【数学】高中数学最全基础知识汇总

考试报 2023-02-09 02:48 Posted on 海南

基本初等函数

- 一、概念与符号
- 1. 函数的概念
- 一般地,我们有:设A,B是非空的数集,如果按照某种确定的对应 关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的 数f(x)和它对应,那么就称 $f:A \to B$ 为从集合A到集合B的一个函数 (function),记作:y = f(x), $x \in A$.
- 2. 映射的概念
- 一般地,我们有:设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应 $f:A \to B$ 为从集合A到集合B的一个映射(mapping)。

- 3. 函数的最值
- 一般地,设函数y = f(x)的定义域为I,如果存在实数M满足:
 - (1) 对于任意的 $x \in I$, 都有 $f(x) \le M(f(x) \ge M)$;
 - (2) 存在 $x_0 \in I$, 使得 $f(x_0) = M$.

那么称M是函数y = f(x)的最大(小)值,通常记为:

$$y_{\text{max}} = M \vec{x} f(x)_{\text{max}} = M (y_{\text{min}} = M \vec{x} f(x)_{\text{min}} = M).$$

4. 奇偶函数等式的等价形式:

奇函数
$$\Leftrightarrow f(-x) = -f(x) \Leftrightarrow f(-x) + f(x) = 0$$

$$\Leftrightarrow \frac{f(-x)}{f(x)} = -1(f(x) \neq 0);$$

偶函数 $\Leftrightarrow f(-x) = f(x) \Leftrightarrow f(-x) - f(x) = 0$

$$\Leftrightarrow \frac{f(-x)}{f(x)} = 1(f(x) \neq 0).$$

- 二、常用公式
- 1. 幂指数运算法则

$$(1)a^r \cdot a^s = a^{r+s}, (a^r)^s = a^{rs}, (ab)^r = a^r b^r. (a > 0, r, s \in \mathbf{Q})$$

(2) 当n为奇数时, $\sqrt[n]{a^n} = a$;

当n为偶数时,
$$\sqrt[n]{a^n} = |a| =$$
$$\begin{cases} a, & a \ge 0, \\ -a, & a < 0. \end{cases}$$

(3) 规定:
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} (a > 0, m, n \in \mathbb{N}^*, 且n > 1);$$

$$a^{-\frac{m}{n}} = \frac{1}{\frac{m}{a^n}} (a > 0, m, n \in \mathbb{N}^*, 且n > 1);$$

$$a^0=1(a\neq 0).$$

2. 对数恒等式

$$a^{\log_a N} = N$$
, $\log_a a = 1$, $\log_a 1 = 0$. (其中 $N > 0$, $a > 0$, 且 $a \neq 1$)

3. 对数运算法则

设
$$a > 0$$
, 且 $a \neq 1$, $M > 0$, $N > 0$, 则

$$\log_a(MN) = \log_a M + \log_a N,$$

$$\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N,$$

$$\log_a N^n = n \log_a N$$

4. 对数换底公式

$$\log_a b = \frac{\log_c b}{\log_c a} (a > 0 \text{ } \text{ } \exists a \neq 1; \ c > 0 \text{ } \exists c \neq 1; \ b > 0)$$

函数的应用

- 一、概念与符号
- 1.函数的零点

对于函数y = f(x),我们把使f(x) = 0的实数x叫做函数y = f(x)的零点(zero)

2.二分法

对于在区间 [a, b]上的连续不断且 $f(a) \cdot f(b) < 0$ 的函数 y = f(x),通过不断地把函数 f(x) 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法(bisection)。

二、常用公式

1. 二次函数式:

$$f(x) = ax^{2} + bx + c = a(x - x_{1})(x - x_{2}) = a(x - h)^{2} + k \left(\sharp + a \neq 0 \right), \quad h = -\frac{b}{2a}, \quad k = \frac{4ac - b^{2}}{4a}.$$

2. 二次函数图象在x轴上两点间的距离:

$$|x_1 - x_2| = \sqrt{(x_1 + x_2)^2 - 4x_1x_2} = \frac{\sqrt{b^2 - 4ac}}{|a|}.$$

- 3. 方程 $ax^2 + bx + c = 0 (a \neq 0)$:
 - (1) 判别式 $\Delta = b^2 4ac$;
 - (2) 求根公式 x_1 , $a_2 = \frac{-b \pm \sqrt{\Delta}}{2a} (\Delta \ge 0)$;

(3) 根与系数的关系
$$\begin{cases} x_1 + x_2 = -\frac{b}{a}, \\ x_1 x_2 = \frac{c}{a}. \end{cases}$$

- 三、常用定理
- 1. 零点存在定理
- 一般地,我们有:如果函数y = f(x)在区间[a, b]上的图象是连续不

断的一条曲线,并且有 $f(a) \cdot f(b) < 0$,那么,函数y = f(x)在区间 (a, b)内有零点,即存在 $c \in (a, b)$,使得f(c) = 0,这个c也就是方程f(x) = 0的根。

2. 二分法的操作步骤

给出精确度 ε ,用二分法求函数f(x)在区间[a, b]上零点近似值的步骤如下:

- (1) 确定区间[a, b], 验证 $f(a) \cdot f(b) < 0$, 给定精确度 ϵ ;
- (2) 求区间(a, b)的中点c;
- (3) 计算f(c);

空间几何

一、常用公式

二、常用定理

- (1) 用一个平面去截一个球,截面是圆面.
- (2) 球心和截面圆心的连线垂直于截面.
- (3) 球心到截面的距离d与球的半径R及截面半径r有下面关系: $r = \sqrt{R^2 d^2}$.
- (4) 球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆.
- (5) 在球面上两点之间连线的最短长度,就是经过这两点的大圆在 这两点间的一段劣弧的长度,这个弧长叫做两点间的球面距离.

点、直线和平面位置关系

一、概念与符号

平面 α 、 β 、 γ ,

直线a、b、c,

点A、B、C.

 $A \in a$ ——点A 在直线a上或直线a经过点A.

 $a \subset \alpha$ ——直线a在平面 α 内.

 $\alpha \cap \beta = a$ ——平面 $\alpha \setminus \beta$ 的交线是a.

 α \ β ——平面 α 、 β 平行.

 $\beta \perp \gamma$ ——平面 β 与平面 γ 垂直.

- 二、常用定理
- 1. 异面直线判断定理

过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.

- 2. 线与线平行的判定定理
 - (1) 平行于同一直线的两条直线平行.
 - (2) 垂直于同一平面的两条直线平行.
- (3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.
- (4)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.
- (5)如果一条直线平行于两个相交平面,那么这条直线平行于两个 平面的交线.

空间向量与立体几何

一、常用公式

1.
$$\ \, \ \, \boldsymbol{a} = \left(a_1, \ a_2, \ a_3 \right) \, , \quad \boldsymbol{b} = \left(b_1, \ b_2, \ b_3 \right) \, , \quad A(x_1, \ y_1, \ z_1) \, \, , \ \,$$

$$B(x_2, y_2, z_2)$$
, 则

$$(1)|\boldsymbol{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2};$$

(2)cos(
$$\boldsymbol{a}$$
, \boldsymbol{b}) = $\frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \cdot \sqrt{b_1^2 + b_2^2 + b_3^2}}$;

(3)
$$|\overrightarrow{AB}| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

2. 中点坐标公式

已知 $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$,若M(x, y, z)是线段AB的中点,则有 $x = \frac{x_1 + x_2}{2}$, $y = \frac{y_1 + y_2}{2}$, $z = \frac{z_1 + z_2}{2}$.

3. 异面直线所成的角

设异面直线AB、CD所成角为 θ ,则

$$\cos \theta = \left| \cos \langle \overrightarrow{AB}, \overrightarrow{CD} \rangle \right| = \frac{|\overrightarrow{AB} \cdot \overrightarrow{CD}|}{|\overrightarrow{AB}| \cdot |\overrightarrow{CD}|}.$$

4. 直线与平面所成的角

如图,已知PA为平面 α 的一条斜线,n为平面 α 的一个法向量,过P作平面 α 的垂线PO,连接OA,则 $\angle PAO$ 为斜线PA和平面 α 所成的角,记为 θ ,易得: $\sin\theta = \left|\sin\left(\frac{\pi}{2} - \langle n, \overrightarrow{AP} \rangle\right)\right| = \left|\cos\langle n, \overrightarrow{AP} \rangle\right| = \frac{|n\cdot\overrightarrow{AP}|}{|n||\overrightarrow{AP}|}$.

5. 二面角的向量求法

(1)基向量法: 如图,二面角A - BD - C中, $AE \perp BD$, $CF \perp BD$, $AC \setminus EF \setminus AE \setminus CF$ 长度已知,则由 $|\overrightarrow{AC}|^2 = (\overrightarrow{AE} + \overrightarrow{EF} + \overrightarrow{FC})^2$ 可求出 $\cos(\overrightarrow{AE}, \overrightarrow{FC})$,从而求得 $(\overrightarrow{AE}, \overrightarrow{FC})$,则二面角A - BD - C的大小即为 $\pi - (\overrightarrow{AE}, \overrightarrow{FC})$.

(2)法向量法: 已知二面角 $\alpha - l - \beta$ 的平面角为 θ ,则

$$|\cos \theta| = \left|\cos \langle \mathbf{n}_1, \mathbf{n}_2 \rangle\right|$$

 $=\frac{|n_1\cdot n_2|}{|n_1|\cdot |n_2|}$ (其中 n_1 , n_2 分别是两平面 α 、 β 的法向量). 再结合直观图确定 θ 是锐角还是钝角,从而去掉绝对值号,结合反三角函数求出 θ .

6. 点 P到平面 α 的距离

设点P到平面 α 的距离为d,则 $d = \frac{|PM \cdot n|}{|n|}$ (其中n为 α 的法向量,M为平面 α 内任一点).

7. 异面直线间的距离

设异面直线AB、CD间的距离为d,则

$$\begin{split} d &= \frac{\left| \overrightarrow{BC} \cdot \boldsymbol{n} \right|}{\left| \boldsymbol{n} \right|} = \frac{\left| \overrightarrow{BD} \cdot \boldsymbol{n} \right|}{\left| \boldsymbol{n} \right|} \\ &= \frac{\left| \overrightarrow{AC} \cdot \boldsymbol{n} \right|}{\left| \boldsymbol{n} \right|} = \frac{\left| \overrightarrow{AD} \cdot \boldsymbol{n} \right|}{\left| \boldsymbol{n} \right|} (其中n满足n \cdot \overrightarrow{AB} = 0, 且n \cdot \overrightarrow{CD} = 0). \end{split}$$

注意: 异面直线间的距离问题在新课标中有所淡化,此公式仅作了解即可. 要注意体会点到平面的距离公式与该公式的联系,从而体会点面之距、异面直线之距间的相互转化.

二、常用定理

1.设
$$\mathbf{a} = (x_1, y_1, z_1), \mathbf{b} = (x_2, y_2, z_2), 则$$

$$(1)\boldsymbol{a} \parallel \boldsymbol{b}(\boldsymbol{b} \neq 0) \Leftrightarrow \begin{cases} x_1 = \lambda x_2, \\ y_1 = \lambda y_2, \\ z_1 = \lambda z_2; \end{cases}$$

(2)若
$$x_2y_2z_2 \neq 0$$
,则 $\boldsymbol{a} \parallel \boldsymbol{b} \Leftrightarrow \frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$;

$$(3)\boldsymbol{a}\perp\boldsymbol{b} \Leftrightarrow x_1x_2+y_1y_2+z_1z_2=0.$$

2.共面向量定理: 如果两个向量a、b不共线,则向量c与向量a、b共面的充要条件是存在唯一的一对有序实数x、v,使c = xa + vb.

直线与方程

一、概念与符号

1.倾斜角

在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为 α ,那么 α 就叫做直线的倾斜角,当直线和x轴平行或重合时,规定其倾斜角为 0° ,因此,倾斜角的取值范围是 $0^\circ \le \alpha < 180^\circ$.

2.斜率

倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率,常用k表示,即 $k = \tan \alpha$,常用斜率表示倾斜角不等于90°的直线对于x轴的倾斜程度.

3.1,到1,的角

l,依逆时针方向旋转到与l,重合时所转的角.

4.l₁和l₂所成的角

*l*₁和*l*₂相交构成的四个角中不大于直角的角叫这两条直线所成的角, 简称夹角.

三、常用定理

两直线位置关系的判定与性质定理如下:

平行: $k_1 = k_2$, 且 $b_1 \neq b_2$

垂直: $k_1k_2 = -1$

相交: $k_1 \neq k_2$

重合: $k_1 = k_2$, 且 $b_1 = b_2$

平行: $\frac{A_1}{A_2} = \frac{B_1}{B_2}$, 且 $\frac{A_1}{A_2} \neq \frac{C_1}{C_2}$

垂直: $A_1A_2 + B_1B_2 = 0$

相交: $A_1B_2 \neq A_2B_1$

重合: $\frac{A_1}{A_2} = \frac{B_1}{B_2}$, 且 $\frac{A_1}{A_2} = \frac{C_1}{C_2}$

(或 $A_1B_2 = A_2B_1$, 且 $A_1C_2 = A_2C_1$)

圆与方程

- 一、概念与符号
- 1. 曲线的方程、方程的曲线

在平面直角坐标系中,如果某曲线C(看做适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x, y) = 0的实数解建立了如下的关系:

①曲线上的点的坐标都是这个方程的解;②以这个方程的解为坐标的点都是曲线上的点。

那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.

- 二、常用公式
- 1. 圆的标准方程

方程 $(x-a)^2 + (y-b)^2 = r^2$ 是圆心为(a, b),半径为r的圆的标准方程. 其中当a = b = 0时, $x^2 + y^2 = r^2$ 表示圆心为(0, 0),半径为r的圆.

2. 圆的一般方程

方程 $x^2 + y^2 + Dx + Ey + F = 0$,当 $D^2 + E^2 - 4F > 0$ 时,称为圆的一般方程. 其中圆心为 $\left(-\frac{D}{2}, -\frac{E}{2}\right)$,半径 $r = \frac{1}{2}\sqrt{D^2 + E^2 - 4F}$

3. 圆的参数方程

设C(a, b), 半径为R, 则其参数方程为 $\begin{cases} x = a + R\cos\theta \\ y = b + R\sin\theta \end{cases} (\theta \text{为参数}, \ 0 \le \theta < 2\pi).$

4. 直线与圆的位置关系

设直线l: Ax + By + C = 0,圆C: $(x - a)^2 + (y - b)^2 = r^2$. 圆心 C(a, b)到l的距离为 $d = \frac{|A \cdot a + B \cdot b + C|}{\sqrt{A^2 + B^2}}$,

则 $d > r \Leftrightarrow l$ 与圆C相离:

 $d = r \Leftrightarrow l$ 与圆C相切;

 $d < r \Leftrightarrow l$ 与圆C相交.

5. 圆与圆的位置关系

设圆 C_1 : $(x-a_1)^2+(y-b_1)^2=r^2$, 圆 C_2 : $(x-a_2)^2+(y-b_2)^2=r^2$

 R^2 . 设两圆的圆心距为d,

则当d > R + r时,两圆外离;

当d = R + r时,两圆外切;

当|R-r| < d < R+r时,两圆相交;

当d = |R - r|时,两圆内切;

当d < |R - r|时,两圆内含.

圆锥曲线与方程

一、椭圆

1.
$$\text{Mig}_{a^2}^{x^2} + \frac{y^2}{b^2} = 1(a > b > 0), c^2 = a^2 - b^2(c > 0), \text{ } \text{£E}|F_1F_2| = 2c.$$

椭圆
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 $(a > b > 0)$ 的离心率有: $e = \frac{c}{a} = \sqrt{1 - \frac{b^2}{a^2}}$.

二、双曲线

1. 双曲线
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$$
,有 $c^2 = a^2 + b^2$, 焦距 $|F_1F_2| = 2c$.

且设 $A(x_1, y_1)$, $B(x_2, y_2)$, AB所在直线的倾斜角为 θ , 则

$$\widehat{1}x_1 \cdot x_2 = \frac{p^2}{4}, \ y_1 \cdot y_2 = -p^2.$$

② $|AF|=x_1+\frac{p}{2},\ |BF|=x_2+\frac{p}{2},\ |AB|=x_1+x_2+p=\frac{2p}{\sin^2\theta},$.特别地,当时 $\theta=\frac{\pi}{2}$,弦长|AB|=2p,此时即为抛物线的通径长.

$$\Im S_{\Delta AOB} = \frac{P^2}{2 \sin \theta}.$$

$$\widehat{\textcircled{4}}\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p}.$$

⑤过B作BC//x轴,点C在准线上,则A、B、F三点共线 \Leftrightarrow A、O、C三点共线.

四、直线与圆锥曲线的关系

- 1. 弦长公式: $|AB| = \sqrt{1 + k^2} |x_1 x_2| = \sqrt{1 + \frac{1}{k^2}} |y_1 y_2|$.
- 2. 抛物线的焦点弦 $|AB| = x_1 + x_2 + p$.
- 3. 抛物线的通径|AB| = 2p.

统计

一、常用符号

 \bar{x} ——平均数, S^2 ——方差, S——标准差, Σ ——求和符号

二、常用公式

$$\bar{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n), S^2 = \frac{1}{n}\sum_{i=1}^n (x_i - \bar{x})^2$$

$$S = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}, \, \hat{\mathbf{b}} = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^{n} x_i^2 - n\bar{x}^2}, \, \hat{a} = \bar{y} - \hat{b}\bar{x}$$

回归方程

$$\hat{y} = \hat{a} + \hat{b}x$$

其中

$$\begin{cases} \hat{b} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x} \cdot \bar{y}}{\sum_{i=1}^{n} x_i^2 - n\bar{x}^2}, \\ \hat{a} = \bar{y} - \hat{b}\bar{x}. \end{cases}$$

相关系数

$$\mathbf{r} = \frac{\sum x_i y_i - n\bar{x} \cdot \bar{y}}{\sqrt{(\sum x_i^2 - n\bar{x}^2) \cdot (\sum y_i^2 - n\bar{y}^2)}}$$

概率

- 一、常用公式
- 1. 随机事件A的概率: P(A)满足 $0 \le P(A) \le 1$.
- 2. 互斥事件的概率加法公式:
 - (1) 如果 $A \setminus B$ 是互斥事件,则 $P(A \cup B) = P(A) + P(B)$.
 - (2) 如果A、B是相互独立事件,则P(AB) = P(A) P(B).
 - (3) 如果事件 A_1 , A_2 , …, A_n 两两相斥,则

$$P(A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n) = P(A_1) + P(A_2) + \dots + P(A_n).$$

- 3. 互为对立事件概率加法公式: $P(\bar{A}) + P(A) = 1$.
- 4. 古典概型:

5. 几何概型:

$$P(A) = \frac{$$
构成事件 A 的区域长度(面积或体积)
试验的全部结果所构成的区域长度(面积或体积)

离散型随机变量的分布列

特别地:

(1) 若X服从两点分布,则D(X) = p(1-p)

(2) 若
$$X \sim B(n, p)$$
, 则 $D(X) = np(1-p)$

- (3) $D(aX + b) = a^2 D(X)$
- 8. 正态变量概率密度曲线的函数表达式:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbf{R},$$

其中 μ , σ 是参数,且 $\sigma > 0$, $-\infty < \mu < +\infty$,式中 μ 和 σ 分别是正态变量的数学期望和标准差. 期望为 μ ,标准差为 σ 的正态分布通常记作 $N(\mu, \sigma^2)$.

当 $\mu = 0$, $\sigma = 1$ 时,正态总体称为标准正态分布,记作N(0, 1). 标准正态分布的函数表示式是

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, x \in \mathbf{R}.$$

三角函数

一、常用概念

- 1. 角的概念及推广
- (1) 一条射线由原来的位置OA,绕着它的端点O按逆(顺)时针方向旋转到另一位置OB,就形成角 α . 旋转开始时的射线OA称为角 α 的始边,旋转终止时的射线OB称为角 α 的终边,射线的端点O称为角 α 的顶点(如图).

- (2) 逆时针方向旋转所形成的角称为正角,按顺时针方向旋转所形成的角称为负角,当射线没有旋转时,称为零角.
- 2. 弧度及弧度制

长度等于半径长的弧称为一弧度的弧,一弧度的弧所对的圆心角是一弧度的角,这种度量角的制度称为弧度制.

3. 三角函数的定义

如图,在 α 的终边上取一点P(x, y), $|OP| = r = \sqrt{x^2 + y^2} > 0$,

定义: $\sin \alpha = \frac{y}{r}$, $\cos \alpha = \frac{x}{r}$, $\tan \alpha = \frac{y}{x}$

二、常用公式

1.孤长公式: $l = |\alpha|R$,R为圆弧所在圆的半径, α 为圆弧所对圆心角

的弧度数, 1为弧长.

- 2.扇形的面积公式: $S = \frac{1}{2}lR$, R为圆的半径, l为弧长.
- 3.同角三角函数的关系式
- (1) 商数关系: $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$,
- (2) 平方关系: $\sin^2\alpha + \cos^2\alpha = 1$
- (3) 诱导公式:

x	函数		
	sin x	cos x	tan x
$\alpha + k \cdot 2\pi (k \in \mathbf{Z})$	sin α	cos α	tan α
$\pi + \alpha$	-sin α	-cos α	tan α
-α	– sin α	cos α	– tan α
$\pi - \alpha$	sin α	- cos α	-tanα
$\frac{\pi}{2} - \alpha$	cos α	sin α	
$\frac{\pi}{2} + \alpha$	cos α	$-\sin \alpha$	

$$\left\{\alpha \mid \alpha = \frac{k\pi}{2} + \frac{\pi}{4}, k \in \mathbf{Z}\right\}.$$

2. 度与弧度的换算及特殊角的三角函数值

度	0°	30°	45"	60°	90°	180°	270°	360°
弧度	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
正弦	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
余弦	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	-1	0	1
正切	0	$\frac{\sqrt{3}}{3}$	1	√3	-	0	-	0

三角函数的图象与性质

一、常用图形

1. 三角函数线

 $\sin \alpha = MP$, $\cos \alpha = OM$, $\tan \alpha = AT$.

2. 三角函数的图象(如图 9-2-23)

二、常用性质

函数名称	正弦函数	余弦函数	正切函数
解析式	$y = \sin x$	$y = \cos x$	$y = \tan x$
定义域	R	R	$\left\{x x\in\mathbf{R}\underline{\boxtimes}x\neq k\pi+\frac{\pi}{2},\ k\in\mathbf{Z}\right\}$
值域	[-1, 1]	[-1, 1]	R
奇偶性	奇函数	偶函数	奇函数
有界性	有界函数	有界函数	
周期性	$T=2\pi$	$T=2\pi$	$T = \pi$
	增区间	增区间	增区间
単调性	$\left[2k\pi - \frac{\pi}{2}, 2k\pi + \frac{\pi}{2}\right]$ 减区间	[2kπ − π, 2kπ] (k ∈ Z) 减⊠间	$\left(k\pi - \frac{\pi}{2}, \ k\pi + \frac{\pi}{2}\right)$ $(k \in \mathbf{Z})$
	$\left[2k\pi + \frac{\pi}{2}, \ 2k\pi + \frac{3\pi}{2}\right]$ $(k \in \mathbf{Z})$	$[2k\pi, 2k\pi + \pi]$ $(k \in \mathbf{Z})$	(n C L)

三、常用公式

1.正弦函数 $y = A \sin(\omega x + \varphi)$ 和余弦函数 $y = A \cos(\omega x + \varphi)$ 的周期 $T = \frac{2\pi}{|\omega|}.$

2.正切函数
$$y = A \tan(\omega x + \varphi)$$
的周期为 $T = \frac{\pi}{|\omega|}$

三角恒等变换

一、常用公式

1. 两角和(差)公式

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
;

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
;

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}.$$

2. 倍角公式:

$$\sin 2\alpha = 2\sin \alpha\cos \alpha$$
;

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

$$\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}.$$

3. 倍角公式的逆用:

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}; \cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}; \tan\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$$

$$=\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}.$$

解三角形

- 一、常用公式
- 1. 三角形面积公式

$$S_{\Delta ABC} = \frac{1}{2}$$
底 × 高 = $\frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{abc}{4R}$,
其中 R 为 ΔABC 的外接圆半径.

- 二、常用定理
- 1. 正弦定理:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R.$$

2. 余弦定理:

$$a^2 = b^2 + c^2 - 2 bc \cos A$$

$$b^2 = a^2 + c^2 - 2 ac \cos B,$$

$$c^2 = a^2 + b^2 - 2 ab \cos C.$$

平面向量

一、常用公式

设 \boldsymbol{a} 、 \boldsymbol{b} 表示向量,且 $\boldsymbol{a} = (x_1, y_1), \boldsymbol{b} = (x_2, y_2), \lambda$ 表示实数.

1. 加法原理:

$$a + b = (x_1 + x_2, y_1 + y_2).$$

2. 减法原理:

$$a - b = (x_1 - x_2, y_1 - y_2).$$

- 3. 数乘: $\lambda \boldsymbol{a} = (\lambda x_1, \lambda y_1)$.
- 4. 数量积:

$$\mathbf{a} \cdot \mathbf{b} = x_1 x_2 + y_1 y_2$$
. $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$ (其中 θ 为 \mathbf{a} 与 \mathbf{b} 的夹角)

5. 平行关系:

$$\boldsymbol{a}\parallel\boldsymbol{b} \Leftrightarrow x_1x_2-y_1y_2=0.$$

(1)
$$|a| = \sqrt{x^2 + y^2}$$
, $\sharp + a = (x, y)$;

10. 角度公式:

$$\cos\theta = \frac{a \cdot b}{|a| \cdot |b|} = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + x_2^2} \cdot \sqrt{y_1^2 + y_2^2}}, \quad 其中\theta为a与b的夹角.$$

- 二、常用定理
- 1. 平面向量基本定理

如果 e_1 、 e_2 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数 λ_1 、 λ_2 ,使 $a=\lambda_1e_1+\lambda_2e_2$.

2. 两向量共线定理

向量b与非零向量a共线的充要条件是有且仅有有个实数 λ ,使 $b = \lambda a$.

3. 两向量垂直定理

向量a与向量b垂直的充要条件是 $a \cdot b = 0$.

数列

一、常用公式

1. 等差数列、等比数列

	等差数列	等比数列
	#/±xx/1	-
定义	$a_{n+1} - a_n = d$	$\frac{a_{n+1}}{a_n} = q$
通项公式	$a_n = a_1 + (n-1)d,$	$a_n = a_1 q^{n-1},$
	$a_n = a_m + (n - m)d$	$a_n = a_m q^{n-m}$
公差(比)	$d=\frac{a_n-a_1}{n-1}(n\neq 1),$	$q^{n-1}=\frac{a_n}{a_1},$
	$d = \frac{a_n - a_m}{n - m} (n \neq m)$	$q^{n-m} = \frac{a_n}{a_m}$
前n项和公式	$S_n = \frac{n(a_1 + a_n)}{2}$	$S_n = \frac{a_1(1-q^n)}{1-q} = \frac{a_1-a_nq}{1-q} (q \neq 1),$
101.000(10.00)	$=na_1+\frac{n(n-1)}{2}d$	$S_n = na_1(q=1)$
中项公式	$A = \frac{a+b}{2}$	$G = \pm \sqrt{ab}(ab > 0)$
m+n	$a_m + a_n = a_p + a_q$	$a_m a_n = a_p a_q$
= p + q		

2. 在等差数列{a_n}中:

$$(1)a_n = m, \ a_m = n, \ m \neq n, \ \square a_{m+n} = 0;$$

(2)若
$$S_n = m$$
, $S_m = n$, $m \neq n$, 则 $S_{m+n} = -(m+n)$;

(3)若
$$S_n = S_m$$
, $m \neq n$, 则 $S_{m+n} = 0$.

- 3. 若 $\{a_n\}$ 与 $\{b_n\}$ 均为等差数列,且前n项和分别为 S_n 与 T_n ,则 $\frac{a_m}{b_m} = \frac{S_{2m-1}}{T_{2m-1}}$.
- 4. 项数为 $2n(n \in \mathbb{N}^*)$ 偶数的等差数列 $\{a_n\}$ 有:

$$S_{2n} = n(a_1 + a_{2n}) = \dots = n(a_n + a_{n+1})(a_n, a_{n+1})$$
 中间的两项);

$$S_{\mathbb{H}}-S_{\mathfrak{H}}=nd$$
; $\frac{S_{\mathfrak{H}}}{S_{\mathfrak{H}}}=\frac{a_n}{a_{n+1}}$.

项数为奇数 $2n-1(n \in \mathbb{N}^*)$ 的等差数列 $\{a_n\}$ 有:

$$S_{2n-1} = (2n-1) a_n (a_n \text{ hero } \overline{y});$$

$$S_{\hat{\ominus}} - S_{\mathbb{A}} = an; \quad \frac{S_{\hat{\ominus}}}{S_{\mathbb{A}}} = \frac{n}{n-1}.$$

 S_{fr} 、 S_{fl} 分别为数列中所有奇数项的和与所有偶数项的和.

5. 常见数列的前n项和的公式

$$1+2+3+\cdots+n=\frac{n(n+2)}{2};$$

$$1+3+5+\cdots+(2n-1)=n^2$$
;

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
;

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$
.

- 二、常用结论
- 1. A是a,b的等差中项的充要条件是 $A = \frac{a+b}{2}$;
- 2. G是a, b的等比中项的充要条件是 $G^2 = ab$, 其中ab > 0.

不等式

1. 不等式的性质

$$2a > b$$
, $b > c \implies a > c$

$$\textcircled{4}a > b$$
, $c > 0 \Longrightarrow ac > bc$; $a > b$, $c < 0 \Longrightarrow ac < bc$

$$(5)a > b$$
, $c > d \implies a + c > b + d$

$$\textcircled{6}$$
 $a > b > 0$, $c > d > 0 \Rightarrow ac > bd$

$$\widehat{\mathcal{T}}a > b > 0 \Longrightarrow a^n > b^n (n \in \mathbb{N}, n \ge 2)$$

$$\textcircled{8}a > b > 0 \Longrightarrow \sqrt[n]{a} > \sqrt[n]{b} (n \in \mathbb{N}, n \ge 2)$$

2. 一元二次不等式:

 $ax^2 + bx + c > 0(a \neq 0)$, 设 x_1 、 x_2 是方程 $ax^2 + bx + c = 0$ 的解,

且
$$x_1 < x_2$$
,若 $a > 0$,则

$$\Delta > 0$$
, $\{x | x < x_1, \ \ \text{if} \ x > x_2\}$;

$$\Delta = 0, \ \left\{ x \middle| x \in \mathbf{R}, \ \exists x \neq -\frac{b}{2a} \right\};$$

 Δ < 0, $x \in \mathbf{R}$.

3. 基本不等式:

$$\sqrt{ab} \le \frac{a+b}{2}$$

(其中a > 0, b > 0, 当且仅当a = b时取 "=").

常用逻辑用语

一、常用符号

$$p \lor q - - p$$
或 $q, p \land q - - p$ 且 $q, \neg p - - 非 p$

 $A \Rightarrow B$ — — A 是 B 成立的充分条件

 $B \Rightarrow A$ — A 是 B 成立的必要条件

 $A \Leftrightarrow B$ ——A是B成立的充要条件

二、常用结论

1.

- 2. 在p或q命题中,一真为真.
- 3. 在p且q命题中,一假为假.
- 4. 在非p命题中,与p的真假相反.
- 5. 全称命题p: $\forall x \in M$, p(x), 它的否定 $\bullet p$: $\exists x \in M$, $\bullet p(x)$.
- 6. 特称命题q: ∃ $x \in M$, q(x), 它的否定 $\bullet q$: $\forall x \in M$, $\bullet q(x)$.

导数及其应用

- 一、常用公式
- 1. 常用函数导数公式
 - (1) C' = 0(C为常数);
 - (2) $(x^n)' = nx^{n-1} (其中n \in \mathbf{R});$
 - $(3) (\sin x)' = \cos x;$
 - $(4) (\cos x)' = -\sin x;$
 - (5) $(\ln x)' = \frac{1}{x}$;
 - (6) $(\log_a x)' = \frac{1}{x \ln a};$
 - (7) $(e^x)' = e^x$;
 - (8) $(a^x)' = a^x \ln a$.
 - (9) 复合函数y = f(g(x))的导数和函数y = f(u), u = g(x)的导数

间的关系为: $y_x' = y_u' \lceil u_x'$.

2. 函数的和、差、积、商的导数

(1)
$$[f(x) \pm g(x)]' = f'(x) \pm g'(x);$$

(2)
$$[f(x) \cdot g(x)]' = f'(x)g(x) + g'(x)f(x);$$

(3)
$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - g'(x)f(x)}{g^2(x)}$$
.

3. 定积分的线性性质

(1)
$$\int_a^b k f(x) dx = k \int_a^b f(x) dx;$$

(2)
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx;$$

(3)
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx (a < b < c).$$

- 二、常用定理
- 1. 函数的单调性与其导函数的正负的关系

在某个区间(a, b)内,如果f'(x) > 0,那么函数y = f(x)在这个区间内单调递增;如果f'(x) < 0,那么函数y = f(x)在这个区间内单调递减.

2. 一般地, 求函数y = f(x)极值的方法是:

解方程f'(x) = 0, 当 $f'(x_0) = 0$ 时:

- ①如果在 x_0 附近的左侧f'(x) > 0,右侧f'(x) < 0,那么 $f(x_0)$ 是极大值;
- ②如果在 x_0 附近的左侧f'(x) < 0,右侧f'(x) > 0,那么 $f(x_0)$ 是极小值;

- 3. 一般地,求函数y = f(x)在[a, b]上的最大值与最小值的步骤如下:
- ①求函数y = f(x)在(a, b)的极值;
- ②将函数y = f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
- 4. 微积分基本定理

如果F'(x) = f(x),且f(x)在[a, b]上可积,则 $\int_a^b f(x) dx = F(x) \Big|_a^b = F(b) - F(a)$,其中F(x)叫做 f(x)的一个原函数.

复数

一、常用公式

1.
$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

$$(a + bi) - (c + di) = (a - c) + (b - d)i,$$

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i,$$

$$\frac{a+b\mathrm{i}}{c+d\mathrm{i}} = \frac{ac+bd}{c^2+d^2} + \frac{bc-bd}{c^2+d^2}\mathrm{i}(c+d\mathrm{i} \neq 0)(以上a、b、c、d\in R).$$

$$2. \ \overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2},$$

$$\overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2},$$

$$\overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}}(z_2 \neq 0),$$

$$z \cdot \bar{z} = |z|^2$$
, $\bar{z} = z$.

3.
$$||z_1| - |z_2|| \le |z_1 \pm z_2| \le |z_1| + |z_2|$$

$$|z_1z_2| = |z_1||z_2|,$$

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|},$$

$$|z|^n = |z^n|,$$

$$\sqrt[n]{|z|} = \left| \sqrt[n]{|z|} \right|.$$

计数原理

一、常用公式

1. 排列数公式:

$$A_n^m = n(n-1)(n-2)\cdots(n-m+1) = \frac{n!}{(n-m)!} \ (m, n \in \mathbb{N}^* \pm m \le n).$$

2. 排列数性质:

$$A_n^m = nA_{n-1}^{m-1}; \ A_n^m = mA_{n-1}^{m-1} + A_{n-1}^m (m, n \in \mathbb{N}^* \perp m \le n).$$

3. 阶乘: $n! = 1 \times 2 \times 3 \times \cdots \times n$; $A_n^n = n!$; 规定0! = 1;

常用变形: $n \cdot n! = (n+1)! - n!. (n \in \mathbb{N}^*)$

4. 组合数公式:

$$C_n^m = \frac{A_n^m}{A_m^m} = \frac{n(n-1)(n-2)\cdots(n-m+1)}{m!} = \frac{n!}{m!(n-m)!};$$
 规定 $C_n^0 = 1$. (m 、 $n \in$

 $N^* \perp m \leq n$

5. 组合数性质:

$$C_n^m = C_n^{n-m}$$
;

$$C_n^m = C_{n-1}^m + C_{n-1}^{m-1}$$
;

$$C_n^m = \frac{n}{m} C_{n-1}^{m-1}$$
;

$$\mathbf{C}_n^m = \mathbf{C}_{n-1}^{m-1} + \mathbf{C}_{n-2}^{m-1} + \mathbf{C}_{n-3}^{m-1} + \dots + \mathbf{C}_{m-1}^{m-1}. \ (以上 m、 n \in \mathbf{N}^* \bot m \leq n)$$

6. 二项式定理:

$$(a+b)^n = \mathsf{C}_n^0 a^n + \mathsf{C}_n^1 a^{n-1} b + \dots + \mathsf{C}_n^r a^{n-r} b^r + \dots + \mathsf{C}_n^n b^n (0 \le r \le r \le r)$$

 $n, r \in \mathbb{N}, n \in \mathbb{N}^*, \mathbb{C}_n^r$ 叫做二项式系数),a, b是任意的数、代数式. 特别地,

$$(1+x)^n = 1 + C_n^1 x + C_n^2 x^2 + \dots + C_n^r x^r + \dots + C_n^n x^n,$$

$$(a-b)^n = C_n^0 a^n - C_n^1 a^{n-1} b + C_n^2 a^{n-2} b^2 - \dots + (-1)^r C_n^r a^{n-r} b^r + \dots + (-1)^n C_n^n b^n.$$

7. 二项展开式的通项公式:

$$T_{r+1} = C_n^r a^{n-r} b^r (0 \le r \le n, r \in \mathbb{N}, n \in \mathbb{N}^*).$$

8.
$$C_n^0 + C_n^1 + C_n^2 + \cdots + C_n^n = 2^n$$
;

$$C_n^0 + C_n^2 + C_n^4 + \dots = C_n^1 + C_n^3 + C_n^5 + \dots = 2^{n-1}.(n \in \mathbb{N}^*)$$

- 二、常用结论
- 1. 含有n(n ∈ N)个元素的集合的子集数为 2^n ,真子集数为 $2^n 1$.
- 2. 组合数恒等式 $(n \in \mathbb{N}^*)$: $(C_n^0)^2 + (C_n^1)^2 + (C_n^2)^2 + \dots + (C_n^n)^2 = C_{2n}^n = \frac{(2n)!}{(n!)^2}$.

坐标系与参数方程

1. 极坐标与直角坐标的互化

设M为平面上的一点,它的直角坐标为(x, y),极坐标为(ρ , θ). 由图可知下面的关系式成立:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \begin{cases} \rho^2 = x^2 + y^2, \\ \tan \theta = \frac{y}{x} (x \neq 0) \end{cases}$$

顺便指出,上式对 $\rho < 0$ 也成立. 这就是极坐标与直角坐标的互化公式.

- 2. 圆的极坐标方程
- (1)圆心在极点,半径为R的圆的极坐标方程为 $\rho = R$.
- (2)圆心在极轴上的点(a, 0)处,且过极点0的圆的极坐标方程为 $\rho = 2a\cos\theta$.
- (3)圆心在点 $\left(a, \frac{\pi}{2}\right)$ 处且过极点的圆的极坐标方程为 $\rho = 2a\sin\theta$, $0 \le \theta \le \pi$.

注: 当圆心不在直角坐标系的坐标轴上时,要建立圆的极坐标方程,通常把极点放置在圆心处,极轴与x轴同向,然后运用极坐标与直角坐标的变换公式.

$$\begin{cases} x = x_0 + \rho \cos \theta \\ y = y_0 + \rho \sin \theta \end{cases} \begin{cases} \rho^2 = (x - x_0)^2 + (y - y_0)^2 \\ \tan \theta = \frac{y - y_0}{x - x_0} \end{cases}$$

3. 直线的参数方程

直线的参数方程可以从它的普通方程转化而来,设直线的点斜式方程 为 $y - y_0 = k(x - x_0)$.

其中 $k = \tan \alpha$, α 为直线的倾斜角, 代入上式, 得

$$y - y_0 = \frac{\sin \alpha}{\cos \alpha} (x - x_0), \quad \alpha \neq \frac{\pi}{2}, \quad \mathbb{I} \mathbb{I} \frac{x - x_0}{\cos \alpha} = \frac{y - y_0}{\sin \alpha}.$$

记上式的比值为
$$t$$
,整理后得 $\begin{cases} x = x_0 + t \cos \alpha, \\ y = y_0 + t \sin \alpha. \end{cases}$

这是直线的参数方程,其中参数t有明显的几何意义. 在直角三角形 M_0AM 中, $|M_0A| = |x - x_0|$, $|MA| = |y - y_0|$, $|M_0M| = |t|$,即|t|表示直线上任一点M到定点 M_0 的距离.

4. 圆的参数方程

若圆心在点 $M_0(x_0, y_0)$, 半径为R, 则圆的参数方程为

$$\begin{cases} x = x_0 + R\cos\theta, \\ y = y_0 + R\sin\theta, \end{cases} 0 \le t \le 2\pi.$$

5. 椭圆的参数方程

若椭圆的中心不在原点,而在点 $M_0(x_0, y_0)$,对称轴与坐标轴平行的的椭圆的参数方程为:

$$\begin{cases} x = x_0 + a \cos t, \\ y = y_0 + b \sin t, \end{cases} \quad 0 \le t \le 2\pi.$$

People who liked this content also liked

终于整理出来了: 60篇必背的黄金搭档: 60篇必默! (吐血推荐)

大道语文

简化数学轻松提高

为什么有不少同学到高一,就被数学虐得怀疑人生

数学班

