COVID-19 Genomic Data Analysis

2023.07.17

Chih-Ting Yang

Dr. Hsin-Chou Yang's Lab

Outline

- Introduction
- Data download
- Sequence alignment
- Data Analysis
- Supplementary
- Further Analysis
- Discussion

Introduction

Motivation

Coronavirus World Map: Tracking the Global Outbreak

Updated March 10, 2023

This page was archived on March 10 as global data on cases and deaths is no longer reported by our data source for all countries except the United States.

All time Last 90 days

New reported cases by day

New reported deaths by day

Reference genome (GISAID: EPI_ISL_402124, GenBank: MN908947)

This transmission electron microscope image shows SARS-CoV-2—also known as 2019-nCoV, the virus that causes COVID-19—isolated from a patient in the U.S. Virus particles are shown emerging from the surface of cells cultured in the lab. The spikes on the outer edge of the virus particles give coronaviruses their name, crown-like. Image captured and colorized at NIAID's Rocky Mountain Laboratories (RML) in Hamilton, Montana. Credit: NIAID

https://www.flickr.com/photos/niaid/albums/72157712914621487

RNA whole-genome sequencing (WGS)

Public databases for viral genomic data

 GISAID (Global Initiative on Shared All Influenza Data) https://gisaid.org/

2. **NCBI** (National Center for Biotechnology Information)

https://www.ncbi.nlm.nih.gov/

SARS-CoV-2 submissions (complete human genome)

Data Last update: 2023/04/06

Download Data from GenBank

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/

About Us v Find Data v Help v How to Participate v Submit Sequences > Contact Us

Quick Access to SARS-CoV-2 Data!

- Novel Severe acute respiratory syndrome coronavirus 2 RefSeq genomes, nucleotide, and protein sequences.
- · View our new SARS-CoV-2 interactive dashboard.
- How to submit SARS-CoV-2 sequences.
- Visit our new SARS-CoV-2 <u>Variants Overview</u> <u>New!</u>

 $NCBI\ Virus\ is\ a\ community\ portal\ for\ viral\ sequence\ data\ from\ RefSeq,\ GenBank\ and\ other\ NCBI\ repositories.\ To\ find,$ retrieve and analyze data, please select an option below.

Search by sequence

Use the NCBI BLAST[™] tool to find similar viral nucleotide and protein sequences.

Search by virus

Use virus name or taxid to find viral nucleotide and protein sequences.

Log in

About Us v Find Data v Help v How to Participate v Submit Sequences v Contact Us

Search by sequence

Use the NCBI BLAST™ tool to find similar viral nucleotide and protein sequences.

Search by virus

Use virus name or taxid to find viral nucleotide and protein sequences.

Download data -1

Refine Results Rese		Isolate	+	Nucleot	otide (1,790,227)	Protein (1	16,597,251)	RefSeq Geno	me (0)						Select Columns
Resi		Dustains		A	Accession Su	ıbmitters 🕏	Organization	\$	Release Date 🕏	Species 🕏	Length ♦	Nuc Completeness 🕏	Geo Location ♥	Host ♥	Collection Date 🕏
Virus	+	Proteins			<u>00618228</u> Scl	hilling,W.	Mahidol-Oxfor	d Tropical M	2023-03-14	Severe acute respiratory sy	29701	complete	Thailand: Bangkok	Homo sapiens	2021-10-14
Severe acute respiratory		Provirus •	+	_ <u>o</u>	<u>00618229</u> Scl	hilling,W.	Mahidol-Oxfor	d Tropical M	2023-03-14	Severe acute respiratory sy	29701	complete	Thailand: Bangkok	Homo sapiens	2021-10-14
syndrome coronavirus 2 (SARS-CoV-2),		Geographic Region	+	<u>_</u>	<u>0Q618230</u> Scl	hilling,W.	Mahidol-Oxfor	d Tropical M	2023-03-14	Severe acute respiratory sy	29684	complete	Thailand: Bangkok	Homo sapiens	2022-01-06
taxid:2697049		Host	+	<u>0</u>	<u>00618231</u> Scl	hilling,W.	Mahidol-Oxfor	d Tropical M	2023-03-14	Severe acute respiratory sy	29684	complete	Thailand: Samut Prakan	Homo sapiens	2022-01-05
Accession	+	Homo sapiens (human),			<u>0Q618293</u> Scl	hilling,W.	Mahidol-Oxfor	d Tropical M	2023-03-14	Severe acute respiratory sy	29684	complete	Thailand: Samut Prakan	Homo sapiens	2022-01-05
Sequence Length +		taxid:9606		<u>0</u>	<u>0Q618294</u> Scl	hilling,W.	Mahidol-Oxfor	d Tropical M	2023-03-14	Severe acute respiratory sy	29684	complete	Thailand: Samut Prakan	Homo sapiens	2022-01-06
Ambiguous Characters	+	Submitters	+		<u>0Q618295</u> Scl	hilling,W.	Mahidol-Oxfor	d Tropical M	2023-03-14	Severe acute respiratory sy	29684	complete	Thailand: Samut Prakan	Homo sapiens	2022-01-06
Sequence Type	+	Isolation Source	+	_ <u>o</u>	<u> </u>	hilling,W.	Mahidol-Oxfor	d Tropical M	2023-03-14	Severe acute respiratory sy	29684	complete	Thailand: Samut Prakan	Homo sapiens	2022-02-10
GenBank ★		Collection Date	+		<u>0Q618297</u> Scl	hilling,W.	Mahidol-Oxfor	d Tropical M	2023-03-14	Severe acute respiratory sy	29684	complete	Thailand: Samut Prakan	Homo sapiens	2022-02-25
		Release Date	+	_ <u>o</u>	OQ618298 Scl	hilling,W.	Mahidol-Oxfor	d Tropical M	2023-03-14	Severe acute respiratory sy	29684	complete	Thailand: Samut Prakan	Homo sapiens	2022-03-04
RefSeq Genome Completeness	ess 🕇	Genome Molecule Type	+		OQ618300 Scl	hilling,W.	Mahidol-Oxfor	d Tropical M	2023-03-14	Severe acute respiratory sy	29701	complete	Thailand: Samut Prakan	Homo sapiens	2021-12-04
Nucleotide Completeness	+	ochome motecute type		<u>o</u>	<u>0Q618301</u> Scl	hilling,W.	Mahidol-Oxfor	d Tropical M	2023-03-14	Severe acute respiratory sy	29684	complete	Thailand: Samut Prakan	Homo sapiens	2022-01-06
complete 🗶		Environmental Source +			<u>00618302</u> Scl	hilling,W.	Mahidol-Oxfor	d Tropical M	2023-03-14	Severe acute respiratory sy	29684	complete	Thailand: Samut Prakan	Homo sapiens	2022-01-06
Pango lineage	+	Lab Host	+	_ <u>o</u>	0 <u>0</u> 618303 Scl	hilling,W.	Mahidol-Oxfor	d Tropical M	2023-03-14	Severe acute respiratory sy	29684	complete	Thailand: Samut Prakan	Homo sapiens	2022-01-08
Random Sampling	+	Vaccine Strain	+		<u>0Q618304</u> Scl	hilling,W.	Mahidol-Oxfor	d Tropical M	2023-03-14	Severe acute respiratory sy	29684	complete	Thailand: Samut Prakan	Homo sapiens	2022-01-12
															<u> </u>

Download data -2

Download data -3

(a) Nucleotide Sequences (FASTA)

<u>⊨</u> sequ	ences fasts 🖸	
1	>OQ699293.1 Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/USA/OK-CDC-LC1029022/2023, complete genome	Т
2	CTTTTGATCTCTTGTAGATCTGTTCTCTAAACGAACTTTAAAATCTGTGTGGGCTGTCACT	П
3	CGGCTGCATGCTTAGTGCACTCACGCAGTATAATTAATTA	
4	GACACGAGTAACTCGTCTATCTTCTGCAGGCTGCTTACGGTTTCGTCCGTGTTGCAGCCG	
5	ATCATCAGCACATCTAGGTTTTGTCCGGGTGTGACCGAAAGGTAAGATGGAGAGCCTTGT	
6	CCCTGGTTTCAACGAGAAAACACACGTCCAACTCAGTTTGCCTGTTTTACAGGTTCGCGA	
7	CGTGCTCGTACGTGGGGACTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACA	
8	TCTTAGAGATGGCACTTGTGGCTTAGTAGAAGTTGAAAAAGGCGTTTTGCCTCAACTTGA	
9	ACAGCCCTATGTGTTCATCAAACGTTCGGATGCTCGAACTGCACCTCATGGTCATGTTAT	
10	GGTTGAGCTGGTAGCAGAACTCGAAGGCATTCAGTACGGTCGTAGTGGTGAGACACTTGG	
11	TGTCCTTGTCCCTCATGTGGGCGAAATACCAGTGGCTTACCGCAAGGTTCTTCTTCGTAA	
12	GAACGGTAATAAAGGAGCTGGTGGCCATAGGTACGGCCGATCTAAAGTCATTTGACTT	
13	AGGCGACGAGCTTGGCACCTGATCCTTATGAAGATTTTCAAGAAAACTGGAACACTAAACA	
14	TAGCAGTGGTGTTACCCGTGAACTCATGCGTGAGCTTAACGGAGGGGCATACACTCGCTA	
15	TGTCGATAACAACTTCTGTGGCCCTGATGGCTACCCTCTTGAGTGCATTAAAGACCTTCT	
16	AGCACGTGCTGGTAAAGCTTCATGCACCTTTGTCCGAACAACTGGACTTTATTGACACTAA	
17	GAGGGGTGTATACTGCTGCCGTGAACATGAGCATGAAATTGCTTGGTACACGGAACGTTC	
18	TGAAAAGAGCTATGAATTGCAGACACCTTTTGAAATTAAATTGGCAAAGAAATTTGACAC	
19	CTTCAATGGGGAACGTCCAAATTTTGTATTTCCCTTAAATTCCATAATCAAGACTATTCA	
20	ACCAAGGGTTGAAAAGAAAAGCTTGATGGCTTATGGGTAGAATTCGATCTGTCTATCC	
21	AGTTGCGTCACCAAATGAATGCAACCAAATGTGCCTTTCAACTCTCATGAAGTGTGATCA	
22	TTGTGGTGAAACTTCATGGCAGACGGGCGATTTTGTTAAAGCCACTTGCGAATTTTGTGG	
23	CACTGAGAATTTGACTAAAGAAGGTGCCACTACTTGTGGTTACTTAC	
24	TGTTAAAATTTATTGTCCAGCATGTCACAATTCAGAAGTAGGACCTGAGCATAGTCTTGC	
25	CGAATACCATAATGAATCTGGCTTGAAAACCATTCTTCGTAAGGGTGGTCGCACTATTGC	
26	CTTTGGAGGCTGTGTTCTCTTATGTTGGCTGCCATAACAAGTGTGCCTATTGGGTTCC	
27	ACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTGTTGGAGAAGGTTCCGAAGG	
28	TCTTAATGACAACCTTCTTGAAATACTCCAAAAAAGAGAAAGTCAACATCAATATTGTTGG	
29	TGACTTTAAACTTAATGAAGAGATCGCCATTATTTTGGCATCTTTTTCCACAAG	
30	TGCTTTTGTGGAAACTGTGAAAGGTTTGGATTATAAAGCATTCAAACAAA	
31	CTGTGGTAATTTTAAAGTTACAAAAGGAAAAGGTAAAAAAGGTGCCTGGAATATTGGTGA	
32	ACAGAAATCAATACTGAGTCCTCTTTATGCATCTAGAGGCTGCTCGTGTTGTACG	
33	ATCAATTTCCCCCCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGAAGGC	
34	CGCTATAACAATACTAGATGGAATTTCACAGTATTCACTGAGACTCATTGATGCTATGAT	
35	GTTCACATCTGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTGGTGT	
36	TGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAAAAACTCAA	
37	ACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAGTTTCTTAGAGACGG	
38	TTGGGAAATTGTTAAATTTATCTCAACCTGTGCATTGTGAAATTGTCGGTGGACAAATTGT	
39	CACCTGTGCAAAGGAAATTAAGGAGAGTGTTCAGACATTCTTTAAGCTTGTAAATAAA	
40	TTTGGCTTTGTGGCTGACTCTATCATTATTGGTGGAGCTAAACTTAAAGCCTTGAATTT	
41	AGGTGAAACATTTGTCACGCACTCAAAGGGATTGTACAGAAAGTGTGTTAAATCCAGAGA	

(b) Metadata (CSV)

Accession	Organism_Name	SRA_Accession	Submitters	Organization	Org_location	Release_Date	Isolate	Molecule_type	Length	Geo_Location	Country	Host	Isolation_Source	Collection_Date	BioSample	GenBank_Title
OQ699293	Severe acute respiratory syndrome coronavirus 2	SRR23985578		Centers for Disease Control and Prevention, Respiratory Viruses Branch, Division of Viral Diseases	USA	2023-03- 28T00:00:00Z	OK-CDC- LC1029022	ssRNA(+)	29724	USA: Oklahoma	USA	Homo sapiens	oronasopharynx	2023/3/6	SAMN33943417	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV- 2/human/USA/O K-CDC- LC1029022/2023, complete genome
OQ699298	Severe acute respiratory syndrome coronavirus 2	SRR23985469		Centers for Disease Control and Prevention, Respiratory Viruses Branch, Division of Viral Diseases	USA	2023-03- 28T00:00:00Z	NM-CDC- LC1029047	ssRNA(+)	29684	USA: New Mexico	USA	Homo sapiens	oronasopharynx	2023/3/6	SAMN33943435	Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV- 2/human/USA/N M-CDC- LC1029047/2023, complete genome

Sequence Alignment

Sequence Alignment

Goal: the process of comparing and matching sequences of nucleotides (DNA or RNA) from a sample to a reference genome or another set of sequences

Tool: Nextclade (https://clades.nextstrain.org/)

Raw sequence

Nextclade – Getting started -1

Clade assignment, mutation calling, and sequence quality checks

Nextclade – Getting started -2

Clade assignment, mutation calling, and sequence quality checks

Nextclade - Result page

Nextclade – Download results

Nextclade aligned (FASTA)

Data Analysis in R

Material

- Data
 - Meatadata_n1932.csv
 - n1932_29903.fas
 - MN908947.fas
 - region.csv
- Code
 - COVID19 Genomic data analysis.R

Distance/ Similarity

- Continuous: Covariance, Euclidean distance, Kendall's tao, Pearson's correlation coefficient, Speakman's rank,
- Binary: Hamman, Jaccard, Phi, Rao, Rogers, Simple match, Sneath, Yule

Agglomerative Hierarchical Clustering

- Agglomerative hierarchical clustering is a popular method used in cluster analysis and data mining to group similar items or data points into clusters.
- **1. Initialization**: At the beginning, each data point is considered as a separate cluster.
- 2. Compute Pairwise Similarities or Distances Merge Similar Clusters: The algorithm identifies the two closest clusters based on the similarity or distance measure and merges them into a new larger cluster. This process is repeated iteratively, and at each step, the algorithm updates the similarity or distance matrix to reflect the newly formed clusters.
- **3. Update Similarity Matrix**: Different linkage methods can be used to determine the distance between two clusters:
 - Single Linkage:

$$d(C_i, C_j) = \min_{a \in C_i, b \in C_j} d(a, b)$$

Complete Linkage:

$$d(C_i, C_j) = \max_{a \in C_i, b \in C_j} d(a, b)$$

Average Linkage:

$$d(C_i, C_j) = \sum_{a \in c_i, b \in C_j} \frac{d(a, b)}{|C_i||C_j|}$$

4. Stopping Criterion: The process continues until a stopping criterion is met. This criterion can be a specific number of desired clusters or a threshold value for the distance between clusters. At this point, the algorithm stops, and the final dendrogram represents the hierarchical clustering.

Agglomerative Hierarchical Clustering -- Complete Linkage

- 1. Initialization
- 2. Compute Pairwise Similarities or Distances Merge Similar Clusters
- 3. Update Similarity Matrix
- 4. Stopping Criterion

	А	В	C	ט	E				
А	0								
В	2	0							
C	3	4	0						
D	5	6	7	0					
E	8	9	10	11	0				
Olaratan Danielan arang									

Cluster Dendrogram

	А	В	С	D	E
А	0				
В	2	0			
С	3	4	0		
D	5	6	7	0	
Е	8	9	10	11	0

	(A,B)	С	D	Е
(A,B)	0			
С	4	0		
D	6	7	0	
E	9	10	11	0

Further Analysis

- 1. Do descriptive statistics
- 2. Add metadata (Collection Date, Country,) and gene region as covariates to the analysis.
- 3. Visualize the results.
- 4. Clustering column (position).
- 5. Download current sequencing data and reanalysis.
- 6.

Discussion