Algorithms

5.2 TRIES

- R-way tries
- ternary search tries
- character-based operations

Summary of the performance of symbol-table implementations

Order of growth of the frequency of operations.

implementation		typical case	ordered	operations		
Implementation	search	insert	delete	operations	on keys	
red-black BST	log N	log N	log N	✓	compareTo()	
hash table	1 †	1 †	1 †		equals() hashCode()	

† under uniform hashing assumption

use array accesses to make R-way decisions (instead of binary decisions)

- Q. Can we do better?
- A. Yes, if we can avoid examining the entire key, as with string sorting.

String symbol table basic API

String symbol table. Symbol table specialized to string keys.

```
public class StringST<Value>

StringST()

create an empty symbol table

void put(String key, Value val)

put key-value pair into the symbol table

Value get(String key)

return value paired with given key

void delete(String key)

delete key and corresponding value

:
```

Goal. Faster than hashing, more flexible than BSTs.

String symbol table implementations cost summary

	character accesses (typical case)				dedup	
implementation	search hit	search miss	insert	space (references)	moby.txt	actors.txt
red-black BST	$L + c \lg^2 N$	$c \lg^2 N$	$c \lg^2 N$	4 <i>N</i>	1.40	97.4
hashing (linear probing)	L	L	L	4N to 16N	0.76	40.6

Parameters

- N = number of strings
- L = length of string
- \blacksquare R = radix

file	size	words	distinct
moby.txt	1.2 MB	210 K	32 K
actors.txt	82 MB	11.4 M	900 K

Challenge. Efficient performance for string keys.

5.2 TRIES

- R-way tries
- ternary search tries
- character-based operations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Tries

Tries. [from retrieval, but pronounced "try"]

- Store characters in nodes (not keys).
- Each node has *R* children, one for each possible character. (for now, we do not draw null links)

key	value
by	4
sea	6
sells	1
she	0
shells	3
shore	7
the	5

- Search hit: node where search ends has a non-null value.
- Search miss: reach null link or node where search ends has null value.

- Search hit: node where search ends has a non-null value.
- Search miss: reach null link or node where search ends has null value.

- Search hit: node where search ends has a non-null value.
- Search miss: reach null link or node where search ends has null value.

- Search hit: node where search ends has a non-null value.
- Search miss: reach null link or node where search ends has null value.

Insertion into a trie

- Encounter a null link: create new node.
- Encounter the last character of the key: set value in that node.

Trie construction demo

trie

trie

Trie representation: Java implementation

Node. A value, plus references to *R* nodes.

```
private static class Node
{
    private Object value;
    private Node[] next = new Node[R];
}

use Object instead of Value since no generic array creation in Java
private Node[] next = new Node[R];
```


R-way trie: Java implementation

```
public class TrieST<Value>
{
   private static final int R = 256;
                                      ← extended ASCII
   private Node root = new Node();
   private static class Node
   { /* see previous slide */ }
  public void put(String key, Value val)
   { root = put(root, key, val, 0); }
  private Node put(Node x, String key, Value val, int d)
     if (x == null) x = new Node();
     if (d == key.length()) { x.val = val; return x; }
     char c = key.charAt(d);
     x.next[c] = put(x.next[c], key, val, d+1);
      return x;
```

R-way trie: Java implementation (continued)

```
public boolean contains(String key)
{ return get(key) != null; }
public Value get(String key)
   Node x = get(root, key, 0);
   if (x == null) return null;
   return (Value) x.val; ← cast needed
private Node get(Node x, String key, int d)
   if (x == null) return null;
   if (d == key.length()) return x;
   char c = key.charAt(d);
   return get(x.next[c], key, d+1);
```

Trie performance

Search hit. Need to examine all *L* characters for equality.

Search miss.

- Could have mismatch on first character.
- Typical case: examine only a few characters (sublinear).

Space. *R* null links at each leaf.

(but sublinear space possible if many short strings share common prefixes)

Bottom line. Fast search hit and even faster search miss, but wastes space.

Deletion in an R-way trie

To delete a key-value pair:

- Find the node corresponding to key and set value to null.
- If node has null value and all null links, remove that node (and recur).

Deletion in an R-way trie

To delete a key-value pair:

- Find the node corresponding to key and set value to null.
- If node has null value and all null links, remove that node (and recur).

String symbol table implementations cost summary

	character accesses (typical case)				dedup	
implementation	search hit	search miss	insert	space (references)	moby.txt	actors.txt
red-black BST	$L + c \lg^2 N$	$c \lg^2 N$	$c \lg^2 N$	4 <i>N</i>	1.40	97.4
hashing (linear probing)	L	L	L	4N to 16N	0.76	40.6
R-way trie	L	$\log_R N$	L	(R+1) N	1.12	out of memory

R-way trie.

- Method of choice for small *R*.
- Too much memory for large R.

Challenge. Use less memory, e.g., 65,536-way trie for Unicode!

5.2 TRIES

- R-way tries
- ternary search tries
- character-based operations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Ternary search tries

- Store characters and values in nodes (not keys).
- Each node has 3 children: smaller (left), equal (middle), larger (right).

Fast Algorithms for Sorting and Searching Strings

Jon L. Bentley*

Robert Sedgewick#

Abstract

We present theoretical algorithms for sorting and searching multikey data, and derive from them practical C implementations for applications in which keys are character strings. The sorting algorithm blends Quicksort and radix sort; it is competitive with the best known C sort codes. The searching algorithm blends tries and binary search trees; it is faster than hashing and other commonly used search methods. The basic ideas behind the algo-

that is competitive with the most efficient string sorting programs known. The second program is a symbol table implementation that is faster than hashing, which is commonly regarded as the fastest symbol table implementation. The symbol table implementation is much more space-efficient than multiway trees, and supports more advanced searches.

In many application programs, sorts use a Quicksort implementation based on an abstract compare operation,

Ternary search tries

- Store characters and values in nodes (not keys).
- Each node has 3 children: smaller (left), equal (middle), larger (right).

TST representation of a trie

Search hit in a TST

get("shelter")

Ternary search trie construction demo

ternary search trie

Ternary search trie construction demo

ternary search trie

Search in a TST

Follow links corresponding to each character in the key.

- If less, take left link; if greater, take right link.
- If equal, take the middle link and move to the next key character.

Search hit. Node where search ends has a non-null value.

Search miss. Reach a null link or node where search ends has null value.

26-way trie vs. TST

26-way trie. 26 null links in each leaf.

26-way trie (1035 null links, not shown)

TST. 3 null links in each leaf.

TST (155 null links)

and

30

now

for

tip ilk dim

tag

jot sob

nob sky

hut ace

bet

men egg

TST representation in Java

A TST node is five fields:

- A value.
- A character c.
- A reference to a left TST.
- A reference to a middle TST.
- A reference to a right TST.

```
private class Node
{
   private Value val;
   private char c;
   private Node left, mid, right;
}
```


TST: Java implementation

```
public class TST<Value>
  private Node root;
  private class Node
  { /* see previous slide */ }
  public void put(String key, Value val)
  { root = put(root, key, val, 0); }
  private Node put(Node x, String key, Value val, int d)
    char c = key.charAt(d);
    if (x == null) \{ x = new Node(); x.c = c; \}
    if (c < x.c) x.left = put(x.left, key, val, d);
    else if (d < key.length() - 1) x.mid = put(x.mid, key, val, d+1);
                              x.val = val;
    else
    return x;
```

TST: Java implementation (continued)

```
public boolean contains(String key)
{ return get(key) != null; }
public Value get(String key)
  Node x = get(root, key, 0);
  if (x == null) return null;
  return x.val;
}
private Node get(Node x, String key, int d)
  if (x == null) return null;
  char c = key.charAt(d);
                   return get(x.left, key, d);
  if (c < x.c)
  else if (c > x.c) return get(x.right, key, d);
  else if (d < key.length() - 1) return get(x.mid, key, d+1);
  else
                                return x;
```

String symbol table implementation cost summary

	character accesses (typical case)				dedup	
implementation	search hit	search miss	insert	space (references)	moby.txt	actors.txt
red-black BST	$L + c \lg^2 N$	$c \lg^2 N$	$c \lg^2 N$	4 <i>N</i>	1.40	97.4
hashing (linear probing)	L	L	L	4N to 16N	0.76	40.6
R-way trie	L	$\log_R N$	L	(R+1) N	1.12	out of memory
TST	<i>L</i> + ln <i>N</i>	ln N	$L + \ln N$	4N	0.72	38.7

Remark. Can build balanced TSTs via rotations to achieve $L + \log N$ worst-case guarantees.

Bottom line. TST is as fast as hashing (for string keys), space efficient.

TST with R² branching at root

Hybrid of R-way trie and TST.

- Do R^2 -way branching at root.
- Each of R^2 root nodes points to a TST.

Q. What about one- and two-letter words?

String symbol table implementation cost summary

	character accesses (typical case)				dedup	
implementation	search hit	search miss	insert	space (references)	moby.txt	actors.txt
red-black BST	$L + c \lg^2 N$	$c \lg^2 N$	$c \lg^2 N$	4 <i>N</i>	1.40	97.4
hashing (linear probing)	L	L	L	4N to 16N	0.76	40.6
R-way trie	L	$\log_R N$	L	(R+1) N	1.12	out of memory
TST	<i>L</i> + ln <i>N</i>	ln N	$L + \ln N$	4 <i>N</i>	0.72	38.7
TST with R ²	$L + \ln N$	ln N	$L + \ln N$	$4N+R^2$	0.51	32.7

Bottom line. Faster than hashing for our benchmark client.

TST vs. hashing

Hashing.

- Need to examine entire key.
- Search hits and misses cost about the same.
- Performance relies on hash function.
- Does not support ordered symbol table operations.

TSTs.

- Works only for string (or digital) keys.
- Only examines just enough key characters.
- Search miss may involve only a few characters.
- Supports ordered symbol table operations (plus extras!).

Bottom line. TSTs are:

- Faster than hashing (especially for search misses).
- More flexible than red-black BSTs. [stay tuned]

5.2 TRIES

- R-way tries
- ternary search tries
- character-based operations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

String symbol table API

Character-based operations. The string symbol table API supports several useful character-based operations.

key	value
by	4
sea	6
sells	1
she	0
shells	3
shore	7
the	5

Prefix match. Keys with prefix sh: she, shells, and shore.

Wildcard match. Keys that match .he: she and the.

Longest prefix. Key that is the longest prefix of shellsort: shells.

String symbol table API

```
public class StringST<Value>
                    StringST()
                                                          create a symbol table with string keys
              void put(String key, Value val)
                                                         put key-value pair into the symbol table
            Value get(String key)
                                                                value paired with key
              void delete(String key)
                                                           delete key and corresponding value
Iterable<String> keys()
                                                                      all keys
Iterable<String> keysWithPrefix(String s)
                                                               keys having s as a prefix
Iterable<String> keysThatMatch(String s)
                                                         keys that match s (where . is a wildcard)
           String longestPrefixOf(String s)
                                                             longest key that is a prefix of s
```

Remark. Can also add other ordered ST methods, e.g., floor() and rank().

Warmup: ordered iteration

To iterate through all keys in sorted order:

- Do inorder traversal of trie; add keys encountered to a queue.
- Maintain sequence of characters on path from root to node.

Ordered iteration: Java implementation

To iterate through all keys in sorted order:

- Do inorder traversal of trie; add keys encountered to a queue.
- Maintain sequence of characters on path from root to node.

```
public Iterable<String> keys()
   Queue<String> queue = new Queue<String>();
   collect(root, "", queue);
   return queue;
                                               sequence of characters
                                                on path from root to x
private void collect(Node x, String prefix, Queue<String> q)
   if (x == null) return;
   if (x.val != null) q.enqueue(prefix);
   for (char c = 0; c < R; c++)
      collect(x.next[c], prefix + c, q);
}
                                         or use StringBuilder
```

Prefix matches

Find all keys in a symbol table starting with a given prefix.

- Ex. Autocomplete in a cell phone, search bar, text editor, or shell.
 - User types characters one at a time.
 - System reports all matching strings.

Prefix matches in an R-way trie

Find all keys in a symbol table starting with a given prefix.


```
public Iterable<String> keysWithPrefix(String prefix)
{
   Queue<String> queue = new Queue<String>();
   Node x = get(root, prefix, 0);
   collect(x, prefix, queue);
   return queue;
}

root of subtrie for all strings
beginning with given prefix
```

key	queue
sh she shel	she
shell shells sho	she shells
shor shore	she shells shore

Longest prefix

Find longest key in symbol table that is a prefix of query string.

Ex. To send packet toward destination IP address, router chooses IP address in routing table that is longest prefix match.

```
"128"

"128.112"

"128.112.055"

"128.112.055.15"

"128.112.136"

"128.112.155.11"

"128.12.155.13"

"128.222"

"128.222.136"

represented as 32-bit binary number for IPv4

(instead of string)

longestPrefixOf("128.112.136.11") = "128.112.136"

longestPrefixOf("128.112.100.16") = "128.112"

longestPrefixOf("128.166.123.45") = "128"
```

Note. Not the same as floor: floor("128.112.100.16") = "128.112.055.15"

Longest prefix in an R-way trie

Find longest key in symbol table that is a prefix of query string.

- Search for query string.
- Keep track of longest key encountered.

Longest prefix in an R-way trie: Java implementation

Find longest key in symbol table that is a prefix of query string.

- Search for query string.
- Keep track of longest key encountered.

```
public String longestPrefixOf(String query)
   int length = search(root, query, 0, 0);
   return query.substring(0, length);
}
private int search(Node x, String query, int d, int length)
{
   if (x == null) return length;
   if (x.val != null) length = d;
   if (d == query.length()) return length;
   char c = query.charAt(d);
   return search(x.next[c], query, d+1, length);
```

T9 texting

Goal. Type text messages on a phone keypad.

Multi-tap input. Enter a letter by repeatedly pressing a key.

Ex. hello: 4 4 3 3 5 5 5 5 5 6 6 6

"a much faster and more fun way to enter text"

T9 text input.

- Find all words that correspond to given sequence of numbers.
- Press 0 to see all completion options.

Ex. hello: 4 3 5 5 6

www.t9.com

Q. How to implement?

Patricia trie

Patricia trie. [Practical Algorithm to Retrieve Information Coded in Alphanumeric]

- Remove one-way branching.
- Each node represents a sequence of characters.
- Implementation: one step beyond this course.

Applications.

- Database search.
- P2P network search.
- IP routing tables: find longest prefix match.
- Compressed quad-tree for N-body simulation.
- Efficiently storing and querying XML documents.

Also known as: crit-bit tree, radix tree.

Suffix tree

Suffix tree.

- Patricia trie of suffixes of a string.
- Linear-time construction: well beyond scope of this course.

Applications.

- Linear-time: longest repeated substring, longest common substring, longest palindromic substring, substring search, tandem repeats,
- Computational biology databases (BLAST, FASTA).

String symbol tables summary

A success story in algorithm design and analysis.

Red-black BST.

- Performance guarantee: $\log N$ key compares.
- Supports ordered symbol table API.

Hash tables.

- Performance guarantee: constant number of probes.
- Requires good hash function for key type.

Tries. R-way, TST.

- Performance guarantee: $\log N$ characters accessed.
- Supports character-based operations.

Bottom line. You can get at anything by examining 50-100 bits (!!!)