Dynamic programming in less time and space

Ben Langmead

Department of Computer Science

You are free to use these slides. If you do, please sign the guestbook (www.langmead-lab.org/teaching-materials), or email me (ben.langmead@gmail.com) and tell me briefly how you're using them. For original Keynote files, email me.

We said the fill step requires O(mn) space

	E	T	Α	T	G	T	C	Α	T	G	С
ϵ	0	8	16	24	32	40	48	56	64	72	80
T	8	0	8	16	24	32	40	48	56	64	72
Α	16	8	0	8	16	24	32	40	48	56	64
C	24	16	8	2	10	18	24	32	40	48	56
G	32	24	16	10	2	10	18	26	34	40	48
T	40	32	24	16	10	2	10	18	26	34	42
C	48	40	32	24	18	10	2	10	18	26	34
Α	56	48	40	32	26	18	10	2	10	18	26
G	64	56	48	40	32	26	18	10	6	10	18
C	72	64	56	48	40	34	26	18	12	10	10

Can we do better?

Assume we're only interested in cost / score in lower right-hand cell

	ϵ	Т	Α	Т	G	Т	C	Α	Т	G	C
ϵ	0	8	16	24	32	40	48	56	64	72	80
Т	8	0	8	16	24	32	40	48	56	64	72
Α											
C											
G											
Т											
C											
Α											
G											
C											_

Idea: just store current and previous rows. Discard older rows as we go. (Likewise for columns or antidiagonals.)

Idea: just store current and previous rows. Discard older rows as we go. (Likewise for columns or antidiagonals.)

We get desired value / score, by looking in the lower right cell (global alignment)

More savings: discard *elements* as soon as they're no longer needed

Can we get both the optimal score and the alignment in linear space?

For global alignment, we can...

Space usage revisited: subdividing matrix

Assume global alignment. Idea: Split matrix into left half, filled as usual, and right half, filled "backwards." In both halves, only store current, previous columns.

Find V[i, j]s for successively longer prefixes of x and y

of ENGINEERING

Space usage revisited: subdividing matrix

After fill, we have the center 2 columns

5	4							
5	5	Given nearby cells from each						
1	6	column, we can calculate value for						
2	6	optimal global alignment passing						
4	3							
5	2	through those cells						
Ĺ	3							
L	1							
<u> </u>	1	Opimal such value indicates where						
5	4	alignment crosses the center						
5	5							
3	6	Repeat recursively to solve the						
4	7	•						
4	1	entire problem, including backtrace,						
2	3	in O(mn) time and linear space						
	_	•						

Hirschberg's algorithm See Gusfield 12.1

Data parallelism: SIMD operations

http://www.coins-project.org/international/COINSdoc.en/simd/simd.html

SIMD: Single Instruction, Multple Data

A SIMD operation performs several operations at once on *vectors* of operands

One instruction on a modern CPU can add two vectors of 8 16-bit numbers quickly:

Data parallelism

Can we take advantage of these operations when filling the matrix?

Data parallelism

Yes, dynamic programming has "data parallelism"

E.g. cells in **red** are calculated in the same way: different inputs but same operations. None depend on the others.

Things we do when filling in a cell: add, max, etc, can be packed into vectors and done for many cells in parallel:

Data parallelism

Variations on this idea are quite practical and used a lot in practice

- Wozniak A. **Using video-oriented instructions to speed up sequence comparison**. *Comput Appl Biosci*. 1997 Apr;13(2):145-50.
- B Rognes T, Seeberg E. Six-fold speed-up of Smith-Waterman sequence database searches using parallel processing on common microprocessors. *Bioinformatics*. 2000 Aug;16(8):699-706.
- Farrar M. Striped Smith-Waterman speeds database searches six times over other SIMD implementations. *Bioinformatics*. 2007 Jan 15;23(2): 156-61.
- Rognes T. **Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation**. *BMC Bioinformatics*. 2011 Jun 1;12:221.

Figure from: Rognes T. Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation. *BMC Bioinformatics*. 2011 Jun 1;12:221.

Dynamic programming summary

- Edit distance is harder to calculate than Hamming distance, but there is a O(mn) time dynamic programming algorithm
- Global alignment generalizes edit distange to use a cost function
- Slight tweaks to global alignment turn it into an algorithm for:
 - Longest Common Subsequence
 - Finding approximate occurrences of P in T
- Local alignment also has a O(mn)-time dynamic programming solution
- Further efficiencies are possible:
 - If no alignment is needed, global/local alignment can be made linear-space
 - Even if alignment is needed, global alignment can be made linear-space with Hirschberg
 - SIMD instructions can fill in chunks of cells at a time

More ideas: http://en.wikipedia.org/wiki/Smith-Waterman algorithm#Accelerated versions

