"Causal Inference with Different Meta-Learners"

1. Introduction to the Research Question

- **Objective**: The goal is to compare different meta-learners (T-Learner, S-Learner, X-Learner, R-Learner) in estimating the Conditional Average Treatment Effect (CATE) within the context of a binary educational intervention.
- Hypothesis: It is hypothesised that one meta-learner may outperform others in accurately capturing the true CATE, potentially due to specific characteristics of the educational intervention and the structure of the data.

2. Data Preparation and Preprocessing

- **Dataset**: The dataset is derived from an observational study based on the National Study of Learning Mindsets, focusing on student achievement (Y) as the outcome and a binary treatment indicator (Z).
- **Covariates**: The covariates include both student-level factors (e.g., race, gender, prior achievement) and school-level factors (e.g., school achievement level, urbanicity).
- Preprocessing Steps:
 - Standardization: Covariates have been standardized to ensure they are on a similar scale.
 - **Splitting Data**: The data is split into training and testing sets (70%-30%) to evaluate the models' performance on unseen data.

3. Implementation of Meta-Learners

- Overview of Meta-Learners: Each meta-learner and its methodology is briefly described:
 - **S-Learner**: Combines treatment and covariates into a single model.
 - **T-Learner**: Builds separate models for treated and control groups.
 - X-Learner: Enhances the T-Learner by refining estimates using both groups.
 - R-Learner: Uses residuals to estimate treatment effects, thereby reducing bias from confounders.

• Implementation:

- **Hyperparameter Tuning**: GridSearchCV is used for hyperparameter optimization for each learner and model combination.
- Models: Various models (e.g., RandomForest, GradientBoosting, NeuralNetwork) are selected to work with each meta-learner. The best hyperparameters for each model and meta-learner pair are documented.

4. Experimentation

- **Objective**: Each meta-learner is run with the selected models on the training set, followed by evaluation on the test set.
- **Evaluation Metric**: Mean Squared Error (MSE) and Expected Mean Squared Error (EMSE) are used as the primary metrics to quantify the accuracy of CATE estimation.

• Steps:

- Each meta-learner is trained on the training dataset using the optimal hyperparameters.
- Outcomes are predicted on the test dataset, and MSE is calculated for each model.
- An EMSE analysis is performed using bootstrapping to estimate the stability and expected error across multiple samples.

5. Results Analysis

MSE Results:

- Comparison: A table summarizing the MSE of each meta-learner paired with each model is presented, with the best-performing combinations highlighted.
- **Visualization**: Bar plots are used to compare the MSE across meta-learners and models, facilitating trend identification.

EMSE Results:

- Robustness: EMSE results are presented to evaluate the stability of the models' predictions, aiding in understanding not only accuracy but also the reliability of each meta-learner.
- Plots: The EMSE results are visualized similarly to MSE, facilitating easier comparison.

6. Interpretation of Results

Meta-Learner Performance:

- The meta-learner that consistently shows the lowest MSE/EMSE is identified, and its effectiveness in this context is discussed.
- The impact of different underlying models (e.g., RandomForest, GradientBoosting) on the performance of each meta-learner is analyzed to determine whether certain models are particularly well-suited to specific learners.
- **Hypothesis Evaluation**: The initial hypothesis is revisited. If one meta-learner indeed outperforms the others, a detailed explanation rooted in the characteristics of the data and intervention is provided.

7. Discussion and Implications

- Educational Implications: The implications of the findings for educational interventions are discussed. For example, if the R-Learner emerges as the best performer, its practical application in tailoring interventions to specific student demographics is explored.
- Meta-Learner Suitability: Recommendations are made on which meta-learner and model combination should be used for future educational CATE estimation, based on the results.
- **Limitations**: Potential limitations of the study, such as the scope of data or the focus on a specific type of intervention, are addressed.

8. Conclusion

- Summary: The key findings of the experiments are recapped. The best-performing
 meta-learner is highlighted, and its contribution to the broader field of educational
 research and causal inference is discussed.
- **Future Research**: Suggestions are made for further exploration, such as applying the findings to real-world data, exploring additional meta-learners, or experimenting with other forms of causal inference methods

Structured Analysis and Insights: Causal Inference with Different Meta-Learners:

1. Objective

The objective of this analysis was to evaluate and compare the performance of different meta-learners—S-Learner, T-Learner, X-Learner, and R-Learner—in estimating the Conditional Average Treatment Effect (CATE) within the context of a binary educational intervention. The analysis was based on observational data, with the goal of identifying the most effective meta-learner for capturing the true CATE.

2. Methodology Overview

2.1 Data Preprocessing

- Dataset: The dataset was sourced from the National Study of Learning Mindsets.
- Treatment and Outcome Variables:
 - Treatment: GrowthMindsetIntervention (Z)
 - Outcome: StudentAchievementScore (Y)
- Covariates: The dataset included various covariates such as FutureSuccessExpectations, StudentRaceEthnicity, StudentGender, SchoolUrbanicity, among others.
- **Standardization**: All covariates were standardized using StandardScaler, ensuring that each feature had a mean of 0 and a standard deviation of 1, which is crucial for model performance, particularly when dealing with regularization techniques.

3. Results and Performance Evaluation

3.1 Mean Squared Error (MSE) Analysis

The performance of different meta-learners was evaluated using the Mean Squared Error (MSE) metric across various machine learning models. The results were as follows:

• S-Learner:

RandomForest: MSE = 0.29
 GradientBoosting: MSE = 0.27
 NeuralNetwork: MSE = 0.28

Ridge: MSE = 0.31Lasso: MSE = 0.35

T-Learner:

RandomForest: MSE = 0.56
 GradientBoosting: MSE = 0.52
 NeuralNetwork: MSE = 0.46

Ridge: MSE = 0.56Lasso: MSE = 0.53

X-Learner:

 Across all models, the X-Learner consistently yielded an MSE of 0.44, indicating a stable performance across different model types.

R-Learner:

- The R-Learner exhibited the highest MSE values, particularly with the NeuralNetwork model, which had an MSE of 13.06. Other models showed relatively lower, but still high, MSE values:
 - RandomForest: MSE = 1.97GradientBoosting: MSE = 2.19

■ **Lasso**: MSE = 2.23

Visualization: A bar plot comparing the MSE values across different meta-learners and models revealed that the S-Learner and X-Learner consistently performed better, especially with ensemble methods like RandomForest and GradientBoosting.

3.2 Enhanced R-Learner Implementation

Given the high MSE values observed with the standard R-Learner, an enhanced version was implemented using RidgeCV and LassoCV for additional regularization. This enhancement led to improved performance:

R-Learner with RidgeCV: MSE = 0.2068
 R-Learner with LassoCV: MSE = 0.2169

Prediction Distribution: The enhanced R-Learner showed more stable predictions across different models, with a consistent mean close to the expected value (e.g., 0.2216 for RandomForest, 0.2277 for GradientBoosting). The distribution of predictions had minimal variance, as observed in the descriptive statistics of the predictions.

3.3 Conditional Average Treatment Effect (CATE) Estimation

The estimated CATE values for various features were calculated and compared with the actual Student Achievement Scores to assess the effectiveness of the meta-learners.

• PreInterventionFixedMindset:

R-Learner: CATE = 0.2681
 Actual Score: 0.5063

• **Insight**: This feature had the highest positive impact on treatment effect estimation, particularly with the R-Learner.

• FutureSuccessExpectations:

X-Learner: CATE = 0.2123
 Actual Score: -0.5256

 Insight: There was a significant negative correlation between the estimated CATE and the actual student achievement score, indicating that this feature might have a detrimental effect on treatment outcomes.

Heatmap Visualization: A heatmap was created to visualize the comparison of CATE values estimated by different meta-learners against actual student achievement scores. This visualization highlighted the varying degrees of effectiveness of each meta-learner across different features.

3.4 EMSE (Expected Mean Squared Error) Evaluation

To obtain a more robust performance evaluation, the Expected Mean Squared Error (EMSE) was calculated using bootstrapping. The results further validated the findings from the MSE analysis:

S-Learner:

• RandomForest: EMSE = 0.28

• **Lasso**: EMSE = 0.32

• R-Learner with LassoCV: EMSE = 0.22

 Insight: The enhanced R-Learner with LassoCV showed substantial improvement in EMSE, indicating its potential viability with appropriate regularization.

Visualization: The EMSE results were visualized using a bar plot, reinforcing the findings that the S-Learner and X-Learner were generally more effective across different models.

4. Conclusion

The analysis demonstrated that the S-Learner and X-Learner consistently outperformed other meta-learners, particularly when combined with ensemble models like RandomForest and GradientBoosting. The enhanced R-Learner, with additional regularization, showed promise but generally exhibited higher variance in CATE estimation, highlighting the need for further tuning and optimization.

5. Future Work

- **Further Tuning**: Additional hyperparameter tuning, particularly for the R-Learner, could potentially reduce the observed variance and improve CATE estimation.
- Application of Advanced Regularization Techniques: Given the success of LassoCV in improving the R-Learner, exploring other regularization techniques might further enhance performance.