单周期 CPU 设计说明文档

一、数据通路设计

1、数据通路具体实现

见表格文档

二、模块规格

1、PC

(1) 端口说明

端口名	方向	描述
clk	I	时钟信号
reset	I	同步复位信号
npc[31:0]	I	32 位存储数据
pc[31:0]	0	输出 32 位 PC 存储的数据

(2) 功能定义

序号	功能名称	功能描述
1	复位	当 reset 为高电平时 PC 同步复位为 0x0000_3000
2	写入 npc	时钟上升沿写入 npc 端口传入的值

2、NPC

(1) 端口说明

端口名	方向	描述
pc[31:0]	I	当前指令 PC 值
NPCOp[1:0]	I	计算 NPC 功能选择
Imm[25:0]	I	26 位立即数
ra[31:0]	I	32 位寄存器值
npc[31:0]	0	输出 32 位 NPC 的值

pc4[31:0]	О	输出 32 位 PC+4 的值
-----------	---	-----------------

序号	功能名称	功能描述	
		NPCOp=00,计算输出顺序地址(PC+4)	
1	次孙小小二个	NPCOp=01,计算输出 beq 地址	
1	次地址计算	NPCOp=10,计算输出 jal 地址	
		NPCOp=11,计算输出 jr 地址	

3, IM

(1) 端口说明

端口名	方向	描述
addr[31:0]	I	输入 32 位地址
Instr[31:0]	О	输出 32 位指令

(2) 功能定义

序号	功能名称	功能描述
1	取出指令	根据 addr 的值从 IM 中取出指令

4、GRF

(1) 端口说明

端口名	方向	描述
A1[4:0]	I	第1个读出寄存器的编号
A2[4:0]	I	第2个读出寄存器的编号
A3[4:0]	I	写入寄存器的编号
RD1[31:0]	0	A1 指向寄存器的值
RD2[31:0]	0	A2 指向寄存器的值
WD[31:0]	I	写入寄存器的值
WE	I	写入使能
clk	I	时钟信号

reset	I	同步复位信号
-------	---	--------

序号	功能名称	功能描述
1	复位	reset=1 时在时钟上升沿所有寄存器复位为 0x0000_0000
2	读出寄存器	A1 和 A2 对应的 32 位寄存器值分别通过 RD1 和 RD2 输出
3	写入寄存器	WE=1 时, WD 的值写入 A3 所指的寄存器

5、ALU

(1) 端口说明

端口名	方向	描述
A[31:0]	I	第1个32位操作数
B[31:0]	I	第2个32位操作数
C[31:0]	О	32 位计算结果
ALUOp[1:0]	I	ALU 功能选择
zero	О	A 和 B 相等比较结果

(2) 功能定义

序号	功能名称	功能描述
1	ALU 数学逻辑计算	ALUOp=00, C=A+B
		ALUOp=01, C=A-B
		ALUOp=10, C=A B
		ALUOp=11,保留
2	相等比较	zero=1, A=B
2		zero=0, A≠B

6、DM

(1) 端口说明

端口名	方向	描述
addr[31:0]	I	地址输入

WD[31:0]	I	写入数据
RD[31:0]	О	读出数据
WE	I	写入使能
clk	I	时钟信号
reset	I	异步复位信号

序号	功能名称	功能描述
1	复位	RST=1 时,在时钟上升沿 RAM 复位为零
2	读出数据	将 addr 所表示的内存地址中的值读出
3	写入数据	WE=1 时,将 WD 的值写入 addr 所表示的内存地址中

7、EXT

(1) 端口说明

端口名	方向	描述
Imm[15:0]	I	16 位立即数输入
out[31:0]	0	32 位扩展结果输出
EXTOp[1:0]	I	扩展功能信号

(2) 功能定义

序号	功能名称	功能描述
		EXTOp=00,进行零扩展
1	拉尼之即 粉	EXTOp=01,进行符号扩展
1	1 扩展立即数	EXTOp=10,进行 LUI 扩展
		EXTOp=11,保留

8、CMP

(1)端口定义

端口名	方向	描述

A[31:0]	I	32 位数据输入
B[31:0]	I	32 位数据输入
equal	О	相等信号输出

序号	功能名称	功能描述
1	相等比较	A==B, equal = 1
	相号比权	A!=B, equal = 0

9、multdiv

(1) 端口定义

端口名	方向	描述
A[31:0]	I	32 位数据输入
B[31:0]	I	32 位数据输入
HiLoOp[2:0]	I	乘除法运算信号
C[31:0]	0	32 位数据输出
busy	О	模块忙信号

(2) 功能定义

序号	功能名称	功能描述
		`MULT_OP: 乘法运算
1	14.1:	`MULTU_OP: 无符号乘法运算
1	multdiv 运算	`DIV_OP: 除法运算
		`DIVU_OP: 无符号除法运算
2	2 HI、LO 读取	`MFHI_OP: HI 读取
2		`MFLO_OP: LO 读取
3	HI、LO 写入	`MTHI_OP: HI 写入
		`MTLO_OP: LO 写入

10. DM_DECODE

(1) 端口定义

端口名	方向	描述
Instr[31:0]	I	32 位指令输入
byte[1:0]	I	2 位地址数据输入
BE[3:0]	О	字节写使能输出

(2) 功能定义

序号	功能名称	功能描述
	DM 字节使能 1 译码	sb: byte==00 ? BE=0001
		byte==01 ? BE=0010
		byte==10 ? BE=0100
1		byte==11 ? BE=1000
		sh: byte==0X ? BE=0011
		byte==1X ? BE=1100
		sw: BE=1111

11、DM_EXT

(1) 端口定义

端口名	方向	描述
Din[31:0]	I	32 位数据输入
DMEXTOp[2:0]	I	DM 输出扩展选择运算
byte[1:0]	I	字节输入
Dout[31:0]	О	32 位数据输出

(2) 功能定义

序号	功能名称	功能描述
		`LB_OP, `LBU_OP,
1	扩展选择运算	`LH_OP, `LHU_OP,
		`LW_OP

12, Controller

(见第二部分:控制器设计)

三、控制器设计

1、端口定义及功能说明

端口名	方向	描述			
opcode[5:0]	I	Instr[31:26]			
funct[5:0]	I	Instr[5:0]			
equal	Ι	相等比较信号			
greater	Ι	大于比较信号			
less	Ι	小于比较信号			
DMWr	О	DM 写使能信号			
ALUOp[3:0]	О	ALU 运算信号			
HiLoOp[2:0]	О	MultDiv 运算信号			
ASel	О	ALU 的 B 端 MUX 选择信号: 0: 寄存器 RD2 值 1: shamt 数据			
BSel	O	ALU 的 B 端 MUX 选择信号: 0: 寄存器 RD2 值 1: EXT 扩展数据			
EXTOp[1:0]	О	EXT 扩展信号			
RFWr	О	GRF 写使能信号			
WDSel[1:0]	O	寄存器的 WD 端 MUX 选择信号: 00: ALU 运算结果 01: DM 输出数据 10: PC+4 11: 保留			

		寄存器的 A3 端 MUX 选择信号:
		00: Instr[20:16]
WRSel[1:0]	О	01: Instr[15:11]
		10: 0x1f
		11: 0x00
NPCOp[1:0]	О	IFU 中 NPC 运算信号

2、真值表

Instr	addu	subu	ori	lw	SW	beq	lui	j	jal	jr
0р	000000	000000	001101	100011	101011	000100	001111	000010	000011	000000
Func	100001	100011	NA	001000						
DMWr	0	0	0	0	1	0	0	0	0	0
ALU0p	ADDU	SUBU	OR	ADDU	ADDU	XX	ADDU	XX	XX	XX
BSel	0	0	1	1	1	X	1	X	X	X
EXT0p	XX	XX	00	01	01	XX	10	XX	XX	XX
RFWr	1	1	1	1	0	0	1	0	1	0
WDSel	00	00	00	01	XX	XX	00	XX	10	XX
WRSel	01	01	00	00	XX	XX	00	XX	10	XX
NPC0p	00	00	00	00	00	0 Zero	00	10	10	11
Instr	bgez	bgtz	blez	bltz	bne	jalr	slt	slti	sltiu	sltu
Ор	000001	000111	000110	000001	000101	000000	000000	001010	001011	000000
Func	NA	NA	NA	NA	NA	001001	101010	NA	NA	101011
DMWr	0	0	0	0	0	0	0	0	0	0
ALU0p	XX	XX	XX	XX	XX	XX	SLT	SLT	SLTU	SLTU
BSel	X	X	X	X	X	X	0	1	1	0
EXT0p	XX	01	01	XX						
RFWr	0	0	0	0	0	1	1	1	1	1
WDSe I	XX	XX	XX	XX	XX	XX	00	00	00	00
WRSel	XX	XX	XX	XX	XX	XX	01	00	00	01

NPC0p	0 Zero	11	00	00	00	00				
Instr	addi	addiu	andi	xori	sll	sllv	sra	srav	srl	srlv
0р	001000	001001	001100	001110	000000	000000	000000	000000	000000	000000
Func	100001	100011	NA	NA	000000	000100	000011	000111	000010	000110
DMWr	0	0	0	0	0	0	0	0	0	0
ALU0p	ADD	ADDU	AND	XOR	SLL	SLL	SRA	SRA	SRL	SRL
BSel	1	1	1	1	0	0	0	0	0	0
EXT0p	01	01	00	00	XX	XX	XX	XX	XX	XX
RFWr	1	1	1	1	1	1	1	1	1	1
WDSel	00	00	00	00	00	00	00	00	00	00
WRSel	00	00	00	00	01	01	01	01	01	01
NPC0p	00	00	00	00	00	00	00	00	00	00
Instr	lh	lhu	lb	lbu	sh	sb	and	nor	or	xor
0р	100001	100101	100000	100100	101001	101000	000000	000000	000000	000000
Func	NA	NA	NA	NA	NA	NA	100100	100111	100101	100110
DMWr	0	0	0	0	1	1	0	0	0	0
ALU0p	ADDU	ADDU	ADDU	ADDU	ADDU	ADDU	AND	NOR	OR	XOR
BSel	1	1	1	1	1	1	0	0	0	0
EXT0p	01	01	01	01	01	01	XX	XX	XX	XX
RFWr	1	1	1	1	0	0	1	1	1	1
WDSel	01	01	01	01	XX	XX	00	00	00	00
WRSel	00	00	00	00	XX	XX	01	01	01	01
NPC0p	00	00	00	00	00	00	00	00	00	00
Instr	add	sub	mult	multu	div	divu	mfhi	mflo	mthi	mtlo
0р	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000
Func	100000	100010	011000	011001	011010	011011	010000	101010	010001	010011
DMWr	0	0	0	0	0	0	0	0	0	0
ALU0p	ADD	SUB	MULT	MULTU	DIV	DIVU	MFHI	MFLO	MTHI	MTLO
BSel	0	0	0	0	0	0	0	0	0	0

EXT0p	XX									
RFWr	1	1	1	1	1	1	1	1	1	1
WDSel	00	00	00	00	00	00	00	00	00	00
WRSel	01	01	01	01	01	01	01	01	01	01
NPC0p	00	00	00	00	00	00	00	00	00	00

3、暂停控制设计表

					ID/EX	级			EX/	MEM 级		
			指令类型	Calc_R	Calc_I	Load	JAL	Calc_R	Calc_I	Load	JAL	busy
			目标寄存器	rd	rt	rt	\$31	rd	rt	rt	\$31	
			Tnew	1	1	2	0	0	0	1	0	
指令类 型	源寄存 器	Tuse										
Calc_R	rs/rt	1				Stall						
Calc_I	rs	1				Stall						
Load	rs	1				Stall						
Beq	rs/rt	0		Stall	Stall	Stall				Stall		
Store	rs	1				Stall						
Store	rt	2									·	
JR	rs	0		Stall	Stall	Stall				Stall	·	
MDuse												stall

4、转发控制设计表

流水级	源寄存器	涉及指令	转发 MUX	控制	信号	输入 0
IF/ID	rs	branch, jreg	MUX_ForwardRS_II) Forwa	rdRS_ID	GRF.RD1
טורוט	rt	branch	MUX_ForwardRT_II) Forwa	rdRT_ID	GRF.RD2
ID/EX	rs	calc_r, calc_i,load,sto	MUX_ForwardRS_E	X Forwa	rdRS_EX	RegData1_ID_EX
	rt	calc_r	MUX_ForwardRT_E	X Forwa	rdRT_EX	RegData2_ID_EX
EX/MEM	rt	store	MUX_ForwardRT_MI	M Forward	BRT_MEM	DM_WD_EX_MEM
			/=			

			ID/EX 级					
			Calc_R	Calc_I	Load	JAL		
		目标寄存器	rd	rt	rt	\$31		
		Tnew	1	1	2	0		
流水级	源寄存器							
IF/ID	rs		/	/	/	PC8_EX		
11710	rt		/	/	/	PC8_EX		

ID/EX	rs		/	/	/		/		
ID/EA	rt		/	/	/		/		
EX/MEM	rt		/	/	/		/		
		EX/MEM 级							
		Calc_R		Calc_I		ad	JAL		
		rd		rt	r	rt	\$31		
		0		0		1	0		
流水级	源寄存器								
IF/ID	rs	ALUout_MEM	Al	_Uout_MEM	,	/	PC8_MEM		
IF/IU	rt	ALUout_MEM	Al	_Uout_MEM	,	/	PC8_MEM		
ID/EX	rs	ALUout_MEM	Al	_Uout_MEM	,	/ PC8_MEM			
ID/LX	rt	ALUout_MEM	Al	_Uout_MEM	,	/ PC8_MEM			
EX/MEM	rt	/		/	,	/	/		
		MEM/WB 级							
		Calc_R		Calc_I			Load	JAL	
		rd		rt			rt	\$31	
		0		0			0	0	
流水级	源寄存器								
IF/ID	rs	/		/			/	/	
IF/IU	rt	/		/			/	/	
ID/EX	rs	RegWriteData_\	WB Re	gWriteData_	WB	RegWriteData_WB		RegWriteData_WB	
ID/LX	rt	RegWriteData_\	WB Re	gWriteData_	WB	Reg\	WriteData_WB	RegWriteData_WB	
EX/MEM	rt	RegWriteData_\	WB Re	gWriteData_	WB	Reg\	WriteData_WB	RegWriteData_WB	

四、测试模块

1、测试 A

测试程序:

li \$s0, 0xfedcba87

li \$s1, 0x6543210f

sw \$s0, 0(\$0)

li \$t0, 8

sh \$s1, -4(\$t0)

sb \$s1, -2(\$t0)

sb \$s1, -1(\$t0)

lw \$v0, -4(\$t0)

addiu \$t0, \$t0, -4

1h \$v1, -2(\$t0)

lhu \$v1, -2(\$t0)

1b \$v1, -3(\$t0)

lbu \$v1, -4(\$t0)

期望结果:

@00003000: \$ 1 <= fedc0000

@00003004: \$16 <= fedcba87

@00003008: \$ 1 <= 65430000

@0000300c: \$17 <= 6543210f

@00003010: *00000000 <= fedcba87

@00003014: \$ 8 <= 00000008

@00003018: *00000004 <= 0000210f

@0000301c: *00000004 <= 000f210f

@00003020: *00000004 <= 0f0f210f

@00003024: \$ 2 <= Of0f210f

@00003028: \$ 8 <= 00000004

@0000302c: \$ 3 <= fffffedc</pre>

@00003030: \$ 3 <= 0000fedc

@00003034: \$ 3 <= ffffffba

@00003038: \$ 3 <= 00000087

2、测试 B

测试程序:

li \$s0, 0xcccc3333

li \$s1, 0x88884444

mult \$s0, \$s1

mfhi \$t0

```
mflo $t1
  multu $s0, $s1
  mfhi $t0
  mflo $t1
  div $s0, $s1
  addiu $v0, $v0, 1
  addiu $v0, $v0, 1
  addiu $v0, $v0, 1
  mfhi $t0
  mflo $t1
  divu $s0, $s1
  jal go
  sll $s0, $s0, 16
  go:
  slt $a0, $s0, $s1
  mfhi $t0
  mflo $t1
  mthi $s0
  mfhi $v0
  mtlo $s1
  mflo $v1
期望结果:
   @00003000: $ 1 <= ccc0000
   @00003004: $16 <= ccc3333
   @00003008: $ 1 <= 88880000
   @0000300c: $17 <= 88884444
  @00003014: $ 8 <= 17e506d3
   @00003018: $ 9 <= eeef258c
  @00003020: $ 8 <= 6d397e4a
  @00003024: $ 9 <= eeef258c
```

@0000302c: \$ 2 <= 00000001

@00003030: \$ 2 <= 00000002

@00003034: \$ 2 <= 00000003

@00003038: \$ 8 <= ccc3333

@0000303c: \$ 9 <= 00000000

@00003044: \$31 <= 0000304c

@00003048: \$16 <= 33330000

@0000304c: \$ 4 <= 00000000

@00003050: \$ 8 <= 4443eeef

@00003054: \$ 9 <= 00000001

@0000305c: \$ 2 <= 33330000

@00003064: \$ 3 <= 88884444

3、测试 C

测试程序:

li \$s0, 0xfedcba87

sll \$v0, \$s0, 16

srl \$v0, \$s0, 16

sra \$v0, \$s0, 16

li \$s1, 30

sllv \$v1, \$s0, \$s1

srlv \$v1, \$s0, \$s1

srav \$v1, \$s0, \$s1

li \$t0, 1

li \$t1, -1

slt \$a0, \$t0, \$t1

sltu \$a0, \$t0, \$t1

slti \$a0, \$t0, -1

slti \$a0, \$t1, 1

sltiu \$a0, \$t0, -1
sltiu \$a0, \$t1, 1
andi \$a1, \$s0, 0xfefe
xori \$a1, \$s0, 0xfefe

期望结果:

@@00003000: \$ 1 <= fedc0000

@00003004: \$16 <= fedcba87

@00003008: \$ 2 <= ba870000

@0000300c: \$ 2 <= 0000fedc

@00003010: \$ 2 <= fffffedc

@00003014: \$17 <= 0000001e

@00003018: \$ 3 <= c0000000

@0000301c: \$ 3 <= 00000003

@00003020: \$ 3 <= ffffffff

@00003024: \$ 8 <= 00000001

@00003028: \$ 9 <= ffffffff

@0000302c: \$ 4 <= 00000000

@00003030: \$ 4 <= 00000001

@00003034: \$ 4 <= 00000000

@00003038: \$ 4 <= 00000001

@0000303c: \$ 4 <= 00000001

@00003040: \$ 4 <= 00000000

@00003044: \$ 5 <= 0000ba86

@00003048: \$ 5 <= fedc4479

4、测试 D (Calc_R)

编号	测试类型	测试序列	预先赋值	期望结果
1	R-M-RS	subu \$2, \$3, \$4	\$3 = 5	\$2 <= 3

12	LW-W-RT	Iw \$2, 0(\$3)	\$3 = 4	\$2 <= 10
		addu \$1, \$2, \$3		
		nop	*4 = 10	\$1 <= 14
11	LW-W-RS	Iw \$2, 0(\$3)	\$3 = 4	\$2 <= 10
				\$1 <= 14
		addu \$1, \$3, \$2	*4 = 10	stall
10	LW-M-RT	Iw \$2, 0(\$3)	\$3 = 4	\$2 <= 10
				\$1 <= 14
		addu \$1, \$2, \$3	*4 = 10	stall
9	LW-M-RS	Iw \$2, 0(\$3)	\$3 = 4	\$2 <= 10
		addu \$1, \$3, \$2		
		nop		\$1 <= 14
8	I-W-RT	ori \$2, \$3, 8	\$3 = 3	\$2 <= 11
		addu \$1, \$2, \$3		
		nop		\$1 <= 14
7	I-W-RS	ori \$2, \$3, 8	\$3 = 3	\$2 <= 11
		addu \$1, \$3, \$2		\$1 <= 14
6	I-M-RT	ori \$2, \$3, 8	\$3 = 3	\$2 <= 11
		addu \$1, \$2, \$3		\$1 <= 14
5	I-M-RS	ori \$2, \$3, 8	\$3 = 3	\$2 <= 11
		addu \$1, \$3, \$2		
		nop	\$4 = 2	\$1 <= 2
4	R-W-RT	subu \$2, \$3, \$4	\$3 = 5	\$2 <= 3
		addu \$1, \$2, \$4		
		nop	\$4 = 2	\$1 <= 1
3	R-W-RS	subu \$2, \$3, \$4	\$3 = 5	\$2 <= 3
		addu \$1, \$3, \$2	\$4 = 2	\$1 <= 2
2	R-M-RT	subu \$2, \$3, \$4	\$3 = 5	\$2 <= 3
		addu \$1, \$2, \$4	\$4 = 2	\$1 <= 1

		nop	*4 = 10	\$1 <= 14
		addu \$1, \$3, \$2		
13	JAL-M-RS	jal go		\$31 <= PC(jal) + 8
		addu \$1, \$31, \$0		\$1 <= PC(jal) + 8
		go: •••		
14	JAL-M-RT	jal go		\$31 <= PC(jal) + 8
		addu \$1, \$0, \$31		\$1 <= PC(jal) + 8
		go: •••		
15	JAL-W-RS	jal go		\$31 <= PC(jal) + 8
		nop		\$1 <= PC(jal) + 8
		go:		
		addu \$1, \$31, \$0		
16	JAL-W-RT	jal go		\$31 <= PC(jal) + 8
		nop		\$1 <= PC(jal) + 8
		go:		
		addu \$1, \$0, \$31		

5、测试 E(Calc_I)

编号	测试类型	测试序列	预先赋值	期望结果
1	R-M-RS	subu \$2, \$3, \$4	\$3 = 8	\$2 <= 6
		ori \$1, \$2, 1	\$4 = 2	\$1 <= 7
2	R-W-RS	subu \$2, \$3, \$4	\$3 = 8	\$2 <= 6
		nop	\$4 = 2	\$1 <= 7
		ori \$1, \$2, 1		
3	I-M-RS	ori \$2, \$3, 8	\$3 = 2	\$2 <= 10
		ori \$1, \$2, 1		\$1 <= 11
4	I-W-RS	ori \$2, \$3, 8	\$3 = 2	\$2 <= 10
		nop		\$1 <= 11
		ori \$1, \$2, 1		

5	LW-M-RS	Iw \$2, 0(\$3)	\$3 = 4	\$2 <= 10
		ori \$1, \$2, 1	*4 = 10	stall
				\$1 <= 11
6	LW-W-RS	Iw \$2, 0(\$3)	\$3 = 4	\$2 <= 10
		nop	*4 = 10	\$1 <= 11
		ori \$1, \$2, 1		
7	JAL-M-RS	jal go		\$31 <= PC(jal) + 8
		ori \$1, \$31, 1		\$1 <= PC(jal) + 8 + 1
		go:•••		
8	JAL-W-RS	jal go		\$31 <= PC(jal) + 8
		nop		\$1 <= PC(jal) + 8 + 1
		go:		
		ori \$1, \$31, 1		

6、测试 F(Load)

编号	测试类型	测试序列	预先赋值	期望结果
1	R-M-RS	subu \$2, \$3, \$4	\$3 = 8	\$2 <= 4
		lw \$1, 0(\$2)	\$4 = 4	\$1 <= 127
			*4 = 127	
1	R-M-RS	subu \$2, \$3, \$4	\$3 = 8	\$2 <= 4
		nop	\$4 = 4	\$1 <= 127
		lw \$1, 0(\$2)	*4 = 127	
3	I-M-RS	ori \$2, \$3, 8	\$3 = 0	\$2 <= 8
		lw \$1, 0(\$2)	*8 = 127	\$1 <= 127
4	I-W-RS	ori \$2, \$3, 8	\$3 = 0	\$2 <= 8
		nop	*8 = 127	\$1 <= 127
		lw \$1, 0(\$2)		

_	LW M DC	1 60 0(60)	φο – 4	¢2
5	LW-M-RS	lw \$2, 0(\$3)	\$3 = 4	\$2 <= 10
		lw \$1, 0(\$2)	*4 = 10	stall
				\$1 <= 11
6	LW-W-RS	lw \$2, 0(\$3)	\$3 = 4	\$2 <= 10
		nop	*4 = 10	\$1 <= 11
		lw \$1, 0(\$2)		
7	JAL-M-RS	jal go	*[PC(jal) + 8] =	\$31 <= PC(jal) + 8
		lw \$1, 0(\$31)	333	\$1 <= 333
		go: •••		
8	JAL-W-RS	jal go	*[PC(jal) + 8] =	\$31 <= PC(jal) + 8
		nop	333	\$1 <= 333
		go:		
		lw \$1, 0(\$2)		

7、测试 G (Store)

编号	测试类型	测试序列	预先赋值	期望结果
1	R-M-RS	subu \$2, \$3, \$4	\$3 = 10	\$2 <= 8
		sw \$4, -4(\$2)	\$4 = 2	*4 <= 2
2	R-M-RT	subu \$2, \$3, \$4	\$3 = 6	\$2 <= 2
		sw \$2, -4(\$4)	\$4 = 4	*0 <= 2
3	R-W-RS	subu \$2, \$3, \$4	\$3 = 10	\$2 <= 8
		nop	\$4 = 2	*4 <= 2
		sw \$4, -4(\$2)		
4	R-W-RT	subu \$2, \$3, \$4	\$3 = 6	\$2 <= 2
		nop	\$4 = 4	*0 <= 2
		sw \$2, -4(\$4)		
5	I-M-RS	ori \$2, \$3, 8	\$3 = 4	\$2 <= 12
		sw \$4, -4(\$2)	\$4 = 11	*8 <= 11
6	I-M-RT	ori \$2, \$3, 8	\$3 = 3	\$2 <= 11

		sw \$2, -4(\$4)	\$4 = 24	*20 <= 11
7	I-W-RS	ori \$2, \$3, 8	\$3 = 4	\$2 <= 12
		nop	\$4 = 11	*8 <= 11
		sw \$4, -4(\$2)		
8	I-W-RT	ori \$2, \$3, 8	\$3 = 3	\$2 <= 11
		nop	\$4 = 24	*20 <= 11
		sw \$2, -4(\$4)		
9	LW-M-RS	Iw \$2, 0(\$3)	\$3 = 4	\$2 <= 12
		sw \$4, -4(\$2)	*4 = 12	stall
			\$4 = 11	*8 <= 11
10	LW-M-RT	Iw \$2, 0(\$3)	\$3 = 4	\$2 <= 10
		sw \$2, -4(\$4)	*4 = 10	*4 <= 10
			\$4 = 8	
11	LW-W-RS	Iw \$2, 0(\$3)	\$3 = 4	\$2 <= 12
		nop	*4 = 12	*8 <= 11
		sw \$4, -4(\$2)	\$4 = 11	
12	LW-W-RT	Iw \$2, 0(\$3)	\$3 = 4	\$2 <= 10
		nop	*4 = 10	*4 <= 10
		sw \$2, -4(\$4)	\$4 = 8	
13	JAL-M-RS	jal go	\$1 = 0	\$31 <= PC(jal) + 8
		sw \$1, 0(\$31)		*[PC(jal) + 8] <= 0
		go: •••		(可写入. text)
14	JAL-M-RT	jal go		\$31 <= PC(jal) + 8
		sw \$31, 0(\$0)		*0 <= PC(jal) + 8
		go: •••		
15	JAL-W-RS	jal go	\$1 = 0	\$31 <= PC(jal) + 8
		nop		*[PC(jal) + 8] <= 0
		go:		(可写入. text)
		sw \$1, 0(\$31)		

16	JAL-W-RT	jal go	\$31 <= PC(jal) + 8
		nop	*0 <= PC(jal) + 8
		go:	
		sw \$31, 0(\$0)	

8、测试 H (Branch)

编号	测试类型	测试序列	预先赋值	期望结果
1	R-E-RS	subu \$2, \$3, \$4	\$3 = 10	\$2 <= 8
		beq \$2, \$5, go	\$4 = 2	stall
		nop	\$5 = 8	jump to go
		lui \$1, Oxffff		\$1 <= 0x11110000
		go:		
		lui \$1, 0x1111		
2	R-E-RT	subu \$2, \$3, \$4	\$3 = 10	\$2 <= 8
		beq \$5, \$2, go	\$4 = 2	stall
		nop	\$5 = 8	jump to go
		lui \$1, Oxffff		\$1 <= 0x11110000
		go:		
		lui \$1, 0x1111		
3	R-M-RS	subu \$2, \$3, \$4	\$3 = 10	\$2 <= 8
		nop	\$4 = 2	jump to go
		beq \$2, \$5, go	\$5 = 8	\$1 <= 0x11110000
		nop		
		lui \$1, Oxffff		
		go:		
		lui \$1, 0x1111		
4	R-M-RT	subu \$2, \$3, \$4	\$3 = 10	\$2 <= 8
		nop	\$4 = 2	jump to go
		beq \$5, \$2, go	\$5 = 8	\$1 <= 0x11110000

		nop		
		lui \$1, Oxffff		
		go:		
		lui \$1, 0x1111		
5	I-E-RS	ori \$2, \$0, 8	\$5 = 8	\$2 <= 8
		beq \$2, \$5, go		stall
		nop		jump to go
		lui \$1, Oxffff		\$1 <= 0x11110000
		go:		
		lui \$1, 0x1111		
6	I-E-RT	ori \$2, \$0, 8	\$5 = 8	\$2 <= 8
		beq \$5, \$2, go		stall
		nop		jump to go
		lui \$1, Oxffff		\$1 <= 0x11110000
		go:		
		lui \$1, 0x1111		
7	I-M-RS	ori \$2, \$0, 8	\$5 = 8	\$2 <= 8
		nop		jump to go
		beq \$2, \$5, go		\$1 <= 0x11110000
		nop		
		lui \$1, Oxffff		
		go:		
		lui \$1, 0x1111		
8	I-M-RT	ori \$2, \$0, 8	\$5 = 8	\$2 <= 8
		nop		jump to go
		beq \$5, \$2, go		\$1 <= 0x11110000
		nop		
		lui \$1, Oxffff		
		go:		
l	L		1	

		lui \$1, 0x1111		
9	LW-E-RS	lw \$2, 0(\$3)	\$3 = 4	\$2 <= 12
		beq \$2, \$5, go	*4 = 12	stall
		nop	\$5 = 12	stall
		lui \$1, Oxffff		jump to go
		go:		\$1 <= 0x11110000
		lui \$1, 0x1111		
10	LW-E-RT	lw \$2, 0(\$3)	\$3 = 4	\$2 <= 12
		beq \$5, \$2, go	*4 = 12	stall
		nop	\$5 = 12	stall
		lui \$1, Oxffff		jump to go
		go:		\$1 <= 0x11110000
		lui \$1, 0x1111		
11	LW-M-RS	lw \$2, 0(\$3)	\$3 = 4	\$2 <= 12
		nop	*4 = 12	stall
		beq \$2, \$5, go	\$5 = 12	jump to go
		nop		\$1 <= 0x11110000
		lui \$1, Oxffff		
		go:		
		lui \$1, 0x1111		
12	LW-M-RT	lw \$2, 0(\$3)	\$3 = 4	\$2 <= 12
		nop	*4 = 12	stall
		beq \$5, \$2, go	\$5 = 12	jump to go
		nop		\$1 <= 0x11110000
		lui \$1, 0xffff		
		go:		
		lui \$1, 0x1111		
13	LW-W-RS	Iw \$2, 0(\$3)	\$3 = 4	\$2 <= 12
		nop	*4 = 12	jump to go

		nop	\$5 = 12	\$1 <= 0x11110000
		beq \$2, \$5, go	·-	
		nop		
		lui \$1, Oxffff		
		go:		
		lui \$1, 0x1111		
14	LW-W-RT	lw \$2, 0(\$3)	\$3 = 4	\$2 <= 12
		nop	*4 = 12	jump to go
		nop	\$5 = 12	\$1 <= 0x11110000
		beq \$5, \$2, go		
		nop		
		lui \$1, Oxffff		
		go:		
		lui \$1, 0x1111		
15	JAL-E-RS	未定义行为		
16	JAL-E-RT	未定义行为		
17	JAL-M-RS	jal pass	\$2 = 2	\$2 <= 12
		nop		stall
		pass:		NOT jump to go
		beq \$ra, \$2, go		\$1 <= 0xffff0000
		nop		\$1 <= 0x11110000
		lui \$1, Oxffff		
		go:		
		lui \$1, 0x1111		
18	JAL-M-RT	jal pass	\$2 = 2	\$2 <= 12
		nop		stall
		pass:		NOT jump to go
		beq \$2, \$ra, go		\$1 <= 0xffff0000
		nop		\$1 <= 0x11110000
		nop pass: beq \$2, \$ra, go	. —	stall NOT jump to go \$1 <= 0xffff0000

		lui \$1, Oxffff		
		go:		
		lui \$1, 0x1111		
19	JAL-W-RS	jal pass	\$2 = 2	\$2 <= 12
		nop		stall
		pass:		NOT jump to go
		nop		\$1 <= 0xffff0000
		beq \$ra, \$2, go		\$1 <= 0x11110000
		nop		
		lui \$1, Oxffff		
		go:		
		lui \$1, 0x1111		
20	JAL-W-RT	jal pass	\$2 = 2	\$2 <= 12
		nop		stall
		pass:		NOT jump to go
		nop		\$1 <= 0xffff0000
		beq \$2, \$ra, go		\$1 <= 0x11110000
		nop		
		lui \$1, Oxffff		
		go:		
		lui \$1, 0x1111		

9、测试 I (JumpWithReg)

编号	测试类型	测试序列	预先赋值	期望结果
1	R-E-RS	addu \$2, \$3, \$4	\$3 = 0x3000	\$2 <= 0x000030008
		jr \$2	\$4 = 8	stall
				: + - 000020000
				jump to 0x000030008
2	R-M-RS	addu \$2, \$3, \$4	\$3 = 0x3000	\$2 <= 0x000030008

		jr \$2		
3	R-W-RS	addu \$2, \$3, \$4	\$3 = 0x3000	\$2 <= 0x000030008
		nop	\$4 = 8	jump to 0x000030008
		nop		
		jr \$2		
4	I-E-RS	ori \$2, \$0, 0x3008		\$2 <= 0x000030008
		jr \$2		stall
				jump to 0x000030008
5	I-M-RS	ori \$2, \$0, 0x3008		\$2 <= 0x000030008
		nop		jump to 0x000030008
		jr \$2		
6	I-W-RS	ori \$2, \$0, 0x3008		\$2 <= 0x000030008
		nop		jump to 0x000030008
		nop		
		jr \$2		
7	LW-E-RS	lw \$2, 0(\$0)	*0 = 0x3008	\$2 <= 0x000030008
		jr \$2		stall
				stall
				jump to 0x000030008
8	LW=M-RS	lw \$2, 0(\$0)	*0 = 0x3008	\$2 <= 0x000030008
		nop		stall
		jr \$2		jump to 0x000030008
9	LW-W-RS	lw \$2, 0(\$0)	*0 = 0x3008	\$2 <= 0x000030008
		nop		jump to 0x000030008
		nop		
		jr \$2		
10	JAL-E-RS	未定义行为		
11	JAL-M-RS	jal go		\$ra <= PC(jal)+8
		nop		forever jump

		go:	
		jr \$ra	
12	JAL-W-RS	jal go	\$ra <= PC(jal)+8
		nop	forever jump
		go:	
		nop	
		jr \$ra	

五、思考题

1、为什么需要有单独的乘除法部件而不是整合进 ALU? 为何需要有独立的 HI、 LO 寄存器?

乘除法的计算一般需要耗费较多的时间,并且,它的逻辑运算单元也比较 庞大,将 ALU 与其分离开来,有利于对芯片模块化的设计,让两者产生更 少的干扰,也便于乘除法模块对流水线暂停的控制。

将 HI、LO 独立出来,是对乘除指令与访存 HI、LO 指令需求的体现,同时,也让乘除法模块更具有整体性,是一种高内聚的设计方法。

2、参照你对延迟槽的理解, 试解释"乘除槽"。

分支延迟槽是针对跳转指令在执行跳转中,为避免控制冒险而浪费一个时钟周期,的一种解决方案,将跳转指令前的不影响程序功能的指令放入延迟槽,以此节省下来控制冲突带来的浪费。

乘除法因其所需大量的计算时间,因此,允许其后不需要乘除法模块的指令继续通过流水线,而阻塞需要乘除法模块的 mult、mflo 等指令,以此优化乘除法的延迟。

3、举例说明并分析何时按字节访问内存相对于按字访问内存性能上更有优势。 (Hint: 考虑 C 语言中字符串的情况) 在对存储单元小于一个字长的数据结构,或存储地址为非按字对齐的数据进行访问时,按字节访问更有优势。

4、如何概括你所设计的 CPU 的设计风格? 为了对抗复杂性你采取了哪些抽象和规范手段?

在设计我的 CPU 中, 我的风格应该是"侦测者"型。

将指令根据是否产生新的数据、产生新数据的位置、需求数据的个数和获取位置,将它们进行分类和抽象。这样,在扩增指令时,只需考虑对应指令的相应类型,就可以精确实现转发和暂停的控制。并且,采用分布式译码,对访问寄存器的地址和数据进行提前计算,模块化设计,都是对CPU设计的规范手段。

5、在本实验中你遇到了哪些不同指令类型组合产生的冲突?你又是如何解决的?相应的测试样例是什么样的?

为手动构造特殊的指令进行冲突测试,根据暂停和转发的表格,对指令顺序进行有计划的排列,如上所写测试。