Homework 3 Karsen Diepholz A20371990

Exercises:

2.

- a. Support for e = 8/10 = .8 Support for item {b,d} = 2/10 = .2 Support for item {b,d,e} = 2/10 = .2
- b. Confidence for rule $\{b,d\} \rightarrow \{e\} = .2/.2 = 100\%$ Confidence for rule $\{e\} \rightarrow \{b,d\} = .2/.8 = 25\%$ Confidence is not symmetric.
- c. Support for $\{e\} = \% = .8$ Support for $\{b,d\} = 5/5 = 1$ Support for $\{b,d,e\} = \% = .8$
- d. Confidence $\{b,d\} \rightarrow \{e\} = .8/1 = 80\%$ Confidence $\{e\} \rightarrow \{b,d\} = .8/.8 = 100\%$
- e. There are no apparent relationships between s_1, s_2, c_1, c_2 according to our measured values.

6.

- a. Total Rules = 3^{items} - $2^{(\text{items}+1)}$ +1 Total Rules = 3^{6} - 2^{7} +1 = 602 Maximum number of rules is 602
 - b. Since minsup > 0, all items are frequent items.
 But the maximum size of frequent item sets that can be is the maximum number of items in one transaction, so in this case, 4.
 - c. Number of data items = 6 $(\frac{6}{3}) = 20$

d.

Item Set	Support Count
milk, beer	1
milk, diapers	4
mild, bread	3
milk, butter	2

milk, cookies	1
beer, diapers	3
beer, bread	0
beer, butter	0
beer, cookies	2
diapers, bread	2
diapers, butter	3
diapers, cookies	1
bread, butter	5
bread, cookies	1
butter, cookies	1

e. Confidence of $\{a\} \rightarrow \{b\} = support\{a,b\}/support\{a\}$

Confidence {bread} \rightarrow {butter} = 5/5 = 1

Confidence {butter} \rightarrow {bread} = 5/5 = 1

8.

a.

Item		Support
	1	5
	2	5
	3	6
	4	4
	5	4

 $\{1,2,3\}$: $\{1,2,3,4\}$, $\{1,2,3,5\}$

{1,2,4}: {1,2,4,5}

{1,2,5}: not possible to extend

{1,3,4}: {1,3,4,5}

 $\{1,3,4\}$: no new items

{2,3,4}: {2,3,4,5}

 $\{2,3,5\}$: no new items

{3,4,5}: not possible to extend

All candidates: {1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,4,5},{1,2,4,6},{1,2,5,6}

- b. All candidates: {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {2,3,4,5}, {2,3,4,6}
- c. {1,2,3,4} is the only candidate that will survive the pruning step.

9.

a. Lattice set:

- b. The number of frequent itemsets is given by f/total number = 16/32 = 50%
- c. The pruning ratio is given by the ratio of N to the total number of itemsets (32). N=11, so 11/32 = 34%
- d. The number of *I* is 5, so 5/32 = 15.6%

12. With threshold equal to 30%, we come up with the following lattice structure:

13.

a.

	С	\overline{c}
b	3	4
\bar{b}	2	1

	d	\bar{d}
a	4	1
ā	5	0

	d	\bar{d}
b	6	1
\overline{b}	3	0

	С	\overline{c}
e	2	4
\overline{e}	3	1

	a	\overline{a}
c	2	3
\overline{c}	3	2

a. Support

Rules	Support	Rank
b> c	0.3	3
a> d	0.4	2
b> d	0.6	1
e> c	0.2	4
c> a	0.2	4

Confidence

Rules	Confidence	Rank
b> c	3/7	3
a> d	4/5	2
b> d	6/7	1
e> c	2/6	5
c> a	2/5	4

Interest $(x \rightarrow y)$

Rules	Interest	Rank
b> c	0.214	3
a> d	0.72	2
b> d	0.771	1
e> c	0.167	5
c> a	0.2	4

IS $(x \rightarrow y)$

Rules	IS(x> y)	Rank
b> c	0.507	3
a> d	0.596	2
b> d	0.756	1
e> c	0.365	5
c> a	0.4	4

Klosgen $(x \rightarrow y)$

Rules	Klosgen	Rank
b> c	-0.039	2
a> d	-0.063	4
b> d	-0.033	1
e> c	-0.075	5

c> a	-0.045	3
------	--------	---

Odds Ratio $(x \rightarrow y)$

Rules	Odds Ratio	Rank
b> c	0.375	2
a> d	0	4
b> d	0	4
e> c	0.167	3
c> a	0.444	1

20.

a. Support(A) = .1, Support(B) = .9, Support (A,B) = .09
Interest(A,B) = 9,
$$\phi$$
(A,B) = .89
 $c(A \rightarrow B) = .9$, $c(B \rightarrow A) = .9$

b. Support(A) = .9, Support(B) = .9, Support(A,B) = .89
Interest(A,B) = 1.09,
$$\phi$$
(A,B) = .89
 $c(A \rightarrow B) = .98, c(B \rightarrow A) = .98$

c. Interest, support, and confidence are non-invariant if and only if the ϕ -coefficient is invariant. This is because the ϕ -coefficient takes into account absence and presence of an item.