Laboratory session 3

student:	ID:
	onnection based on symmetric cryptography, sharing a secret key k . In s a connection with asymmetric cryptography to C , they want to use the
$k_{A} \ k'_{A} \ k_{B} \ k'_{B} \ k'_{C}$	private key of A public key of A (known to C) private key of B public key of B (known to C) private key of C public key of C (known to A and B)
$\lceil 1 \rceil$ A: generates nonce $r_A \sim \mathcal{U}(\mathcal{R})$	

 $A \rightarrow C : [id_A, id_B, r_A]$

2 C: generates $k \sim \mathcal{U}(\mathcal{K}), \ u_1 = [k, r_{\mathsf{A}}], \ \text{encrypts} \ x_1 = E_{k_{\mathsf{A}}'}(u_1)$ C \rightarrow A: x_1 A: decrypts $u_1 = D_{k_{\mathsf{A}}}(x_1)$

 $\boxed{4} \quad \mathsf{B} \to \mathsf{C} : \left[\mathrm{id}_\mathsf{A}, \mathrm{id}_\mathsf{B}, r_\mathsf{A} \right]$

6 B: verifies $b = V_k([\mathrm{id}_A, \mathrm{id}_B, r_A], t_2)$

Your assignment is to:

- 1) implement the above protocol in your favourite language, and check its correctness;
- 2) identify its vulnerabilities and devise an attack that exploits them, under reasonable assumptions;
- 3) implement the attack and evaluate its success probability in dependence of the protocol parameters;
- 4) suggest improvements to the protocol and implement them.

Provide a description of your solution, with justification of your choices, the code for your implementations, and adequate discussion of the results.

Laboratory session 3

student:	ID:
A wants to authenticate himself to B, with whom he share N -round protocol, which does not require A to send k over	
For $n = 1$ to N	

 $\begin{array}{|c|c|} \hline n.1 & \mathsf{B}: \text{ generates a challenge } x_n \sim \mathcal{U}(\{0,1\}^\ell) \\ & \mathsf{B} \to \mathsf{A}: \ x_n \end{array}$

 $\fbox{$n.2$}$ A: calculates $y_n=x_n\oplus k$ and $b_n=\left\{ egin{array}{ll} 1 & \mbox{if }y_n \mbox{ has an even number of ones} \\ 0 & \mbox{if }y_n \mbox{ has an odd number of ones} \end{array} \right.$

 $\boxed{n.3}$ B: checks b_n . If b_n is incorrect, the authentication is rejected

If b_n is correct for all n = 1, ..., N, the authentication is accepted

Your assignment is to:

- 1) implement the above protocol in your favourite language, and check its correctness;
- 2) identify its vulnerabilities and devise an attack that exploits them, under reasonable assumptions;
- 3) implement the attack and evaluate its success probability in dependence of the protocol parameters;
- 4) suggest improvements to the protocol and implement them.

Provide a description of your solution, with justification of your choices, the code for your implementations, and adequate discussion of the results.

Laboratory session 3

student:	ID:
A chooses a password p_A with up to L_{\max} decimal distance $\{0,1,\ldots,9\}^{L_{\max}}$. Let $x_1=h([p_A,0,\ldots,0]), x_N=\underbrace{h_0}$	
protocol run, $n = 1, \dots, N - 1$	N
$\boxed{1} A \rightarrow B : u_1 = [\mathrm{id}_A]$	
$ \begin{array}{c} \boxed{2} \;\; B : \; r_n \sim \mathcal{U}(\mathcal{R}) \\ B \rightarrow A : \;\; u_2 = [n, r_n] \end{array} $	

 $\begin{array}{ccc} \boxed{3} & \mathsf{A}: & x_n = h(x_{n-1}) \\ & \mathsf{A}: & u_3 = [x_n, r_n] \\ & \mathsf{A} \rightarrow \mathsf{B}: & u_3 \end{array}$

4 B: checks whether $\underbrace{h \circ h \circ \dots h}_{N-n}(x_n) = x_N$ and the received r_n is consistent with the transmitted one.

Your assignment is to:

- 1) implement the above protocol in your favourite language, and check its correctness;
- 2) identify its vulnerabilities and devise an attack that exploits them, under reasonable assumptions;
- 3) implement the attack and evaluate its success probability in dependence of the protocol parameters;
- 4) suggest improvements to the protocol and implement them.

Provide a description of your solution, with justification of your choices, the code for your implementations, and adequate discussion of the results.

Laboratory session 3

student:			ID:
Given $\mathcal{M} = \{0,1\}^n$, $\mathcal{K} = \{$ / integrity protection med	$\{0,1\}^{n+m-1}, \mathcal{T} = \{0,1\}^m, \text{ let } (S(0,1)^m) $	$(\cdot,\cdot),V(\cdot,\cdot,\cdot),\mathcal{M},\mathcal{K},\mathcal{T})$	be a symmetric authentication
	t = S(k, r) = T(k)r,	$t\in\mathcal{T},r\in\mathcal{M}$	

being T(k) the $m \times n$ Toeplitz matrix identified by k, and the verification function is defined accordingly.

Suppose A wants to authenticate himself to B, with whom he shares the secret key k, by using the following protocol

 $1 A \rightarrow B : id_A$

B: generates a nonce $r \sim \mathcal{U}(\mathcal{M})$ B \rightarrow A: r

 $\begin{array}{c} \boxed{3} \ \mathsf{A}: \ \mathrm{calculates} \ t = S(k,r) \\ \mathsf{A} \rightarrow \mathsf{B}: \ t \end{array}$

4 B: checks if V(k, r, t) = ok

Your assignment is to:

- 1) implement the above protocol in your favourite language, and check its correctness;
- 2) identify its vulnerabilities and devise an attack that exploits them, under reasonable assumptions;
- 3) implement the attack and evaluate its success probability in dependence of the protocol parameters;
- 4) suggest improvements to the protocol and implement them.

Provide a description of your solution, with justification of your choices, the code for your implementations, and adequate discussion of the results.