Assignment 1

1. (a) The transfer function (TF) of a resistance R may be represented either as $\frac{V(s)}{I(s)} = R$ or as

 $\frac{I(s)}{V(s)} = \frac{1}{R}$. Similarly, it appears at first sight that the TF of a (relaxed) inductance L may be

either sL or $\frac{1}{sL}$, and that of a (relaxed) capacitor C may be either $\frac{1}{Cs}$ or Cs .

- (i) Representing an inductance as a block with TF of sL and a capacitance as a block with TF of $\frac{1}{Cs}$, obtain a block diagram representation of a series RLC circuit excited by a voltage source v(t). Using any standard simulation software (e.g. MATLAB-SIMULINK), obtain the voltage responses $v_L(t), v_c(t)$ and the current i(t) for v(t) = l(t), $R = 40~\Omega$, $L = 10~\mathrm{mH}$, $C = 1~\mu\mathrm{F}$.
- (ii) Repeat the above considering the TF of inductance as $\frac{1}{sL}$.
- (iii) Are the responses obtained in (a) and (b) identical? If not, explain the reason behind and decide which of the above representations is *proper* and hence correct.
- (b) For the RLC circuit shown below, obtain a proper block diagram representation. Also obtain the TF between $V_{C_s}(s)$ and V(s) using block diagram reduction method.

2. An electromagnet having a $(0.5H,20\Omega)$ coil is to be used to suspend a 2kg steel ball at a nominal gap of $x_0=5\times 10^{-3}m$. The lifting force exerted on the mass is given by $3\times 10^{-4}(i_c/x_g)^2N$, where i_c is the current through the coil and $x_g=x_0+x$ is the gap between the magnet and the ball. Let the voltage applied to the coil be $v_c=v_0+v$, v_0 being the nominal value.

- a) Make a suitable choice of the states and obtain the corresponding state-space equation in the form $\dot{X}=f(X,u)$ where X is the state vector, u the input, and f is a (possibly nonlinear) vector function. (Justify that one may choose x_g , \dot{x}_g , i_c as the states.)
- b) Obtain the equilibrium point characterized by $x_g=x_0, \dot{x}_g=\dot{x}_0, i_c=i_0$, and $v_g=v_0$.
- c) Find the incremental state-space representation in terms of x, \dot{x}, i , and v where $i = i_c i_0$.
- d) Hence find the transfer function from v to x. Comment on the *order*, *type* and *stability* of the system?