### Faça o download para poder editar

### Projeto 1: Prevendo Demanda de um Catálogo

Complete cada seção. Quando estiver pronto, salve o arquivo como um documento PDF e envie-o aqui: <a href="https://classroom.udacity.com/nanodegrees/nd008/parts/c0b53068-1239-4f01-82bf-24886872f48e/project">https://classroom.udacity.com/nanodegrees/nd008/parts/c0b53068-1239-4f01-82bf-24886872f48e/project</a>

### Passo 1: Compreensão do Negócio e dos Dados

Fornecer uma explicação das decisões importantes que precisam ser feitas. (limite de 500 palavras)

#### Decisões Chaves:

Responda estas perguntas

- Que decisões precisam ser feitas??
  R: Saber se vale a pena enviar o catálogo para os 250 clientes. Saber se vale a pena = Se dará lucro.
- 2. Que dados são necessários para subsidiar essas decisões??
  - R: Dados do último catálogo, quem comprou, média de compra, anos como cliente.

### Passo 2: Análise, modelagem e validação

Forneça uma descrição de como você configurou o seu modelo de regressão linear, quais as variáveis usadas e o por quê, assim como os resultados do modelo. Visualizações são incentivadas. (limite de 500 palavras)

Importante: Use o p1-customers.xlsx para treinar o modelo linear.

No mínimo, responda à estas perguntas:

- 1. Como e por que você selecionou <u>as variáveis de previsão (veja texto suplementar)</u> em seu modelo? Você deve explicar como as variáveis de previsão contínuas que você escolheu têm uma relação linear com a variável-alvo. Consulte esta <u>lição</u> para ajudar você a explorar seus dados e usar gráficos de dispersão para procurar relações lineares. Você deve incluir gráficos de dispersão em sua resposta.
  - R: A primeira ideia foi utilizar todas as variáveis e ver como elas se ligam ao modelo. Analisei o P Valor e retirei as variáveis com p valor acima de 0,05.

| Coefficients:                                |            |            |         |               |
|----------------------------------------------|------------|------------|---------|---------------|
|                                              | Estimate   | Std. Error | t value | Pr(> t )      |
| (Intercept)                                  | 3.176e+02  | 12.764602  | 24.884  | < 2.2e-16 *** |
| Customer.SegmentLoyalty Club Only            | -1.499e+02 | 8.966376   | -16.716 | < 2.2e-16 *** |
| Customer.SegmentLoyalty Club and Credit Card | 2.821e+02  | 11.918073  | 23.671  | < 2.2e-16 *** |
| Customer.SegmentStore Mailing List           | -2.429e+02 | 9.811708   | -24.757 | < 2.2e-16 *** |
| Customer.ID                                  | -1.543e-03 | 0.002938   | -0.525  | 0.59961       |
| Responded.to.Last.CatalogYes                 | -2.818e+01 | 11.261656  | -2.502  | 0.01242 *     |
| Avg.Num.Products.Purchased                   | 6.689e+01  | 1.516117   | 44.116  | < 2.2e-16 *** |
| XYears.as.Customer                           | -2.303e+00 | 1.221942   | -1.885  | 0.05956.      |

# Scatterplot of Customer\_ID versus Avg\_Sale\_Amount



# Scatterplot of Store\_Number versus Avg\_Sale\_Amoun



## catterplot of Avg\_Sale\_Amount versus X\_\_Years\_as\_Cust



## !rplot of Avg\_Sale\_Amount versus Avg\_Num\_Products\_P



2. Explique por que você acredita que seu modelo linear é um bom modelo. Você deve justificar o seu raciocínio usando os resultados estatísticos criados pelo seu modelo de regressão. Para cada variável selecionada, por favor justificar por que cada variável é uma boa opção para o seu modelo, usando os valores-p e valores R-quadrado produzidos pelo seu modelo.

R: Todas as variáveis utilizadas no modelo possuem p valor abaixo de 0,05 e o R-Quadrado é próximo de 1 e acima de 0,7, validando o modelo linear como um bom modelo.

Residual standard error: 137.48 on 2370 degrees of freedom Multiple R-squared: 0.8369, Adjusted R-Squared: 0.8366

F-statistic: 3040 on 4 and 2370 degrees of freedom (DF), p-value < 2.2e-16

 Qual é a melhor equação de regressão linear com base nos dados disponíveis? Cada coeficiente não deve ter mais de 2 dígitos após o decimal (ex: 1,28)

Importante: A equação de regressão deve estar na forma:

```
Y = Intercept + b1 * Variable_1 + b2 * Variable_2 + b3 * Variable_3.....
```

**Por exemplo:** Y = 482.24 + 28.83 \* Loan\_Status – 159 \* Income + 49 (Se Type: Credit Card) – 90 (Se Type: Mortgage) + 0 (Se Type: Cash)

Note que devemos incluir o coeficiente 0 para o type Cash.

R: 303.36 + (-149.36) \* (Customer.SegmentLoyalty Club Only) + 281.84 \* (Customer.SegmentLoyalty Club and Credit Card) + (-245.42) \* (Customer.SegmentStore Mailing List) + 66.98 (Avg.Num.Products.Purchased)

**Nota**: Para os alunos que utilizam outro software que não Alteryx, se você decidir usar Customer Segment como uma das suas variáveis de previsão, por favor, defina o caso base apenas para Credit Card.

### Passo 3: Apresentação/Visualização

Use os resultados do modelo para fornecer uma recomendação. (limite de 500 palavras)

No mínimo, responder à estas perguntas:

1. Qual é a sua recomendação? A empresa deve enviar o catálogo para estes 250 clientes?

R: Sim, a empresa terá lucro com o envio dos catálogos.

2. Como você chegou na sua recomendação? (Por favor, explique a sua lógica para os revisores poderem lhe dar feedback sobre o seu processo)

R: Ao utilizar o modelo de regressão linar, anexei a base de dados mailinglist a ferramenta score para utilizar a fórmula da regressão na outra base de dados. Após isso, utilizei a ferramenta fórmula para calcular o valor a probabilidade de compra dos clientes, chegando ao resultado da receita de \$ 47,224.87.



A receita esperada com a distribuição do catálogo para os 250 clientes é de \$ 47,224.87. O custo é de 50% a receita + 6,50 por catálogo. Ou seja, \$23,612.43 + 1625 = 25,237.43

3. Qual é o lucro esperado do novo catálogo (assumindo que o catálogo é enviado para estes 250 clientes)?

R: A receita esperada com a distribuição do catálogo para os 250 clientes é de \$ 47,224.87. O custo é de 50% a receita + 6,50 por catálogo. Ou seja, \$25,237.43 de custo, tendo como lucro \$ 21,987.44.

### Antes de enviar

Por favor verifique se suas respostas estão de acordo com o que é pedido na <u>rubrica</u>. Os revisores vão usar esta rubrica para avaliar o seu trabalho.