Undecidability, part II

Warm-up question (4/15/22)

What is your favorite walking area in Pullman (on or off campus)?

Send me your response by Canvas email.

HW 7 is out today

- Last homework set!
- Has 8 problems
 - 7 problems (mostly on decidability and reducibility)
 - 1 game-inspired problem
 - One of the problems involves learning about Cantor
 - 1 reflection question
- You have 10 days

Out: 4/15/22

Due: 4/25/22

In last lecture, we saw...

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts w} \}$

- A_{TM} is Turing-Recognizable
 - Universal Turing Machine
- Countable and Uncountable sets
 - Correspondence
- The set of real numbers R is uncountable
 - The diagonalization method (Cantor)

Today, we will...

 Show that some languages are not Turingrecognizable

Prove that A_{TM} is undecidable

 Exhibit an example of a language that is not Turing-recognizable

Some languages are not Turing-recognizable

- Underlying reason:
 - There are uncountably many languages
 - And only countably many Turing Machines
- To show that the set of all TMs is countable
 - First, observe that the set of all strings Σ* is countable for any alphabet Σ
 - With only finitely many strings of each length, we may form a list Σ* by writing down all strings of length 0, length 1, length 2, and so on
 - Each Turing TM M has an encoding into a string <M>
- To show that the set of all languages is uncountable (well, we need another slide, or two; see next)

The set of all languages is uncountable

- First, observe that the set of all infinite binary sequences is uncountable
 - (An infinite binary sequence is an unending sequence of 0s and 1s)
 - Let B be the set of all infinite binary sequences
 - We can show that B is uncountable by using a proof by diagonalization similar to the one used to prove the set of real R is uncountable

The set of all languages is uncountable

- Let L be the set of all languages over alphabet Σ
- We show that L is uncountable by giving a correspondence with B
- Let $\Sigma^* = \{s_1, s_2, ...\}$
- Each A ε L has a unique sequence in B
- The ith bit of that sequence is a 1 if s_i ∈A and is a 0 if s_i ∉ A
- This is called the characteristic sequence of A
- For example, if A were the language of all strings starting with a $\frac{0}{0}$ over the alphabet $\frac{0}{1}$, its characteristic sequence $\frac{1}{1}$ would be

```
\Sigma^* = \{ egin{array}{llll} oldsymbol{arepsilon}, & 0, & 1, & 00, & 01, & 10, & 11, & 000, & 001, & \cdots \ A = \{ & 0, & 00, & 01, & & 000, & 001, & \cdots \ \}; \ \chi_A = & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & \cdots \end{array} \} \; ;
```


The set of all languages is uncountable

- The function $f: L \rightarrow B$, where f(A) equals the characteristic sequence of A, is one-to-one and onto (hence is a correspondence)
- Therefore, as B is uncountable, L is uncountable as well
- Thus we have shown that the set of all languages cannot be put into a correspondence with a set of all Turing machines
- We conclude that some languages are not recognized by any TM

1

A_{TM} is undecidable: proof

- We assume that A_{TM} is decidable and obtain a contradiction
- Suppose H is a decider for A_{TM} and w is a string
- H halts and accepts if M accepts w;
 H halts and rejects if M fails to accept w
- In other words, we assume that H is a TM, where

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w. \end{cases}$$

A_{TM} is undecidable: proof

- Now we construct a new TM D with H as a subroutine
- This new TM calls H to determine what M does when the input to M is its own description <M>
- Once D has determined this information, it does the opposite (i.e. it rejects if M accepts and accepts if M does not accept)

D = "On input $\langle M \rangle$, where M is a TM:

- **1.** Run H on input $\langle M, \langle M \rangle \rangle$.
- 2. Output the opposite of what H outputs. That is, if H accepts, reject; and if H rejects, accept."

1

A_{TM} is undecidable: proof

In summary, we have:

$$D\big(\langle M \rangle\big) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle. \end{cases}$$

What happens when we run D with its own description <D> as input?

In that case, we get:

$$D\big(\langle D\rangle\big) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D\rangle \\ reject & \text{if } D \text{ accepts } \langle D\rangle. \end{cases}$$

No matter what D does, it is forced to do the opposite, a contradiction. Thus neither TM D nor TM H can exist.

Let us review the steps of the proof we just saw

- Assume that a TM H decides A_{TM}
- Use H to build a TM D that takes an input <M>,
 where D accepts its input <M> exactly when <M>
 does not accept its input <M>
- Finally, run D on itself
- Thus, the machine takes the following actions, with the last line being the contradiction.
 - H accepts $\langle M, w \rangle$ exactly when M accepts w.
 - D rejects $\langle M \rangle$ exactly when M accepts $\langle M \rangle$.
 - D rejects $\langle D \rangle$ exactly when D accepts $\langle D \rangle$.

But where is the diagonalization in the proof?

- Becomes apparent when we examine the tables of behavior for TMs H and D
- In these tables, we list all TMs down the rows, and all their descriptions across the columns
- The entries tell whether the machine in a given row accepts the input in a given column
- The entry is accept if the machine accepts the input, but is blank if it rejects or loops on that input
- Example:

	$\langle M_1 angle$	$\langle M_2 angle$		$\langle M_4 angle$	
M_1	accept		accept		
M_2	accept	accept	$accept \\ accept$	accept	
M_3					
$M_1 \ M_2 \ M_3 \ M_4$	accept	accept			• • •
:			:		
:			:		

But where the diagonalization in the proof?

Entry i,j is the value of H on input $\langle M_i, \langle M_i \rangle \rangle$

But where the diagonalization in the proof?

If D is in the figure, a contradiction occurs at?

```
\langle M_1 \rangle
                    \langle M_2 \rangle
                               \langle M_3 \rangle
                                           \langle M_4 \rangle
                                                               \langle D \rangle
M_1
                   reject
                                          reject
       accept
                              accept
                                                             accept
M_2
       accept
                 accept \quad accept \quad accept
                                                             accept
M_3
       reject
                reject reject reject
                                                             reject
M_4
       accept
                   accept
                              reject
                                          reject
                                                             accept
D
       reject
                   reject
                              accept
                                          accept
```


A Turing-unrecognizable language

Definition:

A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.

Theorem:

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

IOW: a language is decidable exactly when both it and its complement are Turing-recognizable.

Proof

First direction

- If A is decidable, we can easily see that both A and its complement A— are Turing-recognizable
 - Any decidable language is Turing-recognizable,
 and the complement of a decidable language also is decidable

Second direction

- If both A and its complement A⁻ are Turing-recognizable, we let M₁ be the recognizer for A and M₂ be the recognizer for A⁻.
- The following TM M is decider for A

Proof

M = "On input w:

- 1. Run both M_1 and M_2 on input w in parallel.
- 2. If M_1 accepts, accept; if M_2 accepts, reject."
- Running the two machines in parallel means that M has two tapes, one for simulating M₁ and another for simulating M₂
- Next, we show that M decides A
 - Every string w is either in A or A—
 - Therefore, either M₁ or M₂ must accept w
 - Because M halts whenever M₁ or M₂ accepts, M always halts, and so it is a decider
 - Furthermore, it accepts all strings in A and rejects all strings not in A. So M is decider for A, and thus A is decidable.

A Turing-unrecognizable language: exhibit

Corollary:

The complement of A_{TM} is not Turing-recognizable

Proof:

- We know that A_{TM} is Turing-recognizable.
- If A_{TM} complement also were Turing-recognizable, A_{TM} would be decidable.
- But we know that A_{TM} is not decidable.
- So A_{TM} complement must not be Turing-recognizable.