Homework 7

ALECK ZHAO

April 2, 2017

1. Let R be a ring, and let σ be an automorphism of R. Show that $\{a \in R \mid \sigma(a) = a\}$ is a subring of R, and a subfield if R is a field.

Proof. Call the subset S. Any automorphism must fix 1, so $1 \in S$. Now if $a, b \in S$, we have

$$\sigma(a+b) = \sigma(a) + \sigma(b) = a+b$$

$$\sigma(ab) = \sigma(a)\sigma(b) = ab$$

so $a + b, ab \in S$, so S is indeed a subring. Now, if R is a field, then for all nonzero $a \in R$,

$$1 = \sigma(1) = \sigma\left(a \cdot \frac{1}{a}\right) = \sigma(a)\sigma\left(\frac{1}{a}\right)$$

Now, if $a \in S$, then $\sigma(a) = a$, so

$$\sigma\left(\frac{1}{a}\right) = \frac{1}{\sigma(a)} = \frac{1}{a}$$

so $\frac{1}{a} \in S$ as well, and thus S is a field.

2. Let F be a finite field with p^n elements for p a prime. Show that each element $a \in F$ has a pth root in F, i.e. there exists $b \in F$ such that $b^p = a$. Is b unique? By contrast, for K := F(x) the fraction field of the polynomial ring F[x], show that x has no pth root in K.

Proof. Since $F = \mathbb{F}_{p^n}$ is the splitting field of $x^{p^n} - x$ over \mathbb{F}_p , we have $a^{p^n} = a$ for all $a \in \mathbb{F}_{p^n}$. Thus, if $b = a^{p^{n-1}}$, we have

$$b^p = (a^{p^{n-1}})^p = a^{p^n} = a$$

so b is a pth root of a. If $b^p = c^p = a$, then $\left(\frac{b}{c}\right)^p = 1$. The nonzero elements of F form a cyclic group of order $p^n - 1$, so since $\gcd(p, p^n - 1) = 1$, it must be the case that $b/c = 1 \implies b = c$ so the pth root is unique.

Suppose x had a pth root in K, so that for some $f,g \in F[x]$, we have $x = \left(\frac{f}{g}\right)^p$. Then $g^p x = f^p$. Note that $a^p \neq 0$ for any $0 \neq a \in F$ since F is a field and therefore an integral domain. Thus, if $\deg f = m, \deg g = n$, we have $\deg(g^p x) = pn + 1 = pm = \deg f^p$ which is clearly impossible. Thus, there is no pth root of x, as desired.

Section 6.4: Finite Fields

8. Find $[\mathbb{F}_{p^n} : \mathbb{F}_{p^m}]$ where $m \mid n$.

Solution. We have

$$\begin{split} [\mathbb{F}_{p^n} : \mathbb{F}_p] &= [\mathbb{F}_{p^n} : \mathbb{F}_{p^m}] [\mathbb{F}_{p^m} : \mathbb{F}_p] \\ &\Longrightarrow n = [\mathbb{F}_{p^n} : \mathbb{F}_{p^m}] \cdot m \\ &\Longrightarrow \frac{n}{m} = [\mathbb{F}_{p^n} : \mathbb{F}_{p^m}] \end{split}$$

18. (a) Show that a monic irreducible polynomial $f \in F[x]$ has no repeated root in any splitting field over F if and only if $f' \not\equiv 0$ in F[x].

Proof. (\Longrightarrow): Suppose f has no repeated roots in E a splitting field of f over F, but that $f' \equiv 0$. Then if $a \in E$ where $(x - a) \mid f$, since $(x - a) \mid 0 \equiv f'$, so a is a repeated root of f in E, contradiction.

(\Leftarrow): Now if $f' \neq 0$, let $F[x] \ni g = \gcd(f, f')$. Then since f is irreducible, we must have either $g \equiv 1$ or g = f. The case g = f is impossible because $g \mid f'$ so $f \mid f'$, but since $\deg f \geq \deg f'$, it must be that $f = f' \equiv 0$, which is contrary to assumption. Then $g \equiv 1$, so f and f', don't share any common factors. Thus, by Theorem 3, it can't have any repeated roots in any splitting field over F.

(b) If char F = 0, show that no irreducible polynomial has a repeated root in any splitting field over F.

Proof. Let $f \in F[x]$ be irreducible. If char F = 0, we have $f' \equiv 0 \iff \deg f = 0$, which obviously has no repeated roots in any splitting field. Otherwise, $f' \not\equiv 0$ for any f with degree at least 1. Then by the result of (a), it follows that f has no repeated root in any splitting field over F. Since f was arbitrary, no irreducible polynomial has a repeated root in any splitting field over F. \square

19. If char F = p, show that a monic irreducible polynomial $f \in F[x]$ has a repeated root in some splitting field if and only if $f = g(x^p)$ for some $g \in F[x]$. (Hint: Ex 18)

Proof. (\Longrightarrow): From Ex 18(a), if f has a repeated root in some splitting field, then we must have $f' \equiv 0$ in F[x]. Let

$$f = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n$$

$$f' = a_1 + 2a_2 x + \dots + (n-1)a_{n-1} x^{n-2} + n x^{n-1}$$

If $f' \equiv 0$, then we must have $p \mid ka_k$ for all $1 \leq k \leq n-1$. Thus, if $p \nmid k$, we must have $a_k = 0$, which is exactly to say that all exponents of f are divisible by p, and all other coefficients are 0. Thus, $f = g(x^p)$, as desired

 $(\longleftarrow):$ If $f=g(x^p)$, then $f'=px^{p-1}g'(x^p)\equiv 0$ in F. Thus, if f has a root a in a splitting field E over F, then $(x-a)\mid f$ and $(x-a)\mid 0\equiv f'$, so $(x-a)^2\mid f$ by Theorem 3, so f has a repeated root in some splitting field of F.

21. Let p be a prime and write $f = x^p - x - 1$. Show that the splitting field of f over \mathbb{F}_p is $\mathbb{F}_p(u)$, where u is any root of f. (Hint: Compute $f(u+a), a \in \mathbb{F}_p$)

Proof. Let $a \in \mathbb{F}_p$. Now consider f(u+a):

$$f(u+a) = (u+a)^p - (u+a) - 1$$

= $u^p + a^p - u - a - 1 = (u^p - u - 1) + a^p - a$

Now, u is a root of f so the first term vanishes. Since $|\mathbb{F}_p^{\times}| = p-1$ as a multiplicative group, it follows that $a^p - a = 0$. Thus, u + a is a root of f for all $a \in \mathbb{F}_p$. Since $\deg f = p$, we must have f splits into p linear factors [x - (u + a)] for each $a \in \mathbb{F}_p$. Then the splitting field is produced by adjoining each of u + a to \mathbb{F}_p , but since $a \in \mathbb{F}_p$, this is just $\mathbb{F}_p(u)$, as desired.

22. (a) Let f be a monic irreducible polynomial of degree n in $\mathbb{F}_p[x]$. Show that f divides $x^{p^n} - x$ in $\mathbb{F}_p[x]$. (Hint: First work over $\mathbb{F}_p(u)$, f(u) = 0. Use the uniqueness in Theorem 4 § 4.1.)

Proof. Since f is irreducible in $\mathbb{F}_p[x]$, it can't have any root in \mathbb{F}_p since otherwise f would have a linear factor. Let u be a root of f in some extension E over \mathbb{F}_p . Then since f is irreducible and monic, it is the minimal polynomial of u, so $[E:\mathbb{F}_p]=n \Longrightarrow |E|=p^n \Longrightarrow E\cong \mathbb{F}_{p^n}$. Since $u\in E=\mathbb{F}_{p^n}$, it is a root of $x^{p^n}-x$. Now, let $x^{p^n}-x=fg+h$ where $g,h\in \mathbb{F}_p[x]$ and $0\leq \deg h< n$. Now, letting x=u (via the evaluation homomorphism), we have $u^{p^n}-u=0=f(u)g(u)+h(u)=h(u)$, so u is a root of h. However, since f was the minimal polynomial of u, it must be that $h\equiv 0$, so $f\mid (x^{p^n}-x)$, as desired.

(b) Show that the degree of each monic irreducible divisor f of $x^{p^n} - x$ is a divisor of n. (Hint: Theorem 5)

Proof. Let f be a monic irreducible divisor of $x^{p^n} - x$, and let u be a root of f in some extension E. From above, we had $E = \mathbb{F}_{p^n}$, and since E is a field extension of $\mathbb{F}_p(u)$, we must have $\mathbb{F}_p(u) \cong \mathbb{F}_{p^m}$ for some $m \mid n$. Thus, $[\mathbb{F}_p(u) : \mathbb{F}_p] = m = \deg f$ since f is monic and irreducible and therefore the minimal polynomial, so $(\deg f) \mid n$, as desired.

(c) Factor $x^8 - x$ into irreducibles in $\mathbb{F}_2[x]$.

Solution. We have $f = x^8 - x = x^{2^3} - x$, so the degree of each irreducible divisor of f has degree either 1 or 3. We have

$$x^{8} - x = x(x^{7} - 1) = x(x - 1)(x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1)$$

By inspection, the degree 6 polynomial has no roots in \mathbb{F}_p , so it must split into two irreducible degree 3 polynomials. Suppose one of them is $g = x^3 + ax^2 + bx + 1$. If a = b = 0 then g(1) = 0 and likewise if a = b = 1. Thus, either a = 1 and b = 0 or a = 0 and b = 1, so the factorization is given by

$$x^{8} - x = x(x - 1)(x^{3} + x^{2} + 1)(x^{3} + x + 1)$$

Section 4.5: Symmetric Polynomials

- 14. Given $\sigma \in S_n$, define $\theta_{\sigma} : R[x_1, \dots, x_n] \to R[x_1, \dots, x_n]$ by $\theta_{\sigma}[f(x_1, \dots, x_n)] = f(x_{\sigma_1}, \dots, x_{\sigma_n})$.
 - (a) Show that θ_{σ} is a ring automorphism of $R[x_1, \dots, x_n]$.

Proof. First we show this is a ring homomorphism. Clearly $\theta_{\sigma}(1) = 1$. Now, for $f, g \in R[x_1, \dots, x_n]$,

$$\theta_{\sigma} [f(x_1, \dots, x_n) + g(x_1, \dots, x_n)] = \theta_{\sigma} [(f+g)(x_1, \dots, x_n)]$$

$$= (f+g)(x_{\sigma 1}, \dots, x_{\sigma n})$$

$$= f(x_{\sigma 1}, \dots, x_{\sigma n}) + g(x_{\sigma 1}, \dots, x_{\sigma n})$$

$$= \theta_{\sigma} (f) + \theta_{\sigma} (g)$$

$$\theta_{\sigma} [f(x_1, \dots, x_n) \cdot g(x_1, \dots, x_n)] = \theta_{\sigma} [(fg)(x_1, \dots, x_n)]$$

$$= (fg)(x_{\sigma 1}, \dots, x_{\sigma n})$$

$$= f(x_{\sigma 1}, \dots, x_{\sigma n}) \cdot g(x_{\sigma 1}, \dots, x_{\sigma n})$$

$$= \theta_{\sigma} (f) \cdot \theta_{\sigma} (g)$$

Now if

$$\theta_{\sigma}(f) = f(x_{\sigma 1}, \cdots, x_{\sigma n}) = g(x_{\sigma 1}, \cdots, x_{\sigma n}) = \theta_{\sigma}(g)$$

then consider σ^{-1} and its associated $\theta_{\sigma^{-1}}$. Then applying $\theta_{\sigma^{-1}}$ to both of these polynomials,

$$\theta_{\sigma^{-1}}[f(x_{\sigma 1}, \dots, x_{\sigma n})] = f(x_{\sigma^{-1}\sigma 1}, \dots, x_{\sigma^{-1}\sigma n}) = f(x_{1}, \dots, x_{n})$$

=\textsigma_{\sigma^{-1}}[g(x_{\sigma 1}, \dots, x_{\sigma n})] = g(x_{\sigma^{-1}\sigma 1}, \dots, x_{\sigma^{-1}\sigma n}) = g(x_{1}, \dots, x_{n})

so θ_{σ} is injective. Now, for any $f(x_1, \dots, x_n)$, we have

$$\theta_{\sigma}[f(x_{\sigma^{-1}1}, \cdots, x_{\sigma^{-1}n})] = f(x_1, \cdots, x_n)$$

so θ_{σ} is surjective. Thus, θ_{σ} is a bijective ring homomorphism from $R[x_1, \dots, x_n]$ to itself, so it is a ring automorphism.

(b) Show that $\sigma \mapsto \theta_{\sigma}$ is a group homomorphism $S_n \to \text{aut } R[x_1, \cdots, x_n]$, which is injective.

Proof. Let $\sigma, \tau \in S_n$. Then consider $\theta_{\sigma\tau}$. For some $f(x_1, \dots, x_n) \in R[x_1, \dots, x_n]$, we have

$$\theta_{\sigma\tau} [f(x_1, \cdots, x_n)] = f(x_{\sigma\tau 1}, \cdots, x_{\sigma\tau n})$$

$$= \theta_{\sigma} [f(x_{\tau 1}, \cdots, x_{\tau n})]$$

$$= \theta_{\sigma} (\theta_{\tau} [f(x_1, \cdots, x_n)])$$

$$= (\theta_{\sigma} \circ \theta_{\tau}) [f(x_1, \cdots, x_n)]$$

so $(\sigma\tau) \mapsto \theta_{\sigma\tau} = \theta_{\sigma} \circ \theta_{\tau}$ and this is indeed a group homomorphism. Now consider the kernel of this homomorphism. The identity in aut $R[x_1, \dots, x_n]$ is the identity map, which is

$$\theta_{\varepsilon}[f(x_1,\cdots,x_n)]=f(x_1,\cdots,x_n)$$

So the kernel only contains the identity permutation, ε . Thus, we have $S_n/\{\varepsilon\} \cong S_n$ which is isomorphic to the image of this homomorphism, so it is indeed injective.

(c) If $G \subseteq \text{aut } R[x_1, \dots, x_n]$ is a subgroup, show that $S_G = \{ f \mid \theta(f) = f, \forall \theta \in G \}$ is a subring of $R[x_1, \dots, x_n]$.

Proof. Clearly $1 \in S_G$ since all automorphisms must fix 1. Now if $f, g \in S_G$, then.

$$\theta(f+g) = \theta(f) + \theta(g) = f + g$$

$$\theta(f \cdot g) = \theta(f) \cdot \theta(g) = f \cdot g$$

so f + g, $fg \in S_G$, and thus S_G is indeed a subring of $R[x_1, \dots, x_n]$.