See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306320629

Comparison of dose equivalents from charged particles and neutrons inside the spherical tissue-equivalent phantom on...

Article · January 2016

CITATIONS

READS

0

23

8 authors, including:

Vyacheslav Shurshakov

Jordanka Semkova

Bulgarian Academy of Sciences

53 PUBLICATIONS 284 CITATIONS

SEE PROFILE

SEE PROFILE

Rachid Machrafi

University of Ontario Institute of Technology

37 PUBLICATIONS **124** CITATIONS

153 PUBLICATIONS 883 CITATIONS

SEE PROFILE

УДК 629.7+614.876:001.891.5+613.64

СРАВНЕНИЕ ЭКВИВАЛЕНТНОЙ ДОЗЫ ОТ ЗАРЯЖЕННЫХ ЧАСТИЦ И НЕЙТРОНОВ ВНУТРИ ШАРОВОГО ТКАНЕЭКВИВАЛЕНТНОГО ФАНТОМА НА БОРТУ РОССИЙСКОГО СЕГМЕНТА МЕЖДУНАРОДНОЙ КОСМИЧЕСКОЙ СТАНЦИИ

Хулапко С.В.^{1, 2}, Лягушин В.И.¹, Архангельский В.В.², Шуршаков В.А.², Николаев И.В.¹, Семкова Й. (Semkova J.)³, Смит М. (Smith M.)⁴, Машрафи Р. (Machrafi R.)⁵

¹РКК «Энергия» им. С.П. Королева, г. Королев

E-mail: kh sergey2006@mail.ru

Представлено сравнение эквивалентных доз от заряженных частиц и от нейтронного излучения внутри шарового тканеэквивалентного фантома, измеренных с использованием аппаратуры «Люлин-5» и «Баббл-дозиметр» в космическом эксперименте «Матрешка-Р». Измерения проводились в период основных экспедиций МКС-35/36 (март — сентябрь 2013 г.) и МКС-41/42 (сентябрь 2014 г. — март 2015 г.), когда фантом располагался в Малом исследовательском модуле МИМ1 российского сегмента (РС) МКС. Установлено, что среднесуточная мощность эквивалентной дозы нейтронного излучения в каналах фантома составляет от 77 ± 13 до 157 ± 25 мк3B/сут, что соответствует от 17 до 28% от полной дозы.

Ключевые слова: «Баббл-дозиметр», «Люлин-5», «Матрешка-Р», нейтронное излучение, эквивалентная доза, шаровой фантом, радиационная безопасность.

Авиакосмическая и экологическая медицина. 2016. Т. 50. № 2. С. 47–52.

Ионизирующее излучение космического пространства (ИИ КП) обоснованно считается одним из главных неустранимых факторов, создающих опасность для жизнедеятельности космонавтов при пилотируемых полетах как на околоземных орбитах, так и при полетах за пределы магнитосферы Земли.

Традиционно выделяют три основных источника ИИ КП: галактические космические лучи (ГКЛ), солнечные космические лучи (СКЛ) и радиационные пояса Земли (РПЗ). Все эти источники достаточно хорошо изучены [1] и состоят преимущественно из высокоэнергетических заряженных частиц — протонов, электронов и тяжелых заряженных частиц (ТЗЧ).

Дополнительную дозовую нагрузку на экипажи орбитальных станций и пилотируемых космических аппаратов (ПКА) создает нейтронное излучение. На низких околоземных орбитах большая часть эквивалентной дозы от нейтронов формируется

вторичным нейтронным излучением от ядерного взаимодействия между частицами РПЗ, СКЛ и ГКЛ и материалом ПКА [2]. Меньшая часть формируется нейтронами альбедо атмосферы Земли [3, 4]. При этом установлено, что спектр нейтронного излучения сильно меняется в зависимости от ряда параметров, таких, как солнечная активность, высота орбиты полета ПКА, его масса и состав материала обшивки.

В 1990 г. вышел отчет Международной Комиссии по Радиологической Защите (МКРЗ, ICRP – International Commission on Radiological Protection) [5], в котором вводится понятие эквивалентной дозы и взвешивающие коэффициенты для различных типов излучения. Как видно из табл. 1, нейтронное излучение оказывает серьезное поражающее воздействие на биологические объекты (большие значения взвешивающих коэффициентов).

Последующие экспериментальные и теоретические работы по определению вклада нейтронов в общую эквивалентную дозу показали, что этот вклад существенно расходится и может достигать десятков процентов. Так, например, в самом слабозащищенном отсеке КК «Спейс шаттл» в период максимальной солнечной активности вклад нейтронов в эквивалентную дозу составлял всего 5-8 %, а в хорошо защищенном отсеке в период минимума солнечной активности этот вклад возрастал до 60 % [6]. Для орбитальной станции «Мир» сравнение расчетных значений эквивалентных доз показало, что за толщиной защиты более 40 г/см² эквивалентная доза от нейтронного излучения может даже превышать суммарную эквивалентную дозу от ГКЛ и РПЗ [7].

Кроме того, по некоторым данным при проведении оценок эквивалентных доз от нейтронов с энергией от 1 до 15 МэВ, как это делалось, например, в работе [8], определялось лишь около 30 %

²Государственный научный центр Российской Федерации – Институт медико-биологических проблем РАН, Москва

³Институт космических исследований и технологий Болгарской академии наук, г. София, Болгария

⁴Баббл Текнолоджи, Онтарио, Канада

⁵Технологический институт при Университете штата Онтарио, Канада

Таблица 1

Взвешивающие коэффициенты различных типов ионизирующего излучения

Тип излучения	Диапазон энергии	Взвешивающий коэффициент, W _R
Фотоны	все энергии	1
Электроны и мюоны	все энергии	1
Нейтроны	менее 10 кэВ	5
	10–100 кэВ	10
	100 кэВ – 2 МэВ	20
	2-20 МэВ	10
	более 20 МэВ	5
Протоны, кроме протонов отдачи	более 2 МэВ	5
Альфа-частицы, осколки деления, ТЗЧ	все энергии	20

Таблица 2

Состав шарового фантома

Элемент	Процентное соотношение, %	Отклонение от стандартного материла (ICRP 60), %
Водород	8,7	-1,3
Азот	2,6	0,0
Кислород	32,2	-28,8
Углерод	56,5	+33,3

эквивалентной дозы от суммарной дозы нейтронов. Все эти факты указывают на необходимость проведения измерения в более широком диапазоне энергии нейтронов — от 0,1 МэВ до, как минимум, 50 МэВ.

Отдельный интерес представляет определение вклада от нейтронного излучения в общую эквивалентную дозу внутри фантомов (антропоморфного или шарового), рекомендованных МКРЗ для практической оценки радиационного воздействия на критические органы человека [9].

Первоначально внутри шарового и антропоморфного фантомов определялись только дозы от заряженных частиц ГКЛ, РПЗ и СКЛ [10, 11].

Целенаправленные измерения эквивалентной дозы от нейтронов внутри шарового фантома впервые проводились в период экспедиций МКС-13/15 в рамках космического эксперимента (КЭ) «Матрешка-Р» с использованием детекторов научной аппаратуры (НА) «Баббл-дозиметр» [12]. Измерения внутри фантома были выполнены, когда он располагался в правой кабине модуля «Звезда» (служебный модуль — СМ) российского сегмента (РС) Международной космической станции (МКС). Одновременно проводились измерения вне фантома в правой и левой каютах модуля «Звезда» и внутри модуля «Пирс» (Стыковочный отсек — СО1).

Повторные измерения эквивалентной дозы от нейтронов внутри фантома проводились в период экспедиций МКС-35/36 и МКС-41/42, когда он

располагался внутри Малого исследовательского модуля (МИМ1). При этом впервые измерения проводились дозиметрическими и спектрометрическими детекторами и, кроме того, одновременно с детекторами научной аппаратуры (НА) «Бабблдозиметр» в экваториальных каналах фантома располагался детекторный блок НА «Люлин-5» [13].

Методика

Для определения радиационной нагрузки на критические органы человека внутри модулей МКС был разработан шаровой фантом, выполненный из тканеэквивалентного материала с химическим составом, соответствующим ГОСТ 18622-79 [14]. Фантом доставили на борт МКС в 2003 г. в соответствии с программой КЭ «Матрешка-Р». Масса оснащенного фантома составляла 32 кг, плотность 1,1 г/см², его внешний диаметр был равен 350 мм. Данные о составе шарового фантома представлены в табл. 2.

Подробное описание конструктивных особенностей фантома, тип и количество используемых детекторов можно найти в работе [15].

Для определения характеристик нейтронного излучения на борту МКС был разработан специальный комплекс НА «Баббл-дозиметр», включающий в себя набор из 8 детекторов, заполненных специальным гелем, и пульт для считывания информации с этих детекторов.

Пульт НА «Баббл-дозиметр» позволяет автоматически идентифицировать детекторы, фиксировать время начала и окончания измерений, а также подсчитывает количество пузырьков в детекторах и интегральную эквивалентную дозу в каждом детекторе с учетом его индивидуальной чувствительности. Лицевая сторона пульта оснащена жидкокристаллическим (ЖК) сенсорным дисплеем для ввода/вывода информации во время работы космонавтов с детекторами. Пульт «Баббл-дозиметр» оснащен картой памяти ММС, на которую записываются результаты измерений и файлы с изображениями детекторов. По окончании каждой экспедиции карта памяти возвращается на Землю для обработки результатов.

Детекторы НА «Баббл-дозиметр» дают возможность определять интегральную эквивалентную дозу за период экспонирования в диапазоне от 60 кэВ до 50 МэВ (дозиметрические детекторы), а также энергетический спектр в этом же диапазоне энергии (6 пороговых спектрометрических детекторов) для оценки вклада в суммарную дозу нейтронов различной энергии. Более подробно с составом НА «Баббл-дозиметр», характеристиками детекторов, методикой их калибровки и принципом регистрации нейтронов в детекторах можно ознакомиться в работах [16—19].

Научная аппаратура «Люлин-5» позволяет определять спектр линейной передачи энергии (ЛПЭ), потоки и мощности поглощенных доз от электронов, протонов и ТЗЧ на 3 глубинах в экваториальных каналах шарового фантома [11]. «Люлин-5» состоит из блока электроники и детекторного блока. Блок электроники представляет собой моноблок, состоящий из жидкокристаллического индикатора (ЖКИ) — дисплея и органов управления блоком. В памяти прибора запрограммировано 2 режима работы:

- стандартный режим измерения дозы и потока частиц с временным разрешением 90 с и циклом измерения выделившейся энергии и спектра ЛПЭ около 85 мин;
- режим ускоренных измерений с временным разрешением 20 с и циклом измерения выделившейся энергии и спектра ЛПЭ около 15 мин. Данный режим измерений используется при пересечении МКС зоны Южно-Атлантической магнитной аномалии (ЮАМА).

Переключение между режимами осуществляется автоматически.

Внутри блока электроники находится карта памяти, которая возвращается для обработки данных на Землю в конце каждой экспедиции МКС.

Детекторный блок НА «Люлин-5» состоит из 3 полупроводниковых детекторов (обозначенных как D1, D2, D3), расположенных таким образом, что образуют телескоп заряженных частиц с чувствительной толщиной 360–370 мкм и диаметром

около 17,2 мм [20]. Позиция детекторов D1 и D2 внутри фантома (детектор D1 расположен на глубине 40 мм, D2 — на глубине 60 мм от поверхности фантома) соответствует примерной глубине расположения кроветворных органов в теле человека [5]. Детектор D3 располагается близко к центру фантома.

Спектр выделившейся энергии в детекторах D1 и D2 HA «Люлин-5» используется для определения спектра ЛПЭ в кремнии, который затем пересчитывается в ЛПЭ в воде и определяется коэффициент качества излучения Q(L) для последующего определения дозового эквивалента H.

Эквивалентная доза от заряженных частиц Н определяется с использованием НА «Люлин-5» из выражения, заданного в отчете МКРЗ [5]:

$$H = DQ_{av}(L) , (1)$$

где D — поглощенная доза в точке (Гр); Qav(L) — усредненный коэффициент качества излучения, зависящий от ЛПЭ L.

В свою очередь, коэффициент качества определяется из выражения:

$$Q_{av} = \int \frac{Q(L)D(L)dL}{D} \tag{2}$$

где D — поглощенная доза (Гр); L — линейная передача энергии, кэВ/мкм.

Для определения эквивалентной амбиентной дозы, полученной с использованием спектрометрических детекторов НА «Баббл-дозиметр», применялась матрица отклика детекторов и конверсионные коэффициенты из отчета ICRP-74 [20]. Расположение детекторов НА «Баббл-дозиметр» и детекторного блока НА «Люлин-5» внутри шарового фантома показаны на рис. 1, 2.

Измерения проходили с мая по август 2013 г. в период экспедиций МКС-35/36 и с сентября 2014 г. по март 2015 г. в период экспедиций МКС-41/42. В течение всего этого периода в одном из экваториальных каналов шарового фантома находился детекторный блок НА «Люлин-5», а в трех других располагались дозиметрические или спектрометрические детекторы НА «Баббл-дозиметр».

Учитывая, что для определения энергетического спектра нейтронов в диапазоне энергии от 60 кэВ до 50 МэВ необходимы данные со всех 6 спектрометрических детекторов НА «Баббл-дозиметр», а свободных экваториальных каналов в шаровом фантоме было всего 3, измерения проводились по следующей схеме:

– в одном сеансе в фантоме размещалось 3 спектрометрических детектора из 6, измеряющие «нижнюю» область спектра (диапазон энергии от 60 кэВ до 600 кэВ);

Рис. 1. Схематическое расположение детекторов внутри шарового фантома

Рис. 2. Расположение детекторного блока НА «Люлин-5» (слева) и детектора НА «Баббл-дозиметр» (справа) внутри шарового фантома в модуле «Рассвет» РС МКС

Рис. 3. Усредненные мощности дозы от заряженных частиц и нейтронного излучения внутри шарового фантома

- в следующем сеансе в фантоме размещались другие 3 спектрометрических детектора, измеряющие «верхнюю» область спектра (от 600 кэВ до 50 МэВ);
- по итогам 2 сеансов данные объединялись для определения спектра во всем исследуемом диапазоне энергии.

В каждом из сеансов измерений космонавт выполнял следующие операции:

- активацию детекторов;
- регистрацию каждого из детекторов в считывающем устройстве (пульте) посредством помещения детектора в «гнездо» для считывания информации с штрих-кодов и фиксации времени начала экспозиции;
- размещение детекторов в экваториальных каналах фантома и на его поверхности, фотографирование;
- экспозицию детекторов в течение примерно 7 сут;
- сбор детекторов и считывание информации в пульте;
- перевод детекторов в пассивное состояние хранения до следующего сеанса КЭ.

При этом, учитывая, что данные от спектрометрических детекторов за 2 сеанса измерений «сшивались» в один, фактически можно говорить о 4 полноценных сеансах измерений.

Информация о данных измерений по каждому из детекторов записывалась на карту памяти, которая по окончании каждой экспедиции возвращалась на Землю. Кроме того, для оперативного анализа информации данные считывались экипажем с дисплея пульта НА «Бабблдозиметр» и передавались на Землю по каналам связи.

При этом в некоторых сеансах внутри и на поверхности фантома располагались также интегральные дозиметрические детекторы. Детекторный блок НА «Люлин-5» располагался в шаровом фантоме постоянно.

Интервал между сеансами не превышал 21 сут, в эти периоды не проводилась коррекция орбиты МКС, а также не было отмечено возмущений радиационных условий. Все эти факторы подтверждают, что внешние условия были одинаковы за время проведения измерений внутри фантома.

Результаты и обсуждение

На рис. 3 графически представлены среднесуточные мощности эквивалентной дозы от заряженных частиц и нейтронного излучения внутри шарового фантома.

Как видно из рисунка, вклад нейтронов в общую эквивалентную дозу колебался от 17

до 28 %. Отметим, что максимальный вклад нейтронов (28 %) был зарегистрирован в сеансе, когда использовались детекторы НА «Баббл-дозиметр» с истекающим рабочим ресурсом, что могло привести к увеличению погрешности измерений. Этот факт подтверждался наличием несхлопнувшихся пузырьков при инициализации детекторов (около 20 пузырьков).

Как было показано в работе [13], энергетический спектр нейтронного излучения внутри фантома «жестче», чем на его поверхности, и основной вклад в эквивалентную дозу вносят высокоэнергетические нейтроны с энергией выше 15 МэВ (от 86 до 100 %). Этот результат авторы объясняли эффективным замедлением низкоэнергетических нейтронов на атомах элементов, входящих в состав фантома, выведением их в более низкую часть спектра (менее 60 кэВ) и поглощением в веществе фантома. В то же время происходит дополнительная генерация вторичных нейтронов высоких энергий в веществе фантома.

Данные НА «Люлин-5» хорошо сходятся с ранее полученными результатами [21], в то же время мощность эквивалентной дозы от нейтронов внутри фантома в период МКС-35/36 и МКС-41/42 незначительно выше мощности эквивалентной дозы внутри фантома в период МКС-13/15. Суммарная мощность эквивалентной дозы от заряженных частиц и нейтронов подтверждает данные о средних мощностях дозы на МКС в диапазоне от 0,3 до 0,6 мкЗв/сут [22]. В то же время полученные данные хорошо согласуются с результатами измерений детекторов НА «Баббл-дозиметр» и американского тканеэквивалентного пропорционального счетчика ТЕРС [17], где сообщалось, что доза от нейтронов составляет около 30 % от полной дозы, определяемой данным прибором.

Выводы

Установлено, что вклад нейтронов в общую эквивалентную дозу составляет от 17 до 28 %, причем основной вклад вносят нейтроны с энергией выше 15 МэВ (вклад составляет от 86 до 100 %) [13]. Эти уникальные данные дополняют результаты совместных измерений американского тканеэквивалентного счетчика ТЕРС и детекторов НА «Баббл-дозиметр» в модуле «Звезда» РС МКС, где было установлено, что нейтроны вносят примерно 30 % в общую дозу внутри модулей МКС.

Результаты измерений эквивалентной дозы от заряженных частиц и нейтронного излучения внутри шарового фантома, полученные в период МКС-35/36 и МКС-41/42, хорошо согласуются с ранее полученными данными.

Для подтверждения полученных уникальных данных планируется продолжение одновременных

измерений внутри фантома с использованием НА «Люлин-5» и НА «Баббл-дозиметр» в период следующих экспедиций МКС.

Список литературы

1. Модель космоса / М.И. Панасюк, Л.С. Новиков, ред. 8-е изд. М., 2007.

Space model / M.I. Panasyuk, L.S. Novikov, eds. 8^{th} ed. Moscow, 2007.

- 2. Lyagushin V.I., Dudkin V.E., Potapov Yu.V., Sevastianov V.D. Russian measurements of neutron energy spectra in the Mir orbital station // Rad. Measurements. 2001. Nº 33. P. 313–319.
- 3. Лягушин В.И., Юшков Б.Ю. Измерение потоков нейтронов альбедо атмосферы Земли и в Южно-Атлантической магнитной аномалии на орбитальной станции // Изв. АН. Энергетика. 2011. № 3. С. 75—81.

Lyagushin V.I., Yushkov B.Yu. Measurement of albedo neutrons flux from the Earth atmosphere and in the South-Atlantic anomaly onboard orbital station // Izvestiya AN. Energetics. 2011. \mathbb{N}° 3. P. 75–81.

- 4. Armstrong T.W., Colborn B.L. Predictions of secondary neutrons and their importance to radiation effects inside the International space station // Rad. Measurements. 2001. № 33. P. 229–234.
- 5. Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. 1991.
- 6. Badhwar G.D., Keith J.E., Cleghorn T.F. Neutron measurements onboard the space shuttle // Rad. Measurements. 2001. Nº 33. P. 235–241.
- 7. Шафиркин А.В., Григорьев Ю.Г. Межпланетные и орбитальные полеты. Радиационный риск для космонавтов. Радиобиологическое обоснование. М., 2009.

Shafirkin A.V., Grigoryev Yu.G. Interplanetary and orbital space flights. Radiation risk for cosmonauts. Radiological validation. Moscow, 2009

- 8. *Dudkin V.E. et al.* Differential neutron energy spectra measured on spacecraft in low earth orbit // Nuclear Tracks Radiation Measurements. 1990. V. 17. P. 87–91.
- 9. ГОСТ 25645.203-83. Безопасность радиационная экипажа космического аппарата в космическом полете. Модель тела человека для расчета тканевой дозы. Госстандарт. М., 1984.

GOST 25645.203-83. Space crew radiation safety. The human body model for tissue dose calculation. Gosstandart. Moscow, 1984.

- 10. Matthia D., Berger T., Reitz G. Organ shielding and doses in low-earth orbit calculated for spherical and anthropomorphic phantoms // Adv. in Space Res. 2013. V. 52. P. 528–535.
- 11. Semkova J., Koleva R., Maltchev St. et al. Radiation measurements inside a human phantom aboard the International Space Station using Liulin-5 charged particle telescope // Adv. in Space Res. 2010. V. 45. P. 858–865.

12. Черных И.В., Лягушин В.И., Акатов Ю.А. и др. Результаты измерения дозы нейтронов внутри Российского сегмента Международной космической станции в эксперименте «Матрешка-Р» с использованием пузырьковых детекторов // Авиакосм. и экол. мед. 2010. Т. 44. № 3. С. 12–17.

Chernykh I.V., Lyagushin V.I., Akatov Yu.A. et al. Results of measuring neutron dose inside the Russian segment of the International Space Station using bubble detectors in experiment Matryeshka-R // Aviakosmicheskaya i ekologicheskaya meditsina. 2010. T. 44. № 3. P. 12–17.

13. Хулапко С.В., Лягушин В.И., Архангельский В.В. и др. Определение дозы и энергетического спектра нейтронов внутри и снаружи тканеэквивалентного шарового фантома с использованием пузырьковых детекторов в эксперименте «Матрешка-Р» на Российском сегменте МКС // Косм. техника и технологии. 2015. Т. 2. № 9. С. 51–63.

Khulapko S.V., Lyagushin V.I., Arkhangelsky V.V. et al. Measurement of neutron dose and energy spectrum inside the tissue-equivalent spherical phantom and on its surface using bubble detectors during «Matryoshka-R» experiment on the Russian segment of the ISS // Kosmicheskaya tekhnika i tekhnologii. 2015. V. 2. Nº 9. P. 51–63.

14. ГОСТ 18622-79. Взаимодействие ионизирующего излучения с веществом. Химический состав тканеэквивалентного вещества. Госстандарт. М., 1980.

GOST 18622-79. Interaction of ionizing radiation with matter. Chemical composition of the tissue-equivalent matter. Gosstandart. Moscow, 1980.

15. *Карцев И.С., Акатов Ю.А., Еременко В.Г. и др.* Шаровой фантом для исследования радиационной обстановки в космическом пространстве. Конструктивные особенности // Ядерные измерительно-информационные технологии. 2005. Т. 4. № 16. С. 36–45.

Kartsev I.S., Akatov Yu.A., Yeremenko V.G. et al. Spherical phantom for research of the radiation environment in space. The constructive features // Yadernye izmeritelno-informatsionnye tekhologii. 2005. V. 4. Nº 16. P. 36–45.

16. Хулапко С.В., Лягушин В.И., Архангельский В.В. и др. Результаты измерения дозы и энергетического спектра нейтронов внутри Российского сегмента Международной космической станции в эксперименте «Матрешка-Р» с использованием пузырьковых детекторов в период экспедиций МКС-24—34 // Авиакосм. и экол. мед. 2014. Т. 48. \mathbb{N}° 2. С. 52—56.

Khulapko S.V., Lyagushin V.I., Arkhangelsky V.V. et al. Results of measuring neutrons doses and energy spectra inside Russian segment of ISS in experiment «Matryoshka-R» using bubble detectors during the ISS-24–34 missions // Aviakosmicheskaya i ekologicheskaya meditsina. 2014. V. 48. N° 2. P. 52–56.

17. Smith M.B., Khulapko S., Andrews H.R. et al. Bubble-detector measurements in the Russian segment of the International Space Station during 2009-12 // Radiation Protection Dosymetry. 2014. V. 1. P. 1–13.

- 18. *Ing H.* Neutron measurement using bubble detectors terrestrial and space // Rad. Measurements. 2001. V. 33. P. 275–286.
- 19. Smith M.B., Akatov Yu., Andrews H.R. et al. Measurements of the neutron dose and energy spectrum on the International space station during expeditions ISS-16 to ISS-21 // Radiation Protection Dosimetry. 2013. V. 153. \mathbb{N}^9 4. P. 509–533.
- 20. Conversion Coefficients for use in Radiological Protection against External Radiation. ICRP Publication 74. 1996.
- 21. Semkova J., Maltchev St., Bankov N. et al. Depth dose measurements with the Liulin-5 experiment inside the spherical phantom of the Matroshka-R project onboard the International Space Station // Adv. in Space Res. 2012. V. 49. Nº 3. P. 471–478.
- 22. Методические указания МУ 2.6.1. 44-03-2004 Ограничение облучения космонавтов при околоземных космических полетах. М., 2004

Methodological instructive regulations MU 2.6.1. 44-03-2004 Cosmonauts irradiation limitations during the low Earth orbit flights. Moscow, 2004.

Поступила 20.07.2015

COMPARISON OF DOSE EQUIVALENTS FROM CHARGED PARTICLES AND NEUTRONS INSIDE THE SPHERICAL TISSUE-EQUIVALENT PHANTOM ON THE RUSSIAN SEGMENT OF THE INTERNATIONAL SPACE STATION

Khulapko S.V., Lyagushin V.I., Arkhanguelsky V.V., Shurshakov V.A., Nikolaev I.V., Semkova J., Smith M., Machrafi R.

Aviakosmicheskaya i Ekologicheskaya Meditsina (Russia). 2016. V. 50. № 2. P. 47–52

Dose equivalents from charged particles and neutrons measured with Lyulin-5 and a bubble-dosimeter inside the spherical tissue-equivalent phantom were compared within Russian space experiment Matryoshka-R. Measurements were made during main the International space station (the ISS) missions 35/36 (March – September, 2013) and 41/42 (September, 2014 – March, 2015) when the phantom spent time in the Small Research Module (MIM1) of the ISS RS. The daily average rate of neutron dose equivalent in phantom tunnels varies between 77 \pm 13 to 157 \pm 25 μ Sv/d constituting 17 to 28 % of full dose.

Key words: bubble-dosimeter, Lyulin-5, Matryoshka-R, neutron radiation, dose equivalent, spherical phantom, radiation safety.