# 1. IMPORTING LIBRARIES

#### In [126]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
```

#### In [40]:

```
df=pd.read_csv("titanic.csv")
```

#### In [5]:

df.head()

#### Out[5]:

|   | survived | pclass | sex    | age  | sibsp | parch | fare    | embarked | class | who   | adult_ma |
|---|----------|--------|--------|------|-------|-------|---------|----------|-------|-------|----------|
| 0 | 0        | 3      | male   | 22.0 | 1     | 0     | 7.2500  | S        | Third | man   | Tru      |
| 1 | 1        | 1      | female | 38.0 | 1     | 0     | 71.2833 | С        | First | woman | Fals     |
| 2 | 1        | 3      | female | 26.0 | 0     | 0     | 7.9250  | S        | Third | woman | Fals     |
| 3 | 1        | 1      | female | 35.0 | 1     | 0     | 53.1000 | S        | First | woman | Fals     |
| 4 | 0        | 3      | male   | 35.0 | 0     | 0     | 8.0500  | S        | Third | man   | Trı      |
| 4 |          |        |        |      |       |       |         |          |       |       | •        |

#### In [6]:

df.tail()

#### Out[6]:

|     | survived | pclass | sex    | age  | sibsp | parch | fare  | embarked | class  | who   | adult_n |
|-----|----------|--------|--------|------|-------|-------|-------|----------|--------|-------|---------|
| 886 | 0        | 2      | male   | 27.0 | 0     | 0     | 13.00 | S        | Second | man   | 7       |
| 887 | 1        | 1      | female | 19.0 | 0     | 0     | 30.00 | S        | First  | woman | F       |
| 888 | 0        | 3      | female | NaN  | 1     | 2     | 23.45 | S        | Third  | woman | F       |
| 889 | 1        | 1      | male   | 26.0 | 0     | 0     | 30.00 | С        | First  | man   | ٦       |
| 890 | 0        | 3      | male   | 32.0 | 0     | 0     | 7.75  | Q        | Third  | man   | ٦       |
| 4   |          |        |        |      |       |       |       |          |        |       | •       |

```
In [7]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
     Column
                  Non-Null Count Dtype
                  -----
0
     survived
                  891 non-null
                                  int64
 1
                  891 non-null
                                  int64
     pclass
 2
     sex
                  891 non-null
                                  object
                  714 non-null
 3
     age
                                  float64
 4
     sibsp
                  891 non-null
                                  int64
 5
                                  int64
     parch
                  891 non-null
 6
     fare
                  891 non-null
                                  float64
 7
     embarked
                  889 non-null
                                  object
 8
     class
                  891 non-null
                                  object
 9
     who
                  891 non-null
                                  object
 10 adult_male
                  891 non-null
                                  bool
                  203 non-null
 11
     deck
                                  object
 12
    embark_town 889 non-null
                                  object
 13
    alive
                  891 non-null
                                  object
14 alone
                  891 non-null
                                  bool
dtypes: bool(2), float64(2), int64(4), object(7)
memory usage: 92.4+ KB
In [10]:
df.columns
Out[10]:
```

Index(['survived', 'pclass', 'sex', 'age', 'sibsp', 'parch', 'fare',

'embarked', 'class', 'who', 'adult\_male', 'deck', 'embark\_town',

# 2. Descriptive Analysis

'alive', 'alone'],
dtype='object')

```
In [11]:
```

#### df.describe()

#### Out[11]:

|       | survived   | pclass     | age        | sibsp      | parch      | fare       |
|-------|------------|------------|------------|------------|------------|------------|
| count | 891.000000 | 891.000000 | 714.000000 | 891.000000 | 891.000000 | 891.000000 |
| mean  | 0.383838   | 2.308642   | 29.699118  | 0.523008   | 0.381594   | 32.204208  |
| std   | 0.486592   | 0.836071   | 14.526497  | 1.102743   | 0.806057   | 49.693429  |
| min   | 0.000000   | 1.000000   | 0.420000   | 0.000000   | 0.000000   | 0.000000   |
| 25%   | 0.000000   | 2.000000   | 20.125000  | 0.000000   | 0.000000   | 7.910400   |
| 50%   | 0.000000   | 3.000000   | 28.000000  | 0.000000   | 0.000000   | 14.454200  |
| 75%   | 1.000000   | 3.000000   | 38.000000  | 1.000000   | 0.000000   | 31.000000  |
| max   | 1.000000   | 3.000000   | 80.000000  | 8.000000   | 6.000000   | 512.329200 |

#### In [41]:

```
df.select_dtypes(include='number').mean()
```

#### Out[41]:

survived0.383838pclass2.308642age29.699118sibsp0.523008parch0.381594fare32.204208

dtype: float64

#### In [42]:

```
df.select_dtypes(include='number').median()
```

#### Out[42]:

 survived
 0.0000

 pclass
 3.0000

 age
 28.0000

 sibsp
 0.0000

 parch
 0.0000

 fare
 14.4542

 dtype:
 float64

## In [43]:

#### df.mode()

#### Out[43]:

|   | survived | pclass | sex  | age  | sibsp | parch | fare | embarked | class | who | adult_male | dec |
|---|----------|--------|------|------|-------|-------|------|----------|-------|-----|------------|-----|
| 0 | 0        | 3      | male | 24.0 | 0     | 0     | 8.05 | S        | Third | man | True       | (   |
| 4 |          |        |      |      |       |       |      |          |       |     |            | •   |

```
In [44]:
```

```
df.select_dtypes(include='number').var()
```

#### Out[44]:

survived0.236772pclass0.699015age211.019125sibsp1.216043parch0.649728fare2469.436846

dtype: float64

#### In [45]:

```
df.select_dtypes(include='number').std()
```

#### Out[45]:

survived 0.486592 pclass 0.836071 age 14.526497 sibsp 1.102743 parch 0.806057 fare 49.693429

dtype: float64

# 3. Null Values

#### In [46]:

```
df.isnull().any()
```

#### Out[46]:

survived False pclass False False sex True age False sibsp False parch fare False embarked True False class who False adult\_male False True deck embark\_town True False alive alone False

dtype: bool

#### In [47]:

```
df.isnull().sum()
```

#### Out[47]:

survived 0 pclass 0 0 sex 177 age 0 sibsp 0 parch fare 0 embarked 2 class 0 who 0 adult\_male 0 688 deck embark\_town 2 0 alive alone 0 dtype: int64

#### In [70]:

```
# Here we have 688 null values for deck column out of 891 records having this much NA va

df = df.drop(columns=['deck'])
 df.head()
```

#### Out[70]:

|   | survived | pclass | sex    | age  | sibsp | parch | fare    | embarked | class | who   | adult_ma |
|---|----------|--------|--------|------|-------|-------|---------|----------|-------|-------|----------|
| 0 | 0        | 3      | male   | 22.0 | 1     | 0     | 7.2500  | S        | Third | man   | Trı      |
| 1 | 1        | 1      | female | 38.0 | 1     | 0     | 71.2833 | С        | First | woman | Fals     |
| 2 | 1        | 3      | female | 26.0 | 0     | 0     | 7.9250  | S        | Third | woman | Fals     |
| 3 | 1        | 1      | female | 35.0 | 1     | 0     | 53.1000 | S        | First | woman | Fals     |
| 4 | 0        | 3      | male   | 35.0 | 0     | 0     | 8.0500  | S        | Third | man   | Trı      |
| 4 |          |        |        |      |       |       |         |          |       |       | •        |

#### In [71]:

```
df['age'].isna().any()
```

#### Out[71]:

False

```
In [73]:
df.isna().sum()
Out[73]:
survived
                0
pclass
                0
                0
sex
                0
age
                0
sibsp
                0
parch
fare
                0
embarked
                2
class
                0
who
                0
adult_male
                0
embark_town
                2
alive
                0
alone
                0
dtype: int64
In [75]:
# incase age column has missing values we use below code
df['age'].fillna(df['age'].mean(),inplace=True)
In [66]:
In [77]:
df['embarked'].fillna(df['embarked'].mode()[0],inplace=True)
In [78]:
df.isnull().any()
Out[78]:
                False
survived
                False
pclass
                False
sex
                False
age
                False
sibsp
                False
parch
fare
                False
embarked
                False
                False
class
                False
who
adult_male
                False
embark_town
                True
                False
alive
alone
                False
dtype: bool
```

```
In [81]:

df['embark_town'].fillna(df['embark_town'].mode()[0],inplace=True)
```

#### In [82]:

```
df.isnull().any()
```

#### Out[82]:

survived False False pclass False sex False age sibsp False parch False fare False embarked False class False False who adult\_male False embark\_town False alive False alone False dtype: bool

# 4. Visualization

## Univariate

#### In [83]:

```
sns.distplot(df['age'])
plt.xlabel("Age")
plt.title("Age Distribution plot")
```

C:\Users\HP\AppData\Local\Temp\ipykernel\_12108\1512872506.py:1: UserWarnin
g:

`distplot` is a deprecated function and will be removed in seaborn v0.14.
0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df['age'])

#### Out[83]:

Text(0.5, 1.0, 'Age Distribution plot')



#### In [84]:

```
plt.pie(df['survived'].value_counts(),labels=['Not Survived','Survived'],autopct="%.2f%%
```

#### Out[84]:



# **Bivariate Analysis**

## In [85]:

```
sns.barplot(data=df,x='class',y='survived')
```

## Out[85]:

<Axes: xlabel='class', ylabel='survived'>



# In [86]:

```
sns.scatterplot(data=df, x='age', y='fare')
```

## Out[86]:

<Axes: xlabel='age', ylabel='fare'>



# In [87]:

```
sns.jointplot(data=df,x='age',y='fare')
```

## Out[87]:

<seaborn.axisgrid.JointGrid at 0x2679fd99ae0>



# **Multivariate Analysis**

#### In [142]:

```
plt.figure(figsize=(10,8))
sns.heatmap(df.corr(),annot=True)
```

#### Out[142]:

#### <Axes: >



#### In [89]:

#### sns.pairplot(df)

<\_\_array\_function\_\_ internals>:200: RuntimeWarning: Converting input from bool to <class 'numpy.uint8'> for compatibility. <\_\_array\_function\_\_ internals>:200: RuntimeWarning: Converting input from

bool to <class 'numpy.uint8'> for compatibility.

#### Out[89]:

<seaborn.axisgrid.PairGrid at 0x267a2187490>



# 5. Descriptive Analysis

We'll take only the numerical columns for the descriptive analysis for some functions so we'll create a new dataframe named df1 containg only numerical columns

#### In [90]:

```
df1 = df.drop(columns=['sex','class','embarked','embark_town','who','adult_male','alive'
df1.head()
```

#### Out[90]:

|   | survived | pclass | age  | sibsp | parch | fare    |
|---|----------|--------|------|-------|-------|---------|
| 0 | 0        | 3      | 22.0 | 1     | 0     | 7.2500  |
| 1 | 1        | 1      | 38.0 | 1     | 0     | 71.2833 |
| 2 | 1        | 3      | 26.0 | 0     | 0     | 7.9250  |
| 3 | 1        | 1      | 35.0 | 1     | 0     | 53.1000 |
| 4 | 0        | 3      | 35.0 | 0     | 0     | 8.0500  |

#### In [91]:

```
df1.mean()
```

#### Out[91]:

```
survived0.383838pclass2.308642age29.699118sibsp0.523008parch0.381594fare32.204208
```

dtype: float64

#### In [92]:

```
df1.median()
```

#### Out[92]:

```
survived0.000000pclass3.000000age29.699118sibsp0.000000parch0.000000fare14.454200
```

dtype: float64

#### In [93]:

#### df.mode()

#### Out[93]:

|   | survived | pclass | sex  | age       | sibsp | parch | fare | embarked | class | who | adult_male |
|---|----------|--------|------|-----------|-------|-------|------|----------|-------|-----|------------|
| 0 | 0        | 3      | male | 29.699118 | 0     | 0     | 8.05 | S        | Third | man | True       |
| 4 |          |        |      |           |       |       |      |          |       |     | •          |

#### In [94]:

```
df.max()
```

#### Out[94]:

survived 1 pclass 3 male sex 80.0 age sibsp 8 6 parch 512.3292 fare embarked S class Third who woman adult\_male True embark\_town Southampton alive yes alone True

dtype: object

#### In [95]:

```
df.min()
```

#### Out[95]:

0 survived pclass 1 female sex 0.42 age sibsp 0 0 parch 0.0 fare C embarked First class who child adult\_male False embark\_town Cherbourg alive no alone False dtype: object

```
In [98]:
```

```
df.select_dtypes(include='number').var()
```

#### Out[98]:

survived0.236772pclass0.699015age169.052400sibsp1.216043parch0.649728fare2469.436846

dtype: float64

#### In [99]:

```
df.select_dtypes(include='number').std()
```

#### Out[99]:

survived0.486592pclass0.836071age13.002015sibsp1.102743parch0.806057fare49.693429

dtype: float64

#### In [100]:

```
quantile = df1.quantile(q=[0.25,0.75])
quantile
```

#### Out[100]:

|      | survived | pclass | age  | sibsp | parch | fare    |
|------|----------|--------|------|-------|-------|---------|
| 0.25 | 0.0      | 2.0    | 22.0 | 0.0   | 0.0   | 7.9104  |
| 0.75 | 1.0      | 3.0    | 35.0 | 1.0   | 0.0   | 31 0000 |

#### In [101]:

```
IQR = quantile.iloc[1]-quantile.iloc[0]
```

#### In [102]:

```
upper_extreme = quantile.iloc[1]+(1.5*IQR)
upper_extreme
```

#### Out[102]:

```
survived 2.5000 pclass 4.5000 age 54.5000 sibsp 2.5000 parch 0.0000 fare 65.6344 dtype: float64
```

#### In [103]:

```
lower_extreme = quantile.iloc[0]-(1.5*IQR)
lower_extreme
```

#### Out[103]:

survived -1.500
pclass 0.500
age 2.500
sibsp -1.500
parch 0.000
fare -26.724
dtype: float64

#### In [106]:

```
df.select_dtypes(include='number').skew()
```

#### Out[106]:

survived 0.478523 pclass -0.630548 age 0.434488 sibsp 3.695352 parch 2.749117 fare 4.787317

dtype: float64

#### In [108]:

```
df.select_dtypes(include='number').kurt()
```

#### Out[108]:

survived -1.775005 pclass -1.280015 age 0.966279 sibsp 17.880420 parch 9.778125 fare 33.398141

dtype: float64

#### In [109]:

```
df.select_dtypes(include='number').corr()
```

#### Out[109]:

|          | survived  | pclass    | age       | sibsp     | parch     | fare      |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| survived | 1.000000  | -0.338481 | -0.069809 | -0.035322 | 0.081629  | 0.257307  |
| pclass   | -0.338481 | 1.000000  | -0.331339 | 0.083081  | 0.018443  | -0.549500 |
| age      | -0.069809 | -0.331339 | 1.000000  | -0.232625 | -0.179191 | 0.091566  |
| sibsp    | -0.035322 | 0.083081  | -0.232625 | 1.000000  | 0.414838  | 0.159651  |
| parch    | 0.081629  | 0.018443  | -0.179191 | 0.414838  | 1.000000  | 0.216225  |
| fare     | 0.257307  | -0.549500 | 0.091566  | 0.159651  | 0.216225  | 1.000000  |

# In [110]: df['class'].value\_counts() Out[110]: class Third 491 First 216 Second 184 Name: count, dtype: int64 In [111]: df['alive'].value\_counts() Out[111]: alive no 549 342 yes Name: count, dtype: int64 6. Outliers In [112]: sns.boxplot(df['fare']) Out[112]: <Axes: > 500 400 300 200 100

0

0

#### In [113]:

```
# We'll replce the outliers value with upper_extreme when value > upper_extreme
# We'll replce the outliers value with lower_extreme when value < lower_extreme

Q1 = df['fare'].quantile(0.25)
Q3 = df['fare'].quantile(0.75)

IQR = Q3 - Q1

l_e = Q1 -(1.5*IQR)
u_e = Q3 + (1.5*IQR)
df['fare']=np.where(df['fare']>u_e,u_e,np.where(df['fare']<l_e,l_e,df['fare']))</pre>
```

#### In [114]:

```
sns.boxplot(df['fare'])
```

#### Out[114]:

<Axes: >



#### In [115]:

```
sns.boxplot(df['age'])
```

#### Out[115]:

<Axes: >



#### In [116]:

```
Q1 = df['age'].quantile(0.25)
Q3 = df['age'].quantile(0.75)
IQR = Q3-Q1
l_e = Q1 - (1.5*IQR)
u_e = Q1 + (1.5*IQR)
df['age'] = np.where(df['age']>u_e,u_e,np.where(df['age']<l_e,l_e,df['age']))</pre>
```

# In [117]:

```
sns.boxplot(df['age'])
```

# Out[117]:

<Axes: >



#### In [118]:

```
sns.boxplot(df['sibsp'])
```

#### Out[118]:

<Axes: >



#### In [119]:

```
Q1 = df['sibsp'].quantile(0.25)
Q3 = df['sibsp'].quantile(0.75)
IQR = Q3-Q1
l_e = Q1 - (1.5*IQR)
u_e = Q1 + (1.5*IQR)
df['sibsp'] = np.where(df['sibsp']>u_e,u_e,np.where(df['sibsp']<l_e,l_e,df['sibsp']))</pre>
```

# In [120]:

```
sns.boxplot(df['sibsp'])
```

# Out[120]:

<Axes: >



#### In [121]:

```
sns.boxplot(df['parch'])
```

#### Out[121]:

<Axes: >



#### In [122]:

```
Q1 = df['parch'].quantile(0.25)
Q3 = df['parch'].quantile(0.75)
IQR = Q3-Q1
l_e = Q1 - (1.5*IQR)
u_e = Q1 + (1.5*IQR)
df['parch'] = np.where(df['parch']>u_e,u_e,np.where(df['parch']<l_e,l_e,df['parch']))</pre>
```

# In [123]:

```
sns.boxplot(df['parch'])
```

# Out[123]:

<Axes: >



## In [124]:

```
sns.boxplot(df) #No more outliers
```

### Out[124]:

<Axes: >



# 7. Encoding

# In [127]:

LE = LabelEncoder()

```
In [128]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 14 columns):
     Column
                   Non-Null Count
                                    Dtype
 0
     survived
                   891 non-null
                                    int64
 1
                   891 non-null
                                    int64
     pclass
 2
     sex
                   891 non-null
                                    object
 3
                   891 non-null
                                    float64
     age
 4
                   891 non-null
                                    float64
     sibsp
 5
                                    float64
     parch
                   891 non-null
 6
                   891 non-null
                                    float64
     fare
 7
     embarked
                   891 non-null
                                    object
 8
     class
                   891 non-null
                                    object
 9
     who
                   891 non-null
                                    object
 10
     adult_male
                   891 non-null
                                    bool
 11
     embark_town
                   891 non-null
                                    object
 12
     alive
                   891 non-null
                                    object
 13
     alone
                   891 non-null
                                    bool
dtypes: bool(2), float64(4), int64(2), object(6)
memory usage: 85.4+ KB
In [129]:
df['sex'] = LE.fit transform(df['sex'])
df['embarked'] = LE.fit_transform(df['embarked'])
df['class'] = LE.fit_transform(df['class'])
df['who'] = LE.fit_transform(df['who'])
df['embark_town'] = LE.fit_transform(df['embark_town'])
df['alive'] = LE.fit_transform(df['alive'])
df['adult_male'] = LE.fit_transform(df['adult_male'])
df['alone'] = LE.fit_transform(df['alone'])
In [131]:
df.head()
Out[131]:
   survived
                            sibsp
                                 parch
                                           fare embarked class
                                                               who adult_male
                       age
0
                       22.0
                              1.0
                                    0.0
                                         7.2500
                                                       2
                                                             2
1
         1
                    0
                       38.0
                              1.0
                                    0.0
                                        65.6344
                                                       0
                                                             0
                                                                  2
                                                                            0
2
         1
                3
                    0
                       26.0
                              0.0
                                    0.0
                                         7.9250
                                                       2
                                                             2
                                                                  2
                                                                            0
```

2

2

0

2

2

1

0

1

•

# 8. Splitting into dependent and independent variables

0.0

0.0

53.1000

8.0500

1.0

0.0

3

1

0

1

3

0 35.0

1 35.0

Here our main goal is to find whether the people survived or not and that is our target variable(y) so y is survived and x is rest

```
In [132]:
y = df['survived']
x = df.drop(columns=['survived'])
In [133]:
x.head()
Out[133]:
   pclass sex age sibsp parch
                                     fare embarked class who adult_male embark_tow
             1 22.0
                                  7.2500
                                                  2
                                                        2
 0
                       1.0
                              0.0
 1
             0 38.0
                       1.0
                              0.0 65.6344
                                                  0
                                                        0
                                                             2
                                                                        0
 2
        3
             0 26.0
                       0.0
                              0.0
                                   7.9250
                                                  2
                                                        2
                                                             2
                                                                        0
                                                  2
 3
        1
             0 35.0
                       1.0
                              0.0 53.1000
                                                        0
                                                             2
                                                                        0
                                                  2
                                                        2
 4
        3
             1 35.0
                       0.0
                              0.0
                                  8.0500
                                                             1
                                                                         1
In [134]:
y.head()
Out[134]:
0
     0
1
     1
2
     1
     1
3
4
```

# 9. Scaling

Name: survived, dtype: int64

#### In [135]:

```
name = x.columns
SS = StandardScaler()
z = SS.fit_transform(x)
x = pd.DataFrame(z,columns=name)
x
```

#### Out[135]:

|       | pclass     | sex       | age       | sibsp     | parch | fare      | embarked  | class     |       |
|-------|------------|-----------|-----------|-----------|-------|-----------|-----------|-----------|-------|
| 0     | 0.827377   | 0.737695  | -0.611782 | 1.185039  | 0.0   | -0.820552 | 0.585954  | 0.827377  | -0.35 |
| 1     | -1.566107  | -1.355574 | 0.989167  | 1.185039  | 0.0   | 2.031623  | -1.942303 | -1.566107 | 1.328 |
| 2     | 0.827377   | -1.355574 | -0.211544 | -0.664120 | 0.0   | -0.787578 | 0.585954  | 0.827377  | 1.328 |
| 3     | -1.566107  | -1.355574 | 0.688989  | 1.185039  | 0.0   | 1.419297  | 0.585954  | -1.566107 | 1.328 |
| 4     | 0.827377   | 0.737695  | 0.688989  | -0.664120 | 0.0   | -0.781471 | 0.585954  | 0.827377  | -0.35 |
|       |            |           |           |           |       |           |           |           |       |
| 886   | -0.369365  | 0.737695  | -0.111485 | -0.664120 | 0.0   | -0.539655 | 0.585954  | -0.369365 | -0.35 |
| 887   | -1.566107  | -1.355574 | -0.911960 | -0.664120 | 0.0   | 0.290823  | 0.585954  | -1.566107 | 1.328 |
| 888   | 0.827377   | -1.355574 | 0.158587  | 1.185039  | 0.0   | -0.029155 | 0.585954  | 0.827377  | 1.328 |
| 889   | -1.566107  | 0.737695  | -0.211544 | -0.664120 | 0.0   | 0.290823  | -1.942303 | -1.566107 | -0.35 |
| 890   | 0.827377   | 0.737695  | 0.388811  | -0.664120 | 0.0   | -0.796127 | -0.678175 | 0.827377  | -0.35 |
| 891 r | ows × 13 c | columns   |           |           |       |           |           |           |       |
| 4     |            |           |           |           |       |           |           |           | •     |

# 10. Train test spit

#### In [136]:

```
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)
```

# In [137]:

# x\_train

## Out[137]:

|     | pclass    | sex       | age       | sibsp     | parch | fare      | embarked  | class     |       |
|-----|-----------|-----------|-----------|-----------|-------|-----------|-----------|-----------|-------|
| 140 | 0.827377  | -1.355574 | 0.158587  | -0.664120 | 0.0   | -0.429944 | -1.942303 | 0.827377  | 1.328 |
| 439 | -0.369365 | 0.737695  | 0.288752  | -0.664120 | 0.0   | -0.661785 | 0.585954  | -0.369365 | -0.35 |
| 817 | -0.369365 | 0.737695  | 0.288752  | 1.185039  | 0.0   | 0.632990  | -1.942303 | -0.369365 | -0.35 |
| 378 | 0.827377  | 0.737695  | -0.811900 | -0.664120 | 0.0   | -0.978710 | -1.942303 | 0.827377  | -0.35 |
| 491 | 0.827377  | 0.737695  | -0.711841 | -0.664120 | 0.0   | -0.820552 | 0.585954  | 0.827377  | -0.35 |
|     |           |           |           |           |       |           |           |           |       |
| 835 | -1.566107 | -1.355574 | 1.089227  | 1.185039  | 0.0   | 2.031623  | -1.942303 | -1.566107 | 1.328 |
| 192 | 0.827377  | -1.355574 | -0.911960 | 1.185039  | 0.0   | -0.791036 | 0.585954  | 0.827377  | 1.328 |
| 629 | 0.827377  | 0.737695  | 0.158587  | -0.664120 | 0.0   | -0.796942 | -0.678175 | 0.827377  | -0.35 |
| 559 | 0.827377  | -1.355574 | 0.789049  | 1.185039  | 0.0   | -0.324708 | 0.585954  | 0.827377  | 1.328 |
| 684 | -0.369365 | 0.737695  | 1.339375  | 1.185039  | 0.0   | 0.730488  | 0.585954  | -0.369365 | -0.35 |

•

#### 712 rows × 13 columns

In [138]:

x\_test

# Out[138]:

|     | pclass    | sex       | age       | sibsp     | parch | fare      | embarked  | class     |       |
|-----|-----------|-----------|-----------|-----------|-------|-----------|-----------|-----------|-------|
| 495 | 0.827377  | 0.737695  | 0.158587  | -0.664120 | 0.0   | -0.468415 | -1.942303 | 0.827377  | -0.35 |
| 648 | 0.827377  | 0.737695  | 0.158587  | -0.664120 | 0.0   | -0.805897 | 0.585954  | 0.827377  | -0.35 |
| 278 | 0.827377  | 0.737695  | -2.112672 | 2.109618  | 0.0   | 0.248078  | -0.678175 | 0.827377  | -2.03 |
| 31  | -1.566107 | -1.355574 | 0.158587  | 1.185039  | 0.0   | 2.031623  | -1.942303 | -1.566107 | 1.32  |
| 255 | 0.827377  | -1.355574 | 0.088633  | -0.664120 | 0.0   | -0.429944 | -1.942303 | 0.827377  | 1.328 |
|     |           |           |           |           |       |           |           |           |       |
| 780 | 0.827377  | -1.355574 | -1.512316 | -0.664120 | 0.0   | -0.821569 | -1.942303 | 0.827377  | -2.03 |
| 837 | 0.827377  | 0.737695  | 0.158587  | -0.664120 | 0.0   | -0.781471 | 0.585954  | 0.827377  | -0.35 |
| 215 | -1.566107 | -1.355574 | 0.288752  | 1.185039  | 0.0   | 2.031623  | -1.942303 | -1.566107 | 1.32  |
| 833 | 0.827377  | 0.737695  | -0.511722 | -0.664120 | 0.0   | -0.791036 | 0.585954  | 0.827377  | -0.35 |
| 372 | 0.827377  | 0.737695  | -0.911960 | -0.664120 | 0.0   | -0.781471 | 0.585954  | 0.827377  | -0.35 |

179 rows × 13 columns

```
In [139]:
y_train
Out[139]:
140
       0
439
       0
817
       0
378
       0
491
       0
835
       1
192
       1
629
       0
559
       1
684
Name: survived, Length: 712, dtype: int64
In [140]:
y_test
Out[140]:
495
       0
648
       0
```

Name: survived, Length: 179, dtype: int64