บทที่ 8

การวิเคราะห์ความแปรปรวน (Analysis of Variance)

การทดสอบสมมติฐานเกี่ยวกับค่าเฉลี่ยของประชากร<u>สองกลุ่ม</u>สามารถใช้ตัวสถิติ Z หรือ T มา ช่วยในการทดสอบ แต่ในกรณีที่ต้องการทดสอบสมมติฐานเกี่ยวกับความแตกต่างระหว่างค่าเฉลี่ยของ ประชากร<u>ตั้งแต่ 3 กลุ่มขึ้นไปเราไม่สามารถใช้สถิติทดสอบ Z ได้ แต่สถิติทดสอบ T สามารถใช้ได้โดยมี ข้อจำกัด คือ สามารถใช้ทดสอบความแตกต่างระหว่างค่าเฉลี่ยเพียง 2 กลุ่มเท่านั้น สมมติว่าเราต้องการ ทดสอบค่าเฉลี่ยของประชากร k กลุ่ม โดยที่ k>2 คือต้องการทดสอบ $H_0:\mu_1=\ldots=\mu_k$ ถ้าเราเลือกใช้ สถิติทดสอบ T จะต้องทำการทดสอบครั้งละ 2 กลุ่ม นั่นคือจำนวนครั้งที่ต้องทำการทดสอบคือ ${}^kC_2=\frac{k!}{(k-2)!2!}$ ครั้ง ตัวอย่างเช่น จำนวนครั้งที่ต้องทำการทดสอบคือ 3 ครั้ง โดยครั้งแรกทดสอบค่าเฉลี่ยของประชากรกลุ่มที่ 1 กับค่าเฉลี่ยของประชากรกลุ่มที่ 2 $(H_0:\mu_1=\mu_2)$ ครั้งที่สองทดสอบค่าเฉลี่ยของประชากรกลุ่มที่ 1 กับค่าเฉลี่ยของประชากรกลุ่มที่ 3 $(H_0:\mu_1=\mu_3)$ และครั้งสุดท้าย ทดสอบค่าเฉลี่ยของประชากรกลุ่มที่ 2 กับค่าเฉลี่ยของประชากรกลุ่มที่ 3 $(H_0:\mu_1=\mu_3)$ และครั้งสุดท้าย ครั้งที่ทำการทดสอบจะเกิดความคลาดเคลื่อนของการทดสอบขึ้น จึงทำให้เกิดความคลาดเคลื่อนมากเกินความจำเป็น อีกทั้งยังเสียเวลาในการทดสอบโดยไม่จำเป็น เพื่อแก้ปัญหาดังที่กล่าวมาในทางปฏิบัติจึงใช้ เทคนิคการวิเคราะห์ความแปรปรวนมาใช้สำหรับทดสอบความแตกต่างระหว่างค่าเฉลี่ยของประชากร ตั้งแต่ 3 กลุ่มขึ้นไปในครั้งเดียวกัน</u>

การวิเคราะห์ความแปรปรวน (Analysis of Varaince: ANOVA) เป็นการทดสอบความแตกต่าง ระหว่างค่าเฉลี่ยของประชากรตั้งแต่ 3 กลุ่มขึ้นไป ซึ่งนิยมเรียกย่อ ๆ ว่า ANOVA (อ่านว่า อะโนวา) โดยผู้ ที่คิดค้นและเสนอวิธีการวิเคราะห์ความแปรปรวนก็คือ Ronald Fisher นักชีววิทยาและสถิติชาวอังกฤษ

8.1 ความเข้าใจเบื้องต้นที่เกี่ยวกับการวิเคราะห์ความแปรปรวน

- 1. การเปรียบเทียบค่าเฉลี่ยระหว่างกลุ่มหลาย ๆ กลุ่ม จะมีความแปรปรวนที่ต้องคำนึงถึงอยู่ 2 แบบ คือ ความแปรปรวนระหว่างกลุ่ม และความแปรปรวนภายในกลุ่ม
 - ก. ความแปรปรวนระหว่างกลุ่ม (Between-groups variance) จะแสดงขนาดของ
 ความแตกต่างระหว่างค่าเฉลี่ยของกลุ่มต่าง ๆ ถ้าระหว่างกลุ่มมีค่าเฉลี่ยแตกต่างกันมาก
 ค่าความแปรปรวนระหว่างกลุ่มจะมีค่ามากด้วย
 - ข. ความแปรปรวนภายในกลุ่ม (Within-groups variance) จะแสดงการกระจายของค่า สังเกตแต่ละค่าภายในแต่ละกลุ่มว่ามีการกระจายมากหรือน้อย บางครั้งเรียกว่า ความคลาดเคลื่อน
- 2) สถิติที่ใช้ทดสอบ คือ สถิติเอฟ (F-Statistics)
- 3) ข้อมูลที่จะนำมาวิเคราะห์ต้องอยู่ในมาตราอันตรภาคหรืออัตราส่วน
- 4) กลุ่มตัวอย่างแต่ละกลุ่มต้องสุ่มมาจากประชากรที่มีการแจกแจงแบบปกติที่มีความแปรปรวน เท่ากัน และเป็นอิสระจากกัน

2. การคำนวณความแปรปรวน

ความแปรปรวนรวมทั้งหมด (Total sum of squares: SST) ในการวิเคราะห์ความแปรปรวน สามารถคำนวณจากความแปรปรวนระหว่างกลุ่ม (Sum of squares between-groups : SSTrt) รวมกับความแปรปรวนภายในกลุ่ม (Sum of squares within-groups : SSE) (หรือความแปรปรวน ของความคลาดเคลื่อน) นั่นคือ

SST = SSTrt + SSE

สำหรับบทเรียนนี้จะกล่าวถึงรายละเอียดของการวิเคราะห์ความแปรปรวนทางเดียวดังนี้

3. การวิเคราะห์ความแปรปรวนแบบทางเดียว (One-way Analysis of Variance)

การวิเคราะห์ความแปรปรวนแบบทางเดียว เป็นการวิเคราะห์เพื่อตรวจสอบว่าตัวแปร อิสระ 1 ตัว ซึ่งแบ่งออกเป็น k กลุ่ม จะให้ผลต่อตัวแปรตามแตกต่างกันหรือไม่ โดยที่กลุ่ม ตัวอย่าง k กลุ่มอาจมีจำนวนค่าสังเกตในแต่ละกลุ่มเท่ากันหรือไม่เท่ากันก็ได้

ก. ลักษณะของข้อมูลที่ใช้ในการวิเคราะห์ความแปรปรวนแบบทางเดียว

ตารางที่ 8.1 ข้อมูลของตัวแปรอิสระ 1 ตัว แบ่งเป็น k กลุ่ม

กลุ่ม 1	กลุ่ม 2		กลุ่ม k
X ₁₁	X_{21}		X_{k1}
X_{12}	X_{22}		X_{k2}
:	÷	:	÷
X_{1n_1}	X_{2n_2}	::	$X_{{\scriptscriptstyle k}n_{\scriptscriptstyle k}}$
$X_{1.}$	$X_{2.}$		$X_{k.}$

โดยที่

 X_{ij} คือ ค่าสังเกตของกลุ่มที่ i ค่าที่ j

 $X_{i.}$ คือ ผลรวมค่าสังเกตทั้งหมดในกลุ่มที่ i

 n_1, n_2, \dots, n_k คือ จำนวนค่าสังเกตในกลุ่มที่ 1,2,...,k ตามลำดับ

และ
$$n = n_1 + n_2 + \cdots + n_k$$

ข. สมมติฐานที่ใช้ในการทดสอบ

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

 $H_{\scriptscriptstyle 1}$: $\mu_{\scriptscriptstyle i}
eq \mu_{\scriptscriptstyle i}$ อย่างน้อย 1 คู่ โดยที่ i
eq j

ค. สถิติทดสอบ

$$F = \frac{MSTrt}{MSE}$$

โดยที่ F แทน ค่าสถิติเอฟที่คำนวณได้

 MSTrt แทน ความแปรปรวนระหว่างกลุ่ม (Mean square between-groups)

MSE แทน ความแปรปรวนภายในกลุ่ม (Mean square within-groups)

ผลการวิเคราะห์ความแปรปรวนสามารถสร้างเป็นตารางวิเคราะห์ความแปรปรวนทางเดียวได้ดัง ตารางที่ 8.2

ตารางที่ 8.2 สูตรการวิเคราะห์ความแปรปรวนแบบทางเดียว (One way ANOVA)

Source of		Sum of square	Mean square	
variation	df	(SS)	(MS)	F
Between-	k-1	$\sum_{i=1}^{k} (X_i^2) X_i^2$	$MSTrt = \frac{SSTrt}{k-1}$	$F = \frac{MSTrt}{MSE}$
groups	K I	SSTrt= $\sum_{i=1}^{k} \left(\frac{X_{i.}^{2}}{n_{i}} \right) - \frac{X_{}^{2}}{n}$	k-1	MSE
Within-groups	n-k	SSE=SST-SSTrt	$MSE = \frac{SSE}{n-k}$	
Total	n-1	$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}^2 - \frac{X_{}^2}{n}$		

โดยที่ F ค่าสถิติเอฟที่คำนวณได้ แทน ผลบวกของกำลังสองระหว่างกลุ่ม (Sum of squares between groups) SSTrt แทน ผลบวกของกำลังสองภายในกลุ่ม (Sum of squares within groups) SSEแทน ผลบวกของยกกำลังสองทั้งหมด (Total Sum of squares) SSTแทน จำนวนข้อมูลในกลุ่มที่ i n_{i} แทน จำนวนกลุ่มตัวอย่างทั้งหมด แทน $n = \sum_{i=1}^{k} n_i$ จำนวนค่าสังเกตทั้งหมด แทน ผลรวมของค่าสังเกตในกลุ่มที่ i แทน $X_{..}$ ผลรวมของค่าสังเกตทั้งหมด แทน

ผลรวมค่าสังเกตแต่ละค่ายกกำลังสอง

แทน

ตัวอย่างที่ 8.3 กำหนดให้ข้อมูลคะแนนสอบ (คะแนนเต็ม 30 คะแนน) ซึ่งได้จากวิธีสอน 3 วิธี ดังนี้

วิธีสอนที่ 1	วิธีสอนที่ 2	วิธีสอนที่ 3
7	11	17
6	12	6
15	9	18
8	7	14
15	17	16
6	12	8
12	19	7
8	11	15
16	13	9
	8	11
	10	
93	129	121

จงทดสอบว่าคะแนนเฉลี่ยของคะแนนสอบของวิธีการสอนทั้ง 3 วิธีแตกต่างกันหรือไม่ ที่ระดับ นัยสำคัญ 0.05

วิธีทำ

1) ตั้งสมมติฐาน

$$H_0: \mu_1 = \mu_2 = \mu_3$$

$$H_{\scriptscriptstyle 1}$$
 : $\mu_{\scriptscriptstyle i}$ $eq \mu_{\scriptscriptstyle j}$ อย่างน้อย 1 คู่

- 2) กำหนดระดับนัยสำคัญ $\mathbf{Q} = 0.05$
- 3) คำนวณค่าสถิติ F

นำข้อมูลจากตารางข้างต้น มาคำนวณตามสูตรในตารางที่ 2 ดังแสดงรายละเอียดดังนี้

ตารางที่ 8.4 แสดงวิธีการคำนวณค่าต่าง ๆ ในการวิเคราะห์ความแปรปรวนทางเดียว

วิธีสอนที่ 1		วิธีสอนที่ 2		วิธีสอนที่ 3	
x_{1j}	x_{1j}^2	x_{2j}	x_{2j}^2	x_{3j}	x_{3j}^2
7	49	11	121	17	289
6	36	12	144	6	36
15	225	9	81	18	324
8	64	7	49	14	196
15	225	17	289	16	256
6	36	12	144	8	64
12	144	19	361	7	49
8	64	11	121	15	225
16	256	13	169	9	81
		8	64	11	121
		10	100		
X _{1.} = 93	$\sum_{j=1}^{n_1} X_{1j}^2 = 1099$	X _{2.} = 129	$\sum_{j=1}^{n_2} X_{2j}^2 = 1643$	<i>X</i> _{3.} = 121	$\sum_{j=1}^{n_3} X_{3j}^2 = 1641$

$$n = 9 + 11 + 10 = 30$$

$$X_{..} = 93 + 129 + 121 = 343$$

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}^2 - \frac{X_{..}^2}{n} = 4383 - 3921.633 = 461.637$$

$$SSTrt = \sum_{i=1}^{k} \left(\frac{X_{i.}^2}{n_i}\right) - \frac{X_{..}^2}{n} = 961 + 1512.818 + 1464.1 - 3921.633 = 16.285$$

$$SSE = SST - SSTrt = 461.367 - 16.285 = 445.082$$

$$MSTrt = \frac{SSTrt}{k - 1} = \frac{16.285}{2} = 8.1425$$

$$MSE = \frac{SSE}{n - k} = \frac{445.082}{27} = 16.4845$$

จะได้ว่าค่าสถิติทดสอบ
$$F = \frac{MSTrt}{MSE} = \frac{8.1425}{16.4845} = 0.49$$

สามารถเสนอผลการวิเคราะห์ความแปรปรวนทางเดียวดังนี้

ตารางที่ 8.5 ผลการวิเคราะห์ความแปรปรวนทางเดียว

แหล่งความแปรปรวน	df	SS	MS	F
ระหว่างกลุ่ม	2	16.285	8.1425	0.49
ภายในกลุ่ม	27	445.082	16.4845	
รวมทั้งหมด	29	461.367		

4) เปิดตารางค่าวิกฤต F (Critical values of F)

 df_1 คือ df ของ MSTrt และ df_2 คือ df ของ MSE

ดังนั้นให้เปิดตารางเอฟ $df_1 = 2$ และ $df_2 = 27$ ที่ $\mathbf{\alpha} = 0.05$

จะได้ค่าวิกฤต F = 3.35

จากนั้นนำค่า F ที่คำนวณได้ในข้อ 3) คือ F = 0.49 มาเปรียบเทียบกับค่าวิกฤต F = 3.35 ที่ **C** = 0.05 พบว่า ค่า F ที่คำนวณได้ < ค่าวิกฤต F

ดังนั้น จึงยอมรับ $H_0: \mu_1 = \mu_2 = \mu_3$

สรุปได้ว่า <u>วิธีสอนทั้ง 3 แบบให้ผลไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ</u> หรือกล่าวอีกนัยหนึ่ง ว่า วิธีสอนทั้ง 3 แบบให้ผลไม่แตกต่างกัน

หมายเหตุ: ในกรณีที่ ค่า F จากการคำนวณ ≥ ค่าวิกฤต F จะเป็นการปฏิเสธ Ho หรืออีกนัยหนึ่ง เป็น ยอมรับ H_1 ซึ่งแสดงว่า มีค่าเฉลี่ยอย่างน้อย 1 คู่ แตกต่างกันอย่างมีนัยสำคัญทางสถิติ ณ ระดับ $\mathbf{\Omega}$ ที่ กำหนด ต้องทำการทดสอบต่อไปว่าค่าเฉลี่ยคู่ใดบ้างที่แตกต่างกัน และแตกต่างกันอย่างไร โดยใช้การ เปรียบเทียบพหุคูณ (Multiple comparison test) ตามวิธีของเชฟเฟ่ (Scheffe's method) การ ทดสอบ HSD ของทูกีย์ (Tukey's HSD test) หรือ วิธีของนิวแมนคูลส์ (Newman Keuls method) ซึ่งเป็นวิธี "post hoc" หมายถึง วิธีการที่ตามมาหลังการวิเคราะห์ความแปรปรวน

ตัวอย่างที่ 8.4 ให้ตารางการวิเคราะห์ความแปรปรวนทางเดียวมีลักษณะดังนี้

แหล่งความแปรปรวน	df	SS	MS	F
ระหว่างกลุ่ม	3			
ภายในกลุ่ม		25.0		
รวมทั้งหมด	34	150.0		

จงตอบคำถามดังนี้

- 1. เติมตัวเลขในตารางวิเคราะห์ความแปรปรวนทางเดียวให้สมบูรณ์
- 2. จำนวนกลุ่มมีกี่กลุ่ม(k)
- 3. จำนวนข้อมูลทั้งหมด (n)
- 4. จงเขียนสมมติฐานว่าง และสมมติฐานทางเลือก
- 5. ถ้ากำหนดให้ lpha=0.05 จงหาค่าวิกฤต F
- 6. เขียนสรุปผลการทดสอบสมมติฐาน

วิธีทำ

1. ตารางวิเคราะห์ความแปรปรวนทางเดียวที่สมบูรณ์คือ

แหล่งความแปรปรวน	df	SS	MS	F
ระหว่างกลุ่ม	3	114	38.00	32.76
ภายในกลุ่ม	31	36.0	1.61	
รวมทั้งหมด	34	150.0		

2. จำนวนกลุ่มมีกี่กลุ่ม(k)

 $k = 4 \,$ หรือ 4 กลุ่ม (หาจาก k-1 = 3 ดังนั้น k=4)

3. จำนวนข้อมูลทั้งหมด (n)

n = 35 (หาจาก n-1 = 34 ดังนั้น n=35)

4. เขียนสมมติฐานว่าง และสมมติฐานทางเลือก ได้ดังนี้

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

 $H_{\scriptscriptstyle 1}$: $\mu_{\scriptscriptstyle i}$ $eq \mu_{\scriptscriptstyle j}$ อย่างน้อย 1 คู่

- 5. ถ้า lpha = 0.05 จะได้ค่าวิกฤต F คือ $F_{0.05,(3,31)} = 2.9113$
- 6. เนื่องจาก F = 32.76 ซึ่งมากกว่าค่าวิกฤต 2.9113 ดังนั้นจึงสรุปว่าปฏิเสธสมมติฐานว่าง นั่นคือ มีค่าเฉลี่ยอย่างน้อย 1 คู่ที่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ จึงต้องทำการทดสอบต่อไปว่า ค่าเฉลี่ยคู่ใดบ้างที่แตกต่างกัน โดยใช้การเปรียบเทียบพหุคูณ (Multiple comparison test)

แบบฝึกหัดท้ายบท

1.	การวิเคราะห์ความแปรปรวน (ANOVA) คืออะไร จงอธิบายมาพอสังเขป
2.	กรณีการวิเคราะห์ความแปรปรวนทางเดียว (one way ANOVA) มีความแปรปรวนอะไรบ้าง
3.	ถ้ามีกลุ่มข้อมูล 5 กลุ่ม จงเขียนสมมติฐานว่าง และสมมติฐานทางเลือกของการวิเคราะห์ความ แปรปรวนทางเดียว
4.	สถิติทดสอบที่ใช้ในการวิเคราะห์ความแปรปรวนทางเดียวคืออะไร

5. จงเขียนตารางการวิเคราะห์ความแปรปรวนทางเดียวพร้อมสูตรคำนวณ			
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
นการวิเคราะห์ความแปรปรวนทางเดียว จะปฏิเสธสมมติฐานว่าง เมื่อใด จงอธิบายมาพอสังเขป			
	_		
	_		
	_		
	_		
	_		

7. นักวิจัยตลาดคนหนึ่งต้องการทราบว่า รถตู้ที่กำลังได้รับความนิยมในตลาด 3 ยี่ห้อ คือ A , B และ C จะกินน้ำมันต่างกันหรือไม่ จึงสุ่มตัวอย่างรถแต่ละยี่ห้อมาอย่างละ 4 คัน แล้วให้น้ำมัน คันละ 3 ลิตร บันทึกระยะทางที่รถแต่ละคันวิ่งได้จนน้ำมันหมด ดังข้อมูลดังตาราง

ยี่ห้อรถ	ร	รวม					
А	21	21 26 25 20					
В	23	26	25	18	92		
С	35	38	35	32	140		

จงสรุปผลการทดสอบดังกล่าว ที่ระดับนัยสำคัญ 0.05

8. ข้อมูลต่อไปนี้เป็นจำนวนผลผลิตที่ชำรุดจากการตรวจพบในแต่ละวันของเครื่องจักร 5 เครื่องใน ระยะเวลา 5 วัน จงทดสอบว่าประสิทธิภาพของเครื่องจักรทั้ง 5 เครื่องแตกต่างกันหรือไม่ ที่ระดับ นัยสำคัญ 0.01

วัน	เครื่องจักร					
919	А	В	С	D	Е	
1	7	12	14	19	7	
2	7	17	18	25	10	
3	15	12	18	22	11	
4	11	18	19	19	15	
5	9	18	19	23	11	
รวม	49	77	88	108	54	

