Math 395

Homework 2

Due: 2/8/2024

Name: Avinash Iyer

Collaborators:

Problem 2

Let I, J be ideals in ring R. Define $I + J = \{i + j \mid i \in I, j \in J\}$. This is referred to as the sum of the ideals.

(a) We will prove that I + J is an ideal in R that contains I and J.

To start, since I and J are ideals in R, I and J are each subrings of R, meaning both I and J contain 0_R . Therefore, taking $j=0_R$, we find that $\{i+0_R\mid i\in I\}\subseteq I+J$, and similarly, taking $i=0_R$, we find that $\{0_R+j\mid j\in J\}\subseteq I+J$. These sets are, respectively, I and J, meaning I and J are both subsets of I+J.

We will show that I+J is an ideal in R by showing that I+J is a subring that is closed under multiplication by all elements of R. Firstly, I+J is non-empty since, as exhibited earlier, both I and J are subrings, meaning $0_R \in I$ and $0_R \in J$, so $0_R + 0_R = 0_R \in I + J$. Let $x, y \in I + J$. Then, $x = x_i + x_j$ and $y = y_i + y_j$ for some $x_i, y_i \in I$ and $x_j, y_j \in J$. Then,

$$x - y = (x_i + x_j) - (y_i + y_j)$$

= $(x_i - y_i) + (x_j - y_j),$

which is an element of I + J. Similarly,

$$xy = (x_i + x_j) + (y_i + y_j)$$

= $(x_iy_i) + (x_jy_j + x_iy_j + x_jy_i).$

Since $x_i y_i \in I$, as I is a subring, and $x_j y_j \in J$, as J is a subring, as well as $x_i y_j \in J$ and $x_j y_i \in J$ as J is an ideal, we have that $x_j y_j + x_i y_j + x_j y_i \in J$, so $xy \in I + J$.

Finally, we will show that I+J is closed under multiplication by elements from R. Let $r \in R$, $a \in I+J$. Then, $a = a_i + a_j$ for $a_i \in I$ and $a_j \in J$. So,

$$ra = r(a_i + a_j)$$
$$= ra_i + ra_j,$$

and

$$ar = (a_i + a_j)r$$
$$= a_i r + a_i r,$$

and since I and J are both ideals, $ra_i, a_i r \in I$ and $ra_i, a_i r \in J$, so $ar, ra \in I + J$.

Therefore, I + J is an ideal that contains I and J.

(b) Let $a, b \in \mathbf{Z}$. We will show that $a\mathbf{Z} + b\mathbf{Z} = \gcd(a, b)\mathbf{Z}$.

By Bezout's identity, it is the case that there are integers x and y such that $xa + yb = \gcd(a, b)$. Since $xa \in a\mathbf{Z}$, and $yb \in b\mathbf{Z}$, as $a\mathbf{Z}$ and $b\mathbf{Z}$ are ideals in \mathbf{Z} , it is the case that $xa + yb \in a\mathbf{Z} + b\mathbf{Z}$. Therefore, $\gcd(a, b)\mathbf{Z} \subseteq a\mathbf{Z} + b\mathbf{Z}$.

1