Introduction to Numerical Analysis HW9

Yu Cang 018370210001

July 30, 2018

1 QUESTION 1

(a) *Proof.* As \mathcal{A} is convex, the mean value theorem can be applied in terms of y s.t.

$$\Phi(t, y_2) - \Phi(t, y_1) = (y_2 - y_1) \frac{\partial \Phi(t, y)}{\partial y} \Big|_{y = \xi}$$
(1.1)

where $\xi \in (y_1, y_2)$.

Since the there exists c > 0 s.t. for all $(t, y) \in \mathcal{A}$

$$\left| \frac{\partial \Phi(t, y)}{\partial y} \right| \le c \tag{1.2}$$

Thus

$$|\Phi(t, y_2) - \Phi(t, y_1)|$$

$$= |y_2 - y_1| \left| \frac{\partial \Phi(t, y)}{\partial y} \right|_{y=\xi}$$

$$\leq c|y_2 - y_1|$$
(1.3)

which implies that $\Phi(t, y)$ satisfies Lipschitz condition in y on \mathcal{A} .

(b) *Proof.* Let $P_1 = (t_1, y_1)$ and $P_2 = (t_2, y_2)$. Then any point P' lies on the line segment joining P_1 and P_2 can be expressed as

$$P = (1 - \alpha)P_1 + \alpha P_2$$

= $((1 - \alpha)t_1 + \alpha t_2, (1 - \alpha)y_1 + \alpha y_2)$
 $\triangleq (t', y')$ (1.4)

where $\alpha \in [0, 1]$.

It's clear that t_1 and t_2 lies between t_0 and T, and t' lies between t_1 and t_2 . Thus, t' also lies between t_0 and T.

Further, it's also clear that $-\infty < y' < +\infty$.

Hence $P \in \mathcal{D}$, which implies that \mathcal{D} is convex.

(c) Proof. Let

$$\Phi(t, y) = \frac{4t^3y}{1+t^4} \tag{1.5}$$

Then

$$\frac{\partial \Phi(t,y)}{\partial y} = \frac{4t^3}{1+t^4} = \frac{4t}{t^2 + \frac{1}{t^2}} < \frac{4}{t^2 + \frac{1}{t^2}} < \frac{4}{2\sqrt{t^2 + \frac{1}{t^2}}} = 2$$
 (1.6)

as $t \in (0, 1)$.

which implies that $\Phi(t, y)$ satisfies a Lipschitz condition in y.

Thus, the given IVP problem has a unique solution.

(d) Definitely not recommended.

As $\Phi(t, y) = 1 + y^2$, then

$$\frac{\partial \Phi}{\partial y} = 2y \triangleq \lambda y \tag{1.7}$$

Here $\lambda > 0$, and the Euler's method is not stable as the error will be amplified at each iteration step. Finally the calculation will diverge.

2 QUESTION 2

(a) As $\Phi(t, y) = arctan(y)$, then

$$\left| \frac{\partial \Phi}{\partial y} \right| = \frac{1}{|1 + y^2|} < 1 \stackrel{\triangle}{=} c \tag{2.1}$$

(b) As $\dot{y} = \Phi(t, y) = arctan(y)$, then

$$|\ddot{y}| = \left| \frac{\dot{y}}{1 + y^2} \right| = \frac{|arctan(y)|}{1 + y^2} < \frac{\pi}{2(1 + y^2)} \le \frac{\pi}{2}$$
 (2.2)

(c) As the global error is bounded by

$$|e_k| \le \frac{\tau^*}{hc} [e^{c(t_k - t_0)} - 1]$$
 (2.3)

where $\tau^* = \max_k |\tau_k|$, c is the Lipschitz constant and is taken as 1 as has been illustrated above.

Since

$$\frac{\tau^*}{h} = \max_{k} \left| \frac{y(t_k) - y(t_{k-1}) - h\Phi(t_{k-1}, y(t_{k-1}))}{h} \right|
\leq \max_{k} \left| \frac{y(t_k) - y(t_{k-1})}{h} \right| + |\Phi(t_{k-1}, y(t_{k-1}))|
= 2 \max_{k} |\Phi(t_{k-1}, y(t_{k-1}))| < \pi$$
(2.4)

Thus, $|e_k| < \pi [e^{(t_k - t_0)} - 1]$.

3 QUESTION 3

(a)

(b)

(c)

4 QUESTION 6