Розділ 4: ЕМ-алгоритм на умовних випадкових полях Домашнє завдання

1 Основне (2 бали)

1.1 Монотонність ЕМ-алгоритму

Сформулювати ЕМ-алгоритм самонавчання та показати, що на жодній ітерації він не зменшує функції правдоподібності.

2 Додаткове (3 бали)

2.1 EM для GMM

Вивести ЕМ-алгоритм для кластеризації елементів з вибірки тривимірних нормально розподілених векторів, кожен з яких належить одному з двох розподілів з невідомими параметрами $\mu_1 \in \mathbb{R}^3$, $\mu_2 \in \mathbb{R}^3$, $\Sigma_1 \in \mathbb{R}^{3 \times 3}$ та $\Sigma_2 \in \mathbb{R}^{3 \times 3}$.

3 Комп'ютерне (4 бали)

3.1 Основи текстурної сегментації

Задача

Задано поле зору $T=\{1,\ldots,h\}\times\{1,\ldots,w\}$. Маємо кольорове триканальне (RGB) зображення $x:T\to C$ та його часткову сегментація $s:T\to\{b,f,\varepsilon\}$. Реалізувати алгоритм, що складається з чергування наступних кроків:

- 1. Навчання суміші тривимірних випадкових векторів, розподілених за нормальним законом (gaussian mixture model, GMM), використовуючи сегментацію s, що дає на виході набори $\left\{\left\langle p^{f}\left(i\right), \boldsymbol{\mu}_{i}^{f}, \Sigma_{i}^{f}\right\rangle : i = \overline{1, N^{f}}\right\}$ і $\left\{\left\langle p^{b}\left(i\right), \boldsymbol{\mu}_{i}^{b}, \Sigma_{i}^{b}\right\rangle : i = \overline{1, N^{b}}\right\}$, де $N^{f} \in \{3, \dots, 8\}, N^{b} \in \{3, \dots, 8\}$.
- 2. Розв'язок задачі розмітки на умовному випадковому полі

$$s \in \operatorname*{argmax}_{s:T \rightarrow \left\{b,f\right\}} p\left(s;x\right) = \operatorname*{argmax}_{s:T \rightarrow \left\{b,f\right\}} \frac{1}{Z\left(x\right)} \cdot \prod_{t \in T} q_t\left(s_t;x\right) \cdot \prod_{tt' \in \tau} g_{tt'}\left(s_t,s_{t'};x\right),$$

де

$$q_{t}(s_{t};x) = \sum_{i=1}^{N^{s_{t}}} p^{s_{t}}(i) \cdot (2 \cdot \pi)^{-\frac{5}{2}} \cdot \det(\Sigma_{i}^{s_{t}})^{-\frac{1}{2}} \cdot \exp\left\{-\frac{1}{2} \cdot (\boldsymbol{x}_{t} - \boldsymbol{\mu}_{i}^{s_{t}})^{T} \cdot (\Sigma_{i}^{s_{t}})^{-1} (\boldsymbol{x}_{t} - \boldsymbol{\mu}_{i}^{s_{t}})\right\},$$

$$g_{tt'}(s_{t}, s_{t'}; x) = \exp\left\{-\left[s_{t} \neq s_{t'}\right] \cdot \gamma \cdot e^{-\frac{\left\|\boldsymbol{x}_{t} - \boldsymbol{x}_{t'}\right\|^{2}}{2 \cdot \beta}}\right\},$$

$$\gamma \in [10; 100],$$

$$\beta = \frac{\sum_{tt' \in \tau} \|\boldsymbol{x}_{t} - \boldsymbol{x}_{t'}\|^{2}}{|\tau|}.$$

Зі схожими методами сегментації, що використовують схожі вхідні дані та ті ж розподіли, можна ознайомитися за посиланнями

- https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.9971&rep=rep1&type=pdf
- https://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf
- https://sandipanweb.wordpress.com/2018/02/11/interactive-image-segmentation-with-graph-cut
- https://www.robots.ox.ac.uk/~varun/prs.pdf

Зверніть увагу на те, що в даних роботах використовується інший алгоритм пошуку найбільш ймовірного стану випадкового поля, а саме розв'язок задачі про мінімальний зріз графу або її двоїстої задачі — задачі пошуку максимального потоку.

Мета

Ефективна реалізація оцінки найбільш ймовірного стану випадкового поля та ЕМ-алгоритму кластеризації нормальних випадкових векторів.

Завдання

На вхід програмі подається

- шлях до зображення;
- шлях до зображення з частковою сегментацією, де синій та червоний кольори означають фон та об'єкт, а чорний позначає невідому частину, яку програма повинна сегментувати;
- параметри γ, N^f, N^b ;
- максимальну кількість ітерацій ЕМ-алгоритму;
- максимальну кількість ітерацій алгоритму пошуку найбільш ймовірного стану випадкового поля (якщо використовується ітеративний алгоритм);

ЕМ-алгоритм та алгоритм пошуку найбільш ймовірного стану випадкового поля потрібно реалізувати власноруч.

У випадку використання алгоритму дифузії чи TRW-S 10 проходів по зображенню у прямому та зворотньому напрямку не повинно виконуватись більше ніж 100 секунд на зображенні розміром 700×500 .

Приклади

(a) Вхідне зображення x

(b) Початкова сегментація s

(c) Результат роботи алгоритму з параметрами $N^f=N^b=5,$ $\gamma=50,\ 10$ кроків алгоритму по 100 проходів TRW-S в кожному

(a) Вхідне зображення x

(b) Початкова сегментація s

(c) Результат роботи алгоритму з параметрами $N^f=N^b=5,$ $\gamma=50,5$ кроків алгоритму по 100 проходів TRW-S в кожному