Assignment 2 (ML for TS) - MVA 2022/2023

Thibault de Surrel thibault.de-surrel@ensta-paris.fr Alexandre Pradeilles alexandre.pradeilles@gmail.com

February 27, 2023

1 Introduction

Objective. The goal is to better understand the properties of AR and MA processes, and do signal denoising with sparse coding.

Warning and advice.

- Use code from the tutorials as well as from other sources. Do not code yourself well-known procedures (e.g. cross validation or k-means), use an existing implementation.
- The associated notebook contains some hints and several helper functions.
- Be concise. Answers are not expected to be longer than a few sentences (omitting calculations).

Instructions.

- Fill in your names and emails at the top of the document.
- Hand in your report (one per pair of students) by Monday 27th February 11:59 PM.
- Rename your report and notebook as follows:
 FirstnameLastname1_FirstnameLastname1.pdf and
 FirstnameLastname2_FirstnameLastname2.ipynb.
 For instance, LaurentOudre_CharlesTruong.pdf.
- Upload your report (PDF file) and notebook (IPYNB file) using this link: .

2 General questions

A time series $\{y_t\}_t$ is a single realisation of a random process $\{Y_t\}_t$ defined on the probability space (Ω, \mathcal{F}, P) , i.e. $y_t = Y_t(w)$ for a given $w \in \Omega$. In classical statistics, several independent realisations are often needed to obtain a "good" estimate (meaning consistent) of the parameters of the process. However, thanks to a stationarity hypothesis and a "short-memory" hypothesis, it is still possible to make "good" estimates. The following question illustrates this fact.

Question 1

An estimator $\hat{\theta}_n$ is consistent if it converges in probability when the number n of samples grows to ∞ to the true value $\theta \in \mathbb{R}$ of a parameter, i.e. $\hat{\theta}_n \stackrel{\mathcal{D}}{\longrightarrow} \theta$.

- Recall the rate of convergence of the sample mean for i.i.d. random variables with finite variance.
- Let $\{Y_t\}_{t\geq 1}$ a wide-sense stationary process such that $\sum_k |\gamma(k)| < +\infty$. Show that the sample mean $\bar{Y}_n = (Y_1 + \cdots + Y_n)/n$ is consistent and enjoys the same rate of convergence as the i.i.d. case. (Hint: bound $\mathbb{E}[(\bar{Y}_n \mu)^2]$ with the $\gamma(k)$ and recall that convergence in L_2 implies convergence in probability.)

Answer 1

• Let $(Y_n)_{n\in\mathbb{N}}$ a sequence of i.i.d. random variables with finite variance. According to the weak law of large numbers, we now that the sample mean $\bar{Y}_n := \frac{1}{n} \sum_{i=1}^n Y_i$ converges in probability to $\mathbb{E}[Y_1]$. Moreover, according to the central limit theorem, we have that

$$\sqrt{n} \frac{\bar{Y}_n - \mathbb{E}[Y_1]}{\sqrt{\operatorname{Var}(Y_1)}} \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0,1).$$

The rate of convergence is therefore $1/\sqrt{n}$.

• As $\{Y_t\}_{t\geq 1}$ is a wide-sense stationary process, we can denote $\mu := \mathbb{E}[Y_1]$ and we have that $\mu = \mathbb{E}[Y_t]$ for all $t\geq 1$. In order to show that \bar{Y}_n is consistent, it is sufficient to show that \bar{Y}_n converges to μ in L^2 , that is $\mathbb{E}[(\bar{Y}_n - \mu)^2] \xrightarrow[n \to \infty]{} 0$. As we have $\bar{Y}_n - \mu = \frac{1}{n} \sum_{i=1}^n (Y_i - \mu)$, we have

$$\mathbb{E}\left[(\bar{Y}_{n} - \mu)^{2}\right] = \mathbb{E}\left[\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} (Y_{i} - \mu)(Y_{j} - \mu)\right]$$

$$= \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}\left[(Y_{i} - \mu)(Y_{j} - \mu)\right]$$

$$= \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma(|i - j|)$$
(1)

because $\{Y_t\}_{t\geq 1}$ a wide-sense stationary process, so $\mathbb{E}[(Y_i-\mu)(Y_j-\mu)]=\gamma(|i-j|)$. Since we have $1-n\leq i-n\leq i-j\leq i-1\leq n-1$, and $\gamma(-k)=\gamma(k)$, we know that in the final sum of 1, the term in $\gamma(k)$ for $k\in\{0,...,n-1\}$ will not appear more than n times. So we have the following bound :

$$\mathbb{E}\left[(\bar{Y}_n - \mu)^2\right] \le \frac{1}{n} \sum_{k=0}^{n-1} \gamma(k)$$

Therefore, as $\sum_{k} |\gamma(k)| < +\infty$, we have,

$$\mathbb{E}[(\bar{Y}_n - \mu)^2] \le \frac{1}{n} \sum_{k=0}^n |\gamma(k)| \xrightarrow[n \to 0]{} 0.$$

Thus, \bar{Y}_n converges to μ in L^2 so \bar{Y}_n is consistent.

Finally, we have

$$\mathbb{E}[\bar{Y}_n - \mu]^2 \le \mathbb{E}[(\bar{Y}_n - \mu)^2] \le \frac{1}{n} \sum_{k=0}^n |\gamma(k)|$$

So,

$$\mathbb{E}[\bar{Y}_n - \mu] \leq \frac{1}{\sqrt{n}} \left(\sum_{k=0}^n |\gamma(k)| \right)^{1/2}.$$

We then get that the convergence rate is $1/\sqrt{n}$, the same as in the i.i.d. case.

3 AR and MA processes

Question 2 *Infinite order moving average MA*(∞)

Let $\{Y_t\}_{t>0}$ be a random process defined by

$$Y_t = \varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + \dots = \sum_{k=0}^{\infty} \psi_k \varepsilon_{t-k}$$
 (2)

where $(\psi_k)_{k\geq 0} \subset \mathbb{R}$ ($\psi=1$) are square summable, i.e. $\sum_k \psi_k^2 < \infty$ and $\{\varepsilon_t\}_t$ is a zero mean white noise of variance σ_ε^2 . (Here, the infinite sum of random variables is the limit in L_2 of the partial sums.)

- Derive $\mathbb{E}(Y_t)$ and $\mathbb{E}(Y_tY_{t-k})$. Is this process weakly stationary?
- Show that the power spectrum of $\{Y_t\}_t$ is $S(f) = \sigma_{\varepsilon}^2 |\phi(e^{-2\pi i f})|^2$ where $\phi(z) = \sum_j \psi_j z^j$. (Assume a sampling frequency of 1 Hz.)

The process $\{Y_t\}_t$ is a moving average of infinite order. Wold's theorem states that any weakly stationary process can be written as the sum of the deterministic process and a stochastic process which has the form (2).

Answer 2

• We first have:

$$\mathbb{E}[Y_t] = \sum_{k=0}^{\infty} \psi_k \underbrace{\mathbb{E}[\varepsilon_{t-k}]}_{=0} = 0$$

Then we have:

$$\mathbb{E}[Y_t Y_{t-k}] = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \psi_i \psi_j \underbrace{\mathbb{E}[\varepsilon_{t-i} \varepsilon_{t-k-j}]}_{=\sigma_{\varepsilon}^2 \delta_{t-i,t-k-j}} = \sigma_{\varepsilon}^2 \sum_{l=0}^{\infty} \psi_l \psi_{l+|k|} < \infty$$

As the expected value is 0 for all t and the covariance depends only on k, then this process is weakly stationary.

• We have:

$$\sigma_{\varepsilon}^{2}|\phi(e^{-2\pi if})|^{2} = \sigma_{\varepsilon}^{2}(\sum_{l=0}^{\infty}\psi_{l}e^{-2\pi lif})(\sum_{n=0}^{\infty}\psi_{n}e^{2\pi nif}) = \sum_{k=-\infty}^{\infty}(\sigma_{\varepsilon}^{2}\sum_{l=0}^{\infty}\psi_{l}\psi_{l+|k|})e^{-2\pi kif}$$

So finally:

$$\sigma_{\varepsilon}^{2} |\phi(e^{-2\pi i f})|^{2} = \sum_{k=-\infty}^{\infty} \underbrace{\mathbb{E}[Y_{t} Y_{t-k}]}_{=\gamma(k)} e^{-2\pi k i f} = S(f)$$

Question 3 *AR*(2) process

Let $\{Y_t\}_{t\geq 1}$ be an AR(2) process, i.e.

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t \tag{3}$$

with $\phi_1, \phi_2 \in \mathbb{R}$. The associated characteristic polynomial is $\phi(z) := 1 - \phi_1 z - \phi_2 z^2$. Assume that ϕ has two distinct roots (possibly complex) r_1 and r_2 such that $|r_i| > 1$. Properties on the roots of this polynomial drive the behaviour of this process.

- Express the autocovariance coefficients $\gamma(\tau)$ using the roots r_1 and r_2 .
- Figure 1 shows the correlograms of two different AR(2) processes. Can you tell which one has complex roots and which one has real roots?
- Express the power spectrum S(f) (assume the sampling frequency is 1 Hz) using $\phi(\cdot)$.
- Choose ϕ_1 and ϕ_2 such that the characteristic polynomial has two complex conjugate roots of norm r = 1.05 and phase $\theta = 2\pi/6$. Simulate the process $\{Y_t\}_t$ (with n = 2000) and display the signal and the periodogram (use a smooth estimator) on Figure 2. What do you observe?

Correlogram of the first AR(2)

Correlogram of the second AR(2)

Figure 1: Two AR(2) processes

Answer 3

• Let's take $G_1 = \frac{1}{r_1}$, $G_2 = \frac{1}{r_2}$ Y_t can be written as a sum of the previous ϵ_t , then $\forall (t,k) > 0$, ϵ_{t+k} and Y_t are independent. Then, we obtain $\forall k, \gamma(k) = \phi_1 \gamma(k-1) + \phi_2 \gamma(k-2)$ As $\gamma(k) = \gamma(-k)$ and $\phi_1 = G_1 + G_2$ and $\phi_2 = -G_1 G_2$ and $G_1 \neq G_2$: we have $\gamma(1) = \frac{\phi_1}{1 - \phi_2} \gamma(0) = \frac{(1 - G_2)G_1^2 - (1 - G_1)G_2^2}{(G_1 - G_2)(1 + G_1 G_2)} \gamma(0)$ And $\gamma(0) = \frac{(1 - G_2)G_1 - (1 - G_1)G_2}{(G_1 - G_2)(1 + G_1 G_2)} \gamma(0)$ So let's show by recurrence that

$$\forall k > 0, \gamma(k) = \frac{(1 - G_2)G_1^{k+1} - (1 - G_1)G_2^{k+1}}{(G_1 - G_2)(1 + G_1G_2)}\gamma(0)$$

We take k such as the propriety is true for k-1 and k-2. Then:

$$\frac{\gamma(k)}{\gamma(0)} = \phi_1 \frac{(1 - G_2)G_1^k - (1 - G_1)G_2^k}{(G_1 - G_2)(1 + G_1G_2)} + \phi_2 \frac{(1 - G_2)G_1^{k-1} - (1 - G_1)G_2^{k-1}}{(G_1 - G_2)(1 + G_1G_2)}$$

But $\phi_1 = G_1 + G_2$ and $\phi_2 = -G_1G_2$. So:

$$\frac{\gamma(k)}{\gamma(0)} = \frac{(1 - G_2)G_1^{k+1} + (1 - G_2)G_1^kG_2 - (1 - G_1)G_2^kG_1 - (1 - G_1)G_2^{k+1}}{(G_1 - G_2)(1 + G_1G_2)} + \frac{-(1 - G_2)G_1^kG_2 + (1 - G_1)G_2^kG_1}{(G_1 - G_2)(1 + G_1G_2)}$$

i.e

$$\boxed{\frac{\gamma(k)}{\gamma(0)} = \frac{(1 - G_2)G_1^{k+1} - (1 - G_1)G_2^{k+1}}{(G_1 - G_2)(1 + G_1G_2)}}$$

which gives the result.

- According to the previous result, we can notice that in the case of real roots, then $\gamma(k)$ is monotone so it is the second case. In the first case the roots are then complex.
- Let us introduce the lag operator denote *L* defined as follows :

$$\forall t \geq 1$$
, $LY_t = Y_{t-1}$.

We can then rewrite the random process $\{Y_t\}_{t\geq 0}$ as follows :

$$Y_t - \phi_1 L(Y_t) - \phi_2 L^2(Y_t) = \varepsilon_t$$
 i.e. $\phi(L)Y_t = \varepsilon_t$

Using previous notations, we have that

$$\phi(z) = (z - r_1)(z - r_2) = r_1 r_2 (z / r_1 - 1)(z / r_2 - 1) = r_1 r_2 (1 - G_1 z)(1 - G_2 z)$$

so we have

$$Y_t = \frac{1}{\phi(L)} \varepsilon_t = \frac{1}{r_1 r_2 (1 - G_1 L) (1 - G_2 L)} \varepsilon_t$$

As $|r_1| > 1$ and $|r_2| > 1$, we have $|G_1| < 1$ and $|G_2| < 1$ so we can use the Taylor expansion of $x \mapsto \frac{1}{1-x}$:

$$\frac{1}{1 - G_1 L} = \sum_{n=0}^{\infty} G_1^n L^n, \qquad \frac{1}{1 - G_2 L} = \sum_{n=0}^{\infty} G_2^n L^n$$

Then, we have

$$Y_t = \frac{1}{r_1 r_2} \left(\sum_{n=0}^{\infty} G_1^n L^n \right) \left(\sum_{n=0}^{\infty} G_2^n L^n \right) \varepsilon_t = \left(\sum_{n=0}^{\infty} \left(\sum_{k=0}^n G_1^{k+1} G_2^{n-k-1} \right) L^n \right) \varepsilon_t$$

So, Y_t can be seen as a MA(∞) process, and as $Y_t = \frac{1}{\phi(L)} \varepsilon_t$, we can use question 2 and we get :

$$S(f) = \sigma_{\varepsilon}^{2} \left| \frac{1}{\phi(e^{-2\pi i f})} \right|^{2}$$

• $r1 = 0.575\sqrt{3} + i0.575$, $r2 = 0.575\sqrt{3} - i0.575$ verify the conditions. This leads to

$$\phi_2 = \frac{-1}{(1.05)^2}, \phi_1 = \frac{2 * \sqrt{3} * 0.575}{(1.05)^2}$$

Then we obtain:

Figure 2: AR(2) process

We notice a large spike at around $0.05~\mathrm{Hz}$. If we zoom on the signal, we can indeed see that the signal is really similar every 20 points which correspond to the frequency of $0.05~\mathrm{Hz}$

4 Sparse coding

The modulated discrete cosine transform (MDCT) is a signal transformation often used in sound processing applications (for instance to encode a MP3 file). A MDCT atom $\phi_{L,k}$ is defined for a length 2L and a frequency localisation k (k = 0, ..., L - 1) by

$$\forall u = 0, \dots, 2L - 1, \quad \phi_{L,k}[u] = w_L[u] \sqrt{\frac{2}{L}} \cos\left[\frac{\pi}{L} \left(u + \frac{L+1}{2}\right) (k + \frac{1}{2})\right]$$
 (4)

where w_L is a modulating window given by

$$w_L[u] = \sin\left[\frac{\pi}{2L}\left(u + \frac{1}{2}\right)\right]. \tag{5}$$

Question 4 Sparse coding with OMP

For the signal provided in the notebook, learn a sparse representation with MDCT atoms. The dictionary is defined as the concatenation of all shifted MDCDT atoms for scales L in [32,64,128,256,512,1024].

- For the sparse coding, implement the Orthogonal Matching Pursuit (OMP). (Use convolutions to compute the correlations coefficients.)
- Display the norm of the successive residuals and the reconstructed signal with 10 atoms.

Answer 4

Norms of the successive residuals

Reconstruction with 10 atoms

Figure 3: Question 4