Note del corso di Geometria 1

Gabriel Antonio Videtta

22 marzo 2023

Introduzione al prodotto scalare

Nota. Nel corso del documento, per V, qualora non specificato, si intenderà uno spazio vettoriale di dimensione finita n.

Definizione. Un **prodotto scalare** su V è una forma bilineare simmetrica φ con argomenti in V.

Esempio. Sia $\varphi: M(n, \mathbb{K})^2 \to \mathbb{K}$ tale che $\varphi(A, B) = \operatorname{tr}(AB)$.

- $ightharpoonup \varphi(A+A',B) = \operatorname{tr}((A+A')B) = \operatorname{tr}(AB+A'B) = \operatorname{tr}(AB) + \operatorname{tr}(A'B) = \varphi(A,B) + \varphi(A',B)$ (linearità nel primo argomento),
- $\blacktriangleright \varphi(\alpha A, B) = \operatorname{tr}(\alpha AB) = \alpha \operatorname{tr}(AB) = \alpha \varphi(A, B)$ (omogeneità nel primo argomento),
- $ightharpoonup \varphi(A,B) = \operatorname{tr}(AB) = \operatorname{tr}(BA) = \varphi(B,A)$ (simmetria),
- \blacktriangleright poiché φ è simmetrica, φ è lineare e omogenea anche nel secondo argomento, e quindi è una forma bilineare simmetrica, ossia un prodotto scalare su $M(n, \mathbb{K})$.

Definizione. Si definisce prodotto scalare *canonico* di \mathbb{K}^n la forma bilineare simmetrica φ con argomenti in \mathbb{K}^n tale che:

$$\varphi((x_1,...,x_n),(y_1,...,y_n)) = \sum_{i=1}^n x_i y_i.$$

Osservazione. Si può facilmente osservare che il prodotto scalare canonico di \mathbb{K}^n è effettivamente un prodotto scalare.

$$\begin{array}{lll} \blacktriangleright & \varphi((x_1,...,x_n) + (x_1',...,x_n'),(y_1,...,y_n)) = \sum_{i=1}^n (x_i + x_i')y_i = \\ \sum_{i=1}^n \left[x_i y_i + x_i' y_i \right] = \sum_{i=1}^n x_i y_i + \sum_{i=1}^n x_i' y_i = \varphi((x_1,...,x_n),(y_1,...,y_n)) + \\ \varphi((x_1',...,x_n'),(y_1,...,y_n)) \text{ (linearità nel primo argomento),} \end{array}$$

- ▶ $\varphi(\alpha(x_1,...,x_n),(y_1,...,y_n)) = \sum_{i=1}^n \alpha x_i y_i = \alpha \sum_{i=1}^n x_i y_i$ $\alpha \varphi((x_1,...,x_n),(y_1,...,y_n))$ (omogeneità nel primo argomento),
- $=\sum_{i=1}^{n} x_i y_i =$ $\varphi((x_1,...,x_n),(y_1,...,y_n))$ $\varphi((y_1,...,y_n),(x_1,...,x_n))$ (simmetria),
- \blacktriangleright poiché φ è simmetrica, φ è lineare e omogenea anche nel secondo argomento, e quindi è una forma bilineare simmetrica, ossia un prodotto scalare su \mathbb{K}^n .

Esempio. Altri esempi di prodotto scalare sono i seguenti:

- $\blacktriangleright \varphi(A,B) = \operatorname{tr}(A^{\top}B) \text{ per } M(n,\mathbb{K}),$
- $ightharpoonup \varphi(p(x), q(x)) = p(a)q(a) \text{ per } \mathbb{K}[x], \text{ con } a \in \mathbb{K},$
- $\varphi(p(x), q(x)) = \sum_{i=1}^{n} p(x_i)q(x)$ per $\mathbb{K}[x]$, con $x_1, ..., x_n$ distinti, $\varphi(p(x), q(x)) = \int_a^b p(x)q(x)dx$ per lo spazio delle funzioni integrabili su
- $ightharpoonup \varphi(\underline{x},y) = \underline{x}^{\top}Ay \text{ per } \mathbb{K}^n, \text{ con } A \in M(n,\mathbb{K}) \text{ simmetrica.}$

Definizione. Sia¹ $\mathbb{K} = \mathbb{R}$. Allora un prodotto scalare φ si dice **definito positivo** se $\underline{v} \in V$, $\underline{v} \neq \underline{0} \implies \varphi(\underline{v},\underline{v}) > 0$. Analogamente φ è definito **negativo** se $v \neq 0 \implies \varphi(v, v) < 0$.

Infine, φ è semidefinito positivo se $\varphi(\underline{v},\underline{v}) \geq 0 \ \forall \underline{v} \in V$ (o semidefinito **negativo** se invece $\varphi(\underline{v},\underline{v}) \leq 0 \ \forall \underline{v} \in V$).

Esempio. Il prodotto scalare canonico di \mathbb{R}^n è definito positivo: infatti $\varphi((x_1,...,x_n),(x_1,...,x_n)) = \sum_{i=1}^n x_i^2 > 0$, se $(x_1,...,x_n) \neq 0$.

Al contrario, il prodotto scalare $\varphi: \mathbb{R}^2 \to \mathbb{R}$ tale che $\varphi((x_1, x_2), (y_1, y_2)) =$ $x_1y_1 - x_2y_2$ non è definito positivo: $\varphi((x,y),(x,y)) = 0, \forall (x,y) \mid x^2 = y^2,$ ossia se y = x o y = -x.

Definizione. Ad un dato prodotto scalare φ di V si associa una mappa $q: V \to \mathbb{K}$, detta forma quadratica, tale che $q(\underline{v}) = \varphi(\underline{v}, \underline{v})$.

Osservazione. Si osserva che q non è lineare in generale: infatti $q(\underline{v} + \underline{w}) \neq$ $q(\underline{v}) + q(\underline{w})$ in \mathbb{R}^n .

Definizione. Un vettore $v \in V$ si dice **isotropo** rispetto al prodotto scalare φ se $q(\underline{v}) = \varphi(\underline{v}, \underline{v}) = 0$.

¹In realtà, la definizione è facilmente estendibile a qualsiasi campo, purché esso sia ordinato.

Esempio. Rispetto al prodotto scalare $\varphi: \mathbb{R}^3 \to \mathbb{R}$ tale che $\varphi((x_1, x_2, x_3), (y_1, y_2, y_3)) = x_1y_1 + x_2y_2 - x_3y_3$, i vettori isotropi sono i vettori della forma (x, y, z) tali che $x^2 + y^2 = z^2$, ossia i vettori stanti sul cono di equazione $x^2 + y^2 = z^2$.

Osservazione. Come già osservato in generale per le applicazioni multilineari, il prodotto scalare è univocamente determinato dai valori che assume nelle coppie $\underline{v_i}, \underline{v_j}$ estraibili da una base \mathcal{B} . Infatti, se $\mathcal{B} = (\underline{v_1}, ..., \underline{v_k})$, $\underline{v} = \sum_{i=1}^k \alpha_i \underline{v_i}$ e $\underline{w} = \sum_{i=1}^k \beta_i \underline{v_i}$, allora:

$$\varphi(\underline{v},\underline{w}) = \sum_{i=1}^{k} \sum_{j=1}^{k} \alpha_i \beta_j \, \varphi(\underline{v_i},\underline{v_j}).$$

Definizione. Sia φ un prodotto scalare di V e sia $\mathcal{B} = (\underline{v_1}, ..., \underline{v_n})$ una base ordinata di V. Allora si definisce la **matrice** associata a φ come la matrice:

$$M_{\mathcal{B}}(\varphi) = (\varphi(\underline{v_i}, v_j))_{i, j=1 \dots n} \in M(n, \mathbb{K}).$$

Osservazione.

- ▶ $M_{\mathcal{B}}(\varphi)$ è simmetrica, infatti $\varphi(\underline{v_i}, \underline{v_j}) = \varphi(\underline{v_j}, \underline{v_i})$, dal momento che il prodotto scalare è simmetrico,

Teorema. (di cambiamento di base per matrici di prodotti scalari) Siano \mathcal{B} , \mathcal{B}' due basi ordinate di V. Allora, se φ è un prodotto scalare di V e $P = M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)$, vale la seguente identità:

$$\underbrace{M_{\mathcal{B}'}(\varphi)}_{A'} = P^{\top} \underbrace{M_{\mathcal{B}}}_{A} P.$$

 $\begin{array}{ll} \textit{Dimostrazione.} \text{ Siano } \mathcal{B} = (\underline{v_1},...,\underline{v_n}) \text{ e } \mathcal{B}' = (\underline{w_1},...,\underline{w_n}). \text{ Allora } A'_{ij} = \\ \varphi(\underline{w_i},\underline{w_j}) = [\underline{w_i}]_{\mathcal{B}}^\top A[\underline{w_j}]_{\mathcal{B}} = (P^i)^\top A P^j = P_i^\top (AP)^j = (P^\top AP)_{ij}, \text{ da cui la tesi.} \end{array}$

Definizione. Si definisce **congruenza** la relazione di equivalenza \cong (denotata anche come \equiv) definita nel seguente modo su $A, B \in M(n, \mathbb{K})$:

$$A \cong B \iff \exists P \in GL(n, \mathbb{K}) \mid A = P^{\top}AP.$$

Osservazione. Si può facilmente osservare che la congruenza è in effetti una relazione di equivalenza.

- $A = I^{\top}AI \implies A \cong A \text{ (riflessione)},$
- $A \cong B \implies A = P^{\top}BP \implies B = (P^{\top})^{-1}AP^{-1} = (P^{-1})^{\top}AP^{-1} \implies B \cong A \text{ (simmetria)},$
- ▶ $A \cong B, B \cong C \implies A = P^{\top}BP, B = Q^{\top}CQ,$ quindi $A = P^{\top}Q^{\top}CQP = (QP)^{\top}C(QP) \implies A \cong C$ (transitività).

Osservazione. Si osservano alcune proprietà della congruenza.

- ▶ Per il teorema di cambiamento di base del prodotto scalare, due matrici associate a uno stesso prodotto scalare sono sempre congruenti (esattamente come due matrici associate a uno stesso endomorfismo sono sempre simili).
- ▶ Se A e B sono congruenti, $A = P^{\top}BP \implies \operatorname{rg}(A) = \operatorname{rg}(P^{\top}BP) = \operatorname{rg}(BP) = \operatorname{rg}(B)$, dal momento che P e P^{\top} sono invertibili; quindi il rango è un invariante per congruenza. Allora si può ben definire il rango $\operatorname{rg}(\varphi)$ di un prodotto scalare come il rango della matrice associata di φ in una qualsiasi base di V.
- ▶ Se A e B sono congruenti, $A = P^{\top}BP \implies \det(A) = \det(P^{\top}BP) = \det(P^{\top})\det(B)\det(P) = \det(P)^2\det(B)$. Quindi, per $\mathbb{K} = \mathbb{R}$, il segno del determinante è un altro invariante per congruenza.

Definizione. Si definisce il **radicale** di un prodotto scalare φ come lo spazio:

$$V^{\perp} = \{ \underline{v} \in V \mid \varphi(\underline{v}, \underline{w}) = 0 \ \forall \, \underline{w} \in V \}$$

Osservazione. Il radicale del prodotto scalare canonico su \mathbb{R}^n ha dimensione nulla, dal momento che $\forall \underline{v} \in \mathbb{R}^n \setminus \{\underline{0}\}, \ q(\underline{v}) = \varphi(\underline{v},\underline{v}) > 0 \implies \underline{v} \notin V^{\perp}$. In generale ogni prodotto scalare definito positivo (o negativo) è non degenere, dal momento che ogni vettore non nullo non è isotropo, e dunque non può appartenere a V^{\perp} .

Definizione. Un prodotto scalare si dice **degenere** se il radicale dello spazio su tale prodotto scalare ha dimensione non nulla.

Osservazione. Sia $\alpha_{\varphi}: V \to V^*$ la mappa² tale che $\alpha_{\varphi}(\underline{v}) = p$, dove $p(\underline{w}) = \varphi(\underline{v}, \underline{w}) \ \forall \underline{v}, \underline{w} \in V$.

Si osserva che α_{φ} è un'applicazione lineare. Infatti, $\forall \underline{v}, \underline{w}, \underline{u} \in V$, $\alpha_{\varphi}(\underline{v} + \underline{w})(\underline{u}) = \varphi(\underline{v} + \underline{w}, \underline{u}) = \varphi(\underline{v}, \underline{u}) + \varphi(\underline{w}, \underline{u}) = \alpha_{\varphi}(\underline{v})(\underline{u}) + \alpha_{\varphi}(\underline{w})(\underline{u}) \Longrightarrow$

 $^{^2 {\}rm In}$ letteratura questa mappa, se invertibile, è nota come isomorfismo musicale, ed è in realtà indicata come b.

 $\alpha_{\varphi}(\underline{v} + \underline{w}) = \alpha_{\varphi}(\underline{v}) + \alpha_{\varphi}(\underline{w}). \text{ Inoltre } \forall \underline{v}, \underline{w} \in V, \lambda \in \mathbb{K}, \alpha_{\varphi}(\lambda \underline{v})(\underline{w}) = \varphi(\lambda \underline{v}, \underline{w}) = \lambda \varphi(\underline{v}, \underline{w}) = \lambda \alpha_{\varphi}(\underline{v})(\underline{w}) \Longrightarrow \alpha_{\varphi}(\lambda \underline{v}) = \lambda \alpha_{\varphi}(\underline{v}).$

Si osserva inoltre che $\operatorname{Ker} \alpha_{\varphi}$ raccoglie tutti i vettori $\underline{v} \in V$ tali che $\varphi(\underline{v},\underline{w}) = 0 \ \forall \underline{w} \in W$, ossia esattamente i vettori di V^{\perp} , per cui si conclude che $V^{\perp} = \operatorname{Ker} \alpha_{\varphi}$ (per cui V^{\perp} è effettivamente uno spazio vettoriale). Se V ha dimensione finita, $\dim V = \dim V^*$, e si può allora concludere che $\dim V^{\perp} > 0 \iff \operatorname{Ker} \alpha_{\varphi} \neq \{\underline{0}\} \iff \alpha_{\varphi} \text{ non è invertibile (infatti lo spazio di partenza e di arrivo di <math>\alpha_{\varphi}$ hanno la stessa dimensione). In particolare, α_{φ} non è invertibile se e solo se $\det(\alpha_{\varphi}) = 0$.

Sia $\mathcal{B} = (\underline{v_1}, ..., \underline{v_n})$ una base ordinata di V. Si consideri allora la base ordinata del duale costruita su \mathcal{B} , ossia $\mathcal{B}^* = (v_1^*, ..., v_n^*)$. Allora

se ordinata dei duale costruita su
$$\mathcal{B}$$
, ossia $\mathcal{B} = (\underline{v_1}, ..., \underline{v_n})$. Allora $M_{\mathcal{B}^*}^{\mathcal{B}}(\alpha_{\varphi})^i = [\alpha_{\varphi}(\underline{v_i})]_{\mathcal{B}^*} = \begin{pmatrix} \varphi(\underline{v_i}, \underline{v_1}) \\ \vdots \\ \varphi(\underline{v_i}, \underline{v_n}) \end{pmatrix} \underbrace{=}_{\varphi \text{ è simmetrica}} \begin{pmatrix} \varphi(\underline{v_1}, \underline{v_i}) \\ \vdots \\ \varphi(\underline{v_n}, \underline{v_i}) \end{pmatrix} = M_{\mathcal{B}}(\varphi)^i.$ Quindi $M_{\mathcal{B}^*}^{\mathcal{B}}(\alpha_{\varphi}) = M_{\mathcal{B}}(\varphi)$.

Si conclude allora che φ è degenere se e solo se $\det(M_{\mathcal{B}}(\varphi)) = 0$ e che $V^{\perp} \cong \operatorname{Ker} M_{\mathcal{B}}(\varphi)$ mediante l'isomorfismo del passaggio alle coordinate.