

PowerAPI, Deploying Software-defined Power Meters for the Cloud

Open-source for the Cloud - ESIEA, Paris

23rd May, 2017 – 11:00

Maxime COLMANT
Romain ROUVOY
Lionel SEINTURIER

UNIVERSITY LILLE 1 / INRIA / IUF
UNIVERSITY LILLE 1 / INRIA / IUF
UNIVERSITY LILLE 1 / INRIA / IUF

TABLE OF CONTENTS

- 1. Introduction
- 2. Contributions
- 3. Conclusion

INTRODUCTION

THE GLOBAL ICT¹ FOOTPRINT²

Introduction 2/36

¹Information and Communications Technology

²The Climate Group. SMART 2020: Enabling the low carbon economy in the information age. 2008.

MULTI-CORE CPU ARCHITECTURES ARE EVERYWHERE!

Introduction 3/36

MULTI-CORE CPU ARCHITECTURES ARE EVERYWHERE!

Introduction 3/36

CASE STUDY

Introduction 4/36

Introduction 5/36

Introduction 6/36

Introduction 7/36

Introduction 8/36

Introduction 9/36

RESEARCH QUESTIONS

RQ1: Can we model the software power consumption regardless of the underlying architecture?

Introduction 10/36

RESEARCH QUESTIONS

RQ2: Can we propose a uniform view of the service power consumption?

Introduction 11/36

CONTRIBUTIONS

RQ1: Can we model the software power consumption regardless of the underlying architecture?

Contributions 12/36

RQ1: Can we model the software power consumption regardless of the underlying architecture?

Learning CPU Power Models

Contributions 12/36

• Math. function (metrics) \Rightarrow Power

- Math. function (metrics) ⇒ Power
- · Mostly linear

Univariate: $P = a_x + b$

Multivariate: $P = a_x + b_y + c$

- Math. function (metrics) ⇒ Power
- · Mostly linear

Univariate:
$$P = a_x + b$$

Multivariate: $P = a_x + b_y + c$

· Or polynomial

$$P = a_{x^2} + b_x + c$$

- Math. function (metrics) ⇒ Power
- · Mostly linear

Univariate:
$$P = a_x + b$$

Multivariate: $P = a_x + b_y + c$

· Or polynomial

$$P = a_{x^2} + b_x + c$$

· CPU metrics

From HW sensors (motherboard, power meters)
From Hardware Performance Counters (HPCs)

- Math. function (metrics) ⇒ Power
- · Mostly linear

Univariate:
$$P = a_x + b$$

Multivariate: $P = a_x + b_y + c$

· Or polynomial

$$P = a_{x^2} + b_x + c$$

CPU metrics

From HW sensors (motherboard, power meters)
From Hardware Performance Counters (HPCs)

• $[Nou14]^3$: $P_{cpu}^{app} = 0.7 * TDP * CPU_{stats}$

³A. Noureddine. "Towards a Better Understanding of the Energy Consumption of Software Systems". PhD thesis. Université des Sciences et Technologie de Lille - Lille I, 2014.

Ref.	Processor(s)	Feature(s)	Regression(s)	Benchmarks
[Ber+10]	Core 2 Duo	14 PCs regrouped by component		sampl.: μ-benchs eval.: SPEC CPU 06
[Col+15]	Xeon W3520 & i3 2120	non-halted cycles reference cycles	polynomial	sampl.: stress eval.: PARSEC, SPECjbb
[CM05]	XScale PXA255	5 PCs	multiple linear	eval.: SPEC CPU 00, Java CDC/CLDC
[Dol+15]	Xeon E3-1275	3 PCs HW sensors	linear	sampl.: linpack, stream, iperf, IOR eval.: Quantum Espresso
[ERK06]	Turion, Itanium 2	HW sensors	multiple linear	sampl.: Gamut eval.: SPECs, Matrix, Stream
[IM03]	Pentium 4	15 PCs	multiple linear	eval.: μ-benchs, AbiWord, Mozilla, Gnumeric
[RRK08]	Core 2 Duo & Xeon, Itanium 2, Turion	HW sensors PCs	multinla linaar	sampl.: calibration suite eval.: SPECs, stream, Nsort
[Yan+14]	Xeon E5620 & E7530	7 components 91 preselected	support vector	sampl.: NPB, IOzone, CacheBench eval.: SPEC CPU 06, IOzone
[Zha+14]	Sandy Bridge	non-halted cycles	linear	eval.: Google, SPEC CPU 06
???	ARM	???	???	???

Only for Intel or AMD architectures

Ref.	Processor(s)	Feature(s)	Regression(s)	Benchmarks
[Ber+10]	Core 2 Duo	14 HPCs regrouped by component	multiple linear by component	sampl.: μ-benchs eval.: SPEC CPU 06
[Col+15]	Xeon W3520 & i3 2120	non-halted cycles reference cycles	polynomial	sampl.: stress eval.: PARSEC, SPECjbb
[CM05]	XScale PXA255	5 HPCs	multiple linear	eval.: SPEC CPU 00, Java CDC/CLDC
[Dol+15]	Xeon E3-1275	3 HPCs HW sensors	linear	sampl.: linpack, stream, iperf, IOR eval.: Quantum Espresso
[ERK06]	Turion, Itanium 2	HW sensors	multiple linear	sampl.: Gamut eval.: SPECs, Matrix, Stream
[IM03]	Pentium 4	15 HPCs	multiple linear	eval.: μ-benchs, AbiWord, Mozilla, Gnumeric
[RRK08]	Core 2 Duo & Xeon, Itanium 2, Turion	HW sensors HPCs	multiple linear	sampl.: calibration suite eval.: SPECs, stream, Nsort
[Yan+14]	Xeon E5620 & E7530	7 components 91 preselected	support vector	sampl.: NPB, IOzone, CacheBench eval.: SPEC CPU 06, IOzone
[Zha+14]	Sandy Bridge	non-halted cycles	linear	eval.: Google, SPEC CPU 06

HW sensors: coarse-grained CPU metrics

Ref.	Processor(s)	Feature(s)	Regression(s)	Benchmarks
[Ber+10]	Core 2 Duo	14 HPCs regrouped by component	multiple linear by component	sampl.: μ-benchs eval.: SPEC CPU 06
[Col+15]	Xeon W3520 & i3 2120	non-halted cycles reference cycles	polynomial	sampl.: stress eval.: PARSEC, SPECjbb
[CM05]	XScale PXA255	5 HPCs	multiple linear	eval.: SPEC CPU 00, Java CDC/CLDC
[Dol+15]	Xeon E3-1275	3 HPCs HW sensors	linear	sampl.: linpack, stream, iperf, IOR eval.: Quantum Espresso
[ERK06]	Turion, Itanium 2	HW sensors	multiple linear	sampl.: Gamut eval.: SPECs, Matrix, Stream
[IM03]	Pentium 4	15 HPCs	militinie linear	eval.: μ-benchs, AbiWord, Mozilla, Gnumeric
[RRK08]	Core 2 Duo & Xeon, Itanium 2, Turion	HW sensors HPCs	multiple linear	sampl.: calibration suite eval.: SPECs, stream, Nsort
[Yan+14]	Xeon E5620 & E7530	7 components 91 preselected	support vector	sampl.: NPB, IOzone, CacheBench eval.: SPEC CPU 06, IOzone
[Zha+14]	Sandy Bridge	non-halted cycles	linear	eval.: Google, SPEC CPU 06

HPCs: fine-grained CPU metrics

Ref.	Processor(s)	Feature(s)	Regression(s)	Benchmarks
[Ber+10]	Core 2 Duo	14 HPCs regrouped by component	multiple linear by component	sampl.: μ-benchs eval.: SPEC CPU 06
[Col+15]	Xeon W3520 & i3 2120	non-halted cycles reference cycles	polynomial	sampl.: stress eval.: PARSEC, SPECjbb
[CM05]	XScale PXA255	5 HPCs	multiple linear	eval.: SPEC CPU 00, Java CDC/CLDC
[Dol+15]	Xeon E3-1275	3 HPCs HW sensors	linear	sampl.: linpack, stream, iperf, IOR eval.: Quantum Espresso
[ERK06]	Turion, Itanium 2	HW sensors	multiple linear	sampl.: Gamut eval.: SPECs, Matrix, Stream
[IM03]	Pentium 4	15 HPCs	imilitinie linear	eval.: μ-benchs, AbiWord, Mozilla, Gnumeric
[RRK08]	Core 2 Duo & Xeon, Itanium 2, Turion	HW sensors HPCs	multiple linear	sampl.: calibration suite eval.: SPECs, stream, Nsort
[Yan+14]	Xeon E5620 & E7530	7 components 91 preselected	support vector	sampl.: NPB, IOzone, CacheBench eval.: SPEC CPU 06, IOzone
[Zha+14]	Sandy Bridge	non-halted cycles	linear	eval.: Google, SPEC CPU 06

Power models are mostly linear

Ref.	Processor(s)	Feature(s)	Regression(s)	Benchmarks
[Ber+10]	Core 2 Duo	14 HPCs regrouped by component	· ·	sampl.: μ-benchs eval.: SPEC CPU 06
[Col+15]	Xeon W3520 & i3 2120	non-halted cycles reference cycles	polynomial	sampl.: stress eval.: PARSEC, <mark>SPECjbb</mark>
[CM05]	XScale PXA255	5 HPCs	multiple linear	eval.: SPEC CPU 00, Java CDC/CLDC
[Dol+15]	Xeon E3-1275	3 HPCs HW sensors	linear	sampl.: linpack, stream, iperf, IOR eval.: Quantum Espresso
[ERK06]	Turion, Itanium 2	HW sensors	multiple linear	sampl.: Gamut eval.: SPECs, Matrix, Stream
[IM03]	Pentium 4	15 HPCs	multiple linear	eval.: μ-benchs, AbiWord, Mozilla, Gnumeric
[RRK08]	Core 2 Duo & Xeon, Itanium 2, Turion	HW sensors HPCs	multiple linear	sampl.: calibration suite eval.: SPECs, stream, Nsort
[Yan+14]	Xeon E5620 & E7530	7 components 91 preselected	support vector	sampl.: NPB, IOzone, CacheBench eval.: SPEC CPU 06, IOzone
[Zha+14]	Sandy Bridge	non-halted cycles	linear	eval.: Google, SPEC CPU 06

Non free or private workloads

1. Portability

- 1. Portability
- 2. Accuracy

- 1. Portability
- 2. Accuracy
- 3. Reproducibility

- 1. Portability
- 2. Accuracy
- 3. Reproducibility

Towards an automatic approach for learning CPU power models

OUR APPROACH:

OPEN-TESTBED TO AUTOMATICALLY LEARN POWER MODELS

- Input workload injection
 - Configurable
 - PARSEC (open-source, multi-threaded)⁴
 - Run several applications (x264, vips, etc.)

⁴C. Bienia et al. "PARSEC 2.0: A New Benchmark Suite for Chip-Multiprocessors". In: Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simulation. 2009.

Our approach: Open-Testbed To Automatically Learn Power Models

- Acquisition of raw input metrics
 - Automatically explore the high number of the available HPCs (Xeon W3520: 514 HPCs)
 - Take care of HPC multiplexing⁵

⁵Intel. Intel 64 and IA-32 Architectures Software Developer's Manual. 2015.

Our approach: Open-Testbed To Automatically Learn Power Models

- Selection of relevant HPCs
 - Pearson coefficient (HPC ⇔ Power)
 - 1st phase: quickly filtering out uncorrelated HPCs (< 0.5) (Xeon W3250: 253 left out)
 - \cdot 2nd phase: full sampling for the remaining HPCs

OUR APPROACH: OPEN-TESTBED TO AUTOMATICALLY LEARN POWER MODELS

Pearson coefficients of the Top-30 correlated events for the PARSEC benchmarks on a Xeon W3520.

OUR APPROACH: OPEN-TESTBED TO AUTOMATICALLY LEARN POWER MODELS

Pearson coefficients of the Top-30 correlated events for the PARSEC benchmarks on a Xeon W3520.

OUR APPROACH: OPEN-TESTBED TO AUTOMATICALLY LEARN POWER MODELS

Pearson coefficients of the Top-30 correlated events for the PARSEC benchmarks on a Xeon W3520.

OUR APPROACH: OPEN-TESTBED TO AUTOMATICALLY LEARN POWER MODELS

Pearson coefficients of the Top-30 correlated events for the PARSEC benchmarks on a Xeon W3520.

Our approach: Open-Testbed To Automatically Learn Power Models

- 4 Power model inference
 - · Minimize the number of HPCs
 - Robust ridge regression (SotA?)

Our approach: Open-Testbed To Automatically Learn Power Models

Average error per combination of HPCs for freqmine, fluidanimate, facesim on a Xeon W3520.

$$P_{idle} = 92 \text{ W}; \ P_{CPU} = \frac{1.40 \cdot \text{HPC (l1i:reads)}}{10^8} + \frac{7.29 \cdot \text{HPC (lsd:inactive)}}{10^9}$$

Our approach: Open-Testbed To Automatically Learn Power Models

Average error per combination of HPCs for freqmine, fluidanimate, facesim on a Xeon W3520.

$$P_{idle} = 92 \text{ W}; \ P_{CPU} = \frac{1.40 \cdot \text{HPC (l1i:reads)}}{10^8} + \frac{7.29 \cdot \text{HPC (lsd:inactive)}}{10^9}$$

OUR APPROACH: OPEN-TESTBED TO AUTOMATICALLY LEARN POWER MODELS

Relative errors for the PARSEC suite on the Cortex A15.

SUMMARY

Portability

Beyond SotA: 4 CPUs (2×Intel, 1 AMD, 1 ARM)

SUMMARY

Portability

Beyond SotA: 4 CPUs (2×Intel, 1 AMD, 1 ARM)

· Accuracy

Avg. error on the 4 CPUs: 1.5%

SUMMARY

Portability

Beyond SotA: 4 CPUs (2×Intel, 1 AMD, 1 ARM)

Accuracy

Avg. error on the 4 CPUs: 1.5%

· Reproducibility

Built on open-source workloads

RQ2: Can we propose a uniform view of the service power consumption?

Contributions 24/36

RQ2: Can we propose a uniform view of the service power consumption?

Challenges

- 1. Native
- 2. Virtualized
- 3. Distributed

Contributions 25/36

RQ2: Can we propose a uniform view of the service power consumption?

Challenges

- 1. Native
- 2. Virtualized
- 3. Distributed

Contributions 25/36

- · Code freely available on GITHUB: http://powerapi.org
 - · Scala / Akka
 - LoC: 8.7k
 - Docker
 - · AGPLv3

- · Code freely available on GITHUB: http://powerapi.org
 - · Scala / Akka
 - · LoC: 8.7k
 - Docker
 - AGPLv3
- 2nd major iteration⁶
 - Full support of multi-core CPU architectures (HT, DVFS, TB)
 - · Learning techniques
 - Better support of Akka

⁶A. Noureddine. "Towards a Better Understanding of the Energy Consumption of Software Systems". PhD thesis. Université des Sciences et Technologie de Lille - Lille I, 2014.

SD Power Meter For Monitoring Concurrent Apps

· On the Intel Xeon W3520

Monitoring freq.: 4Hz

· Avg. error: 2%

· Low overhead: 2 W

RQ2: Can we propose a uniform view of the service power consumption?

Challenges

- 1. Native
- 2. Virtualized
- 3. Distributed

Contributions 29/36

BITWATTS ARCHITECTURE

EVALUATION

Scaling PARSEC on multiple VMs on a Xeon W3520.

- Errors: from 1% (fluidanimate) up to 10% (swaptions)
- Beyond SotA [Ber+12]: VM as a White-Box (+ multi-tenant)

⁷R. Bertran et al. "Energy Accounting for Shared Virtualized Environments Under DVFS Using PMC-based Power Models". In: Future Generation Computer Systems (2012).

RQ2: Can we propose a uniform view of the service power consumption?

Challenges

- 1. Native
- 2. Virtualized
- 3. Distributed

Contributions 32/36

A SERVICE-LEVEL POWER MONITORING

A SERVICE-LEVEL POWER MONITORING

A SERVICE-LEVEL POWER MONITORING

A Service-Level Power Monitoring

Conclusion

CONTRIBUTIONS

POWERAPI, Deploying Software-defined Power Meters for the Cloud

Conclusion 36/36

CONTRIBUTIONS

POWERAPI, Deploying Software-defined Power Meters for the Cloud

• RQ1: Can we model the software power consumption regardless of the underlying architecture?

Open-testbed approach for learning multi-core power models

Conclusion 36/36

CONTRIBUTIONS

POWERAPI, Deploying Software-defined Power Meters for the Cloud

• RQ1: Can we model the software power consumption regardless of the underlying architecture?

Open-testbed approach for learning multi-core power models

 RQ2: Can we propose a uniform view of the service power consumption?

In width energy monitoring with POWERAPI, BITWATTS & WATTSKIT

Conclusion 36/36

Maxime Colmant — maxime.colmant@inria.fr http://powerapi.org

- [Col+15] M. Colmant et al. "Process-level Power Estimation in VM-based Systems". In: Proceedings of the 10th European Conference on Computer Systems (EuroSys). 2015.
- [Hav+17] A. Havet et al. "GENPACK: A Generational Scheduler for Cloud Data Centers". In: IEEE International Conference on Cloud Engineering (IC2E), 2017.
- [Col+17b] M. Colmant et al. "WattsKit: Software-Defined Power Monitoring of Distributed Systems". In: 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). 2017.
- [Col+17a] M. Colmant et al. "The Next 700 CPU Power Models". In: ACM Trans. Model. Perform. Eval. Comput. Syst. (ACM TOMPECS) (2017).

REFERENCES I

- [Ber+10] R. Bertran et al. "Decomposable and Responsive Power Models for Multicore Processors Using Performance Counters". In: Proceedings of the 24th ACM International Conference on Supercomputing. 2010.
- [Ber+12] R. Bertran et al. "Energy Accounting for Shared Virtualized Environments Under DVFS Using PMC-based Power Models". In: Future Generation Computer Systems (2012).
- [BL09] C. Bienia and K. Li. "PARSEC 2.0: A New Benchmark Suite for Chip-Multiprocessors". In: Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simulation. 2009.
- [CM05] G. Contreras and M. Martonosi. "Power Prediction for Intel XScale® Processors Using Performance Monitoring Unit Events". In: Proceedings of the International Symposium on Low Power Electronics and Design. 2005.
- [Col+15] M. Colmant et al. "Process-level Power Estimation in VM-based Systems". In: Proceedings of the 10th European Conference on Computer Systems (EuroSys). 2015.
- [Col+17a] M. Colmant et al. "The Next 700 CPU Power Models". In: ACM Trans. Model. Perform. Eval. Comput. Syst. (ACM TOMPECS) (2017).
- [Col+17b] M. Colmant et al. "WattsKit: Software-Defined Power Monitoring of Distributed Systems". In: 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). 2017.

REFERENCES II

- [CRS17] M. Colmant, R. Rouvoy, and L. Seinturier. "codEnergy: an Approach For Leveraging Source-Code Level Energy Analysis". In: *To be chosen*. 2017.
- [Dol+15] M. F. Dolz et al. "An analytical methodology to derive power models based on hardware and software metrics". In: Computer Science Research and Development (2015).
- [ERK06] D. Economou, S. Rivoire, and C. Kozyrakis. "Full-System Power Analysis and Modeling for Server Environments". In: In Workshop on Modeling Benchmarking and Simulation. 2006.
- [Hav+17] A. Havet et al. "GENPACK: A Generational Scheduler for Cloud Data Centers". In: IEEE International Conference on Cloud Engineering (IC2E). 2017.
- [IM03] C. Isci and M. Martonosi. "Runtime Power Monitoring in High-End Processors: Methodology and Empirical Data". In: Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture. 2003.
- [Int15] Intel. Intel 64 and IA-32 Architectures Software Developer's Manual. 2015. URL: http: //www.intel.com/content/dam/www/public/us/en/documents/manuals/ 64-ia-32-architectures-software-developer-vol-1-manual.pdf (visited on 08/01/2016).
- [Nou14] A. Noureddine. "Towards a Better Understanding of the Energy Consumption of Software Systems". PhD thesis. Université des Sciences et Technologie de Lille - Lille I, 2014.

REFERENCES III

[RRK08]	S. Rivoire, P. Ranganathan, and C. Kozyrakis. "A Comparison of High-level Full-system		
	Power Models". In: Proceedings of the Conference on Power Aware Computing and		
	Systems. 2008.		

- [The08] The Climate Group. SMART 2020: Enabling the low carbon economy in the information age. 2008. URL: http://gesi.org/article/43 (visited on 09/23/2016).
- [Yan+14] H. Yang et al. "iMeter: An integrated VM power model based on performance profiling".In: Future Generation Computer Systems (2014).
- [Zha+14] Y. Zhai et al. "HaPPy: Hyperthread-aware Power Profiling Dynamically". In: Proceedings of the USENIX Annual Technical Conference. 2014.