Unconstrained Minimisation

1-dim variable

Bisection Search (每次都取中点)

1

Bisection search algorithm

Choose an accuracy tolerance $\epsilon > 0$.

[Step 1] Choose an interval $[a_1, b_1]$ such that $f'(a_1)$ and $f'(b_1)$ have opposite signs.

[Step k] For $k = 1, 2, \dots$,

- (a) set $x_k = \frac{1}{2}(a_k + b_k)$.
- (b) If $b_k a_k \le 2\epsilon$, stop; use $x_k \in [a_k, b_k]$ as an approximate solution of x^* . Else,
 - (i) If $f'(x_k)$ and $f'(b_k)$ have opposite sign, set $[a_{k+1}, b_{k+1}] = [x_k, b_k]$.
 - (ii) If $f'(x_k)$ and $f'(a_k)$ have opposite sign, set $[a_{k+1}, b_{k+1}] = [a_k, x_k]$.

Remark 5.1. (a) $|b_k - a_k| = |b_1 - a_1|/2^{k-1}$.

Thus, to get $|b_k - a_k| \le 2\epsilon$, we need to have

$$k = \left\lceil \frac{\log\left((b_1 - a_1)/\epsilon\right)}{\log 2} \right\rceil$$

Here, [y] denotes the smallest integer greater than or equal to y.

(b) At termination, $|x_k - x^*| \le |b_k - a_k|/2 \le \epsilon$.

Newton's Method (根据Taylor二阶展开式得到)

Newton's Method

[Step 0] Select initial point x_0 , and an error of tolerance $\epsilon > 0$.

[Step k] For $k = 0, 1, 2, \dots$,

- (a) if $|f'(x_k)| < \epsilon$, stops; an appropriate critical point x_k is found.
- (b) Else, compute $x_{k+1} = x_k \frac{f'(x_k)}{f''(x_k)}$.

sensitive to the initial point

Golden Section Method

unimodal fun 只有一个全局最小值

$$\alpha^2=1-\alpha, \alpha=\frac{\sqrt{5}-1}{2}$$

Golden Section Method

[Step 0] Set $[a_0, b_0] = [a, b]$, and choose $\epsilon > 0$. Compute

$$\lambda_0 = b - \alpha(b-a), \quad \mu_0 = a + \alpha(b-a),$$

and evaluate $f(\lambda_0)$, $f(\mu_0)$.

[Step k] For $k = 0, 1, 2, \dots$,

- (a) If $b_k a_k < \epsilon$, stop; and $x^* \in [a_k, b_k]$.
- (b) Else,
 - (i) If $f(\lambda_k) > f(\mu_k)$, then set

$$a_{k+1} = \lambda_k, \qquad b_{k+1} = b_k,$$

$$\lambda_{k+1} = \mu_k, \qquad \mu_{k+1} = \lambda_k + \alpha(b_k - \lambda_k)$$

Evaluate $f(\mu_{k+1})$

(ii) If $f(\lambda_k) \leq f(\mu_k)$, then set

$$a_{k+1} = a_k,$$
 $b_{k+1} = \mu_k,$

$$\lambda_{k+1} = \mu_k - \alpha(\mu_k - a_k), \qquad \mu_{k+1} = \lambda_k$$

Evaluate $f(\lambda_{k+1})$

m-dim variable

1st order -- Gradient Descent Method

一般问题: $\min_{X\subset \mathbb{R}^n}$ f(X)

descent direction: $\left\langle igtriangledown f(x^{(k)}), p^{(k)}
ight
angle < 0$

单位方向: $d = -rac{igtriangledown f(x^*)}{\|igtriangledown f(x^*)\|}$

Steepest descent method with exact line search

[Step 0] Select an initial point $\mathbf{x}^{(0)}$, and $\epsilon > 0$.

[Step k] For $k = 0, 1, 2, 3 \cdots$,

- (a) evaluate $\mathbf{d}^{(k)} := -\nabla f(\mathbf{x}^{(k)})$.
- (b) if $\|\mathbf{d}^{(k)}\| < \epsilon$, stop the algorithm; $\mathbf{x}^{(k)}$ is an approximate solution.
- (c) else,
 - (i) find the value t_k that minimizes the one-dimensional function

$$g(t) := f(\mathbf{x}^{(k)} + t\mathbf{d}^{(k)}) \quad \text{over} \quad t \ge 0.$$

(ii) Set
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + t_k \mathbf{d}^{(k)}$$
.

zig-zag path

Theorem 5.1. The steepest descent method moves in <u>perpendicular</u> steps. More precisely, if $\mathbf{x}^{(k)}$ is a steepest descent sequence for a function $f(\mathbf{x})$, then, for each k, the vector joining $\mathbf{x}^{(k)}$ to $\mathbf{x}^{(k+1)}$ (i.e. $\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}$) is orthogonal (perpendicular) to the vector joining $\mathbf{x}^{(k+1)}$ to $\mathbf{x}^{(k+2)}$ (i.e. $\mathbf{x}^{(k+2)} - \mathbf{x}^{(k+1)}$).

收敛性

Theorem 5.2 (Convergence of gradient descent method). Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable on the set $S = \{x \in \mathbb{R}^n \mid f(x) \le f(x_0)\}$, and that S is a closed and bounded set. Then every cluster point \bar{x} of the sequence $\{x_k\}$ satisfies $\nabla f(\bar{x}) = 0$.

Convex Quadratic Form
$$\min_{X \in \mathbb{R}^n} \quad q(X) = rac{1}{2} X^T Q X$$

 $\boldsymbol{Q} \succ \boldsymbol{0}$, symmetric

收敛性

Proposition 5.1. For a symmetric positive definite \mathbf{Q} , suppose that $\{\mathbf{x}^{(k)}\}$ is the sequence obtained from the steepest descent method with exact line search applied to the function $q(\mathbf{x})$. Then

(a) Let
$$\mathbf{d}^k = \nabla q(\mathbf{x}^k) = \mathbf{Q}\mathbf{x}^k$$
.

$$\frac{q(\mathbf{x}^{k+1})}{q(\mathbf{x}^k)} = 1 - \frac{\langle \mathbf{d}^k, \mathbf{d}^k \rangle^2}{\langle \mathbf{d}^k, \mathbf{Q} \mathbf{d}^k \rangle \langle \mathbf{d}^k, \mathbf{Q}^{-1} \mathbf{d}^k \rangle}$$

(b)

$$\frac{q(\mathbf{x}^{(k+1)})}{q(\mathbf{x}^{(k)})} \le \left[\frac{\kappa(\mathbf{Q}) - 1}{\kappa(\mathbf{Q}) + 1}\right]^2 =: \rho(\mathbf{Q}),$$

where $\kappa(\mathbf{Q}) = \lambda_n/\lambda_1$ and λ_n, λ_1 are the largest and smallest eigenvalues of \mathbf{Q} , respectively. The number $\kappa(\mathbf{Q})$ is called the condition number of \mathbf{Q} . When $\kappa(\mathbf{Q}) \geq 1$ is small, say less than 10^3 , \mathbf{Q} is said to be well-conditioned, and ill-conditioned otherwise.

Remark. (a) From Proposition 5.1, we see that the convergence rate $\rho(\mathbf{Q})$ of the steepest descent method depends on $\kappa(\mathbf{Q})$. When $\kappa(\mathbf{Q})$ is large, the convergence rate

$$\rho(\mathbf{Q}) \approx 1 - \frac{4}{\kappa(\mathbf{Q})}.$$

- (b) In \mathbb{R}^2 , the contours of $q(\mathbf{x})$ are ellipses. And $\sqrt{\kappa(\mathbf{Q})}$ is the ratio between the length of the principal axes of the ellipses. Thus the larger the value of $\kappa(\mathbf{Q})$, the more elongated the ellipses are.
- (c) The number of iterations needed to reduce the relative error $q(\mathbf{x}_k)/q(\mathbf{x}_0)$ to smaller than ϵ is given by

$$k = \left[\frac{\log \epsilon}{\log \rho(\mathbf{Q})}\right] + 1$$

where [a] denotes the largest integer less than or equal to a.

Strongly Convex function: $\min_{X \in S} \quad f(X)$

S: convex set

f: strongly convex & M-Lipschitz continuous gradient on S. Hessian satisfies:

$$mI \preceq H_f(X) \preceq MI, \quad \forall X \in S$$

收敛性

Lemma 5.1. Let \mathbf{x}^* be a minimizer of $\min\{f(\mathbf{x}) \mid \mathbf{x} \in S\}$. Then

$$f(\mathbf{x}) - \frac{1}{2m} \|\nabla f(\mathbf{x})\|^2 \le f(\mathbf{x}^*) \le f(\mathbf{x}) - \frac{1}{2m} \|\nabla f(\mathbf{x})\|^2 \quad \forall \ \mathbf{x} \in S.$$

Theorem 5.3. Let $f: \mathbf{R}^n \to \mathbf{R}$ be strongly convex with parameter m and its gradient is M-Lipschitz. Let \mathbf{x}^* be the unique minimizer of f over \mathbf{R}^n . Define $E_k = f(\mathbf{x}^k) - f(\mathbf{x}^*)$. Then

$$E_{k+1} \leq E_k - \frac{1}{2M} \|\nabla f(\mathbf{x}^k)\|^2$$
 (descent inequality)
 $E_{k+1} \leq E_k \left(1 - \frac{m}{M}\right)$.

Remark. (a) From Theorem 5.3, we see that

$$E(\mathbf{x}^{k+1})/E(\mathbf{x}^1) \le (1 - m/M)^k \le \varepsilon$$

implies that we need the number of iterations k to satisfy

$$k \geq \frac{\log \varepsilon^{-1}}{\log \rho^{-1}} \approx \frac{m}{M} \log \varepsilon^{-1} \quad (\text{if } m/M \ll 1)$$

where $\rho = 1 - m/M$.

Line Search Strategies

Minimization rule = exact line search: find

$$\alpha_k := \operatorname{argmin} \Big\{ f(\mathbf{x}^k + \alpha \mathbf{d}^k) \mid \alpha \ge 0 \Big\}.$$

If the search interval is limited to $\alpha \in [0, \bar{\alpha}]$, it is called limited minimization rule.

 Armijo rule: Let σ ∈ (0, 0.5) and β ∈ (0, 1). Start with ᾱ and continue with α = βᾱ, β²ᾱ, β³ᾱ, . . . until the following inequality is satisfied:

$$f(\mathbf{x}^k + \alpha \mathbf{d}^k) \leq f(\mathbf{x}^k) + \alpha \sigma \langle \nabla f(\mathbf{x}^k), \mathbf{d}^k \rangle.$$

Let r be the first integer satisfying the inequality. Set $\alpha_k = \beta^r \bar{\alpha}$.

Non-monotone line search:

$$f(\mathbf{x}^k + \alpha \mathbf{d}^k) \le \max\{f(\mathbf{x}^{k-l}), \dots, f(\mathbf{x}^k)\} + \alpha \sigma \langle \nabla f(\mathbf{x}^k), \mathbf{d}^k \rangle.$$

2nd order -- Newton Method

用Taylor 二阶形式 q(X) 去逼近原函数 f(X) ,多维中依赖Hessian

Algorithm for Newton Method.

[Step 0] Select an initial point $\mathbf{x}^{(0)}$, and $\epsilon > 0$.

[Step k] For $k = 0, 1, 2, 3, \cdots$

- (a) evaluate $\nabla f(\mathbf{x}^{(k)})$
- (b) if $\|\nabla f(\mathbf{x}^{(k)})\| < \epsilon$, then stop; and $\mathbf{x}^{(k)}$ provides a good approximation to a critical point of $f(\mathbf{x})$.
- (c) else, evaluate $H_f(\mathbf{x}^{(k)})$ and set

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - H_f(\mathbf{x}^{(k)})^{-1} \nabla f(\mathbf{x}^{(k)}).$$

Note that the direction of descent $\mathbf{p}^{(k)}$ is $-H_f(\mathbf{x}^{(k)})^{-1}\nabla f(\mathbf{x}^{(k)})$ and $\alpha_k = 1$.

收敛性

Assumption on f

- H_{*} is non-singular.
- (ii) $H(\mathbf{x})$ is Lipschitz continuous in a neighborhood of \mathbf{x}_* , i.e., there exists a constant L > 0 and $\bar{\delta} > 0$ such that

$$||H(\mathbf{x}) - H(\mathbf{y})||_F \le L||x - y|| \quad \forall \ \mathbf{x}, \mathbf{y} \in B(\mathbf{x}_*, \bar{\delta}).$$

We pick $\bar{\delta}$ to be smaller enough so that $\bar{\delta} \leq 1/(2L\|H_*^{-1}\|_F)$.

Proposition 5.2. Suppose Assumptions (i) and (ii) hold, and \mathbf{x}_0 is sufficiently close to \mathbf{x}_* . Then the sequence $\{\mathbf{x}_k\}$ generated by the Newton method converges to \mathbf{x}_* quadratically, i.e., there exists a constant M such that

$$\|\mathbf{x}_{k+1} - \mathbf{x}_*\| \le M \|\mathbf{x}_k - \mathbf{x}_*\|^2$$