

CORRIGÉ DE L'EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2018

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE		
CHIMIE	В, С	Durée de l'épreuve :	3h	

				1
Overetion I	00:45	A NINI-O-	ANI - On	Total . 4n
intermodipôle dans le plus for partielle H &+ &- &- R I'association	e positive particulière H δ+ δ-	aldéhydes. Cette .as efficace que-l'associations par ponts Hetite taille de l'atome	ssociation dipôle- ciation par ponts H	Total : 4p QC :2p
2. Les pr à l'eau carbon H &+ &- C=0 R l'association paugmente la s	QC :2p			
Question II	QC : 8p	ANN : 4p	AN : 4p	Total : 16p
1. HCHO + 3C 0 2Cu ²⁺ + 2e ⁻ + +2 2Cu ²⁺ + HCHC	+2			QC:1p ANN :2p
2. Additio	n nucléophile			QC :1p

3. L'addition se réalise facilement :

QC:3p

AN:4p

 i. Du fait de la différence d'électronégativité entre C (2,5) et O (3,5), la liaison C=O est polarisée d'autant plus fortement que les électrons du nuage ∏, plus distants des noyaux atomiques, sont plus faciles à déplacer.

ii. Dans le groupement carbonyle existe une mésomérie dont l'une des formes contributives porte une charge positive sur l'atome de carbone.

Des deux considérations précédentes, il résulte que l'atome de carbone du groupement carbonyle est un puissant centre électrophile qui suscite l'attaque des réactifs nucléophiles.

4. ANN :2p

$$CH_3CH_2CH_2CHO + HCN$$
 H_3C
 H_2
 H_2
 H_3
 H_4
 H_5
 H_5

5. QC :3p

6. Quantité de produit :

$$n_{produit}(mol) = \frac{m(g)}{M(\frac{g}{mol})} = \frac{25g}{99\frac{g}{mol}} = 0,252mol$$

Quantité théorique :

$$n_{th\acute{e}orique}(mol) = \frac{n_{produit}(mol)}{\eta} = \frac{0,252mol}{55,3\%} = 0,457mol$$

De l'équation $n_{butanal} = n_{théorique} = 0,457 mol$

Masse de butanal :

$$m_{bu \tan al}(g) = n_{bu \tan al}(mol) \cdot M_{bu \tan al}(\frac{g}{mol}) = 0,457 mol \cdot 72 \frac{g}{mol} = 32,9 g$$

Volume du butanal :

$$V_{bu \tan al}(mL) = \frac{m_{bu \tan al}(g)}{\rho_{bu \tan al}(\frac{g}{mL})} = \frac{32.9g}{0.802 \frac{g}{mL}} = 41.0mL$$

Question III	QC :5p	ANN:11p	AN : 4p	Total : 20p
1.	COOH H——————————————————————————————————			ANN :2p
2. Le plan de polarisation antipode (ou énantiomère par un C* se trouve à dro) est lévogyre (-). D,	dexter, la dernière for	•	ANN :2p
3.	H ₃ C H ₂ COOH			ANN :2p
acide (S)- 3-hydroxybutanoïc	ue acide (R)-3-hydroxybutanoïqu $O \longrightarrow H \longrightarrow H \longrightarrow O \longrightarrow C \longrightarrow CH_3$	+ (n-1)H ₂ O		ANN :2p
5. Voir chimie organique	page 56,57	i n		QC :5p
6.				ANN :3p
0 $Cr_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} + 3 \cdot CH_{3} - CHOH - CCCr_{2}O_{7}^{2-} + 8H^{+} + 3 \cdot CH_{3} - CHOH - CH_{2} - COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$	$H_{3} - CO - CH_{2} - COOH + 2e^{-} + 2r$ $+ 2$ $H_{2} - COOH \xrightarrow{\text{oxydoréduction}} 2Cr^{3+} + 7H_{2}O + 3$ $OH \xrightarrow{\text{oxydoréduction}} 2Cr^{3+} + 7H_{2}O + 3$	$7H_2O + 3CH_3 - CO - CH_2 - COOH + 6$	e ⁻ + 6H ⁺	AN : 4p
$\frac{n_{alcool}(mol)}{n_{Cr_2O_7^{2-}}(mol)} = \frac{3}{1} \Leftrightarrow n_{alcool}(mol) = 3 \cdot n_{Cr_2O_7^{2-}}$ $Quantit\'e \ de \ Cr_2O_7^{2-} : c_{Cr_2O_7^{2-}}(\frac{mol}{L}) = \frac{n_{Cr_2}O_7^{2-}}{V_C}$ $Quantit\'e \ de \ l'acide \ 3 - hydroxybutanoï$ $Concentration \ molaire \ de \ l'acide \ 3 - h$ $c(\frac{mol}{L}) = \frac{n(mol)}{V(L)} = \frac{6,24 \cdot 10^{-5} mol}{25 \cdot 10^{-3} L} = 2,496 \cdot 10^{-3} \frac{mol}{L} \cdot 10^{-2} \frac{mol}{L} = \frac{10}{L} \cdot 10^{-2} \frac{mol}{L} \cdot 10^{-2} m$	$o_{\gamma^{2-}}(mol) \Leftrightarrow n_{Cr_2O_{\gamma^{2-}}}(mol) = c_{Cr_2O_{\gamma^{2-}}}$ $que : n_{acide \ 3-hydroxybu \ tan \ oique}(mol) = ydroxybu tan oique :$ $10^{-3} \frac{mol}{L}$ $hydroxybu tanoique :$			

Question IV QC :0p ANN:6p AN :14p	Total :20p
1.	ANN :1p
R-COOH + NaOH → R-COO ⁻ Na ⁺ + H ₂ O	
2.	ANN :2p
point d'équivalence (19,2mL, 8,7), Point de demi-équivalence : (9,6mL, 4,7), pK _a =4,7	7 ((((.2p
	411.0
3. $n_{\text{substan } ce}(mol) = n_{NaOH}(mol)$	AN :2p
$c_{subs \tan ce} \left(\frac{mol}{L} \right) \cdot V_{subs \tan ce} \left(L \right) = c_{NaOH} \left(\frac{mol}{L} \right) \cdot V_{NaOH} \left(L \right)$	
$C_{substance}\left(\frac{mol}{L}\right) = \frac{C_{NaOH}\left(\frac{mol}{L}\right) \cdot V_{NaOH}\left(L\right)}{V_{substance}\left(L\right)} = \frac{0.25 \frac{mol}{L} \cdot 19.2 \cdot 10^{-3} L}{100 \cdot 10^{-3} L}$	
$V_{\text{substan } ce}(L)$ $V_{\text{substan } ce}(L)$ $100 \cdot 10^{-3} L$	
$C_{subs \tan ce} \left(\frac{mol}{L} \right) = 0.048 \frac{mol}{L}$	
4. Quantité de la substance dans 100mL :	AN : 2p
Au point d'équivalence, on a : $n_{substan ce}(mol) = n_{NaOH}(mol) = c_{NaOH}(\frac{mol}{L}) \cdot V(L) = 0.25 \frac{mol}{L} \cdot 19.2 \cdot 10^{-3} L$	
· · ·	
= $4.8 \cdot 10^{-3} mol$ Quantité de la substance dans la solution initiale 1000mL:	
$n_{substan\ ce\ dans\ 5g}(mol) = 10 \cdot n_{substan\ ce}$	
$= 10 \cdot 4.8 \cdot 10^{-3} mol = 4.8 \cdot 10^{-2} mol$	
Masse molaire :	
$M\left(\frac{g}{mol}\right) = \frac{m(g)}{n(mol)} = \frac{5g}{4.8 \cdot 10^{-2} mol} = 104.2 \frac{g}{mol}$	
$n(mol) 4.8 \cdot 10^{-2} mol$	
5. Formule générale d'un composé ayant une fonction alcool et une fonction acide	ANN :3p
carboxylique : C _n H _{2n} O ₃	
Détamainana	
Déterminons n :	
$M_{C_n H_{2n} O_3} = (n \cdot 12 + 2n + 48) \frac{g}{mol} = 104 \frac{g}{mol}$	
2 2	
$\Leftrightarrow n = \frac{104 - 48}{14} = 4$	
Formule qui répond aux critères donnés :	
l l l l l l l l l l l l l l l l l l l	
adiad 4 flydroxybataflolique	

6. Après avoir ajouté 12mL de NaOH, on est dans le domaine d'une solution AN :3p tampon.

Équation de protolyse :

RCOOH +
$$H_2O$$
 \longrightarrow RCOO $^-$ + H_3O^+

avec
$$K_a = \frac{\left[RCOO^-\right]\cdot\left[H_3O^+\right]}{\left[RCOOH\right]}$$
, pour le calcul de pH d'une solution tampon,

utilisons l'équation de Henderson-Hasselbalch :

$$pH = pK_a + \log \frac{n_{RCOO^-}^{\circ}}{n_{RCOOH}^{\circ}}$$

Déterminons n°:

$$n^{\circ}_{_{RCOO^{-}}}(mol) = n_{_{NaOH}}(mol) = c_{_{NaOH}}(\frac{mol}{L}) \cdot V_{_{NaOH}}(L) = 0,25 \frac{mol}{L} \cdot 12 \cdot 10^{-3} \, L$$

$$n^{\circ}_{RCOO^{-}}(mol) = 3 \cdot 10^{-3} mol$$

$$n_{RCOOH}^{\circ}(mol) = n_{substance}(mol) - n_{NaOH}(mol) = 4.8 \cdot 10^{-3} mol - 3 \cdot 10^{-3} mol$$

$$n^{\circ}_{RCOOH}(mol) = 1.8 \cdot 10^{-3} mol$$

pH de la solution :

$$pH = pK_a + \log \frac{n_{RCOO^-}^{\circ}}{n_{RCOOH}^{\circ}} = 4.7 + \log \frac{3 \cdot 10^{-3} \, mol}{1.8 \cdot 10^{-3} \, mol}$$

$$pH = 4.92$$

7. pH au point d'équivalence, solution d'une base faible :

 $RCOO^- + H_2O \longrightarrow RCOOH + OH^-$

$$K_b = \frac{[RCOOH] \cdot [OH^-]}{[RCOO^-]} \quad on \quad a : [RCOOH] = [OH^-] = x \quad et \quad [RCOO^-] = c_{RCOO^-}^{\circ} - x$$

équation à résoudre: $x^2 + K_b x - K_b \cdot c^\circ = 0$

$$K_b \cdot K_a = 10^{-14} \Rightarrow K_b = \frac{10^{-14}}{K_a} = \frac{10^{-14}}{10^{-pK_a}} = \frac{10^{-14}}{10^{-4.7}} = 10^{-9.3}$$

$$c^{\circ}_{RCOO^{-}} = \frac{n_{RCOO^{-}}(mol)}{V_{\text{\'equivalence}}(L)} = \frac{n_{NaOH}(mol)}{V_{\text{\'equivalence}}(L)} = \frac{4.8 \cdot 10^{-3} mol}{(100 + 19.2)10^{-3} L} = 0.0403 \frac{mol}{L}$$

$$x_{valeur\ positive} = \left[OH^{-}\right] = 4,49 \cdot 10^{-6} \frac{mol}{L}$$

$$pH = 14 + \log[OH^{-}] = 14 - 5,35 = 8,65$$

AN :4p

8. Solution dont le pH est déterminé par la base forte ajouté en excès :

$$V_{excès}(L) = V_{total}(L) - V_{équivalence}(L) = (30 - 19.2) \cdot 10^{-3} L$$

AN:3p

Volume de NaOH en excès :

$$V_{exces}(L) = 10.8 \cdot 10^{-3} L$$

Concentration de NaOH:

$$c_{NaOH} = \frac{n_{NaOH_{excès}} \left(mol \right)}{V_{total} (L)} = \frac{c_{NaOH} \left(\frac{mol}{L} \right) \cdot V_{excès} (L)}{V_{total} (L)} = \frac{0.25 \frac{mol}{L} \cdot 10.8 \cdot 10^{-3} L}{130 \cdot 10^{-3} L} = 0.0208 \frac{mol}{L}$$

Calcul du pH:

$$pH = 14 + \log[OH^{-}] = 14 + \log c^{\circ}_{base\ forte} = 14 + \log 0,0208$$

 $pH = 14 - 1,68 = 12,32$