- 1. A nonempty set $A \subseteq \mathbb{R}$ is said to be bounded above in \mathbb{R} if there exists a real number M such that for all $a \in A$ we have $a \leq M$.
- 2. A nonempty set $A \subseteq \mathbb{R}$ is said to be bounded below in \mathbb{R} if there exists a real number m such that for all $a \in A$ we have $a \geq M$.
- 3. A nonempty subset $A\subseteq\mathbb{R}$ is said to be bounded if it is bounded above and bounded below.
- 4. A sequence (x_n) is said to be convergent, if there exists a real number l such that for every $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$ we have

$$|x_n - l| < \epsilon$$
.

- 5. The real number l is said to be the limit of the sequence.
- 6. If a sequence (x_n) is convergent, then the limit is unique.
- 7. The space of real (or complex) convergent sequences forms a vector space over \mathbb{R} (or \mathbb{C}).
- 8. Let $A\subseteq\mathbb{R}$ be a non-empty set. We say that $\alpha\in\mathbb{R}$ is a least upper bound of A if
 - α is an upper bound of A and
 - if β is an upper bound of A, then $\alpha \leq \beta$.
- 9. Let $A\subseteq\mathbb{R}$ be a non-empty set. We say that $\alpha\in\mathbb{R}$ is a greatest lower bound of A if
 - α is a lower bound of A and
 - if β is a lower bound of A, then $\alpha \geq \beta$.
- 10. Let A be a nonempty subset of \mathbb{R} . Let

M =an upper bound of A

m = a lower bound of A

 α = the least upper bound of A

 β = he greatest lower bound of A.

Then, we have

$$m \le \beta \le \alpha \le M$$
.

There are two equivalent Archimedean properties.

- 1. N is not bounded above in \mathbb{R} . That is give any $x \in \mathbb{N}$, there exists a natural number n such that x > n.
- 2. Given any $x, y \in \mathbb{R}$ there exists a natural number n such that nx > y.

1. If the sequences (x_n) and (y_n) are convergent, then the product will converge. That is,

$$\lim_{n \to \infty} (x_n \cdot y_n) = \lim_{n \to \infty} x_n \cdot \lim_{n \to \infty} y_n.$$

$$\lim_{n \to \infty} x_n = l$$

- A sequence (x_n) converges if and only if $(|x_n|)$ converges.
- Let (x_n) be a sequence such that $x_n \neq 0$ for all n. Let the sequence is convergent. Then the sequence $\left(\frac{1}{x_n}\right)$ converges and

$$\lim_{n\to\infty}\frac{1}{x_n}=\frac{1}{\lim_{n\to\infty}x_n}.$$

A sequence $(x_n) \subseteq \mathbb{R}$ is said to be Cauchy if for each $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that for all $m, n \geq n_0$ we have $|x_m - x_n| < \epsilon$.

A sequence $(x_n) \subseteq \mathbb{R}$ is convergent if and only if it is Cauchy.

Space of all Cauchy sequences form a vector space over \mathbb{R} . A sequence (x_n) is said to be increasing if $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$ and it is said to be decreasing if $x_n \geq x_{n+1}$ for all $n \in \mathbb{N}$. We say a sequence (x_n) to be monotone if it is either increasing or decreasing.

Theorem 1. Let (x_n) is a sequence. Then we have the following results.

- 1. If (x_n) is increasing then it is convergent if and only if it is bounded above.
- 2. If (x_n) is decreasing then it is convergent if and only if it is bounded below.
- 3. If (x_n) is monotone then it is convergent if and only if it is bounded.

Definition 1. Let $f: \mathbb{N} \to \mathbb{R}$ be a sequence and S be any infinite subset of \mathbb{N} . Then a subsequence is the restriction of f to the set S.

Theorem 2. Given any real sequence (x_n) there exists a monotone subsequence.

Theorem 3 (Bolzano Weierstrass Theorem). Every bounded sequence has a convergent subsequence.

Theorem 4. Let $(x_n), (y_n)$ and (z_n) be sequences such that $x_n \to \alpha$, $y_n \to \alpha$ and $x_n \le z_n \le y_n$ for all n. Then $z_n \to \alpha$.

Theorem 5. 1. Let $0 \le r < 1$, then $r^n \to 0$.

- 2. -1 < t < 1, thn $t^n \to 0$.
- 3. Let |r| < 1, then $nr^n \to 0$.
- 4. Let a > 0, then $a^{\frac{1}{n}} \to 0$.

- 5. $n^{\frac{1}{n}} \to 1$.
- 6. For any $a \in \mathbb{R}$, we have $\frac{a^n}{n!} \to 0$.
- 7. Let $(x_n) \to 0$. Let (s_n) denotes the arithmetic mean defined by

$$s_n = \frac{x_1 + \dots + x_n}{n}.$$

Then $s_n \to 0$.

Definition 2. A series $\sum_{n=1}^{\infty} a_n$ is said to be convergent if the sequence of partial sum converges. That is, the sequence

$$S_N = \sum_{n=1}^N a_n$$

converges.

Definition 3. The series $\sum a_n$ is said to be absolutely convergent if $\sum |a_n|$ converges.

- 1. If $\sum a_n$ converges, then $an \to 0$. The converse need nit by true. For example, $\sum \frac{1}{n}$ is not converges but $\frac{1}{n} \to 0$.
- 2. If a series is absolutely convergent, then it is convergent. Th converse need not be true. For example, $\sum \frac{(-1)^n}{n}$ is convergent, but $\sum \frac{1}{n}$ is not.
- 3. For a positive number p the series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

converges if and only if p > 1.

4. The space of all (absolutely) convergent series forms a vector space over \mathbb{R} .

1 Convergence Tests

- 1. Let $\sum a_n$ be a series such that $a_n \geq 0$ for all n.
 - If $\sum a_n$ converges and $|b_n| \leq a_n$ for all n, then $\sum b_n$ converges.
 - If $\sum a_n$ diverges and $a_n \geq b_n$, then $\sum b_n$ also diverges.
- 2. Suppose $\sum a_n$ and $\sum b_n$ are two series. Suppose that $r = \lim \left| \frac{a_n}{b_n} \right|$ exists, and $0 < r < \infty$. Then $\sum a_n$ converges absolutely if and only if $\sum b_n$ converges absolutely.

- 3. Suppose (a_n) is a decreasing sequence of positive terms. Then the series $\sum a_n$ converges if and only if the series $\sum 2^k a_{2^k}$ converges.
- 4. Let $\sum a_n$ be a series and let $r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$. Then the series
 - (a) converges absolutely if r < 1,
 - (b) diverges if r > 1.
 - (c) If r = 1, then the test is inconclusive.
- 5. Let $\sum a_n$ be a series and let $r = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$. Then the series
 - (a) converges absolutely if r < 1,
 - (b) diverges if r > 1.
 - (c) If r = 1, then the test is inconclusive.

2 Limit

Definition 4. Let $f:U\subseteq\mathbb{R}\to\mathbb{R}$ be a function. Let $a\in U$. We say that $\lim_{x\to a}f(x)=l$ if for every $\epsilon>0$ there exists a $\delta>0$ such that for all $x\in(a-\delta,a+\delta)$ we have $|f(x)-l|<\epsilon$.

We say that $\lim_{x\to a} f(x) = l$ if for every sequence $(x_n) \subseteq U$ converging to a the sequence $(f(x_n))$ should converge to l.

If $f, g: U \to \mathbb{R}$ be two functions, then we have

$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x),$$

provided both limit exist. We have

$$\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x),$$

provided the limit exists.

3 Continuity of a function

Definition 5. Let $f: U \subseteq \mathbb{R} \to \mathbb{R}$ be a function. We say that f is continuous at $a \in U$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that for all $x \in (a - \delta, a + \delta)$ we have

$$|f(x) - f(a)| < \epsilon.$$

Definition 6. We say that $f: U \subseteq \mathbb{R}$ is continuous at $a \in U$ if for every sequence (x_n) converging to a we have $f(x_n) \to f(a)$.