The Power Method Algorithm

1 Introduction

The **power method** (also called **power iteration**) is a classic iterative algorithm for computing the dominant eigenvalue and its corresponding eigenvector of a matrix. Given a square matrix $A \in \mathbb{R}^{n \times n}$, the method finds the eigenvalue with the largest absolute value, denoted λ_1 , and its associated eigenvector \mathbf{v}_1 .

2 Algorithm Statement

2.1 Initialization

- Choose an initial vector $\mathbf{x}^{(0)} \in \mathbb{R}^n$ such that $\mathbf{x}^{(0)} \neq \mathbf{0}$.
- Typically, $\mathbf{x}^{(0)}$ is chosen randomly or as $\mathbf{x}^{(0)} = (1, 1, \dots, 1)^T$.
- Normalize: $\mathbf{x}^{(0)} \leftarrow \frac{\mathbf{x}^{(0)}}{\|\mathbf{x}^{(0)}\|}$ (optional but recommended).
- Set convergence tolerance $\epsilon > 0$ and maximum iterations k_{max} .

2.2 Iteration Step

For $k = 0, 1, 2, \ldots$ until convergence:

1. Matrix-vector multiplication:

$$\mathbf{y}^{(k+1)} = A\mathbf{x}^{(k)} \tag{1}$$

2. Normalization:

$$\mathbf{x}^{(k+1)} = \frac{\mathbf{y}^{(k+1)}}{\|\mathbf{y}^{(k+1)}\|} \tag{2}$$

where $\|\cdot\|$ denotes a vector norm (typically the Euclidean norm $\|\cdot\|_2$).

3. Eigenvalue estimate: Compute the Rayleigh quotient

$$\lambda^{(k+1)} = \frac{(\mathbf{x}^{(k+1)})^T A \mathbf{x}^{(k+1)}}{(\mathbf{x}^{(k+1)})^T \mathbf{x}^{(k+1)}} = (\mathbf{x}^{(k+1)})^T A \mathbf{x}^{(k+1)}$$
(3)

where the second equality holds if $\mathbf{x}^{(k+1)}$ is normalized.

Alternatively, if the largest eigenvalue is known to be positive, one can use:

$$\lambda^{(k+1)} = \|\mathbf{y}^{(k+1)}\| = \|A\mathbf{x}^{(k)}\| \tag{4}$$

2.3 Convergence Criteria

The iteration terminates when one of the following conditions is met:

1. Eigenvalue convergence:

$$|\lambda^{(k+1)} - \lambda^{(k)}| < \epsilon \tag{5}$$

2. Eigenvector convergence:

$$\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\| < \epsilon \tag{6}$$

or

$$\|\mathbf{x}^{(k+1)} + \mathbf{x}^{(k)}\| < \epsilon \tag{7}$$

(the second condition accounts for sign ambiguity in eigenvectors).

3. Residual criterion:

$$||A\mathbf{x}^{(k+1)} - \lambda^{(k+1)}\mathbf{x}^{(k+1)}|| < \epsilon \tag{8}$$

4. Maximum iterations reached: $k \geq k_{\text{max}}$

The most commonly used criterion is the eigenvalue convergence test (1) or the residual criterion (3).

3 Formal Algorithm

Algorithm 1 Power Method

Require: Matrix $A \in \mathbb{R}^{n \times n}$, tolerance $\epsilon > 0$, max iterations k_{max}

Ensure: Dominant eigenvalue λ and eigenvector \mathbf{x}

- 1: Choose initial vector $\mathbf{x}^{(0)} \in \mathbb{R}^n$, $\mathbf{x}^{(0)} \neq \mathbf{0}$
- 2: $\mathbf{x}^{(0)} \leftarrow \mathbf{x}^{(0)} / \|\mathbf{x}^{(0)}\|$
- 3: $\lambda^{(0)} \leftarrow 0$
- 4: **for** $k = 0, 1, 2, \dots, k_{\text{max}} 1$ **do** 5: $\mathbf{y}^{(k+1)} \leftarrow A\mathbf{x}^{(k)}$
- $\mathbf{x}^{(k+1)} \leftarrow \mathbf{y}^{(k+1)} / \|\mathbf{y}^{(k+1)}\|$ $\lambda^{(k+1)} \leftarrow (\mathbf{x}^{(k+1)})^T A \mathbf{x}^{(k+1)}$ 6:
- if $|\lambda^{(k+1)} \lambda^{(k)}| < \epsilon$ then 8:
- return $\lambda^{(k+1)}, \mathbf{x}^{(k+1)}$ 9:
- end if 10:
- 11: end for
- 12: **return** $\lambda^{(k_{\text{max}})}, \mathbf{x}^{(k_{\text{max}})}$

▶ Max iterations reached

Convergence Properties 4

Theorem 1 (Convergence of Power Method). Let $A \in \mathbb{R}^{n \times n}$ be diagonalizable with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ such that

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \dots \ge |\lambda_n| \tag{9}$$

and corresponding eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ that form a basis for \mathbb{R}^n . If the initial vector $\mathbf{x}^{(0)}$ has a nonzero component in the direction of \mathbf{v}_1 , then the power method converges:

$$\lambda^{(k)} \to \lambda_1 \quad and \quad \mathbf{x}^{(k)} \to \pm \mathbf{v}_1 \quad as \ k \to \infty$$
 (10)

Remark 1 (Rate of Convergence). The rate of convergence is determined by the ratio $\left|\frac{\lambda_2}{\lambda_1}\right|$. Specifically, the error decreases approximately as:

$$Error^{(k)} \approx C \left| \frac{\lambda_2}{\lambda_1} \right|^k$$
 (11)

where C is a constant depending on the initial vector. The convergence is **linear** with rate $\left|\frac{\lambda_2}{\lambda_1}\right|$.

Remark 2 (Conditions for Convergence). The power method requires:

- The matrix A must have a unique dominant eigenvalue: $|\lambda_1| > |\lambda_2|$
- The initial vector must have a nonzero component in the direction of the dominant eigenvector
- The matrix need not be symmetric

5 Numerical Example

Consider a 5×5 symmetric matrix with eigenvalues $\{10, 5, 3, 1, 0.5\}$. Applying the power method with a random initial vector demonstrates the convergence behavior shown in Figure ??.

Figure 1: Convergence of the power method. The error in the eigenvalue estimate decreases exponentially, exhibiting linear convergence with rate $|\lambda_2/\lambda_1| = 5/10 = 0.5$.

The method successfully computes the dominant eigenvalue $\lambda_1 = 10$ to high accuracy within a few dozen iterations.

6 Variants and Extensions

Several variants of the power method address specific computational needs:

- Inverse Power Method: Applies the power method to A^{-1} to find the smallest eigenvalue
- Shifted Inverse Power Method: Uses $(A \mu I)^{-1}$ to find the eigenvalue closest to a shift μ
- Rayleigh Quotient Iteration: Adaptive shift strategy for faster convergence
- Orthogonal Iteration: Generalizes to find multiple dominant eigenvalues and eigenvectors

7 Computational Complexity

Each iteration of the power method requires:

- One matrix-vector multiplication: $O(n^2)$ operations for dense matrices, potentially O(n) for sparse matrices
- One vector normalization: O(n) operations
- One Rayleigh quotient computation: $O(n^2)$ operations for dense matrices

The total cost per iteration is $O(n^2)$ for dense matrices and potentially much less for sparse matrices, making the power method particularly attractive for large sparse eigenvalue problems.