Detecting Diversity: Paradigm Shifts in Estimation of Species Distribution and Abundance

2006 1930

Steve Beissinger
Dept. of Environmental Science, Policy & Management
& Museum of Vertebrate Zoology
U.C. Berkeley

Pre-1940 MVZ Specimen Locality Records

Pre-1940 MVZ Specimen Locality Records

~ 3 times more species per site observed than collected

Grinnell Resurvey Project: Status and Future

- Sierra and Coastal range resurveys (2004-10)
- Modeling past & future change (2008-12)
- •Current resurveys in the CA desert and Central Valley (2015-18)

Global Biodiversity Monitoring: Sampling for Trends, Searching for Causality

Trend Metrics:

- Species level:
 - Occurrence (Presence or "Absence") of organisms
 - Abundance of organisms
- Community level:
 - Occurrence (Presence or "Absence") of organisms
 - Abundance of organisms
- Ecosystem and higher levels
 - Occurrence (Presence or "Absence") of pixels/process

Are Range Shifts Congruent Across Sierra Nevada Taxa?

(Rapacciuolo, Maher,..., & Beissinger. 2014. Global Change Biology 20:2841-2855)

Do Species Traits Predict Range Shifts?

MacLean and Beissinger unpubl. ms

Factors Affecting the Probability of Detecting a Species

Mechanisms that Cause Different Types Of Zero Observations in Count Surveys and their Effects

Denes, Silveira & Beissinger. 2015. Methods in Ecology and Evolution. DOI: 10.1111/2041-210X.12333

Occupancy Models

(MacKenzie et al. Ecology 2002, 2004; book in 2006)

- Investigate patterns in occupancy Ψ using **detection**-nondetection data $[h = 0,0,1 \quad 1,0,1]$.
- Recognize that an observed 'absence' may be the result of a **true absence or a nondetection**.
- Depend on repeated surveys at a site over a short (closed) time period to determine presence or absence.

Single Season Occupancy

$$L(\psi, \mathbf{p} \mid h_1, h_2, ...h_s) = \left[\psi^{n} \prod_{t=1}^{T} p_t^{n_t} (1 - p_t)^{n - n_t} \right] \times \left[\psi \prod_{t=1}^{T} (1 - p_t) + (1 - \psi)\right]^{N - n}$$

Multi-Season Dynamics

$$\Psi_{t} = \Psi_{t-1} (1 - \epsilon_{t-1}) + (1 - \Psi_{t-1}) \delta_{t-1}$$

Factors Affecting Detectability of 43 Bird Species

8 Candidate Detection Models

- 1. (.)
- 2. Era (Grinnell vs. Us)
- 3. Julian day
- 4. Observer
- 5. Era + Julian Day
- 6. Era * Julian Day
- 7. Observer + Julian Day
- 8. Observer + Julian Day + Julian Day * Era

Detection models with	Cumulative AIC weight
Era	0.89
Julian Day	0.71
Observer	0.34

Modeling Approaches for Estimating Abundance of

Multi-Species Occupancy and Abundance Models (MSOM and MSAM)

MSOM:

```
w_i \sim \operatorname{Bernoulli}(\Omega) - \operatorname{superpopulation process}(\operatorname{data augmentation}); [I] z_{i,j} | w_i \sim \operatorname{Bernoulli}(w_i * \Psi_{i,j}) - \operatorname{ecological process}; [II] y_{i,j,k} | z_{i,j} \sim \operatorname{Bernoulli}(z_{i,j} * p_{i,j,k}) - \operatorname{observation process}. [III]
```

MSAM:

```
w_i \sim \text{Bernoulli}(\Omega) - \text{superpopulation process (data augmentation)};
[IV]
N_{i,j}|w_i \sim \text{Poisson }(w_i * \lambda_{i,j}) - \text{ecological process};
[V]
y_{i,j,k}|N_{i,j} \sim \text{binomial }(N_{i,j},\ p_{i,j,k}) - \text{observation process}.
[VI]
```

Modeling Community Change in Faces the Same Detection Problem

Tingley & Beissinger. 2013. Ecology 94: 598-609

Species Distribution Models use climate to project occupancy. How well do they perform for 18 mammal species we resurveyed?

— Future Modeling to 2050 (a2)—

SDM Model Performance Increased with High Quality Data that was Corrected for Detectability

(Smith et al. 2013. Ecography 36:1017-1031)

Metacommunity (100 Bird Species) Slopes for Standardized Effects

Some Concluding Thoughts

- We are at the start of a statistical shift to the "Detecting Diversity" Paradigm
- "Big Data" and Citizen Science will make huge contributions to future monitoring of global of biodiversity
- This necessitates developing SDMs that account for both false negatives and false positives
- More than ever, we will need boots on the ground to do systematic surveys ("Little Data")
- We are rapidly losing decades of "Little Data" that has already been collected

Someday your data will be "historic". How will you preserve it?

Thanks!

And to NSF, National Geographic Society, CA Energy Commission, MVZ, and NPS for funding.

SDMs over-predicted presence more than absence (Smith et al. 2013. Ecography 36:1017-1031)

False absence: known occurrence predicted to be absence by model

Land Use, Climate Change and Bird Resurveys

Resurveys (1911-40 vs 2009-10): 2 km transect, 10 pt. counts,70 sites Climate Change (1900-1939 vs. 1970-2009): PRISM 1 km buffer Land Use Intensity (Sanderson et al. 2002): 1 km buffer

A Temperature

 $(\bar{x} = 0.29^{\circ}C, -0.24-0.82)$

Δ Precipitation

 $(\bar{x} = 4.6 \text{mm}, -16.8-23.8)$

Land Use Intensity

 $(\bar{x} = 0.29, 0.06-0.76)$

Winners and Losers from Climate (1°C warming & 100 mm drying) and Land Use Change

Δ Occupancy from Land Use

Multiple-Season Occupancy Models to Estimate Colonization and Extinction

(MacKenzie et al. 2002, 2006)

$$\Psi_{t} = \Psi_{t-1} (1 - \epsilon_{t-1}) + (1 - \Psi_{t-1}) \delta_{t-1}$$

Occupied Undetected Not extinct

$$Pr(\mathbf{h}_{2} = 000\ 010) \qquad \qquad \mathbf{Unoccupied\ Colonized}$$

$$= \{\varphi_{1} \prod_{1} (1 - p_{1,j})(1 - \varepsilon) + (1 - \varphi_{1})\delta_{1}\}x\ (1 - p_{2,1})\ p_{2,2}\ (1 - p_{2,3})$$
Detection history

Inference About Turnover based on Naïve Site "Occupancy" History

(1 = present and 0 = absent) for two eras (historic = h and modern = m) derived from its probability of detection (D).

Occupancy history	Persistence (1,1)	Colonization (0,1)	Extinction (1,0)	Unoccupied (0,0)
1,1	1	0	0	0
0,1	1-D _h	D_{h}	0	0
1,0	1-D _m	0	\mathbf{D}_{m}	0
0,0	$(1-D_h)*(1-D_m)$	$D_h^*(1-D_m)$	$(1-D_h)*D_m$	$D_h D_m$

Inference About Occupancy based on Naïve Site "Occupancy", False Absence and False Detections

(z = 1 = present and z = 0 = absent) for two eras (historic = h and modern = m) derived from its probability of detection (D)

detection	(D).			
	fersistence	Colonization	Extinction	Unoccupied
True state	(1,1)	(0,1)	(1,0)	(0,0)
Unoccupied				
(z=0)	1	0	0	0
0,1	$1-D_h$	$\mathrm{D_{h}}$	0	0
1.0	1.5		Г.	
1,0	$1-D_{\rm m}$	0	D_{m}	0
0.0	(1 D)*(1 D)	D *(1 D)	(1 D)*D	D D
0,0	$ (1-D_{\rm h})*(1-D_{\rm m}) $	$D_h*(1-D_m)$	$(1-D_h)*D_m$	$ D_h D_m$

Multiple-Season Occupancy Models to Estimate Colonization and Extinction

(MacKenzie et al. 2002, 2006)

$$\Psi_{t} = \Psi_{t-1} (1 - \epsilon_{t-1}) + (1 - \Psi_{t-1}) \delta_{t-1}$$

Occupied Undetected Not extinct

$$Pr(\mathbf{h}_{2} = 000\ 010) \qquad \qquad \mathbf{Unoccupied\ Colonized}$$

$$= \{\varphi_{1} \prod_{1} (1 - p_{1,j})(1 - \varepsilon) + (1 - \varphi_{1})\delta_{1}\}x\ (1 - p_{2,1})\ p_{2,2}\ (1 - p_{2,3})$$
Detection history

Change in Occupancy (Modern – Historic) for 100 Coast Range Bird Species

Over **twice as many species decreased** (n = 32) **in occupancy** by >0.1 as those that increased (n = 15) in occupancy by >0.1

Consistency of Metacommunity Responses: Slopes of Colonization vs. Extinction

How Does This Affect Avian Communities? Changes in Avian Species Richness

Tingley & Beissinger. 2013. *Ecology 94: 598-609*

How Does This Affect Communities? Turnover in Avian Species Composition

Species distribution models (SDMs) overpredict presence more often than absence.

$$Mean = 0.35$$

$$Mean = 0.14$$

SDMs that had good predictive performance for historic data did not perform as well in projecting contemporary occupancy.

Parameterizations of Occupancy Models for Inferring Range Shifts

Tingley and Beissinger. 2009. TREE 24:625-633.