RESPUESTA FORZADA

Se llama respuesta forzada debido a la fuente de excitación y cuando las condiciones iniciales en los elementos son cero.

La solución de una ecuación diferencial no homogénea es la suma de dos soluciones, la llamada solución homogénea y la solución particular.

$$L\frac{d^2i(t)}{dt^2} + R\frac{di(t)}{dt} + \frac{1}{C}i(t) = v(t)$$
 e. d. no homogenea

$$i_{total}(t) = i_h(t) \Big|_{v(t)=0}^{ci\neq 0} + i_p(t) \Big|_{v(t)\neq 0}^{ci=0}$$

en la cual

ci son las condiciones iniciales

 $i_h(t)$ es la solución homogénea o respuesta libre (estado puramente transitorio)

 $i_p(t)$ es la solución particular o respuesta forzada (estado transitorio + estado permanente)

v(t) excitación del sistema

FORMA DE LA FUNCIÓN DE EXCITACIÓN	FORMA DE LA SOLUCIÓN PARTICULAR
K	A
Kt	A+Bt
$K_0 + K_1 t + K_2 t^2$	A+Bt+Ct ²
Ke ^{-bt}	Ae ^{-bt}
Kcosωt	Acosωt+ Bsenωt
Ksenωt	Acosωt+ Bsenωt
Ke ^{at} cosωt	e ^{at} (Acosωt+ Bsenωt)

Fig. Relación de la forma de excitación y la solución particular

Repuesta forzada en un circuito RC

Para el circuito mostrado, calcular la respuesta *i*(t) para t>0

Solución:

1°.- t<0 o t=0⁻ se observa que el capacitor esta sin carga, por lo tanto $v_c(0^-) = 0$

2°.- t=0 se acciona el interruptor y se inicia el análisis, pero como la capacitancia no permite cambios bruscos de voltaje $v_c(0) = 0$ y el capacitor se comporta como cortocircuito.

La corriente en este tiempo es

$$i(0) = \frac{E}{R}$$

 3° .- Para $t=0^{+}$

por LVK

$$v_R(t) + v_c(t) = E \tag{1}$$

que puede escribirse

$$Ri(t) + \frac{1}{C} \int i(t)dt = E \tag{2}$$

Derivando
$$R \frac{di(t)}{dt} + \frac{1}{C}i(t) = 0$$

Realizando el cambio $\frac{d}{dt} = D$

$$RDi(t) + \frac{1}{C}i(t) = 0$$

Factorizando y haciendo el comentario en la ecuación

$$\underbrace{\left(RD + \frac{1}{C}\right)}_{=0} \underbrace{i(t)}_{\neq 0} = 0$$

El producto de los dos factores en la ecuación anterior debe ser igual cero. Pero i(t) no puede ser cero porque es la solución.

$$RD + \frac{1}{C} = 0$$

Despejando D

$$D = -\frac{1}{RC}$$
 raíz

Ahora proponiendo la solución para i(t)

$$i(t) = Ke^{Dt} = Ke^{-\frac{1}{RC}t}$$

Para calcular la constante arbitraria K se utilizan las condiciones en t=0, por lo tanto, se debe evaluar la propuesta en t=0.

Evaluando
$$i(0) = Ke^{-\frac{1}{RC}(0)} = Ke^{1} = K$$

Pero del paso 2
$$i(0) = \frac{E}{R}$$
 implica que $K = \frac{E}{R}$

Sustituyendo en la solución propuesta se obtiene la solución.

Grafica para la función corriente del circuito RC en respuesta forzada

Utilizando la ley de ohm para voltaje en el resistor

$$v_R(t) = Ri(t)$$
 \longrightarrow $v_R(t) = R(\frac{E}{R}e^{-\frac{1}{RC}t})$
 $v_R(t) = Ee^{-\frac{1}{RC}t}$ [V]

de (1) se puede despejar el voltaje del capacitor

$$v_C(t) = E - v_R(t)$$

$$v_C(t) = E - Ee^{-\frac{1}{RC}t} \text{ [V]}$$

$$v_C(t) = E(1 - e^{-\frac{1}{RC}t}) \text{ [V]}$$

Tarea. Graficar las funciones de $v_R(t)$ y $v_C(t)$

Respuesta forzada en un circuito RL

Para el circuito mostrado, calcular la respuesta *i*(t) para t>0

Solución

- 1. t<0 o $t=0^-$ observamos que el inductor esta desconectado, por lo tanto $i_L(0^-)=0$
- 2. t=0 se acciona el interruptor y se inicia el análisis, pero como la inductancia no permite cambios bruscos de corriente $i_L(0) = 0$ y el inductor se comporta como circuito abierto, esto implica $v_L(0) = E$.

3. Para t>0

por LVK

$$v_R(t) + v_L(t) = E \tag{1}$$

que puede escribirse

$$Ri(t) + L\frac{di(t)}{dt} = E \tag{2}$$

Como es una ecuación diferencial no homogénea, primero propone una solución para la parte homogénea.

$$L\frac{di}{dt} + Ri(t) = 0$$
 y considerando el operador $D = \frac{d}{dt}$

$$\underbrace{\left(DL+R\right)}_{=0}\underbrace{i(t)}_{\neq 0}=0$$

Del primer término la raíz será:

$$D = -\frac{R}{L}$$

la solución propuesta para la homogénea

$$i_h(t) = Ke^{Dt} = Ke^{-\frac{R}{L}t}$$

Ahora, como la parte no homogénea es de tipo constante, se propone una solución de tipo constante.

 $i_p(t) = A$, la cual debe satisfacer a la ecuación diferencial, por lo tanto, sustituir en (2)

$$RA + L\frac{dA}{dt} = E$$

entonces
$$A = \frac{E}{R}$$

y la solución particular es

$$i_p(t) = \frac{E}{R}$$

la solución total es

$$i_{total}(t) = Ke^{-\frac{R}{L}t} + \frac{E}{R}$$
(3)

de las condiciones iniciales $i_{(0)}=0$

por lo tanto, evaluando (3) en t=0

$$i_{total}(0) = Ke^{-\frac{R}{L}(0)} + \frac{E}{R}$$

$$\Rightarrow i_{total}(0) = K + \frac{E}{R} = 0$$

$$K = -\frac{E}{R}$$

Sustituyendo en (3)

Grafica para la función corriente del circuito RL en respuesta forzada

Utilizando la ley de ohm para voltaje en el resistor

$$v_R(t) = Ri(t) \qquad \qquad v_R(t) = R\left(\frac{E}{R}(1 - e^{-\frac{R}{L}t})\right)$$

$$v_R(t) = E(1 - e^{-\frac{R}{L}t}) [V]$$

de (1) se puede despejar el voltaje del capacitor

$$v_L(t) = E - v_R(t)$$

$$v_C(t) = E - E(1 - e^{-\frac{R}{L}t}) [V]$$

$$v_L(t) = Ee^{-\frac{R}{L}t} [V]$$

Tarea. Graficar las funciones de $v_R(t)$ y $v_L(t)$

Respuesta forzada a una función de excitación senoidal en un circuito RL

Solución

Como el circuito está abierto la condición inicial para el inductor es cero

La ecuación diferencial de este circuito se obtiene aplicando la LVK

 $v_R(t) + v_L(t) = v(t)$, esta ecuación se puede escribir de la siguiente manera

$$Ri(t) + L\frac{di(t)}{dt} = Vsen\omega t \tag{1}$$

de la ecuación anterior la solución propuesta para la parte homogénea es

$$i_h(t) = Ke^{-\frac{R}{L}t}$$

Ahora, como el segundo miembro de la ecuación es de tipo senoidal, la solución propuesta para la particular es

 $i_p(t) = A\cos\omega t + Bsen\ \omega t$, la cual debe satisfacer la ecuación diferencial (1)

por lo tanto, sustituyendo

$$R(A\cos\omega t + Bsen\ \omega t) + L\frac{d(A\cos\omega t + Bsen\ \omega t)}{dt} = Vsen\omega t$$
 realizando operaciones

 $RA\cos\omega t + RBsen\ \omega t - LA\omega sen\omega t + LB\omega\cos\omega t = Vsen\omega t$ agrupando

$$(RA + L\omega B)\cos\omega t + (-L\omega A + RB)sen\omega t = Vsen\omega t$$
 igualando coeficientes de términos semejantes

$$RA + L\omega B = 0$$
$$-L\omega A + RB = V$$

Resolviendo este sistema de ecuaciones

$$A = \frac{-VL\omega}{R^2 + L^2\omega^2} , \quad B = \frac{RV}{R^2 + L^2\omega^2}$$

Por lo tanto, la solución particular es

$$i_p(t) = \frac{-VL\omega}{R^2 + L^2\omega^2}\cos\omega t + \frac{RV}{R^2 + L^2\omega^2}sen\omega t$$

la respuesta completa

$$i_{total}(t) = Ke^{-\frac{R}{L}t} - \frac{VL\omega}{R^2 + L^2\omega^2}\cos\omega t + \frac{RV}{R^2 + L^2\omega^2}sen\omega t$$

de las condiciones iniciales i(0)=0

evaluando la ecuación anterior en t=0

$$K = \frac{VL\omega}{R^2 + L^2\omega^2}$$

Finalmente, la solución es

$$\underline{i_{total}(t) = \frac{VL\omega}{R^2 + L^2\omega^2} e^{-\frac{R}{L}t} - \frac{VL\omega}{R^2 + L^2\omega^2} \cos \omega t + \frac{RV}{R^2 + L^2\omega^2} sen\omega t \text{ A}}$$

y la gráfica es

