Contents

1	Basi																		1
	1.1	vimrc																	1
	1.2	Increase Stack																	1
	1.3	Pragma Optimization .																	1
	1.4	IO Optimization				•		•	•				•		•		•		1
_		. .																	_
2		Structure																	2
	2.1	Bigint																	2
	2.2	Dark Magic																	2
	2.3	Disjoint Set																	3
	2.4	Link-Cut Tree																	3
	2.5	LiChao Segment Tree .																	3
	2.6	Treap																	4
	2.7	Sparse Table																	4
	2.8	Linear Basis																	4
3	Grap																		5
	3.1	Euler Circuit																	5
	3.2	BCC Edge																	5
	3.3	BCC Vertex																	5
	3.4	2-SAT (SCC)																	5
	3.5	Lowbit Decomposition .																	6
	3.6	MaxClique																	6
	3.7	MaxCliqueDyn																	7
	3.8	Virtural Tree																	7
	3.9	Tree Hashing																	7
	3.10	Minimum Mean Cycle																	7
	3.11	Mo's Algorithm on Tree																	8
	3.12	Minimum Steiner Tree																	8
		Directed Minimum Span																	8
		Dominator Tree																	9
4	Mate	ching & Flow																	9
	4.1	Kuhn Munkres																	9
	4.2	Bipartite Matching																	9
	4.3	General Graph Matching	g .																10
	4.4	Minimum Weight Match	ing	((liq	υe	· ve	ers	sic	n)									10
	4.5	Flow Models																	10
	4.6	Dinic																	11
	4.7	Minimum Cost Maximun	٦F	lov	٧														11
	4.8	Global Min-Cut																	12
5	Math																		12
	5.1	Prime Table																	12
	5.2	$\lfloor \frac{n}{i} \rfloor$ Enumeration																	12
	5.3	ax+by=gcd																	12
	5.4	Pollard Rho																	12
	5.5	Pi Count (Linear Sieve) .																	12
	5.6	Range Sieve																	13
	5.7	Miller Rabin																	13
	5.8	Inverse Element																	13
	5.9	Euler Phi Function																	13
	5.10	Gauss Elimination																	13
	5.11	Fast Fourier Transform																	13
	5.12	High Speed Linear Recu	rre	enc	e														13
		Chinese Remainder																	14
		Berlekamp Massey																	14
	5.15	NTT																	14
		Polynomial Operations																	15
		FWT																	16
		DiscreteLog																	16
		Quadratic residue																	16
		De-Bruijn																	16
		Simplex Construction																	16
		Simplex																	17
6	Geoi	metry																	17
	6.1	Circle Class																	17
	6.2	Segment Class																	17
	6.3	Line Class																	17
	6.4	Triangle Circumcentre .																	18
	6.5	2D Convex Hull																	18
	6.6	2D Farthest Pair																	18
	6.7	2D Closest Pair																	18
	6.8	kD Closest Pair (3D ver.)																	19
	6.9	Simulated Annealing																	19
		Half Plane Intersection																	19
	6.11	Ternary Search on Integ																	19
		Minimum Covering Circle																	19
		KDTree (Nearest Point)																	19
	-	,					-			•		•		•	•				
7		gology																	20
	7.1	Hash																	20
	7.2	Suffix Array																	20
	7.3	Aho-Corasick Algorithm																	21
	7.4	Suffix Automaton																	21
	7.5	KMP																	21
	7.6	Z value																	21
	7.7	Manacher																	22
	7.8	Lexico Smallest Rotatio	n																22
	7.9	BWT																	22

```
8 Misc
       22
22
8.3.1 totally monotone (concave/convex) . . . . . . . . . . . . . . .
8.3.2 monge condition (concave/convex) . . . . . . . . . . . . . . .
1
Basic
```

1.1 vimrc

```
se is nu rnu bs=2 ru mouse=a encoding=utf-8
se cin et ts=4 sw=4 sts=4 t_Co=256
syn on
colorscheme ron
filetype indent on
map <F8> <ESC>:w<CR>:!clear && g++ "%" -o "%<" -
    fsanitize=address -fsanitize=undefined -g && echo
    success<CR>
map <F9> <ESC>:w<CR>:!clear && g++ "%" -o "%<" -02 &&
    echo success<CR>
map <F10> <ESC>:!./"%<"<CR>
```

1.2 Increase Stack

```
const int size = 256 << 20;</pre>
register long rsp asm("rsp");
char *p = (char*)malloc(size)+size, *bak = (char*)rsp;
__asm__("movq %0, %%rsp\n"::"r"(p));
// main
__asm__("movq %0, %%rsp\n"::"r"(bak));
```

1.3 Pragma Optimization

```
#pragma GCC optimize("Ofast, no-stack-protector")
#pragma GCC optimize("no-math-errno,unroll-loops")
#pragma GCC target("sse,sse2,sse3,sse3,sse4")
#pragma GCC target("popcnt,abm,mmx,avx,tune=native")
```

1.4 IO Optimization

```
static inline int gc() {
 static char buf[ 1 << 20 ], *p = buf, *end = buf;
 if ( p == end ) {
  end = buf + fread( buf, 1, 1 << 20, stdin );
   if ( end == buf ) return EOF;
  p = buf;
 return *p++;
template < typename T >
static inline bool gn( T &_ ) {
 register int c = gc(); register T __ = 1; _ = 0;
while(('0'>c||c>'9') && c!=EOF && c!='-') c = gc();
if(c == '-') { __ = -1; c = gc(); }
if(c == EOF) return false;
 while('0'<=c&&c<='9') _{-} = _{-} * 10 + c _{-} '0', c = gc();
 _ *= __;
 return true;
template < typename T, typename ...Args >
static inline bool gn( T &x, Args &...args )
{ return gn(x) && gn(args...); }
```

2 Data Structure

```
2.1 Bigint
class BigInt{
private
using lld = int_fast64_t;
#define PRINTF_ARG PRIdFAST64
#define LOG_BASE_STR "9"
static constexpr lld BASE = 1000000000;
static constexpr int LOG_BASE = 9;
vector<lld> dig; bool neg;
inline int len() const { return (int) dig.size(); }
inline int cmp_minus(const BigInt& a) const {
 if(len() == 0 && a.len() == 0) return 0;
 if(neg ^ a.neg)return a.neg ^ 1;
 if(len()!=a.len())
   return neg?a.len()-len():len()-a.len();
 for(int i=len()-1;i>=0;i--) if(dig[i]!=a.dig[i])
  return neg?a.dig[i]-dig[i]:dig[i]-a.dig[i];
 return 0;
inline void trim(){
 while(!dig.empty()&&!dig.back())dig.pop_back();
 if(dig.empty()) neg = false;
public:
BigInt(): dig(vector<lld>()), neg(false){}
BigInt(lld a): dig(vector<lld>()){
 neg = a<0; dig.push_back(abs(a));</pre>
 trim();
BigInt(const string& a): dig(vector<lld>()){
 assert(!a.empty()); neg = (a[0]=='-');
 for(int i=((int)a.size())-1;i>=neg;i-=LOG_BASE){
  11d cur = 0;
   for(int j=min(LOG_BASE-1,i-neg);j>=0;j--)
   cur = cur*10+a[i-j]-'0';
  dig.push_back(cur);
 } trim();
inline bool operator<(const BigInt& a)const
 {return cmp_minus(a)<0;}
inline bool operator<=(const BigInt& a)const</pre>
 {return cmp_minus(a)<=0;}
inline bool operator==(const BigInt& a)const
  {return cmp_minus(a)==0;}
 inline bool operator!=(const BigInt& a)const
  {return cmp_minus(a)!=0;}
inline bool operator>(const BigInt& a)const
 {return cmp_minus(a)>0;}
inline bool operator>=(const BigInt& a)const
  {return cmp_minus(a)>=0;}
BigInt operator-() const {
 BigInt ret = *this;
 ret.neg ^= 1; return ret;
BigInt operator+(const BigInt& a) const {
 if(neg) return -(-(*this)+(-a));
  if(a.neg) return (*this)-(-a);
  int n = max(a.len(), len());
 BigInt ret; ret.dig.resize(n);
 11d pro = 0;
 for(int i=0;i<n;i++) {</pre>
  ret.dig[i] = pro;
  if(i < a.len()) ret.dig[i] += a.dig[i];</pre>
  if(i < len()) ret.dig[i] += dig[i];</pre>
  pro = 0
   if(ret.dig[i] >= BASE) pro = ret.dig[i]/BASE;
  ret.dig[i] -= BASE*pro;
 if(pro != 0) ret.dig.push_back(pro);
 return ret;
BigInt operator-(const BigInt& a) const {
 if(neg) return -(-(*this) - (-a));
  if(a.neg) return (*this) + (-a);
  int diff = cmp_minus(a);
  if(diff < 0) return -(a - (*this));</pre>
  if(diff == 0) return 0;
 BigInt ret; ret.dig.resize(len(), 0);
  for(int i=0;i<len();i++) {</pre>
  ret.dig[i] += dig[i];
```

```
if(i < a.len())    ret.dig[i] -= a.dig[i];
   if(ret.dig[i] < 0){</pre>
    ret.dig[i] += BASE;
    ret.dig[i+1]--;
  }
  ret.trim(); return ret;
 BigInt operator*(const BigInt& a) const {
  if(!len()||!a.len()) return 0;
  BigInt ret; ret.dig.resize(len()+a.len()+1);
  ret.neg = neg ^ a.neg;
  for(int i=0;i<len();i++)</pre>
   for(int j=0;j<a.len();j++){</pre>
    ret.dig[i+j] += dig[i] * a.dig[j];
    if(ret.dig[i+j] >= BASE) {
     lld x = ret.dig[i+j] / BASE;
     ret.dig[i+j+1] += x;
     ret.dig[i+j] -= x * BASE;
  ret.trim(); return ret;
 BigInt operator/(const BigInt& a) const {
  assert(a.len());
  if(len() < a.len()) return 0;</pre>
  BigInt ret; ret.dig.resize(len()-a.len()+1);
  ret.neg = a.neg;
  for(int i=len()-a.len();i>=0;i--){
   11d 1 = 0, r = BASE;
   while(r-1 > 1){
    11d \ mid = (1+r)>>1;
    ret.dig[i] = mid;
    if(ret*a<=(neg?-(*this):(*this))) 1 = mid;</pre>
    else r = mid;
   ret.dig[i] = 1;
  ret.neg ^= neg; ret.trim();
  return ret;
 BigInt operator%(const BigInt& a) const {
  return (*this) - (*this) / a * a;
 friend BigInt abs(BigInt a) { a.neg = 0; return a; }
friend void swap(BigInt& a, BigInt& b){
  swap(a.dig, b.dig); swap(a.neg, b.neg);
 friend istream& operator>>(istream& ss, BigInt& a){
  string s; ss >> s; a = s; return ss;
 friend ostream&operator<<(ostream&o, const BigInt&a){</pre>
  if(a.len() == 0) return o << '0';</pre>
  if(a.neg) o <<</pre>
  ss << o.dig.back()
  for(int i=a.len()-2;i>=0;i--)
   o<<setw(LOG_BASE)<<setfill('0')<<a.dig[i];
  return o;
 inline void print() const {
  if(len() == 0){putchar('0');return;}
  if(neg) putchar('-');
printf("%" PRINTF_ARG, dig.back());
  for(int i=len()-2;i>=0;i--)
printf("%0" LOG_BASE_STR PRINTF_ARG, dig[i]);
 #undef PRINTF_ARG
 #undef LOG_BASE_STR
}:
2.2 Dark Magic
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/priority_queue.hpp>
using __gnu_pbds::pairing_heap_tag;
using __gnu_pbds::binary_heap_tag;
using __gnu_pbds::binomial_heap_tag;
using __gnu_pbds::rc_binomial_heap_tag;
       __gnu_pbds::thin_heap_tag;
using
template<typename T>
using pbds_heap=__gnu_pbds::prioity_queue<T,less<T>,\
                     pairing_heap_tag>;
```

// a.join(b), pq.modify(pq.push(10), 87)

```
using __gnu_pbds::rb_tree_tag;
                                                             void to_child(Node* p,Node* c,bool dir){
using __gnu_pbds::ov_tree_tag;
                                                              p->ch[dir]=c;
using __gnu_pbds::splay_tree_tag;
                                                              p->up();
template<typename T>
using ordered_set = __gnu_pbds::tree<T,\</pre>
                                                             inline void rotate(Node* node){
__gnu_pbds::null_type,less<T>,rb_tree_tag,\
                                                              Node* par=node->par;
                                                              Node* par_par=par->par;
__gnu_pbds::tree_order_statistics_node_update>;
                                                              bool dir=node->is_rch();
// find_by_order, order_of_key
template<typename A, typename B>
                                                              bool par_dir=par->is_rch();
using hTable1=__gnu_pbds::cc_hash_table<A,B>;
                                                              to_child(par, node->ch[!dir], dir);
template<typename A, typename B>
                                                              to_child(node,par,!dir);
using hTable2=__gnu_pbds::gp_hash_table<A,B>;
                                                              if(par_par!=nullptr && par_par->ch[par_dir]==par)
                                                               to_child(par_par,node,par_dir);
2.3 Disjoint Set
                                                              else node->par=par_par;
class DJS {
                                                             inline void splay(Node* node){
private:
                                                              Node* tmp=node;
vector< int > fa, sz, sv;
vector< pair< int*, int > > opt;
                                                              stk[top++]=node;
void assign( int *k, int v ) {
                                                              while(!tmp->is_root()){
 opt.emplace_back( k, *k );
                                                               tmp=tmp->par;
                                                               stk[top++]=tmp;
  *k = v;
public:
                                                              while(top) stk[--top]->down();
                                                              for(Node *fa=node->par)
void init( int n ) {
  fa.resize( n ); iota( fa.begin(), fa.end(), 0 );
                                                               !node->is_root();
 sz.resize( n ); fill( sz.begin(), sz.end(), 1 );
                                                               rotate(node), fa=node->par)
                                                               if(!fa->is_root())
  opt.clear();
                                                                rotate(fa->is_rch()==node->is_rch()?fa:node);
int query(int x) {return fa[x] == x?x:query(fa[x]);}
void merge( int a, int b ) {
                                                             inline void access(Node* node){
 int af = query( a ), bf = query( b );
                                                              Node* last=nullptr;
  if( af == bf ) return;
                                                              while(node!=nullptr){
  if( sz[ af ] < sz[ bf ] ) swap( af, bf );</pre>
                                                               splay(node)
 assign( &fa[ bf ], fa[ af ] );
                                                               to_child(node, last, true);
 assign( &sz[ af ], sz[ af ] + sz[ bf ] );
                                                               last=node;
                                                               node=node->par;
void save() { sv.push_back( (int) opt.size() ); }
void undo() {
  int ls = sv.back(); sv.pop_back();
                                                             inline void change_root(Node* node){
 while ( ( int ) opt.size() > ls )
                                                              access(node);splay(node);node->set_rev();
  pair< int*, int > cur = opt.back();
   *cur.first = cur.second;
                                                             inline void link(Node* x, Node* y){
   opt.pop_back();
                                                              change_root(x);splay(x);x->par=y;
 }
}
                                                             inline void split(Node* x, Node* y) {
                                                              {\tt change\_root(x);access(y);splay(x)}
};
                                                              to_child(x,nullptr,true);y->par=nullptr;
     Link-Cut Tree
struct Node{
                                                             inline void change_val(Node* node,int v){
Node *par, *ch[2];
                                                              access(node);splay(node);node->v=v;node->up();
 int xor_sum, v;
 bool is_rev;
                                                             inline int query(Node* x,Node* y){
                                                              change\_root(x); access(y); splay(y);
Node(int _v){
  v=xor_sum=_v;is_rev=false;
                                                              return y->xor_sum;
 par=ch[0]=ch[1]=nullptr;
                                                             inline Node* find_root(Node* node){
inline void set_rev(){is_rev^=1;swap(ch[0],ch[1]);}
                                                              access(node);splay(node);
inline void down(){
                                                              Node* last=nullptr;
 if(is_rev){
                                                              while(node!=nullptr){
   if(ch[0]!=nullptr) ch[0]->set_rev();
                                                               node->down();last=node;node=node->ch[0];
   if(ch[1]!=nullptr) ch[1]->set_rev();
   is_rev=false;
                                                              return last;
 }
                                                             set<pii> dic;
 inline void up(){
                                                             inline void add_edge(int u,int v){
 xor_sum=v;
                                                              if(u>v) swap(u,v)
                                                              if(find_root(node[u])==find_root(node[v])) return;
  if(ch[0]!=nullptr){
  xor_sum^=ch[0]->xor_sum;
                                                              dic.insert(pii(u,v))
  ch[0]->par=this;
                                                              link(node[u],node[v]);
                                                             inline void del_edge(int u,int v){
  if(ch[1]!=nullptr){
                                                              if(u>v) swap(u,v);
  xor_sum^=ch[1]->xor_sum;
   ch[1]->par=this;
                                                              if(dic.find(pii(u,v))==dic.end()) return;
  }
                                                              dic.erase(pii(u,v))
                                                              split(node[u],node[v]);
inline bool is_root(){
  {\color{red} \textbf{return}} \  \, {\color{blue} \textbf{par} = = \textbf{nullptr}} \  \, |\,|\,\backslash \\
                                                             2.5 LiChao Segment Tree
   (par->ch[0]!=this && par->ch[1]!=this);
                                                             struct Line{
bool is_rch(){return !is_root() && par->ch[1]==this;}
                                                              int m, k, id;
} *node[maxn], *stk[maxn];
                                                              Line() : id( -1 ) {}
int top;
                                                              Line( int a, int b, int c )
```

```
: m( a ), k( b ), id( c ) {}
                                                             template < typename T, typename Cmp_ = less< T > >
 int at( int x ) { return m * x + k; }
                                                             class SparseTable {
                                                             private:
class LiChao {
                                                              vector< vector< T > > tbl;
                                                              vector< int > lg;
private:
 int n; vector< Line > nodes;
                                                              T cv( T a, T b ) {
  inline int lc( int x ) { return 2 * x + 1; }
                                                               return Cmp_()( a, b ) ? a : b;
  inline int rc( int x ) { return 2 * x + 2; }
 void insert( int 1, int r, int id, Line ln ) {
  int m = (1 + r) >> 1;
                                                             public:
                                                              void init( T arr[], int n ) {
   if ( nodes[ id ].id == -1 ) {
                                                               // 0-base
   nodes[ id ] = ln;
                                                               lg.resize(n+1);
                                                               lg[0] = -1;
    return:
                                                               for( int i=1 ; i<=n ; ++i ) lg[i] = lg[i>>1] + 1;
                                                               tbl.resize(lg[n] + 1);
   bool atLeft = nodes[ id ].at( 1 ) < ln.at( 1 );</pre>
   if ( nodes[ id ].at( m ) < ln.at( m ) ) {</pre>
                                                               tbl[ 0 ].resize( n )
   atLeft ^= 1; swap( nodes[ id ], ln );
                                                               copy( arr, arr + n, tbl[ 0 ].begin() );
                                                               for ( int i = 1 ; i <= lg[ n ] ; ++ i ) {
   if ( r - 1 == 1 ) return;
                                                                int len = 1 << ( i - 1 ), sz = 1 << i;
                                                                tbl[ i ].resize( n - sz + 1 );
for ( int j = 0 ; j <= n - sz ; ++ j
   if ( atLeft ) insert( 1, m, lc( id ), ln );
   else insert( m, r, rc( id ), ln );
                                                                 tbl[i][j] = cv(tbl[i-1][j], tbl[i-1][j+len]);
  int query( int 1, int r, int id, int x ) {
  int ret = 0;
   if ( nodes[ id ].id != -1 )
                                                              T query( int 1, int r ) {
                                                               // 0-base [1, r)
    ret = nodes[ id ].at( x );
                                                               int wh = lg[ r - l ], len = 1 << wh;</pre>
   int m = (1 + r) >> 1;
   if ( r - l == 1 ) return ret;
                                                               return cv( tbl[ wh ][ 1 ], tbl[ wh ][ r - len ] );
   else if ( x < m )</pre>
                                                             };
    return max( ret, query( 1, m, lc( id ), x ) );
    return max( ret, query( m, r, rc( id ), x ) );
                                                                   Linear Basis
                                                             2.8
public:
                                                             struct LinearBasis {
 void build( int n_ ) {
                                                             private:
  n = n_; nodes.clear();
                                                              int n, sz;
  nodes.resize( n << 2, Line() );</pre>
                                                              vector< llu > B;
                                                              inline llu two( int x ){ return ( ( llu ) 1 ) << x; }</pre>
  void insert( Line ln ) { insert( 0, n, 0, ln ); }
                                                             public:
 int query( int x ) { return query( 0, n, 0, x ); }
                                                              void init( int n_ ) {
} lichao;
                                                               n = n_{;} B.clear(); B.resize(n); sz = 0;
2.6 Treap
                                                              void insert( llu x ) {
namespace Treap{
                                                               // add x into B
#define sz( x ) ( ( x ) ? ( ( x )->size ) : 0 )
                                                               for ( int i = n-1; i >= 0; --i ) if( two(i) & x ){
struct node{
                                                                if ( B[ i ] ) x ^= B[ i ];
  int size;
                                                                else {
 uint32_t pri;
                                                                 B[ i ] = x; sz++;
 node *lc, *rc;
                                                                 for ( int j = i - 1 ; j >= 0 ; -- j )
if( B[ j ] && ( two( j ) & B[ i ] ))
 node() : size(0), pri(rand()), lc(0), rc(0) {}
 void pull() {
                                                                    B[ i ] ^= B[ j ];
  size = 1;
                                                                 for (int j = i + 1; j < n; ++ j)
if (two(i) & B[j])
   if ( lc ) size += lc->size;
  if ( rc ) size += rc->size;
                                                                   B[ j ] ^= B[ i ];
 }
                                                                 break;
 }:
node* merge( node* L, node* R ) {
                                                               }
 if ( not L or not R ) return L ? L : R;
 if ( L->pri > R->pri ) {
                                                              inline int size() { return sz; }
  L->rc = merge( L->rc, R ); L->pull();
                                                              bool check( llu x )
  return L;
                                                               // is x in span(B) ?
  } else {
                                                               for ( int i = n-1 ; i >= 0 ; --i ) if( two(i) & x )
if( B[ i ] ) x ^= B[ i ];
  R->lc = merge( L, R->lc ); R->pull();
   return R:
                                                                else return false;
 }
                                                               return true:
void split_by_size( node*rt,int k,node*&L,node*&R ) {
                                                              llu kth_small(llu k) {
 if ( not rt ) L = R = nullptr;
                                                               /** 1-base would always > 0 **/
  else if( sz( rt->lc ) + 1 <= k ) {
                                                                /** should check it **/
                                                               /* if we choose at least one element
   split_by_size( rt->rc,k-sz(rt->lc)-1,L->rc,R );
                                                                 but size(B)(vectors in B)==N(original elements)
   L->pull();
                                                                  then we can't get 0 */
  } else {
                                                               11u ret = 0;
  R = rt;
                                                               for ( int i = 0 ; i < n ; ++ i ) if( B[ i ] ) {
   split_by_size( rt->lc, k, L, R->lc );
                                                                if( k & 1 ) ret ^= B[ i ];
   R->pull();
                                                                k >>= 1;
 }
                                                               }
                                                               return ret;
 #undef sz
```

} base;

2.7 Sparse Table

3 Graph

3.1 Euler Circuit

```
bool vis[ N ]; size_t la[ K ];
void dfs( int u, vector< int >& vec ) {
while ( la[ u ] < G[ u ].size() ) {</pre>
  if( vis[ G[ u ][ la[ u ] ].second ] ) {
   ++ la[ u ];
   continue;
 int v = G[ u ][ la[ u ] ].first;
vis[ G[ u ][ la[ u ] ].second ] = true;
++ la[ u ]; dfs( v, vec );
  vec.push_back( v );
3.2 BCC Edge
class BCC{
private:
 vector< int > low, dfn;
 int cnt:
 vector< bool > bridge;
 vector< vector< PII > > G;
 void dfs( int w, int f ) {
  low[ w ] = dfn[ w ] = cnt++
  for ( auto [ u, t ] : G[ w ] ) {
   if ( u == f ) continue;
   if ( dfn[ u ] != 0 ) {
  low[ w ] = min( low[ w ], dfn[ u ] );
   }else{
    dfs( u, w );
    low[ w ] = min( low[ w ], low[ u ] );
if ( low[ u ] > dfn[ w ] ) bridge[ t ] = true;
  }
public:
 void init( int n, int m ) {
  G.resize(n); cnt = 0;
  fill( G.begin(), G.end(), vector< PII >() );
  bridge.clear(); bridge.resize( m );
  low.clear(); low.resize( n );
  dfn.clear(); dfn.resize( n );
 void add_edge( int u, int v ) {
  // should check for multiple edge
  G[ u ].emplace_back( v, cnt );
  G[ v ].emplace_back( u, cnt ++ );
 }
 void solve(){
  cnt = 1;
  for (int i = 0; i < n; ++i)</pre>
   if (not vis[ i ]) dfs(i, i);
 // the id will be same as insert order, \theta\text{-base}
 bool is_bridge( int x ) { return bridge[ x ]; }
3.3 BCC Vertex
class BCC {
  private:
    int n, t, ecnt;
    vector<vector<pair<int, int>>> G;
    vector<int> low, tin, st, bcc;
    vector<bool> ap, ins;
void dfs(int x, int p)
       tin[x] = low[x] = ++t;
       int ch = 0;
      for (auto u: G[x]) {
  if (u.first == p) continue;
         if (not ins[u.second]) {
           st.push_back(u.second);
           ins[u.second] = true;
         if (tin[u.first])
           low[x] = min(low[x], tin[u.first]);
           continue;
         ++ch; dfs(u.first, x);
         low[x] = min(low[x], low[u.first]);
```

```
if (low[u.first] >= tin[x]) {
          ap[x] = true; ++ecnt;
          while (true) {
            int e = st.back(); st.pop_back();
            bcc[e] = ecnt;
            if (e == u.second) break;
        }
      if (ch == 1 \text{ and } p == x) ap[x] = false;
  public:
    void init(int n_) {
      n = n_, ecnt = 0; st.clear();
      G.clear(); G.resize(n);
      low.clear(); tin.clear();
      ap.assign(n, false);
    void add_edge(int u, int v) {
      G[u].emplace_back(v, ecnt);
      G[v].emplace_back(u, ecnt++);
    void solve() {
      ecnt = 0; bcc.resize(t);
      ins.assign(t, false);
      for (int i = 0; i < n; ++i)
        if (low[i] == 0) dfs(i, i);
    int get_id(int x) { return bcc[x];; }
    int count() { return ecnt; }
    bool is_ap(int x) { return ap[x]; }
};
3.4 2-SAT (SCC)
class TwoSat{
 private:
  int n:
  vector<vector<int>> rG,G,sccs;
  vector<int> ord,idx;
  vector<bool> vis,result;
  void dfs(int u){
   vis[u]=true
   for(int v:G[u])
   if(!vis[v]) dfs(v);
   ord.push_back(u);
  void rdfs(int u){
   vis[u]=false;idx[u]=sccs.size()-1;
   sccs.back().push_back(u);
   for(int v:rG[u])
    if(vis[v])rdfs(v);
 public:
  void init(int n_){
   n=n_;G.clear();G.resize(n);
   rG.clear();rG.resize(n)
   sccs.clear();ord.clear();
   idx.resize(n);result.resize(n);
  void add_edge(int u,int v){
   G[u].push_back(v);rG[v].push_back(u);
  void orr(int x,int y){
   if ((x^y)==1)return
   add_edge(x^1,y); add_edge(y^1,x);
  bool solve(){
   vis.clear();vis.resize(n);
   for(int i=0;i<n;++i)</pre>
    if(not vis[i])dfs(i);
   reverse(ord.begin(),ord.end());
   for (int u:ord){
    if(!vis[u])continue;
    sccs.push_back(vector<int>());
    rdfs(u);
   for(int i=0;i<n;i+=2)</pre>
    if(idx[i]==idx[i+1])
     return false;
   vector<bool> c(sccs.size());
   for(size_t i=0;i<sccs.size();++i){</pre>
    for(size_t j=0;j<sccs[i].size();++j){</pre>
```

```
result[sccs[i][j]]=c[i];
                                                                     dfschain(1,1);
     c[idx[sccs[i][j]^1]]=!c[i];
                                                                    PII get_inter( int u ) { return {tl[ u ], tr[ u ]}; }
                                                                    vector< PII > get_path( int u , int v ){
                                                                     vector< PII > res;
   return true;
                                                                     int g = lca( u, v );
while ( chain[ u ] != chain[ g ] ) {
  bool get(int x){return result[x];}
                                                                      int s = chain_st[ chain[ u ] ];
  inline int get_id(int x){return idx[x];}
  inline int count(){return sccs.size();}
                                                                      res.emplace_back( tl[ s ], tl[ u ] + 1 );
                                                                      u = fa[ s ][ 0 ];
} sat2:
                                                                     res.emplace_back( tl[ g ], tl[ u ] + 1 );
while ( chain[ v ] != chain[ g ] ) {
  int s = chain_st[ chain[ v ] ];
3.5 Lowbit Decomposition
class LowbitDecomp{
private:
int time_, chain_, LOG_N;
                                                                      res.emplace_back( tl[ s ], tl[ v ] + 1 );
vector< vector< int > > G, fa;
                                                                      v = fa[ s ][ 0 ];
vector< int > tl, tr, chain, chain_st;
// chain_ : number of chain
                                                                     res.emplace_back( tl[ g ] + 1, tl[ v ] + 1 );
// tl, tr[ u ] : subtree interval in the seq. of u
                                                                     return res;
// chain_st[ u ] : head of the chain contains u
// chian[ u ] : chain id of the chain u is on
                                                                     /* res : list of intervals from u to v
                                                                      * ( note only nodes work, not edge )
                                                                      * usage
inline int lowbit( int x ) {
  return x & ( -x );
                                                                      * vector< PII >& path = tree.get_path( u , v )
                                                                      * for( auto [ 1, r ] : path ) {
                                                                      * 0-base [ 1, r )
void predfs( int u, int f ) {
  chain[ u ] = 0;
                                                                      */
  for ( int v : G[ u ] ) {
  if ( v == f ) continue;
   predfs( v, u );
                                                                  } tree;
   if( lowbit( chain[ u ] ) < lowbit( chain[ v ] ) )</pre>
                                                                        MaxClique
    chain[ u ] = chain[ v ];
                                                                   // contain a self loop u to u, than u won't in clique
  if ( not chain[ u ] )
                                                                   template < size_t MAXN >
                                                                  class MaxClique{
   chain[ u ] = chain_ ++;
                                                                   private:
 void dfschain( int u, int f ) {
                                                                    using bits = bitset< MAXN >;
  fa[ u ][ 0 ] = f;
                                                                    bits popped, G[ MAXN ], ans;
                                                                    size_t deg[ MAXN ], deo[ MAXN ], n;
  for ( int i = 1 ; i < LOG_N ; ++ i )
   fa[u][i] = fa[fa[u][i-1]][i-1];
                                                                    void sort_by_degree() {
  tl[ u ] = time_++
                                                                     popped.reset();
  if ( not chain_st[ chain[ u ] ] )
                                                                     for ( size_t i = 0 ; i < n ; ++ i )</pre>
  chain_st[ chain[ u ] ] = u;
                                                                       deg[ i ] = G[ i ].count();
                                                                     for ( size_t i = 0 ; i < n ; ++ i ) {</pre>
  for ( int v : G[ u ] )
  if ( v != f and chain[ v ] == chain[ u ] )
                                                                       size_t mi = MAXN, id = 0;
                                                                       for ( size_t j = 0 ; j < n ; ++ j )
  if ( not popped[ j ] and deg[ j ] < mi )</pre>
  dfschain( v, u );
for ( int v : G[ u ] )
   if ( v != f and chain[ v ] != chain[ u ] )
                                                                           mi = deg[id = j];
                                                                       popped[ deo[ i ] = id ] = 1;
for( size_t u = G[ i ]._Find_first() ;
    dfschain( v, u );
  tr[ u ] = time_;
                                                                        u < n ; u = G[ i ]._Find_next( u ) )</pre>
inline bool anc( int u, int v ) {
  return tl[ u ] <= tl[ v ] \
  and tr[ v ] <= tr[ u ];</pre>
                                                                          -- deg[ u ];
                                                                     }
                                                                    void BK( bits R, bits P, bits X ) {
                                                                     if (R.count()+P.count() <= ans.count()) return;</pre>
public:
inline int lca( int u, int v ) {
                                                                     if ( not P.count() and not X.count() )
  if ( anc( u, v ) ) return u;
                                                                      if ( R.count() > ans.count() ) ans = R;
  for ( int i = LOG_N - 1 ; i >= 0 ; -- i )
                                                                      return:
   if ( not anc( fa[ u ][ i ], v ) )
    u = fa[ u ][ i ];
                                                                     /* greedily chosse max degree as pivot
                                                                     bits cur = P | X; size_t pivot = 0, sz = 0;
for ( size_t u = cur._Find_first() ;
  return fa[ u ][ 0 ];
void init( int n ) {
                                                                      u < n ; u = cur._Find_next( u ) )</pre>
  \begin{array}{l} n \ ++; \\ \text{for} \ ( \ \text{LOG\_N} \ = \ 0 \ ; \ ( \ 1 \ << \ \text{LOG\_N} \ ) \ < \ n \ ; \ ++ \ \text{LOG\_N} \ ); \\ \end{array} 
                                                                       if ( deg[ u ] > sz ) sz = deg[ pivot = u ];
                                                                     cur = P & ( ~G[ pivot ] );
  fa.clear();
                                                                     */ // or simply choose first
                                                                     bits cur = P & (~G[ ( P | X )._Find_first() ]);
  fa.resize( n, vector< int >( LOG_N ) );
 G.clear(); G.resize( n );
tl.clear(); tl.resize( n );
                                                                     for ( size_t u = cur._Find_first()
                                                                      u < n ; u = cur._Find_next( u ) ) {
                                                                      if ( R[ u ] ) continue;
  tr.clear(); tr.resize( n );
  chain.clear(); chain.resize( n );
                                                                      R[u] = 1;
                                                                      BK( R, P & G[ u ], X & G[ u ] );
  chain_st.clear(); chain_st.resize( n );
                                                                      R[u] = P[u] = 0, X[u] = 1;
void add_edge( int u , int v ) {
  // 1-base
  G[ u ].push_back( v );
                                                                  public:
 G[ v ].push_back( u );
                                                                    void init( size_t n_ ) {
                                                                     n = n_{-};
void decompose(){
                                                                     for ( size_t i = 0 ; i < n ; ++ i )
  chain_ = 1;
                                                                      G[ i ].reset();
  predfs( 1, 1 );
                                                                     ans.reset();
  time_{-} = 0;
```

```
void add_edges( int u, bits S ) { G[ u ] = S; }
                                                                    sort(r.begin(), r.end(),
                                                                     [&](int i, int j) { return d[i] > d[j]; });
void add_edge( int u, int v ) {
 G[u][v] = G[v][u] = 1;
                                                                    csort(r, c);
                                                                    dfs(r, c, 1, mask);
return ans; // sol[0 ~ ans-1]
int solve() {
 sort_by_degree(); // or simply iota( deo... )
for ( size_t i = 0 ; i < n ; ++ i )</pre>
                                                                 } graph;
   deg[ i ] = G[ i ].count();
                                                                  3.8 Virtural Tree
 bits pob, nob = 0; pob.set();
  for (size_t i=n; i<MAXN; ++i) pob[i] = 0;</pre>
                                                                 inline bool cmp(const int &i, const int &j) {
 for ( size_t i = 0 ; i < n ; ++ i ) {</pre>
                                                                   return dfn[i] < dfn[j];</pre>
   size_t v = deo[ i ];
  bits tmp; tmp[ v ] = 1;
BK( tmp, pob & G[ v ], nob & G[ v ] );
pob[ v ] = 0, nob[ v ] = 1;
                                                                 void build(int vectrices[], int k) {
                                                                   static int stk[MAX_N];
                                                                   sort(vectrices, vectrices + k, cmp);
                                                                   stk[sz++] = 0;
  return static_cast< int >( ans.count() );
                                                                   for (int i = 0; i < k; ++i) {
  int u = vectrices[i], lca = LCA(u, stk[sz - 1]);
  if (1)</pre>
                                                                    if (lca == stk[sz - 1]) stk[sz++] = u;
     MaxCliqueDyn
3.7
                                                                     while (sz \ge 2 \& dep[stk[sz - 2]] \ge dep[lca]) {
constexpr int kN = 150;
                                                                      addEdge(stk[sz - 2], stk[sz - 1]);
struct MaxClique { // Maximum Clique
bitset<kN> a[kN], cs[kN];
                                                                      sz--:
int ans, sol[kN], q, cur[kN], d[kN], n;
                                                                     if (stk[sz - 1] != lca) {
void init(int _n) {
                                                                      addEdge(lca, stk[--sz]);
 n = _n; for (int i = 0; i < n; i++) a[i].reset();
                                                                      stk[sz++] = lca, vectrices[cnt++] = lca;
void addEdge(int u, int v) { a[u][v] = a[v][u] = 1; }
void csort(vector<int> &r, vector<int> &c) {
                                                                     stk[sz++] = u;
 int mx = 1, km = max(ans - q + 1, 1), t = 0,
    m = int(r.size())
                                                                   for (int i = 0; i < sz - 1; ++i)
  cs[1].reset(); cs[2].reset()
                                                                    addEdge(stk[i], stk[i + 1]);
 for (int i = 0; i < m; i++) {
   int p = r[i], k = 1
   while ((cs[k] & a[p]).count()) k++;
                                                                  3.9 Tree Hashing
   if (k > mx) cs[++mx + 1].reset();
                                                                 uint64_t hsah( int u, int f ) {
   cs[k][p] = 1;
                                                                    uint64_t r = 127;
   if (k < km) r[t++] = p;
                                                                    for ( int v : G[ u ] ) {
  if ( v == f ) continue;
 c.resize(m);
                                                                      uint64_t hh = hsah( v, u );
 if(t) c[t-1] = 0;
                                                                      r = r + (hh * hh) % mod;
  for (int k = km; k <= mx; k++) {</pre>
  for (int p = int(cs[k]._Find_first());
                                                                    return r:
      p < kN; p = int(cs[k]._Find_next(p))) {
                                                                 }
    r[t] = p; c[t++] = k;
                                                                         Minimum Mean Cycle
  }
                                                                  /* minimum mean cycle O(VE) */
void dfs(vector<int> &r, vector<int> &c, int 1,
                                                                 struct MMC{
 bitset<kN> mask) {
                                                                  #define FZ(n) memset((n),0,sizeof(n))
 while (!r.empty()) {
                                                                  #define E 101010
   int p = r.back(); r.pop_back();
                                                                  #define V 1021
   mask[p] = 0;
                                                                 #define inf 1e9
   if (q + c.back() <= ans) return;</pre>
                                                                   struct Edge { int v,u; double c; };
   cur[q++] = p;
                                                                   int n, m, prv[V][V], prve[V][V], vst[V];
   vector<int> nr, nc;
                                                                   Edge e[E];
                                                                   vector<int> edgeID, cycle, rho;
   bitset<kN> nmask = mask & a[p];
   for (int i : r)
                                                                   double d[V][V];
    if (a[p][i]) nr.push_back(i);
                                                                   void init( int _n ) { n = _n; m = 0; }
                                                                   // WARNING: TYPE matters
   if (!nr.empty()) {
    if (1 < 4) {
                                                                   void add_edge( int vi , int ui , double ci )
     for (int i : nr)
                                                                   { e[ m ++ ] = { vi , ui , ci }; }
      d[i] = int((a[i] & nmask).count());
                                                                   void bellman_ford() {
                                                                    for(int i=0; i<n; i++) d[0][i]=0;
for(int i=0; i<n; i++) {</pre>
     sort(nr.begin(), nr.end(),
      [&](int x, int y)
                                                                     fill(d[i+1], d[i+1]+n, inf);
for(int j=0; j<m; j++) {
  int v = e[j].v, u = e[j].u;</pre>
        return d[x] > d[y];
      });
   csort(nr, nc); dfs(nr, nc, 1 + 1, nmask);
} else if (q > ans) {
                                                                      if(d[i][v]<inf && d[i+1][u]>d[i][v]+e[j].c) {
                                                                       d[i+1][u] = d[i][v]+e[j].c;
                                                                       prv[i+1][u] = v
    ans = q; copy(cur, cur + q, sol);
                                                                       prve[i+1][u] = j;
   c.pop_back(); q--;
  }
int solve(bitset<kN> mask) { // vertex mask
 vector<int> r, c;
                                                                   double solve(){
  for (int i = 0; i < n; i++)
                                                                    // returns inf if no cycle, mmc otherwise
  if (mask[i]) r.push_back(i);
for (int i = 0; i < n; i++)</pre>
                                                                    double mmc=inf;
                                                                    int st = -1;
   d[i] = int((a[i] & mask).count());
                                                                    bellman_ford();
```

```
for(int i=0; i<n; i++) {</pre>
                                                                   // Minimum Steiner Tree
                                                                   // O(V 3^T + V^2 2^T)
   double avg=-inf;
   for(int k=0; k<n; k++) {</pre>
                                                                   struct SteinerTree{
    if(d[n][i]<inf-eps)</pre>
                                                                   #define V 33
     avg=max(avg,(d[n][i]-d[k][i])/(n-k));\\
                                                                   #define T 8
                                                                   #define INF 1023456789
    else avg=max(avg,inf);
                                                                     int n , dst[V][V] , dp[1 << T][V] , tdst[V];</pre>
   if (avg < mmc) tie(mmc, st) = tie(avg, i);</pre>
                                                                     void init( int _n ){
                                                                      n = _n;
                                                                      for( int i = 0 ; i < n ; i ++ ){
  for( int j = 0 ; j < n ; j ++ )</pre>
  FZ(vst);edgeID.clear();cycle.clear();rho.clear();
  for (int i=n; !vst[st]; st=prv[i--][st]) {
   vst[st]++;
                                                                        dst[ i ][ j ] = INF;
   edgeID.PB(prve[i][st]);
                                                                       dst[ i ][ i ] = 0;
   rho.PB(st);
                                                                    void add_edge( int ui , int vi , int wi ){
  dst[ ui ][ vi ] = min( dst[ ui ][ vi ] , wi );
  dst[ vi ][ ui ] = min( dst[ vi ][ ui ] , wi );
  while (vst[st] != 2) {
   int v = rho.back(); rho.pop_back();
   cycle.PB(v);
   vst[v]++;
                                                                     void shortest_path(){
                                                                      for( int k = 0 ; k < n ; k ++ )
 reverse(ALL(edgeID));
                                                                       for( int i = 0 ; i < n ; i ++ )</pre>
  edgeID.resize(SZ(cycle));
                                                                        for( int j = 0 ; j < n ; j ++ )
dst[ i ][ j ] = min( dst[ i ][ j ],</pre>
  return mmc;
 }
} mmc;
                                                                             dst[ i ][ k ] + dst[ k ][ j ] );
3.11 Mo's Algorithm on Tree
                                                                     int solve( const vector<int>& ter ){
                                                                      int t = (int)ter.size();
int q; vector< int > G[N];
                                                                     for( int i = 0 ; i < (1 << t ) ; i ++ )
for( int j = 0 ; j < n ; j ++ )
dp[ i ][ j ] = INF;
struct Que{
int u, v, id;
} que[ N ];
                                                                      for( int i = 0 ; i < n ; i ++ )</pre>
int dfn[N], dfn_, block_id[N], block_, stk[N], stk_;
                                                                       dp[0][i] = 0;
void dfs( int u, int f ) {
                                                                      for( int msk = 1 ; msk < ( 1 << t ) ; msk ++ ){</pre>
dfn[ u ] = dfn_++; int saved_rbp = stk_;
for ( int v : G[ u ] ) {
                                                                       if( msk == ( msk & (-msk) ) ){
                                                                        int who = __lg( msk );
for( int i = 0 ; i < n ; i ++ )</pre>
  if ( v == f ) continue;
  dfs( v, u );
                                                                         dp[ msk ][ i ] = dst[ ter[ who ] ][ i ];
  if ( stk_ - saved_rbp < SQRT_N ) continue;</pre>
                                                                        continue:
  for ( ++ block_ ; stk_ != saved_rbp ; )
  block_id[ stk[ -- stk_ ] ] = block_;
                                                                       for( int i = 0 ; i < n ; i ++ )</pre>
                                                                        for( int submsk = ( msk - 1 ) & msk ; submsk ;
stk[ stk_ ++ ] = u;
                                                                              submsk = ( submsk - 1 ) & msk )
                                                                           dp[ msk ][ i ] = min( dp[ msk ][ i ],
bool inPath[ N ];
                                                                                    dp[ submsk ][ i ] +
void Diff( int u ) {
                                                                                    dp[ msk ^ submsk ][ i ] );
if ( inPath[ u ] ^= 1 ) { /*remove this edge*/ }
                                                                       for( int i = 0 ; i < n ; i ++ ){</pre>
 else { /*add this edge*/ }
                                                                        tdst[ i ] = INF;
for( int j = 0 ; j < n ; j ++ )
tdst[ i ] = min( tdst[ i ],</pre>
void traverse( int& origin_u, int u ) {
for ( int g = lca( origin_u, u )
                                                                                dp[ msk ][ j ] + dst[ j ][ i ] );
 origin_u != g ; origin_u = parent_of[ origin_u ] )
   Diff( origin_u );
                                                                       for( int i = 0 ; i < n ; i ++ )</pre>
 for (int v = u; v != origin_u; v = parent_of[v])
                                                                        dp[ msk ][ i ] = tdst[ i ];
 Diff( v );
 origin_u = u;
                                                                      int ans = INF:
                                                                      for( int i = 0 ; i < n ; i ++ )</pre>
void solve() {
                                                                       ans = min(ans, dp[(1 << t) - 1][i]);
 dfs( 1, 1 );
                                                                      return ans:
 while ( stk_ ) block_id[ stk[ -- stk_ ] ] = block_;
 sort( que, que + q, [](const Que& x, const Que& y) {
                                                                   } solver;
  return tie( block_id[ x.u ], dfn[ x.v ] )
       < tie( block_id[ y.u ], dfn[ y.v ] );
                                                                    3.13 Directed Minimum Spanning Tree
 } );
                                                                    template <typename T> struct DMST {
 int U = 1, V = 1;
 for ( int i = 0 ; i < q ; ++ i ) {
  pass( U, que[ i ].u );</pre>
                                                                     T g[maxn][maxn], fw[maxn];
                                                                     int n, fr[maxn];
  pass( V, que[ i ].v );
                                                                     bool vis[maxn], inc[maxn];
                                                                     void clear() {
  // we could get our answer of que[ i ].id
                                                                      for(int i = 0; i < maxn; ++i) {</pre>
                                                                       for(int j = 0; j < maxn; ++j) g[i][j] = inf;
}
                                                                       vis[i] = inc[i] = false;
Method 2:
dfs u:
                                                                     void addEdge(int u,int v,T w){g[u][v]=min(g[u][v],w);}
push u
                                                                     T operator()(int root, int _n) {
 iterate subtree
                                                                     n = _n; T ans = 0;
 push u
                                                                      if (dfs(root) != n) return -1;
Let P = LCA(u, v), and St(u) <= St(v)
if (P == u) query[St(u), St(v)]
                                                                      while (true) {
                                                                       for(int i = 1;i <= n;++i) fw[i] = inf, fr[i] = i;</pre>
else query[Ed(u), St(v)], query[St(P), St(P)]
                                                                       for (int i = 1; i <= n; ++i) if (!inc[i]) {
  for (int j = 1; j <= n; ++j) {</pre>
                                                                         if (!inc[j] && i != j && g[j][i] < fw[i]) {</pre>
```

3.12 Minimum Steiner Tree

```
fw[i] = g[j][i]; fr[i] = j;
                                                                 if (sdom[p] == i) dom[u] = i;
                                                                else dom[u] = p;
    }
                                                               }
                                                               if (i) merge(i, rp[i]);
   int x = -1:
   for(int i = 1;i <= n;++i)if(i != root && !inc[i]){</pre>
                                                              vector<int> p(n, -2); p[s] = -1;
                                                              for (int i = 1; i < tk; ++i)
  if (sdom[i] != dom[i]) dom[i] = dom[dom[i]];</pre>
    int j = i, c = 0;
    while(j!=root && fr[j]!=i && c<=n) ++c, j=fr[j];</pre>
    if (j == root || c > n) continue;
                                                              for (int i = 1; i < tk; ++i) p[rev[i]] = rev[dom[i]];</pre>
    else { x = i; break; }
                                                              return p:
                                                             }}
   if (!~x) {
    for (int i = 1; i <= n; ++i)</pre>
                                                             4
                                                                   Matching & Flow
     if (i != root && !inc[i]) ans += fw[i];
    return ans;
                                                             4.1
                                                                  Kuhn Munkres
                                                             class KM {
   int y = x;
                                                             private:
   for (int i = 1; i <= n; ++i) vis[i] = false;</pre>
                                                              static constexpr lld INF = 1LL << 60;</pre>
   do {
                                                              vector<lld> hl,hr,slk;
    ans += fw[y]; y = fr[y]; vis[y] = inc[y] = true;
                                                              vector<int> fl,fr,pre,qu;
   } while (y != x);
                                                              vector<vector<lld>> w;
   inc[x] = false;
                                                              vector<bool> v1,vr;
   for (int k = 1; k <= n; ++k) if (vis[k]) {
                                                              int n, ql, qr;
    for (int j = 1; j <= n; ++j) if (!vis[j]) {</pre>
                                                              bool check(int x) {
     if (g[x][j] > g[k][j]) g[x][j] = g[k][j]
                                                               if (vl[x] = true, fl[x] != -1)
     if (g[j][k] < \inf \&\& g[j][k]-fw[k] < g[j][x])
                                                                return vr[qu[qr++] = f1[x]] = true;
      g[j][x] = g[j][k] - fw[k];
                                                               while (x != -1) swap(x, fr[fl[x] = pre[x]]);
                                                               return false:
   }
                                                              void bfs(int s) {
  return ans;
                                                               fill(slk.begin(), slk.end(), INF);
                                                               fill(vl.begin(), vl.end(), false);
 int dfs(int now) {
                                                               fill(vr.begin(), vr.end(), false);
  int r = 1; vis[now] = true;
                                                               ql = qr = 0;
  for (int i = 1; i <= n; ++i)</pre>
                                                               qu[qr++] = s;
   if (g[now][i] < inf && !vis[i]) r += dfs(i);</pre>
                                                               vr[s] = true;
  return r;
                                                               while (true) {
                                                                11d d;
};
                                                                while (ql < qr) {
  for (int x = 0, y = qu[ql++]; x < n; ++x) {</pre>
3.14
      Dominator Tree
                                                                  if(!v1[x]&&slk[x]>=(d=h1[x]+hr[y]-w[x][y])){
namespace dominator {
                                                                   if (pre[x] = y, d) slk[x] = d;
vector<int> g[maxn], r[maxn], rdom[maxn];
                                                                    else if (!check(x)) return;
int dfn[maxn], rev[maxn], fa[maxn], sdom[maxn];
int dom[maxn], val[maxn], rp[maxn], tk;
                                                                 }
void init(int n) {
 // vertices are numbered from 0 to n - 1
                                                                d = INF;
 fill(dfn, dfn + n, -1);fill(rev, rev + n, -1);
                                                                for (int x = 0; x < n; ++x)
 fill(fa, fa + n, -1); fill(val, val + n, -1);
                                                                  if (!vl[x] && d > slk[x]) d = slk[x];
 fill(sdom, sdom + n, -1); fill(rp, rp + n, -1);
                                                                 for (int x = 0; x < n; ++x) {
 fill(dom, dom + n, -1); tk = 0;
                                                                 if (v1[x]) h1[x] += d;
 for (int i = 0; i < n; ++i) {
                                                                  else slk[x] -= d;
  g[i].clear(); r[i].clear(); rdom[i].clear();
                                                                 if (vr[x]) hr[x] -= d;
                                                                for (int x = 0; x < n; ++x)
void add_edge(int x, int y) { g[x].push_back(y); }
                                                                 if (!v1[x] && !s1k[x] && !check(x)) return;
void dfs(int x) {
 rev[dfn[x] = tk] = x;
 fa[tk] = sdom[tk] = val[tk] = tk; tk ++;
                                                             public:
for (int u : g[x]) {
  if (dfn[u] == -1) dfs(u), rp[dfn[u]] = dfn[x];
                                                              void init( int n_ ) {
                                                               n = n_; qu.resize(n);
  r[dfn[u]].push_back(dfn[x]);
                                                               fl.clear(); fl.resize(n, -1);
                                                               fr.clear(); fr.resize(n, -1);
                                                               hr.clear(); hr.resize(n); hl.resize(n);
void merge(int x, int y) { fa[x] = y; }
                                                               w.clear(); w.resize(n, vector<lld>(n));
int find(int x, int c = 0) {
                                                               slk.resize(n); pre.resize(n);
 if (fa[x] == x) return c ? -1 : x;
                                                               vl.resize(n); vr.resize(n);
int p = find(fa[x], 1);
if (p == -1) return c ? fa[x] : val[x];
                                                              void set_edge( int u, int v, lld x ) {w[u][v] = x;}
 if (sdom[val[x]]>sdom[val[fa[x]]]) val[x]=val[fa[x]];
                                                              1ld solve() {
 fa[x] = p;
                                                               for (int i = 0; i < n; ++i)
 return c ? p : val[x];
                                                                hl[i] = *max_element(w[i].begin(), w[i].end());
                                                               for (int i = 0; i < n; ++i) bfs(i);</pre>
vector<int> build(int s, int n) {
                                                               11d res = 0;
// return the father of each node in the dominator tree
                                                               for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
// p[i] = -2 if i is unreachable from s
                                                               return res;
 dfs(s);
 for (int i = tk - 1; i >= 0; --i)
                                                             } km;
  for (int u:r[i]) sdom[i]=min(sdom[i],sdom[find(u)]);
  if (i) rdom[sdom[i]].push_back(i);
                                                             4.2 Bipartite Matching
  for (int &u : rdom[i]) {
   int p = find(u);
                                                            class BipartiteMatching{
```

```
private:
vector<int> X[N], Y[N];
int fX[N], fY[N], n;
bitset<N> walked;
bool dfs(int x){
  for(auto i:X[x]){
   if(walked[i])continue;
   walked[i]=1;
   if(fY[i]==-1||dfs(fY[i])){
    fY[i]=x;fX[x]=i;
    return 1:
  }
  return 0;
public:
void init(int _n){
 n=_n; walked.reset();
  for(int i=0;i<n;i++)</pre>
   X[i].clear();Y[i].clear();
   fX[i]=fY[i]=-1;
  }
void add_edge(int x, int y){
 X[x].push_back(y); Y[y].push_back(y);
int solve(){
 int cnt = 0;
  for(int i=0;i<n;i++){</pre>
  walked.reset();
   if(dfs(i)) cnt++;
  // return how many pair matched
  return cnt;
};
      General Graph Matching
const int N = 514, E = (2e5) * 2;
struct Graph{
int to[E],bro[E],head[N],e;
int lnk[N], vis[N], stp,n;
void init( int _n ){
 stp = 0; e = 1; n = _n;
  for( int i = 0 ; i <= n ; i ++ )</pre>
  head[i] = lnk[i] = vis[i] = 0;
void add_edge(int u,int v){
  to[e]=v,bro[e]=head[u],head[u]=e++;
 to[e]=u,bro[e]=head[v],head[v]=e++;
bool dfs(int x){
  vis[x]=stp;
  for(int i=head[x];i;i=bro[i]){
  int v=to[i];
   if(!lnk[v]){
    lnk[x]=v, lnk[v]=x;
    return true
   }else if(vis[lnk[v]]<stp){</pre>
    int w=lnk[v];
    lnk[x]=v, lnk[v]=x, lnk[w]=0;
    if(dfs(w)) return true
    lnk[w]=v, lnk[v]=w, lnk[x]=0;
 }
  return false;
int solve(){
  int ans = 0;
  for(int i=1;i<=n;i++)</pre>
  if(not lnk[i]){
    stp++; ans += dfs(i);
   }
  return ans;
}
} graph;
      Minimum Weight Matching (Clique version)
```

```
struct Graph {
 // 0-base (Perfect Match)
int n, edge[MXN][MXN];
```

```
int match[MXN], dis[MXN], onstk[MXN];
  vector<int> stk;
  void init(int _n) {
   n = _n;
   for (int i=0; i<n; i++)</pre>
    for (int j=0; j<n; j++)</pre>
     edge[i][j] = 0;
  void set_edge(int u, int v, int w) {
  edge[u][v] = edge[v][u] = w;
  bool SPFA(int u){
  if (onstk[u]) return true;
   stk.PB(u);
   onstk[u] = 1;
   for (int v=0; v<n; v++){
    if (u != v && match[u] != v && !onstk[v]){
     int m = match[v];
     if (dis[m] > dis[u] - edge[v][m] + edge[u][v]){
      dis[m] = dis[u] - edge[v][m] + edge[u][v];
      onstk[v] = 1;
      stk.PB(v)
      if (SPFA(m)) return true;
      stk.pop_back();
      onstk[v] = 0;
    }
  onstk[u] = 0;
   stk.pop_back();
   return false;
  int solve() {
  // find a match
   for (int i=0; i<n; i+=2){</pre>
   match[i] = i+1;
   match[i+1] = i;
   while (true){
    int found = 0;
    for (int i=0; i<n; i++)</pre>
     dis[i] = onstk[i] = 0;
    for (int i=0; i<n; i++){</pre>
     stk.clear()
     if (!onstk[i] && SPFA(i)){
      found = 1:
      while (SZ(stk)>=2){
       int u = stk.back(); stk.pop_back();
       int v = stk.back(); stk.pop_back();
       match[u] = v;
       match[v] = u;
   if (!found) break;
   int ret = 0:
   for (int i=0; i<n; i++)
    ret += edge[i][match[i]];
   return ret>>1;
} graph;
4.5 Flow Models
   · Maximum/Minimum flow with lower bound / Circulation problem
```

- 1. Construct super source ${\cal S}$ and sink ${\cal T}$.
- 2. For each edge (x,y,l,u), connect $x\to y$ with capacity u-l. 3. For each vertex v, denote by in(v) the difference between the sum
- of incoming lower bounds and the sum of outgoing lower bounds. 4. If in(v)>0, connect $S\to v$ with capacity in(v), otherwise, connect
- $v \to T$ with capacity -in(v).
 - To maximize, connect $t \to s$ with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the maximum flow from s to t is the answer.
 - To minimize, let f be the maximum flow from S to T. Connect t o s with capacity ∞ and let the flow from S to T be f'. If $f+f'
 eq \sum_{v\in V, in(v)>0} in(v)$, there's no solution. Otherwise, f' is the answer.
- 5. The solution of each edge e is $l_e + f_e$, where f_e corresponds to the flow of edge e on the graph.
- Construct minimum vertex cover from maximum matching M on bipartite graph(X,Y)

```
Redirect every edge: y \to x if (x,y) \in M, x \to y otherwise.
      2. DFS from unmatched vertices in X 3. x \in X is chosen iff x is unvisited.
      4. y \in Y is chosen iff y is visited.
· Minimum cost cyclic flow
      1. Consruct super source {\cal S} and sink {\cal T}
      2. For each edge (x, y, c), connect x \to y with (cost, cap) = (c, 1) if
          c>0, otherwise connect y 	o x with (cost, cap)=(-c,1)
      3. For each edge with c < 0, sum these cost as K, then increase d(y)
         by 1, decrease d(x) by 1
      4. For each vertex v with d(v) > 0, connect S \to v with (cost, cap) =
         (0, d(v))
      5. For each vertex v with d(v) < 0, connect v \to T with (cost, cap) =
      6. Flow from S to T, the answer is the cost of the flow C+K
· Maximum densitu induced subgraph
      1. Binary search on answer, suppose we're checking answer {\cal T}
      2. Construct a max flow model, let K be the sum of all weights
      3. Connect source s \to v , v \in G with capacity K
      4. For each edge (u,v,w) in G, connect u \to v and v \to u with capacity
      5. For v \in \mathit{G}, connect it with sink v \to t with capacity K + 2T -
         (\sum_{e \in E(v)} w(e)) - 2w(v)
      6. T is a valid answer if the maximum flow f < K|V|
· Minimum weight edge cover
      1. For each v \in V create a copy v', and connect u' \to v' with weight
         w(u,v).
```

Project selection problem

cheapest edge incident to v.

1. If $p_v>0$, create edge (s,v) with capacity p_v ; otherwise, create edge

2. Connect v
ightarrow v' with weight $2\mu(v)$, where $\mu(v)$ is the cost of the

- (v, t) with capacity $-p_v$. 2. Create edge (u,v) with capacity w with w being the cost of choosing u without choosing v.
- 3. The mincut is equivalent to the maximum profit of a subset of projects.
- 0/1 quadratic programming

$$\sum_{x} c_{x} x + \sum_{y} c_{y} \bar{y} + \sum_{xy} c_{xy} x \bar{y} + \sum_{xyx'y'} c_{xyx'y'} (x\bar{y} + x'\bar{y'})$$

can be minimized by the mincut of the following graph:

3. Find the minimum weight perfect matching on G'.

- 1. Create edge (x,t) with capacity c_x and create edge (s,y) with ca-
- 2. Create edge (x,y) with capacity c_{xy} . 3. Create edge (x,y) and edge (x',y') with capacity $c_{xyx'y'}$.

4.6 Dinic

```
class Dinic{
private:
using CapT = int64_t;
struct Edge{
  int to, rev;
  CapT cap;
};
int n, st, ed;
vector<vector<Edge>> G;
vector<int> lv, idx;
bool BFS(){
 fill(lv.begin(), lv.end(), -1);
  queue<int> bfs;
  bfs.push(st);
  lv[st] = 0;
  while(!bfs.empty()){
  int u = bfs.front(); bfs.pop();
   for(auto e: G[u]){
    if(e.cap <= 0 or lv[e.to]!=-1) continue;</pre>
    lv[e.to] = lv[u] + 1;
    bfs.push(e.to);
  return (lv[ed]!=-1);
CapT DFS(int u, CapT f){
  if(u == ed) return f;
  CapT ret = 0;
  for(int& i = idx[u]; i < (int)G[u].size(); ++i){</pre>
   auto& e = G[u][i];
   if(e.cap <= 0 or lv[e.to]!=lv[u]+1) continue;</pre>
   CapT nf = DFS(e.to, min(f, e.cap));
   ret += nf; e.cap -= nf; f -= nf;
   G[e.to][e.rev].cap += nf;
   if(f == 0) return ret;
```

```
if(ret == 0) lv[u] = -1;
  return ret;
public:
 void init(int n_, int st_, int ed_){
  n = n_, st = st_, ed = ed_;
  G.resize(n); lv.resize(n);
  fill(G.begin(), G.end(), vector<Edge>());
 void add_edge(int u, int v, CapT c){
  G[u].push_back({v, (int)G[v].size(), c});
  G[v].push_back({u, ((int)G[u].size())-1, 0});
 CapT max_flow(){
  CapT ret = 0;
  while(BFS()){
   idx.assign(n, 0);
   CapT f = DFS(st, numeric_limits<CapT>::max());
   ret += f:
   if(f == 0) break;
  return ret;
} flow;
4.7
      Minimum Cost Maximum Flow
class MiniCostMaxiFlow{
 using CapT = int;
 using WeiT = int64_t;
 using PCW = pair<CapT,WeiT>;
 static constexpr CapT INF_CAP = 1 << 30;</pre>
 static constexpr WeiT INF_WEI = 1LL<<60;</pre>
private:
 struct Edge{
  int to, back;
  WeiT wei;
  CapT cap
  Edge() {}
  Edge(int a,int b,WeiT c,CapT d):
   to(a),back(b),wei(c),cap(d)
  {}
 };
 int ori, edd;
 vector<vector<Edge>> G;
 vector<int> fa, wh;
 vector<bool> inq;
 vector<WeiT> dis;
 PCW SPFA(){
  fill(inq.begin(),inq.end(),false);
  fill(dis.begin(), dis.end(), INF_WEI);
  queue<int> qq; qq.push(ori);
  dis[ori]=0;
  while(!qq.empty()){
   int u=qq.front();qq.pop();
   inq[u] = 0;
   for(int i=0;i<SZ(G[u]);++i){</pre>
    Edge e=G[u][i];
    int v=e.to;
    WeiT d=e.wei;
    if(e.cap<=0||dis[v]<=dis[u]+d)
     continue
    dis[v]=dis[u]+d;
    fa[v]=u, wh[v]=i;
    if(inq[v]) continue;
    qq.push(v);
    inq[v]=1;
  if(dis[edd]==INF_WEI)
   return {-1,-1};
  CapT mw=INF_CAP;
  for(int i=edd;i!=ori;i=fa[i])
   mw=min(mw,G[fa[i]][wh[i]].cap);
  for (int i=edd;i!=ori;i=fa[i]){
   auto &eg=G[fa[i]][wh[i]];
   eg.cap-=mw;
   G[eg.to][eg.back].cap+=mw;
  return {mw,dis[edd]};
 }
```

public:

void init(int a,int b,int n){

```
ori=a,edd=b;
  G.clear();G.resize(n);
  fa.resize(n);wh.resize(n);
  inq.resize(n); dis.resize(n);
 void add_edge(int st,int ed,WeiT w,CapT c){
 G[st].emplace_back(ed,SZ(G[ed]),w,c);
 G[ed].emplace_back(st,SZ(G[st])-1,-w,0);
PCW solve(){
 /* might modify to
 cc += ret.first * ret.second
 or
 ww += ret.first * ret.second
 CapT cc=0; WeiT ww=0;
 while(true)
  PCW ret=SPFA();
  if(ret.first==-1) break;
   cc+=ret.first;
  ww+=ret.second;
  }
 return {cc,ww};
}
} mcmf;
4.8 Global Min-Cut
const int maxn = 500 + 5;
int w[maxn][maxn], g[maxn];
bool v[maxn], del[maxn];
void add_edge(int x, int y, int c) {
w[x][y] += c; w[y][x] += c;
pair<int, int> phase(int n) {
memset(v, false, sizeof(v));
memset(g, 0, sizeof(g));
int s = -1, t = -1;
while (true) {
  int c = -1;
  for (int i = 0; i < n; ++i) {</pre>
  if (del[i] || v[i]) continue;
  if (c == -1 \mid | g[i] > g[c]) c = i;
 if (c == -1) break;
 v[s = t, t = c] = true;
 for (int i = 0; i < n; ++i) {
  if (del[i] || v[i]) continue;</pre>
   g[i] += w[c][i];
return make_pair(s, t);
int mincut(int n) {
int cut = 1e9;
memset(del, false, sizeof(del));
for (int i = 0; i < n - 1; ++i)
 int s, t; tie(s, t) = phase(n);
 del[t] = true; cut = min(cut, g[t]);
 for (int j = 0; j < n; ++j) {
 w[s][j] += w[t][j]; w[j][s] += w[j][t];</pre>
return cut;
5
    Math
```

5.1 Prime Table

```
\begin{array}{c} 1002939109, 1020288887, 1028798297, 1038684299, \\ 1041211027, 1051762951, 1058585963, 1063020809, \\ 1147930723, 1172520109, 1183835981, 1187659051, \\ 1241251303, 1247184097, 1255940849, 1272759031, \\ 1287027493, 1288511629, 1294632499, 1312650799, \\ 1868732623, 1884198443, 1884616807, 1885059541, \\ 1909942399, 1914471137, 1923951707, 1925453197, \\ 1979612177, 1980446837, 1989761941, 2007826547, \\ 2008033571, 2011186739, 2039465081, 2039728567, \\ 2093735719, 2116097521, 2123852629, 2140170259, \\ 3148478261, 3153064147, 3176351071, 3187523093, \\ 3196772239, 3201312913, 3203063977, 3204840059, \\ 3210224309, 3213032591, 3217689851, 3218469083, \\ 3219857533, 3231880427, 3235951699, 3273767923, \\ 3276188869, 3277183181, 3282463507, 3285553889, \\ 3319309027, 3327005333, 3327574903, 3341387953, \\ 3373293941, 3380077549, 3380892997, 3381118801 \end{array}
```

```
5.2 \lfloor \frac{n}{i} \rfloor Enumeration
T_0 = 1, \overline{T_{i+1}} = \lfloor \frac{n}{\lfloor \frac{n}{T_i + 1} \rfloor} \rfloor
5.3 ax+by=gcd
// ax+ny = 1, ax+ny == ax == 1 \pmod{n}
void exgcd(lld x,lld y,lld &g,lld &a,lld &b) {
 if (y == 0) g=x,a=1,b=0;
 else exgcd(y,x%y,g,b,a),b=(x/y)*a;
5.4 Pollard Rho
// does not work when n is prime
// return any non-trivial factor
llu pollard_rho(llu n){
 static auto f=[](llu x,llu k,llu m){
  return add(k,mul(x,x,m),m);
 if (!(n&1)) return 2;
 mt19937 rnd(120821011);
 while(true){
  llu y=2,yy=y,x=rnd()%n,t=1;
  for(llu sz=2;t==1;sz<<=1) {</pre>
   for(llu i=0;i<sz;++i){</pre>
    if(t!=1)break;
    yy=f(yy,x,n);
    t=gcd(yy>y?yy-y:y-yy,n);
   y=yy;
  if(t!=1&&t!=n) return t;
      Pi Count (Linear Sieve)
static constexpr int N = 1000000 + 5;
1ld pi[N];
vector<int> primes;
bool sieved[N]
11d cube_root(11d x){
 lld s=cbrt(x-static_cast<long double>(0.1));
 while(s*s*s <= x) ++s;
 return s-1;
1ld square_root(lld x){
 lld s=sqrt(x-static_cast<long double>(0.1));
 while(s*s <= x) ++s;
 return s-1;
void init(){
 primes.reserve(N);
 primes.push_back(1);
 for(int i=2;i<N;i++) {</pre>
  if(!sieved[i]) primes.push_back(i);
  pi[i] = !sieved[i] + pi[i-1];
for(int p: primes) if(p > 1) {
   if(p * i >= N) break;
    sieved[p * i] = true;
    if(p % i == 0) break;
11d phi(11d m, 11d n) {
 static constexpr int MM = 80000, NN = 500;
 static lld val[MM][NN];
 if(m<MM&&n<NN&&val[m][n])return val[m][n]-1;</pre>
 if(n == 0) return m;
 if(primes[n] >= m) return 1;
lld ret = phi(m,n-1)-phi(m/primes[n],n-1);
 if(m<MM&&n<NN) val[m][n] = ret+1;</pre>
 return ret;
11d pi_count(11d);
11d P2(11d m, 11d n) {
 11d sm = square_root(m), ret = 0;
 for(lld i = n+1;primes[i]<=sm;i++)</pre>
  ret+=pi_count(m/primes[i])-pi_count(primes[i])+1;
 return ret;
11d pi_count(11d m) {
 if(m < N) return pi[m];</pre>
 11d n = pi_count(cube_root(m));
```

```
return phi(m, n) + n - 1 - P2(m, n);
                                                              bool notprime[N];
                                                              11d phi[N];
                                                              void euler_sieve(int n){
5.6 Range Sieve
                                                               for(int i=2;i<n;i++){</pre>
                                                                if(!notprime[i]){
const int MAX_SQRT_B = 50000;
                                                                 primes.push_back(i); phi[i] = i-1;
const int MAX_L = 200000 + 5;
                                                                for(auto j: primes){
bool is_prime_small[MAX_SQRT_B];
                                                                 if(i*j >= n) break;
bool is_prime[MAX_L];
                                                                 notprime[i*j] = true;
                                                                 phi[i*j] = phi[i] * phi[j];
void sieve(lld 1, lld r){
                                                                 if(i \% j == 0){
                                                                  phi[i*j] = phi[i] * j;
 for(lld i=2;i*i<r;i++) is_prime_small[i] = true;</pre>
                                                                   break;
 for(lld i=1;i<r;i++) is_prime[i-1] = true;
if(l==1) is_prime[0] = false;</pre>
 for(lld i=2;i*i<r;i++){</pre>
  if(!is_prime_small[i]) continue;
                                                              }
  for(lld j=i*i;j*j<r;j+=i) is_prime_small[j]=false;
for(lld j=std::max(2LL, (l+i-1)/i)*i;j<r;j+=i)</pre>
                                                                      Gauss Elimination
                                                              5.10
    is_prime[j-l]=false;
                                                              void gauss(vector<vector<double>> &d) {
}
                                                                int n = d.size(), m = d[0].size();
                                                                for (int i = 0; i < m; ++i) {
5.7 Miller Rabin
                                                                  int p = -1;
                                                                   for (int j = i; j < n; ++j) {
  if (fabs(d[j][i]) < eps) continue;</pre>
bool isprime(llu x){
 static llu magic[]={2,325,9375,28178,\
                                                                     if (p == -1 || fabs(d[j][i])>fabs(d[p][i])) p=j;
           450775,9780504,1795265022};
 static auto witn=[](llu a,llu u,llu n,int t){
                                                                  if (p == -1) continue;
  a = mpow(a,u,n);
                                                                   for (int j = 0; j < m; ++j) swap(d[p][j], d[i][j]);
  if (!a)return 0;
                                                                   for (int j = 0; j < n; ++j) {
  while(t--){
                                                                     if (i == j) continue;
   1lu a2=mul(a,a,n);
                                                                     double z = d[j][i] / d[i][i];
   if(a2==1 && a!=1 && a!=n-1)
                                                                     for (int k = 0; k < m; ++k) d[j][k] -= z*d[i][k];
    return 1:
   a = a2:
                                                                }
  }
                                                              }
  return a!=1;
 };
                                                              5.11
                                                                     Fast Fourier Transform
 if(x<2)return 0;</pre>
 if(!(x&1))return x==2;
 llu x1=x-1; int t=0;
                                                                polynomial multiply:
 while(!(x1&1))x1>>=1,t++;
                                                                DFT(a, len); DFT(b, len);
 for(llu m:magic)if(witn(m,x1,x,t))return 0;
                                                                for(int i=0;i<len;i++) c[i] = a[i]*b[i];
 return 1;
                                                                iDFT(c, len);
                                                                (len must be 2^k and = 2^m(max(a, b)))
                                                                Hand written Cplx would be 2x faster
5.8 Inverse Element
                                                              Cplx omega[2][N];
// x's inverse mod k
                                                              void init_omega(int n) {
long long GetInv(long long x, long long k){
                                                               static constexpr llf PI=acos(-1);
 // k is prime: euler_(k)=k-1
                                                               const llf arg=(PI+PI)/n;
 return qPow(x, euler_phi(k)-1);
                                                               for(int i=0;i<n;++i)</pre>
// if you need [1, x] (most use: [1, k-1]
                                                                omega[0][i]={cos(arg*i),sin(arg*i)};
void solve(int x, long long k){
                                                               for(int i=0;i<n;++i)</pre>
                                                                omega[1][i]=conj(omega[0][i]);
 inv[1] = 1;
 for(int i=2;i<x;i++)</pre>
                                                              void tran(Cplx arr[],int n,Cplx omg[]) {
  inv[i] = ((long long)(k - k/i) * inv[k % i]) % k;
                                                               for(int i=0, j=0;i<n;++i){</pre>
                                                                if(i>j)swap(arr[i],arr[j]);
    Euler Phi Function
                                                                for(int l=n>>1;(j^=1)<1;l>>=1);
                                                               for (int l=2;l<=n;l<<=1){
  extended euler:
                                                                int m=1>>1;
  a^b mod p
                                                                for(auto p=arr;p!=arr+n;p+=1){
  if gcd(a, p)==1: a^(b%phi(p))
                                                                 for(int i=0;i<m;++i){</pre>
  elif b < phi(p): a^b mod p
                                                                  Cplx t=omg[n/l*i]*p[m+i];
  else a^(b%phi(p) + phi(p))
                                                                  p[m+i]=p[i]-t; p[i]+=t;
lld euler_phi(int x){
 11d r=1;
 for(int i=2;i*i<=x;++i){</pre>
  if(x%i==0){
                                                              void DFT(Cplx arr[],int n){tran(arr,n,omega[0]);}
   x/=i; r*=(i-1);
                                                              void iDFT(Cplx arr[],int n){
   while(x%i==0){
                                                               tran(arr,n,omega[1]);
    x/=i; r*=i;
                                                               for(int i=0;i<n;++i) arr[i]/=n;</pre>
  }
                                                                     High Speed Linear Recurrence
 if(x>1) r*=x-1;
                                                              #define mod 998244353
 return r;
                                                              const int N=1000010;
                                                              int n,k,m,f[N],h[N],a[N],b[N],ib[N];
vector<int> primes;
```

```
int pw(int x,int y){
                                                               n=rd();k=rd();
 int re=1;
                                                               for(int i=1;i<=k;++i)f[i]=(mod+rd())%mod;</pre>
                                                               for(int i=0;i<k;++i)h[i]=(mod+rd())%mod;</pre>
 if(y<0)y+=mod-1;
                                                               for(int i=a[k]=b[k]=1;i<=k;++i)</pre>
 while(y){
  if(y&1)re=(11)re*x%mod;
                                                                a[k-i]=b[k-i]=(mod-f[i])%mod;
  y>>=1; x=(11)x*x%mod;
                                                               int len=1;while(len<=(k<<1))len<<=1;</pre>
                                                               reverse(a,a+k+1);
 return re;
                                                               poly::inv(a,ib,len);
                                                               poly::cls(ib,k+1,len);
void inc(int&x,int y){x+=y;if(x>=mod)x-=mod;}
                                                               poly::ntt(b,len,1);
namespace poly{
                                                               poly::ntt(ib,len,1);
 const int G=3;
                                                               poly::pow(a,n);
 int rev[N],L;
                                                               int ans=0;
 void ntt(int*A,int len,int f){
                                                               for(int i=0;i<k;++i)inc(ans,(11)a[i]*h[i]%mod);</pre>
                                                               printf("%d\n",ans);
  for(L=0;(1<<L)<len;++L);
  for(int i=0;i<len;++i){</pre>
                                                               return 0;
   rev[i]=(rev[i>>1]>>1)|((i&1)<<(L-1));
   if(i<rev[i])swap(A[i],A[rev[i]]);</pre>
                                                              5.13
                                                                    Chinese Remainder
  for(int i=1;i<len;i<<=1){</pre>
                                                              lld crt(lld ans[], lld pri[], int n){
   int wn=pw(G, f*(mod-1)/(i<<1));</pre>
                                                               11d M = 1, ret = 0;
   for(int j=0;j<len;j+=i<<1){</pre>
                                                               for(int i=0;i<n;i++) M *= pri[i];
    int w=1;
                                                               for(int i=0;i<n;i++){</pre>
    1ld iv = (gcd(M/pri[i],pri[i]).FF+pri[i])%pri[i];
     int x=A[j+k],y=(11)w*A[j+k+i]%mod;
                                                                ret += (ans[i]*(M/pri[i])%M * iv)%M;
     A[j+k]=(x+y) \mod A[j+k+i]=(x-y+mod) \mod ;
                                                                ret %= M:
   }
                                                               return ret;
                                                              }
  if(!~f){
                                                              /*
   int iv=pw(len,mod-2);
                                                              Another:
   for(int i=0;i<len;++i)A[i]=(11)A[i]*iv%mod;</pre>
                                                              x = a1 \% m1
                                                              x = a2 \% m2
 }
                                                              g = gcd(m1, m2)
 void cls(int*A,int l,int r){
                                                              assert((a1-a2)%g==0)
  for(int i=1;i<r;++i)A[i]=0;}</pre>
                                                              [p, q] = exgcd(m2/g, m1/g)
 void cpy(int*A,int*B,int 1){
                                                              return a2+m2*(p*(a1-a2)/g)
  for(int i=0;i<1;++i)A[i]=B[i];}</pre>
                                                              0 <= x < lcm(m1, m2)
 void inv(int*A,int*B,int 1){
  if(l==1){B[0]=pw(A[0], mod-2); return;}
  static int t[N];
                                                              5.14 Berlekamp Massey
  int len=l<<1;
                                                              // x: 1-base, p[]: 0-base
  inv(A,B,l>>1);
                                                              template<size_t N>
  cpy(t,A,1);cls(t,1,len);
                                                              vector<llf> BM(llf x[N], size_t n){
  ntt(t,len,1);ntt(B,len,1);
                                                                size_t f[N]={0},t=0;llf d[N];
  for(int i=0;i<len;++i)</pre>
                                                                vector<llf> p[N];
   B[i]=(11)B[i]*(2-(11)t[i]*B[i]%mod+mod)%mod;
                                                                for(size_t i=1,b=0;i<=n;++i) {</pre>
  ntt(B,len,-1);cls(B,l,len);
                                                                  for(size_t j=0;j<p[t].size();++j)</pre>
                                                                    d[i]+=x[i-j-1]*p[t][j];
 void pmod(int*A){
                                                                  if(abs(d[i]-=x[i])<=EPS)continue;</pre>
  static int t[N];
                                                                  f[t]=i;if(!t){p[++t].resize(i);continue;}
  int l=k+1,len=1;while(len<=(k<<1))len<<=1;</pre>
                                                                  vector<llf> cur(i-f[b]-1);
  cpy(t, A, (k<<1)+1);
                                                                  11f k=-d[i]/d[f[b]];cur.PB(-k);
  reverse(t,t+(k<<1)+1);
                                                                  for(size_t j=0;j<p[b].size();j++)</pre>
  cls(t,1,len);
                                                                    cur.PB(p[b][j]*k);
  ntt(t,len,1);
                                                                  if(cur.size()<p[t].size())cur.resize(p[t].size());</pre>
  for(int i=0;i<len;++i)t[i]=(11)t[i]*ib[i]%mod;</pre>
                                                                  for(size_t j=0;j<p[t].size();j++)cur[j]+=p[t][j];</pre>
  ntt(t,len,-1);
                                                                  if(i-f[b]+p[b].size()>=p[t].size()) b=t;
  cls(t,1,len)
                                                                  p[++t]=cur;
  reverse(t,t+1);
  ntt(t,len,1)
                                                                return p[t];
  for(int i=0;i<len;++i)t[i]=(11)t[i]*b[i]%mod;</pre>
                                                              }
  ntt(t,len,-1);
  cls(t,1,len);
                                                              5.15 NTT
  for(int i=0;i<k;++i)A[i]=(A[i]-t[i]+mod)%mod;</pre>
  cls(A,k,len);
                                                              // Remember coefficient are mod P
                                                              /* p=a*2^n+1
 void pow(int*A,int n){
                                                                    2<sup>n</sup>
                                                                n
                                                                                                  root
  if(n==1) {cls(A,0,k+1);A[1]=1;return;}
                                                                16 65536
                                                                                 65537
                                                                                             1
                                                                                                  3
                                                                                                  3 */
                                                                                 7340033
  pow(A, n>>1);
                                                                20 1048576
                                                                                             7
  int len=1; while(len<=(k<<1))len<<=1;</pre>
                                                              // (must be 2<sup>k</sup>)
                                                              template<LL P, LL root, int MAXN>
  ntt(A,len,1);
  for(int i=0;i<len;++i)A[i]=(11)A[i]*A[i]%mod;</pre>
                                                              struct NTT{
                                                               static LL bigmod(LL a, LL b) {
  ntt(A,len,-1);
  pmod(A)
                                                                LL res = 1;
  if(n&1){
                                                                for (LL bs = a; b; b >>= 1, bs = (bs * bs) % P)
   for(int i=k;i;--i)A[i]=A[i-1];A[0]=0;
                                                                 if(b&1) res=(res*bs)%P;
   pmod(A);
                                                                return res;
                                                               static LL inv(LL a, LL b) {
                                                                if(a==1)return 1;
int main(){
                                                                return (((LL)(a-inv(b%a,a))*b+1)/a)%b;
```

```
return res;
LL omega[MAXN+1];
                                                                   Poly Modulo(const Poly &a, const Poly &b) {
NTT() +
  omega[0] = 1;
                                                                      if (a.size() < b.size()) return a;</pre>
  LL r = bigmod(root, (P-1)/MAXN);
                                                                      auto dv = Multiply(Divide(a, b), b);
  for (int i=1; i<=MAXN; i++)</pre>
                                                                      assert(dv.size() == a.size());
                                                                      for (int i = 0; i < dv.size(); ++i)
  dv[i] = (a[i] + kMod - dv[i]) % kMod;</pre>
   omega[i] = (omega[i-1]*r)%P;
 // n must be 2<sup>k</sup>
                                                                      while (!dv.empty() && dv.back() == 0) dv.pop_back();
void tran(int n, LL a[], bool inv_ntt=false){
  int basic = MAXN / n , theta = basic;
                                                                      return dv;
  for (int m = n; m >= 2; m >>= 1) {
                                                                   Poly Integral(const Poly &f) {
   int mh = m >> 1;
                                                                      int n = f.size();
   for (int i = 0; i < mh; i++) {
                                                                      VI res(n + 1);
    LL w = omega[i*theta%MAXN];
                                                                      for (int i = 0; i < n; ++i)
    for (int j = i; j < n; j += m) {</pre>
                                                                        res[i+1] = 1LL * f[i] * fpow(i + 1, kMod - 2)%kMod;
     int k = j + mh;
                                                                      return res;
     LL x = a[j] - a[k];
     if (x < 0) x += P;
                                                                   Poly Evaluate(const Poly &f, const VI &x) {
     a[j] += a[k];
                                                                      if (x.empty()) return Poly();
     if (a[j] > P) a[j] -= P;
                                                                      int n = x.size();
     a[k] = (w * x) % P;
                                                                      vector<Poly> up(n * 2);
                                                                      for (int i = 0; i < n; ++i) up[i+n] = {kMod-x[i], 1};
for (int i = n - 1; i > 0; --i)
                                                                      up[i] = Multiply(up[i * 2], up[i * 2 + 1]);
   theta = (theta * 2) % MAXN;
                                                                      vector<Poly> down(n * 2)
  int i = 0:
                                                                      down[1] = Modulo(f, up[1]);
  for (int j = 1; j < n - 1; j++) {
                                                                      for (int i = 2; i < n * 2; ++i)</pre>
   for (int k = n >> 1; k > (i ^= k); k >>= 1); if (j < i) swap(a[i], a[j]);
                                                                      down[i] = Modulo(down[i >> 1], up[i]);
                                                                      VI y(n);
                                                                      for (int i = 0; i < n; ++i) y[i] = down[i + n][0];
  if (inv_ntt) {
                                                                      return y;
   LL ni = inv(n,P);
   reverse( a+1 , a+n );
                                                                   Poly Interpolate(const VI &x, const VI &y) {
   for (i = 0; i < n; i++)
                                                                      int n = x.size();
    a[i] = (a[i] * ni) % P;
                                                                      vector<Poly> up(n * 2);
                                                                      for (int i = 0; i < n; ++i) up[i+n] = {kMod-x[i], 1};
                                                                      for (int i = n - 1; i > 0; --i)
up[i] = Multiply(up[i * 2], up[i * 2 + 1]);
const LL P=2013265921, root=31;
                                                                      VI a = Evaluate(Derivative(up[1]), x);
                                                                      for (int i = 0; i < n; ++i)
a[i] = 1LL * y[i] * fpow(a[i], kMod - 2) % kMod;
const int MAXN=4194304;
NTT<P, root, MAXN> ntt;
                                                                      vector<Poly> down(n * 2);
5.16 Polynomial Operations
                                                                      for (int i = 0; i < n; ++i) down[i + n] = {a[i]};
                                                                      for (int i = n - 1; i > 0; --i) {
  auto lhs = Multiply(down[i * 2], up[i * 2 + 1]);
using VI = vector<int>;
Poly Inverse(Poly f) {
                                                                        auto rhs = Multiply(down[i * 2 + 1], up[i * 2]);
  int n = f.size()
                                                                        assert(lhs.size() == rhs.size());
  Poly q(1, fpow(f[0], kMod - 2));
  for (int s = 2;; s <<= 1) {
   if (f.size() < s) f.resize(s);</pre>
                                                                        down[i].resize(lhs.size());
                                                                        for (int j = 0; j < lhs.size(); ++j)
  down[i][j] = (lhs[j] + rhs[j]) % kMod;</pre>
    Poly fv(f.begin(), f.begin() + s);
    Poly fq(q.begin(), q.end());
fv.resize(s + s); fq.resize(s + s);
                                                                      return down[1];
    ntt::Transform(fv, s + s);
    ntt::Transform(fq, s + s);
for (int i = 0; i < s + s; ++i)
   fv[i] = 1LL * fv[i] * fq[i]%kMod * fq[i]%kMod;</pre>
                                                                   Poly Log(Poly f) {
                                                                      int n = f.size();
                                                                      if (n == 1) return {0};
                                                                      auto d = Derivative(f);
    ntt::InverseTransform(fv, s + s);
    Poly res(s);
                                                                      f.resize(n - 1);
    for (int i = 0; i < s; ++i) {
                                                                      d = Multiply(d, Inverse(f));
       res[i] = kMod - fv[i];
                                                                      d.resize(n - 1)
       if (i < (s >> 1)) {
                                                                      return Integral(d);
         int v = 2 * q[i] % kMod;
         (res[i] += v) >= kMod ? res[i] -= kMod : 0;
                                                                   Poly Exp(Poly f) {
                                                                      int n = f.size()
    }
                                                                      Poly q(1, 1); f[0] += 1;
                                                                      for (int s = 1; s < n; s <<= 1) {
    q = res;
    if (s >= n) break;
                                                                           (f.size() < s + s) f.resize(s + s);
                                                                        Poly g(f.begin(), f.begin() + s + s);
                                                                        Poly h(q.begin(), q.end());
h.resize(s + s); h = Log(h);
  q.resize(n);
  return q;
                                                                        for (int i = 0; i < s + s; ++i)
Poly Divide(const Poly &a, const Poly &b) {
                                                                          g[i] = (g[i] + kMod - h[i]) % kMod;
                                                                        g = Multiply(g, q);
  int n = a.size(), m = b.size(), k = 2;
  while (k < n - m + 1) k <<= 1;</pre>
                                                                        g.resize(s + s); q = g;
  Poly ra(k), rb(k);
  for (int i = 0; i < min(n, k); ++i) ra[i] = a[n-1-i];
for (int i = 0; i < min(m, k); ++i) rb[i] = b[m-1-i];
                                                                      assert(q.size() >= n);
                                                                      q.resize(n);
  auto rbi = Inverse(rb);
                                                                      return q;
  auto res = Multiply(rbi, ra);
  res.resize(n - m + 1);
                                                                   Poly SquareRootImpl(Poly f) {
  reverse(res.begin(), res.end());
                                                                     if (f.empty()) return {0};
```

N = (N * f) % P;

```
int z = QuadraticResidue(f[0], kMod), n = f.size();
  constexpr int kInv2 = (kMod + 1) >> 1;
                                                                     return -1;
  if (z = -1) return \{-1\};
                                                                    }
  VIq(1, z);
                                                                    5.19 Quadratic residue
  for (int s = 1; s < n; s <<= 1) {
                                                                    struct Status{
    if (f.size() < s + s) f.resize(s + s);</pre>
    VI fq(q.begin(), q.end());
                                                                      11 x,y;
    fq.resize(s + s)
                                                                    11 w;
    VI f2 = Multiply(fq, fq);
                                                                    Status mult(const Status& a,const Status& b,ll mod){
    f2.resize(s + s);
    for (int i = 0; i < s + s; ++i)
                                                                      res.x=(a.x*b.x+a.y*b.y%mod*w)%mod;
       f2[i] = (f2[i] + kMod - f[i]) % kMod;
    f2 = Multiply(f2, Inverse(fq));
                                                                      res.y=(a.x*b.y+a.y*b.x)%mod;
    f2.resize(s + s);
    for (int i = 0; i < s + s; ++i)
                                                                    inline Status qpow(Status _base, 11 _pow, 11 _mod) {
       fq[i] = (fq[i]+kMod - 1LL*f2[i]*kInv2%kMod)%kMod;
                                                                      Status res = \{1, 0\};
                                                                      while(_pow>0){
                                                                         if(_pow&1) res=mult(res,_base,_mod);
  q.resize(n);
                                                                         _base=mult(_base,_base,_mod);
  return q;
                                                                         _pow>>=1;
Poly SquareRoot(Poly f) {
                                                                      return res;
  int n = f.size(), m = 0;
  while (m < n \&\& f[m] == 0) m++;
                                                                    inline 11 check(11 x,11 p){
  if (m == n) return VI(n);
  if (m & 1) return {-1}
                                                                      return qpow_mod(x,(p-1)>>1,p);
  auto s = SquareRootImpl(VI(f.begin() + m, f.end()));
                                                                    inline 11 get_root(11 n,11 p){
  if (s[0] == -1) return {-1};
  VI res(n);
                                                                      if(p==2) return 1;
                                                                      if(check(n,p)==p-1) return -1;
  for (int i = 0; i < s.size(); ++i) res[i + m/2]=s[i];</pre>
                                                                      11 a;
  return res;
                                                                      while(true){
                                                                         a=rand()%p;
5.17 FWT
                                                                         w=((a*a-n)%p+p)%p;
                                                                         if(check(w,p)==p-1) break;
/* xor convolution:
* x = (x0, x1) , y = (y0, y1)
* z = (x0y0 + x1y1 , x0y1 + x1y0 )
                                                                      Status res = \{a, 1\}
                                                                      res=qpow(res,(p+1)>>1,p);
                                                                      return res.x;
 * x' = (x0+x1, x0-x1), y' = (y0+y1, y0-y1)
* z' = ((x0+x1)(y0+y1), (x0-x1)(y0-y1))
 *z = (1/2) *z'
                                                                    5.20 De-Bruijn
 * or convolution:
                                                                    int res[maxn], aux[maxn], sz;
 * x = (x0, x0+x1), inv = (x0, x1-x0) w/o final div
                                                                    void db(int t, int p, int n, int k) {
 * and convolution:
                                                                     if (t > n) {
 * x = (x0+x1, x1), inv = (x0-x1, x1) w/o final div */
                                                                      if (n % p == 0)
for (int i = 1; i <= p; ++i)
const LL MOD = 1e9+7;
inline void fwt( LL x[ MAXN ] , int N , bool inv=0 ) {
                                                                         res[sz++] = aux[i];
 for( int d = 1 ; d < N ; d <<= 1 ) {</pre>
                                                                     } else {
  int d2 = d << 1;
                                                                      aux[t] = aux[t - p];
  for( int s = 0 ; s < N ; s += d2 )
                                                                      db(t + 1, p, n, k);
   for( int i = s , j = s+d ; i < s+d ; i++, j++ ){
LL ta = x[ i ] , tb = x[ j ];</pre>
                                                                      for (int i = aux[t - p] + 1; i < k; ++i) {
                                                                       aux[t] = i;
    x[ i ] = ta+tb;
                                                                       db(t + 1, t, n, k);
    x[ j ] = ta-tb;
if( x[ i ] >= MOD ) x[ i ] -= MOD;
                                                                      }
                                                                     }
    if(x[j] < 0) x[j] += MOD;
                                                                    int de_bruijn(int k, int n) {
  // return cyclic string of len k^n s.t. every string
 if( inv )
                                                                     // of len n using k char appears as a substring.
  for( int i = 0 ; i < N ; i++ ) {
    x[ i ] *= inv( N, MOD );</pre>
                                                                     if (k == 1) {
                                                                      res[0] = 0;
   x[ i ] %= MOD;
                                                                      return 1;
}
                                                                     for (int i = 0; i < k * n; i++) aux[i] = 0;
5.18
      DiscreteLog
                                                                     db(1, 1, n, k);
// Baby-step Giant-step Algorithm
                                                                     return sz;
11d BSGS(11d P, 11d B, 11d N) {
   // find B^L = N mod P
 unordered_map<lld, int> R;
                                                                    5.21 Simplex Construction
 1ld sq = (lld)sqrt(P);
                                                                    Standard form: maximize \sum_{1 \leq i \leq n} c_i x_i such that for all 1 \leq j \leq m,
 11d t = 1:
                                                                    \sum_{1 < i < n} A_{ji} x_i \leq b_j and x_i \geq 0 for all 1 \leq i \leq n.
 for (int i = 0; i < sq; i++) {
  if (t == N) return i;
if (!R.count(t)) R[t] = i;
                                                                       1. In case of minimization, let c_i^\prime = -c_i
                                                                      2. \sum_{1 \leq i \leq n} A_{ji} x_i \geq b_j \rightarrow \sum_{1 \leq i \leq n} -A_{ji} x_i \leq -b_j
  t = (t * B) % P;
                                                                      3. \sum_{1 < i < n} A_{ji} x_i = b_j
 11d f = inverse(t, P);
 for(int i=0;i<=sq+1;i++) {</pre>
                                                                             • \sum_{1 \le i \le n} A_{ji} x_i \le b_j
  if (R.count(N))
                                                                             • \sum_{1 \leq i \leq n} A_{ji} x_i \geq b_j
   return i * sq + R[N];
```

4. If x_i has no lower bound, replace x_i with $x_i - x_i'$

5.22 Simplex

```
namespace simplex {
// maximize c^Tx under Ax <= B
// return VD(n, -inf) if the solution doesn't exist
// return VD(n, +inf) if the solution is unbounded
using VD = vector<double>;
using VVD = vector<vector<double>>;
const double eps = 1e-9;
const double inf = 1e+9;
int n, m;
VVD d;
vector<int> p, q;
void pivot(int r, int s) {
double inv = 1.0 / d[r][s];
for (int i = 0; i < m + 2; ++i)
  for (int j = 0; j < n + 2; ++j)
  if (i != r && j != s)
   d[i][j] -= d[r][j] * d[i][s] * inv;
for(int i=0;i<m+2;++i) if (i != r) d[i][s] *= -inv;
for(int j=0;j<n+2;++j) if (j != s) d[r][j] *= +inv;</pre>
d[r][s] = inv; swap(p[r], q[s]);
bool phase(int z) {
int x = m + z;
while (true) {
 int s = -1;
  for (int i = 0; i <= n; ++i) {
  if (!z && q[i] == -1) continue;
  if (s == -1 \mid | d[x][i] < d[x][s]) s = i;
  if (d[x][s] > -eps) return true;
  int r = -1
  for (int i = 0; i < m; ++i) {
  if (d[i][s] < eps) continue;
if (r == -1 || \</pre>
   d[i][n+1]/d[i][s] < d[r][n+1]/d[r][s]) r = i;
  if (r == -1) return false;
 pivot(r, s);
VD solve(const VVD &a, const VD &b, const VD &c) {
m = b.size(), n = c.size();
d = VVD(m + 2, VD(n + 2));
for (int i = 0; i < m; ++i)</pre>
 for (int j = 0; j < n; ++j) d[i][j] = a[i][j];</pre>
p.resize(m), q.resize(n + 1);
 for (int i = 0; i < m; ++i)
 p[i] = n + i, d[i][n] = -1, d[i][n + 1] = b[i];
for (int i = 0; i < n; ++i) q[i] = i,d[m][i] = -c[i];
q[n] = -1, d[m + 1][n] = 1;
 int r = 0;
for (int i = 1; i < m; ++i)
  if (d[i][n + 1] < d[r][n + 1]) r = i;</pre>
 if (d[r][n + 1] < -eps) {</pre>
 pivot(r, n)
  if (!phase(1) \mid | d[m + 1][n + 1] < -eps)
  return VD(n, -inf);
  for (int i = 0; i < m; ++i) if (p[i] == -1) {
  int s = min_element(d[i].begin(), d[i].end() - 1)
       - d[i].begin();
   pivot(i, s);
  }
if (!phase(0)) return VD(n, inf);
VD x(n);
for (int i = 0; i < m; ++i)
 if (p[i] < n) \times [p[i]] = d[i][n + 1];
return x;
}}
```

6 Geometry

6.1 Circle Class

```
template<typename T>
struct Circle{
  static constexpr llf EPS = 1e-8;
  Point<T> o; T r;
  vector<Point<llf>> operator&(const Circle& aa)const{
    llf d=o.dis(aa.o);
    if(d>r+aa.r+EPS || d<fabs(r-aa.r)-EPS) return {};</pre>
```

```
17
  11f dt = (r*r - aa.r*aa.r)/d, d1 = (d+dt)/2;
  Point<llf> dir = (aa.o-o); dir /= d;
  Point<llf> pcrs = dir*d1 + o;
  dt=sqrt(max(0.0L, r*r - d1*d1)), dir=dir.rot90();
  return {pcrs + dir*dt, pcrs - dir*dt};
};
6.2 Segment Class
const long double EPS = 1e-8;
template<typename T>
struct Segment{
 // p1.x < p2.x
 Line<T> base;
 Point<T> p1, p2;
 Segment(): base(Line<T>()), p1(Point<T>()), p2(Point<T</pre>
    >()){
  assert(on_line(p1, base) and on_line(p2, base));
 Segment(Line<T> _, Point<T> __, Point<T> __): base(_)
   , p1(__), p2(___){
  assert(on_line(p1, base) and on_line(p2, base));
 template<typename T2>
  Segment(const Segment<T2>& _): base(_.base), p1(_.p1)
     , p2(_.p2) {}
 typedef Point<long double> Pt;
 friend bool on_segment(const Point<T>& p, const
    Segment& 1){
  if(on_line(p, l.base))
   return (1.p1.x-p.x)*(p.x-1.p2.x)>=0 and (1.p1.y-p.y)
    *(p.y-1.p2.y)>=0;
  return false;
 friend bool have_inter(const Segment& a, const Segment
    & b){
  if(is_parallel(a.base, b.base)){
   return on_segment(a.p1, b) or on_segment(a.p2, b) or
     on_segment(b.p1, a) or on_segment(b.p2, a);
  Pt inter = get_inter(a.base, b.base);
  return on_segment(inter, a) and on_segment(inter, b);
 friend inline Pt get_inter(const Segment& a, const
    Segment& b){
  if(!have_inter(a, b)){
   return NOT_EXIST
  }else if(is_parallel(a.base, b.base)){
   if(a.p1 == b.p1){
    if(on_segment(a.p2, b) or on_segment(b.p2, a))
    return INF_P;
    else return a.p1;
   }else if(a.p1 == b.p2){
    if(on_segment(a.p2, b) or on_segment(b.p1, a))
    return INF_P;
    else return a.p1;
   }else if(a.p2 == b.p1){
    if(on_segment(a.p1, b) or on_segment(b.p2, a))
    return INF_P;
    else return a.p2;
   }else if(a.p2 == b.p2){
    if(on_segment(a.p1, b) or on_segment(b.p1, a))
    return INF_P;
    else return a.p2;
   return INF_P;
  }
  return get_inter(a.base, b.base);
 friend ostream& operator<<(ostream& ss, const Segment&
  ss<<o.base<<", "<<o.p1<<" ~ "<<o.p2;
  return ss;
template<typename T>
inline Segment<T> get_segment(const Point<T>& a, const
    Point<T>& b){
 return Segment<T>(get_line(a, b), a, b);
```

6.3 Line Class

```
const Point<long double> INF_P(-1e20, 1e20);
const Point<long double> NOT_EXIST(1e20, 1e-20);
template<typename T>
struct Line{
static constexpr long double EPS = 1e-8;
// ax+by+c = 0
T a, b, c;
Line(T _=0, T
                __=1, T ___=0): a(_), b(__), c(___){
 assert(fabs(a)>EPS or fabs(b)>EPS);}
template<typename T2>
 Line(const Line<T2>& x): a(x.a), b(x.b), c(x.c){}
typedef Point<long double> Pt;
bool equal(const Line& o, true_type) const {
 return fabs(a-o.a)<EPS &&
 fabs(b-o.b) < EPS && fabs(c-o.b) < EPS;}
bool equal(const Line& o, false_type) const {
 return a==o.a and b==o.b and c==o.c;}
bool operator==(const Line& o) const {
 return equal(o, is_floating_point<T>());}
bool operator!=(const Line& o) const {
 return !(*this == o);
friend inline bool on_line__(const Point<T>& p, const
    Line& 1, true_type){
  return fabs(1.a*p.x + 1.b*p.y + 1.c) < EPS;
friend inline bool on_line__(const Point<T>& p, const
    Line& 1, false_type){
  return 1.a*p.x + 1.b*p.y + 1.c == 0;
friend inline bool on_line(const Point<T>&p, const
    Line& 1){
 return on_line__(p, 1, is_floating_point<T>());
friend inline bool is_parallel__(const Line& x, const
    Line& y, true_type){
  return fabs(x.a*y.b - x.b*y.a) < EPS;
friend inline bool is_parallel__(const Line& x, const
    Line& y, false_type){
  return x.a*y.b == x.b*y.a;
friend inline bool is_parallel(const Line& x, const
    Line& y){
  return is_parallel__(x, y, is_floating_point<T>());
friend inline Pt get_inter(const Line& x, const Line&
   y){
 typedef long double llf;
 if(x==y) return INF_P;
  if(is_parallel(x, y)) return NOT_EXIST;
 llf delta = x.a*y.b - x.b*y.a;
  llf delta_x = x.b*y.c - x.c*y.b;
 llf delta_y = x.c*y.a - x.a*y.c;
  return Pt(delta_x / delta, delta_y / delta);
friend ostream&operator<<(ostream&ss, const Line&o){</pre>
 ss<<o.a<<"x+"<<o.b<<"y+"<<o.c<<"=0";
 return ss;
template<typename T>
inline Line<T> get_line(const Point<T>& a, const Point<</pre>
    T>& b){}
return Line<T>(a.y-b.y, b.x-a.x, (b.y-a.y)*a.x-(b.x-a.
    x)*a.y);
```

6.4 Triangle Circumcentre

```
6.5 2D Convex Hull
template<typename T>
class ConvexHull_2D{
private:
 typedef Point<T> PT;
 vector<PT> d;
 struct myhash{
  uint64_t operator()(const PT& a) const {
   uint64_t xx=0, yy=0;
   memcpy(&xx, &a.x, sizeof(a.x));
   memcpy(&yy, &a.y, sizeof(a.y));
   uint64_t ret = xx*17+yy*31;
   ret = (ret ^ (ret >> 16))*0x9E3779B1;
ret = (ret ^ (ret >> 13))*0xC2B2AE35;
   ret = ret ^ xx;
   return (ret ^ (ret << 3)) * yy;</pre>
 };
 unordered_set<PT, myhash> in_hull;
public:
 void init(){in_hull.clear();d.clear();}
 void insert(const PT& x){d.PB(x);}
 void solve(){
  sort(ALL(d), [](const PT& a, const PT& b){
   return tie(a.x, a.y) < tie(b.x, b.y);});</pre>
  vector<PT> s(SZ(d)<<1); int o = 0;
  for(auto p: d) {
   while(o \ge 2 \& cross(p-s[o-2], s[o-1]-s[o-2]) <= 0)
    0--
   s[o++] = p;
  for(int i=SZ(d)-2, t = o+1;i>=0;i--){
   while(o = t\&cross(d[i] - s[o-2], s[o-1] - s[o-2]) <= 0)
    0--:
   s[o++] = d[i];
  }
  s.resize(o-1); swap(s, d);
  for(auto i: s) in_hull.insert(i);
 vector<PT> get(){return d;}
 bool in_it(const PT& x){
  return in_hull.find(x)!=in_hull.end();}
6.6 2D Farthest Pair
// stk is from convex hull
n = (int)(stk.size());
int pos = 1, ans = 0; stk.push_back(stk[0]);
for(int i=0;i<n;i++) {</pre>
 while(abs(cross(stk[i+1]-stk[i],
   stk[(pos+1)%n]-stk[i]))
   abs(cross(stk[i+1]-stk[i],
   stk[pos]-stk[i]))) pos = (pos+1)%n;
 ans = max({ans, dis(stk[i], stk[pos]),
  dis(stk[i+1], stk[pos])});
```

6.7 2D Closest Pair

```
struct cmp_y {
 bool operator()(const P& p, const P& q) const {
  return p.y < q.y;</pre>
 }
};
multiset<P, cmp_y> s;
void solve(P a[], int n) {
 sort(a, a + n, [](const P& p, const P& q) {
  return tie(p.x, p.y) < tie(q.x, q.y);</pre>
 11f d = INF; int pt = 0;
 for (int i = 0; i < n; ++i) {
  while (pt < i \text{ and } a[i].x - a[pt].x >= d)
   s.erase(s.find(a[pt++]));
  auto it = s.lower_bound(P(a[i].x, a[i].y - d));
  while (it != s.end() and it->y - a[i].y < d)
   d = min(d, dis(*(it++), a[i]));
  s.insert(a[i]);
}
```

// cross(pt, line.ed-line.st)>=0 <-> pt in half plane

```
6.8 kD Closest Pair (3D ver.)
                                                               vector< Line > lns;
                                                               deque< Line > que;
11f solve(vector<P> v) {
                                                               deque< Point > pt;
 shuffle(v.begin(), v.end(), mt19937());
                                                               double HPI() {
 // maybe could replace vector<P> with only P
                                                                sort( lns.begin(), lns.end() );
 unordered_map<lld, unordered_map<lld,
                                                                que.clear(); pt.clear();
  unordered_map<lld, vector<P>>>> m;
                                                                que.push_back( lns[ 0 ] );
 llf d = dis(v[0], v[1]);
                                                                for ( int i = 1 ; i < (int)lns.size() ; i ++ ) {</pre>
 auto Idx = [\&d] (11d x) -> 11d {
                                                                 if(!dcmp(lns[i].ang - lns[i-1].ang)) continue;
  return round(x * 2 / d) + 0.1;
                                                                 while ( pt.size() > 0 &&
 auto rebuild_m = [&m, &v, &Idx](int k) {
                                                                  dcmp(cross(lns[i].st,lns[i].ed,pt.back()))<0){</pre>
  m.clear();
                                                                  pt.pop_back();que.pop_back();
  for (int i = 0; i < k; ++i)
   m[Idx(v[i].x)][Idx(v[i].y)]
                                                                 while ( pt.size() > 0 &&
    [Idx(v[i].z)].push_back(v[i]);
                                                                  dcmp(cross(lns[i].st,lns[i].ed,pt.front()))<0){</pre>
 };
                                                                  pt.pop_front(); que.pop_front();
 rebuild_m(2);
 for (size_t i = 2; i < v.size(); ++i) {</pre>
                                                                 pt.push_back(get_point( que.back(), lns[ i ] ));
  const lld kx = Idx(v[i].x), ky = Idx(v[i].y),
                                                                 que.push_back( lns[ i ] );
     kz = Idx(v[i].z); bool found = false;
  for (int x = -2; x <= 2; ++x) {
                                                                while ( pt.size() > 0 &&
   const 11d nx = x + kx;
                                                                 dcmp(cross(que[0].st, que[0].ed, pt.back()))<0){</pre>
   if (m.find(nx) == m.end()) continue;
                                                                 que.pop_back();
   auto& mm = m[nx];
                                                                 pt.pop_back();
   for (int y = -2; y \le 2; ++y) {
    const lld ny = y + ky;
if (mm.find(ny) == mm.end()) continue;
                                                                while ( pt.size() > 0 &&
                                                                 dcmp(cross(que.back().st,que.back().ed,pt[0]))<0){</pre>
    auto& mmm = mm[ny];
                                                                 que.pop_front();
    for (int z = -2; z <= 2; ++z) {
                                                                 pt.pop_front();
     const 11d nz = z + kz;
     if (mmm.find(nz) == mmm.end()) continue;
                                                                pt.push_back(get_point(que.front(), que.back()));
     for (auto p: mmm[nz]) {
  if (dis(p, v[i]) < d) {</pre>
                                                                vector< Point > conv;
                                                                for ( int i = 0 ; i < (int)pt.size() ; i ++ )</pre>
       d = dis(p, v[i]);
                                                                 conv.push_back( pt[ i ] );
       found = true;
                                                                double ret = 0;
                                                                for ( int i = 1 ; i + 1 < (int)conv.size() ; i ++ )
                                                                 ret += abs(cross(conv[0], conv[i], conv[i + 1]));
                                                                return ret / 2.0;
  if (found) rebuild_m(i + 1);
                                                               6.11 Ternary Search on Integer
  else m[kx][ky][kz].push_back(v[i]);
                                                               int TernarySearch(int 1, int r) {
 return d;
                                                                // max value @ (1, r]
                                                                while (r - 1 > 1){
                                                                 int m = (1 + r) >> 1;
6.9 Simulated Annealing
                                                                 if (f(m) > f(m + 1)) r = m;
                                                                 else 1 = m;
11f anneal() {
 mt19937 rnd_engine( seed );
                                                                return 1+1;
 uniform_real_distribution< llf > rnd( 0, 1 );
 const 11f dT = 0.001;
 // Argument p
                                                               6.12 Minimum Covering Circle
 11f S_cur = calc( p ), S_best = S_cur;
for ( 11f T = 2000 ; T > EPS ; T -= dT ) {
                                                               template<typename T>
 // Modify p to p_prime
const llf S_prime = calc( p_prime );
                                                               Circle<llf> MinCircleCover(const vector<PT>& pts){
                                                                 random_shuffle(ALL(pts));
                                                                 Circle<llf> c = \{pts[0], 0\};
  const llf delta_c = S_prime - S_cur
  llf prob = min( ( llf ) 1, exp( -delta_c / T ) );
                                                                 for(int i=0;i<SZ(pts);i++){</pre>
                                                                   if(pts[i].in(c)) continue;
 if ( rnd( rnd_engine ) <= prob )</pre>
   S_{cur} = S_{prime}, p = p_{prime};
                                                                    c = {pts[i], 0};
  if ( S_prime < S_best ) // find min</pre>
                                                                   for(int j=0;j<i;j++){</pre>
   S_best = S_prime, p_best = p_prime;
                                                                      if(pts[j].in(c)) continue;
                                                                      c.o = (pts[i] + pts[j]) / 2;
                                                                      c.r = pts[i].dis(c.o)
 return S_best;
                                                                      for(int k=0;k<j;k++){</pre>
                                                                        if(pts[k].in(c)) continue;
6.10 Half Plane Intersection
                                                                        c = get_circum(pts[i], pts[j], pts[k]);
inline int dcmp ( double x ) {
                                                                   }
if( fabs( x ) < eps ) return 0;
return x > 0 ? 1 : -1;
                                                                 }
                                                                 return c;
struct Line {
Point st, ed;
                                                                      KDTree (Nearest Point)
 double ang;
 Line(Point _s=Point(), Point _e=Point()):
                                                               const int MXN = 100005;
  st(_s),ed(_e),ang(atan2(_e.y-_s.y,_e.x-_s.x)){}
                                                               struct KDTree {
inline bool operator< ( const Line& rhs ) const {
  if(dcmp(ang - rhs.ang) != 0) return ang < rhs.ang;</pre>
                                                                struct Node {
                                                                 int x,y,x1,y1,x2,y2;
                                                                 int id,f;
***R;
  return dcmp( cross( st, ed, rhs.st ) ) < 0;</pre>
                                                                } tree[MXN], *root;
```

int n;

sz = x.size();prefix[0]=0;power[0]=1;

```
LL dis2(int x1, int y1, int x2, int y2) {
                                                                  for(int i=1;i<=sz;i++)</pre>
 LL dx = x1-x2, dy = y1-y2;
                                                                   prefix[i]=add(mul(prefix[i-1], p), x[i-1]);
  return dx*dx+dy*dy;
                                                                  for(int i=1;i<=sz;i++)power[i]=mul(power[i-1], p);</pre>
 static bool cmpx(Node& a, Node& b){return a.x<b.x;}</pre>
                                                                 int query(int 1, int r){
 static bool cmpy(Node& a, Node& b){return a.y<b.y;}</pre>
                                                                  // 1-base (1, r]
                                                                  return sub(prefix[r], mul(prefix[1], power[r-1]));
 void init(vector<pair<int,int>> ip) {
  n = ip.size();
  for (int i=0; i<n; i++) {</pre>
   tree[i].id = i;
tree[i].x = ip[i].first;
                                                                7.2 Suffix Array
   tree[i].y = ip[i].second;
                                                                namespace sfxarray {
                                                                bool t[maxn * 2];
  root = build_tree(0, n-1, 0);
                                                                int hi[maxn], rev[maxn];
                                                                int _s[maxn * 2], sa[maxn * 2], c[maxn * 2];
 Node* build_tree(int L, int R, int d) {
                                                                int x[maxn], p[maxn], q[maxn * 2];
  if (L>R) return nullptr
                                                                // sa[i]: sa[i]-th suffix is the \
  int M = (L+R)/2; tree[M].f = d%2;
                                                                // i-th lexigraphically smallest suffix.
  nth_element(tree+L,tree+M,tree+R+1,d%2?cmpy:cmpx);
                                                                // hi[i]: longest common prefix \
  tree[M].x1 = tree[M].x2 = tree[M].x;
                                                                // of suffix sa[i] and suffix sa[i - 1].
  tree[M].y1 = tree[M].y2 = tree[M].y;
                                                                void pre(int *sa, int *c, int n, int z) {
  tree[M].L = build_tree(L, M-1, d+1);
                                                                 memset(sa, 0, sizeof(int) * n);
                                                                 memcpy(x, c, sizeof(int) * z);
  if (tree[M].L) {
   tree[M].x1 = min(tree[M].x1, tree[M].L->x1);
   tree[M].x2 = max(tree[M].x2, tree[M].L->x2);
                                                                void induce(int *sa,int *c,int *s,bool *t,int n,int z){
   tree[M].y1 = min(tree[M].y1, tree[M].L->y1);
tree[M].y2 = max(tree[M].y2, tree[M].L->y2);
                                                                 memcpy(x + 1, c, sizeof(int) * (z - 1));
for (int i = 0; i < n; ++i)
                                                                  if (sa[i] && !t[sa[i] - 1])
  tree[M].R = build_tree(M+1, R, d+1);
                                                                   sa[x[s[sa[i] - 1]]++] = sa[i] - 1;
  if (tree[M].R) {
                                                                 memcpy(x, c, sizeof(int) * z);
   tree[M].x1 = min(tree[M].x1, tree[M].R->x1);
                                                                 for (int i = n - 1; i >= 0; --i)
   tree[M].x2 = max(tree[M].x2, tree[M].R->x2);
tree[M].y1 = min(tree[M].y1, tree[M].R->y1);
                                                                  if (sa[i] && t[sa[i] - 1])
                                                                   sa[--x[s[sa[i] - 1]]] = sa[i] - 1;
   tree[M].y2 = max(tree[M].y2, tree[M].R->y2);
  }
                                                                void sais(int *s, int *sa, int *p, int *q,
                                                                 bool *t, int *c, int n, int z) {
bool uniq = t[n - 1] = true;
  return tree+M;
 int touch(Node* r, int x, int y, LL d2){
                                                                 int nn=0, nmxz=-1, *nsa = sa+n, *ns=s+n, last=-1;
  LL dis = sqrt(d2)+1;
                                                                 memset(c, 0, sizeof(int) * z);
  if (x<r->x1-dis || x>r->x2+dis ||
                                                                 for (int i = 0; i < n; ++i) uniq &= ++c[s[i]] < 2;
    y<r->y1-dis || y>r->y2+dis)
                                                                 for (int i = 0; i < z - 1; ++i) c[i + 1] += c[i];
   return 0;
                                                                 if (uniq) {
  return 1;
                                                                  for (int i = 0; i < n; ++i) sa[--c[s[i]]] = i;
                                                                  return;
 void nearest(Node* r,int x,int y,int &mID,LL &md2) {
  if (!r || !touch(r, x, y, md2)) return;
                                                                 for (int i = n - 2; i >= 0; --i)
  LL d2 = dis2(r->x, r->y, x, y);
                                                                  t[i] = (s[i] = s[i + 1] ? t[i + 1] : s[i] < s[i + 1]);
  if (d2 < md2 \mid | (d2 == md2 && mID < r->id)) {
                                                                 pre(sa, c, n, z);
for (int i = 1; i <= n - 1; ++i)
   mID = r -> id;
   md2 = d2;
                                                                  if (t[i] && !t[i - 1])
  }
                                                                   sa[--x[s[i]]] = p[q[i] = nn++] = i;
                                                                 induce(sa, c, s, t, n, z);
for (int i = 0; i < n; ++i)
  // search order depends on split dim
  if ((r->f == 0 && x < r->x) ||
    (r->f == 1 && y < r->y))
                                                                  if (sa[i] && t[sa[i]] && !t[sa[i] - 1]) {
   nearest(r->L, x, y, mID, md2);
                                                                  bool neq = last < 0 || \
                                                                   memcmp(s + sa[i], s + last)
   nearest(r->R, x, y, mID, md2);
                                                                    (p[q[sa[i]] + 1] - sa[i]) * sizeof(int));
  } else {
   nearest(r->R, x, y, mID, md2);
                                                                  ns[q[last = sa[i]]] = nmxz += neq;
   nearest(r->L, x, y, mID, md2);
                                                                 sais(ns, nsa, p+nn, q+n, t+n, c+z, nn, nmxz+1);
                                                                 pre(sa, c, n, z);
for (int i = nn - 1; i >= 0; --i)
 int query(int x, int y) {
                                                                  sa[--x[s[p[nsa[i]]]]] = p[nsa[i]];
  int id = 1029384756;
  LL d2 = 102938475612345678LL;
                                                                 induce(sa, c, s, t, n, z);
  nearest(root, x, y, id, d2);
  return id;
                                                                void build(const string &s) {
 }
                                                                 for (int i = 0; i < (int)s.size(); ++i) _s[i] = s[i];
} tree;
                                                                 _s[(int)s.size()] = 0; // s shouldn't contain 0
                                                                 sais(_s, sa, p, q, t, c, (int)s.size() + 1, 256);
for(int i = 0; i < (int)s.size(); ++i) sa[i]=sa[i+1];
     Stringology
                                                                 for(int i = 0;
                                                                                 i < (int)s.size(); ++i) rev[sa[i]]=i;</pre>
7.1 Hash
                                                                 int ind = 0; hi[0] = 0;
class Hash{
                                                                 for (int i = 0; i < (int)s.size(); ++i) {</pre>
                                                                  if (!rev[i]) {
private:
 const int p = 127, q = 1051762951;
                                                                   ind = 0;
 int sz, prefix[N], power[N];
                                                                   continue;
int add(int x, int y){return x+y>=q?x+y-q:x+y;}
int sub(int x, int y){return x-y<0?x-y+q:x-y;}</pre>
                                                                  while (i + ind < (int)s.size() && \</pre>
 int mul(int x, int y){return 1LL*x*y%q;}
                                                                   s[i + ind] == s[sa[rev[i] - 1] + ind]) ++ind;
                                                                  hi[rev[i]] = ind ? ind-- : 0;
public:
 void init(const string &x){
```

}}

7.3 Aho-Corasick Algorithm

```
class AhoCorasick{
private:
  static constexpr int Z = 26;
  struct node{
   node *nxt[ Z ], *fail;
   vector< int > data;
   node(): fail( nullptr ) {
    memset( nxt, 0, sizeof( nxt ) );
    data.clear();
  } *rt;
  inline int Idx( char c ) { return c - 'a'; }
 public:
  void init() { rt = new node(); }
  void add( const string& s, int d ) {
   node* cur = rt;
   for ( auto c : s ) {
  if ( not cur->nxt[ Idx( c ) ] )
  cur->nxt[ Idx( c ) ] = new node();
    cur = cur->nxt[ Idx( c ) ];
   cur->data.push_back( d );
  void compile() {
   vector< node* > bfs;
   size_t ptr = 0;
   for ( int i = 0 ; i < Z ; ++ i ) {
    if ( not rt->nxt[ i ] ) {
     // uncomment 2 lines to make it DFA
     // rt->nxt[i] = rt;
     continue;
    rt->nxt[ i ]->fail = rt;
    bfs.push_back( rt->nxt[ i ] );
   while ( ptr < bfs.size() ) {</pre>
    node* u = bfs[ ptr ++ ];
for ( int i = 0 ; i < Z ; ++ i ) {
  if ( not u->nxt[ i ] ) {
      // u->nxt[i] = u->fail->nxt[i];
      continue;
     node* u_f = u->fail;
     while ( u_f ) {
      if ( not u_f->nxt[ i ] ) {
       u_f = u_f->fail; continue;
      u->nxt[ i ]->fail = u_f->nxt[ i ];
      break;
     if ( not u_f ) u->nxt[ i ]->fail = rt;
     bfs.push_back( u->nxt[ i ] );
  void match( const string& s, vector< int >& ret ) {
   node* u = rt;
   for ( auto c : s ) {
    while ( u != rt and not u->nxt[ Idx( c ) ] )
     u = u->fail;
    u = u->nxt[ Idx( c ) ];
    if ( not u ) u = rt;
    node* tmp = u;
    while ( tmp != rt ) {
     for ( auto d : tmp->data )
ret.push_back( d );
     tmp = tmp->fail;
  }
} ac;
```

7.4 Suffix Automaton

```
struct Node{
Node *green, *edge[26];
int max_len;
Node(const int _max_len)
: green(NULL), max_len(_max_len){
  memset(edge,0,sizeof(edge));
}
```

```
} *ROOT, *LAST;
void Extend(const int c) {
 Node *cursor = LAST;
 LAST = new Node((LAST->max_len) + 1);
 for(;cursor&&!cursor->edge[c]; cursor=cursor->green)
  cursor->edge[c] = LAST;
 if (!cursor)
 LAST->green = ROOT;
 else {
  Node *potential_green = cursor->edge[c];
  if((potential_green->max_len)==(cursor->max_len+1))
   LAST->green = potential_green;
  else {
//assert(potential_green->max_len>(cursor->max_len+1));
   Node *wish = new Node((cursor->max_len) + 1);
   for(;cursor && cursor->edge[c]==potential_green;
      cursor = cursor->green)
    cursor->edge[c] = wish;
   for (int i = 0; i < 26; i++)
    wish->edge[i] = potential_green->edge[i];
   wish->green = potential_green->green;
   potential_green->green = wish;
   LAST->green = wish;
 }
char S[10000001], A[10000001];
int N;
int main(){
 scanf("%d%s", &N, S);
 ROOT = LAST = new Node(0);
 for (int i = 0; S[i]; i++)
  Extend(S[i] -
                 'a');
 while (N--){
  scanf("%s", A);
  Node *cursor = ROOT;
  bool ans = true;
  for (int i = 0; A[i]; i++){
   cursor = cursor->edge[A[i] - 'a'];
   if (!cursor) {
    ans = false;
    break;
   }
 puts(ans ? "Yes" : "No");
 return 0;
}
7.5 KMP
vector<int> kmp(const string &s) {
 vector<int> f(s.size(), 0);
 /* f[i] = length of the longest prefix
   (excluding s[0:i]) such that it coincides
   with the suffix of s[0:i] of the same length */
 /* i + 1 - f[i] is the length of the
   smallest recurring period of s[0:i] */
 int k = 0;
 for (int i = 1; i < (int)s.size(); ++i) {</pre>
  while (k > 0 \&\& s[i] != s[k]) k = f[k - 1];
  if (s[i] == s[k]) ++k;
  f[i] = k;
 return f;
vector<int> search(const string &s, const string &t) {
 // return 0-indexed occurrence of t in s
 vector<int> f = kmp(t), r;
for (int i = 0, k = 0; i < (int)s.size(); ++i)</pre>
  while(k > 0 && (k==(int)t.size() \mid \mid s[i]!=t[k]))
   k = f[k - 1]
  if (s[i] == t[k]) ++k;
  if (k == (int)t.size()) r.push_back(i-t.size()+1);
 return res;
}
7.6 Z value
char s[MAXN];
```

int len,z[MAXN]

void Z_value() {
 int i,j,left,right;

```
National Taiwan University - kiseki
 z[left=right=0]=len;
 for(i=1;i<len;i++)</pre>
  j=max(min(z[i-left],right-i),0);
  for(;i+j<len&&s[i+j]==s[j];j++);
  if(i+(z[i] = j)>right) {
   right=i+z[i];
   left=i;
}
7.7
      Manacher
int z[maxn];
int manacher(const string& s) {
  string t = ".";
 for(char c:s)) t += c, t += '.';
 int 1 = 0, r = 0, ans = 0;
 for (int i = 1; i < t.length(); ++i) {
z[i] = (r > i ? min(z[2 * 1 - i], r - i) : 1);
  while (i - z[i] >= 0 && i + z[i] < t.length()) {
   if(t[i - z[i]] == t[i + z[i]]) ++z[i];
   else break;
  if (i + z[i] > r) r = i + z[i], l = i;
 for(int i=1;i<t.length();++i) ans = max(ans, z[i]-1);</pre>
 return ans;
7.8 Lexico Smallest Rotation
string mcp(string s){
 int n = s.length();
 s += s:
 int i=0, j=1;
 while (i<n && j<n){</pre>
  int k = 0;
  while (k < n \&\& s[i+k] == s[j+k]) k++;
  if (s[i+k] <= s[j+k]) j += k+1;
  else i += k+1;
  if (i == j) j++;
 int ans = i < n ? i : j;</pre>
 return s.substr(ans, n);
7.9 BWT
struct BurrowsWheeler{
#define SIGMA 26
#define BASE 'a'
 vector<int> v[ SIGMA ];
 void BWT(char* ori, char* res){
  // make ori -> ori + ori
  // then build suffix array
 }
 void iBWT(char* ori, char* res){
 for( int i = 0 ; i < SIGMA ; i ++ )</pre>
   v[ i ].clear();
  int len = strlen( ori );
  for( int i = 0 ; i < len ; i ++ )</pre>
   v[ ori[i] - BASE ].push_back( i );
  vector<int> a;
  for( int i = 0 , ptr = 0 ; i < SIGMA ; i ++ )
for( auto j : v[ i ] ){</pre>
```

7.10 Palindromic Tree

a.push_back(j);

ptr = a[ptr];
}
res[len] = 0;

}

} bwt;

ori[ptr ++] = BASE + i;

res[i] = ori[a[ptr]];

```
struct palindromic_tree{
    struct node{
    int next[26],f,len;
    int cnt,num,st,ed;
    node(int l=0):f(0),len(l),cnt(0),num(0) {
        memset(next, 0, sizeof(next)); }
```

for(int i = 0 , ptr = 0 ; i < len ; i ++){</pre>

```
vector<node> st;
vector<char> s:
int last,n;
void init(){
 st.clear();s.clear();last=1; n=0;
 st.push_back(0);st.push_back(-1);
 st[0].f=1;s.push_back(-1); }
int getFail(int x){
 while(s[n-st[x].len-1]!=s[n])x=st[x].f;
 return x;}
void add(int c){
 s.push_back(c-='a'); ++n;
 int cur=getFail(last);
 if(!st[cur].next[c]){
  int now=st.size();
   st.push_back(st[cur].len+2);
   st[now].f=st[getFail(st[cur].f)].next[c];
   st[cur].next[c]=now;
  st[now].num=st[st[now].f].num+1;
 last=st[cur].next[c];
 ++st[last].cnt;}
int size(){ return st.size()-2;}
} pt;
int main() {
string s; cin >> s; pt.init();
for (int i=0; i<SZ(s); i++) {</pre>
 int prvsz = pt.size(); pt.add(s[i]);
 if (prvsz != pt.size()) {
  int r = i, l = r - pt.st[pt.last].len + 1;
   // pal @ [1,r]: s.substr(1, r-l+1)
 }
}
return 0;
```

8 Misc

8.1 Theorems

8.1.1 Kirchhoff's Theorem

Denote L be a $n \times n$ matrix as the Laplacian matrix of graph G, where $L_{ii} = d(i)$, $L_{ij} = -c$ where c is the number of edge (i,j) in G.

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.
- The number of directed spanning tree rooted at r in G is $|\det(\tilde{L}_{rr})|$.

8.1.2 Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniform randomly) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

8.1.3 Cayley's Formula

- Given a degree sequence d_1,d_2,\dots,d_n for each labeled vertices, there're $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.
- Let $T_{n,k}$ be the number of labeled forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.

8.1.4 Erdős-Gallai theorem

A sequence of non-negative integers $d_1 \geq d_2 \geq \ldots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1+d_2+\ldots+d_n$ is even and

$$\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min(d_i,k)$$

 $\text{holds for all } 1 \leq k \leq n.$

8.1.5 Havel–Hakimi algorithm

find the vertex who has greatest degree unused, connect it with other greatest vertex.

8.1.6 Hall's marriage theorem

Let G be a finite bipartite graph with bipartite sets X and Y. For a subset W of X, let $N_G(W)$ denote the set of all vertices in Y adjacent to some element of W. Then there is an X-saturating matching iff $\forall W\subseteq X, |W|\leq |N_G(W)|$

8.1.7 Euler's planar graph formula

```
V - E + F = C + 1, E \le 3V - 6(?)
```

8.1.8 Pick's theorem

For simple polygon, when points are all integer, we have $A=\#\{\text{lattice points in the interior}\}+\frac{\#\{\text{lattice points on the boundary}\}}{2}-1$

8.1.9 Lucas's theorem

```
 \binom{m}{n} \equiv \prod_{i=0}^k \binom{m_i}{n_i} \pmod{p}, \text{ where } m = m_k p^k + m_{k-1} p^{k-1} + \dots + m_1 p + m_0, \\ \text{and } n = n_k p^k + n_{k-1} p^{k-1} + \dots + n_1 p + n_0.
```

8.2 MaximumEmptyRect

```
int max_empty_rect(int n, int m, bool blocked[N][N]) {
static int mxu[2][N], me=0, he=1, ans=0;
for (int i=0;i<m;i++) mxu[he][i]=0;</pre>
for (int i=0;i<n;i++) {</pre>
 stack<PII, vector<PII>> stk;
 for (int j=0;j<m;++j) {
  if (blocked[i][j]) mxu[me][j]=0;</pre>
   else mxu[me][j]=mxu[he][j]+1;
   int la = j;
   while (!stk.empty()&&stk.top().FF>mxu[me][j]) {
    int x1 = i - stk.top().FF, x2 = i;
    int y1 = stk.top().SS, y2 = j;
    la = stk.top().SS; stk.pop();
    ans=max(ans,(x2-x1)*(y2-y1));
   if (stk.empty()||stk.top().FF<mxu[me][j])</pre>
    stk.push({mxu[me][j],la});
  while (!stk.empty()) {
   int x1 = i - stk.top().FF, x2 = i;
   int y1 = stk.top().SS-1, y2 = m-1;
   stk.pop(); ans=max(ans,(x2-x1)*(y2-y1));
 swap(me,he);
return ans;
```

8.3 DP-opt Condition

8.3.1 totally monotone (concave/convex)

```
\begin{array}{l} \forall i < i', j < j', B[i][j] \leq B[i'][j] \implies B[i][j'] \leq B[i'][j'] \\ \forall i < i', j < j', B[i][j] \geq B[i'][j] \implies B[i][j'] \geq B[i'][j'] \end{array}
```

8.3.2 monge condition (concave/convex)

```
\begin{array}{l} \forall i < i', j < j', B[i][j] + B[i'][j'] \geq B[i][j'] + B[i'][j] \\ \forall i < i', j < j', B[i][j] + B[i'][j'] \leq B[i][j'] + B[i'][j] \end{array}
```

8.4 Convex 1D/1D DP

```
struct segment {
int i, 1, r
segment() {}
segment(int a, int b, int c): i(a), l(b), r(c) {}
inline 1ld f(int 1, int r){return dp[1] + w(1+1, r);}
void solve() {
dp[0] = 0:
deque<segment> dq; dq.push_back(segment(0, 1, n));
for (int i = 1; i <= n; ++i) {
  dp[i] = f(dq.front().i, i);</pre>
  while(dq.size()&&dq.front().r<i+1) dq.pop_front();</pre>
  dq.front().l = i + 1;
  segment seg = segment(i, i + 1, n);
  while (dq.size() &&
   f(i, dq.back().1) < f(dq.back().i, dq.back().1))
    dq.pop_back();
  if (dq.size())
   int d = 1 << 20, c = dq.back().1;</pre>
   while (d >>= 1) if (c + d <= dq.back().r)
    if(f(i, c+d) > f(dq.back().i, c+d)) c += d;
   dq.back().r = c; seg.1 = c + 1;
  if (seg.1 <= n) dq.push_back(seg);</pre>
```

8.5 ConvexHull Optimization

```
inline lld DivCeil(lld n, lld d) { // ceil(n/d) return n / d + (((n < 0) != (d > 0)) && (n % d));
struct Line {
  static bool flag;
 lld a, b, 1, r; // y=ax+b in [1, r)
lld operator()(lld x) const { return a * x + b; }
  bool operator<(const Line& i) const {</pre>
   return flag ? tie(a, b) < tie(i.a, i.b) : 1 < i.1;</pre>
  11d operator&(const Line& i) const {
   return DivCeil(b - i.b, i.a - a);
};
bool Line::flag = true;
class ConvexHullMax {
  set<Line> L:
  public:
  ConvexHullMax() { Line::flag = true; }
  void InsertLine(lld a, lld b) { // add y = ax + b
  Line now = \{a, b, -INF, INF\};
   if (L.empty()) {
    L.insert(now);
    return;
  Line::flag = true;
   auto it = L.lower_bound(now);
   auto prv = it == L.begin() ? it : prev(it);
   if (it != L.end() && ((it != L.begin() &&
    (*it)(it->1) >= now(it->1) &&
    (*prv)(prv->r - 1) >= now(prv->r - 1)) ||
    (it == L.begin() && it->a == now.a))) return;
   if (it != L.begin())
    while (prv != L.begin() &&
     (*prv)(prv->1) <= now(prv->1))
      prv = --L.erase(prv)
    if (prv == L.begin() && now.a == prv->a)
     L.erase(prv);
   if (it != L.end())
   while (it != --L.end() &&
     (*it)(it->r) \le now(it->r))
      it = L.erase(it)
   if (it != L.begin())
   prv = prev(it);
    const_cast<Line*>(&*prv)->r=now.l=((*prv)&now);
   if (it != L.end())
   const_cast<Line*>(&*it)->l=now.r=((*it)&now);
  L.insert(it, now);
  11d Query(11d a) const { // query max at x=a
   if (L.empty()) return -INF;
  Line::flag = false;
   auto it = --L.upper_bound(\{0, 0, a, 0\});
   return (*it)(a);
};
 8.6 Josephus Problem
```

```
// n people kill m for each turn
int f(int n, int m) {
  int s = 0;
  for (int i = 2; i <= n; i++)
    s = (s + m) % i;
  return s;
}
// died at kth
int kth(int n, int m, int k){
  if (m == 1) return n-1;
  for (k = k*m+m-1; k >= n; k = k-n+(k-n)/(m-1));
  return k;
}
```

8.7 Cactus Matching

```
vector<int> init_g[maxn],g[maxn*2];
int n,dfn[maxn],low[maxn],par[maxn],dfs_idx,bcc_id;
void tarjan(int u){
  dfn[u]=low[u]=++dfs_idx;
  for(int i=0;i<(int)init_g[u].size();i++){</pre>
```

```
int v=init_g[u][i];
                                                                  init_g[b].push_back(a);
  if(v==par[u]) continue;
  if(!dfn[v]){
                                                                 par[1]=-1;
   par[v]=u;
                                                                 tarjan(1);
                                                                 dfs(1,-1);
   tarjan(v);
   low[u]=min(low[u],low[v]);
                                                                printf("%d\n", max(dp[1][0], dp[1][1]));
   if(dfn[u]<low[v]){</pre>
                                                                 return 0;
                                                               }
    g[u].push_back(v);
    g[v].push_back(u);
                                                               8.8 DLX
                                                               struct DLX {
  }else{
   low[u]=min(low[u],dfn[v]);
                                                                  const static int maxn=210;
   if(dfn[v]<dfn[u]){</pre>
                                                                  const static int maxm=210;
    int temp_v=u;
                                                                  const static int maxnode=210*210;
    bcc_id++;
                                                                  int n, m, size, row[maxnode], col[maxnode];
                                                                  int U[maxnode], D[maxnode], L[maxnode], R[maxnode];
    while(temp_v!=v){
     g[bcc_id+n].push_back(temp_v);
                                                                  int H[maxn], S[maxm], ansd, ans[maxn];
     g[temp_v].push_back(bcc_id+n);
                                                                  void init(int _n, int _m) {
     temp_v=par[temp_v];
                                                                    n = _n, m = _m;
                                                                    for(int i = 0; i <= m; ++i) {</pre>
    g[bcc_id+n].push_back(v);
                                                                      S[i] = 0;
    g[v].push_back(bcc_id+n);
                                                                      U[i] = D[i] = i;
    reverse(g[bcc_id+n].begin(),g[bcc_id+n].end());
                                                                      L[i] = i-1, R[i] = i+1;
                                                                    R[L[0] = size = m] = 0;
                                                                    for(int i = 1; i <= n; ++i) H[i] = -1;
int dp[maxn][2],min_dp[2][2],tmp[2][2],tp[2];
                                                                  void Link(int r, int c) {
void dfs(int u,int fa){
                                                                    ++S[col[++size] = c];
                                                                    row[size] = r; D[size] = D[c];
U[D[c]] = size; U[size] = c; D[c] = size;
if(H[r] < 0) H[r] = L[size] = R[size] = size;</pre>
 if(u<=n){
  for(int i=0;i<(int)g[u].size();i++){</pre>
   int v=g[u][i];
   if(v==fa) continue;
   dfs(v,u);
                                                                      R[size] = R[H[r]];
   memset(tp,0x8f,sizeof tp);
                                                                      L[R[H[r]]] = size;
                                                                      L[size] = H[r];
   if(v<=n){
    tp[0]=dp[u][0]+max(dp[v][0],dp[v][1]);
                                                                      R[H[r]] = size;
    tp[1]=max(
     dp[u][0]+dp[v][0]+1
                                                                  }
     dp[u][1]+max(dp[v][0],dp[v][1])
                                                                  void remove(int c) {
                                                                    L[R[c]] = L[c]; R[L[c]] = R[c];
                                                                    for(int i = D[c]; i != c; i = D[i])
  for(int j = R[i]; j != i; j = R[j]) {
    U[D[j]] = U[j];
   }else{
    tp[0]=dp[u][0]+dp[v][0];
    tp[1]=max(dp[u][0]+dp[v][1],dp[u][1]+dp[v][0]);
                                                                        D[U[j]] = D[j];
   dp[u][0]=tp[0],dp[u][1]=tp[1];
                                                                        --S[col[j]];
 }else{
  for(int i=0;i<(int)g[u].size();i++){</pre>
                                                                  void resume(int c) {
                                                                    L[R[c]] = c; R[L[c]] = c;
  int v=g[u][i];
                                                                    for(int i = U[c]; i != c; i = U[i])
   if(v==fa) continue;
   dfs(v,u);
                                                                      for(int j = L[i]; j != i; j = L[j]) {
                                                                        U[D[j]] = j;
  min_dp[0][0]=0;
                                                                        D[U[j]] = j
  min_dp[1][1]=1;
                                                                        ++S[col[j]];
  min_dp[0][1]=min_dp[1][0]=-0x3f3f3f3f;
  for(int i=0;i<(int)g[u].size();i++){</pre>
   int v=g[u][i];
                                                                  void dance(int d) {
   if(v==fa) continue;
                                                                    if(d>=ansd) return;
   memset(tmp,0x8f,sizeof tmp);
                                                                    if(R[0] == 0) {
   tmp[0][0]=max(
                                                                      ansd = d;
   min_dp[0][0]+max(dp[v][0],dp[v][1]),
                                                                      return;
    min_dp[0][1]+dp[v][0]
                                                                    int c = R[0];
                                                                    for(int i = R[0]; i; i = R[i])
   tmp[0][1]=min_dp[0][0]+dp[v][0]+1;
   tmp[1][0]=max(
                                                                      if(S[i] < S[c]) c = i;
   \min_{dp[1][0]+\max(dp[v][0],dp[v][1])}
                                                                    remove(c);
    min_dp[1][1]+dp[v][0]
                                                                    for(int i = D[c]; i != c; i = D[i]) {
                                                                      ans[d] = row[i]
   tmp[1][1]=min_dp[1][0]+dp[v][0]+1;
                                                                      for(int j = R[i]; j != i; j = R[j])
   memcpy(min_dp,tmp,sizeof tmp);
                                                                        remove(col[j]);
                                                                      dance(d+1);
  dp[u][1]=max(min_dp[0][1], min_dp[1][0]);
                                                                      for(int j = L[i]; j != i; j = L[j])
  dp[u][0]=min_dp[0][0];
                                                                        resume(col[j]);
                                                                    resume(c);
int main(){
                                                                  }
int m,a,b;
                                                               } sol;
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++){
  scanf("%d%d",&a,&b);</pre>
                                                                     Tree Knapsack
                                                               int dp[N][K];PII obj[N];
 init_g[a].push_back(b);
                                                               vector<int> G[N];
```

```
void dfs(int u, int mx){
 for(int s: G[u]) {
  if(mx < obj[s].first) continue;</pre>
  for(int i=0;i<=mx-obj[s].FF;i++)</pre>
   dp[s][i] = dp[u][i];
  dfs(s, mx - obj[s].first);
  for(int i=obj[s].FF;i<=mx;i++)</pre>
   dp[u][i] = max(dp[u][i],
    dp[s][i - obj[s].FF] + obj[s].SS);
int main(){
 int n, k; cin >> n >> k;
 for(int i=1;i<=n;i++){</pre>
  int p; cin >> p;
 G[p].push_back(i);
  cin >> obj[i].FF >> obj[i].SS;
 dfs(0, k); int ans = 0;
 for(int i=0;i<=k;i++) ans = max(ans, dp[0][i]);</pre>
 cout << ans << '\n';
 return 0;
8.10
      N Queens Problem
vector< int > solve( int n ) {
 // no solution when n=2, 3
 vector< int > ret;
 if ( n % 6 == 2 ) {
 for ( int i = 2 ; i <= n ; i += 2 )
  ret.push_back( i );</pre>
  ret.push_back( 3 ); ret.push_back( 1 );
  for ( int i = 7 ; i <= n ; i += 2 )
ret.push_back( i );
  ret.push_back( 5 );
 } else if ( n % 6 == 3 ) {
  for ( int i = 4 ; i <= n ; i += 2 )
  ret.push_back( i );
  ret.push_back( 2 );
  for ( int i = 5 ; i <= n ; i += 2 )
  ret.push_back( i );</pre>
  ret.push_back( 1 ); ret.push_back( 3 );
 } else {
  for ( int i = 2 ; i <= n ; i += 2 )
   ret.push_back( i );
  for ( int i = 1 ; i <= n ; i += 2 )
   ret.push_back( i );
 return ret;
}
8.11 Aliens Optimization
long long Alien() {
  long long c = kInf;
  for (int d = 60; d >= 0; --d) {
    // cost can be negative, depending on the problem.
    if (c - (1LL << d) < 0) continue;</pre>
    long long ck = c - (1LL \ll d);
    pair<long long, int> r = check(ck);
    if (r.second == k) return r.first - ck * k;
    if (r.second < k) c = ck;
 pair<long long, int> r = check(c);
return r.first - c * k;
```