Programmierung

Abgabe: 3. November 2016

Autor Eins 1701 Autor Zwei 74656

Aufgabe 1

Aufgabe 1.a

i)

	S_2
$S_2 \rightarrow A.S_2$	$A.S_2$
$A \rightarrow B$	$B.S_2$
$B \rightarrow p$	$p.S_2$
$S_2 \rightarrow A.S_2$	$p.A.S_2$
$A \rightarrow B$	$p.B.S_2$
$B \rightarrow q$	$p.q.S_2$
$S_2 \to A$.	p.q.A.
$A \rightarrow B : -B$	p.q.B:-B.
$B \rightarrow r$	p.q.r:-B.
$B \rightarrow q$	p.q.r:-q.

Der Ausdruck wird akzeptiert.

$$\mathcal{W}(p.q.r:-q) = \mathcal{W}(p.q.) \cup \{r\}$$
$$= \mathcal{W}(p.) \cup q \cup \{r\}$$
$$= \{p\} \cup \{q\} \cup \{r\}$$
$$= \{p,q,r\}$$

ii)

Der Ausdruck wird akzeptiert.

$$\mathcal{W}(q:-p.p:-q.) = \mathcal{W}(q:-p.)$$
$$= \emptyset$$

iii)

	S_2
$S_2 \rightarrow A.S_2$	$A.S_2$
$A \rightarrow B : -B$	$B:-B.S_2$
$B \rightarrow q$	$q:-B.S_2$
$B \rightarrow p$	$q:-p.S_2$
$S_2 \to A$.	q:-p.A.
$A \rightarrow B$	q:-p.B.
$B \rightarrow p$	q:-p.p.

Der Ausdruck wird Akzeptiert.

$$\mathcal{W}(q:-p.p.) = \mathcal{W}(q:-p.) \cup \{p\}$$
$$= \emptyset \cup \{p\}$$
$$= \{p\}$$

iv)

Der Ausdruck wird nicht Akzeptiert, da »t« kein Symbol des Alphabetes ist.

Autor Eins 1701 Autor Zwei 74656 Programmierung Abgabe: 3. November 2016

Aufgabe 1.b

Sei ${\mathcal S}$ eine Sprache und ${\mathcal P}$ ein Programm. Zu zeigen:

 \mathcal{P} ist semantisch korrekt bzgl. $\mathcal{S}\Rightarrow\mathcal{P}$ ist syntaktisch korrekt \Leftrightarrow \mathcal{P} ist syntaktisch Falsch $\Rightarrow\mathcal{P}$ ist semantisch falsch (entspricht Def.) qed

c)

Seien \mathcal{A}_1 und \mathcal{A}_2 zwei Ausdrcke in einer Sprache und es gelte:

$$\mathcal{W}(\mathcal{A}_1) \neq \mathcal{W}(\mathcal{A}_2) \Rightarrow \mathcal{A}_1 \neq \mathcal{A}_2$$
 dann gilt auch:
$$\mathcal{A}_1 = \mathcal{A}_2 \Rightarrow \mathcal{W}(\mathcal{A}_1) = \mathcal{W}(\mathcal{A}_2)$$

qed

Aufgabe 3

Aufgabe 3.a

 $G = (\{S, A, B\}, \{a, b\}, P, S\}$ mit den Produktionsregeln P:

$$S \rightarrow A$$

$$S \rightarrow B$$

$$A \rightarrow aAb$$

$$A \rightarrow AA$$

$$A \rightarrow a$$

$$B \rightarrow \varepsilon$$

$$B \rightarrow Bb$$

Aufgabe 3.b

$$S_1 = (\{b\}|S_2)$$

 $S_2 = [[S_2]a[S_2]b[S_2]]$

${\bf Aufgabe~3.c}$

Abbildung 1: Regel S_1

Abbildung 2: Regel \mathcal{S}_2