Started on	Tuesday, 27 August 2024, 1:09 PM
State	Finished
Completed on	Tuesday, 27 August 2024, 1:09 PM
Time taken	17 secs
Marks	4.00/4.00
Grade	10.00 out of 10.00 (100%)
Question 1 Correct Mark 1.00 out of 1.00	Which of the following can be source for diffusion in silicon? ✓ a. Highly doped SiO2 layers ✓ ✓ b. Dopants implanted into silicon by ion implantation process. ✓ ✓ c. Dopant containing gases in a high temperature tube furnace. ✓ ✓ d. Epitaxial layers deposited on silicon. ✓
	Your answer is correct. The correct answers are: Highly doped SiO2 layers, Dopant containing gases in a high temperature tube furnace. , Epitaxial layers deposited on silicon. , Dopants implanted into silicon by ion implantation process.
Question 2 Correct Mark 1.00 out of 1.00	Assuming that the resistivity of a single crystal silicon film is inversely proportional to the concentration of the dopants in the silicon, which of the following statements are correct? ✓ a. The smallest resistivity can be obtained by doping the silicon with arsenic. ✓ ☐ b. Among the p-type dopants, the smallest resisitivity can be obtained by doping silicon with gallium.
	Your answer is correct. The correct answer is: The smallest resistivity can be obtained by doping the silicon with arsenic.

Question 3 Correct Mark 1.00 out of 1.00	Assume that a delta layer of phosphorous is placed at 350 micro meter depth in a silicon wafer of 700 micro meter thickness. Subsequently the wafer is heated to high temperature and held at a specific high temperature for about 30 min. Which of the following states are correct?
	 □ a. A gaussian profile will result if the wafer is intrinsic at the diffusion temperature. ☑ b. The resultant profile will be neither a gaussian nor a complementary error function. □ c. A complementary error function profile will result if the wafer is intrinsic at the diffusion temperature.
	Your answer is correct. The correct answer is: The resultant profile will be neither a gaussian nor a complementary error function.
Question 4 Correct Mark 1.00 out of 1.00	The active and chemical concentrations of dopants in silicon are always equal. True False ✓
	The correct answer is 'False'.