LECTURE 3. DIFFERENTIALLY CLOSED FIELDS

We now apply the previous results to describe the model-theoretic properties of the theory DCF_0 of differentially closed fields of characteristic zero. This theory will be written in the language of differentials rings

$$\mathcal{L}_{\partial} = \{0, 1, +, \times, -, \partial\} = \mathcal{L}_{rings} \cup \{\partial\}$$

which is the language of rings expanded with a unary function symbol ∂ . A \mathcal{L}_{∂} -structure (K, ∂) is a model of the theory DCF₀ if it satisfies the following (schemes of) axioms:

- (A1) $K \models ACF_0$ is an algebraically closed field of characteristic zero,
- (A2) ∂ is additive and satisfies the Leibniz rule:

$$\partial(x+y) = \partial(x) + \partial(y)$$
 and $\partial(xy) = x\partial(y) + y\partial(x)$

for all $x, y \in K$.

(A3) for every nonconstant differential polynomial $f, g \in K\{X\}$ with $\operatorname{ord}(g) < \operatorname{ord}(f)$, there exists $x \in K$ such that

$$f(x) = 0 \land q(x) \neq 0.$$

Lemma 3.1. The theory DCF_0 is consistent. Futhermore, any differential field k is contained in a model of DCF_0 .

Proof. Let k be a differential field and let $f, g \in k\{X\}$ with $\operatorname{ord}(g) < \operatorname{ord}(f)$. Denote by f_1 an irreducible factor of f so that $\operatorname{ord}(f_1) = \operatorname{ord}(f)$ and consider $I(f_1)$ the prime differential ideal given by Theorem ??. By construction of this ideal, $g \notin I(f_1)$ as g has lower order than f_1 . It follows that the differential field

$$l = \operatorname{Frac}(k\{X\}/I(f_1))$$

extends k and contains an element a — the image of X — such that $f(a) = 0 \land g(a) \neq 0$.

- Iterating the process we produce a differential field extension $k_1 \mid k$ such that every system of equation and differential equations as above with coefficients in k has a solution in k_1 .
- Iterating this new process, we obtain a chain of differential field extension

$$k \subset k_1 \subset k_2 \subset \ldots \subset k_n \subset \ldots$$

such that every system of equation and differential equations as above with coefficients in k_i has a solution in k_{i+1} .

Clearly, the limit $k = \bigcup_{i \in \mathbb{N}} k_i$ is a differentially closed field containing k.

3.1. Elimination of quantifiers.

Theorem 3.2 (Elimination of quantifiers). The theory DCF₀ admits the elimination of quantifiers in the language \mathcal{L}_{∂} of differential rings.

Recall the following criterion for quantifier-elimination: Let T be a theory in a language \mathcal{L} . The theory T has QE in the language \mathcal{L} if and only if

(*) whenever $M, N \models T$ extend a common finitely generated substructure $A, \overline{a} \in A^n, m \in M$ and $\phi(x, \overline{y})$ a quantifier-free \mathcal{L} -formula (without parameters) such that

$$M \models \phi(m, \overline{a}) \Rightarrow N \models \exists x \phi(x, \overline{a})$$

Furthermore, up to replacing N by an elementary overstructure, we may assume that N is ω -saturated¹ in order to check (*).

¹This means that every countable set of $S = \{\phi_i(x,\bar{l}) \mid i \in \mathbb{N}\}$ which is *finitely* satisfiable in N is satisfiable in N.

Proof. Consider $K, L \models \mathrm{DCF}_0$ containing a common finitely generated \mathcal{L}_∂ -substructure A and assume that L is ω -saturated. By definition of the language, A is a finitely generated substructure means that A is a finitely generated differential subring of K and L respectively and in particular is an integral domain. Denote by k the algebraic closure of the fraction field of A. Since the derivation on A extends uniquely to k and K, L are algebraically closed differential fields (by axioms (A1) and (A2)), the inclusions $i_K: A \to K$ (resp. $i_L: A \to L$) extends uniquely to inclusions

$$\overline{i_K}: k \to K \text{ (resp. } \overline{i_L}: k \to L)$$

Consider $m \in K$, $\bar{s} \in k$ and $\phi(x, \bar{y})$ quantifier-free such that $K \models \phi(m, \bar{s})$. To show that $L \models \exists \phi(x, \bar{s})$, a direct inspection of quantifier-free formulas² shows that it is enough to find $n \in L$ such that

$$k\langle m\rangle \simeq k\langle n\rangle$$

as differential fields over k sending m to n. If $m \in k$ then there is nothing to do. Otherwise, we distinguish according to the position of m with respect to k.

• Case 1. $m \in K$ satisfies a nontrivial differential equation over k that is

$$I(m/k) = \{ f \in k\{X\} \mid f(m) = 0 \}$$

is a nonzero ideal of $k\{X\}$.

By Theorem ??, I(m/k) = I(f) where f is a minimal nonzero polynomial in I(m/k) with respect to \ll and in particular is irreducible. The axiom (A3) of DCF₀ implies that the countable set of formulas

$$\{f(x) = 0 \land g(x) \neq 0 \mid g(x) \in k\{x\} \text{ with } \operatorname{ord}(g) < \operatorname{ord}(f)\}\$$

is finitely satisfiable in L and hence by ω -saturation satisfiable in L. By hypothesis, I(n/k) is a prime ideal containing f and no differential polynomial of lower order. Since f is irreducible, we have

$$I(n/k) = I(f) = I(m/k) \Rightarrow k\langle m \rangle \simeq k\langle n \rangle$$

as required.

• Case 2. $m \in K$ satisfies no nontrivial differential equation over k.

In that case, by ω -saturation of L, the countable set of formulas

$$\{f(x) \neq 0 \mid f(x) \in k\{X\}\}\$$

is finitely satisfiable and hence satisfiable in L say by $n \in L$. By construction, we have

$$k\langle m\rangle \simeq k\langle X\rangle \simeq k\langle n\rangle.$$

as required. This completes the proof of the theorem.

Corollary 3.3. The theory DCF_0 is complete.

Proof. Every differentially closed field contains \mathbb{Q} equipped with the trivial derivation as a substructure. A theory with QE whose models share a common substructure is complete (exercise).

3.2. Geometric consequences. Fix for the rest of the section $K \models DCF_0$.

Definition 3.4. A Kolchin-closed subset Σ of K^n is a set of the form

$$\Sigma = \{ \overline{x} \in K^n \mid f_1(x) = \ldots = f_n(x) = 0 \}$$

where $f_1, \ldots, f_n \in K\{X_1, \ldots, X_n\}$ are differential polynomial of n variables. A Kolchin-closed set is called irreducible if it can not be written as the union

$$\Sigma = \Sigma_1 \cup \Sigma_2$$
 with $\Sigma_1 \not\subset \Sigma_2$ and $\Sigma_2 \not\subset \Sigma_1$.

²The quantifier-free formulas with parameters from k are the boolean combination of formulas of the form $P(x, \bar{s}) = 0$ where $P \in k\{x\}$ is a differential polynomial

Corollary 3.5 (Differential Nullstenlensatz). We have an inclusion reversing one-to-one correspondence

Furthermore, the Kolchin-topology of K^n is a noetherian topology and irreducible Kolchin-closed subsets correspond to prime ideals.

Proof. Clearly, $I(\Sigma)$ is an ideal. It is radical and differential since for every $\overline{x} \in K^n$,

$$f^n(\overline{x}) = 0 \Rightarrow f(\overline{x}) = 0 \text{ and } f(\overline{x}) = 0 \Rightarrow \partial(f)(\overline{x}) = 0$$

as the evaluation is a morphism of differential rings. Convesely, V(I) is a Kolchin-closed set since by Theorem $??, I = \{f_1, \ldots, f_n\}$ is finitely generated. Furthermore, we have

$$V(I(\Sigma)) = \Sigma$$
 and $I(V(\Sigma)) = I$.

Indeed, the first equality is trivial (and does not use the fact that $K \models \mathrm{DCF}_0$). To prove the second one, note that $I \subset I(V(\Sigma))$ and consider $f \in K\{\overline{X}\} \setminus I$. Write

$$I = \bigcap_{j=1}^{n} I_j$$

where the I_j are prime differential ideals so that $f \notin I_j$ for some j. It follows that

$$L = \operatorname{Frac}(K\{\overline{X}\}/I_i) \subset \mathcal{U} \models \operatorname{DCF}_0$$

is a differential field. By construction, The image of \overline{x} of \overline{X} in \mathcal{U} satisfies

$$\overline{x} \in \Sigma \wedge f(\overline{x}) \neq 0$$

so that $\mathcal{U} \models \exists \overline{x}(\overline{x} \in \Sigma) \land f(\overline{x}) \neq 0$ which is a sentence with parameters from K. It follows from Theorem 3.2 that modulo DCF₀, this formula is equivalent to a quantifier-free formula which is satisfied in \mathcal{U} iff it is satisfied in K. It follows that

$$K \models \exists \overline{x} (\overline{x} \in \Sigma) \land f(\overline{x}) \neq 0$$

and hence that $f \notin I(V(\Sigma))$ as required. The second part of the statement is left as an exercise using Theorem ??.

Corollary 3.6 (Description of types). Let $k \subset K$ be a differential subfield. The function

$$I: \begin{cases} S_n(k) & \to \operatorname{Spec}_{\partial} K\{X_1, \dots X_n\} \\ p & \to I = \{ f \in k\{X_1, \dots, X_n \mid \text{``} f(x) = 0 \text{''} \in p \} \end{cases}$$

is a bijection where $S_n(k)$ denotes the model-theoretic space of types and $\operatorname{Spec}_{\partial}K\{X_1,\ldots X_n\}$ is the set of differential prime ideals of $k\{X_1,\ldots X_n\}$.

Proof. We first need to show that I is well defined and that I is a prime ideal. Take $a \models p$. By enlarging K if necessary, we can find a realization $a = a_1, \ldots, a_n$ of p in a model of DCF. By construction of a, we have that

$$I = I(a) = \{ f \in k\{X_1, \dots, X_n\} \mid f(a) = 0 \}$$

and the fact that I is a prime ideal follows easily from this presentation. It remains to show that I is injective and surjective. The second part is automatic. The first part follows directly from quantifier elimination: since every formula is equivalent to boolean combination of formulas of the form f(x) = 0, a type $p \in S_n(k)$ is determined by the function

$$f(x) \mapsto \chi_p : \begin{cases} 0 \text{ if "} f(x) = 0" \in p \\ 1 \text{ otherwise} \end{cases}$$

which is the characteristic function of the subset I in $k\{X_1, \ldots, X_n\}$. Surjectivity follows from the differential Nullstellensatz as any partial type $\pi(x)$ (a consistent set of formulas) can be extended to a complete type. \square

Theorem 3.7. The theory DCF₀ is ω -stable (in the sense of model theory).

Proof. (Counting types) A theory T in a countable language if for any set of parameters A, we have that

$$|S_1(A)| = |A|$$

3.3. Elimination of imaginaries. Recall that a complete theory T in a language of \mathcal{L} admits the *elimination of imaginaries* if for every definable equivalence relation E on some definable set $D \subset M^n$ of some model $M \models T$, there exists a definable function $f: D \to M^s$ such that

$$xEy \Leftrightarrow f(x) = f(y).$$

One can then identify D/E with the definable set f(D) and therefore under this condition take quotient without leaving the category of definable sets. To prove the elimination of imaginaries, we will use a rather indirect path. Fix once for all $K \models DCF_0$ an ω saturated and ω -homogeneous model.

Definition 3.8. Let $\phi(x, a)$ be a formula (in the language of differential rings). A differential field of definition for $\phi(x, a)$ is a differential subfield $k \subset K$ such that there exists a formula $\psi(x, b)$ with parameters $b = b_1, \ldots, b_n$ from k such that

$$\psi(x,b) \leftrightarrow \phi(x,a)$$
.

Similarly, if I is a differential ideal of $K\{X_1, \ldots, X_n\}$, a differential field of definition for I is a differential subfield of K which contains a system of generators for I.

Lemma 3.9. Let $\phi(x, a)$ be a formula and let k be a differential subfield of K. k is a field of definition of $\phi(x, a)$ if and only if for every $\sigma \in \operatorname{Aut}_{\partial}(K)$,

$$\sigma$$
 fixes k pointwise $\Rightarrow \sigma(D) = D$ setwise

where $D = \phi(K, a)$ is the definable set defined by $\phi(x, a)$.

Proof. We only need to prove the converse. We first claim that the second part of the statement implies that for any type $p \in S(k)$ and any two realizations $a, b \models M$ We first claim that ω

Proposition 3.10. The following properties are equivalent:

- (i) $T = DCF_0$ admits the elimination of imaginaries,
- (ii) every formula admits a smallest (finitely generated) differential field of definition,
- (iii) every radical differential ideal of $K\{X_1, \ldots, X_n\}$ admits a smallest (finitely generated) differential field of definition.

Proof. (i) \Rightarrow (ii). Let $\phi(x, a)$ be a formula with $a = a_1, \dots, a_n$. Consider the definable equivalence relation E(y, z) on K^n defined by

$$E(y,z)$$
 iff $K \models \forall x(\phi(x,y) \leftrightarrow \phi(x,z))$

and denote by $f_E: K^n \to K^m$ the function witnessing elimination of imaginaries. We first claim that the differential field k generated by $\alpha = f_E(a)$ is the smallest differential field k of definition of $\phi(x, a)$. Indeed, by construction

$$\sigma$$
 fixes k pointwise iff $\sigma(\alpha) = \alpha$ iff $K \models \phi(x,a) \leftrightarrow \phi(x,\sigma(a))$ iff $\sigma(D) = D$

and we conclude by the previous lemma that k is the smallest differential field of definition of $\phi(x,a)$.

(ii) \Rightarrow (i) By Ritt-Raudenbush Theorem, every radical differential ideal I can be written as

$$I = \{f_1, \dots, f_s\}$$

where f_1, \ldots, f_s is a finite set of differential polynomials. Consider the formula

$$\phi(x,a) := f_1(x) = 0 \wedge \ldots \wedge f_s(x) = 0''$$

where $a \in k$ is the tuple consisting of all the coefficients of the f_i . Clearly, by the differential Nullstenlensatz, a differential field of definition for $\phi(x, a)$ is a differential field of definition of I.

(iii) \Rightarrow (i) Let E(y,z) be a definable equivalence relation on some definable set D defined over k. For $a \in D$, denote by

$$[a]_E = \{ x \in D \mid xEa \}$$

and by $\overline{[a]_E}$ its Kolchin-closure. We claim that

$$\overline{[a]_E} = \overline{[b]_E} \text{ iff } aEb.$$

Indeed, clearly $aEb \Rightarrow [a]_E = [b]_E \Rightarrow \overline{[a]_E} = \overline{[b]_E}$. Conversely, if $\overline{[a]_E} = \overline{[b]_E}$ then $[a]_E$ contains a dense open Kolchin-subset U_a of $\overline{[a]_E}$ and so does $[b]_E$. Since any two dense Kolchin subset intersect, we have $U_a \cap U_b \neq \emptyset$ which implies (by transitivity) that aEb as required.

Now fix $a \in D$ and set α for a generator of the differential field of definition of $I(\overline{[a]_E})$. Since $[a]_E$ is $k\langle a \rangle$ -definable so is $\overline{[a]_E}$ and therefore

$$\alpha \in k\langle a \rangle$$

so that there exits a k-definable function $f_a: D \to K^m$ such that the preimages of α is the equivalence class of a. Since this is true for any $a \in D$, a compactness argument finishes the proof (exercise).

Theorem 3.11 (Field of definition of an ideal). Every ideal I of $K[X_1, ..., X_n]$ admits a smallest field of definition.

Proof. Denote by M a basis of monomials of $K[\overline{X}]/I$ as a K-vector space. Each monomial u of $K[\overline{X}]$ can be uniquely written as

$$u = \sum_{m \in M} a_{u,m} m + f_u$$

where $f_u \in I, a_{u,m} \in K$.

Claim. The field

$$k = \mathbb{Q}[a_{u,m} \mid u \text{ monomial of } K[\overline{X}], m \in M]$$

is the smallest field of definition of I.

• Step 1. We show that k is a field of definition of I.

For $f \in I$, we can write

$$f = \sum_{u \text{ mon. of } K[\overline{X}]} b_u u = \sum_{u \text{ mon. } K[\overline{X}]} b_u \cdot \left(u - \sum_{m \in M} a_{u,m} m \right) + \sum_{m \in M} \left(\sum_{u \text{ mon. of } K[\overline{X}]} b_u a_{u,m} \right) \cdot m$$

Since by definition the left term lies in I and M is a K-basis of $K[\overline{X}]/I$, we conclude that all the coefficients of the right term must be zero and hence that

$$f = \sum_{u \text{ mon.} K[\overline{X}]} b_u \cdot \Big(u - \sum_{m \in M} a_{u,m} m \Big).$$

It follows that I is generated by the $u - \sum_{m \in M} a_{u,m} m \in k[\overline{X}]$ where u ranges over all monomials of $K[\overline{X}]$ so that k is indeed a field of definition for I.

• Step 2. Consider l another field of definition of I. We show that $k \subset l$.

Note that every automorphism of K extends to an automorphism of $K[X_1,\ldots,X_n]$ by setting:

$$\sigma(\sum_{m \in mon.k[X]} f_m \cdot m) = \sum_{m \in mon.k[X]} \sigma(f_m) \cdot m$$

Since l is a field of definition of I, for every $\sigma \in \operatorname{Aut}(K/l)$, we have $\sigma(I) = I$. It follows that for every monomial u, we have

$$u = \sigma(u) = \sum_{m \in M} \sigma(a_{u,m}) \cdot m + \sigma(f_u)$$

By uniqueness of the decomposition, it follows that $\sigma(a_{u,m}) = a_{u,m}$ for every $\sigma \in \operatorname{Aut}(K/l)$ and every u, m. We have therefore shown that k is a subset of l.

Theorem 3.12 (Elimination of imaginaries). The theory DCF₀ eliminates imaginaries in the language \mathcal{L}_{∂} of differential rings.

Proof. It is enough to show that every radical differential ideal I admits a smallest differential field of definition using Proposition 3.10. By the Ritt-Raudenbush Theorem, we can find a finite set of differential polynomial such that

$$I = \{f_1, \dots, f_n\}$$

Consider N large enough so that $f_1, \ldots, f_n \in K[X, X', \ldots, X^{(N)}]$ and set J for the ideal they generate. By Theorem 3.11, J has a smallest field of definition $k \subset K$. It is now easy to see that the differential field \tilde{k} generated by k is the smallest differential field of definition of I.

Example 3.13. Let $K \models \mathrm{DCF}_0$ and denote by \mathcal{C} the field of constants of K.

• The imaginary K^*/C^* is eliminated by the function

$$\partial log: y \mapsto \partial(y)/y$$

• Consider the action of the affine group $Aff_2(C)$ on the affine line K. The imaginary $K/Aff_2(C)$ is eliminated by the affine distorsion:

$$y\mapsto \partial^2(y)/\partial(y)$$

• Consider the action of $PSL_2(C)$ on the projective line $\mathbb{P}^1(K)$. The imaginary $\mathbb{P}^1(K)/PSL_2(C)$ is eliminated by the Schwarzian derivative

$$y \mapsto (y''/y')' - 1/2(y''/y')^2$$