

**(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)**

**(19) Organisation Mondiale de la Propriété
Intellectuelle**
Bureau international

(43) Date de la publication internationale
23 juin 2005 (23.06.2005)

PCT

(10) Numéro de publication internationale
WO 2005/057198 A1

(51) Classification internationale des brevets⁷ :
G01N 27/12, 29/02, 33/00, C08L 83/16

(81) États désignés (sauf indication contraire, pour tout titre de protection nationale disponible) : AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) Numéro de la demande internationale :
PCT/FR2004/050646

(84) États désignés (sauf indication contraire, pour tout titre de protection régionale disponible) : ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(22) Date de dépôt international :
3 décembre 2004 (03.12.2004)

(25) Langue de dépôt : français

(26) Langue de publication : français

(30) Données relatives à la priorité :
0350984 5 décembre 2003 (05.12.2003) FR

(71) Déposant (pour tous les États désignés sauf US) : COM-MISSARIAT A L'ENERGIE ATOMIQUE [FR/FR]; 31-33, rue de la Fédération, F-75752 Paris 15ème (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement) : LEBRET, Bruno [FR/FR]; 12 rue du Castel, F-37300 Joue-Les-Tours (FR). HAIRAUT, Lionel [FR/FR]; 30-32 rue de la Roche, F-37150 La Croix En Touraine (FR). PASQUINET, Eric [FR/FR]; 10 mail de Vençay, F-37550 Saint Avertin (FR).

(74) Mandataire : LEHU, Jean; Brevatome, 3, rue du Docteur Lancereaux, F-75008 Paris (FR).

Publiée :

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: USE OF SILOXANE-BASED POLYMERS OR COMPOSITES IN CHEMICAL SENSORS FOR DETECTING NITRATE COMPOUNDS

(54) Titre : UTILISATION DE POLYMERES OU DE COMPOSITES A BASE DE SILOXANES DANS DES CAPTEURS CHIMIQUES POUR LA DETECTION DE COMPOSES NITRES.

(57) Abstract: The invention relates to the use of at least one type of a polymer comprising a repetitive structural unit of formula (I), wherein X and Y = a simple link or a linear C₁-C₅₀ group; R₁ and R₂ = H, CN, C(Z)₃, CH(Z)₂, CH₂Z with Z = halogens; NH₂, NHR₃, NR₃R₄ with R₃, R₄ = halogens, CH₃ or a linear or branched, saturated or unsaturated C₂-C₂₀ hydrocarbon chain, possibly comprising one or several heteroatoms and/or chemical functions containing at least one heteroatom; at least one R₁ and R₂ different from H; or a compound which comprises said polymer and one or several conductive charges and is used as a sensitive material in a sensor for detecting nitrate compounds. Said invention can be used for detecting explosive materials, controlling/monitoring air pollution and the quality of environment and for monitoring industrial sites.

WO 2005/057198 A1

(57) Abrégé : L'invention concerne l'utilisation d'au moins un polymère comprenant un motif répétitif de formule (I) dans laquelle : X et Y = liaison simple ou groupe hydrocarboné linéaire en C₁-C₅₀ ; R₁ et R₂ = H, CN, C(Z)₃, CH(Z)₂, CH₂Z avec Z = halogène ; NH₂, NHR₃, NR₃R₄ avec R₃, R₄ = halogène, CH₃ ou chaîne hydrocarbonée en C₂-C₂₀ linéaire ou ramifiée, saturée ou insaturée, comprenant éventuellement un ou plusieurs hétéroatomes et/ou fonctions chimiques comportant au moins un hétéroatome ; au moins un de R₁ et R₂ étant de H ; ou d'un composite comprenant ce polymère et une ou plusieurs charges conductrices, en tant que matériau sensible dans un capteur pour détecter des composés nitrés. Applications détection d'explosifs, contrôle/surveillance de la pollution atmosphérique et de la qualité d'ambiances, surveillance de sites industriels.

ABRÉGÉ DESCRIPTIF

L'invention concerne l'utilisation d'au moins un polymère comprenant un motif répétitif de 5 formule (I) :

dans laquelle :

X et Y = liaison simple ou groupe hydrocarboné linéaire en C₁-C₅₀ ;

10 R₁ et R₂ = H, CN, C(Z)₃, CH(Z)₂, CH₂Z avec Z = halogène ; NH₂, NHR₃, NR₃R₄ avec R₃, R₄ = halogène, CH₃ ou chaîne hydrocarbonée en C₂-C₂₀ linéaire ou ramifiée, saturée ou insaturée, comprenant éventuellement un ou plusieurs hétéroatomes et/ou fonctions chimiques 15 comportant au moins un hétéroatome ; au moins un de R₁ et R₂ étant ≠ de H ;

ou d'un composite comprenant ce polymère et une ou plusieurs charges conductrices, en tant que matériau sensible dans un capteur pour détecter des composés 20 nitrés.

Applications : détection d'explosifs, contrôle/surveillance de la pollution atmosphérique et de la qualité d'ambiances, surveillance de sites industriels.

**UTILISATION DE POLYMERES OU DE COMPOSITES A BASE DE
SILOXANES DANS DES CAPTEURS CHIMIQUES POUR LA DETECTION
DE COMPOSES NITRES**

5

DESCRIPTION

DOMAINE TECHNIQUE

La présente invention se rapporte à l'utilisation de polymères à base de siloxanes ou de composites comprenant un tel polymère et une ou plusieurs charges conductrices de l'électricité en tant que matériaux sensibles dans des capteurs destinés à détecter des composés nitrés, et en particulier des composés nitroaromatiques tels que le nitrobenzène (NB), le dinitrobenzène (DNB), le trinitrobenzène (TNB), le nitrotoluène (NT), le dinitrotoluène (DNT), le 2,4,6-trinitrotoluène (TNT) et analogues.

De tels capteurs sont utiles pour la détection d'explosifs, que ce soit en vue d'assurer la sécurité de lieux publics comme les aéroports, de contrôler la licéité de marchandises en circulation sur un territoire, de lutter contre le terrorisme, de procéder à des opérations de désarmement, de localiser des mines antipersonnel ou encore de dépolluer des sites industriels ou militaires.

Ils sont également utiles pour la protection de l'environnement, en particulier pour le contrôle et la surveillance de la pollution atmosphérique et de la qualité d'ambiances plus ou moins confinées, ainsi que pour la surveillance à des fins sécuritaires, de sites industriels fabriquant, stockant et/ou manipulant des composés nitrés.

ETAT DE LA TECHNIQUE ANTERIEURE

La détection d'explosifs est un problème d'intérêt crucial, notamment en matière de sécurité civile.

5 A l'heure actuelle, plusieurs méthodes sont utilisées pour détecter des vapeurs de composés nitrés entrant dans la constitution des explosifs, comme l'emploi de chiens "renifleurs" dressés et entraînés à cet effet, l'analyse en laboratoire, par exemple par chromatographie couplée à un spectromètre de masse ou à 10 un détecteur à capture d'électrons, d'échantillons prélevés sur site, ou encore la détection infrarouge.

15 Ces méthodes font, d'une manière générale, preuve d'une grande sensibilité, ce qui est primordial en matière de détection d'explosifs compte tenu de la très faible concentration en vapeurs de composés nitrés qui règne au voisinage d'un explosif. Elles ne donnent toutefois pas totalement satisfaction.

20 Ainsi, l'utilisation de chiens "renifleurs" présente l'inconvénient de nécessiter une longue formation des chiens et de leurs maîtres et d'être inadaptée à des opérations prolongées en raison de ce que la durée d'attention des chiens est limitée.

25 Quant aux autres méthodes, l'encombrement des appareillages qu'elles utilisent, leur consommation d'énergie et leurs coûts de mise en œuvre s'opposent au développement de systèmes de détection aisément transportables et autonomes et, partant, aptes à être utilisés sur tout type de sites.

30 Depuis quelques années, le développement de capteurs capables de détecter en temps réel des espèces

chimiques gazeuses est en plein essor. Le fonctionnement de ces capteurs est basé sur l'utilisation d'un film d'un matériau sensible, c'est-à-dire d'un matériau dont au moins une propriété physique est modifiée au contact des molécules gazeuses recherchées, qui revêt un système apte à mesurer en temps réel toute variation de cette propriété physique et de mettre ainsi en évidence la présence des molécules gazeuses recherchées.

Les avantages des capteurs chimiques par rapport aux méthodes précitées sont multiples : instantanéité des résultats, possibilité de miniaturisation et, donc, portabilité, maniabilité et autonomie importante, faibles coûts de fabrication et d'exploitation, etc.

Toutefois, il est évident que leurs performances sont extrêmement variables selon la nature du matériau sensible utilisé.

Pour la détection de composés nitrés gazeux, et plus particulièrement de composés nitro-aromatiques, de nombreux matériaux sensibles ont déjà été proposés parmi lesquels on peut citer le silicium poreux, le charbon végétal, le polyéthylène glycol, les amines, les cyclodextrines, des cavitands et des polymères fluorescents (références [1] à [5]).

Par ailleurs, l'utilisation potentielle de polysiloxanes fonctionnalisés en tant que matériaux sensibles de capteurs destinés à détecter des composés nitroaromatiques a été étudiée par McGill et al. (référence [6]).

Ces Auteurs se sont attachés à déterminer les paramètres de solubilité de quelques composés nitroaromatiques (NB, NT, TNB, DNT, TNT) et à définir, à partir de ces paramètres, leurs propriétés de sorption à l'état de vapeurs (c'est-à-dire leur aptitude à être absorbés et retenus) dans une série de polymères incluant divers polysiloxanes.

McGill et al. déduisent des résultats qu'ils obtiennent que les composés nitroaromatiques sont susceptibles d'interagir avec des polymères d'autant plus fortement que ces polymères présentent des propriétés de solubilité complémentaires aux leurs. Ils en concluent que les polysiloxanes les plus prometteurs pour la détection de composés nitroaromatiques sont ceux dont les monomères comportent un cycle aromatique porteur d'un ou plusieurs groupes aptes à établir des liaisons hydrogène avec ces composés, par exemple un groupe hexafluoroisopropanol (HFIP). Il est de fait que les essais de détection du DNT qu'ils effectuent au moyen d'un capteur à ondes de surface muni d'un film mince d'un polysiloxane issu de monomères à cycle aromatique porteur d'un groupe pendant HFIP apparaissent donner des résultats satisfaisants.

Or, dans le cadre de leurs travaux sur le développement de capteurs destinés plus spécialement à détecter des explosifs, les Inventeurs ont constaté que, de manière tout à fait surprenante, des capteurs utilisant comme matériaux sensibles, des polymères à base de siloxanes qui ne comportent ni cycle aromatique, ni groupe pendant de type HFIP, détectent

les composés nitrés, et en particulier les composés nitroaromatiques, avec une sensibilité nettement plus élevée que des capteurs utilisant les polysiloxanes préconisés par McGill et al..

5 C'est cette constatation qui est à la base de l'invention.

EXPOSÉ DE L'INVENTION

L'invention a pour objet l'utilisation d'au moins un polymère comprenant au moins un motif répétitif siloxane répondant à la formule générale (I) ci-après :

dans laquelle :

15 X et Y, identiques ou différents, représentent une liaison simple ou un groupe hydrocarboné linéaire, saturé ou insaturé, et comprenant de 1 à 50 atomes de carbone ;

R₁ et R₂, identiques ou différents, représentent un atome d'hydrogène, un groupe CN, un groupe C(Z)₃, CH(Z)₂ 20 ou CH₂Z avec Z représentant un atome d'halogène ; un groupe NH₂, un groupe NHR₃ ou NR₃R₄ avec R₃ et R₄ représentant, indépendamment l'un de l'autre, un atome d'halogène, un groupe méthyle ou une chaîne hydrocarbonée linéaire ou ramifiée, saturée ou

insaturée, comprenant de 2 à 20 atomes de carbone et éventuellement un ou plusieurs hétéroatomes et/ou une ou plusieurs fonctions chimiques comportant au moins un hétéroatome ; à la condition toutefois que l'un au 5 moins de R₁ et R₂ ne soit pas un atome d'hydrogène ; ou d'un composite comprenant ce polymère et une ou plusieurs charges conductrices de l'électricité, en tant que matériau sensible dans un capteur destiné à détecter un ou plusieurs composés nitrés.

10 Dans la formule générale (I) ci-dessus, lorsque R₃ et/ou R₄ représentent une chaîne hydrocarbonée en C₂ à C₂₀ et que celle-ci comporte un ou plusieurs hétéroatomes et/ou une ou plusieurs fonctions chimiques, alors ces atomes et ces fonctions peuvent aussi bien former pont à l'intérieur de cette chaîne 15 qu'être portés latéralement par elle ou encore se situer à son extrémité.

Le ou les hétéroatomes peuvent être tout atome autre qu'un atome de carbone ou d'hydrogène 20 comme, par exemple, un atome d'oxygène, de soufre, d'azote, de fluor, de chlore, de phosphore, de bore ou encore de silicium.

La ou les fonctions chimiques peuvent notamment être choisies parmi les fonctions -COOH, 25 -COOR₅, -CHO, -CO-, -OH, -OR₅, -SH, -SR₅, -SO₂R₅, -NH₂, -NHR₅, -NR₅R₆, -CONH₂, -CONHR₅, -CONR₅R₆, -C(Z)₃, -OC(Z)₃, -COZ, -CN, -COOCHO et -COOCOR₅ dans lesquelles :

- R₅ représente un groupe hydrocarboné, linéaire ou ramifié, saturé ou insaturé, et comportant de 1 30 à 100 atomes de carbone, ou une liaison covalente dans le cas où ladite ou lesdites

fonctions chimiques forment pont dans une chaîne hydrocarbonée en C₂ à C₂₀ ;

- R₆ représente un groupe hydrocarboné, linéaire ou ramifié, saturé ou insaturé, et comportant de 1 à 100 atomes de carbone, ce groupe pouvant être identique ou différent du groupe hydrocarboné représenté par R₅ ; tandis que
- Z représente un atome d'halogène, par exemple un atome de fluor, de chlore ou de brome.

Par ailleurs, dans la formule générale (I), lorsque X et/ou Y représentent une liaison simple, alors R₁ et/ou R₂ sont respectivement liés directement à l'atome de silicium par une liaison covalente en sorte que le motif répétitif siloxane répond à l'une des formules particulières (Ia), (Ib) et (Ic) ci-après :

dans lesquelles X, Y, R₁ et R₂ ont la même signification que précédemment.

5 Selon une disposition préférée de l'invention, le motif répétitif siloxane répond à la formule particulière (Id) ci-après :

10

dans laquelle X est un groupe hydrocarboné linéaire, saturé ou insaturé, et comportant de 1 à 50 atomes de carbone, tandis que R₁ a la même signification que précédemment.

15

Parmi les motifs répétitifs siloxane de formule particulière (Id), on préfère notamment ceux dans lesquels X représente une chaîne alkylène comportant de 2 à 10 atomes de carbone (c'est-à-dire une chaîne (CH₂)_n dans laquelle n va de 2 à 10) et, 20 parmi ces derniers, le trifluoropropylméthylsiloxane (X = (CH₂)₂, R₁ = CF₃) et le cyanopropylméthylsiloxane (X = (CH₂)₃, R₁ = CN).

Selon une autre disposition préférée de l'invention, le polymère est un homopolymère, c'est-à-dire qu'il n'est constitué que d'un seul et même motif répétitif siloxane de formule générale (I), auquel cas, 5 il est avantageusement choisi parmi les polytrifluoropropylméthylsiloxanes et les polycyanopropylméthylsiloxanes, et plus particulièrement parmi ceux qui présentent un poids moléculaire moyen allant de 50 à 100 000.

10 En variante, le polymère peut également être un copolymère, auquel cas il peut aussi bien être constitué de différents motifs répétitifs siloxane répondant tous à la formule générale (I) que comprendre un ou plusieurs motifs répétitifs siloxane de formule 15 générale (I) et un ou plusieurs motifs répétitifs autres, siloxane ou non.

En effet, il peut, par exemple, être utile d'inclure dans le polymère des motifs répétitifs issus d'un monomère du type éthylène, propylène, oxyde 20 d'éthylène, styrène, carbazole de vinyle ou encore acétate de vinyle, aptes à lui conférer une meilleure résistance mécanique dans le cas notamment où l'on souhaite l'utiliser sous la forme d'un film mince.

Les polymères présentant un motif répétitif 25 siloxane de formule générale (I) n'étant pas des conducteurs intrinsèques de l'électricité, il est possible, conformément à l'invention, de les mélanger à une ou plusieurs charges conductrices en quantité suffisante pour que les composites résultants aient une 30 conductivité électrique adaptée à leur utilisation comme matériaux sensibles de capteurs résistifs. Ces

charges conductrices peuvent être, par exemple, des particules de noir de carbone ou des poudres de métaux (Cu, Pd, Au, Pt, ...) ou d'oxydes métalliques (V₂O₃, TiO, ...).

5 Selon encore une autre disposition préférée de l'invention, le polymère ou le composite se présente sous la forme d'un film mince qui recouvre l'une ou les deux faces d'un substrat convenablement choisi en fonction de la propriété physique du matériau sensible
10 dont les variations sont destinées à être mesurées par ce capteur.

En variante, le polymère ou le composite peut également se présenter sous une forme massive comme, par exemple, un cylindre présentant une certaine porosité de sorte à rendre accessible aux composés nitrés l'ensemble des molécules formant ledit polymère ou ledit composite.

15 Lorsqu'il se présente sous la forme d'un film mince, ce dernier présente, de préférence, une épaisseur de 10 angströms à 100 microns.

20 Un tel film peut être obtenu par l'une quelconque des techniques proposées à ce jour pour réaliser un film mince sur la surface d'un substrat, par exemple :

25 - par pulvérisation, par dépôt à la tournette ("spin coating" en langue anglo-saxonne) ou par dépôt-évaporation ("drop coating" en langue anglo-saxonne) sur le substrat d'une solution contenant le polymère ou le composite,

- par trempage-retrait ("dip coating" en langue anglo-saxonne) du substrat dans une solution contenant le polymère ou le composite,
- par la technique de Langmuir-Blodgett,
- 5 - par dépôt électrochimique, ou encore
- par polymérisation *in situ*, c'est-à-dire directement sur la surface du substrat, d'un monomère précurseur du polymère.

Le substrat ainsi que le système de mesure 10 du capteur sont choisis en fonction de la propriété physique du polymère ou du composite dont les variations induites par la présence de composés nitrés sont destinées à être mesurées par le capteur.

En l'espèce, les variations de deux 15 propriétés physiques se sont révélées particulièrement intéressantes à mesurer : les variations de masse dans le cas d'un polymère et les variations de conductivité électrique dans le cas d'un composite.

Aussi, le capteur est-il, de préférence, un 20 capteur gravimétrique pour la mesure de variations de masse, ou un capteur résistif pour la mesure de variations de conductivité électrique.

A titre d'exemples de capteurs gravimétriques, on peut citer les capteurs du type à 25 microbalance à quartz, les capteurs à ondes de surface, plus connus sous la terminologie anglo-saxonne "SAW" pour "Surface Acoustic Wave", tels que les capteurs à ondes de Love et les capteurs à ondes de Lamb, ainsi que les microleviers.

30 Parmi les capteurs gravimétriques, on préfère plus particulièrement les capteurs du type

microbalance à quartz. Ce type de capteurs, dont le principe de fonctionnement est décrit dans la référence [2], comprend, schématiquement, un substrat piézo-électrique (ou résonateur), généralement un cristal de quartz recouvert sur ses deux faces d'une couche métallique, par exemple d'or ou de platine, et qui est relié à deux électrodes. Le matériau sensible recouvrant l'une ou les deux faces du substrat, toute variation de masse de ce matériau se traduit par une variation de la fréquence de vibration du substrat.

Bien entendu, il est également possible d'utiliser un polymère ou un composite tel que précédemment défini, comme matériau sensible dans des capteurs conçus pour mesurer des variations d'une propriété physique autre que la masse et la conductivité électrique comme, par exemple, des variations d'une propriété optique telles que de fluorescence, de luminescence, d'absorbance dans le domaine UV-visible ou de longueur d'onde dans le domaine des infrarouges.

Dans ce cas, il est possible soit d'exploiter une propriété optique intrinsèque du polymère ou du composite dans le cas où celui-ci en possède une (absorbance, spectre IR, ...), soit de conférer à ce polymère ou à ce composite une propriété optique particulière par couplage avec un marqueur approprié, par exemple fluorescent ou luminescent.

Par ailleurs, il est également possible de réunir au sein d'un même dispositif ou "multicapteur", plusieurs capteurs comprenant des matériaux sensibles différents les uns des autres, ou munis de substrats et

de systèmes de mesure différents les uns des autres comme, par exemple, un ou plusieurs capteurs gravimétriques et/ou un ou plusieurs capteurs résistifs, l'essentiel étant que l'un au moins de ces 5 capteurs comprenne un polymère ou un composite tel que précédemment défini.

Selon encore une disposition préférée de l'invention, le ou les composés nitrés destinés à être détectés par le capteur sont choisis parmi les composés 10 nitroaromatiques, les nitramines, les nitrosamines et les esters nitriques, ces composés pouvant aussi bien se présenter sous forme solide, liquide ou gazeuse (vapeurs).

A titre d'exemples de composés nitro-aromatiques, on peut citer le nitrobenzène, le dinitrobenzène, le trinitrobenzène, le nitrotoluène, le dinitrotoluène, le trinitrotoluène, le dinitrofluorobenzène, le dinitrotrifluorométhoxybenzène, l'amino-dinitrotoluène, le dinitrotrifluorométhylbenzène, le 20 chlorodinitrotrifluorométhylbenzène, l'hexanitrostilbène, la trinitrophénylethylnitramine (ou tétryle) ou encore le trinitrophénol (ou acide picrique).

Les nitramines sont, elles, par exemple la cyclotétraméthylènetranitramine (ou octogène), la cyclotriméthylènetrinitramine (ou hexogène) et le tétryl, tandis que les nitrosamines sont, par exemple, la nitrosodiméthylamine.

Quant aux esters nitriques, il s'agit, par exemple, de pentrite, de dinitrate d'éthylène glycol, 30 de dinitrate de diéthylène glycol, de nitroglycérine ou de nitroguanidine.

Des capteurs comportant un polymère ou un composite tel que précédemment défini, comme matériau sensible, se sont révélés présenter de nombreux avantages, notamment :

- 5 - une aptitude à détecter les composés nitrés, et en particulier les composés nitroaromatiques, avec une très grande sensibilité puisqu'ils sont capables de détecter leur présence à des concentrations de l'ordre du ppm (partie par million), voire du
10 dixième de ppm,
- une rapidité de réponse et une reproductibilité de cette réponse,
- une aptitude à fonctionner en continu,
- une stabilité des performances dans le temps,
- 15 - une durée de vie très satisfaisante,
- un coût de fabrication compatible avec une production de capteurs en série, une très faible quantité de polymère ou de composite (c'est-à-dire en pratique de quelques mg) étant nécessaire pour
20 la fabrication d'un capteur, et
- la possibilité d'être miniaturisés et, partant, d'être aisément transportables et manipulables sur tout type de sites.

Ils sont donc particulièrement utiles pour
25 détecter des explosifs, notamment dans des lieux publics.

D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture du complément de description qui suit, qui se rapporte à
30 des exemples d'utilisation de films minces de polytrifluoropropylméthylsiloxane et de polycyano-

propylméthylsiloxane dans des capteurs à microbalance à quartz pour la détection de vapeurs de dinitrotrifluorométhoxybenzène (DNTFMB) et de dinitrobenzène (DNB), et qui se réfère aux dessins annexés.

5 Le choix du DNTFMB et du DNB en tant que composés nitrés à détecter, a été motivé par le fait que ces composés sont très proches du dinitrotoluène (DNT), lequel est le dérivé nitré le plus présent dans la signature chimique des mines à base de
10 trinitrotoluène (TNT).

Bien entendu, les exemples qui suivent ne sont donnés qu'à titre d'illustrations de l'objet de l'invention et ne constituent en aucun cas une limitation de cet objet.

15 **BREVE DESCRIPTION DES DESSINS**

La figure 1 représente l'évolution de la fréquence de vibration (courbe A) du quartz d'un capteur à microbalance à quartz comprenant un film mince de polytrifluoropropylméthylsiloxane au cours de 20 deux cycles d'exposition (courbe B) de ce capteur à des vapeurs de DNTFMB de concentration égale à 3 ppm.

La figure 2 représente l'évolution de la fréquence de vibration (courbe A) du quartz d'un capteur à microbalance à quartz comprenant un film 25 mince de polytrifluoropropylméthylsiloxane au cours de deux cycles d'exposition (courbe B) de ce capteur à des vapeurs de DNB de concentration égale à 150 ppb (partie par billion).

La figure 3 représente l'évolution de la 30 fréquence de vibration (courbe A) du quartz d'un capteur à microbalance à quartz comprenant un film

mince de polycyanopropylméthylsiloxane au cours d'un cycle d'exposition (courbe B) de ce capteur à des vapeurs de DNTFMB de concentration égale à 3 ppm.

La figure 4 représente l'évolution de la
5 fréquence de vibration (courbe A) du quartz d'un capteur à microbalance à quartz comprenant un film mince de polycyanopropylméthylsiloxane au cours de deux cycles d'exposition (courbe B) de ce capteur à des vapeurs de DNTFMB de concentration égale à 1 ppm pour
10 le premier cycle et à 0,1 ppm pour le deuxième.

La figure 5 représente les valeurs des variations de la fréquence de vibration (ΔF) du quartz d'un capteur à microbalance à quartz comprenant un film mince de polycyanopropylméthylsiloxane telles
15 qu'obtenues en soumettant ce capteur à douze expositions à des vapeurs de DNTFMB de 10 minutes chacune, sur une période de 150 jours.

EXEMPLES

**Exemple 1 : détection du DNTFMB par un capteur
20 comprenant un film mince de polytrifluoropropylméthyl-
siloxane**

Dans cet exemple, on utilise un capteur à microbalance à quartz comprenant un quartz de coupe AT, de fréquence de vibration de 9 MHz, recouvert de deux électrodes de mesure circulaires en or (modèle QA9RA-25 50, AMETEK PRECISION INSTRUMENTS) et portant sur ses deux faces un film mince de polytrifluoropropylméthylsiloxane.

Le dépôt de ce film est réalisé en
30 effectuant sur chaque face du quartz 6 pulvérisations

de 0,5 secondes chacune d'une solution de polytrifluoropropylméthylsiloxane (société ABCR, référence FMS-9921) dans du chloroforme, de concentration égale à 5 g/l.

5 La variation de la fréquence de vibration du quartz due à ce dépôt est de 8,1 kHz.

Le capteur est soumis à deux cycles d'exposition à des vapeurs de DNTFMB, à température ambiante :

10 - le premier cycle comprenant une phase d'exposition de 5800 secondes à l'air ambiant, suivie d'une phase d'exposition de 600 secondes aux vapeurs de DNTFMB, puis d'une phase d'exposition de 2600 secondes à l'air ambiant ;

15 - le deuxième cycle comprenant une phase d'exposition de 600 secondes aux vapeurs de DNTFMB, suivie d'une phase d'exposition de 4800 secondes à l'air ambiant ;

la concentration du DNTFMB étant de 3 ppm dans les deux
20 cycles.

La figure 1 montre l'évolution de la fréquence de vibration du quartz au cours de ces deux cycles, la courbe A et la courbe B correspondant aux variations respectives de ladite fréquence (F), exprimée en hertz (Hz), et de la concentration en DNTFMB ([C]), exprimée en ppm, en fonction du temps (t), exprimé en secondes.

Exemple 2 : détection du DNB par un capteur comprenant un film mince de polytrifluoropropylméthylsiloxane

Dans cet exemple, on utilise un capteur à microbalance à quartz comprenant un quartz identique à 5 celui utilisé dans l'exemple 1, mais dans lequel le quartz est recouvert sur ses deux faces d'un film mince de polytrifluoropropylméthylsiloxane d'épaisseur légèrement supérieure à celui utilisé dans l'exemple 1.

Le dépôt de ce film est réalisé en 10 effectuant sur chaque face du quartz 19 pulvérisations de 0,2 secondes chacune d'une solution de polytrifluoropropylméthylsiloxane dans du chloroforme, de concentration égale à 2 g/l.

La variation de la fréquence de vibration 15 du quartz due à ce dépôt est de 9,9 kHz.

Le capteur est soumis à deux cycles d'exposition à des vapeurs de DNB, à température ambiante :

20 - le premier cycle comprenant une phase d'exposition de 1700 secondes à l'air ambiant, suivie d'une phase d'exposition de 600 secondes aux vapeurs de DNB, puis d'une phase d'exposition de 2300 secondes à l'air ambiant ;

25 - le deuxième cycle comprenant une phase d'exposition de 600 secondes aux vapeurs de DNB, suivie d'une phase d'exposition de 1800 secondes à l'air ambiant ;

la concentration du DNB étant de 150 ppb dans les deux cycles.

30 La figure 2 montre l'évolution de la fréquence de vibration du quartz au cours de ces deux

cycles, la courbe A et la courbe B correspondant aux variations respectives de ladite fréquence (F), exprimée en Hz, et de la concentration en DNTFMB ([C]), exprimée en ppb, en fonction du temps (t), exprimé en 5 secondes.

Exemple 3 : détection du DNTFMB par un capteur comprenant un film mince de polycyanopropylméthylsiloxane

Dans cet exemple, on utilise un capteur à microbalance à quartz comprenant un quartz identique à celui utilisé dans l'exemple 1, mais dans lequel le quartz est recouvert sur ses deux faces d'un film mince de polycyanopropylméthylsiloxane.

Le dépôt de ce film est réalisé en 15 effectuant sur chaque face du quartz 12 pulvérisations de 0,2 secondes chacune d'une solution de polycyanopropylméthylsiloxane (société ABCR, référence YMS-T31) dans du chloroforme, de concentration égale à 5 g/l.

La variation de la fréquence de vibration 20 du quartz due à ce dépôt est de 8,5 kHz.

Le capteur est soumis à un cycle d'exposition à des vapeurs de DNTFMB de concentration égale à 3 ppm, à température ambiante, ce cycle comprenant une phase d'exposition de 3000 secondes à 25 l'air ambiant, suivie d'une phase d'exposition de 600 secondes aux vapeurs de DNTFMB, puis d'une phase d'exposition de 11400 secondes à l'air ambiant.

La figure 3 montre l'évolution de la fréquence de vibration du quartz au cours de ce cycle, 30 la courbe A et la courbe B correspondant aux variations respectives de ladite fréquence (F), exprimée en Hz, et

de la concentration en DNTFMB ([C]), exprimée en ppm, en fonction du temps (t), exprimé en secondes.

Exemple 4 : détection du DNTFMB par un capteur comprenant un film mince de polycyanopropylméthylsiloxane

5

10

Dans cet exemple, on utilise un capteur à microbalance à quartz comprenant un quartz identique à celui utilisé dans l'exemple 1, mais dans lequel le quartz est recouvert sur ses deux faces d'un film mince de polycyanopropylméthylsiloxane.

15

Le dépôt de ce film est réalisé en effectuant sur chaque face du quartz deux pulvérisations de 0,5 secondes chacune d'une solution de polycyanopropylméthylsiloxane (société ABCR, référence YMS-T31) dans du chloroforme, de concentration égale à 5 g/l.

La variation de la fréquence de vibration du quartz due à ce dépôt est de 2 kHz.

20

Le capteur est soumis à deux cycles d'exposition à du DNTFMB sous forme de vapeurs, à température ambiante :

25

- le premier cycle comprenant une phase d'exposition de 1300 secondes à l'air ambiant, suivie d'une phase d'exposition de 600 secondes au DNTFMB à une concentration de 1 ppm, puis d'une phase d'exposition de 6400 secondes à l'air ambiant ;

30

- le deuxième cycle comprenant une phase d'exposition de 600 secondes au DNTFMB à une concentration de 0,1 ppm, suivie d'une phase d'exposition de 1100 secondes à l'air ambiant.

La figure 4 montre l'évolution de la fréquence de vibration du quartz au cours de ces deux cycles, la courbe A et la courbe B correspondant aux variations respectives de ladite fréquence (F), exprimée en hertz (Hz), et de la concentration en DNTFMB ([C]), exprimée en ppm, en fonction du temps (t), exprimé en secondes.

Exemple 5 : étude de la stabilité dans le temps des performances d'un capteur comprenant un film mince de polycyanopropylméthylsiloxane

Dans cet exemple, on utilise un capteur à microbalance à quartz identique à celui utilisé dans l'exemple 4.

Ce capteur est soumis à une première exposition à des vapeurs de DNTFMB de concentration égale à 3 ppm, à température ambiante et pendant 10 minutes, puis il est conservé à l'air ambiant.

Il est ensuite soumis à onze autres expositions à des vapeurs de DNTFMB de concentration égale à 3 ppm, toujours à température ambiante et d'une durée de 10 minutes chacune, réparties sur une période de 150 jours.

La figure 5 représente les valeurs des variations de la fréquence de vibration (ΔF) du quartz observées au cours de ces douze expositions, ces valeurs étant déterminées pour chaque exposition comme suit :

$\Delta F = \text{fréquence de vibration au temps } t_0 \text{ de l'exposition} - \text{fréquence de vibration au temps } t_{10\min} \text{ de l'exposition,}$

et symbolisées par des losanges sur ladite figure 5.

Exemple 6 : comparaison des performances d'un capteur comprenant un film mince d'un polysiloxane utile selon l'invention et d'un capteur comprenant un film mince d'un polysiloxane préconisé par McGill et al.

Dans cet exemple, on utilise deux capteurs à microbalance à quartz comprenant tous deux un quartz identique à celui utilisé dans l'exemple 1, mais se différenciant l'un de l'autre en ce que le quartz du premier est recouvert sur ses deux faces d'un film mince de polycyanopropylméthylsiloxane, alors que le quartz du second est recouvert d'un film mince d'un polysiloxane dont les monomères comportent un cycle aromatique et deux groupes pendants HFIP.

15 Ce polysiloxane répond à la formule (II) ci-après :

Les dépôts des films sont réalisés de sorte que la variation de la fréquence de vibration des quartz due à ces dépôts soit égale à 2 kHz pour chacun des capteurs.

Pour ce faire, le dépôt du film de polycyanopropylméthylsiloxane est effectué comme décrit dans l'exemple 4, tandis que le dépôt du film du polysiloxane de formule (II) est effectué en 5 pulvérissant 6 fois 0,2 secondes une solution dudit polysiloxane dans du dichlorométhane, de concentration égale à 2 g/l, sur les deux faces du quartz.

Les deux capteurs sont exposés, exactement dans les mêmes conditions, à des vapeurs de DNTFMB de 10 concentration égale à 3 ppm, à température ambiante et pendant 10 minutes.

La mesure de la fréquence de vibration du quartz des deux capteurs au temps t_0 et au temps $t_{10\text{min}}$ de cette exposition donne une variation de la fréquence 15 de vibration de 600 Hz pour le quartz du capteur comprenant le film mince de polycyanopropylméthylsiloxane, et de 200 Hz - soit 3 fois plus faible - pour le quartz du capteur comprenant le film mince du polysiloxane de formule (II).

20

Les exemples 1 à 4 ci-avant montrent que des capteurs comprenant un matériau sensible conforme à l'invention, sont capables de détecter avec une très grande sensibilité des composés nitrés comme le DNTFMB 25 et le DNB. Ils montrent aussi que la réponse de ces capteurs est à la fois réversible et reproductible.

L'exemple 5 montre de plus que les performances de ces capteurs sont stables dans le temps et qu'ils sont toujours capables, cinq mois après leur 30 élaboration, de détecter de très faibles quantités de DNTFMB.

Enfin, l'exemple 6 montre que ces capteurs présentent, à l'égard des composés nitroaromatiques, une sensibilité très nettement supérieure à celle d'un capteur comprenant un film mince d'un polysiloxane tel
5 que préconisé par McGill et al..

REFERENCES CITEES

[1] Content et al., *Chem. Eur. J.*, 6, 2205, 2000

[2] Sanchez-Pedrono et al., *Anal. Chim. Acta*, 182, 285,
5 1986

[3] Yang et al., *Langmuir*, 14, 1505, 1998

[4] Nelli et al., *Sens. Actuators B*, 13-14, 302, 1993

10

[5] Yang et al., *J. Am. Chem. Soc.*, 120, 11864, 1998

[6] McGill et al., *Sensors and Actuators B* 65, 5-9, 2000

REVENDICATIONS

1. Utilisation d'au moins un polymère comprenant au moins un motif répétitif siloxane
 5 répondant à la formule générale (I) ci-après :

dans laquelle :

X et Y, identiques ou différents, représentent une
 10 liaison simple ou un groupe hydrocarboné linéaire,
 saturé ou insaturé, et comprenant de 1 à 50 atomes de
 carbone ;

R₁ et R₂, identiques ou différents, représentent un
 15 atome d'hydrogène, un groupe CN, un groupe C(Z)₃, CH(Z)₂
 ou CH₂Z avec Z représentant un atome d'halogène ; un
 groupe NH₂, un groupe NHR₃ ou NR₃R₄ avec R₃ et R₄
 représentant, indépendamment l'un de l'autre, un atome
 20 d'halogène, un groupe méthyle ou une chaîne
 hydrocarbonée linéaire ou ramifiée, saturée ou
 insaturée, comprenant de 2 à 20 atomes de carbone et
 éventuellement un ou plusieurs hétéroatomes et/ou une
 ou plusieurs fonctions chimiques comportant au moins un
 hétéroatome ; à la condition toutefois que l'un au
 moins de R₁ et R₂ ne soit pas un atome d'hydrogène ;

ou d'un composite comprenant ce polymère et une ou plusieurs charges conductrices de l'électricité, en tant que matériau sensible dans un capteur destiné à détecter un ou plusieurs composés nitrés.

5

2. Utilisation selon la revendication 1, dans laquelle le motif répétitif siloxane répond à la formule particulière (Id) ci-après :

10

15

dans laquelle X est un groupe hydrocarboné linéaire, saturé ou insaturé, et comportant de 1 à 50 atomes de carbone, tandis que R₁ a la même signification que ci-dessus.

20

3. Utilisation selon la revendication 2, dans laquelle, dans la formule particulière (Id), X représente une chaîne alkylène comportant de 2 à 10 atomes de carbone.

25

4. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle le motif répétitif siloxane est le trifluoropropylméthylsiloxane ou le cyanopropylméthylsiloxane.

5. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle le polymère est choisi parmi les polytrifluoropropylméthylsiloxanes et les polycyanopropylméthylsiloxanes.

5

6. Utilisation selon la revendication 5, dans laquelle le polymère a une poids moléculaire moyen allant de 50 à 100 000.

10

7. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle la ou les charges conductrices du composite sont choisies parmi les particules de noir de carbone et les poudres de métaux et d'oxydes métalliques.

15

8. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle le polymère ou le composite est utilisé sous la forme d'un film mince recouvrant l'une ou les deux faces d'un substrat.

20

9. Utilisation selon la revendication 8, dans laquelle le film mince mesure de 10 angströms à 100 microns d'épaisseur.

25

10. Utilisation selon la revendication 8 ou la revendication 9, dans laquelle le film mince est préparé par une technique choisie parmi la pulvérisation, le dépôt à la tournette, le dépôt-évaporation, le trempage-retrait, la technique de Langmuir-Blodgett, le dépôt électrochimique et la

30

polymérisation *in situ* d'un monomère précurseur du polymère.

11. Utilisation selon l'une quelconque des
5 revendications précédentes, dans laquelle la détection
du ou des composés nitrés par le capteur chimique est
réalisée par mesure d'une variation de masse du
polymère ou de conductivité électrique du composite.

10 12. Utilisation selon l'une quelconque des
revendications 1 à 11, dans laquelle le capteur est un
capteur gravimétrique.

13. Utilisation selon la revendication 12,
15 dans laquelle le capteur est un capteur à microbalance
à quartz.

14. Utilisation selon l'une quelconque des
revendications 1 à 11, dans laquelle le capteur est un
20 capteur résistif.

15. Utilisation selon l'une quelconque des
revendications précédentes, dans laquelle le capteur
est un multicapteur qui comprend un ou plusieurs
25 capteurs gravimétriques et/ou un ou plusieurs capteurs
résistifs, l'un au moins de ces capteurs comprenant un
polymère ou un composite tel que précédemment défini.

16. Utilisation selon l'une quelconque des
30 revendications précédentes, dans laquelle le ou les
composés nitrés à détecter sont choisis parmi les

composés nitroaromatiques, les nitramines, les nitrosamines et les esters nitriques.

17. Utilisation selon l'une quelconque des
5 revendications précédentes, dans laquelle le ou les
composés nitrés à détecter sont sous forme solide,
liquide ou gazeuse.

18. Utilisation selon l'une quelconque des
10 revendications précédentes, dans laquelle le ou les
composés nitrés à détecter sont choisis parmi le
nitrobenzène, le dinitrobenzène, le trinitrobenzène, le
nitrotoluène, le dinitrotoluène, le trinitrotoluène, le
dinitrofluorobenzène, le dinitrotrifluorométhoxy-
15 benzène, l'aminodinitrotoluène, le dinitrotrifluorométhylbenzène,
le chlorodinitrotrifluorométhylbenzène,
l'hexanitrostilbène, la trinitrophénylethynitramine
et le trinitrophénol.

20 19. Utilisation selon l'une quelconque des
revendications précédentes pour la détection
d'explosifs.

1 / 3

FIG. 1

FIG. 2

2 / 3

FIG. 3

FIG. 4

3 / 3

FIG. 5

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR2004/050646

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G01N27/12 G01N29/02 G01N33/00 C08L83/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G01N C08L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 98/22795 A (SWANSON BASIL I ; UNIV CALIFORNIA (US); YANG XIAOGUANG (US)) 28 May 1998 (1998-05-28) page 21, line 19 - page 22, line 18; claim 1 ----- DE 197 08 529 C (SZE SPEZIAL ELEKTRONIK HAGENUK) 30 July 1998 (1998-07-30) column 2, line 67 - column 3, line 36 ----- WO 02/23134 A (TOKUMARU PHIL ; BRIGLIN SHAWN M (US); LEWIS NATHAN S (US); FREUND MICH) 21 March 2002 (2002-03-21) page 28; table 1 ----- -/-	1,2, 7-12,14, 16-19
Y		1,2, 7-12,14, 16-19
A		1,15

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

19 May 2005

Date of mailing of the international search report

25/05/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer

Duchatellier, M

INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR2004/050646

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 6 433 694 B1 (DOLAN JAMES P ET AL) 13 August 2002 (2002-08-13) claims 1-7 -----	1
A	WO 01/77664 A (UNIV MARYLAND ; MURRAY GEORGE M (US); ARNOLD BRADLEY M (US); LAWRENCE) 18 October 2001 (2001-10-18) abstract page 10, line 27 page 12, lines 5,6 -----	1
A	FR 2 815 351 A (THOMSON CSF) 19 April 2002 (2002-04-19) claims 1-3 -----	
A	US 2003/168355 A1 (HOUSER ERIC J ET AL) 11 September 2003 (2003-09-11) abstract paragraphs '0033! - '0035! -----	1
A	WO 02/08234 A (US GOVERNMENT) 31 January 2002 (2002-01-31) abstract page 5, line 22 - page 6, line 19 -----	1
A	MCGILL R A ET AL: "The design of functionalized silicone polymers for chemical sensor detection of nitroaromatic compounds" SENSORS AND ACTUATORS B, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 65, no. 1-3, 30 June 2000 (2000-06-30), pages 5-9, XP004208582 ISSN: 0925-4005 the whole document -----	1
A	ALI M B ET AL: "Sensitive cyclodextrin-polysiloxane gel membrane on EIS structure and ISFET for heavy metal ion detection" SENSORS AND ACTUATORS B, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 62, no. 3, March 2000 (2000-03), pages 233-237, XP004194220 ISSN: 0925-4005 the whole document -----	1

INTERNATIONAL SEARCH REPORT

 International Application No
PCT/FR2004/050646

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9822795	A	28-05-1998	AU WO US	5588798 A 9822795 A1 6316268 B1		10-06-1998 28-05-1998 13-11-2001
DE 19708529	C	30-07-1998	DE WO	19708529 C1 9839642 A1		30-07-1998 11-09-1998
WO 0223134	A	21-03-2002	EP WO US	1281047 A1 0223134 A1 2002142477 A1		05-02-2003 21-03-2002 03-10-2002
US 6433694	B1	13-08-2002		NONE		
WO 0177664	A	18-10-2001	AU AU AU WO WO WO US US US	7124701 A 7290001 A 7290101 A 0177664 A2 0177672 A2 0177667 A2 2003100118 A1 2003027936 A1 2004014235 A1		23-10-2001 23-10-2001 23-10-2001 18-10-2001 18-10-2001 18-10-2001 29-05-2003 06-02-2003 22-01-2004
FR 2815351	A	19-04-2002	FR	2815351 A1		19-04-2002
US 2003168355	A1	11-09-2003	AU EP WO US	2003301839 A1 1523736 A2 2004042366 A2 2004058057 A1		07-06-2004 20-04-2005 21-05-2004 25-03-2004
WO 0208234	A	31-01-2002	AU AU WO WO US US	7313401 A 7313501 A 0208234 A1 0208314 A1 2002009603 A1 2002026026 A1		05-02-2002 05-02-2002 31-01-2002 31-01-2002 24-01-2002 28-02-2002

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No
PCT/FR2004/050646

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 G01N27/12 G01N29/02 G01N33/00 C08L83/16

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)
CIB 7 G01N C08L

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
Y	WO 98/22795 A (SWANSON BASIL I ; UNIV CALIFORNIA (US); YANG XIAOGUANG (US)) 28 mai 1998 (1998-05-28) page 21, ligne 19 - page 22, ligne 18; revendication 1 ----- DE 197 08 529 C (SZE SPEZIAL ELEKTRONIK HAGENUK) 30 juillet 1998 (1998-07-30) colonne 2, ligne 67 - colonne 3, ligne 36 ----- WO 02/23134 A (TOKUMARU PHIL ; BRIGLIN SHAWN M (US); LEWIS NATHAN S (US); FREUND MICHAEL) 21 mars 2002 (2002-03-21) page 28; tableau 1 ----- -/-	1,2, 7-12,14, 16-19
Y		1,2, 7-12,14, 16-19
A		1,15

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- *A* document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- *E* document antérieur, mais publié à la date de dépôt international ou après cette date
- *L* document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- *O* document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- *P* document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- *T* document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- *X* document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- *Y* document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- *&* document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

19 mai 2005

Date d'expédition du présent rapport de recherche internationale

25/05/2005

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Duchatellier, M

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No
PCT/FR2004/050646

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	US 6 433 694 B1 (DOLAN JAMES P ET AL) 13 août 2002 (2002-08-13) revendications 1-7 -----	1
A	WO 01/77664 A (UNIV MARYLAND ; MURRAY GEORGE M (US); ARNOLD BRADLEY M (US); LAWRENCE) 18 octobre 2001 (2001-10-18) abrégé page 10, ligne 27 page 12, ligne 5,6 -----	1
A	FR 2 815 351 A (THOMSON CSF) 19 avril 2002 (2002-04-19) revendications 1-3 -----	
A	US 2003/168355 A1 (HOUSER ERIC J ET AL) 11 septembre 2003 (2003-09-11) abrégé alinéas '0033! - '0035! -----	1
A	WO 02/08234 A (US GOVERNMENT) 31 janvier 2002 (2002-01-31) abrégé page 5, ligne 22 - page 6, ligne 19 -----	1
A	MCGILL R A ET AL: "The design of functionalized silicone polymers for chemical sensor detection of nitroaromatic compounds" SENSORS AND ACTUATORS B, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 65, no. 1-3, 30 juin 2000 (2000-06-30), pages 5-9, XP004208582 ISSN: 0925-4005 le document en entier -----	1
A	ALI M B ET AL: "Sensitive cyclodextrin-polysiloxane gel membrane on EIS structure and ISFET for heavy metal ion detection" SENSORS AND ACTUATORS B, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 62, no. 3, mars 2000 (2000-03), pages 233-237, XP004194220 ISSN: 0925-4005 le document en entier -----	1

RAPPORT DE RECHERCHE INTERNATIONALE

 Demande Internationale No
 PCT/FR2004/050646

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
WO 9822795	A	28-05-1998	AU WO US	5588798 A 9822795 A1 6316268 B1	10-06-1998 28-05-1998 13-11-2001
DE 19708529	C	30-07-1998	DE WO	19708529 C1 9839642 A1	30-07-1998 11-09-1998
WO 0223134	A	21-03-2002	EP WO US	1281047 A1 0223134 A1 2002142477 A1	05-02-2003 21-03-2002 03-10-2002
US 6433694	B1	13-08-2002		AUCUN	
WO 0177664	A	18-10-2001	AU AU AU WO WO WO US US US	7124701 A 7290001 A 7290101 A 0177664 A2 0177672 A2 0177667 A2 2003100118 A1 2003027936 A1 2004014235 A1	23-10-2001 23-10-2001 23-10-2001 18-10-2001 18-10-2001 18-10-2001 29-05-2003 06-02-2003 22-01-2004
FR 2815351	A	19-04-2002	FR	2815351 A1	19-04-2002
US 2003168355	A1	11-09-2003	AU EP WO US	2003301839 A1 1523736 A2 2004042366 A2 2004058057 A1	07-06-2004 20-04-2005 21-05-2004 25-03-2004
WO 0208234	A	31-01-2002	AU AU WO WO US US	7313401 A 7313501 A 0208234 A1 0208314 A1 2002009603 A1 2002026026 A1	05-02-2002 05-02-2002 31-01-2002 31-01-2002 24-01-2002 28-02-2002