6 - Teoremas de Fermat/Euler

Teorema de Fermat

Teorema de Fermat - Seja $a \in \mathbb{Z}$ e p um primo tal que $p \nmid a$. Então:

$$a^{p-1} \equiv_p 1$$

Corolário: p primo \Rightarrow $a^p \equiv_p a$ $\forall a \in \mathbb{Z}$

Exemplo: Queremos calcular o resto da divisão de 5⁴² por 11.

Como 11 é primo e 11 \nmid 5, pelo T. Fermat, $5^{10} \equiv_{11} 1$ e portanto

$$5^{42} = (5^{10})^4 \times 5^2 \equiv_{11} 1^4 \times 5^2 = 25 \equiv_{11} 3$$

Teorema de Fermat - Demonstração

Demonstração: Consideremos os seguintes p-1 múltiplos de a:

$$a, 2a, 3a \cdots, (p-1)a$$

Como p é primo e $p \nmid a$ então p não divide nenhum destes múltiplos de a.

Por outro lado, todos estes múltiplos dão restos distintos quando divididos por p, pois se tivessemos $k_1a\equiv_p k_2a$, com $k_1>k_2$, teríamos $(k_1-k_2)a\equiv_p 0$, ou seja teríamos $p\mid (k_1-k_2)a$. Logo,

$$a\times 2a\times 3a\times \cdots \times (p-1)a\equiv_p 1\times 2\times 3\times \cdots \times (p-1)$$
 ou seja
$$a^{p-1}(p-1)!\equiv_p (p-1)!$$

Como (p-1)! é primo com p, temos que $a^{p-1} \equiv_p 1$

Função de Euler

Para cada $n\in\mathbb{N}$, representa-se por $\phi(n)$ o número de inteiros positivos, menores ou iguais a n, que são primos com n. A função $\phi:\mathbb{N}\to\mathbb{N}$, assim definida, diz-se a função de Euler .

Exemplos:

$$n = 6$$
 1,2,3,4,5,6 logo $\phi(6) = 2$
 $n = 9$ 1,2,3,4,5,6,7,8,9 logo $\phi(9) = 6$
 $n = 7$ 1,2,3,4,5,6,7 logo $\phi(7) = 6$

Função de Euler - propriedades

A função de Euler tem as seguintes propriedades:

- 1. p primo \Rightarrow $\phi(p) = p 1$
- 2. p primo e $\alpha \in \mathbb{N}$ \Rightarrow $\phi(p^{\alpha}) = p^{\alpha} p^{\alpha-1}$
- 3. $n, m \in \mathbb{N}$ e m.d.c.(n, m) = 1 \Rightarrow $\phi(nm) = \phi(n)\phi(m)$
- 4. Se $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ é a decomposição em primos de n:

$$\phi(n) = (p_1^{\alpha_1} - p_1^{\alpha_1 - 1}) (p_2^{\alpha_2} - p_2^{\alpha_2 - 1}) \cdots (p_k^{\alpha_k} - p_k^{\alpha_k - 1})$$

Exemplo: Como $180 = 2^2 \times 3^2 \times 5$ temos que:

$$\phi(180) = \phi(2^2) \; \phi(3^2) \; \phi(5) = (2^2 - 2^1) \; (3^2 - 3^1) \; (5 - 1) = 2 \times 6 \times 4 = 48$$

Teorema de Euler

Teorema de Euler - Seja $a \in \mathbb{Z}$ e $n \in \mathbb{N}$ tais que m.d.c.(n, a) = 1. Então:

$$a^{\phi(n)} \equiv_n 1$$

Nota : Se n for primo $\phi(n) = n - 1$ e obtemos $a^{n-1} \equiv_n 1$. Ou seja, nesse caso obtemos o Teorema de Fermat.

Exemplo: Queremos calcular o resto da divisão de 5⁴⁴ por 14.

Como 14 é primo com 5, pelo T. Euler , $5^{\phi(14)} \equiv_{14} 1$. Como $14 = 2 \times 7$ temos que $\phi(14) = \phi(2)\phi(7) = (2-1)(7-1) = 1 \times 6 = 6$ e portanto

$$5^{44} = (5^6)^7 \times 5^2 \equiv_{14} 1^7 \times 5^2 = 25 \equiv_{14} 11$$

Teorema de Euler - Demonstração

Demonstração: Sejam $r_1, r_2, \cdots r_{\phi(n)}$ os inteiros positivos inferiores a \overline{n} que são primos com n e consideremos os seguintes múltiplos de a:

$$r_1a, r_2a, r_3a, \cdots, r_{\phi(n)}a$$

Como n é primo com a então n é primo com todos estes múltiplos de a. Logo todas as congruências lineares da forma $ax \equiv_n r_j$ têm uma única solução inferior a n que é prima com n, ou seja, existe um r_i tal que $ar_i \equiv_n r_j$

Por outro lado, todos estes múltiplos dão restos distintos quando divididos por n. Se tivessemos $r_i a \equiv_n r_j a$, dividindo por a que é primo com n, teríamos $r_i \equiv_n r_j$. Logo,

$$r_1 a \times r_2 a \times r_3 a \times \cdots \times r_{\phi(n)} a \equiv_n r_1 \times r_2 \times r_3 \times \cdots \times r_{\phi(n)}$$

e portanto

$$a^{\phi(n)} \times r_1 \times r_2 \times r_3 \times \cdots \times r_{\phi(n)} \equiv_n r_1 \times r_2 \times r_3 \times \cdots \times r_{\phi(n)}$$

Como m.d.c. $(n, r_i) = 1$, para todo i, dividindo por $r_1 \times r_2 \times r_3 \times \cdots \times r_{\phi(n)}$, obtemos $a^{\phi(n)} \equiv_n 1$

Teorema de Wilson

Teorema de Wilson : p primo \Rightarrow $(p-1)! \equiv_p -1$

Demonstração: Ver apontamentos.

Exemplo : Vamos testar o Teorema de Wilson para p = 13:

$$\begin{aligned} &12! = 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 = \\ &(2 \times 7)(3 \times 9)(4 \times 10)(5 \times 8)(6 \times 11) \times 12 \equiv_{13} 1 \times 1 \times 1 \times 1 \times 12 = 12 \equiv_{13} -1 \end{aligned}$$