Experiment 6 Instruction

Dawei Zhong Mar 23, 2022 KAP-B11

Introduction & Tips

- About: In this lab, you need to study optics
- Tips:
 - Read the lab manual and this instruction together to figure out how to do the lab
 - You are required to take photos, don't forget that
 - Be careful about the laser pointer and don't hurt you and your classmates eyes

Hope it helps

Preparation

 Set up: Fill your plastic refraction cup with water and place it on the paper protractor

Set up like this

Task A - Part A, B and C in the Manual

- Refraction and Snell's Law: Make sure the incident beam hits the center of the semi-circle
- Use your setup to measure 9-10 different angles of refraction θ_2 with different angle of incidence θ_1 θ_1 and θ_2 are smaller than 90°

Here is θ_1 and θ_2

Task A - Part A, B and C in the Manual

- Refraction and Snell's Law: Make sure the incident beam hits the center of the semi-circle
- Use your setup to measure 9-10 different angles of refraction θ_2 with different angle of incidence θ_1 θ_1 and θ_2 are smaller than 90°

Task A - Part A, B and C in the Manual

- Data Analysis:
- Plot $\theta_2 \theta_1$, use θ_1 as x—axis value and θ_2 as y—axis value
- Calculate $\sin \theta_1$ and $\sin \theta_2$, and use your Excel to plot $\sin \theta_2 \sin \theta_1$, use $\sin \theta_1$ as x—axis value and $\sin \theta_2$ as y—axis value and calculate the slope of the line with your Excel. The slope is n_1/n_2

Task A - Part D and E in the Manual

- **Totally reflection:** Measure the angle of totally reflection
 - Set up the lab as shown
 - Measure the
 minimum θ_1 that make you
 cannot see the transmitted
 beam
 - Don't forget to answer questions in the manual

Task A - Part D and E in the Manual

- Totally reflection: Measure the angle of totally reflection
 - Set up the lab as shown
 - \circ Measure the minimum $heta_1$ that make you cannot see the transmitted beam
 - Don't forget to answer questions in the manual

Task A - Part D and E in the Manual

- Totally reflection: Measure the angle of totally reflection
 - Set up the lab as shown
 - \circ Measure the minimum $heta_1$ that make you cannot see the transmitted beam
 - Don't forget to answer questions in the manual

Task A - Part F in the Manual

Multiple internal reflection:

- Move the incident beam as shown, and find out the position that make the beam exits at the other end of flat surface
- Make sure the incident beam is perpendicular to the face of the refraction cup

