

Normal Line: Open-loop system

Red Line: Compensated system for unconditional stability
Blue Line: Compensated system with conditional stability
(till a feedback of 40 dB)

- ❖ Note that in order to achieve *unconditional stability* of the system, the *bandwidth* has *reduced drastically* from *1 Mrad/sec* to only *10 rad/sec*!
- **This is the most severe limitation of the DPC technique**

• For conditional stability:

- ❖ The previous compensation scheme ensured system stability for f all the way up to unity (corresponding to the amount of feedback of 100 dB, i.e., the entire output is fed back to the input)
- ❖ In some cases, it may be an *overkill*, if it is known *a priori* that the *entire output* will *NOT* be *fed back* to the *input*, *rather only a part of it*
- ❖ This is what is known as *conditional stability*
- ❖ Suppose that the *maximum amount of feedback* that the system would have is *40 dB*

- \clubsuit For this system to be *stable*, the *DP frequency need not be* at ω_d , but at a higher value
- ❖ To construct the *compensation characteristic* of this system, draw a *horizontal line* AA', corresponding to the *amount of feedback* (40 dB in our example \Rightarrow $A_f = 60$ dB)
- From the *intersection point* (B) of this *line* with the *first* pole (ω_1) , go back 2 decades (40/20), to get the new dominant pole ω_{d1} at 10 krad/sec (shown by the blue line)
- ❖ This compensation scheme protects the system from any stability issues only till a maximum feedback of 40 dB, by ensuring that from 0 to 40 dB of feedback, no other pole will be encountered, apart from ω_{dI}
- ❖ Note the *tremendous bandwidth improvement* of 1000 times (from 10 rad/sec for unconditional stability to 10 krad/sec for conditional stability till a feedback of 40 dB)

> Technique:

- Simplest way: Attach
 a capacitor between
 the input and output
 of the gain stage
 (similar to Miller
 Capacitor)
- This capacitor is labeled as the Compensation
 Capacitor (C_C)

Schematic

Equivalent Circuit

■ **By inspection**, the equivalent circuit can be identified as a **Three-Legged Creature**:

$$\Rightarrow R_C^0 = R_1 + R_2 + g_m R_1 R_2$$

 $R_1 = Effective total resistance on the left of <math>C_C$ $R_2 = Effective total resistance on the right of <math>C_C$

 $g_{m} = Transconductance of the gain stage$

■ Thus:

$$\omega_{\rm d} = 1 / \left(R_{\rm C}^{0} C_{\rm C} \right)$$

• From a knowledge of ω_d , we can find C_C

- Pole Zero Compensation (PZC):
 - ➤ In the *DPC technique*, we observed a *drastic* reduction in *bandwidth* after compensation
 - > PZC technique alleviates this problem to some extent
 - > Novelty of this technique:
 - It adds both a pole and a zero to the open-loop transfer function, with the added zero canceling the first pole of the uncompensated system

Consider a three-pole uncompensated transfer function:

$$A(s)\Big|_{\text{uncompensated}} = \frac{A_0}{(1+s/\omega_1)(1+s/\omega_2)(1+s/\omega_3)}$$

A₀: Low-Frequency Gain

 $\omega_1, \omega_2, \omega_3$: **Pole Frequencies** $(\omega_3 > \omega_2 > \omega_1)$

➤ After adding the network for PZC, the compensated transfer function will be:

$$A(s)\Big|_{compensated} = \frac{A_0 (1 + s/\omega_z)}{(1 + s/\omega_p)(1 + s/\omega_1)(1 + s/\omega_2)(1 + s/\omega_3)}$$

- ω_z : added zero, and ω_p : added pole
- \triangleright By design, ω_z is made equal to ω_1
 - \Rightarrow They cancel each other
- Thus, the *compensated transfer function* still has *three poles*, but the *first pole gets shifted* from ω_1 to ω_p
- The procedure for finding ω_p is the same as that for the DPC technique
- ➤ We take the *same example* as that considered for the *DPC technique*
- > Refer to the next slide

Normal Line: Open-loop system

Red Line: Compensated system for unconditional stability

- \succ Here, the *added zero* (ω_z) *cancels* the *first pole* (ω_1)
- Thus, we now start from ω_2 and go back 5 decades to find ω_p , which comes out to be 100 rad/sec (refer to the red line)
- The compensated system will be unconditionally stable with PM of 45 ° (since ω_3 is ten times away from ω_2)
- The increase in bandwidth, as compared to *DPC*, is 10 times (from 10 rad/sec to 100 rad/sec: equal to the ratio of ω_2 and ω_1)

> Technique:

- Just attach a resistor R_C
 with the compensation
 capacitor C_C
- Put this R_C-C_C network
 between the input and
 output of the gain stage
- Show that the transfer function of the compensated system is of the form:

$$A(s)\Big|_{compensated} \propto \frac{1+s(R_C-1/g_m)C_C}{1+s(R_C+R_2)C_C}$$

Schematic

Equivalent Circuit

Here

$$\omega_z = 1/[(R_C - 1/g_m)C_C]$$

$$\omega_p = 1/[(R_C + R_2)C_C]$$

- Choose R_C and C_C such that
 - $\bullet \omega_z$ is equal to ω_I (the first pole of the uncompensated system)
 - $\bullet \omega_p$ is as found from the example given