Relatório do Projeto — Mineração de Dados

Gustavo Zanfelice Dib

16/11/2019

1 Introdução

Este projeto visa a classificação de arquivos de áudio gravados possuindo 4 letras pronunciadas espaçadamente. As 'classes' compreendidas são a,b,c,d,h,m,n,x,6,7. O retorno do programa é a combinação das 4 letras presentes no áudio.

Para isto foram utilizados 356 arquivos de áudio como treinamento de um modelo classificador. Resultando na distribuição a baixo:

Treinamento											
a	b	c	d	h	m	n	X	6	7		
114	123	125	118	114	127	120	114	122	121		

Para validação foram utilizados 267 arquivos com a distribuição:

Validação											
a	b	c	d	h	m	n	X	6	7		
97	106	107	110	122	104	113	95	100	114		

Os testes serão realizados como método avaliativo, sendo assim, não temos acesso à distribuição destes.

Para o projeto, todo o programa foi escrito na linguagem Python 3, através das bibliotecas:

- Pandas: Uma biblioteca que auxilia a manipulação de dados em formato de tabelas implementando funções de processamento e de visualização
- Numpy: Uma biblioteca matemática que implementa diversas operações, como média, mediana, operações vetoriais e afins.
- Librosa: Uma biblioteca de leitura, processamento e gravação de arquivos de áudio.
- SciKit-learn: Uma biblioteca de aprendizado de máquina, implementando modelos de aprendizado, assim como métricas de avaliação e seleção de hiper parâmetros.

- MatplotLib: Biblioteca de visualização de gráficos e análises visuais.
- NoiseReduce: Esta biblioteca criada por Tim Sainburg que reduz ruídos de áudio.

2 Análise Exploratória

2.1 Transformações nos dados

Primeiramente, a tarefa inicial era isolar os quatro caracteres de cada áudio, para ter uma melhor compreensão da similaridade entre áudios de mesmo carácter e afins. Assim, os áudios foram segmentados e isolados em pastas de seu respectivo carácter. O exemplo dos dados da letra 'b' seguem abaixo (para melhor visualização, foi criada a visão alinhada dos sinais).

Um problema comum ao se trabalhar com áudio é o ruido sonoro em torno do áudio. Para diminuir este ruído, foi utilizada a biblioteca *NoiseReduce* que realiza a suavização de um ruído a partir de uma amostra deste. Um exemplo de suavização segue a baixo.

Em seguida, é notável que por se tratar de arquivos de áudio gravados em diferentes dispositivos por diferentes pessoas, temos uma distância de escala entre os áudios, onde até mesmo o volume em que a mensagem foi dita pode causar esta diferenciação. Para neutralizarmos essa discrepância, foi utilizado o método de normalização da biblioteca librosa. Aplicando essa normalização ao mesmo exemplo exibido acima, temos a mudança:

2.2 Extração de Features

Para o processo de aprendizado, como estamos lidando com uma série temporal, iremos extrair features desta série e armazena-las em um arquivo csv que será processado posteriormente. Para a seleção de quais features extrair, foram analisados os métodos da biblioteca librosa.features e vistos em alguns estudos similares. Dentre todas as features extraidas, a mais notável é o Mel-frequency cepstrum, pois este é robusto a ruídos e por aplicar logaritmo, atenua picos existentes. Estas features são:

- Constant-Q chromagram: Média do cronograma da transformação Constant-Q, que transfere o dado para o domínio da frequência.
- Short-time Fourier transform chromagram: Similar à feature anterior, também foi utilizada a média da transformada de Fourier do áudio, que também transfere o dado para o domínio da frequência.

- Centroide do Espectro: Média dos centroides dos frames (normalizados) do áudio
- Largura de Banda: Média das larguras de banda de cada frame do áudio
- Taxa de Cruzamentos no Zero: Número de vezes que o áudio cruzou o índice 0 no eixo y.
- Frequência de Roll-Off: Definida para cada quadro como a frequência central de modo que pelo menos 0,85 da energia do espectro nessa estrutura esteja contido nessa bandeja e nos compartimentos abaixo.
- Mel-frequency cepstrum: representação do espectro de potência de curto prazo de um som, com base em uma transformação de cosseno linear de um espectro de potência de log.

3 Metodologia

Com um arquivo csv de *Features* extraídas para todas as amostras que serão utilizadas, temos uma tabela no formato: Com isto, foram realizados dois pré-

	filename	chroma_stft	rmse	spectral_centroid	spectral_bandwidth	 mfcc17	mfcc18	mfcc19	mfcc20	label
0	0_2.wav	0.675671	0.647213	0.032813	4821.223004	 0.258107	1.074864	-4.096735	0.139661	0.766718
1	100_0.wav	0.641985	0.500162	0.029933	4067.835660	 3.159953	1.224929	3.162031	4.524626	7.771187
2	101_0.wav	0.602044	0.538624	0.055689	3305.766121	 3.121379	1.829411	0.203210	-1.256773	2.162389
3	101_2.wav	0.688363	0.725112	0.043488	4474.397443	 -0.924525	-0.984750	-3.872282	-2.954205	-5.688318
4	102_0.wav	0.724626	0.774140	0.033320	4744.066601	 -0.674110	-3.580620	0.614482	-2.337616	-3.857900

processamentos nesta base: Os caracteres alvos foram tokenizados para o modelo e todas as features (por serem numéricas e suscetíveis) foram redimensionadas através da operação (x - média)/(desvio padrão).

Com os dados prontos, foi decidido que o modelo implementado é o Support Vector Machine (SVM) pois, como temos diversos atributos diferentemente distribuídos, é provável que os dados sejam linearmente separáveis ou separaveis através da aplicação de um kernel. Sendo assim, foi testado duas implementações: O SVC linear para o teste da possível divisão linear e o SVC com a função de kernel Radial basis function kernel (RBF).

Para a seleção de parâmetros do Kernel RBF foi realizado um Grid Search variando dois parâmetros: A penalidade por erro 'C' entre 0.5 e 100 e o coeficiente do kernel 'gamma' entre os valores [0.001, 0.01, 0.1, 1].

Para a seleção do melhor modelo, o critério de avaliação foi Acurácia, pois como se trata de um problema de classificação multi-classe, o modelo não classifica visando positivos e negativos.

Após a realização da busca em largura, foi obtido que os melhores parâmetros são:

• C=3

• gamma=0.1

Pós realizada a analise exploratória e treino de um modelo classificador para todas as classes em questão, foi também implementado o paradigma *One vs All*, ou seja, para cada classe, os objetos daquela classe são definidos os targets para um modelo, e assim é treinado um classificador para cada possível classe.

Como ao fazer isso, o resultado é uma base desbalanceada, onde o valor positivo representa em média 10% do total da base, antes de treinar o modelo, foi realizado o OverSample da base de treino para conseguirmos explorar melhor os dados.

Como acurácia em casos desbalanceados é um indicador falso, a área abaixo da curva roc, precision e recall foram os parâmetros de avaliação de cada modelo. Com todos os modelos treinados, a votação funcionou segundo uma heurística definida por: Caso apenas um dos classificadores específicos tenha retornado resposta positiva, o objeto é considerado daquela classe. Caso mais de um, ou nenhum classificador específico tenha predito positivamente, a classificação dada pelo classificador generalizado é utilizada.

4 Resultados

Após o treino e avaliação dos modelos, obtive que o modelo melhor ajustado é o SVM com kernel rbf, apresentando 73.0% acurácia contra 65.3% para o kernel linear. O detalhamento dos acertos e erros para o Kernel rbf é exibido abaixo:

	6	7	а	b	C	d	h	m	n	X	Total	Total(%)
Acerto_rbf	80	105	91	58	79	48	118	58	59	84	780	0.730337
Erro_rbf	20	9	6	48	28	62	4	46	54	11	288	0.269663
Acerto_linear	74	94	90	57	59	32	110	55	53	74	698	0.653558
Erro_linear	26	20	7	49	48	78	12	49	60	21	370	0.346442

A comparação entre os dois kernels pode ser vista no gráfico que resume a quantidade de acerto por carácter tratado:

Sendo assim o modelo de kernel rbf apresentou melhor performance para todos os padrões analisados, compreendendo melhor os dados apresentados.

Para o teste do modelo, será inseridos novos arquivos de mesmo formato e então realizada a classificação dos novos arquivos recebidos.

Após a aplicação de um modelo para cada classe, houve um pequeno ganho na acurácia geral, 0.5% em média. O que não é de grande avanço porém um sinal de que é uma abordagem mais completa.

Outra vantagem da aplicação é que torna possível a analise de quais pares são mais comumente confundidos entre os classificadores. No caso 60% dos erros se concentram entre os 3 pares mais similares, conforme exibido no gráfico abaixo.

5 Comentários Finais

Trabalhar com arquivos de áudio requer uma boa compreensão de ondas para a melhor extração de features úteis e melhor normalização. Possivelmente existem melhores atributos para serem analisados, assim como a analise em cima do espectrograma literal de cada onda.

Outra abordagem bem interessante para a proposta seria utilizar Deep Learning e redes neurais para a modelagem, já que redes convolucionais poderiam identificar melhor os padrões exibidos.