CS 341: Foundations of CS II

Marvin K. Nakayama Computer Science Department New Jersey Institute of Technology Newark, NJ 07102

CS 341: Chapter 1 1-3

Introduction

- Now introduce a simple model of a computer having a finite amount of memory.
- This type of machine will be known as a **finite-state machine** or finite automaton.
- Basic idea how a finite automaton works:
 - It is presented an input string w over an alphabet Σ ; i.e., $w \in \Sigma^*$.
 - lacktriangle It reads in the symbols of w from left to right, one at a time.
 - After reading the last symbol, it indicates if it accepts or rejects the string.
- These machines are useful for string matching, compilers, etc.

Chapter 1 **Regular Languages**

Contents

- Finite Automata
- Class of Regular Languages is Closed Under Some Operations
- Nondeterminism
- Regular Expressions
- Nonregular Languages

CS 341: Chapter 1 1-4

Deterministic Finite Automata (DFA)

Example: DFA with alphabet $\Sigma = \{a, b\}$:

- q_1, q_2, q_3 are the **states**.
- ullet q_1 is the **start state** as it has an arrow coming into it from nowhere.
- q_2 is an **accept state** as it is drawn with a double circle.

1-5

1-7

1-8

Deterministic Finite Automata

- ullet Edges tell how to move when in a state and a symbol from Σ is read.
- DFA is fed **input string** $w \in \Sigma^*$. After reading last symbol of w,
 - if DFA is in an accept state, then string is accepted
 - otherwise, it is **rejected**.
- Process the following strings over $\Sigma = \{a, b\}$ on above machine:
 - abaa is accepted ■ aba is rejected ■ ϵ is rejected ■ ϵ is rejected ■ ϵ is rejected ■ ϵ is rejected

Formal Definition of DFA

Definition: A deterministic finite automaton (DFA) is a 5-tuple

$$M = (Q, \Sigma, \delta, q_0, F),$$

where

- 1. Q is a **finite** set of states.
- 2. Σ is an alphabet, and the DFA processes strings over Σ .
- 3. $\delta: Q \times \Sigma \to Q$ is the transition function.
 - ullet δ defines label on each edge.
- 4. $q_0 \in Q$ is the start state (or initial state).
- 5. $F \subseteq Q$ is the set of accept states (or final states).

Remark: Sometimes refer to DFA as simply a finite automaton (FA).

CS 341: Chapter 1

Transition Function of DFA

Transition function $\delta: Q \times \Sigma \to Q$ works as follows:

- ullet For each state and for each symbol of the input alphabet, the function δ tells which (one) state to go to next.
- Specifically, if $r \in Q$ and $\ell \in \Sigma$, then $\delta(r, \ell)$ is the state that the DFA goes to when it is in state r and reads in ℓ , e.g., $\delta(q_2, a) = q_3$.
- ullet For each pair of state $r \in Q$ and symbol $\ell \in \Sigma$,
 - there is **exactly one** arc leaving r labeled with ℓ .
- Thus, there is no choice in how to process a string.
 - So the machine is **deterministic**.

CS 341: Chapter 1

Example of DFA

- $\bullet Q = \{q_1, q_2, q_3\}$
- $\Sigma = \{a, b\}$
- $\delta: Q \times \Sigma \to Q$ is described as

	a	b
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2

- \bullet q_1 is the start state
- $F = \{q_2\}.$

1_9

1-11

1-10

1-12

How a DFA Computes

- ullet DFA is presented with an input string $w\in \Sigma^*$.
- DFA begins in the start state.
- DFA reads the string one symbol at a time, starting from the left.
- The symbols read in determine the sequence of states visited.
- ullet Processing ends after the last symbol of w has been read.
- After reading the entire input string
 - \blacksquare if DFA ends in an accept state, then input string w is **accepted**;
 - lacktriangledown otherwise, input string w is **rejected**.

Formal Definition of DFA Computation

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
- String $w = w_1 w_2 \cdots w_n \in \Sigma^*$, where each $w_i \in \Sigma$ and $n \geq 0$.
- \bullet Then M accepts w if there exists a sequence of states $r_0, r_1, r_2, \ldots, r_n \in Q$ such that
 - 1. $r_0 = q_0$
 - first state r_0 in the sequence is the start state of DFA;
- $2. r_n \in F$
 - \blacksquare last state r_n in the sequence is an accept state;
- 3. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each $i = 0, 1, 2, \dots, n-1$
 - lack sequence of states corresponds to valid transitions for string w.

CS 341: Chapter 1

Language of Machine

- ullet **Definition:** If A is the set of all strings that machine M accepts, then we say
 - \blacksquare A = L(M) is the **language of machine** M, and
 - lacksquare M recognizes A.
- If machine M has input alphabet Σ , then $L(M) \subseteq \Sigma^*$.
- **Definition:** A language is **regular** if it is recognized by some DFA.

CS 341: Chapter 1

Examples of Deterministic Finite Automata

Example: Consider the following DFA M_1 with alphabet $\Sigma = \{0, 1\}$:

Remarks:

- 010110 is accepted, but 0101 is rejected.
- $L(M_1)$ is the language of strings over Σ in which the total number of 1's is odd.
- \bullet Can you come up with a DFA that recognizes the language of strings over Σ having an even number of 1's ?

1-13

1-15

1-14

Example: Consider the following DFA M_2 with alphabet $\Sigma = \{0, 1\}$:

Remarks:

• $L(M_2)$ is language of strings over Σ that have length 1, i.e.,

$$L(M_2) = \{ w \in \Sigma^* \mid |w| = 1 \}$$

• Recall that $\overline{L(M_2)}$, the complement of $L(M_2)$, is the set of strings over Σ not in $L(M_2)$, i.e.,

$$\overline{L(M_2)} = \Sigma^* - L(M_2).$$

Can you come up with a DFA that recognizes $\overline{L(M_2)}$?

Example: Consider the following DFA M_3 with alphabet $\Sigma = \{0,1\}$:

Remarks:

• $L(M_3)$ is the language of strings over Σ that **do not** have length 1, i.e.

$$L(M_3) = \overline{L(M_2)} = \{ w \in \Sigma^* | |w| \neq 1 \}$$

- DFA can have more than one accept state.
- Start state can also be an accept state.
- \bullet In general, a DFA accepts ε if and only if the start state is also an accept state.

CS 341: Chapter 1

Constructing DFA for Complement

- ullet In general, given a DFA M for language A, we can make a DFA \overline{M} for \overline{A} from M by
 - changing all accept states in M into non-accept states in \overline{M} .
 - \blacksquare changing all non-accept states in M into accept states in \overline{M} ,
- More formally, suppose language A over alphabet Σ has a DFA $M = (Q, \Sigma, \delta, q_1, F).$
- ullet Then, a DFA for the complementary language \overline{A} is

$$\overline{M} = (Q, \Sigma, \delta, q_1, Q - F).$$

where $Q, \Sigma, \delta, q_1, F$ are the same as in DFA M.

• Why does this work?

CS 341: Chapter 1 1-16

Example: Consider the following DFA M_4 with alphabet $\Sigma = \{a, b\}$:

Remarks:

ullet $L(M_4)$ is the language of strings over Σ that end with bb, i.e.,

$$L(M_{\Delta}) = \{ w \in \Sigma^* \mid w = sbb \text{ for some } s \in \Sigma^* \}.$$

• Note that $abbb \in L(M_4)$ and $bba \not\in L(M_4)$.

Example: Consider the following DFA M_5 with alphabet $\Sigma = \{a, b\}$:

 $L(M_5) = \{ w \in \Sigma^* \mid w = saa \text{ or } w = sbb \text{ for some string } s \in \Sigma^* \}.$ Note that $abbb \in L(M_5)$ and $bba \notin L(M_5)$. **Example:** Consider the following DFA M_6 with alphabet $\Sigma = \{a, b\}$:

Remarks:

• This DFA accepts all possible strings over Σ , i.e.,

$$L(M_6) = \Sigma^*$$
.

ullet In general, any DFA in which all states are accept states recognizes the language Σ^* .

CS 341: Chapter 1 1-19

Example: Consider the following DFA M_7 with alphabet $\Sigma = \{a, b\}$:

Remarks:

• This DFA accepts no strings over Σ , i.e.,

$$L(M_7) = \emptyset.$$

- In general,
 - lacksquare a DFA may have no accept states, i.e., $F=\emptyset\subseteq Q$.
 - lacksquare any DFA with no accept states recognizes the language \emptyset .

CS 341: Chapter 1

Example: Consider the following DFA M_8 with alphabet $\Sigma = \{a, b\}$:

- DFA moves left or right on a.
- DFA moves up or down on b.
- ullet This DFA recognizes the language of strings over Σ having
 - \blacksquare even number of a's and
 - \blacksquare even number of b's.
- Note that $ababaa \in L(M_8)$ and $bba \not\in L(M_8)$.

Some Operations on Languages

- ullet Let A and B be languages.
- Recall we previously defined the operations:
 - Union:

$$A \cup B = \{ w \mid w \in A \text{ or } w \in B \}.$$

■ Concatenation:

$$A \circ B = \{ vw \mid v \in A, w \in B \}.$$

Kleene star:

$$A^* = \{ w_1 w_2 \cdots w_k | k \ge 0 \text{ and each } w_i \in A \}.$$

subtraction.

ullet Previously saw that given a DFA M_1 for language A, can construct DFA M_2 for complementary language \overline{A} .

■ Make all accept states in M_1 into non-accept states in M_2 .

Closed under Operation

 \bullet Recall that a collection S of objects is **closed** under operation f if

applying f to members of S always returns an object still in S.

 \bullet e.g., $\mathcal{N} = \{1, 2, 3, \ldots\}$ is closed under addition but not

- \blacksquare Make all non-accept states in M_1 into accept states in M_2 .
- Thus, the class of regular languages is closed under complementation.
 - lacksquare i.e., if A is a regular language, then \overline{A} is a regular language.

CS 341: Chapter 1

Regular Languages Closed Under Union

Theorem 1.25

The class of regular languages is closed under union.

ullet i.e., if A_1 and A_2 are regular languages, then so is $A_1 \cup A_2$.

Proof Idea:

- Suppose A_1 is regular, so it has a DFA M_1 .
- Suppose A_2 is regular, so it has a DFA M_2 .
- $w \in A_1 \cup A_2$ if and only if $w \in A_1$ or $w \in A_2$.
- $w \in A_1 \cup A_2$ if and only if w is accepted by M_1 or M_2 .
- Need DFA M_3 to accept a string w iff w is accepted by M_1 or M_2 .
- Construct M_3 to keep track of where the input would be if it were simultaneously running on both M_1 and M_2 .
- ullet Accept string if and only if M_1 or M_2 accepts.

CS 341: Chapter 1 1-24

Example: Consider the following DFAs and languages over $\Sigma = \{a, b\}$:

- DFA M_1 recognizes language $A_1 = L(M_1)$
- DFA M_2 recognizes language $A_2 = L(M_2)$

DFA M_1 for A_1

DFA M_2 for A_2

ullet We now want a DFA M_3 for $A_1 \cup A_2$.

1-31

1-32

DFA M_1 for A_1

DFA M_2 for A_2

Step 5: From (x_1, y_2) on input b, M_1 moves to x_2 , and M_2 moves to y_1, \ldots

DFA M_1 for A_1 a b

Continue until each state has outgoing edge for each symbol in Σ .

CS 341: Chapter 1

DFA M_1 for A_1

DFA M_2 for A_2

Accept states for DFA M_3 for $A_1 \cup A_2$ have accept state from M_1 or M_2

CS 341: Chapter 1

Proof that Regular Languages Closed Under Union

- Suppose A_1 and A_2 are defined over the same alphabet Σ .
- Suppose A_1 recognized by DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$.
- Suppose A_2 recognized by DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.
- Define DFA $M_3=(Q_3,\Sigma,\delta_3,q_3,F_3)$ for $A_1\cup A_2$ as follows:
 - lacksquare Set of states of M_3 is

$$Q_3 = Q_1 \times Q_2 = \{ (x, y) \mid x \in Q_1, y \in Q_2 \}.$$

- The alphabet of M_3 is Σ .
- M_3 has transition function $\delta_3: Q_3 \times \Sigma \to Q_3$ such that for $x \in Q_1, y \in Q_2$, and $\ell \in \Sigma$,

$$\delta_3((x,y),\ell) = (\delta_1(x,\ell), \delta_2(y,\ell)).$$

■ The start state of M_3 is

$$q_3 = (q_1, q_2) \in Q_3.$$

1-34

■ The set of accept states of M_3 is

$$F_3 = \{ (x,y) \in Q_1 \times Q_2 \mid x \in F_1 \text{ or } y \in F_2 \}$$

= $[F_1 \times Q_2] \cup [Q_1 \times F_2].$

- Because $Q_3 = Q_1 \times Q_2$
 - lacksquare number of states in new machine M_3 is $|Q_3|=|Q_1|\cdot |Q_2|$.
- Thus, $|Q_3| < \infty$ because $|Q_1| < \infty$ and $|Q_2| < \infty$.

Remark:

- We can leave out a state $(x,y) \in Q_1 \times Q_2$ from Q_3 if (x,y) is not reachable from M_3 's initial state (q_1, q_2) .
- ullet This would result in fewer states in Q_3 , but still we have $|Q_1|\cdot |Q_2|$ as an upper bound for $|Q_3|$; i.e., $|Q_3| \leq |Q_1| \cdot |Q_2| < \infty$.

Theorem The class of regular languages is closed under intersection.

• i.e., if A_1 and A_2 are regular languages, then so is $A_1 \cap A_2$.

Regular Languages Closed Under Intersection

Proof Idea:

- A_1 has DFA M_1 .
- A_2 has DFA M_2 .
- $w \in A_1 \cap A_2$ if and only if $w \in A_1$ and $w \in A_2$.
- $w \in A_1 \cap A_2$ if and only if w is accepted by both M_1 and M_2 .
- Need DFA M_3 to accept string w iff w is accepted by M_1 and M_2 .
- \bullet Construct M_3 to simultaneously keep track of where the input would be if it were running on both M_1 and M_2 .
- Accept string if and only if both M_1 and M_2 accept.

CS 341: Chapter 1 1-35

Regular Languages Closed Under Concatenation

Theorem 1.26

Class of regular languages is closed under concatenation.

• i.e., if A_1 and A_2 are regular languages, then so is $A_1 \circ A_2$.

Remark:

- It is possible (but cumbersome) to directly construct a DFA for $A_1 \circ A_2$ given DFAs for A_1 and A_2 .
- There is a simpler way if we introduce a new type of machine.

CS 341: Chapter 1 1-36

Nondeterministic Finite Automata

• In any DFA, the next state the machine goes to on any given symbol is uniquely determined.

- This is why these machines are **deterministic**.
- Remember that the transition function in a DFA is defined as

$$\delta: Q \times \Sigma \to Q$$
.

- Because range of δ is Q, for δ always returns a **single state**.
- DFA has exactly one transition leaving each state for each symbol.
- \bullet $\delta(q,\ell)$ tells what state the edge out of q labeled with ℓ leads to.

1-37 *CS 341: Chapter 1*

1-39

1-38

Nondeterminism

- Nondeterministic finite automata (NFAs) allow for several or no choices to exist for the next state on a given symbol.
- ullet For a state q and symbol $\ell \in \Sigma$, NFA can have
 - lacktriangle multiple edges leaving q labelled with the same symbol ℓ
 - lacksquare no edge leaving q labelled with symbol ℓ
 - lacktriangle edges leaving q labelled with arepsilon
 - ${\bf \blacktriangle}$ can take $\varepsilon\text{-edge}$ without reading any symbol from input string.

Example: NFA N_1 with alphabet $\Sigma = \{0, 1\}$.

CS 341: Chapter 1

- Similarly, if a state with an ε -transition is encountered,
 - without reading an input symbol, NFA splits into multiple copies, each one following an exiting ε -transition (or staying put).
 - Each copy proceeds independently of other copies.
 - NFA follows all possible paths in parallel.
 - NFA proceeds **nondeterministically** as before.
- What happens on input string 010110?

 $\begin{array}{c|c} & 1 & q_2 & 0, \varepsilon \\ \hline & 0, 1 & q_3 & 1 \\ \hline & 0, 1 & q_4 \\ \hline \end{array}$

- ullet Suppose NFA is in a state with multiple ways to proceed, e.g., in state q_1 and the next symbol in input string is 1.
- The machine splits into multiple copies of itself (threads).
 - Each copy proceeds with computation independently of others.
 - NFA may be in a **set of states**, instead of a single state.
 - NFA follows all possible computation paths in parallel.
 - If a copy is in a state and next input symbol doesn't appear on any outgoing edge from the state, then the copy **dies** or **crashes**.
- If **any** copy ends in an accept state after reading entire input string, the NFA **accepts** the string.
- If **no** copy ends in an accept state after reading entire input string, then NFA does not accept (**rejects**) the string.

CS 341: Chapter 1 1-40 0, 1

1-41 *CS 341: Chapter 1*

1-44

Example: NFA N

- N accepts strings ε , a, aa, baa, baba,
 - \bullet e.g., $aa = \varepsilon a \varepsilon a$

• N does not accept (i.e., rejects) strings b, ba, bb, bb,

Formal Definition of NFA

Definition: For an alphabet Σ , define $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$.

ullet $\Sigma_{arepsilon}$ is set of possible labels on NFA edges.

Definition: A nondeterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- $1. \ Q$ is a finite set of states
- 2. Σ is an alphabet
- 3. $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ is the transition function, where
 - $\mathcal{P}(Q)$ is the power set of Q
 - \bullet δ defines label on each edge.
- 4. $q_0 \in Q$ is the start state
- 5. $F \subseteq Q$ is the set of accept states.

CS 341: Chapter 1

Difference Between DFA and NFA

• DFA has transition function $\delta: Q \times \Sigma \to Q$.

- NFA has transition function $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$.
 - Returns a **set of states** rather than a single state.
 - Allows for ε -transitions because $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$.
 - For state $q \in Q$ and $\ell \in \Sigma_{\varepsilon}$, $\delta(q, \ell)$ is set of states where edges out of q labeled with ℓ lead to.

• Remark: Note that every DFA is also an NFA.

CS 341: Chapter 1

1-43

Formal description of above NFA $N = (Q, \Sigma, \delta, q_1, F)$

- $Q = \{q_1, q_2, q_3, q_4\}$ is the set of states
- $\Sigma = \{0, 1\}$ is the alphabet
- Transition function $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$

	0	1	arepsilon
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_{4}\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø

- q_1 is the start state
- $F = \{q_4\}$ is the set of accept states

1-45 *CS 341: Chapter 1*

1-48

Formal Definition of NFA Computation

- Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and $w \in \Sigma^*$.
- ullet Then N accepts w if
 - we can write w as $w=y_1\,y_2\,\cdots\,y_m$ for some $m\geq 0$, where each $y_i\in \Sigma_{\varepsilon}$, and
 - lacktriangle there is a sequence of states $r_0, r_1, r_2, \ldots, r_m$ in Q such that
 - 1. $r_0 = q_0$
 - 2. $r_{i+1} \in \delta(r_i, y_{i+1})$ for each i = 0, 1, 2, ..., m-1
 - 3. $r_m \in F$

Definition: The set of all input strings that are accepted by NFA N is the **language recognized by** N and is denoted by L(N).

Equivalence of DFAs and NFAs

Definition: Two machines (of any types) are **equivalent** if they recognize the same language.

Theorem 1.39

Every NFA N has an equivalent DFA M.

 \bullet i.e., if N is some NFA, then \exists DFA M such that L(M) = L(N).

Proof Idea:

- \bullet NFA N splits into multiple copies of itself on nondeterministic moves.
- NFA can be in a **set of states** at any one time.
- ullet Build DFA M whose set of states is the **power set** of the set of states of NFA N, keeping track of where N can be at any time.

CS 341: Chapter 1

 CS 341: Chapter 1

1-47

Example: Convert NFA N into equivalent DFA.

N's start state q_1 has no ε -edges out, so DFA has start state $\{q_1\}$.

Example: Convert NFA N into equivalent DFA.

On reading 0 from states in $\{q_1\}$, can reach states $\{q_1\}$.

Example: Convert NFA N into equivalent DFA.

On reading 1 from states in $\{q_1\}$, can reach states $\{q_1, q_2, q_3\}$.

1-51

CS 341: Chapter 1

1-52

Example: Convert NFA N into equivalent DFA.

On reading 0 from states in $\{q_1,q_2,q_3\}$, can reach states $\{q_1,q_3\}$.

Example: Convert NFA N into equivalent DFA.

On reading 1 from states in $\{q_1,q_2,q_3\}$, can reach $\{q_1,q_2,q_3,q_4\}$.

Example: Convert NFA N into equivalent DFA.

On reading 0 from states in $\{q_1, q_3\}$, can reach states $\{q_1\}$.

Example: Convert NFA N into equivalent DFA.

On reading 1 from states in $\{q_1, q_3\}$, can reach states $\{q_1, q_2, q_3, q_4\}$.

CS 341: Chapter 1

Example: Convert NFA N into equivalent DFA.

Continue until each DFA state has a 0-edge and a 1-edge leaving it. DFA accept states have \geq 1 accept states from N.

CS 341: Chapter 1

1-55

Proof. (Theorem 1.39)

• Consider NFA $N = (Q, \Sigma, \delta, q_0, F)$:

• **Definition:** The ε -closure of a set of states $R\subseteq Q$ is $E(R) \ = \ \{ \ q \mid q \ \text{can be reached from } R \ \text{by}$ travelling over 0 or more ε transitions $\}.$

• e.g.,
$$E(\{q_1, q_2\}) = \{q_1, q_2, q_3\}.$$

Convert NFA to Equivalent DFA

Given NFA $N=(Q,\Sigma,\delta,q_0,F)$, build an equivalent DFA $M=(Q',\Sigma,\delta',q'_0,F')$ as follows:

- 1. Calculate the ε -closure of every subset $R \subseteq Q$.
- 2. Define DFA M's set of states $Q' = \mathcal{P}(Q)$.
- 3. Define DFA M's start state $q'_0 = E(\{q_0\})$.
- 4. Define DFA M's set of accept states F' to be all DFA states in Q' that include an accept state of NFA N; i.e.,

$$F' = \{ R \in Q' \mid R \cap F \neq \emptyset \}.$$

- 5. Calculate DFA M's transition function $\delta': Q' \times \Sigma \to Q'$ as $\delta'(R,\ell) = \{ q \in Q \mid q \in E(\delta(r,\ell)) \text{ for some } r \in R \}$ for $R \in Q' = \mathcal{P}(Q)$ and $\ell \in \Sigma$.
- 6. Can leave out any state $q' \in Q'$ not reachable from q_0' , e.g., $\{q_2,q_3\}$ in our previous example.

Regular \iff NFA

Corollary 1.40

Language ${\cal A}$ is regular if and only if some NFA recognizes ${\cal A}.$

Proof.

 (\Rightarrow)

- ullet If A is regular, then there is a DFA for it.
- ullet But every DFA is also an NFA, so there is an NFA for A.

(⇐)

• Follows from previous theorem (1.39), which showed that every NFA has an equivalent DFA.

CS 341: Chapter 1 1-59

Class of Regular Languages Closed Under Union

Remark: Can use fact that every NFA has an equivalent DFA to simplify the proof that the class of regular languages is closed under union.

Remark: Recall union:

$$A_1 \cup A_2 = \{ w \mid w \in A_1 \text{ or } w \in A_2 \}.$$

Theorem 1.45

The class of regular languages is closed under union.

CS 341: Chapter 1 1-60

Proof Idea: Given NFAs N_1 and N_2 for A_1 and A_2 , resp., construct NFA N for $A_1 \cup A_2$ as follows:

Construct NFA for $A_1 \cup A_2$ from NFAs for A_1 and A_2

- Let A_1 be language recognized by NFA $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$.
- Let A_2 be language recognized by NFA $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.
- Construct NFA $N = (Q, \Sigma, \delta, q_0, F)$ for $A_1 \cup A_2$:
 - $\mathbb{Q} = \{q_0\} \cup Q_1 \cup Q_2 \text{ is set of states of } N.$
 - \blacksquare q_0 is start state of N.
 - Set of accept states $F = F_1 \cup F_2$.
 - lacktriangle For $q \in Q$ and $a \in \Sigma_{\varepsilon}$, transition function δ satisfies

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & \text{if } q \in Q_1, \\ \delta_2(q,a) & \text{if } q \in Q_2, \\ \{q_1,q_2\} & \text{if } q = q_0 \text{ and } a = \varepsilon, \\ \emptyset & \text{if } q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

Class of Regular Languages Closed Under Concatenation

Remark: Recall concatenation:

$$A \circ B = \{ vw \mid v \in A, w \in B \}.$$

Theorem 1.47

The class of regular languages is closed under concatenation.

CS 341: Chapter 1

Proof Idea: Given NFAs N_1 and N_2 for A_1 and A_2 , resp., construct NFA N for $A_1 \circ A_2$ as follows:

CS 341: Chapter 1

1-63

Construct NFA for $A_1 \circ A_2$ from NFAs for A_1 and A_2

- Let A_1 be language recognized by NFA $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$.
- Let A_2 be language recognized by NFA $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.
- Construct NFA $N = (Q, \Sigma, \delta, q_1, F_2)$ for $A_1 \circ A_2$:
 - $Q = Q_1 \cup Q_2$ is set of states of N.
 - Start state of N is q_1 , which is start state of N_1 .
 - \blacksquare Set of accept states of N is F_2 , which is same as for N_2 .
 - lacksquare For $q\in Q$ and $a\in \Sigma_{\varepsilon}$, transition function δ satisfies

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & \text{if } q \in Q_1 - F_1, \\ \delta_1(q,a) & \text{if } q \in F_1 \text{ and } a \neq \varepsilon, \\ \delta_1(q,a) \cup \{q_2\} & \text{if } q \in F_1 \text{ and } a = \varepsilon, \\ \delta_2(q,a) & \text{if } q \in Q_2. \end{cases}$$

1-65

1-67

1-66

1-68

Class of Regular Languages Closed Under Star

Remark: Recall Kleene star:

$$A^* = \{ x_1 x_2 \cdots x_k \mid k \ge 0 \text{ and each } x_i \in A \}.$$

Theorem 1.49

The class of regular languages is closed under the Kleene-star operation.

Proof Idea: Given NFA N_1 for A, construct NFA N for A^* as follows:

 N_1

N

CS 341: Chapter 1

Construct NFA for A^* from NFA for A

- Let A be language recognized by NFA $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$.
- Construct NFA $N = (Q, \Sigma, \delta, q_0, F)$ for A^* :
 - $\mathbb{Q} = \{q_0\} \cup Q_1 \text{ is set of states of } N.$
 - \blacksquare q_0 is start state of N.
 - \blacksquare $F = \{q_0\} \cup F_1$ is the set of accept states of N.
 - lacktriangle For $q \in Q$ and $a \in \Sigma_{\varepsilon}$, transition function δ satisfies

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & \text{if } q \in Q_1 - F_1, \\ \delta_1(q,a) & \text{if } q \in F_1 \text{ and } a \neq \varepsilon, \\ \delta_1(q,a) \cup \{q_1\} & \text{if } q \in F_1 \text{ and } a = \varepsilon, \\ \{q_1\} & \text{if } q = q_0 \text{ and } a = \varepsilon, \\ \emptyset & \text{if } q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

CS 341: Chapter 1

Regular Expressions

- Regular expressions are a way of describing certain languages.
- Consider alphabet $\Sigma = \{0, 1\}$.
- Shorthand notation:
 - 0 means {0}
 - 1 means {1}
- Regular expressions use above shorthand notation and operations
 - union ∪
 - concatenation ○
 - Kleene star *
- When using concatenation, will often leave out operator "o".

Interpreting Regular Expressions

Example: $0 \cup 1$ means $\{0\} \cup \{1\}$, which equals $\{0, 1\}$.

Example:

- Consider $(0 \cup 1)0^*$, which means $(0 \cup 1) \circ 0^*$.
- This equals $\{0,1\} \circ \{0\}^*$.
- Recall $\{0\}^* = \{ \varepsilon, 0, 00, 000, \dots \}.$
- \bullet Thus, $\{0,1\}\circ\{0\}^*$ is the set of strings that
 - start with symbol 0 or 1, and
 - followed by zero or more 0's.

Example:

- $(0 \cup 1)^*$ means $(\{0\} \cup \{1\})^*$.
- ullet This equals $\{0,1\}^*$, which is the set of all possible strings over the alphabet $\Sigma=\{0,1\}$.

Another Example of a Regular Expression

• When $\Sigma = \{0, 1\}$, often use shorthand notation Σ to denote regular expression $(0 \cup 1)$.

CS 341: Chapter 1

Hierarchy of Operations in Regular Expressions

- In most programming languages,
 - multiplication has precedence over addition

$$2 + 3 \times 4 = 14$$

parentheses change usual order

$$(2+3) \times 4 = 20$$

exponentiation has precedence over multiplication and addition

$$4 + 2 \times 3^2 = \underline{\hspace{1cm}}, \qquad 4 + (2 \times 3)^2 = \underline{\hspace{1cm}}.$$

- Order of precedence for the regular operations:
 - 1. Kleene star
 - 2. concatenation
 - 3. union
- Parentheses change usual order.

CS 341: Chapter 1

1-71

More Examples of Regular Expressions

Example: $00 \cup 101^*$ is language consisting of

- string 00
- strings that begin with 10 and followed by zero or more 1's.

Example: $0(0 \cup 101)^*$ is the language consisting of strings that

- start with 0
- concatenated to a string in $\{0, 101\}^*$.

For example, 0101001010 is in the language because $0101001010 = 0 \circ 101 \circ 0 \circ 0 \circ 101 \circ 0.$

Formal Definition of Regular Expression

Definition: R is a **regular expression** with alphabet Σ if R is

- 1. a for some $a \in \Sigma$
- $2. \varepsilon$
- 3. ∅
- 4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions
- 5. $(R_1) \circ (R_2)$, also denoted by $(R_1)(R_2)$, where R_1 and R_2 are regular expressions
- 6. $(R_1)^*$, where R_1 is a regular expression
- 7. (R_1) , where R_1 is a regular expression.

Can remove redundant parentheses, e.g., $((0) \cup (1))(1) \longrightarrow (0 \cup 1)1$.

Definition: If R is a regular expression, then L(R) is the language **generated** (or **described** or **defined**) by R.

Examples of Regular Expressions

Examples: For $\Sigma = \{0, 1\}$,

- 1. $(0 \cup 1) = \{0, 1\}$
- 2. $0*10* = \{ w \mid w \text{ has exactly a single } 1 \}$
- 3. $\Sigma^* 1 \Sigma^* = \{ w \mid w \text{ has at least one } 1 \}$
- 4. $\Sigma^*001\Sigma^* = \{w \mid w \text{ contains } 001 \text{ as a substring }\}$
- 5. $(\Sigma\Sigma)^* = \{w \mid |w| \text{ is even }\}$
- 6. $(\Sigma\Sigma\Sigma)^* = \{w \mid |w| \text{ is a multiple of three }\}$
- 7. $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = \{w \mid w \text{ starts and ends with the same symbol } \}$
- 8. $1^*\emptyset = \emptyset$, anything concatenated with \emptyset is equal to \emptyset .
- 9. $\emptyset^* = \{\varepsilon\}$

CS 341: Chapter 1

Examples:

- 1. $R \cup \emptyset = \emptyset \cup R = R$
- 2. $R \circ \varepsilon = \varepsilon \circ R = R$
- 3. $R \circ \emptyset = \emptyset \circ R = \emptyset$
- 4. $R_1(R_2 \cup R_3) = R_1R_2 \cup R_1R_3$. Concatenation distributes over union.

Example:

- Define EVEN-EVEN over alphabet $\Sigma = \{a, b\}$ as strings with an even number of a's and an even number of b's; see slide 1-20 for a DFA.
- ullet For example, $aababbaaababab \in {\sf EVEN-EVEN}.$
- Regular expression:

$$(aa \cup bb \cup (ab \cup ba)(aa \cup bb)^*(ab \cup ba))^*$$

CS 341: Chapter 1

1-75

Kleene's Theorem

Theorem 1.54

Language A is regular iff A has a regular expression.

Lemma 1.55

If a language is described by a regular expression, then it is regular.

Proof. Procedure to convert regular expression R into NFA N:

1. If R = a for some $a \in \Sigma$, then $L(R) = \{a\}$, which has NFA

 $N=(\{q_1,q_2\},\ \Sigma,\ \delta,\ q_1,\ \{q_2\})$ where transition function δ

- $\delta(q_1, a) = \{q_2\},\$
- $\delta(r,b) = \emptyset$ for any state $r \neq q_1$ or any $b \in \Sigma_{\varepsilon}$ with $b \neq a$.

2. If $R = \varepsilon$, then $L(R) = {\varepsilon}$, which has NFA

 $N = (\{q_1\}, \ \Sigma, \ \delta, \ q_1, \ \{q_1\})$ where

- $\delta(r,b) = \emptyset$ for any state r and any $b \in \Sigma_{\varepsilon}$.
- 3. If $R = \emptyset$, then $L(R) = \emptyset$, which has NFA

 $N = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$ where

• $\delta(r,b) = \emptyset$ for any state r and any $b \in \Sigma_{\varepsilon}$.

4. If $R = (R_1 \cup R_2)$ and

- $L(R_1)$ has NFA N_1
- $L(R_1)$ has NFA N_1 • $L(R_2)$ has NFA N_2 ,

then $L(R) = L(R_1) \cup L(R_2)$ has NFA N below:

CS 341: Chapter 1

5. If $R = (R_1) \circ (R_2)$ and

- \bullet $L(R_1)$ has NFA N_1
- $L(R_2)$ has NFA N_2 ,

then $L(R) = L(R_1) \circ L(R_2)$ has NFA N below:

CS 341: Chapter 1

1-79

6. If $R = (R_1)^*$ and $L(R_1)$ has NFA N_1 , then $L(R) = (L(R_1))^*$ has NFA N below:

- ullet Thus, can convert any regular expression R into an NFA.
- ullet Hence, Corollary 1.40 implies that the language L(R) is regular.

More of Kleene's Theorem

Lemma 1.60

1-81

If a language is regular, then it has a regular expression.

Proof Idea:

- Convert DFA into regular expression.
- Use **generalized NFA (GNFA)**, which is an NFA with following modifications:
 - no edges into start state.
 - single accept state, with no edges out of it.
 - labels on edges are **regular expressions** instead of elements from Σ_{ε} .
 - ▲ can traverse edge on any string generated by its regular expression.

CS 341: Chapter 1 1-83

- Can move from
 - \blacksquare q_1 to q_2 on string ε .
 - \blacksquare q_2 to q_3 on string aabaa.
 - \blacksquare q_3 to q_3 on string b or baaa.
 - \blacksquare q_3 to q_4 on string ε .
 - \blacksquare q_4 to q_5 on string ε .
- GNFA accepts string $\varepsilon \circ aabaa \circ b \circ baaa \circ \varepsilon \circ \varepsilon = aabaabbaaa$.

CS 341: Chapter 1

Method to convert DFA into regular expression

- 1. First convert DFA into equivalent GNFA.
- 2. Apply following iterative procedure:
 - In each step, eliminate one state from GNFA.
 - When state is eliminated, need to account for every path that was previously possible.
 - Can eliminate states in any order but end result will be different.
 - Never delete start or (unique) accept state.
 - Done when only 2 states remaining: start and accept.
 - Label on remaining arc between start and accept states is a regular expression for language of original DFA.

Remark: Method also can convert NFA into a regular expression.

1-84

1-82

- 1. Convert DFA $M = (Q, \Sigma, \delta, q_1, F)$ into equivalent GNFA G.
 - \bullet Introduce new start state s.
 - Add edge from s to q_1 with label ε .
 - Make q_1 no longer the start state.
 - ullet Introduce new accept state t.
 - Add edge with label ε from each state $q \in F$ to t.
 - lacktriangle Make each state originally in F no longer an accept state.
 - Change edge labels into regular expressions.
 - \blacksquare e.g., "a, b" becomes " $a \cup b$ ".

- 2. Iteratively eliminate a state from GNFA ${\it G}$.
 - Need to take into account all possible previous paths.
 - ullet Never eliminate new start state s or new accept state t.

Example: Eliminate state q_2 , which has no other in/out edges.

CS 341: Chapter 1

Example: Convert DFA M into regular expression.

- 2.1) Eliminate state q_2 \longrightarrow s ε $\searrow q_1$ $b \cup aa^*b$ $\swarrow q_3$ ε $\searrow (t)$
- 2.2) Eliminate state $q_3 \longrightarrow s \xrightarrow{\varepsilon} q_1 \xrightarrow{(b \cup aa^*b)(a \cup b)^*} t$
- 2.3) Eliminate state $q_1 \longrightarrow s \xrightarrow{(b \cup aa^*b)(a \cup b)^*} \underbrace{t}$

CS 341: Chapter 1

1-87

Example:

Eliminate state x, which has no other in/out edges

- Let $C = \{v, z\}$, which are states with arcs **into** x (except for x).
- Let $D = \{v, y, z\}$, which are states with arcs **from** x (except for x).
- \bullet When we eliminate x, need to account for paths
 - lacktriangle from each state in C directly into x
 - lacktriangle then from x directly to x
 - lacktriangleright finally from x directly to each state in D

1-89

1-91

1-90

1-92

- Recall $C = \{v, z\}$ and $D = \{v, y, z\}$.
- \bullet So eliminating state x gives

ullet e.g., for path v o x o y, add arc from v to y with label $(R_1)(R_2)^*(R_4)$

Step 1. Convert DFA into GNFA

CS 341: Chapter 1

Step 2.1. Eliminate state 1
$$C = \{s, 2, 3\}$$

$$D = \{2, 3\}$$

$$ba \cup a$$

$$bb$$

CS 341: Chapter 1

Step 2.2. Eliminate state 2

$$C = \{s, 3\}$$
 $D = \{3, t\}$

1-93

1-95

CS 341: Chapter 1

1-94

1-96

Step 2.3. Eliminate state 3

$$C = \{s\}, D = \{t\}$$

$$(a(aa \cup b)^*ab \cup b) ((ba \cup a)(aa \cup b)^*ab \cup bb)^* ((ba \cup a)(aa \cup b)^* \cup \varepsilon)$$

$$\longrightarrow \underbrace{\qquad \qquad \qquad }_{s} \underbrace{\qquad \qquad \qquad }_{t} \underbrace{\qquad \qquad }_{t}$$

- Regular expression accounts for all paths starting in start state 1 and ending in accepting state (2 or 3):
 - visit state 3 at least once (ending in 2 or 3), or
 - never visit state 3 (ending in 2).

CS 341: Chapter 1

Finite Languages are Regular

Theorem

If A is a finite language, then A is regular.

Proof.

 \bullet Because A finite, we can write

$$A = \{ w_1, w_2, \dots, w_n \}$$

for some $n < \infty$.

ullet A regular expression for A is then

$$R = w_1 \cup w_2 \cup \cdots \cup w_n$$

ullet Kleene's Theorem then implies A has a DFA, so A is regular.

Remark: The converse is **not** true. e.g., 1* generates a regular language, but it's infinite. CS 341: Chapter 1

Pumping Lemma for Regular Languages

Example: DFA with alphabet $\Sigma = \{0, 1\}$ for language A.

- DFA has 5 states.
- DFA accepts string s = 0011, which has length 4.
- \bullet On s=0011, DFA visits all of the states.

1-99

1-100

- For any string s with $|s| \ge 5$, guaranteed to visit some state twice by the **pigeonhole principle**.
- ullet String s= 0011011 is accepted by DFA, i.e., $s\in A$.

- \bullet q_2 is first state visited twice.
- Using q_2 , divide string s into 3 parts x, y, z such that s = xyz.
 - x = 0, the symbols read until first visit to q_2 .
 - y = 0110, the symbols read from first to second visit to q_2 .
 - z = 11, the symbols read after second visit to q_2 .

• Recall DFA accepts string

$$s = \underbrace{0}_{x} \underbrace{0110}_{y} \underbrace{11}_{z}.$$

• DFA also accepts strings

$$xyyz = \underbrace{0}_{x} \underbrace{0110}_{y} \underbrace{0110}_{y} \underbrace{11}_{z},$$

$$xyyyz = \underbrace{0}_{x} \underbrace{0110}_{y} \underbrace{0110}_{y} \underbrace{0110}_{y} \underbrace{11}_{z},$$

$$xz = \underbrace{0}_{x} \underbrace{11}_{z}.$$

• String $xy^iz \in A$ for each $i \ge 0$.

CS 341: Chapter 1

• More generally, consider

- \blacksquare language A with DFA M having p states,
- string $s \in A$ with $|s| \ge p$.
- \bullet When processing s on M, guaranteed to visit some state twice.
- Let r be first state visited twice.
- Using state r, can divide s as s = xyz.
 - \blacksquare x are symbols read until first visit to r.
 - lacktriangledown y are symbols read from first to second visit to r.
 - lack z are symbols read from second visit to r to end of s.

CS 341: Chapter 1

Pumping y

 \bullet Because y corresponds to starting in r and returning to r,

$$xy^iz \in A$$
 for each $i \ge 1$.

ullet Also, note $xy^0z=xz\in A$, so

$$xy^iz \in A$$
 for each $i > 0$.

- |y| > 0 because
 - lacksquare y corresponds to starting in r and coming back;
 - this consumes at least one symbol (because DFA), so y can't be empty.

CS 341: Chapter 1 1-102

Length of xy

- $|xy| \le p$, where p is number of states in DFA, because
 - $\blacksquare xy$ are symbols read up to second visit to r.
 - Because r is the first state visited twice,
 all states visited before second visit to r are unique.
 - lacksquare So just before visiting r for second time, DFA visited at most p states, which corresponds to reading at most p-1 symbols.
 - The second visit to r, which is after reading 1 more symbol, corresponds to reading at most p symbols.

Pumping Lemma

Theorem 1.70

If A is regular language, then \exists number p (pumping length) where, if $s \in A$ with $|s| \ge p$, then s can be split into 3 pieces, s = xyz, satisfying the properties

- 1. $xy^iz \in A$ for each $i \geq 0$,
- 2. |y| > 0, and
- 3. $|xy| \le p$.

Remarks:

- y^i denotes i copies of y concatenated together, and $y^0 = \varepsilon$.
- |y| > 0 means $y \neq \varepsilon$.
- $\bullet |xy| \le p$ means x and y together have no more than p symbols total.

CS 341: Chapter 1 1-103

Understanding the Pumping Lemma

If A is regular language, then \exists number p (pumping length) where, $\frac{M_3}{s \in A \text{ with } |s| \geq p}, \text{ then}$ s can be split into 3 pieces, s = xyz, satisfying properties $1. \ xy^iz \in A \text{ for each } i \geq 0,$ $2. \ |y| > 0, \text{ and}$ M_4

3. $|xy| \le p$.

if $(M_1 \text{ is true})$, then $M_2 \text{ is true}$ if $(M_3 \text{ is true})$, then $M_4 \text{ is true}$ endif

CS 341: Chapter 1 1-104

Nonregular Languages

 $\begin{tabular}{ll} \textbf{Definition:} & Language is $\textbf{nonregular}$ if there is no DFA for it. \\ \end{tabular}$

Remarks:

- Pumping Lemma (PL) is a result about regular languages.
- ullet But PL mainly used to prove that certain language A is **nonregular**.
- Typically done using **proof by contradiction**.
 - lacktriangle Assume language A is regular.
 - \blacksquare PL says that all strings $s \in A$ that are at least a certain length must satisfy some properties
 - \blacksquare By appropriately choosing $s \in A$, will eventually get contradiction.
 - PL: can split s into s = xyz satisfying all of Properties 1–3.
 - To get contradiction, show **cannot** split s = xyz satisfying 1–3.
 - ▲ Show **all** splits satisfying 2–3 violate Property 1.
 - Because Property 3 of PL states $|xy| \le p$, often choose $s \in A$ so that all of its first p symbols are the same.

1-108

Language $A = \{ 0^n 1^n | n \ge 0 \}$ is Nonregular

Proof.

- Suppose A is regular, so PL implies A has "pumping length" p.
- Consider string $s = 0^p 1^p \in A$.
- $|s| = 2p \ge p$, so Pumping Lemma will hold.
- So can split s into 3 pieces s = xyz satisfying properties
 - 1. $xy^iz \in A$ for each $i \ge 0$,
 - 2. |y| > 0, and
 - 3. $|xy| \le p$.
- To get contradiction, must show **cannot** split s = xyz satisfying 1–3.
- Show all splits s = xyz satisfying Properties 2 and 3 will violate 1.
- \bullet Because the first p symbols of $s=\underbrace{00\cdots 0}_{p}\underbrace{11\cdots 1}_{p}$ are all 0's
 - \blacksquare Property 3 implies that x and y consist of only 0's.
 - \blacksquare z will be the rest of the 0's, followed by all p 1's.
- **Key:** y has some 0's, and z contains all the 1's (and maybe some 0's), so pumping y changes # of 0's but not # of 1's.

• So we have

CS 341: Chapter 1

$$x = 0^{j}$$
 for some $j \ge 0$,
 $y = 0^{k}$ for some $k \ge 0$,
 $z = 0^{m} 1^{p}$ for some $m > 0$

• s = xyz implies

$$0^p 1^p = 0^j 0^k 0^m 1^p = 0^{j+k+m} 1^p,$$
 so $j + k + m = p$.

- Property 2 states that |y| > 0, so k > 0.
- Property 1 implies $xyyz \in A$, but

$$xyyz = 0^{j} 0^{k} 0^{k} 0^{m} 1^{p}$$

$$= 0^{j+k+k+m} 1^{p}$$

$$= 0^{p+k} 1^{p} \notin A$$

because j + k + m = p and k > 0.

• Contradiction, so $A = \{ 0^n 1^n | n \ge 0 \}$ is nonregular.

CS 341: Chapter 1

Proof.

Language $B = \{ ww \mid w \in \{0,1\}^* \}$ is Nonregular

- Suppose B is regular, so PL implies B has "pumping length" p.
- Consider string $s = 0^p 1 0^p 1 \in B$. $(0^p 0^p \in B \text{ won't work. Why?})$
- $|s| = 2p + 2 \ge p$, so Pumping Lemma will hold.
- So can split s into 3 pieces s = xyz satisfying properties
 - 1. $xy^iz \in B$ for each i > 0,
 - 2. |y| > 0, and
 - 3. $|xy| \le p$.
- For contradiction, show **cannot** split s = xyz so that 1–3 hold.
 - Show all splits s = xyz satisfying Properties 2 and 3 will violate 1.
- ullet Because first p symbols of $s=\underbrace{00\cdots 0}_{p}1\underbrace{00\cdots 0}_{p}1$ are all 0's,
 - \blacksquare Property 3 implies that x and y consist only of 0's.
 - z will be the rest of first set of 0's, followed by $10^p 1$.
- **Key:** y has some of first 0's, and z has all of second 0's, so pumping y changes only # of first 0's.

CS 341: Chapter 1

So we have

 $x = 0^{j}$ for some $j \ge 0$, $y = 0^{k}$ for some $k \ge 0$, $z = 0^{m} 10^{p} 1$ for some m > 0

• s = xyz implies

$$0^p \, 1 \, 0^p \, 1 \; = \; 0^j \, 0^k \, 0^m \, 1 \, 0^p \, 1 \; = \; 0^{j+k+m} \, 1 \, 0^p \, 1,$$
 so $j+k+m=p.$

- Property 2 states that |y| > 0, so k > 0.
- Property 1 implies $xyyz \in B$, but

$$xyyz = 0^{j} 0^{k} 0^{k} 0^{m} 1 0^{p} 1$$

$$= 0^{j+k+k+m} 1 0^{p} 1$$

$$= 0^{p+k} 1 0^{p} 1 \notin B$$

because j + k + m = p and k > 0.

• Contradiction, so $B = \{ ww \mid w \in \{0,1\}^* \}$ is nonregular.

Important Steps in Proving Language is Nonregular

Pumping Lemma (PL):

If A is a regular language, then \exists number p (pumping length) where, if $s \in A$ with $|s| \ge p$, then s can be split into 3 pieces, s = xyz, with

- 1. $xy^iz \in A$ for each $i \geq 0$,
- 2. |y| > 0, and
- 3. $|xy| \le p$.

Remarks:

- ullet Must choose **appropriate** string $s\in A$ to get contradiction.
 - lacksquare Some strings $s \in A$ might not lead to contradiction.
- Because Property 3 of PL states $|xy| \le p$, often choose $s \in A$ so that all of its first p symbols are the same.
- ullet Once appropriate s is chosen, need to show **every** possible split of s=xyz leads to contradiction.

Pumping Lemma (PL):

If A is a regular language, then \exists number p (pumping length) where, if $s \in A$ with $|s| \ge p$, then s can be split into 3 pieces, s = xyz, with

- 1. $xy^iz \in A$ for each $i \ge 0$,
- 2. |y| > 0, and
- 3. $|xy| \le p$.

Examples:

- 1. Let $C = \{ w \in \{a, b\}^* \mid w = w^{\mathcal{R}} \}$, where $w^{\mathcal{R}}$ is the reverse of w.
 - To show C is nonregular, can choose $s = a^p b a^p \in C$.
 - Choosing $s = a^p \in C$ does **not** work. Why?
- 2. To show $D=\{\,a^{2n}\,b^{3n}\,a^n\,|\,\,n\geq 0\,\}$ is nonregular, can choose $s=a^{2p}\,b^{3p}\,a^p\in D.$
- 3. Consider language $E=\{\,w\in\{a,b\}^*\,|\,\,w$ has more a's than b's $\}.$ For example, $baaba\in E.$
 - To show E is nonregular, can choose $s = b^p \ a^{p+1} \in E$.

CS 341: Chapter 1

Common Mistake

- Consider $D = \{ a^{2n} b^{3n} a^n | n \ge 0 \}.$
- To show D is nonregular, can choose $s = a^{2p} b^{3p} a^p \in D$.
- Common mistake: try to apply Pumping Lemma with

$$x = a^{2p}, y = b^{3p}, z = a^p.$$

- For this split, $|xy| = 5p \le p$.
- ullet But Pumping Lemma states "If D is a regular language, then ... can split s=xyz satisfying Properties 1–3."
- To get contradiction, need to show **cannot** split s=xyz satisfying Properties 1–3.
 - Need to show **every** split s = xyz doesn't satisfy all of 1–3.

$$x = a^j, \qquad y = a^k, \qquad z = a^m \, b^{3p} \, a^p,$$

where $j + k \le p$, j + k + m = 2p, and $k \ge 1$.

CS 341: Chapter 1

1-111

 $F = \{ w \mid \# \text{ of } 0 \text{'s in } w \text{ equals } \# \text{ of } 1 \text{'s in } w \} \text{ is Nonregular}$

- \bullet Note that, e.g., $101100 \in F$.
- Need to be careful when choosing string $s \in F$ for Pumping Lemma.
 - If $xyz \in F$ with $y \in F$, then $xy^iz \in F$, so no contradiction.
- Another Approach: If F and G are regular, then $F \cap G$ is regular.
- \bullet **Solution:** Suppose that F is regular.
- Let $G = \{ 0^n 1^m | n, m > 0 \}.$
- lacktriangle G is regular: it has regular expression 0^*1^* .
- Then $F \cap G = \{ 0^n 1^n | n \ge 0 \}.$
- But know that $F \cap G$ is not regular.
- \bullet Conclusion: F is not regular.

Hierarchy of Languages (so far)

Regular (DFA, NFA, Reg Exp) Finite

Examples

1-113

 $\{0^n1^n | n \ge 0\}$ $(0 \cup 1)^*$ $\{110, 01\}$

Summary of Chapter 1

- DFA is a deterministic machine for recognizing certain languages.
- A language is **regular** if it has a DFA.
- The class of regular languages is closed under union, intersection, concatenation, Kleene-star, complementation.
- NFA can be nondeterministic: allows choice in how to process string.
- Every NFA has an equivalent DFA.
- Regular expression is a way of generating certain languages.
- ullet Kleene's Theorem: Language A has DFA iff A has regular expression.
- Every finite language is regular, but not every regular language is finite.
- Use pumping lemma to prove certain languages are not regular.