CS116 – LẬP TRÌNH PYTHON CHO MÁY HỌC

TS. Nguyễn Vinh Tiệp

ML Pipeline

https://machinelearningcoban.com/tabml_book/ch_intro/pipeline.html

Data Validation

- 1. Phát hiện các ngoại lệ
- 2. Xử lý các ngoại lệ (ngoại bỏ, thay thế giá trị)

Ngoại lệ: Các kiểu ngoại lệ khác nhau

Làm sạch dữ liệu - Ngoại lệ

- ☐ Có hai loại ngoại lệ:
 - □ Các ngoại lệ đơn biến: các điểm dữ liệu **có giá trị nằm ngoài phạm vi giá trị dự kiến**
 - ☐ Các ngoại lệ đa biến: có các ngoại lệ **phụ thuộc** vào **mối tương quan** giữa **hai biến**

Làm sạch dữ liệu: Hướng tiếp cận đơn giản

- ☐ Một số bước có thể được thực hiện để làm sạch dữ liệu: ☐ Xóa các giá tri bi thiếu, trùng lặp, ngoại lệ và các hàng/côt không cần thiết ☐ Lập lại chỉ mục và định dạng lại dữ liệu # Drop rows with missing value # Re indexing data.set index('column', inplace = True) data.dropna(inplace = True) data.reset index(drop = True)# Remove duplicates data.drop_duplicates() # Re-formatting data['column'] = data['column'].astype(int) # Drop unnecessary columns
 - # Drop/Filter unnecessary rows data.drop([0, 1], inplace = True)data[data['column filter'] == 'abc']

data.drop(columns = [list cols], axis = 1)

Correcting inconsistent data data['column'].replace(old value, new value, inplace = True)

Dự đoán ngoại lệ như thế nào

- ☐ Phương pháp thống kê:
 - ☐ Phương pháp tính độ lệch chuẩn và trung bình: giới hạn để xác định các giá trị ngoại lệ (Gaussian hoặc Gaussian-like)
 - ☐ Phương pháp Interquartile Range (IQR): một thống kê tốt để tóm tắt mẫu dữ liệu phân phối không phải Gaussian

https://github.com/NavsanSaran/stats101/blob/master/

Tự động phát hiện ngoại lệ

- □ Tự động phát hiện ngoại lệ:
 - Yếu tố ngoại lệ cục bộ (Local Outlier Factor): Xác định các ngoại lệ là xác định vi trí của các mẫu ở xa mẫu khác
 - □ Rừng cách ly (Isolation Forest): Thuật toán phát hiện bất thường dựa trên cây
 - Xác định hiệp phương sai tối thiểu (EllipticEnvelope): Tập dữ liệu theo phân phối chuẩn.
 - One-class SVM : Phát hiện ngoại lệ không được giám sát

Yếu tố ngoại lệ cục bộ - Local Outlier Factor (LOF)

• Thuật toán yếu tố ngoại lệ cục bộ có thể được chia thành bốn phần

K-Distance and K-Neighbors

Nếu k nhỏ thì thuật toán trở nên nhạy cảm với nhiễu và nếu k lớn, nó có thể không nhận ra được các dị thường cục bộ. **Reachability Distance**

Biểu thị khoảng cách lớn nhất của hai điểm và khoảng cách-k của điểm thứ hai **Local Reachability Density**

Đề cập đến việc chúng ta cần đi bao xa từ điểm hiện tại để đến điểm hoặc tập hợp điểm tiếp theo Local Outlier Factor
Calculation

Mật độ khả năng tiếp cận cục bộ được tìm thấy được so sánh với mật độ khả năng tiếp cận cục bộ của k hàng xóm gần nhất

LOF: Làm thế nào để phát hiện các ngoại lệ?

- □ <u>Example</u>
- □ LOF with sklearn

Cleanlab: Công cụ Al tập trung vào dữ liệu tiêu chuẩn

github

Cleanlab: Tìm mẫu OOD (Out-Of-Distribution)

■ Source code

Cleanlab: Tìm vấn đề về nhãn

☐ Phát hiện các vấn đề về dữ liệu: ngoại lệ, trùng lặp, lỗi nhãn,...

```
KNN = NearestNeighbors(metric='euclidean')
KNN.fit(X_processed.values)
knn_graph = KNN.kneighbors_graph(mode="distance")
data = {"X": X_processed.values, "y": labels}
lab = Datalab(data, label name="v")
lab.find issues(pred probs=pred probs, knn graph=knn graph)
Finding label issues ...
Finding outlier issues ...
Finding near_duplicate issues ...
Audit complete, 357 issues found in the dataset.
lab.report()
Here is a summary of the different kinds of issues found in the data:
   issue_type num_issues
        label
      outlier
                     46
near duplicate
                     17
Dataset Information: num examples: 941, num classes: 5
------ label issues
About this issue:
       Examples whose given label is estimated to be potentially incorrect
    (e.g. due to annotation error) are flagged as having label issues.
```


Data preparation

- Data fusion
- Data cleaning
- Data augmentation
- Data visualization
- Data splitting
- •

Làm sạch dữ liệu – thiếu giá trị

- □ Bộ dữ liệu chứa các **giá trị bị thiếu**, thường được mã hóa dưới dạng trống, NaN,..
- ☐ Phương pháp đơn giản:
 - ☐ Bỏ các cột có tỷ lệ thiếu giá trị cao (chẳng hạn như 80%)
 - ☐ Tự động điền giá trị còn thiếu
- ☐ Phương pháp khác

EDA

- Phân tích các đặc trưng chính của dữ liệu
- Mô tả bằng số liệu, biểu đồ thống kê hoặc trực quan hóa dữ liệu

EDA: Ví dụ về dữ liệu

☐ Dataset link

Data loading

Tải dữ liệu và in ra màn hình các dữ liệu đầu tiên

		Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Pas	sengerId											
	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Các loại dữ liệu

Có 2 loại dữ liệu chính:

- Numerical data: dữ liệu dạng số
- Categorical data: dữ liệu dạng phân loại

1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th female 38.0 1 0 PC 17599 71.2833 C85	
2 1 1 Cumings, Mrs. John Bradley (Florence Briggs female 38.0 1 0 PC 17599 71.2833 C85	_
Z	S
	С
3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN	S
4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123	S
5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN	S

Kiểm tra các đặc trưng thống kê

1 df_train.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Đồ thị thống kê

Sử dụng thư viện matplotlib hoặc seaborn để vẽ đồ thị

Các kiểu phân tích dữ liệu bằng cách thăm dò

- □ Có ba loại EDA chính
 - □ Phân tích đơn biến
 - □ Phân tích hai biến
 - □ Phân tích đa biến

Phân tích đơn biến

- □ Phân tích dữ liệu của chỉ một biến (đặc trưng/cột)
- □ Phân tích đơn biến không dùng biểu đồ
 - □ Trung tâm dữ liệu (Central Tendency): đề cập đến giá trị nằm ở vị trí trung tâm hoặc khu vực giữa của dữ liệu (các tham số ước lượng: trung bình, trung vị, mode).
 - □ Phạm vi: Sự **khác biệt** giữa giá trị **tối đa** và **tối thiểu** trong dữ liệu
 - □ Phương sai và độ lệch chuẩn

Phân tích đơn biến không dùng biểu đồ

☐ Tính trung bình, Độ lệch chuẩn, giá trị nhỏ nhất, lớn nhất và phân vị thứ nhất (first quartile), phân vị thứ ba (third quartile), trung vị của các cột số trong tập dữ liệu.

1 df_train[['Survived','Pclass','Age','SibSp','Fare']].describe()

	Survived	Pclass	Age	SibSp	Fare
count	891.000000	891.000000	714.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	32.204208
std	0.486592	0.836071	14.526497	1.102743	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	512.329200

Thực hiện bởi Trường Đại học Công nghệ Thông tin, ĐHQG-HCM

Phân tích đơn biến

- □ Phân tích đơn biến sử dụng biểu đồ
 - □ Biểu đồ tần suất (Histogram): Biểu đồ dạng thanh trong đó **tần số của dữ liệu** được biểu thị bằng các thanh hình chữ nhật
 - □ Biểu đồ mật độ: giống như một phiên bản **mượt mà hơn** của **biểu đồ tần suất**
 - □ Box-plot: Ở đây thông tin được thể hiện dưới dạng các hộp (giá trị nhỏ nhất, phân vị thứ nhất (first quartile), trung vị (median), phân vị thứ ba (third quartile), giá trị lớn nhất)

Histogram & Box plot

Biểu đồ tần suất về tuổi

Box-plot của tuổi

Ví dụ về phân tích đơn biến

Phân tích hai biến

- ☐ Phân tích hai biến: xác định xem có tồn tại mối liên hệ thống kê giữa hai biến hay không
- ☐ Có ba loại chính:
 - ☐ Phân tích dạng số-số
 - ☐ Phân tích dạng số-phân loại
 - ☐ Phân tích dạng phân loại-phân loại

Phân tích dạng số - số

- ☐ Khi cả hai biến được so sánh đều có dữ liệu số
- ☐ Một số phương pháp trực quan có thể được sử dụng:
 - ☐ Biểu đồ phân tán (Scatter plot): được sử dụng để thể hiện mọi điểm dữ liệu trong biểu đồ
 - ☐ Biểu đồ cặp (Pair plot)
 - ☐ Ma trận tương quan (Correlation matrix)

Ma trận tương quan kết hợp bản đồ nhiệt

Biểu đồ phân tán giữa tuổi và chi tiêu

Phân tích dạng số - phân loại

- ☐ Khi một biến có kiểu số và biến khác là biến phân loại
- ☐ Bạn có thể nhóm lại để sắp xếp dữ liệu thành các nhóm tương tự. Các hàng có cùng giá trị trong một cột cụ thể sẽ được sắp xếp thành một nhóm với nhau

```
df train[['Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare'\
               ,'Embarked']].groupby(['Survived', 'Embarked']).mean()
                     Pclass
                                    Age
                                           SibSp
                                                     Parch
                                                                 Fare
          Embarked
Survived
                    2.200000
                              33.666667
                                        0.253333
                                                  0.253333
                                                            35.443335
             Q
                    2.936170
                              30.325000
                                        0.510638
                                                  0.276596
                                                            13.335904
             S
                              30.203966
                                        0.611241
                                                  0.348946
                                                           20.743987
             C
                    1.634409
                              28.973671
                                        0.494624
                                                  0.451613
                                                            79.720926
             Q
                                        0.300000
                                                            13.182227
             S
                              28.113184
                                        0.493088
                                                  0.539171
```

Thực hiện bởi Trường Đại học Công nghệ Thông tin, ĐHQG-HCM

Phân tích dạng phân loại – phân loại

- □ Khi cả hai biến đều có tính phân loại
- □ Một số phương pháp trực quan có thể được sử dụng:
 - □ Biểu đồ cột xếp chồng (Stacked Bar Chart hay Segmented Bar Chart)
 - □ Biểu đồ cột tạo cụm (Cluster Bar Chart)

Phân bố của giới tính và cảng khởi hành

EDA- Age vs Survived

sns.histplot(df_train, x='Age', hue='Survived', bins=40, kde=True)

Một số công cụ Automatic EDA

□ Comparison notebook

Ưu điểm của Automatic EDA tools

Pandas Profiling

Overview

Overview

Pandas profiling

Thiếu giá trị

Pandas profiling

Sự tương quan

Pandas profiling Trình thông dịch

☐ Thực hiện phân tích và trực quan hóa dữ liệu

	Model Code Interpreter ALPHA					
Codo Interpretor ALPHA	Plugins ALPHA					
Code Interpreter ALPHA An experimental model that can use Python, and handles uploads and downloads	Default (GPT-3.5)					
	GPT-4					
	Legacy (GPT-3.5)					
	Default (GPT-3.5) with browsing ALPHA					
	Code Interpreter ALPHA					
	ChatGPT PLUS					

Pandas Al

- ☐ Pandas AI là một thư viện Python bổ sung các khả năng AI tổng quát cho Pandas
- Làm cho Pandas có thể trò chuyện, cho phép bạn đặt câu hỏi về dữ liệu của mình
- ☐ Github: link

Installation

pip install pandasai

HổI ĐÁP