I. Experiments

Datasets

MNIST employed here, is a large hand written database [9] of digits. Its commonly used for training various image classification tasks. It contains training set of 60,000 examples, and a test set of 10,000 examples. With digits in each image being 28 by 28 in size, normalized and centered in a fixed image. With train examples split into train =54000 and validation =6000

Testing Results

VGGNet -

The experiments for VGGNet were performed with the listed hyperparameter values: $batch_size = 128 \text{ num_classes} = 10$ epochs = 20

Total params: 17,093,578

Test Accuracy	0.9949	Test Loss	0.0359
Validation Accuracy	0.9953	Validation Loss	0.0324
Train Accuracy	0.9994	Train Loss	0.0017

VGGNet accuracy and loss graph

ResNet -

Total paramaters: 1,458,954

Test Accuracy	0.9880	Test Loss	0.0487
Validation Accuracy	0.9887	Validation Loss	0.0477
Train Accuracy	0.9955	Train Loss	0.0128

ResNet accuracy and loss graph

GoogLeNet-

The experiments were performed with the listed hyperparameter values: batch_size = $128 \text{ num_classes} = 10 \text{ epochs} = 20 \text{ learning_rate} = 0.0005 \text{ dropout_rate} = 0.4 \text{ activation_type} = 'relu'$

Discussion

The model had 7,420,878 parameters,

Test Accuracy	0.9907	Test Loss	1.1858
Validation Accuracy	0.9897	Validation Loss	0.4041
Train Accuracy	0.9876	Train Loss	0.1436

ideally googlenet in the base paper performs better, it is obvious that vgggnet works quite with the mnist dataset. It is also noted that vggnet happens to have the most parameters to learn making it the most computationally expensive, followed by google net and then resnet.

II. Conclusion

Further Evaluation:

In conclusion its is observed that all the models possess very high accuracy and really novel classifiers for the MNIST dataset. With VGGnet being the best

Snapshots shown in the appendix

Appendix

VGGNet runtime snapshot

The test loss: 0.03590568373736891 The test accuracy: 0.9948999881744385

GoogLeNet runtime snapshot

Train on 54000 samples, validate on 6000 samples Epoch 1/20 54000/54000 [= Epoch 5/20 54000/54000 [54000/54000 [= 54000/54000 [= Epoch 9/20 54000/54000 [= Epoch 11/20 54000/54000 [= Epoch 12/20 54000/54000 [== Epoch 14/20 54000/54000 [== Epoch 15/20 54000/54000 [= 54000/54000 [=

ResNet runtime snapshot

Train on 54000 samples, validate on 6000 samples 54000/54000 Epoch 2/10 54000/54000 =========] - 13s 238us/step - loss: 0.0468 - accuracy: 0.9849 - val_loss: 0.0628 - val_accuracy: 0.9812 Epoch 3/10 54000/54000 [Epoch 4/10 54000/54000 | ========== 1 - 13s 239us/step - loss: 0.0221 - accuracy: 0.9927 - val loss: 0.0683 - val accuracy: 0.9818 54000/54000 [===========] - 13s 238us/step - loss: 0.0216 - accuracy: 0.9930 - val loss: 0.0458 - val accuracy: 0.9882 Epoch 6/10 54000/54000 | Epoch 7/10 ==========] - 13s 238us/step - loss: 0.0120 - accuracy: 0.9957 - val_loss: 0.0849 - val_accuracy: 0.9822 Epoch 8/10 54000/54000 [========= | - 13s 238us/step - loss: 0.0118 - accuracy: 0.9963 - val loss: 0.0813 - val accuracy: 0.9807 Epoch 9/10 54000/54000 [============] - 13s 238us/step - loss: 0.0141 - accuracy: 0.9954 - val loss: 0.0726 - val accuracy: 0.9802 Epoch 10/10 54000/54000 [Loss = 0.048728563966415825

Loss = 0.048728563966415825 Test Accuracy = 0.9879999756813049 Test loss: 0.048728563966415825 Test accuracy: 0.9879999756813049