Resolving Referring Expressions with Situated Contexts

Shiwali Mohan, Aaron Mininger, John E. Laird

Computer Science and Engineering University of Michigan

Learning with Human-Robot/Agent Interaction

- Situated Interactive Instruction
 - · agents embodied in real-world like domains
 - · natural language interactions
 - · exploit the common ground: shared perceptions, domain knowledge, experience
 - · mixed-initiative learning
- Learn new tasks/actions (and verbs)
 - situated comprehension (this talk)
 - · active learning (next talk)

Process Overview

Process Overview

- Phrases used to refer to objects
- Several surface forms: it, this cube, that, the large cube
- May be ambiguous with linguistic context alone
- Situational use

- · Phrases used to refer to objects
- Several surface forms: it, this cube, that, the large cube
- · May be ambiguous with linguistic context alone
- · Situational use

Pick up the blue cube.

- · Phrases used to refer to objects
- Several surface forms: it, this cube, that, the large cube
- · May be ambiguous with linguistic context alone
- · Situational use

Pick up the large, blue cube.

- · Phrases used to refer to objects
- Several surface forms: it, this cube, that, the large cube
- May be ambiguous with linguistic context alone
- · Situational use

Pick up the cube on the left of the red cylinder.

Use of Referring Expressions

- · Language is a co-operative joint activity.
- Communicative goal of referring expression (RE) is identification of object of interest by the hearer.
- Surface form, intonation, word order is influenced by saliency.
 - functionality and usefulness for a task, gestures, changes in appearance, surprise, discourse
- · More informative RE for less salient objects and vice-versa.
 - the red large block for a new object
 - it for an object in context

The Givenness Hierarchy

(Gundel et al., 1993)

- How are REs resolved in a cognitive system?
- Salience → cognitive accessibility (or status)
 - activated objects in short-term memory have a higher cognitive status than in long-term memory
- RE surface forms signal different cognitive statuses

```
in focus > activated > familiar > uniquely identifiable > referential > type identifiable

it this, that that N the N indefinite a N

this N
```

- Two-dimensions of context (Knoeferle and Crocker, 2006)
 - · informational and temporal

Indexical Model for Language Comprehension

- Language features are cues to search perceptions, task knowledge, past experiences
 - language features → referents
 - Referring expressions → objects (perception)
 - Verb + syntactical structure → action-concept-network (semantic + procedural memory)
 - Prepositions → spatial-relationships (semantic memory + SVS)
- Domain knowledge is associated with referents
- Compose referents to generate a grounded representation.
 - · constraints: syntactic, domain knowledge, current state.
 - · removes ambiguity, augments underspecific information.

Reference Resolution Model

A computational model of reference resolution that

- incorporated in the Indexical Model of Comprehension
 - referring expression → objects in perception
- · sensitive to RE surface forms
 - exploits the Givenness hierarchy to create a hypothesis space
- · incorporates various contexts
 - · perceptual semantics, action knowledge, dialog state, attentional state
 - · constrain the hypothesis space, guide search
- scales with learning new words (BOLT)
- · implemented within the architectural constraints of Soar

maintain cognitive status

maintain cognitive status

Environment

maintain cognitive status

Environment

use GH heuristics to identify the candidates

use GH heuristics to identify the candidates

Interaction Environment Resolution Instructor: This is a Cognitive Status blue rectangle. $0_p = \{01,02,03,04\}$ Pantry Table $0_a = \{01\}$ $0_f = \{\}$ GH Heuristic 01 this/that N → active ``.... 02 $0_c = 0_a$ 03 Garbage Dishwasher

resolve

Environment

resolve

Interaction Instructor: This is a blue rectangle.

Environment

Interaction Instructor: This is a blue rectangle. Instructor: This is to the right of the red cylinder.

Pantry Table O1 O2 O3 O4 Dishwasher

Resolution ('this') Cognitive Status $0_p = \{01,02,03,04\}$ $0_a = \{01\}$ $0_f = \{\}$ GH Heuristic this/that N → active

Interaction Instructor: This is a blue rectangle. Instructor: This is to the right of the red cylinder.

Interaction Instructor: This is a blue rectangle. Instructor: This is to the right of the red cylinder.

Interaction

Environment

Resolution ('the red cylinder')

Instructor: This is a blue rectangle. Instructor: This is to the right of the red cylinder.

Interaction

Environment

Resolution ('the red cylinder')

Instructor: This is a blue rectangle.
Instructor: This is to the right of the red cylinder.

Interaction

Environment

Resolution ('the red cylinder')

Instructor: This is a blue rectangle.
Instructor: This is to the right of the red cylinder.

Interaction

Environment

Resolution ('the red cylinder')

Instructor: This is a blue rectangle. Instructor: This is to the right of the red cylinder.

Interaction

Environment

Resolution ('the red cylinder')

Instructor: This is a blue rectangle.
Instructor: This is to the right of the red cylinder.

Cognitive Status $0_p = \{01,02,03,04\}$ $0_a = \{02,01\}$ $0_f = \{\}$ GH Heuristic the $N \longrightarrow percept$ $0_c = 0_p$ Filter(red) $0_c = \{02, 03\}$ Filter(cylinder) $0_c = \{02\}$ Resolution $'the\ red\ cylinder'=02$

Interaction

Instructor: This is a blue rectangle. Instructor: This is to the right of the red cylinder. Instructor: Move the rectangle to the

pantry.

Environment

Resolution ('the rectangle')

Interaction

Instructor: This is a blue rectangle.
Instructor: This is to the right of the red cylinder.
Instructor: Move the rectangle to the pantry.

Environment

Resolution ('the rectangle')

Interaction Instructor: This is a blue rectangle. Instructor: This is to the right of the red cylinder. Instructor: Move the rectangle to the pantry.

Interaction

Instructor: This is a blue rectangle. Instructor: This is to the right of the red cylinder.

Instructor: Move the
rectangle to the
pantry.

Instructor: Pick it
up.

Environment

Resolution ('it')

Interaction

Instructor: This is a blue rectangle. Instructor: This is to the right of the

red cylinder.

Instructor: Move the rectangle to the pantry.

Instructor: Pick it
up.

Environment

Resolution ('it')

Interaction

Instructor: This is a blue rectangle.

Instructor: This is
to the right of the
red cylinder.

Instructor: Move the
rectangle to the
pantry.

Instructor: Pick it
up.

Environment

Resolution ('it')

Results

scenarios: number of distractors models: p, p+t, p+t+a, p+t+a+d

corpus: instructional dialogs, 12 personal pronouns (*it*), 4 demonstrative pronouns (*this*), 3 demonstrative phrases (*that cylinder*), and 14 noun phrases (*the red cylinder*)

Nuggets and Coal

- · Nuggets
 - · `integrative theory' of situated contexts
 - · integrates with interaction
 - · non-linguistic knowledge for linguistic comprehension
- Coal
 - · not complete
 - · not rigorously evaluated