Computation; Notes

July 29, 2020

Contents

1	Con	omputable Functions							
	1.1	Basic Concepts							
	1.2	The URM							
	1.3	Primitive and Partial Recursive Functions							
	1.4	Bounded and Unbounded Quantification							
	1.5	Alternative Models of Computability							
2		mal Methods							
		Hoare Logic							
	2.2	Recursive Algorithms and Correctness							
		Algebraic Specification							

1 Computable Functions

1.1 Basic Concepts

Partial Functions

A partial function generalizes the usual definition of function, the idea being that this kind of function is potentially not defined on the entire domain. Formally:

Definition 1.1. A partial function f from X to Y (written as $f: X \to Y$) is a triple (g, X, Y) such that $X' \subseteq X$ and $g: X' \to Y$ is a function. Furthermore:

- The domain of f is denoted by Dom(f) and is equal to X';
- If Dom(f) = X then f is a total function¹;
- If $x \in (X \setminus \mathsf{Dom}\, f)$ then f(x) is said to be undefined, denoted f(x) = -, on the other hand, if $x \in \mathsf{Dom}\, f$ then we write f(x) = y with y = g(x) and say that f is defined at x.

Henceforth the word "function" will always mean "partial function." As an example, consider the (partial) function:

$$f: \mathbb{N}_0 \to \mathbb{N}_0$$
$$n \mapsto \sqrt{n}.$$

If $n \in \mathbb{N}_0$ is not a perfect square, then f(n) is undefined.

Lambda Notation

We will often use Alonzo Church's lambda notation. Given a mathematical expression $a(x_1, \ldots, x_n)$ the function $f: \mathbb{N}_0^n \to \mathbb{N}_0$ that maps $(x_1, \ldots, x_n) \mapsto a(x_1, \ldots, x_n)$ may be denoted by $f = \lambda_{x_1, \ldots, x_n} \cdot a(x_1, \ldots, x_n)$.

1.2 The URM

Informal Discussion

An algorithm is a finite sequence of discrete mechanical instructions. A numerical function is effectively computable (or simply computable) if an algorithm exists that can be used to calculate the value of the function for any given input from its domain.

¹Total functions and usual functions are equivalent.

The Unlimited Register Machine

The unlimited register machine has an infinite number of registers labelled R_1, R_2, \ldots , each containing a natural number, if R_i is a register then r_i is the number it contains. It can be represented as follows

R_1	R_2	R_3	R_4	R_5	R_6	R_7	• • •
r_1	r_2	r_3	r_4	r_5	r_6	r_7	

The contents of the registers determine its *state* or *configuration*, which might be altered by the URM in response to certain *instructions*.

URM Programs

Name of Instruction	Instruction	URM response
Zero	Z(n)	$r_n \leftarrow 0$
Successor	S(n)	$r_n \leftarrow r_n + 1$
Transfer	T(m,n)	$r_n \leftarrow r_m$
Jump	J(m,n,q)	if $r_m = r_n$ then jump to q-th instruction; otherwise proceed
		to next instruction.

Without exception, the parameters of these instructions are elements of \mathbb{N}_1 .

Definition 1.2. An $URM\ program$ is a finite sequence of URM instructions. The number of instructions of a program is denoted by #P.

Given a program $P = (I_1, \ldots, I_n)$ the URM always starts by executing I_1 , the execution flow then proceeds incrementally unless a jump instruction is performed. The machine's response to each instruction is described in the table above.

Definition 1.3. An URM program P computes the function $f: \mathbb{N}_0^n \to \mathbb{N}_0$ if for every $a_1, \ldots, a_n, b \in \mathbb{N}_0$ then:

$$P(a_1,\ldots,a_n)\downarrow b\Leftrightarrow (a_1,\ldots,a_n)\in \mathsf{Dom}\, f\wedge f(a_1,\ldots,a_n)=b,$$

and

$$P(a_1,\ldots,a_n)\uparrow \Leftrightarrow f(a_1,\ldots,a_n)=-$$

The class of URM-computable functions is denoted by C and by C_n the class of n-ary computable functions.

Definition 1.4. Let P be an URM program and $n \in \mathbb{N}_1$. The unique n-ary function that P computes is denoted by $f_P^{(n)}$, which, given any $x_1, \ldots, x_n \in \mathbb{N}_0$, is defined by:

$$f_P^{(n)}(x_1,\ldots,x_n) = \begin{cases} - & \text{if } P(x_1,\ldots,x_n) \uparrow \\ y & \text{if } P(x_1,\ldots,x_n) \downarrow y \end{cases}$$
.

Example 1.1. Let Q = (Z(2), J(1,2,6), S(2), J(1,1,2), S(3), T(2,1)). The binary function computed by Q is $f_Q^{(2)}(x,y) = x$.

Definition 1.5. Let $M(x_1, ..., x_n)$ be an *n*-ary predicate. The characteristic function of the predicate M is the function $C_M : \mathbb{N}_0^n \to \mathbb{N}_0$ defined by:

$$C_M(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } M(x_1,\ldots,x_n) \\ 0 & \text{if } \neg M(x_1,\ldots,x_n) \end{cases}.$$

The predicate M is decidable if its characteristic function is computable and undecidable when it is not.

Building programs out of other programs

Definition 1.6. A program P is in *standard form* if, for every jump instruction $J(m, n, q) \in P$ it holds that $q \leq \#P + 1$.

Definition 1.7. Let $P = (I_1, \ldots, I_n)$ be an URM program. We denote by P^* the program (I'_1, \ldots, I'_n) constructed as follows:

$$I'_{i} = \begin{cases} J(m, n, \#P + 1) & \text{if } I_{i} = J(m, n, k), \text{ with } k > \#P + 1 \\ I_{i} & \text{otherwise} \end{cases}$$

Definition 1.8. Two programs P_1 and P_2 are *(strongly) equivalent* if, for any initial configuration $(a_1, a_2, a_3, ...)$ it holds that:

- $P_1(a_1, a_2, a_3, ...) \downarrow \text{ iff } P_2(a_1, a_2, a_3, ...) \downarrow;$
- when it is the case that both computations $P_1(a_1, a_2, a_3, ...)$ and $P_2(a_1, a_2, a_3, ...)$ stop, the final configurations of both machines are equal.

Theorem 1.1. Let P be a URM program. The program P^* is in standard form and is equivalent to P.

Definition 1.9. Let P and Q be URM programs. The *concatenation* of P and Q, denoted by P; Q, is the URM program defined as follows:

- #(P;Q) = #P + #Q,
- For every $l \in \{1, \dots, \#P\}, (P; Q)[l] = P'[l],$
- For every $k \in \{1, \dots, \#Q\}$:

$$(P;Q)[\#P+k] = \begin{cases} Q[k] & \text{if } Q[k] \text{ is not a jump instruction} \\ J(m,n,r+\#P) & \text{if } Q[k] = J(m,n,r) \end{cases}$$

Definition 1.10. Let P be an URM program. If $\{R_{v_1}, \ldots, R_{v_n}\}$ is the set of registers mentioned in program P, we denote by $\rho(P)$ the number $\max\{v_1, \ldots, v_n\}$.

Definition 1.11. Let $n, j \ge 1$ and $i_1, \ldots, i_n > n$ and P be an URM program. We denote by $P[i_1, \ldots, i_n \to j]$ the following URM program:

$$(T(i_1,1),...,T(i_n,n),Z(n+1),...,Z(\rho(P)));P;(T(1,j)),$$

where the sequence of instructions $Z(n+1), \ldots, Z(\rho(P))$ only occurs if $\rho(P) > n$.

Definition 1.12. A generalized URM program Q is a finite sequence of generalized URM instructions (I_1, \ldots, I_k) , with $k \geq 1$, where each each of this sequence's elements is either a standard URM instruction or one of the following two (called P-calling instructions):

- 1. CallP,
- 2. CallP[$i_1, \ldots, i_n \rightarrow j$],

where $n, j \geq 1$ and $i_1, \ldots, i_n > n$ and P is an URM program which does not contain instructions that call program Q or instructions that call other programs that call program Q.

1.3 Primitive and Partial Recursive Functions

Definition 1.13. The following functions are called *basic functions*:

- 1. The zero functions: $zero = \lambda_x \cdot 0$,
- 2. the successor function: $suc = \lambda_x \cdot x + 1$,
- 3. for each $n \in \mathbb{N}_1$ and $i \in \{1, \dots, n\}$, the projection function: $U_i^n = \lambda_{x_1, \dots, x_n} \cdot x_i$.

Theorem 1.2. The basic functions are URM-computable.

Definition 1.14. Let $f: \mathbb{N}_0^k \to \mathbb{N}_0$ and $g_i: \mathbb{N}_0^n \to \mathbb{N}_0$, for each $i \in \{1, ..., k\}$. Define $g = (g_1, ..., g_k)$ as

$$g: \mathbb{N}_0^n \to \mathbb{N}_0^k$$

$$(x_1, \dots, x_n) \mapsto g(x_1, \dots, x_n)$$

$$\simeq (g_1(x_1, \dots, x_n), \dots, g_k(x_1, \dots, x_n)).$$

The composition of f and $g = (g_1, \ldots, g_k)$, denoted $f \circ g$, is the following function:

$$f \circ g : \mathbb{N}_0^n \to \mathbb{N}_0$$

$$(x_1, \dots, x_n) \mapsto (f \circ g)(x_1, \dots, x_n) \simeq f(g(x_1, \dots, x_n))$$

$$\simeq f(g_1(x_1, \dots, x_n), \dots, g_k(x_1, \dots, x_n)).$$

Both of these functions are defined at a point (x_1, \ldots, x_n) if and only if g_1, \ldots, g_n are defined at (x_1, \ldots, x_n) .

Theorem 1.3. Let $f: \mathbb{N}_0^k \to \mathbb{N}_0$ and $g_i: \mathbb{N}_0^n \to \mathbb{N}_0$, for each $i \in \{1, ..., k\}$, are computable functions, then the function $h = f \circ (g_1, ..., g_k): \mathbb{N}_0^n \to \mathbb{N}_0$ defined, for any $(x_1, ..., x_n) \in \mathbb{N}_0^n$, by $h(x_1, ..., x_n) \simeq f(g_1(x_1, ..., x_n), ..., g_k(x_1, ..., x_n))$, is also computable. In other words, composition preserves computability.

Definition 1.15. Let $k \in \mathbb{N}_0$ and $n \in \mathbb{N}_1$. We denote by $\mathbf{k}^{(n)}$ the *n*-ary constant function define as follows:

$$\mathbf{k}^{(n)}: \mathbb{N}_0^n \to \mathbb{N}_0$$
$$(x_1, \dots, x_n) \mapsto \mathbf{k}^{(n)}(x_1, \dots, x_n) = k$$

Theorem 1.4. For every $k \in \mathbb{N}_0$ and every $n \in \mathbb{N}_1$ the function $k^{(n)}$ is obtained by composition of basic functions.

1.4 Bounded and Unbounded Quantification

1.5 Alternative Models of Computability

Turing Machines

A Turing Machine M is an abstract device which "performs" operations on a tape of infinite length in both directions. This tape is divided in individual squares along its length. At any given moment each square contains a single symbol from a fixed and finite set called the alphabet of $M = \{s_0, \ldots, s_n\}$. We assume that s_0 is the blank symbol β used to denote an empty square. The machine M has a reading head which, at any given moment, scans and reads a single square of the tape. This machine is capable of performing the following three kinds of operations on the tape:

- 1. Erase the symbol of the square being scanned and write one of the symbols in the alphabet;
- 2. Move the reading head one square to the right of the square being scanned;
- 3. Move the reading head one square to the left of the square being scanned.

At any given moment, the machine M is in one of a finite number of *states*, represented by q_1, q_2, \ldots, q_m . The execution of an operation may cause the state of M to change.

The operation to be performed by M is determined by its *specification*, denoted by Q, and its current state. The set Q is finite and its elements are quadruples, each of which is of the form (q_i, s_j, s_k, q_l) , or (q_i, s_j, R, q_l) , or (q_i, s_l, L, q_l) , with $i, l \in \{1, ..., m\}$ and $j, k \in \{1, ..., m\}$.

A quadruple of the form (q_i, s_j, α, q_l) (where $\alpha \in \{s_k, R, L\}$ in Q specifies the action to be perform by M when it is in state q_i and reading the symbol s_j , as follows:

1. Execute the following operation on the tape:

If $\alpha = s_k$, erase s_i and write s_k in the square being scanned;

If $\alpha = R$, move the reading head one square to the right;

If $\alpha = L$, move the reading head one square to the left.

2. Change into state q_l .

In order for a machine M to begin a computation an initial state is required and its reading head must be positioned over a single square of a given tape. Then M starts performing the actions determined by its specification, as described above. The computation terminates if M is in a state q_p and reading a symbol s_r such that there is no quadruple in Q which starts with $q_p s_r$. Unless stated otherwise, given a Turing machine M and an infinite tape, M starts its computation in the state q_1 and with its reading head placed over the leftmost non-blank square of the received tape.

Example 1.2. Let M be a Turing machine with alphabet $\{\beta, a, b\}$. This machine may be in only one of two states q_1 and q_2 . Let Q be the following specification of M:

 $q_1 \, a \, b \, q_2$ $q_1 \, b \, a \, q_2$ $q_2 \, a \, R \, q_1$ $q_2 \, b \, R \, q_1$

A numerical function $f: \mathbb{N}_0^n \to \mathbb{N}_0$ is *Turing-computable* if there exists a Turing machine that computes f. The class such functions is denoted by \mathcal{T} .

2 Formal Methods

2.1 Hoare Logic

 $Hoare\ logic$ is a formal system appropriate for proving the partial correctness of imperative programs.

2.2 Recursive Algorithms and Correctness

Definition 2.1. A well-founded relation on a set A is a binary relation R which does not contain infinite descending chains, i.e. there is no infinite sequence a_0, a_1, \ldots of elements of A such that for every $n \in \mathbb{N}_0$ it holds that $a_{n+1}Ra_n$.

The symbol " \prec " will often be used to denote a well-founded relation on a set A. Suppose $x, y \in A$, if $x \prec y$ then x is said to be a *predecessor* of y.

Theorem 2.1. Let \prec be a binary relation on a set A. Then \prec is a well-founded relation on A if and only if every non-empty subset X of A contains a minimal element, i.e., there exists some c such that: $c \in X$ and $\not\equiv_a \in x : a \prec c$.

In all that follows L denotes the set of all lists (of any kind of elements) and L^+ denotes the set of all non-empty lists. Furthermore, given a list w:

- #w denotes the length w;
- w_i (with $w \neq \{\}$ and $i \in \{1, \dots, \# w\}$) denotes the element which is in the position i of list w;
- $w \setminus w_i$ (with $w \neq \{\}$ and $i \in \{1, ..., \#w\}$) denotes the list that is obtained from w by deleting the element contained in position i.

Definition of functions using recursion

Theorem 2.2. There exists one and only one function $u: A \to B$ such that:

1. For any minimal element y of A:

$$u(y) = f(y),$$

for some fixed function $f: A \to B$, i.e. the value u(y) is defined explicitly in terms of y without using the value of u at any other point.

2. For any non-minimal element y of A

$$u(y) = g(y, \{(k, u(k)) : k \prec y\},\$$

for some fixed function g which is defined at every pair of the form (y, R_y) , where y is a non-minimal element of A, and $R_y = \{(a, b) \in A \times B : a \prec y\}$ and is a functional relation.

A unuary function $u: A \to B$ is said to be well defined recursively if it satisfied both properties of theorem 2.2.

Theorem 2.3. Let $n \in \mathbb{N}_1$ and let X_1, \ldots, X_n be any sets. There exists one and only one function $u: X_1 \times \cdots \times X_n \times A \to B$ such that:

1. For any $x_i \in A$ (with $i \in \{1, ..., n\}$) and any minimal element y of A

$$u(x_1,\ldots,x_n,y)=f(x_1,\ldots,x_n,y),$$

for some fixed function $f: X_1 \times \cdots \times X_n \times A \to B$.

2. For $x_i \in X_i$ (with $i \in \{1, ..., n\}$) and any non-minial element y of A

$$u(x_1,\ldots,x_n,y) = g(x_1,\ldots,x_n,y,\{(k,u(x_1,\ldots,x_n,k)):k \prec y\}),$$

for some fixed function g which is defined at every n+2-uples of the form $(x_1, ldots, x_n, y, R_y)$, where $x_i \in X_i$, y is a non-minimal element of A, and $R_y = \{(a, b) \in A \times B : a \prec y\}$ and is a functional relation.

With theorem 2.3 we generalize the notion of recursion to n + 1-ary functions.

2.3 Algebraic Specification

Definition 2.2. A signature is a triple $\Sigma = (S, \mathsf{Op}, \mathsf{type})$, where:

- S is a non-empty set, whose elements are called *sorts*;
- Op is a non-empty set, whose elements are called (symbols of) operations, such that $S \cap \mathsf{Op} = \emptyset$;
- type : Op $\to S^* \times S$, with $S^* = \{\varepsilon\} \cup \{s_1 \dots s_n : n \in \mathbb{N}_1 \text{ and } \forall_{i=1}^n s_i \in S\}$, where ε denotes the empty sequence; is a function that associates to each operation:

Its arity (i.e. number of arguments) and the sequence that indicates the sort of each one of its arguments;

The sort of its outcome.

This information is designated by declaration or sort or type of an operation.

In the specification of abstract data types constants are usually presented as 0-ary operations.

Let $\circ \in \mathsf{Op}$ be an operation such that $\mathsf{type}(\circ) = (s_1 \dots s_n, s)$, with $n \in \mathbb{N}_1$. The sequence $s_1 \dots s_n$ indicates the type of each one of the n arguments of \circ and s is the type of its outcome.

If $\circ \in \mathsf{Op}$ is an operation such that $\mathsf{type}(\circ) = (\varepsilon, s)$ then \circ is a constant. In this case we say that \circ is a constant of type s.

In what follows we shall often write $\circ: s_1 \dots s_n \to s$ to indicate that $\circ \in \mathsf{Op}$ and $\mathsf{type}(\circ) = (s_1 \dots s_n, s)$, with $n \in \mathbb{N}_1$. Analogously, we shall write $\circ: \to s$ to indicate that $\circ \in \mathsf{Op}$ and $\mathsf{type}(\circ) = (\varepsilon, s)$, i.e. $\circ: \to s$ means that \circ is a constant of type s.