Legendre Decomposition for Tensors

Mahito Sugiyama (National Institute of Informatics), Hiroyuki Nakahara (RIKEN CBS), Koji Tsuda (The University of Tokyo, NIMS, RIKEN AIP)

The 32nd Annual Conference on Neural Information Processing Systems, December 2–8, 2018

Our Approach

Summary

- We present Legendre decomposition for tensors
 - A new nonnegative decomposition method
 - A tensor is factorized into a multiplicative combination of parameters
- Our proposal is theoretically supported by information geometry
 - The reconstructed tensor is unique and always minimizes the KL divergence from an input tensor

Properties of Legendre Decomposition

- Given $\mathcal{P} \in \mathbb{R}^{l_1 \times l_2 \times \cdots \times l_N}_{\geq 0}$, Legendre decomposition finds \mathcal{Q} , where
 - (i) Q always exists,
- (ii) Q is unique, and
- (iii) \mathcal{Q} is the best approximation in the sense of the KL divergence: $\mathcal{Q} = \operatorname{argmin}_{\mathcal{R} \in \mathcal{S}_{\mathcal{B}}} D_{\mathsf{KL}}(\mathcal{P}, \mathcal{R}),$ $\mathcal{S}_{\mathcal{B}} = \left\{ \mathcal{R} \in \mathbb{R}_{\geq 0}^{l_1 \times l_2 \times \cdots \times l_N} \mid \mathcal{R} \text{ is fully decomposable with } \mathcal{B} \right\}$

Legendre Decomposition

Reconstructed matrix:

Input matrix:

Information Geometry_

- Consider statistical manifold: $S = \{P \mid 0 < p_v < 1 \text{ and } \sum p_v = 1\}$
 - Each distribution P corresponds to a tensor P; p_v is a probability
- S is dually flat as (θ, η) is connected via Legendre transformation: $\theta = \nabla \varphi(\eta), \quad \eta = \nabla \psi(\theta)$

with two convex functions

$$\psi(\theta) = -\theta_{\perp} = -\log p_{\perp}, \quad \varphi(\eta) = \sum_{v \in \Omega} p_v \log p_v$$

- \perp is the least element and corresponds to (1, 1, ..., 1)
- Riemannian metric g, Fisher information (gradient), is given as

$$g(\theta) = \nabla \nabla \psi(\theta), \quad g(\eta) = \nabla \nabla \varphi(\eta),$$

$$g_{uv}(\theta) = \frac{\partial \eta_u}{\partial \theta_v} = \mathbf{E} \left[\frac{\partial \log p_w}{\partial \theta_u} \frac{\partial \log p_w}{\partial \theta_v} \right] = \sum_{w \in \Omega} \zeta(u, w) \zeta(v, w) p_w - \eta_u \eta$$

$$g_{uv}(\eta) = \frac{\partial \theta_u}{\partial \eta_v} = \mathbf{E} \left[\frac{\partial \log p_w}{\partial \eta_u} \frac{\partial \log p_u}{\partial \eta_v} \right] = \sum_{w \in \Omega} \mu(w, u) \mu(w, v) p_w^{-1}$$

– We use zeta function ζ and Möbius function μ

Legendre Decomposition as Projection_

• The *e*-flat and *m*-flat submanifolds:

$$S_B = \{ Q \in S \mid \theta_v = 0 \text{ for all } v \in \Omega \setminus B \}$$

$$S'_B = \{ Q \in S \mid \eta_V = \hat{\eta}_V \text{ for all } V \in B \}$$

- Legendre decomposition finds the intersection $\mathcal{S}_B \cap \mathcal{S}_B'$
 - From some $P \in S_B$ to $S_B \cap S_B'$ is called *e*-projection

Experiments on MNIST.

