

Paralleles Sortierung

Björn Rathjen Patrick Winterstein Freie Universität Berlin

Proseminar Algorithmen, SS14

Grundlage des Sortierens Komparator

Sortiernetzwerk Aufbau Korrektheit

Laufzeit

Herleitung Vergleich mit Software sortieren

Gegenüberstellung

Zusammenfassung

Ausblick Anhang

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit

Gegenüberstellung

Zusammenfassung

Motivation: Allgemein

ist Basis für:

- Suche
- ► (Sortierung)
 - Listen
 - Wörterbücher
 - ٠..
- ▶ Ist dies auch in Hardware möglich?

Grundlage des Sortierens Komparator

Sortiernetzwerk

Laufzeit

Gegenüberstellung

Zusammenfassung

Aufbau

- ▶ 2 Eingänge
- vergleichender Baustein
- 2 Ausgänge


```
void comp(chan in1, in2, out1 out2){
    a = <- in1;
    b = <- in2;

if (a < b){
      out1 <- a;
      out2 <- b;
      return void;
    }
    out1 <- b;
    out2 <- a;
    return void;
}</pre>
```


Grundlage des Sortierens

Sortiernetzwerk Aufbau Korrektheit

Laufzeit

Gegenüberstellung

Zusammenfassung

Erweiterung : Aufbau

- mehrere Eingabeleitungen (gleiche Anzahl an Ausgabeleitungen)
- mehrere vergleichende Schritte
- Ausgabe soll sortiert sein

▶ Resultat soll sortierte Ausgabe sein

- ► Resultat soll sortierte Ausgabe sein grundlegendes Prinzip :
 - ▶ intuitiver Einsatz von Vergleichen
 - Schrittweises sortieren

naiv: grundlegendes Prinzip

7	4	4	4	4	_1_	1	_1	1
4	7	5	5	_1	4	3.	3	2
5	5	7	_1	_5	3	4	2	3
8	8	1	. 7	3	5	2	4	4
6	1	8	3.	7	2	5	5	5
							6	
3	3	6	2	8	6	7	7	7
2	2	2	_6_	6	_8_	8	. 8	8

Wenn es eine Folge A gibt, die ein Sortiernetzwerk nicht sortiert, so existiert auch eine 0,1-Folge, die von diesem Netzwerk nicht sortiert wird.

man kann jede Zahlenfolge durch eine 0,1 Folge repräsentieren Konstante k und Zahlenfolge A mit den Elementen a_i

$$f(a_i) = \begin{cases} 0, & \text{if } a_i < k \\ 1, & \text{if } a_i \ge k \end{cases}$$

effektiveres Netzwerk

- ▶ Resultat soll sortierte Ausgabe sein
- soll effizient sein

- Resultat soll sortierte Ausgabe sein
- ▶ soll effizient sein

grundlegendes Prinzip:

- ▶ intuitiver Einsatz von Vergleichen
 - + Einbezug von Teile und Herrscher

Ablauf:

- sortierte Eingabelisten gemischt
 - ▶ untere Hälfte alle größer als in oberer
- rekursiv die kleineren listen
- Resultat eine Sortierte Liste

Ablauf:

- bekommen zwei sortierte Listen
- trennen in geraden und ungeraden Index
- fassen a(even) b(odd) = c und a(odd) b(even) = d zusammen (Resultat muss sortiert sein)
- c und d werden indexweise verschachtelt
- aufeinander folgende paare werden verglichen und in richtige Reihenfolge gebracht

Demonstration

Bild kleiner Zahlenfolge 4-8-16 Beispiel

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit
Herleitung
Vergleich mit Software sortieren

Gegenüberstellung

Zusammenfassung

N	Anzahl der Schritte
21	
2	

N	Anzahl der Schritte
21	1

N	Anzahl der Schritte
2 ¹ 2 ²	1

N	Anzahl der Schritte
2 ¹ 2 ²	1 1+2

N	Anzahl der Schritte
2 ¹ 2 ² 2 ^k	1 1+2

N	Anzahl der Schritte
2 ¹ 2 ² 2 ^k	$ \begin{array}{c} 1 \\ 1+2 \\ 1+2+3+\ldots+k-1+k = \sum_{i=1}^{k} i \end{array} $

N	Anzahl der Schritte
2 ¹ 2 ² 2 ^k (kleiner Gauss)	$ \begin{array}{c} 1 \\ 1+2 \\ 1+2+3+\ldots+k-1+k = \sum_{i=1}^{k} i \end{array} $

N	Anzahl der Schritte
2 ¹ 2 ² 2 ^k (kleiner Gauss)	$ \begin{array}{c} 1 \\ 1+2 \\ 1+2+3+\ldots+k-1+k = \sum_{i=1}^{k} i \\ = \frac{k \cdot (k+1)}{2} \end{array} $

N	Anzahl der Schritte
21	1
2 ⁻ 2 ²	1 + 2
2 ^k	$1+2+3+\ldots+k-1+k=\sum_{i=1}^{k}i$
(kleiner Gauss)	$=\frac{k\cdot(k+1)}{2}$
$(k = log_2 n)$	2

N	Anzahl der Schritte
21	1
2 ²	1 + 2
2 ^k	$1+2+3+\ldots+k-1+k=\sum_{i=1}^{k}i$
(kleiner Gauss)	$=\frac{k\cdot(k+1)}{2}$
$(k = log_2 n)$	$\Rightarrow \frac{1}{2} \cdot \log_2 n \ (\log_2 n + 1)$

- Schritte gegen Vergleiche
- Abhängigkeit von der Eingabe
- Bezug zum vorherigen Vergleich

Mergesort Quicksort

Mergesort Quicksort

Quichsort : wo ist das Pivot Element ? mit welchem Element müssen wir nun vergleichen?

Mergesort Quicksort

Quichsort: wo ist das Pivot Element?

mit welchem Element müssen wir nun vergleichen?

Mergesort : Wo ist nun das größte Element ?

welcher Vergleich kommt nun?)

Motivation

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit

Gegenüberstellung

Zusammenfassung

Ausblick

- Geschwindigkeit vs Variabilität
 - hohe Geschwindigkeit durch direkte Hardware Implementriegung
 - starre Struktur , bildet Rahmen der Möglichkeiten
 - stark typisierte Eingabe
- Hardwareaufwand vs Softwareaufwand
 - Software zur Auswertung keine zum sortieren
 - geringe Skalierbarkeit
 - hoher Aufwand wenn Eingabelimit überschritten wird
 - nur lokal
 - Hardware Konzeption eventuell aufwendiger

Motivation

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit

Gegenüberstellung

Zusammenfassung

Ausblick

Zusammenfassung

- paralleles sortieren ist schnell und effizient
- problemabhängige Lösung
- starr, nicht universell

Motivation

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit

Gegenüberstellung

Zusammenfassung

Ausblick Anhang

Ausblick

- andere Arten von Netzwerken
- Hypercubes
- ► Simulation von Maschinenmodellen
- ▶ ...

A. Author.

Taschenbuch der Algorithmen. Springer Verlag, 2008.

Tom Leighton.

Einführung in Parallele Algorithmen und Architekturen Gitter, Bäume und Hypercubes.

Thomsom Publisching , 1997.

S. Someone.

http://www.iti.fh-

flensburg.de/lang/algorithmen/sortieren/networks/nulleins.htm