

Generarea unui model ARX neliniar de tip polinomial

Alina Claudia Precup Răzvan-Vasile Vanca

Universitatea Tehnică din Cluj-Napoca, Facultatea de Automatică și Calculatoare, Specializarea Automatică și Informatică Aplicată, Grupa 30134 data-index: 01

Continut

- Motivaţie
 - Elementele Problemei
 - Objectivul
 - Datele de Intrare
- Particularităti ale Solutiei Alese
 - Modelul Matematic
 - Modelul de Aproximare
 - Alegerea Gradului Polinomului şi a Ordinului Sistemului

Continut

- Motivaţie
 - Elementele Problemei
 - Objectivul
 - Datele de Intrare
- Particularități ale Soluției Alese
 - Modelul Matematic
 - Modelul de Aproximare
 - Alegerea Gradului Polinomului și a Ordinului Sistemului

Elementele Problemei

- Un set de date u(k), y(k), k = 1, ..., N măsurate de la un sistem dinamic cu o intrare si o iesire.
- Există o întârziere nk între intrări și ieșiri, utilă în modelarea sistemelor cu timp mort.
- Vectorul de regresori $\varphi \in \mathbb{R}^{nm}$, combinații ale ieșirilor și intrărilor.
- Vectorul de parametri $\theta \in \mathbb{R}^{nm}$ necunoscut.
- Antrenarea modelului prin metoda regresiei liniare.

Continut

- Motivaţie
 - Elementele Problemei
 - Obiectivul
 - Datele de Intrare
- Particularități ale Soluției Alese
 - Modelul Matematic
 - Modelul de Aproximare
 - Alegerea Gradului Polinomului și a Ordinului Sistemului

Obiectivul

- Dezvoltarea unui model de tip cutie neagră pentru sistemul dinamic, folosind o structură ARX neliniară de tip polinomial.
- Programarea procedurii de regresie pentru identificarea parametrilor (coeficienții reali).
- Utilizarea modelului cu intrări noi. Această utilizare fiind făcută în două moduri: predicție și simulare.
- Validarea modelului obținut pe setul de validare.
- Alegerea ordinului modelului, întârzierea şi gradul polinomului în vederea obținerii unei aproximări optime.

Continut

- Motivație
 - Elementele Problemei
 - Objectivul
 - Datele de Intrare
- Particularități ale Soluției Alese
 - Modelul Matematic
 - Modelul de Aproximare
 - Alegerea Gradului Polinomului și a Ordinului Sistemului

Setul de antrenare a modelului

Figure 1: Reprezentarea datelor de identificare (intrarea sistemului)

Setul de antrenare a modelului

Figure 2: Reprezentarea datelor de identificare (iesirea sistemului)

Setul de validare a modelului

Figure 3: Reprezentarea datelor de validare (intrarea sistemului)

Setul de validare a modelului

Figure 4: Reprezentarea datelor de validare (ieșirea sistemului)

Continut

- Motivatie
 - Elementele Problemei
 - Objectivul
 - Datele de Intrare
- Particularităti ale Solutiei Alese
 - Modelul Matematic
 - Modelul de Aproximare
 - Alegerea Gradului Polinomului și a Ordinului Sistemului

Modelul ARX neliniar

Considerăm un model cu ordinele *na*, *nb* și întârzierea *nk*. Modelul ARX neliniar are atunci structura:

$$\hat{y}(k) = p(y(k-1), ..., y(k-na), u(k-nk), u(k-nk-1), ..., u(k-nk-nb+1); \theta)$$

= $p(d(k))$

unde vectorul de semnale precedente (ieșiri și intrări întârziate) este:

$$d(k) = [y(k-1), \dots, y(k-na), u(k-nk), u(k-nk-1), \dots, u(k-nk-nb+1))]^{T}$$

Funcția p este parametrizată de $\theta \in \mathbb{R}^n$, iar acești parametri pot fi aleși pentru a recupera datele de identificare, identificând astfel un sistem dinamic neliniar.

Explicitarea Polinomului

În cazul nostru particular, p este un polinom de gradul m în ieșirile și intrările precedente.

De exemplu, pentru câteva valori particulare ale lui *na*, *nb*, *nk*, vectorul *d* și polinomul *p* au forma:

$$na = nb = 1, m = 2, nk = 0$$

$$d = [y(k-1), u(k-1)]^{T}$$

$$\hat{y}(k) = [1, u(k-1), u(k-1)^{2}, y(k-1), y(k-1)u(k-1), y(k-1)^{2}]^{T}$$

$$\cdot \theta$$

$$= \theta_{1} + \theta_{2}u(k-1) + \theta_{3}u(k-1)^{2} + \theta_{4}y(k-1) + \theta_{5}y(k-1)u(k-1) + \theta_{6}y(k-1)^{2}$$

unde θ_1 , θ_2 , θ_3 , θ_4 , θ_5 , θ_6 sunt coeficienții reali și parametrii modelului.

Modelul neliniar

Modelul este neliniar, conține produse între variabile întârziate, nu doar termeni liniari în y(k-1) și u(k-1) ca și în cazul ARX-ului standard.

Modelul are deci proprietatea esențială că este liniar în parametri, motiv pentru care aceștia pot fi găsiți folosind metoda regresiei liniare.

Forma Generală a Sistemului Liniar

Pentru aproximatorul polinomial \hat{y} de grad m în na + nb variabile numărul de monoame nm este dat de formula combinatorică:

$$nm = \binom{m + na + nb}{na + nb}$$

unde *na*, *nb* reprezintă ordinul sistemului, iar *m* gradul polinomului de aproximare (*na*, *nb*, *m* fiind configurabile)

Pentru simplitate, vom fixa nk=1 și vom considera na=nb în căutarea gradului și a ordinului optim.

Sistemul de Ecuații

Scriind modelul pentru datele de intrare, obținem următorul sistem de ecuatii liniare:

$$y(1)=\varphi_1(1)\theta_1 + \varphi_2(1)\theta_2 + \cdots + \varphi_{nm}(1)\theta_{nm}$$

$$y(2)=\varphi_1(2)\theta_1 + \varphi_2(2)\theta_2 + \cdots + \varphi_{nm}(2)\theta_{nm}$$

$$\cdots$$

$$y(n)=\varphi_1(n)\theta_1 + \varphi_2(n)\theta_2 + \cdots + \varphi_{nm}(n)\theta_{nm}$$

n-numărul datelor de intrare

$$\varphi_1, \varphi_2, \dots, \varphi_{nm}$$
 – regresorii (produse între variabile întârziate) $\theta_1, \theta_2, \dots, \theta_{nm}$ – parametrii modelului (coeficienții reali)

Observație: Când k < na, nb, valorile lui u și y la momentele de timp negative și 0, necesare pentru construirea lui φ vor fi luate 0 (presupunând condiții inițiale nule).

Forma Matriceală a Sistemului de Ecuații

Sistemul se poate scrie sub formă matriceală astfel:

$$\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(n) \end{bmatrix} = \begin{bmatrix} \varphi_1(1) & \varphi_2(1) & \cdots & \varphi_{nm}(1) \\ \varphi_1(2) & \varphi_2(2) & \cdots & \varphi_{nm}(2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(n) & \varphi_2(n) & \cdots & \varphi_{nm}(n) \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_{nm} \end{bmatrix}$$

$$Y = \Phi \theta$$
$$\hat{\theta} = (\Phi^T \Phi)^{-1} \Phi^T Y$$

noile variabile fiind: $Y \in \mathbb{R}^n$ si $\Phi \in \mathbb{R}^{n \times nm}$.

- Problema se reduce la a găsi vectorul de parametri care minimizează media erorilor pătratice.
- Vectorul $\hat{\theta}$ este deci soluția reală a problemei de optimizare, dar rămâne totuși o estimare datorită zgomotului din datele de intrare.

Modelul Matematic

Pentru simplitate, în explicitarea modelului matematic vom considera vectorul de semnale precedente ca fiind:

$$[x_1, x_2, \ldots, x_{nv}]$$

iar nk îl vom considera 0.

nv - numărul de variabile ale polinomului (nv = na + nb)

Astfel, au loc schimbările de variabile:

$$y(k-1) \leftrightarrow x_1$$
 $u(k-1) \leftrightarrow x_{na+1}$ $y(k-2) \leftrightarrow x_2$ $u(k-2) \leftrightarrow x_{na+2}$ \vdots \vdots $y(k-na) \leftrightarrow x_{na}$ $u(k-nb) \leftrightarrow x_{nv}$

Generarea Monoamelor Polinomului de grad *m* în *na* + *nb* variabile

Presupunem că m = 2, iar na = nb = 2. Atunci, vectorul de variabile (în cazul nostru semnale precedente) arată astfel:

$$[x_1, x_2, x_3, x_4] \leftrightarrow [y(k-1), y(k-2), u(k-1), u(k-2)]$$

Regresorii fiind următorii:

Explicitarea Modelului Matematic

$$\begin{bmatrix} \hat{y}(1) \\ \hat{y}(2) \\ \vdots \\ \hat{y}(n) \end{bmatrix} = \begin{bmatrix} 1 & x_{nv}(1) & \cdots & x_{nv}(1)^m & x_{nv-1}(1) & x_{nv-1}(1)x_{nv}(1) & \cdots \\ 1 & x_{nv}(2) & \cdots & x_{nv}(2)^m & x_{nv-1}(2) & x_{nv-1}(2)x_{nv}(2) & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\ 1 & x_{nv}(n) & \cdots & x_{nv}(n)^m & x_{nv-1}(n) & x_{nv-1}(n)x_{nv}(n) & \cdots \\ x_{nv-1}(1)x_{nv}(1)^{m-1} & x_{nv-1}(1)^2 & \cdots & x_{nv-1}(1)^2x_{nv}(1)^{m-2} & \cdots & x_{nv-1}(1)^m \\ x_{nv-1}(2)x_{nv}(2)^{m-1} & x_{nv-1}(2)^2 & \cdots & x_{nv-1}(2)^2x_{nv}(2)^{m-2} & \cdots & x_{nv-1}(2)^m \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{nv-1}(n)x_{nv}(n)^{m-1} & x_{nv-1}(n)^2 & \cdots & x_{nv-1}(n)^2x_{nv}(n)^{m-2} & \cdots & x_{nv-1}(n)^m \\ \cdots & x_1(1) & x_1(1)x_{nv}(1) & \cdots & x_1x_{nv}(1)^{m-1} & \cdots & x_1(1)^m \\ \cdots & x_1(2) & x_1(2)x_{nv}(2) & \cdots & x_1x_{nv}(2)^{m-1} & \cdots & x_1(2)^m \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \cdots & x_1(n) & x_1(n)x_{nv}(n) & \cdots & x_1x_{nv}(n)^{m-1} & \cdots & x_1(n)^m \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_{nm} \end{bmatrix}$$

Ilustrarea Modelului Matematic

Presupunem că gradul polinomului este m=2, iar ordinul na=nb=1, deci vor exista nm=6 monoame în componența acestuia.

$$\begin{bmatrix} \hat{y}(1) \\ \hat{y}(2) \\ \vdots \\ \hat{y}(n) \end{bmatrix} = \begin{bmatrix} 1 & x_2(1) & x_2(1)^2 & x_1(1) & x_1(1)x_2(1) & x_1(1)^2 \\ 1 & x_2(2) & x_2(2)^2 & x_1(2) & x_1(2)x_2(1) & x_1(2)^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_2(n) & x_2(n)^2 & x_1(n) & x_1(n)x_2(n) & x_1(n)^2 \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_6 \end{bmatrix}$$

Concretizarea Modelului Matematic

$$\begin{bmatrix} \hat{y}(1) \\ \hat{y}(2) \\ \vdots \\ \hat{y}(n) \end{bmatrix} = \begin{bmatrix} 1 & u(1-1) & u(1-1)^2 & y(1-1) & y(1-1)u(1-1) & y(1-1)^2 \\ 1 & u(2-1) & u(2-1)^2 & y(2-1) & y(2-1)u(1-1) & y(2-1)^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & u(n-1) & u(n-1)^2 & y(n-1) & y(n-1)u(n-1) & y(n-1)^2 \end{bmatrix} \cdot \theta$$

$$\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_6 \end{bmatrix}$$

Utilizarea Modelului - Predicție

leşirea reală a sistemului este cunoscută, deci este disponibil vectorul de semnale întârziate d(k):

$$d(k) = [y(k-1), \dots, y(k-na), u(k-nk), u(k-nk-1), \dots, u(k-nk-nb+1))]^T$$

Predicție cu un pas înainte: $\hat{y}(k) = p(d(k); \hat{\theta})$

Observație: Semnalele la momente negative de timp vor fi luate 0.

Utilizarea Modelului - Simulare

leşirea reală a sistemului este necunoscută, deci vom folosi ieşirile simulate anterior pentru a construi o aproximare $\tilde{d}(k)$ a lui d(k):

$$\tilde{d}(k) = [\tilde{y}(k-1), \dots, \tilde{y}(k-na), u(k-nk), u(k-nk-1), \dots, u(k-nk-nb+1))]^T$$

Simulare: $\tilde{y}(k) = p(\tilde{d}(k); \hat{\theta})$

Observație: leșirile simulate la pași negativi și zero vor fi luate 0.

Continut

- Motivatie
 - Elementele Problemei
 - Objectivul
 - Datele de Intrare
- Particularităti ale Solutiei Alese
 - Modelul Matematic
 - Modelul de Aproximare
 - Alegerea Gradului Polinomului și a Ordinului Sistemului

Predicție: Aproximarea datelor de identificare pentru grad 2 și ordin 8

Figure 5: Comparația între y_{hat} și y pentru m=2, na=nb=8

Rezultat bun! Parametrii aleși duc la o aproximare bună a datelor de identificare.

Predicție: Aproximarea datelor de validare pentru grad 2 și ordin 8

Figure 6: Comparația între y_{hat} și y pentru m=2, na=nb=8

Rezultat prost! Ordinul mare duce la fenomenul de supraantrenare.

Predicție: Aproximarea datelor de identificare pentru grad 4 și ordin 1

Figure 7: Comparația între y_{hat} și y pentru m=4, na=nb=1

Rezultat bun! Parametrii aleși duc la o aproximare bună a datelor de identificare.

Predictie: Aproximarea datelor de validare pentru grad 4 si ordin 1

Figure 8: Comparatia între y_{hat} si y pentru m=4, na=nb=1

Rezultat bun! Parametrii alesi duc la o aproximare optimă a datelor de validare.

Simulare: Aproximarea datelor de identificare pentru grad 3 și ordin 1

Figure 9: Comparația între y_{hat} și y pentru m=3, na=nb=1

Rezultat bun! Parametrii aleși duc la o aproximare optimă a datelor de identificare.

Simulare: Aproximarea datelor de validare pentru grad 3 și ordin 1

Figure 10: Comparația între y_{hat} și y pentru m=3, na=nb=1

Rezultat bun! Parametrii aleși duc la o aproximare optimă a datelor de validare.

Simulare: Aproximarea datelor de identificare pentru grad 1 și ordin 1

Figure 11: Comparația între y_{hat} și y pentru m=1, na=nb=1

Rezultat prost! Gradul și ordinul mic duc la fenomenul de subantrenare.

Simulare: Aproximarea datelor de validare pentru grad 1 și ordin 1

Figure 12: Comparația între y_{hat} și y pentru m=1, na=nb=1

Rezultat prost! Gradul și ordinul mic duc la fenomenul de subantrenare.

Cele mai bune modele obținute pentru aproximarea datelor de identificare

Figure 13: Comparația între y_{hat} (predicție), y_{hat} (simulare) și y

Utilizarea modelului cu intrări noi prin predicție duce la rezultate mai bune decât prin simulare.

Cele mai bune modele obținute pentru aproximarea datelor de validare

Figure 14: Comparația între y_{hat} (predicție), y_{hat} (simulare) și y

Utilizarea modelului cu intrări noi prin predicție duce la rezultate mai bune decât prin simulare.

Continut

- Motivaţie
 - Elementele Probleme
 - Objectivul
 - Datele de Intrare
- Particularități ale Soluției Alese
 - Modelul Matematic
 - Modelul de Aproximare
 - Alegerea Gradului Polinomului şi a Ordinului Sistemului

Predicție: Evoluția erorii medii pătratice în raport cu m

Figure 15: Reprezentarea erorii medie pătratice în funcție de m

Pentru m > 10 eroarea pe datele de validare începe să crească, iar pe datele de identificare să scadă.

Predicție: Evoluția erorii medii pătratice în raport cu *na* (*na* = *nb*)

Figure 1: Reprezentarea erorii medie pătratice în funcție de na

Pentru *na* > 5 eroarea pe datele de validare începe să crească, iar pe datele de identificare să scadă.

Simulare: Evoluția erorii medii pătratice în raport cu m

Figure 1: Reprezentarea erorii medie pătratice în funcție de m

Pentru *m* mare apar nedeterminări. Se constată că pentru *m* suficient de mic erorile sunt mici, atât pe validare, cât si pe identificare.

Simulare: Evoluția erorii medii pătratice în raport cu *na* (*na* = *nb*)

Figure 1: Reprezentarea erorii medie pătratice în funcție de na

Pentru *na* mare apar nedeterminări. Se constată că pentru *na* mic erorile sunt mici, atât pe validare, cât și pe identificare.

Concluzii

- Predicție: gradul optim al polinomului este 4, iar ordinul optim al sistemului este 1.
- Simulare: gradul optim al polinomului este 3, iar ordinul optim al sistemului este 1.
- Pentru un grad și ordin prea mici apare fenomenul de subantrenare la utilizarea modelului în modul simulare.
- Datele sunt afectate de zgomot, deci creşterea exagerată a gradului și ordinului va duce la supraantrenare: performanțe bune pe datele de identificare, dar proaste pe datele de validare la utlizarea modelului în modul predicție.

Bibliografie I

- Arun K. Tangirala Principles of System Identification. CRC Press, 2015.
- Lennart Ljung System Identification Theory for the User. Prentice Hall PTR, 1999.
- Torsten Söderström, Petre Stoica System Identification. Prentice Hall, 2001.
- Christopher M. Bishop Pattern Recognition and Machine Learning. Springer Science, 2006.

Bibliografie II

Ian Goodfellow, Yoshua Bengio and Aaron Courville Deep Learning.

The MIT Press Cambridge, 2016.

Lucian Buşoniu

Identificarea sistemelor - Ingineria Sistemelor, anul 3 Universitatea Tehnica din Cluj-Napoca.

Partea V - Metoda ARX

```
1 % x - vector simbolic care reprezinta
      variabilele polinomului
2 % m - gradul polinomului
3 % current powers - puterile curente ale
      fiecarei variabile
4 function monomials = generate monomials(x, m,
      current powers)
       if length(current powers) == length(x)
5
           prod = 1;
6
           for i = 1:length(x)
7
               prod=prod * x(i)^current_powers(i);
8
           end
10
           monomials = prod;
11
       else
12
           monomials = [];
13
```

```
% power-potentiala putere care inca nu
14
               a fost asignata variabilei
           % curente
15
        for power = 0:m - sum(current powers)
16
            new current powers = [current powers,
17
               power]; %concatenarea valorii
               power la setul curent de puteri
18
            new result=generate_monomials(x, m,
19
               new current powers); %apel
                recursiv
20
            monomials = [monomials, new result];
21
           end
22
       end
23
  end
24
```

```
function [phi row]=create phi row(m,na,nb,y, u
      , number of row)
            variables = [];
2
            k=number of row;
3
4
            for i=1:na
5
                 if k-i>0
                       variables (i)=y(k-i);
7
                 else
8
                     variables (i) = 0;
9
                 end
10
            end
11
12
            nk=1; %timpul mort
13
14
            for i=1:nb
15
```

```
if k-nk-i>0
16
                        variables(na+i)=u(k-nk-i);
17
                 else
18
                      variables (na+i)=0;
19
                 end
20
            end
21
22
            current powers = [];
23
24
            phi row=generate_monomials(variables,
25
                m, current powers);
  end
26
27
28
29
30
```

```
function [phi]=create phi matrix (N,m,na,nb,y,
      u)
       for k=1:N
2
            variables = [];
3
4
            for i=1:na
5
                 if k=i>0
                       variables(i)=y(k-i); %iesirea
7
                            sistemului
                 else
8
                      variables (i) = 0;
9
                 end
10
            end
11
12
            nk=1; %timpul mort
13
14
```

```
for i=1:nb
15
                 if k-nk-i>0
16
                       variables (na+i)=u(k-nk-i); %
17
                          intrarea intarziata
                 else
18
                     variables (na+i)=0;
19
                 end
20
            end
21
22
            current powers = [];
23
            monomials=generate_monomials(variables
24
                , m, current powers);
25
            phi(k,:)=monomials:
26
       end
27
  end
28
```

```
function [y tilda,e,MSE]
      calculate for simulation (N, m, na, nb,
     theta, u, v)
2
  y tilda=zeros(N,1);
4
  for k=1:N
      phi row=create phi row(m,na,nb,y tilda,u,k
      y tilda(k)=phi row*theta(1:length(phi row)
7
  end
9
  e=y tilda-y(1:length(y tilda));
  MSE=mean(e.^2):
  end
12
```

```
function [MSE id, MSE val, theta, phi id,
     phi val, e id, e val, y hat id, y hat val]=
     calculate for prediction (N id, N val, m, na,
     nb, u id, v id, u val, v val)
2 phi id=create phi matrix(N id, m, na, nb, y id
     . u id):
₃ theta=phi id\y id;
4 y hat id=phi id * theta;
5 e id=y id(1:length(y hat id))-y hat id;
6 MSE id=mean(e id.^2);
7 phi val=create phi matrix(N val, m, na, nb,
     v val, u val);
8 y hat val=phi val*theta;
9 e val=y val(1:length(y hat val))-y hat val;
10 MSE val=mean(e val.^2);
11 end
```

```
1 clear all: close all: clc:
  load('iddata = 01.mat')
3
  % Datele de identificare
  u id=id.u:
6 y id=id.y;
7 t id=id array(:,1);
8
 % Datele de validare
 u val=val.u;
11 y val=val.y;
 t val=val array(:,1);
13
  Ts=t id(2)-t id(1); % perioada de esantionare
  % Reprezentarea grafica a intrarii de
      identificare
```

```
figure
16
  plot(t id, u id, 'LineWidth',1)
  xlabel("t")
18
  vlabel("u id")
  title ("Date de identificare - intrare")
20
  legend("u id")
  % Reprezentarea grafica a iesirii de
      identificare
  figure
23
  plot(t id, y id, 'LineWidth',1)
  xlabel("t")
25
  ylabel("y id")
26
  title ("Date de identificare - ie ire")
27
  legend("v id")
28
29
30
```

```
% Reprezentarea grafica a intrarii de validare
  figure
32
  plot(t val, u val, 'LineWidth',1)
33
  xlabel("t")
34
  ylabel("u val")
35
   title ("Date de validare - intrare")
36
  legend("u val")
37
38
  % Reprezentarea grafica a iesirii de validare
  figure
40
  plot(t val, y val, 'LineWidth', 1)
  xlabel("t")
42
  ylabel("y val")
  title ("Date de validare - ie ire")
44
  legend("y val")
45
46
```

```
N id=length(u id); % nr datelor identificare
  N val=length(u val); % nr date validare
  grad maxim=10; %gradul maxim al polinomului
  ordin maxim=5; %ordinul maxim al sistemului
  poz=1;
51
  for m=1:grad maxim
      for na=1:ordin maxim
53
           nb=na; % consideram na=nb pentru
54
              simplitate
          % predictie
55
           [MSE pr id(poz), MSE pr val(poz),
56
              theta, phi_id, phi_val, e_id, e val
              , y hat id, y hat val]=
              calculate for prediction (N id, N val
              ,m,na,nb,u id, y id, u val, y val);
          % simulare
57
```

```
[v tilda val,e val, MSE sim val(poz)]
58
              = calculate for simulation(N val. m
              . na. nb. theta. u val. v val);
           [y tilda id, e id, MSE sim id(poz)] =
59
              calculate for simulation (N id, m,
              na, nb, theta, u id, y id);
           % actualizare variabile
60
           v hat pr id(:,poz)=y hat id;
61
           y hat pr val(:,poz)=y hat val;
62
           y hat sim id(:,poz)=y tilda id;
63
           y_hat_sim_val(:,poz)=y tilda val;
64
           theta(:,poz)=theta';
65
           order vector(poz)=na;
66
           poz=poz+1;
67
      end
68
69
  end
```

70 % -----PREDICTIE----

```
71 % MSE minima pe datele de identificare
  [MSE10, index10]=\min(MSE pr id);
  sys degree10=ceil(index10/ordin maxim);
74 sys order10=order vector(index10);
75 \% = m=4, na=nb=5
76 %=> MSE pe id: 1.063903e-17
77 %=> MSE pe val: 1.647723e+07
78 %=> FENOMEN SUPRAANTRENARE
  figure
  plot(y id, 'LineWidth', 1)
  hold on
  plot(y hat pr id(:, index10), 'LineWidth',1)
82
   title (sprintf ("Comparatie intre \ny-id si y-
83
      hat-id pentru m=%d, na=nb=%d => MSE=%d",
      sys degree10, sys order10, MSE10))
                                         Alina P., Răzvan V.
                             Generarea unui model ARX neliniar de tip polinomial
```

```
legend ("valori reale ale functiei (
     IDENTIFICARE)", "valori aproximate (
     PREDICTIE)")
  figure
85
  plot(y val, 'LineWidth',1)
86
  hold on
87
  plot(y hat pr val(:, index10), 'LineWidth',1)
88
  title (sprintf ("Comparatie intre \ny-val si y-
89
     hat-val pentru m=%d, na=nb=%d => MSE=%d",
     svs degree10, sys order10, MSE pr val(
     index10)))
  legend("valori reale ale functiei (VALIDARE)",
      "valori aproximate (PREDICTIE)")
 % MSE minima pe datele de validare
  [MSE11, index11]=\min(MSE pr val);
92
  sys degree11=ceil(index11/ordin maxim);
```

```
sys order11=order vector(index11);
  %=> MSE pe id: 0.20375; MSE pe val: 0.19241
   figure
96
   plot(y id, 'LineWidth',1)
   hold on
98
   plot(y hat pr id(:, index11), 'LineWidth',1)
   title (sprintf ("Comparatie intre \ny-id si y-
100
      hat-id pentru m=\%d, na=nb=\%d => MSE=\%.5f",
      sys degree11, sys order11, MSE pr id(
      index11)))
   legend ("valori reale ale functiei (
101
      IDENTIFICARE)", "valori aproximate (
      PREDICTIE)")
   figure
102
   plot(y val, 'LineWidth',1)
103
   hold on
104
```

```
plot(y_hat_pr_val(:, index11),'LineWidth',1)
105
   title (sprintf ("Comparatie intre \ny-val si y-
106
      hat-val pentru m=%d, na=nb=%d => MSE=%.5f",
       sys degree11, sys order11, MSE11))
  legend ("valori reale ale functiei (VALIDARE)",
       "valori aproximate (PREDICTIE)")
108 % grad mic, ordin mare => FENOMEN
      SUPRAANTRENARE
   index30=18:
109
   sys degree30=ceil(index30/ordin maxim);
110
   sys order30=order vector(index30);
111
   figure
112
   plot(y id, 'LineWidth',1)
113
   hold on
114
   plot(y hat pr id(:, index30), 'LineWidth',1)
115
   title (sprintf ("Comparatie intre \ny-id si y-
116
```

```
hat-id pentru m=%d, na=nb=%d => MSE=%.5f",
      sys degree30, sys order30, MSE pr id(
      index30)))
   legend ("valori reale ale functiei (
      IDENTIFICARE)", "valori aproximate (
      PREDICTIE)")
   figure
118
   plot(y val, 'LineWidth',1)
119
   hold on
120
   plot(y hat pr val(:, index30), 'LineWidth',1)
121
   title (sprintf ("Comparatie intre \ny-val si y-
122
      hat-val pentru m=\%d, na=nb=\%d => MSE=\%.5f",
       sys degree30, sys order30, MSE pr val(
      index30)))
   legend("valori reale ale functiei (VALIDARE)",
123
       "valori aproximate (PREDICTIE)")
```

```
%%
             ----SIMULARE----
124
  % MSE minima pe datele de identificare
   [MSE20, index20]=min(MSE sim id);
126
   sys degree20=ceil(index20/ordin maxim);
   sys order20=order vector(index20);
128
  %=> MSE pe id: 0.72468; MSE pe val: 1.15986
   figure
130
   plot(y id, 'LineWidth',1)
131
   hold on
132
   plot(y hat sim id(:, index20), 'LineWidth',1)
133
   title (sprintf ("Comparatie intre \ny-id si y-
134
      hat-id pentru m=%d, na=nb=%d => MSE=%.5f",
      sys degree20, sys order20, MSE20))
   legend ("valori reale ale functiei (
135
      IDENTIFICARE)", "valori aproximate (
      SIMULARE)")
```

```
figure
136
   plot(y val, 'LineWidth',1)
137
   hold on
138
   plot(y hat sim val(:, index20), 'LineWidth',1)
139
   title (sprintf ("Comparatie intre \ny-val si y-
140
      hat-val pentru m=\%d, na=nb=\%d => MSE=\%.5f",
       sys degree20, sys order20, MSE sim val(
      index20)))
   legend ("valori reale ale functiei (VALIDARE)",
       "valori aproximate (SIMULARE)")
142
  % MSE minima pe datele de validare
   [MSE21, index21]=\min(MSE sim val);
144
   sys degree21=ceil(index21/ordin maxim);
145
   sys order21=order vector(index21);
146
  %=> MSE pe id: 0.72468; MSE pe val: 1.15986
```

```
figure
148
   plot(y id, 'LineWidth',1)
149
   hold on
150
   plot(y hat sim id(:, index21), 'LineWidth',1)
151
   title (sprintf ("Comparatie intre \ny-id si y-
152
      hat-id pentru m=%d, na=nb=%d => MSE=%.5f",
      sys degree21, sys order21, MSE sim id(
      index21)))
   legend ("valori reale ale functiei (
      IDENTIFICARE)", "valori aproximate (
      SIMULARE)")
   figure
154
   plot(y val, 'LineWidth',1)
155
   hold on
156
   plot(y_hat_sim_val(:, index21),'LineWidth',1)
157
   title (sprintf ("Comparatie intre \ny-val si y-
158
```

```
hat-val pentru m=%d, na=nb=%d => MSE=%.5f",
       sys degree21, sys order21, MSE21))
   legend ("valori reale ale functiei (VALIDARE)",
159
       "valori aproximate (SIMULARE)")
160
  % grad mic, ordin mic => FENOMEN SUBANTRENARE
   index50=1:
162
   sys degree50=ceil(index50/ordin maxim);
163
   sys order50=order vector(index50);
164
   figure
165
   plot(y id, 'LineWidth',1)
166
   hold on
167
   plot(y hat sim id(:, index50), 'LineWidth',1)
168
   title (sprintf ("Comparatie intre \ny-id si y-
169
      hat-id pentru m=%d, na=nb=%d => MSE=%.5f",
      svs degree50, svs order50, MSE sim id(
```

```
index50)))
   legend ("valori reale ale functiei (
      IDENTIFICARE)", "valori aproximate (
      SIMULARE)")
   figure
171
   plot(y val, 'LineWidth',1)
172
   hold on
173
   plot(y_hat_sim_val(:, index50),'LineWidth',1)
174
   title (sprintf ("Comparatie intre \ny-val si y-
175
      hat-val pentru m=\%d, na=nb=\%d => MSE=\%.5f",
       sys degree50, sys order50, MSE sim val(
      index20)))
   legend("valori reale ale functiei (VALIDARE)",
176
       "valori aproximate (SIMULARE)")
177
178
```

```
%%
                            -MSE-
179
   figure
180
   subplot(211),plot(1:grad maxim, MSE pr id(1:
181
      grad maxim), LineWidth=1)
   xlabel("grad sistem")
182
   vlabel("MSE id")
183
   legend("MSE id")
184
   subplot(212),plot(1:grad_maxim, MSE pr val(1:
185
      grad maxim), LineWidth=1)
   xlabel("grad sistem")
186
   vlabel("MSE val")
187
   legend("MSE val")
188
   sgtitle ('PREDICTIE: Evolutie MSE in functie de
189
       gradul sistemului')
   figure
190
   subplot(211), plot(1:ordin maxim, MSE pr id(1:
191
```

```
ordin maxim), LineWidth=1)
   xlabel("ordin sistem")
192
   vlabel("MSE id")
193
   legend("MSE id")
194
   subplot(212), plot(1:ordin maxim, MSE pr val(1:
195
      ordin maxim), LineWidth=1)
   xlabel ("ordin sistem")
196
   vlabel("MSE val")
197
   legend("MSE val")
198
   sgtitle ('PREDICTIE: Evolutie MSE in functie de
199
       ordinul sistemului')
   figure
200
   subplot(211), plot(1:grad maxim, MSE sim id(1:
201
      grad maxim), LineWidth=1)
   xlabel("grad sistem")
202
   vlabel("MSE id")
203
```

```
legend("MSE id")
204
   subplot(212), plot(1:grad maxim, MSE sim val(1:
205
      grad maxim), LineWidth=1)
   xlabel("grad sistem")
206
   vlabel("MSE val")
207
   legend("MSE val")
208
   sgtitle ('SIMULARE: Evolutie MSE in functie de
209
      gradul sistemului')
   figure
210
   subplot(211),plot(1:ordin maxim, MSE sim id(1:
211
      ordin maxim), LineWidth=1)
   xlabel ("ordin sistem")
212
   vlabel("MSE id")
213
   legend("MSE id")
214
   subplot(212), plot(1:ordin maxim, MSE sim val
215
      (1:ordin maxim), LineWidth=1)
```

```
xlabel("ordin sistem")
216
   vlabel("MSE val")
217
   legend("MSE val")
218
   sgtitle ('SIMULARE: Evolutie MSE in functie de
219
      ordinul sistemului')
220
   figure
221
   plot(y val, 'LineWidth',1)
222
   hold on
223
   plot(y hat pr val(:, index11), "green", '
224
      LineWidth'.1)
   hold on
225
   plot(y hat sim val(:,index21),"magenta",'
226
      LineWidth',1)
   title ("Comparatie intre y-val, y-hat-val (
227
      predictie), y-hat-val (simulare)")
```

```
legend("valori reale ale functiei (VALIDARE)",
228
       "valori aproximate (PREDICTIE)", "valori
      aproximate (SIMULARE)")
   figure
229
   plot(y_id, 'LineWidth',1); hold on
230
   plot(y hat pr id(:, index10), "green", '
231
      LineWidth',1)
   hold on
232
   plot(y hat sim id(:,index20),"magenta",'
      LineWidth', 1)
   title ("Comparatie intre y-id, y-hat-id (
234
      predictie), y-hat-id (simulare)")
   legend ("valori reale ale functiei (
      IDENTIFICARE)", "valori aproximate (
      PREDICTIE)", "valori aproximate (SIMULARE)
```