

Onsite Wastewater Treatment Technologies

Bruce J. Lesikar

Associate Professor

Texas Cooperative Extension
Texas A&M University System

Decentralized Wastewater Treatment

- Appropriate cost effective systems.
 - Onsite
 - Cluster
 - Centralized
- Public perception
- Failed systems
- New Technologies
- Different from a centralized sewer

Onsite Wastewater Treatment Systems?

- Rural and Exurban wastewater infrastructure
- Water Quality Protection
- 40%, Wastewater Infrastructure

Permitting Dispersal Systems

- TCEQ, Chapter 285, 5000 gallons per day or less
- TCEQ, Chapter 317, Greater than 5000 gallons per day.
- Additional requirements for 317 Permits
 - Potential groundwater impact due to water quality and mounding potential
 - Detailed soil analysis
 - Location of water wells within $\frac{1}{2}$ mile
 - Uniformity of effluent distribution

Onsite Wastewater Treatment System

Failing Onsite System

On-Site Wastewater Treatment System Components

- Wastewater source
- Collection
- Pretreatment component
- Final treatment & dispersal component

How do we make the system work?

- Evaluate the wastewater source
- Evaluate site
 - Wastewater treatment
 - Wastewater acceptance
- Choose a final treatment and dispersal component
- Choose the appropriate pretreatment system
- Operation and Maintenance

Types of Facilities - Wastewater Sources

- Restaurants
- Quick Stops
- Strip Malls
- Residences

Wastewater Treatment at a Site

- Soil
 - Type
 - Depth
- Slope
- Restrictive layers
- Separation distances

Conventional Septic Tank System

Two-Compartment Septic Tank

Effluent Filter in Septic Tank Outlet

Effluent filter with biological material attached to the surface

Wash biological
material off

Effluent filter holder in septic tank outlet

Placement off-center in the riser

Pumping frequency is a function of system size and loading

Generally pumping frequency is every two to three years.

Septic tank pumping is a critical component of operation and maintenance.

All materials are removed during pumping.

Conventional Septic Tank System

Wastewater

Gravel-less Pipe System

Gravel-less Pipe Drain Field

System can be installed to follow contour of the site.

Light-weight for carrying into the site.

Chamber System

Chamber Drain Field

Evapotranspiration Bed System

Evapotranspiration Bed

Lined bed below
trailers. Grass
must be
maintained to
ensure vigorous

Evapotranspiration
beds for storing
water until
evaporated from
soil surface or
transpired through
plants.

Low-Pressure Distribution System

Low-Pressure Distribution Drain Field

Low pressure
distribution based on
balanced flow of water.

Check for blocked
emitters.

Flush lines.

Low Pressure Distribution Drain Field

Sub-Surface Drip Dispersal System

Check filtering system (make sure automatic backwash is functional.)

Check the filter (and backwash valve)

Check the control panel (pump run times, number of cycles, etc.)

Check operating pressure.

Subsurface Drip Dispersal Drain Field

Subsurface Drip Tubing

Drip Dispersion Field at a School

Spray Dispersal System

Spray Dispersal

Pump tank

Spray heads

Wastewater spraying in a landscaped bed and yard.

Check operating pressure of the system.

Check the spray heads to make sure they are not broken.

Check spray direction and

Aerobic Treatment Unit System

Aerobic Treatment Unit

Buried Intermittent Sand Filter System

Buried Intermittent Sand Filter

Recirculating Media Filter System

Recirculating Media Filter

Gravel Media Filter

Check water infiltration into bed.

Disturb crust developing on the surface.

Replace top portion of

Sand filter needs uniform distribution of the water.
Check loading rate on the media.

Constructed Wetland System

Constructed Wetland

Wetland
systems
require
management
of the plant
materials.

Residential Constructed Wetland

Disinfection

- Chlorination
 - Tablet
 - Liquid
 - Gas
- UV Light
- Ozonation

Tablet Chlorination System

Tablet Chlorinator

Chlorine Tablets in the Stack Tube

Water Quality Monitoring / Operation and Maintenance

- Monitoring system performance
- All systems require operation and maintenance
 - Frequency
 - Types of activities
 - Types of inputs

Summary

- A site evaluation is critical to determining the potential for a site to treat wastewater.
- Advanced pretreatment and final treatment and dispersal technologies are available for most situations.
- Select the most appropriate technology and scale of system for your site.
- Operation and maintenance is critical for long-term function