Assisting the Deployment of Security-Sensitive Workflows by Finding Execution Scenarios

Daniel R. dos Santos^{1,2,3}, Silvio Ranise¹, Luca Compagna². Serena E. Ponta²

¹Fondazione Bruno Kessler, ²SAP Labs France, ³University of Trento

Outline

- Introduction
- Scenario Finding Problems
- Solving SFPs
- Walidation
- Conclusions

Outline

- Introduction

Context

- A workflow specifies a collection of tasks and the causal relationships between them
- Authorization policies specify which users can execute which tasks
- Additional constraints, such as Separation/Binding of Duty, further restrict the execution of tasks by users
 - Important to avoid errors and fraud, limiting the opportunities for abuse
- We call those workflows security-sensitive

task	roles
t1	r3
t2	r2
t3	r2
t4	r1
t5	r2

roles	users
r1	а
r2	a, b, c
r3	a, b

Workflow Satisfiability Problem

WSP

Is there an assignment of users to tasks such that a workflow terminates while satisfying all authorization constraints?

Run-time WSP

Answering sequences of user requests at execution time ensuring termination with the satisfaction of authorization constraints

WSP is NP-hard already in the presence of one SoD constraint

Problem

Introduction

task	roles
t1	r3
t2	r2
t3	r2
t4	r1
t5	r2

roles	users
r1	а
r2	a, b, c
r3	a, b

Scenario = t1(a), t2(b), t3(c), X

WSP solution

Introduction

task	roies
t1	r3
t2	r2
t3	r2
t4	r1
+5	r2

1....

roles	users
r1	a
r2	a, b, c
r3	a, b

Scenario = t1(b), t2(a), t3(c), t4(a), t5(b)

Solving the WSP - previous work

- Technique for the synthesis of run-time monitors for the WSP
 - C. Bertolissi, D. R. dos Santos, and S. Ranise, "Automated synthesis of run-time monitors to enforce authorization policies in business processes" in ASIACCS 2015
- It takes as input the specification of a security-sensitive workflow and an authorization policy and consists of two steps (off-line and on-line)
- Authorization policy is only considered in the on-line phase, the result of the off-line phase is based on a set of symbolic users and an unconstrained policy

Off-line

- A symbolic transition system S is derived from the execution constraints and the authorization constraints
- S is used to compute a symbolic reachability graph RG
 - Edges labeled by task-user pairs in which users are symbolically represented by variables
 - Nodes labeled by a symbolic representation of the set of states from which it is possible to reach a state in which the workflow successfully terminates
- Any path from a leaf node to the root corresponds to a symbolic eligible scenario

Off-line - Symbolic Reachability Graph

- A Datalog program is derived from RG by building clauses from the formulae labeling the nodes
- Each clause invokes predicates auth, which is an interface to the authorization policy, and h, which keeps track of which user has executed which task
- If the monitor grants a request (clause is satisfied), then the user can execute the task and the workflow can terminate while satisfying the authorization policy and the authorization constraints

Run-time WSP solution

task	roles
t1	r3
t2	r2
t3	r2
t4	r1
t5	r2

roles	users
r1	a
r2	a, b, c
r3	a, b

	#	History	Query	Answer
	0	Ø	$can_do(a, t1)$	deny
	1	-	$can_do(b, t1)$	grant
	2	h(t1,b)	$can_do(c, t3)$	grant
	3	h(t3,c)	can_do(a, t4)	grant
	4	h(t4, a)	$can_do(b, t2)$	deny
	5	-	can_do(a, t2)	grant
	6	h(t2, a)	$can_do(b, t5)$	grant
ĺ	7	h(t5,b)	-	-

New problem

- Customers re-use business process models with authorization constraints from a repository
 - Usually, BPMN and constraints are available at design-time
 - Authorization policy is decided during deployment
- They must know, at deployment time, whether a process can be successfully instantiated with their authorization policy

Business Process Repositories

SAP BPR

Signavio Process Library

- Many solutions to the WSP are less interesting in this scenario because they do not exploit re-use
- Design-time/run-time separation and re-use allow us to pre-compute and store part of the solution
- Later, we find concrete execution scenarios showing termination

Contributions

- Statements of two Scenario Finding Problems (SFPs) and discussion of their relationships with the WSP
- Solution based on a technique for the synthesis of run-time monitors for the WSP
- Validation of the solution on real-world examples from a repository of re-usable business process models

Outline

- 1 Introduction
- Scenario Finding Problems
- Solving SFPs
- 4 Validation
- Conclusions

- An execution scenario is a sequence of user-task pairs
 - A scenario is eligible if all the constraints are satisfied
 - A scenario is authorized if every user is authorized to perform the assigned task
- It is possible to compute—once and for all—the set of eligible scenarios associated to a workflow in a repository
- The problem is then to look for those scenarios with some properties when an authorization policy becomes available

Scenario Finding Problems

Basic (B-SFP)

Given the set of eligible scenarios according to a set of authorization constraints, return a scenario which is authorized according to a given authorization relation

Minimal User Base SFP (MUB-SFP)

Given the set of eligible scenarios according to a set of authorization constraints, return a scenario which is authorized according to a given authorization relation and such that the set of users occurring in it is a minimal user base

SFP vs. WSP

- WSP:
 - Input: Workflow with constraints and authorization policy
 - Output: Eligible and authorized scenario
- B-SFP:
 - Input: Workflow with constraints and authorization policy + Pre-computed set of eligible scenarios
 - Output: Eligible and authorized scenario
- MUB-SFP:
 - Input: Workflow with constraints and authorization policy + Pre-computed set of eligible scenarios
 - Output: Eligible and authorized minimal scenario

Example - eligible scenarios

 $U = \{Alice, Bob, Charlie, Dave, Erin, Frank\}$

- $\eta_1 = t_1(Alice), t_2(Bob), t_3(Charlie), t_4(Dave), t_5(Erin)$
- $\eta_2 = t_1(Bob), t_2(Alice), t_3(Charlie), t_4(Alice), t_5(Bob)$
- $\eta_3 = t_1(Bob), t_4(Charlie), t_2(Alice), t_3(Dave), t_5(Bob)$
- ... (total = 19,080 scenarios)

 $TA = \{(Alice, t_1), (Bob, t_1), (Alice, t_2), (Bob, t_2), \}$ (Charlie, t_3), (Alice, t_4), (Dave, t_4), (Bob, t_5), (Erin, t_5)

- $\eta_1 = t_1(Alice), t_2(Bob), t_3(Charlie), t_4(Dave), t_5(Erin)$
- $\eta_2 = t_1(Bob), t_2(Alice), t_3(Charlie), t_4(Alice), t_5(Bob)$
- $\eta_3 = t_1(Bob), t_4(Charlie), t_2(Alice), t_3(Dave), t_5(Bob)$

Example - minimal scenarios

$$TA = \{(Alice, t_1), (Bob, t_1), (Alice, t_2), (Bob, t_2), (Charlie, t_3), (Alice, t_4), (Dave, t_4), (Bob, t_5), (Erin, t_5)\}$$

- $\eta_1 = t_1(Alice), t_2(Bob), t_3(Charlie), t_4(Dave), t_5(Erin)$
- $\eta_2 = t_1(Bob), t_2(Alice), t_3(Charlie), t_4(Alice), t_5(Bob)$
- $\eta_3 = t_1(Bob), t_4(Charlie), t_2(Alice), t_3(Dave), t_5(Bob)$

- A scenario solving the B-SFP is also a solution of the WSP and vice versa, so we could re-use an algorithm A returning answers to the WSP to solve the B-SFP
- We would have to invoke A for every task-user pair in a scenario, because it does not exploit the fact that the scenarios in E are eligible
- A better approach is to consider each eligible scenario and check if all task-user pairs are authorized

- Maintain a variable storing an eligible and authorized scenario which is a candidate minimal user base
- When all eligible scenarios have been considered, we find a minimal user base

Outline

- Solving SFPs

Solving the SFPs

- We reuse the monitor synthesis technique from ASIACCS2015
- It provides us with a compact data structure to represent the set of all eligible scenarios in a workflow
 - Reachability graph with symbolic users

Solving the SFPs

- Algorithm based on DFS to explore all paths in RG and check that the scenario is authorized by using the run-time monitor
- Instead of enumerating all users, we exploit a Datalog engine to find the right user
- Basic solution is extended with a set of facts which drives the search for a scenario with particular characteristics (conditionals, user-task pairs, etc.)

```
1: for all v \in Nodes(RG) do visited[v] \leftarrow false;
 2. end for
 3: \eta \leftarrow \epsilon; NI \leftarrow \text{NoIncoming}(RG);
 4: while (v \in NI \text{ and } \eta = \epsilon) do
      \eta \leftarrow \mathrm{DFS}(v, \epsilon, \Gamma); NI \leftarrow NI \setminus \{v\};
 6 end while
 7: return \eta
 8: function DFS(v, \eta, H)
         visited[v] \leftarrow true; OE \leftarrow OutGoing(v);
 9:
         if OE = \emptyset then return \eta
10:
         else
11:
              for all v \xrightarrow{t(v)} w \in OE do
12:
                   if (not visited[w] and M, P, H \vdash^{v \mapsto u} can\_do(t, v))
13:
     then
                        return DFS(w, append(\eta, t(u)), H \cup \{h(t, u)\})
14:
                   end if
15:
              end for
16.
         end if
17:
         return \epsilon
18.
19 end function
```

Outline

- 4 Validation

Workflows

Experimental setting

- Policies with and without possible scenarios
- Facts about user assignments and choice of branches
- Algorithm implemented in Python and pyDatalog and experiments run on a MacBook Air 2014

#	Instance	Facts	Solution Scenario	Time (s)
0	$TRW+P_0$	Ø	t1(b), t2(a), t4(a), t3(c), t5(b)	0.288
1	$ITIL+P_2$	$\{c1, c2\}$	t1(u3), t3(u9), t4(u8), t6(u9), t7(u9)	4.267
2	$ITIL+P_2$	$\{c1, \mathbf{not}\ c2\}$	t1(u3), t3(u3), t4(u7), t5(u8), t6(u3), t7(u7)	4.454
3	$ITIL+P_2$	{not $c1, c2$ }	t1(u3), t2(u1), t3(u9), t4(u8), t6(u9), t7(u9)	4.374
4	$ A TIL + P_2 \{ \mathbf{not} \ c1, \mathbf{not} \}$	{not c1 not c2}	t1(u3), t2(u1), t3(u3), t4(u7),	4.561
L		1+7 2 1	$\iota \circ (u \circ), \iota \circ (u \circ), \iota \iota \circ (u \circ)$	4.501
5	ISO+P ₄	{appr}	t1(u3), t4(u7), t5(u8), t2(u3), t3(u7),	6.581
L	130 14	4 (appr)	t6(u9), t7(u7), t9(u8)	0.301
6	ISO+P ₄	{not appr}	t1(u3), t4(u7), t5(u8), t2(u3), t3(u7),	6.637
	130 14 {Hot appl }	(Hot appr)	t6(u7), t7(u8), t8(u6)	0.031
7	$TRW + P_1$	Ø	ϵ	0.407
8	$TRW+P_0$	$\{t2(b)\}$	ϵ	1.554
9	$ITIL+P_3$	Ø	ϵ	9.562
10	$ISO+P_5$	Ø	ϵ	44.076

Experiments - MUB-SFP

#	Instance	Facts	Solution Scenario	Time (s)
11	$\overline{TRW+P_0}$	Ø	t1(b), t2(c), t3(b), t4(a), t5(a)	2.385
12	$ITIL+P_2$	$\{c1, c2\}$	t1(u1), t3(u1), t4(u7), t6(u1), t7(u1)	108.819
13	$ITIL+P_2$	$\{c1, \mathbf{not}\ c2\}$	t1(u3), t3(u3), t4(u7), t5(u7), t6(u3), t7(u3)	116.525
14	$ITIL+P_2$	{not $c1, c2$ }	t1(u1), t2(u1), t3(u1), t4(u7), t6(u1), t7(u1)	108.827
15	ITII ⊥Pa	{not $c1$, not $c2$ }	t1(u3), t2(u3), t3(u3), t4(u7),	116.533
		(Hot c1, Hot c2)	to(ui), to(us), ti(us)	110.555
16	$ISO+P_4$	{appr}	t1(u5), t3(u5), t2(u5), t4(u5), t5(u5),	166.632
	150 7 4	(appi)	t6(u3), t7(u7), t9(u7)	100.032
17	$ISO+P_4$	{not appr}	t1(u5), t3(u5), t2(u5), t4(u5), t5(u5),	166.644
	150 7 4	(iiot appi s	t6(u9), t7(u6), t8(u9)	100.044

Outline

- Conclusions

Conclusions

- We have introduced two SFPs and algorithms to solve them
- The approach exploits the fact that the eligible scenarios can be computed once and re-used with every authorization policy
- Experimental evaluation shows that it can be used at deployment time since it performs the computationally heaviest part when the workflow is added to a repository
- We intend to study
 - resiliency in SFPs
 - automatically suggest changes to authorization policies so that solutions of an SFP are optimal with respect to some criteria, e.g., least privilege.

www.secentis.eu

bertolissi@fbk.eu dossantos@fbk.eu ranise@fbk.eu

