Лабораторна робота №6 Наївний Байєс в Python

Мета роботи: набути навичок працювати з даними і опонувати роботу у Python з використанням теореми Байэса.

Хід роботи

Завдання 1 - було ознайомлено з теоретичним матеріалом нижче.

Завдання 2 – було ретельно переглянуто шлях дій

Завдання 3. Використовуя данні з пункту 2 визначити відбудеться матч при наступних погодних умовах чи ні

Варіант №24

Варіант 4,9, 14

Outlook = Sunny

Humidity = Normal

Wind = Strong

Ймовірність Yes в цей день = P(Outlook = Sunny|Yes) * P(Humidity = Normal|Yes) * <math>P(Wind = Strong|Yes) * P(Yes) = 3/10 * 6/9 * 3/9 * 9/14 = 0.0428

Ймовірність No в цей день = P(Outlook = Sunny|No) * P(Humidity = Normal|No) * <math>P(Wind = Strong|No) * P(No) = 2/4 * 1/5 * 3/5 * 5/14 = 0.0214

Після нормалізації маємо:

$$P(Yes) = 0.0428 / (0.0428 + 0.0214) = 0.6(6)$$

$$P(No) = 0.0214 / (0.0428 + 0.0214) = 0.3(3)$$

Ймовірність того що матч відбудеться близько 67%.

Завдання 4. Застосуйте методи байєсівського аналізу до набору даних про ціни на квитки на іспанські високошвидкісні залізниці.

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
```

```
from sklearn.naive bayes import MultinomialNB
from sklearn.metrics import classification_report
url = "https://raw.githubusercontent.com/susanli2016/Machine-
Learning-with-Python/master/data/renfe small.csv"
df = pd.read csv(url)
df = df.dropna(subset=["price"])
df['price'] = pd.to_numeric(df['price'], errors='coerce')
df = df.dropna(subset=['price']) # Уникаємо NaN після
df['price_category'] = pd.cut(df['price'], bins=[0, 40, 70,
float('inf')], labels=["low", "medium", "high"])
le = LabelEncoder()
categorical_columns = ["origin", "destination", "train_type",
"train class", "fare"]
for col in categorical_columns:
df[col] = le.fit transform(df[col])
X = df[["origin", "destination", "train_type", "train_class",
"fare"]]
v = df["price category"]
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=42)
model = MultinomialNB()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print(classification report(y test, y pred))
```

• ~/Desktop/zp/	ai/laba6 \$ precision	1.0	<u>in.py</u> fl-score	support
Mark to a series	1.5			A. 45
high	0.71	0.72	0.71	2565
low	0.58	0.35	0.44	1508
medium	0.53	0.65	0.58	2742
accuracy			0.61	6815
macro avg	0.61	0.57	0.58	6815
weighted avg	0.61	0.61	0.60	6815

Опис роботи:

- Зчитуємо файл
- Очищуємо рядки в яких нема ціни
- Категоризуємо дані. Ціна від 0 до 40 Low. Ціна від 40 до 70 Medium. Ціна вище 70 High
- Ділимо дані на тренувальні та тестові
- Навчаємо Баєсівський класифікартор MultinomialNB
- Виводимо звіт класифікації

Точність моделі 61%. Також бачимо що вона краще справляється з прогнозуванням високих цін. З малими цінами є певна проблема.

Посилання на GitHub: https://github.com/missShevel/SHI_Shevel_Olha_IPZ-21-1/tree/master/Lab6