1 Определения понятия 'База данных'

1.1 По Конноли и Беггу

База данных – это совместно используемый набор логически связанных данных и описание этих данных, предназначенные для удовлетворения информационных потребностей организации

1.2 По Дейту

База данных – набор постояннохранимых данных, используемых прикладными системами какого-либо предприятия

1.3 По Хомоненко

База данных – совокупность специальным образом организованных данных, хранимых в памяти вычислительной системы и отображающих состояния объектов и их взаимосвязей в рассматриваемой предметной области

2 Определение понятия 'СУБД'

2.1 По Конноли и Беггу

 $CYB\mathcal{A} - \Pi O$ с помощью которого пользователи могут определять, создавать и поддерживать $B\mathcal{A}$, а также осуществлять к ней контролируемый доступ

2.2 По Дейту

 $CYB\mathcal{I}$ — комплекс языковых и програмных средств, предзназначенные для создания, ведения и совместного использования $B\mathcal{I}$ многими пользователями

3 Реляционная БД

- Основа РМД отношение relation
- Схема отношения совокупность заголовков столбцов
- Кортеж отдельная строка в таблице
- Атрибут отдельный столбец таблицы
- Сущность отношение в таблице
- Поле пересечение кортежа и атрибута
- Домен множество допустимых значений атрибута
- Степень отношения количество атрибутов
- Кардинальность отношения количество кортежей

4 Свойства кортежей

- уникальность имени отношения в реляционной схеме (каждая таблица имеет определенное имя)
- каждая ячейка содержит только одно неделимое значение (одно из самых тяжелых с точки зрения баталий и принятия решений)
- уникальность имени атрибута в пределах отношений
- значение любого атрибута берутся из одного и того же домена (домен определяет значения атрибута в столбце)
- каждый кортеж уникален
- порядок следования атрибутов и порядок следования кортежей не имеют значения (важное расхождение с формулировкой Кодда)¹

 $^{^{1}}$ Все хорошо пока не начинаешь сортировать (выполнять другие операции) данные. Триггеры - поверх БД весится проверка при добавлении / изменении новых данных, ускорение при чтении данных

5 Ключи

Хранение связей осуществляется при помощи ключей.

В реляционных моделях хранятся только отношения все объекты однотипны.

- *Супер-ключ* атрибут, или множество атрибутов единственным образом идентифицирующий кортеж (вся схема отношения, совокупность всех атрибутов)
- *Потенциальный ключ* супер-ключ, который не содержит подмножества, также являющегося супер-ключем, составной потенциальный ключ содержит более одного атрибута
- *Первичный ключ* один из потенциальных ключей, который выбран для уникальной идентификации кортежей данного отношения
- Внешний ключ атрибут или множество атрибутов, которые соответствуют потенциальному ключу некоторого может быть того же самого отношения

6 Типы связей

• $Oduh \ \kappa \ odhomy$ - первичный ключ к одному из отношений является одновременно и внешним ключём

Employee	SalesPerson		
$id_{exp}(PK)$	id_sp(PK, FK)		

• *Один ко многим* - значение в некотором неключевом поле берутся из значений потенциального ключа другого отношения

Employee		SalesPerson		
$id_{exp}(PK)$	id_boss(FK)	id_sp(PK, FK)		

• *Многие ко многим* - может быть реализованно только с помощью доп таблицысвязки, в которой содержатся как минимум пары из ключей потенциальных таблиц

Employee SalesPerson		SalesPerson_Product			
$id_{exp}(PK) \mid id_{boss}(FK)$	id_sp(PK, FK)	id_pr	id_sp	id_reg	
Product Region					
-	id_pr id_reg				

7 Целостность

• *Сущностная целостность* – ни один атрибут первичного ключа не может содержать Null значений

• *Ссылочная целостность* — если в отношении существует внешний ключ, то его значение должно соответствовать существующему значению потенциального ключа к другом отношении