Faculty Development Program on

Machine Learning and Image Processing

Course structure

- Lectures
- Introduction to ML, Linear regression
- Logistic regression, SVM
- PCA, ANN
- DNN, CNN
- Advanced topics on IP

- Hands-on sessions
- Introduction to Colab & Python
- Hands-on using Python
- Hands-on using Keras
- Hands-on using Keras
- Demo on image processing

Introduction to Machine Learning

Problem space

• **Problems** — a matter or situation regarded as unwelcome or harmful and needing to be dealt with and overcome

• Target is to solve the same on a computer

Problem space

- **Problems** a matter or situation regarded as unwelcome or harmful and needing to be dealt with and overcome
- Target is to solve the same on a computer
- Problems can be intellectually challenging for human being but relatively straight forward for a computer
 - Travelling salesman problem, chess
- Problems can be easy for common people but difficult for computer (even expressing it in a formal way)
 - Identifying an object, car (say), in a picture

Problem space

- **Problems** a matter or situation regarded as unwelcome or harmful and needing to be dealt with and overcome
- Target is to solve the same on a computer
- Problems can be intellectually challenging for human being but relatively straight forward for a computer
 - Travelling salesman problem, chess
- Problems can be easy for common people but difficult for computer (even expressing it in a formal way)
 - Identifying an object, car (say), in a picture

• Primary focus will be in second category problems

Problem Solving Strategies for Big Data

- ullet Need to solve problems efficiently and accurately when the input data is huge (\sim GB, TB order)
- Finding a deterministic algorithm is difficult
 - Need to find out features
 - Formal description of features are not easy
 - Requires significant effort for model building
 - Need to have domain knowledge
- Statistical inference is found to be suitable
 - Feature selection is not crucial
 - Model will learn from past data

Traditional programming vs ML

Application domains

- Computer vision
- Natural language processing
- E-commerce, finance
- Weather prediction
- Genomics
- Drug discovery
- Particle physics

- Surveillance
- Cryptography
- Self driving car
- Games
- Intelligent control systems
- Speech processing
- many others

Image source: Internet

Learning algorithm

- A ML algorithm is an algorithm that is able to learn from data
- Mitchelle (1997)
 - A computer program is said to learn from experience E with respect to some class of task
 T and performance measure P, if its performance at task in T as measured by P, improves
 with experience E.
- Task A ML task is usually described in terms of how ML system should process an example
 - Example is a collection of features that have been quantitatively measured from some objects or events that we want the learning system process
 - Represented as $\mathbf{x} \in \mathbb{R}^n$ where \mathbf{x}_i is a feature
 - Feature of an image pixel values

Common AI/ML/DL Tasks

Classification

- Need to predict which of the k categories some input belongs to
- Need to have a function $f: \mathbb{R}^n \to \{1, 2, \dots, k\}$
- y = f(x) input x is assigned a category identified by y
- Examples
 - Object identification
 - Face recognition

Regression

- Need to predict numeric value for some given input
- Need to have a function $f: \mathbb{R}^n \to \mathbb{R}$
- Examples
 - Energy consumption
 - Amount of insurance claim

- Classification with missing inputs
 - Need to have a set of functions
 - Each function corresponds to classifying x with different subset of inputs missing
 - Examples
 - Medical diagnosis (expensive or invasive)

- Classification with missing inputs
 - Need to have a set of functions
 - Each function corresponds to classifying x with different subset of inputs missing
 - Examples
 - Medical diagnosis (expensive or invasive)
- Transcription
 - Need to convert relatively unstructured data into discrete, textual form
 - Optical character recognition
 - Speech recognition

- Classification with missing inputs
 - Need to have a set of functions
 - Each function corresponds to classifying x with different subset of inputs missing
 - Examples
 - Medical diagnosis (expensive or invasive)
- Transcription
 - Need to convert relatively unstructured data into discrete, textual form
 - Optical character recognition
 - Speech recognition
- Machine translation
 - Conversion of sequence of symbols in one language to some other language
 - Natural language processing (English to Spanish conversion)

Structured output

- Output is a vector with important relationship between the different elements
 - Mapping natural language sentence into a tree that describes grammatical structure
 - Pixel based image segmentation (eg. identify roads)

• Structured output

- Output is a vector with important relationship between the different elements
 - Mapping natural language sentence into a tree that describes grammatical structure
 - Pixel based image segmentation (eg. identify roads)

Anomaly detection

- Observes a set of events or objects and flags if some of them are unusual
 - Fraud detection in credit card

• Structured output

- Output is a vector with important relationship between the different elements
 - Mapping natural language sentence into a tree that describes grammatical structure
 - Pixel based image segmentation (eg. identify roads)

Anomaly detection

- Observes a set of events or objects and flags if some of them are unusual
 - Fraud detection in credit card
- Synthesis and sampling
 - Generate new example similar to past examples
 - Useful for media application
 - Text to speech

Performance measure

- Accuracy is one of the key measures
 - The proportion of examples for which the model produces correct outputs
 - Similar to error rate
 - Error rate often referred as expected 0-1 loss
- Mostly interested how ML algorithm performs on unseen data
- Choice of performance measure may not be straight forward
 - Transcription
 - Accuracy of the system at transcribing entire sequence
 - Any partial credit for some elements of the sequence are correct

Types of learning

- Supervised learning
 - Labeled data, outcomes are known for training data, Regression/Classification
 - A set of labeled examples $\langle x_1, x_2, \dots, x_n, y \rangle$
 - x_i are input variables, y output variable
 - Need to find a function $f: X_1 \times X_2 \times ... X_n \to Y$
 - Goal is to minimize error/loss function
 - Like to minimize over all dataset
 - We have limited dataset
- Unsupervised learning
 - Unlabeled data, outcomes are not known for training data, Clustering
- Reinforcement learning
 - Need to learn from experience, no immediate outcome is known, Control/Game
- Semi-supervised learning
 - Missing lables for some training examples

Issue of Representation

- Representation of data in an efficient/structured manner is crucial for solving problems more effectively
 - Searching of a set of elements in a given list (sorted/unsorted)
 - Arithmetic operations on Arabic and Roman numerals
 - Primality test of n when n is represented as 11111 . . . 111 (n-number of one)

Structured representation can help in predicting future values

Choice of Representation

Image source: Deep Learning book

Learning representation/feature

- Traditional approaches
 - Pattern recognition
 - Input, output of the problem
- End to end learning
 - System automatically learns internal representation

AI-ML Tasks

- Heavily depends on features
- Requires good domain knowledge
- Feature extraction is not easy job
 - Identify a car
 - How to describe wheel
 - Shadow/brightness
 - Obscuring element

Representation Learning

- Learned representation often results in better performance compared to hand design
- Allows the system to rapidly adapt to new task
- Need to discover a good set of features
- Manual design of features is nearly impossible

Design of Features

- Goal is to separate out variation factors
- These factors are separate sources of influence
- It may exist as unobserved object or unobserved forces that affect observable quantity
 - Speech Factors are age, sex, accent, etc
 - Image Position, color, brightness, etc.

Deep Learning

- Try to address the problem of representation learning
- Representation are expressed in terms of other simpler representation
- Develop complex concept using simpler concept

Simple to Complex Features

Image source: Deep Learning Book

Simple to Complex Features

Image source: Deep Learning Tutorial by Yann LeCun Marc'Aurelio Ranzato, ICML, 2013

Conventional Machine Learning

Representation learning

History

- Has many names and view point
 - Cybernetics (1940-1960)
 - Connectionism (1980-1990) (neural net)
 - Deep learning (2006+)
- More useful as the amount of data is increased
- Models have grown in size as increase in computing resources
- Solving complex problem with increasing accuracy

Popularization of Neural Network

- Most of the theory of neural network was developed in the 1980s
- Started gaining popularity around 2012
 - Geoffrey Hinton and Alex Krizhevsky winning the ImageNet competition where they beat the nearest competitor by a huge margin (2012)

Image source: Deep Residual Learning by Kaiming He, et.al.

Popularity

- Increase data size
 - Computing resources are available
 - Accepting performance 5000 labeled example per category
 - 10 million for human performance
- Increasing model size
- Increasing accuracy, complexity, real world impact
- Used by many companies
 - Google, Microsoft, Facebook, IBM, Baidu, Apple, Adobe, Nvidia, NEC, etc.
- Availability of good commercial & open-source tools
 - Theano, Torch, DistBelief, Caffe, TensorFlow, Keras, etc.

DL Trend

Image source: Internet

IIT Patna

28

Search trend in Google

Google Trends, May 2012 - April 2017, Worldwide

Big Data, Machine Learning, Artificial Intelligence, Data Science, Deep Learning

AI/DL in Google

Number of directories containing model description files

Across many products/areas

- Apps Maps
- **Photos**
- Gmail
- Speech
- Android
- **VouTube**
- Translation
- Robotics Research
- Image Understanding
- Natural Language Understanding
- Drug Discovery

Image source: Internet

Artificial Intelligence is the New Electricity — Andrew Ng

Artificial Intelligence is the New Electricity — Andrew Ng

Thank you!