APPENDIX

П

KINEMATICAL DIFFERENTIAL EQUATIONS IN TERMS OF ORIENTATION ANGLES

In this appendix, the kinematical differential equations associated with each of twenty-four sets of angles describing the orientation of a rigid body B in a reference frame A are tabulated. To use the tables, proceed as follows: let \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 be a dextral set of mutually perpendicular unit vectors fixed in the reference frame A, and let \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 be a similar such set fixed in the body B. Regard \mathbf{b}_i as initially aligned with \mathbf{a}_i (i=1,2,3); select the type of rotation sequence of interest (i.e., body-three, body-two, space-three, or space-two); letting θ_1 , θ_2 , θ_3 denote the amounts (in radians) of the first, the second, and the third rotation, respectively, pick the rotation sequence of interest [for example, 3-1-2 (corresponding to a θ_1 \mathbf{b}_3 , θ_2 \mathbf{b}_1 , θ_3 \mathbf{b}_2 body-three sequence or a θ_1 \mathbf{a}_3 , θ_2 \mathbf{a}_1 , θ_3 \mathbf{a}_2 space-three sequence)]; finally, locate the table corresponding to the rotation sequence chosen. The table contains the relationships between $\dot{\theta}_1$, $\dot{\theta}_2$, $\dot{\theta}_3$ and ω_1 , ω_2 , ω_3 , where $\omega_i \stackrel{\Delta}{=} {}^A \omega^B \cdot \mathbf{b}_i$ (i=1,2,3), ${}^A \omega^B$ being the angular velocity of B in A.

Body-three: 1-2-3

$$\begin{array}{lll}
\omega_{1} = \dot{\theta}_{1}c_{2}c_{3} + \dot{\theta}_{2}s_{3} & \dot{\theta}_{1} = (\omega_{1}c_{3} - \omega_{2}s_{3})/c_{2} \\
\omega_{2} = -\dot{\theta}_{1}c_{2}s_{3} + \dot{\theta}_{2}c_{3} & \dot{\theta}_{2} = \omega_{1}s_{3} + \omega_{2}c_{3} \\
\omega_{3} = \dot{\theta}_{1}s_{2} + \dot{\theta}_{3} & \dot{\theta}_{3} = (-\omega_{1}c_{3} + \omega_{2}s_{3})s_{2}/c_{2} + \omega_{3}
\end{array}$$

428 APPENDIX II

Body-three: 2-3-1

$$\omega_1 = \dot{\theta}_1 s_2 + \dot{\theta}_3$$

$$\omega_2 = \dot{\theta}_1 c_2 c_3 + \dot{\theta}_2 s_3$$

$$\dot{\theta}_1 = (\omega_2 c_3 - \omega_3 s_3)/c_2$$

$$\dot{\theta}_2 = \omega_2 s_3 + \omega_3 c_3$$

$$\omega_{2} = \dot{\theta}_{1}c_{2}c_{3} + \dot{\theta}_{2}s_{3}
\omega_{3} = -\dot{\theta}_{1}c_{2}s_{3} + \dot{\theta}_{2}c_{3}
\dot{\theta}_{3} = \omega_{1} + (-\omega_{2}c_{3} + \omega_{3}s_{3})s_{2}/c_{2}$$

Body-three: 3-1-2

$$\omega_1 = -\dot{\theta}_1 c_2 s_3 + \dot{\theta}_2 c_3$$
 $\dot{\theta}_1 = (-\omega_1 s_3 + \omega_2 c_3)/c_2$

$$\omega_2 = \dot{\theta}_1 s_2 + \dot{\theta}_3 \qquad \qquad \dot{\theta}_2 = \omega_1 c_3 + \omega_3 s_3$$

$$\omega_3 = \dot{\theta}_1 c_2 c_3 + \dot{\theta}_2 s_3$$
 $\dot{\theta}_3 = (\omega_1 s_3 - \omega_3 c_3) s_2 / c_2 + \omega_2$

Body-three: 1-3-2

$$\omega_1 = \dot{\theta}_1 c_2 c_3 - \dot{\theta}_2 s_3 \qquad \dot{\theta}_1 = (\omega_1 c_3 + \omega_2 s_3)/c_2$$

$$\omega_2 = -\dot{\theta}_1 s_2 + \dot{\theta}_3 \qquad \dot{\theta}_2 = -\omega_1 s_3 + \omega_3 c_3$$

$$\omega_3 = \dot{\theta}_1 c_2 s_3 + \dot{\theta}_2 c_3$$
 $\dot{\theta}_3 = (\omega_1 c_3 + \omega_3 s_3) s_2 / c_2 + \omega_2$

Body-three: 2-1-3

$$\omega_1 = \dot{\theta}_1 c_2 s_3 + \dot{\theta}_2 c_3$$
 $\dot{\theta}_1 = (\omega_1 s_3 + \omega_2 c_3)/c_2$

$$\omega_2 = \dot{\theta}_1 c_2 c_3 - \dot{\theta}_2 s_3$$
 $\dot{\theta}_2 = \omega_1 c_3 - \omega_2 s_3$

$$\omega_3 = -\dot{\theta}_1 s_2 + \dot{\theta}_3$$
 $\dot{\theta}_3 = (\omega_1 s_3 + \omega_2 c_3) s_2/c_2 + \omega_3$

Body-three: 3-2-1

$$\omega_1 = -\dot{\theta}_1 s_2 + \dot{\theta}_3$$
 $\dot{\theta}_1 = (\omega_2 s_3 + \omega_3 c_3)/c_2$

$$\omega_2 = \dot{\theta}_1 c_2 s_3 + \dot{\theta}_2 c_3$$
 $\dot{\theta}_2 = \omega_2 c_3 - \omega_3 s_3$

$$\omega_3 = \dot{\theta}_1 c_2 c_3 - \dot{\theta}_2 s_3$$
 $\dot{\theta}_3 = \omega_1 + (\omega_2 s_3 + \omega_3 c_3) s_2/c_2$

Body-two: 1-2-1

$$\omega_1 = \dot{\theta}_1 c_2 + \dot{\theta}_3 \qquad \qquad \dot{\theta}_1 = (\omega_2 s_3 + \omega_3 c_3)/s_2$$

$$\omega_2 = \dot{\theta}_1 s_2 s_3 + \dot{\theta}_2 c_3 \qquad \dot{\theta}_2 = \omega_2 c_3 - \omega_3 s_3$$

$$\omega_3 = \dot{\theta}_1 s_2 c_3 - \dot{\theta}_2 s_3$$
 $\dot{\theta}_3 = \omega_1 - (\omega_2 s_3 + \omega_3 c_3) c_2 / s_2$

Body-two: 1-3-1

$$\omega_1 = \dot{\theta}_1 c_2 + \dot{\theta}_3$$
 $\dot{\theta}_1 = (-\omega_2 c_3 + \omega_3 s_3)/s_2$

$$\omega_2 = -\dot{\theta}_1 s_2 c_3 + \dot{\theta}_2 s_3$$
 $\dot{\theta}_2 = \omega_2 s_3 + \omega_3 c_3$
 $\omega_3 = \dot{\theta}_1 s_2 s_3 + \dot{\theta}_2 c_3$
 $\dot{\theta}_3 = \omega_1 + (\omega_2 c_3 - \omega_3 s_3) c_2 / s_2$

Body-two: 2-1-2

$$\omega_{1} = \dot{\theta}_{1}s_{2}s_{3} + \dot{\theta}_{2}c_{3}
\omega_{2} = \dot{\theta}_{1}c_{2} + \dot{\theta}_{3}
\omega_{3} = -\dot{\theta}_{1}s_{2}c_{3} + \dot{\theta}_{2}s_{3}$$

$$\dot{\theta}_{1} = (\omega_{1}s_{3} - \omega_{3}c_{3})/s_{2}
\dot{\theta}_{2} = \omega_{1}c_{3} + \omega_{3}s_{3}
\dot{\theta}_{3} = (-\omega_{1}s_{3} + \omega_{3}c_{3})c_{2}/s_{2} + \omega_{2}$$

Body-two: 2-3-2

$\omega_1 = \dot{\theta}_1 s_2 c_3 - \dot{\theta}_2 s_3$	$\dot{\theta}_1 = (\omega_1 c_3 + \omega_3 s_3)/s_2$
$\omega_2 = \dot{\theta}_1 c_2 + \dot{\theta}_3$	$\dot{\theta}_2 = -\omega_1 s_3 + \omega_3 c_3$
$\omega_3 = \dot{\theta}_1 s_2 s_3 + \dot{\theta}_2 c_3$	$\dot{\theta}_3 = -(\omega_1 c_3 + \omega_3 s_3)c_2/s_2 + \omega_2$

Body-two: 3-1-3

$\omega_1 = \dot{\theta}_1 s_2 s_3 + \dot{\theta}_2 c_3$	$\dot{\theta}_1 = (\omega_1 s_3 + \omega_2 c_3)/s_2$
$\omega_2 = \dot{\theta}_1 s_2 c_3 - \dot{\theta}_2 s_3$	$\dot{\theta}_2 = \omega_1 c_3 - \omega_2 s_3$
$\omega_3 = \dot{\theta}_1 c_2 + \dot{\theta}_3$	$\dot{\theta}_3 = -(\omega_1 s_3 + \omega_2 c_3)c_2/s_2 + \omega_3$

Body-two: 3-2-3

$\omega_1 = -\dot{\theta}_1 s_2 c_3 + \dot{\theta}_2 s_3$	$\dot{\theta}_1 = (-\omega_1 c_3 + \omega_2 s_3)/s_2$
$\omega_2 = \dot{\theta}_1 s_2 s_3 + \dot{\theta}_2 c_3$	$\dot{\theta}_2 = \omega_1 s_3 + \omega_2 c_3$
$\omega_3 = \dot{\theta}_1 c_2 + \dot{\theta}_3$	$\theta_3 = (\omega_1 c_3 - \omega_2 s_3) c_2 / s_2 + \omega_3$

Space-three: 1-2-3

$\omega_1 = \dot{\theta}_1 - \dot{\theta}_3 s_2$	$\dot{\theta}_1 = \omega_1 + (\omega_2 s_1 + \omega_3 c_1) s_2/c_2$
$\omega_2 = \dot{\theta}_2 c_1 + \dot{\theta}_3 s_1 c_2$	$\dot{\theta}_2 = \omega_2 c_1 - \omega_2 s_1$
$\omega_3 = -\dot{\theta}_2 s_1 + \dot{\theta}_3 c_1 c_2$	$\dot{\theta}_3 = (\omega_2 s_1 + \omega_3 c_1)/c_2$

Space-three: 2-3-1

$$\omega_1 = -\dot{\theta}_2 s_1 + \dot{\theta}_3 c_1 c_2 \qquad \dot{\theta}_1 = (\omega_1 c_1 + \omega_3 s_1) s_2 / c_2 + \omega_2$$

$$\omega_2 = \dot{\theta}_1 - \dot{\theta}_3 s_2 \qquad \dot{\theta}_2 = -\omega_1 s_1 + \omega_3 c_1$$

$$\omega_3 = \dot{\theta}_2 c_1 + \dot{\theta}_3 s_1 c_2 \qquad \dot{\theta}_3 = (\omega_1 c_1 + \omega_3 s_1) / c_2$$

Space-three: 3-1-2

$$\omega_1 = \dot{\theta}_2 c_1 + \dot{\theta}_3 s_1 c_2$$

$$\omega_2 = -\dot{\theta}_2 s_1 + \dot{\theta}_3 c_1 c_2$$

$$\omega_3 = \dot{\theta}_1 - \dot{\theta}_3 s_2$$

$$\dot{\theta}_1 = (\omega_1 s_1 + \omega_2 c_1) s_2 / c_2 + \omega_3$$

$$\dot{\theta}_2 = \omega_1 c_1 - \omega_2 s_1$$

$$\dot{\theta}_3 = (\omega_1 s_1 + \omega_2 c_1) / c_2$$

430 APPENDIX II

Space-three: 1-3-2

$\omega_1 = \dot{\theta}_1 + \dot{\theta}_3 s_2$	$\dot{\theta}_1 = \omega_1 + (-\omega_2 c_1 + \omega_3 s_1) s_2/c_2$
$\omega_2 = \dot{\theta}_2 s_1 + \dot{\theta}_3 c_1 c_2$	$\dot{\theta}_2 = \omega_2 s_1 + \omega_3 c_1$
$\omega_3 = \dot{\theta}_2 c_1 - \dot{\theta}_3 s_1 c_2$	$\dot{\theta}_3 = (\omega_2 c_1 - \omega_3 s_1)/c_2$

Space-three: 2-1-3

$$\omega_1 = \dot{\theta}_2 c_1 - \dot{\theta}_3 s_1 c_2$$

$$\omega_2 = \dot{\theta}_1 + \dot{\theta}_3 s_2$$

$$\omega_3 = \dot{\theta}_2 s_1 + \dot{\theta}_3 c_1 c_2$$

$$\dot{\theta}_1 = (\omega_1 s_1 - \omega_3 c_1) s_2 / c_2 + \omega_2$$

$$\dot{\theta}_2 = \omega_1 c_1 + \omega_3 s_1$$

$$\dot{\theta}_3 = (-\omega_1 s_1 + \omega_3 c_1) / c_2$$

Space-three: 3-2-1

$\omega_1 = \dot{\theta}_2 s_1 + \dot{\theta}_3 c_1 c_2$	$\dot{\theta}_1 = (-\omega_1 c_1 + \omega_2 s_1) s_2/c_2 + \omega_3$
$\omega_2 = \dot{\theta}_2 c_1 - \dot{\theta}_3 s_1 c_2$	$\dot{\theta}_2 = \omega_1 s_1 + \omega_2 c_1$
$\boldsymbol{\omega_3} = \dot{\boldsymbol{\theta}}_1 + \dot{\boldsymbol{\theta}}_3 s_2$	$\dot{\theta}_3 = (\omega_1 c_1 - \omega_2 s_1)/c_2$

Space-two: 1-2-1

$$\omega_1 = \dot{\theta}_1 + \dot{\theta}_3 c_2 \qquad \qquad \dot{\theta}_1 = \omega_1 - (\omega_2 s_1 + \omega_3 c_1) c_2 / s_2$$

$$\omega_2 = \dot{\theta}_2 c_1 + \dot{\theta}_3 s_1 s_2 \qquad \qquad \dot{\theta}_2 = \omega_2 c_1 - \omega_3 s_1$$

$$\omega_3 = -\dot{\theta}_2 s_1 + \dot{\theta}_3 c_1 s_2 \qquad \qquad \dot{\theta}_3 = (\omega_2 s_1 + \omega_3 c_1) / s_2$$

Space-two: 1-3-1

$\omega_1 = \dot{\theta}_1 + \dot{\theta}_3 c_2$	$\dot{\theta}_1 = \omega_1 + (\omega_2 c_1 - \omega_3 s_1) c_2 / s_2$
$\omega_2 = \dot{\theta}_2 s_1 - \dot{\theta}_3 c_1 s_2$	$\dot{\theta}_2 = \omega_2 s_1 + \omega_3 c_1$
$\omega_3 = \dot{\theta}_2 c_1 + \dot{\theta}_3 s_1 s_2$	$\dot{\theta}_3 = (-\omega_2 c_1 + \omega_3 s_1)/s_2$

Space-two: 2-1-2

$$\omega_1 = \dot{\theta}_2 c_1 + \dot{\theta}_3 s_1 s_2$$

$$\omega_2 = \dot{\theta}_1 + \dot{\theta}_3 c_2$$

$$\omega_3 = \dot{\theta}_2 s_1 - \dot{\theta}_3 c_1 s_2$$

$$\dot{\theta}_1 = (-\omega_1 s_1 + \omega_3 c_1) c_2 / s_2 + \omega_2$$

$$\dot{\theta}_2 = \omega_1 c_1 + \omega_3 s_1$$

$$\dot{\theta}_3 = (\omega_1 s_1 - \omega_3 c_1) / s_2$$

Space-two: 2-3-2

$$\omega_1 = -\dot{\theta}_2 s_1 + \dot{\theta}_3 c_1 s_2$$

$$\omega_2 = \dot{\theta}_1 + \dot{\theta}_3 c_2$$

$$\omega_3 = \dot{\theta}_2 c_1 + \dot{\theta}_3 s_1 s_2$$

$$\dot{\theta}_1 = -(\omega_1 c_1 + \omega_3 s_1) c_2 / s_2 + \omega_2$$

$$\dot{\theta}_2 = -\omega_1 s_1 + \omega_3 c_1$$

$$\dot{\theta}_3 = (\omega_1 c_1 + \omega_3 s_1) / s_2$$

Space-two: 3-1-3

$\omega_1 = \dot{\theta}_2 c_1 + \dot{\theta}_3 s_1 s_2$	$\dot{\theta}_1 = -(\omega_1 s_1 + \omega_2 c_1)c_2/s_2 + \omega_3$
$\omega_2 = -\dot{\theta}_2 s_1 + \dot{\theta}_3 c_1 s_2$	
$\omega_3 = \dot{\theta}_1 + \dot{\theta}_3 c_2$	$\dot{\theta}_3 = (\omega_1 s_1 + \omega_2 c_1)/s_2$

Space-two: 3-2-3

$\omega_1 = \dot{\theta}_2 s_1 - \dot{\theta}_3 c_1 s_2$	$\dot{\theta}_1 = (\omega_1 c_1 - \omega_2 s_1) c_2/s_2 + \omega_3$
$\omega_2 = \dot{\theta}_2 c_1 + \dot{\theta}_3 s_1 s_2$	$\dot{\theta}_2 = \omega_1 s_1 + \omega_2 c_1$
$\omega_3 = \dot{\theta}_1 + \dot{\theta}_3 c_2$	$\theta_3 = (-\omega_1 c_1 + \omega_2 s_1)/s_2$