Design & Analysis of Algorithms

Matrix Multiplication

- 1. Traditional method & its Time complexity
- 2. Divide & Conquer method, its Time complexity
- 3. Strassen's Matrix Multiplication

:3

a11 a12 a13 a21 a22 a23 a31 a32 a33

Traditional Method (school level) x

B 3×3					
b11		b12		b13	
b21		b22		b23	
b31		b32		b33	

7	· · · · · · · · · · · · · · · · · · ·
	$\frac{1}{1} = \frac{1}{1} + \frac{1}$
	C12 = a11 * b12 + a12 * b22 + a 13 * b32

c11 c12 c13 c21 c22 c23 c31 c32 c33

Traditional Method Algorithm & Time Complexity

Anxn			
a11	••••	a1n	
•			
an1		ann	

Bnxn			
b11	•••	b1n	
••••	••••	•••	
bn1	••••	bnn	

```
Algorithm Matrix Multiplication GM (A,B,n)

for i:1 to n step 1 do 

for j:=1 to n step 1 do 

{ cli,j]:=0;

for K:=1 to n step 1 do

for K:=1 to n step 1 do
```


19thm mitter

Divide & Conquer Method

BIXI	
b11	< Small

AZXZ		
a11*	a12	
a21	a22	

$$C_{11} = \frac{\alpha_{11} * b_{11}}{2 \times 10^{-1}}$$

$$\begin{bmatrix} C_{11} \end{bmatrix} = \begin{bmatrix} \alpha_{11} * b_{11} \end{bmatrix}$$

$$\begin{bmatrix} C' time \end{bmatrix}$$

$$C_{11} = a_{11} * b_{11} + a_{12} * b_{21}$$

$$C_{12} = a_{11} * b_{12} + a_{12} * b_{22}$$

$$C_{21} = a_{21} * b_{11} + a_{22} * b_{21}$$

$$C_{22} = a_{21} * b_{12} + a_{22} * b_{22}$$

$$4 \times 2 = 8 \text{ Units}$$

Time Complexity 080:

$$T(n) = \begin{cases} C & \frac{n-1}{2} \\ S & \frac{n-2}{2} \end{cases}$$

$$S = \begin{cases} \frac{n}{2} + n^{2} & n > 2 \\ S & \frac{n-1}{2} \end{cases}$$

$$S = \begin{cases} \frac{n-1}{2} + n^{2} & n > 2 \\ S & \frac{n-1}{2} \end{cases}$$

$$S = \begin{cases} \frac{n-1}{2} + n^{2} & n > 2 \\ S & \frac{n-1}{2} & n > 2 \end{cases}$$

$$S = \begin{cases} \frac{n-1}{2} & n > 2 \\ S & \frac{n-1}{2} & n > 2 \end{cases}$$

$$S = \begin{cases} \frac{n-1}{2} & n > 2 \\ S & \frac{n-1}{2} & n > 2 \end{cases}$$

$$S = \begin{cases} \frac{n-1}{2} & n > 2 \\ S & \frac{n-1}{2} & n > 2 \end{cases}$$

$$T(n) = 8 T\left(\frac{n}{2}\right) + n^2$$

$$T(n) = O\left(\frac{\log^2 n}{n}\right) = O\left(\frac{3\log^2 n}{n}\right) \Rightarrow O\left(\frac{3\times 1}{n}\right) = O\left(\frac{3}{n}\right)^2$$

$$T(n) = \alpha^{K} \cdot T\left(\frac{\eta}{b}\right) + f(n)$$

Strassen's Matrix Multiplication

For two $n \times n$ matrices A and B, divided into four $n/2 \times n/2$ submatrices:

$$A = egin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix}, \quad B = egin{bmatrix} B_{11} & B_{12} \ B_{21} & B_{22} \end{bmatrix}$$

Strassen's algorithm computes the following 7 intermediate products:

1.
$$P = (A_{11} + A_{22})(B_{11} + B_{22})$$

2.
$$Q=(A_{21}+A_{22})B_1$$

3.
$$R = A_{11}(B_{12} - B_{22})$$

1.
$$P = (A_{11} + A_{22})(B_{11} + B_{22})$$

2. $Q = (A_{21} + A_{22})B_{11}$
3. $R = A_{11}(B_{12} - B_{22})$
4. $S = A_{22}(B_{21} - B_{11})$
5. $T = (A_{11} + A_{12})B_{22}$
6. $U = (A_{21} - A_{11})(B_{11} + B_{12})$

$$5. \ \ T = (A_{11} + A_{12})B_{22}$$

6.
$$U = (A_{21} - A_{11})(B_{11} + B_{12})$$

7.
$$V = (A_{12} - A_{22})(B_{21} + B_{22})$$

Combining the Results

The resulting matrix C is computed using these intermediate products:

$$C = egin{bmatrix} C_{11} & C_{12} \ C_{21} & C_{22} \end{bmatrix}$$

Where:

$$C_{11} = P + S - T + V$$
 $C_{12} = R + T$
 $C_{21} = Q + S$
 $C_{22} = P - Q + R + U$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$$

$$P = (1+4)(1+2) \Rightarrow 15$$

$$Q = (7) \quad 1 \rightarrow 7$$

$$R = (1)(1-2) \Rightarrow -1$$

$$S = (4)(2-1) = 4$$

$$T = (1+2)(2) = 6$$

$$SU = (3-1)(1+1) = 4$$

$$V = (3-4)(2+2) = -8$$

$$S = (3+1)(1+2) = -8$$

$$S = (3+1)(1+1) = 4$$

$$S = ($$

 $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

