

CZ2007 LAB 3 INTRODUCTION TO DATABASE

Zou Zeren U2022422H Zeng Xunyi U2022509A Tan Pei Lun U2022841A Bryan Chatsirichai U2022154D Mulder Choo U2022324D

1. CREDIT_CARD (card_num, bank, date_valid_to, date_valid_from, customer_id)

Keys: card_num

Primary Key: card_num

FDs: card_num \rightarrow bank, date_valid_to, date_valid_from,customer_id

All the attributes are functionally dependent on solely the Primary Key (card_num)

∴ The relation is in 3NF

2. CUSTOMER (customer_id, username, email,password,full_name,address,phone_num)

Keys: customer_id,username, email

Primary Key: customer_id

FDs:

 $customer_id \rightarrow username, email,password, full_name,address,phone_num \\ username \rightarrow customer_id , email,password, full_name,address,phone_num \\ email \rightarrow username, customer_id,password, full_name,address,phone_num \\ phone_num \rightarrow full_name, address$

3NF Procedures:

Mninimal Basis for R:

.: The relation is **not** in 3NF

 $CUSTOMER \ (customer_id(A), \ username(B), \ email(C), password(D), full_name(E), \\ address(F), phone_num(G))$

= CUSTOMER(A,B,C,D,E,F,G)

KEYS: A,B,C

FDS: A \rightarrow BCDEFG, B \rightarrow ACDEFG, C \rightarrow BADEFG , G \rightarrow EF

STEP 1:

$$A \rightarrow B$$
, $A \rightarrow C$, $A \rightarrow D$, $A \rightarrow E$, $A \rightarrow F$, $A \rightarrow G$

$$B\rightarrow A$$
, $B\rightarrow C$, $B\rightarrow D$, $B\rightarrow E$, $B\rightarrow F$, $B\rightarrow G$

$$C \rightarrow A, C \rightarrow B, C \rightarrow D, C \rightarrow E, C \rightarrow F, C \rightarrow G$$

$$G \rightarrow E, G \rightarrow F$$

STEP 2:

we remove

$$B \rightarrow A$$
, $B \rightarrow C$, $B \rightarrow D$, $B \rightarrow E$, $B \rightarrow F$, $B \rightarrow G$

$$C \rightarrow A$$
, $C \rightarrow B$, $C \rightarrow D$, $C \rightarrow E$, $C \rightarrow F$, $C \rightarrow G$

$$A \rightarrow E, A \rightarrow F$$

$${A}^{+}={ABCDEFG}$$

$$A \rightarrow B$$
, $A \rightarrow C$, $A \rightarrow D$, $A \rightarrow G$, $G \rightarrow E$, $G \rightarrow F$

$$\therefore$$
 B \rightarrow A, B \rightarrow C, B \rightarrow D, B \rightarrow E, B \rightarrow F, B \rightarrow G

$$C \rightarrow A, C \rightarrow B, C \rightarrow D, C \rightarrow E, C \rightarrow F, C \rightarrow G$$

 $A \rightarrow E$, $A \rightarrow F$ is redundant

STEP 3: No FD have redundant attributes on LHS

$$A \rightarrow B$$
, $A \rightarrow C$, $A \rightarrow D$, $A \rightarrow G$

$$G \rightarrow E$$
, $G \rightarrow F$

3NF:

$$A \rightarrow BCDG \quad G \rightarrow EF$$

$$R_1$$
 (ABCDG) = R_1 (customer_id, username, email,password,phone_num)

$$R_2$$
 (GEF) = R_2 (phone_num,full_name,address)

∴ The relation is in 3NF

3. ORDER (order_id, date, status, customer_id)

Keys: order_id

Primary Key: order_id

FDs: order_id \rightarrow date, status, customer_id

All the attributes are functionally dependent on solely the Primary Key (order_id)

∴The relation is in 3NF

```
4. ORDER_ITEM (sequence_num(A), order_id(B), product_unit_price(C), quantity(D), status(E),
  product_id(F), shipment_id(G))
  Keys: {sequence_num(A), order_id(B)}
  Primary Key: {sequence_num(A), order_id(B)}
  FDs: AB→CDEFG
                           F \rightarrow C
    F \rightarrow D violates 3NF (F is not a)
5. ORDER_ITEM (sequence_num, order_id, product_unit_price, quantity, status, order_price, prod-
   uct_id, shipment_id)
  Keys: {sequence_num, order_id}
  Primary Key: {sequence_num, order_id}
  FDs:
    sequence_num, order_id →product_unit_price, quantity, status, order_price,
        product_id, shipment_id
    product_id \rightarrow product_unit_price
    product\_unit\_price, quantity \rightarrow order\_price
   conclusion
    product_id, { product_unit_price, quantity} is not a superkey of the relation
    product_unit_price and order_price are not contained in a key
    ∴The relation is not in 3NF
   3NF Procedures:
    ORDER_ITEM ( sequence_num(A), order_id(B) , product_id(C), shipment_id(D),
        product_unit_price(E), quantity(F), status(G), order_price(H))
    = ORDER\_ITEM(A,B,C,D,E,F,G,H)
   KEYS: AB
  FDS: AB\rightarrowCDEFGH, C\rightarrowE, EF\rightarrowH
   STEP 1(Minimal Basis for R):
   STEP 1.1(For all FD, RHS must have only one attribue):
    AB \rightarrow C, AB \rightarrow D, AB \rightarrow E, AB \rightarrow F, AB \rightarrow G, AB \rightarrow H, C \rightarrow E, EF \rightarrow H
   STEP 1.2(Remove redundant FDs):
    we remove AB \rightarrow E
    \{AB\}^+=\{ABCDEFGH\}
```

 $AB \rightarrow C$, $C \rightarrow E$, $AB \rightarrow E$

 \therefore AB \rightarrow E is redundant

we remove $AB \rightarrow H$

 $\{AB\}^+=\{ABCDEFGH\}$

 $AB \rightarrow C$, $C \rightarrow E$, $AB \rightarrow F$, $EF \rightarrow H$

 \therefore AB \rightarrow H is redundant

STEP 1.3(For all FDs, LHS must have no redundant attribues):

 $AB \rightarrow C$, $AB \rightarrow D$, $AB \rightarrow F$, $AB \rightarrow G$, $AB \rightarrow H$, $C \rightarrow E$, $EF \rightarrow H$

STEP 2(Combine all FDs with common LHS):

 $AB \rightarrow CDFG \quad C \rightarrow E \quad EF \rightarrow H$

STEP 3(Create table for each FD):

 R_1 (ABCDFG) = R_1 ((sequence_num, order_id) , product_id, shipment_id, quantity, status)

 $R_2(CE) = R_2(product_id,product_unit_price)$

 $R_3(EFH) = R_3(product_unit_price, quantity, order_price)$

All the attributes are functionally dependent on solely their Primary Keys

... The relation is in 3NF

6. PRODUCT_TYPE (product_type_id, description, parent_product_type_id)

Keys: product_type_id

Primary Key: product_type_id

FDs: product_type_id \rightarrow description, parent_product_type_id

All the attributes are functionally dependent on solely its Primary Key(product_type_id)

...The relation is in 3NF

7. RESTRICTED_TO (shop_id, product_type_id)

Keys: {shop_id,product_type_id}

Primary Key: {shop_id,product_type_id}

 $\mathbf{FDs:} \ \operatorname{shop_id,product_type_id} \to \operatorname{shop_id,product_type_id}$

Only trival FD exists in the relation

 \therefore The relation is in 3NF

8. SHIPMENT (shipment_id, tracking_num, date, invoice_number)

 $\mathbf{Keys:}\ \mathrm{shipment_id},\ \mathrm{tracking_num}$

Primary Key: shipment_id

FDs: shipment_id → tracking_num, date,invoice_number

All the attributes are functionally dependent on solely its Primary Key(shipment_id)

.: The relation is in 3NF

9. INVOICE(invoice_number,date,status,order_id)

Keys: invoice_number

Primary Key: invoice_number

FDs: invoice_number \rightarrow date,status,order_id

All the attributes are functionally dependent on solely its Primary Key(invoice_number)

∴The relation is in 3NF

10. PAYMENT (payment_id, amount, card_num,invoice_number)

Keys: payment_id

Primary Key: payment_id

FDs: payment_id \rightarrow amount,card_num,invoice_number

All the attributes are functionally dependent on solely its Primary Key(payment_id)

.: The relation is in 3NF

11. PRODUCT(product_id,name,colour,price,size,description,shop_id,product_type_id)

Keys: product_id

Primary Key: product_id

FDs: product_id → name,colour,price,size,description,shop_id,product_type_id

All the attributes are functionally dependent on solely its Primary Key(payment_id)

∴The relation is in 3NF

12. PRODUCT_PHOTO(photo_sequence,product_id,pic)

Keys: {photo_sequence, product_id}

Primary Key: {photo_sequence,product_id}

FDs: photo_sequence,product_id \rightarrow pic

All the attributes are functionally dependent on solely its

Primary Key (photo_sequence,product_id)

...The relation is in 3NF

13. SHOP (shop_id, shop_name)

Keys: shop_id

Primary Key: shop_id

FDs: $shop_id \rightarrow shop_name$

All the attributes are functionally dependent on solely its

Primary Key (shop_id)

∴The relation is in 3NF