# On Time with Minimal Expected Cost!

Alexandre David, Peter G Jensen, Kim G Larsen, Axel Legay, Didier Lime, Mathias G Sørensen, Jakob H Taankvist

CISS - Aalborg University
DENMARK





## **Motivation**

Back

2-Player Game (Antagonistic opponent)
Markov Decision Process (probabilistic opponent)



Bruyere, V., Filiot, E., Randour, M., Raskin, J.F.: Meet your expectations with guarantees: Beyond worst-case synthesis in quantitative games. STACS14

## **Duration Probabilistic Automata**

```
Cumulative Probability Distribution
/* Resources */ res1:1;
/* Processes */ P1: [2,4].<res1:1>[2,6].[3,4];
                     P2: [2,6].<res1:1>[3,8].[1,5];
Pr[<=1000](<> P1.Done && P2.Done)
                                          Uni[2,4]
        Wait0
                                                                           Task2
                      Task0
                                                Task1
                                                              Wait2
                                                                                        Done
                      x < = 4
                                                x \le 6
                                                                           x < = 4
                        x > = 2
                                      res1>=
                                                   \chi > = 2
           x=0
                        x=0
                                      x=0
                                                   x=0
                                                                 Strategy that that will
                                                                         minimize
                                             Race
        Wait0
                      Task0
                                   Wait1
                                                             expected completion time??
                                                  =8
                     x<=6
                                      res1>=1
                                                   x > = 3
                        x=0
                                                   x=0
                                                                x=0
           x=0
                                      x=0
                                                                              x=0
                                                   res1+=1
                                          Uni[2,6]
```

Kempf, J.F., Bozga, M., Maler, O.: As soon as probable: Optimal scheduling under stochastic uncertainty. In: TACAS. pp. 385{400 (2013)



#### **Motivation**



× Priced Timed Game

✓ Timed Game

TIGA

✓ Timed Automata



✓ Priced Timed Automata



✓ Stochastic (P)TA



× Priced Timed MDP



Decision Stochastic Priced
 Timed Automata

Minimize expected cost subject to guaranteed time-bound





## **Overview**

- Priced Timed Games
  - Time bounded reachability strategies
- Priced Timed Markov Decision Processes
  - Minimal expected cost reachability strategy
- Optimal Strategy Synthesis Using Reinforcement Learning
- Representation of Stochastic Strategies
- Experimental Results



## PTA and PTG



$$\mathcal{A} = (L, \ell_0, X, \Sigma, E, P, Inv)$$

is a tuple where

Priced Timed Game  $\Sigma = \Sigma_c \uplus \Sigma_u$ 

- L is a finite set of locations,
- $\ell_0 \in L$  is the initial location,
- X is a finite set of non-negative real-valued clocks,
- Σ is a finite set of actions,
- $E \subseteq L \times \mathcal{B}(X) \times \Sigma \times 2^X \times L$  is a finite set of edges,
- ullet  $P:L o\mathbb{N}$  assigns a price-rate to each location, and
- $Inv : L \to \mathcal{B}(X)$  sets an invariant for each location.



## PTA Semantics

$$S_{\mathcal{A}} = (Q, q_0, \Sigma, \rightarrow)$$

- $(\ell, v) \in Q$  for  $\ell \in L$  and  $v \in \mathbb{R}_{>0}^X$  st  $v \models Inv(\ell)$ ,
- $q_0 = (\ell_0, 0)$  is the in

 $\mathsf{and}^1$ 

- $(\ell, v) \xrightarrow{a}_{0} (\ell', v')$  if  $\pi[i]$  the state  $q_{i}$ ,  $(\ell \xrightarrow{g',a,r} \ell') \in E \text{ st.}$ •  $\pi|_i (\pi|^i)$  the prefix (suffix) of  $\pi$  ending (starting) at  $q_i$ .
  •  $C(\pi) (T(\pi))$  denotes total accumulated cost (time).

- Set of runs of: Exec<sub>A</sub>.
- Set of finite (maximal) runs:  $Exec_{\mathcal{A}}^{f}$  ( $Exec_{\mathcal{A}}^{m}$ ).

$$p = P(\ell) \cdot d$$
,  $v \models Inv(\ell)$  and  $v + d \models Inv(\ell)$ .

#### Run $\pi$ :

$$q_0 \xrightarrow{d_0}_{p_0} q'_0 \xrightarrow{a_0}_0 q_1 \xrightarrow{d_1}_{p_1} q'_1 \xrightarrow{a_1}_0 \cdots \xrightarrow{d_{n-1}}_{p_{n-1}} q'_{n-1} \xrightarrow{a_{n-1}}_0 q_n \cdots$$

 $a_i \in \Sigma$ ,  $d_i, p_i \in \mathbb{R}_{>0}$ , and  $q_i$  is a state  $(\ell_{q_i}, \nu_{q_i})$ .







## **Strategies & Outcome**

Priced Timed Game  $\Sigma = \Sigma_c \uplus \Sigma_u$ 

$$\sigma: Exec_{\mathcal{G}}^f \rightharpoonup \mathcal{P}\left(\Sigma_c \cup \{\lambda\}\right) \setminus \{\emptyset\}$$

such that for any finite run  $\pi$ , if  $q = last(\pi)$  and  $a \in \sigma(\pi) \cap \Sigma_c$ , then  $q \xrightarrow{a} q'$  fs q'.

#### $Out(\sigma) \subseteq Exec_{\mathcal{G}}$

- $q_0 \in Out(\sigma)$
- If  $\pi \in Out(\sigma)$  then  $\pi' = \pi \xrightarrow{e} q' \in Out(\sigma)$  if  $\pi' = Exec_{\mathcal{G}}$  and either one of the following three conditions hold:
  - $\bullet \in \Sigma_u$ , or
  - $e \in \Sigma_c$  and  $e \in \sigma(\pi)$ , or
  - $e \in \mathbb{R}_{\geq 0} \text{ and for all } e' < e, \ \textit{last}(\pi) \xrightarrow{e'} q' \text{ for some } q' \text{ st}$   $\sigma(\pi \xrightarrow{e'} q') \ni \lambda.$



## **Cost Bounded Reachability Strategies**

For  $G \subseteq L$ ,  $B \in \mathbb{R}_{>0}$ : (G, B) is a cost-bounded reachability objective.

 $\pi$  is winning w.r.t. (G,B), if  $last(\pi) \in G \times \mathbb{R}^X_{\geq 0}$  and  $C(\pi) \leq B$ . A strategy  $\sigma$  over G is a winning strategy if all runs in  $Out(\sigma)$  are winning.

#### Theorem (Memoryless, Most Permissive Strategies)

Let G be a non-Zeno, clocked TG. If a time-bounded reachability objective (G,T) has a winning strategy, then it has

- 1 a deterministic, memoryless winning strategies, and
- 2 a (unique) most permissive, memoryless winning strategy  $\sigma_{\mathcal{G}}^{p}(G,T)$ .

## **Motivation**



Most permissive, memoryless strategy

Objective:  $A\langle\rangle$  (END  $\wedge$  time  $\leq 210$ )

**Deterministic, memoryless strategy:** 



## **Priced Timed MDPs**

$$\mathcal{M} = \langle \mathcal{G}, \mu^u \rangle$$

#### where

- $\mathcal{G} = (L, \ell_0, X, \Sigma_c, \Sigma_u, E, P, Inv)$  is a PTG, and
- $\mu^u$  is a family of density-functions,  $\{\mu^u_q : \exists \ell \exists v. q = (\ell, v)\}$ , with  $\mu^u_q(d, u) \in \mathbb{R}_{\geq 0}$  assigning the *density* of the environment aiming at taking the uncontrollable action  $u \in \Sigma_u$  after a delay of d from state q.

#### Assumptions:



## **Stochastic Strategies**

$$\mu^c$$
 for a PTMDP  $\mathcal{M} = \langle \mathcal{G}, \mu^u \rangle$ 

is a family of density-functions,  $\mu^c = \{\mu_q^c : \exists \ell \exists v. q = (\ell, v)\}$ , where  $\mu_q^c(d, c) \in \mathbb{R}_{\geq 0}$  assigns the *density* of the controller aiming at taking the controllable action  $c \in \Sigma_c$  after a delay of d from state q.

- Repeated races between  $\mu^u$  and  $\mu^c$ ,
- Induced probability measure  $\mathbb{P}_{(\mathcal{G},\mu^u),\mu^c}$  on (certain) sets of runs.

## **Induced Probability Measure**

Cylinder set  $C(q, I_0 \ell_0 I_1 \cdots I_n \ell_n)$  with  $\ell_i \in L$  and  $I_i = [I_i, u_i]$  with  $I_i, u_i \in \mathbb{Q}$ , i = 0..n, consists of all maximal runs having a prefix of the form:

$$q \xrightarrow{d_0} \xrightarrow{a_0} (\ell_0, v_0) \xrightarrow{d_1} \xrightarrow{a_1} \cdots \xrightarrow{d_n} \xrightarrow{a_n} (\ell_n, v_n)$$

where  $d_i \in I_i$  for all i < n.

#### Probability Measure

$$\mathbb{P}_{\langle \mathcal{G}, \mu^{u} \rangle, \mu^{c}} \left( \mathcal{C}(q, I_{0} \ell_{0} I_{1} \ell_{1} \cdots I_{n-1} \ell_{n}) \right) = \\
\sum_{p \in \{u, c\}} \sum_{\substack{a \in \Sigma_{p} \\ \ell_{q} \stackrel{a}{\rightarrow} \ell_{1}}} \int_{t \in I_{0}} \mu_{q}^{p}(t, a) \cdot \left( \int_{\tau > t} \mu_{q}^{\overline{p}}(\tau) d\tau \right) \cdot \\
\mathbb{P}_{\langle \mathcal{G}, \mu^{u} \rangle, \mu^{c}} \left( \mathcal{C}((q^{t})^{a}, \mathcal{C}(I_{1} \cdots I_{n-1} \ell_{n})) dt \right)$$

where  $\mu_q^p(\tau) = \sum_{a \in \Sigma_p} \mu_q^p(\tau, a)$ .







## Minimum Expected Cost

Let  $\pi \in Exec^m$  and let G be as set of goal locations.

$$C_G(\pi) = \min\{C(\pi|_i) : \pi[i] \in G\}$$

denotes the accumulated cost before  $\pi$  reaches G.

#### Expected Value of $C_G$ given $\mu^c$ :

$$\mathbb{E}_{\mu^c}^{\langle \mathcal{G}, \mu^u 
angle}(C_G) = \int_{\pi \in \mathsf{Exec}^m} C_G(\pi) \mathbb{P}_{\langle \mathcal{G}, \mu^u 
angle, \mu^c}(d\pi)$$

#### Optimal strategy $\mu^o$

$$\mathbb{E}_{\mu^{c}}^{\langle \mathcal{G}, \mu^{u} \rangle}(C_{G}) = \inf \left\{ \mathbb{E}_{\mu^{c}}^{\langle \mathcal{G}, \mu^{u} \rangle}(C_{G}) \mid \mu^{c} \prec \sigma^{p}(G, T) \right\}$$

where  $\sigma^p(G, T)$  is the most permissive T time-bounded reachability strategy.



#### **Motivation**



Minimal Expected Cost Strategy (0,b) 2\*80=160

Expected Cost for TIGA Strategy (100,w) **4\*95**=**380** 

Minimal Expected Cost while guaranteeing END is reached within time 210:

Strat.: 
$$t>90 \rightarrow (100,w)$$
  
 $t>70 \rightarrow (0,b)$   
 $ow \rightarrow (0,a)$   
=  
204



# Reinforcement Learning



## **Strategies**

#### Nondeterministic Strategies (UPPAAL TIGA)

 $R_{\ell} = \{(Z_1, a_1), \dots, (Z_k, a_k)\}$ , where  $a_i \in \Sigma_c \cup \{\lambda\}$ . Now R represents the strategy  $\sigma_R$  where  $\sigma_R((\ell, v)) \ni a$  iff  $(Z, a) \in R_{\ell}$  for some Z with  $v \in Z$ .

#### Stochastic Strategies (non-lazy \*)

- Urgent:  $\mu_{(\ell,\nu)}^c(d,a)=0$  if d>0, or
- Wait:  $\mu_{(\ell,v)}^c(d,a) = 0$  whenever  $\sigma^p(\ell,v+d) \ni \lambda$ .

$$\mu_{(\ell,v)}^c: (\Sigma_c \cup \{w\}) \to [0,1].$$

Classes allowing for efficient representation and learning



\* Non-lazy strategies suffices for DPAs



## Learning

Given a set of runs  $\Pi$  the relevant information for the sub-strategy  $\mu_\ell^c$  is given as  $ln_{\ell}$ :

$$In_{\ell} = \{(s_n, v) \in (\Sigma_c \cup \mathbb{R}) \times \mathbb{R}^{X}_{\geq 0} \mid (q_0 \stackrel{s_0}{\rightarrow}_{p_0} \dots \stackrel{s_{n-1}}{\rightarrow}_{p_{n-1}} (\ell, v) \stackrel{s_n}{\rightarrow}_{p_n} \dots) \in \Pi\}$$



Simulation of  $Uni(\sigma^p)$  for A() (END  $\land$  time  $\leq 210$ )







## Strategies -

#### Representation & Manipulation

Covariance Matrices

Logistic Regression



Splitting

Using Learning Determinization



$$\mu_{(\ell,v)}^c: (\Sigma_c \cup \{w\}) \rightarrow [0,1].$$







# **Experiments**

| Model        | Uniform | Co-variance        | Splitting | Regression         | Exact [?] |
|--------------|---------|--------------------|-----------|--------------------|-----------|
| Motivational | 410.60  | 200.54             | 204.21    | 200.65             |           |
| example      |         | 10.57s             | 13.16s    | 15.27s             |           |
|              |         | $6.09 \mathrm{MB}$ | 6.23MB    | 6.34MB             |           |
|              |         | 0/27               | 0/50      | 0/10               |           |
|              | 38.62   | 37.83              | 37.80     | 37.90              |           |
| GoWork       |         | 16.89s             | 12.99s    | 19.41              |           |
|              |         | 6.47MB             | 6.43MB    | $6.56 \mathrm{MB}$ |           |
|              |         | 0/32               | 0/29      | 0/9                |           |









































# **Experiments / DPA**

| Model         | Uniform | Co-variance | Splitting | Regression | Exact [?]           |
|---------------|---------|-------------|-----------|------------|---------------------|
|               | 18.07   | 17.61       | 17.54     | 17.56      |                     |
| $p0s3p1s4\_4$ |         | 19.31s      | 18.28s    | 20.87s     | $1062.77\mathrm{s}$ |
|               |         | 6.15MB      | 6.20MB    | 6.30MB     | $145.47\mathrm{MB}$ |
|               |         | 2/40        | 0/7       | 2/33       |                     |
|               | 18.41   | 17.63       | 17.88     | 17.73      |                     |
| p0s3p1s4_16   |         | 12.13s      | 13.21s    | 24.27s     | 176.15s             |
|               |         | 6.06MB      | 6.23MB    | 6.36MB     | 35.60MB             |
|               |         | 1/11        | 2/27      | 1/18       |                     |
|               | 19.80   | 19.25       | 19.22     | 19.23      |                     |
| $p0s4p1s4\_5$ |         | 20.67s      | 21.38s    | 29.02s     | 8547.52s            |
|               |         | 6.43MB      | 6.64MB    | 6.62MB     | $486.92\mathrm{MB}$ |
|               |         | 1/21        | 0/11      | 1/23       |                     |

Kempf, J.F., Bozga, M., Maler, O.: As soon as probable: Optimal scheduling under stochastic uncertainty. In: TACAS. pp. 385{400 (2013) http://www-verimag.imag.fr/PROJECTS/TEMPO/DATA/201304\_dpa/



# **Experiments / DPA Random**

| Model        | Uniform | Co-variance | Splitting | Regression          | Exact | [?] |
|--------------|---------|-------------|-----------|---------------------|-------|-----|
|              | 3944.58 | 2379.90     | 2370.75   | 2346.28             |       |     |
| ran-4-3      |         | 62.63s      | 41.34s    | 74.13s              |       |     |
|              |         | 12.01MB     | 13.12MB   | 12.23MB             |       |     |
|              |         | 0/10        | 2/32      | 1/24                |       |     |
|              | 8092.31 | 5035.81     | 5050.73   | 5029.37             |       |     |
| ran-4-4      |         | 56.97s      | 52.17s    | 112.34s             |       |     |
|              |         | 21.99MB     | 22.33MB   | 16.60MB             |       |     |
|              |         | 2/33        | ,         | 2/55                |       |     |
|              | 3168.30 | 2789.67     | 2778.92   | 2774.52             |       |     |
| tiga-ran-4-3 |         | 64.07s      | 71.25s    | 71.48s              |       |     |
|              |         | 13.44MB     | 14.64MB   | $13.60 \mathrm{MB}$ |       |     |
|              |         | 3/32        | 2/25      | 3/31                |       |     |
|              | 6978.53 | 6358.83     | 6291.49   | 6330.04             |       |     |
| tiga-ran-4-4 |         | 124.68s     | 118.67s   | 88.43s              |       |     |
|              |         | 21.31MB     | 22.43MB   | 18.04MB             |       |     |
|              |         | 1/40        | 2/43      | 0/2                 |       |     |



# **Experiments / DPA Random**

| Model    | Uniform  | Co-variance | Splitting | Regression | Exact | [?] |
|----------|----------|-------------|-----------|------------|-------|-----|
|          | 22030.00 | 15010.20    | 13603.70  | 14162.10   |       |     |
| ran-5-10 |          | 220.93s     | 347.84s   | 412.31s    |       |     |
|          |          | 931.96MB    | 480.51MB  | 265.81MB   |       |     |
|          | 39569.70 | 29642.20    | 30890.90  | 24121.90   |       |     |
| ran-5-15 |          | 332.06s     | 387.16s   | 965.80s    |       |     |
|          |          | 2042.07MB   | 804.52MB  | 1231.08MB  |       |     |
|          | 11538.70 | 6109.22     | 6305.93   | 6118.35    |       |     |
| ran-5-3  |          | 52.37s      | 72.01s    | 116.03s    |       |     |
|          |          | 29.45MB     | 28.69MB   | 18.34MB    |       |     |
|          | 9175.81  | 3888.85     | 3796.84   | 3697.70    |       |     |
| ran-5-4  |          | 97.34s      | 92.88s    | 135.72s    |       |     |
|          |          | 90.61MB     | 43.18MB   | 31.00MB    |       |     |
|          | 6693.26  | 3766.95     | 3515.98   | 3570.11    |       |     |
| ran-5-5  |          | 122.72s     | 151.66s   | 207.10s    |       |     |
|          |          | 145.17MB    | 108.07MB  | 62.79MB    |       |     |
|          | 1-0-0-   | 4-0-0-      |           | 4-00-04    |       |     |

## **Conclusion & Future Work**

- Efficient synthesis of strategies for PTMDP ensuring time-bounds and minimizing expected cost.
- If not time-bound needed we can omit the UPPAAL TIGA synthesis
- Extension to Hybrid MDPs utilizing UPPAAL SMCs support for SHAs.
- Make TIGA/SMC available to you!
- Datastructures supporting general stochastic strategies – not just non-lazy ones.
- More clever filtrations of runs.

