Course Syllabus

Course	CISC 7026 Fall 2024
Time	19:00-22:00, Mondays
-	Room E6-1102C
Location	
Description	This course introduces the theory and application of deep neural networks
Instructor	Steven Morad <smorad at="" um.edu.mo=""></smorad>
Office Hours	11:00-12:00 Mondays and Tuesdays
Teaching	TBD
Assistants	
Grading	Assignments: 70%
	• Quizzes: 20%
	• Participation: 10%
Late Work Policy	• -25% 0-1 days late
	• -50% 1-2 days late
	• -75% 2-3 days late
	• -100% 3+ days late
Prerequisites	Linear Algebra
	Multivariable Calculus
	Programming in Python
Preliminary	Week 1 (08.19): No Lecture (visa issues)
Lecture Schedule	Week 2 (08.26): Introduction to the Course
	• Week 3 (09.02): Linear Regression (D2L 3.1, 3.6)
	• Week 4 (09.09): Neural Networks (D2L 5.1, 5.2, 6.1)
	• Week 5 (09.16): Backpropagation and Optimization (D2L 5.3, 12.1, 12.3-12.5)
	• Week 6 (09.23): Training Tricks (D2L 4.1, 5.5, 5.6, 6.1-6.3)
	Week 7 (09.30): Convolutional Neural Networks (D2L 7)
	Week 8 (10.07): Autoencoders and Generative Models
	Week 9 (10.14): Recurrent Neural Networks (D2L 9-10)
	Week 10 (10.21): Graph Neural Networks
	• Week 11 (10.28): Attention and Transformers (D2L 11.1-11.7)
	• Week 12 (11.04): Foundation Models (D2L 11.8-11.9)
	Week 13 (11.11): Reinforcement Learning I (D2L 17)
	Week 14 (11.18): Reinforcement Learning II
Preliminary	• Week 3-4 (09.02 - 09.09): Linear Regression
Assignment	Week 4-6 (09.09 - 09.23): Neural Networks and Backpropagation
Schedule	• Week 6-8 (09.23 - 10.07): MLP Regression
	Week 8-10 (10.07 - 10.21): Convolutional MNIST Classification
	• Week 10-12 (10.21 - 11.04): LSTM Weather Prediction
	Week 12-14 (11.04 - 11.18): Transformer IMDB Sentiment Analysis