

ReCell Project

Supervised Learning - Linear Regression

Yair Brama – August 2024

Contents / Agenda

- Executive Summary
- Business Problem Overview and Solution Approach
- EDA Results
- Data Preprocessing
- Model Performance Summary
- Appendix

The rising potential of this comparatively under-the-radar market of refurbished and used cellular devices fuels the need for an ML-based solution to develop a dynamic pricing strategy. ReCell, a startup aiming to tap the potential in this market, has hired me as a data scientist. In this project we will analyze the data provided and build a linear regression model to predict the price of a used phone/tablet and identify factors that significantly influence it. (See the data structure in the appendix part)

Performing Supervised Machine Learning - Linear Regression

The primary purpose of linear regression is to predict the value of the dependent variable (price of used devices) based on the values of the independent variables.

As it will show in the next slides, the model that is based on the given data can predict the price with an accuracy of \sim 81%, which meets our expectations for a reliable model

Executive Summary – Model Results

Metric	Train Value	Test Value	Description
R-squared	0.816984	0.822131	The training model is NOT underfitting, ~82% of the results can be predicted by the model
Adjusted R- squared	0.81584	0.819518	This value shows how well the model fits the data, considering the amount of variables
MAE	0.194005	0.196185	MAE indicates that our current model can predict the price within a mean error of ~0.2 units on the test data.
MAPE	0.046678	0.047941	MAPE of 4.8% shows we can predict the price of the test data within this range
RMSE	0.249705	0.253286	The train and test RMSE (as well as MAE) are comparable, so the model is not overfitting

Equation of linear regression

normalized price of used device = 1.3946020282806701 + 0.01467795180139142 * (main_camera_mp) + 0.01171334063789519 * (selfie_camera_mp) + 0.018694083226400683 * (ram) + 9.434404942690962e-05 * (battery) + 0.4756460141277346 * (normalized_new_price) + -0.021515391520670724 * (years_since_release) + 0.05985704728434499 * (brand_name_Alcatel) + 0.14081623761562923 * (brand_name_Karbonn) + 0.0645434807324212 * (brand_name_Lenovo) + 0.13940662078054894 * (brand_name_Microsoft) + 0.07148832358895618 * (brand_name_Nokia) + 0.07361505473160784 * (brand_name_Xiaomi) + -0.1454720059578327 * (os Others) + -0.0763163720532658 * (5g yes)

Solution Approach

Data initial review	EDA	Data Preprocessing	Model Building - Linear Regression	Check assumptions	Final Model Summary
	•	Missing Value Imputation – Based on Median values Feature Engineering – Add field for number of years Create Dummy variables – For the categories fields – brands, OS	Split the dataset between training and test data Run the model and check the performance	No Multicollinearity Linearity of variables Independence of error terms Normality of error terms No Heteroscedasticity	Perform the final run Compare the training and the test sets

The data includes 3454 rows and 15 columns

There are 34 unique brands (e.g., Nokia, Apple), and 4 OS type (e.g., Android, iOS)

Data types:

memory usage: 404.9+ KB

#	Column	Non-Null Count	Dtype			
0	brand_name	3454 non-null	object			
1	os	3454 non-null	object			
2	screen_size	3454 non-null	float64			
3	4g	3454 non-null	object			
4	5g	3454 non-null	object			
5	main_camera_mp	3275 non-null	float64			
6	selfie_camera_mp	3452 non-null	float64			
7	int_memory	3450 non-null	float64			
8	ram	3450 non-null	float64			
9	battery	3448 non-null	float64			
10	weight	3447 non-null	float64			
11	release_year	3454 non-null	int64			
12	days_used	3454 non-null	int64			
13	normalized_used_price	3454 non-null	float64			
14	normalized_new_price	3454 non-null	float64			
dtyp	es: float64(9), int64(2), object(4)				

Checking for missing values

```
In [20]: data.isnull().sum() ## Complete the code to check duplicate entries in the data
Out[20]: brand name
          screen size
          5g
          main camera mp
                                   179
          selfie camera mp
          int memory
          batterv
          weight
         release year
          days used
         normalized used price
          normalized new price
                                     0
          dtype: int64
```

EDA Results - Univariate Analysis

Observation – In this sampling observation, the used price and the new price seem to be distributed normally (visually), with outliers on both sides

Observation – In this sampling observation, these variables look skewed to the right

Observation – In this sampling observation, these variables look skewed to the right as well

Observation – Not surprisingly, these variables show that there is more representation for older devices in this set, with more days used, and more 4g than 5g

Brand Name OS

Observation – These 2 variables are most likely correlated, as the OS and the brand usually go together. Note that there is a small representation of iPhones, which can indicate that these devices are not resold like Android devices, or there isn't enough data

Multivariate Analysis – Heatmap/Correlation

Observation – We can see a stronger correlation between screen size, battery and weight. Also, there is a strong correlation between the new price and the old price

Multivariate Analysis – RAM and Weight across brands

Brand Name and RAM relation

Brand Name and weight relation where battery > 4500

Observation - There is no relation between the RAM and the weight within the same brand

Multivariate Analysis – Screen size and cameras across brands earning

Brand Name and screen size > 6 * 2.54

Observation – We can see that the similar brands have the stronger front cameras and a bigger screen.

However, different brands have stronger rear camera (the main camera)

Brand Name and weight rear camera > 16 mp

Brand Name and front camera > 8 mp

Multivariate Analysis – Prices over time and in relation to 4/5g

Observation – As expected, newer (but used) devices cost more, and 5g is more expensive than 4g that is more expensive than non-4g

Data Preprocessing – Missing Value Imputation

initial missing data

brand_name 0
os 0
screen_size 0
4g 0
5g 0
main_camera_mp 179
selfie_camera_mp 2
int_memory 4
ram 4
battery 6
weight 7
release_year 0
days_used 0
normalized_used_price
normalized_new_price 0
dtype: int64

After adding the median based on release year and brand

brand name 0 05 screen size 4g 5g main camera mp 179 selfie camera mp int memory ram battery weight release year days used normalized used price normalized new price 0 dtype: int64

After adding the median based brand name only

brand name OS screen size 4g 5g main camera mp selfie camera mp int memory ram battery weight release year days used normalized used price normalized new price dtype: int64

Final State – After adding the median of the entire column of main_camera_mp

brand_name	0
os	0
screen_size	0
4g	0
5g	0
main_camera_mp	0
selfie_camera_mp	0
int_memory	0
ram	0
battery	0
weight	0
release_year	0
days_used	0
normalized_used_price	0
normalized_new_price	0
dtype: int64	

Data Preprocessing – Feature Engineering and Outlier Check

- New variable was added, to simplify the computation of years.
 - Let's create a new column years since release from the release year column.
 - We will consider the year of data collection, 2021, as the baseline.
 - We will drop the release year column.

Outliers Check - Most of the variables have outliers, however we will move on with considering them as part of the model

Model Performance Summary – Process Stages

Model Performance Summary – Initial Run Performance

Training Performance						
	RMSE	MAE	R-squared	Adj. R-squared	MAPE	
0	0.229884	0.180326	0.844886	0.841675	0.043268	
Test Performance						
	RMSE	MAE	R-squared	Adj. R-squared	MAPE	
0	0.238358	0.184749	0.842479	0.834659	0.045017	

Observation – The results show a strong performance and ability to predict the independent variable (normalized price of used devices).

Now we need to check the assumptions of linear regression.

Model Performance Summary – Checking Linear Regression assumptions

NO MULTICOLLINEARITY

The independent variables must not be highly correlated with one another, as this can lead to unstable and unreliable coefficient estimates

LINEARITY

The relationship between the independent variables and the dependent variable must be linear.

INDEPENDENCE

The observations in the dataset must be independent of one another, meaning they are not influenced by any other observations in the dataset

NORMALITY

The residuals must be normally distributed with a mean of zero.

HOMOSCEDASTICITY

The variance of the residuals (the difference between the observed values and the predicted values) must be constant across all levels of the independent

Model Performance Summary – No Multicollinearity

Index	Feature	VIF
0	const	227.744081
1	screen_size	7.677290
2	main_camera_mp	2.285051
3	selfie_camera_mp	2.812473
4	int_memory	1.364152
5	ram	2.282352
6	battery	4.081780
7	weight	6.396749
8	days_used	2.660269
9	normalized_new_pric e	3.119430
10	years_since_release	4.899007
11	brand_name_Alcatel	3.405693
12	brand_name_Apple	13.057668
13	brand_name_Asus	3.332038
14	brand_name_BlackB erry	1.632378
15	brand_name_Celkon	1.774721
16	brand_name_Coolpa d	1.468006
17	brand_name_Gionee	1.951272

		\ //=
Index	Feature	VIF
18	brand_name_Google	1.321778
19	brand_name_HTC	3.410361
20	brand_name_Honor	3.340687
21	brand_name_Huawei	5.983852
22	brand_name_Infinix	1.283955
23	brand_name_Karbonn	1.573702
24	brand_name_LG	4.849832
25	brand_name_Lava	1.711360
26	brand_name_Lenovo	4.558941
27	brand_name_Meizu	2.179607
28	brand_name_Micromax	3.363521
29	brand_name_Microsoft	1.869751
30	brand_name_Motorola	3.274558
31	brand_name_Nokia	3.479849
32	brand_name_OnePlus	1.437034
33	brand_name_Oppo	3.971194
34	brand_name_Others	9.711034
35	brand_name_Panasonic	2.105703
36	brand_name_Realme	1.946812
37	brand_name_Samsung	7.539866
38	brand_name_Sony	2.943161
39	brand_name_Spice	1.688863
40	brand_name_Vivo	3.651437
41	brand_name_XOLO	2.138070

Index	Feature	VIF
42	brand_name_Xiaomi	3.719689
43	brand_name_ZTE	3.797581
44	os_Others	1.859863
45	os_Windows	1.596034
46		11.784684
47	4g_yes	2.467681
48	5g_yes	1.813900

Observation – The highlighted variables have VIF > 5, therefore we will try to remove them one by one and see if it will clear the correlated variables and what will be the impact on the model performance

Model Performance Summary – No Multicollinearity – Cont.

Column	Adj. R-squared after dropping col	RMSE after dropping col
brand_name_Apple	0.841809	0.232201
brand_name_Huawei	0.841808	0.232201
brand_name_Others	0.841806	0.232203
os_iOS	0.841795	0.232211
brand_name_Samsung	0.841774	0.232227
screen_size	0.838381	0.234703
weight	0.838071	0.234928

Results – The highlighted variables were removed from the model and the model performance remained high

Model Performance Summary – Dropping high p-value variables

We will drop the predictor variables having a p-value greater than 0.05 as they do not significantly impact the target variable.

Since sometimes p-values change after dropping a variable. So, we'll not drop all variables at once.

Instead, we will do the following:

- Build a model, check the p-values of the variables, and drop the column with the highest p-value.
- Create a new model without the dropped feature, check the results

Results – The second iteration of the model, without the high VIF and the high P-values variables, show strong results, so we will continue working with it

Train performance:

RMSE	MAE	R-squared	Adj. R- squared	MAPE
0.249705	0.194005	0.816984	0.81584	0.046678

Test performance:

RMSE	RMSE MAE		Adj. R- squared	MAPE
0.253286	0.196185	0.822131	0.819518	0.047941

Model Performance Summary – Linearity and Independence

Observation – By plotting, we see random relation between the fitted and the residuals and a visible normal distribution of the residuals. Even the Q-Q comparison, shows close enough to normal.

Model Performance Summary – Linearity and Independence – Cont.

Last test will be the Shapiro Test:

ShapiroResult(statistic=0.9790064070477261, pvalue=2.080160689360709e-18)

Since p-value < 0.05, the residuals are NOT normal as per Shapiro test. Strictly speaking - the residuals are not normal. However, as an approximation, we might be willing to accept this distribution as close to being normal

Model Performance Summary – Homoscedasticity

We will test for homoscedasticity by using the 'goldfeldquandt' test:

```
Result:
```

```
('F statistic', 1.0005049517053914), ('p-value', 0.4965187310899025)
```

Since we got a p-value greater than 0.05, we can say that the residuals are homoscedastic. (The null hypothesis was that they are homoscedastic, and we fail to reject it)

Model Performance Summary – Final Model Performance

Training Set Performance:

RMSE	MAE	R-squared	Adj. R- squared	MAPE
0.249705	0.194005	0.816984	0.81584	0.046678

Test Set Performance:

RMSE	MAE	R-squared	Adj. R- squared	MAPE
0.253286	0.196185	0.822131	0.819518	0.047941

Summary – After adjusting the training and test sets to meet the assumptions, the model keeps its strong performance and shows R-squared of 82% which satisfies our expectations.

APPENDIX

Full Data Set Dictionary

G Great Learning

The 2021 data contains the different attributes of used/refurbished phones and tablets.

Name Description				
brand_name	Name of manufacturing brand			
os	OS on which the device runs			
screen_size	Size of the screen in cm			
4g	Whether 4G is available or not			
5g	Whether 5G is available or not			
main_camera_mp	Resolution of the rear camera in megapixels			
selfie_camera_mp	Resolution of the front camera in megapixels			
int_memory	Amount of internal memory (ROM) in GB			
ram	Amount of RAM in GB			
battery	Energy capacity of the device battery in mAh			
weight	Weight of the device in grams			
release_year	Year when the device model was released			
days_used	Year when the device model was released			
normalized_new_price	Normalized price of a new device of the same model in euros			
normalized_used_price This will be the independent variable Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.				

Model Performance Summary – Initial Run Full Results

OLS Regression Results

normalized_used_price Dep. Variable: R-squared: 0.845 Adi. R-squared: Model: 0.842 Least Squares F-statistic: Method: 268.7 Date: Sun, 25 Aug 2024 Prob (F-statistic): 0.00 Log-Likelihood: Time: 12:21:20 123.85 No. Observations: 2417 AIC: -149.7 Df Residuals: 2368 BIC: 134.0 Df Model: 48 Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]		coef	std err	t	P> t	[0.025	0.975]
	4 2456	0.074	40.454	0.000	4 476	4 455	brand_name_Infinix	0.1633	0.093	1.752	0.080	-0.019	0.346
const	1.3156	0.071	18.454	0.000	1.176	1.455	brand_name_Karbonn	0.0943	0.067	1.405	0.160	-0.037	0.226
screen_size	0.0244	0.003	7.163	0.000	0.018	0.031	brand_name_LG	-0.0132	0.045	-0.291	0.771	-0.102	0.076
main_camera_mp	0.0208	0.002	13.848	0.000	0.018	0.024	brand_name_Lava	0.0332	0.062	0.533	0.594	-0.089	0.155
selfie_camera_mp	0.0135	0.001	11.997	0.000	0.011	0.016	brand_name_Lenovo	0.0454	0.045	1.004	0.316	-0.043	0.134
int_memory	0.0001	6.97e-05	1.651	0.099	-2.16e-05	0.000	brand name Meizu	-0.0129	0.056	-0.230	0.818	-0.123	0.097
ram	0.0230	0.005	4.451	0.000	0.013	0.033	brand name Micromax	-0.0337	0.048	-0.704	0.481	-0.128	0.060
pattery	-1.689e-05	7.27e-06	-2.321	0.020	-3.12e-05	-2.62e-06	brand name Microsoft	0.0952	0.088	1.078	0.281	-0.078	0.268
weight	0.0010	0.000	7.480	0.000	0.001	0.001	brand name Motorola	-0.0112	0.050	-0.226	0.821	-0.109	0.086
days_used	4.216e-05	3.09e-05	1.366	0.172	-1.84e-05	0.000	brand name Nokia	0.0719	0.052	1.387	0.166	-0.030	0.174
normalized_new_price	0.4311	0.012	35.147	0.000	0.407	0.455	brand name OnePlus	0.0709	0.077	0.916	0.360	-0.081	0.223
years_since_release	-0.0237	0.005	-5.193	0.000	-0.033	-0.015	brand name Oppo	0.0124	0.048	0.261	0.794	-0.081	0.106
orand_name_Alcatel	0.0154	0.048	0.323	0.747	-0.078	0.109	brand name Others	-0.0080	0.042	-0.190	0.849	-0.091	0.075
brand_name_Apple	-0.0038	0.147	-0.026	0.980	-0.292	0.285	brand name Panasonic	0.0563	0.056	1.008	0.314	-0.053	0.166
brand_name_Asus	0.0151	0.048	0.314	0.753	-0.079	0.109	brand_name_Realme	0.0319	0.062	0.518	0.605	-0.089	0.153
brand_name_BlackBerry	-0.0300	0.070	-0.427	0.669	-0.168	0.108	brand name Samsung	-0.0313	0.043	-0.725	0.469	-0.116	0.053
brand_name_Celkon	-0.0468	0.066	-0.707	0.480	-0.177	0.083	brand name Sony	-0.0616	0.050	-1.220	0.223	-0.110	0.037
brand_name_Coolpad	0.0209	0.073	0.287	0.774	-0.122	0.164	brand name Spice	-0.0147	0.063	-0.233	0.816	-0.139	0.109
brand name Gionee	0.0448	0.058	0.775	0.438	-0.068	0.158	brand_name_Spice brand_name_Vivo	-0.0154	0.048	-0.233	0.750	-0.110	0.080
brand name Google	-0.0326	0.085	-0.385	0.700	-0.199	0.133	brand name XOLO	0.0152	0.055	0.277	0.782	-0.092	0.123
brand name HTC	-0.0130	0.048	-0.270	0.787	-0.108	0.081	brand_name_xolo brand name Xiaomi	0.0152	0.055	1.806	0.782	-0.092	0.123
brand name Honor	0.0317	0.049	0.644	0.520	-0.065	0.128							
brand_name_Huawei	-0.0020	0.044	-0.046	0.964	-0.089	0.085	brand_name_ZTE	-0.0057	0.047	-0.121	0.904	-0.099	0.087
	***************************************					******	os_Others	-0.0510	0.033	-1.555	0.120	-0.115	0.013
							os_Windows	-0.0207	0.045	-0.459	0.646	-0.109	0.068
							os_iOS	-0.0663	0.146	-0.453	0.651	-0.354	0.221
							4g_yes	0.0528	0.016	3.326	0.001	0.022	0.084
							5g yes	-0.0714	0.031	-2.268	0.023	-0.133	-0.010

-0.0763

5g_yes

OLS Regression Results

Dep. Variable:	normalized_used_price	R-squared:	0.817					
Model:	OLS	Adj. R-squared:	0.816					
Method:	Least Squares	F-statistic:	765.9					
Date:	Sun, 25 Aug 2024	Prob (F-statistic):	0.00					
Time:	13:43:32	Log-Likelihood:	-76.051					
No. Observations:	2417	AIC:	182.1					
Df Residuals:	2402	BIC:	269.0					
Df Model:	14							
Covariance Type:	nonrobust							

std err P>|t| [0.025 0.9751 coef 0.000 const 1.3946 0.051 27.469 1.295 1.494 main camera mp 0.0147 0.001 10.594 0.000 0.012 0.017 selfie camera mp 0.0117 0.001 10.374 0.000 0.009 0.014 0.0187 0.005 3.479 0.001 0.008 0.029 ram battery 9.434e-05 4.99e-06 18.911 0.000 8.46e-05 0.000 normalized new price 0.4756 0.498 0.011 42.607 0.000 0.454 years_since_release -0.0215 0.003 -6.208 0.000 -0.028 -0.015 brand name Alcatel 0.0599 0.116 0.028 2.109 0.035 0.004 brand name Karbonn 0.1408 0.058 2.414 0.016 0.026 0.255 0.0645 brand name Lenovo 0.023 2.783 0.005 0.019 0.110 brand name Microsoft 0.1394 0.070 1.996 0.046 0.002 0.276 brand_name_Nokia 0.0715 0.033 2.157 0.031 0.007 0.136 brand name Xiaomi 0.0736 0.028 2.676 0.128 0.007 0.020 os Others -0.1455 0.030 -4.805 0.000 -0.205 -0.086

Frobletary Content. So Great Learning, Att Nights Neserveg. Onauthorized use of distribution prohibite

-2.348

0.019

-0.140

-0.013

0.033

Happy Learning!

