

Semantic Segmentation **For Pedestrian** in Real Life

Contents

01

Problem Definition

Problem Definition

Object Detection

Semantic Segmentation

Instance Segmentation

02 Methodologies

Image Griding to Pixels YOLO V5 Centering & Object Detection Object Classification YOLOv5 **Remove overlapping**

boundry Box

Region Proposal Network

Fast RCNN

Mask RCNN

Detectron2

03

Dataset & Preperation

Detectron2

YOLOV5

04 **Results**

YOLOV5

YOLO V5

• Precision: 0.987

Recall: 0.826

Detectron2

Detectron2

Mask precision: 0.94

05 Conclusion

YOL^Ov5

Detectron2

- More Accurate segmentation
- Musk Segmentations + BBox

YOLOV5

Vs

- Faster & More Efficient
- Smaller Model Size
- Bbox only

