회귀모형

통계·데이터과학과 장영재 교수

통계학개론

목차

- 1 상관계수
- 2 단순선형회귀모형의 적합
- 3 단순선형회귀모형의 분석 및 추론
- 4 R을 이용한 실습

통계학개론

01

상관계수

상관계수의 정의

- 산점도 (scatter plot)
 - 연속형인 두 변수 사이의 관계를 판단하기 위해 한 변수의 값을 X 축으로 하고 다른 변수의 값을 Y축으로 하여 관측값을 나타낸 그래프
- > 상관계수(correlation coefficient) 연속형 두 변수 간 선형관계의 강도를 나타내는 측도
- ightharpoonup 표본ightharpoonup 표본ightharpoonup 표본ightharpoonup 표본이 관측값

$$c_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$r = \frac{s_{XY}}{s_X s_Y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i y_i - n\bar{x} \bar{y} \right)$$

$$= \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x} \bar{y}}{\sqrt{\sum_{i=1}^{n} x_i^2 - n\bar{x}^2} \sqrt{\sum_{i=1}^{n} y_i^2 - n\bar{y}^2}}$$

상관계수의 특징

> r은 -1과 +1 사이의 값을 가지며, r의 값이 +1에 가까울수록 강한 양의 선형관계를, -1에 가까울수록 강한 음의 상관관계를 나타내며, r의 값이 0에 가까울수록 선형관계는 약해짐

> X와 Y의 대응되는 모든 값이 한 직선상에 위치하면 r의 값은 -1(직선의 기울기가 음인 경우)이나 +1(직선의 기울기가 양인 경우)의 값을 가짐

> 표본상관계수 r은 단지 두 변수의 선형관계만 나타내는 측도이므로 두 변수의 선형상관관계는 없지만 다른 관계를 가질 때에도 r은 '0'에 가까울 수 있음

상관계수의 특징

02

단순선형회귀모형의졐합

회귀분석이란

- > 회귀분석(regression analysis)은 변수 간의 함수적 관련성을 구명하기 위하여 어떤 수학적 모형을 가정하고, 이 모형을 측정된 변수의 데이터로부터 추정하는 통계적 분석방법
- > 주요 개념

회귀식(regression equation): 변수 간의 관계를 나타내는 수학적 모형

종속변수(dependent variable): 설명하고자 하는 대상이 되는 변수,

반응변수(response variable)라고도 함

독립변수(independent variable): 종속변수에 영향을 주는 변수

설명변수(explanatory variable)라고도 함

단순선형회귀모형

> 단순선형회귀모형(simple linear regression analysis)은 1개의 독립변수로 종속변수를 설명하는 선형모형

$$Y_i = \alpha + \beta x_i + \varepsilon_i, i = 1, 2, \dots, n$$

- * α , β 는 회귀계수, ε_i 는 서로 독립이고 평균이 0, 분산이 σ^2 인 동일한 분포를 따르는 오차항
- ightharpoonup 추정된 회귀계수가 a, b라고 하면 $\hat{y}_i = a + bx_i$ 로 나타낼 수 있음

$$e_i = y_i - \hat{y}_i$$

최소제곱법

> 최소제곱법(method of least squares)은 잔차의 제곱의 합을 최소로 하는 회귀계수를 찾아 회귀식을 구하는 방법 (a, b에 관한 편미분 이용)

$$\sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y_{i}})^{2}$$

$$= \sum_{i=1}^{n} (y_{i} - a - bx_{i})^{2}$$

$$b = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}, \quad a = \overline{y} - b\overline{x}$$

> 회귀계수 추정치 b(기울기)와 상관계수 r의 관계

$$b = \frac{s_{XY}}{s_{XX}} = r \cdot \frac{\sqrt{s_{XX}} \sqrt{s_{YY}}}{s_{XX}} = r \cdot \frac{\sqrt{s_{YY}}}{\sqrt{s_{XX}}}$$

회귀직선의 적합도 (표준오차와 결정계수)

> 총변동을 나타내는 제곱합(SST)을 회귀식에 의해 설명된 변동(SSR)과 설명되지 않는 잔차들의 제곱합인 오차제곱합(SSE)으로 나눌 수 있음

제곱합:
$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y_i} - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$
 SST = SSR + SSE
$$n-1 = 1 + n-2$$

> 결정계수 R^2 는 총변동 SST에서 설명된 변동 SSR이 차지하는 비로서 회귀직선의 적합도를 나타내는 척도(1에 가까울수록 표본들이 회귀직선 주위에 밀집되어 있음을 의미) $R^2 = \frac{\text{설명된 변동}}{\text{총변동}} = \frac{\text{SSR}}{\text{SST}}$

03

단순선형회귀모형의분석 및 추론

> 각 제곱합을 자유도로 나누면 SST/(n-1)는 관측값의 표본분산, SSE/(n-2) 오차의 분산 등 일종의 분산형태가 되어 분산분석표 작성이 가능

요인	제곱합	자유도	평균제곱	FH $ $
회귀	SSR	1	$MSR = \frac{SSR}{1}$	$F_0 = \frac{\text{MSR}}{\text{MSE}}$
오차	SSE	n-2	$MSE = \frac{SSE}{(n-2)}$	
전체	SST	n-1		

> F비를 토대로 아래와 같이 가설 검정

가설:
$$H_0: \beta = 0, \quad H_1: \beta \neq 0$$

검정:
$$F_0 = \frac{MSR}{MSE} > F_{1, n-2, \alpha}$$
이면 H_0 를 기각

- \triangleright 오차항의 정규분포 가정 하에서 $Y_i=lpha+eta x_i+arepsilon_i$ 이므로 Y_i 는 평균이 $\alpha+eta x_i$ 이고 분산이 σ^2 인 정규분포를 따르게 됨
- **>** *β* 에 대한 추정

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$E(b) = \beta,$$

$$\int_{-\infty}^{\infty} (x - \overline{x})^2 V_{ax} dx$$

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$Var(b) = \frac{\left(\sum_{i=1}^{n} (x_i - \bar{x})^2 Var(Y_i)\right)}{\left(\sum_{i=1}^{n} (x_i - \bar{x})^2\right)^2} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sigma^2}{\left(\sum_{i=1}^{n} (x_i - \bar{x})^2\right)^2} = \frac{\sigma^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

따라서
$$b \sim N \left(\beta, \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)$$

회귀분석에서의 추론

▶ *β* 에 대한 추정

$$\beta$$
의 $(1-\alpha) \times 100\%$ 신뢰구간 : $[b \pm t_{n-2, \alpha/2} \cdot SE(b)]$

$$SE(b) = s / \sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

β 에 대한 검정

귀무가설: $H_0: \beta = \beta_0$

검정통계량: $t = \frac{b - \beta_0}{SE(b)}$

 H_0 기각역: 대립가설이 H_1 : $\beta < \beta_0$ 이면 $t < -t_{n-2,\alpha}$

대립가설이 H_1 : $\beta > \beta_0$ 이면 $t > t_{n-2, \alpha}$

대립가설이 H_1 : $\beta \neq \beta_0$ 이면 $|t| > t_{n-2, \alpha/2}$

회귀분석에서의 추론

- \blacktriangleright 회귀직선의 절편인 모수 α 의 추정치 α 는 $\alpha=\overline{Y}-b\overline{x}$ 이므로, 오차항의 분포를 이용하여 다음과 같이 추정
- α에 대한 추정

$$E(a) = E(\overline{Y} - b\overline{x}) = \alpha + \beta \overline{x} - \beta \overline{x} = \alpha,$$

$$Var(a) = Var(\overline{Y} - b\overline{x}) = Var(\overline{Y}) + (\overline{x})^{2} Var(b) - 2\overline{x} Cov(\overline{Y}, b)$$

$$= \frac{\sigma^{2}}{n} + \frac{\overline{x}^{2} \sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} + 0 = \frac{\sigma^{2}}{n} + \frac{\overline{x}^{2} \sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

따라서
$$a \sim N \left(\alpha, \left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right) \sigma^2 \right)$$

단순선형회귀모형의 분석 및 추론

> α에 대한 추정

$$\alpha$$
의 $(1-\alpha) \times 100\%$ 신뢰구간 : $[a \pm t_{n-2, \alpha/2} \cdot SE(a)]$

$$SE(a) = s \cdot \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

> α에 대한 검정

귀무가설: $H_0: \alpha = \alpha_0$

검정통계량:
$$t = \frac{\alpha - \alpha_0}{SE(a)}$$

 H_0 기각역: 대립가설이 H_1 : $\alpha < \alpha_0$ 이면 $t < -t_{n-2, \alpha}$

대립가설이 H_1 : $\alpha > \alpha_0$ 이면 $t > t_{n-2, \alpha}$

대립가설이 H_1 : $\alpha \neq \alpha_0$ 이면 $|t| > t_{n-2, \alpha/2}$

단순선형회귀모형의 분석 및 추론

회귀분석에서의 추론

- > 임의의 점 $X=x_o$ 에서의 종속변수 Y 는 평균값 $\mu_{Y|X}=\alpha+\beta x_o$ 를 가지며 이의 점추정량은 $\hat{y}_0=a+bx_0$
- $\mu_{Y|X}$ 에 대한 추정

$$\mu_{Y|X}$$
의 $(1-\alpha) \times 100\%$ 신뢰구간 : $[\hat{y}_0 \pm t_{n-2, \alpha/2} \cdot SE(\hat{y}_0)]$

$$Var(\hat{y}_0) = Var(a + bx_0) = Var(a) + (x_0)^2 Var(b) + 2x_0 Cov(a, b)$$

$$Cov(a, b) = Cov \left(\sum_{i=1}^{n} \left(\frac{1}{n} - \overline{x} \frac{(x_i - \overline{x})}{\sum_{j=1}^{n} (x_j - \overline{x})^2} \right) Y_i, \frac{\sum_{i=1}^{n} (x_i - \overline{x}) Y_i}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \right) \mathbf{O} \mathbf{D}$$

$$Cov(Y_i, Y_i) = \sigma^2$$

회귀분석에서의 추론

 $\mu_{Y|X}$ 에 대한 추정

$$SE(\hat{y}_0) = s \cdot \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

ightharpoonup 신뢰대는 $x_o = \overline{x}$ 일 때 가장 좁고 멀어질수록 점점 넓어짐

04

R을이용한실습

단순선형회귀모형의 적합

> Im 함수는 선형모형을 적합하는 함수

```
x \leftarrow c(56, 80, 50, 78, 65, 75, 53, 57, 53, 44)
y <- c(164, 180, 160, 175, 170, 175, 160, 169, 165, 150)
reg <- lm(y \sim x)
summary(reg)
Call:
lm(formula = y \sim x)
Residuals:
   Min 1Q Median 3Q Max
-5.4997 -1.3318 0.5528 0.6883 4.9094
```

단순선형회귀모형의 적합

> Im 함수는 선형모형을 적합하는 함수

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 126.42286 5.19874 24.318 8.73e-09 ***
   0.66084 0.08349 7.915 4.71e-05 ***
Χ
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.169 on 8 degrees of freedom
Multiple R-squared: 0.8868, Adjusted R-squared: 0.8726
F-statistic: 62.65 on 1 and 8 DF, p-value: 4.715e-05
```

정리하기

● 두 변수 간 상호관계는 표본상관계수와 산점도를 이용하여 분석한다.

회귀모형은 변수 간의 관계를 나타내는 수학적 모형이다.
 관측값을 이용하여 모형을 추정하고, 이를 통해 변수 간의 관계를 설명하고 예측한다.

정리하기

회귀모형에서 서로 관계를 가지고 있는 변수 중,
 다른 변수에 의해 영향을 받는 변수를 종속변수(dependent variable)라 하고,
 종속변수에 영향을 주는 변수를 독립변수(independent variable)라고 한다.

● 단순선형회귀모형은 1개의 독립변수와 종속변수의 관계를 설명하는 모형이다.

15강

다음시간안내

회귀모형॥

