Natural Language Processing II

Jiří Materna

Outline

- Preprocessing for deep learning in NLP
- Recurrent neural networks
- Word embeddings and word2vec
- The Skip-gram model
- Text classification with word embeddings
- Subword tokenization
- LSTM and GRU
- Attention is all you need
- Transformers (GPT3, BERT, XLNET)
- Practical task on classification using BERT

Deep Learning in NLP

Source: https://blog.aylien.com/

Encoding and Unicode

ASCII

не 1 1 о

48 65 6c 6c 6f

Unicode

H e 1 1 o ⊚

00000048 00000065 0000006c 0000006c 0000006f 0000263a

Encoding and Unicode

UTF-8

H e 1 1 o ⊚

48 65 6c 6c 6f e298ba

UTF-16

H e]] o ©

0048 0065 006c 006c 006f 263a

Unicode normalization

NFD (Normalization Form Canonical Decomposition)
NFC (Normalization Form Canonical Composition)
NFKD (Normalization Form Compatibility Decomposition)
NFKC (Normalization Form Compatibility Composition)

Source		NFD	NFC	NFKD	NFKC
\mathbf{f}_{FB01}	:	fi FB01	\mathbf{f}_{FB01}	f i	f i
25	:	2 5	2 5	2 5	2 5
Ļ	:	foò	Ġ	Sọċ	\$
1E9B 0323		017F 0323 0307	1E9B 0323	0073 0323 0307	1E69

Source: https://unicode.org/

Unicode normalization in Python 3

```
>>> aa = b'\xc4\x81'.decode('utf8')
>>> bb = b'a\xcc\x84'.decode('utf8')
>>> aa
'ā'
>>> bb
'ā'
>>> aa == bb
False
>>> import unicodedata as ud
>>> aa == ud.normalize('NFC',bb)
True
```

Near deduplication

Locality-sensitive hashing

Source: https://towardsdatascience.com/understanding-locality-sensitive-hashing-49f6d1f6134

Set of shingles (n-grams) as document representation

	Documents				
	1	1	1	o	
	1	1	0	1	
S	0	1	0	1	
Shingles	0	0	0	1	
S	1	o	О	1	
	1	1	1	О	
	1	0	1	О	

Near deduplication

MinHashing signatures

C1 C2 C3 C4

Cı	C2	C3	C4
----	----	----	----

Permutation π

Input matrix (Shingles x Documents)

_										
Si	a	na	ıtι	Jr	e I	m	at	П	х	М
							_			•••

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

1	o	1	0
1	0	0	1
0	1	0	1
О	1	0	1
o	1	0	1
1	0	1	0
1	0	1	0

Hash function is the *index of the first (in the permuted order) row in which column C has value 1.* Do this several time (use different permutations) to create signature of a column.

Jaccard similarity and MinHashing signatures

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

The similarity of the signatures is the fraction of the min-hash functions (rows) in which they agree. So the similarity of signature for C1 and C3 is 2/3 as 1st and 3rd row are same.

Claim:
$$P[h_{\pi}(C_1) = h_{\pi}(C_2)] = \sin(C_1, C_2)$$

Near deduplication

Locality-sensitive hashing

Source: https://towardsdatascience.com/understanding-locality-sensitive-hashing-49f6d1f6134

Recurrent Neural networks 1/2

source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks 2/2

word2vec

king is to kings as queen to ?.

 \lor (kings) - \lor (king) = \lor (queens) - \lor (queen)

Recurrent Neural Network Language Modeling Toolkit

$$\mathbf{s}(t) = f\left(\mathbf{U}\mathbf{w}(t) + \mathbf{W}\mathbf{s}(t-1)\right)$$
$$\mathbf{y}(t) = g\left(\mathbf{V}\mathbf{s}(t)\right),$$

$$f(z) = \frac{1}{1 + e^{-z}}, \quad g(z_m) = \frac{e^{z_m}}{\sum_k e^{z_k}}.$$

source: http://www.fit.vutbr.cz/~imikolov/rnnlm/

The Skip-gram model

Skip-gram improvements

Subsampling frequent inputs

$$P(w_i) = (\sqrt{\frac{z(w_i)}{0.001}} + 1) \cdot \frac{0.001}{z(w_i)}$$

- z(w) Relative frequency of word w
- P(w) Probability of keeping word w

Graph for (sqrt(x/0.001)+1)*0.001/x

Negative sampling

We select only 5-20 negative samples in the loss function. The probability of picking a word w is given by z(w).

Experiments with word2vec

01-Review-classification-w2v-assignment.ipynb

Long Short-Term Memory

Zdroj: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated Recurrent Unit

Zdroj: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Bidirectional recursive layer in Keras

Embedding layer in Keras

Text classification with bidirectional LSTM

02-Review-classification-LSTM.ipynb

Traditional tokenization

NLTK tokenizers

```
>>> from nltk.tokenize import word_tokenize #simple
>>> from nltk.tokenize.moses import MosesTokenizer #enables detokenization
>>> from nltk.tokenize import ToktokTokenizer #fast
>>>
>>> moses = MosesTokenizer()
>>> toktok = ToktokTokenizer()
>>>
>>> text = "Welcome to Machine Learning College."
>>> print(word_tokenize(text))
>>> print (moses.tokenize(text))
>>> print (toktok.tokenize(text))
['Welcome', 'to', 'Machine', 'Learning', 'College', '.']
['Welcome', 'to', 'Machine', 'Learning', 'College', '.']
['Welcome', 'to', 'Machine', 'Learning', 'College', '.']
```

Traditional tokenization

SpaCy tokenizer

```
>>> import spacy
>>> sp = spacy.load('en_core_web_sm')
>>> tokens = sp("Welcome to Machine Learning College.")
>>>
>>> [word.text for word in tokens]
['Welcome', 'to', 'Machine', 'Learning', 'College', '.']
```

Subword tokenization

Byte-pair encoding

Source: https://mlexplained.com/2019/11/06/a-deep-dive-into-the-wonderful-world-of-preprocessing-in-nlp/

Subword tokenization

Wordpiece and sentencepiece tokenization

Merges bigrams with maximum mutual information instead of maximum frequency.

$$I(x,y) = \log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$

RNN vs. Transformer

source: www.mlexplained.com

Attention is all you need

Self-attention

Thinking Input **Machines Embedding** X_2 X_1 Queries q_1 Keys k_1 k_2 **Values V**₁ V_2 $q_1 \cdot k_1 = 112$ $q_1 \cdot k_2 = 96$ Score Divide by 8 ($\sqrt{d_k}$) 14 12 0.88 0.12 Softmax Softmax Χ V₁ V_2 Value Sum \mathbf{Z}_2 Z_1

WQ

WK

W

Translation with Transformers

GPT-3 Language model

https://beta.openai.com/

BERT (classification)

Text classification using BERT

03-Review-classification-BERT.ipynb