תכנון וניתוח אלגוריתמים תרגיל 1

פרק : פתרון תרגילים במודל התכנון הליניארי

- שאלה 1.8
- מפעל מייצר כיסאות-נוח בשני גדלים;
 - . הכסאות עשויים עץ ובד.
- כסא-נוח גדול צורך 5 ק"ג עץ ו-3 מטר בד
- .כסא-נוח קטן צורך 4 ק"ג עץ ו-2 מטר בד.
- גדול 4 ש"ח ועל כל כסא-נוח גדול 4 ש"ח ועל כל כסא-נוח קטן 3 ש"ח.

- ספק חומרי הגלם של המפעל מסוגל לספק 4000 ק"ג עץ ♦ ספק חומרי הגלם של המפעל מסוגל לספק 2500 ק"ג עץ ו-2500 מטר בד לחודש;
 - ◆ משווק המוצרים אינו מוכן לרכוש בחודש יותר כסאות-נוח גדולים מאשר כסאות קטנים.
- ◆ מנהל הייצור של המפעל נדרש להחליט מהו מספר כסאות הנוח הקטנים ומהו מספר כסאות הנוח הגדולים שייצר המפעל בחודש.
 - . נסחו את הבעיה כבעיית תכנון ליניארי

- פתרון 1.8 ♦
- נגדיר את משתני ההחלטה:
- מספר כסאות הנוח הגדולים לחודש X1 lacktriangleright
- מספר כסאות הנוח הקטנים לחודש ★ X2
 - : ניסוח הבעיה כבעיית תכנון ליניארי

lacktriangle Maximize Z = 4X1 + 3X2

: כפוף לאילוצים ◆

Subject to:

$$\bullet$$
 5*X*1 + 4*X*2 \leq 4000

$$3X1 + 2X2 \le 2500$$

$$\wedge$$
 $X1 \leq X2$

$$\bullet$$
 $X1 \ge 0$, $X2 \ge 0$

- 1.9 שאלה ♦
- ♥ספקי האינטרנט מחוברים לרשת האינטרנט העולמית באמצעות סיבים אופטיים משלושה סוגים.
- כל סיב מסוגל להעביר מידע בנפח מסוים, ודורש טיפול תקופתי בתדירות שונה.
 - •נתוני הסיבים מרוכזים בטבלה הבאה:

זמן בין טיפולים תקופתיים (בחודשים)	קצב העברת הנתונים (GB לשנייה)	עלות הנחת סיב (מיליוני דולרים)	סוג הסיב
אין צורך בטיפולים	10	5	אדום
2	15	9	כחול
1	30	13	צהוב

- משרד התקשורת נערך לתכנון הנחת סיבים אופטיים כדי לספק דרישות תקשורת עתידיות של לפחות 1000GB
- ♦ לפרויקט הוקצב סכום כספי לצורך הטיפולים התקופתיים המאפשר עד 10 טיפולים בחודש. המשרד נערך לחשב את העלות המינימלית הנדרשת להנחת הסיבים האופטיים.
 - •נסחו את הבעיה כבעיית תכנון ליניארי.

- ענגדיר את משתני ההחלטה X1, X2, X3 כמספר הסיבים גדיר את משתני ההחלטה.
- **♦ Minimize** Z = 5X1 + 9X2 + 13X3
- כפוף לאילוצים:
 - : Subject to
- \bullet 10*X*1 + 15*X*2 + 30*X*3 \geq 1000
 - $0.5X2 + X3 \le 10$
- $X1 \ge 0$, $X2 \ge 0$, $X3 \ge 0$

- עדוסיף מכלאה שלישית לבעיית המכלאות (דוגמה 1.2) שצורתה תהיה ריבוע, והיקפה יהיה לכל היותר מחצית מהיקף המכלאה הריבועית הראשונה, אבל לא פחות מ-50 מטר.
 - א. קבעו את משתני ההחלטה;
 - ב. הגדירו את פונקצית המטרה;
 - ג. נסחו את האילוצים על משתני ההחלטה;
 - . ד. נסחו את אילוצי אי-השליליות. ●

Algorithms © Dr Reuven Hotoveli, 2008

עניח כי באותה בעיה (דוגמה 1.2) מוצגת דרישה ששטח המכלאות יהיה מקסימלי ולא היקפן; האם אפשר לפתור את הבעיה בעזרת מודל תכנון ליניארי?

- בור צלע המכלאה הריבועית X3 עבור אלע המכלאה הריבועית השלישית. עלינו להביא למקסימום את הפונקציה:
- **◆ Maximize** Z = 2pX1 + 4X2 + 4X3
- \wedge $X2 \geq 25$
- $4X3 \geq 50$
- $2pX1 \ge 200, \quad 4X_3 \le \frac{1}{2}4X_2$
- $X1 \ge 0$, $X2 \ge 0$, $X3 \ge 0$

- ריבוע $=a^2$ ריבועS lacktriangle
 - מעגל πr^2 שטח העיגול $S \spadesuit$
- הרי בכדי לקבל שטח מקסימלי של מכלאות, פונקצית המטרה הרי בכדי לקבל שטח מקסימלי של $Z = p \, X_1^2 + X_2^2$: שתתקבל תהיה
 - זוהי פונקציה לא ליניארית ולכן לא נוכל לפתור בעיה זו ◆ באמצעות תכנון ליניארי.

- * 1.11 מאלה \$
- יש למצוא את נקודת המינימום של פונקצית המטרה:

• תחת האילוצים:

$$\bullet$$
 1) $2X_1 - 5X_2 - 3X_3 \ge 50$

$$\diamond$$
 2) $5X_2 - 2X_3 \le 10$

$$•$$
 3) $X_1^2 \le 4$

- **♦**4) $X_2 ≥ 0$
- **♦**5) $X_3 ≥ 0$

▶האם אפשר לפתור בעיה זו באמצעות שיטות לפתרון בעיית תכנון ליניארי?

- למרות שהאילוץ $4 \le 4$ הוא בעל צורה של משוואה לא-ליניארית, ניתן לכתבו על-ידי פירוק לשתי משוואת ליניאריות:
- \wedge $X1 \ge -2$
- \bullet $X1 \leq 2$
 - ♦ ולכן זהו ניסוח של בעיה המתאימה לפתרון באמצעות מודל תכנון ליניארי.

- ⇒ בית-חרושת לשוקולד מייצר שני סוגי שוקולד חלב ומריר.
 - שהמחיר לצרכן של 100 גרם שוקולד חלב הוא 5 ₪,
 ושל 100 גרם שוקולד מריר 4 ₪.
- ◆ ההבדל בין שני סוגי השוקולד הוא כמויות המרכיבים של השוקולד:
- -בכל 100 גרם שוקולד חלב ישנם 20 גרם פולי קקאו ו-80 גרם סוכר

- 35 גרם בכל 100 גרם שוקולד מריר נמצאים 35 גרם פולי קקאו ו- 65 גרם סוכר.
- 10-ו למפעל אספקה יומית של 4 טון פולי קקאו ו-**10** טון סוכר.
 - שון פולי קקאו עולה 8000 ₪ וטון סוכר עולה \$600 ₪.

◊מה צריכה להיות התפוקה היומית של המפעלאם מטרתו היא להביא את הכנסותיולמקסימום ?

מה צריכה להיות התפוקה היומית של המפעלאם מטרתו היא להביא את רווחיו למקסימום?

- פתרון 1.12 ♦
- מספר החפיסות (100 גרם) של שוקולד חלב. \star
- . מספר החפיסות של שוקולד מריר. $X2 \spadesuit$
 - מקסימום הכנסות :

 \bullet Maximize Z = 5X1 + 4X2

- : כפוף לאילוצים ♦
- : Subject to

- \bullet 20*X*1 + 35*X*2 \leq 4,000,000
- \bullet 80*X*1 + 65*X*2 \leq 10,000,000
- \bullet $X1 \ge 0$, $X2 \ge 0$

- 1.13 ♦תרגיל
- אריט רכש 80 מ''ר בד כותנה, ו-120 מ''ר בד
 צמר. כדי לתפור מעיל לגבר זקוק החייט ל-1
 מ''ר בד-כותנה, ו-3 מ''ר בד צמר.
- כדי לתפור מעיל לאישה זקוק החייט ל-2 מ"ר
 בד כותנה, ו-2 מ"ר בד צמר.

- ▶המחיר של מעיל לגבר הוא \$30 והמחיר של מעיל לאישה הוא \$20.
- כמה מעילים, משני הסוגים, על החייט לתפור כדי להרוויח את הסכום המקסימלי?

- .מספר מעילי הגברים -X1
 - .מספר מעילי הנשים -X2
- **♦ Maximize** Z = 30X1 + 20X2
- : כפוף לאילוצים
 - : Subject to

♦
$$X1 + 2X2 \le 80$$

$$4 \quad 3X1 + 2X2 \le 120$$

- 1.14 ♦תרגיל
- יצרן משקאות מייצר שני סוגי משקאות: מיץ מיצר שני סוגי משקאות : מיץ ומשקה קל.
 - ♦ לייצור ליטר אחד של מיץ הוא צריך 600 מיליליטר מים.
- לייצור ליטר אחד של משקה קל הוא משתמש ב-מיליליטר תמצית וב- 900 מיליליטר מים.

- ◆הרווח שלו ממכירת ליטר מיץ הוא 0.5 ₪וממכירת ליטר משקה קל 0.1 ₪.
- 10,000 הוא מקבל מדי יום 5000 ליטר תמצית ו- \$\blace\$ ליטר מים.
- ◆מה צריכה להיות תפוקתו היומית אם מטרתו הינה רווח מקסימלי ?

- מספר הליטרים של מיץ. lacktriangle
- אספר הליטרים של משקה קל. *X*2 ◆
- **♦ Maximize** Z = 0.5X1 + 0.1X2

: כפוף לאילוצים

•

: Subject to

$$\bullet$$
 0.6*X*1 + 0.1*X*2 \leq 5,000

$$\bullet$$
 0.4*X*1 + 0.9*X*2 \leq 10,000

$$X1 \ge 0 , X2 \ge 0$$

- 1.15 ♦תרגיל
- במפעל לייצור כלי-רכב ניתן לייצר מכוניותומשאיות. במפעל 4 מחלקות :
 - ◆הרכבת מנועים.
 - שיבוע מתכת.
 - ◆הרכבת מכוניות.
 - ◆הרכבת משאיות.

- במחלקה 1 (הרכבת מנועים) אפשר להרכיב מנועי
 מכוניות, ו/או מנועי משאיות כך גם במחלקה 2 (טיבוע מתכת).
 - במחלקת הרכבת מכוניות אפשר להרכיב מכוניות בלבד, ובמחלקת הרכבת משאיות ניתן להרכיב משאיות בלבד.
 - ♦ להלן הבלה המסכמת את כושר הייצור של המחלקות השונות.

המשך שאלה 1.15

16.01.2008

Algorithms © Dr Reuven Hotoveli, 2008

29

- \$3000 רווח המפעל ממכירת מכונית הוא \$3000 וממכירת משאית \$2500.
- כמה מכוניות וכמה משאיות על המפעל לייצר כדי שהרווח השנתי יהיה מקסימלי ?

- מספר המכוניות מיוצרות בשנה. → 11
- מספר המשאיות המיוצרות בשנה. → X2
- .חלק השנה הדרוש להרכבת מנוע למכונית. → 1/30,000 חלק השנה הדרוש
- . חלק השנה הדרוש להרכבת מנוע למשאית -1/16,000
- .חלק השנה הדרוש לטיבוע מתכת במכונית -1/25,000
- .חלק השנה הדרוש לטיבוע מתכת במשאית -1/35,000

Maximize Z = 3000X1 + 2500X2

$$\bullet$$
 $\frac{1}{30,000} X_1 + \frac{1}{16,000} X_2 \le 1$ אילוץ תחנת הרכבת מנוע

$$lacktriangle$$
 $\frac{1}{25,000} X_1 + \frac{1}{35,000} X_2 \le 1$ אילוץ תחנת טיבוע מתכת

$$X2 \le 15,000$$

 $X2 \le 15,000$ אילוץ תחנת הרכבת משאיות

$$X1 \le 20,000$$

אילוץ תחנת הרכבת מכוניות

$$X1 \ge 0$$
 , $X2 \ge 0$

$$X2 \ge 0$$

- 1.18 ♦ תרגיל
- יאופני איכות" מייצרת שני סוגים של סדרת "אופני איכות"
 - אופניים:
 - אופני הרים.
 - אופני כביש.
- כס ייצור האופניים עבור שני הסוגים כולל מעבר דרך שתי תחנות עבודה :

- ♦הרכבת כידון.
- ◆הרכבת גלגלים.
- ◆בתחנה 1, הרכבת כידון ניתן להרכיב כידון לזוג
 אופניים אחד בו-זמנית.
 - הרכבת כידון לאופני הרים אורכת 2 שעות.
 - הרכבת כידון לאופני כביש אורכת שעה אחת.

- ◆בתחנה 2, הרכבת גלגלים ניתן להרכיב גלגלים לזוג
 אופניים אחד בו-זמנית.
 - הרכבת גלגלים לאופני הרים אורכת שעה אחת.
 - . שעות 2 הרכבת גלגלים לאופני כביש אורכת 2 שעות.
 - .החברה עובדת 16 שעות ביום.
- ♦ הרווח של החברה על זוג אופני הרים הוא \$400 ועל זוג אופני כביש \$200.

- מה מספר זוגות אופני ההרים ומספר זוגותאופני הכביש שעל חברת "אופני איכות"לייצר ביום בכדי להגיע לרווח מקסימלי?
 - פתרון 1.18 ♦
 - מספר זוגות אופני ההרים שיש לייצר ביום. -X1
 - מספר זוגות אופני כביש שיש לייצר ביום. -X2

Maximize Z = 400X1 + 200X2

כפוף לאילוצים:

Subject to

$$2X1 + X2 \le 16$$

אילוץ תחנת הרכבת כידון

$$X1 + 2X2 \le 16$$

 $X1 + 2X2 \le 16$ אילוץ תחנת הרכבת גלגלים

 $X1 \ge 0$, $X2 \ge 0$

- 1.21 ♦ תרגיל
- במטוס מטען שלושה תאי אחסון למטענים: קדמי, אמצעי ואחורי. לתאים השונים מגבלות הן בנפח והן במשקל, כמוצג בטבלה הבאה:

משקל מוחנר (טון)	נפתמחור (מ'ק)	דואארוטון	
14	7000	קדמי	
20	10000	אבוצעי	
8	4000	ארורי	

Algorithms © Dr Reuven Hotoveli, 2008

- כדי לשמור על יציבות המטוס, משקל המטען המועמס בכל אחד מהתאים צריך
 - יא. להתאים למשקל המותר בו.
- ב. לקראת הטיסה הבאה אפשריים ארבעה סוגי מטענים, שנתוניהם מפורטים בטבלה הבאה:

רווח (שולטון)	משקד (טון)	(מ'קלטון)	מטען מספר
320	20	500	1
400	16	700	2
360	25	600	3
290	13	400	4

- ◆אפשר להעביר כל חלק רצוי מכל אחד מהמטענים.
 - ▶ המטרה היא לקבוע איזה חלק להעביר מכל אחד מהמטענים ובאיזה תא אחסון למקמו, כך שהרווח הכולל מהטיסה יהיה מקסימלי.

פתרון 1.21 ♦

- . מספר טונות ממטען מספר 1 שהועברו בתא קדמי X11
- . מספר טונות ממטען מספר 2 שהועברו בתא קדמי X21
- מספר טונות ממטען מספר 3 שהועברו בתא קדמי. *X*31 ◆
- . מספר טונות ממטען מספר 4 שהועברו בתא קדמי X41
- . מספר טונות ממטען מספר 1 שהועברו בתא אמצעי $X12 \diamondsuit$
- . מספר טונות ממטען מספר 2 שהועברו בתא אמצעי $X22 \diamondsuit$

עיי. מספר טונות ממטען מספר X32 - X32 מספר טונות ממטען מספר X42 - X42 מספר טונות ממטען מספר X42 - X43 - X43 מספר טונות ממטען מספר X43 - X43 - X43 - X43 מספר טונות ממטען מספר X43 - X43 - X43 - X43 - X43 מספר טונות ממטען מספר X43 - X43 - X43 - X43 - X43

$$Z = 320(X11 + X12 + X13) +$$

$$400(X21 + X22 + X23) +$$

$$360(X31 + X32 + X33) +$$

$$290(X41 + X42 + X43)$$

€כפוף לאילוצים:

: Subject to

$$X11 + X21 + X31 + X41 \le 14$$
 בתא קדמי

$$X12 + X22 + X32 + X42 \le 20$$
 בתא אמצעי

$$X13 + X23 + X33 + X43 \le 8$$
 בתא אחורי

- מגבלות נפח:
- בתא קדמי
- $500X11 + 700X21 + 600X31 + 400X41 \le 7,000$
 - בתא אמצעי
- $500X12 + 700X22 + 600X32 + 400X42 \le 10,000$
 - בתא אחורי
- $500X13 + 700X23 + 600X33 + 400X43 \le 4{,}000$

$$X11 + X12 + X13 \le 20$$
 מטען 1

$$X21 + X22 + X23 \le 16$$
 מטען 2

$$X31 + X32 + X33 \le 25$$
 מטען 3

$$X41 + X42 + X43 \le 13$$
 4 מטעך

♦
$$Xij \ge 0$$
 $i = 1...4$ $j = 1...3$