# On the Optimization of Pippenger's Bucket Method with Precomputation

Guiwen Luo, Guang Gong

{g27luo, ggong}@uwaterloo.ca

Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L3G1, CANADA

#### **Problem**

Multi-scalar Multiplication (MSM) over fixed points:

 $S_{n,r} = a_1 P_1 + a_2 P_2 + \dots + a_n P_n,$  (1)

where  $0 \le a_i < r$  and  $P_i$  are fixed points in elliptic curve group.

• How can we compute it efficiently for large  $n: n \ge 2^{16}$ ?

#### **Motivation**

- MSM dominates the time consumption in pairing-based zero-knowledge succinct non-interactive argument of knowledge (zkSNARK) schemes.
- Circuit size in Zcash: for single SHA-256 hash, the number of multiplication gates is about 23 thousands; for nested hash, several millions.



credit: https://en.wikipedia.org/wiki/Zcash

# Pippenger's bucket method example

• Example:

$$S_{13,8} = 2P_1 + 3P_2 + 7P_3 + 6P_4 + 5P_5 + 1P_6 + 3P_7$$
$$+6P_8 + 2P_9 + 7P_{10} + 1P_{11} + 4P_{12} + 5P_{13}.$$

• All points are sorted into 7 buckets with respect to the scalars  $\{1, 2, \dots, 7\}$ :

$$S_{13,8} = 1 (P_6 + P_{11}) + 2 (P_1 + P_9) + 3 (P_2 + P_7) + 4P_{12}$$
  
  $+ 5 (P_5 + P_{13}) + 6 (P_4 + P_8) + 7 (P_3 + P_{10})$   
  $:= 1S_1 + 2S_2 + ... + 7S_7.$ 

ullet The accumulated sum  $\Sigma_{i=1}^7 iS_i$  can be computed via

$$S_7$$
  
+  $(S_7 + S_6)$   
+  $(S_7 + S_6 + S_5)$   
...  
+  $(S_7 + S_6 + S_5 + \cdots + S_1)$ .

•  $\{S_i\}$ : 13-7=6 additions,  $\Sigma_{i=1}^7 i S_i$ :  $2\times 6=12$  additions. In total, 18 additions.

# Pippenger's bucket method variant

- If r is small enough, all n points are sorted into r-1 buckets according to the scalars.
- Then MSM

$$S_{n,r} = 1S_1 + 2S_2 + \dots + (r-1)S_{r-1}$$
  
=  $S_{r-1} + (S_{r-1} + S_{r-2}) + \dots$   
+  $(S_{r-1} + S_{r-2} + \dots + S_1).$ 

- $S_i$ 's: n-r+1 additions,  $\sum_{i=1}^{r-1} i S_i$ :  $2\times (r-2)$  additions. In total, n+r-3 additions.
- If r is big (over BLS12-381 curve,  $r\approx 2^{256}$ ), every scalar is decomposed into its q-ary form,

$$a_{i} = a_{i,0} + a_{i,1}q + \dots + a_{i,h-1}q^{h-1},$$

$$S_{n,r} = a_{1}P_{1} + a_{2}P_{2} + \dots + a_{n}P_{n}$$

$$= \sum_{i=1}^{n} \sum_{j=0}^{h-1} a_{ij} \cdot (q^{j}P_{i}), 0 \leq a_{ij} < q,$$

$$\vdots = S_{nh,q}.$$

• Precomputation (nh points):

$$\{q^j P_i \mid 1 \le i \le n, \ 0 \le j \le h-1\}.$$

• By aforementioned method, all points are sorted into q-1 buckets. In total,  $S_{n,r}$  can be computed using nh+q-3

additions.

## **General framework**

• Let us summarize the framework of computing MSM,

$$S_{n,r} = S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{h-1} a_{ij} q^{j} P_{i}, \ 0 \le a_{i} \le q.$$

• If  $a_{ij} = m_{ij}b_{ij}$ ,  $m_{ij} \in M$  (multiplier set),  $b_{ij} \in B$  (bucket set), then

$$S_{hn,q} = \sum_{i=1}^{n} \sum_{j=0}^{h-1} b_{ij} \cdot (m_{ij}q^{j}P_{i}).$$

• Precompute (nh|M| points)

$$\{mq^{j}P_{i} \mid 1 \leq i \leq n, 0 \leq j \leq h-1, m \in M\},\$$

then it takes  $\approx nh + |B|$  additions to compute  $S_{n,r}$ .

• Pippenger's bucket method,

$$M = \{1\}, B = \{0, 1, 2, ..., q - 1\}.$$

 $S_{n,r}$  takes  $\approx nh + q$  additions.

• Pippenger's bucket method variant (notice that -P can be easily computed given P),

$$M = \{1, -1\}, B = \{0, 1, 2, ..., \lceil q/2 \rceil \}.$$

 $S_{n,r}$  takes  $\approx nh + q/2$  additions.

## New alogorithm

**Goal:** Construct bucket set B, s.t.  $|B| \approx q/\ell$ . It will yield an algorithm to compute  $S_{n,r}$  using  $\approx hn + q/\ell$  additions.

- Let q be a prime s.t. 2 is a primitive element in  $\mathbb{F}_q$ .  $\ell$  and h are small positive integers s.t.  $2^{\ell-1} < q$  and  $q^{h-1} < r \le 2^{\ell-1}q^{h-1}$ .
- The multiplier set is

$$M = \{2^i \mid 0 \le i \le \ell - 1\} \cup \{-1\},\$$

• The corresponding bucket set  $(|B| \approx q/\ell)$  is  $B = \{i \mid 0 \le i \le 2^{\ell-1}\} \cup \{2^{i \cdot \ell} \bmod q \mid 0 \le i \le \lfloor q/\ell \rfloor\}.$ 

The idea behind the construction is that

$$\{i \mid 1 \le i \le q-1\} = \{2^i \bmod q \mid 0 \le i \le q-2\}.$$

• Note: Elements in the bucket set is no longer consecutive, a new accumulation algorithm is needed.

## **Further optimization**

Observation:

$$\{i \mid 1 \le i < q\} = \{2^i \bmod q \mid 0 \le i \le q - 2\}$$
$$= \{2^i \bmod q \mid (3 - q)/2 \le i \le (q - 1)/2\}.$$

Bucket set can be further reduced to  $(|B| \approx q/(2\ell))$ 

$$B = \{i \mid 0 \le i \le 2^{\ell}\} \cup \{2^{i \cdot \ell} \mod q \mid 0 \le i \le \lfloor (q-1)/2\ell \rfloor \}.$$

GLV endomorphism

$$\lambda P = \lambda \cdot (x,y) = (\xi x,y), \ \lambda^3 = 1 \in \mathbb{F}_r, \xi^3 = 1 \in \mathbb{F}_p,$$
 where  $\lambda \approx \sqrt{r}$ , every scalar  $a = a_0 + a_1 \lambda$ , so  $S_{n,r} = S_{2n,\lambda}.$ 

It further reduces the precomputation by a factor of 2.

# Conclusion

**Conclusion:**  $S_{n,r}$  over fixed points can be computed using at most approximately

$$nh + q/(2\ell) \tag{2}$$

additions, with the help of  $\ell nh$  precomputed points

$$\{mq^{j}P_{i} \mid 1 \le i \le n, 0 \le j \le h-1, m \in \{1, 2, ..., 2^{\ell-1}\}\},\$$

where  $h = \lceil \log_q r \rceil$ , and q is a prime selected to minimize the cost.

### Instantiation

The instantiation is done over the elliptic curve group of order  $r=2^{256}$ . Some comparisons against Pippenger's bucket method and its variant are presented in the following tables.

Comparison of methods that computes  $S_{n,r}$ 

|   | Method                | Storage           | Worst case cost            |
|---|-----------------------|-------------------|----------------------------|
|   | Pippenger [1]         | $n \cdot P$       | $h(n+q/2)\cdot A$          |
| _ | Pippenger variant [2] | $nh \cdot P$      | $(nh + q/2) \cdot A$       |
|   | Our algorithm         | $\ell nh \cdot P$ | $(nh + q/(2\ell)) \cdot A$ |

Radix q employed by different methods

| n                   | Pippenger | Pippneger variant | Our method    |
|---------------------|-----------|-------------------|---------------|
| $\overline{2^{16}}$ | $2^{13}$  | $2^{17}$          | $2^{18} - 5$  |
| $2^{17}$            | $2^{14}$  | $2^{18}$          | $2^{21} - 19$ |
| $2^{18}$            | $2^{15}$  | $2^{19}$          | $2^{21} - 19$ |
| $2^{19}$            | $2^{17}$  | $2^{20}$          | $2^{21} - 21$ |
| $2^{20}$            | $2^{18}$  | $2^{20}$          | $2^{23}-21$   |

Number of additions taken to compute  $S_{n,r}$ 

| n                   | Pippenger            | Pippenger variant    | Our method           |
|---------------------|----------------------|----------------------|----------------------|
| $2^{16}$            | $1.39 \times 10^{6}$ | $1.11 \times 10^{6}$ | $1.00 \times 10^6$   |
| $2^{17}$            | $2.65 \times 10^{6}$ | $2.10 \times 10^6$   | $1.88 \times 10^6$   |
| $2^{18}$            | $5.01 \times 10^6$   | $3.93 \times 10^6$   | $3.58 \times 10^{6}$ |
| $\overline{2^{19}}$ | $9.44 \times 10^{6}$ | $7.34 \times 10^6$   | $6.99 \times 10^6$   |
| $2^{20}$            | $1.77 \times 10^{7}$ | $1.42 \times 10^{7}$ | $1.33 \times 10^{7}$ |

# Acknowledgements

- [1] This work is supported by NSERC SPG and Ripple University Research.
- [2] Chenkai Weng provides us useful advice about the construction.

#### References

- [1] Daniel J Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk.
   Faster batch forgery identification.
   In International Conference on Cryptology in India, pages 454–473. Springer, 2012.
- [2] Ernest F Brickell, Daniel M Gordon, Kevin S McCurley, and David B Wilson. Fast exponentiation with precomputation: algorithms and lower bounds. *preprint, Mar,* 27, 1995.