LICN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU)

II Semester B. E. Fast-Track Examinations Jan-2024

(Common to AI, BT, CS, CY, CD & IS)

NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.
- 3. Formula book to be provided.

PART-A

1 1.1	The number of positive divisors of the integer 1412 is	02
1.2	Remainder obtained when is divided by 19 is	02
1.3	The directional derivative of at along the unit vector is	02
1.4	A particle moves along the curve, then the velocity and acceleration at any	
	point is and .	02
1.5	If then evaluate along the straight line from to .	02
1.6	If and is the region bounded by the cube, then is	02
1.7		02
1.8	Reduce the Cauchy-Euler differential equation to linear differential equation	
	with constant coefficients.	02
1.9	Construct the difference table for the following data.	
1.1		02
		02

PART-B

2	a b	By using the Euclidean algorithm, obtain the greatest common divisor of and and then find integers and to satisfy . Also show that and are not unique. Given the public key encrypt plain text, where the alphabets are assigned the numbers. Give the cipher text and find the private key.	08
3	a	Find the angle between the normal to the surface at the points and	08

	b	Compute the values of the constants such that vector. Determine the scalar potential function such that .	is curl free	08
		OR		
4	а	Find and for at.		08

	b	If and , then show that is solenoidal.	80
5	a b	 i) The path of the straight line from to and then to (ii) The straight line joining the origin and Using Stokes theorem to evaluate where is the boundary of the triangle with vertices and . 	06
		OR	
		UK UK	
6	а	Using Green's theorem, evaluate where is the boundary of the region enclosed by the lines , .	06
	b	Evaluate the if and is the surface of the sphere in the first octant.	10
7	a b	Using the method of variation of parameters, solve the differential equation . Solve the differential equation .	08 08
		OR	
8	а	Reduce the differential equation to a linear differential equation with constant coefficients and hence solve the same.	08
	b	The current in an circuit is governed by the differential equation A circuit has in series an electromotive force given by volts, a resistor of ohms, an inductor of henry and a capacitor of farads. If the initial current and the initial charge on the capacitor are both zero, find the charge on the	
		capacitor at any time	80
9	а	The following data was collected for the distance travelled versus time:	
		Use numerical differentiation to calculate velocity and acceleration at and .	08

	b	From the following data, estimate the number of students who obtained marks between and using Newton's interpolation method				
			80			
		OR				
10	а	The following data defines the sea-level concentration of dissolved oxygen for fresh water as a function of temperature.				
	b	Using Newton-Gregory formula, calculate the amount of oxygen, when temperature is and . Find a polynomial by using Lagrange's interpolation formula and hence find for the following data	08 08			

<u> </u>			