Introduction au Shell

Introduction au Shell

UV SR01 Dr. Hicham Lakhlef Laboratoire Heudiasyc (UMR UTC-CNRS 7253) Université de Technologie de Compiègne France hlakhlef AT utc.fr

A2022

Sommaire

Introduction au Shell

1 Unix OS

- Historique d'Unix
- Noyau Unix
- Introduction Shell

2 Bash

- Introduction à Bash
- Redirections
- Script bash

3 Expressions régulières

- Grep
- Sed

4 D > 4 A > 4 B > 4 B >

Système d'exploitation, système d'exploitation Unix

Introduction au Shell

Unix OS

Historique d'Unix Noyau Unix Introduction Shell

Bash

Introduction à Bash Redirections Script bash

régulières Grep L'objectif d'un système informatique est d'automatiser le traitement de l'information.

- Un système informatique est constitué de deux entités: le matériel et le logiciel
- Côté matériel, un ordinateur est composé de:
 - L'Unité Centrale (UC) pour les traitements
 - La **Mémoire Central** (MC) pour le stockage
 - Les Périphériques : disque dur, clavier, souris, carte réseau... accessibles via des pilotes de périphériques

Historique d'Unix et Linux

Introduction au Shell

Unix OS

Historique d'Unix Noyau Unix Introduction Shell

Bash

Introduction à Bash Redirections Script bash

régulières Grep

- 1969 : création d'Unix Ken Tompson (Laboratoires Bell)
- 1970 : adaptation au DEC PDP-11/20 par Thompson and Ritchie et naissance du premier langage portable : le langage C
- 1974-77 : les sources d'Unix sont distribuées gratuitement aux Universités
- 1978 : Unix devient la propriété d'ATT et les sources deviennent payantes
- 1979 : création de BSD Unix pour l'Université de Californie à Berkeley
- 1987 : diffusion de X Window, interface graphique pour Unix développée par le MIT

Historique d'Unix et Linux

Introduction au Shell

Unix OS

Historique d'Unix Noyau Unix Introduction Shell

Bash

Introduction à Bash Redirections Script bash

Expression régulières

■ 1987 : AIX d'IBM et HP-UX d'HP naissent

■ 1991 : émergence de Linux

■ 1992 : développement de Sun OS par Sun

 Linux a été écrit par Linus Torvalds, jeune étudiant finlandais, et a été amélioré par de nombreux développeurs dans le monde entier.

■ 1991 : Linux 0.1 et diffusion du code source sur Internet

■ 1993 : Linux 0.99

■ 1994 : FreeBSD 1.0 basé sur BSD Unix

■ 1995 : première distribution « commerciale » RedHat

■ 2001 : Linux 2.4 pour l'USB, le Plug'n Play...

■ 2004 : Linux 2.6, de l'embarqué aux gd systèmes

2011 : Linux kernel 3

■ 2015 : Linux kernel 4

Familles UNIX, Projet GNU

Introduction au Shell

Unix OS

Historique d'Unix Noyau Unix Introduction Shel

Rash

Introduction Bash Redirections Script bash

Expression régulières

Grep

Le noyau Unix

Introduction au Shell

11-:-- 06

Noyau Unix

Bash

Introduction à Bash Redirections Script bash

Expression régulières

Grep Sed

- Le noyau est un programme informatique (écrit en C) qui est au cœur du système d'exploitation d'un ordinateur, avec un contrôle complet sur tout ce qui se trouve dans le système.
- Il gère les ressources (processseur, mémoire, E/S...) du système Linux

Distributions Linux

Introduction au Shell

Unix OS

Historique d'Un Noyau Unix

troduction She

Bash

Bash Redirections Script bash

régulières

Sed

Introduction au Shell

Introduction au Shell

Historique d'Unix Noyau Unix

Introduction Shell

Bash

Introduction à Bash Redirections Script bash

Expression régulières

Grep

- À la connexion dans un terminal, l'utilisateur est mis en relation avec un interpréteur de commandes appelé shell en Unix.
- Shell est le pont entre l'utilisateur, les commandes exécutées par l'utilisateur et les commandes sous Unix qui sont déjà prédéfinies
- Le shell choisi dans ce cours est le bash: bourne again shell, apparu avec GNU/Linux.

```
Richaer Edition Afficiage Terminal Conglets Adde
Utc@ubuntu:-5
```

Sommaire

Introduction au Shell

Unix OS

Noyau Unix

Bash

Introduction a Bash Redirections Script bash

Expression: régulières

1 Unix OS

- Historique d'Unix
- Noyau Unix
- Introduction Shell

2 Bash

- Introduction à Bash
- Redirections
- Script bash

3 Expressions régulières

- Grep
- Sed

Introduction au shell Rôle du shell

Introduction au Shell

Unix OS Historique d'Unix Noyau Unix Introduction Shell

Introduction a Bash Redirections

Bash

Script bash

Expression

régulières Grep

- Le shell possède un double rôle:
 - C'est d'abord un interpréteur de commandes exécutant la boucle infinie suivante:
 - Affichage de l'invite de commande ou prompt (« \$ ») d'attente de lecture au clavier.
 - 2 Lecture d'une commande (validée par RETURN ou ENTRÉE).
 - 3 Analyse syntaxique (découpage en mots).
 - 4 Interprétation des caractères spéciaux.
 - 5 Exécution de la commande et retour au début.
 - Le shell est aussi un langage de programmation gérant des variables.
- Dans ce cours, nous étudions le shell en mode texte bash (Bourne-Again Shell)

Introduction au shell Types de Shell

Introduction au Shell

Unix OS

Historique d'Unix

Noyau Unix

Introduction Shel

Bash

Introduction à Bash Redirections Script bash

Expression régulières Grep

Shell	Nom	Description
Bourne Shell	sh	disponible sur toute plateforme UNIX
C shell	csh	Shell développé par BSD
Korn shell	ksh	Bourne Shell etendu par T
Bourne	bash	Version améliorée de sh et csh.
Again Shell		Fourni le plus souvent avec Linux
Zero Shell	zsh	shell avec beaucoup de fonctionnalitees
Tenex	tcsh	csh étendu
rc	rc	Implementation pour UNIX
		du shell de Plan 9
es	es	Extension de rc height

Introduction au shell Syntaxe générale d'une commande

Introduction au Shell

Unix US Historique d'Unix Noyau Unix

Noyau Unix Introduction Shell

Bash

Introduction à Bash Redirections Script bash

Expressions régulières _{Grep}

- La syntaxe générale d'une commande bash est la suivante: nom [-options] [argument1...]
 - nom est le nom de la commande;
 - options représente une ou plusieurs options;
 - argument1 est le premier argument.
- Les options sont composées d'un seul caractère suivant un tiret.
- Il est parfois possible d'accoler plusieurs options (donc, plusieurs caractères). Par exemple, -asli pour les options -a -s -l -i.
- Si l'option demande un paramètre, il est séparé par un espace comme dans -o fichier.
- Dans une commande, chaque mot est séparé des autres par un espace ou une tabulation.

Introductio au shell Historique des commandes

Introduction au Shell

Unix OS

Historique d'Unix

Noyau Unix

Introduction Shell

Bash

Introduction à Bash Redirections Script bash

Expression régulières

commande	Description	
İİ	Fait référence à la dernière commande	
!n	La n-ième ligne de commande	
!-n	La ligne de commande actuelle moins n	
!mot	La commande la plus récente commençant	
	par mot	
!?mot?	La commande la plus récente contenant	
	la chaîne mot	
history n	Afficher les n dernières commandes	
history -c	Effacer l'historique des commandes	
^mot1^mot2^	Substitution rapide. Répétez la dernière	
	commande en remplaçant mot1 par mot2	
Ctrl r mot	Rechercher dans l'historique	

Introductio au shell Principales commandes sur les fichiers

Introduction au Shell

Historique d'Unix Noyau Unix Introduction Shell

Bash

Introduction à Bash Redirections Script bash

Expression régulières Grep

Caractère	Signification		
file	Afficher le type d'un fichier		
wc	Afficher la taille d'un fichier		
cat	Afficher la totalité du fichier		
more	Afficher page par page		
head	Afficher les premières lignes de texte d'un fichier.		
	Exemple : head -n 20		
tail	Afficher les dernières lignes de texte d'un fichier.		
	Exemple : tail -n 20		
touch	Afficher en continue.		
ср	Copier, exemple : cp fic1 fic2.		
mv	Déplacer ou renommer, exemple : mv fic1 fic1.old		
gzip	Compresser, exemple : gzip fic1		
gunzip	Compresser, exemple : gunzip fic1.gz		

Introduction à Bash

Introduction au Shell

Historique d'Unix

Noyau Unix Introduction Shell

Introduction à

Bash Redirections

Script bash

régulières _{Grep} Pour savoir quel shell utilise votre terminal : echo \$SHELL

- Pour savoir quel shell actuellement utilisé : echo \$0
- Il possible de déterminer les shells installés sur la machine : cat /etc/shells
- bash est installé par défaut pour les utilisateurs. C'est le choix actuel dans la plupart des distributions Linux.

Redirection de la sortie standard

Introduction au Shell

Redirections

A la connexion, le shell dispose de trois flots de communication:

Entrée standard : stdin (numéro 0)

Sortie standard : stdout (numéro1)

■ Erreur standard : et stderr (numéros 2)

- L'association par défaut de ces flots est l'écran pour stdout et stderr, et le clavier pour stdin.
- Une redirection est une modification de l'une ou de l'autre de ces associations.Par exemple :

```
\$ who > UV.txt
```

\$ cat UV.txt

Redirection double de la sortie standard

Introduction au Shell

Unix OS

Historique d'Unix Noyau Unix Introduction Shell

Bash

Introduction a Bash Redirections Script bash

Expression régulières Grep Avec « > », si le fichier de redirection existe, son contenu initial est perdu. Par exemple :

log Is > UV.txt

\$ cat UV.txt

■ La redirection double (commande » nom_fich) permet de ne pas détruire le fichier existant, mais ajoute le nouveau contenu en fin de fichier :

\$ ps » info

\$ cat info

■ Dans le cas d'une redirection double , si le fichier n'existe pas, il est créé, comme pour une redirection simple.

Redirection de l'entrée standard

Introduction au Shell

Unix OS

Historique d'Unix Noyau Unix Introduction Shell

Bash

Introduction a Bash Redirections Script bash

Expressions régulières Moins utilisée que la redirection de la sortie standard, la redirection de l'entrée standard (commande < nom_fich) permet à une commande d'utiliser comme données le contenu d'un fichier à la place d'une lecture clavier.

- Exemple avec la commande write :
 - Envoi d'un message depuis l'entrée standard:
 \$ write » Paul # message à transmettre à Paul Bonjour Paul, ça va ?
 [CTRL-D]
 - Envoi d'un autre message cette fois à partir d'un fichier message:
 - \$ more message # fichier message contenant le message coucou
 - **\$ write Paul < message # redirection de l'entrée** standard, message reçu par Paul contenant "coucou"

Script bash

Introduction au Shell

Unix OS

Historique d'Unix Noyau Unix Introduction Shell

Bash

Introduction a Bash Redirections

Script bash

régulières Grep

■ Un programme bash est un texte bash dans un fichier texte

- Interprétable par bash au lancement par l'utilisateur
- Modifiable par un éditeur de texte (emacs,vi, gedit...)
- Un programme bash doit être rendu exécutable avec : <u>chmod u+x mon_script.sh</u>
- Par convention, les noms de script sont suffixés par l'extension « .sh »
- Invocation du script nommé mon_script.sh avec
 - ./mon_script.sh
 - Avec ses arguments : ./mon script.sh arg1 arg2

Structure d'un script bash

Introduction au Shell

Unix OS

Historique d'Unix Noyau Unix Introduction Shell

Bash

Bash Redirections

Script bash

Expression régulières

Grep Sed

■ Première ligne : #!/bin/bash

- #! : indique au système que ce fichier est un ensemble de commandes à exécuter par l'interpréteur dont le chemin suit
- /bin/bash lance bash
- Puis séquence structurée de commandes shell

```
#! /bin/bash

commande1

commande2

... mon_script.sh
```

- Sortie implicite du script à la fin du fichier
- Sortie explicite avec la commande exit

Variables bash

Introduction au Shell

Unix OS

Noyau Unix Introduction Shell

Bash

Introduction Bash Redirections

Script bash

Expression régulières

- Déclaration/affectation avec = (exemple var=valeur)
- Consultation en préfixant du caractère \$ (exemple \$var)
- Saisie interactive : read var1 var2 ... varn
 - Lecture d'une ligne saisie par l'utilisateur (jusqu'au retour chariot)
 - Le premier mot va dans var1
 - Le second dans var2
 - Tous les mots restants vont dans varn

Schéma algorithmique séquentiel (1/2)

Introduction au Shell

Unix OS

Noyau Unix

Deal

Bash Introduction à Bash

Script bash

Expressio

régulières

Suite de commandes les unes après les autres

- Sur des lignes séparées
- Ou séparés par point virgule (;)

Exemple 1

```
1 #!/bin/bash
2 isvalid=true
3 count=1
4 while [ $isvalid ]; do
5 echo $count
6 if [ $count -eq 5 ];
7 then
8 break
9 fi
10 ((count++))
11 done
```

Schéma algorithmique séquentiel (2/2)

Introduction au Shell

Unix OS

Historique d'Unix Noyau Unix Introduction Shell

Bash

Introduction à Bash Redirections

Script bash

Expressions régulières

Grep

Exemple 2

```
#!/bin/bash
    echo "Entrez un numro valide"
   read n
    if [ $n -eq 101 ];
    then
    echo "Voici le premier numero"
    elif [ $n -eq 510 ];
    then
    echo "Voici le deuxime numero"
    elif [ $n -eq 999 ];
11
    then
    echo "Voici le troisime numero"
    else
13
    echo "Aucun numro ici"
15
    fi
                        4 D > 4 A > 4 B > 4 B > -
```

Tests sur les valeurs

```
Introduction
au Shell
```

■ Tests sur des valeurs numériques

■ Tests sur des chaînes de caractères

```
[ mot1 = mot2] : vrai si mot1 est egale mot2
[ mot1 != mot2] : vrai si mot1 nest pas gale mot2
[ -z mot ] : vrai si mot est le mot vide
[ -n mot ] : vrai si mot nest pas le mot vide
```

L'instruction case

Introduction au Shell

```
Unix OS
```

Noyau Unix Introduction Shell

Bash

Introduction à Bash Redirections

Script bash

Expressions régulières Grep

Syntaxe:

```
case expression in
pattern1 )
statements ;;
pattern2 )
statements ;;
...
esac
```

- Le shell évalue la valeur de mot puis compare séquentiellement cette valeur à chaque modèle.
- Dès qu'un modèle correspond à la valeur de mot, la suite de commandes associée est exécutée, terminant l'exécution de la commande interne composée case.

L'instruction case

Introduction au Shell

Unix OS
Historique d'Unix
Noyau Unix
Introduction Shell
Bash
Introduction à
Bash

Bash Redirections Script bash

Expressions régulières Cet exemple imprime le type d'un fichier (texte, Csource, etc.) en fonction de l'extension du nom de fichier.

```
#!/bin/bash
for nom_fichier in $(ls)
do
       # Prendre l'extension de nom fichiere
       ext=${nom_fichier##*\.}
       case "$ext" in
       c) echo "$nom_fichier : Fichier source C";;
       o) echo "$nom_fichier : Fichier objet";;
       sh) echo "$nom_fichier : Shell script";;
       txt) echo "$nom_fichier : Fichier Text" ;;
       *) echo " $nom_fichier : Non trait";;
esac
done
```

Les boucles (while, for)

Introduction au Shell

Script bash

Le schéma général d'une boucle while est le suivant :

```
1 #!/bin/bash
  while cond; do
3
     cmds
  done
```

- Le schéma général d'une boucle for est le suivant :
 - #!/bin/bash
 - 2 for var in list; do
 - cmds 3
 - done

Arguments d'une commande

Introduction au Shell

Unix OS

Noyau Unix Introduction Shell

_ .

Introduction Bash

Script bash

Expressio

régulières Grep

```
Chaque mot de la commande est stocké dans une variable
numérotée :
```

- "\$0" : toujours le nom de la commande
- "\$1" ... "\$9" : les paramètres de la commande
- \$# : nombre de paramètres de la commande
- \$? : récupération du code retour
- "\$@" : liste des paramètres : "arg1" "arg2" "arg3" "arg4"
- shift : décale d'un cran la liste des paramètres
- Exemple : le script mon_script.sh suivant est à exécuter avec ./mon_script.sh UV SR01

```
1 #! /bin/bash
2 for i in "$0"; do
3 echo $i
```

. . .

Imbrication de commandes

Introduction au Shell

Unix OS

Noyau Unix Introduction Shell

Bash

Bash Redirections

Script bash

régulières Grep Pour récupérer le texte écrit sur le terminal par une commande dans une chaîne de caractères : \$(cmd)

- Attention à ne pas confondre avec \$cmd qui permet l'accès à la valeur de la variable cmd
- Exemple : \$ echo je suis sous le chemin \$ (pwd)
 - 1. Execution de la commande pwd
 - 2. Execution de la commande :\$ echo je suis sous le chemin résultat de pwd

Exemples de Script Obtenir la date actuelle

Introduction au Shell

Unix OS

Noyau Unix Introduction Shell

Bash

Introduction Bash

Script bash

Expressions régulières

```
Unix US
```

```
щ 1 /2-2-- /2-- -2-
```

- #!/bin/bash
- 2 Annee=\$(date +%Y)

Exemple : date.sh

- Mois=\$(date +%m)
- 4 Jour=\$(date +%d)
- F Heure=\$(date +%H)
- 6 Minute=\$(date +%M)
- 7 Seconde=\$(date +%S)
- / Seconde=\$(date
- 8 echo \$(date)
- 9 echo "La date d'aujourd'hui: \$Jour.\$Mois.\$Annee"
- 10 echo "L'heure actuelle est: \$Heure:\$Minute:\$Second

Exemples de Script S'authentifier

else

11 **fi**

Exemple : connexion.sh

echo "Echec de connexion"

Introduction au Shell

```
Unix OS

Historique d'Unix

Noyau Unix

Introduction Shell
```

Bash Introduction à Bash

Bash Redirections

Script bash

Expression: régulières _{Grep}

```
!/bin/bash
cecho "Entrer Nom_utilisateur"
read NomU
cecho "Entrer mot de passe"
read pass
if [[ ( $NomU == "admin" && $pass == "utc" ) ]];
then
cecho "connexion reussie"
```

Exemples de Script **Fichier**

#!/bin/bash

Introduction au Shell

9

10

11

```
echo "Saisir le nom du fichier"
                   read -r fichier
               else
Script bash
                   fichier="$1"
              fi
               while read -r ligne; do
```

set \$ligne

done < "\$fichier"</pre>

movenne=\$(((\$2+\$3+\$4)/3))

echo "L'eleve \$1 a pour moyenne \$moyenne"

• Que fait le programme suivant ?

if ["\$#" -lt 1]; then

Sommaire

Introduction au Shell

Expressions régulières

- 1 Unix OS
 - Historique d'Unix
 - Noyau Unix
 - Introduction Shell
- - Introduction à Bash
 - Redirections
 - Script bash
- 3 Expressions régulières
 - Grep
 - Sed

Expressions régulières Introduction

Introduction au Shell

Unix OS

Noyau Unix Introduction Shell

Bash

Introduction à Bash Redirections Script bash

Expressions régulières

Grep

- Les recherches de modèles sont largement utilisées dans de nombreuses applications telles que les moteurs de recherche
- Une expression régulière est définie comme un modèle qui définit une classe de chaînes
- Étant donné une chaîne, nous pouvons alors tester si la chaîne appartient à cette classe de modèles
- Les expressions régulières sont utilisées par de nombreux utilitaires Unix comme grep, sed, awk ...

Grep

Introduction au Shell

Unix OS

Historique d'Unix Noyau Unix Introduction Shell

Bash

Introduction à Bash Redirections Script bash

Expression: régulières Grep Grep est un filtre, il peut trouver un mot dans un fichier, par exemple :

grep printf *.c

- **Grep** supporte simplement les expressions régulières de base
- On peut l'utiliser (avec un tube) pour filtrer la sortie d'une commande :

locate UVs | grep SR01

 egrep supporte les expressions régulières dites étendues et qui offre donc plus de puissance

Caractères spéciaux de egrep

Introduction au Shell

Unix OS

Historique d'Uni Noyau Unix Introduction She

Bash

Introduction Bash Redirections Script bash

régulières

Grep Sed

Caractère	Signification
[]	Plage de caractères permis.
[^]	Plage de caractères interdits.
^	Début de ligne.
•	Un caractère quelconque, y compris un espace.
*	Répétition du caractère placé avant l'étoile.
\$	Fin de ligne.
{}	Répétition.
{Nbr}	Répétition de Nbr exactement.
{Nbr,}	Répétition de Nbr au minimum.
{Nbr1 Nbr2}	Répétition de Nbr1 à Nbr2.
+	Le caractère devant doit exister au min 1 fois.
?	Le caractère devant peut apparaître 1 ou 0 fois.
(a b)	L'une ou l'autre des expressions sont autorisées.
()	Permettent de grouper des critères partiels.

Options courantes de la commande egrep

Introduction au Shell

Unix OS Historique d'Unix

Noyau Unix Introduction Shel

Bash

Introduction à Bash Redirections Script bash

régulières Grep

Option	Signification
-C	Nombre de ligne trouvées (sans les afficher).
-i	Ne fait pas la différence entre majuscule et minuscule.
-n	Affiche le numéro de la ligne.
-1	Affiche le nom du fichier contenant
	la ligne (et pas la ligne).
-V	Affiche toutes les lignes qui ne contiennent
	pas le mot en question.
-h	Ne pas afficher le nom des fichiers dans
	les résultats lorsque plusieurs fichiers sont parcourus.
-S	Ne pas afficher les messages d'erreurs concernant
	les fichiers inexistants ou illisibles.

Classes de caractères prédéfinies

Introduction au Shell

Grep

- Il existe certaines classes de caractères prédéfinies, avec des noms sont assez explicites : [:alnum:], [:alpha:], [:cntrl:], [:digit:] (chiffres), [:graph:], [:lower:] (minuscules), [:print:] (affichables), [:punct:], [:space:], [:upper:] (majuscules), et [:xdigit:] (chiffres héxadécimaux).
- Par exemple, [[:alnum:]] correspond à [0-9A-Za-z], à la différence que le dernier dépend de l'encodage ASCII, alors que le premier est plus portable.
- Les crochets dans les noms de classes font partie intégrante du nom symbolique, et qu'ils doivent donc être inclus en plus des crochets encadrant la liste.

39 / 51

Exemple head -30 /etc/services head -30 /etc/services | grep -e [[:alnum:]] head -30 /etc/services | grep -ve [[:alnum:]]

Caractères spéciaux

Introduction au Shell

Unix OS

Historique d'Unix Noyau Unix Introduction Shell

Bash

Introduction à Bash Redirections Script bash

régulières Grep Entre simple quotes (« ' ») les caractères spéciaux ne sont pas interprétés par le shell mais deviennent de simples caractères.

- Avec le caractère anti-slash « \» le caractère (spécial) qui le suit n'est pas interprété.
- Si on veut mélanger des caractères spéciaux, des variables, des commandes..., il faut utiliser les guillemets (« " »).
 - Seuls sont interprétés les méta-caractères « \$ »
 (commandes et variables), « \» (annulation) et « ' »
 (commandes).
 - Exemple : echo "Mon dossier est \$(pwd)"
 - Avec de simples quotes, \$(pwd) ne serait pas interprété.

Classes de caractères prédéfinies

Introduction au Shell

Grep

- Chercher toutes les lignes contenant au minimum une lettre en minuscule : egrep [a-z]+
- Chercher toutes les lignes contenant uniquement un nombre à 4 chiffres : egrep ^[0-9]{4}
- Toutes les lignes contenant des nombres de minimum 2 chiffres avant les deux points : egrep :[0-9]{2,}:
- Toutes les lignes commençant par des nombres de minimum 1 à 5 chiffres suivits par deux points : egrep :^[0-9]{1,5}:
- Cherche toutes les lignes contenant la chaîne "SR01 UV" ou "SR02 UV": egrep (SR01|SR02) UV

Réutiliser les motifs

Introduction au Shell

Unix OS

Historique d'Unix Noyau Unix Introduction Shell

Bash

Introduction à Bash Redirections Script bash

Expression régulières

Nommer un motif trouvé avec des parenthèses.

- La référence arrière \ n, où n est un chiffre unique, correspond à la sous-chaîne déjà mise en correspondance avec la n-ième sous-expression rationnelle entre parenthèses.
- Exemple: (exp1) exp2 (exp3) \1 \2 revient à (exp1) exp2 (exp3) exp1 exp3

Grep Exercices

Introduction au Shell

Unix OS

Noyau Unix
Introduction Shell

Basl

Introduction à Bash Redirections Script bash

régulières Grep Donner la liste de fréquences des mots avec deux voyelles consécutives du fichier UV.txt

- 2 Donner la liste des numéros de cartes bancaires se trouvant dans un fichier donné
- 3 Donner la liste de fréquences des mots avec deux voyelles non-consécutives du fichier UV.txt
- 4 Trouver des lignes se terminant par une consonne

Sed

Introduction au Shell

Unix OS Historique d'Unix Noyau Unix Introduction Shell

Introduction Bash

Bash
Redirections
Script bash

régulières

 Comment faire pour renommer 1500 documents d'un coup ou encore modifier du texte dans des centaines de fichiers à la fois

- Sed est un éditeur de flux. Un éditeur de flux est utilisé pour effectuer des transformations de texte de base sur un flux d'entrée
- Sed peut faire des choses qui prendraient des heures à faire avec une interface graphique

Sed Fonctionnement de SED

Introduction au Shell

Unix OS Historique d'Unix

Noyau Unix Introduction Shell

Bash

Introduction à Bash Redirections Script bash

Expression régulières Grep

sed repose-t-il sur le mécanisme suivant :

- Lecture d'une ligne sur le flux d'entrée (jusqu'à ce qu'il rencontre un caractère de saut de ligne);
- Traitement de cette ligne en la soumettant à toutes les commandes rencontrées dans le fichier script;
- 3 Affichage de la ligne résultante sur la sortie standard, sauf si sed est invoqué avec l'option -n;
- 4 Passage à la ligne suivante, et ainsi de suite jusqu'à la fin du flux d'entrée standard.

Sed Suppression

Introduction au Shell

Historique d'Unix

Noyau Unix Introduction Shell

Bash

Introduction à Bash Redirections Script bash

Expressions régulières

Gres Sed

- sed travaille sur un flux de données et pas directement sur un fichier, il ne s'agit pas d'une véritable suppression, mais plutôt d'un abandon.
- Supprimer une ligne selon son numéro
 - Pour supprimer il faut utiliser l'option d
 - Exemple : sed '1d;4d; 5d' SR01.txt est une commande pour supprimer les lignes 1, 4 et 5.
- Supprimer un intervalle de lignes
 - On peut également spécifier un intervalle en utilisant la virgule : sed '1,4d' test.txt supprimera les lignes 1 à 4.

Sed Filtrage

Introduction au Shell

Sed

C'est exactement l'inverse de ce que nous venons de faire.

- Ici on choisit de ne rien afficher par défaut.
- On veut par exemple n'afficher que les lignes qui commencent par dièse, on va utiliser l'option silencieux -n, avec la commande print p : sed -n '/^#/p' SR01.txt
- On peut choisir de n'afficher qu'une ligne : sed -n 5p SR01.txt, ou une intervalle: sed -n 1, 5p SR01.txt

Sed La substitution

Introduction au Shell

Unix OS Historique d'Unix Noyau Unix Introduction Shell

Bash

Introduction à Bash Redirections Script bash

Expression régulières Il s'agit de la tâche principale des commandes sed, car les autres fonctions les plus utilisées (d et p) peuvent souvent être assurées par d'autres utilitaires (grep, tail...) de manière moins directe, mais souvent moins effrayante pour l'utilisateur courant.

- Forme usuelle de la commande sed : commande/avant/après/option
- La substitution permet de remplacer un motif par un autre
- Par exemple, pour remplacer toutes les occurrences de "UV" par "SR01" dans le fichier A2020.txt: sed 's/UV/SR01/' A2020.txt
- Si vous ne spécifiez pas le fichier d'entrée ou si le fichier d'entrée vaut -, sed filtre le contenu de l'entrée standard.

Sed La substitution (options)

Introduction au Shell

Unix OS

Historique d'Unix Noyau Unix Introduction Shel

Bash

Introduction à Bash Redirections Script bash

régulières

Sed

Les options possibles à la fin de la commande de substitution sont les suivantes :

Option	Signification
g	Remplacer tous les motifs rencontrés dans la ligne en cours. Cette option est presque toujours employée.
i	Ne remplacer que la i-ième occurrence du motif dans la ligne. Cela peut surtout servir lorsqu'on manipule des fichiers qui représentent des lignes d'enregistrements, contenant des champs séparés par des délimiteurs.
p	Afficher la ligne si une substitution est réalisée.
W	Suivie d'un nom de fichier, cette option permet d'y envoyer le résultat de la substitution. Cela sert généralement à des fins de débogage.

Sed La translitération

Introduction au Shell

Unix OS

Noyau Unix Introduction Shell

Bash

Introduction à Bash Redirections Script bash

Expression régulières Grep Prototype : sed 'y/ source-chars/dest-chars/'

- Translittérer tous les caractères de l'espace de motif qui correspondent à l'un des source – chars source avec le caractère correspondant dans dest – chars
- Exemple : Translittérer 'a-j' à '0-9' :
- \$ echo hello world | sed 'y/abcdefghij/0123456789/' 74llo worl3

Sed **Exercices**

Introduction au Shell

1 Une (seule) commande Sed pour substituer tout les mots "Michel" dans le fichier «prenom1» avec «Julien» et envoyer le résultat dans le fichier «prenom2» sed 's/chaine1/chaine2/g' chemin1 > chemin2

- 2 Transformer les caractères a, b et c du fichier /etc/passwd par un @ de la ligne 11 à 20 sed -e '11,20s/[abc]/@/g' /etc/passwd
- 3 Transformer les mots du fichier /usr/share/dict/french qui commencent par une consonne et se terminent par un z par le mot Ubuntu