1 Binární operace na množině

Obsah

Obsah

Binární operace na množině
Algebraické struktury s jednou binární operací
Algebraické struktury se dvěma binárními operacemi

Binární operace

Definice 3.1

Nechť $A \neq \emptyset$. Každé zobrazení $f:A^n \to A$ nazýváme n-ární operace na množině A. Pokud n=1, pak mluvíme o unární operaci, jestliže n=2, pak jde o tzv. binární operaci na množině A.

Příklad 3.1

- Odmocňování není unární operací na C.
- \bullet Odčítání není binární operací na N, ale na R ano.
- \bullet Aritmetický průměr je obecně n-ární operace např. na \mathbf{R} , ale ne na \mathbf{N} .

Binární operace, Cayleyho tabulky

Příklad 3.2

- Uvažujme zbytkové třídy "modulo 4", tedy množiny $[0]_4 = \{\ldots, -4, 0, 4, \ldots\}, [1]_4 = \{\ldots, -3, 1, 5, \ldots\}, [2]_4 = \{\ldots, -2, 2, 6, \ldots\}, [3]_4 = \{\ldots, -1, 3, 7, \ldots\}.$
- Definujme dále na množině $\mathbf{Z}_4 = \{[0]_4, [1]_4, [2]_4, [3]_4\}$ binární operace " \oplus " (sčítání na zbytkových třídách) a " \odot " (násobení na zbytkových třídách) takto:

\oplus	$[0]_4$	$[1]_4$	$[2]_4$	$[3]_4$		\odot	$[0]_4$	$[1]_4$	$[2]_4$	$[3]_4$
$[0]_4$	$[0]_4$	$[1]_4$	$[2]_4$	$[3]_4$	-	$[0]_4$	$[0]_4$	$[0]_4$	$[0]_4$	$[0]_4$
$[1]_4$	$[1]_4$	$[2]_4$	$[3]_4$	$[0]_4$		$[1]_4$	$[0]_4$	$[1]_4$	$[2]_4$	$[3]_4$
$[2]_4$	$[2]_4$	$[3]_4$	$[0]_4$	$[1]_4$		$[2]_4$	$[0]_4$	$[2]_4$	$[0]_4$	$[2]_4$
$[3]_4$	$[3]_4$	$[0]_4$	$[1]_4$	$[2]_4$		$[3]_4$	$[0]_4$	$[3]_4$	$[2]_4$	$[1]_4$

Binární operace

Definice 3.2

Nechť \triangle je binární operace na množině $A \neq \emptyset$. Říkáme, že \triangle je na A

- komutativní, jestliže $\forall a, b \in A : a \triangle b = b \triangle a$;
- asociativní, jestliže $\forall a, b, c \in A : (a \triangle b) \triangle c = a \triangle (b \triangle c)$.

Příklad 3.3

- Násobení na množině C je komutativní i asociativní binární operace.
- Odčítání není komutativní, ani asociativní binární operací ${\bf R}.$

2 Algebraické struktury s jednou binární operací

Obsah

Obsah

Pologrupy

Definice 3.3

Nechť " \triangle " je binární operace na $A \neq \emptyset$. Pak dvojici $(A ; \triangle)$ nazýváme grupoid. Je-li operace " \triangle " asociativní, pak mluvíme o pologrupě $(A ; \triangle)$.

Příklad 3.4

- $(Rel(A); \circ)$, kde Rel(A) je množina všech binárních relací na množině A a " \circ " je skládání relací, je pologrupou.
- $(2^A; \cup)$ a $(2^A; \cap)$ jsou pologrupy.

Neutrální prvky

Definice 3.4

```
Jestliže v grupoidu (A; \triangle) existuje prvek e takový, že \forall a \in A platí a \triangle e = a = e \triangle a, pak e se nazývá jednotka (nebo neutrální \ prvek) grupoidu (A; \triangle).
```

Věta 3.1

Každý grupoid má nejvýše jednu jednotku.

Monoidy

Definice 3.5

Jestliže v pologrupě $(A~;~\triangle~)$ existuje jednotka e, pak $(A~;~\triangle~)$ se nazývá monoid.

Příklad 3.5

- $(Rel(A); \circ)$ je monoid.
- $(2^A; \cup)$ a $(2^A; \cap)$ jsou monoidy.

Inverzní prvky

Definice 3.6

Nechť $(A\;;\;\triangle)$ je monoid s jednotkou e. Jestliže pro každý prvek $a\in A$ existuje prvek $b\in A$ tak, že

$$a \triangle b = b \triangle a = e$$
,

pak prvek b se nazývá inverzní prvek k prvku a a píšeme $b = a^{-1}$.

Zřejmě naopak prvek a je inverzní k prvku b, tedy $a=b^{-1}$. Je navíc patrné, že $(a^{-1})^{-1}=a$.

Grupy

Definice 3.7

Nechť $(A; \triangle)$ je monoid s jednotkou e, ve kterém ke každému prvku a existuje prvek inverzní. Pak $(A; \triangle)$ se nazývá grupa. Je-li operace " \triangle " komutativní na A, pak mluvíme o tzv. $abelovské\ grupě$.

Příklad 3.6

- $(Rel(A); \circ)$ je nekomutativní grupa.
- \bullet (R ; \cdot) je komutativní monoid, který není grupou.
- $(2^A; \cup)$ a $(2^A; \cap)$ jsou monoidy, ale ne grupy.
- (\mathbf{Z}_4 ; \oplus) je abelovská grupa.

3 Algebraické struktury se dvěma binárními operacemi

Obsah

Obsah

Okruhy

Definice 3.8

Okruhem rozumíme trojici $(A;+,\cdot)$ takovou, že " + " a " · " jsou binární operace na množině $A\neq\emptyset$ a platí:

- 1. (A;+) je abelovská grupa s jednotkou, kterou značíme 0 (tzv. $nula\ okruhu\ A);$
- 2. $(A; \cdot)$ je pologrupa;
- $3. \quad \forall a,b,c \in A \colon \quad \begin{aligned} a \cdot (b+c) &= a \cdot b + a \cdot c, \\ (b+c) \cdot a &= b \cdot a + c \cdot a. \end{aligned}$

Je-li navíc operace "·" komutativní na A, pak se okruh A nazývá komutativní. Jestliže pologrupa $(A \setminus \{0\}; \cdot)$ obsahuje neutrální prvek, pak se okruh A nazývá unitární. Tuto jednotku značíme 1.

Okruhy

Příklad 3.7

- (**Z** ;+, ·), (**Q** ;+, ·), (**R** ;+, ·), (**C** ;+, ·) jsou komutativní, unitární okruhy.
- $(C[a,b]; \oplus, \odot)$, kde C[a,b] je množina spojitých funkcí na intervalu [a,b] a kde

$$\forall f, g \in C[a, b], \ \forall x \in [a, b]: \quad \begin{array}{l} (f \oplus g)(x) \stackrel{def}{=} f(x) + g(x), \\ (f \odot g)(x) \stackrel{def}{=} f(x) \cdot g(x), \end{array}$$

je komutativní, unitární okruh.

Tělesa

Definice 3.9

Okruh $(A;+,\cdot)$ se nazývá *těleso*, jestliže množina jeho nenulových prvků tvoří spolu s operací "·" grupu. Těleso $(A;+,\cdot)$ se nazývá *komutativní*, je-li grupa $(A\setminus\{0\};\cdot)$ abelovská.

Příklad 3.8

- (**Z**; +, ·) je kom., unit. okruh, který není tělesem.
- $(\mathbf{Z}_4\;;\;\oplus\;,\;\odot\;)$ z Př. 2 je kom., unit. okruh, který není tělesem.
- \bullet (Q ;+, ·), (R ;+, ·), (C ;+, ·) jsou komutativní tělesa.
- $(C[a,b];\oplus,\odot)$ je kom., unit. okruh., který není tělesem.