

Стабилизация квадрокоптера с помощью многослойной нейронной сети

Бушуев Кирилл Русланович E-mail: krbushuev@gmail.com

Научный руководитель: Лобанов Игорь Сергеевич

Цель работы

Необходимо стабилизировать квадрокоптер в условиях замкнутого пространства(во время стабилизации, квадрокоптер не должен отклоняться от начального местоположения более чем на 2 метра), не используя полные данные о системе, а так же предустановленные параметры.

Существующие варианты стабилизации

Провести стабилизацию возможно используя:

- PID регулятор
- GPS координат
- Датчиков расстояния
- Computer Vision(видеокамера)

Открытые вопросы

- Как автоматизировано стабилизировать квадрокоптер не используя дополнительно подключаемые модули?
- Как автоматизировано учитывать конструкционные дефекты каждого отдельно взятого дрона.
- Как учитывать возможные конструкционные изменения произошедшие с момента последнего пуска

Задачи

- Построить математическую модель квадрокоптера
- Построить нейронную сеть способную стабилизировать квадрокоптер в жестких ограничениях
- Обучить нейронную сеть на основе динамических данных
- Выбрать оптимальную структуру и метод обучения нейронной сети для стабилизации квадрокоптера за минимально возможное время

Схема моделируемого квадрокоптера

- $R(r_0)$ координаты корпуса квадрокоптера
- $r_1 \dots r_4$ координаты моторов

Моторы 1,3 вращаются против часовой стрелки. Моторы 2,4 вращаются по часовой стрелке

Математическая модель квадрокоптера

Уравнение движения точек квадрокоптера

$$r_k(t) = r_c(t) + \Omega(\varphi(t)) \cdot r_{kc}(0)$$

Расчет поступательного движения

$$r_c(t+h) = r_c(t) + \dot{r}_c(t) \cdot h + \frac{\ddot{r}_c(t) \cdot h^2}{2}$$
$$\ddot{r}_c(t) = \frac{\sum_k F_k(t)}{M}$$

Расчет вращательного движения

$$\begin{split} \Omega(\varphi(t)) &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi_x(t) & -\sin\varphi_x(t) \\ 0 & \sin\varphi_x(t) & \cos\varphi_x(t) \end{bmatrix} \cdot \begin{bmatrix} \cos\varphi_y(t) & 0 & \sin\varphi_y(t) \\ 0 & 1 & 0 \\ -\sin\varphi_y(t) & 0 & \cos\varphi_y(t) \end{bmatrix} \cdot \begin{bmatrix} \cos\varphi_z(t) & -\sin\varphi_z(t) & 0 \\ \sin\varphi_z(t) & \cos\varphi_z(t) & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \varphi(t+h) &= \varphi(t) + \omega(t) \cdot h + \frac{\dot{\omega}(t) \cdot h^2}{2} \\ \dot{\omega}(t) &= I_c(t)^{-1} \cdot \left(T(t) - \omega \times L(t) \right) \\ T(t) &= \sum_k r_{kc}(t) \times F_k(t) \qquad I_c(t) = \sum_k I_k(t) \qquad L(t) = I_c(t) \cdot \omega \\ I_k(t) &= m_k \cdot \left(r_{kc}(t) \cdot r_{kc}(t)^T - I \cdot \left(r_{kc}(t)^T r_{kc}(t) \right) \right) \end{split}$$

Силы действующие на квадрокоптер

$$F_{k}(t) = \begin{cases} F_{G_{k}}(t) + F_{Rst_{k}}(t) + F_{Conv_{k}}(t), ecnu \ k = 0 \\ F_{G_{k}}(t) + F_{L_{k}}(t) + F_{Rot_{k}}(t) + F_{Conv_{k}}(t) + F_{Rst_{k}}(t), uhave \end{cases}$$

$$F_{G_{k}}(t) = g \cdot m_{k}$$

$$F_{L_{k}}(t) = a_{k} \cdot \omega_{mot \, k}^{2} \cdot n(t)$$

$$F_{Rot_{k}}(t) = (b_{k} \cdot \omega_{mot \, k}^{2}(t) + I_{k}(t) \cdot \dot{\omega}_{mot \, k}(t)) \cdot \sum_{k \neq j} \frac{n(t) \times r_{jk}(t)}{\left\|r_{jk}(t)\right\|}$$

$$F_{Rst_{k}}(t) = c_{k} \cdot \frac{\rho \cdot \left(\dot{r}_{k}(t)\right)^{2}}{2} \cdot S_{k}$$

$$F_{Conv_{k}}(t) = \sum_{k \neq j} \lambda_{kj} \cdot r_{kj}(t)$$

Конструкционные дефекты

- Отклонение размеров квадрокоптера от проектируемых
- Отклонение центра масс от проектируемой точки
- Отклонение характеристик двигателей от проектируемых значений
- ♥ Отклонение формы от проектируемого значения

Аппаратная модель квадрокоптера

- **У**Рама.
- ▼Плата управления.
- У Мотор (4 штуки).
- **♥** Блок датчиков.

Алгоритм стабилизации

Модуль стабилизации

ITsMOre than a UNIVERSITY

Архитектура прогнозирующей нейронной сети

R - рекурсивный слой

D - слой для уменьшения значимых признаков

FC - полносвязный слой

Методы подготовки обучающей выборки

	Стохастическая выборка	Полная выборка
Число семплов в памяти устройства	Последние 250	Все собранные до текущего шага
Вероятность выбора семпла	0.2	1
Последовательность семплов в выборке	Случайная	Последовательная

График обучения нейронной сети

Результаты стабилизации при различных методах обучения нейронной сети

	Стохастическая выборка	Полная выборка	
Обучение нейронной сети			
Среднее число эпох	1254	812	
Среднее время обучения	24 c	16 c	
Процент корректных предсказаниий	87.17	93.87	
Стабилизация коптера			
Среднее число проходов градиента	787	546	
Среднее время обучения	16 c	11 c	
Процент корректных стабилизаций	78.56	92.05	
Асимптотика времени цикла	O(GD)+O(SNW)	K*(O(GD)+O(SNW))	

Спасибо за внимание!

Бушуев К.Р. krbushuev@gmail.com

ITSMOre than a UNIVERSITY

Список литературы

- [1] Ian Goodfellow . Deep Learning [Текст] Ian Goodfellow, Yoshua Bengio, Aaron Courville 2016
- [2]Li Deng, Deep Learning Methods and Applications [Τεκcτ] Li Deng, Diong Yu, 2014 Volume 7 Issues 3-4, ISSN: 1932-8346
- [3]Raul Rojas. Neural Networks. A Systematic Inctroduction [Текст] Raul Rojas 1996
- [4] Richard A. Wasniowski Multi sensor data fusion with filtering [Τεκcτ] Richard A. APPLIED INFORMATICS and COMMUNICATIONS September 15-17, 2005 (pp330-334)
- [5] Гурьянов А. Е. Моделирование управления квадрокоптером [Текст] Инженерный Вестник с. 552
- [6] Dikmen I.C., Arisoy A., Temeltas H. Attitude control of a quadrotor [Τεκττ]. 4th International Conference on Recent Advances in Space Technologies, 2009. Pp. 722-727.
- [7] Zhao W., Hiong Go T. Quadcopter formation flight control combining MPC and robust feedback linearization. [Τεκcτ] Journal of the Franklin Institute. Vol.351, Issue 3, March 2014. Pp. 1335-1355.

