## Лабораторная работа 14

Модели обработки заказов

Тимофеева Екатерина Николаевна

# Содержание

| 1 | Цель работы                                                        | 4  |
|---|--------------------------------------------------------------------|----|
| 2 | Задание                                                            | 5  |
| 3 | Выполнение лабораторной работы                                     | 6  |
|   | 3.1 Модель оформления заказов клиентов одним оператором            | 6  |
|   | 3.2 Построение гистограммы распределения заявок в очереди          | 12 |
|   | 3.3 Модель обслуживания двух типов заказов от клиентов в интернет- |    |
|   | магазине                                                           | 17 |
|   | 3.4 Модель оформления заказов несколькими операторами              | 22 |
| 4 | Выводы                                                             | 29 |

# Список иллюстраций

| 3.1  | Модель оформления заказов клиентов одним оператором             | 7  |
|------|-----------------------------------------------------------------|----|
| 3.2  | Отчёт по модели оформления заказов в интернет-магазине          | 8  |
| 3.3  | Модель оформления заказов клиентов одним оператором с изме-     |    |
|      | ненными интервалами заказов и времени оформления клиентов       | 10 |
| 3.4  | Отчёт по модели оформления заказов в интернет-магазине с из-    |    |
|      | мененными интервалами заказов и времени оформления клиентов     | 11 |
| 3.5  | Построение гистограммы распределения заявок в очереди           | 13 |
| 3.6  | Отчёт по модели оформления заказов в интернет-магазине при      |    |
|      | построении гистограммы распределения заявок в очереди           | 14 |
| 3.7  | Отчёт по модели оформления заказов в интернет-магазине при      |    |
|      | построении гистограммы распределения заявок в очереди           | 14 |
| 3.8  | Гистограмма распределения заявок в очереди                      | 16 |
| 3.9  | Модель обслуживания двух типов заказов от клиентов в интернет-  |    |
|      | магазине                                                        | 17 |
| 3.10 | Отчёт по модели оформления заказов двух типов                   | 18 |
| 3.11 | Модель обслуживания двух типов заказов с условием, что число    |    |
|      | заказов с дополнительным пакетом услуг составляет 30% от общего |    |
|      | числа заказов                                                   | 20 |
| 3.12 | Отчёт по модели оформления заказов двух типов заказов           | 21 |
| 3.13 | Модель оформления заказов несколькими операторами               | 23 |
| 3.14 | Отчет по модели оформления заказов несколькими операторами      | 24 |
| 3.15 | Модель оформления заказов несколькими операторами с учетом      |    |
|      | отказов клиентов                                                | 26 |
| 3.16 | Отчет по модели оформления заказов несколькими операторами с    |    |
|      | учетом отказов клиентов                                         | 27 |

# 1 Цель работы

Реализовать модели обработки заказов и провести анализ результатов.

### 2 Задание

### Реализовать с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.

### 3 Выполнение лабораторной работы

### 3.1 Модель оформления заказов клиентов одним оператором

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) – ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем орегаtor\_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром орегаtor — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE – 480 (8 часов по 60 минут, всего 480 минут). Работа программы

начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается – оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

Таким образом, имеем (рис. 3.1).

```
; operator
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.1: Модель оформления заказов клиентов одним оператором

После запуска симуляции получаем отчёт (рис. 3.2).

| Model 1.2.1 - REPO | RT       |            |            |              |            |       |
|--------------------|----------|------------|------------|--------------|------------|-------|
| STAR               | I TIME   | FND TIME   | F BLOCKS   | FACTI.TTTFS  | STORAGES   |       |
|                    | 0.000    |            |            | 1            |            |       |
|                    | 0.000    | 100.00     | ,          | -            | •          |       |
| N                  | AME      |            | VATUE      |              |            |       |
| OPERA:             |          |            | 0001.000   |              |            |       |
|                    | IOR Q    |            | 0000.000   |              |            |       |
| 012141             |          | -          |            |              |            |       |
| LABEL              | LOC BLO  | CK TYPE    | ENTRY COU  | NT CURRENT C | OUNT RETRY |       |
|                    | 1 GEN    |            |            | C            | 0          |       |
|                    | 2 QUE    | UE         | 32         | C            | 0          |       |
|                    | 3 SEI    |            | 32         | 0            | 0          |       |
|                    | 4 DEP    | ART        | 32         | 0            | 0          |       |
|                    | 5 ADV    |            | 32         | 1            | . 0        |       |
|                    | 6 REL    |            | 31         | 0            | 0          |       |
|                    | 7 TER    |            | 31         | C            | 0          |       |
|                    | 8 GEN    |            | 1          |              | 0          |       |
|                    | 9 TER    | MINATE     | 1          | 0            | 0          |       |
|                    |          |            |            |              |            |       |
| FACILITY           |          |            |            |              |            |       |
| OPERATOR           | 32 0     | .639       | 9.589 1    | 33 (         | 0 0        | U     |
| QUEUE              | MAX CONT | FNTRY FNTR | 7(0) AVF C | ONT AUF TIM  | F ΔVF (=0) | DETRY |
| OPERATOR Q         |          |            |            |              |            |       |
|                    | - "      |            | 0.0        | 0.02         | 0.072      |       |
| FEC XN PRI         | BDT      | ASSEM CU   | RRENT NEX  | T PARAMETER  | VALUE      |       |
| 33 0               | 489.786  | 33         | 5 6        |              |            |       |
| 34 0               | 496.081  | 34         | 0 1        |              |            |       |
| 35 0               | 960 000  | 35         | 0 8        |              |            |       |

Рис. 3.2: Отчёт по модели оформления заказов в интернет-магазине

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator\_q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT – количество транзактов, вошедших в блок с начала процедуры моделирования. Затем идёт информация об одноканальном устройстве FACILITY (оператор,

оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля OWNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин.

### Далее информация об очереди:

- QUEUE=operator\_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования очередь была пуста;
- ENTRIES=32 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=31 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0, 001 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE.(-0)=0, 671 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

### В конце отчёта идёт информация о будущих событиях:

- XN=33 порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора;
- PRI=0 все клиенты (из заявки) равноправны;
- BDT=489, 786 время назначенного события, связанного с данным транзактом;
- ASSEM=33 номер семейства транзактов;
- CURRENT=5 номер блока, в котором находится транзакт;
- NEXT=6 номер блока, в который должен войти транзакт.

#### **Упражнение**

Изменим интервалы поступления заказов и время оформления клиентов (рис. 3.3).

```
; operator
GENERATE 3.14,1.7
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.3: Модель оформления заказов клиентов одним оператором с измененными интервалами заказов и времени оформления клиентов

После запуска симуляции получаем отчёт (рис. 3.4).

| Model 1.3.1 - REPO                   | RT                                                                      |                                                     |                                        |                           |                            |            |
|--------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|---------------------------|----------------------------|------------|
|                                      | TIME<br>0.000                                                           |                                                     |                                        |                           |                            |            |
|                                      | ME<br>OR<br>OR_Q                                                        | 100                                                 | 01.000                                 |                           |                            |            |
| LABEL                                | LOC BLOC 1 GENE 2 QUEU 3 SEIZ 4 DEPA 5 ADVA 6 RELE 7 TERM 8 GENE 9 TERM | RATE<br>E<br>E<br>RT<br>NCE<br>ASE<br>INATE<br>RATE | NTRY COUNTS 152 152 70 70 70 69 69 1 1 | 0<br>82<br>0<br>0         | 0<br>0<br>0<br>0<br>0<br>0 |            |
| FACILITY<br>OPERATOR                 | ENTRIES UTI 70 0.                                                       |                                                     |                                        |                           |                            |            |
| QUEUE<br>OPERATOR_Q                  | MAX CONT.                                                               | ENTRY ENTRY(                                        | 0) AVE.CO                              | ONT. AVE.TIM<br>96 123.46 | E AVE.(-0)<br>1 124.279    | RETRY<br>0 |
| FEC XN PRI<br>71 0<br>154 0<br>155 0 | 480.405<br>483.330                                                      | 71 5                                                | 6                                      | Γ PARAMETER               | VALUE                      |            |

Рис. 3.4: Отчёт по модели оформления заказов в интернет-магазине с измененными интервалами заказов и времени оформления клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator\_q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 152;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 71 заказ от клиентов (значение поля OWNER=71), но оператор успел принять в обработку до окончания рабочего времени только 70 (значение поля ENTRIES=70). Полезность работы оператора составила 0,991. При этом среднее время занятости оператора составило 6,796 мин.

Далее информация об очереди:

- QUEUE=operator\_q имя объекта типа «очередь»;
- МАХ=82 в очереди находилось 82 ожидающих заявок от клиента;
- CONT=82 на момент завершения моделирования в очереди было 82 заявки;
- ENTRIES=82 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=39,096 заявок от клиентов в среднем были в очереди;
- AVE. TIME=123.461 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=123,279 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

### 3.2 Построение гистограммы распределения заявок в очереди

Требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гистограммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой. Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A, B, C, D Здесь Name — метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Код программы будет следующим(рис. 3.5).

```
Waittime QTABLE operator_q,0,2,15
GENERATE 3.34,1.7
TEST LE Q$operator_q,1,Fin
SAVEVALUE Custnum+,1
ASSIGN Custnum,X$Custnum
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
Fin TERMINATE 1
```

Рис. 3.5: Построение гистограммы распределения заявок в очереди

Здесь Waittime — метка оператора таблицы очередей QTABLE, в данном случае название таблицы очереди заявок на заказы. Строка с оператором TEST по смыслу аналогично действиям оператора IF и означает, что если в очереди 0 или 1 заявка, то осуществляется переход к следующему оператору, в данном случае к оператору SAVEVALUE, в противном случае (в очереди более одной заявки) происходит переход к оператору с меткой Fin, то есть заявка удаляется из системы, не попадая на обслуживание. Строка с оператором SAVEVALUE с помощью операнда Custnum подсчитывает число заявок на заказ, попавших в очередь. Далее

оператору ASSIGN присваивается значение СЧА оператора Custnum.

Получим отчет симуляции и проанализируем его (рис. 3.6, 3.7).

| STAR:                  | 0.000                                | END TIME<br>353.895                                      |                                                | ACILITIES S                          |                            |
|------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------------------|--------------------------------------|----------------------------|
| CUSTN<br>FIN<br>OPERA: | IOR<br>IOR_Q                         | 10<br>10                                                 | 10.000                                         |                                      |                            |
| LABEL                  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | TEST SAVEVALUE ASSIGN QUEUE SEIZE DEPART ADVANCE RELEASE | 102<br>102<br>55<br>55<br>55<br>54<br>53<br>53 | 0<br>0<br>0<br>0<br>1<br>1<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 |
| FIN                    | 10                                   | TERMINATE                                                | 100                                            | 0                                    | 0                          |
| FACILITY<br>OPERATOR   |                                      | UTIL. AVE. 1                                             |                                                |                                      | NTER RETRY DELAY<br>0 0 1  |
| QUEUE<br>OPERATOR_Q    | MAX C                                | ONT. ENTRY ENTRY<br>2 55                                 | (0) AVE.CON<br>1 1.652                         | T. AVE.TIME<br>10.628                | AVE.(-0) RETRY<br>10.824 0 |

Рис. 3.6: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

| TABLE<br>WAITTIME    | MEAN         | STD.DEV.      |                 | RANG | E    |          | TRY | FREQUENCY | CUM.%  |
|----------------------|--------------|---------------|-----------------|------|------|----------|-----|-----------|--------|
| WAITITHE             | 10.709       | 2.702         |                 |      | ,    | 0.000    | J   | 1         | 1.89   |
|                      |              |               |                 | _    |      |          |     | 0         |        |
|                      |              |               | .000            | -    |      | 2.000    |     | -         | 1.89   |
|                      |              |               | .000            | _    |      | 1.000    |     | 1         | 3.77   |
|                      |              |               | .000            | -    |      | 5.000    |     | 0         | 3.77   |
|                      |              | -             | .000            | -    | 8    | 3.000    |     | 4         | 11.32  |
|                      |              | 8             | .000            | -    | 10   | 0.000    |     | 12        | 33.96  |
|                      |              | 10            | .000            | -    | 1.2  | 2.000    |     | 17        | 66.04  |
|                      |              | 12            | .000            | -    | 14   | 1.000    |     | 14        | 92.45  |
|                      |              | 14            | .000            | -    | 16   | 5.000    |     | 4         | 100.00 |
| SAVEVALUE<br>CUSTNUM | RE'          |               | VALUE<br>55.000 | 0    |      |          |     |           |        |
| CEC XN PRI<br>98 0   | M1<br>341.23 | ASSEM<br>5 98 | CURRI<br>6      | ENT  | NEXT | PARAMETE | R   | VALUE     |        |
|                      |              |               |                 |      |      | CUSTNUM  |     | 54.000    |        |
| FEC XN PRI           | BDT          | ASSEM         | CURRI           | ENT  | NEXT | PARAMETE | R   | VALUE     |        |
| 103 0                | 356.55       | 3 103         | 0               |      | 1    |          |     |           |        |

Рис. 3.7: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

Результаты работы модели:

• модельное время в начале моделирования: START TIME=0.0;

- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=353.895;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator\_q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 102;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 98 заказов от клиентов (значение поля OWNER=98), но оператор успел принять в обработку до окончания рабочего времени только 54 (значение поля ENTRIES=54). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,470 мин.

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- МАХ=2 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=2 на момент завершения моделирования в очереди было два клиента;
- ENTRIES=55 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=1,652 заявок от клиентов в среднем были в очереди;

- AVE.TIME=10.628 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=10,824 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Также появилась таблица с информацией для гистограммы: частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок(17) обрабатывалось в диапазоне 10-12 минут.

В конце отчёта идёт информация о будущих событиях.

Проанализируем гистограмму (рис. 3.8).



Рис. 3.8: Гистограмма распределения заявок в очереди

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок (17) обрабатывалось 10-12 минут, 14 заявок – 12-14 минут, 12 заявок – 8-10 минут, в остальных диапазонах 0-4 заявок.

# 3.3 Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй – заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE-DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE-RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора. Код и отчет результатов моделирования следующие (рис. 3.9, 3.10).

```
Model 3.gps
ADVANCE 10,2
RELEASE operator
TERMINATE 0
 ; order and service package
GENERATE 30,8
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 5,2
ADVANCE 10,2
RELEASE operator
TERMINATE 0
 ;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.9: Модель обслуживания двух типов заказов от клиентов в интернетмагазине

| Model 3.1.1 - RE    |          |                        |           |          |          |           |        |       |
|---------------------|----------|------------------------|-----------|----------|----------|-----------|--------|-------|
|                     | суббо    | га, июня 08,           | 2024 18:  | 12:40    |          |           |        |       |
| ST                  | ART TIME |                        | TIME BLO  |          |          | S STORA   | GES    |       |
|                     | 0.000    | 480                    | .000 1    | 7        | 1        | 0         |        |       |
|                     |          |                        |           |          |          |           |        |       |
|                     | NAME     |                        | VALU      |          |          |           |        |       |
|                     | RATOR    |                        | 10001.0   |          |          |           |        |       |
| OPE                 | RATOR_Q  |                        | 10000.0   | 00       |          |           |        |       |
| LABEL               | 100      | DIOCK TABE             | PUTDY     | COUNT    | CUDDENT  | COUNT P   | ETDV   |       |
| LADEL               |          | BLOCK TYPE<br>GENERATE |           | 32       | CURRENT  | O COUNT F | 0<br>0 |       |
|                     |          | OUEUE                  |           | 32<br>32 |          | 4         | 0      |       |
|                     |          | SEIZE                  |           | 32<br>28 |          |           | 0      |       |
|                     | _        | DEPART                 |           | 28       |          | 0         | 0      |       |
|                     | -        | ADVANCE                |           | 28       |          | 1         | 0      |       |
|                     |          | RELEASE                |           | 27       |          | 0         | 0      |       |
|                     |          | TERMINATE              |           | 27       |          | 0         | 0      |       |
|                     |          | GENERATE               |           | 15       |          | 0         | 0      |       |
|                     |          | QUEUE                  |           | 15       |          | 3         | 0      |       |
|                     |          | SEIZE                  |           | 12       |          | 0         | 0      |       |
|                     |          | DEPART                 |           | 12       |          | 0         | 0      |       |
|                     | 12       | ADVANCE                |           | 12       |          | 0         | 0      |       |
|                     | 13       | ADVANCE                |           | 12       |          | 0         | 0      |       |
|                     | 14       | RELEASE                |           | 12       |          | 0         | 0      |       |
|                     | 15       | TERMINATE              |           | 12       |          | 0         | 0      |       |
|                     | 16       | GENERATE               |           | 1        |          | 0         | 0      |       |
|                     | 17       | TERMINATE              |           | 1        |          | 0         | 0      |       |
|                     |          |                        |           |          |          |           |        |       |
| FACILITY            | ENTRIES  | UTIL. AV               | E. TIME A | VAIL.    | OWNER PE | ND INTER  | RETRY  | DELAY |
| OPERATOR            | 40       | 0.947                  | 11.365    | 1        | 42       | 0 0       | 0      | 7     |
|                     |          |                        |           |          |          |           |        |       |
| QUEUE<br>OPERATOR_Q | MAX C    | ONT. ENTRY E           | NTRY(0) A | VE.CON   | T. AVE.T | IME AV    | E.(-0) | RETRY |
| OPERATOR Q          | 8        | 7 47                   | 2         | 3.355    | 34.      | 261       | 35.784 | 0     |
|                     |          |                        |           |          |          |           |        |       |
| FEC XN PRI          | BDT      | ASSEM                  | CURRENT   | NEXT     | PARAMET  | ER VA     | LUE    |       |
| 42 0                |          | 325 42                 | 5         | 6        |          |           |        |       |

Рис. 3.10: Отчёт по модели оформления заказов двух типов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator\_q.

• количество транзактов, вошедших в блок первого типа заказов с начала процедуры моделирования ENTRY COUNT = 32, а второго типа(с дополнительными услугами) ENTRY COUNT = 15; обработано 12+27 = 39;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 42 заказ от клиентов (значение поля OWNER=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

Далее информация об очереди:

- QUEUE=operator\_q имя объекта типа «очередь»;
- МАХ=8 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=7 на момент завершения моделирования в очереди было 7 клиентов;
- ENTRIES=47 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- 'ENTRIES(0)=2 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=3,355 заявок от клиентов в среднем были в очереди;
- AVE. TIME=34,261 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=35,784 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

#### **Упражнение**

Скорректируем модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Будем использовать один блок order, а разделим типы заявок с помощью переходов оператором TRANSFER. Каждый заказ обрабатывается  $10\pm2$  минуты,

после этого зададим оператор TRANSFER, в котором укажем, что с вероятностью 0.7 происходит обработка заявки (переход к блоку noextra RELEASE operator), а с вероятностью 0.3 дополнительно заказ обрабатывается еще  $5\pm 2$  минуты (переход к блоку extra ADVANCE 5,2) и только после этого является обработанным ( рис. 3.11).

```
; order
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
TRANSFER 0.3,noextra,extra
extra ADVANCE 5,2
noextra RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.11: Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Проанализируем результаты моделирования (рис. 3.12).

| START               | TIME    | END<br>480         | TIME BLO   | OCKS F  | ACILITII<br>1 | ES ST  | ORAGES<br>0 |         |  |
|---------------------|---------|--------------------|------------|---------|---------------|--------|-------------|---------|--|
|                     |         |                    |            |         |               |        |             |         |  |
| NAM                 |         |                    | VALU       |         |               |        |             |         |  |
| EXTRA               |         |                    | 7.0        | 000     |               |        |             |         |  |
| NOEXTRA             | 7       |                    | 8.0        | 000     |               |        |             |         |  |
| OPERATO             | )R      |                    | 10001.0    | 000     |               |        |             |         |  |
| OPERATO             | OR_Q    |                    | 10000.0    | 000     |               |        |             |         |  |
| LABEL               | LOC     | BLOCK TYPE         | ENTR       | COUNT   | CURREN        | r coun | IT RETRY    |         |  |
|                     | 1       | GENERATE           |            | 33      |               | 0      | 0           |         |  |
|                     | 2       | QUEUE<br>SEIZE     |            | 33      |               | 0      | 0           |         |  |
|                     |         |                    |            |         |               | 0      | 0           |         |  |
|                     |         | DEPART             |            |         |               | 0      | 0           |         |  |
|                     | 5       | ADVANCE            |            | 33      |               |        |             |         |  |
|                     |         | TRANSFER           |            |         |               |        |             |         |  |
| EXTRA               | 7       | ADVANCE<br>RELEASE |            | 8       |               | 1      | 0           |         |  |
| NOEXTRA             | 8       | RELEASE            |            | 32      |               | 0      | 0           |         |  |
|                     |         | TERMINATE          |            |         |               |        |             |         |  |
|                     |         | GENERATE           |            |         |               |        |             |         |  |
|                     | 11      | TERMINATE          |            | 1       |               | 0      | 0           |         |  |
| FACILITY            | ENTRIES | UTIL. AV           | /E. TIME A | AVAIL.  | OWNER PI      | END IN | ITER RETR   | Y DELAY |  |
| OPERATOR            | 33      | 0.766              | 11.146     | 1       | 34            | 0      | 0 0         | 0       |  |
| OUEUE               | MAX CO  | NT. ENTRY          | ENTRY(O)   | AVE.CON | T. AVE.       | TTME   | AVE. (-0    | ) RETRY |  |
| QUEUE<br>OPERATOR_Q | 1       | 0 33               | 25         | 0.054   | 0             | 781    | 3.22        | 0 0     |  |
| FEC XN PRI          | BDT     | ASSEM              | CURRENT    | NEXT    | PARAME:       | TER    | VALUE       |         |  |
| 34 0                |         |                    |            |         |               |        |             |         |  |
| 35 0                | 487.7   | 26 35              | 0          | 1       |               |        |             |         |  |
| 36 0                | 960.0   | 00 36              | 0          | 10      |               |        |             |         |  |

Рис. 3.12: Отчёт по модели оформления заказов двух типов заказов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator\_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 33, при этом из них второго типа (с дополнительными услугами) ENTRY COUNT = 8; обработано 32 заказа;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 34 заказа от клиентов (значение поля OWNER=34), но оператор успел принять в обработку до окончания рабочего времени только 33 (значение поля ENTRIES=33). Полезность работы оператора составила 0,766. При этом среднее время занятости оператора составило 11,146 мин.

Далее информация об очереди:

- QUEUE=operator\_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=33 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=25 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,054 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.781 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=3,220 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

### 3.4 Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом  $5\pm 2$  мин. Время оформления заказа каждым оператором также распределено равномерно на интервале  $10\pm$ 

2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

С помощью строки operator STORAGE 4 указываем, что у нас 4 оператора, затем к обычной процедуре генерации и обработки заявки добавляется, что заявку обрабатывает один оператор operator, 1, сегмент моделирования времени остается без изменений (рис. 3.13).



Рис. 3.13: Модель оформления заказов несколькими операторами

Далее получим и проанализируем отчет (рис. 3.14).

|                              | IME END T.                                                                                              |                                  |                                 | ES                                               |
|------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|--------------------------------------------------|
| NAME<br>OPERATOR<br>OPERATOR |                                                                                                         | VALUE<br>10000.000<br>10001.000  |                                 |                                                  |
| LABEL                        | LOC BLOCK TYPE 1 GENERATE 2 QUEUE 3 ENTER 4 DEPART 5 ADVANCE 6 LEAVE 7 TERMINATE 8 GENERATE 9 TERMINATE | 93<br>93<br>93<br>93<br>93<br>91 | 0<br>0<br>0<br>0<br>2<br>0<br>0 | TRY<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
|                              | MAX CONT. ENTRY EN                                                                                      |                                  |                                 |                                                  |
|                              | CAP. REM. MIN. MAX<br>4 2 0 4                                                                           |                                  |                                 |                                                  |
| 1                            | BDT ASSEM (<br>480.457 95<br>482.805 93                                                                 | 0 1                              | ARAMETER VAL                    | UE                                               |

Рис. 3.14: Отчет по модели оформления заказов несколькими операторами

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator\_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 93; обработан 91 заказ;

### Далее информация об очереди:

- QUEUE=operator\_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=93 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=93 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,000 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.000 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0,000 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 93 заказа от клиентов, но не указано, сколько операторы успели принять в обработку. Полезность работы операторов составила 0,482. При этом среднее время занятости оператора составило 1,926 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

#### Упражнение

Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Добавим строчку TEST LE Q\$operator\_q, 2, которая проверяет больше ли в очереди клиентов, чем два, если нет – клиент поступает на обработку, иначе

уходит. Также в ранее проанализированном отчете видно, что клиентов в очереди не было больше 2, поэтому увеличим время обработки заказов до  $30\pm2$  мин., чтобы проверить результаты изменений модели (рис. 3.15).

```
operator STORAGE 4
GENERATE 5,2
TEST LE Q$operator_q,2
QUEUE operator_q
ENTER operator,1
DEPART operator_q
ADVANCE 30,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.15: Модель оформления заказов несколькими операторами с учетом отказов клиентов

Проанализируем полученный отчет (рис. ~ 3.16).

| Model 4.3.1 | - REPORT  |       |      |                 |        |          |         |         |             |       |
|-------------|-----------|-------|------|-----------------|--------|----------|---------|---------|-------------|-------|
|             |           | IME   |      |                 |        | BLOCKS   |         | TIES    | STORAGES    |       |
|             | 0.0       | 000   |      | 400             | .000   | 10       | 0       |         | 1           |       |
| 1           | NAME      |       |      |                 | v      | ALUE     |         |         |             |       |
|             | OPERATOR  |       |      |                 | 1000   | 0.000    |         |         |             |       |
| (           | OPERATOR_ | _Q    |      |                 | 1000   | 1.000    |         |         |             |       |
| LABEL       |           | LOC   | BLO  | CK TYPE         | EN     | TRY COU  | NT CURF | RENT CO | OUNT RETRY  |       |
|             |           | 1     | GENI | ERATE           |        | 94       |         | 27      |             |       |
|             |           | 2     |      |                 |        | 67       |         | 0       | 0           |       |
|             |           | 3     | _    |                 |        | 67       |         | 3       |             |       |
|             |           |       | ENT  |                 |        | 64       |         | 0       | -           |       |
|             |           |       |      | ART             |        | 64       |         | 0       | -           |       |
|             |           |       |      | ANCE            |        | 64       |         | 4       |             |       |
|             |           |       |      | /E              |        | 60<br>60 |         | _       | 0           |       |
|             |           |       |      | MINATE<br>ERATE |        | 60       |         | _       | 0           |       |
|             |           |       |      | MINATE          |        | 1        |         | 0       | -           |       |
|             |           | 10    | IERI | TINALE          |        | 1        |         | U       | U           |       |
| QUEUE       |           | MAX C | ONT. | ENTRY E         | NTRY(0 | ) AVE.C  | ONT. AV | E.TIM   | E AVE.(-0)  | RETRY |
| OPERATOR_   | 2         | 3     | 3    | 67              | 4      | 2.7      | 01      | 19.34   | 7 20.576    | 5 27  |
| STORAGE     |           | CAP.  | REM. | MIN. MA         | X. EN  | TRIES A  | VL. AV  | 7E.C. 1 | UTIL. RETRY | DELAY |
| OPERATOR    |           | 4     | 0    | 0               | 4      | 64       | 1 3.    | 885     | 0.971 0     | 3     |
| FEC XN PI   | RT        | BDT   |      | ASSEM           | CURRE  | NT NEX   | T PARA  | METER   | VALUE       |       |
| 96          |           |       |      | 96              |        |          |         |         | 202         |       |
| 62          |           |       |      | 62              |        |          |         |         |             |       |
| 63          |           |       |      | 63              |        |          |         |         |             |       |
| 64          |           |       |      | 64              |        |          |         |         |             |       |
| 65          | 0         | 499.  | 648  | 65              | 6      | 7        |         |         |             |       |
| ^7          | n         | 0.00  | 000  | ^7              | ^      | ^        |         |         |             |       |

Рис. 3.16: Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator\_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 94; обработано 60 заказа; 27 человек отказались

оставлять заявки, поскольку очередь была более 2ух заявок.

### Далее информация об очереди:

- QUEUE=operator\_q имя объекта типа «очередь»;
- MAX=3 в очереди находилось не более трех ожидающих заявок от клиента(как и было указано);
- CONT=3 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=67 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=4 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=2,701 заявок от клиентов в среднем были в очереди;
- AVE. TIME=19,347 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=20,576 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 64 заказов от клиентов. Полезность работы операторов составила 0,971. При этом среднее время занятости оператора составило 3,885 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

### 4 Выводы

В результате была реализована с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.