ĐỀ SỐ 3 - THPT NHÂN CHÍNH

Câu 1: Cho hàm số (C): $y = \frac{1}{3}x^3 - 2x^2 + 3x + 1$ và đường thẳng d: y = 3x - 1. Một tiếp tuyến của (C) và song song với đường thẳng d có phương trình là

A.
$$y = 3x + 1$$

B.
$$y = 3x + 3$$

C.
$$y = 3x - \frac{43}{3}$$

D.
$$y = 3x - 1$$

Câu 2: Cho hàm số $y = 3\sin^2 x + 3x - \frac{1}{2}$. Có bao nhiều giá trị $x \in [-\pi; 2\pi]$ để y' = 0.

Câu 3: Hình chóp đều có các mặt bên là?

A.Tam giác đều

B.Tam giác vuông cân C.Tam giác cân

D.Tam giác vuông

Câu 4: Cho hàm số $y = \frac{1}{4}x^4 - 2x^2 - 3$. Tập nghiệm của bất phương trình y' > 0 là:

A.
$$[-2;0] \cup [2;+\infty)$$

B.
$$(-\infty; -2] \cup [0; 2]$$

A.
$$[-2;0] \cup [2;+\infty)$$
 B. $(-\infty;-2] \cup [0;2]$ **C.** $(-2;0) \cup (2;+\infty)$ **D.** $(-\infty;-2) \cup (0;2)$

D.
$$(-\infty; -2) \cup (0; 2)$$

Câu 5: Trong không gian cho mặt phẳng (P) và điểm A bất kỳ. Gọi M là điểm tùy ý thuộc mặt phẳng (P), H là hình chiếu của A lên mặt phẳng (P). Kí hiệu d(A,(P)) là khoảng cách từ A đến mặt phẳng (P). Khẳng định nào sau đây sai?

A.
$$d(A,(P)) \ge 0$$

B.
$$d(A,(P)) = AH$$

C.
$$d(A,(P)) = 0 \Leftrightarrow A \in (P)$$

D.
$$d(A,(P)) = AM$$

Câu 6: Đạo hàm của hàm số $y = \frac{3x-2}{x+1}$ là:

A.
$$y' = \frac{-5}{(x+1)^2}$$
 B. $y' = \frac{5}{(x+1)^2}$ **C.** $y' = \frac{1}{(x+1)^2}$ **D.** $y' = \frac{-1}{(x+1)^2}$

B.
$$y' = \frac{5}{(x+1)^2}$$

C.
$$y' = \frac{1}{(x+1)^2}$$

D.
$$y' = \frac{-1}{(x+1)^2}$$

Câu 7: Điện lượng truyền trong dây dẫn có phương trình $Q = t^2$. Tính cường độ dòng điện tức thời tại thời điểm $t_0 = 2 \text{ (giây)}$?

A.
$$2(A)$$

B.
$$6(A)$$

D.
$$3(A)$$

D.
$$4(A)$$

Câu 8: Cho hàm số $y = \tan x$, gọi y' là đạo hàm của hàm số. Đặt $M = y' - y^2 - 1$. Khi đó M = ?

A.
$$M = 0$$

$$\mathbf{B.} \ M = \sin^2 x$$

C.
$$M = \frac{1}{\cos^2 x}$$
 D. $M = \cos^2 x$

$$\mathbf{D.}\ M = \cos^2 x$$

Câu 9: Cho hàm số $y = \frac{1}{3}x^3 - (m-1)x^2 + (2m^2 + m - 3)x + 1$, (m là tham số). **Tổng** các giá trị nguyên của m để phương trình y'=0 có hai nghiệm phân biệt là:

D.4

Câu 10: Hình nào sau đây không phải là lăng trụ đứng

A.Hình hộp chữ nhật. **B.**Hình lập phương

C.Hình lăng trụ đều

D.Hình hộp

Câu 11: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy, I là trung điểm AC, H là trung điểm của SC. Khẳng định nào sau đây sai?

A.
$$(SAC) \perp (ABC)$$

B.
$$(SBC) \perp (SAB)$$

C.
$$(BIH) \perp (ABC)$$

D.
$$(SAC) \perp (SBC)$$

Câu 12: Cho parabol (P): $y = x^2 - 3x + 4$. Phương trình tiếp tuyến với (P) tại điểm $A(3; y_A)$ thuộc đồ thị (P) là:

- **A.** y = 4x 8
- **B.** y = 3x + 13

Câu 13: Cho hàm số $f(x) = x^4 - \frac{x^2}{2} + 1$ có đồ thị (C). Hệ số góc k của tiếp tuyến với đồ thị (C) tại tiếp điểm có hoành độ $x_0 = 1$ là:

- **A.** k = 1
- **B**. k = 4
- **C.** k = 3
- **D.** $k = \frac{3}{2}$

Câu 14: Một chất điểm chuyển động thẳng có phương trình $S = 15 + 14t - t^2$, trong đó t được tính bằng giây(s) và S được tính bằng mét. Thời điểm chất điểm có vận tốc bằng 0 là:

A. 7s

B. 13s

C. 14s

D. 15s

Câu 15: Số gia của hàm số $f(x) = x^2 + 3x - 1$, ứng với: $x_0 = 1$ và $\Delta x = 1$ là:

D.2

Câu 16: Hàm số $y = cos\left(x + \frac{3\pi}{4}\right)$ có đạo hàm là

- **A.** $y' = \sin\left(x \frac{3\pi}{4}\right)$ **B.** $y' = -\sin x$ **C.** $y' = -\sin\left(x + \frac{3\pi}{4}\right)$ **D.** $y' = \sin\left(x + \frac{3\pi}{4}\right)$

Câu 17: Tính đạo hàm của hàm số $y = \tan x (2\cos x - 3\cot x)$

- **A.** $y' = -2\cos x$
- **B.** $y' = 2\cos x$
- C. $y' = 2\sin x$ D. $y' = -2\cos x 3$

Câu 18: Trong các khẳng định sau, khẳng định nào sai

- **A.** $(sinx)' = \cos x$ **B.** $(\sqrt{x})' = \frac{1}{\sqrt{x}}$ **C.** $(\cos x)' = -\sin x$ **D.** $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$

Câu 19: Phương trình tiếp tuyến của đồ thị (C): $y = \frac{x-3}{x-1}$ tại điểm có tung độ bằng 2 là:

- **A.** $y = -\frac{1}{2}x + \frac{3}{2}$ **B.** $y = \frac{1}{2}x + \frac{3}{2}$ **C.** $y = -\frac{1}{2}x + \frac{5}{2}$ **D.** $y = \frac{1}{2}x + \frac{5}{2}$

Câu 20: Cho hàm số $f(x) = \begin{cases} \frac{\sin 4x}{2x} & khi \ x \neq 0 \\ 2m - 4 & khi \ x = 0 \end{cases}$. Tìm m để hàm số f(x) liên tục tại x = 0, ta được đáp số.

- **A.** $m = -\frac{2}{3}$
- **B.** m = 3
- **C.** m = 2
- **D.** $m = \frac{9}{2}$.

Câu 21: Đặt u = u(x), v = v(x). Khẳng định nào sau đây sai?

- $\mathbf{A.} \left(\frac{u}{v}\right)' = \frac{u'v v'u}{v^2} \qquad \mathbf{B.} \left(\frac{u}{v}\right)' = \frac{u'v + v'u}{v^2} \qquad \mathbf{C.} (u+v)' = u'+v' \qquad \mathbf{D.} (uv)' = u'v+v'u$

A. Hai mặt phẳng cùng vuông góc với một mặt phẳng thì song song với nhau.

B.Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng nằm trong mặt phẳng này vuông góc với mặt phẳng kia

Online: tuyensinh247.com

C. Hai mặt phẳng cùng vuông góc với một mặt phẳng thì vuông góc với nhau.

D.Nếu hai mặt phẳng cắt nhau và cùng vuông góc với một mặt phẳng thì giao tuyến của chúng vuông góc với mặt phẳng đó

Câu 23: Cho hàm số $y = f(x) = x^4 - 2mx^2 + m$, (Cm), m là tham số . Biết A là điểm thuộc đồ thị hàm số (Cm) có hoành độ bằng 1. Tìm giá trị của m để khoảng cách từ điểm $B\left(\frac{3}{4};1\right)$ đến tiếp tuyến của đồ thị hàm số (Cm) tại A lớn nhất. Khi đó m thuộc khoảng nào sau đây

 $\mathbf{A} \cdot \left(\frac{3}{2}; 2\right)$

B.(0;2)

C.(-3;0)

D.(-2;0)

Câu 24: Cho hình chóp S.ABCD, đáy ABCD là hình thoi tâm O có cạnh a, hai mặt phẳng (SAB) ,(SAC) cùng vuông góc với mặt phẳng (ABCD), SA = a và góc $\angle BAC = 60^{\circ}$, khi đó khoảng cách từ điểm O đến mặt phẳng (SBC) bằng

A. $\frac{a\sqrt{21}}{14}$

 $\mathbf{B.} \frac{a\sqrt{2}}{2}$

 $C.\frac{a\sqrt{21}}{7}$

D. *a*

Câu 25: Cho hàm số $y = \frac{1}{3}mx^3 - mx^2 - (2m+10)x + m$, m là tham số. Có bao nhiều giá trị nguyên của m để y' < 0 với mọi giá trị của x thuộc tập xác định của hàm số.

A.4

B.3

C.5

D.Vô số

Câu 26: Có bao nhiều giá trị nguyên của m để phương trình $(m^2 - m + 3).x^{2018} - 2x - 4 = 0$ luôn có nghiệm.

A.19

B.18

C.Vô số

DE

Câu 27: Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, AB = a, $SB = a\sqrt{5}$. Cạnh bên SA vuông góc với mặt đáy (ABC). Khoảng cách giữa hai đường thẳng SC và AB bằng

A.a

B.2a

 $\mathbf{C}.\frac{2a\sqrt{5}}{5}$

 $\mathbf{D}.a\sqrt{2}$

Câu 28: Cho hình chóp S.ABC đều có cạnh đáy bằng 3a, độ dài đường cao của hình chóp bằng $\frac{a}{2}$. Khi đó góc giữa mặt bên và mặt đáy của hình chóp bằng

A.30°

B 45°

C. 60°

D.90°

Câu 29: Cho hình chóp S.ABC, hai tam giác SAB và ABC nằm trên hai mặt phẳng vuông góc với nhau và SA = SB = CA = CB = a, AB = 2x(x > 0). Với giá trị nào của x thì hai mặt phẳng (SAC) và (SBC) vuông góc với nhau.

 $\mathbf{A.} \frac{a\sqrt{2}}{2}$

B. $\frac{a\sqrt{3}}{3}$

 $\mathbf{C}.\frac{a}{2}$

 $\mathbf{D} \cdot \frac{a}{3}$

Câu 30: Cho hình lăng trụ đứng ABC.A'B'C' có $AB = AA' = a, BC = 2a, C'A' = a\sqrt{5}$. Khẳng định nào sau đây sai ?

- A.Góc giữa hai mặt phẳng (ABC) và (A'BC) có số đo bằng 45°
- B. Đáy ABC là tam giác vuông
- C. Góc giữa hai mặt phẳng (A'B'C') và (AB'C') có số đo bằng 30°
- D. Hai mặt phẳng (AA'B'B) và (BB'C') vuông góc nhau