Ch 6.2: Shrinkage - Ridge regression Lecture 18 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Mon, Oct 16, 2023

Announcements

Last time:

Subset selection

This time:

Ridge regression

Announcements:

- HW #5 due Wednesday
- Be sure to make note of people you worked with and resources you used.

Section 1

Last time

Subset selection

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- Select a single best model from among M₀,...,M_p using crossvalidated prediction error, C_p (AIC), BIC, or adjusted R².

Algorithm 6.2 Forward stepwise selection

- Let M₀ denote the null model, which contains no predictors.
- 2. For $k = 0, \ldots, p-1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the best among these p-k models, and call it \mathcal{M}_{k+1} . Here best is defined as having smallest RSS or highest R^2 .
- Select a single best model from among M₀,...,M_p using crossvalidated prediction error, C_p (AIC), BIC, or adjusted R².

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the best among these k models, and call it \mathcal{M}_{k-1} . Here best is defined as having smallest RSS or highest \mathbb{R}^2 .
- Select a single best model from among M₀,..., M_p using crossvalidated prediction error, C_p (AIC), BIC, or adjusted R².

Fixing the code from the notebook

```
Ms = []
# For each of sizes k
for k in range(1,5):
    myvars = []
    myscores = []
    # Take all the size k subsets of input variables
    for Xs in combinations(inputyars.k):
        # use the training score as the quality measure
        myvars.append(Xs)
        myscores.append(myscore train(auto.Xs))
    mvResults = pd.DataFrame({'Vars':mvvars. 'TrainScore':mvscores})
    print('\n k:', k)
    print(myResults)
    indexmin = myResults.idxmin(numeric only = True)
    Ms.append(myResults.Vars[indexmin].iloc[0])
print('\n---\n')
for k in range(1.5):
    print('M '+str(k), Ms[k-1])
```

```
k · 1
              Vars TrainScore
      (cylinders,)
                    24.020180
                    23.943663
     (horsepower.)
         (weight.)
                    18.676617
   (acceleration.)
                    49.873627
 k: 2
                        Vars TrainScore
      (cylinders, horsepower)
                               20.848190
          (cylinders, weight) 18.382946
    (cylinders, acceleration) 23,942447
         (horsepower, weight) 17,841442
   (horsepower, acceleration) 22,461644
       (weight, acceleration) 18,247176
 k: 3
                                   Vars TrainScore
         (cylinders, horsepower, weight)
                                          17.763871
  (cylinders, horsepower, acceleration)
                                          20.055715
       (cylinders, weight, acceleration)
                                          18.126486
      (horsepower, weight, acceleration)
                                          17.841430
 k: 4
                                           Vars TrainScore
0 (cylinders, horsepower, weight, acceleration)
                                                    17 7614
M 1 ('weight'.)
M 2 ('horsepower', 'weight')
M 3 ('cylinders', 'horsepower', 'weight')
M 4 ('cylinders', 'horsepower', 'weight', 'acceleration')
```

More fixing

```
In [29]: ##ANSWER##
          testscores = []
          # Use kfold cv to get the test score to make the final judgement
          for X in Ms:
              testscores.append(myscore cv(auto,X))
          myResultsM = pd.DataFrame({'Vars':Ms, 'TestScore':testscores})
          myResultsM
Out[29]:
                                         Vars TestScore
           0
                                      (weight.) 18.844627
                              (horsepower, weight) 18,108011
           2
                      (cylinders, horsepower, weight) 18,200516
           3 (cylinders, horsepower, weight, acceleration) 18.316760
In [30]: ##ANSWER##
          indexmin = myResultsM.idxmin(numeric only = True)
          print('Best Model:', myResultsM.Vars[indexmin])
          Best Model: 1
                            (horsepower, weight)
          Name: Vars, dtype: object
```

Dr. Munch (MSU-CMSE)

Section 2

Ridge Regression

Goal

- Fit model using all p predictors
- Aim to constrain (regularize) coefficient estimates
- Shrink the coefficient estimates towards 0

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4$$

Dr. Munch (MSU-CMSE)

Ridge regression

Before:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)$$

After:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \qquad \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

Example from the Credit data

$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

Same Setting, Different Plot

$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2 \qquad \|\beta\|_2 = \sqrt{\sum_{j=1}^{p} \beta_j^2}$$

Scale equivavariance (or lack thereof)

Scale equivariant: Multiplying a variable by c (cX_i) just returns a coefficient multiplied by 1/c ($1/c\beta_i$)

Solution: Standardize predictors

$$\widetilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_{ij} - \overline{x}_{j})^{2}}}$$

Using Cross-Validation to find λ

- ullet Choose a grid of λ values
- Compute the (k-fold) cross-validation error for each value of λ
- Select the tuning parameter value λ for which the CV error is smallest.
- The model is re-fit using all of the available observations and the selected value of the tuning parameter.

Or. Munch (MSU-CMSE) Mon, Oct 16, 2023

LOOCV choice of λ for ridge regression and Credit data

Dr. Munch (MSU-CMSE) Mon, Oct 16, 2023

Coding

Dr. Munch (MSU-CMSE)

Mon, Oct

Bias-Variance tradeoff

Squared bias (black), variance (green), and test mean squared error (purple) for simulated data.

Dr. Munch (MSU-CMSE) Mon, Oct 16, 2023

More Bias-Variance Tradeoff

Squared bias (black), variance (green), and test mean squared error (purple) for simulated data.

Or. Munch (MSU-CMSE) Mon, Oct 16, 2023

Advantages of Ridge

Ridge vs. Least Squares:

Ridge vs. Subset Selection:

Next time

12	2 Mon	Oct 2	Leave one out CV	5.1.1, 5.1.2	
13	Wed	Oct 4	k-fold CV	5.1.3	
14	Fri	Oct 6	More k-fold CV,	5.1.4-5	
15	Mon	Oct 9	k-fold CV for classification	5.1.5	HW #4 Due
16	Wed	Oct 11	Resampling methods: Bootstrap	5.2	
17	Fri	Oct 13	Subset selection	6.1	
18	B Mon	Oct 16	Shrinkage: Ridge	6.2.1	
19	Wed	Oct 18	Shrinkage: Lasso	6.2.2	
	Fri	Oct 20	Review		
	Mon	Oct 23	No class - Fall break		
	Wed	Oct 25	Midterm #2		
20) Fri	Oct 27	Dimension Reduction	6.3	

Dr. Munch (MSU-CMSE) Mon, Oct 16, 2023