The noncommutative minimal model program

Imperial College London, Sept. 16, 2022

Daniel Halpern-Leistner

Partially in collaboration with Alekos Robotis

1 Overview

1 Overview

2 Stability conditions and SOD's

- 1 Overview
- 2 Stability conditions and SOD's
- 3 Bordification of the space of stability conditions

- 1 Overview
- 2 Stability conditions and SOD's
- 3 Bordification of the space of stability conditions
- 4 The noncommutative minimal model program

Structure of derived categories

What is fascinating about the bounded derived category of coherent sheaves $D^b(X)$ on a smooth projective variety X?

Hidden structure

Example (D-equivalence conjecture)

 $D^b(X) \cong D^b(X')$ for birationally equivalent projective Calabi-Yau manifolds.

Example (Beilinson's theorem)

 $D^b(\mathbb{P}^n)$ admits a full exceptional collection $\mathscr{O},\mathscr{O}(1),\ldots,\mathscr{O}(n)$.

Stucture of derived categories

An elaboration of Beilinson's theorem:

Example (Dubrovin's conjecture)

A smooth Fano variety has a full exceptional collection if and only if its big quantum cohomology is generically semisimple.

Also some failed hopes: the existence of phantom categories.

Example (Barlow surfaces)

Have exceptional collections of line bundles $L_1, \ldots, L_{11} \in D^b(X)$ that span $K_0(X)$ but do NOT generate $D^b(X)$.

Plan for talk

Goal

Provide a *mechanism* for many conjectures about $D^b(X)$ that is more concrete than appealing to homological mirror symmetry.

Key points:

- 1. Semiorthogonal decompositions (SOD's) of $D^b(X)$ arise from certain paths in $\mathrm{Stab}(X)$, the space of Bridgeland stability conditions on $D^b(X)$
- 2. These paths are convergent in a partial compactification of $\operatorname{Stab}(X)/\mathbb{G}_a$
- 3. Noncommutative MMP = conjectures about canonical paths on $\operatorname{Stab}(X)/\mathbb{G}_a$ that imply several previous conjectures about $D^b(X)$.

Context

- $\mathscr{C} = \text{pre-triangulated dg-category}$,
- $v: K_0(\mathscr{C}) \to \Lambda \cong \mathbb{Z}^n$, called "Mukai vector" homomorphism.

Example (Main)

- $\mathscr{C} = D^b(X)$, X a smooth projective variety,
- v is twisted Chern character map $v = (2\pi i)^{\deg/2} \mathrm{ch} : K_0(X) \twoheadrightarrow H^*_{\mathrm{alg}}(X) \subset H^*(X;\mathbb{C}).$

Comparing the definitions

Stability condition:

- $\mathscr{P}_{\phi} \subset \mathscr{C}$ semistable, $\phi \in \mathbb{R}$
- semiorthogonality for Hom
- every $E \in \mathscr{C}$ has a filtration with $\operatorname{gr}_{\phi}(E) \in \mathscr{P}_{\phi}$
- $\mathscr{P}_{\phi}[1] = \mathscr{P}_{\phi+1}$

Additional data: central charge homomorphism $Z:\Lambda \to \mathbb{C}$ with

- $Z(\mathscr{P}_{\phi}) \subset \mathbb{R}_{>0} \cdot e^{i\pi\phi}$
- support property

Semiorthogonal decomposition:

- $\mathscr{C}_1,\ldots,\mathscr{C}_n\subset\mathscr{C}$
- semiorthogonality for Hom
- every $E \in \mathscr{C}$ has a filtration with $\operatorname{gr}_i(E) \in \mathscr{C}_i$
- $\mathscr{C}_i[1] = \mathscr{C}_i$

Additional data:

???

Bridgeland stability conditions

Importance of additional data:

Theorem (Bridgeland)

 $\operatorname{Stab}(\mathscr{C})$ admits a metric topology such that forgetful map $\operatorname{Stab}(\mathscr{C}) \to \operatorname{Hom}(\Lambda,\mathbb{C})$ taking $(\mathscr{P}_{\bullet},Z) \mapsto Z$ is a local homeomorphism.

Relevance for this talk:

Paths in Stab($\mathscr C$) are determined by starting point and a path in $\operatorname{Hom}(\Lambda,\mathbb C)$.

Key lemma

Let σ_t be a path in $\mathrm{Stab}(\mathscr{C})$ satisfying "quasi-convergence":

- 1. $\forall E \in \mathcal{C}$, Harder-Narasimhan filtration stabilizes for $t \gg 0$;
- 2. \forall eventually semistable E,

$$\log Z_t(E) = \alpha_E t + \beta_E + o(1)$$
 for some $\alpha_E, \beta_E \in \mathbb{C}$;

3. if $\Im(\alpha_E)=\Im(\alpha_F)$, then $\alpha_E=\alpha_F$

Lemma (Key Lemma)

$$\exists$$
 a SOD $\mathscr{C} = \langle \mathscr{C}_1, \dots, \mathscr{C}_n \rangle$ and $\alpha_1, \dots, \alpha_n \in \mathbb{C}$, where $\mathfrak{Z}(\alpha_1) < \dots < \mathfrak{Z}(\alpha_n)$ and

$$\mathscr{C}_i \subset \mathscr{C}$$
 is generated by eventually semistable E with $\alpha_E = \alpha_i$.

Furthermore each \mathscr{C}_i admits a stability condition whose semistable objects are eventually semistable and $Z_i(E) = e^{\beta_E}$.

Key lemma

Proof idea.

Let $G_j := \operatorname{gr}_j E$ for the eventual HN filtration of E. Then $\phi_t(G_j) \sim \Im(\alpha_{G_j} t + \beta_{G_j})/\pi$ is increasing in j for all $t \gg 0$, so $\Im(\alpha_{G_j})$ is increasing in j. The filtration for the SOD is the coarsening of this filtration that groups terms with the same α .

Proposition (Partial converse to key lemma)

If $\mathscr C$ is smooth and proper, any SOD where all the factors admit stability conditions can be recovered from a quasi-convergent path.

(Collins-Polishchuk gluing)

A proposal

Folklore categorical analogy

(stability condition on $D^b(X)$) \leftrightarrow (ample divisor class on X)

You can not formulate the usual MMP without ample divisors!

Principle

Categorical birational geometry = the study of SOD's of $D^b(X)$ in which every factor admits a stability condition.

↑
"polarizable" SOD's

Example: no phantoms

Lemma

If $\mathscr C$ is smooth and proper, $\dim(K_0(\mathscr C)\otimes \mathbb Q)=1$, and $\mathscr C$ admits a stability condition, then $\mathscr C$ is generated by a single exceptional object.

So, if SOD is "polarizable" and it looks like it comes from a full exceptional collection on the level of K-theory, then it does.

Example

On the Barlow surface, $D^b(X) = \langle L_1, \dots, L_{10}, ^{\perp} \{L_1, \dots, L_{10}\} \rangle$ can not arise from a quasi-convergent path in $\mathrm{Stab}(X)$.

Plan for the remainder of the talk

- 1. "Bordification" of $\operatorname{Stab}(\mathscr{C})/\mathbb{G}_a$
- 2. Formulate the noncommutative minimal model program
- 3. Discuss consequences

What is going on in key lemma?

Fix E and consider the configuration $\{\log Z_t(\operatorname{gr}_i^{HN}(E))\}_{i=1}^n$ in \mathbb{C} :

 (\mathbb{P}^1,dz) degenerates to a *multi-scaled line*: a marked genus 0 nodal curve with meromorphic differential (Σ,Ω) with all components isomorphic to (\mathbb{P}^1,dz) . (also has a "level structure")

Generalized stability conditions

A generalized stability condition consists of

- 1. a multi-scaled line $(\Sigma, p_{\infty}, \Omega)$ with an "order preserving" labeling of terminal components v_1, \ldots, v_n
- 2. an SOD $\mathscr{C} = \langle \mathscr{C}_1, \dots, \mathscr{C}_n \rangle$
- 3. elements $\sigma_i \in \operatorname{Stab}(\mathscr{C}_i)/\mathbb{G}_a$ for all i

Regard log of central charge of σ_i as taking values in the corresponding terminal component of Σ .

(Equivalence relation on generalized stability conditions is slightly non-trivial.)

Example of \mathbb{P}^1

 $\operatorname{Stab}(\mathbb{P}^1)/\mathbb{G}_a \cong \mathbb{C}$. Partially compactified by the blue vertical line at infinity. Green path is quasi-convergent.

The space of generalized stability conditions

In progress (joint with Alekos Robotis):

- There is a Hausdorf space $G\operatorname{Stab}(\mathscr{C})$ containing $\operatorname{Stab}(\mathscr{C})/\mathbb{G}_a$ as a dense open subset.
- There is an s.n.c. compactification $\mathbb{C}^n/\mathbb{G}_a\subset M_n^{ms}$ by n-marked stable multi-scaled lines.
- There are locally defined continuous maps

$$\log Z: U \subset G \operatorname{Stab}(\mathscr{C}) \to \tilde{M}_n^{ms},$$

where $n=\mathrm{rk}(\Lambda)$ and \tilde{M}_n^{ms} denotes the real oriented blowup of M_n^{ms} along its boundary.

• Conjecture: the $\log Z$ maps are local homeomorphisms, making $G\mathrm{Stab}(\mathscr{C})$ a manifold with corners.

The NMMP conjectures

- A. To any contraction $\pi: X \to Y$ of a smooth projective X, one can associate a canonical collection of quasi-convergent paths $\sigma_t^{\pi,\psi} \in \operatorname{Stab}(X)/\mathbb{G}_a$, and different generic parameters ψ give mutation equivalent SOD's
- B. If $Y \to Y'$ is a further contraction, then for suitable parameters the SOD for $X \to Y'$ refines that for $X \to Y$.
- C. If, furthermore, Y is smooth and $R\pi_*(\mathscr{O}_X) = \mathscr{O}_Y$, then for suitable parameters, the SOD for $X \to Y'$ refines the SOD obtained by combining

$$D^b(X) = \langle \ker(\pi_*), \pi^*(D^b(Y)) \rangle$$

with the SOD of $D^b(Y) \cong \pi^*(D^b(Y))$ associated to $Y \to Y'$.

Consequences

Assuming the NMMP conjectures:

Proposition

Given a contraction $X \to Y$ of a smooth projective X with $h^0(K_X) > 0$, \exists an admissible category $\mathscr{M}_{X/Y} \subset D^b(X)$, supported on all of X, such that for any other contraction $X' \to Y$ that is birational to X relative to Y, one has an admissible embedding $\mathscr{M}_{X/Y} \subset D^b(X')$.

Corollary

If $X \dashrightarrow X'$ and $|K_X|$ is baspoint free, then \exists admissible embedding $D^b(X) \hookrightarrow D^b(X')$, which is an equivalence if $|K_{X'}|$ is also basepoint free.

Also: gives canonical categorical resolutions of singularities.

More precise proposal for canonical paths

Ansatz: The central charges for the canonical quasi-convergent paths in $\operatorname{Stab}(X)/\mathbb{G}_a$ should have the form for $E \in D^b(X)$

$$Z_t(E) = \int_X \Phi_t(E),$$

where $\Phi_t(E) \in H^*_{\mathrm{alg}}(X)_{\mathbb{C}}$ is linear in $v(E) \in H^*_{\mathrm{alg}}(X)$ and satisfies a *truncated* quantum differential equation

$$t\frac{\partial \Phi_t(E)}{\partial t} + E_{\psi}(t)\Phi_t(E).$$

Here $E_{\psi}(t)\in \mathrm{End}(H^*_{\mathrm{alg}}(X)_{\mathbb{C}})$ depends on a class $\psi=-\omega+iB\in NS(X)_{\mathbb{C}}$ with ω small and relatively ample:

$$(E_{\psi}(t)\alpha,\beta)_{X} := \sum_{\substack{d \in N_{1}(X/Y) \\ c_{1}(X) \cdot d > \omega \cdot d}} \langle c_{1}(X), \alpha, \beta \rangle_{0,3,d}^{X} t^{c_{1}(X) \cdot d} e^{\psi \cdot d}$$

Relationship to Dubrovin / Gamma conjectures

Iritani defines a "quantum cohomology (QH^*) central charge" $Z_{t,\psi}(E)$, which satisfies the above Ansatz (X Fano).

Proposition

X admits a full exceptional collection (actually, Gamma II holds) if:

- the QH^* central charge lifts to a quasi-convergent path in $\operatorname{Stab}(X)/\mathbb{G}_a$ for generic ψ ,
- $Ch: K_0(X) \otimes \mathbb{C} \to H^*(X;\mathbb{C})$ is bijective, and
- QH* is generically semisimple.

Example

In $\operatorname{Stab}(\mathbb{P}^1)/\mathbb{G}_a \cong \mathbb{C} \cong H^2(\mathbb{P}^1;\mathbb{C})$, the QH^* central charge starts at ψ and moves straight to the right.

Relationship to blowup formula

Decategorification

Apply periodic cyclic homology to SOD of $D^b(X)$ $\downarrow \downarrow$

Direct sum decomposition of the Hodge structure on $K_0^{top}(\boldsymbol{X})$

NMMP implies canonical decompositions of $K^{top}(X)$ up to mutation – roughly an alternative version of the Katzarkov-Kontsevich-Pantev-Yu blowup formula conjecture.