Linear Programming: Linear Programming Formulations

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Advanced Algorithms and Complexity Data Structures and Algorithms

Learning Objectives

- Distinguish between the different types of linear programming problems.
- Use an algorithm that solves one formulation to solve another formulation.

Formulations

Several different problem types that all go under the heading of "linear programming".

Full Optimization

Minimize or maximize a linear function subject to a system of linear inequality constraints (or say that the constraints have no solution).

Optimization from Starting Point

Given a system of linear inequalities and a vertex of the polytope they define, optimize a linear function with respect to these constraints.

Given a system of linear inequalities, find some solution.

Given a system of linear inequalities determine whether or not there is a solution.

Equivalence

Actually, if you can solve any of these problems, you can solve any other!

Full Optimization

Clearly capable of solving all the other versions.

- Start Opt: Ignore starting point.
- Solution Finding: Optimal is a solution.
- Satisfiability: See if finds a solution.

Optimization from Starting Point

■ How do you find starting point?

Optimization from Starting Point

- How do you find starting point?
- Add equations one at a time.
- Optimize left hand side of next equation.

Technical Point

Things are a bit messier if some intermediate systems don't have optima.

Technical Point

Things are a bit messier if some intermediate systems don't have optima.

Fix: start with n constraints (gives a single vertex). Then while trying to add constraint $v \cdot x \geq t$, don't just maximize $v \cdot x$. Also add $v \cdot x \leq t$ as a constraint (so that maximum will exist).

Q: How do we go from being able to find a solution to finding the best one?

Q: How do we go from being able to find a solution to finding the best one?

A: Duality.

Q: How do we go from being able to find a solution to finding the best one?

A: Duality. Find a solution and a matching dual solution.

Setup

Want to minimize $x \cdot v$ subject to $Ax \geq b$.

Setup

Want to minimize $x \cdot v$ subject to $Ax \geq b$. Instead find solution to:

$$Ax \ge b$$

$$y \ge 0$$

$$y^{T}A = v$$

$$x \cdot v = y \cdot b.$$

Will give optimal solution to original problem.

How does just knowing when you have a solution help?

How does just knowing when you have a solution help?
Can always find solution at a vertex. Means *n* equations are tight.

How does just knowing when you have a solution help?

Can always find solution at a vertex. Means n equations are tight.

Figure out which equations to use.

Problem

In order to find a solution to a linear program with m equations in n variables, how many times would one have to call a satisfiability algorithm?

Solution

In order to find a solution to a linear program with m equations in n variables, how many times would one have to call a satisfiability algorithm?

m times. You need to test each equation once, keeping the ones that work.