Izomorfizm Curry'ego-Howarda

Rafał Szczerski

2018 Październik

1 Rachunek λ z typami prostymi

1.1 Typy proste

Definicja 1. (Typy proste)

Niech U będzie przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych p, q, \ldots (być może indeksowanych liczbami naturalnymi), które będziemy nazywali *zmiennymi typowymi. Ty-pami prostymi* będziemy nazywali najmniejszy w sensie mnogościowym zbiór wyrażeń taki, że:

- i) Jeśli p jest zmienną typową, to p jest typem prostym.
- ii) Jeśli τ i σ są typami prostymi, to $(\tau \to \sigma)$ jest typem prostym.

Typy proste zbudowane tylko wedle reguły i) nazywamy niekiedy typami atomowymi, zaś wyrażenia zbudowe wedle reguły ii) – typami funkcyjnymi. Zbiór typów prostych określony w myśl powyższej definicji będziemy oznaczali przez \mathbf{T}_{\rightarrow} .

Ustalmy w ramach konwencji, że późniejsze litery alfabetu greckiego, tj. $\sigma, \tau, \rho, \ldots$ będą służyły nam za zmienne metasyntaktyczne do oznaczania typów prostych. Dla lepszej czytelności będziemy pomijali najbardziej zewnętrzne nawiasy. Symbol " \rightarrow " (konstruktor typu) jest prawostronnie łączny, co oznacza, że typy $\tau \rightarrow \sigma \rightarrow \theta$ oraz $\tau \rightarrow (\sigma \rightarrow \theta)$ będziemy uznawali za tożsame.

1.2 Pseudotermy

Niech V będzie przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych x, y, \ldots (również być może indeksowanych liczbami naturalnymi). Elementy takiego zbioru będziemy nazywali λ -zmiennymi.

Definicja 2. (Pseudo-pretermy)

Pseudo-pretermamibędziemy nazywali najmniejszy (w sensie mnogościowym) zbiór $\pmb{\Lambda}_{\rm T}^-$ taki, że:

- i) Jeśli $x \in V$, to $x \in \Lambda_T^-$.
- ii) Jeśli $M \in \Lambda_{\mathrm{T}}^{-}$ i $N \in \Lambda_{\mathrm{T}}^{-}$, to $(MN) \in \Lambda_{\mathrm{T}}^{-}$.
- iii) Dla dowolnych $x \in V$, $\sigma \in \mathbf{T}_{\rightarrow}$, $M \in \mathbf{\Lambda}_{\mathrm{T}}^{-}$ mamy, że $(\lambda x^{\sigma}. M) \in \mathbf{\Lambda}_{\mathrm{T}}^{-}$.

Wyrażenia postaci ii) nazywamy aplikacjami M do N, zaś wyrażenia postaci iii) – λ -abstrakcjami, gdzie o wszystkich podtermach termu M mówi się, że są w zasięgu λ -abstraktora, zaś o λ -zmiennej x mówi się, że jest związana.

Za zmienne metasyntaktyczne obieramy duże litery alfabetu łacińskiego $M,\ N,\dots$ Podobnie jak poprzednio, stosujemy konwencję o opuszczaniu najbardziej zewnętrznych nawiasów. Aplikacja termów jest łączna lewostronnie, co oznacza, że będziemy utożsamiać wyrażenia MNP i (MN)P.

Definicja 3. (Zmienne wolne)

Dla pseudo-pretermu M określamy zbiór termów wolnych FV w nastepujący sposób:

$$FV(x) = \{x\}$$

$$FV(\lambda x^{\sigma}. P) = FV(P) \setminus \{x\}$$

$$FV(PQ) = FV(P) \cup FV(Q)$$

Jesli $FV(M) = \emptyset$, to mówimy, że M jest zamknięty.

Definicja 4. (Podstawienie)

Podstawieniem [x/N] pseudo-pretermu N za λ -zmienną x w M nazwamy zdefiniowane następująco przekształcenie:

$$\begin{split} x[x/N] &= N, \\ y[x/N] &= y, & \text{o ile } x \neq y, \\ (PQ)[x/N] &= P[x/N] \, Q[x/N], \\ (\lambda y^{\sigma}.P)[x/N] &= \lambda y^{\sigma}. \, P[x/N], & \text{gdzie } x \neq y \text{ i } y \notin \text{FV}(N). \end{split}$$

Zachodzą następujące fakty:

Fakt 1. (a) Jeśli $x \notin FV(M)$, to M[x/N] jest poprawnym podstawieniem i M[x/N] = M.

- (b) Jeśli M[x/N] jest poprawnym podstawieniem, to $y \in FV(M[x/N])$ wtw, gdy albo $y \in FV(M)$ i $x \neq y$, albo $y \in FV(N)$ i $x \in FV(M)$.
- (c) Podstawienie M[x/x] jest poprawne i M[x/x] = M.
- (d) Jeśli M[x/y] jest poprawnym podstawieniem, to M[x/y] ma te samą długość, co M.

Fakt 2. Powiedzmy, że M[x/N] jest poprawnym podstawieniem i N[y/L] i M[x/N][y/L] są poprawnymi podstawieniami, gdzie $x \neq y$. Jeśli $x \notin FV(L)$ lub $y \notin FV(M)$, to M[y/L] i M[y/L][x/N[y/L]] jest poprawnym podstawieniem oraz

$$M[x/N][y/L] = M[y/L][x/N[y/L]].$$

Fakt 3. Jesli M[x/y] jest poprawnym postawieniem i $y \notin FV(M)$, to M[x/y][y/x] jest poprawnym podstawieniem oraz M[x/y][y/x] = M.

Definicja 5. (α -konwersja)

 α -konwersją nazywamy najmniejszą (w sensie mnogościowym) zwrotną i przechodnią relację binarną = $_{\alpha}$ określoną na zbiorze pseudotermów $\Lambda_{\rm T}^-$ spełniającą poniższe warunki:

- (a) Jeśli $y \notin FV(M)$ i M[x/y] jest poprawnym podstawieniem, to $\lambda x. M =_{\alpha} \lambda y. M[x/y]$.
- (b) Jeśli $M =_{\alpha} N$, to dla każdej λ -zmiennej x mamy $\lambda x. M =_{\alpha} \lambda x. N$.
- (c) Jeśli $M =_{\alpha} N$, to $MZ =_{\alpha} NZ$.

(d) Jeśli $M =_{\alpha} N$, to $ZM =_{\alpha} ZN$.

Bez dowodu podajemy następujące twierdzenia:

Fakt 4. $Relacja =_{\alpha} jest \ symetryczna$.

Fakt 5. = $_{\alpha}$ jest relacją równoważności.

Fakt 6. Jeśli $M =_{\alpha} N$, to FV(M) = FV(N).

Dysponując powyższymi rozstrzygnięciami otrzymujemy wygodne utożsamienie pseudo-pretermów, które różnią się między sobą tylko zmiennymi związanymi.

Definicja 6. (Pseudotermy)

Pseudotermaminazywamy zbiór ilorazowy $\mathbf{\Lambda}_{\mathrm{T}}$ relacji α -konwersji

$$\mathbf{\Lambda}_{\mathrm{T}} = \{ [M]_{\alpha} \mid M \in \mathbf{\Lambda}_{\mathrm{T}}^{-} \}$$

1.3 Typowalność

Definicja 7. (Kontekst)

Kontekstem (ang. enviroment) nazywamy skończoną funkcję częściową $\Gamma: V \to \mathbf{T}_{\to}$, czyli zbiór par postaci $\Gamma = \{x_1^{\tau_1}, \ldots, x_n^{\tau_n}\}$, gdzie $(x_i^{\tau_i}) = (x_i, \tau_i)$ oraz $x_i \neq x_j$ dla $i \neq j$. Zbiór

$$dom(\Gamma) = \{x \in V \mid \exists \tau(x^{\tau} \in \Gamma)\}\$$

nazywamy dziedziną kontekstu Γ , zaś

$$rg(\Gamma) = \{ \tau \in \mathbf{T}_{\rightarrow} \mid \exists x (x^{\tau} \in \Gamma) \}$$

-zakresem kontekstu Γ . Piszemy:

- $x_1^{\tau_1}, x_2^{\tau_2}$ zamiast $\{x_1^{\tau_1}, x_2^{\tau_2}\}$, o ile $x_1^{\tau_1}$ i $x_2^{\tau_2}$ są różne,
- Γ , x^{φ} zamiast $\Gamma \cup \{x^{\varphi}\}$, o ile $x^{\varphi} \notin \Gamma$,
- Γ , Δ zamiast $\Gamma \cup \Delta$, o ile $\Gamma \cap \Delta = \emptyset$.

Wprowadzimy teraz system w stylu dedukcji naturalnej. Sekwentami będziemy nazywali wyrażenia postaci $\Gamma \vdash M^{\sigma}$, gdzie $M \in \Lambda_{\mathcal{T}}$, $\sigma \in \mathbf{T}_{\rightarrow}$, zaś Γ jest pewnym otoczeniem typowym.

Wprowadzamy następujące reguły dowodzenia:

$$\frac{\Gamma, x^{\varphi} \vdash M^{\psi}}{\Gamma \vdash (\lambda x^{\varphi}.M)^{\varphi \to \psi}} \text{ (Abs)}, \qquad \frac{\Gamma \vdash M^{\varphi \to \psi} \quad \Gamma \vdash N^{\varphi}}{\Gamma \vdash (MN)^{\psi}} \text{ (App)}.$$

Definicja 8. (Typowalność)

Mówimy, że pseudoterm M jest typu σ w kontekście Γ (jest typowalny), jeśli istnieje skończone drzewo sekwentów spełniające poniższe warunki:

- 1. W korzeniu drzewa znajduje się sekwent $\Gamma \vdash M^{\sigma}$.
- 2. Liście są aksjomatami, tj. sekwentami postaci $\Gamma, x^{\sigma} \vdash x^{\sigma}$.
- 3. Każdego rodzica można otrzymać z jego dzieci przez zastosowanie którejś z reguł wyprowadzania nowych sekwentów.

Wszystkie typowalne pseudotermy w pewnym kontekście Γ nazywamy λ -termami (z typami prostymi).

Uwaga. λ -term w kontekście Γ_1 może nie być typowalny w innym kontekście $\Gamma_2.$

Fakt 7. Jesli $\Gamma \vdash M^{\sigma}$ oraz $\Gamma \vdash M^{\tau}$, to $\sigma = \tau$.

1.4 Redukcja

Definicja 9. (Zgodność)

Relację R na zbiorze termów Λ_T nazywamy zgodnq, jeśli dla $M,\,N,\,Z\in\Lambda_T$ spełnia następujące warunki:

- i) Jeśli MRN, to $(\lambda x^{\sigma}.M)R(\lambda x^{\sigma}.N)$ dla dowolnych $x \in V$ i $\sigma \in \mathbf{T}_{\rightarrow}$.
- ii) Jeśli MRN, to (MZ)R(NZ).
- iii) Jeśli MRN, to (ZM)R(ZN).

Kongruencjq nazywamy zgodną relację równowazności na $\Lambda_{\rm T}$. Redukcjq nazywamy zgodną, zwrotną i przechodnią relację na $\Lambda_{\rm T}$.

Definicja 10. (β -redukcja)

 β -redukcją nazywamy najmniejsza w sensie mnogościowym zgodną relację binarną \longrightarrow_{β} określoną zbiorze na pseudotermów $\Lambda_{\rm T}$ za pomocą podstawienia

$$(\lambda x^{\sigma}.P)Q \longrightarrow_{\beta} P[x/Q].$$

 β -redeksem nazywamy wyrażenia postaci $(\lambda x^{\sigma}.M)N$. Rezultatem β -redukcji jest term postaci M[x/N], który nazywamy β -reduktem.

Mówimy, że λ -term M jest w postaci normalnej, jeśli żadna jego podformuła nie jest β -redeksem

M ma postać normalną, jeśli $M =_{\beta} N$ dla pewnego N, który jest w postaci normalnej.

- $\longrightarrow_{\beta}^{+}$ jest przechodnim domknięciem relacji \longrightarrow_{β} w zbiorze pseudotermów Λ_{T} .
- $\longrightarrow_{\beta}^{\star}$ jest domknięciem przechodnio-zwrotnim w $\Lambda_{\rm T}$ relacji \longrightarrow_{β} , a zatem jest redukcjq.
- $=_{\beta}$ jest najmniejszą relację równowazności zawierającą relację \longrightarrow_{β} , a zatem kongruencją.

Fakt 8. Jeśli
$$\Gamma \vdash M^{\sigma}$$
 i $M \longrightarrow_{\beta}^{*} N$, to $\Gamma \vdash N^{\sigma}$.

 η -redukcją nazywamy najmniejszą (w sensie mnogościowym) zgodnąrelację w $\Lambda_{\rm T}$ taką, że

$$\lambda x^{\sigma}. Mx \longrightarrow_{\eta} M,$$

o ile $x \notin FV(M)$.

Fakt 9. Jeśli $\Gamma \vdash M^{\sigma}$ i $M \longrightarrow_{\eta}^{*} N$, to $\Gamma \vdash N^{\sigma}$.

1.5 Normalizacja

 λ -term M ma własność (stabej) normalizacji (co symbolicznie oznaczamy $M \in WN_{\beta}$) wtedy i tylko wtedy, gdy istnieje ciąg β -redukcji rozpoczynający się od M i kończący się termem w postaci normalnej N. Powiemy, że λ -term M ma własność silnej normalizacji (symbolicznie: $M \in SN_{\beta}$), jeśli wszystkie ciągi β -redukcji rozpoczynające się M są skończone.

Strategią redukcji nazywamy odwzorowanie $F: \Lambda_T \to \Lambda_T$ takie, że F(M) = M, gdy M jest w postaci normalnej i $M \to_{\beta} F(M)$ w przeciwnym wypadku. Mówimy, że strategia F jest normalizująca, jeśli dla każdego $M \in WN_{\beta}$ istnieje $i \in \mathbb{N}$ takie, że $F^i(M)$ jest w postaci normalnej.

Twierdzenie 1. (Własność WN $_{\beta}$) Każdy λ -term w stylu Churcha ma postać normalną.

Twierdzenie 2. (Własność SN_{β}) Każdy λ -term w stylu Churcha własność silnej normalizacji.

- WCR: $\forall a, b, c \in A (a \longrightarrow b \land a \longrightarrow c) \rightarrow \exists d \in A (b \longrightarrow^* d \land c \longrightarrow^* d)$
- CR: $\forall a, b, c \in A (a \longrightarrow^* b \land a \longrightarrow^* c) \rightarrow \exists d \in A (b \longrightarrow^* d \land c \longrightarrow^* d)$

Twierdzenie 3. (Lemat Newmana) $Niech \rightarrow bedzie relacją binarną spełniającą <math>SN.$ Jeśli \rightarrow spełnia WCR, to spełnia CR.

Twierdzenie 4. (Własność SN_{β}) Każdy λ -term w stylu Churcha własność silnej normalizacji.