USTHB, Faculté d'Electronique et Informatique Département d'Informatique

Master S2I, 2^{ème} année Module : Data Mining

TD 4

Exercice 1

- 1) Ecrire l'algorithme de génération de l'arbre de décision.
- 2) Calculer sa complexité.
- 3) Quelles sont les trois mesures les plus populaires utilisées dans l'algorithme de l'arbre de décision ?
- 4) Dresser un tableau comparatif de ces mesures. Quel est l'inconvénient majeur de l'algorithme de l'arbre de décision ?
- 5) Citer deux méthodes qui peuvent pallier à cet inconvénient.

Exercice 2

Le tableau suivant contient une base de données d'employés. Certaines données ont été regroupées dans des intervalles, par exemple, "31.. 35" pour l'âge représente la tranche d'âge de 31 à 35 ans. La colonne 'nombre' représente le nombre d'occurrence de l'instance.

département	statut	âge	salaire	nombre
ventes	senior	3135	46K50K	30
ventes	junior	2630	26K30K	40
ventes	junior	3135	31K35K	40
systèmes	junior	2125	46K50K	20
systèmes	senior	3135	66K70K	5
systèmes	junior	2630	46K50K	3
systèmes	senior	4145	66K70K	3
marketing	senior	3640	46K50K	10
marketing	junior	3135	41K45K	4
secrétariat	senior	4650	36K40K	4
secrétariat	junior	2630	26K30K	6

En considérant l'attribut statut comme attribut de classe, engendrer l'arbre de décision de ces données sans tenir compte de la colonne 'nombre'.

- 1) Comment modifier l'algorithme de l'arbre de décision pour prendre en compte le nombre d'occurrence de l'instance ?
- 2) Déduire l'arbre de décision engendré de l'exécution de l'algorithme modifié.

Exercice 3.

Considérer la base d'apprentissage 'jouer au tennis' suivante :

Day	Outlook	Temperature	Humidity	Wind	PlayTennis?
1	Sunny	Hot	High	Light	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Light	Yes
4	Rain	Mild	High	Light	Yes
5	Rain	Cool	Normal	Light	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Light	No
9	Sunny	Cool	Normal	Light	Yes
10	Rain	Mild	Normal	Light	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Light	Yes
14	Rain	Mild	High	Strong	No

Soit l'instance **New day = (sunny, cool, high, light)** à classer. Pour déterminer la classe de l'instance **New day :**

- 1) Appliquer la méthode de la classification Bayésienne naïve.
- 2) Proposer une mesure de similarité entre les instances.
- 3) Appliquer l'algorithme k-NN pour k=3.