Contents

1	Cla	sses	:	2
	1.1	finitef	eld – Finite Field	2
		1.1.1	†FiniteField – finite field, abstract	3
		1.1.2	†FiniteFieldElement – element in finite field, abstract	4
		1.1.3		5
			1.1.3.1 createElement – create element of finite prime	
			$_{ m field}$	6
			1.1.3.2 getCharacteristic – get characteristic	6
			1.1.3.3 issubring – subring test	6
			1.1.3.4 issuperring – superring test	6
		1.1.4		7
			1.1.4.1 getRing – get ring object	8
			1.1.4.2 order – order of multiplicative group	8
		1.1.5	ExtendedField – extended field of finite field	9
			1.1.5.1 createElement – create element of extended field 10	0
			1.1.5.2 getCharacteristic – get characteristic 10	0
			1.1.5.3 issubring – subring test	0
			1.1.5.4 issuperring – superring test	0
			1.1.5.5 primitive_element – generator of multiplicative	
			group	0
		1.1.6	ExtendedFieldElement – element of finite field 1	1
			1.1.6.1 getRing – get ring object	2
			1 1 6 2 inverse = inverse element	2

Chapter 1

Classes

1.1 finitefield – Finite Field

- Classes
 - $\ \dagger Finite Field$
 - $-\ \dagger Finite Field Element$
 - FinitePrimeField
 - FinitePrimeFieldElement
 - ExtendedField
 - $\ \mathbf{ExtendedFieldElement}$

1.1.1 †FiniteField – finite field, abstract

有限体のクラスについて考える。直接的にクラスを扱うのではなく、FinitePrime-Field や ExtendedField のサブクラスとして扱う。 クラスとは Field のサブクラスのことである。

有限体の要素のクラスについて考える。直接的にクラスを扱うのではなく、FinitePrime-FieldElement や ExtendedFieldElement のサブクラスとして扱う。 クラスとは Field のサブクラスのことである。

1.1.3 FinitePrimeField – finite prime field

Finite prime field is also known as \mathbb{F}_p or GF(p). It has prime number cardinality. The class is a subclass of **FiniteField**.

Initialize (Constructor)

FinitePrimeField(characteristic: integer) ightarrow FinitePrimeField

 $Create\ a\ Finite Prime Field\ instance\ with\ the\ given\ {\tt characteristic}.\ {\tt characteristic}$ must be positive prime integer.

Attributes

zero:

It expresses the additive unit 0. (read only)

one:

It expresses the multiplicative unit 1. (read only)

operator	explanation		
F==G	equality test.		
x in F	membership test.		
card(F)	Cardinality of the field.		

1.1.3.1 createElement - create element of finite prime field

 $createElement(self, seed: integer) \rightarrow FinitePrimeFieldElement$

seed の FinitePrimeFieldElement を作る。 seed は int 型か long 型。

1.1.3.2 getCharacteristic - get characteristic

 $\operatorname{getCharacteristic(self)} o integer$

体の標数の値を返す。

1.1.3.3 issubring – subring test

 $issubring(self, other: Ring) \rightarrow bool$

他の環が部分環として体に含まれているか教えてくれる。

1.1.3.4 issuperring – superring test

 $issuperring(self, other: Ring) \rightarrow bool$

Report whether the field is a superring of another ring. Since the field is a prime field, it can be a superring of itself only.

1.1.4 FinitePrimeFieldElement – element of finite prime field

The class provides elements of finite prime fields.

It is a subclass of FiniteFieldElement and IntegerResidueClass.

Initialize (Constructor)

Create element in finite prime field of modulus with residue representative. modulus は正の素数の整数である。

operator	explanation
a+b	addition.
a-b	subtraction.
a*b	multiplication.
a**n,pow(a,n)	power.
-a	negation.
+a	make a copy.
a==b	equality test.
a!=b	inequality test.
repr(a)	return representation string.
str(a)	return string.

 ${\bf 1.1.4.1} \quad {\bf getRing-get\ ring\ object}$

 $\mathtt{getRing}(\mathtt{self}) o extit{FinitePrimeField}$

Return an instance of FinitePrimeField to which the element belongs.

1.1.4.2 order – order of multiplicative group

 $\operatorname{order}(\mathtt{self}) o \mathit{integer}$

 \mathbb{F}_p の乗法群の要素の配列を返す。

1.1.5 ExtendedField – extended field of finite field

Extended Field is a class for finite field, whose cardinality $q = p^n$ with a prime p and n > 1. It is usually called \mathbb{F}_q or GF(q).

The class is a subclass of **FiniteField**.

Initialize (Constructor)

 $\begin{tabular}{ll} Extended Field (basefield: $FiniteField, $modulus: $FiniteFieldPolynomial) \end{tabular}$

 \rightarrow ExtendedField

体の拡張を行う。 basefield[X]/(modulus(X)).

与えられた characteristic の有限素体のインスタンス。The modulus は basefield 上の係数をもつ既約多項式でなければならない。

Attributes

zero:

It expresses the additive unit 0. (read only)

one:

It expresses the multiplicative unit 1. (read only)

operator	explanation
F==G	equality or not.
x in F	membership test.
card(F)	Cardinality of the field.
repr(F)	representation string.
str(F)	string.

1.1.5.1 createElement - create element of extended field

createElement(self, seed: extended element seed)
ightarrow ExtendedFieldElement

シードから体の要素を作る。その結果は Extended Field Element のインスタンスである。

seed が成りうるのは:

- a FinitePrimeFieldPolynomial
- an integer, which will be expanded in card(basefield) and interpreted as a polynomial.
- basefield element.
- 多項式の係数としてベースフィールドの要素が並ぶリスト。
- 1.1.5.2 getCharacteristic get characteristic

 $\operatorname{getCharacteristic(self)} o integer$

体の標数の値を返す。

1.1.5.3 issubring – subring test

 $issubring(self, other: Ring) \rightarrow bool$

他の環が部分環として体を含んでいるか教えてくれる。

1.1.5.4 issuperring – superring test

 $issuperring(self, other: Ring) \rightarrow bool$

Report whether the field is a superring of another ring.

1.1.5.5 primitive element – generator of multiplicative group

 $ext{primitive element(self)} o ext{\it ExtendedFieldElement}$

体の原始元の値を返す。

1.1.6 ExtendedFieldElement – element of finite field

ExtendedFieldElement is a class for an element of F_q . The class is a subclass of **FiniteFieldElement**.

Initialize (Constructor)

有限拡張体の要素を作る。

representative must be an FiniteFieldPolynomial has same basefield. field は拡張体のインスタンス。

operator	explanation
a+b	addition.
a-b	subtraction.
a*b	multiplication.
a/b	inverse multiplication.
a**n,pow(a,n)	power.
-a	negation.
+a	make a copy.
a==b	equality test.
a!=b	inequality test.
repr(a)	return representation string.
str(a)	return string.

 ${\bf 1.1.6.1} \quad {\bf getRing-get\ ring\ object}$

 $\mathtt{getRing}(\mathtt{self}) o extit{FinitePrimeField}$

ある要素が入っている有限素体のインスタンスを返す。

 ${\bf 1.1.6.2}\quad inverse-inverse\ element$

 $inverse(self) \rightarrow \textit{ExtendedFieldElement}$

逆元の値を返す。

Bibliography