More on sg-compact spaces*

Julian Dontchev
Department of Mathematics
University of Helsinki
PL 4, Yliopistonkatu 15
00014 Helsinki 10
Finland

Maximilian Ganster
Department of Mathematics
Graz University of Technology
Steyrergasse 30
A-8010 Graz
Austria

Abstract

The aim of this paper is to continue the study of sg-compact spaces, a topological notion much stronger than hereditary compactness. We investigate the relations between sg-compact and C_2 -spaces and the interrelations to hereditarily sg-closed sets.

1 Introduction

In 1995, sg-compact spaces were introduced independently by Caldas [2] and by Devi, Bal-achandran and Maki [4]. A topological space (X, τ) is called sg-compact [2] if every cover of X by sg-open sets has a finite subcover. In [4], the term SGO-compact is used.

Recall that a subset A of a topological space (X,τ) is called sg-open [1] if every semi-closed subset of A is included in the semi-interior of A. A set A is called semi-open if $A \subseteq \overline{\operatorname{Int} A}$ and semi-closed if $\operatorname{Int} \overline{A} \subseteq A$. The semi-interior of A, denoted by $\operatorname{sInt}(A)$, is the union of all semi-open subsets of A while the semi-closure of A, denoted by $\operatorname{sCl}(A)$, is the intersection of all semi-closed supersets of A. It is well known that $\operatorname{sInt}(A) = A \cap \overline{\operatorname{Int} A}$ and $\operatorname{sCl}(A) = A \cup \operatorname{Int} \overline{A}$.

^{*1991} Math. Subject Classification — Primary: 54D30, 54A05; Secondary: 54H05, 54G99. Key words and phrases — sg-compact, semi-compact, C_2 -space, semi-open set, sg-open set, hsg-closed sets. Research supported partially by the Ella and Georg Ehrnrooth Foundation at Merita Bank, Finland.

Every topological space (X, τ) has a unique decomposition into two sets X_1 and X_2 , where $X_1 = \{x \in X : \{x\} \text{ is nowhere dense}\}$ and $X_2 = \{x \in X : \{x\} \text{ is locally dense}\}$. This decomposition follows from a result of Janković and Reilly [13, Lemma 2]. Recall that a set A is said to be *locally dense* [3] (= preopen) if $A \subseteq \text{Int} \overline{A}$.

It is a fact that a subset A of X is sg-closed (= its complement is sg-open) if and only if $X_1 \cap \mathrm{sCl}(A) \subseteq A$ [6], or equivalently if and only if $X_1 \cap \mathrm{Int}\overline{A} \subseteq A$. By taking complements one easily observes that A is sg-open if and only if $A \cap X_1 \subseteq \mathrm{sInt}(A)$. Hence every subset of X_2 is sg-open.

2 Sg-compact spaces

Let A be a sg-closed subset of a topological space (X, τ) . If every subset of A is also sg-closed in (X, τ) , then A will be called *hereditarily sg-closed* (= hsg-closed). Observe that every nowhere dense subset is hsg-closed but not vice versa.

Proposition 2.1 For a subset A of a topological space (X,τ) the following conditions are equivalent:

- (1) A is hsg-closed.
- (2) $X_1 \cap \operatorname{Int} \overline{A} = \emptyset$.

Proof. (1) \Rightarrow (2) Suppose that there exits $x \in X_1 \cap \operatorname{Int} \overline{A}$. Let V_x be an open set such that $V_x \subseteq \overline{A}$ and let $B = A \setminus \{x\}$. Since B is sg-closed, i.e. $X_1 \cap \operatorname{sCl}(B) \subseteq B$, we have $x \notin \operatorname{sCl}(B)$, hence $x \notin \operatorname{Int} \overline{B}$, and thus $x \in \overline{X \setminus \overline{B}}$. If $H = V_x \cap (X \setminus \overline{B})$, then H is nonempty and open with $H \subseteq \overline{A}$ and $H \cap B = \emptyset$ and so $H \cap A = \{x\}$. Hence $\emptyset \neq H = H \cap \overline{A} \subseteq \overline{H} \cap \overline{A} \subseteq \overline{\{x\}}$, i.e. $\operatorname{Int} \{\overline{x}\} \neq \emptyset$. Thus $x \in X_2$, a contradiction.

 $(2) \Rightarrow (1)$ Let $B \subseteq A$. Then $\operatorname{Int} \overline{B} \subseteq \operatorname{Int} \overline{A}$ and $X_1 \cap \operatorname{Int} \overline{B} = \emptyset$, i.e. B is sg-closed. \square

We will call a topological space (X, τ) a C_2 -space [9] (resp. C_3 -space) if every nowhere dense (resp. hsg-closed) set is finite. Clearly every C_3 -space is a C_2 -space. Also, a topological

space (X, τ) is indiscrete if and only if every subset of X is hsg-closed (since in that case $X_1 = \emptyset$).

Following Hodel [14], we say that a *cellular family* in a topological space (X, τ) is a collection of nonempty, pairwise disjoint open sets. The following result reveals an interesting property of C_2 -spaces.

Lemma 2.2 Let (X, τ) be a C_2 -space. Then every infinite cellular family has an infinite subfamily whose union is contained in X_2 .

Proof. Let $\{U_i : i \in \mathbf{N}\}$ be a cellular family. Suppose that for infinitely many $i \in \mathbf{N}$ we have $U_i \cap X_1 \neq \emptyset$. Without loss of generality we may assume that $U_i \cap X_1 \neq \emptyset$ for each $i \in \mathbf{N}$. Now pick $x_i \in U_i \cap X_1$ for each $i \in \mathbf{N}$ and partition \mathbf{N} into infinitely many disjoint infinite sets, $\mathbf{N} = \bigcup_{k \in \mathbf{N}} \mathbf{N}_k$. Let $A_k = \{x_i : i \in \mathbf{N}_k\}$. Since $A_k \cap (\bigcup_{i \notin \mathbf{N}_k} U_i) = \emptyset$ and $A_k \subseteq \bigcup_{i \in \mathbf{N}_k} U_i$ for each k, it is easily checked that $\{\operatorname{Int} \overline{A_k} : k \in \mathbf{N}\}$ is a disjoint family of open sets. Since X is a C_2 -space, A_k cannot be nowhere dense and so, for each k, there exists $p_k \in \operatorname{Int} \overline{A_k}$ and the p_k 's are pairwise distinct. Also, since X is C_2 , $\overline{\bigcup_{i \in \mathbf{N}} U_i} = \bigcup_{i \in \mathbf{N}} (U_i) \cup F$, where F is finite. Since $p_k \in \overline{\bigcup_{i \in \mathbf{N}} U_i}$ for each k, there exists k_0 such that $p_k \in \bigcup_{i \in \mathbf{N}} U_i$ for $k \geq k_0$, and since $\operatorname{Int} \overline{A_k} \cap (\bigcup_{i \notin \mathbf{N}_k} U_i) = \emptyset$, we have $p_k \in \bigcup_{i \in \mathbf{N}_k} U_i$ for $k \geq k_0$. Now, for each $k \geq k_0$ pick $i_k \in \mathbf{N}_k$ such that $p_k \in U_{i_k}$, and so $p_k \in W = U_{i_k} \cap \operatorname{Int} \overline{A_k}$. Thus $\emptyset \neq W \subseteq U_{i_k} \cap \overline{A_k} \subseteq \overline{U_{i_k} \cap A_k} = \overline{\{x_{i_k}\}}$. Hence $\{x_{i_k}\}$ is locally dense, a contradiction. This shows that only for finitely many $i \in \mathbf{N}$ we have $U_i \cap X_1 \neq \emptyset$. Thus the claim is proved. \square

The α -topology [16] on a topological space (X, τ) is the collection of all sets of the form $U \setminus N$, where $U \in \tau$ and N is nowhere dense in (X, τ) . Recall that topological spaces whose α -topologies are hereditarily compact have been shown to be semi-compact [11]. The original definition of semi-compactness is in terms of semi-open sets and is due to Dorsett [8]. By definition a topological space (X, τ) is called semi-compact [8] if every cover of X by semi-open sets has a finite subcover.

Remark 2.3 (i) The 1-point-compactification of an infinite discrete space is a C_2 -space having an infinite cellular family.

- (ii) [9] A topological space (X, τ) is semi-compact if and only if X is a C_2 -space and every cellular family is finite.
 - (iii) [12] Every subspace of a semi-compact space is semi-compact (as a subspace).

Lemma 2.4 (i) Every C_3 -space (X, τ) is semi-compact.

- (ii) Every sg-compact space is semi-compact.
- Proof. (i) All C_3 -spaces are C_2 -spaces. Thus in the notion of Remark 2.3 (ii) above we need to show that every cellular family in X is finite. Suppose that there exists an infinite cellular family $\{U_i: i \in \mathbf{N}\}$. For each $i \in \mathbf{N}$ pick $x_i \in U_i$ and, as before, partition $\mathbf{N} = \cup_k \mathbf{N}_k$ and set $A_k = \{x_i: i \in \mathbf{N}_k\}$. Since X is a C_2 -space, $\{\operatorname{Int} \overline{A_k}: k \in \mathbf{N}\}$ is a cellular family. By Lemma 2.2, there is a $k \in \mathbf{N}$ such that $\operatorname{Int} \overline{A_k} \subseteq X_2$. Since A_k is not hsg-closed, we must have $X_1 \cap \operatorname{Int} \overline{A_k} \neq \emptyset$, a contradiction. So, every cellular family in X is finite and consequently (X, τ) is semi-compact.
 - (ii) is obvious since every semi-open set is sg-open. □
- Remark 2.5 (i) It is known that sg-open sets are β -open, i.e. they are dense in some regular closed subspace [5]. Note that β -compact spaces, i.e. the spaces in which every cover by β -open sets has a finite subcover are finite [10]. However, one can easily find an example of an infinite sg-compact space the real line with the cofinite topology is such a space.
- (ii) In semi- T_D -spaces the concepts of sg-compactness and semi-compactness coincide. Recall that a topological space (X, τ) is called a $semi-T_D$ -space [13] if each singleton is either open or nowhere dense, i.e. if every sg-closed set is semi-closed.

Theorem 2.6 For a topological space (X, τ) the following conditions are equivalent:

- (1) X is sg-compact.
- (2) X is a C_3 -space.

- *Proof.* (1) \Rightarrow (2) Suppose that there exists an infinite hsg-closed set A and set $B = X \setminus A$. Observe that for each $x \in A$, the set $B \cup \{x\}$ is sg-open in X. Thus $\{B \cup \{x\}: x \in A\}$ is a sg-open cover of X with no finite subcover. Thus (X, τ) is C_3 .
- (2) \Rightarrow (1) Let $X = \bigcup_{i \in I} A_i$, where each A_i is sg-open. Let $S_i = \operatorname{SInt}(A_i)$ for each $i \in I$ and let $S = \bigcup_{i \in I} S_i$. Then S is a semi-open subset of X and each S_i is a semi-open subset of $(S, \tau | S)$. Since X is a C_3 -space, (X, τ) is semi-compact and hence $(S, \tau | S)$ is a semi-compact subspace of X (by Remark 2.3 (iii)). So we may say that $S = S_{i_1} \cup \ldots \cup S_{i_k}$. Since A_i is sg-open, we have $X_1 \cap A_i \subseteq S_i$ for each index i and so $X_1 = X_1 \cap (\cup A_i) \subseteq X_1 \cap S \subseteq S_{i_1} \cup \ldots \cup S_{i_k} = S$. Hence $X \setminus S$ is semi-closed and $X \setminus S \subseteq X_2$. Since $\operatorname{Int}(X \setminus S) \subseteq X \setminus S \subseteq X_2$, we conclude that $X \setminus S$ is hsg-closed and thus finite. This shows that $X = S_{i_1} \cup \ldots \cup S_{i_k} \cup (X \setminus S) = A_{i_1} \cup \ldots \cup A_{i_k} \cup F$, where F is finite, i.e. (X, τ) is sg-compact. \square

Remark 2.7 (i) If $X_1 = X$, then (X, τ) is sg-compact if and only if (X, τ) is semi-compact. Observe that in this case sg-closedness and semi-closedness coincide.

(ii) Every infinite set endowed with the cofinite topology is (hereditarily) sg-compact.

It is known that an arbitrary intersection of sg-closed sets is also an sg-closed set [6]. The following result provides an answer to the question about the additivity of sg-closed sets.

Proposition 2.8 (i) If A is sg-closed and B is closed, then $A \cup B$ is also sg-closed.

- (ii) The intersection of a sg-open and an open set is always sg-open.
- (iii) The union of a sg-closed and a semi-closed set need not be sg-closed, in particular, even finite union of sg-closed sets need not be sg-closed.
- *Proof.* (i) Let $A \cup B \subseteq U$, where U is semi-open. Since A is sg-closed, we have $sCl(A \cup B) = (A \cup B) \cup Int(\overline{A} \cup B) \subseteq U \cup Int(\overline{A} \cup B) \subseteq U \cup (Int\overline{A} \cup B) \subseteq U \cup (U \cup B) = U$.
 - (ii) follows from (i).
- (iii) Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Note that the two sets $A = \{a\}$ and $B = \{b\}$ are semi-closed but their union $\{a, b\}$ is not sg-closed. \square

Theorem 3 from [1] states that if $B \subseteq A \subseteq (X, \tau)$ and A is open and sg-closed, then B is sg-closed in the subspace A if and only if B is sg-closed in X. Since a subset is regular open if and only if it is α -open and sg-closed [7], by using Proposition 2.8, we obtain the following result:

Proposition 2.9 Let R be a regular open subset of a topological space (X, τ) . If $A \subseteq R$ and A is sg-open in $(R, \tau | R)$, then A is sg-open in X. \square

Proof. Since $B = R \setminus A$ is sg-closed in $(R, \tau | R)$, B is sg-closed in X by [1, Theorem 3]. Thus $X \setminus B$ is sg-open in X and by Proposition 2.8 (ii), $R \cap (X \setminus B) = A$ is sg-open in X.

Recall that a subset A of a topological space (X, τ) is called δ -open [18] if A is a union of regular open sets. The collection of all δ -open subsets of a topological space (X, τ) forms the so called semi-regularization topology.

Corollary 2.10 If $A \subseteq B \subseteq (X, \tau)$ such that B is δ -open in X and A is sg-open in B, then A is sg-open in X.

Proof. Let $B = \bigcup_{i \in I} B_i$, where each B_i is regular open in (X, τ) . Clearly, each B_i is regular open also in $(B, \tau | B)$. By Proposition 2.8 (ii), $A \cap B_i$ is sg-open in $(B, \tau | B)$ for each $i \in I$. In the notion of Proposition 2.9, $B \setminus (A \cap B_i)$ is sg-closed in (X, τ) for each $i \in I$. Hence $X \setminus (B \setminus (A \cap B_i)) = (A \cap B_i) \cup (X \setminus B)$ is sg-open in (X, τ) . Again by Proposition 2.8 (ii), $B \cap ((A \cap B_i) \cup (X \setminus B)) = A \cap B_i$ is sg-open in (X, τ) . Since any union of sg-open sets is always sg-open, we have $A = \bigcup_{i \in I} (A \cap B_i)$ is sg-open in (X, τ) . \square

Proposition 2.11 Every δ -open subset of a sg-compact space (X, τ) is sg-compact, in particular, sg-compactness is hereditary with respect to regular open sets.

Proof. Let $A \subseteq X$ be δ -open. If $\{U_i : i \in I\}$ is a sg-open cover of $(S, \tau | S)$, then by Corollary 2.10, each U_i is sg-open in X. Then, $\{U_i : i \in I\}$ along with $X \setminus A$ forms a sg-open cover of X. Since X is sg-compact, there exists a finite $F \subseteq I$ such that $\{U_i : i \in F\}$ covers A. \square

Example 2.12 Let A be an infinite set with $p \notin A$. Let $X = A \cup \{p\}$ and $\tau = \{\emptyset, A, X\}$.

- (i) Clearly, $X_1 = \{p\}$, $X_2 = A$ and for each infinite $B \subseteq X$, we have $\overline{B} = X$. Hence $X_1 \cap \operatorname{Int} \overline{B} \neq \emptyset$, so B is not hsg-closed. Thus (X, τ) is a C_3 -space, so sg-compact. But the open subspace A is an infinite indiscrete space which is not sg-compact. This shows that (1) hereditary sg-compactness is a strictly stronger concept than sg-compactness and (2) in Proposition 2.11 ' δ -open' cannot be replaced with 'open'.
- (ii) Observe that $X \times X$ contains an infinite nowhere dense subset, namely $X \times X \setminus A \times A$. This shows that even the finite product of two sg-compact spaces need not be sg-compact, not even a C_2 -space.
- (iii) [15] If the nonempty product of two spaces is sg-compact T_{gs} -space (see [15]), then each factor space is sg-compact.

Recall that a function $f:(X,\tau)\to (Y,\sigma)$ is called *pre-sg-continuous* [17] if $f^{-1}(F)$ is sg-closed in X for every semi-closed subset $F\subseteq Y$.

Proposition 2.13 (i) The property 'sg-compact' is topological.

(ii) Pre-sq-continuous images of sq-compact spaces are semi-compact. \Box

References

- [1] P. Bhattacharyya and B.K. Lahiri, Semi-generalized closed sets in topology, *Indian J. Math.*, **29** (3) (1987), 375–382.
- [2] M.C. Caldas, Semi-generalized continuous maps in topological spaces, *Portug. Math.*, **52** (4) (1995), 399–407.
- [3] H.H. Corson and E. Michael, Metrizability of certain countable unions, *Illinois J. Math.*, 8 (1964), 351–360.
- [4] R. Devi, K. Balachandran and H. Maki, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, *Indian J. Pure Appl. Math.*, **26** (3) (1995), 271–284.
- [5] J. Dontchev, On some separation axioms associated with the α-topology, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 18 (1997), 31–35.
- [6] J. Dontchev and H. Maki, On sg-closed sets and semi-λ-closed sets, Questions Answers Gen. Topology, 15 (2) (1997), to appear.

- [7] J. Dontchev and M. Przemski, On the various decompositions of continuous and some weakly continuous functions, *Acta Math. Hungar.*, **71** (1-2) (1996), 109–120.
- [8] Ch. Dorsett, Semi-compact R_1 and product spaces, Bull. Malaysian Math. Soc., 3 (2) (1980), 15–19.
- [9] M. Ganster, Some remarks on strongly compact spaces and semi-compact spaces, Bull. Malaysia Math. Soc., 10 (2) (1987), 67–81.
- [10] M. Ganster, Every β -compact space is finite, Bull. Calcutta Math. Soc., 84 (1992), 287–288.
- [11] M. Ganster, D.S. Janković and I.L. Reilly, On compactness with respect to semi-open sets, *Comment. Math. Univ. Carolinae*, **31** (1) (1990), 37–39.
- [12] F. Hanna and Ch. Dorsett, Semicompactness, Questions Answers Gen. Topology, 2 (1) (1984), 38–47.
- [13] D. Janković and I. Reilly, On semiseparation properties, *Indian J. Pure Appl. Math.*, **16** (9) (1985), 957–964.
- [14] R. Hodel, Cardinal Functions I, Handbook of Set-Theoretic Topology, North Holland (1987).
- [15] H. Maki, K. Balachandran and R. Devi, Remarks on semi-generalized closed sets and generalized semi-closed sets, *Kyungpook Math. J.*, **36** (1996), 155-163.
- [16] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
- [17] T. Noiri, Semi-normal spaces and some functions, Acta Math. Hungar., 65 (3) (1994), 305–311.
- [18] N.V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103–118.

E-mail: dontchev@cc.helsinki.fi, ganster@weyl.math.tu-graz.ac.at