Exercise 1.2.5 (De Morgan's Laws) Let A and B be subsets of \mathbb{R} .

- 1. If $x \in A \cap B$, explain why $x \in A^c \cup B^c$. This shows that $(A \cap B)^c \subseteq A^c \cup B^c$.
- 2. Prove the reverse inclusion $(A \cap B)^c \supseteq A^c \cup B^c$ and conclude that $(A \cup B)^c = A^c \cap B^c$.
- 3. Show $(A \cup B)^c = A^c \cap B^c$ by demonstrating inclusion both ways.

Proof:

- 1. If $x \in (A \cap B)^c$, this implies that $x \notin A \cap B$. By the definition of the set intersection, this means that $x \notin A$ or $x \notin B$. This means that $x \in A^c$ or $x \in B^c$. If $x \in A^c$, this means that $x \in A^c \cup B^c$. If $x \in B^c$, then $x \in B^c \cup A^c$, which is the same thing as $x \in A^c \cup B^c$. \square
- 2. If $x \in A^c \cup B^c$, this means that $x \in A^c$ or $x \in B^c$. This also means that $x \notin A$ or $x \notin B$, which further implies that $x \notin A \cap B$. This finally implies that $x \in (A \cap B)^c \square$
- 3. Let $x \in (A \cup B)^c$, which implies that $x \notin A \cup B$, which means that $x \notin A$ and $x \notin B$. This means that $x \in A^c$ and $x \in B^c$, which is the same as $x \in A^c \cap B^c$. For the reverse inclusion, let $x \in A^c \cap B^c$, which means that $x \in A^c$ and $x \in B^c$ by the definition of the set intersection. This implies that $x \notin A$ and $x \notin B$, which means that $x \notin A \cup B$, which is the same thing as saying that $x \in (A \cup B)^c$. \square

Exercise 1.2.6 (Triangle Inequality)

- 1. Verify the triangle inequality in the special case where a and b have the same sign.
- 2. Find an efficient proof for all the cases at once by first demonstrating that $(a+b)^2 \le (|a|+|b|)^2$.
- 3. Prove $|a-b| \leq |a-c| + |c-d| + |d-b|$ for all a,b,c, and d.
- 4. Prove $||a| |b|| \le |a b|$.

Proof:

- 1. We shall proceed by cases. In the case that both a and b are positive, |a| = a and |b| = b, so we may rewrite the triangle inequality in this case as $|a + b| \le a + b$. It follows that |a + b| can be written as a + b as both a and b are positive numbers and therefore their sum will be a positive number. Substituting the alternate forms we have just derived back into the triangle inequality, we get the equation $a + b \le a + b$, which is true for all $a, b \in \mathbb{R}_{\geq 0}$. In the case that both a and b are negative, we have from the definition of the absolute value that |a| = -a and |b| = -b. This means that |a| + |b| = -a + (-b) = -a b and that |a + b| = -(a + b) = (-a b). Simplifying, we arrive at the equation $-a b \le -a b$, which is true for all $a, b \in \mathbb{R}_{\leq 0}$. \square
- 2. We shall begin by expanding both sides of the equation. The left side expands to $a^2 + 2ab + b^2$ and the right side expands to $a^2 + 2|a||b| + b^2$. Note that we can drop the absolute value bars for a^2 and b^2 on the right as the square of any number, positive or negative is always positive, and by the definition of the absolute value, if a number a is positive, then |a| = a. Simplifying yields the inequality $2ab \le 2|a||b|$, which is true because 2ab can be negative (consider the case where either a or b is negative but not both) but 2|a||b| cannot be negative due to the absolute value of any real number always being positive. As squaring preserves the inequality, it follows that $|a+b| \le |a| + |b|$. \square
- 3. We begin by noticing that |a-b| is equivalent to |(a-c)+(c-d)+(d-b)|. Now subtituting that into the original equation, we get $|(a-c)+(c-d)+(d-b)| \le |a-c|+|c-d|+|d-b|$.
- 4. As ||a| |b|| = ||b| |a|| for all $a, b \in \mathbb{R}$, we can assume that |a| > |b|. Then by application of the triangle inequality, $||a| |b|| = |a| |b| = |(a b) + b| |b| \le |a b| + |b| |b| = |a b|$. \square