Ch 2: Produit scalaire

I. <u>Définition et propriétés</u>

1) Norme d'un vecteur

<u>Définition</u>: Soit un vecteur \vec{u} et deux points A et B tels que $\vec{u} = \overrightarrow{AB}$.

La norme du vecteur \vec{u} , notée $\|\vec{u}\|$, est la distance AB.

2) <u>Définition du produit scalaire</u>

<u>Définition</u>: Soit \vec{u} et \vec{v} deux vecteurs du plan. On appelle **produit scalaire** de \vec{u} par \vec{v} , noté \vec{u} . \vec{v} , le nombre réel définit par :

 $-\vec{u}.\vec{v}=0$, si l'un des deux vecteurs \vec{u} et \vec{v} est nul

 $-\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u};\vec{v})$, dans le cas contraire.

 \vec{u} . \vec{v} se lit " \vec{u} scalaire \vec{v} ".

Remarque:

Si \overrightarrow{AB} et \overrightarrow{AC} sont deux représentants des vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} alors :

$$\vec{u} \cdot \vec{v} = \overrightarrow{AB} \cdot \overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times \cos \widehat{BAC}$$

Attention : Le produit scalaire de deux vecteurs est un nombre réel.

3) Propriétés du produit scalaire

<u>Propriété:</u> Pour tout vecteur \vec{u} et \vec{v} , on $a: \vec{u}.\vec{v} = \vec{v}.\vec{u}$

Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} , on a:

1)
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$
 2) $\vec{u} \cdot (k\vec{v}) = k\vec{u} \cdot \vec{v}$, avec k un nombre réel.

II. Produit scalaire et orthogonalité

1) Vecteurs orthogonaux

Propriété: Les vecteurs \vec{u} et \vec{v} sont orthogonaux si et seulement si $\vec{u}.\vec{v}=0$.

2) Projection orthogonale

<u>Définition :</u> Soit une droite *d* et un point M du plan.

Le **projeté orthogonal** du point M sur la droite d est le point d'intersection H de la droite d avec la perpendiculaire à d passant par M.

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls.

Soient A,B,C et D des points du plan tels que $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{CD} = \overrightarrow{v}$.

Soit H le projeté orthogonal de C sur (AB). Soit K le projeté orthogonal de D sur (AB).

Le vecteur \overrightarrow{HK} est appelé projeté orthogonal de \overrightarrow{v} sur (AB).

Propriété:
$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{AB} \cdot \overrightarrow{CD} = \overrightarrow{AB} \cdot \overrightarrow{HK} = \begin{cases} AB \times HK & \text{si } \overrightarrow{AB} \text{ et } \overrightarrow{HK} \text{ ont même sens} \\ -AB \times HK & \text{si } \overrightarrow{AB} \text{ et } \overrightarrow{HK} \text{ sont de sens opposés} \end{cases}$$

On retiendra que : lorsque \vec{u} et \vec{v} sont colinéaires :

- $\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}||$ si \vec{u} et \vec{v} ont même sens
- $\vec{u} \cdot \vec{v} = -\|\vec{u}\| \times \|\vec{v}\|$ si \vec{u} et \vec{v} ont des sens contraires

 $\underline{remarque:} \ on \ a \ donc \ \overline{AB} \cdot \overline{AC} > 0 \ lorsque \ \widehat{BAC} \ est \ aigu, \ et \ \overline{AB} \cdot \overline{AC} < 0 \ lorsque \ \widehat{BAC} \ est \ obtus:$

III. Produit scalaire dans un repère orthonormé

Le plan est muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$.

<u>Propriété</u>: Soit \vec{u} et \vec{v} deux vecteurs de coordonnées respectives (x;y) et (x';y').

On a: $\vec{u}.\vec{v} = xx' + yy'$ et $||\vec{u}||^2 = x^2 + y^2$.

Méthode : Déterminer un angle à l'aide du produit scalaire

Calculer la mesure de l'angle $(\overrightarrow{AB}; \overrightarrow{CD})$ en lisant Les coordonnées de A, B, C et D;

IV. Théorème d'Al Kashi

<u>Théorème</u>: Dans un triangle ABC, on a, avec les notations de la figure :

$$a^2 = b^2 + c^2 - 2bc \cos \hat{A}$$

A noter : Si le triangle ABC est rectangle, on retrouve le théorème de Pythagore.

Méthode: Appliquer le théorème d'Al Kashi

On considère la figure ci-contre, calculer la mesure de l'angle \widehat{BAC} au degré près.

5

6