Amplificatore Operazionale II

Studio del comportamento di un op-amp reale in amplificazione di segnali periodici

S. Bottaro¹ L.M. Perrone¹

¹Dipartimento di Fisica Universita' di Pisa

Recitation - Week03, 2015

- prelude
 - Analisi del generatore
- 2 title
- 3 Incertezze di misura
 - Assegnazione delle incertezze
- Simulazione con TINA
 - Simulazione I
 - Simulazione II
- 6 Analisi in frequenza con generatore esterno
 - G-100
 - G-100 con algoritmo di correzione sfasamenti
 - G-300
 - G-500
 - Grafici Triplot

- prelude
 - Analisi del generatore
- 2 title
- 3 Incertezze di misura
 - Assegnazione delle incertezze
- 4 Simulazione con TINA
 - Simulazione I
 - Simulazione II
- 5 Analisi in frequenza con generatore esterno
 - G-100
 - G-100 con algoritmo di correzione sfasamenti
 - G-300
 - G-500
 - Grafici Triplot

Comportamento 'buono'

Figura: Segnale prodotto a 10kHz, 100mVpp

Figura : Segnale prodotto a 10kHz, 50mVpp

Comportamenti limite

Figura : Segnale prodotto a 10kHz a 10mVpp

Figura: Comportamento anomalo a 10Vpp offset.

Segnale del gen. letto 'contemporaneamente' dalla CB68/CB33

Figura: Gain e sfasamento con 200000 campioni al secondo

Possibile spiegazione

Figura : Schema processo di acquisizione

Definition

$$\Delta arphi = \Delta t f$$
 , $\Delta t = rac{lpha}{f_c}$, $lpha = 179.97 \pm 0.11$

Algoritmo correttivo:

$$\varphi' = \varphi - \alpha \frac{f}{f_c} \tag{1}$$

Correzioni della fase

Figura : Sfasamenti con algoritmo correttivo

- prelude
 - Analisi del generatore
- 2 title
- 3 Incertezze di misura
 - Assegnazione delle incertezze
- 4 Simulazione con TINA
 - Simulazione I
 - Simulazione II
- 5 Analisi in frequenza con generatore esterno
 - G-100
 - G-100 con algoritmo di correzione sfasamenti
 - G-300
 - G-500
 - Grafici Triplot

Assegnazione delle incertezze

• Errore sul GAIN \approx (errore di acquisizione DAQ \oplus errore del generatore di funzioni).

Definition

$$\Delta_{DAQ} = 5mV$$
; $\Delta_{GEN} = max\{1\%V_{PP}, 2mV_{rms}\}$

Example

$$\Delta G = G * \sqrt{(rac{max\{1\%V_{PP},2mV_{rms}\}}{V_{PP}})^2 + (rac{5mV}{V_{out}})^2}$$

• Errore sulle *frequenze* \approx errore del generatore di funzioni).

Definition

$$\Delta_{GEN} = max\{5E - 5\%f, 40\text{mHz}\}$$

Example

$$\Delta f = max\{5E - 5\%f, 40\text{mHz}\}$$

- prelude
 - Analisi del generatore
- 2 title
- 3 Incertezze di misura
 - Assegnazione delle incertezze
- Simulazione con TINA
 - Simulazione I
 - Simulazione II
- 5 Analisi in frequenza con generatore esterno
 - G-100
 - G-100 con algoritmo di correzione sfasamenti
 - G-300
 - G-500
 - Grafici Triplot

Prima simulazione con TINA

Grandezza	Risultati prima simulazione TINA
R_1 (k Ω)	1.03
R_2 (k Ω)	99.8
Second Pole (MHz)	1
Open loop gain	200k
$f_T(kHz)$	10.3
$f_{\frac{1}{2}}(kHz)$	17.8
Max Gain	97.8

Grandezza	Dati sperimentali
$f_T(kHz)$	8.77 ± 0.09
$f_{\frac{1}{2}}(kHz)$	15.14 ± 0.16
Max Gain	97.8 ± 0.1

Figura: Simulazione TINA (1) e dati sperimentali - Comparison

- prelude
 - Analisi del generatore
- 2 title
- 3 Incertezze di misura
 - Assegnazione delle incertezze
- Simulazione con TINA
 - Simulazione I
 - Simulazione II
- 5 Analisi in frequenza con generatore esterno
 - G-100
 - G-100 con algoritmo di correzione sfasamenti
 - G-300
 - G-500
 - Grafici Triplot

Seconda simulazione con TINA

Grandezza	Risultati seconda simulazione TINA
R_1 (k Ω)	1.03
R_2 (k Ω)	99.8
Second Pole (MHz)	1
Open loop gain	171k
$f_T(kHz)$	8.77
$f_{\frac{1}{2}}(kHz)$	15.2
Max Gain	97.84

Grandezza	Dati sperimentali
$f_T(kHz)$	8.77 ± 0.09
$f_{\frac{1}{2}}(kHz)$	15.14 ± 0.16
Max Gain	97.8 ± 0.1

Figura: Simulazione TINA (2) e dati sperimentali - comparison

- prelude
 - Analisi del generatore
- 2 title
- 3 Incertezze di misura
 - Assegnazione delle incertezze
- 4 Simulazione con TINA
 - Simulazione I
 - Simulazione II
- 5 Analisi in frequenza con generatore esterno
 - G-100
 - G-100 con algoritmo di correzione sfasamenti
 - G-300
 - G-500
 - Grafici Triplot

Dati G100

	Dati sperimentali G100
R_1 (k Ω)	1.03 \pm 0.8 %
R_2 (k Ω)	99.8 ± 0.8 %
Second Pole (MHz)	1
Open loop gain	200k
V_{PP}	$100\pm3 \mathrm{mV}$
G	$G_{exp}(G_{exp}^eta) = 97 \pm 1(97) \ G_{meas} = 97 \pm 2$
$f_T(kHz)$	8.77 ± 0.09
$f_{\frac{1}{2}}(kHz)$	15.14 ± 0.16
$G*f_T$ kHz	850 ± 30

G100 corretto

Figura: Bode diagram - G100, sfasamenti corretti

Figure 4.82. Bode plot: gain and phase versus frequency.

Figura: Andamento previsto GAIN-PHASE tratto dall'Horowitz

- prelude
 - Analisi del generatore
- 2 title
- 3 Incertezze di misura
 - Assegnazione delle incertezze
- 4 Simulazione con TINA
 - Simulazione I
 - Simulazione II
- 5 Analisi in frequenza con generatore esterno
 - G-100
 - G-100 con algoritmo di correzione sfasamenti
 - G-300
 - G-500
 - Grafici Triplot

Dati G300

	Dati sperimentali G300
R_1	98 Ohm $+$ 1.03 kOhm (\pm 0.8 %)
R_2	353 kOhm \pm 0.8 $\%$
V_{PP}	$50\pm3 \mathrm{mV}$
V _{OFF} preset	-46mV
G	$G_{ extsf{exp}} = 312 \pm 9 \; G_{ extsf{meas}} = 310 \pm 2$
$f_T(kHz)$	2.7 ± 0.1
$G * f_T \text{ kHz}$	840 ± 40

Figura: Bode Diagram - G300

- prelude
 - Analisi del generatore
- 2 title
- 3 Incertezze di misura
 - Assegnazione delle incertezze
- 4 Simulazione con TINA
 - Simulazione I
 - Simulazione II
- 5 Analisi in frequenza con generatore esterno
 - G-100
 - G-100 con algoritmo di correzione sfasamenti
 - G-300
 - G-500
 - Grafici Triplot

Dati G500

	Dati sperimentali G500
R_1	98 Ohm $+$ 1.03 kOhm (\pm 0.8 %)
R_2	353 kOhm $+$ 217 kOhm \pm 0.8 $\%$
V_{PP}	$30\pm3 \text{mV}$
V _{OFF} preset	-46mV
G	$G_{exp} = 510 \pm 20 \; G_{meas} = 540 \pm 2$
$f_T(kHz)$	1.64 ± 0.04
$G * f_T \text{ kHz}$	880 ± 30

Figura: Bode Diagram - G500

Stima frequenze di taglio per G=1000, G=1

• A partire dalla relazione $G * f_T = cost$ si ricava:

G	f_T
1000	850Hz
1	8.50kHz UGBW

• Interpolando graficamente il grafico *OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREQUENCY* riportato sul datasheet del $\mu A741$ si verifica che la frequenza di **UGBW** pari circa a 1MHz.

- prelude
 - Analisi del generatore
- 2 title
- 3 Incertezze di misura
 - Assegnazione delle incertezze
- 4 Simulazione con TINA
 - Simulazione I
 - Simulazione II
- 5 Analisi in frequenza con generatore esterno
 - G-100
 - G-100 con algoritmo di correzione sfasamenti
 - G-300
 - G-500
 - Grafici Triplot

Figura: Triplot Gain 100-300-500 Semilogx

Figura: Bode Diagram - Triplot bilog

OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

vs FREQUENCY

Figura : Gain vs Frequency - Datasheet uA741

1 9 Q Q

Comportamento anomalo a fondoscala IN 0.05

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.
- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

Bibliografia e approfondimenti I

P. Horowitz.

The Art of Electronics.

Cambridge University Press, 1989.

Datasheet uA741, Texas Instruments.