Tratamento de observações atípicas (outliers)

- Uma observação atípica é aquela que não é bem explicada pelo modelo e assim sendo só pode ser detectada adequadamente após o ajuste de um modelo à série.
- Sua detecção é realizada através dos resíduos do modelo.
- Utilizando que

$$\varepsilon_t \sim N(0,\sigma^2) :: \varepsilon_t/\sigma \sim N(0,1)$$

• Os resíduos padronizados são dados por:

$$\hat{\epsilon}_t / \hat{\sigma} \sim N(0,1)$$

- Espera-se, portanto, que 95% dos resíduos padronizados estejam no intervalo (-1,96;1,96).
 - De forma simplificada, observações "potencialmente" atípicas são resíduos padronizados fora deste intervalo de confiança ou de um IC de 99% ou qualquer outro nível de confiança arbitrado.

 Outra forma de se definir uma observação atípica heuristicamente é através de:

```
|\hat{\epsilon}_t / \hat{\sigma}| > k
|\hat{\epsilon}_t| > k \hat{\sigma}, k = 2,3,... (se k=2 então o IC é de 95%)
```

- Uma ou mais observações atípicas detectadas em uma ST através do ajuste de um modelo podem influenciar de forma não trivial a FAC, FACP, estimativas dos parâmetros do modelo, diagnósticos de normalidade e de capacidade preditiva do modelo etc.
- Assim sendo a ocorrência de observações atípicas pode ter conseqüências não triviais no processo de modelagem de uma ST.
- A ocorrência das observações atípicas pode estar associada a duas possibilidades:
 - (i) Se o IC é de 95% (k=2), então existe 5% de chance da observação atípica (o resíduo padronizado) pertencer realmente à distribuição normal. Portanto uma observação atípica pode ser uma observação genuína do modelo!
 - (i) Uma outra possibilidade é interpretar o valor atípico do resíduo padronizado como

indicação de que essa observação não foi gerada por um erro normal, ou seja a observação atípica "não pertence ao modelo", e deve merecer um "tratamento especial".

- Não existe uma receita simples para decidir se a observação atípica é um valor fidedigno do erro normal (i) ou um valor gerado por uma outra distribuição (ii).
- Se houver conhecimento a priori da ST sendo investigada, podemos descartar uma destas opções.
- Por exemplo, se a ST é uma série de produção de um bem industrial, e num determinado mês t=t*, dentro da amostra, houve uma greve que afetou a produção, então é mais adequado considerar a situação que esta observação foi gerada por um outro modelo (situação ii).
 - O tratamento de observações atípicas do tipo transiente, que afeta a série apenas num tempo específico, pode ser realizado inserindo-se uma dummy, ou função pulso, no modelo.
 - Existem duas formas de valores atípicos (outliers) de uma série: outlier aditivo (AO) e outlier de inovação (IO).

- a) outlier aditivo (AO)= o outlier afeta apenas o nível da observação t*, não se propagando para as demais observações.
 - Neste caso o modelo ARIMA apropriado possuirá forma:

$$y_{t} = c + \delta D_{t} + \frac{\Theta_{q}(L)}{\Delta^{d} \Phi_{p}(L)} \varepsilon_{t}, \ \epsilon_{t} \sim N(0, \sigma^{2}) \qquad D_{t} = \begin{cases} 1, \ t = t^{*} \\ 0, \ t \neq t^{*} \end{cases}$$

- Exemplo: Considere o modelo obtido, fazendo c=0, d=0, q=0, p=1 na expressão geral do modelo AO. E que $\phi=0.7$, $\delta=20$, $\sigma^2=1$, $t^*=100$. A equação será dada por:

$$y_{t} = 20.0 D_{t} + u_{t}, D_{t} = \begin{cases} 1, t = 100 \\ 0, t \neq 100 \end{cases}$$

$$u_{t} = 0.7 u_{t-1} + \varepsilon_{t}$$

$$\begin{aligned} y_t &= 20.0 \ D_t \ + \ \epsilon_t \ / \ 1 - 0.7 L \\ y_t &= 0.7 \ y_{t^{-1}} \ + \ 20 \ D_t \ - 0.7 \ D_{t^{-1}} \ + \epsilon_t \end{aligned}$$

E assim:

$$y_{t} = 0.7 y_{t-1} + \varepsilon_{t}, t \neq 100,101$$

$$y_{100} = 0.7 y_{99} + 20 + \varepsilon_{100}$$

$$y_{101} = 0.7 y_{100} - 14 + \varepsilon_{101}$$

$$= 0.49 y_{99} + 0.7 \varepsilon_{100} + \varepsilon_{101}$$

- Observar que este tipo de modelo poderá ser sempre estimado pelo EViews.
- Observe a presença do outlier em t=100, no gráfico da série, e que ele não se propaga para os outros períodos subsequentes:

	obs	Υ	PULS0	
	94	-0.301117	0.000000	
	95	-0.198377	0.000000	
	96	1.535813	0.000000	
	97	0.926339	0.000000	
	98	-0.017152	0.000000	
	99	0.398137	0.000000	
	100	19.50615	1.000000	
(101	0.075283	0.000000) •
	102	-0.298008	0.000000	
	103_	-0.399467	0.000000	
	104	0.424488	0.000000	
	105	-0.556403	0.000000	

 Em seguida estimamos um modelo AR(1), sem a variável pulso via comando

y ar(1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1)	0.499142	0.050289	9.925385	0.0000
R-squared	0.246234	Mean depe	ndent var	0.115792

- Observe que na opção AR o EViews não estima os parâmetros por MQO, mas sim por MV incondicional, o qual necessita de algoritmo de otimização numérica (a solução não é fechada).
- O gráfico dos resíduos e o histograma dos resíduos padronizados são apresentados a seguir. O outlier artificial, apontado pela seta, foi detectado em t=100.

 Primeiramente observe porque o resíduo em t=100 será "grande" se ajustarmos um modelo AR(1) ignorando o pulso:

$$\begin{aligned} e_{100} &= y_{100} - \hat{y}_{100|t-1} \\ &= (0.7y_{99} + 20 + \varepsilon_{100}) - (\hat{\varphi} y_{99}) \\ &= (0.7 - \hat{\varphi})y_{99} + 20 + \varepsilon_{100}, \ \hat{\varphi} \approx 0.5 \\ &= (0.7 - 0.5)y_{99} + 20 + \varepsilon_{100}. \\ &= 0.2y_{99} + 20 + \varepsilon_{100}. \end{aligned}$$

 Também podemos compreender o porquê do alto valor negativo do resíduo em t=101, que é causado pela retroalimentação do modelo, e assim não possui existência independente do outlier em t=100.

$$\begin{aligned} e_{101} &= y_{101} - \hat{y}_{101|t-1} \\ &= (0.7 \ y_{100} - 14 + \varepsilon_{101}) - (\hat{\varphi} \ y_{100}) \\ &= (0.7 - \hat{\varphi}) \ y_{100} - 14 + \varepsilon_{101}, \ \hat{\varphi} \approx 0.5 \\ &= 0.2 \ y_{100} - 14 + \varepsilon_{101} \\ &= (0.014 y_{99} + 0.2 \varepsilon_{100} + \varepsilon_{101}) - 10 \end{aligned}$$

>> como os ϵ 's e y_{99} são valores pequenos, segue que o resíduo em t=101 será negativo e com alta magnitude.

 Assim, embora o pulso apareça em t=100 para y, nos resíduos serão gerados dois valores atípicos: em t=101 e t=100.

- >> observe o efeito dos valores atípicos no valor da estatística JB.
- Como o modelo não foi capaz de capturar esta observação, devemos re-estimar a ST com um novo modelo o qual incorpore uma intervenção, utilizando a variável pulso previamente definida.
- Assim sendo o novo modelo, além do termo AR(1), incorpora a variável pulso (D_t) como um regressor. Esta variável será suficiente para eliminar os resíduos atípicos em t=100 e t=101.

 O comando do EViews para estimar o modelo AR(1) com a variável pulso é:

• O output do EViews é mostrado a seguir:

Convergence achieved after 4 iterations

Variable Coefficient		Std. Error t-Statistic		Prob.
DT AR(1)	19.27764 0.765561	0.773832 0.037414	24.91191 20.46185	0.0000 0.0000
R-squared	0.733591	Mean dependent var		0.115792

- Observe que o parâmetro associado à variável pulso é estatisticamente significante e tem magnitude aproximadamente igual a 20, a amplitude do pulso gerado.
- Observe também que o valor do coeficiente ϕ passou de 0.499 (no modelo sem D_t) para 0.76 (no modelo com D_t). Ou seja, o modelo sem pulso sub-estima o verdadeiro valor de ϕ (0.7).
- Embora o EViews não estime o modelo por MQO, podemos ter uma idéia aproximada do "efeito" da variável D_t neste modelo considerando o

estimador de MQO de δ , o parâmetro de D_t ,o qual será dado por:

$$\hat{\delta} = y_{100} - \frac{\hat{\varphi}}{(1 + \hat{\varphi}^2)} (y_{101} + y_{99})$$
, e assim segue que:

$$\begin{split} &e_{100} = y_{100} - \hat{y}_{100|t-1} \\ &= y_{100} - (\hat{\phi}y_{99} + \hat{\delta}) = y_{100} - [\hat{\phi}y_{99} + y_{100} - \frac{\hat{\phi}}{(1+\hat{\phi}^{2})}(y_{101} + y_{99})] \\ &= \frac{\hat{\phi}}{(1+\hat{\phi}^{2})}(y_{101} + y_{99}) - \hat{\phi}y_{99}, \, mas \, y_{101} = \phi^{2}y_{99} + \phi\varepsilon_{100} + \varepsilon_{101} \\ &= \frac{\hat{\phi}}{(1+\hat{\phi}^{2})}(\phi^{2}y_{99} + \phi\varepsilon_{100} + \varepsilon_{101} + y_{99}) - \hat{\phi}y_{99} \\ &= \frac{\hat{\phi}}{(1+\hat{\phi}^{2})}[(1+\phi^{2})y_{99}] + \frac{\hat{\phi}}{(1+\hat{\phi}^{2})}[\phi\varepsilon_{100} + \varepsilon_{101}] - \hat{\phi}y_{99}, \, \text{usando que } \hat{\phi} \approx \phi \\ &\approx \hat{\phi}y_{99} + \frac{\hat{\phi}}{(1+\hat{\phi}^{2})}[\phi\varepsilon_{100} + \varepsilon_{101}] - \hat{\phi}y_{99} = \frac{\hat{\phi}}{(1+\hat{\phi}^{2})}[\phi\varepsilon_{100} + \varepsilon_{101}] \end{split}$$

- Ou seja o resíduo de y_{100} no modelo que tem D_t será bem pequeno. Portanto a variável pulso cria uma compensação em t=100 através do alto valor de δ , atenuando consideravelmente o resíduo em t=100.
- Como consequência deste resíduo baixo, todas as estatísticas do modelo (estimativas dos parâmetros, FAC, normalidade etc) são afetadas (para melhor) pela s "atenuação".

 Na sequência apresentamos os resíduos e histogramas do modelo c/ a variável pulso.

obs	Actual	Fitted	Residual	Residual Plot	
98	-0.01715	0.70917	-0.72632	IX I	
99	0.39814	-0.01313	0.41127	' 🔭 '	
100	19.5061	19.5824	-0.07629	l 'a∕'	
101	0.07528	0.17494	0.09965	' '	
102	-0.29801	0.05763	-0.35564	' '	
103	-0.39947	-0.22814	-0.17132		
104	0.42449	-0.30582	0.73030		
105	-0.55640	0.32497	-0.88137	•	
106	-0.63976	-0/42596	-0.21380		
107	-1.19857	-0.48978	-0.70880	'@{ '	
108	-1.46933	-0.91758	-0.55174	'& '	
109	-1.61005	-1.12486	-0.48519	'4 '	
110	-1.49811	-1.23259	-0.26552	ا (فرا	
resíduo quase zero.					

 O modelo agora possui bons resultados no teste JB, pois a observação aberrante foi tratada "fora da distribuição normal".

- **b) outlier inovador (IO)=** nesse caso o outlier afeta o nível da observação em t=t*, e as observações subsequentes, mas com efeito decrescente.
 - Neste caso o modelo ARIMA apropriado possuirá forma:

$$y_{t} = \frac{\Theta_{q}(L)}{\Delta^{d}\Phi_{p}(L)}(c + \delta D_{t} + \varepsilon_{t}), \ \epsilon_{t} \sim N(0, \sigma^{2}) \qquad D_{t} = \begin{cases} 1, \ t = t^{*} \\ 0, \ t \neq t^{*} \end{cases}$$

- Exemplo: Considere o modelo obtido, fazendo c=0, d=0, q=0, p=1 na expressão geral do modelo IO. E que $\phi=0.7$, $\delta=20$, $\sigma^2=1$, $t^*=100$. A sua equação será dada por :

$$y_t = 0.7 y_{t-1} + 20.0 D_t + \varepsilon_t, D_t = \begin{cases} 1, t = 100 \\ 0, t \neq 100 \end{cases} \varepsilon_t \sim N(0.1)$$

E assim:

$$\begin{split} y_t &= 0.7 \, y_{t-1} \, + \, \epsilon_t, \, t < 100 \\ y_{100} &= 0.7 \, y_{99} \, + 20 \, + \, \epsilon_{100} \\ y_{101} &= 0.7 \, y_{100} + \, \epsilon_{101} = 0.7 (0.7 \, y_{99} \, + 20 \, + \, \epsilon_{100}) + \epsilon_{101} \\ &= 0.49 \, y_{99} + 14 + 0.7 \epsilon_{100} + \epsilon_{101} \\ y_{102} &= 0.7 \, y_{101} + \, \epsilon_{102} = 0.7 (0.49 \, y_{99} + 14 + 0.7 \epsilon_{100} + \epsilon_{101}) + \epsilon_{102} \\ &= 0.343 \, y_{99} + 9.8 + 0.49 \epsilon_{100} + 0.7 \, \epsilon_{101} + \epsilon_{102}, \, etc \end{split}$$

 Observar que estes tipos de modelos, na sua forma geral, não podem ser estimados pelo Eviews. Apenas os modelos que possuem a parte AR poderão ser estimados pelo Eviews utilizando os valores defasados da variável dependente y(-1) y(-2) no lugar dos termos ar(1) ar(2) etc.

 Observar que agora as observações subsequentes aquela que recebe o pulso (t=100) são também contaminadas por este valor, e que este efeito vai decrescendo com o tempo.

	obs	Υ	DT	
	95	1.380209	0.000000	
	96	0.907156	0.000000	
	97	-0.516835	0.000000	
	98	0.115786	0.000000	
	99	0.238473	0.000000	
	100	18.22129	1.000000	
(101	15.37685	0.000000)
	102	9.515894	0.000000	
	103	6.633639	0.000000	
	104	3.813887	0.000000	
	105	2.061333	0.000000	
	106	1.398517	0.000000	
	107	1.893930	0.000000	
	108	0.669911	0.000000	

• Para estimar este modelo no EViews o comando é:

$$y y(-1)$$

 Neste caso a estimação é efetuada por MQO, e assim os estimadores possuem formas fechadas. O resultado da estimação é dado a seguir:

Variable	Coefficient	Std. Error	t-Statistic	Prob.
Y(-1)	0.718201	0.040469	17.74711	0.0000
R-squared	0.512427	Mean depend	lent var	-0.117111

- Observar que neste caso a estimativa de φ não é contaminada pela presença do outlier.
- Como o modelo estimado não possui a variável pulso, será gerado um outlier nos resíduos, contribuindo para a sua não normalidade.

 Agora estimamos um modelo incorporando a variável pulso:

y y(-1) dt

Variable	Coefficient	Std. Error	t-Statistic	Prob.
Y(-1) DT	0.715159 18.05074	0.029463 1.108390	24.27283 16.28555	0.0000 0.0000
R-squared	0.742433	Mean depend	ent var	-0.117111

 Nesta situação o resíduo em t=100 será exatamente zero, e não aproximadamente zero como ocorreu antes. Como o modelo é estimado por MQO podemos obter a expressão fechada dos estimadores:

$$y_{t} = \varphi y_{t-1} + \delta D_{t} + \varepsilon_{t}, \quad D_{t} = \begin{cases} 1, & t = 100 \\ 0, & t \neq 100 \end{cases}$$
 $\varepsilon_{t} \sim N(0,1)$

$$S(\phi,\delta) = \sum_{t=2}^{T} (y_t - \hat{y}_{t|t-1})^2 = \sum_{t=2}^{T} (y_t - \phi y_{t-1} - \delta D_t)^2, \text{ e assim:}$$

$$\frac{\partial S(\phi, \delta)}{\partial \delta} = o \Rightarrow \hat{\delta} = y_{100} - \hat{\phi}y_{99}$$
. Portanto:

$$\begin{split} e_{_{100}} &= y_{_{100}} \text{-} \; \hat{y}_{_{100|t-1}} \\ &= y_{_{100}} \text{-} \; (\hat{\phi} \; y_{_{99}} \text{+} \; \hat{\delta}) \text{=} \; y_{_{100}} \text{-} \; \hat{\phi} \; y_{_{99}} \text{-} \; \hat{\delta} \text{=} \; y_{_{100}} \text{-} \; \hat{\phi} \; y_{_{99}} \text{-} y_{_{100}} \text{+} \; \hat{\phi} y_{_{99}} \text{=} o \end{split}$$

obs	Actual	Fitted	Residual	Residual Plot
97	-0.51684	0.64876	-1.16560	< '
98	0.11579	-0.36962	0.48541	' ' '
99	0.23847	0.08281	0.15567	
100	18.2213	18.2213	3.6E-15 <	· ·
101	15.3768	13.0311	2.34573	
102	9.51589	10.9969	-1.48099	Q
103	6.63364	6.80538	-0.17174	
104	3.81389	4.74411	-0.93022	
105	2.06133	2.72754	-0.66620	1 / 1

 A eliminação do outlier dos resíduos resultará em melhora na normalidade desta variável, como pode ser visto a seguir.

Series: Residuals Sample 2 300 Observations 299		
Mean	-0.088146	
Median	-0.074848	
Maximum	2.821267	
Minimum	-3.100815	
Std. Dev.	1.102978	
Skewness	-0.012036	
Kurtosis	2.885985	
Jarque-Bera Probability	0.169171 0.918893	

- É natural perguntar: na prática para "tratar" uma ou mais observações atípicas, que tipo de modelo deve-se usar: AO ou IO?
 - >> o primeiro ponto importante é que se vc utilizar o modelo errado, ou seja, se o outlier for do tipo AO e vc utilizar o modelo IO, ou se o outlier for do tipo IO e vc utilizar o modelo AO, então vc não conseguirá eliminar o outlier incluindo o pulso no modelo.
 - >> nem sempre a inspeção visual da série permitirá avaliar se o outlier presente é do tipo AO ou IO, através da observação se o efeito do outlier é localizado em apenas um tempo t (AO) ou se é transferido aos outros pontos (IO).
 - >> Morettin e Toloi no seu livro, págs. 292-296 sugerem um teste para detectar o modelo mais adequado, mais o procedimento é um pouco complexo e exige software especializado.
 - >> a nossa sugestão pragmática é que vc estime os dois tipos de modelo (se puder...), e baseado nos diagnósticos e capacidade preditiva, escolha o melhor modelo.