Problem of the Week Problem E A Skinny Quadrilateral

In the diagram, $\triangle QP_1R_1$ is right-angled with $QP_1=2$ and $QR_1=5$. Lines QP_1 and QR_1 are extended and many more points are labelled at intervals of 1 unit, so that

$$P_1P_2 = P_2P_3 = P_3P_4 = P_4P_5 = \cdots = 1$$
, and $R_1R_2 = R_2R_3 = R_3R_4 = R_4R_5 = \cdots = 1$.

In fact, $P_1P_j = j - 1$ and $R_1R_k = k - 1$ for any positive integers j and k.

For example, $P_1P_5 = 5 - 1 = 4$ and $R_1R_4 = 4 - 1 = 3$.

Determine the value of n so that the area of quadrilateral $P_n P_{n+1} R_{n+1} R_n$ is 2016. That is, determine the value of n so that the area of the quadrilateral with vertices P_n , P_{n+1} , R_{n+1} , and R_n is 2016.

