Bone Age Detection from X-ray

Group 01

Chirag Soni (1401CS13) Vignesh Edithal (1401CS14) Prashant (1401CS35)

Introduction

- 1. Radiologists manually find skeletal age with help of atlas.
- 2. Compare skeletal age with actual age to ensure normal growth in children.
- 3. RSNA held competition to automate the process.

Dataset

1.png

id	boneage	male	
1	180	False	
2	12	True	
	•••		

Balancing Dataset

Preprocessing

- 1. Age normalization $(x \mu)/\sigma$
 - Reduces effect of outlier data points
- 2. Reduce Image Resolution $2000x1500 \rightarrow 224x224$
 - Reduce redundant pixels while retaining information.
- 3. Rotation 5°
- 4. Horizontal/Vertical Translation 15%
- 5. Zoom 25°
- 6. Horizontal Flip

For better generalization

Hyperparameters

Optimized over these parameters

- Pooling : Average pooling / Max pooling
- Dropout: 0.2 / 0.5
- Activation function : ReLU / tanh
- Gender: Use or not
- Image Size : 224x224, 500x500
- Pretrained models : Inception V3, VGG16, MobileNet

Training

- Batchsize of 10
- Trained over 50 epochs (early stoppage with patience 10)
- Adam optimizer
- Mean Square Error as loss function
- Reduce Learning Rate on Plateau

Results

For the best model,

Test Mean Absolute Error = 8.615 months

- train_loss = 0.0809
- train_mae_months = 9.0737
- valid_loss = 0.0709
- val_mae_months = 8.1923

Code is uploaded on Github

https://github.com/chiragiitp/Bone-Age-Detection-From-X-Ray

Results

Performance Metrics of various models						
Model No.	Train	Train	Valid	Valid	Test	
	Loss	MAE	Loss	MAE	MAE	
Model 1	0.4827	21.9844	0.3689	19.1613	19.449	
Model 2	0.2349	15.4782	0.1865	13.7690	26.3639	
Model 3	0.3227	17.8639	0.1702	12.7672	13.083	
Model 4	0.0889	9.4319	0.0736	8.4977	8.842	
Model 5	0.2878	16.2868	0.1143	10.8331	11.2478	
Model 6	2.4902	56.4327	1.1138	36.9110	35.309	
Model 7	0.1609	12.7924	0.1073	10.6136	11.0849	
Model 8	0.0809	9.0737	0.0709	8.1923	8.615	

Age: 10.0 Predicted Age: 15.6 Gender: Female

Age: 144.0 Predicted Age: 121.9 Gender: Male

Age: 82.0 Predicted Age: 81.3 Gender: Female

Age: 156.0 Predicted Age: 146.3 Gender: Male

Age: 106.0 Predicted Age: 110.1 Gender: Female

Age: 168.0 Predicted Age: 170.0 Gender: Male

Age: 126.0 Predicted Age: 129.8 Gender: Female

Age: 228.0 Predicted Age: 200.3 Gender: Male

Conclusion

- 1. Gender information is vital for the network.
- Mean Average Deviation (MAD) between different human observers 0.61 years. MAD with the winning model is 0.36 years.
- 3. Deep CNN can surpass human level efficiency.

Should we stop training Radiologists now?

References

- Kaggle <u>2</u>
- RSNA challenge
- Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs <a>2
- Lee, H., Tajmir, S., Lee, J. et al. J Digit Imaging (2017) 30: 427. Fully Automated Deep Learning System for Bone Age Assessment

Thank you

