פתרון דף תרגילים 11 – אלגברה לינארית ב'

 $m_2=x+7$ חייב להיות m_2 חייב מגורם האינווריאנטי הראשון הוא חייב $m_1=m$ הגורם האינווריאנטי הראשון הוא $m_1=(x+7), m_{12}=(x-2)^2, m_2=x+7$ צורת ז'ורדן:

$$\begin{pmatrix} -7 & 0 & 0 & 0 \\ 0 & -7 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

- 2. גורמי ז'ורדן של הע"ע 1 הם מהצורה $m_{1x}=(x-1)^{\epsilon_2}$ כאשר $m_{1x}=(x-1)^2$ ומכפלתם $m_{11}=(x-1)^2$ או $m_{11}=(x-1), m_{12}=(x-1), m_{12}=(x-1)$ או $m_{11}=(x-1)^2$ באופן דומה גורמי ז'ורדן של $m_{11}=(x-1)$ נקבעים ע"י הגורם זורדן הראשון של 2- למעט כאשר $m_{11}=(x+2)^2$ במצב האחרון ישנן שתי אפשרויות. סה"כ ישנן 5 אפשרויות לגורמי ז'ורדן של $m_{21}=(x+2)^2$ של הע"ע 2-. מספר האפשרויות לאוסף בלוקי זורדן באופן כללי יהיה מכפלת האפשרויות לבלוקי זורדן של $m_{11}=(x+2)^2$
- xI-A (משמאל לימין) xI-A (משמאל לימין) $xI-R_1+R_2\to R_2$ (משמאל לימין) $xR_1+R_2\to R_2$ $xR_2+R_3\to R_3$ $xC_2+C_1\to C_1$ $x^2C_3+C_1\to C_1$ ונקבל: כי xI-A xI-
- אנתם אותם אותם גורמים אינווריאנטיים הינם בעלי אותם גורמי ז'ורדן. על כן מספיק להראות כי בהינתן הבלוק ז'ורדן המקסימלי של הע"ע λ , בהינתן מספר הבלוקי ז'ורדן של λ להראות כי בהינתן הריבוי האלגברי של λ שקובע את מכפלת כל בלוקי הז'ורדן של λ הבלוקי ז'ורדן של λ נקבעים באופן יחיד. עבור ריבוי אלגברי 1,2,3 ראינו כי הבלוק ז'ורדן הגדול ביותר קובע את שאר בלוקי ז'ורדן. עבור ריבוי אלגברי λ הגורם המקסימלי קובע את שארית הבלוקים אלא אם כן λ בור ריבוי אלגברי λ הגורם במספר הבלוקי זורדן (הריבוי הגאומטרי). λ שני מקרים אלו נבדלים במספר הבלוקי זורדן (הריבוי הגאומטרי). עבור ריבוי אלגברי λ אם λ אם λ שתי אפשרויות לגורמים האחת באורך λ והשניה באורך λ וחיד. אם λ שוב ישנן שתי אפשרויות לגורמים האחת באורך λ והשניה באורך λ והשניה באורך λ אם λ שוב ישנן שתי אפשרויות האחת באורך λ והשניה באורך λ אם λ באופן יחיד. נפצל למקרים:
 - שלישית באורך 4, השניה באורך 4 והשלישית : $m_1 = (x-\lambda)^2$ באורך 3.
 - .2 שלוש אפשרויות, אחת באורך 4 השניה באורך 3 והשלישית באורך 2: $m_1=(x-\lambda)^3$ שתי אפשרויות האחת באורך 2 והשניה באורך 3: $m_1=(x-\lambda)^4$
 - המסקנה היא עבור ריבוי אלגברי ≤ 6 הגורמי ז'ורדן נקבעים ביחידות ע"י הגורם הראשון, מספר הגורמים והריבוי. כלומר כל זוג מטריצות עם אותם פ"א,פ"מ וריבויים גאומטריים מהגדלים הנתונים דומות.
- קם אם N נילפוטנטית מדרגה מינימלית k אז גם N^{tr} נילפוטנטית מדרגה מינמלית N. אם כן N^{tr} שווים) את אותם גורמי ז'ורדן (למעשה זהו גורם אחד שכן הפ"א של N ושל N^{tr} שווים) לשתיהן יש את אותם גורמי ז'ורדן N^{tr} עבורה N^{tr} מקיימת ועל כן הן דומות. אותה מטריצה N^{tr} עבורה N^{tr}

ילכן כל בלוק ז'ורדן דומה לשחלוף שלו (ל- $P^{-1}(N+\lambda I)P=N^{tr}+\lambda I=(N+\lambda I)^{tr}$ שלו). transpose

כעת אם A דומה לB אשר בצורת זורדן אז A^{tr} דומה ל B^{tr} . אך כמסקנה מהפסקה הקודמת כעת אם A דומה ל A^{tr} דומה ל A^{tr} דומה ל A^{tr} דומה ל A^{tr}