Water version 1.0.0e
My email is "kripto289@gmail.com"
Discord channel https://discord.gg/GUUZ9D96Uq

Getting Started

Creating Water in the Scene

To quickly get started with KWS2:

- 1. Right-click in the Hierarchy window
- 2. Navigate to: Effects → KWS Water → Dynamic Waves Simulation Zone

This will automatically add to your scene:

A base ocean with default water settings
 A dynamic simulation zone (used for shallow water equations)
 A flow source that creates directional movement (for rivers, waterfalls, etc.)

You're ready to see dynamic water in action immediately — no setup required.

Water Simulation Zones

Each **simulation zone** represents an area where dynamic shallow-water equations are calculated in real time. You can move, resize, or rotate the zone to define where and how the water flows.

A Simulation zones do not automatically blend with each other in the current version.

This feature is planned for a future update.

Working with multiple zones

To create long rivers or extended flowing areas:

- Add multiple simulation zones along the terrain
- Place a Water Source at the start of each zone this continues the flow visually and physically
- Adjust direction and strength of each source to maintain natural flow between zones

X Usage tips:

- Use one zone for small areas like ponds or waterfalls
- Use multiple zones for long or complex river paths
- Ocean and zones can coexist zones simulate local flow over static ocean base

Performance Tips & Zone Types

KWS2 is heavily optimized, but performance depends on how you configure simulation zones and particles.

General Performance Tips

- Smaller simulation zones = faster performance
- Fewer foam/splash particles = better performance
- Splash shadow rendering is extremely expensive. Use Low Quality or Disable if possible Use the Intersection Layer Mask to exclude non-interactive objects from simulation calculations
- Lower simulation resolution per meter = higher performance. Lower values reduce quality, but improve speed significantly

Zone Types

There are three types of simulation zones, each optimized for specific use cases:

1) Static Zone

A zone designed for stationary simulations such as rivers, lakes, or local flow areas.

- At startup, it captures the current scene depth within the zone and uses it to compute water-surface intersections
- The water flow dynamically adapts to the captured terrain and obstacles allowing rivers to wrap around geometry
- You can change water sources or modify the flow path, and the simulation will react accordingly
- Optionally, you can use **Precompute Start** to bake the current scene depth and flow state in advance → This skips the filling phase and starts the simulation already "settled"
- When precomputed, the cached depth texture is always used even if terrain or objects change after restarting
 - → Intersections will no longer reflect scene updates unless rebaked

K For procedural or runtime-generated worlds, you can manually reinitialize the zone using: zone.ForceUpdateZone();

2) Movable Zone

Can move or follow objects (e.g. player-triggered simulations)

- Does not cache depth, so it won't interact with terrain or static objects
- Still supports interaction with moving dynamic objects

3) Baked Simulation

- Works only after pressing "Precompute Start"
- Caches the full state including depth intersection and flow
- Completely ignores any zone or flow changes after baking
 - → Unlike *Static Zone*, the flow is frozen and will not respond to changes in water sources, terrain, or obstacles
- Ideal for static rivers, foam-covered waterfalls, or any areas where flow doesn't need to change
- No CPU/GPU cost for simulation after bake
 - ▲ Foam and splash particles still render and consume GPU resources

Local Water Zones

You can create **local override zones** to change specific water properties in isolated areas — such as lakes, polluted water, stylized regions, shallow pools, or underwater rooms.

Each zone blends into the main water system based on distance and falloff settings.

Override Options

1. Color Override

Override base water color within the zone with smooth blending into surrounding water.

2. Water Height Override

Override ocean level locally to simulate isolated bodies of water (e.g. higher lakes or sunken areas).

3. Wind Override

Reduce or increase wind intensity locally to simulate calm bays, protected harbors, etc.

X How to Use

- Navigate to: Effects → KWS Water → Water Local Zone
- Adjust zone size, falloff, and enabled properties
- Only affected water inside the zone will blend to new settings
- Zones work in both dynamic and baked contexts

Known Limitations & Optimization Notes

To ensure stable performance and predictable behavior, keep in mind the following limitations and optimization guidelines:

Local Water Zones

- Max visible zones on screen: 8
- Using too many local override zones can impact performance, especially if they're large or overlap

Dynamic Simulation Zones

- Best practice: Split large simulations into multiple smaller zones
 - Enables occlusion culling for off-screen areas
 - Allows adaptive update rates based on camera distance
 - Particle systems (foam/splashes) use LOD logic tied to distance as well

Multiple smaller zones offer significantly better performance than one massive simulation.

Simulation Visibility & Obstacle Blocking

The dynamic water simulation works purely from a top-down surface scan (like a depth orthographic camera).

It cannot detect occluded terrain under overhangs, caves, or concave geometry.

If the rock visually hides the ground from the simulation's perspective, water won't interact correctly. You may see foam or water climbing into the rock.

Correct Setup: Open Geometry or Shifted Zones

Make sure terrain under the rock is visible from the top OR move the simulation zone to begin just beyond the obstruction

Global Water Quality Settings

All global quality settings for KWS2 are located in **Project Settings** → **KWS Water Settings**. This section controls **which water features are active at different Unity Quality Levels** (Very Low → Ultra), as well as default resolution, lighting, and visual effects.

These settings allow for automatic quality scaling based on Unity's built-in quality level system

Key Features of This Panel

Unity Quality Level Mapping

Toggle which water features are enabled per Unity quality tier (Low, Medium, High, etc.)

Reflections

- Enable or disable Screen Space Reflections (SSR) and Planar Reflections
- Adjust SSR resolution quality
- Toggle anisotropic reflections, skybox overrides, sunlight reflections

Refraction

- Choose between physical approximation or simple refraction
- o Enable dispersion for more realistic water distortion

Ocean Foam & Wetness

Toggle global foam and wet surface effects

Volumetric Lighting

- o Control caustics strength, resolution, temporal accumulation
- Enable additional lights if needed (note: higher GPU cost)

Underwater Effects

- Adjust internal reflection, Snell's window effect
- Enable droplets, tension line distortion, or override transparency

Caustics

- Choose caustic simulation quality and enable high-quality filtering
- Dispersion support for realistic colored caustics

Mesh Settings

Control LOD and far-detailing range for water mesh generation

Rendering Settings

- Set transparent render order
- Toggle depth writing, wide-angle compatibility, and fog integration

Tip: You can change the active Unity quality level at runtime or via code to dynamically adjust KWS features per platform or device.

Scripting & API Integration

KWS2 exposes a set of public APIs to help you sample the water surface, check underwater states, or override settings at runtime.

🌊 1. Sampling Water Height, Velocity, and Foam

You can sample dynamic water data using built-in request types:

```
private WaterSurfaceRequestArray _request = new WaterSurfaceRequestArray();
void Update()
  _request.SetNewPositions(_voxelsWorldPos);
  WaterSystem.TryGetWaterSurfaceData(_request);
  if (!_request.IsDataReady) return; //Usually ready after the first few simulation frames.
  for (int i = 0; i < _voxelsWorldPos.Length; i++)
       var waterPos = _request.Result[i].Position;
       var waterVelocity = request.Result[i].Velocity;
       var foam = request.Result[i].Foam;
}
```

Other supported types: WaterSurfaceRequestPoint, WaterSurfaceRequestList

To synchronize simulation time across clients or servers:

```
WaterSystem.UseNetworkTime = true;
WaterSystem.NetworkTime = yourTimeInSeconds;
```

📷 3. Camera & Rendering State Checks

```
Useful for triggering effects like diving, UI changes, post-processing:
bool isUnderwater = WaterSystem.IsCameraFullUnderwater;
bool isPartiallyUnder = WaterSystem.IsCameraPartialUnderwater;
```

You can also toggle rendering manually:

WaterSystem.Instance.WaterRenderingActive = false; // e.g., inside caves

Check if any point is submerged:

var isPointUnderwater = WaterSystem.IsPositionUnderWater(position);

4. Runtime Quality Overrides

Override specific features at runtime:

WaterSystem.QualitySettings.ScreenSpaceReflectionResolutionQuality = Water Quality Level Settings. Screen Space Reflection Resolution Quality Enum. Low;

🔧 5. Runtime Property Control

Directly change visual or physical properties:

WaterSystem.Instance.CausticStrength = 0.5f;