Лабораторная работа 2.1.2 Определение C_p/C_v методом адиабатического расширения

Муляревтч Андрей 21 марта 2022 г. **Цель работы:** определение отношения C_p/C_v углекислого газа по измерения давления в стеклянном сосуде. Измерения производятся сначала после адиабатического расширения газа а затем после нагревания сосуда и газа до комнатной температуры.

В работе используются: стеклянный сосуд: U-образный жидкостный манометр; резиновая груша; газгольдер с углекислым газом.

Экспериментальная установка. Используемая для опытов экспериментальня установка состоит из стеклянного сосуда A (объёмом около 20 л), снабженного краном K, и U-образного жидкостного манометра, измеряющего избыточное давление газа в сосуде. Схема установки показана на Puc. 1.

Избыточное давление создаётся с помощью резиновой груши, сосединённой с сосудом трубкой с краном K_1 .

В начале опыта в стеклянном сосуде А находится исследуемый газ при комнатной температуре T_1 и давлении P_1 , несколько превышающем атмосферное давление P_0 . После открытия крана K, соединяющего сосуд A с атмосферой, давление и температура газа будут понижаться. Это уменьшение температуры приближённо можно считать адиабатическим.

Рис. 1: Установка для определения C_p/C_v методом адиабатического расширения газа

Для адиабатического процесса можно записать следующее уравнение:

$$\left(\frac{P_1}{P_2}\right)^{\gamma - 1} = \left(\frac{T_1}{T_2}\right)^{\gamma},\tag{1}$$

где индексом "1"обозначено состояние после повышения давления в сосуде и выравнивания температуры с комнатной, а интексом "2"— сразу после открытия крана и выравнивания давления с атмосферным.

После того, как кран K вновь отсоединит сосуд от атмосферы , происходит медленное изохорическое нагревание газа со скоростью, определяемой теплопроводностью стеклянных стенок сосуда. Вместе с ростом температуры растёт и давление газа. З время порядка Δt_T (время установления температуры) система достигает равновесия, и установившаяся температура газа T_3 становится равной комнатной температуре T_1 .

Тогда используя закон Гей-Люссака для изохорического процесса и уравнение (1) найдём γ :

$$\gamma = \frac{\ln(P_1/P_0)}{\ln(P_1/P_3)}. (2)$$

С учётом того, что $P_i = P_0 + \rho g h_i$ и пренебрегая членами второго порядка малости получим из (2):

$$\gamma \approx \frac{h_1}{h_1 - h_2}.\tag{3}$$

Ход работы

- 1. Перед началом работы убедимся в том, что краны и места сочленений трубок достаточно герметичны. Для этого нужно наполнить баллон углекислым газом до давления, превышающего атмосферное и перекроем кран K_1 . По U-образному манометру снимем зависимость давления h в баллоне от времени t. По наблюдению было выявлено что за первые первые 60 секунд $\delta h \approx 2$ мм вод. ст. , за следущие 3 мин не изменилось, так что можно считать $\Delta t_T \approx 60$ сек.
- 2. Откроем кран K на короткое время и закроем его снова. Подождём, пока уровень жидкости в манометре перестанет изменяться. Это произойдёт, когда температура газа в сосуде сравняется с комнатной, примерно через время Δt_T . Запишем разность уровней жидкости в манометре h_2 . Проведём серию из 5–8 измерений сначала для времени открытия крана $\Delta t = 0.5$ с, а затем для $\Delta t = 1.0$ с. Далее так проведем по 1 опыту для больших значений Δt , которые зафиксируем с помощью телефонного секундомера. Так как отмерить время порядка 1с с большой точностью сложно из-за человеческой реакции, то мы проводим серию опытов для небольших Δt , после чего, пользуясь распределением Гаусса, выбираем наиболее вероятное значие для измеренных велечин, тем самым снижаем случайную ошибку примерно в n раз, где n кол-во опытов.

Таблица 1: Экспирементальные данные для $\Delta t = 0.5 \text{ c}$

h1, мм вд. ст.	10	10,4	10,4	9,6	10	10	10,4
h2, мм вд. ст.	1,4	2	1,7	1,7	1,3	1,6	1,9
γ	1,16	1,23	1,2	1,21	1,15	1,19	1,22

Наиболее вероятное значение γ для $\Delta t=0.5$ c: 1,21 Случайная относительная погрешность в пределах 1σ : $\varepsilon=1.2\%$

Таблица 2: Экспирементальные данные для $\Delta t = 1$ с

h1, мм вд. ст.	10,4	10	10,4	10	10	10,4	10
h2, мм вд. ст.	1,3	1,3	1,4	1,4	1,3	1,5	1,3
γ	1,14	1,15	1,16	1,16	1,15	1,17	1,15

Наиболее вероятное значение γ для $\Delta t=1$ с: 1,16 Случайная относительная погрешность в пределах 1σ : $\varepsilon=0.8\%$

Таблица 3: Экспирементальные данные для разынх Δt

de at a nambamantamenta deministra dem bera					
h_1 мм вд. ст.	h_2 мм вд. ст	γ	Δt , c		
10,2	1,2	1,3	1,13		
10,4	1,2	1,8	1,13		
10,2	0,9	3,3	1,1		
10,2	1	2,2	1,1		
10,2	1	2,1	1,1		
10	1,1	1,7	1,12		
10	0,9	4,2	1,12		
10,2	1,1	1,6	1,12		

По полученным данным вычислим используя формулу (3) вычислим γ и построим график зависимости $\gamma(\Delta t)$ (График 1).

Теперь оценим вклад приборной погрешности при вычислении величины γ . Измерения h_1 и h_2 проводились с точностью 1мм. Пользуясь формулой (3) можно получить, что относительная погрешность искомой величины

$$\frac{\sigma_{\gamma}}{\gamma} = \sqrt{\left(\frac{\partial \gamma(h_1, h_1 - h_2)}{\partial h_1}\sigma_{h_1}\right)^2 + \left(\frac{\partial \gamma(h_1, h_1 - h_2)}{\partial h_1 - h_2}\sigma_{h_1 - h_2}\right)^2} \approx 0.03$$

что даёт нам право пренебречь статистической погрешностью γ . Случайная погрешность измерения γ для Δt 0,5 и 1 с намного меньше приборной и ошибки из-за фактора человеческой реакции, так что ей можно принебречь.

Точность измерения времени, в течение которого газ выпускался из сосуда, оценивается точностью моей реакции, опыт показал, что эта величина составляет около 0.1 или даже меньше (поскольку интервал в 0.5 с примерно с такой точностью совпадает с временем прокручивания крана на полоборота), поэтому можно считать, что время измерено с точностью $\approx 7\%$

Тогда итоговая погрешность измерения показателя адиабаты составляет около $\sqrt{0.03^2+0.07^2}=8\%$

3. Окончательный результат следует получить экстраполяцией зависимости γ от t примерно к значению $\Delta t=0,1-0,2$ с, когда давление уже почти сравнялось с атмосферным, но теплопроводность ещё не так сильно повлияла на уменьшение γ . Из полученного графика можно сделать вывод, что $\gamma_{CO_2}=1.21\pm0.10$. В то время как табличное значение $\gamma_{CO_2}=1.30$, т. е. совпадает с полученным значением в пределах погрешности.

Вывод

Не смотря на то что результат совпал с табличным в пределах погрешности, точки на графике плохо апроксимируются прямой, возможно это связано с тем что по сути сам адиабатчиеский процесс проходит не во всем объеме а непосредственно возле крана и далее между слоями газа с одинаковыми параметрами $(T \ u \ p)$, откуда можно сделать вывод что температура газа и его давление в колбе грубо говоря не являются интенсивными велечинами, и, соответсвенно теоритическое описание данной модели не верно, однако тот факт что результат получен правдивый говорит о том что данная модель уместна. Так же нужно заметить, что измерять время с помощью секундомера довольно неточно, данный эксперимент требует сложных измерительных конструкций для точного измерения интервалов времени чтобы оценить точность данной модели и уменьшить погрешность измерения времени, которая в свою очередь равна 7% по грубым оценкам, что достаточно много. Так же нужно заметить что с ростом Δt корректность полученных данных падает (данные полученные при $\Delta t > 3$ с в расчет не брались)