SBML Model Report

Model name: "Markevich2004_MAPK-_AllRandomElementary"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Nicolas Le Novre¹ at May 26th 2005 at 8:51 a.m. and last time modified at May 15th 2012 at 9:43 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	18
events	0	constraints	0
reactions	20	function definitions	0
global parameters	32	unit definitions	1
rules	0	initial assignments	0

Model Notes

This model originates from BioModels Database: A Database of Annotated Published Models. It is copyright (c) 2005-2009 The BioModels Team.

For more information see the terms of use.

To cite BioModels Database, please use Le Novre N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J.L., Hucka M. (2006)

¹EMBL-EBI, lenov@ebi.ac.uk

BioModels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems Nucleic Acids Res., 34: D689-D691.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name nanomole (default)

Definition nmol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
cell	cell		3	1	litre		

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

Name cell

4 Species

This model contains 18 species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
M	MAPK	cell	$nmol \cdot l^{-1}$	\Box	
МрҮ	MAPK-PY	cell	$nmol \cdot l^{-1}$		
МрТ	MAPK-PT	cell	$nmol \cdot l^{-1}$		
Мрр	MAPK-PP	cell	$nmol \cdot l^{-1}$		
MAPKK	MAPKK	cell	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
MKP	MKP	cell	$nmol \cdot l^{-1}$		
MpY_MAPKK	MAPK-PY_MAPKK	cell	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
MpT_MAPKK	MAPK-PT_MAPKK	cell	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
M_MAPKK_Y	MAPK_MAPKK_Y	cell	$nmol \cdot l^{-1}$		
M_MAPKK_T	$MAPK_MAPKK_T$	cell	$nmol \cdot l^{-1}$		
Mpp_MKP_Y	MAPK-PP_MKP_T	cell	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
Mpp_MKP_T	MAPK-PP_MKP_Y	cell	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
MpY_MKP_Y	MAPK-PY_MKP_Y	cell	$nmol \cdot l^{-1}$		
MpY_MKP_T	MAPK-PY_MKP_T	cell	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
MpT_MKP_Y	MAPK-PT_MKP_Y	cell	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
MpT_MKP_T	MAPK-PT_MKP_T	cell	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		\Box
M_MKP_T	$MAPK_MKP_T$	cell	$nmol \cdot l^{-1}$		\Box
M_MKP_Y	$MAPK_MKP_Y$	cell	$nmol \cdot l^{-1}$	\Box	

5 Parameters

This model contains 32 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
k1	k1	0.020		
$k_{-}1$	$k_{-}1$	1.000		
k2	k2	0.010		
k3	k3	0.032		
k_3	k_3	1.000		$ \overline{\mathcal{L}} $
k4	k4	15.000		$ \overline{\mathcal{L}} $
k5	k5	0.020		
$k_{-}5$	k_5	1.000		$ \overline{\mathcal{L}} $
k6	k6	0.010		$ \overline{\mathcal{L}} $
k7	k7	0.032		$ \overline{\square} $
$k_{-}7$	$k_{-}7$	1.000		$ \overline{\square} $
k8	k8	15.000		
h1	h1	0.045		
$h_{-}1$	$h_{-}1$	1.000		$ \overline{\mathcal{L}} $
h2	h2	0.092		
h3	h3	1.000		
h_3	h_3	0.010		
h4	h4	0.010		
h_4	h_4	1.000		
h5	h5	0.500		
h6	h6	0.086		
$h_{-}6$	h_6	0.001		
h7	h7	0.010		
$h_{-}7$	$h_{-}7$	1.000		
h8	h8	0.470		
h9	h9	0.140		$ \overline{\square} $
$h_{-}9$	h_9	0.002		$ \overline{\square} $
h10	h10	0.045		$ \overline{\square} $
$h_{-}10$	$h_{-}10$	1.000		$ \overline{\square} $
h11	h11	0.092		
h12	h12	1.000		
$h_{-}12$	h_12	0.010		

6 Reactions

This model contains 20 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	reaction- _0000001	binding MAPKK on Tyr site of MAPK	$M + MAPKK \Longrightarrow M_MAPKK_Y$	
2	reaction- _0000002	tyr phosphorylation of MAPK	$M_MAPKK_Y \longrightarrow MpY + MAPKK$	
3	reaction- _0000003	binding of MAPKK on MAPK-PY	$MpY + MAPKK \Longrightarrow MpY_MAPKK$	
4	reaction- _0000004	thr phosphorylation of MAPK	$MpY_MAPKK \longrightarrow Mpp + MAPKK$	
5	reaction- _0000005	binding of MAPKK on Thr site of MAPK	$M + MAPKK \Longrightarrow M_MAPKK_T$	
6	reaction- _0000006	thr phosphorylation of MAPK	$M_MAPKK_T \longrightarrow MpT + MAPKK$	
7	reaction- _0000007	binding MAPK-PT and MAPKK	$MpT + MAPKK \Longrightarrow MpT_MAPKK$	
8	reaction- _0000008	tyr phosphorylation of MAPK	$MpT_MAPKK \longrightarrow Mpp + MAPKK$	
9	reaction- _0000009	binding of MKP on Tyr site of MAPK-PP	$Mpp + MKP \Longrightarrow Mpp_MKP_Y$	
10	reaction- _0000010	dephosphorylation of Tyr on MAPKK-PP	$Mpp_MKP_Y \longrightarrow MpT_MKP_Y$	
11	reaction- _0000011	dissociation MAPK-PT and MKP	$MpT_MKP_Y \Longrightarrow MpT + MKP$	

N⁰	Id	Name	Reaction Equation	SBO
12	reaction- _0000013	binding of MKP on Thr site of MAPK-PT	$MpT + MKP \Longrightarrow MpT_MKP_T$	
13	reaction- _0000012	dephosphorylation of MAPK-PT	$MpT_MKP_T \longrightarrow M_MKP_T$	
14	reaction- _0000015	dissociation MAPK and MKP	$M_MKP_T \rightleftharpoons M + MKP$	
15	reaction- _0000017	binding of MKP on the Tyr site of MAPK-PY	$MpY + MKP \Longrightarrow MpY_MKP_Y$	
16	reaction- _000014	dephosphorylation of MAPK-PY	$MpY_MKP_Y \longrightarrow M_MKP_Y$	
17	reaction- _0000019	Dissociation MAPK and MKP	$M_MKP_Y \Longrightarrow M+MKP$	
18	reaction- _0000020	binding of MKP on Thr site of MAPK-PP	$Mpp + MKP \Longrightarrow Mpp_MKP_T$	
19	reaction- _0000021	dephosphorylation of Thr on MAPKK-PP	$Mpp_MKP_T \longrightarrow MpY_MKP_T$	
20	reaction- _0000022	dissociation MAPK-PY and MKP	$MpY_MKP_T \Longrightarrow MpY + MKP$	

6.1 Reaction reaction_0000001

This is a reversible reaction of two reactants forming one product.

Name binding MAPKK on Tyr site of MAPK

Reaction equation

$$M + MAPKK \Longrightarrow M_MAPKK_Y$$
 (1)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
М	MAPK	
MAPKK	MAPKK	

Product

Table 7: Properties of each product.

Id	Name	SBO
M_MAPKK_Y	MAPK_MAPKK_Y	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}\left(\text{cell}\right) \cdot \left(\text{k1} \cdot [\text{M}] \cdot [\text{MAPKK}] - \text{k_1} \cdot [\text{M_MAPKK_Y}]\right) \tag{2}$$

6.2 Reaction reaction_0000002

This is an irreversible reaction of one reactant forming two products.

Name tyr phosphorylation of MAPK

Reaction equation

$$M_MAPKK_Y \longrightarrow MpY + MAPKK$$
 (3)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
M_MAPKK_Y	MAPK_MAPKK_Y	

Products

Table 9: Properties of each product.

Name	SBO
MAPK-PY MAPKK	
	1 (41110

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}\left(\text{cell}\right) \cdot \text{k2} \cdot [\text{M_MAPKK_Y}] \tag{4}$$

6.3 Reaction reaction_0000003

This is a reversible reaction of two reactants forming one product.

Name binding of MAPKK on MAPK-PY

Reaction equation

$$MpY + MAPKK \Longrightarrow MpY_MAPKK$$
 (5)

Reactants

Table 10: Properties of each reactant.

Id	Name	SBO
МрҮ	MAPK-PY	
MAPKK	MAPKK	

Product

Table 11: Properties of each product

Id	Name	SBO
MpY_MAPKK	MAPK-PY_MAPKK	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{cell}) \cdot (\text{k3} \cdot [\text{MpY}] \cdot [\text{MAPKK}] - \text{k_3} \cdot [\text{MpY_MAPKK}])$$
 (6)

6.4 Reaction reaction_0000004

This is an irreversible reaction of one reactant forming two products.

Name thr phosphorylation of MAPK

Reaction equation

$$MpY_MAPKK \longrightarrow Mpp + MAPKK$$
 (7)

Reactant

Table 12: Properties of each reactant.

Table 12. Properties of each reactain.		
Id	Name	SBO
MpY_MAPKK	MAPK-PY_MAPKK	

Products

Table 13: Properties of each product.

	_	
Id	Name	SBO
Mpp MAPKK	MAPK-PP MAPKK	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}(\text{cell}) \cdot \text{k4} \cdot [\text{MpY_MAPKK}]$$
 (8)

6.5 Reaction reaction_0000005

This is a reversible reaction of two reactants forming one product.

Name binding of MAPKK on Thr site of MAPK

Reaction equation

$$M + MAPKK \Longrightarrow M_MAPKK_T$$
 (9)

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
M	MAPK	
MAPKK	MAPKK	

Product

Table 15: Properties of each product.

Id	Name	SBO
M_MAPKK_T	MAPK_MAPKK_T	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = vol\left(cell\right) \cdot \left(k5 \cdot [M] \cdot [MAPKK] - k_5 \cdot [M_MAPKK_T]\right) \tag{10}$$

6.6 Reaction reaction_0000006

This is an irreversible reaction of one reactant forming two products.

Name thr phosphorylation of MAPK

Reaction equation

$$M_MAPKK_T \longrightarrow MpT + MAPKK$$
 (11)

Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
M_MAPKK_T	MAPK_MAPKK_T	

Products

Table 17: Properties of each product.

Id	Name	SBO
MpT MAPKK	MAPK-PT MAPKK	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}(\text{cell}) \cdot \text{k6} \cdot [\text{M_MAPKK_T}]$$
 (12)

6.7 Reaction reaction_0000007

This is a reversible reaction of two reactants forming one product.

Name binding MAPK-PT and MAPKK

Reaction equation

$$MpT + MAPKK \Longrightarrow MpT_MAPKK$$
 (13)

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
МрТ	MAPK-PT	
MAPKK	MAPKK	

Product

Table 19: Properties of each product.

Id Id	Name	SBO
MpT_MAPKK	MAPK-PT_MAPKK	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}(\text{cell}) \cdot (k7 \cdot [\text{MpT}] \cdot [\text{MAPKK}] - k_{-}7 \cdot [\text{MpT_MAPKK}])$$
 (14)

6.8 Reaction reaction_0000008

This is an irreversible reaction of one reactant forming two products.

Name tyr phosphorylation of MAPK

Reaction equation

$$MpT_MAPKK \longrightarrow Mpp + MAPKK$$
 (15)

Reactant

Table 20: Properties of each reactant.

Table 20. I Toperties of each reactain.		
Id	Name	SBO
MpT_MAPKK	MAPK-PT_MAPKK	

Products

Table 21: Properties of each product.

Id	Name	SBO
Mpp MAPKK	MAPK-PP MAPKK	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol}(\text{cell}) \cdot \text{k8} \cdot [\text{MpT_MAPKK}]$$
 (16)

6.9 Reaction reaction_0000009

This is a reversible reaction of two reactants forming one product.

Name binding of MKP on Tyr site of MAPK-PP

Reaction equation

$$Mpp + MKP \Longrightarrow Mpp_MKP_Y \tag{17}$$

Reactants

Table 22: Properties of each reactant.

Id	Name	SBO
Mpp MKP	MAPK-PP MKP	

Product

Table 23: Properties of each product.

Id	Name	SBO
Mpp_MKP_Y	MAPK-PP_MKP_T	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol}(\text{cell}) \cdot (\text{h1} \cdot [\text{Mpp}] \cdot [\text{MKP}] - \text{h_1} \cdot [\text{Mpp_MKP_Y}])$$
(18)

6.10 Reaction reaction_0000010

This is an irreversible reaction of one reactant forming one product.

Name dephosphorylation of Tyr on MAPKK-PP

Reaction equation

$$Mpp_MKP_Y \longrightarrow MpT_MKP_Y \tag{19}$$

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
Mpp_MKP_Y	MAPK-PP_MKP_T	

Product

Table 25: Properties of each product.

Id	Name	SBO
MpT_MKP_Y	MAPK-PT_MKP_Y	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}(\text{cell}) \cdot \text{h2} \cdot [\text{Mpp_MKP_Y}]$$
 (20)

6.11 Reaction reaction_0000011

This is a reversible reaction of one reactant forming two products.

Name dissociation MAPK-PT and MKP

Reaction equation

$$MpT_MKP_Y \Longrightarrow MpT + MKP \tag{21}$$

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
MpT_MKP_Y	MAPK-PT_MKP_Y	

Products

Table 27: Properties of each product.

Id	Name	SBO
МрТ	MAPK-PT	
MKP	MKP	

Id	Name	SBO

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{vol}\left(\text{cell}\right) \cdot \left(\text{h3} \cdot [\text{MpT}_\text{MKP}_\text{Y}] - \text{h}_3 \cdot [\text{MpT}] \cdot [\text{MKP}]\right) \tag{22}$$

6.12 Reaction reaction_0000013

This is a reversible reaction of two reactants forming one product.

Name binding of MKP on Thr site of MAPK-PT

Reaction equation

$$MpT + MKP \Longrightarrow MpT_MKP_T$$
 (23)

Reactants

Table 28: Properties of each reactant.

Id	Name	SBO
MpT MKP	MAPK-PT MKP	

Product

Table 29: Properties of each product.

Id	Name	SBO
MpT_MKP_T	MAPK-PT_MKP_T	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol}\left(\text{cell}\right) \cdot \left(\text{h4} \cdot [\text{MpT}] \cdot [\text{MKP}] - \text{h_4} \cdot [\text{MpT_MKP_T}]\right) \tag{24}$$

6.13 Reaction reaction_0000012

This is an irreversible reaction of one reactant forming one product.

Name dephosphorylation of MAPK-PT

Reaction equation

$$MpT_MKP_T \longrightarrow M_MKP_T$$
 (25)

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
MpT_MKP_T	MAPK-PT_MKP_T	

Product

Table 31: Properties of each product.

Id	Name	SBO
M_MKP_T	MAPK_MKP_T	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}(\text{cell}) \cdot \text{h5} \cdot [\text{MpT}_\text{MKP}_\text{T}]$$
 (26)

6.14 Reaction reaction_0000015

This is a reversible reaction of one reactant forming two products.

Name dissociation MAPK and MKP

Reaction equation

$$M_MKP_T \rightleftharpoons M + MKP$$
 (27)

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
M_MKP_T	MAPK_MKP_T	

Products

Table 33: Properties of each product.

Id	Name	SBO
М	MAPK	
MKP	MKP	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}\left(\text{cell}\right) \cdot \left(\text{h6} \cdot [\text{M_MKP_T}] - \text{h_6} \cdot [\text{M}] \cdot [\text{MKP}]\right) \tag{28}$$

6.15 Reaction reaction_0000017

This is a reversible reaction of two reactants forming one product.

Name binding of MKP on the Tyr site of MAPK-PY

Reaction equation

$$MpY + MKP \Longrightarrow MpY MKP_Y$$
 (29)

Reactants

Table 34: Properties of each reactant.

Id	Name	SBO
MpY MKP	MAPK-PY MKP	

Product

Table 35: Properties of each product.

Id	Name	SBO
MpY_MKP_Y	MAPK-PY_MKP_Y	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol}(\text{cell}) \cdot (\text{h7} \cdot [\text{MpY}] \cdot [\text{MKP}] - \text{h_7} \cdot [\text{MpY_MKP_Y}])$$
(30)

6.16 Reaction reaction_0000014

This is an irreversible reaction of one reactant forming one product.

Name dephosphorylation of MAPK-PY

Reaction equation

$$MpY_MKP_Y \longrightarrow M_MKP_Y \tag{31}$$

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
MpY_MKP_Y	MAPK-PY_MKP_Y	

Product

Table 37: Properties of each product.

Id	Name	SBO
M_MKP_Y	MAPK_MKP_Y	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol}(\text{cell}) \cdot \text{h8} \cdot [\text{MpY_MKP_Y}]$$
 (32)

6.17 Reaction reaction_0000019

This is a reversible reaction of one reactant forming two products.

Name Dissociation MAPK and MKP

Reaction equation

$$M_MKP_Y \rightleftharpoons M + MKP$$
 (33)

Reactant

Table 38: Properties of each reactant.

	· F	
Id	Name	SBO
M_MKP_Y	MAPK_MKP_Y	

Products

Table 39: Properties of each product.

Id	Name	SBO
M	MAPK	
MKP	MKP	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}\left(\text{cell}\right) \cdot \left(\text{h9} \cdot [\text{M_MKP_Y}] - \text{h_9} \cdot [\text{M}] \cdot [\text{MKP}]\right) \tag{34}$$

6.18 Reaction reaction_0000020

This is a reversible reaction of two reactants forming one product.

Name binding of MKP on Thr site of MAPK-PP

Reaction equation

$$Mpp + MKP \Longrightarrow Mpp_MKP_T \tag{35}$$

Reactants

Table 40: Properties of each reactant.

Id	Name	SBO
Мрр	MAPK-PP	
MKP	MKP	

Product

Table 41: Properties of each product.

Id	Name	SBO
Mpp_MKP_T	MAPK-PP_MKP_Y	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{18} = vol\left(cell\right) \cdot \left(h10 \cdot [Mpp] \cdot [MKP] - h_{-}10 \cdot [Mpp_MKP_T]\right) \tag{36}$$

6.19 Reaction reaction_0000021

This is an irreversible reaction of one reactant forming one product.

Name dephosphorylation of Thr on MAPKK-PP

Reaction equation

$$Mpp_MKP_T \longrightarrow MpY_MKP_T \tag{37}$$

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
Mpp_MKP_T	MAPK-PP_MKP_Y	

Product

Table 43: Properties of each product.

Id	Name	SBO
MpY_MKP_T	MAPK-PY_MKP_T	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{vol}(\text{cell}) \cdot \text{h11} \cdot [\text{Mpp_MKP_T}]$$
 (38)

6.20 Reaction reaction_0000022

This is a reversible reaction of one reactant forming two products.

Name dissociation MAPK-PY and MKP

Reaction equation

$$MpY_MKP_T \rightleftharpoons MpY + MKP \tag{39}$$

Reactant

Table 44: Properties of each reactant.

	1	
Id	Name	SBO
MpY_MKP_T	MAPK-PY_MKP_T	

Products

Table 45: Properties of each product.

Id	Name	SBO
МрҮ		
MKP	MKP	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{vol}\left(\text{cell}\right) \cdot \left(\text{h12} \cdot \left[\text{MpY_MKP_T}\right] - \text{h_12} \cdot \left[\text{MpY}\right] \cdot \left[\text{MKP}\right]\right) \tag{40}$$

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

7.1 Species M

Name MAPK

Initial concentration 800 nmol·l⁻¹

This species takes part in four reactions (as a reactant in reaction_0000001, reaction_0000005 and as a product in reaction_0000015, reaction_0000019).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M} = |v_{14}| + |v_{17}| - |v_1| - |v_5| \tag{41}$$

7.2 Species MpY

Name MAPK-PY

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction_0000003, reaction_0000017 and as a product in reaction_0000002, reaction_0000022).

$$\frac{d}{dt}MpY = |v_2| + |v_{20}| - |v_3| - |v_{15}|$$
(42)

7.3 Species MpT

Name MAPK-PT

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction_0000007, reaction_0000013 and as a product in reaction_0000006, reaction_0000011).

$$\frac{d}{dt}MpT = |v_6| + |v_{11}| - |v_7| - |v_{12}|$$
(43)

7.4 Species Mpp

Name MAPK-PP

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction_0000009, reaction_0000020 and as a product in reaction_0000004, reaction_0000008).

$$\frac{d}{dt}Mpp = |v_4| + |v_8| - |v_9| - |v_{18}| \tag{44}$$

7.5 Species MAPKK

Name MAPKK

Initial concentration 180 nmol·l⁻¹

This species takes part in eight reactions (as a reactant in reaction_0000001, reaction_0000003, reaction_0000005, reaction_0000007 and as a product in reaction_0000002, reaction_0000004, reaction_0000006, reaction_0000008).

$$\frac{d}{dt}MAPKK = v_2 + v_4 + v_6 + v_8 - v_1 - v_3 - v_5 - v_7$$
(45)

7.6 Species MKP

Name MKP

Initial concentration 100 nmol·l⁻¹

This species takes part in eight reactions (as a reactant in reaction_0000009, reaction_0000013, reaction_0000017, reaction_0000020 and as a product in reaction_0000011, reaction_0000015, reaction_0000019, reaction_0000022).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MKP} = v_{11} + v_{14} + v_{17} + v_{20} - v_{9} - v_{12} - v_{15} - v_{18} \tag{46}$$

7.7 Species MpY_MAPKK

Name MAPK-PY_MAPKK

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000004 and as a product in reaction_0000003).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MpY}_{-}\mathrm{MAPKK} = v_3 - v_4 \tag{47}$$

7.8 Species MpT_MAPKK

Name MAPK-PT_MAPKK

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000008 and as a product in reaction_0000007).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MpT}_{-}\mathrm{MAPKK} = |v_7| - |v_8| \tag{48}$$

7.9 Species M_MAPKK_Y

Name MAPK_MAPKK_Y

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000002 and as a product in reaction_0000001).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{M}_{-}\mathrm{MAPKK}_{-}\mathrm{Y} = v_1 - v_2 \tag{49}$$

7.10 Species M_MAPKK_T

Name MAPK_MAPKK_T

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000006 and as a product in reaction_0000005).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M}_{-}\mathbf{M}\mathbf{A}\mathbf{P}\mathbf{K}\mathbf{K}_{-}\mathbf{T} = \begin{vmatrix} v_5 \end{vmatrix} - \begin{vmatrix} v_6 \end{vmatrix} \tag{50}$$

7.11 Species Mpp_MKP_Y

Name MAPK-PP_MKP_T

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000010 and as a product in reaction_0000009).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mpp}_{-}\mathrm{MKP}_{-}\mathrm{Y} = v_9 - v_{10} \tag{51}$$

7.12 Species Mpp_MKP_T

Name MAPK-PP_MKP_Y

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000021 and as a product in reaction_0000020).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mpp}_{-}\mathrm{MKP}_{-}\mathrm{T} = |v_{18}| - |v_{19}| \tag{52}$$

7.13 Species MpY_MKP_Y

Name MAPK-PY_MKP_Y

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000014 and as a product in reaction_0000017).

$$\frac{d}{dt}MpY_{-}MKP_{-}Y = |v_{15}| - |v_{16}|$$
 (53)

7.14 Species MpY_MKP_T

Name MAPK-PY_MKP_T

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000022 and as a product in reaction_0000021).

$$\frac{d}{dt}MpY_{-}MKP_{-}T = |v_{19}| - |v_{20}|$$
 (54)

7.15 Species MpT_MKP_Y

Name MAPK-PT_MKP_Y

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000011 and as a product in reaction_0000010).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MpT}_{-}\mathrm{MKP}_{-}\mathrm{Y} = v_{10} - v_{11} \tag{55}$$

7.16 Species MpT_MKP_T

Name MAPK-PT_MKP_T

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000012 and as a product in reaction_0000013).

$$\frac{d}{dt}MpT_MKP_T = |v_{12}| - |v_{13}|$$
 (56)

7.17 Species M_MKP_T

Name MAPK_MKP_T

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000015 and as a product in reaction_0000012).

$$\frac{d}{dt}M_{-}MKP_{-}T = v_{13} - v_{14}$$
 (57)

7.18 Species M_MKP_Y

Name MAPK_MKP_Y

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000019 and as a product in reaction_0000014).

$$\frac{d}{dt}M_{-}MKP_{-}Y = |v_{16}| - |v_{17}|$$
 (58)

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany