

Claims

We claim:

1 1. A method for increasing transmit diversity gain in a wireless
 2 communication system including a transmitter with 2^N transmit antennas,
 3 where N is greater than one, and a receiver with one receive antenna,
 4 comprising:

5 generating, in the transmitter, a stream of pairs of symbols in a form X_1
 6 and X_2 ;

7 space-time transmit diversity encoding each pair of symbols at a
 8 symbol-level stage to produce a $2^1 \times 2^1$ matrix

9 $C = \begin{bmatrix} X_1 & X_2 \\ X_2^* & -X_1^* \end{bmatrix}$ for each pair, where * denotes a complex conjugate;

10 and

11 space-time transmit diversity coding each pair of $2^1 \times 2^1$ matrices C of
 12 the previous state in a next stage at a block level to produce a $2^2 \times 2^2$ output
 13 matrix

$$14 \quad T = \begin{bmatrix} C_1 & C_2 \\ C_2^* & -C_1^* \end{bmatrix} = \begin{bmatrix} X_1 & X_2 & X_3 & X_4 \\ X_2^* & -X_1^* & X_4^* & -X_3^* \\ X_3^* & X_4^* & -X_1^* & -X_2^* \\ X_4 & -X_3 & -X_2 & X_1 \end{bmatrix};$$

15 feeding transmit symbols of the output matrix T , in a left-to-right order,
 16 of each row, in a top-to-bottom order, to a corresponding different transmit
 17 antennas.

- 1 2. The method of claim 1, further comprising:
 - 2 applying a transmit weight to each transmit symbol before
 - 3 transmitting the transmit symbol.
- 1 3. The method of claim 2, in which the transmit weight is based on channel conditions.
- 1 4. The method of claim 3, in which the channel condition is estimated by the transmitter.
- 1 5. The method of claim 3, further comprising:
 - 2 measuring the channel conditions in a receiver of the transmit symbols;
 - 3 and
 - 4 feeding back the channel condition to the transmitter.
- 1 6. The method of claim 1, in which the transmit weights are identical.
- 1 7. The method of claim 1, in which a receiver has a plurality of receive antennas.

1 8. The method of claim 1, further comprising:

2 repeatedly space-time transmit diversity coding each pair of $2^{n-1} \times 2^{n-1}$
 3 matrices of the previous state $n-1$ in a next stage n at the block level to
 4 produce a $2^n \times 2^n$ output matrix

$$5 \quad T = \begin{bmatrix} C_1 & C_2 \\ C_2^* & -C_1^* \end{bmatrix} = \begin{bmatrix} X_1 & X_2 & X_3 & X_4 \\ X_2^* & -X_1^* & X_4^* & -X_3^* \\ X_3^* & X_4^* & -X_1^* & -X_2^* \\ X_4^* & -X_3^* & -X_2 & X_1 \end{bmatrix},$$

6 until a number of rows in a final output matrix is equal to 2^N .

1 9. A wireless transmitter including 2^N transmit antennas, where N is greater
 2 than one, comprising:

3 means for generating a stream of pairs of symbols in a form X_1 and X_2 ;
 4 a space-time transmit diversity encoder configured to encode each pair
 5 of symbols at a symbol-level stage to produce a $2^1 \times 2^1$ matrix

$$6 \quad C = \begin{bmatrix} X_1 & X_2 \\ X_2^* & -X_1^* \end{bmatrix}, \text{ where } * \text{ denotes a complex conjugate; and}$$

7 a plurality of space-time transmit diversity encoders, connected serially,
 8 configured to encode each pair of $2^{n-1} \times 2^{n-1}$ matrices of the previous state $n-1$
 9 in a next stage n at a block level to produce a $2^n \times 2^n$ output matrix; and

10 means for feeding transmit symbols of an output matrix of a last stage
 11 of the plurality of encoders, in a left-to-right order, of each row, in a
 12 top-to-bottom order, to a corresponding different one of 2^N transmit antennas.

1 10. A wireless transmitter, comprising:

2 2^N transmit antennas, where N is greater than one;

3 means for generating a stream of pairs of symbols;

4 one symbol level space-time transmit diversity encoder generating a

5 first output matrix from each pair of symbols in the stream;

6 $N-1$ block level space-time transmit diversity encoders connected

7 serially to each other and a first one of the block level space-time transmit

8 diversity encoders is connected to the one symbol level space-time transmit

9 diversity encoder, each block level space-time transmit diversity encoder

10 generating a subsequent output matrix from pairs of output matrices of a

11 previous encoder; and wherein a last encoder generates a $2^N \times 2^N$ output

12 matrix; and

13 feeding transmit symbols of the last output matrix, in a left-to-right

14 order, of each of N rows, in a top-to-bottom order, to a corresponding different

15 one of the 2^N transmit antennas.