Introduction to Algorithm Design

Lecture Notes 9

ROAD MAP

Dynamic Programming

- The Knapsack Problem
- All Pairs Shortest Paths
- Optimal Binary Search Tree
- String Editing
- Matrix Chain Product

Definition :

- Dynamic programming is an interesting algorithm design technique for optimizing multistage decision problems
- It is a technique for solving problems with overlapping subproblems
 - Typically arise from a recurrence relations
 - Solve subproblems once and record the results for later use
 - Bottom up solution of the recurrence
- How to get the recurrence?
 - sequence of decisions
 - possible choices at each decision point
 - Based on principle of optimality write the recurrence relation

Definition:

- For a given set of elements there are several BSTs possible
 - Since total number of BSTs with n nodes is given by C(2n,n)/(n+1), which grows exponentially, brute force is hopeless
- Assume probabilities of searching for elements of a BST are known, some of them are better than the others
 - average number of comparisons is smaller

• Example:

- Consider 4 keys A, B, C, D to be searched with probabilities 0.1, 0.2, 0.4, 0.3
- Two out of possible trees
- What is the average number of comparisons in a successfull search?

• Given: Set of identifiers $\{a_1, a_2, ..., a_n\}$

$$a_1 \le a_2 \le \dots \le a_n$$

 p_i : probability to search a_i

$$\sum p_i = 1$$

- Find : Optimal BST
 - Minimizing the average number of comparisons

Minimum
$$\sum p_i \times \text{level}(a_i)$$

- What is the sequence of decisions?
- What are possible choices at each decision point?
- What about principle of optimality...
- How to write the recurrence relation?
- How to solve the recurrence?

Because of principle of optimality:

Optimal BST with root a_k and two optimal binary search subtrees

Optimal Binary Search Trees

$$cost = p_k + cost(L) + cost(R) + w(1, k-1) + w(k+1, n)$$
$$w(i, j) = \sum_{i=1}^{j} p_i$$

Let C[i,j] be minimum average number of comparisons made in T[i,j]

- T[i,j] is optimal BST for keys $a_i < ... < a_j$
 - where $1 \le i \le j \le n$.
- Consider optimal BST among all BSTs with some a_k as their root
 - $(i \le k \le j)$

$$C(1,n) = \min_{1 \le k \le n} \left\{ C(1,k-1) + C(k+1,n) + p_k + w(1,k-1) + w(k+1,n) \right\}$$

$$C(i, j) = \min_{i \le k \le j} \left\{ c(i, k-1) + c(k+1, j) + \underbrace{p_k + w(i, k-1) + w(k+1, j)}_{w(i, j)} \right\}$$

$$C(i, j) = \min_{i \le k \le j} \{ c(i, k-1) + c(k+1, j) + w(i, j) \}$$

$$C(i, j) = 0$$
 if $j < i$

Table of dynamic programming algorithm for constructing an optimal BST

- Example:
 - Four key set and probabilities are given

$$A \rightarrow 0.1$$

$$B \rightarrow 0.2$$

$$C \rightarrow 0.4$$

$$D \rightarrow 0.3$$

Initial table looks like

	main table						
	0	1	2	3	4		
1	0	0.1	474-401				
2		0	0.2				
3	h		0	0.4			
4				0	0.3		
5					0		

Let us compute C[1,2]:

$$C[1,2] = \min \begin{cases} C[1,0] + C[2,2] + \sum_{s=1}^{2} p_s & \text{if } k = 1 \\ C[1,1] + C[3,2] + \sum_{s=1}^{2} p_s & \text{if } k = 2 \end{cases}$$

$$C[1,2] = \min \begin{cases} 0 + 0.2 + 0.3 = 0.5 \\ 0.1 + 0 + 0.3 = 0.4 \end{cases} = 0.4$$

- Out of two possible binary trees containing the first two keys A and B
 - the root of the optimal tree has index 2
 - average number of comparisons in a successfull search is 0.4

Optimal Binary Search Trees

 If the computations are finished, we will arrive at the following final tables

	main table						
	0	1	2	3	4		
1	0	0.1	0.4	1.1	1.7		
2		0	0.2	8.0	1.4		
3			0	0.4	1.0		
4				0	0.3		
5					0		

12		root table				
	0	1	2	3	4	
1		1	2	3	3	
2			2	3	3	
3				3	3	
4					4	
5						

ALGORITHM OptimalBST(P[1..n])

return C[1, n], R

//Finds an optimal binary search tree by dynamic programming //Input: An array P[1..n] of search probabilities for a sorted list of n keys //Output: Average number of comparisons in successful searches in the optimal BST and table R of subtrees' roots in the optimal BST for $i \leftarrow 1$ to n do $C[i, i-1] \leftarrow 0$ $C[i,i] \leftarrow P[i]$ $R[i,i] \leftarrow i$ $C[n+1,n] \leftarrow 0$ for $d \leftarrow 1$ to n-1 do //diagonal count for $i \leftarrow 1$ to n - d do $i \leftarrow i + d$ $minval \leftarrow \infty$ for $k \leftarrow i$ to j do **if** C[i, k-1] + C[k+1, j] < minval $minval \leftarrow C[i, k-1] + C[k+1, j]; kmin \leftarrow k$ $R[i, j] \leftarrow kmin$ $sum \leftarrow P[i]$; for $s \leftarrow i + 1$ to j do $sum \leftarrow sum + P[s]$ $C[i, j] \leftarrow minval + sum$

- Analysis:
 - Space efficiency is quadratic!
 - Time efficiency is cubic!
 - A more careful analysis shows that entries in the root table are always nondecreasing along each row and column
 - This limits values for R[i,j] to the range R[i,j-1], ..., R[i+1,j] and reduce the running time to $\Theta(n^2)$

Given:

$$\bullet \ X = x_1, x_2, ..., x_n$$

$$\bullet \quad Y = y_1, \quad y_2, \quad ..., \quad y_m$$

• <u>Find</u>:

A transform from X to Y using

```
operation \rightarrow insert I(y_i)

\rightarrow delete D(x_j)

\rightarrow change C(x_i, y_i)
```

• Cost Function: $\sum_{\forall \text{ operations}} \text{cost of operations}$

- What is the sequence of decisions?
- What are possible choices at each decision point?
- What about principle of optimality...
- How to write the recurrence relation?

C(i, j) = optimal cost for transforming x₁, x₂, ..., x_i to y₁, y₂, ..., y_j

$$C(i,0) = C(i-1,0) + D(x_i)$$

$$C(0, j) = C(0, j-1) + I(y_j)$$

$$C(0,0) = 0$$

o/w

$$C(i, j) = C(i-1, j-1)$$

Multiply n given matrices

$$M_1 \times M_2 \times ... \times M_n$$

- Goal :
 - Find the parenthesization to minimize the number of multiplications
 - M_1 , M_2 , M_3 2x3 3x8 8x4

$$M_1 \times M_2 \times M_3 = \begin{cases} (M_1 \times M_2) \times M_3 & (2 \times 3 \times 8) + (2 \times 8 \times 4) = 112 \\ M_1 \times (M_2 \times M_3) & (3 \times 8 \times 4) + (2 \times 3 \times 4) = 120 \end{cases}$$

• $(n-1)! = O(2^n)$ different parenthesization

- What is the sequence of decisions?
- What are possible choices at each decision point?
- What about principle of optimality...
- How to write the recurrence relation?

Matrix Chain Product

C(1,n): cost for 1 to n

$$C(1,n) : \min_{1 \le i \le n-1} \{ C(1,i) + C(i+1,n) + r_1 c_i c_n \}$$

In general

C(i, j): min
$$\{C(i,k) + C(k+1,j) + r_i c_k c_j \}$$

 $i \le k < j$

$$C(i,i) = 0$$
 $C(1,n)$ = optimal solution

- # of C(i,j)'s = $O(n^2)$
- For each C(i,j) we check (j-i) expressions
- Overall complexity is O(n³)