Тема учебного предмета: «Физические процессы в полупроводниках»

Лабораторная работа № 5

Тема работы: «Определение зависимости сопротивления полупроводников от температуры»

1. Цель работы

Научить устанавливать зависимость между температурой и сопротивлением полупроводников.

2. Задание

Измерить сопротивление полупроводников при различных температурах, построить график зависимости $R_1(t), R_2(t)$.

3. Оснащение работы

- 1. Стенд НТЦ 05.13 «Электротехнические материалы».
- 2. Модуль №1 «Температурная зависимость сопротивления полупроводников».
- 3. Мультиметр.
- 4. Измеритель RLC.
- 5. Канцелярские принадлежности (ручка, карандаш, линейка и др.).
- 6. Калькулятор.

4. Основные теоретические сведения

Большая группа материалов с электронной n и дырочной p проводимостью, удельное сопротивление ρ которых при температуре 20 °C больше, чем у проводников, но меньше, чем у диэлектриков, относится к **полупроводникам**. С точки зрения зонной теории твердого тела, к полупроводникам относятся те материалы, ширина запрещенной зоны (33) которых имеет величину в пределах от $0.05\ \partial o\ 3\ \partial B$.

Электрофизические характеристики полупроводниковых материалов зависят не только от их природы, но и от интенсивности внешнего энергетического воздействия, природы и концентрации легирующей примеси — примеси, которую специально вводят в полупроводниковый материал для создания определенного типа и величины электропроводности. Полупроводниковый материал, используемый для изготовления приборов, должен иметь очень высокую степень чистоты.

Управляемость удельной электропроводностью полупроводниковых материалов посредством температуры, света, электрического поля, механического напряжения положена в основу принципа действия соответствующих приборов: терморезисторов, фоторезисторов, нелинейных резисторов (вариаторов), тензорезисторов и т.д.

Наличие двух или более взаимно связанных p-n-переходов образуют управляемые системы — кристаллические транзисторы и тиристоры.

Полупроводниковые системы широко используют для преобразования различных видов энергии в электрическую и наоборот.

Величина и тип электропроводности полупроводников зависят от природы и концентрации примеси, в том числе специально введенной (легирующей).

Концентрация легирующей примеси обычно незначительна, например у Ge она составляет один атом на 10^{10} – 10^{12} атомов полупроводника. В этой связи все полупроводники можно разбить на две группы: собственные и примесные.

Собственные полупроводники не содержат легирующие примеси; к ним относятся высокой степени чистоты простые полупроводники: кремний Si, германий Ge, селен Se, теллур Te и др. и многие полупроводниковые химические соединения: арсенид галлия GaAs, антимонид индия InSb, арсенид индия InAs и др.

Примесные полупроводники всегда содержат донорную или акцепторную примесь. В производстве полупроводниковых приборов примесные полупроводники используют чаще, поскольку в них свободные носители заряда образуются при более низких температурах (чем в собственных полупроводниках), которые отвечают рабочему интервалу температур полупроводникового прибора.

Электропроводность собственных полупроводников. полупроводниках при достаточности тепловой энергии решетки или в результате внешнего энергетического воздействия электрон(ы) перейдет(ут) из валентной зоны (B3) в зону проводимости (3Π) и станет(ут) свободным(и). Необходимая для этого определяется шириной запрещенной перехода энергия зоны (33) ΔW полупроводника. При комнатной температуре эта энергия может возникать вследствие флуктуации тепловых колебаний решетки (средней тепловой энергии решетки для такого перехода недостаточно). С уходом электрона в ЗП в валентной зоне остается свободным энергетический уровень, называемый дыркой, а сама ВЗ полностью заполненной (рисунок 1, а). Электрон становится отрицательный заряд, дырку принято считать положительно заряженной частицей, численно равной заряду электрона.

Таким образом, в кристалле образуется пара свободных носителей заряда — электрон в ЗП и дырка в ВЗ, которые и создают собственную электропроводность полупроводника, тип которой электронно-дырочный.

В отсутствие внешнего электрического поля электрон и дырка совершают тепловые хаотические движения в пределах кристалла, а под действием поля осуществляют дополнительно направленное движение — дрейф, обусловливая тем самым электрический ток. Если концентрации свободных электронов и дырок равны между собой, то подвижность у них различна. В результате более низких значений эффективной массы и инерционности при движении в поле кристаллической решетки свободные электроны более подвижны, чем дырки. Поэтому собственная электропроводность полупроводников имеет слабо преобладающий электронный тип.

a — полупроводник без лигирующей примеси; δ — полупроводник (p-типа) с акцепторной примесью; ϵ — полупроводник (n-типа) с донорной примесью; $\Delta W_{\rm a}$ — энергия активации (образования) дырок в ВЗ полупроводника за счет перехода электронов на уровни акцепторной примеси; $\Delta W_{\rm d}$ — энергия активации электронов — энергия, необходимая для перехода электронов с уровней донорной примеси в ЗП полупроводника

Рисунок 1 – Энергетические диаграммы полупроводников:

Электропроводность примесных полупроводников. В примесных полупроводниках атомы примеси либо поставляют электроны в ЗП полупроводника, либо принимают их с уровней ВЗ. Эти переходы электронов осуществляются при существенно меньших затратах энергии, которые требуются электронам для преодоления потенциального барьера в виде ЗЗ полупроводника. Поэтому эти виды переходов в примесных полупроводниках являются основными, доминирующими над переходом электронов из ВЗ в ЗП.

Атомы примеси, размещаясь в запрещенной зоне полупроводника, создают в пределах этой зоны дискретные энергетические уровни либо у нижнего ее края вблизи к ВЗ, либо – у верхнего, вблизи к ЗП (рисунок 1, б, в). Вследствие своей малой концентрации атомы примеси располагаются в решетке полупроводника на очень больших расстояниях друг от друга, поэтому между собой не взаимодействуют.

При температуре $0\ K$ и в отсутствие другого энергетического воздействия все валентные электроны полупроводника находятся на энергетических уровнях ВЗ. В этом состоянии полупроводник подобен диэлектрику и его проводимость равна нулю. Для переброса электронов из ВЗ в ЗП нужна дополнительная энергия для преодоления потенциального барьера в виде 33. При температуре большей $0\ K$ и дальнейшем ее повышении электроны под действием тепловой энергии начнут переходить в ЗП; в результате образуются пары свободных носителей заряда — электроны в ЗП, а дырки — в ВЗ. Этот процесс называют тепловой генерацией свободных носителей заряда. В ЗП (благодаря наличию свободных уровней) электроны под действием приложенного электрического поля будут перемещаться с уровня на уровень, образуя электрический ток. Аналогично в ВЗ дырки образуют электрический ток. Одновременно с тепловой генерацией свободных носителей заряда существует и обратный процесс, когда свободный электрон возвращается в незаполненную ВЗ. Этот процесс называется рекомбинацией электрона с дыркой.

При заданной температуре между этими процессами осуществляется термодинамическое равновесие, в результате чего в ЗП устанавливается некоторая, вполне определенная концентрация свободных электронов, а в ВЗ — дырок проводимости.

В примесных полупроводниках переходы электронов из ВЗ полупроводника на уровни акцепторной примеси и с локальных уровней донорной примеси в ЗП полупроводника осуществляются при более низких затратах энергии, чем переход электронов из ВЗ собственного полупроводника в его ЗП, т. е. $\Delta W > \Delta W_a \; (\Delta W_{\partial})$. Поэтому электропроводность примесных полупроводников начинает проявляться при более низких температурах, чем электропроводность собственных полупроводников.

Собственная и примесная электропроводности полупроводниковых материалов с ростом температуры возрастают, т.е. они обладают отрицательным коэффициентом сопротивления.

5 Порядок выполнения работы

- 5.1 Изучите основные теоретические сведения.
- 5.2 Согласно рисунку 2 выполните электрические соединения для проведения измерений.
 - !!! Монтаж схемы производите при отключенном питании.

Рисунок 2 — Схема соединений типового комплекта для измерения ТКС полупроводников

В качестве источника питания для нагрева в данной схеме используется источник напряжения «Source Voltage» стенда.

В качестве омметра используйте измеритель RLC, выберите режим измерения сопротивления, нажимая кнопку L/C/R; диапазон измерения выбирается автоматически при измерении.

В качестве термометра используйте мультиметр. Установите режим измерения температуры « $^{\circ}$ C».

- 5.3 Поверните ручку потенциометра RP1 на 4 деления вверх от нуля.
- 5.4 Подайте напряжение питания на комплект включением кнопки SB1 на стенде.
- 5.5 Включите мультиметры. Если термопара не соединена с гнездами мультиметра на его индикаторе будет отображена комнатная температура. Подключите термопару к входу «ТЕМР» мультиметра и, если показания температуры ниже комнатной, измените полярность подключения (переверните вилку термопары).
- 5.6 Для измерения сопротивления первого полупроводника переключите тумблер S1 в верхнее положение, для измерения сопротивления второго полупроводника в нижнее. Полученные значения заносите в таблицу 1.
- 5.7 Постепенно поворачивая ручку потенциометра *RP1* вправо, наблюдайте за показаниями термометра и омметра, и через каждые 5 °C одновременно заносите значения сопротивлений полупроводников и температуры в таблицу 1. Для переключения между проводниками используйте тумблер S1. Измерения проводите до 85°C.

!!! Не допускается нагревать образцы выше 90°C.

- 5.8 Отключите питание и проведите измерения в тех же температурных точках при охлаждении образцов. Полученные значения заносите в таблицу 1. Так как охлаждение ниже 40 °C происходит медленно, допускается не охлаждать ниже 30-40 °C (по указанию преподавателя).
- 5.9 Разберите схему, предоставьте комплекс в полной комплектности и исправности преподавателю или лаборанту.
- 5.10 По данным опыта (таблица 1) постройте графики зависимостей $R_1(t)$, $R_2(t)$. Точку пересечения осей графика выбирать таким образом, чтобы кривая графика занимала максимальную область построения.
- 5.11 Сделайте обобщающий вывод о характере температурной зависимости сопротивления полупроводников.

6 Форма отчета о работе

5.12 Оформите отчет по рекомендуемой форме.

Таблица 1 – Результаты измерений

	1	J				
№ п/п	Нагревание			Охлаждение		
	t, °C	R ₁ , Ом	R ₂ , Ом	t, °C	R_1 , Om	R_2 , Om
1						
2						

График зависимостей $R_1(t)$, $R_2(t)$.

Ответы на контрольные вопросы:
1.
2.
3.
4.
5.
Вывол:

7 Контрольные вопросы и задания

- 1 Объясните отличие полупроводников и проводников.
- 2 Перечислите материалы для изготовления терморезисторов.
- 3 Назовите факторы для управления проводимостью полупроводников.
- 4 Объясните зависимость сопротивления полупроводников от температуры.
- 5 Объясните отличие собственных и примесных полупроводников.

Рекомендуемая литература

- 1. Берлин, В.И. Материаловедение: учебник для техникумов / В. И. Берлин, П.С. Костяев, К.Д. Шапкин. М.: Транспорт, 1979. 382 с.
- 2. Гелин, Ф. Д. Материаловедение: пособие с элементами программирования для металлистов / Ф. Д. Гелин, Э. И. Крупицкий, И. П. Позняк. Минск: Вышэйшая школа, 1977. 269 с.
- 3. Журавлева, Л.В. Электроматериаловедение: учебник для нач. проф. образования / Л. В. Журавлева. М.: Издательский центр "Академия", 2008. 352 с.
- 4. Красько, А.С., Павлович С.Н. Электроматериаловедение: учеб. пособие / А.С. Красько, С.Н. Павлович. Минск: РИПО, 2012. 210 с.