ACM 算法与微应用开发实验室 21 届成员选拔赛题目

2021年11月6日

比赛信息

赛制	语言	时长	题目数量
ACM 个人赛 不封榜	C/C++, Python, Java	3 小时	6

题目概况

题目编号	题目名称	运行时间上限	运行内存上限	题目类型	命题人
A	K 素数筛	3000ms	256M	传统	Tifa
В	天马行空	1000ms	256M	传统	AgOH
C	双端队列	1000ms	256M	传统	AgOH
D	水的体积	1000ms	256M	传统	AgOH
E	棋牌室	1000ms	256M	传统	Tifa
F	倍思亲	1000ms	256M	传统	AgOH

编译命令

C(gcc 9.4)	gcc -DONLINE_JUDGE -02 -w -std=c11 {src_path} -lm -o {exe_path}
C++(g++ 9.4)	g++ -DONLINE_JUDGE -02 -w -std=c++14 {src_path} -lm -o {exe_path}
Java(OpenJDK 11)	<pre>javac {src_path} -d {exe_path} -encoding UTF8</pre>
Python2.7	<pre>python -m py_compile {src_path}</pre>
Python3.6	<pre>python3 -m py_compile {src_path}</pre>

注意事项

- C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- C/C++ 代码必须完全符合 GNU C/C++ 标准,不能使用诸如绘图、Win32API、中断调用、硬件操作或与操作系统相关的 API。
- C/C++ 代码中允许使用 STL 类库。

祝大家取得好成绩!

A. K 素数筛

运行时间上限: 3000ms 运行内存上限: 256M 题目类型: 传统 命题人: Tifa

题目描述

Tifa: 对给定的 n, 如何快速地在 [1, n] 中筛出所有的素数?

AgOH: 这不有手就行? 看我表演一波线性筛素数...

Tifa: 那如果将恰好能表示为 k 个素数乘积的数称为 k-素数, 对给定的 n,k, 如何快速地在 [1,n] 中筛出所有的 k-素数?

AgOH: ???

Tifa: 那如果将恰好能表示为 k 个**不同**素数乘积的数称为完全 k-素数, 对给定的 n, k, 如何快速地在 [1, n] 中 筛出所有的完全 k-素数?

AgOH: ?????? ······不慌, 实验室的成员们应该能帮我解决这个问题, 我先去问问他们去(

输入格式

多组数据。

第一行为一个整数 t ($1 \le t \le 10^3$), 表示数据组数。

接下来 t 行每行有两个整数 n $(1 \le n \le 2 \times 10^6)$, k $(0 \le k \le n)$, 含义同描述。

输出格式

每组数据输出两行, 其中第一行输出 k-素数的结果, 第二行输出完全 k-素数的结果。

每行首先输出一个数 m,表示 [1,n] 中所有 k-素数/完全 k-素数的个数。

若m为0,则结束该行的输出。

若m不为0,则接下来隔一个空格后输出一个数x,为[1,n]中所有k-素数/完全k-素数的**异或和**。

输入样例	输出样例
4	0
11	0
20 1	8 7
10 2	8 7
30 3	4 1
	2 12
	7 27
	1 30

B. 天马行空

运行时间上限: 1000ms 运行内存上限: 256M 题目类型: 传统 命题人: AgOH

题目描述

弈缘棋社每年一度的新生赛马上就要开始了!作为弈缘棋社象棋水平最低的棋手的 AgOH 为了不暴露自己的真实实力,设置了一个问题,只有答出这个问题的人才能在象棋盘上吊打 AgOH 一番。问题如下:

给定中国象棋棋盘上的两个点 p1(x1,y1), p2(x2,y2), 马从 p1 走到 p2 最少需要多少步呢?

作为参赛棋手的小 T 非常想要赢 AgOH 一盘棋,可他实在做不出毒瘤 AgOH 出的这道题目,于是他马上来求助你,你能帮帮他吗?

注:中国象棋中棋子"马"的行动规则(不考虑蹩马腿):每步一直一斜,即先横着或直着走一格,然后再斜着走一个对角线,俗称"马走日"。棋子不能走出棋盘。如图所示的8个绿点为(4,7)位置上的马的行动范围。

输入格式

一行, 四个整数 $x_1, y_1, x_2, y_2 (1 \le x_1, x_2 \le 10; 1 \le y_1, y_2 \le 9)$

输出格式

一行,一个整数:若马能从p1走到p2,输出马从p1走到p2最少需要多少步;否则输出-1。

输入样例	输出样例	
1123	1	
输入样例	输出样例	
5 5 5 5	0	
输入样例	输出样例	
8 5 10 8	3	

C. 双端队列

运行时间上限: 1000ms 运行内存上限: 256M 题目类型: 传统 命题人: AgOH

题目描述

双端队列是一种常用的数据结构,其支持四种操作:在队头插入一个元素、在队尾插入一个元素、弹出队头的元素、弹出队尾的元素。(弹出:即将元素从双端队列中拿走)

给你一个存放有 $1 \sim n$ 的**一个排列**的双端队列,你可以对其进行若干次弹出操作(可以弹出队头或队尾), 且弹出的元素按弹出顺序排列出的数列必须为递增的,请问最多可以弹出多少个元素?

例如:如下双端队列最多可以弹出 4 个元素,操作顺序为弹出队首元素 2、弹出队尾元素 3、弹出队尾元素 4、弹出队尾元素 5。

2 1	5	4	3
-------	---	---	---

输入格式

第一行,一个整数, $n(1 \le n \le 5 \times 10^5)$ 。 第二行,n 个整数,代表初始的双端队列。

输出格式

一行,一个整数:最多能弹出多少个数字。

输出样例
4
输出样例
7
输出样例
3
输出样例
4

D. 水的体积

运行时间上限: 1000ms 运行内存上限: 256M 题目类型: 传统 命题人: AgOH

题目描述

有n个矿泉水瓶,第i个瓶子里装有 a_i ml 水。

AgOH 会对你进行 m 次询问,每次询问一个区间 [l,r],请你告诉 AgOH 第 l 个瓶子到第 r 瓶子之间(包含第 l 个和第 r 个)的所有瓶子里共装有多少 ml 的水。

输入格式

第一行,两个整数 $n, m(1 \le n, m \le 10^5)$ 。

第二行,n 个整数 $a_i(1 \le a_i \le 550)$ 。

第三到第 m+1 行: 每行两个整数 $l, r(1 \le l \le r \le n)$ 。

输出格式

共 m 行, 第 i 行代表第 i 次询问的答案。

输入样例	输出样例
5 3	3
1 2 3 4 5	9
1 2	15
2 4	
1 5	

E. 棋牌室

运行时间上限: 1000ms 运行内存上限: 256M 题目类型: 传统 命题人: Tifa

题目描述

本次比赛实验室内座位布局方式参考……打麻将。

既然都坐成了棋牌室的样子了,不打打麻将实在是说不过去。

当然比赛过程中打一局完整的麻将是不现实的,你只需要判断一副手牌是否是和牌即可。

- 注 和牌规则:对于手中的14张手牌,和牌需达成以下条件:
 - 有一个 雀头。
 - 有四个面子。
 - 雀头和各个面子间没有交叉的牌

雀头: 两张同花色的牌, 如

• 刻子: 三张同花色的牌, 如

输入格式

第一行,一个整数t,代表共有t组数据。

第 $2 \sim t + 1$ 行,每行 14 个用空格分隔开的双字符字符串,代表一副手牌。手牌表示规则如下:

(49)

灰

- 一个 $1 \sim 9$ 的数字 x+ 一个小写字母 b,代表 x 饼 (也叫 x 筒)。例如 2b 代表
- 一个 $1 \sim 9$ 的数字 x+ 一个小写字母 t,代表 x 条(也叫 x 索)。例<u>如</u> 8t 代表
- 一个 $1 \sim 9$ 的数字 x+ 一个小写字母 w,代表 x 万。例如 5w 代表
- 数据保证只会出现以上样式的牌。与正常的一副麻将不同,每张牌的出现次数不限,例如可能出现 14 张白 的情况,且这种情况是和牌。

输出格式

共t行,第i行代表第i组数据的答案: 若该组牌为和牌,输出Tsumo!; 反之输出Waiting for Tsumo!

输入输出样例

输入样例	输出样例
2	Waiting for Tsumo!
1w 2w 3w 4b 5b 6b 7t 8t 9t 1b 1b 1z 2z 6z	Tsumo!
1w 2w 3w 4b 5b 6b 7t 8t 9t 1b 1b 2z 2z 2z	

样例解释

第一副手牌为

第二副手牌为

F. 倍思亲

运行时间上限: 1000ms 运行内存上限: 256M 题目类型: 传统 命题人: AgOH

题目描述

干员异客的攻击方式为:"攻击造成**法术伤害**,且会在 4 个敌人间跳跃,每次跳跃伤害降低 15% 并造成短暂停顿"。即:若敌人被击中时,当前攻击已经击中了 i 个人,则该攻击会对其造成 $(85\%)^i$ 倍的**法术伤害**。

法术伤害会受到敌人法抗的百分比削减,即若对一个法抗为 p% 的敌人造成 s 点法术伤害,该敌人仅会受到 $s\times(1-p\%)$ 点真实伤害。

假设敌人具有无限点血量,给出异客的攻击力和四个被击中的敌人的法抗,请你计算出异客一次攻击对所 有敌人共造成了多少**真实伤害**。

注意:因为敌人的血量为整数,所以对**每个敌人**打出的**真实伤害**都需要向下取整。因浮点误差影响,所输出答案与真实答案之间允许有 2 以内的误差。

输入格式

第一行,一个整数 $t(1 \le t \le 10^5)$,代表共有 t 组数据。

第 $2 \sim t+1$ 行,每行 5 个整数,分别代表异客的攻击力 $A(1 \le A \le 1500)$ 和依次被击中的 4 个敌人的法抗 $p_1, p_2, p_3, p_4 (0 \le p_i \le 100)$

输出格式

共 t 行, 第 i 行代表第 i 组数据的答案

输入样例	输出样例
3	2549
1000 20 20 20 20	3680
1500 10 20 30 40	1959
1001 25 33 37 70	