Evaluate testing data (multi-class) - Lasso

EVE W.

2020-04-19

Contents

0. Load Data	1
1. Scores	2
1.1 Scores per Class	2
1.2 Average score	3
2. Important Features	3
Note: The two differences between Lasso and Tree-based methods are: 1. Lasso has its own inherent feature selection process.	
2. Lasso vimp will be based on how many times the feature exist in all runs.	
## user input	
project_home <- "~/EVE/examples" project_name <- "lasso_multi_outCV_test"	

0. Load Data

```
## Error : $ operator is invalid for atomic vectors
## 300 of samples were used
## 100 of full features
## 4 runs, each run contains 3 CVs.
## Labels:
##
## 0 1 2 3
## 50 149 74 27
run with lasso.r with alpha = 0.5.
```

1. Scores

1.1 Scores per Class

Prevalidation scores during RFE

Confusion Matrix

confusion matrix at feature size = 100

sum across 4 seeds

Reference ## Prediction 1 2 3 ## 0 196 0 0 0 0 560 ## 1 52 7 2 36 234 ## 19 3 ## 0 10

1.2 Average score

Prevalidation scores during RFE

2. Important Features

For Lasso, we calculate how many times a given features is being used in all the runs.

distribution across 4 seed x 3 CV

of times a feature is selected by lasso (alpha= 0.5)

Number of times a feature is use

(currently only Lasso has this graph)[1] "there are 100 unique features used from the 100 feature se ## [1] "summary of number of features used in each run under 4 seeds and 3 CVs"

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 68.00 70.75 72.50 73.00 76.00 77.00
```

For regularized multinomial regression, glmnet does not use a reference level from the outcome variable and provides coefficients for each level of multinomial distribution. Please check out section **Regularized multinomial regression** section from here. The following barplots show the coefficients for each level.

[1] "removing 644 records as their vimp is less than 1e-06"

Average (across seeds) of vimp (sum of all CVs per seed)
Top Features for Class 0

[1] "removing 449 records as their vimp is less than 1e-06"

Distribution of Feature Coefficient for Class 1

Top Features for Class 1

[1] "removing 539 records as their vimp is less than 1e-06"

Distribution of Feature Coefficient for Class 2

Average (across seeds) of vimp (sum of all CVs per seed)
Top Features for Class 2

[1] "removing 684 records as their vimp is less than 1e-06"

Distribution of Feature Coefficient for Class 3

Top Features for Class 3

