Harvard-MIT Division of Health Sciences and Technology
HST.951J: Medical Decision Support, Fall 2005
Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo

6.873/HST.951 Medical Decision Support

Decision Analysis

(part 1 of 2)

Lucila Ohno-Machado

Outline

- Review Bayes rule
- Example of a decision problem: Knee injury
- Elements of a decision tree
- Conditional probabilities in a decision tree
- Expected value
- Value of information (value of tests)
- Sensitivity analysis
- Utilities
- Risk attitudes

Bayes Rule

Conditional Probabilities

probability of PPD- given that patient has
 TB is 0.2

- This patient has PPD-
- What is the probability that he has TB?

2 x 2 table (contingency table)

Probability of TB given PPD- = 2/89

Bayes rule

- Definition of conditional probability:
- P(A|B) = P(AB)/P(B)

$$P(B|A) = P(BA)/P(A)$$

$$P(AB) = P(BA)$$

$$P(A|B)P(B) = P(B|A)P(A)$$

$$P(A|B) = P(B|A)P(A)/P(B)$$

Simple Bayes

Probability of PPD- given
$$TB = P(PPD-|TB) = 0.2$$

Probability of TB $= P(TB) = 0.1$
Probability of PPD- $= P(PPD-) = 0.89$

$$P(TB|PPD-) = \underline{P(PPD-|TB) \ P(TB)}$$

$$P(PPD-)$$

$$P(TB|PPD-) = (.2) (.1)$$
 (.89)

Example of a Decision Problem

- College athlete considering knee surgery
- Uncertainties:
 - success in recovering perfect mobility
 - infection in surgery (if so, needs another surgery and may loose more mobility)
 - survive surgery

Decision Nodes (squares)

• Choices

Chance Nodes (circles)

- Uncertain events
- Determined by complementary probabilities
- Mutually exclusive
- Collectively exhaustive

Outcomes

Values or Utilities (or Costs)

Elements of Decision Trees

Knee Surgery Example

Assigning Probabilities

P(Infection&Survival) = P(Inf|Surv)P(Surv1) = 0.05*0.95 = 0.048 = P(Infection)

Joint Probabilities

P(Death) = P(Death1)+P(Death2|Inf)P(Infection) = 0.05+0.05*0.048 = 0.05+0.0024 = 0.0524

P(Infection|Death) = P(Death|Infection)* P(Infection)/P(Death) = 0.05*0.048/0.0524 = 0.0024/0.0524 = 0.045

Simplifying the tree

Alternative tree

Utilities - QALYs

- Quality Adjusted Life Years
- How many years with problem are equivalent to years without problem
- E.g.:
 - x years with poor mobility are equivalent to y years with full mobility
 - x years wheelchair-bound are equivalent to y years of full mobility
- These are judgement calls that can represent an individual preference or a collective (societal) preference

Expected Values

 Value of outcomes, weighed by the respective probability that they happen

$$0.6*10 + 0.4*6 = 8.4$$

Value of Information

- Value of "Clairvoyance" (e.g. perfect prognostic system)
- If someone knows exactly what will happen if you make a certain decision, how much is that worth?
- E.g., if someone knows for sure whether the patient will die or survive following surgery, how much is that worth?
- It is usually calculated as the difference between the expected value with clairvoyance and without clairvoyance

Sensitivity Analysis

Effect of probabilities in the decision

Sensitivity Analysis

Effect of probabilities in the decision

Utilities

- Quantitative measure of desirability of a health state, from patient's perspective
- Methods
 - standard gamble
 - time-tradeoff
 - visual-analog scale
 - others

Standard Gamble

 What chances (p) are you willing to take (between best and worst case scenarios) so that you would not be living with poor mobility?

Standard Gamble

 What chances (p) are you willing to take (between best and worst case scenarios) so that would not be living wheelchairbound?

Time Trade-Off Visual Analog Scale

Time Trade-Off

- 10 years wheelchair-bound = 3 years full mobility
- does not involve gambles, so does not assess risk attitude

Visual Analog Scale

Risk Neutral Individual

(Utility = Expected Value)

Risk Averse Individual

(Utility > Expected Value)

"A sure outcome is better than the gamble"

Risk Seeking Individual

(Utility < Expected Value)

Utility 10

0

Summary

- Use conditional probabilities to assign probabilities to branches
- Use some utility scale that is consistent
- Calculate expected values
- Choose the max expected value
- Find out value of information
- Perform sensitivity analysis