each time the system was brought online. This improvement was vital because activating the system required 1 to 2 min rather than 15 min as projected, based on the number of measurements required. A 15-min delay was unacceptable in terms of cost, if the system should malfunction once airborne. Further, rapid selection of preselected data sources was also a requirement in view of the quantity of data being measured and the concurrent test program to permit

ORIGINAL PAGE IS OF POOR QUALITY

Table 19. Inboard Aileron

DISTANCE MEASURED IN WRP,	WBL							
cm (in)	445	510						
Leading edge to alleron hinge centerline	830.7 8 (327.08)	680. 54 (267. 93)						
Leading edge to upper surface skin break line	827.5 8 (325.82)	677 .34 (266. 67)						
Leading edge to lower surface skin break line	828.47 (326.17)	677.7 7 (266.84)						

ORIGINAL PAGE IS OF POOR QUALITY

Figure 37. Airborne Data Analysis and Monitoring System

Figure 38. Test Airplane Interior View

the test engineers to track their respective data. Second, a data measurement selector This was necessary because approximately 1023 was incorporated into the ADAMS. measurements were obtained during the flight test. The data measurement selector sent data preselected for output to the digital-to-analog converter.

The original ADAMS software could not support the NAIL program during remote base operation. An onboard pressure coefficient (PC) program was lacking, and thus development of an interim program that satisfied the needs of analysis was necessary. The PC program was developed to use the Brush recorder as a quasigraphics system and to use the line printer for summary outputs. The program could calculate pressure coefficients for up to 16 measurement groups with a maximum of 20 pressure ports each. The output of the program was displayed on the Brush recorder while a summary table of port differential pressures and pressure coefficient values was printed on the line printer. This information was output either continuously or upon keyboard command for a predetermined time interval. The program provided real-time information for determining data quality and for making decisions on subsequent test conditions.

Data were supplied in the forms of tables, computer-generated graphs, and data files on magnetic tapes. Table 20 is an example of a pressure coefficient data table. Engine performance and fuel flow examples are given in tables 21 and 22. An example of an engine clearance data table is given in table 23. Finally, table 24 is an example of a turbine case temperature table. The magnetic tape data files included all the above examples and basic airplane data for all flight conditions, plus acceleration data for the heavyweight landing.

4.2 TEST RESULTS

4.2.1 Aerodynamic and Inertial Loads

4.2.1.1 Aerodynamic Loads

Pressures were measured at 252 ports in 12 rows nominally 30 deg apart on the inlet and fan cowl of engine 3. The actual spacing varied slightly for some ports because of installation and arrangement requirements. (See Appendix A for details.) Fourteen ports were found to have defective or doubtful transducers, and the indicated pressures of those ports were not used. Pressure data are presented graphically and in tabular form in Appendix A.

75

Table 20. Pressure Coefficient

AIRPLANE MODEL AIRPLANE NUMBE			TEST	273-07	PRESSURE COEFFIC	IENT.	REQUES DATE 1	T NO 0391.0303 0/13/50 TINE 03	47
COORDINATION Time HR-Min-Sec	CE	ALPHA DEG	Q P5I	PRESS-INLET E3 PT01 240 PS CF 3211	R E3 PT02 240R	PRESS-INLET E3 PTO3 240R PS CP 3213	PRESS-INLET E3 PT04 240R PS CP 3214	PRESS-INLET E3 PTOS 240R PS CP 3215	PRESS-INLET E3 PTO6 240R PS CP 3216
8-33-20.014 8-33-20.064 8-33-20.164 8-33-20.264 8-33-20.364 8-33-20.364 8-33-20.364 8-33-20.564 8-33-21.664 8-33-21.664 8-33-21.664 8-33-21.664 8-33-21.664 8-33-21.664 8-33-21.664 8-33-21.664 8-33-21.664 8-33-21.664		DHAA DHAA DHAA DHAA DHAA DHAA DHAA DHAA	16555555566666666666666666666666666666	11.296 11.225 -1.6 11.182 -1.1 11.197 -1.6 11.211 -1.6 11.211 -1.6 11.239 -1.6 11.236 -1.6 11.226 -1.6 11.226 -1.6 11.226 -1.6 11.226 -1.6 11.226 -1.6 11.226 -1.6 11.227 -0.8 11.228 -0.8 11.229 -0.8 11.211 -1.6 11.212 -1.6 11.212 -1.6 11.226 -1.6 11.226 -1.6 11.227 -0.8 11.228 -0.8 11.228 -0.8 11.228 -0.8 11.228 -0.8 11.228 -0.8 11.228 -0.8 11.228 -0.8 11.228 -0.8 11.239 -0.8 11.254 -0.8 11.254 -0.8 11.254 -0.8 11.254 -0.8 11.254 -0.8 11.254 -0.8 11.254 -0.8 11.254 -0.8 11.254 -0.8 11.254 -0.8 11.255 -0.8 11.255 -0.8 11.269 -0.8 11.269 -0.8 11.270 -0.8	26	10.994 -1.506 11.054 -1.566 11.0594 -1.566 11.0594 -1.566 11.029 -1.435 11.029 -1.435 11.030 -1.436 11.030 -1.436 11.030 -1.436 11.030 -1.4476 11.012 -1.476 11.013 -1.477 11.013 -1.477 11.013 -1.477 11.013 -1.477 11.013 -1.477 11.013 -1.477 11.013 -1.477 11.013 -1.477 11.013 -1.477 11.013 -1.477 11.013 -1.477 11.013 -1.477 11.013 -1.477 11.013 -1.477 11.013 -1.477 11.043 -1.437 11.043 -1.437 11.043 -1.437 11.043 -1.437 11.043 -1.437 11.043 -1.437 11.056 -1.578 11.056 -1.578 11.056 -1.577 11.056 -1.578 11.051 -1.435 11.051 -1.435	10.872 -1.755 10.852 -1.755 10.891 -1.713 13.872 -1.757 10.891 -1.718 10.910 -1.583 13.872 -1.757 10.872 -1.757 10.853 -1.756 13.891 -1.718	10.629	10.487 -2.553 10.475 -2.553 10.475 -2.553 10.487 -2.553 10.487 -2.553 10.487 -2.553 10.487 -2.553 10.463 -2.553 10.463 -2.553 10.463 -2.553 10.463 -2.553 10.463 -2.553 10.475 -2.553 10.513 -2.553 10.513 -2.553 10.513 -2.553 10.513 -2.553 10.513 -2.553 10.513 -2.553 10.476 -2.553 10.553 -2.453 10.553

SONDITION AVER						
CALIBRATED : PRESSURE AL		145.3 KHOTS 6072 FEET	MACH RUMBER	0.245	BB00B1W 1 TB01BW 05 171 18B B08T	COMPLIEDS NO 4.02.015.118
DYNAMIC PRE		0.495 PSI	FLAP POSITION LANDING GEAR	30 DEG UP	PROGRAM LIBRARY 08/11/80 PR07	pocurient NO D5-22119-1
NORMAL ACCE	LERATION	1.043 G	GROSS WEIGHT	0 LBS		PAGE NO

Table 21. Summary of Measurements of Engine Performance

	LANE M			0	TEST :	273-15	•	IT9 ENG.	PERF SUM	MARY				ST NO 13	16.0101 TIME 0	515
								AIR	PLANE DA	IA						
H FE	P ET	M	V Kts		LTAM G-C	TAM DEG C	TT1 DEG C	PS1 In hg	PT1 In H		B DEL	T1 THEA	67 T	HET67	THET91	THETS
240	76,	0.601	364.	8	2.5	-30.2	-12.7	11.56	34.7	5 0.386	3 0.49	30 0.89	20 ō	. 9346	HDA ,	ND.
								GAS GE	HERATOR	SUMMARY						
ENG STS	FH RFH LBS		SFC RSFC	NI RNI RPN		N2 RH2 RPM	T6 RT6 C/K	77 R17 C/K	WF RWF LB/HR	WAT RWAT LB/SC	P25PT1 P17PT1	P54 P54PT7	SBV BPR POS	SVA SGF DEG/	PLA Deg	
I NDA	ND:		I DU		IDA IDA	NDA NDA	NDA NDA	NDA NDA	I DU	NDA NDA	HDA HDA	HDA HDA	NDA NDA	NDA 0.8213	HDA	
2 NDA	ND:		IDU		IDA IDA	NDA NDA	NDA NDA	NDA . NDA	IDU IDU	NDA NDA	NDA NDA	HDA HDA	NDA NDA	NDA 0.8213	HDA	ř
3 HDA	7212 18670		697 9 7824	278 292		6644. 6988.	620. 979.	400. 749.	5039. 10938.	725. 1398.	1.335 1.092	205.527 12.763	1.0 6.37	0.4	72.1	
HDA	ND/		I DU		IDA IDA	NDA NDA	NDA NDA	NDA NDA	IDU	NDA NDA	NDA NDA	HDA HDA	NDA NDA	NDA 8.8213	NDA	
							THRU	IST_CALC	JLATION I	DETAIL SUI	MARY			,		
ENG	FGF RFGF LBS	RF		FRAM Fram LBS	WIF WIP LB/SC	P25P			PTHRP	PTMBF	CGF CDF	CGP CDP	AFAN APRI F12	RT2.5 WBA K/PPS	WH20	GPR RPR
1	HD		NDA NDA	NDA NDA	HD/		DA DA	NDA NDA	NDA NDA	HDA	NDA NDA	NDA NDA	20.119 6.641	NDA NDA	HDA 7.220	ND/ 0.0
2	HD:		NDA NDA	HDA HDA	ND/		DA DA	HDA HDA	NDA NDA	NDA	NDA NDA	HDA NDA	0.0	HDA HDA	NDA 7.220	ND/
3	17697 45812			3869. 5902.	646. 102.				0162 0047		9.9441 9.9698	0.9473 0.9723	20.119 6.641	318.	1.306 7.220	1.359
- 4	HD.		HDA HDA	NDA NDA	HD/		DA DA	ADA Ada	NDA NDA	NDA	NDA NDA	NDA NDA	20.102 6.644	NDA NDA	NDA 7.220	NDA 0.0

PROGRAM LIBRARY 08/11/80

CONDITION NO 4.08.015.007 DOCUMENT NO D6-22119-1 PAGE NO

Table 22. Engine Fuel-Flow Data

AIRPLANE MODEL 747-160 AIRPLANE HUMBER RAGGI				TEST	273-15	EN	ENGIHE GINE MOD		FLOW DAT		REQUEST NO 1316.0101 DATE 10/31/80 TIME 0515					
COORDII		CE EH		TEST RUF LB/HR 0	VALUES SFC LBS/ -3	RSFC HR/LB -3	D TIME SEC -3	DRWF PCT -1	PNTS /LH 0	DFFH PCT -1 10	SWF	TEST V ARWF LB/HR 0	APSFC	APRSFC IR/LB -6		
11-27-4	0.086	3	IDU	HDA	NDA	HDA	IDU	HDA	IĎ	HDA						
11-27-4	5.086	3	5039	10938	678	782	8000	71	8	72						
AVERAGE	.	3	5039	10938	698	782	8000	71	8	72	100	IDU	IDU	IDU		
NO. OF	POINTS	. 3	1	1	1	. 1	1	1	1	1	. •		•	٥		

OF POOR QUALITY

Table 23. Measurements for Engine Clearance

TEST 273-15

	AIRPLANE NUMBER	RA001									DATE	10/31/8	O TIME O	515		
	COORDINATION	E3 CLEAR														
COURDINATION TIME HPT 128 COURDINATION TIME HPT 21.7 DEG HPT 21.7 DEG MILS MILS 2680 26 0.133 0.1 -3 -1 -1 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	MILS 0 268 3 0.13	MILS 1 268 3 0.13	MILS 2 268	MILS 3 268 3 0.13	MILS 268 5 0.13	MILS 2686 5 0.135	MILS 268 0.13	MILS 7 268	MILS 8 268	MILS 269 2 0.16	MILS 0 2691	DEGF 5180 -0.040	DEGF 5181 -0.030			
	HR MIN SEC		10	10	10	10	10	10	10	10	10	10	10	10	10	
	11-33-01.094 11-33-02.094 11-33-03.094 11-33-04.094 11-33-05.094 11-33-06.094 11-33-08.094	56532 67841 89431 29802 69898 46251 28774 103825	517338 LP LP 499853	26711 20544 81184 62683 22600 103795 45211 -2067 45211 11294	95729 40145 71025 93670 26764 34999 29852 29852 102934 57644	510606 513694 522960 LP 366478 469427 515753 473544 LP 447807	114197 110081 149180 78185 95676 87445 79214 128602 106994 81271	88564 97832 118429 114310 60758 91653 117399 133877 136966 70027	26678 40017 57459 40017 26678 37964 37964 87215 9235	131500 15408 -22605 42119 92460 137664 LP 236291 116089 40064	46295 93633 16451 -56614 135825 201687 238734 110098 161553 44237	525126 202843 147242 133856 LP 370677 LP 485999 88551 228584	71984 171755 136784 34955 119298 209812 282841 182041 182041 270498	663 665 668 665 668 665 665 665	MP MP MP MP MP MP MP MP	Ç
	MUMINIM MUMIXAM	28774 122330	429913 517338	41717 -2067 103795 31236	60217 26764 102934 27432	477534 366478 522960 49021	103085 78185 149180 22201	102982 60758 136966 24322	43710 9235 87215 20670 10	87666 -22605 236291 73834	99190 -56614 238734 85028	272860 88551 525126 155952	177001 34955 290041 83668	665 661 668 2	HDA HDA HDA HDA	N KOOK

PROGRAM LIBRARY 08/11/80 PR07

CONDITION NO 6.08.015.010 DOCUMENT NO D6-22119-1 PAGE NO

REQUEST NO 1316.0101

Table 24. Measurements of Turbine Case Temperature

AIRPLANE MODEL		TEST	273-15								ST NO 131 10/31/80		15	
COORDINATION TIME	TEMP M-FLN TIP 120 RA DEGF 5182	DEGF 5183	D TI MP M-FLN P 240 RA DEGF 5184	DEGF 5185	D RO MP M-FLN OOT 0 RA DEGF 5186	D RO DEGF 5187	D RI NP M-FLI OT 120 I DEGF 5188	RAD RO DEGF 5189	AD RC MP M-FLH OT 240 R DEGF 5190	DEGF 5191	RAD. RO EMP H-FLN ROOT O RA DEGF 5192	D RO DEGF 5193	AD T MP N-FLN OT 240 R DEGF 5194	AD DEGF 5195
	-0.020 0	-0.010	-0.000	0.010	0.020	6.030	0.040 0	9.050 0	-0.040	-0.030	-9.020 0	-0.010 0	-0.000	0,010
HR MIN SEC	10	10	10	10	10	10.	10	10	10	10	10	10	10	10
11-31-20.091 11-31-21.091 11-31-22.091 11-31-23.092 11-31-24.092 11-31-25.092 11-31-26.092 11-31-27.092 11-31-28.092 11-31-29.092	652 655 655 652 652 652 655 655	717 726 722 717 720 717 715 715 717	670 672 672 658 670 6670 670 668 668	689 689 689 687 691 689 687 691	709 704 709 707 709 711 707 709 709	707 707 707 702 707 711 707 698 784 702	707 711 711 707 709 713 707 709 707	-1343 -1296 -1319 -1368 -1368 -1368 -1355 -1343 -1355	717 715 717 717 709 715 715 717 717	728 724 724 726 720 724 724 726 726	1010 1015 1017 1010 1010 1015 1021 1019 1021	792 801 799 792 794 790 792 792	794 803 801 794 797 797 797 799 799	754 750 752 754 754 756 752 750 752 750
AVERAGE MINIMUM MAXIMUM STD DEVIATION NO. OF POINTS	652 650 655 2 10	718 715 726 3 10	669 665 672 2	689 687 691 2 10	709 704 713 2 10	705 698 711 3 10	709 767 713 2 10	-1346 -1380 -1296 24 10	716 709 717 3 10	725 720 728 2 10	1016 1010 1021 4 10	794 790 801 3	797 794 803 3	752 750 756 2 10

To compute resultant airloads from the pressure data, a previously developed computer program was used. It approximates the inlet and cowl geometry as a series of conical frustums and adjusts for the tilt of the inlet axis with respect to the nacelle centerline by insertion of wedge-shaped surfaces. This procedure was checked by comparison to a method based on a complete three-dimensional geometry definition. Resultant forces differed by less than 3%, and resultant yaw and pitching moments at the engine face differed by less than 1%. (Rolling moments differed by 3.5% but are not significant loads.)

Figure 39 shows the coordinate system for the resultant loads.

Table 25 gives resultant loads along with key airplane and engine parameters for 23 flight conditions.

Takeoffs—Four takeoffs—one at flaps 20 deg and 612 000 lb gross weight and three at flaps 10 deg and gross weights of 538 000, 647 000, and 780 000 lb (simulated)—were selected for detailed loads analyses. For two takeoffs, time histories of resultant loads were calculated for the purpose of correlating maximum clearance changes, whenever they occurred, with the aerodynamic loads. For the 780 000 lb takeoff, which was simulated by a pullup manuever at 1000 ft above ground level, the analysis was done at the instant the correct airplane lift coefficient was reached.

The flaps 20 deg, 612 000 lb gross weight takeoff was the initial takeoff for the entire test program. Peak load was reached at inter-range instrumentation group master clock (IRIG) time 6:41:44. The pitching moment at the A-flange was 329 000 in-lb.

The 538 000 lb takeoff occurred during test 273-10, and the time history covers the IRIG span of 9:44:00 to 9:44:11. Time histories of A-flange pitching moment and airflow sensor vane angle* during the takeoff rotation are given in figure 40. The direct relationship of load to flow angle is evident. Also note that the maximum moment for this condition (401 000 in-lb) is considerably higher than the maximum for the flaps 20-deg takeoff, table 25.

^{*}The airflow sensor vanes are mounted on both sides of the fuselage near the flight deck. The flow angles indicated by the vanes are influenced by flap setting, wing upwash, body crossflow, and other factors and should not be construed as airplane angle of attack.

Figure 39. Sign Convention for Steady-State Loads, Engine 3

Table 25. Engine 3 A-Flange Resultants

	· · · · · · · · · · · · · · · · · · ·								, 	
	Condition	Air- speed, KCAS	Pressure altitude, ft	Mach number	Referred airflow, lb/s	Load factor, g	F _x , lb	F _y , lb	M _X , in-lb	M _y , in-lb
101	612K gross weight takeoff									
	(flaps 20)	157.8	2 553	0.250	1549	1.14	6001	-2754	-147 736	-328 780
101	538K gross weight takeoff									-
	(flaps 10)	151.0	2 667	0.239	1527	1.26	7197	-2916	-152 292	-400 756
101	647K gross weight takeoff	160.1.	0.704	0.054	4504		7004	-3112	150 225	-424 987
140	(flaps 10)	190.1	2 634	0.254	1524	1.17	7921	-3112	-159 325	-424 90/
118	780K gross weight simulated takeoff (flaps 10)	183.6	3 646	0.296	1573	1.20	8344	-2757	-134 045	-430 154
100						1.20				
102	Low climb	218.8	5 861	0.367	1539		4670	-1067	- 45 361	-206 043
103	Mid climb	290.4	17 187	0.599	1622		4084	- 588	- 25 756	-125 891
104	High M cruise	291.3	35 481	0.859	1633		2469	-1023	- 36 317	- 59 441
105	Low M cruise	258.3	35 512	0.772	1604		3478	-1131	- 42 237	-106 150
106	Max M	299.0	36 978	0.906	1642		302	- 464	- 15 779	+ 19 317
107	Inflight relight	285.7	27 859	0.721	1365		3277	-736	- 25 639	- 84 847
108	Maximum q	357.5	24 513	0.836	1617		-1410	+ 984	29 060	98 411
109	Stall warning (flaps up)	188.4	16 964	0.391	1591		5437	-1384	- 63 775	-243 214
110	Stall warning (flaps 10)	169.2	16 239	0.347	1621		6229	-2142	- 97 024	-304 770
1111	Stall warning (flaps 30)	129.3	17 049	0.270	1633		3927	-1292	- 72 893	-220 730
112	ldle descent	249.7	8 450	0.439	748		4130	-1124	- 29 669	- 97 234
113	Approach	157.4	6 003	0.265	1547		3707	-1411	- 71 607	-201 854
114	Touch and go	166.5	2 561	0.263	1589		4388	-2321	-125 622	-241 654
115	Thrust reverse	113.2	2 561	0.179	1369		44	- 10	- 17 298	- 40 963
116	2.0g left turn (flaps up)	277.5	8 397	0.487	1562	1.99	7212	-3459	-133 292	-264 186
117	1.6g left turn (flaps 30)	143.0	8 202	0.260	1539	1.61	5293	-3672	-191 221	-284 557
120	2.0g right turn (flaps up)	272.1	8 240	0.476	1196	2.04	7634	-1629	- 47 455	-239 481
121	1.6g right turn (flaps 30)	151.3	8 278	0.266	1435	1.60	5416	- 359	- 10 105	-282 023
123	Airplane stall	115.7	9 000	0.207	1551		6072	-1613	- 89 181	-366 818

25209-31

Figure 40. Inlet Pitching Moment Time History, 538 000 lb Gross Weight Takeoff

The 647 000 lb takeoff occurred during test 273-11 between IRIG time 10:13:46 and 10:13:55. The pitching moment time history (fig. 41) shows that the maximum aerodynamic load occurred at IRIG 10:13:52, with a nose-up moment of 425 000 in-1b. The load factor was 1.17g.

The simulated high gross weight takeoff occurred during test 273-15 at IRIG 8:13:18. The actual gross weight was 696 500 lb. The simulation was achieved by performing a pullup starting at 185 kn and 3646 ft altitude (about 1000 ft above ground) to produce the same airplane lift coefficient that would occur during a 780 000 lb takeoff. (The original intention was to simulate an 820 000 lb gross weight takeoff. However, insufficient allowance was made for speed reduction due to increasing climb gradient in the pullup maneuver.) The moment at the A-flange was 430 100 in-lb.

Other Cases—Airloads for conditions other than takeoff were generally of substantially lesser magnitude. However, certain cases were analyzed in greater detail because of possible adverse combinations of aerodynamic loads and thermal transients in the engine. Figure 42 shows a time history of the pitching moment at the engine face, engine airflow, and body vane angle for condition 110 (stall warning 10 deg flaps). The maximum moment (305 000 in-lb) coincided with maximum engine airflow, although the maximum vane angle occurred earlier in the maneuver. The result shows that engine airflow is of comparable importance to angle of attack in determining inlet airloads.

Other cases given special attention were the turns at constant altitude to achieve a specified load factor. Engine clearance changes during these maneuvers were due to a combination of aerodynamic loads, g-loads, and gyroscopic loads. Condition 116, nominally a 2g turn to the left, was run during test 273-10 and achieved a load factor of 1.99 at IRIG 13:33:58. The A-flange moment was 264 200 in-lb. The indicated pitch rate was 4.29 deg/s and the yaw rate was about 2.9 deg/s on both engines. A 2g turn to the right was performed during test 273-15 (condition 120) at IRIG 11:04:03. The moment was 239 500 in-lb, pitch rate was 5.5 deg/s, and yaw rate was 2.8 deg/s. Turns of 1.6g at flaps 30 deg. were performed to the right and to the left. The left turn occurred during test 273-10, IRIG 13:41:07 (condition 117) with a moment of 284 600 in-lb, pitch rate of 6.5 deg/s, and yaw rate of 3.7 deg/s. The right turn occurred during test 273-15 (condition 121) at IRIG 11:07:25 with a moment of 282 000 in-lb, pitch rate of 7 deg/s, and yaw rate of 4.7 deg/s. Finally, an airplane stall occurred during test 273-10. The moment peaked at 367 000 in-lb at IRIG 13:26:16. This relatively high load level resulted from a very high angle of attack.

Figure 41. Inlet Airload Moment Time History, 647 000 lb Gross Weight Takeoff

125209-34

Figure 42. Airload Moment Time History, Stall Warning Maneuver, Flaps 10

125209-33

In this section all loads pertain to engine 3. Preliminary review of the test data indicated that the pressures on engine 4 were very close to the pressures of engine 3, implying that the loads were about equal. Comparison of the aerodynamic loads determined in the NAIL program with the loads predicted in task IIIA of the JT9D diagnostic program (ref. 2), indicate that:

- o The most critical loads were higher than predicted because of higher angles of attack than had been expected.
- o The cosine law for the circumferential pressure distribution assumed in task IIIA is a only a rough approximation of the actual distribution, especially in the critical region near the highlight.
- o The phase angle of the cosine distribution is about 20 deg from the vertical near the highlight and further into the inlet approaches 0 deg.

4.2.1.2 Inertial Loads

Normal accelerations measured during takeoff and flight did not exceed 1.3g except during the high-g turn maneuvers. No significant turbulence was experienced during the NAIL program. The difference between g-loads measured at the airplane center of gravity and those measured on engines 3 and 4 was within the scatter of the data. In other words, the instruments responded only to steady-state accelerations of the whole airplane, experiencing no significant contributions from wing or nacelle flexible modes.

An exception to the steady-state accelerations occurred during a hard landing in test 273-15. The airplane landed at 690 000 lb gross weight with 297 000 lb fuel and a sink rate of approximately 10 ft/s. Touchdown occurred at IRIG 8:20:49. Vertical acceleration at the airplane center of gravity was 1.53g, with peaks of 2g at engine 4 and 1.7g at engine 3. This case was selected for dynamic analysis. Another exception occurred during test 273-10 during which a mild gust was encountered at IRIG 12:11:52. Normal accelerations were 1.08g at the airplane center of gravity and 1.3g at the engines. Details of all these cases are shown in Appendix A.

Pitch rates during takeoffs did not exceed 3 deg/s, the peak value being achieved before reaching the maximum load factor.

4.2.2 Installed Propulsion System Aerodynamics

Surface static pressures were measured on the nacelle and pylon of engine 3 (inboard) and engine 4 (outboard) and on neighboring wing surfaces during three separate test flights over the span of the test period. The initial flight, test 273-09, acquired data at M=0.77, 0.80, and 0.86 and revealed instrumentation problems, which were partially corrected for a second flight, test 237-12. The third flight, test 273-15, was flown primarily to fulfill the remaining NASA conditions, which included M=0.91. The M=0.91 test was not flown until the end of the NAIL program when the speed restriction was removed concerning the other Boeing developmental programs.

Data plots of the measured pressures are presented in Appendix B.

5.0 REFERENCES

- 1. NASA CR-159717 (PWA-5512-46), Expanded Study of Feasibility of Measuring In-Flight 747/JT9D Loads, Performance, Clearance, and Thermal Data—JT9D Jet Engine Diagnostics Program.
- 2. D6-34720, Report of Task III A, Short Diagnostics Test Program, Engine Component Improvement Program, JT9D Engine Diagnostics (15 November 1978)

APPENDIX A

1.0 Pressures

The locations of pressure ports on engine 3 are shown in table A-1.

The coordinate system is shown in figure A-1. The arc length from the highlight to the port under considerations is denoted by "s." Positive values signify an external port and negative values signify an internal port.

The θ coordinate is the azimuth angle measured from the top and clockwise looking at the inlet from the front.

A distinction was made between nominal values and actual values of s and θ . The nominal values s_{nom} and θ_{nom} are convenient for the computerized plotting of the data. In practice, installing the pressure taps at the nominal location was not always possible because of structural interferences. Consequently the actual s and θ are also listed. Small discrepancies in actual pressure values resulting from these location shifts were accounted for by interpolation in the pressure integration process. The axial coordinate z (the normal distance from the highlight plane) is also listed.

Several pressure tranducers gave unreliable or obviously erroneous readings. Therefore, pressures were determined by averaging values measured at adjacent ports using suitable weighting for geometric relationships. The ports for which such systematic substitutions were made are listed in table A-2. Pressures that still appeared to be erroneous after this substitution were corrected manually before they were plotted.

A complete description of the pressure distribution function p(s,0) at any point on the inlet is required to obtain inlet loads through integration. Because pressure was measured only at the pressure taps, an interpolation scheme was needed to determine the pressure at other locations. In the circumferential direction the Fourier-Bessel formula was used:

$$p(\theta) = A_0 + \sum A_n \cos(n\theta) + \sum B_n \sin(n\theta)$$

The use of this formula leads to a $p(\theta)$ function that fits every measured point exactly and ensures maximum smoothness in between. In the s-direction a linear interpolation was used between measured points.

The coefficients A_n and B_n for all flight conditions are listed in tables A-3 to A-25. (Note that in the lip area, 12 coefficients are tabulated, because pressures were measured at 12 θ values. Elsewhere, only six coefficients are available, because only six θ values were instrumented.)

The axial pressure distributions for each flight condition and value of θ are shown graphically in figures A-2 to A-47. The pressures are plotted in terms of pressure coefficient versus nominal arc lengths. Each flight condition is covered by two pages, one (inlet pressures) pertaining to the rows of pressure ports that extend all the way into the inlet (i.e., θ = 0 deg, 60 deg) and the other (cowl pressures) pertaining to the rows that extend to the trailing edge of the fan cowl (i.e., θ = 30 deg, 90 deg).

On engine 4, pressure taps were installed at three circumferential locations, $\theta = 60 \text{ deg}$, 180 deg, and 300 deg. Axial pressure distributions are shown in figures A-48 to A-70. No Fourier-Bessel coefficients were calculated for this engine because no integration was carried out. The pressures were measured mainly for the purpose of comparison with engine 3 pressures. Note that for some of the test conditions the power level of engine 4 was considerably different from engine 3.

2.0 INERTIAL LOADS

Recorded accelerations on inlets and strut-wing intersections are presented in figures A-71 to A-83 for both engines for conditions when dynamically interesting events occurred:

- Mild gust during test 273-10
- Hard landing during test 273-15

The graphs show airplane parameters measured at airplane center of gravity and engine accelerations and angular rates. Engine accelerations were filtered to pass only frequencies below 40 Hz. Pitch and yaw rates were filtered to 5 Hz.

Table A-1. Engine 3 Pressure Port Locations

PORT NO.	NOM S (IN)	ROW NO. NOMINAL THETA= Z S (IN) (IN)	O. DEG THETA	R NOMINAL Z (IN)	OW NO. THETA= S (IN)	2 30. DEG THETA (DEG)	NOMINA Z (IN)	ROW NO. L THETA= S (IN)	3 60. DEG THETA (DEG)		ROW NO. L THETA= S (IN)	4 90. DEG THETA (DEG)
1234567890112345678901234567890133	-56.50 -51.21 -44.21 -38.21 -28.21 -28.21 -24.21 -20.21 -17.21 -14.21 -11.00 -5.50 -3.00 -1.00 0.00 1.00 2.00 4.00 6.00 9.00 13.69 19.00 25.00 31.00 50.00 62.00 74.26 77.00 98.13	55.23 -57.68 46.98 -49.38 41.50 -43.80 36.04 -38.23 31.12 -33.23 25.69 -27.73 21.22 -23.23 18.48 -20.48 15.78 -17.78 11.29 -13.28 8.49 -10.48 5.58 -7.53 3.61 -5.48 1.41 -3.00 .17 -1.00 0.00 0.00 .32 1.00 1.16 2.00 3.01 4.00 8.17 9.40 11.72 13.00 11.72 13.00 15.39 16.70	1.64 1.54 1.71 1.55 -1.23 1.17 -1.24 1.10 1.23 1.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.61 5.55 3.63 1.41 0.00 1.11 2.96 42 9.88 18.95 29.37 37.91 50.63 72.86 72.86 72.86	-10.60 -7.50 -5.50 -3.00 -1.00 0.00 1.95 3.60 11.08 15.28 20.28 30.2	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	53.60 47.74 42.04 36.25 31.14 25.81 21.39 18.65 11.50 8.61 5.48 3.66 1.45 0.29 1.11 26.42 9.84 13.90	-56.05 -50.15 -44.35 -38.45 -38.45 -27.40 -20.65 -17.50 -107.43 -3.05 -1.00 -5.05 -1.95 -1.10 15.20	58.30 61.35 58.30 61.42 58.68 61.10 58.69 60.00 60.00 60.00 60.00 60.00 60.00 60.00	8.51 5.55 3.63 1.41 .17 0.00 .32 1.16 3.62 9.93 14.08 19.05 24.03 29.52 37.39 50.63 70.71 75.59 93.95 106.39	-10.50 -7.50 -5.50 -3.00 -1.00 0.00 1.00 2.00 4.00 7.81 11.19 15.38 20.38 20.38 33.76 51.45 62.00 72.10 95.49 107.94	OF POOR QUALITY OF POOR QUALITY OSCIOLOGICOSOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC

Table A-1. Engine 3 Pressure Port Locations (Continued)

PORT	NOM	NOM I NA	ROW NO. L THETA=	5 1 20 . DEG		ROW NO. L THETA=	6 150. DEG			7 180. DEG		ROW NO. L THETA:	8 210. DEG
NO.	S (IN)	Z (IN)	S (1N)	THETA	(IN)	S (IN)	THETA (DEG)	Z (IN)	S (IN)	THETA	Z (IN)	S (1N)	THETA (DEG)
1 2 3 4 5 6 7 8 9 0 1 1 2 3 1 4 5 6 7 8 9 0 1 1 2 3 1 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 2 2 2 2 3 3 3 2	-56.50 -51.21 -44.21 -38.21 -24.21 -24.21 -24.21 -17.21 -14.21 -14.21 -1.00 -8.00 -5.50 -3.00 -1.00 2.00 4.00 6.00 9.00 13.69 19.00 25.00 31.00 38.00 52.00 31.00 38.00 50.00 74.26 77.00 98.13 107.94	53.32 47.61 41.97 36.32 31.28 25.85 21.44 18.70 15.95 11.64 8.77 5.92 3.63 1.17 0.32 1.16 3.01 7.98 11.78	-55.77 -50.02 -44.27 -38.52 -33.39 -23.45 -20.70 -17.95 -13.64 -10.76 -7.88 -5.50 -3.00 -1.00 2.00 4.00 9.20 12.33 16.08	118.18 121.16 118.11 121.22 118.72 121.01 118.64 121.03 118.62 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00	8.63 5.36 3.63 1.18 0.00 1.16 3.01 9.89 15.27 29.41 43.63 68.50 75.59 91.01 106.39	-10.62 -7.31 -5.50 -3.00 -1.03 0.00 1.00 2.00 4.00 7.65 11.15 16.60 25.30 30.78 38.08 50.19 62.88 77.00 92.53 107.94	150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00	51.53 48.92 41.01 35.80 30.97 25.69 11.42 5.43 3.64 1.11 2.96 6.71 94.00	-53.97 -51.34 -43.30 -37.99 -33.08 -27.20 -20.45 -17.70 -13.39 -10.51 -7.38 -5.50 -3.00 -1.00 0.98 1.95 7.90 115.30	178.17 180.99 178.10 181.14 178.68 181.09 178.63 181.21 178.62 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00	8.63 5.36 3.69 1.20 0.32 1.11 2.96 6.82 15.25 29.35 48.73 68.73 68.50 75.59 91.01 106.39	-10.62 -7.31 -5.56 -3.06 -1.00 1.95 7.608 16.50 20.23 30.11 62.60 69.60 77.53 107.94	210.00 21

Table A-1. Engine 3 Pressure Port Locations (Concluded)

DODT	NOM		ROW NO. _ THETA=	9 240. DEG		ROW NO. L THETA=			RÓW NO. L THETA=	11 300. DEG		ROW NO. L THETA=	12 330. DEG	
PORT NO.	S (IN)	Z (IN)	S (IN)	THETA (DEG)	Z (1N)	(IN)	THETA (DEG)	Z (in)	S (1N)	THETA (DEG)	(IN)	S (1N)	THETA (DEG)	
1 2 3 4 5 6 7 8 9 10 1 2 3 1 5 6 7 8 9 10 1 2 3 1 5 6 7 8 9 20 1 2 2 2 3 4 5 6 7 8 9 20 1 2 2 2 3 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 3 2 2 3 3 3 3 2 2 3 3 3 3 2 3	-56.50 -51.21 -44.21 -38.21 -32.21 -24.21 -20.21 -17.21 -14.21 -1.00 -5.50 -3.00 -1.00 0.00 4.00 4.00 6.00 9.00 13.69 19.00 25.00 31.00 38.00 52.00 74.26 77.00 98.13 107.94	53.34 47.63 41.99 36.34 31.40 25.97 21.50 16.01 11.54 8.58 5.65 3.60 1.37 0.00 .32 1.16 2.98 8.06 10.95 14.73	-55.79 -50.04 -44.29 -38.54 -33.51 -28.01 -23.51 -20.76 -18.01 -13.54 -10.57 -7.60 -5.47 -2.94 -1.00 0.00 1.00 2.00 3.97 9.28 12.22 16.03	238.18 241.08 238.03 241.22 238.84 241.13 238.79 240.69 240.69 240.00 240.00 240.00 240.00 240.00 240.00 240.00 240.69	8.95 6.01 4.05 1.41 0.00 1.10 2.98 6.87 14.02 18.99 23.97 29.46 37.38 50.63 70.71 75.59 93.95 106.39	-10.94 -7.97 -5.94 -3.00 -1.00 0.00 .97 1.94 3.97 7.91 11.13 15.32 20.32 25.32 38.75 51.00 77.00 95.49 107.94	270.00 270.00	53. 45 48. 65 48. 65 31. 34 45. 36 31. 34 5. 55 1. 100 1. 100	-56.37 -50.87 -44.97 -39.07 -38.88 -28.50 -10.50 -13.50 -10.50 -7.50 -1.00 0.00 1.98 3.98 7.13 15.30	298.30 301.84 298.24 301.61 298.93 301.18 298.89 301.21 298.89 299.31 300.00 300.00 300.00 300.00 300.00 300.00 300.00	8.5558 1.5558 1.190 0.3269.85 13.955 23.9819.95 13.955 23.866 13.558 106.39	-10.60 -7.50 -5.45 -3.00 -1.05 0.00 1.00 2.00 3.98 7.63 11.28 21.28 25.26 30.73 39.25 52.53 62.00 74.26 77.00 98.13	330.00 330.00 330.00 330.00 330.00 330.00 330.00 330.00 330.00 330.00 330.00 330.00 330.00 330.00 330.00	ORIGINAL PAGE IS OF POOR QUALITY (6.10 8) +11-02-902

ORIGINAL PAGE 18 . OF POOR QUALITY

Table A-2. Pressure Corrections for Instrumentation Problems

Engine 3

Row	θ	Port		Average	d from:	
No.	(deg)	No.	Row, port	Row, port	Row, port	Row, port
1	0	None			_	_
2	30	29	2, 28	2,30	_	
3	60	2	3, 1	3, 3	_	
3	60	11	3, 10	3, 12	2, 11	4, 11
3	60	14	3, 13	3, 15	2, 14	4, 14
4	90	15	4, 14	4, 16	3, 15	5, 15
4	90	29	4, 28	4, 30	_	
5	120	None	-			
6	150	None			· —	
7	180	12	7, 11	7, 13	6, 12	8, 12
7	180	15	7, 14	7, 16	6, 15	8, 15
7	180	22	7, 21	6, 22	8, 22	(6,23 and 8,23)
8	210	29	8, 28	8, 30	_	
9	240	18	9, 17	9, 19	8, 18	10, 18
10	270	None	_	_	_	-
11	300	20	10, 20	12, 20	_	_
11	300	21	10, 21	12, 21	–	_
11	300	22	10, 22	12, 22	-	_
12	330	None			- '	

Engine 4

١	1	60	None		_	_	
1	2	180	9	2,8	2, 10	_	
	3	300	None	-		_	

5209-53-423

* Table A-3.

P(THETA) = A(O) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

		CC ALTITUDE=				IGHT TAKE MBER= 0.			ST 273-7 (ED AIRFL				
ROW NO.	Z (IN)	A(0) (PSI)	A(1) (PSI)	A(2) (PSI)	A(3) (PSI)	A(4) (PSI)	A(5) (PSI)	A(6) (PSI)	B(1) (PSI)	B(2) (PSI)	B(3) (PSI)	B(4) (PSI)	B(5) (PSi)
1 2 3 4 5 6 7 8 9 11 12 13 4 15 16 17 8 19 22 22 24 25 6 27 28 9 30 31 32	54.051 48.789 41.907 36.019 30.118 26.166 22.196 18.211 15.215 9.009 6.037 3.629 1.413 0.000 324 1.156 3.007 4.886 7.782 12.404 17.652 29.638 36.633 48.631 60.627 72.863 96.576 106.386	-1,2155 -1,3906 -1,6120 -1,9477 -2,2990 -2,6569 -2,8691 -3,0263 -3,1147 -3,116 -4,0698 -4,3663 -4,3156 -2,9354 -1,4110 -,0637 -,3181 -,3003 -2,268 -1,246 -,0544 -,0430 -,0145 -,0086 -,0052 -,0309 -,0337 -,0060 -,0293 -,0511	.3119 .2381 .2572 .2968 .3170 .3810 .5413 .5896 1.4903 1.5537 1.9624 -0823 -3180 -31	.0146 0004 0260 0061 .0196 .0003 0294 0444 0048 .1093 .0074 .1062 .1469 2193 1535 0949 0761 0635 0291 .0113 0.0000 .0135 .0204 .0436 .0595 .0595 .0662 .0688	. 0234 .0051 0084 0104 0089 .0439 .0125 .0364 0335 2771 0289 0587 0129 0178 0103 .0082	.0029035412582537 .093604730846 .01870129 .00390066 .0055	0497 0316 .1087 .2514 1965 .0702 .0261 .0133 0023 0109 0086 .0372	0530 .0909	0430 0210 .0032 0476 0643 0507 1605 1560 3971 5364 -1.2983 -1.3425 -1.3118 -1.0283 -1.3425 -1.3128 -1.0283 .02368 .02368 .02368 .0961 .0961 .0961 .0961 .0961 .1374 .1466 .1374 .1466	0140 0054 00503 00215 00315 00315 00315 00351 00359 0351 35357 35337 35337 00487 004595 004595 004595 004595 004595 004595 002755 00288	.0482 .0737 .3394 .1134 0144 .1385 0456 .0078 0131 .0003 0126 0034 0101 .0013 0006 .0052 .0105 .0092 .0118 0094	0644 0016 2346 0742 .1506 0803 0404 .0198 .0086 .0038 .0117 0073	0519 0289 0195 0637 .0319 .0421 0312 .0038 .0137 .0087

Table A-4.

P(THETA) = A(O) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

		ALT I TUDE			ROSS WEIG	HTTAKEC MBER= 0.)FF (FLAPS 239	10) TES CORRECT	T 273-10 IF TED AIRFL	RIG 9:44:10 CY= 1527	.6 . LB/SEC	; ;	
ROW NO.	Z · (1N)	A(0) (PSI)	A(1) (PSI)	A(2) (PSI)	A(3) (PSI)	A(4) (PSI)	A(5) (PSI)	A(6) (PSI)	B(1) (PSI)	B(2) (PSI)	B(3) (PSI)	B(4) (PS1)	B(5) (PS1)
1234567890 11234567890 11234567890 1222234567890 1222223332	54.051 48.789 41.907 36.019 30.118 26.166 22.196 18.211 15.214 12.215 9.009 6.037 3.629 1.413 .172 0.000 324 1.156 3.007 4.886 7.679 23.652 29.638 36.531 60.627 72.863 75.593 96.576 106.386	-1.2653 -1.3992 -1.6332 -1.9373 -2.3164 -2.6013 -2.8569 -2.9484 -3.1305 -3.8406 -4.1913 -4.0980 -4.5839 -4.7194 -3.2315 -1.74032774 .1857 .004460234018704310431043104070323	.3071 .2962 .2481 .27908 .3550 .4149 .5920 .7117 1.2550 1.7501 1.8066 2.6442 3.6531 2.7211 .7305 0169 3167 3458 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2049 1374 0935 00235 00235 00235 00235	0549039705630019 .0058 .001600360211 .0038 .10297 .1379 .3778055528922188055528922188004100800198 .0385 .0750 .0598 .0853 .0944 .0913 .0950 .0940	.02490062 .0012 .0195 .0049 .0559 .0341 .03400939 .00270313216004830954021101480161 .01000081 .0201	.0500 0405 0388 1750 .0708 .0127 1305 .0333 0201 .0135 .0094 0142	0423 .0238 1472 .14182 .0684 0225 .0348 .0043 .0184 .0007	0296 .0591	0712 0425 0177 0438 0598 1693 15326 44591 54428 -1.44591 -1.23130 28130 0230 06682 13023 11568 1302 11568 1568 1568 1592 2041	0121 0284 00165 00293 00293 00294 00795 0799 0723 0723 0723 0723 0723 0837 0837 0837 08503 -	.1030 .1595 .0978 .0895 .1154 .1820 .0497 .0145 .0037 .0174 -0191 -0075 -0126 -0170 -0089 .0037 .0083 -0083 -0029	0588 0347 .0032 0849 1418 0449 0250 0085 0030 0263	0604 0187 1877 .0324 0231 .0597 .0471 .0038 0044 .0170 .0255 .0154

5209-4

ORIGINAL PAGE IS

Table A-5.

FOURIER - BESSEL COEFFICIENTS FOR ENGINE NUMBER THREE PRESSURES

P(THETA) *A(O) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

12 6.037 -3.9634 1.9817 .0920037507130389036766500864 .10030205 13 3.629 -4.5242 2.8427 .4280213503731371 .1100 -1.5506 .5411 .1307 .0475 14 1.413 -4.4928 3.8458 .005405591744 .14880625 -1.5912 .4465 .04690513 15 .172 -3.0392 3.737125151036 .09341493 .0498 -1.3862 .3472 .1555 .0480 16 0.000 -1.6151 2.66195275514820318 .05850550 -1.0690 .3829 .20371119 17 .3242419 .60232376042110720068 .03672042 .2544 .01970335 18 1.156 .1822174715490489 .0174 .01970109 .0344 .1177 .0121 .0189 19 3.007 .2296396109130161 .014001150056 .1356 .0509 .00310171 20 4.886 .152943720466 .02260313 .0223 .0017 .1823 .031901140037 21 7.782 .07984271015601200156 .00510017 .2035 .00380135 .0053 22 12.404 .01703032 .0271 .02060062 .04710110 .09820764 .0065 .0054 23 17.679 +.00442827 .0079		ALTITUDE	CONDITION 101, 647K	GROSS WEIGHT TAKE		PS 10) TEST 273-11 IF CORRECTED AIRFL			
2 48,789 -1.3738 .31320032 .0087									B(5) (PSI)
24 23.652 0023 2548 .0428 .0817 0983 0133 25 29.638 0136 2220 .0561 .0940 0673 .0040 26 36.633 0399 1883 .0574 .1017 1119 0104 27 48.631 0703 1589 .0924 .1309 1000 0151 28 60.627 0722 1083 .1073 .1557 0680 0083 29 72.863 0359 0866 .1029 .1736 0582 .0062 30 75.593 0356 0580 .1006 .1781 0662 .0043	12345678901234567890123456789	54.051 -1.1682 48.789 -1.3738 41.907 -1.5479 36.019 -1.8756 30.118 -2.1989 26.166 -2.5647 22.196 -2.7454 18.211 -2.8934 15.214 -3.0146 12.215 -3.4489 9.009 -4.0966 6.037 -3.9634 3.629 -4.5242 1.413 -4.4928 1.72 -3.0392 0.000 -1.6151 .324 -2419 1.156 .1822 3.007 .2296 4.886 .1529 7.782 .0798 12.404 .0170 17.679 -0044 23.652 -0023 29.638 -0136 36.633 -0399 48.631 -0702 72.863 -0359	34170027 38 .31320032 79 .25440257 36 .32780046 39 .3315 .0338 47 .42220212 34 .43410656 34 .69240494 36 .7777 .0082 37 .11731317 36 1.8516 .0094 37 .12 2.8427 .4280 38 3.8458 .0054 32 3.73712515 32 .61952755 39 .60232376 3217471549 3639610913 373720466 3842710156 3933720466 3842710156 393322 .0271 412827 .0079 312548 .0428 312548 .0428 312548 .0428 312548 .0428 312548 .0428 321589 .0574 331589 .0924 321083 .0574 331589 .0924 341083 .1073 350866 .1029	.0087 .0001 .0356 0029 0037 .0762 .0088 .0631 .1900 0058 .0341 03750713 21350373 05591744 1036 .0934 14820318 04211072 0489 .0174 0161 .0140 .02260313 01200156	0389 1371 .1488 1493 .0585 0068 .0197 0115 .0223	0804 0415 1005 0499 0616 1777 1678 2265 .0202 5931 03676650 .1100 -1.5506 0625 -1.5912 .0498 -1.3862 0550 -1.0690 .03672042 0109 .0344 0056 .1356 .0017 .1823 0017 .2035 0110 .0982 0110 .0982 0110 .0982 017 .1369	.0020 0630 .01630 .01630 .0036 .0037 .0059 .0262 4123 0864 .5411 .4465 .3472 .3829 .2544 .1177 .0509 .00318 0852 0983 0983 0983 1119 1000 1000 0582	.10030205 .1307 .0475 .04690513 .1555 .0480 .20371119 .01970335 .0121 .0189 .00310171 .01140037 .0135 .0053 .0065 .0054 .0192 .0133 .0040 .0104 .0151 .0083 .0062	C7:8 0614 2022 .0122 .0742 .0541 0269 0155 .0009 .0093

P(THETA) = A(O) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

CONDI	TION 118	3, 780K	GROSS WEIGHT SIMU	JLATED	TAKEOFF (FLAPS 10)	TEST 273-15	IRIG 8:13:18
ALTITUDE=	3646.	FT	MACH NUMBER=	0.296	CORRECTED	AIRFLOW= 157	3. LB/SEC

ROW	Z	A(0)	A(1)	A(2)	A(3)	A(4)	A(5)	A(6)	B(1)	B(2)	B(3)	B(4)	B(5)
NO.	(IN)	(PSI)	(PSI)	(PSI)	(PSI)	(PSI)	(PSI)	(PSI)	(PSI)	(PSI)	(PSI)	(PSI)	(PSI)
123456789011234567890123456789012	54.051 48.789 41.907 36.019 30.118 26.166 22.196 18.211 15.215 96.037 3.629 1.413 0.324 1.156 3.007 4.782 17.679 23.652 29.633 46.627 72.363 75.593 76.576 106.386	-1.0658 -1.2145 -1.4520 -1.7687 -2.5309 -2.7464 -2.8955 -2.9756 -3.7718 -4.2763 -3.9914 -4.2421 -3.8926 -2.29860 -3.123 -0570 -1053 -0759 -0945 -1191 -07607 -00947	. 2357 .2617 .2082 .2827 .3493 .3493 .4463 .6903 .73169 2.1040 2.	0487 0283 0414 0251 0135 0118 0743 0804 08362 08062 03753 3461 3461 3461 3461 3461 0275 02175 0485 02175 0485 05534 0553	.0043 0212 0112 .0066 .00066 .00068 .0268 .0225 0733 .0621 0155 0391 0981 0656 0520 .0201 0857 1482	0321 1527 1397 1942 .0689 0445 1547 0071 0047 1029 1659 .0072	0447 .0052 0054 .1736 1775 .0584 .0054 .0173 1132 1067 1260	. 0705 0327 .1165 0619	0511 0360 0417 0353 00464 1839 1275 1303 5323 61241 -1.1541 -1.06930 1920 0906 1920 0983 0983 0983 0983 1068 0983 10778 1978 1978 1978 1978 1988 1	0371 0636 0414 0570 0345 0521 .0752 0198 .1602 .03741 .0014 .3464 .29875 .2260 .1228 1028 1028 10268 0365 0398 0365 0329 0365 0323 0188 0285	0806 .0353 .1428 .0390 .1214 0239 .0264 .1235 1764 0547 0078 0130 .0065 .0033 .0083	.0276 .1024 .0312 1010 .0876 0967 0690 0328 .1170 0195 0958 0381	0711 0450 2625 .0120 0821 .0406 .0527 .0007 .0530 .0148 .0105 .0082

52094

P(THETA) = A(O) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

		ALT! TUDE:	5861 .			02, LOW CL			RIG 9:45:59		18/856	•	
		WELLIODE.	- 3001.	FI	MACH NO	AIBER- U.	307	CORRECT	ED ALKIE	.UN- 1005	, LB/ JL	•	
ROW NO.	Z (IN)	A(0) (PSI)	A(1) (PSI)	A(2) (PSI)	A(3) (PSI)	A(4) (PSI)	A(5) (PSI)	A(6) (PSI)	B(1) (PSI)	B(2) (PSI)	B(3) (PSI)	B(4) (PSI)	B(5) (PSI)
1 2 3 4 5 6 7	54.051 48.789 41.907 36.019 30.118 26.166 22.196	4769 6266 8567 -1. 1651 -1. 4941 -1. 7904 -1. 9869	.1437 .1112 .1413 .1434 .2197 .1788 .2048	0122 .0180 0007 .0176 .0317 .0309	.0169 0066 .0078 .0277 .0086 0002				0139 0251 .0073 0286 .0059 .0009 0754	0289 0048 0211 .0187 .0002 .0099			
8 9 10 11	18.211 15.214 12.215 9.009	-2.0864 -2.1862 -2.6789 -2.9348	.3633 .3478 .6373 .9972	0114 .0303 0491 .0176	0093 0077 .0397 0188	0007	0286	. 0402	0231 0273 .0092 1414	0012 .0278 1341 .0236	. 0349	0453	0276
12 13 14	6.037 3.629 1.413	-2.7238 -2.5197 -1.8334	.9553 1.0965 1.4002	.0522 .2600 .0872	0344 0411 0382	0124 0965 1115	0190 0155 .0554	0253 .0571 .0105	-,2150 -,4138 -,3240	0275 .0654 .0564	.0447 .1540 .0379	.0239 0161 0319	0455 1140 0237
15 16 17 18	.172 0.000 .324 1.156	2441 .7709 .6617 .4569	1.2420 .4693 5627 6004	1469 1567 0656 0516	0211 0014 0324 0014	0168 0201 1259 .0237	0304 .0245 0043 .0362	.0464 0327 .0731 0052	3025 1434 .2135 .1375	.0503 .0740 .0730 .0184	.0761 0420 1271 0111	.0340 0416 0383 0215	0416 0118 .0883 0205
19 20 21	3.007 4.886 7.782	.2193 .0580 -,1167	5074 4357 3472	0345 0455 0431	0116 0056 0473	0127 0119 0183	.0058	.0096 0046 0143	.1016 .0777 .1446	.0375 .0277 .0479	0148 .0039 .0161	0074 .0041 0165	0143 .0129 .0236
22 23 24	12.404 17.679 23.652	1783 1769 1335	2645 2411 1965	.0256 0404 0151	.0278	.0086	.0565	.0119	.0283 .0547 .0442	0730 0296 0485	0254 0340 0056	0079	.0271
25 26 27	29.638 36.633 48.631	1588 1417 1636	1550 1204 1027	.0202 0078 .0475		٠,	٠.		.0728 .0325 .0499	.0062 0503 0163	.0045 0051 0110		
28 29 30	60,627 72,863 75,593	1510 0964 0662	0735 0428 0161	,0813 .0536 .0535		•			.0962 .1093 .0993	.0380 .0150 .0153	.0130 .0165 .0089		
31 32	96.576 106.386	.0289 .0719	.0173	.0552 .0149					.0860 .0839	. 0291 0268	.0178 0194		

P(THETA)=A(0) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

		ALTITUDE	= 17187.	7. FT MACH NUMBER# 0.599				TEST 273-7 IRIG 7:28:44.5 CORRECTED AIRFLOW= 1622. LB/SEC					
ROW NO.	Z (IN)	A(0) (129)	A(1) (PSI)	A(2) (PSI)	A(3) (PSI)	A(4) (PSI)	A(5) (PSI)	A(6) (PSI)	B(1) (PSI)	B(2) (PSI)	B(3) (PSI)	B(4) (PSI)	B(5) (PSI)
1234567890123456789012	54.051 48.789 41.907 36.019 30.118 26.196 18.211 15.214 12.215 9.0037 3.629 1.413 0.000 1.156 3.007 4.886 7.782 12.404 17.679 29.638 36.633 48.631 60.623 75.593 96.576 106.386	.6780 .5332 .3252 .0588 2328 4907 6346 7180 7562 -1.1600 8481 3792 .5771 1.7740 1.6788 .0110 4162 5371 6477 7882 7108 5881 4693 4693 4001 1745 .0158 .1827	. 1108 .0590 .0997 .0927 .1261 .1085 .1030 .1969 .1969 .5224 .5046 .4556 .5384 .2684 .2684 .3672 -88648 -3878 -18648 -3258 -1737 -1227 -0850 -1324 -0910 -0024 .0303 .0859	.0059 .0236 -0257 .0003 .0025 -0174 .0173 .1125 .0537 -0535 -0535 -0535 -0535 -0535 -0535 -0535 -0535 -0535 -0148 -0908 -0449 -0449 -0448 -0482 -0488	.0149 .0023 0023 0027 00350 0010 .0169 0855 0243 0311 0360 .0182 .00689 0685 0162 0747 .1083	.0158 0129 0267 0448 0852 0324 0402 0274 0534 0534 0545	0089 0224 .0093 .0312 .0613 .0071 0906 0218 .0070 0189 0202	0299 0186 .0006 .0041 .00271 00496 .0162 .0275 0055 .0702	.0127 0047 .0282 .0018 .0198 .0312 0113 .0090 .0170 1931 1931 1111 1053 .0999 .3038 .1501 .1893 .2044 .2589 0470 .0466 .0423 .0010 0068 .1036 .1001 .0665 .1799	.01370228 .007100560209 .0044 .0169 .0038 .0015 .1093 .0280 .0018 .0362 .0377 .1377 .0704 .0532 .0340 .085515370876 .00780875087508750526 .0723 .0728 .0445 .0200	.0255 .0378 .1066 .0134 .0921 -0378 .0829 -0255 .0303 .0529 -0409 -0700 -0357 .0229 -0119 -0070 .0298 .0104 .0120 .0106 .0900	0510 .0187 0140 0021 .0298 0578 .0388 1029 .0216 0089 0477	.0041 0301 0410 .0162 0562 0409 0065 .0194 0203 .0082 0095

Table A-9.

P(THETA) = A(0) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))
CONDITION 104, HIGH-MACH CRUISE TEST 273-7 IRIG 7:49:26.4

		ALTITUDE=	35481.	FT	MACH NU	MBER= 0.	859	CORRECT	ED AIRFL	OW= 1633	. LB/SEC		
ROW NO.	Z (IN)	A(0) (PSI)	A(1) (PSI)	A(2) (PSI)	A(3) (PSI)	A(4) (PSI)	A(5) (PSI)	A(6) (PSI)	B(1) (PS1)	B(2) (PSI)	B(3) (PSI)	B(4) (PSI)	B(5) (PSI)
1234567890123456789012	54.051 48.789 41.907 36.019 30.118 26.166 22.191 15.215 9.009 6.037 3.629 1.172 0.324 1.1507 4.863 7.782 23.6538 348.631 60.627 72.863 75.593 96.576 106.386	1.0483 .8918 .7167 .5626 .4900 .4287 .0382 .2773 .4804 .8530 1.4538 1.9564 1.4382 3311 93113 8094 -1.1635 -1.2673 -1.2673 -1.0379 6817 4925	.04190023 .0513 .0273 .0458 .0239 .0158 .0523 .0395 .3064 .1337 .1123 .9142827882142825090751183821459012302470324 .0640 .0393 .0490 .1129	.0049 .0049 .0163 .0039 .0023 .0037 .0004 .0249 .0249 .0249 .0376 .0224 .0190 .0141 .0267 .0991 .0725 .1854 .3147 .2650 .0130 .1072 .0130 .1072	.0114 .0110 0047 0042 0062 0183 .0053 0063 0262 0100 0107 0116 .0409 .0117 .0511 .1555 0242 .0092 .0014 .1358	.01190006 .031801460797 .0211 .02771080054504440907	.0017 0144 0041 .0046 .0590 0166 0492 0617 .0254 0413 0689 0141	0383 0116 0279 .0002 .0165 .0015 0537 .1091 .0463 0307 .0001	.00610114 .01820038 .0107002350134032933410751107610460316 .0873 .2322 .26334 .22370213 .0001 .245661280 .0551 .1810 .0553 .0328 .1887	.02540137030200570097016900155015501550185009303130508151305081678015821678016260901069908900485	.0129 .0257 .0159 .0141 .0585 0344 .0886 0324 0169 .1334 1109 0967 0881 0353 .0137 .0006 .0156 .0156 .0156	0179 .0223 .0209 .0140 .0092 0481 0314 1591 0590 .0503 0221	.0243 .0196 .0257 .0160 0518 0583 1801 .1227 0752 .0353 .0061 .0980

Table A-10. FOURIER - BESSEL COEFFICIENTS FOR ENGINE NUMBER THREE PRESSURES P(THETA) = A(0) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

	•	ALTITUDE			05, LOW-MA MACH NU	CH CRUISE			G 7:56:40.5 ED A!RFL		. LB/SEC	.*		
ROW NO.	Z (IN)	A(0) (PSI)	A(1) (PSI)	A(2) (PSI)	A(3) (PSI)	A(4) (PSI)	A(5) (PSI)	A(6) (PSI)	B(1) (PSI)	B(2) (PS1)	B(3) (PSI)	B(4) (PSI)	B(5) (PSI)	
123456789011234567890112 1134567890123456789013	54.051 48.789 41.907 36.019 30.118 26.166 22.196 18.211 15.214 12.215 9.009 1.413 0.000 4.882 12.404 17.679 23.652 29.638 36.633 48.631 60.627 72.863 75.593 96.576 106.386	.9171 .8477 .7400 .6045 .4582 .2620 .2295 .2010 -1745 .0632 .2367 .5232 1.0399 1.5024 1.5024 1.5024 1.0997 3536 8790 8653 5767 4315 4207 3731 2913 1461 1149 .0414 .1889	.0449 .0218 .0550 .0401 .0632 .0726 .1205 .1230 .4389 .3366 .3029 .2954 .2920 -3475 -7175 -7175 -1.0099 -7697 -8150 -3686 -1450 -0887 -0802 -0479 .0269 .0471	.0039 .0042 -0111 .0014 .0027 .0038 -0109 .0146 .0195 .0362 .0233 -0284 -0195 .0362 -0196 -1784 -0558 -0558 -0558 -0211 .0983 .0021 .0983 .00412 -0462	.0037 0022 0004 0036 0154 .0102 0052 01618 0131 0094 0208 .0031 .0448 .0616 .1572 0598 .0861 1558 .1926	0137 0073 .0177 0148 0643 .0237 .0475 0876 0141 0501 1044 .0702	.007700960158 .0133 .037900461109025510490465 .0873	0316 0043 0153 .0053 .0158 .0010 1144 .0878 .0231 0094 0286 .1195	.0046 -0001 .0079 -0098 -0012 -0140 -0350 -0219 -3666 -1369 -0890 -0356 -1369 -0890 -0356 -1311 .3094 .2941 .3111 .2825 .1801 -02462 .0462 .04639 .0104 .108	.0200 .0006 .0142 0026 0095 .0127 .0082 0065 0140 .0137 .0138 .1185 .0811 0138 .1182 0256 05052 050542 .05052 .0049	.0047 .0156 .0250 .0038 .0494 0255 .1578 0014 0524 .0093 0755 0531 0020 .0032 0014 .0053 .0112 .0053	0157 .0136 .0021 .0139 .0140 0383 .0222 1269 0898 .0392 0589	.0228 .0132 .0160 .0236 0397 0441 1247 .0897 1181 .1092 0293 .1545	125209-43

ORIGINAL PAGE IS

Table A-11.

P(THETA) = A(O) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

			CONDITI	ON 106, MA	XIMUM MA	ACH NUMBI	ER .	TEST 273	-15 IRIG	12:09:26.5	•			
		ALTITUDE		-		JMBER= 0.		CORRECT	TED AIRFL	.OW= 1642	. LB/SEC	:		
ROW NO.	Z (IN)	A(0) (PSI)	A(1) (PS1)	A(2) (PS!)	A(3) (PSI)	A(4) (PSI)	A(5) (PSI)	A(6) (PSI)	B(1) (PSI)	B(2) (PSI)	B(3) (PS1)	B(4) (PSi)	B(5) (PSI)	ORIGINAL OF POOR
1 2 3 4 5 6 7 8 9 0 1 1 2 3 1 4 5 6 7 8 9 0 1 1 2 3 1 4 5 6 7 8 9 0 1 1 2 2 2 2 2 2 2 2 2 3 3 1 2 2 2 2 3 3 1 2	54.051 48.789 41.907 36.019 30.118 22.196 18.211 15.214 12.215 9.007 6.637 9.007 4.886 7.782 12.407 12.407 23.652 29.638 36.633 48.631 60.863 75.593 96.386	1.3536 1.2967 1.1734 .9889 .8559 .7210 .5968 .5684 .2214 .4075 .0827 1.5834 2.0827 1.5834 2.0827 1.2614 -1.015083908966 -1.1896 -1.12841 -1.0564 -1.0564 -1.0555 .0828 .4009	02220421 .02020014 .05320271045100660788 .0600 .0356002103030511 .0153 .1124 .0771 .1706 .0641 .0153 .1124 .0771 .1706 .0641 .0153 .1124 .0771 .1706 .0641 .0153 .1124 .0771 .1706 .0641 .0153	0267 .0164 .0105 .0151 .0257 .0183 0082 0109 .0190 0065 .0265 .0058 .0446 0719 .0135 0880 1118 0576 0371 0875 .0673 1227 2093 1227 2093 1914 1625 .1706 0053 .0047 0135	.0040 0159 0133 0123 0040 .0058 0181 0390 0214 .0225 0281 .0278 .0602 .0349 0372 1383 .1533	.0075 0087 .0068 0103 1350 .0405 .0557 0137 1382 1605 1791	0514 .0102 0002 .0266 .0419 .0073 0115 0228 0980 1156 1457 0677	0769 .0232 .0103 .0378 .0136 .0151 0577 .0744 0431 0908 0658 .0678	0014032502180463 .0316 .014304200181037707381187053005150307 .0701 .1494 .2776 .3233 .06610526038405530587 .0079 .1501 .2271 .0353 .0661	.01840073 .00940001 .02570255 .03780055 .0300 .0723 .01841043 .0163 .017700350336 .0952 .056113351317171202201344 .028719671234 .1528 .0358	.0074 .0320 0358 .0091 .0488 0365 0129 0636 1098 1098 1098 0659 0354 0143 0143 0648 0582 0050 .0163	~.0388 .1110 .0455 .0293 ~.0237 ~.0106 .0204 .0337 .0293 ~.1314 .0103	.0029 .0276 0633 .0007 0582 2109 .0264 0069 .0383 .0256	NAL PAGE 13 STORY ON QUALITY

ORIGINAL PAGE IS

Table A-12.

FOURIER - BESSEL COEFFICIENTS FOR ENGINE NUMBER THREE PRESSURES

P(THETA) = A(0) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

		AL 11 TUDE		DITION 107 FT		RELIGHT MBER= 0.				RIG 8:12:5: .0W= 1365			
ROW NO.	Z (1N)	A(0) (PSI)	A(1)	A(2) (PSI)	A(3) (PSI)	A(4) (PSI)	A(5) (PSI)	A(6) (PSI)	B(1) (PSI)	8(2) (PSI)	B(3) (PSI)	B(4) (PSI)	8(5) (PSI)
12345678901123456789012 11234567890123456789012	54.051 48.789 41.907 36.019 30.118 26.166 22.196 18.211 15.215 9.009 6.037 3.629 1.413 1.72 0.000 324 1.156 3.007 4.886 7.782 12.404 17.652 29.638 36.633 48.631 60.637 72.863 75.593 96.576 105.386	1.3631 1.3162 1.2166 1.0936 .9645 .8619 .8063 .7905 .7794 .6168 .7151 .8454 1.1843 1.6347 1.8213 .9195 -1.3076 -2.0476 -2.0476 -1.7535 -1.7517 -1.3295 -1.3295 -1.3295 -1.4758 	-1.1831	.0039 .0109 0145 .0073 0064 .0008 .0070 0102 0189 .0281 .0206 .0099 014 .0070 0025 0681 0025 06848 22766 0848 0970 0848 0970 0382 0970 0382 0990 0900 0000 0000 0000 0000 0000 0000 0000 0	.00190031 .0028008800660082012400520145012901290157 .1101 .1541 .1634 .11310435	0200 0115 .0446 0006 0621 .0507 .1020 0102 .0011 0551 0780 0320	0139 0323 0112 0011 .0814 .0086 1815 00551 1609 0838 .0758	0365 0163 0334 .0081 .0169 .0032 2560 .0655 0108 0345 0596	00430105 .004801030030021200060049061309920613017206180172035005370446 .0413 .00790005085005470446 .0413 .007900050850 .0702 .0950 .0702	.03290021 .02530066 .0088 .0241 .0216 .00500109 .01380133 .0451 .0277 .06490734 .11213087909510696 .0696 .06967 .03520131	0293 0069 0011 .0163 .0572 .0046 .4912 1052 1028 .0202 .0985 1074 0026 0152 0152 0152 0152 0152 0152 0152 0152 0152 0152 0152	0163 .0179 .0169 .0215 0533 .1974 .0312 .0203 .1052 .0291 0878	.0480 .0340 .0306 .0389 0666 0682 3191 .0939 .1141 .1874 .0553 .0064

0

Table A-13.

P(THETA) = A(0) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

		ALTITUDE -	24513.			08, MAXIM	UM Q TE: 836			9:00 .0W≈ 1617	. LB/SEC	:	
ROH NO.	Z (1N)	A(0) (PSI)	A(1) (PS1)	A(2) (PSI)	A(3) (PS1)	A(4) (PSI)	A(5) (PS!)	A(6) (PS1)	B(1) (PSI)	B(2) (P\$I)	B(3) (PS1)	B(4) (PSI)	B(5) (PSI)
1234567890123456789012	54.051 48.789 41.907 36.019 30.118 26.196 18.211 15.214 12.215 9.009 6.037 3.629 1.413 1720 0.000 7.782 12.404 17.679 23.652 29.638 36.633 48.631 60.627 72.863 75.593 96.576 106.386	1.7625 1.5806 1.3198 1.0608 8478 .6978 .6716 .6181 .2119 .3716 .6670 1.3210 2.1955 3.0088 2.1532 6420 -1,9168 -1.3882 -1.6484 -1.8445 -2.1683 -2.2677 -2.0116 -1.5213 -8321 -9501	03210526 .02570157 .0282911540716155313181595 .0276 .12269318441595 .0276 .7576 .7122 .3827 .2828 .3113 .37790708140208540197 .0013	0006 .0163 .0105 .0296 .0195 0035 0022 0269 .0290 0096 .0057 .0055 .0216 0213 0005 0051 1679 1560 1604 1315 4290 2902 0487 .0283 .1940 .0192 .0324 .0147	.0023 0107 0134 0138 0092 0006 0132 0423 0423 0469 0169 0169 0801 0169 0565 0565 10299	0089 0544 .0212 0542 1643 .0188 0342 0802 1357 1638 2404 0167	.0085 0354 0206 .0310 .0979 0316 .0726 0495 0211 1792 1212	0703 0230 .0192 0001 .0132 0677 .0725 .0364 0989 0623 .1516	01390353 .00610256 .0372 .05120038 .0456 .018803270433 .0988 .0363092607081638001715632312276510632312276510226 .00290029002500042	.0240 0006 .0248 .0109 .0012 0217 .0369 .0020 .0262 .0494 .0046 0436 0532 0053 0602 0516 2864 0835 0516 2864 0835 1395 1600 1378 1144 009	.0008 .0026 .0228 -0122 .0694 -0975 .0423 -0562 .1810 -0683 -1721 -1098 -0678 -0950 -0105 -0484 .0142 .0105 .0427	0218 .0427 .1027 .00028 0622 0725 .0146 .0910 .1027 1297 .0375	.0121 .0236 -0253 .0178 -0799 -1010 -0984 .0720 .0160 .0764

Table A-14.

P(THETA) = A(O) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

		ALTITUDE=	COND 16964.	ITION 109, FT	STALL WA	RNING (FI	APS UP) 391	TES CORRECT	T 273-7 I ED AIRFL	RIG 8:18:5 OW= 1591			
ROW NO.	Z (IN)	A(0) (PSI)	A(1) (PSI)	A(2) (PSI)	A(3) (PSI)	A(4) (PSI)	A(5) (PSI)	A(6) (PSI)	B(1) (PSI)	B(2) (PSI)	8(3) (PSI)	B(4) (PSI)	B(5) (PSI)
1234567890123456789012	54.051 48.789 41.907 36.019 30.118 26.166 22.196 15.214 15.214 12.215 9.009 6.037 3.629 1.413 .172 0.000 .324 1.156 3.007 4.886 7.782 12.404 17.679 23.652 29.638 36.633 48.631 60.637 72.863 75.593 96.576 106.386	-1.9270 -1.7872 -1.3482 -2912 .3666 .3310 .2489 .1350 .0475 -0630 -1101 -0724 -0670 -0626 -0539 -0708 -0632	.1449 .1104 .1355 .1355 .1783 .2097 .2406 .3755 .4481 .8743 .11605 1.1605 1.2985 1.1605 1.5679 1.3415 -67001 -5792 -5064 -4155 -2738 -2126 -1646 -1327 -1052 -0144 .0018 .0263 .0396	.0074 .0125 0249 0123 .0013 .00212 0173 .0043 .14228 .2175 0385 .2175 1809 2650 1817 0782 0675 0524 .0370 0162 0247 .0263 .0247 .0263 .0369 .0765	.0232 .0016 .0016 .00143 .00153 .00553 .00559 .00959 .0184 0238 0497 0458 0457 0268 0041 0268 0041 0365	0015 0583 0750 .0041 0293 1010 .0131 0030 0130	.0052 0105 .0012 .0554 0443 .0326 0295 .0129 0056 0187	0194 .0314 0107 .0441 0243 .0322 .0046 0051 .0014	.0193 .0168 .0350 .0020 .0032 0678 0394 29562 2761 4748 29562 2761 4738 1314 .1564 .1731 .05439 .0653 .0627 .1128 .1128 .1128 .1506	0115010600710037003700970131 .1029 .0701 .1068 .1419 .1515 .0586 .0280 .0149 .065207100380017504360264 .0108 .0108 .00810025	.0418 .0664 .1696 .0775 .0240 0586 0144 0017 0051 .00249 0160 0136 0127 0036 0161 .0111 .0149 .0220	0607 0139 0255 0217 .0118 0385 0065 0031 0066 .0006 0107	.0080 .0066 0806 0062 0190 .0081 .0748 0073 0015 .0131 .0090 .0355

Table A-15.

			FOUR	RIER - BE	SSEL COE	FFICIENT	S FOR EN	GINE NUM	BER THRE	E PRESSU	IRES			
			. F	(THETA)	A(0) + S	IGMA(A	N) COS (NT	HETA) +	B(N)SIN(NTHETA))			유
•		ALT1 TUDE			L WARNIN MACH NU	G (FLAPS1 MBER≖ 0.	0) 347	T CORRECT	EST 273-7 ED AIRFL	IRIG 8:22 .0W= 1621	:26 LB/SEC	:		OF POUR
ROW NO.	Z (1N)	A(0) (PSI)	A(1) (PSI)	A(2) (PSI)	A(3) (PSI)	A(4) (PSI)	A(5) (PS!)	A(6) (PS1)	B(1) (PSI)	B(2) (PSI)	B(3) (PSI)	B(4) (PSI)	8(5) (PSI)	π .ς
12345678901234567890123456789012	54.051 48.789 41.907 36.118 26.166 22.191 15.214 12.215 9.009 6.037 3.621 1.172 0.324 1.153 1.172 0.324 1.156 3.652 7.782 12.404 17.679 23.6538 36.633 48.631 72.863 36.576 106.386	528765188205 -1.0727 -1.3226 -1.5477 -1.6964 -1.7902 -2.4470 -2.7601 -2.6707 -2.5904 -2.1742 -1.01751742 -1.0450273045704230359045704230359045704230359	.1811 .1422 .1413 .1416 .2217 .2865 .4265 .5494 .9547 1.6242 1.7576 1.9187 2.18996 1.0006 30849 5297 4815 29735 25317 25317 15915 0043 0043	.0114 0039 0010 .0357 .0416 0019 .0422 .1486 0158 0158 21509 282509 282509 0385 0385 0063 .0023 0385 0063 .0023 0385 0385 0385 0385 0385 0385 0385 0385 0386 03	.0348 .0036 -0062 .0172 -0009 .0027 .0324 -0040 -0780 -0707 -0798 -0657 -0798 -0657 -0702 -0400 .0196 -0204 .0261	.0247 .0362 0885 1212 .0115 0532 0936 .0107 0084 0158 0031	1308 0661 .0272 .0774 0579 0014 .0066 .0029 0384 0120 .0506	.1222 0199 .0385 0090 .0385 0236 .0110 .0225 .0163 0043	00660170002402990068 .000680823067508022710367253151719558513785 .1364 .1664 .1664 .1667 .0980 .0671 .0981 .0921 .1253 .1410 .1654 .1515 .1438 .1889	01870175019800120186012600090290 .0774 .0517 .0901 .2208 .1632 .1909 .1730 .0652 .0473 .0197 .0238073205140168072205140168070800680193	.0036 .0365 .1220 .1495 .1481 .0679 0924 .0019 0252 0171 0007 0077 0077 0073 0130 0184 0016 .0139 .0078 .0132	0529 0917 0551 1003 .0089 0725 0025 0082 .0148 0038	.0079 .0814 0994 .0343 0108 0016 .0584 0038 0081 .0193 .0287	12520040

Table A-16.

P(THETA)=A(O) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

		ALTITUDE			STALL WA	ARNING (F MBER= 0.				IG 8:24:51. .OW= 1633		:		
ROW NO.	Z (1N)	A(0) (PSI)	A(1) (PSI)	A(2) (PSI)	- A(3) - (PSI)	A(4) (PSI)	A(5) (PSI)	A(6) (PS!)	8(1) (PSI)	B(2) (PSI)	B(3) (PS!)	B(4) (PSI)	B(5) (PSI)	
12345678901123456789012 1123456789012 222223312	54.051 48.789 41.907 36.019 30.118 22.196 13.211 15.214 12.215 9.009 6.037 3.629 1.413 0.000 .324 1.156 3.007 4.886 7.782 12.404 17.679 23.652 29.638 36.633 48.631 72.863 75.593 96.576 106.386	77238854 -1.0550 -1.2754 -1.5261 -1.7693 -1.9176 -2.0237 -2.0874 -2.7097 -2.9508 -2.8361 -2.7349 -1.70207024 .0654 .2725 .2404 .1794 .1130 .0548 .0547 .0366 .0353 .0272 .0099 .0082 .0238 .0315 .0502 .0630	. 1489 . 1294 . 1283 . 1268 . 1569 . 1576 . 1947 . 3006 . 3601 . 7711 1 . 2136 1 . 2416 1 . 2416 1 . 2416 1 . 2027 - 2027 - 2035 - 1410 - 2027 - 1458 - 1261 - 1056 - 0943 - 0764 - 0530 - 0112 . 0040	.0065 .0021 -0229 -0136 .0093 -0185 -0118 .0167 .2450 -1277 .2959 .0510 -1242 -0654 -0654 -0529 -0185 .0127 .0186 .0186 .0186 .0346 .0458 .0431 .0432 .0498 .0581	.0172 .0041 .0025 .0220 0004 0011 .0388 .0069 .0242 1419 .0586 0508 0385 03851 0189 0253 0045 0115 .0098	.0229 .0019 0922 1108 .0395 0304 0528 .0073 0101 0045 0097	0494 .0107 .0162 0008 1189 .0261 .0116 0061 .0030 0049	.0743 0492 .0523 .0393 .0528 0067 0457 0002 .0063 0043 0077	.0104 .0167 .0332 .0121 .0105 0504 0305 0383 3676 3878 6970 5737 5736 4445 0218 .0571 .0843 .0516 .0476 .0497 .0473 .0556 .0473 .0556 .0473 .0559 .1165	0155016301630176 .003002350106 .039000950072 .1958 .0524 .0281 .2194 .0610 .1394 .0818 .0461 .0370 .0116 .0147 .0033025804380241019803170302004300900092	. 0206 .0557 .1416 .0865 .0194 .0982 0502 0017 .0019 0009 0073 .0013 0011 .0043 0007 .0007	0390 0651 0302 0417 .0862 0605 .0051 .0005 0055 .0046 0034	0170 .0333 0987 0523 0611 .0058 .0468 0129 0013 .0045 .0060	ORIGINAL PAGE IS OF POOR QUALITY 05-602521

Table A-17.

			FOUR	IER - BE	SSEL COE	FFICIENT	S FOR EN	IGINE NUM	BER THRE	E PRESSU	IRES	. •		000
			P	(THETA)	A(0) + S	IGMA(A	N) COS (NT	HETA) +	B(N)SIN	NTHETA)) .			T 22
				CONDITI	ON 112, ID	LE DESCEN	IT TES	ST 273-7	IRIG 8:28:	56.4				o Z
		ALTITUDE	× 8450 .	FT	MACH NU	JMBER# 0.	439	CORRECT	TED AIRFL	.OW= 748	. LB/SEC	;		ORIGINAL OF POOR
ROW NG.	(1N)	A(0) (PSI)	A(1) (PSI)	A(2) (PSI)	Å(3) (PSI)	A(4) (PS1)	A(5) (PSI)	A(6) (PSI)	B(1) (PSI)	B(2) (PSI)	B(3) (PSI)	B(4) (PSI)	B(5) (PSI)	PAG
1234567890!23456789012 111345678901222222222333	54.051 48.789 41.907 36.019 30.118 26.166 22.196 18.211 15.214 12.215 9.009 6.037 3.629 1.413 0.000 324 1.1567 4.886 7.782 12.404 17.679 23.652 29.638 36.631 60.627 72.863 75.593 96.576 106.386	1.2639 1.2300 1.1914 1.1364 1.0884 1.0491 1.0409 1.0443 1.0332 .9902 1.0727 1.1272 1.2796 1.3977 -2.7683 -2.2738 -1.4961 -1.230997268101623448114124326629032335129409651516	-2.1818	0056 .0083 0011 0003 0028 0027 .0075 0080 .0117 .0060 0570 0570 0603 0402 3996 2842 2399 0430 .0914 0879 0145 0170 .1045 .0323 .0528 098	.0040 .0064 0006 0040 0073 0121 .0013 .0029 .0222 0105 0151 0197 .0396 .0873 .0959 .4196 .2987 1418 0327 0316 .1350	0022 .0046 .0483 .0179 0680 .1351 .5883 0044 0796 1168 0664	0141 0157 0082 0089 .0408 .0472 4559 .0093 .0047 0335 0135	0435 0055 0285 0027 .0100 .0324 6023 .1758 .0159 .0242 .0118 .1064	0018012700420066 .006802230164020505830374061806830377 .1446 .4827 .5912 .3893 .3598 .2926 .0405 .0300 .0814 .0683 .0447 .0381 .1097 .1654 .1102	.0333 .0075 .0228 .0030 0001 .0184 .0022 .0148 0375 .0114 .0112 .0582 .0693 .5202 .1673 .0420 1545 0802 0802 08027 0804 0380 .0380 .0384 .0386 .0386 .0386	.0062 .0044 -0253 -0011 .0084 -0261 .9275 -0765 .1020 .0031 .0243 -0752 -0554 -0172 -0048 .0168 .0054 .0161 .0711	.0070 .0045 0069 .0327 0435 1008 3055 .0922 .0048 0441	.0192 .0342 .0397 .0549 0833 1185 6130 .0716 .0115 .0536 0052 .1011	PAGE IS QUALITY

ORIGINAL PAGE IS

Table A-18.

FOURIER - BESSEL COEFFICIENTS FOR ENGINE NUMBER THREE PRESSURES

P(THETA) = A(O) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

		ALTITUDE	= 6003.		ON 113, AF	PROACH MBER= 0.			RIG 8:34:27 ED AIRFL	, .OW= 1547	. LB/SEC		•
ROW NO.	Z (1N)	A(0) (PSI)	A(1) (PSI)	A(2) (PSI)	A(3) (PSI)	A(4) (PSI)	A(5) (PSI)	A(6) (PSI)	B(1) (PSI)	B(2) (PSI)	B(3) (PSi)	B(4) (PSI)	B(5) (PSI)
12345678901123456789012222233322	54.051 48.789 41.907 36.019 30.118 26.166 22.196 18.211 15.214 12.215 9.009 6.037 3.629 1.413 .172 0.000 .324 1.156 3.007 4.886 7.782 12.404 17.679 23.633 36.633 48.531 60.627 75.593 96.376 106.386	9824 -1.1374 -1.3859 -1.6508 -1.9705 -2.2215 -2.4542 -2.5446 -2.6340 -3.3275 -3.5093 -3.3979 -3.4562 -3.1806 -1.8572 -5835 .2907 -4482 .3148 .2158 .1031 .0307 .010200770156032601450033 .0385 .0624	.1956 .1467 .1597 .1058 .1965 .1914 .2377 .3324 .4313 .6888 .9368 .9730 1.1390 1.6028 1.8313 1.22660 22660 22660 1595 15	0005 .0344 .0027 0010 0103 01560 0655 .0031 .1528 .0280 .02874 .3777 .1886 0685 0967 0412 0628 0178 0002 0124 0005 .0205 .0366 0178 0005 .0346 03	.037701060044 .0209 .0259 .0505 .0693 .0428 .04740893 .020403040419072102420102010201990133 .019900180094	.0073 0245 1445 1369 .0420 0557 0564 .0128 .0047 0109 0010	.0160 0246 .0001 .0700 0875 .0680 .0175 0160 0179 .0027	.0682 0286 .0676 .0425 .0377 0406 .0680 0043 0129 .0122 0089 0137	.0323 .0126 .0085 00416 0039 00574 0254 0254 22491 6262 3091 6262 3706 44467 0733 .0934 .1182 .0733 .0538 .0538 .0584 .0848 .0796 .0843 .0996	.007902050340 .001400720379 .034200050094 .1107 .0286 .0849 .0398 .0886 .0236 .0240 .0177 .02514025140251402142030901030234 .00177 .0050 .0135 .0068	.0178 .0490 .2201 .0322 .0792 -1331 .0120 -0106 .0119 .0090 -0081 -0010 .0047 -0018 -0107 .0064 .0125 .0064 .0120 .0094	0742 .0332 0430 0520 .0221 0541 0083 0163 0099 0032 0125	.0011 0329 1309 0377 0109 .0458 .0519 0055 0030 .0052 .0330

P(THETA) = A(0) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

2.1			C	ONDITION		H AND GO				RIG 8:40:35			
		ALTITUDE	= 2561.	FT	MACH NU	MBER= 0.	263	CORRECT	TED AIRFL	.OW= 1585	. LB/SEC	:	
ROW	ž	A(0)	A(1)	A(2)	A(3)	A(4)	A(5)	A(6)	B(1)	B(2)	B(3)	B(4)	B(5)
NO.	(IN)	(PSI)	(PSI)	(PSI)	(PS1)	(PSI)	(PSI)	(PSI)	(PSI)	(PS1)	(PSI)	(PSI)	(PSI)
1	54.051	-1,2423	. 2260	.0114	. 0279			•	0107	0333			
2	48.789	-1.3951	. 2037	0097	0208				. 0329	.0119			
3	41.907	-1.6942	. 1932	0328	. 0024				. 0238	0334			
4	36.019	-2.0402	. 1906	0274	. 0245				-,0299	0086			
5	30,118	-2.4476	.2415	.0093	.0021				0347	0278	•		
6		-2.8186	. 2262	0131	.0013				0269	0100			
7		-3.0504	. 2456	0416	. 0496				-, 1412	.0414			
8		-3.2089	. 3867	0489.					1026	0100			
9	15.214	-3.3275	. 4329	0018	. 0256				1242	.0195			
10	12,215	-4.0792	. 8133	. 1193	0816				3961	0184			
11	9.009	-4.4561	1.1894	.0149	0103	. 0370	0282	. 1130	4808	.0443	. 0231	0699	0425
12	6,037	-4.2609	1.1553	. 1054	0295	0373	- 0288	0330	5649	0569	.0720	.0141	0555
. 13	3.629	-4.4133	1.3605	. 5531	1202	1714	. 0267	. 0755	-1.0506	.1412	.3128	0671	1415
14	1.413	-4.1699	1,9831	. 2495	1083	0967	.0295		-1.1096	.2242	.0029	. 0065	0853
15	. 172	-2.5406	2.2309	.0067	0629	. 0624	1107		-1.0498	. 1358	. 0854	. 0379	. 0034
16	0.000	-1.0088	1.5795	0577	0346	0638	. 0689		8200	. 1877	. 0942	0595	. 0450
17	. 324	. 2451	. 2778	0091	0017	0821	. 0507	. 077\$	1448	.0740	-,0968	0701	.0680
18	1,156	. 4916	1038	-,0455	0347	. 0162	. 0096	0054	. 0675	. 0471	.0065	.0118	0243
19	3.007	. 4029	2489	0520	0068	0077	0012	0018	. 1200	.0177	0027	. 0042	.0106
50	4.886	. 2880	2647	-,0342	0017	.0031	0072	. 0072	. 1511	.0174	0073	. 0011	. 0087
21	7.782	. 1662	2471	0338	0168	0060	0052	0025	. 1581	0018	0023	. 0001	.0094
22	12.404	.0812	-,1616	0005	0026	.0063	. 0304	0140	. 1069	0224	0074	0052	.0216
23	17,679	.0687	1745	0089					.0830	0557	0044		
24	23.652	.0498	1405	0013					, 0842	0312	0053		
25	29.638	. 0385	1277	. 0085					. 0906	~ ,0263	. 0056		•
26	36.633	. 0293	1120	0004	•				. 0842	0394	.0012		
27	48,631	.0024	0984	.0264					. 0870	0333	. 0077		
. 28	60,627	0014	0726	. 0377	•				. 1203	-,0047	. 0050		
29	72.863	0031	0676	. 0552					. 0853	-,0163	.0160		
30	75.593	. 0366	0248	. 0326					. 1264	0006	. 0088		
31	96,576	.0766	0026	. 0407					. 1192	-,0005	.0155		
32	106.386	. 0970	.0149	. 0467					. 1501	0070	. 0075		

P(THETA) = A(0) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

			C	ONDITION	115, THRU	IST REVER	SE TE	EST 273-7	IRIG 8:45					
•		ALTITUDE	= 25 61,	FT	MACH NU	MBER= 0.	179	CORRECT	ED AIRFL	OW= 1369	. LB/SEC			
ROW NO.	Z (IN)	A(0) (PSI)	A(1) (PS1)	A(2) (PS1)	A(3) (PSI)	A(4) (PSI)	A(5) (PSI)	A(6) (PSI)	B(1) (PSI)	B(2) (PSI)	B(3) (PSI)	B(4) (PSI)	B(5) (PSI)	
1 2 3 4 5 6 7 8 9 0 1 1 2 3 1 4 5 6 7 8 9 0 1 1 1 2 3 1 4 5 6 7 8 9 0 1 1 1 1 3 1 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2	54.051 48.789 41.907 36.019 30.118 26.166 22.196 18.211 15.214 12.215 9.009 1.413 .172 0.324 1.156 3.007 4.886 12.404 17.679 23.652 12.404 17.679 23.653 36.633 48.631 60.627 72.863 75.593 96.576 106.386	88879857 -1.1633 -1.3741 -1.6220 -1.8395 -1.9782 -2.0915 -2.1436 -2.6567 -2.8874 -3.1425 -3.3882 -2.9034 -1.95183537 .1747 .2859 .2717 .2022 .1994 .1872 .1845 .1844 .1887 .2180 .2228 .2371 .2359 .1980	.1066 .0774 .0827 .0761 .0929 .0370 .0925 .0820 .2559 .2523 .2061 .1620 .2734 .7084 .70912 .2393 .0377 -00487 -0070 -00521 .0521	0022 .0006 0252 0208 .0016 0258 0263 .0046 .1200 .0170 .0406 .2891 .1837 .0515 .0260 0432 0049 0055 0255 0269 0269 0269 0137 0049 0049 0049	.0199007100070046 .0338 .0043 .0089012901410238 .0306 .0268 .0468 .013901620120	.0199018711861017 .06340032 .02780226007901650119 .00:5	.0133 0063 .0041 .0409 1167 .0365 0432 0179 .0161 0130 0070	.0655 0124 .0694 .0277 0025 0097 0225 .0032 0053 0043 0238	.0314 .0352 .0384 .0197 .0190 .0258 -0299 .0127 .0301 1692 0603 7.0956 2458 2458 1267 0755 0123 .0092 01022 .0092 01022 01033 01033 01	0311 .0045 0216 .0032 0013 .0252 0126 .0110 .1059 .0081 0364 .0400 .0327 0424 .0045 .0403 .0045 .0047 .0065 0022 .0275 .0369 .0369 .0369 .0369 .0329	.0323 .0294 .1674 .0193 .1073 .1243 0086 0079 0083 0107 0179 0237 0156 0237 0160 01180 0076 0339	0492 .0015 0072 0417 .0083 .0322 0236 0070 0003 0029 0079	0359 0534 1075 0226 0094 .0185 0461 .0027 0004 .0070	OF POOR QUALITY PS-602521

-24

Table A-21.

		ALTITUDE				EFTTURN MBER≖ 0.	(FLAPS UP 487		273-10 TED AIRFL	IRIG 13:33: .0W= 1562				
) W	Z (IN)	A(0) (PSI)	A(1) (PS1)	A(2) (PSI)	A(3) (PSI)	A(4) (PSI)	A(5) (PS!)	A(6) (PS!)	B(1) (PSI)	B(2) (PS1)	8(3) (PSI)	B(4) (PSI)	B(5) (PSI)	
123456789012345678901234567890133	54.051 48.789 41.907 36.019 30.118 26.166 22.196 18.211 15.214 12.215 9.009 6.037 3.629 1.172 0.000 1.156 3.679 4.886 7.782 12.404 17.679 23.6538 36.633 48.631 60.627 72.8638 75.593 96.576 106.386	1510	.1281 .1316 .1703 .2072 .2692 .1772 .2457 .4288 .4468 .8090 1.1932 1.1411 1.2481 1.2481 1.2481 1.4096 .8838 3968 3968 1915 4570 4570 4570 4670 1918	0134 .0054 0038 .0665 .0463 .0530 0064 .0104 0108 0481 .0574 .0290 .0424 1150 2134 3180 1490 1289 0774 1040 .0600 0659 0067 0317 .0518 .1245 .0785 .0754	. 0535 .0139 .0334 .0308 .0046 0315 .0035 .0011 .0237 0573 0573 0217 .0223 0146 0405 0252 0680 0224 0824	0078 .0105 0825 1266 0564 .0044 .0519 .0154 0148 0718 0788 .0358	0172 0533 .0005 .0790 .0014 .0223 0033 .0117 .0288 0269 0345 .1039	.0183 0380 .0245 .0091 .0208 0109 0190 .0253 .0273 0145 .0609	05770881 .000906160240086114661260169724914310647376524907 .1711 .75524956 .1916 .17569 .1864 .1101 .1152 .2140 .2142 .2067 .1704	0171 .0237 0079 .0432 0289 0051 .0005 .0081 .0187 0991 .0730 .0164 .1055 .1282 .2557 .2858 .2275 .1008 .0909 .0787 0515 0899 .0787 0190 1000 1000 0489 .0339 0724	.0094 .0960 .1507 .0543 .0790 0536 .0250 0286 .0043 0166 0774 0167 0163 0153 0162 .0357 .0369 .0360 0300	0347 .0155 0089 0026 .0144 0281 0655 0075 .0393 .0075 0508 0086	.0137 0479 1072 .0064 0399 0040 0290 .0311 .0328 .0832	125209-55

P(THETA) = A(0) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

			CONE	ITION 117	, 1.5g LEFT	TURN (FL	APS 30)	TE	ST 273-10	IRIG 13:4	1:7.5	÷	
		ALT I TUDE	≈ 8131.	FT	MACH NU	MBER= 0.	251	CORREC'	TED AIRFL	OW= 1539	. LB/SEC		
ROW NO.	Z (!N)	A(0) (PSI)	A(1) (PSI)	A(2) (PSI)	A(3) (PS1)	A(4) (PSI)	A(5) (PSI)	A(6) (PSI)	B(1) (PS1)	B(2) (PSI)	B(3) · (PSI)	B(4) (PSI)	B(5) (PSI)
1234567890112345678901232222223333	54.051 48.789 41.907 36.019 30.118 26.196 22.196 18.211 15.214 12.215 9.009 6.037 3.629 1.413 0.324 1.156 3.007 4.886 7.404 17.679 23.652 29.638 36.633 48.631 60.627 72.863 75.596 106.386	9499 -1.0971 -1.2762 -1.5752 -1.8452 -2.1227 -2.3877 -2.4740 -3.0055 -3.3737 -3.2616 -3.5811 -3.5744 -2.3305 -1.0628 -0522 -2109 -2008 -1311 -0564 -0690 -0740 -0984 -0929 -0544 -0667 -0381	.2009 .1845 .1802 .1938 .2620 .2815 .4417 .4980 .8407 1.2591 1.7594 2.4727 2.5667 1.6854 1608 3171 2791 2338 2084 1943 1714 1378 0834 0701 0834 0061 0032	0069 .0061 0019 .0270 .0295 0295 0353 0139 0044 .0868 .5596 .2308 1501 0412 0177 0115 00277 00168 0074 00274 00274 00386 .0432 .0432 .0412 .0245		.0139 0390 1460 2344 .0807 0346 1126 .0212 0064 0020 .0068 0145	0876 0319 0575 .1569 0561 0211 .0027 0210 0305 0089 .0322	.0073 .0823 0507 .0571 .0034 .0245 .0128 0086	0914 0767 0353 0852 0557 1029 2186 2351 2357 3800 7391 8404 -1.6501 -1.6187 -1.1847 -1.1847 11847 11847 1191 1516 1791 1592 1419 1592 1473 1472 1473 1473	0072 0112 0058 0023 0023 0540 0133 0004 1120 0467 2929 4276 4095 4095 2568 1584 0149 0492 0419 0492 0419 0492 0493 	.0517 .0908 .3379 .1355 .0242 .1195 .0439 .0174 0030 0152 0089 0100 .0017 0039 0015 0099 .0122 .0182 0109	0150 0083 0424 0209 .0848 0755 0049 .0115 .0007 0082 .0005 0168	0724 0469 2434 0992 0700 .0428 .0406 0170 0082 .0216 .0353 .0193

A-2

Table A-23.

		FOURIER - BESSEL COEFFICIENTS FOR ENGINE NUMBER THREE PRESSURES P(THETA) = A(0) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA)) CONDITION 120, 2.0g RIGHT TURN (FLAPS UP) TEST 273-15 IRIG 11:04:04											
ROW NO.	Z (1N)	ALTITUDE A(0) (PSI)	* 8218. A(1) (PS1)	A(2) (PSI)	A(3) (PSI)	MBER= 0. A(4) (PSI)	475 A(5) (PSI)	A(6) (PSI)	B(1) (PSI)	.OW= 1195 B(2) (PSI)	B(3) (PS1)	B(4) (PSI)	B(5) (PSI)
123456789011234567890123556789012	54.051 48.789 41.907 36.019 30.118 26.166 22.196 15.214 12.215 9.009 6.037 3.629 1.413 0.000 324 1.156 7.782 12.404 17.655 29.638 36.633 48.631 60.627 72.593 95.576 106.336	1.0189 .9301 .8245 .6528 .4968 .3763 .2945 .0287 .0418 .1711 .4775 .8816 1.2911 .5610 -1.5881 -1.4182 8137 7198 6209 66516 4077 3594 2991 2688 2321 2682 2636	-2.6185	0143 .0067 .0201 .0222 .0278 .0064 .0075 0416 .0075 0416 0767 2531 3972 -1.1996 5823 5823 0242 .1051 0417 0417 0417 0417 0411 0417 0411 0417 0411 0417 	0081 0269 0157 0118 0024 0145 0145 0184 0545 0311 0589 .0064 .0187 .0519 2000 3176 0560 0917 1662 .1304	0182 0270 0248 0405 0512 .0768 .2124 1735 0914 1783 1967	0352 0437 0205 .0452 .0486 .0871 .1101 1039 0878 1380 1388 .0822	0288 .0223 .0332 0175 .0406 .0392 0218 0582 0101 .0052 0383 .0563	04770531063007360234033808840625107411261897164024131355 .3489 .4010 .5108 .3625 .2454 .1673 .0357 .0357 .0357 .0357 .0357 .1780 .2041 .1780 .1642	.0207 .0246 .0154 .0208 .0082 -0170 .0500 0059 .0863 .1564 .0356 .0467 0808 .0813 .1654 1265 1265 1265 1009 0167 0547 .0522 .0238 .0335 .0556	.0158 .0535 .0025 0181 0054 1253 .0988 .0244 .0833 1647 1772 1435 0925 0925 0193 0126 .0126 .0126 .0126 .0107 .0260 .0107 .0260 .0123	0154 .0282 .0629 0012 0794 1148 .0285 .1309 0354 1339 0090	. 0430 . 0797 0305 . 0882 0632 0870 2990 . 0805 . 0499 . 0626 . 0141 . 0747

Table A-24.

P(THETA) + A(O) + SIGMA(A(N)COS(NTHETA) + B(N)SIN(NTHETA))

			CONE	ITION 121	, 1.5g RIGH	T TURN (F	LAPS 30)	TEST 27		3 11:07:27.			
		ALT I TUDE	8221.	FT	MACH NL	MBER= 0.	265	CORRECT	ED AIRFL	.OW= 1434	. LB/SEC	i	
ROW	Z	A(0)	A(1)	A(2)	A(3)	A(4)	A(5)	A(6)	B(1) (PSI)	B(2) (PSI)	B(3) (PS1)	B(4) (PSI)	B(5) (PSI)
NO. 1 2 3 4 4 5 6 7 8 9 10 11	(IN) 54.051 48.789 41.907 36.019 30.118 26.166 22.196 18.211 15.214 12.215 9.009	(PS1)673277989172 -1.1640 -1.3924 -1.6032 -1.7629 -1.8378 -1.8909 -2.4661 -2.5918	(PS1) .1498 .1657 .1715 .1943 .2638 .2932 .3668 .5273 .6131 1.0935	(PS1)013801220252 .0112 .03030160009304070243 .13860293	0183 0023 0093 .0067 .0076 .0173 .0219 0031 .0036 1293 .0033	(PSI)	0622	(PSI)	0052 .0027 .0197 0228 0075 .0265 0460 0088 0028 2706 1016	0467 .0287 0298 .0290 0058 0227 .0545 .0057 .0705 .2101	. 0606	0556	0001
12 13 14 15 16 17 18 19 20 21 22 22 23 24 25 26 27 28 29 20 31 32 32 32 32 32 32 32 32 32 32 32 32 32	6.037 3.629 1.413 172 0.000 324 1.156 3.007 4.886 7.782 12.404 17.679 23.652 29.638 36.633 48.631 72.863 75.593 96.576 106.386	-2.5741 -2.6406 -2.7513 -1.851486870575 .1743 .2564 .2585 .2090 .001604820133030503370501044501920090 .0195 .0270	1.5408 1.8284 2.7746 2.7858 1.7891 1.373 3116 3128 2696 1840 2832 2636 2103 1704 1357 1002 0789 0598 0460 0411	.0463 .2496 -0998 -3798 -4421 -1799 -0391 -0120 .0207 .0374 .0404 .0396 .0755 .0662 .0918 .1110 .1103 .1037 .1157	0525 .0088 .0750 1449 1134 0979 0664 .0195 0865 1320 .0420	021611572075 .056501010999 .00550766123315670035	0370 0440 .1373 1185 .0419 0236 .0283 1310 1293 1322 .0304	0111 .0973 0770 .0618 0204 .0318 0032 0366 0438 0603 0189	1550 2868 3283 32554 0385 .0037 .0644 0736 10790 .0345 .0429 .0793 .0650 .0930 .1196 .1331 .1931	.0030 .0002 .0994 .0837 .0897 .0694 .0681 .0972 0848 2077 0633 0193 0321 .0108 0370 0352 0030 0200 0020	.0346 .1899 0079 .0444 .0377 0100 .0092 .0925 0862 0455 0050 0035 0118 0075 0065 .0047 0075 0020 0059	.0347 .0714 .0005 .0331 0656 0394 0237 .0949 0204 0934 0359	0012 1905 0431 0387 0056 .0205 .0587 .0171 .0151
		• •									9/1		

Table A-25.

P(THETA)=A(O)	SIGMA(A(N)COS(NTHETA)	+ B(N)SIN(NTHETA))	J
---------------	--------	-----------------	---------------------	---

		COND	ITION 123	, AIRPLAN	E STALL			73-10 IRIO			•	
	ALT TUDE:	9000.	FT	MACH NU	MBER≖ O.	207	CORRECT	ED AIRFL	OW= 1551	. LB/SEC		
ROW Z	A(0) (PSI)	A(1) (PSI)	A(2) (PSI)	A(3) (PSI)	A(4) (PSI)	A(5) (PSI)	A(6) (PSI)	B(1) (PSI)	B(2) (PSI)	B(3) (PSI)	B(4) (PSI)	B(5) (PSI)
1 54.0 2 48.7 3 41.9 4 36.0 5 30.1 7 22.1 8 18.2 9 15.2 10 12.0 13 3.6 14 15 1 16 0.3 17 22 1 18 3.0 17 22 1 18 3.0 17 22 1 17 6.0 18 1.1 19 20 4.8 21 7.7 22 29.6 23 36.6 27 28 29.6 28 29 75.5 30 31 32 106.3	89 -1.2851 07 -1.4541 19 -1.7063 18 -1.9749 66 -2.2512 96 -2.4336 11 -2.5439 15 -3.1906 09 -3.5562 37 -3.6103 -4.4217 13 -4.5505 72 -3.4679 -2.0984 245955 607 -2.0984 245955 86 .1013 82 .0036 070027 380027 380027 3800489 2700489 6303120238	.2974 .2406 .2422 .2241 .3137 .2665 .3446 .5000 .5854 .9593 1.4117 1.7308 2.9746 3.6060 3.7221 2.6943 1.0157 .1940 1471 2154 1839 1743 1836 1245 1080 0578 0578 0250	0420030702340220 .0244 .0079 .01410067 .0341 .1327 .1436 .160014360660143004270079 .0079 .00367 .00518 .0866 .0826 .1024 .1058 .0969 .1009 .0929 .1190	0541 0893 .0802 0340 1247 1958 1516 0647 0655 0279 .0173 0008	.0605 0565 2304 1533 .1032 0877 0402 0052 0143 .0110 .0155 0076	1062 0455 .0176 .0435 1498 .1195 .0123 .0205 .0127 .0247 .0002	.1130 .0066 .0660 .0110 .0725 0613 .0228 .0045 0074 0033 0074	0452 0507 0259 0302 0996 0623 0575 2487 4056 -1.0458 9768 9768 9768 06153 0615 06834 0573 0169 .0244 .0583 .0583 .0591 .0551 .0528 .05291 .0551 .0528 .1130 .1179 .1179	01300168015001390139068606810330048307654339216403670183056005750602051104510456	.12961304 .1482 .2239 .1384 .1155 .0257030304740299023000000156007901610037014000630265	0693 ,2473 0868 1410 0684 0723 0409 .0064 0018 0095 .0034	016917311083 .0331 .00920031032301890082 .0281 .02460023

125209-53-422

Figure A-1. Pressure Data Coordinate Conventions

Figure A-2. Engine No. 3 Inlet Pressures, Condition 101, 612K GW Takeoff (Flaps 20)

Figure A-3. Engine No. 3 Cowi Pressures, Condition 101, 612K GW Takeoff (Flaos 20)

Figure A-4. Engine No. 3 Inlet Pressures, Condition 101, 538K GW Takeoff (Flaps 10)

ORIGINAL PAGE IS OF POOR QUALITY

Figure A-5. Engine No. 3 Cowl Pressures, Condition 101, 538K GW Takeoff (Flaps 10)

Figure A-6. Engine No. 3 Inlet Pressures, Condition 101, 647K GW Takeoff (Flaps 10)

ORIGINAL PAGE IS OF POOR QUALITY

Figure A-7. Engine No. 3 Cowl Pressures, Condition 101, 647K GW Takeoff (Flaps 10)

ORIGINAL PAGE IS OF POOR QUALITY

Figure A-8. Engine No. 3 Inlet Pressures, Condition 118, 780K GW Simulated Takeoff (Flaps 10)

Figure A-9. Engine No. 3 Cowl Pressures, Condition 118, 780K GW Simulated Takeoff (Flaps 10)

Figure A-10. Engine No. 3 Inlet Pressures, Condition 102, Low Climb

Figure A-11. Engine No. 3 Cowl Pressures, Condition 102, Low Climb

Figure A-12. Engine No. 3 Inlet Pressures, Condition 103, Mid Climb

Figure A-13. Engine No. 3 Cowl Pressures, Condition 103, Mid Climb

Figure A-14. Engine No. 3 Inlet Pressures, Condition 104, High M Cruise

Figure A-15. Engine No. 3 Cowl Pressures, Condition 104, High M Cruise

Figure A-16. Engine No. 3 Inlet Pressures, Condition 105, Low M Cruise

Figure A-17. Engine No. 3 Cowl Pressures, Condition 105, Low M Cruise

Figure A-18. Engine No. 3 Inlet Pressures, Condition 106, Maximum M

Figure A-19. Engine No. 3 Cowl Pressures, Condition 106, Maximum M

ORIGINAL PAGE IS

Figure A-20. Engine No. 3 Inlet Pressures, Condition 107, Inflight Relight

Figure A-21. Engine No. 3 Cowl Pressures, Condition 107, Inflight Relight

Figure A-22. Engine No. 3 Inlet Pressures, Condition 108, Maximum q

Figure A-23. Engine No. 3 Cowl Pressures, Condition 108, Maximum q

Figure A-24. Engine No. 3 Inlet Pressures, Condition 109, Stall Warning (Flaps Up)

Figure A-25. Engine No. 3 Cowl Pressures, Condition 109, Stall Warning (Flaps Up)

ORIGINAL PACE 13 OF POOR QUALITY

Figure A-26. Engine No. 3 Inlet Pressures, Condition 110, Stall Warning (Flaps 10)

Figure A-27. Engine No. 3 Cowl Pressures, Condition 110, Stall Warning (Flaps 10)

Figure A-28. Engine No. 3 Inlet Pressures, Condition 111, Stall Warning (Flaps 30)

Figure A-29. Engine No. 3 Cowl Pressures, Condition 111, Stall Warning (Flaps 30)

Figure A-30. Engine No. 3 Inlet Pressures, Condition 112, Idle Descent

Figure A-31. Engine No. 3 Cowl Pressures, Condition 112, Idle Descent

Figure A-32. Engine No. 3 Inlet Pressures, Condition 113, Approach

Pressure coefficient

Figure A-33. Engine No. 3 Cowl Pressures, Condition 113, Approach

Figure A-34. Engine No. 3 Inlet Pressures, Condition 114, Touch and Go

Figure A-35. Engine No. 3 Cowl Pressures, Condition 114, Touch and Go

Figure A-36. Engine No. 3 Inlet Pressures, Condition 115, Thrust Reverse

Figure A-37. Engine No. 3 Cowl Pressures, Condition 115, Thrust Reverse

Figure A-38. Engine No. 3 Inlet Pressures, Condition 116, 2.0g Left Turn (Flaps Up)

Nominal arc length from highlight, in

Figure A-39. Engine No. 3 Cowl Pressures, Condition 116, 2.0g Left Turn (Flaps Up)

Figure A-40. Engine No. 3 Inlet Pressures, Condition 117, 1.6g Left Turn (Flaps 30)

Figure A-41. Engine No. 3 Cowl Pressures, Condition 117, 1.6g Left Turn (Flaps 30)

Figure A-42. Engine No. 3 Inlet Pressures, Condition 120, 2.0g Right Turn (Flaps Up)

Figure A-43. Engine No. 3 Cowl Pressures, Condition 120, 2.0g Right Turn (Flaps Up)

Figure A-44. Engine No. 3 Inlet Pressures, Condition 121, 1.6g Right Turn (Flaps 30)

Pressure coefficient

Figure A-45. Engine No. 3 Cowl Pressures, Condition 121, 1.6g Right Turn (Flaps 30)

Figure A-46. Engine No. 3 Inlet Produces, Condition 123, Airplane Stall

Figure A-47. Engine No. 3 Cowl Pressures, Condition 123, Airplane Stall

Figure A-48. Engine No. 4 Inlet Pressures, Condition 101, 612K Gross Weight Takeoff

Nominal arc length from highlight, in

Figure A-49. Engine No. 4 Inlet Pressures, Condition 101, 538K Gross Weight Takeoff

Figure A-50. Engine No. 4 Inlet Pressures, Condition 101, 647K Gross Weight Takeoff

Nominal arc length from highlight, in

Figure A-51. Engine No. 4 Inlet Pressures, Condition 118, 780K Gross Weight Simulated Takeoff

Figure A-52. Engine No. 4 Inlet Pressures, Condition 102, Low Climb

Nominal arc length from highlight, in

ORIGINAL PAGE IS

. .

Figure A-53. Engine No. 4 Inlet Pressures, Condition 103, Mid Climb

Pressure coefficient

Figure A-54. Engine No. 4 Inlet Pressures, Condition 104, High M Cruise

Figure A-55. Engine No. 4 Inlet Pressures, Condition 105, Low M Cruise

Figure A-56. Engine No. 4 Inlet Pressures, Condition 106, Maximum M

Nominal arc length from highlight, in

Figure A-57. Engine No. 4 Inlet Pressures, Condition 107, Inflight Relight

25209-55-43

Figure A-58. Engine No. 4 Inlet Pressures, Condition 108, Maximum q

Figure A-59. Engine No. 4 Inlet Pressures, Condition 109, Stall Warning (Flaps Up)

25209-54-43

Figure A-60. Engine No. 4 Inlet Pressures, Condition 110, Stall Warning (Flaps 10)

Figure A-61. Engine No. 4 Inlet Pressures, Condition 111, Stall Warning (Flaps 30)

Figure A-62. Engine No. 4 Inlet Pressures, Condition 112, Idle Descent

Figure A-63. Engine No. 4 Inlet Pressures, Condition 113, Approach

Figure A-64. Engine No. 4 Inlet Pressures, Condition 114, Touch and Go

WIZ

0

Figure A-65. Engine No. 4 Inlet Pressures, Condition 115, Thrust Reverse

i liker ing

Figure A-66. Engine No. 4 Inlet Pressures, Condition 116, 2.0g Left Turn (Flaps Up)

Figure A-67. Engine No. 4 Inlet Pressures, Condition 117, 1.6g Left Turn (Flaps 30)

Figure A-68. Engine No. 4 Inlet Pressures, Condition 120, 2.0g Right Turn (Flaps Up)

Figure A-69. Engine No. 4 Inlet Pressures, Condition 121, 1.6g Right Turn (Flaps 30)

Figure A-70. Engine No. 4 Inlet Pressures, Condition 123, Airplane Stall

Figure A-71. Airplane Center-of-Gravity Accelerations, Mild Gust

Figure A-72. Engine No. 3 Wing/Strut Accelerations, Mild Gust

Figure A-73. Engine No. 4 Wing/Strut Accelerations, Mild Gust

Figure A-74. Engine Angular Rates, Mild Gust

Figure A-75. Engine No. 3 Accelerations, Mild Gust

Figure A-76. Engine No. 4 Accelerations, Mild Gust

Figure A-77. Airplane Center-of-Gravity Normal Acceleration, Hard Landing

Figure A-78. Airplane Center-of-Gravity Angular Rates, Hard Landing

Figure A-79. Engine No. 3 Wing/Strut Accelerations, Hard Landing

ORIGINAL PAGE IS

Figure A-80. Engine No. 4 Wing/Strut Accelerations, Hard Landing

Figure A-81. Engine Angular Rates, Hard Landing

ORIGINAL PAGE IS OF POOR QUALITY

Figure A-82. Engine No. 3 Accelerations, Hard Landing

ORIGINAL PAGE IS OF POOR QUALITY

Figure A-83. Engine No. 4 Accelerations, Hard Landing

ORIGINAL PAGE IS OF POOR QUALITY

Figure A-83. Engine No. 4 Accelerations, Hard Landing (Concluded)

25394-36

Table B-1. Summary of Selected Test Condition Averages

Test	Condition	Mach	Pressure altitude, m (ft)	Gross weight, kg (Ibm)	Dynamic pressure, kPa (lb/in ²)	Calibrated airspeed, km/h (kn)	Alpha, deg	Free-stream total pressure, kPa (lb/in ²)
273-09	0.001	0.866	12 270	206 025	9.722	487.4	1.6	30.2051
			(40 256)	(454 207)	(1.410)	(263.2)		(4.3809)
i	0,002.1	0.767	12 478	199 759	7.384	418.7	3.3	26.4583
			(40 938)	(440 393)	(1.071)	(226.1)		(3.8375)
	0.003	0 .798	12 353	204 452	8.156	442.1	2.8	2 7.8258
			(40 528)	(450 740)	(1.183)	(238.7)		(4.0358)
273-12	0.001.1	0.864	11 909	219 686	10.239	499.7	1.9	31.9047
			(39 073)	(484 325)	(1.485)	(269.8)		(4.6274)
	0.002	0.762	12 029	216 516	7.826	430.4	3.6	28.2684
			(39 466)	(477 337)	(1.135)	(232.4)		(4.1000)
	0.003	0.800	12 002	218 881	8.660	455.2	2.9	29.4584
	;		(39 376)	(482 550)	(1.256)	(245.8)		(4.2726)
273-15	0.001	0.855	11 591	216 946	10.556	506.2	1.7	33.2491
			(38 028)	(478 283)	(1.531)	(273.3)		(4.8224)
	0.002	0.776	11 596	218 678	8.694	454.1	3.0	30.6829
			(38 045)	(482 102)	(1.261)	(245.2)		(4.4502)
	0.003	0 .802	11 601	218 085	9.267	470.6	2.6	31.4448
			(38 060)	(480 796)	(1.344)	(254.1)		(4.5607)
	0.004	0.906	11 432	216 125	12.162	547.1	1.0	36.0100
			(37 505)	(476 473)	(1.764)	(295.4)		(5.2228)

```
100 A
```

#

```
    WBL 445

COND. 1.00.137.001
UPPER SURFACE
                                                  LOWER SURFACE
                       CP
                                  LOCAL MACH
                                                       X/C -
                                                                         CP
                                                                                   LOCAL MACH
                                   0.881700
     1.0
                   -0.032922
                                                                                    0.898070
                                                                     -0.065627
                                                      65.0
                                                                                    0.896140
     2.0
                   -0.542130
                                   1.151200
                                                      60.0
                                                                     -0.061762
     3.0
                   -0.703680
                                   1.247900
                                                      55.0
                                                                    -0.057188
                                                                                    0.893840
     5.0
                   -0.803810
                                   1.312300
                                                      50.0
                                                                     -0.058936
                                                                                    G.894720
                   -0.923170
                                   1.395000
     7.5
                                                      45.0
                                                                     -0.025817
                                                                                    0.878160
    10.0
                                   1.285400
                   -0.762720
                                                      40.0
                                                                     -0.031856
                                                                                    0.881170
                   -0.769820
    15.0
                                   1.290000
                                                      35.0
                                                                     -0.039185
                                                                                    0.884830
    20.0
                   -0.569560
                                   1.167100
                                                      30.0
                                                                     -0.046008
                                                                                    0.888250
                                   1.105800
    22.5
                   -0,461860
                                                      25.0
                                                                     -0.093059
                                                                                    0.911870
    25.0
                   -0,438570
                                   1.092900
                                                      20.0
                                                                     -0.669350
                                                                                    1.226700
                                                                                    1.081100
                                   1.123200
                                                      15.0
    30.0
                   -0.492970
                                                                     -0.417010
                                   1.140300
                   -0.523020
    35.0
                                                      10.0
                                                                     -0.083081
                                                                                    0.906840
    40.0
                   -0.605700
                                   1.188300
                                                       5.0
                                                                      0.281680
                                                                                    0.725880
    45.0
                                   1.183800
                   -0.598120
                                                       3.0
                                                                      0.329210
                                                                                    0.702210
    50.0
                   -0.660090
                                   1.221000
                                                       2.0
                                                                      0.365610
                                                                                    0.683990
    52.4
                   -0.634160
                                   1,205300
                                                                      0.402580
                                                       1.0
                                                                                    0.665350
    55.0
                                   1.243600
                   -0.696860
    60.0
                   -0.676630
                                   1.231100
                   -0.551060
    65.0
                                   1.156400
    70.0
                   -0.315080
                                   1.026200
    75.0
                   -0.133550
                                   0.932320
    80.0
                   -0.008147
                                   0.869350

    WBL 470

COND. 1.00.137.001
UPPER SURFACE
     X/C - %
                       CP
                                  LOCAL MACH
    11.0
                   -0.830650
                                   1.330300
    20.0
                   -0.478790
                                   1.115300
    30.0
                   -0.576850
                                   1.171400
    40.0
                   -0.702730
                                   1.247300
    50.0
                   -0.750920
                                  · 1.277800
    60.0
                    ***
                                   ***

    WBL 510

COND. 1.00.137.001
UPPER SURFACE
                                                  LOWER SURFACE
     X/C
                       CP
                                  LOCAL MACH
                                                       X/C - %
                                                                         CP
                                                                                   LOCAL MACH
                                   0.924740
     1.0
                   -0.118570
                                                      65.0
                                                                     -0.060707
                                                                                    0.895600
     2.0
                   -0.342000
                                   1.040500
                                                      60.0
                                                                     ~0.065665
                                                                                    0.898080
                                                      55.0
     3.0
                   -0.484470
                                   1.118500
                                                                                    0.905070
                                                                     -0.079551
     5.0
                   -0.643450
                                   1.210900
                                                      50.0
                                                                     -0.096983
                                                                                    0.913840
                                                      45.0
                                                                                    0.892290
     7.5
                   -0.716800
                                   1.256100
                                                                     -0.054096
                                   1,256200
    10.0
                   -0.716930
                                                      40.0
                                                                      0.019008
                                                                                    0.855840
    15.0
                   -0.688900
                                   1.238700
                                                      35.0
                                                                      0.003575
                                                                                    0.863520
    22.5
25.0
                                   1.129300
                   -0.503650
                                                      30.0
                                                                      0.021262
                                                                                    0.854720
                   -0.581370
                                   1.174000
                                                      25.0
                                                                      0.056514
                                                                                    0.837240
    27.5
                   -0.594700
                                   1.181800
                                                      20.0
                                                                      0.062822
                                                                                    0.834130
    30.0
                   -0.602450
                                   1.186400
                                                                                    0.802910
                                                      15.0
                                                                      0.125940
                                   1.193600
    35.0
                   -0.614510
                                                      10.0
                                                                                    0.832560
                                                                      0.065969
    40.0
                   -0.685140
                                   1,236400
                                                       5.0
                                                                      0.092377
                                                                                    0.819490
                                   1.249600
    45.0
                   -0.706420
                                                       3.0
                                                                      0.068567
                                                                                    0.831270
    47.5
                   -0.719200
                                   1.257600
                                                       2.0
                                                                     -0.057611
                                                                                    0.894050
    50.0
                   -0.761100
                                   1.284300
                                                       1.0
                                                                     -0.050702
                                                                                    0.890590
    52.4
                   -0.765600
                                   1.287300
    55.0
                   -0.795960
                                   1.307100
                                   1.353300
    60.0
                   -0.864210
    65.0
                   -0.904410
                                   1,381500
    70.0
                   -0.368560
                                   1.054800
```

Table B-2. Tabulated Data for Test 273-09, Condition 1.00.137.001

ø

Table B-2. Tabulated Data for Test 273-09, Condition 1.00.137.001 (Continued)

ø

COND. 1.00.137.0 INNER SURFACE X/C - % 7.7 5.0 3.3 1.3 0.1 0.0	CP 0.213440 0.307250 0.518850 0.788380 ***** 0.852670	LOCAL MACH 0.759690 0.713170 0.605710 0.455900 **** 0.415850	OUTER SURFACE X/C - % 0.4 1.1 2.8 6.1 9.0 12.9 17.4 22.7 27.7 34.7 46.2 57.5 64.7 71.9 82.4 99.6	CP -0.295370 -0.646790 -0.363790 -0.540860 -0.652230 -0.728380 -0.648810 -0.508850 -0.479430 -0.241710 -0.310250 -0.310250 -0.155860 -0.107370 0.022055 0.225930	LOCAL MACH 1.015800 1.212900 1.052200 1.150500 1.216200 1.263400 1.214200 1.132200 1.115600 0.987780 1.030300 1.023700 0.943650 0.943650 0.919070 0.854330 0.753510
• ENGINE 3 150 deg I COND. 1.00.137.0 INNER SURFACE X/C - % 9.0 5.2 3.6 1.5 0.2 0.0		LOCAL MACH 0.783870 0.696190 0.625210 0.440390 0.199820 0.409890	OUTER SURFACE X/C - X 0.4 1.2 2.9 6.2 9.4 14.5 18.2 22.7 27.7 34.5 45.7 57.0 63.9 71.0 81.3 99.4	CP -0.076050 -0.380470 -0.380470 -0.396250 -0.421370 -0.596550 -0.847690 -0.704930 -0.704930 -0.7248210 -0.248210 -0.2133170 -0.133170 -0.133170 -0.1030303 0.207840	LOCAL MACH 0.903300 1.061200 1.021600 1.083800 1.182900 1.344400 1.341900 1.248700 1.279300 1.030600 0.991160 0.972090 0.932130 0.932130 0.938030 0.866790 0.762460
• ENGINE 3 210 deg I ©OND. 1.00.137.00 INNER SURFACE X/C - % 8.2 5.2 3.6 1.5 0.3 0.0		LOCAL MACH 0.792610 0.681890 0.596840 0.426230 0.141160 0.394530	OUTER SURFACE X/C - X 0.5 1.2 2.9 6.2 9.3 14.4 18.1 22.4 27.5 34.2 45.5 56.9 63.9 70.8 81.0 99.0	CP -0.125650 -0.556750 -0.322610 -0.5709750 -0.729750 -0.790330 -0.774600 -0.695370 -0.724450 -0.231510 -0.193300 -0.157050 -0.119460 0.099189 0.199600	LOCAL MACH 0.928320 1.159700 1.030200 1.167400 1.264300 1.263400 1.242700 1.242700 1.260900 0.982490 0.962790 0.982490 0.962790 0.9860720 0.860720 0.766530

• ENGINE 3 270 deg INLET RADIAL

COND. 1.00.137.001				
INNER SURFACE		OUTER SURFACE		
X/C - % Ci	LOCAL MACH	X/C - %	CP	LOCAL MACH
5.5 0.345	5840 0 .693900	0.4	-0.089061	0.909850
3.7 0.500	0,615150	1.0	-0.778360	1.295500
1.3 0.81	1370 0.441850	2.7	-0.553980	1.158000
0.1 1.180	0.098497	6,2	-0.632890	1.204500
0.0	***	9,6	-0.754270	1.279900
		12.8	-0.908120	1.384100
		17.2	-0.697250	1.243900
		21.7	-0.541550	1.150900
		26.6	-0.587050	1.177300
•		33.8	-0.564310	1.164000
		45.2	-0.262050	0.998360
		56.6	-0.291750	1.013900
		63.9	-0.173540	0.952680
		71.1	-0.136620	0.933880
		81.5	0.003386	0.863610
		99.0	0.190270	0,771150

• ENGINE 3 330 deg INLET RADIAL

- Literial 3 330 deg	MITCH HADIAL				
COND. 1.00.137.0	01		OUTER SURFACE	•• •	
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
4.8	0.397600	0.657870	0.4	-0.312560	1.024900
3.2	0.587040	0.569710	1.1	-0.857820	1.348300
1.2	0.880040	0.397960	2.7	-0.687080	1.237600
0.2	1.081800	0.237690	5.8	-0.791720	1.304300
0.0	0.795940	0.451320	8.8	-0.864750	1.353600
			12.6	-0.676600	1.231100
			17.8	-0.784060	1.299300
			21.4	-0.785620	1.300300
			26.1	-0.788410	1.302200
			33.7	-0.604860	1.187800
			45.4	-0.215810	0.974390
			57.0	-0.290580	1.013300
			64.5	-0.190280	0.961250
			71.8	-0.116550	0.923720
			82.7	0.012508	0.859080
			99.4	0.165980	0.783140

Table B-2. Tabulated Data for Test 273-09, Condition 1.00.137.001 (Continued)

• WBL 809

COHD. 1.00.137. UPPER SURFACE X/C - % 1.0 2.0 3.0 5.0 7.5 10.0 22.5 23.0 35.0 40.0 45.0 50.0 52.4 55.0 60.0 65.0 70.0 75.0 80.0	CP -0.291400 -0.579420 -0.740180 -0.829670 -1.031500 -1.151400 **** 0.849000 -0.713030 -0.763110 -0.610780 -0.690310 -0.311320 **** -0.332350 -0.347700 -0.312140 -0.308720 -0.234310 -0.163300	LOCAL MACH 1.013700 1.172900 1.270900 1.329600 1.477100 1.578300 **** 1.342700 1.253700 1.285600 1.191300 1.239600 1.024200 **** 1.035400 1.024700 1.022900 0.983930 0.947440	LOWER SURFACE X/C - % 65.0 60.0 55.0 50.0 45.0 40.0 35.0 20.0 15.0 10.0 5.0 3.0 2.0 11.0	CP . 0.078344 0.036071 -0.004400 -0.053951 -0.062316 -0.060060 -0.128090 -0.376970 -0.376970 -0.3769760 -0.277010 -0.099552 0.112030 0.389780 0.413190 0.408600 0.332940	LOCAL MACH O.826430 O.847370 O.867480 O.892220 O.896400 O.895270 O.929550 1.059300 1.0659300 0.915130 O.809780 O.671820 O.659970 O.662300 O.700340
• WBL 834					
COND.1.00.137.0 UPPER SURFACE X/C - X .24.0 30.0 40.0 50.0 60.0	CP -0.960380 -0.808740 -0.368120 -0.401490 -0.340510	LOCAL MACH 1.422300 1.315600 1.054500 1.072600 1.039700			

● WBL 870

COND. 1.00.137	001				
UPPER SURFACE	. • • •		LOWER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
1.0	-0.099081	0.914890	65.0	0.041331	0.844760
2 .0	-0.218770	0 .975900	60.0	0.008123	0.861250
10.0	-0.715060	1.255000	55.0	0.004526	0.863040
15.0	-0.841620	1.337700	50.0	0.006066	0.862270
20.0	-0.899720	1.378200	45.0	-0.012179	0.871360
22.5	-0.8189 60	1.322400	40.0	-0.011628	0.871080
25.0	-0.868220	1.356000	35.0	-0.013479	0.872000
30.0	-0.812330	1.318000	30.0	-0.017455	C.873980
35.0	-0.719650	1.257900	25.0	-0.046658	0.888570
40.0	-0.408640	1.076500	20.0	-0.024750	0.877620
45.0	-0.332960	1.035700	15.0	-0.028691	0.879590
47.5	-0.405270	1.074600	10.0	-0.023079	0.876790
50.0	-0.408230	1.0 76300	7.5	-0.015539	0.873030
52.4	-0.427880	1.087000	5.0	-0,028728	0.879600
55.0	-0.443430	1.0 95600	3.0	-0.062171	0.896330
60.0	-0.422510	1.084100	2.0	-0.097367	0.914020
65.0	-0.342510	1.040800	1.0	-0.243080	0.988480
70.0	-0.255760	0.995080			

Table B-2. Tabulated Data for Test 273-09, Condition 1.00.137.001 (Continued)

```
25200_109A
```

.

```
    ENGINE 4 WL 180

COND. 1.00.137.001
INBOARD SURFACE
                                                  OUTBOARD SURFACE
                       CP
                                  LOCAL MACH
                                                       X/C - X
                                                                         CP
                                                                                   LOCAL MACH
     6.7
                    0.424400
                                   0.654290
                                                                                     0.802560
                                                      96.4
                                                                      0.126660
                    0.507700
     8.7
                                   0.611510
                                                      81.5
                                                                     · 0.080734
                                                                                     0.825250
     10.9
                    0.523440
                                   0.603310
                                                      58.9
                                                                     -0.018880
                                                                                     0.874690
     14.5
                    0.396390
                                                                                     0.908440
                                   0.668480
                                                       44.2
                                                                     -0,086267
     17.9
                    0.168110
                                   0.782080
                                                      37.7
                                                                     -0.078251
                                                                                     0.904400
                                                                     -0.030939
                                                                                     0.880700
     21.6
                    0.068386
                                   0.831370
                                                      33.7
     33.7
                   -0.400110
                                   1.071800
                                                      21.6
                                                                      0.042964
                                                                                     0.843950
                                                                     -0.048722
     37.7
                   -0.562480
                                   1.163000
                                                      17.9
                                                                                     0.889600
     44.2
                                   1.008900
                   -0.282260
                                                      14.5
                                                                     -0.117820
                                                                                     0.924350
     58.9
                    0.027765
                                   0.851480
                                                      10.9
                                                                     -0.133450
                                                                                     0.932260
                                   0.799910
     81.5
                    0.132020
                                                        8.7
                                                                     -0.140610
                                                                                     0.935890
     96.4
                    0.190060
                                   0.771240
                                                        6.7
                                                                     -0.093808
                                                                                     0.912230

 ENGINE 4 WL 155

COND. 1.00.137.001
INBOARD SURFACE
                                                  OUTBOARD SURFACE
                       CP
                                  LOCAL MACH
                                                       X/C
                                                                         CP
                                                                                   LOCAL MACH
                   -0.133430
                                   0.932260
      1.8
                                                      96.8
                                                                      0.157740
                                                                                     0.787210
      3.7
                   -0.131060
                                   0.931050
                                                      89.0
                                                                      0.082263
                                                                                     0.824490
                                   0.947860
                                                      81.5
                   -0.164130
     5.5
                                                                                     0.822450
                                                                      0.086387
                                                                      0.015297
     8.1
                   -0.142410
                                   0.936820
                                                      72.2
                                                                                     0.857680
     13.3
                    0.006875
                                   0.861870
                                                      66.6
                                                                                     0.921050
                                                                     -0.111290
     23.1
                    0.204310
                                   0.764210
                                                      62.4
                                                                     -0.243010
                                                                                     0.988450
                                                                     -0.228580
                                                                                     0.980970
     33.1
                    0.368320
                                   0.682610
                                                      57.5
                    0.220860
     43.0
                                   0.756010
                                                      52.2
                                                                     -0.149150
                                                                                     0.940230
     52.2
                   -0.040135
                                   0.885310
                                                       43.0
                                                                     -0.049124
                                                                                     0.889800
    57.5
                   -0.313940
                                   1.025600
                                                      33.1
                                                                      0.017518
                                                                                     0.856580
     62.4
                   -0.607500
                                   1.189400
                                                      23.1
                                                                      0.061974
                                                                                     0.834530
                                   1.208500
    66.6
                   -0.639380
                                                       13.3
                                                                     -0.103580
                                                                                     0.917150
                                                        8.1
                                                                     -0.251980
     72.2
                   -0.083398
                                   0.906990
                                                                                     0.993110
                                   0.846350
     81.5
                    0.038132
                                                        5.5
                                                                     -0.211410
                                                                                     0.972100
     89.0
                    0.004983
                                   0.862810
                                                                     -0.204750
                                                                                     0.968680
                                                        3.7
     96.8
                    0.167190
                                   0.782540
                                                        1.8
                                                                     -0.125210
                                                                                     0.928080

    ENGINE 4 030 deg CORE COWL

COND. 1.00.137.001
OUTBOARD SURFACE
     X/C - %
                       CP
                                  LOCAL MACH
      3.6
                                   0.711210
                    0.311160
     15.5
                    0.089388
                                   0.820970
    24.0
                   -0.235670
                                   0.984650
    29.2
                   -0.265550
                                   1.000200
     37.9
                   -0.131970
                                   0.931510
     44.7
                                   1.033200
                   -0.328240
                   -0.321580
-0.571290
     49.9
                                   1.029700
    53.1
                                   1.168100
     57.0
                   -0.363570
                                   1.052100
    58.2
                   -0.398600
                                   1.071000
     62.7
                   -0.373390
                                   1.057400
    64.9
                   -0.546510
                                   1.153700
     68.1
                   -0.356830
                                   1.048500
                                   1.007800
    69.1
                   -0.280190
    70.2
                   -0.344620
                                   1.041900
                                   1.042300
     74.0
                   -0.345290
     77.4
                   -0.548680
                                   1.155000
     80.8
                   -0.373400
                                   1.057400
    83.8
                   -0.362480
                                   1.051500
    86.7
                   -0.360240
                                   1.050300
    90.1
                   -0.259740
                                   0.997150
    92.0
                   -0.005920
                                   0.868240
    95.4
                    0.028036
                                   0.851350
     99.4
                    0.036179
                                   0.847320
```

Table B-2. Tabulated Data for Test 273-09, Condition 1.00.137.001 (Continued)

• ENGINE 4 060 deg INLET RADIAL

COND. 1.00.137.	0 01				
INNER SURFACE			OUYER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
44.1	0.689130	0.513740	2.7	-0.843820	1.339200
32.2	****	***	6.1	-0.831640	1.331000
23.1	***	****	12.6	-0,919410	1.392300
16.6	0.304970	0.714300	17,0	-0.857110	1.348400
10.2	***	***	26.3	-0.739200	1.270300
4.9	0.400010	0.686650	32.7	-0.668600	1.226200
2.0	0.753510	0.476710	43.2	-0.218820	0.975930
0.0	0.748330	0.479740			

• ENGINE 4 180 deg INLET RADIAL

COND. 1.00.137.0	001		OUTER SURFACE	<u>:</u>	
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
42.5	0.654830	0.532880	6,2	-0.625990	1.200400
31.7	0.474460	0.628700	9.5	****	***
24.4	0.296030	0.713 750	13.2	-0,603580	1.187100
17.8	0.245960	0.743600	17.8	-0.610240	1.191000
11.1	0.079730	0.825750	27.2	-0.267310	1.001100
5.5	0.29 9620	0.716 960	34.5	-0,649040	1.214300
2.4	0.675320	0.521500	45.5	-0,192420	0.962350
0.0	***	***			

• ENGINE 4 300 deg INLET RADIAL

COHD. 1.00.137.0	101					
INNER SURFACE		OUTER SURFACE				
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH	
42.390998	0.660870	0.529540	2.7	-0.763360	1.285800	
32.200001	0.521000	0.604590	5.8	-0.637220	1.207200	
22.799999	0.386720	0 .67 3 360	12.7	-0.696800	1.243600	
16.400000	0.288590	0,722450	17.1	-0.722310	1.259600	
9.900000	0.168660	0.781820	26.4	-0.731240	1.265200	
4.700000	0.306980	0.713300	33.0	-0.767280	1,288400	
2.0 00000	0.696780	0 .509420	43.3	-0.668670	1.226300	
0.00000	0.854860	0.414440				

Table B-2. Tabulated Data for Test 273-09, Condition 1.00.137.001 (Concluded)

```
    WBL 445

COND. 1.00.137.002.1
UPPER SURFACE
                                                 LOWER SURFACE
     X/C - %
                       CP
                                 LOCAL MACH
                                                      X/C - %
                                                                        CP
                                                                                  LOCAL MACH
                   -0.238530
     1.0
                                  0.868810
                                                      65.0
                                                                    -0.018042
                                                                                   0.774200
     2.0
                                  1.390000
                                                     60.0
                   -1.287300
                                                                    -0.009283
                                                                                    0.770460
                   -1.410500
                                  1.470400
                                                      55.0
                                                                    -0.002313
                                                                                   0.767470
     5.0
                   -1.425000
                                  1.480400
                                                     50.0
                                                                    -0.011799
                                                                                   0.771530
     7.5
                   -1.446300
                                  1.495300
                                                      45.0
                                                                     0.003091
                                                                                   0.765150
    10.0
                   -1.408200
                                  1.468800
                                                     49.0
                                                                    -0.010117
                                                                                   0.770810
    15.0
                   -0.484540
                                  0.976710
                                                     35.0
                                                                     0.013295
                                                                                   0.760780
    20.0
                   -0.593300
                                  1.026000
                                                                    -0.029813
                                                                                   0.779240
                                                      30.0
    22.5
                   -0.577550
                                  1.018800
                                                      25.0
                                                                    -0.037373
                                                                                   0,782480
    25.0
                   -0.591580
                                  1.025200
                                                                                   0.793120
                                                      20.0
                                                                    -0.062221
                   -0.559640
    30.0
                                  1.010600
                                                      15.0
                                                                    -0.057297
                                                                                   0.791010
    35.0
                 - -0.563950
                                  1.012600
                                                      10.0
                                                                     0.182710
                                                                                   0.687750
    40.0
                   -0.543020
                                  1,003000
                                                       5.0
                                                                     0.483830
                                                                                   0.552410
    45.0
                   -0.472020
                                  0.971110
                                                       3.0
                                                                     0.509760
                                                                                   0.540150
                                  C.972850
    50.0
                   -0.475910
                                                                     0.521640
                                                       2.0
                                                                                   0.534480
    52.4
                   -0.438570
                                  0.956220
                                                       1.0
                                                                     0.557530
                                                                                    0.517160
    55.0
                   -0.421530
                                  0.948670
                   -0.377720
    60.0
                                  0.929370
    65.0
                   -0.293350
                                  0.892540
    70.0
                   -0.214140
                                  0,858290
    75.0
                  .-0.101070
                                  0.809750
    80.0
                   -0.017336
                                  0.773900
● WBL 470
COND. 1.00.137.002.1
UPPER SURFACE
     X/C - %
                      · CP
                                 LOCAL MACH
    11.0
                   -0.636240
                                  1.045800
    20.0
                                  1.073400
                  -0.695310
    30.0
                  -0.677520
                                  1,065100
    40.0
                  -0.653280
                                  1.053700
    50.0
                   -0.570180
                                  1.015400
   60.0
                    ***
                                  ***

    WBL 510

COND. 1.00.137.003
UPPER SURFACE
                                                 LOWER SURFACE
     X/C - %
                       CP
                                 LOCAL MACH
                                                      X/C - %
                                                                        CP
                                                                                  LOCAL MACH
                                  0.989140
     1.0
                   -0.417540
                                                     65.0
                                                                    -0.023110
                                                                                   0.808310
     2.0
                   -0.622870
                                  1.089000
                                                      60.0
                                                                    -0.020308
                                                                                   0.807050
                                                                    -0.021915
     3.0
                                  1.177100
                   -0.793260
                                                      55.0
                                                                                   0.807780
     5.0
                   -0.991310
                                  1,288200
                                                      50.0
                                                                    -0.042136
                                                                                   0.816870
                   -1.017200
                                  1,303600
                                                     45.0
                                                                    -0.000627
     7.5
                                                                                   0.798190
    10.0
                                                      40.0
                                                                   0.065124
                   -0.530590
                                  1.043400
                                                                                   0.768610
    15.0
                   -0.636720
                                  1,095900
                                                      35.0
                                                                     0.061601
                                                                                   0.770190
    22.5
                   -0.716160
                                                     30.0
                                                                     0.064878
                                  1,136500
                                                                                   0.768720
                                  1.148900
    25.0
                   -0.739930
                                                     25.0
                                                                     0.107820
                                                                                   0.749370
    27.5
                                                     20.0
                   -0.729150
                                                                     0.115580
                                  1.143200
                                                                                   0.745870
    30.0
                   -0.720630
                                                      15.0
                                                                     0.190530
                                  1.138800
                                                                                   0.711970
    35.0
                   -0.698860
                                                      10.0
                                                                     0.144710
                                                                                   0.732720
                                  1.127600
    40.0
                   -0.722350
                                  1.139700
                                                       5.0
                                                                     0.216200
                                                                                    0.700300
    45.0
                   -0.586830
                                  1.071000
                                                       3.0
                                                                     0.228000
                                                                                   0.694920
    47.5
                   -0.609220
                                  1.082100
                                                       2.0
                                                                     0.197680
                                                                                   0.708720
                                  1.103100
    50.0
                   -0.650890
                                                       1.0
                                                                     0.195650
                                                                                    0.709640
    52.4
                   -0,589510
                                  1.072300
                                  1.073000
    55.0
                   -0.590820
    60.0
                   -0.508090
                                  1.032500
                   -0.430520
    65.0
                                  0.995290
    70.0
                   -0.340930
                                  0.953180
```

Table B-3. Tabulated Data for Test 273-09, Condition 1.00.137,002.1

• ENGINE 3 WL 155

COND. 1.00.137.	002.1			A ====	
INBOARD SURFACE	•		OUTBOARD SURF	ACE	
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
3.5	***	****	90.0	0.135410	0.708250
5.1	1	1	82,8	0.139220	0.706600
7.5	j		75,9	0.106400	0.720770
12.3	4	<u> </u>	67.2	0.098889	0.724010
21.5		Ì	62.0	0.014724	0.760170
30.4	j	į.	57.2	-0.036088	0.781930
39.3	₩	.	53.8	-0.011741	0 .771500
48,5	***	***	48,5	0.081021	0.801160
53,8	-0.006445	0.769240	39.3	-0.056028	0.790460
57.2	***	***	30.4	-0.045960	0.786150
62.0	-0.128190	0.821370	21.5	0.032087	0.752720
67.2	-0.0 50701	0.788180	12.3	-0.159180	0.834650
75,9	0.010379	0.762020	7.5	-0.283280	0.888170
82.8	0.043096	0.748000	5.1	-0.313300	0.901210
90.0	0.076236	0.733760	•••		"

• ENGINE 3 030 deg INLET RADIAL

COND. 1.00.137.0	002.1				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
7.7	0.171420	0.692650	0.4	-0.851140	1.148900
5.0	0.347100	0,615190	1.1	-1.229200	1.354400
3.3	0.499420	0.545050	2.7	-1.110000	1.285300
1.3	0.879070	0,340550	5.8	-0.961570	1.205100
0.2	1.119000	0.121530	8.8	-0.862730	1.154700
0.0	0.579850	0.506240	12.5	-0.752380	1.100600
***	1		15.7	-0.634030	1.044800
	·		21.1	-0.481940	0.975540
			26.1	-0.340170	0.912930
			33.5	-0.363610	0.923180
			45.6	-0.332330	0.909500
			57.2	-0.121310	0.818420
			64.5	-0.019510	0.774840
			71.8	-0.003007	0.767760
			82.4	0.131780	0.707700 0.709820
			99,4	0.131780	0.709020

Table B-3. Tabulated Data for Test 273-09, Condition 1.00.137.002.1 (Continued)

.

• ENGINE 3 090 deg INLET RADIAL

COND.1.00.137.00 INNER SURFACE X/C - % 7.7 5.0 3.3 1.3 0.1 0.0	CP 0.088145 0.180220 0.357410 0.681570 **** 0.870320	LOCAL MACH 0.758250 0.716650 0.63260 0.474640 ***** 0.364430	OUTER SURFACE X/C - % 0.4 1.1 2.8 6.1 9.0 12.9 17.4 22.7 27.7 34.7 46.2 57.5 64.7 71.9 82.4 99.6	CP -0.233640 -0.483850 -0.403150 -0.484930 -0.536250 -0.566390 -0.365520 -0.225670 -0.225670 -0.245410 -0.274290 -0.245990 -0.113390 -0.068863 0.041403 0.228770	LOCAL MACH 0.903680 1.020800 0.982340 1.021300 1.044200 1.044200 0.964660 0.900030 0.918990 0.909070 0.922340 0.907040 0.828910 0.828910 0.779280 0.694570
 ENGINE 3 150 deg COND. 1.00.137.0 					
INNER SURFACE X/C - % 9.0 5.2 3.6 1.5 0.2 0.0	CP -0.035718 0.130820 0.265290 0.636680 1.054900 0.961080	LOCAL MACH 0.813990 0.739000 0.677870 0.498400 0.221550 0.301440	OUTER SURFACE X/C - X 0.4 1.2 2.9 - 6.2 9.4 14.5 18.2 22.7 27.7 34.5 45.7 57.0 63.9 71.0 81.3 99.4	CP 0.110560 -0.085730 -0.185490 -0.287710 -0.400800 -0.435750 -0.465680 -0.280350 -0.311960 -0.238420 -0.198710 -0.150830 -0.086039 -0.065378 0.019150 0.205670	LOCAL MACH 0.748140 0.836520 0.881710 0.928520 0.981230 0.997770 1 012000 0 325120 0.939730 0.905870 0.887720 0.865970 0.865970 0.827350 0.789300 0.705080
ENGINE 3 210 deg					
COND. 1.00.137.0 INNER SURFACE X/C - % 8.2 5.2 3.6 1.5 0.3 0.0	CP -0.039522 0.189480 0.352320 0.704070 1.113300 0.946700	LOCAL MACH 0.815700 0.712440 0.637630 0.462450 0.154480 0.312100	OUTER SURFACE X/C - X 0.5 1.2 2.9 6.2 9.3 14.4 18.1 22.4 27.5 34.2 45.5 56.9 63.9 70.8 81.0 99.0	CP -0.003277 -0.361430 -0.292430 -0.498410 -0.543220 -0.545570 -0.428400 -0.356300 -0.356300 -0.351650 -0.175770 -0.112550 -0.112550 -0.005742 -0.170510	LOCAL MACH 0.799390 0.962760 0.930700 1.027800 1.049500 1.050700 0.994290 0.960350 0.952940 0.957880 0.911930 0.87290 0.862580 0.848640 0.795320 0.721050

Table B-3. Tabulated Data for Test 273-09, Condition 1.00.137.002.1 (Continued)

• ENGINE 3 270 deg INLET RADIAL

COND. 1.00.137.	00 3				
INNER SURFACE			OUTER SURFACE	•	
X/C - X	CP	LOCAL MACH	1/C - X	CP	LOCAL MACH
8.1	0.111310	0.747800	0.4	-0.093312	0.839950
5.5	0.263920	0 .678500	1.0	-0.937410	1.256900
3.7	0.431360	0 .600380	2.7	-0.588060	1.071600
1.3	0 .76047 0	0.430940	6.2	-0.800990	1.236200
0.1	1.157100	0.072828	9.0	-0.902000	1.236700
0.0	****	***	12.8	-0.917600	1.245500
			17.2	-0.563650	1.059600
			21.7	-0.303970	0.936030
		•	26.6	-0.300740	0.934540
			33.8	-0.256520	0.914160
			45.2	-0.317370	0.942246
			56.6	-0.339890	0.952700
			63.9	-0.205740	
			71.1		0.890930
			81.5	-0.151040	0.870590
				-0.023708	0.808580
			99.0	0 .138070	0.735720

• ENGINE 3 330 deg INLET RADIAL

COND. 1.00.137.00	3				
INNER SURFACE	•		OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - X	CP	LOCAL MACH
7.5	0.260020	0.680290	0.4	-0.643100	1.099100
4.8	0.389920	0.620020	1.1	-1.189700	1.413000
3.2	0.598030	0.518360	2.7	-1.002500	1.294900
1.2	0.897300	0.345660	5.8	-1.087700	1.346800
0.2	1.053800	0.222600	8.8	-1.139800	1.380000
0.0	0.658610	0.486880	12.6	-0.891460	1.230800
		• • • • • • • • • • • • • • • • • • • •	17.8	-0.690320	1.123200
•			21.4	-0.343189	0.954230
·			26.1	-0.319470	0.943210
			33.7	-0.233920	0,903800
			45.4	-0.267690	0.919300
•			57.0	-0.296900	0.932760
			64.5	-0.191740	0.884550
				-0.114690	0.849600
			71.8		
			82.7	0.009995	0.793420
			99.4	0.138790	0.735400

Table B-3. Tabulated Data for Test 273-09, Condition 1.00.137.002.1 (Continued)

WBL 809

```
COND. 1.00.137.002.1
UPPER SURFACE
                                                LOWER SURFACE
     X/C - %
                                                                                 LOCAL MACH
0.739950
                      CP
                                LOCAL MACH
                                                     X/C - %
                                                                       CP
                                 1.366100
     1.0
                  -1.248500
                                                    65.0
                                                                    0.061845
     2.0
                  -1.301000
                                  1.398600
                                                    60.0
                                                                    0.027753
                                                                                  0.754580
                                 1.437200
     3.0
                  -1.361000
                                                    55.0
                                                                   0.001285
                                                                                  0.765920
     5.0
                  -1.487700
                                                    50.0
                                                                   -0.040849
                                                                                  0.783970
     7.5
                  -1.398900
                                  1.462500
                                                    45.0
                                                                   -0.020737
                                                                                  0.775350
    10.0
                  -1.102400
                                  1.281100
                                                    40.0
                                                                    0.034636
                                                                                  0.751630
    22.5
                   ***
                                  ***
                                                    35.0
                                                                    0.053805
                                                                                  0.743400
    25.0
                  -0.558390
                                  1.010000
                                                    30.0
                                                                   -0.089872
                                                                                  0.804950
                                                                                  0.814780
    30.0
                  -0.506220
                                  0.986430
                                                    25.0
                                                                   -0.112830
    35.0
                  -0.531320
                                 0.997750
                                                    20.0
                                                                   -0.056093
                                                                                  0.790490
    40.0
                  -0.490200
                                 0.979240
                                                    15.0
                                                                    0.086402
                                                                                  0.729390
    45.9
                  -0.536840
                                 1.000200
                                                    10.0
                                                                    0.296650
                                                                                  0.637710
    50.0
                  -0.522230
                                 0.993650
                                                     5.0
                                                                    0.564190
                                                                                  0.513920
                                 1.000900
    52.4
                  -0.538340
                                                     3.0
                                                                    0.580700
                                                                                  0.505820
    55.0
                  -0.457220
                                 0.964510
                                                     2.0
                                                                    0.595200
                                                                                  0.498540
    60.0
                  -0.418470
                                  0.947320
                                                     1.0
                                                                    0.475680
                                                                                  0.556240
    65.0
                  -0.345320
                                 0.915170
    70.0
                  -0.327560
                                 0.907420
    75.0
                  -0.246670
                                 0.872330
    80.0
                  -0.187320
                                 0.845750

    WBL 834

COND. 1.00.137.002.1
UPPER SURFACE
                      CP
                                LOCAL MACH
    24.0
                  -0.665810
                                 1.059600
    30.0
                  -0.571700
                                 1.016100
    40.0
                  -0.599440
                                 1.028800
    50.0
                  -0.502410
                                 0.984720
    60.0
                  -0.358640
                                 0.921000
```

• WBL 870

COND. 1.00.137.	002.1				
UPPER SURFACE			LOWER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
1.0	-0.4 90390	0.979320	65.0	0.043580	0.747790
2.0	-0.591330	1,025100	60.0	0.020521	0.757680
10.0	-1.025100	1.238700	55.0	0.035092	0.751430
15.0	-0.746940	1.098000	50.0	0.039450	0.749560
20.0	-0.696360	1.073900	45,0	0.042497	0.748260
22.5	-0.655920	1.054900	40.0	0.015200	0.759960
25.0	-0 .600960	1.029500	35.0	0.023785	0.756280
30.0	-0.540980	1.002100	30.0	0.039235	0.749660
3 5.0	-0.560860	1.011200	25.0	0.026505	0.755110
40.0	-0.528190	0.996340	20.0	0.065343	0.738440
45.0	-0.529190	0.996780	15.0	0.106140	0.720890
47.5	-0.515090	0.990420	10.0	C.144650	0.704250
50.0	-0.551590	1.006900	7.5	0.157700	0.698600
52.4	-0.502850	0.984920	5.0	0.172930	0.692000
55.0	-0.481760	0.975460	3.0	0.182830	0.687690
60.0	-0.410860	0.943960	2.0	0.190990	0.684140
65.0	-0.331740	0.909250	1.0	0.166730	0.694690
70.0	-0.278430	0.886070		4.130100	4 ,034030

Table B3. Tabulated Data for Test 273-09, Condition 1.00.137.002.1 (Continued)

*

```
 ENGINE 4 WL 180

COND. 1.00.137.002.1
INBOARD SURFACE
                                                  OUTBOARD SURFACE
                       CP
                                  LOCAL MACH
                                                       X/C
                                                                         CP
                                                                                   LOCAL MACH
                                                           - %
                    0.537700
                                                      96.4
                                                                                    0.708370
     8.7
                                   0,526760
                                                                      0.135150
                                   0.472130
     8.7
                    0.647750
                                                      81.5
                                                                      0.092349
                                                                                     0.726830
    10.9
                    0.732060
                                   0.427510
                                                      58.9
                                                                                     0.750450
                                                                      0.037398
                                   0.488020
    14.5
                    0.616460
                                                      44.2
                                                                      0.038336
                                                                                     0.750040
    17.9
                    0.393740
                                   0.594090
                                                      37.7
                                                                      0.074703
                                                                                     0.734430
    21.6
                    0.303460
                                   0.534690
                                                      33.7
                                                                      0.144610
                                                                                     0.704270
                   -0.115470
    33.7
                                   0.815920
                                                      21.6
                                                                      0.080784
                                                                                     0.731810
                                                                     -0.029950
    37.7
                                   0.824390
                   -0.135250
                                                      17.9
                                                                                     0.779300
                   -0.135250
    44.2
                                   0.824390
                                                      14.5
                                                                     -0.150490
                                                                                     0.830930
    58.9
                    0.051403
                                   0.744430
                                                      10.9
                                                                     -0.164640
                                                                                     0.837000
    81.5
                    0.169510
                                   0.693480
                                                       8.7
                                                                     -0.175040
                                                                                     0.841470
    96.4
                    0.225780
                                   0.668950
                                                       6.7
                                                                     -0.159030
                                                                                     0.834600

    ENGINE 4 WL 155

COND. 1.00.137.002.1
INBOARD SURFACE
X/C - 7
                                                  OUTBOARD SURFACE
                                 LOCAL MACH
                                                       X/C
                       CP
                                                                         CP
                                                                                    LOCAL MACH
                                                            - Z
     1.8
                   -0.122640
                                   0.818990
                                                      96.8
                                                                      0.171570
                                                                                     0.692580
                                   0.824540
     3.7
                   -0.135580
                                                       89.0
                                                                      0.114060
                                                                                     0.717470
                                   0.822910
     5.5
                   -0.131780
                                                       81.5
                                                                      0.107780
                                                                                     0.720180
     8.1
                   -0.090809
                                   0.805350
                                                      72.2
                                                                      0.081042
                                                                                     0.731690
    13.3
                    0.012261
                                   0.761200
                                                      66.6
                                                                     -0.020028
                                                                                     0.775050
                                                                                     0.799860
    23.1
                    0.276400
                                   0.646690
                                                      62.4
                                                                     -0.077987
                    0.472290
    33.1
                                   0.557820
                                                      57.5
                                                                     -0.079893
                                                                                     0.800680
                                                                                     0.786860
    43.0
                    0.365820
                                   0.606750
                                                       52.2
                                                                     -0.047594
    52.2
                    0.124630
                                   0.712900
                                                       43.0
                                                                     -0.033915
                                                                                     0.780990
    57.5
                   -0.135160
                                   0.824350
                                                       33.1
                                                                     -0.032750
                                                                                     0.780500
                                   0.871700
                                                      23.1
                                                                                     0.748140
    62.4
                   -0.245210
                                                                      0.042780
    66.6
                   -0.154580
                                   0.832690
                                                       13.3
                                                                     -0.106650
                                                                                     0.812130
                                                        8.1
    72.2
                   -0.070687
                                   0.796740
                                                                     -0.297100
                                                                                     0.894160
    81.5
                    0.042069
                                   0.748430
                                                        5.5
                                                                     -0.271730
                                                                                     0.883160
                    0.038707
                                                                     -0.272200
    89.0
                                   0.749880
                                                        3.7
                                                                                     0.883370
    96.8
                    0.147980
                                   0.702810
                                                        1.8
                                                                     -0.097286
                                                                                     0.808120
• ENGINE 4 030 deg CORE COWL
COND. 1.00.137.002.1
OUTBOARD SURFACE
                       CP
     X/C - %
                                 LOCAL MACH
     3.6
                    0.167630
                                   0.694290
                                   0.676220
    15.5
                    0.209140
    24.0
                   -0.055781
                                   0.790350
    29.2
                   -0.216160
                                   0.859160
                   -0.109480
    37.9
                                   0.813340
    44.7
                   -0.347630
                                   0.916180
                                   0.906670
    49.9
                   -0.325840
    53.1
                   -0.493600
                                   0.980770
                   -0.366930
    57.0
                                   0.924630
                                   0.907490
    58.2
                   -0.327730
                                   0.954780
    62.7
                   -0.435310
                                   0.904390
    64.9
                   -0.320600
                   -0.195040
    68.1
                                   0.850060
    69.1
                   -0.022038
                                   0.775920
    70.2
                   -0.194170
                                   0.849680
    74.0
                   -0.276090
                                   0.885060
    77.4
                   -0.358150
                                   0.920790
                                   0.945270
    80.8
                   -0.413840
    83.8
                   -0.373200
                                   0.927380
                                   0.878560
    86.7
                   -0.261110
    90.1
                   -0.152830
                                   0.831950
                                   0.776240
    92.0
                   -0.022806
    95.4
                   -0.012831
                                   0.771970
```

Table B-3, Tabulated Data for Test 273-09, Condition 1.00.137.002.1(Continued)

0.760480

99.4

0.014005

125209-199B

• ENGINE 4 060 deg INLET RADIAL

COND. 1.00.137.	002.1				
INNER SURFACE		OUTER SURFACE .			
X/C - %	CP	LOCAL MACH	X/C - X	CP	LOCAL MACH
44.1	0.597620	0.497450	2.7	-1.090800	1.274600
32.2	0.202500	0.679120	6.1	-0.731960	1.090800
23.1	0.5 65020	0.513510	12.6	-0.557540	1.009600
16.6	0.185570	0 .686500	17.0	-0.522040	0.993560
10.2	***	***	26.3	-0.304810	0.897520
4.9	0.306650	0.633280	32.7	-0.311760	0.900540
2.0	0.698840	0.445450	43.2	-0.257440	0.876980
0.0	0.646000	0 473020	****	***************************************	***************************************

● ENGINE 4 180 deg INLET RADIAL

COND. 1.00.137.	002.1				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
42.5	0.546240	0,522650	6.2	0.003431	0.765010
31.7	0.341760	0 .617590	9.5	****	***
24.4	0.128460	0.711250	13.2	-0.328150	0.907680
17.8	0.041857	0 .748530	17.8	-0.282050	0.887640
11.1	-0.221070	0.861280	27.2	-9.061771	0.792920
5.5	-0.03758 9	0.782 570	34.5	-0.236240	0.867820
2 . 4	0.384740	0.598180	45.5	-0.193470	0.849390
0.0	***	***			

• ENGINE 4 300 deg INLET RADIAL

COND. 1.00.137.	002.1				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
42.3	0.572340	0.509930	2.7	-1.152700	1.309500
32.2	0.417330	0 .583310	5,8	-0.704110	1.077600
22.7	0.2 82550	0.643970	12.7	-0.704020	1.077600
16.4	0.19 0870	0 .684200	17.1	-0.497300	0.982430
9.9	0.094521	0.725 890	26,4	-0.487050	0.977830
4.7	0.2 61620	0.653220	33.0	-0.445960	0.959500
2.0	0.686060	0.452220	43,3	-0.360070	0.921630
0.0	0.709610	0 .439680			

Table B-3. Tabulated Data for Test 273-09, Condition 1.00.137.002.1(Concluded)

```
    WBL 445

COND. 1.00.137.003
UPPER SURFACE
                                                 LOWER SURFACE
                       CP
     X/C - %
                                 LOCAL MACH
                                                      X/C - %
                                                                        CP
                                                                                  LOCAL MACH
                                                                                   0.810200
     1.0
                   -0.157630
                                  0.869040
                                                      65.0
                                                                    -0.027317
     2.0
                  -0.948230
                                  1.263100
                                                      60.0
                                                                    -0.017630
                                                                                    0.905840
     3.0
                   -1.172400
                                  1.401500
                                                      55.0
                                                                    -0.025365
                                                                                    0.809320
     5.0
                   -1.275200
                                                      50.0
                                  1.472500
                                                                    -0.018909
                                                                                    0.896420
                                                                    -0.007371
     7.5
                  -1.248700
                                  1.453600
                                                      45.0
                                                                                   0.801230
                                  1.357300
    10.0
                   -1.104300
                                                      40.0
                                                                                    0.809900
                                                                    -0.026643
                                                                    -0.010415
    15.0
                  -0.478490
                                  1.018200
                                                      35.0
                                                                                    0.802590
    20.0
                                                      30.0
                   -0.446680
                                  1.003000
                                                                    -0.052513
                                                                                    0.821550
    22.5
                  -0.455470
                                  1.007200
                                                      25.0
                                                                    -0.062428
                                                                                    0.826020
    25.0
                                                      20.0
                  -0.499940
                                  1.028500
                                                                    -0.112830
                                                                                    0.848770
    30.0
                  -0.537730
                                  1.046900
                                                      15.0
                                                                    -0.180620
                                                                                    0.879490
    35.0
                                  1.085400
                                                                     0.093805
                   -0.615720
                                                      10.0
                                                                                    0.755700
    40.0
                  -0.668130
                                  1.111800
                                                       5.0
                                                                     0.419220
                                                                                    0.606150
    45.0
                  -0.530510
                                  1.043300
                                                       3.0
                                                                     0.452420
                                                                                    0.590310
    50.0
                  -0.501190
                                  1.029100
                                                       2.0
                                                                     0.470340
                                                                                    0.581680
    52,4
                  -0.434750
                                  0.997310
                                                       1.0
                                                                     0.525640
                                                                                    0.554680
                  -0.465490
    55.0
                                  1.012000
    60.0
                   -0.400990
                                  0.981320
    65.0
                  -0.302610
                                  0.935410
                                  0.898010
    70.0
                   -0.221240
                   -0.108620
    75.0
                                  0.846860
    80,0
                   -0.016501
                                  0.805340
• WBL 470
COND. 1.00.137.003
UPPER SURFACE
     X/C - %
                       CP
                                 LOCAL MACH
                  -1.074000
    11.0
                                  1.338300
    20.0
                  -0.591210
                                  1.073200
    30.0
                  -0.661650
                                  1.108500
    40.0
                   -0.742080
                                  1.150000
    50.0
                   -0.556560
                                  1.056100
    60.0
• WBL 510
COND. 1.00.137.002.1
UPPER SURFACE
                                                 LOWER SURFACE
                   - - СР
     X/C
1.0
                                 LOCAL MACH
                                                      X/C - %
                                                                        CP
                                                                                  LOCAL MACH
         - %
                  -9.567580
                                                                    -0.019370
                                  1.014200
                                                      65.0
                                                                                   0.774770
                                  1.104900
     2.0
                                                                                   0.773760
                  -0.761230
                                                      60.0
                                                                    -0.016990
     3.0
                  -0.940040
                                  1.194000
                                                      55.0
                                                                    -0.003751
                                                                                   0.768090
     5.0
7.5
                                  1.294500
                  -1,126400
                                                      50.0
                                                                    -0.019472
                                                                                   0.774820
                  -0.744120
                                                                     0.009688
                                  1.096700
                                                      45.0
                                                                                   0.762320
    10.0
                   -0.697920
                                  1.074700
                                                      40.0
                                                                     0.090347
                                                                                    0.727690
    15.0
                  -0.761820
                                                                     0.066460
                                                      35.0
                                  1.105200
                                                                                   0.737970
    22.5
                  -0.723800
                                  1.086900
                                                      30.0
                                                                     0.064913
                                                                                    0.738630
    25.0
                  -0.771600
                                                                     0.114650
                                  1.109900
                                                      25.0
                                                                                    0.717220
    27.5
                  -0.684090
                                  1.068200
                                                      20.0
                                                                     0.137400
                                                                                    0.707390
    30.0
                  -0.658210
                                  1.056000
                                                      15.0
                                                                     0.220430
                                                                                    0.671290
    35,0
                  -0.643960
                                  1.049400
                                                      10.0
                                                                     0.181760
                                                                                    0.688160
    40.0
                   -0.655260
                                  1.054600
                                                       5.0
                                                                     0.258700
                                                                                    0.654500
    45.0
                  -0.594980
                                  1.026700
                                                       3.0
                                                                     0.279790
                                                                                    0.645190
    47.5
                   -0.574660
                                  1.017400
                                                       2.0
                                                                     0.267900
                                                                                    0.650450
    50.0
                  -0.587310
                                  1.023200
                                                       1.0
                                                                     0.273580
                                                                                    0.647940
    52,4
                  -0.570450
                                  1.015500
```

Table B-4. Tabulated Data for Test 273-09, Condition 1.00.137.003

1.010700

0.983400

0.952540

0.915890

55.0

60.0

65.0

70.0

-0.559830

-0.499460

-0.430250

-0.346950

=

ENGINE 3 WL 180

• ENGINE 3 WL 155

• ENGINE 3 030 deg INLET RADIAL

COND. 1.00.137.0	003		OUTER SURFA	ıcf	
X/C - %	CP	LOCAL MACH	0.4	-0.696620	1.126400
7.7	0.212970	0.701770	1.1	-1.072400	1.337300
5.0	0.360150	0 .633980	2.7	-0.945280	1.261400
3.3	0.516910	0 .558990	5.8	-0.893260	1.231800
1.3	0.884450	0.355200	8.8	-0.828880	1.196300
0.2	1.127100	0.134090	12.5	-1.122000	1.368600
0.0	0 .642370	0.4 95440	16.7	-0.589510	1.072300
			21.1	-0.433300	0.998980
			26.1	-0.34 0300	0.952900
			3 3.5	-0.3 66620	0.965180
			45.6	-0.353230	0.958920
			57.2	-0.1 39220	0.8 60700
			64.5	-0,017359	0.805720
			71.8	-0.019175	0.806540
			82.4	0.115390	0 .745960
			99.4	0.271460	0.675040

Table B-4. Tabulated Data for Test 273-09, Condition 1.00.137.003 (Continued)

ø .

COND. 1.00.137.0	002.1		OUTER SURFACE		
X/C - % 7.7 5.0 3.3 1.3 0.1	CP 0.015291 0.110860 0.278890 0.621090 **** 0.882950	LOCAL MACH 0.759920 0.718850 0.645590 0.485690 **** 0.338030	X/C - X 0.4 1.1 2.8 6.1 9.0 12.9 17.4 22.7 27.7 34.7 46.2 57.5 64.7 71.9 82.4 99.6	CP -0.176810 -0.416660 -0.389460 -0.437240 -0.425370 -0.500200 -0.320980 -0.199910 -0.241720 -0.247760 -0.247760 -0.211600 -0.094622 -0.052006 0.051769 0.231440	LGCAL MACH 0.842230 0.946520 0.946520 0.955640 0.955640 0.950380 0.983730 0.964550 0.852160 0.870190 0.860690 0.872800 0.8572800 0.857200 0.85740 0.788740 0.744280 0.666470
 ENGINE 3 150 deg COND. 1.00.137.0 					
NNER SURFACE X/C - % 9.0 5.2 3.6 1.5 0.2 0.0	CP -0.129230 0.007230 0.139210 0.537610 1.014000 1.007000	LOCAL MACH 0.821820 0.763380 0.706610 0.526810 0.246750 0.246750	OUTER SURFACE X/C - % 0.4 1.2 2.9 6.2 9.4 14.5 18.2 22.7 27.7 34.5 45.7 57.0 63.9 71.0 81.3 99.4	CP 0.236570 0.027366 -0.096224 -0.201650 -0.292780 -0.329140 -0.372150 -0.208230 -0.246970 -0.161360 -0.1622770 -0.061562 -0.045791 0.031675 0.208070	LOCAL MACH 0.664230 0.754750 0.807680 0.852910 0.892290 0.908110 0.926920 0.855750 0.872460 0.846120 0.835600 0.819040 0.792840 0.786030 0.752900 0.676700
• ENGINE 3 210 deg	INLET RADIAL				
COND. 1.00.137.0 INNER SURFACE X/C - % 8.2 5.2 3.6 1.5 0.3 0.0	CP -0.183000 0.094543 0.246640 0.612250 1.084800 0.997\$50	LOCAL MACH 0.844890 0.725890 0.659800 0.490140 0.169220 0.254340	OUTER SURFACE X/C - X 0.5 1.2 2.9 6.2 9.3 14.4 18.1 22.4 27.5 34.2 45.5 56.9 63.9 70.8 81.0	CP 0.108960 -0.248630 -0.246470 -0.395700 -0.461620 -0.444870 -0.356170 -0.302580 -0.285300 -0.304500 -0.223680 -0.155130 -0.129960 -0.102370 0.008038 0.161440	LOCAL MACH 0.719630 0.873170 0.872240 0.937270 0.966470 0.959020 0.919920 0.896550 0.889040 0.897380 0.862410 0.832930 0.862410 0.832930 0.862130 0.810300 0.763030 0.696980

Table B-4. Tabulated Data for Test 273-09, Condition 1.00.137.003 (Continued)

• ENGINE 3 270 deg INLET RADIAL

COND. 1.00.137.					
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - X	CP	LOCAL MACH
8.1	0.041149	0.748840	0.4	-0.083359	0.802160
5.5	0.207320	0 .677020	1.0	-0.877880	1.162300
3.7	0.375130	0.602540	2.7	-0.633830	1.044700
1.3	0.720510	0.433810	6.2	-1.008400	1.229800
0.1	1.142700	0.072407	9.0	-0.753310	1.101100
0.0	***	***	12.8	-0.776100	1.112100
			17.2	-0.402780	0.940390
			21.7	-0.304630	0.897440
			26.6	-0.297080	0.894160
			33.8	-0.249650	0.873610
			45 .−2	-0.313390	0.901250
			5 6.6	-0.331740	0.909250
			63.9	-0.2 06900	0.855180
			71.1	-0.165420	0.837340
			81.5	-0.030081	0.779360
			99.0	0.115620	0.718800

• ENGINE 3 330 deg !NLET RADIAL

			•		
COND. 1.00.137.0	002.1				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - X	CP	LOCAL MACH
7.5	0.245470	0.660320	0.4	-0.794750	1.121100
4.8	0.368720	0.605440	• 1.1	-1.354800	1.433100
3.2	0.596640	0.497930	2.7	-1.169500	1.319200
1.2	0.876470	0.342230	5.8	-1.221600	1.349900
0.2	1.025600	0.230380	8.8	-1.258700	1.372300
0.0	0.581810	0.5 05280	12.6	-0.883270	1.165000
			17.8	-0.3 80700	0.930680
			21.4	-0.341410	0.913470
			26.1	-0.386730	0.933330
			33.7	-0.247870	0.872850
			45.4	-0.262300	0.879080
			~57 <i>*</i> 0	-0.281230	0.887280
			, 64.5	-0.185290	0.845870
			_71.8	-0.108830	0.813070
			82.7	0.012331	0.761190
			99.4	0.132070	0.709700

Table B-4. Tabulated Data for Test 273-09, Condition 1.00.137.003 (Continued)

#

0.741430

0.737340

0.766230

0.125400

0.134490

0.070392

```
    WBL 809

COND. 1.00.137.003
UPPER SURFACE
                                                 LOWER SURFACE
     X/C - %
                       CP
                                 LOCAL MACH
                                                      X/C - %
                                                                        CP
                                                                                  LOCAL MACH
     1.0
                   -0.850260
                                  1.208000
                                                                     0.080507
                                                     65.0
                                                                                   0.761670
     2.0
                   -0.985520
                                  1.284800
                                                     60.0
                                                                     0.033948
                                                                                   0.782640
                                  1.400100
     3.0
                   -1.170300
                                                     55.0
                                                                    -0.013210
                                                                                   0.803850
     5.0
                   -1.333900
                                  1.515800
                                                     50.0
                                                                    -0.049477
                                                                                   0.820170
                   -1.416100
     7.5
                                  1.580700
                                                                    -0.050591
                                                     45.0
                                                                                   0.820670
    10.0
                   -1.346400
                                  1.525300
                                                     40.0
                                                                     0.008324
                                                                                   0.794160
    22.5
                    ***
                                  ***
                                                     35.0
                                                                    -0.008819
                                                                                   0.801870
    25.0
                   -0.488260
                                  1.022900
                                                     30.0
                                                                                   0.858800
                                                                    -0.135060
                                  1.002500
    30.0
                   -0.445710
                                                     25.0
                                                                    -0.174230
                                                                                   0.876570
    35.0
                   -0.500410
                                  1.028700
                                                     20.0
                                                                                   0.847820
                                                                    -0.110780
    40.0
                   -0.504850
                                  1.030900
                                                     15.0
                                                                     0.066104
                                                                                   0.768160
    45.0
                   -0.533050
                                  1.044600
                                                      10.0
                                                                     0.240710
                                                                                   0.689110
    50.0
                   -0.530220
                                  1.043200
                                                      5.0
                                                                     0.519590
                                                                                   0.557660
    52.4
                   -0.533700
                                  1.044900
                                                      3.0
                                                                     0.561720
                                                                                   0.536730
                                  1.015500
    55.0
                   -0.472910
                                                      2.0
                                                                     0.548100
                                                                                   0.543540
                                  0.991770
    60.0
                   -0.423110
                                                                     0.480370
                                                       1.0
                                                                                   0.576820
    65.0
                   -0.344840
                                  0.955000
    70.0
                                  0.942070
                   -0.317010
    75.0
                   -0.250510
                                  0.911400
    80.0
                   -0.182780 ·
                                  0.880470

    WBL 834

COND. 1.00.137.003
UPPER SURFACE
     X/C - %
                       CP
                                 LOCAL MACH
    24.0
                   -0.554160
                                  1.054900
    30.0
                  -0.591560
                                  1.073300
    40.0
                   -0.616530
                                  1.085800
                   -0.509550
    50.0
                                  1.033200
    60.0
                   -0.358470
                                  0.961360

    WBL 870

COND. 1.00.137.003
UPPER SURFACE
                                                 LOWER SURFACE
     X/C - %
                       CP
                                 LOCAL MACH
                                                      X/C - %
                                                                        CP
                                                                                  LOCAL MACH
     1.0
                   -0.342800
                                  0.954050
                                                     65.0
                                                                     0.048062
                                                                                   0.776280
                   -0.504140
     2.0
                                  1.030500
                                                     60.0
                                                                     0.023065
                                                                                   0.787530
                                  1.255900
    10.0
                   -0.935820
                                                     55.0
                                                                     0.023065
                                                                                   0.787530
                   -1.067800
    15.0
                                  1.334500
                                                     50.0
                                                                     0.037430
                                                                                   0.781060
    20.0
                   -0.626100
                                  1.090600
                                                                     0.019359
                                                     45.0
                                                                                   0.789190
    22.5
                   -0.559890
                                  1.057700
                                                     40.0
                                                                     0.006776
                                                                                   0.794850
    25.0
                   -0.607510
                                  1.081300
                                                     35.0
                                                                     0.002328
                                                                                   0.796850
                                  1.048800
    30.0
                   -0.541780
                                                                     0.019647
                                                     30.0
                                                                                   0.789060
    35.0
                   -0.555160
                                  1.055400
                                                     25.0
                                                                     0.016661
                                                                                   0.790410
    40.0
                                                     20.0
                   -0.540970
                                  1.048400
                                                                     0.030343
                                                                                   0.784250
    45.0
                   -0.531990
                                                                                   0.760480
                                  1.044100
                                                     15.0
                                                                     0.083152
    47.5
                                  1.034200
                   -0.511670
                                                     10.0
                                                                     0.100230
                                                                                   0.752790
    50.0
                   -0.540350
                                  1.048100
                                                      7.5
                                                                     0.118010
                                                                                   0.744770
                                                                                   0.745200
    52.4
                                  1.038300
                                                       5.0
                   -0.520130
                                                                     0.117060
    55.0
                                                      3.0
```

Table B-4. Tabulated Data for Test 273-09, Condition 1.00,137,003 (Continued)

2.0

1.0

1.019300

0.985150

0.951970

0.923070

-0.480870

-0.409110

-0.338310

-0.275910

60.0

65.0

70.0

• ENGINE 4 WL 180					
COND. 1.00.137.0 INBOARD SURFACE X/C - % 6.7 8.7 10.9 14.5 17.9 21.6 33.7 37.7 44.2 58.9 81.5 96.4	CP 0.485120 0.605720 0.664270 0.555630 0.318790 0.218220 -0.209080 -0.203590 -0.190050 0.040741 0.161330 0.199890	LOCAL MACH 0.574510 0.514420 0.483870 0.539780 0.653210 0.699370 0.892440 0.889950 0.883770 0.779570 0.7725190 0.707710	OUTBOARD SURFACE X/C - X 96.4 81.5 58.9 44.2 37.7 33.7 21.6 17.9 14.5 10.9 8.7 6.7	CP 0.139290 0.082051 0.026337 0.021778 0.042064 0.087693 0.064638 -0.036652 -0.123950 -0.164430 -0.180510 -0.143270	LOCAL MACH 0.735170 0.760980 0.786060 0.788100 0.778980 0.758430 0.758430 0.814400 0.853780 0.872130 0.879430 0.862530
• ENGINE 4 WL 155 COND.1.00.137.00 INBOARD SURFACE X/C - X 1.8 3.7 5.5 8.1 13.3 23.1 33.1 43.0 52.2 57.5 62.4 66.6 72.2 81.5 89.0 96.8	CP -0.129380 -0.137060 -0.185480 -0.121520 0.047468 0.248920 0.442410 0.31880 -0.208650 -0.337310 -0.184780 -0.086100 0.031051 0.024091 0.147490	LOCAL MACH 0.856240 0.859710 0.881700 0.852690 0.776550 0.685360 0.595100 0.655340 0.768270 0.892250 0.951500 0.881380 0.836680 0.783940 0.787060 0.731460	OUTBOARD SURFACE X/C - X 96.8 89.0 81.5 72.2 66.6 62.4 57.5 52.2 43.0 33.1 23.1 13.3 8.1 5.5 3.7	CP 0.173260 0.106340 0.108050 0.049884 -0.036629 -0.104570 -0.106220 -0.061861 -0.058677 -0.032110 0.036080 -0.121900 -0.121900 -0.319530 -0.280300 -0.281070 -0.158400	LOCAL MACH 0.719790 0.750040 0.750040 0.775460 0.814390 0.845020 0.845770 - 0.825760 0.824320 0.812350 0.781670 0.852850 0.943230 0.943230 0.943230 0.943230
● ENGINE 4 030 deg COND. 1.00.137.0 OUTBOARD SURFACE X/C - % 3.6 15.5 24.0 29.2 37.9 44.7 49.9 53.1 57.0 58.2 62.7 64.9 68.1 69.1 70.2 74.0 77.4 80.8 83.8 86.7 90.1 92.0 95.4	003	LOCAL MACH 0.704850 0.698520 0.805990 0.874700 0.918300 0.915640 0.922890 0.912890 0.938370 0.898050 1.013100 1.082100 0.926040 0.837680 0.895450 0.912160 0.962710 0.908920 0.919220 0.903040 0.888910 0.876470 0.807580 0.775050			

Table B-4. Tabulated Data for Test 273-09, Condition 1.00.137.003 (Continued)

• ENGINE 4 060 deg INLET RADIAL

COND.1 00.137.003					
INHER SURFACE			OUTER SURFACE		
X/C - X	CP	LOCAL HACH	I/C - K	CP.	FOCAL MYCH
44.1	0.637390	0.498040	2.7	-1.039100	1.316800
52.2 23.1	0.247050	0.686220	6.1	-0.958430	1.269006
16.6	0.627430	0.503220	12.6	-0.898960	1,235000
10.2	0.242560	0.688270	17.0	-0.503180	1.030100
4.9	0.361080	0.638646	26.3	-0.305400	0.936700
2.0	0.729410	0.633549 0.448480	32.7	-0.324630	0.945610 0.921340
0.0	0.673300	0.479070	43.2	-0.272130	U. 721340

• ENGINE 4 180 deg INLET RADIAL

COND. 1.00.137.	003				
INNER SURFACE			CUTER SURFACE		
X/C - %	CP CP	LOCAL MACH	I/C - X	C.P	LOCAL MACH
42.5	0.594550	0.520140	8.2	-0.181930	0.830090
31.7	0.398930	0.615770	9.5	科技製鋼	***
24.4	0.202290	0 .706 620	13.2	-0.42869 0	0.994420
17.	0.129830	0.739440	17.8	-0.340120	0.952810
11.1	-0.098405	0.842240	27.2	-0.087252	0.837210
5.5	0.098632	0.753520	34.5	-0.273970	0.922180
2.4	0.50673 0	0,563980	45.5	-0.215380	0.895330
0.0	长光光聲				

● ENGINE 4 300 deg INLET RADIAL

COLD. 1.00.137.	003				
HINER SURFACE			OUTER SURFACE		
X/C - %	CP .	LOCAL MACH	X/C - X	CP .	LOCAL MACH
42.3	0.612730	0.510830	2.7	-1.052000	1.324700
32.2	0.467840	0.582880	5.8	-0.896150	1.233400
22.7	0.335490	0.845480	12.7	-0.839460	1.202000
16.4	0.245180	0.686620	17.1	-0.720390	1.138790
9.9	0.149470	0.7305 70	26.4	-0.443570	1.001500
4.7	0.302980	0.660530	33.0	-0.443790	1.001600
2.0	0.707700	0.460460	43.3	-0.363660	0.963790
0.0	A 7392AA	0 443000			

Table B-4. Tabulated Data for Test 273-09, Condition 1.00.137.003 (Concluded)

¥

Þ

```
    WBL 445

COND. 1.00,137,001.1
UPPER SURFACE
                                                   LOWER SURFACE
     X/C - %
                       CP
                                  LOCAL MACH
                                                         X/C - %
                                                                           CP
                                                                                     LOCAL MACH
                   -0.436770
     1.0
                                   1.089100
                                                        65.0
                                                                      -0.069733
                                                                                      0.898010
                                                                                      0.895530
     2.0
                   -0.646180
                                   1.209100
                                                        60.0
                                                                      -0.064769
     3.0
                   -0.814440
                                   1.315300
                                                                     · -0.064534
                                                                                      0.895410
                                                        55.0
     5.0
7.5
                   -0.903750
                                   1.376500
                                                                      -0.061955
                                                                                      0.894130
                                                        50.0
                   -1.056500
                                   1.491700
                                                        45.0
                                                                      -0.024360
                                                                                      0.875370
    10.0
                   -0.974940
                                   1.428300
                                                        40.0
                                                                      -0.022661
                                                                                      0.874530
                                                                      -0.029232
    15.0
                   -0.876010
                                   1.357100
                                                                                      0.877800
                                                        35.0
                                                                      -0.058116
    20.0
                   -0.780080
                                   1.292700
                                                        30.0
                                                                                      0.892200
                   -0.532410
                                   1.142500
    22.5
                                                        25.0
                                                                      -0.111010
                                                                                      0.918720
    25.0
                   -0.532850
                                   1.142800
                                                        20.0
                                                                       -0.654790
                                                                                      1.214300
    30.0
                                   1.160300
                   -0.563340
                                                                      -0.404120
                                                        15.0
                                                                                      1.071300
    35.0
                   -0.583610
                                   1.172100
                                                        10.0
                                                                       -0.056587
                                                                                      0.891440
                                   1.230500
    40.0
                                                                       0.293710
                   -0.681410
                                                         5.0
                                                                                      0.718250
     45.0
                                   1.223800
                   -0.670480
                                                         3.0
                                                                        0.355480
                                                                                      0.687480
                                   1.254600
    50.0
                   -0.720240
                                                         2.0
                                                                        0.382840
                                                                                      0.673760
    52.4
                   -0.709440
                                   1.247800
                                                         1.0
                                                                        0.423660
                                                                                      0.653150
                   -0.742980
                                   1.268900
    55.0
    60.0
                   -0.714780
                                   1.251200
    65.0
                   -0.484650
                                   1.115600
                   -0.362280
    70.0
                                   1.048700
    75.0
                   -0.195590
                                   0.961640
    80.0
                   -0.074493
                                   0.900390

    WBL 470

COND. 1.00.137.001.1
UPPER SURFACE
     X/C - %
                       CP
                                  LOCAL MACH
    11.0
                   -0.861390
                                   1.347000
                   -0.475890
                                   1.110700
    20.0
                                   1.172900
    30.0
                   -0.585100
                                   1.249100
     40.0
                   -0.711460
    50.0
                   -0.751530
                                   1.274400
    60.0
                                   ****

    WBL 510

COND. 1.00.137.001.1
UPPER SURFACE
                                                   LOWER SURFACE
     X/C - %
                       CP
                                 LOCAL MACH
                                                         X/C - %
                                                                           CP
                                                                                     LOCAL MACH
     1.0
                   -0.152580
                                   0.939730
                                                        65.0
                                                                                      0.906030
                                                                       -0.085735
                   -0.352420
                                   1.043500
     2.0
                                                        60.0
                                                                      -0.087665
                                                                                      0.906990
     3.0
                   -0.422480
                                   1.081300
                                                        55.0
                                                                       -0.096073
                                                                                      0.911210
                                   1.235400
     5.0
                   -0.689420
                                                        50.0
                                                                                      0.921990
                                                                       -0.117500
                   -0.729190
                                                                                      0.906090
     7.5
                                   1.260200
                                                        45.0
                                                                       -0.085866
                                   1.257400
                                                        40.0
    10.0
                   -0.724760
                                                                       0.004617
                                                                                      0.860990
                   -0.720380
                                   1.254700
    15.0
                                                        35.0
                                                                       -0.013098
                                                                                      0.869780
                   -0.510910
                                   1.130300
                                                                       -0.003588
    20.0
                                                        30.0
                                                                                      0.865060
    22.5
                   -0.522430
                                   1.136900
                                                        25.0
                                                                        0.046033
                                                                                      0.840490
    25.0
                   -0.573230
                                   1.166000
                                                        20.0
                                                                        0.047411
                                                                                      0.839800
    27.5
                   -0.588340
                                                        15.0
                                   1.174800
                                                                        0.127840
                                                                                      0.800130
    30.0
                   -0.591260
                                                        10.0
                                   1.176500
                                                                        0.115980
                                                                                      0.805970
    35.0
                   -0.609690
                                   1.187400
                                                         5.0
                                                                        0.079793
                                                                                      0.823810
    40.0
                   -0.637440
                                   1.234200
                                                         3.0
                                                                                      0.835990
                                                                        0.055130
                                   1.256100
                                                         2.0
                                                                       -0.092077
    45.0
                   -0.722670
                                                                                      0.909210
    47.5
                   -0.722510
                                   1.256000
                                                         1.0
                                                                       -0.053336
                                                                                       0.889820
    50.0
                   -0.748580
                                   1.272500
    52.4
                   -0.770490
                                   1.286500
                                   1.303300
    55.0
                   -0.786220
    60.0
                   -0.849380
                                   1.338800
                   -0.845490
                                   1.336200
    65.0
    70.0
                   -0.310170
                                   1.021100
```

Table B-5. Tabulated Data for Test 273-12. Condition 1.00.137.001.1

• ENGINE 3 WL 180

COND. 1.00.137.0 1 NBOARD SURFACE X/C - % 1.7 3.3 5.1 7.5 10.0 12.8 16.0 21.4 26.1 29.6 34.9 47.6 65.1 78.7	CP 0.194850 0.169450 0.075842 0.307230 0.441100 0.429720 0.237860 -0.119800 -0.277020 -0.400250 -0.159920 -0.043336 0.074361	LOCAL MACH 0.767120 0.779630 0.825760 0.711540 0.644280 0.650070 0.745900 0.923150 1.003700 1.069200 0.943450 0.84820 0.826490 0.865420	OUTBOARD SURFACE	CP -0.037388 0.040597 0.085557 0.015797 -0.054524 -0.092960 -0.048975 -0.139500 -0.139630 -0.089952 -0.060825 -0.043149 0.101520 -0.049651	LOCAL MACH 0.881860 0.843160 0.820970 0.855440 0.890400 0.909640 0.933090 0.933170 0.933170 0.933170 0.984730 0.884730 0.813100 0.887970
● ENGINE 3 WL 155 COND 1.00.137.00 INBOARD SURFACE X/C - X 7.5 12.3 21.5 30.4 39.3 48.5 53.8 57.2 62.0 67.2 75.9 82.8 90.0 ENGINE 3 030 deg	CP -0.025014 -0.027447 0.143360 0.277330 0.167960 0.024269 -0.168840 **** -0.637240 -0.177650 0.016646 0.042535 0.059533	LGCAL MACH 0.875700 0.876910 0.792480 0.726350 0.780370 0.851240 0.947980 **** 1.203800 0.952470 0.855020 0.842210 0.833810	OUTBOARD SURFACE X/C - X 90.0 82.8 75.9 67.2 62.0 57.2 53.8 48.5 39.3 30.4 21.5 12.3 7.5 5.1	CP 0.088895 0.109490 0.054394 0.041190 -0.086715 -0.174970 -0.151910 -0.1657260 0.057260 0.010574 0.060458 -0.158330 -0.301080 -0.267360	LOCAL MACH 0.819320 0.809170 0.836340 0.842870 0.906510 0.951110 0.939380 0.948360 0.891770 0.858030 0.858030 0.942650 1.016300 0.998650
			COND. 1.00.137.00 OUTBOARD SURFACE X/C - % 3.6 24.0 29.2 37.9 44.7 49.9 53.1 57.0 58.2 62.7 64.9 68.1 69.1 70.2 74.0 77.4 80.8 83.8 86.7 90.1 92.0 95.4	CP 0.391190 -0.042404 -0.133750 -0.264500 -0.07193 -0.215360 -0.211440 -0.363520 -0.427490 -0.462750 -0.497500 -0.497500 -0.497500 -0.497500 -0.497500 -0.497500 -0.363680 -0.324950 -0.324950 -0.324950 -0.324950 -0.33046 0.052636 0.064332	LOCAL MACH 0.669560 0.884360 0.930200 0.997170 0.866840 0.971770 0.969760 1.049400 1.134000 1.118900 1.103400 1.118900 1.091300 1.091300 1.102500 1.102500 1.049500 1.028900 1.039300 0.956890 0.846900 0.831210 0.831440

Table B-5. Tabulated Data for Test 273-12, Condition 1.00.137.001.1 (Continued)

0.844290

0.844540.

ENGINE 3 030 deg INLET RADIAL COND. 1.00.137.001.1 INNER SURFACE OUTER SURFACE CP LOCAL MACH X/C - % CP LOCAL MACH 0.377880 7.7 0.676250 0.4 -0.143770 0.935260 5.0 0.579980 0.572100 1.1 -0.680650 1.230000 3.3 1.214800 0.763570 0.469500 2.7 -0.655640 1.3 *** 5.8 -0.654900 1.214400 8.8 1.219400 0.2 *** -0.663250 1.158500 0.0 0.139670 12.5 -0.964720 1.420700 16.7 -0.959930 1.417200 21.1 -1.044000 1.481700 26.1 -0.723650 1.256700 33.5 -0.277700 1.004000 1.051200 45.6 -0.366960 57.2 -0.173270 0.950240 64.5 -0.013416 0.869940 -0.049993 0.888140 71.8 82.4 0.089307 0.819120 99.4 0.033841 0.846510 ENGINE 3 090 deg INLET RADIAL COND. 1.00.137.001.1 INNER SURFACE **OUTER SURFACE** X/C - % 7.7 CP LOCAL MACH X/C - % CP LOCAL MACH 0.296510 0.716870 0.877390 0.4 -0.028420 1.107300 5.0 0.482400 0.623150 1.1 -0.469850 0.746840 3.3 0.479350 2.8 -0.303310 1.017500 1.3 1,093400 0.224150 1.146200 6.1 -0.538790 0.1 *** 1.198700 *** 9.0 -0.628850 0.0 *** **** 12.9 -0.700920 1.242500 17.4 -0.620020 .1.193500 22.7 -0.502940 1.125800 27.7 -0.471470 1.108200 34.7 -0.275120 1.002700 1.034700 46.2 -0.335940 57.5 -0.308280 1.020100 0.940010 64.7 -0.153160 71.9 -0.105180 0.915780 82.4 0.024845 0.850960 99.6 0.040024 0.843450 ENGINE 3 150 deg INLET RADIAL COND. 1.00.137.001.1 INNER SURFACE **OUTER SURFACE** X/C - % CP LOCAL MACH X/C - % CP LOCAL MACH 0.839700 9.0 0.245020 0.742340 0.4 0.047612 1.2 5.2 0.430440 0.649700 -0.241330 0.985410 1.004300 2.9 3.6 0.596500 0.563240 -0.278230 -0.449490 -0.582700 1.5 0.967010 0.335410 6.2 1.096100 1.171500 0.2 *** 9.4 0.263780 0.0 1.053400 14.5 -0.839260 1.331900 1.283500 18.2 -0.765790 22.7 -0.700270 1.242100 27.7 -0.723920 1.256900 34.5 -0.272880 1.001500 45.7 ·-0.263090 0.996440 0.970650 57.0 -0.213180 63.9 0.929010 -0.131420 71.0 -0.106960 **0**.916680

Table B-5. Tabulated Data for Test 273-12, Condition 1.00.137.001.1 (Continued)

81.3

99.4

0.038337

0.037813

ø

• ENGINE 3 210 deg I	NLET RADIAL				
COND. 1.00.137.00 INNER SURFACE X/C - % 3.2 5.2 3.6 1.5 0.3 0.0	CP 0.338370 0.566790 0.773580 1.147500 ****	LOCAL MACH 0.696030 0.579110 0.463550 0.157010 ****	OUTER SURFACE X/C - X 0.5 1.2 2.9 6.2 9.3 14.4 18.1 22.4 27.5 34.2 45.5 56.9 63.9 70.8 81.0 99.0	CP 0.200590 -0.354870 -0.305180 -0.608460 -0.726900 -0.764920 -0.674490 -0.715430 -0.252490 -0.197580 -0.121320 0.005241 0.041352	LOCAL MACH 0.764290 1.044300 1.018400 1.186600 1.258800 1.229600 1.229600 1.229600 1.226300 1.2251600 0.990930 0.962650 0.942880 0.923910 0.860670 0.842790
 ENGINE 3 270 deg II COND. 1.00.137.00 					
INNER SURFACE X/C - 76 8.1 -5.5 3.7 1.3 0.1 0.0	CP 0.322060 0.545560 0.731330 1.180100 ****	LOGAL MACH 0.704160 0.590300 0.488370 0.097380 ****	OUTER SURFACE X/C - X 0.4 1.0 2.7 6.2 9.0 12.8 17.2 21.7 26.6 33.8 45.2 56.6 63.9 71.1 81.5 99.0	CP -0.080835 -0.664470 -0.535080 -0.682730 -0.771680 -0.875330 -0.557250 -0.557250 -0.591200 -0.569440 -0.237660 -0.308760 -0.140630 0.002277 0.038673	LOCAL MACH 0.903560 1.220200 1.144100 1.287300 1.287300 1.356600 1.240300 1.156800 1.176500 1.163800 0.93260 1.020300 0.952480 0.933690 0.862140 0.844120
COND. 1.00.137.00 INNER SURFACE X/C - % 7.5 4.8 3.2 1.2 0.2 0.0		LOCAL MACH 0.660200 0.565190 0.446340 **** ****	OUTER SURFACE X/C - X 0.4 1.1 2.7 5.8 8.8 12.6 17.8 21.4 26.1 33.7 45.4 57.0 64.5 71.8 82.7 99.4	CP -0.014749 -0.756520 -0.652030 -0.784240 -0.893410 -0.801450 -0.8177490 -0.813770 -0.617730 -0.213940 -0.299290 -0.199270 -0.119220 0.012953 0.031769	LOCAL MACH 0.870590 1.277500 1.212600 1.295400 1.379000 1.337900 1.317300 1.314900 1.314900 1.192100 0.971040 1.015300 0.959220 0.92850 0.856850 0.847530

Table B-5. Tabulated Data for Test 273-12, Condition 1.00.137.001.1 (Continued)

,

```
    WBL 809

COND. 1.00.137.001.1
UPPER SURFACE
     X/C - %
                       CP
                                 LOCAL MACH
                   -0.327320
                                  1.030100
     1.0
     2.0
                   -0.661410
                                  1.218300
     3.0
                                  1.299300
                   -0.790090
     5.0
                   -0.865980
                                  1.350100
                                  1.499500
     7.5
                   -1.066100
    10.0
                   -1.183600
                                  1.601100
    15.0
                                  1,384600
                   -0.915120
    20.0
                   -Q.760970
                                  1.280400
                   -0.747880
                                  1.272000
    22.5
                   -0.881020
    25.0
                                  1.360600
                                  1.222600
    30.0
                   -0.668500
    35.0
                   -0.751070
                                  1.274100
    40.0
                                  1.183800
                   -0.603690
    45.0
                   -0.328160
                                  1.030600
    50.0
                   -0.338180
                                  1.035900
    52.4
                   -0.400030
                                  1.069000
                   -0.363910
-0.370950
    55.0
                                  1.049600
    60.0
                                  1.053400
    65.0
                   -0.320590
                                  1,026600
                                  1.028700
    70.0
                   -0.324720
    75.0
                   -0.243540
                                  0.986290
    80.0
                   -0,173800
                                  0.950500

    WBL 834

COND. 1.00.137.001.1
UPPER SURFACE
     X/C - %
                       CP
                                 LOCAL MACH
    12.0
                   -0.900550
                                  1.374200
                                  1.433300
    24.0
                   -0.981500
    30.0
                   -0.789250
                                  1.298700
    40.0
                   -0.368210
                                  1.051900
    50.0
                   -C.430580
                                   1.085700
    60.0
                   -0.353860
                                  1.044200

    WBL 870

COHD. 1.00.137.001.1
UPPER SURFACE
                                                   LOWER SURFACE
                                                                          CP
     X/C
                       CP
                                 LOCAL MACH
                                                        X/C - %
                                                                                    LOCAL MACH
                                                       65.0 .
                                                                       0.022772
     1.0
                   -0.008217
                                  0.867340
                                                                                     0.851980
                                  0.983070
                  -0.237310
                                                       60.0
                                                                      -0.013785
     2.0
                                                                                     0.870110
     3.0
                   -0.335590
                                  1.034500
                                                       55.0
                                                                      -0.003284
                                                                                     0.864890
                                  1.117200
     5.0
                   -0.487530
                                                       50.0
                                                                      -0.006047
                                                                                     0.866270
     7.5
                   -0.732720
                                  1.262400
                                                       45.0
                                                                      -0.020630
                                                                                     0.873510
                                  1.319000
    10.0
                                                       40.0
                   -0.819930
                                                                      -0.034660
                                                                                     0.880490
                                  1.343300
                                                                      -0.050042
    15.0
                   -0.856000
                                                       35.0
                                                                                     0.888160
                                  1.376500
                                                                      -0.041332
    20.0
                   -0.903810
                                                       30.0
                                                                                     0.883810
    22.5
                   -0.824040
                                  1.321700
                                                                      -0.057219
                                                       25.0
                                                                                     0.891750
                                  1.344100
                                                       20.0
                                                                      -0.048916
    25.0
                   -0.857200
                                                                                     0.887600
                                  1.300800
    30.0
                  -0.792480
                                                       15.0
                                                                      -0.031466
                                                                                     0.878900
    35.0
                                                                       0.003940
                   -0.608780
                                  1.186800
                                                       10.0
                                                                                     0.861310
                                  1.031700
                  -0.330230
    40.0
                                                        7.5
                                                                       0.001255
                                                                                     0.862650
    45.0
                   -0.375280
                                  1.055700
                                                         5.0
                                                                      -0.055237
                                                                                     0.890760
                                  1.090500
    47.5
                   -0.439320
                                                        3.0
                                                                      -0.087213
                                                                                     0.906760
    50.0
                   -0.435750
                                  1.088500
                                                         2.0
                                                                      -0.110510
                                                                                     0.918460
                                  1.089800
    52.4
                   -0.438090
                                                         1.0
                                                                      -0.255830
                                                                                     0.992660
    55.0
                   -0.461100
                                  1.102500
                                  1.096600
    60.0
                   -0.450460
    65.0
                   -0.338800
                                  1.036200
    70.0
                   -0.258750
                                  0.994170
```

Table B-5. Tabulated Data for Test 2/3-12, Condition 1,00,137,001,1 (Continued)

• ENGINE 4 WL 180

COND. 1.00.137.	001.1				
INBOARD SURFACE			OUTBOARD SURFAC	Ε	
X/C - %	CP	LOCAL MACH	X/C - 76	CP	LOCAL MACH
6.7	0.411200	0.659460	96.4	0.132160	0.797990
8.7	0.494170	0.617070	81.5	0.097082	0.815280
10.9	0.501610	0.613230	58.9	0.019498	0.853600
14.5	0.379350	0.675510	44.2	-0.078189	0.902230
17.9	0.147280	0 .790550	37.7	-0.082985	0.904640
21.6	0.026942	0.849930	33.7	-0.057013	0.891640
28.4	-0.183350	0.955370	28.4	0.016275	0.855190
33.7	-0.449380	1.0 96000	21.6	0.044451	0.841260
37.7	-0.585990	1.173400	17.9	0.038337	0.844280
44.2	-0.3288 60	1.030900	14.5	-0.051665	0.8 88970
58.9	-0.010927	0 ,868690	10.9	-0.132860	0.929740
81.5	0.113380	0.807240	8.7	-0.143150	0.934940
96.4	0.163550	0.782540	6.7	-0.087373	0.906830
			4.7	-0.055752	0.891010

• ENGINE 4 WL 155

COND. 1.00.137	.001.1				
INBOARD SURFACE			OUTBOARD SURFAC	E	
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
1.8	-0.1 51410	0 .939130	96.8	0.148610	0.789890
3.7	-0 .157090	0 .942000	89.0	0.087925	O.819790
5.5	-0.1818 80	0 .954620	81.5	0.072864	0.827220
8.1	-0.182770	0.9 55070	72.2	0.013538	0.856550
13.3	-0.024478	0 .875430	66.6	-0.117380	0.921920
23.1	0.184970	0.7 71980	62.4	-0.231180	0.9 79910
33.1	0.35 8700	0.685860	57.5	-0.244880	0.985990
43.0	0.188030	0 .770470	52,2	-0.153130	0.940000
52.2	-0.066242	0.896260	43.0	-0.049866	0 .888070
57.5	-0.314 890	1.023600	33.1	0.014529	0.856060
62.4	-0.612280	1.188900	23.1	0.074567	0.826380
66.6	-0.63 6190	1.203100	13.3	-0.084786	0.905540
72.2	-0.092874	0.9 09600	8.1	-0.273380	1.001800
81.5	0.042563	0.842180	5.5	-0.222930	0.975660
89.0	0.012488	0 .857070	3.7	-0.208340	0.968160
96.8	0.164640	0.781990	1.8	-0.185370	0.956400

Table B-5. Tabulated Data for Test 273-12, Condition 1.00.137,001.1 (Continued)

• ENGINE 4 060 deg INLET RADIAL

COHD. 1.00.137.	001.1		•		
INNER SURFACE		OUTER SURFACE			
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
44.1	0.679220	0.518000	2.7	-0.834200	1.328500
32.2	***	***	6.1	-0.820000	1.319000
23.1	松黄黄	***	12.6	-0.900070	1.373900
16,6	0.342840	0 .693800	17.0	-0.862010	1.347400
10.2	***	***	26.3	-0.725820	1.258100
4.9	0.412750	0.658670	32.7	-0.569790	1.164000
2,0	0.746950	0.479290	43.2	-0.235830	0.982310
0 0	0 817670	0 4367.20		-	

• ENGINE 4 180 deg INLET RADIAL

COND. 1.00.137.	001.1				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
42.5	0.687850	0.513160	6.2	-0.524910	1.138300
31.7	0.503200	0.612410	9.5	-0.564500	1.161000
24.4	0.279880	0.725120	13.2	-0.59 9380	1.181300
17.8	0.234320	0.747650	17.8	-0.6 16890	1.191600
11.1	0.112710	0.807580	27.2	-0.269540	0.999790
5. 5 .	0.280460	0.724830	34.5	-0.648210	1.210300
2.4	***	***	45.5	-0.202660	0.965250
0.0	***	***	•		

• ENGINE 4 300 deg INLET RADIAL

COND. 1.00.137.	001.1	The state of the state of			
INNER SURFACE		OUTER SURFACE			
X/C - %	CP	LOCAL MACH	X/C - X	CP	LOCAL MACH
42.3	0.680720	0,517160	2.7	-0.775910	1.290000
32.2	0.540870	0 .592770	5.8	-0.636240	1.203200
22.7	0.370770	0.679820	12.7	-0.701600	1.243000
16.4	0.271440	0,729290	17.1	-0.728820	1,260000
9.9	0.151140	0 .788660	26.4	-0.736040	1.264500
4.7	0.288490	0.720840	33.0	-0.771700	1.287300
2.0	0.684810	0.514870	43.3	-0.669410	1.223200
ÔΛ	0.861020	0 409220			

Table B-5. Tabulated Data for Test 273-12, Condition 1.00.137.001.1 (Concluded)

.

```
    WBL 445

COND. 1.00.137.002
UPPER SURFACE
                                                   LOWER SURFACE
                                 LOCAL MACH
                                                        X/C - %
     X/C
                       CP
                                                                           CP
                                                                                     LOCAL MACH
         - %
     1.0
                   -1.174700
                                                        65.0
                                   1.310400
                                                                      -0.023016
                                                                                      0.771490
                   -1.482300
                                                                                      0.769540
                                   1.504600
     2.0
                                                        60.0
                                                                      -0.018421
     3.0
                   -1.618400
                                   1.606800
                                                        55.0
                                                                     · -0.019294
                                                                                      0.769910
     5.0
7.5
                   -1.648200
                                  1.631100
                                                        50.0
                                                                      -0.013287
                                                                                      0.767350
                   -1.559500
                                   1.560900
                                                        45.0
                                                                      -0.002588
                                                                                      0.762810
                                   1.185400
                                                                                      0.761650
    10.0
                   -0.941880
                                                        40.0
                                                                       0.000135
                   -0.632290
    15.0
                                   1.036500
                                                        35.0
                                                                        0.011390
                                                                                      0.756860
    20.0
                   -0.668820
                                   1.053300
                                                        30.0
                                                                      -0.026838
                                                                                      0.773110
0.778540
    22.5
                   -0.662730
                                   1.050500
                                                        25.0
                                                                      -0.039609
                   -0.665460
    25.0
                                   1.051800
                                                        20.0
                                                                      -0.053812
                                                                                      0.784570
    30.0
                   -0.656830
                                   1.047800
                                                        15.0
                                                                      -0.053714
                                                                                      0.784530
                   -0.630940
                                                                        0.202540
                                                                                      0.674950
    35.0
                                   1.035900
                                                        10.0
    40.0
                   -0.646050
                                   1.042800
                                                         5.0
                                                                        0.481600
                                                                                      0.550010
    45.0
                   -0.574000
                                   1.010000
                                                         3.0
                                                                        0.513390
                                                                                      0.535030
                                                                        0.541660
    50.0
                                  0.996320
                   -0.543560
                                                         2.0
                                                                                      0.521540
    52.4
                   -0.522360
                                   0.986840
                                                         1.0
                                                                        0.564940
                                                                                      0.510280
    55.0
                   -0.515100
                                   0.983590
    60.0
                   -0.464060
                                   0.960970
    65.0
                   -0.375320
                                   0.922140
    70.0
                   -0.305620
                                   0.892000
    75.0
                   -Q.188250
                                   0.841720
    80.0
                   -0.098917
                                   0.803730
WBL 470
COND 1.00.137.002
UPPER SURFACE
     X/C - %
                       CP
                                 LOCAL MACH
                   -0.660760
                                   1.049600
     11.0
    20.0
                   -0.694670
                                   1.065300
    30.0
                   -0.647470
                                   1.043500
     40.0
                   -0.646010
                                   1.042800
    50.0
                   -0.559250
                                   1.003400
     60.0
                    ***
                                   ***
● WBL 510
COND. 1.00.137.002
UPPER SURFACE
                                                   LOWER SURFACE
     X/C
                       CP
                                  LOCAL MACH
                                                        X/C - %
                                                                           CP
                                                                                     LOCAL MACH
                   -0,620380
                                                        65.0
                                                                      -0.035414
                                                                                      0.776760
     1.0
                                   1.031100
     2.0
                   -0.783740
                                   1.107400
                                                        60.0
                                                                      -0.032219
                                                                                      0.775400
                   -0.962510
     3.0
                                   1.195900
                                                        55.0
                                                                      -0.051597
                                                                                      0.783640
     5.0
                   -1.154600
                                   1.299100
                                                        50.0
                                                                      -0.077838
                                                                                      0.794780
     7.5
                   -0.793780
                                   1.112200
                                                        45.0
                                                                       0.000134
                                                                                      0.761650
                                                        40.0
    10.0
                   -0.711970
                                   1.073400
                                                                       0.087159
                                                                                      0.724570
    15.0
                   -0.781820
                                   1.106500
                                                                                      0.740310
                                                        35.0
                                                                        0.050288
    20.0
                                   1.110100
                   -0.789410
                                                        30.0
                                                                        0.059031
                                                                                      0.736580
                                                                       0.092049
    22.5
                   -0.743480
                                   1.088200
                                                        25.0
                                                                                      0.722480
    25.0
                   -0.761640
                                   1.096800
                                                        20.0
                                                                        0.099099
                                                                                      0.719460
    27.5
                   -0.683800
                                   1.060300
                                                        15.0
                                                                        0.207110
                                                                                      0.672970
    30.0
                   -0.640320
                                   1.040200
                                                        10.0
                                                                        0.225540
                                                                                      0.664960
                   -0.619230
                                                                       0.252160
    35.0
                                                         5.0
                                   1.030500
                                                                                      0.653350
    40.0
                   -0.655960
                                   1.047.100
                                                         3.0
                                                                        0.261000
                                                                                      0.649480
                                                                                      0,651910
    45.0
                   -O.607730
                                   1.025300
                                                         2.0
                                                                        0.255450
                                   1.008800
    47.5
                   ~0.571220
                                                         1.0
                                                                        0.267310
                                                                                      0.646720
    50.0
                   -0.584720
                                   1.014900
                                   1.001300
    52.4
                   -0.554740
    55.0
                   -0.548740
                                   0.998650
    60.0
                   -0.488140
                                   0.971620
    65.0
                   -0.411400
                                   0.937860
    70.0
                   -0.315210
                                   0.896120
```

Table B-6. Tabulated Data for Test 273-12, Condition 1.00.137.002

• ENGINE 3 WL 180

ENGINE 3 WL 18	SU .				
COND. 1.00.137 INBOARD SURFACE X/C - X 1.7 3.3 5.1 7.5 10.0 12.8 16.0 21.4 26.1 29.6 34.9 47.6 65.1 78.7		LOCAL MACH 0.710510 0.722120 0.666600 0.646370 0.535840 0.487740 0.540930 0.690430 0.752020 0.753440 0.741850 0.748860 0.703450 0.720250	OUTBOARD SURFACE X/C - % 78.7 65.1 47.6 34.9 29.6 26.1 21.4 16.0 12.8 10.0 7.5 5.1 3.3 1.7	CP 0.022723 0.100450 0.162530 0.129270 0.123820 0.110930 0.134360 -0.098617 -0.012670 -0.089867 -0.089391 -0.089679 -0.036360 -0.101840	LOCAL MACH 0.752040 0.718880 0.692220 0.706530 0.708870 0.714400 0.704340 0.803600 0.809560 0.799880 0.799880 0.799790 0.777150 0.804960
• ENGINE 3 WL 15	55				
COND. 1.00.137. INBOARD SURFACE X/C - 7.5 12.3 21.5 30.4 39.3 48.5 53.8 57.2 62.0 67.2 75.9 82.8 90.0 • ENGINE 3 030 de	CP 0.077332 0.080273 0.234460 0.371800 0.309630 0.204090 0.027839 **** -0.102050 -0.042492 0.029771 0.053541 0.083608	LOCAL MACH 0.728760 0.728760 0.728760 0.661070 0.660320 0.628070 0.674270 0.749860 **** 0.805050 0.779760 0.749030 0.738910 0.726080	OUTBOARD SURFACE X/C - X 90.0 82.8 75.9 67.2 62.0 57.2 53.8 48.5 39.3 30.4 21.5 12.3 7.5 5.1	CP 0.138700 0.148210 0.110270 0.115030 0.025030 -0.022020 -0.005914 -0.075255 -0.058406 -0.028718 0.037805 -0.142140 -0.287140 -0.302320	LOCAL MACH 0.702480 0.698400 0.714670 0.712630 0.750400 0.771070 0.764220 0.793670 0.786520 0.773910 0.745620 0.822090 0.884040 0.890560
			COND. 1.00.137.0 OUTBOARD SURFACE X/C - % 3.6 24.0 29.2 37.9 44.7 49.9 53.1 57.0 58.2 62.7 64.9 68.1 69.1 70.2 74.0 77.4 80.8 83.8 86.7 90.1 92.0 95.4	02 CP 0.258430 -0.012016 -0.224710 -0.260510 -0.25260 -0.365840 -0.373429 -0.373429 -0.383090 -0.555610 -0.317440 -0.091740 -0.091740 -0.127140 -0.127140 -0.233180 -0.335530 -0.222780 -0.171920 -0.084736 0.106260 0.106260 0.106260 0.046539	LOCAL MACH 0.650610 0.766810 0.857280 0.872600 0.772440 0.918020 0.792890 0.967900 0.909380 0.925510 1.001700 0.897080 0.793200 0.800670 0.815710 0.900800 0.860900 0.856460 0.834770 0.797700 0.716390 0.741900

Table B-6. Tabulated Data for Test 273-12, Condition 1.00.137,002 (Continued)

• ENGINE 3 030 deg INLET RADIAL

COND. 1.00.137.0 INNER SURFACE X/C - 76 7.7 5.0 3.3 1.3 0.2 0.0	CP 0.345580 0.598260 0.797070 **** 1.121800	LOCAL MACH 0.612100 0.493930 0.388000 **** 0.112830	OUTER SURFACE X/C - X 0.4 1.1 2.7 5.8 8.8 12.5 16.7 21.1 26.1 33.5 45.6 57.2 64.5 71.8 82.4 99.4	CP -0.477080 -1.096700 -1.064700 -0.862380 -0.862960 -0.771430 -0.633110 -0.482290 -0.342740 -0.357920 -0.324430 -0.115920 -0.018005 -0.003964 0.138150 0.047249	LOCAL MACH 0.966730 1.266900 1.249500 1.145600 1.145900 1.101500 1.036900 0.969030 0.908010 0.914580 0.900100 0.810950 0.769360 0.760020 0.702730 0.741600
● ENGINE 3 090 deg COND. 1.00.137.0 INNER SURFACE X/C - % 7.7 5.0 3.3 1.3 0.1 0.0		LOCAL MACH 0.714220 0.634820 0.530540 0.257520 ****	OUTER SURFACE X/C - X 0.4 1.1 2.8 6.1 9.0 12.9 17.4 22.7 27.7 34.7 46.2 57.5 64.7 71.9 82.4 99.6	CP 0.220450 -0.160870 -0.229970 -0.389610 -0.399680 -0.468520 -0.297280 -0.187140 -0.228150 -0.227710 -0.246000 -0.246000 -0.088267 -0.088267 -0.048913 0.054513	LOCAL MACH 0.667190 0.830070 0.859540 0.928360 0.928820 0.962940 0.888400 0.841250 0.858760 0.858760 0.858760 0.858700 0.866400 0.849120 0.799210 0.799210 0.738630 0.738510
• ENGINE 3 150 deg (COND. 1.00.137.0 INNER SURFACE X/C - 7/9.0 5.2 3.6 1.5 0.2 0.0	CP -0.042274 0.130500 0.254189 0.701410 ****	LOCAL MACH 0.779670 0.706000 0.652470 0.441070 ****	OUTER SURFACE X/C - X 0.4 1.2 2.9 6.2 9.4 14.5 18.2 22.7 27.7 34.5 45.7 57.0 63.9 71.0 81.3 99.4	CP 0.438460 0.159270 -0.010334 -0.158150 -0.249120 -0.284550 -0.275700 -0.179390 -0.27960 -0.171560 -0.151820 -0.114340 -0.054874 -0.052094 0.055731	LOCAL MACH 0.570010 0.693640 0.766100 0.828910 0.867730 0.882930 0.879120 0.837960 0.858660 0.834620 0.826220 0.78750 0.785020 0.739530 0.737990

Table B-6. Tabulated Data for Test 273-12, Condition 1.00.137.002 (Continued)

*,

0.807450 0.755700

0.742710

ENGINE 3 210 deg INLET RADIAL COND. 1.00.137.002 INHER SURFACE OUTER SURFACE X/C - % CP LOCAL MACH X/C - X CP LOCAL MACH 8.2 0.014127 0.755690 0.5 0.554100 0.515540 0.001699 5.2 0.294140 0.634920 1.2 0.760980 0.532500 3.6 0.525920 2.9 -0.128340 0.816230 1.5 0.978740 0.267150 6.2 -0.415910 0.939840 0.3 9.3 *** ... -0.440450 0.950580 0.0 ---*** 14.4 -0.409700 0.937120 18.1 -0.326670 0.901070 22.4 -0.281850 0.881770 27.5 -0.270910 0.877070 34.2 -0.295850 0.887780 45.5 -0.221670 0.856000 56.9 -0.152570 0.826540 -0.127940 63.9 0.816070 70.8 -0.100960 0.804600 81.0 0.005564 0.759340 99.0 0.055849 0.737910 ENGINE 3 270 deg INLET RADIAL COND. 1.00.137.002 INNER SURFACE **OUTER SURFACE** LOCAL MACH X/C - % CP X/C - % CP LOCAL MACH 8.1 0.664300 0.227060 0.775970 0.4 -0.033563 5.5 0.458780 0.560640 1.0 -0.648280 1.043800 3.7 0.457710 0.669730 2.7 -0.555330 1.001600 1.3 6.2 *** *** -1.057900 1.245900 0.1 **** ... 9.0 -0.7683201.100000 0.0 **** 12.8 -0.686780 1.061700 17.2 -0.388600 0.927920 21.7 -0.305600 0.891980 26.6 -0.297620 0.888550 -0.249880 33.8 0.868060 45.2 -0.308430 0.893200 56.6 -0.331550 0.903170 63.9 -0.208240 0.850260 71.1 -0.168040 0.833120 81.5 -0.030297 0.774580 99.0 0.052961 0.739160 ENGINE 3 330 deg INLET RADIAL COND. 1.00,137,002 INNER SURFACE **OUTER SURFACE** X/C - % CP LOCAL MACH X/C - % CP LOCAL MACH -0.386900 0.437540 7.5 0.570430 0.4 0.927170 4.8 0.631470 0.477310 1.1 -1.197400 1.323500 3.2 0.879380 0.337600 2.7 -1.104200 1.271000 1.2 *** *** 5.8 -1.184500 1.316000 0.2 *** *** 8.8 -1.277200 -0.700080 1.370600 *** 0.0 *** 12.6 1.067800 -0.386100 17.8 0.926830 21.4 -0.354470 0.913090 26.1 -0.394690 0.930570 33.7 -0.253090 0.869430 -0.257950 45.4 0.871510 ¥ 57.0 -0.282200 0.831920 0.839370 64.5 -0.182710

Table B-6. Tabulated Data for Test 273-12, Condition 1.00.137.002 (Continued)

71.8

82.7

99.4

-0.107680

0.014124

0.044640

#

```
    WBL 809

UPPER SURFACE
     X/C - %
                       CP
                                  LOCAL MACH
                                   1.424600
     1.0
                   -1.363600
     2.0
                   -1.409500
                                   1.454700
                                   1.498600
     3.0
                   -1.473800
     5.0
                   -1.496200
                                   1.514400
     7.5
                   -1.296300
                                   1.382300
    10.0
                   -1.130500
                                   1.285500
     15.0
                   -0.933410
                                   1.181100
    20.0
                   -0.747260
                                   1.090000
    22.5
                   -0.384970
                                   0.926340
    25.0
                   -0.602460
                                   1.022900
    30.0
                   -0.502880
                                   0.978160
    35.0
                   -0.536620
                                   0.993200
     40.0
                   -0.500730
                                   0.977200
     45.0
                   -0.542010
                                   0.995610
                   -0.514860
     50.0
                                   0.983490
     52.5
                   -0.509550
                                   0.981130
    55.0
                   -0.469290
                                   0.963280
    60.0
                   -0.429430
                                   0.945750
    65.0
                   -0.349040
                                   0.910730
    70.0
                   -0.326430
                                   0.900950
                   -0.255000
     75.0
                                   0.870240
     80.0
                   -0.188720
                                   0.841930
                                   0.981130
     52.4
                   -0.509550
                   -0.469290
     55.0
                                   0.963280
     60.0
                   -0.429430
                                   0.945750
     65.0
                   -0.349040
                                   0.910730
     70.0
                   -0.326430
                                   0.900950
     75.0
                   -0.255000
                                   0.870240
     80.0
                   -0.188720
                                   0.841930

    WBL 834

COND. 1.00.137.002
UPPER SURFACE
     X/C
                        CP
                                  LOCAL MACH
     12.0
                   -0.868970
                                    1.148800
     24.0
                   -0.671960
                                    1.054800
     30.0
                   -0.588290
                                    1.016500
     40.0
                   -0.574490
                                   1.010200
     50.0
                   -0.512280
                                   0.982330
     60.0
                   -0.365560
                                   0.917890

    WBL 370

                                                    UPPER SURFACE
COND. 1.00.137.002
UPPER SURFACE
                                                         X/C - %
                                                                           CP
                                                                                      LOCAL MACH
                                                        65.0
                                                                       -0.326860
                                                                                       0.901140
     X/C - %
                       CP
                                  LOCAL MACH
                                                        70.0
                   -0.414130
                                                                       -0.280380
                                                                                       0.881130
      1.0
                                   0.939050
                                                    LOWER SURFACE
     2.0
                   -0.583110
                                   1.014100
                                                         X/C - %
                                                                           CP
                                                                                      LOCAL MACH
     3.0
                   -0.673330
                                   1.055400
                                                                                       0.753570
                                                        65.0
                                                                        0.019113
     5.0
                   -0.837340
                                   1.133300
                                                        60.0
                                                                        0.005360
                                                                                       0.759430
     7.5
                   -1.070900
                                   1.252900
                                                                        0.012093
                                                        55.0
                                                                                       0.756550
     10.0
                   -1.167300
                                   1.306200
                                                        50.0
                                                                       0.018231
                                                                                       0.753940
0.761940
    15.0
                   -0.743060
                                   1.083000
                                                        45.0
    20.0
                   -0.745230
                                   1.089100
                                                        40.0
                                                                        -0.000777
                                                                                       0.762030
                                   1.048200
    22.5
                   -0.657700
                                                        35.0
                                                                        0.001211
                                                                                       0.761190
    25.0
                   -0.602390
                                   1,022900
                                                        30.0
                                                                         0.012786
                                                                                       0.756270
     30.0
                   -0.537810
                                   0.993730
                                                        25.0
                                                                         0.000031
                                                                                       0.761680
     35.0
                   -0.567120
                                   1.006900
                                                                                       0.747340
                                                        20.0
                                                                         0.033774
     40.0
                   -0.535180
                                   0.992560
                                                        15.0
                                                                         0.074420
     45.0
                                                                                       0.730010
                   -0.525790
                                   0.988360
                                                                         0.130250
                                                        10.0
                                                                                       0.706110
     47.5
                   -0.515340
                                   0.983700
                                                                         0.141240
                                                         7.5
                                                                                       0.701390
     50.0
                   -0.534630
                                   0.992310
                                                         5.0
                                                                         0.144510
                                                                                       0.699990
     52.4
                   -0.485890
                                   0.970630
                                                         3.0
                                                                         0.158740
                                                                                       0.693870
     55.0
                   -0.474470
                                   0.965570
                                                         2.0
                                                                         0.155970
                                                                                       0.695050
     60.0
                   -0.408860
                                   0.936750
                                                         1.0
                                                                         0.136310
                                                                                       0.703510
```

Table B-6. Tabulated Data for Test 273-12, Condition 1.00.137.002 (Continued)

e

• ENGINE 4 WL 180

COND. 1.00.137.	002				
INBOARD SURFACE		•	OUTBOARD SURFACE		
X/C - %	ÇР	LOCAL MACH	X/C - %	CP	LOCAL MACH
6.7	0.4 74980	0.5 53090	9 6.4	0.141480	0.701280
8.7	0.607320	0.489420	81.5	0.135860	0.703710
10.9	0.682740	0.450920	58.9	0.040545	0.744450
14.5	0.582820	0.501540	44.2	0.029798	0.749020
17.9	0.347090	0.611410	37.7	0.041293	0.744130
21.6	0.260110	0 .649870	33.7	0.108400	0.715470
28.4	0.002351	0.7 60700	28.4	0.166350	0.690580
33.7	-0.162500	0.8 30760	21.6	0.161360	0.692730
37.7	-0.191060	0.842920	17.9	0.067779	0.732840
44.2	-0.188 000	0.841620	14.5	-0.045905	0.781210
58.9	0.020630	0.752920	10.9	-0.188030	0.841620
81.5	0.148530	0.698260	8.7	-0.191520	0.843120
96.4	0.176590	0.686160	6.7	-0.172180	0.834880
			4.7	-0.150250	0.825540

• ENGINE 4 WL155

COND. 1.00.137.					
INBOARD SURFACE			OUTBOARD SURFAC	É	
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
1.8	-0.1 70190	0.8 34040	96.8	0.185850	0.682160
3.7	-0.169010	0 .833540	89.0	0.118450	0.711180
5.5	-0.18 5630	0 .840610	81.5	0 .130170	0.706140
8.1	-0.132160	0.81 7850	72,2	0.073880	0.730230
13.3	0.029327	0 .749220	66.6	0.003677	0.760140
23.1	0.2 36880	0 .660020	62.4	-0.081009	0.796120
33.1	0.444250	0.567340	5 7.5	-0.084710	0.797 680
43.0	0.322870	0 .622200	52.2	-0.033810	0.776060
52.2	0.073823	0.73 0260	43.0	-0.055185	0.785150
57.5	-0.141700	0.821 900	3 3.1	-0.021356	0.770770
62.4	-0.241940	0.864650	23.1	0.038635	0.745260
66.6	-0.134540	0.8 18870	13.3	-0.119020	0.812260
72.2	-0.066185	0 .789820	8.1	-0.297560	0.888520
81.5	0.033317	0 .747530	5 , 5	-0.260330	0.872530
89.0	0.056815	0 .737520	3.7	-0.263010	0.873680
96.8	0.179200	0 .685030	1.8	-0.243650	0.865380

Table B-6. Tabulated Data for Test 273-12, Condition 1.00.137.002 (Continued)

• ENGINE 4 060 deg INLET RADIAL

COND. 1.00.137.0	002	-			
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
44.1	0.5 80570	0.502650	2.7	-1.079200	1.257400
32.2	***	***	6.1	-0.801180	1.115800
23.1	****	***	12.6	-0.550940	0.999630
16.6	0.211810	~ 0 .670930	17.0	-0.540720	0.995050
10.2	***	***	26.3	-0.300590	0.889830
4.9	0.308260	0.628680	32.7	-0.332460	0.903570
2.0	0.667590	0.458820	43.2	-0.263880	0.874050
. 0.0	0.744280	0.417880			

ENGINE 4 180 deg INLET RADIAL

COND. 1.00.137.	002	•			
INNER SURFACE			OUTER SURFACE		
X/C - %	CP .	LOCAL MACH	X/C - X	CP	- LOCAL MACH
42.5	0.581730	0.502080 .	6.2	-0.005137	0.763890
31.7	0.369120	0.601540	9.5	-0.244440	0.865730
24.4	0.096527	0.720570	13.2	-0.309330	0.893590
17.8	0.011016	0.757020	17.8	-0.270080	0.876710
11.1	-0.201710	0,847470	27.2	-0.059648	0.7 87050
5 , 5	-0.094553	0.801920	34.5	-0.233820	0.861190
2.4	****	***	45.5	-0.186550	0.841010
0.0	***	***			

• ENGINE 4 300 deg INLET RADIAL

COND. 1.00.137.0	02				
INNER SURFACE	-		OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
42,3	0.598310	0.493900	2.7	-1.151000	1.297000
32.2	0.440580	0.569040	5.8	-0.737900	1.085600
22.7	0.255320	0.651970	12.7	-0.726060	1.080000
16.4	0.163060	0.692010	17.1	-0.503600	0.978480
9.9	0.064575	0.734210	26.4	-0.4 89060	0.972030
4.7	0.240560	0.658430	33.0	-0.446060	0.953050
2,0	0.672000	0.456540	43.3	-0.362000	0.916350
Λ Λ	A 703766	A 400000			

Table B-6. Tabulated Data for Test 273-12, Condition 1.00.137.002 (Concluded)

```
    WBL 445

COND 1.00.137.003
UPPER SURFACE
                                                    LOWER SURFACE
      X/C - %
                        CP
                                  LOCAL MACH
                                                         X/C - %
                                                                            CP
                                                                                      LOCAL MACH
      1.0
                   -0.849040
                                   1.210500
                                                         65.0
                                                                        -0.030000
                                                                                       0.813120
                                                                                       0.811350
      2.0
                   -1.069900
                                   1.339800
                                                         60.0
                                                                       -0.026079
                   -1.251300
      3.0
                                   1.460300
                                                                                       0.810440
                                                         55.0
                                                                       ·-0.024065
      5.0
                   -1.373200
                                   1.551800
                                                         50.0
                                                                       -0.025970
                                                                                       0.811300
                   -1.346600
                                   1.531000
                                                                       -0.009061
     7.5
                                                         45.0
                                                                                       0.803670
     10.0
                   -1.263800
                                   1.469300
                                                         40.0
                                                                        -0.010156
                                                                                       0.804170
     15.0
                   -0.626520
                                   1.093500
                                                         35.0
                                                                        -0.014578
                                                                                       0.806160
                                   1.023100
     20.0
                   -0.483720
                                                         30.0
                                                                        -0.068662
                                                                                       0.830580
                   -0.512520
-0.536870
                                   1.037000
     22.5
                                                         25,0
                                                                        -0.072272
                                                                                       0.832210
     25.0
                                   1.048900
                                                         20.0
                                                                                       0.854260
                                                                        -0.120960
     30.0
                   -0.605280
                                   1.082800
                                                         15.0
                                                                        -0.177800
                                                                                       0.880100
     35.0
                   -0.674370
                                   1.117800
                                                                                       0.758790
                                                         10.0
                                                                        0.090419
     40.0
                   -0.760550
                                   1.162700
                                                          5.0
                                                                         0.403660
                                                                                       0.614800 ...
                   -0.624510
                                   1.092400
     45.0
                                                          3.0
                                                                         0.456170
                                                                                       0.589730
     50.0
                                                                                        0.574890
                   -0.583580
                                   1.072000
                                                          2.0
                                                                         0.486840
                                   1.053500
     52.4
                   -0.546210
                                                          1.0
                                                                         0.526050
                                                                                       0.555660
     55.0
                   -0.555110
                                    1.057900
                                   1.014900
                   -0.466650
     60.0
     65.0
                   -0.378120
                                   0.972760
     70.0
                   -0.298050
                                   0.935360
     75.0
                   -0,192320
                                   0.386730
     80.0
                    -0.086534
                                   0.838660

    WBL 470

COND. 1.00.137.003
UPPER SURFACE
                                  LOCAL MACH
      X/C - %
                        CP
     11.0
                    -1.107900
                                    1.363700
     20.0
                    -9.559700
                                    1.060100
     30.0
                    -0.646700
                                    1.103760
     40.0
                    -0.750300
                                    1.157300
     50.0
                    -0.541330
                                    1.051100
     60.0
                     ****

    WBL 510

COND. 1.00.137.003
UPPER SURFACE
                                                    LOWER SURFACE
      X/C - 7.
                        CP
                                  LOCAL MACH
                                                         X/C - %
                                                                            CP
                                                                                      LOCAL MACH'
                                                                        -0.052742
      1.0
                   -0.436850
                                   1.000600
                                                         65.0
                                                                                       0.823380
                   -0.617920
                                                                       -0.059048
                                                                                       0,826230
      2.0
                                   1.089100
                                                         60.0
                                                                       -0.063463
      3.0
                                   1.167300
                                                                                       0.828230
                   -0.769230
                                                         55.0
                                                                                       0.837560
      5.0
                   -1.006700
                                   1.301100
                                                         50.0
                                                                        -0.084113
                   -1.038600
                                   1.320400
                                                         45.0
      7.5
                                                                        -0.025382
                                                                                       0,811040
     10.0
                   -0.806280
                                   1.187200
                                                         40.0
                                                                        0.059510
                                                                                       0.772740
     15.0
                   -0.589250
                                                         35.0
                                                                        0.025998
                                                                                       0.787860
                                   1.074800
     20.0
                   -0.681780
                                   1.121600
                                                         30.0
                                                                         0.035058
                                                                                       0.783770
     22.5
                                   1.130900
                   -0.699780
                                                         25.0
                                                                         0.076515
                                                                                       0.765070
     25.0
                   -0.742630
                                   1.153200
                                                         20.0
                                                                         0.090544
                                                                                       0.758740
                                   1.137900
     27.5
                   -0.713460
                                                         15.0
                                                                         0.175340
                                                                                       0.720340
                                                         10.0
     30.0
                   -0.704970
                                   1.133500
                                                                         0.182600
                                                                                       0.717050
                                                                         0.187330
     35.0
                   -0.708320
                                   1.135300
                                                          5.0
                                                                                       0.714900
     40.0
                   -0.772640
                                                          3.0
                                   1.169100
                                                                         0.195140
                                                                                       0.711340
                   -0.569290
     45.0
                                   1.064900
                                                          2.0
                                                                         0.163520
                                                                                       0.725700
     47.5
                   -0.589010
                                   1.074700
                                                          1.0
                                                                         0.175340
                                                                                        0.720340
     50.0
                    -0.627350
                                   1.093900
                                   1.062800
     52.4
                   -0.565150
     55.0
                    -0.568550
                                    1.064500
     60.0
                   -0.477590
                                   1.020100
     65.0
                    -0.394760
                                   0.980610
```

Table B-7. Tabulated Data for Test 273-12, Condition 1.00.137.003

0.937060

70.0

-0.301710

ENGINE 3 WL 180

BOARD SURFACE		LOCAL MACH	OUTBOARD SURFA	CP	LOCAL MAC
	CP		*** *	= -	
1.7	0.124600	0.743340	78.7	0.0 03068	0.798200
3.3	0.082530	0 .762350	65.1	0.090995	0 .758530
5.1	0.134679	0.738 780	47.6	· 0.128700	0.741480
7.5	0.269930	0.677130	34.9	0.090222	0.758890
10.0	0.467540	0.584250	29.6	0.065516	0.770030
12.8	0.523680	0.556840	26.1	0.047092	0.778350
16.0	0.393550	0,619580	21,4	0.072882	0.766710
21.4	0.006051	0.796860	16.0	-0.101480	0.845430
26.1	-0.136910	0.861490	12.8	-0.115040	0.851580
29.6	-0.129380	0.858070	10.0	-0.093176	0.841670
34.9	-0.075134	0,833510	7.5	-0.080614	0.835980
47.6	-0.055798	0.824770	5.1	-0.073199	0.832630
651_	0.083107	0.762090	3.3	0.014259	0.793150
78.7'	0.014426	0 .793080	1.7	-0.083002	0.837070

• ENGINE 3WL 155

COND 1.00.137.0					
INBOARD SURFACE			OUTBOARD SURFA	CE .	
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
7.5	-0.012683	0.805300	90.0	0.114880	0.747740
12.3	-0.003316	0.8 01080	82,8	0.135310	0.738500
21.5	0.172010	0.721850	75.9	0.084860	0 .761300
30.4	0.309130	0.659040	67.2	0.086480	0 .760570
39.3	0.229370	0.695730	62.0	-0.010185	0.804180
48.5	0.095636	0.756440	57.2	-0.064403	0.828650
53.8	-0.070196	0.831270	53 .8	-0.041235	0.818190
57.2	***	***	48.5	-0.093959	0.842020
62.0	-0.178890	0.880600	39.3	-0.051814	0.822960
67.2	-0.083105	0.837110	30.4	-0.015608	0.806630
75.9	0.004751	0.797440	21.5	0.041797	0.780730
82.8	0.031861	0.785210	12.3	-0.158150	0.871150
90.0	0.071330	0.767410	7,5	-0.302880	0.937 600
-			Ř i	-0 205680	0 024260

• ENGINE 3 030 deg CORE COWL

COND. 1.00.137.		
X/C - %	CP	LOCAL MACH
3.6	0.272290	0.676040
24.0	0.008116	0.795920
2 9.2	-0.168420	0.875830
37.9	-0.317130	0.944220
44.7	0.044090	0.7 79700
49.9	-0.359500	0.964020
53.1	-0.218090	0.898520
57.0	-0.339840	0.954810
58.2	-0.417170	0.991220
62.7	-0.333640	0.951910
64.9	-0.538410	1.049700
68.1	-0.567280	1.063900
69.1	-0.245310	0.911010
70.2	-0.114990	0.851140
74.0	-0.083673	0.837370
77.4	-0.183980	0.832920
80.8	-0.302460	0.937400
83,8	-0.248430	0.912450
86.7	-0.244030	0.910420
90.1	-0.182620	0.882300
92.0	-0.1 01930	0.845630
95.4	0.079241	0.763840
99.4	-0.017616	0.807530

Table B-7. Tabulated Data for Test 273-12, Condition 1.00.137.003 (Continued)

• ENGINE 3 030 deg I					
COND. 1.00.137.0 INNER SURFACE X/C - % 7.7 5.0 3.3 1.3 0.2 0.0	CP 0.424110 0.647130 0.827350 **** 1.100900	LOCAL MACH 0.605080 0.494020 0.392410 **** 0.171980	OUTER SURFACE X/C - X 0.4 1.1 2.7 5.8 8.8 12.5 16.7 21.1 26.1 33.5 45.6 57.2 64.5 71.8 82.4 99.4	CP -0.412250 -0.985720 -0.985720 -0.933080 -0.838950 -1.149700 -0.601270 -0.447670 -0.334430 -0.364570 -0.349290 -0.140010 -0.016258 -0.018845 0.114700 0.039320	LOCAL MACH 0.988880 1.288600 1.263500 1.263500 1.257800 1.390800 1.080800 1.005700 0.952280 0.96380 0.959220 0.862900 0.806910 0.808080 0.747810 0.781840
• ENGINE 3 090 deg I					
COND. 1.00.137.0 INNER SURFACE X/C - % 7.7 5.0 3.3 1.3 0.1 0.0	CP 0.249070 0.441390 0.700640 1.084200 ****	LOCAL MACH 0.686710 0.596830 0.465370 0.191810 ****	OUTER SURFACE X/C - X 0.4 1.1 2.8 6.1 9.0 12.9 17.4 22.7 27.7 34.7 46.2 57.5 64.7 71.9 82.4 99.6	CP -0.004661 -0.346250 -0.315880 -0.517280 -0.527050 -0.582960 -0.366180 -0.231110 -0.271850 -0.266890 -0.287370 -0.243730 -0.113750 -0.041549 0.045386	LOCAL MACH 0.801680 0.957800 0.943630 1.039300 1.044100 1.071600 0.967140 0.904480 0.923230 0.920940 0.930400 0.910280 0.910280 0.850970 0.831830 0.780840 0.779110
ENGINE 3 150 deg I			*_ ,	. •	
COND. 1.00.137.00 INNER SURFACE X/C - % 9.0 5.2 3.6 1.5 0.2 0.0	CP 0.149400 0.318770 0.465100 0.870770 ****	LOCAL MACH 0.732110 0.654570 0.585420 0.365100 ****	OUTER SURFACE X/C - X 0.4 1.2 2.9 6.2 9.4 14.5 18.2 22.7 27.7 34.5 45.7 57.0 63.9 71.0 81.3 99.4	CP 0.197600 -0.027671 -0.121370 -0.291170 -0.393130 -0.439370 -0.427900 -0.294780 -0.323610 -0.245100 -0.245170 -0.206170 -0.151680 -0.087153 -0.066681 0.043607 0.046359	LOCAL MACH 0.710210 0.812060 0.852460 0.932160 0.932190 1.001800 0.996310 0.933840 0.947230 0.911090 0.893050 0.893050 0.893050 0.893050 0.893050 0.893050 0.893050 0.893050

Table B-7. Tabulated Data for Test 273-12, Condition 1.00.137.003 (Continued)

● ENGINE 3 210 deg	INLET RADIAL				
COND. 1.00.137.0 INNER SURFACE X/C - % 8.2 5.2 3.6 1.5 0.3	CP 0.243450 0.479910 0.689830 1.096200 ****	LOCAL MACH 0.689280 0.578250 0.471240 0.177790 ****	OUTER SURFACE X/C - X 0.5 1.2 2.9 6.2 9.3 14.4 18.1 22.4 27.5 34.2 45.5 56.9 63.9 70.8 81.0 99.0	CP 0.314160 -0.218380 -0.240540 -0.668670 -0.552490 -0.556870 -0.441230 -0.349020 -0.349020 -0.345650 -0.355770 -0.260960 -0.177350 -0.147270 -0.114440 -0.000742 0.046978	LOCAL MACH 0.656710 0.898640 0.908810 1.114800 1.056600 1.058700 0.959100 0.959100 0.959100 0.959100 0.959100 0.962250 0.918210 0.879890 0.866200 0.851290 0.778390
• ENGINE 3 270 deg					
COND. 1.00.137.0 INNER SURFACE X/C - 76 8.1 5.5 3.7 1.3 0.1 0.0	CP 0.335380 0.565210 0.744130 **** ****	LOCAL MACH 0.646850 0.536130 0.441250 **** ****	OUTER SURFACE X/C - X 0.4 1.0 2.7 6.2 9.0 12.8 17.2 21.7 26.6 33.8 45.2 56.6 63.9 71.1 81.5 99.0	CP -0.061003 -0.809880 -0.573430 -0.873000 -0.912180 -0.891400 -0.662910 -0.308720 -0.300700 -0.258190 -0.320050 -0.320050 -0.342310 -0.208580 -0.164689 -0.024447	LOCAL MACH 0.827110 1.189100 1.066900 1.223800 1.245900 1.234100 1.111900 0.940310 0.936560 0.916930 0.945570 0.945570 0.955960 0.894150 0.874120 0.810600 0.779170
• ENGINE 3 330 deg COND. 1.00.137.0 INNER SURFACE X/C - X 7.5 4.8 3.2 1.2 0.2 0.0		LOCAL MACH 0.568090 0.468200 0.352590 **** ****	OUTER SURFACE X/C - X O.4 1.1 2.7 5.8 8.8 12.6 17.8 21.4 26.1 33.7 45.4 57.0 64.5 71.8 82.7 99.4	CP -0.299020 -1.044100 -0.964720 -1.162700 -0.905430 -0.793310 -0.376310 -0.376310 -0.237280 -0.266980 -0.301740 -0.193010 -0.116690 0.010743 0.036190	LOCAL MACH 0.935800 1.323800 1.3276200 1.335000 1.399400 1.242000 1.180200 0.971900 0.940640 0.907310 0.927310 0.937060 0.937060 0.852310 0.794730 0.783250

Table B-7. Tabulated Data for Test 273-12, Condition 1.00.137.003 (Continued)

```
    WBL 809

COND. 1.00.137.003
UPPER SURFACE
     X/C
                       CP
                                 LOCAL MACH
                   -0.761050
                                  1.162900
     1.0
     2.0
                   -1.013200
                                   1.305000
                                  1.410900
     3.0
                   -1.179900
                   -1.320100
     5.0
                                  1.510700
                   -1.463900
     7.5
                                  1.627400
                                  1.688700
    10.0
                   -1.531300
                                  1.270900
    15.0
                   -0.955700
                                  1.144500
    20.0
                   -0.725950
                    ***
    22.5
                                   ***
                                  1.026800
    25.0
                   -0.491380
    30.0
                   -0.448400
                                   1,006100
                   -0.504280
    35.0
                                  1.033000
    40.0
                   -0.498220
                                   1.030100
    45.0
                   -0.529710
                                  1.045400
                                  1.044800
    50.0
                   -0.528380
    52.4
                   -0.496530
                                   1.029300
    55.0
                   -0.472680
                                  1.017800
    60.0
                   -0.425020
                                   0.994950
                                  0.959450
    65.0
                   -0.349760
    70.0
                   -0.328410
                                  0.949480
    75.0
                   -0.251630
                                  0.913920
    80.0
                   -0.192400
                                   0.886760

    WBL 834

COND. 1.00.137.003
UPPER SURFACE
     X/C - %
                       CP
                                 LOCAL MACH
                  -1.142400
                                  1.386000
    12.0
                                  1.060000
    24.0
                  -0.559330
    30.0
                  -0.592810
                                  1.076500
                                  1.077400
    40.0
                  -0.594610
    50.0
                   -0.516290
                                  1.038900
                   -0.352790
    60.0
                                  0.960870

    WBL 870

COND. 1.00.137.003
UPPER SURFACE
                                                   LOWER SURFACE
                                                        X/C - %
                       CP
                                 LOCAL MACH
                                                                          CP
                                                                                    LOCAL MACH
     X/C - %
     1.0
                   -0.281890
                                  0.927880
                                                       65.0
                                                                       0.014378
                                                                                     0.793100
                                  1.029600
                   -0.497200
                                                       60.0
                                                                      -0.011901
     2.0
                                                                                     0.804950
                                                                       0.003360
     3.0
                   -0.543640
                                   1,052200
                                                       55.0
                                                                                     0.798070
                                  1.136200
     5.0
                   -0.710170
                                                       50.0
                                                                       0.011874
                                                                                     0.794230
     7.5
                   -0.947110
                                  1.265900
                                                       45.0
                                                                      -0.015576
                                                                                     0.806610
                                  1.321100
                   -1.039700
    10.0
                                                       40.0
                                                                      -0.018771
                                                                                     0.808050
    15.0
                   ~1.014500
                                  1.305800
                                                       35.0
                                                                      -0.011831
                                                                                     0.804920
                                  1.085000
    20.0
                                                       30.0
                                                                      -0.006960
                   -0.609610
                                                                                     0.802730
                                  1.055500
    22.5
                   -0.550360
                                                       25.0
                                                                       0.000794
                                                                                     0.799230
                                                       20.0
                                                                                     0.797230
                                  1.082500
    25.0
                   -0.604750
                                                                       0.005219
    30.0
                   -0.525410
                                   1.043300
                                                       15.0
                                                                       0.042085
                                                                                     0.780600
    35.0
                   -0.543490
                                   1.052200
                                                       10.0
                                                                       0.094572
                                                                                      0.756910
    40.0
                                  1.043900
                   -0.526600
                                                                       0.101810
                                                        7.5
                                                                                     0.753640
    45.0
                   -0.534110
                                   1.047600
                                                        5.0
                                                                       0.088806
                                                                                     0.759530
                                  1.038600
                                                                       0.100010
    47.5
                   -0.515710
                                                        3.0
                                                                                     0.754460
    50.0
                   -0.525750
                                   1.043500
                                                        2.0
                                                                       0.104900
                                                                                      0.752250
                                  1.034400
    52.4
                   -0.507190
                                                        1.0
                                                                       0.024846
                                                                                      0.788380
    55.0
                   -0.473130
                                   1.018000
    60.0
                                  0.984060
                   -0.402060
                                  0.953750
    65.0
                   -0.337580
    70.0
                   -0.269850
                                   0.922320
```

Table B-7. Tabulated Data for Test 273-12, Condition 1.00.137.003 (Continued)

• ENGINE 4 WL 180

COND. 1.00.137.	003				Ť
INBOARD SURFACE			OUTBOARD SURFAC	CE	
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH "
6.7	0.459000	0.588380	96.4	0.137110	0.737680
8.7	0.5 65600	0.535950	81.5	0.119140	0.745820
10.9	0.625070	0.5 05560	58.9	0.024704	0.788450
14.5	0.512860	0.562160	44.2	0.010081	0.795040
17.9	0.270200	0.677010	37.7	0.016201	0.792290
21.6	0.183340	0.716710	33.7	0.050972	0 .776600
28.4	-0.081270	0.836280	28.4	0.082240	0.762490
33.7	-0.245290	0.911000	21.6	0.141040	0.735900
37.7	-0.242210	0.909580	17.9	0.057168	0.773800
44.2	-0.218850	0.8 98860	14.5	-0.047702	0.821110
58.9	-0.0 00039	0.799610	10.9	-0.153840	0.8 69190
81.5	0.134730	0.738760	8.7	-0.173990	0.878370
96.4	0.174910	0.720540	6.7	-0.139210	0.862540
-			4.7	-0.117500	0.852690
					-

• ENGINE 4WL 155

COND. 1.00.137.			AUTROLDS	Nor tor	•
INBOARD SURFACE				SURFACE	
X/C - %	CP	LOCAL MACH	X/C -	- % CP	LOCAL MACH
1.8	-0.178000	0.8 80200	96.8	0 ,154720	0.729700
3.7	-0.186760	0.884190	89.0	0 ,106030	0.751740
5.5	-0.217800	0.898380	81.5	0 .102950	0.753130
8.1	-0.176860	0.8 79670	72.2	0.067811	0.768990
13.3	0.010871	0.7 94690	66.6	-0.039426	0.817370
23.1	0.205530	0.706610	62.4	-0.122990	0.855180
33.1	0.395630	0 .618600	37.5	-0.111880	0.850140
43.0	0.273410	0.675540	52.2	-0.077676	0.834660
52.2	0.017291	0.791790	43.0	-0. 050350	0.822300
57.5	-0.220520	0.899640	3 3.1	-0.018831	0.8 08080
62.4	-0.353850	0.961360	23.1	0.047740	0.778050
66.6	-0.191480	0.886340	13.3	-0.109010	0.848850
72.2	-0.071015	0.831650	8.1	-0.315410	0.943420
81.5	0.026364	0.787700	5.5	-0.275010	0.924710
6S.Ū	0.035678	0.783490	3.7	-0.279510	0.926790
96.8	0.170380	· 0.722370	1.8	-0.224380	0.901400

Table B-7. Tabulated Data for Test 273-12, Condition 1.00.137.003 (Continued)

• ENGINE 4 060 deg INLET RADIAL

COND. 1.00.137.	003				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
44.1	0.638340	0.498640	2.7	-1.028200	1.314100
32.2	0.246590	0.687840	6.1	-0.954490	1.270200
23.1	0.639150	0.503430	12.6	-0.933000	1.257800
16.6	0.400790	0.662890	17.0	-0.515440	1.038400
10.2	****	***	26.3	-0.305330	0.938730
4.9	0.335350	0.623450	32.7	-0.346640	O.957980
2.0	0.710330	0.460070	43.2	-0.282570	0.928190
0.0	0.744150	0.441240	• • • •		

• ENGINE 4 180 deg INLET RADIAL

COND. 1.00.137.0	003		•		
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - X	CP	LOCAL MACH
42.5	0.643740	0.495810	6.2 -	-0.121840	0.854650
31.7	0.448300	0.593510	9.5	-0.359390	0.963950
24.4	0,204580	0.707030	13.2	-0.487110	1.024700
17.8 ⁻	0.141140	0.735850	17.8	-0.347630	0.958440
11.1	-0.017293	0.807380	27.2	-0.093186	0.843930
5.5	0.109630	0.750100	34.5	-0.285190	0.929400
2.4	****	***	45.5	-0.218730	0 .898800
0.0	***	****			

• ENGINE 4 300 deg INLET RADIAL

COND. 1.00.137.	003				
INNER SURFACE			OUTER SURFACE	E	
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
42.3	0.646290	0 .494460	2.7	-1.034100	1.317600
32,2	0.504680	0.566170	5.8	-0.883350	1.229600
22.7	0.334860	0 .647090	12.7	-0.822950	1.196200
16.4	0,243780	0 .689130	17.1	-0.722250	1.142500
9.9	0.141790	0 .735550	26.4	-0.438500	1.001400
4.7	0.296810	0.664740	33.0	-0.445010	1.004500
2.0	0.702300	0.464470	43.3	-0.367420	0.967720
0.0	0 752100	0 426740			

Table B-7. Tabulated Data for Test 273-12, Condition 1.00.137.003 (Concluded)

.

```
    WBL 445

COND. 1.00.137.001
UPPER SURFACE
                                                    LOWER SURFACE
      X/C
                        CP
                                  LOCAL MACH
                                                         X/C - %
                                                                            CP
                                                                                      LOCAL MACH
                                                                                       0.879870
                    -0.442900
                                    1.080400
                                                                       -0.051160
      1.0
                                                         65.0
                    -0.664580
      2.0
                                    1.205500
                                                         60.0
                                                                       -0.059281
                                                                                       0.883870
      3.0
                    -0.842480
                                    1.316400
                                                         55.0
                                                                        -0.052104
                                                                                       0.880330
                                                                                       0.877630
      5.0
                    -0.921580
                                    1.369900
                                                                        -0.046627
                                                         50.0
                    -1.059100
                                    1.470900
      7.5
                                                         45.0
                                                                        -0.023766
                                                                                       0.866400
     10.0
                    -0.961990
                                    1.398400
                                                         40.0
                                                                        -0.019801
                                                                                       0.864450
                                    1.322300
                                                                        -0.034729
     15.0
                    -0.851310
                                                         35.0
                                                                                       0.871780
                                    1.144800
     20.0
                    -0.559680
                                                         30.0
                                                                        -0.067217
                                                                                       0.887780
                                    1.120900
     22.5
                                                                                       0.908250
                    -0.516980
                                                         25.0
                                                                        -0.108580
     25.0
                    -0.522000
                                    1.123700
                                                         20.0
                                                                        -0.477850
                                                                                       1.099400
     30.0
                    -0.516230
                                    1.120500
                                                                                       1.070500
                                                         15.0
                                                                        -0.424580
     35.0
                    -0.529810
                                    1.128000
                                                         10.0
                                                                        -0.053618
                                                                                       0.881080
                                                                         0.293550
     40.0
                    -0.687330
                                    1.219100
                                                          5.0
                                                                                       0.711360
                    -0.671030
                                                          3.0
                                                                         0.357780
     45.0
                                    1.209300
                                                                                       0.679640
     50.0
                    -0.684620
                                    1.217400
                                                          2.0
                                                                         0.398760
                                                                                       0.659230
     52.4
                                                                                       0.643110
                    -0.626220
                                    1.183000
                                                          1.0
                                                                         0.430870
     55.0
                    -0.649310
                                    1.196500
                                    1.191900
     60.0
                    -0.641500
     65.0
                    -0.496540
                                    1.109600
                    -0.320670
                                    1.015700
     70.0
     75.0
                    -0.188270
                                    0.948070
     80.0
                    -0.094238
                                    0.901140

    WBL 470

COND. 1.00.137.001
UPPER SURFACE
      X/C - %
                        CP
                                  LOCAL MACH
                    -0.871700
     11.0
                                    1.335800
                                    1.104300
     20.0
                    -0.486980
     30.0
                    -0.572420
                                    1.152000
     40.0
                    -0.710650
                                    1.233200
     50.0
                    -0.712810
                                    1.234500
     60.0
                     ***
                                    ***

    WBL 510

COND. 1.60.137.001
UPPER SURFACE
                                                    LOWER SURFACE
      X/C - %
                                                          X/C
                                                                            CP
                                                                                      LOCAL MACH
                        CP
                                  LOCAL MACH
                                   0.953670
                                                         65.0
                                                                        -0.085923
                                                                                       0.897020
      1.0
                    -0.199390
                                                                                       0.896460
      2.0
                                                                        -0.084784
                    -0.364250
                                                         60.0
                                    1.038500
                                    1.111400
      3.0
                    -0.499800
                                                         55.0
                                                                        -0.079905
                                                                                        0.894050
      5.0
                    -0.699270
                                    1.226300
                                                                                        0.897670
                                                                        -0.087225
                                                         50.0
                                                                        -0.059243
      7.5
                    -0.740390
                                    1.251400
                                                         45.0
                                                                                        0.883850
                                                                         0.054798
     10.0
                    -0.722880
                                    1.240600
                                                         40.0
                                                                                        0.827940
     15.0
                    -0.458690
                                    1.088900
                                                                         0.008434
                                                                                        0.850610
                                                         35.0
                                                                                        0.848290
                                    1.106200
                                                                         0.013151
     20.0
                    -0.490380
                                                         30.0
     22,5
                                    1.145200
                    -0.560410
                                                         25.0
                                                                         0.064069
                                                                                        0.823410
                                    1.177600
                                                                         0.067975
     25.0
                    -0.617040
                                                                                        0.821510
                                                         20.0
     27.5
                    -0.595960
                                    1.165500
                                                         15.0
                                                                         0.095470
                                                                                        0.808110
                                    1.165500
     30.0
                    -0.596090
                                                         10.0
                                                                         0.062604
                                                                                        0.824130
     35.0
                    -0.571950
                                    1.151800
                                                          5.0
                                                                         0.097258
                                                                                        0.807240
     40.0
                                    1.216100
                                                                                        0.805100
                    -0.682430
                                                          3.0
                                                                         0.101650
     45.0
                    -0.766120
                                    1.267400
                                                                                        0.870080
                                                          2.0
                                                                        ~0.031261
     47.5
                    -0.733620
                                    1.247200
                                                          1.0
                                                                        -0.025891
                                                                                        0.867440
     50.0
                                    1.239100
                    -0.720360
```

Table B-8. Tabulated Data for Test 273-15, Condition 1.00.137.001

1.234500

1.262300

1.269700

1.201500

0.990420

52.4

55.0

60.0

65.0

-0.712800

-0.758020

-0.769830

-0.657760

-0.271680

• ENGINE 3 WL 180

NBOARD SURFACE	_		OUTBOARD SUR		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACI
1.7	0.2039 00	0.7552 60	78.7	0.030450	0.869680
3.3	0.172230	0.770710	65.1	0.047316	0.831600
5.1	0.075329	0.817930	47.6	0.089065	0.811230
7.5	0.317120	0.699760	34.9	0.022868	0.843550
10.0	0.469140	0.623730	29.6	-0.043726	0.876210
12.8	0.447430	0 .634750	26.1	-0.075546	0.891900
16.0	0.246810	0 .734290	21.4	-0.036545	0.872680
21.4	-0.166740	0.937260	16.0	-0.12 5640	0.916730
26.1	-0.344490	1.028100	12.8	-0.132490	0.920150
29.6	-0.484770	1.103100	10.0	-0.090287	0.899190
34.9	-0.158290	0.933030	7.5	-0.070899	0.889610
47.6	-0.057967	0.883220	5.1	-0.038619	0.873700
65.1	0.047984	0.831270	3.3	0.094763	0.808450
78.7	-0.010743	0.860010	1.7	-0.041496	0.875120

• ENGINE 3 WL 155

COND. 1.00.137			OUTBOARD SURFA	0 F	
INBOARD SURFACE					
X/C = %	· CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
7.5	-0.108690	0.908310	90.0	0.091039	0.810270
12.3	-0.049811	0.879210	82.8	0.116750	0.797740
21.5	0.143770	0.784570	75.9	0.049199	0.830670
30.4	0.293550	0.711370	67.2	0 .046609	0.831940
39.3	0.162050	0.775670	62.0	-0.082038	0.895100
48.5	0.009969	0.849860	57.2	~0.170030	0.938910
53.8	-0.183890	.0.945870	53.8	-0.134740	0.921260
57.2	***	***	48.5	-0.156320	0.932050
62.0	-0.624040	1.181700	3 9.3	-0.0 50708	0.879 650
67.2	-0.138930	0.923350	30.4	0.013031	0.848360
75.9	0.005825	0.851890	21.5	0.054700	0.827990
82.8	0.029277	0.840410	12.3	-0.158310	0 .933030
90.0	0.058129	0.826320	7.5	-0.32 0600	1.015700
			5.1	-0.288310	0.9 98970

• ENGINE 3 030 deg CORE COWL

COND. 1.00.137	' . 0 0 1	
OUTBOARD SURFA		
X/C - %	CP	LOCAL MACH
3 .6	0.361580	0.6777 60
24.0	-0.036133	0.872480
29.2	-0.132270	0.920040
37.9	-0.243740	0.976150
44.7	0,006523	0.851540
49.9	-0.213080	0.960590
53.1	-0.222320	0.965270
57.0	-0.371210	1.042100
58.2	-0.397000	1,055800
62.7	-0.479930	1.100500
64.9	-0.437270	1.077300
68.1	-0.450540	1,084500
69.1	-0.348150	1.030000
70.2	-0.3 50080	1.031000
74.0	-0.482990	1.102200
77.4	-0.389910	1.052000
80.8	-0.285850	0.997710
83.8	-0,266820	0.987940
86.7	-0.193360	0.950630
90.1	-0.085426	0.896790
92.0	0.036330	0.836960
95,4	0.062170	0.824340
99.4	0.045997	0.832240

Table B-8. Tabulated Data for Test 273-15, Condition 1.00.137.001 (Continued)

• ENGINE 3 330 deg CORE COWL

COND. 1.00.133		
X/C - %	CP	LOCAL MACH
3,6	0.403210	0.657000
24.0	0.305550	0.705460
29.2	0.097848	0.806950
37.9	0.239730	0.737760
44.7	0.084170	0.813620
49.9	0.006356	0.851630
53.1	-0.020914	0.865000
57.0	-0.107900	0.907920
58.2	-0.027208	0.868090
62.7	-0.008336	0.858830
64.9	-0.233820	0.971110
68.1	-0.388790	1.051400
69.1	-0.269140	0.989130
70.2	-0.263540	0.986260
74.0	-0.372370	1.042800
77.4	-0.516970	1.120900
80.8	-0.493530	1.107900
83.8	-0.651320	1.197700
86.7	-0.646930	1.195100
90.1	-0.624700	1.182100
92.0	-0.457660	1.088400
95.4	-0.390280	1.052200
99.4	-0.309530	1,009900
99.7	-0.003360	1.003300

• ENGINE 3 030 deg INLET RADIAL

COND. 1.00.137.001 INNER SURFACE	t .	AUTER SURFACE		
X/C - % CP	LOCAL MACH	OUTER SURFACE	CP	LOCAL MACH
7.7 0.247010	0.734190	0.4	-0.453900	1.086300
5.0 0.368590	0.674280	1.1	-0.800230	1.289000
3.3 0.5 66850	0.573200	2.7	-0.671320	1.209500
1.3 0.889820	0 .385100	5.8	-0.635880	1.188600
0.2 1.151600	0.143330 ,	8.8	-0.692320	1.222100
0.0 0.735770	0.480420	12.5	-0.95 8950	1.396200
		16.7	-0.969140	1.403600
		21.1	-1.052800	1.466000
	-	⁻ 26.1	-0.698520	1.225800
		33.5	-0.304310	1.007200
	· <u>-</u> -	45.6	-0.388160	1.051100
	•	57.2	-0.1 80350	0.944080
		64.5	-0.123310	0.915570
		71.8	-0.043248	0.875970
		82.4	0.084051	0.813670
 ENGINE 3 090 deg INLET RADIA 	L	99.4	0.258370	0.728620
COND. 1.00.137.001				
INNER SURFACE		OUTER SURFACE		•
X/C - % CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
7.7 0.168530	0 .772500	0.4	-0.259950	0.984-20
5.0 0.262420	0.726650	1.1	-0.444790	1.081400
3.3 0.44 9730	0 .633580	2.8	-0.352850	1.032500
1.3 0.796400	0.444550	6.1	-0.533810	1.130300
0,1 ****	***	9.0	-0.639620	1.190800
0.0 0.852620	0.409500	12.9	-0.715700	1.236200
		17.4	-0.647410	1.195400
		22.7	-0.498050	1.110400
		27.7	-0.273090	0.991150
		34.7	-0.316930	1.013800
		46.2	-0.352050	1.032100
		5 7.5	-0.309610	1.010000
		64.7	-0.151300	0.929520
		71.9	-0.105420	0.906680
		82.4	0.020747	0.844580
		99.6	0.225340	0.744790

Table B-8. Tabulated Data for Test 273-15, Condition 1.00.137.001 (Continued)

• ENGINE 3 150 deg INLET RADIAL

COND. 1.00.137.0	01				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
9.0	0.102220	0.804810	0.4	0.013569	0.861390
5.2	0.288970	0.713610	1.2	-0.314530	1.012500
3.6	0.4 69420	0.623590	2.9	-0.326690	1.018800
1.5	0.811420	0.435380	6.2	-0.479940	1.100500
0.2	1.156200	0.135700	9.4	-0.582440	1.157700
0.0	0.883450	0.389370	14.5	-0.833450	1.310500
			18.2	-0.756140	1.261200
			22.7	-0.669030	1.208100
			27.7	-0.435220	1.076200
			34.5	-0.297720	1.003800
			45.7	-0.265040	0.987030
			57.0	-0.171160	0.939470
			63.9	-0.135560	0.921670
			71.0	-0.105580	0.9 06760
			81.3	0.001888	0.853810
			99.4	0.210290	0.752140

• ENGINE 3 210 deg INLET RADIAL

COND. 1.00.137.00	1				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
8.2	0.131720	0 .790440	0.5	-0.136060	0.921930
5.2	0.318460	0 .699100	1.2	-0.438310	1.105100
3.6	0.508540	0 .603560	2.9	-0.348000	1.030000
1.5	0.823880	0.427670	6.2	-0.591940	1,163200
0.3	1.151100	0.144110	9.3	-0.754350	1.260000
0.0	0.880460	0.391360	14.4	-0.762750	1.265300
			18.1	-0.699020	1,226100
			22.4	-0.761350	1.264400
			27.5	-0.671610	1.209700
			34.2	-0.341200	1.026400
			45.5	-0.288050	0.998840
			5 6.9	-0.204910	0.956460
			63.9	-0.166660	0.937220
			70.8	-0.124290	0.916070
			81.0	0.019575	0.845150
			99.0	0.194700	0.759750

Table B-8. Tabulated Data for Test 273-15, Condition 1.00.137.001 (Continued)

● ENGINE 3 270 deg INLET RADIAL

COND. 1.00.137.0	101				
INNER SURFACE			OUTER SURFACE	:	
X/C - %	CP	LOCAL MACH	X/C - X	. CP	LOCAL MACH
8.1	0.201200	0.756580	0.4	-0.063406	0.885900
5.5	0.330120	0.693340	1.0	-0.812930	1.297200
3.7	0.505480	0.605130	2.7	-0.583560	1.158400
1.3	0.828290	C.424910	6.2	-0.674590	1.211500
0.1	1.190800	0.051072	9.0	-0.783140	1.278100
0.0	0.775540	0.457100	12.8	-0.883930	1.344100
			17.2	-0.695580	1.224000
			21.7	-0.561970	1.146100
			26.6	-0.591210	1.162700
	4 - 44		33.8	-0.570340	1.150800
			45.2	-0.244530	0.976550
			56.6	-0.336630	1.024000
	•		63.9	-0.191650	0.949770
			71.1	-0.144680	0.926220
			81.5	-0.002934	0.856170
			99.0	0.182880	0.765510

• ENGINE 3 330 deg INLET RADIAL

COND. 1.00.137					
INNER SURFAC	E		OUTER SURFACE		
X/C - X 7.5	CP 0.282110	LOCAL MACH 0.716990	X/C - X	CP -0.343100	LOCAL MACH
4.8	0.399280	0.658970	1.1	-0.912430	1.363600
3.2 1.2	- 0.566620 0.905470	0.573320 0.374500	2.7 5.8	-0.739490 -0.838920	1.250800 1.314100
0.2	1.103600	0.207090	8.8	-0.880270	1.341600
0.0	0.765780	0.462890	12.6 17.8	-0.686150 -0.797700	1.218400 1.287400
			21.4 26.1	-0.810250 -0.806790	1.295500
			33,7	-0.315100	1.293200 1.012800
			45.4 57.0	-0.223050 -0.320050	0.965630 1.015400
			64.5	-0.187430	0.947640
			71.8 82.7	-0.123620 0.017948	0.915720 0.845950
			99.4	0.159230	0.777040

Table B-8. Tabulated Data for Test 273-15, Condition 1.00.137.001 (Continued)

0.856120

0.877130

0.913010

0.944660

```
COND. 1.00.137.001
UPPER SURFACE
                                                    LOWER SURFACE
     X/C - %
                                  LOCAL MACH
                       CP
                                                         X/C - %
                                                                           CP
                                                                                     LOCAL MACH
                   -0.231930
     2.0
                                   0.970140
                                                        65.0
                                                                       -0.009763
                                                                                      0.859520
     3.0
                   -0.350860
                                                        60.0
                                   1.031400
                                                                                      0.883430
                                                                      -0.058396
     5.0
                   -0.673270
                                                        55.0
                                   1.210700
                                                                       -0.036712
                                                                                      0.897410
     7.5
                   -0.827210
                                   1.306400
                                                        50.0
                                                                                      0.933210
                                                                       -0.158660
    10.0
                   -0.977690
                                   1.409700
                                                        45.0
                                                                                      0.759720
                                                                       0.194770
    15.0
                   -1.066300
                                   1.476500
                                                        40.0
                                                                       -0.004437
                                                                                      0.856910
    20.0
                   -1.204600
                                                        35.0
                                                                                      0.667860
                                   1.592700
                                                                        0.381460
    22.5
                                                        30.0
                                   ....
                                                                        0.140630
                                                                                      0.786100
    25.0
                   -0.949010
                                   1.389200
                                                        25.0
                                                                       -0.228610
                                                                                      0.968450
    30.0
                   -0.865950
                                                        20.0
                                   1.332000
                                                                       -0.485930
                                                                                      1.103800
    35.0
                                  1.309900
                   -0.832550
                                                        15.0
                                                                       -0.410650
                                                                                      1.063100
    40.0
                   -0.675010
                                                        10.0
                                   1.211700
                                                                       -0.249090
                                                                                      0.978880
    45.0
                   -0.515480
                                   1.120100
                                                         5.0
                                                                        0.414780
                                                                                      0.651200
    50.0
                   -0.280100
                                   0.994740
                                                         3.0
                                                                        0.430090
                                                                                      0.643490
    52.4
                  -0.248690
                                   0.978670
                                                         1.0
                                                                        0.137300
                                                                                      0.787720
    55.0
                   -0.366010
                                   1.039400
    60.0
                  -0.433420
                                   1.075200
    65.0
                  -0.438390
                                   1.077900
    70.0
                  -0.409080
                                   1.062200
    75.0
                   -0.338820
                                   1.025100
    80.0
                   -0.331490
                                   1.021300

    WBL 834

COND. 1.00.137.001
UPPER SURFACE
     X/C
                       CP
                                 LOCAL MACH
    12.0
                   -0.907510
                                  1.360200
    24.0
                   -0.961410
                                   1.398000
    30.0
                  -0.318790
                                   1.014700
    40.0
                  -0.465440
                                  1.092600~
    50.0
                  -0.478340
                                   1.099600
    60.0
                   -0.390700
                                   1.052400

    WBL 870

COND. 1.00.137.001
UPPER SURFACE
                                                   LOWER SURFACE
     X/C
                       CP
                                  LOCAL MACH
                                                        X/C - %
                                                                          CP
                                                                                    LOCAL MACH
                                  0.875020
     1.0
                   -0.041313
                                                       65.0
                                                                       0.050401
                                                                                     0.830080
     2.0
                   -0.273360
                                   0.991290
                                                       60.0
                                                                       0.019940
                                                                                     0.844970
                                   1.021000
     3.0
                   -0.330950
                                                       55.0
                                                                       0.011039
                                                                                     0.849330
     5.0
                   -0.940810
                                   1.383400
                                                       50.0
                                                                       0.023702
                                                                                     0.843130
     7,5
                   -0.825300
                                   1.305200
                                                        45.0
                                                                      -0.004537
                                                                                     0.856960
    10.0
                   -0.835960
                                   1.312100
                                                        40.0
                                                                      -0.010012
                                                                                     0.859640
    15.0
                   -0.879280
                                   1.340900
                                                       35.0
                                                                      -0.018058
                                                                                     0.863590
    20.0
                   -0.944760
                                   1.386200
                                                       30.0
                                                                     -0.009155
                                                                                     0.859220
    22.5
                   -0.889940
                                   1.348100
                                                       25.0
                                                                      -0.025246
                                                                                     0.867120
    25,0
                   -0.894230
                                   1.351100
                                                       20.0
                                                                      -0.018570
                                                                                     0.863840
    30.0
                   -0.441130
                                                       15.0
                                   1.079400
                                                                      -0.006589
                                                                                     0.857960
    35.0
                   -0.349850
                                   1.030900
                                                        10.0
                                                                       0.034826
                                                                                     0.837690
    40.0
                   -0.420670
                                   1,068400
                                                        7.5
                                                                       0.017370
                                                                                     0.846230
    45.0
                   -0.488910
                                   1.105400
```

WBL 809

47.5

50.0

52.4

55.0

60.0

65.0

70.0

0

-0.566270

-0.559050

-0.557160

-0.554580

-0.498200

-0.366360

-0.291750

Table B-8: Tabulated Data for Test 273-15, Condition 1.00.137.001 (Continued)

5.0

3.0

2.0

1.0

-0.002822

-0.045611

-0.118170

-0.181490

1.148500

1,144400

1,143400

1.141900

1.110500

1.039600

1.000700

• ENGINE 4 WL 180

COND. 1.00.137.	001				
INBOARD SURFACE	i I		OUTBOARD	SURFACE	
X/C - %	CP	LOCAL MACH	X/C	- % CP	LOCAL MACH
6.7	0.381670	0 .667770	96.4	0.125260	0.793590
8.7	0.464310	0.626200	81.5	· 0,104420	0.803750
10.9	0.468070	0.624280	58.9	· 0.020328	0.844790
14.5	0.354120	0.681460	44.2	-0.078560	0.893390
17,9	0.123410	0.794490	37.7	-0.090739	0.899420
21.6	0.020535	0.844690	33.7	-0.067079	0.887720
28.4	-0.236000	0.972220	28.4	0.010112	0.849780
33.7	-0.461260	1.090300	21.6	0.047242	0.831630
37.7	-0.615 560	1.176800	17.9	0.039912	0.835220
44.2	-0.298940	1.004500	14.5	-0.043911	0.876300
58.9	-0.031437	0.870160	10.9	-0,134240	0.921020
81.5	0.100040	0.805880	8.7	-0.1425 80	0.925180
96.4	0.137110	0.787820	6.7	-0.090546	0.899310
			4.7	-0.056993	0.882740

• ENGINE 4 WL 155

COND. 1.00.137.	.001				
INBOARD SURFACE			O UTBOARD	SURFACE	
X/C - %	CP	LOCAL MACH	X/C	- % CP	LOCAL MACH
1.8	-0.135620	0 .921700	9 6.8	0 .159590	0.776870
3.7	-0.19 5040	0.951480	89.0	0.082182	0.814590
5 . 5	-0.240840	0.974680	81.5	0.086290	0.812580
8.1	-0.227180	0.9 67740	72.2	0 .003316	0.853110
13.3	-0.043397	0.8 76050	66.6	-0 ,103180	0.905570
23.1	0.147580	0 .782720	62.4	~0.234930	0.971670
33.1	0.305840	0 .705330	5 7.5	-0.1 97820	0.952880
43.0	0.168480	0 .772530	52.2	-0.14543 0	0.926600
52.2	-0.127350	0 .917600	43.0	-0 .058380	0.883430
57.5	-0.30 6600	1.008400	3 3.1	0.012837	0.848450
62.4	-0.629580	1.184900	23.1	0.064501	0.823210
66.6	-0.603820	1.170000	13.3	-0,115970	0.911920
72.2	-0 .086450	0 .897290	8.1	-0,3 09790	1.010100
81.5	0.039861	0.835240	5 ,5	-0.251900	0.980310
89.0	0.017154	0.846340	3.7	-0.229370	0.968850
96.8	0 .169170	0.772190	1.8	-0.150120	0.928940

Table B-8. Tabulated Data for Test 273-15, Condition 1.00.137.001 (Continued)

• ENGINE 4 030 deg CORE COWL

COND. 1.00.137.0		
OUTBOARD SURFACE		1.0041.344.04
X/C - %	CP	LOCAL MACH
3.6	0.316250	0.700190
15.5	0.175240	0.769240
24.0	-0.119240	0.913550
29.2	-0.220330	0.964260
37.9	-0.069063	0 .888700
44.7	-0.307890	1.009100
49.9	-0 .315950	1.013300
53.1	-0.473410	1.096900
57.0	-0.374540	1.043900
58.2	-0.385570	1.049700
62.7	-0.350620	1.031300
64.9	-0.433160	1.075100
68.1	-0.280430	0.994920
69.1	-0.190940	0.949420
70.2	-0.304370	1.007300
74.0	-0.288850	0.999250
77.4	-0.472800	1.096600
80.8	-0.401230	1.058000
83.8	-0.433840	1.075500
86.7	-0.357930	1.035200
90.1		0.914310
92.0	-0.041595	0.875160
95.4	0.054657	
99,4		0.828020
#7,4	0.047608	0.831460

• ENGINE 4 330 deg CORE COWL

COND. 1.00.137	7.001	
INBOARD SURFAC	CE	
X/C - %	CP	LOCAL MACH
3.6	0.408290	0 .654460
15.5	-0.054067	0.881 300
24.0	0 .116510	0.79 7860
29.2	- 0.030661	0.839740
37.9	0.103890	0.804010
44.7	-0.076999	0,892620.
49.9	-0.012547	0.8 60890
53.1	-0,188810	0.948350
57.0	-0.2 09240	0.958650
58.2	-0.113230	0.910560
62.7	-0.3 78000	1.045700
64,9	-0.575810	1.154000
68.1	-0.452500	1.085600
69.1	-0.415680	1.065800
70.2	~0.394 660	1.054 600
74.0	-0 .560190	1.145100
77.4	-0.641110	1.191700
80.8	-0.771550	1.2 70800
83.8	-0.761260	1.264400
86.7	-0 .590870	1.162600
90.1	-0.388810	1.051400
92.0	-0.330790	1.021000
95.4	-0.200240	0,954110
99,4	-0.080350	0.894270

Table B-8. Tabulated Data for Test 273-15, Condition 1.00.137.001 (Continued)

• ENGINE 4 060 deg INLET RADIAL

COND. 1.00.137.	001				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	I/C - X	CP	LOCAL MACH
44.1	0.690110	0.506390	2.7	-0.857580	1.326400
32.2	0.275350	Ŏ.720300	5.1	-0.823480	1.307300
23.1	0.676500	0.513990	12.6	-0.924510	1.371900
16.8	0.323070	0.696820	17.0	-0.838210	1.313600
10.2		****	26.3	-0.698210	1.225600
4.9	0.391710	0.662750	32.7	-0.242060	0.975290
2.0	0.705240	0.497870	43.2	-0.267750	0.988410
0.0	0.756720	0.468230			

• ENGINE 4 180 deg INLET RADIAL

COND. 1.00.137.0	01				
INNER SURFACE			OUTER SURFACE		-
X/C - %	CP	LOCAL MACH	X/C - X	CP	LOCAL MACH
42.5	0.667410	0.519020	6,2	-0.589600 ~	1.161800
31.7	0.486860	0.614680	9.5	-0.577370	1.154800
24.4	0.273310	0.721300	13,2	-0.606970	1.171800
17.8	0.237980	0.738610	17.8	-0.627350 °	1.183600
11.1	0.087216	0.812130	27.2	-0.270410	0.989770
5.5	0.284500	0.715810	34.5	-0.243340	0.975940
2.4	0.626670	0.541300	45.5	-0.230710	0.969520
0.0	***	***			

• ENGINE 4 300 deg INLET RADIAL

COND. 1.00.137.0	001				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - X	CP	LOCAL MACH
42.3	0.668370	0.518500	2.7	-0.790730	1.283000
32.2	0.517050	0.599170	5.8	-0.650290	1.197000
22.7	0.360430	0.678320	12.7	-0.683050	1.216500
16.4	0.273140	0.721390	17.1	-0.734480	1.247700
9.9	0.151900	0.780610	26,4	-0.741470	1.252100
4.7	0.2 83020	0.716530	3 3.0	-0.759130	1.263000
2.0	0.689870	0.506530	43.3	-0.243980	0.976270
0.0	0.849610	0.411440			•••••

Table B-8. Tabulated Deta for Test 273-15, Condition 1.00.137.001 (Concluded)

.

```
● WBL 445
 COND. 1.00.137.002
 UPPER SURFACE
                                                    LOWER SURFACE
       X/C - %
                         CP
                                   LOCAL MACH
                                                         X/C - %
                                                                           CP
                                                                                      LOCAL MACH
                    -0.941840
       1.0
                                    1.213900
                                                         65.0
                                                                       -0.016946
                                                                                       0.783250
                    -1.275300
                                                                       -0.012981
       2.0
                                    1.409000
                                                         60.0
                                                                                       0.781530
                     -1.299600
       3.0
                                                         55.0
                                    1.424600
                                                                       -0.014565
                                                                                       0.782220
       5.0
7.5
                                    1.544700
                    -1.469900
                                                                       -0.017476
                                                         50.0
                                                                                       0.783480
                    -1.430900
                                                                        0.000782
                                    1.515700
                                                         45.0
                                                                                       0.775540
      10.0
                    -0.926130
                                    1.205600
                                                         40.0
                                                                       -0.009008
                                                                                       0.779800
      15.0
                    -0.504130
                                    0.998910
                                                         35.0
                                                                       -0.016153
                                                                                       0.782910
                                    1.073400
      20.0
                    -0.663030
                                                         30.0
                                                                       -0.047127
                                                                                       0.796370
      22.5
                    -0.646380
                                    1.065400
                                                         25.0
                                                                       -0.070413
                                                                                       0.806500
      25.0
                                    1.066600
                                                         20.0
                     -0.648760
                                                                       -0.089741
                                                                                       0.814900
      30.0
                                    1.056400
                     ~0.627340
                                                         15.0
                                                                       -0.125210
                                                                                       0.830340
      35.0
                                    1.060000
                     -0.634960
                                                                        0.141340
                                                         10.0
                                                                                       0.714240
      40.0
                     -0.638290
                                    1.061600
                                                          5.0
                                                                        0.430660
                                                                                       0.584210
                     -0.546470
                                    1.018500
                                                                        0.485460
      45.0
                                                          3.0
                                                                                       0.558440
      50.0
                                    1.021800
                    -9.553610
                                                          2.0
                                                                        0.514840
                                                                                       0.544390
                                    1.020000
      52.4
                     -0.549800
                                                          1.0
                                                                        0.546080
                                                                                       0.529250
      55.0
                                    1,003900
                     -0.515070
      60.0
                     -0.454640
                                    0.976300
                                    0.937920
      65.0
                     -0.369480
      70.0
                     -0.299070
                                    0,906590
      75.0
                     -0.186320
                                    0.857010
      80.0
                     -0.104960
                                    0.821520

    WBL 470

 COND. 1.00.137.002
 UPPER SURFACE
       X/C - %
                         CP
                                   LOCAL MACH
                    -0.575690
      11.0
                                    1.032100
      20.0
                    -0.669750
                                    1.076600
     30.0
                    -0.664620
                                    1.074200
      40.0
                    -0.624930
                                    1.055300
      30.0
                    -0.559360
                                    1.024400
      60.0
                     ***
                                    ***
.. • WBL 510
 COND. 1.00.137.002
 UPPER SURFACE
                                                    LOWER SURFACE
       X/C - %
                         CP
                                   LOCAL MACH
                                                         X/C - %
                                                                           CP
                                                                                      LOCAL MACH
                                    1.013300
       1.0
                    -0.535330
                                                         85.0
                                                                       -0.030071
                                                                                       0.788950
       2.0
                                    1.084800
                                                                       -0.010004
                    -0.686810
                                                         60.0
                                                                                       0.780230
                                    1.171100
                                                                       -0.019809
       3.0
                    -0.860030
                                                         55.0
                                                                                       0.784490
       5.0
                    -1.022300
                                    1.257700
                                                         50.0
                                                                       -0.049902
                                                                                       0.797570
                                                                        0.006184
       7.5
                    -0.736810
                                    1.109200
                                                         45.0
                                                                                       0.773200
      10.0
                    -0.703900
                                    1.093100
                                                         40.0
                                                                        0.091904
                                                                                       0.735860
      15.0
                                                                        0.059989
                    -0.697400
                                    1.090000
                                                         35.0
                                                                                       0.749780
      20.0
                    -0.705580
                                    1.093900
                                                         30.0
                                                                        0.070248
                                                                                       0.745310
      22.5
                    -0.700740
                                    1.091600
                                                         25.0
                                                                        0.100570
                                                                                       0.732080
                                    1.100200
      25.0
                                                         20.0
                    -0.718400
                                                                        0.099889
                                                                                       0.732380
      27.5
                    -0.633090
                                    1.059100
                                                         15.0
                                                                        0.184920
                                                                                       0.695090
      30.0
                    -0.642570
                                    1.063600
                                                         10.0
                                                                        0.155060
                                                                                       0.708220
      35.0
                    -0.608000
                                    1.047200
                                                                        0.228240
                                                          5.0
                                                                                       0.675940
      40.0
                    -0.622120
                                    1.053900
                                                          3.0
                                                                        0.266770
                                                                                       0.658800
      45.0
                    -0.582530
                                    1.035300
                                                          2.0
                                                                        0.226410
                                                                                       0.676750
      47.5
                    -0.546480
                                    1.018500
                                                          1.0
                                                                        0.239410
                                                                                       0.670990
      50.0
                    -0.559670
                                    1.024600
```

Table B-9. Tabulated Data for Test 273-15, Condition 1.00.137.002

1.020200

1.013800

0.993190

0.952440

0,913760

52.4

55.0

60.0

65.0

70.0

-0.550190

-0.536440

-0.491640

-0.401870

-0.315250

ż

ENGINE 3 WL 180 COND. 1.00.137.002 INBOARD SURFACE **OUTBOARD SURFACE** X/C CP CP LOCAL MACH X/C LOCAL MACH - % 0.722830 78.7 0.763740 1.7 0.121740 0.027948 3.3 0.729300 0.068604 0.746030 0.106950 65.1 5.1 0.158070 0.706900 0.139840 0.714900 47.6 0.651590 7.5 0.282940 0.124390 0.721670 34.9 0.509240 10.0 0.547090 29.6 0.092559 0.733580 12.8 0.588540 0.508310 26.1 0.088964 0.737160 16.0 0.446980 0.576600 21.4 0.098319 0.733070 0.804860 21.4 0.027065 0.764120 16.0 -0.066645 26.1 -0.131890 0.833260 12.8 -0.080680 0.810970 0.804000 29.6 -0.128650 0.831850 10.0 -0.064652 34.9 -0.069323 -0.062258 0.802960 0.806030 7.5 -0.055186 0.799880 47.6 -0.063380 0.803440 5:1 65.1 0.075094 0.769700 0.014241 0.743210 3.3 78.7 0.019050 0.767600 -0.081876 0.811480 1.7 • ENGINE 3 WL 155 COND. 1.00.137.002 INDOARD SURFACE OUTBOARD SURFACE X/C - % CP LOCAL MACH X/C CP LOCAL MACH -0.078041 7.5 0.809820 90.0 0.125360 0.721250 0.785370 12.3 -0.021810 82-.8 0.139810 0.714920 21.5 0.183300 75.9 0.695810 0.070050 0.745400 30.4 0.348710 67.2 0.621910 0.093988 0.734960 39.3 0.255830 0.663690 62.0 -0.001458 0.776530 48.5 0.106650 0.729430 57.2 -0.055871 0.800180 -0.020207 53.8 -0.045414 0.795640 53.8 0.784670 48.5 57.2 -0.080508 *** 0.810890 -0.028199 62.0 -0.146240 0.839520 39.3 0.788150 67.2 -0.078387 0.809970 30.4 0.001830 0.775090 75.9 0.007055 0.772820 21.5 0.051780 0.753360 82.8 0.027112 0.764100 12.3 -0.144620 0.838810 90.0 0.080434 0,740870 7.5 -0.275750 0.896290 5.1 -0.274590 0.895780 ENGINE 3 030 deg CORE COWL COND. 1.00.137.002 OUTBOARD SURFACE X/C - 7 CP LOCAL MACH 3.6 0.240820 0.670370 24.0 -0.014702 0.782290 29.2 -0.208930 0.866920 37.9 -0.251140 0.885450 44.7 0.013146 0.770180 49.9 -0.278370 0.897460 53.1 -0.041989 0.794150 -0.431480 57.0 0.965810 58.2 -0.356670 0.932200 62.7 -0.361030 0.934150 -0.539550 64.9 1.015300 68.1 -0.356820 0.932270 69.1 -0.021897 0.785420 70.2 -0.041484 0.793930 74.0 77.4 -0.112050 0.824620 -0.264060 0.891150 80.8 -0.273810 0.895440 83.8 -0.290080 0.902620 86.7 -0.185290 0.856570

Table B-9. Tabulated Data for Test 273-15, Condition 1.00.137.002 (Continued)

0.828260

0.781010

0.721910

0.750060

90.1

92.0

95.4

99.4

-0.120400

-0.011766

0.123860

0.059362

```
    ENGINE 3 330 deg CORE COWL

COND. 1.00.137.002
INBOARD SURFACE
X/C - %
3.6
                          CP
                                     LOCAL MACH
                      0.425640
                                      0.586560
     24.0
                      0.277070
                                      0.654210
     29.2
37.9
                      0.229040
                                      0.675600
                      0.270640
                                      0.657090
                      0.117100
                                      0.724870
     49.9
                                      0.777110
0.755630
                     -0.002805
                      0.046592
     53.1
     57.0
                      0.057375
                                      0.750930
     58.2
                     -0.026904
                                      0.787590
     62.7
64.9
                                      0.784450
0.796520
                     -0.019667
                     -0.047448
     68.1
                     -0.319050
                                      0.915460
                                      0.960480
     69.1
                     -0.419680
     70.2
                     -0.287460
                                       0.901470
     74.0
                     -0.305320
                                      0.909370
     77.4
                     -0.280380
                                      0.898340
                                      0.877680
     80.8
                     -0.233460
                     -0.164880
```

-0.117150

-0.243650

-0.194100

-0.066358

-0.032136

• ENGINE 3 030 deg INLET RADIAL

83.8

86.7

90.1

92.0

99.4

COND. 1.00.137.0	002		OUTER SURFACE		
INNER SURFACE	۸n	LOCAL MECH	X/C - %	CP	LOCAL MACH
X/C - %	CP O 007510	LOCAL MACH			
7.7	0.207530	0.685110	0.4	-0.818180	1.149700
5.0	0.359020	0.617210	1.1	-1.174600	1.345800
3.3	0.563730	0.520600	2.7	-0 .997780	1.244200
1.3	0.900390	0.331470	5.8	-0.852550	1.167200
0.2	1.106600	0.147540	8.8	-0.874480	1.178500
0.0	0.582640	0.511240	12.5	-0.7 37580	1.109600
			16.7	-0.631430	1.058300
			21.1	-0.477080	0.986520
			2 6.1	-0.352540	0.930390
			33.5	-0.364620	0.935740
			45.6	-0.344550	0.926790
			57.2	-0.136340	0.835190
			64.5	-0.071103	0.800790
			71.8	0.001905	0.775060
			82.4	0.119010	0.724020
			99.4	0.274540	0.655330
 ENGINE 3 090 deg 	INLET RADIAL		•••	V. Z. 4547	0.00000
COND. 1.00.137.0	102	Ť			
INNER SURFACE	702	*	OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
7.7	0.025954	0.764600	0.4		
5.0	0.128890	0.704000		-0.195870	0.861190
			1.1 2.8	-0.410430	0.956300
3.3	0.263970	0.560060		-0.343330	0,926250
1.3	0.684960	0.458770	6.1	-0.477770	0.986840
0.1	***	****	9.0	-0.453800	0.975920
0.0	0.861870	0.356990	12.9	-0.499580	0.996820
			17.4	-0.336290	0.923110 -
			22.7	-0.220190	0.871840
			27.7	-0.267910	0.892830
			34.7	-0.278130	0.897330
			46.2	-0.291300	0 .903160
			57.5	-0.223570	0 .873330
			64.7	-0.099612	0.819200
			71.9	-0.060674	0.802260
			82.4	0.044056	0.756720
			99,6	0.229330	0.675460

0.847650

0.826840

0.882170

0.860430 0.804740

0.789860

Table B-9. Tabulated Data for Test 273-15, Condition 1.00.137.002 (Continued)

● ENGINE 3 150 deg INLET RADIAL

COND. 1.00.137.	002				
INNER SURFACE	i I		OUTER SURFACE		
X/C ~ %	CP	LOCAL MACH	X/C - X	CP	LOCAL MACH
9.0	-0.090248	0.815120	0.4	0.223420	0.678080
5.2	0.033839	0.761160	1.2	0.078664	0.810080
3.6	0.232470	0.674060	2.9	-0.113730	0.825330
1.5	0.612870	0.496080	6.2	-0.264540	0.891340
0.2	1.094900	0.163080	9.4	-0.338150	0.923940
0.0	0.990240	0.266040	14.5	-0.394180	0.948990
			18.2	-0.389020	0.946670
			22.7	-0.269410	0.893490
•			27.7	-0.295090	0.904830
			34.5	-0.226740	0.874720
			45.7	-0.187500	0.857520
		• •	5 7.0	-0.088900	0.814530
			63.9	-0.079977	0.810650
			71.0	-0.058366	0.801260
			81.3	0.029986	0.762840
			99.4	0.210710	0.683700

• ENGINE 3 210 deg INLET RADIAL

COND. 1.00.137.	002				
INNER SURFACE		•	OUTER SURFACE	E	
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
8.2	-0.124430	0.830030	0.5	0.034656	0.760820
5.2	0.1 00660	0.732050	1.2	-0.2 70210	0.893850
3.6	0.294020	0.646610	2.9	-0.2 52300	0.885960
1.5	0 .644370	_ 0.4 80000	6.2	-0.456280	0.977060
0.3	1.098200	0.158930	9.3	-0.497130	0.995710
0.0	0.9 66090	0.285010	14.4	-0.454620	0.976310
			18.1	-0.3 70820	0.938520
			22.4	-0.3 19930	0.915850
			27.5	-0.31 0300	0.911580
			34.2	-0.334920	0.922510
			45.5	-0.2 56280	0.887710
			56.9	-0.163340	0.846980
			63.9	-0.14 0520	0.837020
			70.8	-0.1 05650	0.821830
			81.0	0.023765	0.765560
			99.0	0.1 66850	0.703050

5209-211B

• ENGINE 3 270 deg INLET RADIAL

COND. 1.00.137.	002				
INNER SURFACE	•		OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
8.1	0.089090	0.737090	0.4	-0.058283	0.801220
5.5	0.234570	0.673140	1.0	-0.872530	1.177500
3.7	0.434830	0.582270	2.7	-0.606580	1.045600
1.3	0.758490	0.418600	6.2	-1.018000	1.255300
0.1	***	***	9.0	-0.745990	1.113700
0.0	0.740960	0.428410	12.8	-0.868860	1.175600
			17.2	-0.382200	0.943610
			21.7	-0.311320	0.912020
			26.6	-0.301130	0.907500
			33.8	-0.255060	0.887160
			45.2	-0.307790	0.910450
			5 6.6	-0.329080	0.919900
			63.9	-0,209090	0.866980
			71.1	-0.159600	0.845340
			81.5	-0.026869	0.787560
			99.0	0.125680	0.721100

ENGINE 3 330 deg INLET RADIAL

COND. 1.00.137.00	2		OUTER SURFACE		
X/C - %	CD.	LOCAL MACH	X/C - %	CP	LOCAL HACH
	CP	LOCAL MACH			LOCAL MACH
7.5	0.266780	0 .658800	0.4	-0.74 0290	1.110900
4.8	0.3 88130	0.603900	1.1	-1.2 94100	1.421000
3.2	0.575330	0.514870	2.7	-1.099500	1.301400
1,2	0.8 90630	0.338380	5.8	-1.174300	1.345600
0.2	1.061100	0.201620	8.8	-1.176200	1.346700
0.0	0.590910	0.507120	12.6	-0.900660	1.192200 ~
-			17.8	-0.390630	0.947390
			21.4	-0.338810	0.924230
			26.1	-0.382600	0.943790
			33.7	-0.267680	0.892730
			45.4	-0.259490	0.889120
			57.0	-0.289640	0.902420
			64.5	-0.171940	0.850720
			71.8	-0.110540	0.823950
			82.7	0.023679	0.765590
			99.4	0.131740	0.718450

Table B-9. Tabulated Data for Test 273-15, Condition 1.00.137.002 (Continued)

```
25200.2128
```

*

```
    WBL 809

COND. 1.00.137.002
UPPER SURFACE
                                                   LOWER SURFACE
     X/C - %
                        CP
                                  LOCAL MACH
                                                         X/C - %
                                                                           CP
                                                                                     LOCAL MACH
                   -0.861170
-0.954070
                                   1.171700
      2.0
                                                                     . 0.001493
                                                        65.0
                                                                                       0.775240
     3.0
                                   1,220500
                                                        60.0
                                                                      -0.058251
                                                                                       0.801220
                   -1.124900
      5.0
                                   1.316200
                                                        55.0
                                                                       -0.077404
                                                                                       0.809530
     7.5
                   -1.356800
                                                        50.0
                                   1.463100
                                                                       -0.141340
                                                                                       0.837380
     10.0
                   -1.498600
                                   1.566800
                                                        45.0
                                                                        0.318690
                                                                                       0.635510
     15.0
                   -1.429000
                                   1.514300
                                                        40.0
                                                                        0.125670
                                                                                       0.721110
    20.0
                                   1.283600
                   -1.068600
                                                        35.0
                                                                        0.509370
                                                                                       0.547020
     25.0
                   -0.820980
                                   1.151200
                                                        30.0
                                                                        0.212720
                                                                                       0.682820
     30.0
                   -0.860740
                                   1.072300
                                                        25.0
                                                                      -0.163750
                                                                                       0.847150
     35.0
                   -0.530260
                                   1.011000
                                                        20.0
                                                                       -0.174490
                                                                                       0.851840
     40.0
                   -0.480840
                                   0.988240
                                                        15.0
                                                                                       0.855820
                                                                       -0.183600
     45.0
                   -0.516690
                                   1.004700
                                                        10.0
                                                                       -0.081594
                                                                                       0.811360
     50.0
                   -0.490760
-0.525560
                                   0,992780
                                                         5.0
                                                                        0.578470
                                                                                       0.513320
     55.0
                                   1.008800
                                                         3.0
                                                                        0.623060
                                                                                       0.490920
     60.0
                   -0.505550
                                   0.998530
                                                         1.0
                                                                        0.212500
                                                                                       0.682920
     65.0
                   -0.462230
                                   0.979750
                                   0.957300
     70.0
                   -0.412650
                   -0.338180
     75.0
                                   0.923950
     80.0
                   -0.321480
                                   0.916530

    WBL 834

COND. 1.00.137.002
UPPER SURFACE
     X/C - %
                       CP
                                  LOCAL MACH
    12.0
                   -0.762120
                                   1.121700
    24.0
                   -0.670740
                                   1.077100
    30.0
                   -0.561800
                                   1,025600
                                   1.037300
     40.0
                   -0.586810
                                   0.994020
    50.0
                   -0.493460
    60.0
                   -0.362720
                                   0.934900
● WBL 870
COND. 1.00.137.002
UPPER SURFACE
                                                    LOWER SURFACE
     X/C - %
                                                         X/C - %
                        CP
                                  LOCAL MACH
                                                                           CP
                                                                                     LOCAL MACH
      1.0
                   -0.349380
                                                                        0.063450
                                                        65.0
                                   0.928940
                                                                                      0.748280
      2.0
                                   1.029700
                                                        60.0
                   -0.570510
                                                                        0.045460
                                                                                      0.756110
     3.0
                   -0.596520
                                   1.041800
                                                        55.0
                                                                        0.041861
                                                                                      0.757680
                   -1.288800
      5.0
                                   1.417500
                                                        50.0
                                                                        0.046418
                                                                                      0.755700
                   -1.095200
                                                        45.0
     7.5
                                   1,298900
                                                                        0.029149
                                                                                      0.763210
     10.0
                   -1.108400
                                   1.306500
                                                        40.0
                                                                        0.027231
                                                                                      0.764040
                   -0.778880
     15.0
                                   1.130000
                                                        35.0
                                                                        0.030590
                                                                                      0.762590
     20.0
                   -0.725160
                                   1.103500
                                                        30.0
                                                                                      0.759140
                                                                        0.038503
                                                        25.0
     22.5
                   -0.665660
                                   1.074700
                                                                        0.035866
                                                                                      0.760290
     25.0
                   -0.621340
                                   1.053500
                                                        20.0
                                                                        0.048335
                                                                                      0.754860
     30.0
                   -0.533720
                                   1.014900
                                                        15.0
                                                                        0.087431
                                                                                      0.737820
    35.0
                   -0.565930
                                   1.027500
                                                        10.0
                                                                        0.144760
                                                                                      0.712750
                                   1.025800
     40.0
                   -0.562320
                                                         7.5
                                                                        0.162740
                                                                                      0.704850
     45.0
                                                          5.0
                   -0.562800
                                   1.026100
                                                                        0.157230
                                                                                      0.707280
                   -0.550040
     47.5
                                   1.020100
                                                          3.0
                                                                        0.155310
                                                                                      0.708120
     50.0
                   -0.559670
                                   1.024600
                                                          2.0
                                                                        0.143790
                                                                                       0.713170
     52.4
                   -0.533420
                                   1,012400
                                                          1.0
                                                                        0.134920
                                                                                       0.717060
```

Table B-9. Tabulated Data for Test 273-15, Condition 1.00,137,002 (Continued)

1.001100

0.971380

0.941320

0.913510

55.0

60.0

65.0

70.0

-0.508840

-0.443800

-0.377080

-0.314690

COUD. 1.00.137.	002				
THROARD SURFACE			OUTBOARD SURF	ACE	
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
6.7	0 .440160	0.579 790	96.4	. 0.131520	0.718550
8.7	0.540710	0 .531880	81.5	0.116060	0.725320
10.9	0.620430	0.492260	58.9	0.039968	0.758510
14.5	0.5 00020	0.551500	44.2	-0.004573	0.777880
17.9	0.270170	0.657290	37.7	0.023761	0.765560
21.6	0.168440	0.702350	33.7	0.061506	0.749130
28.4	-0.090525	0.815250	28.4	0.120850	0.723220
33.7	-0.229910	0.876120	21.6	0.165020	0.703850
37.7	-0.242100	0.881470	17.9	0.074869	0.743310
44.2	-0.235960	0.878780	14.5	-0.020950	0.785000
58.9	-0.037937	0.792380	10.9	-0.147200	0.839930
81.5	0.098302	0.733080	8.7	-0.166190	0.848220
96.4	0.143070	0.713490	6.7	-0.117240	0.826870
			4.7	-0.105570	0 821796

ENGINE 4 WL 155

COND. 1.00.137.	002				
INBOARD SURFACE			OUTBOARD SURFA	CE	
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
1.8	-0.217190	0.8 70540	96.8	0.170770	0.701320
3.7	-0.225450	0.874170	81.5	0.101990	0.731460
5.5	-0.240400	0.880720	72.2	0.070302	0.745290
8.1	-0.185450	0.856640	66.6	-0.034561	0.790920
13.3	-0.011084	0 .780710	62,4	-0.099019	0.818940
23.1	0.189820	0.692940	5 7.5	-0.095448	0.817390
33.1	0.372050	0.611270	52.2	-0.061991	0.802840
43.0	0.249720	0.666410	43.0	-0.038684	0.792710
52.2	0.000301	0.775760	3 3.1	-0.002229	0.776860
57.5	-0.191220	0 .859170	23.1	0.040257	0.758380
62.4	-0.294490	0.9 04580	13.3	-0.088712	0.814460
66.6	-0.160150	0.845580	8.1	-0.281560	0.898860
72.2	-0.062689	0.803140	5.5	-0.263220	0.890770
81.5	0.032740	0.761650	3.7	-0.280410	0.898350
89.0	0.053306	0 .7 52 690	1.8	-0.226500	0.874620
96.8	0.172240	0.700680			

• ENGINE 4 030 deg CORE COWL

COND. 1.00.137.00	02	
OUTBOARD SURFACE		
X/C - %	CP	LOCAL MACH
3.6	0.210300	0.683890
15.5	0.231120	0.674670
24.0	-0.016584	0.783110
29.2	-0.156190	0.843860
37.9	-0.176970	0.852940
44.7	-0.262610	0.890500
49.9	-0.204530	0.864990
53.1	-0.420770	0.960970
57.0	-0,235060	0.878390
58.2	-0.239130	0.880170
62.7	-0.556630	1.023200
64.9	-0.518630	1,005600
68.1	-0.142890	0.838050
69.1	-0.048471	0.796970
70.2	-0.100640	0.819660
74.0	-0.198070	0.862160
77.4	-0.314640	0.913510
80.8	-0.242190	0.881510
83.8	-0.258170	0.888550
86.7	-0.245580	0.883010
90.1	-0.114470	0.825680
92.0	-0.116490	0.826560
95.4	-0.018049	0.783740
99.4	0.081384	0.740460

• ENGINE 4 330 deg CORE COWL

```
COND. 1.00.137.002
INBOARD SURFACE
X/C - 7
3.8
15.5 -6
24.0
                         CP
                                    LOCAL MACH
                                      0.590930
                      0.416240
                     -0.044587
                                      0.795280
                      0.097010
                                      0.733650
     29.2
                      0.164410
                                      0.704130
                                      0.744400
                      0.072350
     37.9
                                      0.799800
     44.7
                     -0.054984
                     -0.013609
                                      0.781820
     49.9
                     -0.064558
                                      0.803950
     53.1
                     -0.187600
-0.289440
     57.0
                                      0.857580
                                      0.902340
     58.2
     62.7
                     -0.275400
                                      0.896140
                     -0.312490
                                      0.912550
     64.9
     68.1
                     -0.310140
                                      0.911510
                     -0.369150
                                      0.937780
     69.1
     70.2
                     -0.463000
                                      0.980110
                                      0.988250
                     -0.480840
     74.0
                                      0.971730
     77.4
                     -0.444560
                     -0.337550
                                      0.923670
     80.8
     83.8
                     -0.214650
                                      0.869430
                     -0.248150
-0.258370
     86.7
                                      0.884140
     90.1
                                      0.888640
     92.0
95.4
                     -0.142780
                                      0.838010
                     -0.043007
                                      0.794590
     99.4
                     -0.017252
                                      0.783400
```

Table B-9. Tabulated Data for Test 273-15, Condition 1.00.137.002 (Continued)

• ENGINE 4 060 deg INLET RADIAL

COND. 1.00.137.	002				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
44.1	0.618060	0.493450	2.7	-1.044200	1.269900
32.2	***	***	6.1	-0.777310	1.129200
23.1	***	***	12.6	0.594390	1.040800
16.6	0.222420	0.678520	17.0	-0.524130	1.008100
10.2	***	***	26.3	-0.309130	0.911050
4.9	0.317490	0.636050	32.7	-0.323920	0.917610
2.0	0.660370	0.471690	43.2	-0.269310	9.893450
Λ Λ	0 669700	0 466820	•		

• ENGINE 4 180 deg INLET RADIAL

COND. 1.00.137.	002	0			
INNER SURFACE	•		OUTER SURFACE		
X/C - %	ĊP	LOCAL MACH	X/C - %	CP	EOCAL MACH
42.5	0.583370	0.510880	6.2	-0.039285	0.792960
31.7	0 .380800	0.607260	9.5	-0.314960	0.913630
24.4	0.129150	0.719580	13.2	-0.366430	0.936550
17,8	0.066932	0.746750	17.8	-0.303250	0.908440
11.1	-0.15 6430	0.843950	27,2	-0.082764	0.811860
5 . <u>5</u>	0.013769	0 .769900	34.5	-0.256160	0.887650
2.4	0.379900	0 .607670	45.5	-0.194070	0.8 60400
0.0	****	****			

• ENGINE 4 300 deg INLET RADIAL

COND. 1,00.137.	002				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
42.3	0.598060	0.503540	2.7	-1.042900	1.269100
32.2	0.431160	0.583980	5.8	-0.731960	1.106800
22.7	0.263900	0 .660080	12.7	-0.617330	1.051700
16.4	0.179870	0 .697310	17.1	-0 .490130	0.992510
9.9	0.068149	0.746230	26.4	-0.485200	0.9 90230
4.7	0.228010	0.676050	33.0	-0.438280	0.9 68880
2.0	0,660280	0.471750	43.3	-0.361000	0.934130
0.0	0.748190	0.424390			

Table B-9. Tabulated Data for Test 273-15, Condition 1.00.137.002 (Concluded)

```
• WBL 445
COND. 1.00.137.003
UPPER SURFACE
                                                   LOWER SURFACE
     X/C
                                                        X/C - %
65.0
                       CP
                                  LOCAL MACH
                                                                           CP
                                                                                     LOCAL MACH
     1.0
                   -0.777040
                                                                       -0.026633
                                   1.175100
                                                                                      0.813610
     2.0
                   -1.012900
                                   1.309300
                                                        60.0
                                                                      -0.024485
                                                                                      0.812640
      3.0
                   -1.173800
                                   1.412100
                                                        55.0
                                                                      -0.025555
                                                                                      0.813130
     5.0
                                                                       -0.022327
                   -1.301900
                                   1.503300
                                                        50.0
                                                                                      0.811670
     7.5
                   -1.305300
                                   1.505800
                                                        45.0
                                                                      -0.013730
                                                                                      0.807770
    10.0
                                                                       -0.012116
                   -1.204700
                                   1.433300
                                                        40.0
                                                                                      0.807040
    15.0
                                   1.012600
                   -0.456150
                                                        35.0
                                                                      -0.018832
                                                                                      0.810080
    20.0
                   -0.570690
                                   1.068600
                                                                       -0.066426
                                                                                      0.831640
                                                        30.0
                                   1.058400
                                                        25.0
    22.5
                                                                      -0.095994
                   -0.550090
                                                                                      0.845060
    25.0
                   -0.594850
                                                                       -0.128000
                                                                                      0.859610
                                   1.080700
                                                        20.0
                                                                       -0.223720
    30.0
                   -0.605970
                                                        15.0
                                   1.086200
                                                                                      0.903410
    35.0
                   -0.653810
                                   1.110500
                                                        10.0
                                                                        0.075811
                                                                                      0.767260
    40.0
                   -0.734030
                                   1.152200
                                                         5.0
                                                                                      0.620940
                                                                        0.393890
    45.0
                   -0.567300
                                   1.066900
                                                         3.0
                                                                        0.443910
                                                                                      0.597090
    50.0
                   -0.552320
                                   1.059500
                                                         2.0
                                                                        0.487180
                                                                                      0.576140
    52.4
                   -0.520420
                                   1.043800
                                                         1.0
                                                                        0.525910
                                                                                      0.557120
    55.0
                   -0.548460
                                   1.057600
    60.0
                                   1.016100
                   -0.463400
    65.0
                   -0.370610
                                   0.971810
    70.0
                   -0.292810
                                   0.935370
                   -0.188420
    75.0
                                   0.887200
    80.0
                   -0.088397
                                   0.841600

    WBL 470

COND. 1.00.137.003
UPPER SURFACE
     X/C - %
                       CP
                                  LOCAL MACH
    11.0
                   -0.804380
                                   1.189900
    20.0
                   -0.586810
                                   1.076600
    30.0
                   -0.639670
                                   1.103300
    40.0
                   -0.682810
                                   1.125400
    50.0
                   -0.569020
                                   1.067800
    60.0
                    ***
                                   ***
• WBL 510
COND. 1.00.137.003
UPPER SURFACE
                                                    LOWER SURFACE
     X/C
                       CP
                                 LOCAL MACH
                                                         X/C
                                                                           CP
                                                                                     LOCAL MACH
                   -0.418330
     1.0
                                   0.994450
                                                        65.0
                                                                       -0.035109
                                                                                      0.817440
                                   1.069200
     2.0
                   -0.571830
                                                        60.0
                                                                      -0.034873
                                                                                      0.817340
     3.0
                   -0.754200
                                   1.162800
                                                        55.0
                                                                       -0.042516
                                                                                      0.820800
     5.0
                   -0.944510
                                   1.268600
                                                        50.0
                                                                       -0.063348
                                                                                      0.830250
     7.5
                   -0.934880
                                   1.263000
                                                        45.0
                                                                       -0.009867
                                                                                      0.806020
    10.0
                   -0.514050
                                   1.040700
                                                        40.0
                                                                        0.082539
                                                                                      0.764220
    15.0
                   -0.638470
                                   1.102700
                                                        35.0
                                                                        0.044559
                                                                                      0.781400
    20.0
                   -0.699450
                                   1.134000
                                                        30.0
                                                                        0.054285
                                                                                      0.777000
    22.5
                                                        25.0
                                                                                      0.760020
                   -0.682460
                                   1.125200
                                                                        0.091801
                                                        20.0
    25.0
                   -0.708520
                                                                        0.105000
                                                                                      0.754040
                                   1.138800
                                                        15.0
    27.5
                   -0.686050
                                   1.127100
                                                                        0.161270
                                                                                      0.728500
    30.0
                   -0.685860
                                                        10.0
                                                                        0.121900
                                   1.127000
                                                                                      0.746370
                                                         5.0
    35.0
                   -0.659430
                                   1.113400
                                                                        0.203190
                                                                                      0.703390
    40.0
                                   1.099400
                                                         3.0
                   -0.632050
                                                                        0.224960
                                                                                      0.699440
                                                         2.0
    45.0
                   -0.584860
                                   1.075700
                                                                        0.160580
                                                                                      0.728810
                   -0.615440
    47.5
                                   1.091000
                                                         1.0
                                                                                      0.725020
                                                                        0.168920
    50.0
                   -0.629970
                                   1.098400
    52.4
                   -0.540670
                                   1.053700
    55.0
                   -0.565600
                                   1.066100
    60.0
                   -0.491580
                                   1.029700
                   -0.405120
    65.0
                                   0.988160
    70.0
                   -0.315250
                                   0.945820
```

Table B-10. Tabulated Data for Test 273-15, Condition 1.00.137.003

ь

```
    ENGINE 3 WL 180

COND. 1.00.137.003
INBOARD SURFACE
                                                   OUTBOARD SURFACE
     X/C - X
                       CP
                                 LOCAL MACH
                                                                          CP
                                                                                    LOCAL MACH
                                                        X/C
                                                             - %
     1.7
                    0.156180
                                  0.730820
                                                       78.7
                                                                       0.012592
                                                                                     0.795870
                    0.106730
     3.3
                                                                       0.085349
                                  0.753270
                                                       65.1
                                                                                     0.762950
     5.1
                    0.133850
                                  0.740960
                                                       47.5
                                                                       0.129300
                                                                                      0.743030
     7.5
                    0.303150
                                  0.663430
                                                                                      0.765200
                                                       34.9
                                                                       0.080378
    10.0
                                                       29.6
                    0.496680
                                  0.571520
                                                                       0.042729
                                                                                      0.782240
                                  0.550440
    12.8
                    0.539380
                                                                                      0.781420
                                                       26.1
                                                                       0.044529
    16.0
                    0.374050
                                  0.630310
                                                       21.4
                                                                                      0.771920
                                                                       0.065533
    21.4
                   -0.041750
                                  0.820460
                                                       16.0
                                                                      -0.087151
                                                                                      0.841040
    26.1
                   -0.207070
                                  0.895770
                                                       12.8
                                                                      -0.096735
                                                                                      0.845390
    29.6
                   -0.181170
                                  0.883890
                                                        10.0
                                                                      -0.079042
                                                                                      0.837370
    34.9
                   -0.087434
                                  0.841180
                                                                                      0.827800
                                                        7.5
                                                                      -0.057938
    47.6
                   -0.074206
                                  0.835170
                                                        5.1
                                                                      -0.046621
                                                                                      0.822670
    65.1
                    0.056164
                                  0.776150
                                                         3.3
                                                                       0.038199
                                                                                      0.784290
    78.7
                    0.005201
                                  0.799210
                                                         1.7
                                                                      -0.067073
                                                                                      0.831940

 ENGINE 3 WL 155

COND. 1.00.137.003
INBOARD SURFACE
                                                   OUTBOARD SURFACE
                                 LOCAL MACH
0.843830
                       CF
                                                        X/C
                                                                          CP
                                                                                    LOCAL MACH
                                                                                     0.751040
     7.5
                   -0.093271
                                                       90.0
                                                                       0.111630
    12.3
                   -0.036506
                                  0.818080
                                                       82.8
                                                                       0.132000
                                                                                     0.741800
    21.5
                    0.168500
                                  0.725220
                                                       75.9
                                                                       0.067058
                                                                                     0.771230
    30.4
                    0.326350
                                  0.652640
                                                       67.2
                                                                       0.069027
                                                                                     0.770330
                    0.226850
    39.3
                                  0.698580
                                                       62.0
                                                                      -0.022084
                                                                                     0.811560
    48.5
                    0.074123
                                                       57.2
                                  0.768030
                                                                     -0.079172
                                                                                     0.837430
    53.8
                                                       53.8
                   -0.101370
                                  0.847500
                                                                      -0.056789
                                                                                     0.827280
    57.2
                                  ***
                                                       48.5
                                                                      -0.099489
                                                                                     0.846650
    62.0
                   -0.204730
                                  0.894690
                                                       39.3
                                                                                     0.822000
                                                                      -0.045154
    67.2
                   -0.108190
                                  0.850600
                                                       30.4
                                                                      -0.009150
                                                                                     0.805700
    75.9
                   -0.002628
                                  0.802760
                                                       21.5
                                                                       0.049981
                                                                                     0.778950
    82.8
                    0.031022
                                  0.787530
                                                       12.3
                                                                      -0.144070
                                                                                     0.866940
    90.0
                    0.065844
                                  0.771780
                                                        7.5
                                                                      -0.301840
                                                                                     0.939580
                                                                      -0.289160
                                                                                     0.933680

    ENGINE 3 030 deg CORE COWL

COND. 1.00.137.003
OUTBOARD SURFACE
     X/C
                       CP
                                 LOCAL MACH
                    0.294270
     3.6
                                  0.667530
    24.0
                   -0,005936
                                  0.804250
    29.2
                   -0.108040
                                  0.850530
                   -0.297230
    37.9
                                  0.937430
    44.7
                   -0.041447
                                  0.820320
    49.9
                   -0.288590
                                  0.933410
    53.1
                   -0.225010
                                  0.904010
    57.0
                   -0.223660
                                  0.903390
                   -0.383840
    58.2
                                  0.978070
    62.7
                   -0.374060
                                  0.973440
                                  1.001100
    64.9
                   -0.432290
    68.1
                   -0.471290
                                  1.019900
    69.1
                                  1.034800
                   -0.502050
    70.2
                   -0.383140
                                  0.977740
    74.0
                   -0.273000
                                  0.926180
    77.4
                   -0.222420
                                  0.902820
                   -0.268290
    80.8
                                  0.923990
                   -0.298740
    83.8
                                  0.938130
    86.7
                   -0.151430
                                  0.870300
    90.1
                   -0.106470
                                  0.849820
    92.0
                   -0.054174
                                  0.826090
```

Table B-10. Tabulated Data for Test 273-15, Condition 1.00.137,003 (Continued)

0.760030

0.776860

0.091778

0.054616

95.4

99.4

• ENGINE 3 330 deg CORE COWL

COND. 1.00.137.0 Inboard Surface	003	
X/C - %	ĈP	LOCAL MACH
3.6	0.365510	0.634330
24.0	0.315370	0.657750
29.2	0.112620	0.750590
37.9	0.210010	0.706280
44.7	0.207290	0.707520
49,9	-0.001069	0.802050
53.1	-0.047716	0.823160
57.0	-0.002175	0.802550
58.2	0.045161	0.781130
62.7	-0.003690	0.803230
64.9	-0.070276	
68.1	-0.293970	0.833390
69.1		0.935910
	-0.479320	1.023800
70.2	-0,317640	0.946940
74.0	-0.316060	0.946210
77.4	-0.425020	0.9 97650
80.8	-0.377590	0.975110
83.8	-0.415570	G.993140
86.7	-0.2 05860	0.895210
90.1	-0.154270	0.871590
92.0	-0.144560	0.867160
95,4	-0.126850	0.859090
99.4	-0.056548	0.827160

• ENGINE 3 030 deg INLET RADIAL

COND. 1.00.137.00	3		:	•	
INNER SURFACE			OUTER SURFACE		
X/C - % 7.7 5.0 3.3 1.3 0.2 0.0	CP 0.206800 0.351640 0.563850 0.883690 1.128100 0.645980	LOCAL MACH 0.707740 0.640820 0.538170 0.354510 0.135480 0.495920	OUTER SURFACE X/C - % 0.4 1.1 2.7 5.8 8.8 12.5 16.7 21.1 26.1 33.5 45.6 57.2 64.5 71.8 82.4 99.4	CP -0.689910 -1.039800 -0.884310 -0.804770 -0.841560 -1.1039000 -0.589000 -0.452320 -0.345640 -0.367540 -0.362370 -0.150010 -0.087519 -0.010079 0.108020 0.269800	LOCAL MACH 1.129100 1.325300 1.234100 1.190000 1.210200 1.366100 1.07700 1.010700 0.960050 0.970360 0.970360 0.967920 0.869640 0.841210 0.806120 0.752670 0.678840
• ENGINE 3 090 deg IN					

 ENGINE 3 090 deg 	INLET RADIAL			V. 20000	0.010040
• ENGINE 3 090 deg COND. 1.00.137.0 INNER SURFACE		LOCAL MACH 0.774130 0.729150 0.659970 0.457120 *****	OUTER SURFACE X/C - X 0.4 1.1 2.8 6.1 9.0 12.9 17.4 22.7 27.7 34.7 46.2 57.5 64.7	CP -0.210280 -0.430320 -0.352110 -0.513730 -0.535640 -0.571450 -0.359890 -0.235480 -0.287130 -0.287130 -0.247330 -0.247330 -0.115070	LOCAL MACH 0.897230 1.000200 0.963090 1.043000 1.051300 1.059000 0.966760 0.98330 0.932730 0.932730 0.937420 0.9344880 0.914290 0.853720
			57.5	-0.247330	0.914290
Table R-10	Tahulatud D	ata for Tost 272 1	82.4 99.6	0.037311	0.784680 0.698040

Table B-10. Tabulated Data for Test 273-15, Condition 1.00.137.003 (Continued)

● ENGINE 3 150 deg INLET RADIAL

COND. 1.00.137.	.003				
INNER SURFACE			OUTER SURFACE	E	
X/C - %	CP	LOCAL MACH	X/C - X	CP	LOCAL MACH
9.0	-0.041059	0.820140	0.4	0.139210	0.738530
5.2	0.109960	0.751800	1.2	-0.121280	0.856550
3.6	0.301940	0.663980	2.9	-0.183740	0.885060
1.5	0.671880	0.482170 -	6.2	-0.325600	0.950660
0.2	1.117400	0.151390	9.4	-0.425280	0.997770
0.0	0.961900	0.302900	14.5	-0.467620	1.018100
			18.2	-0.450430	1.009800
			22.7	-0.312350	0.944470
			27.7	-0.335060	0.955090
			34.5	-0.259540	0.919940
• -			45.7	0.215560	0.899660
			57.0	-0.113770	0.853130
			63.9	-0.096854	0.845450
			71.0	-0.072852	0.834550
			81.3	0.021261	0.791940
			99.4	0.2 09500	0.706510

• ENGINE 3 210 deg INLET RADIAL

COND. 1.00.13					-
INNER SURFA	CE		OUTER SURFAC	E	
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
8.2	-0.055039	0.826480	0.5	-0.016392	0.808980
5.2	0.157910	0.730030	1.2	-0.338700	0.956800
3.6	0.359810	0.637000	2.9	-0.289470	0.933820
1.5 0.3	0.699220	0.467410	6.2	-0.657790	1.112500
0.0	1.122600 0.935910	0.143900	9.3	-0.560330	1.063500
0.0	0.933910	0.322010	14.4	-0.575740	1.071100
			18.1	-0.431080	1.000500
			22.4	-0.355570	0.964730
			27.5	-0.349060	0.961670
			34.2	-0.366780	0.970010
			45.5	-0.278470	0.928710
			5 6.9	-0.178420	0.882640
			63.9 70.8	-0.150060	0.869680
				-0.113420	0.852980
			81.0	0.022081	0.791580
			, 9 9.0	0 .176200	0.721710

• ENGINE 3 270 deg INLET RADIAL

COND. 1.00.137.00	03				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - X	CP	LOCAL MACH
8.1	0.118070	0.748110	0.4	-0.061554	0.829430
5.5	0.253280	0.686440	1.0	-0.868480	1.225200
3.7	0.446390	0.595900	2.7	-0.535120	1.051000
1.3	0.774060	0.425330	6.2	-0.909800	1.248600
0.1	***	***	9.0	-0.892400	1.238700
0.0	0.766940	0.429460	12.8	-0.843340	1.211200
			17.2	-0.589000	1.077700
			21.7	-0.306070	0.941540
			26.6	-0.297450	0.937520
			33.8	-0.257850	0.919150
			45.2	-0.314680	0.945560
			56.6	-0.336930	0.955960
			63.9	-0.207190	0.895810
			71.1	-0.156820	0.872750
			81.5	-0.021336	0.811210
			99.0	0.145910	0.735480

• ENGINE 3 330 deg INLET RADIAL

COND. 1.00.137			A11777 - 11871 - 1	-		
INNER SURFACE			OUTER SURFACE			
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH	
7.5	0.2 66780	0 .658800	0.4	-0.6 03830	1.085200	
7.5	0.2 64800	0.681140	1.1~ "	-1.152400	1.397800	
4.8	0.3 96580	0,619660	2.7	-0.9 80680	1,289900	
3.2	0.560210	0.540010	5.8_	~1.057300	1.336600	
1.2	0.893040	0.351620	3.8	-1.080200	1.351000	
0.2	1.074400	0,2 03780	12.6	-0.832540	1,205200	
0.0	0.661860	0.487520	17.8	-0.831690	1.204800	
			21.4	-0.339290	0.957080	
			26.1	-0.326140	0.950910	
			33.7	-0.255220	0.917940	
			45.4	-0.264400	0.922180	
			57.0	-0.301680	0.939500	
			64.5	-0.177640	0.882270	
			71.8	-0.116070	0.854180	
			82.7	0.021370	0.791890	
			99.4	0.142430	0.737060	

Table B-10. Tabulated Data for Test 273-15, Condition 1.00.137.003 (Continued)

Table B-10. Tabulated Data for Test 273-15, Condition 1.00.137.003 (Continued)

1.003000 0.967100

0.944730

60.0

65.0

70.0

-0.436250

-0.360640

-0.312930

• ENGINE 4WL 180

COND. 1.00.137.0	003					
INBOARD SURFACE			OUTBOARD	SURFACE		
X/C - %	CP	LOCAL MACH	X/C	- 7.	CP	LOCAL MACH
6.7	0.410200	0.613200	96.4		0.136120	0.739930
8.7	0.526440	0 .556860	81.5	•	0.118660	0.747860
10.9	0.362110	0.539060	58.9		0.022556	0.791360
14.5	0.459450	0.589610	44.2	•	-0.016712	0.809120
17,9	0.2 19590	0.701860	37.7		0.000342	0.801410
21.6	0.111850	0.750940	33.7		0.036213	0.785180
28,4	-0.148390	0.868910	28.4	r	0.030213	0.768330
33.7	-0.2 97790	0.937690	21.6			
37.7	-0.283110	0.930870			0.119330	0.747550
44.2	-0.280080	0.929460	- 17.9		0.064199	0.772520
58.9	-0.046553	0.822630	14.5		-0.022889	0.811920
81.5			10.9		-0.146740	0.868150
	0.100720	0.755990	8.7		-0.151970	0.870550
96.4	0.13 9880	0.738220	6.7		-0.101490	0.847560
			4.7		-0.112420	0.852530

• ENGINE 4 WL 155

COND. 1.00.137	. 003	m 4m				
INBOARD SURFACE			OUTBOARD SU	SURFACE		
X/C - %	CP	LOCAL MACH	X/C -		LOCAL MACH	
1.8	-0.210150	0.897180	96.8	0.172110	0.723570	
3.7	-0.230010	0.906320	89.0	0.084667	0.763260	
5.5	-0.253990	0.917380	81.5	0.100180	0.756230	
8.1	-0.1 95800	0.8 90590	72.2	0.040923	0.783060	
13.3	-0.028443	0.814440	66.6	-0.050104	0.824250	
23.1	0.166550	0.726100	62.4	-0.111410	0.852070	
33.1	0.3 63100	0.635460	57.5	-0.127980	0.859610	
43.0	0.227160	0.698430	52.2	-0.086993	0.840970	
52.2	-0.033930	0.816920	43.0	-0.045684	0.822250	
57.5	- 0.2 30800	0.9 06680	33.1	-0.028856	0.814620	
62.4	-0.386130	0.979150	23.1	0.042833	0.782190	
66.6	-0.200540	0.892770	13.3	·0.103130	0.848300	
72.2	-0.061295	0.829320	8.1	-0.304540	0.940840	
81.5	0.028242	0.7 88790	5.5	-0.287490	0.932910	
89.0	0.039547	0.783680	3.7	-0.293170	0.935550	
96.8	0.155630	0.731060	1.8	-0.215150	0.899480	

Table B-10. Tabulated Data for Test 273-15, Condition 1.00.137.003 (Continued)

● ENGINE 4 030 deg CORE COWL

```
COND. 1.00.137.003
OUTBOARD SURFACE
     X/C - %
                       CP
                                 LOCAL MACH
     3.6
                    0.231780
                                   0.696310
    15.5
                    0.259600
                                  0.683540
    24.0
                   -0.011948
                                  0.806970
    29.2
                   -0.126390
                                  0.858880
    37.9
                   -0.251420
                                  0.916190
                   -0.269280
-0.208240
    44.7
                                  0.924450
    49.9
                                  0.896300
    53.1
                   -0.260570
                                  0.920410
    57.0
                   -0.274550
                                  0.926890
    58.2
                   -0.221390
                                  0.902340
    62.7
                   -0.464400
                                  1.016500
    64.9
                                  1.066600
                   -0.566670
    68.1
                   -0.426910
                                  0.998550
    69.1
                   -0.144450
                                  0.867110
                   -0.213140
    70.2
                                  0.898550
    74.0
77.4
                   -0.264770
                                  0.922360
                  -0.262810
                                  0.921450
    80.8
                   -0.362910
                                  0.968180
    83.8
                   -0.177610
                                  0.882260
    86.7
                  -0.150730
                                  0.869970
   90.1
                  -0.155440
                                  0.872120
   92.0
                  -0.164940
                                  0.876470
   95.4
                   -0.021455
                                  0.811270
   99.4
                   0.033870
                                  0.786240
```

ENGINE 4 330 deg CORE COWL

```
COND. 1.00.137.003
INBOARD SURFACE
     X/C - %
                      CP
                                 LOCAL MACH
     3.6
                   0.396460
                                  0.619730
    15.5
                                  0.830500
                  -0.063905
    24.0
                   0.082052
                                  0.764440
    29.2
                                  0.773570
                   0.061870
    37.9
                   0.125800
                                  0.744600
    44.7
                  -0.105640
                                  0.849440
    49.9
                                  0.857470
                  -0.123300
    53.1
                  -0.112830
                                  0.852720
    57.0
                  -0.024702
                                  0.812730
    58.2
                  -0.149730
                                  0.869510
    62.7
                  -0.318860
                                  0.947520
    64.9
                  -0.440560
                                  1.005100
    68.1
                  -0.433310
                                  1.002600
    69.1
                  -0.455960
                                  1.012500
    70.2
                                  1.007200
                  -0.444870
    74.0
                  -0.512410
                                  1.039900
                                  1.064500
                  -0.562510
    80.8
                  -0.503740
                                  1.035600
    83.8
                  -0.308890
                                  0.942860
                  -0.190900
                                 0.888340
    86.7
    90.1
                  -0.189620
                                  0.887750
    92.0
                  -0.160780
                                 0.874560
    95.4
                  -0.054818
                                  0.826380
    99.4
                  -0.010038
                                  0.806100
```

Table B-10. Tabulated Data for Test 273-15, Condition 1,00,137,003 (Continued)

• ENGINE 4 060 deg INLET RADIAL

COND. 1.00.137.	003				
INNER SURFACE			OUTER SURFACE		
X/G - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
44.1	0.654670	0.491330	2.7	-1.013400	1.309600
32.2	0.240360	0.692380	6.1	-0.945670	1.269300
23.1	0.621470	0.508730	12.6	· -0.9444 50	. 1.2 68600 '
16.6	0.282050	0.673180	17.0	-0.471980	1.020200
10.2	****	***	26.3	-0.306550	0.941770
4.9	0.363440	0.635300	32.7	-0.333660	0.954440
2.0	0.687880	0.473560	43.2	-0.282670	0.930650
0 0	0 686010	0 474570			

● ENGINE 4 180 deg INLET RADIAL

COND 4 00 127	aaà		•		
COND. 1.00.137.	003		OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
42.5 .	0.622970	0 .507950	6,2	-0.190960	0.888370
31.7	0.432020	0.602790	9.5	-0.377150	0.974900
24.4	0.199230	0 .711200	13.2	-0.568660	1.067600
17.8	0.150810	0.733250	17.8	-0.348700	0.961490
, 11 . 1	-0.040953	0 .820090	27.2	-0.105440	0.849350
5.5	0.135740	0 .740100	34.5	-0.289220	0.933700
2.4	0.489450	0.5 75030	45.5	-0.215820	0.899780
0.0	***	***			

• ENGINE 4 300 deg INLET RADIAL

COND. 1.00.137.	003	OUTER SURFACE			
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
42.3	0.634140	0.502130	2.7	-0.991590	1.296500
32,2	0.477710	0.5 80760	5.8	-0.800966	1.188000
22.7	0.319500	0.655830	12.7	-0.780230	1.176800
16.4	0.238050	0.693440	17.1	-0.678150	1.123000
9 .9	0.127300	0.743930	26.4	-0.446420	1.007900
4.7	0.274170	0.676820	33.0	-0.438360	1.004300
2.0	0.686840	0.474130	43.4	-0.364320	0.969030
0.0	0 771940	0.426560			

Table B-10. Tabulated Data for Test 273-15, Condition 1.00.137.003 (Concluded)

```
    WBL 445

COND. 1.00.137.004
UPPER SURFACE
                                                    LOWER SURFACE
      X/C - %
                        CP
                                  LOCAL MACH
                                                         X/C
                                                                            CP
                                                                                      LOCAL MACH
      1.0
                    -9.141780
                                   0.981710
                                                         65.0
                                                                      . -0.126890
                                                                                       0.973630
      2.0
                   -0.424280
                                   1.142200
                                                        60.0
                                                                       -0.117520
                                                                                       0.968580
      3.0
                   -0.521560
                                   1.201900
                                                         55.0
                                                                       -0.095874
                                                                                       0.956920
      5.0
                    -0.714720
                                   1.330700
                                                        50.0
                                                                       -0.072029
                                                                                       0.944140
      7.5
                   -0.788600
                                   1.384600
                                                        45.0
                                                                       -0.029275
                                                                                       0.921360
     10.0
                    -0.756340
                                   1.380700
                                                         40.0
                                                                        0.009635
                                                                                       0.900830
     15.0
                   -0.680300
                                   1.306500
                                                        35.0
                                                                        0.000549
                                                                                       0.905620
     20.0
                    -0.739090
                                   1.348100
                                                        30.0
                                                                       -0.024504
                                                                                       0.918880
     22.5
                   -0.482260
                                   1.177500
                                                         25.0
                                                                       -0:775220
                                                                                       1.374700
     25.0
                   -0.469830
                                   1.169800
                                                        20.0
                                                                       -0.665560
                                                                                       1.296400
     30.0
                   -0.461470
                                   1.164700
                                                         15.0
                                                                       -0.396200
                                                                                       1.125500
     35.0
                                                        10.0
                   -0.505640
                                   1.192000
                                                                       -0.119700
                                                                                       0.969780
                                   1.252800
     40,0
                   -0.600750
                                                         5.0
                                                                        0.240600
                                                                                       0.780540
     45.0
                                   1.239200
                   -0.579940
                                                          3.0
                                                                        0.287600
                                                                                       0.756180
                    -0.589620
     50.0
                                   1.245600
                                                          2.0
                                                                        0.336040
                                                                                       0.731000
     52.4
                   -0.651980
                                   1.287100
                                                          1.0
                                                                        0.346370
                                                                                       0.725610
                                   1.337300
     55.0
                    -0.724010
     60.0
                   -0.781520
                                   1.379300
     65.0
                    -0.782850
                                   1.380300
     70.0
                   -0.723580
                                   1.337000
     75.0
                   -0.629870
                                   1.272200
     80.0
                    -0.278380
                                   1.057400
● WBL 470
COND. 1.00.137.004
UPPER SURFACE
      X/C -
                        CP
                                  LOCAL MACH
     11.0
                    -0.704410
                                   1.323400
     20.0
                   -0.431870
                                   1.146700
     30.0
                    -0.466490
                                   1.167800
     40.0
                   -0.616580
                                   1.263300
     50.0
                    -0.649090
                                   1.285200
     60.0
                    ***
                                   ***

    WBL 510

COND. 1.00.137.004
UPPER SURFACE
                                                    LOWER SURFACE
      X/C
                        CP
                                  LOCAL MACH
                                                         X/C
                                                                            CP
                                                                                      LOCAL MACH
                   -0.094694
      1.0
                                   0.956270
                                                         65.0
                                                                       -0.098097
                                                                                       0.958110
                   -0.186080
      2.0
                                   1.005900
                                                         60.0
                                                                       -0.126930
                                                                                       0.973650
      3.0
                                                        55.0
                   -0.301120
                                   1.070200
                                                                       -0.161210
                                                                                       0.992300
      5.0
                   -0.463840
                                   1.166100
                                                         50.0
                                                                                       1.000200
                                                                       -0.175630
      7.5
                   -0.553400
                                   1.222100
                                                        45.0
                                                                       -0.089653
                                                                                       0.953560
     10.0
                   -0.480360
                                   1.176300
                                                         40.0
                                                                        0.008251
                                                                                       0.901560
     15.0
                   -0.466740
                                   1.167900
                                                         35.0
                                                                       -0.044726
                                                                                       0.929580
     20.0
                   -0.390700
                                                        30.0
                                   1.122200
                                                                       -0.013356
                                                                                       0.912960
     22.5
                                   1.145900
                   -0.430440
                                                                        0.036411
                                                         25.0
                                                                                       0.886740
     25.0
                   -0.497960
                                   1,187200
                                                        20.0
                                                                        0.038521
                                                                                       0.885630
     27.5
                                   1.182700
                   -0.490710
                                                        15.0
                                                                        0.045105
                                                                                       0.882190
     30.0
                   -0.492100
                                   1.183500
                                                         10.0
                                                                       -0.031200
                                                                                       0.922380
     35.0
                   -0.528880
                                   1.206600
                                                          5.0
                                                                       -0.042976
                                                                                       0.928680
     40.0
                   -0.578820
                                   1.238500
                                                         3.0
                                                                       -0.100990
                                                                                       0.959710
     45.0
                   -0.684130
                                   1.309200
                                                         2.0
                                                                       -0.316020
                                                                                       1.078800
     47.5
                   -0.637190
                                   1.277100
                                                          1.0
                                                                       -0.295480
                                                                                       1.067100
                                   1.291900
     50.0
                   -0.658950
     52.4
                   -0.674630
                                   1.302700
     55.0
                   -0.704370
                                   1.323400
```

Table B-11. Tabulated Data for Test 273-15, Condition 1.00.137.004

1.393400

1.404800

1.421400

60.0

65.0

70.0

-0.800200

-0.815250

-0.836660

ENGINE 3 WL 180

BOARD SURFACE	CP CP	LOCAL MACH	OUTBOARD SURFA	CP	LOCAL MAC
1.7	0.266210	0.767250	78.7	0.075859	0.946190
3.3	0.245240	0.778130	65.1 -	0.023565	0.893500
5.1	0.034515	0.887750	47.6	0.052650	0.878250
7.5	0.346460	0.725560	34.9	-0.069116	0.942590
10.0	0.451110	0.670620	.29.6	-0.235530	1.033300
12.8	0.384430	0.705730	26.1	-0.372890	1.11180
16.0	0.168690	0.817820	21.4	-0.130720	0.975710
21.4	-0.189510	1.007800	16.0	-0.134060	0.97750
26.1	-0.335150	1.089800	12.8	~0 .126520	0.973430
29.6	-0.426190	1.143400	10.0	-0.061449	0.938500
34.9	-0.495500	1.185600	7.5	-0.020162	0.91656
47.6	-0.053968	0.934510	5.1	-0.0 03418	0.90770
65.1	0.037056	0.886420	3.3	0.166630	0.81888
78.7	-0.042226	0.928280	1.7	-0 .002395	0.90716

• ENGINE 3 WL 155

COND. 1.00.137.		•			
INBOARD SURFACE			OUTBOARD SURFAC	E	
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
7.5	-0.293640	1.066000	90.0	0.084385	0.861650
12.3	-0.056697	0.935970	82.8	0.108170	0.849260
21.5	0.142990	0.831160	75.9	0.018825	0.896000
30.4	0.301860	0.748770	67.2	-0.013655	0.913110
39.3	0.147420	0.828850	62.0	-0.309200	1.074900
48.5	-0.004926	0.9 08500	57.2 .	-0.380600	1.116300
53.8	-0.164590	0.9 94130	53.8	-0.236860	1.034000
57.2	***	***	48.5	-0.151500	0.986970
62.0	-0.617940	1.264300	39.3	-0.013068	0.912820
67.2	-0.844970	1.428000	30.4	0.049325	0.879970
75.9	-0.170310	0.9 97260	21.5	0.092837	0.857250
82.8	0.102610	0.852150	12.3	-0.134090	0.977540
90.0	0.096863	0.855130	7.5	-0.534000	1.209800 -
-			5.1	-0.508170	1 193600

• ENGINE 3 030 deg CORE COWL

COND. 1.00.137.0 OUTBOARD SURFACE		
X/C - %	CP	LOCAL MACH
3.6	0.458110	0.666910
24.0	-0.022243	0.917650
29.2	0.001647	0.905030
37.9	-0.121560	0.970740
44.7	0.040254	0.884730
49,9	-0.157190	0.990090
53,1	-0.113750	0.966540
57.0	-0.318990	1.080500
58.2	-0.289820	1.063800
62.7	-0.409590	1.133400
64.9	-0.514920	1.197800
68,1	-0.436830	1.149800
69,1	-0.455420	1.161000
70.2	-0.433950	1.148000
74.0	-0.558830	1.225600
77.4	-0.587280	1.244000
80.8	-0.581340	1.240200
83.8	-0.594770	1.248900
86.7	-0.524370	1.203700
90.1	-0.473000	1.171800
92.0	-0.273590	1.054700
95.4	-0.025090	0.919190
99.4	-0.061567	0.938570

Table B-11. Tabulated Data for Test 273-15, Condition 1.00.137,004 (Continued)

• ENGINE 3 330 deg CORE COWL

COND. 1.00.13	7.004	
INBOARD SURFA	CE	
X/C - %	CP	LOCAL MACH
3.6	0.480410	0.655060
24.0	0.4 00480	0.697310
29.2	0.071524	0.868360
37.9	-0.087182	0.952280
44.7	0,264850	0.767980
49.9	0,109590	0.848530
53.1	-0.085631	0.951440
57.0	-0.087522	0.952440
58.2	-0.123830	0.971980
62.7	-0.054105	0.934580
64.9	-0.120650	0.970270
68.1	-0.302190	1.070900
69.1	-0.443660	1.153900
70.2	-0.324470	1.083600
74.0	-0.304800	1.072400
77.4	-0.507370	1.193100
80.8	-0.531010	1.207900
83.8	-0,601690	1.253500
86.7	-0.596940	1.250400
90.1	-0.684800	1.309700
92.0	-0,697730	1.318700
95.4	-0.629660	1.272100
99.4	-0.646530	1.283400
	-	

• ENGINE 3 030 deg INLET RADIAL

	=				
COND. 1.00.137. INNER SURFACE X/C ~ % 7.7 5.0 3.3 1.3 0.2	CP 0.237300 0.357850 0.550350 0.867730 1.174600	LOCAL MACH 0.782250 0.719630 0.617450 0.430690 0.152860	OUTER SURFACE X/C - X 0.4 1.1 2.7 5.8 8.8	CP -0.242860 -0.544190 -0.440920 -0.447460 -0.561310	LOCAL MACH 1.037300 1.216200 1.152200 1.156200 1.227200
0.0 ■ ENGINE 3 090 de	0.827650	0.456560	12.5 16.7 21.1 26.1 33.5 45.6 57.2 64.5 71.8 82.4	-0.769230 -0.793940 -0.885240 -0.646500 -0.748620 -0.642930 -0.375300 -0.375300 -0.146470 -0.054618 0.070299 0.242810	1.370200 1.388600 1.460300 1.283400 1.355000 1.281000 1.113200 0.984260 0.934850 0.869000 0.779390
COND. 1.00.137.	004				
INNER SURFACE X/C - % 7.7 5.0 3.3 1.3 0.1 0.0	CP 0.214690 0.305400 0.498800 0.825300 ***** 0.878530	LOCAL MACH 0.793960 0.746930 0.645250 0.458070 **** 0.423520	OUTER SURFACE X/C - X 0.4 1.1 2.8 6.1 9.0 12.9 17.4 22.7	CP -0.142450 -0.426770 -0.275540 -0.461500 -0.576070 -0.637900 -0.582260 -0.469040	LOCAL MACH 0.982050 1.143700 1.055700 1.164700 1.236700 1.277600 1.240800 1.169300

71.9 -0.062408 0.939000 82.4 0.041893 0.883870 99.6 0.234990 0.783440 Table B-11. Tabulated Data for Test 273-15, Condition 1.00.137.004 (Continued)

1.214400 1.181000 1.275300 1.193000

9-211D

• ENGINE 3 150 deg INLET RADIAL

COND. 1.00.137.	004				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - X	CP .	LOCAL MACH
9.0	0.200610	0.801260	0.4	0.041906	0.928080
5.2	0.383260	0.706340	1.2	-0.680370	1.306600
3.6	0.556130	0.614300	2.9	-0.342460	1.094000
1.5	0.88 3480	0.420210	6.2	-0.473180	1.171900
0.2	1.174000	0.153 850	9.4	-0.568150	1.231600
0.0	0.852280	0.44 0780	14.5	-0.804800	1.396800
			18.2	-0.780870	1.378800
			22.7	-0.730230	1.341800
			27.7	-0.754890	1.359600
			34.5	-0.635360	1.275900
			45.7	-0.627520	1.270600
			57.0 :	-0.491080	1.182900
			63.9	-0.410260	1.133900
			71.0	-0.055741	0.935450
			81.3	0.035914	0.887010
			99.4	0.233310	0.784310

• ENGINE 3 210 deg INLET RADIAL

COND. 1.00.137	.004				
INNER SURFAC	Ę		OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
8.2	0.219970	0.791220	0.5	-0.135230	0.978170
5.2	0 .409270	0.692690	1.2	-0.638780	1.278200
3.6	0.589280	0.5 96150	2.9	-0.522880	1,202800
1.5	0.892560	0.414 080	6.2	-0.565730	1,230100
0.3	1.168500	0.162580	9.3	-0.662020	1.294000
0.0	0.859290	0.436230	14.4	-0.778430	1.377000
			18.1	-0.705400	1.324100
			22.4	-0.773210	1.373100
	*		27.5	-0.713540	1.329900
			34.2	-0.778010	1.376700
			45.5	-0.738960	1.348000
			5 6.9	-0.555790	1,223700
			63,9	-0.487100	1.180400
			70.8	-0.063224	0.939440
			81.0	0.066885	0.870790
			99.0	0.231070	0.785480

Table B-11. Tabulated Data for Test 273-15, Condition 1.00.137.004 (Continued)

• ENGINE 3 270 deg INLET RADIAL

AUTER CUREACE	
INNER SURFACE OUTER SURFACE	
X/C - % CP LOCAL MACH X/C - % CP LOCAL	MACH
8.1 0.242890 0.779360 0.4 -0.063521 0.939	
5.5 0.375610 0.710340 1.00.701270 1.32	200
3.7 0.554200 0.615330 2.7 -0.522650 1.20	
1.3 0.853440 0.440010 6.2 -0.578580 1.23	400
0.1 1.195500 0.114560 9.0 -0.659620 1.29	500
0.0 0.822530 0.459820 12.8 -0.747190 1.354	000
17.2 -0.633780 1.274	800
21.7 -0.518720 1.200	200
26.6 -0.512320 1.190	100
33.8 -0.484250 1.178	
45.2 -0.531060 1.20	7900
56.6 -0.722530 1.330	300
63.9 -0.434600 1.149	
71.1 -0.115050 0.96	240
81.5 0.044384 0.88	
99.0 0.221300 0.790	

ENGINE 3 330 deg INLET RADIAL

COND. 1.00.137.	004				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - X	CP	LOCAL MACH
7.5	0.284950	0 .757550	0.4	-0.141810	0.981730
- 4 . 8	0.4 09850	0.692370	1.1	-0.689470	1.312900
3.2	0.542850	0 .621500	2.7	-0.504920	1.191500
1.2	0.882300	0.42 0990	5.8	-0.630040	1.272300
0.2	1.119400	0.22 5590	8.8	-0.712380	1.329000
0.0	0 .863920	0.433180	12,6	-0.535470	1.210700
			17.8	-0 .649500	1.285400
			21.4	-0.669690	1.299200
	• •		2 6.1	-0 .650610	1.286200
	•		3 3.7	-0.509420	1.194300
			45.4	-0 .506240	1.192300
			57.0	-0.662640	1.294400
			64.5	-0.258440	1.046100
			71.8	-0.084623	0.950880
			82.7	0.039997	0.884860
			99.4	0.172010	0.816090

Table B-11. Tabulated Data for Test 273-15, Condition 1.00.137.004 (Continued)

```
    WBL 809

COND. 1.00.137.004
UPPER SURFACE
                                                   LOWER SURFACE
      X/C - %
                       CP
                                  LOCAL MACH
                                                                           CP
                                                         X/C - %
                                                                                     LOCAL MACH
                    0.104630
                                   0.851080
      2.0
                                                        65.0
                                                                       0.024968
                                                                                      0.892770
                                                        60.0
      3.0
                   -0.092752
                                   0.955230
                                                                     . -0.022078
                                                                                      0.917590
      5.0
                   -0.315540
                                                        55.0
                                   1.078500
                                                                       -0.095815
                                                                                      0.956900
      7.5
                   -0.510680
                                   1.195100
                                                                                      1.329700
                                                        50.0
                                                                       -0.713150
                                   1.303900
     10.0
                   -0.676540
                                                        45.0
                                                                        0.116950
                                                                                      0.844700
                                                                                      0.934860
     15.0
                   -0.769840
                                   1.370600
                                                        40.0
                                                                       -0.054617
     20.0
                   -0.911310
                                   1.481800
                                                        35.0
                                                                        0.270270
                                                                                      0.765170
     22.5
                   -0.091291
                                   0.954450
                                                        30.0
                                                                       0.066189
                                                                                      0.871170
                                   1.327000
     25.0
                   -0.709550
                                                        25.0
                                                                       -0.633450
                                                                                      1.274700
                                                                                      1.164000
     30.0
                   -0.663790
                                   1.295200
                                                        20.0
                                                                       -0:460220
     35.0
                   -0.638100
                                   1.277700
                                                        15.0
                                                                       -0.427650
                                                                                      1.144300
     40.0
                   -0.659360
                                   1.292200
                                                        10.0
                                                                       -0.336150
                                                                                      1,090400
                                   1.312100
     45.0
                   -0.688280
                                                         5.0
                                                                  ;
                                                                                      0.766630
                                                                        0.267450
                                   1.218700
     50.0
                   -0.547910
                                                         3.0
                                                                        0.234280
                                                                                      0.783830
                                   0.969850
     52.4
                   -0.119910
                                                         1.0
                                                                        0.083747
                                                                                      0.861990
                                   1.289700
     55.0
                   -0.655700
     60.0
                   -0.716650
                                   1.332100
     65.0
                   -0.780290
                                   1.378500
     70.0
                   -0.365620
                                   1.107500
     75.0
                    -0.190630
                                   1.008400
     80.0
                    -0.154500
                                   0.988620

    WBL 834

COND. 1.00.137.004
UPPER SURFACE
     X/C - %
                       CP
                                  LOCAL MACH
                                   1.334000
     12.0
                   -0.719400
     24.0
                   -0.769320
                                   1.370200
     30.0
                   -0.695120
                                   1.317100
     40.0
                   -0.680070
                                   1.306500
     50.0
                   -0.767410
                                   1.369000
     60.0
                   -0.203850
                                   1.015600

    WBL 870

COHD. 1.00.137.004
                                                   LOWER SURFACE
UPPER SURFACE
      X/C
         - %
                       CP
                                  LOCAL MACH
                                                         X/C - %
                                                                                     LOCAL MACH
                                                                           CP
      1.0
                                                        65.0
                    0.094290
                                   0.856470
                                                                       0.036151
                                                                                      O.886880
      2.0
                   -0.121060
                                   0.970470
                                                        60.0
                                                                       40.003061
                                                                                      0.907520
                                                        55.0
      3.0
                                   1.008800
                   -0.191330
                                                                       -0.006578
                                                                                      0.909400
                                   1.370500
      5.0
                   -0.769740
                                                        50.0
                                                                      +0.003218
                                                                                      0.904220
                   -0.614430
                                                        45.0
                                   1.261900
      7.5
                                                                       -0.017981
                                                                                      0.915410
                                   1.307400
     10.0
                   -0.681550
                                                        40.0
                                                                       -0.013999
                                                                                      0.913290
                                   1.315800
     15.0
                   -0.693630
                                                        35.0
                                                                       -5.026231
                                                                                      0.919770
                                   1.364300
                   -0.761250
     20.0
                                                        30.0
                                                                       -0.031557
                                                                                      0.922610
     22.5
                   -0.667010
                                   1.297400
                                                        25.0
                                                                       -0.052702
                                                                                      0.933860
                                   1.317700
                                                        20.0
     25.0
                   -0.696350
                                                                      -0.071217
                                                                                      0.943720
                                   1.261100
     30.0
                   -0.613150
                                                        15.0
                                                                       -0.096591
                                                                                      0.957340
                                   1.284400
                   -0.647760
     35.0
                                                        10.0
                                                                      -0.109960
                                                                                      0.964530
                   -0.642870
                                   1.281100
     40.0
                                                         7.5
                                                                                      1.000000
                                                                      -0.189750
                                   1.283900
     45.0
                   -0.647140
                                                         5.0
                                                                      -0.200680
                                                                                      1.014000
     47.5
                   -0.693850
                                   1.316000
                                                         3.0
                                                                                      1.033000
                                                                      -0.234990
     50.0
                   -0.718530
                                   1.333500
                                                         2.0
                                                                      -0.451120
                                                                                      1.158500
                                   1.352200
                   -0.744670
     52.4
                                                         1.0
                                                                       -0.586890
                                                                                      1.243800
     55.0
                   -0.729240
                                   1.341200
                                                                                                 125209-212p
                   -0.284750
     60.0
                                   1.060900
                                   1.017900
     65.0
                   -0.207860
     70.0
                   -0.176330
                                   1_000500
```

Table B-11. Tabulated Data for Test 273-15, Condition 1.00.137.004 (Continued)

COND. 1.00.137	7.004				
INBOARD SURFAC	CE		OUTBOARD SURFA	CE	
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
6.7	0.337800	0.730090	96.4	. 0.112940	0.846780
8.7	0.402150	0.696440	81.5	0.068863	0.869770
10.9	0.357990	0.719550	58.9	· 0.002835	0.904420
14.5	0.254860	0.773180	44.2	-0.157090	0.990090
17.9	0.051685	0.878770	37.7	-0.232940	1.031900
21.6	-0.039116	0.926640	33.7	-0.256780	1.045300
28.4	-0.318140	1.080000	28.4	-0.066813	0.941420
33.7	-0.457200	1,162100	21.6	0.018434	0.896190
37.7	-0.574760	1.235900	17.9	0.057636	0.875640
44.2	-0.7879 30	1.384300	14.5	-0.012095	0.912300
58.9	-0.024836	0.919040	10.9	-0.091055	0.954340
··- 81.5	0.081237	0.863320	8.7	-0.088993	0.953200
96.4	0.131790	0.836980	6.7	-0.022968	0.918040
			4.7	0 .008379	0.901480

• ENGINE 4 WL 155

COND. 1.00.137.	.004				
INBOARD SURFACE			OUTBOARD SURFAC	CE	`
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
1.8	-0.480470	1.176500	96.8	0.152550	0.826180
3.7	-0.461370	1.164800	89.0	0.083462	0.852130
5.5	-0.567220	1.231200	81.5	0.076140	0.865970
8.1	-0.540880	1.214300	72.2	-0.012841	0.912720
13.3	-0.089345	0.953430	6 6.6	-0.372500	1.111600
23.1	0.132260	0.836750	62.4	-0.465210	1.167100
33.1	0.325300	0.736570	57.5	-0.340160	1.092700
43.0	0.1 07160	0.849810	52.2	-0.159220	0.991240
52.2	-0.121580	0 .970780	43.0	-0.007400	0.909770
57.5	-0.389010	1,121300	33.1	0.054566	0.877240
62.4	-0.557370	1,224700	23.1	0.068891	0.869770
6 6.6	-0.70 6980	1.325200	13.3	-0.177340	1.001200
72.2	-0.557880	1,225100	8.1	-0.529390	1.207000
81.5	0.0 03700	0 .903970	5.5	-0.478870	1.175500
89.0	0.044653	0.882440	3.7	-0.470820	1.170600
96.8	0.173200	0.815470	1.8	-0.381 930	1.117200

Table B-11. Tabulated Data for Test 273-15, Condition 1.00.137.004 (Continued)

• ENGINE 4 030 deg CORE COWL

COND. 1.00.137.0	04	÷
OUTBOARD SURFACE		•
X/C - %	CP	LOCAL MACH
3 .6	0.463790	0.663820
15.5	0.369220	0.713690
24.0	0.005500	0.903010
29.2	-0.022165	0.917620
37.9	-0.002837	0.907410
44.7	-0.261430	1.047800
49.9	-0.280460	1.058500
53.1	-0.366940	1.108300
57.0	-0.292700	1.065500
58.2	-0.267860	1.051400
62.7	-0.478140	1.174900
64.9	-0.480180	1.176200
68.1	-0.446900	1.155900
69.1	****	#### 1.133300
70.2		
	-0.493680	1.184600
74.0	-0.558050	1.225200
77.4	-0.523550	1.203200
80.8	-0.595690	1.249600
83.8	-0.539850	1.213600
8 6.7	-0.55998 0	1.226400
90.1	-0.488230	1.181200
92.0	-0.3 46080	1.096200
95.4	-0.123930	0.972080
99.4	0.010576	0.900360

• ENGINE 4 330 deg CORE COWL

COND. 1.00.137.	004	•
INBOARD SURFACE	• • •	
X/C - %	CP	LOCAL MACH
		0.633770
3.6 15.5	-0.034666	0.924250
24.0	0.062547	0.873060
29.2	-0.126140	0.973240
37.9	0.006311	0.902590
44.7	-0.021497	0.917260
49.9	-0.054965	0.935030
53.1	-0.168990	0.996560
57.0	-0.269630	1.052400
58.2	-0.223000	1.026400
62.7	-0,252530	1.042800
64.9	-0.442200	1,153000
68.1	-0.454200	1.160300
69.1	-0.505130	1.191700
70.2	-0 .561300	1.227300
74.0	-0.505490	1.191900
77.4	-0.625390	1.269200
80.8	-0.717590	1.332800
		1.296800
83.8	-0 .666090	
86.7	-0.771490	1.371900
90.1	-0 .805090	1.397200
92.0	-0.761140	1.364300
95.4	-0.681670	1.307600
99.4	-0.429870	1.145600

Table B-11. Tabulated Data for Test 273-15, Condition 1.00.137.004 (Continued)

• ENGINE 4 060 deg INLET RADIAL

COND. 1.00.137.	004				
INNER SURFACE			OUTER SURFA	ACE.	
X/C - %	CP	LOCAL MACH	X/C - X	CP	LOCAL MACH
44.1	0.678920	0.5458 60,	2.7	-0.653200	1.287900
32.2	0.248460	0.776470	6.1	0.646260	1,283200
23.1	0.651230	0 .561600	12.6	-0 .777390	1.376200
16.6	0.273070	0.763710	17.0	-0.735330	1.345400
10.2	****	***	26.3	-0.6 60280	1.292800
4.9	0.325 660	0.736400	32.7	-0.712630	1.329200
2.0	0.655810	0.559010	43.2	-0.699070	1.319600
ሰ ለ	6 8 4 9 1 1 6	0 442490			* *

• ENGINE 4 180 deg INLET RADIAL

COND. 1.00.137.0 INNER SURFACE	0 4		OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
42.5	0.660740	0.556220	6.2	-0.558410	1.225400
31.7	0.475880	0.657470	9.5	-0.604240	1.255200
24.4	0.257240-	0.771920	13.2	-0.617680	1.264100
17.8	0.221020	0.790680	17.8	-0.617510	1.264000
11.1	0.075594	0.866230	27.2	-0.313490	1.077300
5.5	0.325490	0.736480	34.5	-0.682240	1.307900
2.4	0.676810	0.547070	45,5	-0.576260	1.236900
0.0	****	***			.,

• ENGINE 4 300 deg INLET RADIAL

COND. 1.00.137.	004				
INNER SURFACE			OUTER SURFACE		
X/C - %	CP	LOCAL MACH	X/C - %	CP	LOCAL MACH
42.3	0.655040	0.559450	2.7	-0.516260	1.198600
32.2	0.495340	0.647090	5.8	-0.457880	1.162500
22.7	0.320760	0.738940	12.7	-0.591450	1.246800
16.4	0.213800	0.794430	17.1	~0.604940	1.255600
9.9	0.046549	0.881420	26.4	-0.645850	1.283000
4.7	0.189920	0.806800	33.0	-0.678360	1.305200
2.0	0.622890	0.577510	43.3	-0.617480	1.263900
0.0	0.952510	0.371930	10 (0	0.011400	1.200300

Table B-11. Tabulated Data for Test 273-15, Condition 1.00.137.004 (Concluded)

Figure B-1. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.001)

Figure B-1. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.001)(Continued)

● ENGINE 3 ~ 090 DEGREE RADIAL -NAIL

Figure B-1. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.001) (Continued)

• ENGINE 3 ~ 210 DEGREE RADIAL -NAIL

Figure B-1. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.001) (Continued)

● ENG!NE 3 ~ 330 DEGREE RADIAL —NAIL

Figure B-1. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.001)(Continued)

Figure B-1. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.001)(Continued)

Figure B-1. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.001) (Continued)

● ENGINE 4 PYLON WL 155 — IPSA

● ENGINE 4 CORE 030 DEG - IPSA

Figure B-1. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.001) (Continued)

Figure B-1. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.001)(Continued)

● ENGINE 4 ~ 300 DEGREE RADIAL -NAIL

Figure B-1. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.001)(Continued)

M = 0.866 = 12 270m (40 256 ft) = 206 025 kg (454 207 lbm) $\alpha = 1.6 \deg$ GW = 9,722 kPa (1.410 PSI) FLAPS = 0 deg Q = 487.4 km/h (263.2 KTS) LANDING GEAR UP

p = 12 270m (40 256 ft)

M = 0.866 α = 1.6 deg

SW = 206 025 kg (454 207 lbm) 1 = 9.722 kPa (1.410 PSI)

α = 1.6 deg

Ve = 487.4 km/h (263.2 KTS)

LANDING GEAR UP

25209-141

 Hp
 = 12 270m (40 256 ft)
 M
 = 0.866

 GW
 = 206 025 kg (454 207 lbm)
 α
 = 1.6 deg

 Q
 = 9.722 kPa (1.410 PSI)
 FLAPS = 0 deg

 Vc
 = 487.4 km/h (263.2 KTS)
 LANDING GEAR UP

Figure B-2. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.002.1)

● PRESS DIST E3 PYLON WL 180 - IPSA

• PRESS DIST E3 PYLON WL 155 - IPSA

Figure B-2. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.002.1) (Continued)

Figure B-2. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.002.1)(Continued)

● ENGINE 3 ~ 150 DEGREE RADIAL -NAIL

● ENGINE 3 ~ 210 DEGREE RADIAL -NAIL

Figure B-2. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.002.1)(Continued)

Figure B-2. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.002.1) (Continued)

Figure B-2. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.002.1)(Continued)

Figure B-2. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.002.1)(Continued)

PRESSURE DIST E4 CORE 030 DEG -1PSR

Figure B-2. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.002.1)(Continued)

● ENGINE 4 ~ 060 DEGREE RADIAL -NAIL

Figure B-2. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.002.1)(Continued)

Figure B-2. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.002.1) (Continued)

25209-152

• CONDITION STABILITY

= 12 478m (40 938 ft) **=** 0.767 GW = 199 759 kg (440 393 lbm) α = 3.3 deg = 7.384 kPa (1.071 PSI) FLAPS = 0 deg = 418.7 km/h (226.1 KTS) LANDING GEAR UP

CONTROL SURFACE POSITION

Нр		12 478m (40 938 ft)	M	=	0.767
GW	=	199 759 kg (440 393 lbm)	α	=	3.3 deg
Q	=	7.384 kPa (1.071 PSI)	FLA	PS -	· 0 deg
Vc	-	418.7 km/h (226.1 KTS)	LAT	NDIN	IG GEAR UP

Figure B-2. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.002.1)(Continued)

12 478m (40 938 ft) - 0.767 Hp M GW 199 759 kg (440 393 lbm) = 3.3 deg α FLAPS = 0 deg Q 7.384 kPa (1.071 PSI) LANDING GEAR UP 418.7 km/h (226.1 KTS)

Figure B-2. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.002.1) (Continued)

lp = 12 478m (40 938 ft) W = 199 759 kg (440 393 lbm)

Q = 7.384 kPa (1.071 PSI)

Vc = 418.7 km/h (226.1 KTS)

M = 0.767 α = 3.3 deg FLAPS = 0 deg LANDING GEAR UP

Figure B-2. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.002.1) (Concluded)

• PRESSURE DIST WBL 445 - IPSA

PORT LOCATION~PERCENT OF CHORD

Hp 12 353m (40 528 ft) 0.798 М GW 204 452 kg (450 740 lbm) 2.8 deg 8.156 kPa (1.183 PSI) Q FLAPS = 0 deg 442.1 km/h (238.7 KTS) LANDING GEAR UP

Figure B-3. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.003)

• PRESS DIST E3 PYLON WL 155 - IPSA

Figure B-3. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.003) (Continued)

Figure B-3. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.003) (Continued)

• ENGINE 3 ~ 210 DEGREE RADIAL

 Hp
 =
 12 353m (40 528 ft)
 M
 =
 0.798

 GW
 =
 204 452 kg (450 740 lbm)
 α
 =
 2.8 deg

 Q
 =
 8.156 kPa (1.183 PSI)
 FLAPS = 0 deg

 Vc
 =
 442.1 km/h (238.7 KTS)
 LANDING GEAR UP

Figure B-3. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.003) (Continued)

Figure B-3. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.003) (Continued)

● PRESS DIST WBL 834 TOP-IPSA

Figure B-3. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.003)(Continued)

Figure B-3. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.003) (Continued)

 Hp
 =
 12 353m (40 528 ft)
 M
 =
 0.798

 GW
 =
 204 452 kg (450 740 lbm)
 α
 =
 2.8 deg

 Q
 =
 8.156 kPa (1.183 PSI)
 FLAPS = 0 deg

 Vc
 =
 442.1 km/h (238.7 KTS)
 LANDING GEAR UP

Figure B-3. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.003)(Continued)

● ENGINE 4 ~ 180 DEGREE RADIAL

PORT LOCATION-PERCENT OF CHORD

Vc

Figure B-3. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.003) (Continued)

LANDING GEAR UP

442.1 km/h (238.7 KTS)

Figure B-3. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.003)(Continued)

= 204 452 kg (450 740 lbm)

= 442.1 km/h (238.7 KTS)

= 8.156 kPa (1.183 PSI)

α = 2.8 deg

LANDING GEAR UP

FLAPS = 0 deg

= 442.1 km/h (238.7 KTS)

LANDING GEAR UP

Figure B-3. Pressure Coefficient Plots (Test 273-09, Condition 1.00.137.003) (Concluded)

FLAPS = 0 deg

LANDING GEAR UP

= 8.156 kPa (1.183 PSI)

= 442.1 km/h (238.7 KTS)

0.50

PORT LOCATION ~ PERCENT OF CHORD

Figure B-4. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.001.1)

Figure B-4. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.001.1)(Continued)

PORT LOCATION~PERCENT OF CHORD

Figure B-4. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.001.1) (Continued)

PORT LOCATION ~ PERCENT OF CHORD

Figure B-4. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.001.1)(Continued)

PORT LOCATION PERCENT OF CHORD

 Hp
 = 11 909m (39 073 ft)
 M
 = 0.864

 GW
 = 219 686 kg (484 325 lbm)
 α
 = 1.9 deg

 Q
 = 10.239 kPa (1.485 PSI)
 FLAPS = 0 deg

 Vc
 = 499.7 km/h (269.8 KTS)
 LANDING GEAR UP

Figure B-4. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.001.1)(Continued)

H_P = 11 909m (39 073 ft) M = 0.864 GW = 219 686 kg (484 325 lbm) α = 1.9 deg Q = 10.239 kPa (1.485 PSI) FLAPS = 0 deg Vc = 499.7 km/h (269.8 KTS) LANDING GEAR UP

Figure B-4. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.001.1)(Continued)

● ENGINE 3 ~ 330 DEGREE RADIAL-NAIL

H_P = 11 909m (39 073 ft) M = 0.864 GW = 219 686 kg (484 325 lbm) α = 1.9 deg Q = 10.239 kPa (1.485 PSI) FLAPS = 0 deg Vc = 499.7 km/h (269.8 KTS) LANDING GEAR UP

Figure B-4. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.001.1) (Continued)

80

60

40

PORT LOCATION~PERCENT OF CHORD

G UPPER SURFACE • PRESSURE DIST WBL 834 TOP-IPSA PRESSURE COEFFICIENT ~ C_p -1.00 -0.75 **-0**.50 **-0**.25 30 50

11 909m (39 073 ft) 0.864 GW 219 686 kg (484 325 lbm) 1.9 deg Q 10.239 kPa (1.485 PSI) FLAPS = 0 deg 499.7 km/h (269.8 KTS) LANDING GEAR UP

PORT LOCATION~PERCENT OF CHORD

Figure B-4. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.001.1)(Continued)

 HP
 = 11 909m (39 073 ft)
 M
 = 0.864

 GW
 = 219 686 kg (424 325 lbm)
 α
 = 1.9 deg

 Q
 = 10.239 kPa (1.485 PSI)
 FLAPS = 0 deg

 Vc
 = 499.7 km/h (269.8 KTS)
 LANDING GEAR UP

Figure B-4. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.001.1)(Continued)

Figure B-4. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.001.1) (Continued)

Figure B-4. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.001.1)(Continued)

• CONDITION STABILITY

= 11 909m (39 073 ft) = 0.864 GW = 219 686 kg (484 325 lbm) α = 1.9 deg Q = 10.239 kPa (1.485 PSI) FLAPS - 0 deg Vc = 499.7 km/h (269.8 KTS) LANDING GEAR UP

Figure B-4. Pressure Coefficient Data (Test 273-12, Condition 1.00.137.001.1) (Continued)

CONTROL SURFACE POSITION

= 11 909m (39 073 ft) M = 0.864 GW = 219 686 kg (484 325 lbm) α = 1.9 deg = 10.239 kPa (1.485 PSI) FLAPS = 0 deg = 499.7 km/h (269.8 KTS) LANDING GEAR UP

Figure B-4. Pressure Coefficient Data (Test 273-12, Condition 1.00.137.001.1) (Continued)

Hp = 11 909m (39 073 ft) M = 0.864 GW = 219 686 kg (484 325 lbm) α = 1.9 deg Q = 10.239 kPs (1.485 PSI) FLAPS = 0 deg Vc = 499.7 km/h (269.8 KTS) LANDING GEAR UP

Figure B-4. Pressure Coefficient Data (Test 273-12, Condition 1.00.137.001.1)

(Concluded)

Figure B-5. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.002)

Figure B-5. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.002)(Continued)

125209-229

Figure B-5. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.002) (Continued)

Figure B-5. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.002) (Continued) 135

PORT LOCATION-PERCENT OF CHORD

12 029m (39 466 ft) Hp GW 216 516 kg (477 337 lbm) α Q 7.826 kPa (1.135 PSI) Vc

FLAPS = 0 deg 430.4 km/h (232.4 KTS) LANDING GEAR UP

= 0.762

= 3.6 deg

125209-232A

INNER SURFACE

 Hp
 =
 12 029m (39 466 ft)
 M
 =
 0.762

 GW
 =
 216 516 kg (477 337 lbm)
 α
 =
 3.6 deg

 Q
 =
 7.826 kPa (1.135 PSI)
 FLAPS = 0 deg

 Vc
 =
 430.4 km/h (232.4 KTS)
 LANDING GEAR UP

Figure B. J. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.002)(Continued)

● ENGINE 3 ~ 33Ø.DEGREE RADIAL ~ NAIL

PORT LOCATION PERCENT OF CHURD

Figure B-5. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.002) (Continued)

Figure B-5. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.002)(Continued)

PORT LOCATION~PERCENT OF CHORD

• PRESS DIST E4 PYLON WL 180 - IPSA

 Hp
 =
 12 0 29 m (39 466 ft)
 M
 =
 0.762

 GW
 =
 216 516 kg (477 337 lbm)
 α'
 =
 3.6 deg

 Q
 =
 7.826 kPa (1.135 PSI)
 FLAPS = 0 deg

 Vc
 =
 430.4 km/h (232.4 KTS)
 LANDING GEAR UP

Figure B-5. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.002) (Continued)

● ENGINE 4 ~ Ø6Ø DEGREE RADIAL ~ NAIL

430.4 km/h (232.4 KTS) LANDING GEAR UP

Figure B-5. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.002) (Continued)

Figure B-5. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.002)(Continued)

Figure B-5. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.002)(Continued)

125209-238

 H_p = 12 029m (39 466 ft) M = 0.762 GW = 216 516 kg (477 337 lbm) α = 3.6 deg Ω = 7.826 kPa (1.135 PSI) F LAPS = 0 deg

Vc = 430.4 km/h (232.4 KTS) LANDING GEAR UP

Figure B-5. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.002) (Continued)

ENGINE AIRFLOW

= 12 029m (39 466 ft) M = 0.762= 216 516 kg (477 337 lbm) $\alpha = 3.6 \deg$ = 7.826 kPa (1.135 PSI) FLAPS = 9 deg = 430,4 km/h (232.4 KTS) LANDING GEAR UP

Figure B-6. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.003)

LANDING GEAR UP

455 2 km/h (245 8 KTS)

• PRESS DIST E3 PYLON WL 180 - IPSA

Figure B-6. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.003) (Continued)

• PRESS DIST E3 CORE 030 DEG - IPSA.

Figure B-6. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.003) (Continued)

- }

H_p = 12 002m (39 376 ft) M = 0 800 GW = 218 881 kg (482 550 lbm) α = 2.9 deg C = 8.660 kPa (1.256 PSI) FLAPS = 0 deg Vc = 455.2 km/h (245.8 KTS) LANDING GEAR UP

Figure B-6. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.003) (Continued)

-1

H_p = 12 002m (39 376 ft) M = 0.800 GW = 218 881 kg (482 550 lbm) α = 2.9 deg Q = 8.660 kPa (1.256 PSI) FLAPS = 0 deg Vc = 455.2 km/h (245.8 KTS) LANDING GEAR UP 125209-232A

Figure B-6. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.003) (Continued)

H_p = 12 002m (39 376 ft) M = 0.800 GW = 218 881 kg (482 550 lbm) α = 2.9 deg Q = 8.660 kPa (1.256 PSI) FLAPS = 0 deg Vc = 455 2 km/h (245.8 KTS) LANDING GEAR UP

Figure B-6. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.003) (Continued)

Figure B-6. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.003) (Continued)

H = 12 002m (39 376 ft) M = 0.800 GW = 218 881 kg (482 550 lbm) α = 2.9 deg O = 8,660 kPa (1.256 PSI) FLAPS = 0 deg Vc = 455 2 km/h (245.8 KTS) LANDING GEAR UP

Figure B-6. Pressure Coefficient Plots (Test 273-12, Condition 1,00.137.003) (Continued)

4.3

H_p = 12 002m (39 376 ft) M = 0 800 GW = 218 881 kg (482 550 lbm) α = 2.9 deg O = 8.660 kPa (1.256 PSI) FLAPS = 0 deg Vc = 455.2 km/h (245.8 KTS) LANDING GEAR UP

Figure B-6. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.003) (Continued)

• PRESS DIST WBL 834 TOP-IPSA

Figure B-6. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.003) (Continued)

• PRESS FIST E4 PYLON WL 180 - IPSA

٠ţ

Figure B-6. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.003) (Continued)

• PRESS DIST E4 PYLON WL 155 - IPSA

• ENGINE 4 ~ 060 DEGREE RADIAL ~ NAIL

Figure B-6. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.003) (Continued)

● ENGINE 4 ~ 180 DEGREE RADIAL-NAIL

● ENGINE 4 ~ 300 DEGREE RADIAL-NAIL

125209-250

Figure B-6. Pressure Coefficient Plots (Test 273-12, Condition 1.00.137.003)(Concluded)

Figure B-6. Pressure Coefficient Data (Test 273-12, Condition 1.00.137.003) (Continued)

2.9 deg

LANDING GEAR UP

FLAPS = 0 deg

GW = 218 881 kg (482 550 lbm)

Q = 8,660 kPa (1.256 PSI)

Vc = 455.2 km/h (245.8 KTS)

• CONTROL SURFACE POSITION

H_p = 12 002m (39 376 ft)

GW = 218 881 kg (482 550 lbm) Q = 8.660 kPa (1.256 PSI)

Vc = 455.2 km/h (245.8 KTS)

0.800 α = 2.9 deg FLAPS ≈ 0 deg LANDING GEAR UP

Figure B-6. Pressure Coefficient Data (Test 273-12, Condition 1.00.137.003) (Continued)

Figure B-6. Pressure Coefficient Data (Test 273-12, Condition 1.00.137.003) (Concluded)

2.9 deg

FLAPS = 0 deg

LANDING GEAR UP

* 218 381 kg (482 550 lbm)

* 455.2 km/h (245.8 KTS)

= 8 660 kPa (1.256 PSI)

● PRESS DIST WBL 470 TOP-IPSA

O UPPER SURFACE

 H_{p} = 11 591m (38,028 ft) M = 0.855 GW = 216 946 kg (478,283 lbm) α = 1.7 deg Ω = 10.556 kPa (1.531 PSI) FLAPS = 0 deg V_{c} = 506.2 km/h (273.3 KTS) LANDING GEAR UP

Figure B-7. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.001)

Figure B-7. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.001) (Continued)

PORT LOCATION~PERCENT OF CHORD

• PRESS DIST E3 CORE 030 DEG - 1PSA

* {

9 OUTBOARD SURFACE

Figure B-7. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.001)(Continued)

125209-257

PORT LOCATION~PERCENT OF CHORD

Figure B-7. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.001) (Continued)

Figure B-7. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.001) (Continued)

PRESSURE COEFFICIENTS ~ NAIL PROG. **ENGINE 3 ~ 210 DEGREE RADIAL**

 PRESSURE COEFFICIENTS ~ NAIL PROG. ENGINE 3 ~ 270 DEGREE RADIAL

Q

- 1

FLAPS = 0 deg

LANDING GEAR UP

Figure B-7. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.001) (Continued)

10.556 kPa (1.531 PSI)

506.2 km/h (273.3 KTS)

1

Figure B-7. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.001) (Continued)

•

O UPPER SURFACE

Figure B-7. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.001) (Continued)

125209-262

Figure B-7. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.001) (Continued)

• PRESSURE DIST E4 CORE 030 DEG - IPSA

O OUTBOARD SURFACE

125209-263

H_P = 11 591m (38 028 ft) M = 0.855 GW = 216 946 kg (478 283 lbm) α = 1.7 deg Q = 10.556 kPa (1.531 PSI) FLAPS = 0 deg V_c = 506.2 km/h (273.3 KTS) LANDING GEAR UP

Figure B-7. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.001) (Continued)

PRESSURE DIST E4 CORE 330 DEG - IPSA

Figure B-7. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.001) (Continued)

Figure B-7. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.001) (Continued) 173

CONDITION STABILITY

H_p = 11 591m (38 028 ft) GW = 216 946 kg (478 283 lbm) Q = 10.556 kPa (1.531 PSI) V_c = 506.2 km/h (273.3 KTS) M = 0.855 α = 1.7 deg FLAPS = 0 deg LANDING GEAR UP

CONTROL SURFACE POSITION

H_P = 11 591m (38 028 ft) GW = 216 946 kg (478 283 lbm) = 10.556 kPa (1.531 PSI)

= 506.2 km/h (273.3 KTS)

= 0.855 = 1.7 deg

FLAPS = 0 deg LANDING GEAR UP

• ENGINE AIRFLOW

H_p = 11 591m (38 028 ft) GW = 216 946 kg (478 283 lbm) Q = 10.556 kPa (1.531 PSI) V_c = 506.2 km/h (273.3 KTS)

M = 0.855 α = 1.7 deg FLAPS = 0 deg LANDING GEAR UP

• ENGINE AIRFLOW

H_P = 11 591m (38 028 ft) GW = 216 946 kg (478 283 lbm) Q = 10.556 kPa (1.531 PSI)

= 506.2 km/h (273.3 KTS)

M = 0.855
 α = 1.7 deg
 FLAPS = 0 deg
 LANDING GEAR UP

125209-269

PORT LOCATION~PERCENT OF CHORD

Figure B-8. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.002)

Figure B-8. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.002) (Continued)

PORT LOCATION~PERCENT OF CHORD

• PRESSURE DIST E3 CORE 330 DEG - IPSA

O INBOARD SURFACE

125209-271

PORT LOCATION~PERCENT OF CHORD

Figure B-8. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.002) (Continued)

ullet Pressure coefficients \sim nail prog.

\bullet Pressure coefficients \sim NAIL Prog.

Figure B-8. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.002) (Continued)

Figure B-8. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.002) (Continued)

● ENGINE 3-270 DEGREE RADIAL ~ NAIL

● ENGINE 3-330 DEGREE RADIAL ~ NAIL.

Figure B-8. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.002)(Continued)

125209-275

PORT LOCATION~PERCENT OF CHORD

Hp = 11 596m (38 045 ft) M = 0.776 GW = 218 678 kg (482 102 lbm) α = 3.0 deg Q = 8.694 kPa (1.261 PSI) FLAPS = 0 deg V_C = 454.1 km/h (245.2 KTS) LANDING GEAR UP

Figure B-8. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.002)(Continued)

.75

11 596m (38 045 ft) **0**.776 Hp 218 678 kg (482 102 lbm) GW **= 3.0** deg 8.694 kPa (1.261 PSI) Q FLAPS = 0 deg = 454 1 km/h (245.2 KTS) LANDING GEAR UP

PORT LOCATION~PERCENT OF CHORD

Figure B-8. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.002) (Continued)

●PRESSURE DIST E4 CORE 030 DEG - IPSA

O OUTBOARD SURFACE

Figure B-8. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.002) (Continued)

Figure B-8. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.002)(Continued)

PRESSURE COEFFICIENTS ~ NAIL PROG.
 ENGINE 4 ~ 180 DEGREE RADIAL

PRESSURE COEFFICIENTS ~ NAIL PROG.
 ENGINE 4 ~ 300 DEGREE RADIAL

Figure B-8. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.002)(Continued)

• CONDITION STABILITY

= 11 596m (38 045 ft) = 0.776 = 218 678 kg (482 102 lbm) = 3,0 deg = 8.694 kPa (1.261 PSI) FLAPS = 0 deg = 454.1 km/h (245.2 KTS) LANDING GEAR UP

Figure B-8. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.002)(Continued)

CONTROL SURFACE POSITION

H_P = 11 596m (38 045 ft) M = 0.776 GW = 218 678 kg (482 102 lbm) α = 3.0 deg Q = 8.694 kPa (1.261 PSI) FLAPS = 0 deg V_C = 454.1 km/h (245.2 KTS) LANDING GEAR UP

Figure B-8. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.002) (Continued)

• ENGINE AIRFLOW

٠ ۵

Hp = 11 596m (38 045 ft) M = 0.776 GW = 218 678 kg (482 102 lbm) α = 3.0 deg Q = 8.694 kPa (1.261 PSI) FLAPS = 0 deg V_C = 454.1 km/h (245.2 KTS) LANDING GEAR UP

Figure B-8. Pressure Coefficier t Plots (Test 273-15, Condition 1.00.137.002) (Concluded)

O UPPER SURFACE

11 601m (38 060 ft) HP **- 0**.802 GW 218 085 kg (480 796 lbm) = 2.6 deg FLAPS = 0 deg Q 9.267 kPa (1.344 PSI) Vc 470.6 km/h (254.1 KTS) LANDING GEAR UP

Figure B-9. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.003)

Figure B-9. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.003) (Continued)

LANDING GEAR UP

470.6 km/h (254.1 KTS)

V_c

• PRESSURE DIST E3 CORE 330 DEG - IPSA

O INBOARD SURFACE

Figure B-9. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.003) (Continued)

Figure B-9. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.003) (Continued)

PORT LOCATION ~ % CHORD

Figure B-9. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.003) (Continued)

Figure B-9. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.003) (Continued)

O UPPER SURFACE

= 11 601m (38 060 ft) 0.802 Hρ 2.6 deg GW 218 085 kg (480 796 lbm) = 9.267 kPa (1.344 PSI) FLAPS = 0 deg 470.6 km/h (254.1 KTS) LANDING GEAR UP

Figure B-9. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.003) (Continued)

• PRESS DIST E4 PYLON WL 180 - IPSA

125209-290

Figure B-9. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.003) (Continued)

 PRESSURE DIST E4 CORE 030 DEG -IPSA O DUTBOARD SURFACE

125209-291

PORT LOCATION~PERCENT OF CHORD

Figure B-9. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.003) (Continued)

Figure B-9. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.003) (Continued)

0.75

1.00

0.802 HP 11 601m (38 060 ft) GW 218 085 kg (480 796 lbm) α 2.6 deg FLAPS = 0 deg Q 9.267 kPa (1.344 PSI) LANDING GEAR UP 470.6 km/h (254.1 KTS) V_c

Figure B-9. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.003) (Continued)

Figure B-9. Pressure Coefficient Plots
(Test 273-15, Condition 1.00.137.003)(Continued)

= 218 085 kg (480 796 lbm)

= 9.267 kPa (1.344 PSI)

V_c = 470.6 km/h (254.1 KTS)

α = 2.6 deg

LANDING GEAR UP

FLAPS = 0 deg

Hp = 11 601m (38 060 ft) - 0.802 = 2.6 deg = 218 085 kg (480 796 lbm) Q = 9.267 kPa (1.344 PSI) FLAPS = 0 deg Vc . = 470.6 km/h (254.1 KTS) LANDING GEAR UP

Figure B-9. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.003) (Continued)

Figure B-9. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.003) (Concluded)

= 9.267 kPa (1.344 PSI)

= 470.6 km/h (254.1 KTS)

FLAPS = 0 deg

LANDING GEAR UP

PORT LOCATION~PERCENT OF CHORD

Hp	-	11 432m (37 505 ft)	M = 0.906
GW	=	216 125 kg (476 473 lbm)	a = 1.0 deg
Q	*	12.162 kPa (1.764 PSI)	FLAPS = 0 deg
V _c	-	547.1 km/h (295.4 KTS)	LANDING GEAR UP

Figure B-10. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.004)

Figure B-10. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.004) (Continued)

● PRESS DIST E3 CORE 030 DEG - ·IPSA

O OUTBOARD SURFACE

Figure B-10. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.004) (Continued)

PORT LOCATION ~ % CHORD

PRESSURE COEFFICIENTS ~ NAIL PROG.
 ENGINE 3 ~ 030 DEGREE RADIAL

C) 	ŊŅ	ΕR	:SL	RF	AC	-
	::::(UT	ËR	SL	RF	AC	

 Hp
 - 11 432m (37 505 ft)
 M
 - 0.906

 GW
 - 216 125 kg (476 473 lbm)
 α
 - 1.0 deg

 Q
 - 12.162 kPa (1.764 PSI)
 FLAPS = 0 deg

 V_C
 - 547.1 km/h (295 4 KTS)
 LANDING GEAR UP

Figure B-5. Sample of Local Mach Number Data (Test 273-12, Condition 1.00.137.001.1)(Continued)

Figure B-10. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.004) (Continued)

Figure B-10. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.004) (Continued)

PRESSURE COEFFICIENTS ~ NAIL PROG. ENGINE 3 ~ 330 DEGREE RADIAL

Figure B-10. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.004) (Continued)

Figure B-10. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.004) (Continued)

Figure B. J. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.004) (Continued)

PORT LOCATION~PERCENT OF CHORD

 PRESSURE DIST E4 CORE 030 DEG -IPSA O OUTBOARD SURFACE

PORT LOCATION~PERCENT OF CHORD

Figure B-10. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.004) (Continued)

Figure B-10. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.004) (Continued)

Figure B-10. Pressure Coefficient Plots (Test 273-15, Condition 1.00.137.004) (Continued)

547.1 km/h (295.4 KTS)

25209-308

(Test 273-15, Condition 1.00,137.004) Figure _8-10. Pressure Coefficient Data_

LANDING GEAR UP FLAPS = 0 deg geb 0,f = 10 deg

906'0 =

247.1 km/h (295.4 KTS) = 12,162 kPa (1,764 PSI) Ø

CM = 516 125 kg (476 473 lbm) Hp = 11432m (37 505 ft)

CONDITION STABILITY

◆ CC FROL SURFACE POSITION

Hp = 11 432m (37 505 ft) GW = 216 125 kg (476 473 lbm) Q = 12.162 kPa (1.764 PSI) V_c = 547.1 km/h (295.4 KTS)

M = 0.906 α = 1.0 deg FLAPS = 0 deg LANDING GEAR UP

Figure B-10. Pressure Coefficient Data (Test 273-15, Condition 1.00.137.004) (Continued)

• ENGINE AIRFLOW

Hp = 11 432m (37 505 ft) GW = 216 125 kg (476 473 lbm) **M** = 0.906 = 12.162 kPa (1.764 PSI) = 547.1 km/h (295.4 KTS)

α = 1.0 deg FLAPS = 0 deg LANDING GEAR UP

Figure B-10. Pressure Coefficient Data (Test 273-15, Condition 1.00.137.004) (Concluded)

WBL 470 ~ IPSA

O UPPER SURFACE

Hp = 12 270m (40 256 ft)
GW = 206 025 kg (454 207 lbm)

Q = 9.722 kPa (1.410 PSI) Vc = 487.4 km/h (263.2 KTS) M - 0.866

α = 1.6 deg

FLAPS = 0 deg LANDING GEAR UP

Figure B-11. Local Mach Number Plots (Test 273-09, Condition 1.00.137.001)

Figure B-11. Local Mach Number Plots (Test 273-09, Condition 1.00.137.001) (Continued)

Figure B-11. Local Mach Number Plots (Test 273-09, Condition 1.00.137.001) (Continued)

LANDING GEAR UP

487.4 km/h (263.2 KTS)

Figure B-11. Local Mach Number Plots (Test 273-09, Condition 1.00.137.001) (Continued)

Figure B-11. Local Mach Number Plots (Test 273-09, Condition 1.00.137.001) (Continued)

Figure B-11. Local Mach Number Plots (Test 273-09, Condition 1.00.137.001) (Continued)

6 UPPER SURFACE

Hp = 12 270m (40 256 ft)

GW = 206 025 kg (454 207 lbm)

Q = 9.722 kPa (1.410 PSI) V_c = 487.4 km/h (263.2 KTS) M - 0.866

α = 1.6 deg

FLAPS = 0 deg

Figure B-11. Local Mach Number Plots (Test 273-09, Condition 1.00.137.001) (Continued)

Hp = 12 270m (40 256 ft) M = 0.866 GW = 206 025 kg (454 207 lbm) α = 1.6 deg Q = 9.722 kPa (1,410 PSI) FLAPS = 0 deg V_C = 487.4 km/h (263.2 KTS) LANDING GEAR UP

Figure B-11. Local Mach Number Plots (Test 273-09, Condition 1.00.137.001) (Continued)

Figure B-11. Local Mach Number Plots (Test 273-09, Condition 1.00.137.001) (Continued)

Figure B-11. Local Mach Number Plots (Test 273-09, Condition 1.00.137.001) (Continued)

Figure B-11. Local Mach Number Plots (Test 273-09, Condition 1.00.137.001) (Concluded)

• UPPER SURFACE

Hp = 12 478m (40 938 ft)
GW = 199 769 kg (440 393 lbm)
Q = 7.384 kPa (1.071 PSI)
Vc = 418.7 km/h (226.1 KTS)

M = 0.767 α = 3.3 deg FLAPS = 0 deg LANDING GEAR UP

Figure B-12. Local Mach Number Plots (Test 273-09, Condition 1.00.137.002.1)

Figure B-12. Local Mach Number Plots (Test 273-09, Condition 1.00.137.002.1) (Continued)

Figure B-12. Local Mach Number Plots (Test 273-09, Condition 1.00.137.002.1) (Continued)

= 7.384 kPa (1.071 PSI)

418 7 km/h (226.1 KTS)

Q

FLAPS = 0 deg

● ENGINE 3 ~ 150 DEGREE RADIAL ~ NAIL

Hp = 12 478m (40 938 ft) GW = 199 759 kg (440 393 lbm) Q = 7 384 kPa (1.071 PSI)

V_c = 418.7 km/h (226 1 KTS)

M = 0.767 α = 3.3 deg FLAPS = 0 deg

Figure B-12. Local Mach Number Plots (Test 273-09, Condition 1.00.137.002.1)(Continued)

Figure B-12. Local Mach Number Plots (Test 273-09, Condition 1.00.137.002.1) (Continued)

 ■ LOCAL MACH NUMBER ~ NAIL PROGRAM ENGINE 3 ~ 330 DEGREE RADIAL

O INNER SURFACE SURFACE m OUTER

12 478m (40 938 ft) Hp GW 199 759 kg (440 393 lbm) Q 7.384 kPa (1.071 PSI)

0.767 α **3.3** deg FLAPS = 0 deg

418.7 km/h (226.1 KTS)

W UPPER PURFACE

Hp = 12 478m (40 938 ft)
GW = 199 759 kg (440 393 lbm)
Q = 7.384 kPa (1.071 PSI)
V_c = 418.7 km/h (226.1 KTS)

M = 0.767
 α = 3.3 deg
 FLAPS = 0 deg
 LANDING GEAR UP

25209-328

Figure B-12. Local Mach Number Plots (Test 273-09, Condition 1.00.137.002.1) (Continued)

Figure B-12. Local Mach Number Plots (Test 273-09, Condition 1.00.137.002.1) (Continued)

● LOCAL MACH NUMBER ~ IPSA PROGRAM ENGINE 4 CORE Ø30 DEG

O OUTBOARD SURFACE

Hp = 12 478m (40 938 ft)

GW = 199 759 kg (440 393 lbm)

Q = 7.384 kPa (1.071 PSI) V_c = 418.7 km/h (226.1 KTS) α = 3.3 deg

FLAPS = 0 deg

LANDING GEAR UP

- 0.767

Figure B-12. Local Mach Number Plots (Test 273-09, Condition 1.00.137.002.1) (Continued)

● LOCAL MACH NUMBER ~ NAIL PROGRAM ENGINE 4 ~ 060 DEGREE RADIAL

O THNER BURFACE

◆LOCAL MACH NUMBER ~ NAIL PROGRAMENGINE 4 ~ 180 DEGREE RADIAL

Figure B-12. Local Mach Number Plots (Test 273-09, Condition 1.00.137.002.1) (Continued)

Hp = 12 478m (40 938 ft) M = 0.767 GW = 199 759 kg (440 393 lbm) α = 3.3 deg Q = 7.384 kPa (1.071 PSI) FLAPS = 0 deg V_C = 418.7 km/h (226.1 KTS) LANDING GEAR UP

Figure B-12. Local Mach Number Plots (Test 273-09, Condition 1.00.137.002.1) (Concluded)

Figure B-13. Local Mach Number Plots (Test 273-09, Condition 1.00.137.003)

FLAPS = 0 deg

LANDING GEAR UP

8.156 kPa (1.183 PSI)

441.2 km/h (238.7 KTS)

Q

٧c

Figure B-13. Local Mach Number Plots (Test 273-09, Condition 1.00.137.003) (Continued)

Figure B-13. Local Mach Number Plots (Test 273-09, Condition 1.00.137.003) (Continued)

441.2 km/h (238.7 KTS)

Figure B-13. Local Mach Number Plots (Test 273-09, Condition 1.00.137.003) (Continued)

● ENGINE 3 ~ 270 DEGREE RADIAL ~ NAIL

O INNER SURFACE:

125209-337

Figure B-13. Local Mach Number Plots (Test 273-09, Condition 1.00.137.003) (Continued)

Hp = 12 353m (40 528 ft)
GW = 204 452 kg (450 740 lbm)
Q = 8.156 kPa (1.183 PSI)

= 441.2 km/h (238.7 KTS)

M = 0.798 α = 2.8 deg FLAPS = 0 deg ...ANDING GEAR UP

Figure B-13. Local Mach Number Plots (Test 273-09, Condition 1.00.137.003) (Continued)

Figure B-13. Local Mach Number Plots (Test 273-09, Condition 1.00.137.003) (Continued)

INBOARD SURFACE

Figure B-13. Local Mach Number Plots (Test 273-09, Condition 1.00.137.003) (Continued)

Hp = 12 353m (40 528 ft)

GW = 204 452 kg (450 740 lbm)

Q = 8.156 kPa (1.183 PSI)

= 441.2 km/h (238.7 KTS)

M • 0.798

α = 2.8 deg

FLAPS = 0 deg LANDING GEAR UP

Figure B-13. Local Mach Number Plots (Test 273-09, Condition 1.00.137.003) (Continued)

Figure B-13. Local Mach Number Plots (Test 273-09, Condition 1.00.137.003) (Continued)

Figure B-13. Local Mach Number Plots (Test 273-09, Condition 1.00.137.003) (Concluded)

d UPPER SURFACE

Figure B-14. Local Mach Number Plots (Test 273-12, Condition 1.00.137.001.1)

Figure B-14. Local Mach Number Plots (Test 273-12, Condition 1.00.137.001.1)(Continued)

 ■ LOCAL MACH NUMBER ~ IPSA PROGRAM ENGINE 3 WL155

O INBOARD SURFACE

 LOCAL MACH NUMBER ~ IPSA PROGRAM ENGINE 3 CORE Ø3Ø DEG

o loutedaro surface

H_p = 11 909m (39 073 ft) GW = 219 686 kg (484 325 lbm) Q = 10.239 kPa (1.485 PS1) V_a = 499.7 km/h (269.8 KTS)

α = 1.9 deg
FLAPS = 0 deg
LANDING GEAR UP

- 0.864

25209-346

Figure B-14. Local Mach Number Plots (Test 273-12, Condition 1.00.137.001.1)(Continued)

Figure B-14. Local Mach Number Plots (Test 273-12, Condition 1.00.137.001.1)(Continued)

ş.

Figure B-14. Local Mach Number Plots (Test 273-12, Condition 1.00.137.001.1) (Continued)

Figure B-14. Local Mach Number Plots (Test 273-12, Condition 1.00.137.001.1) (Continued)

H_p = 11 909m (39 073 ft) GW = 219 686 kg (484 325 ll

Q

= 219 686 kg (484 325 lbm) = 10.239 kPa (1.485 PSI)

= 499.7 km/h (269.8 KTS)

M = 0.864

α = 1.9 deg

FLAPS = 0 deg LANDING GEAR UP

Figure B-14. Local Mach Number Plots (Test 273-12, Condition 1.00.137.001.1) (Continued)

125209-351

Figure B-14. Local Mach Number Plots (Test 273-12, Condition 1.00.137.001.1) (Continued)

Figure B-14. Local Mach Number Plots (Test 273-12, Condition 1.00.137.001.1)(Continued)

LANDING GEAR UP

499.7 km/h (269.8 KTS)

Figure B-14. Local Mach Number Plots (Test 273-12, Condition 1.00.137.001.1) (Concluded)

Figure B-15. Local Mach Number Plots (Test 273-12, Condition 1.00.137.002)

Figure B-15. Local Mach Number Plots (Test 273-12, Condition 1.00.137.002) (Continued)

Figure B-15. Local Mach Number Plots (Test 273-12, Condition 1.00.137.002) (Continued)

Figure B-15. Local Mach Number Plots (Test 273-12, Condition 1.00.137.002)(Continued)

 Hp
 =
 12 029m (39 466 ft)
 M
 =
 0.762

 GW
 =
 216 516 kg (477 337 lbm)
 α
 =
 3.6 deg

 Q
 =
 7.826 kPa (1.135 PSI)
 FLAPS = 0 deg

 Vc
 =
 430.4 km/h (232.4 KTS)
 LANDING GEAR UP

Figure B-15. Local Mach Number Plots (Test 273-12, Condition 1.00.137.002) (Continued)

Figure B-15. Local Mach Number Plots (Test 273-12, Condition 1.00.137.002) (Continued)

Figure B-15. Local Mach Number Plots (Test 273-12, Condition 1.00.137.002) (Continued)

125209-361

Figure B-15. Local Mach Number Plots (Test 273-12, Condition 1.00.137.002) (Continued)

Figure B-15. Local Mach Number Plots (Test 273-12, Condition 1.00.137.002) (Continued)

 Hp
 = 12 029m (39 466 ft)
 M
 = 0.762

 GW
 = 216 516 kg (477 337 lbm)
 α
 = 3.6 deg

 Q
 = 7.826 kPa (1.135 PSI)
 FLAPS = 0 deg

 Vc
 = 430.4 km/h (232.4 KTS)
 LANDING GEAR UP

Figure B-15. Local Mach Number Plots (Test 273-12, Condition 1.00.137.002) (Concluded)

H_P = 12 002m (39 376 ft) M = 0.800 GW = 218 881 kg (482 550 lbm) α = 2.9 deg Q = 8.660 kPa (1.256 PSI) FLAPS = 0 deg V_c = 455.2 km/h (245.8 KTS) LANDING GEAR UP

Figure B-16. Local Mach Number Plots (Test 273-12, Condition 1.00.137.003)

Figure B-16. Local Mach Number Plots (Test 273-12, Condition 1.00.137.003) (Continued)

 LOCAL MACH NUMBER ~ IPSA PROGRAM ENGINE 3 CORE Ø3Ø DEG Ф О ОТВРАКО SURFACE

Figure B-16. Local Mach Number Plots (Test 273-12, Condition 1.00.137.003) (Continued)

Figure B-16. Local Mach Number Plots (Test 273-12, Condition 1.00.137.003) (Continued)

Figure B-16. Local Mach Number Plots (Test 273-12, Condition 1.00.137.003) (Continued)

Figure B-16. Local Mach Number Plots (Test 273-12, Condition 1.00.137.003) (Continued)

Figure B-16. Local Mach Number Plots (Test 273-12, Condition 1.00.137.003) (Continued)

Figure B-16. Local Mach Number Plots (Test 273-12, Condition 1.00.137.003) (Continued)

Figure B-16. Local Mach Number Plots (Test 273-12, Condition 1.00.137.003) (Continued)

Figure B-16. Local Mach Number Plots (Test 273-12, Condition 1.00.137.003) (Concluded)

LANDING GEAR UP

= 455.2 km/h (245.8 KTS)

V_c

● WBL 470 ~ IPSA

O UPPER SURFACE

HP = 11 591m (38 028 ft) GW

216 946 kg (478 283 lbm)

10.556 kPa (1.531 PSI) 506.2 km/h (273.3 KTS) **- 0**.855

α = 1.7 deg FLAPS = 0 deg

LANDING GEAR UP

Figure B-17. Local Mach Number Plots (Test 273-15, Condition 1.00.137.001) (Continued)

0.855

LANDING GEAR UP

FLAPS = 0 deg

= 1.7 deg

11 591m (38 028 ft)

216 946 kg (478 283 lbm)

10 556 kPa (1.531 PSI)

506.2 km/h (273,3 KTS)

GW

Q

 ■ LOCAL MACH NUMBER ~ IPSA PROGRAM ENGINE 3 CORE 030 DEG

D::IOUTBOARD BURFACE

125209-376

Figure B-17. Local Mach Number Plots (Test 273-15, Condition 1.00.137.001) (Continued)

• LOCAL MACH NUMBER ∼ NAIL PROGRAM ENGINE 3 ∼ 030 DEGREE RADIAL

O INNER SURFACE

H_P = 11 591m (38 028 ft) GW = 216 946 kg (478 283 lbm) Q = 10.556 kPa (1.531 PSI) V_c = 506.2 km/h (273.3 KTS)

α = 1.7 deg
FLAPS = 0 deg
LANDING GEAR UP

0.855

Figure B-17. Local Mach Number Plots (Test 273-15, Condition 1.00.137.001)(Continued)

Figure B-17. Local Mach Number Plots (Test 273-15, Condition 1.00.137.001)(Continued)

Figure B-17. Local Mach Number Plots (Test 273-15, Condition 1.00.137.001) (Continued)

Figure B-17. Local Mach Number Plots (Test 273-15, Condition 1.00.137.001) (Continued)

5209-380

Figure B-17. Local Mach Number Plots (Test 273-15, Condition 1.00.137.001) (Continued)

● ENGINE 4 WL 180 ~ IPSA

© INBORRD SURFACE ED OUTBOARD SURFACE

H_P = 11 591m (38 028 ft) GW = 216 946 kg (478 283 lbm) Q = 10.556 kPa (1.531 PSI)

α = 1.7 deg
FLAPS = 0 deg
LANDING GEAR UP

0.855

M

506.2 km/h (273.3 KTS) LANDIN

Figure B-17. Local Mach Number Plots (Test 273-15, Condition 1.00.137.001) (Continued)

● LOCAL MACH NUMBER ~ IPSA PROGRAM ENGINE 4 CORE Ø3Ø DEG

O COUTBOARD SURFACE

Hp = 11 591m (38 028 ft) GW = 216 946 kg (478 283 lbm) Q = 10.556 kPa (1.531 PSI) V = 506.2 km/h (273.3 KTS) M = 0.855
 α = 1.7 deg
 FLAPS = 0 deg
 LANDING GEAR UP

Figure B-17. Local Mach Number Plots (Test 273-15, Condition 1.00.137.001) (Continued)

Figure B-17. Local Mach Number Plots (Test 273-15, Condition 1.00.137.001) (Continued)

0.0

H_P = 11 591m (38 028 ft) M = 0.855 GW = 216 946 kg (478 283 lbm) α = 1.7 deg Q = 10.556 kPa (1.531 PSI) FLAPS = 0 deg V_c = 506.2 km/h (273.3 KTS) LANDING GEAR UP

60

PORT LOCATION - PERCENT CHORD

Figure B-17. Local Mach Number Plots (Test 273-15, Condition 1.00.137.001) (Concluded)

● LOCAL MACH NUMBER ~ IPSA PROGRAM WBL 470

O UPPER SURFACE

Figure B-18. Locals Mach Number Plots (Test 273-15, Condition 1.00.137.002) (Continued)

Figure B-18. Local Mach Number Plots (Test 273-15, Condition 1.00.137.002) (Continued)

o INBOARD BURFACE m OUTBOARD SURFACE

●LOCAL MACH NUMBER ~ IPSA PROGRAM ENGINE 3 CORE 030 DEG O OUTBOARD SURFACE

Hp = 11 596m (38 045 ft) GW = 218 678 kg (482 102 lbm)

Q = 8.694 kPa (1.261 PSI)

V_c = 454.1 km/h (245.2 KTS)

M = 0.776

α = 3.0 deg

FLAPS = 0 deg

LANDING GEAR UP

Figure B-18. Local Mach Number Plots (Test 273-15, Condition 1.00.137.002) (Continued)

Figure B-18. Local Mach Number Plots (Test 273-15, Condition 1.00.137.002) (Continued)

Figure B-18. Local Mach Number Plots (Test 273-15, Condition 1.00.137.002) (Continued)

Figure B-18. Local Mach Number Plots (Test 273-15, Condition 1.00.137.002) (Continued)

= 0.776

LANDING GEAR UP

FLAPS = 0 deg

3.0 deg

= 11 596m (38 045 ft)

218 678 kg (482 102 lbm)

8.694 kPa (1.261 PSI)

454.1 km/h (245.2 KTS)

Hp GW

Q

496			
1 4 T			
	00		
1 2 2			
1 1 1			
Z			
8			<u>U</u>
<u> </u>	Ф		
9			
9.9			
9	20 20) 67 E LOCATION ∼ % CHORD	100
		Eddin 1011 7 6 4 1010	

Hp = 11 596m (38 045 ft) M = 0.776 GW = 218 678 kg (482 102 lbm) α = 3.0 deg Q = 8.694 kPa (1.261 PSI) FLAPS = 0 deg V_C = 454.1 km/h (245.2 KTS) LANDING GEAR UP

Figure B-18. Local Mach Number Plots (Test 273-15, Condition 1.00.137.002) (Continued)

Figure B-18. Local Mach Number Plots (Test 273-15, Condition 1.00.137.002) (Continued)

Figure B-18. Local Mach Number Plots (Test 273-15, Condition 1.00.137.002) (Continued)

◆LOCAL MACH NUMBER ~ IPSA PROGRAM ENGINE 4 CORE Ø3Ø DEG 6 PUTBOARD BURFACE

Figure B-18. Local Mach Number Plots (Test 273-15, Condition 1.00.137.002) (Continued)

■ ENGINE 4 ~ Ø6Ø DEGREE RADIAL ~ NAIL

O INNER SURFACE .

Hp = 11 596m (38 045 ft)
GW = 218 678 kg (432 102 lbm)
Q = 8.694 kPa (1.261 PSI)

V_c = 454.1 km/h (245.2 KTS)

M = 0.776 α = 3.0 deg FLAPS = 0 deg

FLAPS = 0 deg LANDING GEAR UP

Figure B-18. Local Mach Number Plots (Test 273-15, Condition 1.00.137.002) (Continued)

rig e B-18. Local Mach Number Plots (Test 273-15, Condition 1.00.137.002) (Concluded)

= 3.0 deg

LANDING GEAR UP

FLAPS = 0 deg

α

218 678 kg (482 102 lbm)

454,1 km/h (245,2 KTS)

= 8.694 kPa (1.261 PSI)

GW

Q

Figure B-19. Local Mach Number Plots (Test 273-15, Condition 1.00.137.003)

 Hp
 = 11 601m (38 060 ft)
 M
 = 0.802

 GW
 = 218 085 kg (480 796 lbm)
 α
 = 2.6 deg

 Q
 = 9.267 kPa (1.344 PSI)
 FLAPS = 0 deg

 Vc
 = 470 6 km/h (254.1 KTS)
 LANDING GEAR UP

Figure B-19. Local Mach Number Plots (Test 273-15, Condition 1.00.137.003) (Continued)

●LOCAL MACH NUMBER ~ IPSA PROGRAM ENGINE 3 CORE 030 DEG @|OUTEQUARD|SURFACE

Figure B-19. Local Mach Number Plots (Test 273-15, Condition 1.00.137.003) (Continued)

◆LOCAL MACH NUMBER ~ NAIL PROGRAM ENGINE 3 ~ Ø3Ø DEGREE RADIAL

Hp = 11 601m (38 060 ft) GW = 218 085 kg (480 796 lbm)

Q = 9.267 kPa (1.344 PSI) V_c = 470.6 km/h (254.1 KTS) M = 0.802 α = 2.6 deg

FLAPS = 0 deg LANDING GEAR UP

Figure B-19. Local Mach Number Plots (Test 273-15, Condition 1.00.137.003) (Continued)

Figure B-19. Local Mach Number Plots (Test 273-15, Condition 1.00.137.003) (Continued)

Figure B-19. Local Mach Number Plots (Test 273-15, Condition 1.00.137.003) (Continued)

PORT LOCATION ~ % CHORD

80

100

0.0

0

Figure B-19. Local Mach Number Plots (Test 273-15, Condition 1.00.137.003) (Continued)

Figure B-19. Local Mach Number Plots (Test 273-15, Condition 1.00.137.003) (Continued)

Figure B-19. Local Mach Number Plots (Test 273-15, Condition 1.00.137.003) (Continued)

0.802

FLAPS = 0 deg

LANDING GEAR UP

2.6 deg

11 601m (38 060 ft)

218 085 kg (480 796 lbm)

9.267 kPa (1.344 PSI)

470.6 km/h (254.1 KTS)

Hp

GW

Q

 LOCAL MACH NUMBER ~ IPSA PROGRAM ENGINE 4 CORE Ø3Ø DEG

Hp = 11 601m (38 060 ft)

GW = 218 085 kg (480 796 lbm)

Q = 9.267 kPa (1.344 PSI)

V_C = 470.6 km/h (254.1 KTS)

α = 2.6 deg
FLAPS = 0 deg
LANDING GEAR UP

0.802

Figure B-19. Local Mach Number Plots (Test 273-15, Condition 1.00.137.003) (Continued)

 LOCAL MACH NUMBER ~ NAIL PROGRAM ENGINE 4 ~ Ø6Ø DEGREE RADIAL

o INNER SURFACE

Hp = \$1 601m (38 060 ft) GW = 218 095 kg (480 796 lbm) Q = 9.267 kPa (1.344 PSI) Vc = 470.6 km/h (254.1 KTS)

α = 2.6 deg FLAPS = 0 deg LANDING GEAR UP

= 0.802

Figure B-19. Local Mach Number Plots (Test 273-15, Condition 1.00.137.003) (Continued)

60

PORT LOCATION ~ % CHORD

80

100

20

Figure B-19. Local Mach Number Plots (Test 273-15, Condition 1.00.137.003) (Concluded)

Figure B-19. Local Mach Number Plots (Test 273-15, Condition 1.00.137.003)(Continued)

O UPPER SURFACE
O LOWER SURFACE

• LOCAL MACH NUMBER ∼ IPSA PROGRAM WBL 470

O UPPER SURFACE

Hp = 11 432m (37 505 ft) GW = 216 125 kg (476 473 lbm)

Q = 12.162 kPa (1.764 PSI) V_c = 547.1 km/h (295.4 KTS) M = 0.906 α = 1.0 deg

FLAPS = 0 deg LANDING GEAR UP

Figure B-20. Local Mach Number Plots (Test 273-15, Condition 1.00.137.004)

Hp = 11 432m (37 505 ft)
GW = 216 125 kg (476 473 lbm)
Q = 12.162 kPa (1.764 PSI)
V_c = 547.1 km/h (295.4 KTS)

M = 0.906
 α = 1.0 deg
 FLAPS = 0 deg
 LANDING GEAR UP

.

Figure B-20. Local Mach Number Plots (Test 273-15, Condition 1.00.137.004) (Continued)

●LOCAL MACH NUMBER ~ IPSA PROGRAM ENGINE 3 CORE 030 DEG

OUTBOARD SURFACE

= 11 432m (37 505 ft) GW

= 216 125 kg (476 473 lbm)

Q = 12.162 kPa (1.764 PSI) = 547.1 km/h (295.4 KTS) **- 0**.906

= 1.0 deg

FLAPS = 0 deg LANDING GEAR UP

Figure B-20. Local Mach Number Plots (Test 273-15, Condition 1.00.137.004) (Continued)

●LOCAL MACH NUMBER ~ NAIL PROGRAM ENGINE 3 ~ 030 DEGREE RADIAL d INNER SURFACE _______ U OUTER SURFACE

H_P = 11 432m (37 505 ft) M = 0.906 GW = 216 125 kg (476 473 lbm) α = 1.0 deg Q = 12.162 kPa (1.764 PSI) FLAPS = 0 deg V_c = 547.1 km/h (295.4 KTS) LANDING GEAR UP

Figure B-20. Local Mach Number Plots (Test 273-15, Condition 1.00.137.004) (Continued)

Figure B-20. Local Mach Number Plots (Test 273-15, Condition 1.00.137.004) (Continued)

 LOCAL MACH NUMBER ~ NAIL PROGRAM ENGINE 3 ~ 210 DEGREE RADIAL O INNER SURFACE

 LOCAL MACH NUMBER ~ NAIL PROGRAM ENGINE 3 ~ 270 DEGREE RADIAL O INNER SURFACE

DUTER SURFACE

Hp = 11 432m (37 505 ft) GW = 216 125 kg (476 473 lbm)

m) M = 0.906

Q = 12.162 kPa (1.764 PSI) V_c = 547.1 km/h (295.4 KTS) FLAPS = 0 deg LANDING GEAR UP

Figure B-20. Local Mach Number Plots (Test 273-15, Condition 1.00.137.004) (Continued)

Hp=11 432m (37 505 ft)M=0.906GW=216 125 kg (476 473 lbm) α =1.0 degQ=12.162 kPa (1.764 PSI)FLAPS = 0 degVc=547.1 km/h (295.4 KTS)LANDING GEAR UP

Figure B-20. Local Mach Number Plots (Test 273-15, Condition 1.00.137.004) (Continued)

O UPPER SURFACE

● WBL 834 ~ IPSA

Figure B-20. Local Mach Number Plots (Test 273-15, Condition 1.00.137.004) (Continued)

Figure B-20. Local Mach Number Plots (Test 273-15, Condition 1.00.137.004) (Continued)

Figure B-20. Local Mach Number Plots (Test 273-15, Condition 1.00.137.004) (Continued)

• LOCAL MACH NUMBER ~ NAIL PROGRAM ENGINE 4 ~ 060 DEGREE RADIAL

| INVER. SURFACE | DUFER SURF

Figure B-20. Local Mach Number Plots (Test 273-15, Condition 1.00.137.004) (Continued)

PORT |

20

1.:

0

[rocation & p

в Снокр 125209-421

Figure B-20. Local Mach Number Plots (Test 273-15, Condition 1.00.137.004) (Concluded)