Yufei Lin

Problem Set 8

Nov 25^{th} 2019

Problem Set 8

Question 1

Suppose that $f:[a,b]\to\mathbb{R}$, is integrable, and suppose that $m=\inf\{f(x):x\in[a,b]\}$ and $M=\sup\{f(x):x\in[a,b]\}$. Then, we have $m(b-a)\leq\int_a^bf\leq M(b-a)$.

Proof:

Lemma: Suppose $f:[a,b]\to\mathbb{R}$ is integrable and suppose that P is any partition [a,b]. Then we have $L(f,P)\leq \int_a^b f\leq U(f,P)$.

Proof of Lemma:

We will prove this lemma from two parts:

First, we prove that $L(f, P) \leq \int_a^b f$.

Since f is integrable, then we know $\sup\{L(f,P)|P,\text{a partition in range }[a,b]\}=\int_a^b f$. And let $A=\{L(f,P)|P,\text{a partition in range }[a,b]\}$. Then $\sup A$ is the least upper bound of A. Let $y=\sup A$, then $\forall x\in A,x\leq y$. Then, because we have $y=\int_a^b f,\,\forall x\in A,x\leq y=\int_a^b f.$ Thus, $L(f,P)\leq \int_a^b f.$

Then, we prove that $\int_a^b f \leq U(f, P)$.

Since f is integrable, we know $\inf\{U(f,P)|P$, a partition in range $[a,b]\}=\int_a^b f$. And let $B=\{U(f,P)|P$, a partition in range $[a,b]\}$. Let $z=\inf B$, then $\forall x\in B, z\leq x$. Therefore, since we have $U(f,P)\geq \int_a^b f$.

Thus, $L(f, P) \leq \int_a^b f \leq U(f, P)$.

From the definition, $L(f,P) = \sum_{i=1}^n m_i(t_i - t_{i-1})$ and $U(f,P) = \sum_{i=1}^n M_i(t_i - t_{i-1})$. In this case, we have the partition P as [a,b] meaning there's only one pair of m and M, and $t_i = b, t_{i-1} = a$. Therefore, we have L(f,P) = m(b-a) and U(f,P) = M(b-a). Thus, from the lemma we know that $m(b-a) \leq \int_a^b f \leq M(b-a)$.

Question 2

Prove that the function $f: [-1,1] \to \mathbb{R}$, defined by

$$f(n) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases},$$

is integrable on [-1, 1].

Proof:

At first we choose the partition $P = \{-1, 0, 1\}$. Then, by definition, $L(f, P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1})$ and $U(f, P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1})$. Therefore, we have,

$$L(f, P) = \sum_{i=1}^{2} m_i (t_i - t_{i-1})$$

$$= m_1 \cdot (t_1 - t_0) + m_2 \cdot (t_2 - t_1)$$

$$= 0 \cdot (-0 + 1) + 1 \cdot (1 - 0)$$

$$= 1$$

and

$$U(f, P) = \sum_{i=1}^{2} M_i(t_i - t_{i-1})$$

$$= M_1 \cdot (t_1 - t_0) + M_2 \cdot (t_2 - t_1)$$

$$= 1 \cdot (-0 + 1) + 1 \cdot (1 - 0)$$

$$= 2$$

Thus, we have $1 \leq \int_a^b f \leq 2$.

Then, suppose f is not integrable on [-1,1]. Therefore, $\forall \epsilon \in \mathbb{R}, \epsilon > 0$ such that if $P = \{-1, -\epsilon, 1\}$, then, L(f, P) < U(f, P). Therefore, we have

$$U(f, P) = \sum_{i=1}^{2} M_i(t_i - t_{i-1})$$

$$= M_1 \cdot (t_1 - t_0) + M_2 \cdot (t_2 - t_1)$$

$$= 0 \cdot (-\epsilon + 1) + 1 \cdot (1 + \epsilon)$$

$$= 1 + \epsilon$$

Then, $1+\epsilon \geq \int_a^b f$. Also we have $1 \leq \int_a^b f$. Therefore, $0 \leq \int_a^b f - 1 \leq \epsilon$. Since f is not integrable, then we have $0 < \int_a^b f - 1$. Let $\delta = \int_a^b f - 1$, $\delta > 0$. Since $\epsilon > 0$, therefore, $\exists \epsilon, \delta > \epsilon > 0$. Thus, $\exists \epsilon, \int_a^b f - 1 > \epsilon > 0$. Then, we have $\int_a^b f > 1 + \epsilon$, which is a contradiction. Thus, f is integrable on [-1, 1].