台北市立松山高中 110 學年度第一學期期末考高三選修物理【電磁現象 IV】試題

- 一、單選題 (每題3分,答錯不倒扣,共60分)
- 1. 把相同的一些帶電粒子,以各不相同的速率垂直射入一均勻磁場內,則各粒子的圓周運動中,量值相同的物理量為:
 - (A)動能 (B)角速率 (C)動量 (D)軌道半徑 (E)磁力
- 2. 將設有一垂直指出紙面的均勻磁場B,如有一質量為m的電子,在紙面上以與磁場邊緣夾30°角的方向進入磁場,如右圖所示,則該電子在磁場中逗留的時間應為:

- 3. 電子打入互相垂直之磁場及電場中,其強度各為 $E=3.4\times10^5$ 牛頓/庫侖、 $B=2\times10^{-2}$ 特斯拉時電子不偏向,其速率為多少公尺/秒?
 - (A) 6.8×10^3 (B) 5.1×10^5 (C) 1.7×10^7 (D) 3×10^8 (E) 9.5×10^{10}
- 4. 將一質子及一 α 粒子,以相同速率及方向分別射入相同的之均勻磁場中。由於入射速度不與磁場方向垂直,因此質子及 α 粒子均做螺線形運動。設質子及 α 粒子所做的螺線運動之螺距(如右圖所示)分別為 d_1 及 d_2 ,則 $\frac{d_1}{d_2}$ 之值為何?

題組 5-6

如右圖所示,一磁鐵棒從一螺線管上方穿過螺線管的過程中,如螺線 管兩端接上一微安培計,設重力加速度為 g。試回答下列各題:

5. 若磁鐵棒等速從螺線管上方掉落至下方過程中,則螺線管線圈中之電流 係,以下列哪個圖較為正確?

(D)

- 6. 若磁鐵棒原來作自由落體運動,當它通過螺線管線圈時,其運動狀態將依下列哪種情況發生改變?
 - (A)接近線圈時速度變小,離開線圈時速度也變小
 - (B)接近線圈和離開線圈時,其加速度都小於 g
 - (C)接近線圈時作減速運動,離開線圈時作加速運動
 - (D)接近線圈時加速度小於 g,離開線圈時加速度大於 g
 - (E)接近線圈時加速度大於 g,離開線圈時加速度小於 g
- 7. 如右圖所示,空間有一矩形線框 abcd 和一根很長的通電直導線 ef, 直導線與線框在同一水平桌面上,直導線的電流方向由 f 至 e,則矩 形線框從左邊平移到右邊的整個過程中:

- (A)線框中,應電流的方向先為 abcda,然後 adcba,再 abcda
- (B)線框中,應電流的方向先為 adcba, 然後 abcda, 再 adcba
- (C)線框中,應電流的方向始終為 adcba
- (D)線框中,應電流的方向始終為 abcda
- (E)當移到 ab 及 cd 邊與 ef 的距離恰好相等處時,應電流為 0

題組 8-10

有一個單匝線圈置於磁場中,已知通過此線圈面的磁通量為 $\phi_B = t^2 - 2t + 4$ (Wb),則:

- 8. 當線圈上瞬間應電動勢為 0 時,當時的磁通量量值為多少 Wb?
 - (A) 0 (B) 1 (C) 2 (D) 3 (E) 4
- 9. 前兩秒內線圈之平均應電動勢量值 ε 為多少 V ?
 - (A) 0 (B) 1 (C) 2 (D) 3 (E) 4
- 10. 當 t=2 時的瞬時感應電動勢量值 ε 為多少 V ?
 - (A) 0 (B) 1 (C) 2 (D) 3 (E) 4
- 11. 如右圖所示,磁場強度為 $0.1\ T$,若導線 AD 以 $10\ m/s$ 的速度向右,圖中 AD $=1\ m$, $R=10\Omega$,若導線等速運動,線圈內應電流為多少 A?

(A) 0.02 (B) 0.04 (C) 0.08 (D) 0.10 (E) 0.16

線以等速度V垂直於導線和磁場

- (B) 導線上若有負電荷,將會受到向 a 端之磁力
- (C)導線上會產生應電動勢 $\varepsilon = \ell vB$, a 端電位較 b 端低
- (D)導線上會產生應電場 E=vB,方向由 a 指向 b
- (E)導線上會產生應電流 $I = \frac{\ell vB}{R}$

有一線圈在均勻磁場中轉動時,通過線圈面的磁通量Φ 與時間 t 成正弦關係,如右圖所示,則:

13. 此線圈轉動的頻率為多少 Hz?

(A) 1 (B)
$$\frac{1}{2}$$
 (C) $\frac{1}{4}$ (D) $\frac{1}{8}$ (E) $\frac{1}{16}$

- 14. 此線圈上瞬時應電動勢的最大值為多少伏特?
 - (A) 4 (B) 8 (C) 2π (D) 4π (E) 8π
- 15. 在下列的哪一個瞬間,此線圈上應電動勢的值最大值?
 - (A)第 0.25 秒 (B)第 0.4 秒 (C)第 1.0 秒 (D)第 2.2 秒 (E)第 3.5 秒
- 16. 第1.5秒時,線圈上的瞬時應電動勢為多少伏特?

(A)
$$\pi$$
 (B) $\frac{\pi}{2}$ (C) 2π (D) 4π (E) 0

- 17. 在1.0~1.5秒期間,線圈上平均感應電動勢值為多少伏特?
 - (A) 0 (B) 2 (C) 4 (D) 8 (E) 16
- 18. 瞬時應電動勢e與時間 t 的關係圖為:

- 19. 如右圖,自南向北前進的電磁波於某瞬間其磁場方向朝東,則其電場方向為何?
 - (A) 向西 (B) 向南 (C) 向上 (D) 向下 (E) 無從判定

20. 一無線電臺發射電磁波向東傳播,其電場方向 為上下,若以環形線圈作為接收天線,則應如何 擺放,才能有最大之收訊效果?線圈面的軸線

方向應指著:(提示:電場會影響導線上的電子運動)

- (A)上下 (B)南北 (C)東西 (D)東北、西南 (E)都一樣
- 二、多選題 (每題5分,答錯不倒扣,共10分)
- 21. 带電質點在磁場中運動時,所受磁力為:
 - (A)磁力方向必與運動速度垂直 (B)磁力方向必與磁場方向垂直 (C)磁力僅能改變電荷運動方向 (D)磁力亦可改變電荷之速率 (E)磁力大小因電荷運動速率而改變
- 22. 一簡單的交流發電機的每匝線圈面積為 A、總匝數為 N,在均勻磁場 B 中旋轉的角頻率 為 ω ,在時間 t=0 時,線圈面與磁場垂直,則下列敘述何者正確?
 - (A)在時刻 t 時,線圈之磁通量為 $NAB\cos\omega\,t$ (B)在時刻 t 時,線圈之應電動勢大小為 ω $NAB\sin\omega\,t$ (C)當線圈面與磁場平行時,磁通量為最大值 (D)當線圈面與磁場平行時,應電流所受磁力作用之力矩最大 (E)線圈面與磁場垂直位置之前後線圈上應電流方向會發生改變
- 23. 在 x>0 的空間有一朝 z 方向 (垂直射出紙面) 的均勻磁場 B ,在 x<0 的空間則無磁場。

在 xy 平面上有一長方形線圈,長與寬分別為 3a 及 2a ,線圈之電阻為 R 。如線圈以等速 v ,平行於 x 軸的方向,由無磁場區進入磁場區,如右圖所示,則下列敘述何者正確?

- (A)當部分線圈進入磁場區域時,線圈內的電流是順時鐘方向
- (B)當線圈有電流時,電流的量值 $\frac{3aBv}{R}$
- (C)當線圈有電流時,須有量值為 $\frac{6a^2B^2v}{R}$ 朝正 x 方向之外力,作用於線圈上,線圈才能維持等速運動
- (D)當線圈有電流時,線圈消耗之電功率為 $\frac{9a^2B^2v^2}{R}$
- (E)線圈由無磁場區完全進入磁場區之過程中,線圈產生之熱能為 $\frac{18a^3B^2v}{R}$

三、綜合題 (總分25分,請用原子筆在手寫卷詳細寫下過程)

1. 下列各小題中,迴線甲上是否會產生應電流?如果有應電流的方向為何?依題號書寫

1. 下列各小題中,迴線甲上是各	S 會產生應電流?如果有應電?	
圖	如圖說明	回答 以你的視角回答順、逆時針或無
ZI	一載流長直導線乙垂直穿 過圓形迴線甲的圈面中 心,當導線乙的電流 I 增加 時。	(1)
T Z	一載流長直導線乙平行於 圓形迴線甲的圈面並與直 徑重合,當導線乙的電流 增加時。	(2)
Z /	甲、乙導線在同一平面上 當長直導線乙中的電流隨 時間增加時。	(3)
Z #	一左一右兩個圓形線圈 乙、甲共平面,當乙線圈 突然出現一順時針方向的 電流時。	(4)
Z	甲、乙為共平面之兩圓形 導線,當圓形導線乙中的 電流隨時間增加時。	(5)
乙甲	乙、丙為兩無限長平行細 直導線,通以同方向的相 同電流,其間有一矩形導 線迴路甲,整個裝置在同 一平面上。今將甲迴線等 速向左平移時。	(6)

 如右圖,邊長為θ之正方形的迴線,以等速度ν正在橫移越過一 均勻磁場 B,此磁場的寬度為迴線邊長的兩倍。試將迴線中的磁 通量ΦB、應電動勢ε,移動線圈所需外力 F 分別為縱坐標,橫移 之位置 x 為橫坐標作關係圖。(y 軸要標註量值,每張圖 3 分)

備註:線圈右端碰到 m 開始作圖。且定義電流 (電動勢) 順時針為正,力向右為正。

3. 如右圖所示,有一鉛直豎立且兩長邊極長的固定□形金屬線,置於一垂直此□形平面的均勻磁場 B 中。現有一段電阻為 R、長度為 ℓ 的導線,其兩端套在此□形金屬線的兩長邊上,並持續保持良好接觸,使導線和金屬線形成迴路。該生發現讓該導線自靜止狀態向下滑落,導線運動速度會增加,最後趨近於終端速度作等速運動。請解釋說明該現象的成因為何?(忽略摩擦力、空氣阻力、地磁、迴路電流產生的磁場,)(4分)

2.(1) (9 分)

3. (4分)

台北市立松山高中 110 學年度第二學期第二次段考高二物理科試題答案

一、選擇題

1	2	3	4	5	6	7	8	9	10
В	D	С	В	С	В	В	D	A	С
11	12	13	14	15	16	17	18	19	20
С	D	В	E	С	E	E	D	С	В

二、多選題

21	22	23	24	25
ABCE	ABDE	ABDE		

三、綜合題

(1)不會;(2)不會;(3)逆時針方向;(4)順時針方向;(5)逆時針方向;(6)逆時針方向

(圖每個區域錯扣1分扣完兩分為止,Y軸數值對1分)

- 1. 當導線滑下時,會切割磁力線造成感應電流(或說磁通量發生變化,產生感應電流(電動勢), $\varepsilon = LvB$)
- 2. 而當導線有電流時,在磁場中會受力,利用開掌定則(或F = ILB)判斷受力向上)
- 3. 速度越快則電流越大,則磁力向上越大,
- 4. 而逐漸與重力相同而達到終端速度

各個項次一個1分,加分至4分