1 Gramatika, převod - NKA, DKA

Gramatika zadání.

$$S \rightarrow bA \mid bB \mid aS$$

 $A \rightarrow abA \mid bcB \mid e$
 $B \rightarrow bA \mid cba$
 $C \rightarrow aS \mid ab \mid e$

Stav C je vyškrtnut, protože se do něj nelze dostat z žádného jiného stavu a není možné logicky odvodit, co stav reprezentuje a jak by se do něj mělo být možné dostat.

Zadaná gramatika převedena do regulárního tvaru.

Obrázek 1: Automat zadané gramatiky (nedeterministický)

V obrázku 1 existuje stav pojmenován jako exit, který ale není v gramatice. Tento stav byl přidán, aby reprezentoval výstup ze stavu B sekvencí cba, protože použitý nástroj pro kreslení automatu neumožňuje volně mířící šipky.

Obrázek 2: Automat regulární gramatiky (nedeterministický)

Stav a		b	c
\rightarrow S	S	$\{A, B\}$	Ø
$\leftarrow \{A, B\}$	A_1	$\{B_1, A\}$	B_2
$\leftarrow \{B_1, A\}$	A_1	$\{B_1, A\}$	$\{A, B\}$
A_1	Ø	$\{A, B\}$	Ø
B_2	Ø	B_3	Ø
B_3	B_4	Ø	Ø
$\leftarrow B_4$	Ø	Ø	Ø

Tabulka 1: Převedení gramatiky na deterministickou

Stavy $\{A, B\}$ a $\{B_1, A\}$ budou dále označovány jako C a D (ve stejném pořadí) a nahrazují původní stavy A a B.

Obrázek 3: Automat podle tabulky (deterministický)

2 Automat dělitelnosti 5ti binárního čísla

Přesně takovýto automat a jeho princip je výborně popsán zde https://math.stackexchange.com/questions/4027896/pattern-for-all-the-binary-chains-divisible-by-5. Tento zdroj byl použit.

Obrázek 4: Automat dělitenosti 5ti binárního čísla

k	b	2k + b	$(2k + b) \mod 5$
0	0	0	0
0	1	1	1
1	0	2	2
1	1	3	3
2	0	4	4
2	1	5	0 (mod 5)
3	0	6	1
3	1	7	2
4	0	8	3
4	1	9	4

Tabulka 2: Funkčnost automatu dělitolnosti 5ti binárního čísla

Tabulka 2 popisuje průchod automatem a způsob principu automatu. Začínáme ve stavu 0 (\mathbf{k} - zbytek po dělení 5ti) a poté přijímáme binární číslo \mathbf{b} . Nyní provedeme $2\mathbf{k} + \mathbf{b}$, kde \mathbf{k} je číslo stavu a \mathbf{b} je načtená binární hodnota. Načtením hodnoty \mathbf{b} se mění vstupní číslo a je třeba přepnout automat do správného stavu. Ten je získán provedením operace $2\mathbf{k} + \mathbf{b}$ mod $\mathbf{5}$, protože hledáme číslo dělitelné 5ti a proto jsou stavy automatu zbytky po dělení 5ti (mod $\mathbf{5}$).

3 Sestavení gramatiky popisující jazyk reg. výrazů

3.0.1 Vysvětlivky

```
a ... ASCII znak
b ... +| ... nebo
* ... iterace
() ... priorita
```

3.0.2 Gramatika

3.1 Příklad 1: $a(b|c)^*$

Pozor: v příkladu jsou **a,b,c** ASCII znaky, ale v grafu **a** reprezentuje ASCII všechny znaky a **b** reprezentuje **nebo**.

$$S \to \mathbf{aA} \to \mathbf{aS_1} \to \mathbf{a(aba} \to \mathbf{a(aba} S_1 \to \mathbf{a(aba}) \to \mathbf{a(aba}) S_1 \to \mathbf{a(aba})^* S_1 \to \mathbf{a(aba})^*$$

3.2 Příklad 2: (a(bc))

Pozor: v příkladu jsou ${\bf a,b,c}$ ASCII znaky, ale v grafu ${\bf a}$ reprezentuje ASCII všechny tyto znaky.

$$S \rightarrow (aAB \rightarrow (aS_1B \rightarrow (a(aABB \rightarrow (a(aAS_1BB \rightarrow (a(aaBB \rightarrow (a(aa)B \rightarrow (a(aa)) \rightarrow (a(aa)) \rightarrow (a(aa)))))))$$

