Zadanie nr 3 - Splot, filtracja i korelacja sygnałów

Cyfrowe Przetwarzanie Sygnałów

Jakub Wachała, 216914 — Radosław Grela, 21676917.05.2020

1 Cel zadania

Celem zadania jest oswojenie się z zagadnieniami dotyczącymi splotu, filtracji i korelacji sygnałów. Zadanie polega na implementacji wybranych wariantów filtracji, funkcji okien, które są często wykorzystywane w praktyce cyfrowej filtracji sygnałów.

2 Wstep teoretyczny

Program ten jest wzbogaconą o powyższe funkcjonalności wersją programu z zadania 1. i 2. Umożliwia wykonanie operacji splotu, korelację sygnałów dyskretnych, tworzenie filtrów o ustalonej wartości (M - rząd filtru, f0 - odcięcia filtru, fd - częstotliwość próbkowania sygnału) z wykorzystaniem okien.

- Splot jedna z najważniejszych operacji, która wykorzystywana jest podczas filtracji sygnałów dyskretnych. Polega na przetwarzaniu dwóch sygnałów dyskretnych co w konsekwencji daje nam jeden sygnał dyskretny.
- Korelacja sygnałów bardzo ważna rzecz w przetwarzaniu sygnałów.
 Używana gdy porównujemy ze sobą dwa sygnały np. sygnał oryginalny z sygnałem oryginalnym, ale przesuniętym na osi. Tak samo jak operacja splotu podając dwa sygnały otrzymujemy jeden.
- Filtracja jedna z podstawowych operacji w cyfrowym przetwarzaniu sygnałów. W jej procesie widmo sygnału podlega modyfikacji tj. odfiltrowanie składowych sygnału, których częstotliwości znajdują się w paśmie zaporowym, natomiast te, które znajdują się w paśmie przepustowym(pozostała część) nie są zmieniane lub ulegają małemu tłumieniu.
- Okno postać odpowiedzi impulsowej filtru SOI

2.1 Dodatkowo zaimplementowane warianty:

- 1. Wykorzystane okna
 - okno prostokatne
 - (O2) okno Hanninga
- 2. Wykorzystane filtry
 - filtr dolnoprzepustowy

- (F1) filtr środkowoprzepsutowy
- 3. Operacja splotu
- 4. Korelacja sygnałów dyskretnych
 - korelacja bezpośrednia
 - korelacja z użyciem splotu

3 Eksperymenty i wyniki

Eksperymenty zostały przez nas podzielone na: operacje splotu, operacje korelacji, operacje filtracji z wykorzystaniem okna. Skorzystamy z funkcji trójkątnej, sinusoidalnej, prostokątnej i sinus. wyprostowanej dwupołówkowo z parametrami:

- amplituda: 5
- okres: 1
- czas początkowy: 0
- czas trwania: 10

3.1 Operacje splotu

Rysunek 1: Operacja splotu funkcji sinusoidalnej i prostokatnej

Rysunek 2: Operacja splotu funkcji trójkątnej i sinusoidalnej

3.2 Operacje korelacji

Rysunek 3: Operacja korelacji bezpośredniej dla funkcji sinusoidalnej i prostokątnej

Rysunek 4: Operacja korelacji bezpośredniej dla funkcji prostokątnej i sinus. wyprostowanej dwupołówkowo

Rysunek 5: Operacja korelacji bezpośredniej dla funkcji sinusoidalnej i trójkątnej

Rysunek 6: Operacja korelacji przez splot dla funkcji trójkątnej i sinus. wyprostowanej dwupołówkowo

Rysunek 7: Operacja korelacji przez splot dla funkcji trójkątnej i prostokątnej

3.3 Operacje filtracji z wykorzystaniem okna

Celem eksperymentu jest przedstawienie wyników procesu filtracji sygnałów zaszumionych z i bez wykorzystania okna. O parametrach:

• amplituda: 5

• okres: 3

• czas początkowy: 0

• czas trwania: 10

• Rząd filtru (M): 57

• Częstotliwość odcięcia filtru (f0): 1

• Częstotliwość próbkowania sygnału(fd): 250

3.3.1 Rezultat

Rysunek 8: Zaszumiony sygnał sinusoidalny

Rysunek 9: Zaszumiony sygnał trojkatny

Rysunek 10: Zaszumiony sygnał prostokątny

Rysunek 11: Filtr dolnoprzepustowy dla funkcji sinusoidalnej

Rysunek 12: Filtr dolnoprzepustowy dla funkcji trójkątnej

Rysunek 13: Filtr środkowoprzepustowy z oknem Hanninga dla funkcji sinusoidalnej

Rysunek 14: Filtr środkowoprzepustowy z oknem Hanninga dla funkcji trójkątnej

Rysunek 15: Filtr środkowoprzepustowy z oknem Hanninga dla funkcji prostokątnej

3.4 Antena - pomiar odległości

Jednym ze sposobów wykorzystania otrzymanych rezultatów porównania sygnałów przesuniętych jest pomiar odległości od celu za pomocą radaru. Radar wysyła sygnał, który po odbiciu od obiektu powraca do anteny z opóźnieniem. Wykorzystując właśnie to opóźnienie i korelację sygnału wysłanego i zwrotnego. W poniższej tabeli przedstawiamy wyniki dla obliczonych odległości tj. odległość oryginalną, obliczony dystans oraz różnicę między nimi.

• Liczba pomiarów: 10

• Prędkość rzeczywista: 10

• Prędkość w abstrakcyjnym ośrodku: 1000

• Okres sygnału: 1

 \bullet Częstotliwość próbkowania: 100

• Długość buforów: 500

Oryginalny dystans	Obliczony dystans
0	1.841
10	8.123
20	18.162
30	28.111
40	38.127
50	48.092
60	58.131
70	68.088
80	78.096
90	88.066

4 Wnioski

• Prezentowane wyniki są dowodem na poprawne wykonanie zadania tj. poprawność wykonania operacji splotu, korelacji bezpośredniej, korelacji z użyciem splotu, wykorzystaniu filtrów, oraz filtrów z oknami.

Literatura

[1] Zadanie 2 - Próbkowanie i kwantyzacja Cyfrowe Przetwarzanie Sygnału WIKAMP FTIMS