This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

FR2614901

Abstract		
	•	
•		

The invention relates to an Al alloy of type 3000, according to the Aluminium Association nomenclature, exhibiting improved corrosion resistance when employed as a brazed heat exchanger, in particular for motor vehicles. The alloy according to the invention is an alloy of type 3000, for example 3003, 3005, 3105, whose main analytical characteristics are a low Zr content (Zr

THIS PAGE BLANK (USPTO)

2 614 901

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE PARIS	(à n'utiliser que pour les commendes de reproduction) (21) N° d'enregistrement national : 87 0668. (51) Int Cl* : C 22 C 21/00; F 28 F 21/08; F 28 D 1/02.
(12) BREVET	D'INVENTION B1
(54) ALLIAGES D'ALUMINIUM POUR ECHAN	GEUR DE CHALEUR BRASE
(22) Date de dépôt : 05.05.87.	60) Références à d'autres documents nationaux apparentés :
	71) Demandeur(s): PECHINEY RHENALU. FR.
Date de la mise à disposition du public de la demande : 10.11.88 Bulletin 88/45. Date de la mise à disposition du public brevet d'invention : 24.07.92 Bulletin 92/3	(72) Inventeur(s): PHILIPPE GIMENEZ - JEAN- CLAUDE KUCZA
56) Liste des documents cités dans le rappo de recherche :	ort (73) Titulaire(s) :
Se reporter à la fin du présent fascicule	74 Mandataire(s) : LEON SERAPHIN, PECHINEY

(11) N° de publication :

RÉPUBLIQUE FRANÇAISE

ALLIAGES D'ALUMINIUM POUR ECHANGEUR DE CHALEUR BRASE

L'invention concerne un alliage d'Al de type 3000, selon la nomenclature de l'Aluminium Association, présentant une résistance à la corrosion améliorée lors de l'utilisation comme échangeur de chaleur brasé, en particulier pour les véhicules automobiles.

On sait que les échangeurs brasés de ce type sont soumis à une corrosion intérieure due au fluide de refroidissement du moteur et à une corrosion extérieure due à l'atmosphère environnante et éventuellement aux projections de boues ou de produits de déneigement ou de déverglaçage.

10

La corrosion intérieure peut conduire soit à un colmatage des canaux par les produits de corrosion (corrosion généralisée), soit à une perforation de l'échangeur thermique (corrosion localisée par piqûres).

La corrosion extérieure peut également conduire à la perforation de l'échangeur par piqûres.

Ces différentes formes de corrosion sont évaluées par des tests normalisés, comme indiqué ci-après.

L'alliage selon l'invention, présentant des caractéristiques améliorées de résistance aux corrosions définies ci-dessus, est un alliage de type 3000, par exemple 3003, 3005, 3105, dont les caractéristiques analytiques principales sont une faible teneur en Zr (Zr < 0,07 %) associée à une teneur en Cr élevée (0,15 < Cr < 0,25 %), ces pourcentages étant en poids. Les teneurs des autres éléments sont habituelles pour ce type d'alliage -voir nomenclature de l'A.A.-; en particulier, on a pour le 3003 :

```
1 < Mn < 1,50 %

Si < 0,6 %

Fe < 0,7 %

Mg < 0,5 %

Zn < 0,1 %

0,05 < Cu < 0,2 %

35 autres chacun < 0,05 %.
```

total < 0,15 % - reste Al.

Une teneur en Cr de l'alliage (> 0,25 %) entraîne la formation à la coulée de composés intermétalliques grossiers qui fragilisent l'alliage à la coulée, lors de la transformation ultérieure et diminuent les propriétés mécaniques à l'état final.

- 5 La teneur en 2r est tenue de préférence inférieure ou égale à 0,04 %.

 Pour obtenir un bon comportement au brasage, il est préférable que l'alliage présente une grosseur de grain avant brasage, inférieure ou égale à 100 µm.
- 10 Les avantages de la présente invention en ce qui concerne la résistance à la corrosion par rapport à un alliage 3003 classique sont reportés dans les exemples comparatifs suivants :

Exemple 1

Un alliage 3003 classique dont la composition chimique est la suivante (% en poids):

- A) Mn= 1,1 %- Si= 0,31 % Fe= 0,57 %- Cu = 0,09 % Ti \leq 0,02 % Zn \leq 0,05 %- Zr= 0,01 %- Cr= 0,01 %- reste A1
- et un alliage 3003 selon l'invention, dont la composition est la suivante:
- 20 B) Mn= 0,9 %- Si 0,30 %- Fe 0,53 %- Cu 0,09 %- Mg \leq 0,01 % Zr= 0,07- Cr= 0,24 %- reste Al

ont été élaborés sous forme de tôles de 1 mm d'épaisseur totale, plaquées à 10 % sur une face par l'alliage 4104. Ces tôles ont subi, dans les mêmes conditions, la simulation d'un cycle de brasage sous vide par maintien de 2 min à 600°C environ. Puis elles sont été soumises aux tests de corrosion normalisés suivants (sur la face alliage 3003 pour la corrosion intérieure et sur la face plaquée 4104 pour la corrosion extérieure):

- 30 mesure du courant de corrosion i_o (intersection de la droite de Tafel cathodique avec la droite correspondant au potentiel de corrosion Eo) dans un milieu conforme à la norme ASTM D 3585-1983 à 70°C;
 - mesure de la profondeur des piqures internes après essai au ballon suivant la n rme ASTM D 1384 au bout de l ou 2 mois d'essai;
- 35 mesure de la prof ndeur des piqures après essais en bruillard salin suivant la norme ASTM B 117 pour des durées de 500, 1000 et 1500 h d'essai.

Les résultats obtenus sont les suivants :

5	ESSAI	UNITE	COMPOSITION A	COMPOSITION B
	Corrosion généralisée interne*	nA/cm ²	l 45 	
10	Corrosion externe brouillard salin 1000h**	hru	 475 	 250
	Corrosion interne, test ballon, I mois**	hm	 424 	133 131

15

Exemple 2

- 20 L'influence de la teneur en Zr est exemplifiée ci-après :
 deux échantillons identiques contenant 1,1 % Mn et 0,25 % Cr et
 respectivement 0,07 et 0,14 % Zr ont été testés dans les mêmes conditions
 que l'Exemple 1 ci-dessus.
- Les examens micrographiques et les résultats d'essais de corrosion sont les suiyants

1	Zr(%) Taille de		Corrosion*	
		grain (pm)	extérieure 1000h BS(pm)	intérieure 2 mois (µm)
· 	0,07	62	250	93
1	0,14	177	300	380

^{35 *} Profondeur myenne des piqures.

^{*} Les valeurs sont inférieures à la valeur limite exigée: 200 nA/cm² ** Moyenne des 10 piqures les plus profondes.

On note une dégradation importante de la tenue à la corrosion lorsque zr > 0,07 %.

Propriétés mécaniques

5 L'alliage selon l'invention a des caractéristiques mécaniques de traction analogues mais légèrement améliorées par rapport à l'alliage 3003 de l'AA comme l'indique l'exemple ci-après.

Les compositions sont identiques à celles des échantillons A et B de l'Exemple 1.

10

İ	Sens	Caractéristiques mécaniques	 Echantillon A 	Echantillon B
15	 Travers	R _M MPa RO,2 MPa A %	1 115 1 45 1 26	123 50 26
20	Long	R _M MPa R _{O,} 2 MPa A %	120 43 31	130 49 40

REVENDICATION

- 1. Alliage d'aluminium de la série 3000, selon la désignation de l'Aluminium Association présentant une tenue à la corrosion améliorée lors de l'utilisation dans des échangeurs de chaleur brasés caractérisé en ce qu'il contient (en poids %):
- 5 Zr ≼0,07 0,15 ≼ Cr ≼ 0,25

les teneurs des autres éléments d'alliage étant conformes à celles données dans la nommenclature de l'Aluminium Association.

10

- 2. Alliage selon la revendication 1, caractérisé en ce que la teneur en Zr est inférieure ou égale à 0,04 %.
- 3. Alliage selon l'une des revendications 1 ou 2, caractérisé par le 15 fait que la taille de grain, avant l'opération de brasage, est inférieure à 100 μm .

87 06 685

No

Elabli par :

H. GROS

Ingénieur examinateur à l'Institut national de la propriété industrielle (Division Tectinique des Bravets)

OBJET DE L'AVIS DOCUMENTAIRE

Conférant à son titulaire le droit exclusif d'exploiter l'invention, le brevet constitue pour les tiers, une importante exception à la liberté d'entreprendre. C'est la raison pour laquelle la loi prévoit qu'un brevet n'est valable que si, entre autres conditions,

l'invention :

 est "nouvelle", c'est-à-dire n'a pas été rendue publique en quelque lleu que ce soit, avant sa date de dépôt, implique une "activité inventive", c'est-à-dire dépasse le cadre de ce qui aurait été évident pour un homme du métier.

 L'Institut n'est pas habilité, sauf absence manifeste de nouveauté, à refuser un brevet pour une invention ne répondant pas aux conditions ci-dessus. C'est aux tribunaux qu'il appartient d'en prononcer la nullité à la demande de toute personne intéressée, par exemple à l'occasion d'une action en contretaçon. L'institut est toutefois chargé d'annexer à chaque brevet un "AVIS DOCUMENTAIRE" destiné à éclairer le public et les tribunaux sur les antériorités susceptibles de s'opposer à la validité du brevet.

ONDITIONS D'ETABLISSEMENT DU PRESENT AVIS

Il a été établi sur la base des "revendications"	dont la fonction est de définir les points sur les-
quels l'inventeur estime avoir fait œuvre inventive et	entend en conséquence être protégé.

- Il a été établi à l'issue d'une procédure contradictoire (1) au cours de laquelle :
- le résultat d'une recherche d'antériorités effectuée parmi les brevets et autres publications a été notifié au demandeur et rendu public.
- les tiers ont présenté des observations visant à compléter le résultat de la recherche
- le demandeur a modifié les revendications pour tenir compte du résultat de cette recherche
- le demandeur a modifié la description pour en éliminer les éléments qui n'étalent plus en concordance avec les nouvelles revendications.
- [7] le demandeur a présenté des observations pour justifier sa position.

EXAMEN DES ANTERIORITES

- Cet examen n'a pas été nécessaire, car aucun brevet ou autre publication n'a été relevé en cours de procédure.
- Les brevets et autres publications (1), ci-après, cités en cours de procédure, n'ont pas été examinés car pour être efficace, cet examen suppose au préalable une vérification des priorités (2) :
- Les brevets et autres publications (1) cl-après, cités en cours de procédure, n'ont pas été retenus comme antériorités :

DE - A - 2 911 295 GB - A - 2 159 175 FR - A - 2 489 845 FR - A ~ 2 316 348

PATENT ABSTRACTS OF JAPAN, vol. 8, no. 201 (M-325) 1638), 14 septembre 1984; 1984; JP - A - 59 89 999

W.HUFNAGEL: "Aluminium-Schlüssel",1983, édition 2, Aluminium Verlag, Düsseldorf, DE

CONCLUSION: EN L'ETAT, AUCUNE ANTERIORITE N'A ETE RETENUE

THIS PAGE BLANK (USPTO)