TRIGONOMETRY

Chapter 12 Sesión II

REDUCCIÓN AL PRIMER CUADRANTE II

CUATRO EN RAYA TRIGONOMÉTRICO

Saberes previos al tema, se presenta este juego de tablero llamado"cuatro en raya" donde para poder ocupar una casilla del tablero los jugadores deben averiguar el valor de ciertas razones trigonométricas o la expresión simplificada de una fórmula, el turno decide el docente. Gana el que acierta 4 lugares cualesquiera.

1 tgx	tg30°	sen ² x + cos ² x	cot g 45°	$\cos(\frac{\pi}{4})$	sen 225°
cos 120°	tg ² x + 1	sen 270°	1 66H X		1 cot g x
$tg \frac{3\pi}{4}$	cos(-x)	1 cot g 30°	$\operatorname{sen} \frac{\pi}{4}$	sen360°	cos 270°
cot g ² x + 1	1- cos² x	sen(-30°)	se n 180°	cos xtgx	sen 135°
$\cos \frac{3\pi}{4}$	cot gx tgx	sen 210°	$\cos \frac{3\pi}{2}$	sen(-x)	cos x sen x
cos 90°	senxcotgx	cos 225°	$sen \frac{5\pi}{4}$	sec 30°	se n 240°

Reducción al primer cuadrante II

Para ángulos mayores a una vuelta: Para ángulos expresados en radianes: Si θ > 360°; entonces:

Donde β es un ángulo menor a una \mathbf{I} vuelta y $k \in \mathbb{Z} - \{0\}$

$$RT(\theta) = RT(360^{\circ}k + \beta)$$

$$RT(\theta) = RT(\beta)$$

1) Efectúe G = tan 1920°. cot 36 135°

RESOLUCIÓN

$$G = tan 120^{\circ}.cot 135^{\circ}$$

$$G = tan(180^{\circ} - 60^{\circ}).cot(180 - 45^{\circ})$$

$$G = (-tan60^{\circ}) (-cot45^{\circ})$$

$$\therefore G = \sqrt{3}$$

IIC

2) En el siguiente gráfico se muestra el precio del dólar en los años 2012 y 2016. Indique la diferencia de ambos precios en los últimos 4 años. Donde:

A =
$$2\csc\left(161\frac{\pi}{4}\right) = 2\csc\left(1\frac{\pi}{4}\right) = 2\csc45^{\circ} = 2\sqrt{2} = 2,82$$

B =
$$2\cot\left(37\frac{\pi}{6}\right) = 2\cot\left(1\frac{\pi}{6}\right) = 2\cot30^\circ = 2\sqrt{3} = 3,46$$

Considere: $\sqrt{2} \cong 1,41 \ y \ \sqrt{3} \cong 1,73$

RESOLUCIÓN

$$37 \ \underline{12} \leftarrow 2x6$$

Diferencia =
$$3,46 - 2,82 = \frac{S}{0,64}$$

Recordar:

$$\cot 30^{\circ} = \sqrt{3}$$

$$csc45^{\circ} = \sqrt{2}$$

3) Simplifique:

$$Q = 4 sen 3630^{\circ} + \frac{tan\left(\frac{39\pi}{2} - x\right)}{cot(15\pi - x)}$$

RESOLUCIÓN

$$\cot(1^{\uparrow}5\pi - x) = -\cot x$$

$$IIC$$

$$\tan\left(\frac{39\pi}{2} - x\right)$$

IIIC

$$=+\cot x$$

Q = 1

4) Daniela desea comprar un terreno. Dicho terreno tiene las siguientes

dimensiones:

Donde:

$$A = \frac{8\text{sen}(80\pi + x)}{\cos(75\frac{\pi}{2} + x)}$$

$$B = 10 \frac{\cot(71\pi + x)}{\tan(61\frac{\pi}{2} - x)}$$

Si cada m² tiene un valor de \$900 ¿Cuánto invertirá por su compra?

IC

$$A = \frac{8sen(80\pi + x)}{\cos(75\frac{\pi}{2} + x)} \Rightarrow A = \frac{8.senx}{senx} = 8$$

$$B = 10 \frac{\cot(71\pi + x)}{\tan(61\frac{\pi}{2} - x)} \Rightarrow B = 10 \frac{\cot x}{\cot x} = 10$$

$$S = (8m)(10m) \implies S = 80 \text{ m}^2$$

Inversión =
$$(80)($900) = $72000$$

5) Si x + y =
$$17\frac{\pi}{2}$$
 reduzca:

$$M = \frac{senx}{cosy} + \frac{tanx}{coty}$$

RESOLUCIÓN

$$x = 17\frac{\pi}{2} - y$$

$$IC$$

6) En un triángulo ABC, reduzca:

$$K = \frac{\tan(3A + 3B + 4C)}{\tan(A + B)}$$

RESOLUCIÓN

Del dato:
$$A + B + C = 180^{\circ}$$

$$A + B = 180^{\circ} - C$$

$$3A + 3B + 3C = 3(180^{\circ})$$

$$3A + 3B + 3C = 2(180^{\circ}) + 180^{\circ}$$

Nos piden:
$$K = \frac{tan(3A + 3B + 4C)}{tan(A + B)}$$

$$K = \frac{tan(3A + 3B + 3C + C)}{tan(A + B)}$$

IIIC

$$K = \frac{tan(180^{\circ} + C)}{tan(180^{\circ} - C)} = \frac{tanC}{-tanC}$$

IIC

$$\therefore K = -1$$

7) Si $tan \beta = \frac{1}{2}$, donde β es un ángulo agudo, reduzca:

K = sen(15π-β). sen
$$\left(13\frac{\pi}{2}+\beta\right)$$

RESOLUCIÓN

Del dato:
$$tan\beta = \frac{1}{2}$$

8) Si $\sec\left(17\frac{\pi}{2} + \alpha\right) = -\frac{13}{5}$, donde α es un ángulo agudo, efectúe:

$$E = \csc\left(19\frac{\pi}{2} + \alpha\right) - \tan(36\pi - \alpha)$$

RESOLUCIÓN

Del dato: $sec\left(17\frac{\pi}{2} + \alpha\right) = -\frac{13}{5}$

$$-\csc\alpha = -\frac{13}{5}$$

$$\Rightarrow \csc\alpha = \frac{13}{5}$$

$$\Rightarrow \frac{13}{5}$$

Nos piden

$$E = csc\left(\frac{19\frac{\pi}{2} + \alpha}{19\frac{\pi}{2} + \alpha}\right) - tan(36\pi - \alpha)$$

$$IVC$$

$$E = (-\sec\alpha) - (-\tan\alpha)$$

$$E = -\sec\alpha + \tan\alpha$$

$$E = -\frac{13}{12} + \frac{5}{12}$$

$$E = -\frac{8}{12}$$

$$\pi \text{ impar}$$

$$IIC \text{ IVC}$$

$$IIIC \text{ IVC}$$

$$Here exists the second of the second of$$