第七周 多维随机变量, 独立性

7.1. 多维随机变量

多维随机变量

在同一个随机试验中,往往同时涉及多个随机变量,例如考察某地区中学生的身体素质情况,随机地选取一名学生,观察学生的身高 X,体重 Y 和肺活量 Z 等指标。随机变量 X,Y,Z来自同一样本空间,它们的取值可能相互影响。像这样同时考虑的多个随机变量、称为多元随机变量。

如果 $X_1(\omega), X_2(\omega), \dots, X_n(\omega)$ 是定义在同一样本空间 $\Omega = \{\omega\}$ 上的n个随机变量,则称 $X(\omega) = (X_1(\omega), X_2(\omega), \dots, X_n(\omega))$ 为n维随机变量,或随机向量。

对任意 n个实数 x_1, x_2, \dots, x_n ,事件 $\{X_1 \leq x_1\}$, $\{X_2 \leq x_2\}$,…, $\{X_n \leq x_n\}$ 同时发生的概率 $F(x_1, x_2, \dots, x_n) = P(X_1 \leq x_1, X_2 \leq x_2, \dots, X_n \leq x_n)$ 称为 n 维随机变量 X 的联合分布函数。

下面我们主要讨论二维随机变量的性质,大多数二维随机变量的结果都很容易推广到 n维的情况。

定理 二维联合分布函数 F(x,y) 具有如下性质

(1) 单调性 F(x,y)分别对x和y是单调不减的,

当
$$x_1 < x_2$$
 时, $F(x_1, y) \le F(x_2, y)$; 当 $y_1 < y_2$ 时, $F(x, y_1) \le F(x, y_2)$;

- (2) 有界性 对任意 x 和 y ,有 $0 \le F(x,y) \le 1$,且 $F(-\infty,y) = \lim_{x \to -\infty} F(x,y) = 0$ $F(x,-\infty) = \lim_{x \to -\infty} F(x,y) = 0 \text{ , } F(+\infty,+\infty) = \lim_{x \to +\infty} F(x,y) = 1 \text{ ; }$
- (3) 右连续性 F(x+0,y)=F(x,y), F(x,y+0)=F(x,y)
- (4) 非负性 对任意a < b, c < d, 有 P(a < X < b, c < Y < d)

$$= F(b,d) - F(a,d) - F(b,c) + F(a,c) \ge 0$$

这3条性质,一元随机变量也具备。仅仅满足前3条性质,并不足以表明二元函数是 某个二维随机变量的分布函数。下面看一个反例。

例 7.1.1 二元函数
$$G(x,y) = \begin{cases} 0 & x+y<0\\ 1 & x+y\geq0 \end{cases}$$

$$G(1,1)-G(1,-1)-G(-1,1)+G(-1,-1)=-1<0$$
,

故G(x,y)不能作为二元随机变量的分布函数。

二维离散型随机变量

若(X,Y)只取至多可列个数对, (x_i,y_j) ,则称(X,Y)为二维离散随机变量,

$$p_{ii} = P(X = x_i, Y = y_i)$$
 称为 (X, Y) 的联合分布列。

其中,
$$p_{ij} \ge 0$$
, $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{ij} = 1$ 。

边缘分布

(X,Y)为二元离散型随机变量,其中X和Y各自的分布称为边缘分布

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_n & \cdots \\ P(X=x_1) & P(X=x_2) & \cdots & P(X=x_2) & \cdots \end{pmatrix}$$
 称为 X 的边缘分布列

其中,
$$P(X = x_i) = \sum_{j=1}^{\infty} P(X = x_i, Y = y_j) = \sum_{j=1}^{\infty} p_{ij}$$

$$\begin{pmatrix} y_1 & y_2 & \cdots & y_n & \cdots \\ P(Y=y_1) & P(Y=y_2) & \cdots & P(Y=y_2) & \cdots \end{pmatrix}$$
 称为 Y 的边缘分布列

其中,
$$P(Y = y_i) = \sum_{i=1}^{\infty} P(X = x_i, Y = y_j) = \sum_{i=1}^{\infty} p_{ij}$$

例 7.1.2 从 1,2,3,4 中等可能地随机取一个数记为 X, 再从 1,2,…,X 中等可能地随机取一个数记为 Y。(1)写出 (X,Y) 的联合分布列,并计算 P(X=Y);(2)写出 (X,Y) 的边缘分布列。

$$X \setminus Y$$
12341 $1/4$ 0002 $1/8$ $1/8$ 003 $1/12$ $1/12$ $1/12$ 04 $1/16$ $1/16$ $1/16$ $1/16$

$$P(X=i,Y=j) = \begin{cases} \frac{1}{4i}, & 1 \le j \le i \le 4\\ 0, & 其他 \end{cases}$$

$$P(X = Y) = P(X = 1, Y = 1) + P(X = 2, Y = 2) + P(X = 3, Y = 3) + P(X = 4, Y = 4)$$
$$= \frac{1}{4} + \frac{1}{8} + \frac{1}{12} + \frac{1}{16} = \frac{25}{48} .$$

(2) 边缘分布列
$$P(X=i)=\frac{1}{4}$$
, $i=1,2,3,4$

$$P(Y=1) = \sum_{i=1}^{4} p_{ij} = \frac{1}{4} + \frac{1}{8} + \frac{1}{12} + \frac{1}{16} = \frac{25}{48}$$
,

同理可得,
$$P(Y=2)=\frac{13}{48}$$
, $P(Y=3)=\frac{7}{48}$, $P(Y=4)=\frac{1}{16}$ 。

$X \setminus Y$	1	2	3	4	P(X=i)
1	1/4	0	0	0	1/4
2	1/8	1/8	0	0	1/4
3	1/12	1/12	1/12	0	1/4
4	1/16	1/16	1/16	1/16	1/4
P(Y=j)	25/48	13/48	7/48	1/16	1

例 7.1.3. 设二元随机变量
$$(X,Y)$$
的联合分布列为, $P(X=1,Y=1)=\frac{4}{9}$,

$$P(X=1,Y=2)=\frac{2}{9}$$
, $P(X=2,Y=1)=\frac{2}{9}$, $P(X=2,Y=2)=\frac{1}{9}$ or $\c U=\max(X,Y)$, $\c U=\min(X,Y)$ or $\c U=\min$

(1) 求(U,V)的联合概率分布; (2) 求U,V的期望和方差。

解: (1)

(2)

得到U,V的边缘分布列分别为 $U\sim\begin{pmatrix}1&2\\\frac49&\frac59\end{pmatrix}$, $V\sim\begin{pmatrix}1&2\\\frac89&\frac19\end{pmatrix}$

$$E(U) = 1 \cdot \frac{4}{9} + 2 \cdot \frac{5}{9} = \frac{14}{9}$$
, $E(U^2) = 1 \cdot \frac{4}{9} + 2^2 \cdot \frac{5}{9} = \frac{24}{9}$, $Var(U) = E(U^2) - E(U)^2 = \frac{20}{81}$

$$E(V) = 1 \cdot \frac{8}{9} + 2 \cdot \frac{1}{9} = \frac{10}{9}$$
, $E(V^2) = 1 \cdot \frac{8}{9} + 2^2 \cdot \frac{1}{9} = \frac{12}{9}$, $Var(V) = E(V^2) - E(V)^2 = \frac{8}{81}$

二维连续型随机变量

存在二元非负函数 f(x,y),使得二维随机变量 (X,Y)的分布函数 F(x,y)可表示为 $F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv \, , \, \, \text{则}(X,Y)$ 为二维连续型随机变量, f(x,y)为(X,Y)的 联合密度函数, $f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y)$ 。(稍停顿)

边缘密度函数 $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$;

边缘分布函数
$$F_X(x) = F(x,+\infty) = \int_{-\infty}^x \left(\int_{-\infty}^{+\infty} f(u,v) dv \right) du = \int_{-\infty}^x f_X(u) du$$
.