Einführung Mathematik

Version 0.1.192

Markus Demarmels, markus.demarmels@bluewin.ch

Für meine Patenkinder Seraina und Jaël und für meine Kinder Flurina und Michael: Ich wünsche Euch Lebensfreude

Ich konnte es nie, ich kann es nicht, ich werde es nie können - aber habe trotzdem Spaß daran.

Inhaltsverzeichnis

Abbildungsverzeichnis	9	
Tabellenverzeichnis		
 Kapitel 1. Einleitung 1.1. Warum dieses Buch? 1.2. Wie soll dieses Buch gelesen werden? 1.3. Voraussetzungen für das Lesen dieses Buches 1.4. Welches sind denn die "Sünden" der Mathematik? 1.5. Was soll denn an Mathematik so begeisternd sein? 1.6. Was soll in diesem Buch besprochen werden? 1.7. Gibt es auch Aufgaben und Übungen in Deinem Mathebuch? 1.8. Welches sind die Limitierungen dieses Buches? 1.9. weitere Vorbemerkungen 	39 39 42 43 45 49 52 59 63	
Teil 1. Wieso wird Logik und Mengenlehre benötig	gt? 65	
Kapitel 2. Was sind Symbole?	69	
Kapitel 3. Was sind Aussagen?	111	
Kapitel 4. Welche Spielregeln gelten in der Logik?	115	
Kapitel 5. Was sind Mengen?	123	
Kapitel 6. Über das sogenannte Bilderverbot in der Mathe	e 135	
Kapitel 7. Warum werden Fälle in logischen Tabellen geor	rdnet? 139	
Kapitel 8. Was ist eine "Negation"?	143	
Kapitel 9. Was ist eine "Identität"?	155	
Kapitel 10. Was ist eine "Konjunktion"?	159	
Kapitel 11. Was ist eine "Implikation"?	169	
Kapitel 12. Was ist eine "Replikation"?	179	
Kapitel 13. Was ist eine "Disjunktion"?	185	
Kapitel 14. Was ist eine "logische Äquivalenz"?	193	

Kapitel 15.	Was ist eine "Antivalenz"?	201
Kapitel 16.	Was ist eine "NAND-Verknüpfung"?	207
Kapitel 17.	Was ist eine "NOR-Verknüpfung"?	213
Kapitel 18.	Wie ist die Ausführungsreihenfolge von Operatoren?	219
Kapitel 19.	Mengenelemente und logische Aussagen	223
20.1. Voi 20.2. Wa 20.3. Wa 20.4. Wa 20.5. Wa 20.6. Wi 20.7. Wa 20.8. Au 20.9. Äq 20.10. Za 20.11. D 20.12. D 20.13. D 20.14. D	Über logische Sätze rbemerkung as ist der Satz der doppelten Negation? as ist der "Satz vom ausgeschlossenen Dritten"? as ist der "Satz der Transitivität der Implikation"? arum ist die Äquivalenz transitiv? as ist der "Satz vom logischen Widerspruch"? as ist der "Satz vom logischen Widerspruch"? as Konjunktion folgt Disjunktion uivalenz, Implikation und Replikation usammenhang Implikation und Replikation istributivgesetz von Implikation und Konjunktion istributivgesetz von Implikation und Disjunktion istributivgesetz von Konjunktion und Disjunktion istributivgesetz von Konjunktion und Disjunktion	227 236 241 246 253 260 264 272 278 281 284 287 291 294 306
20.16. Ä 20.17. W 20.18. W 20.19. W	quivalenz von Aussage und Konjunktion quivalenz von Aussage und Disjunktion Varum folgt die Aussage aus der Aussage? Varum kommutiert die Konjunktion? Varum kommutiert die Disjunktion?	307 311 313 314 319
20.21. W 20.22. W 20.23. W	Varum ist die Äquivalenz identitiv? Varum kommutiert die Äquivalenz? Varum ist die Konjunktion assoziativ? Varum ist die Disjunktion assoziativ? Vinimumprinzip der Konjunktion	320 321 323 329 334
20.26. W 20.27. W 20.28. W	Vas ist der Satz der Negation der Konjunktion? Varum muss es unwahre Aussagen geben? Vas ist der Satz der Negation der Disjunktion? Vas ist der Satz des Ausschlusses?	339 344 346 349
20.30. In 20.31. Zr 20.32. D	quivalenz als zwei Implikationen nplikation Implikation aus Äquivalenz usammenhang Disjunktion und Konjunktion isjunktive Normalform der Implikation	353 358 360 365
20.34. Zr 20.35. W	Varum folgt aus einer Konjunktion eine Aussage? usammenhang Aussage und Disjunktion Vas ist der Äquivalenz - Negation Satz? m was geht es beim Äquivalenz-Antivalenz-Satz?	368 372 378 381

20.37. Implikation Antivalenz Disjunktion	383
20.38. Satz der Negation der Implikation	384
20.39. Satz der Trivialität	385
20.40. Mit Implikationen Äquivalenzen beweisen	389
20.41. Kommutativität der NAND-Verknüpfung	403
20.42. Zusammenhang Konjunktion und NAND-Verknüpfung	404
20.43. Zusammenhang NOR-Verknüpfung und Disjunktion	407
20.44. Schlussbemerkungen über logische Sätze	409
Kapitel 21. Normalformen logischer Aussagen	411
21.1. Konjunktive Normalform der Äquivalenz	417
21.2. Konjunktive Normalform der Antivalenz	421
21.3. Konjunktive Normalform der NAND-Verknüpfung	423
21.4. konjunktive Normalform der NOR-Verknüpfung	426
Kapitel 22. Minimumsätze und Maximumsätze der Logik	429
Kapitel 23. Erzeugendensysteme in der Logik	453
23.1. Zusammenhang Negation und NAND-Verknüpfung	453
23.2. Zusammenhang Identität und NAND-Verknüpfung	455
23.3. Zusammenhang Konjunktion und NAND-Verknüpfung	457
23.4. Zusammenhang Disjunktion und NAND-Verknüpfung	458
23.5. Zusammenhang Implikation und NAND-Verknüpfung	462
23.6. Zusammenhang Antivalenz und NAND-Verknüpfung	464
23.7. Zusammenhang Äquivalenz und NAND-Verknüpfung	468
23.8. Zusammenhang von NOR und NAND-Verknüpfung	473
23.9. Zusammenhang von NAND und NOR-Verknüpfung	476
23.10. NAND-Verknüpfung als besondere Implikation	485
23.11. NOR-Verknüpfung als besondere Implikation	486
23.12. Erzeugendensysteme der Logik - Zusammenfassung	488
Kapitel 24. Substitutionssätze	493
24.1. Substitutionssatz der Negation	493
24.2. Substitutionssätze der Konjunktion	498
24.3. Substitutionssatz der Disjunktion	509
24.4. Substitutionssätze der Implikation	522
24.5. Substitutionssätze der Replikation	533
24.6. Was ist der Substitutionssatz der Äquivalenz?	547
24.7. Substitutionssätze der Antivalenz	552
24.8. Substitutionssätze der NAND-Verknüpfung	560
24.9. Substitutionssätze der NOR-Verknüpfung	570
24.10. weitere Substitutionssätze	574
Kapitel 25. Was sind Quantoren?	593
25.1. Transformationen von Quantoren	596
Kapitel 26. Mengenoperationen	601
26.1. Aussagenlogische Definition der Mengenlehre	602

26.3. Eig	ngengleichheit als Äquivalenzrelation genschaft der leeren Menge	604 613
	enschaften der leeren Menge	614
	itere Eigenschaften von Mengen	626
26.6. Eig	enschaften von Schnittmengen	631
Kapitel 27.	Was ist das kartesische Produkt von Mengen?	639
Kapitel 28.	weitere Betrachtungen	645
Teil 2. Wa	as sind natürliche Zahlen?	647
Kapitel 29.	Wieso können Schulden gut sein?	649
Kapitel 30.	Nun, was sind Zahlen?	653
Teil 3. Re	lationen und Funktionen	655
Kapitel 31.	Warum ist die Äquivalenz eine Äquivalenz relation?	657
Kapitel 32.	Vorbereitungen zu den natürlichen Zahlen	675
Kapitel 33.	Wieso sind die natürlichen Zahlen nicht natürlich?	723
Kapitel 34.	Warum sind die Axiome von Peano keine?	745
Kapitel 35.	Schlussfolgerungen aus den Axiomen von Peano	753
Kapitel 36.	Abschätzung des Quotienten zweier Potenzreihen	767
Kapitel 37.	Größter Gemeinsamer Teiler	771
Kapitel 38.	Minimum und Maximum	787
Kapitel 39.	kleinstes gemeinsames Vielfache	791
Kapitel 40.	Konjunktive und disjunktive Normalformen von Aussagen	801
Kapitel 41.	Über das Kronecker-Symbol	817
	weis des logischen Satzes der doppelten Negation	839
41.2. Bev	weis des Satzes des ausgeschlossenen Dritten	839
	weis der Transitivität der Implikation	843
	weis der Transitivität der Äquivalenz	848
	z des logischen Widerspruchs	860
	z der Schlussfolgerung	864
-	plikation und kleiner-gleich Beziehung	866 867
	mmutation der Konjunktion mmutation der Disjunktion	867
	ommutation der Äquivalenz	868
	aplikation Antivalenz Disjunktion	869
	aplikation Disjunktion aus Konjunktion	872

41.13. Satz des Distributivgesetzes von Konjunktion und	070
Disjunktion Al 14 Distributive sects were Implification and Maniambtion	873 875
41.14. Distributivgesetz von Implikation und Konjunktion	
41.15. Implikation und Replikation	880
41.16. Distributivgesetz von Implikation und Disjunktion	880
41.17. Minimumsätze und Maximumsätze der Logik	883 887
41.18. Vertauschung Konjunktion Implikation 41.19. Vertauschung Disjunktion und Implikation	890
41.19. Vertauschung Disjunktion und Implikation	090
Kapitel 42. Addition zweier nicht-negativer Binärzahlen	895
42.1. Äquivalenz von Äquivalenz und Implikationen	896
42.2. Äquivalenz Aussage und Konjunktion	897
42.3. Äquivalenz Aussage Disjunktion	898
42.4. Kommutativität der Konjunktion	899
42.5. Kommutativität der Disjunktion	900
42.6. Assoziativität der Konjunktion	901
42.7. Assoziativität der Disjunktion	901
42.8. Negation der Konjunktion	903
42.9. Konjunktive Normalform der Implikation	905
42.10. Satz der Negation der Disjunktion	905
42.11. Satz des Ausschlusses	907
42.12. Zusammenhang von Disjunktion und Konjunktion	911
42.13. Äquivalenz von Implikation und Negation einer	
Konjunktion	914
42.14. Satz der Implikation einer Aussage	915
42.15. Über unwahre Aussagen	916
42.16. aus Konjunktion folgt Aussage	917
42.17. Implikation aus Äquivalenz	918
42.18. Satz der Implikation aus einer Aussage	920
42.19. Satz der Äquivalenz von Äquivalenz und negierten	
Aussagen	923
42.20. Äquivalenz-Antivalenz-Satz	925
42.21. Kommutativität der NAND-Verknüpfung	927
42.22. Zusammenhang NAND-Verknüpfung und Negation	928
42.23. Zusammenhang NAND-Verknüpfung und Identität	929
Kapitel 43. Über Orangenhaufen	931
43.1. Zusammenhang NAND-Verknüpfung und Konjunktion	931
43.2. Zusammenhang NAND-Verknüpfung und Implikation	932
Kapitel 44. NAND-Verknüpfung als spezielle Implikation	935
Kapitel 45. Logische Aussagen mit dem Computer überprüfen	937
Kapitel 46. Erste Vorstufe zum großen Äquivalenzsatz	941
Teil 4. Die reellen Zahlen	949

Kapitel 47. Wieso werden reelle Zahlen benötigt? 47.1. Wie wurde das Problem der fehlenden Zahlen gelöst?	951 954
Kapitel 48. Was sind reelle Zahlen?	957
Anhang A: Symboltabelle	971
Stichwortverzeichnis	973

Abbildungsverzeichnis

1 Symbole Ubersicht	96
2 Einfache Symbole	97
3 Zahlen	97
4 Buchstaben	98
5 lateinische Buchstaben	98
6 kleine lateinische Buchstaben	99
7 große lateinische Buchstaben	100
8 griechische Buchstaben	101
9 kleine griechische Buchstaben	102
10 große griechische Buchstaben	103
11 übrige Buchstaben	104
12 Operatoren	105
13 übrige Symbole	106
14 ausgezeichnete Symbole	107
15 Auszeichnungen von Symbolen	108
16 zusammengesetzte Symbole	109
17 spezielle Funktionsbezeichnungen	110
1 syntaktische Beschreibung eines Operators	129
2 syntaktische Beschreibung einer Operation	129
3 syntaktische Beschreibung einer Bedingung	129
4 syntaktische Beschreibung eines Trennzeichens	129
5 syntaktische Beschreibung der maskierten Symbole	130
6 syntaktische Beschreibung einer expliziten Mengenbeschreibung	130
7 syntaktische Beschreibung einer Menge	130
1 Venn-Diagramm einer Menge	137
2 nicht korrektes Venn-Diagramm einer Menge	137
3 korrigiertes Venn-Diagramm der vorhergehenden Abbildung	137
1 Negation als Schaltbild (1. Darstellung, Ausgang gesetzt)	149
2 Negation als Schaltbild (1. Darstellung, Ausgang zurückgesetzt)	149

3 Negation als Schaltbild (2. Darstellung)	151
1 1. Schaltbild der Identität im zurückgesetzten Zustand	156
2 1. Schaltbild der Identität im gesetzten Ausgang	156
3 2. Schaltbild der Identität	157
1 1. Prinzipschema Konjunktion	165
2 2. Prinzipschema Konjunktion	165
•	
1 1. Schaltbild Schlussfolgerung	172
2 2. Schaltbild Schlussfolgerung	172
3 3. Schaltbild Schlussfolgerung	173
1 1. Schaltbild der Disjunktion	189
2 2. Schaltbild der Disjunktion	190
1 1. Schaltbild der Äquivalenz	196
2 2. Schaltbild der Äquivalenz	196
3 3. Schaltbild der Äquivalenz	197
4 4. Schaltbild der Äquivalenz	198
1 1. Schaltbild der Antivalenz	203
2 2. Schaltbild der Antivalenz	204
1 1. Prinzipschema NAND-Verknüpfung	207
2 2. Prinzipschema NAND-Verknüpfung	208
1 1. Prinzipschema NOR-Verknüpfung	214
2 2. Prinzipschema NOR-Verknüpfung	215
1 nichtleere Menge ist gleich zu sich selber	605
2 1. Visualisierung Lemma leere Menge ist gleich zu sich selber	606
3 2. Visualisierung Lemma leere Menge ist gleich zu sich selber	606
4 Kommutativität der Mengengleichheit von nichtleeren Mengen	607
5 1. Abbildung Kommutativität der Mengengleichheit von leeren	
Mengen	608
6 2. Abbildung Kommutativität der Mengengleichheit von leeren Mengen	608
7 Abbildung Transitivität der Mengengleichheit von nichtleeren	
Mengen	610
8 Abbildung Transitivität der Mengengleichheit von leeren Mengen	
9 Visualisierung leere Menge in sich selbst enthalten	615
10 Visualisierung leere Menge in nichtleerer Menge enthalten	615

ABBILDUNGSVERZEICHNIS	11
11 Visualisierung Schnittmenge von leerer Menge mit sich selber	620
12 Visualisierung Schnittmenge von nichtleerer Menge mit leerer Menge	620
13 Abbildung Kommutativität von Schnittmengen	632
1 Beispiel eines Koordinatensystems	639
1 Graph Vermögen Gudrun Gantenbein	659
1 Heaviside-Funktion	822
2 alternative Heaviside-Funktion	823
3 Schrittfunktion	823
1 Durchmesser eines Quadrats	954

969

1 Schema eines Pendels

Tabellenverzeichnis

1	1. Teil Auflistung der Flussdiagramme	95
2	Auflistung der Flussdiagramme	96
1	1. Schema Fallunterscheidungen für logische Aussagen mit einer logischen Variablen	140
2	2. Schema Fallunterscheidungen für logische Aussagen mit einer logischen Variablen	140
3	$1.\ Schema$ Fallunterscheidungen für logische Aussagen mit zwei logischen Variablen	140
4	2. Schema Fallunterscheidungen für logische Aussagen mit drei logischen Variablen	141
5	1. Schema Fallunterscheidungen für logische Aussagen mit drei logischen Variablen	141
6	2. Schema Fallunterscheidungen für logische Aussagen mit drei logischen Variablen	141
1	1. Darstellung der Wahrheitstabelle der Negation	152
2	2. Darstellung der Wahrheitstabelle der Negation	152
	 Darstellung der Wahrheitstabelle der Identität Darstellung der Wahrheitstabelle der Identität 	156 157
1	1. Darstellung der Wahrheitstabelle der Konjunktion	161
2	2. Darstellung der Wahrheitstabelle der Konjunktion	161
	 Darstellung der Wahrheitstabelle der Schlussfolgerung Darstellung der Wahrheitstabelle der Schlussfolgerung 	171 171
	 Darstellung der Wahrheitstabelle der Replikation Darstellung der Wahrheitstabelle Replikation 	181 181
	 Darstellung der Wahrheitstabelle der Disjunktion Darstellung der Wahrheitstabelle der Disjunktion 	186 186
1	1. Darstellung der Wahrheitstabelle der logischen Äquivalenz	194
2	2. Darstellung der Wahrheitstabelle der logischen Äquivalenz	195

1 1. Darstellung der Wahrheitstabelle der logischen Äquivalenz	202
2 2. Darstellung der Wahrheitstabelle der logischen Äquivalenz	202
1 1. Darstellung der Wahrheitstabelle der NAND-Verknüpfung	208
2 2. Darstellung der Wahrheitstabelle der NAND-Verknüpfung	209
1 1. Darstellung der Wahrheitstabelle der NOR-Verknüpfung	213
2 2. Darstellung der Wahrheitstabelle der NOR-Verknüpfung	213
1 1. Tabelle der logischen Sätze	232
3 2. Tabelle der logischen Sätze	233
4 3. Tabelle der logischen Sätze	234
5 4. Tabelle der logischen Sätze	235
6 5. Tabelle der logischen Sätze	236
7 6. Tabelle der logischen (Hilfs-)Sätze	237
8 7. Tabelle der logischen (Hilfs-)Sätze	238
9 1. Beweis des Satzes der doppelten Negation	243
10 2. Beweis des Satzes der doppelten Negation	243
11 Verweise des Satzes der doppelten Negation	244
12 1. Beweis des Satzes vom ausgeschlossenen Dritten	246
13 2. Beweis des Satzes vom ausgeschlossenen Dritten	246
14 Verweise des Satz vom ausgeschlossenen Dritten	246
15 1. Beweis des schwachen Satzes vom ausgeschlossenen Dritten	252
16 2. Beweis des schwachen Satzes vom ausgeschlossenen Dritten	253
17 Verweise des schwachen Satz vom ausgeschlossenen Dritten	253
18 1. Teil 1. Beweis Satz der Transitivität der Implikation	254
19 2. Teil 1. Beweis der Transitivität der Implikation	254
20 1. Teil 2. Beweis Satz der Transitivität der Implikation	255
21 2. Teil 2. Beweis der Transitivität der Implikation	255
22 1. Teil Verweise Beweis Kette von Schlussfolgerungen	256
23 2. Teil Verweise Beweis Kette von Schlussfolgerung	256
24 1. Teil 1. Beweis Satz der Transitivität der Äquivalenz	262
25 2. Teil 1. Beweis Satz der Transitivität der Äquivalenz	262
26 1. Teil 2. Beweis Satz der Transitivität der Äquivalenz	263
27 2. Teil 2. Beweis Satz der Transitivität der Äquivalenz	263
28 1. Teil Verweise Beweis Satz der Transitivität der Äquivalenz	264
29 2. Teil Verweise Beweis Kette der Äquivalenz	264
30 1. Beweis Satz der logischen Schlussfolgerung	265
31 2. Beweis Satz der logischen Schlussfolgerung	266

32 1. Teil Verweise Beweis Satz der logischen Schlussfolgerung	266
33 2. Teil Verweise Beweis Satz der logischen Schlussfolgerung	266
34 1. Beweis des verschärften Satzes der logischen Schlussfolgerung	269
35 2. Beweis des verschärften Satzes der logischen Schlussfolgerung	270
36 Verweise des verschärften Satzes der logischen Schlussfolgerung	270
37 1. Beweis des entschärften Satzes der logischen Schlussfolgerung	271
38 2. Beweis des verschärften Satzes der logischen Schlussfolgerung	271
39 Verweise Beweis entschärfter Satz vom logischen Widerspruch	271
40 1. Teil 1. Beweis 1. Satz vom logischen Widerspruch	272
41 2. Teil 1. Beweis 1. Satz vom logischen Widerspruch	272
42 1. Teil 2. Beweis 1. Satz vom logischen Widerspruch	273
43 2. Teil 2. Beweis 1. Satz vom logischen Widerspruch	273
44 1. Teil Verweise Beweis 1. Satz vom logischen Widerspruch	273
45 2. Teil Verweise Beweis 1. Satz vom logischen Widerspruch	273
46 1. Teil 1. Beweis 2. Satz vom logischen Widerspruch	276
47 2. Teil 1. Beweis 2. Satz vom logischen Widerspruch	276
48 1. Teil 2. Beweis 2. Satz vom logischen Widerspruch	276
49 2. Teil 2. Beweis 2. Satz vom logischen Widerspruch	276
50 1. Teil Verweise Beweis 2. Satz vom logischen Widerspruch	277
51 2. Teil Verweise Beweis 2. Satz vom logischen Widerspruch	277
52 1. Beweis Folgerung der Disjunktion aufgrund der Konjunktion	280
53 2. Beweis Folgerung der Disjunktion aufgrund der Konjunktion	280
54 Verweise Beweis Folgerung der Disjunktion aufgrund der Konjunktion	280
55 1. Teil 1. Beweis Äquivalenz von Äquivalenz und zwei Implikationen	282
56 2. Teil 1. Beweis Äquivalenz von Äquivalenz und zwei Implikationen	283
57 1. Teil 2. Beweis Äquivalenz von Äquivalenz und zwei	
Implikationen	283
58 2. Teil 2. Beweis Äquivalenz von Äquivalenz und zwei Implikationen	283
59 1. Tabelle Verweise Beweis Äquivalenz von Äquivalenz und zwei Implikationen	283
60 2. Tabelle Verweise Beweis Äquivalenz von Äquivalenz und zwei	i
Implikationen	284
61 1. Beweis des Satzes der Äquivalenz von Implikation und Replikation	284

62	2. Beweis des Satzes der Äquivalenz von Implikation und Replikation	285
63	Verweise Beweis des Satzes der Äquivalenz von Implikation und Replikation	285
64	1. Teil 1. Beweis des alternativen Satzes des Zusammenhangs von Replikation und Implikation	286
65	2. Teil 1. Beweis des alternativen Satzes des Zusammenhangs von Replikation und Implikation	286
66	1. Teil 2. Beweis des alternativen Satzes des Zusammenhangs von Replikation und Implikation	286
67	2. Teil 2. Beweis des alternativen Satzes des Zusammenhangs von Replikation und Implikation	287
68	1. Teil Verweise Beweis des alternativen Satzes des Zusammenhangs von Replikation und Implikation	287
69	2. Teil Verweise Beweis des Zusammenhangs von Implikation und Replikation	287
70	$1.\ {\rm Teil}\ 1.$ Beweis des Satzes der Kommutation von Implikation und Konjunktion	288
71	$2.\ {\rm Teil}\ 1.$ Beweis des Satzes der Kommutation von Implikation und Konjunktion	289
72	$1.\ {\rm Teil}\ 2.$ Beweis des Satzes der Kommutation von Implikation und Konjunktion	289
73	$2.\ {\rm Teil}\ 2.$ Beweis des Satzes der Kommutation von Implikation und Konjunktion	290
74	1. Tabelle Verweise Beweis des Satzes der Kommutation von Implikation und Konjunktion	290
75	2. Tabelle Verweise Beweis des Satzes der Kommutation von Implikation und Konjunktion	291
7 6	1. Teil 1. Beweis des Satzes der Kommutation von Implikation und Disjunktion	293
77	$2.\ {\rm Teil}\ 1.$ Beweis des Satzes der Kommutation von Implikation und Disjunktion	294
78	1. Teil 2. Beweis des Satzes der Kommutation von Implikation und Disjunktion	294
79	2. Teil 2. Beweis des Satzes der Kommutation von Implikation und Disjunktion	295
80	1. Tabelle Verweise Beweis des Satzes der Kommutation von Implikation und Disjunktion	295
81	2. Tabelle Verweise Beweis des Satzes der Kommutation von Implikation und Disjunktion	296

82 1. Teil 1. Beweis der Vertauschung von Disjunktion und Konjunktion unter der Implikation	297
83 2. Teil 1. Beweis der Vertauschung von Disjunktion und Konjunktion unter der Implikation	297
84 1. Teil 2. Beweis der Vertauschung von Disjunktion und Konjunktion unter der Implikation	298
85 2. Teil 2. Beweis der Vertauschung von Disjunktion und Konjunktion unter der Implikation	298
86 1. Tabelle Verweise des Beweises der Vertauschung von Disjunktion und Konjunktion unter der Implikation	299
87 2. Tabelle Verweise des Beweises der Vertauschung von Disjunktion und Konjunktion unter der Implikation	299
88 1. Teil 1. Beweis der Vertauschung von Konjunktion und Disjunktion unter der Implikation	301
89 2. Teil 1. Beweis der Vertauschung von Konjunktion und Disjunktion unter der Implikation	301
90 1. Teil 2. Beweis der Vertauschung von Konjunktion und Disjunktion unter der Implikation	302
91 2. Teil 2. Beweis der Vertauschung von Konjunktion und Disjunktion unter der Implikation	302
92 1. Tabelle Verweise des Beweises der Vertauschung von Konjunktion und Disjunktion unter der Implikation	303
93 2. Tabelle Verweise des Beweises der Vertauschung von Konjunktion und Disjunktion unter der Implikation	303
94 1. Teil 1. Beweis des Satzes des Distributivgesetzes von Konjunktion und Disjunktion	308
95 2. Teil 1. Beweis des Satzes des Distributivgesetzes von Konjunktion und Disjunktion	308
96 1. Teil 2. Beweis des Distributivgesetzes von Konjunktion und Disjunktion	308
97 2. Teil 2. Beweis des Distributivgesetzes von Konjunktion und Disjunktion	309
98 1. Tabelle Verweise Beweis des Distributivgesetzes von Konjunktion und Konjunktion	309
99 2. Tabelle Verweise Beweis des Distributivgesetzes von Konjunktion und Konjunktion	310
100 1. Beweis des Satzes der Äquivalenz von Aussage und Konjunktion	310
101 2. Beweis des Satzes der Äquivalenz von Aussage und Konjunktion	311

102 Tabelle Verweise Beweis des Satzes der Äquivalenz von Aussage und Konjunktion	311
103 1. Beweis des Satzes der Äquivalenz von Aussage und Disjunktion	312
104 2. Beweis des Satzes der Äquivalenz von Aussage und	312
Disjunktion 105 Tabelle Verweise Beweis des Satzes der Äquivalenz von	312
Aussage und Disjunktion	312
106 1. Beweis des Satzes der Implikation von Aussage zu Aussage	313
107 2. Beweis des Satzes der Implikation von Aussage zu Aussage	314
108 Tabelle Verweise Beweis des Satzes der Äquivalenz von	
Aussage und Aussage	314
109 1. Beweis des Satzes der Kommutativität der Konjunktion	316
110 2. Beweis der Kommutativität der Kommutation	316
111 1. Tabelle Verweise Beweis der Kommutation der Konjunktion	316
112 1. Beweis des Satzes der Kommutativität der Negation der Konjunktion	318
113 1. Teil des 2. Beweis der Kommutativität der Negation der	
Kommutation	318
114 2. Teil des 2. Beweis der Kommutativität der Negation der	010
Kommutation	318
115 1. Tabelle Verweise Beweis der Kommutation der Negation der Konjunktion	318
116 2. Tabelle Verweise Beweis der Kommutation der Negation der	
Konjunktion	319
117 1. Beweis des Satzes der Kommutativität der Disjunktion	320
118 2. Beweis der Kommutativität der Disjunktion	320
119 Verweise Beweis der Kommutation der Disjunktion	320
120 1. Beweis des Satzes der Kommutativität der Äquivalenz	323
121 2. Beweis der Kommutativität der Äquivalenz	323
122 Verweise Beweis der Kommutation der Aquivalenz	324
123 1. Teil 1. Beweis des Satzes der Assoziativität der Konjunktion	
124 1. Teil 2. Beweis der Assoziativität der Konjunktion	327
125 2. Teil 2. Beweis der Assoziativität der Konjunktion	327
126 1. Tabelle Verweise Beweis der Assoziativität der Konjunktion	328
127 2. Tabelle Verweise der Assoziativität der Konjunktion	328
128 1. Teil 1. Beweis des Satzes der Assoziativität der Disjunktion	
129 1. Teil 2. Beweis der Assoziativität der Disjunktion	331
130 2. Teil 2. Beweis der Assoziativität der Disjunktion	332

131 1. Tabelle Verweise Beweis der Assoziation der Disjunktion	332
132 2. Tabelle Verweise Beweis des Distributivgesetzes von	
Konjunktion und Konjunktion	333
133 1. Beweis 1. Teil Minimumprinzip Konjunktion	335
134 2. Beweis 1. Teil Minimumprinzip Konjunktion	335
135 Verweise des 1. Teil des Minimumprinzip der Konjunktion	336
136 2. Teil Verweise des Beweises des Satzes der Konjunktion mit	
nicht wahrer Aussage	336
137 1. Beweis 2. Teil Minimumprinzip Konjunktion	337
138 2. Beweis 2. Teil Minimumprinzip Konjunktion	337
139 Verweise des 1. Teil des Minimumprinzip der Konjunktion Teil	l
1	337
140 Verweise des 1. Teil des Minimumprinzip der Konjunktion Teil	L
2	338
141 1. Teil 1. Beweis Minimumprinzip Konjunktion mit drei	
Argumenten	339
142 2. Teil 1. Beweis Minimumprinzip Konjunktion mit drei	
Argumenten	339
143 3. Teil 1. Beweis Minimumprinzip Konjunktion mit drei	240
Argumenten	340
144 1. Teil 2. Beweis Minimumprinzip Konjunktion mit drei Argumenten	340
9	940
145 2. Teil 2. Beweis Minimumprinzip Konjunktion mit drei Argumenten	340
146 3. Teil 2. Beweis Minimumprinzip Konjunktion mit drei	010
Argumenten	341
147 1. Teil Verweise Minimumprinzip Konjunktion mit drei	
Argumenten	341
148 2. Teil Verweise Minimumprinzip Konjunktion mit drei	
Argumenten	342
149 3. Teil Verweise Minimumprinzip Konjunktion mit drei	
Argumenten	342
150 1. Beweis des Satzes der Negation der Konjunktion	343
151 1. Beweis des Satzes der Negation der Konjunktion	343
152 1. Teil 2. Beweis des Satzes der Negation der Konjunktion	343
153 2. Teil 2. Beweis des Satzes der Negation der Konjunktion	344
154 1. Teil Verweise des Beweises des Satzes der Negation der	
Konjunktion	344
155 2. Teil Verweise des Beweises des Satzes der Negation der	
Konjunktion	344

156 1. Beweis der Negation der Konjunktion der Aussage und ihrer	
	345
157 2. Beweis der Negation der Konjunktion der Aussage und ihrer Negation	346
158 Verweise des Satzes der Negation der Konjunktion der Aussage und ihrer Negation	346
159 1. Beweis des Satzes der Negation der Disjunktion	348
160 1. Teil 2. Beweis des Satzes der Negation der Disjunktion	348
161 2. Teil 2. Beweis des Satzes der Negation der Disjunktion	348
162 1. Teil Verweise Beweis Negation der Disjunktion	348
163 2. Teil Verweise Beweis Negation der Disjunktion	349
164 1. Beweis des Satzes des Ausschlusses	351
165 1. Teil 2. Beweis des Satzes des Ausschlusses	351
166 2. Teil 2. Beweis des Satzes des Ausschlusses	351
167 1. Teil Verweise Beweis Satz des Ausschlusses	352
168 2. Teil Verweise Beweis Satz des Ausschlusses	352
169 1. Beweis des Satzes der Folgerung der Aussage aus der der doppelten Negation	353
170 2. Beweis des Satzes der Folgerung der Aussage aus der der doppelten Negation	353
171 Verweise des Satzes der Folgerung der Aussage aus der der doppelten Negation	354
172 1. Teil 1. Beweis des Satzes der Äquivalenz als zwei Implikationen	355
173 2. Teil 1. Beweis des Satzes der Äquivalenz als zwei Implikationen	356
174 1. Teil 2. Beweis des Satzes der Äquivalenz als zwei Implikationen	356
175 2. Teil 2. Beweis des Satzes der Äquivalenz als zwei Implikationen	356
176 1. Teil Verweise Beweis des Satzes der Äquivalenz als zwei Implikationen	356
177 1. Teil Verweise Beweis des Satzes der Äquivalenz als zwei Implikationen	357
$178\ 1.$ Teil 1. Beweis des Satzes alternativen Satzes der Äquivalenz als zwei Implikationen	358
$179\ 2.$ Teil 1. Beweis des Satzes alternativen Satzes der Äquivalenz als zwei Implikationen	358
1801. Teil 2. Beweis des Satzes alternativen Satzes der Äquivalenz als zwei Implikationen	358

181 1. Teil 2. Beweis des Satzes alternativen Satzes der Aquivalenz als zwei Implikationen	359
182 1. Teil Verweise Beweis alternativer Satz der Äquivalenz als	250
•	359
	359
184 1. Beweis des Satzes der Implikation der Implikation aus der Äquivalenz	360
185 2. Beweis des Satzes der Implikation der Implikation aus der Äquivalenz	361
186 Verweise Beweis Satz des Ausschlusses	361
187 1. Teil 1. Beweis des Satzes des Zusammenhangs von Disjunktion und Konjunktion	364
188 2. Teil 1. Beweis des Satzes des Zusammenhangs von Disjunktion und Konjunktion	364
189 1. Teil 2. Beweis des Satzes des Zusammenhangs von Disjunktion und Konjunktion	364
190 2. Teil 2. Beweis des Satzes des Zusammenhangs von Disjunktion und Konjunktion	364
191 1. Teil Verweise Beweis Zusammenhang von Disjunktion und Konjunktion	365
192 2. Teil Verweise Beweis Zusammenhang von Disjunktion und Konjunktion	365
193 1. Beweis des Satzes der Äquivalenz von Implikation und Negation einer Konjunktion	366
194 1. Teil 2. Beweis des Satzes der Äquivalenz von Implikation und Negation einer Konjunktion	367
195 2. Teil 2. Beweis des Satzes der Äquivalenz von Implikation und Negation einer Konjunktion	367
196 1. Teil Verweise Beweis Satzes der Äquivalenz von Implikation und Negation einer Konjunktion	367
197 2. Teil Verweise Beweis Satzes der Äquivalenz von Implikation und Negation einer Konjunktion	367
198 1. Beweis der Folgerung der Aussage aus einer Konjunktion	369
199 2. Beweis der Folgerung der Aussage aus einer Konjunktion	369
200 Verweise Beweis der Folgerung der Aussage aus einer	
Konjunktion	369
201 1. Teil 1. Beweis Denkfehler Implikation	370
•	371
•	371
•	371

205 1. Teil Verweise Beweis des Denkfehlers der Implikation	371
206 2. Teil Verweise Beweis des Denkfehlers der Implikation	372
$207\ 1.$ Beweis der Implikation einer Disjunktion aus einer Aussage	373
208 2. Beweis des Satzes der Implikation einer Disjunktion aus einer Aussage	373
209 Verweise Beweis Satz der Implikation einer Disjunktion aus einer Aussage	373
210 1. Teil 1. Beweis Denkfehler Disjunktion	375
211 2. Teil 1. Beweis Denkfehler Disjunktion	375
212 1. Teil 2. Beweis Denkfehler Disjunktion	375
213 2. Teil 2. Beweis Denkfehler Disjunktion	376
214 1. Teil Verweise Beweis des Denkfehlers der Konjunktion	376
215 2. Teil Verweise Beweis des Denkfehlers der Konjunktion	376
216 1. Beweis des zweiten Teils des Maximumprinzips der Disjunktion	377
217 2. Beweis des zweiten Teils des Maximumprinzips der Disjunktion	377
218 Verweise des zweiten Teils des Maximumprinzips der Disjunktion	377
219 1. Beweis des Äquivalenz-Negations-Satzes	380
220 1. Teil 2. Beweis des Äquivalenz-Negations-Satzes	380
221 2. Teil 2. Beweis des Äquivalenz-Negations-Satzes	380
222 1. Tabelle Verweise Beweis Äquivalenz-Negationssatz	380
223 2. Tabelle Verweise Beweis Äquivalenz-Negationssatz	380
224 1. Beweis des Äquivalenz-Antivalenz-Satzes	381
225 1. Teil 2. Beweis des Äquivalenz-Antivalenz-Satzes	381
226 2. Teil 2. Beweis des Äquivalenz-Antivalenz-Satzes	382
227 1. Teil Verweise Beweis des Äquivalenz-Antivalenz-Satzes	382
228 2. Teil Verweise Beweis des Äquivalenz-Antivalenz-Satzes	382
229 1. Beweis des Satzes der Implikation von Antivalenz und Disjunktion	384
230 2. Beweis des Äquivalenz-Antivalenz-Satzes	385
231 Verweise Beweis des Satzes der Implikation von Antivalenz und Disjunktion	385
232 1. Teil 1. Beweis des Satzes der Negation der Implikation	386
233 2. Teil 1. Beweis des Satzes der Negation der Implikation	386
234 1. Teil 2. Beweis des Satzes der Negation der Implikation	386
235 2. Teil 2. Beweis des kleinen Lemmas der Äquivalenz der Disjunktion	386

236 1. Teil Verweise Beweis des Satzes der Negation der Implikation	387
$237\ 2.$ Teil Verweise Beweis des Satzes der Negation der Implikation	387
238 1. Beweis Satz der Trivialität	388
239 2. Beweis Satz der Trivialität	388
240 Verweise Satz der Trivialität	388
241 1. Teil 1. Beweis Satz Äquivalenzen aus Implikationen	391
242 2. Teil 1. Beweis Satz Äquivalenzen aus Implikationen	392
243 3. Teil 1. Beweis Satz Äquivalenzen aus Implikationen	392
244 1. Teil 2. Beweis Satz Äquivalenzen aus Implikationen	392
245 2. Teil 2. Beweis Satz Äquivalenzen aus Implikationen	393
246 3. Teil 2. Beweis Satz Äquivalenzen aus Implikationen	394
247 4. Teil 2. Beweis Satz Äquivalenzen aus Implikationen	394
248 1. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen	395
249 2. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen	395
250 3. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen	395
251 1. Teil 1. Beweis Satz Äquivalenzen aus Implikationen	399
252 2. Teil 1. Beweis Satz Äquivalenzen aus Implikationen	399
253 3. Teil 1. Beweis Satz Äquivalenzen aus Implikationen	399
254 1. Teil 2. Beweis Satz Äquivalenzen aus Implikationen	400
255 2. Teil 2. Beweis Satz Äquivalenzen aus Implikationen	400
256 3. Teil 2. Beweis Satz Äquivalenzen aus Implikationen	401
257 4. Teil 2. Beweis Satz Äquivalenzen aus Implikationen	401
258 1. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen	402
259 2. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen	402
260 3. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen	402
261 1. Beweis der Kommutativität der NAND-Verknüpfung	403
262 2. Beweis Kommutativität der NAND-Verknüpfung	403
263 Tabelle Verweise Beweis der Kommutativität der NAND-	
	403
264 1. Beweis des Satzes der Äquivalenz von NAND und der Negation einer Konjunktion	406
265 1. Teil 2. Beweis des Satzes der Äquivalenz von NAND und der Negation einer Konjunktion	406
266 2. Teil 2. Beweis des Satzes der Äquivalenz von NAND und	
	407
267 1. Teil Verweise Beweis des Satzes der Äquivalenz von NAND und der Negation einer Konjunktion	407
·	

2682. Teil Verweise Beweis des Satzes der Äquivalenz von NAND und der Negation einer Konjunktion	407
269 1. Beweis des Satzes der Äquivalenz von NOR und der Negation einer Disjunktion	408
270 1. Teil 2. Beweis des Satzes der Äquivalenz von NOR und der Negation einer Disjunktion	408
271 2. Teil 2. Beweis des Satzes der Äquivalenz von NOR und der Negation einer Disjunktion	408
272 1. Teil Verweise des Beweis des Satzes der Äquivalenz von NOR und der Negation einer Disjunktion	408
273 2. Teil Verweise des Beweis des Satzes der Äquivalenz von NOR und der Negation einer Disjunktion	409
1 1. Beweis der konjunktiven Normalform der Implikation	412
2 2. Beweis der konjunktiven Normalform der Implikation	412
3 1. Teil der Verweise des Beweises der konjunktiven Normalform der Implikation	413
4 2. Teil der Verweise des Beweises der konjunktiven Normalform der Implikation	413
5 1. Beweis konjunktive Normalform Replikation	414
6 2. Beweis konjunktive Normalform Replikation	415
7 Verweise des Beweises der konjunktiven Normalform der Replikation	415
8 Verweise des Beweises der konjunktiven Normalform der Replikation	415
$9\ 1.$ Beweis des ersten Korollars der konjunktiven Normalform der Implikation	416
10 2. Beweis des ersten Korollars der konjunktiven Normalform der Implikation	416
11 Verweise des ersten Korollars der konjunktiven Normalform der Implikation	417
12 1. Beweis des zweiten Korollars der konjunktiven Normalform der Implikation	418
13 2. Beweis des zweiten Korollars der konjunktiven Normalform der Implikation	418
14 Verweise des ersten Korollars der konjunktiven Normalform der Implikation	418
15 1. Teil 1. Beweis konjunktive Normalform der Äquivalenz	419
16 2. Teil 1. Beweis konjunktive Normalform der Äquivalenz	419
17 1. Teil 2. Beweis konjunktive Normalform der Äquivalenz	420

18 2. Teil 2. Beweis konjunktive Normalform der Äquivalenz	120
19 1. Teil Verweise des Beweises der konjunktiven Normalform der Äquivalenz	420
20 2. Teil Verweise des Beweises der konjunktiven Normalform der Äquivalenz	121
21 3. Teil Verweise des Beweises der konjunktiven Normalform der Äquivalenz	421
22 1. Teil 1. Beweis konjunktive Normalform der Antivalenz	122
23 2. Teil 1. Beweis konjunktive Normalform der Antivalenz	122
24 1. Teil 2. Beweis konjunktive Normalform der Antivalenz	123
25 2. Teil 2. Beweis konjunktive Normalform der Antivalenz	123
26 1. Teil Verweise des Beweises der konjunktiven Normalform der Antivalenz	423
27 2. Teil Verweise des Beweises der konjunktiven Normalform der Antivalenz	124
28 3. Teil Verweise des Beweises der konjunktiven Normalform der Äquivalenz	124
29 1. Teil 1. Beweis konjunktive Normalform NAND-Verknüpfung 4	125
30 2. Teil 1. Beweis konjunktive Normalform der NAND- Verknüpfung	125
31 1. Teil 2. Beweis konjunktive Normalform der NAND- Verknüpfung	125
32 2. Teil 2. Beweis konjunktive Normalform der NAND- Verknüpfung	125
33 1. Teil Verweise Beweis konjunktive Normalform der NAND- Verknüpfung	126
34 2. Teile Verweise Beweis konjunktive Normalform der NAND-Verknüpfung	426
	127
36 2. Teil 1. Beweis konjunktive Normalform der NOR-Verknüpfung 4	127
37 1. Teil 2. Beweis konjunktive Normalform der NAND- Verknüpfung	427
38 2. Teil 2. Beweis konjunktive Normalform der NOR-Verknüpfung 4	128
39 1. Teil Verweise Beweis konjunktive Normalform der NOR-	428
40 2. Teile Verweise Beweis konjunktive Normalform der	428
1 Auflistung der Beweise der Minimum- und Maximumsätze der Logik	129

2 Auflistung der Verweise der Minimum- und Maximumsätze der	
Logik	430
3 1. Beweis Implikation Aussage aus nicht wahrer Aussage	432
4 1. Beweis Implikation Aussage aus nicht wahrer Aussage	432
5 1. Teil Verweise des Beweises der Implikation Aussage aus nicht	
wahrer Aussage	432
6 1. Beweis Konjunktion mit nicht wahrer Aussage	433
7 2. Beweis Konjunktion mit nicht wahrer Aussage	433
8 1. Teil Verweise des Beweises des Satzes der Konjunktion mit	433
nicht wahrer Aussage 9 2. Teil Verweise des Beweises des Satzes der Konjunktion mit	455
nicht wahrer Aussage	433
10 1. Beweis Disjunktion mit nicht wahrer Aussage	434
11 2. Beweis Disjunktion mit nicht wahrer Aussage	434
12 1. Teil der Verweise Beweises Disjunktion mit nicht wahrer	
Aussage	434
13 2. Teil der Verweise des Beweis Disjunktion mit nicht wahrer	
Aussage	434
14 1. Beweis Konjunktion mit wahrer Aussage	435
15 2. Beweis Konjunktion mit wahrer Aussage	435
16 1. Teil Verweise Beweis Konjunktion mit wahrer Aussage	435
17 2. Teil Verweise Beweis Konjunktion mit wahrer Aussage	435
18 1. Beweis Disjunktion mit wahrer Aussage	436
19 2. Beweis Disjunktion mit wahrer Aussage	436
20 1. Teil Verweise Beweis Konjunktion mit wahrer Aussage	436
21 2. Teil Verweise Beweis Konjunktion mit wahrer Aussage	436
22 1. Beweis Implikation wahre Aussage aus Aussage	437
23 1. Beweis Implikation wahre Aussage aus Aussage	437
24 1. Teil Verweise des Beweises des Satzes der Implikation wahre	
Aussage aus Aussage	437
25 Auflistung der ersten Beweise der erweiterten Minimum- und Maximumsätze der Logik	441
26 Auflistung der zweiten Beweise der Minimum- und Maximumsätze der Logik	441
27 Auflistung der Verweise der Minimum- und Maximumsätze der	
Logik	441
28 1. Teil 1. Beweis erweiterter Satz der Konjunktion mit nicht wahrer Aussage	442

29	2. Teil 1. Beweis erweiterter Satz der Konjunktion mit nicht wahrer Aussage	442
30	1. Teil 2. Beweis erweiterter Satz der Konjunktion mit nicht wahrer Aussage	443
31	2. Teil 2. Beweis erweiterter Satz der Konjunktion mit nicht wahrer Aussage	443
32	1. Teil Verweise des Beweises des erweiterten Satzes der Konjunktion mit nicht wahrer Aussage	444
33	2. Teil Verweise des Beweises des erweiterten Satzes der Konjunktion mit nicht wahrer Aussage	444
34	1. Teil 1. Beweis erweiterter Satz der Disjunktion mit nicht wahrer Aussage	444
35	2. Teil 1. Beweis erweiterter Satz der Disjunktion mit nicht wahrer Aussage	445
36	1. Teil 2. Beweis erweiterter Satz der Disjunktion mit nicht wahrer Aussage	445
37	2. Teil 2. Beweis erweiterter Satz der Disjunktion mit nicht wahrer Aussage	446
38	1. Teil der Verweise des Beweises des erweiterten Satzes der	
39	Disjunktion mit nicht wahrer Aussage 2. Teil Verweise des Beweises des erweiterten Satzes der Disjunktion mit nicht wahrer Aussage	446 447
40	1. Teil 1. Beweis erweiterter Satz der Konjunktion mit wahrer Aussage	447
41	2. Teil 1. Beweis erweiterter Satz der Konjunktion mit wahrer Aussage	447
42	1. Teil 2. Beweis erweiterter Satz der Konjunktion mit wahrer Aussage	448
43	2. Teil 2. Beweis erweiterter Satz der Konjunktion mit wahrer Aussage	448
44	1. Teil Verweise Beweis erweiterter Satz der Konjunktion mit wahrer Aussage	449
45	2. Teil Verweise Beweis erweiterter Satz der Konjunktion mit wahrer Aussage	449
46	1. Teil 1. Beweis erweiterter Satz der Disjunktion mit wahrer Aussage	449
47	2. Teil 1. Beweis erweiterter Satz der Disjunktion mit wahrer Aussage	450
48	1. Teil 2. Beweis erweiterter Satz Disjunktion mit wahrer Aussage	450

49 2. Teil 2. Beweis erweiterter Satz Disjunktion mit wahrer Aussage	451
50 1. Teil Verweise Beweis erweiterter Satz Disjunktion mit wahrer Aussage	451
51 2. Teil Verweise erweiterter Satz Beweis erweiterter Satz der Disjunktion mit wahrer Aussage	452
1 1. Beweis der Ableitung der Negation von der NAND- Verknüpfung	454
2 2. Beweis der Ableitung der Negation von der NAND- Verknüpfung	455
3 Tabelle Verweise des Beweises der Ableitung der Negation von der NAND-Verknüpfung	455
41. Beweis der Ableitung der Identität von der NAND-Verknüpfung	455
5 1. Teil 2. Beweis der Ableitung der Identität von der NAND-Verknüpfung	455
6 Tabelle Verweise des Beweises der Ableitung der Negation von der NAND-Verknüpfung	456
7 1. Beweis des Zusammenhangs von Konjunktion und NAND- Verknüpfung	458
8 1. Teil 2. Beweis des Zusammenhangs von Konjunktion und NAND-Verknüpfung	458
9 2. Teil 2. Beweis des Zusammenhangs von Konjunktion und NAND-Verknüpfung	458
10 Verweise Beweis Satz des Zusammenhangs von Konjunktion und NAND-Verknüpfung	459
11 Verweise Beweis Satz des Zusammenhangs von Konjunktion und NAND-Verknüpfung	459
12 1. Teil 1. Beweis Zusammenhang Disjunktion und NAND- Verknüpfung	459
13 2. Teil 1. Beweis Zusammenhang Disjunktion und NAND- Verknüpfung	460
14 1. Teil 2. Beweis Zusammenhang Disjunktion und NAND-Verknüpfung	460
15 2. Teil 2. Beweis Zusammenhang Disjunktion und NAND-Verknüpfung	460
16 1. Teil Verweise Beweis Zusammenhang Disjunktion und NAND-Verknüpfung	460
17 2. Teil Verweise Beweis Zusammenhang Disjunktion und NAND-Verknüpfungs	461

18	1. Beweis Zusammenhang Implikation und NAND-Verknüpfung	463
19	1. Teil 2. Beweis Zusammenhang Implikation und NAND-	463
20	2. Teil 2. Beweis Zusammenhang Implikation und NAND-	463
21	1. Teil Verweise Beweis Zusammenhang Implikation und	464
22	2. Teil Verweise Beweis	464
23	1. Teil 1. Beweis Zusammenhang Antivalenz und NAND- Verknüpfung	468
24	2. Teil 1. Beweis Zusammenhang Antivalenz und NAND-Verknüpfung	468
25	1. Teil 2. Beweis Zusammenhang Antivalenz und NAND- Verknüpfung	468
26	2. Teil 2. Beweis Zusammenhang Antivalenz und NAND-Verknüpfung	469
27	1. Teil Verweise Beweis Zusammenhang Antivalenz und NAND-Verknüpfung	469
28	2. Teil Verweise Beweis Beweis Zusammenhang Antivalenz und NAND-Verknüpfung	469
29	3. Teil Verweise Beweis Beweis Zusammenhang Antivalenz und NAND-Verknüpfung	470
30	1. Teil 1. Beweis Zusammenhang Äquivalenz und NAND- Verknüpfung	472
31	2. Teil 1. Beweis Zusammenhang Äquivalenz und NAND- Verknüpfung	472
32	3. Teil 1. Beweis Zusammenhang Äquivalenz und NAND- Verknüpfung	472
33	1. Teil 2. Beweis Zusammenhang Äquivalenz und NAND- Verknüpfung	472
34	2. Teil 2. Beweis Zusammenhang Äquivalenz und NAND- Verknüpfung	473
35	3. Teil 2. Beweis Zusammenhang Äquivalenz und NAND- Verknüpfung	473
36	1. Teil Verweise Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung	473
37	2. Teil Verweise Beweis Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung	474
38	3. Teil Verweise Beweis Beweis Zusammenhang Äquivalenz und	474

39	1. Teil 1. Beweis Zusammenhang NOR- und NAND-Verknüpfung	476
40	2. Teil 1. Beweis Zusammenhang NOR- und NAND-Verknüpfung	476
41	3. Teil 1. Beweis Zusammenhang NOR- und NAND-Verknüpfung	476
42	1. Teil 2. Beweis Zusammenhang NOR- und NAND-Verknüpfung	476
43	2. Teil 2. Beweis Zusammenhang NOR-1— und NAND-	
	Verknüpfung	477
44	3. Teil 2. Beweis Zusammenhang NOR- und NAND-Verknüpfung	477
45	1. Teil Verweise Beweis Zusammenhang NOR- und NAND- Verknüpfung	477
46	2. Teil Verweise Beweis Zusammenhang NOR- und NAND- Verknüpfung	478
47	3. Teil Verweise Beweis Zusammenhang NOR- und NAND- Verknüpfung	478
48	1. Teil 1. Beweis des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung	479
49	2. Teil 1. Beweis des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung	480
50	1. Teil 2. Beweis des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung	480
51	2. Teil 2. Beweis des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung	480
52	$1.\ {\rm Teil}\ {\rm Verweise}\ {\rm des}\ {\rm Satzes}\ {\rm des}\ {\rm Zusammenhangs}\ {\rm der}\ {\rm Konjunktion}$ und der NOR-Verknüpfung	480
53	2. Teil Verweise des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung	481
54	1. Teil 1. Beweis des Satzes des Zusammenhangs von NAND- und NOR-Verknüpfung	482
55	2. Teil 1. Beweis des Satzes des Zusammenhangs der NAND und der NOR-Verknüpfung	482
56	3. Teil 1. Beweis des Satzes des Zusammenhangs von NAND- und NOR-Verknüpfung	483
57	1. Teil 2. Beweis des Satzes des Zusammenhangs der NAND- und der NOR-Verknüpfung	483
58	2. Teil 2. Beweis des Satzes des Zusammenhangs von NAND- und NOR-Verknüpfung	483
59	3. Teil 2. Beweis des Satzes des Zusammenhangs von NAND- und NOR-Verknüpfung	483
60	1. Teil Verweise des Satzes des Zusammenhangs der NAND- und der NOR-Verknüpfung	484

61 2. Teil Verweise des Satzes des Zusammenhangs der NAND- und der NOR-Verknüpfung	484
62 2. Teil Verweise des Satzes des Zusammenhangs der NAND- und	
der NOR-Verknüpfung	484
631. Teil 1. Beweis des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation	486
$64\ 2.$ Teil 1. Beweis des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation	486
$65\ 1.$ Teil 2. Beweis des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation	487
$66\ 2.$ Teil 2. Beweis des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation	487
67 1. Teil der Verweise des Beweises des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation	487
68 2. Teil der Verweise des Beweises des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation	487
69 1. Teil 1. Beweis des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation	488
70 2. Teil 1. Beweis des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation	489
71 1. Teil 2. Beweis des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation	489
72 2. Teil 2. Beweis des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation	489
73 1. Teil der Verweise des Beweises des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation	489
74 2. Teil der Verweise des Beweises des Zusammenhangs der	
NOR-Verknüpfung und einer erweiterten Form der Implikation	490
1 1. Teil 1. Beweis Substitutionssatz der Negation	495
2 2. Teil 1. Beweis Substitutionssatz der Negation	495
3 1. Teil 2. Beweis Substitutionssatz der Negation	495
4 2. Teil 2. Beweis Substitutionssatz der Negation	495
5 1. Teil Verweise Beweis Substitutionssatz der Negation	495
6 2. Teile Verweise Beweis Substitutionssatz der Negation	496
7 1. Teil 1. Beweis 2. Substitutionssatz der Negation	497
8 2. Teil 1. Beweis 2. Substitutionssatz der Negation	497
9 1. Teil 2. Beweis 2. Substitutionssatz der Negation	497
10 2. Teil 2. Beweis 2. Substitutionssatz der Negation	498

11 1. Teil Verweise Beweis 2. Substitutionssatz der Negation	498
12 2. Teile Verweise Beweis 2. Substitutionssatz der Negation	498
13 1. Teil 1. Beweis 1. Substitutionssatz der Konjunktion	500
14 2. Teil 1. Beweis 1. Substitutionssatz der Konjunktion	500
15 1. Teil 2. Beweis 1. Substitutionssatz der Konjunktion	500
16 2. Teil 2. Beweis 1. Substitutionssatz der Konjunktion	501
17 1. Teil Verweise Beweis 1. Substitutionssatz der Konjunktion	501
18 2. Teil Verweise Beweis 1. Substitutionssatz der Konjunktion	501
19 1. Teil 1. Beweis 2. Substitutionssatz der Konjunktion	503
20 2. Teil 1. Beweis 2. Substitutionssatz der Konjunktion	503
21 1. Teil 2. Beweis 2. Substitutionssatz der Konjunktion	503
22 2. Teil 2. Beweis 2. Substitutionssatz der Konjunktion	504
23 1. Teil Verweise Beweis 2. Substitutionssatz der Konjunktion	504
24 2. Teil Verweise Beweis 2. Substitutionssatz der Konjunktion	504
25 1. Teil 1. Beweis 3. Substitutionssatz der Konjunktion	506
26 2. Teil 1. Beweis 3. Substitutionssatz der Konjunktion	506
27 1. Teil 2. Beweis 3. Substitutionssatz der Konjunktion	506
28 2. Teil 2. Beweis 3. Substitutionssatz der Konjunktion	507
29 1. Teil Verweise Beweis 3. Substitutionssatz der Konjunktion	507
30 2. Teil Verweise Beweis 3. Substitutionssatz der Konjunktion	507
31 1. Teil 1. Beweis 4. Substitutionssatz der Konjunktion	509
32 2. Teil 1. Beweis 4. Substitutionssatz der Konjunktion	509
33 1. Teil 2. Beweis 4. Substitutionssatz der Konjunktion	509
34 2. Teil 2. Beweis 4. Substitutionssatz der Konjunktion	510
35 1. Teil Verweise Beweis 4. Substitutionssatz der Konjunktion	510
36 2. Teil Verweise Beweis 4. Substitutionssatz der Konjunktion	510
37 1. Teil 1. Beweis 1. Substitutionssatz der Disjunktion	512
38 2. Teil 1. Beweis 1. Substitutionssatz der Disjunktion	513
39 1. Teil 2. Beweis 1. Substitutionssatz der Disjunktion	513
40 2. Teil 2. Beweis 1. Substitutionssatz der Disjunktion	513
41 1. Teil Verweise Beweis 1. Substitutionssatz der Disjunktion	514
42 2. Teil Verweise Beweis 1. Substitutionssatz der Disjunktion	514
43 1. Teil 1. Beweis 2. Substitutionssatz der Disjunktion	516
44 2. Teil 1. Beweis 2. Substitutionssatz der Disjunktion	516
45 1. Teil 2. Beweis 2. Substitutionssatz der Disjunktion	516
46 2. Teil 2. Beweis 2. Substitutionssatz der Disjunktion	517
47 1. Teil Verweise Beweis 2. Substitutionssatz der Disjunktion	517

48 2. Teil Verweise Beweis 2. Substitutionssatz der Disjunktion	517
49 1. Teil 1. Beweis 3. Substitutionssatz der Disjunktion	519
50 2. Teil 1. Beweis 3. Substitutionssatz der Disjunktion	519
51 1. Teil 2. Beweis 3. Substitutionssatz der Disjunktion	519
52 2. Teil 2. Beweis 3. Substitutionssatz der Disjunktion	520
53 1. Teil Verweise Beweis 3. Substitutionssatz der Disjunktion	520
54 2. Teil Verweise Beweis 3. Substitutionssatz der Disjunktion	520
55 1. Teil 1. Beweis 4. Substitutionssatz der Disjunktion	522
56 2. Teil 1. Beweis 4. Substitutionssatz der Disjunktion	522
57 1. Teil 2. Beweis 4. Substitutionssatz der Disjunktion	523
58 2. Teil 2. Beweis 3. Substitutionssatz der Disjunktion	523
59 1. Teil Verweise Beweis 4. Substitutionssatz der Disjunktion	523
60 2. Teil Verweise Beweis 3. Substitutionssatz der Disjunktion	524
61 1. Teil 1. Beweis 1. Substitutionssatz der Implikation	525
62 2. Teil 1. Beweis 1. Substitutionssatz der Implikation	526
63 1. Teil 2. Beweis 1. Substitutionssatz der Implikation	526
64 2. Teil 2. Beweis 1. Substitutionssatz der Implikation	526
65 1. Teil Verweise Beweis 1. Substitutionssatz der Implikation	527
66 2. Teil Verweise Beweis 1. Substitutionssatz der Implikation	527
67 1. Teil 1. Beweis 3. Substitutionssatz der Implikation	529
68 2. Teil 1. Beweis 3. Substitutionssatz der Implikation	529
69 1. Teil 2. Beweis 3. Substitutionssatz der Implikation	529
70 2. Teil 2. Beweis 3. Substitutionssatz der Implikation	530
71 1. Teil Verweise Beweis 2. Substitutionssatz der Implikation	530
72 2. Teil Verweise Beweis 1. Substitutionssatz der Implikation	530
73 1. Teil 1. Beweis 4. Substitutionssatz der Implikation	532
74 2. Teil 1. Beweis 4. Substitutionssatz der Implikation	532
75 1. Teil 2. Beweis 4. Substitutionssatz der Implikation	533
76 2. Teil 2. Beweis 4. Substitutionssatz der Implikation	533
77 1. Teil Verweise Beweis 4. Substitutionssatz der Implikation	533
78 2. Teil Verweise Beweis 4. Substitutionssatz der Implikation	534
79 1. Teil 1. Beweis 1. Substitutionssatz der Replikation	536
80 2. Teil 1. Beweis 1. Substitutionssatz der Replikation	536
81 1. Teil 2. Beweis 1. Substitutionssatz der Replikation	536
82 2. Teil 2. Beweis 1. Substitutionssatz der Replikation	537
83 1. Teil Verweise Beweis 1. Substitutionssatz der Replikation	537
84 2. Teil Verweise Beweis 1. Substitutionssatz der Replikation	537

85 1. Teil 1. Beweis 2. Substitutionssatz der Replikation	539
86 2. Teil 1. Beweis 2. Substitutionssatz der Replikation	539
87 1. Teil 2. Beweis 2. Substitutionssatz der Replikation	539
88 2. Teil 2. Beweis 2. Substitutionssatz der Replikation	540
89 1. Teil Verweise Beweis 2. Substitutionssatz der Replikation	540
90 2. Teil Verweise Beweis 2. Substitutionssatz der Replikation	540
91 1. Teil 1. Beweis 3. Substitutionssatz der Replikation	542
92 2. Teil 1. Beweis 3. Substitutionssatz der Replikation	542
93 1. Teil 2. Beweis 3. Substitutionssatz der Replikation	542
94 2. Teil 2. Beweis 3. Substitutionssatz der Replikation	543
95 1. Teil Verweise Beweis 2. Substitutionssatz der Replikation	543
96 2. Teil Verweise Beweis 2. Substitutionssatz der Replikation	543
97 1. Teil 1. Beweis 4. Substitutionssatz der Replikation	545
98 2. Teil 1. Beweis 4. Substitutionssatz der Replikation	545
99 1. Teil 2. Beweis 4. Substitutionssatz der Replikation	545
100 2. Teil 2. Beweis 4. Substitutionssatz der Replikation	546
101 1. Teil Verweise Beweis 3. Substitutionssatz der Replikation	546
102 2. Teil Verweise Beweis 4. Substitutionssatz der Replikation	546
103 1. Teil 1. Beweis Substitutionssatz der Äquivalenz	548
104 2. Teil 1. Beweis Substitutionssatz der Äquivalenz	549
105 1. Teil 2. Beweis Substitutionssatz der Äquivalenz	549
106 2. Teil 2. Beweis Substitutionssatz der Äquivalenz	549
107 1. Teil Verweise Beweis Substitutionssatz der Äquivalenz	550
108 2. Teil Verweise Beweis 4. Substitutionssatz der Äquivalenz	550
109 1. Teil 1. Beweis 1. Substitutionssatz der Antivalenz	553
110 2. Teil 1. Beweis 1. Substitutionssatz der Antivalenz	553
111 1. Teil 2. Beweis 1. Substitutionssatz der Antivalenz	554
112 2. Teil 2. Beweis 1. Substitutionssatz der Antivalenz	554
113 1. Teil Verweise Beweis 1. Substitutionssatz der Antivalenz	554
114 2. Teil Verweise Beweis 1. Substitutionssatz der Antivalenz	555
115 1. Teil 1. Beweis 2. Substitutionssatz der Antivalenz	556
116 2. Teil 1. Beweis 1. Substitutionssatz der Antivalenz	557
117 1. Teil 2. Beweis 1. Substitutionssatz der Antivalenz	557
118 2. Teil 2. Beweis 1. Substitutionssatz der Antivalenz	557
119 1. Teil Verweise Beweis 1. Substitutionssatz der Antivalenz	558
120 2. Teil Verweise Beweis 1. Substitutionssatz der Antivalenz	558
121 1. Teil 1. Beweis 1. Substitutionssatz der NAND-Verknüpfung	562

$122\ 2.$ Teil 1. Beweis 1. Substitutionssatz der NAND-Verknüpfung	562
123 1. Teil 2. Beweis 1. Substitutionssatz der NAND-Verknüpfung	563
124 2. Teil 2. Beweis 1. Substitutionssatz der NAND-Verknüpfung	563
125 1. Teil Verweise Beweis 1. Substitutionssatz der NAND- Verknüpfung	563
126 2. Teil Verweise Beweis 1. Substitutionssatz der NAND-	
Verknüpfung	564
127 1. Teil 1. Beweis 2. Substitutionssatz der NAND-Verknüpfung	565
1282. Teil 1. Beweis 2. Substitutionssatz der NAND-Verknüpfung	566
$129\ 1.$ Teil 2. Beweis 2. Substitutionssatz der NAND-Verknüpfung	566
1302. Teil 2. Beweis 2. Substitutionssatz der NAND-Verknüpfung	566
131 1. Teil Verweise Beweis 2. Substitutionssatz der NAND- Verknüpfung	567
132 2. Teil Verweise Beweis 2. Substitutionssatz der NAND-	
Verknüpfung	567
133 1. Teil 1. Beweis 1. Substitutionssatz der NOR-Verknüpfung	571
134 2. Teil 1. Beweis 1. Substitutionssatz der NOR-Verknüpfung	571
135 1. Teil 2. Beweis 1. Substitutionssatz der NOR-Verknüpfung	572
136 2. Teil 2. Beweis 1. Substitutionssatz der NOR-Verknüpfung	572
137 1. Teil Verweise Beweis 1. Substitutionssatz der NOR- Verknüpfung	572
138 2. Teil Verweise Beweis 1. Substitutionssatz der NOR-	
Verknüpfung	573
139 1. Teil 1. Beweis 2. Substitutionssatz der NOR-Verknüpfung	574
140 2. Teil 1. Beweis 2. Substitutionssatz der NOR-Verknüpfung	575
141 1. Teil 2. Beweis 2. Substitutionssatz der NOR-Verknüpfung	575
142 2. Teil 2. Beweis 1. Substitutionssatz der NOR-Verknüpfung	575
143 1. Teil Verweise Beweis 2. Substitutionssatz der NOR- Verknüpfung	576
144 2. Teil Verweise Beweis 2. Substitutionssatz der NOR-	-
Verknüpfung	576
145 1. Teil 1. Beweis 1. erweiterter Substitutionssatz der Konjunktion	578
146 2. Teil 1. Beweis 1. erweiterter Substitutionssatz der	E 70
Konjunktion 147 1. Teil 2. Beweis 1. erweiterter Substitutionssatz der	578
Konjunktion	579
148 2. Teil 2. Beweis 1. erweiterter Substitutionssatz der	0
Konjunktion	579

1	Guthaben von Gudrun Gantenbein in der Woche vom 9 15. November 2015	658
1	1. Teil 1. Beweis 2. konjunktive Normalform Implikation	811
2	2. Teil 1. Beweis 2. konjunktive Normalform Implikation	811
3	1. Teil 2. Beweis 2. konjunktive Normalform Implikation	811
4	2. Teil 1. Beweis 2. konjunktive Normalform Implikation	812
5	1. Teil der Verweise des Beweises der 2. konjunktiven Normalform der Implikation	1 812
6	2. Teil der Verweise des 2. Beweises der 2. konjunktiven Normalform der Implikation	813
7	3. Teil der Verweise des 2. Beweises der 2. konjunktiven Normalform der Implikation	813
1	δ -Notationen	821
2	Beispiel einer Wahrheitstabelle (Schlussfolgerung)	821
3	Beweis des Lemmas der Implikation als kleiner oder gleich Beziehung	827
1	1. Teil Beispiel Berechnung logischer Aussage mittels Kalkulationsprogramm	937
2	2. Teil Beispiel Berechnung logischer Aussage mittels Kalkulationsprogramm	938
1	Auflistung der Intervalle	965
2	Symboltabelle	972

KAPITEL 1

Einleitung

1.1. Warum dieses Buch?

Ich schreibe dieses Buch, weil ich es selbst gerne gelesen hätte, als ich an der ETH in Zürich 6 Semester Physik studierte. Ich habe also Physik nicht abgeschlossen, was ich immer noch bedaure. Jedoch habe ich in der Zwischenzeit mir die Grundlagen für das Erarbeiten dieses Buchs geschaffen: Ich habe einen Diplomstudiengang in Heilpädagogik absolviert (dies entspricht in etwa einer Fachhochschulreife), dann habe ich unter anderem im Früherziehungsbereich gearbeitet (das sind Kinder im Vorschulalter, welche entweder in irgend einer Form behindert oder von Behinderung bedroht sind). Da ich mit Menschen zusammengearbeitet habe, welche behindert sind oder aber Verhaltensauffälligkeiten in irgend einer Form zeigten, habe ich mich mit der Frage auseinander setzen müssen, was die menschliche Entwicklung üblicherweise ausmacht und wie sie nach Möglichkeiten gefördert werden kann¹. Schlussendlich habe ich noch einen Fachhochschulabschluss in Automation gemacht. Daneben habe ich mich ab und zu mit Mathematik auseinandergesetzt, weil ich wissen wollte, wie es funktioniert. Aus dieser Beschäftigung ist mit der Zeit eine Leidenschaft geworden. Lange Zeit wusste ich nicht, wie ich das Buch schreiben könne. Denn mit einem herkömmlichen Textverarbeitungsprogramm ist das Eintippen von Formeln schwierig bis unmöglich. Durch Herumstöbern im Internet bin ich auf LyX gestoßen, und so möchte ich jetzt mein Glück mit dieser Software versuchen. Natürlich bin ich ein wenig futterneidisch auf alle, welche sich mit Physik und Mathematik die Bäuche vollschlagen, aber ich hoffe, dass sich dies im Buch nicht allzu negativ durchschlägt.

Dieses Buch ist an alle gerichtet, welche wie ich Mühe in Mathematik haben, jedoch gerne Mathematik verstehen würden. Die Mathematik ist eine sehr esoterische Wissenschaft, was einigermaßen erstaunt. Lange Zeit habe ich gemeint, "esoterisch" habe sei etwas, das mit Religion zu tun hat. Dies ist jedoch nicht der Fall. "Esoterik" bedeutet so viel wie "Geheimlehre", und da hat die Mathematik sehr viele Elemente

¹Wobei ich auch in der Arbeit mit verhaltensauffälliegen Kindern in eine Rolle gedrängt wurde, in welcher ich faktisch polizeiliche Funktion ausüben musste, was mir jedoch überhaupt nicht behagte. Auf der anderen Seite gibt es Grenzen der Förderung, welche so akzeptiert und ausgehalten werden müssen.

davon. Ich möchte mich in einem späteren Kapitel mit den Schwierigkeiten der Mathematik ausführlich auseinandersetzen. Fürs erste sei jedoch so viel verraten:

$$(1) W w_1 w_2 d_1 M_1 u M_2 r w_3, d_2 w_3 d_2 S s a$$

Kapiert? Diese Abkürzungsfolge heißt: "Wenn wir wie die Mathematikerinnen und Mathematiker reden würden, dann würde dieser Satz so aussehen". Es ist nämlich eine Unart, in der Mathematik alles abzukürzen, was sich abkürzen lässt. Die Subskripts (also die Zahlen 1, 2 oder 3) habe ich hingeschrieben, um zu verdeutlichen, dass zwei verschiedene Wörter die gleichen Anfangsbuchstaben besitzen und darum es nicht reicht, einfach den ersten Buchstaben zu nehmen. Also werden weitere Unterscheidungsmittel hinzugenommen, welche jedoch ziemlich willkürlich sind.

Muss dieses Buch gelesen werden? Ich finde: Nein, das muss es wirklich nicht. Aber es kann durchaus interessant sein, es zu lesen. Die Mathematik ist in der Naturwissenschaft und Technik eine tragende Säule. Jedoch bin ich der Meinung, dass die wahren Probleme unserer Zeit an einem anderen Ort zu finden sind: Kriege und Terrorismus machen das Leben schwer, dazu kommen Hunger, Armut und Elend, Übergewicht als Geißel der modernen Zivilisation (ich bin auch stark übergewichtig...) sowie der drohende Klimawandel. Trotzdem bin ich ein Bildungsoptimist in dem Sinn, dass ich finde, dass Bildung das wichtigste Mittel im Kampf gegen Ungerechtigkeit und Elend ist.

Ich persönlich empfinde den ersten Schritt einer Reise immer als den schwierigsten. Soll ich mich auf die Reise machen? Kommt es gut? Lerne ich freundliche Menschen kennen, oder ist es nur mühsam auf der Reise? Wird es auf der Reise immer regnen oder zwischendurch auch einmal die Sonne scheinen? Oder wird auf der Reise die Sonne so stark scheinen, dass ich fast verdurste und mein Herz nicht mehr mitmacht². So geht es mir auch bei Büchern, welche ich lese. Wobei ich bekennen muss, dass ich bei Fachbüchern regelmäßig bei 2/3 des Buchs zu lesen aufhöre. Mir fehlt offenbar der Durchhaltewille, etwas auch abzuschließen, das ich begonnen habe. Nein, dieses Buch muss nicht gelesen werden. Liebe Leserin, lieber Leser, Du kannst sicher auch glücklich auf Erden werden, wenn Du keine Ahnung davon hast, was Folgen und Reihen sind, was die Minkowskische Ungleichung ist, was das Riemann-Stieltjessche Integral bedeutet und so weiter und so fort. Und selbst wenn Du dieses Buch liest, so kann es sehr sinnvoll sein, wenn Du das Buch nicht von vorne nach hinten durchliest, sondern irgendwo anfängst und an einem beliebigen Punkt im Buch wieder aus dem Buch steigst. Denn dieses Buch ist so angelegt, dass die einzelnen Teile davon

²Wie gesagt, ich bin übergewichtig, und so habe ich manchmal auf diese Art Mühe mit der Hitze.

selbsterklärend sein sollten. Und wo dies nicht der Fall ist³, dann habe ich den Plan, dass die einzelnen Verweise fein säuberlich aufgelistet werden sollen. Eigentlich ist der Versuch, ein Buch über Einführung in Mathematik zu schreiben, in welchem wirklich alle Aussagen bewiesen werden, und welches keine Voraussetzungen benötigt, so sinnvoll, wie mit bloßen Händen eine Drehbank fertigen zu wollen - sprich, eigentlich ist es ein ziemlich idiotisches Vorhaben. Weil es langweilig ist, weil es mühsam ist, umfangreich, ein Moloch. Weil es eigentlich niemand interessiert. Und trotzdem möchte ich es schreiben - sozusagen als Rache dafür, dass diese "A..." es nicht zustande brachten, den Stoff so rüber zu bringen, dass ich es kapiert habe.

Üblicherweise wird ein Kontakt angegeben. Meinen kannst Du oben nachschlagen (zur Erinnerung: markus.demarmels@bluewin.ch). Natürlich freue ich mich über jedes Mail, falls die Kritik konstruktiv bleibt. Ich habe den Text nicht für Superhirne geschrieben. Die sollen besser ein seriöses Mathebuch sich zu Gemüt führen. Ich habe das Buch für jene geschrieben, welche keine Ahnung von der Mathematik haben. Und in diesem Sinn wünsche ich viel Vergnügen bei der Lektüre.

Braucht es dieses Buch noch? Vorgestern (am 16. Februar 2011) habe ich das Buch "Mathematik" (was für ein unbescheidener Name ;)) von Helmut Stachel, Klaus Lichtenegger, Ulrich Kockelkorn, Christian Karpfinger, Frank Hettlich sowie Tilo Arens gekauft. Ca. 95 Fr., 1200 Seiten, ein Koloss, welcher wahrscheinlich wesentlich tiefer geht, als ich es jemals zu schreiben beabsichtige. Schönere Bilder hat, wirklich lesenswert ist. Und im zweiten Abschnitt der Einführung wird von Mühe gesprochen, von Arbeit. Brrrr. So quasi "die Wahl der Qual" darstellt. Ich werde es wahrscheinlich trotzdem lesen - so gut wie es kann. Wahrscheinlich werden es wieder 50 bis 100 A4-Hefter werden, welche es braucht, um bis 2/3 des Buchs zu gelangen. Aber lese das Buch, falls Du es besser findest. Und wenn es Dich nicht stört, dass von "Mathematikern" und nicht von "Mathematikerinnen und Mathematikern" gesprochen wird. Und um noch ein wenig zu sticheln, soll sich mein Buch weniger mit der "Höheren" als mit der "Niederen" Mathematik beschäftigen. Ich werde möglichst im Tiefflug Mathe⁴ betreiben, so dass Du wahrscheinlich immer wieder findest: "Wie kann der Demarmels nur"? Einfach, weil ich mit diesem Buch mehr will. Ich will mich in meine Freiheit denken, in die Freiheit meines Denkens. Ansonsten kannst Du das Buch auch als moderne Don Quijote-Erzählung verstanden wissen. Mit eigentlich nichts mehr als mit meinem Denken

³Es ist eigentlich in einem mathematischen Buch fast fast immer der Fall, dass sie nicht einmal dann verstanden werden, wenn sie von vorne nach hinten durchgelesen werden! Dass nur einzelne Teile davon gelesen werden können, kommt meines Erachtens noch seltener vor.

 $^{^4}$ "Mathe" ist eine Abkürzung, aber auch eine Verniedlichung oder sogar Kosewort von "Mathematik"

möchte ich etwas bewirken. Ich möchte bewirken, dass die Welt freier, demokratischer, lebenswerter und glücklicher wird. Das Risiko, dass ich scheitere, ist sehr nahe bei 100 Prozent. Aber ich probiere es trotzdem.

Es sind seit dem Schreiben des obigen Absatzes sieben Jahre vergangen. Nun kommt der Zweifel zum schreiben und lesen dieses Buches auch aus der Ecke der sogenannten "künstlichen Intelliegenz" (wobei ich mich immer noch frage, was es dann mit der sogenannten "natürlichen Intelliegenz" auf sich hat). Lohnt es sich, darüber nachzudenken, was Zahlen sind, wenn Computer drauf und dran sind viele Millionen Arbeitsplätze zu vernichten? Ich glaube: Ja, das tut es. Denn was uns Lebewesen ausmacht, ist meines Erachtens die Geschichte. Und diese Geschichte gilt es immer wieder und immer wieder neu zu erzählen. Das möchte diese Erzähltradition weiterführen.

Es gibt Bücher, da bist Du eine andere oder ein anderer, falls Du das Buch gelesen hast. Bei mir war es beispielsweise "Krieg und Frieden" von Leo Tolstoi. Ich möchte gerne ein Script schreiben, bei dem es genau so ist.

1.2. Wie soll dieses Buch gelesen werden?

Ich hoffe, die beste Art, dieses Buch zu lesen, besteht darin, dass Du dort nachschlägst, wo es Dich interessiert. So gesehen ist das Buch mehr Nachschlagewerk denn Lehrbuch. Ich nehme an, dass niemand das Buch von vorne nach hinten durchlesen will, denn das Buch fängt dort an, wo eigentlich niemand beginnen will, weil es mehr oder weniger langweilig ist. Ich nenne meine empfohlene Leseart einen "Top Down Approach" (der Begriff stammt aus der Pädagogik). Falls Du den Rückgriffen auf bestehende Kapitel nicht traust oder es ganz genau nehmen willst, dann kannst Du den Verweisen in den vorhergehenden Kapiteln folgen. Falls es mir gelingt, das Buch wirklich zu schreiben, dann ist jedes Thema so entwickelt, dass zuerst in Prosa die Thematik motiviert und ausgebreitet wird. Der zweite Teil ist der formale Teil, in welchem einerseits die Definitionen und Sätze vorgestellt werden. Der dritte Teil dient zur Herleitung der Behauptungen (mit diesem Teil habe ich die meiste Zeit verbracht), wobei Herleitung vielfach nur heißt, die bereits hergeleiteten Sätze richtig mit den Sätzen des Kapitels zu verknüpfen. Es folgen Beispiele der Anwendung der Sätze, gefolgt von Aufgaben, welche die Sätze beinhalten. Schlussendlich wird aufgelistet, welche Sätze und Definitionen gebraucht werden und welche Sätze und Definitionen die Sätze und Definitionen der Kapitel verwenden.

Ich möchte nicht verschweigen, wie ich Mathematikbücher in der Regel lese: Auf der rechten Seite auf dem Tisch (ich bin Linkshänder) habe ich das Mathematikbuch. Weiter habe ich auf auf der linken Seite einen Notizblock samt Kugelschreiber (oder sonst ein Schreibwerkzeug)⁵. Und dann lese ich so lange, bis eine Formel kommt. Und dann weiß ich nicht, wie diese Formel hergeleitet wurde. Es leuchtet mir einfach nicht ein. Und dann probiere ich, diese Formel mehr oder weniger sinnvoll nachzuvollziehen. Und das dauert quälende "Millisekunden" (welche da schier zahllos verstreichen), bis ich endlich merke, dass es geht. Und in der Regel verrechne ich mich ca. 5 - 10 Mal, bis ich auf die richtige Lösung komme. Es kann vorkommen, dass ich an einer Gleichung gut und gerne eine Woche oder länger herumprobiere, bis ich sie so nachvollziehen kann, das es für mich einleuchtend ist. Ja, ich gebe es zu, ich bin "grottenschlecht⁶" in Mathematik - aber ich betreibe sie einfach gerne! Die andere Möglichkeit ist, es einfach zu glauben, dass es richtig ist, was das geschrieben steht. Das wird ja auch an den Hochschulen mehr oder weniger offensichtlich so gefordert. Ich habe das auch gemacht - und mit der Zeit wusste ich nicht mehr, was vorne und hinten ist. Weil mir das Gefühl für die Materie völlig verloren ging. Damit Dir das nicht auch passiert, möchte ich gerne so viel wie möglich über etwas schreiben und erst dann weiter gehen. Es mag sein, dass Du es schon lange kapiert hast. Aber lasse Dich nicht verdrießen. Du bist frei, Kapitel zu überspringen, falls Du es begriffen hast. Ich bin der Meinung, dass es im umgekehrten Fall einfach schwieriger ist, wenn Du etwas nicht begreifst, weil ich zu wenig geschrieben habe.

1.3. Voraussetzungen für das Lesen dieses Buches

Ich denke, es ist von Vorteil, wenn Du Interesse am Lesen hast. Dies ist nicht so selbstverständlich, wie es vielleicht tönt. Ich hoffe jedoch, dass im besten Fall "der Appetit mit dem Essen kommt". Gemeint ist, dass im guten Fall das Interesse am Lesen beim Lesen dieses Textes kommt. Es ist schwierig, sich ein Zielpublikum vorzustellen. Ich weiß ja nicht einmal, ob es irgendein Wesen (vielleicht eine südamerikanische Brillenbärin mit Kurzsichtigkeit oder so) gibt, dem es derart langweilig ist, das sie oder er sich mit diesem Text abplagt. Von der Sprache her denke ich, dass der Text für Menschen ab der Pubertät interessant werden könnte. Gerne täusche ich mich jedoch ⁸. Leider habe ich das Gefühl, dass dieser Text einige Fremdwörter und Wortspiele zu viel

⁵Ich muss gestehen, dass ich auch oft im liegen schreibe ;)... Das ist zwar mühsam, aber ich bin oft ein derart fauler Sack, dass ich das Liegen dem Sitzen vorziehe.

⁶umgangssprachlicher Ausdruck für sehr, sehr schlecht

 $^{^7\}mathrm{Ich}$ hoffe, du liest das Buch nicht hungrig - in diesem Fall möchte ich mich für meine Wortwahl entschuldigen

⁸Interessant wäre natürlich für mich, wie die Konzepte, die in diesem Text vorgestellt werden, möglichst früh in die Bildung von Kindern gewinnbringend eingesetzt werden könnten. Richard Feymann, ein sehr bekannter Physiker, hat einmal gesagt: "There's plenty room at the bottom". Will heißen: Es gibt viel Platz, wenn ganz kleine Dimensionen betrachtet werden. Ich wandle diesen Slogan ab auf die

haben könnte. Es kann jedoch ebenso wahr sein, dass meine Sprache schon jetzt hoffnungslos veraltet und steif daherkommt. Ich weiß es nicht. Jedoch bin ich schon nur froh, wenn ich Dir zwischendurch ein Schmunzeln entlocken kann. Und wenn Du aus dem einen oder anderen Satz nicht klug wirst oder ein Abschnitt Dir nur spanisch vorkommt, dann lese doch einfach weiter. Denn falls etwas wirklich wichtig ist, werde ich später im Buch darauf wieder Bezug nehmen. Aber Du kannst mir natürlich auch mailen. Ich werde dann versuchen, die entsprechende Stelle klarer zu formulieren.

Weiter sollte es Dich nicht stören, wenn ich Dich duze. Ich würde mir im täglichen Umgang mit Dir nicht erlauben, Dich zu duzen. Aber finde, es ist einfacher, wenn ich Dich stumm duze. Du solltest Dich nicht nerven, dass in diesem Buch relativ viele Wiederholungen vorkommen. Wiederholungen scheinen in der Mathematik übrigens absolut verpönt zu sein⁹. Die Wiederholungen in diesem Buch stammen davon, dass ich versucht habe, die einzelnen Kapitel möglichst selbsterklärend zu machen. Eine Wiederholung ist beispielsweise, wenn ich an dieser Stelle erwähne, dass Du in der Lage sein solltest, viele Teile dieses Buches einfach zu überlesen. Denn das Buch wird, falls es mir gelingt, sehr umfangreich werden. Des weiteren wird das Buch aus dem sehr monotonen "Dreiklang" "Definition, Satz, Beweis" bestehen. So weit wie möglich werde ich noch "Beispiel" und "Anwendung" hinzufügen. Dies soll Dich jedoch nicht abschrecken. Schlussendlich solltest Du Dich nicht daran stoßen, dass ich praktisch alle Überschriften als Frage formuliere. Die Fragen sind eigentlich Anregung zum Handeln. Die Frage: "Könnten Sie mir sagen, wo es zum Bahnhof geht?" ist meines Erachtens eine höfliche Umformulierung der Anweisung: "Sagen Sie mir, wo es zum Bahnhof geht". Ich möchte, dass dieses Buch zum Nachdenken anregt, dass es Dich fesselt, dass es Dich nicht loslässt, dass Du immer das Gefühl hast, gleichzeitig unheimlich viel, andererseits überhaupt nichts verstanden zu haben.

Was ich Dir ans Herz legen möchte, ist, dass Du gut daran tust, den Verweisen innerhalb des Textes nachgehst. Wenn ich also schreibe "gemäß dem Doppelreihensatz von Cauchy", dann tust Du wirklich gut daran, den Satz kurz zu überfliegen, falls Du ihn nicht so gut kennst,

kindliche Entwicklung. Ich bin der Meinung, dass Kinder viel früher gewinnbringend gefördert werden könnten. Natürlich wäre für kleine Kinder nur die Handlung mit Materialien entscheidend, keinesfalls ein Text. Wichtig wären auch Spiel, Bewegung, Zärtlichkeit, An - und Entspannung, Begegnung in der Gruppe. Aber wir sollten den kleinen Personen in unserer Gesellschaft in intellektueller Hinsicht vielmehr zutrauen. Aber auch umgekehrt kann die Mathematik viel lernen, wenn sie sich nicht als die absolute Königsdisziplin versteht, sondern **endlich** Erkenntnisse aus der Geistes- und Sozialwissenschaft, der Entwicklungspsychologie und der Biologie in ihre Didaktik einbezieht.

⁹Es scheint, dass die lieben Mathematikerinnen und Mathematiker oft lieber etwas zu wenig als etwas zu viel sagen.

dass Du diesen Satz nicht mehr hören kannst. Ich weiß, das ist mühsam und hirntötend, und ich habe es in meinen Mathematiksemestern auch nicht gemacht. Und ich gebe mir auch wirklich Mühe, Dir das Nachschlagen zu ersparen. Aber es ist nun mal so, dass es schlichtweg nicht möglich ist, alle Verweise im Text noch einmal auszuführen.

Schlussendlich solltest Du immer mit wachem Verstand dieses Buch lesen: Ich bin nicht einmal ein Mathematiker, sondern einfach ein Dilettant¹⁰, welcher mit viel Begeisterung Mathematik betreibt. Dann ist nie klar, wie richtig das ist, was ich so schreibe. Außerdem werde ich die Mathematik so entwickeln, wie Du sie sonst wahrscheinlich so nicht bei anderen liest. Das bedeutet aber natürlich nicht, dass ich nun Sätze erfinden würde, welche sich nicht beweisen lassen (wie beispielsweise Sätze über Parallelwelten oder so). Ich versuche nach bestem Wissen und Gewissen die Mathematik so aufzubereiten, dass es für mich Sinn macht - und hoffentlich für Dich auch.

Leider weiß ich nicht, ob die von mir verwendeten Wörter für Dich geläufig sind und Dir auch wirklich etwas bedeuten. Dieser Satz tönt harmlos. Ist er jedoch leider nicht. Denn es ist möglich, dass ich zum Beispiel einen Witz mache, welchen Du nicht verstehst. Mir ist das aufgefallen, als ich die folgende Fußnote einfügte: "Ich habe es nicht so mit Männern, welche sich mit Amphetaminen vollgepumpt haben." Natürlich ist die Chance groß, dass Du weißt, dass Bodybuilder ab und zu mit Medikamenten oder Drogen versuchen, ihren Körpern noch mehr Muskelmasse zu verleihen. Jedoch: Vielleicht bist Du, was weiß ich, 12 Jahre alt und hast Dich noch nicht groß mit Krafttraining und Bodybuilding auseinander gesetzt. Dann geht der obige Witz voll in die Hosen. Und Du würdest das Gefühl bekommen, dass ich eine Art geistige Selbstbefriedigung treibe, schöne Texte schreiben möchte, welche niemand versteht. Das ist jedoch nicht die Absicht.

1.4. Welches sind denn die "Sünden" der Mathematik?

Wie Du aus der kurzen Einleitung bereits entnehmen konntest, bin ich nicht unparteiisch. Jedoch möchte es trotzdem ausformulieren, was mich an der Mathematik, wie ich sie kennengelernt habe, so nicht schätze:

(1) Keine andere Wissenschaft dient so wie die Mathematik dazu, "gescheite" von "dummen" Menschen zu unterscheiden. Der Mathematiker (oder die Mathematikerin) ist zusammen mit der Physikerin (oder der Physiker) der Inbegriff der cleveren Person, welche mehr weiß und alles ein wenig schneller als der Rest der Welt. Das stört mich. Auch wenn wir

¹⁰Das bedeutet, dass mein Beruf nicht Mathematiker ist.

aufgrund von unseren Erbanlagen Menschen und keine Albatrosse¹¹ sind, halte ich rein gar nichts davon, dass unsere Intelliegenz maßgeblich mittels Erbanlagen zugeteilt wurden. Wer diese Meinung vertritt, hat meines Erachtens keine Ahnung davon, wie unbarmherzig während dem größten Teil unseres Werdegangs alles ausgemerzt wurde, was nur eine kleine Schwäche hatte. Unter diesem Aspekt wäre eine breite Streuung des Merkmals "Intelliegenz" unverzüglich durch andere Volksgruppen ausgerottet worden. Lese doch einmal im Alten Testament der Bibel nach, wie groß die Angst der Autoren war, dass sie selbst wie andere Volksgruppen als Ganzes hätten aufgerieben oder ausgerottet werden können. Das war die Währung früher: Nicht das Individuum, sprich der einzelne Mensch (egal ob Frau oder Mann), sondern eine Volksgruppe musste als ganzes ums Überleben kämpfen. Wenn es dann nicht so groß sein soll, dann zumindest als Sippe (ca. 150 Personen), welche als Ganzes unterging oder Bestand hatte. Aber auch innerhalb der Gruppen war bis jetzt der Selektionsdruck in der Regel schlichtweg brutal. In Schwarzafrika gab es beispielsweise offenbar bis vor kurzem keine behinderten Kinder¹². Die haben nicht lange gelebt. Ich wehre mich dagegen mit allen mir zur Verfügung stehenden Mitteln dagegen, dass die Evolution genau gleich wütet wie bisher. Aus dem einfachen Grund, weil sonst ein Leben gar nicht lebenswert wäre. Das wäre nur Mord und Totschlag. Bei den Tuareg haben in früheren Zeiten offenbar ca. 1/3 der jungen Männer nicht überlebt, weil diese durch Stammesfehden ausradiert wurden. Willst Du das? Ich nicht. Ich finde, es reicht. Gerade höhere Bildung würde gegenstandslos, wenn ein bedeutender Teil der gebildeten Personen dieses Wissen auch prinzipiell gar nicht gewinnbringend einbringen könnten, weil sie aus einem banalen Grund vor dem eigentlichen Erwachsenenalter das Zeitliche segnen würden. Ein ehemaliger Studienkollege von mir (Shane Schelter) hat mir gesagt, er sei zwar in Brasilien aufgewachsen, möchte jedoch dort nicht leben. Weil es immer wieder scheinbar aus dem Nichts heraus Mord und Totschlag gegeben habe. Dieser Text ist geradezu ein Manifest meiner These, dass Alle die sogenannte höhere Mathematik verstehen können, wenn der entsprechende Text geeignet aufbereitet ist. Egal, ob Du arm

 $^{^{11}}$ Falls mich der liebe Gott noch einmal auf die Welt schickt, dann wäre ich gerne ein Wanderalbatros, welcher mit durchschnittlich 80 km/h die sturmgepeitschten röhrenden 60. Breitengrade durchfliegt. Das wäre Action pur!

¹²Das ist auch so eine Behauptung von mir, welche ich nicht belege. Ich habe es gelesen oder gehört in meiner Ausbildung im sozialen Bereich

oder reich, gebildet oder ungebildet, sportlich oder unsportlich, sogenannt hässlich oder schön, eitel oder bescheiden bist, Dich geliebt oder verhasst fühlst: Falls Du es möchtest, kannst Du höhere Bildung erlangen. Und, wie ich wirklich hoffe, ein besserer Mensch werden. Besser im Sinn von "Mitgefühl zeigend". Wenn Du besser bist als andere, dann bedeutet dies in meinen Augen, dass Du die Pflicht hast, den anderen zu helfen. Denn nur dann bist Du gut, wenn die anderen es auch werden. Ich habe mit Menschen zusammengearbeitet, welche geistig behindert waren. Das heißt nun auch nicht, dass diese Personen, falls sie nicht schwer geistig behindert waren, überhaupt nichts verstanden hätten. Es war und ist auch bei diesen Menschen unsere Aufgabe, ihnen Freude am Leben zu vermitteln. Bei schwer geistig behinderten Personen waren wirklich oft nur noch die physiologischen Funktionen vorhanden, soweit diese physiologischen Funktionen vorhanden waren, das ist wahr¹³. Ihnen jedoch das Menschsein absprechen zu wollen, fand und finde ich jedoch nicht legitim. Gleich wie wir nicht bestimmen konnten, wo und wie wir auf die Welt gekommen sind, sollten wir nicht bestimmen, ob andere Menschen leben. Wenn wir an diesem Grundpfeiler unser menschlichen Gesellschaft ritzen, dann haben wir schnell einmal wieder die Zustände, wie sie in Nazideutschland geherrscht haben. Ich möchte dies nicht erleben. Und so mache ich mich also auf, mein mühsam erworbenes Wissen mit allen zu teilen, welche das wollen.

(2) Die Mathematiker gefallen sich ungemein darin, bei Beweisen häufig nur die Hälfte zu erzählen. Oftmals werden Schritte einfach ausgeführt und nicht erklärt, was gemacht wurde. Ich behaupte, das kürzest mögliche Mathebuch sei: "Es gelten aufgrund der üblichen Definition alle wesentlichen Sätze der Mathematik. Beweis: Als Aufgabe." Nun, das ist bösartig, ich weiß schon. Aber bekanntlich ist Humor, wenn man trotzdem lacht. Außerdem möchte ich es ja besser machen, muss daher den Beweis noch erbringen, dass ich es denn besser kann.

¹³Ich habe einmal mit Susanne zusammengearbeitet, "Suse" genannt. Susanne war eine schwer geistig behinderte erwachsene Frau. Ich hatte keinen Zugang zu ihr. Was mich jedoch bis in mein Innerstes berührt hat, war die Tatsache, dass eine Betreuerin mir gesagt hat: "Schau, Suse lacht, weil sie Kinderstimmen hört". Das wäre für Suse ein lebenswertes Leben gewesen: Einen oder einen halben Tag pro Woche zusammen mit Kindern im Kindergarten zu verbringen. Ich hoffe, dass ich das noch einmal erleben darf. Das wäre schön - auch für die Kindergartenkinder. Denn auch Kinder wollen ernst genommen werden und nicht in einem rosa Puppenhaus leben und immer brav sein müssen. Sie möchten auch über den Sinn, die Schönheit, aber auch die Ungerechtigkeit des Lebens nachdenken dürfen. Und da wäre es eben gut, wenn sie schon früh ihre sozialen Kompetenzen trainieren könnten im Umgang mit Personen, welche auf Hilfe angewiesen sind.

- (3) Das Prinzip in Mathematik ist oft: Einmal erzählt, dann muss es sitzen. Dies scheint mir aus lernpsychologischer Sicht ein Blödsinn zu sein.
- (4) Oftmals werden Beweise in Aufgaben abgeschoben oder als "trivial" abgetan.
- (5) Vielfach werden keine anschaulichen Beispiele gemacht.
- (6) Es wird oftmals nicht erzählt, wo was wie verwendet wird.
- (7) Viele Autoren von Einführungswerken legen eine Haltung an den Tag, welche vermuten lässt, dass es eigentlich unter ihrer Würde ist, ein Einführungswerk zu schreiben, ja nachgerade eine Zumutung¹⁴. Ich finde diese Haltung unbefriedigend, denn auch in der Einführung der Mathematik scheint mindestens etwa 3000 Jahre Kulturgeschichte verborgen zu sein.
- (8) Es wird so viel Stoff in die Bücher gepackt, dass eigentlich unmöglich alles verstanden werden kann. So mutieren viele Bücher zu "Glaubenslehren": Die Leserin oder der Leser werden aufgefordert, zu glauben, was da geschrieben steht.
- (9) Mit etwa 12 Jahren wollte ich ein populärwissenschaftliches Mathematikbuch lesen. Es hatte zwar wunderschöne Bilder aber verstanden habe ich so gut wie nichts. Insbesondere wurde gezeigt, wie viele Kanonenkugeln auf einem Haufen liegen, deren unterste Schicht ein Quadrat mit einer bestimmten Zahl von Kugeln liegen und die restlichen Kugeln anschließend in Form einer Pyramide aufgeschichtet werden. Dann wurde die Formel angegeben, wie viele Kugeln auf dem Haufen liegen. Ich kann mich nicht mehr daran erinnern, dass ein Beweis für die Behauptung gegeben worden wäre. Ich möchte dies hiermit ändern. Ich finde, es sollte möglich sein, Mathematik so mitzuteilen, dass sie etwas von ihrem Schrecken verliert.
- (10) Immer wieder wird mitgeteilt, frau oder man solle gefälligst die Beweise nachvollziehen, welche fast schon aus Prinzip nur zur Hälfte aufgeschrieben werden. Ich frage mich, viele Promille der geneigten Leserinnen und Leser (von den abgeneigten ganz zu schweigen) das wohl wirklich machen, und das innerhalb der durch das Studium gesetzten Zeit!
- (11) Der Anfang der Mathematik bleibt ziemlich im Trüben, und ich vermute, dass dadurch ein ziemlich wichtiger Teil der Mathematik nicht begrifflich fassbar ist. Falls die Axiome der natürlichen Zahlen nur mit Peano erklärt werden, so ist dies in

¹⁴Gerade heute (4. Oktober 2011) habe ich von Richard Dedekind, einem bedeutenden deutschen Mathematiker gelesen, dass er nach dem Wegzug von der ETH Zürich an die Universität Göttingen darauf bestanden hatte, sich nicht mehr mit der "niederen Mathematik" beschäftigen zu müssen (Spektrum mathematischer Monatskalender, www.spektrum.de). Da haben wir es!

meinen Augen ähnlich demjenigen Vorgang, einen Baum zu fällen und dann zu behaupten, dass der Baum ausschließlich aus dem Stamm, den Ästen den Zweigen und den Nadeln (oder Blättern, oder gar nichts, falls gerade Winter ist) bestehen würde. Das stimmt so nicht. Die Wurzeln, ja auch das umgebende Erdreich zusammen mit den darin enthaltenen Bewohnerinnen und Bewohnern muss für eine umfassende Betrachtung von Bäumen einbezogen werden. Das im Hinblick auf die Mathematik zu machen, hat mich einfach sehr interessiert.

- (12) Das Problem der Verwechslung von Modell und Realität. In der Mathematik und Wissenschaft werden oft Modelle erstellt. Das Problem dabei ist, wenn die Modelle mit der Realität verwechselt werden. Das kann bisweilen fatale Folgen nach sich ziehen. Zu einer soliden Diskussion eines Modells gehört es, wenn das Modell mit der Realität validiert wird (also verglichen wird) und abgeschätzt wird, wo das Modell nahe, und wo es fern der Realität liegt. Alles andere ist Vorspiegelung falscher Tatsachen und bisweilen sogar fahrlässig falsch.
- (13) Es gibt in der Mathematik eine Art "Bilderverbot": "Du sollst nicht versuchen, mit Beispielen etwas zu erklären". Natürlich ist es nicht korrekt, wenn mit Beispielen allgemeingültige Sachverhalte geprüft werden. Aber die bewusste Vereinfachung oder das Verwenden von Beispiel ist oftmals geradezu eine Triebfeder von neuen Ideen, wie Probleme in leichtere Probleme umgewandelt werden.
- (14) Was mich auch wahnsinnig gestört hat, war, dass meiner Tochter Flurina verboten wurde, mit den Händen zu rechnen. Das ist meines Erachtens der falsche Fokus. Es ist meines Erachtens nicht wichtig, wie etwas gerechnet wird sondern dass etwas gerechnet wird.

Die Frage ist natürlich: Warum betreibe ich trotzdem Mathematik, wenn sie Dich scheinbar so anödet? Die Begründung möchte ich bereits wieder in ein neues Unterkapitel schreiben.

1.5. Was soll denn an Mathematik so begeisternd sein?

Ich möchte hiermit meine "Liebeserklärung" an die Mathematik formulieren. Ich bin hin und weg von der Mathematik, weil

- (1) ich beim Nachvollziehen der Beweise und Definitionen immer wieder etwas entdecke, welches ich vorher keine Vermutung gehabt hätte, dass es überhaupt existiert.
- (2) ich größten Respekt vor der rund 3000 jährigen Geschichte der Mathematik habe.
- (3) ich gelernt habe, dass es sich lohnt, stundenlang über irgendwelche Beweise nachzudenken, um am Schluss zu merken, was

- gemacht werden muss, damit sich vieles in Wohlgefallen auflöst
- (4) für mich Mathematik die pure Lust am Denken übers Denken ist beste Philosophie eben.
- (5) ich das Gefühl habe, dass die Sachen noch viel anschaulicher erklärt werden könnten. Weil ich das Gefühl habe, dass eben noch nicht alles zur und über die Mathematik gesagt wurde.
- (6) mit ihrer Hilfe Zusammenhänge aufgedeckt, physikalische und technische Modelle erstellt werden können, auf welche ich nie gekommen wäre.
- (7) die Mathematik in meinen Augen nebst der Bibel und der klassischen Bildung eine wichtige Säule unserer (europäischen) Kultur ist¹⁵.
- (8) ich finde, dass die Mathematik immer eine Reise wert ist.
- (9) ich das Gefühl habe, dass es neben Prosa (Erzählungen, Romane), Lyrik mit Sachbüchern noch eine andere Literaturart gibt, welche mich und hoffentlich auch Dich fesseln kann und welche neugierig auf das Leben machen kann.
- (10) weil es zu ihrer Ausübung ein Mathematikbuch, Papier und Schreibwerkzeug braucht, und das finde ich großartig. Es ist eigentlich die einzige exakte Wissenschaft, welche ohne viel materiellem Aufwand betrieben werden kann. Ja, ich weiß, Du sagst jetzt wahrscheinlich: Stimmt nicht, auch für Informatik braucht es eigentlich nur ein Laptop oder Desktop und wenn möglich ein Internetanschluss. Ich bin jedoch noch vor dem PC-Zeitalter auf die Welt gekommen, und die wirklich super leistungsstarken Computer gibt es meines Erachtens erst seit etwa 1995. Vorher gab es zwar Compis¹⁶, aber die waren teuer. Außerdem gibt es viele gute Informatikbücher, welche im Selbststudium gelesen werden können. Da braucht es mich meines Erachtens nicht so dringend¹⁷. Ich habe einmal damit begonnen, ein Physikbuch (Jay Orear, Physik) zu lösen. Hätte ich es zu Ende gelöst, dann wäre ich jetzt Physiker. Das Lösen der Aufgaben im Physikbuch war auch interessant. Jedoch habe ich mich jetzt in Mathematik "verbissen", denn beim Physikbuch konnte ich nur sogenannte "Kreidephysik" machen. Ich hatte also nie die Möglichkeit, die Theorie in den

¹⁵Ich möchte nicht verheimlichen, dass die Mathematik, so wir sie heute kennen, eigentlich ein Importprodukt von den arabischen Ländern und Indien ist, wofür ich mich herzlich bedanke. Weiter muss ich gestehen, dass ich zwar weitgehend die Bibel gelesen habe, jedoch weder des (klassischen) Griechischen noch des Lateins mächtig bin.

¹⁶Compi ist das schweizerdeutsche Kosewort für "Computer"

¹⁷Ich bin an C/C++ lernen mit einem entsprechenden Buch. Langsam, aber stetig.

- Experimenten zu überprüfen. Das wäre jedoch meines Erachtens ebenfalls wichtig. Erst im Zusammenwirken von Theorie und Praxis wäre es sinnvoll, Physik zu betreiben. Das würde mich zwar auch sehr reizen. Beispielsweise eine Uhr mit bloßen Händen zu erzeugen¹⁸. Aber weil das mit großem materiellem Aufwand verbunden wäre, bleibt mir, davon zu träumen.
- (11) es sich lohnt, wenn ich sozusagen "Mathematik in Zeitlupe" betreibe, damit Du rasend schnell die Konzepte der Mathematik verinnerlichen kannst.
- (12) zu schön ist, um sie einfach den Mathematikerinnen und Mathematikern zu überlassen. Das ist wahrscheinlich anmaßend, wenn ich das so schreibe. Aber ich finde, die Wissenschaft soll zu den Menschen gebracht werden und nicht umgekehrt die Menschen zur Wissenschaft.
- (13) ich der Meinung bin, dass Mathematik einerseits der Linguistik und andererseits der Psychologie zugeordnet werden kann. Das heißt, ich bin der Meinung, dass des der Mathematik gut tut, wenn Sie sich darauf besinnt, dass sie von Menschen für Menschen gemacht wurde (und nicht gegen Menschen, wie sich boshaft vermuten ließe). Damit das wieder so wird, dafür kämpfe ich! Ich habe lange gedacht, Mathematik sei eine Naturwissenschaft. Soweit ich Mathematiker kenne, würden die sich sehr dagegen sträuben, zu akzeptieren, dass Mathematik eine Geisteswissenschaft wäre. Denn in den Augen von "guten" Mathematikerinnen und Mathematikern sind Sozialund Geisteswissenschaftler "Stümper", solche, die es im Leben zu nichts gebracht haben und darum sich den sozial- und geisteswissenschaftlichen Fächern zugewandt haben. Eine Ausnahmen sind wahrscheinlich Ökonomen, "Geili Sieche", wie ich auf schweizerdeutsch schwafeln würde, also echte Kerle. Aber die haben in der breiten Öffentlichkeit im Moment auch keinen so guten Ruf mehr. Ein Bekannter von mir, welcher in Fachkreisen wahrscheinlich äußerst bekannt ist, Walter Gubler¹⁹, hat mir einmal gesagt, es könne darüber gestritten werden, ob Mathematik eine Natur- oder Geisteswissenschaft sei.

¹⁸Ich denke an eine Wasseruhr, bei welcher mit einer Quelle periodisch ein Wasserbehälter gefüllt würde und welche dann über ein Jahr geschaut würde, wie viele Kübel gefüllt würden. Dann könnte ein Zeitmaß berechnet werden: 1 Sekunde sind so und so viele Teile eines Kübels. Wenn dieser Kübel dann noch zylinderförmig wäre, dann könnte eine Sekunde so bestimmt werden. Ja, ich weiß, das hat es schon gegeben und wird es auch geben. Aber ich habe noch keine wirklichen Daten gefunden, welche das veranschaulichen. Physik sozusagen "mit bloßen Händen" auszuüben, nur mein Verstand und mit Schreibmaterial ausgerüstet die physikalischen Gesetze empirisch prüfen und natürlich entsprechend dokumentieren - das wäre schön!

¹⁹welcher jetzt ordentlicher Professor für Mathematik ist

Warum ist das so wichtig? Gibt es nicht ernsthaftere Themen, welche der Rede wert wären? Gibt es sicher. Aber der Punkt ist der: In der Geistes- und Sozialwissenschaft scheint mir der "Diskurs", das aufrichtige, ehrliche, empathische Fachgespräch weitaus wichtiger zu sein als in der Mathematik, wo ich doch immer das Gefühl habe, alle Mathematiker seien als unappetitliche, besserwisserische, lieblose, gemeine, hinterhältige Genies auf die Welt gekommen (das ist jetzt nicht nett - aber meinst Du, die waren es zu mir?). Ich möchte einen neuen Zugang zur Mathematik, als praktische Philosophie betreiben. Mit nichts als einem Mathebuch als Vorlage, einem Laptop, einem Schreibprogramm und viel, viel Zeit möchte ich über Begriffe des täglichen Lebens nachdenken, einen Weg zeigen, wie das Sinn machen könnte, Tipps und Tricks, jedoch auch Fallen, Irrwege, Rätsel und ungelöste Fragen diskutieren.

(14) dieser Text eine Liebeserklärung an das Leben und die Wahrheit sein soll.

1.6. Was soll in diesem Buch besprochen werden?

Ich hoffe, viel und immer mehr! Ich möchte dieses Buch schreiben, so wie es eigentlich nie gemacht wird: Aus einem Guss. Das bedeutet, ich möchte gerne Alles erklären und auf Alles eingehen. Der Nachteil dieser Vorgehensweise ist, dass das Buch im Grunde genommen unlesbar wird. Denn es sind vor allem die kleinen, mühsamen, aber eigentlich klaren Beweise, welche ermüdend zum lesen sind, welche jedoch Übersicht erzeugen, ein gewisses Gefühl für das Wesen, aber auch die Widerhaken und Fallen des Stoffes geben. Ich möchte fast die "klassische Ochsentour" beschreiten, so weit dies möglich ist, jedoch noch ein kleines bisschen darüber hinausgehen:

- Symbole: Das habe ich bis jetzt noch in keinem Mathebuch gelesen, dass dieses sich mit Symbolen beschäftigt. Es geht in diesem Kapitel darum, sich mit dem Wesen von Symbolen zu beschäftigen, denn diese sind die zentralen Bausteine in unserem Denken. Es geht um die Eigentümlichkeiten von Symbolen.
- Logik und Mengenlehre: Die Logik beschäftigt sich mit Symbolen, Aussagen, Wahrheitsgehalte von Aussagen, wie Aussagen miteinander verknüpft werden können und welche Gesetze dabei gelten. Die Mengenlehre beschäftigt sich mit Zusammenfassungen von (anderen) Symbolen und den daraus abzuleitenden Gesetzmäßigkeiten
- natürliche Zahlen und ihre Eigenschaften: Natürlichen Zahlen sind 1 sowie alle Zahlen, welche aus der Addition einer natürlichen Zahl mit 1 entstehen. Dies sind also die Zahlen 1, 2, 3, 4,

- 5, 6 und so weiter. Es können Operationen + und \times definiert werden, welche bestimmte Eigenschaften besitzen.
- ganze Zahlen: Ganze Zahlen sind die natürlichen Zahlen und diejenigen Zahlen, welche entstehen, wenn zwei natürliche Zahlen voneinander subtrahiert werden. Es sind dies die Zahlen 0, 1, -1, 2, -2, 3, -3 und so weiter. Die ganzen Zahlen bilden bezüglich der Addition eine abelsche Gruppe. Die abelsche Gruppe ist sozusagen der logische Kern der ganzen Zahlen.
- rationale Zahlen: Rationale Zahlen sind die ganzen Zahlen und diejenigen Zahlen, welche entstehen, wenn eine ganze Zahl durch eine andere ganze Zahl dividiert wird. Wobei die zweite ganze Zahl nicht Null sein darf. Die rationalen Zahlen bilden zusammen mit den Operationen + und × einen Körper. Wiederum ist der ein Körper sozusagen der logische Kern von rationalen Zahlen.
- Funktionen: Funktionen sind Abbildungen von Mengen auf andere Mengen, was vielsagend nichtssagend ist. Beispielsweise kann die Geschwindigkeit eines Zugs als Funktion (Abbildung) der Zeit verstanden werden.
- stetige Funktionen in allen Varianten: Eine Funktion heißt stetig in einem ihrer Definitionspunkte, falls der Wert eines Punkts der Funktion in einer beliebigen (kleinen!) Umgebung vom Funktionswert im Punkt abhängt. Umgangssprachlich (aber ebenso missverständlich!) macht die Funktion keine Sprünge. Zuerst wird die Stetigkeit einer Funktion in einer Art "Sandkasten" gezeigt, wo alles noch übersichtlich und verständlich ist. Dann jedoch wird die Stetigkeit auf immer abstrusere²⁰ Mengen übertragen.
- Folgen: Auch wenn Kindern ihren Eltern folgen sollten, dies jedoch oft genug nicht tun, ist diese Art von Folgen nicht gemeint. Folgen sind Abbildungen von natürlichen Zahlen auf beliebige Mengen zuerst einmal werden jedoch Folgen von rationalen Zahlen untersucht.
- reelle Zahlen: Reelle Zahlen sind verschieden definierbar. Am meisten Verwendung findet wohl die Definition von reellen Zahlen als Folgen von rationalen Zahlen. Es gibt reelle Zahlen, welche gar nicht mehr als Bruchzahlen aufgeschrieben werden können. Die bekannteste davon ist sicher π , die "Kreiszahl"²¹.
- imaginäre Zahlen: Imaginäre Zahlen sind reelle Zahlen zusammen mit Vielfachen der Wurzel aus -1, $i \equiv \sqrt{-1}$. Das merkwürdige an imaginären Zahlen ist, dass es sie einerseits gar nicht gibt, aber andererseits mit ihnen sehr gut gerechnet werden kann!

 $^{^{20}}$ will heißen: seltsamere oder merkwürdigere

²¹tönt zwar wie "Kreischzahl", ist es jedoch nicht

• Differentiation: Die Ableitung einer Funktion entspricht dem Vorgang, aus der Ortsfunktion eines Körpers seine Geschwindigkeit zu berechnen. Die Ortsfunktion gibt an, wann ein Gegenstand sich wo befindet. Niemand würde bezweifeln, dass beispielsweise ein Zug eine gewisse Geschwindigkeit besitzt doch genau das wurde in der Vergangenheit genau gemacht. Ich möchte die Problematik²² skizzieren. Denn erweist es sich sehr trügerisch, die momentane Geschwindigkeit eines Zugs so berechnen zu wollen, wie in der Mathematik dies gemacht würde. Wie würde das in der Mathematik gemacht? Angenommen, die Geschwindigkeit eines Zugs soll ermittelt werden, welcher von Bern um 15:00 Uhr abfährt und (sofern er keine Verspätung besitzt) um ca. 16:03 Uhr in Zürich ankommt. Dann fragt sich ein neunmalkluger Mathematiker (Männer mögen da ein wenig pingeliger zu sein als Frauen), wie groß seine momentane Geschwindigkeit um 15:24 Uhr ist. Und zwar genau um 15:24 Uhr, keine Mikrosekunde früher und keine später. Wobei eine Mikrosekunde²³. immer noch zu ungenau für die Mathematiker ist. Ich nehme jedoch an, unser neunmalkluger Mathematiker würde sich unser erbarmen und sagen: Also dann nehmen wir halt den über eine Mikrosekunden gemittelte Wert der Geschwindigkeit. Dann schießt der Mathematiker zwei Bilder im Abstand von 10^{-6} Sekunden, das ist also 1/1000 von 1/1000Sekunden (was ich schon einmal nicht könnte) und bestimmt dann, wo der Zug sich befindet. Wie weit kommt der Zug? Dies ist schon fast eine Fermiaufgabe²⁴: Ich nehme an, der Zug fahre etwa 180 km/Stunde schnell (auf den Neubaustrecken ist dies offenbar ein vernünftiger Wert). Da 1 km 1000 m und eine Stunde 3600 Sekunden sind, beträgt die Geschwindigkeit

²²Das tönt vielleicht in Deinen Ohren grauenhaft, und Du könnest Dich fragen: Wieso schwafelt der andauernd von Problemen. Nun, das mache ich darum, dass Deine Aufmerksamkeit darauf zu lenken. Nichts ist für Kinder so langweilig wie ein Spaziergang auf dem Asphalt. Das langweilt. Wenn es jedoch über das Geröll eines Bachbetts geht, und die Kinder müssen sich ganz auf den nächsten Schritt konzentrieren, damit sie nicht umfallen und sich wehtun, dann wird es interessant. Obwohl die Kinder dann nicht mehr so schnell vorwärts kommen. Wir Menschen wollen Probleme haben. Jedoch dürfen diese weder zu leicht noch zu schwierig sein. Meine Aufgabe sehe ich darin, Dich von einem Problem zum anderen zu leiten, so dass es für Dich derart spannend wird, dass Du immer mehr davon lösen willst.

 $^{^{23}}$ Ein Mikrosekunde ist $10^{-6}s=0.000001$ Sekunden, was bedeutet, dass 1 Million davon eine Sekunde ist. 1 zu 1 Million ist soviel wie 1 mm zu 1 km, also wirklich sehr wenig

²⁴Siehe dazu das Physikbuch von Tipler: Der italienisch-amerikanische Physiker Enrico Fermi hat Aufgaben gestellt, welche gar nicht präzise beantwortet werden können, welche aber eine einleuchtende Lösung besitzen, wenn vernünftige Annahmen getroffen werden. Ich habe den Begriff "fast" verwendet, weil die Aufgabe wohl zu einfach ist, um als Fermi-Aufgabe zu gelten.

des Zugs in m/s

$$180\frac{km}{h} = 180\frac{1000m}{3600s} = \frac{180000m}{3600s} = \frac{1800m}{36s} = 50\frac{m}{s}$$

denn $5\times36=10\times36/2=360/2=180$, also ist $50\times36=1800$. Dies bedeutet, dass der Zug pro Sekunde 50 m weiter kommt. Also ist der Zug in 10^{-6} Sekunden $50\times10^{-6}m=5\times10^{-5}m$ weiter. Das sind dann $50\times10^{-6}m$, das wären also $50\times1/1000\times1/1000m=50/1000mm$. Meinst Du, du könntest diesen Unterschied auf diesen zwei Bildern feststellen? Ich für mich halte dies für eher unwahrscheinlich. Dann würde etwas geschehen, was in der Numerik "underflow", also wörtlich übersetzt "Unterfluss" genannt wird. Die Differenz zwischen zwei Größen ist so klein, dass sie verschwindet. Prinzipiell wird die Momentangeschwindigkeit berechnet, indem die gemessene Strecke durch die gemessene Zeit geteilt wird. Im obigen Beispiel wäre dies

$$\frac{50 \times 1/1000 \times 1/1000m}{1/1000 \times 1/1000s} = 50 \frac{m}{s}$$

Dies würde aber bedeuten, dass, falls der geneigte Mathematiker den Zeitunterschied klein genug machen würde, der Ortsunterschied nicht mehr also verschieden von Null gemessen werden könnte. Was zur Folge hätte, dass die gemessene Geschwindigkeit plötzlich Null würde. "Ja was denn?", wirst Du Dich vielleicht fragen. Der Zug fährt doch, dann kann er doch nicht plötzlich still stehen? Jetzt sieht es so aus, als ob die ganze Mathematik nichts wert wäre. Doch das stimmt meines Erachtens so nicht. In der Mathematik wird von praktischen Problemen zuerst einmal großzügig abstrahiert. Falls trotzdem etwas berechnet werden soll, wird das Problem der Numerik übergeben. Innerhalb der Numerik wird versucht, mit den Gegebenheiten der Computer so genau wie möglich das Resultat zu berechnen. Schließlich wird dann die Mathematik in die Physik und Ingenieurwissenschaften umgesetzt, um wirklich praktikable Lösungen zu erzielen. Wie das gemacht wird? Das weiß ich selbst nicht sehr gut. Aber ein gewöhnlicher Tachometer arbeitet mit Wirbelströmen²⁵, und damit diese verstanden werden können, wird genau diese Art der Berechnung verwendet, welche ich oben demonstriert habe. Außerdem kann in der Praxis beispielsweise umgekehrt vorgegangen werden: Es kann beispielsweise über zwei Sekunden gemittelt werden, wie weit der Zug gekommen ist und daraus die Geschwindigkeit

²⁵Ich habe es schnell auf Wikipedia (http://de.wikipedia.org/wiki/Wirbelstrom) überflogen, welche zwar keine "gute" Quelle ist, jedoch denke ich, sollte es für die Diskussion an dieser Stelle ausreichend sein.

56

des Zugs abgeschätzt werden. Diese Näherung ist umso besser, je weniger der Zug während dieser Zeit beschleunigt oder abbremst. Dieses Resultat wurde auch mit mathematischen und physikalischen Mitteln erarbeitet. Was ich weiter weiß, ist, dass in den Ingenieurswissenschaften immer versucht wird, das Unwesentliche wegzulassen, so dass ein Naturprinzip einerseits verwendet werden kann. Andererseits soll die Näherung immer noch so gut sein, dass das Resultat noch brauchbar ist. Das ist auch eine Kunst, aber ich tue mich als Automationsingenieur mit Fachhochschulreife zugegebenermaßen immer schwer damit. Ich habe immer Angst davor, das Falsche zu vernachlässigen, und dann stimmt es plötzlich nicht mehr. Übrigens sind "Abschätzungen", also Vernachlässigungen von Größen, auch in der Mathematik sozusagen das Salz in der Suppe. Auch in der Mathematik geht es oft darum, das Wesentliche zu erfassen und das Unwesentliche wegzulassen.

Zurück zur Ableitung: Mit ihrer Hilfe können viele Sachen berechnet werden, welche vorher entweder nur sehr mühsam oder überhaupt nicht berechnet werden können.

- Reihen: Der Sinn der Reihen besteht darin, dass mit ihrer Hilfe Funktionen relativ schnell berechnet werden können, welche sonst nur sehr mühsam berechnet werden können.
- Satz von Taylor als Kulminationspunkt der Differentiation einer Funktion: Mit Hilfe des Satzes von Taylors lassen sich viele Funktionen sehr schnell und genau berechnen.
- Potenzreihen: Der Satz von Taylor führt auf Potenzreihen. Dies ist ein Mix von Reihen und Funktionen.
- Integration: Wenn es bei der Differentiation exemplarisch darum geht, die Geschwindigkeit eines Zugs zu bestimmen, dann geht es bei der Integration typischerweise um eine Flächenbestimmung.

Nun, ja eigentlich gibt es jetzt drei mögliche Reaktionsarten Deinerseits. Entweder kennst Du die Begriffe, und Du hast nur schnell überfliegen wollen, was ich zu besprechen gedenke. Vielleicht sagst Du Dir, dass dies ein wenig mager sei. Nun ja, das stimmt wahrscheinlich auch. In diesem Fall kannst Du diese Einführung getrost auf der Seite lassen und Dich wichtigeren Sachen zuwenden. Dann entschuldige ich mich dafür, dass ich Deine kostbare Zeit verschwendet habe. Oder aber Du kennst diese Begriffe noch nicht und denkst etwa: "Folgen, ist das nicht Terminator²⁶ Folge 1 bis X" oder sonst eine Folge von mehr oder weniger abartigen, unterhaltsamen oder lustigen Geschichten. Wenn ich

²⁶da ich unbescheiden hoffe, dass diese Einführung dereinst zeitlos werden wird (ist natürlich nicht frei von Selbstironie): "Termintor" ist eine Serie von und mit Arnold Schwarzenegger, von welcher ich jedoch, Schande über mich, keinen einzigen

in diesem Fall Deine Neugier geweckt habe: Das freut mich natürlich. Die dritte Reaktionsmöglichkeit ist für mich eindeutig diejenige, welche mir am meisten Kopfzerbrechen bereitet: Du kennst diese Begriffe, möchtest diese jedoch noch so gerne nicht kennen. Weil sie langweilig und unverständlich sind. Die Schwester meiner Ex-Frau hat vor vielen Jahren die Matura (oder Abitur im deutschen Sprachraum) absolviert. Sie erzählte mir immer wieder, sie habe den Mathematiklehrer gefragt, für was Mathematik eigentlich gut sei - und dieser Mathematiklehrer habe es ihr nicht erklären können. Ich glaube, dies in einem schlechten Witz so darlegen zu können: Mathematik ist ein Art Spiel. Wer zuerst nach dem Sinn fragt, hat verloren. Damit Du verstehst, worin der Sinn dieses Witzes bestehen soll: Es gibt ein Spiel, dass jemand jemandem anderen Fragen stellen darf, und in den Antworten darauf dürfen bestimme Wörter nicht vorkommen. Also zum Beispiel die Wörter oder "Ja" oder "Nein". Und dann kannst Du Dir die Mathematik so vorstellen, dass so lange von Dingen gesprochen wird, welche zwar logisch sinnvoll sind, jedoch keinen praktischen Nutzen für irgend jemanden besitzen (außer zur Selektion von sogenannten guten Schülerinnen und Schülern), dass jemand fragt: "Für was ist das gut?" Dann können die anderen schreien: "Du hast verloren!"

Falls ich es trotzdem schaffe, Dir den Sinn der Mathematik darzulegen, habe ich mein Ziel erreicht. Ich meine auch, Mathematik ist eigentlich ein Lebensgefühl, eine Geisteshaltung, und weniger eine Technik. Ich versuche, Dir schmackhaft zu machen, dass Mathematik ist eine Art geistiges Klettern ist, welches witzig sein und Spaß machen kann. Urteile doch selbst, ob es mir gelingt.

Mein Vorbild bezüglich Mathematik ist Eugen. Eugen hat gelebt (oder lebt immer noch, ich weiß es nicht) und hieß wirklich so, er hatte ein Down-Syndrom und war überdies (was für eine grässliche Zeit) kastriert. Er musste wirklich ein Leben als Eunuche führen, das heißt, die Hoden wurden ihm entfernt. Also hatte Eugen eine hohe Stimme und eine unförmige Gestalt. Ich verstand ihn nicht, er war mir mehr oder weniger unzugänglich. Ich habe ihn bei einem Praktikum in einem Behindertenheim kennengelernt. Eugen zeichnete immer Striche und Kreise, ich wusste nicht, wieso. Bis Mario, ein völlig desillusionierter und auch ein wenig versoffener Betreuer, mir sagte, Eugen würde rechnen, so wie er es an der heilpädagogischen Schule gelernt habe. Mag sein, dass Eugen nie wirklich etwas kapiert hatte, dass diese Übung für ihn mehr oder weniger "sinnfrei" war, jedoch hat er es durchgezogen. Ich wäre froh, wenn es mir gelingen würde, dieses Dokument so zu gestalten, dass es immer wieder neu erobert werden könnte, auch von Personen, welche "bildungsfern" sind.

Teil gesehen habe. Ich habe es nicht so mit Männern, welche sich mit Amphetaminen vollgepumpt haben.

Es kann auch gefragt werden, ob es in Zeiten von Wikipedia sinnvoll ist, ein Mathebuch zu schreiben. Ja, ich denke schon. Denn die Wikipedia-Texte über Mathematik, welche ich überflogen habe, sind meines Erachtens nicht wirklich berauschend. Irgendwie ist denen jegliche Didaktik und Methodik abhanden gekommen. Die Texte sind für meine Begriffe ähnlich "diktatorisch²⁷" wie weiland die Gesetzestafeln von Moses. Es stimmt m.E.²⁸ zwar, was aufgeschrieben wird. Jedoch: Wie diese Wahrheiten errungen wurde, was sie genau aussagen, wie ich sie anwenden kann, worauf ich aufpassen muss, was sie genau meinen mit dem, was sie gesagt haben: Fehlanzeige. Auch Witz oder Geist finde ich in diesen Texten keinen. Es kommt mir daher wie ein Abgesang, eine Grabrede auf die Mathematik vor. Nur von Toten wird üblicherweise so trostlos ernst gesprochen²⁹. Wobei ich natürlich nichts dagegen habe, wenn ich eines Besseren belehrt werde! Auch ist es irgendwie Faulheit oder fehlender Mut, ein entsprechendes Wikipedia-Projekt zu starten. Ich möchte einfach still vor mich hin werkeln können. Darum werde ich diesen Text zumindest in der ersten Fassung für mich alleine schreiben. Melde Dich doch, wenn Du entsprechend weitere Texte, Vertiefungen oder Korrekturen schreiben möchtest. Gerne würde ich einer Schreibwerkstatt (auch nur schon per E-Mail-Austausch) weitere Texte im Bildungsbereich schreiben.

Ich möchte mit diesem Skript einen radikalen Weg der "Umkehr der Beweislast" gehen. Mein Prizip soll sein: Hast Du es nicht verstanden, dann habe ich etwas falsch gemacht. Und nicht: Wenn Du es nicht verstehst, dann hast Du etwas falsch gemacht. Wenn es ein Vermächtnis dieses Skript geben soll, dann soll es dieses sein: Dass auch in Naturwissenschaften und Technik geschaut wir, dass alle, welche es wollen, es auch verstehen.

Und nun zur Frage: Was soll in diesem Text nicht besprochen werden? Nun, ich habe auch dunkle Flecken, über welche nicht sprechen kann und/ oder will. Wenn ich auch viel zu viel in diesem Text über mich verrate, so schreibe ich doch nicht alles auf. Denn auch ich bin sehr limitiert. Und ich möchte nicht, dass meine Welt aus den Fugen gerät, weil ich alles aufschreibe, was mir gerade in den Sinn kommt.

 $^{^{27}}$ So weit wie ich weiß, heißt "dictum" auf lateinisch etwa so viel wie: Aussage oder Befehl.

²⁸m.E. heißt "meines Erachtens". Dies bedeutet also, dass ich hier meine persönliche Meinung vertrete, welche jedoch durchaus als falsch sein kann.

²⁹Diesen Satz finde ich auch nicht mehr so witzig wie auch schon, da ich gestern (22. August 2011) bei einer Beerdigung war. Nun, ich lasse den Satz im Text drin, denn das Ernste, Erhabene, Entrückte in der Wikipedia-Sprachregelung geht mir immer noch auf den Geist.

1.7. Gibt es auch Aufgaben und Übungen in Deinem Mathebuch?

Ja und nein. Ja, es gibt Wiederholungen und Verweise. Ich hoffe, genügend Aufgaben sammeln zu können, welche behandelt werden können, um sich mit dem Stoff vertraut zu machen. Nein, es gibt keine Aufgaben und Übungen, weil ich weder die Lösungen verheimlichen noch separat hinschreiben will. Wie schon oben erwähnt, wird wohl die größte Herausforderung beim Durchlesen dieses Buchs diejenige sein, nur so viel davon zu lesen, wie es für das Verstehen desselben nötig ist.

1.8. Welches sind die Limitierungen dieses Buches?

Ja, ich gebe es zu, auch dieses Buch hat Limitierungen. Als da wären:

- Abschrift: Dieses Buch stützt sich in weiten Teilen auf ein existierendes Lehrbuch, nämlich: Heuser, Harro: Lehrbuch der Analysis, Teil 1 4., durchges. Auflage © B.G. Teubner Verlag, Stuttgart 1986. Diesen Text werde ich im Folgenden mit "Heuser" abkürzen. Ich weiß nicht, ob es überhaupt statthaft ist, ein Buch umzuschreiben, auch wenn der daraus entstehende Text keine große Ähnlichkeit mit dem Original mehr aufweist. Ich habe es trotzdem gemacht, lege jedoch meine Quelle(n) offen, falls ich diese angeben kann. Des weiteren habe ich im DTV-Atlas der Mathematik gelesen (was ich nicht mehr so gut kann, da der Text schon fast mikroskopisch klein ist). Falls Dir das Original besser passt: Viel Vergnügen damit! Herr Heuser möge mir vom Himmel aus verzeihen³⁰, dass ich ihm irgendwie in den Rücken falle, weil ich sein Buch als nicht als letzte Weisheit betrachte. Er ist ja auch Professor der Mathematik, und ich bin nur ein "missratener" Physikstudent. Und sein Buch ist wirklich gut, meines hingegen ist keines. Aber sein Buch macht auch viele Rechnungen nur andeutungsweise und so, dass ich bis jetzt rund 50 - 100 A4-Hefter vollgeschrieben habe, um die Aufgaben und Sätze nachvollziehen zu können. Außerdem habe ich gemerkt, dass ein großer Teil der Beweise in die Aufgaben verlegt wurde, welche nur mit einem für mich gigantischen Zeitaufwand erledigt werden konnten. Das möchte ich Dir ersparen. Darum bin ich so frech und erzeuge aus dem gegebenen Text einen neuen.
- Quellenverzeichnis: Viele Behauptungen untermauere ich (fast ein wenig im Widerspruch zur Aussage im vorhergehenden Punkt) nicht mit Quellenverweisen. Der Grund ist jedoch nicht der, dass ich Dir glauben machen will, ich hätte all das Zeugs selbst herausgefunden. Der Grund liegt vielmehr darin, dass

 $^{^{30}}$ er ist am 21. Februar 2011 gestorben

ich die Quellen oftmals nicht zur Hand habe. Jedoch schreibe ich dann Zusätze wie "offenbar", "anscheinend" oder so ähnlich. Ich weiß, das ist nicht wissenschaftlich gearbeitet. Jedoch bekomme ich für diesen Text auch keine akademische Auszeichnung³¹, ich schreibe ihn in meiner Freizeit. Darum möchte stundenlang in den (Universitäts-) Bibliotheken rumhängen und den Quellen nachjagen. Ich hoffe, es stört Dich nicht, wenn ich Aussagen, welche ich anderswo gelesen habe, nicht explizit angebe. Dies hat mit meiner Faulheit, aber nichts mit Geheimniskrämerei zu tun. Falls Du Quellen kennst und Du diese mir mitteilen möchtest: Nur zu. Außerdem: Heuser oder beispielsweise Tippler oder Orear (Lehrbücher der Physik) machen es über weite Teile auch nicht, äußern sich aber nicht zur Problematik. Ich gebe es wenigstens zu, dass da ein Problem ist. Ich behalte mir vor, eine Quelle nur rudimentär wiederzugeben oder nicht Primärliteratur zurückzugreifen. Heutzutage ist es üblich, dass bei Meier nachgeschaut wird, wenn Müller schreibt, Meier habe geschrieben, dass ein Quadrat vier Ecken habe (um ein einfaches Beispiel zu nehmen). Denn die Meier hätte in diesem Fall die Primärliteratur, also den ursprünglichen Text, und Müller hätte in diesem Fall die Sekundärliteratur erzeugt, also abgeschrieben. Ich würde es dann dabei belassen, zu schreiben, der Müller habe geschrieben, dass die Meier geschrieben habe, ein Quadrat habe vier Ecken. Und das war es dann. Der Bezug auf die Primärliteratur ist ja im akademischen Betrieb sicher zumindest dann sinnvoll, falls Müller einer Sprache spricht, welcher nur der Meier versteht, ich jedoch nicht. Oder der von Meier erzeugte Text so unverständlich ist, dass nur nach jahrelanger Forschungsarbeit durch Müller klar wird, was die Meier gemeint hat. Ich möchte jedoch einen Einführungstext schreiben, welcher leicht und luftig ist. Das bedeutet, dass das erste Ziel des Textes ist, dass er verständlich ist. Du kannst Dich dann schon noch "verknorzten" Texten zuwenden, bei welchen sich die schreibende Person darin gefällt, die Sachverhalte mehr zu verdecken als zu enthüllen.

Graphen: Ich bin kein Mann des Bilds. Wenn ich all die schönen Bilder in den Mathematikbüchern sehe, dann kommen mir zwar ab und zu fast die Tränen vor Rührung, weil diese Bilder oftmals schlicht perfekt sind - aber oft verstehe ich dann kein Wort von dem, was im Text zu den Bildern steht. Bei mir ist

³¹Sollte ich dafür einen Ehrendoktor bekommen, würde ich ihn selbstverständlich nicht ablehnen ;). Nein, ich weiß, dass der akademische Zug für mich schon lange abgefahren ist und ich außer Konkurrenz fahre.

- es hoffentlich umgekehrt. Mir ist es wichtig, dass in Deinem Kopf die Bilder entstehen - wie bei einem guten Roman.
- Profi: Lese diesen Text nicht, falls Du Mathematikerin oder Mathematiker bist oder es werden willst. Denn es ist ein Text für alle, welche Mühe haben mit der Mathematik, und nicht für solche, welche es können. Natürlich würde es mir schmeicheln, wenn Du das Buch trotzdem überfliegen würdest, aber Du darfst nicht erwarten, dass es Dir gefallen wird. Denn das Buch ist eben nicht "cool" geschrieben, sondern hat einen geschwätzigen Stil. Alles ist so weit wie möglich bis ins Detail erklärt.
- Beispiele: Die Beispiele der Einführung sind oft in einem "flapsigen" Stil geschrieben. Vielleicht findest Du sie doof, kindlich, naiv. Aber ich hoffe, Du würdest Dich nicht daran stören. Wenn sich jemand durch ein Beispiel beleidigt fühlt, soll sie oder er es mir doch mitteilen. Ich werde es dann korrigieren. Aber ich möchte niemand verletzen, und sei es "nur" durch meine Wortwahl.
- Grammatik: Ich habe ein gespaltenes Verhältnis zur Grammatik. Ich habe mir die Grammatik, falls überhaupt, durch Gewöhnung angeeignet. Die neue deutsche Rechtschreibung ist an mir spurlos vorbeigegangen. Traurig aber wahr, muss ich mir wahrscheinlich eingestehen, dass dieser Text wahrscheinlich voller grammatikalischer Fehler ist. Ich hoffe, dass er trotzdem unterhält.
- Sprache 1. Limitierung: Ich wollte einen leicht verständlichen Einführungstext schreiben. Leider muss ich mir eingestehen, dass ich nicht weiß, auf welche Wörter ich besser verzichten würde. Ich fürchte, dass es viele Anspielungen gibt, welche nur schwer verständlich sind. Trotzdem möchte ich Dir Mut machen, den Text einfach rigoros zu überfliegen, auch wenn der eine oder andere Satz von Dir nicht entschlüsselt werden kann. Auch wäre ich froh um entsprechende Rückmeldungen, falls ich einen Satz nicht, auf eine andere Art oder besser schreiben sollte
- Sprache 2. Limitierung: Dieser Text ist nicht in der sogenannten "einfachen Sprache" geschrieben. Ich bilde mir zwar ein, dass ich einer einfachen Sprache schreiben würde. Aber wenn ich ehrlich zu sein versuche, dann muss ich mir eingestehen, dass meine Sprache nicht einfacher ist als diejenige anderer.
- Dass es ein Text ist: Eigentlich kann kein Buch die ideale Lehrerin oder der ideale Lehrer sein. Denn gemäß meiner Erfahrung sind einerseits Leserinnen und Lehrer, welche ein Gegenüber darstellen und mit der ganzen Persönlichkeit sich auf das Gegenüber einstellen, für das Lernen am wirksamsten. An

- zweiter Stelle kommen Computerspiele. Diese können sogar noch gegenüber einem Lehrer oder einer Lehrerin sogar noch den Vorteil der "unendlichen Geduld" besitzen. Erst an dritter Stelle kommt meines Erachtens das Buch (oder das Skript). Dennoch möchte ich mit diesem Mittel arbeiten, da ich mich irgendwie mitteilen möchte. Vielleicht kommst Du einmal dazu eine richtig gute Anwendung zu schreiben, welche für die Leserin oder den Leser noch informativer oder lehrreicher ist?
- Layout: Es gibt bestimmte Layoutprobleme beim PDF, welche nicht schön aussehen. Ein Beispiel ist das Abbildungsverzeichnis. Es gelingt mir jedoch nicht, alle Layoutprobleme zu beheben.
- Programme: Obwohl ich eigentlich Informatik gerne habe, kann ich nicht gut programmieren. Das hat den Effekt, dass ich ab und an schreiben werde, dass da beispielsweise eine Erweiterung von Excel oder Open Office Calc zwar schön wäre, aber ich keine Möglichkeiten sehe, das auf die Schnelle so umzusetzen.
- Beim Überarbeiten meiner Aufzeichnungen ist mir aufgefallen, wie viel Zeit für relativ wenig Begriffe verwendet werden. Das scheint mir ein Unterschied zum Erlernen einer Sprache zu sein. In einer Sprache müssen meines Erachtens viel mehr Begriffe pro Zeit erlernt werden, die einzelnen Begriffe werden jedoch weniger ausführlich besprochen. Es geht mir jedoch nicht darum, die Unterschied zum Erlernen einer Sprache und von Mathematik, so wie ich es verstehe, zu betonen. Ich könnte auch die Gemeinsamkeiten betonen oder eine Auflistung der Merkmale von Sprachen und der Mathematik erarbeiten und diese dann präsentieren - aber ich glaube nicht, dass Dir das groß dienen würde. Ich habe dieses Merkmal der Mathematik auch darum besprochen, weil ich Dich darauf hinweisen möchte, dass Du Dein Augenmerk darauf richten solltest. Das Schwierige an der Mathematik ist meines Erachtens, dass Eigenschaften oft stillschweigend verwendet werden. Wenn Du als Leser diese Eigenschaft kennst, dann kannst Du dem Text folgen. Wenn nicht, dann grenzt der Text an Hexerei.
- Er ist langweilig: Nun, das ist zwar eine gewagte Behauptung, welche ich nur zu gerne von Dir widerlegt gehört haben würde. Jedoch muss ich, nachdem ich ein paar Jahre mehr oder weniger intensiv an diesem Text arbeite, mir eingestehen, dass im Text relative "tote Hose" ist. Das bedeutet: Es ist nicht so viel los. Es gibt wahrscheinlich selten etwas, was uns wirklich "aus den Socken hauen würde". Trotzdem hoffe ich, dass er zumindest wie ein Lexikon als Nachschlagewerk dienen kann.

- Wiederholungen: Ich kann nicht ausschließen, dass ich mich ab und zu wiederhole. Dann kann es sein, dass ich etwas zwei Mal formuliere und zu beweisen versuche. Bitte nehme mir das nicht übel. Das ist ein Zeichen dafür, dass mit dieser Text für sehr lange Zeit im meinem Leben begleitet hat und begleiten wird
- Alles und nichts: Ich bin jetzt sei sechs Jahre an diesem Skript und musste feststellen, dass die größte Limitierung dieses Textes ist, dass ich nicht "einfach einmal gut sein lassen kann". Ich möchte immer noch mehr zeigen, was möglich ist und komme so nie an ein Ende. Das führt oft dazu, dass ich mich zuerst selbst blockiere und dann die Erstellung dieses Textes ebenfalls blockiert wird.
- Vollständigkeit: Leider ist dieses Skript immer ein Fragment, da ich immer Stellen habe, bei welchen ich noch etwas hinzufügen oder ändern möchte.
- Leere: Wenn ich so nachdenke, was ich bisher alles bisher alles erreicht habe mit meinen Aufzeichnungen, dann muss ich mir eingestehen: Dieses Werk sind ca. 600 Seiten "Nichts". Nun, vielleicht ist es bitter, vielleicht auch einfach tröstlich.
- Fehlende Empirie: An und für wäre dieser Text nur dann nützlich, wenn die Erfahrungen der Leserinnen und Leser mit diesem Text in den Text einfließen würden. Insbesondere wäre es wünschenswert, die typischen Ursachen der Fehlüberlegungen aufzulisten, welchen Leserinnen und Leser im Umgang mit der darstellten Mathematik widerfahren würden. Leider kann ich damit nicht dienen, da ich zwar den Text im engsten Bekannten- und Verwandtenkreis gestreut habe. Jedoch habe ich keine verwertbare Rückmeldung bezüglich des Textes erhalten.

Nun möchte ich mit dem Lernstoff beginnen. Ich weiß, jetzt kommt nicht das, was Du erwartest, nämlich die Einführung in die natürlichen Zahlen. Diese kommt später, viel später. Zuerst fasse ich mich mit Logik und Mengenlehre auseinander. Erst dann beginne ich zu "rechnen".

1.9. weitere Vorbemerkungen

Drucke das Skript bitte nur im Notfall aus. Falls Du es bearbeiten möchtest, dann verwende bitte LyX (http://www.lyx.org/). Ich werde nach Möglichkeit nicht nur das PDF, sondern auch die LyX-version veröffentlichen. Jedes Mal, wenn ich etwas am Skript schreibe, dann verändere ich die Versionsbezeichnung. Im Moment (12. Februar 2012) bin ich bei der Version 0.1.41. Ich denke, ich werde kaum über die Version 0.1 hinauskommen. Um die Versionen auf meinem System zu verwalten, verwendete ich zu Beginn TortoiseHg, jetzt Git, mit GitTortoise als Benutzeroberfläche. Ich wünsche mir, dass dieses Buch nie für Selektionen irgendwelcher Art verwendet wird. Denn ich habe es nicht

dafür geschrieben, um Leute in gescheite und dumme einzuteilen, sondern damit alle, welche es wünschen, sich in Mathematik einarbeiten können.

Übrigens sind viele Verweise anklickbar - falls Du das Skript als PDF liest. Sie sind blau eingefärbt. Und mit der Tastenkombination Alt+← (in Worten: wenn Du als zuerst auf die Taste drückst, auf welcher "alt" oder so steht, und anschließend auf die Taste drückst, auf welcher der Pfeil gegen links abgebildet ist) kommst Du üblicherweise zur Stelle, von wo Du den Verweis aufgerufen hast.

Teil 1

Wieso wird Logik und Mengenlehre benötigt?

Dieses Teil beschäftigt mit der Frage, für was Logik und Mengenlehre benötigt wird. Abgesehen von der innewohnenden Schönheit bildet die Logik das Skelett (oder das Gerüst), auf welchem die übrige Mathematik aufgebaut ist. Es ist so, dass die Logik die Spielregeln vorgibt, wie in der Mathematik die Beweise geführt werden müssen, damit die bewiesenen Aussagen als wahr akzeptiert werden. Was jedoch nicht bedeutet, dass die Anschauung, das Ausprobieren, Näherungsrechnungen und ähnliche Vorgänge nicht verwendet werden sollen und dürfen. Jedoch hat es sich als sinnvoll erwiesen, dass die Beweisführung nur mit den Mitteln der Logik vorgenommen wird. Du fragst Dich vielleicht, wieso dies so ist. Weil innerhalb der Logik überlegt wird, wie ich von Aussagen (wie beispielsweise: "Max und Moritz haben die Hosen voll"), welche ich als wahr betrachte, wieder auf andere von mir als wahr betrachtete Aussage schließen kann. Nun, das tönt vielsagend nichtssagend. Falls Du mehr darüber wissen möchtest, dann schaue doch beispielsweise im Abschnitt 20.6 mit der Bezeichnung "Wie kann ich etwas folgern?" nach. Dort habe ich ein Beispiel für eine solche Umformung gemacht. Beachte, dass die Logik, so wie ich sie hier betreibe, ausschließlich darauf ausgerichtet ist, die weitere Mathematik zu entwickeln. Ich habe kürzlich wieder einmal auf der Wikipedia den Eintrag über Logik überflogen - und habe praktisch kein Wort auf Anhieb kapiert. Wie Du siehst, mache ich also fast alles, damit Du diesen Text wieder auf die Seite legst. Nein, ich habe mich schon ein wenig mit der Logik befasst. Ich möchte die Logik so einführen, dass es möglichst praktisch ist.

Was ich ab und zu gelesen habe, ist die faktische Geringschätzung, welcher der elementaren Logik entgegengebracht wird. Da³² wurde beispielsweise geschrieben, Mathematik sei viel mehr, als Textaussagen mit Hilfe der Logik ineinander umzuwandeln. Ich habe das Gefühl, die Abneigung gegen die Logik als dumpfe Ausführung von an und für sich sinnlosen Vorschriften hat etwas von einer Höllenvorstellung (wo "Heulen und Zähneklappern" vorherrscht). Es tönt in meinen Ohren so, wie arme Schülerinnen und Schüler immer noch genötigt werden, Reihen zu lernen, den Zehnerübergang zu büffeln. Ich glaube, die Abneigung gegen die Logik hat damit zu tun, dass Logik automatisiert werden kann. Der Compi³³ ist förmlich die materialisierte Form der Logik. Jedoch steckt die Kreativität nicht in der Ausführung der elementaren Logik diese Ausführung ist recht einfach zu behalten und auszuführen. Nein die Kreativität in der elementaren Logik besteht aus meiner Sicht darin, wie die Definitionen gemacht wurden. Diese Definitionen sind sicher nicht einfach so "vom Himmel gefallen", sondern sie waren einer sehr wahrscheinlich das Erzeugnis einer langen und wahrscheinlich erbittert

 $^{^{32}}$ Ich werden den Literaturhinweis nur dann noch einfügen, falls er mir per Zufall wieder über den Weg läuft.

³³Kosewort für "Computer".

geführten Diskussion. Da wurde sehr wahrscheinlich gestritten und es gingen die Emotionen hoch, bis klar wurde, was jetzt als richtig und was als nicht richtig gilt.

Ich werde im Übrigen diese Möglichkeit der Automatisierung der Logik andeuten, indem ich für alle logischen Verknüpfungen die Schaltbilder gezeichnet habe, mit welchen die logischen Verknüpfungen nachgebildet werden können. Dabei wird der Wahrheitsgehalt von Aussagen (siehe Kapitel 3) immer so dargestellt, als dass ein Taster³⁴ betätigt werde, falls die Aussage wahr ist. Ist die Aussage jedoch nicht wahr, dann werde der Taster jedoch nicht betätigt. Eine Einführung über die Schaltbilder habe ich mindestens an zwei Stellen geschrieben. Die erste Stelle befindet sich im Kapitel der Definition der Negation (siehe Kapitel 8). Der Wahrheitswert einer Aussage sei definiert als wahr, falls die Aussage wahr ist. Entsprechend sei der Wahrheitswert einer Aussage als falsch definiert, falls nicht gilt, dass die Aussage wahr ist.

Üblicherweise werde ich logische Sätze beweisen, indem ich die Definitionen nachschlage und einsetze. Ich werde jedoch auch Methoden zeigen, welche nicht nach dem Prinzip des Nachschlagens und Ausführens von Definitionen oder anderen logischen Sätzen bestehen (siehe zum Beispiel den Satz der Transitivität der Implikation, Kapitel 20.4). Aber ob diese Beweisführungen eleganter sind als das simple "berechnen" der Behauptungen, weiß ich auch nicht. Beim Beweis des Satzes der Transitivität der Implikation ist er auf jeden Fall ähnlich groß geworden, wie er würde, wenn er einfach ausgerechnet würde. Egal, wo immer möglich werde ich beide Beweisarten nebeneinander ausführen, damit Du möglichst viel Übung in der Beweisführung bekommst und dies dann später dann gewinnbringend anwenden kannst.

Da in der Logik Symbole verwendet werden, werde ich zuerst sehr ausführlich über Symbole schreiben. Andererseits werde ich mir erlauben, den Prozess der Mathematisierung sozusagen in Zeitlupe noch einmal nachzubilden.

Beim Durchlesen der Beispiele dieses Teils (Logik) ist mir aufgefallen, dass relative viele Beispiele mit Benennungen wie "Alle Hirsche heißen Hans" oder "Alle Hasen heißen Roger Rabbit" oder ähnlich lauten. Dies ist ein (dummer) Zufall. Die Beispiele dienen sowieso der Illustration der Definitionen und Sätze. Aus ihnen entsteht also keine Theorie. Aus diesem Grund erlaube ich mir, diese Beispiele vorläufig nicht zu entfernen. Ebenfalls zu diskutieren ist, ob ich die formale Beschreibung der einzelnen logischen Verknüpfungen wirklich abgesetzt von der jeweils tabellarischen Beschreibung machen sollte. Aber urteile selbst.

³⁴Eigentlich würde ich gerne von "Schalter" sprechen. Jedoch sind diese so beschaffen, dass sie gedrückt bleiben, falls sie gedrückt werden. Erst wenn sie noch einmal gedrückt werden, dann werden sie wieder stromlos. Ein Taster jedoch springt automatisch wieder in die Ruheposition, falls er nicht gedrückt wird.

Zuerst werden die Beispiele, welche ich mache, aus dem Alltag gegriffen sein. Die Beispiele werden jedoch immer mehr mit der Mathematik zu tun haben. Auf der einen Seite ist das schade. Denn es macht den Anschein, als ob Mathematik ausschließlich reiner Selbstzweck wäre. Auf der anderen Seite soll es Dir zeigen, für was der ganze Unterbau gut sein soll. Dass es also durchaus Berechtigung besitzt, wenn ich mir ausführlich Gedanken mache, warum etwas so und nicht auf eine andere Art definiert wurde.

Noch auf eine Schwierigkeit möchte hinweisen. Egal, wie viele logische Sätze ich zu formulieren und beweisen versuche: Ich werde später mehr davon oder andere logische Sätze benötigen. Das Ganze ist gleichsam ein Fass ohne Boden. Aber ich denke, dass ich gegebenenfalls das Gebiet der Logik verlassen und bei Bedarf wieder darauf zurückkommen werde.

Und nun zum Aufbau dieses Teils: Zuerst werde ich mich mit Symbolen und Aussagen beschäftigen. Das ist zuerst einmal knochentrocken und langweilig. Aber es dient dazu, den Prozess der Mathematisierung minutiös zu beschreiben. Anschließend werde ich die in der Logik verwendeten Aussagen definieren. Dann werde ich das machen, was meines Erachtens das ganze erst spannend macht. Ich werde untersuchen, welches die Zusammenhänge von einzelnen definierten Aussagen vorhanden sind. Hier kommen die logischen Sätze ins Spiel. Diese können dann später hoffentlich gewinnbringend angewendet werden. Außerdem dient das Untersuchen der Zusammenhänge zwischen den definierten Aussagen zum Überprüfen der Tauglichkeit der gemachten Definitionen. Im dümmsten Fall kann es geschehen, dass am Schluss klar wird, dass die gemachten Voraussetzungen falsch sind.

KAPITEL 2

Was sind Symbole?

Ich finde, dass es sich lohnt, ein eigenes Kapitel über Symbole zu schreiben. Einerseits hat die Mathematik die Schreibweise und die Menge der Symbole erweitert, andererseits benutzt sie die Symbole oft auf eine eigene Art. In diesem Kapitel will ich mich mit Symbolen auseinandersetzen und das Kapitel über Aussagen und Aussagenlogik vorbereiten. Diesen Teil findest Du wahrscheinlich in keinem anderen Lehrbuch über Mathematik. Er ist stark von Entwicklungspsychologie motiviert und wäre nie zustande gekommen, wenn ich nicht an der Universität Freiburg ein Diplom (entspricht in etwa einem Fachhochschulabschluss) in klinischer Heilpädagogik/ Sonderpädagogik gemacht hätte. Die Idee ist, dass der Umgang mit Symbolen in der menschlichen Entwicklung angelegt ist, dass die meisten Menschen Symbole als solche erkennen und mit ihrer Hilfe Denkvorgänge ausführen können. Wenn ich schreibe, "die meisten Menschen", dann ist das eine Spitzfindigkeit, welche ausgeführt werden soll und muss. Denn wenn geschrieben wird "Menschen", dann habe ich argumentativ ein Problem: Was, wenn jemand im Koma liegt? Ist dann sie oder er kein Mensch mehr? Denn Menschen im Koma können keine Symbole erkennen. Oder ist dann meine Aussage falsch? Es gilt, sorgfältig mit der Sprache umzugehen, nicht "unter Umgehung der Großhirnrinde¹" einfach etwas in die Welt zu setzen und am Ende werden Millionen von unschuldigen Menschen umgebracht. Einfach weil schludrig argumentiert wird. Und was ist mit Säuglingen, welche noch nicht lesen können? Sind das keine Menschen? Was ist hirnverletzten Personen, welche die Fähigkeiten verloren haben, zu lesen? Sind das keine Menschen mehr? Was ist mit geistig behinderten Personen, welche nicht lesen können? Was ist mit funktionellen Analphabeten, welche zwar lesen können, jedoch sich keinen Sinn daraus reimen können? Sind das keine Menschen? Was ist mit Menschen aus fremden Kulturkreisen, welche die lateinische Schrift nicht lesen können, weil sie eine andere Sprache oder andere Zeichensätze für ihre Texte verwenden? Was mit Analphabeten, welche aus welchen Gründen auch immer nie lesen gelernt haben? Und was ist mit Blinden? Was ist, wenn ich die Blindenschrift nicht lesen kann? So, jetzt habe ich es niedergeschrieben. Ich glaube daran, dass alles Menschen sind -

¹ich will damit sagen: nicht gedankenlos

auch wenn sie nicht lesen können sollten. Jedoch haben trotzdem viele Menschen im Verlaufe ihres Lebens die Kulturfähigkeit errungen, aus niedergeschriebenen Symbolen sinnvolle Gedanken zu konstruieren sprich, zu lesen.

Doch was sind Symbole? Mit Symbolen meine ich etwas, was auf etwas anderes hinweist, ohne das andere selbst zu sein. Nicht zuletzt dieser Text besteht aus lauter Symbolen: Zuerst den Buchstaben, welche auf eine eigentümliche Art und Weise Laute symbolisieren - aber nicht so, wie wir es gerne hätten! Da gibt es einerseits die Hochsprache einer Sprache. Beispiele dafür sind das "Oxford-Englisch" oder das "Hessisch-Deutsche", das Italienisch, welches von Florenz her stammt. Alle diese Dialekte wurden für die jeweiliegen Sprachen als Vorbild für Englisch, Deutsch der Italienisch erklärt. Dabei spreche ich als Schweizer, sogar wenn ich wollte, kein Deutsch, sondern eine Sprache, welche so ähnlich wie Deutsch tönt - ohne es jedoch genau zu sein². Die Laute, welche ich dabei spreche, tönen nicht so, wie wenn eine Schauspielerin oder ein Schauspieler den gleichen Text sprechen würde³. Nur schon aus diesem Grund ist die Zuordnung von Lauten und Buchstaben nicht eindeutig. Aber selbst die Sprache wird nicht Eins zu Eins als Schrift wiedergegeben. Bei vielen Wörtern werden andere Laute geschrieben, als dass sie gelesen werden. Ich nehme als Beispiel das Wort "Beispiel". Kannst Du den Unterschied zwischen einem kleinem Buchstaben "b" und dem großen Buchstaben "B" hören? Also ich nicht. Vielleicht ist die Idee hinter Großbuchstaben, dass diese Wörter, oder zumindest diese Wortanfänge bei der Aussprache betont werden sollten. Aber dann könnte ich schreiben: "Die Mäusebussardin hat den Mäuserich gejagt⁴", oder "Die Mäusebussardin hat den Mäuserich Gejagt" oder gar "Die Mäusebussardin hat Den Mäuserich gejagt". Aber nichts da: Ewig "jagt der Mäusebussardin den Mäuserich", keine anderen Varianten sind erlaubt. Und wie viele Kinder werden mit Rechtschreibung traktiert, obwohl die einzige in meinen Augen vernünftige Rechtschreibung die in Form eines Open Source Programms liegt, welches als Rechtschreibprüfung über die Dokumente gejagt werden sollte, damit diese einheitlich aussehen? Das scheint mir nämlich der Sinn des ganzen zu sein. Indem die Grammatik eines geschriebenen Textes streng reglementiert ist, wird er leichter lesbar, weil der Aufwand, welcher getrieben werden muss, um die Information aus dem Text zu extrahieren, durch diese reglementierte Schreibweise verkleinert werden kann. Das wird spätestens

²Um genau zu sein: Diese Aussage ist halb ernst, halb ironisch gemeint.

³Das ist übrigens eine recht schmerzvolle Erfahrung, welche ich oft beim Singen mache - nebst Mathematik, Trompete spielen und Fahrrad fahren ein liebes Hobby von mir. Ich töne einfach nicht schön, weil meine Stimme nicht schön tönt und weil ich kein Bühnen-deutsch spreche. Aber ich singe trotzdem fürs Leben gern

⁴Ich hoffe, die Aussage wird mir nicht als sexistisch ausgelegt. Ich bemühe mich nach Kräften, den Text geschlechtsneutral zu formulieren.

dann klar, wenn Texte gelesen werden sollen, welche in einem schweizerischen Dialekt geschrieben wurden. Weiter werden die Symbole nicht 1:1 ausgesprochen, wie sie hingeschrieben wurden. Im Wort "Beispiel" wird "Ei" geschrieben, jedoch "ai" gesprochen. Es scheint eine Form von Bildung zu sein, die richtigen Wörter zu den Lauten hinschreiben zu können. Doch genug der vielen Worte - und damit auch Symbole. Das Prinzip, dass jeder Buchstabe ein Symbol für einen Laut ist, stimmt im Prinzip. Falls dieser Text beispielsweise mit einer Lautschrift des Koreanischen aufgeschrieben würde, wäre er meines Erachtens für mich als Schweizer nicht mehr lesbar.

Zurück zu den Symbolen: Es gibt natürlich noch weitere Symbole, beispielsweise die Freiheitsstatue in New York als Symbol für die Freiheit der europäischen Auswanderer. Weiter "Yin" und "Yan" als Symbole für die Dualität im Leben - und im Sterben. Religionen sind ebenfalls mit Symbolen durchtränkt, wenn nicht überflutet. Überall Symbole - oder doch nicht? Auch wenn es praktisch wäre, von Luft und Liebe zu leben, bleibt dies leider meist symbolisch wahr (ich bin stark übergewichtig...). Ich kann mich nicht von Symbolen ernähren. Und auch kann ich nicht symbolisch mit dem Zug von Olten nach Bern und wieder zurück fahren. Auch der Compi, auf welchem ich diesen Text schreibe, ist entweder vorhanden, oder er ist es nicht. Ich kann nicht symbolisch auf einem Compi schreiben. Da gibt es einen Witz dazu der lautet so: Ein Physiker, ein Chemiker und ein Mathematiker sind auf einer Insel gestrandet und haben Hunger. Zu ihrem Glück kommt eine Konservendose angeschwemmt. Zu ihrem Pech ist kein Dosenöffner dabei, und sie selbst haben auch keinen. Nun überlegen die drei Männer (nun ja, es ist keine Frau dabei, der Witz ist nicht genderneutral...), wie sie trotzdem an den Inhalt der Dose gelangen könnten. Der Physiker macht den ersten Vorschlag: Er schlägt vor, die Konservendose auf den Steinen zu zerschmettern (mit roher Kraft, wie es in den Teilchenbeschleunigern mit viel Ausdauer und Energie⁵ gemacht wird). Da meint der Chemiker, er hätte eine bessere Idee. Er schlägt vor, dass die Konservendose so lange im Salzwasser eingelegt werden könnte, bis der Inhalt der Konservendose aus dieser herausgelöst werden könne. Da meint der Mathematiker: "Angenommen, die Dose wäre offen: Guten Appetit". Der Witz lebt zu einem guten Teil davon, dass der Mathematiker vorschlägt, so zu tun, als ob die Dose bereits offen wäre. Und dieses "Tun als ob" ist eine wichtige Voraussetzung für die symbolische menschliche Entwicklung. Jedoch ist es in diesem Fall nicht von Nutzen, sich vorzustellen, die Büchse sei offen. Da sie nicht offen ist, kann ihr Inhalt dementsprechend nicht gegessen werden.

Konservendosenwitz

⁵Energie ist, wenn Du, jemand oder etwas arbeiten musst, um etwas zu erreichen. Ein Beispiel dafür ist, eine Kiste auf dem Boden zu verschieben. Das braucht Arbeit, oder eben Energie.

Nun stellt sich vielleicht die Frage nach dem Sinn oder dem Unsinn von Symbolen. Für was soll das gut sein? Ich möchte anhand eines ziemlich großen Beispiels den Sinn der symbolischen Darstellung von Mathematik versuchen, Dich davon zu überzeugen, dass es Sinn macht, wenn Mathematik mittels mathematischen "Zauberformeln" dargestellt wird. Denn der Mathematik wird von eigens definierten Symbolen ausgiebig Gebrauch gemacht. Ein Beispiel ist:

(2)
$$\frac{\partial^{2}}{\partial x^{2}}\psi\left(\vec{x}\right) + \frac{\partial^{2}}{\partial y^{2}}\psi\left(\vec{x}\right) + \frac{\partial^{2}}{\partial z^{2}}\psi\left(\vec{x}\right) - V\left(\vec{x}\right) = E \cdot \psi\left(\vec{x}\right)$$

Dies ist die Schrödingergleichung, welche für relativ einfache Randbedingungen noch exakt lösbar ist. Sie beschreibt zum Beispiel, mit welcher Wahrscheinlichkeit sich wo sich ein Elektron eines Wasserstoffatoms aufhält. Das Wasserstoffatom ist nach heutigem Stand des Wissens der einfachste Teil der Stoffe, welche uns umgeben. Wasserstoffatome bestehen aus einem relativ sehr leichten Teil, dem Elektron, und einem relativ sehr schweren Teil, dem Proton. Das Elektron verhält sich gemäß der obigen Formel. Ich möchte zuerst versuchen, die Symbole der Formel ein wenig aufzuschlüsseln. Doch es wird nicht so sein, dass Du am Schluss das Gefühl haben wirst: Jetzt habe ich die Formel ganz verstanden. Das ist jedoch auch nicht nötig. $V(\vec{x})$ beschreibt, in welchem Kräftefeld sich das Elektron befindet. Ein Kräftefeld kannst Du Dir so vorstellen: Angenommen, Du müsstest einen flachen Fluss derart überqueren, dass Du überall im Fluss stehen kannst. Dann scheint es irgendwie einleuchtend, dass Du die Kraft, welche durch das strömende Wasser verursacht wird, nicht überall gleich stark ist. Am Flussrand ist sie wahrscheinlich kleiner als in der Flussmitte. Wenn der Fluss sich anschließend schlängelt, dann fließt das Wasser auch nicht immer in die gleiche Richtung. Angenommen, es sei Dir langweilig. Dann könntest Du bei einem Flussabschnitt von vielleicht 1000 Schritten immer im Abstand von einem Schritt den Fluss überqueren und Dir notieren, wie stark und in welche Richtung das Wasser fließt. Natürlich ist das nur ein Gedankenspiel. Aber ist prinzipiell möglich, dass Du Dir auf einer Karte notieren könntest, in welche Richtung das Wasser wie stark fließt. Dann könntest Du die Richtung der Kraft mit einem Pfeil darstellen, welcher umso länger ist, je stärker das Wasser an Deinen Körper drückt. Diese Darstellung ist dann ein Kräftefeld. Es ist jedoch nicht das Kräftefeld selbst, sondern das Potential des Kräftefeldes, welches in der Schrödingergleichung verwendet wird, weil das Kräftefeld selbst komplizierter aufgebaut ist als das Potential. Ein Potential ist, falls es vorhanden ist, die Energie, welches das Elektron immer wieder speichert und abgibt. So wie Du Dir alle Knochen brechen kannst, wenn Du an einem Berg den Felsen hinunter stürzt, so besitzt in der Vorstellung auch das Elektron eines Wasserstoffatoms ein Potential. Das Potential ist sozusagen gespeicherter Schwung. Es gibt jedoch nicht zu

jedem Kräftefeld ein Potential. Es gibt zum Beispiel kein Potential, falls bei einer Bewegung Reibung im Spiel ist. Oder wenn Wirbel vorkommen. Aber im Fall der Reise des Elektrons um den Atomkern kann angenommen werden, dass keine Reibung im Spiel ist. Dieses Potential wird vorgegeben. Jedoch frage ich mich immer wieder, wie dann ein Potential erzeugt wird, wenn die anderen Teilchen ebenfalls den Gesetzen der Quantenmechanik gehorchen. Denn in diesem Fall ist kein Potential gegeben, mit welchem die Schrödingergleichung berechnet werden kann. Wie Du daraus erkennen kannst, möchte ich noch so gerne weiter Physik lernen. Ich habe zwar ein wenig darüber gelesen, jedoch weiß ich noch zu wenig darüber, so dass ich mich nicht getraue, etwas darüber zu schreiben.

Doch zurück zum Beispiel der Schrödingergleichung. In dieser Formel sind weitere Symbole vorhanden, wobei etliche in der üblichen lateinischen Schrift nicht vorkommen:

- ∂: Dieses Symbol heißt Delta, ausgesprochen wird es haargenau gleich wie "d". Es beschreibt eine beliebig kleine, jedoch nicht verschwindende Größe (vergleiche mit der Geschwindigkeitsmessung oben, dort habe ich auch vorausgesetzt, dass eine Größe beliebig klein, jedoch nicht verschwindend ist). Typisch daran ist, dass die mathematischen Symbole aus der lateinischen respektive griechischen Schrift entnommen werden. Selten gibt es ein hebräisches Symbol wie ℵ (genannt "Aleph"). Das δ ist ein griechisches Symbol.
- \vec{x} : Das x, über welchem ein Pfeil hingeschrieben wurde (als wären wir bei den Indianern⁶), sagt gewöhnlich aus, dass es sich bei der Größe um eine Position im Raum handelt. Mit dem Pfeil wird sozusagen der Punkt im Raum abgeschossen und auf die Papierebene gelegt.
- ψ: Dieser Dreizack des Poseidons⁷ist die gesuchte Größe. Es beschreibt um sieben Ecken und Enden, wie groß die Wahrscheinlichkeit ist, dass ein Elektron an einer gegebenen Stelle ist. Eine Wahrscheinlichkeit bedeutet in der Regel, dass nicht mehr genau gesagt oder geschrieben werden kann, dass etwas gilt oder nicht gilt, sondern dass, wenn ein bestimmter Vorgang ausgeführt wird, erwartet werden kann, dass gesamthaft ein bestimmte Anzahl das Ergebnis so oder nicht so ist. Das berühmteste Beispiel ist ein Münzwurf. Vorausgesetzt, eine Münze sei so konstruiert, dass nicht bevorzugt auf einer Seite zu liegen kommt, falls sie auf den Boden fällt. Die Münze besitze zwei Seiten. Die eine Seite werde mit "Kopf", die

⁶Was für mich durchaus eine interessante Vorstellung ist!

 $^{^7}$ Griechischer Gott des Meeres, von welchem das Symbol wahrscheinlich seine Form hat. Ich weiß es jedoch nicht, denn der Buchstabe ψ entspricht der lateinischen Buchstabenfolge "ps"

andere Seite werde mit "Zahl" bezeichnet. Wenn ich dann eine Münze tausend Mal werfen würde, dann könnte ich erwarten, dass sie etwa 500 Mal auf die eine und 500 Mal auf die andere Seite fällt⁸. Die Größe ψ selbst ist eine komplexe Zahl, also eine Zahl, welche es eigentlich gar nicht gibt, mit welcher jedoch prima (und sogar besser als mit Zahlen, welche "existieren") gerechnet werden kann. Die Wellenfunktion beschreibt jedoch nicht die Wahrscheinlichkeit an und für sich. Der Betrag der Wellenfunktion beschreibt die Wahrscheinlichkeit, dass sich das Elektron zu einem bestimmten Zeitpunkt an einem bestimmten Ort befindet. Wobei der Betrag einer Zahl eine "nicht-negative" Größe ist, also eine Größe größer oder gleich Null, mit welcher der Abstand einer Zahl zum Nullpunkt ausdrückt werden kann. Nun stellt sich die Frage, wie dem Ding gesagt werden soll. In der Mathematik ist das häufig eine wichtige Frage: Wie sag ich dem Kind? In der Physik wird dieser Größe "die Wellenfunktion" des Elektrons gesagt. Auch wenn diese Größe etwa mit einer Wasserwelle nichts zu tun hat. Jedoch ist mit der Bezeichnung die Vorstellung verknüpft, dass sich das Elektron wie eine Welle bewegt. Es zeigt sich, dass sich die Wahrscheinlichkeiten wie Wasserwellen verstärken oder abschwächen können, wenn verschiedene Wellenfunktionen aufeinander treffen. Diese Wellenfunktion wird gesucht. Es sind etliche Überlegungen notwendig, um selbst für relativ einfache Potentiale von Kräftefeldern die Lösungen oder Annäherungen derselben zu finden.

• $\frac{\partial^2}{\partial x^2}$: Auch der Bruchstrich ist ein Symbol, und zwar für die Operation der Division. Vielleicht symbolisiert der Bruchstrich ein Bruch einer Linie, wer weiß? Es ist ebenfalls typisch, dass bei den meisten Symbolen völlig unklar und rätselhaft ist, was sie darstellen. Der Bruchstrich in dieser Formel bedeutet zwar auch eine Division, jedoch eher die Grenzwertbildung, welche ich Dir oben beschrieben habe. Diesmal wird jedoch nicht über eine Zeit, sondern über einen Ort ein Grenzwert gebildet. $\frac{\partial}{\partial x}$ bedeutet im wesentlich, dass ein Wert an einer Stelle mit einem Wert an einer beliebig kleinen, jedoch immer anderen Stelle verglichen und die Differenz dann durch die Distanz geteilt werden soll. Folgendes Beispiel soll dies verdeutlichen: Um die Steilheit einer Straße zu ermitteln, kann ich für benachbarte Punkte messen, wie groß ihr Höhenunterschied ist und anschließend den einen Punkt gegen den andern Punkt

⁸Falls es noch keinen Automaten gibt, welcher dies macht, dann wäre jetzt der Zeitpunkt gekommen, einen solchen herzustellen und das Ergebnis auf dem Internet zu publizieren. Ich habe auf dem Netz zwar einen für Würfel gefunden, aber der überzeugt mich nicht ganz.

gehen lassen - mit dem bekannten Makel: Irgend einmal werde ich keinen Höhenunterschied mehr ausmachen können - und dann wird eigentlich der angeblich gesunde Menschenverstand mir sagen, dass die Straße am gegebenen Punkt keine Steigung besitze. Was jedoch der Anschauung in den meisten Fällen zuwiderläuft - zumindest in diesen Fällen, in welchen die Straße tatsächlich ansteigt ober fällt. Im obigen Fall bedeutet diese Grenzwertbildung, dass geschaut wird, wie stark sich die räumliche Veränderung der Wellenfunktion sich räumlich verändert. Im übrigen wird ∂ (der kleine griechische Buchstabe für d mit der Bezeichnung "delta") hingeschrieben, weil betont werden soll, dass immer nur eine Richtung aufs Mal verändert wird. Du fragst Dich wahrscheinlich: Welche "Richtung"? Nun ja, um einen Punkt im Raum beschreiben zu können, reichen in der Regel drei Zahlen aus. Diese Zahlen werden gemessen oder berechnet. Nehme einen Kasten. Dieser hat eine bestimmte Länge, Breite und Höhe. Die Größe des Kastens wird so festgelegt. Dann wird die Länge des Kastens gemessen, die Breite und die Höhe, um zu bestimmen, wie groß der Kasten ist. Gleich lässt sich gedanklich die Länge, Breite und Höhe messen, wo sich unser Elektron befindet. Also wird die Veränderung der räumlichen Veränderung der Wellenfunktion in derjenigen Richtung bestimmt, in welcher die Länge, die Breite oder Höhe des Orts des Elektrons gemessen wird. Dann werden drei Richtungen angenommen und die Veränderungen der Veränderungen in diesen Richtungen bestimmt. Der "Trick" dabei ist, zu zeigen, dass die gefundene Lösung überhaupt eine sinnvolle räumliche Veränderung der räumlichen Veränderung besitzt. Das ist keinesfalls immer der Fall. Es sind durchaus Fälle bekannt, bei welchen eine räumliche Ableitung keinen Sinn macht. Aber es war wiederum die Arbeit von Mathematikerinnen und Mathematikern, zu überlegen, unter welchen Voraussetzungen diese Verfahren durchgeführt werden können und ob bei den Lösungen der Schrödingergleichung diese Voraussetzungen gegeben waren. Die Lösungen der Schrödingergleichung sind meines Wissens immer so "gutartig", dass ihre räumlichen Ableitungen existieren.

• ²: Die hochgestellten Zahlen bedeuten, dass die Grenzwertbildung von vorher gleich zwei Mal hintereinander ausgeführt werden soll. Was wird dann gemessen? Es ist dann nicht die Steigung der Kurve, sondern die räumliche Veränderung der räumlichen Veränderung. Wieder vergleiche ich das Ganze mit einer Straße. Wenn der Vorgang der Bestimmung der Steigung zwei Mal hintereinander ausgeführt wird, dann bedeutet dies, dass ich nicht etwa messe, wie steil die Straße ansteigt oder

- abfällt, sondern wie stark die Steilheit der Straße sich verändert. Es ist also möglich, dass eine Straße sehr stark ansteigt, jedoch immer gleich steil ansteigt. Dann ist die Veränderung der Steilheit der Straße trotzdem Null. Es ist aber auch möglich, dass die Straße recht steil abfällt und schnell gerade ist. Dann ist die Veränderung der Steilheit der Straße recht groß.
- E: Dieser Buchstabe bedeutet die Bewegungsenergie, welche das Elektron besitzt. Es kommt gerade in der Physik ziemlich häufig vor, dass anstatt Wörter nur die Anfangsbuchstaben in einer Formel verwendet werden (vergleiche mit der Aussage 1 im Vorwort). Hier wird mit "E" die "Energie" bezeichnet, sehr wahrscheinlich jedoch "energy" (also die englische Form des Worts). Dies besitzt den Vorteil, dass die Formeln relativ übersichtlich werden. Bei der obigen Formel wäre eine verbale Beschreibung so ausführlich, dass sie noch undurchschaubar und überdies schwierig zu manipulieren wäre.
- Und auch die Klammern "()" sind Symbole. Sie zeigen an, auf welche Größe oder welche Größen sich eine bestimmte Rechenvorschrift ("Operation") beziehen soll.

Bei dieser (für mich wunderschönen Formel) stellt sich die Frage nach dem "Warum?" und "Wozu?". Ich weiß, dass es für Dich, falls Du diese Zeilen nur mit Widerwillen liest, ein schwacher Trost ist, jedoch: Ich hätte dieses Dokument wohl nie schreiben können, das Internet wäre nicht entstanden, Mobilfunk und alle elektronischen Medien wären in der vorliegenden Form wahrscheinlich nicht möglich, falls diese Formel nicht entdeckt worden wäre. Denn diese Formel hat, soweit ich weiß, übertragen auf Festkörper, das Wesen von Halbleiter erst entschlüsseln können und den Weg gezeigt, wie denn die Halbleiter abgewandelt werden müssen, damit mit ihnen Transistoren und Dioden (die Grundlage von Computer) gebaut werden können. Weiter hat die Technologie schon einen großen Einfluss auf den Aufbau unserer Gesellschaft. Demokratie, so wie sie in Westeuropa bekannt und trotz allem geschätzt ist, wurde entscheidend durch die moderneren Kommunikationsmittel (Radio, Fernsehen, Internet, Zeitungswesen, welches auch durch die Elektronik bestimmt wird) bestimmt. Auch der sogenannte arabische Frühling (welcher im Frühling 2011) stattfand, wurde meines Wissens wesentlich durch die neuen Medien ermöglicht. Nun müsste die Formel jedoch weiter sprachlich ausgeführt werden. Dies wäre dann die Gedankenarbeit, welche gemacht werden müsste. Damit die Formel anschaulich wird, werden einfache Fälle untersucht. Was passiert bei ganz einfachen Fällen? Welches sind die Eigenschaften der Formel, und welche Schlussfolgerungen können aus ihr gezogen werden? Das bedeutet, dass jede Formel an und für sich sagt nicht viel aussagt. Es sind ganz viele Anwendungsbeispiele zu machen und Spezialfälle zu untersuchen, bis klarer wird, wo die Formel passt - und wo eben nicht. Auch wenn

sie eindrucksvoll aussehen sollte, beschreibt sie eben nicht ganz genau die Vorgänge, so wie sie in der Natur auftritt. Diese ist einfach immer ein "bisschen" komplizierter, als wir sie abbilden können. Das ist einerseits faszinierend, andererseits auch ein wenig beängstigend. Denn wir einerseits können wird das Gefühl haben, wir hätten die Spielregeln, die Gesetze der Natur verstanden. Andererseits müssen wir uns immer wieder eingestehen, dass wir eben noch nicht alles begriffen haben.

Die ähnliche Frage ist: Wieso werden Formeln geschrieben und die Sachverhalte mittels Formeln beschrieben? Das wäre doch einfacher, die Dinge in Worte zu fassen. Der Aufwand, sich die formale Beschreibung einzuprägen, ist immens. Ich habe selbst etwa zwei Jahre gebraucht, bis die obige Formel einigermaßen begriffen habe - und begreife sie zugegebenermaßen immer noch nicht so gut. Ich finde jedoch auch, frau oder man soll das eine tun und das andere nicht lassen. Die sprachliche Formulierung ist immer auch wichtig, denn wir Menschen denken nun einmal nicht in einer formalen Sprache. Andererseits wäre die Bearbeitung der Formel praktisch unmöglich, wenn sie als ausgeschriebener Satz aufgeschrieben würde. Denn die Formel oben zeigt genau noch nicht die Wahrscheinlichkeit an, das sich das Elektron an einem gegebenen Punkt im Raum befindet. Sondern sie zeigt an, welchen Regeln eine mit der Wahrscheinlichkeit verknüpfte Größe genügt. Bis eine Formel selbst für das relativ einfache Wasserstoffatom gefunden wird, braucht es noch einen großen Aufwand. Bei komplizierteren Atomen (wie Gold) ist meines Wissens es nicht einmal mehr möglich, eine exakte Lösung für diese Wahrscheinlichkeit zu finden. Da werden Näherungen gesucht, immer bessere zwar, jedoch sind es immer noch Näherungen. Und auch die Formel selbst, welche dann entsteht, ist immer noch nicht aussagekräftig. Wieso soll ich wissen, wo mit welcher Wahrscheinlichkeit sich ein Wasserstoffelektron sich relativ zum entsprechenden Kernproton befindet? Die Formel für die Ortswahrscheinlichkeit muss dann ebenfalls noch bearbeitet werden, bis am Schluss Voraussagen darüber gemacht werden können, in welchen Farben eine "Neonröhre" leuchtet, welche mit Wasserstoff gefüllt wird und betrieben wird. Das Bearbeiten ist fast nur noch formal möglich, also wenn die Symbole verwendet werden und nicht die sprachliche Beschreibung. Ich selbst kenne leider die Umformungen auch nicht, und diejenigen, welche ich gesehen habe, habe ich nicht begriffen... Aber falls Du per Zufall einen Flaschengeist findest, welcher Dir drei Wünsche erfüllt, und Du hast noch einen frei (ich würde ja als ersten Wunsch wünschen, dass ich beliebig viele Wünsche frei hätte, was den Flaschengeist sicher wütend machen würde, und er mir genau diesen Wunsch nicht erfüllen würde), dann kannst Du dir wünschen, dass die mathematische-physikalische Literatur so geschrieben wird, dass sie so spannend daherkommt wie vielleicht ein Harry-Potter-Roman (ja ich. weiß, das findest Du nicht spannend, aber

immerhin hat Frau Rowling damit zumindest geldmäßig einen durchschlagenden Erfolg erzielt). Und dann könnte ich lesen und lesen und lesen und am Schluss hätte ich das Gefühl: Ja, jetzt weiß ich, was alles gemacht werden musste, um meinen Computer, mit welchem ich diesen Text hinschreibe, zu bauen. Und weil es so spannend war, könnte ich mir ausmalen, dass ich ein anderes Gerät gerne bauen würde, und ich könnte nachlesen, wie ich das machen müsste. Das wäre phantastisch!

So weit so gut, aber leider ist damit noch nicht alles über Symbole gesagt, was eigentlich gesagt werden müsste. Der Grund ist der, dass streng genommen nicht die Bezeichnungen in die Formeln und Sätze geschrieben werden müssten, sondern deren Metasymbole. Dabei ist ein Metasymbol ein Symbol, welches andere Symbole symbolisiert. Lass mich dies an einem einfacheren Beispiel erklären:

$$\forall n \in \mathbb{N} \ n > 1$$

Ausformuliert heißt diese Aussage "Für alle natürlichen Zahlen, welche mit n bezeichnet werden sollen, gilt, dass sie größer oder gleich Eins sind". Dabei hat der Quantor " \forall " die Bedeutung von "für alle" Ich nehme an, dass Du nichts gegen diese Aussage einzuwenden hast. Obwohl sie ein Axiom - streng genommen eine Behauptung - ist und kein Satz, welcher beweisbar ist. Sie ist ein Axiom der natürlichen Zahlen von Peano. Die Schwierigkeit bei der Formulierung dieser Formel besteht meines Erachtens darin, dass sie eine Variablenbezeichnung "n" besitzt. Wieso n und nicht x, y, z oder x_1 ? Üblicherweise wird von Mathematikerinnen und Mathematikern gesagt, es spiele keine Rolle, wie die Variable bezeichnet werde, es müsse einfach ein beliebiger Name verwendet werden. Es komme nicht darauf an, welcher dies sei. Doch diese Position hat mindestens 15 Probleme in sich:

(1) Es wird stillschweigend vorausgesetzt, dass diese Formel für beliebige Bezeichnungen gilt. Du musst also sozusagen "zwischen den Zeilen lesen", wie diese Formel gemeint ist. Streng genommen müsste ich schreiben:

(3)
$$\forall x : 'x \text{ ist ein Bezeichner'} \land x \in \mathbb{N} \Rightarrow x \geq 1$$

Dies würde bedeuten, wobei das Wort "Bezeichner" ein anderes Wort für das Wort Symbol darstellt: Für alle Bezeichner, welche eine natürliche Zahlen darstellen, gilt folgendes: Stellen die Bezeichner eine natürliche Zahl dar, dann gilt für die natürliche Zahl, welche sie darstellen, dass diese Zahl größer oder gleich Eins ist. Dies würde bedeuten

$$y \in \mathbb{N} \Rightarrow y > 1$$

oder

 $z \in \mathbb{N} \Rightarrow z > 1$

oder

$$k \in \mathbb{N} \Rightarrow k \geq 1$$

Dass anstelle eines (beliebigen Bezeichners) ein Bezeichner von beliebigen Bezeichnern verwendet wird, wäre zwar korrekter, wird jedoch nicht gemacht, denn "man weiß ja, was gemeint ist". Respektive: Diejenigen, welche es stillschweigend so akzeptieren und anwenden können, werden als intelliegent angesehen, die anderen können schauen, wie sie sich organisieren. Weiter wird auch oben nicht zwischen dem Bezeichner und dem, was mit dem Bezeichner bezeichnet wird, unterschieden. In den folgenden Kapitel werde ich immer wieder Satzteile verwenden wie "es sei A das Symbol für eine Aussage" (siehe Kapitel 3 für die Bedeutung einer Aussage). Das ist in den üblichen mathematischen Texten nicht üblich. Üblicherweise wird geschrieben: "Es sei A eine Aussage". Der Sinn dabei ist, dass Du als Leser selbst erkennst, dass A selbst keine Aussage ist (weil "A" grundsätzlich das Symbol für einen Laut ist), sondern dass A das Symbol für die Aussage ist. Welche Aussage, das wird übrigens nicht gesagt. Es kann eine beliebige Aussage sein (wie "Morgen gibt es Brot und Tee"). So merkwürdig dies ist, so gewöhnlich ist es wiederum, da "Ursula und Domenico sind in Kalabrien in den Ferien⁹" und auch nicht gesagt wird: "Die Personen, welche mit den Symbolen "Ursula" respektive "Domenico" bezeichnet werden, sind im Moment in Kalabrien in den Ferien". Trotzdem werde ich fürs erste weiter schreiben: "Es sei A das Symbol für eine Aussage". Einfach, weil es in meinen Ohren besser tönt als etwa: "Gilt A, dann gilt $\neg A$ nicht". Weil im Beispiel nicht gesagt wird, aus was "A" besteht oder wofür "A" steht.

(2) Was ein Bezeichner ist, das ist auch durch eine stillschweigende Konvention geregelt: Als Bezeichner werden üblicherweise Buchstaben des lateinischen und griechischen Alphabets (also a, b, c usw. beziehungsweise α , β , γ und so weiter¹⁰). Dies bedeutet, dass die Aussage 3 gerade keine korrekte Aussage ist. Weiter gehorchen die Bezeichner einer Art "Geheimkodex", welcher oft genug nicht offen gelegt wird. Wenn Energien mit

 $^{^9{\}rm Ursula}$ ist meine Schwester, Domenico mein Schwager, und sie sind jetzt (am 31.07.2011) wirklich in Kalabrien in den Ferien

¹⁰Wikipedia zeigt Dir unter http://de.wikipedia.org/wiki/Griechisches_Alphabet die einzelnen griechischen Buchstaben

"E" bezeichnet werden, dann leuchtet dies mir mehr oder weniger ein, denn "E" ist der erste Buchstabe von "Energie". Für Volumen "V" zu verwenden, finde ich ebenfalls keine schlechte Idee, denn "V" ist wiederum der 1. Buchstabe des Worts "Volumen". Weiter ist "W" oft der Bezeichner für "Work" (zu deutsch: Arbeit), damit wird eine Energie gemeint. Weiter ist beispielsweise "p" "Pressure" (zu deutsch: Druck), jedoch "P" "Power", also auf Deutsch "Leistung" (definiert als Arbeit pro Zeiteinheit). Das Unübliche an den Bezeichnern ist, dass nur ein Buchstabe als Symbol für eine Größe verwendet wird. Das gibt es sonst zumindest in der deutschen Sprache nicht - in der englischen jedoch sehr wohl: "I" heißt im englischen "ich". Aber sonst - wieso sollte ein Buchstabe für den Namen einer Person genommen werden? In Gerichtsreportagen werden häufig die Namen mit den ersten Buchstaben des Vor- und des Nachnamens abgekürzt, was schmerzhafte Konsequenzen haben kann, falls eine Buchstabenkombination sehr selten vorkommt. Es wird also statt Eduard Beckmann von E.B. gesprochen. Aber auch dies sind zwei Buchstaben als Symbole für eine Person. Die Abkürzung mit einem Buchstaben hat jedoch den Vorteil, dass damit die mathematischen Ausdrücke so kurz wie nur möglich werden. Dies kann schneller geschrieben werden und außerdem werden die Formel übersichtlicher. Da halbe Symbole nicht existieren (das wäre mal etwas Neues, jedoch hat sich unser Alphabet im Laufe der Zeit immer mehr vereinfacht, ich denke, einfacher ist fast nicht möglich), würde eine erneute Reduktion eines Symbols darin resultieren, das Symbol überhaupt nicht zu schreiben¹¹. Das würde jedoch in Richtung Gedankenübertragung gehen, und da ich das nicht beherrsche, begnüge ich mich damit, ein einziges Symbol aufzuschreiben. Außerdem kannst Du das Schreiben von jeweils ganzen Symbolen als erzwungene Eindeutigkeit betrachten. Es wird erzwungen, dass ein eindeutiges Symbol hingeschrieben wird. Wenn Du mehr über dieses Thema in dieser Einführung lesen willst, dann siehe doch in den Ausführungen über den Satz vom ausgeschlossenen Dritten (siehe Kapitel 20.3) nach. Dass eine Variable prinzipiell ein Buchstaben lang ist, hat übrigens den Vorteil, dass bei den Formeln das Formelzeichen der Multiplikation nicht hingeschrieben werden muss, damit die Bedeutung der Formel eindeutig wird. Beispielsweise wäre V = xyz die Formel eines Quaders mit den Seitenlängen x, y,

erzwungene Eindeutigkeit

¹¹Dies kannst Du Dir als "maximal mögliche Reduktion" vorstellen. Es wird sozusagen alles, was nicht überlebenswichtig ist, von "Bord gekippt". Übrig bleibt der "Kern der Gedanken", welcher dann leichter überblickt und manipuliert werden kann.

z. Dann müsste nicht ausdrücklich $V = x \cdot y \cdot z$ hingeschrieben werden, um von einem Bezeichner "xyz" zu unterscheiden. Wenn also zwischen zwei Symbolen in einer mathematischen Formel fehlen, dann ist der Grund dafür sehr wahrscheinlich der, dass angenommen wird, dass die beiden Größen miteinander multipliziert werden sollen ¹². Jedoch ist diese Auslassung wahrscheinlich eher die Folge als die Ursache der Benennung einer Größe mit prinzipiell genau einem Symbol und nicht deren Ursache. Damit meine ich, dass wahrscheinlich wohl zuerst in mathematischen Formeln Größen mit prinzipiell einem Buchstaben hingeschrieben wurden und erst anschließend die Symbole der Multiplikation weggelassen wurden. Es gibt noch subtile Details, welche auch nicht außer Acht gelassen werden sollten: Verwende nach Möglichkeit die Buchstaben o respektive O nicht als Symbole, falls diese keine Funktionen (siehe Definition 158) bezeichnen: Denn in mathematischen Texten sind die Buchstaben o respektive O nur schwer von der Zahl Null (0) zu unterscheiden. Groß O wird in der Differenzialrechnung häufig für eine Funktionen bezeichnet, welche einen Rest bezeichnet. Da wird die Nähe zur Null nicht nur in Kauf genommen, sondern sogar gewünscht. Denn diese Funktionen bezeichnet einen Rest, welcher im weiteren Verlauf der Rechnungen vernachlässigt werden kann. Vermeide nach Möglichkeit auch den Buchstaben i als Variablennamen. Denn i wird gewöhnlich als Prototyp¹³ für imaginäre Zahlen verwendet. In Texten, in welchen mit elektrischen Stromstärken gerechnet wird, wird bezeichnenderweise mit i die elektrische Stromstärke bezeichnet. In diesem Fall wird i als Prototyp für imaginäre Zahlen verwendet. Was auch ungünstig ist, ist "l" (wie der Anfangsbuchstaben des Wortes "lustig", "luftig" respektive "leicht") als Symbol zu verwenden, denn dieser Buchstabe ähnelt der Ziffer 1. Dann sieht a_1 wie a_l aus. Nun gut, in Latex¹⁴ ist der Unterschied gut sichtbar. Aber trotzdem lohnt es sich aus meiner Sicht, sich Gedanken darüber zu machen, ob die Symbole optisch sich ähneln oder nicht. Dies ist eine Folge der maximal möglich Reduktion. Falls Du Übung im Lesen hast, dann überliest Du Fehler in geschriebenen Texten, falls diese nicht vor Fehler "strotzen" (also voller Fehler sind). Wenn jetzt alles Überflüssige sozusagen "über Bord gekippt

¹²Oder die Formel wurde falsch aufgeschrieben...

¹³ein Prototyp ist sozusagen eine besonders eindrückliche Vorlage für etwas

¹⁴Latex ist in diesem Zusammenhang übrigens weder ein medizinisches noch solches Material, welches manche Erwachsene im sexuellen Sinn anregt, sondern eine Software, mit welchen mathematische Formeln ansprechend dargestellt werden können.

- wird", dann ist es umso wichtiger, dass das, was übrig bleibt, sich gut voneinander unterscheiden lässt.
- (3) Obwohl die Bezeichnung mittels eines Buchstabens oft genügt, reicht diese Art der Bezeichnung vielfach genau wieder nicht. Darum wurde das System aufgeweicht, indem Subskripts eingefügt wurden wie beispielsweise α_9 oder so ähnlich. Es sind auch noch kompliziertere Möglichkeiten vorhanden, die Symbole zu erweitern. Weiter unten werde ich weitere Arten aufschreiben, wie zusätzliche Symbole erzeugt werden können obwohl ich diese Arten in dieser einfachen Einführung sicher nicht abschließend aufzählen kann.
- (4) Die unter 3. beschriebene Erweiterung reicht ebenfalls noch nicht, denn es gibt noch mehr Symbole, welche eingeführt wurden wie: \int , ∞ , \exists . Bei guten Mathematikbüchern gibt es eine Tabelle, in welcher die Symbole zusammen mit dem Ort der Definition aufgeführt werden (der Heuser hat es). Diese Sonderzeichen machen einen guten Teil des "esoterischen" Anstrichs der Mathematik aus. Diese Symbole sind teilweise Standard (wie beispielsweise das Symbol ∞ für unendlich große Zahlen. Teilweise können sie auch durchaus dem Zeichentalent und der Phantasie der schreibenden Person entsprungen sein. Jedoch ist bei selbst ausgedachten Symbolen große Vorsicht angezeigt. Denn der Aufwand, um sich an ein neues Symbol zu gewöhnen und dieses gewinnbringend anwenden zu können, empfinde ich als gigantisch. Aber solche Symbole wurden in der Vergangenheit ab und zu eingeführt werden wahrscheinlich auch in Zukunft eingeführt werden.
- (5) Gleichwohl gibt es Symbole, welche aus mehreren Buchstaben bestehen. Ein Beispiel dafür ist die Sinusfunkton, welche Du dir als die schönste Welle vorstellen kannst, welche existiert. Egal wie sie definiert ist, an dieser Stelle ist wichtig, dass die Bezeichnung der Sinusfunktion nicht etwa "S" oder "s" oder irgendwie ähnlich ist, sondern "sin". Das sind drei Buchstaben. Nun gut, das wird Dich wahrscheinlich nicht groß stören. Egal, Du weißt, was gemeint ist. Es folgt noch eine seltsame Beschränkung, welche mir erst jetzt, ca. sechs Jahre nach dem Beginn des Schreibens an diesem Text in den Sinn kommt: Wenn ein Symbol aus mehreren anderen Symbolen (wie es Buchstaben sind) bestehen, dann soll es aus höchstens endlich vielen Symbolen bestehen. Natürlich stellt sich an dieser Stelle, was "Endlichkeit" in diesem Zusammenhang wohl bedeutet. Fürs erste scheint meines Erachtens zu genügen, dass das

- Symbol, wenn dessen Buchstaben oder Schriftzeichen niedergeschrieben wird, innerhalb von endlicher Zeit niedergeschrieben werden können soll. Aber ich werde natürlich weiter unten wieder auf diesen Begriff der Endlichkeit zurückkommen.
- (6) Manchmal bedeutet eine Formatierung eine bestimmte Symbolart. Beispiel werden für gelegentlich für zusammengesetzte Größen wie Punkte im Raum, welche mit drei Zahlen beschrieben werden können, fette Buchstaben wie \boldsymbol{x} anstatt die Pfeildarstellung \overrightarrow{x} verwendet.
- (7) Symbole werden teilweise auf eine andere Art als sonst üblich verwendet. Ein Beispiel dafür sind Klammern. In der Prosa werden die Klammern verwendet, wenn etwas im üblichen Redefluss ein Einschub gemacht wird, welcher mit dem sonstigen Text nicht unmittelbar zusammenhängt. In der mathematischen Literatur hingegen werden Klammern verwendet, um anzuzeigen, dass das, was innerhalb der Klammern steht, zuerst ausgeführt wird.
- (8) Es kommt noch "schlimmer": Oft werden Symbole insofern "überladen", indem indem das gleiche Symbol für verschiedene Größen verwendet wird. Beispielsweise wird 'manchmal als gewöhnlicher Bezeichner verwendet in Zusammenhängen wie "es seien f und f' zwei Funktionen¹⁵". Andererseits wird der Apostroph (') als Rechenvorschrift verwendet (für die Ableitung, etwa für eine Geschwindigkeitsbestimmung). Weiter ist es möglich, dass verschiedene Symbole das Gleiche bedeuten (beispielsweise kann eine Ableitung einer Funktion mit f' oder mit $\frac{d}{dx}f(x)$ bezeichnet werden). Dann gibt es allgemein gebräuchliche Symbole und ad hoc-Symbole, also solche, welche die Autorin oder der Autor auf die Schnelle selbst definiert hat, weil sich damit Sachverhalt besser aufzeigen lässt.
- (9) Eine andere Art von Überladung kommt insofern vor, als dass innerhalb von Texten die gleichen Benennungen für für verschiedene Dinge gebraucht werden. Ich habe eine Zeitlang versucht, eindeutige Bezeichner für Symbole zu verwenden. Dies ist jedoch sehr mühsam, und der Vorteil von dieser Übung im Vergleich zum benötigten Aufwand klein. Es wird jedoch in Mathematikbücher oft eine sprachliche Abgrenzung verwendet, welche dafür sorgt, dass die Symbolbezeichnungen nicht völlig missverständlich werden: Am Ende jedes Beweises oder

 $^{^{15}}$ Du musst Dir Deinen Kopf an dieser Stelle nicht darüber zerbrechen, was eine Funktion oder eine Abbildung bedeutet. Wichtig an dieser Stelle ist nur, dass mit f und f' zwei Objekte bezeichnet werden.

am Ende einer Berechnung wird offenbar oft ein spezielles Zeichen wie etwa "

" oder eine Abkürzung wie "q.e.d" verwendet, welches darauf hinweist, dass der Beweis oder eine Abkürzung beendet ist. Einerseits soll damit wohl ausgedrückt werden, dass der Überzeugungsversuch für die Richtigkeit der zu beweisenden Aussage vorbei ist. Andererseits bedeutet dies jedoch auch, dass die reservierten Symbole wieder freigegeben sind. Ich möchte ein Beispiel machen, wobei die verwendeten Begriffe (Funktion respektive Stetigkeit) später erklärt werden sollen. Wenn ich im Beweis die Aussage mache: "Es sei f eine stetige Funktion", dann kann ich nach dem Beweis den Buchstaben f für eine andere Größe¹⁶ verwenden, ohne dass ich verwendeten Begriffe (Funktion, Stetigkeit) dies groß begründen muss. Was jedoch nicht geht, ist, wenn ich während des Beweises plötzlich f für eine andere Größe verwende, beispielsweise weil ich die Anzahl der Punkte, welche größer als Null sind, ebenfalls mit f bezeichnen will. Aber auch dies ist nicht so ungewöhnlich. Wenn Du innerhalb eines Textes von zwei Personen schreibst, welche den gleichen Vornamen besitzen (wie beispielsweise Flurina), dann wirst Du im Text alles daran setzen, dass diese beide Personen trotzdem irgendwie unterscheidbar sind. Damit hilfst Du, Verwirrung zu vermeiden.

(10) Als absoluten Gipfel des Wirrwarrs kann wahrscheinlich bezeichnet werden, dass eben nicht beliebige Bezeichner für die Variablenbezeichnungen in Formeln verwendet werden können, da teilweise die Bezeichner sehr wohl eine eindeutig festgelegte Bezeichnungen besitzen. Wird in der obigen Formel

$$y \in \mathbb{N} \Rightarrow y \ge 1$$

anstatt der Buchstabe "y" das Symbol " \mathbb{N} " verwendet, dann sieht die Formel so aus:

$$\mathbb{N}\epsilon\mathbb{N} \Rightarrow \mathbb{N} \geq 1$$

Vielleicht könntest Du als geneigte Leserin oder geneigter Leser diese Formel noch auflösen, da Du dir sagen könntest, dass mit N zuerst die Menge der natürlichen Zahlen bezeichnet wurde und N anschließend neu definiert wurde als Exemplar einer natürlichen Zahl. Wie wäre es jedoch damit?

$$\Rightarrow \epsilon \mathbb{N} \Rightarrow \Rightarrow \geq 1$$

¹⁶beispielsweise für die Bezeichnung einer Tonhöhe. f wird in diesem Fall als Frequenz bezeichnet.

Ich muss zugegeben, dass ich diese Formel nur darum entschlüsseln könnte, weil ich weiß, wie ich sie selbst zusammengebastelt habe.

(11) Ein Bezeichner kann auch (und das ist ein wenig ein "Schwanzbeisser", da ich auf etwas vorgreife, was später kommt) ein Symbol für andere Symbole oder Verkettung von Symbolen, also Aussagen (siehe Kapitel3) darstellen. Dabei gilt meistens die Einschränkung, dass die Symbole letztendlich auflösbar sein müssen. Ein Beispiel, in welchem dies nicht der Fall ist, ist die Bezeichnung GNU ("GNU is not Unix") für freie Software, falls GNU als Abkürzung interpretiert wird. Denn ist der Namen folgendermaßen definiert (≡ wird als definiert gleich verstanden, also es ist nicht gleich, weil es so hergeleitet werden kann aus anderen Tatsachen, sondern weil das so festgelegt ist):

 $GNU \equiv GNU$ is not Unix

und wird GNU als Abkürzung verstanden, dann resultiert nach der ersten Auflösung des Namens:

 $GNU \equiv (GNU \text{ is not Unix}) \text{ is not Unix}$

wobei die Klammern zeigen, wo die Definition eingesetzt wurde. Nach der zweiten Auflösung des Namens resultiert:

 $GNU \equiv ((GNU \text{ is not Unix}) \text{ is not Unix}) \text{ is not Unix}$

Das geht immer weiter so. Ich nehme an, dass dieser Effekt gewollt ist, um auszudrücken, dass auf keinen, aber auch gar keinen Fall, überhaupt nicht (usw.) GNU Unix sei. Außerdem ist es ein augenzwinkernder Verweis auf die Tierart mit der Bezeichnung "Gnu". Falls übrigens GNU nur als Bezeichner verwendet wird, jedoch nicht als Abkürzung, dann macht die Definition ebenfalls Sinn - dann ist diese Bezeichnung jedoch doppeldeutig - da ja bereits die gleichnamige Tierart damit bezeichnet wird. Andererseits - schaue in der Definition der sogenannten natürlichen Zahlen nach (siehe Definition 204)! Dort wird ebenfalls mit einer rekursiven Definition gearbeitet. Und niemand regt sich darüber auf...

Wenn ich jetzt schon ein problematisches Beispiel gebracht habe, dann möchte ein unproblematisches Beispiel zeigen. Beispielsweise ist das Symbol "Fahrzeug" das Symbol welches "Velo", "Zug", "Auto", "Ochsenkarren" und so weiter bedeuten kann. Welches, das ist jedoch nicht bestimmt. Entsprechend

kann ich, wenn ich von "Fahrzeug" spreche, nicht einfach von einer "Klingel" sprechen, da zwar Fahrräder (oft) über eine Klingel verfügen, Autos in der Regel jedoch nicht.

(12) Üblicherweise werden mit Symbolen, welche keine Zahlen oder Operatoren (wie +, - , / oder ·) sind, nicht nur auf ein einziges Objekt verwiesen. Die folgende Formel ist daher unüblich:

$$(4) x = 10 \Rightarrow x > 1$$

Statt die Formel 4 (obwohl sie korrekt geschrieben wurde) würde dann die Formel

geschrieben. Eine Ausnahme sind die Zahlen wie e und π , welche Zahlen sind, die nicht nicht als Bruchzahlen geschrieben werden können. Diese Symbole e respektive π heißen dementsprechend **Konstanten**. Wenn ein Symbol gleich auf mehrere andere Objekte zeigen kann, dann wird dieses Symbol im Unterschied zu Konstante **Variable** genannt. Diese Schreibweise von Variablen erspart in der Regel Schreibarbeit, ja, es ermöglicht sogar, mathematische Aussagen präzise hinzuschreiben, welche sonst gar nicht genau fassbar wären. Als Beispiel sei genannt:

$$\forall x, y \in \mathbb{N} \ (x+y > x \ \land \ x+y > y)$$

Diese Formel bedeutet, dass jede Summe von natürlichen Zahlen größer als ihre Summanden ist. Diese Formel meint also

```
1+1>1 und 1+1>1
                        und
2 + 1 > 2
         und 2 + 1 > 1
                        und
1 + 2 > 1
         und 1+2 > 2
                        und
2 + 2 > 2
              2+2>2
         und
                        und
3 + 1 > 3
              3 + 1 > 1
         und
                        und
1 + 3 > 1
         und
              1 + 3 > 3
                        und
3 + 2 > 3
              3 + 2 > 2
         und
                        und
2 + 3 > 2
         und
              2 + 3 > 3
                        und
3 + 3 > 3
         und
              3 + 3 > 3
                        und
4 + 1 > 4
         und
              4+1>1
                        und
1 + 4 > 4
              1 + 4 > 4
         und
                        und
4 + 2 > 4
              4 + 2 > 4
         und
                        und
2 + 4 > 2
         und
              2 + 4 > 4
                        und
4 + 3 > 4
         und 4+3 > 3
                        und
3+4>3 und 3+4>4
                        und
4+4>4 und 4+4>4
                        usw.
```

Beachte, dass "und" respektive "usw." keine mathematische Schreibweisen sind, sondern von mir der leichteren Lesbarkeit wegen so hingeschrieben wurde. Beachte weiter dass es in der Mathematik möglich ist, zwei Mal die gleiche Aussage hintereinander aufzuschreiben: Eine Aussage ist "genau dann" richtig, falls sie zwei Mal hintereinander aufgeschrieben richtig ist. "Genau dann" meint, dass diese zwei verschiedenen Aussagen gleichbedeutend sind, vom logischen Standpunkt her also kein Unterschied auszumachen ist. Wie auch immer, das ist zwar logisch richtig, wenn zwei Mal die gleiche Aussage hingeschrieben wird, aber es stört wahrscheinlich Dich genau so, wie es mich stört. Die Problematik der obigen Darstellung besteht jedoch darin, dass sie einerseits langatmig, nervtötend und zudem nicht exakt ist. Der Teufel steckt in der Formulierung "usw.". Er deutet darauf hin, dass Du Dir als Leserin oder als Leser vorstellen musst, wie das genau gemeint ist mit der Aussage. Mit dieser Formulierung wird es schwierig, einen mathematischen Beweis zu führen. Und genau das ist das Schwierige.

Die Größen x und y werden als Variablen bezeichnet. Dies bedeutet, dass x und y beliebige natürliche Zahlen darstellen können. Variablen sind Metasymbole, das heißt, sie sind Symbole von anderen Symbolen. Wobei das Wort "andere" wirklich wichtig ist, denn eine Variable darf nie direkt oder indirekt ("über sieben Ecken und Enden") wieder auf sich selbst verweisen. Jedoch sind es sozusagen "entpersonalisierte" Metasymbole. Der Fokus wird nicht auf eine bestimmtes Symbol gelegt, sondern es wird überlegt, welche Eigenschaften alle Größen besitzen, auf welche die Variable verweisen kann. Im weiteren Verlauf der Einführung in die Logik wird von logischen Variablen gesprochen. Ist A das Symbol einer solchen logischen Variable, dann bedeutet dies einerseits, dass A eine beliebige Aussage sein kann, welcher wahr oder nicht wahr sein kann. Im Kapitel 5 walze ich dieses Thema noch einmal ausführlich breit.

Eine weitere Ausnahme von der Regel, dass üblicherweise nicht von Aussagen wie Aussage 4 vermieden werden, besteht darin, wenn Eigenschaften von Variablen besprochen werden. Ich möchte ein Beispiel machen: Es sei n das Symbol für alle natürlichen Zahlen, welche kleiner als 11 seien. Dann kann n das Symbol einer der folgenden Zahlen sein:

Dann ist könnte ich mich fragen, für welche dieser n gilt, dass $n \cdot n < 10$. Dann kann ich sagen, dass für n = 3 gilt:

$$n \cdot n = 9 < 10$$

Und in diesem Sinn kann ich sehr wohl schreiben, dass gilt

$$(n=3) \Rightarrow (n \cdot n = 9 \land n \le 10)$$

In Worten: "Ist n das Symbol für die Zahl 3, dann gilt, dass n mit sich selbst multipliziert 9, also kleiner als 10 ist." Jetzt könnte ich weiter argumentieren, bis ich herausfinde, dass n eine der drei Zahlen 1, 2 oder 3 sein könnte. Jedoch, möchte ich den ganzen Beweis nicht an dieser Stelle führen. Das bedeutet also, ich möchte nicht versuchen, Dich an dieser Stelle davon zu überzeugen, dass dem so ist. Vielmehr möchte ich den Beweis auf später verschieben. An dieser Stelle möchte ich bloß schreiben, dass es unter bestimmten Umständen eben doch möglich sein könnte, derartige Aussagen zu machen. Nämlich dann, wenn von Variablen gesprochen wird und dann eine bestimmte Größe, welche mit dieser Variable ausgedrückt werden kann, auf eine bestimmte Eigenschaft hin untersuchen möchte.

(13) Was weiter auch noch möglich ist, ist die Möglichkeit, dass innerhalb eines Satzes Größen mit verschiedenen Symbolen benennt werden (ich möchte dies die "Möglichkeit der Alias-Bezeichnung nennen" nennen). Ich mache ein Beispiel, damit es klarer wird: Sind a und b natürliche Zahlen, so gilt:

$$a \cdot b = b \cdot a$$

Dies ist das Kommutativgesetz der Addition. Dann ist es möglich,dass a und b beide den Wert 933'094'713 besitzen (für einmal weder 1, 2, 3 noch 10). Dies habe ich bereits im Punkt 11 so verwendet, aber - ach du Schande - nicht so gesagt. Was jedoch nicht geht, ist das umgekehrte: Dass ich für a auf der linken Seite der Gleichung den Wert 13'746'391 und auf der rechten Seite den Wert 3'989'737'111'367 verwende. Das geht so nicht, also mache das niemals¹⁷! Nein im Ernst, davon ist dringend abzuraten, weil die dadurch entstehenden Aussagen nicht wahr sind. Und nicht wahre Aussagen wollen wir um jeden Preis der Welt vermeiden.

(14) Eine weitere Ausnahme der Regel, dass ein Symbol, welches keine Zahl oder kein Operator ist, genau ein Objekt bezeichnet, sind Unbekannte in Gleichungen. Eine Unbekannte ist dabei ein Objekt, von welcher der Name und Eigenschaften

¹⁷ist nur im Scherz so diktatorisch geschrieben

bekannt sind. Es ist dann wie in einem Detektiv-Spiel: Errate mehr oder weniger geschickt die Zahl, welche gemeint ist - aber oft kann gezeigt werden, dass es gar keine Zahl gibt (oder Objekt), welches die Eigenschaft erfüllt. Dies ist dann eine Gleichung ohne Lösung (auch das kommt vor, nicht nur im "richtigen Leben" gibt es manchmal Aufgaben, welche nicht gelöst werden können). Üblicherweise werden für Unbekannte x oder y geschrieben (ich weiß auch nicht, von wo das kommt. Ich sollte einmal Wikipedia fragen). Es gibt jedoch auch der Fall, in welchem die Gleichung mehr als eine Lösung besitzt. Im Extremfall gibt es sogar unendlich viele Lösungen!

(15) Es gibt auch lokale Variablen, welche insbesondere nur innerhalb von Rechenausdrücken wie Summen oder Integralen vorkommen. Dies bedeutet, ein Symbol kann nur innerhalb einer Summe gültig eine bestimmte Bedeutung besitzen, außerhalb der Summe wieder eine andere Bedeutung annehmen. Übertreibe es bitte jedoch nicht mit der Redefinition von Symbolen - mache es so klar wie möglich, denn falls Du Dich verrechnest, weil Du zu sparsam mit den Symbolnamen umgegangen bist, dann ist dies vor allem für Dich ärgerlich.

Doch zurück zur ursprünglichen Aussage, dass es spiele keine Rolle spiele, wie eine Variable bezeichnet werde, es müsse einfach ein beliebiger Name verwendet werden. Ich habe jetzt 15 Punkte aufgezählt, welche diese Behauptung in Frage stellen oder noch andere Aspekte aufzählen. Gleichwohl kann ich nicht schreiben, diese Liste sei abschließend. Es kann noch andere Aspekte geben, welche ich vergessen habe oder nicht kenne. Jedoch habe ich Dir diese Punkte aufgeschrieben, damit der Eintrittspreis in die Welt der mathematischen Symbole nicht allzu hoch ist. Und dass die Freude über diese neue Sprache über die Sorge um das Verständnis derselben überwiegt.

Bezüglich der Diskussion über mathematische Symbole möchte ich an dieser Stelle die These¹⁸ aufstellen, dass Tiere keine Metasymbole verstehen können. Ich versteige mich zur Vermutung, dass es genau das ausmacht, was uns von allen anderen Lebewesen von diesem Planeten unterscheidet. Aber ich kann es nicht beweisen. Jedoch möchte ich mich auf keinen Fall missverstanden wissen in diesem Sinn, dass ich die Behauptung aufstelle, dass jemand ein Tier sei, wer mit mathematischen Symbolen nichts anzufangen wisse oder nicht lesen könne. Ich möchte mit dieser Aussage vielmehr betonen, wie wichtig für die meisten Personen die Kommunikation und Metakommunikation (also Kommunikation über Kommunikation) ist und dass ich die Metakommunikation für das spezifisch menschliche halte. Falls jemand weder über Kommunikation noch über Metakommunikation verfügt, ist das

¹⁸eine These ist eine unbewiesene Behauptung

jedoch noch lange keinen Grund, sie oder ihn nicht als Menschen zu betrachten. Ich verweise diesbezüglich auf die Randbemerkung mit der Nummer 13, in welcher ich meine diesbezügliche Ansicht dargelegt habe. Auch möchte ich damit nicht ausdrücken, dass wir Menschen per se mehr wert als Tiere seien. Oder dass ich finde, es müsse unbedingt ein Merkmal gefunden werden, welches uns fundamental von Tieren unterscheidet. Vielmehr würde ich mich freuen, wenn meine Behauptung durch ein Experiment widerlegt werden könnte.

Ein großer Teil der Mathematik entstand dadurch, dass Vorgänge in der unbelebten und belebten Natur durch Symbole abgebildet wurde. Anschließend wurde versucht, die Vorgänge mittels Modellen zu erklären, welche mittels Mathematik formuliert wurde. Vor allem die logischen Schlussfolgerungen dieser Modelle wurden wieder in der Natur überprüft. Dieser Kreislauf hat sich als überaus erfolgreich herausgestellt, besonders in der Physik, der Chemie und den Naturwissenschaften und der Technik, jedoch auch in den Wirtschafts- und Sozialwissenschaften. Dass wesentliche Teile der Mathematik völlig losgelöst von Vorgängen in der Natur und Technik sind, soll auch nicht verschwiegen werden. Jedoch sind die Symbole das erste Glied in der Kette, um die Welt um uns zu begreifen. Natürlich gibt es auch Größen, welche sich bis heute hartnäckig einer mathematischen Beschreibung entziehen, auch wenn ich mich fast nicht traue, zu schreiben, um welche Begriffe es sich handelt, da ich immer Gefahr laufe, von der Entwicklung überrollt zu werden. Ich nehme als Beispiel: Kampf gegen Ungerechtigkeit und gegen das Unglück in der Welt.

Die Symbole der Lautschrift sind übrigens von den Phönizier erfunden worden, ein Seefahrer- und Handelsvolk im heutigen Libanon, welches offenbar ihren Göttern Kinder geopfert hat. Dies wird in der Bibel beanstandet. Jedoch wurden auch entsprechende archäologische Funde gemacht. Die dabei gefundenen Kinderknochen könnten aber auch rituelle Kinderbestattungen gewesen sein, wie ich einem Buch (für Laien) über die Archäologie des Nahen Ostens gelesen habe. Offenbar geht die Evolution eigene, oft verschlungene Wege. Der Gebrauch von Symbolen ist nicht auf Menschen beschränkt, jedoch nur bei uns Menschen mit einer derartigen Verbissenheit ausgeprägt. In der Entwicklungspsychologie ist die symbolische Entwicklung sehr wichtig. Eine gute Einführung in dieses überraschend spannende Kapitel bietet beispielsweise Barbara Zollinger, "die Entdeckung der Sprache" (Haupt Verlag). Da Entwicklungspsychologie ein Teil der Psychologie ist, kann ich auch das Buch "Biologische Psychologie" von Birbaumer und Schmidt empfehlen - aber Du willst ja etwas über Mathematik lernen und keine Psychologie. Jedoch möchte ich dieses Kapitel nicht beenden, ohne zu bemerken, dass Symbole mit den Sinnen erfasst und verarbeitet werden müssen, um als solche erkannt zu werden. Es handelt sich somit

im makroskopische Größen. Wir müssen die Symbole sehen, hören, riechen, schmecken, fühlen oder tasten können, damit wir sie als solche wahrnehmen. Auch wenn sie beispielsweise in einem Computer so gespeichert werden, dass niemand auf der Welt sie unmittelbar erfahren kann. Übrigens werden in der Informatik Symbole ebenfalls gerne verwendet. Dort werden sie Variablen genannt. Eine Variable besitzt drei wichtige Merkmale: Erstens eine Adresse, welche der Variable zugeordnet ist. Zweitens eine bestimmte Größe des Speicherplatzes, welche die Variable benötigt. Die Adresse und die Größe des Speicherplatzes der Variablen darf vom Computer nicht für andere Variablen verwendet werden. Ansonsten würde das nackte Grauen ausbrechen. Es wäre dann nicht mehr möglich von einer bestimmten Variablen zu sprechen. Natürlich existieren auch Ausnahmen von dieser Regel, aber diese sollen uns an dieser Stelle nicht groß kümmern. Das dritte Merkmal einer Variable sind die Eigenschaften, welche bestimmen, was mit der Variable alles gemacht werden kann. Dies wird in verschiedenen Programmsprachen zwar unterschiedlich behandelt. Jedoch sind meines Wissen die meisten Programmiersprachen der Auffassung, dass es nur nach entsprechender Definition es möglich sein sollte, zwei Buchstaben zusammenzuzählen. Es ist zwar in der Informatik "alles Zahl", um es mit den alten Griechen zu sagen¹⁹. Dies bedeutet, dass jedem Objekt, welches in einem Computer bearbeitet wird, auf Biegen und Brechen eine ganze oder gebrochene Zahl zugeordnet werden kann. Jedoch würde es meines Erachtens keinen großen Sinn machen, falls

$$_{,}E" + _{,}i" + _{,}n" + _{,}s"$$

$$= 69 + 105 + 110 + 115$$

$$= 70 - 1 + (100 + 5) + (100 + 10) + (100 + 15)$$

$$= 100 + 100 + 100 + 70 - 1 + 5 + 10 + 15$$

$$= 300 + 70 + 15 + 15 - 1$$

$$= 300 + 70 + 30 - 1$$

$$= 300 + 100 - 1$$

$$= 400 - 1$$

$$= 399$$

gerechnet würde. Denn die Buchstaben werden meistens mit diesen Zahlen in Verbindung gebracht, wenn Sie in einem Computer gespeichert werden sollen. Diese Zahlen habe einer ASCII-Tabelle entnommen. Aber 399 als Summe der Zahlen entspricht dann nicht mehr dem

¹⁹entsprechend wütend und bestürzt seien sie gewesen, als sie entdecken mussten, dass sich nicht alles durch ihre Zahlen ausdrücken ließe, schreibt beispielsweise Heuser, S. 29. Heuser legt seine Quelle nicht offen, wahrscheinlich ist sie im zu unwichtig.

Text "Eins". Darum macht es keinen großen Sinn, wenn Buchstaben im Computer zusammengezählt werden. Es gibt jedoch wieder eine Ausnahme von dieser Regel: Falls überprüft werden soll, ob Buchstaben richtig beispielsweise über das Internet übermittelt wurden. In diesem Fall werden jedoch oft nicht die Zahlen einfach so zusammengezählt, sondern in einer komplizierteren Art und Weise. Mit dieser komplizierteren Art und Weise wird das Risiko, dass irrtümlich gemeint wird, Text oder Daten seien richtig übertragen worden, obwohl dies nicht der Fall ist, noch einmal deutlich verkleinert. Falls Du mehr über dieses Thema erfahren möchtest, schaue beispielsweise entsprechenden Wikipedia-Artikel nach.

Ich habe vorher kurz beschrieben, welche Eigenschaften Symbole in der Informatik besitzen, um zu überlegen, ob dann auch in der Mathematik so verfahren werden muss. Es gibt Gemeinsamkeiten im Verfahren, jedoch auch Unterschiede. Zwar musst Du Dir irgendwie in Deinem Gedächtnis behalten, wenn von "F" als Kraft die Rede ist ("F" ist der erste Buchstabe im englischen Wort "Force", was wieder Kraft auf Deutsch bedeutet). Ich gebe zu, dass ich nicht genau weiß, welche Vorgänge dann in unseren Köpfen vor sich gehen. So wie es aussieht, wird die Information schon irgendwie abgelegt, aber sehr wahrscheinlich nicht so wie in einem Computer. Dementsprechend musst Du F auch nicht mit einer Adresse belegen. Auch musst Du nicht intern speichern, welchen Speicherbedarf es braucht, um eine Kraft zu speichern. Jedoch musst Du auch wissen, was mit einer Kraft alles gemacht werden kann. Es ist zum Beispiel nicht sinnvoll, eine Kraft und einen Weg einfach zu addieren. Aber - und vielleicht erstaunt es Dich - es macht sehr wohl Sinn, eine Kraft und einen Weg miteinander zu multiplizieren! Denn ein Produkt aus einer Kraft und einem Weg ergibt (unter bestimmten Umständen) eine Arbeit. Stelle Dir vor, Du solltest einen einen Mehlsack mit einem Flaschenzug senkrecht nach oben ziehen. Ein Flaschenzug ist eine Vorrichtung, mit welchem schwere Lasten mittels Seilen und Rollgen gehoben werden können. Dann leuchtet es Dir vielleicht irgendwie ein, dass es zwei Mal so anstrengend ist, den Mehlsack zwei Meter in die Höhe zu ziehen, wie es anstrengend ist, den Mehlsack einen Meter in die Höhe zu ziehen. Und dass es (mindestens) doppelt so anstrengend ist, einen doppelt so schweren Mehlsack einen Meter in die Höhe zu ziehen²⁰. Denn es gibt wohl keinen "Mengenrabatt" für das Heben von zwei Mehlsäcken. Auch leuchtet es Dir vielleicht ein, dass es mindestens vier Mal so schwer ist, zwei Mehlsäcke zwei Meter in die Höhe zu ziehen. Wenn ich jetzt dir Kraft mit dem Weg multipliziere, dann sollte es in etwa gleich anstrengend sein, einen Mehlsack zwei Meter in die Höhe zu ziehen, wie es Anstrengung braucht, zwei Mehlsäcke einen Meter in die Höhe zu ziehen. Dies würde dann bedeuten, dass das

²⁰Wahrscheinlich ist es aufgrund von zusätzlich auftretender Reibung noch ein wenig anstrengender, aber das weiß ich bereits nicht.

Produkt von Kraft und Weg (was der geleisteten Arbeit entsprechen würde) in etwa gleich wäre. Dies ist jedoch kein strenger Beweis, dass es Sinn macht unter bestimmten Umständen Kraft und Weg miteinander zu multiplizieren. Gleichwohl möchte ich mit der ganzen Überlegung zum Ausdruck bringen, dass Du wissen musst, welche Eigenschaften die verschiedenen Größen haben.

Meine Betrachtungen, in welchen ich uns Menschen indirekt mit Computern vergleiche, werden Dir vielleicht abwegig vorkommen. Die Diskussion über die Vergleichbarkeit von Menschen mit Maschinen war übrigens der Inhalt einer der einzigen Vorlesungen über geistig behinderte Menschen, welche mir in Erinnerung blieb. Der Dozent vertrat die Ansicht, dass systemisches Denken in der Heilpädagogik nicht angebracht sei, weil wir Menschen und keine Maschinen seinen und darum dieses Denken, welches aus der Kybernetik stammt (falls ich mich recht erinnere) nicht auf Menschen übertragen werden könne. Die Schlussfolgerung ist also: Wir sind keine Maschinen. Was ich so nicht behauptet habe. Aber ich habe mich gefragt, was gemeinsam ist an Computern und Menschen. Das, was verschieden ist, das ist einfacher zu beschreiben. Ich möchte mit meinen Überlegungen weiter damit zum Ausdruck bringen, dass ich gerne wüsste, wie andere und ich besser lernen können. Denn es interessiert mich. Es gibt sicher irgendwie so super neurobiologische Forschungen, welche genau zeigen wollen, wie Mathematik gelernt wird. Und die da behaupten, sie wüssten, was zu machen ist, damit Du die "Wahrheit mit dem Löffel fressen" kannst. Bis es dann so weit ist, werde ich Dir meine Dienst anbieten, damit Du zur Glückseligkeit kommst. Das Fundament der Mathematik ist die Logik, und diese wird Hilfe von Symbolen formuliert. Also sind Symbole wirklich sehr wichtig in der Mathematik.

Ich möchte schlussendlich in Form von Flussdiagrammen aufzeigen, welche Symbole es in etwa gibt. In der Symboltabelle des entsprechenden Kapitels 48 wird dann aufgelistet, wo die in den Flussdiagrammen definierten Symbole dann verwendet werden. Die Flussdiagramme zeigen meines Erachtens aber auch die Grenzen auf, welche der graphischen Darstellung der Symbole gesetzt werden. Denn lange nicht alles, was ich in diesem Kapitel zu zeigen versucht habe²¹, kann ich auch nur annähernd graphisch beschreiben. Ich denke, dass eine Menge sogar nur mit einem großem Aufwand als sogenannte Anwendung einer Programmiersprache umsetzbar wäre. Obwohl ich nichts dagegen hätte, falls diesbezügliche Anstrengungen unternommen würden.

²¹ich hoffe, Du erkennst den Witz dieser Aussage. Wenn in einem Arbeitszeugnis steht: "Herr Demarmels versuchte unermüdlich, die an ihn gestellten Anforderungen zu erfüllen", dann steht drin, dass er es eben nicht geschafft hat, die an ihn gestellten Anforderungen zu erfüllen - was übrigens wirklich mehr als einmal bei mir vorgekommen ist.

Aber es ist keinesfalls meine Meinung, dass Du diese Graphen auswendig lernen solltest. Sie sie sind eigentlich mehr spielerisch gedacht. Falls ein Symbol nicht mit Anführungs- und Schlusszeichen geschrieben ist, dann wird entweder auf einen anderen Graph verwiesen (falls die Box eckig ist) oder es sind Start- respektive Endmarken gemeint (falls die Boxen abgerundet sind). Die Pfeile sind grundsätzlich Alternativen. Die Meinung ist, dass Du vom Anfang bis zum Ende zwar einen Weg gehen musst, jedoch bei zwei oder mehr Pfeilen immerhin auswählen kannst, welchen Weg Du gehen willst. Das ist so wie bei einer Eisenbahn, welche zwar theoretisch auf mehreren Gleisen fahren kann jedoch nicht gleichzeitig. Natürlich sind die Graphen auch ein wenig augenzwinkernd gedacht, weil sie gleichzeitig die Buchstaben beschreiben und anwenden. Jedoch ist genau der Symbolcharakter der Buchstaben gemeint. Wenn ich beispielsweise eine Größe "P" nenne, dann meine ich vermutlich eine Leistung und nicht der Buchstabe "P" an und für sich. Ich beanspruche auch nicht, eine vollständige Auflistung aller mathematischen Symbole zu präsentieren. Ich möchte vielmehr eine Idee davon geben, welche Symbole üblicherweise verwendet werden. Ausdrücke wie «hochgestellt» sollen auf eine bestimmte Darstellungsart zeigen. Im vorliegenden Fall soll also gezeigt werden, dass die eine Zahl hochgestellt dargestellt werden soll²². Auch dies ist ein Symbol. Bitte störe Dich nicht daran, wenn die Buchstaben des lateinische und griechischen Alphabets teilweise identisch sind. Ich möchte nur zeigen, was möglich wäre - nicht, was wo üblicherweise verwendet wird. Weiter sind die Symbole, welche ähnlich wie Buchstaben aussehen, nicht identisch mit den Symbolen, welche ich sonst im Text verwende. Denn die Graphen wurden mit Open Office erstellt, der Text wurde mit Lyx (somit Latex) geschrieben. Zudem ist die ganze Sache insofern ein Witz, also Du diese Symbole - aber noch viele mehr! - siehst, wenn Du mit Lyx²³ (m)ein Dokument öffnest und eine Formel eintippst. Also hätte ich diese Symbole gar nicht aufzuschreiben brauchen. Schlussendlich hoffe ich, dass Du diese Abbildungen als das siehst, als was ich sie gezeichnet habe: Als Spiel der Symbole, nicht mehr, aber auch nicht weniger. Eine Tabelle mit der Übersicht der einzelnen Flussdiagramme und eine kleine Beschreibung derselben ist in den Tabelle 1 sowie 2 aufgelistet. Bitte beachte übrigens, dass für einmal zuerst die Verwendung und dann erst die Definitionen aufgelistet sind. Also beispielsweise behaupte ich, dass griechische Buchstaben aus kleinen und griechischen Buchstaben bestehen. Ganz am Schluss liste ich die kleinen und großen griechischen Buchstaben auf. Das mache ich sonst eher weniger. Aber ich finde, bei den Symbolen sollte dies gut gehen.

 $^{^{22}}$ Beispielsweise wird die Zahl Zwei (2) im Ausdruck x^2 hochgestellt geschrieben.

²³http://www.lyx.org/, ich kann's wirklich nur empfehlen!

TABELLE 1. 1. Teil Auflistung der Flussdiagramme

Übersicht der Symbole 1 Ein Symbol kann ein	Bezeichnung	Abbildung	Beschreibung
- zusammengesetztes Symbol sein. einfache Symbole 2 Ein einfaches Symbol kann ein - Buchstabe - Operator - sonstiges Symbol sein. Buchstaben 3 Ein Buchtabe kann ein - lateinischer - griechischer - sonstiger Buchstabe sein. lateinische Buchstabe 5 Ein lateinischer Buchtabe kann ein - kleiner - grosser lateinischer Buchstabe sein. kleiner lateinischer Buchstabe 6 Aufzählung der große lateinische Buchstaben große lateinische Buchstabe 7 Aufzählung der	Übersicht der Symbole	1	
sein. einfache Symbole 2 Ein einfaches Symbol kann ein - Buchstabe - Operator - sonstiges Symbol sein. Buchstaben 3 Ein Buchtabe kann ein - lateinischer - griechischer - sonstiger Buchstabe sein. lateinische Buchstabe 5 Ein lateinischer Buchtabe kann ein - kleiner - grosser lateinischer Buchstabe sein. kleiner lateinischer Buchstabe sein. kleiner lateinischer Buchstabe große lateinische Buchstabe 7 Aufzählung der			
einfache Symbole Ein einfaches Symbol kann ein - Buchstabe - Operator - sonstiges Symbol sein. Buchstaben 3 Ein Buchtabe kann ein - lateinischer - griechischer - sonstiger Buchstabe sein. lateinische Buchstabe 5 Ein lateinischer Buchtabe kann ein - kleiner - grosser lateinischer Buchstabe sein. kleiner lateinischer Buchstabe Kleiner lateinischen Buchstabe große lateinische Buchstabe 7 Aufzählung der			Į v
- Buchstabe - Operator - sonstiges Symbol sein. Buchstaben 3 Ein Buchtabe kann ein - lateinischer - griechischer - sonstiger Buchstabe sein. lateinische Buchstabe 5 Ein lateinischer Buchtabe kann ein - kleiner - grosser lateinischer Buchstabe sein. kleiner lateinischer Buchstabe of Aufzählung der kleinen lateinischen Buchstaben große lateinische Buchstabe 7 Aufzählung der			
- Operator - sonstiges Symbol sein. Buchstaben 3 Ein Buchtabe kann ein - lateinischer - griechischer - sonstiger Buchstabe sein. lateinische Buchstabe 5 Ein lateinischer Buchtabe kann ein - kleiner - grosser lateinischer Buchstabe sein. kleiner lateinischer Buchstabe 6 Aufzählung der kleinen lateinischen Buchstaben große lateinische Buchstabe 7 Aufzählung der	einfache Symbole	2	
- sonstiges Symbol sein. Buchstaben 3 Ein Buchtabe kann ein - lateinischer - griechischer - griechischer - sonstiger Buchstabe sein. lateinische Buchstabe 5 Ein lateinischer Buchtabe kann ein - kleiner - grosser lateinischer Buchstabe sein. kleiner lateinischer Buchstabe 6 Aufzählung der kleinen lateinischen Buchstaben große lateinische Buchstabe 7 Aufzählung der			
Buchstaben 3 Ein Buchtabe kann ein - lateinischer - griechischer - sonstiger Buchstabe sein. lateinische Buchstabe 5 Ein lateinischer Buchtabe kann ein - kleiner - grosser lateinischer Buchstabe sein. kleiner lateinischer Buchstabe 6 Aufzählung der kleinen lateinischen Buchstaben große lateinische Buchstabe 7 Aufzählung der			_
Buchstaben 3 Ein Buchtabe kann ein - lateinischer - griechischer - sonstiger Buchstabe sein. lateinische Buchstabe 5 Ein lateinischer Buchtabe kann ein - kleiner - grosser lateinischer Buchstabe sein. kleiner lateinischer Buchstabe 6 Aufzählung der kleinen lateinischen Buchstaben große lateinische Buchstabe 7 Aufzählung der			- sonstiges Symbol
- lateinischer - griechischer - sonstiger Buchstabe sein. Iateinische Buchstabe 5 Ein lateinischer Buchtabe kann ein - kleiner - grosser lateinischer Buchstabe sein. kleiner lateinischer Buchstabe 6 Aufzählung der kleinen lateinischen Buchstaben große lateinische Buchstabe 7 Aufzählung der			
- griechischer - sonstiger Buchstabe sein. lateinische Buchstabe 5 Ein lateinischer Buchtabe kann ein - kleiner - grosser lateinischer Buchstabe sein. kleiner lateinischer Buchstabe 6 Aufzählung der kleinen lateinischen Buchstaben große lateinische Buchstabe 7 Aufzählung der	Buchstaben	3	Ein Buchtabe kann ein
- sonstiger Buchstabe sein. Iateinische Buchstabe 5 Ein lateinischer Buchtabe kann ein - kleiner - grosser lateinischer Buchstabe sein. kleiner lateinischer Buchstabe 6 Aufzählung der kleinen lateinischen Buchstaben große lateinische Buchstabe 7 Aufzählung der			- lateinischer
Buchstabe sein. lateinische Buchstabe 5 Ein lateinischer Buchtabe kann ein - kleiner - grosser lateinischer Buchstabe sein. kleiner lateinischer Buchstabe 6 Aufzählung der kleinen lateinischen Buchstaben große lateinische Buchstabe 7 Aufzählung der			- griechischer
lateinische Buchstabe 5 Ein lateinischer Buchtabe kann ein - kleiner - grosser lateinischer Buchstabe sein. kleiner lateinischer Buchstabe 6 Aufzählung der kleinen lateinischen Buchstaben große lateinische Buchstabe 7 Aufzählung der			_
- kleiner - grosser lateinischer Buchstabe sein. kleiner lateinischer Buchstabe 6 Aufzählung der kleinen lateinischen Buchstaben große lateinische Buchstabe 7 Aufzählung der			
- grosser lateinischer Buchstabe sein. kleiner lateinischer Buchstabe 6 Aufzählung der kleinen lateinischen Buchstaben große lateinische Buchstabe 7 Aufzählung der	lateinische Buchstabe	5	Ein lateinischer Buchtabe kann ein
kleiner lateinischer Buchstabe 6 Aufzählung der kleinen lateinische Buchstaben große lateinische Buchstabe 7 Aufzählung der			- kleiner
kleiner lateinischer Buchstabe 6 Aufzählung der kleinen lateinischen Buchstaben große lateinische Buchstabe 7 Aufzählung der			
große lateinische Buchstabe 7 Kleinen lateinischen Buchstaben Aufzählung der			lateinischer Buchstabe sein.
große lateinische Buchstabe 7 Aufzählung der	kleiner lateinischer Buchstabe	6	Aufzählung der
8			kleinen lateinischen Buchstaben
grossen lateinischen Buchstaben	große lateinische Buchstabe	7	Aufzählung der
			grossen lateinischen Buchstaben
griechische Buchstabe 8 Ein griechischer Buchtabe kann ein	griechische Buchstabe	8	Ein griechischer Buchtabe kann ein
- kleiner			- kleiner
- grosser			- grosser
griechischer Buchstabe sein.			
kleiner griechischer Buchstabe 9 Aufzählung von	kleiner griechischer Buchstabe	9	Aufzählung von
kleinen griechischen Buchstaben			kleinen griechischen Buchstaben
große griechischer Buchstabe 10 Aufzählung von	große griechischer Buchstabe	10	
grossen griechische Buchstaben			grossen griechische Buchstaben
übrige Buchstaben 11 Aufzählung von	übrige Buchstaben	11	Aufzählung von
übrigen Buchstaben			übrigen Buchstaben
Operatoren 12 Aufzählung von	Operatoren	12	Aufzählung von
Operatoren			Operatoren
übrige Symbole 13 Aufzählung von	übrige Symbole	13	Aufzählung von
weiteren Symbolen			weiteren Symbolen
ausgezeichnete Symbole 14 ausgezeichnete Symbole sind	ausgezeichnete Symbole	14	ausgezeichnete Symbole sind
Symbole, welchen			
Auszeichnungen vorangestellt			
sind.			sind.

Tabelle 2. Auflistung der Flussdiagramme

Bezeichnung	Abbildung	Beschreibung
Auszeichnungen	15	Aufzählungen von
von Symbolen		Auszeichnungen wie Schriftstil,
		gefolgt von Auszeichnungen
		welche mehrfach vorhanden sein
		können.
zusammengesetzte Symbole	16	zusammengesetzte Symbole
		können mehrfache einfache oder
		zusammengesetzte Symbole
		oder aber spezielle Funktions-
		bezeichnungen sein.
spezielle	17	Aufzählung von speziellen
Funktionsbezeichnungen		Funktionsbezeichnungen

Abbildung 1. Symbole Übersicht

Die Diagramme können übrigens nicht dazu verwendet werden, um irgendwelche mathematische Erkenntnisse zu erzeugen. Mit Hilfe der obigen Flussdiagramme könnte ich zum Beispiels schreiben

$$1 = 2$$

Das wäre, wenn ich die Flussdiagramme oben durchlaufe, möglich. Aber diese Behauptung ist völliger Blödsinn. Ich möchte mit den Flussdiagrammen nur spielerisch zeigen, welche Symbole verwendet werden. Damit Du in etwa siehst, was mit ihnen gemacht werden könnten, möchte

ABBILDUNG 2. Einfache Symbole

Abbildung 3. Zahlen

Abbildung 4. Buchstaben

ABBILDUNG 5. lateinische Buchstaben

ABBILDUNG 6. kleine lateinische Buchstaben

ich noch ein Beispiel aufschreiben, welches wirklich oft verwendet wird:

$$x^2$$

Das ist ein zusammengesetztes Symbol mit der Bedeutung: "Nimm eine beliebige Zahl und multipliziere diese mit sich selbst." Also könnte ich beispielsweise anstelle von x die Zahl 4 nehmen. Dann würde bedeuten

$$x^2 = 4^2 = 4 \cdot 4 = 16$$

Und jetzt möchte ich zeigen, dass x^2 mit Hilfe der Flussdiagramme erzeugt werden kann. x^2 ist ein zusammengesetztes Symbol, bestehend aus x und 2 . Zuerst kann ich in der Abbildung 1 mit der Bezeichnung

Abbildung 7. große lateinische Buchstaben

"Symbole Übersicht" den Pfad ganz rechts hinunterfahren zum Kästchen mit der Bezeichnung "zusammengesetzte Symbole". Anschließend geht es in der Abbildung 16 mit der Bezeichnung "zusammengesetzte Symbole" in das Kästchen mit der Bezeichnung "einfache Symbole". In der Abbildung 2 mit der Bezeichnung "einfache Symbole" gehe ich in das Kästchen mit der Bezeichnung "Buchstaben". In der Abbildung 4 mit der Bezeichnung "Buchstaben" gehe ich in das Kästchen mit der Bezeichnung "lateinische Buchstaben". In der Abbildung 5 mit der Bezeichnung "lateinische Buchstaben" gehe ich in das Kästchen mit der Bezeichnung "kleine lateinische Buchstaben". In der Abbildung 6 mit der Bezeichnung "kleine lateinische Buchstaben" gehe ich in das

Start
griechische Buchstaben

Kleine griechische
Buchstaben

Ende
griechische Buchstaben

Abbildung 8. griechische Buchstaben

Kästchen mit der Bezeichnung "x". Damit hätte ich gezeigt, wie x als Symbol in mathematischen Texten verwendet werden kann. Ich kann nun alle Kästchen zurück gehen (die Pfade rückwärts sind in diesem Zusammenhang immer eindeutig) - bis ich wieder in der Abbildung 16 mit der Bezeichnung "zusammengesetzte Symbole" komme. Dann kann ich nach dem Kästchen mit der Bezeichnung "Einfache Symbole" in das Kästchen mit der Bezeichnung "Ausgezeichnete Symbole" eintreten. In der Abbildung 14 mit der Bezeichnung "Ausgezeichnete Symbole" gehe ich zuerst in das Kästchen mit der Bezeichnung "Auszeichnung Symbole". In der Abbildung 15 mit der Bezeichnung "Auszeichnung Symbole" gehe ich in das Kästchen mit der Bezeichnung "Schriftstil ≪normal»". Anschließend gehe ich in das Kästchen mit der Bezeichnung "Schriftart ≪hochgestellt≫" (ich verzichte darauf, die Hochstellung gleich noch in der Bezeichnung "hochgestellt" darzustellen). Nun muss kann ich die Auszeichnung der Symbole verlassen. In der Abbildung 14 der ausgezeichneten Symbole kann ich in das Kästchen mit der Bezeichnung "einfache Symbole" eintreten. In der aufgerufenen Abbildung 2 kann ich in das Kästchen mit der Bezeichnung "Zahlen" eintreten. In der Abbildung 3 kann ich in das Kästchen mit der Bezeichnung "2" eintreten. Anschließend kann ich alle Kästchen verlassen. Insbesondere in der Abbildung 16 mit der Bezeichnung "zusammengesetzte Symbole" kann ich den Ausgang wählen. Damit hätte ich gezeigt, wie das Symbol

ABBILDUNG 9. kleine griechische Buchstaben

 x^2 mit Hilfe der Flussdiagramme gezeigt werden können. Jedoch denke ich, dass diese Erläuterungen wahrscheinlich extrem ausführlich sind für so etwas kleines wie den Ausdruck x^2 .

Bitte beachte übrigens, dass bei zusammengesetzten Symbolen diese immer aus endlich vielen Elementen bestehen müssen (auch wenn ich den Begriff der "Endlichkeit" noch einmal neu fassen werde).

Es ist mir erst jetzt aufgefallen, dass ich den Gleichheitsbegriff von Symbolen bis jetzt nicht definiert habe. Das Symbol

sei definiert als "nach Übereinkunft gleichbedeutend". Damit will ich zum Ausdruck bringen, dass ich die Bedeutungen der Symbole Links und Rechts nach Übereinkunft gleich seien. Das Symbol ¬ bedeutet "nicht". Ich habe dem Symbol sogar ein einen eigenen Abschnitt gewidmet: Schaue unter dem Abschnitt 8 nach, was ich alles dazu zu sagen habe.

ABBILDUNG 10. große griechische Buchstaben

Hier nun die entsprechende Definition der Gleichheit von Symbolen.

DEFINITION 1. Es seien A sowie B Metasymbole. Dann sei

$$A = B$$

falls beide Metasymbole aus einem Symbol bestehen, welches bei beiden Symbolen gleich sind. Besteht das eine Symbol aus einem Symbol und das andere Symbol aus mehreren Symbolen, dann seien die Symbole verschieden. Nun bestehen beide Symbole gemäß Voraussetzung aus mehreren Symbolen, es sei also

$$A = A_1 A_2$$

$$B = B_1 B_2$$

Dabei setze ich voraus, dass A_1 und B_1 je aus einem einzelnen Symbol bestehen. Dann seien die Symbole A und B gleich, falls die Symbole

Abbildung 11. übrige Buchstaben

 A_1 und B_1 gleich sind und die Symbole A_2 und B_2 gleich sind. Weiter sei

$$A \neq B \Leftrightarrow \neg (A = B)$$

In Worten. Besteht sowohl A wie auch B aus einem Symbol, dann seien diese zwei Symbole verschieden, falls sie nicht gleich seien. Natürlich ist diese Definition nahezu an der Grenze zum Sinnlosen. Aber wenn Du Dir den Satz des ausgeschlossenen Dritten (siehe Satz 13) vor Augen hältst, dann macht es durch aus Sinn, zu definieren, dass etwas dann gelte, falls etwas anderes nicht gelte. Bestehen jedoch A wie auch B aus mehreren Symbolen, ist also

$$A = A_1 A_2$$
$$B = B_1 B_2$$

und bestehen A_1 und B_1 aus genau einem Symbol, dann ist $A_1 \neq B_1$ oder $A_2 \neq B_2$. Besteht A aus einem Symbol und B aus mehreren Symbolen oder A aus mehreren Symbolen und B aus einem Symbol, dann seien die beiden Symbole ebenfalls verschieden. Weiter gelte einerseits

$$A = A$$

In Worten: Per Definition sei jedes Symbol gleich sich selbst. Andererseits (und ich hoffe, das sei kein "Verbrechen", wenn ich das so fordere),

Start Operatoren "∉ˈ Ende Operatoren

Abbildung 12. Operatoren

folgere aus der Gleichheit von A und B auch die Gleichheit von B und A.

Schlussendlich - und das ist wirklich einmalig in diesem Skript - liegt es außerhalb der Mathematik, um zu entscheiden, ob zwei verschiedene Symbole, welche aus einem Symbol bestehen, gleich sind oder nicht. Es wird jedoch angenommen, dass eine solche Unterscheidung zumindest mit einiger Übung möglich ist.

ABBILDUNG 13. übrige Symbole

Der letzte Abschnitt mag auf Dich seltsam wirken. Trotzdem möchte ich Dich weitere Diskussion bezüglich den Symbolen möchte in das Kapitel 32 über die Vorbereitungen zu den natürlichen Zahlen verschieben - etwa unter der entsprechenden Anmerkung 32. Nachfolgend möchte ich die Untersuchungen über die naive Logik weiterführen.

ABBILDUNG 14. ausgezeichnete Symbole

Abbildung 15. Auszeichnungen von Symbolen

Start zusammengesetzte Symbole Auszeichnung Symbole Spezielle Funktionsbezeichnungen Einfache Symbole Ausgezeichnete Symbole Auszeichnung Symbole Spezielle Funktionsbezeichnungen Einfache Symbole Ausgezeichnete Symbole Ende ausgezeichnete Symbole

Abbildung 16. zusammengesetzte Symbole

Abbildung 17. spezielle Funktionsbezeichnungen

KAPITEL 3

Was sind Aussagen?

Ich möchte gleich auf den Punkt kommen:

(5) Aussagen sind Anneinanderreihungen von Symbolen

Jeder umgangssprachliche Satz ist also eine Aussage. Damit wird also der Begriff der mathematischen Aussage definiert. Dass Symbole noch weiter zusammengefasst werden, lässt die Frage aufkommen, ab wann eine Aussage eine Aussage ist und welche Art der Verknüpfungen gelten. Ist zum Beispiel "dies ist" auch eine Aussage? Oder ist sogar "d" eine Aussage? Gemäß der obigen Definition wäre das erste Beispiel ("dies ist") eine Aussage, "d" jedoch nicht, da es nur aus einem Symbol besteht. Gleichwohl kann gegebenenfalls auch "d" als Aussage interpretiert werden. Allerdings würde ich behaupten, dass ein einzelnes Symbol wohl nie eine Aussage bilden kann, welche wahr ist. Denn in der Logik geht es eigentlich nicht um die Aussage an und für sich, sondern immer nur darum, welches die Wahrheitsgehalte von Aussagen sind. Vielleicht findest Du dies doof, fühlst Dich vielleicht veräppelt. Aber das Füllen von Inhalten wird einfach den anderen mathematischen Teilgebieten überlassen. Das ist eine Art Aufgabenteilung innerhalb der Mathematik. Wenn Du Dich fragst: "Wo wird dann das gebraucht?", dann muss ich Dich auf die späteren Kapitel vertrösten. In diesen werde ich zeigen müssen, dass die Spielregeln der Logik wirklich genug durchdacht waren, so dass nicht widersprüchliche Theorien aus ihnen folgen. Bestehen die Verknüpfungen aus dem hintereinander Aufschreiben der Symbole? Im Moment seien Aussagen Symbole, welche hintereinander aufgeschrieben (es wird dann schon noch komplizierter ;)) Als Beispiel soll eine Aussage dienen:

$\forall x \in \mathbb{R} \exists n \in \mathbb{N} \ n > x$

Dies ist der Satz von Archimedes: Jede reelle Zahl wird von einer natürlichen Zahl übertroffen (wahrscheinlich haut dies Dich nicht aus den Socken, aber dies ist ein mathematischer Satz). Dies ist eine Aussage, und diese Aussage ist erst noch wahr. In diesem Zusammenhang seien drei wichtige Aussagen erwähnt:

• Definition

Eine Definition ist eine Festlegung, welche nicht begründet werden soll. Ich sage, rot sei die Farbe des menschlichen Blutes.

Natürlich ist dies weder ein exakte Definition (das Blut von Menschen mit einer Kohlendioxidvergiftung sei kirschenrot, habe an der Kantonsschule einmal gelernt) noch lässt sich über den Sinn dieser Definition streiten. Was ist dann "menschlich", was ist "Blut"? Was ist mit Personen, welche nichts sehen? Können sich diese unter rot mit dieser Definition etwas vorstellen? Aber es ist eine Definition, ohne Zweifel. Ich glaube, die Mathematik ist vor allem eine Frage der Definitionen. Welche Definitionen muss ich treffen? Was ist sinnvoll, das ich festlege, was überflüssig, was führt geradezu in eine Sackgasse? Da steckt meines Erachtens das ganze Herzblut drin. Oft werden Definitionen gemacht, um einen Sachverhalt besser studieren zu können. Oder um eine bemerkenswerte Tatsache begrifflich fassen zu können. Beispiel für eine gelungene Definition ist beispielsweise das Zahlensystem der Dezimalzahlen. Es dauerte fast eine Ewigkeit, bis es sich festgelegt hat, und kaum jemand möchte es missen. Aber es ist eine Festlegung, eine Definition, welche als solche meines Erachtens nicht vom Himmel gefallen ist. Es musste hart erarbeitet werden, und jedes Kind muss es wieder entdecken und den Sinn desselben erfassen können. Definition sind so lange als wahr anzuerkennen, bis sie als falsch erkannt werden (die berühmte Falsifizierungsregel der Wissenschaft, so wie ich es begreife, eine ursprünglich sozialwissenschaftliche Errungenschaft). Wenn eine Definition, also eine Festlegung, eine Beziehung oder einen Sachverhalt betrifft, welcher zwar wie ein Satz daherkommt, aber keiner ist, dann wird von einem Axiom gesprochen. Ein Axiom ist beispielsweise die vollständige Induktion (siehe Satz 225). Ich habe die zuweilen schon fast krankhafte Angewohnheit, dass ich möglichst wenig Definitionen machen möchte. Natürlich ist es klar, dass es ohne nicht geht. Aber es ist reizvoll, wenn nur so viele Definitionen wie unbedingt nötig und so wenige Definitionen wie möglich verwendet werden. Aber wie schon oben erwähnt, schütte ich zuweilen sozusagen das Kind mit dem Bad aus, indem ich finde, das könnte jetzt auch noch hergeleitet und nicht definiert werden. Zu meiner Verteidigung möchte ich jedoch schreiben, dass ich die Definitionen für das eigentlich menschliche an der Mathematik halte. Die Sätze und die Beweise sind eigentlich immer Folgen der Definitionen. Und da ist eine elegante Definition Gold wert.

• Satz

Ein Satz ist wie eine Landmarke, etwa ein Gipfelkreuz, ein Leuchtturm oder eine Fahne, welche anzeigt: Seht her, ich habe etwas wichtiges herausgefunden. Es lohnt sich, diesen Sachverhalt zu merken. Es gibt nebst dem Satz noch das Lemma,

den Hilfssatz. Dieser wird oft benötigt, um einen Satz zu beweisen, wird jedoch nicht als so wichtig gehalten, um einen Satz zu bilden. Ein Satz kann nie ein Dilemma sein. Denn ein Dilemma besagt, dass jemand nicht weiß, was zu tun ist. Ein Lemma ist jedoch ein Satz, welcher selbst nicht so wichtig ist. Jedoch ist ein Lemma eine wahre Aussage, wogegen beim Dilemma nicht sicher ist, ob es jetzt wahr ist oder nicht. Vielleicht denkst Du jetzt: Was, ein Satz? In einem Mathematikbuch hat es doch Hunderte davon. Das stimmt schon, jedoch ist nicht jeder Satz als Satz in einem mathematischen Sinn definiert. Die Sätze sind sozusagen die Schlüsselstellen im Buch, entlang derer Du Dich "entlanghangeln können solltest". Es sind sozusagen die Leuchttürme (wieder eine Metapher¹ für die Bedeutung eines Satzes) innerhalb des Textes. Wenn Du fertig bist mit dem Überfliegen oder dem Wälzen dieses Textes, dann solltest Du leicht wieder finden können, was Du gelesen hast. Darum werden besonders wichtige Textpassagen als Sätze gekennzeichnet. Schlussendlich gibt es noch die Vermutung: Dies ist ein unbewiesener Satz. Es gibt bekanntlich mathematische Vermutungen, welche schon ein paar hundert Jahre waren, bis sie bewiesen wurden². Und es gibt Vermutungen, welche selbst schon mehr als hundert Jahre alt sind, und immer noch nicht bewiesen wurden³! Selbstredend muss ich gestehen, dass ich noch keinen Satz produziert habe, welcher in die Mathematikbücher eingegangen ist. Ich bin eben nur Laie, und nicht Profi. Und außerdem weiß ich nicht, ob das erstrebenswert wäre, wenn es einen Satz von Demarmels gäbe. Einen kleinen Satz glaube ich für mich herausgefunden zu haben: Das Axiom der vollständigen Induktion ist meines Erachtens beweisbar (vergleiche mit dem Kapitel 34). Aber das ist keine große Leistung. Ich bin schon nur froh, wenn ich nachvollziehen kann, was andere bewiesen haben.

Ach ja, bevor ich es vergesse: Ein mathematischer Satz kann aus mehreren Sätzen bestehen⁴! Ein mathematischer Satz und ein sprachlicher Satz sind eben nicht dasselbe. Ein sprachlicher besteht offenbar aus einem oder mehreren Wörtern, welche durch ein spezielles "Interpunktionszeichen" abgeschlossen wird (beispielsweise einen Punkt, ein Ausrufs- oder ein Fragezeichen) und bei welchem das erste Wort mit einem großen

¹ein bildlicher Vergleich

 $^{^2\}mathrm{Beispiel}$ ist die Fermatsche Vermutung. Wikipedia weiß Bescheid, um was es dabei geht.

 $^{^3{\}rm Ein}$ Beispiel dafür ist die Riemannsche Vermutung über die Zeta-Funktion, siehe wiederum Wikipedia

⁴keine Sorge: Das ist nur ein Sprachspiel (er beißt nicht, er will nur spielen).

Buchstaben geschrieben wird. Wie es in anderen Sprachen funktioniert wie beispielsweise dem Chinesischen, entzieht sich meiner Kenntnis. Aber es ist schon so, dass ein mathematischer Satz auch aus mehreren Sätzen gebildet werden kann. Das ist sogar die Regel. Er wird dann so gekennzeichnet, indem er sprachlich oder mit darstellenden Mitteln besonders gekennzeichnet wird. Ich hoffe, dass ich Dich gelegentlich auf entsprechende Beispiele verweisen kann. Ein einfaches Beispiel für für einen mathematischen Satz, welcher aus mehreren (in diesem Fall, zwei) sprachlichen Sätzen besteht, ist der Satz 270.

• Beweis

Ein Satz muss bewiesen werden. Es genügt, nicht, zu sagen: "Das gilt, und Du musst mir glauben, dass es so ist". Was ein Beweis ist und was nicht - das ist im Rahmen der Analysis durch die Logik festgelegt. Im Buch von Heuser gibt es die schöne Aussage⁵, dass ein Satz nur mit den mitteln der Logik und nicht mit den drei traditionsreichsten "Beweis"-Mitteln Überredung, Einschüchterung und Bestechung bewiesen werden dürfe. Ich denke, damit ist eben auch gezeigt, dass die Tätigkeit des Beweisens eben schon etwas von einer Auseinandersetzung besitzt, welche jedoch mit unblutigen Mitteln geführt wird. Einen Beweis zu schreiben, ist oft so, wie eine Arbeit zu machen. Leider, das muss ich gestehen, habe ich noch viele Beweise nicht begriffen, und das ist ja auch gerade einer der Gründe, wieso ich gerne diesen Text schreiben möchte. Ich möchte viel und noch viel mehr begreifen. Einen Beweis zu begreifen, das gibt mir ein Gefühl der tiefen Befriedigung (ja, ja, ich denke, ich weiß, was Du gerade denkst, denke Du das ruhig). Für mich ist es, wie in einer Landschaft herumzuwandern, welche nur im Kopf existiert. Jedoch kann diese Landschaft im Kopf nie ganz durchmessen werden. Jedoch gibt es ein Gefühl dafür, dass man etwas mit gutem Gewissen anwenden darf. Auf der anderen Seite ist es ein Scheiß-Gefühl, wenn Du vor einem Mathebuch sitzt und beim besten Willen keinen leisen Schimmer davon hast, um was es in diesem Buch geht.

⁵auf Seite 12

KAPITEL 4

Welche Spielregeln gelten in der Logik?

Bis jetzt habe ich Aussagen definiert. Im folgenden möchte ich mit der Frage auseinander setzen, welche Regeln für die Verknüpfung von Aussagen von der Sicht der Logik her gelten sollen - und welche nicht. Zuerst möchte ich ein wenig über Wahrheit "philosophieren" (im Sinn einer Stammtischphilosophie - ich bin weder Mathematiker noch Philosoph). Dann möchte ich mich über meine Interpretation der Logik auslassen. Die in diesem Kapitel gemachten Aussagen sind allesamt ziemlich langweilig. Das haben so Einführungstexte in der Logik so an sich. Es gibt daneben in Einführungen über einfache Logik immer wieder total an den Haaren herbeigezogene Beispiele. Diese möchte ich jedoch außer Acht lassen, obwohl ich absurde Beispiele verwende. Mit "an den Haaren herbeigezogen" meine ich jedoch so verwinkelte Aussagen, dass es schnell einmal zur Haarspalterei wird, um was es genau geht. Ich möchte wirklich nur einfache Logik betreiben - auf diese dann jedoch auch wirklich zurückgreifen.

Zuerst möchte ich darauf hinweisen, dass Wahrheit oft im Zusammenhang mit Gerechtigkeit bemüht wird. Gerade in der Rechtsprechung wird versucht, ein wahres Bild der Wirklichkeit zu konstruieren. Ich habe meine Worte absichtlich so gewählt, dass es ersichtlich ist, dass Wahrheit ein menschliche Konstruktion ist, wie es ein Gebäude oder eine Maschine ist. Das bedeutet, dass ich der Meinung bin, dass die Wahrheit nicht "vom Himmel fällt", obwohl ich auch nichts gegen eine göttliche Ordnung hätte - nur leider hat es diese m.E. so nie gegeben. Immer waren es Menschen, welche das Recht und somit die Wahrheit in Anspruch nahmen. Ich habe die Mühe auf mich genommen, die Bibel zu lesen. Dabei habe ich zu meiner Verwunderung mit der Zeit gemerkt, dass alle Autoren je für sich ein eigenes Gottesbild entwerfen. Ebenso erstaunt war ich, wie "diktatorisch" die einzelnen Autoren sind. Alle sagen immer und immer wieder: "Ich weiß, wie es ist, es ist so". Dieses Bild der Dinge ist heute nicht mehr modern. Heute gilt es vielmehr, zu sagen: "Das nehme ich an, und das folgere ich daraus". Und wenn ich schreibe "ich", dann möchte ich damit nicht ausdrücken, dass ich die Wahrheit mit dem Löffel gefressen hätte, sondern, dass die Wahrheit immer subjektiv, immer an Menschen (Frauen, Männer, Kinder, gleich jedes Ansehen, Vermögen, Nationalität) gebunden ist. Die Wahrheit an und für sich, die gibt es heute so nicht mehr (das ist zwar ein geisteswissenschaftlicher Ansatz, aber ich denke, er bewährt sich

in der Naturwissenschaft bestens, denn da gibt es auch immer wieder Hahnenkämpfe, welche darauf zurückzuführen sind, dass sich Personen sehr wichtig finden). Der Vorteil dieser Sichtweise liegt meines Erachtens darin, dass "die Mathematik" von allen immer wieder neu entdeckt und erobert werden will. Was ich heute sage, wirst Du morgen vielleicht nicht mehr so sehen - und übermorgen ein anderer wieder auf eine andere Art betrachten. Wichtig ist jedoch in meinen Augen, dass Du Dir ein eigenes Bild von der Materie machen kannst, dass diese nicht nur einer kleinen Elite vorbehalten ist (wie im alten Testament die Schriftgelehrten und der Stamm von Amos sich die Religion und Politik unter den Nagel rissen).

Nachdem ich nun das Wort zum Donnerstag losgelassen habe (ich habe das Kapitel am Donnerstag, den 29. Juli 2010 geschrieben), möchte ich mit einer Voraussetzung beginnen, welche in der Logik eine wichtige Rolle spielt:

(6) Es gibt wahre Aussagen.

Nun kommt die Formalisierung der Aussage: Für den Sprachteil "es gibt" oder "es existiert" oder "existiert" wird das Symbol " \exists " verwendet. Und genau so, wie ich oben lang und breit ausgewalzt habe, wird anstatt der Aussage oft ein Buchstaben für dessen Symbol oder Bezeichnung genommen, typischerweise A oder B, seltener auch C. Es werden einfach von vorne begonnen die Symbole des lateinischen Alphabets genommen. Also "richtig" formuliert heißt der obige Satz:

$$(7) \exists A$$

falls A als Symbol für eine Aussage verstanden wird. Der Satzteil "falls A als Symbol für eine Aussage verstanden wird", kann formalisiert werden mit

$$(8) \exists A \epsilon \Omega A$$

wobei Ω die Menge aller Aussagen bezeichne, welche nicht in sich selbst oder bezüglich anderen Symbolen widersprüchlich seien (dies ist allerdings schon wieder eine selbst gewählte Bezeichnung, welche ich nicht in einem Mathematikbuch gefunden habe). Der Grund, wieso ich den griechischen Buchstaben Omega verwendet habe, liegt darin, dass A und Ω gerne als Symbole für Alles verwendet werden. A und Ω sind die ersten und die letzten Buchstaben des griechischen Alphabetes. Da eigentlich fast alles Aussagen sind, habe ich den letzten Buchstaben des griechischen Alphabets für die Bezeichnung der Menge aller Aussagen verwendet. Sätze, welche nicht als Schlussfolgerungen von anderen Sätzen ableiten lassen (siehe auch das Kapitel 20.6), werden als Axiome, als unbeweisbare Aussagen, bezeichnet. In den Sozialwissenschaften heißen

diese Behauptungen übrigens "Thesen". Es gilt also die Regel: Ist eine Aussage wahr, dann wird sie einfach hingeschrieben. Es wird also bei der formalen Beschreibung nicht speziell geschrieben: Diese Behauptung ist wahr. Obwohl dies bei der sprachlichen Beschreibung immer gemacht wird.

Damit alles seine Richtigkeit hat, möchte ich den eben erwähnten Sachverhalt in eine Definition und ein Axiom abfüllen. Somit schreibe ich die folgende

DEFINITION 2. Es bezeichne Ω die Menge aller Aussagen, welche in sich selbst und bezüglich den anderen Aussagen widerspruchsfrei seien.

Weiter definiere ich (als Axiom)

DEFINITION 3. **Axiom der wahren Aussagen**: Es gelte per Definition (als Axiom)

 $\exists A \in \Omega : A$

In Worten: Es gibt Aussagen, welche wahr sind.

Leider kann ich die Axiome nicht als eigenständige Begriffe (wie "Definition" und "Satz") mit meinem Textverarbeitungssystem ("Lyx") erzeugen. Respektive weiß ich nicht, wie ich das machen soll. Darum habe ich das Axiom der wahren Aussagen als Definition gekennzeichnet.

Es ist im Übrigen seltsam, dass das Axiom der wahren Aussagen erst jetzt kommt. Denn alle anderen Sätze vorher müssten von Dir ebenfalls als wahre Sätze anerkannt werden. Sonst hättest Du das Buch schon lange weggelegt, wohl im Stil von: "So ein Scheißdreck, was der Demarmels wieder faselt. Ist ein gescheiterter Physikstudent und will jetzt ein Einführungswerk in Mathematik schreiben." Das mag ja sein. Jedoch geht es ohne die Annahme des Satzes 8 sonst nicht weiter. Und das wäre schade. Auf jeden Fall ist dieses Axiom schon fast philosophisch. Dass es wahre Aussagen gibt, kann weder bewiesen noch widerlegt werden. Es ist eine Annahme - jedoch eine überaus praktische.

Wenn ich von wahren Aussagen spreche, dann meine ich in erster Linie diejenigen Aussagen, welche wirklich von den meisten Menschen als wahr angenommen werden. Wenn an Mathematik gedacht wird, dann werden unter wahren Aussagen wohl in erster Linie solche verstanden, welche erst nach einer langen und mühsamen Beweisserie als wahr akzeptiert werden. Und da verschiebt sich der Begriff der wahren Aussage in Richtung "unglaublich, aber offenbar wahr" oder "ich habe keinen blassen Schimmer, wie Vorfahren auf diese Idee gekommen sind, und ich kann den Beweis selbst nicht nachvollziehen, aber wenn die das sagen, wird es schon stimmen". Nein, ich meine Aussagen, welche für die meisten Menschen als selbstverständlich angenommen werden. Aussagen wie: "Ein Elefant ist üblicherweise schwerer als eine Maus" (Ich

betrachte den Fall nicht, in welchem die Maus selbst trächtig ist, jedoch der Elefant gerade erst im Mutterleib gezeugt wurde und sich die befruchtete Eizelle des so gezeugten Elefanten sich noch nie geteilt hat). Oder ich denke an Tatsachen wie: "Wenn ein Lebewesen stirbt, dann kann es nicht wieder zum Leben erweckt werden" oder "Die Sonnenstrahlen sind wichtig für das Leben auf der Erde". Oder aber: "Menschen müssen Nahrung zu sich nehmen, damit sie leben können". Aber auch dass diese Aussagen wahr sind, kann im eigentlichen Sinn nicht bewiesen werden. Es ist eine Annahme, ein Glaube, welcher aus vergangenen Erfahrungen resultiert. Natürlich werden Karrieren gemacht oder vernichtet, indem Schülerinnen und Schüler nach Aussagen abgefragt werden, welche die Lehrpersonen als wahr erachten. Natürlich gibt es Personen, welche aufgrund einer Behinderung nicht in der Lage sind, Aussagen als wahr zu erkennen und gewinnbringend anzuwenden. Aber Hand aufs Herz, was verstehst Du, was verstehe ich "von der Welt"? Und wollen wir das wirklich? Das wäre eine Höllenvorstellung, wenn ich alles im Voraus erkennen würde, was in naher oder gar ferner Zukunft geschehen würde, eben weil ich alles wüsste. Dass es nicht darum geht, "gut zu sein", sondern bloß besser als die Mitmenschen in meiner Umgebung, ist für mich kein wirklicher Trost. Ich habe es, um es genauer zu schreiben, sogar ziemlich satt. Gerade darum finde ich diese Annahme, dass es wahre Aussagen gibt, unglaublich inspirierend. Weil sie den Kern der Sache offenlegt: Es werden Annahmen gemacht und überlegt, was daraus gefolgert werden kann.

In der Disziplin der Mathematik war es ein schmerzhafter Einschnitt, als erkannt wurde, dass Annahmen nicht wahr waren, welche als richtig angenommen wurden. Als Beispiel dafür kann der Mengenbegriff (siehe Kapitel 5) genommen werden. Denn das Gemeine an den falschen Annahmen ist, dass dann deren Schlussfolgerungen ebenfalls nicht mehr gültig sind. Dann müssen wir wieder "von vorne" beginnen. Vielleicht ist darum kein Zufall, dass der Wegbereiter des Mengenbegriffs, Georg Cantor, an manischen Depressionen erkrankte¹. Cantor musste erkennen, dass eine grundlegende Annahme (die Menge aller Mengen, siehe Abschnitt 5) in sich nicht logisch ist. Dies leitet auf die psychologische Dimension des Axioms hin, welche ebenfalls nicht ohne Tiefgang ist: Es gibt leider immer wieder Leute, welche am Leben verzweifeln. Für diese Personen gilt diese Annahme "Es gibt wahre Aussagen" leider nicht mehr. Für sie ist alles falsch. Und das ist traurig, todtraurig. Nun, es ist ein Mathematikbuch, welches ich zu schreiben beabsichtige, und kein Lehrbuch über klinische Psychologie. Trotzdem möchte ich darauf hinweisen, dass auch in der Mathematik nicht davon ausgegangen werden kann, zu wissen, was richtig ist und was falsch. Es wird einfach angenommen, dass es Aussagen gibt, welche richtig sind. Weiter wird untersucht, was daraus folgt.

¹gemäß Wikipedia, ich habe es aber auch in anderen Texten gelesen

Auf der anderen Seite gilt in der modernen Physik eine solche Aussage wohl nur schwer. Eine absolute Aussage widerspricht eigentlich der Denkweise der Quantenphysik. Jedoch verbraucht die moderne Hochenergiephysik Milliarden an Dollar, und das ist doch sicher ein Faktum, welches so gilt. Das heißt, in der Alltagswelt ist die moderne Physik vielleicht doch nicht so diffus ist, wie sie zu sein doch irgendwie vorgibt. Doch es gilt auch, sich von den Geistes- und Sozialwissenschaften abzugrenzen in dem Sinn, dass in den Geistes und Sozialwissenschaften häufig eine sogenannte Relativismusdebatte geführt wird. Beispielsweise wird die Relativität der verschiedenen Lebens- und Kulturformen gepredigt. Das mag ja innerhalb gewisser Grenzen auch zutreffen. Doch es gibt beispielsweise keine Volksgruppe, welche sich ausschließlich von Kieselsteinen ernährt. Es ist sicher nicht so, dass sich durch die Mathematik alles beweisen ließe. Das ist einfach nicht zutreffend, es wurde sogar bewiesen (durch Gödel). Aber innerhalb der Mathematik wird angenommen, dass es wahre Aussagen gibt.

Bevor ich weiter weiter meinen Gedanken nachgehe, möchte ich darauf hinweisen, dass eine wahre Aussage sicher eine Entsprechung in den Strukturen von Menschen, jedoch auch von Tieren oder sogar Pflanzen haben sollte. Der Begriff der wahren Aussage ist nicht menschengemacht, sondern ein Ergebnis unserer Evolution. Ich möchte an dieser Stelle dafür danken, denn dank diesen Strukturen habe ich eine Möglichkeit gefunden, wie ich etwas mit meiner Zeit auf Erden anfangen kann.

Ich möchte jetzt bereits eine Aussage aufschreiben, welche ich sich selbst widersprüchlich sind. Das Beispiel ist das Barbier-Pradoxon von Berndt Russel². Es lautet: "Man kann einen Barbier definieren als einen, der alle diejenigen und nur diejenigen, die sich nicht selbst rasieren, rasiert. Die Frage ist: Rasiert der Barbier sich selbst?". Denn wenn er sich selbst rasieren würde, dann würde er sich gemäß Definition jemanden rasieren, obwohl sich dieser selbst rasiert. Dann wäre er jedoch kein Barbier. Also ist dies nicht möglich. Würde er sich selbst jedoch nicht rasieren, dann gäbe es jemanden, welcher nicht durch den Barbier rasiert wird. Also wäre er wieder kein Barbier. Wie ich es drehe und wende, das geht nicht gut. Also ist die ganze Aussage in sich selbst widersprüchlich. Der ganze Widerspruch kann jedoch gut aufgelöst werden, falls die Aussage ausdrücklich nur auf andere Personen eingeschränkt wird. Also etwa: "Ein Barbier rasiert andere Personen, welche sich selbst nicht rasieren". Dann habe ich bemerkt, dass es nicht darauf ankommt, ob der Barbier sich selbst rasiert oder nicht. Es kommt nur darauf an, ob er andere Personen rasiert.

²nachzulesen unter http://de.wikipedia.org/wiki/Barbier-Paradoxon

Ein anderes Beispiel ist das folgende³. Stelle Dir vor, jemand würde eine Verbotstafel aufstellen auf welcher geschrieben würde: "Es ist verboten, im Umkreis von 100 Metern Verbotstafeln aufzustellen". Dann ist das ein Widerspruch in sich selbst. Denn dann hätte die Verbotstafel selbst nicht aufgestellt werden dürfen. Andererseits wäre in diesem Fall die Verbotstafel nicht vorhanden. Dann wäre es jedoch erlaubt, Verbotstafeln aufzustellen, was jedoch hätte verhindert werden sollen. Wieder kann der Widerspruch so aufgelöst werden, indem auf die Verbotstafel geschrieben wird: "Es ist verboten, im Umkreis von 100 Metern andere Verbotstafeln aufzustellen".

Ein drittes Beispiel musste ich selbst erleiden. Es ist der berühmte logische Zirkelschluss, welchem ich auch als kleiner Knirps erlegen bin. Ich habe die Wolken und den Wind betrachtet. Und dann habe ich voller Stolz meiner großen Schwester erklärt: "Jetzt weiß ich, wieso der Wind bläst: Es sind die Wolken, welche den Wind antreiben". Und dann hat meine Schwester mich gefragt: "Das ist ja schon gut und recht. Aber wieso bewegen sich dann die Wolken." Dann habe ich nachgedacht und wichtig erklärt: "Das ist doch ganz einfach: Weil der Wind bläst". Meine große Schwester erklärte mir, dass das nicht stimmen kann was ich sage, aber ich habe damals nicht begriffen, wieso. Später lernten wir beide, dass diese Art von Fehlschlüssen in der menschlichen Entwicklung praktisch immer vorkommen. Aber im Moment fühlte ich mich schon gedemütigt. Also gibt es Aussagen, welche in sich selbst widersprüchlich sind. Es ist oft wichtig und richtig, diese Aussagen aufzuschreiben - damit den lieben Mitmenschen respektive Nachfahren nicht die gleiche Pein widerfährt wie mir, als ich ein kleiner Junge war.

Ich möchte betonen, dass die folgenden Zeilen ein Vorschlag sind und dass meines Erachtens die Problematik der in sich widersprüchlichen Aussagen in der ernsthaften Logik sehr kontrovers diskutiert wird. Aber bilde Dir doch selbst ein Urteil! Wie also mit in sich widersprüchlichen Aussagen umgehen? Nun, diese können als in sich widersprüchlich bezeichnet und als solche den nicht wahren Aussagen zugewiesen werden. Jedoch können diese nicht aus sich selbst als nicht wahre Aussagen erschlossen werden, sondern müssen als solche zusätzlich bezeichnet werden. Das ist dann wie ein Fisch, welcher in einem Lebensmittelladen zum Verkauf angeboten wird, dessen Ablaufdatum jedoch überschritten ist. Falls er stinkt, dann merkst Du es selbst, dass es keine gute Idee mehr ist, diesen Fisch zum Verzehr kaufen zu wollen. Stinkt er jedoch nicht, dann siehst Du eventuell auf einer Beschriftung auf der Verpackung des Fisches, dass sein Ablaufdatum überschritten ist. Und so, schlage ich vor, kannst Du mit einer in sich selbst widersprüchlichen Aussage umgehen: Falls Du gemerkt hast, dass etwas mit der Aussage

³Auch dieses Beispiel habe ich irgendwo geklaut, aber noch abgewandelt. Wenn ich die Quelle noch wüsste, würde ich sie an dieser Stelle aufschreiben.

nicht stimmt, dann schreibst Du diese zusammen mit dem Vermerk hin: "Mit dieser Aussage ist etwas nicht in Ordnung". Damit rechnest Du diese Aussage jedoch automatisch den nicht wahren Aussagen zu. Dann kannst Du weiter Deinen Überlegungen nachgehen. Diese Problematik kann unter einem pessimistischen oder optimistischen Standpunkt betrachtet werden. Einfacher ausgedrückt: Das kann als Nachteil oder als Vorteil angesehen werden. Der pessimistische Standpunkt ist, dass die so vorgestellte, "naive" Logik fehlerhaft und in sich widersprüchlich ist. Der optimistische Standpunkt ist, dass es uns Menschen braucht, um Logik betreiben zu können. Vielleicht werden Maschinen und Computer immer besser und überflügeln uns immer öfter in Teilgebieten an sogenannter Intelliegenz überflügeln. Ein Beispiel dafür ist im Moment (am 31. Mai 2019) die Gesichtserkennung. Es soll jetzt Computern besser als uns Menschen gelingen, Gesichter zu erkennen. Das kann beispielsweise wichtig sein, um polizeilich gesuchte Menschen in Flughäfen oder Bahnhöfen zu erkennen. Und da finde ich den Gedanken tröstlich, dass es uns Menschen im Moment noch gelingt, Computer oder Roboter insofern zu überflügeln, als ich noch nie von einem Computer gehört hätte, welcher aus freien Stücken oder nach einer entsprechenden Aufforderung ein Skript über Logik schreiben würde.

Übrigens ist der Begriff der Widerspruchsfreiheit selbst recht heikel. Wie ich mit dem Beispiel 20.18 zeigen möchte, kann eine Aussage nur schon durch die Reihenfolge der Niederschrift zu einer Widersprüchlichkeit führen.

Die nächsten Kapitel 8 bis 16 beschäftigen sich mit der Definition von logischen Verknüpfungen. Diese sind immer gleich aufgebaut: Zuerst werden Beispiele gemacht, welche zeigen sollen, wie logische Verknüpfungen aufgebaut sind. Die Eigenschaften der logischen Verknüpfungen werden mit Tabellen beziehungsweise Schaltbildern anschaulich dargestellt. Die Kapitel enden jeweils mit einer mathematisch formalisierten Darstellung der logischen Verknüpfungen. Diese werden jeweils noch aufgelöst bis sie wieder rein sprachliche Beschreibungen darstellen. Außerdem werde ich versuchen, bei den drei gebräuchlichsten logischen Verknüpfungen (der Konjunktion⁴ und der Disjunktion⁵ sowie der Implikation⁶) "Abkürzungen" anzugeben, welche verwendet werden können, um logische Ausdrücke auszuwerten. Ich versuche, den Schritt von der umgangssprachlichen Darstellung der Aussagen in die formale Darstellung in möglichst viele, möglichst kleine Schritte zu unterteilen, so dass Du Dich möglichst ohne eigene Anstrengung an die formale mathematische Darstellung gewöhnst, und sie vielleicht, wenn ich Glück habe, sogar schätzen lernst. Denke daran, dass Du natürlich jederzeit das Recht hast, die Kapitel zu überlesen, falls es Dir zu blöd wird!

⁴ "Und-Verknüpfung"

⁵,,Oder-Verknüpfung"

⁶logischen Schlussfolgerungen

Vielleicht liest Du zuerst ein späteres Kapitel und kommst dann wieder auf diese Definitionen zurück. Ich nehme mir die Freiheit, dass ich in der sprachlichen Beschreibung von formalisierten Aussagen diese, falls sie offensichtlich nicht wahr sind, in der indirekten Schreibweise wieder geben. Wenn ich also schreibe: "Es gilt nicht, dass Eisbären in der Antarktis leben würden", dann bedeutet dies eben, dass Eisbären nicht in der Antarktis leben.

KAPITEL 5

Was sind Mengen?

Im umgangssprachlichen Sinn wird der Begriff der Menge oft als Umschreibung ähnlich wie das Wort "viel" verwendet. "Der Demarmels erzählt eine Menge Scheiße" könnte beispielsweise eine solche Aussage sein, in welcher dieses Wort verwendet wird. In einem Kreuzworträtsel war jedoch einmal ein gesuchter Begriff "Menge zwischen zwei Fingern". Wüsstest Du ihn? Würde ich jetzt einen professionellen Text schreiben, dann würde ich Dich darüber im Dunkeln lassen, um welchen Begriff es sich dabei handelt. Schließlich habe ich auch lange darüber nachgedacht. Warum sollte ich Dir jetzt die Lösung "auf dem Silbertablett" präsentieren? Nun, ich schreibe keinen professionellen Text. Und darum begnüge ich mich damit, die Lösung als Fußnote einzufügen¹. Obwohl in der Umgangssprechei der Begriff "Menge" oft gleichbedeutend mit der Eigenschaft "viel" ist, kann in der Mathematik eine Menge aber nichts sein. Meine Definition von einer Menge ist:

DEFINITION 4. Eine Menge ist eine Zusammenfassung von Symbolen. Jedes Symbol kann jedoch höchstens einmal in einer Menge auftreten. Dabei darf die Menge weder direkt noch indirekt in der Zusammenfassung enthalten sein. Ein Symbol, welches in einer Menge enthalten ist, wird Element geheißen.

Diese Definition ist vom Typ Marke Eigenbau². Mengen werden üblicherweise so definiert, als für sie ein Symbol reserviert wird. Üblicherweise ist das Symbol für eine Menge "M", getreu dem Grundsatz, dass von einem Begriff der erste Buchstabe genommen und dieser als Symbol für den Begriff genommen wird.

Nun kommt etwas, was immer für Verwirrung sorgt - auch für mich. Ich möchte mich mit der Frage beschäfigtigen, ob es denn Mengen gibt, welche nicht leer sind? Ich beginne am Besten zuerst mit dem Lemma:

Lemma 5. Es gibt Mengen, welche nicht leer sind.

Definition von Mengen

¹Die Lösung ist: "Prise", also etwa eine Prise Salz. Der Witz dabei ist, dass genau nicht "viel", sondern "wenig" damit gemeint ist. Also nicht etwa ein Kilo Salz, sondern ganz, ganz wenig Salz.

²Das bedeutet, dass Du diese Definition so in keinem Lehrbuch findest. Ich habe diese Definition selbst zusammengebastelt. Darum tust Du gut daran, zu überlegen, ob diese Definition kompletter Nonsens, teilweise falsch, eigentlich richtig, richtig oder sogar genial ist.

Beweis. Im Lemma 6 habe ich angenommen, dass es wahre Aussagen gibt. Also kann ich daraus folgern, dass die Menge der wahren Aussagen nicht leer ist. Denn ansonsten wäre die Menge aller Aussagen leer. Damit glaube ich, den Beweis des Lemmas erbracht zu haben und bende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Wozu das Ganze? Das Problem ist, dass es möglich sein könnte, etwas zu definieren, welches gar nicht gibt. Ein Beispiel dafür für etwas, was es nicht gibt, ist die Definition der kleinsten Zahl, welche grösser als 0 ist. Das gibt es nicht. Denn wäre eine solche vorhanden, dann kann ich diese mit x bezeichnen. Dann müsste jedoch auch

 $\frac{x}{2}$

eine Zahl sein, welche grösser als Null ist. Jedoch müsste diese auch kleiner als x sein. Damit könnte jedoch x nicht die kleinste Zahl sein, welche grösser als Null ist. Damit das nicht auch hinsichtlich der Annahme von leeren Mengen passiert, habe ich das kleine Lemma aufgeschrieben. Interessant ist aus meiner Sicht, dass sich der Beweis von nicht leeren Mengen auf die Annahme von wahren Aussagen stützt und somit mehr oder weniger ebenfalls eine Definition ist. Jedoch ist die Annahme von wahren Aussagen bis jetzt immer noch eine Annahme, welche durchaus sinnvoll ist.

Es ist nun am einfachsten, wenn Du Dir unter einer Menge eine Menge von Zahlen vorstellst, auch wenn wenn dieser Mengenbegriff keineswegs so "harmlos³" ist, wie es aussieht. Aber es sei nun M die Menge der Zahlen $1, \frac{1}{2}, \frac{1}{4}$ sowie $\frac{1}{8}$. Dann kann ich das so aufschreiben:

$$M = \left\{1, \, \frac{1}{2}, \, \frac{1}{4}, \, \frac{1}{8}\right\}$$

Die Zahlen 1, $\frac{1}{2}$, $\frac{1}{4}$ sowie $\frac{1}{8}$ werden die Elemente der Menge M geheißen. Die öffnende und geschweifte Klammer ("{" beziehungsweise "}") geben an, dass es sich um eine Mengenbezeichnung handelt. Aber das kann problematisch werden. Ein Problem kann beispielsweise dann auftreten, wenn Bruchzahlen mit Komma geschrieben werden. Im obigen Fall würde dies dann so aussehen:

$$M = \{1, 0, 5, 0, 25, 0, 125\}$$

Na ja, das sieht nicht schön aus. In diesem Fall kannst Du selbstverständlich auch Semikolons⁴ als Zahlentrenner nehmen:

³Keine Angst, es ist sowieso nie von Gefahr für Leib und Leben die Rede. Der Ausdruck "gefährlich" würde bedeuten, dass eine Aussage nicht wahr sein könnte. Wenn es darum geht, dass Du eventuell eine Prüfung nicht bestehen könntest, ausgeschlossen würdest von einem Leben in Anstand und Würde, dauernd Praktikantenjobs erledigen müsstest, 1 Euro-Jobs ausüben dürftest oder so ähnlich - ja, dann ist es wirklich GEFÄHRLICH!

⁴auf gut Deutsch: "Strichpunkt" ";"

$$M = \{1; 0, 5; 0, 25; 0, 125\}$$

Oder aber Du könntest Punkte als Trennzeichen bei Bruchzahlen verwenden, was wie folgt aussehen würde:

$$M = \{1, 0.5, 0.25, 0.125\}$$

Das anderes Problem ist dasjenige, dass in der Definition nichts davon gesagt, wird, dass es sich dabei um endlich viele Symbole handeln muss. Ein guter Teil der Analysis lebt jedoch gerade davon, dass Mengen unendlich viele Elemente besitzen können. Ein Beispiel dafür ist die Menge der natürlichen Zahlen, welche wie folgt definiert werden könnte:

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

Wieder sind die Punkte unsäglich. Denn diese heißen eigentlich: "Frau oder Mann weiß ja, wie es weiter geht". Und ich behaupte: Davon kann nicht ausgegangen werden. Denn damit lässt sich genau nicht rechnen. Wenn Du es ganz exakt aufschreiben möchtest, dann kannst Du es wie folgt aufschreiben, wobei ich zugebe, dass die logischen Verknüpfungen noch nicht behandelt habe (lasse Dich bitte jedoch nicht davon abschrecken, ich werde alle ganz genau erklären - lese einfach weiter!):

(9)
$$\mathbb{N} = \{ x \mid (x = 1) \lor ((y \in \mathbb{N}) \land (x = y + 1)) \}$$

In Worten besagt diese Definition der Menge der natürlichen Zahlen das folgende: "Die Menge der natürlichen Zahlen ist definiert als die Menge der Objekte x, für welche gilt: x ist Eins oder es gibt eine andere natürliche Zahl, welche mit y bezeichnet wird, so dass x=y+1 ist". Der genaue logische Aufbau der Aussage rechts vom Trennstrich "|" muss Dich nicht interessieren. Wesentlich ist nur, dass die Menge so definiert ist, dass ihre Elemente, welche mit dem Symbol x bezeichnet werden, einer Eigenschaft zugeordnet werden. Dies lässt sich dann sprachlich so formulieren: "Eine Menge M ist definiert als die Menge aller Elemente, welche mit x bezeichnet werden, für welche jeweils gilt ("|"). Dabei ist es meines Wissens auch möglich, den Satzteil "für welche gilt" auch mit einem Doppelpunkt ":" abzukürzen. Ich werde mich jedoch an den Trennstrich halten. Die einzelnen natürlichen Zahlen werden dann auch Elemente der Menge der natürlichen Zahlen geheißen.

Nun möchte ich weiter Beispiele für Mengen aufschreiben: Es sei A die Menge aller Automarken⁵. Dann umfasst A mindestens die Automarken "Mercedes", "Citroën", "Toyota", natürlich nebst anderen

 $^{^5}$ Sobald die eine oder andere Automarke verschwindet, muss ich diesen Abschnitt wieder neu schreiben. Wie bereits die Griechen gesagt haben: Παντα ρηει - alles fließt.

Automarken. Dann heißen die Automarken "Mercedes", "Citroën" und "Toyota" die Elemente der Menge aller Automarken.

Oder es sei F die Menge aller Fruchtarten. Dann umfasst F mindestens die Fruchtart "Äpfel", "Birnen", "Bananen", "Aprikosen". Also sind "Äpfel", "Birnen" oder "Bananen" Elemente der Menge aller Fruchtarten.

Wenn ich eine Menge mit der Bezeichnung M und ein beliebiges Element mit der Bezeichnung e habe, dann wird, wie ich es schon geschrieben, jedoch noch nicht gesagt habe, das Symbol der Menge üblicherweise mit einem Großbuchstaben und das Element mit einem Kleinbuchstaben gekennzeichnet. Der Buchstabe "e" ist übrigens keine glückliche Bezeichnung für ein Element. Denn in der Mathematik ist e im Allgemeinen für die sogenannte eulerschen Zahl e definiert, welche ungefähr den Wert 2.718 besitzt. Aber da ich sehr wahrscheinlich erst nach sehr vielen Seiten, wenn überhaupt dazu komme, die eulersche Zahl zu definieren, werde ich mir erlauben, an dieser Stelle sehr trotzdem den Buchstaben "e" als Bezeichnung eines Elements zu definieren. Jetzt kann ich zwei Fälle unterscheiden: Entweder, das Element e gehört zur Menge M oder das Element e gehört nicht zur Menge. Falls das Element e zur Menge M gehört, dann schreibe ich: $e \in M^6$. Falls das Element e nicht zur Menge M gehört, dann schreibe ich $e \notin M$. Ich könnte aber auch schreiben $\neg (e \in M)$. Um Beispiele zu machen: Da "Toyota" eine Automarke ist, gilt "Toyota" $\in A$. Da Aprikosen Früchte sind, gilt "Aprikose" $\in F$. Da jedoch "Mercedes" keine Fruchtart ist, schreibe ich "Mercedes" $\notin F$. Da wiederum Bananen keine Autos sind, schreibe ich "Bananen" $\notin A$.

Mengen sind zusammen mit Aussagen, dass zwei Elemente gleich oder ungleich sind, die kleinsten Bausteine der Logik. Sie entsprechen der Kategorisierung in der menschlichen Entwicklung, also beispielsweise der Aussage: "Kaninchen sind Säugetiere" oder eben "Äpfel sind Früchte". Kinder beginnen in der Regel im Alter von vier bis sechs Jahren, solche Kategorien für ihre Überlegungen zu verwenden.

Wobei, genauer geschrieben, kann bei einer gegebenen Menge M die Aussage $e \in M$ auch als Variablendefinition verwendet werden. Ich mache ein Beispiel: Es sei $M = \{1,3,5,7,9\}$ die Definition der Menge M als diejenige Menge, welche die ungeraden natürlichen Zahlen bis und mit neun definiert. "Ungerade" bedeutet, dass die Zahl, welche mit dem Symbol n bezeichnet werde, entweder 1 ist oder es eine andere natürliche Zahl g gibt (also mit dem Symbol "g" bezeichnet werde) so dass gilt:

$$n = 2 \cdot q + 1$$

Ich möchte kurz zeigen, dass das dies auf die Zahlen der Menge M zutrifft: 1 ist in der Menge M enthalten. Also ist 1 per Definition

 $^{^6}$ " \in " kann als "enthalten" gelesen werden, falls Du den Text auf Deutsch liest

(willkürlicher Festlegung) ungerade. 3 ist ungerade, da gilt:

$$3 = 2 \cdot 1 + 1 = 2 + 1$$

5 ist ungerade, da gilt:

$$5 = 2 \cdot 2 + 1 = 4 + 1$$

7 ist ungerade, da gilt:

$$7 = 2 \cdot 3 + 1 = 6 + 1$$

Und schlussendlich ist 9 ungerade, da gilt:

$$9 = 2 \cdot 4 + 1 = 8 + 1$$

Dann kann mit der Aussage: Es sei e ein Element von M (formal beschrieben mit $e \in M$) verwendet werden, um die Variable e zu definieren (zur Definition einer Variablen siehe Definition 12 oben). Dann ist e ein Metasymbol für eine der Zahlen 1, 3, 5, 7 oder 9. Welches Symbol genau gemeint ist, kann und will bis zu dieser Stelle niemand sagen - auch wenn dies widersinnig erscheint. Das Metasymbol ist gewissermaßen anonymisiert. Anstatt über ein Symbol der Menge M nachzudenken, überlege ich mir, welche wahren Aussagen ich über alle Elemente der Menge M machen kann. Dies ist wieder ein Beispiel für eine Kategorisierung, welche in der präoperativen Stufe der kognitiven Entwicklung nach Piaget beschrieben wird. Damit ist gemeint, dass beispielsweise Tierarten zusammengefasst werden wie "Hunde, Katzen, Kühe und Mäuse sind Säugetiere". Dann kann ich schreiben: "Es sei s ein (Meta-)Symbol für Säugetiere. Dann hat s vier Gliedmaßen, sofern es keine Geburtsmissbildung respektive Unfall erleiden musste." Es kann jedoch auch geschrieben werden, welche gemeinsamen Eigenschaften die aufgezählten Säugetierarten nicht besitzen. Beispielsweise kann ich aufschreiben: "Es gilt nicht, dass s ein Metasymbol für eine Säugetierart ist, welches andere Säugetiere isst. Denn Katzen oder der Hunde essen Fleisch, Kühe und Mäuse jedoch nicht. Angewendet auf mathematische Aussagen wird später also nie ausschließlich die Rede davon sein, dass $e \in M$ sei. Es werden typischerweise Aussagen wie die folgende gemacht

$$\forall e \in M : e \text{ ist ungerade.}$$

Ganz ausgeschrieben bedeutet dies, dass für alle Elemente e in der Menge M gilt, dass e ungerade ist. Nun, da sowohl 1, 3, 5, 7 wie auch 9 ungerade sind, haben wir wohl nichts dagegen einzuwenden - außer dass es wahrscheinlich immer noch fragwürdig ist, für was das gut sei. Jedoch werden später wohl schier unzählige mathematische Aussagen sich wunderbar klar mittels der Variablenschreibweise formulieren, jedoch noch besser beweisen lassen, wenn anstelle der ausgeschriebenen Schreibweise wie "1, 3, 5, 7 sowie 9 sind ungerade" die Schreibweise mittels Eigenschaften (siehe Aussage 9 oben) verwendet wird. Dies ist

mindestens dann bestimmt der Fall, wenn M unendlich viele Elemente besitzt.

Wenn ich eine Menge M definiert habe, dann fordere ich, dass die Menge weder direkt noch indirekt als Element der Menge definiert ist. Ein Beispiel dafür, was nicht geht, ist die folgende Menge: Es sei S die Menge aller Mengen, welche sich selbst nicht als Element enthalten. Das hatte der Mathematiker Cantor bemerkt⁷. Denn diese Menge ist in sich widersprüchlich. Denn es geht um die Frage, ob S in S enthalten sei. Falls ich sage: "Doch, S muss in S enthalten sein, denn S ist auch eine Menge, welche sich nicht selbst als Element enthält", dann ist S gerade eine Menge, welche sich selbst als Element enthält. Also darf S kein Element von S sein. Ist jedoch S nicht in S enthalten, dann ist S einer Menge, welche sich nicht selbst als Element enthält. Also ist S in S als Element enthalten.

Woher kommt der Widerspruch und wie kann er sich auflösen? Der Widerspruch stammt m.E. daher, weil eine Menge sicher syntaktisch beschrieben werden kann. Das Wort syntaktisch bedeutet, dass klar definierte Regeln aufgeschrieben werden können, welche beschreiben, was eine Menge ist und was nicht. In den Abbildungen 1 bis 7 habe ich die Beschreibung einer Menge als Abbildung eingefügt. Ich habe zuerst gedacht, das sei einfach, aufzuschreiben, was eine Menge ist und was nicht. Aber ich glaube, ich habe mich getäuscht. Vielleicht empfindest Du die Darstellung überschaubar. Dann gratuliere ich Dir! Ich finde diese Beschreibung schon sehr unübersichtlich. Die Beschreibung von Mengen mittels Flussdiagrammen habe ich zuerst in einem Buch über Programmierung mittels Modula-2 zuerst gesehen⁸. Ich habe das Buch selbst nicht kapiert. Jedoch fand ich die Beschreibung der Grammatik der Programmiersprache mittels Flussdiagrammen schön. Diese Beschreibung in den Abbildungen der Abbildungen 1 bis 7 kannst Du so lesen: Einerseits kannst Du eine Menge wird so definieren, indem kein beziehungsweise ein Symbol definiert wird. Dabei sollen die Symbole so definiert werden, wie ich es im Kapitel 2 dargestellt habe. Einerseits ist es möglich, die Mengendefinition damit bereits abzuschließen. Dann ist die Menge jedoch nicht näher umschrieben. Das heißt, dass in diesem Fall uns außer dem Namen keine weiteren Eigenschaften der Menge bekannt sind. Aber es ist möglich, auf diese Weise ein Menge zu bezeichnen. Ob das sinnvoll ist, wage ich jedoch zu bezweifeln. Darum kann andererseits die Menge noch weiter beschrieben werden. Entweder, indem eine Bedingung aufgeschrieben wird. Oder es können kein, ein oder mehrere Symbole aufgeschrieben werden. Schlussendlich

⁷Da ich den Beweis nicht mehr im Kopf hatte, habe ich ihn bei http://www.mathe-online.at nachgelesen

⁸Wenn ich mich nicht täusche. dieses Buch (der war PDF ist natürlich Ausgedruckt imaktiviert. lautet er http://www.inf.ethz.ch/personal/wirth/books/Modula2D/)

ABBILDUNG 1. syntaktische Beschreibung eines Operators

Abbildung 2. syntaktische Beschreibung einer Operation

Abbildung 3. syntaktische Beschreibung einer Bedingung

Abbildung 4. syntaktische Beschreibung eines Trennzeichens

können neue Mengen erzeugt werden, indem diese durch mehr oder weniger komplizierte Operationen aus anderen Mengen gebildet werden. Die Operation werden später noch aufgelistet. Ich habe diese ausschließlich hier aufgeschrieben, weil ich aufzeigen möchte, wie Mengen gebildet werden können.

Den Begriff des "maskierten Symbols" wirst Du weiter oben nicht finden. Und nein, dieser Ausdruck ist nicht in der Mathematik geläufig. Dort wird diese Thematik generös umschifft. Dafür kenne ich ihn aus der Informatik. Du kannst jedoch beruhigt sein, denn ich werde den Begriff des maskierten Symbols zwar beschreiben. Aber ich werde ihn später nicht mehr verwenden. Er dient bloß dazu, Dir die Schwierigkeit einer sogenannten hieb- und stichfesten Definition vor Augen zu führen. Weiter bedeute das angespitzte Rechteck eine Entscheidung. Das Gleichheitszeichen mit drei Strichen bedeute definitionsgemäße Gleichheit. Ich möchte kurz beschreiben, was ich überhaupt mit diesem Flussdiagramm ausdrücken wollte: Ein maskiertes Symbol ist zuerst einmal ein Symbol. Ist das Symbol jedoch einer der folgenden Zeichen: "{", "}", ",", "/", dann verwende ich nicht das Symbol, sondern das maskiertes Symbol. Ich verwende also anstelle des Symbols das Symbol, dem jedoch ein Schrägstrich "/" vorangestellt wird. Würde ich bloß "Symbol" schreiben, dann wäre gemäß dieser Beschreibung die folgende Menge zwar syntaktisch korrekt, jedoch von der Bedeutung her ("semantisch") mehrdeutig:

$$M = \{,\}\}, \{,a,/\}$$

Dann wäre es beispielsweise unklar, ob das erste Element jetzt ein Komma und zwei schließende geschweifte Klammern (, }}) oder ,}}, { wäre. Jedoch könnte diese Unklarheit beseitigt werden, indem ein Füllsymbol (in diesem Fall ein Schrägstrich) verwendet würde. So wie ich in der Abbildung 5 die Maskierung definiert habe, geht es darum, dass Also

Abbildung 5. syntaktische Beschreibung der maskierten Symbole

ABBILDUNG 6. syntaktische Beschreibung einer expliziten Mengenbeschreibung

ABBILDUNG 7. syntaktische Beschreibung einer Menge

könnte im obigen Beispiel etwa geschrieben werden:

$$M = \{/,/\}/\},/\{/,a,//\}$$

In diesem Fall hätte die Menge M die folgenden Elemente: Das erste Element wäre ",/ $\}$ / $\}$ ". Es würde also aus einem Komma und zwei schließenden Klammern bestehen. Das zweite Element wäre "/ $\{$ ". Dies wäre dann eine öffnende Klammer. Das dritte Element wäre "a", also der Buchstabe "a". Dieser Buchstabe könnte eventuell als Symbol für etwas anderes verwendet werden könnte. Was das genau ist, wird jedoch im Rahmen dieser Mengenbeschreibung nicht preisgegeben. Das vierte Symbol wäre "/", also ein Schrägstrich.

Das System der Maskierung kommt in der Mathematik übrigens nicht vor. Dafür umso intensiver in der Informatik. Dort dient es dazu, zwischen Symbol und Metasymbol zu unterscheiden. Jedoch werden durch diesen Kunstgriff die Mengen fast nicht mehr lesbar. Aber falls ich dann die Elemente auslese, dann wäre beispielsweise die Aussage

$$, \in M$$

zwar wahr - aber leider schon wieder grenzwertig. Besser wäre es wohl aufzuschreiben, dass

$$','\in M$$

sei. Auch diese Aussage wäre wahr. Und nun kommt natürlich die "nächste Katastrophe". Denn würde ich willkürlich definieren

$$N \equiv M \cup \{\cup\}$$

Nun wäre das natürlich schon wieder gewöhnungsbedürftig. Und ja, wahrscheinlich wäre es eine gute Idee, alle Symbole, welche in irgendeiner Form im Zusammenhang mit der Mengenschreibweise vorkommen, entweder von vornherein mit Apostrophen ('), Anführungs- und Schlusszeichen oder Maskierungzeichen zu maskieren. Aber ich werde jetzt an dieser Stelle abbrechen. Einfach, weil die Diskussion an dieser Stelle bloß zeigen soll, wie schwierig es ist, gute Festlegungen zu finden.

Trotzdem sollte es jetzt möglich sein, beliebige Mengen aufzuschreiben. Eine solche ist ist zum Beispiel

$$\mathbb{Z} = \left\{ z \mid \exists n_1 \, n_2 \in \mathbb{N} : z = (n_1, \, n_2) \right\}$$

Um diese Menge aufzuschreiben, kannst Du in der Abbildung 7 beginnen und dann den mittleren Pfad einschlagen. Das Symbol, welches verlangt wird, ist \mathbb{Z} . Diese Menge ist die übrigens die Definition der Menge aller ganzen Zahlen, wobei jedoch die Addition genauer definiert werden müsste. Anschließend wird das Gleichheitszeichen aufgeschrieben und dann zu expliziten Mengenbeschreibung (siehe Abbildung 6). In dieser expliziten Mengenbeschreibung wird zuerst die öffnende geschweifte Klammer hingeschrieben. Dann folgt ein Symbol, ein vertikaler Trennstrich um zum Schluss eine Bedienung, welche in mathematischer Form hingeschrieben wurde. Diese Bedingung lautet ausformuliert nicht mehr und nicht weniger: Es existieren zwei natürliche Zahlen, welche mit n_1 respektive n_2 benennt sein sollen, so dass gilt, dass z die geordnete Menge aus n_1 und n_2 ist. Eine geordnete Menge werde ich später erklären, wenn ich mich über die ganzen Zahlen unterhalte.

Auf diese Weise sollte es möglich sein, alle Menge in einer Liste einzutragen - in der Menge aller Menge eben. Dass diese Menge aller Menge in der Liste aller Mengen enthalten sein soll oder eben nicht, interessiert meines Erachtens nur unwesentlich. Falls es interessiert, dann führt dies zu einem Widerspruch, welcher oben aufgeschrieben wurde. Aber ich habe ja oben definiert, dass in der resultierenden Liste nicht danach gesucht werden soll, ob die Menge in der Menge enthalten ist. Es ist jedoch sicher richtig, dass darauf hingewiesen wurde, dass es diesbezüglich Schwierigkeiten geben kann. Es wurde meines Erachtens durch Cantor darauf hingewiesen, dass zwischen einer Zusammenfassung von Symbolen (also einer Menge) und einzelnen Symbolen unterschieden werden soll. Ich halte es so, wie ich es gelesen habe (wobei mir im Moment die Quelle entfallen ist): Falls eine Menge definiert wird, dann soll darauf geachtet werden, dass diese Menge nicht "ins Blaue hinaus" definiert wird. Was bedeutet, dass ich darauf achten muss, dass die Elemente gut definiert werden müssen. Und dass kein Element ein Symbol für etwas ist, was gar nicht existiert, oder welches genau wieder auf sich selbst hinweist. Es gibt natürlich Ausnahmen. Eine davon ist eine leere Menge, als Symbol \mathcal{O} . Diese Menge besitzt keine Elemente. Wieso soll das gut sein, etwas aufzuschreiben, was es gar nicht gibt? Es ist schon wichtig, sich zu überlegen, ob etwas überhaupt existieren kann. Und wenn es nicht existiert, dann lohnt es sich, das aufzuschreiben. Dadurch können andere Personen oder ich selbst zu einem späteren Zeitpunkt davon abgehalten werden, nach etwas zu suchen, was nicht existieren kann. Oder nach etwas, was in sich selbst widersprüchlich wäre (vergleiche mit dem Abschnitt 4). Andere Mengen, welche grundsätzlich

vor der Verwendung genau auf innere Widersprüche untersucht werden müssen, sind rekursiv definierte Mengen, wie ich unter der Definition 9 oben gezeigt habe. Das Problem dieser Menge ist, dass gar nicht mehr alle Elemente der Menge aufgeschrieben werden können! Die Frage ist, ob dies sinnvoll ist oder nicht. Diese Frage werde ich später sicher wieder aufnehmen.

Eine andere Lösung des Problems in sich widersprüchlicher Mengen besteht darin, Mengen und Mengen von Mengen und Mengen von Mengen und so weiter separat zu definieren. Dann würden die Mengen von Mengen typischerweise als "Metamengen" definiert. Also sind Mengen und Elemente klar voneinander zu trennen. Eine Menge kann nur innerhalb von Mengen, welche Mengen als Elemente besitzen, ein Element sein. Die folgende Menge wäre in diesem Sinn falsch formuliert.

$$M_1 = \{1, \{2\}\}\$$

Dennoch wird diese Schreibweise oft in der Mathematik angewendet. Doch wieso wäre diese Schreibweise falsch? 1 und die Menge mit dem Element 2 wären Elemente der Menge M_1 . Dies bedeutet, dass ein Element und eine Menge mit einem Element in der gleichen Menge verwendet würden. Richtig formuliert müsste es in diesem Zusammenhang heißen: Entweder schreibe ich

$$M_2 = \{1, 2\}$$

oder aber

$$M_3 = \{\{1\}, \{2\}\}$$

 M_2 ist dann die Menge mit den Elementen 1 respektive 2, M_3 ist dann die Metamenge, welche die Mengen $\{1\}$ respektive $\{2\}$ enthält. Aber ich vermute (ich weiß es nicht), dass jede in diesem Sinn falsch aufgeschriebene Menge in einer richtig geschriebene Menge umgewandelt werden kann. Im Moment möchte ich mir jedoch keine Gedanken darüber machen, ob das auch wirklich so ist.

Wie oben bereits erwähnt spielen in sich selbst widersprüchliche Mengen für die weiteren Betrachtung eine eher untergeordnete Rolle. In der Logik, so wie ich sie auf Wikipedia überflogen habe, wird das jedoch "breitgewalzt", also ausführlich besprochen werden. Und wie schon besprochen, kapiere ich die Ausführungen jeweils nur teilweise. Ich werde im folgenden von einer "wohldefinierten Menge" sprechen, wenn ich zwar eine beliebige, jedoch nicht potentiell in sich oder in Bezugu auf andere Mengen widersprüchlichen Menge im Kopf habe. Ein solche Menge, welche sicher nicht in sich widersprüchlich ist, ist beispielsweise die Menge $M = \{0, 1, 2, 3, 4, 5, 6, 7\}$. Bevor ich weiter gehe, möchte ich noch aufschreiben, wann zwei Mengen als gleich zu betrachten sind.

DEFINITION 6. Es seien M und N beliebige Mengen. Ist dann jedes Element von M in der Menge N enthalten und umgekehrt jedes Element der Menge N in der Menge M, dann dann seien die Mengen gleich.

Ich möchte nun Beispiele von Mengengleichheiten respektive Mengenungleichheiten aufschreiben Es seien beispielsweise die Mengen M und P wie folgt gegeben:

$$M = \left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right\}$$

$$P = \left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right\}$$

Dann sind die Mengen M und und P gleich. Denn jedes Element von M kommt in der Menge P und jedes Element von P kommt in der Menge M vor, wie Du wohl ebenfalls unmittelbar siehst. Auch die Mengen

$$S = \left\{ \frac{1}{2}, 1, \frac{1}{4}, \frac{1}{8} \right\}$$

$$T = \left\{ \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, \frac{1}{1} \right\}$$

sind gleich der Menge M. Erstaunlicherweise sind jedoch die folgenden Mengen M und Q ebenfalls gleich:

$$M = \left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right\}$$

$$Q = \left\{1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right\}$$

Der Grund dafür ist, dass alle Elemente von M (also die Elemente 1, $\frac{1}{2}$, $\frac{1}{4}$ sowie $\frac{1}{8}$) sowohl ebenfalls in der Menge Q vorkommen. Ebenso kommen die Elemente von Q (also die Elemente 1, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{4}$ sowie $\frac{1}{8}$) ebenfalls in der Menge M vorkommen. Jetzt möchte ich selbstverständlich noch ein Beispiel für zwei Mengen aufschreiben, welche nicht gleich sind. Es seien die Mengen

$$M = \left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right\}$$

$$R = \left\{0, 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right\}$$

gegeben. Dann sind zwar alle Menge von M in der Menge R enthalten. Jedoch sind nicht alle Elemente von R in der Menge M enthalten. Denn 0 ist zwar in der Menge R, nicht jedoch in der Menge M enthalten.

Die Beispiele mögen Dir wahrscheinlich lächerlich einfach erscheinen. Tatsächlich sind jedoch viele äußerst vertrackte Beweise in der Analysis derart aufgebaut, dass im Kern gezeigt wird, dass zwei Mengen entweder gleich oder ungleich sind.

Ich habe mir erlaubt, die Menge Ω als diejenige Menge zu definieren, welche keine in sich oder gegenüber anderen Aussagen widersprüchliche Aussagen enthalte. Obwohl solche widersprüchliche Aussagen sehr wohl existieren (siehe dazu Abschnitt 4). Das macht für die Logik meines Erachtens keine gravierende Probleme. Denn falls eine A eine in sich widersprüchliche Aussage ist, dann kann sie keine wahre Aussage sein. Also muss sie in der Menge derjenigen Aussagen enthalten sein, welche nicht wahr ist.

Bevor ich weitere Elemente vorstelle, möchte ich kurz das erste Mal die leere Menge definieren. Es gelte:

DEFINITION 7. Es sei $\emptyset \equiv \{\}$ die leere Menge. In Worten: Die leere Menge \emptyset sei definiert als diejenige Menge, welche keine Elemente besitze. Wenn ich umgekehrt schreibe, eine (wohldefinierte) Menge M sei nichtleer (oder gewöhnlicher geschrieben: nicht leer), dann meine ich, dass gilt

$$M \neq \emptyset$$

In Worten: Ich meine damit, dass M nicht leer sei. Also muss M mindestens ein Element besitzen.

KAPITEL 6

Über das sogenannte Bilderverbot in der Mathe

Vorbemerkung: Diese Bezeichnung "Bilderverbot" ist eine Bezeichnung, welche ich selber gewählt habe. Ich werde jedoch noch erklären versuchen, wieso ich das so gemacht habe.

Ich möchte ein Beispiel machen: Jemand sagt, dass gilt

$$\sum_{k=0}^{n} (2 \cdot k + 1) = (n+1)^{2}$$

Was bedeutet diese Formel? In Worten besagt diese Formel: Gegeben sei die Menge der ungeraden Zahlen. Das sind etwa die Zahlen 1, 3, 5, aber auch 111, 127. Also die Zahlen welche ich dadurch bilden kann, dass ich eine beliebige "natürliche Zahl" abzüglich 1 nehme, diese mit 2 multipliziere und dann 1 hinzuzähle. Beispiel: Wenn ich 42 als Ausgangszahl nehme, dann kann ich rechnen

$$2 \cdot 42 + 1 = 84 + 1 = 85$$

Nun ist die Behauptung: Wenn ich eine bestimmte Zahl habe, sagen wir 3. Dann bestimme ich die entsprechende ungerade Zahl, indem ich rechne:

$$2 \cdot 3 + 1 = 6 + 1 = 7$$

Weiter zähle ich alle ungeraden Zahlen welche kleiner oder gleich diese Zahl (7 im Beispiel) sind, zusammen. Dann erhalte ich

$$1+3+5+7=4+12=16$$

Also behaupte ich, dass diese Summe gleich die ursprüngliche Zahl (3) mal sich selber ist. Und hier kommt das "Bilderverbot" ins Spiel: Weil ich gesehen habe, dass die Behauptung für die Zahl 3 stimmt, heißt dies nicht, dass dies für alle Zahlen gelten muss. Und ja, die Regel ist üblicherweise ist schon sinnvoll. Übrigens ist es auch Sinnvoll, eine allgemeine Aussage zu widerlegen, indem ein Gegenbeispiel gefunden wird. Ein gutes diesbezpgliches Beispiel finde ich die sogenannten Mersenne-Zahlen¹. Dies sind spezielle gebildete Zahlen. Ursprünglich war die Idee, dass alle diese Zahlen sogenannten Primzahlen seien, also solche, welche ohne Rest nur durch 1 und die Zahl selber geteilt werden können. Jedoch wurde dann eine Zahl gefunden, welche eine solche Mersenne-Zahl ist, jedoch trotzdem keine Primzahl ist. Also kann ich

¹siehe beispielsweise https://de.wikipedia.org/wiki/Mersenne-Zahl

schließen, dass ein Beispiel zwar ein gutes Mittel ist, um einen mathematischen Satz zu widerlegen - jedoch nicht, um einen mathematischen Satz zu beweisen.

Das Wort "Bilderverbot" habe ich mir übrigens von der christlichen Religion ausgeleiht. Dort wurde es ja bereits vielfach selber ad absurdum geführt (also durch sich selber widerlegt). In den zehn Geboten von Mose wird geschrieben: "Du sollst dir kein Gottesbild machen" (zitiert von https://de.wikipedia.org/wiki/Bilderverbot). Warum das so geschrieben wurde, ist natürlich im Nachhinein schwierig zu erraten. Und ja: Gerade die römisch katholische Kirche (zu welcher ich selber gehöre) hat sich eigentlich immer darum foutiert (also hat dieses Gebot nie eingehalten). Dieses Bilderverbot besagt im Kern, dass die Frage, wer oder was der Begriff der Göttin oder des Gottes sein könnte, sich selber eigentlich verbietet. Von mir gesehen wäre diese dieses Gebot schon sinnvoll - aber wie schon geschrieben: Daran hält sie in der römisch katholischen Kirche niemand. Und wieso ist das Gebot sinnvoll? Weil die Autoren (leider waren es wahrscheinlich wirklich fast immer Männer, welche die Bibel niederschrieben) an einem bestimmten Punkt in der Niederschreibung des Werks der Meinung waren, dass es nicht möglich sei, zu beschreiben, was unter dem Begriff "Gott" zu verstehen sei. Sie stellten sich vor, dass da etwas sei, was die Geschicke der Welt lenken würde. Was dieses etwas sei, das entziehe sich jedoch der menschlichen Beschreibung. Es wurde auch die Meinung vertreten, dass Gott sehen unweigerlich den eigenen Tod nach sich ziehen würde. Weil die Kraft, welche das Universum geformt habe, so gross und mächtig sein müsse, dass jedes menschliche Leben daneben winzig sein müsse. Denke dabei an Phänomene wie Stürme, die unvollstellbare Grösse der Sonne, neben welcher die Erde klein wie eine Stecknadel erscheint. Oder Erdbeben, Tsunamis, Stürme, Tornados, Vulkanausbrüche. Wenn auch die moderne Naturwissenschaft auch die Mechanismen dieser Erscheinungen besser beschreiben kann - steuern oder gar regeln kann die Naturwissenschaft diese Phänomene nicht. Die Menschheit kann beispielsweise Erdbeben immer noch nicht gut vorhersagen oder die Gewalt von Vulkanausbrüchen begrenzen. Aus diesem Grund finde ich eigentlich ganz sinnvoll, wenn der Gottesbegriff so gehandhabt wird, dass Gott ein Bild ist für das Rätsel unserer Existenz.

Aber auch in der Mathematik hält sich niemand an das "Bilderverbot". Wenn beispielweise ein Beweis für einen Beweis nachvollzogen wird, dann wird häufig eine Skizze angefertigt, um den Beweis für eine bestimmte Situation nachvollziehen zu können. Dies auch im Wissen darüber, dass jede Skizze nur einen bestimmten möglichen Fall beschreiben kann, in welchem ein mathematischer Satz gilt. Obwohl viele Sätze häufig unendlich viele Fälle aufs Mal beschreiben. Trotzdem hilft es für das Erinnern eines Beweises enorm, wenn die Schritte exemplarisch nachvollzogen werden. Jedoch gibt es eine wesentliche Schranke:

Abbildung 1. Venn-Diagramm einer Menge

ABBILDUNG 2. nicht korrektes Venn-Diagramm einer Menge

Abbildung 3. korrigiertes Venn-Diagramm der vorhergehenden Abbildung

Wenn ein mathematischer Satz bewiesen wird, dann reicht es nicht, falls der mathematische Satz an wenigen Beispielen bewiesen wird. Dann wird es sinnvoll, wenn der mathematische Satz für alle Fälle bewiesen wird. Und falls dies nicht geht, dann ist es üblich, den Satz als Vermutung aufzuschreiben und nicht als Satz oder den Satz nur für diejenigen Fälle zu beschreiben, in welchen er gültig ist.

Doch wieso schreibe ich dies an dieser Stelle auf? Ich möchte hier ein erstes Mal mir sozusagen "die Hände schmutzig machen" und Venn-Diagramme beschreiben. Diese dienen zur Visualisierung des Mengenbegriffs und werden in der Mathematik oft verwendet. Obwohl sie für sich selber betrachtet nur einen begrenzten Wert besitzen. In der 1 ist das Venn-Diagramm einer Menge mit der Bezeichnung "A" abgebildet, welche selber nicht leer sei.

Und nun möchte ich damit beginnen, die Eigenschaften des Venn-Diagramms zu beschreiben - so gut wie ich es kenne und kann. Das in der Abbildung gezeigte Diagramm zeigt die zwei Mengen mit den Bezeichnungen A und B. Dabei gilt

```
A = \{\text{``Kamel''}, \text{``Dromedar''}, \text{``Pfeifhase''}\} B = \{\text{``Pfeifhase''}, \text{``Seekuh''}, \text{``Elefant''}, \text{``Klipppschliefer''}\} C = \{\}
```

Als einziges Element ist "Pfeifhase" sowohl in den Mengen A wie auch B vorhanden.

Es scheint mir wesentlich zu sein, dass ein Element genau einmal in einem Venn-Diagramm eingezeichnet wird. Denn sonst stimmen die Venn-Diagramme aufgrund der Definition der Symbolgleichheit nicht mit den entsprechenden Mengenaussagen überein. In der Abbildung 2 ist etwa das Element mit der Bezeichnung "böses Element" sowohl in der Menge A wie auch B eingezeichnet. Das ist jedoch nicht korrekt. In der Abbildung 3 habe zu zeichnen versucht, wie das korrekt gezeichnet werden müsste.

Mehr zeigt das abgebildete Venn-Diagramm nicht. Manchmal werden noch Punkte eingezeichnet für einzelne Elemente. Die Farben sind nicht obligatorisch (aber es sieht doch schöner aus mit Farben, oder

nicht?). Die Elemente können mit oder ohne Anführungs- oder Schlusszeichen aufgeschrieben werden. Häufig werden Zahlen oder Anführungs- und Schlusszeichen aufgeschrieben. Die Mengen werden als Kreise oder Ellipsen (etwa "eiförmige Kreise") gezeichnet. Das hat den Vorteil, dass Du besser sehen kannst, wie gross eine Menge ist. Dabei wird angenommen, dass die Mengenbegrenzung keine Ecken hat. Darum gehört der "Pfeifhase" sowohl zur Menge A wie auch zur Menge B. Die Menge C ist speziell. Denn sie ist die sogenannte "leere Menge". Schlussendlich spielt es keine Rolle, mit welcher Farbe die Elemente geschrieben werden. Auch spielt die Hintergrundfarbe der Mengen keine Rolle.

Ab und zu werden auch keine Elemente in die runden Mengen eingezeichnet. Dann ist ist die Meinung, dass die Menge durch die Punkte innerhalt der runden Mengen definiert werden. Dann besteht jedoch eine Schwierigkeit darin, leere Menge zu zeichnen.

Ich werde die Venn-Diagramme erst wieder zur Illustration von Mengenoperationen heranziehen (vergleiche mit dem Kapitel 26). Bis dann bleibt diese Definition der Venn-Diagramme relativ blutleer. Venn-Diagramme sind meines Erachtens nicht schwierig zu verstehen. Jedoch scheint der praktische Nutzen von Venn-Diagrammen relativ beschränkt zu sein. Soll deswegen auf sie verzichtet werden? Nein, sicher nicht. Denn sie können überaus nützliche Dienste erweisen. Auch wenn mit diesen Diagrammen nicht alles bewiesen werden kann, können sie Sachverhalte auf eine gute Art darstellen.

KAPITEL 7

Warum werden Fälle in logischen Tabellen geordnet?

Dass diese Auflistung von Fällen vor den eigentlichen Definitionen geschrieben wird, erstaunt Dich vielleicht. Es geht dabei um folgendes: Logische Verknüpfungen verbinden eine oder mehrere Aussagen zu neuen Aussagen. In den Kapitel 8 bis 16 wirst Du insgesamt 8 verschiedene Verknüpfungen kennen lernen (die Identität nicht mitgezählt). Weiter wirst Du in den darauf folgenden Sätzen 13 und folgende Anwendungen dieser Definitionen kennenlernen. Die Eigenschaften der Verknüpfungen werden dabei immer wieder so vorgestellt: Es seien entweder eine, zwei oder mehr Aussagen gegeben, welche mit den Buchstaben A respektive B, C abgekürzt werden. Und dann wird für jede Kombination der Wahrheitsgehalte der Aussagen festgestellt, ob die verknüpften Aussagen wahr oder nicht wahr sind. Dabei sind alle Kombinationen immer auf die gleiche Art aufgelistet (vergleiche mit dem Tabellen 1 bis 6). Ist nur eine logische Variable beteiligt, dann wird der Tabellen 1 respektive 2 aufgelistet. "Vor. A" bedeutet dabei "Voraussetzung der Aussage mit dem Symbol A". Entsprechend heißt "Vor. B" respektive "Vor. C" "Voraussetzung der Aussage mit dem Symbol B" respektive "Voraussetzung der Aussage mit dem Symbol C". Zurück zur Tabelle 1. In den Zeilen wird bezüglich der Voraussetzung der Aussage mit dem Symbol aufgelistet, dass zuerst A nicht wahr, anschließend, dass A wahr sei. Wie ich oben dargelegt habe, existieren wahre Aussagen nach Annahme. An dieser Stelle nehme ich auch an, dass es nicht wahre Aussagen gibt. Eine davon dürfte sein: "Alle Menschen haben genug essen und genug zu trinken". Leider ist diese Aussage, so wie es scheint, nicht wahr. Trotzdem möchte ich weiter unten im Kapitel 20.26 zeigen, dass aufgrund der Annahme, dass es wahre Aussagen gibt und der Festlegung der Regeln der elementaren Logik sich zeigen lässt, dass auch Aussagen geben muss, welche nicht wahr sind. Noch einmal zurück zur Auflistung der Aussagen: Warum wird gerade diese Reihenfolge gemacht? Mit dieser Anordnung geht kein Fall verloren. Dies habe ich versucht, in der zweiten Tabelle 2 der Auflistung der Fälle von einer logischen Variablen zu zeigen. In dieser Tabelle wird 0 hingeschrieben, falls die Aussage mit der Bezeichnung A nicht wahr ist. Ist die Aussage A wahr, dann

¹Eine Kombination ist eine mögliche Zusammensetzung

TABELLE 1. 1. Schema Fallunterscheidungen für logische Aussagen mit einer logischen Variablen

Aussage/ Fall Nr.	Vor. A
1	$\neg A$
2	A

TABELLE 2. 2. Schema Fallunterscheidungen für logische Aussagen mit einer logischen Variablen

Aussage/ Fall Nr.	Vor. A	Wert
1	0	$0 \cdot 2^0 = 0 = 1 - 1$
2	1	$1 \cdot 2^0 = 1 = 2 - 1$

TABELLE 3. 1. Schema Fallunterscheidungen für logische Aussagen mit zwei logischen Variablen

Aussage/ Fall Nr.	Vor. A	Vor. B
1	$\neg A$	$\neg B$
2	$\neg A$	B
3	A	B
4	A	$\neg B$

schreibe ich eine 1 hin. In dieser Tabelle siehst Du, dass sich die Nummer des Falls mit dem Wahrheitswert der Aussage A verknüpfen lässt gemäß der Formel, welche in der Spalte mit der Bezeichnung "Wert" jeweils für den entsprechenden Fall ausgerechnet wird. Dabei sei $2^0 \equiv 1$, $2^1 \equiv 2 \cdot 2^0 = 2 \cdot 1 = 2$, $2^2 \equiv 2 \cdot 2^1 = 2 \cdot 2 = 4$, $2^3 \equiv 2 \cdot 2^2 = 2 \cdot 4 = 8$. Wobei \equiv mit "definiert gleich" übersetzt werden kann. Das bedeutet, dass die Teile links und rechts gleich sind, aber nicht, weil dies so berechnet oder hergeleitet werden kann. Sondern, weil das so festgelegt wird, also aufgrund einer Annahme. Ich möchte nicht verschweigen, dass anstelle von \equiv auch oft := geschrieben wird, da dies einfacher zu schreiben ist (wenn es ohne "Tex" oder "LaTex" geschrieben wird). Zurück zu den beiden Tabellen mit der Auflistung der Fälle für eine logische Variable: Diese Tabelle finde ich relativ langweilig, weil bei einer logischen Variable der Überblick über die möglichen Wahrheitswerte der Variable wohl kaum verloren geht.

Bei zwei Fällen ist es schon ein wenig interessanter, wie Du in den Tabellen 3 respektive 4 nachschlagen kannst. So richtig Sinn macht das Ganze bei drei logischen Variablen. Diese habe in den Tabellen 5

7. WARUM WERDEN FÄLLE IN LOGISCHEN TABELLEN GEORDNET? 141

TABELLE 4. 2. Schema Fallunterscheidungen für logische Aussagen mit drei logischen Variablen

Aussage/ Fall Nr.	Vor. A	Vor. B	Wert
1	0	0	$0 \cdot 2^1 + 0 \cdot 2^0 = 0 = 1 - 1$
2	0	1	$0 \cdot 2^1 + 1 \cdot 2^0 = 1 = 2 - 1$
3	1	0	$1 \cdot 2^1 + 0 \cdot 2^0 = 2 = 3 - 1$
4	1	1	$1 \cdot 2^1 + 1 \cdot 2^0 = 3 = 4 - 1$

TABELLE 5. 1. Schema Fallunterscheidungen für logische Aussagen mit drei logischen Variablen

Aussage/ Fall Nr.	Vor. A	Vor. B	Vor. C
1	$\neg A$	$\neg B$	$\neg C$
2	$\neg A$	$\neg B$	C
3	$\neg A$	B	$\neg C$
4	$\neg A$	B	C
5	A	$\neg B$	$\neg C$
6	A	$\neg B$	C
7	A	B	$\neg C$
8	A	B	C

TABELLE 6. 2. Schema Fallunterscheidungen für logische Aussagen mit drei logischen Variablen

Auggaga /				
Aussage/ Fall Nr.	Vor. A	Vor. B	Vor. C	Wert
ган ти.				
1	0	0	0	$0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 0 = 1 - 1$
2	0	0	1	$0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 1 = 2 - 1$
3	0	1	0	$0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 2 = 3 - 1$
4	0	1	1	$0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 3 = 4 - 1$
5	1	0	0	$1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 4 = 5 - 1$
6	1	0	1	$1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5 = 6 - 1$
7	1	1	0	$1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 6 = 7 - 1$
8	1	1	1	$1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 7 = 8 - 1$

respektive 6 aufgelistet. Und in den jeweils zweiten Tabellen habe ich die Herleitung der Zeilennummern aufgrund der Fälle aufgezeigt.

Vielleicht ist es Dir aufgefallen, dass in den jeweiliegen Tabellen jeweils von 0 bis 7 und nicht von 1 bis 8 durchgezählt wird. Dies hängt damit zusammen, dass mit zwei Symbolen (0 respektive 1) und drei Ziffern (also wie 101) 8 Zahlen, jedoch von 0 bis 7 und nicht von 1 bis 8

gebildet werden können. Sogar wenn Du die obige Rechnung verstehen solltest, wirst Du Dir wahrscheinlich immer noch die Frage stellen, wozu ich dieses Schema aufgestellt habe. Wieso so kompliziert, falls es einfach auch geht? Der Hinweis, dass ich auch dies in erster Linie abgeschrieben habe, mag Dich wahrscheinlich nicht zufrieden zu stellen. Noch einmal: Dieses Schema hilft, Übersicht zu gewinnen. Wenn einfach einmal mit einem Fall begonnen wird, und dann den nächsten Fall betrachtet wird, dann verliere ich schnell einmal die Übersicht. Welchen Fall habe ich jetzt bereits behandelt, und welchen Fall gilt es noch zu behandeln? Diese ordnende Funktion der Mathematik ist nicht zu unterschätzen. Schließlich hat sich die Mathematik offenbar aus dem Bemühen unserer Vorfahren in Indien und Mesopotamien entwickelt, Übersicht darüber zu entwickeln, was in welcher Menge vorhanden ist (vor allem die Anzahl von Getreidekrügen oder Kühen oder Ochsen oder sonstigen Lebensmitteln). Ich kann jedoch nicht verschweigen, dass ich immer mit dem Chaos kämpfe, und leider träume ich immer davon, dass mein Leben ein wenig mehr Ordnung bekommt.

ordnende Funktion der Mathematik

Es gibt noch eine weitere Möglichkeit, wie Du Dir die Reihenfolge der Fälle m.E. gut merken kannst. Und zwar ändert in der letzten Spalte der Wert der logischen Variablen jede Zeile. In der zweitletzten Zeile ändert der Wert der logischen Variablen nur jede jede zweite Zeile. Und in der ersten Spalte ändert der Wert der logischen Variablen nur noch jede vierte Spalte. Wenn es eine noch eine Spalte weiter links gäbe, dann würde diese nur noch jede achte Spalte ändern. Wenn Du Dir die Zahlen überlegst, dann sind dies 1, 2, 4, 8,... Nachher würde 16, dann 32, dann 64 und so weiter folgen. Also immer Multiplikation mit 2.

Nachdem ich jetzt über die Voraussetzungen gesprochen habe, möchte ich jetzt die logischen Verknüpfungen vorstellen.

KAPITEL 8

Was ist eine "Negation"?

Falls eine Aussage nicht wahr ist, dann muss dies besonders gekennzeichnet werden. Ansonsten würde ja die Aussage als wahr "verkauft", also als wahre Ausgabe dargestellt. In der Logik wird dafür das "¬"-Zeichen verwendet. Dieses Zeichen beutet also: Das, was nachher aufgeschrieben wird, ist nicht wahr. Wird mit A das Symbol einer Aussage bezeichnet, so wird mit $\neg A$ die Negation der Aussage, auf Deutsch etwa die Verneinung der Aussage, bezeichnet. Eigentlich könntest Du Dir sagen: "Wieso schreibst Du es dann trotzdem auf, wenn es schon nicht stimmt?" Nun, diese Frage ist berechtigt. Aber manchmal ist es eben trotzdem wichtig, sich Sachen zu überlegen, welche sich dann als falsch herausstellen. Beispielsweise ist es wichtig, wenn aufgeschrieben wird, dass Knollenblätterpilze¹ nicht essbar sind. Formal würde das so geschrieben werden:

(10) ¬(Knollenblätterpilze sind essbar)

Nebenbemerkungen:

- In einer Diskussion mit einem lieben Freund ist die Bemerkung gefallen, Knollenblätterpilze seien auf jeden Fall essbar, das was nach dem Verzehr kommen würde, sei zu diskutieren. Ich wollte habe schon mit der Korrektur begonnen, da habe ich mir gedacht: "Moment, ich schaue nach, wie der Begriff definiert ist. Und da habe ich wirklich gelesen, dass das wirklich so korrekt beschrieben ist. Knollenblätterpilze sind demnach wirklich genau dann essbar, falls sie nicht giftig sind.
- Ich hätte schreiben sollen "¬(**grüne** Knollenblätterpilze sind essbar)", da es mehrere Arten von Knollenblätterpilzen gibt. Aber vielleicht macht es dies noch interessanter. Denn dann wird es noch schwieriger, dieser Aussage einen Wahrheitswert zuzuordnen, also also zu bestimmen, ob die Aussage, "Knollenblätterpilze sind essbar" wahr ist oder nicht.

Doch zurück zur eigentlichen Aussage: Die Klammer habe ich wieder geschrieben, damit klar wird, dass die ganze Aussage nicht gültig ist,

¹Knollenblätterpilze sind Pilze, welche so giftig sind, dass ihr Verzehr tödlich sein kann. Heute (4. Januar 2012) habe ich in einer Gratiszeitung ("Blick am Abend") gelesen, in Australien seien Personen gestorben, weil sie Knollenblätterpilze gegessen hätten. Ich habe jedoch nicht gewusst, dass es in Australien auch Knollenblätterpilze gibt.

und nicht etwa nur der erste Teil, also "Knollenblätterpilze). Es ist wieder nicht üblich, Wörter in einer mathematischen Formel zu verwenden. Aber keine Angst: Weiter unten wird die "reine" mathematische Formulierung hingeschrieben. Der obige Satz könnte auch auf eine andere Art geschrieben werden: "Knollenblätterpilze sind nicht essbar". Aber weil das Wort "nicht" in der mathematischen Literatur so oft vorkommt, wurde es offenbar als zweckmäßig erachtet, dem Wort "nicht" ein eigenes Symbol zur Verfügung zu stellen. Weiter besteht meines Erachtens ein gewisser Unterschied, wenn geschrieben wird: "Die Aussage "Knollenblätterpilze sind essbar' ist nicht wahr", im Gegensatz zur Aussage "Die Aussage "Knollenblätterpilze sind essbar' ist falsch". Du wirst dies vielleicht für eine Spitzfindigkeit halten. Jedoch ist es möglich, dass Du Knollenblätterpilze kennst, jedoch aus Vorsicht noch keinen gegessen hast (was ich Dir auch DRINGEND anrate: Esse NIE Knollenblätterpilze!). Aber Du weißt nicht, ob Knollenblätterpilze essbar sind. Dies möchtest Du gerne als mathematische Formel aufschreiben. Nun ist es so, dass die elementare Logik Dir zwei Möglichkeiten gibt, dies aufzuschreiben. Entweder Du schreibst "Es gilt nicht, dass Knollenblätterpilze essbar sind". Oder Du schreibst: "Es gilt, dass Knollenblätterpilze essbar sind", wobei jedoch, und das möchte ich noch einmal betonen, diese Aussage NICHT wahr ist². Also müsstest Du die erste Variante aufschreiben: "Es gilt nicht, dass Knollenblätterpilze essbar sind", obwohl, und dies ist jetzt gerade der Witz der Sache, Du nicht weißt, ob dies auch so stimmt. Denn Du hast, und das ist sehr vernünftig, bis jetzt (und wirst es hoffentlich auch in Zukunft) nicht versucht, selbst zu untersuchen, ob Knollenblätterpilze essbar sind.

Es gibt jetzt noch zwei Argumente, welche ich diesbezüglich einbringen will. Das erste Argument lautet, dass die naive Logik die Wörter "vielleicht" oder "wahrscheinlich" oder "eventuell" oder so ähnlich vermeidet. Umgangssprachlich würde ich etwa schreiben: "Es ist wahrscheinlich, dass Knollenblätterpilze nicht essbar sind." Aber genau diese Möglichkeit vermeidet die naive Logik. Entweder gilt es, oder es ist nicht wahr, dass es etwas gilt. Nichts dazwischen. Das ist ein Unterschied zur Alltagssprache. Das zweite Argument ist, dass Wahrscheinlichkeiten vermieden werden. Obwohl die Wahrscheinlichkeit selbst ein mathematischer Begriff ist, welcher noch genauer zu definieren wäre. Aber in der Logik wird auf Wahrscheinlichkeiten bewusst verzichtet. Im Fall der Knollenblätterpilze wäre die Anwendung von Wahrscheinlichkeiten sowieso ein "Kaffeesatzlesen", sprich unseriös. Denn was soll ich schreiben? "Das Risiko, dass Knollenblätterpilze giftig, ja sogar tödlich sind, beträgt etwa 90%"? Wie komme ich auf diese Zahl? Ich habe

²Mir scheint es unmöglich, die zweite Variante aufzuschreiben, denn dies wäre die Einladung zu einem tödlichen Mahl.

keine Ahnung, welche Zahl ich einsetzen soll. Ich weiß ja nicht, ob Knollenblätterpilze essbar sind. Also ist auch dieser Weg aus meiner Sicht nicht praktikabel.

Vielleicht denkst Du jetzt: "Was soll ich mit Knollenblätterpilzen, ich möchte Mathematik betreiben?" Stimmt, jedoch gibt es auch in der Mathematik Aussagen, von welchen wir nicht wissen, ob sie zutreffen oder nicht. Dann ist es aus Sicht der Logik nicht zulässig, zu sagen, dass die Aussage wahr ist. Also müsstest Du schreiben, dass die Aussage nicht wahr ist. Obwohl die Aussage wahr sein könnte. Aber die Logik verbietet es, eine Aussage als wahr hinzustellen, obwohl nicht sicher ist, ob sie wahr ist oder nicht. Auf der anderen Seite ist es jedoch sehr wohl möglich, von einer Aussage anzunehmen, dass sie nicht wahr sei, obwohl sie wahr ist. Das ist weit weniger tragisch. Denn daraus können keine falschen Schlüssen gezogen werden (vergleiche mit dem "Konservendosenwitz" von Kapitel 2).

Und wieder gibt es zwei Ausnahme zu der Regel, dass Sachen nicht aufgeschrieben werden sollen, welche nicht zutreffen. Die erste ist der Widerspruchsbeweis. Dieser wird unter dem Abschnitt 20.7 präsentiert. Die zweite ist, dass Vermutungen als solche hingeschrieben werden. Also müsste ich, wenn ich es wirklich seriös angehen möchte, schreiben:

Vermutung 8. Es ist zu vermuten, dass Knollenblätterpilze giftig sind.

Also kannst Du erkennen, dass es in der Mathematik eine unbedingte Liebe zur Wahrheit gibt. Auch wenn es so aussehen sollte: Wahre und nicht wahre Aussagen sind in der Logik und somit auch in der Mathematik nicht gleichberechtigt. Es werden immer nur wahre Aussagen aufgeschrieben, nie nicht wahre. Es wird also nie bewusst geschummelt oder noch schlimmer, gelogen. Zum Schluss möchte ich Dir einen Slogan vorstellen, welcher meine Gedanken so ziemlich zusammenfassen sollte: "Nicht wahr" ist nicht das Gleiche wie "falsch". Ich meine damit, dass die Begriffe "Eine Aussage ist nicht wahr" in meinen Augen nicht das gleiche meint wie "Eine Aussage ist falsch". Wenn ich schreibe: "Die Aussage, Alle Hunde essen in der Nacht, wenn niemand zusieht, Pizza' ist nicht wahr", dann ist das zwar an den Haaren herbei gezogen. Aber es ist nicht nicht die gleiche Aussage wie "Die Aussage 'Alle Hunde essen in der Nacht, wenn niemand zusieht, Pizza' ist falsch". Denn im ersten Fall gebe ich zu erkennen, dass ich es nicht weiß, ob alle Hunde in der Nacht, wenn niemand zusieht, Pizza essen. Also schreibe ich, dass ich nicht sagen kann, dass dem so ist. Aber eben auch nichts anderes. Während dem ich mich im zweiten Fall ("Die Aussage 'Alle Hunde essen in der Nacht, wenn niemand zusieht, Pizza' ist falsch") einen Beweis dafür liefern muss. Ich muss also einen Hund finden, den ich nicht beobachte, welcher aber, wenn alle Menschen schlafen (was wahrscheinlich schwierig zu beweisen sein dürfte, dass dies je einmal zutrifft) eben

nicht wahr ungleich falsch nicht Pizza isst. Erst wenn ich "hieb- und stichfest" beweisen kann, dass ein Hund in diesem Moment nicht Pizza gegessen hat, dann kann ich sagen, dass die Aussage "Alle Hunde essen in der Nacht, wenn niemand zuschaut und zusieht, Pizza" falsch ist. Der ersten Aussage "Die Aussage , Alle Hunde essen in der Nacht, wenn niemand zusieht, Pizza' ist nicht wahr" kann ich ohne weiteres zustimmen. Die zweite "Die Aussage Alle Hunde essen in der Nacht, wenn niemand zusieht, Pizza' ist falsch" finde ich jedoch eben nicht wahr! Denn ich vermute zwar, dass die Aussage "Die Aussage 'Alle Hunde essen in der Nacht, wenn niemand zusieht, Pizza' ist nicht wahr" zutrifft, also eben wahr ist. Aber ich kann es nicht beweisen. Also muss ich, da ich mich ja diesbezüglich (freiwillig) äußern möchte, schreiben: "Die Aussage "Die Aussage ,Alle Hunde essen in der Nacht, wenn niemand zusieht, Pizza' ist falsch", ist nicht wahr". Dann ist so für mich richtig. Aber bedenke, dass ich über Festlegungen schreibe und nicht über Wahrheiten. Somit bist Du natürlich immer noch frei, für Dich zu sagen: "So ein Quatsch" und meine Ausführungen ebenfalls als nicht wahr, oder schlimmer noch als falsch zu bezeichnen.

Doch nun endlich zurück zur Negation: Die Negation kann als Schaltbild dargestellt werden (vergleiche mit der Abbildung 1). In der Elektrotechnik werden Schaltungen, welche ein Eingangssignal negieren, als NOT-Gatter bezeichnet. Lass Dir keine grauen Haare wachsen, falls Du den Sinn der Schaltbilder nicht verstehst. Die Schaltbilder wurden nur Illustration hingezeichnet, später im Text wird nirgends mehr darauf verwiesen. Beachte jedoch, dass die konkreten elektrischen Schaltungen häufig ganz anders aufgebaut sind. Diese Schaltbilder eignen sich wahrscheinlich überhaupt nicht für die elektrotechnische Umsetzung. Aber dieses Skript soll eine Einführung in die Mathematik sein und keine über Elektrotechnik ³. Trotzdem sollen die Schaltbilder folgendes bezwecken:

- (1) Sie sollen auf eine weitere Art darstellen, wie logische Verknüpfungen aufgebaut sind.
- (2) Sie sollen zeigen, dass in logischen Aussagen nur der Wahrheitsgehalt (eine Aussage ist wahr, oder eben gerade nicht) interessiert. Sonst nichts.
- (3) Sie sollen aufzeigen, dass es durchaus Sinn macht, dass die Logik üblicherweise nur zwei Arten von Aussagen kennt. Wenn der Taster nur "ein bisschen" schaltet, dann müsste mit einer komplizierten Spannungsmessung am Ende festgestellt werden, wie viel geschaltet worden ist. Wenn hingegen die Schaltung genau schalten kann oder auch nicht, dann genügt es, ein Lämpchen an den Ausgang zu stellen und zu schauen, ob es

³Ich habe mir den Wälzer von Tietze und Schenk vom Springer Verlag über Halbleiterschalttechnik gekauft, lese immer wieder Mal drin - und bin jedes Mal frustriert, wie wenig ich davon zu begreifen glaube.

leuchtet oder nicht. Natürlich soll nicht verschwiegen werden, dass es auch widerspruchsfreie Logik gibt, welche mit mehr als zwei Zuständen ("nicht wahr" respektive "wahr") auskommt. Ein Beispiel dafür ist die Fuzzylogic, auf deutsch übersetzbar mit etwa "Fusellogik"⁴. Aber diese ist für unsere Zwecke zu aufwendig. Gemäß einem Bonmot⁵ von Einstein⁶ sollen die Sachen so einfach wie möglich gemacht werden, jedoch nicht "einfacher". Die sogenannt zweiwertige Logik scheint mir diesem Kriterium zu genügen: Sie ist einfach, jedoch durchaus ausreichend.

Beim elektrischen Strom gibt es zwei wichtige Größen. Dabei ist die Situation ähnlich einem Rohr, welches von Wasser durchströmt wird. Die Stromstärke I kann mit der Wassermenge verglichen werde, welche pro Zeiteinheit (zum Beispiel Sekunde oder Stunde) durch das Rohr fliesen. Die Spannung V kann mit dem Druck im Rohr verglichen werden. Der Wasserstrahl kann umso mehr Leistung verrichten, je mehr Wasser pro Sekunde durch das Rohr hindurch schießest und je größer der Druck im Rohr ist. Die elektrische Leistung P ist gerade gleich dem Produkt von I und V. Das bedeutet in einer Formel aufgeschrieben

$$P = I \cdot V$$

Beispiels: Ist $I=0.10\,A$ und $V=10\,V$, also der Strom 0.1 Ampere und die Spannung 10 Volt, dann ist die Leistung

$$P = 10 \cdot 0.1VA = 1W$$

Ein Watt ist noch nicht so viel, dass Du damit durch die Galaxien sausen könntest, aber auch nicht nichts. In Wikipedia⁷ wird die Leistung durchschnittliche Leistung eines Handys mit 1.5 Watt angegeben.

Doch zurück zu den Schaltschemata⁸. Es bezeichnet V_c die Versorgungsspannung (üblicherweise 5 V, also durchaus ungefährlich für Deine Gesundheit). U_a bezeichne die Ausgangsspannung. Diese Ausgangsspannung zeigt das Resultat an. Diese kann beispielsweise verwendet werden, um ein Lämpchen zu schalten, so wie es im Bild auch gezeigt wird. Der Taster ist so gezeichnet, dass er nicht schaltet, falls der Eingang (der Wahrheitswert der Aussage mit der Bezeichnung "A") wahr ist. Den Buchstabe "A" als Symbol einer Aussage habe ich gewählt, weil weiter unten bei Verknüpfungen von zwei Aussagen die Symbole "A" respektive "B" für Aussagen verwendet wurden. Falls A nicht wahr ist,

⁴ "Fusel" als Stoffteilchen, welche herumliegen und wie Dreck aussehen

⁵so weit ich weiß ist ein Bonmot ein gelungener, also witziger oder geistreicher Spruch

⁶ich kann nicht angeben, wo ich das gelesen habe

⁷unter dem entsprechenden Wikipedia-Artikel

⁸Mehrzahl für "Schaltschema"

dann liegt liegt am Ausgang als Ausgangsspannung die Eingangsspannung an. Das Lämpchen leuchtet in diesem Fall also. Gleichzeitig fließt immer ein wenig Ladung via Lämpchen auf die Erde. Üblicherweise ist es genau umgekehrt: Es fließen Elektronen von der Erde das Lämpchen "hinauf". Aber das kommt davon, weil die Entdecker der Elektrizität nicht gewusst haben, was in einem metallischen Leiter genau fließt. Doch das ist eine andere - ebenfalls spannende - Geschichte.

Wahrscheinlich ist das für Dich ungewöhnlich, dass ein Taster die Leitung unterbricht, wenn er gedrückt wird. Üblicherweise schaltet ein Taster, falls der betätigt wurde. Jedoch ist es im Bereich der Technik üblich, Taster zu verwenden, welche genau umgekehrt schalten. Also welche die Leitung unterbrechen, falls sie betätigt werden. Ein Beispiel dafür sind Not-Ausschalter bei Steuerungen oder bei Brandschutzanlagen. Not ist hier kein eingedeutschtes englisches Wort, sondern sondern das deutsche Wort für Not im Sinne von Mangel oder Ausnahmezustand (beispielsweise wie im Satz "die Not ist groß"). Der Sinn dieser Schaltart ist, dass Leitungsunterbrüche mit dieser Schaltlogik ebenfalls erkennt werden können. Wenn das Signal vorhanden ist, dann heißt das, dass alles in Ordnung ist. Ist das Signal jedoch nicht anstehend, dann bedeutet dies, dass entweder etwas wirklich nicht in Ordnung ist oder aber die Leitung unterbrochen ist. Ist der Taster also gesetzt (was mit einem Energieaufwand verbunden ist), dann wird der Ausgang spannungslos. Wäre das Lämpchen nicht vorhanden, dann würde sich das Potential des Ausgangs und der Erde (das Symbol unterhalb des Lämpchens) nicht so ohne weiteres angleichen. Darum muss das Lämpchen vorhanden sein, sonst funktioniert die Schaltung nicht. Ich hätte auch einen Widerstand zeichnen können. Der kann kann ebenfalls als Erdungselement verwendet werden, ohne das die Schaltung gleich einen Kurzschluss erzeugt. Ein Kurzschluss sollte vermieden werden. Falls Batterien verwendet werden, werden diese bei einem Kurzschluss in Null Komma Nichts entleert. Es ist im Fall eines Kurzschlusses auch möglich, dass derart große Ströme und damit auch große Leistungen erzeugt werden, dass die elektrische Schaltung zerstört wird. Im schlimmsten Fall kann das ganze Gebäude in Flammen aufgehen! Falls der Ausgang wieder in einer logischen Schaltung verwendet und gar nicht angezeigt werden soll, dann wäre es wahrscheinlich sinnvoller, einen Widerstand statt eines Lämpchen⁹ zu verwenden. In meinem Beispiel jedoch soll der Ausgang der Schaltung nicht mehr für weitere logische Berechnungen verwendet werden. Darum finde ich, dass ein Lämpchen zweckmäßiger eingebaut würde. Die ausgefüllten Punkte unter und oberhalb des Symbol der Lampe bedeuteten, dass die Leitungen zusammen gelötet werden sollen. Der Kringel (kleiner Kreis)

⁹Übrigens kann ein Lämpchen als ein spezieller Widerstand betrachtet werden, welcher zu leuchten beginnt, falls der Stromfluss eine bestimmte Größe überschreitet.

Abbild (1. Darstellung, Ausgang gesetzt)

Abbild (1. Darstellung, Ausgang zurückgesetzt)

links vom Taster bedeutet, dass an dieser Stelle der Leiter beweglich ist.

Wenn der Taster also nicht betätigt wurde, dann liegt am Ausgang die Eingangsspannung an (so wie in der Abbildung 1 gezeichnet). Ich sage in diesem Fall, der Ausgang sei "gesetzt". In diesem Fall liegt zwischen dem Ausgang der Schaltung und der Erde ein Potential an. Das Lämpchen ist weiß gezeichnet, weil es in diesem Fall leuchtet.

Ist der Taster jedoch geschaltet, dann besitzt der Ausgang das Erdpotential. Das Lämpchen leuchtet in diesem Fall nicht. Ich rede in diesem Fall davon, dass der Ausgang sei "zurückgesetzt". Das bedeutet, dass zwischen dem Ausgang der Schaltung und der Erde keine Spannung anliegt und die Lampe in diesem Fall nicht leuchtet. Ich habe versucht, dies in der Abbildung 2 entsprechend zu zeichnen. Das Lämpchen ist schwarz gezeichnet, da es in diesem Fall nicht leuchtet. Der Leiter ist nach unten gelegt gezeichnet. Damit sollte die Bedeutung des Kringels hoffentlich ein wenig klarer werden: Er zeigt an, so der Taster beginnt. und dass an dieser Stelle eigentlich ein Taster wäre.

Jetzt soll gelten: Ist der Taster nicht betätigt, dann sei die Aussage, welche invertiert werden soll (zum Beispiel die Aussage "es gibt einen Zwerg, welcher größer ist, als Menschen üblicherweise sind") nicht wahr. In diesem Fall ist die invertierte Aussage wahr. Das bedeutet also beispielsweise:

¬ (es gibt einen Zwerg, welcher grösser ist, als es Menschen üblicherweise sind)

Ist jedoch die Aussage wahr wie beispielsweise die Aussage

es ist noch kein Meister vom Himmel gefallen dann ist die invertierte Aussage nicht wahr:

 $\neg (\neg (es ist noch kein Meister vom Himmel gefallen))$

In Worten: Es gilt nicht, dass nicht gilt, dass wahr ist, dass noch kein Meister vom Himmel gefallen ist. Wie ich später noch zeigen will, ist dies gleichbedeutend zur ursprünglichen Aussage "Es ist noch kein Meister vom Himmel gefallen" (vergleiche mit dem Absatz 20.2). Wie Du siehst, gibt es also nach Annahme auch nicht wahre Aussagen. Denn für jede Aussage A, welche wahr ist, gilt, dass nicht gilt, dass ihre Negation $\neg A$ ebenfalls wahr ist. Also ist $\neg A$ nicht wahr. Und da wir annehmen, dass es wahre Aussagen A gibt, gibt es also auch nicht wahre Aussagen.

Nun wendest Du vielleicht ein: "Dein Schaltbild ist schon gut. Jedoch ist es Energieverschwendung, dass beständig Ladung verloren geht. Das kostet, und in der heutigen Zeit sollte nicht so viel Energie verschwendet werden. Geht das nicht ohne einen Widerstand oder ein Lämpchen?" Eigentlich geht es schon energieeffizienter - wobei ich gestehen muss, dass ich die gesamten typischen Energieaufwände nicht kenne. Die Energiesparvariante habe dies in der Abbildung 3 hingezeichnet. In diesem Fall gehört das Lämpchen nicht mehr zur eigentlichen Schaltung. Das heißt, die Schaltung würde auch dann richtig funktionieren, falls das Lämpchen nicht mehr eingefügt wäre. Ich habe es jedoch trotzdem hinzugefügt, weil es versinnbildlicht, was die Schaltung bewirkt. Das in die Höhe verzerrte "T" soll zeigen, das mit einem Tastendruck gleich zwei Taster betätigt werden, wobei der obere Taster ein "Öffner" ist, die Stromleitung also unterbrochen wird, falls der Taster betätigt wird. Der untere Taster jedoch ist ein "Schließer", das bedeutet, dass die Stromleitung also geschlossen wird, falls der Taster betätigt wird. Das T erinnert übrigens an die Pistons von Blechblasinstrumente. Pistons sind sozusagen die Tasten, welche bei Blechblasinstrumenten gedrückt werden können, so dass die Tonhöhe angepasst

Abbildung 3. Negation als Schaltbild (2. Darstellung)

werden kann¹⁰. Genau gleich kannst Du die Taster vorstellen: Sobald der Taster betätigt ist, wird entweder der Stromfluss unterbrochen oder fließt an einem anderen Ort durch. Bei Blechblasinstrumenten wird der Luftstrom übrigens nicht unterbrochen, falls ein Piston ganz gedrückt wird - sonst würde kein Ton mehr erklingen.

Ich möchte jedoch nicht verschweigen, dass auch diese Schaltung von Abbildung 3 Energie benötigt, damit sie geschaltet betrieben werden kann. Denn einerseits benötigt der Taster Energie zum Schalten, andererseits fließen immer Ladungen, falls die Kontakte des Schalters ein- oder ausgeschaltet werden. Auch wenn diese Energieaufwände für einzelne Taster klein sind, kann die Summe der Aufwände bei einem Computer oder bei einer Rechnerfarm, welche für Telekom-Firmen Webseiten speichert oder sonst wie für Webanfragen genutzt werden können, sehr groß werden. Der Bogen in der Stromleitung bedeutet, dass an der Stelle des Bogens der Leiter nicht mit dem Taster verknüpft ist.

So weit ich weiß, ist es bei der Fertigung von integrierten Schaltkreisen einfacher, Taster herzustellen, als Widerstände zu fertigen. Darum wird meines Wissens die zweite Schaltart typischerweise in der Mikroelektronik verwendet. Ich weiß jedoch nicht, ob in Computern genau diese Art des Schalters (als Negation) existieren. Jedoch kommen ähnliche Taster durchaus vor (siehe den Kapitel 16).

Die Eigenschaften der Negation können in Tabellenform dargestellt werden. Die Reihenfolge ist nun diejenige, wie ich sie ausführlich im Kapitel 7 ausgeführt habe. Diese Reihenfolge wurde in den Tabellen 1 beziehungsweise der Tabelle 2 dargestellt. Es sei A das Symbol einer

¹⁰Ich spiele ein wenig Trompete

Tabelle 1. 1. Darstellung der Wahrheitstabelle der Negation

Voraussetzung	
$\neg A$	$\neg A$
A	$\neg (\neg A)$

Tabelle 2. 2. Darstellung der Wahrheitstabelle der Negation

A	$\neg A$	
0	1	
1	0	

Aussage. Dabei zeigt die Negation ein seltsames Verhalten: Ist die Aussage nicht wahr, dann gilt, dass die Negation der Aussage wahr ist. Ist die Aussage wahr, dann gilt nicht, dass die Negation der Aussage nicht wahr ist.

In der Tabelle 2 wird 0 geschrieben, falls die Aussage nicht wahr ist. Ist die Aussage wahr, dann wird 1 geschrieben. Ansonsten sind die zwei Tabellen völlig identisch. Im Verlauf dieses Textes möchte ich die eigene Schreibweise noch mehr entwickeln. In der Aussage 11 siehst Du, wie ich mir die Definition der Negation in einer logischen Schreibweise vorstelle.

$$(\neg A \implies \neg A) \land$$

$$(11) \qquad (A \implies \neg (\neg A))$$

Das einzige Zeichen, welches Du so nicht in der mathematischen Literatur sehen wirst, ist der dreifache Pfeil ("⇒") nach rechts. Dieser soll anzeigen, dass die Folgerung als solche festgelegt ist. Das bedeutet mit anderen Worten, dass die Schlussfolgerung nicht aus anderen Definitionen oder Sätzen abgeleitet werden kann. Vielleicht denkst Du, das sei unnötig kompliziert. Dies mag sein. Mir ist einfach aufgefallen, dass die Tabellen irgendwie ist im Vergleich zur üblichen Schreibweise in der mathematischen Literatur unstimmig sind. Ich möchte darum bereits die Definitionen in der (fast) üblichen Schreibweise darstellen. Das letzte Zeichen auf der ersten Zeile bedeutet übrigens "und", nicht mehr und nicht weniger (siehe dazu Kapitel 10). Ich werde zukünftig mir erlauben, von der 1. respektive 2. Zeile der Definition 11 zu sprechen. Dann bedeutet dies, dass ich mich entweder auf die Aussage $(\neg A \Rightarrow \neg A)$ oder aber auf die Aussage $(A \Rightarrow \neg (\neg A))$ beziehe. Beachte, dass das Und-Zeichen (\wedge) am Ende der ersten Zeile, dazu dient, die beiden Aussagen sprachlich zu verbinden. Es könnte auch weggelassen werden, aber ich denke, der Lesefluss würde dadurch ein wenig gestört.

Nun werde ich kleine Beispiele für die Definitionen aufschreiben. Ich werde zuerst ein Beispiel für die erste Zeile der Definition machen: Es sei A das Symbol für die Aussage "Alle Hirsche heißen Hans". Diese Aussage ist nicht wahr. Ich hoffe, Du stimmst mit mir darin überein. Dann gilt die Negation der Aussage, $\neg A$, welche im vorliegenden Fall gleichbedeutend zur Aussage \neg "Alle Hirsche heißen Hans". Sprachlich umformuliert ist dies die Aussage: "Es gilt nicht, dass alle Hirsche Hans heißen". Damit ist das Beispiel für die erste Zeile gemacht. Nun möchte ich ein Beispiel für die zweite Zeile der Definition machen: Ist A das Symbol für die Aussage "Adam und Eva sind Namen", dann gilt die Negation der Aussage nicht. Es gilt also $\neg(\neg A)$. Wenn die Aussage eingesetzt wird, dann heißt diese Aussage $\neg(\neg$ "Adam und Eva sind Namen"). Sprachlich umformuliert bedeutet dies: "Es gilt nicht, dass nicht gilt, dass Adam und Eva Namen sind". Das ist fast alles.

KAPITEL 9

Was ist eine "Identität"?

Die Identität ist im Bereich der Logik eigentlich überflüssig, im Bereich der Elektrotechnik jedoch wird sie dankbar gebraucht. Darum beschreibe ich zuerst, wieso im Bereich der Elektrotechnik die Identität gebraucht wird. Wenn Du eine Schaltung hast, in welcher der Ausgang nicht bestimmt ist, falls eine Bedingung nicht erfüllt ist, dann kannst Du diese Schaltung an eine Identität anschließen, und diese garantiert Dir, dass die Schaltung dann definierte Zustände besitzt. Außerdem wird die Identität in der Elektrotechnik gebraucht, um Signale "aufzufrischen". Dies bedeutet, dass es manchmal wichtig ist, ein Signal, welches beispielsweise durch eine lange Leitung abgeschwächt wurde, vor der weiteren Verarbeitung so zu verstärken, dass keine undefinierte Zustände vorkommen. Ein solcher undefinierter Zustand kann dazu führen, dass ein Schalter irgendwie zwischen dem ein- und dem ausgeschalteten Zustand hin und her flackert. Dann haben wird statt einem eindeutigen Signal nur noch ein Rauschen und wissen nicht mehr, was der Sender uns eigentlich mitteilen wollte. Ein Beispiel für eine Identität habe ich in der Figur 4 gezeichnet. Die Identität wird über eine Spule garantiert, welche bewirkt, dass der Ausgang der Schaltung auch wirklich auf den Grund gezogen wird (also der Wert der dazugehörigen Aussage nicht wahr wird), falls die Aussage nicht wahr ist.

Im Bereich der Logik ist die Identität der Aussage der Wahrheitswert der Aussage selbst. Falls eine Aussage nicht wahr ist, dann ist die Identität der Aussage, dass die Aussage nicht wahr ist. Falls die Aussage wahr ist, dann ist der Wert der Identität der Aussage, dass die Aussage wahr ist. Ein Beispiel: Der Wert der Identität der Aussage, dass alle Eisbären südlich der Sahara wohnen, ist derjenige, dass es nicht wahr ist, dass alle Eisbären südlich der Sahara wohnen. Der Wert der Identität der Aussage, dass es mehr Chinesen als Schweizer gibt, ist, dass es wahr ist, dass es mehr Chinesen als Schweizer gibt. Für die Identität der ist mir kein besonderes Symbol bekannt. Wie eingangs erwähnt, ist es mehr ein elektrotechnisches denn ein logisches Problem.

Die Identität kann auch als Schaltbild gezeichnet werden (vergleiche mit der Abbildung 1).

Das Lämpchen ist ausgeschaltet gezeichnet, weil in diesem Fall der Ausgang der Schaltung zurückgesetzt ist. Das bedeutet, dass zwischen dem Ausgang und der Erde keine Spannung anliegt und in diesem Fall das Lämpchen nicht leuchtet. Der Taster ist durch den Kringel auf

ABBILDUNG 1. 1. Schaltbild der Identität im zurückgesetzten Zustand

Abbildung 2. 1. Schaltbild der Identität im gesetzten Ausgang

TABELLE 1. 1. Darstellung der Wahrheitstabelle der Identität

Voraussetzung	$\neg A$
$\neg A$	$\neg (\neg A)$
A	$\neg A$

der linken Seite und den kurzen vertikalen (senkrechten Strich gekennzeichnet). Den senkrechten Strich habe ich gezeichnet, damit auch im Fall des geschalteten Tasters ersichtlich wird, dass sich ein Schalter in der Schaltung befindet. Ich habe versucht, dies in der Abbildung 2 zu zeichnen. Ich hoffe, Du bist mir nicht böse, wenn ich zukünftig nicht beide Schaltzustände nachfolgend nicht mehr speziell darstelle.

Die energiesparende Version der Identität habe ich in der Abbildung 3 gezeichnet.

Ich habe in den Tabellen 1 sowie 2 noch die Wahrheitstafeln der Identität aufgeschrieben.

Nun sollen die drei wichtigsten logischen Verknüpfungen vorgestellt werden:

ABBILDUNG 3. 2. Schaltbild der Identität

TABELLE 2. 2. Darstellung der Wahrheitstabelle der Identität

A	$\neg A$
0	0
1	1

KAPITEL 10

Was ist eine "Konjunktion"?

Ich mache ein Beispiel dafür, was eine Konjunktion ist: Es seien A sowie B Symbole von Aussagen. Dann sei $A \wedge B$ genau dann war, falls sowohl A wie auch B wahr sind. Die Konjunktion wird auch "Und-Verknüpfung" genannt. Die würde, so wie es verstehe, in etwa "(etwas) miteinander verknüpfen" bedeuten. Nun muss ich jedoch die Konjunktion mit Leben füllen und zeigen, für was das gut ist. A sei die Aussage "Mäuse essen gerne Käse" und B sei die Aussage "Frederike ist eine Maus". Falls beides zutrifft, dann gilt eben die Aussage "Frederike ist eine Maus ∧ Mäuse essen gerne Käse". Nun sei Frederike keine Maus, sondern eine Physikerin. Dann gilt die Aussage "Frederike ist eine Maus ∧ Mäuse essen gerne Käse" nicht. Angenommen, es würde eine Biologin geben, welche eine Maus finden würde, welche eine Käseallergie hat (vielleicht eine Mutantin der "käse-intoleranten" Mäuse), dann stimmt die Aussage "Frederike ist eine Maus ∧ Mäuse essen gerne Käse" ebenfalls nicht, sogar dann, falls die Maus wirklich Frederike heißen würde. Aber das spielt dann überhaupt keine Rolle mehr. Egal ob die Maus Kasimir oder Markus oder Hermine oder Mausi heißt, die Aussage "Frederike ist eine Maus ∧ Mäuse essen gerne Käse" stimmt immer noch nicht. Falls Frederike ein Flughörnchen und keine Maus wäre, und es "käse-intolerante" Mäuse geben würde, dann würde die Aussage "Frederike ist eine Maus ∧ Mäuse essen gerne Käse" erst recht nicht stimmen, wobei es logisch keinen Unterschied macht, ob eine oder beide Aussagen nicht zutreffen. Die Aussage wird nicht "falscher", falls beide Aussagen nicht zutreffen. Die Reihenfolge ist ebenfalls nicht wesentlich für die Bestimmung des Wahrheitsgehalts. Es ist nicht wesentlich ob zuerst "Mäuse essen gerne Käse" oder "Frederike ist eine Maus" aufgeschrieben wird. Dies möchte ich jedoch noch im Abschnitt 20.18 weiter ausführen möchte.

Es gibt ein anderes Beispiel, welches jedoch vielleicht auf den ersten Blick komisch aussieht:

Falls A die Aussage ist: "Der Ball ist rund", und B ist die Aussage ist: "Der Ball ist rund", dann ist die Aussage "Der Ball ist rund \land der Ball ist rund" ebenfalls wahr. Obwohl Dir sich wahrscheinlich die Nackenhaare sträuben bei diesem Gedanken. Im umgangssprachlichen Sinn ist die Aussage "Der Ball ist rund und der Ball ist rund." wohl eher ein Zeichen dafür, dass Gefahr irgendwelcher Art in Verzug ist.

Ich werde das jedoch zeigen müssen, dass dies wirklich so ist, und zwar im Kapitel 31.

Es gibt noch ein drittes Beispiel, welches ebenfalls es wert ist, aufgeschrieben zu werden: Falls A die Aussage ist "Kaffee ist ein Getränk" und "Jimi Hendrix war ein Musiker", dann ist die Aussage "Kaffee ist ein Getränk \land Jimy Hendrix war ein Musiker" wahr. Du fragst Dich wahrscheinlich: "Was hat das eine mit dem anderen zu tun?" Die Antwort ist: Nichts. Aber das spielt eben keine Rolle in der Logik. Es wird nicht darüber nachgedacht, welche Beziehungen Aussagen zueinander besitzen, sondern nur, was sich aus Aussagen folgern lässt.

Die Konjunktion kann formal so aufgeschrieben werden:

$$(12) A, B \in \Omega \Rightarrow (A \land B \Leftrightarrow A B)$$

Ausgeschrieben heißt diese Behauptung: Für alle Aussagen mit den Bezeichnungen "A" und "B" gilt: Die Aussage "A gilt und B gilt, sei per Übereinkunft genau dann wahr, falls sowohl A wie auch B gilt. Wobei diese Beschreibung der Konjunktion wohl eher Verwirrung als Klarheit stiftet. Der Sinn dieser Schreibweise soll derjenige sein, Dich nach und nach mit der formalen mathematischen Sprache vertraut zu machen. Gehen wir die Formel also durch. Am besten sage ich im Voraus, was nicht Standard in der mathematischen Schreibweise ist. Das Aufschreiben von A B soll anzeigen, dass sowohl A wie auch B wahr sind. Der dreifache Pfeil nach rechts ist ebenfalls nicht Standard. Er bedeutet (wie schon oben beschrieben: "Das gelte so per Festlegung, also per Definition". $A, B \in \Omega$ ist ebenfalls nicht Standard. Es soll bedeuten: "A und B sind Bezeichnungen von Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen der Behauptung widerspruchsfrei seien." Standard sind folgende Teile: $B\epsilon\Omega$ (vergleiche mit dem Kapitel 5 Mengen). Dies bedeutet: B ist ein Element der Menge mit der Bezeichnung Ω. "⇒" bedeutet: "Daraus folgt per Übereinkunft, ist also willkürlich festgelegt" (siehe Kapitel 11). Die Klammern "(" sowie ")" habe ich nicht etwa hingeschrieben, weil die Aussage $A \wedge B \iff A B$ eine Randbemerkung wäre, weil sie nicht so wichtig ist wie der Rest, sondern weil sonst nicht klar ist, was mit was äquivalent, also gleichbedeutend ist. Das Symbol ⇔ habe ich extra erzeugen müssen, damit ich es aufschreiben konnte. Es ist so speziell, dass es nicht einmal durch ETFX (das Schreibprogramm) zur Verfügung gestellt wurde. Die Bedeutung dieses dreifachen Pfeils nach links und rechts sei: Es gelte nach Übereinkunft, dass $A \wedge B$ die gleiche Bedeutung habe wie die Aussage A, gefolgt von der Aussage B.

Die Aussage $A \wedge B$ sei also genau dann wahr, falls A wahr ist sowie B wahr ist. Diese Aussage ist jedoch streng genommen ein Witz. Ich vermute, dass Du beim bestem Willen keinen Unterschied zwischen " $A \wedge B$ ist wahr", und "sowohl A ist wahr wie auch B ist wahr", abgekürzt

Tabelle 1. 1. Darstellung der Wahrheitstabelle der Konjunktion

A	B	$A \wedge B$
$\neg A$	$\neg B$	$\neg (A \land B)$
$\neg A$	B	$\neg (A \land B)$
A	$\neg B$	$\neg (A \land B)$
A	B	$A \wedge B$

Tabelle 2. 2. Darstellung der Wahrheitstabelle der Konjunktion

A	$\mid B \mid$	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

"AB" finden kannst. Ich auch nicht. Ich habe es übrigens erst beim Aufschreiben dieser Zeilen bemerkt, dass streng genommen das ∧-Zeichen weggelassen werden kann. $W\ddot{u}rde \wedge ich \wedge das \wedge ganze \wedge Script \wedge so \wedge$ schreiben,∧dann∧würde∧dieser∧Text∧so∧aussehen. Und das wäre ja einfach lächerlich, findest Du nicht auch? Wieso wird es dann trotzdem aufgeschrieben? Abgesehen, um Dich zu ärgern (aber auch dies ist nicht sicher), vor allem darum, um damit eine Operation, also eine Tätigkeit, auszudrucken: Wir haben die beiden Aussagen, welche mit A und B bezeichnet werden, und jetzt möchte ich feststellen, ob beide Aussagen wahr sind. Das Aufschreiben des Zeichens der Konjunktion ist auch dann praktisch, wenn in Definitionen und Sätzen der Logik eine Konjunktion von Aussagen auftritt. In diesem Fall kannst Du das ∧-Zeichen für die Trennung der Fälle verwenden. Du siehst dann leichter, wo die eine Aussage aufhört und wo die andere Aussage anfängt.

In den Tabellen 1 respektive 2 wurden zwei Mal eine Wahrheitstafel für die Konjunktion aufgeschrieben: Das eine Mal, so wie ich es schreiben würde, das andere Mal so, wie es üblicherweise aufgeschrieben wird.

Die Tabelle 1 kannst Du so lesen: A und B seien Metasymbole von Aussagen. Auf jeder Zeile ist eine mögliche der Kombinationen der Wahrheitsgehalte aufgeschrieben: In der ersten Zeile sind beide Aussagen nicht wahr. In der zweiten Zeile ist die Aussage B, in der dritten Zeile ist die Zeile A wahr. In der letzten Zeile sind beide Aussagen wahr. Diese Anordnung der Fälle ist darum üblich, damit kein Fall vergessen geht. Außerdem sind die Fälle geordnet. In der letzten Spalte ist dann aufgeschrieben, ob die Konjunktion der beiden Aussagen immer noch wahr ist. Wie Du siehst, ist dies nur der Fall, falls sowohl die erste Aussage A wie auch die zweite Aussage B wahr sind. In der Tabelle 2 ist das Gleiche noch einmal aufgeschrieben - jedoch auf eine andere

Klammern der Konjunktion können weggelassen werden

Art: Statt der Bezeichnung der Aussage ist nur noch deren Wahrheitsgehalt aufgeschrieben, jedoch auch dieser nur noch als Zahl: Falls die Aussage nicht wahr ist, dann wird eine Null hingeschrieben, ansonsten eine Eins. Der Grund, wieso dies so aufgeschrieben wird, ist der, dass die Konjunktion als Rechnung mit 0 und 1 aufgefasst werden kann. Der Wahrheitsgehalt der Aussage $A \wedge B$ kann als Produkt (Multiplikation) der Wahrheitsgehalte von A und B aufgefasst werden. Ich werde diese Interpretation des Wahrheitswertes als Multiplikation¹ ausführlich im Kapitel 41 besprechen. Es seien zunächst sowohl A wie auch B Symbole für Aussagen, welche nicht wahr seien. Ich nehme zwei Aussagen, welche so nicht stimmen. Es sei A das Symbol für die Aussage "Kreise besitzen vier Ecken" und B das Symbol für die Aussage "Alle Hasen heißen Roger Rabbit". Da beide Aussagen nicht wahr sind, besitzen sowohl A wie auch B den den Wahrheitswert 0. Es gilt $0 \cdot 0 = 0$, aber dies streng genommen ein Satz, welcher bewiesen werden muss². Doch wir glauben jetzt einmal, dass dem so sei. Wie Du vielleicht erraten kannst, finde ich die ganze Übung insofern bescheuert, weil sie gerade eben nicht induktiv ist, sondern bereits auf Tatsachen zurückgreift, welche erst noch gezeigt werden müssen. Das wird übrigens auf häufig in richtigen Mathematikbüchern gemacht, aber eben: Mathematikerinnen und Mathematiker sind häufig "gut getarnte Chaoten" respektive "gut getarnte Chaotinnen". Nun ja, aber zurück zu dem, was ich eigentlich zeigen wollte. Weil eben $0 \cdot 0 = 0$ ist, kann dieser Wert dem Wahrheitswert der Aussage "Alle Kreise besitzen vier Ecken und alle Hasen heißen Roger Rabbit" zugeordnet werden. Beachte übrigens, dass ich "alle" im Beispiel klein geschrieben habe. Streng genommen hätte ich "Alle" schreiben müssen, denn "a" und "A" zwei verschiedene Symbole. Vielleicht denkst Du, dass sei eine übertriebene Spitzfindigkeit. Und natürlich hast Du recht. Dummerweise jedoch lebt die Mathematik von der Auslassung. Damit meine ich, dass ein wesentlicher Teil der mathematischen Arbeit darin besteht, so viel wie möglich wegzulassen, und so viel wie nötig zu behalten. Das führt dazu, dass jeder einzelne Teil einer Aussage wichtig wird. Ich habe zum Beispiel kürzlich in einer Aufgabe einen Punkt übersehen. Das Beispiel war: Berechne die Lösungen der inhomogenen Differentialgleichung

$$D^3x(t) - \dot{x}(t) = t - 1$$

zu berechnen. In der Eile habe ich gelesen:

$$D^3x(t) - x(t) = t - 1$$

Finde den Unterschied... Es ist der Punkt oberhalb des zweiten x-es von links. Ich nehme nicht an, dass Du die Gleichung verstehst

¹Mal-Rechnung

²und unter auch bewiesen wird. Dort wird auch $1 \cdot 0 = 0$, $0 \cdot 1 = 0$ sowie $1 \cdot 1 = 1$ bewiesen.

. Es geht mir selbstverständlich nicht darum, zu zeigen, was ich doch für ein toller Hirsch bin. Ich möchte einfach daraus hinweisen, dass es wichtig und richtig ist, bis ins kleinste Detail eine Aussage zu prüfen, falls mit ihr gerechnet werden soll. Zurück zu unserer Aussage "Kreise besitzen vier Ecken und alle Hasen heißen Roger Rabbit". Da dieser Aussage der Wert 0 zugeordnet wird, bedeutet dies, dass sie nicht wahr ist - was wir ja schon immer gewusst haben. Aber die erste Zeile der Definitionstabelle ist damit erledigt.

Nun gehe ich zur zweiten Zeile: Es sei A das Symbol einer nicht wahren Aussage und B das Symbol für eine wahre Aussage (zum Beispiel sei A der Name der Aussage "In der Nacht scheint die Sonne" und Bder Name der Aussage "1 ist eine Zahl"). Dann kann A der Wahrheitswert 0 zugewiesen werden und B der Wahrheitswert 1. Wieder muss ich ich auf später vertrösten, was den Wert der Multiplikation $0 \cdot 1$ betrifft. Natürlich ist anzunehmen, dass Du schon weißt, dass $0 \cdot 1 = 0$ ist. Der Witz an der ganzen Sache ist jedoch nicht, dass $0 \cdot 1 = 0$ ist, sondern, wieso $0 \cdot 1 = 0$ ist. An dieser Stelle begnügen wird uns damit, zu bemerken, dass $0 \cdot 1 = 0$ ist. Das bedeutet, dass der Aussage "In der Nacht scheint die Sonne und 1 ist eine Zahl" der Wahrheitswert 0 zugewiesen werden muss. Damit wäre die zweite Zeile der Tabelle erledigt. Nun kommt das nächste Beispiel an die Reihe. A sei das Symbol für die Aussage "Es gibt Blumen und Bäume" und B das Symbol für die Aussage "Alle Personen heißen gleich". Da B (zum Glück!) nicht wahr ist, A hingegen schon, muss B den Wert 0 und A den Wert 1 zugewiesen werden. Nun ist $1 \cdot 0 = 0$, was wiederum bedeutet, dass der Aussage "Es gibt Blumen und Bäume und alle Personen heißen gleich" der Wert 0 zugewiesen wird. Es gilt also nicht, dass es gleichzeitig Blumen und Bäume gibt und alle Personen gleich heißen. Dass in einer Aussage wieder ein "und" verwendet wurde, macht übrigens nichts. Das geht schon. Es zeigt, dass sich im Fall der Logik die geschriebene Sprache und die formale logische Sprache teilweise vermischen können. Zu guter Letzt sei A das Symbol für die Aussage "Wasser kann gefrieren" und B das Symbol für die Aussage "Es ist noch kein Meister vom Himmel gefallen". Sowohl A wie auch B sind meines Erachtens wahr. Obwohl B natürlich nur im übertragenen Sinn wahr ist, nämlich in demjenigen, dass es noch niemand gab, welche oder welcher schon allwissend auf die Welt gekommen ist. Im wörtlichen Sinn weiß ich es natürlich nicht, ob es nicht einmal ein Genie gelebt hat, welches sich dadurch in die ewigen Jagdgründe beförderte, indem er oder sie sich vom Flugzeug stürzte und dann wortwörtlich "vom Himmel fiel". Da A und B wahr sind, muss beiden Aussagen eine 1 zugeordnet werden. Es gilt: $1 \cdot 1 = 1$. Also besitzt die Aussage "Wasser kann gefrieren und es ist noch kein Meister vom Himmel gefallen" den Wahrheitswert 1, was bedeutet, dass sie wahr ist - obwohl sie ziemlich bekloppt tönt.

Keine Angst, ich denke natürlich nicht immer in solch komischen Zusammenhängen, obwohl es manchmal lustig ist, sich solche Beispiele auszudenken. Aber damit wäre auf jeden Fall ein Beispiel der letzten Zeile der Definition der Konjunktion gemacht.

Definition von $,, \Lambda$ "

Es gibt übrigens ein ähnliches mathematische Symbol, welches fast gleich aussieht: " Λ ". Dieses Symbol hat die gleiche Bedeutung wie " \forall ", und das ist…? Das ist "Für alle...". Die Ähnlichkeit des Symbols " Λ " mit dem Symbol " Λ " ist kein Zufall, in beiden Fällen spielt die Und-(Λ) Verknüpfung hinein. So kann kann einerseits die Und-(Λ) Verknüpfung als Spezialfall einer "Für alle..."-(Λ) Aussage verstanden werden. Diese "Für alle..."-(Λ) Aussage wird auf zwei Aussagen (welche oben mit " Λ " respektive " Λ B" bezeichnet werden) angewendet. Somit wäre die Und- (Λ) Verknüpfung die kleine Schwester der "Für alle..."-(Λ) Aussage. Andererseits kann die "Für alle..."-(Λ) Aussage als Verallgemeinerung einer Konjunktion aufgefasst werden. Statt zwei Aussagen werden alle Aussagen mittels einer Konjunktion miteinander verkettet. Die Schreibweise von " Λ " und " \forall " unterscheidet sich insofern, als das die Bedingung unter das Λ -Zeichen geschrieben wird. Also wird beispielsweise geschrieben:

$$\bigwedge_{n \in \mathbb{N}} (-1) \cdot n \leqslant -1$$

statt

$$\forall n \in \mathbb{N} \ (-1) \cdot n \leqslant -1$$

Ausgeschrieben heißen beide Aussagen: "Für alle natürlichen Zahlen gilt, dass ihr Produkt mit Minus Eins kleiner oder gleich Minus Eins ist." Ich weiß, dass hast Du schon vorher gewusst. Aber hier geht es mir ausschließlich um die Notation und nicht darum, um über Eigenschaften von natürlichen Zahlen nachzudenken. Ich habe die erste Notation mit dem "Spitzberg" nicht so gerne, weil die Leserichtung kurzzeitig statt von links nach rechts von oben nach unten geht. Aber falls Du es cooler findest, dann kannst Du natürlich in Deinen mathematischen Abhandlungen den großen Bruder der Konjunktion (\wedge) verwenden.

Auch die Konjunktion kann als Schaltbild dargestellt werden (vgl. mit der Abbildung 1). Falls die zwei Taster gedrückt sind, dann ist das Ausgangspotential der Taster gleich dem Eingangspotential. In diesem Fall fließt Ladung durch das Lämpchen, und dieses beginnt zu leuchten. Ist jedoch mindestens einer der beiden Taster nicht betätigt, dann fließt alle Ladung in die Erde respektive findet ein Potentialausgleich von der Erde zum Ausgang der Schaltung statt. Auch für diese Schaltung gibt es die energiesparende Variante. Diese ist unter der Abbildung 2 dargestellt.

Abbildung 1. 1. Prinzipschema Konjunktion

Abbildung 2. 2. Prinzipschema Konjunktion

In der zweiten Darstellung der Und-Schaltung wird der Ausgang nur dann nicht auf das Erdpotential "hinuntergezogen", falls beide Eingänge gesetzt sind. Der obere Teil wurde von der vorhergehenden Abbildung übernommen. Wieder ist in der zweiten Schaltung das Lämpchen für Funktion nicht mehr nötig. Im Gegensatz dazu ist in der ersten Schaltung das Lämpchen nötig, damit die Ausgangsspannung verschwindet, falls die beiden Aussagen nicht wahr und also die beiden Taster nicht betätigt worden sind.

Die endgültige Formalisierung der Eigenschaften der Konjunktion habe unter der Tabelle 13 dargestellt. Lasse Dich nicht verdrießen von den vielen Klammern und Dreifachpfeilen:

$$((\neg A \land \neg B) \Rightarrow \neg (A \land B)) \land \\ ((\neg A \land B) \Rightarrow \neg (A \land B)) \land \\ ((A \land \neg B) \Rightarrow \neg (A \land B)) \land \\ ((A \land B) \Rightarrow (A \land B))$$

Noch einmal werde ich versuchen, diese Aussage sprachlich zu fassen. Es seien A respektive B Symbole für zwei Aussagen (welche auch verschiedene Bezeichnung für die gleiche Aussage sein können). Dann ist Aussage, welche aus der Aussage A und der Aussage B besteht, genau dann wahr, falls die Aussage A sowie die Aussage B wahr sind. Es fällt natürlich auf, dass das "Und"-Zeichen (\wedge) einerseits definiert wird, andererseits gleichzeitig verwendet wird. Jedoch wollte ich zeigen, wie die formale Variante der Definition der Konjunktion aussieht. Die sprachliche Beschreibung wurde ja weiter oben bereits gemacht. Ich werde noch einmal Beispiele machen. Vermutlich ist es Dir zu langweilig, diese durchzulesen, weil Du es bereits begriffen hast, um was es geht. In diesem Fall kannst Du die Beispiele getrost überlesen - Du wirst nichts verpassen. Im anderen Fall wünsche ich Dir viel Kurzweil beim Überfliegen der Beispiele: Es sei A das Symbol für die Aussage: "Der Mond kann kugelrund sein" und B sei das Symbol für die Aussage "Ein Automobil ist ein Fahrzeug". Ich nehme an, Du wirst gegen beide Aussagen nichts einzuwenden haben. Dann sind also sowohl die Aussage A wie auch die Aussage B wahr. Dann gilt also, dass $A \wedge B$ wahr ist, ausgeschrieben

"Der Mond kann kugelrund sein" \\
"Ein Automobil ist ein Fahrzeug",

sprachlich ausformuliert "Es ist wahr, dass der Mond kugelrund sein kann und dass ein Automobil ein Fahrzeug ist". Ja, ich weiß, diese zwei Aussagen haben absolut nichts miteinander zu tun, jedoch kommt es darauf in der Logik nicht darauf an. Wichtig ist, dass die zusammengesetzte Aussage wahr ist. Falls A das Symbol für die Aussage ist "Alle Esel reden schweizerdeutsch" und B ist das Symbol für die Aussage "Hirsche sind Säugetiere", dann ist die Aussage $A \wedge B$ nicht wahr, denn es gilt

¬ ("Alle Esel reden schweizerdeutsch" ∧ "Hirsche sind Säugetiere")

ausformuliert: "Es gilt nicht, dass einerseits alle Esel schweizerdeutsch reden und dass andererseits Hirsche Säugetiere sind". Denn ich denke nicht, dass alle Esel schweizerdeutsch reden können. Damit ist bereits die mit einer Konjunktion zusammengesetzte Aussage falsch. Es sei nun A das Symbol für die Aussage "Das Jahr ist in Monate unterteilt" und B sei das Symbol für die Aussage "Die Körpertemperatur des Menschen ist -197 °C". Dann gilt wieder die Aussage $\neg (A \land B)$, ausgeschrieben

¬ ("Das Jahr ist in Monate unterteilt"∧
"Die Körpertemperatur des Menschen betraegt-197° C"),

ausformuliert: "Es stimmt nicht, dass Körpertemperatur des Menschen - 197 °C beträgt, und dass andererseits das Jahr in Monate unterteilt ist". Ich musste die Aussage abgesetzt und auf zwei Zeilen verteilt schreiben, da ansonsten der Ausdruck im PDF-Format nicht lesbar gewesen wäre. Aber von der Mathematik her sind die drei Schreibweisen meines Erachtens gleichwertig. Die Aussage ist darum nicht wahr, weil die Körpertemperatur etwa 36 °C und nicht kälter als gefrierendes Wasser ist. Gefrierendes Wasser besitzt eine Temperatur von 0 °C. - 197 °C ist meines Wissens die Temperatur von flüssigem Stickstoff. Aber so cool³ sind wir glücklicherweise nicht! Schlussendlich sei A das Symbol für die Aussage "Züge können fliegen." und B sei das Symbol für die Aussage "Fernseher sind zum Wellenreiten da". Da beide Aussagen offensichtlich Quatsch sind, gilt die Aussage $\neg (A \land B)$, ausgeschrieben

¬ ("Züge können fliegen." ∧ "Fernseher sind zum Wellenreiten da.")

ausformuliert: "Es stimmt nicht, dass einerseits Züge fliegen können und andererseits Fernseher zum Wellenreiten da sind".

Ich habe noch herausgefunden (wahrscheinlich wurde das schon in Hundert anderen Einführungen in die Logik festgestellt, aber was soll's), dass die Konjunktion mathematisch als Bestimmung des Minimums auffassen kann. Sind also A und B Symbole von Aussagen, dann können von den in Zahlen umgewandelten Werten das Minimum bestimmt werden, um zum Wahrheitsgehalt der Und-verknüpften Aussage $(A \wedge B)$ zu gelangen. Ist beispielsweise A wahr und B nicht, dann ist der Wahrheitsgehalt von A 1, derjenige von B jedoch 0, das Minimum also $0 = \min\{0, 1\}$. Diese Tatsache möchte ich fortan mit dem "Minimumprinzip der Konjunktion" benennen. Die geschweiften Klammern bedeuten übrigens eine Mengenangabe (vergleiche mit dem Kapitel 5). In Worten bedeutet das Resultat, dass nicht die Aussage A zusammen mit der Aussage B gilt. Ich nehme an, das ist Dir ziemlich egal, aber zum Beweisen von logischen Sätzen ist es eben praktisch, wenn Du die Wahrheitswerte der Aussagen in Zahlen umsetzen und anschließend mit ihnen rechnen kannst, so wie Du es lange (eventuell sogar qualvolle) Stunden lang geübt hast. So ist es eventuell einfacher für Dich. Wenn nicht, habe ich es einfach der Vollständigkeit halber hingeschrieben. Außerdem wird dadurch das Verständnis der mathematischen Operation, welche hinter der Disjunktion steckt (vergleiche mit dem Kapitel 13) einfacher: Der Wahrheitswert der Disjunktion von

Minimumprinzip der Konjunktion

³"kalt" auf Englisch geschrieben

zwei Aussagen ist gleich dem Maximum der Wahrheitswerte der beiden Aussagen. Das Schöne an dieser Definition ist, dass sie irgendwie symmetrisch sind. Denn die Bestimmung eines Minimums respektive Maximums von Elementen von Mengen mit (endlich) vielen Elementen sind irgendwie ähnlich, wenn auch genau entgegengesetzt. Das Minimumprinzip kann auch als logische Sätze formuliert und bewiesen werden. Ich habe dies unter den Lemma 42 sowie 43 aufgeschrieben.

Abkürzung Konjunktion

An dieser Stelle möchte ich auf eine Besonderheit der Konjunktion hinweisen. Es geht darum, dass die Überprüfung der Konjunktion abgebrochen werden kann, falls die erste Aussage (mit "A" oben bezeichnet) nicht gilt. Dies folgt aus dem Minimumprinzip der Konjunktion, welches ich im vorhergehenden Kapitel vorgestellt habe. Denn ist die erste Aussage nicht wahr, dann ist deren Wahrheitswert, in einer Zahl ausgedrückt, 0. Das bedeutet jedoch, dass das Minimum der Wahrheitswerte der Konjunktion der beiden Aussagen in diesem Fall nicht größer als Null sein kann. Denn das Minimum ist immer kleiner oder gleich 0. Da die Wahrheitswerte der beiden Aussagen nur 0 respektive 1 sein können, folgt daraus, dass der Wert der Konjunktion immer Null sein muss. Falls Du immer noch skeptisch bist, ob die Aussage, dass die Konjunktion automatisch nicht wahr ist, falls die erste Aussage nicht wahr ist (das ist Dein gutes Recht, und ich möchte Dich nur darin bestärken, dieses Recht bei Bedarf auch einzufordern), dann kannst Du in der ersten respektive zweiten Zeile der Definition 13 nachschlagen. In beiden Zeilen ist die Aussage A sowie die Konjunktion der beiden Aussagen nicht wahr. Dies ist zwar nicht weiter verwunderlich, aber es kann Dir "Rechenzeit", seriöser ausgedrückt, Zeit für die Überlegung ersparen. In vielen Programmiersprachen wie "C/C++" oder "Java" wird das berücksichtigt, indem in diesem Fall die zweite Aussage für die Konjunktion nicht mehr berücksichtigt wird, sondern das Resultat bereits dann zurückgegeben wird, falls die erste Aussage nicht wahr ist. Dies ist im Fall der Programmiersprachen dann heimtückisch, wenn, wie in der Programmiersprache "C" leider üblich, das Abfragen und das Verändern von Werten im gleichen Zug ausgeführt werden. Dann kann es vorkommen, dass gemeint wird, dass beide Teile der Und-Abfrage zumindest überprüft und in der zweiten Und-Abfrage noch etwas ausgeführt werden sollte. Sowohl die Überprüfung (was so auch gewünscht wird) wie auch die Ausführung (was so nicht gewünscht ist) der zweiten Aussage erfolgen dann nicht, und so wird etwas nicht ausgeführt, was hätte ausgeführt werden sollen. Schlussendlich können dadurch Programmfehler entstehen, welche nur sehr mühsam entdeckt werden. Aber zum Glück lernen wir hier nicht programmieren, sondern ich möchte Dir eine Einführung in Mathematik geben.

KAPITEL 11

Was ist eine "Implikation"?

Ich nehme an, Du hättest das Kapitel "Was ist eine Disjunktion?" (also "Oder-Verknüpfung") erwartet. Das hatte ich auch in der ersten Version des Skriptes so vorgesehen. Dann habe ich jedoch bemerkt, dass es für die eigene Darstellung der Definition der logischen Verknüpfungen besser ist, wenn ich die Definition der Implikation (welche auch als "Schlussfolgerung" bezeichnet wird) vorziehe. Diese eigene Darstellungsart der Definition der logischen Verknüpfungen mache ich bekanntlich darum, dass Du Dich möglichst früh mit der mathematischen Schreibweise von Aussagen vertraut machen kannst. Aus diesen Gründen habe ich die Reihenfolge der Kapitel umgekehrt.

Die meisten mathematischen Sätze sind so aufgebaut: Für alle x aus der Menge M, für welche die folgenden Voraussetzungen gelten, folgt die folgende (geniale, unglaublich erstaunliche) Schlussfolgerung. Die Schlussfolgerung wird mit einem Doppelpfeil abgekürzt. Ich weiß jedoch nicht, wieso ausgerechnet ein Doppelpfeil ("⇒") und kein einfacher Pfeil ("→") verwendet wird. In der deutschen Sprache können "folgen" und "gehorchen" mit dem gleichen Tätigkeitswort "folgen" geschrieben werden. Ob und wenn ja der Doppelpfeil etwas mit dieser Art von "gehorchen" zu tun hat, weiß ich nicht. Das bleibt Deiner Phantasie überlassen. Um es ein wenig kompliziert zu machen¹, möchte ich an dieser Stelle noch erwähnen, dass die Schlussfolgerung nicht das gleiche wie "folgern" ist. Ich bespreche an dieser Stelle nur die Schlussfolgerung, und diese hat sehr merkwürdige Eigenschaften. Das folgern jedoch, welches später als logischer Satz präsentiert wird (siehe Kapitel 20.6), hat diejenigen Eigenschaften, welche Dir vertraut vorkommen dürften.

Ich möchte jetzt zwei Beispiele machen, welche mehr oder weniger spitzfindig sind. Die Aussage mit dem Symbol A laute: "Alles was wir am Himmel sehen, wird Himmelskörper genannt" und B sei ein Symbol der Aussage: "Der Mond steht ab und zu am Himmel". Weil sowohl A wie auch B wahre Aussagen sind, gilt die Schlussfolgerung: Aus der Tatsache, dass wir alles was wir am Himmel sehen, Himmelskörper nennen, folgt, dass der Mond ab und zu am Himmel steht. Beachte, dass diese Schlussfolgerung nicht das ist, was Du wahrscheinlich erwarten würdest. Wenn ich mich nicht täusche, würdest Du die folgende Schlussfolgerung erwarten: "Der Mond steht ab und zu am Himmel" sei die erste

Beispiel wahrer Schlussfolgerung

 $^{^{1}}$ sollte ein Witz sein...

Aussage, "Alles was ab und zu am Himmel steht, wird Himmelskörper genannt", sei die zweite Aussage. Die Schlussfolgerung ist entsprechend: "Der Mond ist ein Himmelskörper". Das ist eine Schlussfolgerung, welche jedoch bereits ein logischer Satz ist und dementsprechend bewiesen werden kann und soll. Die ursprüngliche Schlussfolgerung $A \Rightarrow B$ ist jedoch sehr seltsam: Weder Du noch ich würden aus der Tatsache, dass alles, was wir am Himmel sehen, folgern, dass der Mond ab und zu am Himmel steht. Jedoch ist die Schlussfolgerung trotzdem richtig, weil nämlich beide Aussagen A und B richtig sind. Das bedeutet, dass die Schlussfolgerung auch dann wahr bleibt, auch wenn nicht ersichtlich ist, wie die zweite Aussage aus der ersten Aussage abgeleitet wurde. Davon lebt die Mathematik. Sie "zimmert" Sätze zusammen, welche mit zwei Aussagen arbeiten (welche hier A und B genannt werden). In der Aussage A sind die Bedingungen abgelegt, in der Aussage B die Schlussfolgerung. Und dann wird die ganze Aussage als wahre Schlussfolgerung angepriesen. Auch wenn der Leser oder die Leserin nicht weiß, wie aus der Aussage A die Aussage B abgeleitet wird. Das hat dann häufig etwas verschwörerisches an sich: "Vertraue mir, es stimmt so".

Beispiel nicht wahrer Schlussfolgerung Nun möchte ich ein Beispiel einer nicht wahren Schlussfolgerung aufschreiben. Eine Schlussfolgerung ist nur dann nicht wahr, falls die erste Aussage A wahr, die zweite Ausgabe B jedoch nicht wahr ist. A sei zum Beispiel das Symbol der Aussage: "Ein Auto ist schwerer als ein Fahrrad" und B sei die Aussage "Äpfel und Birnen sind das Gleiche". Dann gilt die Schlussfolgerung: "Aus der Tatsache, dass ein Auto schwerer ist als ein Fahrrad, folgt, dass Äpfel und Birnen das Gleiche sind" nicht. Das würdest Du wahrscheinlich auch so sehen, oder nicht?

Es wird die folgende Wahrheitstafel für die Implikation vereinbart, welche ich wieder in zwei Varianten aufschreibe (vergleiche mit den Tabellen 1 respektive 2). Die Tabelle 1 kannst Du so lesen: A und B seien Metasymbole von Aussagen. Auf jeder Zeile ist eine möglichen Wahrheitsgehalte der Kombinationen der Wahrheitsgehalte aufgeschrieben: In der ersten Zeile sind beide Aussagen nicht wahr. Auf der zweiten Zeile ist die Aussage B, auf der dritten Zeile ist die Aussage A wahr B jedoch nicht. In der letzten Zeile sind beide Aussagen wahr. In der letzten Spalte ist dann aufgeschrieben, ob aus der Aussage A die Aussage B folgt respektive nicht folgt. Wie Du siehst, ist letzteres (die Schlussfolgerung gilt nicht) nur der Fall, falls Aussage A wahr, jedoch die Aussage B nicht wahr ist. In der Tabelle 2 ist das Gleiche noch einmal aufgeschrieben - jedoch auf eine andere Art: Statt der Bezeichnung der Aussage ist nur noch deren Wahrheitsgehalt aufgeschrieben, jedoch auch dieser nur noch als Zahl. Falls die Aussage nicht wahr ist, dann wird eine Null hingeschrieben, ansonsten eine Eins.

Tabelle 1. 1. Darstellung der Wahrheitstabelle der Schlussfolgerung

Voraussetzungen	
$\neg A \land \neg B$	$A \Rightarrow B$
$\neg A \land B$	$A \Rightarrow B$
$A \wedge \neg B$	$\neg (A \Rightarrow B)$
$A \wedge B$	$A \Rightarrow B$

Tabelle 2. 2. Darstellung der Wahrheitstabelle der Schlussfolgerung

A	B	$A \Rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

Ich mache Beispiele, welche Du gut überlesen kannst. Es sei A die Aussage: "Der Steinpilz ist eine Kamelart". B sei die Aussage: "Elche lügen immer". Dann sind wohl beide Aussagen nicht wahr. Gleichwohl ist jedoch die Schlussfolgerung wahr: "Elche lügen immer, falls der Steinpilz eine Kamelart ist". Vielleicht denkst Du jetzt, ich hätte eine Meise. Aber diese Definition kommt nicht von mir. Ich werde schon noch Argumente auflisten, welche die Bedeutung dieser Definition nahelegen. Für die ersten Zeilen wäre jetzt also ein Beispiel gemacht.

Zur Demonstration der zweiten Zeile sei A die Bezeichnung der Aussage: "Die Violine ist ein Blasinstrument" und B sei die Aussage: "Ein Dreieck ist nicht rund". Dann gilt die Schlussfolgerung "Aus der Tatsache, dass die Violine ein Blasinstrument ist, folgt, dass ein Dreieck nicht rund ist." Nun ja, auch diese Aussage ist gewöhnungsbedürftig. Aber damit ist ein Beispiel für die zweite Zeile der Definition der Schlussfolgerung gegeben. Ein Beispiel für die dritte Zeile habe ich unter Kapitel 11 unter der Randbemerkung "Beispiel einer nicht wahren Schlussfolgerung" gegeben (das Beispiel, dass aus der Tatsache, dass ein Auto schwerer als ein Velo, also ein Fahrrad ist, folgt, dass Äpfel gleich Birnen sind).

Und ein Beispiel für die letzte Zeile habe ich zu Beginn des Kapitels geschrieben ("Aus der Tatsache, dass wir alles was wir am Himmel sehen, Himmelskörper nennen, folgt, dass der Mond ab und zu am Himmel steht"). Analog dem Minimumprinzip der Konjunktion respektive und dem Maximumprinzip der Disjunktion (siehe die entsprechenden Kapitel 10 respektive 13) kannst Du Dir folgendes merken: Die Schlussfolgerung gilt nur dann nicht, falls links eine Eins und rechts eine Null steht. Damit kannst Du bei schwierigeren logischen Berechnungen schneller die entsprechenden Tabellen füllen.

Abbildung 1. 1. Schaltbild Schlussfolgerung

ABBILDUNG 2. 2. Schaltbild Schlussfolgerung

Es existieren auch für die logische Schlussfolgerung Schaltbilder. Dasjenige mit einem Lämpchen ist in Abbildung 1, das andere ohne Widerstand (die "Energiesparvariante") in Abbildung 2 gezeigt. In Abbildung 3 habe ich eine "symmetrische Variante" aufgezeichnet.

Diese Schaltbilder sind für meinen Geschmack ziemlich kompliziert. Darum möchte ich sie kurz sprachlich beschreiben. Im ersten Schaltbild ist der Ausgang schon gesetzt, falls die Aussage A nicht wahr ist.

Abbild Schlussfolgerung

Das bedeutet, dass bereits in diesem Zustand das Lämpchen leuchtet. Falls die Aussage A wahr ist, der entsprechende Taster entsprechend gesetzt, dann hängt das Potential am Ausgang davon ab, ob die Aussage B wahr ist, der Taster B dementsprechend gesetzt ist. Falls die Aussage B wahr ist und somit der entsprechende Taster gesetzt, dann liegt wieder die Eingangsspannung über dem Ausgang. Falls der zweite Taster nicht getätigt ist, dann fließt die Ladung in die Erde - entweder über das Lämpchen wie in der ersten Schaltung oder in der zweiten Schaltung direkt über den entsprechenden Schaltkreis in die Erde. Der inverse Taster beim Taster B ist übrigens in diesem Fall direkt mit der Erde verbunden und darum existiert in diesem Fall kein Potentialunterschied über dem Lämpchen. Ich behaupte, dass in der Implikation "echte Mathe" zum ersten Mal zu Vorschein kommt. Denn alle anderen logischen Verknüpfungen, welche ich definiert habe, sind symmetrisch.

Die endgültige formale Fassung der Eigenschaften der Implikation ist in der Aussage 14 festgelegt:

$$((\neg A \land \neg B) \Rightarrow (A \Rightarrow B)) \land \\ ((\neg A \land B) \Rightarrow (A \Rightarrow B)) \land \\ ((A \land \neg B) \Rightarrow \neg (A \Rightarrow B)) \land \\ ((A \land B) \Rightarrow (A \Rightarrow B))$$

Natürlich ist es wiederum fast ein wenig widersinnig, die Schlussfolgerung einerseits zu definieren, andererseits bereits in der gleichen Aussage bereits zu verwenden. Aber wieder habe ich die Eigenschaften der Schlussfolgerung bereits einmal vorgestellt, ohne die Schlussfolgerung

gleichzeitig zu verwenden. Andererseits finde ich es besser, wenn die formale Sprache möglichst früh möglichst stimmig zeige, so dass Du später nicht viel Aufwand betreiben musst, um die Sätze und die Beweise zu verstehen. Ich werde wieder noch einmal Beispiele hinschreiben, welche es klarer machen, was ich eigentlich meine. Es seien A das Symbol für die Aussage: "Elefanten können fliegen." Und B das Symbol für die Aussage: "Auch Computer sind nur Menschen". Offenbar stimmen beide Aussagen nicht. Dann gilt komischerweise die Aussage $A \Rightarrow B$, ausgeschrieben

"Elefanten können fliegen" \Rightarrow "Auch Computer sind nur Menschen",

ausformuliert: Wenn Elefanten fliegen können, dann sind Computer auch nur Menschen". Wohlgemerkt habe ich dadurch nicht bewiesen dass Computer auch nur Menschen seien. Aber das werde ich später noch ausführlich erläutern. Damit habe ich ein Beispiel für die erste Zeile der Definition der Implikation aufgeschrieben. Nun möchte ich ich ein Beispiel für die zweite Zeile der Definition der Implikation aufschreiben. Es sei nun A das Symbol für die Aussage "Stein ist so weich wie Luft" und B sei das Symbol für die Aussage "Blitze und Hagel sind Wetterphänomene". Dann gilt $A \Rightarrow B$, ausgeschrieben

"Stein ist so weich wie Luft" \Rightarrow "Blitze und Hagel sind Wetterphänomene",

ausformuliert "Wenn Stein so weich wie Luft ist, dann sind Blitz und Hagel Wetterphänomene". Das tönt in meinen Ohren so, also ob es nicht stimmen würde, dass Blitz und Hagel keine Wetterphänomene seien. Oder als seien Blitz und Hagel nur dann Wetterphänomene, falls Stein so weich wie Luft ist. Beides ist nicht der Fall. So wie ich die Logik verstehe, ist gemeint, dass nicht ausgeschlossen werden kann, dass Blitz und Hagel Wetterphänomene sind. Aber da nicht wahr ist, dass Stein so weich wie Luft ist, dann ist es immer noch möglich, dass Blitz und Hagel Wetterphänomene sind. Gehen wir zum nächsten Beispiel: Es sei B das Symbol für die Aussage: "Das Wort 'Pop' ist die Abkürzung für 'populäre Musik" und und B sei das Symbol der Aussage: "Physik handelt von lachenden Kühen". Dann gilt die Aussage $\neg(A \Rightarrow B)$, ausgeschrieben,

 \neg ("Das Wort 'Pop' ist die Abkürzung für 'populäre Musik'." \Rightarrow "Physik handelt von lachenden Kühen") ,

ausformuliert: "Es gilt nicht, dass Physik von lachenden Kühen handelt, wenn 'Pop' die Abkürzung für 'populäre Musik' ist". Denn 'Pop'

ist meines Wissens tatsächlich die Abkürzung für "populäre Musik", jedoch bin ich nicht der Meinung, dass Physik von lachenden Kühnen handelt. Darum ist diese Schlussfolgerung unzulässig. Und noch ein letztes Beispiel: Es sei A das Symbol für die Aussage "Fahrradfahren wäre gesund" und B sei das Symbol für die Aussage "Klettern kann Spaß machen". Da beide Aussagen wahr sind, gilt die Schlussfolgerung

"Fahrradfahren wäre gesund" ⇒ "Klettern kann Spass machen",

ausformuliert: "Klettern kann Spaß machen, weil Fahrradfahren gesund wäre". Du denkst jetzt wahrscheinlich, das sei totaler Bockmist, den ich Dir da auftischen möchte. Es ist jedoch so, dass einerseits Fahrradfahren gesund wäre (würde frau oder man dann tun), andererseits Klettern Spaß machen kann (jedoch nicht muss). Da beide Aussagen wahr sind, gilt banalerweise, dass die zweite Aussage "Klettern kann Spaß machen" aus der ersten folgt - auch wenn diese beide Aussagen nichts miteinander zu tun haben. Aber dies ist so definiert und wird entsprechend in der Mathematik durchgezogen. Es sind genau nicht die Definitionen, welche interessant sind, sondern deren Anwendung. Und bei diesen Anwendungen hat sich diese Definition als sehr wirksam erwiesen.

Diese Art der Verknüpfung ist asymmetrisch. Was dies bedeutet möchte ich anhand eines Beispiels zeigen. Es gibt Aussagen mit dem Symbolen A, B derart gibt, dass gilt

$$(A \Rightarrow B) \land \neg (B \Rightarrow A)$$

In Worten: Aus der Aussage A folgt die Aussage B aber aus der Aussage B folgt nicht die Aussage A. Um ein kleines Beispiel zu machen: Jede Chinesin, welche in China wohnt, ist eine Asiatin, aber nicht jede Asiatin ist eine Chinesin (es könnte beispielsweise auch eine Nepalesin sein). Diese Asymmetrie mag stoßend sein. Aber sie ist in der Mathematik sehr wichtig, da sie erlaubt, Beweise auf eine gute Art zu führen.

Ich möchte wieder auf die "Abkürzungen" bei der Auswertung der Schlussfolgerungen hinweisen: Falls die erste Aussage A nicht wahr oder die zweite Aussage B wahr ist, dann ist die Schlussfolgerung immer bereits wahr. Falls die erste Aussage nicht wahr ist, dann liegen die Fälle vor, welche auf der ersten respektive der zweiten Zeile der Definition 14 der Schlussfolgerung beschrieben werden. Wenn diese Situation auftritt, dann kann ich das sprachlich so beschreiben, als ich sage, die Implikation sei wahr, weil die Voraussetzung nicht wahr seit. Um die zweite Behauptung zu überprüfen, schaue auf der zweiten respektive vierten Zeile der betreffenden Definition nach. Nur in diesen Fällen ist die zweite Aussage wahr, jedoch die Schlussfolgerung bereits richtig.

Abkürzungsregeln der Implikation

 $^{^2}$ Ich selbst höre übrigens mehr "unpopuläre" Musik, insbesondere Kirchenmusik und ethnologische Musik

Diese Situation fasse ich sprachlich in Worte, indem ich in diesem Fall sage, die Implikation sei wahr, weil die Folgerung wahr sei. Diese Beobachtung kann mittels eigenen logischen Sätzen formuliert und bewiesen werden. Siehe dazu Korollare 72 sowie 73.

Es gibt noch eine weitere Art, wie Du den Wahrheitswert einer Implikation ermitteln kannst: Falls Du untersuchen willst, ob die Implikation der zwei Aussagen A sowie B wahr ist, kannst du den Wahrheitswert von A oder B mit 0 bezeichnen, sofern die Aussagen nicht wahr sind. Falls die Aussgen A oder B wahr sind, dann kannst Du diese mit 1 bezeichnen. Dann sollen die Wahrheitswerte von A und B, als Zahl ausgedrückt, mit $\delta\left(A\right)$ sowie $\delta\left(B\right)$ bezeichnet werden. Dann ist die Implikation

$$A \Rightarrow B$$

genau dann wahr, falls gilt

$$\delta(A) \leq \delta(B)$$

In Worten: Die Implikation

$$A \Rightarrow B$$

ist genau dann wahr, falls der Wahrheitswert von A kleiner oder gleich dem Wahrheitswert von B ist.

Ich greife hier ein wenig vor (vergleiche mit dem äußerst langem Kapitel 20 über logische Sätze, falls Du bereits mehr darüber wissen möchtest).

Um zu dies zu beweisen, kann ich für alle denkbaren Fälle dies überprüfen: Sind sowohl die Aussage A wie auch die Aussage B nicht wahr, dann gilt

$$\delta\left(A\right) = 0$$

sowie

$$\delta(B) = 0$$

Somit ist

$$\delta(A) = \delta(B)$$

und darum auch

$$\delta(A) \leq \delta(B)$$

Also ist in diesem Fall einerseits gemäß der ersten Zeile der Definition 14 der Implikation

$$A \Rightarrow B$$

und andererseits

$$\delta(A) \leq \delta(B)$$

Damit wäre dieser Fall bewiesen. Nun möchte ich die drei anderen Fälle auf genau die gleiche Art beweisen.

Ist die Aussage A nicht wahr, die Aussage B aber wahr, dann gilt

$$\delta(A) = 0$$

sowie

$$\delta(B) = 1$$

Somit ist

$$\delta(A) < \delta(B)$$

und darum auch

$$\delta(A) \leq \delta(b)$$

Also ist in diesem Fall einerseits gemäß der zweiten Zeile der Definition 14 der Implikation

$$A \Rightarrow B$$

und andererseits

$$\delta(A) \le \delta B$$

Also habe ich gezeigt, dass auch in diesem Fall die Behauptung wahr ist.

Ist die Aussage A wahr, die Aussage B aber nicht wahr, dann gilt

$$\delta\left(A\right) = 1$$

sowie

$$\delta(B) = 0$$

Somit ist

$$\delta(A) > \delta(B)$$

und darum auch

$$\neg (\delta (A) \leq \delta (b))$$

In Worten: Es gilt nicht dass der Wahrheitswert von A (als Zahl ausgedrückt) kleiner oder gleich dem Wahrheitswert von B (wiederum als Wahrheitswert ausgedrückt) ist. Also ist in diesem Fall einerseits gemäß der dritten Zeile der Definition 14 der Implikation

$$\neg (A \Rightarrow B)$$

und andererseits

$$\neg (\delta (A) \le \delta B)$$

Also habe ich gezeigt, dass auch in diesem Fall die Behauptung wahr ist

Nun möchte ich mir noch den letzten Fall überlegen: Sind sowohl die Aussagen A wie auch B wahr, dann gilt

$$\delta(A) = 1$$

sowie

$$\delta(B) = 1$$

Somit ist

$$\delta(A) = \delta(B)$$

und darum auch

$$\delta(A) \leq \delta(B)$$

Also ist in diesem Fall einerseits gemäß der vierten Zeile der Definition 14 der Implikation

$$A \Rightarrow B$$

und andererseits

$$\delta(A) \le \delta(B)$$

Also habe ich gezeigt, dass auch in diesem Fall die Behauptung wahr ist.

Schlussendlich meine ich, in allen vernünftigen Fälle den Beweis für die Richtigkeit der Behauptung erbracht zu haben. Darum behaupte ich, gezeigt zu haben, dass die Behauptung bewiesen ist und beende aus diesem Grund die weitere Beweisführung. Es bleibt mir jedoch noch darauf hinzuweisen, dass ich unter dem Lemma 279 diesen Satz erneut zu beweisen.

KAPITEL 12

Was ist eine "Replikation"?

Dieses Kapitel behandelt die Bedeutung des Symbol, welches wie ein Doppelpfeil nach links aussieht. Ich werde zuerst ein Beispiel machen, welches Dir vielleicht auf Anhieb unverständlich ist. Lasse Dich nicht verdrießen. Weiter unten werde ich dann schon wieder klarer und einfacher.

Den Doppelpfeil nach links gibt es eigentlich gar nicht. Jedenfalls ist mir der Pfeil nach links in mathematischen Texten nicht geläufig. Als ich an der ETH studiert habe, wollte ich viele Aussagen hinschreiben wie: "Die Summe zweier ganzer Zahlen ist größer oder gleich Null, falls beide Zahlen größer oder gleich Null sind". Nun, meine Aussage ist schon ein wenig problematisch, da es auch Summen von zwei ganzen Zahlen gibt, welche größer als Null sind, falls eine Zahl kleiner, die andere jedoch größer als Null ist. Ein Beispiel ist die Summe 10+(-9)=1. Diese Summe ist größer als Null, obwohl eine der beiden ganzen Zahlen kleiner als Null ist. Nehme jedoch an, diese Aussage sei ursprünglich die Aussage: Falls zwei ganze Zahlen größer oder gleich Null sind, dann ist ihre Summe größer oder gleich Null. An dieser Aussage gibt es nichts auszusetzen. Diese Aussage kann so als formale Aussage übersetzt werden:

$$\forall x \in \mathbb{Z} \ \forall y \in \mathbb{Z} \ ((x \ge 0) \land (y \ge 0)) \Rightarrow (x + y \ge 0)$$

Nun ist es jedoch möglich, dass Du die Aussage wirklich so schreiben möchtest, wie ich sie ursprünglich geschrieben habe (mit dem Satzteil "falls..."). Dann muss ich zwei Schritte machen, um dies so hinschreiben zu können. Doch zuerst möchte ich eine Anekdote erzählen. Als ich an der ETH Physik studiert habt (ohne Abschluss, wie ich schon erwähnt habe), ist mir genau das passiert. Ich wollte etwas hinschreiben in der obigen Art, mit dem Zusatz: "... falls das und das gilt". Dann hat eine Assistentin, deren Namen mir jedoch entfallen ist, relativ heftig interveniert und gesagt, dass das so nicht gehen würde. Nun möchte ich zeigen, dass dies sehr wohl geht. Es ist jedoch nicht so, dass ich das als Revanche oder Rache verstehen würde. Sondern vielmehr geht es mir darum, mich von meinen Schatten der Vergangenheit zu lösen. Ich möchte selbst einen neuen Zugang zur Mathematik finden, welcher entspannter, glücklicher oder gelöster ist als denjenigen, welchen ich kennen gelernt habe.

Doch zurück zu dem, was ich zeigen wollte. Der erste Schritt besteht darin, dass ich die Aussage oben umformuliere zu

$$((x \in \mathbb{Z}) \land (y \in \mathbb{Z}) \land (x \ge 0) \land (y \ge 0)) \Rightarrow (x + y \ge 0)$$

Ich kann mir vorstellen, dass Du Dir jetzt die Augen reibst und nicht weißt, was mit diese Aussage anzufangen sei. Diese Aussage besagt jetzt aber wirklich das gleiche wie die erste Aussage dieses Kapitels. Falls x und y ganze Zahlen sind, welche größer oder gleich Null sind, dann folgt daraus, dass ihre Summe größer oder gleich Null ist. Und nun besteht der zweite Schritt darin, dass ich die Aussage "umkehre", und zwar so, wie ich es nachfolgend aufschreibe:

$$(x+y \ge 0) \Leftarrow ((x \in \mathbb{Z}) \land (y \in \mathbb{Z}) \land (x \ge 0) \land (y \ge 0))$$

Und diese Aussage bedeutet jetzt wirklich das, so wie ich es für mich oft denke: Die Summe zweier Zahlen ist größer oder gleich Null, falls beide Zahlen ganze Zahlen sind, welche größer oder gleich Null sind. Um es ein wenig allgemeiner zu machen werde weiter unten unter dem Satz 24 zu zeigen versuchen:

$$(15) \qquad \forall A, B \in \Omega \ ((A \Leftarrow B) \Leftrightarrow (B \Rightarrow A))$$

In Worten ausgedrückt bedeutet diese Aussage: Sind A und B Symbole von Aussagen, dann die Aussage, dass A gilt, falls B gilt, genau dann wahr, falls A aus B folgt.

Ich empfehle ausdrücklich nicht, den Pfeil nach links in Aussagen zu verwenden, welche dann in einem PDF oder sonst wo "für die Ewigkeit" gespeichert werden soll. Denn das ist meines Wissens nicht oder noch nicht Standard. Jedoch ist es beispielsweise dann praktisch, falls Du Dir etwas überlegst und zuerst den Sachverhalt und erst anschließend die Voraussetzung aufschreiben möchtest. Denn ich zumindest denke oft so, dass mir etwas wichtig ist, und ich dann zuerst dies aufschreiben möchte. Anschließend schreibe ich den Rest. Gemäß einer Suche im Netz heißt diese Verknüpfung "Replikation". Wobei ich diese Wortwahl eigenartig finde. Denn üblicherweise bedeutet für mich "Replikation" "Nachbildung", also wenn etwas erneut geschaffen ist, was bereits existiert. Aber was soll ich machen? So haben sie es definiert und ich kann leider nicht die Begriffe einfach mit einem neuen Wort beschreiben, nur weil mir das vorhandene Wort nicht gebrauchen möchte.

Nun möchte ich wieder die Wahrheitstafeln respektive die formale Beschreibung der Replikation aufschreiben. Das ist übrigens der Grund, wieso ich oben die Aussage 15 nicht als Definition der Replikation definiert habe. Wenn Du etwas definiert hast, dann ist es definiert, und das weitere muss aus der Definition hergeleitet werden. Du kannst nicht sagen: "Gut, ich habe es definiert, jetzt definiere ich es noch einmal." Jedoch werden häufig Definitionen mit verschiedenen Bezeichnungen gemacht und anschließend gezeigt, dass dass beide Definitionen die gleiche Bedeutung besitzen. Damit ich keine Schwierigkeiten damit bekomme

Tabelle 1. 1. Darstellung der Wahrheitstabelle der Replikation

A	B	$A \Leftarrow B$
$\neg A$	$\neg B$	$A \Leftarrow B$
$\neg A$	B	$\neg (A \Leftarrow B)$
A	$\neg B$	$A \Leftarrow B$
A	В	$A \Leftarrow B$

Tabelle 2. 2. Darstellung der Wahrheitstabelle Replikation

A	В	$A \Leftarrow B$
0	0	1
0	1	0
1	0	1
1	1	1

(auch ich habe ein wenig meinen Stolz, die Dinge inhaltlich korrekt darzustellen), werde ich in den Tabellen 1 sowie 2 wie auch in der Aussage 16 die Eigenschaften der Replikation noch einmal aufschreiben.

$$((\neg A \land \neg B) \Rightarrow (A \Leftarrow B)) \land \\ ((\neg A \land B) \Rightarrow \neg (A \Leftarrow B)) \land \\ ((A \land \neg B) \Rightarrow (A \Leftarrow B)) \land \\ ((A \land B) \Rightarrow (A \Leftarrow B))$$

Nun sollte ich Dir noch Beispiele bringen für die Replikation. Ist A das Symbol der Aussage "Alle Hunde tanzen Tango" und B das Symbol der Aussage "Der Mond ist viereckig", dann sind beide Aussagen wohl nicht wahr. Wenn Du jetzt in den Tabellen die ersten Zeilen nachschlägst, dann siehst Du, dass in diesem Fall die Replikation trotzdem richtig ist. Es gilt also die Aussage $A \Leftarrow B$, ausgeschrieben

"Alle Hunde tanzen Tango"
$$\Leftarrow$$
"Der Mond ist viereckig",

ausformuliert: "Alle Hunde tanzen Tango, falls der Mond viereckig ist". Was ich irgendwie verstehen kann, denn in diesem Fall sind die Hunde oder wir oder beide wahrscheinlich auf Drogen. Auf jeden Fall ist damit ein Beispiel für die erste Zeile der Replikation gemacht. Nun sei A das Symbol für die Aussage: "Alle Stiere heißen Markus mit Vornamen", B sei jedoch das Symbol der Aussage: "Mit Eisen können Schwerter oder Pflugscharen gefertigt werden". Dann erscheint mir A nicht richtig, B jedoch schon¹. Dann gilt aber die Aussage $\neg (A \Leftarrow B)$, ausgeschrieben:

 $^{^1}B$ ist ein abgewandeltes Bibel-Zitat (offenbar gemäß Wikipedia vom Propheten Micha, 4,1–4): "Dann werden Schwerter zu Pflugscharen...", eine wunderbar schöne Formulierung Hoffnung, dass einmal Frieden auf Welt werde.

¬ ("Alle Stiere heissen Markus mit Vornamen." ←
"Mit Eisen können Schwerter oder Pflugscharen gefertigt werden."),

ausformuliert: "Es gilt nicht, dass alle Stiere mit Vornamen Markus heißen würden, falls aus Eisen Schwerter oder Pflugscharen gefertigt werden kann". Denn es kann ja aus Eisen Schwerter oder Pflugscharen gefertigt werden (das entsprechende Können vorausgesetzt, was bei mir selbstredend nicht vorhanden ist), jedoch heißen glücklicherweise nicht alle Stiere mit Vornamen Markus. Damit ist ein Beispiel der zweiten Zeile der Definition der "Replikation" gemacht. Um ein ein Beispiel für die dritte Zeile der Definition der "Replikation" anzugeben, sei A das Symbol der Aussage "Es gibt Hunde und Katzen, welche sich leiden können". B sei das Symbol für die Aussage "Es gibt eine Leiter zum Mond". Nun, ich kenne einen Hund und eine Katze, welche sich mögen, und das ist zuckersüß anzuschauen. Also ist die Aussage mit der Bezeichnung A wahr. Es ist mir jedoch nicht bekannt, dass es eine Leiter zum Mond gäbe. Also ist die Aussage B nicht wahr. Dann ist jedoch die "Replikation" $A \Leftarrow B$ wahr, ausformuliert

"Es gibt Hunde und Katzen, welche sich leiden können." \Leftarrow "Es gibt eine Leiter zum Mond",

ausgeschrieben: "Es gibt Hunde und Katzen, welche sich leiden können, falls es eine Leiter zum Mond gibt." Wohl gemerkt gibt es nicht nur dann Hunde und Katzen, welche sich leiden können, falls es eine Leiter zum Mond gibt. Das ist eine andere Sache. Aber falls es eine Leiter zum Mond gibt, dann gibt es sicher Hunde und Katzen, welche sich leiden können. Daraus kannst Du ablesen, dass Du, obwohl die obige Aussage richtig ist, nicht schließen kannst, dass es Hunde und Katzen gibt, welche sich leiden können. Dies musst Du auf eine andere Art bewerkstelliegen. Jedoch kann ich auf Grund dieser Aussage schließen, dass es zumindest nicht ausgeschlossen ist, dass es Hunde und Katzen gibt, welche sich nicht leiden können.

Die folgenden Ausführungen verstehst Du nur dann, falls Du das Kapitel über die Logik bereits einmal durchgelesen hast. Aber lasse Dich nicht verdrießen davon, falls Du es beim ersten Durchlesen nicht verstehst. Die Situation der "Replikation" erinnert mich ein wenig an die Eigenschaften der Oder- und der Entweder-Disjunktionen, welche in den Kapiteln 13 respektive 15 vorgestellt werden. Die "Replikation" ist weniger einengend, als wird uns das vorstellen würden, so wie die Disjunktion eigentlich nicht der umgangssprachlichen Vorstellung einer "Disjunktion" entspricht. Es wäre die Antivalenz (Entweder-Disjunktion), welche der umgangssprachlichen Vorstellung einer

"entweder-Disjunktion" entspricht. Wenn ich die einengendere Replikation nehmen würde, dann würde ich beim logischen Satz des Schlussfolgerns (siehe Kapitel 20.6) landen, und diese ist, wie mir beim Beweisen aufgefallen ist, logisch äquivalent (gleichwertig) zur "Konjunktion" (vergleiche mit dem Satz 18).

Zu guter Letzt möchte ich ich ein Beispiel für die letzte Zeile der "Replikation" machen. Es sei A das Symbol der Aussage "Es gibt Ballone", B sei das Symbol der Aussage "Es gibt Steine". Nun, da beide Aussage wahr sind (jedoch langweilig, das gebe ich zu), gilt die entsprechende Replikation $A \Leftarrow B$, ausformuliert (also die Symbole A sowie B durch ihre Aussagen ersetzt)

"Es gibt Ballone." \Leftarrow "Es gibt Steine."

Das Gleiche in Worten: "Es gibt Ballone, falls es Steine gibt." Obwohl diese Aussage richtig ist, ist sie für meinen Geschmack trotzdem merkwürdig. Denn Steine und Ballone haben ja nicht viel miteinander zu tun. Warum soll das eine gelten, falls das andere gilt? Die Antwort ist eben so, dass dies so vereinbart wurde. Das heißt, es wird angenommen, dass diese Annahme der wahren Aussage richtig ist. Nicht mehr und nicht weniger.

KAPITEL 13

Was ist eine "Disjunktion"?

Wieder beginne ich die Einführung mit einem Beispiel:

Es sei A die Bezeichnung der Aussage "Alle Kaninchen haben ein Pyjama an" und B sei die Bezeichnung der Aussage: "Der Mond ist ein Himmelskörper". Dann ist die Aussage "Alle Kaninchen haben ein Pyjama an oder der Mond ist ein Himmelskörper", formal geschrieben " $A \vee B$ " wahr - auch wenn dies seltsam tönen sollte. Die Aussage "Aist ein Buchstabe oder B ist ein Buchstabe" ist ebenso wahr (A und Bwerden hier übrigens als Buchstaben bezeichnet, und nicht als Symbole für Aussagen oder andere Buchstaben). Die Disjunktion (auch logische Oder-(V) Verknüpfung genannt) ist also auch dann wahr, falls beide Aussagen wahr sind. Sie wird jedoch nicht "wahrer", falls beide Aussagen wahr sind. Falls jedoch beide Aussagen nicht wahr sind, dann kann die Disjunktion der Aussagen nicht wahr sein. Die Aussage "Alle Kaninchen haben ein Pyjama an oder jeweils am Freitag, dem 13., gehen alle schwarzen Katzen im Handstand von links nach rechts über die Straße" ist also nicht wahr (Glück gehabt). Es gilt jedoch auch nicht, dass die beiden Teilaussagen wahr sind, falls die gesamte Oder-verknüpfte Aussage wahr ist. Es folgt also nicht, dass alle Kaninchen ein Pyjama angezogen haben, wenn die Aussage "Der Mond ist ein Himmelskörper oder alle Kaninchen haben ein Pyjama an" wahr ist. Was aber durchaus aus Sicht der Aussagenlogik möglich ist, ist die Tatsache, dass die zwei miteinander verknüpften Aussagen überhaupt nichts miteinander zu tun haben müssen (siehe die Aussagen über Kaninchen und den Mond oben).

Die Bezeichnung "Disjunktion" scheint mir ein seltsamer Name zu sein. Denn die griechische Vorsilbe "Dis" hat meines Wissens die Bedeutung von "Auflösung". Wahrscheinlich ist dies die Abgrenzung von "Konjunktion", aber ich weiß es nicht. Ich möchte wieder auf zwei verschiedene Arten die Wahrheitstafeln der Disjunktion aufschreiben (vergleiche mit den Tabellen 1 respektive 2) . Es seien also A respektive B die Bezeichnungen für zwei Aussagen. Je nach dem Wahrheitsgehalt von A und B ist dann die Disjunktion der beiden Aussagen wahr oder nicht.

Wieder kannst Du diese Tabelle zeilenweise lesen. In der ersten Zeile seien A und B nicht wahr. Dann ist also auch die Disjunktion der beiden Aussagen nicht wahr. In allen anderen Fällen ist mindestens

Tabelle 1. 1. Darstellung der Wahrheitstabelle der Disjunktion

$\neg A$	$\neg B$	$\neg (A \lor B)$
$\neg A$	B	$A \lor B$
A	$\neg B$	$A \vee B$
A	B	$A \vee B$

Tabelle 2. 2. Darstellung der Wahrheitstabelle der Disjunktion

A	B	$A \lor B$
0	0	0
0	1	1
1	0	1
1	1	1

eine der beiden Aussagen A oder B wahr. Dann ist die Disjunktion der beiden Aussagen wahr.

Die Tabelle 2 der Wahrheitstabelle der Disjunktion zeigt die Wahrheitstabelle wieder so, wie sie in den Einführungsbüchern üblicherweise geschrieben wird. Ich habe lange Zeit gedacht, dass die Disjunktion nur mittels der Rechenvorschrift

$$(A \lor B) \Leftrightarrow (\delta(A) + \delta(B) \geqslant 1)$$

(in Worten: Die Aussage A oder B ist genau dann wahr, falls deren Zahlenwerte zusammengezählt größer oder gleich ist) übersetzt werden könnte. Aber ich habe mich geirrt. Siehe Satz 270, um mehr darüber zu erfahren. Im Folgenden werde ich mich ausführlich darüber unterhalten.

Ich möchte nun Beispiele aufschreiben, wie Rechenvorschrift

$$(A \lor B) \Leftrightarrow (\delta(A) + \delta(B) \geqslant 1)$$

umgesetzt werden kann. Ich möchte jedoch betonen, dass die Rechenvorschrift

$$(A \lor B) \Leftrightarrow (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B) = 1)$$

viel praktischer ist. Nun, das soll Dich nicht stören. Zur Notation $\delta\left(A\right)$ siehe Kapitel 41 "Kronecker-Symbole". Es seien nun A und B Symbole für Aussagen, welche nicht wahr seien. Es sei A die Bezeichnung der Aussage "Die Leibspeise von Eisbären sind Pinguine" und B die Bezeichnung der Aussage "Es gibt eine Pflanze, welche 100 Meter in 9.3 Sekunden zurücklegen kann". Da beide Aussagen offenbar nicht wahr sind, müssen sowohl dem Wahrheitswert von A wie auch demjenigen von B 0 zugeordnet werden. Die Summe von 0 und 0, 0 + 0, ist wieder 0. Nun ist jedoch 0 < 1 (auch dies ist eine Behauptung, welche später noch geklärt werden muss). Dies bedeutet, dass die Summe (0) nicht größer oder gleich 1 ist. Also ist Aussage

$$(\delta(A) + \delta(B) \geqslant 1)$$

nicht wahr. Dies bedeutet, dass nicht stimmt, dass die Aussage A oder die Aussage B wahr sind. Damit ist die erste Zeile "erschlagen". Nun seien A und B Symbole für Aussagen, wobei die Aussage A immer noch nicht wahr ist, B jedoch schon. Ich denke mir als mögliche Aussagen aus: A sei das Symbol für die Aussagen "Alle Elefanten essen am liebsten Sauerkraut, Speck und Bohnen". B sei das Symbol für die Aussage: "Es führen viele Wege nach Rom" (diese deutsche Redewendung bedeutet, dass es oft mehrere Wege gibt, wie etwas erledigt werden kann). Die Aussage A ist nicht wahr, darum wird ihr der Wahrheitswert 0 zugewiesen. Die Aussage B hingegen ist wahr. Also wird ihr der Wert 1 zugewiesen. Nun ist $0+1=1 \ge 1$, wobei ich mir erlaubt habe, zwei Aussagen hintereinander aufzuschreiben. Korrekt wäre es, wenn ich aufschreiben würde $(0+1=1) \land (1 \ge 1)$. Aber dies ist in der mathematischen Literatur üblich, und es gibt keine Probleme, falls darauf geachtet wird, dass immer Ungleichungen hintereinander aufgeschrieben werden, welche immer \geq oder aber immer \leq beinhalten, also in Richtung größerer Zahlen oder Gleichheit, oder jedoch in Richtung kleinerer Zahlen oder eine Gleichheit. Was jedoch keinen Sinn ergibt, sind Ungleichungen hintereinander zu schreiben, welche einmal in Richtung größerer Zahlen und einmal in Richtung kleinerer Zahlen geschrieben werden, wie zum Beispiel x < 4 > y, falls x und y Symbole für Bruchzahlen sind und ein Aussage darüber gemacht werden soll, ob denn nun x < y, x = y, oder x > y gilt. Doch zurück zu unserem Problem. Zusammengefasst ist also $\delta(A) + \delta(B) \ge 1$. Also muss der Aussage "Alle Elefanten essen am liebsten Sauerkraut, Speck und Bohnen oder es führen viele Wege nach Rom" wahr sein, auch wenn uns wahrscheinlich dabei ein wenig unwohl ist. Damit ist die Richtigkeit der zweiten Zeile gezeigt. Für die dritte Zeile denke ich mir folgenden (zugegebenermaßen sowohl trivial wie auch abstrusen) Aussagen aus: Es sei A die Bezeichnung für die Aussage "Es gibt Tiere, Pflanzen, Bakterien und Viren" und B sei die Bezeichnung der Aussage "Ich kenne einen Kater, welcher mehrsprachig Furzen kann" (ich hoffe, Du mögest Dich nicht über diese Aussage ärgern, sie stimmt eh nicht, kann es nur auf deutsch:)). Da A offenbar immer noch wahr ist und B ein offensichtlicher Schwachsinn, welcher nie und nimmer wahr sein kann, ordne ich A den Wahrheitswert 1 und B den Wahrheitswert 0 zu. Nun ist 1+0=1, und darum kann der Aussage "Es gibt Tiere, Pflanzen, Bakterien und Viren oder ich kenne einen Kater, der kann mehrsprachig Furzen" den Wahrheitswert 1 zugewiesen werden, das heißt, diese Aussage ist ebenfalls wahr. Nun kommt noch die letzte Zeile dieser Wahrheitstafel. Wieder denke ich mir zwei Aussagen aus, welche beide wahr sein sollen. Die erste Aussage lautet: "Laut und Luise sind zwei Wörter"¹ und die zweite Aussage lautete "Alle Tage haben weniger als 25 Stunden". Da A und B beide wahr sind, muss beiden Aussagen der Wahrheitswert 1 zugewiesen werden. Da $1+1=2\geqslant 1$ gilt (eigentlich gilt ja 2>1, aber aus 2>1 folgt $2>1\lor 2=1$, also auch $2\geqslant 1$, was bereits ein Vorgeschmack darauf ist, wozu die Disjunktion verwendet werden kann, vergleiche mit dem Abschnitt 55), ist also $A+B\geqslant 1$ wahr, es kann ihr also der Wahrheitswert 1 zugewiesen werden. Und darum ist auch diese Aussage "Laut und Luise sind zwei Wörter oder alle Tage haben weniger als 25 Stunden" wahr. Wieder gibt es eine große Schwester (oder einen großen Bruder) der Disjunktion, und die sieht dann entsprechend so aus: \bigvee . Wenn Du errätst, welche Bedeutung das Zeichen in der Formel

$$\bigvee_{z \in \mathbb{Z}} z^2 = 4$$

hat, dann bis Du genial. In Worten gesprochen heißt diese Gleichung: Es gibt eine ganze Zahl, deren Quadrat (also die Zahl mit sich selbst multipliziert, wie beispielsweise $7^2 = 7 \cdot 7 = 49^2$) 4 gibt. Vielleicht wirst Du jetzt denken: "Das stimmt nicht, es gibt nicht eine, sondern zwei Zahlen, für welche das stimmt". Ja, das ist so (die Zahlen sind 2 respektive -2, denn $2^2 = 2 \cdot 2 = 4$, jedoch ist auch $(-2)^2 = (-2) \cdot (-2) = 4$), aber wie oben gesagt, spielt es keine Rolle, ob es ein oder mehrere Aussagen gibt, welche wahr sind - Hauptsache, es gibt überhaupt eine Aussage, welche wahr ist. Wieder möchte ich an dieser Stelle mich darüber beschweren, dass die "Rabenschnabel"-variante der "es-gibt" Aussage zum Lesen eigentlich nicht gut ist, weil sie den Lesefluss stört. Es gibt ja die " \exists "-Schreibweise, welche genau das gleiche leistet. Die obige Aussage lautet dann:

$$\exists z \in \mathbb{Z}, z^2 = 4$$

Auf der anderen Seite ist nicht wahr, dass es ganze Zahlen gibt, für welche gilt, dass ihr Quadrat -1 ergibt. Dies könnte ich dann so aufschreiben:

$$\neg \left(\exists z \epsilon \mathbb{Z} \ z^2 = -1\right)$$

Das ist jedoch ein unnötig kompliziert aufgeschrieben. Kürzer und gleichbedeutend (wobei ich das weiter unten zeigen 124 will) ist:

¹Fast hätte ich eine Quelle nicht angegeben! Gemäß Wikipedia ist "Laut und Luise" ein Gedichtband des österreichischen Lyrikers Ernst Jandl, der 1966 im Walter Verlag veröffentlicht wurde. Den Walter-Verlag, den gibt's nicht mehr (leider). Er war ca. 3 km von meinem Wohnsitz entfernt.

 $^{^2}$ Apropos: Kennst Du den Spruch "Sieben mal sieben gibt feinen Sand", welcher eine Verballhornung von $7^2=7\cdot 7=49$ darstellt? Dann gibt es noch einen Spruch, aber der geht nur gut auf Schweizerdeutsch: "Acht mal Acht gibt 64, scheiß in die Hosen links und rechts". In diesem Sinn wäre also das Quadrat von 8, $8^2=8\cdot 8=64$ total verschissen Hosen...

Abbildung 1. 1. Schaltbild der Disjunktion

$$\forall z \in \mathbb{Z} \ z^2 \neq -1$$

Dies bedeutet, dass die Quantoren" \forall " (für alle) sowie " \exists " (es gibt) eigentlich nur zwei Seiten der gleichen Medaille sind. Wenn ich eine Aussage mit dem Quantor " \forall ", dann könnte ich ebenso gut die verneinte Aussage verwenden - diese Ausführungen muss ich jedoch später unter dem Satz 20.32 ausführen³.

Auch die Disjunktion kann als Schaltbild dargestellt werden (siehe Abbildung 1). Sobald einer der Eingänge geschaltet ist, befindet sich der Ausgang auf dem Potential des Eingangs und das Lämpchen beginnt zu leuchten. Falls der Eingang nicht mit dem Ausgang verbunden ist, dann fließt die noch vorhandene Ladung über das Lämpchen ab. Nach dieser winzig kleinen Zeit leuchtet das Lämpchen nicht mehr. Auch von dieser Schaltung existiert eine "Energiesparvariante" (siehe Abbildung 2), welche das Lämpchen nicht mehr benötigt, damit sie richtig arbeitet.

In der Aussage 17 sind die Eigenschaften der Disjunktion noch einmal aufgeschrieben.

$$(17) \qquad \begin{array}{ccc} ((\neg A \wedge \neg B) & \Rrightarrow & \neg (A \vee B)) & \wedge \\ ((\neg A \wedge B) & \Rrightarrow & (A \vee B)) & \wedge \\ ((A \wedge \neg B) & \Rrightarrow & (A \vee B)) & \wedge \\ ((A \wedge B) & \Rrightarrow & (A \vee B)) \end{array}$$

³Vielleicht denkst Du jetzt: "Morgen, morgen, nur nicht heute, sagen alle faulen Leute". Aber ich möchte einfach kein Durcheinander machen

Abbildung 2. 2. Schaltbild der Disjunktion

Ich werde noch einmal abschließende Beispiele machen welche die Eigenschaften der Disjunktion noch einmal auflisten sollen. Es sei A das Symbol für die Aussage "Blumen können galoppieren" und B sei das Symbol für die Aussage "Hähne legen Eier". Dann ist $\neg (A \lor B)$, ausgeschrieben

 \neg ("Blumen können gallopieren" \lor "Hähne legen Eier"),

ausformuliert: "Es gilt nicht, dass Blumen galoppieren würden oder dass Hähne Eier legen könnten". Damit habe ich ein Beispiel für die erste Zeile der Definition 17 der Disjunktion gegeben. Nun sei A ein Symbol für die Aussage "Dächer bestehen aus Regen" und B sei ein Symbol für die Aussage "Autos fahren häufig mit Benzin". Da A offenbar nicht wahr sein kann, B jedoch schon, gilt $A \vee B$, ausgeschrieben

"Dächer bestehen aus Regen"∨ "Autos fahren häufig mit Benzin",

ausformuliert: "Dächer bestehen aus Regen oder Autos fahren häufig mit Benzin". Diese Aussage ist wahr, auch wenn sie Dir (wie mir auch) völlig durchgeknallt erscheint. Auf jeden Fall habe ich damit ein Beispiel für die zweite Zeile der Definition der Disjunktion gegeben. Weiter sei A das Symbol für die Aussage: "Es gibt in Afrika Elefanten", B sei das Symbol für die Aussage: "Licht besteht aus Schatten". Da die Aussage A wahr ist (und hoffentlich noch lange sein wird) und die Aussage B einfach so nicht stimmen kann, dann gilt $A \vee B$, ausgeschrieben

"Es gibt in Afrika Elefanten" \\
"Licht besteht aus Schatten",

ausformuliert: "Es gibt in Afrika Elefanten oder Licht besteht aus Schatten". Auch hier ist wieder die Bemerkung angebracht, dass die Aussage sogar dann wahr ist, wenn die beiden Teile absolut nichts gemeinsam haben. Damit wäre ein Beispiel für die dritte Zeile der Definition gegeben. Nun kommt noch das Beispiel für die letzte Zeile dran: Es sei A das Symbol der Aussage "Mauersegler sind keine Singvögel" und B sei das Symbol der Aussage "Beryllium ist ein Leichtmetall". Wie Du in Wikipedia nachschlagen kannst, sind beide Aussagen wahr. Darum gilt $A \vee B$, ausgeschrieben

"Mauersegler sind keine Singvögel"∨ "Beryllium ist ein Leichtmetall",

ausformuliert: "Mauersegler sind keine Singvögel oder Beryllium ist ein Leichtmetall". Bemerkenswert ist, dass die Aussage sogar dann noch gilt, falls beide Aussagen wahr sind. Die "ausschließende" Disjunktion, bei welcher dies nicht mehr gilt, wird unter Kapitel 15 beschrieben.

Wie ich im Kapitel 10 über die Konjunktion gezeigt habe, kann die Disjunktion als Bestimmung des Maximums der Wahrheitswerte der beteiligten Aussagen verstanden werden. Ich möchte dies noch einmal ausführen. Angenommen, A sei das Symbol der Aussage "Eisen hat eine kleinere Dichte als Eis", B sei das Symbol der Aussage "4 ist eine Zahl". A ist Unsinn, B jedoch wahr, dann besitzt A den Wahrheitswert B0, B1 den Wahrheitswert B1. Dann ist

$$(18) 1 = \max\{0, 1\}$$

wobei max die Bezeichnung für die Bestimmung des Maximalwerts ist (vergleiche diesbezüglich mit dem Kapitel 38. Entsprechend dem Minimumprinzip der Konjunktion (siehe Kapitel 10 oben) möchte ich diese Umdeutung das "Maximumprinzip der Disjunktion" nennen . Die geschweiften Klammern definieren eine Menge im mathematischen Sinn. Und zwar bedeutet $\{0,1\}$ die Menge mit den beiden Elementen 0 respektive 1. In Worten bedeutet die Gleichung 18, dass Eisen eine kleinere Dichte als Eis hat oder dass 4 eine Zahl ist.

Es gibt wiederum eine Abkürzung in der Auswertung des Wahrheitswerts der Disjunktion. Falls die Aussage A wahr ist, dann ist die Disjunktion der Aussage bereits wahr. Wieder wird das in vielen Programmiersprachen, bei welchen darauf geachtet wurde, dass die Geschwindigkeit der Berechnung möglichst groß ist, berücksichtigt, indem die Aussage B gar nicht mehr auf ihren Wahrheitsgehalt untersucht wird, falls die Aussage A wahr ist. Um die Richtigkeit der Behauptung, dass die Disjunktion bereits dann wahr ist, falls die Aussage A wahr

Maximumprinzip der Disjunktion

Abkürzung Disjunktion

ist, kannst Du in der Zeile drei respektive vier der Definition der Disjunktion nachschlagen. In diesen Fällen ist die Aussage A und auch die Disjunktion der Aussagen A mit der Aussage B wahr.

Und weiter geht es mit der Definition von logischen Verknüpfungen.

KAPITEL 14

Was ist eine "logische Äquivalenz"?

Aus dem Internet habe ich in Erfahrung gebracht, dass Äquivalenz die Bedeutung von "Gleichwertigkeit" besitzt. Das heißt, dass immer dann wenn A und B Metasymbole von logischen Aussagen sind und die Aussage $A \Leftrightarrow B$ gilt, A aus logischer Sicht die gleiche Bedeutung wie B besitzt. Du kannst übrigens $A \Leftrightarrow B$ lesen mit "A gilt genau dann, falls B gilt" oder "A ist äquivalent zu B" ("A ist logisch gleichbedeutend mit B"). Es gibt noch eine andere Ausdrucksweise für diesen Sachverhalt: Es wird geschrieben oder gesagt, die Aussage A sei "dann und nur dann" wahr, falls die Aussage B wahr sei. Im englischen wird dieser Ausdruck meines Erachtens häufiger verwendet. Es heißt dann vielleicht: "The statement A is true, if and only if B is it too¹". Mir persönlich gefällt diese Ausdrucksweise jedoch nicht so gut, weil sie in meinen Augen so eine Art "Aussage mit dem Zeigefinger" ist. Das ist wie wenn der Pfarrer Kinder beim stehlen von Äpfeln erwischt hat und ihnen ins Gewissen redet².

Also wenn ich bis jetzt keine Ahnung vom Ganzen hätte, würde ich mir in diesem Augenblick denken: "OK, dann sind A und B verschiedene Symbole für die gleiche Aussage". Aber das kann, muss jedoch nicht der Fall sein. Zum Beispiel sind beide Aussagen logisch gleichbedeutend: "Sonne und Mond sind ausschließlich Bezeichnungen von Gasthäusern" und "Alle Menschen besitzen 42 Finger". Warum ist das so? Weil beide Aussagen nicht wahr sind. Weiter sind die Aussagen gleichbedeutend: "Rhein und Rhone sind beides Flüsse in Zentraleuropa" sowie die Aussage "Es gibt fliegende Fische", denn beide Aussagen sind wahr (obwohl ich selbst noch nie einen fliegenden Fisch gesehen habe, außer im Fernsehen - aber ich bin nun einmal ein "gläubiger" Mensch, und so glaube ich, was mir erzählt oder gezeigt wird).

Der Vollständigkeit halber sei erwähnt, dass also beispielsweise folgende Aussagen nicht gleichbedeutend sind: "Alle Menschen besitzen 42 Finger" ist nicht gleichwertig zur Aussage der Aussage "Rhein und

¹Mein Englisch ist hundsmiserabel.

²Es gibt ja diesen Witz: "Dem Pfarrer werden andauernd aus dem Obstgarten Früchte gestohlen. Er stellt ein Schild auf: "Gott sieht alles!" Am nächsten Tag steht darunter: "Aber er petzt nicht..."" (leicht abgeändert gefunden auf etwa "https://www.versoehnungskirche-unterbettringen.de/humor/"). Ich finde, die Mathematik sollte aus der Ecke der "penetranten Besserwisserinnen und Besserwisser" herauskommen.

TABELLE 1. 1. Darstellung der Wahrheitstabelle der logischen Äquivalenz

A	B	$A \Leftrightarrow B$
$\neg A$	$\neg B$	$A \Leftrightarrow B$
$\neg A$	B	$\neg (A \Leftrightarrow B)$
A	$\neg B$	$\neg (A \Leftrightarrow B)$
A	B	$A \Leftrightarrow B$

Rhone sind beides Flüsse in Zentraleuropa" (die erste Aussage ist nicht wahr, die zweite ist wahr) respektive "Es gibt fliegende Fische" und "Alle Menschen besitzen 42 Finger" (die erste Aussage ist wahr, die zweite nicht). Wieder allgemeiner ausgedrückt sind alle wahren Aussagen per Definition paarweise logisch äquivalent respektive alle nicht wahren Aussagen sind paarweise logisch äquivalent. Der Begriff "paarweise" wird in der mathematischen Literatur öfters verwendet. Er bedeutet in diesem Fall: "Nimm zwei beliebige Aussagen (also ein Paar Aussagen) und vergleiche deren Wahrheitswerte. Sind dann die Wahrheitswerte beider Aussagen gleich und gilt das für alle mögliche Paare, dann gilt, dass die Wahrheitswerte aller Aussagen paarweise gleich sind". Eigentlich könnte geschrieben werden, alle Wahrheitswerte seien gleich. Jedoch gibt es Situationen, in welchen der Begriff "paarweise" wirklich treffender ist als der Begriff "alle gleich". Bevor ich die Wahrheitstafeln aufstelle, schreibe ich darum, dass $A \Leftrightarrow B$, vorausgesetzt, A sowie B seien Symbole von beliebigen logische Aussagen, genau dann wahr ist, wenn A wie auch B wahr sind (im "positiven" Fall) oder sowohl A wie auch B nicht wahr seien (im "negativen" Fall). Die Äquivalenz bezieht sich also auf den Wahrheitsgehalt der beiden Aussagen - und in der Logik ist nur der Wahrheitsgehalt einer Aussage wichtig, nichts anderes. Oder besser gesagt, wird das Füllen der Aussagen mit Bedeutungen sowieso auf die anderen mathematischen oder sonstigen Disziplinen übertragen. Es wird also von der gegebenen Aussage abstrahiert. Die Aussage interessiert nur in der Hinsicht, ob sie wahr ist - oder nicht. Unscharf ausgedrückt ist die logische Äquivalenz das Gleichheitszeichen in der Logik. Bezüglich der Logik sind beide Aussagen gleich - das bedeutet jedoch immer noch nicht, dass die beiden Aussagen, in Text übersetzt, gleich sein müssen. Ich möchte jetzt auf die Wahrheitstafeln der logischen Äquivalenz unter 1 respektive 2 verweisen.

Die Tabelle 1 kannst Du so lesen: A und B seien Metasymbole von Aussagen. Auf jeder Zeile ist eine mögliche Kombination der Wahrheitsgehalte aufgeschrieben. In der ersten Zeile sind beide Aussagen nicht wahr. Auf der zweiten Zeile ist die Aussage B, auf der dritten Zeile ist die A wahr. In der letzten Zeile sind beide Aussagen wahr. In der letzten Spalte ist dann aufgeschrieben, ob die entsprechende Aussage, dass die Aussage A genau dann gilt, falls die Aussage B gilt, gültig ist.

paarweise

TABELLE 2. 2. Darstellung der Wahrheitstabelle der logischen Äquivalenz

A	B	$A \Leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

In der Tabelle 2 ist das Gleiche noch einmal aufgeschrieben - jedoch auf eine andere Art: Statt der Bezeichnung der Aussage ist nur noch deren Wahrheitsgehalt aufgeschrieben, jedoch auch dieser nur noch als Zahl. Falls die Aussage nicht wahr ist, dann wird eine Null hingeschrieben, ansonsten eine Eins.

Die Zuordnung der obigen Beispiele zu den einzelnen Zeilen ist wie folgt: Die Aussage "Sonne und Mond sind ausschließlich Bezeichnungen von Gasthäusern ist genau dann wahr, falls alle Menschen 42 Finger besitzen", ist ein Beispiel, dessen Wahrheitsgehalt in den jeweils ersten Zeilen abgelesen werden kann (die Aussage stimmt). Die Aussage "Rhein und Rhone sind genau dann Flüsse in Zentraleuropa, falls es gibt fliegende Fische gibt" ist ein Beispiel, dessen Wahrheitsgehalt in vierten Zeile nachgeschlagen werden kann (auch diese Aussage ist wahr). "Alle Menschen besitzen genau dann 42 Finger falls Rhein und Rhone beides Flüsse in Zentraleuropa sind" ist ein Beispiel einer Aussage, dessen Wahrheitsgehalt in der jeweils zweiten Zeile nachgeschlagen werden kann - diese Aussage gilt also nicht. Ebenso wenig, wie es wahr ist, dass es genau dann fliegende Fische gibt, falls alle Menschen 42 Finger besitzen. Diese Definition kann in den jeweils dritten Zeilen der Tabellen nachgeschlagen werden.

Und auch die Äquivalenz lässt sich mit einem Schaltbild nachbilden, und wie vorher üblich mit einer energiefressenden (siehe Abbildung 1) und einer energiesparenden Variante (unter Abbildung 2).

Der Halbkreis bei der Überkreuzung der Leitungen zeigt an, dass die beiden Leitungen sich nicht berühren sollen. Anderenfalls würde ein Kurzschluss erzeugt, falls die Aussage A wahr wäre. Beide Schaltungen sind so angelegt, dass das Lämpchen genau dann leuchtet, falls die Aussagen entweder beide wahr oder nicht wahr sind. Bei der zweiten Abbildung regt es mich irgendwie auf, dass sie bezüglich den Eingängen A respektive B nicht symmetrisch ist. Ich habe darüber nachgedacht, bringe jedoch keine ähnlich gute Schaltung hin, welche symmetrisch wäre. Die volle Schaltung, welche ich der Vollständigkeit halber noch unter Abbildung 3 abgebildet habe, zeigt für jede Zeile der Tabelle 2 die entsprechende Schaltung. Wie Du aus dem Vergleich der beiden Abbildungen erkennen kannst, ergibt sich die Verschaltung, welche in

Elend der asymmetrischen Schaltung

Abbildung 1. 1. Schaltbild der Äquivalenz

Abbildung 2. 2. Schaltbild der Äquivalenz

der Abbildung 2 verwendet wurde, aus dem Umstand, dass die entsprechende Taster bei B de facto nicht verwendet werden, falls A entsprechend verwendet wird. Aber die Tatsache, dass die daraus entstehende Schaltung bezüglich den Eingängen A und B asymmetrisch ist, hat mir irgendwie einen halben Ferientag versaut. Was mich irgendwie nervt, ist das Gefühl, es könne eine noch elegantere Schaltmöglichkeit geben, welche ich einfach übersehen habe. Vielleicht findest Du ein besseres Schaltbild für die Äquivalenz. Maile es mir doch. Beachte jedoch, dass ich aus ästhetischen Gründen es auch nicht schön finde, wenn ein Taster vorkommt, welcher von einem Zwischenprodukt angesteuert wird, so wie es in der Abbildung 4 gezeigt wird. Und ja, ich gebe es auch

Abbildung 3. 3. Schaltbild der Äquivalenz

zu, immer schwingt bei mir die leise Angst mit, dass es mir dann nicht möglich ist, weiter Mathematik zu treiben - oder schon nur das, was ich dafür halte, wenn ich die perfekte Lösung nicht gefunden habe. Jetzt weißt Du auch ein wenig, wie ich ticke, und warum ich dieses Dokument schreiben möchte. Trotzdem noch kurz zur Abbildung 4. Dort wird das Problem des unbestimmten Ausgangs so gelöst, dass ein weiterer Taster mittels einer Spule oder einer Identität betätigt wird, welcher dann den Ausgang auf ein definiertes Niveau hebt. Jedoch finde ich diese Art der Schaltung nicht cool, weil sie eventuell Zeit kostet. Zudem wird auch in dieser Variante Energie verbraten für das Ziehen des Relais (weil eine Spule durchflossen wird). Was in diesem Schaltbild ebenfalls seltsam ist, ist der Umstand, dass die Spule angezogen gezeichnet wurde. Der kurze senkrechte Strich bedeutet, dass der Kontakt geschlossen wurde.

Unter der Gleichung 19 ist wieder formal beschrieben, wie die Eigenschaften der Äquivalenz zu verstehen sind.

$$((\neg A \land \neg B) \Rightarrow (A \Leftrightarrow B)) \land \\ ((\neg A \land B) \Rightarrow \neg (A \Leftrightarrow B)) \land \\ ((A \land \neg B) \Rightarrow \neg (A \Leftrightarrow B)) \land \\ ((A \land B) \Rightarrow (A \Leftrightarrow B))$$

V_C A B U_a

Abbildung 4. 4. Schaltbild der Äquivalenz

Wieder sollen abschließende Beispiele die Kenntnisse der Eigenschaften der Äquivalenz und die Anwendung der formalen mathematischen Schreibweise vertiefen. Es sei A das Symbol für die Aussage: "Europa und Amerika sind Automarken", B sei das Symbol der Aussage: "Mobiltelefone sind verdaulich". Nun, ich denke, wir sind uns einig, dass beide Aussagen kompletter Nonsens ist. Dagegen ist die Aussage $A \Leftrightarrow B$, ausgeschrieben

"Europa und Amerika sind Automarken" ⇔
"Mobiltelefone sind verdaulich",

ausformuliert: "Europa und Amerika sind genau dann Automarken, falls Mobiltelefone verdaulich sind", wahr. Ich denke, dass ist auch intuitiv so einsichtig. da beide Aussagen nicht richtig sind, ist das eine ebenso wenig wahr wie das zweite. Darum sind die beiden Aussagen gleichwertig. Nun zur zweiten Zeile der Definition. Es sei A das Symbol der Aussage "Störche bringen die Kinder" und B sei das Symbol für die Aussage "Getreide und Reis sind wichtige Nahrungsmittel". Da nun die Aussage A offenbar nicht wahr ist, B jedoch schon, gilt die Aussage $\neg(A \Leftrightarrow B)$, ausgeschrieben

 \neg ("Störche bringen die Kinder" \Leftrightarrow "Getreide und Reis sind wichtige Nahrungsmittel")

ausgeschrieben: "Es gilt nicht, dass Störche genau dann Kinder bringen, falls Getreide und Reis wichtige Nahrungsmittel sind". Weiter sei A das Symbol für die Aussage "mit Windkraft kann elektrische Energie erzeugt werden", wogegen B das Symbol für die Aussage ist: "Mücken können tonnenweise Lasten tragen". Dann ist die Aussage A richtig, B jedoch nicht. Entsprechend gilt $\neg (A \Leftrightarrow B)$, ausgeschrieben

¬ ("mit Windkraft kann elektrische Energie erzeugt werden" ⇔
"Mücken können tonnenweise Lasten tragen"),

ausformuliert: "Es gilt nicht, dass mit Windkraft genau dann elektrische Energie erzeugt werden kann, falls Mücken tonnenweise Lasten tragen können". Schlussendlich sei A das Symbol für die Aussage: "Es gibt Wüsten", B sei das Symbol für die Aussage "in der Sahara scheint die Sonne häufig". Dann sind meines Erachtens beide Aussagen wahr. Also gilt per Definition die Aussage $A \Leftrightarrow B$, ausgeschrieben

"es gibt Wüsten" \Leftrightarrow "in der Sahara scheint die Sonne häufig",

ausformuliert: "Es gibt genau dann Wüsten, falls in der Sahara die Sonne oft scheint". Natürlich ist dies eine sonderbare Aussage, und sie ist nur darum richtig, weil die Äquivalenz auf diese Weise definiert wurde. Ich würde mich davor hüten, diese Aussage ein einem anderen Zusammenhang als dieser Einführung in die Logik zu machen. Denn die Aussage ist in meinen Augen völlig sinnlos. Aber sie ist logisch richtig, so bedenklich mir das auch scheinen mag.

Du denkst vielleicht wie ich - es reicht mit den Definitionen, die sind langweilig. Dann kannst Du natürlich gelangweilt ein wenig mit dem Bildschirm nach unten scrollen und weiter unten wieder weiterlesen. Du verpasst wahrscheinlich nicht sehr viel. Ich jedoch möchte oder muss noch weitere Definitionen präsentieren.

KAPITEL 15

Was ist eine "Antivalenz"?

Um es einfach zu machen: Eine entweder-oder Verknüpfung (auch "ausschließende Disjunktion genannt") ist wiederum eine Verknüpfung von zwei Aussagen, welche genau dann wahr ist, falls die entsprechende logische Äquivalenzaussage (siehe Kapitel 15) nicht wahr ist. Da gibt es vielleicht zwei Fragen von Dir: "1. Warum definierst Du dann die Antivalenz, wenn diese einfach mit der logischen Definition der Äquivalenz definiert werden kann" und "2. Wieso heißt diese Verknüpfung dann entweder-oder-Verknüpfung". Zur ersten Frage: Diese Verknüpfung wird eingeführt, weil sie in der mathematischen Literatur, jedoch vor allem in der Elektrotechnik vorkommen. Dabei wird sie definiert, weil das Ausschreiben als Negation der Äquivalenz oft mühsamer ist als das Hinschreiben der Antivalenz. Zur zweiten Frage: In der Tabelle 1 seien A und B die Symbole von Aussagen. Die Fälle sind so geordnet, wie ich sie in den Tabellen 3 respektive 4 dargestellt habe. In der letzten Spalte ist dann aufgeschrieben, ob die Antivalenz gilt. Ich muss gestehen, dass das Symbol der Antivalenz eventuell falsch ist. In der elektrotechnischen Literatur wird EXOR als Bezeichnung für die Antivalenz genommen, oder (vielleicht überraschend) "=1". In der Tabelle 2 ist das Gleiche noch einmal aufgeschrieben - jedoch auf eine andere Art: Statt der Bezeichnung der Aussage ist nur noch deren Wahrheitsgehalt aufgeschrieben, jedoch auch dieser nur noch als Zahl. Falls die Aussage nicht wahr ist, dann wird eine Null hingeschrieben, ansonsten eine Eins¹. Das "=1"-Zeichen kannst Du wie folgt interpretieren: Alle Zeilen der Tabelle 2, in welchen rechts die 1 steht, wahr sind. Wie Du jetzt ablesen kannst, ist die Antivalenz also genau dann wahr, falls eine der beiden Aussagen wahr und die andere Aussage nicht wahr ist. Wenn Du jetzt in in der Tabelle 2 die Zahlen auf der linken Seite zusammenzählst, dann sind alle Zeilen wahr, in welchen die Summe der Zahlen auf der linken Seite gleich eins ist. In der ersten Zeile ist die Summe der Zahlen auf der linken Seite der Tabelle 0, also ungleich 1. In den nächsten beiden Zeilen ist die Summe der Zahlen 1 = 0 + 1 = 1 + 0. Die entweder-Disjunktion ist in diesem Fall auch wahr. In der letzten Zeile ist auf der linken Seite die Summe der Zahlen 2. Da jedoch 2 ungleich 1 ist, ist die Antivalenz nicht richtig. Darum muss ihr der Wert 0 zugeordnet werden.

¹Vergleiche dazu mit der Definition 261 der Delta-Notation

TABELLE 1. 1. Darstellung der Wahrheitstabelle der logischen Äquivalenz

$\neg A$	$\neg B$	$\neg (A \Leftrightarrow B)$
$\neg A$	B	$A \Leftrightarrow B$
A	$\neg B$	$A \Leftrightarrow B$
A	В	$\neg (A \Leftrightarrow B)$

TABELLE 2. 2. Darstellung der Wahrheitstabelle der logischen Äquivalenz

A	B	$A \Leftrightarrow B$
0	0	0
0	1	1
1	0	1
1	1	0

Diese Art der "Disjunktion" liegt mir rein intuitiv näher als die "nicht ausschließende Disjunktion", welche ich im Kapitel 13 definiert habe. Das "nicht ausschließend" meint, dass die Aussage auch dann wahr sein soll, falls beide Teile der Aussage wahr sind. Falls bei einer "ausschließenden Disjunktion" beide Teile der Aussage wahr sind, dann ist die gesamte Aussage nicht wahr. Falls zwei Aussagen mit den Bezeichnungen A und B mit einer Antivalenz verknüpft werden sollen, dann kannst Du sagen: "Entweder gilt A oder es gilt B". Falls Du sagst: "A oder B gilt", dann ist es in der mathematischen Sprechweise immer möglich, dass beide Aussagen A und B zugleich gelten.

Ich mache jetzt Beispiele zur ausschließenden Disjunktion. Es ist nicht wahr, dass entweder Elche schießen können oder aber alle Pinguine in London leben (damit wäre eine Beispiel für die erste Zeile gemacht). Weiter ist es jedoch sehr wohl wahr, dass sich entweder Bäume auf schweizerdeutsch unterhalten oder aber wir Menschen nicht leben können, ohne zu atmen (auch wenn diese Atmung teilweise mittels einer Maschine gemacht wird). Damit wäre ein Beispiel für die jeweils zweiten Zeilen der Definitionen gemacht. Auch wahr ist, dass entweder Afrika ein Kontinent ist oder aber alle Menschen alle Sprachen dieser Welt sprechen können (ich für mich bin schon nur froh, wenn ich einigermaßen Deutsch schreiben kann - reden kann ich als Deutschschweizer sowieso nur Schweizerdeutsch). Dies ist ein Beispiel für die jeweils dritten Zeilen der Definition der Antivalenz. Es ist jedoch wiederum nicht wahr, dass entweder Fische im Wasser leben oder dass Vögel existieren, welche Möwen heißen (da beide Aussagen wahr sind, ist die Entweder-Oder-Aussage falsch). Damit hätte ich ein Beispiel für die jeweils vierten Zeilen der Definitionen der Antivalenz gemacht. Schlussendlich ist die Aussage zu Kindern: "Entweder Du gehst jetzt

sofort ins Bett, oder Du gehst jetzt sofort ins Bett" zwar eine massive Drohung, jedoch als Aussage nicht wahr². Denn sie ist nicht wahr, falls das Kind nicht ins Bett geht. In diesem Fall wäre es ein weitere Beispiel für die erste Zeile der Definition der Antivalenz. Oder aber sie ist nicht wahr, falls das Kind ins Bett geht. In diesem Fall wäre sie ein weiteres Beispiel für die vierte Zeile der Antivalenz.

Wieder existieren Schaltbilder für die Antivalenz. In der Abbildung 1 habe ich die Variante mit einem Lämpchen gezeichnet. In der Abbildung 2 habe ich die Variante gezeichnet, bei welcher das Lämpchen nicht zwingend notwendig ist. Bei der zweiten Schaltung ist wieder das "Elend" der asymmetrischen Schaltung vorhanden (Siehe die Bemerkung auf Seite 195).

In der Definition 20 werden die Eigenschaften der Antivalenz noch einmal aufgeschrieben, diesmal formal (abgesehen vom dreifachen Pfeil nach rechts (\Longrightarrow) .

$$((\neg A \land \neg B) \Rightarrow \neg (A \Leftrightarrow B)) \land \\ ((\neg A \land B) \Rightarrow (A \Leftrightarrow B)) \land \\ ((A \land \neg B) \Rightarrow (A \Leftrightarrow B)) \land \\ ((A \land B) \Rightarrow \neg (A \Leftrightarrow B))$$

Wieder mache ich abschließende Beispiele, welche die Eigenschaften der logischen Antivalenz besser zeigen sollen. Als Beispiel für die erste Zeile sei A das Symbol für die Aussage: "Kühe haben vier Ohren", B sei das Symbol für die Aussage: "Geld ist essbar". Da ich an beide Aussagen nicht glaube, sind meiner Ansicht nach beide Aussage falsch. Darum gilt $\neg(A \Leftrightarrow B)$, ausgeschrieben:

²Außerdem sollten Kindern bekanntlich nur Alternativen angeboten werden, welche echte Alternativen sind. Ansonsten ist es eine Art seelische Marter (in der Art "Wahl der Qual").

Abbildung 2. 2. Schaltbild der Antivalenz

¬("Kühe haben vier Ohren" ⇔
"Geld ist essbar"),

ausgeschrieben: "Es ist ist nicht wahr, dass entweder Kühe vier Ohren haben oder aber Geld essbar ist". Nun kommen zwei komische Beispiele. Als Beispiel für die zweite Zeile der Definition der Antivalenz sei A das Symbol für die Aussage "Es gibt eine Person, welche nirgends Ausländerin oder Ausländer ist" und B sei das Symbol für die Aussage "Bits und Bytes sind Begriffe der Informatik". Da die Aussage A bekanntlich nicht stimmt (es gilt ja die Aussage "Alle Menschen sind irgendwo Ausländer"), Bits und Bytes jedoch tatsächlich Begriffe der Informatik sind, gilt $A \Leftrightarrow B$, ausgeschrieben

"Es gibt eine Person, welche nirgends Ausländerin oder Ausländer ist" ⇔ "Bits und Bytes sind Begriffe der Informatik",

ausformuliert: "Entweder gibt es eine Person, welche nirgends Ausländerin oder Ausländer ist, oder Bits und Bytes sind Begriffe der Informatik". Wenn dieser Satz oberflächlich gelesen wird, dann kann es meines Erachtens passieren, dass gemeint wird, dass alles stimmt. Das ist jedoch nicht wahr. Die Aussage meint, dass eine der beiden Aussagen richtig ist und die andere ist es nicht. Natürlich wird nicht gesagt, welche Aussage richtig ist und welche nicht. Jedoch ist wahr, dass eine der beiden Aussagen wahr ist und die andere ist es nicht. Wie Du jedoch sehen kannst, ist jedoch viel gewonnen, wenn ich zeigen kann, dass es keine Person gibt, welche nirgends Ausländerin oder Ausländer ist. Denn wenn ich das zeigen kann, dann ist damit klar, dass Bits und

Bytes Begriffe der Informatik sind - falls mich das noch interessiert... Jedoch ist das in etwa das Vorgehen in der Mathematik. Beim nächsten Beispiel, welches als Beispiel der dritten Zeile der Antivalenz dienen soll, sei A das Symbol für die Aussage "Zuwenig Regen ist schlecht, zu viel jedoch auch" und B sei das Symbol für die Aussage "Es führt genau eine Straße nach Rom". Dann empfinde ich die Aussage A als zwar vage, jedoch wahr. Wohingegen die Aussage B nicht wahr ist. Also gilt $A \not\Leftrightarrow B$, ausgeschrieben

"Zuwenig Regen ist schlecht, zuviel jedoch auch"

"Es führt genau eine Strasse nach Rom",

ausformuliert: "Entweder ist zu wenig Regen schlecht, zu viel jedoch auch, oder es führt genau eine Straße nach Rom." Ich finde, das ist für mich einigermaßen plausibel. Da mehrere Straßen nach Rom führen³, muss die ersten Aussage wahr sein - und das ist sie doch, oder? Nun kommt noch das Beispiel für die letzte Zeile der Definition der Antivalenz, welche meines Erachtens wieder schwerer nachzuvollziehen ist. Ja, ich weiß, für Dich ist alles leicht, und das soll ja auch so sein. Ich aber quäle mich immer ein wenig ab in der Suche, etwas so einfach wie möglich und so kompliziert wie nötig darzustellen. Es sei also A das Symbol der Aussage: "Im Leben gibt es schöne und weniger schöne Momente", B sei das Symbol für die Aussage: "Bäume sind Pflanzen". Dann sind beide Aussagen meines Erachtens wahr (ich hoffe nicht, dass Du nur schönes oder nur weniger schönes erlebt hast), und Bäume sind auch Pflanzen. Jedoch gilt $\neg(A \Leftrightarrow B)$, ausgeschrieben:

¬ ("Im Leben gibt es schöne und weniger schöne Momente" ⇔ "Bäume sind Pflanzen")

ausformuliert: "Es gilt nicht, dass es entweder im Leben schöne und weniger schöne Momente gibt, oder dass Bäume Pflanzen sind". Es gilt eben beides, nicht "entweder oder".

Die nächsten zwei Arten von logischen Verknüpfungen werden in der Elektrotechnik bis zur Erschöpfung, aber in der Mathematik meines Wissens fast nicht verwendet. Sie werden hier aufgelistet, weil mit beide von ihnen alle übrigen Verknüpfungen von Aussagen erzeugt werden können - was ich seltsam finde, jedoch ist es so!

³"Es führen viele Wege nach Rom" ist ein Sprichwort, welches besagt, dass häufig mehrere Wege zum Ziel führen. Das stimmt übrigens auch in der Mathematik. Häufig gibt es mehrere Beweise für einen mathematischen Satz.

KAPITEL 16

Was ist eine "NAND-Verknüpfung"?

Die NAND-Verknüpfung (gemäß Wikipedia offenbar auch als Sheffer-Notation bezeichnet) besitzt als charakterisierende Eigenschaft, dass sie genau dann wahr ist, falls die entsprechende Konjunktion nicht wahr ist. Die wichtigste Eigenschaft dieser Verknüpfung ist jedoch, dass sich aus ihr alle andere Verknüpfungen ableiten lassen (was ich wieder später erledigen werde, so nach dem Motto: Verschiebe getrost auf Morgen, was Du heute kannst besorgen :)¹). Nein den entsprechenden Absatz kannst Du unter dem Satz 93 sowie dessen entsprechendem Abschnitt nachlesen). Im Abschnitt 23.12 möchte ich das beweisen. Diese Art der Verknüpfung wird in der Computer-Industrie milliardenfach verwendet - als logische Gatter. Das tönt wie eine Vorrichtung, um einen Gartenzaun oder so abzuschließen. Es sind jedoch elektrische Schaltbilder damit gemeint. Diese kannst Du unter 1 (energiefressende Variante) respektive 2 (Energiesparvariante) betrachten.

Ich versuche wieder in Worte zu fassen, was ich zeichnen wollte. Die verschiedenen Elemente habe ich bereits an anderer Stelle vorgestellt

Abbildung 1. 1. Prinzipschema NAND-Verknüpfung

¹Was natürlich so nicht stimmt! Das deutsche Sprichwort lautet: "Verschiebe nicht auf Morgen, was Du heute kannst besorgen."

Abbildung 2. 2. Prinzipschema NAND-Verknüpfung

TABELLE 1. 1. Darstellung der Wahrheitstabelle der NAND-Verknüpfung

$\neg A$	$\neg B$	$A \overline{\wedge} B$
$\neg A$	B	$A \overline{\wedge} B$
A	$\neg B$	$A \overline{\wedge} B$
A	B	$\neg (A \overline{\wedge} B)$

(beispielsweise unter dem Kapitel 8 über die Negation einer Aussage). Der Ausgang der Prinzipschemata der NAND-Verknüpfung wird nur dann "auf den Grund gezogen", dass heißt, er besitzt nur dann ein verschwindendes Potential gegenüber der Erde, falls beide Taster geschlossen sind. In allen anderen Fällen besitzt der Ausgang eine Ausgangsspannung.

Nachdem ich so "schöne Bildchen" gezeichnet habe (über deren Sinn respektive Unsinn sich durchaus streiten lässt) fühle ich mich trotzdem verpflichtet, den Sachverhalt der NAND-Verknüpfung noch sprachlich respektive tabellarisch zu fassen.

Wie gesagt, lässt sich die NAND-Verknüpfung dadurch charakterisieren, dass sie zwei Aussagen miteinander verknüpft nur dann nicht wahr ist, falls beide Aussagen wahr sind. Die Verknüpfung müsste also heißen: "... ist nicht zusammen wahr mit der Aussage ...".

In der Tabelle 1 respektive der Tabelle 2 sind die Eigenschaften der NAND-Verknüpfung noch einmal genau aufgelistet. Ich werde wieder Beispiele auflisten, welche die Eigenschaften NAND-Verknüpfung demonstrieren sollen. Es ist wahr, dass die Aussage, dass Himalaya ausschließlich der Name eines Gebirges ist, nicht zusammen wahr ist mit

TABELLE 2. 2. Darstellung der Wahrheitstabelle der NAND-Verknüpfung

A	B	$A \overline{\wedge} B$
0	0	1
0	1	1
1	0	1
1	1	0

der Aussage, dass sich Fliegen melken lassen. Denn es gibt offenbar eine schweizerische Künstlerin², welche ihre Tochter Himalaya taufen ließ (das arme Kind). Läuse werden angeblich von Ameisen "gemolken"³, jedoch ist mir von Fliegen nicht bekannt. Damit wäre ein Beispiel für die jeweils ersten Zeilen der Tabellen der NAND-Verknüpfung gemacht. Weiter ist die Aussage, dass Autos in der Schweiz gleich besteuert werden wie Fahrräder nicht zusammen wahr mit der Aussage, dass es Gleithörnchen gibt. In der Schweiz werden die Autofahrer "gemolken" in dem Sinn, dass die Fahrzeugsteuer schon ziemlich ins Geld gehen kann (ich selbst besitze kein Auto, obwohl ich stolzer Besitzer eines gültigen Fahrausweises bin). Gleithörnchen existieren jedoch (honnit soi qui mal y pense⁴;)). Jedoch sind nicht beide Aussagen gleichzeitig wahr, und darum ist die NAND-Verknüpfung der beiden Aussagen wieder wahr. Also wäre auch die nächste Zeile der Tabelle der NAND-Verknüpfung mit einem Beispiel belegt. Weiter ist die Aussage, dass es Laubbäume gibt, nicht gleichzeitig wahr mit der Aussage, dass Übergewicht harmlos ist. Ja, es gibt Laubbäume, Übergewicht ist jedoch eine eigentliche Krankheit (ich leide an Übergewicht). Da jedoch nicht gleichzeitig beide Aussagen wahr sind, gilt die NAND-Verknüpfung der beiden Aussagen wieder. Damit ist auch ein Beispiel der dritten Zeile gegeben. Schlussendlich stimmt jedoch die Aussage nicht, dass die Aussage, dass es am Himmel Wolken gibt, nicht zusammen wahr ist mit der Aussage, dass es aus Wolken regnen kann. Denn beide Aussagen (dass es am Himmel Wolken gibt einerseits und dass es aus Wolken regnen kann), sind wahr. Damit wären die Beispiele gezeigt. Nun werde ich wieder die Eigenschaften der NAND-Verknüpfung formal beschreiben:

²Die Künstlerin arbeitet unter dem Namen Pippilotti Rist

 $^{^3}$ Ja ich weiß: Hier wäre wieder eine Literaturangabe fällig, aber das lasse ich weg. Wer Lust hat, kann die entsprechende Literaturangabe mir zusenden

⁴Auf gut Deutsch: "Ein Schelm, wer Arges dabei denkt". Wobei die Aussage insofern wieder lustig ist, weil der, welche oder welcher dies schreibt, an die verfängliche Variante gedacht haben muss. Hätte er oder sie nicht daran gedacht, dann wäre es ihr oder ihm auch nicht in denn Sinn gekommen, dies zu sagen. Bitte verzeihe mir, wenn ich an dieser Stelle keine Erklärungen mache, was mir dabei durch den Kopf gegangen ist.

$$((\neg A \land \neg B) \Rightarrow (A \overline{\land} B)) \land \\ ((\neg A \land B) \Rightarrow (A \overline{\land} B)) \land \\ ((A \land \neg B) \Rightarrow (A \overline{\land} B)) \land \\ ((A \land B) \Rightarrow \neg (A \overline{\land} B))$$

Wieder mache ich Beispiele für diese Eigenschaften. Es sei A das Symbol der Aussage "Es gibt Papageien am Südpol.", B sei das Symbol der Aussage "Alle Clowns sind Mathematiker". Nun, beide Aussage sind wohl nicht wahr. Darum gilt $A \bar{\wedge} B$, ausgeschrieben:

"Es gibt Papageien am Südpol."⊼
"Alle Clowns sind Mathematiker.".

ausformuliert: "Dass es Papageien am Südpol gäbe ist nicht gleichzeitig wahr wie die Aussage, dass alle Clowns Mathematiker seien." Damit ist ein Beispiel für die erste Zeile der Definition der NAND-Verknüpfung gegeben. Nun sei A ein Symbol für die Aussage: "Alle Menschen haben die gleiche Hautfarbe grün", B sei ein Symbol für die Aussage: "Viele Menschen können sehen". Die Aussage A stimmt wohl eher nicht, auch wenn wir uns manchmal grün und blau ärgern. Hingegen können tatsächlich viele (wenn auch nicht alle) Menschen sehen. Darum gilt $A \bar{\wedge} B$, ausgeschrieben

"Alle Menschen haben die gleiche Hautfarbe grün."⊼
"Viele Menschen können sehen.",

ausformuliert: "Dass alle Menschen grüne Hautfarbe hätten, ist nicht gleichzeitig wahr wie die Aussage, dass viele Menschen sehen können." Nun sei A das Symbol für die Aussage: "Schnee ist kälter als kochendes Wasser". B sei das Symbol für die Aussage: "Alle Menschen haben genug zu essen". Leider ist die letzte Aussage B im Jahr 2011 immer noch nicht wahr (was für eine Schande für uns). Hingegen ist Schnee durchaus kälter als kochendes Wasser. Darum gilt: $A \bar{\wedge} B$, ausgeschrieben

"Schnee ist kälter als kochendes Wasser."⊼
"Alle Menschen haben genug zu essen.",

ausformuliert: "Die Aussage, dass Schnee kälter als kochendes Wasser ist, ist nicht zusammen wahr mit der Aussage, dass alle Menschen genug zu essen hätten." Nun möchte ich noch ein Beispiel für die letzte Zeile der Definition der NAND-Verknüpfung machen. Es sei A das Symbol der Aussage: "Es gibt Mathematikerinnen". B sei das Symbol der Aussage: "Es gibt Babysitter". Da bekanntlich beide Aussagen wahr sind, gilt: $\neg(A \bar{\land} B)$, ausgeschrieben

 \neg ("Es gibt Mathematikerinnen." $\bar{\wedge}$ "Es gibt Babysitter."),

ausformuliert: "Es gilt nicht, dass die Aussage, dass es Mathematikerinnen gibt, nicht zusammen wahr ist mit der Aussage, dass es Babysitter gibt". Damit wäre auch ein Beispiel für die letzte Zeile der formalen Beschreibung der NAND-Verknüpfung gemacht.

Bevor ich zum Schluss des Kapitels komme, möchte ich mir nicht überlegen, ob es Abkürzungsregeln der NAND-Verknüpfung gibt. Ich bin der Meinung, dass diese vorhanden ist.

LEMMA 9. Es seien A und B Symbole für Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Ist dann A oder B nicht wahr, dann ist die Aussage

 $A \overline{\wedge} B$

wahr.

BEWEIS. Denn sind beide Behauptungen A und B nicht wahr, dann ist gemäß der ersten Zeile der Definition der NAND-Verknüpfung oben die Behauptung wahr. Ist die Aussage A nicht wahr und die Behauptung B wahr (also die Behauptung A nicht wahr), dann ist gemäß der zweiten Zeile der Definition der NAND-Verknüpfung oben die Behauptung ebenfalls wahr. Ist die Aussage A wahr und die Aussage B nicht wahr (also die Behauptung B nicht wahr), dann ist gemäß der dritten Zeilen der Definition der NAND-Verknüpfung die Behauptung ebenfalls wahr. Damit hätte ich jedoch den Beweis für die Richtigkeit der Behauptung erbracht und beende darum an dieser Stelle die weitere Beweisführung.

Am Schluss dieses Kapitels möchte ich eine Bemerkung über die das Symbol der NAND-Verknüpfung schreiben: Das Symbol der NAND-Verknüpfung ist eigentlich aus zwei Symbolen aufgebaut: Dem Symbol der Konjunktion "^" und dem Symbol der Negation "". Allerdings ist das Symbol der Negation nicht wie sonst als "Haken" geschrieben: "¬", sondern als Strich über der Aussage. Das ist auch eine mögliche Schreibweise. Sie ich im Satz 68 formulieren und beweisen möchte, könnte ich anstelle von

 $A\overline{\wedge}B$

schreiben

$$\neg (A \land B)$$

Und da in der Mathematik anstelle des Hakens auch ein Strich über der Aussage geschrieben wird, könnte ich auch schreiben:

$$\overline{A \wedge B}$$

Also ist die Schreibweise $\overline{\wedge}$ sozusagen eine Verkürzung der Schreibweise mit dem langen Strich oberhalb der Aussage.

sogenannte Abkürzungsregeln der NAND-Verknüpfung Als nächstes folgt die Beschreibung der letzten logischen Verknüpfung, welche ich vorstellen möchte.

KAPITEL 17

Was ist eine "NOR-Verknüpfung"?

Um es kurz zu machen: eine NOR-Verknüpfung (gemäß Wikipedia auch als Peirce-Notation bezeichnet) ist die Negation einer Disjunktion. Daher auch ihr Name. "NOR" ist eine Verkürzung von "not or", auf deutsch also "nicht oder". Sie ist also nur dann wahr, falls beide Aussagen, welche NOR-verknüpft werden, falsch sind. Die Tabellen 1 respektive 2 zeigen die Eigenschaften der NOR-Verknüpfung. Das Symbol der NOR-Verknüpfung wurde dem dtv-Atlas der Mathematik entnommen. Die Sprachregelung ist übrigens ebenfalls komisch: Sind A und B Symbole für Aussagen, so kann die zusammengesetzte Aussage $A \overline{\lor} B$ ausgesprochen werden als: "Weder A noch B sind wahr". Wieso wird dann von NOR, also "not or", und nicht von "not and", "nicht und" gesprochen? Ich werde diese noch zeigen müssen (siehe Kapitel 20.25). Weiter werde ich an anderer Stelle ebenfalls zeigen, dass die NOR-Verknüpfung alle anderen Verknüpfungen erzeugt.

Die NOR-Verknüpfung spielt in der Computertechnik eine wichtige Rolle, indem mit ihr logische Schaltungen aus Transistoren erzeugt werden können. Falls Du wie auch daran glaubst, dass die Amerikaner auf dem Mond waren (sie hätten mich dort ruhig besuchen dürfen,

TABELLE 1. 1. Darstellung der Wahrheitstabelle der NOR-Verknüpfung

$\neg A$	$\neg B$	$(A\overline{\vee}B)$
$\neg A$	B	$\neg (A \overline{\vee} B)$
A	$\neg B$	$\neg (A \overline{\vee} B)$
A	B	$\neg (A \nabla B)$

TABELLE 2. 2. Darstellung der Wahrheitstabelle der NOR-Verknüpfung

A	B	$A \overline{\vee} B$
0	0	1
0	1	0
1	0	0
1	1	0

Abbildung 1. 1. Prinzipschema NOR-Verknüpfung

da ich schon lange hinter dem Mond wohne¹...), dann lass Dir gesagt sein, dass die Amerikaner mit einem Computer auf den Mond flogen, welcher als logische Grundbausteine NOR-Gatter besaßen. 1 zeigt das Prinzip eines NOR-Gatters.

Ich möchte sprachlich ausdrücken, was ich zu zeichnen versucht habe². Ganz links ist der Verweis angebracht, dass diese Leitung mit der Grundspannung versorgt wird. Keine Angst, das sind üblicherweise nicht kV, welche da angeschlossen sind (kV sind 1000 V, durchaus tödlich). Üblicherweise sind dies 5 V. Es kitzelt an der Zunge, wenn der Leiter über die Zunge mit der Erde verbunden wird. Aber mehr passiert nicht. Dann hat es zwei komische Taster. Diese Taster haben die Eigenschaft, dass sie keinen Strom leiten, wenn der Taster "eingeschaltet" wird. Das Einschalten kannst Du Dir so vorstellen, dass Energie verwendet muss, um den Taster zu drücken. Falls keine Energie verwendet wird, dann springt der Taster wieder auf und wird dadurch leitend. Diese Taster sind einer nach dem anderen geschaltet. Das bedeutet: Sobald einer der beiden Taster betätigt wird, dann wird die Stromleitung unterbrochen. Die Ladung, welche dann beim Ausgang noch vorhanden wäre, fließt in in diesem Fall den Boden. Dadurch wird erreicht, dass beim Ausgang keine Spannung mehr vorhanden ist. Wäre kein Widerstand vorhanden, dann würde die Ladung beim Ausgang verbleiben, und der Taster würde sich nicht ausschalten lassen. Nur falls beide Taster geöffnet sind, kann Ladung aus der Spannungsquelle zum Ausgang fließen und somit für eine Ausgangsspannung sorgen. Wenn dann eine kleine Spannung als 0 und Spannung als 1 übersetzt wird³, dann kannst Du aus dem Vergleich mit 2 erkennen, dass diese Schaltung tatsächlich

¹wäre übrigens ein Witz

²Sei mir bitte nicht böse, dass diese Beschreibung eine ähnliche ist wie diejenige der vorhergehenden Kapitel, insbesondere des Kapitels 8

³Eigentlich könnte ich schreiben "keine Spannung". Aber in der Elektrotechnik wird zwischen kleiner und großer Spannung unterschieden, damit die Schaltungen auch unter realen Bedingungen funktionieren.

V_C B U_a

Abbildung 2. 2. Prinzipschema NOR-Verknüpfung

ein NOR-Gatter erzeugt. Wenn anstatt ein Widerstand zwei Taster verwendet werden um gegebenenfalls überflüssige Ladungen in die Erde abzuleiten, dann sind dies Taster, so wie Du sie sicher kennst: Falls diese gedrückt werden, dann fließt die überschüssige Ladung in die Erde. Wie Du in der Abbildung 2 erkennen kannst, wird der Ausgang mit der Erde verbunden, sobald einer der beiden Taster betätigt wird. Umgekehrt wird der Ausgang nur dann mit der Versorgungsspannung verbunden, wenn beide Taster nicht betätigt sind. Schaltungen ohne Widerstände sind in der Mikrosystemtechnik meines Wissens einfacher zu realisieren als Schaltungen mit Widerständen. Darüber hinaus erzeugt die Schaltung ohne Widerstände weniger Verlustleistung. Die Compis brauchen auch so noch zu viel elektrische Energie...

Ich möchte noch Beispiele für die NOR-Verknüpfung machen machen: Die Aussage "alle Hasen essen Ostereier an Pfingsten" ist ebenso wenig wahr wie die Aussage "Ali Baba und die 50 Räuber". (Es wären 40 Räuber im Märchen aus 1001 Nacht). Das wäre ein Beispiel für die erste Zeile der NOR-Verknüpfung. Jedoch stimmt es nicht, dass die Aussage "Aller Anfang ist 10 kg leicht" ebenso wenig wahr ist wie die Aussage "Die Sonne geht im Osten auf und im Westen unter". Denn die Sonne geht per Definition im Osten auf und im Westen unter. Also hätte ich ein Beispiel der zweiten Zeile der Definition NOR-Verknüpfung aufgeschrieben. Weiter stimmt es auch nicht, dass Wikinger nicht Norweger waren und Julius Cäsar als Kaiser von Rom mit Kaiser Napoleon Bonaparte nie in Buenos Aires gemeinsam das Frühstück eingenommen haben. Denn die Wikinger waren wirklich (unter anderem) Norweger.

Adlerdings ist zu bezweifeln, ob Kaiser Napoleon Bonaparte und Julius Cäsar miteinander das Frühstück eingenommen haben. Aber da die erste Aussage wahr ist, ist damit schon gezeigt, dass nicht gilt, dass die erste Aussage ebenso wenig wahr ist wie die zweite Aussage. Damit wäre ein Beispiel für die dritte Zeile der NOR-Verknüpfung gemacht. Schlussendlich stimmt es auch nicht, dass Pinguine nicht in der Arktis und Eisbären nicht in der Antarktis natürlicherweise vorkommen. Da beide Aussagen wahr sind, ist die NOR-Verknüpfung der beiden Aussagen sicher nicht wahr. Jedoch habe ich damit ein Beispiel der vierten Zeile der NOR-Verknüpfung geschrieben.

Wieder möchte ich die formale Beschreibung der NOR-Verknüpfung einführen. Diese besitzt per Definition die folgenden Eigenschaften:

$$((\neg A \land \neg B) \Rightarrow (A \nabla B)) \land \\ ((\neg A \land B) \Rightarrow \neg (A \nabla B)) \land \\ ((A \land \neg B) \Rightarrow \neg (A \nabla B)) \land \\ ((A \land B) \Rightarrow \neg (A \nabla B))$$

Ich werde jetzt wieder Beispiele für die formale Beschreibung machen. Es sei A das Symbol für die Aussage: "Die Beine von Bachstelzen sind gleich lang, besonders jeweils das linke."⁴, B sei das Symbol für die Aussage: "Die Menschen werden als Greise geboren und sterben als Säuglinge". Beide Aussagen stimmen natürlich nicht, jedoch die Aussage $A \nabla B$, ausgeschrieben

"die Füsse von Bachstelzen sind gleich lang, "
"besonders jeweils der linke Fuss."

"Die Menschen werden als Greise geboren "
"und sterben als Säuglinge"

ausformuliert: "Die Aussage, dass beide Beine von Bachstelzen gleich lang seien, besonders das linke, ist ebenso wenig wahr wie die Aussage, dass Menschen als Greise geboren werden und als Säuglinge sterben." Also wäre ein Beispiel für die erste Zeile der formalen Definition der NOR-Verknüpfung gemacht. Als Beispiel für die zweite Zeile der formalen Definition der NOR-Verknüpfung sei A das Symbol der Aussage: "Steine haben ein Herz und Nieren", B sei das Symbol für die Aussage: "Es gibt viele verschiedene Tier- respektive Pflanzenarten". Dann ist die A Aussage nicht wahr (jedenfalls ist mir nicht bekannt, dass Steine leben würden), wohingegen die Aussage B durchaus richtig ist. Also gilt $\neg (A \nabla B)$, ausgeschrieben

⁴Das war, wenn ich mich richtig erinnere, Bestandteil eines Witzes: "Welches Bein einer Bachstelze ist länger, das linke oder das rechte? Antwort: Beide Beine sind gleich lang, besonders der linke". Er geht in die gleiche Richtung wie der Witz: "Im Kommunismus sind alle Personen gleich, nur sind ein paar gleicher". Die Utopie und die Realität prallen eben nicht nur in der katholischen Kirche immer wieder hart aufeinander.

 \neg ("Steine haben ein Herz und Nieren." $\overline{\lor}$ "Es gibt viele verschiedene Tier- repspektive Pflanzenarten."),

ausformuliert: "Es ist nicht wahr, dass die Aussage, dass Steine Herz und Nieren hätten, ebenso wenig wahr ist wie die Aussage, dass es viele verschiedene Tier- respektive Pflanzenarten gibt". Also ist das Beispiel für die zweite Zeile der Definition der NOR-Verknüpfung gemacht. Als Beispiel für die dritte Zeile sei A das Symbol der Aussage: "Die Künste beeindrucken viele Personen." B sei das Symbol für die Aussage: "Pferde sind Fleischfresser." Dann ist die Aussage A wahr, wenn auch schwammig formuliert. Jedoch ist die Aussage B nicht wahr. Also gilt $\neg (A \nabla B)$, ausgeschrieben

¬ ("Die Künste beeindrucken viele Personen."

"Pferde sind Fleischfresser."),

ausformuliert: "Es ist nicht wahr, dass die Aussage, dass die Künste viele Personen beeindrucken, ebenso wenig wahr ist wie die Aussage, dass Pferde Fleischfresser seien." Damit ist das Beispiel für die dritte Zeile der NOR-Verknüpfung gemacht. Als Beispiel für die vierte Zeile der formalen Beschreibung der NOR-Verknüpfung sei A das Symbol für die Aussage "1 ist eine Zahl.", B sei das Symbol für die Aussage "2 ist eine Zahl.". Dann gilt $\neg(A\nabla B)$, ausgeschrieben

 \neg ("1 ist eine Zahl" $\overline{\lor}$ "2 ist eine Zahl."),

ausformuliert: "Es gilt nicht, dass weder 1 noch 2 Zahlen sind".

Entsprechend der Bemerkung über das Symbol der NAND-Verknüpfung kann ich auch über das Symbol der NOR-Verknüpfung schreiben, dass dieses eigentlich eine Abkürzung der Schreibweise

$$\overline{A \vee B} \Leftrightarrow \neg (A \vee B)$$

angesehen werden kann. In Worten will ich damit schreiben, dass die NOR-Verknüpfung als Negation einer Disjunktion angesehen werden kann. Vergleiche dazu mit dem Satz 69 - falls Dich das interessiert und Dich "getraust", das schon durchzulesen. Ich meine das nicht abwertend. Jedoch sind Vorwärtsbezüge in Büchern immer eigentlich deplatziert ("doof"), da die lesenden Personen praktisch immer in "kaltes Wasser geworfen werden".

Jetzt endlich sind die Startbedingungen festgemacht.

Als nächstes möchte ich aufschreiben, welche Operatoren üblicherweise zuerst, welche dann anschließend ausgeführt werden.

KAPITEL 18

Wie ist die Ausführungsreihenfolge von Operatoren?

Ich habe jetzt die folgenden Operationen definiert:

- die Negation ¬
- die Identität, diese besitzt jedoch kein Symbol und interessiert nur am Rand
- die Konjunktion ∧
- die Implikation \Rightarrow
- die "Replikation" \Leftarrow
- die Disjunktion ∨
- die logische Äquivalenz ⇔
- die logische Antivalenz #
- die NOR-Verknüpfung ∇
- die NAND-Verknüpfung ⊼

Jetzt ist praktisch, wenn eine Reihenfolge gemacht wird, welche anzeigt, welche Operation zuerst ausgeführt wird, und welche nachher. Ich mache ein Beispiel, welches das die Problemstellung aufzeigen soll: Der Satz der Kette der Schlussfolgerung lässt beispielsweise so aufschreiben: Sind A, B sowie C Symbole dreier Aussagen, dann gilt

$$(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$$

In Worten bedeutet dieser Satz: Wenn aus aus der Aussage A die Aussage B und aus der Aussage B die Aussage C folgt, dann folgt aus der Aussage A die Aussage B. Natürlich haut dieser Satz uns nicht aus den Socken. Jedoch wird er viel-tausend Mal im täglichen Leben aber auch in der Mathematik verwendet. Jetzt könntest Du Dich fragen ob die Aussage so abgearbeitet werden muss:

$$((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$$

oder so

$$(A \Rightarrow B) \land ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$$

Dann bedeutet die erste Art der Verknüpfung: "Wenn aus der Aussage A die Aussage B und aus der Aussage B die Aussage B

auf jeden Fall kein logischer Satz (vergleiche mit dem folgenden Kapitel). Denn wenn A eine wahre, B hingegen keine wahr Aussage ist, dann ist die ganze Aussage nicht wahr (vergleiche mit der dritten Zeile der Definition 14 der Schlussfolgerung sowie der "Abkürzungsregel der Konjunktion" am Ende des Kapitels 10). Das bedeutet, aber nach dem folgenden Kapitel, dass die Aussage kein logischer Satz sein kann. Weiter kann ich damit zeigen, dass es unter Umständen sehr auf die Ausführungsreihenfolge der Operationen ankommt.

Es ist jedoch praktisch, wenn die Klammern weggelassen werden können, falls es klar ist, wie die Ausführungsreihenfolge lautet. Ich werde zwar so oft wie möglich probieren, die Klammern zu setzen. Aber Du wirst wahrscheinlich selbst nicht alle Klammern schreiben, so wie auch in mathematischen Texten die Klammern nicht geschrieben werden. Nachfolgend möchte ich Dir die Reihenfolge angeben, so wie ich sie kennengelernt habe. Dabei bedeutet eine tiefe Nummer, dass die Operation zuerst ausgeführt wird. Eine höhere Nummer bedeutet, dass die Operation später ausgeführt wird (ich habe weitgehend bei Wikipedia¹ abgeschrieben):

- (1) die Negation \neg
- (2) die Identität (ohne spezielles Symbol)
- (3) die NOR-Verknüpfung ∇
- (4) die Konjunktion \wedge
- (5) die NAND-Verknüpfung ⊼
- (6) die Disjunktion \vee
- (7) die Äquivalenz \Leftrightarrow
- (8) die Antivalenz #
- (9) die Replikation \Leftarrow
- (10) die Implikation \Rightarrow

Ich muss zugeben, dass mir nicht bekannt ist, an welcher Stelle die NOR respektive die NAND-Verknüpfung kommt. Vielleicht weißt Du es. Dann wäre ich um eine entsprechende Rückmeldung dankbar. Ebenfalls bin ich mir nicht genau sicher mit den genauen Positionen der Äquivalenz, der Antivalenz, der Replikation und der Implikation.

Wie schon gesagt, würde ich Klammern schreiben und vielleicht noch die Abstände zwischen Teilen, welche erst später verknüpft werden, vielleicht noch ein wenig vergrößern, falls Du Dir nicht hundertprozentig sicher bist, was jetzt zuerst, was erst anschließend ausgeführt werden soll. Übrigens ist die Ausführungsreihenfolge auch in Programmiersprachen ein großes Thema. Dort sind dann alle Operatoren schön geordnet. Aber ich bezweifle, ob jemand diese Reihenfolge vollständig verinnerlichen kann. Ich beispielsweise kann's nicht, und tendiere auf jeden Fall dazu, immer schön kleinere Einheiten zu machen. Dies ist dann auch für die Fehlersuche vorteilhaft.

¹http://de.wikipedia.org/wiki/Operatorrangfolge

So, jetzt wären sozusagen die Zutaten pfannenfertig vorhanden. Was nun kommt, ist sozusagen der erste Lackmustest², ob diese Festlegungen auch sinnvoll sind. Das ist m.E. das Interessante am Ganzen. Du kannst Alles definieren, jedoch musst Du nachher zeigen, ob die Annahmen auch sinnvolle Resultate zeigen³. In den folgenden Kapiteln möchte ich logische Aussagen beweisen.

²Ein Lackmustest (http://de.wikipedia.org/wiki/Lackmustest) zeigt meines Wissens an, ob eine Flüssigkeit sauer oder basisch ist. Dabei handelt es sich um einen Streifen, welcher kurz in die Flüssigkeit gehalten werden muss. Je nach Farbe ist die Flüssigkeit also eine Säure oder eine Base. Im übertragenen Sinn habe ich den Lackmustest kennengelernt als Überprüfung, ob die Dinge wirklich so sind, wie sie zu sein scheinen.

³Das war einer der wesentlichen Gründe, wieso ich im sozialen Bereich todtraurig wurde. Da wurde gesagt und gesagt, jedoch nicht überprüft.

KAPITEL 19

Mengenelemente und logische Aussagen

Das folgende Kapitel schreibe ich, weil ich bemerkt habe, dass es später wichtig ist, wenn ich später einfach darauf zurückgreifen kann und nicht noch erläutern muss, was ich das sagen möchte. Es sei M eine Menge, welche jedoch wohldefiniert sei! Das bedeutet, wie ich weiter oben in Kapitel 5 bereits zu zeigen versuchte, dass diese Menge keine abstruse Menge sei, welche eventuell über sieben Ecken und Enden Bezug auf sich selbst nimmt. Nun sei A eine Aussage. Dann sei der Allquantor \forall wie folgt definiert:

$$(23) \qquad (\forall x \in M : A) \Leftrightarrow ((x \in M) \Rightarrow A)$$

In Worten: Es sei definitionsgemäß die Aussage A für alle Elemente x der Menge M dann gültig, falls aus der Aussage, dass x in M sei, die Aussage A folge. Auf der linken Seite der Definition ($\forall x \in M: A$) steht die Aussage "Für alle x aus der Menge M gilt die Aussage A. Diese Aussage kann eine Aussage sein, in welcher x als Metasymbol verwendet wird. Oder es kann eine Aussage sein, welche x nicht als Metasymbol enthält. Dann allerdings ist die Aussage wahrscheinlich sinnlos, also vielleicht zwar formal richtig, jedoch ohne jeden praktischen Bezug.

Andererseits sei der Existenzquantor \exists wie folgt definiert:

$$(24) \qquad (\exists x \in M : A) \Leftrightarrow ((x \in M) \land A)$$

Wenn ich diese Definitionen sprachlich ausdrücken will, dann gibt es definitionsgemäß genau dann ein Element x der Menge M, für welche die Aussage A gelte, falls x ein Element der Menge M ist und die Aussage A gilt. Auf der linken Seite der Definition $(\exists x \in M : A)$ ist die Aussage aufgeschrieben: "Es gibt ein Element der Menge M, für welche die Aussage A gilt". Die Symbole \forall respektive \exists werden übrigens Quantoren genannt. Ein Quantor ist (Irrtum vorbehalten) eine Mengenbezeichnung.

Ich mache ein Beispiel, welches vielleicht hoffentlich ein wenig zur Klärung beiträgt. Es sei n das Symbol für eine beliebige natürliche Zahl. Eine Zahl heiße natürlich, falls sie entweder 1 ist oder es eine natürliche Zahl gibt, welche mit dem Symbol bezeichnet m werde, so dass n=m+1 ist. Das heißt, dass $1,2,3,4,\ldots$ natürliche Zahlen sind. Nun gilt die Aussage, dass jede natürlich Zahl entweder gerade oder ungerade ist. Dabei heißt eine natürliche Zahl n gerade, falls es

eine natürliche Zahl p derart gibt, dass $n=2\cdot p$ ist. Das bedeutet, dass unter anderem die Zahlen 2, 4, 6, respektive 8 gerade sind. Weiter heißt eine natürliche Zahl n ungerade ist, falls es eine natürliche Zahl q derart gibt, dass $q=2\cdot q-1$ ist. Das hat zur Folge, dass die Zahlen 1, 3, 5, 7 ungerade sind. Nun gilt die Aussage

$$\forall n \in \mathbb{N} : ((\exists p \in \mathbb{N} : n = 2 \cdot p) \lor (\exists q \in \mathbb{N} : n = 2 \cdot q - 1))$$

Diese Aussage bedeutet in Worten: Jede Zahl ist gerade oder ungerade. Ich löse die Definition auf und erhalte

$$(n \in \mathbb{N}) \Rightarrow ((\exists p \in \mathbb{N} : n = 2 \cdot p) \lor (\exists q \in \mathbb{N} : n = 2 \cdot q - 1))$$

oder, falls die die Existenzaussagen auch noch ausschreibe

$$(n \in \mathbb{N}) \Rightarrow ((p \in \mathbb{N} \, \wedge \, n = 2 \cdot p) \vee (q \in \mathbb{N} \, \wedge \, n = 2 \cdot q - 1))$$

Wenn ich die letzte Aussage in Worte fasse, dann kann ich schreiben: Ist n das Metasymbol einer natürlichen Zahl, dann folgt daraus, dass n gerade oder ungerade ist.

Wieder ist da die quälende Frage: "Was soll das Ganze?" Wieso muss ich etwas definieren, wenn ich es auf eine andere Art ebenso aufschreiben könnte? Die Antwort kenne ich nicht genau. Jedoch vermute ich, dass die Definition darum entstand, damit die Aussagen leichter lesbar sind. Außerdem sind die Aussagen insofern bemerkenswert, weil sie eine Definition und eine Aussage enthalten. Also die Leserin oder den Leser zuerst darauf lenken, dass etwas definiert wird ("n sei das Symbol einer natürlichen Zahl") und anschließend eine Aussage über das definierte Symbol gemacht wird. Zwar beinhaltet die Aussage

$$(n \in \mathbb{N}) \Rightarrow ((p \in \mathbb{N} \land n = 2 \cdot p) \lor (q \in \mathbb{N} \land n = 2 \cdot q - 1))$$

auch Definitionen. Aber diese sind sozusagen versteckt. Denn ist n keine natürliche Zahl, dann gilt die Aussage gemäß den ersten zwei Zeilen der Definition 14 trotzdem. Und ist n eine natürliche Zahl, dann muss es Symbole, welche mit p oder q derart geben, dass p und q natürliche Zahlen symbolisieren und für welche gelten, dass $n=2\cdot p$ oder $n=2\cdot q-1$ ist. Wenn ich jedoch schreibe

$$\forall n \in \mathbb{N} : ((\exists p \in \mathbb{N} : n = 2 \cdot p) \lor (\exists q \in \mathbb{N} : n = 2 \cdot q - 1))$$

dann mache ich die Definitionen der Symbole n, p sowie q klar sichtbar. Die Hoffnung ist dann, dass der Text in diesem Fall leichter lesbar wird.

Und nun, da ich schon ein einigermaßen gescheites Beispiel gemacht habe, ein unsinniges Beispiel. Ich nehme an, dass die die Aussage sei: "Die Sonne ist ein sehr großer Himmelskörper". dann würde die ganze Aussage lauten

 $\forall n \in \mathbb{N}$: "Die Sonne ist ein sehr grosser Himmelskörper"

Dies könnte dann übersetzt werden mit

 $(n \in \mathbb{N}) \Rightarrow$ "Die Sonne ist ein sehr grosser Himmelskörper"

Ausgeschrieben: "Für alle natürlichen Zahlen n gilt, dass die Sonne ein Himmelskörper ist". Diese Aussage ist zwar wahr - aber der Erkenntnisgewinn minimal, also eigentlich gar nicht vorhanden. Denn da auf der rechten Seite immer eine wahre Aussage ist, gilt die Aussage immer, unabhängig davon, ob die Aussage auf der linken Seite der Behauptung wahr ist. Jedoch gilt die Aussage immer noch für alle natürlichen Zahlen, welche mit n beschrieben werden sollen.

Es gibt übrigens noch eine Definition in diesem Zusammenhang, welche mir erwähnenswert scheint: Wenn ich schreibe

$$\exists ! n \in \mathbb{N} : n < 1$$

dann meine ich damit: Es gibt genau eine natürliche Zahl, welche kleiner oder gleich 1 ist. Das heißt, das ich nicht bloß schreibe, dass es mindestens eine natürliche Zahl, welche mit n bezeichnet werde und für welche gilt, dass n kleiner oder gleich ist. Es ist vielmehr so, dass es in diesem Fall auch höchstens eine Zahl n gibt, für welche dies gilt. Wenn Du Dich fragst, wieso das so wichtig sein soll, dann möchte ich darauf antworten, dass es oftmals wichtig ist, zu wissen, wie viele Möglichkeiten existieren. Zur Illustrationen möchte ich Dir eine kleine Geschichte erzählen. Ich habe einmal mit meiner Exfrau und damaliegen Freundin "im Bahnhof" abgemacht, und zwar dann, wenn der letzte Zug angekommen ist. Leider habe ich angenommen, dass meine damalige Freundin den Bahnhof Luzern meinte. Während dem sie angenommen hat, dass der Bahnhof Olten gemeint ist. Also habe ich am Bahnhof Luzern gewartet und meine damalige Freundin ist nicht erschienen. Mit dem Resultat, dass ich eine Nacht im Freien verbringen durfte, da ich keine Bleibe über Nacht hatte. Dadurch, dass die Aussage "im Bahnhof zum Zeitpunkt der letzten Ankunft des Zuges" mehr als eine Möglichkeit hatte, hat sich ein Kommunikationsfehler eingeschlichen, deren Folge ich schmerzlich am eigenen Leib verspürt habe. Also ist es manchmal wichtig nicht nur zu wissen, ob eine Problemstellung beispielsweise mindestens eine Lösung hat (wo verabreden wir uns wann), sondern auch, ob es höchstens eine Lösung hat (reden wir vom gleichen Zeitpunkt und vom gleichen Ort?). Zu diesem Zweck wurde das Ausrufezeichen eingeführt. Ich habe ich mich übrigens schon gefragt, ob es dann auch eine Möglichkeit gibt, formal zu schreiben, dass es etwa 10 natürliche Zahlen gibt, deren Quadrat (also Multiplikation mit sich selbst) kleiner oder gleich 100 ist. Wie wäre es etwa mit dieser Schreibweise?

$$\exists (10)! n \in \mathbb{N}: n^2 \le 100$$

Leider nein. Mir ist keine solche Schreibweise bekannt. Diese wird offenbar auch nicht benötigt. Aber ich finde es trotzdem witzig, darüber nachzudenken. Und übrigens: Die gesuchten Zahlen sind in folgender Menge enthalten:

$$\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

Denn

$$1 \cdot 1 = 1 \le 100$$

$$2 \cdot 2 = 4 \le 100$$

$$3 \cdot 3 = 9 \le 100$$

$$4 \cdot 4 = 16 \le 100$$

$$5 \cdot 5 = 25 \le 100$$

$$6 \cdot 6 = 36 \le 100$$

$$7 \cdot 7 = 49 \le 100$$

$$8 \cdot 8 = 64 \le 100$$

$$9 \cdot 9 = 81 \le 100$$

$$10 \cdot 10 = 100 \le 100$$

KAPITEL 20

Über logische Sätze

Alles, was in der Logik interessiert, sind Wahrheitsgehalte von Aussagen, welche, wie ich in im Abschnitt 5 zu definieren versuchte, Verknüpfungen von Symbolen sind. Dabei können die Aussagen wahr oder nicht wahr sein. Ein logischer Satz ist jetzt eine beliebige Verknüpfung von Aussagen, welche mit den in den Kapitel 8 bis 16 definierten logischen Verknüpfungen oder anderen entsprechend definierten Verknüpfungen zusammengeschweißt wurden. Dabei ist ein logischer Satz erstaunlicherweise genau dann wahr, falls für alle Aussagen die so entstandene Aussage wahr ist. Dies mag komisch tönen, denn dies erinnert an Pleonasmen wie "der weiße Schimmel" oder "das motorisierte Auto" (meines Wissens sind Autos immer mit einem Motor versehen). Aber wie ich Dir schon weiter oben "vorgebetet" habe, sind in der Logik nicht die Aussagen an und für sich wichtig, sondern es interessiert nur, wie von wahren Aussagen auf weitere wahre Aussagen geschlossen werden kann. Logische Sätze helfen auf diesem Weg. Wie so oft ist Dir sehr wahrscheinlich nicht so klar, wie das gehen soll. Darum werde unten viele, viele Beispiele geben. Ich kann jedoch bereits an dieser Stelle sagen, dass ein wichtiges Element in logischen Sätzen häufig ist, dass eine Schlussfolgerung in ihr enthalten ist. Diese garantiert, dass die Behauptung trotzdem wahr ist, auch wenn die Voraussetzungen nicht wahr sind (vergleiche mit der ersten und zweiten Zeile der entsprechenden Definition 14 der Implikation). Ich möchte nun versuchen, die Eigenschaften von logischen Sätzen formal darzustellen. Es gibt ein paar logische Sätze, welche zwei logische Variablen verwenden. Dann sei A das Symbol für die erste logische Variable und B das Symbol für die zweite logische Variable. Es sei C die Bezeichnung einer Aussage, in welcher die logischen Variablen verwendet werden. Es sei S die Menge aller logischen Sätze Dann sei C ein logischer Satz, falls gelte:

(25)
$$C \in \Omega \Rightarrow (C \in S \Leftrightarrow (\forall A, B \in \Omega : C))$$

In Worten bedeutet diese logische Aussage nicht mehr und nicht weniger: Ist C eine Aussage, dann ist C genau dann ein logischer Satz, falls für alle Aussagen A und B gilt, dass die daraus gebildete Aussage C wahr ist. Was ich in der Definition nicht aufgeschrieben habe, ist die Tatsache, dass sowohl A wie auch B in der Aussage C enthalten sein

sollen. Aber ich weiß im Moment nicht, wie ich das mit den momentanen Mitteln darstellen sollte¹. Ich möchte ein Beispiel für die obige Definition machen: Häufig wird ein sogenannter Widerspruchsbeweis geführt, um zu beweisen, dass etwas gilt. Dieser Widerspruchsbeweis hat die folgende Form:

$$(26) \qquad \forall A, B \in \Omega \ ((\neg A \Rightarrow \neg B) \land B) \Rightarrow A$$

In Worten: Für alle Aussagen mit den Bezeichnungen A sowie B, welche in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei sind, gilt: Folgt aus der Negation der Aussage A die Negation der Aussage B, gilt jedoch die Aussage B, dann folgt daraus, dass die Aussage A gilt. Für einen Beweis siehe etwa Abschnitt 20.7.

Mit diesem logischen Satz werden ganz viele andere Sätze bewiesen. Die Arbeit besteht dann darin, zu zeigen, dass tatsächlich aus der Negation von A die Negation von B folgt, jedoch gleichzeitig B gilt. Wie Du auf die Aussage kommst, welche mit Hilfe der Logik bewiesen werden soll, ist wiederum eine eigene Geschichte. Die Logik legt nur die Spielregeln fest, wie der Satz mit Hilfe der Logik bewiesen werden kann. Natürlich werden praktisch alle logischen Sätze, welche nachfolgend aufschreiben werde, für Dich wahrscheinlich leicht zu verstehen sein. Es geht jedoch oft nicht so sehr darum, ob etwas gültig ist, sondern darum, warum es gültig ist. Es geht sozusagen darum, Dir das Rüstzeug, oder weniger vornehm ausgedrückt das Werkzeug, die Mittel zur Verfügung zu stellen, damit Du gegebenenfalls selbst überprüfen kannst, ob gemäß den Regeln der elementaren Logik etwas gezeigt werden kann - oder eben nicht. Eine Falle, welche ich ab und zu gesehen habe, ist die Meinung, dass das Folgende ein logischer Satz sei. Es seien dabei A und B Metasymbole. Dann ist die Frage, ob zwingend gelten muss:

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$
?

Nein, das muss es nicht. Denn ist A eine Aussage, welche nicht wahr ist, jedoch B eine wahre Aussage, dann gilt die Aussage

$$\neg (\neg A \Rightarrow \neg B)$$

also in Worten: Es ist nicht wahr, dass aus der Negation der Aussage A die Negation der Aussage B folgt. Denn ist die Aussage A nicht wahr, dann gilt gemäß der ersten Zeile der Definition 14 der Implikation die Aussage $\neg A$. Ist auf der anderen Seite die Aussage B wahr, dann gilt gemäß der zweiten Zeile der Definition 14 der Negation die Aussage B nicht. Da nun die Aussage A wahr, die Aussage B jedoch nicht wahr

 $^{^1}$ Ich könnte schreiben $C\left(A,B\right)$, in Worten: "Die Aussage, welche mit dem Buchstaben Cbezeichnet werde, sei von den Aussagen A und Babhängig. Vergleiche mit dem Kapitel 31 über Funktionen. Funktionen mit mehr als einem Argument muss ich jedoch noch speziell definieren.

ist, kann gemäß der dritten Zeile der Definition 14 der Implikation die Aussage

$$\neg A \Rightarrow \neg B$$

nicht wahr sein. Aber es gilt die Implikation von A auf die Aussage B gemäß der zweiten Zeile der Definition 14 der Implikation, da die Aussage A gemäß Voraussetzung nicht wahr ist und die Aussage B gemäß Voraussetzung wahr ist. Es gilt also die Aussage

$$A \Rightarrow B$$

Da nun die Aussage

$$A \Rightarrow B$$

in diesem Fall wahr, die Aussage

$$\neg A \Rightarrow \neg B$$

jedoch nicht wahr ist, kann in diesem Fall also die Aussage

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$

gemäß der dritten Zeile der Definition 14 der Implikation nicht wahr sein. Also muss gemäß der ersten Zeile der Definition 11 die Aussage

$$\neg ((A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B))$$

wahr sein. Wenn ich daraus einen logischen Satz "zimmern²" möchte, dann könnte ich das so schreiben:

$$\neg A \land B \Rightarrow \neg ((A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B))$$

In Worten besagt dieser logische Satz: Gegeben seien zwei Aussagen, welche mit den Symbolen A und B bezeichnet werden. Diese Aussagen seien in Bezug auf sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei. Dann gilt die Aussage nicht, dass aus der Implikation von A nach B die Implikation der Negation der Aussage B aus der Negation der Aussage A folgt. Dies ist jetzt zwar ein logischer Satz, da die linke Seite der Implikation $(\neg A \land B)$ nur dann wahr ist, falls A eben nicht wahr und B wahr ist und die rechte Seite genau in diesem Fall wahr ist. Also ist in allen möglichen Fällen die Aussage wahr. Jedoch wird dieser logische Satz wohl kaum in einem Beweis verwendet werden, da sein Erkenntnisgewinn vernachlässigbar klein ist. Er dient bloß dazu, Dir zu vor Augen zu führen, dass es sehr wohl logische Fehlschlüsse geben kann, welche Dir scheinbare Wahrheiten vorspiegeln können, welche jedoch so nicht existieren.

Wahrscheinlich werde ich in den folgenden Kapiteln wieder auf bereits bekannte Eigenschaften der oben definierten Verknüpfungen Bezug nehme. Aber das soll Dich nicht weiter aufhalten. Du kannst es ja überlesen, falls Du die Eigenschaften kennst. Aber ich will damit die Eigenschaften der Definitionen mit Dir sozusagen pauken, damit

²Mir ist schon klar, dass ich nicht zimmere, sondern bloß schreibe. Es ist mehr ein Wortspiel als ein sinnvoller Ausdruck.

Du in deiner weiteren Karriere keine Probleme mehr damit bekommst. Wie schon hundertfach in diesem Text erwähnt, steht es Dir frei, dies zu überlesen, falls es schon begriffen hast, bevor Du es gelesen hast³ oder falls Du jemand mit einem gesunden Menschenverstand bist⁴. Im zweiten Fall hast Du jedes Wort, jeden Begriff, jede Definition, jeden Satz genau einmal hören müssen, damit Du es auswendig kannst⁵. Ich möchte gerne eine Definition aufschreiben, welcher zwar recht vage ist und welchen ich zwar nicht weiter verwende, jedoch trotzdem aus meiner Sicht noch ganz nützlich ist. Dabei kannst Du Dir $\mathbb N$ vorstellen als die Menge

$$\mathbb{N} \equiv \{1, 2, 3, \dots\}$$

auch wenn ich mir bewusst bin, dass diese Mengenbeschreibung äußerst vage ist.

DEFINITION 10. Es seien $k, n \in \mathbb{N}$ mit $k \leq n$ sowie $\{A_k\}_{k \in \mathbb{N} \wedge k \leq n}$ Symbole von Aussagen, welche in sich selber und in Bezug auf die anderen Aussagen der Definition widerspruchsfrei. Weiter mit $k \in \mathbb{N}$ und $k \leq n$ die Aussage A aus den Aussagen A_k sowie logischen Verknüpfungen gebildet wird. Ich beschreibe dies formal mit

$$A\left(\left\{A_k\right\}_{k\in\mathbb{N}\wedge k\leq n}\right)$$

in Worten: A ist abhängig von den Aussagen A_k , wobei k eine natürliche Zahl kleiner oder gleich n ist. Die Definition von $\mathbb N$ habe ich unter dem Kapitel 33 zu definieren versucht. Dann ist A oder genau dann ein logischer Satz, falls für alle $k \in \mathbb N$ mit $k \le n$ sowie für alle Aussagen A_k gilt:

$$A\left(\left\{A_k\right\}_{k\in\mathbb{N}\wedge k\leq n}\right)$$

Natürlich ist diese Definition so vage und umständlich, dass sein praktischer Nutzen fast ohne Bedeutung ist. Trotzdem zeigt er meines Erachtens, worin das Wesens eines logischen Satzes besteht. Ein logischer Satz besteht aus anderen Aussagen, welche mittels logischen Verknüpfungen zusammengesetzt werden. Der logische Satz zeichnet sich dadurch aus, dass er für alle Aussagen, aus welchen er besteht, immer wahr ist. Und ja, obige Definition ist zu allem Übel noch in sich widersprüchlich. Denn einerseits habe ich mit

$$A\left(\left\{A_k\right\}_{k\in\mathbb{N}\wedge k\leq n}\right)$$

³Dies soll ein Witz sein...

⁴Das ist ein erneuter Versuch eines Witzes. Von wegen "gesundem Menschenverstand": Dieser besagt bekanntlich, dass die Erde eine Scheibe ist. Aber das ist wieder ein Zitat, von welchem ich nicht weiß, von wem ich es geklaut habe. Wie so ziemlich alles in diesem Buch geklaut ist, so wie es die Prinzen - eine deutsche Popgruppe - es in einem ihrer Lieder besingen.

⁵Was wiederum fast nur bei Autisten oder bei zwei oder drei anderen Menschen auf dieser Welt vorkommt. Aber eben: Du bist sicher so genial. Ich bin es nicht.

auszudrücken versucht, dass die Aussage A von den Aussagen A_k in irgend einer Form abhängig sei. Also die Aussagen A_k in der Aussage A vorkommt. Andererseits habe ich mit

$$A\left(\left\{A_k\right\}_{k\in\mathbb{N}\wedge k\leq n}\right)$$

zu beschreiben versucht, dass die dadurch geformte Aussage A wahr sei. Aber dass ich mich getraute, dies zu schreiben, hängt damit zusammen, dass ich versuche, die Dinge so gut zu beschreiben, wie ich es eben nur kann. Und ich hoffe, dass meine Lust am Fabulieren sich auf Dich überträgt.

Wenn ich das so zuerst lesen würde, dann würde ich denken: Oh, das muss sehr langweilig sein. Denn die logischen Sätze zeichnen sich im Allgemeinen nicht dadurch aus, dass sie weltbewegende Tatsachen beinhalten würden. Aber darum geht es nicht. Es geht vor allem darum, festzulegen, welche logischen Umformungen erlaubt sind - und welche eben nicht. Ich möchte nun eine Sammlung von logischen Sätze präsentieren. Wieder geht es weder um Vollständigkeit oder um die neusten und letzten logischen Sätze ("Spitze der Forschung"). Nein, es geht mir um den Geist der logischen Sätze: Wie kann ich zeigen, das ein logischer Satz gültig ist?

Um die Übersicht zu bewahren, möchte ich eine Zusammenfassung von Sätzen in der Tabellen 1 bis 8 aufschreiben. Beachte bitte, dass die Sätze nicht thematisch oder sonst wie geordnet sind und deren Auswahl willkürlich ist. Dabei seien A, B und C Symbole für beliebige Aussagen.

Ich habe noch eine Art Hilfssätze formuliert und bewiesen. Diese sind an der Grenze dessen, was als sinnvoll erachtet werden kann. Trotzdem möchte ich diese an dieser Stelle ebenfalls noch auflisten.

Bezüglich der tabellarischen Form der logischen Sätze: Ich habe eine kleine Python-Anwendung⁶ geschrieben, mit welchen ich die Sätze noch einmal vom Computer nachrechnen ließ. Vielleicht gelingt es mir einmal, die Software auch zu veröffentlichen. Ich habe auch ein wenig online gesucht und bin beispielsweise unter

fündig geworden. Es mag eventuell aus Deiner Sicht stoßend sein, wenn ich die Sätze noch mit einer Software nachgerechnet habe. So im Sinn von "Wieso soll ich dann das Zeugs lernen, wenn es mit einer kleiner Anwendung bequem nachgerechnet werden kann?" Nun, dieser Einwand ist sicher berechtigt. Jedoch möchte ich darauf verweisen, dass es nicht darum geht, dass Du das Zeugs auswendig lernst. Sondern ich möchte eine Auflistung der logischen Sätze aufschreiben, von welcher in der restlichen Mathematik ausführlich Gebrauch gemacht wird. Jedoch habe ich kein Lektorat, welches die Sachen unabhängig nachrechnet. Damit die Qualität meiner Arbeit verbessert wird, möchte ich

 $^{^6}$ "Python" ist als Programmiersprache zu verstehen, nicht als Schlange.

TABELLE 1. 1. Tabelle der logischen Sätze

Bezeichnung	Satz	logischer Satz
doppelte Negation	11	$\neg (\neg A) \Leftrightarrow A$
doppelte Negation	12	$\neg (\neg A) \Rightarrow A$
(abgeschwächte Form)		
ausgeschlossener Dritter	13	$\neg A \Leftrightarrow A$
ausgeschlossener Dritter	14	$A \vee \neg A$
(schwache Form)	14	
Transitivität der Implikation	15	$ \begin{array}{c} (A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow \\ (A \Rightarrow C) \end{array} $
Transitivität der Äquivalenz	16	$ (A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C) $
Satz der Schlussfolgerung	17	$A \land (A \Rightarrow B) \Rightarrow B$
alternativer	18	$A \wedge (A \Rightarrow B) \Leftrightarrow$
Satz der Schlussfolgerung	10	$A \wedge B$
Widerspruchssatz	20	$ \begin{array}{c} (\neg A \Rightarrow \neg B) \Rightarrow \\ (B \Rightarrow A) \\ (\neg A \Rightarrow \neg B) \land B \Rightarrow \end{array} $
alternativer	21	$(\neg A \Rightarrow \neg B) \land B \Rightarrow$
Widerspruchssatz	21	A
Konjunktions-Disunktionssatz	22	$A \land B \Rightarrow A \lor B$
Äquivalenz-Implikationssatz	23	$ \begin{array}{c} (A \Leftrightarrow B) & \Leftrightarrow \\ (A \Rightarrow B) \land (B \Rightarrow A) \end{array} $
Zusammenhang	9.4	
Replikation-Implikation	24	$(A \Rightarrow B) \Leftrightarrow (B \Leftarrow A)$
alternativer Satz		$(A \rightarrow B) \leftrightarrow$
Zusammenhang	25	$ \begin{array}{c} (A \Rightarrow B) & \Leftrightarrow \\ (\neg B \Leftarrow \neg A) \end{array} $
Replikation-Implikation		$(D \leftarrow A)$
Distribution	26	$(A \Rightarrow (B \land C)) \qquad \Leftrightarrow \qquad$
Implikation-Konjunktion	20	$(A \Rightarrow B) \land (A \Rightarrow C)$ $(A \Rightarrow (B \lor C)) \Leftrightarrow$
Distribution	27	
Implikation-Disjunktion	21	$(A \Rightarrow B) \lor (A \Rightarrow C)$
Disjunktion-Vertauschungssatz	28	$((A \lor B) \Rightarrow C) \qquad \Leftrightarrow \qquad$
Disjunktion vertausenungssatz	20	$(A \Rightarrow C) \land (B \Rightarrow C)$ $((A \land B) \Rightarrow C) \Leftrightarrow$
Konjunktion-Vertauschungssatz	29	$((A \land B) \Rightarrow C) \qquad \Leftrightarrow \qquad$
, ,	23	$(A \Rightarrow C) \lor (B \Rightarrow C)$ $(A \land (B \lor C)) \Leftrightarrow$
Distributivgesetz	30	` ' ' ' '
Konjunktion und Disjunktion	30	$(A \land B) \lor (B \land A)$
Äquivalenz-Aussage-	31	$A \Leftrightarrow A \wedge A$
Kommutation	01	
Äquivalenz Aussage-Disjunktion	32	$A \Leftrightarrow A \lor A$
Implikation Aussage aus	33	$A \Rightarrow A$
Aussage	30	71 7 71
Äquivalenz Aussage und	34	$A \Leftrightarrow A$
Aussage		
Kommutation Konjunktion	35	$A \wedge B \Leftrightarrow B \wedge A$
Kommutation Negation	36	$\neg (A \land B) \Leftrightarrow$
Kommutation		
Kommutation Disjunktion	37	$A \vee B \Leftrightarrow B \vee A$

TABELLE 3. 2. Tabelle der logischen Sätze

Bezeichnung	Satz	logischer Satz
Identitivität Äquivalenz	38	$A \Leftrightarrow A$
Kommutation Äquivalenz	39	$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$
Assoziativität Konjunktion	40	$ \begin{array}{c} (A \wedge B) \wedge C \iff \\ A \wedge (B \wedge C) \end{array} $
Assoziativität Disjunktion	41	$ \begin{array}{c} (A \vee B) \vee C \iff \\ A \vee (B \vee C) \end{array} $
1. Minimumprinzip Konjunktion	42	$\neg A \Rightarrow \neg \left(A \land B \right)$
2. Minimumprinzip Konjunktion	43	$\neg B \Rightarrow \neg \left(A \land B \right)$
Minimumprinzip Konjunktion 3 Argumente	44	$ \neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg (A \land B \land C) \\ (\neg (A \land B)) \Leftrightarrow $
Negation-Konjunktionssatz	45	$ \begin{array}{c} (\neg (A \land B)) & \Leftrightarrow \\ ((\neg A) \lor (\neg B)) & \end{array} $
Existenz nicht wahrer Aussagen	46	$\neg (A \land \neg A)$
Negation-Disjunktionssatz	47	$ \begin{array}{c} (\neg (A \lor B)) \Leftrightarrow \\ ((\neg A) \land (\neg B)) \\ \hline ((A \lor B) \land (\neg A)) \Leftrightarrow \end{array} $
Ausschlusssatz	48	$((A \lor B) \land (\neg A)) \Leftrightarrow B$
doppelte Negation impliziert Aussage	49	$\neg (\neg A) \Rightarrow A$
Äquivalenz Äquivalenz und zwei Implikationen	50	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (A \Rightarrow B) & \land \\ (B \Rightarrow A) \end{array} $
alternativer Äquivalenz-Implikationssatz	51	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (A \Rightarrow B) & \land \\ (\neg A \Rightarrow \neg B) \end{array} $
Implikation aus Äquivalenz	52	$ \begin{array}{cc} (A \Leftrightarrow B) & \Rightarrow \\ (A \Rightarrow B) \end{array} $
Disjunktions-Konjunktionssatz	53	$ \begin{array}{ccc} \neg (\neg A \lor \neg B) & \Leftrightarrow \\ (A \land B) & & \\ (A \Rightarrow B) & \Leftrightarrow & \\ \end{array} $
disjunktive Normalform der Implikation	54	$(A \Rightarrow B) \Leftrightarrow (\neg (A \land \neg B))$ $A \land B \Rightarrow A$
Konjunktion-Aussagesatz	55	$A \wedge B \Rightarrow A$
Denkfehler Konjunktion	5.6	$A \wedge \neg B \qquad \Rightarrow$
aus Aussage	56	$\neg (A \Rightarrow A \land B)$ $A \Rightarrow A \lor B$
Aussage-Disjunktionssatz	57	
Denkfehler Aussage	58	$\neg A \land B \Rightarrow$
aus Disjunktion	00	$\neg (A \lor B \Rightarrow A)$
2. Maximumprinzip Disjunktion	59	$B \Rightarrow A \vee B$

TABELLE 4. 3. Tabelle der logischen Sätze

Bezeichnung	Satz	logischer Satz
Äquivalenz-Negationssatz	60	$ \begin{array}{c} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \Leftrightarrow \neg B) \end{array} $
Äquivalenz-Antivalenzsatz	61	
aus Antivalenz folgt Disjunktion	62	$\begin{array}{c} (A \Leftrightarrow B) \Rightarrow \\ A \vee B \end{array}$
Negation-Implikationssatz	63	$ \begin{array}{ccc} \neg (A \Rightarrow B) & \Leftrightarrow \\ A \land \neg B \end{array} $
Satz der Trivialität	64	$\neg A \land A \Rightarrow B$
Satz der zyklischen Implikationen	65	$(A \Rightarrow B) \land \\ (B \Rightarrow C) \land \\ (C \Rightarrow A) \Rightarrow \\ (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \land \\ (C \Leftrightarrow A)$
verschärfter Satz der zyklischen Implikationen	66	$(A \Rightarrow B) \land \\ (B \Rightarrow C) \land \\ (C \Rightarrow A) \Leftrightarrow \\ (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \land \\ (C \Leftrightarrow A)$
Kommutativität der NAND-Verknüpfung	67	$\begin{array}{c} A \overline{\wedge} B \iff \\ B \overline{\wedge} A \end{array}$
disjunktive Normalform der NAND-Verknüpfung	68	$ \begin{array}{ccc} \neg (A \land B) & \Leftrightarrow \\ (A \overline{\land} B) \end{array} $
disjunktive Normalform der NOR-Verknüpfung	69	$(A \overline{\vee} B) \Leftrightarrow \neg (A \vee B)$
konjunktive Normalform Implikation	70	$ \begin{array}{ccc} (A \Rightarrow B) & \Leftrightarrow \\ \neg A \lor B \end{array} $
konjunktive Normalform Replikation	71	$ \begin{array}{c} (A \Leftarrow B) \Leftrightarrow \\ A \lor \neg B \end{array} $
1. Abkürzungsregel Implikation	72	$\neg A \Rightarrow (A \Rightarrow B)$
2. Abkürzungsregel Implikation	73	$B \Rightarrow (A \Rightarrow B)$
konjunktive Normalform der Äquivalenz	74	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ \neg A \wedge \neg B & \vee \\ A \wedge B \end{array} $

Tabelle der logischen Sätze

Bezeichnung	Satz	logischer Satz
konjunktive Normalform der Antivalenz	75	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ \neg A \wedge B & \lor \\ A \wedge \neg B \end{array} $
konjunktive Normalform der NAND-Verknüpfung	76	$(A\overline{\wedge}B) \Leftrightarrow \\ \neg A \wedge \neg B \vee \\ A \wedge \neg B \vee \\ \neg A \wedge B \vee$
konjunktive Normalform der NOR-Verknüpfung	77	$ \begin{array}{c} (A \nabla B) & \Leftrightarrow \\ \neg A \wedge \neg B \end{array} $
1. Minimumsatz der Logik	78	$\begin{array}{ccc} A \wedge (B \wedge \neg B) & \Leftrightarrow \\ (B \wedge \neg B) & \Leftrightarrow \end{array}$
2. Minimumsatz der Logik	78	$\begin{array}{ccc} A \wedge (B \vee \neg B) & \Leftrightarrow \\ A & \Leftrightarrow \end{array}$
1. Maximumsatz der Logik	78	$\begin{array}{ccc} A \lor (B \land \neg B) & \Leftrightarrow \\ A & \Leftrightarrow \end{array}$
2. Maximumsatz der Logik	78	$\begin{array}{ccc} A \lor (B \land \neg B) & \Leftrightarrow \\ A & \Leftrightarrow \end{array}$
1. erweiterter Minimumsatz der Logik	79	$ \begin{array}{c} (A \Leftrightarrow (B \land \neg B)) \Rightarrow \\ (A \Leftrightarrow C \land A) \end{array} $
2. erweiterter Minimumsatz der Logik	79	$ \begin{array}{c} (A \Leftrightarrow (B \vee \neg B)) \Rightarrow \\ (C \Leftrightarrow C \wedge A) \end{array} $
1. erweiterter Maximumsatz der Logik	79	$ \begin{array}{c} (A \Leftrightarrow (B \land \neg B)) \Rightarrow \\ (C \Leftrightarrow C \lor A) \end{array} $
2. erweiterter Maximumsatz der Logik	79	$ \begin{array}{c} (A \Leftrightarrow (B \vee \neg B)) \Rightarrow \\ (A \Leftrightarrow C \vee A) \end{array} $
Zusammenhang Negation-NAND	80	$ \begin{array}{ccc} \neg A & \Leftrightarrow \\ (A \overline{\wedge} A) & & \\ \end{array} $
Zusammenhang Identität-NAND	81	$ \begin{array}{c} A & \Leftrightarrow \\ (A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A) & \end{array} $
Zusammenhang Konjunktion-NAND	82	$ \begin{array}{c} A \wedge B & \Leftrightarrow \\ (A \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} B) & \end{array} $

auf eine zweite, unabhängige Art die Beweise nachprüfen. Übrigens ist das meine Erachtens ein großer Teil der Mathematik, dass ein Beweis eines Satzes zwar gut ist, zwei Beweise eines Satzes jedoch viel besser sind. Denn es durchaus möglich, dass ein Beweis eines Satzes zwar äußerst einleuchtend tönt, jedoch schlicht falsch ist. Damit möchte zum wiederholten Mal meine Überzeugung zum Ausdruck bringen, dass Mathematik auch nicht vom Himmel gefallen ist, sonder stetig aufs Neue von den beteiligten Personen konstruiert werden muss.

Tabelle der logischen Sätze

Bezeichnung	Satz	logischer Satz
Zusammenhang Disjunktion-NAND	83	$ \begin{array}{ccc} A \vee B & \Leftrightarrow \\ (A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B) & \end{array} $
Zusammenhang Implikation-NAND	84	$ \begin{array}{c} (A \Rightarrow B) & \Leftrightarrow \\ A \overline{\wedge} (B \overline{\wedge} B) \end{array} $
Zusammenhang Antivalenz-NAND	85	$(A \Leftrightarrow B) \Leftrightarrow (A\overline{\wedge} (B\overline{\wedge} B)) \overline{\wedge} \\ (B\overline{\wedge} (A\overline{\wedge} A))$
Zusammenhang Äquivalenz-NAND	86	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) & \overline{\wedge} \\ (A\overline{\wedge}B) \end{array} $
Zusammenhang NOR-NAND	87	$(A \overline{\vee} B) \Leftrightarrow ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)) \overline{\wedge} ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B))$
Zusammenhang Negation-NOR	88	$\neg A \Leftrightarrow A \overline{\vee} A$
Zusammenhang Konjunktion-NOR	89	$\begin{array}{c} A \wedge B & \Leftrightarrow \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) & \end{array}$
Zusammenhang NAND-NOR	90	$ \begin{array}{c} A\overline{\wedge}B \Leftrightarrow \\ ((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))\overline{\vee} \\ ((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)) \end{array} $
Zusammenhang NAND-Implikation	91	$\begin{array}{c} A \overline{\wedge} B & \Leftrightarrow \\ (A \Rightarrow \neg B) & \end{array}$
Zusammenhang NOR-Implikation	92	$A \overline{\vee} B \Leftrightarrow \neg (\neg A \Rightarrow B)$
Quantoren- transformationen	124	$\exists x \in M : A \Leftrightarrow \\ \neg (\forall x \in M : \neg A) \\ \forall x \in M : A \Leftrightarrow \\ \neg (\exists x \in M : \neg A)$

20.1. Vorbemerkung

Mir ist etwas aufgefallen. Und zwar, dass ich irgendwie Mühe habe, Sachen zu zeigen, welche eigentlich gezeigt werden sollten. Es seien A,B sowie C Symbole für Aussagen. Dabei sei die Aussage B in der Aussage A enthalten. Ist nun C äquivalent zu B, dann müsste auch gelten

$$(27) A(B) \Leftrightarrow A(C)$$

Das kannst Du so aussprechen: Die Aussage A, welche von der Aussage B abhängt, ist genau dann war, falls es die Aussage ist, welche von der Aussage C abhängig ist. Und wo ist das Problem? Das Problem ist, dass das zwar eigentlich offensichtlich ist, ich es jedoch nicht beweisen

TABELLE 7. 6. Tabelle der logischen (Hilfs-) Sätze

Bezeichnung	Satz	logischer Satz
1. Substitutionssatz	Date	$\neg A \land (B \Rightarrow A) \Rightarrow$
der Negation	94	$\neg A \land (D \Rightarrow A) \Rightarrow \neg B$
2. Substitutionssatz		$\neg A \land (A \Leftrightarrow B) \Rightarrow$
der Negation	95	$\neg B$
1. Substitutionssatz		$A \wedge B \wedge (A \Rightarrow C) \Rightarrow$
der Konjunktion	96	$C \wedge B$
2. Substitutionssatz	0.7	$A \wedge B \wedge (B \Rightarrow C) \Rightarrow$
der Konjunktion	97	$A \wedge C$
3. Substitutionssatz	00	$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow$
der Konjunktion	98	$C \wedge B$
4. Substitutionssatz	00	$A \wedge B \wedge (B \Leftrightarrow C) \Rightarrow$
der Konjunktion	99	$A \wedge C$
1. Substitutionssatz	100	$(A \lor B) \land (A \Rightarrow C) \Rightarrow$
der Disjunktion	100	$C \vee B$
2. Substitutionssatz	101	$(A \lor B) \land (B \Rightarrow C) \Rightarrow$
der Disjunktion	101	$A \lor C$
3. Substitutionssatz	102	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow$
der Disjunktion	102	$C \vee B$
4. Substitutionssatz	103	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow$
der Disjunktion	105	$A \lor C$
1. Substitutionssatz	104	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow$
der Implikation	104	$(C \Rightarrow B)$ $(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow$
2. Substitutionssatz	15	$(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow$
der Implikation	10	$(A \Rightarrow C)$
3. Substitutionssatz	105	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow$
der Implikation	100	$(C \Rightarrow B)$
4. Substitutionssatz	106	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow$
der Implikation	100	$(A \Rightarrow C)$
1. Substitutionssatz	112	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow$
der Replikation	112	$(C \Leftarrow B)$
2. Substitutionssatz	113	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow$
der Replikation	110	$(A \Leftarrow C)$ $(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow$
3. Substitutionssatz	109	
der Replikation	105	$(C \Leftarrow B)$
4. Substitutionssatz	110	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow$
der Replikation	110	$(A \Leftarrow C)$ $(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow$
Substitutionssatz	111	
der Aequivalenz	111	$(C \Leftrightarrow B)$
1. Substitutionssatz	112	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow$
der Antivalenz	114	$ \begin{array}{c} (A \Leftrightarrow B) \\ \hline (A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow \end{array} $
2. Substitutionssatz	113	
der Antivalenz	110	$(A \Leftrightarrow C)$

Tabelle der logischen (Hilfs-)Sätze

Bezeichnung	Satz	logischer Satz
1. Substitutionssatz der NAND- Verknüpfung	114	$ \begin{array}{c} (A \overline{\wedge} B) \wedge (A \Leftrightarrow C) \Rightarrow \\ (C \overline{\wedge} B) \end{array} $
2. Substitutionssatz der NAND- Verknüpfung	115	$ \begin{array}{c} (A \overline{\wedge} B) \wedge (B \Leftrightarrow C) \Rightarrow \\ (A \overline{\wedge} C) \end{array} $
1. Substitutionssatz der NOR- Verknüpfung	116	$ \begin{array}{c} (A \nabla B) \wedge (A \Leftrightarrow C) \Rightarrow \\ (C \nabla B) \end{array} $
2. Substitutionssatz der NOR- Verknüpfung	117	$ \begin{array}{c} (A \nabla B) \wedge (B \Leftrightarrow C) \Rightarrow \\ (A \nabla C) \end{array} $
1. erweiterter Substitutionssatz der Konjunktion	118	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Rightarrow \\ ((A \land C) & \Leftrightarrow \\ (B \land C)) \end{array} $
2. erweiterter Substitutionssatz der Konjunktion	119	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Rightarrow \\ ((C \land A) & \Leftrightarrow \\ (C \land B)) \end{array} $
1. erweiterter Substitutionssatz der Disjunktion	120	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Rightarrow \\ ((A \lor C) & \Leftrightarrow \\ (B \lor C)) \end{array} $
2. erweiterter Substitutionssatz der Disjunktion	120	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Rightarrow \\ ((C \lor A) & \Leftrightarrow \\ (C \lor B)) \end{array} $

kann. Auch wenn es nicht möglich ist, so ist es doch in der Mathematik mehr oder weniger typisch: Es gibt ab und an Behauptungen, welche zwar irgendwie offensichtlich sind - aber trotzdem nicht gezeigt werden können. Als ich dieses Problem begriffen habe, bin ich zuerst einmal wie so oft - ziemlich ratlos geworden und bin fast schon in einer Art Schockstarre verfallen. Denn ich hatte die Hoffnung, dass es mir gelingt, ein Dokument zu schreiben, welches die Mathematik näher bringt. Und zwar so klar, dass eigentlich "Alles und Jedes" gezeigt wird. Doch die Aussage 27 hat mir gezeigt, dass ich da an meine Grenzen stoße. Nun beginne ich hoffentlich, mich langsam aus dieser Schockstarre zu lösen. Eine Strategie, welche ich mir zurecht gelegt habe, um trotzdem an meinem Skript weiter arbeiten zu können, heißt: Überprüfung. Denn ich kann hemmungslos von der Aussage 27 Gebrauch machen. Nur muss ich mich dafür verpflichten, einen gefundenen logischen Satz anschließend unabhängig zu überprüfen. Und zwar mit den mühsamen und hirntötenden Tabellen. Natürlich stellt sich die Frage, wieso ich jetzt eine Einführung auf ca. 300 Seiten geschrieben habe, wenn am Schluss alles mit einem simplen Rechner ausgerechnet werden kann? Es geht mir in dieser Einleitung darum, die Grundlagen dafür zu schaffen, dass Du weißt, wo die Fallen sind und wie Du mit den Grundlagen der Logik umgehen kannst. Und wie oben bereits erwähnt, habe ich auch selbst eine kleine Python-Anwendung geschrieben, mit welcher die Wahrheitstafeln von logischen Aussagen erstellt werden können. Und eine zweite Strategie war das Formulieren und Beweisen von Sätzen, welche ich selbst "Substitutionssätze" genannt habe (vergleiche mit den Tabellen 7 und 8). Mit diesen Sätzen möchte ich zu zeigen versuchen, wie diese Gleichheit von Aussagen verwendet werden können. Leider ist es mir jedoch bis auf wenige Ausnahmen nicht oder noch nicht gelungen, diese Substitutionssätze bei Beweisen von logischen Aussagen wirklich zu verwenden. Trotzdem habe ich das jetzt zu zeigen versucht. Falls es möglich ist, werde ich noch zukünftig nochmals versuchen, diese Behauptung zu beweisen. Und zwar mit Hilfe der natürlichen Zahlen.

Das Ganze hat für mich eine unangenehme, aber auch eine angenehme Seite: Die unangenehme Seite für mich ist, dass mir klar vor Augen geführt wird, wie sehr die Mathematik eben doch mit uns Menschen verknüpft ist. Wie leicht wir das, was wir machen, nicht erklären können. Dass also noch mehr "Magie" in unserem Tun vorhanden ist, als wir uns gerne eingestehen. Vielleicht habe ich jedoch einfach den falschen Ausgangspunkt für einen Beweis des Paradoxons 27 verwendet? Keine Ahnung. Die angenehme Seite des Ganzen ist für mich, dass der Sinn einer guten Lektüre ist, dass am Schluss mehr Fragen als zu Beginn vorhanden sein sollten. Denn im besten Fall sagst Du Dir: "OK, aber ich kann das besser". Und genau das (nicht mehr, aber auch nicht weniger) möchte ich ja. Ich möchte Dich ermächtigen, eigene Schritte in dieser Hinsicht zu unternehmen.

Ich möchte noch auf eine zweite Besonderheit hinweisen. Diese besteht darin, dass die Logik in der Anwendung häufig im Kopf durchgeführt wird. Zwar wird diese in mathematischen Beweisen immer und immer wieder angewendet. Jedoch werden die logischen Anwendungen häufig weder ausdrücklich erwähnt noch die zu Grunde liegenden Beweise durchgeführt.

Vielleicht hast Du jetzt das Gefühl, dass alle logischen Aussagen automatisch logische Sätze sind und dass immer die Aussagen oder ihre Negation logische Sätze sind. Darum möchte ich ein entsprechendes Beispiel aufschreiben, welches zeigen soll, dass dass dem nicht so ist: Wieder seien A und B Metasymbole von Aussagen (welche weder in sich selber noch in Bezug auf die anderen Symbole der Aussage widersprüchlich sein sollen). Dann ist weder

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$

noch

$$\neg ((A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B))$$

ein logischer Satz. Denn ist A das Metasymbol einer nicht wahren Aussage und B das Metasymbol einer wahren Aussage, dann ist gemäß der zweiten Zeile der Definition 14 der Implikation die Aussage

$$A \Rightarrow B$$

wahr. Jedoch ist in diesem Fall gemäß der ersten Zeile der Definition 11 der Negation die Aussage $\neg A$ wahr, und gemäß der zweiten Zeile derselben Definition ist die Aussage $\neg B$ nicht wahr. Da nun die Aussage $\neg A$ wahr sein muss und die Aussage $\neg B$ nicht wahr sein kann, ist also gemäß der dritten Zeile der Definition 14 der Implikation die Aussage

$$\neg A \Rightarrow \neg B$$

nicht wahr.

Da nun die Aussage

$$A \Rightarrow B$$

wahr sein muss, die Aussage

$$\neg A \Rightarrow \neg B$$

jedoch nicht wahr sein kann, folgt wiederum gemäß der dritten Zeile der Definition 14 der Implikation, dass die Aussage

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$

nicht wahr ist. Somit kann die Aussage

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$

kein logischer Satz sein. Damit hätte ich den Beweis für die Richtigkeit des ersten Teil der Behauptung erbracht. Sind jedoch sowohl A wie auch B Metasymbole von Aussagen, welche wahr seien, dann ist gemäß der vierten Zeile der Definition 14 der Implikation die Aussage

$$A \Rightarrow B$$

wahr. Gemäß der zweiten Zeile der Definition 11 der Negation sind sowohl die Aussagen $\neg A$ wie auch $\neg B$ nicht wahr. Da nun weder die Aussage $\neg A$ noch die Aussage $\neg B$ wahr sein können, folgt aus der ersten Zeile der Definition 14 der Implikation, dass die Aussage

$$\neg A \Rightarrow \neg B$$

wiederum wahr ist. Weil sowohl die Aussage

$$A \Rightarrow B$$

wie auch die Aussage

$$\neg A \Rightarrow \neg B$$

wahr ist, ist wiederum gemäß der vierten Zeile der Definition 14 der Implikation die Aussage

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$

wahr. Weil diese letzte Aussage wahr ist, ist in diesem Fall gemäß der zweiten Zeile der Definition 11 der Negation die Aussage

$$\neg ((A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B))$$

nicht wahr. Also kann auch diese Aussage kein logischer Satz sein.

Damit hätte ich den Beweis der Richtigkeit beider Behauptungen erbracht. Doch warum habe ich gerade mit diesem Beispiel zu zeigen versucht, dass nicht alle Aussagen oder ihre Negationen logische Sätze sind? Ganz einfach, weil wahrscheinlich die ganze mathematische Logik entwickelt wurde, weil gemerkt wurde, dass diese Aussagen nicht zutreffen. Es ist sozusagen das Paradebeispiel eines logischen Fehlschlusses. Übrigens ist es typisch, dass ein Gegenbeispiel verwendet wird. Herr Struwe (ein Mathematiker, welcher an der ETH lehrt), hat einmal gesagt, wahrscheinlich könne fast die ganze Analysis (Teilgebiet der Mathematik) mit Hilfe von Gegenbeispielen demonstriert werden. Falls Du jetzt das Gefühl hast, meine Behauptungen oben würde gegen den Satz 13 des ausgeschlossenen Dritten verstoßen, dann kann ich an dieser Stelle Entwarnung geben. Die korrekten Aussagen sind:

$$\neg (\forall A, B \in \Omega : (A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B))$$
$$\neg (\forall A, B \in \Omega : \neg ((A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)))$$

In Worten: Es gilt weder für alle Aussagen (welche mit den Buchstaben A sowie B bezeichnet werden), dass es richtig ist, dass aus der Negation der Aussage A die Negation der Aussage B folgt, sofern aus der Aussage A die Aussage B folgt. Ebenfalls ist nicht richtig, dass es für alle derartigen Aussagen nicht gilt, dass aus der Negation der Aussage A die Negation der Aussage B folgt, falls aus der Aussage B folgt.

Und diese Aussagen sind wahr.

20.2. Was ist der Satz der doppelten Negation?

Der Satz der doppelten Negation besagt, dass die Negation der Negation einer Aussage äquivalent zur Aussage selbst ist. Das ist so ein logischer Satz, welcher Du wahrscheinlich bereits das eine oder andere Mal durchgeführt hast und darum Dich nicht aus den Socken haut. Es ist jedoch eine Aufgabe der elementaren Logik, die Begriffe zu benennen und miteinander in Beziehung zu setzen. Ich denke, das war die eigentliche Leistung der Mathematik. Wahrscheinlich haben bereits früher Menschen sich logische Gedanken gemacht, sich jedoch keine großen Gedanken darüber gemacht, wie genau die Eigenschaften beschaffen sein müssen, damit die einzelnen Begriffe stimmig miteinander verknüpft werden sollen. Dass die Logik eigentlich erst mit der schriftlichen Aufzeichnung sinnvoll betrieben werden kann, zeigen die Beweise der logischen Sätze, welche im Kopf wahrscheinlich gar nicht durchführbar wären. Auf der anderen Seite ist bekannt, dass im Laufe

der menschlichen Entwicklung Personen immer wieder ähnliche Denkfehler machen, ja sogar machen müssen. Dann besteht die Aufgabe der elementaren Logik, dass alle Beteiligten die Gelegenheit erhalten, über ihre Voraussetzungen nachzudenken, zu streiten, anzunehmen und vielleicht sogar zu verwerfen. Auch ich mache das immer wieder. Am Schluss merke ich dann, dass ich nicht mehr der gleiche bin, wie ich einmal war. Und das ist dann nicht nur immer schlecht.

Ich mache ein Beispiel zum Satz der doppelten Negation: Es sei A das Symbol der Aussage, dass der Eiffelturm in Paris steht. $\neg A$ wäre dann die Aussage, dass nicht gilt, dass der Eiffelturm in Paris stehen würde. $\neg(\neg A)$ ist schlussendlich die Aussage, dass nicht stimmt, dass nicht stimmt, dass der Eiffelturm in Paris steht. Dann ist die Behauptung dass die Aussage, dass es nicht stimmt, dass nicht stimmt, das der Eiffelturm in Paris steht, genau dann wahr ist, falls es wahr ist, dass der Eiffelturm in Paris steht. Nun, da der Eiffelturm tatsächlich in Paris steht, ist die Aussage, dass es nicht stimmt, dass der Eiffelturm in Paris steht, nicht wahr. Das heißt, es stimmt nicht, dass es nicht stimmt, dass der Eiffelturm in Paris steht. Damit wäre für diesen Fall die Aussage bewiesen. Da ich später auf diese logische Aussage verweisen möchte, werde ich ihn als logischen Satz formulieren und hoffentlich auch beweisen können:

Satz 11. Es sei A das Symbol einer Aussage. Dann gilt

$$A \Leftrightarrow \neg (\neg A)$$

Beweis. Ich möchte den Satz jetzt mit Hilfe von Wahrheitstafeln herleiten, und zwar zuerst so, wie es üblicherweise gemacht wird. Vergleiche dazu mit der Tabelle 9. In der Tabelle 10 ist es so beschrieben, wie ich es selbst erarbeitet habe. Jedoch - in diesem Fall ist die Schreibweise mit den Nullen und Einsen wirklich besser, wie ich zerknirscht feststellen muss. Besonders die Feststellung dass nicht gilt, dass A gilt, falls A nicht gilt, ist eigentlich eine intellektuelle Zumutung. Jedoch kannst Du erstens den Beweis getrost überlesen, falls ihn nicht lesen willst (Du verpasst nichts), und zweitens kannst Du in der Tabelle 9 abgucken, falls es Dir zu kompliziert ist. Ich wollte übrigens zuerst den zweiten Beweis zuerst hinschreiben - bin jedoch im ersten Anlauf prompt auf die Nase gefallen. Ja, so ist das Leben. Es geht nicht alles, und schon gar nicht auf Anhieb. Unter der Tabelle 11 habe ich die Verweise des Satzes der doppelten Negation aufgeschrieben.

Ich möchte den Beweis noch sprachlich begründen - obwohl dieser Beweis einem bloßen Nacherzählen des tabellarischen Beweises gleichkommt: Ist die Aussage A nicht wahr, dann ist gemäß der ersten Zeile der Definition 11 der Negation die Aussage $\neg A$ wahr. Da die Aussage $\neg A$ wahr ist, ist gemäß der zweiten Zeile der gleichen Definition 11 der

Tabelle 9. 1. Beweis des Satzes der doppelten Negation

Aussage/ Fall Nr.	$\neg A$	$\neg (\neg A)$	$(\neg (\neg A)) \Leftrightarrow A$
1	1	0	1
2	0	1	1

Tabelle 10. 2. Beweis des Satzes der doppelten Negation

Aussage/ Fall Nr.	$\neg A$	$\neg (\neg A)$	$(\neg (\neg A)) \Leftrightarrow A$
1	$\neg A$	$\neg (\neg (\neg A))$	$(\neg(\neg A)) \Leftrightarrow A$
2	$\neg (\neg A)$	$\neg (\neg A)$	$(\neg(\neg A)) \Leftrightarrow A$

Negation die Aussage $\neg(\neg A)$ nicht wahr. Da nun A nach Voraussetzung wahr ist und ich folgern kann, dass in diesem Fall die Aussage $\neg(\neg A)$ ebenfalls nicht wahr sein kann, gilt gemäß der ersten Zeile der Definition 19 der Äquivalenz, dass die Aussage

$$A \Leftrightarrow \neg (\neg A)$$

wahr sein muss. Also hätte ich die Behauptung unter der Bedingung, dass die Aussage A nicht wahr ist, beweisen.

Auf die haargenau gleiche Art kann ich nun zeigen, dass die Behauptung auch dann wahr sein muss, falls die Aussage A wahr ist. Ist die Aussage A wahr, dann gilt gemäß der zweiten Zeile der Definition 11 der Negation, dass die Aussage $\neg A$ nicht wahr sein kann. Ist die Aussage $\neg A$ nicht wahr, dann gilt gemäß der ersten Zeile der gleichen Definition 11 der Negation, dass die Aussage $\neg (\neg A)$ wahr ist. Da die Aussage A nach Voraussetzung wahr sein soll und ich folgern kann, dass die Aussage $\neg (\neg A)$ wahr sein muss, ist gemäß der vierten Zeile der Definition 19 die Aussage

$$A \Leftrightarrow \neg (\neg A)$$

wiederum wahr. Somit habe ich auch in diesem Fall gezeigt, dass die Behauptung bewiesen werden kann. Aus diesem Grund glaube ich gezeigt zu haben, dass in allen möglichen Fällen die Behauptung richtig ist und ich somit den Beweis für die Richtigkeit der Behauptung erbracht habe. Darum beende ich an dieser Stelle die weitere Beweisführung.

Es bleibt mir noch, ein zweites Beispiel des Satzes der doppelten Negation zu liefern. Falls die Aussage wahr ist, habe ich ja zu Beginn des Kapitels ein Beispiel gegeben. Es sei A das Symbol für die Aussage: Alle Äpfel schmecken wie Bananen. Ich glaube nicht, dass das so ist. Äpfel schmecken wie Äpfel, Bananen wie Bananen. Also ist die Aussage A nicht wahr. Dann ist die Aussage $\neg(\neg(\neg A))$ ebenfalls wahr,

Definion/ Fall Nr.	Definition 11 der Negation	Definition 11 der Negation	Definition 19 der Äquivalenz
1	1. Zeile	2. Zeile	1. Zeile
2	2. Zeile	1. Zeile	4. Zeile

Tabelle 11. Verweise des Satzes der doppelten Negation

in Worten: Es stimmt nicht, dass nicht stimmt, dass die Aussage, dass alle Äpfel wie Bananen schmecken würden, falsch sei. Aber ich merke jetzt gerade, dass ich die Beispiele von der falschen Richtung her aufgezogen habe. Üblicherweise ist die doppelte Verneinung einer Aussage gegeben und dann besteht die intellektuelle Leistung darin, die Aussage selbst zu extrahieren. Das vereinfacht in der Regel die Sache erheblich. Beispiel: Jemand sagt, es würde nicht stimmen, dass Dampflokomotiven keinen Dampf erzeugen würden. Dann ist diese Aussage, welche ich wieder mit A^7 bezeichnen will: "Dampflokomotiven erzeugen Dampf". Diese Aussage ist wahr: Dampfmaschinen erzeugen abgesehen ganz wenig mechanischer Leistung sehr viel Dampf.

Die Negation dieser Aussage (welche entsprechend mit $\neg A$ bezeichnet wird) lautet: "Dampflokomotiven erzeugen keinen Dampf". Und die Negation der letzteren Aussage $\neg (\neg A)$ lautet: "Es stimmt nicht, dass Dampflokomotiven keinen Dampf erzeugen würden". Und dann garantiert also der Satz der doppelten Negation, dass die Aussage, dass nicht stimmt, dass Dampflokomotiven keinen Dampf erzeugen, gleichbedeutend zur Aussage ist, dass Dampflokomotiven Dampf erzeugen. Also muss auch die Aussage $\neg (\neg A)$ wahr sein: Es ist nicht wahr, dass Dampfmaschinen keinen Dampf erzeugen.

Auf der anderen Seite sei die Aussage: "Es gilt nicht, dass nicht gilt, dass Möwen zwei linke Beine haben" gegeben. Ist jetzt diese Aussage wahr oder nicht wahr? Ich gehe von der Aussage mit der (erneuten) Bezeichnung A aus, die da lautet: "Möwen haben zwei linke Beine". Diese Aussage stimmt so nicht, ist also nicht wahr. Per Definition (Festlegung) haben Möwen, welche noch über zwei Beine verfügen, ein linkes und ein rechtes Bein. Gemäß der ersten Zeile der Definition 11 der Negation gilt also, dass die Aussage $\neg A$: "Es gilt nicht, dass Möwen zwei linke Beine haben" wahr ist. Wenn ich nun die ursprüngliche Aussage A zwei Mal verneine, dann erhalte ich die Aussage, dass nicht gilt, dass nicht gilt, dass Möwen zwei linke Beine haben. So ist das. Nun weiß ich aber, dass diese Aussage genau dann wahr ist, falls die Aussage "Möwen haben zwei linke Bein" wahr ist. Das ist sie jedoch nicht. Also ist Aussage: "Es gilt nicht, dass nicht gilt, dass Möwen zwei linke Beine

 $^{^7}$ ja, ich weiß, das tönt seltsam, aber typischerweise bedeutet A, dass der ersten Aussage ein Namen gegeben werden soll, B, dass der zweiten Aussage ein Name gegeben soll, und so weiter.

haben" nicht wahr. Es kommt ab und zu vor, dass zwei Verneinungen einer Aussage durch die Aussage selbst ersetzt werden können.

Falls Du diese Zeilen liest, dann wirst Du Dir wahrscheinlich fast nicht vorstellen können, dass diese Gedanken für irgend etwas gut sein sollen. Dass dem trotzdem so ist, das wird im Verlauf dieses Dokuments zu zeigen meine Aufgabe sein. Aber abgesehen davon, hoffe ich, dass es Dir auch ein wenig Spaß macht, auszuloten, was die Konsequenzen der ursprünglichen Definitionen sind. Dies ist übrigens meines Erachtens ein großer Teil der Arbeit von Mathematikerinnen und Mathematikern. Es wird etwas definiert und dann wird geschaut, was die möglichen Konsequenzen aus diesen Definitionen sind. Mit viel Glück kommt dabei etwas heraus, was praktische Anwendungen haben kann. Ich möchte übrigens noch eine "Spielart" dieses Satzes aufschreiben:

Satz 12. Es sein A die Bezeichnung einer Aussage, welche in sich selber und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei sei. Dann gilt die Aussage

$$\neg (\neg A) \Rightarrow A$$

In Worten: Ist die Negation der Aussage A nicht wahr, dann ist die Aussage wahr.

BEWEIS. Da dieser logische Satz bloß eine Aussage umfasst, kann ich auf den Beweis mittels Wahrheitstabellen verzichten. Ist die Aussage A nicht wahr, dann ist gemäß der ersten Zeile der Definition 11 der Negation die Aussage $\neg A$ wahr. Da nun die Aussage $\neg A$ wahr ist, ist gemäß der zweiten Zeile der gleichen Definition 11 der Negation die Aussage

$$\neg (\neg A)$$

wiederum nicht wahr. Da nun sowohl die Aussagen A wie auch $\neg (\neg A)$ nicht wahr sind, ist gemäß der ersten Zeile der Definition 14 der Implikation die Aussage

$$\neg (\neg A) \Rightarrow A$$

wiederum wahr. Nun sei die Aussage A wahr. Dann ist gemäß der zweiten Zeile der Definition 11 der Negation die Aussage $\neg A$ nicht wahr. Da ich feststellen kann, dass die Aussage $\neg A$ nicht wahr ist, ist gemäß der ersten Zeile derselben Definition 11 der Negation die Aussage $\neg (\neg A)$ wiederum wahr. Da in diesem Fall (in welchem A als wahr angenommen wird) also sowohl die Aussagen A wie auch $\neg (\neg A)$ wahr sind, kann ich gemäß der vierten Zeile der Definition 14 der Implikation schließen, dass auch die Aussage

$$\neg (\neg A) \Rightarrow A$$

wahr sein muss. Somit glaube ich, in allen möglichen Fällen gezeigt zu haben, dass die Behauptung richtig ist und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Tabelle 12. 1. Beweis des Satzes vom ausgeschlossenen Dritten

Aussage/ Fall Nr.	$\neg A$	$A \Leftrightarrow (\neg A)$
1	1	1
2	0	1

TABELLE 13. 2. Beweis des Satzes vom ausgeschlossenen Dritten

Aussage/ Fall Nr.	$\neg A$	$A \Leftrightarrow (\neg A)$
1	$\neg A$	$A \Leftrightarrow (\neg A)$
2	$\neg (\neg A)$	$A \Leftrightarrow (\neg A)$

TABELLE 14. Verweise des Satz vom ausgeschlossenen Dritten

Definition /	Definition 11	Definition 20
Definition/ Fall Nr.	der	der
	Negation	Antivalenz
1	1. Zeile	2. Zeile
2	2. Zeile	3. Zeile

20.3. Was ist der "Satz vom ausgeschlossenen Dritten"?

Der Satz vom ausgeschlossenen Dritten besagt folgendes:

Satz 13. Es sei A das Symbol für eine Aussage, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei sei. Dann gilt

$$A \Leftrightarrow \neg A$$

Ausformuliert heißt dieser Satz: "Jede Aussage ist entweder wahr oder nicht wahr".

BEWEIS. Ich möchte den Beweis zuerst mit tabellarischen Mitteln (in Form einer Tabelle) führen, und zwar in zwei Tabellen, einmal so, wie es üblicherweise gemacht wird und einmal so, wie ich es zeigen würde. Die erste Beweis ist in der Tabelle 12 abgelegt, der zweite Beweis in der Tabelle 13. Die Verweise des Beweises habe ich in der Tabelle 14 abgelegt.

Beachte, dass in dieser Tabelle ausgiebig von den "Alias-Bezeichnungen" Gebrauch gemacht wird (vergleiche mit dem Punkt 13 der Auflistung 1.4 im Abschnitt, in welchem ich kritisch über mathematischen Vorgehensweise äußere). Unter der Tabelle 14 sind die Verweise der Beweise abgelegt. Wie Du in den Tabellen siehst, ist die Aussage, dass entweder die Aussage A oder ihre Negation richtig ist, also darum richtig, weil sie für alle Aussagen, welche richtig sind, und

für alle Aussagen, welche nicht richtig sind, stimmt. Nun bin ich mir jedoch durchaus bewusst, dass diese Beweisführung etwas "zirkuläres⁸" in sich trägt. Also eine Art inneren Widerspruch besitzt. Aber auch diese Beweisführung ist mehr oder weniger eine Übereinkunft: Es wird vereinbart, dass der logische Satz dann als wahr anerkannt wird, falls er für alle (hinreichend in sich selbst widerspruchsfreien) Aussagen richtig ist. Diese Art der Beweisführung werde ich für alle logischen Sätze so durchziehen. Bemerkenswert ist, dass, es sich nur um ein "Nachschlagen" handelt. Du wirst Dich wahrscheinlich fragen: "Wo bleibt da die Kreativität, der Witz an der ganzen Sache?" oder: "Das ist ja schön langweilig". Lass Dir gesagt sein: Die Kreativität liegt in den Definitionen und der Erstellung der Sätze selbst. Das Austesten der Sätze ist eine "Formsache", eine Art "maschinelles Austesten". Aber Du wolltest doch die Welt verbessern und weder logische Sätze erfinden noch austesten. Darum übernehme ich Dir diese Arbeit. Deine Arbeit wird darin liegen, die logischen Aussagen anzuwenden. Ich werde den Beweis noch einmal führen, und zwar formal, damit Du ein Gefühl dafür bekommst, wie formale Beweise aufgebaut sind. Und nun möchte ich (endlich) den Beweis noch mit sprachlichen Mitteln führen:

Es sei also A das Symbol einer Aussage. Ist die Aussage A wahr, dann gilt gemäß der 2. Zeile der Definition 11 der Negation, dass die Aussage $\neg A$ nicht wahr ist. Da nun die Aussage A wahr und Aussage $\neg A$ nicht wahr, dann gilt gemäß der 3. Zeile der Definition 20 der Antivalenz die Aussage $A \Leftrightarrow \neg A$. Ist jedoch A nicht wahr ist, dann ist gemäß der ersten Zeile der Definition 11 der Negation die Aussage $\neg A$ wahr. Da nun gemäß Voraussetzung die Aussage A nicht wahr ist und gemäß der Schlussfolgerung die Aussage A wahr ist, dann ist gemäß der zweiten Zeile der Definition 20 der Antivalenz die Aussage $A \Leftrightarrow \neg A$ wiederum wahr. Darum ist $A \Leftrightarrow \neg (\neg A)$ unabhängig von der konkreten Aussage A immer wahr. Damit meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Der folgende Abschnitt hat große Ähnlichkeit mit den Ausführungen im Kapitel 8 über die Negation. Daher kannst Du ihn getrost überlesen oder nur schnell überfliegen, falls Du das entsprechende Kapitel bereits einmal gelesen hast.

Ja ich weiß, die Aussage des Aussage heißt normalerweise nicht: "Alle Aussagen sind entweder wahr oder nicht wahr", sondern: "Aussagen sind entweder wahr oder falsch". Dann sind die zwei Wahrheitswerte "wahr" und "falsch", und der Sinn des Satzes "Satz vom ausgeschlossenen Dritten" bedeutet dann, dass es keinen dritten Wahrheitswert gibt. Jedoch werde ich mir erlauben, ihn in der obigen Form zu verwenden. Doch wahrscheinlich kommen jetzt von Dir ein oder mehrere

⁸wörtlich "kreisförmiges", also "etwas, was auf sich selbst verweist"

Widersprüche: "Wieso wahr oder nicht wahr" und nicht "Wahr oder falsch"? Oder der Widerspruch: "Was ist mit den Aussagen, welche sehr wahrscheinlich wahr sind, oder solche, welche sehr wahrscheinlich falsch sind?" Zum ersten Einwand: Nun, für das Weitere spielt es sowieso keine große Rolle, ob jetzt "wahr und falsch" oder "wahr und nicht wahr" als Aussage genommen wird. Jedoch ist oft unklar, ob jetzt etwas gilt oder etwas nicht gilt. In diesem Fall kann nicht gesagt werden, ob etwas wahr oder falsch ist - wir wissen es nicht. Dann liegt eben der Fall vor, dass wir nicht sagen können, ob eine Aussage wahr oder falsch ist. Dann macht es Sinn, zu sagen, dass die Aussage nicht wahr ist. Ich möchte jedoch auch zu bedenken geben, dass oft die Situation vorliegt, in welcher wir versucht sind, das "Fell zu verkaufen, bevor der Bär erlegt ist". Dies bedeutet, dass wir annehmen, die Aussage sei wahr - um dann das Gegenteil zu beweisen. Schlussendlich - und dies scheint mit das stärkste Argument zu sein - geht es in der Mathematik darum, von wahren, oder besser geschrieben von als wahr angenommenen Aussagen wieder wahre Aussagen zu gewinnen. Es nützt nichts, wenn wir eine Aussage, von welcher wir nicht wissen, ob sie wahr ist, oder von welcher wir sogar wissen, dass sie nicht zutrifft, verwenden, um wieder zu wahren Aussagen zu kommen. Falls eine Aussage nicht wahr ist, dann heißt das nicht, dass ich das auch beweisen kann, dass sie nicht wahr ist. Wenn ich schreiben würde: "Alle Aussagen sind entweder wahr oder falsch", dann habe ich ein Problem, falls ich an eine Aussage gerate, von welcher ich nicht weiß, ob sie wahr oder falsch ist. Was mache ich dann mit dieser Aussage? Wenn ich sage: "Diese Aussage ist falsch", dann verhalte ich mich wie der Bauer, welche die Kartoffeln nicht isst, welche er nicht kennt⁹: Alles was ich nicht kenne, lehne ich ab. Ich denke, dann verschenke ich mir die Chance, eventuell auf etwas zu stoßen, welches interessant sein könnte. Wenn ich jedoch sage: "Gut, ich nehme an, dass die Aussage wahr sei", dann laufe ich Gefahr, naiv alles zu übernehmen, was ich nicht kenne, so frei nach dem Motto: "Alles was ich nicht kenne, muss besser sein als das, was ich habe" (so wie der Hansdampf im Schneckenhaus¹⁰). Ich denke nicht, dass dies eine besonders geschickte Strategie ist. Aus diesem Grund habe ich mich entschieden, im Folgenden "nicht wahr" zu verwenden - auch wenn ich weiß, dass die logische Literatur meiner Argumentation wohl kaum folgen wird. Es folgt nun ein ziemlich langer Teil, in welchem ich meine Wortwahl zu begründen versuche. Aber ich denke nicht, dass es mir gelingen wird.

⁹Es gibt im Deutschen ein Sprichwort, welches heißt: "Was der Bauer nicht kennt, das isst er nicht". Es will bedeuten, dass viele Bäuerinnen und Bauer an Neuem nicht interessiert seien und darum Chancen auf bessere Produkte leichtfertig verspielen würden.

¹⁰Kinderreim, welcher da lautet: Hansdampf im Schneckenhaus, hat alles was er will. Und was er hat, das will er nicht. Und was er will, das hat er nicht

Ich möchte die zweiwertige Logik (mit wahren und nicht wahren Aussagen) mit physikalischen Erkenntnissen vergleichen, welche im Zusammenhang der Schrödingergleichung (siehe Gleichung 2) entstanden sind. In der Quantenmechanik wird von einer Wellenfunktion gesprochen, welche mit Aufenthaltswahrscheinlichkeiten verknüpft ist. Der springende Punkt dabei ist, dass es nicht mehr möglich wird, absolut wahre oder falsche Aussagen zu machen. Sondern Aussagen sind immer mit einer Wahrscheinlichkeit verknüpft, welche angeben, wie häufig diese zutreffen. Eine zweiwertige Logik wäre also ein Spezialfall, in welchem die Wahrscheinlichkeit für ein bestimmtes Ereignis immer entweder 0 oder 100% wäre. Ich möchte ein Beispiel machen. Aischa geht in die Schule. Wenn sie keine Schule hat, dann ist sie daheim oder auf dem Spielplatz. Ab und zu kauft sie für ihren Vater ein, welcher den Haushalt besorgt. Selten geht sie fort. Dann ist die Wahrscheinlichkeit recht groß, dass sie im Bett ist und schläft (sagen wir etwa 9 Stunden pro Tag). Am zweithäufigsten ist sie wohl daheim und in der Schule anzutreffen, seltener wahrscheinlich auf dem Spielplatz oder sonst wo. Aber wann sie genau wo ist, das kann niemand sagen. Das weiß wirklich niemand außer Aischa selbst - wenn sie sich darauf achtet. Später wird sie sehr wahrscheinlich vergessen, wo sie wann war. Wenn wir jetzt nur die zweiwertige Logik akzeptieren würden, dann wäre die Aussage "Aischa ist auf dem Spielplatz" immer nur wahr oder nicht wahr. Würden wir jetzt quantenmechanisch argumentieren, würden wir sagen: "Aischa ist mit einer Wahrscheinlichkeit von 12% auf dem Spielplatz". Das bedeutet, wenn wir während einer genügend langen Zeit (beispielsweise einem Monat) alle 15 Minuten auf dem Spielplatz ein Photo machen würden (in der Nacht mit Restlichtverstärkung oder Infrarotaufnahmen oder Blitzlichtbeleuchtung), dann wäre etwa auf jedem achten Bild auf dem Bild Aischa zu sehen. Das bedeutet jedoch, dass ich nicht absolut sagen kann, wann sich Aischa wo aufhält, sondern nur mit einer gewissen Wahrscheinlichkeit. Heißt das jedoch, dass die zweiwertige Logik jetzt falsch ist? Ich meine, dass sie nicht falsch ist, und ich möchte versuchen, meine Meinung zu begründen. Die Logik, wie ich sie hier zu entwickeln versuche, geht von wahren Aussagen aus. Häufig sind jedoch die wahren Aussagen diejenigen, welche ich als wahr annehme. Der Unterschied zwischen einer wahren und einer als wahr angenommenen Aussagen mag für Dich lächerlich klein oder gar nicht vorhanden zu sein. Dies ist jedoch nicht der Fall. Meine Behauptung ist also, dass die Mathematik anders bei anderen Wissenschaften nicht von der "Empirie", also der Erfahrung ausgeht, sondern von Annahmen. Darum nehme ich auch an, dass solche wahren Aussagen existieren (vergleiche mit der Aussage 6). Anschließend wird überlegt, was dann aus diesen Annahmen gefolgert werden kann. Dass die Mathematik gerade auch in der Physik und vielen anderen erfahrungsgestützten Wissenschaften erfolgreich verwendet werden kann, zeigt meines Erachtens im Nachhinein, dass dieses Vorgehen durchaus gerechtfertigt ist.

Es gab auch in der Mathematik und in der Wissenschaft insgesamt immer wieder Krisen, weil sich Aussagen, von welchen immer angenommen wurde, dass sie wahr sind, plötzlich als nicht mehr haltbar, als in sich widersprüchlich herausgestellt haben. Dies wird wahrscheinlich immer wieder der Fall sein. Damit diese Krisen jedoch sinngebend in einer Theorie einfließen können, halte ich es für unerlässlich, dass ich schreibe, dass eigentlich immer nur die Annahmen als wirklich wahr betrachtet werden können. Alle Beobachtungen, die ganze Wahrnehmungen (sehen, hören, riechen, schmecken, fühlen) sind immer nur mit einer gewissen Wahrscheinlichkeit wahr. An der Kantonsschule musste ich einmal ein Buch lesen mit dem Titel "konstruierte Wahrheiten". Ich weiß keinen Satz mehr vom Buch, es hat mich angeödet. Jedoch ist der Titel hängen geblieben. Er hat mich aufgeregt, weil ich dachte, entweder ist etwas wahr oder nicht wahr. Aber Wahrheit kann doch nicht konstruiert, zurechtgebogen werden, so wie es von schmierigen Winkeladvokaten behauptet wird? Erst viel später habe ich gemerkt, dass es wohltuend sein kann, wenn die Annahmen offengelegt und die daraus resultierenden Konsequenzen abgeleitet werden. "Konstruierte Wahrheiten" bedeutet jedoch immer auch, dass Wahrnehmungen interpretiert werden müssen, damit sie einen Sinn ergeben. Jedoch sind gerade Symbole derart gebaut, dass die Wahrscheinlichkeit, dass sie falsch interpretiert werden, auf ein absolutes Minimum reduziert wird. Eine der raren Ausnahmen, welche jedoch die Regel ziemlich gut bestätigen, sind die Symbole 0 respektive O. Vergleiche mit der Notiz über die erzwungene Eindeutigkeit (siehe Abschnitt 2), welche sich ebenfalls mit diesem Thema auseinandersetzt. Während das erste Symbol das Symbol für die Zahl "Null" ist, ist das zweite Symbol das Symbol des Lautes, welches im Wort "Ort" zuerst ausgesprochen wird. Trotzdem funktioniert diese "Objektivierung" im Allgemeinen sehr gut. Wenn Wahrheiten konstruiert werden, dann können Aussagen als wahr angenommen werden, ohne wenn und aber. Aus diesen Wahrheiten können mittels den Mitteln der Logik wieder andere Wahrheiten abgeleitet werden. Darum glaube ich daran, dass der Satz des ausgeschlossenen Dritten eine richtige Konsequenz der Logik ist. Mein Standpunkt ist übrigens dem Konstruktivismus der Sozialwissenschaften angelehnt, und diesen Standpunkt halte ich für sehr interessant. Denn er macht aus uns handelnde Subjekte. Wahrheit ist mit uns Menschen verknüpft, sie wächst weder auf den Bäumen noch fällt sie vom Himmel. Und sie ist in meinen Augen lebensbejahend und nicht so diktatorisch wie der traditionelle naturwissenschaftliche Anspruch einer "immateriellen Wahrheit". Aber das ist eine Behauptung von mir, welche ich mit Leben füllen muss, indem ich diesen Text schreibe. Natürlich lassen sich auch mit Texten mehrdeutige Aussagen erzeugen, und genau das ist ja sehr interessant, wenn Du ein unterhaltsames Buch liest. Denn das Lesen ruft im guten Fall immer Bilder hervor, es ist ein Eintauchen in einer fremde Welt, welche aus sicherer Distanz gefahrlos betrachtet werden kann (beispielsweise beim Lesen des Buchs "Krieg und Frieden" von Tolstoi). Und in diesen Texten ist die Mehrdeutigkeit immer zu einem guten Teil gewollt. Jedoch wird in mathematischen Texten eine Mehrdeutigkeit von Begriffen nach Kräften vermieden. Dies ist jedoch eine bewusste Entscheidung, und sie wird gerade verständlich, wenn Du Dir die Anfänge der Mathematik vor Augen hältst. Die Mathematik diente beispielsweise bei den Sumerern und Babyloniern offenbar dazu, Schulden zu beziffern (vergleiche mit den Ausführungen im entsprechenden Kapitel 29 über Schulden). Da ist es natürlich das Interesse vom Schuldner und vom Gläubiger, dass peinlichst genau aufgeschrieben wird, wer wem was schuldet.

Um die Diskussion über den Sinngehalt des Satzes des ausgeschlossenen Dritten zu beenden, möchte ich bemerken, dass der Satz in der Gleichung 13 beweisbar ist - wogegen die Aussage "Aussagen sind entweder wahr oder falsch" eine Annahme ist. Welche dann erst noch viele Diskussionen darüber entfacht, ob es nicht doch andere Zustände geben soll - mit entsprechend komplizierten Argumenten, welche meines Erachtens sowieso nur darauf hinauslaufen, dass sie so doziert werden können, dass kein Meerschweinchen und kein Kanarienvogel verstehen und am Schluss die gähnende Leere und Öde herrscht¹¹.

Wie dem auch sei, Du willst ja die Welt verändern, reich und berühmt werden, das Leben in Saus und Braus genießen können, und darum werde ich jetzt mein Wehklagen beenden. Ich mache noch Beispiele für diesen Satz. Es sei A das Symbol für die Aussage: Alle Elefanten haben 10 Rüssel. Nun, diese Aussage ist ja nicht wahr. A ist also nicht wahr, $\neg A$ jedoch schon. Insgesamt gilt also $A \Leftrightarrow \neg A$, ausgeschrieben:

ausformuliert: "Entweder haben alle Elefanten 10 Rüssel, oder sie haben es nicht." Ich nehme an, das würdest Du auch so sehen. Es sei A das Symbol der Aussage: "Biber sind die größten Nagetiere Europas" (das habe ich jetzt gerade im Fernsehen gehört...). Nun, wenn wenn die das im Fernsehen sagen, dann wird es schon stimmen. Nein, ich habe das einmal in der Kantonsschule an einer Prüfung über Säugetiere nicht gewusst, und das hat sich tief in meine Hirnwindungen eingebrannt. Darum bin ich felsenfest davon überzeugt, dass dies stimmt. Also ist

¹¹obwohl "herrscht" nicht geschlechtsneutral ist, aber was soll's: Die Zukunft ist eh weiblich... Auch wenn ich mir verbitten würde, von etwas zu schreiben, welches "dämlich" sei, finde ich es ganz in Ordnung, wenn mein sogenanntes "starkes Geschlecht" auch mal sein Fett weg bekommt.

TABELLE 15. 1. Beweis des schwachen Satzes vom ausgeschlossenen Dritten

Aussage/ Fall Nr.	$\neg A$	$A \vee (\neg A)$
1	1	1
2	0	1

A wahr, $\neg A$ jedoch nicht. und darum ist $A \Leftrightarrow \neg A$ wiederum wahr, ausgeschrieben:

"Biber sind die grössten Säugetiere Europas" #

¬("Biber sind die grössten Säugetiere Europas"),

ausformuliert: "Entweder sind Biber die größten Säugetiere Europas, oder sie sind es nicht".

xxxyyy

Es gibt jedoch noch abgeschwächte Varianten des Satzes des ausgeschlossenen Dritten. Es gilt der

Satz 14. Schwacher Satz des ausgeschlossenen Dritten: Es sei A das Symbol einer Aussage. Dann gilt:

$$A \vee \neg A$$

In Worten: Die Aussage A gilt oder die Negation der Aussage A gilt.

Beweis. Ich habe diesen Beweis in den Tabellen 15 respektive 16 erbracht. Die Verweise habe ich in der Tabelle 17 abgelegt.

Ich möchte den Beweis trotzdem noch als noch einmal führen: Ist die Aussage A nicht wahr, dann gilt gemäß der ersten Zeile der Definition 11 der Negation die Aussage $\neg A$ wahr. Da nun die Aussage $\neg A$ wahr und die Aussage A nicht wahr ist, kann ich gemäß der dritten Zeile der Definition 17 der Disjunktion folgern, dass die Aussage

$$\neg A \vee A$$

wahr ist. Damit wäre die eine Hälfte der Behauptung bewiesen. Ist die Aussage A wahr, dann ist gemäß der zweiten Zeile der Definition 11 der Negation die Aussage $\neg A$ nicht wahr. Da nun die Aussage $\neg A$ nicht wahr und die Aussage A wahr ist, ist gemäß der zweiten Zeile der Definition 17 der Disjunktion die Aussage

$$\neg A \lor A$$

wiederum wahr. Also bin ich der Meinung, dass ich die Behauptung in allen möglichen Fällen bewiesen habe und beende an dieser Stelle aus diesem Grund die weitere Beweisführung.

Zum Wort "schwach". In der Umgangssprache bedeutet "schwach" oft, das etwas schlecht sei. Dies ist aber nicht die Meinung im in diesem Fall. In diesem Fall bedeutet "schwach", dass die Schlussfolgerung

TABELLE 16. 2. Beweis des schwachen Satzes vom ausgeschlossenen Dritten

Aussage/ Fall Nr.	$\neg A$	$A \vee (\neg A)$
1	$\neg A$	$A \vee (\neg A)$
2	$\neg (\neg A)$	$A \vee (\neg A)$

Tabelle 17. Verweise des schwachen Satz vom ausgeschlossenen Dritten

Definition /	Definition 11	Definition 17
Definition/ Fall Nr.	der	der
	Negation	Disjunktion
1	1. Zeile	2. Zeile
2	2. Zeile	3. Zeile

weniger weitreichend ist als die Schlussfolgerung des "starken", also üblichen Satzes vom ausgeschlossenen Dritten. Aber manchmal genügt dies.

Es gibt eine witzige Umsetzung des schwachen Satzes der. Es gibt ein Sprichwort, welches heißt: "Kräht der Hahn auf dem Mist, so ändert das Wetter, oder es bleibt wie es ist." Bezüglich dem Wetter gibt es zwei Möglichkeiten: Es ändert, oder es ändert nicht. Der schwache Satz 14 des ausgeschlossenen Dritten besagt nun, dass dies immer wahr ist. Nun ist zwar die Aussage wahr - aber meines Erachtens will das Sprichwort nicht darauf anspielen. Es spielt vielmehr darauf an, dass die Aussage zwar wahr ist - aber das eine (das Krähen des Hahns) nichts mit dem anderen (der Verlauf des Wetters) zu tun hat.

Und weiter geht es mit dem nächsten logischen Satz.

20.4. Was ist der "Satz der Transitivität der Implikation"?

Den Satz kennst Du wahrscheinlich auch, wenn auch nicht so formal, dann jedoch intuitiv.

Satz 15. Angenommen, A, B sowie C seien Symbole für Aussagen. Der Satz lautet in diesem Fall

$$((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$$

ausformuliert: "Wenn aus der Aussage A die Aussage B folgt und aus der Aussage B die Aussage C, dann folgt aus der Aussage A die Aussage C".

BEWEIS. Damit kein Durcheinander mit den Fällen auftritt, welche möglich sind, habe ich die Wahrheitsgehalte der einzelnen logischen Variablen (siehe die Definition 13) gemäß der Tabelle 5 aufgelistet. Darum

Tabelle 18. 1. Teil 1. Beweis Satz der Transitivität der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Rightarrow C$	$(A \Rightarrow B) \land (B \Rightarrow C)$
1	1	1	1
2	1	1	1
3	1	0	0
4	1	1	1
5	0	1	0
6	0	1	0
7	1	0	0
8	1	1	1

Tabelle 19. 2. Teil 1. Beweis der Transitivität der Implikation

Aussage/ Fall Nr.	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)
1	1	1
2	1	1
3	1	1
4	1	1
5	0	1
6	1	1
7	0	1
8	1	1

habe ich mir oben auch so viel Zeit gelassen, um das möglichst ausführlich zu erklären. In den Tabellen 18 sowie 19 ist der erste Beweis der Aussage dargestellt. In den Tabellen 20 sowie 21 habe ich den zweiten Beweis der Aussage aufgeschrieben. In den Tabellen 22 respektive 23 habe ich aufgeschrieben, welche Voraussetzungen für diesen Beweis verwendet wurden.

Ich habe ein wenig mit den Einstellungen gespielt. Obwohl die Art der Darstellung ein wenig unglücklich ist, habe ich sie so belassen, da ich annehme, dass Du diese Einführung entweder gar nicht liest¹² oder dann aber als PDF. Falls Du sie als PDF lesen würdest, müsstest Du zwischendurch den Kopf verdrehen, damit Du die Darstellung lesen kannst. Ich möchte Dir dies ersparen, es tut zumindest mir einigermaßen weh, vor allem wenn ich daran denke, dass ich noch ein paar Tabellen bis zum Ende dieses Textes einfügen werde. Bevor ich angebe, wieso ich mich erfrecht habe, diese Aussagen aufzuschreiben, welche in den zwei Tabellen abgebildet sind, möchte ich die Tabellen so schreiben, wie ich sie in den Büchern gefunden habe (vergleiche mit

¹²Nur dass wir uns verstehen: Das sollte ein Witz sein, und ich weiß schon, dass das gegenstandslos ist, falls Du die Einführung gar nicht liest.

20.4. WAS IST DER "SATZ DER TRANSITIVITÄT DER IMPLIKATION"? 255 TABELLE 20. 1. Teil 2. Beweis Satz der Transitivität der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Rightarrow C$	$ \begin{array}{c} (A \Rightarrow B) \land \\ (B \Rightarrow C) \end{array} $
1	$A \Rightarrow B$	$B \Rightarrow C$	$(A \Rightarrow B) \land (B \Rightarrow C)$
2	$A \Rightarrow B$	$B \Rightarrow C$	$(A \Rightarrow B) \land (B \Rightarrow C)$
3	$A \Rightarrow B$		$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$
4	$A \Rightarrow B$	$B \Rightarrow C$	$(A \Rightarrow B) \land (B \Rightarrow C)$
5		$B \Rightarrow C$	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$
6	$\neg (A \Rightarrow B)$	$B \Rightarrow C$	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$
7	$A \Rightarrow B$	$\neg \left(B \Rightarrow C \right)$	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$
8	$A \Rightarrow B$	$B \Rightarrow C$	$(A \Rightarrow B) \land (B \Rightarrow C)$

TABELLE 21. 2. Teil 2. Beweis der Transitivität der Implikation

Aussage/ Fall Nr.	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)
1	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)
2	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)
3	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)
4	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)
5	$\neg (A \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)
6	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)
7	$\neg (A \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)
8	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)

TABELLE 22. 1. Teil Verweise Beweis Kette von Schlussfolgerungen

Definition/	Definition 14 der	Definition 14 der	Definition 13 der
Fall Nr.	Implikation	Implikation	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	4. Zeile
3	2. Zeile	3. Zeile	3. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 23. 2. Teil Verweise Beweis Kette von Schlussfolgerung

Definition/ Fall Nr.	Definition 14 der Implikation	Definition 14 der Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	4. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	4. Zeile
5	3. Zeile	1. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile

den Tabellen 18 respektive 19). In dieser Tabelle kannst Du sehr gut sehen, wieso mit Zahlen gerechnet wird: Die Konjunktion ist immer das Minimum der Argumente, wie ich es oben bereits erwähnt habe (siehe Kapitel 10). Die Schlussfolgerung kannst du Dir so merken, dass die Schlussfolgerung genau dann nicht wahr ist, falls die Aussage auf der linken Seite wahr, die Aussage auf der rechten Seite jedoch nicht wahr ist (vergleiche mit dem Kapitel 11).

Ich bespreche zuerst eine Zeile, welche wenig interessant ist. Betrachte zuerst den Fall, dass die Aussage A nicht wahr ist. Dann ist die Aussage bereits bewiesen! Warum ist das so? Nun: Falls die Aussage A nicht wahr ist, dann ist die Aussage, dass aus der Aussage A die Aussage C folgt, immer wahr (vergleiche mit den Zeilen 1 und 2 der Definition 14 der Implikation). Um es noch klarer auszudrücken: Sind weder die Aussagen A noch C wahr, dann kannst Du in der ersten Zeile der Definition 14 der Implikation nachlesen, dass die Schlussfolgerung $A \Rightarrow C$ wahr ist. Ist jedoch die Aussage A nicht wahr und die Aussage C wahr, dann kannst Du in der zweiten Zeile der Definition 14 der

Implikation erkennen, dass die Aussage $A \Rightarrow C$ wiederum wahr ist. Wenn jetzt die Aussage $A \Rightarrow C$ wahr ist, dann ist die gesamte Aussage $((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$ immer wahr, unabhängig davon, was auf der linken Seite der Aussage steht. Dies habe ich im Kapitel 11 der Abkürzungen der Schlussfolgerungen dargelegt. Darum ist die Behauptung bereits dann wahr, falls die Aussage A nicht wahr ist.

Nun möchte ich einen interessanteren Fall untersuchen. Betrachte den Fall 7, in welchem die Aussagen A und B wahr sind, die Aussage C jedoch nicht wahr ist. Aufgrund der 4. Zeile der Definition 14 der Implikation ist die Schlussfolgerung $A\Rightarrow B$ wahr, jedoch sind die Schlussfolgerungen $B\Rightarrow C$ respektive $A\Rightarrow C$ beide gemäß der 3. Zeile der Definition 14 nicht wahr. Da die Aussage $A\Rightarrow B$ wahr ist, die Aussage $B\Rightarrow C$ jedoch nicht, ist gemäß der 3. Zeile der Definition der Konjunktion 13 ist die Aussage $(A\Rightarrow B)\land (B\Rightarrow C)$ nicht wahr. Da jetzt also sowohl die Aussage $(A\Rightarrow B)\land (B\Rightarrow C)$ wie auch die Aussage $A\Rightarrow C$ nicht wahr sind, ist jedoch gemäß der 1. Zeile der Definition 14 der Implikation die Behauptung der Kette der Schlussfolgerung für diesen Fall wiederum wahr. Die restlichen Zeilen habe ich in der Tabelle 22 respektive 23 entsprechend berechnet.

Jedoch - vielleicht findest Du den Beweis öde und abstrakt. Denn ich habe in der obigen Beweisführung eine Definition nach der anderen hervorgekramt und angewendet. Das ist gewissermaßen mit dem "rhetorischen Zweihänder" bewiesen, also relativ uninspiriert, geistlos. Da stellt sich die Frage: Gibt es eine elegantere Beweisführung, sozusagen mit dem "rhetorischen Florett". Doch, die gibt es, und die geht so: Wie ich oben bereits angedeutet habe, ist die Aussage $A \Rightarrow B$ nur dann nicht wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. Da stellt sich die Frage: Angenommen, es gibt Aussagen mit den Symbolen A, B respektive C, für welche die Kette der Schlussfolgerung $((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$ nicht gilt. Welchen Wahrheitswerten müssten den drei Aussagen dann zugeordnet werden? Dies wäre dann der Fall, falls die Aussage $(A \Rightarrow B) \land (B \Rightarrow C)$ wahr, die Aussage $A \Rightarrow C$ jedoch nicht wahr wäre. Die Aussage $(A \Rightarrow B) \land (B \Rightarrow C)$ scheint mir bereits ein wenig kompliziert zu sein, um sich Fälle zu überlegen, in welchen sie wahr wäre. Bei der Aussage auf der rechten Seite aber ist schnell zu bestimmen, in welchen Fällen sie nicht gilt: Gemäß der dritten Zeile der Definition 14 müsste die Aussage A wahr sein, die Aussage C jedoch könnte nicht wahr sein. In den anderen Fälle ist diese Schlussfolgerung wahr, und wie ich oben schon ausgeführt habe, ist damit in den anderen Fällen die Behauptung bereits bewiesen! Nun habe ich zu zeigen, dass auch in den restlichen zwei Fällen die Behauptung gilt. Entweder ist B wahr oder nicht wahr, wie ich versuchte, Dir im Satz vom ausgeschlossenen Dritten (siehe Satz 20.3) zu vermitteln. Angenommen, die Aussage B sei nicht wahr. Siehe

sprachlicher Beweis der Transitivität der Implikation wieder die Bemerkung 7 über die ordnende Funktion der Mathematik, wenn es Dir seltsam vorkommt, wieso ich zuerst annehme, dass die Aussage B nicht wahr ist. Wie dem auch sei - wenn also die Aussage B nicht wahr wäre, dann wäre die Aussage $A \Rightarrow B$ gemäß der dritten Zeile der Definition der Schlussfolgerungen 14 nicht wahr. Und dann ist die Behauptung bereits wieder wahr! Denn wenn die Aussage $A \Rightarrow B$ nicht wahr wäre, dann wäre gemäß dem Minimumprinzip 10 der Konjunktion die Konjunktion $(A \Rightarrow B) \land (B \Rightarrow C)$ bereits nicht wahr. Und da die Aussage $(A \Rightarrow B) \land (B \Rightarrow C)$ ist, ist die Schlussfolgerung $((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$ immer wahr, wie ich unter den Abkürzungsregeln der Implikation 11 oben dargelegt habe. Falls die Aussage B jedoch wahr wäre, dann wäre die Schlussfolgerung $B \Rightarrow C$ gemäß der dritten Zeile der Definition 14 der Implikation nicht wahr, da ja die Aussage C gemäß Voraussetzung immer noch nicht wahr ist. Da A und die Aussage B wahr sind, ist übrigens nach der vierten Zeile der Definition 14 der Schlussfolgerung die Aussage $A \Rightarrow B$ wahr. Weil nun die Aussage $A \Rightarrow B$ wahr ist, die Aussage $B \Rightarrow C$ jedoch nicht, wäre die Aussage $(A \Rightarrow B) \land (B \Rightarrow C)$ nicht wahr, da dazu beide Teilaussagen wahr sein müssen (siehe die 3. Zeile der Definition 13 der Konjunktion). Da jetzt $(A \Rightarrow B) \land (B \Rightarrow C)$ nicht wahr wäre, wäre wiederum die Behauptung der Transitivität der Implikation, also die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$$

gemäß den Abkürzungsregeln 11 der Implikation wiederum wahr. Weil jetzt alle möglichen Fälle untersucht wurden, habe ich also wieder gezeigt, dass die Behauptung der Transitivität der Implikation für alle möglichen (also in sich und gegenüber den anderen Symbolen des Satzes widerspruchsfreien) Aussagen richtig ist. Obwohl ich nicht weiß, ob Dir dieser Beweis einsichtig erscheint. Damit beende ich an dieser Stelle die weitere Beweisführung.

Dieser Satz wird so viel verwendet, dass es eigentlich gar nicht möglich ist, aufzuzählen, wo er überall verwendet wird. Darum macht es eigentlich keinen Sinn, wenn ich versuche, Beispiele aufzuzählen. Ich möchte es trotzdem versuchen. Es sei A das Symbol für die Aussage "Anna ist ein Mensch", B sei das Symbol der Aussage "Bert ist ein Mensch" und C sei das Symbol der Aussage "Caroline ist ein Mensch". Wenn jetzt Bert der Sohn von Anna ist und Caroline die Tochter von Bert, dann kann ich daraus schließen: "Wenn Anna ein Mensch ist, dann ist Bert ein Mensch". Dies entspricht der Aussage: $A \Rightarrow B$. Weiter kann ich daraus schließen: "Wenn Bert ein Mensch ist, dann ist Caroline ein Mensch". Dies entspricht der Aussage: $B \Rightarrow C$. Aus dem Satz der Transitivität der Implikation kann ich jetzt folgern: "Wenn Anna ein Mensch ist, dann ist Caroline ein Mensch".

Und nochmals ja, ich weiß, das Beispiel ist irgendwie mager. Aber wie gesagt, eigentlich wird der Satz der Transitivität der Implikation bis zum Überdruss verwendet. Ich versuche, Dir den Grund dafür darzulegen. Bei praktisch allen Beweisen werden zuerst die Definitionen der beteiligten Größen herangezogen. Anschließend werden werden die Schlussfolgerungen die Definitionen umgeformt. Nun ist es so, dass häufig mehrere Schlussfolgerungen hintereinander aufgeschrieben werden. Dann garantiert die Transitivität der Implikation, dass aus den Voraussetzungen immer wieder das Resultat der letzten Schlussfolgerung folgt. Aber eben: Ich werde Dir natürlich noch die entsprechenden Beispiele nachliefern müssen. Ja, das mit den Beispielen, wird immer schwieriger. Denn die logischen Sätze werden immer spezieller und entfernen sich immer weiter vom täglichen Leben. Jedoch hoffe ich trotzdem, zur gegebenen Zeit gute Beispiele nachliefern zu können.

Alle Verknüpfungen, welche dieses Verhalten besitzen, heißen "transitiv". Vergleiche mit der Definition 163, aber lasse Dich bitte nicht von den Formeln abschrecken! Sondern lese die nachfolgenden Erläuterungen, welche ich allerdings nachfolgend noch einmal aufschreiben werde.

Im Prinzip könnte ich es jetzt Dir überlassen, ähnliche logische Sätze zu beweisen. Ich denke, ich habe Dir jetzt das Rüstzeug gegeben, um logische Sätze formulieren, beweisen und anwenden zu können. Ich schreibe mittlerweile schon recht lange an diesem Teil des Buchs. Und ehrlich geschrieben: Ich finde es mittlerweile recht langweilig. Dennoch geht es in diesem Buch ja nur noch am Rande um mich - sondern viel mehr um Dich! Du musst entscheiden, ob Du weiter lesen oder den nächsten Buchteil zu lesen beginnen möchtest. Aber vielleicht möchtest Du noch ein wenig Übung, oder Du möchtest Dich nicht mit den Einzelheiten der Beweise (der "Beweistechnik") herumschlagen. Vielleicht möchtest Du nur noch die Ergebnisse sehen, weil Du denkst, Du wüsstest "im Falle eines Falles", wie etwas zu formulieren, beweisen und anzuwenden wäre.

Beachte übrigens die Ähnlichkeit von der Schlussfolgerung mit Abschätzungen. Dabei geht es um folgendes: Es seien beispielsweise drei natürliche Zahlen (zur Definition von natürlichen Zahlen siehe 204) n_1, n_2 sowie n_3 , zum Beispiel 34, 495 sowie 750. Dann gilt

$$n_1 \le n_2 \land n_2 \le n_3 \Rightarrow n_1 \le n_3$$

In Worten: Ist die Zahl n_1 kleiner oder gleich n_2 und n_2 kleiner oder gleich n_3 , dann ist n_1 kleiner oder gleich n_3 .

Mit den obigen Zahlen gilt dann

$$34 \leq 495 \wedge 495 \leq 750 \Rightarrow 34 \leq 750$$

In Worten: Da 34 kleiner oder gleich 495 und 495 kleiner oder gleich 750 ist, muss 34 kleiner oder gleich 750 sein.

Nun, mit drei natürlichen Zahlen ist dies relativ einsichtig. Aber viele wichtige Sätze der Analysis können mittels Abschätzungen erzeugt

werden. Und ich versuche unter dem Lemma 269 zu zeigen, dass die Implikation auch als eine Art kleiner oder gleich Beziehung verstanden werden kann.

Egal, welche Beweggründe hast, den Text zusammen mit dem Laptop in die Ecke zu schmeißen (schade um den Laptop) oder begierig am Text zu kleben¹³, formuliere ich jetzt den nächsten logischen Satz. xxxyyy

20.5. Warum ist die Äquivalenz transitiv?

Die Äquivalenz und die Implikation unterscheiden sich in Bezug auf die Transitivität praktisch nicht. Ich möchte also den Satz formulieren und beweisen:

SATZ 16. Es seien A, B und C Symbole von Aussagen. Dann gilt:

$$((A \Leftrightarrow B) \land (B \Leftrightarrow C)) \Rightarrow (A \Leftrightarrow C)$$

BEWEIS. Der Beweis mit Hilfe der δ -Notation (siehe Definition 261) ist schnell erzählt. Ist $A \Leftrightarrow B$ und $B \Leftrightarrow C$, dann ist

$$\delta\left(A\right) = \delta\left(B\right)$$

und

$$\delta\left(B\right) = \delta\left(C\right)$$

Somit ist also

$$\delta(A) = \delta(C)$$

was eben gemäß dem Satz 264 bedeutet, dass

$$A \Leftrightarrow C$$

ist. Da die Krux der δ -Notation darin besteht, dass sie auf Zahlen zurückgreift, und ich noch nicht erzählt habe, was darunter zu verstehen sei. Also möchte ich die Behauptung noch mittels Wahrheitstafeln erbringen. Die Beweise habe ich in den Tabellen 24 und 25 respektive 26 sowie 27 aufgeschrieben. Die Verweise habe ich in den Tabellen 28 sowie 29 aufgeschrieben.

Ich möchte trotzdem versuchen, den Beweis auch mit sprachlichen Mitteln zu erbringen. Dazu möchte ich fragen, unter welchen Bedingungen die Behauptung nicht wahr sein könnte? Dies wäre dann der Fall, falls die Aussage

$$A \Leftrightarrow C$$

nicht wahr, die Behauptungen

$$A \Leftrightarrow B$$

sowie jedoch

$$B \Leftrightarrow C$$

¹³Ich fände beide übrigens Reaktionen ein wenig übertrieben.

jedoch wahr wären. Wäre jedoch

$$\neg (A \Leftrightarrow C)$$

dann müsste gemäß der Definition 19 der Äquivalenz einer der beiden Fälle vorliegen: Entweder wäre die Aussage A nicht wahr, die Aussage C jedoch wahr, oder aber die Aussage A wäre wahr, die Aussage C aber nicht. Wäre nun die Aussage A nicht wahr, die Aussage C jedoch wahr, dann gilt es wieder zwei Fälle zu überprüfen. In einem Fall ist die Aussage B nicht wahr, im anderen Fall ist die Aussage B jedoch wahr. Ist die Aussage B nicht wahr, dann könnte die Aussage

$$B \Leftrightarrow C$$

gemäß der zweiten Zeile der Definition 19 der Äquivalenz nicht wahr sein. Weil diese Aussage nicht wahr sein könnte, könnte gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

ebenfalls nicht wahr sein. Weil diese Aussage nicht wahr sein könnte, müsste gemäß der Abkürzungsregel 11 der Implikation die gesamte Aussage trotzdem wahr sein. Wäre jedoch die Aussage B wahr, dann könnte die Aussage

$$A \Leftrightarrow B$$

gemäß der zweiten Zeile der Definition 19 der Äquivalenz nicht wahr sein. Da diese Aussage nicht wahr sein könnte, könnte wiederum gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

nicht wahr sein. Da die letzte Aussage nicht wahr sein könnte, müsste erneut gemäß der Abkürzungsregel 11 der Implikation die gesamte Aussage trotzdem wahr sein.

Das wäre der eine Teil des Beweises. Und entsprechend möchte ich den zweiten Teil des Beweises aufschreiben. Wäre die Aussage A wahr, dann könnte es die Aussage C nicht sein. Also gibt es erneut zwei Fälle zu unterscheiden. Wäre die Aussage B nicht wahr, dann könnte die Aussage

$$A \Leftrightarrow B$$

gemäß der dritten Zeile der Definition 19 der Äquivalenz nicht wahr sein. Da diese Aussage nicht wahr sein könnte, könnte gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

ebenfalls nicht wahr sein. Und da diese letzte Aussage nicht wahr sein könnte, müsste gemäß der Abkürzungsregel 11 der Implikation die gesamte Aussage trotzdem wahr sein. Und endlich komme ich zum letzten

Tabelle 24. 1. Teil 1. Beweis Satz der Transitivität der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $
1	1	1	1
2	1	0	0
3	0	0	0
4	0	1	0
5	0	1	0
6	0	0	0
7	1	0	0
8	1	1	1

Tabelle 25. 2. Teil 1. Beweis Satz der Transitivität der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow C$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$ $\Rightarrow (A \Leftrightarrow C)$
1	1	1
2	0	1
3	1	1
4	0	1
5	0	1
6	1	1
7	0	1
8	1	1

Fall. Wäre die Aussage B wahr, dann könnte gemäß der dritten Zeile der Definition 19 der Äquivalenz die Aussage

$$B \Leftrightarrow C$$

wiederum nicht wahr sein. Da diese Aussage nicht wahr sein könnte, könnte gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

ebenfalls nicht wahr sein. Und da die letzte Aussage in Form einer Konjunktion nicht wahr sein könnte, müsste somit die gesamte Aussage gemäß der Abkürzungsregeln 11 der Implikation wiederum wahr sein. Also meine ich, in allen möglichen Fällen gezeigt haben, dass die Behauptung wahr ist.

An dieser Stelle bin ich Dir ein gutes Beispiel schuldig. Ich hoffe, es Dir gelegentlich noch geben zu können. Es bleibt mir übrig, darauf hinzuweisen, dass mit dem Satz der Transitivität der Äquivalenz gezeigt wird, dass die Äquivalenz sozusagen die Gleichheit von Aussagen

TABELLE 26. 1. Teil 2. Beweis Satz der Transitivität der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $
1	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $
2	$A \Leftrightarrow B$	$\neg (B \Leftrightarrow C)$	$\neg (A \Leftrightarrow B) \land (B \Leftrightarrow C) $
3	$\neg (A \Leftrightarrow B)$	$\neg \left(B \Leftrightarrow C \right)$	$\neg (A \Leftrightarrow B) \land (B \Leftrightarrow C) $
4	$\neg (A \Leftrightarrow B)$	$B \Leftrightarrow C$	$\neg (A \Leftrightarrow B) \land (B \Leftrightarrow C) $
5	$\neg (A \Leftrightarrow B)$	$B \Leftrightarrow C$	$\neg (A \Leftrightarrow B) \land (B \Leftrightarrow C) $
6	$\neg (A \Leftrightarrow B)$	$\neg (B \Leftrightarrow C)$	$\neg (A \Leftrightarrow B) \land (B \Leftrightarrow C) $
7	$A \Leftrightarrow B$	$\neg \left(B \Leftrightarrow C \right)$	$\neg (A \Leftrightarrow B) \land (B \Leftrightarrow C) $
8	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $

TABELLE 27. 2. Teil 2. Beweis Satz der Transitivität der Äquivalenz

	I	(/ 1
Aussage/ Fall Nr.	$A \Leftrightarrow C$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$ $\Rightarrow (A \Leftrightarrow C)$
		$((A \cup D) \land (D \cup C))$
1	$A \Leftrightarrow C$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$ $\Rightarrow (A \Leftrightarrow C)$
		$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
2	$\neg (A \Leftrightarrow C)$	$\Rightarrow (A \Leftrightarrow C)$
		,
3	$A \Leftrightarrow C$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
0	71 4 0	$\Rightarrow (A \Leftrightarrow C)$
	$\neg (A \Leftrightarrow C)$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
4		$A \cap A \cap$
		$\Rightarrow (A \Leftrightarrow C)$
	(4 0)	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
5	$\neg (A \Leftrightarrow C)$, , , , , , , , , , , , , , , , , , , ,
		$\Rightarrow (A \Leftrightarrow C)$
C.	4	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
6	$A \Leftrightarrow C$	$\Rightarrow (A \Leftrightarrow C)$
		,
7	$\neg (A \Leftrightarrow C)$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
1		$\Rightarrow (A \Leftrightarrow C)$
		$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
8	$A \Leftrightarrow C$, , , , , , , , , , , , , , , , , , , ,
	11 (7 0	$\Rightarrow (A \Leftrightarrow C)$

TABELLE 28. 1. Teil Verweise Beweis Satz der Transitivität der Äquivalenz

Aussage/	Definition 19	Definition 19	Definition 13
Fall Nr.	der	der	der
rall Nr.	Äquivalenz	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	2. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	1. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle 29. 2. Teil Verweise Beweis Kette der Äquivalenz

Aussage/	Definition 19	Definition 14
Fall Nr.	der	der
ran m.	Äquivalenz	Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile
5	3. Zeile	1. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile

darstellt. Wobei jedoch bloß auf ein Merkmal hin die Gleichheit untersucht wird. Dabei sind zwei Aussagen gleich, falls beide Aussagen wahr oder beide Aussagen nicht wahr sind.

Ich möchte jedoch darauf hinweisen, dass der Satz der Transitivität der Äquivalenz nicht bedeutet, dass immer automatisch alle Aussagen wahr sein müssen. Es ist möglich, dass mit diesem Satz bewiesen wird, dass die Aussagen A, B oder C nicht wahr sind.

20.6. Wie kann ich etwas "folgern"?

Dieser Satz ist wahrscheinlich innerhalb der elementaren Logik zentral. Er besagt folgendes:

Satz 17. Satz der Schlussfolgerung: Es seien A und B die Symbole von zwei beliebigen Aussagen, welche jedoch in sich selber und in Bezug auf die anderen Aussagen des Satzes nicht widersprüchlich seien. Dann

Aussage/ $(A \land (A \Rightarrow B)) \Rightarrow B$ $A \Rightarrow B$ $A \wedge (A \Rightarrow B)$ Fall Nr. 0 1 1 $\overline{2}$ 1 0 1 3 0 0 1 4 1 1 1

Tabelle 30. 1. Beweis Satz der logischen Schlussfolgerung

gilt

$$(A \land (A \Rightarrow B)) \Rightarrow B$$

In Worten bedeutet dies, dass die Aussage B wahr ist, falls die Aussage A wahr ist und die Schlussfolgerung, dass aus aus der Aussage A die Aussage B folgt, ebenfalls richtig ist. Wieder gibt es "plumpere" und "elegantere" Beweise für diesen logischen Satz. Ich versuche zuerst, den Beweis in Worten zu fassen.

BEWEIS. Angenommen, die Behauptung sei nicht richtig. Dann könnte also die Aussage B gemäß der dritten Zeile der Definition 14 der Schlussfolgerung nicht wahr sein. Denn in allen anderen Fällen wäre die Schlussfolgerung

$$(A \land (A \Rightarrow B)) \Rightarrow B$$

wahr. Weiter müssten sowohl die Aussage A sowie die Implikation $A \Rightarrow B$ wahr sein. Ansonsten wäre die Aussage

$$A \wedge (A \Rightarrow B)$$

gemäß dem Minimumprinzip 10 der Konjunktion nicht wahr. Wenn jedoch sowohl die Aussage A wie auch die Schlussfolgerung der Aussage A nach auf die Aussage B wahr sein müssten, dann wäre die Aussage B eben auch wahr. Ansonsten wäre nämlich die Schlussfolgerung von A nach B nicht wahr (siehe dritte Zeile der Definition 14 der Schlussfolgerung). Jedoch habe ich jetzt ein Problem. Denn ich habe weiter oben vorausgesetzt, dass die Aussage B nicht wahr sein kann. Darum kann ich keinen Fall konstruieren, in welchem der Satz der Schlussfolgerung nicht wahr ist. Gemäß dem Satz 13 des ausgeschlossenen Dritten meine ich daher, behaupten zu können, dass die Behauptung in in allen vernünftigen Fällen wahr sein muss. Eventuell ist Dir dieser Satz hiermit zu wenig klar bewiesen. Darum möchte ich ihn zuerst in der Tabelle 30 auf die gängige Art, dann in den Tabellen 31 auf meine Art beweisen und schlussendlich in der Tabelle 32 die verwendeten Eigenschaften auflisten.

Wenn Du die Tabelle 30 betrachtest, dann siehst Du, dass die Aussage $A \wedge (A \Rightarrow B)$ genau dann wahr sind, falls die Aussagen A sowie B beide wahr sind. Das heißt, ich könnte mich darauf beschränken, zu zeigen, dass die Aussagen A sowie B wahr sind. Aber das ist nicht

Tabelle 31. 2. Beweis Satz der logischen Schlussfolgerung

Aussage/ Fall Nr.	$A \Rightarrow B$	$A \wedge (A \Rightarrow B)$	$(A \land (A \Rightarrow B)) \Rightarrow B$
1	$A \Rightarrow B$	$\neg (A \land (A \Rightarrow B))$	$(A \land (A \Rightarrow B)) \Rightarrow B$
2	$A \Rightarrow B$	$\neg (A \land (A \Rightarrow B))$	$(A \land (A \Rightarrow B)) \Rightarrow B$
3	$\neg (A \Rightarrow B)$	$\neg (A \land (A \Rightarrow B))$	$(A \land (A \Rightarrow B)) \Rightarrow B$
4	$A \Rightarrow B$	$A \wedge (A \Rightarrow B)$	$(A \land (A \Rightarrow B)) \Rightarrow B$

TABELLE 32. 1. Teil Verweise Beweis Satz der logischen Schlussfolgerung

Definition/ Fall Nr.	Definition 14 der Implikation	Definition 13 der Konjunktion
1	1. Zeile	2. Zeile
2	2. Zeile	2. Zeile
3	3. Zeile	3. Zeile
4	4. Zeile	4. Zeile

TABELLE 33. 2. Teil Verweise Beweis Satz der logischen Schlussfolgerung

Definition/ Fall Nr.	Definition 14 der Implikation
1	1. Zeile
2	2. Zeile
3	1. Zeile
4	4. Zeile

der springende Punkt. Es sind zwei verschiedene Wege, welche ich beschreiten kann, um zu zeigen, dass die Aussage B wahr ist, sofern die jeweils andere Aussage als wahr vorausgesetzt wird. Es ist ebenfalls wichtig, dass die wahren Aussagen "nicht vom Himmel fallen". Die Aussagen sind nur wahr, weil wir Voraussetzungen gemacht haben. Falls wir nichts voraussetzen würden ("glauben" im religiös-philosophischen Sinn), dann würden wir auch nichts als wahr erkennen können. Also hat Mathematik genau gleich viel oder gleich wenig mit Glauben wie Religion zu tun in dem Sinn, das in beiden Fällen Annahmen getroffen werden. Wahrscheinlich erwiderst Du mit Zornesröte auf der Stirn, dass in der Mathematik die sinnvolleren Annahmen als in der Religion getroffen werden. Aber auch das ist für mich ein viel zu großes Wort, als dass ich es wage, an dieser Stelle und überhaupt sonst im

Moment zu diskutieren. Im Wort "sinnvoll" ist das Wort "Sinn" enthalten. Für mich ist das fest mit "Sehnsucht" verknüpft. Wie ich mich in der Mathematik nach "Erlösung" sehne in Sinn von "verstehen" oder schon nur "das Gefühl haben, zu verstehen", auch wenn ich vielleicht weiß, dass ich nur ein ganz kleinen Flecken des Planeten der Mathematik kenne, habe ich auch in meinem Empfinden die Sehnsucht nach einer Ganzheit, nach einer Einheit, nach einer Stimmigkeit. Wenn Du sagst, Du würdest nur das glauben, was Du mit eigenen Augen gesehen hast, dann müsstest Du an Zauberei glauben, denn jeder Zauberkünstler kann uns glauben machen, dass das richtig ist, was wir sehen. Und die in der Mathematik vertretene Ansicht, die Formel seien "für die Ewigkeit gemacht", ist genau überlegt nicht stichhaltig. Wenn es keine Menschen gäbe, welche Mathematik lernen und anwenden, dann wäre nicht einsehbar, dass von einer Mathematik gesprochen werden könnte. Übrigens wird "Religion" häufig mit "magischem Denken" in Verbindung gebracht. Ich weiß nicht, warum dies so ist. Ich weiß auch nicht, warum das so sein müsste. Ein nicht religiöser Mensch ist für mich - und da lehne ich ich wahrscheinlich "weit aus dem Fenster hinaus" - jemand, welcher oder welche ein opportunistischer Arschkriecher respektive eine opportunistische Arschkriecherin ist. Welcher für ein Geschäft seine oder ihre eigene Großmutter verkaufen würde. Dem oder der das Los anderer Menschen scheißegal ist, welche oder welcher immer ausschließlich auf seinen oder ihren Vorteil bedacht ist. Weiter beginnt der Glauben dort, wo das Wissen aufhört. Und das ist in der Mathematik genau am Anfang. Denn immer zu Beginn einer Theorie werden die Annahmen getroffen. Anschließend werden die Schlussfolgerungen daraus gezogen. Und die Annahmen werden immer exotischer und abenteuerlicher (denke etwa an die Quantenphysik mit ihren wirklich abenteuerlichen Annahmen, etwa derjenigen des Teilchen-Welle-Dualismus). Das ist aus meiner Sicht Glauben, nicht Wissen. Aber die Theorie funktioniert wirklich gut - siehe mein Skript, welches aufgrund von quantenphysikalischen Erkenntnissen geschrieben werden konnte. Doch zurück auf den "Pfad der Tugend". Die elementaren Sätze der Logik lehren uns, dass nie aus "nichts" Schlüsse gezogen werden können. Und das ist auch gut so!

Der Satz der Schlussfolgerung sieht irgendwie wie eine Mogelpackung aus: Denn ich habe bereits die Aussage, dass aus der Aussage A die Aussage B folgt. Wieso muss ich dann noch zusätzlich schreiben, dass A gilt? Das ist darum, weil die Aussage, dass aus der Aussage A die Aussage B folgt, auch dann wahr ist, falls die Aussage A nicht wahr ist. In diesem Fall kann auch die Aussage B nicht wahr sein. Wenn ich jedoch noch zusätzlich voraussetze, dass die Aussage A wahr ist, dann muss die Aussage B ebenfalls wahr sein. Dieser Satz ist jedoch gleichzeitig ein Beispiel für eine sogenannte "Deduktion" in dem Sinn, dass aus dem Allgemeinen etwas Spezielles hergeleitet wird. Dabei ist

die Implikation, dass aus der Aussage A die Aussage B folgt, sozusagen die allgemeine Aussage. Die Aussage A ist dann der Einzelfall, auf welchen der allgemeine Fall angewendet werden soll. Vergleiche mit dem Satz 225 vollständigen Induktion. Dort wird aus dem Speziellen etwas Allgemeines hergeleitet. Dies ist gerade der umgekehrte Fall.

Ich mache noch eine kleine Anwendung des Satzes. Diese ist zwar noch nicht ganz richtig gezeigt. Denn es wird mit Mengen argumentiert. Es sei A das Symbol der Aussage: "Markus ist Schweizer". Die Schlussfolgerung, dass alle Schweizer auch Europäer sind, sei durch die Schlussfolgerung $A \Rightarrow B$ dargestellt. Die Aussage B sei schließlich die Aussage, dass Markus Europäer ist. Da ich Markus bin, trifft für mich die Aussage A zu. Die Schlussfolgerung, dass alle Schweizer Europäer sind, ist diskutabel, ich nehme jetzt einfach frecherweise an, dies sei so¹⁴. Wie auch immer, ich nehme an, dass diese Schlussfolgerung richtig sei. Dann kann ich folgern, dass ich, Markus, ein Europäer bin¹⁵. Solche Schlussfolgerungen gibt es wie Sand am Meer respektive Sterne am Himmel. Hier haben wir jedoch gezeigt, dass unter den gegebenen Annahmen wir ruhig folgern dürfen, wenn uns danach der Sinn steht. Mag sein, dass Dich der Stoff zu nerven beginnt. Es gibt jedoch noch ein paar andere logische Sätze, welche ich ebenfalls noch schnell zeigen will.

Ich kann diesen Satz jedoch noch verschärfen. Diese Verschärfung drückt jedoch nichts neues aus. Inhaltlich besagt er, dass die Voraussetzung des Satzes der Schlussfolgerung äquivalent zur Konjunktion ist. Diese Verschärfung wird dann so jedoch meines Wissens nicht mehr angewendet.

Satz 18. Es seien also A und B Metasymbole, welche in sich selber und in Bezug auf die anderen Symbole widerspruchsfrei seien. Dann gilt

$$A \wedge (A \Rightarrow B) \Leftrightarrow A \wedge B$$

Beweis. Ich möchte zeigen, dass die Aussage der

$$A \wedge (A \wedge B)$$

¹⁴Es scheint manchmal so, dass wir Schweizerinnen und Schweizer uns als Marsmenschen betrachten, welche es nur infolge eines dummen Zufalls auf die Erde verschneit hat. Dem ist jedoch nicht so. Wir sind nun mal Erdenbewohnerinnen und Erdenbewohner und zudem weder Asiatinnen noch Asiaten, Afrikanerinnen noch Afrikaner, Polynesierinnen noch Polynesier, Australierinnen noch Australier oder gar Amerikanerinnen noch Amerikaner. Folglich müssen wir Europäer sein. Aber auch die eurozentristische Sichtweise ist bekanntlich viel zu kurz gegriffen. Wir sind auf einem im Vergleich zum Weltall winzig kleinen Raumkapsel unterwegs und somit in erster Linie Weltenbürger - was natürlich auch wieder Raum für philosophische oder theologische Gespräche lässt.

 $^{^{15}}$ obwohl ich eine Art Sehnsucht zur afrikanischen Steppe fühle, auch wenn ich noch nie dort war

 $A \wedge (A \Rightarrow B) \Leftrightarrow$ Aussage/ $A \wedge B$ $A \Rightarrow B$ $A \wedge (A \Rightarrow B)$ Fall Nr. $A \wedge B$ 1 1 0 0 1 2 1 0 1 0 3 0 0 0 1 4 1 1 1 1

TABELLE 34. 1. Beweis des verschärften Satzes der logischen Schlussfolgerung

genau dann wahr ist, falls sowohl die Aussage A wie auch die Aussage B wahr sind. Damit die Aussage $A \wedge (A \Rightarrow B)$ wahr ist, müssen gemäß der Definition 13 der Konjunktion sowohl die Aussage A wie auch die Aussage $A \Rightarrow B$ wahr sein. Da die Aussage A wahr ist, muss jedoch auch die Aussage B wahr sein. Denn wäre die Aussage B nicht wahr, dann wäre gemäß der dritten Zeile der Definition 14 der Implikation die Aussage

$$A \Rightarrow B$$

nicht wahr. Also wäre gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$A \wedge (A \Rightarrow B)$$

nicht wahr. Ist die Aussage B jedoch wahr, dann ist die Aussage

$$A \Rightarrow B$$

gemäß der vierten Zeile der Definition 14 der Implikation wahr. Also ist die Aussage

$$A \wedge (A \Rightarrow B)$$

nur dann wahr, falls sowohl die Aussage A wie auch die Aussage B wahr sind. Somit meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

Der Einfachheit halber schreibe ich den Beweis ebenfalls noch in Wahrheitstafeln auf. Diese sind in den Tabellen 34 respektive 35 abgelegt. Die Verweise kannst Du bei Bedarf unter der Tabelle 36 nachschlagen.

Es gilt auch noch eine entschärfte Variante des Satzes des Schlussfolgerung:

Satz 19. Es seien A und B Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$A \wedge (A \Leftrightarrow B) \Rightarrow B$$

Beweis. Angenommen, die Aussage wäre nicht wahr. Dies könnte gemäß der Definition 14 nur dann der Fall, falls die Aussage

$$A \wedge (A \Leftrightarrow B)$$

TABELLE 35. 2. Beweis des verschärften Satzes der logischen Schlussfolgerung

Aussage/ Fall Nr.	$A \Rightarrow B$	$A \wedge (A \Rightarrow B)$	$A \wedge B$	$A \wedge (A \Rightarrow B) \Leftrightarrow A \wedge B$
1	$A \Rightarrow B$		$\neg (A \land B)$	$\begin{array}{c} A \wedge (A \Rightarrow B) \Leftrightarrow \\ A \wedge B \end{array}$
2	$A \Rightarrow B$		$\neg (A \land B)$	$A \land (A \Rightarrow B) \Leftrightarrow A \land B$
3	$\neg (A \Rightarrow B)$	$\neg (A \land (A \Rightarrow B))$	$\neg (A \land B)$	$A \land (A \Rightarrow B) \Leftrightarrow A \land B$
4	$A \Rightarrow B$	$A \wedge (A \Rightarrow B)$	$A \wedge B$	$\begin{array}{c} A \wedge (A \Rightarrow B) \Leftrightarrow \\ A \wedge B \end{array}$

TABELLE 36. Verweise des verschärften Satzes der logischen Schlussfolgerung

Aussage/	Definition 14	Definition 13	Definition 13	Definition 19
Fall Nr.	der	der	der	der
rall Nr.	Implikation	Konjunktion	Konjunktion	Äquivalenz
1	1. Zeile	2. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	2. Zeile	1. Zeile
3	3. Zeile	3. Zeile	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile	4. Zeile

wahr, die Aussage B jedoch nicht wahr wäre. Da die Aussage B jedoch nicht wahr sein darf, kann die Aussage A auch nicht wahr sein. Denn wäre die Aussage A wahr und die Aussage B nicht wahr, dann wäre gemäß der dritten Zeile der Definition 19 die Aussage

$$A \Leftrightarrow B$$

nicht wahr. Gemäß dem Minimumprinzip 10 der Konjunktion wäre dann

$$A \wedge (A \Leftrightarrow B)$$

ebenfalls nicht wahr - im Gegensatz zur Voraussetzung. Also dürfte dann die Aussage A nicht wahr sein. Wäre jedoch die Aussage A nicht wahr, dann wäre zwar die Aussage

$$A \Leftrightarrow B$$

gemäß der ersten Zeile der Definition 19 der Äquivalenzrelation wahr. Denn gemäß der zweiten Zeile der Definition 13 der Konjunktion wäre in diesem Fall die Aussage

$$A \wedge (A \Leftrightarrow B)$$

TABELLE 37. 1. Beweis des entschärften Satzes der logischen Schlussfolgerung

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \wedge (A \Leftrightarrow B)$	$A \land (A \Leftrightarrow B) \Leftrightarrow B$
1	1	0	1
2	0	0	1
3	0	0	1
4	1	1	1

TABELLE 38. 2. Beweis des verschärften Satzes der logischen Schlussfolgerung

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \wedge (A \Leftrightarrow B)$	$A \wedge (A \Leftrightarrow B) \Leftrightarrow B$
1	$A \Leftrightarrow B$	$\neg (A \land (A \Leftrightarrow B))$	$A \land (A \Leftrightarrow B) \Leftrightarrow B$
2	$\neg A \Leftrightarrow B$	$\neg (A \land (A \Leftrightarrow B))$	$A \land (A \Leftrightarrow B) \Leftrightarrow B$
3	$\neg (A \Leftrightarrow B)$	$\neg (A \land (A \Leftrightarrow B))$	$A \land (A \Leftrightarrow B) \Leftrightarrow B$
4	$A \Leftrightarrow B$	$A \wedge (A \Leftrightarrow B)$	$A \land (A \Leftrightarrow B) \Leftrightarrow B$

TABELLE 39. Verweise Beweis entschärfter Satz vom logischen Widerspruch

Auggaga /	Definition 19	Definition 13	Definition 19
Aussage/ Fall Nr.	der	der	der
rall IVI.	Implikation	Konjunktion	Implikation
1	1. Zeile	2. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	3. Zeile	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

nicht wahr - im Widerspruch zur Voraussetzung. Somit meine ich gezeigt zu haben, dass es nicht möglich ist, Aussagen mit den Bezeichnungen A und B derart zu finden, dass die gesamte Aussage der Behauptung nicht wahr ist. Gemäß dem Satz 13 des ausgeschlossenen Dritten meine ich darum folgern zu können, dass für alle Aussagen A sowie B die Behauptung richtig sein muss.

Ich möchte den Satz noch einmal mittels Wahrheitstabellen beweisen.

TABELLE 40. 1. Teil 1. Beweis 1. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
1	1	1	1
2	1	0	0
3	0	1	1
4	0	0	1

TABELLE 41. 2. Teil 1. Beweis 1. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$B \Rightarrow A$	Behauptung
1	1	1
2	0	1
3	1	1
4	1	1

20.7. Was ist der "Satz vom logischen Widerspruch"?

Den Widerspruchsbeweis ist oben bereits vorgestellt worden (vergleiche mit der Aussage 26 oben). Er wird kann übrigens auch auf eine andere Art dargestellt werden:

Satz 20. Es seien A und B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$((\neg A) \Rightarrow (\neg B)) \Rightarrow (B \Rightarrow A)$$

Welche Form Du nimmst, um Dir ihn einzuprägen, sofern dies Dein Ziel ist, überlasse ich natürlich Dir. Nun möchte ich jedoch daran gehen, ihn Dir zu beweisen:

Beweis. Dies mache ich diesmal zuerst so, wie es üblicherweise ausgerechnet würde (vergleiche mit den Tabellen 40 respektive 41). Da nur zwei logische Variablen vorkommen, werde ich ich die Tabelle 4 für die Fälle verwenden.

In den Tabellen 42 respektive 43 habe ich den Beweis des Satzes formaler aufgeschrieben. In den Tabellen 44 sowie 45 habe ich die Verweise des Beweises aufgeschrieben.

Ich möchte trotzdem noch versuchen, sprachlich darzulegen, wieso der Satz logisch bewiesen werden könnte. Er wäre gemäß der Definition 14 der Implikation nur dann nicht wahr, falls es Aussagen A respektive B derart gäbe, so dass die Aussage

$$((\neg A) \Rightarrow (\neg B)) \Rightarrow (B \Rightarrow A)$$

TABELLE 42. 1. Teil 2. Beweis 1. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
1	$\neg A$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
2	$\neg A$	$\neg (\neg B)$	$\neg ((\neg A) \Rightarrow (\neg B))$
3	$\neg (\neg A)$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
4	$\neg (\neg A)$	$\neg (\neg B)$	$(\neg A) \Rightarrow (\neg B)$

TABELLE 43. 2. Teil 2. Beweis 1. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$B \Rightarrow A$	$\begin{array}{c} ((\neg A) \Rightarrow (\neg B)) \Rightarrow \\ B \Rightarrow A \end{array}$
1	$B \Rightarrow A$	$ \begin{array}{c} ((\neg A) \Rightarrow (\neg B)) \Rightarrow \\ B \Rightarrow A \end{array} $
2	$\neg \left(B\Rightarrow A\right)$	$ \begin{array}{c} ((\neg A) \Rightarrow (\neg B)) \Rightarrow \\ B \Rightarrow A \end{array} $
3	$B \Rightarrow A$	$ \begin{array}{c} ((\neg A) \Rightarrow (\neg B)) \Rightarrow \\ B \Rightarrow A \end{array} $
4	$B \Rightarrow A$	$ \begin{array}{c} ((\neg A) \Rightarrow (\neg B)) \Rightarrow \\ B \Rightarrow A \end{array} $

TABELLE 44. 1. Teil Verweise Beweis 1. Satz vom logischen Widerspruch

Defintion /	Definition 11	Definition 11	Definition 14
Defintion/	der	der	der
Fall Nr.	Negation	Negation	Implikation
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	1. Zeile

TABELLE 45. 2. Teil Verweise Beweis 1. Satz vom logischen Widerspruch

Definition/	Definition 14	Definition 14
Fall Nr.	der	der
rall IVI.	Implikation	Implikation
1	1. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	4. Zeile

nicht wahr wäre. Die wäre dann der Fall, falls die Aussage

$$B \Rightarrow A$$

nicht wahr, die Aussage

$$(\neg A) \Rightarrow (\neg B)$$

jedoch wahr wäre. Die Aussage

$$B \Rightarrow A$$

kann wiederum gemäß der dritten Zeile der Definition 14 der Implikation nur dann nicht wahr sein, falls die Aussage B wahr, die Aussage A jedoch nicht wahr wäre. Da die Aussage B wahr sein müsste, wäre in diesem Fall wäre dann gemäß zweiten Zeile der Definition 11 der Negation die Aussage $\neg B$ nicht wahr. Weil die Aussage A nicht wahr sein könnte, müsste gemäß der ersten Zeile derselben Definition 11 der Negation die Aussage $\neg A$ jedoch wahr sein. Da nun die Aussage $\neg A$ wahr sein müsste, die Aussage $\neg B$ jedoch nicht wahr könnte, könnte gemäß der dritten Zeile der Definition 14 der Implikation die Aussage

$$(\neg A) \Rightarrow (\neg B)$$

ebenfalls nicht wahr sein. Da diese Aussage also nicht wahr sein könnte, müsste die gesamte Aussage

$$((\neg A) \Rightarrow (\neg B)) \Rightarrow (B \Rightarrow A)$$

aufgrund der Abkürzungsregel 11 der Implikation eben trotzdem wahr sein. Darum meine ich schließen zu können, dass es keine entsprechende Aussagen A,B derart geben kann, dass die Aussage

$$((\neg A) \Rightarrow (\neg B)) \Rightarrow (B \Rightarrow A)$$

nicht wahr wäre. Gemäß dem Satz 13 des ausgeschlossenen Dritten glaube ich darum sagen zu können, dass die Behauptung für alle möglichen, sprich in sich und bezüglich den anderen Aussagen des Satzes widerspruchsfreien Aussagen wahr sein muss. Also meine ich, den Satz mit rein sprachlichen Mitteln noch einmal bewiesen zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Skeptikerinnen und Skeptiker der zweiwertigen Logik (vergleiche mit den Bemerkungen zum Satz 13 des ausgeschlossenen Dritten) verwenden diesen Satz übrigens nicht, da sie argumentieren, dass es noch andere Möglichkeit der Wahrheit gebe als bloß "wahr" und "nicht wahr" (oder noch schlimmer: als "falsch"). Ob Du den Widerspruchsbeweis ablehnst oder nicht, bleibt natürlich Dir überlassen. Obwohl der Weg über die Aussagen, welche sich nicht mit dem Widerspruchsbeweis beweisen lassen, immer "steiniger" ist als derjenige, welcher bequem den Widerspruchsbeweis benutzt. Ich werde ihn benutzen.

Ich möchte jetzt trotzdem noch den anderen Satz des logischen Widerspruchs formulieren und beweisen:

Satz 21. Es seien A und B Bezeichnungen von logischen Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei. Dann gilt die Aussage

$$(\neg A \Rightarrow \neg B) \land B \Rightarrow A$$

Beweis. Angenommen, die Aussage sei nicht wahr. Gemäß der dritten Zeile der Definition 14 wäre dies der Fall, falls die Aussage

$$(\neg A \Rightarrow \neg B) \land B$$

wahr, die Aussage A jedoch nicht wahr wäre. Da die Aussage A nicht wahr sein könnte, wäre gemäß der ersten Zeile der Definition 11 die Aussage $\neg A$ wahr. Da die Aussage

$$(\neg A \Rightarrow \neg B) \land B$$

wahr sein müsste, müsste auch die Aussage B wahr sein. Ansonsten wäre gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$(\neg A \Rightarrow \neg B) \land B$$

nicht wahr - im Widerspruch zur Voraussetzung. Da jedoch die Aussage B wahr sein müsste, wäre in diesem Fall die Aussage

$$\neg B$$

gemäß der zweiten Zeile der Definition 11 der Negation nicht wahr. Da nun die Aussage $\neg A$ wahr sein müsse, die Aussage $\neg B$ jedoch nicht wahr sein könnte, wäre die Aussage

$$\neg A \Rightarrow \neg B$$

gemäß der dritten Zeile der Definition 14 der Implikation nicht wahr und darum die Aussage

$$(\neg A \Rightarrow \neg B) \land B$$

gemäß dem Minimumprinzip entgegen der Voraussetzung eben trotzdem nicht wahr. Also folgere ich, dass es keine Aussagen A und B derart geben kann, so dass die Aussage

$$(\neg A \Rightarrow \neg B) \land B \Rightarrow A$$

nicht wahr sein kann. Gemäß dem Satz 13 des ausgeschlossenen Dritten muss darum diese Aussage für alle in sich widerspruchsfreien Aussagen A sowie B wahr sein. Darum meine ich an dieser Stelle, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

Ich möchte den Beweis trotzdem noch einmal tabellarisch führen. Diesen habe ich in den

In den Tabellen 48 respektive 49 habe ich den Beweis des Satzes formaler aufgeschrieben. In den Tabellen 50 sowie 51 habe ich die Verweise des Beweises aufgeschrieben.

TABELLE 46. 1. Teil 1. Beweis 2. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
1	1	1	1
2	1	0	0
3	0	1	1
4	0	0	1

TABELLE 47. 2. Teil 1. Beweis 2. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$((\neg A) \Rightarrow (\neg B)) \land B$	Behauptung
1	0	1
2	0	1
3	0	1
4	1	1

TABELLE 48. 1. Teil 2. Beweis 2. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
1	$\neg A$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
2	$\neg A$	$\neg (\neg B)$	$\neg ((\neg A) \Rightarrow (\neg B))$
3	$\neg (\neg A)$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
4	$\neg (\neg A)$	$\neg (\neg B)$	$(\neg A) \Rightarrow (\neg B)$

TABELLE 49. 2. Teil 2. Beweis 2. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$(B \Rightarrow A) \land B$	$ \begin{array}{c} ((\neg A) \Rightarrow (\neg B)) \land B \Rightarrow \\ B \Rightarrow A \end{array} $
1	$\neg ((B \Rightarrow A) \land B)$	$((\neg A) \Rightarrow (\neg B)) \Rightarrow B \Rightarrow A$
2	$\neg \left((B \Rightarrow A) \land B \right)$	$((\neg A) \Rightarrow (\neg B)) \Rightarrow B \Rightarrow A$
3	$\neg ((B \Rightarrow A) \land B)$	$((\neg A) \Rightarrow (\neg B)) \Rightarrow B \Rightarrow A$
4	$(B \Rightarrow A) \land B$	$((\neg A) \Rightarrow (\neg B)) \Rightarrow B \Rightarrow A$

Ich möchte nun eine kleine Anwendung des Satzes des logischen Widerspruchs aufschreiben. Es sei p eine gerade Zahl größer als Null, welche mit sich sich selbst multipliziert gerade und kleiner als 10 ist. Welche Zahl ist damit gemeint? Wenn von geraden Zahlen gesprochen wird, dann kannst Du davon ausgehen, dass damit mindestens ganze

TABELLE 50. 1. Teil Verweise Beweis 2. Satz vom logischen Widerspruch

Defintion/	Definition 11	Definition 11	Definition 14
Fall Nr.	der	der	der
ran m.	Negation	Negation	Implikation
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	1. Zeile

TABELLE 51. 2. Teil Verweise Beweis 2. Satz vom logischen Widerspruch

Definition/ Fall Nr.	Definition 13 der	Definition 14 der
rall Mr.	Konjunktion	Implikation
1	3. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	3. Zeile	2. Zeile
4	4. Zeile	4. Zeile

Zahlen (0, -1, 1, -2, 2, -3, 3, -4, 4 und so weiter) verwendet werden sollen. Ich weiß, ich hätte das "fairerweise" bei der "Aufgabenstellung" sagen sollen. Eine gerade Zahl x ist eine solche, welche bei Division durch 2 keinen Rest besitzt. Genauer: Es gibt eine andere ganze Zahl y (y kann also den Wert 0, -1, 1, -2, 2, -3, 3 und so weiter besitzen), so dass gilt: $y=2\cdot x$. Um zu finden, welche Zahl oder welche Zahlen gesucht sein könnten, gehe ich einmal den einfachen Weg und rechne es aus:

$$\begin{array}{rcl}
1 \cdot 1 &=& 1 \\
2 \cdot 2 &=& 4 \\
3 \cdot 3 &=& 9 \\
4 \cdot 4 &=& 16 \\
5 \cdot 5 &=& 25 \\
6 \cdot 6 &=& 36 \\
7 \cdot 7 &=& 49 \\
8 \cdot 8 &=& 64 \\
9 \cdot 9 &=& 81
\end{array}$$

Wie Du vermuten kannst (ich verzichte hier auf einen exakten Beweis, der wird später natürlich nachgeliefert), muss für alle ganzen Zahlen z, welche größer oder gleich 4 sind, gelten, dass $z \cdot z > 10$ ist. Dann bleiben noch 1, 2, respektive 3 als mögliche Kandidaten für die gesuchte Zahl übrig. Wäre die Zahl jetzt 1, dann dann wäre ihr Quadrat

(also das Produkt von 1 mit sich selbst) wieder 1. Dies ist jedoch eine ungerade Zahl, denn

$$1 = 2 \cdot 0 + 1$$

Darum kann die gesuchte Zahl nicht 1 sein. Dies ist jetzt aber ein Beispiel für einen Widerspruchsbeweis, in dem die Aussage mit dem Symbol A ist: "1 ist nicht die gesuchte Zahl". B ist dann die Aussage: "Das Quadrat der Zahl 1 ist kleiner als 10 und gerade". Die Negation von der Aussage A ist: "Es gilt nicht, dass 1 nicht die gesuchte Zahl ist." Gemäß dem Satz 11 der doppelten Negation ist die Negation von A äquivalent zur Aussage: "1 ist die gesuchte Zahl". Die Negation der Aussage B lautet: "Es gilt nicht, dass das Quadrat von 1 kleiner als 10 und gerade ist". Da die Aussage B wahr ist (da das Quadrat von 1 ungerade ist), muss gemäß der Abkürzungsregel 11 der Implikation gelten, dass die Aussage

$$\neg A \Rightarrow \neg B$$

wahr. In Worten: "Ist 1 die gesuchte Zahl, dann gilt nicht, dass das Quadrat von 1 kleiner als 10 und gerade ist". Da ich jedoch annehme, dass die Aussage B gelten muss, kann ich gemäß der zweiten Version des Satzes 21 des Satzes des logischen Widerspruchs folgern, dass gilt

$$(\neg A \Rightarrow \neg B) \land B \Rightarrow A$$

In Worten: "Wäre die gesuchte Zahl 1 dann würde daraus folgern, dann wäre das Quadrat von 1 nicht zugleich kleiner 10 und gerade - im Gegensatz zur Voraussetzung. Daraus folgt, dass A nicht die gesuchte Zahl sein kann."

Natürlich wärst Du sicher auf darauf gekommen. Jedoch erscheint es mir zweckmäßig, dies exemplarisch für ein Beispiel zu demonstrieren. Nehme ich dagegen 2, dann ist das Quadrat der Zahl $(4=2\cdot 2)$ kleiner und gerade. Also habe ich eine Zahl gefunden, welche die gesuchten Eigenschaften bestimmt. Nehme ich jetzt 3, dann ist das Quadrat der Zahl zwar immer noch kleiner als 9, jedoch ist das Quadrat wieder ungerade $(9=2\cdot 4+1)$. Darum habe ich genau eine Zahl gefunden, welche die gewünschten Eingenschaften besitzt. Es hätte jedoch auch gut sein können, dass ich keine, mehrere oder beliebig viele Zahlen mit der gewünschten Eigenschaft gefunden hätte. Ich weiß übrigens nicht, wie ich auf die Schnelle einen Beweis finden könnte, welcher auf den Widerspruchsbeweis verzichtet.

20.8. Aus Konjunktion folgt Disjunktion

Ich habe im Kapitel 10 die Konjunktion und im Kapitel 13 die Disjunktion definiert. Dann gilt der folgende logische Satz:

Satz 22. (Konjunktions-Disjunktionssatz) Sind A respektive B Symbole für Aussagen, dann gilt:

$$(A \land B) \Rightarrow (A \lor B)$$

In der formalen Schreibweise wären die Klammern nicht notwendig, denn sowohl die Konjunktion wie auch die Disjunktion haben eine höhere Priorität als die Implikation ("Schlussfolgerung"). In Worten bedeutet dieser Satz: Falls die Aussagen A und B beide wahr sind, dann ist die Aussage A oder die Aussage B wahr. Ich nehme nicht an, dass Dich dieser Satz erstaunt. Er ist jedoch manchmal ganz nützlich. Dies ist eine eine Art "Abschätzung" der logischen Art. Diese Art der Abschätzung ist zwar recht grob, jedoch dennoch oftmals genügend. Wahrscheinlich widerspricht die Aussage ein wenig dem sogenannten "gesunden Menschenverstand", indem ich nicht mehr sage, dass die Aussage A und die Aussage B gelten, sondern nur noch, dass die Aussage A oder die Aussage B gilt. Dann vermute ich, dass Du Dir sagst: "Warum soll jetzt A oder B gelten? Es gelten doch beide Aussagen". Eine Falle wäre es jedoch, wenn Du Dir denken würdest: "Dann gelten also entweder A oder B, jedoch nicht beide Aussagen". Nein, so ist es nicht gemeint. Falls A und B wahre Aussagen sind, dann gilt die Aussage A, oder es gilt die Aussage B, oder es gelten die Aussagen A und B. Ich mache ein Beispiel. Es sei A das Symbol der Aussage: "Viele Menschen können sehen". B sei das Symbol der Aussage: "Viele Menschen können hören". Da sowohl die Aussage A wie auch die Aussage B m.E.¹⁶ wahr sind sind, gilt die Konjunktion der beiden Aussagen $(A \wedge B)$. Dann gilt aber auch die Disjunktion der beiden Aussage $(A \vee B)$, ausformuliert: "Viele Menschen können sehen oder viele Menschen können hören". Sprachlich würde das wohl eher so umformuliert: Viele Menschen können sehen oder hören. Eventuell regt sich bei Dir Widerstand in dem Sinn, als Du Dich fragst: Wieso soll ich davon reden, dass viele Menschen sehen oder hören können, wenn viele Menschen sehen und hören können? Aber das hat schon seinen Grund, wie ich später darzulegen versuche.

Jetzt möchte ich zeigen, wie dieser Satz hergeleitet werden könnte:

BEWEIS. Da ich ein einfaches Gemüt bin, möchte ich zuerst wieder einmal mit einem Widerspruchsbeweis die Richtigkeit des Satzes herleiten. Angenommen, der Satz wäre nicht wahr. Dann müsste aufgrund der dritten Zeile der Definition 14 der Implikation die Aussage $A \vee B$ nicht wahr, die Aussage $A \wedge B$ jedoch wahr sein. Dies ist jedoch nicht möglich. Denn die Aussage $A \vee B$ ist gemäß der Definition 17 genau dann nicht wahr, falls sowohl A wie auch B nicht wahr sind. Dann ist jedoch die Aussage $A \wedge B$ gemäß der ersten Zeile der Definition 13 der Konjunktion ebenfalls nicht wahr. Also ist auch in diesem Fall die Aussage $(A \wedge B) \Rightarrow (A \vee B)$ gemäß der ersten Zeile der Definition 17 wieder wahr. In anderen Fällen ist entweder A oder B wahr. Somit ist

¹⁶,,m.E." ist die Abkürzung für "meines Erachtens"

TABELLE 52. 1. Beweis Folgerung der Disjunktion aufgrund der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A \lor B$	$(A \land B) \Rightarrow (A \lor B)$
1	0	0	1
2	0	1	1
3	0	1	1
4	1	1	1

Tabelle 53. 2. Beweis Folgerung der Disjunktion aufgrund der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A \vee B$	$(A \land B) \Rightarrow (A \lor B)$
1	$\neg (A \land B)$	$\neg (A \lor B)$	$(A \land B) \Rightarrow (A \lor B)$
2	$\neg (A \land B)$	$A \vee B$	$(A \land B) \Rightarrow (A \lor B)$
3	$\neg (A \land B)$	$A \vee B$	$(A \land B) \Rightarrow (A \lor B)$
4	$A \wedge B$	$A \lor B$	$(A \land B) \Rightarrow (A \lor B)$

TABELLE 54. Verweise Beweis Folgerung der Disjunktion aufgrund der Konjunktion

Definition/	Definition 13	Definition 17	Definition 14
Fall Nr.	der	der	der
rall Mi.	Konjunktion	Disjunktion	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	2. Zeile
3	3. Zeile	3. Zeile	2. Zeile
4	4. Zeile	4. Zeile	4. Zeile

gemäß des Maximumprinzip 13 der Disjunktion bereits wahr. Also ist gemäß der Abkürzungsregel 11 der Implikation die Behauptung bereits wieder bewiesen.

Nun gut, vielleicht traust Du meinem Geplapper nicht. Darum möchte ich den Beweis noch auf die "hirnlose Art" führen. In der Tabelle 52 habe ich den Beweis so aufgeschrieben, wie Du ihn wahrscheinlich in den seriösen Mathebüchern finden könntest. Tabelle 53 zeigt einen Beweis auf meine Art. In der Tabelle 54 habe ich die Definitionen aufgeschrieben, welche für den Beweis verwendet wurden. Da ich oben ein Beispiel für den Satz gemacht habe, verzichte ich darauf, noch eine Anwendung des Satzes zu zeigen.

Ich werde noch ein paar Sätze auflisten, welche ich verwenden werde. Ich habe jedoch bei der Überarbeitung des Textes bemerkt, dass mir die Beispiele der Anwendungen der Sätze ausgegangen sind. Nun

kommt insofern eine "Durststrecke", als ich in einem ersten Schritt die logischen Sätze bloß aufschreibe. Falls Du diese Zeilen überfliegst, dann wird dies eine Glaubensfrage der anderen Art. Ich hoffe, dass Du mir glaubst, dass es Sinn macht, diese logischen Sätze aufzulisten, weil ich davon überzeugt bin, dass sie auch gegebenenfalls sinnvoll eingesetzt werden können. Jedoch fühle ich mich im Moment ausschließlich in der Lage, Dir die Sätze anzugeben, jedoch nicht, anzugeben, ob und wenn ja diese auch angewendet werden.

20.9. Äquivalenz, Implikation und Replikation

Oder auf eine andere Art formuliert: Was ist der Satz der Äquivalenz von Äquivalenz einerseits und einer Implikation und einer Replikation andererseits? Was immer es ist: Die Bezeichnung des logischen Satzes ist eine ad Hoc Bezeichnung. Dies bedeutet, dass Du diesen Satz so nicht in der mathematischen Literatur finden wirst. Gemeint ist der folgende logische Satz:

Satz 23. Es seien A und B Symbole für zwei Aussagen. Dann gilt

$$(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (A \Leftarrow B))$$

BEWEIS. Angenommen, die Äquivalenz $A \Leftrightarrow B$ sei wahr. Dann können die Aussagen A und B gemäß der Definition 19 der Äquivalenz beide wahr oder nicht wahr sein. Sind beide Aussagen wahr, dann gelten gemäß der vierten Zeilen der Definitionen 14 der Schlussfolgerung sowie der Definition 16 der Replikation sowohl die Aussagen

$$A \Rightarrow B$$

und

$$A \Leftarrow B$$

Das bedeutet, dass in diesem Fall gemäß der vierten Zeile der Definition 13 der Konjunktion der Aussagen ebenfalls wahr sein muss. In diesem Fall ist also die Aussage

$$(A \Rightarrow B) \land (A \Leftarrow B)$$

wahr. Gemäß der vierten Zeile der Definition 19 der Äquivalenz ist die gesamte Aussage

$$(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (A \Leftarrow B))$$

ebenfalls wahr und dieser Fall bewiesen.

Sind A und B jedoch nicht wahr, dann gelten gemäß der ersten Zeilen der Definitionen 14 der Implikation wie auch der Definition 16 der Replikation die Aussagen

$$A \Rightarrow B$$

und

$$A \Leftarrow B$$

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	$A \Leftarrow B$	$(A \Rightarrow B) \land (A \Leftarrow B)$
1	1	1	1	1
2	0	1	0	0
3	0	0	1	0
1	1	1	1	1

TABELLE 55. 1. Teil 1. Beweis Äquivalenz von Äquivalenz und zwei Implikationen

Somit kann ich wiederum folgern, dass in diesem Fall ebenfalls gemäß der vierten Zeile der Definition 13 der Konjunktion der Aussagen ebenfalls wahr sein muss. In diesem Fall ist also erneut die Aussage

$$(A \Rightarrow B) \land (A \Leftarrow B)$$

wahr. Gemäß der vierten Zeile der Definition 19 der Äquivalenz ist die gesamte Aussage

$$(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (A \Leftarrow B))$$

ebenfalls wiederum wahr und dieser ebenfalls Fall bewiesen.

Nun sei die Äquivalenz $A \Leftrightarrow B$ nicht wahr. Dann muss gemäß der Definition der Äquivalenz eine der beiden Aussagen wahr, die andere jedoch nicht wahr sein. Ist die Aussage A nicht wahr, die Aussage B jedoch schon, dann ist die Replikation $A \Leftarrow B$ gemäß der zweiten Zeile der Definition 16 der Replikation nicht wahr. Ist die Aussage A jedoch wahr, die Aussage B hingegen nicht, dann ist gemäß der Definition 14 der Implikation die Aussage $A \Rightarrow B$ nicht wahr. Das bedeutet aufgrund des Minimumprinzip 10 der Konjunktion, dass die Konjunktion der beiden Aussagen in diesen Fällen ebenfalls nicht wahr sein kann. Da jedoch die Aussage $(A \Rightarrow B) \land (A \Leftarrow B)$ in diesem Fall ebenfalls nicht wahr ist, ist die gesamte Aussage der Äquivalenz von Äquivalenz und Implikation wiederum wahr. Damit wäre der Beweis erbracht.

Nun ist es gut möglich, dass Du mir entweder nicht folgen willst oder nicht kannst, weil Du meine Formulierungen zu umständlich findest. In diesem Fall empfehle ich Dir, die Tabellen 55 bis 58 zu überfliegen, in welchen die Aussagen zusammen mit den Verweisen auf die entsprechenden Definitionen noch einmal aufgeführt sind.

Wieder mache ich ein Beispiel zum Beweis: Es seien M und N zwei Mengen. Dann sind diese Mengen genau dann gleich, falls jedes Element der ersten Menge in der zweiten Menge und jedes Element der zweiten Menge in der ersten Menge ist. Es ist gut möglich, dass Du auf die Schnelle nicht begreifst, was der Satz der Äquivalenz von Äquivalenz und zwei Implikationen mit der Mengengleichheit verbinden soll. Dies werde ich an anderer Stelle zu zeigen versuchen. An dieser Stelle sei

TABELLE 56. 2. Teil 1. Beweis Äquivalenz von Äquivalenz und zwei Implikationen

Aussage/ Fall Nr.	$(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (A \Leftarrow B))$
1	1
2	1
3	1
4	1

TABELLE 57. 1. Teil 2. Beweis Äquivalenz von Äquivalenz und zwei Implikationen

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	$A \Leftarrow B$
1	$A \Leftrightarrow B$	$A \Rightarrow B$	$A \Leftarrow B$
2	$\neg (A \Leftrightarrow B)$	$A \Rightarrow B$	$\neg (A \Leftarrow B)$
3	$\neg (A \Leftrightarrow B)$	$\neg (A \Rightarrow B)$	$A \Leftarrow B$
4	$A \Leftrightarrow B$	$A \Rightarrow B$	$A \Leftarrow B$

TABELLE 58. 2. Teil 2. Beweis Äquivalenz von Äquivalenz und zwei Implikationen

Aussage/ Fall Nr.	$(A \Rightarrow B) \land (A \Leftarrow B)$	$(A \Leftrightarrow B) ((A \Rightarrow B) \land (A \Leftarrow B))$	\Leftrightarrow
1	$(A \Rightarrow B) \land (A \Leftarrow B)$	$(A \Leftrightarrow B)$ $((A \Rightarrow B) \land (A \Leftarrow B))$	\Leftrightarrow
2		$(A \Leftrightarrow B)$ $((A \Rightarrow B) \land (A \Leftarrow B))$	\Leftrightarrow
3	$\neg ((A \Rightarrow B) \land (A \Leftarrow B))$	$(A \Leftrightarrow B)$ $((A \Rightarrow B) \land (A \Leftarrow B))$	\Leftrightarrow
4	$(A \Rightarrow B) \land (A \Leftarrow B)$	$(A \Leftrightarrow B)$ $((A \Rightarrow B) \land (A \Leftarrow B))$	\Leftrightarrow

TABELLE 59. 1. Tabelle Verweise Beweis Äquivalenz von Äquivalenz und zwei Implikationen

Definition/	Definition 19	Definition 14	Definition 16
Fall Nr.	der	der	der
rall Nr.	Äquivalenz	Implikation	Replikation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	2. Zeile
3	3. Zeile	3. Zeile	3. Zeile
4	4. Zeile	4. Zeile	4. Zeile

Tabelle Verweise Beweis Äquivalenz von Äquivalenz und zwei Implikationen

Definition/ Fall Nr.	Definition 13 der Konjunktion	Definition 19 der Äquivalenz
1	4. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	4. Zeile

TABELLE 61. 1. Beweis des Satzes der Äquivalenz von Implikation und Replikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Leftarrow A$	Behauptung
1	1	1	1
2	1	1	1
3	0	0	1
4	1	1	1

einfach gesagt, dass der logische Satz für die Beweistechnik unentbehrlich ist. Denn dadurch wird es möglich, zu zeigen, dass zwei Aussagen logisch gleichwertig und in diesem Sinn eben äquivalent sind. Der Satz ist irgendwie vertrackt. Denn im Unterschied zu den meisten logischen Sätzen vorher verwendet er keine Schlussfolgerung als Verknüpfung der zwei Teile der übergeordneten Aussage, sondern eine Äquivalenz. Denn diese Äquivalenz, und das ist eben der Witz am Ganzen, sind ja aufgrund des Satzes eine Implikation und eine Replikation.

20.10. Zusammenhang Implikation und Replikation

Dieses Kapitel ist eigentlich überflüssig. Aber ich möchte Dir trotzdem zeigen, dass folgender Satz gilt:

Satz 24. Es seien $A, B \in \Omega$, also Symbolen von Aussagen, welche in sich selbst sowie in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei sein. Dann gilt

$$(A \Rightarrow B) \Leftrightarrow (B \Leftarrow A)$$

Beweis. Der Beweis ist in den Tabellen 61 sowie 62, die Verweise unter der Tabelle 63 abgelegt.

Dieser Satz ist die Einlösung einer meiner schier unzähligen Versprechen, welche ich im Verlauf meines bisherigen Lebens gegeben und

Tabelle 62.	2.	Beweis	${\rm des}$	Satzes	${\rm der}$	Äquivalenz	von
Implikation un	nd	Replika	tion				

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Leftarrow A$	Behauptung
1	$A \Rightarrow B$	$B \Leftarrow A$	$(A \Rightarrow B) \Leftrightarrow (B \Leftarrow A)$
2	$A \Rightarrow B$	$B \Leftarrow A$	$(A \Rightarrow B) \Leftrightarrow (B \Leftarrow A)$
3	$\neg (A \Rightarrow B)$	$\neg (B \Leftarrow A)$	$(A \Rightarrow B) \Leftrightarrow (B \Leftarrow A)$
4	$A \Rightarrow B$	$B \Leftarrow A$	$(A \Rightarrow B) \Leftrightarrow (B \Leftarrow A)$

TABELLE 63. Verweise Beweis des Satzes der Äquivalenz von Implikation und Replikation

Definition/	Definition 14	Definition 16	Definition 19
	der	der	der
Fall Nr.	Implikation	Replikation	Äquivalenz
1	1. Zeile	1. Zeile	4. Zeile
2	2. Zeile	3. Zeile	4. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

in erdrückend großer Anzahl nicht eingelöst habe. Ich habe bei der Definition der Replikation bei der Aussage 15 angekündigt, dass ich diesen Zusammenhang noch einmal erbringen möchte. Dies hätte ich hiermit getan. Auch dieser Satz besitzt übrigens eine alternative Formulierung:

Satz 25. Es seien A und B Symbole von Aussagen, welche in sich selber und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$(A \Leftarrow B) \Leftrightarrow (\neg A \Rightarrow \neg B)$$

BEWEIS. Die Replikation ist gemäß der Definition 16 der Replikation genau dann nicht wahr, falls die Aussage A nicht wahr, die Aussage B jedoch wahr ist. Die Aussage

$$\neg A \Rightarrow \neg B$$

ist gemäß der Definition 14 genau dann nicht wahr, falls die Aussage $\neg A$ wahr, die Aussagen $\neg B$ jedoch nicht wahr ist. Die Aussagen $\neg A$ ist gemäß der Definition 11 der Negation genau dann wahr, falls die Aussage A nicht wahr ist. Die Aussage $\neg B$ ist gemäß der Definition 11 der Negation genau dann nicht wahr, falls die Aussage B wahr ist. Somit ist die Aussage

$$\neg A \Rightarrow \neg B$$

genau dann nicht wahr, falls die Aussage A nicht wahr, die Aussage B jedoch wahr ist. Das ist jedoch genau der gleiche Fall, in welchem

TABELLE 64. 1. Teil 1. Beweis des alternativen Satzes des Zusammenhangs von Replikation und Implikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$\neg A$	$\neg B$
1	1	1	1
2	0	1	0
3	1	0	1
4	1	0	0

TABELLE 65. 2. Teil 1. Beweis des alternativen Satzes des Zusammenhangs von Replikation und Implikation

Aussage/ Fall Nr.	$\neg A \Rightarrow \neg B$	Behauptung
1	1	1
2	0	1
3	1	1
4	1	1

TABELLE 66. 1. Teil 2. Beweis des alternativen Satzes des Zusammenhangs von Replikation und Implikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$\neg A$	$\neg B$
1	$A \Leftarrow B$	$\neg A$	$\neg B$
2	$\neg (A \Leftarrow B)$	$\neg A$	$\neg (\neg B)$
3	$A \Leftarrow B$	$\neg (\neg A)$	$\neg B$
4	$A \Leftarrow B$	$\neg (\neg A)$	$\neg (\neg B)$

die Replikation von B nach A nicht wahr ist. Also muss gemäß dem Äquivalenz-Negationssatz 60 auch die Äquivalenz

$$(A \Leftarrow B) \Leftrightarrow (\neg A \Rightarrow \neg B)$$

wahr sein. Damit meine ich jedoch den Beweis für die Richtigkeit der Behauptung erbracht zu haben. Jedoch habe ich (ohne es ausdrücklich zu schreiben) den abgeschwächten Satz 12 der doppelten Negation verwendet, indem ich schließe, das alle Aussagen wahr sind, falls ich zeigen kann, dass sie nicht nicht wahr sind.

Damit ich mich nicht verrechne, möchte ich den Beweis noch einmal berechnen. Diesen Beweis habe ich einerseits in den Tabellen 64 sowie 65 und andererseits in den Tabellen 65 sowie 67 abgelegt. Schlussendlich sind in den Tabellen 67 sowie 69 die Verweise abgelegt.

Als nächstes möchte ich Distributivgesetze in der Logik besprechen. Ich hoffe, Du findest das auch ein wenig interessant.

TABELLE 67. 2. Teil 2. Beweis des alternativen Satzes des Zusammenhangs von Replikation und Implikation

Aussage/ Fall Nr.	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Leftarrow B) & \Leftrightarrow \\ (\neg A \Rightarrow \neg B) \end{array} $
1	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Leftarrow B) & \Leftrightarrow \\ (\neg A \Rightarrow \neg B) \end{array} $
2	$\neg (\neg A \Rightarrow \neg B)$	$ \begin{array}{c} (A \Leftarrow B) & \Leftrightarrow \\ (\neg A \Rightarrow \neg B) \end{array} $
3	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Leftarrow B) & \Leftrightarrow \\ (\neg A \Rightarrow \neg B) \end{array} $
4	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Leftarrow B) & \Leftrightarrow \\ (\neg A \Rightarrow \neg B) \end{array} $

Tabelle 68. 1. Teil Verweise Beweis des alternativen Satzes des Zusammenhangs von Replikation und Implikation

Definition/	Definition 14	Definition 11	Definition 11
Fall Nr.	der	der	der
ran m.	Replikation	Negation	Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	2. Zeile

TABELLE 69. 2. Teil Verweise Beweis des Zusammenhangs von Implikation und Replikation

Definition/ Fall Nr.	Definition 14 der Implikation	Definition 19 der Negation
1	4. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	4. Zeile
4	1. Zeile	4. Zeile

20.11. Distributivgesetz von Implikation und Konjunktion

Was ist ein Distributivgesetz? Ich habe kurz nachgeschaut, was "distributiv" bedeutet. So wie ich es gesehen habe, bedeutet dies in etwa so viel wie "die Verteilung betreffend". Das Distributivgesetz kann meines Erachtens am Besten mit der Addition und Multiplikation von Zahlen gezeigt werden. Es gilt beispielsweise

$$5 \cdot (1+2) = 5 \cdot 3 = 15$$

Aussage/ Fall Nr.	$B \wedge C$	$\begin{array}{c} A \Rightarrow \\ B \wedge C \end{array}$	$A \Rightarrow B$
1	0	1	1
2	0	1	1
3	0	1	1
4	1	1	1
5	0	0	0
6	0	0	0
7	0	0	1

TABELLE 70. 1. Teil 1. Beweis des Satzes der Kommutation von Implikation und Konjunktion

Jedoch ist auch auch

$$5 \cdot (1+2) = 5 \cdot 1 + 5 \cdot 2 = 5 + 10 = 15$$

Also kommt es nicht darauf an, ob ich zuerst 1+2 addiere und dann mit 5 multipliziere oder zuerst 5 mit 1 multipliziere, 5 mit 2 multipliziere und dann addiere. Also verhält sich sozusagen die Multiplikation ähnlich wie die Implikation und die Addition ähnlich wie die Konjunktion. Doch wie lautet jetzt der Satz genau?

Satz 26. Es seien jetzt A, B respektive C Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Rightarrow (B \land C)) \Leftrightarrow ((A \Rightarrow B) \land (A \Rightarrow C))$$

Das bedeutet, dass aus der Aussage A die Aussagen B und C genau dann folgen, falls aus der Aussage A die Aussage B und aus der Aussage A die Aussage B und aus der Aussage B die Aussage B und Grauf der Konjunktion miteinander vertauschen. Es kommt also nicht darauf an, ob ich zuerst die Konjunktion der Aussagen B und B beweise und anschließend zeige, dass die Implikation der Aussage B zur Konjunktion von B und B und B wie auch die Aussage B

Beweise. Um die Behauptung der Äquivalenz zu beweisen, stelle ich wieder die Wahrheitstafeln auf: Für die Beweise siehe Tabellen 70 sowie 71 einerseits für den einen sowie die Tabellen 72 und 73 andererseits für den anderen Beweis. Für die Verweise siehe Tabellen 74 sowie 75.

Und wie steht es mit den Klammern, braucht es diese? Ja, diese sind nötig. Ich möchte den Beweis unter dem Lemma 154 erbringen, weil er recht aufwändig, jedoch ziemlich unergiebig ist.

Ich möchte den Beweis noch mit Worten führen. Die Aussage $A \Rightarrow (B \wedge C)$ ist gemäß der dritten Zeile der Definition 14 genau dann nicht

TABELLE 71. 2. Teil 1. Beweis des Satzes der Kommutation von Implikation und Konjunktion

Aussage/ Fall Nr.	$A \Rightarrow C$	$(A \Rightarrow B) \land (A \Rightarrow C)$	Behauptung
1	1	1	1
2	1	1	1
3	1	1	1
4	1	1	1
5	0	0	1
6	1	0	1
7	0	0	1
8	1	1	1

TABELLE 72. 1. Teil 2. Beweis des Satzes der Kommutation von Implikation und Konjunktion

Aussage/ Fall Nr.	$B \wedge C$	$A \Rightarrow (B \land C)$	$A \Rightarrow B$	$A \Rightarrow C$
1	$\neg (B \land C)$	$A \Rightarrow (B \land C)$	$A \Rightarrow B$	$A \Rightarrow C$
2	$\neg (B \land C)$	$A \Rightarrow (B \land C)$	$A \Rightarrow B$	$A \Rightarrow C$
3	$\neg (B \land C)$	$A \Rightarrow (B \land C)$	$A \Rightarrow B$	$A \Rightarrow C$
4	$B \wedge C$	$A \Rightarrow (B \land C)$	$A \Rightarrow B$	$A \Rightarrow C$
5	$\neg (B \land C)$	$\neg (A \Rightarrow (B \land C))$	$\neg (A \Rightarrow B)$	$\neg (A \Rightarrow C)$
6	$\neg (B \land C)$	$\neg (A \Rightarrow (B \land C))$	$\neg (A \Rightarrow B)$	$A \Rightarrow C$
7	$\neg (B \land C)$	$\neg (A \Rightarrow (B \land C))$	$A \Rightarrow B$	$\neg (A \Rightarrow C)$
8	$B \wedge C$	$A \Rightarrow (B \land C)$	$A \Rightarrow B$	$A \Rightarrow C$

wahr, falls die Aussage A wahr und die Aussage $B \wedge C$ nicht wahr ist. Die Aussage $B \wedge C$ ist gemäß der vierten Zeile der Definition 13 der Konjunktion genau dann nicht wahr, falls die Aussagen B oder C nicht wahr sind. Dann ist also die Aussage $A \Rightarrow (B \land C)$ also genau dann nicht wahr, falls die Aussage A wahr ist, die Aussagen B oder C jedoch nicht wahr sind. Auf der anderen Seite ist die Aussage $A \Rightarrow B$ genau dann nicht wahr, falls die Aussage A wahr und die Aussage B nicht wahr ist. Die Aussage $A \Rightarrow C$ ist genau dann nicht wahr, falls die Aussage A wahr und die Aussage C nicht wahr ist. Also ist der Ausdruck $(A \Rightarrow B) \land (A \Rightarrow C)$ genau dann nicht wahr, falls die Aussagen A wahr wahr ist, die Aussage B jedoch nicht, oder aber falls die Aussage A wahr ist, die Aussage C jedoch nicht. Damit die gesamte Aussage nicht wahr ist, muss also die Aussage A auf jeden Fall wahr sein. Weiter können eine der Aussagen B oder C nicht wahr sein. Dies sind jedoch die genau gleichen Fälle, in welchen $A \Rightarrow (B \land C)$ nicht wahr sind. Wenn ich mit dem abgeschwächten Satz 14 des ausgeschlossenen Dritten argumentiere, dass alle Aussage wahr sein müssen, falls sie nicht

TABELLE 73. 2. Teil 2. Beweis des Satzes der Kommutation von Implikation und Konjunktion

Aussage/ Fall Nr.	$(A \Rightarrow B) \land (A \Rightarrow C)$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
1	$(A \Rightarrow B) \land (A \Rightarrow C)$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
2	$(A \Rightarrow B) \land (A \Rightarrow C)$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
3	$(A \Rightarrow B) \land (A \Rightarrow C)$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
4	$(A \Rightarrow B) \land (A \Rightarrow C)$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
5	$\neg ((A \Rightarrow B) \land (A \Rightarrow C))$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
6	$\neg ((A \Rightarrow B) \land (A \Rightarrow C))$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
7	$\neg ((A \Rightarrow B) \land (A \Rightarrow C))$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
8	$(A \Rightarrow B) \land (A \Rightarrow C)$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow

TABELLE 74. 1. Tabelle Verweise Beweis des Satzes der Kommutation von Implikation und Konjunktion

Definition/	Definition 13	Definition 14	Definition 14
Fall Nr.	der	der	der
ran m.	Konjunktion	Implikation	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	1. Zeile
3	3. Zeile	1. Zeile	2. Zeile
4	4. Zeile	2. Zeile	2. Zeile
5	1. Zeile	3. Zeile	3. Zeile
6	2. Zeile	3. Zeile	3. Zeile
7	3. Zeile	3. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

wahr sein können, kann ich den Beweis der Behauptung als bewiesen betrachten. Darum erlaube ich mir an dieser Stelle, auf die weitere Beweisführung zu verzichten (um es so kompliziert auszudrücken). Oder auf gut Deutsch: Darum ist der Beweis beendet.

Nun, ich muss gestehen, dass mir im Moment keine Anwendung dieses Satzes einfällt. Aber vielleicht stoße ich noch auf eine Anwendung dieses Satzes, wer weiß? Falls Du ein Satz kennenlernen möchtest, in

TABELLE 75. 2. Tabelle Verweise Beweis des Satzes der Kommutation von Implikation und Konjunktion

Definition/	Definition 13	Definition 13	Definition 19
Fall Nr.	der	der	der
rall Nr.	Konjunktion	Konjunktion	Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	4. Zeile	4. Zeile
3	1. Zeile	4. Zeile	4. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	1. Zeile	1. Zeile
6	4. Zeile	2. Zeile	1. Zeile
7	3. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	4. Zeile

welchem zwei Operationen nicht einem Distributivgesetz folgen, dann möchte ich Dich auf den Satz 28 verweisen.

Jedoch, und das finde ich ein wenig verwirrend, gehorcht die Kombination von Implikation und Disjunktion ebenfalls dem Distributivgesetz. Das möchte ich im nächsten Abschnitt beschreiben.

20.12. Distributivgesetz von Implikation und Disjunktion

Auch dieser Satz verhält sich so, wie Du es Dir wahrscheinlich vorstellst. Er funktioniert genau gleich wie derjenige Satz, welchen ich im vorhergehenden Abschnitt vorgestellt habe. Jedoch mit dem Unterschied, dass anstelle der Konjunktion die Disjunktion verwendet wird:

Satz 27. Es seien A, B sowie C die Metasymbole dreier beliebigen Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gehorcht die Kombination der Implikation und Disjunktion dem Distributivgesetz. Es gilt also:

$$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$$

Es spielt also wiederum keine Rolle, ob ich zeige, dass aus der Aussage A die Aussage B oder aus der Aussage A die Aussage C folgt, oder ob ich zeige, dass aus der Aussage A die Aussage B oder die Aussage C folgt. Wieder interessiere ich mich eigentlich mehr dafür, wieso dies funktioniert, als dass es mir wichtig ist, zu zeigen, dass es funktioniert. Darum möchte ich für einmal zuerst den sprachlichen Beweis erbringen und erst anschließend den Beweis mittels Wahrheitstabellen aufschreiben:

Beweis. Die Implikation

$$A \Rightarrow (B \lor C)$$

ist gemäß der der dritten Zeile der Definition 14 der Implikation genau dann nicht gültig, falls die Aussage A wahr ist, jedoch sowohl die Aussage $B \vee C$ nicht wahr ist. Gemäß der ersten Zeile der Definition 17 der Disjunktion ist die Aussage $A \vee B$ genau dann nicht wahr, falls weder die Aussage A noch die Aussage B wahr sind. Darum muss ich jetzt zeigen, dass genau in diesem Fall die Aussage

$$(A \Rightarrow B) \lor (A \Rightarrow C)$$

nicht wahr ist. Ist die Aussage A wahr, sind jedoch die Aussagen B und C nicht wahr, dann sind nach der dritten Zeile der Definition 14 der Implikation sowohl die Aussage

$$A \Rightarrow B$$

wie auch die Aussage

$$A \Rightarrow C$$

nicht wahr. Also ist nach der ersten Zeile der Definition 17 der Disjunktion die Aussage

$$(A \Rightarrow B) \lor (A \Rightarrow C)$$

nicht wahr. Ich möchte nun überlegen, unter welchen Umständen die Aussage

$$(A \Rightarrow B) \lor (A \Rightarrow C)$$

nicht wahr ist. Gemäß der ersten Zeile der Definition 17 der Disjunktion ist diese Aussage genau dann nicht wahr, falls weder die Aussage $A \Rightarrow B$ noch die Aussage $A \Rightarrow C$ wahr ist. Die Aussage

$$A \Rightarrow B$$

ist gemäß der dritten Zeile der Definition 14 der Implikation genau dann nicht wahr, falls die Aussage A wahr ist, die Aussage B jedoch nicht wahr ist. Ebenso ist die Aussage

$$A \Rightarrow C$$

gemäß der gleichen dritten Zeile der Definition 14 der Implikation genau dann nicht wahr, falls die Aussage A wahr, die Aussage C jedoch nicht wahr ist. Also ist der einzige Fall, in welchem die Aussage

$$(A \Rightarrow B) \lor (A \Rightarrow C)$$

nicht wahr ist, derjenige, in welchem die Aussage A wahr ist, die Aussagen B sowie C jedoch nicht wahr sind. Das ist jedoch genau der gleiche Fall, in welchem die Aussage

$$A \Rightarrow (B \lor C)$$

nicht wahr ist. Gemäß dem abgeschwächten Satz 14 des ausgeschlossenen Dritten behaupte ich, dass die Aussagen genau dann wahr sein

Tabelle 76. 1. Teil 1. Beweis des Satzes der Kommutation von Implikation und Disjunktion

Aussage/ Fall Nr.	$B \lor C$	$\begin{array}{c} A \Rightarrow \\ B \lor C \end{array}$	$A \Rightarrow B$
1	0	1	1
2	1	1	1
3	1	1	1
4	1	1	1
5	0	0	0
6	1	1	0
7	1	1	1
8	1	1	1

müssen, falls ich zeigen kann, dass sie nicht nicht wahr sein können. Also meine ich, dass die beiden Aussagen

$$A \Rightarrow (B \lor C)$$

sowie

$$(A \Rightarrow B) \lor (A \Rightarrow C)$$

gleichbedeutend (äquivalent) sind. Also glaube ich, damit zeigen zu können, dass in den gleichen Fällen die Aussagen

$$A \Rightarrow (B \lor C)$$

sowie

$$(A \Rightarrow B) \lor (A \Rightarrow C)$$

wahr respektive nicht wahr sind. Somit folgere ich daraus, dass die beiden Aussagen äquivalent sein müssen. Darum meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

Aber ich möchte jetzt den ganzen Beweis trotzdem noch einmal mittels Wahrheitstafeln aufschreiben (vergleiche mit den Tabelle 76 sowie Tabelle 77). Wenn die Behauptung bewiesen wird, indem die Aussagen hingeschrieben werden, dann gilt der Beweis, so wie er in den Tabellen 78 sowie 79 aufgeschrieben ist. Die Verweise der Beweise werden in den Tabellen 80 sowie 81 aufgelistet. Weil ich glaube, den Beweis noch einmal erbracht zu haben, beende ich an dieser Stelle die weitere Beweisführung.

Auch für diesen Satz muss ich im Moment passen, wenn es um ein gutes Beispiel gehen sollte. Ich hoffe, ich werde dies zu gegebener Zeit nachholen können.

Nun kommt sozusagen mein Lieblingssatz, wenn es um logische Sätze geht. Denn einerseits besitzt dieser Satz meines Erachtens eine wirklich wichtige Anwendung. Andererseits verblüfft er mich, weil er eine Disjunktion sozusagen in eine Konjunktion "verwandelt". Jedoch lässt

Tabelle 77.	2. Teil 1. Bew	eis des Satzes	der Kommu-
tation von Imp	olikation und I	Disjunktion	

Aussage/ Fall Nr.	$A \Rightarrow C$	$(A \Rightarrow B) \lor (A \Rightarrow C)$	Behauptung
1	1	1	1
2	1	1	1
3	1	1	1
4	1	1	1
5	0	0	1
6	1	1	1
7	0	1	1
8	1	1	1

TABELLE 78. 1. Teil 2. Beweis des Satzes der Kommutation von Implikation und Disjunktion

Aussage/ Fall Nr.	$B \lor C$	$A \Rightarrow (B \lor C)$	$A \Rightarrow B$	$A \Rightarrow C$
1	$\neg (B \lor C)$	$A \Rightarrow (B \lor C)$	$A \Rightarrow B$	$A \Rightarrow C$
2	$B \lor C$	$A \Rightarrow (B \lor C)$	$A \Rightarrow B$	$A \Rightarrow C$
3	$B \lor C$	$A \Rightarrow (B \lor C)$	$A \Rightarrow B$	$A \Rightarrow C$
4	$B \lor C$	$A \Rightarrow (B \lor C)$	$A \Rightarrow B$	$A \Rightarrow C$
5	$\neg (B \lor C)$	$\neg (A \Rightarrow (B \lor C))$	$\neg (A \Rightarrow B)$	$\neg (A \Rightarrow C)$
6	$B \lor C$	$A \Rightarrow (B \lor C)$	$\neg (A \Rightarrow B)$	$A \Rightarrow C$
7	$B \lor C$	$A \Rightarrow (B \lor C)$	$A \Rightarrow B$	$\neg (A \Rightarrow C)$
8	$B \lor C$	$A \Rightarrow (B \lor C)$	$A \Rightarrow B$	$A \Rightarrow C$

sich bekanntlich über den Geschmack vortrefflich streiten. Und ich hoffe selbstverständlich, dass Du nicht Deine Nase rümpfst, falls ich von einem "Lieblingssatz" schreibe.

20.13. Disjunktion, Implikation und Konjunktion

Ich persönlich finde den nächsten Abschnitt insofern interessant, als er einen Weg zeigt, wie für alle Elemente einer Menge eine Aussage bewiesen werden kann. Doch ich möchte zuerst ein wenig ausholen:

Satz 28. Es seien A, B und C Metasymbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Also gilt

$$((A \lor B) \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C))$$

Beweis. Ich möchte mir die Fälle überlegen, in welchen die Aussage

$$(A \lor B) \Rightarrow C$$

TABELLE 79. 2. Teil 2. Beweis des Satzes der Kommutation von Implikation und Disjunktion

Aussage/ Fall Nr.	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
1	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
2	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
3	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
4	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
5	$\neg ((A \Rightarrow B) \lor (A \Rightarrow C))$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
6	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
7	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
8	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$

TABELLE 80. 1. Tabelle Verweise Beweis des Satzes der Kommutation von Implikation und Disjunktion

Definition/ Fall Nr.	Definition 17 der	Definition 14 der	Definition 14 der
	Disjunktion	Implikation	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	1. Zeile
3	3. Zeile	2. Zeile	2. Zeile
4	4. Zeile	2. Zeile	2. Zeile
5	1. Zeile	3. Zeile	3. Zeile
6	2. Zeile	4. Zeile	3. Zeile
7	3. Zeile	4. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

und die Aussage

$$(A \Rightarrow C) \land (B \Rightarrow C)$$

nicht wahr sind und dann zeigen, dass die beiden Aussagen in genau den gleichen Fällen nicht wahr sind. Falls dies der Fall ist, kann ich dann gemäß dem abgeschwächten Satz 14 des ausgeschlossenen Dritten folgern, dass die beiden Aussagen auch in genau den gleichen Fällen

5

6

8

Definition/ Fall Nr.	Definition 17	Definition 13	Definition 19
	der	der	der
	Disjunktion	Konjunktion	Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	4. Zeile	4. Zeile
3	1. Zeile	4. Zeile	4. Zeile
4	2. Zeile	4. Zeile	4. Zeile

1. Zeile

2. Zeile

3. Zeile

4. Zeile

1. Zeile

4. Zeile

4. Zeile

4. Zeile

3. Zeile

4. Zeile

3. Zeile

4. Zeile

TABELLE 81. 2. Tabelle Verweise Beweis des Satzes der Kommutation von Implikation und Disjunktion

wahr sind. Also kann ich in diesem Fall die Äquivalenz der beiden Aussagen folgern und somit den Satz auf diese Art beweisen. Nun möchte ich mit meinen "Untersuchungen" beginnen:

Die Aussage $(A \vee B) \Rightarrow C$ ist gemäß der dritten Zeile der Definition 14 der Implikation genau dann nicht wahr, falls die Aussage $A \vee B$ wahr ist, die Aussage C jedoch nicht wahr ist. Die Disjunktion der Aussagen A sowie B (also die Aussage $A \vee B$) ist gemäß der Definition 14 der Implikation dann wahr, falls die Aussage A wahr ist, die Aussage B wahr ist oder beide Aussagen A und B wahr sind. Zusammengefasst ist die Aussage $A \vee B \Rightarrow C$ als genau dann nicht wahr, falls die Aussage A wahr ist, die Aussage B wahr ist oder die Aussagen A und B wahr sind, die Aussage C aber in jedem Fall nicht wahr ist.

Die Aussage $((A\Rightarrow C)\land (B\Rightarrow C))$ ist gemäß den ersten drei Zeilen der Definition 13 der Konjunktion genau dann nicht wahr, falls die Aussage $A\Rightarrow C$ nicht wahr ist, die Aussage $B\Rightarrow C$ nicht wahr oder beide Aussagen (sowohl die Aussage $A\Rightarrow C$ wie auch die Aussage $B\Rightarrow C$) nicht wahr sind. Die Aussage $A\Rightarrow C$ ist gemäß der dritten Zeile der Definition 14 der Implikation nicht wahr, falls die Aussage A ist, die Aussage A jedoch nicht wahr ist. Die Aussage A ist gemäß der gleichen (dritten) Zeilen der gleichen Definition 14 der Implikation genau dann nicht wahr, falls die Aussage A wahr ist, die Aussage A jedoch nicht wahr ist. Zusammengefasst ist die Aussage A wahr ist, die Aussage A wahr ist, die Aussage A wahr ist, die Aussage A wahr ist oder beide Aussage A und A wahr sind, die Aussage A jedoch nicht wahr ist.

Nun vergleiche ich diese Fälle mit denjenigen Fällen, in welchem die Aussage

$$(A \vee B) \Rightarrow C$$

nicht wahr sind und sehe, dass es genau die gleichen Fälle sind. Gemäß dem abgeschwächten Satz 11 der doppelten Negation kann ich jetzt

TABELLE 82. 1. Teil 1. Beweis der Vertauschung von Disjunktion und Konjunktion unter der Implikation

Aussage/ Fall Nr.	$A \lor B$	$\begin{array}{c} A \vee B \\ \Rightarrow C \end{array}$	$A \Rightarrow C$
1	0	1	1
2	0	1	1
3	1	0	1
4	1	1	1
5	1	0	0
6	1	1	1
7	1	0	0
8	1	1	1

TABELLE 83. 2. Teil 1. Beweis der Vertauschung von Disjunktion und Konjunktion unter der Implikation

Aussage/ Fall Nr.	$B \Rightarrow C$	$(A \Rightarrow C) \land (B \Rightarrow C)$	Behauptung
1	1	1	1
2	1	1	1
3	0	0	1
4	1	1	1
5	1	0	1
6	1	1	1
7	0	0	1
8	1	1	1

folgern, dass die beiden Aussagen

$$(A \lor B) \Rightarrow C$$

sowie

$$(A \Rightarrow C) \land (B \Rightarrow C)$$

auch in den gleichen Fällen wahr sein müssen. Damit meine ich schließen zu können, dass die beiden Aussagen äquivalent sein müssen.

Ich hoffe, meine obigen Gedanken sind einigermaßen nachvollziehbar. Ich möchte jedoch den Satz noch "konventionell", also auch mit Wahrheitstafeln beweisen, da er noch weiterhin wichtige Dienste leisten soll. Der Beweis ist in den Tabellen 82, 83, 84 sowie 85, die Verweise sind in den Tabellen 86 sowie 87 aufgeschrieben.

Nun möchte ich zu zeigen versuchen, für was dies nützlich ist. Es sei

$$M = \{1, 2\}$$

TABELLE 84. 1. Teil 2. Beweis der Vertauschung von Disjunktion und Konjunktion unter der Implikation

Aussage/ Fall Nr.	$A \lor B$	$\begin{array}{c} A \lor B \\ \Rightarrow C \end{array}$	$A \Rightarrow C$	$B \Rightarrow C$
1	$\neg (A \lor B)$	$A \vee B \\ \Rightarrow C$	$A \Rightarrow C$	$B \Rightarrow C$
2	$\neg (A \lor B)$	$A \vee B \\ \Rightarrow C$	$A \Rightarrow C$	$B \Rightarrow C$
3	$A \lor B$	$\neg (A \lor B \\ \Rightarrow C)$	$A \Rightarrow C$	
4	$A \lor B$	$A \vee B \\ \Rightarrow C$	$A \Rightarrow C$	$B \Rightarrow C$
5	$A \lor B$	$\neg (A \lor B \\ \Rightarrow C)$	$\neg (A \Rightarrow C)$	$B \Rightarrow C$
6	$A \lor B$	$A \vee B \\ \Rightarrow C$	$A \Rightarrow C$	$B \Rightarrow C$
7	$A \lor B$	$\neg (A \lor B \\ \Rightarrow C)$	$\neg (A \Rightarrow C)$	$\neg (B \Rightarrow C)$
8	$A \lor B$	$A \vee B \\ \Rightarrow C$	$A \Rightarrow C$	$B \Rightarrow C$

TABELLE 85. 2. Teil 2. Beweis der Vertauschung von Disjunktion und Konjunktion unter der Implikation

Aussage/ Fall Nr.	$(A \Rightarrow C) \land (B \Rightarrow C)$	Behauptung
1	$(A \Rightarrow C) \land (B \Rightarrow C)$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$
2	$(A \Rightarrow C) \land (B \Rightarrow C)$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$
3	$\neg ((A \Rightarrow C) \land (B \Rightarrow C))$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$
4	$(A \Rightarrow C) \land (B \Rightarrow C)$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$
5	$\neg ((A \Rightarrow C) \land (B \Rightarrow C))$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$
6	$(A \Rightarrow C) \land (B \Rightarrow C)$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$
7	$\neg ((A \Rightarrow C) \land (B \Rightarrow C))$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$
8	$(A \Rightarrow C) \land (B \Rightarrow C)$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$

TABELLE 86. 1. Tabelle Verweise des Beweises der Vertauschung von Disjunktion und Konjunktion unter der Implikation

Definition/	Definition 17	Definition 14	Definition 14
Fall Nr.	der	der	der
rall IVI.	Disjunktion	Implikation	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	2. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle Verweise des Beweises der Vertauschung von Disjunktion und Konjunktion unter der Implikation

Definition/	Definition 14	Definition 13	Definition 19
Fall Nr.	der	der	der
ran m.	Implikation	Konjunktion	Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	4. Zeile	4. Zeile
3	3. Zeile	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile
5	1. Zeile	2. Zeile	1. Zeile
6	2. Zeile	4. Zeile	4. Zeile
7	3. Zeile	1. Zeile	1. Zeile
8	4. Zeile	4. Zeile	4. Zeile

In Worten: Die Menge, welche mit dem Symbol "M" beschrieben (bezeichnet, benannt) werde, bestehe aus den Elementen "1" und "2". Nun möchte ich zeigen, dass für alle Elemente m der Menge M gilt, dass $m \geq 1$ ist. Doch wie schreibe ich das korrekt auf? Wenn ich $m \in M$ als logische Aussage aufschreibe dann kann ich schreiben:

$$m \in M \Leftrightarrow m = 1 \lor m = 2$$

Ich kann meine Behauptung, dass für alle Elemente m aus der Menge gelten müssen, dass m größer oder gleich zwei ist, logisch korrekt so aufschreiben:

$$m \in M \Rightarrow m \ge 1$$

Wenn ich die Definition der Menge jetzt einfüge, dann bekommt die Aussage die folgende Gestalt

$$m \in \{1, 2\} \Rightarrow m \ge 1$$

oder, wenn ich das aufschreibe

$$m = 1 \lor m = 2 \Rightarrow m \ge 1$$

Also kann ich den obigen Satz 28 verwenden und erhalte die als zu überprüfende Aussage:

$$(m=1 \Rightarrow m \ge 1) \land (m=2 \Rightarrow m \ge 1)$$

Übrigens sind die Klammern an dieser Stelle wesentlich, da Du ansonsten die Aussage so lesen müsstest:

$$m = 1 \Rightarrow (m \ge 1 \land m = 2) \Rightarrow m \ge 1$$

Und das wäre weder eine richtige Aussage (da aus m=1 nicht m=2 folgt) noch die richtige Umformung. Doch zurück zur richtig umgeformten Behauptung. Ich muss also zeigen, dass gilt:

$$(m=1 \Rightarrow m \ge 1) \land (m=2 \Rightarrow m \ge 1)$$

Da für m=1 gilt

$$1 \ge 1$$

ist die Aussage

$$m=1 \Rightarrow m \geq 1$$

wahr. Und da für m=2 gilt

$$2 \ge 1$$

ist die Aussage

$$m=2 \Rightarrow m \geq 1$$

ebenfalls wahr. Somit gilt also die Aussage

$$(m = 1 \Rightarrow m \ge 1) \land (m = 2 \Rightarrow m \ge 1)$$

Also ist die einerseits die Aussage

$$(m=1 \lor m=2) \Rightarrow m \ge 1$$

sowie

$$m \in \{1, 2\} \Rightarrow m \ge 1$$

ebenfalls wahr. Schlussendlich kann ich also schreiben

$$m \in M \Rightarrow m > 1$$

Der Satz 28 der Vertauschung von Disjunktion und Konjunktion unter der Implikation kann auch auf Mengen mit mehr als zwei Elementen erweitert werden. Aber ich hoffe, Dir damit gezeigt zu haben, wie die Vertauschung von Disjunktion und Konjunktion unter der Implikation verwendet werden kann, damit Behauptungen für alle Elemente in

TABELLE 88. 1. Teil 1. Beweis der Vertauschung von Konjunktion und Disjunktion unter der Implikation

Aussage/ Fall Nr.	$A \wedge B$	$\begin{array}{c} A \wedge B \\ \Rightarrow C \end{array}$	$A \Rightarrow C$
1	0	1	1
2	0	1	1
3	0	1	1
4	0	1	1
5	0	1	0
6	0	1	1
7	1	0	0
8	1	1	1

TABELLE 89. 2. Teil 1. Beweis der Vertauschung von Konjunktion und Disjunktion unter der Implikation

Aussage/ Fall Nr.	$B \Rightarrow C$	$(A \Rightarrow C) \lor (B \Rightarrow C)$	Behauptung
1	1	1	1
2	1	1	1
3	0	1	1
4	1	1	1
5	1	1	1
6	1	1	1
7	0	0	1
8	1	1	1

einer Menge überprüft werden können. Wenn Du im Kapitel 25 nachschlägst, dann kannst Du erkennen, wie der Satz 28 für die Definition von Quantoren verwendet wird.

Und dann kommt noch die andere Art der Verknüpfung. Auch dies würde ich so nicht erwarten. Denn gefühlsmäßig ist ein Konjunktion immer einschränkender als die Disjunktion.

Satz 29. Es seien $A, B, C \in \Omega$, also Metasymbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt

$$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$$

Beweise. Ich möchte den Satz zuerst wiederum mit bloßem Nachschlagen erbringen. Die Beweise sind in den Tabellen 88, 89, 90 sowie 91 abgelegt. Die Verweise kannst Du in den Tabellen 92 sowie 93 nachschlagen.

TABELLE 90. 1. Teil 2. Beweis der Vertauschung von Konjunktion und Disjunktion unter der Implikation

Aussage/ Fall Nr.	$A \wedge B$	$A \wedge B \\ \Rightarrow C$	$A \Rightarrow C$	$B \Rightarrow C$
1	$\neg (A \land B)$	$\begin{array}{c} A \wedge B \\ \Rightarrow C \end{array}$	$A \Rightarrow C$	$B \Rightarrow C$
2	$\neg (A \land B)$	$\begin{array}{c} A \wedge B \\ \Rightarrow C \end{array}$	$A \Rightarrow C$	$B \Rightarrow C$
3	$\neg (A \land B)$	$A \wedge B \\ \Rightarrow C$	$A \Rightarrow C$	$\neg \left(B\Rightarrow C\right)$
4	$\neg (A \land B)$	$\begin{array}{c} A \wedge B \\ \Rightarrow C \end{array}$	$A \Rightarrow C$	$B \Rightarrow C$
5	$\neg (A \land B)$	$A \wedge B \\ \Rightarrow C$	$\neg \left(A \Rightarrow C \right)$	$B \Rightarrow C$
6	$\neg (A \land B)$	$\begin{array}{c} A \wedge B \\ \Rightarrow C \end{array}$	$A \Rightarrow C$	$B \Rightarrow C$
7	$A \wedge B$	$\neg (A \land B \\ \Rightarrow C)$	$\neg \left(A \Rightarrow C \right)$	$\neg \left(B\Rightarrow C\right)$
8	$A \wedge B$	$\begin{array}{c} A \wedge B \\ \Rightarrow C \end{array}$	$A \Rightarrow C$	$B \Rightarrow C$

TABELLE 91. 2. Teil 2. Beweis der Vertauschung von Konjunktion und Disjunktion unter der Implikation

Aussage/ Fall Nr.	$(A \Rightarrow C) \lor (B \Rightarrow C)$	Behauptung
1	$(A \Rightarrow C) \lor (B \Rightarrow C)$	$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$
2	$(A \Rightarrow C) \lor (B \Rightarrow C)$	$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$
3	$(A \Rightarrow C) \lor (B \Rightarrow C)$	$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$
4	$(A \Rightarrow C) \lor (B \Rightarrow C)$	$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$
5	$(A \Rightarrow C) \lor (B \Rightarrow C)$	$ (A \land B \Rightarrow C) \Leftrightarrow \\ ((A \Rightarrow C) \lor (B \Rightarrow C)) $
6	$(A \Rightarrow C) \lor (B \Rightarrow C)$	$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$
7	$\neg ((A \Rightarrow C) \lor (B \Rightarrow C))$	$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$
8	$(A \Rightarrow C) \lor (B \Rightarrow C)$	$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$

Tabelle Verweise des Beweises der Vertauschung von Konjunktion und Disjunktion unter der Implikation

Definition/	Definition 13	Definition 14	Definition 14
Fall Nr.	der	der	der
ran m.	Konjunktion	Implikation	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	1. Zeile	1. Zeile
4	2. Zeile	2. Zeile	2. Zeile
5	3. Zeile	1. Zeile	3. Zeile
6	3. Zeile	2. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle 93. 2. Tabelle Verweise des Beweises der Vertauschung von Konjunktion und Disjunktion unter der Implikation

Definition/	Definition 14	Definition 17	Definition 19
Fall Nr.	der	der	der
rall IVI.	Implikation	Disjunktion	Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	4. Zeile	4. Zeile
3	3. Zeile	3. Zeile	4. Zeile
4	4. Zeile	4. Zeile	4. Zeile
5	1. Zeile	2. Zeile	4. Zeile
6	2. Zeile	4. Zeile	4. Zeile
7	3. Zeile	1. Zeile	1. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Nun folgt der Versuch eines sprachlichen Beweises des Satzes: Ich frage mich zuerst, welche Bedingungen gelten müssen, damit die Aussage

$$A \wedge B \Rightarrow C$$

nicht wahr sei. Gemäß der dritten Zeile der Definition 14 der Implikation ist dies genau dann der Fall, falls die Aussage $A \wedge B$ wahr, die Aussage C jedoch nicht wahr ist. Die Aussage $A \wedge B$ ist gemäß der vierten Zeile der Definition 13 der Konjunktion wahr, falls sowohl die Aussage A wie auch die Aussage B wahr ist. Insgesamt ist die Aussage

$$A \wedge B \Rightarrow C$$

also dann nicht wahr, falls die Aussagen A und B wahr sind, die Aussage C jedoch nicht wahr ist.

Weiter frage ich mich, unter welchen Umständen die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

nicht wahr ist. Gemäß der ersten Zeile der Definition 17 der Disjunktion ist die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

genau dann nicht wahr, falls weder die Aussage $A\Rightarrow C$ noch die Aussage $B\Rightarrow C$ wahr ist. Die Aussage

$$A \Rightarrow C$$

ist gemäß der dritten Zeile der Definition 14 der Implikation genau dann nicht wahr, falls die Aussage A wahr, die Aussage C jedoch nicht wahr ist. Die Aussage

$$B \Rightarrow C$$

ist gemäß der gleichen (dritten) Zeile der (gleichen) Definition 14 der Implikation ebenfalls genau dann nicht wahr, falls die Aussage B wahr, die Aussage C aber nicht wahr ist. Zusammengefasst ist die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

also genau dann nicht wahr, falls die Aussage A und B wahr sind, die Aussage C jedoch nicht. Ich kann das auch noch auf eine andere Art überlegen. Ist eine der beiden Aussagen A oder B wahr, dann ist gemäß der Abkürzungsregel 11 der Implikation eine der Aussagen

$$A \Rightarrow C$$

oder

$$B \Rightarrow C$$

wahr. Also ist gemäß der letzten drei Zeilen der Definition 17 der Disjunktion die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

ebenfalls dann wahr, falls die Aussagen A oder B nicht wahr sind. Denn ist die Aussage A nicht wahr, dann ist gemäß der Abkürzungsregel 11 der Implikation die Aussage

$$A \Rightarrow C$$

wahr. Also muss gemäß dem Maximumprinzip 13 der Disjunktion die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

wahr sein. Die gleiche Überlegung kann ich auch auf die Aussage B anwenden: Ist die Aussage B nicht wahr, dann ist gemäß der Abkürzungsregel 11 der Implikation die Aussage

$$B \Rightarrow C$$

wahr. Gemäß dem Maximumprinzip 13 der Disjunktion kann ich dann erneut schließen, dass die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

auch in diesem Fall wahr sein muss.

Auf der anderen Seite sind beide Aussagen

$$A \Rightarrow C$$

respektive

$$B \Rightarrow C$$

gemäß der Abkürzungsregel 11 der Implikation wahr, falls die Aussage C wahr ist. Somit ist auch gemäß der vierten Zeile der Definition 17 der Disjunktion die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

wahr, falls die Aussage C wahr ist.

Ich fasse also zusammen: Ist mindestens eine der beiden Aussage A oder B nicht wahr oder ist die Aussage C wahr, dann ist die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

wahr.

Nun kann ich gemäß der abgeschwächten Form des Satzes 13 des ausgeschlossenen Dritten folgern, dass in allen Fällen die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

also nur dann nicht wahr sein kann, falls sowohl die Aussagen A wie auch B wahr sind und aber die Aussage C nicht wahr ist.

Nun kann ich das Ergebnis meiner Überlegungen zusammenfassen: Die Bedingungen, unter welchen die Aussage

$$A \wedge B \Rightarrow C$$

wie auch die Aussage

$$A \Rightarrow C \lor B \Rightarrow C$$

nicht wahr sind, sind gleich. Beide Aussagen sind genau dann nicht wahr, falls beide Aussagen A und B wahr sind, die Aussage C jedoch nicht wahr ist. Gemäß dem abgeschwächten Satz 12 der doppelten Negation kann ich dann folgern, dass die beide Aussagen

$$A \wedge B \Rightarrow C$$

wie auch

$$A \Rightarrow C \lor B \Rightarrow C$$

also genau dann wahr sind, falls mindestens eine der beiden Aussagen A oder B nicht wahr oder aber die Aussage C wahr ist. Damit meine ich schließen zu können, dass beide Aussagen äquivalent, also gleichbedeutend sein müssen, mithin also die Aussage

$$(A \land B \Rightarrow C) \Leftrightarrow (A \Rightarrow C) \lor (B \Rightarrow C)$$

gilt. Damit beende ich an dieser Stelle endlich die weitere Beweisführung.

Zu meinem eigenen Verdruss könnte ich jedoch keine Anwendung dieses logischen Satzes angeben. Ich habe ihn sozusagen einfach zum Spaß formuliert und bewiesen. Ich hoffe, Dich damit nicht zu fest verärgert zu haben.

20.14. Distributivgesetz von Konjunktion und Disjunktion

Die beiden folgenden Sätze zeigen auf, dass die Konjunktion sozusagen stärker bindet als die Disjunktion.

Satz 30. Es seien wie gewohnt A, B, C Metasymbole von drei beliebigen Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$((A \lor B) \land C) \Leftrightarrow (A \land C) \lor (B \land C)$$

Auch dieser Satz erinnert an ein Distributivgesetz (vergleiche mit dem Absatz 20.11) der Addition und Multiplikation von Zahlen. Dabei nimmt die Addition ("+") den Platz der Disjunktion ("V") und die Multiplikation ("·") den Platz der Konjunktion ein. Doch zurück zum Satz 30 des Distributivgesetzes der Konjunktion und Disjunktion. Wieder möchte ich den Beweis für die Behauptung zuerst sprachlich erbringen, bevor ich den Beweis mit Wahrheitstafeln zu erbringen versuche.

Beweis. Ich möchte mir überlegen, unter welchen Bedingung die Aussage

$$(A \vee B) \wedge C$$

nicht wahr ist. Gemäß der Definition 13 der Konjunktion müsste die Aussage C nicht wahr sein oder die Aussage $A \vee B$ müsste nicht wahr sein. Die Aussage $A \vee B$ ist gemäß der Definition 17 der Disjunktion genau dann nicht wahr, falls weder die Aussage A noch die Aussage B nicht wahr sind. Zusammenfassend kann ich also sagen, dass die Aussage

$$(A \vee B) \wedge C$$

genau dann nicht wahr ist, falls die Aussage C nicht wahr ist oder sowohl die Aussagen A wie auch B nicht wahr sind.

Wenn ich mir überlege, unter welchen Bedingungen die Aussage

$$(A \wedge C) \vee (B \wedge C)$$

nicht wahr ist, dann muss gemäß der Definition 17 der Disjunktion sowohl die Aussage

$$A \wedge C$$

wie auch die Aussage

$$B \wedge C$$

nicht wahr sein. Ist jedoch die Aussage C nicht wahr, dann sind nach dem Minimumprinzip 10 der Konjunktion bereits die Aussagen

$$A \wedge C$$

wie auch die Aussagen

$$B \wedge C$$

nicht wahr. Ist die Aussage C hingegen wahr, dann kann der gesamte Ausdruck $(A \wedge C) \vee (B \wedge C)$ nur dann nicht wahr sein, wenn sowohl die Aussagen A und B nicht wahr sind. Denn ansonsten ist die Aussage $A \wedge C$ oder die Aussage $B \wedge C$ und somit gemäß dem Maximumprinzip 13 der Disjunktion die Aussage

$$(A \wedge C) \vee (B \wedge C)$$

wahr. Also ist die Aussage

$$(A \wedge C) \vee (B \wedge C)$$

auch in genau denjenigen Fällen nicht wahr, in welchen C nicht wahr ist oder sowohl die Aussagen A wie auch B nicht wahr sind. Das ist jedoch genau in den gleichen Fällen, in welchen die Aussage

$$(A \vee B) \wedge C$$

nicht wahr ist. Damit glaube ich jedoch den Beweis für die Gültigkeit der Äquivalenz der beiden Aussagen erbracht zu haben.

Soweit die sprachliche Beschreibung des Beweises. Jetzt kommt das dröge Nachschlagen der Definitionen. In den Tabellen 94 und 95 sind die Beweise mittels Nachschlagen der Definitionen geführt. Wenn die Behauptung bewiesen wird, indem die Aussagen hingeschrieben werden, dann gilt der Beweis, so wie er in den Tabellen 96 sowie 97 aufgeschrieben ist. Die Verweise der Beweise werden in den Tabellen 98 sowie 99 aufgelistet.-

20.15. Äquivalenz von Aussage und Konjunktion

Ja, dieser Satz ist wieder an Einfachheit kaum zu überbieten. Es geht mir aber primär nicht darum, zu überlegen, was gilt, sondern warum es gilt. Das ist jedoch ein kleiner, jedoch feiner Unterschied.

Satz 31. Es sei A das Symbol für eine beliebige Aussage, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei sei. Dann gilt der logische Satz:

$$A \Leftrightarrow (A \land A)$$

TABELLE 94. 1. Teil 1. Beweis des Satzes des Distributivgesetzes von Konjunktion und Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$(A \vee B) \wedge C$	$A \wedge C$
1	0	0	0
2	0	0	0
3	1	0	0
4	1	1	0
5	1	0	0
6	1	1	1
7	1	0	0
8	1	1	1

TABELLE 95. 2. Teil 1. Beweis des Satzes des Distributivgesetzes von Konjunktion und Disjunktion

Aussage/ Fall Nr.	$B \wedge C$	$(A \land C) \lor (B \land C)$	Behauptung
1	0	0	1
2	0	0	1
3	0	0	1
4	1	1	1
5	0	0	1
6	0	1	1
7	0	0	1
8	1	1	1

TABELLE 96. 1. Teil 2. Beweis des Distributivgesetzes von Konjunktion und Disjunktion

Aussage/ Fall Nr.	$A \vee B$	$(A \vee B) \wedge C$	$A \wedge C$	$B \wedge C$
1	$\neg (A \lor B)$	$\neg ((A \lor B) \land C)$	$\neg (A \land C)$	$\neg (B \land C)$
2	$\neg (A \lor B)$	$\neg ((A \lor B) \land C)$	$\neg (A \land C)$	$\neg (B \land C)$
3	$A \vee B$	$\neg ((A \lor B) \land C)$	$\neg (A \land C)$	$\neg (B \land C)$
4	$A \vee B$	$(A \lor B) \land C$	$\neg (A \land C)$	$B \wedge C$
5	$A \lor B$	$\neg ((A \lor B) \land C)$	$\neg (A \land C)$	$\neg (B \land C)$
6	$A \vee B$	$(A \lor B) \land C$	$A \wedge C$	$\neg (B \land C)$
7	$A \lor B$	$\neg ((A \lor B) \land C)$	$\neg (A \land C)$	$\neg (B \land C)$
8	$A \lor B$	$(A \lor B) \land C$	$A \wedge C$	$B \wedge C$

In Worten bedeutet dies, dass die Aussage A genau dann wahr ist, falls die Aussage A und die Aussage A wahr ist. Natürlich glaubst Du mir sofort, dass dieser Satz einerseits wahr, auf der anderen Seite völlig

TABELLE 97. 2. Teil 2. Beweis des Distributivgesetzes von Konjunktion und Disjunktion

Aussage/ Fall Nr.	$(A \land C) \lor (B \land C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C))$
1	$\neg ((A \land C) \lor (B \land C))$	$ \begin{array}{c} (A \Rightarrow (B \lor C)) \Leftrightarrow \\ ((A \land C) \lor (B \land C)) \end{array} $
2	$\neg ((A \land C) \lor (B \land C))$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C))$
3	$\neg ((A \land C) \lor (B \land C))$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C))$
4	$(A \land C) \lor (B \land C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C))$
5	$\neg ((A \land C) \lor (B \land C))$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C))$
6	$(A \land C) \lor (B \land C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C))$
7	$\neg \left((A \land C) \lor (B \land C) \right)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C))$
8	$(A \wedge C) \vee (B \wedge C)$	$ (A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C)) $

TABELLE 98. 1. Tabelle Verweise Beweis des Distributivgesetzes von Konjunktion und Konjunktion

Defintion/	Definition 17 der	Definition 13 der	Definition 13 der
Fall Nr.	Disjunktion	Konjunktion	Konjunktion
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	2. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

sinnlos ist. Nun ja, trotzdem möchte ich ihn hier aufschreiben, da ich einerseits wissen möchte, warum er gilt, andererseits möchte ich gelegentlich hier aufschreiben, wo dies benutzt werden kann. Dieser Satz kann übrigens gut als Beispiel dafür herangezogen werden, dass aus vernünftigen Annahmen (der Definition der Äquivalenz und der Konjunktion) Aussagen konstruiert werden können, welche dem Gefühl total entgegenlaufen. Dieser logische Satz ist aus meiner Sicht irgendwie

TABELLE 99. 2. Tabelle Verweise Beweis des Distributivgesetzes von Konjunktion und Konjunktion

Defintion/	Definition 13	Definition 17	Definition 19
Fall Nr.	der	der	der
rall Nr.	Konjunktion	Disjunktion	Äquivalenz
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	1. Zeile
3	1. Zeile	1. Zeile	1. Zeile
4	2. Zeile	2. Zeile	4. Zeile
5	1. Zeile	1. Zeile	1. Zeile
6	2. Zeile	4. Zeile	4. Zeile
7	1. Zeile	1. Zeile	1. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle 100. 1. Beweis des Satzes der Äquivalenz von Aussage und Konjunktion

Aussage/ Fall Nr.	$A \wedge A$	$\begin{array}{c} A \Leftrightarrow \\ (A \wedge A) \end{array}$
1	0	1
2	1	1

befremdend und seltsam. Und er ist auch ein logischer Satz, welcher genau eine logische Variable enthält. Auch das ist gewöhnungsbedürftig, wenn sozusagen etwas mit sich selbst verknüpft wird.

BEWEIS. Der Beweis soll zuerst rein sprachlich erfolgen, da genau eine Variable im logischen Satz enthalten ist. Ist A nicht wahr, dann ist auch dessen Konjunktion mit sich selbst gemäß der ersten Zeile der Definition 13 der Konjunktion nicht wahr. Also ist in diesem Fall die Äquivalenz von A zur Konjunktion von A mit sich selbst gemäß der ersten Zeile der entsprechenden Definition 19 der Äquivalenz wahr. Ist hingegen A das Symbol einer wahren Aussage, dann ist auch die Konjunktion von A mit sich selbst gemäß der vierten Zeile der Definition 13 der Konjunktion wahr. Somit ist auch die Äquivalenz von A mit der Konjunktion von A mit sich selbst gemäß der vierten Zeile der Definition 19 der Äquivalenz wiederum wahr. Darum ist der Satz insgesamt wahr, da er in allen denkbaren Fällen wahr ist.

Der Vollständigkeit halber soll der Beweis ebenfalls durch das Auflisten der Definitionen geführt werden (siehe Tabelle 100). Wenn die Behauptung bewiesen wird, indem die Aussagen hingeschrieben werden, dann gilt der Beweis, so wie er in der Tabelle 101 aufgeschrieben ist. Die Verweise des Beweises habe ich in die Tabelle 102 hingeschrieben.

TABELLE 101. 2. Beweis des Satzes der Äquivalenz von Aussage und Konjunktion

Aussage/ Fall Nr.	$A \wedge A$	$A \Leftrightarrow (A \land A)$
1	$\neg (A \land A)$	$A \Leftrightarrow (A \land A)$
2	$A \wedge A$	$A \Leftrightarrow (A \land A)$

Tabelle Verweise Beweis des Satzes der Äquivalenz von Aussage und Konjunktion

Defintion/ Fall Nr.	Definition 13 der Konjunktion	Definition 19 der Äquivalenz
1	1. Zeile	1. Zeile
2	4. Zeile	4. Zeile

Und weiter geht es jetzt mit dem nächsten logischen Satz.

20.16. Äquivalenz von Aussage und Disjunktion

Warum ist eine Aussage äquivalent zur Disjunktion mit sich selbst? Eigentlich könnte ich das letzte Kapitel kopieren und anpassen. Denn genau gleich, wie eine Aussage A äquivalent ist zur Konjunktion $A \wedge A$ mit sich selbst, ist A auch äquivalent zur Disjunktion $A \vee A$ mit sich selbst. Wieder gelten alle Vorbehalte (Für was soll das gut sein? Das wird doch nirgends benötigt). Und trotzdem möchte ich den logischen Satz formulieren und zu beweisen versuchen.

Satz 32. Es sei wie gewohnt A das Symbol für eine Aussage, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei sei. Dann gilt der logische Satz

$$A \Leftrightarrow (A \lor A)$$

Beweis. Ja, und wie beweise ich das jetzt? Ich nehme an, Du könntest dies "unter Umgehung des Großhirns¹⁷" beweisen. Nein, das geht natürlich nicht, das kann niemand. Es will jedoch andeuten, dass für die Ausübung der Mathematik die Gesetzmäßigkeiten und Definition verinnerlicht werden sollten. Jedoch denke ich, ist auch diese Art der Mathematik heute nicht mehr zeitgemäß. Heute geht es meines Erachtens mehr darum, den Stoff derart gut zu präsentieren, dass bloß noch gelernt werden muss, wo eine gute "Futterquelle" für mathematisches Wissen ist und bei Bedarf dieses angezapft werden kann. Und ja,

¹⁷Das will heißen: ohne darüber nachzudenken. Es gibt übrigens wirklich Reaktionen mit Muskeln, welche offenbar nicht vom Gehirn ausgelöst werden müssen. Das berühmteste diesbezügliche Beispiel sind Reflexe wie zum Beispiel der Kniesehnenreflex

Tabelle 103. 1. Beweis des Satzes der Äquivalenz von Aussage und Disjunktion

Aussage/ Fall Nr.	$A \lor A$	$A \Leftrightarrow (A \vee A)$
1	0	1
2	1	1

Tabelle 104. 2. Beweis des Satzes der Äquivalenz von Aussage und Disjunktion

Aussage/ Fall Nr.	$A \lor A$	$A \Leftrightarrow (A \vee A)$
1	$\neg (A \lor A)$	$A \Leftrightarrow (A \lor A)$
2	$A \lor A$	$A \Leftrightarrow (A \lor A)$

Tabelle Verweise Beweis des Satzes der Äquivalenz von Aussage und Disjunktion

Defintion/ Fall Nr.	Definition 17 der Disjunktion	Definition 19 der Äquivalenz
1	1. Zeile	1. Zeile
2	4. Zeile	4. Zeile

ich bin wieder abgeschweift. Zurück zum Thema: Ich möchte zeigen, dass wirklich jede Aussage A äquivalent zur Disjunktion der Aussage A zu sich selbst ist. Da wiederum nur eine logische Variable verwendet wird, möchte auch diesen Beweis rein sprachlich darlegen. Ist A nicht das Symbol einer wahren Aussage, dann ist gemäß der ersten Zeile der Definition 17 der Disjunktion die Disjunktion von A mit sich selbst nicht wahr. Darum ist auch gemäß der ersten Zeile der Definition 19 der Äguivalenz-Verknüpfung die Aussage A äguivalent zur Disjunktion von A mit sich selbst. Ist jedoch A das Symbol einer wahren Aussage, dann ist gemäß der vierten Zeile der Definition 17 der Disjunktion die Disjunktion von A mit sich selbst ebenfalls wahr. Gemäß der vierten Zeile der Definition 19 der Äquivalenz-Verknüpfung ist dann A äquivalent zur Disjunktion von A mit sich selbst. Da jetzt für alle denkbaren Fälle gezeigt wurde, dass die Aussage, dass A äquivalent zur Disjunktion von A mit sich selbst ist, darf ich schreiben, dass die Behauptung bewiesen wurde. Den Beweis habe ich in der Tabelle 103 noch einmal aufgeschrieben. Wenn die Behauptung bewiesen wird, indem die Aussagen hingeschrieben werden, dann gilt der Beweis, so wie er in den Tabellen 104 aufgeschrieben ist. Die Verweise der Beweise sind in der Tabelle 105 aufgeschrieben.

Tabelle 106. 1. Beweis des Satzes der Implikation von Aussage zu Aussage

Aussage/ Fall Nr.	$A \Rightarrow A$
1	1
2	1

Natürlich muss ich gegebenenfalls den Beweis nachliefern, dass dieser logische Satz auch wirklich verwendet wird. Aber im Moment bin ich um ein entsprechende Beispiel verlegen.

Und wieder kommt im nächsten Abschnitt ein Satz, dessen Bedeutung alles andere als einleuchtend ist.

20.17. Warum folgt die Aussage aus der Aussage?

Auf diesen Satz bin ich per Zufall gestoßen. Er ist eigentlich so bescheuert, dass ich grinsen musste, als ich ihn beim Überarbeiten des Textes wieder gelesen habe.

Satz 33. Es sei A ein Metasymbol einer Aussage, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei sei. Dann gilt

$$A \Rightarrow A$$

Beweis. Denn ist A eine Aussage, welche nicht wahr ist, dann gilt gemäß der 1. Zeile der Definition 14 der Implikation

$$A \Rightarrow A$$

Ist A eine wahre Aussage, welche wahr ist, dann gilt gemäß der 4. Zeile der Definition 14 der Implikation

$$A \Rightarrow A$$

Somit gilt für alle Aussage alle genügend widerspruchsfreien Aussagen und ich kann den Satz als bewiesen betrachten. Ich habe jedoch mir nicht nehmen lassen, den Beweis mittels Wahrheitstafeln zu beweisen. Dies habe ich in der Tabelle 106 aufgeschrieben. Wenn die Behauptung bewiesen wird, indem die Aussagen hingeschrieben werden, dann gilt der Beweis, so wie er in der Tabelle 107 aufgeschrieben ist. Die Verweise des Beweises habe ich in der Tabelle 108 hingeschrieben.

Ich möchte nun ein kleines Korollar dieses Satzes aufschreiben:

Korollar 34. Es sei A eine Aussage, welche in sich selber und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt

$$A \Leftrightarrow A$$

Tabelle 107. 2. Beweis des Satzes der Implikation von Aussage zu Aussage

Aussage/ Fall Nr.	$A \Rightarrow A$
1	$A \Rightarrow A$
2	$A \Rightarrow A$

Tabelle Verweise Beweis des Satzes der Äquivalenz von Aussage und Aussage

Aussage/ Fall Nr.	Definition 14 der Implikation
1	1. Zeile
2	4. Zeile

Beweis. Ist die Aussage A nicht wahr, dann gilt gemäß der ersten Zeile der Definition 19 der Äquivalenz die Aussage

$$A \Leftrightarrow A$$

Ist jedoch die Aussage A wahr, dann gilt gemäß der vierten Zeile der Definition 19 die Aussage

$$A \Leftrightarrow A$$

Da gemäß dem Satz 13 des ausgeschlossenen Dritten die Aussage A nur nicht wahr oder wahr ist, meine ich gezeigt, zu haben, dass für alle denkbaren Fälle gilt, dass die Aussage

$$A \Leftrightarrow A$$

wahr ist. Somit meine ich, den Beweis für die Richtigkeit der Behauptung des Korollars erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Bitte beachte, dass dieser Satz für sich selbst betrachtet relativ "sinnfrei¹⁸" ist. Sinn macht er erst, wenn er in beispielsweise im Zusammenhang einer logischen Umformung betrachtet wird. Siehe dazu beispielsweise den Abschnitt 78 über die Minimum- und Maximumsätze in der Logik.

20.18. Warum kommutiert die Konjunktion?

Und wieso soll dies wichtig sein? Und kann ich dabei von Kommutation sprechen? Eventuell hätte ich davon schreiben sollen, dass die Konjunktion symmetrisch sei. Ich habe schnell auf der entsprechenden Wikipedia-Seite gelinst (vergleiche dazu die entsprechende Bemerkung

 $^{^{18}}$ unsinnig, sinnlos

unter 1.8), und gesehen, dass da unbedarft¹⁹ von Kommutation geschrieben wird. Nun ja, wenn die sich getrauen, dann möchte ich auch von Kommutation sprechen - oder besser gesagt schreiben.

Sowohl die Addition wie auch die Multiplikation sind kommutativ. So gilt etwa (und das soll als beispielhafte Definition der Kommutation gelten):

$$5 \cdot 3 = 3 \cdot 5 = 15$$

 $8 + 13 = 13 + 8 = 21$

Kommutation oder eben keine Kommutation ist in der theoretischen Physik extrem wichtig. Eines der wichtigsten Dinge in der Physik, welche nicht kommutativ ist, ist die Aneinanderreihung von Drehungen, sofern die Drehachsen nicht in einer besonderen Beziehung zueinander stehen. Werden dann zwei Drehungen (welche geeignet definiert werden) nacheinander ausgeführt, dann macht es einen Unterschied, ob zuerst die eine und anschließend die andere oder zuerst die andere und dann die eine Drehung ausgeführt wird.

Um die erste Frage zu beantworten, wieso das wichtig sein soll, dass die Konjunktion kommutiert: Genau das macht die Mathematik aus. In der Mathematik geht es oft darum, bei neuen Begriffen zu überprüfen, welche Eigenschaften diese besitzen. Denn dieses Absuchen nach Eigenschaften erschließt oft neue Möglichkeiten, um Lösungen für bekannte Probleme zu finden.

Satz 35. Es seien also A respektive B Symbole für Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Beweises widerspruchsfrei seien. Dann gilt die Aussage

$$(A \wedge B) \Leftrightarrow (B \wedge A)$$

Nun ich nehme an, dass Du das auch so siehst. Dies umso mehr, als das Zeichen der Konjunktion (" \wedge ") ja ebenso gut weggelassen werden könnte. Und es dürfte bei genügend gutartigen Aussagen auch keine Rolle spielen, ob sie an erster oder zweiter Stelle aufgeschrieben werden. An dieser Stelle ist jedoch für mich wieder wichtig, zu zeigen, warum ich zu dieser Behauptung gelange.

BEWEIS. Die Behauptung $A \wedge B$ ist gemäß ihrer Definition 13 genau dann wahr, falls sowohl die Behauptung A wie auch die Behauptung B wahr ist. Die Behauptung $B \wedge A$ ist jedoch ebenfalls genau dann wahr, falls sowohl die Behauptung B wie auch die Behauptung A wahr ist (vergleiche mit der vierten Zeile der Definition 13 der Konjunktion, jedoch unter der Bedingung, dass die Variable A der Definition in die

¹⁹oder ein wenig nüchterner ausgedrückt: ohne zu zögern

Tabelle 109. 1. Beweis des Satzes der Kommutativität der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$B \wedge A$	$(A \land B) \Leftrightarrow (B \land A)$
1	0	0	1
2	0	0	1
3	0	0	1
4	1	1	1

Tabelle 110. 2. Beweis der Kommutativität der Kommutation

Aussage/ Fall Nr.	$A \wedge B$	$B \wedge A$	$(A \land B) \Leftrightarrow (B \land A)$
1	$\neg (A \land B)$	$\neg (B \land A)$	$(A \land B) \Leftrightarrow (B \land A)$
2	$\neg (A \land B)$	$\neg (B \land A)$	$(A \land B) \Leftrightarrow (B \land A)$
3	$\neg (A \land B)$	$\neg (B \land A)$	$(A \land B) \Leftrightarrow (B \land A)$
4	$A \wedge B$	$B \wedge A$	$(A \land B) \Leftrightarrow (B \land A)$

TABELLE 111. 1. Tabelle Verweise Beweis der Kommutation der Konjunktion

D.C/	Definition 13	Definition 13	Definition 19
Defintion/ Fall Nr.	der	der	der
rall Mi.	Konjunktion	Konjunktion	Äquivalenz
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	3. Zeile	1. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

Variable B und die Variable B der Definition in die Variable A umbenennt wird). Ist jedoch die Behauptung B wie auch die Behauptung A wahr, dann ist auch sowohl die Behauptung A wie auch die Behauptung B wahr. Das bedeutet jedoch, dass die Behauptung $A \land B$ im genau dem gleichen Fall wahr ist, in welchem die Behauptung $B \land A$ wahr ist. Das bedeutet jedoch, dass die beiden Behauptungen äquivalent sind und darum der Satz 35 wahr ist. Nun mir liegt viel daran, dass die Verhältnisse glasklar sind. Und darum möchte ich noch den tabellarischen Beweis nachholen. Dieser habe ich in den Tabellen 109 sowie 110 abgelegt. Die Verweise der Beweise sind in der Tabelle 111 aufgelistet.

Beispiel topologische Widersprüchlichkeit

Also gut, ich habe jetzt die Richtigkeit des obigen Satzes zu erbringen versucht. Dann möchte ich jetzt ein Beispiel zeigen, welches beweisen sollte, das dies nicht so einfach ist, wie ich es gerne hätte. Es sei A das Symbol für die Aussage: "Menschen leben". Diese Aussage ist

bestimmt so lange wahr, wie es jemanden gibt, welcher sich als Mensch bezeichnen würde. Und das sind im Moment doch einige (im Moment seien dies rund 7.6 Milliarden Menschen, sagt mir die entsprechende Webseite von Wikipedia). Die Aussage B sei das Symbol für die Aussage: "vorher wurde die Aussage mit dem Symbol A gefolgt von einem Symbol für die Konjunktion (" \wedge ") hingeschrieben. Dann stimmt zwar die Aussage

$$A \wedge B$$

Jedoch stimmt die Aussage

$$B \wedge A$$

eben gerade nicht. Denn diese Aussage lautet:

"Vorher wurde die Aussage "Menschen leben", gefolgt von einem Symbol für die Konjunktion (\land) hingeschrieben" \land "Menschen leben".

Also kann diese Aussage so nicht stimmen. Jedoch - und das ist der springende Punkt bei meinen Ausführungen - möchte ich betonen, dass ich diese Art von Widersprüchlichkeit in den Voraussetzungen abgefangen haben, indem ich von A und B verlangt habe, dass sie "weder in sich selbst noch bezüglich den anderen Symbolen des Satzes widersprüchlich seien. Ich möchte diese Art Widersprüchlichkeit eine "topologische Widersprüchlichkeit²⁰ nennen. Ich kann mir nun gut vorstellen, dass sich in Dir ein Widerspruch regt im Sinn von "Demarmels ist ein Scharlatan". Das kann ja sein. Aber ich möchte zu zeigen versuchen, dass die von mir vorgestellte elementare und naive Logik eben doch Pferdefüße derart besitzt, welche dazu führen, dass sie nicht vollständig in sich widerspruchsfrei ist. Schlussendlich möchte ich an dieser Stelle betonen, dass für die meisten praktischen Probleme diese Widersprüchlichkeit keine Rolle spielt. Und dass wir deswegen unsere Flinten nicht ins Korn werfen oder den Bettel hinschmeißen sollten. Sondern im Gegenteil mit viel Lust und Leidenschaft Mathematik und Logik betreiben sollten.

Nun möchte ich zeigen, dass auch die Disjunktion kommutativ ist. Zuvor möchte ich jedoch ein kleines Korollar beweisen:

Korollar 36. Es seien also A respektive B Symbole für Aussagen. Dann gilt die Aussage

$$\neg (A \land B) \Leftrightarrow \neg (B \land A)$$

Beweis. Ich möchte den Beweis für die Richtigkeit des Satzes mit Hilfe von Wahrheitstafeln zeigen. Ich habe die Beweise in den Tabellen 112 sowie den Tabellen 113 und 114 aufgeschrieben. Die Verweise der Beweise habe ich in den Tabellen 115 sowie 116 abgelegt.

²⁰Die Topologie kann sozusagen als die Wissenschaft der Lagebeziehungen aufgefasst werden.

TABELLE 112. 1. Beweis des Satzes der Kommutativität der Negation der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$\neg (A \land B)$	$B \wedge A$	$\neg (B \land A)$	$\neg (A \land B) \Leftrightarrow \\ \neg (B \land A)$
1	0	1	0	1	1
2	0	1	0	1	1
3	0	1	0	1	1
4	1	0	1	0	1

Tabelle 113. 1. Teil des 2. Beweis der Kommutativität der Negation der Kommutation

Aussage/ Fall Nr.	$A \wedge B$	$\neg (A \land B)$
1	$\neg (A \land B)$	$\neg (A \land B)$
2	$\neg (A \land B)$	$\neg (A \land B)$
3	$\neg (A \land B)$	$\neg (A \land B)$
4	$A \wedge B$	$\neg (\neg (A \land B))$

TABELLE 114. 2. Teil des 2. Beweis der Kommutativität der Negation der Kommutation

Aussage/ Fall Nr.	$B \wedge A$	$(\neg (B \land A))$	$\neg (A \land B) \Leftrightarrow \neg (B \land A)$
1	$\neg (B \land A)$	$(\neg (B \land A))$	$\neg (A \land B) \Leftrightarrow \\ \neg (B \land A)$
2	$\neg (B \land A)$	$(\neg (B \land A))$	$\neg (A \land B) \Leftrightarrow \\ \neg (B \land A)$
3	$\neg (B \land A)$	$(\neg (B \land A))$	$\neg (A \land B) \Leftrightarrow \\ \neg (B \land A)$
4	$B \wedge A$	$\neg (\neg (B \land A))$	$\neg (A \land B) \Leftrightarrow \\ \neg (B \land A)$

TABELLE 115. 1. Tabelle Verweise Beweis der Kommutation der Negation der Konjunktion

Defintion/	Definition 13	Definition 11
Fall Nr.	der	der
ran m.	Konjunktion	Negation
1	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	3. Zeile	1. Zeile
4	4. Zeile	2. Zeile

TABELLE 116. 2. Tabelle Verweise Beweis der Kommutation der Negation der Konjunktion

Defintion/	Definition 13	Definition 11	Definition 19
Fall Nr.	der	der	der
rall Nr.	Konjunktion	Negation	Äquivalenz
1	1. Zeile	1. Zeile	4. Zeile
2	3. Zeile	1. Zeile	4. Zeile
3	2. Zeile	1. Zeile	4. Zeile
4	4. Zeile	2. Zeile	1. Zeile

20.19. Warum kommutiert die Disjunktion?

Ja, es kommt auch noch dieser Satz. Denn dieser Satz ist genau gleich aufgebaut wie der vorhergehende. Ich muss zugeben, dass sich bei mir eine gewisse Ermüdung breitmacht, weil ich etwas auf ca. 300 Seite ausgewalzt habe, was in anderen Lehrbüchern auf einer Seite präsentiert wird. Macht das Sinn? Keine Ahnung, ich weiß es nicht. Jedoch möchte ich, dass alle die gleichen Chancen haben, und darum mache ich weiter im Text.

Satz 37. Es seien also A respektive B Symbole für zwei Aussagen. Dann gilt

$$(A \lor B) \Leftrightarrow (B \lor A)$$

wobei die Klammern gar nicht notwendig wären.

Um den

BEWEIS. sprachlich zu erledigen, möchte ich mich fragen, wann eine beiden Disjunktionen $A \vee B$ respektive $B \vee A$ nicht wahr sind. Dies ist in beide Fällen genau dann der Fall, wenn sowohl A wie auch B nicht wahr sind. Also ist in demjenigen Fall, in welchem sowohl B wie auch A nicht wahr sind, die Äquivalenz

$$(A \lor B) \Leftrightarrow (B \lor A)$$

gemäß der ersten Zeile der Definition 2 der Äquivalenz immer noch wahr. In anderen Fällen sind beide Aussagen $A\vee B$ wie auch $B\vee A$ wahr und somit gemäß der vierten Zeile der Definition der Äquivalenz die gesamte Aussage

$$(A \lor B) \Leftrightarrow (B \lor A)$$

ebenfalls wahr. Damit ist der Beweis jedoch erbracht.

Nun, dieser Beweis ist zwar wahr, jedoch irgendwie schwammig. Falls Du dich lieber auf klipp und klare Verweise abstützt, gebe ich Dir in den Tabellen 117 sowie 118 Gelegenheit, dies tabellarisch nachzuprüfen. In der Tabelle 119 werden die Verweise auf die Definitionen nachgeliefert.

Tabelle 117. 1. Beweis des Satzes der Kommutativität der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$B \lor A$	$(A \vee B) \Leftrightarrow (B \vee A)$
1	0	0	1
2	1	1	1
3	1	1	1
4	1	1	1

Tabelle 118. 2. Beweis der Kommutativität der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$B \vee A$	$(A \vee B) \Leftrightarrow (B \vee A)$
1	$\neg (A \lor B)$	$\neg (B \lor A)$	$(A \lor B) \Leftrightarrow (B \lor A)$
2	$A \lor B$	$B \vee A$	$(A \lor B) \Leftrightarrow (B \lor A)$
3	$A \lor B$	$B \vee A$	$(A \vee B) \Leftrightarrow (B \vee A)$
4	$A \lor B$	$B \vee A$	$(A \lor B) \Leftrightarrow (B \lor A)$

Tabelle 119. Verweise Beweis der Kommutation der Disjunktion

Defintion/	Definition 17	Definition 17	Definition 19
Fall Nr.	der	der	der
rall Mi.	Disjunktion	Disjunktion	Äquivalenz
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	3. Zeile	4. Zeile
3	3. Zeile	2. Zeile	4. Zeile
4	4. Zeile	4. Zeile	4. Zeile

20.20. Warum ist die Äquivalenz identitiv?

Warum nicht? Nein, das war jetzt keine gute Bemerkung. Also was ist "identitiv"? Ich möchte zwar die exakte Definition der Identivität erst nachfolgend in der Definition 160 definieren. An dieser Stelle sei verraten, was ich darunter meine:

Satz 38. Es sei A das Metasymbol einer Aussage, welche in sich selbst und in Bezug auf die anderen Symbole widerspruchsfrei sei. Dann gilt:

$$A \Leftrightarrow A$$

Beweis. Ist A das Symbol einer Aussage, welche nicht wahr ist, dann gilt gemäß der ersten Zeile der Definition 19 der Äquivalenz

$$A \Leftrightarrow A$$

Ist jedoch A das Symbol einer wahren Aussage, dann gilt gemäß der vierten Zeile der Definition 19 der Äquivalenz ebenfalls, dass

$$A \Leftrightarrow A$$

Also muss diese Aussage für alle denkbaren Aussagen gelten (gemäß dem Satz 13 des ausgeschlossenen Dritten kann es ja keine andere logischen Aussagen geben). Darum glaube ich, die Richtigkeit des Behauptung an dieser Stelle erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Warum überhaupt dieser Satz? Weil er dazu dient, zu zeigen, dass die Äquivalenz eine Äquivalenzrelation ist. Aber dies möchte ich unter dem Satz 171 weiter unten zeigen. Natürlich könnte jetzt die Idee aufkommen, dass alle Verknüpfungen identitiv seien. Das ist jedoch nicht der Fall. Falls es Dich interessiert: Schaue doch unter dem Satz 162 nach.

Und weiter geht es zum nächsten logischen Satz.

20.21. Warum kommutiert die Äquivalenz?

Dass die Äquivalenz kommutiert, ist wahrscheinlich schnell einmal erkannt. Trotzdem möchte ich zeigen, dass dem tatsächlich so ist:

Satz 39. Es seien A, B die Symbole zweier Aussagen, welche in sich selbst beziehungsweise in Bezug auf die anderen Symbole des Beweises widerspruchsfrei seien. Dann gilt

$$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$$

Beweis Zuerst einmal möchte ich den Beweis sprachlich ergründen: A und B sind genau dann äquivalent, falls beide Aussagen wahr oder nicht wahr sind. Sind beide Aussagen A sowie B wahr, dann ist gemäß der vierten Zeile der Definition 19 der Äquivalenz die Aussage

$$A \Leftrightarrow B$$

wahr. Also ist in diesem Fall wiederum gemäß der vierten Zeile der Definition 19 der Äquivalenz ebenso die Aussage

$$B \Leftrightarrow A$$

wahr. Somit muss gemäß wiederum gemäß der vierten Zeile der Äquivalenz die Aussage

$$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$$

wahr sein. Daum meine ich, die Behauptung in diesem Fall bewiesen zu haben.

Sind jedoch A und B nicht wahr, dann ist gemäß der ersten Zeile der Definition 19 der Äquivalenz die Aussage

$$A \Leftrightarrow B$$

nicht wahr. Also ist gemäß der ersten Zeile der Definition 19 der Äquivalenz ebenso die Aussage

$$B \Leftrightarrow A$$

wiederum wahr. Somit ist gemäß der vierten Zeile der Definition 19 der Äquivalenz wiederum die Aussage

$$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$$

wiederum wahr. Die Behauptung des Satzes kann nur dann gemäß der zweiten und dritten Zeile der Definition 19 der Äquivalenz nicht wahr sein, falls eine der Aussagen

$$A \Leftrightarrow B$$

oder

$$B \Leftrightarrow A$$

nicht wahr, die andere jedoch wahr ist. Es sei nun die Aussage

$$A \Leftrightarrow B$$

wahr. Dann müssten entweder beide Aussagen A wie auch B nicht wahr sein oder beide Aussagen wahr sein. Sind jedoch die Aussagen A und B nicht wahr, dann müsste gemäß der erste Zeile der Definition 19 der Äquivalenz die Aussage

$$B \Leftrightarrow A$$

ebenfalls wahr sein - im Widerspruch der Voraussetzung, dass diese Aussage eben nicht wahr sein darf. Darum ist dieser Fall nicht möglich. Sind jedoch sowohl die Aussagen A und B beide wahr, dann müsste auch gemäß der vierten Zeile der Definition 19 auch die Aussage

$$B \Leftrightarrow A$$

wahr sein. Also kann auch dieser Fall nicht wahr sein.

Nun sei die Aussage

$$A \Leftrightarrow B$$

nicht wahr, die Aussage

$$B \Leftrightarrow A$$

jedoch wahr. Wiederum müssten in diesem Fall sowohl die Aussagen B wie auch A nicht wahr oder wahr sein. Sind sowohl die Aussagen B wie auch A nicht wahr, dann muss gemäß der ersten Zeile der Definition 19 der Äquivalenz die Aussage

$$A \Leftrightarrow B$$

eben trotzdem wahr sein - jedoch entgegen der Voraussetzung, dass diese Aussage nicht wahr sein darf. Sind jedoch sowohl die Aussagen B wie auch A wahr, dann muss gemäß der vierten Zeile der Definition 19 der Äquivalenz die Aussage

$$A \Leftrightarrow B$$

Tabelle 120. 1. Beweis des Satzes der Kommutativität der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$B \Leftrightarrow A$	$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$
1	1	1	1
2	0	0	1
3	0	0	1
4	1	1	1

Tabelle 121. 2. Beweis der Kommutativität der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$B \Leftrightarrow A$	$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$
1	$A \Leftrightarrow B$	$B \Leftrightarrow A$	$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$
2	$\neg (A \Leftrightarrow B)$	$\neg (B \Leftrightarrow A)$	$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$
3	$\neg (A \Leftrightarrow B)$	$\neg (B \Leftrightarrow A)$	$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$
4	$A \Leftrightarrow B$	$B \Leftrightarrow A$	$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$

eben wiederum wahr sein. Aber die dies ist wiederum ein Widerspruch zur Voraussetzung, dass die Aussage

$$A \Leftrightarrow B$$

nicht wahr sein darf. Damit hätte ich auch in diesem Fall gezeigt, dass es nicht möglich ist, zwei Aussagen mit den Symbolen A wie auch B derart zu finden, dass die Aussage

$$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$$

nicht wahr ist. Gemäß der abgeschwächten Form des Satzes 12 der doppelten Negation kann ich nun folgen, dass die Aussage der Behauptung für alle Aussagen, welche hinreichend widerspruchsfrei in sich selbst und in Bezug der anderen Aussagen sind, wahr sein muss.

Also denke ich, dass damit der Beweis erbracht ist. Der Vollständigkeit halber möchte ich jedoch den Beweis tabellarisch beweisen (siehe Tabellen 120 respektive 121, für die Verweise des Beweise siehe 122).

Nun möchte ich zeigen, dass die Konjunktion nicht bloß kommutativ, sondern ebenfalls assoziativ ist.

20.22. Warum ist die Konjunktion assoziativ?

Kommutativität und Assoziativität sind so Begriffe, welche oft gesagt werden, deren Sinn aber vielleicht irgendwie schleierhaft ist. Ich möchte den Satz der Assoziativität der Konjunktion zuerst einmal formulieren:

Defintion/ Fall Nr.	Definition 19 der Äquivalenz	Definition 19 der Äquivalenz	Definition 19
1	1. Zeile	1. Zeile	4. Zeile
2	2. Zeile	3. Zeile	1. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

Tabelle 122. Verweise Beweis der Kommutation der Äquivalenz

Satz 40. Es seien A, B sowie C Symbole von Aussagen, welche in sich selber und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien . Dann gilt die Aussage

$$(A \wedge B) \wedge C \Leftrightarrow A \wedge (B \wedge C)$$

BEWEIS. Ich habe ja bei der Einführung der Konjunktion unter dem Abschnitt 10 bemerkt, dass das Symbol der Konjunktion ebenso gut weggelassen werden könnte. Somit hätte ich den Beweis bereits erbracht, auch wenn der Beweis irgendwie schwammig bleibt. Darum möchte ich den Beweis noch mittels Wahrheitstafeln erbringen. Diesen habe ich in den Tabellen 123 einerseits und 124 sowie 125 andererseits abgelegt. Die Verweise der Beweise habe ich in den Tabellen 126 sowie 127 abgelegt.

Weil meine Ausführungen jetzt noch ein wenig mager sind, möchte ich mich zusätzlich noch an einen sprachlichen Beweis der Behauptung wagen. Angenommen, die Behauptung sei nicht wahr. Dann müsste es Aussagen mit den Symbolen $A,\,B$ sowie C derart geben, dass die Aussage

$$(A \wedge B) \wedge C \Leftrightarrow A \wedge (B \wedge C)$$

nicht wahr ist. Also müsste entweder die Aussage

$$(A \wedge B) \wedge C$$

wahr, die Aussage

$$A \wedge (B \wedge C)$$

jedoch nicht wahr sein. Oder aber die Aussage

$$(A \wedge B) \wedge C$$

nicht wahr und die Aussage

$$A \wedge (B \wedge C)$$

wahr sein. Dann muss ich zeigen, dass beide Fälle einen Widerspruch beinhalten. Angenommen, die Aussage

$$(A \wedge B) \wedge C$$

sei wahr. Dies ist gemäß der Definition 13 der Konjunktion nur dann der Fall, falls sowohl die Aussage

$$A \wedge B$$

wie auch die Aussage C wahr sind. Die Aussage

$$A \wedge B$$

ist jedoch gemäß der Definition 13 der Konjunktion nur dann der Fall, falls sowohl die Aussage A wie auch die Aussage B wahr sind. Insgesamt kann ich also aussagen, dass die Aussage

$$(A \wedge B) \wedge C$$

nur dann wahr ist, wenn alle drei Aussagen A,B wie auch C wahr sind. Dann muss jedoch gemäß der vierten Zeile der Definition 13 der Konjunktion die Aussage

$$B \wedge C$$

wahr sein. Ebenfalls gemäß der gleichen vierten Zeile der Definition 13 der Konjunktion muss in diesem Fall die Aussage

$$A \wedge (B \wedge C)$$

wahr sein. Dies ist jedoch ein Widerspruch der Voraussetzung, dass die Aussage

$$A \wedge (B \wedge C)$$

nicht wahr ist. Somit kann dieser Fall nie eintreten.

Genau gleich kann ich argumentieren, um zu zeigen, dass es nicht möglich ist, dass die Aussage

$$(A \wedge B) \wedge C$$

nicht wahr, die Aussage

$$A \wedge (B \wedge C)$$

jedoch wahr ist. Die Aussage

$$A \wedge (B \wedge C)$$

ist gemäß der Definition 13 der Konjunktion nur dann wahr, falls die Aussagen A und $B \wedge C$ wahr sind. Die Aussage

$$B \wedge C$$

ist gemäß der gleichen Definition 13 der Konjunktion nur dann wahr, falls die Aussage B und C wahr sind. Somit ist auch diese Aussage nur dann wahr, falls alle drei Aussagen A, B sowie C wahr sind. Ist also die Aussage

$$A \wedge (B \wedge C)$$

wahr, dann müssen alle drei Aussagen A,B und C wahr sein. Also muss in diesem Fall gemäß der vierten Zeile der Definition 13 der Konjunktion die Aussage

$$A \wedge B$$

TABELLE 123, 1. Teil 1. Beweis des Satzes der Assozia-

	_	njunktion	ewels des	Catzos	dor 1	1550210	
issage/	4 A D	$(A \wedge B) \wedge$		$A \wedge$	\	D I	_

Aussage/ Fall Nr.	$A \wedge B$	$(A \wedge B) \wedge C$	$B \wedge C$	$(B \wedge C)$	Behauptung
1	0	0	0	0	1
2	0	0	0	0	1
3	0	0	0	0	1
4	0	0	1	0	1
5	0	0	0	0	1
6	0	0	0	0	1
7	1	0	0	0	1
8	1	1	1	1	1

wahr sein. Ebenso muss gemäß der gleichen Zeile der Definition 13 der Konjunktion die Aussage

$$(A \wedge B) \wedge C$$

wahr sein. Dies ist jedoch ein Widerspruch zur Voraussetzung, dass die Aussage

$$(A \wedge B) \wedge C$$

nicht wahr ist. Somit ist es ebenfalls nicht möglich, Aussagen A, B sowie C derart zu finden, dass die Aussage

$$A \wedge (B \wedge C)$$

wahr, die Aussage

$$A \wedge (B \wedge C)$$

jedoch nicht wahr ist. Somit glaube ich, für alle Fälle gezeigt zu haben, dass es nicht möglich ist, Aussagen mit den Symbolen A, B sowie C derart zu finden, dass die Behauptung nicht stimmt. Aufgrund der abgeschwächten Form des Satzes 12 der doppelten Negation behaupte ich, dass die Behauptung für alle in sich und in Bezug auf die anderen Symbole widerspruchsfreien Symbolen wahr sein muss. Also habe ich den Beweis für die Richtigkeit der Behauptung meines Erachtens gefunden und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Es hat sich in der Mathematik durchgesetzt, dass bei mathematischen Verknüpfungen, welche assoziativ sind, die Klammern weggelassen werden. Also kannst Du schreiben, falls A,B und C Symbole von Aussagen sind:

$$A \wedge B \wedge C$$

wenn Du die Aussage

$$(A \wedge B) \wedge C$$

Tabelle 124. 1. Teil 2. Beweis der Assoziativität der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$(A \wedge B) \wedge C$	$B \wedge C$
1	$\neg (A \land B)$	$\neg ((A \land B) \land C)$	$\neg (B \land C)$
2	$\neg (A \land B)$	$\neg ((A \land B) \land C)$	$\neg (B \land C)$
3	$\neg (A \land B)$	$\neg ((A \land B) \land C)$	$\neg (B \land C)$
4	$\neg (A \land B)$	$\neg ((A \land B) \land C)$	$B \wedge C$
5	$\neg (A \land B)$	$\neg ((A \land B) \land C)$	$\neg (B \land C)$
6	$\neg (A \land B)$	$\neg ((A \land B) \land C)$	$\neg (B \land C)$
7	$A \wedge B$	$\neg ((A \land B) \land C)$	$\neg (B \land C)$
8	$A \wedge B$	$(A \wedge B) \wedge C$	$B \wedge C$

Tabelle 125. 2. Teil 2. Beweis der Assoziativität der Konjunktion

Aussage/ Fall Nr.	$A \wedge (B \wedge C)$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
1	$\neg (A \land (B \land C))$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
2	$\neg (A \land (B \land C))$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
3	$\neg (A \land (B \land C))$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
4	$\neg (A \land (B \land C))$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
5	$\neg \left(A \wedge \left(B \wedge C \right) \right)$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
6	$\neg (A \land (B \land C))$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
7	$\neg \left(A \wedge \left(B \wedge C \right) \right)$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
8	$A \wedge (B \wedge C)$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$

oder die Aussage

$$A \wedge (B \wedge C)$$

meinst. Denn da ich oben gezeigt habe, das die letzteren beiden Ausdrücke gleichbedeutend sind, spielt es keine Rolle, ob die Klammern hingeschrieben werden oder nicht. Doch zurück zur ursprünglichen Frage: Was ist Assoziativität? Diese ist eigentlich eine spezielle Art von Kommutativität. Und zwar geht es im Fall der Konjunktion von zwei Aussagen eben um die Frage, ob der Wahrheitsgehalt der Konjunktion der Aussagen A, B sowie C davon abhängt, ob zuerst die Konjunktion von A und B gebildet wird und nachher die Konjunktion der Aussage

Tabelle Verweise Beweis der Assoziativität der Konjunktion

Defintion/	Definition 13	Definition 13	Definition 13
Fall Nr.	der	der	der
ran m.	Konjunktion	Konjunktion	Konjunktion
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	1. Zeile	3. Zeile
4	2. Zeile	2. Zeile	4. Zeile
5	3. Zeile	1. Zeile	1. Zeile
6	3. Zeile	2. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle 127. 2. Tabelle Verweise der Assoziativität der Konjunktion

Defintion/	Definition 13	Definition 19
Fall Nr.	der	der
ran m.	Konjunktion	Äquivalenz
1	1. Zeile	1. Zeile
2	1. Zeile	1. Zeile
3	1. Zeile	1. Zeile
4	2. Zeile	1. Zeile
5	3. Zeile	1. Zeile
6	3. Zeile	1. Zeile
7	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile

 $(A \wedge B)$ mit C gebildet wird (und somit die Aussage

$$D \equiv (A \wedge B) \wedge C$$

gebildet wird) oder ob zuerst die Konjunktion der Aussagen B und C gebildet wird (also die Aussage $B \wedge C$ gebildet wird) und anschließend die Konjunktion der Aussage A mit dieser Aussage und somit die Aussage

$$E \equiv A \wedge (B \wedge C)$$

gebildet wird. Oder, indem ich es noch einmal sprachlich zu fassen versuche, ob es auf die Reihenfolge der Verknüpfungen ankommt. Nun, im Fall der Konjunktion kann es intuitiv (gefühlsmäßig) darum leicht eingesehen werden, indem daran erinnert wird, dass das Symbol der Konjunktion ja gar nicht aufgeschrieben werden müsste.

20.23. Warum ist die Disjunktion assoziativ?

Genau auf die gleiche Art, wie die Konjunktion assoziativ ist, es die Disjunktion auch. Darum habe ich den obigen Abschnitt zuerst einmal umkopiert und angepasst. Falls Du also einen entsprechenden Fehler in meiner Argumentation entdeckst, weißt Du also, wieso dem so ist.

Wiederum formuliere ich zuerst einmal den Satz der Assoziativität der Disjunktion:

Satz 41. Es seien A, B sowie C Symbole von Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt

$$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$$

BEWEIS. Und wieder möchte ich den Beweis mittels Wahrheitstafeln erbringen. Diesen habe ich in den Tabellen 128 einerseits und 129 sowie 130 andererseits abgelegt. Die Verweise der Beweise habe ich in den Tabellen 131 sowie 132 abgelegt. Beim Überarbeiten des Satzes habe ich mir gedacht, dass bloß mit stumpfen Nachschlagen der Definitionen der Beweis für die Richtigkeit des Satzes nur halb erbracht ist. Darum möchte ich an dieser Stelle versuchen, zu zeigen, dass es einen eleganteren Beweis geben müsse. Wäre die Disjunktion nicht assoziativ, dann müsste es eine Kombination der Aussagen mit den Symbolen A, B oder C derart geben, dass die Aussage

$$(A \vee B) \vee C$$

nicht wahr und die Aussage

$$A \vee (B \vee C)$$

wahr wäre oder umgekehrt die Aussage

$$(A \vee B) \vee C$$

wahr und die Aussage

$$A \vee (B \vee C)$$

nicht wahr wäre. Nun, dann möchte ich damit beginnen, mir zu überlegen, ob dann der erste Fall auftreten könnte. Wäre die Aussage

$$(A \vee B) \vee C$$

nicht wahr, dann könnte keine der drei Aussagen wahr sein. Nur in diesem Fall wäre die Aussage

$$(A \vee B) \vee C$$

nicht wahr. Genauer: Die Aussage

$$(A \vee B) \vee C$$

kann gemäß der Definition 17 der Disjunktion nur dann nicht wahr sein, falls weder die Aussage

$$A \vee B$$

noch die Aussage C wahr ist. Die Aussage

$$A \vee B$$

ist gemäß der gleichen Definition 17 der Disjunktion der Disjunktion nur dann nicht wahr, falls weder die Aussage A noch die Aussage B wahr ist. Zusammenfassend kann ich also schreiben, dass die Aussage

$$(A \lor B) \lor C$$

nur dann nicht wahr ist, falls keine der Aussagen A,B sowie C wahr ist. Also müsste in diesem Fall gemäß der ersten Zeile der Definition 17 der Disjunktion die Aussage

$$B \vee C$$

und somit aus dem genau gleichen Grund auch die Aussage

$$A \vee (B \vee C)$$

nicht wahr sein - entgegen der Annahme, dass die Aussage

$$A \lor (B \lor C)$$

wahr sein müsste. Somit kann der erste Fall nicht eintreten. Und auf die genau gleiche Art kann ich beweisen, dass auch der zweite Fall nicht eintreten kann: Die Aussage

$$A \vee (B \vee C)$$

kann gemäß der Definition 17 der Disjunktion nur dann nicht wahr sein, falls die Aussage A nicht wahr und die Aussage $B \vee C$ nicht wahr ist. Die Aussage $B \vee C$ kann wiederum gemäß der gleichen Definition 17 der Disjunktion nur dann nicht wahr sein, falls weder die Aussage B noch die Aussage C wahr ist. Also kann die Aussage

$$A \lor (B \lor C)$$

nur dann nicht wahr sein, falls keine der drei Aussagen A,B oder C nicht wahr ist. In diesem Fall kann jedoch die Aussage

$$A \vee B$$

immer noch gemäß der ersten Zeile der Definition 17 der Disjunktion ebenfalls nicht wahr sein. Da die Aussage C ja auch nicht wahr sein kann, kann in diesem Fall die Aussage

$$(A \vee B) \vee C$$

ebenfalls nicht wahr sein (auch immer noch gemäß der Definition 17 der Disjunktion). Also kann auch der zweite Fall nicht eintreten. Darum glaube ich gemäß der abgeschwächten Form des Satzes 13 des ausgeschlossenen Dritten schließen zu können, dass die Behauptung für alle möglichen Aussagen wahr sein muss. Somit glaube ich gezeigt zu haben, dass für alle Fälle gelten muss, dass die Aussage

$$A \lor (B \lor C) \Leftrightarrow (A \lor B) \lor C$$

TABELLE 128. 1. Teil 1. Beweis des Satzes der Assoziativität der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$(A \vee B) \vee C$	$B \lor C$	$(B \vee C)$	Behauptung
1	0	0	0	0	1
2	0	1	1	1	1
3	1	1	1	1	1
4	1	1	1	1	1
5	1	1	0	1	1
6	1	1	1	1	1
7	1	1	1	1	1
8	1	1	1	1	1

Tabelle 129. 1. Teil 2. Beweis der Assoziativität der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$(A \vee B) \vee C$	$B \lor C$
1	$\neg (A \lor B)$	$\neg ((A \lor B) \lor C)$	$\neg (B \lor C)$
2	$\neg (A \lor B)$	$(A \lor B) \lor C$	$B \lor C$
3	$A \lor B$	$(A \lor B) \lor C$	$B \lor C$
4	$A \lor B$	$(A \lor B) \lor C$	$B \lor C$
5	$A \lor B$	$(A \lor B) \lor C$	$\neg (B \lor C)$
6	$A \lor B$	$(A \lor B) \lor C$	$B \lor C$
7	$A \lor B$	$(A \lor B) \lor C$	$B \lor C$
8	$A \lor B$	$(A \lor B) \lor C$	$B \lor C$

wahr ist. Damit glaube ich gezeigt zu haben, dass ich den Beweis für die Richtigkeit meiner Aussage erbracht habe und beende an dieser Stelle die weitere Beweisführung.

Als Vereinfachung der Schreibweise kannst Du wiederum schreiben, falls A,B und C Symbole von Aussagen sind:

$$A \lor B \lor C$$

wenn Du

$$(A \lor B) \lor C$$

oder

$$A \vee (B \vee C)$$

meinst. Denn da ich oben gezeigt habe, das die letzteren beiden Ausdrücke gleichbedeutend sind, spielt es keine Rolle, ob die Klammern hingeschrieben werden oder nicht.

So, wie ich die letzten vier Abschnitte geschrieben habe, könntest Du den Eindruck bekommen, dass eigentlich alle logischen Verknüpfungen kommutativ und assoziativ sein müssten. Das ist jedoch

Tabelle 130. 2. Teil 2. Beweis der Assoziativität der Disjunktion

Aussage/ Fall Nr.	$A \vee (B \vee C)$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
1	$\neg (A \lor (B \lor C))$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
2	$A \vee (B \vee C)$	$(A \vee B) \vee C \Leftrightarrow A \vee (B \vee C)$
3	$A \vee (B \vee C)$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
4	$A \vee (B \vee C)$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
5	$A \vee (B \vee C)$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
6	$A \vee (B \vee C)$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
7	$A \vee (B \vee C)$	$(A \vee B) \vee C \Leftrightarrow A \vee (B \vee C)$
8	$A \vee (B \vee C)$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

Tabelle 131. 1. Tabelle Verweise Beweis der Assoziation der Disjunktion

Defintion/ Fall Nr.	Definition 17 der Disjunktion	Definition 17 der Disjunktion	Definition 17 der Disjunktion
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	3. Zeile	3. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	3. Zeile	1. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

nicht der Fall. Denn beispielsweise die Implikation ist weder kommutativ noch assoziativ. Es seien A,B Metasymbole von logischen Aussagen welche in sich selbst und in Bezug auf die anderen Symbole des folgenden Abschnitts widerspruchsfrei sei. Ist A das Symbol einer wahren Aussage, B jedoch das Symbol keiner wahren Aussage, dann ist gemäß der dritten Zeile der Definition 14 der Implikation die Aussage

TABELLE 132. 2. Tabelle Verweise Beweis des Distributivgesetzes von Konjunktion und Konjunktion

Defintion/	Definition 17	Definition 19
Fall Nr.	der	der
ran m.	Disjunktion	Äquivalenz
1	1. Zeile	1. Zeile
2	2. Zeile	4. Zeile
3	2. Zeile	4. Zeile
4	2. Zeile	4. Zeile
5	3. Zeile	4. Zeile
6	4. Zeile	4. Zeile
7	4. Zeile	4. Zeile
8	4. Zeile	4. Zeile

nicht wahr. Hingegen ist die Aussage

$$B \Rightarrow A$$

gemäß der zweiten Zeile der Definition 14 der Implikation wahr. Also muss in diesem Fall gelten, dass gilt

$$(A \land \neg B) \Rightarrow (\neg ((A \Rightarrow B) \Leftrightarrow (B \Rightarrow A)))$$

und somit die Implikation nicht kommutativ ist. Es seien nun A,B,C Symbole von Aussagen, wobei A,B und C nicht wahr seien. Dann ist die Aussage

$$(A \Rightarrow B) \Rightarrow C$$

nicht wahr. Denn gemäß der ersten Zeile der Definition 14 der Implikation ist die Aussage $A \Rightarrow B$ zwar wahr. Also ist die Aussage

$$(A \Rightarrow B) \Rightarrow C$$

gemäß der dritten Zeile der Definition 14 nicht wahr. Jedoch ist die Aussage

$$A \Rightarrow (B \Rightarrow C)$$

wahr, da die Aussage

$$B \Rightarrow C$$

in diesem Fall gemäß der ersten Zeile der Definition 14 der Implikation wiederum wahr ist. Also ist die Aussage

$$A \Rightarrow (B \Rightarrow C)$$

gemäß der zweiten Zeile der Definition 14 der Implikation wieder wahr. Somit gilt in diesem Fall die Aussage

$$(\neg A \land \neg B \land \neg C) \Rightarrow (\neg (((A \Rightarrow B) \Rightarrow C) \Leftrightarrow (A \Rightarrow (B \Rightarrow C))))$$

Damit habe ich auch gezeigt, dass die Implikation nicht assoziativ ist. Ich möchte noch ein weiteres Beispiel einer Verknüpfung geben, welche nicht assoziativ ist. Es gilt

$$(10-3)-1=7-1=6$$

jedoch

$$10 - (3 - 1) = 10 - 2 = 8$$

und darum kann ich schreiben

$$(10-3)-1 \neq 10-(3-1)$$

Eine strenge formale Definition der Assoziativität werde ich unter 172 aufzuschreiben versuchen. Die Assoziativität und Kommutativität ist wichtig, um logische Ausdrücke zu vereinfachen. Aber wenn ich Dir keine Beispiele liefere, dann ist diese Aussage von mir relativ sinnlos. In der Mathematik geht es jedoch immer auch darum, alle Eigenschaften zu überprüfen. Wenn auf einem Gebiet der Mathematik Eigenschaften definiert werden, dann können diese Eigenschaften auf andere Gebiete der Mathematik zu übertragen versucht werden. Gelingt es, dann können erstaunliche Aussagen erzeugt werden. Das ist die eigentliche Schönheit der Mathematik. Dass die Mathematik zu einem Spiel wird, in welchem überraschende Zusammenhänge gelten. Aber ich müsste auch hier sinnvolle Beispiele liefern können.

Jetzt kommen meines Erachtens interessantere logische Sätze, welche wirklich ab und an angewendet werden können.

20.24. Minimumprinzip der Konjunktion

Ich möchte an dieser Stelle zeigen, dass das Minimumprinzip der Konjunktion auch als logischer Sätze formuliert und bewiesen werden kann. Ich möchte gleich beginnen zu zeigen, was ich damit meine:

Lemma 42. Es seien A und B Bezeichnungen für Aussagen, welche in sich selber und in Bezug auf andere Symbole und Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$\neg A \Rightarrow \neg (A \land B)$$

Beweis. Angenommen, die Aussage sei nicht wahr. Dann müsste es gemäß der dritten Zeile der Definition 14 der Implikation Aussagen mit den Bezeichnungen A sowie B derart geben, dass die Aussage $\neg A$ wahr, die Aussage

$$\neg (A \land B)$$

jedoch nicht wahr ist. Gemäß dem Satz 11 der doppelten Negation wäre in diesem Fall die Aussage

$$A \wedge B$$

wahr. Dies würde jedoch gemäß der vierten Zeile der Definition 13 der Konjunktion bedeuten, dass die Aussage A wahr sein müsste. Denn in

Tabelle 133. 1. Beweis 1. Teil Minimumprinzip Konjunktion

Aussage/ Fall Nr.	$\neg A$	$A \wedge B$	$\neg (A \land B)$	Behauptung
1	1	0	1	1
2	1	0	1	1
3	0	0	1	1
4	0	1	0	1

Tabelle 134. 2. Beweis 1. Teil Minimumprinzip Konjunktion

Aussage/ Fall Nr.	$\neg A$	$A \wedge B$	$\neg (A \land B)$		\Rightarrow
1	$\neg A$	$\neg (A \land B)$	$\neg (A \land B)$		\Rightarrow
2	$\neg A$		$\neg (A \land B)$		\Rightarrow
3	$\neg (\neg A)$	$\neg (A \land B)$	$\neg (A \land B)$	$\neg A \\ (A \land B)$	\Rightarrow
4	$\neg (\neg A)$	$A \wedge B$	$\neg \left(\neg \left(A \land B\right)\right)$	$ \begin{array}{c} \neg A \\ (A \wedge B) \end{array} $	\Rightarrow

allen anderen Fällen (falls die Aussage A nicht wahr ist oder dass die Aussage B wahr ist), ist eben die Aussage

$$A \wedge B$$

nicht wahr. Da die Aussage A wahr ist, ist jedoch die Aussage $\neg A$ nicht wahr. Somit ist gemäß der ersten Zeile der Definition 14 der Implikation im Widerspruch zur Voraussetzung eben doch wahr. Also ist es nicht möglich, Aussagen mit den Bezeichnungen A sowie B derart zu finden, dass die Behauptung nicht wahr ist. Gemäß der abgeschwächten Form des Satzes 12 der doppelten Negation folgere ich daraus, dass die Behauptung eben richtig sein muss.

Damit meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben. Damit alles seine Richtigkeit hat, werde ich den Beweis noch in Form von Wahrheitstabellen erbringen. Diesen habe ich in der Tabelle 133 auf die übliche Art und in der Tabelle 133 auf meine Art erbracht. Die Verweise habe ich in den Tabellen 135 sowie 136 aufgeschrieben. Damit erlaube ich mir, die weitere Beweisführung an dieser Stelle zu beenden.

Nun möchte ich den zweiten Teil des Minimumprinzip der Konjunktion formulieren und beweisen:

Lemma 43. Es seien A sowie B Bezeichnungen für Aussagen, welche in sich selber und in Bezug auf die anderen Aussagen des Lemmas

TABELLE 135. Verweise des 1. Teil des Minimumprinzip der Konjunktion

Defintion/ Fall Nr.	Definition 11 der Negation	Definition 13 der Konjunktion
1	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile
3	2. Zeile	3. Zeile
4	2. Zeile	4. Zeile

TABELLE 136. 2. Teil Verweise des Beweises des Satzes der Konjunktion mit nicht wahrer Aussage

Defintion/ Fall Nr.	Definition 11 der Negation	Definition 14 der Implikaton
1	1. Zeile	4. Zeile
2	1. Zeile	4. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile

widerspruchsfrei seien. Dann gilt die Aussage:

$$\neg B \Rightarrow \neg (A \land B)$$

BEWEIS. Wiederum nehme ich an, dass es Aussagen mit den Bezeichnungen A sowie B derart geben würde, dass die Behauptung nicht wahr sei. Dann müsste gemäß der dritten Zeile der Definition 14 der Implikation die Aussage $\neg B$ wahr, die Aussage $\neg (A \land B)$ jedoch nicht wahr sein. Es müsste also gelten:

$$\neg \left(\neg \left(A \wedge B \right) \right)$$

Gemäß dem Satz 11 der doppelten Negation ist dies gleichbedeutend mit der Aussage, dass die Aussage

$$A \wedge B$$

wahr ist. Gemäß der Definition 13 der Konjunktion ist dies nur dann möglich, falls die Aussage A wie auch die Aussage B wahr ist. Da die Aussage B wahr ist, muss die Aussage $\neg B$ gemäß der zweiten Zeile der Definition 13 aber nicht wahr sein. Das bedeutet jedoch gemäß der zweiten Definition 14 der Implikation, dass die Aussage

$$\neg B \Rightarrow \neg (A \land B)$$

im Widerspruch zur Voraussetzung eben doch war wäre. Also ist es nicht möglich, Aussagen mit den Bezeichnungen A sowie B derart zu finden, dass die Behauptung nicht wahr ist. Gemäß der abgeschwächten

Tabelle 137. 1. Beweis 2. Teil Minimumprinzip Konjunktion

Aussage/ Fall Nr.	$\neg B$	$A \wedge B$	$\neg (A \land B)$	Behauptung
1	1	0	1	1
2	0	0	1	1
3	1	0	1	1
4	0	1	0	1

Tabelle 138. 2. Beweis 2. Teil Minimumprinzip Konjunktion

Aussage/ Fall Nr.	$\neg B$	$A \wedge B$	$\neg (A \land B)$	$ \begin{array}{cc} \neg A & \Rightarrow \\ (A \land B) \end{array} $
1	$\neg B$	$\neg (A \land B)$	$\neg (A \land B)$	$ \begin{array}{cc} \neg A & \Rightarrow \\ (A \land B) \end{array} $
2	$\neg (\neg B)$	$\neg (A \land B)$	$\neg (A \land B)$	
3	$\neg B$	$\neg (A \land B)$	$\neg (A \land B)$	
4	$\neg (\neg B)$	$A \wedge B$	$\neg \left(\neg \left(A \land B\right)\right)$	$ \begin{array}{cc} \neg A & \Rightarrow \\ (A \land B) \end{array} $

TABELLE 139. Verweise des 1. Teil des Minimumprinzip der Konjunktion Teil 1

Defintion/ Fall Nr.	Definition 11 der Negation	Definition 13 der Konjunktion
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	1. Zeile	3. Zeile
4	2. Zeile	4. Zeile

Form des Satzes 12 der doppelten Negation folgere ich daraus, dass die Behauptung eben richtig sein muss.

Damit meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben. Damit ich den Satz noch einmal unabhängig beweisen kann, werde ich diesen noch einmal mittels Wahrheitstafeln zu beweisen versuchen. Den Beweis habe ich in der Tabelle 137 so aufgeschrieben, wie er üblicherweise aufgeschrieben wird. Andererseits habe ich ihn in der Tabelle 137 auf meine Art aufgeschrieben. In der Tabelle 139 habe ich die Verweise des Satzes aufgeschrieben.

Tabelle 140.	Verweise des 1.	Teil des l	Minimumprinzip
der Konjunktio	n Teil 2		

Defintion/ Fall Nr.	Definition 11 der	Definition 13 der
ran Nr.	Negation	Konjunktion
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	1. Zeile	3. Zeile
4	2. Zeile	4. Zeile

Das Minimumprinzip lässt sich verallgemeinern. Dies möchte ich jedoch in aller Ausführlichkeit im Teil über natürliche Zahlen aufschreiben. An dieser Stelle möchte ich bloß skizzieren, wie ich das Prinzip auf drei Aussagen auszuweiten.

Lemma 44. Es seien A, B oder C Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$\neg A \lor \neg B \lor \neg C \Rightarrow \neg (A \land B \land C)$$

BEWEIS. Angenommen, das Lemma wäre nicht wahr. Dann müsste es Aussagen, welche mit A,B sowie C bezeichnet werden sollen, derart geben, dass die Aussage

$$\neg (A \land B \land C)$$

nicht wahr ist, die Aussage $\neg A \lor \neg B \lor \neg C$ jedoch wahr ist. Gemäß dem Satz 11 der doppelten Negation ist die Aussage

$$\neg (\neg (A \land B \land C))$$

gleichbedeutend zur Aussage

$$A \wedge B \wedge C$$

Diese Aussage ist jedoch nur dann wahr, falls alle drei Aussagen wahr sind. Das ist jedoch ein Widerspruch zur Aussage, dass eine der Aussagen A,B oder C nicht wahr ist. Darum schließe ich, dass es keine Aussagen, welche mit den Buchstaben A,B wie auch C bezeichnet werden sollen, derart gibt, dass die Aussage

$$\neg A \lor \neg B \lor \neg C \Rightarrow \neg (A \land B \land C)$$

nicht wahr ist. Gemäß dem abgeschwächten Satz 12 der doppelten Negation folgere ich daraus, dass die Behauptung wahr ist. Ich möchte den Beweis noch mittels Wahrheitstafeln erbringen. Diesen habe ich in der üblichen Art in den Tabellen 141, 142 sowie 143 abgelegt. Auf die eigene Art habe ich ihn in den Tabellen 144, 145 sowie 146 abgelegt. Die Verweise der Beweise habe ich in den Tabellen 147, 148 sowie 149

TABELLE 141. 1. Teil 1. Beweis Minimumprinzip Konjunktion mit drei Argumenten

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$\boxed{\neg A \vee \neg B}$
1	1	1	1
2	1	1	1
3	1	0	1
4	1	0	1
5	0	1	1
6	0	1	1
7	0	0	0
8	0	0	0

TABELLE 142. 2. Teil 1. Beweis Minimumprinzip Konjunktion mit drei Argumenten

Aussage/ Fall Nr.	$\neg C$	$\neg A \vee \neg B \vee \neg C$	$A \wedge B$
1	1	1	0
2	0	1	0
3	1	1	0
4	0	1	0
5	1	1	0
6	0	1	0
7	1	1	1
8	0	0	1

abgelegt. Und noch eine kleine Schlussbemerkung: Es wäre nicht nur eine Implikation, sondern eine Äquivalenz, welche ich beweisen könnte. Aber den Beweis dieser Behauptung lasse ich für einmal sein. Da ich nun meine, den Beweis für die Richtigkeit des Beweises der Behauptung erbracht zu haben, erlaube ich mir, auf die Fortführung der weiteren Beweisführung an dieser Stelle zu verzichten und diesen stattdessen zu beenden.

Damit möchte ich gleich zum nächsten Satz wechseln.

20.25. Was ist der Satz der Negation der Konjunktion?

Es gilt der Satz, dass die Negation der Konjunktion zweier Aussagen die Disjunktion der jeweiligen Negationen der zwei Aussagen sind. Hast Du nicht begriffen, was ich damit meine? Ja, ich würde das auch

TABELLE 143. 3. Teil 1. Beweis Minimumprinzip Konjunktion mit drei Argumenten

Aussage/ Fall Nr.	$(A \wedge B) \wedge C$	$\neg ((A \land B) \land C)$	Behauptung
1	0	1	1
2	0	1	1
3	0	1	1
4	0	1	1
5	0	1	1
6	0	1	1
7	0	1	1
8	1	0	1

TABELLE 144. 1. Teil 2. Beweis Minimumprinzip Konjunktion mit drei Argumenten

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$\neg A \lor \neg B$
1	$\neg A$	$\neg B$	$\neg A \lor \neg B$
2	$\neg A$	$\neg B$	$\neg A \lor \neg B$
3	$\neg A$	$\neg (\neg B)$	$\neg A \lor \neg B$
4	$\neg A$	$\neg (\neg B)$	$\neg A \lor \neg B$
5	$\neg (\neg A)$	$\neg B$	$\neg A \lor \neg B$
6	$\neg (\neg A)$	$\neg B$	$\neg A \lor \neg B$
7	$\neg (\neg A)$	$\neg (\neg B)$	$\neg (\neg A \lor \neg B)$
8	$\neg (\neg A)$	$\neg (\neg B)$	$\neg (\neg A \lor \neg B)$

TABELLE 145. 2. Teil 2. Beweis Minimumprinzip Konjunktion mit drei Argumenten

Aussage/ Fall Nr.	$\neg C$	$\neg A \vee \neg B \vee \neg C$	$A \wedge B$
1	$\neg C$	$\neg A \lor \neg B \lor \neg C$	$\neg (A \land B)$
2	$\neg (\neg C)$	$\neg A \lor \neg B \lor \neg C$	$\neg (A \land B)$
3	$\neg C$	$\neg A \lor \neg B \lor \neg C$	$\neg (A \land B)$
4	$\neg (\neg C)$	$\neg A \lor \neg B \lor \neg C$	$\neg (A \land B)$
5	$\neg C$	$\neg A \lor \neg B \lor \neg C$	$\neg (A \land B)$
6	$\neg (\neg C)$	$\neg A \lor \neg B \lor \neg C$	$\neg (A \land B)$
7	$\neg C$	$\neg A \lor \neg B \lor \neg C$	$A \wedge B$
8	$\neg (\neg C)$	$\neg (\neg A \lor \neg B \lor \neg C)$	$A \wedge B$

nicht. Damit Du siehst, was ich meine, möchte ich den Satz formal 21 aufschreiben.

²¹will heißen: als Formel

TABELLE 146. 3. Teil 2. Beweis Minimumprinzip Konjunktion mit drei Argumenten

Aussage/ Fall Nr.	$(A \land B) \land C$	$\neg \left((A \land B) \land C \right)$	$\neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C)$
1	$\neg (A \land B) \land C$	$\neg ((A \land B) \land C)$	$ \neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C) $
2	$\neg (A \land B) \land C$	$\neg \left((A \land B) \land C \right)$	$ \neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C) $
3	$\neg (A \land B) \land C$	$\neg \left((A \land B) \land C \right)$	$ \neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C) $
4	$\neg (A \land B) \land C$	$\neg \left((A \land B) \land C \right)$	$ \neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C) $
5		$\neg ((A \land B) \land C)$	$ \neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C) $
6		$\neg \left(\left(A \wedge B \right) \wedge C \right)$	$ \neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C) $
7		$\neg ((A \land B) \land C)$	$ \neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C) $
8	$(A \wedge B) \wedge C$	$\neg (\neg ((A \land B) \land C))$	$ \neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C) $

TABELLE 147. 1. Teil Verweise Minimumprinzip Konjunktion mit drei Argumenten

Defintion/	Definition 11	Definition 11	Definition 17
Fall Nr.	der	der	der
ran ivi.	Negation	Negation	Disjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	1. Zeile	4. Zeile
3	1. Zeile	2. Zeile	3. Zeile
4	1. Zeile	2. Zeile	3. Zeile
5	2. Zeile	1. Zeile	2. Zeile
6	2. Zeile	2. Zeile	2. Zeile
7	2. Zeile	2. Zeile	1. Zeile
8	2. Zeile	2. Zeile	1. Zeile

Satz 45. Es seien A sowie B Symbole für Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(\neg (A \land B)) \Leftrightarrow ((\neg A) \lor (\neg B))$$

TABELLE 148. 2. Teil Verweise Minimumprinzip Konjunktion mit drei Argumenten

Defintion/	Definition 11	Definition 17	Definition 13
Fall Nr.	der	der	der
ran m.	Negation	Disjunktion	Konjunktion
1	1. Zeile	4. Zeile	1. Zeile
2	2. Zeile	3. Zeile	1. Zeile
3	1. Zeile	4. Zeile	2. Zeile
4	2. Zeile	3. Zeile	2. Zeile
5	1. Zeile	4. Zeile	3. Zeile
6	2. Zeile	3. Zeile	3. Zeile
7	1. Zeile	2. Zeile	4. Zeile
8	2. Zeile	1. Zeile	4. Zeile

TABELLE 149. 3. Teil Verweise Minimumprinzip Konjunktion mit drei Argumenten

Defintion/	Definition 13	Definition 11	Definition 14
Fall Nr.	der	der	der
ran m.	Konjunktion	Negation	Implikation
1	1. Zeile	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	1. Zeile	1. Zeile	4. Zeile
4	2. Zeile	1. Zeile	4. Zeile
5	1. Zeile	1. Zeile	4. Zeile
6	2. Zeile	1. Zeile	4. Zeile
7	3. Zeile	1. Zeile	4. Zeile
8	4. Zeile	2. Zeile	1. Zeile

BEWEIS. Ich möchte umgehend einen Beweis liefern. Da die Konjunktion der Aussagen A sowie B gemäß der vierten Zeile der Definition 13 der Konjunktion genau dann wahr ist, wenn die Aussage A wie auch die Aussage B wahr sind, ist also die Negation der Konjunktion der Aussagen A und B gemäß der zweiten Zeile der Definition 11 der Negation nur dann nicht wahr, falls beide Aussagen wahr sind. Auf der anderen Seite ist gemäß der ersten Zeile der Definition 17 der Disjunktion auch die Aussage $(\neg A) \lor (\neg B)$ nur dann nicht wahr, falls sowohl die Aussage A sowie die Aussage B wahr sind. Denn ist eine der beiden Aussagen A oder B nicht wahr, dann ist deren Negation gemäß der ersten Zeil der Definition 11 der Negation wahr und somit gemäß dem Maximumprinzip 13 der Disjunktion die gesamte Aussage. Doch was heißt dies genau? Angenommen, die Aussage A sei nicht wahr. Dann ist die Negation der Aussage A (die Aussage $\neg A$) gemäß der ersten

Tabelle 150. 1. Beweis des Satzes der Negation der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$\neg (A \land B)$	$\neg A$	$\neg B$
1	0	1	1	1
2	0	1	1	0
3	0	1	0	1
4	1	0	0	0

Tabelle 151. 1. Beweis des Satzes der Negation der Konjunktion

Aussage/ Fall Nr.	$(\neg A) \lor (\neg B)$	Behauptung
1	1	1
2	1	1
3	1	1
4	0	1

TABELLE 152. 1. Teil 2. Beweis des Satzes der Negation der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$\neg (A \land B)$	$\neg A$	$\neg B$
1	$\neg (A \land B)$	$\neg (A \land B)$	$\neg A$	$\neg B$
2	$\neg (A \land B)$	$\neg (A \land B)$	$\neg A$	$\neg (\neg B)$
3	$\neg (A \land B)$	$\neg (A \land B)$	$\neg (\neg A)$	$\neg B$
4	$A \wedge B$	$\neg (\neg (A \land B))$	$\neg (\neg A)$	$\neg (\neg B)$

Zeile der Definition 11 der Negation wahr. Also ist gemäß dem Maximumprinzip 13 der Disjunktion die Aussage $\neg A \lor \neg B$ bereits wahr. Ebenfalls ist die Aussage $\neg A \lor \neg B$ gemäß dem Maximumprinzip 13 der Disjunktion ebenfalls bereits dann wahr, falls $\neg B$ wahr ist. Gemäß der Definition 11 der Negation kann in diesem Fall jedoch B nicht wahr sein. Das wollte ich jedoch genau zeigen. Zusammenfassend kann ich also schließen, dass sowohl die Aussage

$$\neg (A \land B)$$

wie auch die Aussage

$$(\neg A) \lor (\neg B)$$

genau dann nicht wahr sind, falls sowohl A wie auch B wahr sind. Darum glaube ich schließen zu dürfen, dass beide Aussagen äquivalent sind. Wieder möchte ich die Aussage jedoch auch mittels Wahrheitstabelle herleiten. Diese sind in den den Tabellen 150 und 151 einerseits sowie 152 und 153 andererseits abgelegt. Für die Verweise der Verknüpfungen siehe die Tabellen 154 zusammen mit der Tabelle 155.

TABELLE 153. 2. Teil 2. Beweis des Satzes der Negation der Konjunktion

Aussage/ Fall Nr.	$(\neg A) \lor (\neg B)$	$ \begin{array}{c} (\neg (A \land B)) & \Leftrightarrow \\ ((\neg A) \lor (\neg B)) & \end{array} $
1	$(\neg A) \lor (\neg B)$	$ \begin{array}{c} (\neg (A \land B)) & \Leftrightarrow \\ ((\neg A) \lor (\neg B)) & \end{array} $
2	$(\neg A) \lor (\neg B)$	$ \begin{array}{c} (\neg (A \land B)) & \Leftrightarrow \\ ((\neg A) \lor (\neg B)) & \end{array} $
3	$(\neg A) \lor (\neg B)$	$ \begin{array}{c} (\neg (A \land B)) & \Leftrightarrow \\ ((\neg A) \lor (\neg B)) & \end{array} $
4	$\neg ((\neg A) \lor (\neg B))$	$ \begin{array}{c} (\neg (A \land B)) & \Leftrightarrow \\ ((\neg A) \lor (\neg B)) & \end{array} $

TABELLE 154. 1. Teil Verweise des Beweises des Satzes der Negation der Konjunktion

Defintion/	Definition 13	Definition 11	Definition 11
Fall Nr.	der	der	der
rall IVI.	Konjunktion	Negation	Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	1. Zeile
3	3. Zeile	1. Zeile	2. Zeile
4	4. Zeile	2. Zeile	2. Zeile

Tabelle 155. 2. Teil Verweise des Beweises des Satzes der Negation der Konjunktion

Defintion/	Definition 11	Definition 17	Definition 19
Fall Nr.	der	der	der
ran nr.	Negation	Disjunktion	Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	3. Zeile	4. Zeile
3	1. Zeile	2. Zeile	4. Zeile
4	2. Zeile	1. Zeile	1. Zeile

Das Interessante an diesem Satz besteht meines Erachtens darin, dass er die Konjunktion mit der Disjunktion verknüpft.

20.26. Warum muss es unwahre Aussagen geben?

Nun, ich habe oben definiert, dass es wahre Aussagen gibt. Jedoch habe ich nichts über nicht wahre Aussage geschrieben. Obwohl in meiner täglichen Erfahrung auch unwahre Aussagen geben dürfte. Darum

Tabelle 156. 1. Beweis der Negation der Konjunktion der Aussage und ihrer Negation

Aussage/ Fall Nr.	$\neg A$	$A \wedge (\neg A)$	$\neg (A \land (\neg A))$
1	1	0	1
2	0	0	1

möchte ich an dieser Stelle zeigen, dass etwa für beliebige (in sich widerspruchsfreie) Aussagen A die Aussage

$$A \wedge \neg A$$

nie wahr sein kann. Dies möchte ich gerne ein wenig schärfer formulieren:

Satz 46. Es sei A das Symbol einer Aussage, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann muss gelten

$$\neg (A \land \neg A)$$

In Worten: Es kann nicht gleichzeitig A und die Negation von A wahr sein.

Das ist jedoch zu beweisen.

BEWEIS. Ist A das Symbol einer wahren Aussage, dann kann gemäß der zweiten Zeile der Definition 11 der Negation die Aussage $\neg A$ nicht wahr sein. Also kann aufgrund der dritten Zeile der Definition 13 der Konjunktion die Aussage $A \land \neg A$ nicht wahr sein. Ist jedoch A das Symbol einer nicht wahren Aussage, dann muss aufgrund der ersten Zeile der Definition 11 der Negation die Aussage $\neg A$ wahr sein. Also ist die Aussage $A \land \neg A$ wegen der zweiten Zeile der Definition 13 nicht wahr. Somit ist wiederum wegen der ersten Zeile der Definition 13 der Konjunktion die ganze Behauptung

$$\neg (A \land \neg A)$$

wahr. Damit ist jedoch die Behauptung bewiesen.

Doch was ist ein Beweis im Bereich Logik ohne Wahrheitstafeln? Eben. Darum möchte den Beweis mit Hilfe von Wahrheitstafeln erbringen. Die Beweise habe ich in den Tabellen 156 sowie 157 aufgeschrieben. Die Verweise der Beweise habe in der Tabelle 158 aufgelistet. Somit erachte ich den Beweis des Satzes als erwiesen und erlaube mir, den Beweis an dieser Stelle zu beenden.

Der Satz besagt, dass eine beliebige logische Aussage nicht gleichzeitig wahr und nicht wahr sein kann.

Also habe ich sozusagen meine Hausaufgaben gemacht, so wie ich es im Kapitel 7 versprochen habe. Die andere Frage ist natürlich, für was das gut sein soll. Eine andere Anwendung ist die Definition einer

TABELLE 157. 2. Beweis der Negation der Konjunktion der Aussage und ihrer Negation

Aussage/ Fall Nr.	$\neg A$	$A \wedge (\neg A)$	$\neg (A \land (\neg A))$
1	$\neg A$	$\neg (A \land (\neg A))$	$\neg (A \land (\neg A))$
2	$\neg (\neg A)$	$\neg (A \land (\neg A))$	$\neg (A \land (\neg A))$

Tabelle 158. Verweise des Satzes der Negation der Konjunktion der Aussage und ihrer Negation

Definition/	Definition 11	Definition 13	Definition 11
/	der	der	der
Fall Nr.	Negation	Konjunktion	Negation
1	1. Zeile	2. Zeile	1. Zeile
2	2. Zeile	3. Zeile	1. Zeile

Menge. Wenn ich eine wohldefinierte Menge M besitze, dann kann ich definieren

$$\phi = \left\{ x \in M \mid x \in M \land x \notin M \right\}$$

wobei ich diese Menge jedoch auch so schreiben könnte

$$\phi = \left\{ x \in M \mid x \notin M \right\}$$

Es gibt also eine Asymmetrie²² zwischen der Menge der wahren sowie der Menge der nicht wahren Aussagen: Währendem ich annehme, dass es wahre Aussagen gibt, beweise ich, dass es in diesem Fall nicht wahre Aussagen geben muss.

20.27. Was ist der Satz der Negation der Disjunktion?

Dieses Kapitel ist die Kopie zusammen mit den entsprechenden Anpassungen des Absatzes 20.25 über die Negation der Konjunktion. Das ist einerseits langweilig. Andererseits soll es an dieser Stelle trotzdem der Vollständigkeit halber aufgeschrieben werden.

Es gilt also wiederum der

Satz 47. Es seien A sowie B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt

$$(\neg (A \lor B)) \Leftrightarrow ((\neg A) \land (\neg B))$$

Für den

 $^{^{22}}$ eine Asymmetrie liegt in etwa dann vor, wenn zwei Dinge sich bezüglich einer bestimmen Eigenschaft unterscheiden

BEWEIS. der Äquivalenz möchte ich mir überlegen, wann die Aussagen $\neg (A \lor B)$ respektive $(\neg A) \land (\neg B)$ wahr sind. Die zweite Aussage ist gemäß der vierten Zeile der Definition 13 der Konjunktion genau dann wahr, falls weder A noch B wahr ist. Denn ist A oder B wahr, dann sind es die Aussagen $\neg A$ oder $\neg B$ gemäß der zweiten Zeile der Definition 11 der Negation nicht. Also ist gemäß dem Minimumprinzip 10 der Konjunktion auch bereits schon die Aussage

$$\neg A \land \neg B$$

Sind jedoch weder die Aussage A noch die Aussage B wahr, dann sind gemäß der ersten Zeile der Definition 11 der Negation die Aussagen $\neg A$ wie auch $\neg B$ wahr. Somit ist die Aussage

$$\neg A \land \neg B$$

gemäß der vierten Zeile der Definition 13 der Konjunktion wiederum wahr.

Jedoch ist auch die Aussage $\neg (A \lor B)$ nur dann wahr, falls weder die Aussage A noch die Aussage B wahr sind. Denn ist die Aussage A oder B wahr, dann ist wegen dem Maximumprinzip 13 der Disjunktion die Disjunktion bereits wahr. Also ist die Negation der Disjunktion in diesem Fall gemäß der zweiten Zeile der Definition 11 der Negation nicht wahr. Sind hingegen weder die Aussage A noch B wahr, dann ist es gemäß der ersten Zeile der Definition 17 der Disjunktion auch die Aussage $A \lor B$ nicht. Somit ist gemäß der ersten Zeile der Definition 11 der Negation die Aussage

$$\neg (A \lor B)$$

wahr. Also dürfen auch in der Aussage $\neg (A \lor B)$ weder die Aussage A noch die Aussage B wahr sein, soll die Aussage

$$\neg (A \lor B)$$

wahr ist.

Ich habe jetzt zu zeigen versucht, dass die beiden Aussagen genau dann wahr sind, falls weder A noch B wahr ist. Darum bin ich der Meinung den Beweis für die Richtigkeit der Behauptung mit sprachlichen Mitteln erbracht zu haben. Und auch diesen Beweis habe ich ebenso mit Hilfe von langweiligen Tabellen noch einmal erbracht: Siehe Tabelle 159 sowie die Tabellen 160 wie auch 161. Die Verweise habe ich in den Tabellen 162 respektive 163 "verstaut" (aufgelistet, um es weniger flapsig auszudrücken).

Vielleicht könntest Du Dich fragen, wo dann der Unterschied zum Satz der Negation der Konjunktion sein könnte? Der Unterschied ist meiner Ansicht nach derjenige, dass der Satz der Negation der Disjunktion nur dann wahr ist, falls die Aussagen A respektive B nicht wahr sind, der Satz der Negation der Konjunktion jedoch nur dann

TABELLE 159. 1. Beweis des Satzes der Negation der Disjunktion

	Aussage/ Fall Nr.	$A \lor B$	$\neg (A \lor B)$	$\neg A$	$\neg B$	$(\neg A) \wedge (\neg B)$	Behauptung
	1	0	1	1	1	1	1
	2	1	0	1	0	0	1
ſ	3	1	0	0	1	0	1
	4	1	0	0	0	0	1

Tabelle 160. 1. Teil 2. Beweis des Satzes der Negation der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$\neg (A \lor B)$
1	$\neg (A \lor B)$	$\neg (\neg (A \lor B))$
2	$A \vee B$	$\neg (A \lor B)$
3	$A \vee B$	$\neg (A \lor B)$
4	$A \lor B$	$\neg (A \lor B)$

TABELLE 161. 2. Teil 2. Beweis des Satzes der Negation der Disjunktion

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$(\neg A) \wedge (\neg B)$	$ \begin{array}{c} (\neg (A \lor B)) & \Leftrightarrow \\ ((\neg A) \land (\neg B)) & \end{array} $
1	$\neg A$	$\neg B$	$(\neg A) \wedge (\neg B)$	$ (\neg (A \lor B)) \Leftrightarrow ((\neg A) \land (\neg B)) $
2	$\neg A$	$\neg (\neg B)$	$\neg ((\neg A) \land (\neg B))$	$ \begin{array}{cc} (\neg (A \lor B)) & \Leftrightarrow \\ ((\neg A) \land (\neg B)) & \end{array} $
3	$\neg (\neg A)$	$\neg B$	$\neg ((\neg A) \land (\neg B))$	$ \begin{array}{c} (\neg (A \lor B)) \Leftrightarrow \\ ((\neg A) \land (\neg B)) \end{array} $
4	$\neg (\neg A)$	$\neg (\neg B)$	$\neg ((\neg A) \land (\neg B))$	$ (\neg (A \lor B)) \Leftrightarrow ((\neg A) \land (\neg B)) $

Tabelle 162. 1. Teil Verweise Beweis Negation der Disjunktion

Defintion/	Definition 17	Definition 11	Definition 11
Fall Nr.	der	der	der
ran m.	Disjunktion	Negation	Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	1. Zeile
3	3. Zeile	2. Zeile	2. Zeile
4	4. Zeile	2. Zeile	2. Zeile

Definition /	Definition 11	Definition 13	Definition 19
Defintion/ Fall Nr.	der	der	der
rall IVI.	Negation	Konjunktion	Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	3. Zeile	1. Zeile
3	1. Zeile	2. Zeile	1. Zeile
4	2. Zeile	1. Zeile	1. Zeile

Tabelle 163. 2. Teil Verweise Beweis Negation der Disjunktion

nicht wahr ist, falls die Aussagen A respektive B wahr sind. Insbesondere ist der Satz der Negation der Konjunktion auch in diesem Fall wahr, falls sowohl die Aussagen A wie auch B nicht wahr sind. Also folgt aus der NOR-Verknüpfung die NAND-Verknüpfung. Die Negation bewirkt also, dass die Disjunktion also restriktiver wird als die Konjunktion. Und so frage ich mich im Moment, wieso dann in den Computern trotzdem die Schaltungen offenbar häufiger mit NAND- als mit NOR-Verknüpfungen realisiert wurden. Denn je seltener ein Ausgang gesetzt wird, desto weniger Energie wird für die ganze Schaltung benötigt. Ich glaube jedoch nicht, dass dadurch bereits sicher ist, dass dadurch weniger Energie verheizt wird. Denn dies wäre nur dann der Fall, wenn alle Kombination der Variablen der Eingänge in den Gittern gleich häufig wären. Aber wer weiß. Vielleicht kommt einmal ein superstromsparender Compi auf den Markt, und nur wir wissen warum? 23

20.28. Was ist der Satz des Ausschlusses?

Er ist vor allem eines: Eine von mir gewählte Bezeichnung für einen Sachverhalt. Ich weiß nicht, wie der sonst heißen müsste. Ich meine damit folgenden Satz:

Satz 48. Es seien A respektive B Bezeichnungen für zwei Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt der Satz

$$((A \lor B) \land (\neg A)) \Rightarrow B$$

Dieser Satz ist irgendwie vergleichbar mit derjenigen Situation, in welcher Dir zwei Garagen gezeigt werden. Es werde Dir gesagt, dass in der einen Garage ein Auto enthalte sei und in der anderen Garage sei kein Auto enthalten. Die Türen zu den Garagen sind jedoch verschlossen. Es wird gesagt, dass Du ein Garagentor öffnen könnest. Falls sich dann ein Auto in der Garage befinde, dann könnest Du das Auto behalten. Du öffnest erwartungsfroh ein Garagentor - doch oh weh, da ist kein Auto hinter der Garagentüre vorhanden. Dann schließt Du blitzschnell, dass das Auto sich hinter der anderen Garagentür befinden

²³soll ein Witz sein

muss. Auch wenn das Beispiel total bescheuert tönt: Es ist eine vereinfachte Situation einer Wahrscheinlichkeitsaufgabe, welche ich zwar kenne, aber ehrlich gesagt, nicht wirklich begreife. Und zwar ist das Beispiel so aufgebaut, dass in drei Garagen ein Auto versteckt ist. Dann wählst Du eine Garage aus. Anschließend wird wird gesagt, hinter welchen anderen Tür sich kein Auto versteckt. Dann ist die Frage: Macht es Sinn, jetzt die dritte Garage auszuwählen, welche weder von Dir gewählt wurde noch nachträglich als leer bezeichnet wurde? Und die Antwort ist: Ja, dann wird die Chance größer, das Auto tatsächlich zu finden. Aber das ist eine andere Geschichte.

Der Witz am Satz des Ausschlusses ist derjenige, dass Du gar nicht zeigen musst, dass B wahr ist, sondern dass A nicht wahr ist. Dieser Gedankengang wird häufig in der Mathematik beschritten. Es stellt sich wiederum die Frage, warum der Satz des Ausschlusses gültig sein muss. Dass der Satz des Ausschlusses gilt, möchte ich zuerst mittels den folgenden Überlegungen zeigen:

Beweis. (des Satzes des Ausschlusses) Es sei die Aussage

$$((A \lor B) \land (\neg A)) \Rightarrow B$$

nicht wahr. Dies könnte gemäß der dritten Zeile der Definition 14 der Implikation nur dann geschehen, falls die Aussage

$$(A \lor B) \land (\neg A)$$

wahr, die Aussage B jedoch nicht wahr ist. Jedoch müsste in diesem Fall die Aussage

$$(A \vee B) \wedge (\neg A)$$

im Widerspruch zur Voraussetzung nicht wahr sein. Denn die Aussage

$$(A \vee B) \wedge (\neg A)$$

könnte gemäß der vierten Zeile der Definition 13 der Konjunktion nur dann wahr sein, falls die Aussage $\neg A$ nicht wahr wäre. Also müsste gemäß der Definition 11 der Negation die Aussage A nicht wahr sein. Denn wäre die Aussage A wahr, dann wäre gemäß der Definition 11 die Aussage $\neg A$ nicht wahr. Wäre jedoch die Aussage A nicht wahr, dann wäre gemäß der Definition 11 der Negation die Aussage $\neg A$ wahr. Wären jedoch sowohl die Aussage A wie auch die Aussage B nicht wahr, dann müsste gemäß der ersten Zeile der Definition 17 der Disjunktion die Aussage $A \lor B$ ebenfalls nicht wahr sein. Also könnte gemäß der zweiten Zeile der Definition 13 der Konjunktion die Aussage

$$(A \vee B) \wedge (\neg A)$$

nicht wahr sein. Gemäß der Abkürzungsregeln 11 der Implikation wäre darum die gesamte Aussage

$$((A \lor B) \land (\neg A)) \Rightarrow B$$

Tabelle 164. 1. Beweis des Satzes des Ausschlusses

Aussage/ Fall Nr.	$A \lor B$	$\neg A$	$(A \vee B) \wedge (\neg A)$	Behauptung
1	0	1	0	1
2	1	1	1	1
3	1	0	0	1
4	1	0	0	1

Tabelle 165. 1. Teil 2. Beweis des Satzes des Ausschlusses

Aussage/ Fall Nr.	$A \lor B$	$\neg A$
1	$\neg (A \lor B)$	$\neg A$
2	$A \lor B$	$\neg A$
3	$A \lor B$	$\neg (\neg A)$
4	$A \lor B$	$\neg (\neg A)$

Tabelle 166. 2. Teil 2. Beweis des Satzes des Ausschlusses

Aussage/ Fall Nr.	$(A \vee B) \wedge (\neg A)$	Behauptung
1	$\neg ((A \lor B) \land (\neg A))$	$((A \lor B) \land (\neg A)) \Rightarrow B$
2	$(A \vee B) \wedge (\neg A)$	$((A \lor B) \land (\neg A)) \Rightarrow B$
3	$\neg ((A \lor B) \land (\neg A))$	$((A \lor B) \land (\neg A)) \Rightarrow B$
4	$\neg ((A \lor B) \land (\neg A))$	$((A \lor B) \land (\neg A)) \Rightarrow B$

im Gegensatz zur Voraussetzung eben doch wahr. Also ist es nicht möglich, dass es Aussagen A sowie B derart gibt, dass die Aussage

$$((A \lor B) \land (\neg A)) \Rightarrow B$$

nicht wahr ist. Darum meine ich gezeigt zu haben, dass die Aussage

$$((A \lor B) \land (\neg A)) \Rightarrow B$$

für alle möglichen Aussagen immer wahr ist.

Nun gut, das war jetzt eine schwammige textliche Begründung, wieso der Satz des Ausschlusses gelten müsste. Ich möchte jetzt noch einen "harten" Beweis liefern. Die Beweise sind in den Tabellen 164, 165 sowie 166 aufgelistet. Die Verweise habe ich in den Tabellen 167 sowie 168 abgelegt.

Ich hatte übrigens einmal die Idee, dass ich zeigen könne, dass ich anstelle von B im Satz des Ausschlusses die Aussage $\neg A$ verwenden könne. Die Idee war, zu zeigen: Wenn ich zeigen kann, $\neg (\neg A)$ gilt,

Tabelle 167. 1. Teil Verweise Beweis Satz des Ausschlusses

Defintion/	Definition 17	Definition 11
Fall Nr.	der Disjunktion	der Negation
1	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	3. Zeile	2. Zeile
4	4. Zeile	2. Zeile

TABELLE 168. 2. Teil Verweise Beweis Satz des Ausschlusses

Def./	Definition 13	Definition 14
Fall Nr.	der	der
ran IVI.	Konjunktion	Implikation
1	2. Zeile	1. Zeile
2	4. Zeile	4. Zeile
3	3. Zeile	1. Zeile
4	3. Zeile	2. Zeile

dass dann A gilt. Aber das Resultat war enttäuschend. Denn die resultierende Aussage erhält die Form

$$(A \lor \neg A) \land \neg A \Rightarrow \neg A$$

Da die Aussage $A \vee \neg A$ immer wahr ist, kann ich stattdessen schreiben

$$\neg A \Rightarrow \neg A$$

Das ist jedoch ebenso banal. Eine Alternative wäre wenn ich anstelle von B die Aussage A und anstelle von A die Aussage $\neg A$ verwenden würde. Das Resultat wäre dann

$$(\neg A \lor A) \lor \neg (\neg A) \Rightarrow A$$

Dies könnte ich wiederum abkürzen zur Aussage

$$\neg (\neg A) \Rightarrow A$$

Doch das wäre auch nicht so berauschend. Denn das könnte ich auch als Folgerung des Satzes 11 der doppelten Negation verstehen. Aber wieso eigentlich nicht? Ich probiere es einmal:

Satz 49. Es sei A das Symbol einer Aussage, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei sei. Dann gilt die Aussage

$$\neg (\neg A) \Rightarrow A$$

Beweis. Angenommen, dieser Satz sei falsch. Dann müsste gemäß der dritten Zeile der Definition 14 der Implikation die Aussage

$$\neg (\neg A)$$

Tabelle 169. 1. Beweis des Satzes der Folgerung der Aussage aus der der doppelten Negation

Aussage/ Fall Nr.	$\neg A$	$\neg (\neg A)$	$\neg (\neg A) \Rightarrow A$
1	1	0	1
2	0	1	1

Tabelle 170. 2. Beweis des Satzes der Folgerung der Aussage aus der der doppelten Negation

Aussage/ Fall Nr.	$\neg A$	$\neg (\neg A)$	$\neg (\neg A)$
1	$\neg A$	$\neg (\neg (\neg A))$	$\neg (\neg A)$
2	$\neg (\neg A)$	$\neg (\neg A)$	$\neg (\neg A)$

wahr, die Aussage

A

jedoch nicht wahr sein. Gemäß dem Satz 11 der doppelten Negation ist jedoch die Aussage

$$\neg (\neg A)$$

genau dann wahr, falls es die Aussage

A

ebenfalls ist. Das wäre jedoch ein Widerspruch zur Voraussetzung, dass die Aussage A nicht wahr sein kann. Also schließe ich daraus, dass es keine Aussage A derart geben kann, dass die Aussage

$$\neg (\neg A) \Rightarrow A$$

nicht wahr sein kann. Zusammen mit dem Satz 13 des ausgeschlossenen Dritten schließe ich daraus, dass für alle (genügend widerspruchsfreien) Aussagen die Aussage

$$\neg (\neg A) \Rightarrow A$$

eben trotzdem wahr sein muss. Darum glaube ich, den Beweis für die Richtigkeit des Satzes erbracht zu haben. Trotzdem möchte ich den Satz noch zusätzlich mit Hilfe der der Wahrheitstabellen beweisen.

20.29. Äquivalenz als zwei Implikationen

Jetzt kann ich den Satz 24 umformulieren, so wie ich es eigentlich schon viel früher hätte tun müssen. Bevor ich ihn jedoch formuliere und zu beweisen versuche, möchte ich Dich darauf hinweisen, dass der Beweis ein neues Element besitzt. Ich möchte versuchen, mit logischen Umformungen den Beweis herzuleiten. Allerdings weiß ich nicht, ob

Tabelle	171.	Verweise	des	Satzes	der	Folgerung	der
Aussage au	ıs der	der dopp	elte	n Negat	ion		

Definition/	Definition 11	Definition 11	Definition 14
Fall Nr.	der	der	der
rall Nr.	Negation	Negation	Implikation
1	1. Zeile	2. Zeile	1. Zeile
2	2. Zeile	1. Zeile	4. Zeile

mir dies gelingt. In der Physik und in der Mathematik gilt die unausgesprochene Regel: Für neue Aussagen oder Vermutungen darfst Du sämtliche Regeln brechen. Da muss nur die Lösung einigermaßen plausibel sein. Jedoch musst Du (oder müsstest Du, falls Du Dich an die Regeln halten willst) beim Beweis sehr pedantisch sein. Dass ich im Beweis die etwas schwammigen Umformungen vornehme, kann ich eigentlich nur dadurch begründen, dass ich den Beweis unabhängig von den logischen Umformungen zusätzlich mit Wahrheitstafeln zu beweisen versuche. Doch urteile selbst:

Satz 50. Es seien A, B Symbole von Aussagen, welche in sich selbst sowie in Bezug auf die anderen Symbole des Beweises widerspruchsfrei seien. Dann gilt:

$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$$

Beweis. Gemäß dem Satz 23 kann ich schreiben:

$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (A \Leftarrow B)$$

Da die Konjunktion gemäß dem Satz 35 kommutativ ist, kann ich schreiben:

$$(A \Rightarrow B) \land (A \Leftarrow B) \Leftrightarrow (A \Leftarrow B) \land (A \Rightarrow B)$$

Gemäß dem Satz 16 der Transitivität der Äquivalenz kann ich schreiben:

$$(A \Leftrightarrow B) \Leftrightarrow (A \Leftarrow B) \land (A \Rightarrow B)$$

Gemäß dem Satz 24 gilt (nach entsprechender Umbenennung)

$$(A \Leftarrow B) \Leftrightarrow (B \Rightarrow A)$$

Nun kann ich, da diese Aussage für alle sinnvollen Aussagen A wie auch B wahr ist, gemäß der ersten Zeile der erweiterten Minimum- und Maximumsätze 79 der Logik schreiben:

$$(A \Leftarrow B) \land (A \Rightarrow B) \Leftrightarrow (A \Leftarrow B) \land (A \Rightarrow B) \land ((A \Leftarrow B) \Leftrightarrow (B \Rightarrow A))$$

Wiederum kann ich schreiben, das die Äquivalenz gemäß dem Satz 24 transitiv ist:

$$(A \Leftrightarrow B) \Leftrightarrow (A \Leftarrow B) \land (A \Rightarrow B) \land ((A \Leftarrow B) \Leftrightarrow (B \Rightarrow A))$$

TABELLE 172. 1. Teil 1. Beweis des Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	$B \Rightarrow A$
1	1	1	1
2	0	1	0
3	0	0	1
4	1	1	1

Nun kann ich gemäß dem Substitutionssatz 96 der Konjunktion schreiben:

$$((A \Leftarrow B) \land (A \Rightarrow B) \land ((A \Leftarrow B) \Leftrightarrow (B \Rightarrow A))) \Leftrightarrow ((B \Rightarrow A) \land (A \Rightarrow B) \land ((A \Leftarrow B) \Leftrightarrow (B \Rightarrow A)))$$

Wieder nehme ich den Satz 16 der Äquivalenz zu Hilfe und erhalte die Aussage

$$(A \Leftrightarrow B) \Leftrightarrow ((B \Rightarrow A) \land (A \Rightarrow B) \land ((A \Leftarrow B) \Leftrightarrow (B \Rightarrow A)))$$

Da die Aussage

$$(A \Leftarrow B) \Leftrightarrow (B \Rightarrow A)$$

ein logischer Satz ist, kann ich wiederum gemäß der erweiterten Minimum- und Maximumsätze 79 der Logik schreiben:

$$((B \Rightarrow A) \land (A \Rightarrow B) \land ((A \Leftarrow B) \Leftrightarrow (B \Rightarrow A))) \Leftrightarrow (B \Rightarrow A) \land (A \Rightarrow B)$$

Erneut nehme ich den Satz 16 der Äquivalenz zu Hilfe und erhalte die Aussage

$$(A \Leftrightarrow B) \Leftrightarrow ((B \Rightarrow A) \land (A \Rightarrow B))$$

Dann kann ich wiederum den Satz 35 der Kommutativität anwenden und erhalte

$$(B \Leftarrow A) \land (A \Rightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$$

Zu guter Letzt kann ich noch einmal den Satz 16 der Transitivität der Äquivalenz anwenden und erhalte endlich die gewünschte Behauptung:

$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$$

Nun habe ich (sogar für meine Verhältnisse) den Beweis extrem langatmig bewiesen. Damit Du siehst, dass alles mit rechten Dingen zugeht, werde ich den Beweis noch einmal mit Hilfe von Wahrheitstafeln beweisen. Der Beweis habe ich einerseits in den Tabellen 172 sowie 173 einerseits und 174 sowie 175 andererseits abgelegt. Die Verweise habe ich in den Tabellen 176 sowie 177 abgelegt.

TABELLE 173. 2. Teil 1. Beweis des Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$(A \Rightarrow B) \land (B \Rightarrow A)$	Behauptung
1	1	1
2	0	1
3	0	1
4	1	1

TABELLE 174. 1. Teil 2. Beweis des Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	$B \Rightarrow A$
1	$A \Leftrightarrow B$	$A \Rightarrow B$	$B \Rightarrow A$
2	$\neg (A \Leftrightarrow B)$	$A \Rightarrow B$	$\neg (B \Rightarrow A)$
3	$\neg (A \Leftrightarrow B)$	$\neg (A \Rightarrow B)$	$B \Rightarrow A$
4	$A \Leftrightarrow B$	$A \Rightarrow B$	$B \Rightarrow A$

TABELLE 175. 2. Teil 2. Beweis des Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$(A \Rightarrow B) \land (B \Rightarrow A)$	$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$
1	$(A \Rightarrow B) \land (B \Rightarrow A)$	$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$
2	$\neg ((A \Rightarrow B) \land (B \Rightarrow A))$	$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$
3	$\neg ((A \Rightarrow B) \land (B \Rightarrow A))$	$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$
4	$(A \Rightarrow B) \land (B \Rightarrow A)$	$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$

TABELLE 176. 1. Teil Verweise Beweis des Satzes der Äquivalenz als zwei Implikationen

Defeation /	Definition 19	Definition 14	Definition 14
Defintion/ Fall Nr.	der	der	der
rall Mi.	Äquivalenz	Implikation	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	3. Zeile
3	3. Zeile	3. Zeile	2. Zeile
4	4. Zeile	4. Zeile	4. Zeile

Tabelle	177.	1. Teil	Verweise	Beweis	des	Satzes	der
Äquivalen	z als z	wei Im	plikatione	n			

Def./	Definition 14	Definition 19
Fall Nr.	der	der
ran Nr.	Implikation	Äquivalenz
1	4. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	4. Zeile

Es gibt noch einen alternativen Äquivalenzsatz, auf welche ich per Zufall gestoßen bin (welcher jedoch ebenfalls oft verwendet wird). Diesen möchte ich nun formulieren und beweisen:

Satz 51. Es seien A sowie B Bezeichnungen von Aussagen, welche weder in sich selber noch in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (\neg A \Rightarrow \neg B)$$

BEWEIS. Ich möchte zeigen, dass die Aussagen $A \Leftrightarrow B$ sowie $(A \Rightarrow B) \land (\neg A \Rightarrow \neg B)$ wahr sind. Die Aussage $A \Leftrightarrow B$ ist genau dann wahr, falls weder die Aussage A noch die Aussage B wahr sind oder sowohl die Aussage A wie auch die Aussage B wahr sind. Die Aussage

$$A \Rightarrow B$$

ist gemäß der dritten Zeile der Definition 14 der Implikation nur dann nicht wahr, falls die Aussage A wahr und die Aussage B nicht wahr ist. Die Aussage

$$\neg A \Rightarrow \neg B$$

ist entsprechend der gleichen dritten dritten Zeile der Definition 14 der Implikation nur dann nicht wahr, falls die Aussage $\neg A$ wahr und die Aussage $\neg B$ nicht wahr ist. Die Aussage $\neg A$ ist gemäß der ersten Zeile der Definition 11 der Negation wahr, falls die Aussage A nicht wahr ist. Die Aussage $\neg B$ ist gemäß der zweiten Zeile der Definition 11 der Negation nicht wahr, falls die Aussage B wahr ist. Also ist die Implikation

$$\neg A \Rightarrow \neg B$$

genau dann nicht wahr, falls die Aussage A nicht wahr, die Aussage B jedoch wahr ist. Somit ist die Aussage

$$(A \Rightarrow B) \land (\neg A \Rightarrow \neg B)$$

nicht wahr, falls die Aussage A nicht wahr und die Aussage B wahr ist oder falls die Aussage A wahr und die Aussage B wahr ist. Also ist die Aussage

$$(A \Rightarrow B) \land (\neg A \Rightarrow \neg B)$$

TABELLE 178. 1. Teil 1. Beweis des Satzes alternativen Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	$\neg A$	$\neg B$
1	1	1	1	1
2	0	1	1	0
3	0	0	0	1
4	1	1	0	0

TABELLE 179. 2. Teil 1. Beweis des Satzes alternativen Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Rightarrow B) & \land \\ (\neg A \Rightarrow \neg B) \end{array} $	Behauptung
1	1	1	1
2	0	0	1
3	1	0	1
4	1	1	1

TABELLE 180. 1. Teil 2. Beweis des Satzes alternativen Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	$\neg A$	$\neg B$
1	$A \Leftrightarrow B$	$A \Rightarrow B$	$\neg A$	$\neg B$
2	$\neg (A \Leftrightarrow B)$	$A \Rightarrow B$	$\neg A$	$\neg (\neg B)$
3	$\neg (A \Leftrightarrow B)$	$\neg (A \Rightarrow B)$	$\neg (\neg A)$	$\neg B$
4	$A \Leftrightarrow B$	$A \Rightarrow B$	$\neg (\neg A)$	$\neg (\neg B)$

wahr, falls sowohl die Aussage A wie auch die Aussage B nicht wahr ist oder falls sowohl die Aussagen A wie auch B wahr sind. Also ist diese Aussage genau dann wahr, falls A und B äquivalent sind, also die Aussage

$$A \Leftrightarrow B$$

gilt. Damit glaube ich den Beweis für die Richtigkeit erbracht zu haben. Damit alles seine Richtigkeit hat, werde ich den Beweis mit Wahrheitstafeln erbringen. Die Beweise habe ich in den Tabellen 178 und 178 einerseits sowie 178 und 178 andererseits abgelegt. Die Verweise habe ich in den zwei Tabellen 178 sowie 178 abgelegt.

20.30. Implikation Implikation aus Äquivalenz

Nun, um was geht es wohl in diesem Abschnitt? Es ist der folgende, an und für sich banale Sachverhalt:

_

TABELLE 181. 1. Teil 2. Beweis des Satzes alternativen Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Rightarrow B) \land \\ (\neg A \Rightarrow \neg B) \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ ((A \Rightarrow B) & \land \\ (\neg A \Rightarrow \neg B)) \end{array} $
1	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Rightarrow B) \land \\ (\neg A \Rightarrow \neg B) \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ ((A \Rightarrow B) & \land \\ (\neg A \Rightarrow \neg B)) \end{array} $
2	$\neg (\neg A \Rightarrow \neg B)$	$\neg ((A \Rightarrow B) \land (\neg A \Rightarrow \neg B))$	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ ((A \Rightarrow B) & \land \\ (\neg A \Rightarrow \neg B)) \end{array} $
3	$\neg A \Rightarrow \neg B$	$\neg ((A \Rightarrow B) \land (\neg A \Rightarrow \neg B))$	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ ((A \Rightarrow B) & \land \\ (\neg A \Rightarrow \neg B)) \end{array} $
4	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Rightarrow B) \land \\ (\neg A \Rightarrow \neg B) \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ ((A \Rightarrow B) & \land \\ (\neg A \Rightarrow \neg B)) \end{array} $

Tabelle 182. 1. Teil Verweise Beweis alternativer Satz der Äquivalenz als zwei Implikationen

Defintion/	Definition 19	Definition 13	Definition 11	Definition 11
Fall Nr.	der	der	der	der
	Äquvialenz	Implikaton	Negation	Negation
1	1. Zeile	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	1. Zeile	2. Zeile
3	3. Zeile	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	4. Zeile	2. Zeile	2. Zeile

TABELLE 183. 2. Teil Verweise Beweis Satz des Ausschlusses

Defintion /	Definition 14	Definition 13	Definition 19
Defintion/ Fall Nr.	der	der	der
	Implikation	Konjunktion	Äquvialenz
1	4. Zeile	4. Zeile	4. Zeile
2	3. Zeile	3. Zeile	1. Zeile
3	2. Zeile	2. Zeile	1. Zeile
4	1. Zeile	4. Zeile	4. Zeile

Tabelle 184. 1. Beweis des Satzes der Implikation der Implikation aus der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	Behauptung
1	1	1	1
2	0	1	1
3	0	0	1
4	1	1	1

SATZ 52. Es seien A, B Metasymbole für Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$$

Beweis. Dieser Satz kann nur dann nicht wahr sein, falls die Aussage

$$A \Leftrightarrow B$$

wahr, die Aussage

$$A \Rightarrow B$$

jedoch nicht wahr ist. Die Implikation $A\Rightarrow B$ ist nur dann nicht wahr, falls die Aussage A wahr, die Aussage B nicht wahr ist (vergleiche mit dem Satz 54 respektive mit der dritten Zeile der Definition 14 der Implikation). In diesem Fall ist jedoch die Äquivalenz $A\Leftrightarrow B$ gemäß der dritten Zeile der Definition 19 nicht wahr. Das bedeutet jedoch, dass der gesamte Satz

$$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$$

wiederum wahr sein muss. Somit kann ich feststellen, dass der gesamte Satz in allen denkbaren Fällen wahr sein muss. Natürlich möchte ich den Satz noch einmal mit den (von mir nicht mehr so heiß geliebten) Wahrheitstafeln erbringen. Die Beweise habe ich in den Tabellen 184 respektive 185 verstaut. Die Verweise auf die Definitionen habe ich in der Tabelle 186 untergebracht. Damit erachte ich den Beweis der Behauptung als erbracht und beende an dieser Stelle die weitere Beweisführung.

20.31. Zusammenhang Disjunktion und Konjunktion

Wie kann aus der Negation und der Disjunktion eine Konjunktion erzeugt werden? Und warum? Das "warum" ist einerseits die Neugier, wie das logisch zusammenhängen könnte. Andererseits ist das eine weitere Anwendung der Definitionen.

Satz 53. Es seien also A, B Symbole von Aussagen. Dann gilt:

$$\neg (\neg A \lor \neg B) \Leftrightarrow (A \land B)$$

Tabelle 185.	2. Beweis des Satzes der Implikation der
Implikation aus	s der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	Behauptung
1	$A \Leftrightarrow B$	$A \Rightarrow B$	$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$
2	$\neg (A \Leftrightarrow B)$	$A \Rightarrow B$	$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$
3	$\neg (A \Leftrightarrow B)$	$\neg (A \Rightarrow B)$	$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$
4	$A \Leftrightarrow B$	$A \Rightarrow B$	$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$

Tabelle 186. Verweise Beweis Satz des Ausschlusses

Defintion/	Definition 19	Definition 14	Definition 14
Fall Nr.	der	der	der
ran m.	Äquivalenz	Implikation	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	2. Zeile
3	3. Zeile	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

BEWEIS. Der Beweis kann so geführt werden, dass gemäß dem Satz 47 des Satzes der Negation der Disjunktion gilt, dass eine Negation einer Disjunktion gleich der Konjunktion der Negation der Aussagen ist. Wenn ich nun anstelle von A die Aussage $\neg A$ und anstelle der Aussage B die Aussage B verwende, dann erhalte ich

$$\neg \left(\neg A \vee \neg B \right) \Leftrightarrow \left(\neg \left(\neg A \right) \wedge \neg \left(\neg B \right) \right)$$

Da jetzt die Äquivalenz transitiv und gemäß dem Satz 11 der doppelten Negation

$$\neg (\neg A) \Leftrightarrow A$$
$$\neg (\neg B) \Leftrightarrow B$$

ist, ist ebenso

$$\neg (\neg A \lor \neg B) \Leftrightarrow (A \land B)$$

Damit glaube ich, den Beweis erbracht zu haben. Oder doch nicht? Leider ist der Beweis jedoch nicht ganz "wasserdicht", also ganz erbracht. Ich möchte nun die Ochsentour durchführen und den Beweis besser machen (ganz erbracht ist auch der nicht):

Gemäß dem Satz der doppelten Negation 11 ist $\neg(\neg A) \Leftrightarrow A$ ein logischer Satz. Ich kann nun gemäß der zweiten Zeile des Lemmas 79 schreiben, dass gilt

$$(\neg (\neg A) \land \neg (\neg B)) \Leftrightarrow (\neg (\neg A) \land \neg (\neg B)) \land (\neg (\neg A) \Leftrightarrow A)$$

Wenn ich den Satz 16 der Transitivität der Äquivalenz verwende, erhalte ich

$$\neg (\neg A \lor \neg B) \Leftrightarrow (\neg (\neg A) \land \neg (\neg B)) \land (\neg (\neg A) \Leftrightarrow A)$$

Nun schreibe ich gemäß dem Substitutionssatz 96 der Konjunktion

$$(\neg(\neg A) \land \neg(\neg B)) \land (\neg(\neg A) \Leftrightarrow A) \Leftrightarrow (A \land \neg(\neg B)) \land (\neg(\neg A) \Leftrightarrow A)$$

Wieder verwende ich den Satz 16 der Transitivität der Äquivalenz und erhalte die Aussage

$$\neg (\neg A \lor \neg B) \Leftrightarrow (A \land \neg (\neg B)) \land (\neg (\neg A) \Leftrightarrow A)$$

Nun kann ich die zweite Zeile des Lemmas 79 rückwärts verwenden und erhalte:

$$(A \land \neg (\neg B)) \land (\neg (\neg A) \Leftrightarrow A) \Leftrightarrow (A \land \neg (\neg B))$$

Nach der wiederholten Anwendung des Satzes 16 der Transitivität der Äquivalenz erhalte ich die Aussage

$$\neg (\neg A \lor \neg B) \Leftrightarrow (A \land \neg (\neg B))$$

Jetzt verwende ich den Satz 37 der Kommutativität der Konjunktion und erhalte die Aussage

$$(A \land \neg (\neg B)) \Leftrightarrow (\neg (\neg B) \land A)$$

Nach der wiederholten Anwendung des Satzes 16 der Transitivität der Äquivalenz erhalte ich die Aussage

$$\neg (\neg A \lor \neg B) \Leftrightarrow (\neg (\neg B) \land A)$$

Und jetzt kommt die ganze Ochsentour noch einmal, jedoch mit vertauschten Rollen:

Gemäß dem Satz der doppelten Negation 11 ist $\neg(\neg B) \Leftrightarrow B$ ein logischer Satz. Ich kann nun gemäß der zweiten Zeile des Lemmas 79 schreiben, dass gilt

$$(\neg (\neg A) \land \neg (\neg B)) \Leftrightarrow (\neg (\neg B) \land A) \land (\neg (\neg B) \Leftrightarrow B)$$

Wenn ich den Satz 16 der Transitivität der Äquivalenz verwende, erhalte ich

$$\neg (\neg A \lor \neg B) \Leftrightarrow (\neg (\neg B) \land A) \land (\neg (\neg B) \Leftrightarrow B)$$

Nun schreibe ich gemäß dem Substitutionssatz 96 der Konjunktion

$$(\neg(\neg B) \land A) \land (\neg(\neg B) \Leftrightarrow B) \Leftrightarrow (B \land A) \land (\neg(\neg B) \Leftrightarrow B)$$

Wieder verwende ich den Satz 16 der Transitivität der Äquivalenz und erhalte die Aussage

$$\neg (\neg A \lor \neg B) \Leftrightarrow (B \land A) \land (\neg (\neg B) \Leftrightarrow B)$$

Nun kann ich die zweite Zeile des Lemmas 79 rückwärts verwenden und erhalte:

$$(B \land A) \land (\neg (\neg B) \Leftrightarrow B) \Leftrightarrow (B \land A)$$

Nach der wiederholten Anwendung des Satzes 16 der Transitivität der Äquivalenz erhalte ich die Aussage

$$\neg (\neg A \lor \neg B) \Leftrightarrow (B \land A)$$

Jetzt verwende ich den Satz 37 der Kommutativität der Konjunktion und erhalte die Aussage

$$(B \land A) \Leftrightarrow (A \land B)$$

Nach der wiederholten Anwendung des Satzes 16 der Transitivität der Äquivalenz erhalte ich die Aussage

$$\neg (\neg A \lor \neg B) \Leftrightarrow (A \land B)$$

Ich möchte noch einmal versuchen, einen Beweis zu erbringen, diesmal einen, welcher weniger konstruktiv²⁴ ist (im Sinn von "wie komme ich darauf?") sondern deskriptiv²⁵ (im Sinn von "stimmt das so?"). Ich möchte mir überlegen, unter welchen Umständen die beiden Aussagen

$$\neg (\neg A \lor \neg B)$$

sowie

$$A \wedge B$$

wahr sind. Da die zweite Aussage einfacher ist, möchte ich mit dieser Aussage beginnen. Die Aussage $A \wedge B$ ist gemäß der vierten Zeile der Definition 13 der Konjunktion genau dann wahr, falls sowohl die Aussage A wie auch die Aussage B wahr ist. Nun möchte ich dies für die Aussage

$$\neg (\neg A \lor \neg B)$$

überlegen. Gemäß der Definition 11 der Negation ist diese Aussage nur dann wahr, falls die Aussage

$$\neg A \lor \neg B$$

nicht wahr ist. Damit die Aussage $\neg A \lor \neg B$ nicht wahr ist, können gemäß der ersten Zeile der Definition 17 der Disjunktion weder die Aussage $\neg A$ noch die Aussage $\neg B$ wahr sein. Gemäß der zweiten zweiten Zeile der Definition 11 der Negation muss gelten, dass sowohl A wie auch B wahr sein müssen. Also ist die Aussage

$$\neg (\neg A \lor \neg B)$$

genau dann wahr, falls die Aussagen A wie auch B wahr sind. Das ist jedoch genau dann der Fall, wenn

$$A \wedge B$$

wahr ist. Also meine ich, trotzdem den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

An dieser Stelle möchte ich versuchen, Dir den Beweis für die Richtigkeit des Satzes zusätzlich mittels Wahrheitstafeln zu zeigen. Der Beweis habe ich einerseits in der Tabelle 187 sowie 188 und andererseits in den Tabellen 189 sowie 190 aufgeschrieben. Die Verweise des Beweises habe ich in den Tabellen 191 sowie 192 aufgeschrieben.

 $^{^{24}}$ erzeugend, erschaffend

 $^{^{25}}$ beschreibend

TABELLE 187. 1. Teil 1. Beweis des Satzes des Zusammenhangs von Disjunktion und Konjunktion

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$\neg A \lor \neg B$
1	1	1	1
2	1	0	1
3	0	1	1
4	0	0	0

TABELLE 188. 2. Teil 1. Beweis des Satzes des Zusammenhangs von Disjunktion und Konjunktion

Aussage/ Fall Nr.	$\neg \left(\neg A \vee \neg B\right)$	$A \wedge B$	Behauptung
1	0	0	1
2	0	0	1
3	0	0	1
4	1	1	1

TABELLE 189. 1. Teil 2. Beweis des Satzes des Zusammenhangs von Disjunktion und Konjunktion

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$\neg A \lor \neg B$
1	$\neg A$	$\neg B$	$\neg A \lor \neg B$
2	$\neg A$	$\neg (\neg B)$	$\neg A \lor \neg B$
3	$\neg (\neg A)$	$\neg B$	$\neg A \lor \neg B$
4	$\neg (\neg A)$	$\neg (\neg B)$	$\neg (\neg A \lor \neg B)$

TABELLE 190. 2. Teil 2. Beweis des Satzes des Zusammenhangs von Disjunktion und Konjunktion

Aussage/ Fall Nr.	$\neg \left(\neg A \vee \neg B \right)$	$A \wedge B$	$ \begin{array}{cc} (\neg (\neg A \lor \neg B)) & \Leftrightarrow \\ (A \land B) & \end{array} $
1	$\neg \left(\neg \left(\neg A \vee \neg B\right)\right)$	$\neg (A \land B)$	$ \begin{array}{c} (\neg (\neg A \lor \neg B)) \Leftrightarrow \\ (A \land B) \end{array} $
2	$\neg (\neg (\neg A \lor \neg B))$	$\neg (A \land B)$	$ \begin{array}{c} (\neg (\neg A \lor \neg B)) \Leftrightarrow \\ (A \land B) \end{array} $
3	$\neg \left(\neg \left(\neg A \vee \neg B\right)\right)$	$\neg (A \land B)$	$ \begin{array}{c} (\neg (\neg A \lor \neg B)) \Leftrightarrow \\ (A \land B) \end{array} $
4	$\neg \left(\neg A \vee \neg B \right)$	$A \wedge B$	$ \begin{array}{c} (\neg (\neg A \lor \neg B)) \Leftrightarrow \\ (A \land B) \end{array} $

TABELLE 191. 1. Teil Verweise Beweis Zusammenhang von Disjunktion und Konjunktion

Defintion/	Definition 11	Definition 11	Definition 17
Fall Nr.	der	der	der
ran m.	Negation	Negation	Disjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	1. Zeile

TABELLE 192. 2. Teil Verweise Beweis Zusammenhang von Disjunktion und Konjunktion

Defintion/	Definition 11	Definition 13	Definition 19
Fall Nr.	der	der	der
rall Mi.	Negation	Konjunktion	Äquivalenz
1	2. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	1. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	1. Zeile	4. Zeile	4. Zeile

Ich gebe es zu, so ganz wohl ist es mir mit diesem Beweis nicht. Die Frage treibt mich regelmäßig herum: Wann ist ein Beweis wirklich erbracht und wann ist er richtig oder wird als richtig empfunden? Ich weiß es nicht. Vielleicht genügt es einfach, in Dir das Feuer der Leidenschaft zu entzünden, dass Du Dich mit viel Begeisterung in die Diskussion einhängst und aufrichtig versuchst, Dich in der Frage von richtig oder falsch einzubringen. Vielleicht ist es das, was es richtig macht. Wer weiß?

20.32. Disjunktive Normalform der Implikation

Warum ist die Implikation äquivalent zur Negation einer Konjunktion? Ja, was soll jetzt dieser Satz wieder?

Satz 54. Es seien A und B Symbole von zwei Aussagen. Dann gilt die Aussage

$$(A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))$$

Wenn ich also nachweisen will, dass aus der Aussage A die Aussage B folgt, dann genügt es also zu zeigen, dass nicht sowohl die Aussage A wie auch die Negation der Aussage B wahr ist. Ist jedoch sowohl die Aussage A wie auch die Negation der Aussage B wahr, dann kann nicht aus der Aussage A die Aussage B folgen. Dieser Satz ist ja schon recht, nur sollte er noch bewiesen werden. Das möchte ich nachfolgend noch erledigen.

Aussage/ Fall Nr.	$A \Rightarrow B$	$\neg B$	$A \wedge (\neg B)$	$\neg (A \land (\neg B))$	Behauptung
1	1	1	0	1	1
2	1	0	0	1	1
3	0	1	1	0	1
4	1	0	0	1	1

TABELLE 193. 1. Beweis des Satzes der Äquivalenz von Implikation und Negation einer Konjunktion

BEWEIS. Wieder soll überlegt werden, wann die Implikation von A auf B respektive die Aussage $\neg(A \land (\neg B))$ gültig ist. Im Satz 45 der Negation der Konjunktion habe ich zu zeigen versucht, dass die Aussage $\neg(A \land (\neg B))$ gleichbedeutend zur Aussage $\neg A \lor \neg(\neg B)$ ist. Stillschweigend habe ich in diesem Satz statt der logischen Variablen B die logische Variable $\neg B$ verwendet. Gemäß dem Satz der doppelten Negation (siehe 20.2) ist die Aussage $\neg(\neg B)$ äquivalent zur Aussage B. Also ist zu zeigen, dass die Implikation von A auf B gleichbedeutend zur Aussage $\neg A \lor B$ ist. Jedoch sind gemäß der Definitionen 14 der Implikation sowie der Definition 17 der Disjunktion beide Aussagen genau dann nicht wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. Damit ist ist die Behauptung jedoch bewiesen.

Ich möchte noch einen zweiten Versuch machen, die Behauptung zu beweisen. Ich möchte überlegen, wann beide Aussagen der Äquivalenz nicht wahr sind. Gemäß der dritten Zeile der Definition 14 der Implikation ist diese nicht wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. Die Aussage $(\neg (A \land (\neg B)))$ ist gemäß der Definition 11 der Negation nicht wahr, falls die Aussage

$$A \wedge (\neg B)$$

wahr ist. Gemäß der Definition 13 der Konjunktion ist die Aussage $A \wedge (\neg B)$ jedoch nur dann wahr, falls sowohl die Aussage A wie auch die Aussage $\neg B$ wahr sind. Die Aussage $\neg B$ ist jedoch dann gemäß der Definition 11 der Negation wahr, falls die Aussage B nicht wahr ist. Damit kann ich sagen, dass auch die Aussagen A wie auch $A \wedge (\neg B)$ genau dann nicht wahr sind, falls die Aussage A wahr, die Aussage B nicht wahr ist. Damit meine ich noch einmal gezeigt zu haben, dass die beiden Aussagen wirklich äquivalent sind, also die gesamte Aussage

$$(A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))$$

wirklich wahr ist. Damit Du auch siehst, dass meine sprachliche Beschreibung des Beweises nicht an den Haaren herbeigezogen ist, möchte ich den Beweis noch einmal mit Wahrheitstafeln nachvollziehen. Die Beweise selbst sind in den Tabellen 193 einerseits sowie 194 und 195 abgelegt. Die Verweise habe ich in den Tabellen 196 sowie 197 abgelegt.

TABELLE 194. 1. Teil 2. Beweis des Satzes der Äquivalenz von Implikation und Negation einer Konjunktion

Aussage/ Fall Nr.	$A \Rightarrow B$	$\neg B$	$A \wedge (\neg B)$
1	$A \Rightarrow B$	$\neg (\neg B)$	$\neg (A \land (\neg B))$
2	$A \Rightarrow B$	$\neg B$	$\neg (A \land (\neg B))$
3	$\neg (A \Rightarrow B)$	$\neg (\neg B)$	$A \wedge (\neg B)$
4	$A \Rightarrow B$	$\neg B$	$\neg (A \land (\neg B))$

TABELLE 195. 2. Teil 2. Beweis des Satzes der Äquivalenz von Implikation und Negation einer Konjunktion

Aussage/ Fall Nr.	$\neg (A \land (\neg B))$	$(A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))$
1	$\neg (\neg (A \land (\neg B)))$	$(A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))$
2	$\neg (\neg (A \land (\neg B)))$	$(A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))$
3	$\neg (A \land (\neg B))$	$(A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))$
4	$\neg (\neg (A \land (\neg B)))$	$(A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))$

TABELLE 196. 1. Teil Verweise Beweis Satzes der Äquivalenz von Implikation und Negation einer Konjunktion

Defintion/	Definition 14	Definition 11	Definition 13
Fall Nr.	der	der	der
rall Nr.	Implikation	Negation	Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	2. Zeile	2. Zeile	1. Zeile
3	3. Zeile	1. Zeile	4. Zeile
4	4. Zeile	2. Zeile	3. Zeile

Tabelle 197. 2. Teil Verweise Beweis Satzes der Äquivalenz von Implikation und Negation einer Konjunktion

Defintion/ Fall Nr.	Definition 11 der Negation	Definition 19 der Äquivalenz
1	1. Zeile	4. Zeile
2	1. Zeile	4. Zeile
3	2. Zeile	1. Zeile
4	1. Zeile	4. Zeile

Zum eben formulierten Satz möchte ich noch anfügen, dass er eigentlich ein billiger Taschenspielertrick ist. Denn wenn Du Dir die Definition 14 der Implikation noch einmal anschaust, dann siehst Du, dass die Implikation nur dann nicht wahr ist, falls die Aussage A wahr ist, die Aussage B jedoch nicht wahr ist. Also kannst Du annehmen, dass die Implikation also in allen anderen Fällen wahr ist. Also sollte die Implikation wahr sein, falls nicht gilt, dass die Aussage A wahr, die Aussage B nicht wahr ist. Und das ist genau die Behauptung des obigen Satzes.

Nun, warum mache ich so einen Lärm um einen Satz, welcher eigentlich höchstens ein Lemma (ein Hilfssatz) ist? Der Grund dafür ist, weil er oft in der Mathematik gebraucht wird, und zwar um Implikationen zu beweisen. Es wird überlegt, ob gleichzeitig die Aussage A und die Negation der Aussage B zutreffen können. Ist dies nicht der Fall, dann kann geschlossen werden, dass aus der Aussage A die Aussage B folgt. Darum ist dieser Satz in meinen Augen durchaus erwähnenswert.

Vielleicht wunderst Du Dich über die Namensgebung. Diese liegt daran, weil in dieser Form der Aussagen untersucht wird, wann eine Aussage nicht gilt. Die einzelnen Aussagen werden dann Disjunktionen zusammengehalten. Ich werde es eventuell noch später beschreiben.

20.33. Warum folgt aus einer Konjunktion eine Aussage?

Natürlich ist dieser Satz fast schon der Gipfel der Einfallslosigkeit. Denn wie ich weiter oben dargestellt habe, kann das Symbol der Konjunktion ("^") ebenso gut weggelassen werden. Also gelten die Aussagen, falls die Konjunktion der Aussagen gültig ist Die Bedeutung dieses Satzes ist, dass er Dir zeigen soll, dass die mathematisierte Form der Konjunktion und der Implikation gleich der umgangssprachlichen Bedeutung der von "und" und "daraus folgt" ist. Es soll also wie das übrige Skript auch, Dir dazu dienen, dich ganz sanft in die Mathe einzuführen. Nichtsdestotrotz möchte ich den Satz formulieren und beweisen:

Satz 55. Es seien A sowie B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Aussagen des Satzes widerspruchsfrei seien. Dann muss also gelten:

$$A \wedge B \Rightarrow A$$

BEWEIS. Angenommen, es gäbe Aussagen, welche mit A und B bezeichnet werden, für welche die Aussage nicht gilt. Dies könnte gemäß der dritten Zeile der Definition 14 der Implikation nur dann gelten, falls die Aussagen A und B wahr, die Aussage A jedoch nicht wahr wäre. Wäre jedoch A nicht wahr, dann könnte es gemäß dem Minimumprinzip 10 der Konjunktion auch die Aussage $A \wedge B$ nicht sein. Also hätte ich einen Widerspruch zum Satz 13 des ausgeschlossenen Dritten, demzufolge eine Aussage nicht gleichzeitig wahr und nicht wahr sein kann.

Tabelle 198. 1. Beweis der Folgerung der Aussage aus einer Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A \land B \Rightarrow A$
1	0	1
2	0	1
3	0	1
4	1	1

Tabelle 199. 2. Beweis der Folgerung der Aussage aus einer Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A \land B \Rightarrow A$
1	$\neg (A \land B)$	$A \wedge B \Rightarrow A$
2	$\neg (A \land B)$	$A \wedge B \Rightarrow A$
3	$\neg (A \land B)$	$A \wedge B \Rightarrow A$
4	$A \wedge B$	$A \wedge B \Rightarrow A$

TABELLE 200. Verweise Beweis der Folgerung der Aussage aus einer Konjunktion

Defintion/ Fall Nr.	Definition 17 der Disjunktion	Definition 14 der Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	3. Zeile	2. Zeile
4	4. Zeile	4. Zeile

Also folgt in jedem Fall, dass aus $A \wedge B$ die Aussage A folgt. Nun möchte ich jedoch in den Tabellen 198 sowie 199 trotzdem den tabellarischen Beweis aufschreiben. Die Verweise habe ich in der Tabelle 200

Somit denke ich, den Beweis für die Gültigkeit der Behauptung erbracht zu haben und beende an dieser Stelle die weitere Beweisführung.

Ich vermute, dass folgender logischer Fehler häufig vorkommt: Sind zwei Aussagen A, B geben, welche in sich selbst und bezüglich den anderen Aussagen des Satzes widerspruchsfrei sind, dann folgt aus der Richtigkeit der Aussage A nicht, dass die Aussagen A und B richtig sind. Um meine Aussage noch ein wenig prägnanter (einprägsamer) formulieren zu können, schreibe ich:

Tabelle 201. 1. Teil 1. Beweis Denkfehler Implikation

Aussage/ Fall Nr.	$\neg B$	$A \wedge \neg B$	$A \wedge B$
1	1	0	0
2	0	0	0
3	1	1	0
4	0	0	1

Lemma 56. Es seien A, B Aussagen, welche in sich selbst widerspruchsfrei seien. Dann gilt:

$$A \land \neg B \Rightarrow \neg (A \Rightarrow A \land B)$$

In Worten: Ist die Aussage A wahr, die Aussage B nicht wahr, dann gilt nicht, dass die Implikation von der Aussage A auf die Konjunktion von A und B wahr wäre.

Beweis. Ist A nicht wahr oder die Aussage B wahr, dann ist die Konjunktion

$$A \wedge \neg B$$

gemäß den ersten zwei Zeilen sowie der letzten Zeile der Definition 13 der Konjunktion nicht wahr. Also ist die gesamte zu beweisende Aussage gemäß den ersten zwei Zeilen der Definition 14 der Implikation bereits wahr. Ist jedoch die Aussage A wahr und die Aussage B nicht wahr, dann ist die Konjunktion

$$A \wedge B$$

gemäß der dritten Zeile der Definition 13 der Konjunktion nicht wahr. Also ist gemäß der dritten Zeile der Definition 14 der Implikation die Aussage

$$A \Rightarrow A \wedge B$$

nicht wahr. Gemäß der ersten Zeile der Definition 11 der Negation ist die Aussage

$$\neg (A \Rightarrow A \land B)$$

wiederum wahr. Also ist die gesamte Aussage

$$A \land \neg B \Rightarrow \neg (A \Rightarrow A \land B)$$

in diesem Fall gemäß der vierten Zeile der Definition 14 wiederum wahr. Ich habe den Beweis noch einmal tabellarisch aufgelistet. Er ist einerseits in den Tabellen 201 sowie 202, andererseits in den Tabellen 203 respektive 204 aufgeschrieben worden. Die Verweise habe ich in den Tabellen 205 sowie 206. Damit glaube ich gezeigt zu haben, dass meine Behauptung in allen denkbaren Fällen wahr ist. Aus diesem Grund erachte ich den Beweis der Behauptung als erbracht und beende an dieser Stelle den Beweis.

TABELLE 202. 2. Teil 1. Beweis Denkfehler Implikation

Aussage/ Fall Nr.	$A \Rightarrow A \land B$	$\neg (A \Rightarrow A \land B)$	$\begin{array}{c} A \wedge \neg B \Rightarrow \\ \neg (A \Rightarrow A \wedge B) \end{array}$
1	1	0	1
2	1	0	1
3	0	1	1
4	1	0	1

Tabelle 203. 1. Teil 2. Beweis Denkfehler Implikation

Aussage/ Fall Nr.	$\neg B$	$A \wedge \neg B$	$A \wedge B$
1	$\neg B$	$\neg (A \land \neg B)$	$\neg (A \land B)$
2	$\neg (\neg B)$	$\neg (A \land \neg B)$	$\neg (A \land B)$
3	$\neg B$	$A \wedge \neg B$	$\neg (A \land B)$
4	$\neg (\neg B)$	$\neg (A \land \neg B)$	$A \wedge B$

TABELLE 204. 2. Teil 2. Beweis Denkfehler Implikation

Aussage/ Fall Nr.	$A \Rightarrow A \land B$	$\neg (A \Rightarrow A \land B)$	$A \land \neg B \Rightarrow \\ \neg (A \Rightarrow A \land B)$
1	$A \Rightarrow A \land B$	$\neg \left(\neg \left(A \Rightarrow A \land B\right)\right)$	$\begin{array}{c} A \wedge \neg B \Rightarrow \\ \neg (A \Rightarrow A \wedge B) \end{array}$
2	$A \Rightarrow A \land B$	$\neg (\neg (A \Rightarrow A \land B))$	$A \land \neg B \Rightarrow \\ \neg (A \Rightarrow A \land B)$
3	$\neg (A \Rightarrow A \land B)$	$\neg (A \Rightarrow A \land B)$	$A \land \neg B \Rightarrow \\ \neg (A \Rightarrow A \land B)$
4	$A \Rightarrow A \land B$	$\neg (\neg (A \Rightarrow A \land B))$	$A \land \neg B \Rightarrow \\ \neg (A \Rightarrow A \land B)$

Tabelle 205. 1. Teil Verweise Beweis des Denkfehlers der Implikation

Definition /	Definition 11	Definition 13	Definition 13
Defintion/ Fall Nr.	der	der	der
ran m.	Negation	Konjunktion	Konjunktion
1	1. Zeile	2. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	1. Zeile	4. Zeile	3. Zeile
4	2. Zeile	3. Zeile	4. Zeile

Ich habe das obige Lemma als Warnung aufgeschrieben, weil diese Art von Fehlüberlegung meines Erachtens schnell einmal auftreten

Defintion/	Definition 14	Definition 11	Definition 14
Fall Nr.	der	der	der
ran Nr.	Implikation	Negation	Implikation
1	1. Zeile	2. Zeile	1. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	3. Zeile	1. Zeile	4. Zeile
4	4. Zeile	2. Zeile	1. Zeile

TABELLE 206. 2. Teil Verweise Beweis des Denkfehlers der Implikation

kann. Trotzdem möchte alle ermuntern auch dann Mathematik zu betreiben, wenn Fehler auftreten. Denn Fehler gehören untrennbar zum menschlichen Leben.

20.34. Zusammenhang Aussage und Disjunktion

Dieser Abschnitt musste ja kommen. Denn was ich im letzten Abschnitt über die Konjunktion geschrieben habe, lässt sich ganz genau gleich auf die Disjunktion übertragen.

Satz 57. Es seien A sowie B die Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$A \Rightarrow (A \lor B)$$

wobei jedoch die Klammern weggelassen werden könnten.

BEWEIS. Zuerst möchte ich den Fall betrachten, in welchem die Aussage mit der Bezeichnung A wahr ist. In diesem Fall ist dann die Disjunktion $A \vee B$ gemäß des Maximumprinzips der Disjunktion (siehe unter Definition 13) wahr. Dann gilt jedoch gemäß den Zeilen 2 respektive 4 der Definition 14 der Implikation, dass die Schlussfolgerung $A \Rightarrow (A \vee B)$ wahr ist. Ist jedoch die Aussage A nicht wahr, dann gilt gemäß den ersten zwei Zeilen der Definition 14 der Implikation, dass die Implikation $A \Rightarrow (A \vee B)$ immer noch wahr ist. Denn egal, ob die Aussage $A \vee B$ wahr ist oder nicht, wird die Implikation von A nach $(A \vee B)$ richtig sein. Der Vollständigkeit halber habe ich die Beweise noch tabellarisch aufgeschrieben, und zwar in den Tabellen 207 sowie 208. Die Verweise habe in in der Tabelle 209 aufgeschrieben.

Falls Du denkst: "Was für ein blöder Satz!" Dann versuche ich Dich hiermit vom Gegenteil zu überzeugen. Wenn ich schreibe: Es sei x eine reelle²⁶ Zahl x < 5 Dann folgt daraus das $x \le 5$ ist. In Worten: Die Zahl x ist 5 oder sie ist kleiner als 5. Diese Art des Gedankengangs kann "Vergröberung" oder "Abschätzung" genannt werden und

²⁶Was eine reelle Zahl ist, versuche ich unter zu zeigen.

Tabelle 207. 1. Beweis der Implikation einer Disjunktion aus einer Aussage

Aussage/ Fall Nr.	$A \lor B$	Behauptung
1	0	1
2	1	1
3	1	1
4	1	1

Tabelle 208. 2. Beweis des Satzes der Implikation einer Disjunktion aus einer Aussage

Aussage/ Fall Nr.	$A \lor B$	Behauptung
1	$\neg (A \lor B)$	$A \Rightarrow (A \lor B)$
2	$A \vee B$	$A \Rightarrow (A \lor B)$
3	$A \vee B$	$A \Rightarrow (A \lor B)$
4	$A \vee B$	$A \Rightarrow (A \lor B)$

Tabelle 209. Verweise Beweis Satz der Implikation einer Disjunktion aus einer Aussage

Defintion/ Fall Nr.	Definition 17 der Disjunktion	Definition 14 der Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	3. Zeile	4. Zeile
4	4. Zeile	4. Zeile

leistet in der Mathematik oft fast unschätzbare Werte. Ich habe oben unter dem Absatz 1.6 darüber schon ein wenig geschrieben. Denn die Voraussetzung von Sätzen sind oftmals sogenannt "schwächer" als die denjenigen Fällen, in welchen diese angewendet werden. Darum kann es meines Erachtens angebracht sein, diesen logischen Satz anzuwenden.

Zum logischen Satz 57 möchte ich jedoch noch bemerken, dass die Aussage B irgend ein Nonsenses, ein Quatsch sein könnte, und die Aussage wäre trotzdem wahr. Das zeigt eigentlich, wie sinnfrei die Logik sein kann. Oder besser geschrieben: Die Logik selbst ist sinnfrei. Der Sinn kann nur in die Logik hineingebracht werden, sie ist jedoch nicht per se in der Logik selbst enthalten. Den Satz 57 kann ich wie folgt beweisen:

Die umgekehrte Aussage, dass aus der Disjunktion zweier Aussagen, welche mit den Symbolen A respektive B bezeichnet werden, die

Aussage A folgen müsse, ist kein logischer Satz. Damit ich das trotzdem irgendwie ausschreiben kann, schreibe ich:

Satz 58. Es seien A sowie B Symbole von Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$\neg A \land B \Rightarrow \neg (A \lor B \Rightarrow A)$$

In Worten: Wenn die Aussage A nicht, die Aussage B jedoch wahr ist, dann ist die Implikation der Aussage $A \vee B$ auf die Aussage A nicht wahr.

Beweis. Angenommen, die Aussage

$$\neg A \land B \Rightarrow \neg (A \lor B \Rightarrow A)$$

sei nicht wahr. Dies könnte gemäß der Definition 14 der Implikation nur dann der Fall sein, falls die Aussage

$$\neg A \wedge B$$

wahr, die Aussage

$$\neg (A \lor B \Rightarrow A)$$

jedoch nicht wahr wäre. Also könnte ich annehmen, dass die Aussage

$$\neg A \wedge B$$

wahr sei. Gemäß der vierten Zeile der Definition 13 der Konjunktion müsste also die Negation der Aussage A sowie die Aussage B wahr sein. Also wäre gemäß der zweiten Zeile der Definition 17 der Disjunktion die Aussage

$$A \vee B$$

wahr. Jedoch wäre gemäß der ersten Zeile der Definition 11 der Negation die Aussage A nicht wahr. Somit wäre gemäß der dritten Zeile der Definition 14 der Implikation die Aussage

$$A \vee B \Rightarrow A$$

nicht wahr. Somit müsste jedoch gemäß der ersten Zeile der Definition 11 der Negation die Aussage

$$\neg (A \lor B \Rightarrow A)$$

eben doch wahr sein. Somit wäre gemäß der vierten Zeile der Definition 14 der Implikation die Aussage

$$\neg A \land B \Rightarrow \neg (A \lor B \Rightarrow A)$$

eben doch wahr. Somit kann ich schließen, dass es nicht möglich ist, Aussagen A wie auch B derart zu finden, dass die Aussage

$$\neg A \land B \Rightarrow \neg (A \lor B \Rightarrow A)$$

Tabelle 210. 1. Teil 1. Beweis Denkfehler Disjunktion

Aussage/ Fall Nr.	$\neg A$	$\neg A \wedge B$	$A \lor B$
1	1	0	0
2	1	1	1
3	0	0	1
4	0	0	1

Tabelle 211. 2. Teil 1. Beweis Denkfehler Disjunktion

Aussage/ Fall Nr.	$A \vee B \Rightarrow A$	$\neg (A \lor B \Rightarrow A)$	$ \neg A \land B \Rightarrow \\ \neg (A \lor B \Rightarrow A) $
1	1	0	1
2	0	1	1
3	1	0	1
4	1	0	1

Tabelle 212. 1. Teil 2. Beweis Denkfehler Disjunktion

Aussage/ Fall Nr.	$\neg A$	$\neg A \wedge B$	$A \lor B$
1	$\neg A$	$\neg (\neg A \land B)$	$\neg (A \lor B)$
2	$\neg A$	$\neg A \wedge B$	$A \vee B$
3	$\neg (\neg A)$	$\neg (\neg A \land B)$	$A \lor B$
4	$\neg (\neg A)$	$\neg (\neg A \land B)$	$A \lor B$

nicht wahr ist. Gemäß dem Satz 12 der doppelten Negation glaube ich daraus schließen zu können, dass jede dieser Aussagen

$$\neg A \land B \Rightarrow \neg (A \lor B \Rightarrow A)$$

wahr sein muss. Auch diesen Beweis habe ich in den Tabellen 210 sowie 211 einerseits und 212 sowie 213 andererseits aufgeschrieben. Die Verweise habe ich in den Tabellen 214 sowie 215 aufgelistet.

Die Aussage

$$\neg A \land B \Rightarrow \neg (A \lor B \Rightarrow A)$$

habe ich nur darum aufgeschrieben, um Dich zu warnen.

Nun möchte ich daran gehen, den zweiten Teile der Maximumsätze zu formulieren und zu beweisen. Den ersten Teil habe ich bereits formuliert und bewiesen. Es ist der Satz 57 der Implikation der Disjunktion aus der Aussage. Der zweite Teil lautet wie folgt:

Lemma 59. Es seien A und B Symbole von Aussagen, welche in sich selber in Bezug auf die anderen Symbole des Lemmas widerspruchsfrei seien. Dann gilt:

$$B \Rightarrow A \vee B$$

Tabelle 213. 2. Teil 2. Beweis Denkfehler Disjunktion

Aussage/ Fall Nr.	$A \vee B \Rightarrow A$	$\neg (A \lor B \Rightarrow A)$	$\neg A \land B \Rightarrow \\ \neg (A \lor B \Rightarrow A)$
1	$A \vee B \Rightarrow A$	$\neg (\neg (A \lor B \Rightarrow A))$	$\neg A \land B \Rightarrow \\ \neg (A \lor B \Rightarrow A)$
2		$\neg (A \lor B \Rightarrow A)$	$\neg A \land B \Rightarrow \\ \neg (A \lor B \Rightarrow A)$
3	$A \vee B \Rightarrow A$	$\neg (\neg (A \lor B \Rightarrow A))$	$\neg A \land B \Rightarrow \\ \neg (A \lor B \Rightarrow A)$
4	$A \vee B \Rightarrow A$		$\neg A \land B \Rightarrow \\ \neg (A \lor B \Rightarrow A)$

TABELLE 214. 1. Teil Verweise Beweis des Denkfehlers der Konjunktion

Defintion/	Definition 11	Definition 13	Definition 17
Fall Nr.	der	der	der
rall Nr.	Negation	Konjunktion	Disjunktion
1	1. Zeile	3. Zeile	1. Zeile
2	1. Zeile	4. Zeile	2. Zeile
3	2. Zeile	1. Zeile	3. Zeile
4	2. Zeile	2. Zeile	4. Zeile

TABELLE 215. 2. Teil Verweise Beweis des Denkfehlers der Konjunktion

Defintion/	Definition 14	Definition 11	Definition 14
Fall Nr.	der	der	der
rall Nr.	Implikation	Negation	Implikation
1	1. Zeile	2. Zeile	1. Zeile
2	3. Zeile	1. Zeile	4. Zeile
3	4. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	1. Zeile

BEWEIS. Angenommen, das Lemma wäre nicht wahr. Dann müsste es gemäß der dritten Zeile der Definition 14 Aussagen mit den Bezeichnungen A und B derart geben, dass die Aussage B wahr, die Aussage $A \vee B$ jedoch nicht wahr ist. Gemäß der ersten Zeile der Definition 17 der Disjunktion kann diese nur dann nicht wahr sein, falls weder die Aussage A noch die Aussage B wahr ist. Also kann die Aussage B ebenfalls nicht wahr sein. Das ist jedoch ein Widerspruch zur Voraussetzung, dass die Aussage B wahr sein muss. Gemäß der abgeschwächten Form des Satzes 12 der doppelten Negation kann ich nun folgen, dass

TABELLE 216. 1. Beweis des zweiten Teils des Maximumprinzips der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	Behauptung
1	0	1
2	1	1
3	1	1
4	1	1

TABELLE 217. 2. Beweis des zweiten Teils des Maximumprinzips der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$A \Rightarrow (A \lor B)$
1	$\neg (A \lor B)$	$A \Rightarrow (A \lor B)$
2	$A \lor B$	$A \Rightarrow (A \lor B)$
3	$A \lor B$	$A \Rightarrow (A \lor B)$
4	$A \lor B$	$A \Rightarrow (A \lor B)$

Tabelle 218. Verweise des zweiten Teils des Maximumprinzips der Disjunktion

Defintion/ Fall Nr.	Definition 17 der	Definition 14 der
ran m.	Disjunktion	Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	3. Zeile	4. Zeile
4	4. Zeile	4. Zeile

die Aussage für alle Aussagen mit den Bezeichnungen A wie auch B wahr sein muss.

Ich möchte das Lemma wiederum mittels Wahrheitstafeln beweisen. Diesen Beweis habe ich einerseits in der Tabelle 216 auf allgemeine Art und in der Tabelle 216 auf meine Art bewiesen. Die Verweise habe ich in der Tabelle 218 abgelegt. Da ich nun der Meinung bin, den Beweis für die Richtigkeit des Satzes erbracht zu haben, verzichte an dieser Stelle auf eine weitere Beweisführung (und beende entsprechend den Beweis).

Nun hätte ich also mittels Beweisführung das an und für sich selbsterklärenden Maximumprinzip 13 der Disjunktion bewiesen. Ich habe dies vor allem gemacht, um zu zeigen, das die behaupteten Aussagen widerspruchsfrei seien. Und wie das Beweisen derselben vor sich gehen kann.

20.35. Was ist der Äquivalenz - Negation Satz?

Das ist vor allem eine Wortneuschöpfung (Neologismus), welchen ich verwende, um ein neues Kapitel aufschlagen zu können. Es gilt:

Satz 60. Es seien A, B Symbole für Aussagen, welche jedoch nicht in sich selbst und bezüglich den anderen Aussagen des Satzes widersprüchlich seien. Dann behaupte ich, dass gilt

$$(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$$

In Worten: A ist genau dann äquivalent zu B, falls $\neg A$ äquivalent zu $\neg B$ ist.

Diesen logischen Satz, so ich ihn überhaupt beweisen kann, nenne ich den Äquivalenz-Negationssatz.

BEWEIS. Ich möchte den Beweis durch bloßes Ausrechnen erbringen. Ich habe ihn in den Tabellen 219 respektive 220 sowie 221 abgelegt. Die Verweise des Beweises habe ich in den Tabellen 222 sowie 223 abgelegt. Ich habe den Beweis noch einmal überflogen. Er sieht ein wenig mager aus. Darum möchte ich noch versuchen, ob ich ihn auch mit rein sprachlichen Mitteln erbringen könnte. Ich überlege mir, ob ich eine Aussage A oder B derart finden könnte, so dass die Aussage

$$(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$$

nicht wahr sei. Wenn ich die Definition 19 anschaue, dann könnte dies nur dann der Fall sein, falls

$$A \Leftrightarrow B$$

nicht wahr, die Aussage

$$\neg A \Leftrightarrow \neg B$$

jedoch wahr oder andererseits die Aussage

$$A \Leftrightarrow B$$

wahr und die Aussage

$$\neg A \Leftrightarrow \neg B$$

nicht wahr wäre. Zum ersten Fall: Es müsste

$$\neg A \Leftrightarrow \neg B$$

gelten. Das könnte gemäß der ersten respektive vierten Zeile der Definition 19 der Äquivalenz wiederum nur dann der Fall sein, falls sowohl $\neg A$ wie auch $\neg B$ nicht wahr wären oder aber falls sowohl $\neg A$ wie auch $\neg B$ wahr wären. Wäre sowohl $\neg A$ wie auch $\neg B$ nicht wahr, dann müsste gemäß der ersten Definition 11 der Negation sowohl A wie auch B wahr sein. Dies hätte jedoch die Folge, das gemäß der vierten Zeile der Definition 19 der Äquivalenz die Aussage

$$A \Leftrightarrow B$$

ebenfalls wahr wäre. Damit habe ich gezeigt, dass dieser Fall nicht eintreten. Die anderen drei Fälle werde ich jetzt auf die haargenau gleiche Art behandeln. Wäre sowohl $\neg A$ wie auch $\neg B$ wahr, dann müsste gemäß der ersten Zeile der Definition 11 der Negation die Aussagen A sowie B nicht wahr sein. Dann müsste jedoch gemäß der ersten Zeile der Definition 19 der Äquivalenz die Aussage

$$A \Leftrightarrow B$$

entgegen der Voraussetzung eben doch wahr sein. Also kann dieser Fall ebenfalls nicht eintreten. Nun habe ich gezeigt, dass nicht gelten kann, dass die Aussage

$$\neg A \Leftrightarrow \neg B$$

wahr, die Aussage

$$A \Leftrightarrow B$$

nicht wahr ist.

Nun sei die Aussage

$$A \Leftrightarrow B$$

wahr. Gemäß der ersten und der vierten Zeile der Definition 19 der Äquivalenz müssten daher beide Aussagen A wie auch B entweder nicht wahr oder aber wahr sein. Wären beide Aussagen A sowie B nicht wahr, dann dann müssten gemäß der ersten Zeile der Definition 11 der Negation die Aussagen $\neg A$ wie auch $\neg B$ wahr sein. Also müsste gemäß der vierten Zeile der Definition 19 der Äquivalenz im Widerspruch zur Voraussetzung die Aussage

$$\neg A \Leftrightarrow \neg B$$

eben doch wahr sein. Wären jedoch die Aussagen A wie auch B wahr, dann wären gemäß der zweiten Zeile der Definition 11 der Negation die Aussagen $\neg A$ wie auch $\neg B$ nicht wahr. Also wäre gemäß der ersten Zeile der Definition 19 die Aussage

$$\neg A \Leftrightarrow \neg B$$

eben doch wahr - im Widerspruch zur Annahme, dass die letztgenannte Annahme nicht wahr sei. Also meine ich hiermit gezeigt zu haben, dass der Fall nicht eintreten kann, dass die Aussage

$$A \Leftrightarrow B$$

wahr, die Aussage

$$\neg A \Leftrightarrow \neg B$$

jedoch nicht wahr ist.

So, jetzt habe ich diese Ochsentour absolviert und meine, dass der Beweis nunmehr mit sprachlichen Mitteln eben doch noch erbracht wird (auch wenn dieser langweilig und mühsam ist).

TABELLE 219. 1. Beweis des Äquivalenz-Negations-Satzes

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$\neg A$	$\neg B$	$\neg A \Leftrightarrow \neg B$	Behauptung
1	1	1	1	1	1
2	0	1	0	0	1
3	0	0	1	0	1
4	1	0	0	1	1

TABELLE 220. 1. Teil 2. Beweis des Äquivalenz-Negations-Satzes

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$\neg A$	$\neg B$
1	$A \Leftrightarrow B$	$\neg A$	$\neg B$
2	$\neg (A \Leftrightarrow B)$	$\neg A$	$\neg (\neg B)$
3	$\neg (A \Leftrightarrow B)$	$\neg (\neg A)$	$\neg B$
4	$A \Leftrightarrow B$	$\neg (\neg A)$	$\neg (\neg B)$

TABELLE 221. 2. Teil 2. Beweis des Äquivalenz-Negations-Satzes

Aussage/ Fall Nr.	$\neg A \Leftrightarrow \neg B$	Behauptung
1	$\neg A \Leftrightarrow \neg B$	$(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$
2	$\neg (\neg A \Leftrightarrow \neg B)$	$(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$
3	$\neg (\neg A \Leftrightarrow \neg B)$	$(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$
4	$\neg A \Leftrightarrow \neg B$	$(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$

Tabelle 222. 1. Tabelle Verweise Beweis Äquivalenz-Negationssatz

Defintion/	Definition 19	Definition 11	Definition 11
Fall Nr.	der	der	der
rall Mi.	Äquivalenz	Negation	Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	2. Zeile

TABELLE 223. 2. Tabelle Verweise Beweis Äquivalenz-Negationssatz

Defintion/ Fall Nr.	Definition 19 der Äquivalenz	Definition 19 der Äquivalenz
1	4. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	1. Zeile	4. Zeile

Tabelle 224. 1. Beweis des Äquivalenz-Antivalenz-Satzes

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Leftrightarrow B$	$\neg (A \Leftrightarrow B)$	Behauptung
1	0	1	0	1
2	1	0	1	1
3	1	0	1	1
4	0	1	0	1

Tabelle 225. 1. Teil 2. Beweis des Äquivalenz-Antivalenz-Satzes

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Leftrightarrow B$	$\neg (A \Leftrightarrow B)$
1	$\neg (A \Leftrightarrow B)$	$A \Leftrightarrow B$	$\neg (\neg (A \Leftrightarrow B))$
2	$A \Leftrightarrow B$	$\neg (A \Leftrightarrow B)$	$\neg (A \Leftrightarrow B)$
3	$A \Leftrightarrow B$	$\neg (A \Leftrightarrow B)$	$\neg (A \Leftrightarrow B)$
4	$\neg (A \Leftrightarrow B)$	$A \Leftrightarrow B$	$\neg (\neg (A \Leftrightarrow B))$

In diesem Fall trügt also der Schein nicht. Wenn ich zeigen will, dass zwei Aussagen A,B äquivalent sind, dann genügt es zu zeigen, dass die Negation der Aussage A äquivalent zur Negation der Aussage B ist.

20.36. Um was geht es beim Äquivalenz-Antivalenz-Satz?

Ich möchte in diesem Abschnitt die Verbindung zwischen der Äquivalenz und der Antivalenz herstellen.

Satz 61. Es seien A, B Symbole für Aussagen, welche nicht in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann behaupte ich, dass gilt

$$(A \Leftrightarrow B) \Leftrightarrow \neg (A \Leftrightarrow B)$$

In Worten: Es ist genau dann entweder A oder B wahr, falls nicht A äquivalent zu B ist.

BEWEIS. Dieses logischen Satz, so ich ihn überhaupt beweisen kann, nenne ich den Äquivalenz-Antivalenz-Satz. Ich möchte den Beweis zuerst einmal durch bloßes Ausrechnen zeigen. In den Tabellen 224 und 225 sowie 226 habe ich die Beweise aufgeschrieben. In den Tabellen 227 sowie 228 habe ich die Verweise der Beweise aufgeschrieben.

Ich möchte versuchen, den Satz sprachlich zu beweisen. Angenommen, es gäbe Aussagen A und B derart, dass die Behauptung nicht gelten würde. Dann müsste gemäß der zweiten und dritten Zeile der Definition 19 der Äquivalenz entweder die Aussage

$$A \Leftrightarrow B$$

Tabelle 226. 2. Teil 2. Beweis des Äquivalenz-Antivalenz-Satzes

Aussage/ Fall Nr.	Behauptung
1	
2	$(A \Leftrightarrow B) \Leftrightarrow \neg (A \Leftrightarrow B)$
3	$(A \Leftrightarrow B) \Leftrightarrow \neg (A \Leftrightarrow B)$
4	$(A \Leftrightarrow B) \Leftrightarrow \neg (A \Leftrightarrow B)$

Tabelle 227. 1. Teil Verweise Beweis des Äquivalenz-Antivalenz-Satzes

Defintion/	Definition 20	Definition 19	Definition 11
Fall Nr.	der	der	der
rall IVI.	Antivalenz	Äquivalenz	Negation
1	1. Zeile	1. Zeile	2. Zeile
2	2. Zeile	2. Zeile	1. Zeile
3	3. Zeile	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile	2. Zeile

Tabelle 228. 2. Teil Verweise Beweis des Äquivalenz-Antivalenz-Satzes

Defintion/ Fall Nr.	Definition 19 der Äquivalenz
1	1. Zeile
2	4. Zeile
3	4. Zeile
4	1. Zeile

nicht wahr und die Aussage

$$\neg (A \Leftrightarrow B)$$

wahr oder die Aussage

$$A \not\Leftrightarrow B$$

wahr und die Aussage

$$\neg (A \Leftrightarrow B)$$

nicht wahr sein. Ich beginne mit dem ersten Fall: Wäre die Aussage

$$\neg (A \Leftrightarrow B)$$

wahr, könnten die Aussagen A und B gemäß der Definition 19 der Äquivalenz nicht beide nicht wahr oder beide wahr sein. Also müsste die Aussage A nicht wahr und die Aussage B wahr oder die Aussage

A wahr und die Aussage B nicht wahr sein. Wäre die Aussage A nicht wahr und die Aussage B wahr, dann wäre gemäß der zweiten Zeile der Definition 20 der Antivalenz die Aussage $A \Leftrightarrow B$ wahr. Wäre die Aussage A wahr und die Aussage B nicht wahr, dann wäre gemäß der dritten Zeile der Definition 20 der Antivalenz die Aussage $A \Leftrightarrow B$ wiederum wahr. Also kann dieser Fall nicht eintreten, dass die Aussage

$$\neg (A \Leftrightarrow B)$$

wahr, die Aussage

$$A \Leftrightarrow B$$

jedoch nicht wahr ist.

Nun möchte ich auf der anderen Seite überlegen, ob der Fall eintreten könnte, dass die Aussage

$$A \Leftrightarrow B$$

wahr, die Aussage

$$\neg (A \Leftrightarrow B)$$

nicht wahr ist. Ist die Aussage

$$A \Leftrightarrow B$$

wahr, dann muss gemäß der zweiten und dritten Zeile der Definition 20 der Antivalenz entweder die Aussage A nicht wahr, die Aussage B wahr oder umgekehrt die Aussage A wahr und die Aussage B nicht wahr sein. Ist die Aussage A nicht wahr, die Aussage B jedoch wahr, dann ist gemäß der zweiten Zeile der Definition 19 der Äquivalenz die Aussage $A \Leftrightarrow B$ nicht wahr. Also ist gemäß der ersten Zeile der Definition 11 der Negation die Aussage $\neg (A \Leftrightarrow B)$ eben trotzdem wahr. Ist auf der anderen Seite die Aussage A wahr, die Aussage B jedoch nicht, dann ist gemäß der dritten Zeile der Definition 19 der Äquivalenz die Aussage $A \Leftrightarrow B$ wiederum nicht wahr, die Aussage $\neg (A \Leftrightarrow B)$ jedoch wiederum gemäß der ersten Zeile der Definition 11 der Negation ebenso wahr. Also ist es nicht möglich, Aussagen mit den Bezeichnungen A und B derart zu finden, dass die Aussage $A \Leftrightarrow B$ nicht wahr, die Aussage $\neg (A \Leftrightarrow B)$ jedoch wahr ist. Zusammengefasst habe ich endlich auch mit sprachlichen Mitteln zu zeigen versucht, dass es nicht möglich ist, dass $A \Leftrightarrow B$ nicht wahr, die Aussage $\neg (A \Leftrightarrow B)$ jedoch wahr ist oder die Aussage $A \Leftrightarrow B$ wahr und die Aussage $\neg (A \Leftrightarrow B)$ nicht wahr ist. Somit meine ich auch mit sprachlichen Mitteln die Richtigkeit der Behauptung erbracht zu haben (auch wenn dieser Beweis im Vergleich zum tabellarischen Beweis extrem lang fädig ist) und beende darum an dieser Stelle diesen Beweis.

20.37. Implikation Antivalenz Disjunktion

Auch dieser logische Satz ist nicht wahnsinnig genial.

Tabelle 229. 1. Beweis des Satzes der Implikation von Antivalenz und Disjunktion

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \lor B$	Behauptung
1	0	0	1
2	1	1	1
3	1	1	1
4	0	1	1

Satz 62. Es seien A und B Metasymbole von Aussagen, welche weder in sich selbst noch bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \Rightarrow (A \lor B)$$

In Worten: Ist entweder A oder B wahr, dann folgt daraus, dass A oder B wahr ist.

Ich kann darum umgangssprachlich sagen, dass die Antivalenz eine strengere Bedingung ist als die Disjunktion.

Beweis. Ich möchte den Beweis wiederum als Tabellen abgelegt, und zwar in der Tabelle 229 so, wie ich üblicherweise geschrieben wird und in der Tabelle 230 so, wie ich es eventuell aufschreiben würde. In der Tabelle 231 habe ich die Verweise der Beweise aufgeschrieben. Vielleicht klappt es bei diesem Satz einen sprachlichen Beweis anzufügen (da er eine Implikation enthält). Ich möchte mir überlegen, ob es Aussagen A und B derartig geben müsste, dass die Behauptung nicht richtig sei. Dann müsste also gemäß der dritten Zeile der Definition 20 die Antivalenz von A und B ($A \Leftrightarrow B$) wahr, jedoch die Disjunktion von A und B ($A \vee B$) jedoch nicht wahr sein. Gemäß der Definition 17 der Disjunktion kann diese jedoch nur dann nicht wahr sein, falls weder A noch B wahr sind. In diesem Fall ist gemäß der ersten Zeile der Definition 20 der Antivalenz jedoch die Antivalenz von A und B jedoch ebenfalls nicht wahr. Das bedeutet jedoch, dass die ganze Behauptung (dass aus der Antivalenz der beiden Aussagen A und B die Implikation folgern würden) jedoch gemäß der ersten Zeile der Definition 14 der Implikation trotzdem wahr wäre. Damit glaube ich, den Beweis für die Richtigkeit der Behauptung doch noch mit rein sprachlichen Mitteln erbracht zu haben und beende darum an dieser Stelle die weitere Beweisführung.

20.38. Satz der Negation der Implikation

Dieser Satz verwende ich bei der Herleitung der Gesetzte der natürlichen Zahlen. Er dient jedoch auch dazu, zu zeigen, wann eine Implikation nicht gilt. Denn wenn ich zeigen kann, dass eine Voraussetzung

Aussage/ $A \Leftrightarrow B$ $A \vee B$ Behauptung Fall Nr. $\neg (A \Leftrightarrow B) \Rightarrow$ $\neg (A \lor B)$ 1 $\neg (A \Leftrightarrow B)$ $(A \vee B)$ $\neg (A \Leftrightarrow B) \Rightarrow$ 2 $A \Leftrightarrow B$ $A \vee B$ $(A \vee B)$ $\neg (A \Leftrightarrow B) \Rightarrow$ 3 $A \Leftrightarrow B$ $A \vee B$ $(A \vee B)$ $\neg (A \Leftrightarrow B) \Rightarrow$ 4 $A \vee B$ $\neg (A \Leftrightarrow B)$ $(A \vee B)$

Tabelle 230. 2. Beweis des Äquivalenz-Antivalenz-Satzes

TABELLE 231. Verweise Beweis des Satzes der Implikation von Antivalenz und Disjunktion

Defintion/	Definition 20	Definition 17	Definition 14
Fall Nr.	der	der	der
ran m.	Antivalenz	Disjunktion	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	4. Zeile
3	3. Zeile	3. Zeile	4. Zeile
4	4. Zeile	4. Zeile	2. Zeile

gilt, jedoch die Folgerung nicht gilt, dann habe ich bereits gezeigt, dass die Implikation nicht richtig sein kann. Es gilt:

Satz 63. Es seien A, B Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt:

$$\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$$

BEWEIS. Die Implikation ist gemäß der Definition 14 genau dann nicht wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. Damit hätte ich den Satz bereits bewiesen. Damit alles seine Richtigkeit besitzt, möchte ich den Beweis noch tabellarisch beweisen. Diesen Beweis habe ich in den Tabellen 232 und 233 sowie 235 und 235 abgelegt. Die Verweise habe ich in der Tabelle 236 sowie 237 abgelegt.

20.39. Satz der Trivialität

Nun, den Namen dieses Satzes gibt es nicht. Zumindest habe ich dessen Namen noch nie gelesen. Ob er sinnvoll ist, ist noch einmal eine andere Frage. Aber ich kann ihn zumindest formulieren und beweisen. Er lautet:

TABELLE 232. 1. Teil 1. Beweis des Satzes der Negation der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$\neg (A \Rightarrow B)$
1	1	0
2	1	0
3	0	1
4	1	0

Tabelle 233. 2. Teil 1. Beweis des Satzes der Negation der Implikation

Aussage/ Fall Nr.	$\neg B$	$A \wedge \neg B$	$\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$
1	1	0	1
2	0	0	1
3	1	1	1
4	0	0	1

Tabelle 234. 1. Teil 2. Beweis des Satzes der Negation der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$\neg (A \Rightarrow B)$
1	$A \Rightarrow B$	$\neg (\neg (A \Rightarrow B))$
2	$A \Rightarrow B$	$\neg (\neg (A \Rightarrow B))$
3	$\neg (A \Rightarrow B)$	$\neg (A \Rightarrow B)$
4	$A \Rightarrow B$	$\neg (\neg (A \Rightarrow B))$

Tabelle 235. 2. Teil 2. Beweis des kleinen Lemmas der Äquivalenz der Disjunktion

Aussage/ Fall Nr.	$\neg B$	$A \wedge \neg B$	$\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$
1	$\neg B$	$\neg (A \land \neg B)$	$\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$
2	$\neg (\neg B)$	$\neg (A \land \neg B)$	$\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$
3	$\neg B$	$A \wedge \neg B$	$\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$
4	$\neg (\neg B)$	$\neg (A \land \neg B)$	$\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$

TABELLE 236. 1. Teil Verweise Beweis des Satzes der Negation der Implikation

Defintion/ Fall Nr.	Definition 14 der Negation	Definition 11 der Negation
1	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile
3	2. Zeile	1. Zeile
4	2. Zeile	2. Zeile

Tabelle 237. 2. Teil Verweise Beweis des Satzes der Negation der Implikation

Defintion/	Definition 11	Definition 13	Definition 19
Fall Nr.	der	der	der
rall Mi.	Negation	Konjunktion	Äquivalenz
1	1. Zeile	2. Zeile	1. Zeile
2	2. Zeile	1. Zeile	1. Zeile
3	1. Zeile	4. Zeile	4. Zeile
4	2. Zeile	3. Zeile	1. Zeile

Satz 64. Es seien A sowie B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt:

$$(\neg A \land A) \Rightarrow B$$

BEWEIS. Ich habe den Beweis des Satzes in den Tabellen 238 sowie 239 abgelegt. Die Verweise des Beweises habe ich in der Tabelle 240 aufgeschrieben. Es gibt jedoch auch einen kurzen sprachlichen Beweis. Gemäß dem Satz 46 muss $\neg A \land A$ eine nicht wahre Aussage sein. Das bedeutet jedoch, dass gemäß der ersten Zeile der Definition 11 der Negation die Aussage

$$\neg (\neg A \land A)$$

wahr ist. Gemäß der Abkürzungsregel 11 der Implikation ist damit jedoch die Implikation bereits bewiesen. Da alles seine Richtigkeit haben soll, habe ich in den Tabellen 238 einerseits sowie 239 den Beweis noch tabellarisch erbracht. In der Tabelle 240 habe ich die Verweise des Beweises aufgeschrieben. Damit hoffe ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende darum an dieser Stelle die weitere Beweisführung.

Und bevor Du Dich maßlos darüber aufregst, dass ich diesen Satz formuliert und bewiesen habe: Der Satz wird noch verwendet. Aber ich

Tabelle 238. 1. Beweis Satz der Trivialität

Aussage/ Fall Nr.	$\neg A$	$\neg A \wedge A$	Behauptung
1	1	0	1
2	1	0	1
3	0	0	1
4	0	0	1

Tabelle 239. 2. Beweis Satz der Trivialität

Aussage/ Fall Nr.	$\neg A$	$\neg A \wedge A$	Behauptung
1	$\neg A$	$\neg A \wedge A$	$\neg A \land A \Rightarrow B$
2	$\neg A$	$\neg A \wedge A$	$\neg A \land A \Rightarrow B$
3	$\neg (\neg A)$	$\neg A \wedge A$	$\neg A \land A \Rightarrow B$
4	$\neg (\neg A)$	$\neg A \wedge A$	$\neg A \land A \Rightarrow B$

Tabelle 240. Verweise Satz der Trivialität

Defintion/	Definition 11	Definition 13	Definition 14
Fall Nr.	der	der	der
rall Mi.	Negation	Konjunktion	Implikation
1	1. Zeile	3. Zeile	1. Zeile
2	1. Zeile	3. Zeile	2. Zeile
3	2. Zeile	2. Zeile	1. Zeile
4	2. Zeile	2. Zeile	2. Zeile

Trottel habe in einer früheren Fassung einen falschen Verweis hingeschrieben. Doch die ganze Sache dient mir auch als Vorwand, um auf eine wichtige Funktion von Mathematik hinzuweisen: Die Mathematik dient auch als "Gerümpelkammer" für Ideen. Da werden Probleme und dazugehörige Lösungen aufgeschrieben. Und richtige Mathematikerinnen und Mathematiker untersuchen bei eigenen Problemstellungen oft auch in diesen Sammlungen - "Literatur" genannt - ob ihr Problem auch schon beschrieben oder sogar gelöst wurde. Wenn das der Fall ist, dann haben sie je nachdem Glück oder Pech gehabt. Glück haben sie dann gehabt, falls das gesuchte Problem ein Teilproblem eines anderen Problems war, welches sie eigentlich lösen wollten. Pech haben sie dann gehabt, falls sie dieses Problem hätten lösen und darüber in einer Fachzeitschrift²⁷ oder sonst wo etwas hätten schreiben sollen.

²⁷Also einer Zeitschrift, in welcher Wissenschaftlerinnen und Wissenschaftlich für andere Fachpersonen schreiben (so kompliziert, dass es üblicherweise nur ihresgleichen lesen können).

20.40. Mit Implikationen Äquivalenzen beweisen

Angenommen, Du hast mindestens drei Aussagen A, B sowie C und Du möchtest beweisen, dass alle drei Aussagen äquivalent sind. Gibt es da eine elegantes Verfahren? Ja, das gibt es. Ich möchte es kurz zeigen:

SATZ 65. Es seien A, B und C Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage:

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow (A \Leftrightarrow B \land B \Leftrightarrow C)$$

Beweis. Kleine Vorbemerkung: Gemäß dem Satz 40 ist die Konjunktion assoziativ. Darum kommt es für die Auswertung des Wahrheitsgehalts nicht darauf an, ob ich die Aussage

$$(A \Rightarrow B) \land ((B \Rightarrow C) \land (C \Rightarrow A))$$

oder die Aussage

$$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$$

betrachte. Nun möchte ich aber versuchen, den Beweis des zu beweisenden Satz mit sprachlichen Mitteln zu erbringen. Gilt eine der drei Aussagen

$$A \Rightarrow B$$

$$B \Rightarrow C$$

$$C \Rightarrow A$$

nicht, dann ist gemäß der Definition 13 der Konjunktion die gesamte Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

nicht wahr. Da es sich hier um einen Basistext handelt, möchte ich das noch weiter ausführen: Ist die Aussage

$$A \Rightarrow B$$

nicht wahr, dann ist gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$(A \Rightarrow B) \land ((B \Rightarrow C) \land (C \Rightarrow A))$$

und damit die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

nicht wahr. Hier habe ich erneut vom Satz 40 der Assoziativität der Konjunktion Gebrauch gemacht. Ist die Aussage $B \Rightarrow C$ nicht wahr, dann ist gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C)$$

wiederum nicht wahr. Gemäß dem gleichen Minimumprinzip 10 der Konjunktion ist dann die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

ebenfalls nicht wahr. Ist schlussendlich die Aussage

$$C \Rightarrow A$$

nicht wahr, dann ist zum dritten Mal gemäß dem Minimumprinzip gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$$

und somit gemäß dem Satz 40 der Assoziativität der Konjunktion die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

wiederum nicht wahr. Also ist die gesamte Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

nicht wahr, falls eine der drei Aussagen

$$A \Rightarrow B$$

$$B \Rightarrow C$$

$$C \Rightarrow A$$

nicht wahr ist. Ist dies der Fall, dann ist gemäß der Abkürzungsregel 11 der Implikation die gesamte Aussage jedoch wahr. Sind jedoch alle drei Implikationen

$$A \Rightarrow B$$

$$B \Rightarrow C$$

$$C \Rightarrow A$$

wahr, dann kann ich gemäß dem Satz 15 der Transitivität der Implikation schließen, dass gelten muss

$$B \Rightarrow A$$

da ja gilt

$$B \Rightarrow C \land C \Rightarrow A$$

Also kann ich jetzt schreiben, dass gilt

$$(A \Rightarrow B) \land (B \Rightarrow A)$$

Also kann ich gemäß dem Satz 50 der Äquivalenz von Äquivalenz und Implikationen schreiben, dass gilt:

$$B \Leftrightarrow A$$

Da nun die Äquivalenz gemäß dem Satz 39 kommutativ ist, kann ich daraus folgern, dass ebenfalls gelten muss

$$A \Leftrightarrow B$$

Auf genau die gleiche Art kann ich beweisen, dass

$$B \Leftrightarrow C$$

sein muss. Da

$$(A \Rightarrow B) \land (C \Rightarrow A)$$

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$
1	1	1	1
2	1	1	0
3	1	0	1
4	1	1	0
5	0	1	1
6	0	1	1
7	1	0	1
8	1	1	1

Tabelle 241. 1. Teil 1. Beweis Satz Äquivalenzen aus Implikationen

gilt und die Konjunktion gemäß dem Satz 35 immer noch kommutiert, muss auch gelten:

$$(C \Rightarrow A) \land (A \Rightarrow B)$$

Somit muss gemäß dem Satz 15 der Transitivität der Implikation schließen, dass gilt:

$$C \Rightarrow B$$

Zusammen mit der Voraussetzung $B \Rightarrow C$, welche gemäß Voraussetzung wahr sein muss, kann ich also wiederum gemäß dem Korollar 50 des Satzes 23 schreiben, dass gilt:

$$C \Leftrightarrow B$$

Da nun die Äquivalenz gemäß dem Satz 39 kommutativ ist, kann ich daraus folgern, dass ebenfalls gelten muss

$$B \Leftrightarrow C$$

Somit kann ich wiederum folgern, dass gilt

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

Aus diesem Grund bin ich der Meinung, dass ich den ganzen Beweis für die Richtigkeit der Behauptung erbracht habe.

Nun möchte ich gerne wiederum den Beweis mit Hilfe von Wahrheitstafeln erbringen. Die Wahrheitstafeln, welche mit Hilfe von Zahlen den Satz beweisen, sind in den Tabellen 241, 242 sowie 243 abgelegt. Die Wahrheitstafeln, welche mit Hilfe von Aussagen den Satz beweisen, sind in den Tabellen 244, 245, 246 sowie 247 abgelegt. Die Verweise der Beweise sind in den Tabellen 248, 249 sowie 250 abgelegt.

Falls Du den tabellarischen Beweis überfliegt, dann wirst Du sehen, dass dieser extrem aufwändig ist. Darum kann es unter Umständen Sinn machen, den sprachlichen Beweis zu verwenden, da dieser zwar auch aufwändig ist, jedoch immerhin noch eine gewisse Übersicht besitzt.

TABELLE 242. 2. Teil 1. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$
1	1	1	1
2	1	0	1
3	0	0	0
4	1	0	0
5	0	0	0
6	0	0	0
7	0	0	1
8	1	1	1

TABELLE 243. 3. Teil 1. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$	Behauptung
1	1	1	1
2	0	0	1
3	0	0	1
4	1	0	1
5	1	0	1
6	0	0	1
7	0	0	1
8	1	1	1

TABELLE 244. 1. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$
1	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$
2	$A \Rightarrow B$	$B \Rightarrow C$	$\neg (C \Rightarrow A)$
3	$A \Rightarrow B$	$\neg (B \Rightarrow C)$	$C \Rightarrow A$
4	$A \Rightarrow B$	$B \Rightarrow C$	$\neg (C \Rightarrow A)$
5	$\neg (A \Rightarrow B)$	$B \Rightarrow C$	$C \Rightarrow A$
6	$\neg (A \Rightarrow B)$	$B \Rightarrow C$	$C \Rightarrow A$
7	$A \Rightarrow B$	$\neg \left(B \Rightarrow C \right)$	$C \Rightarrow A$
8	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$

Nun bin ich an der Stelle, an welcher ich zu meinen glaube, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grund die weitere Beweisführung.

Tabelle 245. 2. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$
1	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$
2	$(A \Rightarrow B) \land (B \Rightarrow C)$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$A \Leftrightarrow B$
3	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
4	$(A \Rightarrow B) \land (B \Rightarrow C)$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
5	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
6	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
7	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$A \Leftrightarrow B$
8	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$

Ich möchte an dieser Stelle übrigens noch bemerken, dass der Satz nicht aussagt, dass alle Aussagen A,B und C wahr seien müssen. Es ist auch möglich, dass alle Aussagen nicht wahr sind. Jedoch sagt der Satz sehr wohl aus, dass alle Aussagen in diesem Fall wahr sind, sobald eine der Aussagen wahr ist. Auch kann keine Aussage wahr sein, falls eine der Aussagen nicht wahr ist.

Der vorhergehende Satz kann übrigens noch verschärft werden:

Satz 66. Es seien A, B sowie C Aussagen, welche in sich selber und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow (A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

Beweise. Die Hälfte des Beweises habe ich ja bereits im vorhergehenden Satz 66 erbracht, in welchem ich gezeigt habe, dass eine Äquivalenz aus zyklischen Implikationen folgt. Formal aufgeschrieben habe

TABELLE 246. 3. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $
1	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $
2	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
3	$\neg \left(B \Leftrightarrow C \right)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
4	$B \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
5	$B \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
6	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
7	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
8	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $

TABELLE 247. 4. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

Aussage/	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
Fall Nr.	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
1	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
1	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
2	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
2	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
3	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
3	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
4	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
4	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
5	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
9	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
6	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
0	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
7	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
8	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
0	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$

TABELLE 248. 1. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	Definition 14	Definition 14	Definition 14
	der	der	der
	Implikation	Implikation	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	3. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	4. Zeile
7	4. Zeile	3. Zeile	2. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 249. 2. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen

Auggero /	Definition 13	Definition 13	Definition 19
Aussage/ Fall Nr.	der	der	der
	Konjunktion	Konjunktion	Äquivalenz
1	4. Zeile	4. Zeile	1. Zeile
2	4. Zeile	3. Zeile	1. Zeile
3	3. Zeile	2. Zeile	2. Zeile
4	4. Zeile	3. Zeile	2. Zeile
5	2. Zeile	2. Zeile	3. Zeile
6	2. Zeile	2. Zeile	3. Zeile
7	3. Zeile	2. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle 250. 3. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	Definition 19	Definition 13	Definition 19
	der	der	der
	Äquivalenz	Konjunktion	Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	3. Zeile	1. Zeile
3	3. Zeile	1. Zeile	1. Zeile
4	4. Zeile	2. Zeile	1. Zeile
5	1. Zeile	2. Zeile	1. Zeile
6	2. Zeile	1. Zeile	1. Zeile
7	3. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	4. Zeile

ich also bereits gezeigt, dass gelten muss:

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow (A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

Angenommen die umgekehrte Richtung der Behauptung sei falsch. Zuerst einmal kann gemäß dem Satz 24 über die Äquivalenz von Implikation und Replikation schreiben, dass gilt

$$((A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)) \Leftrightarrow ((A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftarrow (A \Leftrightarrow B) \land (B \Leftrightarrow C))$$

Da die Äquivalenz gemäß dem Satz 39 kommutativ ist, muss daher auch gelten:

$$((A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftarrow (A \Leftrightarrow B) \land (B \Leftrightarrow C)) \Leftrightarrow ((A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A))$$

Nun möchte ich mir überlegen, ob die Implikation

$$((A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A))$$

nicht wahr sein könnte. Dies wäre gemäß der dritten Zeile der Definition 14 dann der Fall, falls die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

wahr, die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

jedoch nicht wahr wäre. Angenommen, die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

wäre nicht wahr. Dann müsste mindestens eine Aussage der Aussagen

$$A \Rightarrow B$$

$$B \Rightarrow C$$

$$C \Rightarrow A$$

nicht wahr sein. Ansonsten wäre die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

eben (im Widerspruch zur Voraussetzung) wahr. Wäre die Aussage

$$A \Rightarrow B$$

nicht wahr, dann würde dies gemäß der dritten Zeile der Definition 14 der Implikation bedeuten, dass gilt

$$A \wedge \neg B$$

Daraus würde gemäß der dritten Zeile der Definition 19 der Äquivalenz jedoch folgen, dass die Aussage

$$A \Leftrightarrow B$$

nicht wahr ist. Also wäre gemäß dem Minimumprinzip 42 der Konjunktion folgen, dass die gesamte Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

nicht wahr wäre. Somit wäre gemäß der Abkürzungsregel 11 der Implikation die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

eben doch wahr. Genau auf die gleiche Art kann ich argumentieren, falls die Aussage

$$B \Rightarrow C$$

nicht wahr wäre: Wäre die Aussage

$$B \Rightarrow C$$

nicht wahr, dann würde dies gemäß der dritten Zeile der Definition 14 der Implikation bedeuten, dass gilt

$$B \wedge \neg C$$

Daraus würde gemäß der dritten Zeile der Definition 19 der Äquivalenz jedoch folgen, dass die Aussage

$$B \Leftrightarrow C$$

nicht wahr ist. Also wäre gemäß dem Minimumprinzip 42 der Konjunktion folgen, dass die gesamte Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

nicht wahr wäre. Somit wäre gemäß der Abkürzungsregel 11 der Implikation die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

eben doch wahr.

Wäre nun die Aussage $C\Rightarrow A$ nicht wahr, dann müsste gemäß der dritten Zeile der Definition 14 der Implikation gelten, dass gilt

$$C \wedge \neg A$$

Dann könnte jedoch die Aussage

$$(A \Leftrightarrow B) \land (B \Rightarrow C)$$

ebenfalls nicht gelten. Somit wäre gemäß der Abkürzungsregel 11 der Implikation die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

eben doch wahr.

Denn wäre die Aussage A nicht wahr, dann müsste die Aussage B auch nicht wahr sein. Ansonsten wäre gemäß der zweiten Zeile der Definition 19 der Äquivalenz die Aussage die Aussage

$$A \Leftrightarrow B$$

nicht wahr und somit gemäß dem Minimumprinzip 10 der Konjunktion die gesamte Aussage nicht wahr. Wäre jedoch die Aussage B nicht wahr, dann wäre gemäß der zweiten Zeile der Definition 19 der Äquivalenz die Aussage

$$B \Leftrightarrow C$$

nicht wahr. Also wäre wiederum gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$(A \Leftrightarrow B) \land (B \Rightarrow C)$$

nicht wahr. Somit wäre gemäß der Abkürzungsregel 11 der Implikation die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

eben doch wahr.

Zusammenfassend kann ich schreiben, dass ich keine Aussagen mit dem Symbolen A,B und C finden kann, welche in sich und in Bezug auf die anderen Symbole des Lemmas widerspruchsfrei sind und für welche die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

nicht wahr gemäß dem Satz 13 des ausgeschlossenen Dritten meine ich nun schreiben zu können, dass diese Aussage für alle Aussagen gelten muss. Also kann ich auch gemäß dem Satz 24 über die Äquivalenz von Implikation und Replikation schreiben, dass gilt

$$((A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)) \Leftrightarrow ((A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftarrow (A \Leftrightarrow B) \land (B \Leftrightarrow C))$$

Gemäß dem Satz 17 der Schlussfolgerung kann ich also folgern, dass gilt:

$$((A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftarrow (A \Leftrightarrow B) \land (B \Leftrightarrow C))$$

Da ich bereits gezeigt habe, dass gilt:

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow (A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

kann ich gemäß dem Satz 50 kann ich nun schließen dass also gilt:

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow (A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

Auch diesen Beweis möchte noch einmal mit Hilfe von Wahrheitstafeln erbringen. Die Wahrheitstafeln, welche mit Hilfe von Zahlen den Satz beweisen, sind in den Tabellen 251, 252 sowie 253 abgelegt. Die Wahrheitstafeln, welche mit Hilfe von Aussagen den Satz beweisen, sind in den Tabellen 254, 255, 256 sowie 257 abgelegt. Die Verweise der Beweise sind in den Tabellen 258, 259 sowie 260 abgelegt.

TABELLE 251. 1. Teil 1. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$
1	1	1	1
2	1	1	0
3	1	0	1
4	1	1	0
5	0	1	1
6	0	1	1
7	1	0	1
8	1	1	1

TABELLE 252. 2. Teil 1. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$
1	1	1	1
2	1	0	1
3	0	0	0
4	1	0	0
5	0	0	0
6	0	0	0
7	0	0	1
8	1	1	1

TABELLE 253. 3. Teil 1. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$	Behauptung
1	1	1	1
2	0	0	1
3	0	0	1
4	1	0	1
5	1	0	1
6	0	0	1
7	0	0	1
8	1	1	1

Nebenbemerkung: Das Aufschreiben dieses Beweises hat mir wieder einmal vor Augen geführt, dass Mathematik bisweilen ziemlich harte Arbeit ist. Aber auf eine andere Art, als ich dies üblicherweise in der mathematischen Literatur zu lesen glaube: Die Arbeit besteht darin,

TABELLE 254. 1. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$
1	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$
2	$A \Rightarrow B$	$B \Rightarrow C$	$\neg (C \Rightarrow A)$
3	$A \Rightarrow B$	$\neg (B \Rightarrow C)$	$C \Rightarrow A$
4	$A \Rightarrow B$	$B \Rightarrow C$	$\neg (C \Rightarrow A)$
5	$\neg (A \Rightarrow B)$	$B \Rightarrow C$	$C \Rightarrow A$
6	$\neg (A \Rightarrow B)$	$B \Rightarrow C$	$C \Rightarrow A$
7	$A \Rightarrow B$	$\neg (B \Rightarrow C)$	$C \Rightarrow A$
8	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$

TABELLE 255. 2. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

		(/ 4 5)	
Aussage/ Fall Nr.	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$
1	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$
2	$(A \Rightarrow B) \land (B \Rightarrow C)$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$A \Leftrightarrow B$
3	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
4	$(A \Rightarrow B) \land (B \Rightarrow C)$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
5	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
6	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
7	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$A \Leftrightarrow B$
8	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$

TABELLE 256. 3. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $
1	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
2	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
3	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
4	$B \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
5	$B \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
6	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
7	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
8	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $

TABELLE 257. 4. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

Aussage/	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
_ ,	, , , , , , , , , , , , , , , , , , , ,
Fall Nr.	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
1	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
1	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
2	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
2	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
3	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
3	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
4	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
4	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
5	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
6	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
7	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
8	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
0	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$

TABELLE 258. 1. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen

Auggaga /	Definition 14	Definition 14	Definition 14
Aussage/ Fall Nr.	der	der	der
ran m.	Implikation	Implikation	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	3. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	4. Zeile
7	4. Zeile	3. Zeile	2. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle 259. 2. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen

Aussage/	Definition 13	Definition 13	Definition 19
Fall Nr.	der	der	der
rall IVI.	Konjunktion	Konjunktion	Äquivalenz
1	4. Zeile	4. Zeile	1. Zeile
2	4. Zeile	3. Zeile	1. Zeile
3	3. Zeile	2. Zeile	2. Zeile
4	4. Zeile	3. Zeile	2. Zeile
5	2. Zeile	2. Zeile	3. Zeile
6	2. Zeile	2. Zeile	3. Zeile
7	3. Zeile	2. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 260. 3. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen

Aussage/	Definition 19	Definition 13	Definition 19
Fall Nr.	der	der	der
ran m.	Äquivalenz	Konjunktion	Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	3. Zeile	1. Zeile
3	3. Zeile	1. Zeile	1. Zeile
4	4. Zeile	2. Zeile	1. Zeile
5	1. Zeile	2. Zeile	1. Zeile
6	2. Zeile	1. Zeile	1. Zeile
7	3. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle 261. 1. Beweis der Kommutativität der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$B\overline{\wedge}A$	$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$
1	1	1	1
2	1	1	1
3	1	1	1
4	0	0	1

Tabelle 262. 2. Beweis Kommutativität der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$B\overline{\wedge}A$	$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$
1	$A\overline{\wedge}B$	$B\overline{\wedge}A$	$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$
2	$A\overline{\wedge}B$	$B\overline{\wedge}A$	$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$
3	$A\overline{\wedge}B$	$B\overline{\wedge}A$	$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$
4	$\neg (A \overline{\wedge} B)$	$\neg (B \overline{\wedge} A)$	$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$

TABELLE 263. Tabelle Verweise Beweis der Kommutativität der NAND-Verknüpfung

Defintion/	Definition 21	Definition 21	Definition 19
Fall Nr.	der NAND-	der NAND-	der
ran nr.	Verknüpfung	Verknüpfung	Äquivalenz
1	1. Zeile	1. Zeile	4. Zeile
2	2. Zeile	3. Zeile	4. Zeile
3	3. Zeile	2. Zeile	4. Zeile
4	4. Zeile	4. Zeile	1. Zeile

so präzis wie möglich Dinge aufzuschreiben, welche als sowieso wahr gelten.

20.41. Kommutativität der NAND-Verknüpfung

Obwohl es nach dem ersten Blick auf die Definition 21 der NAND-Verknüpfung schnell klar wird, dass die NAND-Verknüpfung kommutativ ist, möchte ich gerne die Behauptung noch einmal erbringen:s

Satz 67. Es seien A sowie B Symbole für Aussagen. Dann ist

$$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$$

BEWEIS. Ich möchte den Beweis mittels Wahrheitstafeln führen. In den Tabellen 261 sowie 262 habe führe ich den Beweis, in der Tabelle 263 habe ich die Verweise aufgelistet.

Nun möchte ich mir überlegen, wieso die NAND-Verknüpfung so heißt?

20.42. Zusammenhang Konjunktion und NAND-Verknüpfung

Was ist der Zusammenhang von NAND-Verknüpfung und Konjunktion? Es ist nicht schwierig, einen solchen herzustellen. Eigentlich hätte ich als Titel schreiben wollen: Warum ist die NAND-Verknpfüpfung die Negation einer Konjunktion? Als ersten Satz dieses Kapitels hätte ich schreiben wollen: Weil das so definiert ist. Aber der Titel wurde zu lang. Jedoch nützt es wenig, wenn ich das so sage, dass die Negation der Konjunktion die NAND-Verknüpfung ist und ich es jedoch nicht zeigen kann, wieso es so ist. Diese Situation kommt übrigens noch ab und zu in der Mathematik vor. Es werden verschiedene Dinge definiert und es wird damit gearbeitet. Und mit der Zeit wird klar, dass beide Definitionen nur unterschiedliche Ansichten des gleichen Sachverhaltes sind. Dann stellt sich die Frage, wieso dann beide Definition beibehalten werden und nicht eine Definition aufgegeben wird. Die Antwort ist, dass jede Beschreibung ihre Vor- und Nachteile besitzt. Darum ist es manchmal von Vorteil, beide Definitionen zu verwenden und sich Gedanken darüber zu machen, wann die eine Beschreibung besser ist und wann die andere.

Doch zurück zur Aussage. Der nachfolgende Satz könnte auch als disjunktive Normalform der NAND-Verküpfung betrachtet werden (auch wenn der Satz keine einzige Disjunktion enthält):

Satz 68. Es seien A respektive B Metasymbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Beweises widerspruchsfrei seien. Dann gilt:

$$(A \overline{\wedge} B) \Leftrightarrow \neg (A \wedge B)$$

Beweis. Jetzt möchte ich endlich einmal den Satz 50 verwenden. Ich möchte also zeigen, dass aus der Aussage

$$A\overline{\wedge}B$$

die Aussage

$$\neg (A \land B)$$

und aus der Aussage

$$\neg (A \land B)$$

die Aussage

$$A\overline{\wedge}B$$

folgt. Zur ersten Behauptung: Ich möchte mir überlegen, ob es Aussagen mit den Symbolen A sowie B derart gibt, dass die Aussage

$$A\overline{\wedge}B \Rightarrow \neg (A \wedge B)$$

nicht gilt. Dies wäre dann gemäß der dritten Zeile der Definition 14 der Implikation dann der Fall, falls die Aussage $A \overline{\land} B$ wahr, die Aussage $\neg (A \land B)$ jedoch nicht wahr wäre. Die Aussage $\neg (A \land B)$ ist gemäß

der zweiten Zeile der Definition 11 der Negation dann nicht wahr, falls die Aussage $A \wedge B$ wahr ist. Die Aussage $A \wedge B$ ist gemäß der vierten Zeile der Definition 13 der Konjunktion wahr, falls sowohl die Aussage A wie auch die Aussage B wahr ist. Sind sowohl die Aussagen A wie auch B wahr, dann ist jedoch gemäß der vierten Zeile der Definition 21 der NAND-Funktion (Sheffer Notation) die Aussage $A\overline{\wedge}B$ ebenfalls nicht wahr. Da nun sowohl die Aussagen $A\overline{\wedge}B$ wie auch $\neg (A \wedge B)$ nicht wahr sind, ist gemäß der ersten Zeile der Definition 14 der Implikation in diesem Fall die Behauptung

$$A \overline{\wedge} B \Rightarrow \neg (A \wedge B)$$

eben doch wahr. Also ist es nicht möglich, dass die Behauptung für irgendwelche (genügend "vernünftige") Aussagen nicht wahr ist. Darum kann ich schließen, dass für alle Aussagen, welche mit den Symbolen A sowie B bezeichnet werden die Aussage

$$A \overline{\wedge} B \Rightarrow \neg (A \wedge B)$$

wahr ist.

Die umgekehrte Richtung kann ich auf die haargenau gleiche Art beweisen. Ich habe dementsprechend den obigen Abschnitt kopiert und angepasst. Ich hoffe, dass dies Dich nicht stört. Ich möchte mir überlegen, ob es Aussagen mit den Symbolen A sowie B derart gibt, dass die Aussage

$$\neg (A \land B) \Rightarrow A \overline{\land} B$$

nicht gilt. Dies wäre dann gemäß der dritten Zeile der Definition 14 der Implikation dann der Fall, falls die Aussage $\neg(A \land B)$ wahr, die Aussage $A \overline{\land} B$ jedoch nicht wahr wäre. Die Aussage $A \overline{\land} B$ ist gemäß der vierten Zeile der Definition 21 der NAND - Funktion nicht wahr, falls sowohl die Aussage A wie auch die Aussage B wahr sind. Sind jedoch die Aussagen A und B wahr, dann ist gemäß der vierten Zeile der Definition 13 der Konjunktion die Aussage $A \land B$ wahr. Da nun die Aussage $A \land B$ wahr ist, ist gemäß der zweiten Zeile der Definition 11 der Negation in diesem Fall die Aussage $\neg(A \land B)$ jedoch nicht wahr. Das bedeutet, dass in diesem Fall weder die Aussage

$$\neg (A \land B)$$

noch die Aussage

$$A\overline{\wedge}B$$

wahr sind. Gemäß der ersten Zeile der Definition 14 der Implikation ist in diesem Fall die Behauptung

$$\neg (A \land B) \Rightarrow A \overline{\land} B$$

eben doch wahr. Also ist es nicht möglich, dass die Behauptung für irgendwelche (genügend "vernünftige") Aussagen nicht wahr ist. Darum

TABELLE 264. 1. Beweis des Satzes der Äquivalenz von NAND und der Negation einer Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A\overline{\wedge}B$	$\neg (A \land B)$	Behauptung
1	0	1	1	1
2	0	1	1	1
3	0	1	1	1
4	1	0	0	1

TABELLE 265. 1. Teil 2. Beweis des Satzes der Äquivalenz von NAND und der Negation einer Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A\overline{\wedge}B$
1	$\neg (A \land B)$	$A\overline{\wedge}B$
2	$\neg (A \land B)$	$A\overline{\wedge}B$
3	$\neg (A \land B)$	$A\overline{\wedge}B$
4	$A \wedge B$	$\neg (A \overline{\wedge} B)$

kann ich schließen, dass für alle Aussagen, welche mit den Symbolen A sowie B bezeichnet werden die Aussage

$$\neg (A \land B) \Rightarrow A \overline{\land} B$$

wahr ist. Da ich nun gezeigt habe, dass für alle in sich selbst und in Bezug auf die anderen Symbolen widerspruchsfreien Aussagen sowohl gilt

$$A \overline{\wedge} B \Rightarrow \neg (A \wedge B)$$

wie auch

$$\neg (A \land B) \Rightarrow A \overline{\land} B$$

kann ich gemäß dem Satz 50 der Äquivalenz von Äquivalenz und zwei Implikationen folgern, dass die beiden Aussagen $A \overline{\wedge} B$ sowie $\neg (A \wedge B)$ äquivalent sind. Es gilt also

$$A \overline{\wedge} B \Leftrightarrow \neg (A \wedge B)$$

Genau dies wollte ich jedoch beweisen. Ich habe den Beweis ebenfalls mittels Wahrheitstafeln erbracht. Dieser ist in den Tabellen 264 respektive 265 sowie 266 abgelegt. Die Verweise des Beweises habe ich in den Tabellen 267 sowie 268 aufgeschrieben. Darum glaube ich an dieser Stelle, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grunde an dieser Stelle die weitere Beweisführung.

Und was kommt jetzt? Richtig: Wenn ich schon mit viel zu vielen Worten zu erklären versucht habe, wieso die NAND-Verknüpfung so

TABELLE 266. 2. Teil 2. Beweis des Satzes der Äquivalenz von NAND und der Negation einer Konjunktion

Aussage/ Fall Nr.	$\neg (A \land B)$	$(\neg (A \land B)) \Leftrightarrow A \overline{\land} B$
1	$\neg (A \land B)$	$(\neg (A \land B)) \Leftrightarrow A \overline{\land} B$
2	$\neg (A \land B)$	$(\neg (A \land B)) \Leftrightarrow A \overline{\land} B$
3	$\neg (A \land B)$	$(\neg (A \land B)) \Leftrightarrow A \overline{\land} B$
4	$\neg (\neg (A \land B))$	$(\neg (A \land B)) \Leftrightarrow A \overline{\land} B$

Tabelle 267. 1. Teil Verweise Beweis des Satzes der Äquivalenz von NAND und der Negation einer Konjunktion

Defintion/ Fall Nr.	Definition 13 der Konjunktion	Definition 11 der Negation
1	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	3. Zeile	1. Zeile
4	4. Zeile	2. Zeile

Tabelle 268. 2. Teil Verweise Beweis des Satzes der Äquivalenz von NAND und der Negation einer Konjunktion

Defintion/ Fall Nr.	Definition 21 der NAND- Verknüpfung	Definition 19 der Äquivalenz
1	1. Zeile	4. Zeile
2	2. Zeile	4. Zeile
3	3. Zeile	4. Zeile
4	4. Zeile	1. Zeile

heißt, wie sie eben heißt, möchte ich nun beschreiben, wieso die NOR-Verknüpfung so heißt, wie sie eben heißt.

20.43. Zusammenhang NOR-Verknüpfung und Disjunktion

Dieser Abschnitt dient zur Abrundung der Zusammenhänge. Ich möchte gerne zeigen, dass die NOR-Verknüpfung wirklich als Negation einer Disjunktion betrachtet werden kann, so wie es eigentlich durch die Definition 17 behauptet wurde.

Satz 69. Für alle Aussagen mit den Symbolen A respektive B gilt:

$$(A \overline{\vee} B) \Leftrightarrow \neg (A \vee B)$$

TABELLE 269. 1. Beweis des Satzes der Äquivalenz von NOR und der Negation einer Disjunktion

Aussage/ Fall Nr.	$A \overline{\vee} B$	$A \lor B$	$\neg (A \lor B)$	Behauptung
1	1	0	1	1
2	0	1	0	1
3	0	1	0	1
4	0	1	0	1

TABELLE 270. 1. Teil 2. Beweis des Satzes der Äquivalenz von NOR und der Negation einer Disjunktion

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$A \lor B$
1	$A\overline{\wedge}B$	$\neg (A \lor B)$
2	$\neg (A \overline{\wedge} B)$	$A \lor B$
3	$\neg (A \overline{\wedge} B)$	$A \lor B$
4	$\neg (A \overline{\wedge} B)$	$A \lor B$

TABELLE 271. 2. Teil 2. Beweis des Satzes der Äquivalenz von NOR und der Negation einer Disjunktion

Aussage/ Fall Nr.	$\neg (A \lor B)$	Behauptung
1	$\neg (A \lor B)$	$(\neg (A \lor B)) \Leftrightarrow A \overline{\lor} B$
2	$\neg (\neg (A \lor B))$	$(\neg (A \lor B)) \Leftrightarrow A \overline{\lor} B$
3	$\neg (\neg (A \lor B))$	$(\neg (A \lor B)) \Leftrightarrow A \nabla B$
4	$\neg (\neg (A \lor B))$	$(\neg (A \lor B)) \Leftrightarrow A \overline{\lor} B$

Tabelle 272. 1. Teil Verweise des Beweis des Satzes der Äquivalenz von NOR und der Negation einer Disjunktion

Defintion/ Fall Nr.	Definition 17 der NOR- Verknüpfung	Definition 17 der Disjunktion
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	3. Zeile	3. Zeile
4	4. Zeile	4. Zeile

BEWEIS. Wieder schreibe ich den Beweis einfach auf (siehe Tabellen 269 sowie 270 und 271, Verweise siehe Tabellen 272 sowie 273). Ich möchte versuchen, den Beweis mit sprachlichen Mittel zu finden.

Tabelle 273. 2. Teil Verweise des Beweis des Satzes der Äquivalenz von NOR und der Negation einer Disjunktion

Defintion/ Fall Nr.	Definition 11 der Negation	Definition 19 der Äquivalenz
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	2. Zeile	1. Zeile

Es geht mir um die Frage, in welchem Fall (es ist wirklich nur einer) die Aussage

$$\neg (A \lor B)$$

nicht wahr ist. Da die Aussage

$$A \vee B$$

gemäß der ersten Zeile der Definition 17 der Disjunktion genau dann nicht wahr ist, falls sowohl die Aussage A wie auch die Aussage B nicht wahr ist, ist gemäß der ersten Zeile der Definition 11 der Negation die Aussage

$$\neg (A \lor B)$$

genau dann wahr, falls weder die Aussage A noch die Aussage B wahr ist. Wenn ich jetzt die Definition 17 der NOR-Verknüpfung anschaue, dann ist auch die Aussage

$$A \nabla B$$

auch genau dann wahr, falls weder die Aussage A noch die Aussage B wahr ist. Also kann ich schließen, dass in allen möglichen Fällen die Aussage

$$\neg (A \lor B)$$

genau dann wahr, falls die Aussage

$$A \overline{\vee} B$$

wahr ist. Also meine ich, daraus schließen zu können, dass die beiden Aussagen äquivalent sind. Damit ist meines Erachtens der Beweis für die Richtigkeit dieses Satzes erbracht und ich beende an dieser Stelle die weitere Beweisführung.

20.44. Schlussbemerkungen über logische Sätze

Ich möchte jetzt einen Schnitt machen und diesen Teil abschließen. Ich hoffe, dass Du Dich gegebenenfalls an dem Fundus der logischen Sätze bedienen kannst.

Und jetzt, nach der vielen Plackerei, möchte ich Dir mitteilen, dass wir eigentlich uns die Bemühungen hätten ersparen können. Denn es ist auch möglich, die Überprüfung von Sätzen der naiven Logik an Computer zu delegieren. Ich habe das entsprechende Kapitel mit der Bezeichnung "Logische Aussagen mit dem Computer überprüfen" unter 45 eingefügt. Diese machen die Berechnungen schneller und zuverlässiger. Trotzdem waren die obigen Sätze nicht ohne Nutzen. Denn einerseits sollen sie Dir eine Einführung in das logische Denken ermöglichen. Andererseits findet der Compi nicht einfach Sätze und gibt ihnen dazu sprechende Namen. Darum ist die obige Auflistung nicht ganz ohne Nutzen.

Im Folgenden möchte ich jedoch trotzdem weitere logische Sätze formulieren und beweisen. Aber die Sätze werden einen anderen Charakter besitzen. Die nachfolgende Sätze werden wohl nicht mehr oft als solche verwendet werden, sondern dienen dazu, Eigenschaften von logischen Aussagen zu beschreiben. Aber das tönt wahrscheinlich "vielsagend nichtssagend". Ich will damit schreiben, dass das vielleicht so aussieht, als hätte ich gar nicht wirklich wichtiges zu schreiben. Das kann sein. Am besten, ich beginne gleich mit meinen Bemühungen.

KAPITEL 21

Normalformen logischer Aussagen

Normalformen helfen, das Leben übersichtlicher zu machen. Anstatt mit beliebigen Aussagen zu hantieren, kannst Du Dich im Fall der konjunktiven Normalform damit begnügen, Dich mit der Negation, der Konjunktion und der Disjunktion zu beschäftigen. Im Moment sehe mich nicht in der Lage, die Normalformen in der gewünschten Gründlichkeit zu beschreiben. Ich werde erst später mich tiefer mit kon- und disjunktiven Normalform herumschlagen (siehe dazu Kapitel 40). Jedoch habe ich bereits ein paar Normalformen formuliert und bewiesen. Ein Beispiel hierfür ist der Satz 54 bezüglich der disjunktiven Normalform der Implikation. Ein anderes Beispiel ist der Satz 68, welcher die NAND-Verknüpfung auf die Negation einer Konjunktion zurückführt.

Grundsätzlich wird mit konjunktiven und disjunktiven Aussagen versucht, beliebige logische Aussagen in einer bestimmten Weise auf Negationen, Konjunktion und Disjunktionen von Aussagen zurückzuführen.

In der Elektrotechnik wird mit konjunktiven und disjunktiven Normalformen versucht, digitale Schaltungen zu vereinfachen. Das Prinzip ist dabei relativ simpel: Je weniger logische Elemente ("Gatter" genannt) eine elektronische Schaltung enthält, desto billiger wird deren Herstellung. Und desto weniger wird die Umwelt durch die Herstellung der logischen Schaltungen strapaziert. Doch diese Beschreibung der Definition ist an dieser Stelle sehr wage. Und ich werde auch nicht versuchen, diese Beschreibung weiter auszuführen. Stattdessen werde ich ein paar wenige Normalformen formulieren und zu beweisen versuchen:

Satz 70. Es seien A und B Symbole für Aussagen. Dann ist die konjunktive Normalform der Implikation

$$(A \Rightarrow B) \Leftrightarrow \neg A \lor B$$

In Worten: Die Aussage B folgt genau dann aus der Aussage A, falls die Aussage A nicht wahr oder die Aussage B wahr ist.

Beweis. Zuerst möchte ich versuchen, den Beweis mit sprachlichen Mitteln zu erbringen. Die Implikation ist gemäß der dritten Zeile der Definition 14 genau dann nicht wahr, falls die Aussage A nicht wahr, jedoch die Aussage B wahr ist. Die Aussage

$$\neg A \lor B$$

Tabelle 1. 1. Beweis der konjunktiven Normalform der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$\neg A$	$\neg A \lor B$	Behauptung
1	1	1	1	1
2	1	1	1	1
3	0	0	0	1
4	1	0	1	1

Tabelle 2. 2. Beweis der konjunktiven Normalform der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$\neg A$	$\neg A \lor B$	$ \begin{array}{c} \neg A \lor B \Leftrightarrow \\ A \Rightarrow B \end{array} $
1	$A \Rightarrow B$	$\neg A$	$\neg A \lor B$	$ \begin{array}{c} \neg A \lor B \Leftrightarrow \\ A \Rightarrow B \end{array} $
2	$A \Rightarrow B$	$\neg A$	$\neg A \vee B$	$ \neg A \lor B \Leftrightarrow \\ A \Rightarrow B $
3	$\neg (A \Rightarrow B)$	$\neg (\neg A)$	$\neg \left(\neg A \vee B \right)$	
4	$A \Rightarrow B$	$\neg (\neg A)$	$\neg A \lor B$	$ \begin{array}{c} \neg A \lor B \Leftrightarrow \\ A \Rightarrow B \end{array} $

ist gemäß der Definition 17 der Disjunktion genau dann nicht wahr, falls sowohl die Aussagen $\neg A$ wie auch B nicht wahr sind. Die Aussage $\neg A$ ist gemäß der Definition 11 der Negation genau dann nicht wahr, falls die Aussage A wahr ist. Zusammengefasst ist also die Aussage

$$\neg A \lor B$$

genau dann nicht wahr, falls die Aussage A wahr und die Aussage B nicht wahr ist. Das ist jedoch genau dann der Fall, wenn die Implikation

$$A \Rightarrow B$$

nicht wahr ist. Gemäß dem Äquivalenz-Negation-Satz 60 ist dann die Aussage

$$\neg A \lor B$$

genau dann wahr, wenn die Aussage

$$A \Rightarrow B$$

wahr ist. Also sind beide Aussagen äquivalent. Damit meine ich den Beweis für die Richtigkeit der Behauptung erbracht zu haben. Ich möchte den Satz ebenfalls mit Hilfe von Wahrheitstafeln erbringen. In den Tabellen 1 sowie 2 habe ich die Beweise aufgeschrieben. In den Tabellen 3 sowie 4 habe ich die Verweise der Tabelle abgelegt.

Da ich nun meine, den Beweis für die Richtigkeit der Behauptung auf zwei verschiedene Arten erbracht zu haben, beende ich an dieser Stelle die weitere Beweisführung. .

TABELLE 3. 1. Teil der Verweise des Beweises der konjunktiven Normalform der Implikation

Defintion/ Fall Nr.	Definition 14 der Implikation	Definition 11 der Negation
1	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	3. Zeile	2. Zeile
4	4. Zeile	2. Zeile

TABELLE 4. 2. Teil der Verweise des Beweises der konjunktiven Normalform der Implikation

Defintion/ Fall Nr.	Definition 17 der Disjunktion	Definition 19 der Äquivalenz
1	3. Zeile	4. Zeile
2	4. Zeile	4. Zeile
3	1. Zeile	1. Zeile
4	2. Zeile	4. Zeile

Zur Bezeichnung: Ich schreibe zwar von einer konjunktiven Normalform. Jedoch gibt es in der Aussage keine einzige Konjunktion. Das ist jedoch nicht etwa ein Versehen, sondern aus der Definition der konjunktiven Normalform erklärbar. Eine typische konjunktive Normalform habe ich unter dem Satz 74 über die konjunktive Normalform der Äquivalenz aufgeschrieben. Das Besondere an der konjunktiven Normalform der Implikation besteht darin, dass die Aussagen nicht mittels Konjunktionen gekoppelt sind. Ich könnte als konjunktive Normalform der Implikation ebenso angeben:

$$(A \Rightarrow B) \Leftrightarrow (\neg A \land \neg B \lor \neg A \land B \lor A \land B)$$

Diese konjunktive Normalform hätte dann Konjunktionen.

Vielleicht fragst Du Dich, welches dann die disjunktive Normalform der Implikation ist. Diese habe ich bereits aufgeschrieben, und zwar unter dem gleichnamigen Satz 54. Zur Erinnerung: Die disjunktive Normalform der Implikation lautet (wobei wie gewohnt A und B Symbole von Aussagen seien, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien):

$$(A \Rightarrow B) \Leftrightarrow \neg (A \land \neg B)$$

Und nun möchte ich daran gehen, aus der konjunktiven Normalform der Implikation Folgerungen abzuleiten:

Aussage/ Fall Nr.	$A \Leftarrow B$	$\neg B$	$A \vee \neg B$	Behauptung
1	1	1	1	1
2	0	0	0	1
3	1	1	1	1
4	1	0	1	1

Tabelle 5. 1. Beweis konjunktive Normalform Replikation

KOROLLAR 71. Es seien $A, B \in \Omega$, also (um es erneut zu betonen) A, B Symbole von Aussagen, welche in sich selbst und bezüglich der anderen Symbolen in der Behauptung widerspruchsfrei seien. Dann gilt:

$$(A \Leftarrow B) \Leftrightarrow A \lor \neg B$$

Beweis. Es ist gemäß dem Satz 24, welcher den Zusammenhang von Replikation und Implikation beschreibt:

$$(B \Rightarrow A) \Leftrightarrow (A \Leftarrow B)$$

Da die Äquivalenz gemäß dem Satz 39 kommutiert, kann ich gemäß dem Satz 17 der Schlussfolgerung schließen, dass auch gelten muss:

$$(A \Leftarrow B) \Leftrightarrow (B \Rightarrow A)$$

Gemäß dem vorhergehenden Satz 70 kann ich darum schreiben:

$$(B \Rightarrow A) \Leftrightarrow (\neg B \lor A)$$

Da die Äquivalenz gemäß dem Satz 16 transitiv ist, erhalte ich die Aussage:

$$(A \Leftarrow B) \Leftrightarrow (\neg B \lor A)$$

Zu meinem Glück ist die Disjunktion gemäß dem Satz 37 wiederum kommutativ. Und so muss gelten:

$$(\neg B \lor A) \Leftrightarrow (A \lor \neg B)$$

Wiederum kann ich vom Satz 16 der Transitivität der Äquivalenz Gebrauch machen und erhalte die Aussage:

$$(A \Leftarrow B) \Leftrightarrow (A \lor \neg B)$$

Damit glaube ich, den Beweis für die Richtigkeit dieses Korollars erbracht zu haben. Weil es mir wichtig ist, dass die Sachen so ausführlich wie möglich dargelegt werden, werde ich den Beweis wiederum tabellarisch auflisten. In den Tabellen 5 sowie 6 habe ich die Beweise aufgeschrieben. In der Tabelle 7 sowie 8 habe ich die Verweise aufgeschrieben.

Aussage/ Fall Nr.	$A \Leftarrow B$	$\neg B$	$A \vee \neg B$	$\begin{array}{c} A \vee \neg B \\ (A \Leftarrow B) \end{array}$	\Leftrightarrow
1	$A \Leftarrow B$	$\neg B$	$A \vee \neg B$	$\begin{array}{c} A \vee \neg B \\ (A \Leftarrow B) \end{array}$	\Leftrightarrow
2	$\neg (A \Leftarrow B)$	$\neg (\neg B)$	$\neg (A \vee \neg B)$	$\begin{array}{c} A \vee \neg B \\ (A \Leftarrow B) \end{array}$	\Leftrightarrow
3	$A \Leftarrow B$	$\neg B$	$\neg A \lor B$	$\begin{array}{c} A \vee \neg B \\ (A \Leftarrow B) \end{array}$	\Leftrightarrow
4	$A \Rightarrow B$	$\neg (\neg B)$	$\neg A \lor B$	$A \lor \neg B \longleftrightarrow (A \Leftarrow B)$	\Leftrightarrow

Tabelle 6. 2. Beweis konjunktive Normalform Replikation

TABELLE 7. Verweise des Beweises der konjunktiven Normalform der Replikation

Defintion/	Definition 16	Definition 11	Definition 17
Fall Nr.	der	der	der
rall IVI.	Replikation	Negation	Disjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	2. Zeile	2. Zeile	1. Zeile
3	3. Zeile	1. Zeile	4. Zeile
4	4. Zeile	2. Zeile	3. Zeile

TABELLE 8. Verweise des Beweises der konjunktiven Normalform der Replikation

Defintion/ Fall Nr.	Definition 19 der Äquivalenz
1	4. Zeile
2	1. Zeile
3	4. Zeile
4	4. Zeile

Der Abschnitt könnte an dieser Stelle beendet sein - ist es jedoch noch nicht. Denn es gibt noch zwei Behauptungen aufzuschreiben und zu beweisen. Diese Behauptungen sind gleichbedeutend mit den Abkürzungsregeln 11 der Implikation. Ich beginne mit dem ersten Korollar:

Korollar 72. Es seien A sowie B Bezeichnungen von logischen Aussagen, welche in sich selber und in Bezug auf die anderen Behauptungen des Korollars widerspruchsfrei seien. Dann gilt die folgende Aussage:

$$\neg A \Rightarrow (A \Rightarrow B)$$

TABELLE 9. 1. Beweis des ersten Korollars der konjunktiven Normalform der Implikation

Aussage/ Fall Nr.	$\neg A$	$A \Rightarrow B$	Behauptung
1	1	1	1
2	1	1	1
3	0	0	1
4	0	1	1

Tabelle 10. 2. Beweis des ersten Korollars der konjunktiven Normalform der Implikation

Aussage/ Fall Nr.	$\neg A$	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$
1	$\neg A$	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$
2	$\neg A$	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$
3	$\neg (\neg A)$	$\neg (A \Rightarrow B)$	$\neg A \Rightarrow (A \Rightarrow B)$
4	$\neg (\neg A)$	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$

BEWEIS. Angenommen, der Satz würde nicht stimmen. Dann müsste es Aussagen, welche mit den Buchstaben A sowie B bezeichnet werden, derart geben, dass die Behauptung des Korollars nicht gilt. Dies wäre gemäß der dritten Zeile der Definition 14 der Implikation dann der Fall, falls die Aussage $\neg A$ wahr, die Aussage $A \Rightarrow B$ jedoch nicht wahr wäre. Die Aussage $A \Rightarrow B$ ist jedoch gemäß der genau gleichen Zeile (drei) der Definition 14 der Implikation nur dann nicht wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr wäre. Ist jedoch die Aussage A wahr, dann ist gemäß der zweiten Zeile der Definition 11 der Negation die Aussage $\neg A$ nicht wahr. Also ist gemäß der zweiten Zeile der Definition 14 in diesem Fall die gesamte Aussage

$$\neg A \Rightarrow (A \Rightarrow B)$$

im Widerspruch zur Annahme eben doch wahr. Also glaube ich gezeigt zu haben, dass es keine Aussagen mit den Bezeichnungen A sowie B derart geben kann, dass die Aussage

$$\neg A \Rightarrow (A \Rightarrow B)$$

nicht wahr ist. Gemäß der abgeschwächten Form des Satzes 12 der doppelten Negation folgere ich daraus, dass der Satz für alle derartigen Aussagen wahr sein muss.

Ich möchte den Satz noch einmal mittels Wahrheitstafeln beweisen. Dieser habe ich in Tabelle 9 sowie 10 abgelegt. Die Beweise habe ich in der Tabelle 11 abgelegt.

Definition 11 Definition 14 Definition 14 Defintion/ der der der Fall Nr. Negation Implikation Implikation 1. Zeile 1. Zeile 4. Zeile 1 2. Zeile 2 1. Zeile 4. Zeile 2. Zeile 1. Zeile 3 3. Zeile 4 2. Zeile 4. Zeile 2. Zeile

TABELLE 11. Verweise des ersten Korollars der konjunktiven Normalform der Implikation

Dies war der erste Streich - und der nächste folgt zugleich¹:

Satz 73. Es seien A, B Symbole von Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Korollars widerspruchsfrei seien. Dann gilt:

$$B \Rightarrow (A \Rightarrow B)$$

BEWEIS. Angenommen, das Korollar sei nicht wahr. Dann würde es demnach Aussagen geben, welche mit A und B bezeichnet werden könnten und für welche gelten würde, dass die Aussage

$$B \Rightarrow (A \Rightarrow B)$$

nicht wahr ist. Dies wäre gemäß der dritten Zeile der Definition 14 der Implikation dann der Fall, falls die Aussage B wahr, die Implikation

$$A \Rightarrow B$$

jedoch nicht wahr wäre. Die Aussage $A\Rightarrow B$ wäre gemäß der dritten Zeile der Definition 14 der Implikation jedoch nur dann nicht wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr wäre. Das wäre jedoch ein Widerspruch zur Bedingung, dass die Aussage B wahr wäre. Also meine ich folgern zu können, dass es keine Aussagen, welche mit A und B bezeichnet werden können, derart gibt, dass die Behauptung nicht wahr ist. Gemäß der abgeschwächten Form des Satzes 12 der doppelten Negation folgere ich nun, dass die Behauptung für alle Aussagen, welche mit A und B bezeichnet werden können, wahr ist.

Ich möchte den Satz noch einmal mittels Wahrheitstabellen beweisen. Dieser habe ich in Tabelle 12 sowie 13 abgelegt. Die Beweise habe ich in der Tabelle 14 abgelegt.

21.1. Konjunktive Normalform der Äquivalenz

An dieser Stelle möchte ich eine konjunktive Normalform der Äquivalenz formulieren und beweisen:

¹das ist ein frei zitierter Vers aus dem Buch "Max und Moritz" von Wilhelm Busch, welches ich für derbste Erwachsenenliteratur halte.

Tabelle 12. 1. Beweis des zweiten Korollars der konjunktiven Normalform der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	Behauptung
1	1	1
2	1	1
3	0	1
4	1	1

Tabelle 13. 2. Beweis des zweiten Korollars der konjunktiven Normalform der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$
1	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$
2	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$
3	$\neg (A \Rightarrow B)$	$\neg A \Rightarrow (A \Rightarrow B)$
4	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$

TABELLE 14. Verweise des ersten Korollars der konjunktiven Normalform der Implikation

Defintion/ Fall Nr.	Definition 14 der Implikation	Definition 14 der Implikation
1	1. Zeile	2. Zeile
2	2. Zeile	4. Zeile
3	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile

Satz 74. Es seien A, B Symbole von Aussagen, welche in selbst und bezüglich den anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt

$$(A \Leftrightarrow B) \Leftrightarrow (\neg A \land \neg B \lor A \land B)$$

Beweis. Ich möchte mir überlegen, unter welchen Bedingung die Aussage

$$\neg A \land \neg B \lor A \land B$$

wahr ist. Diese Aussage ist gemäß der letzten drei Zeilen der Definition 17 der Disjunktion genau dann wahr, falls die Aussage

$$\neg A \wedge \neg B$$

wahr ist oder die Aussage

$$A \wedge B$$

TABELLE 15. 1. Teil 1. Beweis konjunktive Normalform der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$\neg A$	$\neg B$	$\neg A \wedge \neg B$
1	1	1	1	1
2	0	1	0	0
3	0	0	1	0
4	1	0	0	0

TABELLE 16. 2. Teil 1. Beweis konjunktive Normalform der Äquivalenz

Aussage/ Fall Nr.	$A \wedge B$	$ \begin{array}{c cccc} \neg A \land \neg B & \lor \\ A \land & B \end{array} $	Behauptung
1	0	1	1
2	0	0	1
3	0	0	1
4	1	1	1

wahr ist. Die Aussage

$$\neg A \land \neg B$$

ist gemäß der vierten Zeile der Definition 13 der Konjunktion genau dann wahr, falls sowohl die Aussagen $\neg A$ wie auch $\neg B$ wahr sind. Die Aussage $\neg A$ ist gemäß der ersten Zeile der Definition 11 der Negation genau dann wahr, falls die Aussage A nicht wahr ist. Die Aussage $\neg B$ ist gemäß der gleichen ersten Zeile der gleichen Definition 11 der Negation genau dann wahr, falls die Aussage B nicht wahr ist. Zusammengefasst ist die Aussage $\neg A \land \neg B$ genau dann nicht wahr, falls weder die Aussage A noch die Aussage B wahr ist. Die Aussage $A \land B$ ist gemäß der vierten Zeile der Definition 13 der Konjunktion genau dann wahr, falls sowohl die Aussage A wie auch die Aussage B wahr ist.

Ich fasse zusammen: Die Aussage

$$\neg A \land \neg B \lor A \land B$$

ist genau dann wahr, falls weder die Aussage A noch die Aussage B wahr ist oder aber sowohl die Aussage A und die Aussage B wahr ist. Das ist jedoch genau dann der Fall, falls die Äquivalenz von A und B wahr ist. Darum meine ich, dass der Beweis der Richtigkeit der Behauptung erbracht ist.

Damit alles seine Richtigkeit hat, bemühe ich wiederum Wahrheitstafeln, um den Beweis für die Korrektheit der Behauptung noch einmal zu erbringen. Diese Beweise lege ich in den Tabellen 15 und 16 sowie 17 und 18 ab. Die Verweise habe ich in den Tabellen 19, 20 sowie 21 abgelegt.

TABELLE 17. 1. Teil 2. Beweis konjunktive Normalform der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$\neg A$	$\neg B$	$\neg A \wedge \neg B$
1	$A \Leftrightarrow B$	$\neg A$	$\neg B$	$\neg A \wedge \neg B$
2	$\neg (A \Leftrightarrow B)$	$\neg A$	$\neg (\neg B)$	$\neg (\neg A \land \neg B)$
3	$\neg (A \Leftrightarrow B)$	$\neg (\neg A)$	$\neg B$	$\neg (\neg A \land \neg B)$
4	$A \Leftrightarrow B$	$\neg (\neg A)$	$\neg (\neg B)$	$\neg (\neg A \land \neg B)$

TABELLE 18. 2. Teil 2. Beweis konjunktive Normalform der Äquivalenz

Aussage/ Fall Nr.	$A \wedge B$	$ \begin{array}{ccc} \neg A \wedge \neg B & \vee \\ A \wedge & B \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land \neg B & \lor \\ A \land & B) \end{array} $
1	$\neg (A \land B)$	$ \begin{array}{ccc} \neg A \wedge \neg B & \vee \\ A \wedge & B \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land \neg B & \lor \\ A \land & B) \end{array} $
2	$\neg (A \land B)$	$ \begin{array}{ccc} \neg (\neg A \land \neg B & \lor \\ A \land & B) \end{array} $	$ \begin{array}{c c} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land \neg B & \lor \\ A \land & B) \end{array} $
3	$\neg (A \land B)$	$ \begin{array}{ccc} \neg (\neg A \land \neg B & \lor \\ A \land & B) \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land \neg B & \lor \\ A \land & B) \end{array} $
4	$A \wedge B$	$ \begin{array}{ccc} \neg A \wedge \neg B & \vee \\ A \wedge & B \end{array} $	$ \begin{array}{c c} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land \neg B & \lor \\ A \land & B) \end{array} $

TABELLE 19. 1. Teil Verweise des Beweises der konjunktiven Normalform der Äquivalenz

Defintion/	Definition 19	Definition 11	Definition 11
Fall Nr.	der	der	der
rall Mi.	Äquivalenz	Negation	Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	2. Zeile

In einer vorhergehenden Version hatte ich den Beweis auf ca. 4 Seiten ausgewalzt. Jedoch habe ich das Gefühl, dass dieser Beweis nicht derart zwingend ist, wie er sein sollte. Darum habe ich mich entschieden, eine sehr vereinfachte Form des Beweises aufzuschreiben.

TABELLE 20. 2. Teil Verweise des Beweises der konjunktiven Normalform der Äquivalenz

Defintion/ Fall Nr.	Definition 13 der Konjunktion	Definition 13 der Konjunktion
1	4. Zeile	1. Zeile
2	3. Zeile	2. Zeile
3	2. Zeile	3. Zeile
4	1. Zeile	4. Zeile

TABELLE 21. 3. Teil Verweise des Beweises der konjunktiven Normalform der Äquivalenz

Defintion/	Definition 17 der	Definition 19 der
Fall Nr.	Disjunktion	Äquivalenz
1	3. Zeile	4. Zeile
2	1. Zeile	1. Zeile
3	1. Zeile	1. Zeile
4	2. Zeile	4. Zeile

21.2. Konjunktive Normalform der Antivalenz

Die konjunktive Normalform ist gewissermaßen das Gegenstück für die konjunktive Normalform der Äquivalenz:

Satz 75. Es seien A sowie B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt:

$$(A \Leftrightarrow B) \Leftrightarrow \neg A \land B \lor A \land \neg B$$

Beweis. Wieder gilt es, zu überlegen, wann die Aussage

$$\neg A \wedge B \vee A \wedge \neg B$$

wahr ist. Gemäß der letzten dritten Zeilen der Definition 17 der Disjunktion ist das der Fall, falls die Aussage

$$\neg A \wedge B$$

oder die Aussage

$$A \wedge \neg B$$

wahr ist. Die Aussage $\neg A \land B$ ist gemäß der vierten Zeile der Definition 13 der Konjunktion genau dann wahr, falls sowohl die Aussage $\neg A$ wie auch die Aussage B wahr ist. Die Aussage $\neg A$ ist gemäß der ersten Zeile der Definition 11 der Negation genau dann wahr, falls die Aussage A nicht wahr ist. Also ist die Aussage $\neg A \land B$ wahr, falls die Aussage A

TABELLE 22. 1. Teil 1. Beweis konjunktive Normalform der Antivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$\neg A$	$\neg B$	$\neg A \wedge B$
1	0	1	1	0
2	1	1	0	1
3	1	0	1	0
4	0	0	0	0

TABELLE 23. 2. Teil 1. Beweis konjunktive Normalform der Antivalenz

Aussage/ Fall Nr.	$A \wedge \neg B$	$ \begin{array}{ccc} \neg A \wedge & B & \lor \\ A \wedge \neg B & & \end{array} $	Behauptung
1	0	0	1
2	0	1	1
3	1	1	1
4	0	0	1

nicht wahr, die Aussage B jedoch wahr ist. Auf der anderen Seite ist die Aussage $A \land \neg B$ gemäß der vierten Ziele der Definition 13 genau dann wahr, falls sowohl die Aussage A wie auch die Aussage $\neg B$ wahr sind. Die Aussage $\neg B$ ist gemäß der ersten Zeile der Definition 11 der Negation nicht wahr, falls die Aussage B nicht wahr ist. Also ist die Aussage $A \land \neg B$ genau dann wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist.

Somit kann ich zusammenfassen: Die Aussage

$$\neg A \land B \lor A \land \neg B$$

ist genau dann wahr, falls die Aussage A nicht wahr, die Aussage B jedoch wahr ist oder aber falls die Aussage A wahr und die Aussage B nicht wahr ist. Das sind jedoch genau diejenigen Fälle, in welchen die Antivalenz von A und B wahr ist. Darum meine ich, gezeigt zu haben, dass beide Aussagen äquivalent sind.

Ich werde den Beweis noch einmal mit Hilfe der Wahrheitstafeln führen. Diese Beweise lege ich in den Tabellen 22 und 23 sowie 24 und 25 ab. Die Verweise habe ich in den Tabellen 26, 27 sowie 28 abgelegt. Da ich der Meinung bin, dass ich den Beweis für die Richtigkeit der Behauptung auf zwei unterschiedliche Arten erbracht habe, erlaube ich mir an dieser Stelle, die Beweisführung an dieser Stelle zu beenden.

Tabelle 24. 1. Teil 2. Beweis konjunktive Normalform der Antivalenz

Aussage/ Fall Nr.	<i>A</i> ⇔ <i>B</i>	$\neg A$	$\neg B$	$A \wedge \neg B$
1	$\neg (A \Leftrightarrow B)$	$\neg A$	$\neg B$	$\neg (A \land \neg B)$
2	$A \not\Leftrightarrow B$	$\neg A$	$\neg (\neg B)$	$A \wedge \neg B$
3	$A \Leftrightarrow B$	$\neg (\neg A)$	$\neg B$	$\neg (A \land \neg B)$
4	$\neg (A \Leftrightarrow B)$	$\neg (\neg A)$	$\neg (\neg B)$	$\neg (A \land \neg B)$

TABELLE 25. 2. Teil 2. Beweis konjunktive Normalform der Antivalenz

Aussage/ Fall Nr.	$\neg A \land B$	$ \begin{array}{c c} \neg A \wedge & B & \vee \\ A \wedge \neg B & \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \wedge & B & \vee \\ A \wedge \neg B) \end{array} $
1	$\neg (\neg A \land B)$	$ \neg (\neg A \land B \lor A \land \neg B) $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land & B & \lor \\ A \land \neg B) \end{array} $
2	$\neg (\neg A \land B)$	$ \begin{array}{c c} \neg A \wedge B & \lor \\ A \wedge \neg B & \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land B & \lor \\ A \land \neg B) \end{array} $
3	$\neg A \land B$	$ \begin{array}{c c} \neg A \wedge B & \lor \\ A \wedge \neg B & \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land B & \lor \\ A \land \neg B) \end{array} $
4	$\neg (\neg A \land B)$	$\neg (\neg A \land B \lor A \land \neg B)$	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \wedge & B & \lor \\ A \wedge \neg B) \end{array} $

TABELLE 26. 1. Teil Verweise des Beweises der konjunktiven Normalform der Antivalenz

Defintion/	Definition 19	Definition 11	Definition 11
Fall Nr.	der	der	der
rall IVI.	Äquivalenz	Negation	Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	2. Zeile

21.3. Konjunktive Normalform der NAND-Verknüpfung

Ich möchte noch die konjunktiven Normalformen der NAND-aufschreiben. Ich glaube, dass ich diesmal einen wunderhübschen Beweis präsentieren kann.

TABELLE 27. 2. Teil Verweise des Beweises der konjunktiven Normalform der Antivalenz

Defintion/ Fall Nr.	Definition 13 der Konjunktion	Definition 13 der Konjunktion
1	3. Zeile	2. Zeile
2	4. Zeile	1. Zeile
3	1. Zeile	4. Zeile
4	2. Zeile	3. Zeile

TABELLE 28. 3. Teil Verweise des Beweises der konjunktiven Normalform der Äquivalenz

Defintion/ Fall Nr.	Definition 17 der	Definition 19 der
	Disjunktion	Äquivalenz
1	1. Zeile	1. Zeile
2	3. Zeile	4. Zeile
3	2. Zeile	4. Zeile
4	1. Zeile	1. Zeile

Satz 76. Es seien A sowie B Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$A\overline{\wedge}B \Leftrightarrow \neg A \vee \neg B$$

Beweis. Es gilt gemäß dem Satz 68 der Verknüpfung der NAND-Verknüpfung und der Konjunktion

$$(A\overline{\wedge}B) \Leftrightarrow \neg (A \wedge B)$$

Weiter gilt gemäß dem Satz 45 über die Negation der Konjunktion, sofern A und B Symbole von in sich selbst und in Bezug auf die anderen Symbolen widerspruchsfreien Aussagen sind:

$$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$$

Weiter kann ich gemäß dem Satz der Transitivität der Äquivalenz schließen, dass gelten muss

$$(A \overline{\wedge} B) \Leftrightarrow \neg A \vee \neg B$$

Dies ist jedoch gerade die Behauptung. Darum meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

Der Vollständigkeit halber habe ich den Beweis noch mittels Wahrheitstafeln aufschreiben. Die Beweise sind einerseits in den Tabellen 29 sowie 30 und 31 sowie 32 andererseits aufgeschrieben. Die Verweise habe ich in den Tabellen 33 sowie 34 abgelegt.

TABELLE 29. 1. Teil 1. Beweis konjunktive Normalform NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$\neg A$	$\neg B$
1	1	1	1
2	1	1	0
3	1	0	1
4	0	0	0

TABELLE 30. 2. Teil 1. Beweis konjunktive Normalform der NAND-Verknüpfung

Aussage/ Fall Nr.	$\neg A \lor \neg B$	Behauptung
1	1	1
2	1	1
3	1	1
4	0	1

TABELLE 31. 1. Teil 2. Beweis konjunktive Normalform der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$\neg A$	$\neg B$
1	$A\overline{\wedge}B$	$\neg A$	$\neg B$
2	$A\overline{\wedge}B$	$\neg A$	$\neg (\neg B)$
3	$A\overline{\wedge}B$	$\neg (\neg A)$	$\neg B$
4	$\neg (A \overline{\wedge} B)$	$\neg (\neg A)$	$\neg (\neg B)$

TABELLE 32. 2. Teil 2. Beweis konjunktive Normalform der NAND-Verknüpfung

Aussage/ Fall Nr.	$\neg A \lor \neg B$	$A \overline{\wedge} B \Leftrightarrow \\ \neg A \vee \neg B$
1	$\neg A \lor \neg B$	$A\overline{\wedge}B \Leftrightarrow \neg A \vee \neg B$
2	$\neg A \lor \neg B$	$A\overline{\wedge}B \Leftrightarrow \neg A \vee \neg B$
3	$\neg A \lor \neg B$	$A\overline{\wedge}B \Leftrightarrow \neg A \vee \neg B$
4	$\neg \left(\neg A \vee \neg B\right)$	$A\overline{\wedge}B \Leftrightarrow \neg A \vee \neg B$

TABELLE 33. 1. Teil Verweise Beweis konjunktive Normalform der NAND-Verknüpfung

Auggaga /	Definition 21	Definition 11	Definition 11
Aussage/ Fall Nr.	der	der	der
ran m.	NAND-Verknüpfung	Negation	Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	2. Zeile

Tabelle 34. 2. Teile Verweise Beweis konjunktive Normalform der NAND-Verknüpfung

Aussage/ Fall Nr.	Definition 17 der Disjunktion	Definition 19 der Äquivalenz
1	4. Zeile	4. Zeile
2	3. Zeile	4. Zeile
3	2. Zeile	4. Zeile
4	1. Zeile	1. Zeile

Also bin ich der Meinung, dass ich den Beweis für die Richtigkeit der Behauptung erbracht habe und beende somit die weitere Beweisführung an dieser Stelle.

21.4. konjunktive Normalform der NOR-Verknüpfung

Auch die konjunktive Normalform der NOR-Verknüpfung kann meines Erachtens gut abgeleitet werden.

Satz 77. Es seien A und B Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$A\overline{\vee}B \Leftrightarrow \neg A \wedge \neg B$$

Beweis. Es gilt gemäß dem Satz 69 der Verknüpfung der NOR-Verknüpfung mit der Disjunktion

$$A\overline{\vee}B \Leftrightarrow \neg (A \vee B)$$

Gemäß dem Satz 47 der Negation der Disjunktion gilt:

$$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$$

Somit kann ich gemäß dem Satz 16 der Transitivität der Äquivalenz folgern, dass gilt:

$$A \overline{\vee} B \Leftrightarrow \neg A \wedge \neg B$$

TABELLE 35. 1. Teil 1. Beweis konjunktive Normalform NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\lor}B$	$\neg A$	$\neg B$
1	1	1	1
2	0	1	0
3	0	0	1
4	0	0	0

TABELLE 36. 2. Teil 1. Beweis konjunktive Normalform der NOR-Verknüpfung

Aussage/ Fall Nr.	$\neg A \wedge \neg B$	Behauptung
1	1	1
2	0	1
3	0	1
4	0	1

TABELLE 37. 1. Teil 2. Beweis konjunktive Normalform der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{ee}B$	$\neg A$	$\neg B$
1	$A\overline{\vee}B$	$\neg A$	$\neg B$
2	$\neg (A \overline{\vee} B)$	$\neg A$	$\neg (\neg B)$
3	$\neg (A \overline{\vee} B)$	$\neg (\neg A)$	$\neg B$
4	$\neg (A \overline{\vee} B)$	$\neg (\neg A)$	$\neg (\neg B)$

Damit hätte ich diesen logischen Satz auch schon wieder bewiesen. Ich werde jedoch den Beweis des Satzes erneut mit Hilfe von logischen Tabellen erbringen. Diese sind einerseits unter den Tabellen 35 sowie 36 und andererseits unter den Tabellen 37 sowie 38 abgelegt. Die Verweise habe ich in den Tabellen 39 sowie 40 abgelegt. Somit bin ich der Meinung, dass ich den Beweis für die Richtigkeit des Satzes erbracht habe und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Ich möchte nun an dieser Stelle dieses Kapitel abschließen. Ich nehme an, dass sich der Sinn des Ganzen (also der konjunktiven und disjunktiven Normalformen) für Dich wahrscheinlich noch nicht ganz erschließt. Und da habe ich keine geringe Mitschuld daran. Ich werde wahrscheinlich versuchen, später auf diese Thematik noch einmal zurück zu kommen. In möchte mich nun einem weiteren sinnlosen Kapitel zuwenden. Aber Du musst es ja nicht lesen, falls Du dies nicht möchtest.

TABELLE 38. 2. Teil 2. Beweis konjunktive Normalform der NOR-Verknüpfung

Aussage/ Fall Nr.	$\neg A \wedge \neg B$	$A \overline{\vee} B \Leftrightarrow \neg A \wedge \neg B$
1	$\neg A \wedge \neg B$	$ \begin{array}{c} A \overline{\vee} B \Leftrightarrow \\ \neg A \wedge \neg B \end{array} $
2	$\neg (\neg A \land \neg B)$	$A \overline{\vee} B \Leftrightarrow \neg A \wedge \neg B$
3	$\neg (\neg A \land \neg B)$	$A \overline{\vee} B \Leftrightarrow \neg A \wedge \neg B$
4	$\neg \left(\neg A \wedge \neg B\right)$	$A \overline{\vee} B \Leftrightarrow \neg A \wedge \neg B$

TABELLE 39. 1. Teil Verweise Beweis konjunktive Normalform der NOR-Verknüpfung

Auggaga /	Definition 21	Definition 11	Definition 11
Aussage/ Fall Nr.	der	der	der
	NAND-Verknüpfung	Negation	Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	2. Zeile

TABELLE 40. 2. Teile Verweise Beweis konjunktive Normalform der NOR-Verknüpfung

Aussage/ Fall Nr.	Definition 13 der Konjunktion	Definition 19 der Äquivalenz
1	4. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	1. Zeile	1. Zeile

KAPITEL 22

Minimumsätze und Maximumsätze der Logik

Dieser Abschnitt ist meines Erachtens auch ein wenig seltsam. Denn es geht mir darum, die Binsenwahrheiten der Logik aufzuschreiben. Als da wären:

Lemma 78. Es seien A, B Symbole von Aussagen welche in sich selbst und in Bezug auf die anderen Aussagen dieses Lemmas widerspruchsfrei seien. Dann gilt

$$A \wedge (B \wedge \neg B) \iff B \wedge \neg B$$

$$A \wedge (B \vee \neg B) \iff A$$

$$A \vee (B \wedge \neg B) \iff A$$

$$A \vee (B \vee \neg B) \iff B \vee \neg B$$

$$B \wedge \neg B \implies A$$

$$A \implies B \vee \neg B$$

In Worten:

Aus einer Aussage, welche nicht wahr ist, folgt jede Aussage.

Die Konjunktion einer beliebigen Aussage mit einer nicht wahren Aussage ist nicht wahr.

Die Konjunktion einer Aussage A mit einer wahren Aussage ist genau dann wahr, falls die Aussage A wahr ist.

Die Disjunktion einer Aussage A mit einer nicht wahren Aussage ist genau dann wahr, falls die Aussage A wahr ist.

Die Disjunktion einer beliebigen Aussage mit einer wahren Aussagen ist wahr.

Aus jeder Aussage folgt eine Aussage, welche wahr ist.

TABELLE 1. Auflistung der Beweise der Minimum- und Maximumsätze der Logik

Zeile Nummer	erster Beweis	zweiter Beweis
1	Tabelle 3	Tabelle 4
2	Tabelle 6	Tabelle 7
3	Tabelle 10	Tabelle 11
4	Tabelle 14	Tabelle 15
5	Tabelle 18	Tabelle 19
6	Tabelle 22	Tabelle 23

Zeile Nummer	erste Tabelle Verweise	zweite Tabelle Verweise
1	Tabelle 3	Tabelle 4
2	Tabelle 8	Tabelle 9
3	Tabelle 12	Tabelle 13
4	Tabelle 16	Tabelle 17
5	Tabelle 20	Tabelle 21
6	Tabelle 22	Tabelle 23

TABELLE 2. Auflistung der Verweise der Minimum- und Maximumsätze der Logik

Beweis. Ich habe in der Tabelle 1 die Verweise auf die Wahrheitstafeln hineingeschrieben, welche für den tabellarischen Beweis der Behauptungen des Lemmas der Minimal- und Maximalsätze in der Logik verwendet werden können. Die Verweise auf die Tabellen mit der Verweisen, welche in den Wahrheitstafeln verwendet wurden, habe ich in der Tabelle 2 aufgeschrieben. Ich möchte nun mit sprachlichen Mitteln zu zeigen versuchen, dass die einzelnen in der Behauptung formulierten Aussagen wahr sein müssen.

Zum Beweis des Satzes, dass aus nicht wahren Aussagen eine Aussage folgt: Gemäß dem Satz 46 kann die Aussage

$$B \wedge \neg B$$

nicht wahr sein. Ist eine Aussage nicht wahr, dann kann gemäß der Abkürzungsregel 11 der Implikation gefolgert werden, dass die nichtwahre Aussage eine beliebige andere Aussage folgt.

Gemäß dem Satz 46 über nicht wahre Aussagen kann die Aussage $B \wedge \neg B$ nicht wahr sein, wohingegen gemäß dem Satz 14 der schwachen Form des ausgeschlossenen Dritten die Aussage $B \vee \neg B$ wahr sein muss. Bezüglich der ersten Aussage: Da die Aussage $B \wedge \neg B$ nicht wahr wahr ist, kann auch gemäß dem Minimumprinzip 10 der Konjunktion auch die Aussage $A \wedge (B \wedge \neg B)$ nicht wahr sein. Aufgrund der ersten Zeile der Definition 19 der Äquivalenz ist darum die Aussage

$$A \wedge (B \wedge \neg B) \Leftrightarrow B \wedge \neg B$$

wiederum wahr. Damit wäre die erste Aussage bereits bewiesen. Bezüglich der letzten Behauptung

$$A \lor (B \lor \neg B) \Leftrightarrow B \lor \neg B$$

Diese Aussage lässt sich aus dem Maximumprinzip 13 der Disjunktion ableiten, da die Aussage $B \vee \neg B$ ja wahr ist. Also gilt gemäß der vierten Zeile der Definition 19 der Äquivalenz, dass die Behauptung

$$A \lor (B \lor \neg B) \Leftrightarrow B \lor \neg B$$

gilt. Im Fall der Aussage

$$A \wedge (B \vee \neg B) \Leftrightarrow A$$

reicht es, den Wahrheitswert von A zu ermitteln (da die Aussage

$$B \vee \neg B$$

gemäß der schwachen Form des Satzes 14 des ausgeschlossenen Dritten bekanntlich wahr ist). Ist A nicht wahr, dann kann gemäß dem Minimumprinzip 10 der Konjunktion die Aussage $A \wedge (B \vee \neg B)$ nicht wahr sein. Also ist eben auch gemäß der ersten Zeile der Definition 19 der Äquivalenz die ganze Aussage

$$A \wedge (B \vee \neg B) \Leftrightarrow A$$

wiederum wahr. Ist hingegen A eine wahre Aussage, dann ist gemäß der vierten Zeile der Definition 13 der Konjunktion auch die Aussage

$$A \wedge (B \vee \neg B)$$

wiederum wahr. Ebenso ist gemäß der vierten Zeile der Definition 19 der Äquivalenz ebenfalls die Aussage

$$A \wedge (B \vee \neg B) \Leftrightarrow A$$

wiederum wahr. Somit glaube ich an dieser Stelle gezeigt zu haben, dass die Aussage

$$A \wedge (B \vee \neg B)$$

genau dann wahr ist, falls es die Aussage A ist. Also meine ich, den Beweis für die diesbezügliche Behauptung erbracht zu haben.

Im Fall der Aussage

$$A \lor (B \land \neg B) \Leftrightarrow A$$

reicht es ebenfalls, den Wahrheitswert von A zu ermitteln (da die Aussage

$$B \wedge \neg B$$

bekanntlich nicht wahr ist). Ist A wahr, dann muss gemäß dem Maximumprinzip 13 der Disjunktion die Aussage $A \vee (B \wedge \neg B)$ bereits wahr sein. Also ist eben auch gemäß der vierten Zeile der Definition 19 der Äquivalenz die ganze Aussage

$$A \vee (B \wedge \neg B) \Leftrightarrow A$$

wiederum wahr. Ist hingegen A eine Aussage, welche nicht wahr ist, dann ist gemäß der ersten Zeile der Definition 17 der Disjunktion auch die Aussage

$$A \vee (B \wedge \neg B)$$

auch nicht wahr. Also ist gemäß der ersten Zeile der Definition 19 der Äquivalenz ebenfalls die Aussage

$$A \lor (B \land \neg B) \Leftrightarrow A$$

wiederum wahr. Somit hätte ich endlich auch den Beweis der letzten Aussage erbracht und kann darum an dieser Stelle die Beweisführung beenden.

Tabelle 3. 1. Beweis Implikation Aussage aus nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	Behauptung
1	1	0	1
2	0	0	1
3	1	0	1
4	0	0	1

Tabelle 4. 1. Beweis Implikation Aussage aus nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	$(B \land \neg B) \Rightarrow A$
1	$\neg B$	$\neg (B \land \neg B)$	$(B \land \neg B) \Rightarrow A$
2	$\neg (\neg B)$	$\neg (B \land \neg B)$	$(B \land \neg B) \Rightarrow A$
3	$\neg B$	$\neg (B \land \neg B)$	$(B \land \neg B) \Rightarrow A$
4	$\neg (\neg B)$	$\neg (B \land \neg B)$	$(B \land \neg B) \Rightarrow A$

TABELLE 5. 1. Teil Verweise des Beweises der Implikation Aussage aus nicht wahrer Aussage

Defintion/	Definition 11	Definition 13	Definition 14
Fall Nr.	der	der	der
rall Mi.	Negation	Konjunktion	Implikation
1	1. Zeile	2. Zeile	1. Zeile
2	2. Zeile	3. Zeile	1. Zeile
3	1. Zeile	2. Zeile	2. Zeile
4	2. Zeile	3. Zeile	2. Zeile

Zum Beweis, dass aus einer Aussage eine wahre Aussage folgt: Gemäß dem schwachen Satz 14 des ausgeschlossenen Dritten, kann ich folgern, dass die Aussage

$$B \vee \neg B$$

wahr sein muss. Ist eine Aussage wahr, dann kann ich gemäß dem zweiten Teil der Abkürzungsregel 11 (die zweite Aussage ist wahr) folgern, dass die gesamte Aussage wahr ist.

Ich muss Dir etwas gestehen: Ich kann diese Satze nicht "bestimmungsgemäß" verwenden. Denn das ist meines Erachtens gar nicht so möglich. Eventuell könnte ich versuchen, die Sätze so zu formulieren:

TABELLE 6. 1. Beweis Konjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	$A \wedge (B \wedge \neg B)$	Behauptung
1	1	0	0	1
2	0	0	0	1
3	1	0	0	1
4	0	0	0	1

TABELLE 7. 2. Beweis Konjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	$\begin{array}{c} A \wedge \\ (B \wedge \neg B) \end{array}$	Behauptung
1	$\neg B$	$\neg (B \land \neg B)$	$ \begin{array}{c} \neg (A \land \\ (B \land \neg B)) \end{array} $	$\begin{array}{c} A \wedge (B \wedge \neg B) \Leftrightarrow \\ (B \wedge \neg B) \end{array}$
2	$\neg (\neg B)$	$\neg (B \land \neg B)$	$ \neg (A \land (B \land \neg B)) $	$\begin{array}{c} A \wedge (B \wedge \neg B) \Leftrightarrow \\ (B \wedge \neg B) \end{array}$
3	$\neg B$	$\neg (B \land \neg B)$	$ \begin{array}{c} \neg (A \land \\ (B \land \neg B)) \end{array} $	$\begin{array}{c} A \wedge (B \wedge \neg B) \Leftrightarrow \\ (B \wedge \neg B) \end{array}$
4	$\neg (\neg B)$	$\neg (B \land \neg B)$	$ \neg (A \land (B \land \neg B)) $	$\begin{array}{c} A \wedge (B \wedge \neg B) \Leftrightarrow \\ (B \wedge \neg B) \end{array}$

TABELLE 8. 1. Teil Verweise des Beweises des Satzes der Konjunktion mit nicht wahrer Aussage

Defintion/ Fall Nr.	Definition 11 der Negation	Definition 13 der Konjunktion
1	1. Zeile	2. Zeile
2	2. Zeile	3. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	3. Zeile

TABELLE 9. 2. Teil Verweise des Beweises des Satzes der Konjunktion mit nicht wahrer Aussage

Defintion/ Fall Nr.	Definition 13 der Konjunktion	Definition 19 der Äquivalenz
1	1. Zeile	1. Zeile
2	1. Zeile	1. Zeile
3	3. Zeile	1. Zeile
4	3. Zeile	1. Zeile

Tabelle 10. 1. Beweis Disjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	$A \vee (B \wedge \neg B)$	Behauptung
1	1	0	0	1
2	0	0	0	1
3	1	0	1	1
4	0	0	1	1

TABELLE 11. 2. Beweis Disjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	$\begin{array}{c} A \lor \\ (B \land \neg B) \end{array}$	Behauptung
1	$\neg B$	$\neg (B \land \neg B)$		$\begin{array}{c} A \Leftrightarrow \\ A \lor (B \land \neg B) \end{array}$
2	$\neg (\neg B)$	$\neg (B \land \neg B)$	$ \neg (A \land (B \land \neg B)) $	$\begin{array}{c} A \Leftrightarrow \\ A \lor (B \land \neg B) \end{array}$
3	$\neg B$	$\neg (B \land \neg B)$	$(B \land \neg B))$	$\begin{array}{c} A \Leftrightarrow \\ A \lor (B \land \neg B) \end{array}$
4	$\neg (\neg B)$	$\neg (B \land \neg B)$	$(B \land \neg B))$	$\begin{array}{c} A \Leftrightarrow \\ A \lor (B \land \neg B) \end{array}$

TABELLE 12. 1. Teil der Verweise Beweises Disjunktion mit nicht wahrer Aussage

Definition /	Definition 11	Definition 13
Defintion/	der	der
Fall Nr.	Negation	Konjunktion
1	1. Zeile	2. Zeile
2	2. Zeile	3. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	3. Zeile

TABELLE 13. 2. Teil der Verweise des Beweis Disjunktion mit nicht wahrer Aussage

Defintion/ Fall Nr.	Definition 17 der Disjunktion	Definition 19 der Äquivalenz
1	1. Zeile	1. Zeile
2	1. Zeile	1. Zeile
3	3. Zeile	4. Zeile
4	3. Zeile	4. Zeile

TABELLE 14. 1. Beweis Konjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$A \wedge (B \wedge \neg B)$	Behauptung
1	1	1	0	1
2	0	1	0	1
3	1	1	1	1
4	0	1	1	1

TABELLE 15. 2. Beweis Konjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$(B \vee \neg B)$	Behauptung
1	$\neg B$	$\neg \left(B \vee \neg B \right)$	$ \begin{array}{c} \neg (A \land \\ (B \lor \neg B)) \end{array} $	$\begin{array}{c} A \Leftrightarrow \\ A \wedge (B \vee \neg B) \end{array}$
2	$\neg (\neg B)$	$\neg (B \land \neg B)$	$\neg (A \land (B \lor \neg B))$	$\begin{array}{c} A \Leftrightarrow \\ A \wedge (B \vee \neg B) \end{array}$
3	$\neg B$	$\neg (B \lor \neg B)$	$(B \vee \neg B))$	$\begin{array}{c} A \Leftrightarrow \\ A \wedge (B \vee \neg B) \end{array}$
4	$\neg (\neg B)$	$\neg (B \lor \neg B)$	$(B \vee \neg B))$	$\begin{array}{c} A \Leftrightarrow \\ A \wedge (B \vee \neg B) \end{array}$

TABELLE 16. 1. Teil Verweise Beweis Konjunktion mit wahrer Aussage

Definition /	Definition 11	Definition 17
Defintion/	der	der
Fall Nr.	Negation	Disjunktion
1	1. Zeile	2. Zeile
2	2. Zeile	3. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	3. Zeile

Tabelle 17. 2. Teil Verweise Beweis Konjunktion mit wahrer Aussage $\,$

Defintion/	Definition 13 der	Definition 19 der
Fall Nr.	Konjunktion	Äquivalenz
1	2. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	4. Zeile	4. Zeile
4	4. Zeile	4. Zeile

Tabelle 18. 1. Beweis Disjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$A \vee (B \wedge \neg B)$	Behauptung
1	1	1	1	1
2	0	1	1	1
3	1	1	1	1
4	0	1	1	1

Tabelle 19. 2. Beweis Disjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \lor \\ (B \lor \neg B) \end{array}$	Behauptung
1	$\neg B$	$\neg (B \lor \neg B)$	$(B \vee \neg B)$	$(B \vee \neg B) \Leftrightarrow A \wedge (B \vee \neg B)$
2	$\neg (\neg B)$	$\neg (B \land \neg B)$	$\begin{array}{c} A \lor \\ (B \lor \neg B) \end{array}$	$(B \vee \neg B) \Leftrightarrow A \wedge (B \vee \neg B)$
3	$\neg B$	$\neg (B \lor \neg B)$	$(B \vee \neg B)$	$(B \vee \neg B) \Leftrightarrow A \wedge (B \vee \neg B)$
4	$\neg (\neg B)$	$\neg (B \lor \neg B)$	$(B \vee \neg B)$	$(B \vee \neg B) \Leftrightarrow A \wedge (B \vee \neg B)$

TABELLE 20. 1. Teil Verweise Beweis Konjunktion mit wahrer Aussage $\,$

Definition /	Definition 11	Definition 17
Defintion/	der	der
Fall Nr.	Negation	Disjunktion
1	1. Zeile	2. Zeile
2	2. Zeile	3. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	3. Zeile

TABELLE 21. 2. Teil Verweise Beweis Konjunktion mit wahrer Aussage $\,$

Defintion/	Definition 17	Definition 19
Fall Nr.	der	der
	Disjunktion	Äquivalenz
1	2. Zeile	4. Zeile
2	2. Zeile	4. Zeile
3	4. Zeile	4. Zeile
4	4. Zeile	4. Zeile

Tabelle 22. 1. Beweis Implikation wahre Aussage aus Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	Behauptung
1	1	1	1
2	0	1	1
3	1	1	1
4	0	1	1

Tabelle 23. 1. Beweis Implikation wahre Aussage aus Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$A \Rightarrow (B \vee \neg B)$
1	$\neg B$	$B \vee \neg B$	$A \Rightarrow (B \vee \neg B)$
2	$\neg (\neg B)$	$B \vee \neg B$	$A \Rightarrow (B \vee \neg B)$
3	$\neg B$	$B \vee \neg B$	$A \Rightarrow (B \vee \neg B)$
4	$\neg (\neg B)$	$B \vee \neg B$	$A \Rightarrow (B \vee \neg B)$

TABELLE 24. 1. Teil Verweise des Beweises des Satzes der Implikation wahre Aussage aus Aussage

Defintion/	Definition 11	Definition 17	Definition 14
Fall Nr.	der	der	der
rall IVI.	Negation	Disjunktion	Implikation
1	1. Zeile	2. Zeile	2. Zeile
2	2. Zeile	3. Zeile	2. Zeile
3	1. Zeile	2. Zeile	4. Zeile
4	2. Zeile	3. Zeile	4. Zeile

Lemma 79. Es seien A, B sowie C Symbole von Aussagen welche in sich selbst und in Bezug auf die anderen Aussagen dieses Lemmas widerspruchsfrei seien. Dann gilt

$$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (A \Leftrightarrow C \land A)$$
$$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (C \Leftrightarrow C \land A)$$
$$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (C \Leftrightarrow C \lor A)$$
$$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (A \Leftrightarrow C \lor A)$$

In Worten:

Die Konjunktion einer beliebiger Aussage mit einer Aussage, welche nicht wahr ist, ist selbst wieder nicht wahr.

Die Konjunktion einer beliebigen Aussage A mit einer wahren Aussage ist genau dann wahr, falls die Aussage A wahr ist.

Die Disjunktion einer beliebigen Aussage A mit einer Aussage, welche nicht wahr ist, ist genau dann wahr, falls die Aussage A wahr ist.

Die Disjunktion einer beliebigen Aussage mit einer wahren Aussage ist wiederum wahr.

Beweis. Zuerst möchte ich gerne den sprachlichen Beweis erbringen. Zuerst möchte ich die Aussage

$$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (A \Leftrightarrow C \land A)$$

beweisen. Ist die Äquivalenz

$$A \Leftrightarrow (B \land \neg B)$$

nicht wahr, dann ist gemäß den ersten zwei Zeilen der Definition der Implikation die zu beweisende Aussage bereits wahr. Also kann ich im folgenden annehmen, dass die Äquivalenz wahr sei. Dann kann jedoch die Aussage A nicht wahr sein, da die Aussage

$$B \wedge \neg B$$

gemäß dem Satz 46 nicht wahr ist. Das bedeutet jedoch, dass sowohl die Aussage A wie auch die Aussage $C \wedge A$ nicht wahr sein können (die Aussage $C \wedge A$ ist gemäß dem Minimumprinzip 10 der Konjunktion nicht wahr). Also muss auch in diesem Fall gemäß der ersten Zeile der Definition 19 der Äquivalenz die Aussage

$$(A \Leftrightarrow C \land A)$$

wahr sein. Somit ist gemäß der vierten Zeile der Definition 14 der Implikation die Aussage

$$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (A \Leftrightarrow C \land A)$$

wiederum wahr. Somit hätte ich zumindest bewiesen, dass die erste Aussage des Lemmas ein logischer Satz ist.

Nun möchte ich gerne die zweite Aussage des Lemmas beweisen: Ist die Aussage

$$(A \Leftrightarrow (B \vee \neg B))$$

nicht wahr, dann ist die Behauptung gemäß der ersten und zweiten Zeile der Definition 14 der Implikation richtig. Ist jedoch die Voraussetzung

$$A \Leftrightarrow (B \vee \neg B)$$

wahr, dann muss auch die Aussage A wahr sein, da die Aussage

$$B \vee \neg B$$

gemäß dem schwachen Satz 14 des ausgeschlossenen Dritten immer wahr ist. Ist nun die Aussage C nicht wahr, dann ist auch die Aussage $C \wedge A$ gemäß dem Minimumprinzip 10 der Konjunktion nicht wahr. Also ist gemäß der ersten Zeile der Definition 19 der Äquivalenz die Aussage

$$C \Leftrightarrow C \wedge A$$

wiederum wahr. Somit muss gemäß der vierten Zeile der Definition 14 der Implikation die gesamte Aussage

$$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (C \Leftrightarrow C \wedge A)$$

wahr sein. Ist jetzt die Aussage C wahr, dann muss gemäß der vierten Zeile der Definition 13 der Konjunktion die Aussage

$$C \wedge A$$

wiederum wahr sein. Also ist auch die Aussage

$$C \Leftrightarrow C \wedge A$$

gemäß der vierten Zeile der Definition 19 der Äquivalenz wiederum wahr. Also ist auch in diesem Fall gemäß der vierten Zeile der Definition 14 der Implikation die gesamte Aussage

$$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (C \Leftrightarrow C \wedge A)$$

wiederum wahr. Auf diese Art meine ich, den Beweis für die Richtigkeit der zweiten Zeile des Lemmas erbracht zu haben.

Nun möchte ich versuchen, den Beweis für die Richtigkeit der dritten Zeile des Lemmas zu erbringen:

$$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (C \Leftrightarrow C \lor A)$$

Ist die Voraussetzung

$$A \Leftrightarrow (B \land \neg B)$$

nicht wahr, dann ist die Behauptung gemäß der Abkürzungsregel 11 der Implikation wahr. Ist jedoch die Voraussetzung

$$A \Leftrightarrow (B \land \neg B)$$

wahr, dann kann die Aussage A nicht wahr sein, da gemäß dem Satz 46 die Aussage $B \land \neg B$ nicht wahr sein kann. Ist die Aussage C nicht wahr, dann kann gemäß der ersten Zeile der Definition 17 der Disjunktion die Aussage $C \lor A$ nicht wahr sein. Also ist gemäß der ersten Zeile der Definition 19 der Äquivalenz die Aussage

$$C \Leftrightarrow C \vee A$$

trotzdem wahr. Also ist gemäß der vierten Zeile der Definition 14 der Implikation die Aussage

$$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (C \Leftrightarrow C \lor A)$$

wahr. Ist jedoch die Aussage C wahr, dann ist gemäß der dritten Zeile der Definition 17 der Disjunktion die Aussage

$$C \vee A$$

wahr. Ebenso ist die Aussage

$$C \Leftrightarrow C \vee A$$

gemäß der vierten Zeile der Definition 19 der Äquivalenz wahr. Also ist die gesamte Aussage gemäß der vierten Zeile der Definition 14 der

Implikation wiederum richtig. Somit glaube ich, dass ich den Beweis für die Richtigkeit der dritten Behauptung erbracht habe.

Schlussendlich möchte ich den Beweis für die Richtigkeit der vierten Aussage erbringen:

$$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (A \Leftrightarrow C \vee A)$$

Es gilt wieder die gleiche Art der Überlegung: Ist die Voraussetzung

$$A \Leftrightarrow (B \vee \neg B)$$

nicht wahr, dann ist gemäß der ersten zwei Zeilen der Definition 14 der Implikation die ganze Behauptung wahr. Es bleibt also noch den Fall zu untersuchen, in welchem die Voraussetzung

$$A \Leftrightarrow (B \vee \neg B)$$

wahr ist. In diesem Fall muss die Aussage A wahr sein, da gemäß dem schwachen Satz 14 des ausgeschlossenen Dritten die Aussage

$$(B \vee \neg B)$$

für alle genügend in sich selbst und gegenüber anderen Aussagen hinreichend widerspruchsfreien Aussagen wahr ist. Wäre nun die Aussage A nicht wahr, dann wäre gemäß der zweiten Zeile der Definition 19 der Äquivalenz die Aussage

$$A \Leftrightarrow (B \vee \neg B)$$

nicht wahr. Ist die Aussage A jedoch wahr, dann ist die Aussage

$$A \Leftrightarrow (B \vee \neg B)$$

gemäß der vierten Zeile der Definition 19 der Äquivalenz wahr. Und da ich annehme, dass diese Aussage wahr wäre, muss also folgerichtig die Aussage A in diesem Fall wahr sein. In diesem Fall ist gemäß dem Maximumprinzip 13 der Disjunktion die Behauptung

$$C \vee A$$

wahr. Also ist gemäß der vierten Zeile der Definition 17 der Äquivalenz die Behauptung

$$(A \Leftrightarrow C \lor A)$$

und endlich auch gemäß der vierten Zeile der Definition 14 der Implikation die Behauptung

$$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (A \Leftrightarrow C \vee A)$$

wahr. Also hätte ich den Beweis für die Richtigkeit der vierten Zeile des Lemmas und somit den Beweis für die Richtigkeit des gesamten Lemmas meines Erachtens glücklicherweise erbracht.

Falls Du meine Behauptungen nicht folgen kannst, nicht folgen willst oder Du (wider Erwarten) eine Schwäche für Wahrheitstafeln hast, habe ich die Beweise der Sätze wiederum in Wahrheitstafeln abgefüllt. Und wieder gibt es derart viele Wahrheitstafeln, dass es sich

Tabelle 25. Auflistung der ersten Beweise der erweiterten Minimum- und Maximumsätze der Logik

Zeile Nummer	1. Teil	2. Teil
1	28	29
2	34	35
3	40	41
4	46	47

Tabelle 26. Auflistung der zweiten Beweise der Minimum- und Maximumsätze der Logik

Zeile Nummer	1. Teil	2. Teil
1	30	31
2	36	37
3	42	43
4	48	49

Tabelle 27. Auflistung der Verweise der Minimum- und Maximumsätze der Logik

Zeile Nummer	erste Tabelle Verweise	zweite Tabelle Verweise
1	32	33
2	38	39
3	44	45
4	50	51

lohnt, ein Verzeichnis derselben in Form von zwei Tabellen abzulegen. Die Verweise auf die Tabellen der Beweise habe ich in der Tabelle 25 sowie 26 abgelegt. Die Verweise auf die Tabellen, in welchen die Verweise der Beweise abgelegt wurden (was für ein Durcheinander) habe ich in der Tabelle 27 abgelegt.

TABELLE 28. 1. Teil 1. Beweis erweiterter Satz der Konjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$(B \land \neg B)$	$A \Leftrightarrow B \land \neg B$
1	1	0	1
2	1	0	1
3	0	0	1
4	0	0	1
5	1	0	0
6	1	0	0
7	0	0	0
8	0	0	0

TABELLE 29. 2. Teil 1. Beweis erweiterter Satz der Konjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$C \wedge A$	$\begin{array}{c} A \Leftrightarrow \\ C \wedge A \end{array}$	Behauptung
1	0	1	1
2	0	1	1
3	0	1	1
4	0	1	1
5	0	0	1
6	1	1	1
7	0	0	1
8	1	1	1

TABELLE 30. 1. Teil 2. Beweis erweiterter Satz der Konjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	$A \Leftrightarrow B \land \neg B$
1	$\neg B$	$\neg (B \land \neg B)$	$A \Leftrightarrow B \land \neg B$
2	$\neg B$	$\neg (B \land \neg B)$	$A \Leftrightarrow B \land \neg B$
3	$\neg (\neg B)$	$\neg (B \land \neg B)$	$A \Leftrightarrow B \land \neg B$
4	$\neg (\neg B)$		$A \Leftrightarrow B \land \neg B$
5	$\neg B$	$\neg (B \land \neg B)$	$\neg (A \Leftrightarrow B \land \neg B)$
6	$\neg B$		$\neg (A \Leftrightarrow B \land \neg B)$
7	$\neg (\neg B)$	$\neg \left(B \wedge \neg B \right)$	$\neg (A \Leftrightarrow B \land \neg B)$
8	$\neg (\neg B)$		$\neg (A \Leftrightarrow B \land \neg B)$

TABELLE 31. 2. Teil 2. Beweis erweiterter Satz der Konjunktion mit nicht wahrer Aussage

Aussage/	$C \wedge A$)	$A \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
Fall Nr.	(, (11)	$C \wedge A$	$(A \Leftrightarrow C \land A)$
1	- (C \ \ 1)	$A \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
1	$\neg (C \land A)$	$C \wedge A$	$(A \Leftrightarrow C \land A)$
2	$\neg (C \land A)$	$A \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
2		$C \wedge A$	$(A \Leftrightarrow C \land A)$
3	$\neg (C \land A)$	$A \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
9		$C \wedge A$	$(A \Leftrightarrow C \land A)$
4	$-(C \wedge A)$	$A \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
4	$\neg (C \land A)$	$C \wedge A$	$(A \Leftrightarrow C \land A)$
5	$-(C \wedge A)$	$\neg (A \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
9	$\neg (C \land A)$	$C \wedge A$)	$(A \Leftrightarrow C \land A)$
6	$C \wedge A$	$A \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
0	$C \wedge A$	$C \wedge A$	$(A \Leftrightarrow C \land A)$
7	$-(C \wedge A)$	$\neg (A \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
1	$\neg (C \land A)$	$C \wedge A$)	$(A \Leftrightarrow C \land A)$
8	$C \wedge A$	$A \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
8	$C \wedge A$	$C \wedge A$	$(A \Leftrightarrow C \land A)$

TABELLE 32. 1. Teil Verweise des Beweises des erweiterten Satzes der Konjunktion mit nicht wahrer Aussage

Defintion/	Definition 11	Definition 13	Definition 19
Fall Nr.	der	der	der
ran nr.	Negation	Konjunktion	Äquivalenz
1	1. Zeile	2. Zeile	1. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	3. Zeile	1. Zeile
5	1. Zeile	2. Zeile	3. Zeile
6	1. Zeile	2. Zeile	3. Zeile
7	2. Zeile	3. Zeile	3. Zeile
8	2. Zeile	3. Zeile	3. Zeile

TABELLE 33. 2. Teil Verweise des Beweises des erweiterten Satzes der Konjunktion mit nicht wahrer Aussage

Defintion/	Definition 13	Definition 19	Definition 14
Fall Nr.	der	der	der
rall IVI.	Konjunktion	Äquivalenz	Implikation
1	1. Zeile	1. Zeile	4. Zeile
2	3. Zeile	1. Zeile	4. Zeile
3	1. Zeile	1. Zeile	4. Zeile
4	3. Zeile	1. Zeile	4. Zeile
5	2. Zeile	3. Zeile	1. Zeile
6	4. Zeile	4. Zeile	2. Zeile
7	2. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

TABELLE 34. 1. Teil 1. Beweis erweiterter Satz der Disjunktion mit nicht wahrer Aussage

A /			
Aussage/ Fall Nr.	$\neg B$	$B \land \neg B$	$A \Leftrightarrow (B \land \neg B)$
1	1	0	1
2	1	0	1
3	0	0	1
4	0	0	1
5	1	0	0
6	1	0	0
7	0	0	0
8	0	0	0

TABELLE 35. 2. Teil 1. Beweis erweiterter Satz der Disjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$C \vee A$	$C \Leftrightarrow C \vee A$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (C \Leftrightarrow C \lor A)$
1	0	1	1
2	1	1	1
3	0	1	1
4	1	1	1
5	1	0	1
6	1	1	1
7	1	0	1
8	1	1	1

TABELLE 36. 1. Teil 2. Beweis erweiterter Satz der Disjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	$A \Leftrightarrow (B \land \neg B)$
1	$\neg B$	$\neg (B \land \neg B)$	$A \Leftrightarrow (B \land \neg B)$
2	$\neg B$	$\neg (B \land \neg B)$	$A \Leftrightarrow (B \land \neg B)$
3	$\neg (\neg B)$	$\neg (B \land \neg B)$	$A \Leftrightarrow (B \land \neg B)$
4	$\neg (\neg B)$	$\neg (B \land \neg B)$	$A \Leftrightarrow (B \land \neg B)$
5	$\neg B$	$\neg (B \land \neg B)$	$\neg (A \Leftrightarrow (B \land \neg B))$
6	$\neg B$	$\neg (B \land \neg B)$	$\neg (A \Leftrightarrow (B \land \neg B))$
7	$\neg (\neg B)$	$\neg (B \land \neg B)$	$\neg (A \Leftrightarrow (B \land \neg B))$
8	$\neg (\neg B)$	$\neg (B \land \neg B)$	$\neg (A \Leftrightarrow (B \land \neg B))$

TABELLE 37. 2. Teil 2. Beweis erweiterter Satz der Disjunktion mit nicht wahrer Aussage

Aussage/		$C \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
Fall Nr.	$C \lor A$	$C \vee A$	$(C \Leftrightarrow C \lor A)$
1	((() (1)	$C \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
1	$\neg (C \lor A)$	$C \vee A$	$(C \Leftrightarrow C \vee A)$
2	$C \vee A$	$C \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
2		$C \vee A$	$(C \Leftrightarrow C \vee A)$
3	$-(C \setminus A)$	$C \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
3	$\neg (C \lor A)$	$C \vee A$	$(C \Leftrightarrow C \vee A)$
4	$C \vee A$	$C \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
4		$C \vee A$	$(C \Leftrightarrow C \vee A)$
5	$C \lor A$	$\neg (C \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
9	$C \lor A$	$C \vee A$)	$(C \Leftrightarrow C \vee A)$
6	$C \vee A$	$C \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
0		$C \vee A$	$(C \Leftrightarrow C \lor A)$
7	$C \lor A$	$\neg (C \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
1		$C \vee A$)	$(C \Leftrightarrow C \vee A)$
8	$C \vee A$	$C \Leftrightarrow$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow$
8		$C \vee A$	$(C \Leftrightarrow C \vee A)$

TABELLE 38. 1. Teil der Verweise des Beweises des erweiterten Satzes der Disjunktion mit nicht wahrer Aussage

Defintion/	Definition 11	Definition 13	Definition 19
Fall Nr.	der	der	der
rall IVI.	Negation	Konjunktion	Äquivalenz
1	1. Zeile	2. Zeile	1. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	3. Zeile	1. Zeile
5	1. Zeile	2. Zeile	3. Zeile
6	1. Zeile	2. Zeile	3. Zeile
7	2. Zeile	3. Zeile	3. Zeile
8	2. Zeile	3. Zeile	3. Zeile

Tabelle 39. 2. Teil Verweise des Beweises des erweiterten Satzes der Disjunktion mit nicht wahrer Aussage

Defintion/	Definition 17	Definition 19	Definition 14
Fall Nr.	der	der	der
ran m.	Disjunktion	Äquivalenz	Implikation
1	1. Zeile	1. Zeile	4. Zeile
2	3. Zeile	4. Zeile	4. Zeile
3	1. Zeile	1. Zeile	4. Zeile
4	3. Zeile	4. Zeile	4. Zeile
5	2. Zeile	2. Zeile	1. Zeile
6	4. Zeile	4. Zeile	2. Zeile
7	2. Zeile	2. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

TABELLE 40. 1. Teil 1. Beweis erweiterter Satz der Konjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
1	1	1	0
2	1	1	0
3	0	1	0
4	0	1	0
5	1	1	1
6	1	1	1
7	0	1	1
8	0	1	1

TABELLE 41. 2. Teil 1. Beweis erweiterter Satz der Konjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$C \wedge A$	$C \Leftrightarrow \\ C \wedge A$	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (C \Leftrightarrow C \wedge A)$
1	0	1	1
2	0	0	1
3	0	1	1
4	0	0	1
5	0	1	1
6	1	1	1
7	0	1	1
8	1	1	1

TABELLE 42. 1. Teil 2. Beweis erweiterter Satz der Konjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
1	$\neg B$	$B \vee \neg B$	
2	$\neg B$	$B \vee \neg B$	$ \neg (A \Leftrightarrow (B \lor \neg B)) $
3	$\neg (\neg B)$	$B \vee \neg B$	$\neg (A \Leftrightarrow (B \vee \neg B))$
4	$\neg (\neg B)$	$B \vee \neg B$	$ \neg (A \Leftrightarrow (B \lor \neg B)) $
5	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
6	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
7	$\neg (\neg B)$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
8	$\neg (\neg B)$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$

TABELLE 43. 2. Teil 2. Beweis erweiterter Satz der Konjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$C \wedge A$	$C \Leftrightarrow C \wedge A$	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (C \Leftrightarrow C \wedge A)$
1	$\neg (C \land A)$	$C \Leftrightarrow C \wedge A$	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (C \Leftrightarrow C \land A)$
2	$\neg (C \land A)$		$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (C \Leftrightarrow C \wedge A)$
3	$\neg (C \land A)$	$C \Leftrightarrow C \wedge A$	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (C \Leftrightarrow C \land A)$
4	$\neg (C \land A)$		$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (C \Leftrightarrow C \wedge A)$
5	$\neg (C \land A)$	$C \Leftrightarrow \\ C \wedge A$	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (C \Leftrightarrow C \land A)$
6	$C \wedge A$	$C \Leftrightarrow \\ C \wedge A$	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (C \Leftrightarrow C \land A)$
7	$\neg (C \land A)$	$C \Leftrightarrow \\ C \wedge A$	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (C \Leftrightarrow C \land A)$
8	$C \wedge A$	$C \Leftrightarrow \\ C \wedge A$	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (C \Leftrightarrow C \land A)$

TABELLE 44. 1. Teil Verweise Beweis erweiterter Satz der Konjunktion mit wahrer Aussage

Defintion/	Definition 11	Definition 17	Definition 19
Fall Nr.	der	der	der
ran m.	Negation	Disjunktion	Äquivalenz
1	1. Zeile	2. Zeile	2. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	3. Zeile	2. Zeile
4	2. Zeile	3. Zeile	2. Zeile
5	1. Zeile	2. Zeile	4. Zeile
6	1. Zeile	2. Zeile	4. Zeile
7	2. Zeile	3. Zeile	4. Zeile
8	2. Zeile	3. Zeile	4. Zeile

Tabelle 45. 2. Teil Verweise Beweis erweiterter Satz der Konjunktion mit wahrer Aussage

Defintion/	Definition 13	Definition 19	Definition 14
Fall Nr.	der	der	der
rall IVI.	Konjunktion	Äquivalenz	Implikation
1	1. Zeile	1. Zeile	2. Zeile
2	3. Zeile	3. Zeile	1. Zeile
3	1. Zeile	1. Zeile	2. Zeile
4	3. Zeile	3. Zeile	1. Zeile
5	2. Zeile	1. Zeile	4. Zeile
6	4. Zeile	4. Zeile	4. Zeile
7	2. Zeile	1. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 46. 1. Teil 1. Beweis erweiterter Satz der Disjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
1	1	1	0
2	1	1	0
3	0	1	0
4	0	1	0
5	1	1	1
6	1	1	1
7	0	1	1
8	0	1	1

TABELLE 47. 2. Teil 1. Beweis erweiterter Satz der Disjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$C \vee A$	$\begin{array}{c} A \Leftrightarrow \\ C \vee A \end{array}$	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (A \Leftrightarrow C \vee A)$
1	0	1	1
2	1	0	1
3	0	1	1
4	1	0	1
5	1	1	1
6	1	1	1
7	1	1	1
8	1	1	1

TABELLE 48. 1. Teil 2. Beweis erweiterter Satz Disjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
1	$\neg B$	$B \vee \neg B$	$ \begin{array}{c} \neg (A \Leftrightarrow \\ (B \lor \neg B)) \end{array} $
2	$\neg B$	$B \vee \neg B$	
3	$\neg (\neg B)$	$B \vee \neg B$	$\neg (A \Leftrightarrow (B \vee \neg B))$
4	$\neg (\neg B)$	$B \vee \neg B$	$ \neg (A \Leftrightarrow (B \lor \neg B)) $
5	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
6	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
7	$\neg (\neg B)$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
8	$\neg (\neg B)$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$

TABELLE 49. 2. Teil 2. Beweis erweiterter Satz Disjunktion mit wahrer Aussage

Aussage/	$C \vee A$	$A \Leftrightarrow$	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow$
Fall Nr.	$C \lor A$	$C \vee A$	$(A \Leftrightarrow C \vee A)$
1	$-(C \setminus A)$	$A \Leftrightarrow$	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow$
1	$\neg (C \lor A)$	$C \vee A$	$(A \Leftrightarrow C \vee A)$
2	$C \vee A$	$\neg (A \Leftrightarrow$	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow$
2	C V 21	$C \vee A$)	$(A \Leftrightarrow C \vee A)$
3	$\neg (C \lor A)$	$A \Leftrightarrow$	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow$
0	(C V 21)	$C \vee A$	$(A \Leftrightarrow C \vee A)$
4	$C \vee A$	$\neg (A \Leftrightarrow$	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow$
4	$C \vee A$	$C \vee A$)	$(A \Leftrightarrow C \vee A)$
5	$C \vee A$	$A \Leftrightarrow$	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow$
9	C V 21	$C \vee A$	$(A \Leftrightarrow C \vee A)$
6	$C \vee A$	$A \Leftrightarrow$	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow$
0	CVA	$C \vee A$	$(A \Leftrightarrow C \vee A)$
7	$C \vee A$	$A \Leftrightarrow$	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow$
'		$C \vee A$	$(A \Leftrightarrow C \vee A)$
8	$C \vee A$	$A \Leftrightarrow$	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow$
0		$C \vee A$	$(A \Leftrightarrow C \vee A)$

TABELLE 50. 1. Teil Verweise Beweis erweiterter Satz Disjunktion mit wahrer Aussage

Defintion /	Definition 11	Definition 17	Definition 19
Defintion/ Fall Nr.	der	der	der
rall Nr.	Negation	Disjunktion	Äquivalenz
1	1. Zeile	2. Zeile	2. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	3. Zeile	2. Zeile
4	2. Zeile	3. Zeile	2. Zeile
5	1. Zeile	2. Zeile	4. Zeile
6	1. Zeile	2. Zeile	4. Zeile
7	2. Zeile	3. Zeile	4. Zeile
8	2. Zeile	3. Zeile	4. Zeile

TABELLE 51. 2. Teil Verweise erweiterter Satz Beweis erweiterter Satz der Disjunktion mit wahrer Aussage

Defintion/	Definition 17	Definition 19	Definition 14
Fall Nr.	der	der	der
rall Nr.	Disjunktion	Äquivalenz	Implikation
1	1. Zeile	1. Zeile	2. Zeile
2	3. Zeile	2. Zeile	1. Zeile
3	1. Zeile	1. Zeile	2. Zeile
4	3. Zeile	2. Zeile	1. Zeile
5	2. Zeile	4. Zeile	4. Zeile
6	4. Zeile	4. Zeile	4. Zeile
7	2. Zeile	4. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

KAPITEL 23

Erzeugendensysteme in der Logik

Dieses Kapitel ist für sich selber eigentlich ungenießbar. Denn die einzelnen logischen Sätze können eigentlich nicht weiter verwendet werden. Dann stellt sich die Frage, wieso ich mir dann die Mühe mache, die Sätze zu formulieren und zu beweisen? Der Sinn dieser Übung besteht darin, dass ich später die Fragestellung noch einmal bearbeiten möchte, welche ich versucht habe, in der Aussage 27 zu formulieren. Dazu möchte ich gerne alle anderen logischen Verknüpfungen auf die NAND-Verknüpfung zurückzuführen. Es ist also möglich, alle andere logischen Verknüpfungen mit NAND-Verknüpfungen zu ersetzen. Nachdem dies geschehen ist, kann ich dann später darauf später zurückkommen. Ich hoffe, dass ich dann die in der Aussage 27 aufgeworfene Fragestellung dann hoffentlich zufrieden beantworten kann.

Auf der anderen Seite stellt sich die Frage, wieso dann die anderen Verknüpfungen definiert wurden, wenn es nur die NAND-Verknüpfung benötigt? Die Antwort ist einfach: Die anderen Verknüpfungen werden vielfach in der Mathematik verwendet und besitzen ihre eigene Eigenschaften. Darum lohnt es sich, auch die anderen logischen Verknüpfungen kennen zu lernen und ihre Eigenschaften in Form von logischen Sätzen zu studieren. Doch nun möchte ich mit den "Rückführungen^{1"} beginnen.

23.1. Zusammenhang Negation und NAND-Verknüpfung

In den folgenden Abschnitten möchte ich daran gehen, alle Verknüpfung auf eine Verknüpfung (der NAND-Verknüpfung, auch Sheffer-Notation genannt) zurückzuführen. Der Grund für diese Untersuchungen besteht darin, dass das Suchen von Verbindungen ebenfalls eine sehr wichtige Beschäftigung in der Mathematik darstellt. Das erlaubt dann beispielsweise, dass Probleme zuerst in eine andere Darstellung übersetzt, in der neuen Darstellung gelöst und und anschließend wieder in die ursprüngliche Darstellung zurück übersetzt werden können. So können Probleme gelöst werden, welche ansonsten nicht gelöst oder nur mit einem viel größerem Aufwand gelöst werden könnten.

¹Mit "Rückführungen" werden heutzutage oft Versuche beschrieben, Menschen dazu zu bringen, dass sie sich an Erlebnisse in früheren Leben erinnern. Ob das möglich ist oder nicht, ist jedoch glücklicherweise nicht Thema dieses Buches.

TABELLE 1. 1. Beweis der Ableitung der Negation von der NAND-Verknüpfung

Aussage/ Fall Nr.	$\neg A$	$A\overline{\wedge}A$	Behauptung
1	1	1	1
2	0	0	1

Zuerst suche suche ich den Zusammenhang von der NAND-Verknüpfung und der Negation. Dieser lautet:

Satz 80. Es sei zuerst A das Symbol einer Aussage. Dann muss gelten:

$$\neg A \Leftrightarrow A \overline{\wedge} A$$

Beweis. Ich möchte den Beweis in den Tabellen 1 respektive 2 führen. Die Verweise des Beweises möchte ich der Tabelle 3 auflisten.

Nun, ein tabellarischer Beweis ist schon ein Beweis. Nur ist es nicht so witzig, einen Beweis in Tabellen "zu erschlagen". Darum möchte ich versuchen, den Beweis auch mit sprachlichen Mitteln zu erbringen. Ist die Aussage A nicht wahr, dann ist gemäß der ersten Zeile der Definition 11 der Negation die Aussage $\neg A$ wahr. Ebenfalls gemäß der ersten Zeile der Definition 21 der NAND-Verknüpfung ist die Aussage

$$A \overline{\wedge} A$$

ebenfalls wahr. Da nun sowohl die Aussagen $\neg A$ wie auch $A \overline{\wedge} A$ wahr sind, ist in diesem Fall gemäß der vierten Zeile der Definition 19 der Äquivalenz die Aussage

$$\neg A \Leftrightarrow A \overline{\wedge} A$$

wiederum wahr. Ist jedoch die Aussage A wahr, dann gemäß der zweiten Zeile der Definition 11 der Negation die Aussage $\neg A$ nicht wahr. Ebenso ist gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

$$A\overline{\wedge}A$$

nicht wahr. Da nun in diesem Fall die Aussage $\neg A$ wie auch $A \overline{\wedge} A$ nicht wahr sind, ist in diesem Fall gemäß der ersten Zeile der Definition 19 der Äquivalenz die Aussage

$$\neg A \Leftrightarrow A \overline{\wedge} A$$

wiederum wahr. Und da es gemäß dem Satz 13 des ausgeschlossenen Dritten alle Aussagen entweder wahr noch nicht wahr sein müssen, behaupte ich an dieser Stelle, den sprachlichen Beweis für die Richtigkeit der Behauptung erbracht zu haben. Also beende ich an dieser Stelle die weitere Beweisführung.

TABELLE 2. 2. Beweis der Ableitung der Negation von der NAND-Verknüpfung

Aussage/ Fall Nr.	$\neg A$	$A\overline{\wedge}A$	$\neg A \Leftrightarrow (A \overline{\wedge} A)$
1	$\neg A$	$A\overline{\wedge}A$	$\neg A \Leftrightarrow (A \overline{\wedge} A)$
2	$\neg (\neg A)$	$\neg (A \overline{\wedge} A)$	$\neg A \Leftrightarrow (A \overline{\wedge} A)$

TABELLE 3. Tabelle Verweise des Beweises der Ableitung der Negation von der NAND-Verknüpfung

Defintion/	Definition 11	Definition 11	Definition 19
,	der	der	der
Fall Nr.	Negation	Negation	Äquivalenz
1	1. Zeile	1. Zeile	4. Zeile
2	2. Zeile	4. Zeile	1. Zeile

TABELLE 4. 1. Beweis der Ableitung der Identität von der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}A$	$(A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A)$	Behauptung
1	1	0	1
2	0	1	1

TABELLE 5. 1. Teil 2. Beweis der Ableitung der Identität von der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}A$	$(A\overline{\wedge}A)\overline{\wedge}$ $(A\overline{\wedge}A)$	$A \Leftrightarrow (A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A)$
1	$A\overline{\wedge}A$	$ \begin{array}{c c} \neg ((A \overline{\wedge} A) \overline{\wedge} \\ ((A \overline{\wedge} A)) \end{array} $	$A \Leftrightarrow (A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A)$
2	$\neg (A \overline{\wedge} A)$	$(A\overline{\wedge}A)\overline{\wedge}$ $(A\overline{\wedge}A)$	$A \Leftrightarrow (A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A)$

23.2. Zusammenhang Identität und NAND-Verknüpfung

Ich möchte versuchen, die Identität als NAND-Verknüpfung aufzuschreiben.

Satz 81. Es sei A das Symbol einer Aussage, dann gilt:

$$A \Leftrightarrow (A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A)$$

Beweise. Ich möchte dies in den Tabellen 4 sowie 5 tabellarisch überprüfen. In der Tabellen 6 habe ich die Verweise der Beweise aufgeschrieben.

TABELLE 6. Tabelle Verweise des Beweises der Ableitung der Negation von der NAND-Verknüpfung

Defintion/	Definition 21 der NAND-	Definition 21 der NAND-	Definition 19 der
Fall Nr.	Verknüpfung	Verknüpfung	Äquivalenz
1	1. Zeile	4. Zeile	1. Zeile
2	4. Zeile	1. Zeile	4. Zeile

Ich möchte den Beweis auch mit sprachlichen Mitteln zu führen versuchen. Ich kann gemäß dem Satz 80 des Zusammenhangs der Verknüpfung der Negation und der NAND-Verknüpfung schreiben, dass gilt:

$$\neg A \Leftrightarrow A \overline{\wedge} A$$

Gemäß dem Äquivalenz-Negationssatz 60 kann ich darum folgern, dass gilt

$$\neg (\neg A) \Leftrightarrow \neg (A \overline{\wedge} A)$$

Gemäß dem Satz 11 der doppelten Negation kann ich schließen, dass gilt

$$\neg (\neg A) \Leftrightarrow A$$

Da die Äquivalenz gemäß dem Satz 39 kommutativ ist, kann ich ebenfalls schließen:

$$A \Leftrightarrow \neg (\neg A)$$

Da die Äquivalenz gemäß dem Satz 16 transitiv ist, kann ich also schließen, dass gilt

$$A \Leftrightarrow \neg (A \overline{\wedge} A)$$

Nun kann ich erneut den Satz 80 über den Zusammenhang der Negation und der NAND-Verknüpfung verwenden und erhalte die Aussage

$$\neg \left(A \overline{\wedge} A \right) \Leftrightarrow \left(A \overline{\wedge} A \right) \overline{\wedge} \left(A \overline{\wedge} A \right)$$

Da die Äquivalenz gemäß dem Satz 16 immer noch transitiv ist, kann ich schließen:

$$A \Leftrightarrow (A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A)$$

Damit meine ich, den Beweis für die Richtigkeit der Behauptung noch einmal erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Bitte beachte, dass es mir in diesen Beweisen vor allem darum geht, die Transformationen anwenden zu können. Ein Beweis, welcher sich rein an den Wahrheitstafeln entlang geangelt hätte, wäre ungleich kürzer ausgefallen. Jedoch wirst Du später nicht mehr die tabellarischen Beweise, sondern vor allem die möglichen (aber auch und vor allem die unmöglich scheinenden) Transformationen verwenden. Ich möchte

versuchen, an dieser Stelle ein mögliches Grundgerüst bereit zu stellen. Es wäre schön, wenn der Funken auf Dich überspringen würde.

23.3. Zusammenhang Konjunktion und NAND-Verknüpfung

Ich habe bei der Überarbeitung etwa eine Stunde gebraucht, bis ich begriffen habe, dass dieser Abschnitt entgegen meiner ersten Vermutung nicht das gleiche Thema wie der Satz 68 über die disjunktive Normalform der NAND-Verknüpfung besitzt. In diesem Abschnitt soll die Konjunktion mit Hilfe der NAND-Verknüpfung formuliert werden.

Satz 82. Es seien A, B Symbole von Aussagen. Dann gilt

$$A \wedge B \Leftrightarrow (A \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} B)$$

Beweis. Ich möchte meine Behauptung noch tabellarisch überprüfen. Diese Überprüfung habe ich in den Tabellen 7, 8 sowie 9 gemacht. Die Verweise habe ich in den Tabellen 10 sowie 11 aufgeschrieben. Wiederum möchte ich versuche, einen sprachlichen Beweis zu erbringen.

Es seien A und B Symbole von Aussagen. Da gemäß dem Satz 68 gelten muss

$$A \overline{\wedge} B \Leftrightarrow \neg (A \wedge B)$$

muss also auch gemäß dem von mir so getauften Äquivalenz-Negations-Satz 60 gelten

$$\neg (A \overline{\wedge} B) \Leftrightarrow A \wedge B$$

das bedeutet jedoch in Worten, dass die Negation der NAND-Verknüpfung tatsächlich äquivalent zur Konjunktion ist.

Da die Äquivalenz gemäß dem Satz 39 kommutativ ist, kann ich ebenso gut schreiben:

$$A \wedge B \Leftrightarrow \neg (A \overline{\wedge} B)$$

Der Satz 80 über den Zusammenhang der Negation und der NAND-Verknüpfung lehrt mich, dass für jede Aussage C gilt:

$$\neg C \Leftrightarrow C \overline{\wedge} C$$

Nun kann ich für die Aussage C die Aussage $A\overline{\wedge}B$ einsetzen und ich erhalte

$$\neg (A \overline{\land} B) \Leftrightarrow (A \overline{\land} B) \overline{\land} (A \overline{\land} B)$$

Weiter oben habe ich gesehen, dass die logische Aussage gilt

$$A \wedge B \Leftrightarrow \neg (A \overline{\wedge} B)$$

Eben konnte ich zeigen, dass offenbar die logische Aussage

$$\neg (A \overline{\land} B) \Leftrightarrow (A \overline{\land} B) \overline{\land} (A \overline{\land} B)$$

gelten muss. Nun wende ich den Satz 16 der Transitivität der Äquivalenz an und erhalte die Aussage

$$A \wedge B \Leftrightarrow (A \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} B)$$

Tabelle 7. 1. Beweis des Zusammenhangs von Konjunktion und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \wedge B$	$A\overline{\wedge}B$	$(A\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}B)$	Behauptung
1	0	1	0	1
2	0	1	0	1
3	0	1	0	1
4	1	0	1	1

TABELLE 8. 1. Teil 2. Beweis des Zusammenhangs von Konjunktion und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \wedge B$	$A\overline{\wedge}B$
1	$\neg (A \land B)$	$A\overline{\wedge}B$
2	$\neg (A \land B)$	$A\overline{\wedge}B$
3	$\neg (A \land B)$	$A\overline{\wedge}B$
4	$A \wedge B$	$\neg (A \overline{\wedge} B)$

TABELLE 9. 2. Teil 2. Beweis des Zusammenhangs von Konjunktion und NAND-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}B)$	$(A \wedge B) \Leftrightarrow ((A\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}B))$
1	$\neg ((A \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} B))$	$(A \land B) \Leftrightarrow ((A \overline{\land} B) \overline{\land} (A \overline{\land} B))$
2	$\neg ((A \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} B))$	$(A \land B) \Leftrightarrow ((A \overline{\land} B) \overline{\land} (A \overline{\land} B))$
3	$\neg ((A \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} B))$	$(A \land B) \Leftrightarrow ((A \overline{\land} B) \overline{\land} (A \overline{\land} B))$
4	$(A\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}B)$	$(A \land B) \Leftrightarrow ((A \overline{\land} B) \overline{\land} (A \overline{\land} B))$

Diese Aussage wollte ich jedoch zeigen. Darum erachte ich den Beweis als erbracht und beende an diese Stelle die weitere Beweisführung. ■

23.4. Zusammenhang Disjunktion und NAND-Verknüpfung

Ich möchte die Disjunktion auf die NAND-Verknüpfung zurückführen.

Satz 83. Es seien A sowie B sind Symbole von Aussagen. Dann gilt die Aussage:

$$A \lor B \Leftrightarrow (A \overline{\land} A) \overline{\land} (B \overline{\land} B)$$

TABELLE 10. Verweise Beweis Satz des Zusammenhangs von Konjunktion und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 13 der Konjunktion	Definition 21 der NAND- Verknüpfung
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	3. Zeile	3. Zeile
4	4. Zeile	4. Zeile

TABELLE 11. Verweise Beweis Satz des Zusammenhangs von Konjunktion und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 21 der NAND- Verknüpfung	Definition 19 der Äquivalenz
1	4. Zeile	1. Zeile
2	4. Zeile	1. Zeile
3	4. Zeile	1. Zeile
4	1. Zeile	4. Zeile

TABELLE 12. 1. Teil 1. Beweis Zusammenhang Disjunktion und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \lor B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
1	0	1	1
2	1	1	0
3	1	0	1
4	1	0	0

Somit habe ich also auch die Disjunktion auf die NAND-Verknüpfung zurückgeführt.

Beweis. In den Tabellen 13 bis 17 habe ich den Beweis des Zusammenhangs von Disjunktion und NAND-Verknüpfung noch einmal ausgerechnet.

Nun möchte ich trotzdem noch einmal mit sprachlichen Mitteln zu begründen versuchen, wieso den Satz für richtig halte. Ich möchte überlegen, wann die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$$

nicht wahr ist. Diese Aussage ist gemäß der vierten Zeile der Definition 21 nur dann nicht wahr, falls die Aussagen $A \overline{\wedge} A$ sowie $B \overline{\wedge} B$ wahr sind. Die Aussage $A \overline{\wedge} A$ sowie $B \overline{\wedge} B$ sind gemäß des Satzes 80 über den

TABELLE 13. 2. Teil 1. Beweis Zusammenhang Disjunktion und NAND-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	Behauptung
1	0	1
2	1	1
3	1	1
4	1	1

TABELLE 14. 1. Teil 2. Beweis Zusammenhang Disjunktion und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \lor B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
1	$\neg (A \lor B)$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
2	$A \lor B$	$A\overline{\wedge}A$	$\neg (B \overline{\wedge} B)$
3	$A \lor B$	$\neg (A \overline{\wedge} A)$	$B\overline{\wedge}B$
4	$A \lor B$	$\neg (A \overline{\wedge} A)$	$\neg (B \overline{\wedge} B)$

TABELLE 15. 2. Teil 2. Beweis Zusammenhang Disjunktion und NAND-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$(A \lor B) \Leftrightarrow ((A \overline{\land} A) \overline{\land} (B \overline{\land} B))$
1	$\neg ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B))$	$(A \lor B) \Leftrightarrow ((A \overline{\land} A) \overline{\land} (B \overline{\land} B))$
2	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$(A \lor B) \Leftrightarrow ((A \overline{\land} A) \overline{\land} (B \overline{\land} B))$
3	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$(A \lor B) \Leftrightarrow ((A \overline{\land} A) \overline{\land} (B \overline{\land} B))$
4	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$(A \lor B) \Leftrightarrow ((A \overline{\land} A) \overline{\land} (B \overline{\land} B))$

TABELLE 16. 1. Teil Verweise Beweis Zusammenhang Disjunktion und NAND-Verknüpfung

Defintion/	Definition 17	Definition 21	Definition 21
Fall Nr.	der	der NAND-	der NAND-
rall Nr.	Disjunktion	Verknüpfung	Verknüpfung
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	3. Zeile	4. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

TABELLE 17. 2. Teil Verweise Beweis Zusammenhang Disjunktion und NAND-Verknüpfungs

Defintion/ Fall Nr.	Definition 21 der NAND- Verknüpfung	Definition 19 derÄquivalenz
1	4. Zeile	1. Zeile
2	3. Zeile	4. Zeile
3	2. Zeile	4. Zeile
4	1. Zeile	4. Zeile

Zusammenhang der Negation mit der NAND-Verknüpfung genau dann wahr, falls die Aussagen $\neg A$ sowie $\neg B$ wahr sind. Die Aussagen $\neg A$ sowie $\neg B$ sind gemäß der ersten Zeile der Definition 11 der Negation genau dann wahr, falls die Aussagen A wie auch B nicht wahr sind. Zusammengefasst ist also die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$$

genau dann nicht wahr, falls die Aussagen A und B nicht wahr sind. Das bedeutet jedoch, dass diese Aussage genau dann nicht wahr ist, falls die Aussage $A \vee B$ nicht wahr ist. Weiter bedeutet dies gemäß des Äquivalenz-Negationssatz 60, dass die Aussage $(A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)$ genau dann wahr ist, falls die Aussage $A \vee B$ wahr ist. Das ist jedoch gerade die Behauptung. Damit meine ich, noch einmal mit sprachlichen Mitteln den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Gerne hätte ich noch folgenden Beweis ins Feld geführt: Es ist gemäß dem Satz 80 des Zusammenhangs von Negation und der NAND-Verknüpfung gelten die Aussagen

$$A \Leftrightarrow (A \overline{\wedge} A)$$

$$B \Leftrightarrow (B\overline{\wedge}B)$$

Weiter ist gemäß dem Satz 47 der Negation der Disjunktion

$$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$$

und somit gemäß dem Äquivalenz-Negationssatz 60

$$\neg \left(\neg \left(A \vee B \right) \right) \Leftrightarrow \neg \left(\neg A \wedge \neg B \right)$$

Gemäß dem Satz 11 der doppelten Negation gilt weiter

$$\neg (\neg (A \lor B)) \Leftrightarrow A \lor B$$

Da die Äquivalenz gemäß dem Satz 39 kommutiert, gilt weiter

$$A \lor B \Leftrightarrow \neg (\neg (A \lor B))$$

Und da die Äquivalenz gemäß dem Satz 16 transitiv ist, gilt weiter

$$A \vee B \Leftrightarrow \neg (\neg A \wedge \neg B)$$

Dann kann ich weiter die obigen Äquivalenzen der Negationen von A und B einsetzen und erhalte

$$A \vee B \Leftrightarrow \neg ((A \overline{\wedge} A) \wedge (B \overline{\wedge} B))$$

Schlussendlich kann ich den Satz 68 verwenden und erhalte die Aussage

$$\neg ((A \overline{\wedge} A) \wedge (B \overline{\wedge} B)) \Leftrightarrow ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B))$$

Wenn ich schlussendlich noch einmal den Satz 16 der Äquivalenz verwende, erhalte ich die finale Aussage

$$A \vee B \Leftrightarrow ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B))$$

Ende gut, alles gut? Leider nein. Weißt Du, wo ich es nicht herleiten kann? Das ist beim Abschnitt "Dann kann ich weiter die obigen Äquivalenzen der Negationen von A und B einsetzen". Das kann ich eben nicht. Es liegt zwar auf der Hand, dass dem so ist. Aber ich kann es nicht beweisen. Ich muss das später noch zeigen, dass dieser Schritt möglich ist. Jedoch muss ich meines Erachtens zuerst das Konzept der natürlichen Zahlen noch entwickeln, bevor ich mich an diese Verknüpfung wagen kann. Vorher ist das "Kaffeesatzleserei" und darum nicht seriös.

23.5. Zusammenhang Implikation und NAND-Verknüpfung

Und wenn ja, für was soll dieser gut sein? Wieder geht es vor allem darum Klarheit zu schaffen (und um Computer bauen zu können, welche alle logischen Verknüpfungen nachbilden kann). Es seien A und B Symbole von beliebigen Aussagen. Dann gilt ja gemäß dem Satz 54:

$$(A \Rightarrow B) \Leftrightarrow \neg (A \land (\neg B))$$

Das ist bereits fast die Behauptung: Es ist

$$\neg B \Leftrightarrow B \overline{\wedge} B$$

Das bedeutet jedoch, dass gilt:

$$(A \Rightarrow B) \Leftrightarrow (A \overline{\wedge} (B \overline{\wedge} B))$$

So, das war jetzt der "Beweis" in dem Sinn, dass er zwar das richtige Ergebnis liefert - jedoch nicht vollständig ist. Ich werde den Beweis in Form von Wahrheitstafeln nachfolgend erbringen. Es gilt also der

Satz 84. Es seien A sowie B Symbole von Aussagen. Dann gilt:

$$(A \Rightarrow B) \Leftrightarrow (A \overline{\wedge} (B \overline{\wedge} B))$$

TABELLE 18. 1. Beweis Zusammenhang Implikation und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \Rightarrow B$	$B\overline{\wedge}B$	$A\overline{\wedge} (B\overline{\wedge} B)$	Behauptung
1	1	1	1	1
2	1	0	1	1
3	0	1	0	1
4	1	0	1	1

TABELLE 19. 1. Teil 2. Beweis Zusammenhang Implikation und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \Rightarrow B$	$B\overline{\wedge}B$
1	$A \Rightarrow B$	$B\overline{\wedge}B$
2	$A \Rightarrow B$	$\neg (B \overline{\wedge} B)$
3	$\neg (A \Rightarrow B)$	$B\overline{\wedge}B$
4	$A \Rightarrow B$	$\neg (B \overline{\wedge} B)$

TABELLE 20. 2. Teil 2. Beweis Zusammenhang Implikation und NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge} (B\overline{\wedge} B)$	$(A \Rightarrow B) \Leftrightarrow A \overline{\wedge} (B \overline{\wedge} B)$
1	$A\overline{\wedge} (B\overline{\wedge} B)$	$(A \Rightarrow B) \Leftrightarrow A\overline{\wedge} (B\overline{\wedge}B)$
2	$A\overline{\wedge} (B\overline{\wedge} B)$	$(A \Rightarrow B) \Leftrightarrow A \overline{\wedge} (B \overline{\wedge} B)$
3	$\neg (A \overline{\wedge} (B \overline{\wedge} B))$	$(A \Rightarrow B) \Leftrightarrow A \overline{\wedge} (B \overline{\wedge} B)$
4	$A\overline{\wedge} (B\overline{\wedge} B)$	$(A \Rightarrow B) \Leftrightarrow A\overline{\wedge} (B\overline{\wedge}B)$

BEWEIS. Wieder ist die Asymmetrie irgendwie stoßend, aber halt einfach vorhanden. Bedenke jedoch, dass die Implikation als "≤" (kleiner oder gleich Beziehung) in der Logik verstanden werden kann (vergleiche mit der entsprechenden Kronecker-Beziehung, welche im Lemma 269 zu zeigen versuche). Ich habe den Beweis ebenfalls mit Hilfe der Wahrheitstafeln aufgeschrieben. Dieser ist in den Tabellen 18 einerseits und 19 sowie 20 andererseits abgelegt. Die Verweise des Beweises habe ich in den Tabellen 21 sowie 22 aufgeschrieben.

Aber ich kann den Beweis trotzdem so nicht stehen lassen. Denn ein Beweis bloß mit Wahrheitstafeln zu erbringen ist irgendwie trostlos und kalt. Darum werde noch einen "wasserdichten" (vollständigen) Beweis mit sprachlichen Mitteln nachliefern.

Ich möchte mir überlegen, unter welchen Umständen die Aussage $A\overline{\wedge} (B\overline{\wedge} B)$ nicht wahr ist. Dies ist gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung dann der Fall, falls die Aussage A

TABELLE 21. 1. Teil Verweise Beweis Zusammenhang Implikation und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 14 der Implikation	Definition 21 der NAND- Verknüpfung
1	1. Zeile	1. Zeile
2	2. Zeile	4. Zeile
3	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile

Tabelle 22. 2. Teil Verweise Beweis

Defintion/ Fall Nr.	Definition 21 der NAND- Verknüpfung	Definition 19 der Äquivalenz
1	2. Zeile	4. Zeile
2	1. Zeile	4. Zeile
3	4. Zeile	1. Zeile
4	3. Zeile	4. Zeile

wie auch die Aussage $B \overline{\wedge} B$ wahr ist. Ist die Aussage B wahr, dann ist gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung die Aussage $B \overline{\wedge} B$ nicht wahr. Ist jedoch die Aussage B nicht wahr, dann ist gemäß der erste Zeile der Definition 21 der NAND-Verknüpfung die Aussage $B \overline{\wedge} B$ jedoch wahr - so wie es die Voraussetzung über die Aussage $B\overline{\wedge}B$ fordert. Zusammenfassend kann ich also schreiben, dass die Aussage $A\overline{\wedge}(B\overline{\wedge}B)$ also genau dann nicht wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. Dies ist jedoch gemäß der dritten Zeile der Definition 14 der Implikation genau dann der Fall, falls die Implikation $A \Rightarrow B$ nicht wahr ist. Gemäß dem Äquivalenz-Negationssatz 60 schließe ich daraus, dass die Aussage $A \Rightarrow B$ genau dann wahr ist, falls es auch die Aussage $A\overline{\wedge} (B\overline{\wedge}B)$ ist. Somit kann ich schließen, das beide Aussagen äquivalent sind. Das war jedoch gerade zu beweisen. Aus diesem Grund erachte ich den Beweis für die Richtigkeit der Behauptung als erbracht und ich beende aus diesem Grund hiermit an dieser Stelle die weitere Beweisführung.

23.6. Zusammenhang Antivalenz und NAND-Verknüpfung

Ich versuche in den folgenden Zeilen, den Zusammenhang zwischen der Antivalenz und der NAND-Verknüpfung zu formulieren und zu beweisen. Ursprünglich wollte ich den Satz mittels logischen Transformationen herleiten. Das möchte ich nun auf später verschieben. Also versuche ich, den Satz über den Zusammenhang von Antivalenz und NAND-Verknüpfung zu formulieren und zu beweisen:

Satz 85. Es seien A, B Metasymbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Beweises widerspruchsfrei seien. Dann gilt

$$(A \Leftrightarrow B) \Leftrightarrow ((A \overline{\wedge} A) \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} (B \overline{\wedge} B))$$

Beweis. Angenommen, der Satz sei nicht wahr. Dann müsste es Aussagen A und B derart geben müsste, dass

$$A \Leftrightarrow B$$

wahr, die Aussage

$$((A \overline{\wedge} A) \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} (B \overline{\wedge} B))$$

jedoch nicht wahr ist oder umgekehrt die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

wahr ist und die Aussage

$$A \Leftrightarrow B$$

nicht wahr ist. Angenommen, die Aussage

$$A \Leftrightarrow B$$

sei wahr. Dann ist die Aussage A wahr und die Aussage B nicht wahr oder umgekehrt die Aussage A ist nicht wahr und die Aussage B ist wahr. Im ersten Fall ist gemäß der ersten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

$$B\overline{\wedge}B$$

wahr. Also ist gemäß der vierten Zeile der gleichen Definition 21 der NAND-Verknüpfung die Aussage .

$$A\overline{\wedge} (B\overline{\wedge}B)$$

nicht wahr. Da die Aussage $A\overline{\wedge}(B\overline{\wedge}B)$ nicht wahr ist, ist gemäß der ersten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

auf jeden Fall wahr. Ist jedoch die Aussage A nicht wahr und die Aussage B wahr, dann kann aus ähnlichen Gründen die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}B$$

nicht wahr sein. Denn die Aussage

$$A\overline{\wedge}A$$

muss gemäß der ersten Zeile der Definition 21 der NAND-Verknüpfung wahr sein. Da nun sowohl

$$A\overline{\wedge}A$$

wie auch B wahr sind, kann gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung dann auch die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}B$$

nicht wahr sein. Darum muss gemäß der ersten und der zweiten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

wahr sein. Also habe ich gezeigt, dass es keine Aussagen A, B derart geben kann, dass die Aussage

$$A \Leftrightarrow B$$

wahr, die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

jedoch nicht wahr ist. Somit hätte ich gezeigt, dass gilt

$$(A \Leftrightarrow B) \Rightarrow ((A \overline{\wedge} A) \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} (B \overline{\wedge} B))$$

Damit hätte ich lang fädig die erste Hälfte der Behauptung bewiesen. Nun möchte ich endlich die zweite Hälfte der Behauptung beweisen

Ich möchte überlegen, ob es Aussagen $A,\,B$ derart geben kann, dass die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

wahr ist und die Aussage

$$A \Leftrightarrow B$$

nicht wahr ist. Die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

ist nur dann nicht wahr, falls sowohl die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}B$$

wie auch die Aussage

$$A\overline{\wedge} (B\overline{\wedge}B)$$

wahr sind. In allen übrigen Fällen ist die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

wahr. Die übrigen Fälle sind diejenigen, in welchen die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}B$$

nicht wahr ist oder die Aussage

$$A\overline{\wedge} (B\overline{\wedge}B)$$

nicht wahr ist.

Die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}B$$

ist gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung dann nicht wahr, falls nicht sowohl die Aussage

$$A\overline{\wedge}A$$

wahr wie auch die Aussage B wahr sind. Die Aussage

$$A\overline{\wedge}A$$

ist gemäß der ersten Zeile der Definition 21 der NAND-Verknüpfung dann wahr, falls die Aussage A nicht wahr ist. Zusammengefasst kann also nicht die Aussage A nicht wahr und muss die Aussage B wahr sein, damit die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}B$$

nicht wahr ist.

Nun möchte ich mir überlegen, unter welchen Umständen die Aussage

$$A\overline{\wedge} (B\overline{\wedge}B)$$

nicht wahr ist. Dies ist gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung dann der Fall, falls die Aussage A und die Aussage $B\overline{\wedge}B$ wahr sind. Die Aussage $B\overline{\wedge}B$ ist gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung dann wahr, falls die Aussage B nicht wahr ist. Also kann die Aussage A nicht wahr oder muss die Aussage B wahr sein, damit die Aussage

$$A\overline{\wedge} (B\overline{\wedge}B)$$

nicht wahr ist.

Ich fasse zusammen: Die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

ist dann wahr, falls die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)$$

nicht wahr ist oder die Aussage

$$(A\overline{\wedge}(B\overline{\wedge}B))$$

nicht wahr ist. Also kann die Aussage A nicht wahr sein und die Aussage B muss wahr sein oder aber die Aussage A muss wahr sein und die Aussage B kann nicht wahr sein. Gemäß der zweiten und der dritten Zeile der Definition 20 der Antivalenz sind das genau diejenigen Fälle, in welchen die Antivalenz

$$A \Leftrightarrow B$$

wahr ist. Damit meine ich gezeigt zu haben, dass gilt

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B)) \Rightarrow A \Leftrightarrow B$$

Gemäß dem Satz 50 über den Zusammenhang von Äquivalenz und zwei Implikationen kann ich nun schließen, dass gilt

$$(A \Leftrightarrow B) \Leftrightarrow ((A\overline{\wedge}A)\overline{\wedge}B\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B)))$$

Also hätte ich den Beweis für die Richtigkeit der Behauptung erbracht. Damit Du erkennen kannst, dass die Behauptung richtig ist, habe ich den Beweis noch einmal in Wahrheitstafeln aufschreiben. Erneut

TABELLE 23. 1. Teil 1. Beweis Zusammenhang Antivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A\overline{\wedge}A$	$(A\overline{\wedge}A)\overline{\wedge}B$	$B\overline{\wedge}B$
1	0	1	1	1
2	1	1	0	0
3	1	0	1	1
4	0	0	1	0

TABELLE 24. 2. Teil 1. Beweis Zusammenhang Antivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge} (B\overline{\wedge} B)$	$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} (A\overline{\wedge}(B\overline{\wedge}B))$	Behauptung
1	1	0	1
2	1	1	1
3	0	1	1
4	1	0	1

TABELLE 25. 1. Teil 2. Beweis Zusammenhang Antivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A\overline{\wedge}A$	$(A\overline{\wedge}A)\overline{\wedge}B$	$B\overline{\wedge}B$
1	$\neg (A \Leftrightarrow B)$	$A\overline{\wedge}A$	$(A\overline{\wedge}A)\overline{\wedge}B$	$B\overline{\wedge}B$
2	$A \Leftrightarrow B$	$A\overline{\wedge}A$	$\neg ((A \overline{\wedge} A) \overline{\wedge} B)$	$\neg (B \overline{\wedge} B)$
3	$A \Leftrightarrow B$	$\neg (A \overline{\wedge} A)$	$(A\overline{\wedge}A)\overline{\wedge}B$	$B\overline{\wedge}B$
4	$\neg (A \Leftrightarrow B)$	$\neg (A \overline{\wedge} A)$	$(A\overline{\wedge}A)\overline{\wedge}B$	$\neg (B \overline{\wedge} B)$

habe ich den Beweis ebenfalls mit Hilfe der Wahrheitstafeln aufgeschrieben. Dieser ist in den Tabellen 23 sowie 24 einerseits und 25 sowie 26 andererseits abgelegt. Die Verweise des Beweises habe ich in den Tabellen 27 sowie 28 aufgeschrieben.

23.7. Zusammenhang Äquivalenz und NAND-Verknüpfung

Ach, hört das dann nie auf? Wieder ein Zusammenhang, welcher so gezeigt werden soll, jedoch immer noch nicht klar ist, für was dies gut sein soll.

Satz 86. Es seien A, B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$(A \Leftrightarrow B) \Leftrightarrow (((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)) \overline{\wedge} (A \overline{\wedge} B))$$

TABELLE 26. 2. Teil 2. Beweis Zusammenhang Antivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge} (B\overline{\wedge}B)$	$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} (A\overline{\wedge}(B\overline{\wedge}B))$	$(A \Leftrightarrow B) \Leftrightarrow (((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} (A\overline{\wedge}(B\overline{\wedge}B)))$
1	$A\overline{\wedge} (B\overline{\wedge}B)$	$\neg (((A \overline{\wedge} A) \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} (B \overline{\wedge} B)))$	$(A \Leftrightarrow B) \Leftrightarrow (((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} (A\overline{\wedge}(B\overline{\wedge}B)))$
2	$A\overline{\wedge} (B\overline{\wedge}B)$	$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} (A\overline{\wedge}(B\overline{\wedge}B))$	$(A \Leftrightarrow B) \Leftrightarrow (((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} (A\overline{\wedge}(B\overline{\wedge}B)))$
3	$\neg (A \overline{\wedge} (B \overline{\wedge} B))$	$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} (A\overline{\wedge}(B\overline{\wedge}B))$	$(A \Leftrightarrow B) \Leftrightarrow (((A \overline{\land} A) \overline{\land} B) \overline{\land} \\ (A \overline{\land} (B \overline{\land} B)))$
4	$A\overline{\wedge} (B\overline{\wedge}B)$	$\neg (((A \overline{\wedge} A) \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} (B \overline{\wedge} B)))$	$(A \Leftrightarrow B) \Leftrightarrow (((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} (A\overline{\wedge}(B\overline{\wedge}B)))$

TABELLE 27. 1. Teil Verweise Beweis Zusammenhang Antivalenz und NAND-Verknüpfung

Defintion/	Definition 20	Definition 11	Definition 21
Fall Nr.	der	der	der NAND-
rall Mi.	Antivalenz	Negation	Verknüpfung
1	1. Zeile	1. Zeile	3. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	3. Zeile	4. Zeile	1. Zeile
4	4. Zeile	4. Zeile	2. Zeile

TABELLE 28. 2. Teil Verweise Beweis Beweis Zusammenhang Antivalenz und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 21 der NAND- Verknüpfung	Definition 21 der NAND- Verknüpfung
1	1. Zeile	2. Zeile
2	4. Zeile	1. Zeile
3	1. Zeile	4. Zeile
4	4. Zeile	3. Zeile

BEWEIS. Ich möchte auch diesen Satz nicht mit logischen Transformationen beweisen sondern mittels anderer Überlegungen. Ich möchte gerne den Satz gemäß dem alternativen Satz 51 der Äquivalenz als zwei

TABELLE 29. 3. Teil Verweise Beweis Beweis Zusammenhang Antivalenz und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 21 der NAND- Verknüpfung	Definition 19 der Äquivalenz
1	4. Zeile	1. Zeile
2	2. Zeile	4. Zeile
3	3. Zeile	4. Zeile
4	4. Zeile	1. Zeile

Implikation beweisen. Es sei also zuerst die Aussage

$$A \Leftrightarrow B$$

wahr. Gemäß der ersten und der vierten Zeile der Definition 19 der Äquivalenz ist dies der Fall, falls sowohl die Aussagen A wie auch B nicht wahr oder beide Aussagen wahr sind. Sind beide Aussagen nicht wahr, dann sind gemäß der ersten Zeile der Definition 19 der Äquivalenz die Aussagen

 $A\overline{\wedge}A$

und

 $B\overline{\wedge}B$

wie auch

 $A\overline{\wedge}B$

wahr. Also ist gemäß der vierten Zeile der Definition 21 ist die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$$

nicht wahr und gemäß der dritten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

$$(((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}(A\overline{\wedge}B))$$

wahr. Sind jetzt jedoch beide Aussagen A wie auch B wahr, dann ist gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

$$A\overline{\wedge}B$$

nicht wahr. Also ist die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}(A\overline{\wedge}B)$$

gemäß der Abkürzungsregel 16 der NAND-Verknüpfung wahr. Also ist auch in diesem Fall die Behauptung wahr.

Nun möchte ich mir den Fall überlegen, in welchem die Aussage

$$A \Leftrightarrow B$$

nicht wahr ist. In diesem Fall ist gemäß der zweiten und dritten Zeile der Definition 19 der Äquivalenz die Aussage A nicht wahr und die Aussage

B wahr oder aber die zweite Aussage A wahr und die Aussage B nicht wahr. Ist die Aussage A nicht wahr wahr und die Aussage B wahr, dann ist gemäß der zweiten Zeile der Definition 21 der NAND-Verknüpfung die Aussage $(A\overline{\wedge}B)$ wahr. Da die Aussage B wahr ist, dann ist gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

$$B\overline{\wedge}B$$

nicht wahr. Also ist gemäß der Abkürzungsregel 9 der NAND-Verknüpfung die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$$

wahr. Somit ist gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}(A\overline{\wedge}B)$$

nicht wahr. Auf die gleiche Art kann ich zeigen, dass die gleiche Aussage nicht wahr ist, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. Denn in diesem Fall ist die Aussage

$$A\overline{\wedge}B$$

gemäß der dritten Zeile der Definition 21 der NAND-Verknüpfung wahr. Weiter ist gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

$$A\overline{\wedge}A$$

nicht wahr. Also ist gemäß der Abkürzungsregel 9 die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$$

wahr. Darum ist auch in diesem Fall die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}(A\overline{\wedge}B)$$

nicht wahr. Also habe ich gezeigt, dass diese Aussage nicht wahr sein kann, falls eine der beiden Aussagen A und B nicht wahr und die andere wahr ist, also die Aussage

$$A \Leftrightarrow B$$

nicht wahr ist. Damit habe ich jedoch gemäß dem alternativen Satz 51 der Äquivalenz als zwei Implikationen gezeigt, dass die Aussage

$$A \Leftrightarrow B$$

äquivalent zur Aussage

$$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}(A\overline{\wedge}B)$$

ist. Damit glaube ich jedoch, den Beweis für die Richtigkeit der Aussage erbracht zu haben. Damit ich auch wirklich sicher bin, dass die hergeleitete Aussage auch tatsächlich richtig ist (und ich Dich hoffentlich ein kleines bisschen überzeugen kann, dass dem so ist), habe ich den Beweis sowie dessen Verweise ebenfalls in Tabellenform aufgelistet. Der Beweis ist einerseits in den Tabellen 30, 31 sowie 32 abgelegt.

TABELLE 30. 1. Teil 1. Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
1	1	1	1
2	0	1	0
3	0	0	1
4	1	0	0

TABELLE 31. 2. Teil 1. Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$A\overline{\wedge}B$
1	0	1
2	1	1
3	1	1
4	1	0

TABELLE 32. 3. Teil 1. Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}$ $(A\overline{\wedge}B)$	Behauptung
1	1	1
2	0	1
3	0	1
4	1	1

TABELLE 33. 1. Teil 2. Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
1	$A \Leftrightarrow B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
2	$\neg (A \Leftrightarrow B)$	$A\overline{\wedge}A$	$\neg (B \overline{\wedge} B)$
3	$\neg (A \Leftrightarrow B)$	$\neg (A \overline{\wedge} A)$	$B\overline{\wedge}B$
4	$A \Leftrightarrow B$	$\neg (A \overline{\wedge} A)$	$\neg (B \overline{\wedge} B)$

Andererseits ist in der Tabellen 33, 34 sowie 35 aufgeschrieben. Die Verweise habe ich in den Tabellen 36, 37 sowie 37 verstaut.

Und wie kommt frau oder man auf diese Behauptung? Ich habe sie Online gefunden - ich hätte sie nicht selbst herausgefunden.

TABELLE 34. 2. Teil 2. Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$A\overline{\wedge}B$
1	$\neg ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B))$	$A\overline{\wedge}B$
2	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$A\overline{\wedge}B$
3	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$A\overline{\wedge}B$
4	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$\neg (A \overline{\wedge} B)$

TABELLE 35. 3. Teil 2. Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} (A\overline{\wedge}B)$	$(A \Leftrightarrow B) \Leftrightarrow ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} (A\overline{\wedge}B)$
1	$\neg (((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)) \overline{\wedge} ((A \overline{\wedge} B))$	$(A \Leftrightarrow B) \Leftrightarrow \\ ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} \\ (A\overline{\wedge}B)$
2	$(((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} (A\overline{\wedge}B)$	$(A \Leftrightarrow B) \Leftrightarrow ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} \\ (A\overline{\wedge}B)$
3	$(((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} (A\overline{\wedge}B)$	$(A \Leftrightarrow B) \Leftrightarrow ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} \\ (A\overline{\wedge}B)$
4	$\neg (((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)) \overline{\wedge} ((A \overline{\wedge} B))$	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)) & \overline{\wedge} \\ (A \overline{\wedge} B) & \end{array} $

Tabelle 36. 1. Teil Verweise Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 19 der Äquivalenz	Definition 21 der NAND- Verknüpfung	Definition 21 der NAND- Verknüpfung
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	3. Zeile	4. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

23.8. Zusammenhang von NOR und NAND-Verknüpfung

Nun kommt sozusagen das "pièce de résistance²". Ich möchte die NOR-Verknüpfung aus der NAND-Verknüpfung herleiten.

 $^{^2\}mathrm{der}$ schwierigste Teil

TABELLE 37. 2. Teil Verweise Beweis Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 21 der NAND- Verknüpfung	Definition 21 der NAND- Verknüpfung
1	4. Zeile	1. Zeile
2	3. Zeile	2. Zeile
3	2. Zeile	3. Zeile
4	1. Zeile	4. Zeile

TABELLE 38. 3. Teil Verweise Beweis Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 21 der NAND- Verknüpfung	Definition 19 der Äquivalenz
1	2. Zeile	4. Zeile
2	4. Zeile	1. Zeile
3	4. Zeile	1. Zeile
4	3. Zeile	4. Zeile

Satz 87. Es seien A sowie B Symbole von Aussagen, welche weder in sich selbst noch bezüglich den anderen Symbolen des Satzes widersprüchlich seinen. Dann gilt

$$(A \overline{\vee} B) \Leftrightarrow (((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)) \overline{\wedge} ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)))$$

Dieser Satz bedeutet, dass die NOR-Verknüpfung als NAND-Verknüpfung dargestellt werden kann.

Beweis. Ich überlege mir wiederum, wann die Aussage

$$(((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)))$$

wahr ist. Diese ist dann wahr, falls die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$$

nicht wahr ist. Denn ist die Aussage

$$(A\overline{\wedge}A)\,\overline{\wedge}\,(B\overline{\wedge}B)$$

wahr, dann ist gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

$$(((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)))$$

nicht wahr. Die Aussage

$$(A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)$$

ist gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung genau dann nicht wahr, falls sowohl die Aussage $A\overline{\wedge}A$ wie auch $B\overline{\wedge}B$ wahr sind. Die Aussagen

 $A\overline{\wedge}A$

wie auch

 $B\overline{\wedge}B$

sind gemäß ersten Zeile der Definition genau dann wahr, falls die Aussagen A und B nicht wahr sind. Denn ist die Aussage A nicht wahr, dann ist gemäß der ersten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

 $A\overline{\wedge}A$

wahr. Ist jedoch die Aussage A wahr, dann ist gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

 $A\overline{\wedge}A$

nicht wahr.

Wenn ich $A \equiv B$ setze, kann ich ebenso folgern, dass die Aussage

 $B\overline{\wedge}B$

genau dann wahr, falls die Aussage B nicht wahr ist. Denn ist die Aussage B nicht wahr, dann ist gemäß der ersten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

 $B\overline{\wedge}B$

wahr. Ist jedoch die Aussage B wahr, dann ist gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

 $B\overline{\wedge}B$

nicht wahr. Zusammengefasst kann ich also folgern, dass die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$$

genau dann wahr ist, falls die Aussagen A und B nicht wahr sind. Das ist jedoch genau derjenige Fall, in welchem die Aussage $A\overline{\vee}B$ wahr ist. Damit meine ich den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

So, und jetzt hätte ich den Satz des Zusammenhangs der NOR- und der NAND-Verknüpfung wiederum mehr oder weniger präzise hergeleitet. Nun möchte ich diesen Satz wiederum mittels Wahrheitstafeln herleiten. Dieser ist in den Tabellen 39, 40 sowie 41 einerseits und 42, 43 sowie 44 andererseits abgelegt. Die Verweise des Beweises habe ich in den Tabellen 45, 46 sowie s47 aufgeschrieben.

TABELLE 39. 1. Teil 1. Beweis Zusammenhang NOR- und NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\vee}B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
1	1	1	1
2	0	1	0
3	0	0	1
4	0	0	0

TABELLE 40. 2. Teil 1. Beweis Zusammenhang NOR- und NAND-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge} ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$
1	0	1
2	1	0
3	1	0
4	1	0

TABELLE 41. 3. Teil 1. Beweis Zusammenhang NOR- und NAND-Verknüpfung

Aussage/ Fall Nr.	Behauptung
1	1
2	1
3	1
4	1

TABELLE 42. 1. Teil 2. Beweis Zusammenhang NOR- und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \overline{ee} B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
1	$A\overline{\vee}B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
2	$\neg (A \overline{\vee} B)$	$A\overline{\wedge}A$	$\neg (B \overline{\wedge} B)$
3	$\neg (A \overline{\vee} B)$	$\neg (A \overline{\wedge} A)$	$B\overline{\wedge}B$
4	$\neg (A \nabla B)$	$\neg (A \overline{\wedge} A)$	$\neg (B \overline{\wedge} B)$

23.9. Zusammenhang von NAND und NOR-Verknüpfung

Ich habe im vorhergehenden Abschnitt die NOR-Verknüpfung als NAND-Verknüpfung dargestellt. Nun möchte ich den umgekehrten Weg gehen. Damit ich das machen kann, möchte im Unterschied zu den

TABELLE 43. 2. Teil 2. Beweis Zusammenhang NOR- und NAND-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge} ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$
1	$\neg ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B))$	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge} ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$
2	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$\neg (((A \overline{\land} A) \overline{\land} (B \overline{\land} B)) \overline{\land} \\ (((A \overline{\land} A) \overline{\land} (B \overline{\land} B)))$
3	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$\neg (((A \overline{\land} A) \overline{\land} (B \overline{\land} B)) \overline{\land} \\ (((A \overline{\land} A) \overline{\land} (B \overline{\land} B)))$
4	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$\neg (((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge} (((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)))$

TABELLE 44. 3. Teil 2. Beweis Zusammenhang NOR- und NAND-Verknüpfung

Aussage/	$A\overline{\lor}B$
Fall Nr.	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$
1	$A\overline{\vee}B$
1	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$
2	$A \overline{ee} B$
2	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$
3	$A\overline{ee}B$
3	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$
4	$A\overline{\vee}B$
4	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$

TABELLE 45. 1. Teil Verweise Beweis Zusammenhang NOR- und NAND-Verknüpfung

Defintion/	Definition 17	Definition 21	Definition 21
Fall Nr.	der NOR-	der NAND-	der NAND-
ran ivi.	Verknüfung	Verknüpfung	Verknüpfung
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	3. Zeile	4. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

vorhergehenden Abschnitte mehrere Sätze im gleichen Abschnitt aufführen. Ich möchte aus dem Satz 69 heraus starten.

Satz 88. Es sei A das Symbol einer Aussage, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei sei. Dann gilt

$$\neg A \Leftrightarrow A \overline{\vee} A$$

TABELLE 46. 2. Teil Verweise Beweis Zusammenhang NOR- und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 21 der NAND- Verknüpfung	Definition 21 der NAND- Verknüpfung
1	4. Zeile	1. Zeile
2	3. Zeile	4. Zeile
3	2. Zeile	4. Zeile
4	1. Zeile	4. Zeile

TABELLE 47. 3. Teil Verweise Beweis Zusammenhang NOR- und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 19 der Äquivalenz
1	4. Zeile
2	1. Zeile
3	1. Zeile
4	1. Zeile

Beweis. Ist A nicht wahr, dann gilt gemäß der ersten Zeile der Definition 17 der NOR-Verknüpfung

$$A\nabla A$$

Ist jedoch A wahr, dann gilt gemäß der vierten Zeile der Definition 17 der NOR-Verknüpfung

$$\neg (A \overline{\vee} A)$$

Zusammengefasst ist die Aussage

$$A\overline{\vee}A$$

also genau dann wahr, falls die Aussage

$$\neg A$$

wahr ist. Also kann ich folgern, dass gilt

$$A\overline{\vee}A \Leftrightarrow \neg A$$

Darum glaube an dieser Stelle den Beweis erbracht zu haben und beende darum an dieser Stelle die weitere Beweisführung.

Nun möchte ich daran gehen, den Zusammenhang der Disjunktion mit der NOR-Verknüpfung zu finden.

Satz 89. Es seinen A und B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei

TABELLE 48. 1. Teil 1. Beweis des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung

Aussage/ Fall Nr.	$A \wedge B$	$A\overline{\vee}A$	$B\overline{\vee}B$
1	0	1	1
2	0	1	0
3	0	0	1
4	1	0	0

seien. Dann gilt

$$A \wedge B \Leftrightarrow (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)$$

Beweis. Ich möchte mir überlegen, unter welchen Umständen die Aussage

$$(A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)$$

wahr ist. Dies ist gemäß der ersten Zeile der Definition 17 der NOR-Verknüpfung dann der Fall, falls sowohl die Aussagen

$$A\overline{\vee}A$$

wie auch

$$B\overline{\vee}B$$

nicht wahr sind. Gemäß dem vorhergehenden Satz 88 sind die Aussagen

$$A\overline{\vee}A$$

wie auch

$$B\overline{\vee}B$$

genau dann nicht wahr, falls die Aussagen A wie auch B wahr sind. Also ist die Aussage

$$(A \nabla A) \nabla (B \nabla B)$$

genau dann wahr, falls die Aussagen A wie auch B wahr sind. Also kann ich daraus schließen, dass die beiden Aussagen Äquivalent sind. Darum meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben. Wiederum möchte ich den Beweis noch mittels Wahrheitstafeln ebenfalls führen. Dieser ist einerseits in den Tabellen 48 sowie 49 andererseits jedoch in den Tabellen 50 sowie 51 niedergeschrieben. Die Verweise des Beweises ist in den Tabellen 52 und 52 abgelegt.

Nun bin ich fast am Ziel:

Satz 90. Es seien A,B Symbole, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt:

$$A\overline{\wedge}B \Leftrightarrow ((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))\overline{\vee}((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))$$

TABELLE 49. 2. Teil 1. Beweis des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$	Behauptung
1	0	1
2	0	1
3	0	1
4	1	1

TABELLE 50. 1. Teil 2. Beweis des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung

Aussage/ Fall Nr.	$A \wedge B$	$A\overline{ee}A$	$B\overline{\vee}B$
1	$\neg (A \land B)$	$A\overline{\vee}A$	$B\overline{\vee}B$
2	$\neg (A \land B)$	$A\overline{\vee}A$	$\neg (B \overline{\vee} B)$
3	$\neg (A \land B)$	$\neg (A \overline{\vee} A)$	$B\overline{\vee}B$
4	$A \wedge B$	$\neg (A \overline{\vee} A)$	$\neg (B \overline{\vee} B)$

TABELLE 51. 2. Teil 2. Beweis des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$	$ \begin{array}{c} A \wedge B \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) \end{array} $	\Leftrightarrow
1	$\neg ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$	$(A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)$	\Leftrightarrow
2	$\neg ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$	$ \begin{array}{c} A \wedge B \\ (A \nabla A) \nabla (B \nabla B) \end{array} $	\Leftrightarrow
3	$\neg ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$	$ \begin{array}{c} A \wedge B \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) \end{array} $	\Leftrightarrow
4	$(A \nabla A) \nabla (B \nabla B)$	$ \begin{array}{c} A \wedge B \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) \end{array} $	\Leftrightarrow

TABELLE 52. 1. Teil Verweise des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung

Defintion/	Definition 13	Definition 17	Definition 17
Fall Nr.	der	der NOR-	der NOR-
rall Nr.	Konjunktion	Verknüpfung	Verknüpfung
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	3. Zeile	4. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

Tabelle 53.	2. Teil Verweise des Satzes des Zusammen-
hangs der Kor	njunktion und der NOR-Verknüpfung

Defintion/ Fall Nr.	Definition 17 der NOR- Verknüpfung	Definition 19 der Äquivalenz
1	4. Zeile	1. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	1. Zeile	4. Zeile

Beweis. Ich möchte mir überlegen, unter welchen Umständen die Aussage

$$((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$$

nicht wahr ist. Diese Aussage ist dann nicht wahr, falls die Aussage

$$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$$

wahr ist. Denn ist die Aussage

$$(A \nabla A) \nabla (B \nabla B)$$

nicht wahr, dann ist gemäß der ersten Zeile der Definition 17 die Aussage

$$((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$$

wahr. Ist jedoch die Aussage

$$(A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)$$

wahr, dann ist gemäß der vierten Zeile der Definition 17 die Aussage

$$((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$$

nicht wahr. Gemäß dem vorhergehenden Satz 89 ist die Aussage

$$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$$

äquivalent zur Konjunktion

$$A \wedge B$$

Also ist die Aussage

$$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$$

genau dann wahr, falls die Aussagen A und B wahr sind. Also kann ich folgern, dass die Aussage

$$((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$$

genau dann nicht wahr, falls sowohl die Aussage A wie auch die Aussage B wahr sind. Gemäß dem Äquivalenz-Negationssatz 60 kann ich dann folgern, dass die Aussage

$$((A \nabla A) \nabla (B \nabla B)) \nabla ((A \nabla A) \nabla (B \nabla B))$$

TABELLE 54. 1. Teil 1. Beweis des Satzes des Zusammenhangs von NAND- und NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$A\overline{\vee}A$	$B\overline{\vee}B$
1	1	1	1
2	1	1	0
3	1	0	1
4	0	0	0

TABELLE 55. 2. Teil 1. Beweis des Satzes des Zusammenhangs der NAND und der NOR-Verknüpfung

Aussage/ Fall Nr.	$(A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)$	$ \begin{array}{cc} ((A \nabla A) \nabla (B \nabla B)) & \nabla \\ ((A \nabla A) \nabla (B \nabla B)) & \end{array} $
1	0	1
2	0	1
3	0	1
4	1	0

genau dann wahr ist, falls die Aussage

$$\neg (A \land B)$$

wahr ist. Gemäß dem Satz 68 ist die Aussage

$$\neg (A \land B)$$

auch äquivalent zur Aussage

$$A\overline{\wedge}B$$

Da die Äquivalenz transitiv ist, kann ich daraus folgern, dass auch die Aussage

$$((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$$

äquivalent zur Aussage

$$A\overline{\wedge}B$$

ist. Somit bin ich jetzt an meinem Ziel angekommen und habe Dich, liebe Leserin oder lieber Leser, hoffentlich überzeugt, dass ich den Nachweis für die Richtigkeit der Behauptung des Satzes erbracht habe. Bevor ich den Satz wiederum beende, möchte ich den Satz wiederum mit Wahrheitstafeln beweisen. Der Beweis des Satzes ist einerseits in den Tabellen 54, 55 sowie 56 abgelegt. Andererseits habe ich den Beweis in den Tabellen 57, 58 sowie 59 aufgeschrieben. Die Verweise des Beweises sind in den Tabellen 60, 61 sowie 62 festgehalten.

Wenn ich übrigens die folgenden Sätze der Äquivalenzen gegenüberstelle (wobei ich wie immer voraussetzen kann, dass A und B Symbole

TABELLE 56. 3. Teil 1. Beweis des Satzes des Zusammenhangs von NAND- und NOR-Verknüpfung

Aussage/ Fall Nr.	Behauptung
1	1
2	1
3	1
4	1

TABELLE 57. 1. Teil 2. Beweis des Satzes des Zusammenhangs der NAND- und der NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$A\overline{ee}A$	$B\overline{ee}B$
1	$A\overline{\wedge}B$	$A\overline{\vee}A$	$B\overline{\vee}B$
2	$A\overline{\wedge}B$	$A\overline{\vee}A$	$\neg (B\overline{\vee}B)$
3	$A\overline{\wedge}B$	$\neg (A \overline{\vee} A)$	$B\overline{\vee}B$
4	$\neg (A \overline{\wedge} B)$	$\neg (A \overline{\vee} A)$	$\neg (B \overline{\vee} B)$

TABELLE 58. 2. Teil 2. Beweis des Satzes des Zusammenhangs von NAND- und NOR-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$	$ \begin{array}{cc} (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) & \overline{\vee} \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) & \end{array} $
1	$\neg ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$	$ \begin{array}{cc} (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) & \overline{\vee} \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) \end{array} $
2	$\neg ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$	$ \begin{array}{cc} (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) & \overline{\vee} \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) \end{array} $
3	$\neg ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$	$ \begin{array}{cc} (A \nabla A) \nabla (B \nabla B) & \nabla \\ (A \nabla A) \nabla (B \nabla B) \end{array} $
4	$(A \nabla A) \nabla (B \nabla B)$	$\neg ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) \overline{\vee} (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$

TABELLE 59. 3. Teil 2. Beweis des Satzes des Zusammenhangs von NAND- und NOR-Verknüpfung

Aussage/ Fall Nr.	$A \overline{\wedge} B \Leftrightarrow ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$
1	$A \overline{\wedge} B \Leftrightarrow ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$
2	$A \overline{\wedge} B \Leftrightarrow ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$
3	$A \overline{\wedge} B \Leftrightarrow ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$
4	$A \overline{\wedge} B \Leftrightarrow ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$

TABELLE 60. 1. Teil Verweise des Satzes des Zusammenhangs der NAND- und der NOR-Verknüpfung

Defintion/ Fall Nr.	Definition 13 der NAND- Verknüpfung	Definition 17 der NOR- Verknüpfung	Definition 17 der NOR- Verknüpfung
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	3. Zeile	4. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

TABELLE 61. 2. Teil Verweise des Satzes des Zusammenhangs der NAND- und der NOR-Verknüpfung

Defintion/ Fall Nr.	Definition 17 der NOR- Verknüpfung	Definition 17 der NOR- Verknüpfung
1	4. Zeile	1. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	1. Zeile	4. Zeile

TABELLE 62. 2. Teil Verweise des Satzes des Zusammenhangs der NAND- und der NOR-Verknüpfung

Defintion/ Fall Nr.	Definition 19 der Äquivalenz
1	4. Zeile
2	4. Zeile
3	4. Zeile
4	1. Zeile

für Aussagen seien, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien):

$$A \overline{\vee} B \Leftrightarrow ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)) \overline{\wedge} ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B))$$
$$A \overline{\wedge} B \Leftrightarrow ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$$

dann sehe ich zu meiner Verblüffung, dass die beiden Aussagen rein durch Ersetzung der Symbole durch die jeweils andere Aussage erzeugt werden können. Dabei ist die erste Aussage vorher der Satz 87 des Zusammenhangs von NOR- und NAND-Verknüpfung und die zweite Aussage der Satz 90 des Zusammenhangs von NAND- und NOR-Verknüpfung.

Ersetze ich in der ersten Äquivalenz jedes Symbol der NOR-Verknüpfung (∇) durch das Symbol der NAND-Verknüpfung ($\overline{\wedge}$) und gleichzeitig jedes Symbol der NAND-Verknüpfung wiederum durch das Symbol der NOR-Verknüpfung, dann erhalte ich die zweite Äquivalenz. Und die zweite Äquivalenz kann durch die genau gleiche Prozedur in die erste Äquivalenz umgewandelt werden. Dieses Paar von Aussagen kann mit dem folgenden Paar von Aussagen verglichen werden (wobei wiederum $A, B \in \Omega$ sei):

$$\neg (A \lor B) \Leftrightarrow \neg (\neg (\neg A \land \neg B))$$
$$\neg (A \land B) \Leftrightarrow \neg (\neg (\neg A \lor \neg B))$$

Dabei ist ist die ersten Aussage der Satz 47 der Negation der Disjunktion und die zweite Aussage der Satz 45 der Negation der Konjunktion. Es mag eine Spielerei sein oder das Tor zu einer komplett neuen, faszinierenden Welt? Ich weiß es nicht. Aber ich möchte mich jetzt einer anderen Frage zuwenden. Der Frage nämlich: Wie viele logischen Operationen sind nötig, damit die restlichen logischen Operationen daraus erzeugt werden können? Es ist genau eine. Dabei kann es sich beispielsweise um die NAND- oder die NOR-Operation handeln. Aber ich vermute, dass es dass es auch noch mindestens eine weitere Operation gibt, welche das Gleiche leistet.

23.10. NAND-Verknüpfung als besondere Implikation

Ich habe diesen Abschnitt geschrieben, weil ich zeigen möchte, dass es noch weitere Arten der Verknüpfung geben muss, welche alle anderen logischen Verknüpfung erzeugen kann:

Satz 91. Es seien A, B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien.. Dann gilt

$$A\overline{\wedge}B \Leftrightarrow (A \Rightarrow (\neg B))$$

BEWEIS. Ich möchte mir überlegen, unter welchen Bedingungen sowohl die NAND-Verknüpfung wie auch die Aussage

$$A \Rightarrow (\neg B)$$

nicht wahr sind. Bei der NAND-Verknüpfung ist dies gemäß ihrer Definition 21 dann der Fall, falls sowohl A wie auch B wahr sind. Bei der Aussage $A\Rightarrow (\neg B)$ ist dies gemäß der Definition 14 dann der Fall, falls die Aussage A wahr, die Aussage $\neg B$ jedoch nicht wahr ist. Die Aussage $\neg B$ ist wiederum gemäß der Definition 11 der Negation dann nicht wahr, falls die Aussage B wahr ist. Wenn ich das zusammenfasse, dann ist also die Aussage

$$A \Rightarrow (\neg B)$$

TABELLE 63. 1. Teil 1. Beweis des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$\neg B$
1	1	1
2	1	0
3	1	1
4	0	0

Tabelle 64. 2. Teil 1. Beweis des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$A \Rightarrow \neg B$	Behauptung
1	1	1
2	1	1
3	1	1
4	0	1

genau dann nicht wahr, falls A wahr und B nicht wahr sind. Das heißt, dass dies in genau den gleichen Fällen zutrifft, in welchen auch die NAND-Verknüpfung der beiden Aussagen nicht wahr ist. Somit muss (auch gemäß dem Äquivalenz-Negation-Satz 60) die NAND-Verknüpfung der beiden Aussagen genau dann wahr sein, falls die Aussage

$$A \Rightarrow (\neg B)$$

wahr ist. Also bin ich der Meinung, dass in allen Fällen die Äquivalenz der beiden Aussagen erbracht ist. Also meine ich, den Beweis für die Richtigkeit des Satzes gezeigt zu haben.

Ich werden den Beweis jedoch ebenfalls mit Wahrheitstafeln erbringen. Die Beweise habe ich einerseits in den Tabellen 63 sowie 64 abgelegt. Andererseits ist er in den Tabellen 65 sowie 66 abgelegt. Die Verweise der Tabelle kannst Du in den Tabelle 67 sowie 68 nachlesen falls Du das möchtest!

23.11. NOR-Verknüpfung als besondere Implikation

Wenn ich gerade dabei bin, möchte ich mir überlegen, ob auch die NOR-Verknüpfung noch zu einem anderen logischen Ausdruck äquivalent sein muss, welcher auf den ersten Blick wenig mit der NOR-Verknüpfung zu tun hat. Ich probiere es mit dem folgenden Satz:

TABELLE 65. 1. Teil 2. Beweis des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$\neg B$
1	$A\overline{\wedge}B$	$\neg B$
2	$A\overline{\wedge}B$	$\neg (\neg B)$
3	$A\overline{\wedge}B$	$\neg B$
4	$\neg (A \overline{\wedge} B)$	$\neg (\neg B)$

TABELLE 66. 2. Teil 2. Beweis des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$A \Rightarrow \neg B$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$
1	$A \Rightarrow \neg B$	
2	$A \Rightarrow \neg B$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$
3	$A \Rightarrow \neg B$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$
4	$\neg (A \Rightarrow \neg B)$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$

TABELLE 67. 1. Teil der Verweise des Beweises des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation

Defintion/ Fall Nr.	Definition 21 der NAND- Verknüfpung	Definition 11 der Negation
1	1. Zeile	1. Zeile
2 3	2. Zeile 3. Zeile	2. Zeile 1. Zeile
4	4. Zeile	2. Zeile

TABELLE 68. 2. Teil der Verweise des Beweises des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation

Defintion/ Fall Nr.	Definition 14 der Implikation	Definition 19 der Äquivalenz
1	2. Zeile	4. Zeile
2	1. Zeile	4. Zeile
3	4. Zeile	4. Zeile
4	3. Zeile	1. Zeile

TABELLE 69. 1. Teil 1. Beweis des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$A \overline{\vee} B$	$\neg A$	$\neg A \Rightarrow B$
1	1	1	0
2	0	1	1
3	0	0	1
4	0	0	1

Satz 92. Es seien A, B Symbolen von Aussage, welche in sich selbst sowie in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt

$$A \overline{\vee} B \Leftrightarrow \neg (\neg A \Rightarrow B)$$

Beweis. Ich möchte mir überlegen, unter welchen Umständen die Aussage

$$\neg (\neg A \Rightarrow B)$$

wahr ist. Dies ist gemäß der ersten Zeile der Definition 11 der Negation dann der Fall, falls die Aussage

$$\neg A \Rightarrow B$$

nicht wahr ist. Diese Aussage ist gemäß der dritten Zeile der Definition 14 dann der Fall, falls die Aussage $\neg A$ wahr, die Aussage B jedoch nicht wahr ist. Die Aussage A ist gemäß der ersten Zeile der Definition 11 der Negation dann wahr, falls die Aussage A nicht wahr ist. Wenn ich die Voraussetzungen zusammensetze, dann ist die Aussage

$$\neg (\neg A \Rightarrow B)$$

genau dann wahr, falls sowohl die Aussage A wie auch die Aussage B nicht wahr sind. Das ist jedoch genau derjenige Fall, in welchem die NOR-Verknüpfung der beiden Aussagen wahr ist. Damit meine ich, den Beweis für die Richtigkeit der Aussage erbracht zu haben.

Jedoch werde ich den Beweis noch einmal mit Hilfe von Wahrheitstafeln zu erbringen versuchen, damit ich einigermaßen sicher sein kann, dass der Satz wirklich richtig ist. Der Beweis ist einerseits in den Tabellen 69 und 70 sowie den Tabellen 70 und 72 andererseits abgelegt. Die Beweise sind in den Tabellen 72 sowie 72 abgelegt. Nun beende ich an dieser Stelle die weitere Beweisführung.

23.12. Erzeugendensysteme der Logik - Zusammenfassung

Für was soll das wieder gut sein? Ich vermute, dass es eine der wichtigen Aufgaben der Mathematik ist, die Dinge möglichst einfach darzustellen. Da gibt es beeindruckende Entsprechungen in der Welt

Tabelle 70. 2. Teil 1. Beweis des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$\neg (A \Rightarrow \neg B)$	Behauptung
1	1	1
2	0	1
3	0	1
4	0	1

TABELLE 71. 1. Teil 2. Beweis des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$A\overline{ee}B$	$\neg A$	$\neg A \Rightarrow B$
1	$A\overline{\vee}B$	$\neg A$	$\neg (\neg A \Rightarrow B)$
2	$\neg (A \overline{\vee} B)$	$\neg A$	$\neg A \Rightarrow B$
3	$\neg (A \overline{\vee} B)$	$\neg (\neg A)$	$\neg A \Rightarrow B$
4	$\neg (A \overline{\vee} B)$	$\neg (\neg A)$	$\neg A \Rightarrow B$

TABELLE 72. 2. Teil 2. Beweis des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$A \Rightarrow \neg B$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$
1	$A \Rightarrow \neg B$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$
2	$A \Rightarrow \neg B$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$
3	$A \Rightarrow \neg B$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$
4	$\neg (A \Rightarrow \neg B)$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$

TABELLE 73. 1. Teil der Verweise des Beweises des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation

Defintion/	Definition 21	Definition 11	Definition 14
Fall Nr.	der NAND-	der	der
rall Nr.	Verknüfpung	Negation	Implikation
1	1. Zeile	1. Zeile	3. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	2. Zeile

TABELLE 74. 2. Teil der Verweise des Beweises des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation

Defintion/ Fall Nr.	Definition 14 der Implikation	Definition 19 der Äquivalenz
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	2. Zeile	1. Zeile

der Wissenschaft. Eine, welche ich erwähnen möchte, ist das Periodensystem der Atome. Obwohl es sehr verschiedene Materialien (wie Gesteinsarten und Kunststoffe) und Zustandsformen (wie flüssig, gasförmig, plasmaförmig, fest, kristallin) gibt, konnten Forscherinnen und Forscher im Laufe der Zeit entschlüsseln, dass praktisch alle diese Stoffe aus verschiedenen chemischen Elementen entstehen, welche sich in bestimmter Art und Weise zu diesen Erscheinungsformen zusammenfinden. Zwar sind diese chemischen Elemente nicht "einfach", jedoch "einfacher" als all diese verschiedenen Erscheinungsformen.

Aber auch die menschliche Sprache und Erkenntnis ist voll von Bemühungen, die Dinge zu vereinfachen, indem sie in geeigneter Art und Weise geordnet werden. Beispielsweise sind Kühe Wiederkäuer und als solche Säugetiere und als solche Tiere und als solche Lebewesen. Es geht jedoch auch technischer und weniger geheimnisvoll. Ein Auto ist ein vierrädriges Fahrzeug mit Antrieb. Diese Beispiele mögen zeigen, dass es hilfreich sein kann, Ordnung in das Leben zu bringen (auch wenn es wahrscheinlich oftmals nur ein frommer Wunsch ist, ein geordnetes Leben leben zu können).

In der Logik kann jetzt gefragt werden, ob alle logischen Verknüpfungen völlig unabhängig voneinander sind. Und wie ich bereits in den Kapiteln 16 respektive 17 vollmundig verkündet habe: Nein, das sind sie nicht. Sie können auseinander erzeugt werden. Es reicht im Prinzip eine logische Verknüpfung, damit die anderen aus ihr erzeugt werden kann. Das ist dann nützlich, um damit Computer und ähnliche Maschinen zu bauen (wie die sogenannten "Smartphones"). Aber eine direkte Anwendung in der Mathematik kenne ich nicht. Sei's drum. Ich finde es trotzdem interessant.

Doch welche Verknüpfungen sind überhaupt abzuleiten? Es sind dies:

- die Negation
- die Identität
- die Konjunktion
- die Disjunktion

- die Implikation
- die Äquivalenz
- die Antivalenz
- die NOR-Verknüpfung

sowie

• die NAND-Verknüpfung

Nun habe ich in den Abschnitten 23.1 bis 23.8 zu zeigen versucht, dass alle anderen Verknüpfungen als NAND-Verknüpfungen aufgefasst werden können. Also können alle logischen Verknüpfungen als NAND-Verknüpfungen aufgefasst werden. Das mag irgendwie abgehoben tönen. Und als ich den Text zum ersten Mal geschrieben hatte, dann hatte ich das Gefühl ebenfalls. Jedoch hat sich dieses Gefühl bei mir in der Zwischenzeit wieder gelegt, dann mir ist in den Sinn gekommen, dass gemäß dem Satz 68 die NAND-Verknüpfung als Verkettung einer Konjunktion, gefolgt von einer Negation aufgefasst werden kann.

Es muss also gelten, wobei $A, B \in \Omega$ sein soll:

$$(A \overline{\wedge} B) \Leftrightarrow \neg (A \wedge B)$$

Wenn also jetzt jede logische Verknüpfung als Verkettung von NAND-Verknüpfungen aufgefasst werden kann, dann bedeutet dies jedoch, dass jede logische Verknüpfung auch als Verkettungen von Konjunktionen und Negationen aufgefasst werden kann. Das tönt vielleicht für Deine Ohren immer noch sehr abstrakt und vage. Aber die Bedeutung dessen finde ich zumindest recht anschaulich - jedoch auch ziemlich banal: Es gibt keine logische Aussage, welche nicht darauf zurückgeführt werden könnte auf das, was gilt und was nicht gilt. Wobei ich wiederum präzisieren muss: Wenn ich sage, dass etwas nicht gilt, dann meine ich nicht, dass ich immer zeigen kann, dass etwas falsch wäre. Vergleiche dazu mit der Einführung in das Kapitel über die 8 der Negation.

Aber damit nicht genug: Gemäß dem Satz 45 kann die Konjunktion wiederum als Kombination von Disjunktion und Negation erzeugt werden. Also kann die NAND-Verknüpfung ebenfalls wiederum als Kombination von Disjunktion und Negation erzeugt werden. Das bedeutet iedoch:

Satz 93. Alle logischen Verknüpfungen auch als Kombinationen von Negationen und Disjunktionen dargestellt werden können.

Dies kannst Du auch daran ablesen, dass die NAND-Verknüpfung ihrerseits als Verkettung von NOR-Verknüpfungen dargestellt werden kann (vergleiche mit dem Satz 90). Welche anderen Erzeugendensysteme in der Logik vorhanden sind, kann ich so nicht sagen. Wahrscheinlich sind jedoch solche vorhanden. Ein interessanter Kandidat ist die Implikation. Ich habe in den Sätzen 91 sowie 92 zu zeigen versucht, dass die NAND- und die NOR-Verknüpfung wiederum als Kombination von Negation und Implikation verstanden werden kann. Ich würde es jetzt gerne Dir überlassen, darüber zu forschen, welche Erzeugendensysteme sonst noch möglich wären. Aber ich denke nicht, dass es viele Lorbeeren diesbezüglich zu holen gäbe. Ich kann nicht sagen, ob es diesbezüglich schon Untersuchungen gab. Trotzdem möchte ich das an dieser Stelle aufschreiben, da es das erste Mal wäre, wo ich etwas aus freien Stücken nicht weiter ausführen möchte.

KAPITEL 24

Substitutionssätze

Das mit den Substitutionssätzen ist so eine Sache. Wo ich sie auch immer hinstelle, ist es nicht so gut. Doch um was geht es bei diesen Sätzen? Im vorhergehenden Kapitel habe ich mich gefragt, wieso etwas so sein muss. Denke beispielsweise an den Satz der Schlussfolgerung: Sind A und B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Aussagen widerspruchsfrei sind, so gilt:

$$A \wedge (A \Rightarrow B) \Rightarrow B$$

Da war es mir wichtig, zu zeigen, dass ich diesen logischen Satz beweisen konnte. In diesem Kapitel geht es mir jedoch um etwas anderes: Es geht mir um die Frage, wie logische Umformungen vorgenommen werden können. Auch wenn ich mir bewusst bin, dass dies wahrscheinlich noch nicht die letzte Fassung dieser Art ist, werde ich trotzdem versuchen, eine erste Fassung zu schreiben.

Bezüglich den Substitutionssätzen ist es auch darum eine Sache, weil die eigentlich fast alle Sätze sofort intuitiv klar sind (außer dem ersten Substitutionssatz 94 der Negation unten). Jedoch geht es mir eben gerade nicht darum, zu zeigen, was ich zeigen kann und was nicht, sondern vor allem, wie ich darauf komme. Und dieses Kapitel ist aus einer veritablen Krise meinerseits entstanden. Ich habe verschiedene Sachen ausprobiert - und eigentlich nichts hat richtig funktioniert. Darum mache ich an dieser Stelle noch einmal einen Anlauf und hoffe, dass es dann jetzt endlich klappt.

24.1. Substitutionssatz der Negation

Ich starte zuerst mit diesem Substitutionssatz:

SATZ 94. Es seien $A, B \in \Omega$, also Symbole von Aussagen, welche weder in sich selbst noch bezüglich anderen Aussagen und Symbolen widersprüchlich seien. Dann gilt die Aussage

$$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$$

Beweis. Ich möchte zuerst versuchen, den Beweis mit sprachlichen Mitteln zu erbringen. Bezüglich der Aussage

$$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$$

Ist die Aussage $\neg A$ oder die Aussage $B \Rightarrow A$ nicht wahr, dann ist gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$\neg A \land (A \Leftrightarrow B)$$

nicht wahr. Da die Aussage

$$\neg A \land (A \Leftrightarrow B)$$

ist in diesem Fall die Aussage

$$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$$

gemäß der Abkürzungsregel 11 der Implikation wahr. Also kann ich im folgenden annehmen, dass die Aussagen $\neg A$ wie auch die Aussage $B \Rightarrow A$ wahr sind. Ist die Aussage $\neg A$ wahr, dann kann gemäß der ersten Zeile der Definition 11 der Negation die Aussage A nicht wahr sein. Ist jedoch die Aussage A nicht wahr, dann auch die Aussage B nicht wahr sein. Denn in diesem Fall ist gemäß der ersten Zeile der Definition 14 der Implikation die Aussage

$$B \Rightarrow A$$

wahr. Wäre die Aussage B wahr, dann wäre gemäß der dritten Zeile der Definition 14 der Implikation die Aussage

$$B \Rightarrow A$$

nicht wahr. Da nun die Aussage B nicht wahr sein kann, muss die Aussage B gemäß der ersten Zeile der Definition 11 der Negation wahr sein. Also muss auch in diesem Fall die Aussage

$$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$$

wahr sein. Somit glaube ich gezeigt zu haben, dass es nicht möglich ist, Aussagen A und B derart zu finden, dass die Aussage

$$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$$

nicht wahr ist. Darum muss gemäß der abgeschwächten Form des Satzes 12 der doppelten Negation diese Aussage wahr sein. Somit glaube ich, die Beweis für die Richtigkeit des Satzes erbracht zu haben und beende an dieser Stelle... Stopp! Fast hätte ich es vergessen. Ich möchte den Satz noch mittels Wahrheitstafeln beweisen. In den Tabellen 1 sowie 2 einerseits und 3 sowie 4 andererseits habe ich den Beweis aufgeschrieben. Die Verweise der Beweise habe ich in den Tabellen 5 sowie 6 abgelegt. Nun glaube ich behaupten zu können, dass ich den Beweis für die Richtigkeit des Satzes erbrachte habe und beende aus diesem Grund die weitere Beweisführung.

Nun kommt der zweite Substitutionssatz der Negation:

TABELLE 1. 1. Teil 1. Beweis Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg A$	$B \Rightarrow A$	$\neg A \land (B \Rightarrow A)$
1	1	1	1
2	1	0	0
3	0	1	0
4	0	1	0

TABELLE 2. 2. Teil 1. Beweis Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg B$	Behauptung
1	1	1
2	0	1
3	1	1
4	0	1

TABELLE 3. 1. Teil 2. Beweis Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg A$	$B \Rightarrow A$	$\neg A \land (B \Rightarrow A)$
1	$\neg A$	$B \Rightarrow A$	$\neg A \land (B \Rightarrow A)$
2	$\neg A$	$\neg (B \Rightarrow A)$	$\neg (\neg A \land (B \Rightarrow A))$
3	$\neg (\neg A)$	$B \Rightarrow A$	$\neg (\neg A \land (B \Rightarrow A))$
4	$\neg (\neg A)$	$B \Rightarrow A$	$\neg (\neg A \land (B \Rightarrow A))$

TABELLE 4. 2. Teil 2. Beweis Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg B$	$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$
1	$\neg B$	
2	$\neg (\neg B)$	$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$
3	$\neg B$	$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$
4	$\neg (\neg B)$	$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$

TABELLE 5. 1. Teil Verweise Beweis Substitutionssatz der Negation

Auggama /	Definition 11	Definition 14	Definition 13
Aussage/ Fall Nr.	der	der	der
ran m.	Negation	Implikation	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	2. Zeile
4	2. Zeile	4. Zeile	2. Zeile

Tabelle 6.	2.	Teile	Verweise	Beweis	Substitutionssatz
der Negation					

Aussage/	Definition 11	Definition 14
Fall Nr.		der Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile

Satz 95. Es seien A, B Symbole für Aussagen, welche nicht in sich selbst oder in Bezug auf die anderen den Symbolen des Satzes widersprüchlich seien. Dann gilt die Aussage

$$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$$

BEWEIS. Angenommen, die Aussage sei nicht wahr. Dann müsste es gemäß der dritten Zeile der Definition 14 der Implikation Aussagen A, B derart geben, dass die Aussage $\neg B$ nicht wahr, die Aussage

$$\neg A \land (A \Leftrightarrow B)$$

jedoch wahr wäre. Da die Aussage $\neg B$ nicht wahr sein könnte, müsste gemäß der zweiten Zeile der Definition 11 der Negation die Aussage B wahr sein. Denn wäre die Aussage B selbst nicht wahr, dann wäre die Aussage $\neg B$ gemäß der ersten Zeile der Definition 11 der Negation wahr. Da die Aussage

$$\neg A \land (A \Leftrightarrow B)$$

wahr sein müsste, müsste gemäß dem Satz 55, welcher besagt, dass aus der Konjunktion die Aussage folgt, die Aussage $\neg A$ wahr sein. Somit könnte die Aussage A nicht wahr sein. Denn wäre die Aussage A wahr, dann wäre gemäß der zweiten Zeile der Definition 11 der Negation die Aussage A nicht wahr. Wäre jedoch die Aussage A nicht wahr, dann wäre gemäß der ersten Zeile der Definition 11 der Negation die Aussage $\neg A$ wahr. Nun hätte ich zusammengefasst also die Situation, dass die Aussage A nicht wahr sein könnte, die Aussage B jedoch wahr sein müsste. Jedoch wäre in diesem Fall die Aussage

$$A \Leftrightarrow B$$

gemäß der zweiten Zeile der Definition 19 der Äquivalenz nicht wahr. Somit wäre gemäß der dritten Zeile der Definition 13 der Konjunktion die Aussage

$$\neg A \land (A \Leftrightarrow B)$$

nicht wahr. Also wäre die gesamte Aussage

$$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$$

Tabelle 7. 1. Teil 1. Beweis 2. Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg A$	$A \Leftrightarrow B$	
1	1	1	1
2	1	0	0
3	0	0	0
4	0	1	0

Tabelle 8. 2. Teil 1. Beweis 2. Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg B$	Behauptung
1	1	1
2	0	1
3	1	1
4	0	1

Tabelle 9. 1. Teil 2. Beweis 2. Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg A$	$A \Leftrightarrow B$	$\neg A \land (A \Leftrightarrow B)$
1	$\neg A$	$A \Leftrightarrow B$	$\neg A \land (A \Leftrightarrow B)$
2	$\neg A$	$\neg (A \Leftrightarrow B)$	$\neg (\neg A \land (A \Leftrightarrow B))$
3	$\neg (\neg A)$	$\neg (A \Leftrightarrow B)$	$\neg (\neg A \land (A \Leftrightarrow B))$
4	$\neg (\neg A)$	$A \Leftrightarrow B$	$\neg (\neg A \land (A \Leftrightarrow B))$

wiederum wahr. Also meine ich damit gezeigt zu haben, dass es keine Aussagen mit der Bezeichnung A sowie B geben kann, so dass die Aussage

$$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$$

nicht wahr ist. Also meine ich gemäß dem abgeschwächten Satz 12 der doppelten Negation folgern zu können, dass für alle Aussagen, welche mit den Symbolen A wie auch B bezeichnet werden, die Aussage

$$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$$

wahr ist. Damit meine ich, die Richtigkeit des Beweises erbracht zu haben und schreibe den Beweis zur Sicherheit noch tabellarisch auf. In den Tabellen 8 sowie 7 einerseits und 9 sowie 10 andererseits habe ich den Beweis aufgeschrieben. Die Verweise der Beweise habe ich in den Tabellen 11 sowie 12 abgelegt. Somit glaube ich, den Beweis für die Richtigkeit der Behauptung dieses Satzes erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Tabelle 10. 2. Teil 2. Beweis 2. Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg B$	$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$
1	$\neg B$	$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$
2	$\neg (\neg B)$	$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$
3	$\neg B$	$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$
4	$\neg (\neg B)$	$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$

TABELLE 11. 1. Teil Verweise Beweis 2. Substitutionssatz der Negation

Auggaga /	Definition 11	Definition 19	Definition 13
Aussage/ Fall Nr.	der	der	der
ran m.	Negation	Implikation	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	2. Zeile

TABELLE 12. 2. Teile Verweise Beweis 2. Substitutionssatz der Negation

Aussage/	Definition 11 der	Definition 14 der
Fall Nr.	Negation	Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile

24.2. Substitutionssätze der Konjunktion

Auch dieser Satz ist sozusagen der Gipfel der Einfaltlosigkeit. Darum werde ich ihn ohne weitere Umschweife an dieser Stelle formulieren und beweisen.

Satz 96. Es seien $A, B, C \in \Omega$, also Symbole von Aussagen, welche weder in sich selbst noch bezüglich anderen Aussagen und Symbolen widersprüchlich seien. Dann gilt die Aussage

$$A \wedge B \wedge (A \Rightarrow C) \Rightarrow C \wedge B$$

Beweis. Ist die Aussage $A \wedge B$ oder die Aussage $A \Rightarrow C$ nicht wahr, dann ist die Aussage

$$A \wedge B \wedge (A \Rightarrow C)$$

gemäß dem Minimumprinzip 10 der Konjunktion nicht wahr. Da die letzte Aussage in diesem Fall nicht wahr ist, ist in diesem Fall aufgrund der der Abkürzungsregel 11 der Implikation die Aussage

$$A \wedge B \wedge (A \Rightarrow C) \Rightarrow C \wedge B$$

bereits wahr. Ist die Aussage A oder B nicht wahr, dann ist gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$A \wedge B$$

nicht wahr. Also ist wiederum gemäß der der Abkürzungsregel 11 der Implikation die zu beweisende Aussage

$$A \wedge B \wedge (A \Rightarrow C) \Rightarrow C \wedge B$$

bereits wahr. Also kann ich im folgenden davon ausgehen, dass die Aussagen A,B sowie $A\Rightarrow C$ wahr sind. Denn in allen anderen Fällen ist die zu beweisende Aussage bereits wahr. Ist die Aussage A wahr, dann muss aufgrund der als wahr angenommen Aussage

$$A \Rightarrow C$$

sowie aufgrund des Satzes 17 der Schlussfolgerung die Aussage C ebenfalls wahr sein. Denn wäre die Aussage C nicht wahr, dann wäre die Implikation

$$A \Rightarrow C$$

aufgrund der dritten Zeile der Definition 14 der Implikation nicht wahr. Da nun jedoch sowohl die Aussagen A und B wie auch die Aussage C wahr sind, ist gemäß der vierten Zeile der Definition 13 der Konjunktion die Aussage

$$C \wedge B$$

ebenfalls wahr. Somit ist gemäß der vierten Zeile der Definition 14 die gesamte Aussage

$$A \wedge B \wedge (A \Rightarrow C) \Rightarrow C \wedge B$$

wiederum wahr. Also meine ich gezeigt zu haben, dass in allen denkbaren Fällen die Aussage

$$A \wedge B \wedge (A \Rightarrow C) \Rightarrow C \wedge B$$

wahr ist und der Beweis für die Richtigkeit des Satzes somit erbracht ist. Ich habe den Beweis wiederum ebenfalls in Form von Wahrheitstafeln erbracht. In den Tabellen 13 sowie 14 einerseits und 15 sowie 16 andererseits habe ich den Beweis aufgeschrieben. Die Verweise der Beweise habe ich in den Tabellen 17 sowie 18 abgelegt. Somit behaupte ich, den Beweis für die Richtigkeit der Aussage an dieser Stelle erbracht habe und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Nun möchte ich den zweiten Substitutionssatz (des zweiten Arguments) der Konjunktion formulieren und beweisen;

Tabelle 13. 1. Teil 1. Beweis 1. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A \Rightarrow C$	$A \wedge B \wedge (A \Rightarrow C)$
1	0	1	0
2	0	1	0
3	0	1	0
4	0	1	0
5	0	0	0
6	0	1	0
7	1	0	0
8	1	1	1

Tabelle 14. 2. Teil 1. Beweis 1. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$C \wedge B$	Behauptung
1	0	1
2	0	1
3	0	1
4	1	1
5	0	1
6	0	1
7	0	1
8	1	1

Tabelle 15. 1. Teil 2. Beweis 1. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A \Rightarrow C$	$A \wedge B \wedge (A \Rightarrow C)$
1	$\neg (A \land B)$	$A \Rightarrow C$	$\neg (A \land B \land (A \Rightarrow C))$
2	$\neg (A \land B)$	$A \Rightarrow C$	$\neg (A \land B \land (A \Rightarrow C))$
3	$\neg (A \land B)$	$A \Rightarrow C$	$\neg (A \land B \land (A \Rightarrow C))$
4	$\neg (A \land B)$	$A \Rightarrow C$	
5	$\neg (A \land B)$	$\neg (A \Rightarrow C)$	$\neg (A \land B \land (A \Rightarrow C))$
6	$\neg (A \land B)$	$A \Rightarrow C$	$\neg (A \land B \land (A \Rightarrow C))$
7	$A \wedge B$	$\neg (A \Rightarrow C)$	$\neg (A \land B \land (A \Rightarrow C))$
8	$A \wedge B$	$A \Rightarrow C$	$A \land B \land (A \Rightarrow C)$

Satz 97. Es seien $A, B, C \in \Omega$, also Symbole von Aussagen, welche weder in sich selbst noch bezüglich anderen Aussagen und Symbolen widersprüchlich seien. Dann gilt die folgende Aussage:

$$A \wedge B \wedge (B \Rightarrow C) \Rightarrow A \wedge C$$

Tabelle 16. 2. Teil 2. Beweis 1. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$C \wedge B$	$A \land B \land (A \Rightarrow C) \Rightarrow C \land B$
1	$\neg (C \land B)$	$A \land B \land (A \Rightarrow C) \Rightarrow C \land B$
2	$\neg (C \land B)$	$A \land B \land (A \Rightarrow C) \Rightarrow C \land B$
3	$\neg (C \land B)$	$A \wedge B \wedge (A \Rightarrow C) \Rightarrow C \wedge B$
4	$C \wedge B$	$A \land B \land (A \Rightarrow C) \Rightarrow C \land B$
5	$\neg (C \land B)$	$A \land B \land (A \Rightarrow C) \Rightarrow C \land B$
6	$\neg (C \land B)$	$A \land B \land (A \Rightarrow C) \Rightarrow C \land B$
7	$\neg (C \land B)$	$A \land B \land (A \Rightarrow C) \Rightarrow C \land B$
8	$C \wedge B$	$A \land B \land (A \Rightarrow C) \Rightarrow C \land B$

TABELLE 17. 1. Teil Verweise Beweis 1. Substitutionssatz der Konjunktion

Aussage/	Definition 13	Definition 14	Definition 13
Fall Nr.	der	der	der
ran m.	Konjunktion	Implikation	Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	2. Zeile
5	3. Zeile	3. Zeile	1. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 18. 2. Teil Verweise Beweis 1. Substitutionssatz der Konjunktion

Aussage/	Definition 13	Definition 14
Fall Nr.	der	der
ran m.	Konjunktion	Implikation
1	1. Zeile	1. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile
5	1. Zeile	1. Zeile
6	3. Zeile	1. Zeile
7	2. Zeile	1. Zeile
8	4. Zeile	4. Zeile

Beweis. Ist die Aussage $A \wedge B$ oder die Aussage $B \Rightarrow C$ nicht wahr, dann ist die Aussage

$$A \wedge B \wedge (B \Rightarrow C)$$

gemäß dem Minimumprinzip 10 der Konjunktion nicht wahr. Also ist in diesem Fall die gesamte Aussage

$$A \wedge B \wedge (B \Rightarrow C) \Rightarrow C \wedge B$$

aufgrund der Abkürzungsregel 11 der Implikation bereits wahr. Ist die Aussage A oder B nicht wahr, dann ist gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$A \wedge B$$

nicht wahr. Also ist wiederum gemäß der der Abkürzungsregel 11 der Implikation die zu beweisende Aussage

$$A \wedge B \wedge (B \Rightarrow C) \Rightarrow C \wedge B$$

bereits wahr. Also kann ich im folgenden davon ausgehen, dass die Aussagen A,B sowie $B\Rightarrow C$ wahr sind. Denn in allen anderen Fällen ist die zu beweisende Aussage bereits wahr. Ist die Aussage B wahr, dann muss aufgrund der als wahr angenommen Aussage

$$B \Rightarrow C$$

sowie aufgrund des Satzes 17 der Schlussfolgerung die Aussage C ebenfalls wahr sein. Denn wäre die Aussage C nicht wahr, dann wäre die Implikation

$$B \Rightarrow C$$

aufgrund der dritten Zeile der Definition 14 der Implikation nicht wahr. Da nun jedoch sowohl die Aussagen A und B wie auch die Aussage C wahr sind, ist gemäß der vierten Zeile der Definition 13 der Konjunktion die Aussage

$$C \wedge B$$

ebenfalls wahr. Somit ist gemäß der vierten Zeile der Definition 14 der Implikation die gesamte Aussage

$$A \wedge B \wedge (B \Rightarrow C) \Rightarrow C \wedge B$$

wiederum wahr. Also meine ich gezeigt zu haben, dass in allen denkbaren Fällen die Aussage

$$A \wedge B \wedge (B \Rightarrow C) \Rightarrow C \wedge B$$

wahr ist. Ich habe den Beweis wiederum ebenfalls in Form von Wahrheitstafeln erbracht. In den Tabellen 19 sowie 20 einerseits und 21 sowie 22 andererseits habe ich den Beweis aufgeschrieben. Die Verweise der Beweise habe ich in den Tabellen 23 sowie 24 abgelegt. Somit behaupte ich an dieser Stelle, den Beweis für die Richtigkeit der Aussage an dieser Stelle erbracht habe und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Tabelle 19. 1. Teil 1. Beweis 2. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$B \Rightarrow C$	$A \wedge B \wedge (B \Rightarrow C)$
1	0	1	0
2	0	1	0
3	0	0	0
4	0	1	0
5	0	1	0
6	0	1	0
7	1	0	0
8	1	1	1

Tabelle 20. 2. Teil 1. Beweis 2. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge C$	Behauptung
1	0	1
2	0	1
3	0	1
4	0	1
5	0	1
6	1	1
7	0	1
8	1	1

TABELLE 21. 1. Teil 2. Beweis 2. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$B \Rightarrow C$	$A \land B \land (B \Rightarrow C)$
1	$\neg (A \land B)$	$B \Rightarrow C$	$\neg (A \land B \land (B \Rightarrow C))$
2	$\neg (A \land B)$	$B \Rightarrow C$	$\neg (A \land B \land (B \Rightarrow C))$
3	$\neg (A \land B)$	$\neg (B \Rightarrow C)$	
4	$\neg (A \land B)$	$B \Rightarrow C$	
5	$\neg (A \land B)$	$B \Rightarrow C$	$\neg (A \land B \land (B \Rightarrow C))$
6	$\neg (A \land B)$	$B \Rightarrow C$	
7	$A \wedge B$	$\neg \left(B \Rightarrow C \right)$	$\neg (A \land B \land (B \Rightarrow C))$
8	$A \wedge B$	$B \Rightarrow C$	$A \land B \land (B \Rightarrow C)$

Nun komme ich zum dritten von sage und schreibe vierten Substitutionssatz der Konjunktion:

Satz 98. Es seien A, B und C Symbole von Aussagen, welche in sich und gegenüber von anderen Aussage widerspruchsfrei seien. Dann gilt:

$$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$$

Tabelle 22. 2. Teil 2. Beweis 2. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge C$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$
1	$\neg (A \land C)$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$
2	$\neg (A \land C)$	$A \wedge B \wedge (B \Rightarrow C) \Rightarrow C \wedge B$
3	$\neg (A \land C)$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$
4	$\neg (A \land C)$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$
5	$\neg (A \land C)$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$
6	$A \wedge C$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$
7	$\neg (A \land C)$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$
8	$A \wedge C$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$

TABELLE 23. 1. Teil Verweise Beweis 2. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	Definition 13	Definition 14	Definition 13
	der	der	der
	Konjunktion	Implikation	Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	2. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 24. 2. Teil Verweise Beweis 2. Substitutionssatz der Konjunktion

Aussage/	Definition 13	Definition 14
Fall Nr.	der	der
ran m.	Konjunktion	Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	1. Zeile
4	2. Zeile	1. Zeile
5	3. Zeile	1. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile

Beweis. Falls die Aussage $A \wedge B$ oder die Aussage $A \Leftrightarrow C$ nicht wahr sind, dann ist gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$A \wedge B \wedge (A \Leftrightarrow C)$$

nicht wahr und somit gemäß der Abkürzungsregel 11 der Implikation die Aussage

$$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$$

wahr. Also kann ich im folgenden annehmen, dass die Aussagen

$$A \wedge B$$

und

$$A \Leftrightarrow C$$

wahr seien. Da die Aussage $A \wedge B$ wahr sein soll, muss auch die Aussage A wahr sein. Vergleiche mit dem Satz 55, welcher besagt, dass aus der Konjunktion die Aussage folgt. Da die Aussage A wahr ist und die Aussage C gleichbedeutend zur Aussage A ist, muss auch die Aussage A wahr sein. Ansonsten wäre gemäß der dritten Zeile der Definition 19 die Aussage

$$A \Leftrightarrow C$$

nicht wahr - was jedoch ein Widerspruch wäre zur Annahme, dass die Aussage

$$A \Leftrightarrow C$$

sein soll. Wäre nun die Aussage B nicht wahr, dann könne gemäß der dritten Zeile 13 der Konjunktion die Aussage $A \wedge B$ auch nicht wahr sein. Also muss die Aussage B auch wahr sein. Damit ist gemäß der vierten Zeile der Definition 13 der Konjunktion die Aussage

$$C \wedge B$$

ebenfalls wahr. Also ist gemäß der vierten Zeile der Definition 14 der Implikation die Aussage

$$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$$

ebenfalls wahr. Also meine ich gezeigt zu haben, dass in allen denkbaren Fällen (in denen die Aussage A,B sowie C jedoch in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien) die Aussage

$$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$$

wahr. Somit meine ich, den Beweis für die Richtigkeit des Satzes erbracht zu haben. Ich habe ebenfalls den tabellarischen Beweis erbracht. Dieser ist unter den Tabelle 25 und 26 sowie 27 und 28 abgelegt. Die Verweise sind unter den Tabellen 29 sowie 30 abgelegt. Also beende ich an dieser Stelle die weitere Beweisführung.

Tabelle 25. 1. Teil 1. Beweis 3. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A \Leftrightarrow C$	$A \wedge B \wedge (A \Leftrightarrow C)$
1	0	1	0
2	0	0	0
3	0	1	0
4	0	0	0
5	0	0	0
6	0	1	0
7	1	0	0
8	1	1	1

Tabelle 26. 2. Teil 1. Beweis 3. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$C \wedge B$	Behauptung
1	0	1
2	0	1
3	0	1
4	1	1
5	0	1
6	0	1
7	0	1
8	1	1

Tabelle 27. 1. Teil 2. Beweis 3. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A \Leftrightarrow C$	$A \wedge B \wedge (A \Leftrightarrow C)$
1	$\neg (A \land B)$	$A \Leftrightarrow C$	$\neg (A \land B \land (A \Leftrightarrow C))$
2	$\neg (A \land B)$	$\neg (A \Leftrightarrow C)$	$\neg (A \land B \land (A \Leftrightarrow C))$
3	$\neg (A \land B)$	$A \Leftrightarrow C$	$\neg (A \land B \land (A \Leftrightarrow C))$
4	$\neg (A \land B)$	$\neg (A \Leftrightarrow C)$	$\neg (A \land B \land (A \Leftrightarrow C))$
5	$\neg (A \land B)$	$\neg (A \Leftrightarrow C)$	$\neg (A \land B \land (A \Leftrightarrow C))$
6	$\neg (A \land B)$	$A \Leftrightarrow C$	$\neg (A \land B \land (A \Leftrightarrow C))$
7	$A \wedge B$	$\neg (A \Leftrightarrow C)$	$\neg (A \land B \land (A \Leftrightarrow C))$
8	$A \wedge B$	$A \Leftrightarrow C$	$A \wedge B \wedge (A \Leftrightarrow C)$

Alle guten Dinge wären zwar drei. Jedoch formuliere ich noch einen vierten Substitutionssatz der Konjunktion und versuche diesen anschließend zu beweisen:

Satz 99. Es seien A, B und C Symbole von Aussagen, welche in sich und gegenüber von anderen Aussage widerspruchsfrei seien. Dann

Tabelle 28. 2. Teil 2. Beweis 3. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$C \wedge B$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
1	$\neg (C \land B)$	$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$
2	$\neg (C \land B)$	$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$
3	$\neg (C \land B)$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
4	$C \wedge B$	$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$
5	$\neg (C \land B)$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
6	$\neg (C \land B)$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
7	$\neg (C \land B)$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
8	$C \wedge B$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$

TABELLE 29. 1. Teil Verweise Beweis 3. Substitutionssatz der Konjunktion

Aussage/	Definition 13	Definition 19	Definition 13
Fall Nr.	der	der	der
ran m.	Konjunktion	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	1. Zeile
5	3. Zeile	3. Zeile	1. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 30. 2. Teil Verweise Beweis 3. Substitutionssatz der Konjunktion

Aussage/	Definition 13	Definition 14
Fall Nr.	der	der
1 611 111.	Konjunktion	Implikation
1	1. Zeile	1. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile
5	1. Zeile	1. Zeile
6	3. Zeile	1. Zeile
7	2. Zeile	1. Zeile
8	4. Zeile	4. Zeile

gilt die Aussage

$$A \wedge B \wedge (B \Leftrightarrow C) \Rightarrow A \wedge C$$

BEWEIS. Falls die Aussage $A \wedge B$ oder die Aussage $B \Leftrightarrow C$ nicht wahr sind, dann ist gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$A \wedge B \wedge (B \Leftrightarrow C)$$

nicht wahr und somit gemäß der Abkürzungsregel 11 der Implikation die Aussage

$$A \wedge B \wedge (B \Leftrightarrow C) \Rightarrow C \wedge B$$

wahr. Also kann ich im folgenden annehmen, dass die Aussagen

$$A \wedge B$$

und

$$A \Leftrightarrow C$$

wahr seien. Da die Aussage $A \wedge B$ wahr sein soll, muss auch die Aussage A wahr sein. Wäre die Aussage A nicht wahr, dann wäre gemäß dem Minimumprinzip 10 der Konjunktion die Aussage $A \wedge B$ nicht wahr. Da die Aussage B wahr ist und die Aussage C gleichbedeutend zur Aussage A ist, muss auch die Aussage C wahr sein. Ansonsten wäre gemäß der dritten Zeile der Definition 19 die Aussage

$$A \Leftrightarrow C$$

nicht wahr - entgegen der Annahme, dass die Aussage $A\Leftrightarrow C$ wahr sein soll. Wäre nun die Aussage A nicht wahr, dann könne gemäß der zweiten Zeile 13 der Konjunktion die Aussage $A\wedge B$ auch nicht wahr sein. Also muss die Aussage A auch wahr sein. Damit ist gemäß der vierten Zeile der Definition 13 der Konjunktion die Aussage

$$A \wedge C$$

ebenfalls wahr. Also ist gemäß der vierten Zeile der Definition 14 der Implikation die Aussage

$$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$$

ebenfalls wahr. Also meine ich gezeigt zu haben, dass in allen denkbaren Fällen (in denen die Aussage A,B sowie C jedoch in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien) die Aussage

$$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$$

wahr ist. Somit meine ich, den Beweis für die Richtigkeit des Satzes erbracht zu haben. Ich habe ebenfalls den tabellarischen Beweis erbracht. Dieser ist unter den Tabelle 31 und 32 sowie 33 und 34 abgelegt. Die Verweise sind unter den Tabellen 35 sowie 36 abgelegt. Also beende ich an dieser Stelle die weitere Beweisführung.

Nun lasse ich es aber gut sein und wende mich den von mir aus gesehen interessanteren Substitutionssätzen der Disjunktionen zu.

Tabelle 31. 1. Teil 1. Beweis 4. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$B \Leftrightarrow C$	$A \wedge B \wedge (B \Leftrightarrow C)$
1	0	1	0
2	0	0	0
3	0	0	0
4	0	1	0
5	0	1	0
6	0	0	0
7	1	0	0
8	1	1	1

Tabelle 32. 2. Teil 1. Beweis 4. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge C$	Behauptung
1	0	1
2	0	1
3	0	1
4	0	1
5	0	1
6	1	1
7	0	1
8	1	1

Tabelle 33. 1. Teil 2. Beweis 4. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$B \Leftrightarrow C$	$A \wedge B \wedge (B \Leftrightarrow C)$
1	$\neg (A \land B)$	$B \Leftrightarrow C$	$\neg A \land B \land (B \Leftrightarrow C)$
2	$\neg (A \land B)$	$\neg (B \Leftrightarrow C)$	$\neg A \land B \land (B \Leftrightarrow C)$
3	$\neg (A \land B)$	$\neg (B \Leftrightarrow C)$	$\neg A \land B \land (B \Leftrightarrow C)$
4	$\neg (A \land B)$	$B \Leftrightarrow C$	$\neg A \land B \land (B \Leftrightarrow C)$
5	$\neg (A \land B)$	$B \Leftrightarrow C$	$\neg A \land B \land (B \Leftrightarrow C)$
6	$\neg (A \land B)$	$\neg (B \Leftrightarrow C)$	$\neg A \land B \land (B \Leftrightarrow C)$
7	$A \wedge B$	$\neg (B \Leftrightarrow C)$	$\neg A \land B \land (B \Leftrightarrow C)$
8	$A \wedge B$	$B \Leftrightarrow C$	$A \wedge B \wedge (B \Leftrightarrow C)$

24.3. Substitutionssatz der Disjunktion

Diese Substitutionssätze liegen zwar immer noch auf der Hand. Aber meines Erachtens sind sie ein wenig interessanter als die Substitutionssätze der Konjunktion.

Tabelle 34. 2. Teil 2. Beweis 4. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge C$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
1	/	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
2	$\neg (A \land C)$	$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$
3	$\neg (A \land C)$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
4	$\neg (A \land C)$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
5	$\neg (A \land C)$	$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$
6	$A \wedge C$	$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$
7	$\neg (A \land C)$	$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$
8	$A \wedge C$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$

TABELLE 35. 1. Teil Verweise Beweis 4. Substitutionssatz der Konjunktion

Aussage/	Definition 13	Definition 19	Definition 13
Fall Nr.	der	der der	der
Tall IVI.	Konjunktion	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	2. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	1. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 36. 2. Teil Verweise Beweis 4. Substitutionssatz der Konjunktion

Aussage/	Definition 13	Definition 14
Fall Nr.	der	der
ran m.	Konjunktion	Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	1. Zeile
4	2. Zeile	1. Zeile
5	3. Zeile	1. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile

Satz 100. Es seien $A, B, C \in \Omega$, also Symbole von Aussagen, welche weder in sich selbst noch bezüglich anderen Aussagen und Symbolen widersprüchlich seien. Dann gelten die Aussage

$$(A \lor B) \land (A \Rightarrow C) \Rightarrow (C \lor B)$$

Beweis. Gilt die Aussage

$$A \Rightarrow C$$

oder die Aussage

$$A \vee B$$

nicht, dann gilt gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$(A \lor B) \land (A \Rightarrow C)$$

nicht. Gemäß der Abkürzungsregel 11 der Implikation gilt in diesem Fall jedoch die Aussage

$$(A \lor B) \land (A \Rightarrow C) \Rightarrow C \lor B$$

Aus diesem Grund kann ich annehmen, dass sowohl die Aussage

$$A \vee B$$

wie auch die Aussage

$$A \Rightarrow C$$

wahr sind. Nun kann ich die folgende Unterscheidung treffen: Ist die Aussage A nicht wahr, dann muss es die Aussage B sein. Denn wäre die Aussage B nicht wahr, dann wäre auch gemäß der ersten Zeile der Definition 17 der Disjunktion die Aussage

$$A \vee B$$

ebenfalls nicht wahr. Das wäre jedoch ein Widerspruch zur Annahme, dass die Aussage

$$A \vee B$$

wahr sei. Ist andererseits die Aussage B wahr, dann ist auch gemäß der zweiten Zeile der Definition 17 der Disjunktion die Aussage

$$A \vee B$$

wahr - so wie ich es angenommen habe. Ist jedoch die Aussage B wahr, dann ist gemäß dem Maximumprinzip 13 der Disjunktion die Aussage

$$C \vee B$$

wahr. Somit ist gemäß der Abkürzungsregel 11 der Implikation die Aussage

$$(A \lor B) \land (A \Rightarrow C) \Rightarrow (C \lor B)$$

wahr. Damit hätte ich diesen Fall bewiesen. Ist jedoch die Aussage A wahr, dann muss gemäß der als wahr angenommen Aussage

$$A \Rightarrow C$$

Aussage/ Fall Nr.	$A \lor B$	$A \Rightarrow C$	$(A \vee B) \wedge (A \Rightarrow C)$
1	0	1	0
2	0	1	0
3	1	1	1
4	1	1	1
5	1	0	0
6	1	1	1
7	1	0	0
8	1	1	1

Tabelle 37. 1. Teil 1. Beweis 1. Substitutionssatz der Disjunktion

auch die Aussage C wahr sein. Wäre die Aussage C nämlich nicht wahr, dann könnte auch gemäß der dritten Zeile der Definition 14 der Implikation die Aussage

$$A \Rightarrow C$$

nicht wahr sein - im Widerspruch zur getroffenen Annahme. Ist jedoch die Aussage C wahr, dann ist auch gemäß dem Maximumprinzip 13 der Disjunktion die Aussage

$$C \vee B$$

wahr. Somit kann ich wiederum gemäß der Abkürzungsregel 11 der Implikation folgern, dass die Aussage

$$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$$

wiederum wahr sein muss. Somit meine ich behaupten zu können, dass keine Aussagen derart geben kann, dass Behauptung nicht wahr ist. Gemäß dem abgeschwächten Satz 14 des ausgeschlossenen Dritten schließe ich daraus, dass für alle möglichen Aussagen A,B sowie C die zu beweisende Aussage wahr sein muss. Darum behaupte ich an dieser Stelle, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

Nun möchte ich diese Beweise wiederum mit Hilfe von Wahrheitstafeln erbringen. Diesen habe ich einerseits in den Tabellen 37 sowie 38 und andererseits in den Tabellen 39 sowie 40 abgelegt. Die Verweise des Beweises habe ich in den Tabellen 41 sowie 42 aufgeschrieben. Damit beende ich den weiteren Beweis dieses Satzes an dieser Stelle.

Nun kommt, was kommen muss: Der zweite Substitutionssatz der Disjunktion.

Satz 101. Es seien A, B sowie C Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \lor B) \land (B \Rightarrow C) \Rightarrow (A \lor C)$$

Tabelle 38. 2. Teil 1. Beweis 1. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$C \vee B$	Behauptung
1	0	1
2	1	1
3	1	1
4	1	1
5	0	1
6	1	1
7	1	1
8	1	1

Tabelle 39. 1. Teil 2. Beweis 1. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$A \Rightarrow C$	$A \vee B \wedge (A \Leftrightarrow C)$
1	$\neg (A \lor B)$	$A \Rightarrow C$	$\neg (A \lor B \land (A \Leftrightarrow C))$
2	$\neg (A \lor B)$	$A \Rightarrow C$	$\neg (A \lor B \land (A \Leftrightarrow C))$
3	$A \lor B$	$A \Rightarrow C$	$A \lor B \land (A \Leftrightarrow C)$
4	$A \vee B$	$A \Rightarrow C$	$A \lor B \land (A \Leftrightarrow C)$
5	$A \lor B$	$\neg (A \Rightarrow C)$	$\neg (A \lor B \land (A \Leftrightarrow C))$
6	$A \lor B$	$A \Rightarrow C$	$A \lor B \land (A \Leftrightarrow C)$
7	$A \lor B$	$\neg (A \Leftrightarrow C)$	$\neg (A \lor B \land (A \Leftrightarrow C))$
8	$A \lor B$	$A \Leftrightarrow C$	$A \lor B \land (A \Leftrightarrow C)$

Tabelle 40. 2. Teil 2. Beweis 1. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
1	$\neg (C \lor B)$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
2	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
3	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
4	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
5	$\neg (C \lor B)$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
6	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
7	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
8	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$

BEWEIS. Angenommen, die Aussage wäre kein logischer Satz. Dann müsste es Aussagen A,B sowie C derart geben, dass die Aussage

$$(A \lor B) \land (B \Rightarrow C) \Rightarrow (A \lor C)$$

TABELLE 41. 1. Teil Verweise Beweis 1. Substitutionssatz der Disjunktion

Aussage/	Definition 17	Definition 19	Definition 13
Fall Nr.	der	der	der
rall Nr.	Disjunktion	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	1. Zeile	4. Zeile
4	2. Zeile	2. Zeile	4. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle 42. 2. Teil Verweise Beweis 1. Substitutionssatz der Disjunktion

Aussage/	Definition 17	Definition 14
Fall Nr.	der	der
ran m.	Disjunktion	Implikation
1	1. Zeile	1. Zeile
2	3. Zeile	2. Zeile
3	2. Zeile	4. Zeile
4	4. Zeile	4. Zeile
5	1. Zeile	1. Zeile
6	3. Zeile	4. Zeile
7	2. Zeile	2. Zeile
8	4. Zeile	4. Zeile

nicht wahr sein dürfte. Also dürfte gemäß der dritten Zeile der Definition 14 die Aussage

$$A \vee C$$

nicht wahr sein. Das würde jedoch bedeuten, dass gemäß dem Maximumprinzip 13 der Disjunktion sowohl die Aussage A wie auch die Aussage C nicht wahr sein dürften. Denn ansonsten wäre die Aussage

$$A \vee C$$

wahr. Dann müsste jedoch ebenfalls die Aussage B wahr sein. Denn wäre die Aussage B nicht wahr, dann wäre gemäß dem gleichen Maximumprinzip 13 der Disjunktion die Aussage

$$A \vee B$$

nicht wahr. Gemäß dem Minimumprinzip 10 der Konjunktion könnte jedoch in diesem Fall die Aussage

$$(A \vee B) \wedge (B \Rightarrow C)$$

ebenfalls nicht wahr sein. Was bedeuten würde, dass gemäß der Abkürzungsregel 11 der Implikation die gesamte Aussage

$$(A \lor B) \land (B \Rightarrow C) \Rightarrow (A \lor C)$$

eben doch wieder wahr wäre. Falls jedoch die Aussage B wahr wäre, dann wäre (da die Aussage C gemäß der obigen Überlegung nicht wahr sein könnte) die Aussage

$$B \Rightarrow C$$

gemäß der dritten Zeile der Definition 14 der Implikation nicht wahr. Also könnte gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$(A \lor B) \land (B \Rightarrow C)$$

wiederum nicht wahr sein. Aufgrund der Abkürzungsregel 11 der Implikation wäre wiederum die gesamte Aussage

$$(A \lor B) \land (B \Rightarrow C) \Rightarrow (A \lor C)$$

eben doch wieder wahr. Was ich damit sagen will: Ich kann es drehen und wenden, wie ich will - es kann keine in sich und in Bezug auf die anderen Symbolen des Beweises widerspruchsfreie Aussagen A,B sowie C geben, für welche die Aussage

$$(A \lor B) \land (B \Rightarrow C) \Rightarrow (A \lor C)$$

nicht wahr ist. Es gilt also nicht, dass die Behauptung nicht wahr sein könnte. Also muss sie gemäß dem Satz 11 der doppelten Verneinung die Behauptung eben richtig sein. Somit meine ich, den sprachlichen Beweis für die Richtigkeit der Aussage erbracht zu haben.

In den Tabellen 43 und 44 einerseits sowie 45 und 46 andererseits habe ich den Beweis tabellarisch aufgeschrieben. In den Tabellen 47 sowie 48 habe ich die Verweise der Beweise aufgeschrieben.

Jetzt kommen noch die langweiligeren zwei Sätze:

Satz 102. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und gegenüber anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$$

Beweis. Angenommen, der Satz sei nicht wahr. Dann müsste es Aussagen A, B sowie C derart geben, dass die Aussage

$$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$$

Tabelle 43. 1. Teil 1. Beweis 2. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$B \Rightarrow C$	$(A \vee B) \wedge (A \Rightarrow C)$
1	0	1	0
2	0	1	0
3	1	0	0
4	1	1	1
5	1	1	1
6	1	1	1
7	1	0	0
8	1	1	1

Tabelle 44. 2. Teil 1. Beweis 2. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \lor C$	Behauptung
1	0	1
2	1	1
3	0	1
4	1	1
5	1	1
6	1	1
7	1	1
8	1	1

Tabelle 45. 1. Teil 2. Beweis 2. Substitutionssatz der Disjunktion

	T		1
Aussage/ Fall Nr.	$A \lor B$	$B \Rightarrow C$	$(A \lor B) \land (A \Leftrightarrow C)$
1	$\neg (A \lor B)$	$B \Rightarrow C$	$\neg (A \lor B \land (A \Leftrightarrow C))$
2	$\neg (A \lor B)$	$B \Rightarrow C$	$\neg (A \lor B \land (A \Leftrightarrow C))$
3	$A \lor B$	$\neg (B \Rightarrow C)$	$\neg (A \lor B \land (A \Leftrightarrow C))$
4	$A \lor B$	$B \Rightarrow C$	$(A \lor B) \land (A \Leftrightarrow C)$
5	$A \lor B$	$B \Leftrightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$
6	$A \lor B$	$B \Rightarrow C$	$(A \lor B) \land (A \Leftrightarrow C)$
7	$A \lor B$	$\neg (B \Rightarrow C)$	$\neg (A \lor B \land (A \Leftrightarrow C))$
8	$A \lor B$	$B \Rightarrow C$	$(A \lor B) \land (A \Leftrightarrow C)$

nicht wahr ist. Dies ist gemäß der dritten Zeile der Definition 14 der Implikation nur dann möglich, falls die Aussage

$$(A \lor B) \land (A \Leftrightarrow C)$$

wahr, die Aussage

$$C \vee B$$

Tabelle 46. 2. Teil 2. Beweis 2. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \lor C$	$(A \vee B) \wedge (B \Leftrightarrow C) \Rightarrow (A \vee C)$
1	$\neg (A \lor C)$	$(A \vee B) \wedge (B \Leftrightarrow C) \Rightarrow (A \vee C)$
2	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow (A \lor C)$
3	$\neg (A \lor C)$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow (A \lor C)$
4	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow (A \lor C)$
5	$A \lor C$	$(A \vee B) \wedge (B \Leftrightarrow C) \Rightarrow (A \vee C)$
6	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow (A \lor C)$
7	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow (A \lor C)$
8	$A \lor C$	$(A \vee B) \wedge (B \Leftrightarrow C) \Rightarrow (A \vee C)$

TABELLE 47. 1. Teil Verweise Beweis 2. Substitutionssatz der Disjunktion

Aussage/	Definition 17	Definition 14	Definition 13
Fall Nr.	der	der	der
ran m.	Disjunktion	Implikation	Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	3. Zeile	3. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	1. Zeile	4. Zeile
6	3. Zeile	2. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 48. 2. Teil Verweise Beweis 2. Substitutionssatz der Disjunktion

Aussage/	Definition 17	Definition 14
Fall Nr.	der	der
ran m.	Disjunktion	Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	1. Zeile	1. Zeile
4	2. Zeile	4. Zeile
5	3. Zeile	4. Zeile
6	4. Zeile	4. Zeile
7	3. Zeile	2. Zeile
8	4. Zeile	4. Zeile

jedoch nicht wahr ist. Die Aussage

$$C \vee B$$

ist ebenfalls gemäß dem Maximumprinzip 13 der Disjunktion nur dann nicht wahr, falls weder die Aussage C noch die Aussage B wahr sind. Denn ansonsten wäre die Aussage

$$C \vee B$$

wahr - im Widerspruch zur Voraussetzung. Damit die Aussage

$$(A \lor B) \land (A \Leftrightarrow C)$$

wahr ist, müssen gemäß der vierten Zeile der Definition 13 der Konjunktion sowohl die Aussage

$$A \vee B$$

wie auch die Aussage

$$A \Leftrightarrow C$$

wahr sein. Nun habe ich weiter oben jedoch gefolgert, dass die Aussage B nicht wahr sein kann, falls die gesamte Aussage nicht gelten soll. Also muss die Aussage A wahr sein. Denn wäre die Aussage A nicht wahr, dann wäre gemäß der ersten Zeile der Definition 17 der Disjunktion die Aussage

$$A \vee B$$

nicht wahr. Ist jedoch die Aussage A wahr, dann ist es gemäß der dritten Zeile der Definition 17 der Disjunktion auch die Aussage

$$A \vee B$$

Nun sind jedoch die Wahrheitswerte der Aussagen A, B sowie C festgelegt: Die Aussage A muss wahr, die Aussagen B sowie C können nicht wahr sein. Also kann jedoch die Aussage

$$A \Leftrightarrow C$$

gemäß der dritten Zeile der Definition 19 ebenfalls nicht wahr sein. Dann ist jedoch ebenfalls gemäß der dritten Zeile der Definition 13 die Konjunktion auch nicht wahr. Somit muss gemäß der Abkürzungsregel 11 der Implikation die gesamte Aussage

$$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$$

trotzdem wieder wahr. Somit meine ich gezeigt haben zu können, dass es keine Aussagen, welche mit A,B sowie C bezeichnet werden, existieren können, für welche die zu beweisende Aussage nicht gilt. Also schließe ich gemäß der abgeschwächten Form des Satzes 14 des ausgeschlossenen Dritten, dass der Satz für alle vernünftigen Aussagen wahr sein muss. Das wollte ich jedoch gerade zeigen. Damit glaube ich den Satz bewiesen zu haben und beende die weitere Beweisführung - nachdem ich den Beweis noch tabellarisch erbracht habe. Ich habe in den Tabellen 49 und 50 einerseits sowie 51 und 52 den Satz tabellarisch

Tabelle 49. 1. Teil 1. Beweis 3. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$A \Leftrightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$
1	0	1	0
2	0	0	0
3	1	1	1
4	1	0	0
5	1	0	0
6	1	1	1
7	1	0	0
8	1	1	1

Tabelle 50. 2. Teil 1. Beweis 3. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$C \vee B$	Behauptung
1	0	1
2	1	1
3	1	1
4	1	1
5	0	1
6	1	1
7	1	1
8	1	1

Tabelle 51. 1. Teil 2. Beweis 3. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$A \Leftrightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$
1	$\neg (A \lor B)$	$A \Leftrightarrow C$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
2	$\neg (A \lor B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
3	$A \lor B$	$A \Leftrightarrow C$	$(A \lor B) \land (A \Leftrightarrow C)$
4	$A \lor B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
5	$A \lor B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
6	$A \lor B$	$A \Leftrightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$
7	$A \lor B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
8	$A \lor B$	$A \Leftrightarrow C$	$(A \lor B) \land (A \Leftrightarrow C)$

aufgeschrieben. Andererseits habe ich die Verweise in den Tabellen 53 sowie 54 aufgeschrieben.

Ich werde nun den letzten, vierten Substitutionssatz der Disjunktion aufschreiben und versuchen, zu beweisen:

TABELLE 52. 2. Teil 2. Beweis 3. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
1	$\neg (C \lor B)$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
2	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
3	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
4	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
5	$\neg (C \lor B)$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
6	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
7	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
8	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$

TABELLE 53. 1. Teil Verweise Beweis 3. Substitutionssatz der Disjunktion

Aussage/	Definition 17 der	Definition 19 der	Definition 13 der
Fall Nr.	Disjunktion	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	1. Zeile	4. Zeile
4	2. Zeile	2. Zeile	3. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 54. 2. Teil Verweise Beweis 3. Substitutionssatz der Disjunktion

Aussage/	Definition 17	Definition 14
Fall Nr.	der	der
ran m.	Disjunktion	Implikation
1	1. Zeile	1. Zeile
2	3. Zeile	2. Zeile
3	2. Zeile	4. Zeile
4	4. Zeile	2. Zeile
5	1. Zeile	1. Zeile
6	3. Zeile	4. Zeile
7	2. Zeile	2. Zeile
8	4. Zeile	4. Zeile

Satz 103. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt:

$$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$$

Beweis. Weil es mir dies besser gefällt, werde ich wieder versuchen, einen Widerspruchsbeweis aufzuschreiben. Angenommen, die Behauptung sei falsch. Dann müsste es Aussagen, welche mit den Symbolen A, B sowie C bezeichnet werden, für welche die Aussage

$$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$$

nicht gilt. Dies ist gemäß der Definition 14 der Implikation dann der Fall, falls die Aussage

$$(A \lor B) \land (B \Leftrightarrow C)$$

wahr ist, die Aussage

$$A \vee C$$

jedoch nicht wahr ist. Die Aussage $A \vee C$ ist gemäß der Definition 17 der Disjunktion dann nicht wahr, falls weder die Aussage A noch die Aussage C wahr ist. Die Aussage

$$(A \lor B) \land (B \Leftrightarrow C)$$

ist gemäß der Definition 13 der Konjunktion dann wahr, falls sowohl die Aussage

$$A \vee B$$

wie auch die Aussage

$$B \Leftrightarrow C$$

wahr sind. Jetzt kann jedoch die Aussage A nicht wahr sein. Also muss gemäß der Definition 17 der Disjunktion die Aussage B wahr sein. Denn wäre die Aussage B nicht wahr, dann wäre auch gemäß der ersten Zeile der Definition der Disjunktion die Aussage

$$A \vee B$$

nicht wahr wäre. Wäre jedoch die Aussage B wahr, dann wäre gemäß der dritten Zeile der Definition 17 der Disjunktion die Aussage

$$A \vee B$$

wahr. Also müsste die Aussage B wahr sein, falls der logische Satz nicht wahr sein soll. Damit wäre jedoch gemäß der dritten Zeile der Definition 19 der Äquivalenz die Aussage

$$B \Leftrightarrow C$$

nicht wahr, da die Aussage C ja nicht wahr sein kann. Somit wäre gemäß der dritten Zeile der Definition 13 der Konjunktion die Aussage

$$(A \lor B) \land (B \Leftrightarrow C)$$

Aussage/ Fall Nr.	$A \lor B$	$B \Leftrightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$
1	0	1	0
2	0	0	0
3	1	0	0
4	1	1	1
5	1	1	1
6	1	0	0
7	1	0	0

Tabelle 55. 1. Teil 1. Beweis 4. Substitutionssatz der Disjunktion

Tabelle 56. 2. Teil 1. Beweis 4. Substitutionssatz der Disjunktion

1

1

Aussage/ Fall Nr.	$A \lor C$	Behauptung
1	0	1
2	1	1
3	0	1
4	1	1
5	1	1
6	1	1
7	1	1
8	1	1

trotzdem nicht wahr. Gemäß der Abkürzungsregel 11 der Implikation wäre dann die gesamte Aussage

$$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$$

trotzdem wahr. Somit schließe ich gemäß der schwachen Form des Satzes 14 des ausgeschlossenen Dritten, dass die Behauptung für alle möglichen Aussagen mit den Bezeichnungen A, B sowie C wahr sein muss. Somit meine ich, den Beweis für die Richtigkeit des Satzes erbracht zu haben und beende somit die weitere Beweisführung, nachdem ich den Satz noch tabellarisch bewiesen habe. Ich habe den Beweis einerseits in den Tabellen 55 sowie 56 aufgeschrieben. Andererseits habe ich den Beweis in den Tabellen 57 sowie 58 abgelegt. Die Verweise habe ich in den Tabellen 59 sowie 60 aufgeschrieben.

24.4. Substitutionssätze der Implikation

Ich möchte mir jetzt überlegen, was ich so beweisen kann - und was nicht. Beachte bitte, dass dieser Satz eine Mogelpackung ist. Wenn ich die Formulierungen von oben weiter verwenden möchte, dann würde

Tabelle 57. 1. Teil 2. Beweis 4. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$B \Leftrightarrow C$	$(A \lor B) \land (A \Leftrightarrow C)$
1	$\neg (A \lor B)$	$B \Leftrightarrow C$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
2	$\neg (A \lor B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
3	$A \lor B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
4	$A \lor B$	$B \Leftrightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$
5	$A \vee B$	$B \Leftrightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$
6	$A \lor B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
7	$A \lor B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
8	$A \lor B$	$B \Leftrightarrow C$	$(A \lor B) \land (A \Leftrightarrow C)$

Tabelle 58. 2. Teil 2. Beweis 3. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$
1	$\neg (A \lor C)$	$(A \vee B) \wedge (B \Leftrightarrow C) \Rightarrow A \vee C$
2	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$
3	$\neg (A \lor C)$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$
4	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$
5	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$
6	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$
7	$A \lor C$	$(A \vee B) \wedge (B \Leftrightarrow C) \Rightarrow A \vee C$
8	$A \lor C$	$(A \vee B) \wedge (B \Leftrightarrow C) \Rightarrow A \vee C$

TABELLE 59. 1. Teil Verweise Beweis 4. Substitutionssatz der Disjunktion

Aussage/	Definition 17	Definition 19	Definition 13
Fall Nr.	der	der	der
rall IVI.	Disjunktion	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	3. Zeile	3. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	1. Zeile	4. Zeile
6	3. Zeile	2. Zeile	3. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

für die Voraussetzung (die linke Seite) der Implikation ich schreiben:

$$(A \Rightarrow B) \land (A \Rightarrow C)$$

TABELLE 60. 2. Teil Verweise Beweis 3. Substitutionssatz der Disjunktion

Aussage/	Definition 17	Definition 14
Fall Nr.	der	der
ran m.	Disjunktion	Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	1. Zeile	1. Zeile
4	2. Zeile	4. Zeile
5	3. Zeile	4. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	2. Zeile
8	4. Zeile	4. Zeile

Aber es ist absehbar, dass dies als Satz nicht funktioniert. Denn falls die Implikation $C \Rightarrow B$ nicht wahr ist, könnten die Implikationen

$$A \Rightarrow B$$

sowie

$$A \Rightarrow C$$

trotzdem wahr sein. Dies wäre dann der Fall, falls die Aussagen A wie auch B nicht wahr wären, die Aussage C jedoch schon. Denn in diesem Fall gilt aufgrund der ersten Zeile der Definition 14 der Implikation die Aussage

$$A \Rightarrow B$$

und gemäß der zweiten Zeile die Aussage der gleichen Definition die Aussage

$$A \Rightarrow C$$

Also wäre gemäß der vierten Zeile der Definition 13 der Konjunktion die Aussage

$$(A \Rightarrow B) \land (A \Rightarrow C)$$

wahr. Die Aussage

$$C \Rightarrow B$$

wäre dann gemäß der dritten Zeile der Definition 14 der Implikation nicht wahr. Und gemäß der genau gleichen Zeile der gleichen Definition wäre in diesem Fall die Aussage

$$(A \Rightarrow B) \land (A \Rightarrow C) \Rightarrow (C \Rightarrow B)$$

nicht wahr. Aber nun möchte ich einen Satz aufschreiben, welcher funktionieren sollte:

Aussage/ Fall Nr.	$A \Rightarrow B$	$C \Rightarrow A$	$(A \Rightarrow B) \land (C \Rightarrow A)$
1	1	1	1
2	1	0	0
3	1	1	1
4	1	0	0
5	0	1	0
6	0	1	0
7	1	1	1
8	1	1	1

Tabelle 61. 1. Teil 1. Beweis 1. Substitutionssatz der Implikation

Satz 104. Es seien A, B sowie C Symbole, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$$

BEWEIS. Der Satz ist ein billiger Taschenspielertrick. Denn er ist ein verpackter Satz der Transitivität der Implikation. Gemäß dem Satz 35 der Kommutativität der Konjunktion gilt

$$(A \Rightarrow B) \land (C \Rightarrow A) \Leftrightarrow (C \Rightarrow A) \land (A \Rightarrow B)$$

Gemäß dem Satz 52, welcher besagt, dass aus der Äquivalenz die Implikation folgt, kann ich schließen, dass gilt:

$$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow A) \land (A \Rightarrow B)$$

Nun kann ich gemäß dem Satz 15 der Transitivität der Implikation schließen, dass gilt:

$$(C \Rightarrow A) \land (A \Rightarrow B) \Rightarrow (C \Rightarrow B)$$

Also kann ich gemäß dem gleichen Satz 15 der Transitivität der Implikation schließen, dass gilt

$$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$$

Genau dies wollte ich jedoch beweisen. Ich werde den Beweis noch tabellarisch aufschreiben. Dies habe ich in den Tabellen 61 und 62 einerseits sowie 63 und 64 andererseits gemacht. Die Verweise habe ich in den Tabellen 65 sowie 66 abgelegt.

Somit hätte ich den ersten Substitutionssatz von vier Substitutionssätzen formuliert und bewiesen.

Den zweiten Substitutionssatz der Implikation der Implikation gibt es nicht. Denn der zweite Substitutionssatz der Implikation würde heißen: "Es seien A, B, C Symbole von Aussagen, welche in sich selbst und

Tabelle 62. 2. Teil 1. Beweis 1. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$C \Rightarrow B$	Behauptung
1	1	1
2	0	1
3	1	1
4	1	1
5	1	1
6	0	1
7	1	1
8	1	1

Tabelle 63. 1. Teil 2. Beweis 1. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$C \Rightarrow A$	$(A \Rightarrow B) \land (C \Rightarrow A)$
1	$A \Rightarrow B$	$C \Rightarrow A$	$(A \Rightarrow B) \land (C \Rightarrow A)$
2	$A \Rightarrow B$	$\neg (C \Rightarrow A)$	$\neg ((A \Rightarrow B) \land (C \Rightarrow A))$
3	$A \Rightarrow B$	$C \Rightarrow A$	$(A \Rightarrow B) \land (C \Rightarrow A)$
4	$A \Rightarrow B$	$\neg (C \Rightarrow A)$	$\neg ((A \Rightarrow B) \land (C \Rightarrow A))$
5	$\neg (A \Rightarrow B)$	$C \Rightarrow A$	$\neg ((A \Rightarrow B) \land (C \Rightarrow A))$
6	$\neg (A \Rightarrow B)$	$C \Rightarrow A$	$\neg ((A \Rightarrow B) \land (C \Rightarrow A))$
7	$A \Rightarrow B$	$C \Rightarrow A$	$(A \Rightarrow B) \land (C \Rightarrow A)$
8	$A \Rightarrow B$	$C \Rightarrow A$	$(A \Rightarrow B) \land (C \Rightarrow A)$

Tabelle 64. 2. Teil 2. Beweis 1. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$C \Rightarrow B$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
1	$C \Rightarrow B$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
2	$\neg (C \Rightarrow B)$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
3	$C \Rightarrow B$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
4	$C \Rightarrow B$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
5	$C \Rightarrow B$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
6	$\neg (C \Rightarrow B)$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
7	$C \Rightarrow B$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
8	$C \Rightarrow B$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$

in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$$

Nun wäre das zwar ein vernünftiger Substitutionssatz. Jedoch habe ich den bereits formuliert und vielfach angewendet. Denn es handelt sich

Tabelle 65. 1. Teil Verweise Beweis 1. Substitutionssatz der Implikation

Aussage/	Definition 14	Definition 14	Definition 13
Fall Nr.	der	der	der
ran m.	Implikation	Implikation	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	3. Zeile	3. Zeile
3	2. Zeile	1. Zeile	4. Zeile
4	2. Zeile	3. Zeile	3. Zeile
5	3. Zeile	2. Zeile	2. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	2. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle 66. 2. Teil Verweise Beweis 1. Substitutionssatz der Implikation

Aussage/	Definition 14	Definition 14
Fall Nr.	der	der
ran m.	Implikation	Implikation
1	1. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	4. Zeile
4	4. Zeile	2. Zeile
5	1. Zeile	2. Zeile
6	3. Zeile	1. Zeile
7	2. Zeile	4. Zeile
8	4. Zeile	4. Zeile

hierbei um den Satz 15 der Transitivität der Implikation. Irgendwie Pech gehabt. Irgendwie jedoch auch schön. So finde ich jedenfalls.

Nun werde ich versuchen, den dritten Substitutionssatz der Implikation zu formulieren und zu bewiesen:

Satz 105. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$$

Beweis. Angenommen, der Satz wäre nicht wahr, dann müsste die Aussage

$$(A \Rightarrow B) \land (A \Leftrightarrow C)$$

wahr, die Aussage

$$C \Rightarrow B$$

jedoch nicht wahr sein. Die Aussage

$$C \Rightarrow B$$

ist gemäß der konjunktiven Normalform 70 der Implikation genau dann nicht wahr, falls die die Aussage C wahr, die Aussage B jedoch nicht wahr ist. Da die Aussage

$$(A \Rightarrow B) \land (A \Leftrightarrow C)$$

wahr sein müsste, müssten gemäß der Definition 13 der Konjunktion sowohl die Aussagen

$$A \Rightarrow B$$

wie auch die Aussage

$$A \Leftrightarrow C$$

wahr sein. Da jedoch die Aussage C wahr sein müsste, müsste es auch die Aussage A sein. Denn wäre die Aussage A nicht wahr, dann wäre gemäß der zweiten Zeile der Definition 19 der Äquivalenz nicht wahr. Wäre jedoch die Aussage A wahr, dann wäre die Aussage

$$A \Rightarrow B$$

nicht wahr. Denn wie ich oben zu zeigen versucht habe, könnte die gesamte Aussage nur dann nicht wahr sein, falls die Aussage B nicht wahr wäre. Dies wäre dann jedoch ein Widerspruch zur Voraussetzung, dass die Aussage

$$A \Rightarrow B$$

wahr sein müsste. Also gelingt es mir nicht, zu zeigen, dass es Aussagen A, B wie auch C derart geben müsste, dass die Aussage

$$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$$

nicht wahr ist. Gemäß dem Satz 11 der doppelten Negation kann ich daraus schließen, dass die Aussage wahr sein muss. Genau dies wollte ich jedoch zeigen.

Nun werde ich den Beweis dieses Satzes ebenfalls tabellarisch aufschreiben. Ich habe diesen Beweis in den Tabellen 67 und 68 sowie 69 und 70 aufgeschrieben. Die Verweises habe ich in den Tabellen 71 sowie 72 aufgeschrieben. Damit meine ich, den Beweis für die Richtigkeit des Satzes erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Nun geht es an den letzten Substitutionssatz der Implikation:

Satz 106. Es seien A, B sowie C Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage:

$$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$$

Tabelle 67. 1. Teil 1. Beweis 3. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$A \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
1	1	1	1
2	1	0	0
3	1	1	1
4	1	0	0
5	0	0	0
6	0	1	0
7	1	0	0
8	1	1	1

Tabelle 68. 2. Teil 1. Beweis 3. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$C \Rightarrow B$	Behauptung
1	1	1
2	0	1
3	1	1
4	1	1
5	1	1
6	0	1
7	1	1
8	1	1

Tabelle 69. 1. Teil 2. Beweis 3. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$A \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
1	$A \Rightarrow B$	$A \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
2	$A \Rightarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
3	$A \Rightarrow B$	$A \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
4	$A \Rightarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
5	$\neg (A \Rightarrow B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
6	$\neg (A \Rightarrow B)$	$A \Leftrightarrow C$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
7	$A \Rightarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
8	$A \Rightarrow B$	$A \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$

BEWEIS. Na ja, es ist klar, dass dieser Satz gilt. Die Frage ist bloß, warum? Angenommen, der Satz gelte nicht. Dann müsste es Aussagen, welche mit den Buchstaben A,B sowie C bezeichnet werden, derart geben, dass die Behauptung nicht stimmt. Dies wäre jedoch gemäß der dritten Zeile der Definition 14 der Implikation nur dann möglich, falls

TABELLE 70. 2. Teil 2. Beweis 3. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$C \Rightarrow B$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
1	$C \Rightarrow B$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
2	$\neg (C \Rightarrow B)$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
3	$C \Rightarrow B$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
4	$C \Rightarrow B$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
5	$C \Rightarrow B$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
6	$\neg (C \Rightarrow B)$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
7	$C \Rightarrow B$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
8	$C \Rightarrow B$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$

TABELLE 71. 1. Teil Verweise Beweis 2. Substitutionssatz der Implikation

Aussage/	Definition 14	Definition 19	Definition 13
Fall Nr.	der	der	der
ran m.	Implikation	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	4. Zeile
4	2. Zeile	2. Zeile	3. Zeile
5	3. Zeile	2. Zeile	1. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	2. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 72. 2. Teil Verweise Beweis 1. Substitutionssatz der Implikation

Aussage/	Definition 14	Definition 14
Fall Nr.	der	der
ran m.	Implikation	Implikation
1	1. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	4. Zeile
4	4. Zeile	2. Zeile
5	1. Zeile	2. Zeile
6	3. Zeile	1. Zeile
7	2. Zeile	2. Zeile
8	4. Zeile	4. Zeile

die Aussage

$$A \Rightarrow C$$

nicht wahr wäre, die Aussage

$$(A \Rightarrow B) \land (B \Leftrightarrow C)$$

jedoch wahr wäre. Die Aussage

$$A \Rightarrow C$$

ist gemäß der gleichen Zeile der Definition 14 der Implikation dann nicht wahr, falls die Aussage A wahr ist, die Aussage C jedoch nicht wahr ist. Die Aussage

$$(A \Rightarrow B) \land (B \Leftrightarrow C)$$

ist gemäß der vierten Zeile der Definition 13 der Konjunktion dann wahr, falls sowohl die Aussage

$$A \Rightarrow B$$

wie auch die Aussage

$$B \Leftrightarrow C$$

wahr sind. Da die Aussage

$$A \Rightarrow B$$

wahr sein soll, müsste die Aussage B wahr sein. Denn wie ich oben zu zeigen versucht habe, müsste die Aussage A wahr sein, falls die gesamte Aussage nicht war wäre. Wäre dann die Aussage B nicht wahr, dann wäre die Aussage gemäß der dritten Zeile der Definition 14 der Implikation die Aussage

$$A \Rightarrow B$$

nicht wahr - im Widerspruch zur Voraussetzung. Wäre jedoch die Aussage B wahr, dann wäre gemäß der vierten Zeile der Definition 14 der Implikation die Aussage

$$A \Rightarrow B$$

wahr. Dann wäre jedoch gemäß der dritten Zeile der Definition 19 der Äquivalenz die Aussage

$$B \Leftrightarrow C$$

nicht wahr. Denn die Aussage B muss gemäß der Aussage

$$A \Rightarrow B$$

wahr sein. Die Aussage C kann gemäß der Aussage

$$A \Rightarrow C$$

nicht wahr sein. Dies ist jedoch ein Widerspruch zur Voraussetzung, dass die Aussage

$$B \Leftrightarrow C$$

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
1	1	1	1
2	1	0	0
3	1	0	0
4	1	1	1
5	O.	1	0

Tabelle 73. 1. Teil 1. Beweis 4. Substitutionssatz der Implikation

Tabelle 74. 2. Teil 1. Beweis 4. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$A \Rightarrow C$	Behauptung
1	1	1
2	1	1
3	1	1
4	1	1
5	0	1
6	1	1
7	0	1
8	1	1

trotzdem wahr sein muss. Darum glaube ich gezeigt zu haben, dass es keine Aussagen mit den Bezeichnungen $A,\,B$ sowie C derart geben kann dass die Aussage

$$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$$

nicht wahr ist. Also muss aufgrund des abgeschwächten Satzes 13 der doppelten Negation die Aussage für alle möglich Aussagen A,B sowie C wahr sein.

Das habe ich jedoch eben beweisen wollen. Ich möchte den Beweis noch einmal tabellarisch erbringen. Diese Beweise wurden einerseits in den Tabellen 73 und 74 sowie 75 und 76 aufgeschrieben. Die Verweise habe ich unter der Tabellen 77 und 78 abgelegt. Damit meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende somit an dieser Stelle die weitere Beweisführung.

Damit hätte ich die Substitutionssätze der Implikation erschlagen.

Tabelle 75. 1. Teil 2. Beweis 4. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
1	$A \Rightarrow B$	$B \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
2	$A \Rightarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
3	$A \Rightarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
4	$A \Rightarrow B$	$B \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
5	$\neg (A \Rightarrow B)$	$B \Leftrightarrow C$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
6	$\neg (A \Rightarrow B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
7	$A \Rightarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
8	$A \Rightarrow B$	$B \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$

TABELLE 76. 2. Teil 2. Beweis 4. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$A \Rightarrow C$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
1	$A \Rightarrow C$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
2	$A \Rightarrow C$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
3	$A \Rightarrow C$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
4	$A \Rightarrow C$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
5	$\neg (A \Rightarrow C)$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
6	$A \Rightarrow C$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
7	$\neg (A \Rightarrow C)$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
8	$A \Rightarrow C$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$

TABELLE 77. 1. Teil Verweise Beweis 4. Substitutionssatz der Implikation

Aussage/	Definition 14	Definition 19	Definition 13
Fall Nr.	der	der	der
ran m.	Implikation	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	3. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	1. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

24.5. Substitutionssätze der Replikation

Echt jetzt? Braucht es diesen Abschnitt wirklich? Denn die Replikation ist ja ausschließlich eine umgekehrte Implikation, wie uns der Satz

Tabelle	78.	2.	Teil	Verweise	Beweis	4.	Substitutions-
satz der Ir	nplil	kat	ion				

Aussage/	Definition 14	Definition 14
Fall Nr.	der	der
ran ivi.	Implikation	Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	2. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	4. Zeile
5	3. Zeile	1. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile

24 zu zeigen versuchte. Doch, ich denke, ich ziehe das durch. Denn Du kannst ja den Abschnitt überlesen, falls Du dies wünscht. Andererseits kannst Du ihn lesen, falls Du ihn lesen willst.

Satz 107. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$$

BEWEIS. Ich werde den Beweis wiederum recht ruhig angehen. Angenommen, die Behauptung wäre nicht wahr. Dann müsste es Aussagen mit den Symbolen A,B sowie C derart geben, dass die Aussage

$$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$$

nicht wahr ist. Dies könnte gemäß der dritten Zeile der Definition 14 der Implikation nur dann der Fall sein, falls die Aussage

$$(A \Leftarrow B) \land (A \Rightarrow C)$$

wahr, die Aussage

$$C \Leftarrow B$$

jedoch nicht wahr wäre. Die Aussage

$$C \Leftarrow B$$

ist jedoch gemäß der zweiten Zeile der Definition 16 der Replikation nur dann nicht wahr, falls die Aussage C nicht wahr, die Aussage B jedoch wahr wäre. Daraus kann ich jedoch schließen, dass auch die Aussage A nicht wahr sein kann. Denn ansonsten wäre die Aussage

$$A \Rightarrow C$$

gemäß der dritten Zeile 14 der Implikation nicht wahr. Dann wäre weiter gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$(A \Leftarrow B) \land (A \Rightarrow C)$$

nicht wahr und gemäß der Abkürzungsregeln 11 der Implikation die gesamte Aussage

$$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$$

eben doch wahr - im Widerspruch zur entsprechenden Voraussetzung. Da gemäß den obigen Überlegungen die Aussage A nicht wahr sein könnte, die Aussage B jedoch wahr sein müsste, wäre in diesem Falls die Aussage

$$A \Leftarrow B$$

nicht wahr. Das würde jedoch gemäß dem Minimumprinzip 10 der Konjunktion bedeuten, dass die Aussage

$$(A \Leftarrow B) \land (A \Rightarrow C)$$

nicht wahr wäre und gemäß der Abkürzungsregeln 11 der Implikation die gesamte Aussage eben trotzdem wahr wäre. Somit glaube ich hiermit gezeigt zu haben, dass es keine Aussagen A, B sowie C derart geben kann, dass die Aussage

$$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$$

nicht wahr ist. Gemäß dem abgeschwächten Satz 13 der doppelten Negation schließe ich daraus, dass für alle Symbole, welche mit den Symbolen A,B sowie C bezeichnet werden und in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei sind, die Behauptung wahr ist. Somit glaube ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

Ich möchte den Beweis noch einmal mittels Wahrheitstabellen erbringen. Diese habe ich in den Tabellen 79 und 80 einerseits sowie 81 und 82 andererseits aufgeschrieben. Die Verweise auf die Definitionen habe ich in den Tabellen 83 sowie 83 abgelegt. Also beende ich an dieser Stelle die weitere Beweisführung.

Nun möchte ich mich dem nächsten Substitutionssatz der Replikation zuwenden:

Satz 108. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt

$$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$$

Beweis. Aus dieser Satz ist relativ witzlos, ebenso wie der entsprechende Beweis. Angenommen, die Behauptung sein nicht richtig. Dann müsste es in sich selber und gegenüber den anderen Aussagen des

Tabelle 79. 1. Teil 1. Beweis 1. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$A \Rightarrow C$	$(A \Leftarrow B) \land (A \Rightarrow C)$
1	1	1	1
2	1	1	1
3	0	1	0
4	0	1	0
5	1	0	0
6	1	1	1
7	1	0	0
8	1	1	1

TABELLE 80. 2. Teil 1. Beweis 1. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$C \Leftarrow B$	Behauptung
1	1	1
2	1	1
3	0	1
4	1	1
5	1	1
6	1	1
7	0	1
8	1	1

TABELLE 81. 1. Teil 2. Beweis 1. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$A \Rightarrow C$	$(A \Leftarrow B) \land (A \Rightarrow C)$
1	$A \Leftarrow B$	$A \Rightarrow C$	$(A \Leftarrow B) \land (A \Rightarrow C)$
2	$A \Leftarrow B$	$A \Rightarrow C$	$(A \Leftarrow B) \land (A \Rightarrow C)$
3	$\neg (A \Leftarrow B)$	$A \Rightarrow C$	$\neg ((A \Leftarrow B) \land (A \Rightarrow C))$
4	$\neg (A \Leftarrow B)$	$A \Rightarrow C$	
5	$A \Leftarrow B$	$\neg (A \Rightarrow C)$	$\neg ((A \Leftarrow B) \land (A \Rightarrow C))$
6	$A \Leftarrow B$	$A \Rightarrow C$	$(A \Leftarrow B) \land (A \Rightarrow C)$
7	$A \Leftarrow B$	$\neg (A \Rightarrow C)$	$\neg ((A \Leftarrow B) \land (A \Rightarrow C))$
8	$A \Leftarrow B$	$A \Rightarrow C$	$(A \Leftarrow B) \land (A \Rightarrow C)$

Satzes widerspruchsfreie Aussagen A,Bsowie ${\cal C}$ derart geben, dass die Aussage

$$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$$

TABELLE 82. 2. Teil 2. Beweis 1. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
1	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
2	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
3	$\neg (C \Leftarrow B)$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
4	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
5	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
6	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
7	$\neg (C \Leftarrow B)$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
8	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$

TABELLE 83. 1. Teil Verweise Beweis 1. Substitutionssatz der Replikation

Aussage/	Definition 16	Definition 14	Definition 13
Fall Nr.	der	der	der
ran m.	Replikation	Implikation	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	4. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	2. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 84. 2. Teil Verweise Beweis 1. Substitutionssatz der Replikation

Aussage/	Definition 16	Definition 14
Fall Nr.	der	der
ran m.	Replikation	Implikation
1	1. Zeile	4. Zeile
2	3. Zeile	4. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile
5	1. Zeile	2. Zeile
6	3. Zeile	4. Zeile
7	2. Zeile	1. Zeile
8	4. Zeile	4. Zeile

nicht wahr ist. Dies wäre gemäß der dritten Zeile der Definition 14 der Implikation dann der Fall, falls die Aussage

$$(A \Leftarrow B) \land (C \Rightarrow B)$$

wahr, die Aussage

$$A \Leftarrow C$$

jedoch nicht wahr wäre. Die Aussage

$$A \Leftarrow C$$

ist gemäß der zweiten Zeile der Definition 14 der Replikation genau dann nicht wahr, falls die Aussage A nicht wahr, die Aussage C jedoch wahr ist. Da die Aussage C wahr ist, muss die Aussage B auch wahr sein. Ansonsten wäre die Aussage C auch wahr sein. Ansonsten wäre gemäß der dritten Zeile der Definition 14 der Implikation nicht wahr. Dies hätte zur Folge, dass die Konjunktion

$$(A \Leftarrow B) \land (C \Rightarrow B)$$

gemäß dem Minimumprinzip 10 der Implikation nicht wahr und somit die gesamte Aussage gemäß der Abkürzungsregel 11 der Implikation wiederum wahr wäre - was ja gemäß Annahme nicht der Fall sein soll. Da jedoch die Aussage A gemäß der obigen Überlegung nicht wahr sein könnte und B jedoch wahr sein müsste, wäre in diesem Fall die Aussage

$$A \Leftarrow B$$

gemäß der zweite Zeile der Definition 16 der Replikation eben nicht wahr. Gemäß dem Minimumprinzip 10 der Konjunktion und der Abkürzungsregel 11 der Implikation wäre dann die gesamte Aussage eben trotzdem wieder wahr - was wiederum ein Widerspruch zur Voraussetzung wäre. Also glaube ich schließen zu können, dass es keine Aussagen A,B sowie C derart geben kann, dass die Aussage

$$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$$

nicht wahr ist. Somit glaube ich gemäß dem abgeschwächten Satz 12 der doppelten Negation folgern zu können, dass für alle in sich selber und gegenüber den anderen Symbolen des Satzes widerspruchsfreien Aussagen A,B sowie C gelten muss, dass die gesamte Aussage wahr ist.

Damit hätte ich auch diesen Satz endlich bewiesen. Ich habe den Satz noch einmal mit Hilfe von Wahrheitstabellen erbracht. Diesen habe ich in den Tabellen 85 und 86 einerseits sowie 87 und 88 abgelegt. Die Verweise habe ich in den Tabellen 89 sowie 90 abgelegt. Da ich nun meines Erachtens alles geschrieben habe, was im Hinblick auf den korrekten Beweis der Behauptung zu schreiben war, erlaube ich mir an dieser Stelle, die weitere Beweisführung zu beenden.

Jetzt kommt der langweiligere dritte Substitutionssatz der Replikation:

Tabelle 85. 1. Teil 1. Beweis 2. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$C \Rightarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B)$
1	1	1	1
2	1	0	0
3	0	1	0
4	0	1	0
5	1	1	1
6	1	0	0
7	1	1	1
8	1	1	1

Tabelle 86. 2. Teil 1. Beweis 2. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow C$	Behauptung
1	1	1
2	0	1
3	1	1
4	0	1
5	1	1
6	1	1
7	1	1
8	1	1

Tabelle 87. 1. Teil 2. Beweis 2. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$C \Rightarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B)$
1	$A \Leftarrow B$	$C \Rightarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B)$
2	$A \Leftarrow B$	$\neg (C \Rightarrow B)$	$\neg ((A \Leftarrow B) \land (C \Rightarrow B))$
3	$\neg (A \Leftarrow B)$	$C \Rightarrow B$	$\neg ((A \Leftarrow B) \land (C \Rightarrow B))$
4	$\neg (A \Leftarrow B)$	$C \Rightarrow B$	$\neg ((A \Leftarrow B) \land (C \Rightarrow B))$
5	$A \Leftarrow B$	$C \Rightarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B)$
6	$A \Leftarrow B$	$\neg (C \Rightarrow B)$	$\neg ((A \Leftarrow B) \land (C \Rightarrow B))$
7	$A \Leftarrow B$	$C \Rightarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B)$
8	$A \Leftarrow B$	$C \Rightarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B)$

Satz 109. Es seien A, B sowie C Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$$

TABELLE 88. 2. Teil 2. Beweis 2. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$C \Leftarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
1	$C \Leftarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
2	$\neg (C \Leftarrow B)$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
3	$C \Leftarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
4	$\neg (C \Leftarrow B)$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
5	$C \Leftarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
6	$C \Leftarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
7	$C \Leftarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
8	$C \Leftarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$

TABELLE 89. 1. Teil Verweise Beweis 2. Substitutionssatz der Replikation

Aussage/	Definition 16	Definition 14	Definition 13
Fall Nr.	der	der	der
rall IVI.	Replikation	Implikation	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	3. Zeile	3. Zeile
3	2. Zeile	2. Zeile	2. Zeile
4	2. Zeile	4. Zeile	2. Zeile
5	3. Zeile	1. Zeile	4. Zeile
6	3. Zeile	3. Zeile	3. Zeile
7	4. Zeile	2. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 90. 2. Teil Verweise Beweis 2. Substitutionssatz der Replikation

Aussage/ Fall Nr.	Definition 16 der Replikation	Definition 14 der Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile
5	3. Zeile	2. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	4. Zeile
8	4. Zeile	4. Zeile

BEWEIS. Der Satz ist darum langweilig, weil er klar sein dürfte. Angenommen, der Satz wäre nicht wahr. Dann müsste es Aussagen geben, welche mit den Buchstaben A, B sowie C bezeichnet werden sollen, so dass die Aussage

$$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$$

nicht wahr ist. Dies wäre gemäß der dritten Zeile der Definition 14 der Implikation dann der Fall, falls die Aussage

$$(A \Leftarrow B) \land (A \Leftrightarrow C)$$

wahr, die Aussage

$$C \Leftarrow B$$

jedoch nicht wahr wäre. Die Aussage

$$C \Leftarrow B$$

ist gemäß der zweiten Zeile der Definition 16 der Replikation genau dann nicht wahr, falls die Aussage C nicht wahr, die Aussage B jedoch wahr ist. Dann könnte die Aussage A jedoch ebenfalls nicht wahr sein. Denn ansonsten wäre gemäß der dritten Zeile der Definition 19 der Äquivalenz die Aussage

$$A \Leftrightarrow C$$

ebenfalls nicht wahr. Aufgrund des Minimumprinzip 10 der Konjunktion könnte dann die Konjunktion

$$(A \Leftarrow B) \land (A \Leftrightarrow C)$$

ebenfalls nicht wahr sein. Also wäre dann gemäß der Abkürzungsregel 11 der Implikation die gesamte Aussage der Behauptung wiederum wahr. Da jedoch A ebenfalls nicht wahr sein könnte, die Aussage B jedoch wahr sein müsste, wäre die Aussage

$$A \Leftarrow B$$

gemäß der zweiten Zeile der Definition 16 der Replikation wiederum nicht wahr. Das wäre jedoch ein Widerspruch zur Voraussetzung. Darum folgere ich, dass es keine Aussagen geben kann, welche mit den Buchstaben A,B sowie C bezeichnet werden sollen, so dass die Aussage

$$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$$

nicht gilt. Also folgere ich gemäß dem abgeschwächten Satz 12 der doppelten Negation, dass die Behauptung für alle Aussagen wahr sein muss - sofern die Aussagen A,B und C in sich selber und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei sind. Also meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

Ich möchte gerne versuchen, den Satz ebenfalls noch mit Hilfe von Wahrheitstabellen zu erbringen. Diesen habe ich in den Tabellen 91 und 92 sowie 93 und 94 abgelegt. Die Verweise des Beweises habe ich in den Tabellen 95 sowie 96 abgelegt. Damit habe ich meines Erachtens den

Tabelle 91. 1. Teil 1. Beweis 3. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$A \Leftrightarrow C$	$(A \Leftarrow B) \land (A \Leftrightarrow C)$
1	1	1	1 ab
2	1	0	0
3	0	1	0
4	0	0	0
5	1	0	0
6	1	1	1
7	1	0	0
8	1	1	1

Tabelle 92. 2. Teil 1. Beweis 3. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$C \Leftarrow B$	Behauptung
1	1	1
2	1	1
3	0	1
4	1	1
5	1	1
6	1	1
7	0	1
8	1	1

Tabelle 93. 1. Teil 2. Beweis 3. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$A \Leftrightarrow C$	$(A \Leftarrow B) \land (A \Leftrightarrow C)$
1	$A \Leftarrow B$	$A \Leftrightarrow C$	$(A \Leftarrow B) \land (A \Leftrightarrow C)$
2	$A \Leftarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftarrow B) \land (A \Leftrightarrow C))$
3	$\neg (A \Leftarrow B)$	$A \Leftrightarrow C$	$\neg ((A \Leftarrow B) \land (A \Leftrightarrow C))$
4	$\neg (A \Leftarrow B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftarrow B) \land (A \Leftrightarrow C))$
5	$A \Leftarrow B$	$\neg (A \Leftrightarrow C)$	
6	$A \Leftarrow B$	$A \Leftrightarrow C$	$(A \Leftarrow B) \land (A \Leftrightarrow C)$
7	$A \Leftarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftarrow B) \land (A \Leftrightarrow C))$
8	$A \Leftarrow B$	$A \Leftrightarrow C$	$(A \Leftarrow B) \land (A \Leftrightarrow C)$

Beweis für die Richtigkeit der Behauptung erbracht und beende somit an dieser Stelle die weitere Beweisführung.

Nun schreibe ich noch den letzten Substitutionssatz der Replikation auf und versuche diesen zu beweisen:

Tabelle 94. 2. Teil 2. Beweis 3. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
1	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
2	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
3	$\neg (C \Leftarrow B)$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
4	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
5	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
6	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
7	$\neg (C \Leftarrow B)$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
8	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$

TABELLE 95. 1. Teil Verweise Beweis 2. Substitutionssatz der Replikation

Aussage/	Definition 16	Definition 19	Definition 13
Fall Nr.	der	der	der
ran Nr.	Replikation	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	1. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 96. 2. Teil Verweise Beweis 2. Substitutionssatz der Replikation

Aussage/	Definition 16	Definition 14
Fall Nr.	der	der
ran m.	Replikation	Implikation
1	1. Zeile	4. Zeile
2	3. Zeile	2. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile
5	1. Zeile	2. Zeile
6	3. Zeile	4. Zeile
7	2. Zeile	1. Zeile
8	4. Zeile	4. Zeile

Satz 110. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussagen:

$$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$$

Beweis. Ich nehme an, dass es Aussagen gibt, welche mit den Buchstaben A,B sowie C bezeichnet werden sollen, derart existieren, dass die Behauptung eben nicht wahr sei. Gemäß der dritten Zeile der Definition 14 kann dies nur der Fall sein, falls die Aussage

$$(A \Leftarrow B) \land (B \Leftrightarrow C)$$

wahr ist, die Aussage

$$A \Leftarrow C$$

jedoch nicht wahr ist. Die Aussage A folgt gemäß der zweiten Zeile der Definition 16 der Replikation genau dann nicht aus der Aussage C, falls die Aussage A nicht wahr, die Aussage C jedoch wahr ist. Da die Aussage A nicht wahr sein kann, kann die Aussage B ebenfalls nicht wahr sein. Denn wäre die Aussage B wahr, dann wäre gemäß der zweiten Zeile 16 der Replikation die Aussage

$$A \Leftarrow B$$

nicht wahr. Gemäß dem Minimumprinzip 10 der Konjunktion wäre dann die Aussage

$$(A \Leftarrow B) \land (B \Leftrightarrow C)$$

nicht wahr - im Widerspruch zur Voraussetzung. Da die Aussage B nicht wahr sein könnte, die Aussage C jedoch wahr sein müsste, könnte jedoch gemäß der zweiten Zeile der Definition 19 der Äquivalenz die Aussage

$$B \Leftrightarrow C$$

nicht wahr sein. Gemäß dem Minimumprinzip 10 würde dies jedoch wiederum bedeuten, dass die Aussage

$$(A \Leftarrow B) \land (B \Leftrightarrow C)$$

im Widerspruch zur Voraussetzung eben trotzdem nicht wahr wäre. Darum glaube ich gezeigt zu haben, dass es keine derartigen Aussagen, welche mit A,B sowie C bezeichnet werden sollen, geben kann, so das die Behauptung nicht wahr ist. Gemäß der abgeschwächten Form des Satzes 12 der doppelten Negation glaube ich darum folgern zu können, dass für alle derartigen Aussagen die Behauptung eben wahr ist.

Eben dies wollte ich jedoch beweisen. Ich möchte den Satz noch einmal mit Hilfe von Wahrheitstabellen erbringen. Den Beweis habe ich in den Tabellen 97 sowie 98 einerseits sowie in den Tabellen 99 sowie 100 abgelegt. Die Beweise habe ich in den Tabellen 101 sowie 101 abgelegt. Darum erlaube ich mir, an dieser Stelle auf die weitere Beweisführung zu verzichten und den Beweis zu beenden.

Tabelle 97. 1. Teil 1. Beweis 4. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$B \Leftrightarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C)$
1	1	1	1
2	1	0	0
3	0	0	0
4	0	1	0
5	1	1	1
6	1	0	0
7	1	0	0
8	1	1	1

TABELLE 98. 2. Teil 1. Beweis 4. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow C$	Behauptung
1	1	1
2	0	1
3	1	1
4	0	1
5	1	1
6	1	1
7	1	1
8	1	1

Tabelle 99. 1. Teil 2. Beweis 4. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$B \Leftrightarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C)$
1	$A \Leftarrow B$	$B \Leftrightarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C)$
2	$A \Leftarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftarrow B) \land (B \Leftrightarrow C))$
3	$\neg (A \Leftarrow B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftarrow B) \land (B \Leftrightarrow C))$
4	$\neg (A \Leftarrow B)$	$B \Leftrightarrow C$	$\neg ((A \Leftarrow B) \land (B \Leftrightarrow C))$
5	$A \Leftarrow B$	$B \Leftrightarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C)$
6	$A \Leftarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftarrow B) \land (B \Leftrightarrow C))$
7	$A \Leftarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftarrow B) \land (B \Leftrightarrow C))$
8	$A \Leftarrow B$	$B \Leftrightarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C)$

Ich hoffe, dass ich nun die Substitutionssätze der Replikation abhaken kann und werde mich darum nun den Substitutionssätzen der Äquivalenz zuwenden.

Tabelle 100. 2. Teil 2. Beweis 4. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
1	$A \Leftarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
2	$\neg (A \Leftarrow C)$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
3	$A \Leftarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
4	$\neg (A \Leftarrow C)$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
5	$A \Leftarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
6	$A \Leftarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
7	$A \Leftarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
8	$A \Leftarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$

TABELLE 101. 1. Teil Verweise Beweis 3. Substitutionssatz der Replikation

Aussage/	Definition 16 der	Definition 19 der	Definition 13 der
Fall Nr.	Replikation	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	2. Zeile
5	3. Zeile	1. Zeile	4. Zeile
6	3. Zeile	2. Zeile	3. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 102. 2. Teil Verweise Beweis 4. Substitutionssatz der Replikation

Aussage/	Definition 16	Definition 14
Fall Nr.	der	der
Tan IVI.	Replikation	Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile
5	3. Zeile	4. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	2. Zeile
8	4. Zeile	4. Zeile

24.6. Was ist der Substitutionssatz der Äquivalenz?

Nachfolgend wird der erste Substitutionssatz der Äquivalenz aufgeschrieben und bewiesen:

Satz 111. Es seien A, B sowie C Aussagen, welche in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$$

Beweis. Ist die Aussage $A \Leftrightarrow B$ oder $A \Leftrightarrow C$ nicht wahr, dann ist gemäß der Abkürzungsregel 10 der Konjunktion die Aussage

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$$

nicht wahr und gemäß der Abkürzungsregel 11 der Implikation die gesamte Aussage

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$$

wiederum wahr. Also kann ich annehmen, dass sowohl die Aussage

$$A \Leftrightarrow B$$

wie auch die Aussage

$$A \Leftrightarrow C$$

wahr sind. Da die Äquivalenz gemäß dem Satz 39 kommutiert, kann ich schreiben

$$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$$

Nun kann ich den dritten Substitutionssatz 98 der Konjunktion verwenden. Und zwar ersetze ich in diesem Satz die Aussage A durch die Aussage $A \Leftrightarrow B$. Die Aussage B ersetze ich mit der Aussage $A \Leftrightarrow C$. Als Aussage C verwende ich die Aussage

$$B \Leftrightarrow A$$

Also kann ich gemäß dem dritten Substitutionssatz 98 der Konjunktionssatz sowie dem Satz 17 der Schlussfolgerung schreiben, dass gilt

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (B \Leftrightarrow A) \land (A \Leftrightarrow C)$$

Nun kann ich den Satz 16 der Transitivität der Äquivalenz auf die Aussage

$$(B \Leftrightarrow A) \land (A \Leftrightarrow C)$$

anwenden. Gemäß diesem und wiederum dem Satz 17 der Schlussfolgerung kann ich schließen, dass gilt

$$(B \Leftrightarrow A) \land (A \Leftrightarrow C) \Rightarrow (B \Leftrightarrow C)$$

Und noch einmal kann ich den Satz 39 der Kommutation der Äquivalenz verwenden. Gemäß diesem kann ich schreiben, dass gilt

$$(B \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$$

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$
1	1	1	1
2	1	0	0
3	0	1	0
4	0	0	0
5	0	0	0
6	0	1	0
7	1	0	0
8	1	1	1

Tabelle 103. 1. Teil 1. Beweis Substitutionssatz der Äquivalenz

Da jetzt gilt

$$((B \Leftrightarrow A) \land (A \Leftrightarrow C) \Rightarrow (B \Leftrightarrow C)) \land ((B \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B))$$

kann ich gemäß dem Satz 15 der Transitivität der Implikation und der erneuten Hinzunahme des Satzs 17 der Schlussfolgerung schreiben, dass gilt

$$((B \Leftrightarrow A) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B))$$

Weiter oben habe ich zu zeigen versucht, dass gilt:

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (B \Leftrightarrow A) \land (A \Leftrightarrow C)$$

Nun habe ich zu zeigen versucht, dass gilt:

$$((B \Leftrightarrow A) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B))$$

Gemäß dem Satz 15 der Transitivität der Implikation und dem Satz 17 der Schlussfolgerung kann ich schreiben, dass gilt

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$$

Nun glaube ich, in allen möglichen Fällen bewiesen zu haben dass die Aussage richtig ist. Ich möchte gerne den Beweis noch einmal tabellarisch beweisen. Diesen Beweis habe ich in den Tabellen 103 und 104 einerseits sowie 105 und 106 abgelegt. Die Verweise habe ich in den Tabellen 107 sowie 108 abgelegt. Somit erachte ich diesen Beweis als erbracht und möchte mich nun den Substitutionssätzen der Antivalenz zuwenden.

Vielleicht wunderst Du Dich darüber, wieso ich nur von einem Substitutionssatz der Äquivalenz schreibe. Nun: Weil es keinen anderen Substitutionssatz der Äquivalenz gibt. Denn der zweite Substitutionssatz, welcher noch möglich wäre, würde wie folgt lauten: Wären A, B sowie C Symbole von Aussagen, welche in sich selbst sowie in Bezug

TABELLE 104. 2. Teil 1. Beweis Substitutionssatz der Äquivalenz

Aussage/ Fall Nr.	$C \Leftrightarrow B$	Behauptung
1	1	1
2	0	1
3	0	1
4	1	1
5	1	1
6	0	1
7	0	1
8	1	1

TABELLE 105. 1. Teil 2. Beweis Substitutionssatz der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$
1	$A \Leftrightarrow B$	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$
2	$A \Leftrightarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
3	$\neg (A \Leftrightarrow B)$	$A \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
4	$\neg (A \Leftrightarrow B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
5	$\neg (A \Leftrightarrow B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
6	$\neg (A \Leftrightarrow B)$	$A \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
7	$A \Leftrightarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
8	$A \Leftrightarrow B$	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$

Tabelle 106. 2. Teil 2. Beweis Substitutionssatz der Äquivalenz

Aussage/ Fall Nr.	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
1	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
2	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
3	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
4	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
5	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
6	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
7	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
8	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$

auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage:

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$$

Tabelle 107.	1. Teil Verweise Beweis Substitutionssatz
der Äquivalenz	

Aussage/	Definition 19	Definition 19	Definition 13
Fall Nr.	der	der	der
rall IVI.	Äquivalenz	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	1. Zeile
5	3. Zeile	3. Zeile	1. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle 108. 2. Teil Verweise Beweis 4. Substitutionssatz der Äquivalenz

Aussage/	Definition 19	Definition 14
Fall Nr.	der	der
Tair ivi.	Äquivalenz	Implikation
1	1. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile
5	1. Zeile	2. Zeile
6	3. Zeile	1. Zeile
7	2. Zeile	1. Zeile
8	4. Zeile	4. Zeile

Nun, dieser Satz existiert zwar. Jedoch ist er bereits formuliert und bewiesen. Und zwar unter der Bezeichnung "Satz der Transitivität der Äquivalenz". Ich habe ihn diesen unter dem Satz 16 abgelegt.

Und dann musste ich mir eingestehen, dass es keine Substitutionssätze derart gibt, dass eine Äquivalenz mit einer Implikation verknüpft wird. Denn es gilt: Sind A,B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbole der Behauptung widerspruchsfrei seien. Dann gilt die Aussage

$$\neg A \land \neg B \land C \Rightarrow ((A \Leftrightarrow B) \land (A \Rightarrow C) \Rightarrow \neg (C \Leftrightarrow B))$$

Der Beweis dieser Aussage ist meines Erachtens schnell erbracht. Ist A wahr oder B wahr oder C nicht wahr, dann ist gemäß dem Miniumsatz 44 der Konjunktion mit drei Argumenten die Aussage

$$\neg A \land \neg B \land C$$

nicht wahr und somit gemäß der Abkürzungsregel 11 die gesamte Aussage wahr. Ist jedoch weder die Aussage A noch die Aussage B wahr und die Aussage C wahr, dann ist die Aussage $C \Leftrightarrow B$ gemäß der dritten Zeile der Definition 19 nicht wahr. Also ist gemäß der der ersten Zeile der Definition 11 der Negation die Aussage

$$\neg (C \Leftrightarrow B)$$

wahr. Somit ist wiederum gemäß der Abkürzungsregel 11 der Implikation die Behauptung

$$(A \Leftrightarrow B) \land (A \Rightarrow C) \Rightarrow \neg (C \Leftrightarrow B)$$

wahr und somit gemäß der vierten Zeile der Definition 14 der Implikation die ganze Behauptung

$$\neg A \land \neg B \land C \Rightarrow ((A \Leftrightarrow B) \land (A \Rightarrow C) \Rightarrow \neg (C \Leftrightarrow B))$$

wiederum wahr. Somit hätte ich in allen denkbaren Fällen den Beweis für die Richtigkeit dieser Behauptung erbracht.

Das ganze Schlamassel passiert auch dann, falls ich die folgende Aussage untersuche: Es seien A,B sowie C Symbole von Aussagen, welche in sich selbst sowie in Bezug auf die anderen Symbole der Behauptung widerspruchsfrei seien. Dann gilt die Aussage

$$\neg A \land \neg B \land C \Rightarrow ((A \Leftrightarrow B) \land (B \Rightarrow C) \Rightarrow \neg (A \Leftrightarrow C))$$

Auch diese Behauptung ist nicht allzu schwierig zu beweisen. Denn sind A oder B wahr oder C nicht wahr, dann ist die Aussage

$$\neg A \land \neg B \land C$$

dem Miniumsatz 44 der Konjunktion mit drei Argumenten nicht wahr. Gemäß der Abkürzungsregel 11 der Implikation ist in allen diesen Fällen die gesamte Behauptung bereits wahr. Sind jedoch sowohl die Aussagen A wie auch B nicht wahr und die Aussage C wahr, dann ist die Aussage $A \Leftrightarrow C$ gemäß der zweiten Zeile der Definition 19 nicht wahr. Gemäß der Abkürzungsregel 11 der Implikation ist dann die Aussage

$$((A \Leftrightarrow B) \land (B \Rightarrow C) \Rightarrow \neg (A \Leftrightarrow C))$$

wahr. Und genau gemäß der gleichen Abkürzungsregel ist dann in diesem Fall die gesamte Aussage

$$\neg A \land \neg B \land C \Rightarrow ((A \Leftrightarrow B) \land (B \Rightarrow C) \Rightarrow \neg (A \Leftrightarrow C))$$

wiederum wahr. Also hätte bereits an dieser Stelle die ganze Behauptung bewiesen, da ich für alle denkbaren Fälle die Behauptung bewiesen habe.

Mit diesen zwei Behauptungen glaube ich gezeigt zu haben, dass diese zwei Substitutionssätze nicht möglich sind. Damit glaube ich jedoch gezeigt zu haben, dass nur ein Substitutionssatz der Äquivalenz sinnvoll ist.

24.7. Substitutionssätze der Antivalenz

Ehrlich geschrieben habe ich noch keine Ahnung, was da auf mich zukommt. Ich beginne mit den zwei offensichtlichen Fällen:

Satz 112. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst sowie in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$$

Beweis. Ich möchte mir überlegen, ob ein Fall vorhanden sein könnte, in welchem die Aussage nicht zutrifft. Dies könnte nur dann der Fall sein, falls die Aussage

$$C \Leftrightarrow B$$

nicht wahr, die Aussage

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$$

hingegen wahr wäre. Da die Aussage

$$C \Leftrightarrow B$$

nicht wahr sein dürfte, müssten gemäß der Definition 20 der Antivalenz entweder beide Aussagen C wie auch B nicht wahr sein oder aber wahr sein. Wären beide Aussage nicht wahr, dann dürfte auch die Aussage A nicht wahr sein. Denn andernfalls wäre gemäß der dritten Zeile der Definition 19 der Äquivalenz die Aussage $A \Leftrightarrow C$ nicht wahr. Wäre jedoch die Aussage A nicht wahr, dann wären alle drei Aussagen A, B sowie C nicht wahr. Jedoch wäre in diesem Fall die Aussage

$$A \Leftrightarrow B$$

gemäß der ersten Zeile der Definition 20 der Antivalenz ebenfalls nicht wahr. Somit können C und B nicht beide zusammen nicht wahr sein. Wären jedoch sowohl B wie auch C wahr, dann müsste auch A wahr sein. Denn andernfalls wäre die Aussage

$$A \Leftrightarrow C$$

gemäß der zweiten Aussage der Definition 19 der Äquivalenz nicht wahr. Wären jedoch sowohl A wie auch C wahr, dann wären alle drei Aussagen A, B wie auch C wahr. In diesem Fall wäre jedoch die Aussage

$$A \Leftrightarrow B$$

wiederum gemäß der vierten Zeile der Definition 20 wiederum nicht wahr. Also ist auch dieser Fall nicht möglich. Somit bleibt festzuhalten, dass es es keine Aussagen geben kann, welche mit A, B sowie C bezeichnet werden sollen, so dass die Aussage

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$$

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$
1	0	1	0
2	0	0	0

 $\frac{4}{5}$

Tabelle 109. 1. Teil 1. Beweis 1. Substitutionssatz der Antivalenz

	0 55 41 4	ъ	Q 1	1 A . A 1
TABELLE 11()	2 Teil 1	Reweis 1	Substitutionssatz	der Antivalenz

Aussage/ Fall Nr.	$C \Leftrightarrow B$	Behauptung
1	0	1
2	1	1
3	1	1
4	0	1
5	0	1
6	1	1
7	1	1
8	0	1

nicht wahr ist. Also glaube ich gemäß dem abgeschwächten Satz der doppelten Negation folgern zu können, dass die Aussage

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$$

für alle möglichen ("vernünftigen") Aussagen, welche mit den Buchstaben A, B sowie C bezeichnet werden sollen, wahr ist.

Also meine ich, den Beweis für die Richtigkeit der Aussage erbracht zu haben. Ich möchte den Beweis nachfolgend noch einmal mit Hilfe von Wahrheitstafeln erbringen. Diesen habe ich in den 109 und 110 einerseits sowie 111 und 112 abgelegt. Die Verweise habe ich in den Tabellen 113 sowie 114 abgelegt.

Nun wird der zweite Substitutionssatz der Antivalenz formuliert und bewiesen:

Satz 113. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst sowie in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$$

TABELLE 111. 1. Teil 2. Beweis 1. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	<i>A</i> ⇔ <i>B</i>	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$
1	$\neg (A \Leftrightarrow B)$	$A \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
2	$\neg (A \Leftrightarrow B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
3	$A \Leftrightarrow B$	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$
4	$A \Leftrightarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
5	$A \Leftrightarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
6	$A \Leftrightarrow B$	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$
7	$\neg (A \Leftrightarrow B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
8	$\neg (A \Leftrightarrow B)$	$A \Leftrightarrow C$	

TABELLE 112. 2. Teil 2. Beweis 1. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
1	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
2	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
3	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
4	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
5	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
6	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
7	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
8	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$

TABELLE 113. 1. Teil Verweise Beweis 1. Substitutionssatz der Antivalenz

Auggaga /	Definition 20	Definition 19	Definition 13
Aussage/ Fall Nr.	der	der	der
rall Nr.	Antivalenz	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	1. Zeile	4. Zeile
4	2. Zeile	2. Zeile	3. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

Beweis. Ich überlege mir wiederum, ob es Aussagen gibt, welche mit A,B sowie C bezeichnet werden sollen, und für welche die obige Aussage nicht gilt. Diese ist nur dann nicht wahr, falls die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

TABELLE 114. 2. Teil Verweise Beweis 1. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	Definition 20 der Antivalenz	Definition 14 der Implikation
1	1. Zeile	1. Zeile
2	3. Zeile	2. Zeile
3	2. Zeile	4. Zeile
4	4. Zeile	1. Zeile
5	1. Zeile	1. Zeile
6	3. Zeile	4. Zeile
7	2. Zeile	2. Zeile
8	4. Zeile	1. Zeile

wahr, die Aussage

$$(A \Leftrightarrow C)$$

jedoch nicht wahr ist. Die Aussage

$$(A \Leftrightarrow C)$$

ist gemäß der ersten und vierten Zeile der Definition 20 dann nicht wahr, falls sowohl die Aussagen A wie auch C nicht wahr sind oder beide Aussagen A und C wahr sind. Angenommen, beide Aussagen sind nicht wahr. Ist in diesem Fall die Aussage C ebenfalls nicht wahr, dann kann gemäß der ersten Zeile der Definition 19 die Aussage B ebenfalls nicht wahr sein. Denn wäre die Aussage B wahr, dann wäre gemäß der dritten Zeile der Definition 19 die Aussage

$$B \Leftrightarrow C$$

nicht wahr - im Widerspruch zur Annahme, dass die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

und somit gemäß der vierten Zeile der Definition 13 der Konjunktion die Aussage

$$B \Leftrightarrow C$$

ebenfalls wahr wahr sein müsste. Wäre jedoch die Aussage B ebenfalls nicht wahr, dann könnte gemäß der ersten Zeile der Definition 20 der Antivalenz nicht wahr sein - im Widerspruch zur Annahme. Also können nicht gleichzeitig A und C nicht wahr sein. Wären jedoch sowohl A wie auch C wahr, dann müsste auch B wahr sein. Andernfalls wäre nämlich die Äquivalenz

$$B \Leftrightarrow C$$

gemäß der Zeile der Definition 19 der Äquivalenz nicht wahr. Also wäre gemäß dem Minimumprinzip 10 der Konjunktion die Konjunktion

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
1	0	1	0
2	0	0	0
3	1	0	0
4	1	1	1
5	1	1	1
6	1	0	0
7	0	0	0
8	0	1	0

Tabelle 115. 1. Teil 1. Beweis 2. Substitutionssatz der Antivalenz

und somit gemäß der Abkürzungsregel 11 der Implikation die ganze Behauptung

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$$

wiederum wahr. Da jedoch alle drei Aussagen A,B wie auch C wahr sein müssten, wäre gemäß der vierten Zeile der Definition 20 der Antivalenz die Aussage

$$A \Leftrightarrow B$$

ebenfalls nicht wahr - im Gegensatz zur Voraussetzung.

Somit kann ich festhalten, dass es nicht möglich ist, Aussagen mit den Symbolen A, B sowie C derart zu finden, dass die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$$

nicht wahr ist. Also kann ich folgern, dass für alle (widerspruchsfreien) Aussagen mit den Bezeichnungen A, B wie auch C die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$$

wahr sein muss. Somit hätte ich den Beweis für die Richtigkeit der Behauptung erbracht. Ich möchte den Beweis noch tabellarisch erbringen. Dieser ist in den nachfolgenden Tabellen 115 und 116 sowie 117 und 118 abgelegt. Die Verweise habe ich in den Tabellen 119 sowie 120 abgelegt.

Es bleibt mir in diesem Abschnitt noch zu zeigen, dass dies die einzigen möglichen Substitutionssätze der Antivalenz sind. Es seien A, B, C Symbole von Aussagen, welche in sich selbst und gegenüber der anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt

$$\neg A \land B \land C \Rightarrow \neg ((A \Leftrightarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftrightarrow B))$$

Denn falls A wahr oder B oder C nicht wahr sind, ist gemäß dem Lemma 44 der Konjunktion mit drei Argumenten die Aussage

$$\neg A \land B \land C$$

Tabelle 116. 2. Teil 1. Beweis 1. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow C$	Behauptung
1	0	1
2	1	1
3	0	1
4	1	1
5	1	1
6	0	1
7	1	1
8	0	1

TABELLE 117. 1. Teil 2. Beweis 1. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
1	$\neg (A \Leftrightarrow B)$	$B \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
2	$\neg (A \Leftrightarrow B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
3	$A \Leftrightarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
4	$A \not\Leftrightarrow B$	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
5	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
6	$A \Leftrightarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
7	$\neg (A \Leftrightarrow B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
8	$\neg (A \Leftrightarrow B)$	$B \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$

TABELLE 118. 2. Teil 2. Beweis 1. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
1	$\neg (A \Leftrightarrow C)$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
2	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
3	$\neg (A \Leftrightarrow C)$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
4	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
5	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
6	$\neg (A \Leftrightarrow C)$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
7	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
8	$\neg (A \Leftrightarrow C)$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$

nicht wahr. Somit ist der Abkürzungsregel 11 der Implikation die ganze Behauptung wahr. Ist jedoch A nicht wahr und sind sowohl die Aussage B wie auch C wahr, dann ist gemäß der Definition 13 der Konjunktion die Aussage

$$(\neg A \land B) \land C$$

TABELLE 119. 1. Teil Verweise Beweis 1. Substitutionssatz der Antivalenz

Aussage/	Definition 20	Definition 19	Definition 13
Fall Nr.	der	der	der
ran m.	Antivalenz	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	2.Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	3. Zeile	3. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	1. Zeile	4. Zeile
6	3. Zeile	2. Zeile	3. Zeile
7	4. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

TABELLE 120. 2. Teil Verweise Beweis 1. Substitutionssatz der Antivalenz

Aussage/	Definition 20	Definition 14
Fall Nr.	der	der
ran m.	Antivalenz	Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	1. Zeile	1. Zeile
4	2. Zeile	4. Zeile
5	3. Zeile	4. Zeile
6	4. Zeile	1. Zeile
7	3. Zeile	2. Zeile
8	4. Zeile	1. Zeile

wahr. Genauer: Gemäß der ersten Zeile der Definition 11 ist die Aussage $\neg A$ wahr. Gemäß der vierten Zeile der Definition 13 der Konjunktion ist die Aussage

$$\neg A \wedge B$$

wahr. Und ebenfalls gemäß der vierten Zeile der Definition 13 der Konjunktion ist die Aussage

$$(\neg A \land B) \land C$$

ebenfalls wahr. Gemäß dem Satz 40 der Assoziativität der Konjunktion ist diese Aussage gleichbedeutend zur Aussage

$$\neg A \land B \land C$$

welche also ebenfalls wahr ist. Weiter ist in diesem Fall die Antivalenz

$$A \not\Leftrightarrow B$$

gemäß der zweiten Zeile der Definition 20 der Antivalenz wahr. Ebenfalls gemäß der zweiten Zeile der Definition 14 ist die Implikation

$$A \Rightarrow C$$

wahr. Also ist gemäß der vierten Zeile der Definition 13 der Konjunktion die Aussage

$$(A \Leftrightarrow B) \land (A \Rightarrow C)$$

wahr. Nun ist gemäß der vierten Zeile der Definition 20 der Antivalenz die Aussage

$$C \Leftrightarrow B$$

nicht wahr. Gemäß der dritten Zeile der Definition 14 der Implikation ist dann die Aussage

$$(A \Leftrightarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftrightarrow B)$$

nicht wahr. Gemäß der ersten Zeile der Definition 11 ist dann die Aussage

$$\neg ((A \Leftrightarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftrightarrow B))$$

wahr. Insgesamt ist dann gemäß der vierten Zeile der Definition 14 der Implikation die Aussage

$$\neg A \land B \land C \Rightarrow \neg ((A \Leftrightarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftrightarrow B))$$

wahr. Also ist ein entsprechender Substitutionssatz der Antivalenz mittels der Implikation nicht möglich.

Und da die Antivalenz kommutiert (wie aus der Definition der Antivalenz abgelesen werden kann), kann ich auch schließen

$$A \land \neg B \land C \Rightarrow \neg (((A \Leftrightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Leftrightarrow C)))$$

Ich möchte das genauer begründen: Ist die Aussage B wahr oder sind eine der beiden Aussagen A oder C nicht wahr, dann ist gemäß dem Lemma 44 der Konjunktion mit drei Argumenten die Aussage

$$A \wedge \neg B \wedge C$$

nicht wahr. Also ist gemäß der Abkürzungsregel 11 der Implikation die ganze Aussage bereits wahr. Sind jedoch die Aussagen A und C wahr und ist die Aussage B nicht wahr, dann ist sicher gemäß der Definition 13 der Konjunktion die Aussage

$$A \wedge \neg B \wedge C$$

wahr. Genauer: Gemäß der ersten Zeile der Definition 11 der Negation ist die Aussage $\neg B$ wahr. Gemäß der vierten Zeile der Definition 13 ist die Konjunktion

$$A \wedge \neg B$$

ebenfalls wahr. Gemäß der gleichen vierten Zeile der Definition 13 der Konjunktion ist die Aussage

$$(A \land \neg B) \land C$$

wahr. Und da die Konjunktion gemäß dem Satz 40 assoziativ ist, muss vorhergehende Aussage äquivalent zur Aussage

$$A \wedge \neg B \wedge C$$

sein, welche dementsprechend auch wahr sein muss. Weiter ist gemäß der dritten Zeile der Definition 20 der Antivalenz die Aussage

$$A \Leftrightarrow B$$

wahr. Gemäß der zweiten Zeile der gleichen Definition 14 der Implikation ist die Aussage

$$B \Rightarrow C$$

ebenfalls wahr. Gemäß der vierten Zeile der Definition 13 der Konjunktion ist die Aussage

$$(A \Leftrightarrow B) \land (B \Rightarrow C)$$

immer ebenfalls wahr. Gemäß der vierten Zeile der Definition 20 der Antivalenz ist die Aussage

$$A \Leftrightarrow C$$

nicht wahr. Somit ist gemäß der dritten Zeile der Definition 14 der Implikation die Aussage

$$(A \Leftrightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Leftrightarrow C)$$

nicht wahr. Also ist gemäß der ersten Zeile der Definition 11 die Aussage

$$\neg \left((A \not\Leftrightarrow B) \land (B \Rightarrow C) \Rightarrow (A \not\Leftrightarrow C) \right)$$

wahr. Somit ist gemäß der vierten Zeile der Definition die Aussage

$$A \land \neg B \land C \Rightarrow \neg ((A \Leftrightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Leftrightarrow C))$$

wahr. Also hätte ich auch diese Behauptung bewiesen, welche besagt, dass ein entsprechender Substitutionssatz der Antivalenz auch nicht möglich ist. Nun kann ich mich den Substitutionssätzen der NAND-Verknüpfung (Sheffer-Notation) zuwenden.

24.8. Substitutionssätze der NAND-Verknüpfung

Wenn mein Plan aufgeht, dann möchte ich diese Sätze verwenden, damit ich das Konzept der Substitutionssätze weiterverfolgen kann.

Auch für die NAND-Verknüpfung kann ich nur zwei Substitutionssätze formulieren und beweisen:

Satz 114. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst sowie in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$$

Beweis. Ich möchte mir überlegen, ob ein Fall vorhanden sein könnte, in welchem die Aussage nicht zutrifft. Dies könnte gemäß der dritten Zeile der Definition 14 der Implikation nur dann der Fall sein, falls die Aussage

$$C\overline{\wedge}B$$

nicht wahr wäre, die Aussage

$$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C)$$

hingegen schon. Da die Aussage

$$C\overline{\wedge}B$$

nicht wahr sein dürfte, müssten gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung sowohl die Aussagen B wie auch C wahr sein. Dann müsste auch die Aussage A wahr sein. Denn wäre die Aussage A nicht wahr, dann könnte gemäß der zweiten Zeile der Definition 19 der Äquivalenz die Aussage

$$A \Leftrightarrow C$$

auch nicht wahr sein. Dann wäre jedoch gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C)$$

ebenfalls nicht wahr - im Gegensatz zur Voraussetzung über diese letzte Aussage. Wäre die Aussage A jedoch wahr, dann wäre die Aussage gemäß der vierten Zeile der Definition 19 der Äquivalenz die Aussage

$$A \Leftrightarrow C$$

wiederum wahr. Gemäß dem Satz 13 des ausgeschlossenen Dritten kann ich darum folgern, dass die Aussage A darum wahr sein muss (es gibt keinen dritten Wahrheitswert der Aussage: Entweder ist sie wahr oder aber es gilt nicht, dass sie wahr ist).

Weiter oben habe ich schon bemerkt, dass die gesamte Aussage nur dann nicht wahr sein kann, falls die Aussage B nicht wahr ist. Nun habe ich festgestellt, dass die gesamte Aussage nur dann nicht wahr sein kann, falls die Aussage A auch wahr ist. Ist jedoch die Aussage A wahr, dann kann gemäß der vierten Zeile der Definition 21 die NAND-Verknüpfung

$$A\overline{\wedge}B$$

ebenfalls nicht wahr sein. Also müsste in diesem Fall ebenfalls gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C)$$

und somit gemäß der Abkürzungsregel 11 der Implikation wiederum wahr ist. Also kann ich daraus schließen, dass es nicht möglich ist,

TABELLE 121. 1. Teil 1. Beweis 1. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$A \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)$
1	1	1	1
2	1	0	0
3	1	1	1
4	1	0	0
5	1	0	0
6	1	1	1
7	1	0	0
8	0	1	0

TABELLE 122. 2. Teil 1. Beweis 1. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	$C\overline{\wedge}B$	Behauptung
1	1	1
2	1	1
3	1	1
4	0	1
5	1	1
6	1	1
7	1	1
8	0	1

Aussagen mit der Bezeichnungen A,B sowie C derart zu finden, dass die Aussage

$$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$$

nicht wahr. Somit glaube ich wiederum gemäß dem abgeschwächten Satz 12 der doppelten Negation schließen zu können, dass für alle solche Aussagen mit den Symbolen A,B sowie C die Aussage

$$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)\Rightarrow(C\overline{\wedge}B)$$

wahr sein muss. Also meine ich, den Beweis für die Richtigkeit der Behauptung des Satzes erbracht zu haben.

Ich möchte den Beweis nachfolgend noch einmal mit Hilfe von Wahrheitstafeln erbringen. Diesen habe ich in den 121 und 122 einerseits sowie 123 und 124 abgelegt. Die Verweise habe ich in den Tabellen 125 sowie 126 abgelegt.

TABELLE 123. 1. Teil 2. Beweis 1. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$A \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)$
1	$A\overline{\wedge}B$	$A \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)$
2	$A\overline{\wedge}B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \overline{\wedge} B) \wedge (A \Leftrightarrow C))$
3	$A\overline{\wedge}B$	$A \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)$
4	$A\overline{\wedge}B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \overline{\land} B) \land (A \Leftrightarrow C))$
5	$A\overline{\wedge}B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \overline{\wedge} B) \wedge (A \Leftrightarrow C))$
6	$A\overline{\wedge}B$	$A \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)$
7	$\neg (A \overline{\wedge} B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \overline{\wedge} B) \wedge (A \Leftrightarrow C))$
8	$\neg (A \overline{\wedge} B)$	$A \Leftrightarrow C$	$\neg ((A \overline{\wedge} B) \wedge (A \Leftrightarrow C))$

TABELLE 124. 2. Teil 2. Beweis 1. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	$C\overline{\wedge}B$	$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)\Rightarrow(C\overline{\wedge}B)$
1	$C\overline{\wedge}B$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$
2	$C\overline{\wedge}B$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$
3	$C\overline{\wedge}B$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$
4	$\neg (C \overline{\wedge} B)$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$
5	$C\overline{\wedge}B$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$
6	$C\overline{\wedge}B$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$
7	$C\overline{\wedge}B$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$
8	$\neg (C \overline{\wedge} B)$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$

TABELLE 125. 1. Teil Verweise Beweis 1. Substitutionssatz der NAND-Verknüpfung

Aussage/	Definition 21	Definition 19	Definition 13
Fall Nr.	der	der	der
ган тт.	NAND-Verknüpfung	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	4. Zeile
4	2. Zeile	2. Zeile	3. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

Tabelle 126.	2. Teil	Verweise	Beweis	1.	Substitutions-
satz der NAND	-Verkni	ipfung			

Aussage/	Definition 21	Definition 14
Fall Nr.	der	der
ran m.	NAND-Verknüpfung	Implikation
1	1. Zeile	4. Zeile
2	3. Zeile	2. Zeile
3	2. Zeile	4. Zeile
4	4. Zeile	1. Zeile
5	1. Zeile	2. Zeile
6	3. Zeile	4. Zeile
7	2. Zeile	2. Zeile
8	4. Zeile	1. Zeile

Nun möchte ich den zweiten Substitutionssatz der NAND-Verknüpfung formulieren und beweisen:

Satz 115. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst sowie in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A\overline{\wedge}B) \wedge (B \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$$

BEWEIS. Ursprünglich hatte ich den Beweis des letzten Satzes kopiert und angepasst. Nun möchte ich mir jedoch den Beweis auf eine andere Art überlegen. Denn ich habe das Gefühl, dass dies bessser passt. Ist eine der Aussagen $A\overline{\wedge}B$ oder $B\Leftrightarrow C$ nicht wahr, dann ist gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$(A\overline{\wedge}B) \wedge (B \Leftrightarrow C)$$

nicht wahr und gemäß der Abkürzungsregel 11 der Implikation ist in diesem Fall die gesamte Aussage wiederum wahr. Somit kann an dieser Stelle annehmen, dass sowohl die Aussage $A\overline{\wedge}B$ wie auch die Aussage $B\Leftrightarrow C$ wahr ist. Gemäß dem Satz 67 ist die NAND-Verknüpfung kommutativ. Nun kann ich den dritten Substitutionssatz 98 der Konjunktion anwenden. Anstelle von A verwende ich die Aussage $A\overline{\wedge}B$. Anstelle von B verwende ich die Aussage $B\Leftrightarrow C$. Anstelle von C verwende ich die Aussage $B\overline{\wedge}A$. Aufgrund dieses Satzes und des Satzes 17 der Schlussfolgerung kann ich schreiben

$$(A\overline{\wedge}B) \wedge (B \Leftrightarrow C) \wedge ((A\overline{\wedge}B) \Leftrightarrow (B\overline{\wedge}A)) \Rightarrow (B\overline{\wedge}A) \wedge (B \Leftrightarrow C)$$

Nun kann ich die Aussage $(B\overline{\wedge}A) \wedge (B \Leftrightarrow C)$ in den ersten Substitutionssatz 114 der NAND-Verknüpfung einfügen (wobei ich die Aussagen A und B vertausche). Wiederum gemäß dem Satz 17 der Schlussfolgerung kann ich dann schließen

$$(B\overline{\wedge}A) \wedge (B \Leftrightarrow C) \Rightarrow (C\overline{\wedge}A)$$

TABELLE 127. 1. Teil 1. Beweis 2. Substitutionssatz der NAND-Verknüpfung

Nun habe ich als Aussgen

$$(A\overline{\wedge}B) \wedge (B \Leftrightarrow C) \Rightarrow (B\overline{\wedge}A) \wedge (B \Leftrightarrow C)$$

sowie

$$(B\overline{\wedge}A) \wedge (B \Leftrightarrow C) \Rightarrow (C\overline{\wedge}A)$$

Da die Implikation gemäß dem Satz 15 transitiv ist, kann ich darum (wieder unter Zuhilfnahme des Satzes 17 des Schlussolgerung) schließen, dass gilt

$$(A\overline{\wedge}B) \wedge (B \Leftrightarrow C) \Rightarrow (C\overline{\wedge}A)$$

Nun kann ich erneut den Satz 67 der Kommutation der NAND-Verknüpfung zusammen mit dem Satz 17 der Schlussfolgerung anwenden. Ich kann dann schließen, dass gilt:

$$(C\overline{\wedge}A) \Rightarrow (A\overline{\wedge}C)$$

Und schlussendlich kann ich noch ein letztes Mal kann ich den Satz 15 der Transitivität der Implikation sowie dem Satz 17 der Schlussfolgerung anwenden. Ich erhalte dann die "finale¹" Aussage

$$(A\overline{\wedge}B) \wedge (B \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$$

Dies ist jedoch gerade die zu beweisende Aussage.

Ich möchte den Beweis nachfolgend noch einmal mit Hilfe von Wahrheitstafeln erbringen. Diesen habe ich in den 127 und 128 einerseits sowie 129 und 130 abgelegt. Die Verweise habe ich in den Tabellen 131 sowie 132 abgelegt. Da ich der Meinung bin, dass ich nun den Beweis auf zwei unterschiedliche Arten bewiesen habe, erlaube ich mir an dieser Stelle, auf eine weitere Beweisführung zu verzichten und den Beweis an dieser Stelle zu beenden.

¹endgültige

TABELLE 128. 2. Teil 1. Beweis 2. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}C$	Behauptung
1	1	1
2	1	1
3	1	1
4	1	1
5	1	1
6	0	1
7	1	1
8	0	1

TABELLE 129. 1. Teil 2. Beweis 2. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$B \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(B\Leftrightarrow C)$
1	$A\overline{\wedge}B$	$B \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(B\Leftrightarrow C)$
2	$A\overline{\wedge}B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\land} B) \land (B \Leftrightarrow C))$
3	$A\overline{\wedge}B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\wedge} B) \wedge (B \Leftrightarrow C))$
4	$A\overline{\wedge}B$	$B \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(B\Leftrightarrow C)$
5	$A\overline{\wedge}B$	$B \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(B\Leftrightarrow C)$
6	$A\overline{\wedge}B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\wedge} B) \wedge (B \Leftrightarrow C))$
7	$\neg (A \overline{\wedge} B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\wedge} B) \wedge (B \Leftrightarrow C))$
8	$\neg (A \overline{\wedge} B)$	$B \Leftrightarrow C$	$\neg ((A \overline{\wedge} B) \wedge (B \Leftrightarrow C))$

TABELLE 130. 2. Teil 2. Beweis 2. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}C$	$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)\Rightarrow(A\overline{\wedge}C)$
1	$A\overline{\wedge}C$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$
2	$A\overline{\wedge}C$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$
3	$A\overline{\wedge}C$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$
4	$A\overline{\wedge}C$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$
5	$A\overline{\wedge}C$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$
6	$\neg (A \overline{\wedge} C)$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$
7	$A\overline{\wedge}C$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$
8	$\neg (A \overline{\wedge} C)$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$

Wieder möchte ich an dieser Stelle darauf hinweisen, dass es keine anderen Substitutionssätze der NAND-Verknüpfung geben kann - mindestens in diesem Sinn, als dass diese mit einer einfachen Implikation funktionieren würden.

TABELLE 131. 1. Teil Verweise Beweis 2. Substitutionssatz der NAND-Verknüpfung

Aussage/	Definition 21	Definition 19	Definition 13
Fall Nr.	der	der	der
ran nr.	NAND-Verknüpfung	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	3. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	1. Zeile	4. Zeile
6	3. Zeile	2. Zeile	3. Zeile
7	4. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

TABELLE 132. 2. Teil Verweise Beweis 2. Substitutionssatz der NAND-Verknüpfung

Aussage/	Definition 21	Definition 14
Fall Nr.	der	der
ran m.	NAND-Verknüpfung	Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	2. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	4. Zeile
5	3. Zeile	4. Zeile
6	4. Zeile	1. Zeile
7	3. Zeile	2. Zeile
8	4. Zeile	1. Zeile

Es seien A,B sowie C Symbole von Aussagen, welche in sich selbst, jedoch auch in Bezug auf die anderen Symbole der Behauptung widerspruchsfrei seien. Dann gilt die Aussage

$$\neg A \land B \land C \Rightarrow \neg \left((A \overline{\land} B) \land (A \Rightarrow C) \Rightarrow (C \overline{\land} B) \right)$$

Ist A wahr oder B oder C nicht wahr, dann ist gemäß der erweiterten Anwendung des Minimumprinzip 44 der Konjunktion die Aussage

$$\neg A \land B \land C$$

nicht wahr. Gemäß der Abkürzungsregel 14 der Implikation ist in diesem Fall die gesamte Aussage wahr. Ist jedoch A nicht wahr und sind die Aussagen B sowie C wahr, dann ist gemäß der Definition 13 der Konjunktion die Aussage

$$\neg A \land B \land C$$

wahr. Genauer: Gemäß der ersten Zeile der Definition 11 der Negation ist die Aussage $\neg A$ wahr. Gemäß der vierten Zeile der Definition 13 ist die Aussage

$$\neg A \wedge B$$

wahr. Ebenfalls gemäß der vierten Zeile Definition 13 der Konjunktion ist dann die Aussage

$$(\neg A \land B) \land C$$

wahr. Und da die Konjunktion gemäß dem Satz 40 assoziativ ist, ist die letzte Aussage äquivalent zur Aussage

$$\neg A \wedge B \wedge C$$

welche darum ebenfalls wahr ist.

Gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung ist weiter die Aussage

$$C\overline{\wedge}B$$

jedoch nicht wahr. Gemäß der zweiten Zeile der Definition 21 der NAND-Verknüpfung ist die Aussage

$$A\overline{\wedge}B$$

wahr. Ebenso ist gemäß der zweiten Zeile der Definition 14 der Implikation die Aussage

$$A \Rightarrow C$$

wahr. Somit ist gemäß der vierten Zeile der Definition 13 der Konjunktion die Aussage

$$(A\overline{\wedge}B) \wedge (A \Rightarrow C)$$

ebenfalls wahr. Jedoch ist gemäß der dritten Zeile der Definition 14 der Implikation die Aussage

$$(A\overline{\wedge}B) \wedge (A \Rightarrow C) \Rightarrow (C\overline{\wedge}B)$$

nicht wahr. Dann ist jedoch gemäß der ersten Zeile der Definition 11 der Negation die Aussage

$$\neg ((A \overline{\wedge} B) \wedge (A \Rightarrow C) \Rightarrow (C \overline{\wedge} B))$$

wahr. Also ist gemäß der vierten Zeile die gesamte Aussage

$$\neg A \land B \land C \Rightarrow \neg ((A \overline{\land} B) \land (A \Rightarrow C) \Rightarrow (C \overline{\land} B))$$

wiederum wahr. Damit hätte ich diese Aussage bewiesen.

Und ja: Da die NAND-Verknüpfung ist gemäß dem Satz 67 kommutativ. Und darum kann auch kein Substitutionssatz mit dem zweiten Argument auf der Basis einer Implikation bewiesen werden. Es gilt:

$$A \land \neg B \land C \Rightarrow \neg ((A \overline{\land} B) \land (B \Rightarrow C) \Rightarrow (A \overline{\land} C))$$

Denn ist die Aussage B wahr oder eine der Aussagen A oder C nicht wahr, dann ist aufgrund dem Minimumprinzip 44 mit drei Argumenten die Aussage

$$A \wedge \neg B \wedge C$$

nicht wahr. In diesem Fall ist aufgrund der Abkürzungsregel 11 der Implikation die gesamte Aussage wiederum wahr. Sind sowohl die Aussagen A wie auch C wahr und die Aussage B nicht wahr, dann ist die Aussage

$$A \wedge \neg B \wedge C$$

wahr. Genauer: Gemäß der ersten Zeile der Definition 11 der Negation die Aussage $\neg B$ wahr. Gemäß der vierten Zeile der Definition 13 ist die Aussage

$$A \wedge \neg B$$

wahr. Ebenfalls gemäß der vierten Zeile Definition 13 der Konjunktion ist dann die Aussage

$$(A \land \neg B) \land C$$

wahr. Und da die Konjunktion gemäß dem Satz 40 assoziativ ist, ist die letzte Aussage äquivalent zur Aussage

$$A \wedge \neg B \wedge C$$

welche darum ebenfalls wahr ist.

Die Aussage

$$A\overline{\wedge}C$$

ist gemäß der vierten Zeile der Definition 21 der NAND-Verknüpfung nicht wahr. Jedoch ist gemäß der dritten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

$$A\overline{\wedge}B$$

wahr. Und die Aussage

$$B \Rightarrow C$$

ist gemäß der zweiten Zeile der Definition 14 der Implikation ebenfalls wahr. Also ist gemäß der vierten Zeile der Definition 13 der Konjunktion die Aussage

$$(A \overline{\wedge} B) \wedge (B \Rightarrow C)$$

ebenfalls wahr. Gemäß der dritten Zeile der Definition 14 ist die Aussage

$$(A\overline{\wedge}B) \wedge (B \Rightarrow C) \Rightarrow (A\overline{\wedge}C)$$

nicht wahr. Also ist gemäß der ersten Zeile der Definition 11 der Negation die Aussage

$$\neg ((A \overline{\wedge} B) \wedge (B \Rightarrow C) \Rightarrow (A \overline{\wedge} C))$$

wahr. Somit ist gemäß der vierten Zeile der Definition 14 der Implikation die Aussage

$$A \land \neg B \land C \Rightarrow \neg ((A \overline{\land} B) \land (B \Rightarrow C) \Rightarrow (A \overline{\land} C))$$

eben wahr. Darum bin ich der Meinung, den Beweis für die Richtigkeit der Behauptung erbracht zu haben. Ich bin der Meinung, dass ich jetzt langsam auf die Zielgerade eingebogen bin, was die Substitutionssätze anbelangt. Ich werde mich nun um die Substitutionssätze der NOR-Verknüpfung (Peirce-Funktion) kümmern.

24.9. Substitutionssätze der NOR-Verknüpfung

Ich möchte nun die zwei Substitutionssätze der NOR-Verknüpfung formulieren und beweisen. Der erste Substitutionssatz der NOR-Verknüpfung lautet:

Satz 116. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die die übrigen Symbole des Satzes widerspruchsfrei seien. Dann gilt:

$$A \overline{\vee} B \wedge (A \Leftrightarrow C) \Rightarrow C \overline{\vee} B$$

Beweis. Ist A oder B wahr, dann ist die Aussage

$$A \nabla B$$

gemäß der Definition 17 der NOR-Verknüpfung nicht wahr. Also ist gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$A \nabla B \wedge (A \Leftrightarrow C)$$

nicht wahr und gemäß der Abkürzungsregel 11 der Implikation die gesamte Aussage des Satzes wiederum wahr. Somit kann ich im Folgenden annehmen, dass sowohl die Aussage A wie auch B nicht wahr. Ist nun die Aussage C nicht wahr, dann ist gemäß der dritten Zeile der Definition 19 der Äquivalenz die Aussage

$$A \Leftrightarrow C$$

nicht wahr. Also ist wiederum gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$A \nabla B \wedge (A \Leftrightarrow C)$$

nicht wahr und gemäß der Abkürzungsregel 11 der Implikation die gesamte Aussage des Satzes erneut wahr. Somit bleibt noch der Fall übrig, in welchem die Aussage C ebenfalls nicht wahr ist. In diesem Fall ist gemäß der ersten Zeile der Definition 19 der Äquivalenz die Aussage

$$A \Leftrightarrow C$$

wahr. Gemäß der vierten Zeile ist in diesem Fall die Aussage

$$A \nabla B \wedge (A \Leftrightarrow C)$$

wahr. Jedoch ist (da sowohl die Aussage B wie auch die Aussage C nicht wahr sind), die Aussage

$$C \nabla B$$

gemäß der ersten Zeile der Definition 17 der NOR-Verknüpfung ebenfalls wahr. Somit ist gemäß der vierten Zeile der Definition 14 die gesamte Aussage

$$A\overline{\vee}B \wedge (A \Leftrightarrow C) \Rightarrow C\overline{\vee}B$$

TABELLE 133. 1. Teil 1. Beweis 1. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\vee}B$	$A \Leftrightarrow C$	$(A \overline{\vee} B) \wedge (A \Leftrightarrow C)$
1	1	1	1
2	1	0	0
3	0	1	0
4	0	0	0
5	0	0	0
6	0	1	0
7	0	0	0
8	0	1	0

TABELLE 134. 2. Teil 1. Beweis 1. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	$C \nabla B$	Behauptung
1	1	1
2	0	1
3	0	1
4	0	1
5	1	1
6	0	1
7	0	1
8	0	1

ebenfalls wahr. Damit meine ich, in allen sinnvollen Fällen gezeigt zu haben, dass die Aussage wahr ist und ich somit den Beweis für die Richtigkeit der Behauptung erbracht habe. Ich möchte den Beweis jedoch noch einmal mit Hilfe von Wahrheitstabellen erbringen. Diese sind in den Tabellen 133 und 134 sowie 135 und 136 abgelegt. Die Verweise habe ich in den Tabellen 137 sowie 138 abgelegt.

Nun folgt auch schon der zweite Substitutionssatz der NOR-Verknüpfung. Dieser könnte relativ leicht aus dem ersten Substitutionssatz der NOR-Verknüpfung abgeleitet werden, indem darauf aufmerksam gemacht wird, dass die NOR-Verknüpfung kommutiert (vergleiche mit der Definition 17 der NOR-Verknüpfung). Aber das ist mir zu mühsam. Denn ich habe auch nicht streng herleitet, dass die NOR-Verknüpfung nicht kommutiert. Ich habe das einfach so geschrieben. Also möchte ich das wiederum die Ochsentour beschreiten, um den zweiten Substitutionssatz der NOR-Verknüpfung zu beweisen. Nun, da ist er:

TABELLE 135. 1. Teil 2. Beweis 1. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\lor}B$	$A \Leftrightarrow C$	$(A\overline{\vee}B)\wedge(A\Leftrightarrow C)$
1	$A\overline{\vee}B$	$A \Leftrightarrow C$	$(A \overline{\vee} B) \wedge (A \Leftrightarrow C)$
2	$A \nabla B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \nabla B) \wedge (A \Leftrightarrow C))$
3	$\neg (A \overline{\vee} B)$	$A \Leftrightarrow C$	$\neg ((A \overline{\vee} B) \wedge (A \Leftrightarrow C))$
4	$\neg (A \overline{\vee} B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \overline{\vee} B) \wedge (A \Leftrightarrow C))$
5	$\neg (A \overline{\vee} B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \nabla B) \wedge (A \Leftrightarrow C))$
6	$\neg (A \overline{\vee} B)$	$A \Leftrightarrow C$	$\neg ((A \overline{\vee} B) \wedge (A \Leftrightarrow C))$
7	$\neg (A \overline{\vee} B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \overline{\vee} B) \wedge (A \Leftrightarrow C))$
8	$\neg (A \overline{\vee} B)$	$A \Leftrightarrow C$	$\neg ((A \overline{\vee} B) \wedge (A \Leftrightarrow C))$

TABELLE 136. 2. Teil 2. Beweis 1. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	$C \overline{\vee} B$	$A \overline{\vee} B \wedge (A \Leftrightarrow C) \Rightarrow C \overline{\vee} B$
1	$C \nabla B$	$A \overline{\vee} B \wedge (A \Leftrightarrow C) \Rightarrow C \overline{\vee} B$
2	$\neg (C \overline{\lor} B)$	$A\overline{\vee}B \wedge (A \Leftrightarrow C) \Rightarrow C\overline{\vee}B$
3	$\neg (C \overline{\lor} B)$	$A \overline{\vee} B \wedge (A \Leftrightarrow C) \Rightarrow C \overline{\vee} B$
4	$\neg (C \nabla B)$	$A \overline{\vee} B \wedge (A \Leftrightarrow C) \Rightarrow C \overline{\vee} B$
5	$C \overline{\vee} B$	$A \overline{\vee} B \wedge (A \Leftrightarrow C) \Rightarrow C \overline{\vee} B$
6	$\neg (C \overline{\lor} B)$	$A \overline{\vee} B \wedge (A \Leftrightarrow C) \Rightarrow C \overline{\vee} B$
7	$\neg (C \nabla B)$	$A\overline{\vee}B \wedge (A \Leftrightarrow C) \Rightarrow C\overline{\vee}B$
8	$\neg (C \nabla B)$	$A \overline{\vee} B \wedge (A \Leftrightarrow C) \Rightarrow C \overline{\vee} B$

TABELLE 137. 1. Teil Verweise Beweis 1. Substitutionssatz der NOR-Verknüpfung

Auggaga /	Definition 17	Definition 19	Definition 13
Aussage/ Fall Nr.	der	der	der
ran m.	NOR-Verknüpfung	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	1. Zeile
5	3. Zeile	3. Zeile	1. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

TABELLE 138. 2. Teil Verweise Beweis 1. Substitutionssatz der NOR-Verknüpfung

Aussage/	Definition 17	Definition 14
Fall Nr.	der	der
ran m.	NOR-Verknüpfung	Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	3. Zeile	1. Zeile
4	4. Zeile	1. Zeile
5	1. Zeile	2. Zeile
6	2. Zeile	1. Zeile
7	3. Zeile	1. Zeile
8	4. Zeile	1. Zeile

Satz 117. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbole des Beweises widerspruchsfrei seien. Dann gilt die Aussage

$$A\overline{\vee}B \wedge (B \Leftrightarrow C) \Rightarrow A\overline{\vee}C$$

Beweis. Sei mir bitte nicht böse, dass der Beweis haargenau gleich wie derjenige des vorhergehenden Substitutionssatzes aufgebaut ist. Ist eine der Aussagen A oder B der beide zusammen nicht wahr, dann ist die Aussage

$$A\overline{\vee}B$$

nicht wahr. Also ist in diesen Fällen gemäß dem Minimumprinzip 10 der Konjunktion die Aussage

$$A\overline{\vee}B \wedge (B \Leftrightarrow C)$$

nicht wahr und gemäß der Abkürzungsregel 10 der Konjunktion die gesamte zu beweisende Aussage wiederum wahr. Sind jedoch beide Aussagen A und B nicht wahr, dann ist die Aussage

$$A \overline{\vee} B$$

wahr. Dann kann jedoch ebenfalls die Aussage C nicht wahr sein. Denn in diesem Fall ist die Aussage

$$B \Leftrightarrow C$$

gemäß der ersten Zeile der Definition 19 wahr. Wäre die Aussage C nicht wahr, dann wäre die Aussage

$$B \Leftrightarrow C$$

nicht wahr. Also wäre gemäß dem Minimumprinzip 10 der Konjunktion die Auassage

$$A \overline{\vee} B \wedge (B \Leftrightarrow C)$$

Tabelle 139.	1. Teil 1	. Beweis	2.	Substitutionssatz	der
NOR-Verknüpf	ung				

Aussage/ Fall Nr.	$A\overline{\vee}B$	$B \Leftrightarrow C$	$(A\overline{\vee}B)\wedge(B\Leftrightarrow C)$
1	1	1	1
2	1	0	0
3	0	0	0
4	0	1	0
5	0	1	0
6	0	0	0
7	0	0	0
8	0	1	0

nicht wahr und dann entsprechend der Abkürzungsregel 11 der Implikation die Aussage wiederum wahr.

Doch zurück zum Fall, in welchem die Aussage C nicht wahr ist. In diesem Fall ist gemäß der ersten Zeile der Definition 17 der NOR-Verknüpfung die Aussage

$$A\overline{\vee}C$$

wahr. Also ist gemäß der vierten Zeile der Definition 14 der Implikation die gesamte Aussage

$$A\overline{\vee}B \wedge (B \Leftrightarrow C) \Rightarrow A\overline{\vee}C$$

wahr. Somit bin ich der Meinung, dass ich in allen denkbaren Fällen gezeigt habe, dass die Aussage des Satzes wahr ist. Aus diesem Grund kann ich die weitere Beweisführung an dieser Stelle abbrechen - nachdem ich die Richtigkeit der Aussage noch einmal mittels Wahrheitstabellen erbracht habe. Den Beweis habe ich einerseits in den Tabellen 139 sowie 140 und andererseits in den Tabellen 141 sowie 142 abgelegt. Die Beweise habe ich in den Tabellen 143 sowie 144 abgelegt. Da ich nun meine, den Beweis auf zwei verschiedene Arten bewiesen habe, erlaube ich mir, auf eine weitere Beweisführung zu verzichten und den Beweis somit an dieser Stelle zu beenden.

24.10. weitere Substitutionssätze

Es ist ein Jammer. Kaum habe ich versucht, die Mengenoperationen weiter auszführen, musste ich zu meinem Ärger erkennen, dass ich mit dem bestehenden Rüstzeug eben nicht nicht die wirklich wichtigen Sätze beweisen könne. Ich bin mir bewussst, dass ich noch viele Sätze formulieren und beweisen muss. Darum möchte ich gleich beginnen:

TABELLE 140. 2. Teil 1. Beweis 2. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	$A \overline{\vee} C$	Behauptung
1	1	1
2	0	1
3	1	1
4	0	1
5	0	1
6	0	1
7	0	1
8	0	1

TABELLE 141. 1. Teil 2. Beweis 2. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{ee}B$	$B \Leftrightarrow C$	$(A\overline{\vee}B)\wedge(B\Leftrightarrow C)$
1	$A\overline{\vee}B$	$B \Leftrightarrow C$	$(A \overline{\vee} B) \wedge (B \Leftrightarrow C)$
2	$A\overline{\vee}B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\vee} B) \wedge (B \Leftrightarrow C))$
3	$\neg (A \overline{\vee} B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\vee} B) \wedge (B \Leftrightarrow C))$
4	$\neg (A \overline{\vee} B)$	$B \Leftrightarrow C$	$\neg ((A \nabla B) \wedge (B \Leftrightarrow C))$
5	$\neg (A \overline{\vee} B)$	$B \Leftrightarrow C$	$\neg ((A \overline{\vee} B) \wedge (B \Leftrightarrow C))$
6	$\neg (A \overline{\vee} B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\vee} B) \wedge (B \Leftrightarrow C))$
7	$\neg (A \overline{\vee} B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\vee} B) \wedge (B \Leftrightarrow C))$
8	$\neg (A \overline{\vee} B)$	$B \Leftrightarrow C$	$\neg ((A \nabla B) \wedge (B \Leftrightarrow C))$

TABELLE 142. 2. Teil 2. Beweis 1. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\vee}C$	Behauptung
1	1	1
2	0	1
3	1	1
4	0	1
5	0	1
6	0	1
7	0	1
8	0	1

Satz 118. Es seien A,B sowie C Aussagen, welche in sich selber und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

TABELLE 143. 1. Teil Verweise Beweis 2. Substitutionssatz der NOR-Verknüpfung

Aussage/	Definition 17	Definition 19	Definition 13
Fall Nr.	der	der	der
rall INT.	NOR-Verknüpfung	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	2. Zeile
4	2. Zeile	4. Zeile	1. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	1. Zeile
7	4. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

TABELLE 144. 2. Teil Verweise Beweis 2. Substitutionssatz der NOR-Verknüpfung

Auggero /	Definition 17	Definition 14
Aussage/	der	der
Fall Nr.	NOR-Verknüpfung	Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile
5	3. Zeile	1. Zeile
6	4. Zeile	1. Zeile
7	3. Zeile	1. Zeile
8	4. Zeile	1. Zeile

$$(A \Leftrightarrow B) \Rightarrow ((A \land C) \Leftrightarrow (B \land C))$$

Beweis. Ist die Aussage C nicht wahr, dann ist gemäß dem Minimumusprinzip 10 der Konjunktion sowohl die Aussage $A \wedge C$ wie auch die Aussage $B \wedge C$ nicht wahr. Somit ist gemäß der ersten Zeile der Definition 19 der Äquivalenz die Aussage

$$(A \wedge C) \Leftrightarrow (B \wedge C)$$

wahr. Somit ist gemäß der Abkürzungsregel 11 der Implikation die Aussage

$$(A \Leftrightarrow B) \Rightarrow ((A \land C) \Leftrightarrow (B \land C))$$

wahr. Ist jedoch die Aussage C wahr, dann kann ich gemäß der zweiten Zeile des Lemmas der erweiterten Minimums und Maximumsätze 79 der

Logik schreiben

$$A \Leftrightarrow A \wedge C$$

sowie auch

$$B \Leftrightarrow B \wedge C$$

Nun kann ich (da die Aussage $A \Leftrightarrow A \land C$ wahr ist) und dem zweiten Zeile des Lemmas der erweiterten Minimums und Maximumsätze 79 der Logik schreiben:

$$(A \Leftrightarrow B) \Leftrightarrow (A \Leftrightarrow B) \land (A \Leftrightarrow A \land C)$$

Da aus gemäß dem Satz 52 aus der Äquivalenz auch die Implikation folgt, kann ich schreiben:

$$(A \Leftrightarrow B) \Rightarrow (A \Leftrightarrow B) \land (A \Leftrightarrow A \land C)$$

Jetzt kann ich den Substitutionssatz 111 der Äquivalenz verwenden und kann dann schließen

$$(A \Leftrightarrow B) \land (A \Leftrightarrow A \land C) \Rightarrow (A \land C \Leftrightarrow B)$$

Da die Implikation gemäß dem Satz 15 transitiv ist, kann ich aufgrund der letzten beiden Aussagen schließen:

$$(A \Leftrightarrow B) \Rightarrow (A \land C \Leftrightarrow B)$$

Da ich weiter oben bereits schließen konnte, dass gilt:

$$B \Leftrightarrow B \wedge C$$

kann ich gemäß dem zweiten Satz der erweiterten Minimums und Maximumsätze 79 der Logik schreiben

$$(A \land C \Leftrightarrow B) \Leftrightarrow (A \land C \Leftrightarrow B) \land (B \Leftrightarrow B \land C)$$

Da aus der Äquivalenz folgt, kann ich auch schreiben:

$$(A \land C \Leftrightarrow B) \Rightarrow (A \land C \Leftrightarrow B) \land (B \Leftrightarrow B \land C)$$

Da gilt:

$$(A \Leftrightarrow B) \Rightarrow (A \land C \Leftrightarrow B)$$

sowie

$$(A \land C \Leftrightarrow B) \Rightarrow (A \land C \Leftrightarrow B) \land (B \Leftrightarrow B \land C)$$

kann ich gemäß dem Satz 15 der Transitivität der Implikation schreiben .

$$(A \Leftrightarrow B) \Rightarrow (A \land C \Leftrightarrow B) \land (B \Leftrightarrow B \land C)$$

Gemäß dem Satz 16 der Transitivität der Äquivalenz kann ich nun schließen:

$$(A \land C \Leftrightarrow B) \land (B \Leftrightarrow B \land C) \Rightarrow (A \land C \Leftrightarrow B \land C)$$

Da weiter die Implikation gemäß dem Satz 15 transitiv ist, kann ich noch einmal schreiben

$$(A \Leftrightarrow B) \Rightarrow (A \land C \Leftrightarrow B \land C)$$

Tabelle 145. 1. Teil 1. Beweis 1. erweiterter Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \wedge C$	$B \wedge C$
1	1	0	0
2	1	0	0
3	0	0	0
4	0	0	1
5	0	0	0
6	0	1	0
7	1	0	0
8	1	1	1

Tabelle 146. 2. Teil 1. Beweis 1. erweiterter Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$\begin{array}{cc} A \wedge C & \Leftrightarrow \\ B \wedge C \end{array}$	Behauptung
1	1	1
2	1	1
3	1	1
4	0	1
5	1	1
6	0	1
7	1	1
8	1	1

Das bedeutet jedoch, dass die Aussage auch dann stimmt, falls die Aussage C wahr ist. Darum bin ich der Meinung, dass ich den Beweis für die Richtigkeit der Behauptung für alle möglichen Aussagen A, B sowie C erbracht habe.

Ich möchte den Satz noch mittels Wahrheitsfafeln beweisen. Diesen habe ich einerseits in den Tabellen 145 sowie 146 und andererseits in den Tabellen 147 sowie 148 abgelegt. Die Verweise habe ich in den Tabellen 149 sowie 150 abgelegt.

Da ich nun der Meinung bin, dass ich den Beweis für die Richtigkeit der Behauptung auf zwei unabhängige Arten erbracht habe, erlaube ich mir an dieser Stelle, auf eine weitere Beweisführung zu verzichen und den Beweis an dieser Stelle somit zu beenden.

Satz 119. Es seien A, B sowie C Aussagen, welche in sich selber und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

TABELLE 147. 1. Teil 2. Beweis 1. erweiterter Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \wedge C$	$B \wedge C$
1	$A \Leftrightarrow B$	$\neg (A \land C)$	$\neg (B \land C)$
2	$A \Leftrightarrow B$	$\neg (A \land C)$	$\neg (B \land C)$
3	$\neg (A \Leftrightarrow B)$	$\neg (A \land C)$	$\neg (B \land C)$
4	$\neg (A \Leftrightarrow B)$	$\neg (A \land C)$	$B \wedge C$
5	$\neg (A \Leftrightarrow B)$	$\neg (A \land C)$	$\neg (B \land C)$
6	$\neg (A \Leftrightarrow B)$	$A \wedge C$	$\neg (B \land C)$
7	$A \Leftrightarrow B$	$\neg (A \land C)$	$\neg (B \land C)$
8	$A \Leftrightarrow B$	$A \wedge C$	$B \wedge C$

Tabelle 148. 2. Teil 2. Beweis 1. erweiterter Substitutionssatz der Konjunktion

Aussage/	$A \wedge C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
Fall Nr.	$B \wedge C$	$(A \land C \Leftrightarrow B \land C)$	
1	$A \wedge C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
1	$B \wedge C$	$(A \land C \Leftrightarrow B \land C)$	
2	$A \wedge C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
2	$B \wedge C$	$(A \land C \Leftrightarrow B \land C)$	
3	$A \wedge C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
3	$B \wedge C$	$(A \land C \Leftrightarrow B \land C)$	
4	$\neg (A \land C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
4	$B \wedge C$	$(A \land C \Leftrightarrow B \land C)$	
5	$A \wedge C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
9	$B \wedge C$	$(A \land C \Leftrightarrow B \land C)$	
6	$\neg (A \land C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
0	$B \wedge C$)	$(A \land C \Leftrightarrow B \land C)$	
7	$A \wedge C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
($B \wedge C$	$(A \land C \Leftrightarrow B \land C)$	
8	$A \wedge C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
0	$B \wedge C$	$(A \land C \Leftrightarrow B \land C)$	

$$(A \Leftrightarrow B) \Rightarrow (C \land A \Leftrightarrow C \land B)$$

Beweis. Ich frage mich, ob es mir gelingen kann, den Beweis dieses Satzes mit Hilfe des vorhergehenden ersten erweiterten Substitutionssatzes 118 der Konjunktion zusammen mit den übrigen Substitutionssätzen zu erbrigen. Ich probiere es.

Tabelle 149. 1. Teil Verweise Beweis 1. erweitertert Substitutionssatz der Konjunktion

Aussage/	Definition 19	Definition 13	Definition 13
Fall Nr.	der	der	der
rall IVI.	Äquivalenz	Konjunktion	Konjunktion
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	1. Zeile	3. Zeile
4	2. Zeile	2. Zeile	4. Zeile
5	3. Zeile	3. Zeile	1. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle 150. 2. Teil Verweise Beweis 1. erweiterter Substitutionssatz der Konjunktion

Aussage/	Definition 19	Definition 14
Fall Nr.	der	der
ran m.	Äquivalenz	Implikation
1	1. Zeile	4. Zeile
2	1. Zeile	4. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile
5	1. Zeile	2. Zeile
6	3. Zeile	1. Zeile
7	1. Zeile	4. Zeile
8	4. Zeile	4. Zeile

Gemäß dem vorgehenden ersten erweiterten Substitutionssatz 118 der Konunktion kann ich schließen, dass gilt

$$(A \Leftrightarrow B) \Rightarrow (A \land C \Leftrightarrow B \land C)$$

Wenn ich zeigen kann, dass gilt

$$((A \land C) \Leftrightarrow (B \land C)) \Rightarrow (C \land A \Leftrightarrow C \land B)$$

dann habe ich den Beweis für die Richtigkeit der Behauptung erbracht. Auch dies probiere ich so umzusetzen. Da die Konjunktion gemäß dem Satz 35 kommutiert, kann ich schreiben:

$$A \wedge C \Leftrightarrow C \wedge A$$

Da die letzte Aussage immer wahr sein muss, kann ich darum schreiben (vergleiche mit dem zweiten Satz 79 des erweiterten Lemmas der

Minimums und Maximumsätze der Logik):

$$((A \land C) \Leftrightarrow (B \land C)) \Rightarrow ((A \land C) \Leftrightarrow (B \land C)) \land (A \land C \Leftrightarrow C \land A)$$

Dann kann ich gemäß dem Substitutionssatz 111 der Äquivalenz schreiben, dass gilt

$$((A \land C) \Leftrightarrow (B \land C)) \land (A \land C \Leftrightarrow C \land A) \Rightarrow (C \land A \Leftrightarrow B \land C)$$

Da die Implikation gemäß dem Satz 15 transitiv ist, kann ich wegen den Aussagen

$$((A \land C) \Leftrightarrow (B \land C)) \Rightarrow ((A \land C) \Leftrightarrow (B \land C)) \land (A \land C \Leftrightarrow C \land A)$$
 sowie

$$((A \land C) \Leftrightarrow (B \land C)) \land (A \land C \Leftrightarrow C \land A) \Rightarrow (C \land A \Leftrightarrow B \land C)$$

folgern, dass auch gelten muss

$$((A \land C) \Leftrightarrow (B \land C)) \Rightarrow (C \land A \Leftrightarrow B \land C)$$

Wie Du siehst, war das jetzt ein mächtiger "Klimmzug²" für ein solch bescheidenes Resultat. Fast die gleiche Überlegung kann ich nun anstellen, um zu zeigen, dass auch die Implikation

$$(C \land A \Leftrightarrow B \land C) \Rightarrow (C \land A \Leftrightarrow C \land B)$$

gilt: Gemäß dem Satz 35 der Kommutation der Konjunktion kann ich schreiben, dass gilt:

$$B \wedge C \Leftrightarrow C \wedge B$$

Da diese Aussage ein logischer Satz und darum immer wahr ist (sofern die Aussagen B und C in sich selber und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei sind), kann ich gemäß dem zweiten Satz 79 des erweiterten Lemmas der Minimums und Maximumsätze der Logik folgern, dass gilt:

$$(C \land A \Leftrightarrow B \land C) \Rightarrow (C \land A \Leftrightarrow B \land C) \land (C \land B \Leftrightarrow B \land C)$$

Gemäß dem Satz 16 der Transitivität der Äquivalenz kann ich schließen, dass gilt:

$$(C \land A \Leftrightarrow B \land C) \land (B \land C \Leftrightarrow C \land B) \Rightarrow (C \land A \Leftrightarrow C \land B)$$

Gemäß dem Satz 15 der Transitivität der Implikation kann ich wegen den letzten Aussagen schließen, dass gilt:

$$(C \land A \Leftrightarrow B \land C) \Rightarrow (C \land A \Leftrightarrow C \land B)$$

Ich fasse zusammen: Weiter oben habe ich gesehen, dass gilt:

$$(A \Leftrightarrow B) \Rightarrow (A \land C \Leftrightarrow B \land C)$$

Dann habe ich gezeigt, dass die Aussage gilt:

$$(A \land C \Leftrightarrow B \land C) \Rightarrow (C \land A \Leftrightarrow B \land C)$$

²also eine grosse Anstrengung

Tabelle 151	. 1. Teil	1. Beweis	2. erweiter	ter Substitu-
tionssatz der	Konjunk	tion		

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$C \wedge A$	$C \wedge B$
1	1	0	0
2	1	0	0
3	0	0	0
4	0	0	1
5	0	0	0
6	0	1	0
7	1	0	0
8	1	1	1

Da die Implikation gemäß dem Satz 15 transitiv ist, kann ich darum schließen, dass auch gilt

$$(A \Leftrightarrow B) \Rightarrow (C \land A \Leftrightarrow B \land C)$$

Ebenfalls weiter oben habe ich zu zeigen versucht, dass die folgende Aussage ebenfalls wahr ist:

$$(C \land A \Leftrightarrow B \land C) \Rightarrow (C \land A \Leftrightarrow C \land B)$$

Und da die Implikation gemäß dem Satz 15 immer noch transitiv ist, kann ich wiederum folgern, dass gilt:

$$(A \Leftrightarrow B) \Rightarrow (C \land A \Leftrightarrow C \land B)$$

Das ist jedoch gerade die Behauptung.

Damit alles seine Richtigkeit hat, möchte ich den Satz ebenfalls noch einmal mit Hilfe von Wahrheitstafeln erbringen. Diesen habe ich einersits in den Tabellen 151 sowie 152 einerseits sowie 152 sowie 154 andererseits abgelegt. Die Verweise habe ich in den Tabellen 155 sowie 156 abgelegt. Da ich nun glaube, den Beweis für die Richtigkeit der Behauptung auf zwei unabhängige Arten erbracht zu haben, erlaube ich mir, auf eine weitere Beweisführung zu verzichen und den Beweis somit an dieser Stelle zu beenden.

Zum obigen Beweis möchte ich anfügen, dass ich mir bewusst bin, dass er extrem langfädig ausgefallen ist. Ob es sich lohnt, Beweise so in aller Ausführlichkeit zu beschreiben, weiß ich nicht. Ich hoffe trotzdem, dass es für etwas gut sein könnte.

Nun möchte ich die nächsten zwei entsprechenden Sätze formulieren und zu beweisen.

Satz 120. Es seien A, B sowie C Symbole von Aussagen, welche sowohl in sich selber wie auch in Bezug auf die anderen Symbole des

TABELLE 152. 2. Teil 1. Beweis 2. erweiterter Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$\begin{array}{ccc} C \wedge A & \Leftrightarrow \\ C \wedge B & \end{array}$	Behauptung
1	1	1
2	1	1
3	1	1
4	0	1
5	1	1
6	0	1
7	1	1
8	1	1

TABELLE 153. 1. Teil 2. Beweis 2. erweiterter Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$C \wedge A$	$C \wedge B$
1	$A \Leftrightarrow B$	$\neg (C \land A)$	$\neg (C \land B)$
2	$A \Leftrightarrow B$	$\neg (C \land A)$	$\neg (C \land B)$
3	$\neg (A \Leftrightarrow B)$	$\neg (C \land A)$	$\neg (C \land B)$
4	$\neg (A \Leftrightarrow B)$	$\neg (C \land A)$	$C \wedge B$
5	$\neg (A \Leftrightarrow B)$	$\neg (C \land A)$	$\neg (C \land B)$
6	$\neg (A \Leftrightarrow B)$	$C \wedge A$	$\neg (C \land B)$
7	$A \Leftrightarrow B$	$\neg (C \land A)$	$\neg (C \land B)$
8	$A \Leftrightarrow B$	$C \wedge A$	$C \wedge B$

Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \Rightarrow ((A \lor C) \Leftrightarrow (B \lor C))$$

BEWEIS. Ist die Aussage C wahr, dann ist bereits die ganze Aussage wahr. Denn gemäß der Abkürzungsregel 11 der Implikation ist in diesem Fall sowohl die Aussage

$$A \vee C$$

wie auch die Aussage

$$B \vee C$$

wahr. Gemäß der vierten Zeile der Definition 19 der Äquivalenz ist in diesem Fall (da beide Aussagen wahr sind) die Aussage

$$A \lor C \Leftrightarrow B \lor C$$

wahr. Also ist gemäß der Abkürzungsregel 11 die Aussage

$$(A \Leftrightarrow B) \Rightarrow ((A \lor C) \Leftrightarrow (B \lor C))$$

TABELLE 154. 2. Teil 2. Beweis 2. erweiterter Substitutionssatz der Konjunktion

Angaama /	$C \wedge A \wedge $	$(A \leftrightarrow D)$	
Aussage/	$C \wedge A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
Fall Nr.	$C \wedge B$	$(C \land A \Leftrightarrow C \land B)$	
1	$C \wedge A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
1	$C \wedge B$	$(C \land A \Leftrightarrow C \land B)$	
2	$C \wedge A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
2	$C \wedge B$	$(C \land A \Leftrightarrow C \land B)$	
3	$C \wedge A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
3	$C \wedge B$	$(C \land A \Leftrightarrow C \land B)$	
4	$\neg (C \land A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
4	$C \wedge B$)	$(C \land A \Leftrightarrow C \land B)$	
5	$C \wedge A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
9	$C \wedge B$	$(C \land A \Leftrightarrow C \land B)$	
6	$\neg (C \land A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
0	$C \wedge B$)	$(C \land A \Leftrightarrow C \land B)$	
7	$C \wedge A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
'	$C \wedge B$	$(C \land A \Leftrightarrow C \land B)$	
8	$C \wedge A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
O	$C \wedge B$	$(A \land C \Leftrightarrow B \land C)$	

TABELLE 155. 1. Teil Verweise Beweis 2. erweiterter Substitutionssatz der Konjunktion

Aussage/	Definition 19	Definition 13	Definition 13
Fall Nr.	der	der	der
ran m.	Äquivalenz	Konjunktion	Konjunktion
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	3. Zeile	3. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	3. Zeile	4. Zeile
5	3. Zeile	2. Zeile	1. Zeile
6	3. Zeile	4. Zeile	3. Zeile
7	4. Zeile	2. Zeile	2. Zeile
8	4. Zeile	4. Zeile	4. Zeile

wahr. Im folgenden kann ich darum annehmen, dass die Aussage C nicht wahr ist. Gemäß der dritten Zeile des Lemmas 79 der erweiterten Minimums und Maximumsätze kann ich in diesem Fall jedoch schreiben

$$A \Leftrightarrow A \vee C$$

sowie

$$B \Leftrightarrow B \lor C$$

Tabelle 156. 2. Teil Verweise Beweis 2. erweiterter Substitutionssatz der Konjunktion

Aussage/	Definition 19	Definition 14
Fall Nr.	der	der
ran m.	Äquivalenz	Implikation
1	1. Zeile	4. Zeile
2	1. Zeile	4. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile
5	1. Zeile	2. Zeile
6	3. Zeile	1. Zeile
7	1. Zeile	4. Zeile
8	4. Zeile	4. Zeile

Da diese Auassage wahr sind, kann ich gemäß der zweiten Zeile des Lemmas 79 der erweiterten Minimums und Maximumsätze der Logik schreiben

$$(A \Leftrightarrow B) \Leftrightarrow (A \Leftrightarrow B) \land (A \Leftrightarrow A \lor C)$$

Da gemäß dem Satz 52 aus der Äquivalenz die Implikation folgt kann ich auch schreiben:

$$(A \Leftrightarrow B) \Rightarrow (A \Leftrightarrow B) \land (A \Leftrightarrow A \lor C)$$

Gemäß dem Substitutionssatz 111 der Äquivalenz kann ich schreiben:

$$(A \Leftrightarrow B) \land (A \Leftrightarrow A \lor C) \Rightarrow ((A \lor C) \Leftrightarrow B)$$

Da die Implikation gemäß dem Satz 15 transitiv ist, kann ich aufgrund der letzten zwei Aussagen schreiben:

$$(A \Leftrightarrow B) \Rightarrow ((A \lor C) \Leftrightarrow B)$$

Weiter oben habe ich gefolgert, dass ich (da die Aussage ${\cal C}$ nicht wahr ist) die Aussage

$$B \Leftrightarrow B \vee C$$

wahr ist. Gemäß der zweiten Zeile der der erweiterten Minimums und Maximumsätze der Logik schreiben

$$(A \lor C \Leftrightarrow B) \Leftrightarrow (A \lor C \Leftrightarrow B) \land (B \Leftrightarrow B \lor C)$$

Da gemäß dem Satz 52 aus der Äquivalenz die Implikation folgt, kann ich auch schreiben:

$$(A \Leftrightarrow B) \Rightarrow (A \lor C \Leftrightarrow B) \land (B \Leftrightarrow B \lor C)$$

Gemäß dem Satz 16 der Transitivität der Äquivalenz kann ich schreiben:

$$(A \lor C \Leftrightarrow B) \land (B \Leftrightarrow B \lor C) \Rightarrow (A \lor C \Leftrightarrow B \lor C)$$

TABELLE 157. 1. Teil 1. Beweis 1. erweiterter Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \lor C$	$B \lor C$
1	1	0	0
2	1	1	1
3	0	0	1
4	0	1	1
5	0	1	0
6	0	1	1
7	1	1	1
8	1	1	1

TABELLE 158. 2. Teil 1. Beweis 1. erweiterter Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$\begin{array}{ccc} A \lor C & \Leftrightarrow \\ B \lor C \end{array}$	Behauptung
1	1	1
2	1	1
3	0	1
4	1	1
5	0	1
6	1	1
7	1	1
8	1	1

Da die Implikation gemäß dem Satz 15 transitiv ist, kann ich aufgrund der letzten zwei Aussagen schreiben:

$$(A \Leftrightarrow B) \Rightarrow (A \lor C \Leftrightarrow B \lor C)$$

Dies ist jedoch gerade die Behauptung. Darum bin ich der Meinung, dass ich den Beweis für die Richtigkeit der Behauptung erbracht habe.

Damit alles seine Richtigkeit hat, möchte ich den Beweis noch einmal mittels Wahrheitstafeln erbringen. Diesen habe ich einerseits in den Tabellen 157 sowie 158, andererseits in den Tabellen 159 wie auch 160 abgelegt. Die Verweise habe ich in den Tabellen 161 sowie 162 abgelegt.

Da ich nun der Meinung bin, zwei Mal auf unterschiedliche Arten den Beweis für die Richtigkeit der Behauptung erbracht zu haben, beende ich an dieser Stelle die weitere Beweisführung.

Ich werde nun versuchen, den zweiten erweiterten Substitutionssatz der Disjunktion formulieren und zu beweisen.

TABELLE 159. 1. Teil 2. Beweis 1. erweiterter Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \lor C$	$B \lor C$
1	$A \Leftrightarrow B$	$\neg (A \lor C)$	$\neg (B \lor C)$
2	$A \Leftrightarrow B$	$A \lor C$	$B \lor C$
3	$\neg (A \Leftrightarrow B)$	$\neg (A \lor C)$	$B \lor C$
4	$\neg (A \Leftrightarrow B)$	$A \lor C$	$B \lor C$
5	$\neg (A \Leftrightarrow B)$	$A \lor C$	$\neg (B \lor C)$
6	$\neg (A \Leftrightarrow B)$	$A \lor C$	$B \lor C$
7	$A \Leftrightarrow B$	$A \lor C$	$B \lor C$
8	$A \Leftrightarrow B$	$A \lor C$	$B \lor C$

Tabelle 160. 2. Teil 2. Beweis 1. erweiterter Substitutionssatz der Disjunktion

Aussage/	$A \lor C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
Fall Nr.	$B \vee C$	$(A \vee C \Leftrightarrow B' \vee C)$	
1	$A \lor C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
1	$B \vee C$	$(A \lor C \Leftrightarrow B \lor C)$	
2	$A \lor C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
	$B \vee C$	$(A \lor C \Leftrightarrow B \lor C)$	
3	$\neg (A \lor C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
3	$B \vee C$	$(A \lor C \Leftrightarrow B \lor C)$	
4	$A \lor C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
4	$B \vee C$	$(A \lor C \Leftrightarrow B \lor C)$	
5	$\neg (A \lor C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
9	$B \vee C$	$(A \lor C \Leftrightarrow B \lor C)$	
6	$A \lor C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
0	$B \vee C$	$(A \lor C \Leftrightarrow B \lor C)$	
7	$A \lor C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
($B \vee C$	$(A \lor C \Leftrightarrow B \lor C)$	
8	$A \lor C \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
0	$B \vee C$	$(A \lor C \Leftrightarrow B \lor C)$	

Satz 121. Es seien A, B sowie C Symbole von Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \Rightarrow (C \lor A \Leftrightarrow C \lor B)$$

Beweis. Ich habe den Beweis des vorhergehenden Satzes 119 kopiert und angepasst. Falls Du also merkst, dass der Beweis falsch ist, könnte ein Grund dafür in der Tatsache liegen, dass der Beweis eine

Tabelle 161. 1. Teil Verweise Beweis 1. erweiterter Substitutionssatz der Disjunktion

Aussage/	Definition 19	Definition 17	Definition 17
Fall Nr.	der	der	der
rall Nr.	Äquivalenz	Disjunktion	Disjunktion
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	1. Zeile	3. Zeile
4	2. Zeile	2. Zeile	4. Zeile
5	3. Zeile	3. Zeile	1. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle 162. 2. Teil Verweise Beweis 1. erweiterter Substitutionssatz der Konjunktion

Aussage/	Definition 19	Definition 14
Fall Nr.	der	der
ran m.	Äquivalenz	Implikation
1	1. Zeile	4. Zeile
2	4. Zeile	4. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile
5	3. Zeile	1. Zeile
6	4. Zeile	2. Zeile
7	4. Zeile	4. Zeile
8	4. Zeile	4. Zeile

angepasste Kopie ist. Ich hoffe jedoch trotzdem, dass der Beweis richtig ist.

Gemäß dem vorgehenden ersten erweiterten Substitutionssatz 120 der Disjunktion kann ich schließen, dass gilt

$$(A \Leftrightarrow B) \Rightarrow (A \lor C \Leftrightarrow B \lor C)$$

Wenn ich zeigen kann, dass gilt

$$((A \lor C) \Leftrightarrow (B \lor C)) \Rightarrow (C \lor A \Leftrightarrow C \lor B)$$

dann habe ich den Beweis für die Richtigkeit der Behauptung erbracht. Auch dies probiere ich so umzusetzen. Da die Disjunktion gemäß dem Satz 37 kommutiert, kann ich schreiben:

$$A \lor C \Leftrightarrow C \lor A$$

Da die letzte Aussage immer wahr sein muss, kann ich darum schreiben (vergleiche mit dem zweiten Satz 79 des erweiterten Lemmas der

Minimums und Maximumsätze der Logik):

$$((A \lor C) \Leftrightarrow (B \lor C)) \Rightarrow ((A \lor C) \Leftrightarrow (B \lor C)) \land (A \lor C \Leftrightarrow C \lor A)$$

Dann kann ich gemäß dem Substitutionssatz 111 der Äquivalenz schreiben, dass gilt

$$((A \lor C) \Leftrightarrow (B \lor C)) \land (A \lor C \Leftrightarrow C \lor A) \Rightarrow (C \lor A \Leftrightarrow B \lor C)$$

Da die Implikation gemäß dem Satz 15 transitiv ist, kann ich wegen den Aussagen

$$((A \vee C) \Leftrightarrow (B \vee C)) \Rightarrow ((A \vee C) \Leftrightarrow (B \vee C)) \wedge (A \vee C \Leftrightarrow C \vee A)$$
 sowie

$$((A \lor C) \Leftrightarrow (B \lor C)) \land (A \lor C \Leftrightarrow C \lor A) \Rightarrow (C \lor A \Leftrightarrow B \lor C)$$

folgern, dass auch gelten muss

$$((A \lor C) \Leftrightarrow (B \lor C)) \Rightarrow (C \lor A \Leftrightarrow B \lor C)$$

Fast die gleiche Überlegung kann ich nun anstellen, um zu zeigen, dass auch die Implikation

$$(C \lor A \Leftrightarrow B \lor C) \Rightarrow (C \lor A \Leftrightarrow C \lor B)$$

gilt: Gemäß dem Satz 22 der Kommutation der Disjunktion kann ich schreiben, dass gilt:

$$B \lor C \Leftrightarrow C \lor B$$

Da diese Aussage ein logischer Satz und darum immer wahr ist (sofern die Aussagen B und C in sich selber und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei sind), kann ich gemäß dem zweiten Satz 79 des erweiterten Lemmas der Minimums und Maximumsätze der Logik folgern, dass gilt:

$$(C \lor A \Leftrightarrow B \lor C) \Rightarrow (C \lor A \Leftrightarrow B \lor C) \land (B \lor C \Leftrightarrow C \lor B)$$

Gemäß dem Satz 16 der Transitivität der Äquivalenz kann ich schließen, dass gilt:

$$(C \lor A \Leftrightarrow B \lor C) \land (B \lor C \Leftrightarrow C \lor B) \Rightarrow (C \lor A \Leftrightarrow C \lor B)$$

Gemäß dem Satz 15 der Transitivität der Implikation kann ich wegen den letzten Aussagen schließen, dass gilt:

$$(C \lor A \Leftrightarrow B \lor C) \Rightarrow (C \lor A \Leftrightarrow C \lor B)$$

Ich fasse zusammen: Weiter oben habe ich gesehen, dass gilt:

$$(A \Leftrightarrow B) \Rightarrow (A \lor C \Leftrightarrow B \lor C)$$

Dann habe ich gezeigt, dass die Aussage gilt:

$$(A \lor C \Leftrightarrow B \lor C) \Rightarrow (C \lor A \Leftrightarrow B \lor C)$$

Da die Implikation gemäß dem Satz 15 transitiv ist, kann ich darum schließen, dass auch gilt

$$(A \Leftrightarrow B) \Rightarrow (C \lor A \Leftrightarrow B \lor C)$$

Tabelle 163. 1. Teil 1. Beweis 2. erweiterter Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$C \vee A$	$C \vee B$
1	1	0	0
2	1	1	1
3	0	0	1
4	0	1	1
5	0	1	0
6	0	1	1
7	1	1	1
8	1	1	1

Tabelle 164. 2. Teil 1. Beweis 2. erweiterter Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$\begin{array}{ccc} C \lor A & \Leftrightarrow \\ C \lor B \end{array}$	Behauptung
1	1	1
2	1	1
3	0	1
4	1	1
5	0	1
6	1	1
7	1	1
8	1	1

Ebenfalls weiter oben habe ich zu zeigen versucht, dass die folgende Aussage ebenfalls wahr ist:

$$(C \lor A \Leftrightarrow B \lor C) \Rightarrow (C \lor A \Leftrightarrow C \lor B)$$

Und da die Implikation gemäß dem Satz 15 immer noch transitiv ist, kann ich wiederum folgern, dass gilt:

$$(A \Leftrightarrow B) \Rightarrow (C \lor A \Leftrightarrow C \lor B)$$

Das ist jedoch gerade die Behauptung. Damit alles seine Richtigkeit hat, möchte ich den Satz ebenfalls noch einmal mit Hilfe von Wahrheitstafeln erbringen. Diesen habe ich einersits in den Tabellen 163 sowie 164 einerseits sowie 164 sowie 166 andererseits abgelegt. Die Verweise habe ich in den Tabellen 167 sowie 168 abgelegt. Da ich nun glaube, den Beweis für die Richtigkeit der Behauptung auf zwei unabhängige Arten erbracht zu haben, erlaube ich mir, auf eine weitere Beweisführung zu verzichen und den Beweis somit an dieser Stelle zu beenden.

TABELLE 165. 1. Teil 2. Beweis 2. erweiterter Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$C \vee A$	$C \vee B$
1	$A \Leftrightarrow B$	$\neg (C \lor A)$	$\neg (C \lor B)$
2	$A \Leftrightarrow B$	$C \vee A$	$C \vee B$
3	$\neg (A \Leftrightarrow B)$	$\neg (C \lor A)$	$C \vee B$
4	$\neg (A \Leftrightarrow B)$	$C \vee A$	$C \vee B$
5	$\neg (A \Leftrightarrow B)$	$C \vee A$	$\neg (C \lor B)$
6	$\neg (A \Leftrightarrow B)$	$C \vee A$	$C \vee B$
7	$A \Leftrightarrow B$	$C \vee A$	$C \vee B$
8	$A \Leftrightarrow B$	$C \lor A$	$C \wedge B$

TABELLE 166. 2. Teil 2. Beweis 2. erweiterter Substitutionssatz der Disjunktion

Aussage/	$C \lor A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
Fall Nr.	$C \vee B$	$(C \vee A \Leftrightarrow C \vee B)$	
1	$C \lor A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
1	$C \vee B$	$(C \vee A \Leftrightarrow C \wedge B)$	
2	$C \lor A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
2	$C \vee B$	$(C \land A \Leftrightarrow C \land B)$	
3	$\neg (C \lor A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
9	$C \vee B$)	$(C \vee A \Leftrightarrow C \vee B)$	
4	$C \lor A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
4	$C \vee B$	$(C \vee A \Leftrightarrow C \vee B)$	
5	$\neg (C \lor A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
9	$C \vee B$)	$(C \vee A \Leftrightarrow C \vee B)$	
6	$C \lor A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
0	$C \vee B$	$(C \vee A \Leftrightarrow C \vee B)$	
7	$C \lor A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
1	$C \vee B$	$(C \vee A \Leftrightarrow C \vee B)$	
8	$C \lor A \Leftrightarrow$	$(A \Leftrightarrow B)$	\Rightarrow
8	$C \vee B$	$(A \lor C \Leftrightarrow B \lor C)$	

Tabelle 167. 1. Teil Verweise Beweis 2. erweiterter Substitutionssatz der Disjunktion

Aussage/	Definition 19	Definition 17	Definition 17
Fall Nr.	der	der	der
rall IVI.	Äquivalenz	Disjunktion	Disjunktion
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	3. Zeile	3. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	3. Zeile	4. Zeile
5	3. Zeile	2. Zeile	1. Zeile
6	3. Zeile	4. Zeile	3. Zeile
7	4. Zeile	2. Zeile	2. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 168. 2. Teil Verweise Beweis 2. erweiterter Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	Definition 19 der Äquivalenz	Definition 14 der Implikation
1	1. Zeile	4. Zeile
2	4. Zeile	4. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile
5	3. Zeile	1. Zeile
6	4. Zeile	2. Zeile
7	4. Zeile	4. Zeile
8	4. Zeile	4. Zeile

KAPITEL 25

Was sind Quantoren?

Ich kenne zwei Quantoren: Der eine heißt "∃" und und bedeutet: "Es existiert". Der zweite Quantor heißt "∀" und er bedeutet "für alle". Doch halt: Eigentlich gibt es drei davon. Der dritte heißt: "∃!". Die Frage an Dich: Was könnte das heißen? Das heißt: "Es existiert genau ein".

Die Quantoren führe ich darum ein, weil mit diesen Quantoren die mathematischen Ausdrücke flüssiger beschrieben werden können. Ich möchte die Quantoren formal so formulieren:

DEFINITION 122. Es sei M eine nichtleere Menge und A sowie B Symbole von Aussagen. Dann sei definiert:

```
(\exists x \in M : A) \iff x \in M \land A
(\nexists x \in M : A) \iff \neg (\exists x \in M : A)
(\exists ! x \in M : A) \iff (\exists x \in M : A) \land (\exists y \in M : A \Rightarrow x = y)
(\forall x \in M : A) \iff x \in M \Rightarrow A
```

Dabei werden bedeutet " \exists " "es existiert" und " \forall " "für alle". Die Symbole \exists und \forall werden "Quantoren" geheißen. Das Symbol " \exists " wird als "Existenzquantor" und das Symbol " \forall " wird als "Allquantor" bezeichnet.

Die erste Zeile kann ausgesprochen werden als "es existiert (mindestens) ein Element x der Menge M, so dass die Aussage A gilt.

Die zweite Zeile kann ausgesprochen werden als "Es existiert kein Element x der Menge M, so dass die Aussage A gilt".

Die dritte Zeile kann ausgesprochen werden als "Es existiert genau ein Elemente x der Menge M derart, dass die Aussage A gilt. Zur dritten Zeile möchte ich noch hinzufügen, dass deren Definition wie folgt zu verstehen ist: Es gibt mindestens ein Element der Menge M, welches mit x bezeichnet werde und für welche die Eigenschaft A zutreffe. Gibt es dann ein weiteres Element, welches mit y bezeichnet werde und ebenfalls zur Menge mit der Bezeichnung M gehört, für welches die Eigenschaft A zutrifft, dann sind x und y identisch. Im Verlauf des Lernens hätte ich gerne Definitionen der Art "Es gibt 4 Elemente der Menge M, für welche die Eigenschaft A zutrifft", gehabt. Eine solche Definition ist jedoch nicht üblich.

Die vierte Zeile kann ausgesprochen werden als "für alle Elemente x der Menge M gilt die Aussage A". Der Doppelpunkt (":") in den Quantoren kann weggelassen werden. Es kann also geschrieben werden:

$$\exists x \in M A$$
$$\exists x \in M A$$
$$\exists ! x \in M A$$

oder

$$\forall x \in M A$$

Ich möchte gerne Beispiele einfügen:

$$\forall n \in \mathbb{N} : \sum_{k=1}^{n} k = \frac{1}{2} \cdot n \cdot (n+1)$$

bedeutet ausformuliert: Für alle natürlichen Zahlen n (also 1, 2, 3, und so weiter, genauere Definition siehe 219) gilt, dass die Summe von 1 bis n gleich dem Ausdruck

$$\frac{1}{2} \cdot n \cdot (n+1)$$

ist. Falls etwa n=4 ist, dann ist die Behauptung, dass

$$1 + 2 + 3 + 4 = \frac{1}{2} \cdot 4 \cdot (4+1) = 2 \cdot 5 = 10$$

ist. Das wäre ein Beispiel für "für alle". Ein Beispiel für "es existiert" wäre die Aussage

$$\exists n \in \mathbb{N} : n^2 = 9$$

Ich möchte noch einen Hinweis geben, dass der Quantor "∃" Dich dazu verleiten könnte, anzunehmen, dass der Ausdruck

$$\exists x \in M : A$$

bedeuten könnte: "Es gibt genau ein Element x aus der Menge M derart, dass die Aussage A zutrifft. Das ist zwar naheliegend - aber nicht ganz zutreffend. Um es ganz genau zu beschreiben, was mit der formalen Aussage gemeint ist, müsste ich schreiben: "Es gibt mindestens ein Element x aus der Menge M derart, dass die Aussage A zutrifft. Ja, es besteht sogar der an und für sich groteske Satz:

Satz 123. Es sei M eine nichtleere Menge und A eine Aussage. Dann gilt:

$$\forall x \in M : A \Rightarrow \exists x \in M : A$$

BEWEIS. Der Beweis ist wiederum leider ein wenig vertrackt. Denn er behandelt eine sogenannte implizite Variablenumbenennung. Darunter verstehe ich die Tatsache, dass das Symbol x in der Aussage

$$\exists x \in M : A$$

nicht bedeuten muss, dass das Element, für welches die Aussage A zutrifft, ein Symbol für das Element ist und nicht der schlussendlich verwendete Name des Elements selbst ist. Also beginne ich mit dem eigentlichen Beweis: Es sei y das Symbol eines Elementes der Menge. y muss vorhanden sein, da die Menge M nach Voraussetzung selbst nicht leer sein kann. Also muss gemäß der Voraussetzung des Satzes gelten, dass die Aussage A in diesem Fall zutreffen muss. Somit kann ich jedoch schließen, dass es ein Element x in der Menge M geben muss (nämlich y), für welche die Aussage A gelten muss. Darum habe ich jedoch die Aussage bewiesen.

Der Satz kann jedoch auch aussagenlogisch bewiesen werden. Als ich den Beweis erbringen wollte, bin ich jedoch ziemlich ins Trudeln gekommen. Ich nehme an, dass es damit zusammenhängt, dass die Menge M nicht leer sein darf.

Darum muss die korrekte Aussage sein:

$$x \in M \land \forall x \in M : A$$

$$\Leftrightarrow x \in M \land x \in M \Rightarrow A$$

$$\Rightarrow x \in M \land A$$

Ich möchte das für einmal im Nachhinein begründen:

Die erste Aussage

$$x \in M \land \forall x \in M : A$$

bedeutet: x ist ein Element der Menge M und für alle x der Menge M gilt die Aussage A. Gemäß der Definition 122 des Allquantors ist die Aussage

$$\forall x \in M : A \Leftrightarrow x \in M \Rightarrow A$$

per Definition wahr. Nun kann ich den 4. Substitutionssatz der Konjunktion 99 anwenden und daraus schließen, dass gilt

$$x \in M \land \forall x \in M : A \Rightarrow x \in M \land x \in M \Rightarrow A$$

Gemäß dem alternativen Satz 18 der Schlussfolgerung kann ich schließen, dass gilt

$$x \in M \land (x \in M \Rightarrow A) \Leftrightarrow x \in M \land A$$

Da gemäß dem Satz 52 aus der Äquivalenz die Implikation folgt, kann ich auch schließen, dass gilt

$$x \in M \land (x \in M \Rightarrow A) \Rightarrow x \in M \land A$$

Nun kann ich gemäß dem Satz 15 der Implikation schlussfolgern, dass gilt

$$(x \in M \land \forall x \in M : A \Rightarrow x \in M \land (x \in M \Rightarrow A))$$
$$\land ((x \in M \land (x \in M \Rightarrow A)) \Rightarrow x \in M \land A)$$
$$\Rightarrow (x \in M \land \forall x \in M : A \Rightarrow x \in M \land A)$$

Die letzte Aussage ist jedoch genau die Aussage, welche zu beweisen gewesen war: Wenn x eine Element der Menge M ist und für alle Elemente x der Menge M gilt, dass die Aussage A gültig ist, dann gibt es ein Element x der Menge M für welche die Aussage A gültig ist. Diese Aussage konnte ich jedoch nur gewinnen, wenn ich annehme, dass tatsächlich Elemente x der Menge M existieren.

Da ich nun annehme, dass ich auf zwei unterschiedlichen Arten den Beweis für die Richtigkeit der Behauptung erbringen konnte, beende ich an dieser Stelle die weitere Beweisführung.

Zum obigen Beweis möchte ich jedoch noch anmerken, dass ich ihn nicht schön finde. Insbesondere den formalen Beweis finde ich im Moment einfach nicht gut. Aber ich weiß nicht, ob ich einmal einen besseren Beweis finden werde.

Ich möchte den Satz an einem Beispiel durchspielen: Es gilt die Aussage

$$\forall n \in \mathbb{N} : n > 0$$

In Worten: Für alle natürlichen Zahlen (also 1, 2, 3 und so weiter, aber für eine formale Definition siehe 219) gilt, dass n größer als 0 ist. Nun ist beispielsweise 34 eine natürliche Zahl. Somit muss auch 34 größer als 0. Also kann ich sagen, dass es eine natürliche Zahl geben muss, für welche gilt, dass diese Zahl größer als 0 ist. Somit hätte ich das Beispiel durchgespielt.

Nun möchte ich ein Beispiel für die Aussage "es existiert genau ein Element, für welches gilt" aufschreiben:

$$\exists! n \in \mathbb{N} : n^2 = 4$$

In Worten: Es gibt genau eine natürliche Zahl (also die Zahlen 1, 2, 3...) so dass gilt: $n \cdot n = 4$ (Die Zahl ist 2, da gilt $2 \cdot 2 = 4$).

25.1. Transformationen von Quantoren

Vielleicht hast Du Dich gewundert, wieso die Definitionen 23 sowie 24 des Allquantors respektive des Existenzquantors zusammen definiert wurde. Der Grund dafür ist, dass es eigentlich nur einen der beiden Symbole benötigen würde. Das möchte mittels dem folgenden Satz zeigen:

Satz 124. Es sei M eine nichtleere Menge und A sowie B Symbole für Aussagen. Dann gilt

$$\neg (\exists x \in M : A) \Leftrightarrow \forall x \in M : \neg A$$

In Worten: Die Aussage, dass nicht gilt, dass es ein Element der Menge M derart gibt, dass die Aussage A gilt, ist äquivalent zur Aussage, dass für alle Elemente der Menge M die Aussage A nicht gilt.

Weiter gilt:

$$\neg (\forall x \in M : A) \Leftrightarrow \exists x \in M : \neg A$$

In Worten: Die Aussage, dass nicht gilt, dass für alle Elemente der Menge M die Aussage A gilt, ist äquivalent zur Aussage, dass es ein Element der Menge M derart gibt, dass die Aussage A nicht gilt.

Beweis. Es ist definiert:

$$\forall x \in M : \neg A \Leftrightarrow x \in M \Rightarrow \neg A$$

Nun kann muss gemäß dem Satz 11 der doppelten Negation gelten

$$(x \in M \Rightarrow \neg A) \Leftrightarrow \neg (\neg (x \in M \Rightarrow \neg A))$$

Da die Äquivalenz gemäß dem Satz 16 transitiv ist, kann ich folgern, dass gilt:

$$\forall x \in M : \neg A \Leftrightarrow \neg (\neg (x \in M \Rightarrow \neg A))$$

Gemäß dem Satz 54 der disjunktiven Normalform der Negation kann ich folgern:

$$\neg (x \in M \Rightarrow \neg A) \Leftrightarrow x \in M \land \neg (\neg A)$$

Wiederum gemäß dem Satz 11 der doppelten Negation kann ich folgern:

$$\neg (\neg A) \Leftrightarrow A$$

Also kann ich gemäß dem zweiten Satz 119 der Konjunktion folgern, dass gelten muss

$$x \in M \land \neg (\neg A) \Leftrightarrow x \in M \land A$$

Wiederum gemäß dem Satz 16 der Transitivität der Äquivalenz kann ich folgern, dass gelten muss

$$\neg (x \in M \Rightarrow \neg A) \Leftrightarrow x \in M \land A$$

Gemäß dem Äquivalenz-Negationssatz 60 kann ich darum folgern, dass gilt

$$\neg (\neg (x \in M \Rightarrow \neg A)) \Leftrightarrow \neg (x \in M \land A)$$

Da die Äquivalenz immer noch transitiv ist, kann ich folgern, dass gilt:

$$\forall x \in M : \neg A \Leftrightarrow \neg (x \in M \land A)$$

Gemäß Definition 122 des Existenzquantors gilt

$$\exists x \in M : A \Leftrightarrow x \in M \land A$$

Die Äquivalenz ist gemäß dem Satz 39 immer noch kommutativ. Das bedeutet jedoch, dass ich gemäß dem Satz 17 der Schlussfolgerung schließen kann, dass auch gilt:

$$x \in M \land A \Leftrightarrow \exists x \in M : A$$

Gemäß dem Äquivalenz-Negationssatz 60 kann ich schließen, dass dann auch gelten muss

$$\neg (x \in M \land A) \Leftrightarrow \neg (\exists x \in M : A)$$

Weiter oben habe ich ja geschrieben, dass gelten muss

$$\forall x \in M : \neg A \Leftrightarrow \neg (x \in M \land A)$$

Da die Äquivalenz gemäß dem Satz 16 immer noch transitiv ist, kann ich darum schließen:

$$\forall x \in M : \neg A \Leftrightarrow \neg (\exists x \in M : A)$$

Und da die Äquivalenz immer noch kommutativ ist, kann ich gemäß dem Satz 17 der Schlussfolgerung folgern, dass auch gelten muss

$$\neg (\exists x \in M : A) \Leftrightarrow \forall x \in M : \neg A$$

Dies ist jedoch gerade die Behauptung.

Dieser Beweis kann wahrscheinlich sprachlich viel einfach bewiesen werden: Zuerst möchte ich die Implikation beweisen, also die Aussage

$$\neg (\exists x \in M : A) \Rightarrow \forall x \in M : \neg A$$

Falls nicht zutrifft, dass es ein Element x der Menge M derart gibt, dass die Aussage A zutrifft, dann kann muss für alle Elemente x der Menge M gelten, dass die Aussage A nicht zutrifft. Denn ansonsten wäre die Voraussetzung eben nicht wahr und ein Widerspruch würde auftreten. Damit wäre bewiesen, dass aus der Aussage, dass nicht gilt, dass es ein Element x der Menge M derart gibt, dass die Aussage A wahr ist, die Aussage folgt, dass für alle Elemente x der Menge M die Aussage A nicht wahr sein kann kann. Damit habe ich die Implikation bewiesen.

Nun möchte ich den Beweis der Replikation erbringen. Wenn für alle Elemente der Menge M gilt, dass die Aussage A nicht zutrifft, dann kann es auch kein Element der Menge M derart gibt, dass die Aussage A zutrifft. Denn ansonsten wäre die Voraussetzung eben nicht wahr.

Da ich die Implikation und die Replikation bewiesen habe, habe ich gemäß dem Satz 23 der Äquivalenz der Äquivalenz von Implikation und Replikation auch die ganze Behauptung bewiesen. Damit bin ich der Meinung, dass ich den Beweis für die Richtigkeit der Behauptung

$$\neg (\exists x \in M : A) \Leftrightarrow \forall x \in M : \neg A$$

erbracht habe.

Nun möchte ich den zweiten Teil der Behauptung beweisen, also die Aussage

$$\neg (\forall x \in M : A) \Leftrightarrow \exists x \in M : \neg A$$

Gemäß der Definition 122 Allquantors ist die Aussage

$$\forall x \in M : A \Leftrightarrow x \in M \Rightarrow A$$

wahr. Also muss gemäß dem Äquivalenz-Negationssatz 60 muss dann auch gelten

$$\neg (\forall x \in M : A) \Leftrightarrow \neg (x \in M \Rightarrow A)$$

Aufgrund der disjunktiven Normalform 54 kann ich schreiben

$$x \in M \Rightarrow A \Leftrightarrow \neg (x \in M \land \neg A)$$

Somit kann ich wieder gemäß dem Äquivalenz-Negationssatz 60 und dem Satz der Schlussfolgerung schreiben, dass auch gilt

$$\neg (x \in M \Rightarrow A) \Leftrightarrow \neg (\neg (x \in M \land \neg A))$$

Gemäß dem Satz 11 der doppelten Negation gilt

$$\neg (\neg (x \in M \land \neg A)) \Leftrightarrow x \in M \land \neg A$$

Somit kann ich gemäß dem Satz 16 der Transitivität der Äquivalenz schließen, dass auch gelten muss

$$\neg (x \in M \Rightarrow A) \Leftrightarrow x \in M \land \neg A$$

Und durch nochmaliges Anwenden des Satzes 16 der Transitivität der Äquivalenz erhalte ich die Gültigkeit der folgenden Aussage:

$$\neg (\forall x \in M : A) \Leftrightarrow x \in M \land \neg A$$

Gemäß der Definition 122 des Existenzquantors gilt die Aussage

$$\exists x \in M : \neg A \Leftrightarrow x \in M \land \neg A$$

Gemäß dem Satz 39 der Kommutativität der Konjunktion und dem Satz 17 der Schlussfolgerung kann ich schließen, dass auch gelten muss

$$x \in M \land \neg A \Leftrightarrow \exists x \in M : \neg A$$

Gemäß dem Satz 16 der Transitivität der Äquivalenz kann ich darum schreiben, dass gilt

$$\neg (\forall x \in M : A) \Leftrightarrow \exists x \in M : \neg A$$

Dies ist jedoch gerade die Behauptung, welche hiermit bewiesen worden wäre.

Und auch dieser Teil kann sehr schnell auch rein sprachlich bewiesen werden. Ich möchte nun die Implikation der Behauptung beweisen: Wenn nicht gilt, dass für alle Elemente der Menge M die Aussage A gilt, dann kann für mindestens eine Element x der Menge M die Aussage A nicht wahr sein. Andernfalls wäre die Aussage für alle Elemente x der Menge M eben wahr - im Widerspruch zur Voraussetzung. Damit wäre die Implikation bewiesen.

Nun möchte ich die Replikation der Behauptung beweisen: Wenn es andererseits ein Element x der Menge M derart gibt, dass die Aussage A nicht wahr ist, dann ist es nicht möglich, dass für alle Elemente x der Menge M die Aussage A wahr ist. Andernfalls wäre die Aussage A ja für alle Elemente x der Menge M wahr. Damit hätte ich die Replikation und somit auch die Äquivalenz beweisen.

Denn die Äquivalenz von zwei Aussagen ist ja gemäß dem Satz 23 genau dann wahr, falls die Implikation und die Replikation der beiden Aussagen wahr sind.

Damit hätte ich auch die zweite Behauptung

$$\neg (\forall x \in M : A) \Leftrightarrow \exists x \in M : \neg A$$

bewiesen. Da ich nun beide Behauptung bewiesen habe, meine ich, den Beweis für die Richtigkeit des ganzen Satzes erbracht zu haben. Daher beende ich an dieser Stelle die weitere Beweisführung.

Diese beide Sätze sind bequem, um entweder Aussagen zu beweisen oder zu verwerfen. Ich hoffe, dass mir gelegentlich ein Beispiel für einen solchen Beweis in den Sinn kommt, damit ich an dieser Stelle einen entsprechenden Hinweis auf einen solchen Beweis aufschreiben kann.

So ich glaube, jetzt möchte ich es gut sein lassen mit diesem Teil - und auch mit einem großen Teil der logischen Sätze. Ich hoffe, dass Du den obigen Teil als "Kochbuch" verwenden kannst, um zu schauen, wie die logischen Sätze aufgebaut sein können und wie diese bewiesen werden können. Weiter hoffe ich, dass Du ein Gefühl bekommen hast, was es mit Symbolen und Variablen auf sich hat, welche Symbole es in etwa gibt, was der Sinn derselben sein könnte.

Das Thema ist jedoch noch nicht zur Gänze erschöpft. Wie ich bereits geschrieben habe, möchte ich gerne mit Hilfe von natürlichen Zahlen und der vollständigen Induktion noch zeigen, wie das in der Aussage 27 zum Ausdruck gebrachte Problem trotzdem noch lösen kann. Aber ich finde das schon noch interessant: Die Beantwortung der Fragestellung wirft weitere Fragen auf. Das ist für mich "Wissenschaft" im besten Sinn, wenn sie nicht abgeschlossen ist, nicht "problemlos" ist (also immer noch Fragen aufwirft).

Nun möchte ich mir der Frage zuwenden, wie mit Mengen gerechnet werden kann.

KAPITEL 26

Mengenoperationen

Jetzt hätte ich diesen Teil der Mathematik doch fast glatt vergessen! Ich wollte "schon" zum nächsten Teil der Einführung gehen wollen und nun merke ich, dass ich die Mengenoperationen noch nicht thematisiert habe. Das hat schon einen Grund: Denn die Mengenoperationen lassen sich praktisch direkt von der Aussagenlogik ableiten. Das ist so ein Moment, welcher durchaus als unschön zu bezeichnen ist: Wenn ich merke, dass all die viele Arbeit, welche ich im Kapitel 20 über logische Sätze gemacht habe, noch einmal gemacht werden sollte. Denn wahrscheinlich können viele Sätze, welche in diesem Kapitel gemacht wurde, in einen Satz der Mengenlehre umgewandelt werden, indem anstelle einer Aussage mit dem "Meta-Metasymbol" A die Aussage $x \in A$ verwendet wird. Ich mache ein Beispiel: Das Distributivgesetz 30 der Konjunktion und Disjunktion lautet:

$$A \land (B \lor C) \Leftrightarrow A \land B \lor A \lor C$$

Nun kann ich die Aussagen durch Mengenaussagen wie folgt ersetzen:

$$A = x \in M_1$$
$$B = x \in M_2$$
$$C = x \in M_3$$

Dann lautet dieser Satz

$$x \in M_1 \land (x \in M_2 \lor x \in M_3) \Leftrightarrow$$
$$x \in M_1 \land x \in M_2 \lor x \in M_1 \land x \in M_3$$

Wird dies in die Mengenschreibweise umgesetzt, dann bedeutet dieser Satz

$$M_1 \cap (M_2 \cup M_3) = M_1 \cap M_2 \cup M_1 \cap M_3$$

In Worten übersetzt bedeutet dieser Satz: Die Schnittmenge der Menge M_1 mit der Vereinigungsmenge der Mengen M_2 und M_3 ist gleich Vereinigungsmenge der Schnittmenge der Mengen M_1 und M_2 und der Schnittmenge der Mengen M_1 und M_3 . Darum könnte ich der Versuchung erlegen, die Mengenlehre als Ableitung der Logik zu betrachten und somit mehr oder weniger links liegen zu lassen.

Trotzdem möchte ich an dieser Stelle aufschreiben, was das Neue an der Mengenlehre ist. Die Mengenlehre ist meines Erachtens die erste Anwendung der Logik. Dabei sind vor allem die Aussage

$$x \in M$$

wichtig. Wobei x die Bezeichnung eines Elements und M die Bezeichnung einer Menge ist. Die Aussage heißt ausformuliert: "x ist ein Element der Menge M".

Dann ist das neue Element der Mengenoperationen, dass die Beweise nicht mehr allein mit Wahrheitstafeln gemacht werden können. Das macht es ein wenig schwieriger, die Aussagen zu überprüfen. Jedoch ist die Mengenlehre sozusagen die erste Anwendung der naiven Logik. Darum wird auch der Teil "Logik und elementare Mengenlehre" geheißen.

26.1. Aussagenlogische Definition der Mengenlehre

Ich möchte die Definition der Menge und der Operationen von Mengen noch einmal definieren. Es ist also:

DEFINITION 125. Es sei M eine wohldefinierte Menge sowie A respektive Symbole, welches in sich widerspruchsfrei seien. Dann sei

$$x \in M \cup \{A\} \iff x \in M \lor x = A$$

Es gelte weiter

$$x \in \{A\} \iff x = A$$

Und zum Schluss dieses Blocks von Definitionen sei S eine Beschreibung von Elementen einer Menge, welche jedoch in sich selbst der bezüglich den anderen Symbolen der Definitionen widerspruchsfrei sein sollen. Es gelte

$$M = \{S\}$$

Dann sei

$$M \cup \{A\} \equiv \{S,A\} = \{S\} \cup \{A\}$$

und

$$M \cup \{A\} \equiv \{S;A\} = \{S\} \cup \{A\}$$

S kann beispielsweise bedeuten:

$$S = D, E, F$$

wobei D, E und F Symbole sind, welche in sich selbst und gegenüber den anderen Symbolen widerspruchsfrei seien.

Das bedeutet jedoch, dass die Mengenschreibweise eigentlich als Verkürzung einer Mengenvereinigung aufgeschrieben werden kann.

Es seien M_1, M_2 Mengen, welche wohldefiniert seien. Dann sei M_1 genau dann in M_2 enthalten, geschrieben

$$(28) M_1 \subset M_2$$

respektive

$$(29) M_2 \supset M_1$$

Verknüpfung Menge und Aussagenlogik falls gilt:

$$m \in M_1 \Rightarrow m \in M_2$$

In diesem Fall wird M_1 die Teilmenge und M_2 die Obermenge geheißen. Den Ausdruck

$$M_1 \subset M_2$$

kannst Du lesen als: "Die Menge M_1 ist in der Menge M_2 enthalten."

$$M_2 \subset M_1$$

kannst Du lesen als: "Die Menge M_2 ist die Obermenge der Menge M_1 ". Es gilt per Definition genau dann

$$M_1 = M_2$$

falls die Aussage

$$m \in M_1 \Leftrightarrow m \in M_2$$

gilt. Dies bedeutet also gemäß dem Satz 23, dass gelten muss

$$(m \in M_1 \Rightarrow m \in M_2) \land (m \in M_2 \Rightarrow m \in M_1)$$

oder aber

$$M_1 \subset M_2 \wedge M_2 \subset M_1$$

gilt. Ist $M_1 \subset M_2$, jedoch $M_1 \neq M_2$, dann heiße M_1 eine echte Teilmenge von M_2 , geschrieben

$$M_1 \subseteq M_2$$

Weiter sei die Schnittmenge $M_1 \cap M_2$ von M_1 und M_2 wie folgt definiert

$$M_1 \cap M_2 \equiv \left\{ m \mid m \in M_1 \land m \in M_2 \right\}$$

Die Vereinigungsmenge $M_1 \cup M_2$ von M_1 und M_2 wird definiert als

$$M_1 \cup M_2 \equiv \left\{ m \mid m \in M_1 \lor m \in M_2 \right\}$$

Die Differenzmenge (oder, falls M_1 in M_2 enthalten ist, das Komplement von M_1 bezüglich der Menge M_2) $M_1 \backslash M_2$ sei definiert als

$$M_2 \backslash M_1 \equiv \left\{ m \mid m \in M_1 \lor m \notin M_2 \right\}$$

Schlussendlich sei

$$\mathcal{P}\left(M_{1}\right) \equiv \left\{M_{3} \mid M_{3} \subset M_{1}\right\}$$

definiert als die Potenzmenge von M_1 . Ist schlussendlich M eine beliebige, jedoch in sich und in Bezug auf die anderen Symbolen der Definition widerspruchsfreie und nichtleere Menge, dann sei

(30)
$$\emptyset \equiv \left\{ m \in M \mid m \notin M \right\} \Leftrightarrow x \in \emptyset \Leftrightarrow x \in M \land x \notin M$$

Die leere Menge ist insofern widerspenstig, als dass sie meines Erachtens begrifflich nur schwer zu fassen ist. Ich habe es für mich so gelöst, als ich ich die leere Menge mittels einer nichtleeren Menge definiere. In Worten ausgedrückt bedeutet die Definition der leeren Menge, dass diese dadurch definiert ist, dass diese als Menge aller Elemente definiert ist, welche gleichzeitig einer anderen, nicht leeren Menge M angehören und nicht angehören. Da dies nicht möglich ist, kann die leere Menge eben keine Elemente besitzen. Ich möchte jedoch weiter unten noch einmal zu zeigen versuchen, dass diese Definition zu keinen Widersprüchen führt.

Beachte, dass das Symbol der Vereinigungsmenge (\cup) demjenigen der Disjunktion (\vee) sowie dasjenige der Schnittmenge (\cap) demjenigen der Konjunktion (\cap) ähnelt. Ich denke, diese Ähnlichkeiten sind gewollt - ohne diese Behauptung jedoch beweisen zu können. Auf jeden Fall wird die Vereinigungsmenge mit Hilfe einer Disjunktion und die Schnittmenge wird mit Hilfe einer Konjunktion konstruiert. Wenn also meine Behauptung nicht wahr sein sollte, so ist sie doch zumindest wenigstens eine gute Eselsbrücke.

Wiederum geht es jetzt darum, die entsprechenden Sätze zu formulieren und zu beweisen, welche aus der Definition geschlossen werden können. Wobei schon jetzt klar sein dürfte, dass diese eigentlich sehr gut von den entsprechenden Sätzen der Logik abgeleitet werden können. Ich hatte einen Dozenten (wenn es mich nicht täuscht war es Herr Professor Alfred Huber), welcher gesagt hat: "Es gibt zwei Sorten von Mathematikern. Die eine Sorte spricht über die leere Menge, die andere tut es nicht". Nun, ich möchte gerne über die leere Menge sprechen.

26.2. Mengengleichheit als Äquivalenzrelation

Nun möchte ich zeigen, dass die obige Definition der Mengengleichheit eine Gleichheit im Sinn der Mathematik ist. Doch was ist eine "Gleichheit im Sinn der Mathematik"? Das kannst Du weiter unten unter dem der Definition 164 einer Äquivalenzrelation nachlesen. Die Mengengleichheit ist identitiv (vergleiche mit der Definition 160), symmetrisch (vergleiche mit der Definition 161) und transitiv (vergleiche mit der Definition 163).

Lemma 126. Es sei A das Symbol einer Menge, welche in sich selber und in Bezug auf die anderen Symbole des Lemmas widerspruchsfrei sei. Weiter sei A nicht leer. Dann gilt

$$A = A$$

BEWEIS. Es sei A die Bezeichnung einer Menge, welche nicht leer sein. Dann gilt gemäß dem Satz 38 der Identivität der Äquivalenz

$$x \in A \Leftrightarrow x \in A$$

Abbildung 1. nichtleere Menge ist gleich zu sich selber

Das bedeutet jedoch gemäß der formalen Definition 125 der Mengengleichheit, dass gilt:

$$A = A$$

Damit glaube ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Und an dieser Stelle möchte ich zum ersten Mal ausscheren aus der streng formalen Beweisführung. Ich werde versuchen, das vorgehende Lemma zu visualisieren. Dies habe ich in der Abbildung 1 zu zeigen versucht. Dabei sind die Elemente der Menge A vier Namen von Tieren, welche alle mit dem Buchstaben "E" beginnen.

Wie Du siehst, ist jedes Element, welches in der Menge A enthalten ist, ebenfalls in der Menge A enthalten. Und so wie ich das geschrieben habe, tönt das total wirr. Denn so würdest Du im täglichen Leben einen Sachverhalt wohl nie und nimmer beschreiben. Aber in der Mathematik ist eine solche Beschreibung durchaus zulässig, da diese nicht gegen die Grundannahmen der Logik verstößt.

Ich möchte nun zeigen, dass die leere Menge identisch mit sich selber ist:

Lemma 127. Es sei A das Symbol einer Menge, welche in sich selber und in Bezug auf die anderen Symbole des Lemmas widerspruchsfrei sei. Weiter sei A leer. Dann gilt

$$A = A$$

Beweis. Es sei M eine Menge, welche nicht leer sei. Eine solche muss gemäß dem Lemma 5 geben. Dann kann ich schreiben

$$x \in A \Leftrightarrow x \in M \land \neg (x \in M)$$

Da die Äquivalenz gemäß dem Satz 39 kommutiert, kann ich dann auch folgern, dass gilt

$$x \in M \land \neg (x \in M) \Leftrightarrow x \in A$$

Somit kann ich gemäß dem Satz 16 der Transitivität der Äquivalenz folgern, dass gilt

$$x \in A \Leftrightarrow x \in A$$

Also kann ich auch in diesem Fall folgern, dass gilt

$$A = A$$

Somit meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

ABBILDUNG 2. 1. Visualisierung Lemma leere Menge ist gleich zu sich selber

ABBILDUNG 3. 2. Visualisierung Lemma leere Menge ist gleich zu sich selber

Die Schwierigkeit im Beweis dieses Lemmas besteht für mich in der Tatsache, dass die Aussage $x \in \emptyset$ ja nie wahr sein kann. Jedoch ist auch in diesem Fall die Kommutativität der Äquivalenz gemäß dem Satz 39 und die Transitivität der Äquivalenz gemäß dem Satz 16 wahr. Darum ist es es trotzdem möglich, zu zeigen, dass die leere Menge identitiv zu sich selber ist. Ich möchte auch dieses Lemma visualisieren, und zwar in den Abbildungen 2 sowie 3.

Ich finde es bemerkenswert, dass in der Abbildung 3 die Mengen gleich sind, auch wenn ihre Venn-Diagramme sich gar nicht überschneiden. Das funktioniert meines Erachtens nur darum, weil keine Menge ein Element enthält.

Satz 128. Die Mengengleichheit ist identitiv. Genauer: Es sei A das Symbol einer beliebigen Menge. Dann gilt

$$A = A$$

BEWEIS. Ist die Menge A nicht leer, dann habe ich den Beweis unter dem Beweis des Lemmas 126 aufgeschrieben. Ist die Menge A jedoch leer, dann habe ich den Beweis unter dem Beweis des Lemmas 127 aufgeschrieben. Da ich nun der Meinung bin, dass ich für alle denkbaren Fälle gezeigt habe, dass die Identivität der Mengengleichheit bewiesen habe, behaupte ich nun, dass ich den Beweis für die Richtigkeit der Behauptung erbracht habe. Aus diesem Grund beende ich an dieser Stelle die weitere Beweisführung.

Weiter möchte ich zeigen, dass die Mengengleicheit von Mengen kommutiert:

Lemma 129. Es seien A und B Bezeichnungen von Mengen, welche in sich selber und in Bezug auf die anderen Symbole des Beweises widerspruchsfrei seien. Die Menge A sei nicht leer. Weiter sei A=B. Dann ist auch B=A.

BEWEIS. Da nach Voraussetzung A=B ist, muss gemäß der Definition 125 der Mengengleichheit gelten

$$x \in A \Leftrightarrow x \in B$$

Abbildung 4. Kommutativität der Mengengleichheit von nichtleeren Mengen

Da die Äquivalenz gemäß dem Satz 39 kommutiert, kann ich dann auch (gemäß dem Satz 17 der Schlussfolgerung) schreiben, dass gilt:

$$x \in B \Leftrightarrow x \in A$$

Dann kann ich jedoch gemäß der Definition 125 der Mengengleichheit gelten

$$B = A$$

Somit bin ich der Meinung, dass ich den Beweis für die Richtigkeit der Behauptung erbracht habe und erlaube mir aus diesem Grund, auf die weitere Beweisführung zu verzichten und den Beweis an dieser Stelle zu beenden.

Ich möchte den Beweis wiederum wiederum als Venn-Diagramm beispielhaft beweisen. Ich habe im der Abbildung 4 zwei Mengen mit den Bezeichnungen A und B gezeichnet. Beide Mengen seinen gleich. Denn jedes Element, welches in der Menge A vorhanden ist, ist auch in der Menge B vorhanden. Und jedes Element, welches in der Menge B vorhanden ist, ist auch in der Menge A vorhanden. Wie Du siehst, spielt es keine Rolle, ob ich zuerst eine Element in der Menge A auswähle und dann überprüfe, ob es auch in der Menge B vorhanden ist. Oder ob ich zuerst ein Element in der Menge B auswähle und dann überprüfe, ob es ebenfalls in der Menge A vorhanden ist. Die Hauptsache ist, dass für alle Elemente überprüft wird, ob diese in beiden Mengen vorhanden sind. Damit möchte ich dieses Beispiel beenden.

Nun möchte ich Satz für denjenigen Fall beweisen, in welchem die Menge A leer ist.

Lemma 130. Es seien A und B Bezeichnungen von Mengen, welche in sich selber und in Bezug auf die anderen Symbole des Beweises widerspruchsfrei seien. Die Menge A sei leer. Weiter sei A = B. Dann ist auch B = A.

Beweis. Gemäß der Definition 125 der Mengengleichheit muss gelten

$$x \in A \Leftrightarrow x \in B$$

Es sei M eine Menge, welche nicht leer ist. Eine solche muss gemäß dem Satz 5 existieren. Dann kann ich schreiben:

$$x \in A \Leftrightarrow x \in M \land \neg (x \in M)$$

Also kann ich gemäß dem Substitutionssatz 111 der Äquivalenz sowie dem Satz 17 der Schlussfolgerung folgern, dass gilt

$$x \in M \land \neg (x \in M) \Leftrightarrow x \in B$$

ABBILDUNG 5. 1. Abbildung Kommutativität der Mengengleichheit von leeren Mengen

ABBILDUNG 6. 2. Abbildung Kommutativität der Mengengleichheit von leeren Mengen

Da die Äquivalenz gemäß dem Satz 39 kommutiert, kann ich zusammen mit dem Satz 17 der Schlussfolgerung schließen, dass auch gelten muss

$$x \in B \Leftrightarrow x \in M \land \neg (x \in M)$$

Und da die Äquivalenz gemäß dem Satz 39 immer noch kommutiert, kann ich zusammen mit dem Satz 17 der Schlussfolgerung schließen, dass auch gilt

$$x \in M \land \neg (x \in M) \Leftrightarrow x \in B$$

Somit kann ich gemäß dem Satz 16 der Transitivität der Äquivalenz schließen, dass gilt

$$x \in B \Leftrightarrow x \in A$$

Dies ist jedoch gemäß der Definition 6 der Mengengleichheit gerade die Aussage

$$B = A$$

Damit habe ich den Beweis für die Richtigkeit der Behauptung erbracht. Ich beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Das Spezielle an dem letzten Lemma ist, dass die Aussage $x \in M \land \neg (x \in M)$ ja gemäß dem Satz 46 nie wahr ist. Trotzdem ist die gesamte Aussage über die Mengengleichheit wahr.

Und auch dieses Lemma möchte ich mittels zwei Abbildungen illustrieren. Diese Abbildungen sind sind für einmal umfassend - da die leere Mengen ja einzigartig ist.

Da die leere Menge keine Elemente besitzt, gilt gemäß der Abkürzungsregel 14 der Implikation, dass für alle Elemente der Menge A gilt, dass diese in der Menge B vorhanden sind. Ebenso gilt gemäß der gleichen Abkürzungsregel 14 der Implikation, dass für alle Elemente der Menge B gilt, dass diese in der Menge A vorhanden sind. Die Reihenfolge dieser Überprüfung ist wiederum belanglos. Wichtig ist nur, dass die Überprüfungen durchgeführt werden.

Nun möchte ich die oberen zwei Lemmata zu einem Satz zusammenfügen:

Satz 131. Es seien A sowie B Bezeichnungen von Mengen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes

widerspruchsfrei seien. Weiter sei

$$A = B$$

Dann gilt auch

$$B = A$$

Beweis. Ist die Menge A nicht leer, dann habe ich den Beweis im Lemma 129 bewiesen. Ist die Menge A leer, dann habe ich den Beweis im Lemma 130 bewiesen. Somit habe ich für alle widerspruchsfreien Mengen A die Behauptung bewiesen. Aus diesem Grund bin ich der Meinung, den Beweis für alle Mengen A beweisen zu haben. Da die Menge B jeweils gleich der Menge A ist, muss ich nicht noch speziell für den Beweis für die Menge B führen. Aus diesem Grund bin ich der Meinung, den Beweis für die Richtigkeit der Behauptung an dieser Stelle erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Nun bleibt mir noch zu zeigen, dass die Mengengleichheit transitiv ist:

Lemma 132. Es seien A, B sowie C Symbole von Mengen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Die Menge A sei nicht leer. Weiter gelte

$$A = B \wedge B = C$$

Dann gilt auch

$$A = C$$

BEWEIS. Da die Menge A nicht leer ist, muss ein Element $x \in A$ existieren. Dann muss gemäß der Definition 125 der Mengengleichheit gelten:

$$x \in A \Leftrightarrow x \in B$$

Das bedeutet jedoch insbesondere, das auch die Menge nicht leer sein kann. Gemäß der Definition der Mengengleichheit 6 muss dann ebenfalls gelten

$$x \in B \Leftrightarrow x \in C$$

Gemäß dem Satz 16 der Transitivität der Äquivalenz sowie dem Satz 17 der Schlussfolgerung kann ich dann auch schreiben, dass gilt:

$$x \in A \Leftrightarrow x \in C$$

Dann kann ich jedoch gemäß der Definition 125 schreiben, dass gelten muss

$$A = C$$

Diese Aussage wollte ich jedoch gerade beweisen. Da ich nun der Meinung bin, den Beweis für die Richtigkeit der Behauptung erbracht zu haben, beende ich an dieser Stelle die weitere Beweisführung.

Abbildung Transitivität der Mengengleichheit von nichtleeren Mengen

Ich habe die Transitivität der Mengengleichheit von nichtleeren Mengen in der Abbildung 7 zu zeigen versucht. Die Mengengleichheit der Mengen A und B bedeutet, dass alle Elemente der Elemente mit der Bezeichnung A (also die Elemente mit der Bezeichnungen "Kaulquappe", "Laich" und "Frosch") auch in der Menge mit der Bezeichnung B enthalten sind. Die Mengengleichheit der Mengen B und C bedeutet, dass alle Elemente, welche in der Menge B enthalten sind (also die Elemente mit den Bezeichnungen "Kaulquappe", "Laich" sowie "Frosch") auch in der Menge mit der Bezeichnung C enthalten sind. Somit besagt der Satz der Transitivität der Mengengleichheit von nichtleeren Mengen, dass alle Elemente, welche in der Menge mit der Bezeichnung A vorhanden sind (also die Elemente mit den Bezeichnungen "Kaulquappe", "Laich" sowie "Frosch") ebenfalls in der Menge mit der Bezeichnung C vorhanden sind.

Und falls Du Dich fragst, welche Menge dann hier grob beschrieben wurde: Es sind die verschiedenen Entwicklungsstadien von Fröschen (allgemein: von Amphibien). Deren Eier werden als Laich bezeichnet. Anschließend schlüpfen diese Eier und die kleinen Amphibien leben als Kaulquappen im Wasser. Diese durchleben dann (bis auf ganz wenige Ausnahmen) schlussendlich einen Gestaltwandel (also eine Metamorphose) und leben dann als geschlechtsreife erwachsene Tiere auf dem Land.

Nun möchte ich mir denjenigen Fall überlegen, in welchem die die Menge mit der Bezeichnung A leer ist:

Lemma 133. Es seien A, B sowie C Symbole von Mengen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Die Menge A sei leer. Weiter gelte

$$A = B \wedge B = C$$

Dann gilt auch

$$A = C$$

BEWEIS. Es sei M eine nichtleere Menge. Eine solche muss gemäß dem Lemma 5 über die Existenz nichtleerer Mengen existieren. Dann gilt gemäß der Definition 30 der leeren Menge kann ich dann schreiben:

$$x \in A \Leftrightarrow x \in M \land \neg (x \in M)$$

Gemäß dem Satz 39 ist die Äquivalenz kommutativ. Dann kann ich gemäß dem Satz 17 der Schlussfolgerung kann ich dann folgern, dass gilt:

$$x \in M \land \neg (x \in M) \Leftrightarrow x \in A$$

Gemäß der Voraussetzung muss gelten:

$$A = B$$

Das bedeutet, dass gilt

$$x \in A \Leftrightarrow x \in B$$

Da nun gilt:

$$x \in M \land \neg (x \in M) \Leftrightarrow x \in A$$

sowie

$$x \in A \Leftrightarrow x \in B$$

Dann kann ich gemäß dem Satz 16 der Transitivität der Äquivalenz und gemäß dem Satz 17 der Schlussfolgerung folgern, dass gilt

$$x \in M \land \neg (x \in M) \Leftrightarrow x \in B$$

Da die Äquivalenz gemäß dem Satz 39 kommutativ ist, kann ich zusammen mit dem Satz 17 der Schlussfolgerung folgern, dass gelten muss

$$x \in B \Leftrightarrow x \in M \land \neg (x \in M)$$

Das bedeutet, dass auch die Menge B leer sein muss. Nun kann ich diesen Gedankengang wiederholen. Gemäß Voraussetzung muss gelten

$$B = C$$

Das bedeutet gemäß der Definition 125 gelten:

$$x \in B \Leftrightarrow x \in C$$

Da ich weiter oben folgern konnte, dass gilt:

$$x \in M \land \neg (x \in M) \Leftrightarrow x \in B$$

Nun habe ich eben gezeigt, dass gilt:

$$x \in B \Leftrightarrow x \in C$$

Nun kann ich gemäß dem Satz 16 der Transitivität der Äquivalenz und gemäß dem Satz 17 der Schlussfolgerung folgern, dass gilt

$$x \in M \land \neg (x \in M) \Leftrightarrow x \in C$$

Schlussendlich kann ich wiederum die Voraussetzung verwenden, dass die Menge A die leere Menge ist. Gemäß der Definition 30 kann ich dann schreiben:

$$x \in A \Leftrightarrow x \in M \land \neg (x \in M)$$

Weiter habe ich eben gezeigt, dass gilt:

$$x \in M \land \neg (x \in M) \Leftrightarrow x \in C$$

Dann kann ich nochmal ein letztes Mal den Satz 16 der Transitivität und den Satz 17 der Schlussfolgerungen anwenden und erhalte die Aussage

$$x \in A \Leftrightarrow x \in C$$

Abbildung Transitivität der Mengengleichheit von leeren Mengen

Das bedeutet gemäß der Definition 125 der Mengengleichheit, dass gilt

$$A = C$$

Dies ist jedoch gerade die Behauptung. Darum bin ich der Meinung, dass ich an dieser Stelle den Beweis für die Richtigkeit der Behauptung erbracht habe und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Wieder besteht die formale Besonderheit darin, dass die Aussage $x \in M \land \neg (x \in M)$ ja nie wahr sein kann und trotzdem die Richtigkeit der Transitivität der Mengengleichheit hergeleitet werden kann. Ich habe versucht, den Satz der Transitivität der Mengengleichheit in einer Abbildung darzustellen. Die Mengen mit den Bezeichnungen A und B sind gleich, da beide keine Elemente besitzen. Die Mengen B und C sind gleich, da beide Mengen leer sind. Also sind auch die Mengen A und C gleich, da beide Mengen leer sind.

Nun kann die beiden Lemmata oben wiederum zu einem Satz zusammenfügen:

Satz 134. Es seien A, B sowie C Mengen, welche in sich selber und in Bezug auf die anderen Mengen des Satzes widerspruchsfrei seien. Dann gilt:

$$A = B \land B = C \Rightarrow A = C$$

BEWEIS. Ist die Menge A nicht leer, dann ist der Beweis im Lemma 132 beschrieben. Ist die Menge A jedoch leer, dann ist der Beweis im Lemma 133 beschrieben. Da die Menge A jedoch gemäß dem Satz 13 nur leer oder nicht leer sein kann, ist der Beweis in allen denkbaren Fällen erbracht. Da ich nun der Meinung bin, den Beweis für die Richtigkeit der Behauptung erbracht zu haben, beende ich an dieser Stelle die weitere Beweisführung.

Satz 135. Die Mengengleichheit von Mengen ist identitiv, kommutativ und transitiv: Das bedeutet, falls A, B sowie C Symbole von beliebigen, jedoch in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien, dass gilt:

$$A = A$$

 $A = B \Rightarrow B = A$
 $A = B \land B = C \Rightarrow A = C$

BEWEIS. Im Beweis des Satzes 128 habe ich zu zeigen versucht, dass die Mengengleichheit identitiv ist. Im Beweis des Satzes 131 habe ich zu zeigen versucht, dass die Mengengleichheit kommutativ ist.

Im Beweis des Satzes 134 habe zu zeigen versucht, dass die Mengengleichheit transitiv ist. Damit meine ich, dass ich den Beweis für die Richtigkeit der Behauptung erbracht ist. Aus diesem Grund erlaube ich mir an dieser Stelle, die weitere Beweisführung zu beenden.

26.3. Eigenschaft der leeren Menge

Ich habe oben die leere Menge definiert als Menge aller Elemente, welcher gleichzeitig einer beliebigen, nicht leeren Menge angehören und nicht angehören. In Worten: Ist M_n eine beliebige, in sich widerspruchsfreie nicht leere Menge, dass gilt

$$\phi \equiv \left\{ x \in M_n \mid x \notin M_n \right\}$$

Jedoch bin ich den Beweis bis jetzt schuldig geblieben, dass diese Definition in sich widerspruchsfrei ist. Aber wie soll ich das überprüfen? Abgesehen davon, dass ein endgültiger Beweis wohl nie erbracht werden kann, da immer ein Widerspruch beim Nachdenken über ein mathematisches Problem auftreten kann, möchte ich nachfolgend zeigen, dass die Definition der leeren Menge unabhängig ist von der verwendeten Hilfsmenge M_n welche nicht leer, aber in sich selbst wiederspruchsfrei sei soll. Dies möchte ich dadurch erreichen, dass ich zeige, dass alle derartig erzeugen Mengen gleich sein müssen. Nun ist das ein relativ hoffnungsloses Unterfangen, falls dies mittels der Anschauung bewiesen werden sollte. Denn die leere Menge besitzt ja keine Elemente. Aber mit Hilfe der Logik kann das relativ leicht erbracht werden. Dazu möchte ich zeigen, dass alle derart erzeugten Mengen zu einer Äquivalenzklasse gehören. Dies kann ich m.E. nur dann relativ einfach machen, wenn ich eine kleine Definition vorhnehme:

DEFINITION 136. Es sei M_n eine nicht leere Menge, welche in sich selber widerspruchsfrei sei. Dann sei

$$\phi_n \equiv \left\{ x \in M_n \mid x \notin M_n \right\}$$

die dazu gehörige leere Menge.

Nun möchte ich zeigen, dass gilt:

Satz 137. Die in der vorhergehenden Defintion definierten Mengen ϕ_n sind alle bezüglich der Mengengleichheit gleich.

BEWEIS. Es sei M_n eine beliebige Menge, welche in sich widerspruchsfrei und zudem nicht leer sei. Dann sei die Aussage $x \in \emptyset$ definiert als

$$x \in \emptyset \Leftrightarrow x \in M_n \land x \notin M_n$$

Da die Äquivalen gemäss dem Satz 39 kommutiert, kann ich gemäss dem abgeschwächten Satz 19 der Schlussfolgerung schliessen, dass auch gelten muss

$$x \in M_n \land x \notin M_n \Leftrightarrow x \in \emptyset$$

Gemäss dem Satz 16 der Transitivität kann ich daraus schliessen, dass gilt

$$x \in \emptyset \Leftrightarrow x \in \emptyset$$

26.4. Eigenschaften der leeren Menge

Ich möchte jetzt die Mengeneigenschaften von leeren Mengen untersuchen. Jedoch wäre es durchaus möglich, die Beweise der leeren Menge teilweise wegzulassen. Aber ich möchte die Beweise trotzdem formulieren und beweisen, damit Du nicht gelegentlich darüber stolperst, falls die ein entsprechendes Problem über den Weg läuft:

Satz 138. Es sei M eine beliebige, jedoch in sich selbst und in Bezug auf die anderen Symbolen des Lemmas widerspruchsfreie Menge. Die leere Menge Φ besitzt die folgenden Eigenschaften:

$$\phi = \phi$$

$$\phi \subset M$$

$$\phi \cap M = M \cap \phi = \phi$$

$$\phi \cup M = M \cup \phi = M$$

$$M \setminus \phi = M$$

$$\phi \setminus M = \phi$$

Da ich beim Beweisen ein Durcheinander gemacht habe, möchte ich die einzelnen Aussagen noch einmal separat formulieren und beweisen:

Ich habe im Lemma 127 formuliert und zu beweisen versucht, dass die leere Menge identisch zu sich selber ist. Darum möchte ich auf den Beweis dieser Aussage an dieser Stelle verzichten.

Nun möchte ich zu zeigen versuchen, dass die leere Menge in sich selber enthalten ist.

Lemma 139. Es sei M eine wohldefinierte Menge, welche leer oder nicht leer sein kann. Dann gilt.

$$\phi \subset M$$

BEWEIS. Es sei M_n eine beliebige Menge, welche jedoch nicht leer sein kann. Gemäß dem Lemma 5 muss eine solche Menge existieren. Dann gilt nach Festlegung 30:

$$x \in \emptyset \Leftrightarrow x \in M_n \land x \notin M_n$$

Da gemäß der Definition 5 gilt

$$x \notin M_n \Leftrightarrow \neg (x \in M_n)$$

kann ich gemäß dem zweiten erweiterten Substitutionssatz 119 der Konjunktion folgern, dass gilt

$$x \in M_n \land x \notin M_n \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Abbildung 9. Visualisierung leere Menge in sich selbst enthalten

ABBILDUNG 10. Visualisierung leere Menge in nichtleerer Menge enthalten

Nun kann ich gemäß dem Satz 16 der Transitivität der Äquivalenz folgern, dass gilt:

$$x \in \emptyset \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Da gemäß dem Satz 52 aus der Äquivalenz auch die Implikation folgt, kann ich gemäß dem Satz 17 der Schlussfolgerung folgern, dass auch gilt:

$$x \in \emptyset \Rightarrow x \in M_n \land \neg (x \in M_n)$$

Gemäß dem Satz 46 über die Existenz nicht wahrer Aussagen ist die Aussage

$$x \in M_n \land \neg (x \in M_n)$$

nicht wahr (als Aussage A habe ich die Aussage $x \in M_n$ verwendet). Also kann ich gemäß dem ersten Satz 78 der Minimums- und Maximumssätze der Logik schließen, dass gilt:

$$x \in M_n \land \neg (x \in M_n) \Rightarrow x \in M$$

Dabei habe ich $B \equiv x \in M$ gesetzt und $A \equiv x \in M_n \land \neg (x \in M_n)$. Da die Implikation transitiv ist, kann ich gemäß dem Satz 15 der Implikation folgern, dass auch gilt:

$$x \in \emptyset \Rightarrow x \in M$$

Gemäß der Definition 28 der Teilmenge kann ich also schreiben, dass gilt

$$\phi \subset M$$

In Worten: Die leere Menge ist eine Teilmenge der Menge M. Das ist jedoch gerade die Behauptung. Somit bin ich der Meinung, dass ich den Beweis der Behauptung auf ziemlich umständliche Art erbracht habe. Auf jeden Fall beende ich an dieser Stelle die weitere Beweisführung.

Ich möchte diesen Sachverhalt noch visualisieren. In der Abbildung 9 habe ich zu zeigen versucht, dass die leere Menge in sich selber enthalten ist. In der Abbildung 10 habe ich zu zeigen versucht, dass die leere Menge in der nichtleeren Menge enthalten ist. Und falls Du Dich fragst, was das für eine Menge M sein sein, welche die Elemente "Mausi", "Hasi" und "Schnecke" enthält? Das sind Kosenamen. Ob diese Menge sinnvoll ist oder nicht, steht an dieser Stelle zwar nicht zur Debatte. Ich hoffe jedoch, dass dies nicht sexistisch empfunden wird.

Ich möchte nun die nächste Behauptung formulieren und beweisen:

LEMMA 140. Es sei M eine wohldefinierte Menge. Dann gilt

$$M \cap \emptyset = \emptyset \cap M = \emptyset$$

BEWEIS. Es sei M_n eine wohldefinierte Menge, welche jedoch nicht leer sein. Eine solche Menge muss gemäß dem Satz 5 existieren. Dann kann ich gemäß der Definition 30 definieren:

$$x \in \emptyset \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Nun kann ich gemäß dem ersten Miniumsatz 78 der Logik schreiben, dass gilt:

$$x \in M \land (x \in M_n \land \neg (x \in M_n)) \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Da die Äquivalenz gemäss dem Satz 16 transitiv ist, kann ich gemäss dem Satz der Schlussfolgerung folgern, dass auch gelten muss

$$x \in M_n \land \neg (x \in M_n) \Leftrightarrow x \in M \land (x \in M_n \land \neg (x \in M_n))$$

Da die Äquivalenz gemäß dem Satz 16 transitiv ist, kann ich wegen der Aussage

$$(x \in \emptyset \Leftrightarrow x \in M_n \land \neg (x \in M_n))$$
$$\land (x \in M_n \land \neg (x \in M_n) \Leftrightarrow x \in M \land (x \in M_n \land \neg (x \in M_n)))$$

auch schreiben, dass gilt:

$$x \in \emptyset \Leftrightarrow x \in M \land (x \in M_n \land \neg (x \in M_n))$$

Da die Äquivalenz gemäß dem Satz 39 kommutativ ist, kann ich gemäß dem entschärften Satz 19 der Schlussfolgerung schreiben, dass auch gilt:

$$x \in M \land x \in M_n \land \neg (x \in M_n) \Leftrightarrow x \in \emptyset$$

Gemäß dem zweiten erweiterten Substitutionssatz 119 der Konjunktion kann ich folgern, dass gilt:

$$x \in M \land (x \in M_n \land \neg (x \in M_n)) \Leftrightarrow x \in M \land x \in \emptyset$$

Zurück zur Aussage

$$x \in \emptyset \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Da die Äquivalenz immer noch gemäß dem Satz 16 transitiv ist, kann ich schreiben, dass auch gilt:

$$x \in \emptyset \Leftrightarrow x \in M \land x \in \emptyset$$

Gemäß der Definition 125 der Schnittmenge kann ich schreiben:

$$x \in M \cap \emptyset \Leftrightarrow x \in M \land x \in \emptyset$$

Wiederum aufgrund des Satz 39 der Kommutativität der Äquivalenz kann ich gemäß dem entschärften Satz 19 der Schlussfolgerung schreiben, dass auch gilt:

$$x \in M \land x \in \emptyset \Leftrightarrow x \in M \cap \emptyset$$

Da die Äquivalenz gemäß dem Satz 16 transitiv ist, kann aus der Aussage

$$x \in \emptyset \Leftrightarrow x \in M \land x \in \emptyset$$
$$\land x \in M \land x \in \emptyset \Leftrightarrow x \in M \cap \emptyset$$

schliessen, dass gilt:

$$x \in \emptyset \Leftrightarrow x \in M \cap \emptyset$$

Gemäß der Definition 125 der Mengengleichheit kann ich darum schreiben, dass gilt:

$$\emptyset = M \cap \emptyset$$

Da die Gleichheit von Mengen gemäß dem Satz 131 kommutativ ist, kann ich gemäß dem entschärften Satz der Schlussfolgerung folgern, dass gilt:

$$M \cap \emptyset = \emptyset$$

Dies entspricht jedoch dem ersten Teil der Behauptung.

Nun möchte ich den zweiten Teil der Behauptung erbringen. Ich möchte also zeigen, dass auch

$$\emptyset = \emptyset \cap M$$

gilt. Es gilt immer noch die Aussage

$$x \in \emptyset \Leftrightarrow x \in M \land x \in \emptyset$$

Gemäß dem Satz 35 der Kommutativität der Konjunktion gilt

$$x \in M \land x \in \emptyset \Leftrightarrow x \in \emptyset \land x \in M$$

Da die Äquivalenz gemäß dem Satz 16 immer noch transitiv ist, kann ich also schließen, dass auch gilt:

$$x \in \emptyset \Leftrightarrow x \in \emptyset \land x \in M$$

Gemäß der Definition 125 der Schnittmenge kann ich schreiben:

$$x \in \emptyset \cap M \Leftrightarrow x \in \emptyset \land x \in M$$

Wiederum aufgrund des Satz 39 der Kommutativität der Äquivalenz kann ich gemäß dem entschärften Satz 19 der Schlussfolgerung schreiben, dass auch gilt:

$$x \in \emptyset \land x \in M \Leftrightarrow x \in \emptyset \cap M$$

Da die Äquivalenz gemäß dem Satz 16 transitiv ist, kann ich auch schreiben

$$x \in \emptyset \Leftrightarrow x \in \emptyset \cap M$$

Gemäß der Definition 125 der Mengengleichheit kann ich darum schreiben, dass gilt:

$$\emptyset = \emptyset \cap M$$

Dies entspricht jedoch dem ersten Teil der Behauptung. Da die Gleichheit von Mengen gemäß dem Satz 131 kommutativ ist, kann ich gemäß dem entschärften Satz der Schlussfolgerung folgern, dass gilt:

$$\emptyset \cap M = \emptyset$$

Dies entspricht jedoch dem zweiten Teil der Behauptung.

Ich möchte noch einen anderen Beweis zu beweisen versuchen. Angenommen, die Schnittmenge von

$$\emptyset \cap M$$

wäre nicht leer. Dann müsste es gemäß der Definition 125 der Menge ein Element, welches mit x bezeichnet werde, derart geben, dass

$$x \in \mathcal{O} \cap M$$

wäre. Gemäß der Definition 125 der Schnittmenge bedeutet

$$x \in \emptyset \cap M \Leftrightarrow x \in \emptyset \wedge x \in M$$

Da gemäß dem Satz 52 aus der Äquivalenz auch die Implikation folgt, kann ich gemäß dem Satz 17 der Schlussfolgerung folgern, dass auch gilt

$$x \in \emptyset \land x \in M$$

Da gemäß dem Satz 55 aus der Konjunktion die Aussage folgt, kann ich gemäß dem Satz 17 der Schlussfolgerung folgern, dass auch gilt:

$$x \in \emptyset$$

Das ist jedoch ein Widerspruch zur Definition der leeren Menge. Denn diese leere Menge kann gemäß Definition 30 kein Element besitzen. Also kann ich gemäß dem Satz 20 des logischen Widerspruchs folgern, dass die Menge

$$\phi \cap M$$

kein Element besitzen kann. Somit muss also gelten

$$\emptyset \cap M = \emptyset$$

Das wäre jedoch gerade die Behauptung. Ähnlich kann ich argumentieren, um zu zeigen, dass auch

$$M \cap \emptyset = \emptyset$$

sein muss. Angenommen, die Schnittmenge von

$$M \cap \emptyset$$

wäre nicht leer. Dann müsste es gemäß der Definition 125 der Menge ein Element, welches mit x bezeichnet werde, derart geben, dass

$$x \in M \cap \emptyset$$

wäre. Gemäß der Definition 125 der Schnittmenge bedeutet

$$x \in M \cap \emptyset \Leftrightarrow x \in \emptyset \land x \in M$$

Da gemäß dem Satz 52 aus der Äquivalenz auch die Implikation folgt, kann ich gemäß dem Satz 17 der Schlussfolgerung folgern, dass auch gilt

$$x \in M \land x \in \emptyset$$

Gemäß dem Satz 35 ist die Konjunktion kommutativ. Es muss also gelten:

$$x \in M \land x \in \emptyset \Leftrightarrow x \in \emptyset \land x \in M$$

Gemäß dem entschärften Satz 19 der Schlussfolgerung kann ich schließen, dass gilt:

$$x \in M \cap \emptyset \Leftrightarrow x \in \emptyset \land x \in M$$

Weiter oben habe ich angenommen, dass die Aussage

$$x \in M \cap \emptyset$$

wahr sei. Da gemäß dem Satz 52 aus der Äquivalenz auch die Implikation folgt, kann ich gemäß dem Satz 17 der Schlussfolgerung folgern, dass auch gilt

$$x \in \emptyset \land x \in M$$

Da gemäß dem Satz 55 aus der Konjunktion die Aussage folgt, kann ich gemäß dem Satz 17 der Schlussfolgerung folgern, dass auch gilt:

$$x \in \emptyset$$

Das ist jedoch ein Widerspruch zur Definition der leeren Menge. Denn diese leere Menge kann gemäß Definition 30 kein Element besitzen. Also kann ich gemäß dem Satz 20 des logischen Widerspruchs folgern, dass die Menge

$$\phi \cap M$$

kein Element besitzen kann. Somit muss also gelten

$$\emptyset \cap M = \emptyset$$

Somit behaupte ich, dass die den Beweis für die Richtigkeit der erbracht habe und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Ich möchte dieses Satz wiederum visualisieren. In der Abbildung 11 versuchte ich zu zeigen, dass die Schnittmenge der leeren Menge mit sich selber wiederum leer ist. In dieser und ich auch in der folgenden Abbildung gibt es mehrere Mengen, welche mit der leeren Menge bezeichnet werden. Das ist schon speziell. Denn üblicherweise werden verschiedene Objekte mit verschiedenen Symbolen bezeichnet. In der 12 versuchte ich zu zeigen, dass die Schnittmenge einer nichtleeren Menge mit einer leeren Menge wiederum leer sein muss. Ich möchte nicht unerwähnt bleiben, dass ich die Beweisidee für den zweiten Beweis des

ABBILDUNG 11. Visualisierung Schnittmenge von leerer Menge mit sich selber

ABBILDUNG 12. Visualisierung Schnittmenge von nichtleerer Menge mit leerer Menge

vorhergehenden Satzes erst dann gehabt habe, als ich diese zwei Abbildungen gezeichnet habe. Somit halte ich den Beweis für erbracht, dass Zeichnungen, auch wenn sie immer nur Beispiele liefern, ebenso ihre Berechtigung besitzen in der Mathematik wie die rein formalen Beweise.

Lemma 141. Es sei M eine wohldefinierte Menge. Dann gilt

$$M \cup \emptyset = \emptyset \cup M = M$$

Beweis. Es sei

$$x \in M \cup \emptyset$$

Gemäß der Definition 125 der Vereinigungsmenge kann ich schreiben

$$x \in M \cup \emptyset \Leftrightarrow x \in M \lor x \in \emptyset$$

Es sei M_n eine wohldefinierte Menge, welche jedoch nicht leer sei. Eine solche muss es gemäß dem Lemma 5 geben. Dann kann ich gemäß der Definition 30 definieren:

$$x \in \emptyset \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Gemäß dem zweiten erweiterten Satz 120 der Disjunktion kann ich dann schreiben, dass gilt:

$$x \in M \lor x \in \emptyset \Leftrightarrow x \in M \lor x \in M_n \land \neg (x \in M_n)$$

Da die Äquivalenz gemäß dem Satz 16 transitiv ist, kann ich aufgrund der Aussagen

$$x \in M \cup \emptyset \Leftrightarrow x \in M \lor x \in \emptyset$$
$$x \in M \lor x \in \emptyset \Leftrightarrow x \in M \lor x \in M_n \land \neg (x \in M_n)$$

schreiben, dass gilt:

$$x \in M \cup \emptyset \Leftrightarrow x \in M \lor x \in M_n \land \neg (x \in M_n)$$

Dann kann ich gemäß dem ersten Satz 78 der Minimal- und Maximalsätze der Logik schreiben:

$$x \in M \lor x \in M_n \land \neg (x \in M_n) \Leftrightarrow x \in M$$

Und wiederum gemäß dem Satz 16 der Äquivalenz kann ich schreiben, dass gilt

$$x \in M \cup \emptyset \Leftrightarrow x \in M$$

Gemäß der Definition 125 der Mengengleichheit kann ich darum schreiben, dass gilt:

$$M \cup \emptyset = M$$

Das wollte ich jedoch gerade beweisen. Nun möchte ich zeigen, dass auch gilt

$$\emptyset \cup M = M$$

Gemäß der Definition 125 der Vereinigungsmenge kann ich schreiben:

$$x \in \emptyset \cup M \Leftrightarrow x \in \emptyset \lor x \in M$$

Dann kann ich gemäß der Definition 30 der leeren Menge schreiben

$$x \in \emptyset \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Somit kann ich gemäß dem ersten erweiterten Satz 120 der Disjunktion schreiben:

$$x \in \emptyset \lor x \in M \Leftrightarrow x \in M_n \land \neg (x \in M_n) \lor x \in M$$

Da die Äquivalenz gemäß dem Satz 16 transitiv ist, kann ich aufgrund der als wahr erkannten Aussagen

$$x \in \mathcal{O} \cup M \Leftrightarrow \qquad \qquad x \in \mathcal{O} \lor x \in M$$

 $x \in \mathcal{O} \lor x \in M \Leftrightarrow \qquad x \in M_n \land \neg (x \in M_n) \lor x \in M$

schreiben:

$$x \in \emptyset \cup M \Leftrightarrow x \in M_n \land \neg (x \in M_n) \lor x \in M$$

Da die Disjunktion gemäß dem Satz 37 kommutativ ist, kann ich schreiben:

$$x \in M_n \land \neg (x \in M_n) \lor x \in M \Leftrightarrow x \in M \lor x \in M_n \land \neg (x \in M_n)$$

Gemäß dem Satz 16 der Transitivität kann ich wiederum folgern, dass gilt:

$$x \in \emptyset \cup M \Leftrightarrow x \in M \lor x \in M_n \land \neg (x \in M_n)$$

Dann kann ich gemäß dem ersten Satz 78 der Maximalsätze der Logik schreiben:

$$x \in M \lor x \in M_n \land (x \in M_n) \Leftrightarrow x \in M$$

Und wiederum gemäß dem Satz 16 der Äquivalenz kann ich schreiben, dass gilt

$$x \in M \cup \emptyset \Leftrightarrow x \in M$$

Gemäß der Definition 125 der Mengengleichheit kann ich darum schreiben, dass gilt:

$$M \cup \emptyset = M$$

Dies ist jedoch gerade die Behauptung. Somit habe ich beide Teile der Behauptung bewiesen.

Also bin ich der Meinung, dass ich die Richtigkeit der gesamten Behauptung gezeigt habe und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Für die Visualisierung des Satzes möchte ich auf die Abbildungen 11 sowie 12 verweisen. In der ersten Abbildung siehst Du, dass die Vereinigung zweier leerer Menge wiederum leer ist. In der zweiten Abbildung siehst Du, dass die Vereinigung einer nichtleeren Menge mit einer leeren Menge gleich der nichtleeren Menge ist.

Nun möchte ich das folgende Lemma formulieren und beweisen:

Lemma 142. Es sei M eine wohldefinierte Menge, welche leer oder nicht leer sein kann. Dann gilt

$$M \backslash \emptyset = \emptyset$$

BEWEIS. Gemäß dem Lemma 5 muss es eine Menge M_n derart geben, welche nicht leer ist. Dann kann ich gemäß 30 folgern, dass gilt

$$x \in \emptyset \Leftrightarrow x \in M_n \land x \notin M_n$$

wobei gemäß Definition 5 schreiben kann:

$$x \notin M_n = \neg \left(x \in M_n \right)$$

ist. Also kann ich sicher schreiben:

$$x \in \emptyset \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Gemäß dem Äquivalenz-Negationssatz 60 muss dann auch gelten:

$$\neg (x \in \emptyset) \Leftrightarrow \neg (x \in M_n \land \neg (x \in M))$$

Da die Äquivalenz gemäss dem Satz 39 kommutiert, kann ich gemäss dem entschräften Satz 19 der Schlussfolgerung folgern, dass auch die Aussage

$$\neg (x \in M_n \land \neg (x \in M_n)) \Leftrightarrow \neg (x \in \emptyset)$$

wahr ist.

Nun kann ich gemäß dem zweiten erweiterten Substitutionssatz 119 der Konjunktion folgern, dass gilt:

$$x \in M \land \neg (x \in M_n \land \neg (x \in M_n)) \Leftrightarrow x \in M \land \neg (x \in \emptyset)$$

Aus den Aussagen

$$x \in M \Leftrightarrow x \in M \land \neg (x \in M_n \land \neg (x \in M_n))$$

sowie

$$x \in M \land \neg (x \in M_n \land \neg (x \in M_n)) \Leftrightarrow x \in M \land \neg (x \in \emptyset)$$

kann ich gemäß dem Satz 16 der Transitivität folgern, dass gilt:

$$x \in M \Leftrightarrow x \in M \land \neg (x \in \emptyset)$$

Gemäß der Definition 125 der Differenzmenge kann ich schreiben:

$$x \in M \backslash \emptyset \Leftrightarrow x \in M \land \neg (x \in \emptyset)$$

Da die Äquivalenz gemäß dem Satz 39 kommutativ ist, kann ich gemäß dem entschärften Satz 19 der Schlussfolgerung folgern, dass auch gelten muss:

$$x \in M \land \neg (x \in \emptyset) \Leftrightarrow x \in M \backslash \emptyset$$

Und wieder gemäß dem Satz 16 der Transitivität der Äquivalenz kann ich aus den Aussagen

$$x \in M \Leftrightarrow x \in M \land \neg (x \in \emptyset)$$

sowie

$$x \in M \land \neg (x \in \emptyset) \Leftrightarrow x \in M \backslash \emptyset$$

folgern, dass gilt:

$$x \in M \Leftrightarrow x \in M \backslash \emptyset$$

Das bedeutet gemäß der Definition 125 dass gilt:

$$M = M \backslash \emptyset$$

Da die Mengengleichheit gemäß dem Satz 131 kommutiert, gilt auch:

$$M \backslash \emptyset = M$$

Dies ist jedoch gerade die Behauptung, welche ich beweisen wollte. Somit bin ich der Meinung, dass ich die Richtigkeit der Behauptung erbracht habe und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Für die Visualisierung dieses möchte ich auf die Abbildungen 9 sowie 10 verweisen. Die erste Abbildung zeigt, dass die Differenzmenge aus der leeren Menge und der leeren Menge wiederum die leere Menge ist. Die zweite Abbildung zeigt, dass die Differenzmenge aus einer nichtleeren Menge und der leeren Menge die nichtleere Menge ist.

Satz 143. Es sei M eine wohldefinierte Menge, welche leer oder nichtleer sein kann. Dann gilt die Mengengleichheit

$$\emptyset \backslash M = \emptyset$$

In Worten: Die Differenzmenge aus der leeren Menge und einer beliebigen Menge ist wiederum leer.

Beweis. Ist M die leere Menge, dann habe ich also zu zeigen:

$$\emptyset \backslash \emptyset = \emptyset$$

Es sei M_n eine wohldefinierte Menge, welche nicht leer sei. Eine solche Menge muss es gemäß dem Lemma 5 geben. Dann kann ich gemäß der Definition 30 schreiben

$$x \in \emptyset \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Weiter muss gemäß der Definition 125 der Differenzmenge gelten

$$x \in (\emptyset \backslash \emptyset) \Leftrightarrow x \in \emptyset \land \neg (x \in \emptyset)$$

Gemäß dem ersten erweiterten Substitutionssatz 118 der Konjunktion gilt darum auch

$$x \in \emptyset \land \neg (x \in \emptyset) \Leftrightarrow x \in M_n \land \neg (x \in M_n) \land \neg (x \in \emptyset)$$

Da die Äquivalenz gemäß dem Satz 16 transitiv ist, kann ich daraus schließen, dass gilt

$$x \in (\emptyset \backslash \emptyset) \Leftrightarrow x \in M_n \land \neg (x \in M_n) \land \neg (x \in \emptyset)$$

Gemäß dem Satz 35 ist die Konjunktion kommutativ. Also kann ich schreiben

$$x \in M_n \land \neg (x \in M_n) \land \neg (x \in \emptyset) \Leftrightarrow \neg (x \in \emptyset) \land x \in M_n \land \neg (x \in M_n)$$

Da die Äquivalenz immer noch gemäß dem Satz 16 transitiv ist, kann ich schreiben

$$x \in (\emptyset \backslash \emptyset) \Leftrightarrow \neg(x \in \emptyset) \land x \in M_n \land \neg(x \in M_n)$$

Gemäß dem Satz 46 der Existenz von nicht wahren Aussagen kann die Aussage

$$x \in M_n \land \neg (x \in M_n)$$

nicht wahr sein. Also kann ich gemäß dem ersten Miniumsatz 78 schreiben, dass gilt

$$\neg (x \in \emptyset) \land x \in M_n \land \neg (x \in M_n) \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Immer noch gemäß dem Satz 16 der Transitivität der Äquivalenz kann ich schreiben, dass gilt:

$$x \in (\emptyset \backslash \emptyset) \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Gemäß der Definition 30 der leeren Mengen kann ich schreiben, dass gilt

$$x \in \emptyset \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Da die die Äquivalenz 39 kommutativ ist, muss auch gelten

$$x \in M_n \land \neg (x \in M_n) \Leftrightarrow x \in \emptyset$$

Also kann ich gemäß dem Satz 16 der Transitivität der Äquivalenz folgern, dass gilt

$$x \in (\emptyset \backslash \emptyset) \Leftrightarrow x \in \emptyset$$

Gemäss der Definition 125 der Mengengleichheit ist diese Aussage äquivalent zur Aussage

$$\emptyset \backslash \emptyset = \emptyset$$

Das war jedoch zu beweisen.

Nun möchte ich den Fall beweisen, in welchem die Menge M nicht leer sei.

Es sei M_n eine wohldefinierte Menge, welche nicht leer sei. Eine solche Menge muss es gemäß dem Lemma 5 geben. Dann kann ich gemäß der Definition 30 schreiben

$$x \in \emptyset \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Somit muss gemäß der Definition 125 der Differenzmenge gelten

$$x \in (\emptyset \backslash M) \Leftrightarrow x \in \emptyset \land \neg (x \in M)$$

Gemäß dem ersten erweiterten Substitutionssatz 118 der Konjunktion gilt darum auch

$$x \in \emptyset \land \neg (x \in M) \Leftrightarrow x \in M_n \land \neg (x \in M_n) \land \neg (x \in M)$$

Da die Äquivalenz gemäß dem Satz 16 transitiv ist, kann ich daraus schließen, dass gilt

$$x \in (\emptyset \backslash M) \Leftrightarrow x \in M_n \land \neg (x \in M_n) \land \neg (x \in M)$$

Gemäß dem Satz 35 ist die Konjunktion kommutativ. Also kann ich schreiben

$$x \in M_n \land \neg (x \in M_n) \land \neg (x \in M) \Leftrightarrow \neg (x \in M) \land x \in M_n \land \neg (x \in M_n)$$

Da die Äquivalenz immer noch gemäß dem Satz 16 transitiv ist, kann ich schreiben

$$x \in (\emptyset \backslash M) \Leftrightarrow \neg (x \in M) \land x \in M_n \land \neg (x \in M_n)$$

Gemäß dem Satz 46 der Existenz von nicht wahren Aussagen kann die Aussage

$$x \in M_n \land \neg (x \in M_n)$$

nicht wahr sein. Also kann ich gemäß dem ersten Miniumsatz 78 der Logik schreiben, dass gilt

$$\neg (x \in M) \land x \in M_n \land \neg (x \in M_n) \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Immer noch gemäß dem Satz 16 der Transitivität der Äquivalenz kann ich schreiben, dass gilt:

$$x \in (\emptyset \backslash M) \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Gemäß der Definition 30 der leeren Mengen kann ich schreiben, dass gilt

$$x \in \emptyset \Leftrightarrow x \in M_n \land \neg (x \in M_n)$$

Da die die Äquivalenz gemäss dem Satz 39 kommutativ ist, muss auch gelten

$$x \in M_n \land \neg (x \in M_n) \Leftrightarrow x \in \emptyset$$

Also kann ich gemäß dem Satz 16 der Transitivität der Äquivalenz folgern, dass gilt

$$x \in (\emptyset \backslash M) \Leftrightarrow x \in \emptyset$$

Da war jedoch gerade zu beweisen.

Somit meine ich, den Beweis in allen denkbaren Fällen bewiesen zu haben. Aus diesem Grund erachte ich an dieser Stelle den Beweis der Behauptung des Satzes als erbracht und beende folglich die weitere Beweisführung.

Für die Visualisierung der Behauptungen möchte ich auf die Abbildungen 11 (falls die Menge M leer ist) sowie 12 (falls die Menge M nicht leer ist) verweisen. In beiden Fällen ist die Differenzmenge der Teil auf der rechten Seite der Abbildung, welcher jedoch keine Elemente besitzt und somit leer ist.

26.5. Weitere Eigenschaften von Mengen

Es gibt jetzt viele Sachen im Leben, die geglaubt werden, ohne sich weiter damit auseinander zu setzen. Dies ist in der Regel gar nicht nötig. Ich möchte in diesem Skript jedoch den umgekehrten Weg gehen: So viel wie möglich befragen. Darum auch das nächste

Lemma 144. Es seien A, B, welche in sich selbst und gegenüber anderen Symbolen des Lemmas widerspruchsfrei seien. Dann gilt:

$$\{A, B\} = \{B, A\}$$

Beweis. Gemäß der Definition 125 kann ich schreiben

$$x \in \{A,B\} \Leftrightarrow x \in A \lor x \in B$$

Nun ist die Disjunktion gemäß dem Satz 37 kommutativ. Darum kann ich schreiben

$$x \in A \lor x \in B \Leftrightarrow x \in B \lor x \in A$$

Da die Äquivalenz gemäß dem Satz 15 transitiv ist, kann ich schreiben

$$x \in \{A, B\} \Leftrightarrow x \in B \lor x \in A$$

Nun gilt jedoch per Übereinkunft (siehe wiederum Definition 125 oben)

$$x \in \{B, A\} \Leftrightarrow x \in B \lor x \in A$$

Und da die Äquivalenz gemäß dem Satz 39 kommutativ ist, kann ich gemäß dem Satz 17 auch schreiben:

$$x \in B \lor x \in A \Leftrightarrow x \in \{B, A\}$$

Wiederum verwende ich den Satz 15 der Transitivität der Äquivalenz und erhalte die Aussage:

$$x \in \{A, B\} \Leftrightarrow x \in \{B, A\}$$

Also kann ich gemäß der formalen Definition 125 der Mengengleichheit folgern, dass gilt

$${A,B} = {B,A}$$

Genau dies wollte ich jedoch zeigen. Da ich nun meine, den Beweis für die Richtigkeit des Lemmas erbracht zu haben, beende ich nun an dieser Stelle die weitere Beweisführung.

Also es kann ja irgendwie nicht einfach genug zu und her gehen in meinen Betrachtungen. Der Witz am nachfolgenden Lemma ist, dass ich damit versuche, zu zeigen, dass die Mengenbeschreibung und die Aussagenlogik eigentlich mehr oder weniger dasselbe ist. Obwohl rein anschaulich klar ist, dass dies so gilt, möchte ich mich fragen, ob ich das richtig mit der Logik verknüpfen kann. Und ich hoffe zu zeigen, dass dem tatsächlich so ist.

Darum werde ich noch zu zeigen versuchen:

Lemma 145. Es seien A, B Symbole, welche in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt

$$A \in \{A, B\} \land B \in \{A, B\}$$

Schlussendlich gilt

$$\{A\} = \{A, A\}$$

Beweis. Es ist gemäß der Definition 1 der Gleichheit von Symbolen

$$A = A$$

Gemäß dem Satz 57 kann ich schreiben

$$A = A \Rightarrow (A = A) \lor (A = B)$$

Weiter kann ich gemäß der Definition 125 der Menge mit Hilfe der Aussagenlogik kann ich schreiben:

$$A \in \{A\} \Leftrightarrow A = A$$

sowie

$$A \in \{B\} \Leftrightarrow A = B$$

Da die Äquivalenz gemäß dem Satz 39 kommutativ ist, kann ich auch schreiben:

$$A = A \Leftrightarrow A \in \{A\}$$

$$A = B \Leftrightarrow A \in \{B\}$$

Somit kann ich auch gemäß dem 3. Substitutionssatz 102 der Disjunktion schreiben:

$$(A = A) \lor (A = B) \Rightarrow A \in \{A\} \lor A = B$$

Da die Implikation gemäß dem Satz 15 transitiv ist, kann ich aufgrund der Aussagen

$$A = A \Rightarrow (A = A) \lor (A = B)$$

sowie

$$(A=A) \lor (A=B) \Rightarrow A \in \{A\} \lor A=B$$

schreiben:

$$A = A \Rightarrow A \in \{A\} \lor A = B$$

Weiter kann ich gemäß dem 4. Substitutionssatz 103 der Disjunktion schreiben:

$$A \in \{A\} \lor A = B \Rightarrow A \in \{A\} \lor A \in \{B\}$$

Da die Implikation immer noch gemäß dem Satz 15 transitiv ist, kann aufgrund der Aussagen

$$A = A \Rightarrow A \in \{A\} \lor A = B$$

sowie

$$A \in \{A\} \lor A = B \Rightarrow A \in \{A\} \lor A \in \{B\}$$

schreiben:

$$A = A \Rightarrow A \in \{A\} \lor A \in \{B\}$$

Gemäß der Definition 125 der Verknüpfung der Mengenschreibweise mit der Logik kann ich schreiben

$${A,B} = {A} \cup {B}$$

Gemäß der formalen Definition 125 der Mengengleicheit ist diese Gleichheit definiert als

$$A \in \{A, B\} \Leftrightarrow A \in \{A\} \lor A \in \{B\}$$

Da die Äquivalenz gemäß dem Satz 39 kommutiert, kann ich auch schreiben

$$A \in \{A\} \vee A \in \{B\} \Leftrightarrow A \in \{A,B\}$$

Da gemäß dem Satz 52 aus der Äquivalenz auch die Implikation folgt, kann ich schreiben

$$A \in \{A\} \lor A \in \{B\} \Rightarrow A \in \{A, B\}$$

Da die Implikation gemäß dem Satz 15 transitiv ist, kann ich aufgrund der Aussagen

$$A = A \Rightarrow A \in \{A\} \lor A \in \{B\}$$

sowie

$$A \in \{A\} \lor A \in \{B\} \Rightarrow A \in \{A, B\}$$

schreiben:

$$A = A \Rightarrow A \in \{A, B\}$$

Weiter kann ich gemäß der Definition 125 der Menge mit Hilfe der Aussagenlogik ist

$$A \in \{A\} \Leftrightarrow A = A$$

Da die Äquivalenz gemäss dem Satz 39 kommutiert, kann ich gemäss dem abgeschwächten Satz 19 der Schlussfolgerung schliessen, dass gilt

$$A = A \Leftrightarrow A \in \{A\}$$

Gemäss dem 3. Substitutionssatz 105 der Implikation kann ich darum aus den Aussagen

$$A = A \Rightarrow A \in \{A, B\}$$

sowie

$$A = A \Leftrightarrow A \in \{A\}$$

schliessen, dass gilt

$$A \in \{A\} \Rightarrow A \in \{A, B\}$$

Nun ist gemäss der Defintion 1 der Gleichheit von Symbolen die Aussage

$$A = A$$

und somit gemäß der Definition 125 der Verknüpfung der Mengenschreibweise mit der Logikauch die Aussage

$$A \in \{A\}$$

wahr. Also muss es gemäß dem Satz 17 der Schlussfolgerung auch die Aussage

$$A \in \{A, B\}$$

sein. Damit wäre der Beweis des ersten Teil dieses kleinen Lemmas erbracht. Nun möchte ich den zweiten Teil beweisen. Gemäß dem bereits bewiesenen gilt

$$B \in \{B, A\}$$

Nun ist gemäß dem Lemma 144 der Unabhängigkeit der Menge von der Reihenfolge der Schreibweise die Aussage

$$\{B,A\} = \{A,B\}$$

wahr. Gemäß der formalen Definition 125 der Mengengleichheit bedeutet dies

$$B \in \{B, A\} \Leftrightarrow B \in \{B, A\}$$

Da aus der Äquivalenz gemäß dem Satz 52 die Implikation folgt, kann ich schreiben

$$B \in \{B, A\} \Rightarrow B \in \{A, B\}$$

Da die Implikation immer noch gemäß dem Satz 15 transitiv ist, kann ich aufgrund der Aussagen

$$B = B \Rightarrow B \in \{B, A\}$$

sowie

$$B \in \{B, A\} \Rightarrow B \in \{A, B\}$$

schreiben

$$B = B \Rightarrow B \in \{A, B\}$$

Gemäss der 125 der Verknüpfung der Mengenschreibweise mit der Logik ist

$$B \in \{B\} \Leftrightarrow B = B$$

Da die Äquivalenz gemäss dem Satz 39 kommutiert, kann ich gemäss dem abgeschwächten Satz 19 schliessen, dass gilt

$$B = B \Leftrightarrow B \in \{B\}$$

Gemäss dem 3. Substitutionssatz 105 der Implikation kann ich darum aus den Aussagen

$$B = B \Rightarrow B \in \{A, B\}$$

sowie

$$B = B \Leftrightarrow B \in \{B\}$$

schliessen, dass gilt

$$B \in \{B\} \Rightarrow B \in \{A, B\}$$

Da die Aussage

$$B = B$$

und somit auch die Aussage

$$B \in \{B\}$$

per Definition 1 der Gleichheit von Symbolen wahr ist, muss gemäß dem Satz 17 der Schlussfolgerung auch die Aussage

$$B \in \{A, B\}$$

wahr sein. Damit ist die Richtigkeit der zweiten Behauptung erbracht. Zum Beweis der letzten Behauptung des Lemmas:

Ich hatte einen Beweis geschrieben. Der war aber so umständlich, dass ich ihn verworfen habe. Ich probiere es noch einmal. Gemäss der Defintion 125 der Menge mit Hilfe der Aussagenlogik kann ich schreiben:

$$x \in \{A\} \Leftrightarrow x = A$$

Gemäss dem Satz 32 der Äquivalenz von Disjunktion und Aussage gilt die Aussage

$$x = A \Leftrightarrow x = A \lor x = A$$

Da die Äquivalenz gemäss dem Satz 16 transitiv ist, kann ich nun gemäss dem Satz 16 schreiben, dass gilt

$$x \in \{A\} \Leftrightarrow x = A \lor x = A$$

Gemäss der Definition 125 der Menge mit Hilfe der Aussagenlogik kann ich wiederum schreiben, dass gilt:

$$x \in \{A, A\} \Leftrightarrow x = A \lor x = A$$

Da die Äquivalenz gemäss dem Satz 39 kommutiert, kann ich nun gemäss dem abgeschwächten Satz 19 folgern, dass gilt

$$x = A \vee x = A \Leftrightarrow x \in \{A,A\}$$

Da die Äquivalenz gemäss dem Satz 16 immer noch transitiv ist, kann ich nun gemäss dem Satz 16 schreiben, dass gilt

$$x \in \{A\} \Leftrightarrow x \in \{A, A\}$$

Gemäss der Definition 6 kann ich nun schreiben

$$\{A\} = \{A, A\}$$

Das war jedoch gerade zu beweisen. Darum bin ich der Meinung, dass ich den Beweis für die Richtigkeit der Behauptung erbracht habe und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Der Letzte Teil der Behauptung

$$\{A\} = \{A, A\}$$

des vorhergehenden Satz finde ich schon bemerkenswert. Denn irgendwie erscheint er mir seltsam ("kontraintuitiv", also entgegen der eigenen Vorstellung). Denn es gilt ja, sofern ich "A" als widerspruchsfeies Metasymbol definiere

$$A \neq AA$$

Aber es sind eben zwei verschiedene Dinge, ob ich das Metasymbol als Element einer Menge oder als Element einer Zeichenkette definiere.

26.6. Eigenschaften von Schnittmengen

Nun möchte ich die Eigenschaften von Schnittmengen beschreiben.

Lemma 146. Es seien A, B Mengen, welche in sich selber und in Bezug auf die anderen Mengen nicht widersprüchlich seien. Dann gilt:

$$A \cap B = B \cap A$$

BEWEIS. Zuerst nehme ich an, dass sowohl A wie auch B nicht leer seien. Dann gilt gemäß der Definition 125 oben, insbesondere die Definition der Schnittmenge:

$$x \in A \cap B \Leftrightarrow x \in A \land x \in B$$

Gemäß dem Satz 35 der Kommutation der Konjunktion gilt

$$x \in A \land x \in B \Leftrightarrow x \in B \land x \in A$$

Da die Äquivalenz gemäß dem Satz 16 transitiv ist, kann ich aufgrund der Aussagen

$$x \in A \cap B \Leftrightarrow x \in A \land x \in B$$

sowie

$$x \in A \land x \in B \Leftrightarrow x \in B \land x \in A$$

dann schreiben:

$$x \in A \cap B \Leftrightarrow x \in B \land x \in A$$

Dann gilt gemäß der Definition 125 der Menge oben, insbesondere die Definition der Schnittmenge wiederum:

$$x \in B \cap A \Leftrightarrow x \in B \land x \in A$$

Abbildung Kommutativität von Schnittmengen

Gemäß dem Satz 39 der Kommutativität der Äquivalenz kann ich gemäß dem abgeschächten Satz 19 der Schlussfolgerung folgern, dass auch gilt

$$x \in B \land x \in A \Leftrightarrow x \in B \cap A$$

Nun habe ich weiter oben gezeigt, dass gilt

$$x \in A \cap B \Leftrightarrow x \in B \land x \in A$$

Somit kann ich gemäß dem Satz 16 der Transitivität der Äquivalenz folgern, dass gilt

$$x \in A \cap B \Leftrightarrow x \in B \cap A$$

Gemäß der Definition 125 der Menge, insbesondere der Mengengleichheit, bedeutet diese jedoch, dass gilt:

$$A \cap B = B \cap A$$

Damit hätte ich die Behauptung zumindest für nichtleere Mengen bewiesen.

Ich möchte jetzt den Satz in dem
jenigen Fall beweisen, in welchem die Menge A oder die Menge B (oder natürlich be
ide Mengen) leer sind. Dann ist gemäß dem Satz 138

beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Ich möchte dieses Lemma in einer (nicht ganz ernst gemeinten) Abbildung 13 habe ich anhand eines Beispiels versucht, die Kommutativität der Schnittmengenbildung zu illustrieren. Die Schnittmenge der Mengen mit den Bezeichnungen A und B sowie der Mengen mit den Bezeichnungen B und A sind identisch. Dabei seien die beiden Mengen mit den Bezeichnungen A sowie B wie folgt definiert:

```
A = \{\text{''hat Flügel''}, \text{"singt"}, \text{"plustert sich manchmal auf"}, \text{"hat Schnabel"}\}
```

 $B = \{\text{"singt"}, \text{"hat Mund"}, \text{"plustert sich manchmal auf"}, \text{"hat Arme"}\}$

Dann gilt

$$A \cap B = \{\text{"singt"}, \text{"plustert sich manchmal auf"}\}\$$

 $B \cap A = \{\text{"singt"}, \text{"plustert sich manchmal auf"}\}\$

Hast Du übrigens erraten, welche Mengen ich da im Sinn hatte? Die Menge mit der Bezeichnung A beinhaltet einzelne Eigenschaften von Vögeln, insbesondere von Singvögeln. Die Menge mit der Bezeichnung B beinhaltet einzelne Eigenschafen von Sängerinnen und Sängern, insbesondere Opernsängerinnen und Opernsängern.

Nun möchte ich den Beweis in demjenigen Fall führen, dass die Menge A leer sei.

Lemma 147. Es seien A und B Mengen, welche weder in sich selber noch in Bezug auf die anderen Symbole des Lemmas widersprüchlich seien. Weiter sei die Menge A leer, die Menge B jedoch nicht. Dann gilt die Aussage

$$A \cap B = B \cap A$$

Beweis. Nun sei A die leere Menge. Weiter sei M eine beliebige, jedoch nicht leere Menge. Gemäß dem Lemma 5 muss es eine solche nichtleere Menge M geben. Dann kann ich gemäß der Definition 30 der leeren Menge schreiben:

$$x \in A \Leftrightarrow x \in M \land \neg (x \in M)$$

Somit muss gelten

$$x \in A \cap B \Leftrightarrow x \in A \land x \in B$$

Ich kann gemäß dem ersten erweiterten Substitutionssatz 118 der Konjunktion schreiben:

$$(x \in A \Leftrightarrow x \in M \land \neg (x \in M)) \Rightarrow$$
$$(x \in A \land x \in B \Leftrightarrow x \in M \land \neg (x \in M) \land x \in B)$$

Die Aussage

$$(x \in A \Leftrightarrow x \in M \land \neg (x \in M))$$

ist ja per Definition wahr. Somit kann ich gemäß dem Satz 118 der Schlussfolgerung folgern, dass die Aussage

$$x \in A \land x \in B \Leftrightarrow x \in M \land \neg (x \in M) \land x \in B$$

ebenfalls wahr ist. Also kann ich schreiben, dass gilt:

$$x \in A \land x \in B \Leftrightarrow$$

$$x \in M \land \neg (x \in M) \land x \in B$$

Beachte, dass ich die Klammern um die Aussage $x \in M \land \neg (x \in M)$ weglassen kann, weil die Konjunktion assoziativ ist.

Da die Äquivalenz gemäß dem Satz 16 transitiv ist, kann ich schreiben

$$(x \in A \cap B \Leftrightarrow x \in A \land x \in B) \land$$
$$((x \in A \land x \in B) \Leftrightarrow x \in M \land \neg (x \in M) \land x \in B) \Rightarrow$$
$$(x \in A \cap B \Leftrightarrow x \in M \land \neg (x \in M) \land x \in B)$$

Da die Konjunktion gemäß dem Satz 35 kommutativ ist, kann ich dann auch schreiben:

$$x \in M \land \neg (x \in M) \land x \in B \Leftrightarrow x \in B \land x \in M \land \neg (x \in M)$$

Und wiederum gemäß dem Satz 16 Transitivität der Äquivalenz kann ich dann folgern, dass gilt:

$$(x \in A \cap B \Leftrightarrow x \in M \land \neg (x \in M) \land x \in B) \land$$
$$(x \in M \land \neg (x \in M) \land x \in B \Leftrightarrow x \in B \land x \in M \land \neg (x \in M)) \Rightarrow$$
$$(x \in A \cap B \Leftrightarrow x \in B \land x \in M \land \neg (x \in M))$$

Da die die Aussage

$$x \in A \Leftrightarrow x \in M \land \neg (x \in M)$$

als wahr angenommen wird und die Äquivalenz gemäß dem Satz 39 kommutativ ist, kann ich gemäß dem Satz 11 der Schlussfolgerung schreiben, dass auch gilt:

$$x \in M \land \neg (x \in M) \Leftrightarrow x \in A$$

Nun kann ich mich wiederum der Aussage

$$x \in B \land x \in M \land \neg (x \in M)$$

zuwenden. Gemäß dem zweiten erweiterten Substitutionssatz 119 der Konjunktion kann ich schreiben, dass gilt

$$(x \in M \land \neg (x \in M) \Leftrightarrow x \in A) \Rightarrow$$
$$(x \in B \land x \in M \land \neg (x \in M) \Leftrightarrow x \in B \land x \in A)$$

Da ich oben geschlossen habe, dass die Aussage

$$x \in M \land \neg (x \in M) \Leftrightarrow x \in A$$

wahr ist, kann ich gemäß dem Satz 17 der Schlussfolgerung schließen, dass gilt:

$$x \in B \land x \in M \land \neg (x \in M) \Leftrightarrow x \in B \land x \in A$$

Und wiederum kann ich gemäß dem Satz 16 der Transitivität der Äquivalenz schließen, dass gilt:

$$(x \in A \cap B \Leftrightarrow x \in B \land x \in M \land \neg (x \in M)) \land$$
$$(x \in B \land x \in M \land \neg (x \in M) \Leftrightarrow x \in B \land x \in A) \Rightarrow$$
$$(x \in A \cap B \Leftrightarrow x \in B \land x \in A)$$

Nun bin ich fast am Ziel meiner Träume¹. Gemäß der Definition der Menge 125, insbesondere derjenigen der Schnittmenge, kann ich schreiben:

$$x \in B \cap A \Leftrightarrow x \in B \land x \in A$$

Da die Äquivalenz gemäß dem Satz 39 kommutiert, kann ich schreiben:

$$(x \in B \cap A \Leftrightarrow x \in B \land x \in A) \Leftrightarrow (x \in B \land x \in A \Leftrightarrow x \in B \cap A)$$

¹schön wäre es.

Gemäß dem Satz 52, welcher besagt, dass aus der Äquivalenz die Implikation folgt, kann ich dann schlussfolgern, dass gilt:

$$(x \in B \cap A \Leftrightarrow x \in B \land x \in A) \Rightarrow$$
$$(x \in B \land x \in A \Leftrightarrow x \in B \cap A)$$

Gemäß dem Satz 17 der Schlussfolgerung kann ich schreiben, dass gilt

$$(x \in B \cap A \Leftrightarrow x \in B \land x \in A) \land$$

$$((x \in B \cap A \Leftrightarrow x \in B \land x \in A) \Rightarrow$$

$$(x \in B \land x \in A \Leftrightarrow x \in B \cap A)) \Rightarrow$$

$$(x \in B \land x \in A \Leftrightarrow x \in B \cap A)$$

Das heißt, dass ich annehmen kann, dass die Aussage

$$x \in B \land x \in A \Leftrightarrow x \in B \cap A$$

wahr ist. Ich kann jetzt schreiben, dass gemäß dem Satz 16 der Transitivität der Äquivalenz gilt:

$$(x \in A \cap B \Leftrightarrow x \in B \land x \in A) \land$$
$$(x \in B \land x \in A \Leftrightarrow x \in B \cap A) \Rightarrow$$
$$(x \in A \cap B \Leftrightarrow x \in B \cap A)$$

Also kann ich schließen, dass die Aussage gilt:

$$x \in A \cap B \Leftrightarrow x \in B \cap A$$

Dies ist jedoch genau die Aussage, welche ich beweisen wollte. Da ich nun meine, den Beweis für die Richtigkeit der Behauptung erbracht zu haben, erlaube ich mir an dieser Stelle, auf die weitere Beweisführung zu verzichten und den Beweis an dieser Stelle also zu beenden.

Nun habe ich diesen Fall auch bewiesen. Dann möchte ich denjenigen Fall beweisen in welchem die Menge nicht leer, die Menge B jedoch leer sei.

Lemma 148. Es seien A und B Mengen, welche weder in sich selber noch in Bezug auf die anderen Symbole des Lemmas widersprüchlich seien. Weiter sei die Menge A nicht leer, die Menge B jedoch leer. Dann gilt die Aussage

$$A \cap B = B \cap A$$

Beweis. Gemäß dem letzten Lemma 147 kann ich mindestens folgern, dass gilt:

$$B \cap A = A \cap B$$

Denn ich habe als Menge mit der Bezeichnung A des letzten Lemmas die Menge mit der Bezeichnung B verwendet und als Menge mit der Bezeichnung B des letzten Lemmas die Menge mit der Bezeichnung A

verwendet. Gemäß dem Lemma 131 ist die Mengengleichheit kommutativ. Darum kann ich auch schreiben, dass gilt

$$A \cap B = B \cap A$$

Dies ist jedoch gerade die Behauptung. Darum bin ich der Meinung, das ich den Beweis für die Richtigkeit der Behauptung erbracht und beende aus diesem Grund die weitere Beweisführung.

Lemma 149. Es seien A und B Mengen, welche weder in sich selber noch in Bezug auf die anderen Symbole des Lemmas widersprüchlich seien. Weiter seien sowohl die Mengen A wie auch B leer. Dann gilt die Aussage

$$A \cap B = B \cap A$$

Beweis. Gemäß der Definition 125 der Schnittmenge kann ich schreiben, dass gilt:

$$x \in A \cap B \Leftrightarrow x \in A \land x \in B$$

Es sei M eine Menge, welche nicht leer sei. Eine solche Menge muss es gemäß dem Lemma 5 geben. Dann kann ich gemäß der Definition 30 der leeren Menge schreiben:

$$x \in A \Leftrightarrow x \in M \land \neg (x \in M)$$

Gemäß dem ersten erweiterten Substitutionssatz 111 der Äquivalenz kann ich schreiben, dass gilt:

$$x \in A \land x \in B \Leftrightarrow (x \in M \land \neg (x \in M)) \land x \in B$$

Da die Äquivalenz gemäß dem Satz 16 transitiv ist, kann ich schreiben, dass gilt:

$$x \in A \cap B \Leftrightarrow (x \in M \land \neg (x \in M)) \land x \in B$$

Weiter kann ich mit der Aussage

$$x \in B \Leftrightarrow (x \in M \land \neg (x \in M))$$

und dem zweiten erweiterten Substitutionssatz 120 der Konjunktion schreiben, dass gilt:

$$(x \in M \land \neg (x \in M)) \land x \in B \Leftrightarrow (x \in M \land \neg (x \in M)) \land (x \in M \land \neg (x \in M))$$

Wiederum kann ich von dem Satz 16 der Transitivität der Äquivalenz Gebrauch machen und erhalte die Aussage

$$x \in A \cap B \Leftrightarrow (x \in M \land \neg (x \in M)) \land (x \in M \land \neg (x \in M))$$

Lemma 150. Es seien A und B Bezeichnungen von Mengen, welche weder in sich selber noch in Bezug auf die anderen Symbole des Satzes widersprüchlich seien. Weiter sei die Menge A leer, die Menge B jedoch nicht leer. Dann gilt

$$A \cap B = B \cap A$$

Beweis. Wenn ich die Mengen in das vorhergehenden Lemma einsetze, dann kann ich schreiben, dass gilt:

$$B \cap A = A \cap B$$

Da die Gleichheit von Mengen gemäß dem Lemma 130 kommutiert, kann ich darum auch schreiben, dass gilt

$$A \cap B = B \cap A$$

dies wollte ich jedoch beweisen. Darum glaube ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Nun folgt noch das letzte Lemma aus dieser Serie:

Es seien A und B Bezeichnungen, welche in sich selber noch in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Sowohl A wie auch B seien leere Menge. Dann gilt

$$A \cap B = B \cap A$$

Nun möchte ich die Ausführungen dieses Teil der Mathematik (Logik und elementare Mengenlehre) fürs erste beenden. Es gäbe natürlich noch mehr zu zeigen. Insbesondere hatte ich zuerst die Idee, kon- und disjunktive Normalformen von Aussagen in diesem Teil zu beschreiben. Aber ich denke, das wäre nicht sonderlich hilfreich. Ich möchte weitere logische Sätze in einem späteren Teil wieder hinzufügen. Grund dafür ist, dass ich mich zuerst mit den natürlichen Zahlen beschäftigen möchte. Es ist zwar so, dass natürliche Zahlen keine Hexerei sind. Aber es geht mir darum, nicht Teile zu fest zu mischen, welche nicht unmittelbar zusammen gehören. Ich hoffe, dass ich Dir, lieber Leser, wenigstens das eine oder andere Schmunzeln entlocken konnte oder Du das eine oder andere Aha-Erlebnis hattest. Denn Mathe ist meines Erachtens schön und erstaunlich.

KAPITEL 27

Was ist das kartesische Produkt von Mengen?

Und hat "kartesisch" etwas mit "Karten" zu tun? Nein, hat es nicht. "Kartesisch" hat etwas zu tun mit René Descartes (vergleiche mit dem entsprechenden Artikel auf Wikipedia). Herr Descartes hat dieses Produkt verwendet, um Punkte im Raum zu beschreiben. Da ich nicht so gut im Raum zeichnen kann, möchte ich zuerst in der Ebene einen Punkt zeichnen (vergleiche mit der Abbildung 1). Als Zeichenprogramm habe ich GeoGebra verwendet (Marcel Heer hat mich schon vor Jahren darauf aufmerksam gemacht). Dann besitzt der Punkt mit der Bezeichnung "A" die Koordinaten

 $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$

Das bedeutet: "Gehe vom Ursprung (Punkt mit der Bezeichnung B) drei Einheiten nach rechts (grüner Pfeil, mit u bezeichnet) und anschließend zwei Einheiten nach oben (roter Pfeil, mit v bezeichnet)."

Wahrscheinlich wirst Du das nicht interessant finden. Ich für mich würde mich dann fragen, wenn ich das zum ersten Mal sehen würde: "Für was soll das gut sein?" Und: "Wieso soll ich dann zum Punkt A gehen?" Das Koordinatensystem selbst ist tatsächlich sehr langweilig. Es wird dann spannend, wenn mit Hilfe von mathematischen Formeln Geometrie gemacht werden soll. Aber ich möchte nicht versuchen, etwas Dir zu erklären, für was ich noch nicht die Möglichkeit habe, dies zu tun.

Jedoch ist bei dieser Beschreibung wesentlich, dass zwei Zahlen geordnet dargestellt werden. Ob diese Zahlen senkrecht oder waagrecht angeordnet werden und ob die Zahlen mittels Komma oder Strichpunkt ("Semikolon") voneinander getrennt werden, ist nebensächlich. Wichtig ist, dass zwei verschiedene solche Anordnungen

$$(a_1, a_2)$$

respektive

$$(b_1, b_2)$$

genau dann gleich seien, falls gilt

$$a_1 = b_1$$

respektive

$$a_2 = b_2$$

Um es genau aufzuschreiben, schreibe ich

DEFINITION 151. Es seien M_1, M_2 wohldefinierte nichtleere Mengen, das bedeutet M_1 und M_2 seien in sich selbst und in Bezug aufeinander nicht widersprüchlich. Zudem seien die Mengen nicht leer. Dann sei die Menge

$$M_1 \times M_1 \equiv \{(m_1, m_2) \mid m_1 \in M_1 \land m_2 \in M_2\}$$

genau dann geordnet, falls ich mit $m_1, m_3 \in M_1$ und $m_2, m_4 \in M_2$ folgern kann:

$$(m_1, m_2) = (m_3, m_4) \Rightarrow m_1 = m_3 \land m_2 = m_4$$

Und nun stellt Du Dir vielleicht die Frage: Was hat das mit Mengen zu tun? In Mengen sind die Elemente grundsätzlich nicht geordnet. Das bedeutet: Es gilt

$${2,3} = {3,2}$$

Denn 2 ist auch in der Menge {3,2}. Auch 3 ist in der Menge {3,2}. Ist also "außer Spesen nichts gewesen?". Nein, wie aus dem DTV-Atlas der Mathematik gelernt habe¹, kann ich Mengen so anordnen, indem ich definiere:

DEFINITION 152. Es seien M_1, M_2 zwei beliebige, jedoch in sich selbst und in Bezug auf andere Mengen wohldefinierte Mengen, welche zudem nicht leer seien. Dann sei

$$M_{1} \times M_{2}$$

$$\equiv \left\{ (m_{1}, m_{2}) \mid \atop m_{1} \in M_{1} \wedge m_{2} \in M_{2} \Rightarrow (m_{1}, m_{2}) \equiv \left\{ \left\{ m_{1} \right\}, \left\{ m_{1}, m_{2} \right\} \right\} \right\}$$

In Worten: Die Menge $M_1 \times M_2$ sei die Menge aller Mengen

$$\{\{m_1\},\{m_1,m_2\}\}$$

wobei m_1 ein Element von M_1 und m_2 ein Element der Menge M_2 sei.

¹Obwohl es sich die Autoren des DTV-Atlas insofern leicht gemacht haben, indem sie Elemente und Mengen mischen.

Natürlich könnte ich jetzt sagen: Dann ist $M_1 \times M_2$ eine geordnete Menge. Aber ich hoffe, dass sich bei Dir Widerspruch regt und Du Dir jetzt sagst: "Das glaube ich nicht". Wenn Du schon so gut bist, dass Du den Beweis im Kopf ausführen kannst, gibt es natürlich nichts mehr zu zeigen. Ansonsten möchte ich jetzt den Beweis aufschreiben, wobei ich zugeben muss, dass ich viele Begriffe im Beweis noch gar nicht richtig definiert habe.

SATZ 153. Es seien M_1, M_2 zwei beliebige, jedoch wohldefinierte Mengen, welche jedoch nicht leer seien. Weiter sei $m_{1,1}, m_{1,2} \in M_1$ sowie $m_{2,1}, m_{2,2} \in M_1$. Dann gilt

$$(m_{1,1}, m_{1,2}) = (m_{2,1}, m_{2,2}) \Leftrightarrow m_{1,1} = m_{2,1} \land m_{1,2} = m_{2,2}$$

In Worten: Dann sind die zwei Elemente

$$(m_{1,1}, m_{1,2})$$

sowie

$$(m_{2,1}, m_{2,2})$$

genau dann gleich, falls gilt

$$m_{1.1} = m_{2.1}$$

sowie

$$m_{2,1} = m_{2,2}$$

BEWEIS. Ich bin so frech und zeige zuerst den leichteren Teil. Es seien $m_{1,1}=m_{2,1} \wedge m_{1,2}=m_{2,2}$. Also muss gelten

$$(m_{1,1}, m_{1,2})$$

$$= \{\{m_{1,1}\}, \{m_{1,1}, m_{1,2}\}\}$$

Also ist $\{m_{1,1}\} = \{m_{2,1}\}$ sowie $\{m_{1,1}, m_{1,2}\} = \{m_{2,1}, m_{2,2}\}$ Somit ist auch

$$\left\{ \left\{ m_{1,1}\right\} ,\left\{ m_{1,1},m_{1,2}\right\} \right\} =\left\{ \left\{ m_{2,1}\right\} ,\left\{ m_{2,1},m_{2,2}\right\} \right\}$$

und darum auch

$$\left\{ \left\{ m_{1,1}\right\} ,\left\{ m_{1,1},m_{1,2}\right\} \right\} =\left(m_{2,1},m_{2,2}\right)$$

Also kann ich schreiben, dass gelten muss

$$(m_{1,1}, m_{1,2}) = (m_{2,1}, m_{2,2})$$

Nun sei umgekehrt

$$(m_{1,1}, m_{1,2}) = (m_{2,1}, m_{2,2})$$

Also muss gemäß der Definition gelten

$$\{\{m_{1,1}\},\{m_{1,1},m_{1,2}\}\}=\{\{m_{2,1}\},\{m_{2,1},m_{2,2}\}\}$$

Dabei sind zwei Fälle zu unterscheiden. Ist

$$m_{1.1} = m_{1.2}$$

dann ist

$$\{\{m_{1,1}\}, \{m_{1,1}, m_{1,2}\}\}$$

$$= \{\{m_{1,1}\}, \{m_{1,1}, m_{1,1}\}\}$$

$$= \{\{m_{1,1}\}, \{m_{1,1}\}\}$$

$$= \{\{m_{1,1}\}\}$$

und somit

$$\{\{m_{1,1}\}\}=\{\{m_{2,1}\},\{m_{2,1},m_{2,2}\}\}$$

Also muss gelten

$$\{m_{1,1}\} = \{m_{2,1}\}$$

und darum ebenfalls

$$m_{1,1} = m_{2,1}$$

Aber es muss auch gelten

$$\{m_{1,1}\}$$

$$= \{m_{2,1}, m_{2,2}\}$$

$$= \{m_{1,1}, m_{2,2}\}$$

Also muss auch gelten

$$m_{2,2} \in \{m_{1,1}\}$$

Somit kann ich schreiben:

$$m_{2,2} = m_{1,1}$$

Also ist auch

$$(m_{2,1}, m_{2,2})$$

$$= (m_{1,1}, m_{1,1})$$

$$= (m_{1,1}, m_{1,2})$$

Auf der anderen Seite sei $m_{1,1} \neq m_{1,2}$. Dann muss gelten

$$(m_{1,1}, m_{1,2})$$

$$= \{ \{m_{1,1}\}, \{m_{1,1}, m_{1,2}\} \}$$

$$= \{ \{m_{2,1}\}, \{m_{2,1}, m_{2,2}\} \}$$

Wäre nun $m_{2,1}=m_{2,2},$ dann müsste ebenfalls gelten

$$\left\{ \left\{ m_{2,1} \right\}, \left\{ m_{2,1}, m_{2,2} \right\} \right\}$$

$$= \left\{ \left\{ m_{2,1} \right\}, \left\{ m_{2,1}, m_{2,1} \right\} \right\}$$

$$= \left\{ \left\{ m_{2,1} \right\}, \left\{ m_{2,1} \right\} \right\}$$

$$= \left\{ \left\{ m_{2,1} \right\} \right\}$$

Da nach Annahme

$$\{\{m_{1,1}\}, \{m_{1,1}, m_{1,2}\}\}\$$

$$= \{\{m_{2,1}\}, \{m_{2,1}, m_{2,2}\}\}\$$

ist, müsste jedes Element von

$$\{\{m_{1,1}\},\{m_{1,1},m_{1,2}\}\}$$

in der Menge

$$\{\{m_{2,1}\},\{m_{2,1},m_{2,2}\}\}=\{\{m_{2,1}\}\}$$

vorkommen. Somit müsste gelten

$$\{m_{1,1}\}\in\{\{m_{2,1}\}\}$$

Also müsste

$$\{m_{1,1}\} = \{m_{2,1}\}$$

und somit

$$m_{1,1} = m_{2,1}$$

sein. Es müsste dann jedoch auch gelten

$$\{m_{1,1}, m_{1,2}\} \in \{\{m_{2,1}\}\} = \{\{m_{1,1}\}\}\$$

und somit

$$\{m_{1,1}, m_{1,2}\} = \{m_{1,1}\}$$

Das heißt also, das gelten muss:

$$m_{1,2} = m_{1,1}$$

was jedoch ein Widerspruch wäre zur Voraussetzung

$$m_{1,1} \neq m_{1,2}$$

Also muss gelten

$$m_{2,1} \neq m_{2,2}$$

Aus der Gleichung

$$\left\{ \left\{ m_{1,1}\right\} ,\left\{ m_{1,1},m_{1,2}\right\} \right\} =\left\{ \left\{ m_{2,1}\right\} ,\left\{ m_{2,1},m_{2,2}\right\} \right\}$$

kann ich nun folgern:

$$\left\{ m_{1,1} \right\} \in \left\{ \left\{ m_{2,1} \right\}, \left\{ m_{2,1}, m_{2,2} \right\} \right\}$$

Es muss wieder gelten

$$\{m_{1,1}\} \neq \{m_{2,1}, m_{2,2}\}$$

Denn ansonsten wäre

$$m_{2,1} = m_{1,1}$$

und

$$m_{2,2} = m_{1,1}$$

und somit wieder

$$m_{2,1} = m_{2,2}$$

Aber das wäre wiederum ein Widerspruch zur Tatsache

$$m_{2,1} \neq m_{2,2}$$

Somit kann ich gemäß dem Ausschlusssatz 48 folgern, dass gelten muss

$$\{m_{1,1}\} = \{m_{2,1}\}$$

Daraus kann ich ebenfalls schließen, dass gelten muss:

$$m_{1.1} = m_{2.1}$$

Weiter muss ebenfalls gelten

$$\{m_{1,1}, m_{1,2}\} = \{m_{2,1}, m_{2,2}\}$$

Da jetzt $m_{1,1} \neq m_{1,2}$ ist und $m_{2,1} = m_{1,1}$ sein muss, kann ich schreiben

$$\{m_{1,1}, m_{1,2}\} = \{m_{1,1}, m_{2,2}\}$$

Somit kann ich in diesem Beweis das letzte Mal dem Ausschlusssatz 48 anwenden, gemäß dessen ich folgern kann: $m_{1,2} = m_{2,2}$. Somit habe ich auch in diesem Fall endlich bewiesen, dass gelten muss

$$m_{1,1} = m_{2,1}$$

 $m_{2,1} = m_{2,2}$

Somit habe ich zeigt, dass in jedem Fall die Behauptung gültig ist.

Ich werde weiter unten ausführen, wie sich dieses Kreuzprodukt weiter verallgemeinern lässt.

KAPITEL 28

weitere Betrachtungen

Ich möchte gerne noch weitere Überlegungen anstellen über die naive Logik.

Lemma 154. Ich möchte zeigen, dass die Aussage

$$(A \Rightarrow B) \land (A \Rightarrow C)$$

ungleich der Aussage

$$A \Rightarrow B \land A \Rightarrow C$$

ist.

Beweis. Es ist

$$A \Rightarrow B \wedge A$$

gemäß dem Satz 27 gilt

$$A \Rightarrow B \land A \Leftrightarrow ((A \Rightarrow B) \land (A \Rightarrow A))$$

Weiter gilt gemäß dem Satz 33

$$A \Rightarrow A$$

Somit kann ich gemäß dem dem Lemma 78 schließen, dass gilt:

$$((A \Rightarrow B) \land (A \Rightarrow A)) \Leftrightarrow (A \Rightarrow B)$$

Also kann ich aufschreiben, da gemäß dem Satz 16 die Äquivalenz transitiv ist:

$$(A \Rightarrow B \land A \Rightarrow A) \Rightarrow C$$

Somit kann ich schreiben

$$(A \Rightarrow B \land A \Rightarrow C) \Leftrightarrow (A \Rightarrow B \Rightarrow C)$$

Dann gilt es, diese Kette von Implikation aufzubrechen.

$$(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$$

Somit kann ich gemäß dem Satz 70 schreiben:

$$(A \Rightarrow B \Rightarrow C)$$

$$\Leftrightarrow ((\neg A \lor B) \Rightarrow C)$$

$$\Leftrightarrow \neg (\neg A \lor B) \lor C$$

$$\Leftrightarrow (A \land \neg B) \lor C$$

$$\Leftrightarrow A \land C \lor \neg B \land C$$

Der Einfachheit halber breche ich die Aussage

$$(A \Rightarrow B) \land (A \Rightarrow C)$$

ebenfalls auf

$$(A \Rightarrow B) \land (A \Rightarrow C)$$

$$\Leftrightarrow A \Rightarrow B \land C$$

$$\Leftrightarrow \neg A \lor B \land C$$

Also angenommen, A sei wahr, B sein nicht wahr und C sei wiederum wahr. Dann ist die Aussage

$$A \Rightarrow B$$

gemäß der dritten Zeile der Definition der Implikation nicht wahr und die Aussage

$$(A \Rightarrow B) \land (A \Rightarrow C)$$

gemäß dem Minimumprinzip 10 der Konjunktion nicht wahr. Jedoch ist die Aussage

$$A \Rightarrow B$$

nicht wahr und die Aussage

$$(A \Rightarrow A \land B) \Rightarrow C$$

wahr, da die Aussage C wahr ist. Also konnte ich mit viel Mühe und Not zeigen, dass die Aussagen

$$(A \Rightarrow B) \land (A \Rightarrow C)$$

sowie

$$A \Rightarrow B \land A \Rightarrow C$$

wahr.

Sind das jetzt alle logischen Transformationen, welche in der Mathematik eingesetzt werden? Nein, und ich möchte das auch klipp und klar feststellen. Es wird immer wieder logische Umwandlungen und Sätze geben, welche separat formuliert und bewiesen werden müssen. Denn auch wenn die Logik gut mittels Maschinen (Rechner) überprüft werden können, ist es nicht so, dass es möglich und sinnvoll ist, alle verwendete Transformationen vorgängig formulieren und ausrechnen zu wollen. Das ist jedoch auch irgendwie tröstlich. Denn das bedeutet, dass auch diese sogenannte "naive Logik" keineswegs tot ist, sondern dass sie immer wieder angepasst und weiter ausgebaut werden kann.

Teil 2 Was sind natürliche Zahlen?

Im vorhergehenden Abschnitt habe ich mich mit Aussagen und Mengen beschäftigt. Nun möchte ich mich endlich der Definition von Zahlen befassen. Was ist eine Zahl? Und wieso gibt es verschiedene Arten von Zahlen? In diesem Teil möchte ich mich dem Zahlenbegriff auseinandersetzen. Vermutlich wirst Du denken, dass es nichts langweiligeres als eine Zahl gibt. Wahrscheinlich ist es ähnlich wie mit der Ökonomie: Wer kein eigenes Geschäft oder kein eigenes ansehnliches Vermögen hat, der oder dem kann die Buchhaltung ziemlich egal sein. So geht es zumindest mir. Und wieso soll ich wissen, dass $4 \cdot 5 = 20$ ist? Das macht doch der Taschenrechner für mich. Doch der Zahlenbegriff ist für mich viel interessanter, als es vielleicht auf den ersten Blick aussieht. Er ist einerseits eng mit der gesamten Menschheitsgeschichte verbunden, aber es ist immer noch mirakulös, wie genau die Zahlen entstanden sind. Und die Definition in der Mathematik ist meines Erachtens nur ein sogenanntes "Reverse-Engineering". Das bedeutet, dass die Eigenschaften bekannt sind und geschaut wird, wie die Definitionen beschaffen sein müssen, damit die bekannten Eigenschaften als Sätze beweisbar sind. Jedoch finde ich das nicht schön. Denn was auf der Strecke bleibt, bleibt die Anschauung und das Verständnis auf der Strecke. Darum schlage ich eine andere Definition der natürlichen Zahlen vor und leite daraus die übliche Definition der natürlichen Zahlen als Sätze ab.

KAPITEL 29

Wieso können Schulden gut sein?

¹Das nachfolgende Kapitel ist vage. Bei Wikipedia würde es wahrscheinlich nicht durchkommen. Die Gedanken sollen Dich motivieren, Zahlen mit anderen Augen zu betrachten. Die Zahlen, um welche es in diesem Dokument immer und immer wieder geht, sind nicht einfach vom Himmel gefallen, sondern das Resultat einer Entwicklung, welche über Jahrtausende hinweg stattgefunden hat. Eine der verblüffendsten Erkenntnisse, welche ich in der letzten Zeit hatte, war diejenige, dass die Entwicklung der Zahlen im heutigen Sinn untrennbar verknüpft sind mit Schulden. Wie das? Nun, mein Arbeitskollege Zdenek Sulz hatte mir erzählt, dass beispielsweise bei Ausgrabungen von Tempelanlagen auf Kreta an den Außenwänden von Tempeln Schriftzeichen entdeckt worden seien, welche lange nicht hätten entziffert werden können. Die Schriftart der Beschriftungen war wahrscheinlich Linearschrift B^2 . Als diese dann unter sehr großem Aufwand entziffert werden konnten, seien viele Forscher enttäuscht gewesen. Denn anstatt über Heldentaten oder Lebensgeheimnisse zu berichten, seien auf den Schriften bloß die Schulden aufgeführt worden, welche Personen anderen Personen geschuldet hätten. Das gleiche Bild hatte sich den Ausgräberinnen und Ausgräbern im Zweistromland im heutigen Irak gezeigt. Dort waren die Schulden auf Tontäfelchen aufgeschrieben worden. Also, da wird ausführlich geschrieben, wer wem wie viel schuldet. Wenn Du glaubst, das sei banal, dann vermute ich, dass Du Dich irrst. Denn das ist eine wahnsinnig komplizierte Leistung, welche da vollbracht wird. Ich denke, es ist kein Zufall, dass die Schulden häufig im Umfeld von Tempelanlagen aufgeschrieben wurden. Denn einerseits waren diese Stätten gewiss Orte, welche relativ häufig besucht wurden (im Gegensatz zu heute, wo Kirchen oft Oasen der Ruhe, jedoch auch der Einsamkeit sind). Jedoch strahlen diese Orte auch einen Geist der Ernsthaftigkeit aus. Wenn Du mir etwas überlässt, dann musst Du mir vertrauen können, dass ich gewillt bin, dir das Überlassene oder einen gleichwertigen Ersatz wieder zurückgeben zu wollen. Dafür braucht es vor allem Öffentlichkeit. Wenn Du mir 1000 Euro in einem schummrigen Hinterhof in einer dunklen

¹Eine der Ideen für das Schreiben war eine Buchrezension des Buchs von David Graeber über die Kulturgeschichte der Schulden (Schulden, die ersten 5000 Jahre, herausgekommen im Klett-Verlag). Ich muss betonen, dass ich das Buch selbst nicht gelesen habe.

²Vergleiche mit dem Wikipedia-Artikel https://de.wikipedia.org/wiki/Linearschrift B

Nacht übergibst, dann werde ich Dir das Geld nur dann zurückzahlen, wenn Du mich sehr unter Druck setzen kannst. Denn ansonsten werde ich allen Personen erzählen, Du hättest mir nie und nimmer einen solchen Betrag übergeben. Wenn Du jedoch mir das Geld vor Zeugen, beispielsweise vor einem Notar übergibst und von mir eine Unterschrift verlangst, dass ich das Geld auch wirklich erhalten habe, dann werde ich das Geld Dir mit relativ hoher Wahrscheinlichkeit wieder zurückgeben (falls ich dazu in der Lage bin). Der Grund dafür ist jedoch vor allem, weil außer Dir und mir noch andere Personen davon betroffen sind. Und im Fall von Tempeln werden sogar noch höhere Mächte (die Götter) als Zeugen hinzugenommen. Wichtig ist jedoch, dass bei allen beteiligten Personen die Spielregeln klar sind: Schulden müssen früher oder später zurückgezahlt werden (was jedoch nicht immer sicher ist).

Du wirst Dich vielleicht fragen: "Nun gut, aber was haben Zahlen damit zu tun?" Zu Beginn der schriftlichen Fixierung von Zahlen war das Symbole "5" verschieden, wenn 5 Ochsen oder 5 Krüge Korn gemeint waren. Erst im Lauf der Jahrhunderte waren vermutlich die Schreiberlinge (vermutlich waren es vor allem Männer, welche sich den Job unter die Fingernägel gerissen haben) faul genug, um die Symbole gleich zu schreiben. Und diese vereinfachte Schreiben von Symbolen darf als die Geburtsstunde von Zahlen betrachtet werden. Jedoch ist das im Nachhinein nur zu vermuten, dass dies wahrscheinlich in dieser Art und Weise abgelaufen ist. Denn das Aufschreiben von Schulden war, und da bin ich mir ziemlich sicher, immer mit einer großen Geheimniskrämerei verbunden. Die Schriftstücke im alten Babylon waren in einer Sprache verfasst, welche bereits ausgestorben war, als die Schriftstücke geschrieben wurden. Das hatte den Effekt, dass der Vorgang des Lesens und Schreibens nur einer kleinen Elite vorbehalten war, so unter dem Motto ("Wissen ist Macht"). Mein Ziel ist es ja, Wissen zu demokratisieren. Und darum ist es mir wichtig, an dieser Stelle festzuhalten, dass der Vorgang des bewussten Verschleierns von Wissen gerade bei der Mathematik untrennbar mit ihrer Entwicklung verknüpft ist. Mir scheint, dass es darum so verdammt schwierig ist, ein gutes Mathebuch zu schreiben, weil Mathe eigentlich gar nicht dazu erschaffen wurde, damit möglichst jede und jeder sie versteht.

Doch zurück zum eigentlichen Thema des Kapitels. Ich persönlich hasse Schulden. Ich finde es widerlich, dass Menschen mittels Schulden geknechtet werden. Dass in unserer Gesellschaft kein Konsens darüber herrscht, dass Menschen, soweit sie die Grenzen der Freiheit nicht missachten, grundsätzlich selbstbestimmt und frei handeln sollen, sondern vorwiegend als Lohnsklaven mit unsichtbaren Ketten handeln müssen, finde ich abstoßend. Dass Geld zusammen mit Sport und Wissenschaft die heutige Religion ist, finde ich barbarisch. Nicht dass ich zurück in die Zeit des Mittelalters gehen möchte, in welchem mittels Religion Menschen andere Menschen unterworfen haben. Jedoch wünsche ich

mir, dass alle interessierten Personen die Möglichkeiten haben, sich mit dem beschäftigen zu können, was ihnen wichtig scheint. Und dass die Arbeiten fair aufgeteilt werden. Dass jedoch die von mir gehassten Schulden indirekt, über sieben Ecken und Enden, den Effekt hatten, dass die Mathematik sich wegen ihnen entwickelt hat, das hat mich zutiefst beeindruckt. Übrigens habe ich keine Kenntnis darüber, welcher Anteil an Schulden je zurückgezahlt wurden. Da sind wir bei der Volkswirtschaft gelandet. Denn als Privatperson kann ich entweder exzellent mit Schulden leben (viele reiche Personen haben noch mehr Schulden, welche mit ihrem Vermögen, also ihren Besitztümern in Form von Naturalien oder Geld gedeckt sind) oder überhaupt nicht. Der zweite Fall tritt dann auf, falls ich zwar Schulden habe, jedoch keine Garantien leisten kann, dass ich die Schulden auch tatsächlich zurückzahlen kann.

Und es gibt noch eine weiter Verflechtung von Schulden. Meines Erachtens ist es nicht zufällig, dass Schuld und Sünde ähnlich tönt. Sünde meint Verschuldung gegeben eine Gottheit. Nicht umsonst wurde im Mittelalter der Ablasshandel erfunden. Da wurde die Vorstellung entwickelt, dass mittels Geld sich Personen von Sünden loskaufen könnten. Wieso ich das alles schreibe: Ich möchte in die Lust "nach mehr" (Wissen, Erleben, Geschichten) wecken. Egal, wie ich es Dir erzähle: Es geschah auf eine andere Art. Ich möchte Dir also auch Deine Vorstellung von Zahlen aufbrechen und sie in einen anderen, hoffentlich spannenderen Zusammenhang stellen.

In der Entwicklungsbiologie oder der Entwicklungspsychologie gibt es das Schlagwort, welches da in etwa heißt: "Die Ontogenese ist eine verkürzte Phylogenese". Das will bedeuten: So wie wir Menschen erschafft wurden, so entwickelt sich auch alle Menschen. Nun ist das Problem der Mathematik genau das, dass dies nicht zutrifft.

Um dieses Kapitel mit einem markigen Kernsatz zu beenden: "Religion und Schulden waren maßgebliche Triebfedern für die Entwicklung der Mathematik".

KAPITEL 30

Nun, was sind Zahlen?

Zuerst einmal: Es gibt nicht "die Zahlen". Es gibt verschiedene Arten von Zahlen. An dieser Stelle möchte ich diese zuerst aufzählen und beschreiben, wo diese verwendet werden:

- die natürlichen Zahlen. Das tönt so harmlos: "natürliche Zahlen". Was wäre dann das Gegenteil? "Künstliche Zahlen"? "Natürlich" meint nicht, dass diese Zahlen von Bäumen gepflückt werden könnten oder dass sie sonst in der "Natur" vorkommen würden. "Natürliche Zahlen" sind diejenige Zahlen, welche im Laufe der menschlichen Entwicklung zuerst gelernt werden. Natürlich hätte ich Lust, bereits die ganze Litanei herunter zu beten, was dann natürliche Zahlen sind. Aber ich denke, das würde nur verwirren. Also begnüge ich mich damit, Beispielsweise von natürlichen Zahlen aufzuzählen: Es sind dies beispielsweise 2, 1, 7, 8. Ist eine x das Symbol einer natürlichen Zahl, so ist x + 1 ebenfalls ebenfalls eine natürliche Zahl. Ist beispielsweise 12034 eine natürliche Zahl, dann ist ebenfalls 12035 = 12034 + 1 eine natürliche Zahl. Keine natürliche Zahl sind jedoch -4 oder 1.4, geschweige denn $\sqrt{18}$. Doch zurück zur menschlichen Entwicklung. "Ein Elefant" kann verstanden werden als Beschreibung eines Dickhäuters, von welchem der Name nicht so wichtig ist. Oder aber "ein Elefant" ist in dem Sinn gemeint, als dass nicht zwei oder gar 33 Elefanten gemeint sind. Dann ist "ein" ein Zahlwort. Ich könnte im zweiten Fall schreiben "1 Elefant". Dann wäre es klarer.
- die ganzen Zahlen. Die bekanntesten ganzen Zahlen sind sicher diejenigen, welche in den Wetterprognosen mitgeteilt werden sofern es im betreffenden Gebiet überhaupt genügend kalt wird und nicht Fahreinheit als Temperatureinheit verwendet wird. Wenn also die Meteorologin im Fernseher mitteilt, dass es -14°C in der Nacht wird, dann meint sie in erster Linie: Wäre es 15°C wärmer, dann wäre es 1°C kalt. Die ganze Zahl, welche nicht gleichzeitig eine natürliche Zahl ist, ist übrigens 0.0 hat die Eigenschaft, dass 0+1 = 1 ist. Jede natürliche Zahl ist auch eine ganze Zahl.
- die **rationalen Zahlen**. "Rational" heißt meines Wissens "vernünftig". Diese traten früher oft als Kuchendiagramme in der Mathematik auf. Ich hatte zwar Kuchen gerne, jedoch fand

ich diese Kuchendiagramme nicht schön. Irgendwie hatte ich immer das Gefühl, dass mir irgendwie der Speck durch den Mund gezogen würde. Wenn schon Kuchen, dann bitte solche, welche essbar sind! Ich weiß nicht, wie rationale Zahlen heute den Kindern schmackhaft gemacht werden. Noch ein Wort zum Wort "vernünftig". Vernünftig bedeutet in diesem Fall, das diese Zahlen überhaupt als Folge von Ziffern darstellbar sind. Das tönt vielleicht für Dich selbstverständlich - ist es jedoch nicht. Jede ganze Zahl ist eine rationale Zahl.

- die irrationalen Zahlen. Diese Zahlen sind "unvernünftig". Die üblichste irrationale Zahl ist √2 (ausgesprochen: "Wurzel aus 2"). Sie lässt sich so darstellen: . Die Wurzel aus 2 lässt sich zwar graphisch sehr gut beschreiben (als Länge der beiden Diagonalen von Quadraten). Jedoch mussten bereits die alten Griechen zu ihrem Leidwesen erkennen, dass es keine rationale Zahl gibt, deren Wert exakt √2 beträgt. Jede rationale Zahl ist eine irrationale Zahl.
- die komplexen Zahlen. Diese Zahlen müssten eigentlich "noch unvernünftiger" oder "super-irrational" heißen. Das tun sie jedoch nicht. Aber gibt es solche komplexen Zahlen, welche es "gar nicht gibt". Der Prototyp einer irrationalen Zahl ist √-1. Wenn Du denkst: "Kein Problem, das ist ja 1", dann würdest Du etwa so denken, wie ich wahrscheinlich gedacht habe, als ich √-1 zuerst gesehen habe. Aber es ist nicht 1. Es kann gar keine irrationale Zahl geben, welche die Eigenschaft besitzt, dass ihr Wert gerade gleich demjenigen von √-1 entspricht. Jede irrationale Zahl ist eine komplexe Zahl.

Aber es gibt daneben noch weitere Zahlen. Und zwar solche im mathematischen als auch solche im weiteren Sinn. Die übrigen Zahlen im mathematischen Sinn möchte ich an dieser Stelle nicht mehr erwähnen, da diese nicht das Thema dieser Einführung sind. Sie sind doch eher speziell.

Die Zahlen im weiteren Sinn sind zwar überall vorhanden. Jedoch sind werden diese nicht unbedingt als solche verstanden. Mir kommen dabei vor allem Zahlen in der Informatik in den Sinn. Auch wenn dies für Dich ein wenig abwegig erscheinen sollte. Ich möchte dabei ein Beispiel machen: 32-Bit lange ganze Zahlen. Das sind die Zahlen

$$-2^{31} = -2147483648$$

bis

$$2^{31} - 1 = 2147483647$$

Diese Zahlen werden häufig in Computern gebraucht.

Teil 3Relationen und Funktionen

Bitte beachte: Ab hier ist das Skript noch ein Fragment.

KAPITEL 31

Warum ist die Äquivalenz eine Äquivalenzrelation?

Und was ist eine Relation überhaupt? Eine Relation ist so einfach, dass sie sprachlich fast nicht zu beschreiben ist.

DEFINITION 155. Es seien M_1, M_2 zwei wohldefinierte Mengen. Dann wird jede Teilmenge

$$R \subset M_1 \times M_2$$

eine Relation genannt.

Relation heißt, so weit ich weiß, "Beziehung". Irgendwie ist die Definition der Relation an Dummheit fast nicht zu überbieten. Aber sie macht durchaus Sinn, wenn auch auf eine andere Art als ich zuerst gedacht habe. Denn eine Relation an und für sich sagt herzlich wenig aus. Erst wenn spezielle Arten von Relationen untersucht werden, dann werden diese praktisch augenblicklich mit "Sinn gefüllt". Nun möchte ich die Definition zuerst einmal auflisten und dann diskutieren:

DEFINITION 156. Es seien M_1, M_2 zwei wohldefinierte Mengen und R eine Relation derselben genannt. Dann heißt R eine linkstotale Relation, falls gilt, dass es für jedes $m_1 \in M_1$ mindestens ein Element

$$(m_l, m_r) \in R$$

mit $m_l = m_1$ geben muss.

Weiter gelte:

DEFINITION 157. Es seien M_1, M_2 zwei wohldefinierte Mengen und R eine Relation derselben genannt. Dann heißt R eine rechtseindeutige Relation, falls gilt, dass es für jedes $m_1 \in M_1$, welches in R enthalten ist, es genau ein Element $m_2 \in M_2$ mit

$$(m_1, m_2) \in \mathbb{R}$$

gibt.

Die obigen Definitionen können zusammengesetzt werden zu

DEFINITION 158. Es seien M_1, M_2 zwei wohldefinierte Mengen, welche jedoch nicht leer sein dürfen. Dann heiße

$$f \subset M_1 \times M_2$$

eine Funktion, falls f linkstotal und rechtseindeutig sei. Die Funktion wird üblicherweise so geschrieben

$$f: M_1 \to M_2$$

TABELLE 1. Guthaben von Gudrun Gantenbein in der Woche vom 9. - 15. November 2015

Datum	Guthaben in sFr. ²		
9.11.2015	25'349.70		
10.11.2015	25'322.45		
11.11.2015	25'103.90		
12.11.2015	24'073.10		
13.11.2015	22'957.20		
14.11.2015	22'875.40		
15.11.2015	22'175.10		

Es heiße M_1 die Definitionsmenge der Abbildung f und M_2 die Bildmenge oder der Abbildung f. Jedoch ist das Bild $f(M_1)$ von M_1 unter der Abbildung f definiert als

$$f(M_1) \equiv \left\{ f(x) \mid x \in M_1 \right\} \subset M_2$$

Also in Worten: Das Bild $f(M_1)$ von f unter der Abbildung ist definiert als Menge aller Bildpunkte von Elementen von M. Jedoch ist das Urbild der Teilmenge $M_3 \subset M_2$ mit der Bezeichnung $f^{-1}(M_3)$ definiert als

$$f^{-1}\left(M_{3}\right) \equiv \left\{x \in M_{1} \mid f\left(M_{1}\right) \subset M_{3}\right\}$$

Beachte übrigens, dass die Bezeichnung $f^{-1}(M_3)$ doppeldeutig ist.

Ich möchte jetzt ein Beispiel machen, welche diese Definition einer Funktion demonstrieren soll:

BEISPIEL 159. Du hast wahrscheinlich Besitz in Form von Geld. Dann ist es wahrscheinlich, dass Du in einem gewissen Zeitraum (typischerweise von der Geburt bis zum Tod) jeden Tag einen gewissen Geldbetrag besitzt. Es muss jedoch nicht zwingend das ganze Leben sein. Es reicht, wenn beispielsweise der Zeitraum vom 9. - 15. November 2015 betrachtet wird¹. In der Tabelle 1 habe ich das Vermögen der von mir erfundenen Gudrun Gantenbein für den Zeitraum vom 9. - 15. November 2015 aufgeschrieben.

Diese Tabelle entspricht einer Funktion. Denn jedem Tag entspricht genau einem Wert. Auch diese Tabelle kann in einen Graphen umgesetzt werden. Dieser sieht dann aus wie unter der Abbildung1 dargestellt. Natürlich darf und muss sogar gefragt werden, warum diese Auflistung überhaupt Sinn macht. Diese Funktion kann dazu dienen, das Chaos in dieser Welt ein bisschen zu verkleinern. Die arme Gudrun könnte beispielsweise erkennen, dass sie in der Zeit vom 11. bis 13. November rund 2000 sFr.³ ausgegeben hat. Hat sie dies in voller Absicht

¹an welchem ich diesen Abschnitt geschrieben habe

²sFr. ist die Abkürzung für "Schweizer Franken"

³Abkürzung für "Schweizer Franken"

Abbildung 1. Graph Vermögen Gudrun Gantenbein

Abbildungen_Einfuehrung_Mathe/Guthaben_Gudrun_Ganter

getan, ist nichts dagegen einzuwenden. Hat jedoch eine andere Person unerlaubt von ihrem Konto Geld abgehoben, dann tut Gudrun gut daran, zur Bank zu gehen und abzuklären, ob dieser Diebstahl rückgängig gemacht werden kann.

Die Funktion als Beispiel einer Relation habe ich eingefügt, um ein ein möglichst sinnvolles Beispiel einer Relation aufzuzeigen. Es geht mir jedoch als nächstes darum, zu definieren, was eine Äquivalenzrelation sein soll. Dazu möchte ich (wen wundert's) erneut andere Definition aufzeigen:

DEFINITION 160. Es sei M eine (in sich widerspruchsfreie) Menge und

$$R_i \subset M \times M$$

eine Relation. Dann heiße R_i identitiv, falls für alle

$$m \in M$$

gelte

$$(m,m) \in R_i$$

Das ist auch eine Relation, welche sozusagen eine Prüfung des guten Geschmacks darstellt, da sie an (scheinbarer) Einfachheit fast nicht zu überbieten ist. Denn sie scheint so etwas von selbstverständlich zu sein. Jedoch ist sie gar nicht so selbstverständlich, wie sie scheint. Denn beispielsweise die Relation

$$<\subset \mathbb{N} \times \mathbb{N}$$

welche die sogenannten "natürlichen Zahlen" vergleicht (wie auch immer diese definiert seien) ist nicht identitiv. Denn es gilt

$$\neg (1 < 1)$$

oder n als Symbol für eine natürliche Zahl

$$\neg (n < n)$$

Aber es ist

oder ebenfalls Ich muss gestehen, dass ich die Delta-Notation

$$n \leq n$$

Somit ist die Relation

identitiv, jedoch die Relation

<

nicht. Wobei ich streng genommen schreiben müsste

$$(1,1) \notin \langle$$

$$(n,n) \notin <$$

$$(1,1) \in \leq$$

$$(n,n) \in \leq$$

wenn ich die Mengenschreibweise streng umsetzen wollte. Jedoch ist das in der Mathematik meines Wissens nicht üblich.

Definition 161. Es sei M eine (in sich widerspruchsfreie) Menge und

$$R_s \subset M \times M$$

eine Relation. Dann heiße R_s symmetrisch, falls für alle

$$m_1, m_2 \in M$$

aus

$$(m_1, m_2) \in R_s$$

folgt

$$(m_2, m_1) \in R_s$$

Wieder erschließt sich der Sinn dieser Definition nicht unmittelbar. Eine Relation, welche symmetrisch ist, ist beispielsweise

$$d^{+} \subset \mathbb{N} \times \mathbb{N}$$
$$(n_{1}, n_{2}) \in d^{+} \Leftrightarrow n_{1} - n_{2} \neq 0$$

bestehend aus den Paaren von allen natürlichen Zahlen, welche ungleich sind. Die Bezeichnung der Relation " d^+ " ist von mir frei gewählt. Ich habe sie so gewählt: d ist die Abkürzung für das englische Wort "distance", zu Deutsch "Distanz" oder eben "Abstand". " $^+$ " bedeute, dass der Abstand eben größer als 0 sei. Ich habe eben behauptet, dass die Relation symmetrisch sei. Das muss ich natürlich zeigen. Folgendes ist mein "Beweis 4 ". Ist

$$n_1 - n_2 \neq 0$$

dann muss gelten

$$n_1 \neq n_2$$

und somit auch

$$n_2 \neq n_1$$

also ebenfalls

$$n_2 - n_2 \neq 0$$

und somit auch

$$(n_2, n_1) \in d^+$$

⁴Wobei das nicht scharf bewiesen ist.

Das ist jedoch gerade die Behauptung.

Also kann ich zeigen:

Satz 162. Es gibt Relationen, welche zwar symmetrisch, jedoch nicht identitiv sind.

BEWEIS. Die oben definierte Relation d^+ ist zwar symmetrisch, wie ich zu zeigen versucht habe. Jedoch ist sie nicht identitiv. Denn ist $n \in \mathbb{N}$, dann ist n - n = 0 und somit ist $(n, n) \notin d^+$.

Definition 163. Es sei ${\cal M}$ eine (in sich widerspruchsfreie) Menge und

$$R_t \subset M \times M$$

eine Relation. Dann heiße R_i transitiv, falls gilt:

$$\forall m_1, m_2, m_3 \in M : ((m_1, m_2) \in R_t \land (m_2, m_3) \in R_t \Rightarrow (m_1, m_3) \in R_t)$$

In Worten: Wenn die Tupel (m_1, m_2) sowie (m_2, m_3) in der Menge R_t enthalten sind, dann ist es auch das Tupel (m_1, m_3) .

Auch wenn diese Relation vielleicht nichtssagend aussieht, ist sie doch höchstwahrscheinlich allen vertraut. Denn beispielsweise die ≤-Beziehung von Zahlen ist eine wichtige Beziehung, welche transitiv ist.

Denn sind $m_1, m_2, m_3 \in \mathbb{N}$ und ist $m_1 \leq m_2$ und $m_2 \leq m_3$, so muss auch $m_1 \leq m_3$ sein. Ein Beispiel soll dies verdeutlichen: Ist $m_1 = 5$, $m_2 = 7$ und $m_3 = 57$, dann ist sowohl $5 \leq 7$ und $7 \leq 57$. Und da ich jetzt "weiß", dass die "größer oder gleich"-Beziehung transitiv ist, dann kann ich daraus schließen, dass $5 \leq 57$ sein muss. Und was ist jetzt also eine Äquivalenzrelation? Eine solche liegt vor wenn gilt:

Definition 164. Es sei M eine (in sich widerspruchsfreie) nichtleere Menge und

$$R_a \subset M \times M$$

eine Relation. Dann heiße R_a eine Äquivalenzrelation, falls R_a identitiv, symmetrisch und transitiv ist.

Irgendwie ist R_a eine "arme Relation", da R_a sozusagen in ein Korsett gezwängt wird. Jedoch hat diese Definition den Vorteil, dass nicht mehr für jede entsprechende Menge M und die daraus gebildete Äquivalenzrelation einzeln überprüft werden muss, was jetzt gilt. Alle Sätze, welche ich aus dieser Definition ableiten kann, gelten dann automatisch für alle Mengen und die daraus gebildeten Äquivalenzrelationen. Das bedeutet, dass ich sozusagen noch einmal abstrahieren kann von einer Menge (welche ja selbst wieder eine Abstraktion ist). Natürlich ist das reichlich theoretisch. Darum möchte ich gelegentlich zeigen, was aus der Definition hergeleitet werden kann. Dafür werde ich jedoch wiederum weitere Definitionen bemühen:

DEFINITION 165. Es sei M eine (in sich widerspruchsfreie) nichtleere Menge und

$$R_a \subset M \times M$$

Dann sei definiert

$$x \cong y :\Leftrightarrow (x, y) \in R_a$$

Es wird davon gesprochen, dass x äquivalent zu y sei.

Diese Äquivalenz ist eine Erweiterung des Gleichheitsbegriff. Ich möchte ein Beispiel machen:

BEISPIEL 166. Es sei M_A die Menge aller Autobesitzerinnen, welche genau ein Auto ihr eigen nennen⁵ A_a sei die Äquivalenzrelation, welche wie folgt definiert sei: Sind $x, y \in M_A$ und ist $x \cong y$, dann besitzen x und y genau das gleiche Automodell. Es ist natürlich zu zeigen, dass A_a tatsächlich eine Äquivalenzrelation ist.

BEWEIS. Ist x das Symbol einer Autobesitzerin, dann besitzt x die gleiche Automodell wie x. Somit ist die Relation A_a identitiv. Sind x und y Symbole von Autobesitzerinnen und besitzt x das gleiche Automodell wie y, dann besitzt entsprechend y das gleiche Automodell wie x. Also ist die Relation A_a symmetrisch. Sind schlussendlich x, y, z Symbole für Autobesitzerinnen und besitzt x das gleiche Automodell wie y und y besitzt das gleiche Automodell wie z, dann besitzt also auch x das gleiche Automodell wie z. Damit habe ich gezeigt, dass schlussendlich A_a transitiv ist. Also habe gezeigt, dass A_a wirklich eine Äquivalenzrelation ist - jedoch nur für die gegebene Menge!

Definition 167. Es sei M eine (in sich widerspruchsfreie) nichtleere Menge und

$$R_a \subset M \times M$$

eine Äquivalenzrelation. Dann heiße \mathbb{P} eine Partition, wenn $\mathbb{P} \in \mathcal{P}(M)$ ist und gilt

$$M_T \in \mathbb{P} : \Leftrightarrow \exists x, y \in M : (x, y) \in M_T$$

In Worten: \mathbb{P} ist eine Teilmenge Potenzmenge von M und alle Elemente M_T sind dadurch definiert, dass in ihnen alle Elemente $x, y \in M$ enthalten sind, für welche gilt, dass $y \cong y$ ist.

Der wichtigste Satz über Äquivalenzrelationen ist meines Erachtens:

Satz 168. Es sei M eine (in sich widerspruchsfreie) nichtleere Menge und

$$R_a \subset M \times M$$

⁵Ich möchte hiermit eine Lanze für alle Autobesitzerinnen brechen - auch wenn ich kein Autofanatiker und schon gar nicht ein Autobesitzer bin. Ich fahre Mobility[®].

eine Äquivalenzrelation. Dann muss es ein nichtleeres Mengensystem M derart geben, dass gilt

$$\bigcup_{M_T \in \mathbb{M}} M_T = M$$

$$\wedge \left(M_1, M_2 \in \mathbb{M} \wedge M_1 \cap M_2 \neq \emptyset \right) \Rightarrow M_1 = M_2$$

BEWEIS. Da R_a identitiv ist, muss für alle $x \in M$ gelten, dass $(x,x) \in R_a$ ist. Also muss es mindestens die nichtleere Äquivalenzklasse $M_x \equiv \left\{y \in M \mid (x,y) \in R_a\right\}$ geben. Also ist mit $x \in M$ ebenso $M_x \subset M$. Somit ist jedes $x \in M$ in einer nichtleeren Äquivalenzklasse

$$M_x \in \mathbb{M}$$

enthalten. Darum ist auch auch

$$\bigcup_{y \in M} M_y \subset M$$

Ebenso muss jedoch gelten

$$M \subset \bigcup_{y \in M} M_y$$

Denn ist $x \in M$, dann ist

$$x \in M_x \subset \bigcup_{y \in M} M_y$$

Somit kann ich schreiben

$$M = \bigcup_{y \in M} M_y$$

Nun seien jedoch

$$M_1, M_2 \in \mathbb{M}$$

und

$$M_1 \cap M_2 \neq \emptyset$$

Es sei nun $x_0 \in M_1 \cap M_2$. Es sei weiter $y \in M_1$ und $z \in M_2$. Also muss gelten

$$y \cong x_0 \cong z$$

Da nun \cong transitiv ist muss auch gelten

$$y \cong z$$

Also muss gelten

$$y \in M_2$$

Darum kann ich folgern:

$$M_1 \subset M_2$$

Ebenso muss jedoch gelten, da \cong symmetrisch ist $z \cong y$. Somit muss auch aus $z \in M_2$ folgern:

$$z \in M_1$$

Insgesamt kann ich darum folgern

$$M_1 = M_2$$

Also habe ich gezeigt, dass

$$\mathbb{M} \equiv \left\{ M_x \equiv \left\{ y \in M \mid (x, y) \in R_a \right\} \right\}$$

eine Partition von M sein muss.

Es gilt jedoch auch der umgekehrte Fall:

Satz 169. Es sei M eine in sich widerspruchsfreie, jedoch nichtleere Menge und \mathbb{P} eine Partition derselben. Dann ist die Relation

$$R_a \subset M \times M : \Leftrightarrow (x,y) \in R_a \Leftrightarrow \exists M_z \in \mathbb{M} : x,y \in M_z$$

eine Äquivalenzrelation.

BEWEIS. Falls ich den Beweis erbringen will, dann muss ich zeigen, dass R_a identitiv, symmetrisch und transitiv ist. Es sei $x \in M$. Da M eine Partition von Mist, muss es genau eine Menge $M_z \in \mathbb{M}$ derart geben, dass $x \in M_z$ ist. Somit ist $x, x \in M_z$ (auch wenn das sehr seltsam aussieht!). Es ist also $x \in M_z$ und $x \in M_z$. Also ist

$$(x,x) \in R_a$$

Damit habe ich den Beweis erbracht, dass R_a identitiv ist. Nun seien $x, y \in M$ und

$$(x,y) \in R_a$$

Also gibt es genau eine Menge $M_z \in \mathbb{M}$ derart, dass $x, y \in M_z$, was nichts anderes bedeutet, als dass

$$x \in M_z$$

und

$$y \in M_z$$

ist. Dann ist jedoch ebenfalls

$$y \in M_z$$

und

$$x \in M_z$$

Somit ist auch

$$y, x \in M_z$$

also auch

$$(y,x) \in R_a$$

Das bedeutet, dass ich auch in diesem Fall den Beweis erbracht habe. Schlussendlich seien $x, y, z \in M$ und

$$(x,y) \in R_a$$

sowie

$$(y,z) \in R_a$$

Also muss es genau zwei Menge $M_{z,1}$ sowie $M_{z,2}$ derart geben, dass gilt

$$x, y \in M_{z,1}$$

sowie

$$y, z \in M_{z,2}$$

Da nun jedoch y sowohl in $M_{z,1}$ wie auch in $M_{z,2}$ vorhanden ist, muss nach Voraussetzung über die Partition \mathbb{M} von M zutreffen, dass

$$M_{z,1} = M_{z,2}$$

ist. Somit glaube ich schreiben zu dürfen, auch

$$z \in M_{z,1} = M_{z,2}$$

enthalten ist. Also gibt es genau eine Menge $M_{z,3} \equiv M_{z,1} \in \mathbb{M}$ derart, dass

$$x, z \in M_{z,3}$$

enthalten sind. Das bedeutet jedoch dass ebenfalls

$$(x,z) \in R_a$$

sein muss. Also habe ich gezeigt, dass

$$R_a$$

transitiv ist. Da ich nun gezeigt habe, dass R_a sowohl identitiv, symmetrisch wie auch transitiv ist, glaube ich den Beweis erbracht zu haben, dass R_a eine Äquivalenzrelation ist.

Zusammenfassend glaube ich schreiben zu dürfen:

Satz 170. Es sei M eine nichtleere Menge. Dann ist die Relation

$$R_a \subset M \times M$$

genau dann eine Äquivalenzrelation, falls es eine Partition \mathbb{M} von M derart gibt, dass gilt

$$x, y \in M \Rightarrow (x, y) \in R_a \Leftrightarrow \exists M_z \in \mathbb{M} : x, y \in M_z$$

Doch was will dieser Satz Dir, liebe und lieber, geduldige und geduldiger und wissbegierige Leserin und wissbegieriger Leser überhaupt sagen? Die Äquivalenzrelation ist ein verallgemeinerter Gleichheitsbegriff. Und jeder Äquivalenzrelation entspricht genau einer Partition derjenigen Menge, in welcher die Äquivalenzrelation definiert wurde. Der oben hingeschriebene Formalismus mag stupide, hirntötend, langweilig oder abstoßend wirken. Jedoch ist er eine ziemlich präzise formale (symbolische) Beschreibung dessen, was einen verallgemeinerten Gleichheitsbegriff umfasst. Es ist nun nicht so, dass Lebewesen im Allgemeinen Äquivalenzrelationen unbekannt wären. Speziell ist es so, dass Kinder so ca. ab 3 Lebensjahren sich für Klassifikationen sehr interessieren. Es gibt beispielsweise Bären. Nun ist es nicht so, dass jedes Lebewesen ein Bär wäre oder dass es nur genau einen Bären geben würde. Es ist

vielmehr so, dass der Gedanke vorhanden ist, dass für jedes Lebewesen genau eine Art zugewiesen werden kann - was jedoch nicht genau zutrifft. Aber ohne diesen Artbegriff wäre es für uns Menschen schlichtweg lebensgefährlich auf dieser Welt. Stelle Dir vor, Du würdest durch kanadische Wälder trampeln und plötzlich würde so ein pelziges, braunes Wesen mit einem Zottelfell und spitzen Zähnen ca. 100 Meter von Dir entfernt quer über den Weg laufen⁶. Würdest Du darüber streiten wollen, dass jetzt vielleicht Vorsicht angebracht wäre? Ich für meinen Teil also überhaupt nicht. In diesem Fall ist es also höchst ratsam, sich zu überlegen: Da ist ein Bär, und jetzt ist Vorsicht angebracht. Das ist also der tiefere Sinn von verallgemeinerten Gleichheitsbeziehungen. Es gibt nicht "den Bär", aber es ist davon auszugehen, dass Bären bestimmte Eigenheiten gemeinsam haben. Eine davon ist, dass sie aggressiv werden können, falls sich ein Mensch zwischen ihnen und ihren Kindern aufhält. Und dass darum Vorsicht am Platz ist, falls dies der Fall sein sollte. So hilft uns das Denken, am Leben zu bleiben.

Nun jedoch zur eigentlichen Aussage des Kapitels:

Satz 171. Die Äquivalenz ist eine Äquivalenzrelation.

BEWEIS. Es sei A eine Aussage. Ist A nicht wahr, dann ist gemäß der 1. Zeile der Definition der Äquivalenzrelation 2

$$A \Leftrightarrow A$$

Ist jedoch A wahr, dann ist gemäß der 4. Zeile der gleichen Definition der Äquivalenzrelation ebenfalls

$$A \Leftrightarrow A$$

Also ist in jedem Fall

$$A \Leftrightarrow A$$

Somit ist bewiesen, dass die Äquivalenzrelation identitiv ist.

Ich möchte gerne zeigen, dass die Äquivalenzrelation symmetrisch ist. Es seien nun A, B Aussagen, für welche gilt

$$A \Leftrightarrow B$$

Also müssen gemäß der Definition der Äquivalenzrelation 2 entweder beide Aussagen nicht wahr oder aber wahr sein. Gilt

$$\neg A \wedge \neg B$$

So ist auch aufgrund der ersten Zeile der Definition 2 der Konjunktion (Konjunktion), wobei gesetzt werde $C \equiv B$ und $D \equiv A$

$$\neg C \land \neg D$$

also auch

$$\neg B \wedge \neg A$$

 $^{^6}$ gemeint ist ein Bär, wobei ich mir schon am überlegen bin, ob die Beschreibung passt?

Also gilt gemäß der ersten Zeile der Äquivalenz wiederum

$$B \Leftrightarrow A$$

Sind jedoch A und B beides wahre Aussagen, so sind auch B und A wahre Aussagen, und es gilt gemäß der vierten Zeile der Definition 2 wiederum

$$B \Leftrightarrow A$$

Also habe ich gezeigt, dass aus

$$A \Leftrightarrow B$$

immer

$$B \Leftrightarrow A$$

folgt. Somit meine ich, gezeigt zu haben, dass die Äquivalenz symmetrisch ist.

Nun möchte ich zeigen, dass die Äquivalenz transitiv ist. Es seien A,B sowie C Symbole von Aussagen. Weiter sei

$$A \Leftrightarrow B \land B \Leftrightarrow C$$

Ist A nicht wahr, dann muss auch B nicht wahr sein. Also kann auch C nicht wahr sein. Also muss in diesem Fall gemäß der ersten Zeile der Äquivalenzrelation 2 gelten

$$A \Leftrightarrow C$$

Ist jedoch A wahr, so muss auch B wahr sein. Ansonsten wäre nämlich

$$\neg (A \Leftrightarrow B)$$

Ist jedoch B wahr, so muss es auch C sein. Also gilt wiederum gemäß der vierten Zeile der Definition der Äquivalenzrelation 2 gelten

$$A \Leftrightarrow C$$

Somit denke ich, dass ich schreiben darf, dass die Äquivalenz tatsächlich transitiv ist.

Da nun jedoch die Äquivalenz symmetrisch, identitiv und transitiv ist, glaube ich, schreiben zu dürfen, dass die Äquivalenzrelation tatsächlich eine Äquivalenzrelation ist.

Nun möchte ich weitere Begriffe definieren:

DEFINITION 172. Es seien M_1, M_2 nichtleere Mengen. Weiter sei die Abbildung f definiert durch

$$f: M_1 \times M_1 \to M_2$$

Dann heiße f kommutativ, falls für alle $x_1, x_2 \in M_1$ gilt

$$f(x_1, x_2) = f(x_2, x_1)$$

Es sei weiter die Abbildung g definiert durch

$$g: M_1 \times M_1 \to M_1$$

Also heißt g assoziativ, falls für alle $x_1, x_2, x_2 \in M_1$ gilt

$$g(g(x_1, x_2), x_3) = g(x_1, g(x_2, x_3))$$

Ich habe lange gemeint, damit eine Abbildung kommutativ sei, müsse sie immer auch assoziativ sein. Dem ist jedoch nicht so, wie ich per Zufall herausgefunden habe. Ich möchte dies als Satz behaupten und beweisen.

Satz 173. Es gibt kommutative Abbildungen, welche nicht assoziativ sind.

BEWEIS. Es seien $A, B, C \in \Omega$, also in Worten: Es seien A, B sowie C Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$\neg A \land \neg B \land C \Rightarrow ((A \bar{\land} B) \overline{\land} C \Leftrightarrow A \land (B \overline{\land} C))$$

Für den Beweis kann ich annehmen, dass A und B nicht wahr seien, C sei jedoch wahr. In allen anderen Fällen ist die Konjunktion

$$\neg A \land \neg B \land C$$

nicht wahr und die gesamte Behauptung gemäß der Abkürzungsregel 11 bereits wahr ist. Ist jedoch A und B nicht wahr seien, C jedoch wahr, dann ist gemäß der ersten Zeile 21 der Definition der NAND-Verknüpfung die Aussage

$$A \wedge B$$

wahr sowie die gemäß der vierten Zeile der gleichen Definition die Aussage

$$(A \wedge B) \wedge C$$

nicht wahr. Jedoch ist gemäß der zweiten Zeile der Definition 21 der NAND-Verknüpfung die Aussage

$$B\overline{\wedge}C$$

wahr. Gemäß der ersten Zeile derselben Definition ist die Aussage

$$A \wedge (B \overline{\wedge} C)$$

immer noch wahr. Also ist gemäß der dritten Zeile der Definition 20 der Antivalenz die Aussage

$$(A \bar{\wedge} B) \bar{\wedge} C \Leftrightarrow A \wedge (B \bar{\wedge} C)$$

wahr. Somit ist die Aussage

$$\neg A \wedge \neg B \wedge C \Rightarrow \left(\left(A \mathbin{\bar{\wedge}} B \right) \overline{\wedge} C \not\Leftrightarrow A \wedge \left(B \overline{\wedge} C \right) \right)$$

eben auch wahr. Also habe ich eine Verknüpfung gefunden (die NAND-Verknüpfung) welche zwar kommutativ, aber zu meiner eigenen Verwunderung nicht assoziativ ist. Darum glaube ich den Beweis an dieser Stelle beenden zu können.

Und wenn ich gerade am definieren bin:

DEFINITION 174. Es seien M_1, M_2 nichtleere Mengen und es sei

$$f: M_1 \to M_2$$

Dann wird f surjektiv geheißen, falls gilt:

$$\forall y \in M_2 \exists x \in M_1 : f(x_1) = y$$

Ich kann abgekürzt schreiben:

$$f(M_1) = M_2$$

und dies sprachlich umschreiben mit: "Das Bild der Menge M_1 unter der Abbildung f ist die Menge M_2 ".Gibt es jedoch eine Abbildung

$$q:M_1\to M_2$$

für welche gilt

$$\forall x_1, x_2 \in M_1 : q(x_1) = q(x_2) \Rightarrow x_1 = x_2$$

dann wird g injektiv geheißen.

Die Abbildung

$$h: M_1 \to M_2$$

wird bijektiv geheißen, falls sie injektiv und surjektiv ist.

Surjektive und injektive Abbildung spielen eine wichtige Rolle, falls Mächtigkeiten von Mengen definiert werden sollen:

DEFINITION 175. Eine Menge M, welche wohlgeordnet sei, heiße "endlich", wenn gezeigt werden kann, dass es keine injektive Abbildung von M in eine echte Teilmenge N von M gibt.

Die große Aufgabe besteht natürlich darin zu zeigen, dass es keine injektive Abbildung geben kann.

DEFINITION 176. Es sei M eine wohldefinierte Menge und $M_1 \leq M_2$. Dann sei die Mächtigkeit von M_1 , geschrieben als $|M_1|$ kleiner oder gleich derjenigen von M_2 , wobei die Mächtigkeit von M_2 mit $|M_2|$ bezeichnet werden, falls die Menge M_1 nicht leer ist oder es eine injektive Abbildung

$$f: M_1 \to M_2$$

gibt. Dies werde geschrieben als

$$|M_1| \le |M_2|$$

Ich hätte sehr gerne an Stelle von $|M_1|$

$$\aleph(M_1)$$

geschrieben. Denn üblicherweise wird mit || etwas anderes gemeint (der Betrag eine Zahl, also der Abstand einer Zahl von 0). Aber dann musste ich zu meinem Verdruss bemerken, dass $\aleph(M_1)$ nicht definiert ist.

Ich habe dann beschlossen, nicht etwas zu definieren, was so nicht üblicherweise definiert wird.

Du kannst Dir den Vergleich der Mächtigkeiten als als Paarbildung vorstellen, sofern beide Mengen nicht leer sind und alle Elemente von M_1 und M_2 endlich sind. Du nimmst das erste Element $m_{1,1}$ vom M_1 und ordnest es dem ersten Element $m_{2,1}$ von M_2 zu. Sind jetzt alle Elemente vergeben, dann ist der Vergleich beendet. Ansonsten bildest Du

$$M_3 \equiv M_1 \setminus \{m_{1,1}\}$$

$$M_4 \equiv M_2 \setminus \{m_{2,1}\}$$

Und ordnest erneut ein Element $m_{1,2} \in M_3 \subset M_1$ einem solchen Element $m_{2,2} \in M_4 \subset M_2$ zu. Dieser Vorgang wird so lange wiederholt, bis alle Elemente von M_1 einem Element von M_2 zugeordnet sind. Auf diese Weise hast Du eine injektive Abbildung konstruiert und gezeigt, dass die Mächtigkeit von M_1 kleiner oder gleich derjenigen von M_2 ist.

Dieses Prinzip des Vergleichs ist irgendwie urmenschlich - und gleichzeitig hat es schon auch viel Leid in die Welt gebracht! Wie viel verdienst Du, was bist Du wert? Wie teuer ist Dein Auto? Solche Fragen stecken in uns immer und immer wieder drin. Hier ist sozusagen das logische Skelett für den Vergleich abgebildet.

Ich möchte den Beweis noch einmal später aufschreiben, weil ich damit das Prinzip der vollständigen Induktion erläutern möchte.

Und ich möchte noch weitere Definitionen von Eigenschaften von Relationen vorstellen:

SATZ 177. Es seien M_1, M_2 wohldefinierte Mengen und $M_1 \subset M_2$. Dann ist

$$|M_1| \le |M_2|$$

Beweis. Ist M_1 leer, dann ist per Definition

$$|M_1| \le |M_2|$$

Ist jedoch M_1 nicht leer, dann konstruiere ich die Abbildung

$$f: M_1 \to M_2$$
$$x \mapsto x$$

Diese Abbildung ist injektiv. Denn ist $x, y \in M_1$ und

$$f(x) = f(y)$$

dann ist

$$x = f(x) = f(y) = y$$

Also auch

$$x = y$$

Somit habe gemäß der Definition 176 gezeigt, dass auch in diesem Fall gilt, dass

$$|M_1| \le |M_2|$$

ist. Also habe ich den Beweis in diesem Fall ebenfalls erbracht.

Und weiter geht es:

Lemma 178. Es sei M_1 eine in sich widerspruchsfreie Menge. Dann ist M_1 eine Menge mit unendlich vielen Elementen, wenn es es eine echte Teilmenge M_2 von M_1 derart gibt, dass

$$|M_1| \le |M_2|$$

ist.

BEWEIS. M_1 ist nach Definition genau dann unendlich, falls es eine echte Teilmenge M_2 von M_1 derart gibt, dass die Abbildung

$$f: M_1 \to M_2$$

injektiv ist. Also ist nach Definition der Kardinalität eben auch

$$|M_1| \le |M_2|$$

DEFINITION 179. Es seien M eine nichtleere Menge und $R \subset M \times M$. Dann heiße R total, falls für alle $m_1, m_2 \in M$ gilt

$$(m_1, m_2) \in R \vee (m_2, m_1) \in R$$

Die Bezeichnung "total" ist ja nicht besonders schön. Denn es gab einmal eine Vorstellung eines "totalen Krieges⁷", welche jedoch eher als "totaler Sieg", also uneingeschränktem Sieg verstanden wurde - jedoch vor allem Leid und Zerstörung hüben und drüben verursacht hat. Jedoch meint "total" im Zusammenhang mit Relationen "ganz". Ein Beispiel einer totalen Relation ist die Ordnungsrelation von ganzen Zahlen. Für alle natürlichen Zahlen n_1, n_2 gilt

$$n_1 < n_2 \lor n_2 < n_1$$

Eine Relation, welche nicht total ist, ist das Konzept der Teilmenge. Es sei beispielsweise

$$\mathbb{M} \equiv \mathcal{P}(\mathbb{N})$$

die Menge aller Teilmengen von natürlichen Zahlen. Dann ist die Relation \subset , welche in

$$\mathbb{M} \times \mathbb{M}$$

enthalten ist, gerade nicht total.

Bijektive Abbildungen werden auch "ein-eindeutige" Abbildungen geheißen. Sie sind in der Mathematik wichtig. Denn mit ihrer Hilfe können Probleme von einem Wissensfeld auf das andere abgebildet und

⁷die Nationalsozialisten haben im 2. Weltkrieg davon geträumt

dort weiter untersucht werden. Ist dann das Problem im Bild gelöst, dann können sie wieder in das Urbild abgebildet werden.

Es gibt ein meines Erachtens schönen Satz, mit welchem festgestellt werden kann, dass eine Abbildung bijektiv

Satz 180. Es seien M_1, M_2 wohldefinierte und nicht in sich widersprüchliche Mengen, welche auch nicht widersprüchlich in Bezug auf die anderen Größen dieses Beweises sind. Weiter sei

$$f: M_1 \to M_2$$

eine Abbildung. Dann ist f genau dann bijektiv, falls es eine Abbildung

$$g:M_2\to M_1$$

derart gibt, so dass gilt:

$$\forall m \in M_1 \ g \circ f(m) = m \land \forall n \in M_2 \ f \circ g(n) = n$$

BEWEIS. Es sei f eine bijektive Abbildung. Dann definiere ich

$$g: M_2 \rightarrow M_1$$

 $m \in M_1 \Rightarrow f(m) \mapsto m$

Ich muss jedoch zeigen, dass g als Abbildung überhaupt definiert ist. Es sei $n \in M_2$. Da f bijektiv ist, muss f aufgrund der Definition 172 f auch surjektiv sein. Also muss es für jedes $n \in M_2$ mindestens ein $m \in M_1$ derart geben, dass gilt

$$f\left(m\right) = n$$

Also ist die Relation g linkstotal.

Da f ebenfalls injektiv ist, kann es höchstens ein $m \in M_1$ derart geben, dass gilt

$$f(m) = n$$

Also ist die Relation g rechtseindeutig. Da die Abbildung linkstotal und rechtseindeutig ist, kann ich gemäß der Definition 158 schreiben, dass g tatsächlich eine Abbildung ist. Nun sei $m \in M_1$. Dann kann ich schreiben

$$g \circ f(m) = g(f(m))$$

Also ist

$$n \equiv f(m)$$

nach Definition von q

$$g(n) = m$$

Es sei nun $n \in M_2$. Dann muss gelten

$$f \circ g(n) = f(g(n))$$

mit

$$p \equiv q(n)$$

muss nach Konstruktion von g gelten, dass

$$f\left(p\right) = n$$

ist. Also kann ich schreiben

$$f(p) = f(q(n)) = n$$

Somit habe ich gezeigt:

$$\forall m \in M_1: g \circ f(m) = m \land \forall n \in M_2: f \circ g(n) = n$$

Damit hätte ich die eine Richtung der Behauptung bewiesen. Nun sei für

$$f: M_1 \to M_2$$

die Abbildung

$$g:M_2\to M_1$$

derart, dass gilt:

$$(31) \qquad \forall m \in M_1: g \circ f(m) = m \land \forall n \in M_2: f \circ g(n) = n$$

Also möchte ich zeigen, dass f bijektiv ist. Zuerst möchte ich zeigen, dass f surjektiv ist. Zu diesem Zweck sei

$$n \in M_2$$

Dann muss

$$q \equiv q(n)$$

dasjenige

$$q \in M_1$$

sein, für welches gilt

$$f(q) = n$$

Dann es gilt gemäß der Aussage 31

$$f(q) = f(q(n)) = f \circ q(n) = n$$

Also habe ich gezeigt, dass f surjektiv ist. Nun seien für $n \in M_2$ die Elemente $m_1, m_2 \in M_1$ mit

$$f\left(m_1\right) = f\left(m_2\right) = n$$

Dann kann ich schreiben:

$$m_1 = g(n) \wedge m_2 = g(n)$$

Aufgrund der Gleichheit der Elemente von Mengen muss auch gelten

$$m_1 = g(n) \wedge g(n) = m_2$$

Da nun die Gleichheit der Elemente von Mengen transitiv ist, muss darum gelten

$$m_1 = m_2$$

Damit hätte ich auch gezeigt, dass f injektiv ist. Also kann ich insgesamt schließen, dass f bijektiv ist. Schlussendlich kann ich schließen, dass somit auch die andere Richtung bewiesen ist und darum auch

$\,$ 31. WARUM IST DIE ÄQUIVALENZ EINE ÄQUIVALENZRELATION?

beide Richtungen der Behauptungen bewiesen sind. Ich erachte darum den Beweis als erbracht.

Ich möchte noch eine Anwendung des Konzepts der Endlichkeit von Mengen betrachten.

KAPITEL 32

Vorbereitungen zu den natürlichen Zahlen

Manchmal ist es nicht schlecht, die Dinge etwas langsamer anzugehen. In meinem Fall waren es dreieinhalb Jahre. Seit dreieinhalb Jahren habe ich mir immer wieder überlegt, wie ich die natürlichen Zahlen (also die Zahlen 1, 2, 3 und so weiter) begründen könnte. Und nun glaube ich, endlich die lange ersehnte Lösung gefunden zu haben. Beachte bitte, dass ich diesen Teil eigentlich ursprünglich nach der Definition 1 über die Gleichheit von Symbolen aufgeschrieben habe und dass er immer noch dort stehen könnte. Das bedeutend, dass ich eigentlich immer noch auf einem sehr einfachen Niveau argumentiere. Jedoch habe ich in der Zwischenzeit in langwieriger Arbeit die Grundlagen der naiven Logik aufgeschrieben. Somit starten wir hier trotzdem nicht vom Anfang an. Wenn Du Dich im Folgenden über die Umständlichkeit des Geschriebenen wunderst, dann stammt diese davon, weil ich eben noch nicht von der Möglichkeit der natürlichen Zahlen Gebrauch machen kann und will. Mein Ziel ist es eben, die Zahlen als Anzahl der Symbole von Symbolketten mit lauter gleichartigen Symbolen zu motivieren.

Ich habe unter der Definition 1 aufgeschrieben, wann ich zwei Symbole als gleich betrachte. Ich möchte an dieser Stelle versuchen zu zeigen, dass die obige Definition (im Rahmen der Widerspruchsfreiheit von Symbolen) widerspruchsfrei ist:

Lemma 181. Es seien A, B Metasymbole von Symbolen, welche in sich selbst und bezüglich den anderen Symbolen des Beweises widerspruchsfrei seien. Dann kann immer festgestellt werden, ob die durch A und B repräsentierten Symbole gleich oder ungleich sind.

BEWEIS. Bestehen die durch A und B repräsentierten Symbole aus einem einzelnen Symbol, dann kann ich annehmen, dass ich unterscheiden kann, ob die zwei Symbole gleich sind oder nicht¹. Also kann ich in diesem Fall entscheiden, ob die Symbole gleich oder ungleich sind. Besteht das Symbol A aus einem und das Symbol B aus mehreren Symbolen oder A aus mehreren Symbolen und B aus einem Symbol, dann sind diese gemäß der Definition 1 der Gleichheit von Symbolen

¹Vergleiche mit der Bemerkung 32 über die Gleichheit von Symbolen

verschieden. Bestehen die Symbole A wie auch B aus mehreren Symbolen, dann kann wiederum geschrieben werden:

$$A = A_1 A_2$$
$$B = B_1 B_2$$

Dabei setze ich voraus, dass A_1 und B_1 je aus einem einzelnen Symbol bestehen. Dann seien die Symbole A und B gleich, falls die Symbole A_1 und B_1 gleich sind und die Symbole A_2 und B_2 gleich sind. Falls $A_1 \neq B_1$ ist, dann weiß ich an dieser Stelle, dass die beiden Symbole ungleich sind. Gilt jedoch $A_1 = B_1$, dann kann ich wiederum untersuchen, ob $A_2 = B_2$ ist. Nun kommt die eigentliche Überlegung dieses kleinen Lemmas: Da sowohl A wie auch B aus endlich vielen Symbolen bestehen müssen, kann ich nach endlich vielen Schritten entscheiden, ob beide Symbole gleich oder ungleich sind. Das bedeutet jedoch, dass ich immer entscheiden kann, ob die beiden Symbole gleich oder ungleich sind. Damit habe ich meines Erachtens den Beweis für die Richtigkeit der Behauptung erbracht und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Ich habe das folgende Lemma ursprünglich bloß in einem Beweis eines Lemmas aufgeschrieben. Da ich jedoch eine Freunde daran habe, dass mir der Beweis der Transitivität der Identität der Gleichheit von Symbolen gelungen ist, möchte ich den Beweis separat aufschreiben:

Lemma 182. Die Gleichheit von Symbolen ist eine Äquivalenzrelation im Sinn der Definition 164 bezüglich der Definition einer Äquivalenz.

Beweis. Was muss ich überhaupt zeigen? Um das zu wissen (falls ich es noch nicht tue), lese ich die Definition 164 noch einmal. In dieser Definition kann ich nachlesen, dass die Gleichheit von Symbolen dann eine Äquivalenzrelation ist, falls diese identitiv, symmetrisch und transitiv ist. Nun, ich weiß nicht, ob ich dadurch schlauer geworden bin. Falls nicht, muss ich halt im Stichwortverzeichnis die Begriffe nachschlagen und die entsprechenden Definitionen lesen.

Ich möchte nun den Begriff der Definition der Identität der Aquivalenzrelation in Bezug auf die Gleichheit von Symbolen noch einmal aufschreiben und beweisen: Wenn ich zeigen möchte, dass die Gleichheit von Symbolen identitiv ist, muss ich zeigen, dass für alle Symbole A, welche in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien, gilt:

$$A = A$$

Gemäß der Definition 1 der Gleichheit von Symbolen gilt dies per Festlegung, also per Definition. Damit ist gezeigt, dass die Gleichheit von Symbolen identitiv ist. Nun möchte ich zeigen, dass die Gleichheit von Symbolen symmetrisch ist. Falls mit A und B Metasymbole bezeichnet

werden, welche in sich selbst gegenüber den anderen Symbolen widerspruchsfrei seien, und für welche gilt:

$$A = B$$

dann ist zu zeigen, dass also auch gilt:

$$B = A$$

Doch auch dies ist per Festlegung der Fall. Dann gilt noch zu zeigen, dass die Gleichheit von Symbolen transitiv ist. Ich fordere also, dass für alle Metasymbole, welche mit A, B sowie C bezeichnet werden und in sich selbst sowie den anderen Symbolen des Satzes widerspruchsfrei sein sollen, gilt:

$$A = B \land B = C \Rightarrow A = C$$

Besteht das Symbol A aus einem einzelnen Symbol D, dann muss mit A=B auch das Symbol B aus dem Symbol D bestehen. Und da ebenfalls B=C gilt, muss auch das Symbol C aus dem Symbol D bestehen. Also muss dann gemäß der Definition 1 A=C gelten. Besteht das Symbol A aus mehreren Symbolen, dann muss auch das Symbol B aus mehreren Symbolen bestehen. Würde das Symbol C aus bloß einem Symbol bestehen, dann wäre gemäß der Definition C aus bloß einem Symbolen

$$B \neq C$$

im Widerspruch der Definition. Also müsste auch das Symbol C aus mehreren Symbolen bestehen. Also müsste mit geeigneten Metasymbole A_1 , A_2 , C_1 sowie C_2 gelten

$$A = A_1 A_2$$
$$C = C_1 C_2$$

wobei die Symbole A_1 und C_1 aus einem und die Symbole A_2 und C_2 aus mehreren Symbolen bestehen müssten. Wiederum kann aufgrund der Definition 1 der Gleichheit von Symbolen mit sich selbst nicht $A_1 \neq C_1$ sein. Das gleiche Argument kann endlich viele Male auf durchgeführt werden, und zwar beginnend mit den Symbolen A_2 und C_2 und so lange, bis das letzte Symbol von A_2 mit dem letzten Symbol von C_2 verglichen ist. Es ist nicht möglich, dass es ein Metasymbol D derart gibt, dass gilt

$$A = D \, E$$
 und
$$C = D$$
 oder umgekehrt
$$A = D$$
 und
$$C = D \, E$$
 Denn da gilt
$$A = B$$

und

$$B = C$$

und somit (da die Gleichheit von Symbolen per Definition per Festlegung symmetrisch ist)

$$C = B$$

müsste in diesem Fall gelten

$$B \neq B$$

Denn das Symbol B müsste, je nachdem welche Gleichheit zuerst betrachtet würde, unterschiedlich viele Symbole besitzen. Somit meine ich, auch in diesem Fall gezeigt zu haben, dass gelten müsste:

$$A = C$$

Somit erachte ich den Beweis als erbracht und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

LEMMA 183. Es seien A_1 , A_2 sowie B Symbole, welche in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Ist nun $A_1 = A_2$, dann ist sowohl

$$A_1 B = A_2 B$$

wie auch

$$BA_1 = BA_2$$

BEWEIS. Der Beweis ist zwar einfach, jedoch aufwändig. Denn sowohl die Symbole A_1, A_2 wie auch B können Metasymbole von einfachen Symbolen oder jedoch auch Symbole von Symbolketten darstellen. Da jedoch $A_1 = A_2$ ist, muss genau dann A_1 ein Metasymbol einer Symbolkette sein, falls A_2 ein Metasymbol einer Symbolkette ist. Ist A_1 ein Metasymbol eines einfaches Symbols, dann muss auch A_2 ein Metasymbol eines einfachen Symbols sein. Gemäß der Definition ist die Zeichenkette $A_1 B$ genau dann gleich der Zeichenkette $A_2 B$, falls $A_1 = A_2$ ist und B = B ist. Die Gleichung B = B ist per Definition wahr. Die Gleichung $A_1 = A_2$ ist nach Voraussetzung wahr. Also ist die ganze Behauptung wahr. Das Gleiche gilt auch für die Gleichung

$$BA_1 = BA_2$$

Unabhängig davon, ob B das Metasymbol eines einzelnen oder von mehreren Symbolen ist, ist diese Gleichung genau dann wahr, falls

$$B = B$$

und

$$A_1 = A_2$$

ist. Das erste ist nach Definition der Gleichheit von Symbolen richtig. Das zweite nach Voraussetzung über A_1 und A_2 . Somit ist auch die Gleichung

$$BA_1 = BA_2$$

Nun seien jedoch A_1 sowie A_2 Metasymbole von Symbolketten. Wesentlich an dieser Stelle ist, dass die Symbolketten über gleich viele Symbole verfügen und die Symbole an den entsprechenden Stellen (der ersten bis letzten Stelle) der jeweils paarweise identisch sind. Das bedeutet, dass auch wiederum das Symbol B mit sich selbst verglichen wird. Also kann ich wiederum folgern, dass aufgrund der Voraussetzung

$$A_1 = A_2$$

wiederum ebenfalls

$$A_1 B = A_2 B$$

gelten muss. Bezüglich der Vergleichbarkeit von

$$BA_1 = BA_2$$

hat sich jedoch in diesem Fall gegenüber demjenigen Fall, in welchem A_1 respektive A_2 aus jeweils einem Symbol bestehen, nichts geändert. Also kann ich schließen, dass diese Gleichung immer noch wahr sein muss. Somit meine ich, den Beweis für die Richtigkeit dieser Aussage erbracht zu haben und beende darum an dieser Stelle die weitere Beweisführung.

Das führt mich zur nächsten Fragestellung: Kann gezeigt werden, ob und wenn ja warum die Aneinanderreihung von Symbolen assoziativ ist? Bezüglich der Einführung von Assoziativität siehe etwa Definition 172. Nun habe ich jedoch ein Problem. Denn wenn ABC Metasymbole sind, dann kann ich nicht untersuchen, ob

$$(AB)C = A(BC)$$

ist. Denn das wird im Allgemeinen nie der Fall sein. Der Grund dafür ist simpel: Die Klammern sind ja auch Symbole. Also wie mache ich es? Ich versuche es so:

Lemma 184. Es seien A, B sowie C Metasymbol, welche in sich selbst und in Bezug auf die anderen Symbole des Lemmas widerspruchsfrei seien. Weiter seien die Metasymbole D sowie E wie folgt definiert:

$$D = AB$$

$$E = BC$$

Dann gilt

$$DC = AE$$

Beweis. Gemäß dem vorhergehenden Lemma 183 kann ich schreiben

$$DC = ABC$$

Weiter kann ich gemäß dem gleichen Lemma ebenfalls folgern, dass gilt

$$AE = ABC$$

Da die Gleichheit von Symbolen gemäß dem Lemma 234 eine Äquivalenzrelation ist, ist sie gemäß der Definition 164 der Äquivalenzrelation symmetrisch. Also kann ich folgern:

$$ABC = AE$$

Weiter muss die Gleichheit von Symbolen transitiv sein, weil sie ja eine gemäß dem Lemma 234 eine Äquivalenzrelation ist. Darum kann ich auch schließen

$$DC = AE$$

Das ist jedoch gerade die Behauptung. Also bin ich der Meinung, dass ich den Beweis für die Richtigkeit der Behauptung erbracht habe und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Nun bin ich der Meinung, dass ich durchaus gezeigt habe, dass die Verkettung von Symbolen durchaus assoziativ ist. Um einen Beweis der anderen Art, welcher weniger formal, mir aber dafür um so einsichtiger erscheint, möchte ich folgenden Beweis ins Land führen. Angenommen, ich würde ein Buch mit den Kapiteln beschreiben welche mit den Symbolen A, B und C bezeichnet würde. Wäre die Verkettung von Symbolen nicht assoziativ, dann würde es einen Unterschied machen, ob zuerst die Kapitel B und C schreibe und dann zuletzt das Kapitel A vor den anderen beiden Kapiteln hinsetze, oder ob ich die Kapitel A, B sowie C hinschreibe. Das würde meines Erachtens der menschlichen Erfahrung, dass in beiden Fällen am Schluss die gleichen Symbole hingeschrieben werde, grundsätzlich widersprechen. Also folgere ich daraus, dass dies keine Rolle spielen darf und somit die Verkettung von Symbolen tatsächlich assoziativ ist.

Ich möchte jetzt etwas schreiben, was Du vielleicht überflüssig findest.

Lemma 185. Es seien A und B Metasymbole, das heißt Symbole von Symbolen, welche in sich selbst und bezüglich den anderen Symbolen der Behauptung widerspruchsfrei seien. Dann gilt:

$$AB \neq A$$

Beweis. Ich setze in der Definition 1 der Gleichheit von Symbolen die Metasymbole

$$C \equiv AB$$
$$D \equiv A$$

Dann muss

$$C \neq D$$

sein. Denn dafür müssten gleich viele Symbole vorhanden sein. Das ist jedoch nicht der Fall. Denn besteht das Symbol, welches durch das Metasymbol D und somit durch A symbolisiert wird, aus einem Symbol,

dann muss das Symbol, welches durch C und somit durch D symbolisiert wird, aus mindestens zwei Symbolen bestehen. Also kann in diesem Falls die Gleichheit von C und D nicht gelten. Besteht jedoch das durch D und somit A symbolisierte Symbol aus mehreren Symbolen, dann muss es zwei Metasymbole E und F derart geben, dass

$$A = E F$$

ist. Weiter kann ich fordern, das F genau ein Schriftzeichen symbolisiert. Also muss in diesem Fall gelten

$$C = EFB$$
$$D = EF$$

Nun stimmen zwar alle Symbole von E überein, aber gemäß der Vergleichsvorschrift tritt der Fall auf, die beiden Symbole F und F B miteinander zu vergleichen. Also gelange ich wieder an den Punkt, ein Symbol, welches aus mehreren Symbolen besteht (FB) mit einem zu vergleichen, welches nur aus einem Symbol besteht (F). Gemäß der Definition 204 müssen diese Symbole jedoch ungleich sein. Damit glaube ich auch in diesem Fall und somit in allen Fällen den Beweis für die Ungleichheit der Symbole erbracht zu haben.

Die Definition der Gleichheit von Symbolen hat einen sogenannten Pferdefuß (also eine Unschönheit, welche in Kauf genommen werden muss): Ich habe geschrieben "falls die Symbole A_1 und B_1 gleich sind". Nun, wann zwei Symbole wie "Pferd" und "Kuh" gleich sind und wann nicht, das kann ich so nicht sagen. Natürlich sind die Symbole "Pferd" und "Kuh" nicht gleich. Denn wir haben in der Schule gelernt, dass das Symbol "P" und das Symbol "K" ungleich sind. Ob ich jedoch auf Anhieb beispielsweise zwei chinesische Schriftzeichen bezüglich Gleichheit richtig beurteilen könnte, das bezweifle ich. Auch bei tamilischen oder thailändischen Schriftzeichen oder einer anderen Schriftart wie beispielsweise dem kyrillischen wäre ich mir da nicht sicher. Wenn das maschinell erkannt werden kann, habe ich zwar nichts dagegen. Jedoch bleibt mir trotzdem festzuhalten, dass dies etwas ist, was im Rahmen dieser Einführung in die Mathe nicht endgültig zu Ende diskutiert werden kann. Doch wieso walze ich dieses Thema so breit aus? Weil darin auch ein Stück "Magie" steckt. Weil ich damit beweisen will, dass in der Mathematik eben nicht "alles beweisen werden kann". Die Mathematik ist meines Erachtens immer eine Beschreibung eines Teilbereichs der "Wirklichkeit". Was "wirklich" ist, das kann auch die Mathematik nicht sagen. Es ist sozusagen ein Fischernetz, welches auch "Löcher" besitzt. Das bedeutet jedoch nicht, sehr verehrte Leserin oder Leser, dass Du Dich nicht mit Mathematik beschäftigen sollst. Es bedeutet jedoch, dass eine gewisse Demut gegenüber dem, was so existiert, durchaus angezeigt ist.

Pferdefuß der Gleichheit von Symbolen Doch zurück zur Einführung in die Symbole: Ich möchte nun Beispiele für die Überprüfung der Gleichheit von Symbolen machen. Ist A das Symbol für "Kuh" und B das Symbol für "Kuh", dann sind beide Symbole gleich. Ist A das Symbol für "Ei" und B das Symbol für "Ei", dann sind diese beiden Symbole nicht gleich. Beide Symbole beginnen zwar mit einem "E", gefolgt von einem "i". Aber wenn ich schreibe

$$A_1 = 'E'$$
 $A_2 = 'i'$
 $A_1A_2 = 'Ei'$
 $B_1 = 'E'$
 $B_2 = 'i Ei'$
 $B_1B_2 = 'Ei Ei'$

dann sind zwar $A_1 = B_1$. Jedoch besteht das Symbol A_2 aus einem Symbol, wogegen das Symbol B_2 aus vier Symbolen (sofern ich den Leerschlag mitzähle, ansonsten sind es deren drei), also mehr als einem besteht. Darum ist $A_2 \neq B_2$ und darum auch $A \neq B$. Und noch eine Besonderheit sei aufgeschrieben, obwohl sie so nicht deutsch und deutlich in der Definition steht. Mein Name ist "Markus Demarmels". Dann sei

$$A = 'Markus'$$

und

$$B = 'Demarmels'$$

Also ist

$$A \neq B$$

da

$$A = A_1 A_2 = 'M'$$
 'arkus'
 $B = B_1 B_2 = 'D'$ 'emarmels'

und

$$M' \neq D'$$

ist. Jedoch können beide Symbole "Markus" und "Demarmels" dazu verwendet werden, um meine Person zu beschreiben. Aber wenn ich von Symbolen schreibe, dann meine ich die Symbole an und für sich und nicht die Größen oder Dingen, welche sie damit beschreiben. Zum Schluss noch einfachere Beispiele: Ist A das Symbol für α und B das Symbol für α , dann ist

$$A = B$$

Ist jedoch A das Symbol für α und B das Symbol für μ , dann ist

$$A \neq B$$

Und nun möchte ich weiter in der Beschreibung der Eigenschaften von Symbolen fahren:

Lemma 186. Es sei A ein Symbol und sei B sei ein Metasymbols, welches aus einer beliebigen, jedoch endlichen Anzahl von aneinander gereihten Symbolen A bestehe. Dann gilt

$$AB = BA$$

Beweis. Ist B = A, dann kann ich schreiben:

$$AB = AA$$

Nun kann ich mir erlauben, das erste Symbol "A" auf der rechten Seite der Gleichung wieder mit dem Symbol B zu bezeichnen und ich erhalte

$$AA = BA$$

Damit hätte ich jedoch auch die Gleichheit

$$AB = BA$$

Nun nehme ich an, dass das Symbol B aus mehr als einem Symbole A bestehe und dass gelte

$$AB \neq BA$$

Da B aus mindestens einem Symbol A besteht, kann ich ein Symbol wegnehmen. Und jetzt kommt das "Kindertrickli²". Wenn ich bei Aneinanderreihung B irgend ein Symbol wegnehme, dann spielt es keine Rolle, welches ich wegnehme. Ob ich es am Anfang, in der Mitte oder am Schluss wegnehme, spielt überhaupt keine Rolle. Wenn ich die restlichen Symbole am Schluss wieder aneinanderreihe, dann habe ich immer wieder das gleiche zusammengesetzte Symbol. Ich möchte es demonstrieren, falls

$$B = A A A A A$$

sei. Ich verwende dafür die sogenannte "Zipfelmützen-" oder "Tarnkappennotation³ Dasjenige Symbol, welches ich herausnehme, bezeichne ich mit einem Dach auf dem Symbol. Nun schreibe ich die einzelnen Symbole auf, wenn ich nacheinander bei den Symbolen ein Symbol "

²Eigentlich wäre der schweizerdeutsche Ausdruck dafür "Bubentrickli", also ein "kleiner Trick eines Knaben". Da jedoch das ungerecht gegenüber den schlauen Mädchen wäre, erlaube ich mir "Kindertrickli", also "kleiner Trick eines Kindes" zu schreiben.

³Beat Streckeisen von der Fachhochschule Nordwestschweiz verwendete meines Wissens diesen Ausdruck.

A" entferne:

$$\hat{A} A A A A A = A A A A$$

$$A \hat{A} A A A A = A A A A$$

$$A \hat{A} A A A A = A A A A$$

$$A A \hat{A} A A A A A A$$

$$A A A A \hat{A} A = A A A A$$

$$A A A A A \hat{A} = A A A A$$

Das ganze funktioniert darum, weil ich die Zwischenräume zwischen dem Symbol mit der Bezeichnung "A" nicht als Symbol betrachte. Also steht es mir frei, das erste Symbol von B zu entfernen. Es muss also ein Symbol C derart geben, dass gilt

$$B = AC$$

Wenn ich nun die Zeichenketten AB und BA vergleiche, dann kann ich zuerst B umschreiben und erhalte

$$BA = ACA$$

Also kann ich die Zeichenketten AB sowie BA = ACA vergleichen. Dann sind bei beiden Zeichenketten das erste Symbol gleich. Also muss ich die beiden Symbole CA sowie B miteinander vergleichen. Nun habe ich ja eben die Betrachtung angestellt, dass es beim Entfernen eines Symbols A aus dem Symbol B nicht darauf ankommt, ob ich das Symbol A aus dem Anfang, der Mitte oder dem Ende von B entferne. Darum schließe ich, dass gelten muss:

$$CA = B$$

Somit kann ich gesamthaft schließen, dass

$$AB = ACA$$

gilt. Da jedoch gemäß Konstruktion von AC gilt, dass

$$AC = B$$

ist, kann ich also folgern, dass dann auch gilt

$$ACA = BA$$

Mit

$$AB = ACA$$

und

$$ACA = BA$$

muss darum auch gelten, da die Gleichheit von Symbolen gemäß dem Lemma 182 eine Äquivalenzrelation ist:

$$AB = BA$$

Darum glaube zeigen zu können, dass auch

$$AB = BA$$

sein muss und beende somit den Beweis an dieser Stelle.

Nachbetrachtung: Würde dieser Satz nicht zutreffen, dann wäre unsere ganze Gesellschaft eine ganz andere! Denn falls beispielsweise ein T-Shirt 17 € (Euro) kosten würde, und die Kundin würde 18 € in einer Reihe von 18 Münzen mit je 1 € auf den Kassentisch legen, dann würde, falls der Satz nicht zutreffen würde, es einen Unterschied machen, ob die Person an der Kasse die erste, vierte oder 14. Euromünze aus der Reihe nehmen und es der Kundin zurückgeben würde. Somit meine ich, dass uns die Alltagserfahrung lehrt, dass in diesem Fall wirklich es keine Rolle spielt, ob ich ein Symbol am Anfang oder am Ende einer Zeichenkette einfügt. Wenn ich ein Symbol am Schluss einer Kette von gleichen Symbolen nehme und ich dieses Symbol an den Anfang der Zeichenkette stelle, dann sind nachher noch gleich viele Symbole vorhanden und die beiden Ketten von Symbolen sind immer noch gleich: Dieses Prinzip erinnert mich auch an die Objektpermanenz, welche kleine Kinder ab dem Alter von ca. 8 Monaten zu beschäftigen beginnt. Es lautet, dass üblicherweise Dinge auch dann noch vorhanden sind, wenn ich diese im Moment nicht sehen kann. Ich vermute, dass auch dies eine Triebfeder für die Formalisierung von Symbolen im Rahmen der Mathematik war.

Es gibt noch eine zweite Nachbetrachtung: In der modernen Quantenphysik wurde die Entdeckung gemacht, dass ganz kleine (subatomare) Teilchen wirklich prinzipiell ununterscheidbar sind. Das hat die Auswirkung, dass nicht mehr davon gesprochen werden kann, dass ein solches Teilchen einen bestimmten Weg zurücklegt. Angenommen, in einem Experiment werde ein Teilchen so manipuliert, dass es bei einer bestimmten Quelle (beispielsweise einem glühenden Draht) ausgesendet wird. An einem anderen anderen Ort werde mittels einem Fühler bestimmt wird, ob es auch wirklich dort angekommen ist. Der zweite Ort werde "Senke" genannt (so wie ein Bach in einer Talsenke in einem Höhlensystem verschwinden kann). Dann kann nicht mehr genau gesagt werden, welchen Weg das Teilchen von der Quelle zur Senke zurückgelegt hat. Diese Beobachtung war ganz zentral für die heutige Physik. Aber obwohl die Grundannahme - dass Teilchen prinzipiell nicht mehr voneinander unterschieden werden können - sehr seltsam anmutet: In der Menschheitsgeschichte wurde auf diese Grundannahme schon früher zurückgegriffen. Ich würde nicht auf die Idee kommen, vom "562." Auftreten des Buchstabens "t" in diesem Skript zu schreiben. Alle Buchstaben werden als "eigenschaftslos" und voneinander "ununterscheidbar" betrachtet. Weil diese Betrachtung eben "praktisch", also vorteilhaft für uns Menschen ist. Dieser Gedanke ist es, welchen ich im Versuch des Beweises des kleinen Satzes oben verwendet habe. Es ist jedoch fraglich, ob dieser Versuch des Beweises wirklich angemessen ist. Urteile selbst!

Das vorhergehende Lemma kann erweitert werden:

Lemma 187. Es sei A ein Symbol und es seien B, C Metasymbole, welches aus einer beliebigen, jedoch endlichen Anzahl von aneinander gereihten Symbolen A bestehe. Dann gilt

$$BC = CB$$

Beweis. Habe ich die Symbolkette

BC

dann muss diese aus einer Symbolkette bestehen, welche aus endlich vielen Symbolen A bestehen. Nun kann ich diese Symbole sozusagen beschriften: Das erste werde mit A beschriftet. Das zweite werde mit A A beschriftet. Das dritte werde mit A A A beschriftet. Diese Beschriftung werde für alle Symbole A der Symbolkette so durchgeführt. Gemäß der Definition 1 über die Gleichheit von Symbolen und insbesondere des Lemmas 185 über die Ungleichheit von Symbolen und Symbolen, denen andere Symbole angehängt sind, sind dann alle Beschriftungen ungleich. Nun kann ich diese Beschriftungen beispielsweise auf Steinchen aufschreiben, diese Steinchen in einen Sack werfen, den Sack verschnüren und schütteln. Die Erfahrung der Objektpermanenz (welche fast alle Kinder ab ca. dem 8. Lebensmonat machen) lehrt mich jetzt, dass bei diesem Vorgang weder eine Beschriftung hinzugefügt wird noch weggenommen wird. Anschließend entnehme ich die Steinchen eins nach nach dem anderen dem Sack und schreibe die Beschriftungen wieder aufs Papier. Dann habe ich die Beschriftungen der Symbole, jedoch nicht die Symbole selbst aufgeschrieben. Also ersetze ich nachher jede Beschriftung der Symbole durch das Symbol, welches sie symbolisieren. Das ist jedoch immer noch in jedem Fall das Symbol A. Am Schluss habe ich wieder eine Symbolkette, bestehend aus endlich vielen Symbolen A. Dann kann ich folgern, dass wieder genau gleich viele Symbole auf dem Papier geschrieben wurden. Da alle Symbole gleich dem Symbol A sind, kann ich daraus folgern, dass die daraus resultierenden Zeichenketten gleich der ursprünglichen Zeichenfolge ist. Also kann ich daraus folgern, dass auch die Zeichenfolge

$$CB = BC$$

sein muss. Denn ich kann ja die beschrifteten Symbole entweder dem Symbol B oder dem Symbol C zuordnen. Durch den oben beschriebenen Vorgang werden die Positionen der Symbole jetzt beliebig vertauscht. Und da alle Vertauschungen offenbar die Gleichheit mit dem ursprünglichen Symbol nicht zerstören, kann ich auch folgern, dass auch

$$CB = BC$$

sein muss. Das wäre der erste Beweisversuch für die Richtigkeit der Behauptung.

Nun möchte ich jedoch noch einen zweiten Beweisversuch aufschreiben: Die resultierende Symbolkette besteht wiederum aus endlich vielen

aneinandergereihten Symbolen A. Ich nehme an, es sei etwa

$$B = A A$$
$$C = A A A$$

Dann ist die resultierende Zeichenkette

$$BC = AAAAA$$

Dann entnehme ich der resultierenden Zeichenkette so lange an beliebiger Stelle Symbole A, bis die Symbolkette C resultiert. Dann lehrt mich wiederum die Erfahrung der Objektpermanenz, dass es keine Rolle spielt, welche Symbole entfernt werden, sofern nicht zu viel oder zu wenig Symbole entfernt werden Es gilt also etwa

$$C = \hat{A} \hat{A} A A A$$

$$= \hat{A} \hat{A} \hat{A} \hat{A} A$$

Dabei habe die zu entfernenden Symbole wiederum mit "Tarnkappen" bezeichnet. Und so folgere ich eben auch, dass auch gilt

$$C = A A A \hat{A} \hat{A}$$
$$= \hat{A} \hat{A} A A A$$

Dass bedeutet jedoch dass auch wiederum gilt

$$CB$$

$$=AAAÂÂAAA$$

$$=BC$$

Denn jedes Symbol A, welches auf der rechten Seite der Zeichenkette

$$C = A A A \hat{A} \hat{A}$$

mittels der "Tarnkappennotation" entfernt wird, wird anschließend wieder hinzugefügt. Am Schluss resultiert wieder die ursprüngliche Zeichenkette. Und die ist ja

Somit schließe ich, dass, unabhängig von der Anzahl der Symbole A in den Zeichenkette B sowie C, die Zeichenketten

sowie

identisch sein müssen. Damit hoffe ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende darum an dieser Stelle wiederum die weitere Beweisführung.

Nachbemerkung: Eventuell müsste das vorhergehende Lemma als Axiom verwendet werden, da der Beweis eventuell nicht präzis zu führen ist. Ich kann das so nicht sagen. Aber er ist für die weiteren Überlegungen unentbehrlich. Darum nehme ich im Folgenden an, dass das Lemma richtig ist. Ich hoffe inständig, ich liege da nicht falsch.

DEFINITION 188. Es seien A, B sowie C Metasymbole. Dabei sollen per Definition die Metasymbole B wie auch C aus einer beliebigen, jedoch endlichen Folge der durch A repräsentierten Symbole bestehen. Dies Symbole seien in sich selbst und bezüglich den anderen Symbolen der Definition widerspruchsfrei. Um die Dinge nicht unnötig kompliziert zu machen, sei beispielsweise A das Metasymbol für "Brot". B bestehe aus zwei Symbolen, welche durch A repräsentiert werden. In diesem Fall also

Brot Brot

 ${\cal C}$ bestehe aus 4 Symbolen, welche durch das Symbol ${\cal A}$ repräsentiert werde:

Brot Brot Brot Brot

Dann sei das Metasymbol ${\cal B}$ kleiner als das Metasymbol ${\cal C}$ (geschrieben als

), falls es ein Metasymbol D derart gibt, so dass gilt

$$BD = C$$

Ich nenne D die Differenz der Symbole C und B. Dann sei das Metasymbol B gleich dem Metasymbol C, falls gemäß der Definition 1 gilt:

$$B = C$$

Schlussendlich sei das Metasymbol B größer als das Metasymbol C (geschrieben als

, falls es ein Metasymbol E derart gibt, so dass gilt

$$B = C E$$

Wieder sei E die Differenz der Symbole C und B.

Und nun zwei Abkürzungen, welche sich als ungemein nützlich erweisen: Es sei definiert

$$B \le C \Leftrightarrow B < C \lor B = C$$

respektive

$$B > C \Leftrightarrow B = C \lor B > C$$

In Worten: Das Symbol B sei kleiner oder gleich dem Symbol C, falls B kleiner C oder B gleich C ist. Das Symbol B sei größer oder gleich dem Symbol C, falls das Symbol B größer als das Symbol C ist oder das Symbol B gleich dem Symbol C ist.

Beim Vergleich der Länge von zwei Zeichenketten kommt die Gier ins Spiel. Das scheint einmal zuerst abwegig zu sein. Was kratzt Dich das, ob jetzt

Ziege Ziege

mit

Ziege Ziege Ziege

verglichen wird? Aber wenn Du bedenkst, dass die erste Zeile Deine Anzahl der Ziegen sein könnte, und die zweite Anzahl die entsprechende Anzahl der Nachbarin: Was würdest Du dann sagen? Wärst Du immer noch so kühl und "tiefenenspannt"? Darum bleibt mir an dieser Stelle festzuhalten, dass die Mathematik ihre "Unschuld" schon am Anfang verloren hat. Und doch lässt sich wahrscheinlich vermuten, dass das Prinzip des Vergleichens von Besitz oder die Anzahl von Dingen bereits vor den Hochkulturen ein Thema war.

Die Gier kommt auch darum ins Spiel, weil kaum jemand behaupten wollte, dass gilt

Goldstück

sei "kleiner als"

Kieselstein Kieselstein

•

Wobei ich zugeben muss, dass es schon schwierig genug ist, zwei Goldstücke als gleichwertig anzunehmen. Was, wenn das einige Goldstück nur eine dünne Schicht aus Gold als Überzug besitzt, im Innern jedoch auch Blei besteht? Wogegen ein zweiten Goldstück äußerst rein ist, so rein wie nur möglich? Aber Unterschiede in den durch die Symbole repräsentierten Größen werden an dieser Stelle absichtlich außer Acht gelassen. Das einzige, was verglichen wird, sind die Symbole.

Da jedoch kaum jemand behaupten wollte, zwei Kieselsteine seien mehr als ein Goldstück, macht es meines Erachtens nur Sinn, Symbolketten auf deren Länge zu vergleichen, falls beide Symbolketten aus den völlig identischen Symbolen bestehen. Noch frappierender wird es, wenn ich vergleiche

Mensch Mensch Mensch Mensch

sowie

Erde

Würde nun zugelassen, dass verschiedene Symbole miteinander verglichen würde, dann würde ich wahrscheinlich zum Schluss kommen, dass gelten müsste dass die "Erde kleiner als mehrere Menschen (5, um

genau zu sein)" sein müsste. Nein, das bringt uns in der Diskussion nicht weiter. In der Menschheitsgeschichte wurden meines Erachtens diese Widerwärtigkeiten umgangen, indem mehr oder weniger willkürlich über "Artengrenzen" ein "Wechselkurs" festgelegt wurde. Denkbar wäre etwa, dass 20 "Weizenkrüge⁴" (durch das Metasymbol "K" bezeichnet) vielleicht einer Ziege (durch das Metasymbol "W" bezeichnet) entsprachen. Möchte ich dann zwei Ziegen und 63 Weizenkrüge miteinander vergleichen, dann würde nichts anderes übrigbleiben, als folgendes zu vergleichen. Zuerst würde ich die beiden folgenden Zeichenketten miteinander vergleichen:

```
W
   W
      W
                W
                   W
                       W
                          W
                             W
W
   W
      W
         W
             W
                W
                   W
                       W
                          W
                             W
W
   W
      W
         W
             W
                W
                   W
                       W
                          W
                             W
W
   W
      W
         W
             W
                W
                   W
                      W
                          W
                             W
W
      W
         W
             W
                W
                   W
                      W
                          W
                             W
   W
W
   W
```

ZZ

Weiter könnte ich dann anstelle von einem Symbol für eine Ziege zwanzig Symbole von Weizenkrügen aufschreiben. Also müsste ich die beiden folgenden Symbolketten vergleichen:

```
W
        W
               W
                  W
                     W
                        W
                            W
                               W
                                  W
                                      W
        W
           W
               W
                  W
                     W
                        W
                            W
                               W
                                  W
                                      W
        W
           W
               W
                  W
                     W
                         W
                            W
                               W
                                  W
                                      W
        W
           W
               W
                  W
                     W
                         W
                            W
                               W
                                  W
                                      W
               W
                  W
                     W
                        W
                            W
                               W
                                  W
        W
           W
                                      W
        W
           W
sowie
        W
           W
               W
                  W
                     W
                        W
                            W
                               W
                                  W
                                      W
                                      W
           W
        W
               W
                  W
                     W
                         W
                            W
                               W
                                  W
        W
           W
               W
                  W
                     W
                         W
                            W
                               W
                                  W
                                      W
           W
              W
                  W
                     W
                        W
                            W
                               W
                                  W
                                      W
```

Nun könnte ich erkennen, dass die erste Zeichenkette länger als die zweite Zeichenkette ist.

Jetzt, da ich mich ausgiebig über Beispiele des Vergleichs von zwei Zeichenketten von ausgelassen habe, möchte ich zeigen:

Satz 189. Es seien A, B, C Symbole, wobei B und C Metasymbole sein, welche aus jeweils aus einem oder mehreren (aber nur endlich vielen) Symbolen C bestehen sollen. Wie gewohnt (um mir ein wenig

⁴offenbar gemäß dem entsprechenden Artikel der Deutschen Bibelgesellschaft ("https://www.bibelwissenschaft.de/") über Masse und Gewichte ein Krug mit einem Fassungsvermögen von ca. 1.5 - 2 Liter, welcher mit Weizen gefüllt war. Ich weiß nicht, ob auch der Krug mit verkauft wurde und ob der Käufer, der Verkäufer oder beide gemessen haben.

die Magie zu bewahren) setze ich voraus, dass alle Symbole in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt genau eine der drei Möglichkeiten:

$$B = C$$

oder

Formal bedeutet dies:

$$B < C \lor B = C \lor B > C$$

BEWEIS. Ich habe im Lemma 181 über die Vergleichbarkeit von Symbolen zu zeigen versucht, dass ich immer feststellen kann, ob zwei Symbole gleich oder ungleich sind. Sind die Symbole gleich, dann bin ich schon am Ende mit diesem Beweis. Es sei nun $B \neq C$. Dann ist gemäß dem Lemma 187 über die Kommutativität der Addition von gleichen Symbolen

$$BC = CB$$

Überdies muss gemäß der Definition 188 des Vergleichs von Symbolketten von gleichen Symbolen gelten

$$B < BC$$
$$C < CB = BC$$

Im ersten Fall ist C die Differenz der Symbole BC und B. Im zweiten Fall ist B die Differenz der Symbole BC und C. Nun entferne ich so lange Symbole A von der Symbolkette BC, bis die resultierende Zeichenkette einer der beiden Symbolketten entspricht. Ich nehme an, zuerst sei die resultierende Zeichenkette diejenige des Symbols B. Nun ist C ist ja in allen dieser Symbolketten, welche aus der Abspaltung von einem oder mehreren Symbolen A von der Symbolkette BC entsteht, enthalten. Somit kann ich folgern, dass es eine Symbolketten E geben muss, welche aus einem oder mehreren Symbolen besteht, und für welche gilt:

$$CE = B$$

oder entsprechend

$$B = C E$$

Also muss

sein. Entsprechend kann ich argumentieren, falls zuerst die Symbolkette C entsteht, falls der der Symbolkette B C ein oder mehrere Symbole A entnommen werden. Dann muss die Symbolkette B in allen diesen Symbolketten, welche entstehen, falls der Symbolkette B C ein oder mehrere Symbol A entnommen werden, enthalten sein. Somit kann ich

folgern, dass es eine Symbolkette F, welche aus lauter Symbolen A besteht, geben muss, so dass gilt:

$$BF = C$$

Also kann ich daraus folgen

Somit hoffe ich, dass ich den Beweis für die Richtigkeit dieser Behauptung erbracht habe und beende aus diesem Grund die weitere Beweisführung.

Nun, es geht noch plumper:

KOROLLAR 190. Es seien A, B, C Symbole, wobei B und C Metasymbole sein, welche aus jeweils aus einem oder mehreren (aber nur endlich vielen) Symbolen C bestehen sollen. Weiter seien alle der Symbole A, B sowie C in sich selbst und bezüglich den anderen Symbolen widerspruchsfrei. Dann gilt:

$$B < C \lor B > C$$

Beweis. Der Beweis basiert rein auf logischen Argumenten. Es gilt gemäß dem vorhergehenden Satz 189

$$B < C \lor B = C \lor B > C$$

Gemäß dem Satz 57 kann ich schreiben

$$B = C \Leftrightarrow B = C \lor B = C$$

Also kann ich gemäß dem vierten Substitutionssatz 103 der Disjunktion folgern:

$$B < C \lor B = C \Rightarrow B < C \lor B = C \lor B = C$$

Nun kann ich noch den ersten Substitutionssatz 100 der Disjunktion verwenden und erhalte die Aussage

$$B < C \lor B = C \lor B > C$$

$$\Rightarrow B < C \lor B = C \lor B = C \lor B = C$$

Weiter gilt per Definition 188

$$B < C \Leftrightarrow B < C \lor B = C$$

Da die Äquivalenz gemäß dem Satz 39 kommutiert, dann ich auch schreiben

$$B < C \lor B = C \Leftrightarrow B \le C$$

Somit kann ich gemäß dem dritten Substitutionssatz 102 verwenden und erhalte die Aussage

$$B < C \lor B = C \lor B = C \lor B = C$$

$$\Rightarrow B < C \lor B = C$$

Da die Implikation gemäß dem Satz 15 transitiv ist, kann ich auch schreiben:

$$B < C \lor B = C \lor B > C$$

$$\Rightarrow B < C \lor B = C \lor B > C$$

Nun ja, Du weißt jetzt sicher, wie es weiter geht. Aber da ich die Dinge ganz klar aufschreiben möchte, schreibe ich weiter:

Gemäß der Definition 188 gilt:

$$B > C \Leftrightarrow B = C \lor B > C$$

Da die Äquivalenz gemäß dem Satz 39 kommutiert, dann ich auch schreiben:

$$B = C \lor B > C \Leftrightarrow B > C$$

Also kann ich gemäß dem vierten Substitutionssatz 103:

$$B < C \lor B = C \lor B > C \Rightarrow B < C \lor B > C$$

Da die Implikation gemäß dem Satz 15 immer noch transitiv ist, kann ich folgern:

$$B < C \lor B = C \lor B = C \lor B > C$$

$$\Rightarrow B \le C \lor B \ge C$$

Ich verwende noch einmal den Satz 15 und folgere:

$$B < C \lor B = C \lor B > C$$

$$\Rightarrow B < C \lor B > C$$

So, das wäre jetzt den Beweis für die eine Richtung der Behauptung gewesen. Nun möchte ich gerne den Beweis für die Richtigkeit der anderen Richtung erbringen:

$$B < C \lor B > C$$

Gemäß der Definition 188 gilt

$$B \le C \Leftrightarrow B < C \lor B = C$$

Also gilt gemäß dem dritten Substitutionssatz 102

$$B \le C \lor B \ge C$$

$$\Rightarrow B < C \lor B = C \lor B > C$$

Gemäß der Definition 188 gilt ebenfalls

$$B > C \Leftrightarrow B = C \lor B > C$$

Also gilt gemäß dem vierten Substitutionssatz 102 die Aussage

$$B < C \lor B = C \lor B \ge C$$

$$\Rightarrow B < C \lor B = C \lor B = C \lor B > C$$

Somit kann ich schreiben, da die Implikation gemäß dem Satz 15 immer noch transitiv ist:

$$B \le C \lor B \ge C$$

$$\Rightarrow B < C \lor B = C \lor B = C \lor B = C$$

Nun kann ich den Satz 32 verwenden, welcher besagt, dass die Disjunktion einer Aussage äquivalent zur Aussage selbst ist:

$$B = C \Leftrightarrow B = C \lor B = C$$

Da die Äquivalenz gemäß dem Satz 39 kommutativ ist, kann ich auch schreiben:

$$B = C \vee B = C \Leftrightarrow B = C$$

Nun kann ich den vierten Substitutionssatz 103 der Disjunktion heranziehen und erhalte die Aussage

$$B < C \lor B = C \lor B = C$$

$$\Rightarrow B < C \lor B = C$$

Nun kann ich den ersten Substitutionssatz der Disjunktion heranziehen und erhalte die Aussage

$$B < C \lor B = C \lor B = C \lor B > C$$

$$\Rightarrow B < C \lor B = C \lor B > C$$

Da die Implikation immer noch gemäß dem Satz 15 transitiv ist, kann kann ich schreiben

$$B < C \lor B > C \Rightarrow B < C \lor B = C \lor B > C$$

Also meine ich hiermit, gezeigt zu haben, dass gilt

$$B < C \lor B > C \Rightarrow B < C \lor B = C \lor B > C$$

Insgesamt meine ich also, gezeigt zu haben dass gilt

$$(B < C \lor B = C \lor B > C \Rightarrow B \le C \lor B \ge C)$$

$$\land (B < C \lor B > C \Rightarrow B < C \lor B = C \lor B > C)$$

Nun setze ich die Aussagen

$$D \equiv B < C \lor B = C \lor B > C$$

$$E \equiv B \le C \lor B \ge C$$

Dann gilt

$$(D \Rightarrow E) \land (E \Rightarrow D)$$

Gemäß dem Satz 50 muss gelten

$$(D \Leftrightarrow E) \Leftrightarrow (D \Rightarrow E) \land (E \Rightarrow D)$$

Da die Äquivalenz gemäß dem Satz 39 kommutativ ist, kann ich auch schreiben:

$$(D \Rightarrow E) \land (E \Rightarrow D) \Leftrightarrow (D \Leftrightarrow E)$$

Da gemäß dem Satz 52 aus der Äquivalenz die Implikation folgt, kann ich auch schreiben, dass gilt:

$$(D \Rightarrow E) \land (E \Rightarrow D) \Rightarrow (D \Leftrightarrow E)$$

Somit kann ich gemäß dem Satz der Schlussfolgerung schreiben:

$$(D \Rightarrow E) \land (E \Rightarrow D)$$
$$\land (D \Rightarrow E) \land (E \Rightarrow D) \Rightarrow (D \Leftrightarrow E)$$
$$\Rightarrow (D \Leftrightarrow E)$$

Also kann ich schreiben, dass gilt:

$$(B < C \lor B = C \lor B > C \Rightarrow B \le C \lor B \ge C)$$

$$\land (B \le C \lor B \ge C \Rightarrow B < C \lor B = C \lor B > C)$$

$$\Rightarrow (B < C \lor B = C \lor B > C \Leftrightarrow B < C \lor B > C)$$

Also kann ich schließen, dass gilt:

$$B < C \lor B = C \lor B > C \Leftrightarrow B \le C \lor B \ge C$$

Dies wäre jedoch gerade die zu beweisende Behauptung. Aus diesem Grund behaupte ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende also auch die weitere Beweisführung.

Nun kommen ein paar logische Spitzfindigkeiten. Jedoch sind diese ungemein nützlich:

Lemma 191. Es seien A, B, C Symbole, wobei B sowie C Metasymbole seien, welche aus jeweils aus einem oder mehreren (aber nur endlich vielen) Symbolen A bestehen sollen. Alle Symbole sind in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei. Dann gilt (banalerweise)

$$B < C \Rightarrow B \le C$$

$$B = C \Rightarrow B \le C$$

$$B = C \Rightarrow B \ge C$$

$$B > C \Rightarrow B > C$$

Beweis. Zum Beweis möchte ich bemerken, dass dieser aus rein logischen Elementen besteht. Trotzdem möchte ich ihn der Vollständigkeit halber führen.

Es sei

Dann muss gemäß dem Satz 57, welcher besagt, dass aus einer Aussage eine Disjunktion mit einer anderen Aussage gilt, gelten:

$$B < C \Rightarrow B < C \lor B = C$$

Weiter gilt per Definition

$$B < C \Leftrightarrow B < C \lor B = C$$

Da die Äquivalenz gemäß dem Satz 39 kommutativ ist, muss dann auch gelten

$$B < C \lor B = C \Leftrightarrow B \le C$$

Gemäß dem Satz 52, welcher besagt, dass aus der Äquivalenz die Implikation folgt, kann ich daraus folgern, dass auch gilt:

$$B < C \lor B = C \Rightarrow B \le C$$

Und da die Implikation gemäß dem Satz 16 transitiv ist, kann ich folgern:

$$B < C \Rightarrow B < C$$

Damit meine ich, den Beweis für die Richtigkeit der ersten Aussage erbracht zu haben.

Nun möchte ich versuchen, den Beweis für die Richtigkeit der zweiten Aussage zu erbringen. Ist

$$B = C$$

dann kann ich wieder gemäß dem Satz 57, welcher besagt, dass aus der Aussage die Disjunktion der Aussage mit einer beliebigen Aussage folgt, folgern, dass gilt:

$$B = C \Rightarrow B = C \lor B < C$$

Da die Disjunktion gemäß dem Satz 37 kommutativ ist, folgt daraus:

$$B = C \lor B < C \Leftrightarrow B < C \lor B = C$$

Da gemäß dem Satz 52 aus der Äquivalenz die Implikation folgt, kann ich folgern, dass gilt:

$$B = C \lor B < C \Rightarrow B < C \lor B = C$$

Da die Implikation gemäß dem Satz 16 immer noch transitiv ist, kann ich folgern:

$$B = C \Rightarrow B < C \lor B = C$$

Nun habe ich oben zu zeigen versucht, dass aus der Aussage

$$B < C \lor B = C$$

die Aussage

folgt. Wenn ich den Satz 16 der Transitivität der Implikation erneut bemühe, kann ich folgern

$$B = C \Rightarrow B < C$$

Damit meine ich den Beweis für die Richtigkeit der zweiten Aussage erbracht zu haben.

Zum Beweis der dritten Behauptung: Es sei B=C. Da die Gleichheit von Symbolketten gemäß dem Lemma 234 eine Äquivalenzrelation und darum symmetrisch ist, kann ich auch schreiben, dass gilt

$$C = B$$

dann kann ich wieder gemäß dem Satz 57, welcher besagt, dass aus der Aussage die Disjunktion der Aussage mit einer beliebigen Aussage folgt, folgern, dass gilt:

$$B = C \Rightarrow B = C \lor B > C$$

Weiter gilt per Definition

$$B > C \Leftrightarrow B = C \lor B > C$$

Da die Äquivalenz gemäß dem Satz 39 kommutativ ist, muss dann auch gelten

$$B = C \lor B > C \Leftrightarrow B > C$$

Gemäß dem Satz 52, welcher besagt, dass aus der Äquivalenz die Implikation folgt, kann ich daraus folgern, dass auch gilt:

$$B = C \lor B > C \Rightarrow B > C$$

Und da die Implikation gemäß dem Satz 16 transitiv ist, kann ich folgern:

$$B = C \Rightarrow B > C$$

Damit meine ich, den Beweis für die Richtigkeit der zweiten Aussage erbracht zu haben.

Nun möchte ich den Beweis für die Richtigkeit vierte Aussage versuchen zu erbringen: Es sei

Dann kann ich wieder gemäß dem Satz 57, welcher besagt, dass aus der Aussage die Disjunktion der Aussage mit einer beliebigen Aussage folgt, folgern, dass gilt:

$$B > C \Rightarrow B > C \lor B = C$$

Da die Disjunktion gemäß dem Satz 37 kommutativ ist, muss gelten:

$$B > C \lor B = C \Leftrightarrow B = C \lor B > C$$

Da der Satz 16 der Transitivität der Implikation immer noch gilt, kann ich folgern

$$B > C \Rightarrow B = C \lor B > C$$

Beim Versuch des Beweises der vorhergehenden Aussage habe ich zu zeigen versucht, dass gilt:

$$B > C \Rightarrow B = C \lor B > C \Rightarrow B > C$$

Und da die Implikation gemäß dem Satz 16 immer noch transitiv ist, kann ich folgern:

$$B = C \Rightarrow B > C$$

Somit meine ich, den Beweis für die Richtigkeit der vierten Aussage des Satzes und somit aller Aussagen des Satzes erbracht zu haben. Aus diesem Grund verzichte ich auf eine weitere Beweisführung und beende somit den Beweis an dieser Stelle wieder.

Ich probiere weiter zu zeigen:

KOROLLAR 192. Es seien A, B, C Symbole, wobei B und C Metasymbole sein, welche aus jeweils aus einem oder mehreren (aber nur endlich vielen) Symbolen C bestehen sollen. Alle Symbole sind in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei. Dann ist genau dann

falls

ist.

Beweis. Es sei B < C. Wäre nun

$$C \leq B$$

dann müsste gelten:

$$(C = B) \lor (C < B)$$

Da

ist, muss gelten

$$B \neq C$$

Wäre nun

dann müsste ein Metasymbol D, welches aus einer Symbolkette aus einem oder mehreren Symbolen A besteht, existieren, so dass gilt:

$$CD = B$$

Da nun B < C ist, müsste ein Metasymbol E, welches aus einer Symbolkette aus einem oder mehreren Symbolen A besteht, existieren, so dass gilt:

$$BE = C$$

Wenn anstelle von B die Zeichenkette CD verwende, müsste also gelten:

$$CDE = C$$

Das würde jedoch gemäß der Definition 188 der Vergleichbarkeit von Metasymbolen von Symbolketten mit gleichen Symbolen bedeuten, dass gelten würde:

und insbesondere

$$C \neq C$$

Da dies jedoch ein Widerspruch zur Definition 1 der Gleichheit von Symbolen ist, kann ich daraus folgern, dass nicht gilt, dass C kleiner als D ist. Da jedoch gemäß dem Satz 189 alle endlichen Symbolketten

gleicher Symbole miteinander vergleichbar sind, muss gemäß dem Satz 48 der Ausschlusses gelten

Der entsprechende Beweis kann ich führen, falls C>B ist. Da C>B ist, muss es ein Symbol D derart geben, dass gilt

$$BD = C$$

Somit kann $B \neq C$ sein. Wäre nun

dann müsste es ein Metasymbol F derart geben, dass gilt

$$B = C F$$

Da jedoch gilt

muss es ein Metasymbol G derart geben, dass gilt

$$C = BG$$

Also müsste gelten

$$B = BGF$$

somit müsste gemäß der Definition 188 der Vergleichbarkeit von Symbolen gelten

Dies wäre jedoch ein Widerspruch zur Definition 1 der Gleichheit von Symbolen. Also kann nicht gelten

Da ebenfalls gemäß Voraussetzung nicht gelten kann

$$B = C$$

kann ich wiederum gemäß dem Satz 48 der Ausschlusses folgern, dass gilt

Damit hätte ich auch diese Behauptung bewiesen. Langer Rede kurzer Sinn: Ich meine, hiermit den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende darum an dieser Stelle die weitere Beweisführung.

Bevor ich die Umkehrung der Ungleichheit abschwäche, indem ich zu zeigen versuche, dass gilt:

$$B < C \Rightarrow C > B$$

möchte ich folgendes Lemma formulieren und beweisen:

Lemma 193. Es seien A, B, C Symbole, wobei B und C Metasymbole sein, welche aus jeweils aus einem oder mehreren (aber nur endlich vielen) Symbolen C bestehen sollen. Alle Symbole sind in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei. Dann gilt

$$\neg (B \le C) \Leftrightarrow B > C$$

In Worten: Die Zeichenkette B ist genau dann nicht kleiner als oder gleich der Zeichenkette C, falls diese größer als C ist.

Beweis. Ich möchte nun zeigen, dass diese Behauptung gleichbedeutend ist zur Behauptung

$$(B \le C) \lor (B > C)$$

Gemäß der Definition 188 der Vergleichbarkeit von Symbolketten gleicher Symbole gilt die Festlegung

$$(B \le C) \Leftrightarrow (B < C) \lor (B = C)$$

Da die Äquivalenz gemäß dem Satz 39 kommutativ ist, kann ich aus der vorhergehenden Aussage folgern:

$$(B < C) \lor (B = C) \Leftrightarrow (B \le C)$$

Also kann ich gemäß dem 3. Substitutionssatz 102 der Disjunktion folgern, dass gilt:

$$(B < C) \lor (B = C) \lor (B > C) \Rightarrow (B \le C) \lor (B > C)$$

Gemäß dem Satz 189 über die Vergleichbarkeit von Symbolketten von gleichen Symbolen muss gelten:

$$(B < C) \lor (B = C) \lor (B > C)$$

Nun kann mit Hilfe des Satzes 17 der Schlussfolgerung folgern

$$((B < C) \lor (B = C) \lor (B > C))$$

$$\land ((B < C) \lor (B = C) \lor (B > C) \Rightarrow (B \le C) \lor (B > C))$$

$$\Rightarrow (B \le C) \lor (B > C)$$

Also habe ich jetzt nicht mehr, aber auch nicht weniger gezeigt, dass gilt

$$(B \le C) \lor (B > C)$$

Gemäß dem 2. Satz des Lemmas 78 der Minimum- und Maximumsätze (die Aussage $((B \le C) \lor (B > C))$ ist ja wahr) kann ich folgern:

$$\neg (B \le C) \land ((B \le C) \lor (B > C)) \Leftrightarrow \neg (B \le C)$$

Nun ist die Äquivalenz gemäß dem Satz 39 die Äquivalenz kommutativ ist, kann ich folgern, dass auch gilt:

$$\neg (B \le C) \Leftrightarrow \neg (B \le C) \land ((B \le C) \lor (B > C))$$

Und da die Konjunktion gemäß dem Satz 35 kommutativ ist, muss gelten

$$\neg (B \le C) \land ((B \le C) \lor (B > C)) \Leftrightarrow ((B \le C) \lor (B > C)) \land \neg (B \le C)$$

Wiederum kann ich auf den Satz 16 der Transitivität der Äquivalenz zurückgreifen und erhalte die Aussage

$$\neg (B \le C) \Leftrightarrow ((B \le C) \lor (B > C)) \land \neg (B \le C)$$

Da aus der Äquivalenz gemäß dem Satz 52 die Implikation folgt, kann ich folgern

$$\neg (B \le C) \Rightarrow ((B \le C) \lor (B > C)) \land \neg (B \le C)$$

Dann kann ich den Satz 48 des Ausschlusses verwenden und erhalte die Aussage

$$((B < C) \lor (B > C)) \land \neg (B < C) \Rightarrow B > C$$

Noch ein letztes Mal verwende ich den Satz 16 der Transitivität der Äquivalenz und erhalte die Aussage

$$\neg (B \le C) \Rightarrow B > C$$

Damit meine ich, den Beweis für die eine Richtigkeit der einen Richtung der Behauptung erbracht zu haben.

Nun muss ich noch die umgekehrte Richtung der Aussage beweisen:

$$B > C \Rightarrow \neg (B \le C)$$

Es sei also B > C. Dann müsste es gemäß der Definition 188 der Vergleichbarkeit von Symbolketten von gleichen Symbolen ein SymbolD derart geben, dass gilt:

$$B = CD$$

Somit kann jedoch aufgrund des Lemmas 185 über die Ungleichheit von angehängten Symbolen $C \neq B$ und darum auch nicht B = C sein. Denn wäre B = C, dann müsste, da gemäß dem Lemma 182 die Gleichheit eine Äquivalenzrelation ist, ebenfalls C = B sein - im Widerspruch zur Voraussetzung. Darum bin ich der Meinung, dass

$$B \neq C$$

gelten muss. Wäre

dann müsste es ein Symbol E derart geben, dass

$$C = B E$$

wäre. Da ja gemäß Voraussetzung

wäre, müsste es ein Metasymbol F derart geben, dass

$$B = C F$$

wäre. Würde jetzt das Symbol C durch das Symbol BE ersetzt (was gemäß dem Lemma 183 möglich ist) dann erhalte ich die Gleichung

$$B = B E F$$

Das würde jedoch gemäß dem Lemma 185 über die Ungleichheit von angehängten Symbolen bedeuten, das

$$B \neq B$$

wäre. Gemäß der Definition 1 der Gleichheit von Symbolen ist dies jedoch nicht möglich. Also kann ich an dieser Stelle den Satz 20 des Widerspruchs verwenden, um zu schlussfolgern, dass auch nicht

sein könnte. Darum kann ich schreiben

$$B > C \Rightarrow \neg (B < C) \land \neg (B = C)$$

Wenn ich den Satz 20.27 der Negation der Disjunktion verwende, dann kann ich schlussfolgern, dass gilt:

$$\neg (B < C \lor B = C) \Leftrightarrow \neg (B < C) \land \neg (B = C)$$

Da die Äquivalenz gemäß dem Satz 39 kommutiert, kann ich auch schreiben

$$\neg \left(B < C \right) \wedge \neg \left(B = C \right) \Leftrightarrow \neg \left(B < C \vee B = C \right)$$

Und da aus der Äquivalenz gemäß dem Satz 52 die Implikation folgt, kann ich schreiben:

$$\neg (B < C) \land \neg (B = C) \Rightarrow \neg (B < C \lor B = C)$$

Somit kann ich gemäß dem Satz 15 der Transitivität der Implikation folgern, dass gilt:

$$(B > C \Rightarrow \neg (B < C) \land \neg (B = C))$$

$$\land (\neg (B < C) \land \neg (B = C) \Rightarrow \neg (B < C \lor B = C))$$

$$\Rightarrow B > C \Rightarrow \neg (B < C \lor B = C)$$

Nun bin ich fast am Ziel. Gemäß der Definition gilt

$$(B \le C) \Leftrightarrow (B < C \lor B = C)$$

Da die Äquivalenz 39 kommutativ ist, kann ich darum auch schreiben:

$$(B < C \lor B = C) \Leftrightarrow (B \le C)$$

Darum muss gemäß dem 2. Substitutionssatz 95 der Negation gelten:

$$\neg (B < C \lor B = C) \Rightarrow \neg (B < C)$$

Dann kann ich das letzte Mal den Satz 15 der Transitivität der Implikation verwenden und erhalte das wenig überraschende Resultat:

$$B > C \Rightarrow \neg (B \le C)$$

Da ich nun endlich beide Richtungen der Behauptung bewiesen habe, habe ich gemäß dem Satz 50 beweisen, dass gilt:

$$\neg (B < C) \Leftrightarrow B > C$$

Damit hoffe ich, endlich den Beweis für die Richtigkeit der Behauptung erbracht zu haben und verzichte hiermit (einigermaßen erschöpft) auf die weitere Beweisführung.

Auch von diesem Lemma gibt es ein kleines Korollar:

KOROLLAR 194. Es seien A, B, C Symbole, wobei B und C Metasymbole sein, welche aus jeweils aus einem oder mehreren (aber nur endlich vielen) Symbolen C bestehen sollen. Alle Symbole sind in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei. Dann gilt

$$\neg (B > C) \Leftrightarrow B \leq C$$

Beweis. Gemäß dem Lemma 193 gilt

$$\neg (B \le C) \Leftrightarrow B > C$$

Da die Äquivalenz gemäß dem Satz 171 eine Äquivalenzrelation ist, muss daher auch gelten:

$$B > C \Leftrightarrow \neg (B \le C)$$

Gemäß dem Satz 60 kann ich dann auch schreiben

$$\neg (B > C) \Leftrightarrow \neg (\neg (B \le C))$$

Da gemäß dem Satz 11 gilt

$$B < C \Leftrightarrow \neg (\neg (B < C))$$

und gemäß dem Satz 39 die Äquivalenz kommutiert, kann ich auch schreiben

$$\neg (\neg (B < C)) \Leftrightarrow B < C$$

Da die Äquivalenz gemäß dem Satz 171 eine Äquivalenzrelation ist, muss daher auch gelten

$$\neg (B > C) \Leftrightarrow B \leq C$$

Das wäre jedoch gerade die Behauptung.

Nun möchte ich zeigen:

Lemma 195. Es seien A, B, C, D Symbole, wobei B, C sowie C Metasymbole seien, welche aus jeweils aus einem oder mehreren (aber nur endlich vielen) Symbolen C bestehen sollen. Alle Symbole sind in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei. Dann gilt

$$B < C \land C < D \Rightarrow B < D$$

In Worten: Die "kleiner als Beziehung" ist transitiv.

BEWEIS. Es gelte $B < C \land C < D$. Somit muss gemäß der Definition der "kleiner als Beziehung" Metasymbole E sowie F derart geben, dass gilt:

$$BE = C$$

sowie

$$CF = D$$

Ersetze ich nun C in der letzten Gleichung durch BE in der vorletzten Gleichung, dann erhalte (auch gemäß dem Lemma 183)

$$BEF = D$$

Somit muss es ein Metasymbol G (mit dem Wert EF) derart geben, dass gilt

$$BG = D$$

Das bedeutet jedoch, dass gilt

Damit meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Ich möchte den Satz der Transitivität des Vergleichs von Symbolen noch ausweiten. Dafür möchte ich jedoch vorgängig noch das folgende Lemma formulieren und beweisen:

Lemma 196. Es seien A, B, C Symbole, wobei B und C Metasymbole sein, welche aus jeweils aus einem oder mehreren (aber nur endlich vielen) Symbolen C bestehen sollen. Alle Symbole sind in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei. Dann ist genau dann

$$B \leq C$$

falls

ist. Formal kann ich das so schreiben

$$B < C \Leftrightarrow C > C$$

Beweis. Es sei

$$B \leq C$$

Dann ist

oder

$$B = C$$

Ist B < C, dann gilt gemäß dem Korollar 192:

$$B < C \Leftrightarrow C > B$$

Dies bedeutet gemäß dem Satz 52, welcher besagt, dass aus der Äquivalenz einer Aussage deren Implikation folgt:

$$B < C \Rightarrow C > B$$

Gemäß der vierten Aussage des Lemmas 191 kann ich nun schließen, dass gilt:

$$C > B \Rightarrow C > B$$

Nun ist die Implikation immer noch gemäß dem Satz 15 transitiv. Darum kann ich endlich schließen:

$$B < C \Rightarrow C > B$$

Ist B=C, dann ist gemäß dem Lemma 182, welches besagt, dass die Gleichheit von Symbolen eine Äquivalenzrelation ist,

$$B = C \Leftrightarrow C = B$$

Dies bedeutet gemäß dem Satz 52, welcher besagt, dass aus der Äquivalenz einer Aussage deren Implikation folgt:

$$B = C \Rightarrow C = B$$

Gemäß der dritten Aussage des Lemmas 191 kann ich nun schließen, dass gilt:

$$C = B \Rightarrow C > B$$

Nun ist die Implikation immer noch gemäß dem Satz 15 transitiv. Darum kann ich endlich schließen:

$$B = C \Rightarrow C > B$$

Also kann ich auf jeden Fall zeigen, dass gilt

$$B < C \Rightarrow C > B$$

Damit habe ich diesen Teil der Behauptung bewiesen.

Nun möchte ich die umgekehrte Richtung zeigen. Es sei

$$C \ge B$$

Dann ist

oder

$$C = B$$

Ist C > B, dann ist gemäß dem Korollar 192

$$C > B \Leftrightarrow B < C$$

Dies bedeutet gemäß dem Satz 52, welcher besagt, dass aus der Äquivalenz einer Aussage deren Implikation folgt, dass ich daraus schließen kann, dass gilt

$$C > B \Rightarrow B < C$$

Gemäß der ersten Aussage des Lemmas 191 kann ich nun schließen, dass gilt:

$$B < C \Rightarrow B \le C$$

Nun ist die Implikation immer noch gemäß dem Satz 15 transitiv. Darum kann ich endlich schließen:

$$C > B \Rightarrow B < C$$

Ist C = B, dann ist gemäß dem Lemma 182, welches besagt, dass die Gleichheit von Symbolen eine Äquivalenzrelation ist,

$$C = B \Leftrightarrow B = C$$

Gemäß der zweiten Aussage des Lemmas 191 kann ich nun schließen, dass gilt:

$$B = C \Rightarrow B \le C$$

Nun ist die Implikation immer noch gemäß dem Satz 15 transitiv. Darum kann ich endlich schließen:

$$C = B \Rightarrow B < C$$

Also habe ich hoffentlich den Beweis für die Richtigkeit der umgekehrten Richtung der Behauptung erbracht. Somit habe ich gemäß dem Satz 50 endlich gezeigt, dass gilt

$$B \le C \Leftrightarrow C \ge B$$

Ich möchte nun zeigen, dass gilt:

Lemma 197. Es seien A, B, C, D Symbole, wobei B, C sowie D Metasymbole seien, welche aus jeweils aus einem oder mehreren (aber nur endlich vielen) Symbolen A bestehen sollen. Alle Symbole sind in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei. Dann gilt

$$B \leq C \land C \leq D \Rightarrow B \leq D$$

In Worten: Die "kleiner oder gleich Beziehung" ist transitiv.

Beweis. Es sei B kleiner oder gleich dem Symbol C. Dann muss B gleich C sein oder es muss ein Metasymbol E derart geben, dass gilt

$$BE = C$$

Es sei ebenfalls C kleiner oder gleich dem Symbol D. Dann muss C gleich dem Symbol D sein oder es muss ein Metasymbol F derart geben, dass gilt

$$CF = D$$

Nun existieren vier Fälle, welche (leider) überlegt sein wollen. Ist B=C und C=D, dann muss gemäß dem Lemma 234, welches besagt, dass die Gleichheit von Symbolen eine Äquivalenzrelation ist, auch B=D

sein. Gemäß dem vorhergehenden Lemma 191 kann ich schließen, dass gilt

Damit wäre dieser Teil des Beweises erbracht. Ist B=C und C < D dann kann ich gemäß dem Lemma 183 der Gleichheit von Teilsymbolen schreiben:

$$BF = CF = D$$

Da die Gleichheit von Symbolen gemäß dem Lemma 234 eine Äquivalenzrelation und somit transitiv ist, kann ich also schließen, dass gilt:

$$BF = D$$

Also muss gemäß der Definition 188 der Vergleichbarkeit von Metasymbolen von gleichen Symbolen gelten:

Somit kann ich gemäß dem Lemma 191 folgern, dass auch gilt:

ist. Zusammengefasst kann ich also schreiben

$$B = C \land C < D \Rightarrow B \le D$$

Ist andererseits

sowie

$$C = D$$

dann kann ich wiederum folgern, dass gilt

$$BE = C = D$$

Gemäß dem Lemma 234, welches besagt, dass die Gleichheit von Symbolen eine Äquivalenzrelation und darum insbesondere transitiv ist, kann ich dann folgern, dass gilt:

$$BE = D$$

Damit gilt gemäß der Definition 188 der Vergleichbarkeit von Metasymbolen:

Und wiederum kann ich gemäß dem Lemma 191 folgern, dass gilt:

Nun kommt noch der letzte und "leichteste Fall": Ist

$$B < C \land C < D$$

dann muss gemäß dem Lemma 195 bezüglich der Transitivität der Vergleichbarkeit von Symbolketten mit gleichen Symbolen gelten

Und erneut kann ich gemäß dem Lemma 191, welches besagt, dass aus einer Aussage eine Disjunktion folgt, folgern:

Schlussendlich seien

$$B = C \wedge C = D$$

Da die Gleichheit von Symbolen gemäß dem Lemma 234, welches besagt, dass die Gleichheit von Symbolen eine Äquivalenzrelation und darum insbesondere transitiv ist, kann ich dann folgern, dass gilt:

$$B = D$$

Gemäß der zweiten Aussage des Lemmas 191 kann ich wiederum folgern:

So, damit ist die Fleißarbeit erledigt. Ich habe gezeigt, dass in allen vier denkbaren Fällen gilt, dass unter den gegebenen Voraussetzungen gilt

und dass somit die "kleiner oder gleich Beziehung" von Symbolketten von gleichen Symbolen transitiv ist. Damit habe ich meines Erachtens den Beweis für die Richtigkeit der Behauptung erbracht und beende aus diesem Grund an dieser Stelle erneut die weitere Beweisführung.

Ich kann nun schreiben:

Lemma 198. Es seien A, B sowie C Symbole, wobei B und C Symbolketten aus je endlich vielen Symbolen A seien. Dann gilt

$$B < C \land C < B \Rightarrow B = C$$

BEWEIS. Ich nehme an, dass $B \neq C$ sei, dann müsste gemäß dem dritten Substitutionssatz 98 der Konjunktion gelten:

$$B \le C \land B \ne C \land (B \le C \Leftrightarrow B < C \lor B = C)$$

$$\Rightarrow (B < C \lor B = C) \land B \ne C$$

Weiter ist gemäß die Disjunktion gemäß dem Satz 37 kommutativ. Dann ist

$$(B < C \lor B = C) \Leftrightarrow (B = C \lor B < C)$$

Dann gilt wiederum gemäß dem dritten Substitutionssatz 98 der Konjunktion:

$$(B < C \lor B = C) \land B \neq C$$

$$\land ((B < C \lor B = C) \Leftrightarrow (B = C \lor B < C))$$

$$\Rightarrow (B = C \lor B < C) \land B \neq C$$

Da die Implikation gemäß dem Satz15 transitiv ist,kann ich schließen:

$$B \le C \land B \ne C \land (B \le C \Leftrightarrow B < C \lor B = C)$$

$$\Rightarrow (B = C \lor B < C) \land B \ne C$$

Nun kann ich gemäß dem Ausschlusssatz 48 folgern:

$$(B = C \lor B < C) \land B \neq C$$

$$\Rightarrow B < C$$

Also kann ich wiederum gemäß dem Satz 15 der Transitivität der Implikation folgern

$$B \leq C \land B \neq C \land (B \leq C \Leftrightarrow B < C \lor B = C)$$

$$\Rightarrow B < C$$

Somit müsste es gemäß der Definition 188 der Vergleichbarkeit von Symbolketten gleichen Symbolen ein Symbol D derart geben, dass gilt

$$BD = C$$

Nun ist gemäß der weiteren Voraussetzung über B und C

$$C \le B$$

Also müsste gelten

$$BD \le C \le B$$

Da die Relation "≤" (kleiner oder gleich) jedoch gemäß dem Lemma 197 transitiv ist, müsste gelten

$$BD \le B$$

Da ist jedoch ein Widerspruch zum Lemma 185, welches besagt, dass

sein muss. Also kann ich gemäß dem Widerspruchssatz 20 folgern, dass eben gelten muss:

$$B = C$$

Damit meine ich den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Nun möchte ich das Minimum und das Maximum von zwei Symbolketten von gleichen Symbolen definieren:

DEFINITION 199. (erste Erweiterung des Minimums und des Maximums von Symbolketten gleicher Symbolen) Es seien A, B, C Symbole, wobei B und C Metasymbole sein, welche aus jeweils aus einem oder mehreren (aber nur endlich vielen) Symbolen C bestehen sollen. Weiter

setze ich voraus, dass alle Symbole in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann sei

$$D = \min \{B, C\} \Leftrightarrow D \in \{B, C\} \land (E \in \{B, C\} \Rightarrow D \le E)$$

$$D = \max \{B, C\} \Leftrightarrow D \in \{B, C\} \land (E \in \{B, C\} \Rightarrow D \ge E)$$

In Worten: D ist das Minimum der Symbole B und C, falls D in der Menge $\{B,C\}$ enthalten ist und D kleiner oder gleich B sowie D kleiner oder gleich C ist. Andererseits ist D das das Minimum der Symbole B und C, falls D in der Menge $\{B,C\}$ enthalten ist und D größer oder gleich B sowie D kleiner oder gleich C ist.

Beachte bitte, das die Definition auch dann "funktioniert", falls die Symbole B und C gleich sind. Ich möchte dies im Korollar 200 weiter unten ausführen.

Ich gebe zu, dass die Definition des Minimum oder des Maximums sinnlos kompliziert ist. Trotzdem ist sie hoffentlich praktisch. Der "Sinn" der Definition besteht, darin, dass sich die Definition so fast beliebig verallgemeinern lässt.

KOROLLAR 200. Es seien A, B, C Symbole, wobei B und C Metasymbole sein, welche aus jeweils aus einem oder mehreren (aber nur endlich vielen) Symbolen C bestehen sollen. Alle Symbole sind in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei. Dann existieren

$$\min \{B, C\}$$

sowie

$$\max\{B,C\}$$

Beweis. Gemäß dem vorhergehenden Satz muss einer der drei Fälle gelten:

$$B = C$$

Das bedeutet, dass in jedem Fall $\min\{B,C\}$ sowie $\max\{B,C\}$ bestimmt werden kann.

Ist B < C, dann muss gelten

$$\min \{B, C\} = B$$

Denn es ist

$$B \in \{B,C\}$$

weiter ist per Definition

$$B = B$$

Daraus folgt gemäß der zweiten Aussage des Lemmas 191:

$$B \le B$$

Da gemäß Voraussetzung gilt

kann ich gemäß der ersten Aussage des Lemmas 191 schließen, dass auch gilt

$$B \leq C$$

Somit kann ich festhalten

$$B \in \{B, C\} \land B < B \land B < C$$

Das bedeutet jedoch, dass

$$B = \min \{B, C\}$$

ist.

Weiter muss in diesem Fall

$$C = \max\{B, C\}$$

sein. Denn es gilt $C \in \{B, C\}$ und

$$C = C$$

Daraus folgt gemäß der dritten Aussage des Lemmas 191:

$$C \ge C$$

Da gemäß Voraussetzung gilt

kann ich gemäß der vierten Aussage des Lemmas 191 schließen, dass auch gilt

$$B \ge C$$

Somit kann ich festhalten

$$C \in \{B, C\} \land C \ge C \land C \ge B$$

Dies bedeutet jedoch, dass gilt

$$C = \max\{B, C\}$$

Damit habe ich bewiesen, dass die Behauptung gilt, falls B < C ist.

Nun kommt der mühsame Teil: Ist B = C, dann kann ich schließen,

$$B = C = \min\{B, C\} = \max\{B, C\}$$

Ich habe "mühsam" geschrieben, da dieser ziemlich offensichtlich ist. Ist

$$B = C$$

dann muss auch gelten

$$\{B,C\} = \{B\}$$

Denn es gilt:

$$B \in \{B\}$$

Mit C = B muss auch gelten:

$$C \in \{B\}$$

Darum gilt

$$\{B,C\}\subset\{B\}$$

Auf der anderen Seite ist

$$B \in \{B, C\}$$

Also ist auch

$$\{B\} \subset \{B,C\}$$

Darum ist gemäß der Definition 125 der Mengengleichheit

$$\{B\} = \{B, C\}$$

Also muss gelten

$$B = \min\{B\} = \max\{B\}$$

Denn es ist

$$B \in \{B\}$$

Weiter ist gemäß der zweiten und dritten Aussage des Lemmas 191 aus

$$B = B$$

die Aussagen

$$B \le B$$

sowie

$$B \ge B$$

Darum muss gelten

$$B = \min \{B\} = \min \{B, C\}$$

$$B = \max \{B\} = \max \{B, C\}$$

Also habe ich auch in diesem Fall gezeigt, dass das Minimum respektive das Maximum existieren.

Nun kommt der letzte Fall: Ist B > C, dann muss gelten

$$\min \{B, C\} = C$$

Denn es ist

$$C \in \{B, C\}$$

weiter ist per Definition 1 über die Gleichheit von Symbolen

$$C = C$$

Daraus folgt gemäß der zweiten Aussage des Lemmas 191:

$$C \leq C$$

Da gemäß Voraussetzung gilt

muss gemäß dem Korollar 192 ebenfalls

gelten. Weiter kann ich gemäß der ersten Aussage des Lemmas 191 schließen, dass auch gilt

$$C \le B$$

Somit kann ich festhalten

$$C \in \{B, C\} \land C \le C \land C \le B$$

Das bedeutet jedoch, dass

$$C = \min\{B, C\}$$

ist. Weiter muss in diesem Fall

$$B = \max\{B, C\}$$

sein. Denn es gilt $C \in \{B, C\}$ und

$$B = B$$

Daraus folgt gemäß der dritten Aussage des Lemmas 191:

$$B \ge B$$

Da gemäß Voraussetzung gilt

kann ich gemäß der vierten Aussage des Lemmas 191 schließen, dass auch gilt

Somit kann ich festhalten

$$B \in \{B, C\} \land B \ge B \land C \ge B$$

Dies bedeutet jedoch, dass gilt

$$C = \max\{B, C\}$$

Also habe ich auch in diesem Fall bewiesen, dass das Minimum und das Maximum in diesem Fall eindeutig bestimmbar sind.

Somit hätte ich allen denkbaren Fällen bewiesen, dass das Minimum und das Maximum vorhanden ist.

Bevor ich weitere Überlegungen mache, möchte ich die Definition von Minima und Maxima von Symbolketten aus einem oder mehren Symbolen erweitern:

DEFINITION 201. Es seien A ein Symbol, welches in sich selbst und in Bezug auf andere Symbole widerspruchsfrei sei. Weiter sei M eine Menge von Metasymbolen B, wobei jedes dieser Metasymbole aus einer Symbolkette aus einem oder mehreren, jedoch endlich vielen Symbolen A bestehe. Ich kann annehmen, dass für Metasymbole, welche mit verschiedenen Symbolen bezeichnet werden, auch tatsächlich paarweise verschieden seien. Dann sei

$$\min \left\{ B | B \in M \right\}$$

definiert als dasjenige Metasymbol C für welches gilt: $C \in M$ und für alle $B \in M$ gilt

$$C \le B$$

Diese Definition ist jedoch nur dann gültig, falls ein solches Metasymbol auch vorhanden ist. Weiter sei

$$\max \{B | B \in M\}$$

definiert als dasjenige Metasymbol D für welches gilt: $D \in M$ und für alle $B \in M$ gilt

Auch diese Definition ist nur dann gültig, falls sichergestellt ist, dass es ein solches D auch geben muss.

 $\min \{B|B \in M\}$ werde das Minimum $\max \{B|B \in M\}$ werde das Maximum der Menge M geheißen. Ich möchte diese Definitionen noch einmal formal aufschreiben:

$$C = \min \left\{ B \mid B \in M \right\}$$

$$\iff ((C \in M \land B \in M) \Rightarrow C \le B)$$

$$C = \max \left\{ B \mid B \in M \right\}$$

$$\iff ((C \in M \land B \in M) \Rightarrow C \ge B)$$

Das nächste Lemma beschäftigt sich mit dem Minimum und Maximum einer endlichen Menge von Symbolketten von gleichen Symbolen:

Lemma 202. Es seien A ein Symbol, welches in sich selbst und in Bezug auf andere Symbole widerspruchsfrei sei. Weiter sei M eine Menge von endlich vielen Metasymbolen B, wobei jedes dieser Metasymbol auf eine Symbolkette aus einem oder mehreren, jedoch endlich vielen Symbolen A bestehe. Der Begriff "endlich viel" bedeute insbesondere, dass die Menge M mindestens ein Metasymbol enthält. Weiter kann ich annehmen, dass für alle Metasymbole der Menge M, welche mit verschiedenen Symbolen bezeichnet werden, gilt, dass diese auch wirklich paarweise verschieden sind. Dann existiert

$$\min\left\{B|B\in M\right\}$$

sowie

$$\max \left\{ B | B \in M \right\}$$

Beweis. Besitzt die Menge eine einzelne Zeichenkette A, dann gilt

$$A = \min \left\{ B \mid B \in M \right\}$$
$$A = \max \left\{ B \mid B \in M \right\}$$

Denn A ist in M enthalten. Ist $B \in M$, dann muss, da M ein einzelnes Element besitzt, gelten

$$B = A$$

Somit kann ich gemäß dem Lemma 191 folgern

$$A \leq B$$

Das bedeutet jedoch gemäß der Definition 201, dass gilt

$$A = \min \left\{ B \mid B \in M \right\}$$

$$A = \max \left\{ B \mid B \in M \right\}$$

Damit wäre dieser Fall erneut bewiesen. Denn es ist per Definition:

$$B = B$$

Besteht jedoch M aus mehrere Symbolen, dann müssen mindesten zwei verschiedene Metasymbole A und B vorhanden sein. Für die Bestimmung des Minimums können zwei beliebige Elemente B und C von M verglichen werden. Da nach Voraussetzung die beiden Elemente ungleich sein müssen, muss entweder

oder

sein. Ist B < C, dann kann das Minimum der Menge

$$M \setminus \{C\}$$

bestimmt werden. Ist andererseits B > C, dann kann das Minimum der Menge

$$M \setminus \{B\}$$

bestimmt werden. Denn wie ich im Lemma 192 zu zeigen versucht habe, muss gelten

falls

ist. Auf diese Weise kann ich in endlich vielen Schritten ein Element m_1 der Menge M bestimmen, so dass für alle anderen Elemente $C \in M$ gilt, dass $m_1 \leq C$ ist. Dies gilt insbesondere auch darum, weil die Ordnungsrelation "kleiner-als" transitiv ist. Das entsprechende gilt für die Bestimmung des Maximums: Durch den Vergleich von je zwei Symbolketten B, C kann jeweils bestimmt werden, ob

oder

ist. Dann wird dasjenige weiterverwendet, welches größer als das andere Element ist. Auf diese Art sollte es möglich sein, nach endlich vielen Schritten festzustellen, welches Element das größte Element der Menge ist. Ich möchte noch einen zweiten Beweis formulieren und aufschreiben:

Den Fall, in welchem M bloß ein ein Element besitzt, habe ich oben bereits bewiesen. Besitzt die Menge M jedoch mehrere, jedoch endlich vielen Symbolketten, dann muss die Symbolkette S, welche aus der Aneinanderreihung aller Symbolketten B aus M besteht, ebenfalls aus einer Aneinanderreihung von endlich vielen Symbolen A bestehen. Denke beispielsweise wieder an Geldstücke. Wäre das nicht der Fall, dann müsste es eine Kombination von Noten und Münzen derart geben, dass diese unendlich viele Wert hätte. Das widerspricht derart fundamental der Alltagserfahrung, dass ich im weiteren ausschließen kann, dass so etwas existiert. Dann muss für alle Symbolketten $B \in M$ gelten, dass

ist. Denn ist mit einem geeigneten Symbol C

$$S = BC$$

dann ist gemäß der Definition 188

Ist jedoch mit geeigneten Symbolen C, D

$$S = CBD$$

Dann muss eben auch gemäß dem Lemma 187 gelten

$$CB = BC$$

und gemäß dem Lemma 183

$$CBD = BCD$$

Da die Symbolgleichheit gemäß der 182 gelten

$$S = BCD$$

und somit gemäß der Definition 188

Nun kann ich der Symbolkette so lange nacheinander Symbole A entnehmen, bis diese gleich einem Element $m_1 \in M$ entspricht. Dieses Element muss dann dem Maximum m_1 der Menge M entsprechen. Denn es sei $B \in M$ ein beliebiges Element. Gemäß dem Lemma 181 ist dann

$$B < m_1$$

$$B=m_1$$

oder

$$B > m_1$$

An dieser Stelle ist jedoch bloß zu zeigen, dass nicht

$$B>m_1$$

sein kann. Denn wäre $B > m_1$, dann wäre die Konstruktion von m_1 fehlerhaft gewesen, da in diesem bereits in einem der vorhergehenden Schritte hätte $S \in M$ sein müssen. Von dem kann jedoch nicht ausgegangen werden. Also kann nicht

gelten. Somit muss gemäß dem Korollar 194 gelten

$$B \leq m_1$$

Da dies für alle $B \in M$ gilt habe ich den Beweis erbracht.

Andererseits kann eine zweite Symbolkette T derart bilden, indem anfänglich T=A sei. Ist $T\in M$, dann habe ich bereits das Minimum der Menge M gefunden. Ansonsten füge ich der Symbolkette T wiederum so lange Symbole A derart an, bis $T\in M$ ist. Dies muss nach endlicher Zeit erfolgen, da ich ja annehme, dass alle Elemente $B\in M$ aus Symbolketten von endlich vielen Symbolen A bestehen. Sobald $T\in M$ ist, habe ich dann das Minimum $m_2\in M$ gefunden. Damit hätte ich einen zweiten Beweis für die Behauptung gefunden.

Auch hier möchte ich zeigen, dass m_2 dem Minimum von M entspricht. Es sei $B \in M$. Wäre

$$m_2 > B$$

dann wäre wiederum das Konstruktionsverfahren von m_2 falsch. Denn es hätte bereits früher $m_2 \in M$ sein müssen. Da dies jedoch nicht ausgegangen werden. Also muss gemäß dem 194

$$m_2 \leq B$$

gelten. Damit hätte ich jedoch auch den Beweis für die Richtigkeit dieses Satzes erbracht.

Bevor ich zum nächsten Korollar übergehe, möchte ich das folgende Lemma formulieren und beweisen:

Lemma 203. Es seien A ein Symbol, welches in sich selbst und in Bezug auf andere Symbole widerspruchsfrei sei. Weiter sei M eine Menge von beliebig vielen Metasymbolen B, wobei jedes dieser Metasymbol auf eine Symbolkette aus einem oder mehreren, jedoch endlich vielen Symbolen A bestehe. Der Begriff "endlich viel" bedeute insbesondere, dass die Menge M mindestens ein Metasymbol enthält. Weiter kann ich annehmen, dass für alle Metasymbole der Menge M, welche mit verschiedenen Symbolen bezeichnet werden, gilt, dass diese auch

wirklich paarweise verschieden sind. Schlussendlich seien P,Q nichtleere Teilmengen von M, welche jedoch nicht notwendigerweise disjunkt sein müssen, für welche jedoch gilt

$$M = P \cup Q$$

Dann gilt, sofern die Symbole min M, min P und min Q existieren:

$$\min M = \min \left\{ \min P, \min Q \right\}$$

BEWEIS. Da min P und min Q nach Voraussetzung existieren müssen, gilt gemäß dem Lemma 190

$$\min P \le \min Q \vee \min Q \le \min P$$

Es sei

$$\min P \le \min Q$$

Es gilt dann:

$$\min P \in \{\min P, \min Q\}$$

Ebenfalls gilt gemäß der Definition 1 über die Gleichheit von Symbolen:

$$\min P = \min P$$

und somit gemäß der zweiten Zeile des Lemmas 191

$$\min P \le \min P$$

Weiter gilt nach Voraussetzung:

$$\min P \leq \min Q$$

Somit ist gemäß der Definition 201

$$\min P = \min \left\{ \min P, \min Q \right\}$$

Weiter ist nach Voraussetzung

$$M = P \cup Q$$

Also ist

$$p \in P \Rightarrow p \in M$$

Somit ist ebenfalls

$$\min P \in P \Rightarrow \min P \in M$$

Ist $m \in M$, dann ist gemäß der Definition von $P \cup Q$

$$m \in P \lor m \in Q$$

Ist $m \in P$, dann ist gemäß der Voraussetzung über das Minimum

$$\min P \leq m$$

Ist $m \in Q$, dann ist gemäß der Voraussetzung über das Minimum

$$\min Q \leq m$$

Weiter ist nach Voraussetzung ebenfalls

$$\min P \leq \min Q$$

Da die \leq (kleiner oder gleich) Relation gemäß dem Lemma 197 transitiv ist, muss dann auch gelten

$$\min P \leq m$$

Also kann ich daraus folgern, dass für alle $m \in M$ folgt, dass gilt

$$\min P \le m$$

Da die Symbolgleichheit gemäß dem Lemma 182 eine Äquivalenzrelation ist, kann ich aus

$$\min P = \min M$$

und

$$\min P = \min \{ \min P, \min Q \}$$

folgern, dass

$$\min M = \min \{ \min P, \min Q \}$$

ist.

Damit hätte ich den Satz unter der Voraussetzung bewiesen, dass

$$\min P \le \min Q$$

ist. Ist jedoch

$$\min P \geq \min Q$$

dann muss gemäß dem Element 196 auch gelten

$$\min Q \le \min P$$

Somit kann ich die gesamten vorhergehenden Überlegungen mit vertauschten Bezeichnungen noch einmal durchspielen. Ich werde das so aufschreiben. Du kannst jedoch den nachfolgenden Abschnitt getrost überspringen und die Schlussüberlegung wie. Wiederum gilt dann:

$$\min Q \in \{\min P, \min Q\}$$

Ebenfalls gilt gemäß der Definition 1 über die Gleichheit von Symbolen:

$$\min Q = \min Q$$

und somit gemäß der zweiten Zeile des Lemmas 191

$$\min Q \le \min Q$$

Weiter gilt nach Voraussetzung:

$$\min Q < \min P$$

Somit ist gemäß der Definition 201

$$\min Q = \min \{ \min P, \min Q \}$$

Weiter ist nach Voraussetzung

$$M = P \cup Q$$

Also ist

$$q \in Q \Rightarrow q \in M$$

Somit ist ebenfalls

$$\min Q \in Q \Rightarrow \min Q \in M$$

Ist $m \in M$, dann ist gemäß der Definition von $P \cup Q$

$$m \in P \lor m \in Q$$

Ist $m \in Q$, dann ist gemäß der Voraussetzung über das Minimum

$$\min Q \leq m$$

Ist $m \in P$, dann ist gemäß der Voraussetzung über das Minimum

$$\min P \leq m$$

Weiter ist nach Voraussetzung ebenfalls

$$\min Q \le \min P$$

Da die \leq (kleiner oder gleich) Relation gemäß dem Lemma 197 transitiv ist, muss dann auch gelten

$$\min Q \leq m$$

Also kann ich daraus folgern, dass für alle $m \in M$ folgt, dass gilt

$$\min Q \leq m$$

Da die Symbolgleichheit gemäß dem Lemma 182 eine Äquivalenzrelation ist, kann ich aus

$$\min Q = \min M$$

und

$$\min Q = \min \left\{ \min P, \min Q \right\}$$

folgern, dass

$$\min M = \min \left\{ \min P, \min Q \right\}$$

ist.

Damit hätte ich den Satz unter der Voraussetzung bewiesen, dass

$$\min P \ge \min Q$$

ist.

Da ich jetzt annehme, dass ich für alle denkbaren Fälle gezeigt habe, dass gilt

$$\min M = \min \{ \min P, \min Q \}$$

meine ich jetzt den Beweis für die Richtigkeit der Behauptung erbracht zu haben. Darum erlaube ich mir, die weitere Beweisführung an dieser Stelle zu beenden.

Im folgendes möchte ich etwas besprechen, welches eigentlich ein Unding ist. Aber welches oft verwendet wird: Das Prinzip der Unendlichkeit. Es wird so getan, als ob unendlich viele Elemente behandelt werden könne. Nun, die Kunst besteht darin, dem Konzept der Unendlichkeit möglichst große Widerspruchsfreiheit abzutrotzen.

Nachbemerkung: Vielleicht hast Du Dich gewundert, wieso ich nicht als Vergleichsmengen für die Bestimmung des Minimums etwa

$$\min \{B | B \in M \land B < C\}, \min \{B | B \in M \land B \ge C\}$$

oder

$$\min \{B | B \in M \land B \le C\}, \min \{B | B \in M \land B > C\}$$

verwendet habe. So wie ich es im Beweis verwendet habe, ist es möglich, dass ich für E das Minimum der Menge

$$\{C,C\} = \{C\}$$

bestimmen müsste. Das wäre ja schon ein wenig komisch, oder? Nun, Du hast es sicher herausgefunden, ohne lange darüber nachzudenken. Ansonsten sage ich es Dir natürlich gerne: Das ist, weil ansonsten die Möglichkeit bestehen würde, dass eine der beiden Mengen

$$\{B | B \in M \land B < C\}$$

respektive

$$\{B|B\in M\land B>C\}$$

leer wäre. Ersteres ($\{B|B\in M\land B< C\}=\emptyset$) wäre der Fall, falls ich ein "Mordsglück" gehabt hätte und per Zufall schon richtig geraten hätte, dass C das Minimum der Menge M wäre. Letzteres ($\{B|B\in M\land B>C\}=\emptyset$) wäre der Fall, falls C das Maximum der Menge $\{B|B\in M\land B>C\}$ wäre. Und ich habe bis jetzt nicht definiert, was das Minimum der leeren Menge sein könnte. Jedoch kann ich es dir gerne "verraten": Es wäre ∞ A, in Worten "die Symbolkette, welche aus unendlich vielen Buchstaben A bestehen würde". Wenn ich dann weiter definieren würde, dass jedes jede Symbolkette aus endlich vielen Symbolen A kleiner als die Symbolkette ∞ A wäre, dann könnte ich den Beweis "retten". Denn dann wäre gemäß den vorhergehenden Definitionen im Fall, dass $C=\min\{B|B\in M\}$ wäre:

$$\min \left\{ \min \left\{ B \middle| B \in M \land B < C \right\}, \min \left\{ B \middle| B \in M \land B \ge C \right\} \right\}$$
$$= \min \left\{ \infty A, \min \left\{ B \middle| B \in M \land B \ge C \right\} \right\}$$

Und nun wäre per Festlegung

$$\min \{ \infty A, \min \{ B | B \in M \land B \ge C \} \}$$
$$= \min \{ B | B \in M \land B \ge C \} = C$$

Womit ich die Behauptung ebenfalls ebenfalls bewiesen hätte.

So jetzt wären wir also das erste Mal in diesem Script in Tuchfühlung gekommen mit dem Begriff der "Unendlichkeit". Ich finde den

Gedanken reizvoll, dass es möglich sein kann, über einen Aspekt von Unendlichkeit nachzudenken, so dass am Ende immer noch etwas herauskommt, was praktische Auswirkungen hat. Dabei geht es um das Prinzip der vollständigen Induktion.

Ich hoffe jedoch keinesfalls, dass ich Dich langweile. Also gehe ich jetzt der nächsten Frage nach:

KAPITEL 33

Wieso sind die natürlichen Zahlen nicht natürlich?

Gemach, gemach. Zuerst einmal möchte ich die natürlichen Zahlen definieren, bevor ich mich mit dem Titel des Kapitels herumschlage. Um genauer zu sein, sollen es eigentlich zwei Definitionen sein. Die eine Definition soll "Marke Eigenbräu¹" sein, ist also von mir selbst so gedacht. Die zweite Definition ist diejenige, welche in der Mathematik verwendet wird. Diese wurde vom italienischen Mathematiker Peano entwickelt. Dann möchte ich zeigen, dass meine Definition diejenige von Peano herleiten kann. Aber warum mache ich das so? Es ist nicht so, dass meine Definition "besser" wäre. Aber ich hoffe, dass sie anschaulicher ist und den Begriff der natürlichen Zahl näher an die Entstehung der natürlichen Zahlen bringt.

Definition 204. Es sei

A

das Metasymbol eines belieben Schriftzeichens, welches wirklich ein Symbol sein muss und nicht leer (oder ein Leerschlag) sein darf. Bitte beachte, dass das Symbol nicht in sich und bezüglich den anderen Symbolen der Definition widersprüchlich sein darf. Insbesondere darf das Symbol A nicht das Metasymbol des Symbols 1 oder eines anderen Zahlzeichen entsprechen. Dann sei die natürlichen Zahl 1 wie folgt definiert:

$$(1) \cdot A \equiv A$$

Nun sei n das Symbol einer beliebigen natürlichen Zahl. Dann ist die Zahl n+1 definiert:

$$(n+1) \cdot A \equiv n \cdot A A$$

Anstelle

 $(1) \cdot A$

kann auch

1A

geschrieben werden. Anstelle

 $(n+1)\cdot A$

kann auch

$$(n+1)A$$

¹also ein von mir selbst entworfener Begriff. Das Wort "Eigenbräu" kommt meines Erachtens aus der Bierherstellung und bedeutet "selbst gebraut".

geschrieben werden. Jedoch muss ich fordern, dass nur solche Zahlen $n \in \mathbb{N}$ zugelassen werden dürfen, für welche gilt, dass

$$n \cdot A$$

aus einer endlichen Anzahl von Symbolen A bestehen. Dies beschreibe ich so, das ich fordere, dass es für eine bestimmte natürliche Zahl $n_1 \in \mathbb{N}$ keine Folge $(n_k)_{k \in \mathbb{N}}$ derart geben kann, dass gilt

$$n_k > n_{k+1}$$

Weitere Elemente von \mathbb{N} als die oben definierten seien nicht vorhanden. Zwei natürlichen Zahlen m, n seien genau dann gleich, falls für ein beliebiges (natürliches nicht in sich widersprüchliches) Symbol gilt:

$$m \cdot A = n \cdot A$$

Dadurch ist die Gleichheit von natürlichen Zahlen auf die Gleichheit von Symbolen (vergleiche mit der entsprechenden Definition 1) zurückgeführt. Entsprechend sei

$$m \neq n$$

derart definiert, dass

$$m \cdot A \neq n \cdot A$$

sei.

Ist schließlich

$$m \cdot A = n \cdot A$$

oder gibt es ein $p \in \mathbb{N}$ derart, dass gilt

$$m \cdot A p \cdot A = n \cdot A$$

dann gelte per Definition

$$m \leq n$$

Sind schlussendlich die drei natürlichen Zahlen m,n,p derart gegeben,
dass gilt

$$m \cdot A p \cdot A = n \cdot A$$

dann sei

Sind nun wiederum $m, n \in \mathbb{N}$, dann sei

$$m \ge n$$

per Definition genau dann wahr, falls gelte:

$$n \leq m$$

Ebenso sei

per Definition genau dann wahr, falls gelte

Zur Begründung, wieso ich fordere, dass es für eine bstimmte Zahl $n_1 \in \mathbb{N}$ keine Folge

$$(n_k)_{k\in\mathbb{N}}$$

derart geben darf, dass für alle $k \in \mathbb{N}$ gilt

$$n_k > n_{k+1}$$

Tatsächlich lässt sich das m.E. nicht ganz streng beweisen. Auf jeden Fall nicht so, wie es gerne hätte. Die Forderung, dass

$$n_k > n_{k+1}$$

sein muss, hätte zur Folge, dass für ein beliebiges Metasymbol A gelten müsste, dass für ein gegebenes $k \in \mathbb{N}$ es eine natürliche Zahl p_{k+1} derart geben müsste, dass gelten würde

$$n_k \cdot A = n_{k+1} \cdot A \, p_{k+1} A$$

geben würde. Also müsste die Zeichenkette n_k mindestens ein Symbol A länger als die Zeichenkette n_{k+1} sein. Dies müsste jedoch für alle natürlichen Zahlen k gelten. Somit müsste das Symbol

$$n_1 \cdot A$$

mindestens ein Symbol A mehr als das Symbol

$$n_2 \cdot A$$

besitzen. Wird der ganze Vorgang k Mal ausgeführt, dann bedeutet dies, dass es eine natürliche Zahl n_{k+1} derart geben müsste, dass die Zahl

$$n_1 \cdot A$$

mindestens k Symbole A mehr als das Symbol

$$n_{k+1}A$$

besitzt. Da jedoch k beliebig ist, bedeutet dies, dass die Zahl $n_1 \cdot A$ eben aus beliebig vielen Symbolen A bestehen müsste. Das wäre jedoch ein Widerspruch zur Voraussetzung, dass die Zahl

$$n_1A$$

aus höchstens endlich vielen Aneinanderreihungen des Symbols A bestehen dürfte.

Damit die Definition der natürlichen Zahlen bereits erfolgt! Ich muss jedoch schreiben, wieso ich diese Definition für sinnvoll halte. Es sei A beispielsweise das Symbol für das Wort "Kuh". Dann ist

$$1 \cdot \text{Kuh} \equiv \text{Kuh}$$

Ist nun $1 \cdot \text{Kuh definiert}$, dann sei

$$(1+1)\cdot Kuh$$

 $\equiv 1 \cdot \text{Kuh Kuh}$

= Kuh Kuh

Nun habe ich (1+1) · Kuh definiert. Dann ist

$$(1+1+1) \cdot Kuh$$

$$\equiv (1+1) \cdot Kuh Kuh$$

$$= Kuh Kuh Kuh$$

Also habe ich (1+1+1) definiert. Also ist, um ein weiteres Beispiel zu machen

$$(1+1+1+1) \cdot Kuh$$

$$\equiv (1+1+1) \cdot Kuh Kuh$$

$$= Kuh Kuh Kuh Kuh$$

Und um ein letztes Beispiel zu machen, ist

$$(1+1+1+1+1) \cdot Kuh$$

$$\equiv (1+1+1+1) \cdot Kuh Kuh$$

$$= Kuh Kuh Kuh Kuh Kuh Kuh$$

So weit so gut - oder langweilig. Doch für was soll das gut sein? Es ist eine Abstraktion. Das bedeutet also, es spielt keine Rolle, ob das Symbol "Kuh" oder "gefüllter Weizenkrug" oder "gefüllter Bierkrug" ist. Weiter ist es jedoch auch so, dass durch diese Definition der Boden für eine Verringerung der Schreibarbeit ist. Ich schreibe beispielsweise:

$20 \, \mathrm{Kuh}$

Das Malzeichen "·" habe ich weggelassen. Anstatt "Kühe" habe ich "Kuh" geschrieben. Dann besitzt diese Darstellung zusammen mit dem Leerzeichen 7 Zeichen. Schreibe ich jedoch das ganze aus:

dann benötige ich zusammen mit den Leerzeichen $20 \cdot (3+1) - 1 = 59$ Zeichen. Das sind ungefähr 8 Mal mehr Zeichen. Ich vermute, dass dies auch der Grund ist, wieso die Zahlen überhaupt erfunden wurden. Denn wenn die Zahlen noch größer werden, können noch viel mehr Zeichen eingespart werden. Jedoch möchte ich dazu ebenfalls schreiben, dass es nicht nur einen Nutzen gibt, wenn Symbole mittels Zahlen geschrieben werden. Es gibt auch Kosten. Denn 50 Mal das Symbol für Kuh aufzuschreiben, das geht auch dann, falls die Schrift und das Rechnen sonst nicht mit viel Mühe und Not gelernt werden. Auf der anderen Seite ist es halt schon ein großer Aufwand, wenn zuerst jahrelang das Lesen und Schreiben sowie das Rechnen gelernt werden muss, damit der Begriff "20 Kuh" (oder entsprechende 20 Kühe) einen Sinn macht. Zudem war

und ist mit dem Lesen und Schreiben sowie mit dem Rechnen meines Erachtens die Gesellschaft so richtig aufgespalten worden in arme und reiche, in ungebildete (, "eingebildete²") und gebildete Personen.

Zur Abgrenzung der natürlichen Zahlen von der Logik: In der Logik geht es darum, sich zu überlegen, welche Aussagen aus wahren Aussagen (definiert als Zeichenketten, welche als wahr oder nicht wahr festgelegt oder erkannt werden) wiederum gefolgert werden können. In der naiven Zahlenlehre der natürlichen Zahlen geht es darum, sich die Eigenschaften von Zeichenketten zu überlegen, welche aus lauter gleichen Symbolen bestehen.

In der Definition habe ich noch kein Zahlensystem (wie das duale oder das dezimale, also das Zehnersystem) verwendet. In den Einführungen zur Mathematik wird dieses übrigens nirgends gemacht. Wahrscheinlich wird das in der Ausbildung zu den Mathematiklehrern gelehrt und vielleicht auch ein wenig gelernt. Ich weiß es nicht.

Die Definition der natürliche Zahlen könnte auch auf eine andere Art aufgeschrieben werden. Es könnte anstatt:

$$1 \cdot A \equiv A$$

aufgeschrieben werden:

$$|A \equiv A$$

Ist nun n ein Symbol für eine natürliche Zahl, dann sei

$$n|A \equiv nAA$$

So kann also beispielsweise 4A (wobei 4 gar noch nicht definiert ist, jedoch allen, welche diesen Text aus Versehen lesen, wahrscheinlich klar ist) geschrieben werden

$$4A = ||||A = AAAA$$

Die senkrechten Striche sind eine Anlehnung an die Zählstriche, welche früher oft gebraucht wurden, um Dinge zu zählen. Berühmt sind die Zählstriche bei den Kartenspielen. Dort werden jedoch 4 Striche mit einem 5. Querstrich sozusagen "abgebunden":

Das wird gemacht, um leichter zählen zu können. Der entscheidende Unterschied von Zahlen zu den Zählstrichen ist derjenige, dass immer diejenige Größe, welche gezählt wird, nämlich die Anzahl der Symbole ("A"), immer angegeben wird. Das erinnert mich an eine Regel, welche ich in der Schule hören musste: "Nicht Äpfel und Birnen zusammen zählen!" Das kann hier nicht passieren, da immer das Symbol, welches gezählt wird, angegeben wird. Ein anderes Beispiel ist, dass einmal eine Raumsonde auf den Mars abgestürzt ist, weil für die gleiche Größe zwei verschiedene Einheiten verwendet wurden (siehe den entsprechenden Wikipedia-Eintrag). Das hatte zur Folge, dass der Computer zu starke

²Das sollte ein Witz sein.

Korrekturen vorgenommen hatte und die Sonde zu tief flog. Die Sonde wurde dann durch die Atmosphäre des Mars zerstört. Zum Schluss möchte ich angeben, dass es in der Physik und der Technik gang und gäbe ist, immer eine "Einheit" bei der Zahl hinzuschreiben. Das einfachste diesbezügliche Beispiel scheint mir die Währung zu sein. Es ist üblich, einen Preis, Kosten oder Erträge in Dollar, Euro, britischem Pfund oder Yen anzugeben. Sinnigerweise gibt es sogar eigene Symbole dafür, so zum Beispiel "\$" Dollar. So macht es also durchaus einen Unterschied, ob ein Fahrrad 1000\$ oder 1000£ kostet (1000 britische Pfund im zweiten Fall). So weit ich gelesen habe, sind Zahlen erfunden worden, um die Zahlensymbole vor Symbole zu vereinheitlichen. Es wurden also ursprünglich offenbar andere Zahlen verwendet, um Weizenkrüge (also ein Krug mit einem bestimmten Volumen, welcher mit Weizen gefüllt ist) oder Ochsen zu zählen. Das wäre so wie wenn ich schreiben würde

2Ochsen \equiv Ochse Ochse

und

2Weizenkrüge ≡ Weizenkrug Weizenkrug

Wenn Du jetzt denkst, dass diese Leute "dumm" gewesen seien, dann möchte ich zur Vorsicht mahnen. Denn die Zahlen, wie wir sie heute kennen, sind derart komplex, dass ich mir nicht vorstellen kann, dass Du oder ich darauf gekommen wären, ohne dass uns das gelehrt worden wäre. Ich vermute, dass die Zahlen darum entstanden, weil der Lernaufwand für das Schreiben der Zahlen verkleinert wurde. Sozusagen aus Faulheit. Das würde dann bedeuten: Die Zahlen sind aus Schulden und Faulheit entstanden! Lange Zeit wurden einzelne Zahlen durch Zahlwörter abgekürzt. Bei den Römern waren das unter anderem: I für 1, V für 5, X für 10, L für 50, C für 100, D für 500 und M für 1000 (ich habe die Zahlwörter dem entsprechenden Wikipedia-Artikel über die römische Zahlwörter). Diese Zahlwörter sind gut und recht - aber zum rechnen leider nicht besonders elegant. Es ist jedoch unüblich, zwei Zahlwörter hintereinander zu verwenden. Natürlich wäre es möglich

V (CWeizenkrüge)

aufzuschreiben. Das wären dann

500Weizenkrüge

was recht gewöhnlich aussieht. Wie wäre es jedoch damit

IV (III (VIII Weitzenkrüge))

Das sieht so aus, also ob damit

438 Weizenkrüge

damit bezeichnet würden. Tut es jedoch nicht. Es sind

 $4 \cdot 3 \cdot 8$ Weizenkrüge = $12 \cdot 8$ Weizenkrüge = 96 Weizenkrüge

Doch zurück zur Eingangsfrage: Wieso sind die natürlichen Zahlen nicht natürlich? Der Grund ist ganz einfach: Weil die natürlichen Zahlen zwar definiert, jedoch in ihrer Gesamtheit nie aufgeschrieben werden können. Es gibt unendlich viele davon. Und kein Mensch der Welt kann alle aufschreiben. Denn würde alle bekannte Datenträger verwendet, um eine natürliche Zahl aufzuschreiben, dann wäre diese Zahl zuzüglich 1 immer noch eine natürliche Zahl. Diese wäre jedoch noch nie aufgeschrieben worden. Der berühmte Spruch "Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk." von Leopold Kronecker (siehe https://de.wikipedia.org/wiki/Leopold Kronecker) ist meines Erachtens schon einmal falsch. Denn unsere Existenz ist unzweifelhaft an das Endliche gebunden. So auch an endlich viele Zahlen. Also können weder die unendlich vielen natürlichen noch die unendlich vielen ganzen Zahlen existieren. Jedoch können wir trotzdem mit ihnen umgehen. Dafür gibt es zwei Methoden: Einmal, indem nur auf die allgemeinen Eigenschaften von natürlichen Zahlen zurückgegriffen werden. Und das andere Mal, indem auf das Prinzip der vollständige Induktion verwendet wird. Doch davon später.

Anstelle des Unendlichen kommt heute immer mehr das Prinzip des Unscharfen. Denn es stellt sich heraus, dass es kein beliebig Kleines gibt. In der Physik kommt das prominent durch die Heisenbergsche Unschärferelation zum Ausdruck, welches besagt, dass von jeder physikalischen Größe nicht gleichzeitig die Geschwindigkeit (genauer: der Impuls) und der Ort beliebig genau gemessen werden kann. Dennoch werden Zahlen verwendet und das ist sicher auch gut so. Jetzt kommt die zweite große Zumutung: Die natürliche Zahlen sind nur darum sinnvoll, weil mit ihnen gut gerechnet werden kann, sie also praktisch sind. Nun möchte ich über die Eigenschaften von natürlichen Zahlen nachdenken.

Zu Beginn möchte ich zeigen:

Lemma 205. Die Gleichheit von natürlichen Zahlen ist eine Äquivalenzrelation.

BEWEIS. Und wie zeige ich das? Dazu muss ich zuerst nachschauen, wie dann die Gleichheit von natürlichen Zahlen überhaupt definiert ist. Ich schlage dazu unter der Definition 164 nach und lese, dass ich zeigen muss, dass die Gleichheit von natürlichen Zahlen identitiv, symmetrisch und transitiv ist. Nun denn, dann probiere ich es: Es sei A ein Metasymbol, welches jedoch in sich selbst und bezüglich den anderen Symbolen des Beweises nicht widersprüchlich sein darf. Weiter sei

 $n \in \mathbb{N}$ eine beliebige natürlich Zahl. Da die Gleichheit von Symbolen gemäß dem Lemma 234 ebenfalls eine Äquivalenzrelation ist, kann ich schreiben:

$$n \cdot A = n \cdot A$$

Und somit gemäß der Definition der Gleichheit von natürlichen Zahlen

$$n = n$$

Somit ist die Gleichheit von natürlichen Zahlen zumindest identitiv. Nun seien $m,n\in\mathbb{N}$ und

$$m = n$$

Also muss für A gemäß der Definition der Gleichheit von natürliche Zahlen

$$m \cdot A = n \cdot A$$

Da die Gleichheit von von Symbolen gemäß dem Lemma 234 eine Äquivalenzrelation ist und somit auch symmetrisch ist, kann ich daraus schließen, dass ebenfalls gilt

$$n \cdot A = m \cdot A$$

Somit muss gemäß der Definition der Gleichheit von natürlichen gelten, dass

$$n = m$$

ist. Also habe ich gezeigt, dass die Gleichheit von natürlichen Zahlen reflexiv ist. Schlussendlich seien $m,n,p\in\mathbb{N},$ also natürliche Zahlen und es gelte

$$m=n\wedge n=p$$

Somit muss gemäß der Definition der Gleichheit von natürlichen Zahlen gelten

$$m \cdot A = n \cdot A \wedge n \cdot A = p \cdot A$$

Da die Gleichheit von natürlichen Zahlen gemäß dem Lemma 234 eine Äquivalenzrelation und somit ebenfalls transitiv ist, kann ich daraus schließen, dass gilt:

$$m \cdot A = p \cdot A$$

Gemäß der Definition der Gleichheit kann ich also schreiben:

$$m \cdot A = p \cdot A$$

Darum habe ich endlich auch gezeigt, dass die Gleichheit von natürlichen Zahlen ebenfalls transitiv ist.

Da ich nun gezeigt habe, dass die Gleichheit von natürlichen Zahlen identitiv, symmetrisch und transitiv ist, kann ich also folgern, dass die Gleichheit von natürlichen Zahlen tatsächlich eine Äquivalenzrelation ist. Also glaube ich die Richtigkeit des obigen Satzes und somit den Beweis erbracht zu haben.

Ich habe natürlich wieder einmal viel zu lange darüber nachgedacht, was die natürlichen Zahlen ausmacht. Aber ich möchte trotzdem nun etwas wagen, was das Ganze aus meiner Sicht auf einen Schlag viel einfacher machen sollte:

Satz 206. Die Vergleichsrelation \leq der natürlichen Zahlen ist total.

Beweis. Es seien n_1, n_2 natürliche Zahlen. Dann ist gemäß dem Korollar 190

$$n_1 \cdot A \leq n_2 \cdot A \vee n_1 \cdot A \geq n_2 \cdot A$$

Das bedeutet jedoch gemäß der Definition 204, dass gilt

$$n_1 \le n_2 \lor n_1 \ge n_2$$

Aus diesem Grund kann ich den Beweis an dieser Stelle als bewiesen betrachten und beende an dieser Stelle die weitere Beweisführung.

Nun regt sich jedoch ein kleines Teufelchen in mir. Aber das soll Dich nicht verdrießen. Es ist bloß ein kleines Kopfexperiment, welches uns ein wenig unterhalten sollte. Angenommen, Alice und Bob sitzen im Sandkasten und streiten darüber, wer wohl mehr Sandkörner in ihrer respektive in seiner Sandburg hätte. Meinst Du, die könnten das einfach so auszählen? Ich für mich denke, das wäre wohl ein hoffnungsloses Unterfangen. Oder, um den Gedankengang auf die Spitze zu treiben: Gemäß Wikipedia ist die Avogadro-Konstante, welche eine reine Zahl ist und den Wert

$$6,022140857(74) \cdot 10^{23} \approx 6022140857000000000000000$$

besitzt, gleich der Anzahl eine bestimmten Sorte von Atomen (Kohlenstoffatomen mit 6 Protonen und 6 Neutronen), welche 12 Gramm schwer ist. Also ist auch hier die Preisfrage: Wie lange würde es gehen, wenn exakt 12 Gramm dieses Kohlenstoffs genommen würde und jedes einzelne Atom abgezählt würde - falls dies überhaupt gehen würde. In der Physik sind (Irrtum vorbehalten) die genausten Messungen diejenigen, welche mit Zählen zu tun haben. Und hier ist das Messen der Zeit besonders zu erwähnen. Also stelle ich mir folgenden Versuchsaufbau vor: Um zu Messen, wie lange eine Sekunde dauert, wird auf 9'192'631'770 gezählt, falls mittels der Stoffsorte Cäsium eine sogenannte Atomuhr gebaut wird. Angenommen, bei jedem Hochzählen werde gleichzeitig ein Atom abgezählt. Wie lange würde es dauern, bis dann am Schluss die Menge der Atome von 12 Gramm Kohlenstoff der besonderen Sorte 6 Protonen und 6 Neutronen abgezählt wären? Das wären dann

Und wie lange wären dann diese Anzahl Sekunden in Jahren? Ich habe bei Wikipedia einen Wert von

$$1 y \equiv 31557600 s$$

für ein Jahr gefunden (y ist die Abkürzung für "Jahr", auf Englisch "Year"). Dann würde es rund 2 Millionen Jahre dauern, bis die Menge abgezählt würde. Hättest Du so lang Zeit? Ich für mich wohl kaum.

Also sieht es so aus, als ob das ganze Gedankengebäude für die Katz wäre. Als dass Zahlen zwar definiert werden könnten. Diese jedoch im Alltag nicht anwendbar seien. Aber das scheint mir ebenfalls übertrieben. Also möchte ich ein drittes und letztes Gedankenexperiment durchführen. Angenommen, die Hirten Markus und Michael möchten gerne wissen, wer mehr Schafe in der Herde hat. Beide haben es jedoch nicht so mit Zählen. Wie können sie trotzdem wissen, wer mehr Schafe (und Böcke) hat? Sie können es so durchführen: Sie nehmen 4 Gehege, wobei je zwei Gehege miteinander durch ein Tor verbunden sind. Ihre Herden haben Sie in getrennten Gehegen, jedoch so, dass je ein Gehege eine Schafherde enthält und das mit ihm verbundene Gehege leer ist. Dann lassen sie immer gleichzeitig genau ein Schaf durch das Tor von einem Gehege in das andere Gehege. Nun wissen sie: Sind die ursprüngliche Gehege gleichzeitig leer, dann besitzen beide Herden gleich viele Schafe. Ist jedoch ein Gehege früher leer als das andere, dann besitzt derjenige Hirte mit derjenige Herde, welche früher durch das entsprechende Tor von einem Gehege in das andere übergetreten ist, weniger Schafe. Und auch dieses Vorgehen entspricht genau dem Gedankengang des Beweises des vorhergehenden Satzes 206. Und in diesem Fall ist die Einschränkung, dass immer höchstens endlich viele Schafe vorhanden sein müssen, geradezu grotesk. Denn es ist geradezu absurd, sich vorzustellen, dass ein Schafherde unendlich viele Schafe haben könnte. Und auch wenn das Beispiel wohl an den Haaren herbeigezogen ist, kann ich feststellen, dass die Mathematik aus diesen Fragestellungen heraus entstanden ist, also in solchen Gebieten, in welchen die Anwendung der Mathematik unproblematisch ist und kein Kopfzerbrechen bereitet. Aber ich denke, die Mathematik tut gut daran, dass sie ihre Herkunft nicht vergisst. Denn Theorie und Praxis befruchten sich stets immer wieder aufs Neue vortrefflich³. Ich möchte mit dem Satz 206 nun weiter zeigen:

Lemma 207. Es seien $n_1, n_2 \in \mathbb{N}$. Dann gilt

$$n_1 \le n_2 \land n_1 \ge n_2 \Leftrightarrow n_1 = n_2$$

BEWEIS. Es sei A ein beliebiges Symbol, jedoch in sich selbst und in Bezug auf die anderen Symbole widerspruchsfrei sei. Weiter seien $n_1, n_2 \in \mathbb{N}$ und $n_1 = n_2$. Dies ist gemäß der Definition 204 dann der Fall, falls gilt

$$n_1 \cdot A = n_2 \cdot A$$

³Bist Du in der Pubertät oder Adoleszenz, dann kann und will ich Dir nicht verübeln, dass Du Dir ein Schmunzeln an dieser Stelle nicht verkneifen kannst. "Befruchten" meint an dieser Stelle nicht "miteinander Sex haben", sondern "einander zum Wachsen und Gedeihen anregen".

Gemäß dem Satz 57 kann ich daraus folgern (mit dem Satz 17 der Schlussfolgerung), dass daraus folgt

$$n_1 \cdot A = n_2 \cdot A \Rightarrow n_1 \cdot A = n_2 \cdot A \vee n_1 \cdot A < n_2 \cdot A$$

Gemäß der Definition 188 gilt

$$n_1 \cdot A \leq n_2 \cdot A \Leftrightarrow n_1 \cdot A = n_2 \cdot A \vee n_1 \cdot A < n_2 \cdot A$$

Da die Äquivalenz gemäß dem Satz 39 kommutiert, kann ich daraus auch schließen, dass auch gilt

$$n_1 \cdot A = n_2 \cdot A \vee n_1 \cdot A < n_2 \cdot A \Leftrightarrow n_1 \cdot A < n_2 \cdot A$$

Da gemäß dem Satz 52 kann ich zusammen mit dem Satz 17 der Schlussfolgerung folgern, dass gilt

$$n_1 \cdot A = n_2 \cdot A \vee n_1 \cdot A < n_2 \cdot A \Rightarrow n_1 \cdot A \leq n_2 \cdot A$$

Da die Implikation gemäß dem Satz 15 transitiv ist, kann ich folgern, dass gilt:

$$n_1 \cdot A = n_2 \cdot A \Rightarrow n_1 \cdot A < n_2 \cdot A$$

Weiter kann ich gemäß dem Satz 57 kann ich daraus folgern (mit dem Satz 17 der Schlussfolgerung), dass daraus folgt

$$n_1 \cdot A = n_2 \cdot A \Rightarrow n_1 \cdot A = n_2 \cdot A \vee n_1 \cdot A > n_2 \cdot A$$

Gemäß der Definition 188 gilt

$$n_1 \cdot A \ge n_2 \cdot A \Leftrightarrow n_1 \cdot A = n_2 \cdot A \vee n_1 \cdot A > n_2 \cdot A$$

Da die Äquivalenz gemäß dem Satz 39 kommutiert, kann ich daraus auch schließen, dass auch gilt

$$n_1 \cdot A = n_2 \cdot A \vee n_1 \cdot A > n_2 \cdot A \Leftrightarrow n_1 \cdot A \geq n_2 \cdot A$$

Da gemäß dem Satz 52 kann ich zusammen mit dem Satz 17 der Schlussfolgerung folgern, dass gilt

$$n_1 \cdot A = n_2 \cdot A \vee n_1 \cdot A > n_2 \cdot A \Rightarrow n_1 \cdot A > n_2 \cdot A$$

Da die Implikation gemäß dem Satz 15 transitiv ist, kann ich folgern, dass gilt:

$$n_1 \cdot A = n_2 \cdot A \Rightarrow n_1 \cdot A > n_2 \cdot A$$

Insgesamt muss also gelten:

$$(n_1 \cdot A = n_2 \cdot A \Rightarrow n_1 \cdot A \le n_2 \cdot A) \land (n_1 \cdot A = n_2 \cdot A \Rightarrow n_1 \cdot A \ge n_2 \cdot A)$$

Ich habe recht lange überlegt, wie ich den nächsten Gedanken aufschreiben muss: Gemäß dem Satz 27 gilt für alle Symbole U,V sowie W,welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien:

$$(U \Rightarrow V \land W) \Leftrightarrow ((U \Rightarrow V) \land (U \land W))$$

Da die Äquivalenz gemäß dem Satz 39 kommutativ ist, kann ich mit Hilfe des Satz 17 der Schlussfolgerung folgern, dass auch gelten muss:

$$((U \Rightarrow V) \land (U \land W)) \Leftrightarrow (U \Rightarrow V \land W)$$

Da aus der Äquivalenz gemäß dem Satz 52 aus der Äquivalenz auch die Implikation folgen muss, muss auch gelten:

$$((U \Rightarrow V) \land (U \land W)) \Rightarrow (U \Rightarrow V \land W)$$

Wenn ich jetzt definiere:

$$U \Leftrightarrow n_1 \cdot A = n_2 \cdot A$$
$$V \Leftrightarrow n_1 \cdot A \leq n_2 \cdot A$$
$$W \Leftrightarrow n_1 \cdot A > n_2 \cdot A$$

dann kann ich also schreiben:

$$n_1 \cdot A = n_2 \cdot A \Rightarrow n_1 \cdot A \leq n_2 \cdot A \wedge n_1 \cdot A \geq n_2 \cdot A$$

Gemäß der Definition 204 der natürlichen Zahlen kann ich daraus folgern, dass gilt

$$n_1 = n_2 \Rightarrow n_1 \leq n_2 \land n_1 \geq n_2$$

Also habe ich die eine Richtung der Behauptung bewiesen. Nun gelte:

$$n_1 \leq n_2 \wedge n_2 \leq n_1$$

Dann muss gemäß der Definition 204 muss gelten

$$n_1 \cdot A \leq n_2 \cdot A \wedge n_2 \cdot A \leq n_1 \cdot A$$

Dann kann ich gemäß dem Lemma 198 kann ich nun folgern

$$n_1 \cdot A = n_2 \cdot A$$

Dies bedeutet jedoch gemäß der Definition 204, dass gilt:

$$n_1 = n_2$$

Damit habe ich die andere Richtung der Behauptung bewiesen. Gemäß dem Satz 50 kann ich aus den Aussagen

$$(n_1 = n_2 \Rightarrow n_1 \le n_2 \land n_1 \ge n_2) \land (n_1 < n_2 \land n_1 \ge n_2 \Rightarrow n_1 = n_2)$$

folgern, dass gilt

$$n_1 = n_2 \Leftrightarrow n_1 < n_2 \land n_1 > n_2$$

KOROLLAR 208. Es seien $n_1, n_2 \in \mathbb{N}$. Dann gilt

$$n_1 < n_2 \lor n_1 = n_2 \lor n_1 > n_2$$

Beweis. Ich habe im Beweis von Satz 206 dass mindestens gelten muss

$$n_1 \leq n_2 \vee n_1 \geq n_2$$

Gemäß der Definition 17 der Disjunktion muss also gelten

$$(n_1 \le n_2 \land \neg (n_1 \ge n_2)) \lor (\neg (n_1 \le n_2) \land n_1 \ge n_2) \lor (n_1 \le n_2 \land n_1 \ge n_2) \lor$$

Ist nun $n_1 \leq n_2 \wedge \neg (n_1 \geq n_2)$, dann kann nicht $n_1 = n_2$ sein. Dann sonst wäre ebenfalls

$$n_1 > n_2$$

Also muss in diesem Fall $n_1 \neq n_2$ sein. Somit ist gemäß der Definition 204 der kleiner-gleich Ordnungsrelation und dem Ausschlusssatz 48

$$n_1 = n_2$$

Im zweiten Fall

$$\neg (n_1 \leq n_2) \land n_1 \geq n_2$$

kann ich die Rollen von n_1 und n_2 vertauschen. Ich erhalte

$$n_3 \equiv n_2$$

$$n_4 \equiv n_1$$

Dann gilt also

$$n_3 \leq n_4 \wedge \neg (n_3 \geq n_4)$$

wobei ich von der Kommutativität 35 der Konjunktion und von der Tatsache Gebrauch gemacht habe, dass

$$n_3 \leq n_4$$

per Definition gleichbedeutend zu

$$n_4 \geq n_3$$

ist. Und dies entspricht ja genau der Voraussetzung

$$n_1 = n_4 \ge n_3 = n_2$$

Somit kann ich nach dem eben Gezeigtem folgern, dass auch in diesem Fall gelten muss

$$n_3 < n_4$$

Also ebenfalls

$$n_2 < n_1$$

Per Definition 204 betreffend der natürlichen Zahlen ist die gleichbedeutend zu

$$n_1 > n_2$$

Zuletzt sei

$$(n_1 \leq n_2) \wedge (n_1 \geq n_2)$$

Somit kann ich gemäß dem vorhergehenden Lemma 207 schreiben, dass gelten muss:

$$n_1 = n_2$$

Somit glaube ich schreiben zu können, dass für jeden möglichen Wert von n_1 und n_2 gilt:

$$n_1 < n_2 \lor n_1 = n_2 \lor n_1 > n_2$$

Also glaube ich den Beweis für die Richtigkeit meiner Behauptung erbracht zu haben.

DEFINITION 209. Es seien $n_1, n_2 \in \mathbb{N}$. Dann sei das Minimum von n_1 und n_2 wie folgt definiert.

$$\min \{n_1, n_2\} \equiv \begin{cases} n_1 & \Leftarrow n_1 < n_2 \\ n_1 & \Leftarrow n_1 = n_2 \\ n_2 & \Leftarrow n_1 = n_2 \end{cases}$$

Zusammen mit dem Satz 206 und dem Korollar 208 kann ich dann schreiben:

KOROLLAR 210. Es sei $n_1, n_2 \in \mathbb{N}$. Dann ist das Minimum von n_1 und n_2 für alle $n_1, n_2 \in \mathbb{N}$ eindeutig definiert.

Noch einmal kurz möchte ich innehalten: Natürlich ist es ein totaler "overkill", also eine total übertriebener Aufwand, wenn ich soviel Platz brauche, bloß um zu zeigen, dass das Minimum von zwei natürlichen Zahlen eindeutig definiert ist. Aber es geht mir vor allem darum, dass Du siehst, wie so etwas gemacht werden kann und dass es wichtig ist, sich zu überlegen, ob aufgrund der getroffenen Annahmen die Schlüsse in sich selbst widerspruchsfrei sind. Ansonsten könnte ich etwas schließen, was völliger Unfug wäre. Und dann wäre es den ganzen Aufwand in keinster Art und Weise gerechtfertigt.

Ich möchte jetzt einen Satz definieren und zu beweisen, an welchem ich mir lange Zeit schier die Zähne ausgebissen habe:

SATZ 211. Es sei $M \subset \mathbb{N}$ eine nichtleere Teilmenge der natürlichen Zahlen. Dann besitzt Mein Minimum m_M , welches in Menthalten ist und für welches gilt

$$\forall n \in M \, m_M < m$$

Beweis. Gemäß dem Korollar 208 muss für alle m,n eine der drei Möglichkeiten zutreffen:

$$m < n \lor m = n \lor m > n$$

Angenommen, M würde nicht über ein Minimum verfügen. Das würde bedeuten, dass es für alle $m \in M$ ein $n \in M$ derart geben würde, dass gilt

Dann könnte ich eine Folge $(n_k)_{k\in\mathbb{N}}$ derart bilden dass gilt

$$n_1 \equiv m \land \forall k \in \mathbb{N} : n_{k+1} \in M \land n_k > n_{k+1}$$

Da jedoch alle Elemente in M enthalten wären, müssten diese ebenfalls in \mathbb{N} enthalten sein. Das wäre jedoch ein Widerspruch zur Definition 204 der natürlichen Zahlen. Denn das würde bedeuten, dass für ein beliebiges Metasymbol A die Zeichenkette

$$n \cdot A$$

beliebig viele Symbole A besitzen würde. Also habe ich einen Widerspruch gefunden. Das bedeutet, dass die Annahme nicht wahr sein kann. Also muss es ein $m \in M$ derart geben, dass für alle $n \in M$ gilt

Wenn ich dieses m in m_M umbenenne, dann habe ich den Beweis für die Richtigkeit der Behauptung bewiesen.

Somit möchte ich diesen Teil des Kapitels abschließen.

In der Mathematik und auch sonst sind immer zwei Prinzipien vorhanden, welche oft auch miteinander zu tun haben. Das eine Prinzipist, dass neue Begriffe erfunden werden, damit neu über etwas nach gedacht werden kann. Wie hier der Begriff der natürlichen Zahl. Oder der Begriff eines Punktes in einem Bild. Oder Begriff eines Hauses. Bevor Menschen sesshaft wurden, gab es wohl ausschließlich den Begriff der Höhle, nicht jedoch denjenigen des Hauses. Das andere Prinzip, welches verwendet wird, ist dasjenige des Zurückführens der neuen Begriffe auf auf bereits bestehende Begriffe. Bei den natürlichen Zahlen bietet sich an, zu versuchen, die natürlichen Zahlen auf den Mengenbegriff zurückzuführen. Und das möchte ich jetzt versuchen:

Satz 212. Es sei N die Menge der natürlichen Zahlen. Es sei A das Metasymbol eines beliebigen Symbols, welches jedoch in sich selbst und bezüglich den anderen Symbolen widerspruchsfrei sei. Weiter sei mit

$$E_n \equiv \bigcup_{k=1}^n \left\{ k \cdot A \right\}$$

die Menge $\mathcal{M}_{u}(A)$ definiert als

$$\mathcal{M}_{u}\left(A\right)\equiv\bigcup_{n\in\mathbb{N}}\left\{ E_{n}\right\}$$

Dann ist die Abbildung

$$f: \mathbb{N} \to \mathcal{M}_u(A)$$
$$n \mapsto E_n$$

bijektiv.

Beweis. Bevor ich mit dem Beweis beginne, möchte ich zeigen, dass gilt:

$$E_{n(1)} = E_{n(2)} \Rightarrow n_1 = n_2$$

Da $n_1 \in \mathbb{N}$ ist, kann $E_{n(1)}$ nicht die leere Menge sein, da mindestens das Symbol A in $E_{n(1)}$ enthalten sein muss. Das genau gleiche gilt für $E_{n(2)}$: Da $n_2 \in \mathbb{N}$ ist, muss mindestens das Symbol A in $E_{n(2)}$ enthalten sein

Das Besondere an der Definition von $\mathcal{M}_u(s)$ ist, dass alle deren Elemente ebenfalls Mengen sind. Also muss ich zeigen, dass aus der Gleichheit der beiden Mengen $E_{n(1)}$ und $E_{n(2)}$ folgt, dass die beiden natürlichen Zahlen n_1 und n_2 gleich sind:

$$E_{n(1)} = E_{n(2)} \Leftrightarrow \left(B \in E_{n(1)} \Leftrightarrow B \in E_{n(2)} \right)$$

Falls $n_1 \neq n_2$ wäre, könnte ich gemäß dem Korollar 208 folgern, dass entweder $n_1 < n_2$ oder $n_1 > n_2$ sein müsste. Wäre jedoch

$$n_1 < n_2$$

dann müsste es gemäß der Definition 204 der kleiner-gleich Ordnungsrelation eine Zahl

$$n_3 \in \mathbb{N}$$

derart geben, dass gilt

$$n_1 A n_3 A = n_2 A$$

Somit müsste

$$E_{n(2)}$$

die Zeichenkette

$$n_1 A n_3 A$$

enthalten Diese Zeichenkette kann jedoch nicht in

$$E_{n(1)}$$

enthalten sein, da für alle Zeichenketten $B \in E_{n(1)}$ gilt

$$B = n_1 \cdot A \vee \exists n_4 \in \mathbb{N} : B n_3 \cdot A = n_1 \cdot A$$

Ist

$$B = n_1 \cdot A$$

dann gilt dem Lemma 185

$$B = n_1 \cdot A \neq n_1 \cdot A \, n_3 \cdot A = n_2 \cdot A$$

Gäbe es ein $n_4 \in \mathbb{N}$ mit

$$B n_4 \cdot A = n_1 \cdot A$$

dann könnte mit der Zeichenkette

$$C \equiv n_4 \cdot A \, n_3 \cdot A$$

sowie dem gleichen Lemma 185 wiederum nicht gleich sein. Denn dieses Lemma besagt ja, das gilt

$$B = n_1 \cdot A \neq BC = n_1 \cdot A n_4 \cdot A n_3 \cdot A = n_2 \cdot A$$

Also meine ich für alle Fälle gezeigt zu haben, das

$$n_2 \cdot A \notin E_{n(1)}$$

sein könnte. Also kann nicht gelten

$$n_1 < n_2$$

Ist jedoch $n_1 > n_2$, dann kann ich die Rollen von n_1 und n_2 umkehren. Ich erhalte in diesem Fall mit

$$n_3 \equiv n_2$$
 $n_4 \equiv n_1$

gemäß den vorhergehenden Überlegungen das Resultat, dass nicht

$$n_3 < n_4$$

sein kann. Somit es nicht möglich, dass $n_1 \neq n_2$ sein kann. Also muss $n_1 = n_2$ sein.

Der Beweis ist wiederum so einfach, dass er schon fast wieder schwierig zu zeigen ist, da nicht klar ist, was überhaupt zu beweisen ist. Ich probiere es so, dass ich die Umkehrfunktion suche.

$$g: \mathcal{M}_u(A) \rightarrow \mathbb{N}$$

 $f(E(n)) \mapsto n$

Jetzt möchte ich zeigen, dass gilt:

$$\forall n \in \mathbb{N} : g \circ f(n) = n$$

 $\forall E \in \mathcal{M}_u(As) : f \circ g(E) = E$

Es sei also

$$n \in \mathbb{N}$$

dann gilt

$$g \circ f(n) = g(E(n)) = n$$

Dieses Resultat habe ich erhalten, indem ich in f(n) dessen Definition eingesetzt habe. Diese ist E(n). In g(E(n)) habe ich ich die Definition der Funktion eingefügt und wiederum erhalten

$$g(E(n)) = n$$

Also habe ich das Resultat erhalten. Ist $E \in \mathcal{M}_u(A)$, dann muss es gemäß der Definition der Menge ein $n \in \mathbb{N}$ mit

$$E = E(n)$$

geben. Wie ich oben zu zeigen versuchte, muss dieses n eindeutig definiert sein. Denn gäbe es zwei

$$n_1, n_2 \in \mathbb{N}$$

mit

$$E(n_1) = E(n_2)$$

dann könnte ich daraus schließen, dass

$$n_1 = n_2$$

ist. Somit kann ich schreiben

$$f \circ g(E) = f(g(E_n)) = f(n) = E_n = E$$

Da nun die Richtigkeit der Behauptungen

$$\forall n \in \mathbb{N} : g \circ f(n) = n$$

 $\forall E \in \mathcal{M}_n(A) : f \circ g(E) = E$

erbracht sind, kann ich gemäß dem Satz 180 folgern, dass die Abbildung f tatsächlich bijektiv ist. Damit glaube ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

Doch wieso überhaupt solche Aufregung um so etwas unscheinbares? Üblicherweise werden die natürlichen Zahlen als Mächtigkeiten von Mengen eingeführt. Mit diesem Satz kann ich jetzt zeigen, dass auch meine Definition in Mächtigkeiten von Mengen übersetzbar ist und somit kein Widerspruch zur anderen Definition besteht.

Ich möchte noch kurz aufschreiben, wie dann Elemente von

$$\mathcal{M}_{u}\left(A\right)$$

aussehen könnten. Beispielsweise wäre dann

Damit dürfte klar sein, wieso sich diese Menge nur beschränkt für den praktischen Einsatz eignet. Denn ihre Menge sind extrem unübersichtlich aufgebaut. Und ja, das wesentliche der Elemente besteht schlicht und ergreifend darin, dass es darum geht, wie viele Elemente diese besitzt. Bevor ich zeigen möchte, dass das Konzept der Mächtigkeit von Mengen mit endlich vielen Elementen und von natürlichen Zahlen identisch ist, versuche ich zu zeigen, dass gilt:

LEMMA 213. Es seien $n_1, n_2 \in \mathbb{N}$ und mit den obigen Bezeichnungen

$$E_{n(1)}, E_{n(2)} \in \mathcal{M}_u(A)$$

Dann qilt

$$E_{n(1)} \subset E_{n(2)} \vee E_{n(2)} \subset M_{n(1)}$$

Beweis. Ich habe im Satz 206 zu zeigen versucht, dass auf jeden Fall gelten muss, das

$$n_1 < n_2 \lor n_2 < n_1$$

gelten muss. Es sei nun $n_1 \leq n_2$. Nun definiere ich die Menge T wie folgt:

$$T = \{k \in \mathbb{N} | k > n_1 \land k \le n_2\}$$

Ist $n_1 = n_2$, dann ist die Menge T leer. Ansonsten ist sie nicht leer. Es gilt jedoch auf jeden Fall

$$\left\{k \in \mathbb{N} \mid k \le n_2\right\} = \left\{k \in \mathbb{N} \mid k \le n_1\right\} \vee \left\{k \in \mathbb{N} \mid k > n_1 \land k \le n_2\right\}$$

Dann kann ich schreiben

$$E_{n(2)} = \bigcup_{k=1}^{n_2} \{k \cdot A\} = \bigcup_{k=1}^{n_1} \{k \cdot A\} \cup \bigcup_{k \in T} \{k \cdot A\}$$

Wiederum gilt die Bemerkung, dass gilt, dass

$$\bigcup_{k \in T} \left\{ k \cdot A \right\} = \emptyset$$

ist, falls $n_1 = n_2$ ist.

Satz 214. Es seien $n_1, n_2 \in \mathbb{N}$, also natürliche Zahlen. Dann ist genau dann

$$n_1 \leq n_2$$

falls

$$\left| E_{n(1)} \right| \le \left| E_{n(1)} \right|$$

Beweis. Es sei $n_1 \leq n_2$. Dann ist

$$E_{n(1)} = \bigcup_{k=1}^{n(1)} \{k \cdot A\}$$

Ist $n_1 = n_2$, dann ist ebenfalls

$$E_{n(2)} = E_{n(1)}$$

und somit auch

$$E_{n(1)} \subset E_{n(2)}$$

Ist jedoch $n_1 < n_2$, dann muss es ein $p \in \mathbb{N}$ derart geben, dass gilt

$$n_2 \cdot A = n_1 \cdot A p \cdot A$$

Es gibt eine offizielle Definition der natürlichen Zahlen. Diese stammt von italienischen Mathematiker Giuseppe Peano. Aber da ich diese Definition aus meiner eigenen Definition herleiten möchte, möchte ich zuerst weiter über die Eigenschaften meiner Zahlen nachdenken und weitere Definitionen anfügen:

DEFINITION 215. Es seien m, n Symbole für natürliche Zahlen und A ein Symbol, welches jedoch nicht in sich widersprüchlich sei und auch weder "1" noch "+" sei und auch sonst nicht mit den anderen Symbolen der nachfolgenden Gleichung in Konflikt komme. Dann sei

$$(m+n) \cdot A = m \cdot A \, n \cdot A$$

Es sei genau dann m < n, falls es eine Zahl $k \in \mathbb{N}$ derart gibt, dass gilt

$$n = m + k$$

Schlussendlich sei genau dann $m \leq n$, falls entweder m = n oder m < n ist.

Beispiel: Es sei $m \equiv 1+1+1$ und $n \equiv 1+1$ und A das Symbol für "Esel" (ich habe heute in meinen Ferien gerade ein solches Grautier gesehen). Dann ist

$$(m+n) \cdot A$$

$$= ((1+1+1) \cdot A) \cdot ((1+1) \cdot A)$$

$$= ((1+1) \cdot AA) (1 \cdot AA)$$

$$= (1 \cdot AAA) (AA)$$

$$= (AAA) (AA)$$

$$= AAAAA$$

$$= AAAAA$$

$$= Esel Esel Esel Esel Esel$$

Natürlich ist das nicht sonderlich spannend. Aber es geht nur um die grundlegende Sachen.

Ich möchte nun ganz einfach beginnen:

LEMMA 216. Es seien $n_1, n_2, n_3 \in \mathbb{N}$. Ist $n_1 = n_2$ gilt

$$n_1 + n_3 = n_2 + n_3$$
$$n_3 + n_1 = n_3 + n_2$$

Beweise. Zur ersten Behauptung: Es sei A ein Symbol, welches in sich und bezüglich den anderen Symbolen dieses Beweises widerspruchsfrei sei. Dann muss gelten

$$(n_1 + n_3) \cdot A$$

$$\equiv n_1 \cdot A \, n_3 \cdot A$$

Nun ist $n_1 = n_3$ gerade so definiert, dass gilt

$$n_1 \cdot A = n_2 \cdot A$$

Es muss gemäß der ersten Aussage des Lemma 183 über die Gleichheit von Teilsymbolen gelten, dass

$$n_1 \cdot A n_3 \cdot A = n_2 \cdot A n_3 \cdot A$$

ist. Nun ist jedoch per Definition der Addition

$$n_2 \cdot A \, n_3 \cdot A = (n_2 + n_3) \cdot A$$

Da A fast beliebig ist, glaube ich schließen zu können, dass gelten muss

$$(n_1 + n_3) \cdot A = (n_2 + n_3) \cdot A$$

Also muss auch gemäß der Definition der Addition von natürlichen Zahlen gelten

$$n_1 + n_3 = n_2 + n_3$$

Damit glaube ich, den Beweis der ersten Behauptung erbracht zu.

Zur zweiten Behauptung: Es sei A ein Symbol, welches in sich und bezüglich den anderen Symbolen dieses Beweises widerspruchsfrei sei. Dann muss gelten

$$(n_3 + n_1) \cdot A$$

$$\equiv n_3 \cdot A \, n_1 \cdot A$$

Nun ist $n_1 = n_3$ gerade so definiert, dass gilt

$$n_1 \cdot A = n_2 \cdot A$$

Es muss gemäß der zweiten Aussage des Lemma 183 über die Gleichheit von Teilsymbolen gelten, dass

$$n_3 \cdot A \, n_1 \cdot A = n_3 \cdot A \, n_2 \cdot A$$

ist. Nun ist jedoch per Definition der Addition

$$n_3 \cdot A n_2 \cdot A = (n_3 + n_2) \cdot A$$

Da A fast beliebig ist, glaube ich schließen zu können, dass gelten muss

$$(n_3 + n_1) \cdot A = (n_3 + n_2) \cdot A$$

Also muss auch gemäß der Definition der Addition von natürlichen Zahlen gelten

$$n_3 + n_1 = n_3 + n_2$$

Damit glaube ich, den Beweis der ersten Behauptung erbracht zu.

Lemma 217. Es sei $n \in \mathbb{N}$. Dann ist n+1=1+n.

BEWEIS. Es sei A ein Symbol, welches in sich selbst und in Bezug auf die anderen Symbole dieses Beweises widerspruchsfrei ist. Dann gilt:

$$(n+1) \cdot A = n \cdot A A$$

Gemäß dem Lemma 186 glaube ich, schließen zu können, dass gilt

$$n \cdot A A = A n \cdot A$$

Somit kann ich dann folgern

$$A n \cdot A = (1+n) \cdot A$$

Somit gilt auch

$$(n+1) \cdot A = (1+n) \cdot A$$

Damit glaube ich, die Richtigkeit des Lemmas erbracht zu haben und beweise aus diesem Grund an dieser Stelle die weitere Beweisführung.

Dieses Lemma hat jedoch noch ein Korollar, welches ich nachfolgend formulieren und beweisen möchte:

KOROLLAR 218. Es sei $n \in \mathbb{N}$, n also eine natürliche Zahl. Weiter sei $n \neq 1$.

KAPITEL 34

Warum sind die Axiome von Peano keine?

Die Kapitelübersicht von mir ist eine pure Anmaßung meinerseits. Der italienische Mathematiker Peano hat die folgenden Axiome bezüglich den natürlichen Zahlen aufgestellt (frei zitiert nach Heuser):

DEFINITION 219. Die Menge $\mathbb N$ der natürlichen Zahlen ist wie folgt definiert:

- $(1) 1 \in \mathbb{N}$
- (2) $n \in \mathbb{N} \Rightarrow n+1 \in \mathbb{N}$
- (3) $\forall n \in \mathbb{N} : n+1 \neq 1$.
- (4) $\forall m, n \in \mathbb{N} : n+1=m+1 \Rightarrow n=m$
- (5) Es gilt

$$\forall n \mathbb{N} : A(n) \in \Omega(n) \Rightarrow$$

 $(A(1) \wedge (A(n) \Rightarrow A(n+1))) \Rightarrow A(n)$

Dieses Axiom möchte ich sprachlich genauer formulieren. Ist für alle natürlichen Zahlen n A(n) eine Aussage, welche eventuell von n abhängt und und gilt A(1) und kann ich zeigen, dass aus der Richtigkeit von A(n) die Richtigkeit von A(n+1) folgt, dann muss für alle A(n) für alle natürlichen Zahlen n gelten.

Jetzt habe ich ein sprachliches Problem. Denn ich habe ja behauptet, diese Definition könne aus meiner Definition der Zahlen abgeleitet werden. Falls das so wäre, dann hätte ich jedoch nicht "Definition" schreiben dürfen, sondern "Satz" als Titel des Abschnitts schreiben müssen. Aber ich habe trotzdem "Definition" geschrieben, da es eine Verbeugung vor dem Mathematiker Peano sein soll. Immerhin habe ich das Symbol $\mathbb N$ erst an dieser Stelle eingeführt. Ich möchte mir nun die Axiome von Peano zur Brust nehmen und beweisen:

Lemma 220. ("Beweis" des ersten Axioms von Peano) Es sei A ein Symbol, welches in sich selbst und bezüglich den anderen Symbolen des Beweis widerspruchsfrei sei. Dann gilt:

$$1 \cdot A = A$$

und somit gilt

Beweis. So wie ich 1 weiter oben unter der Definition 211 als Metasymbol definiert habe, gilt definitionsgemäß

$$1 \cdot A = A$$

Also hat 1 die geforderte Eigenschaft. Damit kann ich den Beweis an dieser Stelle auch schon wieder beenden.

Ich möchte nun zeigen:

Weiter möchte weiter beweisen:

LEMMA 221. ("Beweis" des zweiten Axioms von Peano) Es sei $n \in \mathbb{N}$. Dann ist auch $n+1 \in \mathbb{N}$.

BEWEIS. Es sei A ein in sich und gegenüber den anderen Symbolen widerspruchsfreies Symbol. Da n eine natürliche Zahl ist, muss gemäß dem der Definition 211

$$n \cdot A$$

eine Aneinanderreihung von endlichen Symbolen A sein. Also ist

$$n \cdot AA$$

wieder eine Aneinanderreihung von endlich vielen Symbolen

$$n \cdot A A = (n+1) \cdot A$$

Das bedeutet jedoch, dass die Zahl n+1 wiederum ein Metasymbol ist, welche sinnvoll als natürliche Zahl gemäß der Definition 211 definierbar ist. Damit meine ich, auch den Beweis für diese Behauptung erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

LEMMA 222. ("Beweis" des dritten Axioms von Peano) Es sei $n \in \mathbb{N}$. Dann ist $n+1 \neq 1$.

Beweise. Es sei A ein Symbol, welches in sich selbst und gegenüber den anderen Symbolen des Beweises widerspruchsfrei sei. Weiter sei

$$n \in \mathbb{N}$$

Dann ist gemäß der Definition von n+1

$$(n+1) \cdot A \equiv n \cdot A A$$

Wie ich weiter oben unter dem Lemma 186 mühevoll zu zeigen versucht habe, muss dann gelten:

$$n \cdot A A = A n \cdot A$$

Gemäß dem ein dem Lemma 182 kann ich nun folgern, dass gilt

$$(n+1)\cdot A = An\cdot A$$

Somit kann ich gemäß der Definition 188 des Vergleichs von Symbolen kann ich darum schreiben:

$$A < A n \cdot A$$

und gemäß dem Satz 189 muss dann gelten

$$A \neq A n \cdot A$$

Dann kann auch nicht

$$A n \cdot A \neq A$$

gelten, da gemäß dem Lemma 182 ja die Symbolgleichheit eine Äquivalenzrelation ist. Also muss auch gemäß der Definition 204 der natürlichen Zahlen auch nicht

$$n+1 \neq 1$$

sein. Somit glaube ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

LEMMA 223. ("Beweis" des vierten Axioms von Peano): Es seien $m, n \in \mathbb{N}$, in Worten: m und n seien natürliche Zahlen. Dann muss gelten

$$m+1=n+1 \Rightarrow n=1$$

Beweis. Es sei A das Metasymbol eines Symbols, welches in sich selbst und in Bezug auf die anderen Symbole des Beweises widerspruchsfrei sei. Nun sei gemäß Voraussetzung

$$(m+1) \cdot A = (n+1) \cdot A$$

Dann muss nach Definition 204 der natürlichen Zahlen gelten

$$(m+1) \cdot A = m \cdot A A = n \cdot A A = (n+1) \cdot A$$

Da die Gleichheit von Symbolen gemäß dem Lemma 182 eine Äquivalenzrelation ist, kann ich schließen:

$$m \cdot A A = n \cdot A A$$

Gemäß dem Lemma 186 kann ich schreiben

$$m \cdot A A = A m \cdot A$$

$$n \cdot A A = A n \cdot A$$

Wiederum kann ich das Lemma 182 heranziehen, welches besagt, dass die Symbolgleichheit eine Äquivalenzrelation ist. Darum kann ich schreiben:

$$A m \cdot A = m \cdot A A = n \cdot A A = A n \cdot A$$

Also muss insgesamt gelten

$$Am \cdot A = An \cdot A$$

Aufgrund der Definition 1 kann ich nun folgern, dass also auch gelten muss

$$m \cdot A = n \cdot A$$

Das bedeutet jedoch gemäß der Definition 204 der natürlichen Zahlen und insbesondere deren Gleichheit, dass gelten muss

$$m = n$$

Also meine ich, dass ich endlich auch den Beweis für die Richtigkeit der Behauptung erbracht habe. Darum erlaube ich mir an dieser Stelle, die weitere Beweisführung abbrechen zu können.

Ich möchte noch ein Lemma formulieren und beweisen, welches wichtig ist für den Beweis des Satzes der vollständigen Induktion:

Lemma 224. Es sei $n \in \mathbb{N}$ eine natürliche Zahl. Dann ist n = 1 oder es gibt eine natürliche Zahl m derart, dass gilt

$$n = m + 1$$

BEWEIS. Es sei also $n \in \mathbb{N}$. Ist n = 1, dann ist der Beweis an dieser Stelle bereits erbracht. Ist jedoch $n \neq 1$, dann kann ich mindestens folgern, dass gilt

$$n < n + 1$$

Denn es sei A ein Symbol, welches in sich selbst und in Bezug auf die andere Symbole des Beweises widerspruchsfrei sei. Dann gilt gemäß der Definition 204 der natürlichen Zahlen

$$n \cdot A A = (n+1) \cdot A$$

gelten. Dies bedeutet jedoch, dass wirklich

$$n \cdot A < (n+1) \cdot A$$

ist. Gemäß dem (überaus nützlichen) Lemma 186 muss gelten

$$n \cdot A A = A n \cdot A$$

Nun kann ich beiden zusammengesetzten Symbolketten ein A am Schluss entfernen. Dann müssen immer noch die gleichen Symbolketten links und rechts vom Gleichheitssymbol vorhanden sein müssen. Ebenfalls muss die Symbolkette $n\cdot A$ gemäß Voraussetzung mehr als ein Symbol A besitzen. Also muss es eine natürliche Zahl m derart existieren, dass gilt

$$n \cdot A = A m \cdot A$$

Also kann ich gemäß dem Lemma 186 wiederum schreiben:

$$Am \cdot A = m \cdot AA$$

Und es ist wiederum gemäß der Definition 204 der natürlichen Zahlen wiederum

$$m \cdot A A = (m+1) \cdot A$$

Da die Gleichheit von Symbolketten transitiv ist, kann ich darum auch wiederum schreiben:

$$n \cdot A = (m+1) \cdot A$$

Also muss darum gemäß der Definition 204 der natürlichen Zahlen wiederum gelten:

$$n = m + 1$$

Somit meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Satz 225. Der Satz der vollständigen Induktion kann aus der elementaren Logik hergeleitet werden.

Beweis. Angenommen, der Satz der vollständigen Induktion sei falsch. Es gäbe also eine Folge

$$(A_n): \mathbb{N} \to \Omega$$

 $n \mapsto A_n$

derart, dass gelten würde

$$A_1$$

sei wahr und es gelte für alle natürlichen n

$$A_n \Rightarrow A_{n+1}$$

Nun gäbe es ein $m \in \mathbb{N}$ derart, dass die Aussage A_m nicht wahr sein würde, also formal geschrieben:

$$\neg A_m$$

Nun möchte ich zeigen, dass dies zu einem Widerspruch führen würde. Wäre m=1 dann wäre also

$$\neg (A_m) \Leftrightarrow \neg (A_1)$$

Das wäre jedoch ein Widerspruch zur Aussage, dass die Aussage

$$A_1$$

wahr ist. Daraus kann ich darum folgern, dass die Aussage m nicht 1 sein kann. Nun gelte also mit $m \neq 1$ die Aussage

$$\neg (A_m)$$

Also müsste es aufgrund der Definition 204 ein $p \in \mathbb{N}$ derart geben, dass

$$p + 1 = n$$

ist. Wäre jetzt die Aussage A_p wahr, dann würde die Aussage

$$A_n \wedge \neg A_{n+1}$$

gelten. Das wäre jedoch gemäss dem Satz 63 der Negation der Implikation äquivalent zur Aussage

$$\neg \left(A_p \Rightarrow A_{p+1} \right)$$

was jedoch ein Widerspruch zur Aussage

$$A_p \Rightarrow A_{p+1}$$

wäre. Somit kann dieser Fall nicht auftreten. Also müsste müsste auch $\neg A_p$ gelten, in Worten: Die Aussage A_p könnte auch nicht wahr sein. Jedoch könnte dieses Argument (die nächst kleinere Zahl q finden und

dann folgern, dass auch die Aussage A_q nicht wahr sein kann) höchstens endlich viele Male wiederholt werden, da $n_0 \in \mathbb{N}$ als natürliche Zahl als Metasymbol für eine endliche Aneinanderreihung von beiliebigen Symbolen interpretert wird. Am Schluss wäre dann die Aussage, dass die Aussage A_1 wahr wäre, die Aussage A_{1+1} (mit 1+1 als sogenannter "Nachfolger" von 1) jedoch nicht. Formal geschrieben bedeutet dies

$$A_1 \wedge \neg A_2$$

Das wäre jedoch gemäss dem Satz 63 der Negation der Implikation äquivalent zur Aussage

$$\neg (A_1 \Rightarrow A_{1+1})$$

was jedoch ein Widerspruch zur Aussage

$$A_1 \Rightarrow A_{1+1}$$

wäre. Somit kann ich festhalten, dass die Annahme, dass es ein natürliches $n_0 \in \mathbb{N}$ derart geben müsse, so dass die Aussage $A_{n(0)}$ nicht wahr sein könnte, zu einem Widerspruch führen würde. Also folgere ich gemäss der abgeschächten Form des Satzes 12 der doppelten Negation folgern, dass für alle $n_0 \in \mathbb{N}$ die Aussage $A_{n(0)}$ wahr sein muss. Das war jedoch gerade zu beweisen. Darum glaube ich an dieser Stelle, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Natürlich ist es Dir überlassen, ob Du den Beweis akzeptierst oder nicht. In der üblichen mathematischen Literatur wird der Satz der vollständigen Induktion als Axiom (unbewiesene, jedoch als wahr erachtete Aussage) betrachtet und darum überhaupt nicht bewiesen.

Der Satz der vollständigen Induktion ist ein Beispiel für eine Induktion, also als Herleitung eines allgemeinen Prinzips ausgehend von Einzelfällen. Als Gegenprinzip der Deduktion kann der Satz 17 der Schlussfolgerung angesehen werden.

Nun möchte ich mir noch den letzte zu beweisende Teil der Axiome von Peano vornehmen.

LEMMA 226. Es seien $m, n \in \mathbb{N}$ mit m+1 = n+1. Dann ist m = n.

Beweis. Gemäß dem Satz 230 der Kommutation der Addition gilt

$$m + 1 = 1 + m$$

sowie

$$n + 1 = 1 + n$$

Also muss für ein beliebiges Symbol A gelten

$$(m+1) \cdot A$$

$$= (1+m) \cdot A$$

$$= A m \cdot A$$

$$= (n+1) \cdot A$$

$$= A n \cdot A$$

Also muss gemäß der Definition 1 der Gleichheit von Symbolen gelten:

$$m \cdot A = n \cdot A$$

sein. Somit kann ich behaupten, dass auch

$$m = n$$

sein muss. Da ich nun zeigen kann, dass gilt

$$n+1=m+1 \Rightarrow n=m$$

Also kann ich gemäß dem Satz 20 folgern, das aus

$$n \neq m \Rightarrow n+1 \neq m+1$$

Ich möchte nun überprüfen, ob die unter der Definition 33 definierte Gleichheit von Symbolen eine Äquivalenzrelation ist. Das Besondere daran ist, dass ich davon ausgehe, das jedes Symbol (egal ob es aus einem oder mehreren Symbolen zusammengesetzt ist) aus einer endlichen Anzahl von Symbolen besteht. Damit kann ich jedoch bereits mit der vollständigen Induktion arbeiten.

KAPITEL 35

Schlussfolgerungen aus den Axiomen von Peano

Es kommt jetzt ein wenig Knochenarbeit, welche jedoch durchaus reizvoll ist. Ich möchte das Prinzip der vollständigen Induktion immer wieder anwenden.

Der erste Satz ist derart einfach, dass er schon wieder sehr schwierig wird. Denn die Schwierigkeit besteht darin, dass Du Dir die Gleichheit neu denken musst.

Doch zuerst die Definition der Addition von natürlichen Zahlen:

DEFINITION 227. Es seien $n, m \in \mathbb{N}$ sowie A ein Symbol. Dann sei

$$(n+m) \cdot A \equiv n \cdot A m \cdot A$$

Ich möchte nun zeigen:

Satz 228. Es seien $n, m \in \mathbb{N}$. Dann ist

$$n + (m+1) = (n+m) + 1$$

Nebenbemerkung: Mir fällt übrigens auf, dass oft von " $n,m \in \mathbb{N}$ " gesprochen wird: Im Alphabet ist ja der Buchstabe "m" vor dem Buchstaben "n". Der Grund, wieso dies so geschrieben wird, ist meines Erachtens der, weil "n" wohl die Abkürzung für "natürliche Zahl" ist. Würde nun der nächste Buchstabe genommen, dann müsste " $n,o \in \mathbb{N}$ " geschrieben werden. Jedoch ist o kein gutes Beispiel für einen Variablennamen. Darum kommt es meiner Ansicht nach zu dieser speziellen Reihenfolge. Jetzt aber zum Beweis des Satzes:

Beweise Sei A die Bezeichnung eines Symbols oder Metasymbols, welches in sich selbst und in Bezug auf die anderen Symbole des Beweises widerspruchsfrei ist. Dann gilt gemäß der Definition 215 der Addition der natürlichen Zahlen:

$$(n + (m+1)) A$$
$$= n \cdot A (m+1) \cdot A$$

Gemäß der Definition 204 der natürlichen Zahlen muss dann gelten

$$(m+1)\cdot A = m\cdot AA$$

Also kann ich gemäß dem zweiten Teil des Lemmas 183 über die Gleichheit von Teilsymbolen folgen, dass gilt:

$$n \cdot A (m+1) \cdot A = n \cdot A m \cdot A A$$

Die Gleichheit ist also im hinteren Teil des Symbols vorhanden. Und da die Gleichheit von Symbolen gemäß dem Lemma 234 eine Äquivalenzrelation und somit auch transitiv ist, kann ich daraus folgern, dass gilt

$$(n + (m+1)) A = n \cdot A m \cdot A A$$

Nun kann ich die Definition der Addition zweier natürlicher Zahlen wieder rückgängig machen. Ich beziehe mich dabei auch ausdrücklich darauf, dass gemäß dem Satz 184 die Verkettungen von Symbolen assoziativ sind. Ich erhalte

$$n \cdot A \, m \cdot A = (n+m) \cdot A$$

und kann wiederum aufgrund des Lemmas 183 über die Gleichheit von Teilsymbolen folgen, dass gilt:

$$n \cdot A m \cdot A A = (n+m) \cdot A A$$

Die Gleichheit ist jetzt jedoch auf dem vorderen Teil des Symbols vorhanden. Wiederum gemäß dem Lemma 234, welches besagt, dass die Äquivalenz und somit auch transitiv ist, kann ich daraus folgern, dass gilt

$$(n + (m+1)) \cdot A = (n+m) \cdot A A$$

Also kann ich gemäß der Definition 204 der natürlichen Zahlen wiederum schreiben

$$(n+m) \cdot AA = ((n+m)+1) \cdot A$$

Und noch ein letztes Mal kann ich das Lemma 234, welches besagt, dass die Äquivalenz und somit auch transitiv ist, zu Hilfe nehmen und erhalte die Gleichheit

$$(n + (m+1)) \cdot A = ((n+m) + 1) \cdot A$$

Nun kann ich aufgrund der Definition 204 der natürlichen Zahlen folgern, dass gelten muss:

$$n + (m + 1) = (n + m) + 1$$

Langer Rede kurzer Sinn behaupte ich, damit den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Weiter geht es mit Definitionen:

Definition 229. Es seien $n_1, n_2 \in \mathbb{N}$. Dann ist

$$n_1 < n_2$$

falls es ein $n_3 \in \mathbb{N}$ derart gibt, dass

$$n_2 = n_1 + n_3$$

ist. Weiter bedeute

$$(n_1 < n_2) \iff n_1 < n_2 \lor n_1 = n_2$$

Satz 230. Die Addition von natürlichen Zahlen ist assoziativ. Es seien also n_1, n_2 sowie $n_3 \in \mathbb{N}$. Dann ist

$$n_1 + (n_2 + n_3) = (n_1 + n_2) + n_3$$

BEWEIS. Der Beweis habe ich für $n_3=1$ bereits erbracht. Es ist ja gemäß dem vorhergehenden Satz 228

$$n_1 + (n_2 + 1) = (n_1 + n_2) + 1$$

Nun gelte der Satz für $n_3 \in \mathbb{N}$. Es sei also

$$n_1 + (n_2 + n_3) = (n_1 + n_2) + n_3$$

Dann gilt gemäß dem vorhergehenden Satz 228

$$n_2 + (n_3 + 1) = (n_2 + n_3) + 1$$

Gemäß dem Lemma 216 über Gleichheit der Addition mit gleichen Zahlen kann ich daraus schließen, dass gilt:

$$n_1 + (n_2 + (n_3 + 1))$$
= $n_1 + ((n_2 + n_3) + 1)$

Jetzt kann ich die Induktionsvoraussetzung für n_1 sowie n_2+n_3 verwenden. Ich erhalte

$$(n_1 + (n_2 + n_3)) + 1$$

= $n_1 + ((n_2 + n_3) + 1)$

Weiter kann ich den Satz 228 der Assoziativität der Addition mit 1 auf die Zahlen n_1 sowie $(n_2 + n_3)$ anwenden. Ich erhalte die Gleichheit

$$n_1 + ((n_2 + n_3) + 1) = (n_1 + (n_2 + n_3)) + 1$$

Nun kann ich endlich die Voraussetzung der Induktionsschrittes anwenden. Es muss also gelten

$$n_1 + (n_2 + n_3) = (n_1 + n_2) + n_3$$

Darum kann gemäß dem Lemma 216 über Gleichheit der Addition mit gleichen Zahlen schreiben:

$$(n_1 + (n_2 + n_3)) + 1 = ((n_1 + n_2) + n_3) + 1$$

Nun kann ich den Satz 228 über die Addition mit 1 sozusagen rückwärts anwenden. Es gilt

$$((n_1 + n_2) + n_3) + 1 = (n_1 + n_2) + (n_3 + 1)$$

Da die Gleichheit von Symbolen gemäß dem Satz 234 eine Äquivalenzrelation und gemäß der Definition 164 der Äquivalenzrelation auch transitiv ist, kann ich darum schließen

$$n_1 + (n_2 + (n_3 + 1)) = (n_1 + n_2) + (n_3 + 1)$$

Also habe ich den Induktionsschritt und somit die ganze Behauptung erbracht. Darum erlaube ich mir, an dieser Stelle die Beweisführung zu beenden.

Nachbemerkung: Eigentlich hätte ich einen einfacheren Beweis verwenden können, welcher nicht auf der vollständigen Induktion basiert. Denn die Assoziativität der Addition von natürlichen Zahlen kann mit meiner Definition der natürlichen Zahlen auf die Assoziativität von Symbolketten zurückgeführt werden. Ich probiere darum einen zweiten

BEWEIS. Es seien die natürlichen Zahlen n_1, n_2 sowie n_3 gegeben. Weiter sei A ein Metasymbol, welches in sich selbst und in Bezug auf die anderen Symbole des Beweises widerspruchsfrei seien. Dann kann ich gemäß der Definition 215 der Addition der natürlichen Zahlen schreiben

$$((n_1 + n_2) + n_3) \cdot A = (n_1 + n_2) \cdot A n_3 \cdot A$$

Gemäß der gleichen Definition 215 der Addition der natürlichen Zahlen kann ich schreiben

$$(n_1+n_2)\cdot A=n_1\cdot A\,n_2\cdot A$$

Nun muss gemäß ersten Teil des Lemmas 183 über die Gleichheit von Teilsymbolen gelten

$$(n_1 + n_2) \cdot A n_3 \cdot A = n_1 \cdot A n_2 \cdot A n_3 \cdot A$$

Da die Gleichheit von Symbolketten gemäß dem Lemma 234 eine Äquivalenzrelation ist und gemäß der Definition 164 der Äquivalenz somit auch transitiv ist, kann ich schließen, das gelten muss:

$$((n_1 + n_2) + n_3) \cdot A = n_1 \cdot A n_2 \cdot A n_3 \cdot A$$

Weiter nutze ich aus, dass die Verknüpfung von Symbolketten gemäß dem Lemma 184 assoziativ ist. Also kann ich wiederum gemäß der Definition 215 der Addition von natürlichen Zahlen und gemäß dem Umstand, dass die Gleichheit von Symbolketten gemäß dem Lemma 234 eine Äquivalenzrelation ist und gemäß der Definition 164 der Äquivalenz somit auch symmetrisch ist:

$$n_2 \cdot A n_3 \cdot A = (n_2 + n_3) \cdot A$$

Und wiederum gemäß dem zweiten Teil des Lemmas 183 der Gleichheit von Teilsymbolen muss gelten

$$n_1 \cdot A n_2 \cdot A n_3 \cdot A = n_1 \cdot A (n_2 + n_3) \cdot A$$

Da die Gleichheit von Symbolketten gemäß dem Lemma 234 eine Äquivalenzrelation ist und gemäß der Definition 164 der Äquivalenz somit auch transitiv ist, kann ich schließen, das gelten muss:

$$((n_1 + n_2) + n_3) \cdot A = n_1 \cdot A (n_2 + n_3) \cdot A$$

Nun kann ich noch einmal die Definition der 215 der Addition von natürlichen Zahlen heranziehen und kann darum schreiben

$$(n_1 + (n_2 + n_3)) \cdot A = n_1 \cdot A (n_2 + n_3) \cdot A$$

Da die Gleichheit von Symbolketten gemäß dem Lemma 234 eine Äquivalenzrelation und infolge dessen aufgrund der Definition 164 der Äquivalenzrelation auch symmetrisch ist, kann ich auch schreiben:

$$n_1 \cdot A (n_2 + n_3) \cdot A = (n_1 + (n_2 + n_3)) \cdot A$$

Schlussendlich kann ich noch einmal die Transitivität der Gleichheit von Symbolketten, welche gemäß dem Lemma 234 der Äquivalenzrelation und Definition 164 der Äquivalenzrelation vorhanden sein muss, verwenden um zu zeigen, dass gilt:

$$(n_1 + (n_2 + n_3)) \cdot A = (n_1 + (n_2 + n_3)) \cdot A$$

Damit glaube ich, erneut den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Und was ist die Kommutation? Die Kommutation ist eines der zentralen Gedanken in der Mathematik. Angenommen, Du möchtest am Morgen aus dem Haus und hast es eilig. Sollst Du zuerst hastig eine Tasse körperwarme Milch trinken und anschließend die Schuhe anziehen oder zuerst die Schuhe anziehen und anschließend die körperwarme Tasse Milch trinken? Ich denke, da spielt die Reihenfolge keine Rolle. Es gibt jetzt in der Mathematik viele Vorgänge, bei welchen es auf die Reihenfolge nicht darauf ankommt. Dann heißen diese Vorgänge kommutativ. Ein bekannteres Beispiel dafür ist die Addition von zwei Zahlen. In diesem Fall spielt es keine Rolle, ob 5 mit 3 oder 3 mit 5 addiert wird. Also wird die Addition kommutativ geheißen. Aber nicht alle Operationen sind so lieb! Um das Alltagsbeispiel weiter zu spinnen: Wenn Du anstatt Dich gefragt hättest, ob Du zuerst ein bestrichenes Brot hättest essen oder ob Du zuerst die Schuhe hättest anziehen sollen, dann sind diese zwei Vorgänge unter Umständen nicht kommutativ. Es hängt dann davon ab, ob Du mit dem Rad, mit dem Auto oder zu Fuß und dann mit der Straßenbahn, dem Bus oder dem Zug unterwegs bist. Hast Du Deine Hände frei, dann gewinnst Du Zeit, falls Du zuerst die Schuhe bindest und dann im Gehen das gestrichene Brot isst. Bist Du jedoch mit dem Rad oder mit dem Auto unterwegs, dann spielt es keine Rolle, ob Du zuerst die Schuhe bindest oder zuerst das bestrichene Brot isst (unter der Bedienung, dass Du beim Fahrradfahren kein Brot isst).

Ich möchte weiter mit der vollständigen Induktion arbeiten:

Satz 231. Die Addition von natürlichen Zahlen ist kommutativ. Es ist also für alle $n_1, n_2 \in \mathbb{N}$

$$n_2 + n_1 = n_1 + n_2$$

Beweis. Den Beweis möchte ich in zwei Teilen gestalten. Es sei A ein Symbol, welches in sich selbst und mit den anderen Symbolen dieses

Beweises widerspruchsfrei sei. Es sei $n_2=1$. Gemäß der Definition der Addition kann ich schreiben

$$(n_1+1)\cdot A=n_1\cdot AA$$

Dann muss zusammen mit dem Lemma 217 gelten

$$(n_1 + 1) \cdot A$$

$$= n_1 \cdot A A$$

$$= A n_1 \cdot A$$

$$= (1 + n_1) \cdot A$$

Somit kann ich folgern, dass gilt

$$n_1 + 1 = 1 + n_2$$

Nun sei $n_2 \neq 1$. Ich möchte nun zeigen, dass es dann für $n_4 \in \mathbb{N}$ mit $1 \leq n_4 < n_2$ gelten muss

$$(n_1 + n_2) \cdot A = (n_2 - n_4) \cdot A n_1 \cdot A (n_4) \cdot A$$

Den Anfang für $n_3 = 1$ sei wie folgt gemacht

$$(n_1 + n_2) \cdot A$$

$$= n_1 \cdot A n_2 \cdot A$$

$$= n_1 \cdot A n_3 \cdot A A$$

Nun muss gemäß dem Lemma 217 wiederum anwenden, diesmal jedoch auf das Symbol

$$n_1 \cdot A n_3 \cdot A$$

Ich erhalte die Aussage

$$n_1 \cdot A \, n_3 \cdot A = A \, n_1 \cdot A \, n_3 \cdot A$$

Dann kann ich genau die gleiche Aussage beliebig lange durchspielen, sofern n_3 ungleich 1 ist. Also erhalte ich für solche beliebigen n_3 die Aussage

$$(n_1 + n_2) \cdot A = (n_2 - n_3) \cdot A n_1 \cdot A n_3 \cdot A$$

da die Summe $n_2 - n_4 + n_4$ immer gleich viel sein muss, nämlich n_2 . Denn jedes Symbol, welches ich vom Symbol

$$n_2 \cdot A$$

wegnehme, muss ich links vom Symbol $n_1 \cdot A$ wieder einfügen. Ist jedoch

$$n_3 = 1$$

dann kann ich das Lemma 217 ein letztes Mal anwenden. Es resultiert

$$(n_1 + n_2) \cdot A$$
= $(n_2 - 1) \cdot A n_1 \cdot A \cdot A \cdot A$
= $(n_2 - 1) \cdot A n_1 \cdot A \cdot A$
= $(n_2 - 1) \cdot A \cdot A \cdot n_1 \cdot A$
= $n_2 \cdot A \cdot n_1 \cdot A$

was jedoch die Behauptung ist.

Lemma 232. Es sei $n \in \mathbb{N}$. Dann ist $n + 1 \neq 1$.

Beweis. Ist n = 1, dann möchte ich zeigen, dass

$$1 + 1 \neq 1$$

ist. Es sei A ein Symbol für ein beliebiges Symbol, welches jedoch nicht leer sein darf. Dann ist

$$\begin{array}{rcl} 1 \cdot A & \equiv & A \\ (1+1) \cdot A & \equiv & 1 \cdot A A = A A \end{array}$$

Da jedoch gemäß der Definition 1 gelten muss

$$A \neq A A$$

kann darum auch nicht

$$1 = 1 + 1$$

sein. Denn 1 und 1+1 habe ich ja als Metasymbole definiert. Und wenn die erzeugen Symbole nicht gleich sind, können es auch die erzeugenden Metasymbole nicht sein.

Es sei jetzt $n \in \mathbb{N}$. Gemäß der Konstruktion von natürlichen Zahlen muss das Symbol

$$(n+1)\cdot A$$

mindestens das Symbol

enthalten. Also kann ich gemäß der Definition 1 wiederum folgern, dass

$$1 \cdot A \equiv A \neq (n+1) \cdot A$$

und darum ebenso

$$1 \neq n+1$$

sein muss. Wiederum muss dies gelten, weil 1 sowie n+1 als Metasymbole definiert sind. Wenn dann die erzeugten Symbole nicht gleich sind, können auch die erzeugenden Metasymbole auch nicht gleich sein. Darum habe ich meines Erachtens das ganze Lemma bewiesen.

Lemma 233. Es seien A sowie B Metasymbole, welche gleich seien. Dann müssen die von A respektive B symbolisierten Symbolen aus gleich vielen einzelnen Symbolen zusammengesetzt sein.

Beweis. Das ist wieder so eine Fingerübung, welche daraus hinausläuft, dass Du zwar weniger über die Gleichheit von Symbolen, jedoch mehr über die vollständige Induktion erfahren kannst. Es seien also A und B Metasymbole und es sei A = B. Das von A symbolisierte Symbol sei aus einem einzelnen Symbol aufgebaut. Dann muss gemäß der Definition 1 auch B aus einem Symbol aufgebaut sein. Nun gelte die Behauptung für alle Symbole, welche aus $n \in \mathbb{N}$ Symbolen aufgebaut sei. Weiter sei A ein Symbol, welches aus n+1 Symbolen aufgebaut sei. Also muss ein Metasymbol A_{n+1} derart geben, dass das durch A_{n+1} symbolisierte Symbol aus einem Symbol aufgebaut ist. Ebenfalls muss es ein Metasymbol A_n derart derart geben, dass das durch A_n symbolisierte Symbol aus n Symbolen besteht. Weiter sei $A = A_{n+1} A_n$. Nun sei A = B. Gemäß der Definition 1 muss darum das durch B symbolisierte Symbol ebenfalls mit dem Symbol A_{n+1} beginnen. Wenn B keine weitere Symbole mehr enthalten würde, dann könnte B nicht mehr gleich A sein. Also muss auch das Symbol B_n welches entsteht, indem beim Symbol B das erste Symbol (A_{n+1}) entfernt wird ebenfalls gleich demjenigen von A_n symbolisierten Symbol sein. Also muss gemäß der Induktionsvoraussetzung die Anzahl der Symbole von A_n gleich derjenigen von B_n sein. Das sind jedoch gemäß der Induktionsvoraussetzung n Symbole. Also hat das durch B symbolisierte Symbol ebenfalls n+1Symbole besitzen. Damit ist jedoch die Induktionsvererbung und somit der ganze Induktionsbeweis erbracht. Da gemäß der Definition von Symbolen alle Symbole aus endlich viele Symbolen zusammengesetzt sind, halte ich den Beweis für erbracht.

Auch das folgende Lemma ist eigentlich eine Zumutung.

Lemma 234. Die unter der Definition 33 festgelegte Gleichheit ist eine Äquivalenzrelation.

BEWEIS. Es sei A das Symbol für ein Symbol. Dann ist A=A. Denn besteht das von A symbolisierte Symbol aus einem einzelnen Symbol, dann muss das Symbol gleich dem Symbol selbst sein. Angenommen, die Anzahl der Symbole, aus welchen A zusammengesetzt sei, sei $n \in \mathbb{N}$ und die Gleichheit von A=A sei bewiesen. Besteht A jedoch aus n+1 Symbolen, dann kann ich schreiben

$$A = A_{n+1} A_n$$

Das Symbol A_n besteht dabei aus n Symbolen, das Symbol A_{n+1} ist aus einem Symbol aufgebaut. Dann muss gemäß der Induktionsverankerung und der Voraussetzung der Induktionsvererbung gelten, dass

$$A_{n+1} = A_{n+1}$$

sowie

$$A_n = A_n$$

ist. Also kann ich gemäß der Definition 33 der Gleichheit von Symbolen schließen, dass

$$A_{n+1} A_n = A_{n+1} A_n$$

ist. Also muss die Behauptung auch für Symbole A gelten, welche n+1 Symbole besitzen. Da gemäß Voraussetzung alle Symbole aus endlich vielen Elementen aufgebaut sind, glaube ich schließen zu dürfen, dass dies für alle Symbole gelten muss. Nun seien A und B Symbole von Symbolen, wobei

$$A = B$$

sei. Falls A ein Symbol symbolisiert, dann muss gemäß der Definition 1 der Gleichheit von Symbolen das Symbol B ebenfalls ein Symbol symbolisieren. Also müssen die beiden Symbole identisch sein. Es sei C das Symbol welches dieses gemeinsame Symbol symbolisiere. Also ist, da jedes Symbol gleich zu sich selbst ist.

$$C = C$$

Darum kann ich auch schreiben

$$B = A$$

Die Behauptung sei jetzt für $n \in \mathbb{N}$ Symbole bewiesen. Zeigt sowohl A wie auch B auf Symbole, welche auf $n \in \mathbb{N}$ aufgebaut sind, dann muss gelten, dass aus

$$A = B$$

ebenfalls

$$B = A$$

folgt. Nun sei A ein Symbol, welches ein Symbol symbolisiert, welches aus n+1 Symbolen aufgebaut ist. Also muss gelten

$$A = A_{n+1} A_n$$

wobei A_{n+1} ein Symbol symbolisiert, welches aus einem Symbol aufgebaut ist. A_n ist ein Symbol, welches aus n Symbolen aufgebaut ist. Gemäß dem Lemma 233 muss ebenfalls gelten

$$B = B_{n+1} B_n$$

wobei B_n ebenfalls aus n Symbolen aufgebaut ist. Also muss aufgrund der Definition der Gleichheit von Symbolen gelten, dass

$$A_{n+1} = B_{n+1}$$

Da nun A_n aus n Symbolen zusammengesetzt ist, kann ich aufgrund der Induktionsvoraussetzung folgern, dass

$$A_n = B_n$$

sein muss und A_n wie auch B_n aus n Symbolen zusammengesetzt sein müssen. Weiter kann ich aufgrund der Induktionsvoraussetzung ebenfalls folgern, dass

$$B_{n+1} = A_{n+1}$$

762

sowie

$$B_n = A_n$$

gelten muss. Das bedeutet jedoch auch, dass

$$B = B_{n+1} B_n = A_{n+1} A_n = A$$

sein muss. Also habe ich die Symmetrie der Gleichheit von Symbolen gezeigt.

Nun kommt die Frage der Transitivität der Gleichheit von Symbolen. Es seien A, B sowie C Metasymbole. Weiter sei A = B sowie B = C. Das von A symbolisierte Symbol bestehe aus einem Symbol bestehe aus einem Symbol. Also muss auch B gemäß der Definition von Symbolen aus einem Symbol bestehen. Da B = C ist, muss gemäß der Definition von Symbolen ebenfalls C aus einem Symbol bestehen. Wäre nun das von C symbolisierte Symbol ungleich dem von A symbolisierten Symbol, dann müsste, da B = C ist, auch das von B symbolisierte Symbol ungleich dem von A symbolisierten Symbol sein. Das ist jedoch gemäß der Voraussetzung über A und B nicht wahr. Also muss das von C symbolisierte Symbol gleich dem von A symbolisierten Symbol sein. Darum glaube ich, schreiben zu können, dass

$$A = C$$

ist. Nun sei die Behauptung für Symbolen bewiesen, welche aus $n \in \mathbb{N}$ Symbolen bestehen. Besteht als A aus n Symbolen und ist

$$A = B$$

sowie

$$B = C$$

dann muss auch

$$A = C$$

sein. Nun bestehe A aus n+1 Symbolen. Also muss es ein Symbole A_{n+1} sowie A_n derart geben, dass

$$A = A_{n+1} A_n$$

Dabei besteht A_{n+1} aus einem Symbol und A_n aus n Symbolen. Nun sei

$$A = B$$

Gemäß dem Lemma 233 muss B ebenfalls aus n+1 Symbolen bestehen. Also kann ich wieder schreiben

$$B = B_{n+1} B_n$$

sein. Wobei B_{n+1} aus einem Symbol und B_n aus n Symbolen besteht. Da B=C ist, muss gemäß dem Lemma 233 wiederum gelten, dass C wiederum aus n+1 Symbolen bestehen. Also kann ich wiederum schreiben

$$C = C_{n+1} C_n$$

Nun kann ich schließen, dass aufgrund der Definition 1der Gleichheit von Symbolen gelten muss:

$$A_{n+1} = B_{n+1}$$

$$B_{n+1} = C_{n+1}$$

$$A_n = B_n$$

$$B_n = C_n$$

Nun sind A_n , B_n , C_n , A_{n+1} , B_{n+1} wie auch C_{n+1} Metasymbole, welche auf Symbole verweisen, welche aus höchstens n Symbolen zusammengesetzt sind. Darum kann ich aufgrund der Induktionsvoraussetzung und der Induktionsverankerung schließen, dass gelten muss

$$A_{n+1} = C_{n+1}$$
$$A_n = C_n$$

Somit muss aufgrund der Definition 1 der Gleichheit von Symbolen schließen, dass

$$A = C$$

ist. Somit hätte ich den Induktionsschritt und damit auch den ganzen Induktionsbeweis erbracht. Nun ist also klar, dass die Gleichheit von Symbolen ebenfalls transitiv sein muss. Damit hätte ich jedoch (endlich) den ganzen Induktionsbeweis erbracht.

Was jetzt kommt, ist einerseits sehr einfach - andererseits äußerst kompliziert. Um was geht es? Ich habe die Gleichheit von natürlichen Zahlen habe ich unter dem Kapitel 33 festgelegt. Nun möchte ich zeigen, dass diese Gleichheit wirklich eine Gleichheit im mathematischen Sinn

Satz 235. Die Gleichheit von natürlichen Zahlen ist transitiv.

BEWEIS. Es sei A ein beliebiges (jedoch "vernünftig" gewähltes) Metasymbol sowie a_1, a_2 sowie $a_3 \in \mathbb{N}$ Weiter sei $a_1 = a_2$ und $a_1 = a_3$. Doch was bedeutet dies? Ist $a_1 = 1$, dann muss gelten

$$a_1 \cdot A \equiv A$$

Da nun

$$a_1 \cdot A = a_2 \cdot A$$

sein soll, muss auch gelten

$$a_2 \cdot A = A$$

Daraus kann ich schließen, dass gelten muss

$$a_2 = 1$$

Da jetzt nach Voraussetzung gelten muss, dass $a_2 = a_3$ ist, muss also gelten

$$a_3 \cdot A = 1 \cdot A = A$$

Also kann ich erneut schließen, dass gilt

$$a_3 = 1$$

Somit wäre für $a_1=1$ die Behauptung bewiesen. Nun sei $n\in\mathbb{N}$ sowie $a_1=n+1$ und $a_2=a_1$. Das Lemma 232 lehrt mich nun, dass $a_2\neq 1$ sein muss. Also muss es ein $m\in\mathbb{N}$ mit

$$a_2 = m + 1$$

geben. Also gilt

$$n + 1 = m + 1$$

Also kann ich gemäß dem Lemma 226 folgern, dass m=n sein muss. Genau die gleiche Argumentation kann ich für a_3 anstellen. Aus

$$a_3 = a_2 = n + 1$$

kann ich gemäß dem Lemma 232 folgern

$$m = n$$

Also ist wiederum

$$a_3 = n + 1$$

Also kann ich wiederum schließen:

$$a_3 = a_1$$

Also hätte ich den Induktionsschritt und somit den ganzen Induktionsbeweis erbracht.

DEFINITION 236. Es seien n_1, n_2 natürliche Zahlen. Dann sei $n_1 \le n_2$ genau dann, falls $n_1 = n_2$ ist oder es eine natürliche Zahl n_3 derart gibt, dass gilt

$$n_1 + n_3 = n_2$$

Umgangssprachlich kann ich den Sachverhalt so ausdrücken: n_1 ist genau dann kleiner oder gleich n_2 , falls beide Zahlen identisch sind oder n_2 ein (direkter oder indirekter) Nachfolger von n_1 ist.

SATZ 237. Es sei A eine Aussage, für welche gilt: Ist n = 1, dann folgt daraus die Aussage A. Ist $n \in \mathbb{N}$ und nehme ich an, dass für alle $m \in \mathbb{N}$ mit $m \le n$ die Aussage A, dann folgt für n + 1 wiederum die Aussage A. Also gilt für alle $n \in \mathbb{N}$ die Aussage.

Beweis. Ich weiß, dass ich den Beweis bereits einmal erbracht habe. Aber ich weiß nicht mehr, wie er funktioniert... Nun, so ungewöhnlich ist diese Situation schon nicht. Aber sie ist ärgerlich. Also mache ich mich auf die erneute Suche nach diesem Beweis:

Es gilt also

$$(n = 1 \Rightarrow A(n))$$

$$\wedge (((n \in \mathbb{N}) \wedge (m \in \mathbb{N}) \wedge (m \leq n) \Rightarrow A(m)) \Rightarrow (A(n) \Rightarrow A(n+1)))$$

$$\Rightarrow (n \in \mathbb{N} \Rightarrow A(n))$$

Ich nehme an, dass es eine Aussage, welche von der Zahl n abhängt, geben könnte, dass die erweiterte vollständige Induktion nicht gilt. Also müsste die Aussage

$$n \in \mathbb{N} \Rightarrow A(n)$$

nicht gelten. Also müsste es ein $n \in \mathbb{N}$ der
art geben, dass die Aussage

$$\neg (A(n))$$

gilt.

KAPITEL 36

Abschätzung des Quotienten zweier Potenzreihen

Ich habe zwei Potenzreihen f(x) sowie g(x) welche für alle nicht-negativen reellen Zahlen definiert sei. Es gelte also:

$$f(x) = \sum_{k \in \mathbb{N}} a_k \cdot x^k$$

respektive

$$g(x) = \sum_{k \in \mathbb{N}} b_k \cdot x^k$$

wobei alle $a_k, b_k \in \mathbb{R}$ seien für $k \in \mathbb{N}_0$. Weiter sei

$$\lim_{k \to \infty} \frac{a_k}{b_k} = c \in \mathbb{R}$$

und $g(x) \neq 0$ für genügend große x.

Dann ist

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = c$$

Beweis:

Es sei $\epsilon \in \mathbb{R}$. Dann gilt nach Voraussetzung:

(32)
$$\exists n_0 \in \mathbb{R} \, \forall n \in \mathbb{N} \, n > n_0 \, \left| \frac{a_n}{b_n} - c \right| < \frac{\epsilon}{3}$$

Es sei jetzt $n \in \mathbb{N}$ mit $n > n_0$. Dann gilt für dieses
n die obige Aussage. Da nun

$$\frac{a_n}{b_n} - c \in \mathbb{R}$$

liegt, muss b_n ebenfalls eine reelle Zahl sein. Bestimme nun $x_0 \in \mathbb{R}$ derart, dass

$$\left| \frac{\sum_{k=0}^{n} a_k \cdot x^{n-k}}{\sum_{k=0}^{n} b_k \cdot x^{n-k}} - \frac{a_n}{b_n} \right| < \frac{\epsilon}{3}$$

ist für alle $x > x_0$. Auch dies ist möglich, denn aus

$$\lim_{x \to \infty} \sum_{k=0}^{n} a_k \cdot x^{n-k} = a_n$$

sowie

$$\lim_{x \to \infty} \sum_{k=0}^{n} b_n \cdot x^{n-k} = b_n$$

folgt aus Satz 42.1 des Buchs von Heuser

$$\lim_{x \to \infty} \frac{\sum_{k=0}^{n} a_k \cdot x^{n-k}}{\sum_{k=0}^{n} b_k \cdot x^{n-k}} = \frac{a_n}{b_n}$$

Dies bedeutet, dass es ein solches x_0 mit der gewünschten Eigenschaft geben muss. es sei nun $x>x_0$. Entsprechend ist nun

$$\left| \frac{\sum_{k=0}^{n} a_k \cdot x^{n-k}}{\sum_{k=0}^{n} b_k \cdot x^{n-k}} - \frac{a_n}{b_n} \right| = \left| \frac{\sum_{k=0}^{n} a_k \cdot x^k}{\sum_{k=0}^{n} b_k \cdot x^k} - \frac{a_n}{b_n} \right| < \frac{\epsilon}{3}$$

Bestimme zuletzt ein $n_1 > n_0$ mit

$$\left| \frac{\sum_{k=0}^{n} a_k \cdot x^k}{\sum_{k=0}^{n} b_k \cdot x^k} - \frac{f(x)}{g(x)} \right| < \frac{\epsilon}{3}$$

Dieses n_1 muss vorhanden sein, denn mit $\lim_{n\to\infty} \sum_{k=0}^n a_k \cdot x^k = f(x)$ und $\lim_{n\to\infty} \sum_{k=0}^n a_k \cdot x^k = g(x) \neq 0$ für genügend große $x \in \mathbb{R}$ gilt nach dem Divisionssatz für Folgen

$$\lim_{x \to \infty} \frac{\sum_{k=0}^{n} a_k \cdot x^k}{\sum_{k=0}^{n} b_k \cdot x^k} = \frac{f(x)}{g(x)}$$

Daraus folgt die Behauptung. Nun ist also für genügend große ${\bf x}$ und n

$$\left| \frac{f(x)}{g(x)} - c \right| = \left| \frac{f(x)}{g(x)} - \frac{\sum_{k=0}^{n} a_{k} \cdot x^{k}}{\sum_{k=0}^{n} b_{k} \cdot x^{k}} + \frac{\sum_{k=0}^{n} a_{k} \cdot x^{k}}{\sum_{k=0}^{n} b_{k} \cdot x^{k}} - c \right| \\
\leq \left| \frac{f(x)}{g(x)} - \frac{\sum_{k=0}^{n} a_{k} \cdot x^{k}}{\sum_{k=0}^{n} b_{k} \cdot x^{k}} \right| + \left| \frac{\sum_{k=0}^{n} a_{k} \cdot x^{k}}{\sum_{k=0}^{n} b_{k} \cdot x^{k}} - c \right| \\
< \frac{\epsilon}{3} + \left| \frac{\sum_{k=0}^{n} a_{k} \cdot x^{k}}{\sum_{k=0}^{n} b_{k} \cdot x^{k}} - c \right| \\
< \frac{\epsilon}{3} + \left| \frac{\sum_{k=0}^{n} a_{k} \cdot x^{n-k}}{\sum_{k=0}^{n} b_{k} \cdot x^{n-k}} - \frac{a_{n}}{b_{n}} + \frac{a_{n}}{b_{n}} - c \right| \\
\leq \frac{\epsilon}{3} + \left| \frac{\sum_{k=0}^{n} a_{k} \cdot x^{n-k}}{\sum_{k=0}^{n} b_{k} \cdot x^{n-k}} - \frac{a_{n}}{b_{n}} \right| + \left| \frac{a_{n}}{b_{n}} - c \right| \\
< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

Dies bedeutet jedoch gerade

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = c$$

Damit ist der Beweis geführt.

Falls nun

$$\lim_{k \to \infty} \frac{a_k}{b_k} = \infty$$

ist, dann ist zu zeigen, dass

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$$

gilt.

Beweis:

Es sei nun

$$\lim_{k \to \infty} \frac{a_k}{b_k} = \infty$$

Dies bedeutet, dass für alle $\epsilon \in \mathbb{R}^+$ ein $n_0 \in \mathbb{N}$ gibt, so dass für alle $n \in \mathbb{N}$ mit $n > n_0$ gilt

$$\frac{a_n}{b_n} > \frac{3}{\epsilon}$$

Nun sei also $n > n_0$ mit

$$\frac{a_n}{b_n} > \frac{3}{\epsilon}$$

Nun kann $b_n=0$ sein. Ist dies der Fall, dann kann a_n nicht auch gleich Null sein, denn ansonsten wäre Wert des Bruch endgültig nicht mehr bestimmt. Also muss $a_n>0$ sein. Bestimme nun ein x_0 mit

$$\frac{a_n}{b_n} - \frac{\sum_{k=0}^{n} a_k \cdot x^{n-k}}{\sum_{k=0}^{n} b_k \cdot x^{n-k}} > \frac{2}{\epsilon}$$

Dieses x_0 muss existieren, denn

$$\lim_{x \to \infty} \sum_{k=0}^{n} a_k \cdot x^{n-k} = a_n$$

respektive

$$\lim_{x \to \infty} \sum_{k=0}^{n} b_k \cdot x^{n-k} = b_n$$

also existiert nach dem Satz 42.1 vom Heuser ein x_0 mit der gewünschten Eigenschaft.

Nun sei also $x \in \mathbb{R}$ mit $x > x_0$ mit der gewünschten Eingenschaft

$$\frac{a_n}{b_n} - \frac{\sum_{k=0}^{n} a_k \cdot x^{n-k}}{\sum_{k=0}^{n} b_k \cdot x^{n-k}} > \frac{2}{\epsilon}$$

Bestimme nun ein $n_1 \in \mathbb{N}$ mit $n_1 > n_0$ und der Eigenschaft dass $\forall n \in \mathbb{N}$ mit $n > n_0$ gilt

$$\frac{f(x)}{g(x)} - \frac{\sum_{k=0}^{n} a_k \cdot x^{n-k}}{\sum_{k=0}^{n} b_k \cdot x^{n-k}} < \frac{1}{\epsilon}$$

Nun sei also $n > n_0$ und darum

$$\frac{f(x)}{g(x)} - \frac{\sum_{k=0}^{n} a_k \cdot x^{n-k}}{\sum_{k=0}^{n} b_k \cdot x^{n-k}} > -\frac{1}{\epsilon}$$

Dann ist insgesamt

$$\frac{f(x)}{g(x)} = \left(\frac{f(x)}{g(x)} - \frac{\sum_{k=0}^{n} a_k \cdot x^{n-k}}{\sum_{k=0}^{n} b_k \cdot x^{n-k}}\right) + \left(\frac{\sum_{k=0}^{n} a_k \cdot x^{n-k}}{\sum_{k=0}^{n} b_k \cdot x^{n-k}} - \frac{a_n}{b_n}\right) \\
> \frac{2}{\epsilon} - \frac{1}{\epsilon} = \frac{1}{\epsilon}$$

Das bedeutet jedoch, dass

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$$

ist, wobei der Beweis erbracht wurde.

Falls

$$\lim_{k\to\infty}\frac{a_k}{b_k}=-\infty$$

dann ist zu zeigen, dass ebenfalls

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = -\infty$$

ist.

Beweis:

Da also nach Voraussetzung

$$\lim_{k\to\infty}\frac{a_k}{b_k}=-\infty$$

ist, gibt es nach für alle $\epsilon \in \mathbb{R}^+$ ein $n_0 \in \mathbb{N}$, so dass $\forall n \in \mathbb{N}$, für welche $n > n_0$ ist,

$$\frac{a_k}{b_k} < -\frac{3}{\epsilon}$$

Da

$$\lim_{x \to \infty} \sum_{k=0}^{n} a_k \cdot x^{n-k} = a_n$$

sowie

$$\lim_{x \to \infty} \sum_{k=0}^{n} b_k \cdot x^{n-k} = b_n$$

KAPITEL 37

Größter Gemeinsamer Teiler

Der größte gemeinsame Teiler geht auf die Zeit zurück, in welcher das Rechnen von Hand ausgeführt wurde. Denn das Bruchrechnen von Zahlen der Form

$$q \equiv \frac{z}{n}$$

wobei $z \in \mathbb{Z}$ und $n \in \mathbb{N}$ sei, ist einfacher, falls angenommen wird, dass der Zähler (mit der Bezeichnung z) und der Nenner (mit der Bezeichnung n) keine gemeinsamen Teiler mehr besitzen. Sind also zwei ganze Zahlen

$$z_1, z_2 \in \mathbb{Z}$$

gegeben, wobei ich annehmen kann, dass weder z_1 noch z_2 den Wert 0 besitzen, dann heiße $t \in \mathbb{N} \setminus \{1\}$ ein gemeinsamer Teiler von z_1 und z_2 sei, falls gilt

$$\frac{|z_1|}{t} \in \mathbb{N} \wedge \frac{|z_2|}{t} \in \mathbb{N}$$

Ich mache ein Beispiel: Es seien $z_1 = -48$ und $z_2 = 18$. Also ist

$$t=2$$

ein gemeinsamer Teiler von z_1 und z_2 . Denn es ist

$$\frac{|-48|}{2} = \frac{48}{2} = 24 \in \mathbb{N}$$

wie auch

$$\frac{18}{2} = 9 \in \mathbb{N}$$

Jedoch ist 12 kein gemeinsamer Teiler von -48 und 18. Denn es ist zwar

$$\frac{|-48|}{12} = 4 \in \mathbb{N}$$

jedoch

$$\frac{18}{12} = \frac{3}{2} \in \mathbb{Q} \backslash \mathbb{N}$$

Und um zu zeigen, wie größte gemeinsame Teiler das Rechnen mit Bruchzahlen vereinfachen sollen, sei an der Rechnung

$$\frac{145}{45} - \frac{21}{15}$$

demonstriert. Ich kann zwar die Rechnung machen in dem ich sie umschreibe in

$$\frac{145}{45} - \frac{21}{15} = \frac{145 \cdot 15}{45 \cdot 15} - \frac{21 \cdot 45}{15 \cdot 45}$$

Anschließend benutze ich die Eigenschaft, dass die Multiplikation kommutativ ist. Es gilt also

$$45 \cdot 15 = 15 \cdot 45$$

und somit

$$\frac{145 \cdot 15}{45 \cdot 15} - \frac{21 \cdot 45}{15 \cdot 45} = \frac{145 \cdot 15}{45 \cdot 15} - \frac{21 \cdot 45}{45 \cdot 15}$$

Also kann ich schreiben

$$\frac{145}{45} - \frac{21}{15} = \frac{145 \cdot 15 - 21 \cdot 45}{45 \cdot 15}$$

Und dann rechne ich die einzelnen Größen aus:

Berechnung von $15 \cdot 45$

$$\begin{array}{r}
 \begin{array}{r}
 15 \\
 45 \\
 \hline
 75 \\
 \hline
 60 \\
 \hline
 675 \\
\end{array}$$

Berechnung von $145 \cdot 15$

Berechnung von $21\cdot 45$

$$\begin{array}{r}
 21 \\
 45 \\
 \hline
 105 \\
 84 \\
 \hline
 945 \\
\end{array}$$

Die Ergebnisse dieser Berechnungen muss ich jetzt in die Rechnung einfügen. Es resultiert

$$\frac{145}{45} - \frac{21}{15} = \frac{2175 - 945}{675}$$

Wieder muss

Berechnung von
$$2175 - 945$$

$$- \frac{2175}{945}$$

$$1230$$

Also ist das Resultat

$$\frac{145}{45} - \frac{21}{15} = \frac{2175 - 945}{675} = \frac{1230}{675} = 1.8\overline{2}$$

Dabei bedeute der Balken über der letzten 2 im Resultat, dass alle folgenden Ziffern Zwei sind. Ein wenig unpräzise könnte ich also schreiben

$$1.8\overline{2} = 1.822222...$$

Ich überprüfe die Rechnung noch einmal, indem ich die Zahlen in gerundete Dezimalzahlen umschreibe:

$$\frac{145}{45} \approx 3.22$$

$$\frac{21}{15} = 1.4$$

Berechnung von 3.22 - 1.4

$$\frac{-3.2 \ 2}{1.4} \\ -1.8 \ 2$$

Also müsste gelten

$$\frac{145}{45} - \frac{21}{15} \approx 1.82$$

Ja, das sieht doch so aus, als ob meine Berechnung richtig ist. Und jetzt ist die Frage, ob die obige Rechnung vereinfacht werden könnte, und wenn ja, zu welchem Preis? Die Idee ist, dass von den rationalen Zahlen

$$\frac{145}{45}$$

und

$$\frac{21}{15}$$

gemeinsame Faktoren von Zähler und Nenner gesucht werden. Diese Suche entspricht der Suche nach dem größten gemeinsamen Teiler.

$$145 = 5 \cdot 29$$

$$45 = 5 \cdot 3^2$$

Also ist

$$\frac{145}{45} = \frac{5 \cdot 29}{5 \cdot 3^2} = \frac{29}{3^2} = \frac{29}{9}$$

Ebenso ist

$$21 = 3 \cdot 7$$

$$15 = 3 \cdot 5$$

und somit

$$\frac{21}{15} = \frac{3 \cdot 7}{3 \cdot 5} = \frac{7}{5}$$

Dann kann ich schreiben

$$\frac{145}{45} - \frac{21}{15}$$

$$= \frac{29}{9} - \frac{7}{5}$$

$$= \frac{29 \cdot 5}{45} - \frac{7 \cdot 9}{45}$$

$$= \frac{145}{45} - \frac{63}{45}$$

$$= \frac{145 - 63}{45}$$

Somit ist das Resultat

$$\frac{145}{45} - \frac{21}{15} = \frac{82}{45} = 1.8\overline{2}$$

Damit hat sich die Rechnung meines Erachtens schon ein wenig vereinfacht.

Ich frage mich jedoch, ob

$$\frac{82}{45}$$

einfacher zu beschreiben ist.

$$82 = 2 \cdot 41$$

$$45 = 3^2 \cdot 5$$

Da

$$\frac{100}{45} = \frac{2^2 \cdot 5^2}{3^3 \cdot 5} = \frac{2^2 \cdot 5}{3^3} = \frac{20}{9} = 2 + \frac{2}{9}$$

ist, kann ich schreiben

$$\frac{82}{45}$$

$$= 1 + \frac{82 - 45}{45}$$

$$= 1 + \frac{37}{45}$$

$$= 1 + \frac{1}{10} \cdot \frac{370}{45}$$

$$= 1 + \frac{1}{10} \cdot \left(8 + \frac{370 - 8 \cdot 45}{45}\right)$$

$$= 1 + \frac{1}{10} \cdot \left(8 + \frac{370 - 360}{45}\right)$$

$$= 1 + \frac{1}{10} \cdot \left(8 + \frac{10}{45}\right)$$

$$= 1 + \frac{1}{10} \cdot \left(8 + \frac{2}{9}\right)$$

$$= 1 + \frac{8}{10} + \frac{2}{90}$$

$$= 1 + \frac{4}{5} + \frac{1}{45}$$

Es sei allerdings dahingestellt, ob meine Darstellung des Bruchs Sinn macht. Doch zurück zum Begriff des größten gemeinsamen Teilers:

DEFINITION 238. Es seien $n_1, n_2 \in \mathbb{N}$. Dann sei der größte gemeinsame Teiler wie folgt bezeichnet:

$$\gcd(n_1, n_2) : \mathbb{N}^2 \to \mathbb{N}$$

$$(n_1, n_2) \mapsto \max \left\{ n \in \mathbb{N} \mid \frac{n_1}{n}, \frac{n_2}{n} \in \mathbb{N} \right\}$$

In er Mathematik wird ab und an "ggT" anstatt "gcd" verwendet. Dabei heißt "ggT" größter gemeinsamer Teiler und "gcd" "greatest common divisor". "greatest common divisor" heißt Wort für Wort das gleiche wie "größter gemeinsamer Teiler".

Der Ausdruck "gcd (n_1, n_2) " ist eine Funktion, welche eine linkstotale und rechtseindeutige Relation von $\mathbb{N}^2 \times \mathbb{N}$ ist.

Nun gibt es mehr oder weniger sinnvolle Arten, wie ich für zwei Zahlen der größten gemeinsamen Teiler bestimme. Zuerst möchte ich übliche Art der Bestimmung des größten gemeinsamen Teilers zeigen.

Satz 239. Es seien $n_1, n_2 \in \mathbb{N}$ sowie

$$n_1 = \prod_{k \in \mathbb{N}} p_k^{l_1(k)}, n_2 = \prod_{k \in \mathbb{N}} p_k^{l_2(k)}$$

mit

 $p_k \in \mathbb{P} \equiv Menge \ der \ Primzahlen$

776

sowie

$$l_1(k), l_2(k) \in \mathbb{N}_0$$

Dann gilt

$$\gcd(n_{1}, n_{2}) = \prod_{k \in \mathbb{N}} p_{k}^{\min\{l_{1}(k), l_{2}(k)\}}$$

Beweis. Es seien $n_1, n_2 \in \mathbb{N}$ sowie

$$n_1 = \prod_{k \in \mathbb{N}} p_k^{l_1(k)}, \ n_2 = \prod_{k \in \mathbb{N}} p_k^{l_2(k)}$$

und

$$\gcd(n_1, n_2) = \prod_{k \in \mathbb{N}} p_k^{l_3(k)}$$

mit

 $p_k \in \mathbb{P} \equiv \text{Menge der Primzahlen}$

sowie für alle $k \in \mathbb{N}$

$$l_1(k), l_2(k), l_3(k) \in \mathbb{N}_0$$

also muss gelten

$$\frac{n_1}{\gcd(n_1, n_2)}$$

$$= \frac{\prod_{k \in \mathbb{N}} p_k^{l_1(k)}}{\prod_{k \in \mathbb{N}} p_k^{l_3(k)}}$$

$$= \prod_{k \in \mathbb{N}} p_k^{l_1(k) - l_3(k)}$$

und entsprechend

$$\frac{n_2}{\gcd(n_1, n_2)}$$

$$= \frac{\prod_{k \in \mathbb{N}} p_k^{l_2(k)}}{\prod_{k \in \mathbb{N}} p_k^{l_3(k)}}$$

$$= \prod_{k \in \mathbb{N}} p_k^{l_2(k) - l_3(k)}$$

Gäbe es eine Zahl $m \in \mathbb{N} \setminus \{1\}$ derart, dass

$$\frac{\frac{n_1}{\gcd(n_1,n_2)}}{m} = \frac{n_1}{m \cdot \gcd\left(n_1,n_2\right)} \in \mathbb{N}$$

sowie

$$\frac{\frac{n_2}{\gcd(n_1, n_2)}}{m} = \frac{n_2}{m \cdot \gcd(n_1, n_2)} \in \mathbb{N}$$

dann wäre

$$m \cdot \gcd(n_1, n_2) > \gcd(n_1, n_2)$$

der größte gemeinsame Teiler, jedoch im Widerspruch zur Definition über den größten gemeinsamen Teiler. Also kann eine solche Zahl nicht existieren. Ich nehme an, dass es ein $k_0 \in \mathbb{N}$ derart gäbe, dass gilt

$$l_1(k_0) - l_3(k_0) > 0 \land l_2(k_0) - l_3(k_0) > 0$$

Dann müsste mit

$$\rho \equiv \min \{l_1(k_0) - l_3(k_0), l_2(k_0) - l_3(k_0)\} > 0$$

gelten

$$\begin{split} &\frac{\frac{n_1}{\gcd(n_1,n_2)}}{p_{k(0)}^{\rho}} \\ &= &\frac{\prod_{k \in \mathbb{N}} p_k^{l_1(k)-l_3(k)}}{p_{k(0)}^{\rho}} \\ &= &\frac{\prod_{k \in \mathbb{N}} p_k^{l_1(k)-l_3(k)}}{p_{k(0)}^{\rho}} \\ &= &\prod_{k \in \mathbb{N} \land k \in \mathbb{N} \land k < k (0)} p_k^{l_1(k)-l_3(k)} \cdot p_{k(0)}^{l_1(k)-l_3(k)-\rho} \cdot \prod_{k \in \mathbb{N} \land k < k (0)} p_k^{l_1(k)-l_3(k)} \in \mathbb{N} \end{split}$$

da mit

$$\rho \le l_1(k) - l_3(k)$$

eben gilt

$$0 \le l_1(k) - l_3(k) - \rho$$

und somit

$$p_{k(0)}^{l_1(k)-l_3(k)-m} \ge p_{k(0)}^0 = 1$$

also

$$p_{k(0)}^{l_1(k)-l_3(k)-\rho} \in \mathbb{N}$$

Mit

$$\prod_{\substack{k \in \mathbb{N} \land \\ k < k (0)}} p_k^{l_1(k) - l_3(k)} \in \mathbb{N}$$

und

$$\prod_{\substack{k \in \mathbb{N} \land \\ k > k (0)}} p_k^{l_1(k) - l_3(k)} \in \mathbb{N}$$

muss also das Produkt dreier natürlicher Zahlen immer noch natürlich sein. Auf haargenau gleiche Art kann ich zeigen, dass ebenfalls gelten müsste:

$$\frac{\frac{n_2}{\gcd(n_1, n_2)}}{p_{k(0)}^{\rho}} \in \mathbb{N}$$

Denn es müsste gelten:

$$\begin{split} &\frac{\frac{n_2}{\gcd(n_1,n_2)}}{p_{k(0)}^{\rho}} \\ &= &\frac{\prod_{k \in \mathbb{N}} p_k^{l_2(k)-l_3(k)}}{p_{k(0)}^{\rho}} \\ &= &\prod_{\substack{k \in \mathbb{N} \land \\ k < k \ (0)}} p_k^{l_2(k)-l_3(k)} \cdot p_{k(0)}^{l_2(k)-l_3(k)-\rho} \cdot &\prod_{\substack{k \in \mathbb{N} \land \\ k > k \ (0)}} p_k^{l_2(k)-l_3(k)} \in \mathbb{N} \end{split}$$

da mit

$$\rho \le l_2(k) - l_3(k)$$

eben gilt

$$0 \le l_2(k) - l_3(k) - \rho$$

und somit

$$p_{k(0)}^{l_2(k)-l_3(k)-m} \ge p_{k(0)}^0 = 1$$

also

$$p_{k(0)}^{l_2(k)-l_3(k)-\rho} \in \mathbb{N}$$

Mit

$$\prod_{\substack{k \in \mathbb{N} \land \\ k < k (0)}} p_k^{l_2(k) - l_3(k)} \in \mathbb{N}$$

und

$$\prod_{\substack{k \in \mathbb{N} \land \\ k > k (0)}} p_k^{l_2(k) - l_3(k)} \in \mathbb{N}$$

muss also das Produkt dreier natürlicher Zahlen immer noch natürlich sein.

Also hätte ich mit

$$m \equiv p_{k(0)}^{\rho} \ge p_{k(0)} > 1$$

und

$$\frac{\frac{n_1}{\gcd(n_1, n_2)}}{m} \in \mathbb{N}$$

sowie

$$\frac{\frac{n_2}{\gcd(n_1, n_2)}}{m} \in \mathbb{N}$$

eine natürliche Zahl m gefunden, welche sowohl ein Teiler von

$$\frac{n_1}{\gcd(n_1, n_2)}$$

wie auch von

$$\frac{n_2}{\gcd(n_1, n_2)}$$

wäre - was jedoch wiederum ein Widerspruch zur Definition vom größten gemeinsamen Teiler wäre. Darum muss für alle $k \in \mathbb{N}$ gelten

$$\min \left\{ l_1(k_0) - l_3(k_0), l_2(k_0) - l_3(k_0) \right\} \le 0$$

also

$$l_1(k) \le l_3(k) \lor l_2(k) \le l_3(k)$$

Also muss gelten

$$\min \{l_1(k), l_2(k)\} < l_3(k)$$

Wäre nun für ein $k_1 \in \mathbb{N}$

$$\nu \equiv \min \{l_1(k_1), l_2(k_1)\} < l_3(k_1)$$

dann kann ich eine Fallunterscheidung machen. Wäre etwa

$$l_1\left(k_1\right) < l_3\left(k_1\right)$$

dann müsste gelten

musste geiten
$$\frac{n_1}{\gcd{(n_1,n_2)}}$$

$$= \prod_{k \in \mathbb{N}} p_k^{l_1(k)-l_3(k)}$$

$$= \prod_{k \in \mathbb{N} \land k < k \, (1)} p_k^{l_1(k)-l_3(k)} \cdot p_{k(1)}^{l_1(k(1))-\nu} \cdot \prod_{k \in \mathbb{N} \land k < k \, (1)} p_k^{l_1(k)-l_3(k)}$$
st.

Nun ist

$$l_1(k) - \nu < 0$$

und somit das Produkt oben gleich

t das Produkt oben gleich
$$\frac{n_1}{\gcd(n_1,n_2)}$$

$$\Pi \quad k \in \mathbb{N} \wedge \quad p_k^{l_1(k)-l_3(k)} \cdot \Pi \quad k \in \mathbb{N} \wedge \quad p_k^{l_1(k)-l_3(k)}$$

$$= \frac{k < k(1)}{p_{k(1)}^{\nu-l_1(k(1))}}$$

$$p_{k(1)} \text{ eine Primzahl ist, müssen alle positiven Potenzelieben nicht negativen Potenzen der anderen Primzahl$$

Da nun $p_{k(1)}$ eine Primzahl ist, müssen alle positiven Potenzen von $p_{k(1)}$ zu belieben nicht negativen Potenzen der anderen Primzahlen teilerfremd sein. Also würde daraus folgen, das

$$\frac{n_1}{\gcd\left(n_1, n_2\right)}$$

keine natürliche Zahl wäre, was ebenfalls der Voraussetzung über den größten gemeinsamen Teiler widerspricht. Das wäre ebenfalls der Fall, falls gelten würde:

$$l_2\left(k_1\right) < l_3\left(k_1\right)$$

Denn dann müsste gelten

$$\begin{array}{ll} & \frac{n_2}{\gcd{(n_1,n_2)}} \\ = & \prod_{k \in \mathbb{N}} p_k^{l_2(k)-l_3(k)} \\ = & \prod_{k \in \mathbb{N} \land} p_k^{l_2(k)-l_3(k)} \cdot p_{k(1)}^{l_2(k(1))-\nu} \cdot \prod_{\substack{k \in \mathbb{N} \land \\ k < k \, (1)}} p_k^{l_2(k)-l_3(k)} \\ & k \in \mathbb{N} \land \\ & k > k \, (1) \end{array}$$

Nun wäre

$$l_2(k) - \nu < 0$$

und somit das Produkt oben gleich

$$= \frac{\frac{n_2}{\gcd(n_1, n_2)}}{\prod_{k \in \mathbb{N} \land} p_k^{l_2(k) - l_3(k)} \cdot \prod_{k \in \mathbb{N} \land} p_k^{l_2(k) - l_3(k)}}{\sum_{\substack{k < k (1) \\ p_{k(1)}^{\nu - l_2(k(1))}}} p_k^{l_2(k) - l_3(k)}$$

Da nun $p_{k(1)}$ eine Primzahl ist, müssen alle positiven Potenzen von $p_{k(1)}$ zu belieben nicht negativen Potenzen der anderen Primzahlen teilerfremd sein. Also würde daraus folgen, das

$$\frac{n_2}{\gcd\left(n_1, n_2\right)}$$

keine natürliche Zahl wäre, was wiederum der Voraussetzung über den größten gemeinsamen Teiler widerspricht. Also muss für alle $k\in\mathbb{N}$ gelten

$$\min \{l_1(k_1), l_2(k_1)\} = l_3(k_1)$$

und somit habe ich meines Erachtens die Formel

$$\gcd(n_1, n_2) = \prod_{k \in \mathbb{N}} p_k^{l_3(k)} = \prod_{k \in \mathbb{N}} p_k^{\min\{l_1(k), l_2(k)\}}$$

bewiesen.

Ich möchte zuerst einen Hilfssatz formulieren und beweisen, der da lautet:

Lemma 240. Es seien $n_1, n_2 \in \mathbb{N}$. Dann ist

$$\gcd(n_1, n_2) \le \min\{n_1, n_2\}$$

Beweis. Es ist

$$\gcd(n_1, n_2)$$

$$= \prod_{k \in \mathbb{N}} p_k^{\min\{l_1(k), l_2(k)\}}$$

$$\leq \prod_{k \in \mathbb{N}} p_k^{l_1(k)}$$

$$= n_1$$

und ebenso

$$\gcd(n_1, n_2)$$

$$= \prod_{k \in \mathbb{N}} p_k^{\min\{l_1(k), l_2(k)\}}$$

$$\leq \prod_{k \in \mathbb{N}} p_k^{l_2(k)}$$

$$= n_1$$

Also ist

$$\gcd(n_1, n_2) \le \min\{n_1, n_2\}$$

so wie ich es behauptet habe. Darum glaube ich, den Satz als bewiesen betrachten zu können.

Ich habe übrigens ganz lang nicht gewusst, dass der größte gemeinsame Teiler zweier natürlicher Zahlen $n_1, n_2 \in \mathbb{N}$ auch eleganter ermittelt werden kann:

SATZ 241. Es seien $n_1, n_2 \in \mathbb{N}$. Dann kann der größte gemeinsame Teiler $\gcd(n_1, n_2)$ von n_1 und n_2 wie folgt ermittelt werden.

- 1) Bestimme $n_3 \equiv \max\{n_1, n_2\} \ und \ n_4 \equiv \min\{n_1, n_2\}$
- 2) Bestimme $n_5 \equiv n_3 \mod n_4$
- 3) Ist $n_5 = 0$, dann ist $n_4 = \gcd(n_1, n_3)$
- 4) Ist $n_5 > 0$, dann setze $n_3 \equiv n_4$ und $n_4 \equiv n_5$. Gehe anschließend wieder zu 2)

BEWEIS. Das Beweisen von Algorithmen ist so eine Sache. Denn ich finde es sehr schwierig, die Richtigkeit von einem Algorithmus zu beweisen. Ist $n_1 = n_2$, dann ist

$$\gcd(n_1, n_2) = \gcd(n_1, n_1) = n_1$$

Denn es ist

$$\frac{n_1}{n_1} = 1 \in \mathbb{N}$$

Gemäß dem vorhergehenden Lemma 240 muss

$$\gcd(n_1, n_1) \le n_1$$

sein. Also ist

$$\gcd(n_1, n_1) = n_1$$

Wird jetzt der euklidische Algorithmus angewendet, dann ist

$$n_1 \mod n_1 = 0$$

und somit ist

$$\gcd(n_1, n_1) = 0$$

Also ist in diesem Fall der euklidische Algorithmus richtig. Somit kann ich im folgenden $n_1 \neq n_2$ annehmen.

Sicher ist für $n_1, n_2 \in \mathbb{N}$

$$\gcd(n_1, n_2) = \gcd(n_2, n_1)$$

Denn es ist

$$\gcd(n_1, n_2)$$

$$= \prod_{k \in \mathbb{N}} p_k^{\min\{l_1(k), l_2(k)\}}$$

$$= \prod_{k \in \mathbb{N}} p_k^{\min\{l_2(k), l_2(k)\}}$$

$$= \gcd(n_2, n_1)$$

Weiter ist

$$\{\min\{n_1, n_2\}, \max\{n_1, n_2\}\} = \{n_1, n_2\}$$

Ist

$$n_1 < n_2$$

dann ist

$$\{\min\{n_1, n_2\}, \max\{n_1, n_2\}\} = \{n_1, n_2\}$$

Ist schlussendlich

$$n_1 > n_2$$

dann ist

$$\{\min\{n_1, n_2\}, \max\{n_1, n_2\}\} = \{n_2, n_1\} = \{n_1, n_2\}$$

Also ist

$$gcd(n_1, n_2) = gcd(max\{n_1, n_2\}, min\{n_1, n_2\})$$

Ich kann also im folgenden annehmen:

$$n_1 > n_2$$

Ist

$$n_1 \mod n_2 = 0$$

dann ist n_2 ein Teiler von n_1 . Also ist, da gemäß dem Lemma 240 oben

$$\gcd(n_1, n_2) \le \min\{n_1, n_2\} \le n_2$$

sein muss. Somit möchte ich schlussendlich noch zeigen, dass gilt:

$$\gcd(n_1, n_2) = \gcd(n_2, n_1 \mod n_2)$$

falls

$$n_1 \mod n_2 \neq 0$$

ist. Dabei werde gesetzt:

$$n_1 \mod n_2 \equiv n_1 - n_2 \cdot \left\lfloor \frac{n_1}{n_2} \right\rfloor$$

$$\gcd(n_2, n_1 \mod n_2)$$

muss ein Teiler von n_2 sein. Also muss

$$\frac{n_2}{\gcd\left(n_2,n_1\mod n_2\right)}\in\mathbb{N}$$

sowie

$$\frac{n_1 \mod n_2}{\gcd(n_2, n_1 \mod n_2)} \in \mathbb{N}$$

Dann ist jedoch auch mit

$$n_1 = n_2 \cdot \left| \frac{n_1}{n_2} \right| + n_1 \mod n_2 \in \mathbb{N}$$

Weiter kann ich schreiben

$$\frac{n_1}{\gcd(n_2, n_1 \mod n_2)} \\
= \frac{n_2 \cdot \left\lfloor \frac{n_1}{n_2} \right\rfloor + n_1 \mod n_2}{\gcd(n_2, n_1 \mod n_2)} \\
= \frac{n_2 \cdot \left\lfloor \frac{n_1}{n_2} \right\rfloor}{\gcd(n_2, n_1 \mod n_2)} + \frac{n_1 \mod n_2}{\gcd(n_2, n_1 \mod n_2)} \\
= \frac{n_2}{\gcd(n_2, n_1 \mod n_2)} \cdot \left\lfloor \frac{n_1}{n_2} \right\rfloor + \frac{n_1 \mod n_2}{\gcd(n_2, n_1 \mod n_2)}$$

Dann nun

$$\frac{n_2}{\gcd(n_2, n_1 \mod n_2)} \in \mathbb{N}$$

$$\frac{n_1 \mod n_2}{\gcd(n_2, n_1 \mod n_2)} \in \mathbb{N}$$

sowie nach wegen

$$n_1 \geq n_1$$

ebenfalls

$$\frac{n_1}{n_2} \ge 1$$

und somit

$$\left|\frac{n_1}{n_2}\right| \ge 1 \in \mathbb{N}$$

ist, muss also

$$\frac{n_2}{\gcd\left(n_2,n_1\mod n_2\right)}\cdot \left\lfloor \frac{n_1}{n_2} \right\rfloor + \frac{n_1\mod n_2}{\gcd\left(n_2,n_1\mod n_2\right)} \in \mathbb{N}$$

sein. Also ist auch

$$\frac{n_1}{\gcd\left(n_2,n_1\mod n_2\right)}\in\mathbb{N}$$

Somit ist

$$\gcd(n_2, n_1 \mod n_2)$$

ein Teiler von n_1 und n_2 und somit also ein gemeinsamer Teiler von n_1 und n_2 . Es muss darum

$$\gcd(n_2, n_1 \mod n_2) \leq \gcd(n_1, n_2)$$

gelten. Die Preisfrage ist, ob

$$\gcd(n_2, n_1 \mod n_2)$$

der größte gemeinsame Teiler von n_1 und n_2 sein muss. Es sei t ein gemeinsamer Teiler von n_1 und n_2 . Also muss gelten

$$\frac{n_1}{t} \in \mathbb{N}$$

und

$$\frac{n_2}{t} \in \mathbb{N}$$

Dann folgt jedoch auch aus

$$n_1 = n_2 \cdot \left\lfloor \frac{n_1}{n_2} \right\rfloor + n_1 \mod n_2$$

$$n_1 \mod n_2 = n_1 - n_2 \cdot \left\lfloor \frac{n_1}{n_2} \right\rfloor$$

und ebenso

$$= \frac{n_1 \mod n_2}{t}$$

$$= \frac{n_1 - n_2 \cdot \left\lfloor \frac{n_1}{n_2} \right\rfloor}{t}$$

$$= \frac{n_1}{t} - \frac{n_2}{t} \cdot \left\lfloor \frac{n_1}{n_2} \right\rfloor$$

Da nun t ein Teiler sowohl von n_1 wie auch von n_2 ist, muss gelten

$$\left| \frac{n_2}{t} \cdot \left\lfloor \frac{n_1}{n_2} \right\rfloor \in \mathbb{N} \right|$$

Da n_2 kein Teiler von n_1 ist, muss gelten

$$n_1 \mod n_2 > 0$$

und darum

$$n_1 - n_2 \cdot \left\lfloor \frac{n_1}{n_2} \right\rfloor > 0$$

also

$$n_1 > n_2 \cdot \left\lfloor \frac{n_1}{n_2} \right\rfloor$$

Also ist mit

$$\frac{n_1}{t} \in \mathbb{N}$$

und

$$\frac{n_2}{t} \in \mathbb{N}$$

$$\frac{n_1}{t} > \frac{n_2}{t} \cdot \left\lfloor \frac{n_1}{n_2} \right\rfloor$$

und darum auch

$$\frac{n_1}{t} - \frac{n_2}{t} \cdot \left\lfloor \frac{n_1}{n_2} \right\rfloor \in \mathbb{N}$$

Darum ist auch

$$n_1 \mod n_2 \in \mathbb{N}$$

Also ist jeder gemeinsamer Teiler von n_1 und n_2 auch ein Teiler von

$$n_1 \mod n_2$$

Das bedeutet jedoch auch, dass der größte gemeinsame Teiler von n_1 und n_2 auch ein Teiler von n_2 und n_1 mod n_2 und somit kleiner oder gleich dem größten gemeinsamen Teiler von n_2 und n_1 ist, formal geschrieben

$$\gcd(n_1, n_2) \leq \gcd(n_2, n_1 \mod n_2)$$

Somit kann ich schreiben:

$$\gcd(n_2, n_1 \mod n_2) \le \gcd(n_1, n_2) \le \gcd(n_2, n_1 \mod n_2)$$

also schlussendlich

$$\gcd(n_2, n_1 \mod n_2) = \gcd(n_1, n_2)$$

Damit habe ich den Schritt von 4) nach 2) gezeigt: Wenn kein Teiler von n_1 ist, dann bestimme den größten gemeinsamen Teiler von n_2 und n_1 mod n_2 . Also behaupte ich, den Beweis erbracht zu haben.

KAPITEL 38

Minimum und Maximum

Dieses Kapitel ist winzig. Es stellt bloß zwei kleine Begriffe vor.

DEFINITION 242. Es seien $x, y \in \mathbb{R}$. Dann sei

$$\min \{x, y\} \equiv \begin{cases} x & \Leftarrow x \le y \\ y & \Leftarrow x > y \end{cases}$$

sowie

$$\max \{x, y\} \equiv \begin{cases} y & \Leftarrow x \le y \\ x & \Leftarrow x > y \end{cases}$$

Und nun möchte ich zeigen:

Lemma 243. Es seien $x, y \in \mathbb{R}$. Dann gilt

$$\min \{x, y\} = x \cdot \delta_{x \le y} + y \cdot \delta_{x > y}$$

respektive

$$\max\{x,y\} = y \cdot \delta_{x \le y} + x \cdot \delta_{x > y}$$

Beweis. Es seien $x, y \in \mathbb{R}$ und $x \leq y$. Dann ist

$$x \cdot \delta_{x \le y} + y \cdot \delta_{x > y} = x \cdot 1 + y \cdot 0 = x = \min\{x, y\}$$

respektive

$$y \cdot \delta_{x \le y} + x \cdot \delta_{x > y} = y \cdot 1 + x \cdot 0 = y = \max\{x, y\}$$

Ist jedoch x > y, dann gilt

$$x \cdot \delta_{x \leq y} + y \cdot \delta_{x > y} = x \cdot 0 + y \cdot 1 = 1 = \min\left\{x, y\right\}$$

sowie

$$y \cdot \delta_{x \le y} + x \cdot \delta_{x > y} = y \cdot 0 + x \cdot 1 = y = \max\{x, y\}$$

Also gilt in allen Fällen

$$x \cdot \delta_{x \le y} + y \cdot \delta_{x > y} = \min \{x, y\}$$

sowie

$$y \cdot \delta_{x \le y} + x \cdot \delta_{x > y} = \max\{x, y\}$$

Das sind jedoch gerade die Behauptungen von Lemma 243. Damit habe ich den Beweis erbracht.

Das eben formulierte Lemma ist ja schon gut und recht. Jedoch ist es irgendwie "unsymmetrisch". Ich möchte daher ein Lemma formulieren und beweisen, welches symmetrischer daherkommt: Lemma 244. Es seien $x, y \in \mathbb{R}$. Dann ist

$$\min \{x, y\} = x \cdot \delta_{x \le y} + y \cdot \delta_{x \ge y} - x \cdot \delta_{x = y}$$

$$\max \{x, y\} = y \cdot \delta_{x < y} + x \cdot \delta_{x > y} - x \cdot \delta_{x = y}$$

Beweis. Es seien $x, y \in \mathbb{R}$ sowie x < y. Dann ist

$$x \cdot \delta_{x \le y} + y \cdot \delta_{x \ge y} - x \cdot \delta_{x = y} = x \cdot 1 + y \cdot 0 - x \cdot 0 = x + 0 - 0 = x = \min\{x, y\}$$

Ist x = y, dann kann ich schreiben:

$$x \cdot \delta_{x \le y} + y \cdot \delta_{x \ge y} - x \cdot \delta_{x = y}$$

$$= x \cdot 1 + y \cdot 1 - x \cdot 1$$

$$= x + y - x$$

$$= 0 + y$$

$$= y$$

Da nun gemäß Voraussetzung x=y ist muss eben auch y=x gelten. Darum kann ich schreiben

$$x \cdot \delta_{x \le y} + y \cdot \delta_{x \ge y} - x \cdot \delta_{x = y}$$

$$= y$$

$$= x$$

$$= \min \{x, y\}$$

Ist schlussendlich x > y, dann muss gemäß dem Satz 57 gelten:

$$x > y \Rightarrow x \ge y$$

Somit muss gemäß der Definition des Kronecker-Symbols (vergleiche mit Definition 35) gelten

$$\delta_{x>y}=1$$

Also kann ich schreiben:

$$x \cdot \delta_{x \le y} + y \cdot \delta_{x \ge y} - x \cdot \delta_{x = y} = x \cdot 0 + y \cdot 1 - x \cdot 0 = 0 + y - 0 = y = \min\{x, y\}$$

Genau die gleiche Überlegung kann ich für die Beschreibung von max anstellen: Es seien $x, y \in \mathbb{R}$ sowie x < y. Dann ist

$$y \cdot \delta_{x \le y} + x \cdot \delta_{x \ge y} - x \cdot \delta_{x = y} = y \cdot 1 + x \cdot 0 - x \cdot 0 = y + 0 - 0 = y = \max\{x, y\}$$

Ist x = y, dann kann ich schreiben:

$$x \cdot \delta_{x \le y} + y \cdot \delta_{x \ge y} - x \cdot \delta_{x = y}$$

$$= x \cdot 1 + y \cdot 1 - x \cdot 1$$

$$= x + y - x$$

$$= 0 + y$$

$$= y$$

Da nun gemäß Voraussetzung x=y ist muss eben auch y=x gelten. Darum kann ich schreiben

$$x \cdot \delta_{x \le y} + y \cdot \delta_{x \ge y} - x \cdot \delta_{x = y}$$

$$= y$$

$$= x$$

$$= \max\{x, y\}$$

Ist schlussendlich x > y, dann muss gemäß dem Satz 57 gelten:

$$x > y \Rightarrow x > y$$

Somit muss gemäß der Definition des Kronecker-Symbols (vergleiche mit Definition 35) gelten

$$\delta_{x>y}=1$$

Also kann ich schreiben:

$$y \cdot \delta_{x \le y} + x \cdot \delta_{x \ge y} - x \cdot \delta_{x = y} = y \cdot 0 + x \cdot 1 - x \cdot 0 = 0 + x - 0 = x = \max\{x, y\}$$

Somit muss wiederum für alle möglichen $x, y \in \mathbb{R}$ gelten

$$\max \{x, y\} = y \cdot \delta_{x \le y} + x \cdot \delta_{x \ge y} - x \cdot \delta_{x = y}$$

Somit glaube ich, für alle $x,y\in\mathbb{R}$ die Behauptung und somit die Behauptung insgesamt bewiesen zu haben.

Ich möchte nun zeigen:

Satz 245. Es seien $x, y \in \mathbb{R}$. Dann gilt

$$\min \{x, y\} = -\max \{-x, -y\}$$
$$\max \{x, y\} = -\min \{-x, -y\}$$

Beweis. Es seien $x, y \in \mathbb{R}$. Dann gilt

$$- \max \{-x, -y\}$$

$$= -(-y \cdot \delta_{-x \le -y} + (-x) \cdot \delta_{-x \ge -y} - (-x) \cdot \delta_{-x = -y})$$

$$= y \cdot \delta_{-x \le -y} - (-x) \cdot \delta_{-x \ge -y} + (-x) \cdot \delta_{-x = -y}$$

$$= y \cdot \delta_{-x \le -y} + x \cdot \delta_{-x \ge -y} + (-x) \cdot \delta_{-x = -y}$$

$$= x \cdot \delta_{-x \ge -y} + y \cdot \delta_{-x < -y} - x \cdot \delta_{-x = -y}$$

Nun ist $-x \ge -y$ genau dann wahr, falls

$$x \le y$$

ist. Also muss

$$\delta_{-x>-y} = \delta_{x< y}$$

sein. Ebenso ist $-x \leq -y$ genau dann wahr, falls

$$x \ge y$$

ist. Somit ist also auch

$$\delta_{-x < -y} = \delta_{x > y}$$

und somit ist

$$-x = -y$$

genau dann wahr, falls

$$x = y$$

ist. Also muss gelten

$$\delta_{-x=-y} = \delta_{x=y}$$

Diese Resultate kann ich die obige Rechnung einsetzen und ich erhalte

$$\begin{aligned} &-\max\left\{-x,-y\right\}\\ &=x\cdot\delta_{-x\geq -y}+y\cdot\delta_{-x\leq -y}+x\cdot\delta_{-x\geq -y}-x\cdot\delta_{-x=-y}\\ &=x\cdot\delta_{-x\geq -y}+y\cdot\delta_{-x\leq -y}-x\cdot\delta_{-x=-y}\\ &=x\cdot\delta_{x\leq y}+y\cdot\delta_{x\geq y}-x\cdot\delta_{x=y}\\ &=\min\left\{x,y\right\} \end{aligned}$$

Um nun zu zeigen, dass

$$-\min\left\{-x, -y\right\} = \max\left\{x, y\right\}$$

ist, mache ich den Ansatz

$$t \equiv -x$$
$$u \equiv -y$$

Dann muss gelten

$$- \min \{t, u\}$$
= \text{max} \{-t, -u\}
= \text{max} \{-(-x), -(-y)\}
= \text{max} \{x, y\}

womit auch diese Behauptung glücklich bewiesen worden wäre.

Und für was soll das gut sein? Das ist natürlich die Preisfrage. Es geht darum, dass die Bestimmung des Minimums sowie des Maximums immer irgendwie aufwändig und mühsam durchzuführen ist. Also ist es einfacher, wenn die Bestimmung des Minimum oder des Maximum mittels eines algebraischen Ausdrucks anstelle einer Fallunterscheidung getroffen werden kann.

KAPITEL 39

kleinstes gemeinsames Vielfache

DEFINITION 246. Es seien $n_1, n_2 \in \mathbb{N}$. Dann heiße

$$\operatorname{lcm}(n_1, n_2)$$

das kleinste gemeinsame Vielfache (lowest common multiple) von n_1 und n_2 , falls gelte:

lcm
$$(n_1, n_2)$$
 = min $\left\{ n_5 \in \mathbb{N} \mid \exists n_3, n_4 \in \mathbb{N} : n_5 = n_1 \cdot n_3 = n_2 \cdot n_4 \right\}$

Natürlich muss ich jetzt zeigen, dass dieses kleinste gemeinsame Vielfache auch wirklich für alle $n_1, n_2 \in \mathbb{N}$ existiert.

Satz 247. Es seien $n_1, n_2 \in \mathbb{N}$. Dann muss es genau eine natürliche Zahl

$$lcm(n_1, n_2) \in \mathbb{N}$$

geben.

Beweis. Es seien $n_1, n_2 \in \mathbb{N}$. Dann gilt

$$n_5 = n_1 \cdot n_2 = n_2 \cdot n_1$$

Also ist die Menge

$$\left\{ n_5 \in \mathbb{N} \mid \exists n_3, n_4 \in \mathbb{N} : n_5 = n_1 \cdot n_3 = n_2 \cdot n_4 \right\}$$

nicht leer. Diese Menge besitzt genau ein kleinstes Element. Also ist der Satz bewiesen.

Nun ist klar dass das kleinste gemeinsame Vielfache existieren muss. Die Frage ist jedoch, wie ich das kleinste gemeinsame Vielfache finden kann. Es gilt:

Satz 248. Es seien $n_1, n_2 \in \mathbb{N}$ sowie

$$n_1 = \prod_{k \in \mathbb{P}} p_k^{l_1(k)}, \ n_2 = \prod_{k \in \mathbb{P}} p_k^{l_2(k)}$$

mit

 $p_k \in \mathbb{P} \equiv Menge \ der \ Primzahlen$

sowie

$$l_1(k), l_2(k) \in \mathbb{N}_0$$

Dann gilt

$$lcm(n_1, n_2) = \prod_{k \in \mathbb{P}} p_k^{\max\{l_1(k), l_2(k)\}}$$

Beweis. Es seien

$$n_3 = \prod_{k \in \mathbb{P}} p_k^{l_3(k)}$$

$$n_4 = \prod_{k \in \mathbb{P}} p_k^{l_4(k)}$$

mit

$$lcm (n_1, n_2) = n_3 \cdot n_1 = n_4 \cdot n_2$$

Also kann ich schreiben

$$= \prod_{k \in \mathbb{P}} p_k^{l_3(k)} \cdot \prod_{k \in \mathbb{P}} p_k^{l_1(k)}$$

$$= \prod_{k \in \mathbb{P}} p_k^{l_3(k) + l_1(k)}$$

$$= \prod_{k \in \mathbb{P}} p_k^{l_4(k) + l_2(k)}$$

$$= \prod_{k \in \mathbb{P}} p_k^{l_4(k)} \cdot \prod_{k \in \mathbb{P}} p_k^{l_2(k)}$$

$$= n_4 \cdot n_2$$

und somit gilt für alle $k \in \mathbb{N}$

$$l_1(k) + l_3(k) = l_2(k) + l_4(k)$$

Nun gilt es $l_{3}\left(k\right)$ wie auch $l_{4}\left(k\right)$ möglichst klein zu wählen. Wäre für ein $k_{0}\in\mathbb{N}$

$$l_3(k_0) > 0$$

und

$$l_4(k_0) > 0$$

dann wäre auch für

$$l_3'(k_0) \equiv l_3(k_0) - \min\{l_3(k_0), l_4(k_0)\}\$$

$$l_4'(k_0) \equiv l_4(k_0) - \min\{l_3(k_0), l_4(k_0)\}\$$

$$l_1(k_0) + l_3'(k_0) = l_2(k_0) + l_4'(k_0)$$

Dann wäre würde jedoch auch für

$$\begin{array}{lcl} n_3' & \equiv & \prod_{k \in \mathbb{P} \backslash \{k_0\}} p_k^{l_3(k)} \cdot p_{k(0)}^{l_3'(k_0)} \\ \\ n_4' & \equiv & \prod_{k \in \mathbb{P} \backslash \{k_0\}} p_k^{l_4(k)} \cdot p_{k(0)}^{l_4'(k_0)} \end{array}$$

gelten

$$n_3' \cdot n_1 = n_4' \cdot n_2$$

mit $n_3' < n_3$ und $n_4' < n_4$ wäre jedoch

$$lcm (n_1, n_2) \le n_3' \cdot n_1 < n_3 \cdot n_1$$

Also muss gelten

$$l_3(k) = \max\{l_1(k), l_2(k)\} - l_1(k)$$

 $l_4(k) = \max\{l_1(k), l_2(k)\} - l_2(k)$

Denn ist $l_3(k) > 0$, dann muss gelten

$$\max \{l_1(k), l_2(k)\} - l_1(k) > 0$$

oder aber

$$\max \{l_1(k), l_2(k)\} > l_1(k)$$

und somit

$$l_1(k) < l_2(k)$$

Also ist darum

$$l_4(k) = \max\{l_1(k), l_2(k)\} - l_2(k) = l_2(k) - l_2(k) = 0$$

Ist jedoch $l_4(k) > 0$, dann muss gelten

$$\max \{l_1(k), l_2(k)\} - l_2(k) > 0$$

oder aber

$$\max \{l_1(k), l_2(k)\} > l_2(k)$$

und somit

$$l_2(k) < l_1(k)$$

Also ist darum

$$l_3(k) = \max \{l_1(k), l_2(k)\} - l_1(k) = l_2(k) - l_1(k) = 0$$

Somit kann ich schreiben

$$lcm (n_1, n_2)
= n_3 \cdot n_1
= \prod_{k \in \mathbb{P}} p_k^{l_3(k) + l_1(k)}
= \prod_{k \in \mathbb{P}} p_k^{(\max\{l_1(k), l_2(k)\} - l_1(k)) + l_1(k)}
= \prod_{k \in \mathbb{P}} p_k^{\max\{l_1(k), l_2(k)\}}
= \prod_{k \in \mathbb{P}} p_k^{\max\{l_1(k), l_2(k)\} - l_2(k) + l_2(k)}
= \prod_{k \in \mathbb{P}} p_k^{(\max\{l_1(k), l_2(k)\} - l_2(k)) + l_2(k)}
= \prod_{k \in \mathbb{P}} p_k^{l_4(k) + l_2(k)}
= n_4 \cdot n_2$$

Damit glaube ich jedoch, gezeigt zu haben, dass gilt

$$lcm(n_1, n_2) = \prod_{k \in \mathbb{P}} p_k^{\max\{l_1(k), l_2(k)\}}$$

Es sei nun

$$\operatorname{lcm}(n_1, n_2) = \prod_{k \in \mathbb{P}} p_k^{l_5(k)}$$

Gäbe es jetzt ein $k_1 \in \mathbb{N}$ mit $l_5\left(k_1\right) < \max\left\{l_1\left(k_1\right), l_2\left(k_1\right)\right\}$ dann müsste mit

$$\prod_{k \in \mathbb{P}} p_k^{l_5(k)} = \prod_{k \in \mathbb{P}} p_k^{l_3(k) + l_1(k)} = \prod_{k \in \mathbb{P}} p_k^{l_4(k) + l_2(k)}$$

gelten:

$$l_5(k_1) = l_3(k_1) + l_1(k_1) = l_4(k_1) + l_2(k_1)$$

Es sei nun

$$l_1(k_1) = \max\{l_1(k_1), l_2(k_1)\}\$$

Also müsste gelten

$$l_5(k_1) < l_1(k_1)$$

und somit

$$l_3(k_1) = l_5(k_1) - l_1(k_1) < 0$$

was jedoch ein Widerspruch wäre zu $l_3\left(k\right)\geq 0$. Wäre jedoch

$$l_2(k_1) = \max\{l_1(k_1), l_2(k_1)\}\$$

dann müsste gelten

$$l_5(k_1) = l_4(k_1) + l_2(k_1)$$

und also mit

$$l_5\left(k_1\right) < l_2\left(k_1\right)$$

entsprechend

$$l_5(k_1) - l_2(k_1) < 0$$

also

$$l_4(k_1) = l_5(k_1) - l_2(k_1) < 0$$

was jedoch ein Widerspruch wäre zu

$$l_4(k_1) > 0$$

Somit muss wirklich gelten

$$\forall k \in \mathbb{N} : l_4(k_1) \ge \max\{l_1(k), l_2(k)\}\$$

Damit glaube ich, den Beweis wirklich erbracht zu haben.

Ich möchte einen vorbereitenden Satz formulieren und beweisen:

Satz 249. Es seien $n_1, n_2 \in \mathbb{N}$. Dann muss gelten

$$\min\{n_1, n_2\} + \max\{n_1, n_2\} = n_1 + n_2$$

Beweis. Es sei $n_1 \leq n_2$. Also ist

$$\min \{n_1, n_2\} = n_1 \max \{n_1, n_2\} = n_2$$

Also gilt

$$\min\{n_1, n_2\} + \max\{n_1, n_2\} = n_1 + n_2$$

Ist jedoch $n_1 > n_2$, dann ist

$$\min \{n_1, n_2\} = n_2$$

 $\max \{n_1, n_2\} = n_1$

Also gilt

$$\min \{n_1, n_2\} + \max \{n_1, n_2\} = n_2 + n_1 = n_1 + n_2$$

Somit kann ich in jedem Fall schreiben, dass gelten muss:

$$\min\{n_1, n_2\} + \max\{n_1, n_2\} = n_1 + n_2$$

Somit glaube ich, gezeigt zu haben, dass der Beweis erbracht ist.

Nun gibt es einen einfachen Zusammenhang vom dem größten gemeinsamen Teiler und kleinsten gemeinsamen Vielfachen von zwei Zahlen. Es gilt:

Satz 250. Es seien $n_1, n_2 \in \mathbb{N}$. Dann muss gelten

$$gcd(n_1, n_2) \cdot lcm(n_1, n_2) = n_1 \cdot n_2$$

Beweis. Es seien $n_1, n_2 \in \mathbb{N}$ sowie

$$n_1 = \prod_{k \in \mathbb{P}} p_k^{l_1(k)}, \ n_2 = \prod_{k \in \mathbb{P}} p_k^{l_2(k)}$$

mit

$$p_k \in \mathbb{P} \equiv$$
 Menge der Primzahlen

sowie

$$l_1(k), l_2(k) \in \mathbb{N}_0$$

Dann gilt

$$\gcd(n_1, n_2) = \prod_{k \in \mathbb{P}} p_k^{\min\{l_1(k), l_2(k)\}}$$
$$\operatorname{lcm}(n_1, n_2) = \prod_{k \in \mathbb{P}} p_k^{\max\{l_1(k), l_2(k)\}}$$

Also kann ich schreiben

$$\gcd(n_{1}, n_{2}) \cdot \operatorname{lcm}(n_{1}, n_{2})$$

$$= \prod_{k \in \mathbb{P}} p_{k}^{\min\{l_{1}(k), l_{2}(k)\}} \cdot \prod_{k \in \mathbb{P}} p_{k}^{\max\{l_{1}(k), l_{2}(k)\}}$$

$$= \prod_{k \in \mathbb{P}} p_{k}^{\min\{l_{1}(k), l_{2}(k)\} + \max\{l_{1}(k), l_{2}(k)\}}$$

$$= \prod_{k \in \mathbb{P}} p_{k}^{l_{1}(k) + l_{2}(k)}$$

$$= \prod_{k \in \mathbb{P}} p_{k}^{l_{1}(k)} \cdot p_{k}^{l_{2}(k)}$$

$$= \prod_{k \in \mathbb{P}} p_{k}^{l_{1}(k)} \cdot \prod_{k \in \mathbb{P}} p_{k}^{l_{2}(k)}$$

$$= n_{1} \cdot n_{2}$$

Damit hoffe ich, gezeigt zu haben, dass der Beweis erbracht ist.

AUFGABE 251. Der Aktienkurs eines bestimmten Titels falle um a%. Um wie viele Prozent b des neuen Aktienkurs muss er anschließend wieder steigen, damit er schlussendlich wieder auf dem ursprünglichen Stand ist? Wie groß ist das Verhältnis

$$\frac{b}{a}$$

Der erste Versuch war schon mal nicht erfolgreich. Der ursprünglich Aktienkurs sei t_1 . Zwar ist es nicht nötig, diesen einzuführen. Aber dies erleichtert mir die Anschauung. Es sei $k \in \mathbb{N}$ und der Aktienkurs falle um

$$a = \frac{k-1}{k} \cdot 100$$

Prozent. Ist also etwa k = 4 dann ist

$$\frac{4-1}{4} \cdot 100 = \frac{3}{4} \cdot 100 = 75$$

Prozent. Dann ist der neue Aktienkurs

$$1 - \frac{k-1}{k} = \frac{k - (k-1)}{k} = \frac{k - k + 1}{k} = \frac{1}{k}$$

Prozent des alten Aktienkurses. Für das Beispiel k=4 ist dann

$$\frac{1}{4} \cdot 100 = 25$$

Prozent des alten Aktienkurs. Also beträgt der neue Aktienkurs

$$t_1 = \frac{1}{k} \cdot t_0$$

Nun ist derjenige Prozentsatz b von t_1 derart zu bestimmen, so dass gilt:

$$t_1 + \frac{b}{100} \cdot t_1 = t_0$$

Also muss gelten

$$\frac{b}{100} \cdot t_1 = t_0 - t_1$$

und somit

$$\begin{array}{rcl}
b \\
 & \frac{t_0 - t_1}{t_1} \cdot 100 \\
 & = \frac{t_0 - \frac{t_0}{k}}{\frac{t_0}{k}} \cdot 100 \\
 & = \frac{1 - \frac{1}{k}}{\frac{1}{k}} \cdot 100 \\
 & = \frac{\frac{k-1}{k}}{\frac{1}{k}} \cdot 100 \\
 & = (k-1) \cdot 100
\end{array}$$

Im Beispiel k=4 muss also gelten

$$b = 400$$

also muss gelten

$$\frac{b}{a} = \frac{(k-1) \cdot 100}{\frac{k-1}{k} \cdot 100} = k$$

Und nun endlich zum allgemeinen Fall: Der ursprüngliche Aktienkurs sei t_0 . Er falle um a Prozent. Also sei

$$t_1 = t_0 - \frac{a}{100} \cdot t_0$$
$$= \left(1 - \frac{a}{100}\right) \cdot t_0$$

Nachher ist der Prozentsatz b von t_1 derart zu bestimmen, so dass gilt

$$t_1 + \frac{b}{100} \cdot t_1 = t_0$$

Es ist also

$$\frac{b}{100} \cdot t_1 = t_0 - t_1$$

und somit

$$\frac{b}{100} = \frac{t_0 - t_1}{t_1}$$

und auch

$$= \frac{b}{t_0 - t_1} \cdot 100$$

$$= \frac{t_0 - \left(1 - \frac{a}{100}\right) \cdot t_0}{\left(1 - \frac{a}{100}\right) \cdot t_0} \cdot 100$$

$$= \frac{\left(1 - \left(1 - \frac{a}{100}\right)\right) \cdot t_0}{\left(1 - \frac{a}{100}\right) \cdot t_0} \cdot 100$$

$$= \frac{1 - \left(1 - \frac{a}{100}\right)}{1 - \frac{a}{100}} \cdot 100$$

$$= \frac{1 - 1 + \frac{a}{100}}{1 - \frac{a}{100}} \cdot 100$$

$$= \frac{\frac{a}{100}}{1 - \frac{a}{100}} \cdot 100$$

$$= \frac{\frac{a}{100} \cdot 100}{\left(1 - \frac{a}{100}\right) \cdot 100} \cdot 100$$

$$= \frac{a}{\left(1 - \frac{a}{100}\right) \cdot 100} \cdot 100$$

$$= \frac{a}{1 - \frac{a}{100}} \cdot 100$$

$$= \frac{a}{1 - \frac{a}{100}} \cdot 100$$

Also muss gelten

$$\frac{\frac{b}{a}}{a} = \frac{\frac{a}{1 - \frac{a}{100}}}{\frac{a}{a}} = \frac{\frac{a}{1 - \frac{a}{100}}}{a} = \frac{\frac{a}{1 - \frac{a}{100}} \cdot \left(1 - \frac{a}{100}\right)}{a \cdot \left(1 - \frac{a}{100}\right)} = \frac{a}{a \cdot \left(1 - \frac{a}{100}\right)} = \frac{1}{1 - \frac{a}{100}}$$

Wenn $a = \frac{k-1}{k} \cdot 100$ ist, dann

$$\frac{b}{a}$$

$$= \frac{1}{1 - \frac{k-1}{k} \cdot 100}$$

$$= \frac{1}{1 - \frac{k-1}{k}}$$

$$= \frac{1}{\frac{k-(k-1)}{k}}$$

$$= \frac{k}{k-(k-1)}$$

$$= \frac{k}{k-k+1}$$

$$= k$$

womit ich meine, gezeigt zu haben, dass das Resultat nicht ganz falsch sein kann.

KAPITEL 40

Konjunktive und disjunktive Normalformen von Aussagen

Ich möchte zuerst ein Beispiel machen, bevor ich diese disjunktive Normalform formal definieren will.

Ich habe kurz im Netz nach den konjunktiven Normalformen Ausschau gehalten - und meines Erachtens dabei nichts wahnsinnig Schlaues gefunden. Darum versuche ich, mir etwas Eigenes zusammen zu schustern. Aber ich möchte ehrlich zu Dir sein: Es kann durchaus sein, das ich mich diesbezüglich extrem täusche. Also kann es sein, dass ich hier etwas schreiben, was kolossal falsch ist.

DEFINITION 252. Es sei $n \in \mathbb{N}$ und für $k \in \mathbb{N}$ mit $k \leq n$ seien A_k Symbole von Aussagen. Dann sei

$$K \equiv \left\{ A \mid A = A_k \lor A = \neg A_k \lor \exists B, C \in K : (A = B \lor C) \lor (A = B \land C) \right\}$$

die Menge der konjunktiven Formen der Aussagen A_k . Die Menge der disjunktiven Formen sei

$$\left\{ \neg A \mid A \in K \right\}$$

Diese Definition kannst Du wie folgt lesen: Es sei K die Menge der konjunktiven Formen der Aussagen A_k . Dabei gehört für A_k sowohl A_k wie auch $\neg A_k$ zur Menge der konjunktiven Formen K. Sind nun B und C Elemente von K, dann seien per Definition (Festlegung) ebenfalls $B \vee C$ wie auch $B \wedge C$ Elemente von K. Wahrscheinlich ist auch diese Beschreibung immer noch unansehnlich, falls Du noch keine riesige Übung in Sachen formalen Definitionen besitzt. Darum möchte ich noch ein Beispiel machen. Es sei n=2. Dann seien A_1 und A_2 Symbole von Aussagen. Also gelten unter anderem folgende Aussagen per Definition zur Menge der konjunktiven Formen \mathbb{K} der Aussagen A_1

und A_2 :

$$\begin{array}{c}
A_1 \\
A_2 \\
\neg A_1
\end{array}$$

$$\begin{array}{c}
\neg A_1 \\
\neg A_2 \\
A_1 \land A_2 \\
\neg A_1 \lor A_2 \\
A_1 \land \neg A_2
\end{array}$$

Beachte jedoch, dass diese Auflistung nicht vollständig ist. In der Definition habe ich mit Bedacht das Gleichheitszeichen und nicht die Äquivalenz genommen. Denn es geht um alle möglichen Aussagen, welche die Aussagen A_1 bis A_n sowie die deren Negationen und konjunktiven und disjunktiven Verknüpfungen beinhalten und nicht um äquivalente Aussagen derselben.

Dann möchte ich weiter festlegen:

DEFINITION 253. Es sei $n \in \mathbb{N}$ und für $k \in \mathbb{N}$ mit $k \leq n$ seien A_k Symbole von Aussagen, wie auch D das Symbol einer Aussage sei. K sei die Menge der konjunktiven Formen der Aussagen A_k . Dann seien $E, F \in K$ eine konjunktive Normalform von D, falls

$$E \Leftrightarrow D$$

sei. Weiter sei F eine disjunktive Normalform von D, falls

$$\neg F \Leftrightarrow D$$

ist.

Ich möchte über die Menge der Konjunktiven Normalformen ein wenig diskutieren. Es seien A_1 und A_2 Aussagen und

$$A_1 \Rightarrow A_2$$

Nun möchte ich mir überlegen, ob dann

$$\neg A_1 \lor A_2$$

wirklich eine konjunktive Normalform der Implikation von A_1 nach A_2 darstellt. wie oben nachlesen kannst, habe ich diese Verknüpfung als Beispiel in der Liste 34 aufgelistet (vergleiche mit der 6. Zeile, also der zweitletzten Zeile der Auflistung).

Nun kommt vielleicht, die Stelle, auf welche Du eventuell schon gewartet hast (also ich hätte es wahrscheinlich nicht, das gebe ich zu). Du fragst Dich eventuell, wieso es dann die "konjunktive Normalform" heißt, obwohl in der konjunktiven Normalform der Implikation gar keine Konjunktion gibt? Nun, das ist nicht einfach so klar. Jedoch könnte ich als konjunktive Normalform der Implikation ebenfalls schreiben:

$$(A_1 \Rightarrow A_2) \Leftrightarrow ((\neg A_1 \land \neg A_2) \lor (\neg A_1 \land A_2) \lor (A_1 \land A_2))$$

Dann könntest Du sehen, dass diese Normalform tatsächlich Konjunktionen besitzt. Und dass in meinem Vorschlag ich sozusagen eine verdichtete konjunktive Normalform verwendet habe, so dass alle Konjunktionen herausgeflogen sind. Was? Du glaubst mir nicht, dass diese Aussage oben ein logischer Satz ist? Gut, dann werde ich das halt zeigen müssen. Doch zuerst möchte ich einen kleinen Hilfssatz formulieren und beweisen:

Lemma 254. Es seien A_1, A_2 sowie A_3 Symbole von Aussagen. Dann gilt

$$\delta (A_{1} \lor A_{2} \lor A_{3})$$

$$=\delta (A_{1}) + \delta (A_{2}) + \delta (A_{3})$$

$$- (\delta (A_{1} \land A_{2}) + \delta (A_{1} \land A_{3}) + \delta (A_{2} \land A_{3})) + \delta (A_{1} \land A_{2} \land A_{3})$$
BEWEIS. Es ist
$$\delta (A_{1} \lor A_{2} \lor A_{3})$$

$$=\delta (A_{1}) + \delta (A_{2} \lor A_{3}) - \delta (A_{1}) \cdot \delta (A_{2} \lor A_{3})$$

$$=\delta (A_{1}) + \delta (A_{2} \lor A_{3}) - \delta (A_{1}) \cdot \delta (A_{2} \lor A_{3})$$

$$=\delta (A_{1}) + \delta (A_{2}) + \delta (A_{3}) - \delta (A_{2}) \cdot \delta (A_{3})$$

$$-\delta (A_{1}) \cdot (\delta (A_{2}) + \delta (A_{3}) - \delta (A_{2}) \cdot \delta (A_{3}))$$

$$=\delta (A_{1}) + \delta (A_{2}) + \delta (A_{3}) - \delta (A_{2}) \cdot \delta (A_{3})$$

$$- (\delta (A_{1}) \cdot \delta (A_{2}) + \delta (A_{1}) \cdot \delta (A_{3}) - \delta (A_{1}) \cdot \delta (A_{2}) \cdot \delta (A_{3}))$$

$$=\delta (A_{1}) + \delta (A_{2}) + \delta (A_{3}) - \delta (A_{2} \land A_{3})$$

$$-\delta (A_{1} \land A_{2}) - \delta (A_{1} \land A_{3}) + \delta (A_{1} \land A_{2} \land A_{3})$$

Um es ein wenig besser beschreiben zu können, werde ich eine Definition einführen, welche Du jedoch in keinem Lehrbuch finden dürftest:

DEFINITION 255. Es sei $n \in \mathbb{N}$ und mit $k \in \mathbb{N}$ sowie $k \leq n$ A_k Symbole für Aussagen. Dann nenne ich die Aussagen A_k paarweise orthogonal¹, falls gilt:

$$(k, l \in \mathbb{N} \land k, l < n) \Rightarrow \neg (A_k \land A_l)$$

Ist nun $\{A_k\}_{k\in\mathbb{N}\wedge k\leq n}$ als Menge von Aussagen gegeben, so hieße diese Menge von Aussagen orthogonal

Meine Definition ist von der linearen Algebra her inspiriert. Nun möchte ich mir das Leben ein wenig einfacher machen. Ich zeige dazu:

LEMMA 256. Es sei $n \in \mathbb{N}$ und A_n Symbole für Aussagen. Dann ist die Menge der Aussagen $\{A_k\}_{k\in\mathbb{N}\wedge k\leq n}$ genau dann paarweise orthogonal, falls gilt:

$$(k, l \in \mathbb{N} \land k \le l \le n) \Rightarrow \neg (A_k \land A_l)$$

¹Eigentlich heißt "orthogonal" "rechtwinklig". Aber dieser Begriff wird in der Mathe für vielerlei Objekte verwendet, welches das beschriebene Verhalten zeigen.

BEWEIS. Es sei zuerst die Menge der Aussagen $\{A_k\}_{k\in\mathbb{N}\wedge k\leq n}$ paarweise orthogonal. Also gilt für alle $k,l\in\mathbb{N}$ mit $k,l\leq n$

$$\neg (A_k \wedge A_l)$$

Somit gilt auch für alle $k, l \in \mathbb{N}$ mit $k, l \leq n$ und $k \leq l$

$$\neg (A_k \wedge A_l)$$

Also hätte ich die eine Richtung der Behauptung bewiesen. Nun sei auf der anderen Seite für $n \in \mathbb{N}$ mit $\{B_k\}_{k \in \mathbb{N} \land k \leq n}$ eine Menge von Aussagen gegeben, für welche gilt, dass für alle $k, l \in \mathbb{N}$ und $k \leq l$ gilt

$$\neg (B_k \wedge B_l)$$

Es seien jetzt $p,q\in\mathbb{N}$ mit $p,q\leq n$. Ist $p\leq q$, dann gilt gemäß Voraussetzung über die Menge $\{B_k\}_{k\in\mathbb{N}\wedge k\leq n}$ die Aussage

$$\neg (B_p \land B_q)$$

Ist jedoch p > q, dann ist q < p oder aber gemäß dem Satz 57 $q \le p$. Also muss dann mindestens

$$\neg (B_q \land B_p)$$

Also muss gemäß dem Korollar 36 gelten:

$$\neg (B_p \land B_q)$$

Somit kann ich schließen, dass für alle $p,q\in\mathbb{N}$ gilt

$$\neg (B_n \wedge B_a)$$

Somit habe ich den Beweis für alle Aussagen der Menge und darum insgesamt erbracht. Also habe ich auch den umgekehrten Fall und darum die ganze Behauptung gezeigt.

Bevor ich weiter mich über orthogonale Mengen von Aussagen auslasse möchte ich gerne eine weitere Definitionen vornehmen.

DEFINITION 257. Es seien M sowie N nicht leere Mengen von Aussagen. Dann sei

$$M \wedge N \equiv \left\{ m \wedge n \mid m \in M \wedge n \in \mathbb{N} \right\}$$

Weiter sei sei für $n \in \mathbb{N}$ A_n das Symbol für eine Aussage. Gemäß Voraussetzung seien alle Aussagen A_n paarweise verschieden. Dann sei

$$M_{1,r} \equiv \{\neg A_1, A_1\}$$

Ist nun für $k \in \mathbb{N}$ die Menge $M_{k,r}$ definiert, dann sei

$$M_{k+1,r} \equiv M_{k,r} \wedge \{ \neg A_{k+1}, A_{k+1} \}$$

Nun möchte ich meine Definition zu einem Satz zusammensetzten.

SATZ 258. Es sei $n \in \mathbb{N}$ und A_n das Symbol einer Aussage. Dann ist $M_{n,r}$ eine Menge orthogonaler Aussagen.

BEWEIS. Es sei n=1. Dann ist $M_{1,r} \equiv \{\neg A_1, A_1\}$. Nun ist $\neg (\neg A_1 \wedge A_1)$

(vergleiche mit dem Korollar 14) aber auch

$$\neg (A_1 \land \neg A_1)$$

Denn gemäß dem Satz 45 ist

$$\neg (A_1 \land \neg A_1) \Leftrightarrow \neg (\neg A_1 \land A_1)$$

Also gilt auch

$$\neg (\neg A_1 \land A_1)$$

Entsprechend sind für $n \in \mathbb{N}$ die Aussagen der Mengen

$$\{\neg A_n, A_n\}$$

orthogonal. Denn ebenso wie

$$\neg (\neg A_n \land A_n)$$

muss auch

$$\neg (A_n \land \neg A_n)$$

gelten (gemäß dem Korollar 14 sowie dem Satz 45).

Somit hätte ich die Induktionsvoraussetzung bewiesen. Nun gelte für $n \in \mathbb{N}$ die Behauptung, also gelte

$$\forall B_1, B_2 \in M_{n,r}: B_1 \neq B_2 \Rightarrow \neg (B_1 \land B_2)$$

Nun seien $C_1, C_2 \in M_{n+1,r}$ mit $C_1 \neq C_2$. Gemäß der Konstruktion von $M_{n+1,r}$ muss darum zwei Aussagen $B_1, B_2 \in M_{n+1,r}$ derart sowie zwei Aussagen $A_{n+1,1}, A_{n+2}$ derart geben, dass gilt

$$C_1 = B_1 \wedge A_{n+1,1}$$

$$C_2 = B_2 \wedge A_{n+1,2}$$

Nun muss

$$B_1 \neq B_2$$

oder

$$A_{n+1,1} \neq A_{n+1,2}$$

sein. Ansonsten wären die Aussagen C_1 und C_2 gleich. Ist $B_1 \neq B_2$ dann muss gelten

$$C_1 \wedge C_2$$

$$\Leftrightarrow (B_1 \wedge A_{n+1,1}) \wedge (B_2 \wedge A_{n+1,2})$$

$$\Leftrightarrow B_1 \wedge B_2 \wedge A_{n+1,1} \wedge A_{n+1,2}$$

Ist

$$B_1 \neq B_2$$

dann muss gelten

$$\neg (B_1 \land B_2)$$

Also muss gemäß dem Minimumprinzip der Konjunktion gelten

$$\neg (B_1 \land B_2 \land A_{n+1,1} \land A_{n+1,2})$$

Ist

$$A_{n+1,1} \neq A_{n+1,2}$$

dann muss gelten

$$\neg \left(A_{n+1,1} \land A_{n+2,2} \right)$$

Also muss wiederum gemäß dem Minimumprinzip der Konjunktion gelten

$$\neg (B_1 \land B_2 \land A_{n+1,1} \land A_{n+1,2})$$

Somit gilt auf jeden Fall

$$\neg (B_1 \land B_2 \land A_{n+1,1} \land A_{n+1,2})$$

Somit muss auch, da

$$B_1 \wedge B_2 \wedge A_{n+1,1} \wedge A_{n+1,2} \Leftrightarrow C_1 \wedge C_2$$

ist, ebenfalls

$$\neg (C_1 \land C_2)$$

sein. Also muss das für beliebige Aussagen $C_1, C_2 \in M_{n+1,r}$ gelten, sofern diese ungleich sein. Somit glaube ich, den Satz bewiesen zu haben.

Für was soll das gut sein? Nun, ich möchte gerne versuchen, das mit dem folgenden Satz zu demonstrieren:

SATZ 259. Es seien M eine Menge von Aussagen, welche paarweise disjunkt seien. Ist $n \in \mathbb{N}$ und sind für $k, l \in \mathbb{N}$ mit $k, l \leq n$ die Aussagen A_k und A_l verschieden, dann ist

$$\delta\left(\bigvee_{k=1}^{n} A_{k}\right) = \sum_{k=1}^{n} \delta\left(A_{k}\right)$$

Beweis. Es sei n = 1. Dann ist per Definition

$$\bigvee_{k=1}^{n} A_k = \bigvee_{k=1}^{1} A_k \equiv A_1$$

Also kann ich schreiben

$$\delta\left(\bigvee_{k=1}^{n} A_{k}\right) = \delta\left(A_{1}\right) = \sum_{k=1}^{n} \delta\left(A_{k}\right)$$

Nun gelte für $n \in \mathbb{N}$ die Behauptung. Dann gilt für n+1, sofern die Aussage A_{n+1} orthogonal zu allen anderen Aussagen A_k (mit $k \in \mathbb{N}$

und $k \leq 1$) sind:

$$\delta \left(\bigvee_{k=1}^{n+1} A_{k}\right)$$

$$= \delta \left(\bigvee_{k=1}^{n} A_{k} \vee A_{n+1}\right)$$

$$= \delta \left(\bigvee_{k=1}^{n} A_{k}\right) + \delta \left(A_{n+1}\right) - \delta \left(\bigvee_{k=1}^{n} A_{k}\right) \cdot \delta \left(A_{n+1}\right)$$

$$= \sum_{k=1}^{n} \delta \left(A_{k}\right) + \delta \left(A_{n+1}\right) - \delta \left(\left(\bigvee_{k=1}^{n} A_{k}\right) \wedge A_{n+1}\right)$$

$$= \sum_{k=1}^{n+1} \delta \left(A_{k}\right) - \delta \left(\bigvee_{k=1}^{n} \left(A_{k} \wedge A_{n+1}\right)\right)$$

Nun kann ich schließen, dass die Aussagen für $k\in\mathbb{N}$ und $k\leq n$ die $A_k\wedge A_{n+1}$ ebenfalls orthogonal sein müssen. Denn für $k,l\in\mathbb{N}$ mit $k,l\leq n$ muss gelten

$$A_k \wedge A_{n+1} \wedge A_l \wedge A_{n+1}$$

$$\Leftrightarrow A_k \wedge A_l \wedge A_{n+1} \wedge A_{n+1}$$

$$\Leftrightarrow A_k \wedge A_l \wedge A_{n+1}$$

Nun muss per Definition über A_k und A_l

$$\neg (A_k \wedge A_l)$$

sein. Also muss gemäß dem Minimumprinzip der Konjunktion

$$\neg (A_k \land A_l \land A_{n+1})$$

sein. Somit kann ich auch schließen, dass

$$\neg (A_k \land A_{n+1} \land A_l \land A_{n+1})$$

sein muss. Somit kann ich schließen, dass

$$\delta\left(\bigvee_{k=1}^{n}\left(A_{k}\wedge A_{n+1}\right)\right) = \sum_{k=1}^{n}\delta\left(A_{k}\wedge A_{n+1}\right)$$

ist. Da gemäß Voraussetzung über die Aussagen A_k mit $k \le n+1$ alle Aussagen orthogonal sein müssen, muss also gelten

$$\delta\left(A_k \wedge A_{n+1}\right) = 0$$

Darum kann ich schreiben

$$\sum_{k=1}^{n} \delta (A_k \wedge A_{n+1}) = \sum_{k=1}^{n} 0 = 0$$

und also auch

$$\delta\left(\bigvee_{k=1}^{n} \left(A_{k} \wedge A_{n+1}\right)\right) = \sum_{k=1}^{n} \delta\left(A_{k} \wedge A_{n+1}\right) = 0$$

Darum kann ich also schreiben:

$$\delta \left(\bigvee_{k=1}^{n+1} A_k \right)$$

$$= \sum_{k=1}^{n+1} \delta \left(A_k \right) - \delta \left(\bigvee_{k=1}^{n} \left(A_k \wedge A_{n+1} \right) \right)$$

$$= \sum_{k=1}^{n+1} \delta \left(A_k \right) - 0$$

$$= 0$$

Somit hätte ich den Beweis erbracht.

Satz 260. Es seien A_1 und A_2 Symbole für Aussagen. Dann gilt der logische Satz:

$$(A_1 \Rightarrow A_2) \Leftrightarrow ((\neg A_1 \land \neg A_2) \lor (\neg A_1 \land A_2) \lor (A_1 \land A_2))$$

Beweis
. Ich möchte den Beweis zuerst mittels der δ -Notation erschlagen. Dazu möchte
ich zeigen, dass gilt

$$\delta\left(\left(\left(\neg A_1 \land \neg A_2\right) \lor \left(\neg A_1 \land A_2\right) \lor \left(A_1 \land A_2\right)\right)\right) = \delta\left(A_1 \Rightarrow A_2\right)$$

Das ist vor allem aufwändig. Es gilt

$$\delta\left(A_1 \wedge A_2\right) = \delta\left(A_1\right) \cdot \delta\left(A_2\right)$$

Weiter gilt

$$\delta (\neg A_1 \wedge A_2)$$

$$= \delta (\neg A_1) \cdot \delta (A_2)$$

$$= (1 - \delta (A_1)) \cdot \delta (A_2)$$

$$= \delta (A_2) - \delta (A_1) \cdot \delta (A_2)$$

und ebenfalls

$$\delta (\neg A_1 \wedge \neg A_2)$$

$$= \delta (\neg A_1) \cdot \delta (\neg A_2)$$

$$= (1 - \delta (A_1)) \cdot (1 - \delta (A_2))$$

$$= 1 - \delta (A_2) - \delta (A_1) + \delta (A_1) \cdot \delta (A_2)$$

nun möchte ich Abkürzungen einfügen, damit mir das Leben ein wenig einfacher wird:

$$a \equiv \neg A_1 \wedge \neg A_2$$

$$b \equiv \neg A_1 \wedge A_2$$

$$c \equiv A_1 \wedge A_2$$

Dann ist weiter

$$\delta (a \lor b \lor c)$$

$$= \delta (a \lor (b \lor c))$$

$$= \delta (a) + \delta (b \lor c) - \delta (a) \cdot \delta (b \lor c)$$

$$= \delta (a) + \delta (b) + \delta (c) - \delta (b) \cdot \delta (c) - \delta (a) \cdot (\delta (b) + \delta (c) - \delta (b) \cdot \delta (c))$$

$$= \delta (a) + \delta (b) + \delta (c) - \delta (b) \cdot \delta (c) - \delta (a) \cdot \delta (b) \cdot \delta (c)$$

$$= \delta (a) + \delta (b) + \delta (a) \cdot \delta (c) - \delta (a) \cdot \delta (b) \cdot \delta (c)$$

$$= \delta (a) + \delta (b) + \delta (c) - \delta (b) \cdot \delta (c) - \delta (a) \cdot \delta (b) + \delta (c)$$

$$= \delta (a) + \delta (b) + \delta (c) - \delta (a) \cdot \delta (b) - \delta (a) \cdot \delta (c) - \delta (b) \cdot \delta (c)$$

$$= \delta (a) + \delta (b) + \delta (c) - \delta (a) \cdot \delta (b) - \delta (a) \cdot \delta (c) - \delta (a) \cdot \delta (c) + \delta (a) \cdot \delta (c)$$

$$= \delta (a) + \delta (b) + \delta (c) - \delta (a \land b) - \delta (a \land c) - \delta (b \land c) + \delta (a \land b \land c)$$

Nun kann ich die δ -Notationen der Konjunktionen ausrechnen:

$$\delta (a \wedge b)$$

$$= \delta (\neg A_1 \wedge \neg A_2 \wedge \neg A_1 \wedge A_2)$$

$$= \delta (\neg A_1 \wedge \neg A_1 \wedge A_2 \neg A_2)$$

$$= \delta (\neg A_1 \wedge \neg A_2 \wedge A_2)$$

$$= \delta (\neg A_1) \cdot \delta (\neg A_2 \wedge A_2)$$

$$= \delta (\neg A_1) \cdot 0$$

$$= 0$$

Weiter ist

$$\delta (a \wedge c)$$

$$= \delta (\neg A_1 \wedge \neg A_2 \wedge A_1 \wedge A_2)$$

$$= \delta (\neg A_1 \wedge A_1 \wedge \neg A_2 \wedge A_2)$$

$$= \delta (\neg A_1 \wedge A_1) \cdot \delta (A_2 \wedge A_2)$$

$$= 0 \cdot 0$$

$$= 0$$

sowie

$$\delta (b \wedge c)$$

$$= \delta (\neg A_1 \wedge A_2 \wedge A_1 \wedge A_2)$$

$$= \delta (\neg A_1 \wedge A_1 \wedge A_2 \wedge A_2)$$

$$= \delta (\neg A_1 \wedge A_1) \cdot \delta (A_2 \wedge A_2)$$

$$= 0 \cdot 0$$

$$= 0$$

und schlussendlich

$$\delta (a \wedge b \wedge c)$$

$$= \delta (\neg A_1 \wedge \neg A_2 \wedge \neg A_1 \wedge A_2 \wedge A_1 \wedge A_2)$$

$$= \delta (\neg A_1 \wedge \neg A_1 \wedge A_1 \wedge \neg A_2 \wedge A_2 \wedge A_2)$$

$$= \delta (\neg A_1 \wedge A_2 \wedge \neg A_2 \wedge A_2)$$

$$= \delta (\neg A_1 \wedge A_2) \cdot \delta (\neg A_2 \wedge A_2)$$

$$= \delta (0) \cdot 0$$

$$= 0$$

Somit kann ich schreiben

$$\delta(a \lor b \lor c)
= \delta(a) + \delta(b) + \delta(c)
-\delta(a \land b) - \delta(a \land c) - \delta(b \land c) + \delta(a \land b \land c)
= \delta(a) + \delta(b) + \delta(c)
-0 - 0 - 0 + 0
= \delta(a) + \delta(b) + \delta(c)
+0
= \delta(a) + \delta(b) + \delta(c)
= 1 - \delta(A_2) - \delta(A_1) + \delta(A_1) \cdot \delta(A_2) + \delta(A_2)
-\delta(A_1) \cdot \delta(A_2) + \delta(A_1) \cdot \delta(A_2)
= 1 - \delta(A_1) + \delta(A_1) \cdot \delta(A_2) + \delta(A_2) - \delta(A_2)
-0
= 1 - \delta(A_1) + \delta(A_1) \cdot \delta(A_2) + \delta(A_2) - \delta(A_2)
= 1 - \delta(A_1) + \delta(A_1) \cdot \delta(A_2) + 0
= 1 - \delta(A_1) + \delta(A_1) \cdot \delta(A_2)
= 1 - \delta(A_1) + \delta$$

Hurra, der Elefant hat eine Maus geborgen und ich also den Satz bewiesen. Ich möchte jedoch trotzdem den Beweis noch einmal mit Hilfe der

Tabelle 1. 1. Teil 1. Beweis 2. konjunktive Normalform Implikation

Aussage/ Fall Nr.	$\neg A_1$	$\neg A_2$		$\neg A_1 \wedge A_2$	$A_1 \wedge A_2$
1	1	1	1	0	0
2	1	0	0	1	0
3	0	1	0	0	0
4	0	0	0	0	1

Tabelle 2. 2. Teil 1. Beweis 2. konjunktive Normalform Implikation

Aussage/ Fall Nr.	$ \begin{array}{ccc} \neg A_1 \wedge \neg A_2 \vee \\ \neg A_1 \wedge & A_2 \vee \\ A_1 \wedge & A_2 \end{array} $	$A \Rightarrow B$	Behauptung
1	1	1	1
2	1	1	1
3	0	0	1
4	1	1	1

Tabelle 3. 1. Teil 2. Beweis 2. konjunktive Normalform Implikation

Aussage/ Fall Nr.	$\neg A_1$	$\neg A_2$	$\neg A_1 \wedge \neg A_2$	$\neg A_1 \wedge A_2$	$A_1 \wedge A_2$
1	$\neg A_1$	$\neg A_2$	$\neg A_1 \wedge \neg A_2$	$\neg (\neg A_1 \land A_2)$	$\neg (A_1 \land A_2)$
2	$\neg A_1$	A_2	$\neg (\neg A_1 \land \neg A_2)$	$\neg A_1 \wedge A_2$	$\neg (A_1 \land A_2)$
3	A_1	$\neg A_2$	$\neg (\neg A_1 \land \neg A_2)$	$\neg (\neg A_1 \land A_2)$	$\neg (A_1 \land A_2)$
4	A_1	A_2	$\neg (\neg A_1 \land \neg A_2)$	$\neg (\neg A_1 \land A_2)$	$A_1 \wedge A_2$

"drögen²" Wahrheitstafeln erbringen. Die Beweise sowie deren Verweise auf die entsprechenden Definitionen sind unter den folgenden Tabellen abgelegt: 1, 2, 3, 4, 5, 6 sowie 7.

Somit hätte ich die 2. konjunktive Normalform von $A\Rightarrow B$ beschrieben. Falls Du jetzt dies mit der Definition 14 der Implikation vergleichst, dann siehst Du, dass ich eigentlich eine Art konjunktiver Normalform aufgeschrieben habe, um die Implikation zu beschreiben. Wie Du an der Definition oben und diesen zwei Normalformen ablesen kannst, ist es offenbar so, dass eine konjunktive Normalform nicht eindeutig festgelegt sein muss.

Darum möchte ich ich nachfolgend die konjunktiven Normalformen der definierten Verknüpfungen aufzeigen. Es seien A und B Aussagen. Dann ist

²umgangssprachlich für "langweilig"

812). KONJUNKTIVE UND DISJUNKTIVE NORMALFORMEN VON AUSSAGEN

Tabelle 4. 2. Teil 1. Beweis 2. konjunktive Normalform Implikation

Aussage/ Fall Nr.	$ \begin{array}{c c} \neg A_1 \wedge \neg A_2 \vee \\ \neg A_1 \wedge & A_2 \vee \\ A_1 \wedge & A_2 \end{array} $	$A \Rightarrow B$	$ \begin{array}{ccc} (\neg A_1 \wedge \neg A_2 \vee \\ \neg A_1 \wedge & A_2 \vee \\ A_1 \wedge & A_2 \end{array}) \\ \Leftrightarrow \\ (A \Rightarrow B) $
1	$ \begin{array}{c c} \neg A_1 \wedge \neg A_2 \vee \\ \neg A_1 \wedge & A_2 \vee \\ A_1 \wedge & A_2 \end{array} $	$A \Rightarrow B$	$ \begin{array}{c} (\neg A_1 \wedge \neg A_2 \vee \\ \neg A_1 \wedge A_2 \vee \\ A_1 \wedge A_2) \\ \Leftrightarrow \\ (A \Rightarrow B) \end{array} $
2	$ \begin{array}{c c} \neg A_1 \wedge \neg A_2 \vee \\ \neg A_1 \wedge & A_2 \vee \\ A_1 \wedge & A_2 \end{array} $	$A \Rightarrow B$	$(\neg A_1 \land \neg A_2 \lor \\ \neg A_1 \land A_2 \lor \\ A_1 \land A_2) \\ \Leftrightarrow \\ (A \Rightarrow B)$
3	$ \neg (\neg A_1 \land \neg A_2 \lor \\ \neg A_1 \land A_2 \lor \\ A_1 \land A_2) $	$\neg (A \Rightarrow B)$	$ \begin{array}{c} (\neg A_1 \wedge \neg A_2 \vee \\ \neg A_1 \wedge A_2 \vee \\ A_1 \wedge A_2) \\ \Leftrightarrow \\ (A \Rightarrow B) \end{array} $
4	$ \begin{array}{c} \neg A_1 \wedge \neg A_2 \vee \\ \neg A_1 \wedge A_2 \vee \\ A_1 \wedge A_2 \end{array} $	$A \Rightarrow B$	$ \begin{array}{ccc} (\neg A_1 \wedge \neg A_2 \vee \\ \neg A_1 \wedge & A_2 \vee \\ A_1 \wedge & A_2 \end{array}) \\ \Leftrightarrow \\ (A \Rightarrow B) $

TABELLE 5. 1. Teil der Verweise des Beweises der 2. konjunktiven Normalform der Implikation

Defintion/	Definition 11	Definition 11	Definition 13
Fall Nr.	der	der	der
rall Nr.	Negation	Negation	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	1. Zeile

bereits die konjunktive Normalform von $\neg A$. Weiter ist

$$A \wedge B$$

ebenfalls die konjunktive Normalform von $A \wedge B$. Es ist weiter

$$A \vee B$$

40. KONJUNKTIVE UND DISJUNKTIVE NORMALFORMEN VON AUSSAGE 313

TABELLE 6. 2. Teil der Verweise des 2. Beweises der 2. konjunktiven Normalform der Implikation

Aussage/ Fall Nr.	Definition 13 der Konjunktion
1	3. Zeile
2	4. Zeile
3	1. Zeile
4	2. Zeile

TABELLE 7. 3. Teil der Verweise des 2. Beweises der 2. konjunktiven Normalform der Implikation

Defintion/	Definition 14	Definition 19
Fall Nr.	der	der
ran ivi.	Implikation	Äquivalenz
1	1. Zeile	4. Zeile
2	2. Zeile	4. Zeile
3	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile

jedoch auch

$$\neg A \land B \lor A \land \neg B \lor A \land B$$

die konjunktive Normalform der Disjunktion. Zur zweiten Form:

$$\delta (\neg A \land B \lor A \land \neg B \lor A \land B)$$

=\delta (\neg A \land B) + \delta (A \land \neg B \lor A \land B) -

$$A \land \neg B \lor A \land B$$

$$\Leftrightarrow A \land (\neg B \lor B)$$

$$\Leftrightarrow A$$

Der letzte logische Schritt habe ich bei Lemma 78 abgeguckt. Darum kann ich schreiben

$$\neg A \land B \lor A \land \neg B \lor A \land B$$

$$\Leftrightarrow \neg A \land B \lor A$$

Also ist

$$\delta (\neg A \wedge B \vee A)$$

$$=\delta (\neg A \wedge B) + \delta (A) - \delta (\neg A \wedge B) \cdot \delta (A)$$

$$=\delta (\neg A) \cdot \delta (B) + \delta (A) - \delta (\neg A) \cdot (B) \cdot \delta (A)$$

$$=\delta (\neg A) \cdot \delta (B) + \delta (A) - \delta (A) \cdot \delta (\neg A) \cdot \delta (B)$$

$$=(1 - \delta (A)) \cdot \delta (B) + \delta (A) - \delta (A \wedge \neg A) \cdot \delta (B)$$

$$=\delta (B) - \delta (A) \cdot \delta (B) + \delta (A) - 0 \cdot \delta (B)$$

$$=\delta (A) + \delta (B) - \delta (A) \cdot \delta (B) - 0$$

$$=\delta (A) + \delta (B) - \delta (A) \cdot \delta (B)$$

$$=\delta (A \vee B)$$

Somit muss also gelten

$$\delta (\neg A \land B \lor A \land \neg B \lor A \land B)$$

=\delta (A \lor B)

und darum auch gemäß dem Satz 264

$$(A \Rightarrow B) \Leftrightarrow \neg A \land B \lor A \land \neg B \lor A \land B$$

Ich möchte nun nicht mehr allzu viel über konjunktive Normalformen schreiben. Für die Grundoperationen (Negation, Konjunktion, Disjunktion, Implikation, Äquivalenz, Antivalenz, NAND- respektive NOR-Verknüpfung) sind konjunktiven Normalformen beispielsweise die Disjunktion aller Zeilen der entsprechenden Definitionen, für welche die Definition wahr sind. Im Moment kann ich jedoch den entsprechenden Beweis nicht führen. Jedoch habe ich ein erstes Beispiel oben gemacht. Ich möchte nun weitere Beispiele machen: Die konjunktive Normalform der Negation ist die Negation selbst, diejenige der Konjunktion die Konjunktion selbst. Bei beiden logischen Operationen gilt die Behauptung, dass die Normalform an denjenigen Zeilen in der Definition abgelesen werden kann, in welcher die Operation wahr ist. Die konjunktive Normalform der Disjunktion ist entsprechend ebenfalls die Disjunktion selbst.

Die konjunktive Normalform der Äquivalenz ist

$$(A \Leftrightarrow B) \Leftrightarrow (\neg A \land \neg B) \lor (A \land B)$$

Denn es ist

$$\delta(A \Leftrightarrow B)$$

$$=1 - (\delta(A) - \delta(B))^{2}$$

$$=1 - (\delta(A)^{2} - 2 \cdot \delta(A) \cdot \delta(B) + \delta(B)^{2})$$

$$=1 - \delta(A)^{2} + 2 \cdot \delta(A) \cdot \delta(B) - \delta(B)^{2}$$

$$=1 - \delta(A) + 2 \cdot \delta(A) \cdot \delta(B) - \delta(B)$$

Nun möchte ich die δ -Notation von

$$(\neg A \land \neg B) \lor (A \land B)$$

bestimmen:

$$\delta\left((\neg A \land \neg B) \lor (A \land B)\right)$$

$$=\delta\left(\neg A \land \neg B\right) + \delta\left((A \land B)\right) - \delta\left(\neg A \land \neg B\right) \cdot \delta\left(A \land B\right)$$

$$=\delta\left(\neg A\right) \cdot \delta\left(\neg B\right) + \delta\left(A\right) \cdot \delta\left(B\right) - \delta\left(\neg A\right) \cdot \delta\left(\neg B\right) \cdot \delta\left(A\right) \cdot \delta\left(B\right)$$

$$=\delta\left(\neg A\right) \cdot \delta\left(\neg B\right) + \delta\left(A\right) \cdot \delta\left(B\right) - \delta\left(\neg A\right) \cdot \delta\left(A\right) \cdot \delta\left(\neg B\right) \cdot \delta\left(B\right)$$

$$=\delta\left(\neg A\right) \cdot \delta\left(\neg B\right) + \delta\left(A\right) \cdot \delta\left(B\right) - \delta\left(\neg A \land A\right) \cdot \delta\left(\neg B \land B\right)$$

$$=\delta\left(\neg A\right) \cdot \delta\left(\neg B\right) + \delta\left(A\right) \cdot \delta\left(B\right) - 0 \cdot 0$$

$$=\delta\left(\neg A\right) \cdot \delta\left(\neg B\right) + \delta\left(A\right) \cdot \delta\left(B\right) - 0$$

$$=\delta\left(\neg A\right) \cdot \delta\left(\neg B\right) + \delta\left(A\right) \cdot \delta\left(B\right)$$

Die δ -Notationen werden schnell unübersichtlich. Also kann ich wirklich schreiben

$$\delta\left((\neg A \land \neg B) \lor (A \land B)\right)$$

$$=\delta\left(\neg A\right) \cdot \delta\left(\neg B\right) + \delta\left(A\right) \cdot \delta\left(B\right)$$

$$=\left(1 - \delta\left(A\right)\right) \cdot \left(1 - \delta\left(B\right)\right) + \delta\left(A\right) \cdot \delta\left(B\right)$$

$$=1 - \delta\left(B\right) - \delta\left(A\right) + \delta\left(A\right) \cdot \delta\left(B\right) + \delta\left(A\right) \cdot \delta\left(B\right)$$

$$=1 - \delta\left(A\right) + 2 \cdot \delta\left(A\right) \cdot \delta\left(B\right) - \delta\left(B\right)$$

$$=\delta\left(A \Leftrightarrow B\right)$$

Also habe ich auch diesen Beweis gemäß dem Satz 264 erbracht. Die konjunktive Normalform der Disjunktion hingegen ist:

$$(A \Leftrightarrow B) \Leftrightarrow (\neg A \land B) \lor (A \land \neg B)$$

Denn es ist

$$\delta (A \Leftrightarrow B)$$

$$= (\delta (A) - \delta (B))^{2}$$

$$= \delta^{2} (A) - 2 \cdot \delta (A) \cdot \delta (B) + \delta^{2} (B)$$

$$= \delta^{2} (A) - 2 \cdot \delta (A) \cdot \delta (B) + \delta^{2} (B)$$

$$= \delta (A) - 2 \cdot \delta (A) \cdot \delta (B) + \delta (B)$$

8140. KONJUNKTIVE UND DISJUNKTIVE NORMALFORMEN VON AUSSAGEN

Wieder ist

$$\begin{split} \delta\left((\neg A \land B) \lor (A \land \neg B)\right) \\ = \delta\left(\neg A \land B\right) + \delta\left(A \land \neg B\right) \\ = \delta\left(\neg A\right) \cdot \delta\left(B\right) + \delta\left(A\right) \cdot \delta\left(\neg B\right) \\ = (1 - \delta\left(A\right)) \cdot \delta\left(B\right) + \delta\left(A\right) \cdot (1 - \delta\left(B\right)) \\ = \delta\left(B\right) - \delta\left(A\right) \cdot \delta\left(B\right) + \delta\left(A\right) - \delta\left(A\right) \cdot \delta\left(B\right) \\ = \delta\left(B\right) - \delta\left(A\right) \cdot \delta\left(B\right) + \delta\left(A\right) - \delta\left(A\right) \cdot \delta\left(B\right) \\ = \delta\left(A\right) - 2 \cdot \delta\left(A\right) \cdot \delta\left(B\right) + \delta\left(B\right) \\ = \delta\left(A \Leftrightarrow B\right) \end{split}$$

und somit kann ich entsprechend dem Satz 264 wiederum schließen, dass

$$A \Leftrightarrow B \Leftrightarrow ((\neg A \land B) \lor (A \land \neg B))$$

gelten muss.

KAPITEL 41

Über das Kronecker-Symbol

Herr Kronecker war offenbar ein stinkreicher Typ, welcher es sich leisten konnte, zu seiner Unterhaltung Mathematik zu betreiben und andre Leute ins Unglück zu stürzen. So beschreibt es auf alle Fälle in seinem Buch über die Entdeckung der Unendlichkeit. Aber nur zur eigentlichen Einleitung dieses Kapitels:

Manchmal könnte ich schon den Kopf über mich selbst schütteln! Da denke ich mir jahrelang etwas aus - nur um am Schluss zu bemerken, dass es das schon seit Urzeiten gibt. Aber ich möchte trotzdem das Konzept der Delta-Funktionen hier ganz ausführlich aufschreiben, da es exemplarisch für etwas steht, was in der Mathematik sehr häufig passiert. Angenommen, Du stehst am Abgrund einer tiefen Schlucht, welchen du unmöglich überspringen kannst. Jedoch möchtest Du noch so gerne auf die andere Seite. Hinunterklettern ist auch keine Option, da Du kein Klettermaterial dabei hast und nicht unnötig Dein Leben riskieren möchtest. Was kannst Du machen? Du schaust Dich um und ganz weit weg siehst Du eine Brücke die tiefe und gefährliche Schlucht übergueren. So weit Du überblicken kannst, führt von deinem momentanen Aufenthaltsort zur Brücke und auf der anderen Seite der Brücke bis zu Deinem Sehnsuchtsort ein relativ beguemer Weg. Dann dürfte es klar sein, wie Du auf die andere Seite kommst: Du marschierst zur Brücke, über die Brücke auf die andere Seite und dann von der anderen Seite zu Deinem gewünschten Zielort. So weit sollte wahrscheinlich alles klar sein. Was meines Erachtens jedoch erstaunlich ist, ist die Feststellung, dass dies in der Mathematik eben auch häufig passiert. Du bist mit einem Problem konfrontiert, welches Du auf den ersten Blick unmöglich lösen kannst. Keine Ahnung, wie eine Lösung des Rätsels erfolgen soll. Die große Leistung ist dann häufig diejenige, Ausschau zu halten, ob das Problem auf eines zurückgeführt werden kann, für welches bereits eine Lösung bekannt ist. Die Schwierigkeit ist jedoch oft, zu erkennen, ob es eine Verbindung zu einem bereits gelösten Problem gibt oder nicht. Und wenn es ganz schwierig wird, dann kannst Du Dir auch überlegen, ob das Problem überhaupt eine Lösung haben kann. Also ob es überhaupt möglich ist, das Problem auf ein bekanntest Problem zurückzuführen. Falls Du das schaffst (das Problem auf ein bereits bekanntes Problem zurückzuführen oder zu zeigen, dass das gar nicht möglich ist), dann ist das sehr beglückend. Das ist ein großer Reiz der Mathematik und verschafft ihr auch einen großen Charme. Genau so

ist dieses Kapitel in meinen Augen zu verstehen. Es ist zwar möglich, logische Sätze zu beweisen, indem die Voraussetzungen nachgeschlagen werden. Aber mit der Übersetzung kann ich die Fallunterscheidungen weglassen.

DEFINITION 261. Es sei $A \in \Omega$, in Worten: A sei eine Aussage, welche in sich selbst nicht widersprüchlich sei. Dann sei definiert, dass $\delta(A) \equiv 1$ sei, falls die Aussage wahr sei. In allen anderen Fällen sei $\delta(A) \equiv 0$. Bei in sich selbst widersprüchlichen Aussage werde (im besten Sinn des Worts) willkürlich ebenfalls $\delta(A) \equiv 0$ festgelegt.

Falls Du mehr über Abbildungen erfahren willst, dann sei Dir die Definition 158 ans Herz gelegt. Du fragst Dich vielleicht, für was diese Formulierung gut sein soll. Die Antwort ist relativ simpel: Die Beweisführung mittels Nachschlagen der Definitionen der logischen Verknüpfungen ist recht mühselig und zeitraubend - außer falls Du eine recht große Routine in den Definitionen besitzt. Das Rechnen mit Kronecker-Symbolen ist zwar zuweilen auch recht mühsam. Aber da Du diese Rechenart bestimmt besser im Kopf hast als die Definitionen der logischen Verknüpfungen, bieten sich diese Berechnungen als Kontrolle oder oder unabhängige Berechnungen (beispielsweise mittels Excel-Tabellen) geradezu an. Außerdem habe ich bereits rege von den Kronecker-Symbolen Gebrauch gemacht, und zwar in den tabellarischen Definitionen und Beweisen der logischen Aussagen (siehe beispielsweise in der Tabelle 82) Nun möchte ich jedoch daran gehen, die Eigenschaften der Delta-Notation aufzuschlüsseln. Aus der Definition der Definition der Delta-Notation lässt sich ableiten:

Satz 262. Es sei A eine Aussage. Dann ist genau dann A wahr, falls $\delta(A) = 1$ ist.

BEWEIS. Ist A wahr, dann muss gemäß der Definition der δ -Notation $\delta(A)=1$ sein. Darum ist die eine Seite des Beweises erbracht. Es sei jetzt A eine Aussage mit der Eigenschaft, dass $\delta(A)=1$ sein. Wäre A nicht wahr, dann könnte nicht $\delta(A)=1$ sein, sondern müsste nach Definition $\delta(A)=0$ sein - was jedoch nicht zutreffen würde. Also muss A eine wahre Aussage sein. Damit ist jedoch der Beweis erbracht.

Ich möchte nun eine der grundlegendsten Eingenschaften der Kronecker-Symbole formulieren und beweisen.

Satz 263. Es sei A eine Aussage, welche in sich selbst und bezüglich den anderen Symbolen dieses Beweises widerspruchsfrei ist. Dann gilt

$$\delta^{2}(A) \equiv (\delta(A))^{2} \equiv \delta(A) \cdot \delta(A) = \delta(A)$$

BEWEIS. Es sei $A \in \delta$. Dann gilt per Definition $\delta(A) \in \{0, 1\}$. Ist $\delta(A) = 0$, dann gilt

$$\delta^{2}(A) = \delta(A) \cdot \delta(A) = 0 \cdot 0 = 0 = \delta(A)$$

Ist hingegen $\delta(A) = 1$, dann ist also

$$\delta^2(A) = 1 \cdot 1 = 1 = \delta(A)$$

Also gilt in jedem Fall

$$\delta^2(A) = \delta(A)$$

und somit kann ich diesen Satz als erwiesen betrachten. Ein zweiter, leicht anderer Beweis bedient sich Sätzen, welche ich weiter unten ausführe. Gemäß dem Satz 267 unten ist

$$\delta^{2}(A) = \delta(A) \cdot \delta(A) = \delta(A \wedge A) = \delta(A)$$

Die letzte Gleichung gilt, da

$$A \wedge A \Leftrightarrow A$$

ist. Also muss gemäß dem nächsten Satz 264 gelten, dass

$$\delta\left(A \wedge A\right) = \delta\left(A\right)$$

ist. Damit hätte ich den Satz zwar erneut beweisen. Es ist mir zum jetzigen Zeitpunkt jedoch nicht klar, ob der zweite Beweis nicht von diesem Satz selbst abhängt - was natürlich ein grober Fehler wäre. Aber ausschließen kann ich es im Moment nicht.

Ist übrigens r eine (wie auch immer definierte Zahl), dann sei ebenfalls definiert

$$r^2 \equiv r \cdot r$$

Zur Wortwahl der Idempotenz. Ich habe die Idempotenz zuerst in der Funktionalanalysis kennen (und hassen) gelernt. Ein bekannteres Beispiel, welche hoffentlich unmittelbar einleuchtet, sei dieses: Angenommen, Du hast einen Körper (beispielsweise einen Stuhl). Und diesen Stuhl projizierst Du auf eine Wand, beispielsweise mit einer Taschenlampe. Dann zeichnest Du also den Schatten auf die Wand. Dann erhältst Du also eine ebenes Bild des Stuhls. Wenn Du jetzt ein an der Wand ein Papier befestigst und dem Schatten mit einem Stift nachführst, dann den Schatten ausschneidest und das ausgeschnittene Papier auf ein anderes Papier heftest, den Stuhl entfernst und den "Schatten" des ersten ausgeschnittenen Schattenbilds auf dem zweiten Papier erneut nachzeichnest und wieder ausschneidest: Was siehst Du dann? Du siehst dann, dass der Schattens des Schattens gleich groß ist wie der Schatten. Denn Projektionen sind eben idempotent. Wenn ich die Operation zwei oder mehrere Male durchführe, dann kommt dasselbe heraus, wie wenn ich die Operation einmal durchführe. Das ist genau gleich bei der Deltanotation.

Nun möchte ich eine weitere Eigenschaft der δ -Notation zeigen.

Satz 264. Es seien $A, B \in \delta$. Dann ist genau dann

$$A \Leftrightarrow B$$

820

falls

$$\delta(A) = \delta(B)$$

ist. Um es formal zu schreiben:

$$\delta(A \Leftrightarrow B) \Leftrightarrow (\delta(A) = \delta(B))$$

BEWEIS. Es sei $A \Leftrightarrow B$. Also sind entweder beide Aussagen wahr oder beide Aussagen nicht wahr. Angenommen beide Aussagen seien wahr. Dann gilt also $\delta(A) = 1$ sowie $\delta(B) = 1$. Somit kann ich dann schreiben:

$$\delta(A) = 1 = \delta(B)$$

und also

$$\delta\left(A\right) = \delta\left(B\right)$$

Also ist die Behauptung in diesem Fall erbracht. Sind jedoch beide Aussagen nicht wahr, dann gilt also $\delta(A)=0$ sowie $\delta(B)=0$. Das bedeutet, dass

$$\delta(A) = 0 = \delta(B)$$

und somit wiederum

$$\delta\left(A\right) = \delta\left(B\right)$$

gelten muss. Falls eine Aussage wahr, die andere jedoch falsch ist, dann gilt also die Voraussetzung

$$A \Leftrightarrow B$$

also nicht. Dennoch gilt jedoch die Implikation, dass daraus

$$\delta(A) = \delta(B)$$

folgt. Damit wäre jedoch die eine Richtung der Behauptung bewiesen.

Es sei andererseits $\delta(A) = \delta(B)$. Da gelten muss

$$\delta(A), \delta(B) \in \{0, 1\}$$

bedeutet dies, dass entweder

$$\delta(A) = \delta(B) = 0$$

oder aber

$$\delta(A) = \delta(B) = 1$$

gelten muss. Ist jedoch $\delta(A) = \delta(B) = 0$, dann sind per Definition der δ -Notation beide Aussage nicht wahr. Also muss dann ebenfalls gemäß der ersten Zeile der Definition der Äquivalenz (siehe Definition 20), dass gilt

$$A \Leftrightarrow B$$

Ist jedoch $\delta(A) = \delta(B) = 1$, dann müssen beide Aussagen A und B wahr sein. Gemäß der 4. Zeile der Definition muss dann die Äquivalenz der beiden Aussagen ebenfalls wahr sein. Ist zuletzt $\delta(A) \neq \delta(B)$, dann gilt die Implikation, dass die Äquivalenz wahr ist, aufgrund der Definition der Implikation trotzdem (siehe Definition 14, erste respektive 2. Zeile). Also hätte ich damit beide Richtungen der Äquivalenz und somit den Satz selbst bewiesen.

Tabelle 1. δ -Notationen

Formel	Verweis
$\delta^{2}\left(A\right) = \delta\left(A\right)$	Satz 263
$\delta\left(\neg A\right) = 1 - \delta\left(A\right)$	Satz 266
$\delta\left(A \wedge B\right) = \delta\left(A\right) \cdot \delta\left(B\right)$	Satz 267
$\delta(A \vee B) = \delta(A) + \delta(B) - \delta(A) \cdot \delta(B)$	Satz 270
$\delta(A \Rightarrow B) = 1 - \delta(A) \cdot (1 - \delta(B))$	Satz 268
$\delta(A \Leftrightarrow B) = 1 - (\delta(A) - \delta(B))^{2}$	Satz 272
$\delta(A \Leftrightarrow B) = (\delta(A) - \delta(B))^{2}$	Satz 271
$\delta\left(A\overline{\wedge}B\right) = 1 - \delta\left(A\right) \cdot \delta\left(B\right)$	Satz 273
$\delta(A \nabla B) = 1 - \delta(A) - \delta(B) + \delta(A) \cdot \delta(B)$	Satz 274

Tabelle 2. Beispiel einer Wahrheitstabelle (Schlussfolgerung)

A	B	$A \Rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

Mit dem Satz der δ -Notation lassen sich logische Sätze zwar nicht unbedingt schneller, jedoch leichter beweisen. Denn die logischen Sätze lassen sich in Zahlenausdrücke umwandeln und umformen. Zudem musst Du Dir weniger merken. Die ganze Verweise auf die Definitionen der logischen Verknüpfungen fallen auch weg. Aber - und das ist der Pferdefuß - sie setzen das Rechnen mit ganzen Zahlen voraus. Und wenn die ganzen Zahlen mit Hilfe der Logik hergeleitet werden sollen, dann musst Du darauf achtgeben, dass die Beweise nicht auf etwas zurückgreifen, was sie eigentlich beweisen sollten. Darum werde ich zwei immer zwei Herleitungen von logischen Sätzen machen. Die eine ohne, und die andere mit der δ -Notation. In der Tabelle 1beschreibe ich die wesentlichen Formeln der δ -Notation zusammen mit den Verweisen. Dabei seien $A, B \in \delta$ (also A oder B Symbole für beliebige Aussagen). Bitte lasse Dich nicht davon abschrecken, falls sich Dir den Sinn für diese Formeln nicht unmittelbar erschließt.

Die δ -Notation wird vor allem in den Definitionen der logischen Verknüpfungen verwendet. Betrachte die Definition der Implikation (Schlussfolgerung). Obwohl ich es später noch einmal sehr genau zu zeigen versuche, liste ich nachfolgend aus Gründen der Übersichtlichkeit unter der Tabelle 2 schon einmal die Definition der Implikation auf. In der dritten Zeile dieser Tabelle kannst Du ablesen: Ist die Aussage A wahr (ist also deren δ -notation 1) sowie die Aussage B nicht wahr

(ist also deren δ -notation 0) dann sei definiert, dass die Implikation

$$A \Rightarrow B$$

in diesem Fall nicht wahr sei, also definiert sei

$$\delta(A \Rightarrow B) \equiv 0$$

Viele Wahrheitstafeln sind auf diese Weise aufgebaut.

Es gibt jedoch in der Mathematik auch eine andere Verbindung zur δ -notation, welche meines Erachtens ziemlich wichtig ist. Jedoch ist (wie leider so oft) die Bezeichnung verschieden. Es sei A das Symbol einer Aussage. Dann sei das Kronecker-Symbol derart definiert:

(35)
$$\delta_A \equiv \begin{cases} 0 & \Leftarrow \delta(A) = 0 \\ 1 & \Leftarrow \delta(A) = 1 \end{cases}$$

Das bedeutet, dass das Kronecker-Symbol schlichtweg eine Umschreibung der δ -Notation ist. Jedoch wird A selten so "kryptisch" (also geheimnisvoll) beschrieben. Darum möchte im Folgenden ein Beispiel aufschreiben. Lasse die jedoch bitte nicht verdrießen, falls Du die Notation noch nicht verstehst.

DEFINITION 265. Die sogenannte Heaviside Funktion¹ sei wie folgt definiert:

$$f_h: \mathbb{R} \to \{0, 1\}$$

 $x \mapsto \delta_{x > 0}$

Also ist

$$f_h(x) \equiv \begin{cases} 0 & \Leftarrow x \le 0 \\ 1 & \Leftarrow x > 0 \end{cases}$$

Ich habe den Graph der Heaviside Funktion in der Abbildung 1 abgebildet.

Die Funktion kann noch schöner ausgeführt werden, indem gefordert wird:

$$f_{h,2}(x) \equiv \begin{cases} 0 & \Leftarrow x < 0 \\ \frac{1}{2} & \Leftarrow x = 0 \\ 1 & \Leftarrow x > 0 \end{cases}$$

 $^{^{1}}$ benannt gemäß Wikipedia nach dem Mathematiker und Physiker Oliver Heaviside

Diese Funktion könnte ich formal beschreiben etwa durch

$$f_{h,2}(x) \equiv \frac{1}{2} \cdot \delta_{x=0} + \delta_{x>0}$$

Ich habe den Graph dieser alternativen Form der Heaviside-Funktion in der Abbildung 1 abgebildet.

Das Kronecker-Symbol eignet sich prima, um relativ schwierige Berechnungen formal elegant durchzuführen. Wenn ich hingegen die folgende Funktion definiere:

$$f_{h,2}(x) \equiv \delta_{x=0} + 2 \cdot \delta_{x>0} - 1$$

dann gilt

$$f_{h,2}(x) \equiv \begin{cases} -1 & \Leftarrow x < 0 \\ 0 & \Leftarrow x = 0 \\ 1 & \Leftarrow x > 0 \end{cases}$$

Ich habe den Graph dieser alternativen Form der Heaviside-Funktion in der Abbildung 3 abgebildet.

In allen drei Beispielen ist es meines Erachtens leichter, mit den Kroneker-Symbolen zu rechnen als mit den Fallunterscheidungen. Das bedeutet, dass die Kroneker-Symbole eine Art versteckter Fallunterscheidungen sind, mit welchen Du relativ leicht rechnen kannst - sofern Du Dich an die Schreibweise (Notation) gewöhnt hast. Nun möchte ich die Sätze, welche ich oben definiert habe, noch einmal mit Hilfe der Kronecker-Symbole beweisen:

SATZ 266. Es sei
$$A \in \delta$$
. Dann ist $\delta(\neg A) = 1 - \delta(A)$.

Beweis. Ist A eine wahre Aussage, dann ist per Definition $\neg A$ keine wahre Aussage und gleichzeitig muss gelten:

$$\delta(A) = 1$$
$$\delta(\neg A) = 0$$

Somit kann ich schreiben:

$$\delta(\neg A) = 0 = 1 - 1 = 1 - \delta(A)$$

Ist hingegen A keine wahre Aussage, dann muss also gelten: $\delta(A) = 0$. Auf der anderen Seite ist in diesem Fall $\delta(\neg A) = 1$. Also ist auch in diesem Fall gilt

$$\delta(\neg A) = 1 = 1 - 0 = 1 - \delta(A)$$

kann ich also sagen, dass in beiden, und somit allen möglichen Fällen gilt, dass

$$\delta\left(\neg A\right) = 1 - \delta\left(A\right)$$

ist. Somit glaube ich, diesen Satz bewiesen zu haben.

Die Identität besitzt keine besondere δ -Notation.

Als nächstes möchte ich die Delta-Notation der Konjunktion notieren.

Satz 267. Es seien $A, B \in \delta$. Dann gilt in diesem Fall

$$\delta(A \wedge B) = \delta(A) \cdot \delta(B)$$

BEWEIS. Es seien A und B wahre Aussagen. Dann muss also nach Definition der Konjunktion $A \wedge B$ ebenfalls eine wahre Aussage sein. Also muss nach Definition der δ -Notation gelten

$$\delta(A) = 1$$
$$\delta(B) = 1$$
$$\delta(A \land B) = 1$$

somit kann ich schreiben

$$\delta(A \wedge B) = 1 = 1 \cdot 1 = \delta(A) \cdot \delta(B)$$

Es sei nun A oder B oder beide Aussagen A und B Aussagen, welche nicht wahr seien. Dann muss auf jeden Fall einer der Beiden Faktoren $\delta(A)$, $\delta(B)$ im Produkt

$$\delta(A) \cdot \delta(B)$$

0 sein. Da beide Faktoren jedoch in der Menge $\{0,1\}$ enthalten sein müssen, gilt dann auf jeden Fall

$$\delta(A) \cdot \delta(B) = 0$$

Die Aussage $A \wedge B$ kann dann keine wahre Aussage sein. Also muss in diesem Fall gelte

$$\delta(A \wedge B) = 0 = \delta(A) \cdot \delta(B)$$

Also glaube ich auch in diesem Fall und somit in allen möglichen Fällen den Beweis erbracht zu haben. Darum erachte ich die Behauptung als bewiesen.

Zur Delta-Notation der Implikation:

Satz 268. Es seien $A, B \in \delta$. Dann gilt

(36)
$$\delta(A \Rightarrow B) = 1 - \delta(A) \cdot (1 - \delta(B))$$

Beweis. Gemäß dem Satz 54 weiter unten ist die Aussage

$$A \Rightarrow B$$

genau dann wahr, falls die Aussage

$$\neg (A \land \neg B)$$

wahr ist. In Worten: Es darf nicht sowohl die Aussage von A wie auch die Negation von B wahr sein. Darum kann ich gemäß den obigen Sätzen rechnen:

$$\delta (A \Rightarrow B)$$

$$= \delta (\neg (A \land \neg B))$$

$$= 1 - \delta (A \land \neg B)$$

$$= 1 - \delta (A) \cdot \delta (\neg B)$$

$$= 1 - \delta (A) \cdot (1 - \delta (B))$$

Das Resultat kann auch wie folgt begründet werden: Ist die Aussage A nicht wahr, dann muss $\delta(A) = 0$ sein. Also gilt in diesem Fall

$$= 1 - \delta(A) \cdot (1 - \delta(B)) = 1 - 0 \cdot (1 - \delta(B))$$

Da $\delta(B) \in \{0, 1\}$ ist, muss also ebenfalls $1 - \delta(B) \in \delta\{0, 1\}$ sein. Also ist sowohl

$$1 - 0 \cdot (1 - 0) = 1 - 0 \cdot 1 = 1 - 0 = 1$$

wie auch

$$1 - 0 \cdot (1 - 1) = 1 - 0 \cdot 0 = 1 - 0 = 1$$

In diesem Fall muss jedoch gemäß der Definition der Implikation ebenfalls die Implikation gelten und somit auch $\delta(A \Rightarrow B)$ wahr sein. Damit ist jedoch in diesem Fall (A ist nicht wahr) die Behauptung erbracht. Sind andererseits sowohl A wie auch B wahr dann ist also $\delta(A) = \delta(B) = 1$. Somit gilt also in diesem Fall

$$\delta (A \Rightarrow B)$$

$$=1 - \delta (A) \cdot (1 - \delta (B))$$

$$=1 - 1 \cdot (1 - 1)$$

$$=1 - 1 \cdot 0$$

$$=1 - 0$$

sein. Da jedoch in diesem Fall (falls sowohl die Aussage A wie auch die Abbildung B wahr sind) die Implikation per Definition der Implikation ebenfalls wahr sein soll, ist also auch

$$\delta(A \Rightarrow B) = 1$$

wahr. Somit ist auch in diesem Fall die behauptete Formel (also die Gleichung 36) richtig. Nun zum letzten Fall. Ist die Aussage A, kann ich das gleiche jedoch nicht von der Aussage B behaupten (ich nehme also an, die Aussage B sei nicht wahr), dann muss

$$\delta(A \Rightarrow B) = 0$$

sein. Es gilt jedoch auch in diesem Fall

$$1 - \delta(A) \cdot (1 - \delta(B))$$
=1 - 1 \cdot (1 - 0)
=1 - 1 \cdot 1
=1 - 1
=0

ich zeigen, dass in allen denkbaren Fällen die Behauptung bewiesen und somit der von mir behauptete Satz richtig ist.

Es gibt meines Erachtens noch eine schönere Aussage über die Delta-Notation der Implikation. Da dieser Satz wohl nirgends weiter verwendet wird, beschreibe ich ihn als Hilfssatz:

Lemma 269. Es seien $A, B \in \Omega$. Dann

$$\delta(A \Rightarrow B) = \delta(\delta(A) \le \delta(B))$$

BEWEIS. Ich überlege mir, wann $\delta\left(A\Rightarrow B\right)=0$ ist. Dies ist genau dann der Fall, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. In diesem Fall ist gemäß der Definition 261 der Delta-Notation ist $\delta\left(A\right)=1$ sowie $\delta\left(B\right)=0$. Also ist die Aussage

$$\delta(A) \leq \delta(B)$$

in diesem Fall nicht wahr. Somit gilt jedoch gemäß der gleichen Definition 261

$$\delta \left(\delta \left(A \right) \le \delta \left(B \right) \right) = 0$$

Ist jedoch A nicht wahr oder B wahr, dann ist die Implikation

$$A \Rightarrow B$$

wahr. Jedoch ist in diesen Fällen auch die Aussage

$$\delta(A) \leq \delta(B)$$

wahr. Denn ist A nicht wahr, dann ist $\delta(A) = 0$. Da jedoch $\delta(B) \in \{0,1\}$ ist, muss dann bereits

$$\delta(A) \leq \delta(B)$$

gelten. Denn es gilt sowohl $0 \le 0$ wie auch $0 \le 1$. Ist jedoch die Aussage B wahr, dann muss ebenfalls die Aussage

$$\delta(A) \leq \delta(B)$$

TABELLE 3. Beweis des Lemmas der Implikation als kleiner oder gleich Beziehung

Aussage/ Fall Nr.	$\delta(A)$	$\delta\left(B\right)$	$\delta (A \Rightarrow B)$	$\delta\left(A\right) \le \delta\left(B\right)$	$\begin{array}{cc} \delta\left(A \Rightarrow B\right) & \Leftrightarrow \\ \delta\left(A\right) \leq \delta\left(B\right) \end{array}$
1	0	0	1	1	1
2	0	1	1	1	1
3	1	0	0	0	1
4	1	1	1	1	1

wahr sein. Denn $\delta(A) \in \{0,1\}$ und es ist sowohl $0 \leq 1$ wie auch $1 \leq 1$. Damit hätte ich jedoch den Beweis der gesamten Behauptung erbracht. Du glaubst mir nicht? Dann schau doch auf die Tabelle 3, in welcher ich den Beweis noch einmal tabellarisch aufgeschrieben habe. Die Verweise auf die Definitionen habe ich für einmal nicht tabellarisch auf, da diese keinen Mehrwert bringen würde. Stattdessen schreibe ich diese im Fließtext auf: Die Definition der Werte von $\delta(A)$ respektive $\delta(B)$ kannst Du in der Definition 261 nachschlagen. Die Werte des Ausdrucks $\delta(A \Rightarrow B)$ kannst Du in der Definition 14 nachschlagen. Gemäß ist der Ausdruck $\delta(A) \leq \delta(B)$ nur bei der dritten Zeile nicht wahr, da in diesem Fall die Aussage 1 > 0 nicht wahr ist. Die Werte der Aussage

$$\delta(A \Rightarrow B) \Leftrightarrow (\delta(A) < \delta(B))$$

kannst Du in der Definition 19 nachschlagen. Für alle Zeilen außer der dritten kannst Du in der vierten Zeile der Definition nachschlagen (da in diesen Fällen sowohl die Aussage $\delta\left(A\Rightarrow B\right)$ wie auch die Aussage $\delta\left(A\right) \leq \delta\left(B\right)$ wahr ist). In der dritten Zeile kannst auf der ersten Zeile der Definition nachschlagen (da in diesem Fall sowohl die Aussage $\delta\left(A\Rightarrow B\right)$ wie auch die Aussage $\delta\left(A\right) \leq \delta\left(B\right)$ nicht wahr ist).

ch muss gestehen, dass ich die Delta-Notation der Disjunktion nicht selbst herausgefunden habe, was mich einigermaßen beschämt. Aber so ist es halt. Hier ist sie:

Satz 270. Es seien $A, B \in \Omega$. Somit muss gelten

$$\delta(A \vee B) = \delta(A) + \delta(B) - \delta(A) \cdot \delta(B)$$

BEWEIS. Nun kommt wieder so ein "schmutziger Taschenspielertrick". Gemäß dem Satz 45 muss gelten

$$\neg (A \lor B) \Leftrightarrow (\neg A \land \neg B)$$

Also kann ich gemäß dem so von mir genannten "Äquivalenz-Negations-Satz" 60 folgern:

$$A \lor B \Leftrightarrow \neg (\neg A \land \neg B)$$

Also mache ich den Ansatz

$$\delta (A \lor B)$$

$$=\delta (\neg (\neg A \land \neg B))$$

$$=1 - \delta (\neg A \land \neg B)$$

$$=1 - \delta (\neg A) \cdot \delta (\neg B)$$

$$=1 - (1 - \delta (A)) \cdot (1 - \delta (B))$$

$$=1 - (1 - \delta (B) - \delta (A) + \delta (A) \cdot \delta (B))$$

$$=1 - 1 + \delta (B) + \delta (A) - \delta (A) \cdot \delta (B)$$

$$=\delta (A) + \delta (B) - \delta (A) \cdot \delta (B)$$

Das ist jetzt jedoch nur eine Seite des Beweises, nämlich das Aufzeigen, wie diese Formel hergeleitet werden kann. Ich möchte jetzt jedoch noch darlegen, warum diese Formel denn gültig ist. Es muss also für alle möglichen Aussagen A, B gelten:

$$\delta(A \vee B) = \delta(A) + \delta(B) - \delta(A) \cdot \delta(B)$$

Sind jetzt beide Aussagen A und B nicht wahr, dann sind alle Summanden auf der rechten Seite der Gleichung und somit auch der Wert von $\delta(A \vee B) = 0$. Es gilt also in diesem Fan

$$\delta(A) + \delta(B) - \delta(A) \cdot \delta(B)$$

$$= 0 + 0 - 0 \cdot 0$$

$$= 0 - 0$$

so wie die δ -Notation für Disjunktion der beiden Aussagen A und B in diesem Fall definiert ist. Denn die Aussage $A \vee B$ ist in diesem Fall ja auch nicht wahr und somit gilt

$$\delta (A \vee B) = 0$$

Also kann ich in diesem Fall schreiben

$$\delta(A \vee B) = 0 = \delta(A) + \delta(B) - \delta(A) \cdot \delta(B)$$

Ist nun genau eine der beiden Aussagen A oder B wahr, die andere hingegen nicht, dann muss gelten

$$\delta(A) + \delta(B) = 1$$

sowie

$$\delta(A) \cdot \delta(B) = 0$$

Denn ist A wahr, hingegen B nicht, so muss also gelten $\delta(A) = 1$ und $\delta(B) = 0$. Also ist

$$\delta(A) + \delta(B) = 1 + 0 = 1$$

sowie

$$\delta(A) \cdot \delta(B) = 1 \cdot 0 = 0$$

Ist hingegen A nicht wahr, hingegen B schon, dann ist also $\delta(A) = 0$ respektive $\delta(B) = 1$. Also kann ich in diesem Fall schreiben

$$\delta(A) + \delta(B) = 0 + 1 = 1$$

beziehungsweise

$$\delta(A) \cdot \delta(B) = 0 \cdot 1 = 0$$

In diesen beiden Fällen gilt darum

$$\delta(A) + \delta(B) - \delta(A) \cdot \delta(B) = 1 - 0 = 1$$

im Einklang mit der δ -Notation der Disjunktion der beiden Aussagen. Denn die Aussage $A \vee B$ ist ja in diesem beiden Fällen wahr und somit muss gemäß der Definition der δ -Notation gelten

$$\delta(A \vee B) = 1$$

Also gilt auch in diesem Fall

$$\delta (A \lor B)$$
= 1
= $\delta (A) + \delta (B) - \delta (A) \cdot \delta (B)$

Es bleibt der letzte Fall, in welchem beide Aussagen wahr sind. Dann kann ich berechnen:

$$\delta(A) + \delta(B) - \delta(A) \cdot \delta(B)$$

$$= 1 + 1 - 1 \cdot 1$$

$$= 2 - 1$$

$$= 1$$

Da jedoch die Disjunktion der beiden Aussagen in diesem Fall ebenfalls wahr sein muss, kann ich auch für den letzten Fall schreiben

$$\delta (A \lor B)$$
= 1
= $\delta (A) + \delta (B) - \delta (A) \cdot \delta (B)$

Also habe ich gezeigt, dass in allen denkbaren Fällen die Formel richtig ist und damit als bewiesen betrachtet werden darf.

Ich möchte nun die Delta-Notation der Antivalenz berechnen:

Satz 271. Es seien $A, B \in \Omega$. Dann ist

$$\delta(A \Leftrightarrow B) = (\delta(A) - \delta(B))^{2}$$
$$= \delta(A) + \delta(B) - 2 \cdot \delta(A) \cdot \delta(B)$$

Beweis. Es seien sowohl A wie auch B Aussagen, welche nicht wahr seien. Also muss gelten, dass sowohl

$$\delta(A) = 0$$

wie auch

$$\delta(B) = 0$$

gilt. Nun kann ich also rechnen

$$(\delta(A) - \delta(B))^{2}$$

$$= (0 - 0)^{2}$$

$$= 0^{2}$$

$$= 0$$

Jedoch muss gemäß der Definition der δ -Notation in diesem Fall ebenfalls

$$\delta\left(A \Leftrightarrow B\right) = 0$$

gelten. Ist $\delta(A) = \delta(B) = 1$, dann kann ich ebenfalls rechnen

$$(\delta(A) - \delta(B))^{2}$$

$$= (1 - 1)^{2}$$

$$= 0^{2}$$

$$= 0$$

in Einklang mit der diesbezüglichen Definition der δ -Notation. Ist jedoch eine der beiden Aussagen wahr, lässt sich jedoch von der anderen das gleiche nicht sagen, dann muss gelten

$$\delta(B) = 1 - \delta(A)$$

Also kann ich rechnen

$$(\delta(A) - \delta(B))^{2}$$
= $(\delta(A) - (1 - \delta(A)))^{2}$
= $(\delta(A) - 1 + \delta(A))^{2}$
= $(2 \cdot \delta(A) - 1)^{2}$
= $4 \cdot \delta^{2}(A) - 4 \cdot \delta(A) + 1$
= $4 \cdot (\delta^{2}(A) - \delta(A)) + 1$

Wiederum kann ich schreiben gemäß dem Satz 263 schreiben

$$(\delta(A))^2 = \delta(A)$$

Also kann ich schreiben

$$(\delta(A) - \delta(B))^{2}$$
= $4 \cdot ((\delta(A))^{2} - \delta(A)) + 1$
= $4 \cdot (\delta(A) - \delta(A)) + 1$
= $4 \cdot 0 + 1$
= $0 + 1$
= 1

Also habe ich auch in diesen Fällen und schlussendlich auch in allen Fällen gezeigt, dass die δ -Notation sich mit dieser Formel beschreiben lässt. Ich möchte nun noch zeigen, dass gilt

$$(\delta(A) - \delta(B))^{2} = \delta(A) + \delta(B) - 2 \cdot \delta(A) \cdot \delta(B)$$

Es ist (relativ phantasielos ausgerechnet):

$$(\delta(A) - \delta(B))^{2}$$

$$= (\delta(A) - \delta(B)) \cdot (\delta(A) - \delta(B))$$

$$= \delta^{2}(A) - \delta(A) \cdot \delta(B) - \delta(B) \cdot \delta(A) + \delta^{2}(B)$$

$$= \delta^{2}(A) - \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B) + \delta^{2}(B)$$

$$= \delta^{2}(A) - 2 \cdot \delta(A) \cdot \delta(B) + \delta^{2}(B)$$

Gemäß dem Satz 263 der Idempotenz der Deltanotation ist

$$\delta^{2}(A) = \delta(A)$$
$$\delta^{2}(B) = \delta(B)$$

Weiter ist die Multiplikation von ganzen Zahlen kommutativ und die Addition von ganzen Zahlen kommutativ und assoziativ. Aus alle dem kann ich folgern:

$$(\delta(A) - \delta(B))^{2}$$

$$= \delta^{2}(A) + \delta^{2}(B) - \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B)$$

$$= \delta(A) + \delta(B) - 2 \cdot \delta(A) \cdot \delta(B)$$

Daher bin ich der Meinung, dass ich an dieser Stelle den Beweis erbracht habe.

Ich möchte nun die Delta-Notation der Äquivalenz berechnen.

Satz 272. Es seien $A, B \in \delta$. Dann gilt

$$\delta (A \Leftrightarrow B)$$

$$=1 + 2 \cdot \delta (A) \cdot \delta (B) - \delta (A) - \delta (B)$$

$$=1 - (\delta (A) - \delta (B))^{2}$$

Beweis. Ein erster (kurzer) Beweis kann wie folgt erbracht werden: Gemäß dem Satz 61 muss gelten

$$(A \Leftrightarrow B) \Leftrightarrow \neg (A \Leftrightarrow B)$$

Somit kann ich gemäß dem Satz 264 folgern, dass gelten muss

$$\delta(A \Leftrightarrow B) = \delta(\neg(A \Leftrightarrow B))$$

Gemäß dem Satz 266 kann ich nun den Ausdruck $\delta\left(\neg\left(A \Leftrightarrow B\right)\right)$ umrechnen zu

$$\delta\left(\neg\left(A \not\Leftrightarrow B\right)\right) = 1 - \delta\left(A \not\Leftrightarrow B\right)$$

Und da ich gemäß dem Satz 271 berechnen kann, welchen Wert $\delta (\not\Leftrightarrow B)$ besitzt, kann ich schreiben:

$$\delta (A \Leftrightarrow B)$$

$$=1 - \delta (A \Leftrightarrow B)$$

$$=1 - (\delta (A) - \delta (B))^{2}$$

$$=1 - (\delta (A) + \delta (B) - 2 \cdot \delta (A) \cdot \delta (B))$$

$$=1 - \delta (A) - \delta (B) + 2 \cdot \delta (A) \cdot \delta (B)$$

$$=1 + 2 \cdot \delta (A) \cdot \delta (B) - \delta (A) - \delta (B)$$

Damit hätte ich den ersten Beweis für die Richtigkeit der umgeschriebenen Deltanotation der Äquivalenz erbracht. Nun möchte ich einen zweiten entsprechenden Beweis erbringen.

Ist

$$A \Leftrightarrow B$$

wahr, dann sind entweder beide Aussagen nicht wahr oder sie sind beide wahr. Falls beide Aussagen nicht wahr sind, dann muss gelten

$$\delta(A) = \delta(B) = 0$$

Somit kann ich schreiben

$$\delta(A) - \delta(B) = 0 - 0 = 0$$

Also muss gelten

$$1 - (\delta(A) - \delta(B))^{2}$$
=1 - 0²
=1 - 0
=1

Jedoch muss in diesem Fall ebenfalls gemäß der δ -Notation der Äquivalenz ebenfalls gelten, dass $\delta\left(A \Leftrightarrow B\right) = 1$ ist. Also wäre in diesem Fall der Beweis erbracht. Sind jetzt sowohl A wie auch B wahre Aussagen, dann muss gelten, dass $\delta\left(A\right) = 1$ wie auch $\delta\left(B\right) = 1$ ist. Also ist auch

$$1 - (\delta(A) - \delta(B))^{2}$$

$$= 1 - (1 - 1)^{2}$$

$$= 1 - 0^{2}$$

$$= 1 - 0$$

$$= 1$$

womit jedoch der Beweis wiederum erbracht ist, da für die δ -Notation der Äquivalenz in diesem Fall ebenfalls per Definition $\delta\left(A\right)=1$ gelten muss. Nun sei $\delta\left(A\right)\neq\delta\left(B\right)$ und damit auch die eine der beiden Aussagen wahr, die andre jedoch falsch. Also muss gelten

$$\delta\left(B\right) = 1 - \delta\left(A\right)$$

Dann kann ich in diesem Fall berechnen

$$1 - (\delta(A) - \delta(B))^{2}$$

$$= 1 - (\delta(A) - (1 - \delta(A)))^{2}$$

$$= 1 - (\delta(A) - 1 + \delta(A))^{2}$$

$$= 1 - (2 \cdot \delta(A) - 1)^{2}$$

$$= 1 - (4 \cdot \delta^{2}(A) - 2 \cdot 2 \cdot \delta(A) + 1)$$

$$= 1 - (4 \cdot \delta(A) - 2 \cdot 2 \cdot \delta(A) + 1)$$

$$= 1 - (4 \cdot \delta(A) - 4 \cdot \delta(A) + 1)$$

$$= 1 - (0 + 1)$$

$$= 1 - 1$$

Wieder habe ich von der Tatsache Gebrauch gemacht, dass die Deltanotation impotent ist, also $\delta^2(A) = \delta(A)$ sein muss. Da die δ -Notation der Äquivalenz der beiden Aussagen ebenfalls den Wert 0 besitzen muss, falls die eine Aussage wahr, die andere nicht wahr ist, habe ich jedoch für alle möglichen Fälle gezeigt, dass für die δ -Notation der Äquivalenz den Wert

$$\delta(A \Leftrightarrow B) = 1 - (\delta(A) - \delta(B))^{2}$$

besitzt. Also hätte ich den ersten Teil des Beweises erbracht. Den Beweis, dass

$$\delta(A \Leftrightarrow B) = 1 + 2 \cdot \delta(A) \cdot \delta(B) - \delta(A) - \delta(B)$$

gelten muss, kann ich wiederum erbringe, indem ich gemäß dem Satz 271 schreibe:

$$\delta (A \Leftrightarrow B)$$

$$=1 - (\delta (A) - \delta (B))^{2}$$

$$=1 - \delta (A \Leftrightarrow B)$$

$$=1 - (\delta (A) + \delta (B) - 2 \cdot \delta (A) \cdot \delta (B))$$

$$=1 - \delta (A) - \delta (B) + 2 \cdot \delta (A) \cdot \delta (B)$$

$$=1 + 2 \cdot \delta (A) \cdot \delta (B) - \delta (A) - \delta (B)$$

Aus diesem Grund erachte ich den Beweis für die Richtigkeit meiner Behauptung als erbracht.

Nun soll die Delta-Notation der NAND-Verknüpfung berechnet werden. Es gilt der Satz:

SATZ 273. Es seien $A, B \in \delta$. Dann gilt:

$$\delta(A \overline{\wedge} B) = 1 - \delta(A) \cdot \delta(B)$$

Beweis. Ist A oder B nicht wahr, dann muss per Definition der δ -Notation gelten

$$0 \le \delta(A) \cdot \delta(B) \le 0 \cdot 1 = 1$$

und

$$\delta(A) \cdot \delta(B) = 0$$

Ich will damit nicht geschrieben haben, dass die Aussage A nicht wahr sei, die Aussage B hingegen schon. Jedoch möchte ich damit zum Ausdruck bringen, dass beide Zahlen $\delta\left(A\right),\delta\left(B\right)\in\{0,1\}$ sind und damit nicht negative Zahlen sind. Zudem sind beide Zahlen kleiner oder gleich Eins. Jedoch muss mindestens eine der beiden Zahlen 0 sein. Also ist in diesem Fall

$$1 - \delta(A) \cdot \delta(B) = 1 - 0 = 1$$

in Einklang mit der δ -Notation der Aussage von

$$A \bar{\wedge} B$$

in diesen Fällen. Sind jedoch sowohl A wie auch B wahre aussagen, so muss auch gelten

$$\delta(A) \cdot \delta(B) = 1 \cdot 1 = 1$$

und somit

$$1 - \delta(A) \cdot \delta(B) = 1 - 1 = 0$$

so wie es auch von der δ -Notation der Aussage

$$A \overline{\wedge} B$$

in diesem Fall zu erwarten ist (denn es gilt ja in diesem Fall

$$\neg (A \overline{\wedge} B)$$

). Somit habe ich in allen möglichen Fällen gezeigt, dass die von mir behauptete Formel in allen denkbaren Fällen mit den Werten δ -Notation der Aussage

$$A \bar{\wedge} B$$

in diesen Fällen übereinstimmt und somit der Satz als bewiesen betrachtet werden kann.

Satz 274. Es seien A, B Aussagen. Dann gilt

$$\delta(A \nabla B) = 1 - \delta(A) - \delta(B) + \delta(A) \cdot \delta(B)$$

BEWEIS. Es sei weder A noch B eine wahre Aussage. Dann muss also gelten, dass $\delta(A) = \delta(B) = 0$. Also kann ich schreiben, dass

$$1 - \delta(A) - \delta(B) + \delta(A) \cdot \delta(B)$$

$$= 1 - 0 - 0 + 0 \cdot 0$$

$$= 1 + 0$$

$$= 0$$

in Übereinstimmung mit der Definition der δ -Notation für diesen Fall. Also ist die Behauptung in diesem Fall erbracht. Nun seien beide Aussagen wahr. Also gilt in diesem Fall

$$\delta(A) = \delta(B) = 1$$

Somit muss gelten:

$$1 - \delta(A) - \delta(B) + \delta(A) \cdot \delta(B)$$
= 1 - 1 - 1 + 1 \cdot 1

= 0 - 1 + 1

= 1 - 1

= 0

wiederum in Übereinstimmung mit der Definition der δ -Notation für diesen Fall. Es folgt noch der Beweis für die restlichen zwei Fälle: Die eine Behauptung sei wahr, die andere nicht. Also muss gelten:

$$\delta(B) = 1 - \delta(A)$$

Dann kann ich rechnen:

$$1 - \delta(A) - \delta(B) + \delta(A) \cdot \delta(B)$$
= $1 - \delta(A) - (1 - \delta(A)) + \delta(A) \cdot (1 - \delta(A))$
= $1 - \delta(A) - 1 + \delta(A) + \delta(A) - (\delta(A))^{2}$
= $1 - 1 + \delta(A) + \delta(A) + \delta(A) - \delta(A)$
= $0 + 0 + 0$
= 0

Dann hat der Ausdruck exakt den Wert, welcher er gemäß der δ -Notation haben muss. Somit habe ich den Beweis für alle möglichen Fälle und damit auch als Ganzen erbracht.

Da die Replikation wohl eher selten vorkommen dürfe, werde ich deren δ -Notation zwar hier aufschreiben, aber später wohl nur noch selten verwenden:

Satz 275. Es seien $A, B \in \delta$. Dann gilt

$$\delta (A \Leftarrow B) = 1 - \delta (B) \cdot (1 - \delta (A))$$

Beweis. Die Replikation ist nur dann nicht wahr, falls B wahr ist, dasselbe jedoch von A nicht behauptet werden kann. Ist A wahr, dann ist nach Definition

$$\delta(A) = 1$$

Also ist $1 - \delta(A) = 0$ und somit, da $\delta(B) \in \{0, 1\}$ ist, auf jeden Fall

$$\delta(B) \cdot (1 - \delta(A)) = 0$$

also auch

$$1 - \delta(B) \cdot (1 - \delta(A)) = 1 - 0 = 1$$

Jedoch ist in diesem Fall ebenfalls

$$\delta (A \Leftarrow B) = 1$$

und somit die Behauptung in diesem Fall bewiesen. Sind jedoch weder A noch B wahr, dann muss zwar gleichwohl nach der Definition der Replikation die Aussage $A \Leftarrow B$ wahr sein. Aber mit $\delta(A) = 1$ und somit $1 - \delta(A) = 1 - 0 = 1$ sowie $\delta(B) = 0$ muss dann gelten

$$\delta(B) \cdot (1 - \delta(A)) = 0 \cdot (1 - 0) = 0 \cdot 1 = 0$$

Das bedeutet, dass in diesem Fall der Ausdruck

$$1 - \delta(B) \cdot (1 - \delta(A))$$

ebenfalls den Wert

$$1 - \delta(B) \cdot (1 - \delta(A)) = 1 - 0 = 1$$

besitzt, im Einklang mit der Definition der δ -Notation einerseits, jedoch auch der Definition der Replikation andererseits. Es bleibt noch der letzte Fall: Es sei A eine nicht wahre Aussage. B dagegen sei durchaus wahr. Also muss gemäß der Definition der δ -Notation gelten:

$$1 - \delta(B) \cdot (1 - \delta(A))$$
=1 - 1 \cdot (1 - 0)
=1 - 1 \cdot 1
=1 - 1
=0

Das ist jedoch genau der verlangte Wert gemäß der δ -Notation, welche die Replikation in diesem Fall (in welchem A zwar wahr ist, jedoch das gleiche nicht von B behauptet werden muss) besitzen muss. Da nun für alle denkbaren Fälle gezeigt wurde, dass die δ -Notation der Replikation den Wert

$$1 - \delta(B) \cdot (1 - \delta(A))$$

besitzen muss, also gelten muss

$$\delta\left(A \Leftarrow B\right) = 1 - \delta\left(B\right) \cdot \left(1 - \delta\left(A\right)\right)$$

Somit erachte ich diesen Beweis als erbracht.

Nachbemerkung: Wenn ich zeigen kann, dass die Behauptung 15 gültig ist, dann liegt die Herleitung der Formel auf der Hand:

$$\delta(A \Leftarrow B) = \delta(B \Rightarrow A) = 1 - \delta(B) \cdot (1 - \delta(A))$$

Aber das kann ich wirklich erst so durchführen, wenn ich sicher bin, die Behauptung 15 auch wirklich stimmt!

Bevor ich loslege möchte ich folgenden Hilfssatz formulieren und beweisen: Lemma 276. Es sei A eine beliebige, jedoch bezüglich sich selbst und den anderen Symbolen dieses Satzes widerspruchsfreie Aussage. Dann gilt

$$\delta(A) \cdot (1 - \delta(A)) = 0$$

Beweis. Es gilt gemäß dem Distributivgesetz der Multiplikation und der Addition:

$$\delta(A) \cdot (1 - \delta(A))$$
$$= \delta(A) - \delta^{2}(A)$$

Nun ist die Deltanotation gemäß dem Satz 263 idempotent. Also gilt

$$\delta^2(A) = \delta(A)$$

Dieses Resultat kann verwenden und erhalte darum:

$$\delta(A) \cdot (1 - \delta(A))$$

$$= \delta(A) - \delta^{2}(A)$$

$$= \delta(A) - \delta(A)$$

$$= 0$$

Damit meine ich, den Beweis dieses Lemmas erbracht zu haben.

Dieser Satz ist übrigens auch nicht so erstaunlich, denn gemäß dem Korollar muss ja gelten

$$\neg (A \land \neg A)$$

falls A wie gewohnt das Symbol für eine Aussage ist, welche nicht in sich selbst zu bezüglich den anderen Symbolen des Satzes widersprüchlich ist. Ausgeschrieben bedeutet dieses Korollar, dass nicht gleichzeitig die Aussage zusammen mit dessen Negation gültig sein kann. Und wenn ich diesen Satz mittels der Deltanotation nachrechne, erhalte ich

$$\delta \left(\neg \left(A \land \neg A \right) \right)$$

Wenn ich dann die Deltanotation der Negation gemäß dem Satz 266 umschreibe, dann erhalte ich

$$\delta \left(\neg \left(A \wedge \neg A \right) \right)$$

=1 - \delta \left(A \land \neg A \right)

Anschließend kann ich die Konjunktion gemäß dem Satz 267 umschreiben und erhalte

$$\delta (A \wedge \neg A) = \delta (A) \cdot \delta (\neg A)$$

Die Negation von A kann ich wiederum gemäß dem Satz 266 umschreiben zu

$$\delta\left(\neg A\right) = 1 - \delta\left(A\right)$$

Dieses Resultat kann ich nun in die Rechnung einfügen und erhalte

$$\delta(A) \cdot \delta(\neg A) = \delta(A) \cdot (1 - \delta(A))$$

und jetzt kommt der Punkt, an welchem ich das Lemma 276 verwenden kann. Da

$$\delta(A) \cdot (1 - \delta(A)) = 0$$

ist, kann ich schreiben

$$\delta(A) \cdot \delta(\neg A) = \delta(A) \cdot (1 - \delta(A)) = 0$$

Also kann ich dieses Ergebnis wieder in die obige Rechnung einfügen und erhalte

$$\delta (\neg (A \land \neg A))$$

$$=1 - \delta (A \land \neg A)$$

$$=1 - 0$$

$$=0$$

Somit hätte ich dieses Korollar 14 erneut bewiesen.

Ich kann jedoch ebenfalls sozusagen den Spieß noch einmal umdrehen. Ich möchte mit dem folgenden Lemma beginnen, so dass Du leicht sehen kannst, wie ich dies meine:

Lemma 277. Es seien A, B Metasymbole von logischen Aussagen. Dann gilt

$$(A \Leftrightarrow B) \Leftrightarrow (\delta(A) = \delta(B))$$

BEWEIS. Es sei $A \Leftrightarrow B$. Dann müssen gemäß der Definition 19 entweder beide Aussage nicht wahr oder wahr sein. Sind beide Aussagen nicht wahr, dann muss gelten:

$$\delta(A) = 0$$
$$\delta(B) = 0$$

Also kann ich schließen:

$$\delta(A) = 0 = \delta(B)$$

und da die Gleichheit transitiv ist, kann ich also schließen

$$\delta\left(A\right) = \delta\left(B\right)$$

Sind beide Aussagen A, B wahr, dann muss gelten

$$\delta(A) = 1$$
$$\delta(B) = 1$$

Wiederum kann ich dann schließen:

$$\delta(A) = 1 = \delta(B)$$

und dank der Transitivität der Gleichheit muss wiederum gelten

$$\delta(A) = \delta(B)$$

Also hätte ich in diesem Fall die Behauptung gemäß dem Satz

In den folgenden Abschnitten möchte die Beweise von anderen logischen Sätze noch einmal mit Hilfe der δ -Notation nachrechnen:

41.1. Beweis des logischen Satzes der doppelten Negation

Ich möchte den Beweis des Satzes 11 der doppelten Negation noch in der δ -Notation führen:

Beweis. (des Satzes der doppelten Negation) Es sei also $A \in \delta$. Dann gilt gemäß dem Satz 266

$$\delta(\neg(\neg A)) = 1 - \delta(\neg A) = 1 - (1 - \delta(A)) = 1 - 1 + \delta(A) = \delta(A)$$

und darum auch $\delta\left(\neg\left(\neg A\right)\right)=\delta\left(A\right)$. Gemäß dem Satz 264 muss darum gelten

$$\neg (\neg A) \Leftrightarrow A$$

womit der Satz erneut bewiesen worden wäre. Ich könnte jedoch auch den ganzen Satz so berechnen

(37)
$$\delta(A \Leftrightarrow \neg(\neg A)) = 1 - (\delta(A) - \delta(\neg(\neg A)))$$

Da ich unmittelbar vorher gezeigt habe, dass gelten muss

$$\delta(A) = \delta(\neg(\neg A))$$

muss also (falls ich auf beiden Seiten der Gleichung die Größe

$$\delta (\neg (\neg A))$$

subtrahiere) gelten

$$\delta(A) - \delta(\neg(\neg A)) = 0$$

Dies kann ich in die Gleichung 37 einfügen und erhalte

$$\delta(A \Leftrightarrow \neg(\neg A)) = 1 - 0 = 1$$

Das bedeutet jedoch das für alle (sinnvollen) Aussagen gilt

$$A \Leftrightarrow \neg (\neg A)$$

womit die Korrektheit des Satzes wiederum erbracht hätte.

41.2. Beweis des Satzes des ausgeschlossenen Dritten

Ich möchte gerne den Satz 13 des ausgeschlossen Dritten in der starken sowie in der schwachen Form gerne noch in der δ -Notation beweisen.

BEWEIS. (der starken und schwachen Form des ausgeschlossenen Dritten) Es sei also A das Symbol für eine beliebe Aussage. Dann gilt also gemäß des Satzes 271 der Antivalenz:

$$\delta (A \Leftrightarrow \neg A)$$

$$= (\delta (A) - \delta (\neg A))^{2}$$

Nun kann ich für die Negation der Aussage A den Satz 266 verwenden und erhalte

$$\delta\left(\neg A\right) = 1 - \delta\left(A\right)$$

Dieses Resultat füge ich in die vorhergehende Gleichung ein und erhalte

$$\delta (A \Leftrightarrow \neg A)$$

$$= (\delta (A) - \delta (\neg A))^{2}$$

$$= (\delta (A) - (1 - \delta (A)))^{2}$$

Nun kann ich daran gehen den Term

$$\delta(A) - (1 - \delta(A))$$

umzurechnen. Ich erhalte

$$\delta(A) - (1 - \delta(A))$$

$$= \delta(A) - 1 + \delta(A)$$

$$= 2 \cdot \delta(A) - 1$$

Wenn ich diesen Ausdruck quadriere, dann erhalte ich

$$(2 \cdot \delta(A) - 1)^{2}$$

$$= (2 \cdot \delta(A) - 1) \cdot (2 \cdot \delta(A) - 1)$$

$$= 4 \cdot \delta^{2}(A) - 2 \cdot \delta(A) - 2 \cdot \delta(A) + 1$$

$$= 4 \cdot \delta^{2}(A) - 4 \cdot \delta(A) + 1$$

Gemäß dem Satz 263 muss gelten

$$\delta^2(A) = \delta(A)$$

Dies Resultat kann ich in die Berechnung von

$$(2 \cdot \delta(A) - 1)^2$$

und ich erhalte

$$(2 \cdot \delta(A) - 1)^{2}$$

$$= 4 \cdot \delta^{2}(A) - 4 \cdot \delta(A) + 1$$

$$= 4 \cdot \delta(A) - 4 \cdot \delta(A) + 1$$

$$= 4 \cdot (\delta(A) - \delta(A)) + 1$$

$$= 4 \cdot 0 + 1$$

$$= 0 + 1$$

$$= 1$$

Also kann ich daraus schließen dass gilt, dass die Aussage

$$A \Leftrightarrow \neg A$$

für alle (widerspruchsfreien Aussagen A zutrifft. Weiter gilt gemäß dem Satz 270 muss gelten:

$$\delta (A \vee (\neg A))$$

$$= \delta (A) + \delta (\neg A) - \delta (A) \cdot \delta (\neg A)$$

Als nächstes möchte ich den Satz 266 anwenden, welche die δ -Notation der Negation beschreibt:

$$\delta(\neg A) = 1 - \delta(A)$$

Dieses Resultat setze ich in die vorhergehende Gleichung ein und erhalte

$$\delta(A) + \delta(\neg A) - \delta(A) \cdot \delta(\neg A)$$

=\delta(A) + (1 - \delta(A)) - \delta(A) \cdot (1 - \delta(A))

Nun multipliziere ich den Term

$$\delta(A) \cdot (1 - \delta(A))$$

aus und erhalte

$$\delta(A) \cdot (1 - \delta(A))$$
$$= \delta(A) - \delta^{2}(A)$$

Gemäß dem Satz 263 gilt aber

$$\delta\left(A\right) = \delta^2\left(A\right)$$

Wenn ich auf beiden Seiten der Gleichung $\delta^{2}\left(A\right)$ subtrahiere, dann erhalte ich

$$\delta\left(A\right) - \delta^2\left(A\right) = 0$$

Somit kann ich schließen, dass ebenfalls gelten muss

$$\delta(A) \cdot (1 - \delta(A))$$

$$= \delta - \delta^{2}(A)$$

$$= 0$$

Auch dieses Resultat kann ich in die Summe

$$\delta(A) + (1 - \delta(A)) - \delta(A) \cdot (1 - \delta(A))$$

einsetzen und erhalte dann

$$\delta(A) + (1 - \delta(A)) - \delta(A) \cdot (1 - \delta(A))$$

$$= \delta(A) + (1 - \delta(A)) - 0$$

$$= \delta(A) + 1 - \delta(A)$$

$$= 1 + \delta(A) - \delta(A)$$

$$= 1 + 0$$

$$= 1$$

Schlussendlich muss darum gelten

$$\delta\left(A\vee\left(\neg A\right)\right)=\delta\left(A\right)+\left(1-\delta\left(A\right)\right)-\delta\left(A\right)\cdot\left(1-\delta\left(A\right)\right)=1$$

Also kann ich gemäß dem Satz 262 schließen, dass gilt:

$$A \vee (\neg A)$$

womit ich die Richtigkeit des Satzes 13, also des Satzes ausgeschlossen Dritten gezeigt hätte.

Nun möchte ich die Richtigkeit des Korollars 14 vom Satz des ausgeschlossen Dritten mit Hilfe der δ -Notation zeigen:

BEWEIS. Darum möchte ich den Satz mittels der ω -Notation ebenfalls erbringen. Es ist $\delta (\neg (A \land \neg A))$ zu berechnen. Gemäß dem Satz 266 der Deltanotation der Negation gilt

$$\delta \left(\neg \left(A \land \neg A \right) \right) = 1 - \delta \left(A \land \neg A \right)$$

Nun möchte ich also den Ausdruck δ ($\neg A \land \neg A$) berechnen. Gemäß dem Satz 267 der Delta-Notation der Konjunktion gilt

$$\delta(A \wedge \neg A) = \delta(A) \cdot \delta(\neg A)$$

Wenn ich gemäß dem Satz 266 der Delta-Notation der Negation erneut anwende, dann erhalte ich die Umformung

$$\delta(\neg A) = 1 - \delta(A)$$

Dieses Resultat kann ich nun in den Ausdruck $\delta(A) \cdot \delta(\neg A)$ einfügen und ich erhalte (zusammen mit dem Distributivgesetz der ganzen Zahlen):

$$\delta(A) \cdot \delta(\neg A)$$

$$= \delta(A) \cdot (1 - \delta(A))$$

$$= \delta(A) - \delta^{2}(A)$$

Jetzt kann ich das Potenzgesetz 263 der Deltanotation anwenden und erhalte

$$\delta^2(A) = \delta(A)$$

Wenn ich diesen Ausdruck in den Ausdruck

$$\delta\left(A\right) - \delta^{2}\left(A\right) = \delta\left(A\right) - \delta\left(A\right) = 0$$

Also kann ich (auch aufgrund der Transitivität der Gleichheit) schließen

$$\delta(A) \cdot \delta(\neg A) = \delta(A) - \delta^{2}(A) = 0$$

Also muss somit gelten

$$\delta(A \wedge \neg A) = \delta(A) \delta(\neg A) = 0$$

Nun füge ich dieses Resultat in den Ausdruck $1 - \delta (A \wedge \neg A)$ ein und erhalte

$$1 - \delta \left(A \wedge \neg A \right) = 1 - 0 = 1$$

Dieses Resultat kann ich ganz zum Schluss in den ursprünglichen Ausdruck $\delta (\neg (A \land \neg A))$ einsetzen. Also resultiert

$$\delta \left(\neg \left(A \land \neg A \right) \right) = 1 - \delta \left(A \land \neg A \right) = 1$$

Das bedeutet jedoch, dass ich den Beweis erbracht habe.

41.3. Beweis der Transitivität der Implikation

Ich möchte den Satz 15 der Transitivität der Implikation mit Hilfe der δ -Notation noch einmal aufschreiben. Gerade bei diesem Beweis musste ich merken, dass das Risiko, sich zu verrechnen, schon relativ groß ist. Umso schöner ist es, am Schluss trotzdem das richtige Resultat zu erhalten:

BEWEIS. (des Satzes der Transitivität der Implikation) Es seien also $A,\,B$ wie auch C logische Aussagen. Also möchte ich den Ausdruck

$$\delta(((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C))$$

berechnen. Zuerst einmal muss ich den Satz 268 der Delta-Notation der Implikation verwenden. Angewandt auf die Aussagen

$$(A \Rightarrow B) \land (B \Rightarrow C)$$

sowie

$$A \Rightarrow C$$

erhalte ich die

$$\omega\left(\left((A\Rightarrow B)\land (B\Rightarrow C)\right)\Rightarrow (A\Rightarrow C)\right)$$

=1 - \omega\left(\left((A\Rightarrow B)\left\land(B\Rightarrow C)\right)\cdot\left(1-\omega(A\Rightarrow C)\right)

Als nächstes möchte ich die Delta-Notation der Konjunktion

$$(A \Rightarrow B) \land (B \Rightarrow C)$$

berechnen. Diese ist gemäß dem Satz 267

$$\delta((A \Rightarrow B) \land (B \Rightarrow C)) = \delta(A \Rightarrow B) \cdot \delta(B \Rightarrow C)$$

Dieses Resultat möchte ich gleich in den Ausdruck

$$1 - \omega \left(\left((A \Rightarrow B) \land (B \Rightarrow C) \right) \right) \cdot \left(1 - \omega \left(A \Rightarrow C \right) \right)$$

einsetzen und ich erhalte

$$(38) \qquad 1 - \omega \left(\left((A \Rightarrow B) \land (B \Rightarrow C) \right) \right) \cdot \left(1 - \omega \left(A \Rightarrow C \right) \right)$$

Wenn Du genau hinschaust, erkennst Du, dass nun die Delta-Notationen der folgenden Implikationen zu berechnen sind:

$$A \Rightarrow B$$

$$B \Rightarrow C$$

$$A \Rightarrow C$$

Also kann ich drei Mal den gleichen Satz 268 der Delta-Notation der Implikation verwenden und ich erhalte

$$\delta(A \Rightarrow B) = 1 - \delta(A) \cdot (1 - \delta(B))$$

$$\delta(B \Rightarrow C) = 1 - \delta(B) \cdot (1 - \delta(C))$$

$$\delta(A \Rightarrow C) = 1 - \delta(A) \cdot (1 - \delta(C))$$

Somit kann ich diese Ausdrücke

$$\delta (A \Rightarrow B)$$
$$\delta (B \Rightarrow C)$$
$$\delta (A \Rightarrow C)$$

in der Gleichung 38 durch ihre umgeformten Ausdrücke

$$1 - \delta(A) \cdot (1 - \delta(B))$$
$$1 - \delta(B) \cdot (1 - \delta(C))$$
$$1 - \delta(A) \cdot (1 - \delta(C))$$

ersetzen und ich erhalte die Gleichung

$$\omega\left(\left((A\Rightarrow B)\land (B\Rightarrow C)\right)\Rightarrow (A\Rightarrow C)\right)$$

$$=1-\delta\left(A\Rightarrow B\right)\cdot\delta\left(B\Rightarrow C\right)\cdot\left(1-\omega\left(A\Rightarrow C\right)\right)$$

$$=1-\left(1-\delta\left(A\right)\cdot\left(1-\delta\left(B\right)\right)\right)\cdot\left(1-\delta\left(C\right)\right)\cdot\left(1-\left(1-\delta\left(A\right)\cdot\left(1-\delta\left(C\right)\right)\right)\right)$$

und schon habe ich bereits fast das perfekte Chaos!

Dann gilt mit

$$a \equiv \delta(A)$$

$$b \equiv \delta(B)$$

$$c \equiv \delta(C)$$

$$\omega(((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C))$$
=1 - (1 - \delta(A) \cdot (1 - \delta(B))) \cdot (1 - \delta(B)) \cdot (1 - \delta(C))) \cdot (1 - (1 - \delta(A) \cdot (1 - \delta(C))))
=1 - (1 - a \cdot (1 - b)) \cdot (1 - b \cdot (1 - c)) \cdot (1 - (1 - a \cdot (1 - c)))

Nun habe ich einen riesigen Bandwurm, dessen Wert ich gerne vereinfachen möchte. Die einfachste Umwandlung kommt zuletzt. Es ist

$$(1 - a \cdot (1 - c))$$
$$= 1 - a + a \cdot c$$

Somit ist auch

$$(1 - (1 - a \cdot (1 - c)))$$
=1 - (1 - a + a \cdot c)
=1 - 1 + a - a \cdot c
=a - a \cdot c
=a \cdot (1 - c)

Ebenso muss gelten

$$(1 - a \cdot (1 - b)) = 1 - (a - a \cdot b) = 1 - a + a \cdot b$$
$$(1 - b \cdot (1 - c)) = 1 - (b - b \cdot c) = 1 - b + b \cdot c$$

Nun kommt der mühsame Teil des Ganzen. Ich möchte

$$(1 - a + a \cdot b) \cdot (1 - b + b \cdot c)$$

berechnen. Es ist

$$(1 - a + a \cdot b) \cdot (1 - b + b \cdot c)$$

= 1 - b + b \cdot c - a + a \cdot b - a \cdot b \cdot c + a \cdot b - a \cdot b^2 + a \cdot b^2 \cdot c

Da nun die Deltanotation gemäß dem Satz 263 idempotent ist, kann ich schreiben schreiben

$$b^2 = b$$

Dieses Resultat setze ich die Gleichung oben ein. Ich erhalte

$$(1 - a + a \cdot b) \cdot (1 - b + b \cdot c)$$

$$= 1 - b + b \cdot c - a + a \cdot b - a \cdot b \cdot c + a \cdot b - a \cdot b^2 + a \cdot b^2 \cdot c$$

$$= 1 - b + b \cdot c - a + a \cdot b - a \cdot b \cdot c + a \cdot b - a \cdot b + a \cdot b \cdot c$$

Ich kann die folgenden Vereinfachungen durchführen

$$a \cdot b \cdot c - a \cdot b \cdot c = 0$$

Also erhalte ich

$$(1 - a + a \cdot b) \cdot (1 - b + b \cdot c)$$

$$= 1 - b + b \cdot c - a + a \cdot b - a \cdot b \cdot c + a \cdot b - a \cdot b + a \cdot b \cdot c$$

$$= 1 - b + b \cdot c - a + a \cdot b + a \cdot b - a \cdot b + a \cdot b \cdot c - a \cdot b \cdot c$$

$$= 1 - b + b \cdot c - a + a \cdot b + a \cdot b - a \cdot b + 0$$

$$= 1 - b + b \cdot c - a + a \cdot b + a \cdot b - a \cdot b$$

Ebenso ist

$$a \cdot b - a \cdot b = 0$$

Somit erhalte ich

$$(1 - a + a \cdot b) \cdot (1 - b + b \cdot c)$$
=1 - b + b \cdot c - a + a \cdot b + a \cdot b - a \cdot b
=1 - b + b \cdot c - a + a \cdot b
=1 - a - b + a \cdot b + b \cdot c

Nun möchte ich berechnen

(39)
$$(1 - b + b \cdot c - a + a \cdot b) \cdot a \cdot (1 - c)$$

$$= (a - a \cdot b + a \cdot b \cdot c - a^2 + a^2 \cdot b) \cdot (1 - c)$$

Wieder kann ich den Satz 263 anwenden und erhalte

$$a - a \cdot b + a \cdot b \cdot c - a^2 + a^2 \cdot b$$

$$= a - a \cdot b + a \cdot b \cdot c - a + a \cdot b$$

$$= a - a + a \cdot b - a \cdot b + a \cdot b \cdot c$$

Nun ist ja wiederum

$$a - a = 0$$

sowie

$$a \cdot b - a \cdot b = 0$$

also kann ich schreiben, dass gelten muss

$$a - a \cdot b + a \cdot b \cdot c - a^{2} + a^{2} \cdot b$$

$$= a - a + a \cdot b - a \cdot b + a \cdot b \cdot c$$

$$= 0 + 0 + a \cdot b \cdot c$$

$$= a \cdot b \cdot c$$

Dieses Resultat kann ich in die Gleichung 39 einsetzen. Dann erhalte ich

$$(1 - b + b \cdot c - a + a \cdot b) \cdot a \cdot (1 - c)$$

$$= (a - a \cdot b + a \cdot b \cdot c - a^2 + a^2 \cdot b) \cdot (1 - c)$$

$$= a \cdot b \cdot c \cdot (1 - c)$$

Nun ist jedoch

$$c \cdot (1 - c) = 0$$

Denn es gilt

$$c \cdot (1 - c) = c - c^2$$

Erneut gemäß dem Satz 263 kann ich schließen, dass gelten

$$c^2 = c$$

gelten muss. Dann ist also

$$c - c^2 = c - c = 0$$

Also ist auch

$$c \cdot (1 - c) = c - c^2 = 0$$

Somit ist jedoch auch (da a sowie b endlich große Zahlen sind)

$$a \cdot b \cdot c \cdot (1 - c) = a \cdot b \cdot 0 = 0$$

Nun kann ich die einzelnen Teile zusammensetzen. Die ursprüngliche Gleichung war

$$\omega\left(\left((A\Rightarrow B)\land (B\Rightarrow C)\right)\Rightarrow (A\Rightarrow C)\right)$$

=1 - (1 - a \cdot (1 - b)) \cdot (1 - b \cdot (1 - c)) \cdot (1 - (1 - a \cdot (1 - c)))

Ich konnte die folgenden Umrechnungen zeigen:

$$(1 - a \cdot (1 - b)) \cdot (1 - b \cdot (1 - c)) = 1 - b + b \cdot c - a + a \cdot b$$

sowie was fast noch im Kopf geht:

$$(1 - (1 - a \cdot (1 - c))) = a \cdot (1 - c)$$

Also muss daraus folgen

$$(1 - a \cdot (1 - b)) \cdot (1 - b \cdot (1 - c)) \cdot (1 - (1 - a \cdot (1 - c)))$$

= $(1 - b + b \cdot c - a + a \cdot b) \cdot a \cdot (1 - c)$

Ebenso konnte ich zeigen

$$(1 - b + b \cdot c - a + a \cdot b) \cdot a \cdot (1 - c)$$
$$= a \cdot b \cdot c \cdot (1 - c)$$

Und ich habe gezeigt, dass gelten muss

$$a \cdot b \cdot c \cdot (1 - c) = 0$$

Also kann ich schließen, dass gelten muss

$$(1 - a \cdot (1 - b)) \cdot (1 - b \cdot (1 - c)) \cdot (1 - (1 - a \cdot (1 - c)))$$

$$= a \cdot b \cdot c \cdot (1 - c)$$

$$= 0$$

Das bedeutet jedoch wiederum, dass gilt

$$\omega\left(\left((A\Rightarrow B)\land (B\Rightarrow C)\right)\Rightarrow (A\Rightarrow C)\right)$$

$$=1-\left(1-a\cdot (1-b)\right)\cdot \left(1-b\cdot (1-c)\right)\cdot \left(1-\left(1-a\cdot (1-c)\right)\right)$$

$$=1-0$$

$$=1$$

Somit kann ich gemäß dem Satz 262
in allen Fällen schließen, dass die Behauptung

$$((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$$

richtig ist und somit die Behauptung bewiesen ist. Daraus folgt die Behauptung.

41.4. Beweis der Transitivität der Äquivalenz

Bevor ich diesen Satz beweisen möchte, möchte ich Hilfssätze formulieren und beweisen:

LEMMA 278. Es seien $a, b, c \in \mathbb{N}_0$. Dann ist:

$$\delta(a = b) \cdot \delta(b = c) \le \delta(a = c)$$

Beweis. Ich nehme an, dass

$$\delta(a = b) \cdot \delta(b = c) > \delta(a = c)$$

sei. Da der Wertebereich des Kronecker-Symbols $\{0,1\}$ ist, ist der Wertebereich der Multiplikation zweier Kronecker-Symbole ebenfalls $\{0,1\}$. Denn es seien $a,b\in\{0,1\}$. Ist a=b=0, dann ist

$$a \cdot b = 0 \cdot 0 = 1$$

Ist a = 0 und b = 1, dann ist

$$a \cdot b = 0 \cdot 1 = 0$$

Ist a = 1 und b = 0, dann ist

$$a \cdot b = 1 \cdot 0 = 0$$

Sind a = b = 1, dann ist

$$a \cdot b = 1 \cdot 1 = 1$$

Damit ist diese Behauptung erbracht. Also müsste, falls

$$\delta(a = b) \cdot \delta(b = c) > \delta(a = c)$$

wäre, dann müsste

$$\delta(a=b) \cdot \delta(b=c) = 1$$

auf der anderen Seite jedoch

$$\delta \left(a = c \right) = 0$$

sein. Also müsste $a \neq c$ sein. Jedoch müsste ebenfalls

$$\delta(a = b) \cdot \delta(b = c) = \delta(a = b \land b = c) = 1$$

sein. Also müsste $a=b \land b=c$ sein. Wäre a=b dann könnte jedoch nicht b=c sein. Denn in diesem Fall wäre ebenfalls wieder a=c. Wäre b=c, dann könnte nicht a=b sein. Denn in diesem Fall wäre wiederum a=c. Somit ist es nicht möglich, dass

$$\delta(a = b) \cdot \delta(b = c) > \delta(a = c)$$

Somit muss immer

$$\delta(a = b) \cdot \delta(b = c) \le \delta(a = c)$$

sein. Denn mit

$$c \equiv \delta (a = b) \cdot \delta (b = c) \in \{0, 1\}$$

und

$$d \equiv \delta (a = c) \in \{0, 1\}$$

Also können die folgenden Fälle auftreten

$$c = d = 0$$

$$\lor c = 0 \land d = 1$$

$$\lor c = 1 \land d = 0$$

$$\lor c = d = 1$$

Da der Fall $c=1 \land d=0$ nicht vorkommen kann (sonst wäre gleichzeitig a=c und $a\neq c$) muss einer der anderen Fälle auftreten. Das wären die Fälle

$$c = d = 0$$

$$\lor c = 0 \land d = 1$$

$$\lor c = d = 1$$

Und in diesen Fällen ist immer

$$c \leq d$$

Denn es ist

$$c = d = 0 \Rightarrow c \le d$$

$$\land \quad c = 0 \land d = 1 \Rightarrow c \le d$$

$$\land \quad c = d = 1 \Rightarrow c \le d$$

Somit habe ich die Behauptung erbracht.

Zur Erinnerung: Es seien A,B sowie C Aussagen, welche in sich und bezüglich den anderen Aussagen dieses Satzes nicht widersprüchlich seien. Dann gilt

$$((A \Leftrightarrow B) \land (B \Leftrightarrow C)) \Rightarrow (A \Leftrightarrow C)$$

Beweis. Zuerst möchte ich die Notation in diejenige der Deltanotation überführen:

$$\delta\left(\left((A \Leftrightarrow B) \land (B \Leftrightarrow C)\right) \Rightarrow (A \Leftrightarrow C)\right)$$

$$= 1 - \delta\left((A \Leftrightarrow B) \land (B \Leftrightarrow C)\right) \cdot \left(1 - \delta\left(A \Leftrightarrow C\right)\right)$$

$$= 1 - \delta\left(A \Leftrightarrow B\right) \cdot \delta\left(B \Leftrightarrow C\right) \cdot \left(1 - \left(1 - \left(\delta\left(A\right) - \delta\left(C\right)\right)^{2}\right)\right)$$

$$= 1 - \left(1 - \left(\delta\left(A\right) - \delta\left(B\right)\right)^{2}\right) \cdot \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(\delta\left(A\right) - \delta\left(C\right)\right)^{2}$$

Aus Gründen der Übersichtlichkeit möchte ich wiederum Abkürzungen einführen

$$a \equiv \delta(A)$$

$$b \equiv \delta(B)$$

$$c \equiv \delta(C)$$

Also kann ich schreiben

$$1 - \left(1 - (\delta(A) - \delta(B))^{2}\right) \cdot \left(1 - (\delta(A) - \delta(B))^{2}\right) \cdot (\delta(A) - \delta(C))^{2}$$

$$= 1 - \left(1 - (a - b)^{2}\right) \cdot \left(1 - (b - c)^{2}\right) \cdot (a - c)^{2}$$

Nun möchte ich den Wert des Ausdrucks

$$(1 - (a - b)^{2}) \cdot (1 - (b - c)^{2}) \cdot (a - c)^{2}$$

berechnen. Dieser müsste 0 sein, falls die Aussage ein logischer Satz ist. Wäre er 1, dann müssten alle Ausdrücke ungleich Null sein. Also müssten alle Ausdrücke 1 sein. Somit müsste $a=b,\,b=c$ und $a\neq c$ sein. Das ist jedoch nicht möglich. Also hätte ich den Beweis erneut erbracht. Ich möchte noch einmal ein Beweis versuchen. Da $a,b\in\{0,1\}$ sind, kann die Differenz

$$(a-b)^2$$

wiederum die Werte 0 oder 1 annehmen. Siehe dazu die nachfolgende Übersicht an:

$$a = 0 \land b = 0 \Rightarrow (a - b)^{2} = (0 - 0)^{2} = 0^{2} = 0 \cdot 0 = 0$$

$$\land a = 0 \land b = 1 \Rightarrow (a - b)^{2} = (0 - 1)^{2} = (-1)^{2} = (-1) \cdot (-1) = 1$$

$$\land a = 1 \land b = 0 \Rightarrow (a - b)^{2} = (1 - 0)^{2} = 1^{2} = 1 \cdot 1 = 1$$

$$\land a = 1 \land b = 1 \Rightarrow (a - b)^{2} = (1 - 1)^{2} = 0^{2} = 0 \cdot 0 = 0$$

Da liegt die Versuchung nahe, diesen Ausdruck in Deltanotation ausdrücken zu wollen. Aber welchen? Wenn ich die obigen Resultate betrachte, dann sehe ich, dass $(a-b)^2$ genau dann den Wert 1 besitzt, falls $a \neq b$ ist. Ist jedoch a = b, dann ist der Wert des Ausdrucks (a - b) gleich 0. Also ist

$$(a-b)^2 = \delta (a \neq b)$$

Ausgeschrieben:

$$a = 0 \land b = 0 \Rightarrow (a - b)^{2} = 0 = \delta (0 \neq 0)$$

$$\land \quad a = 0 \land b = 1 \Rightarrow (a - b)^{2} = 1 = \delta (0 \neq 1)$$

$$\land \quad a = 1 \land b = 0 \Rightarrow (a - b)^{2} = 1 = \delta (1 \neq 0)$$

$$\land \quad a = 1 \land b = 1 \Rightarrow (a - b)^{2} = 0 = \delta (1 \neq 1)$$

Somit kann ich schreiben

$$(1 - (a - b)^{2}) \cdot (1 - (b - c)^{2}) \cdot (a - c)^{2}$$

$$= (1 - \delta (a \neq b)) \cdot (1 - \delta (b \neq c)) \cdot \delta (a \neq c)$$

Nun möchte ich zeigen, dass gilt

$$1 - \delta (a \neq b) = \delta (a = b)$$

Dies kann ich machen, indem schreiben

$$1 - \delta (a \neq b)$$
= 1 - \delta (\gamma (a = b))
= 1 - (1 - \delta (a = b))
= 1 - 1 + \delta (a = b)
= 0 + \delta (a = b)
= \delta (a = b)

Also kann ich schreiben

$$(1 - (a - b)^{2}) \cdot (1 - (b - c)^{2}) \cdot (a - c)^{2}$$

$$= (1 - \delta (a \neq b)) \cdot (1 - \delta (b \neq c)) \cdot \delta (a \neq c)$$

$$= \delta (a = b) \cdot \delta (b = c) \cdot (1 - \delta (a = c))$$

Jetzt ist die Zeit gekommen, das Lemma 278 zu verwenden. Es gilt gemäß diesem Lemma

$$\delta(a = b) \cdot \delta(b = c) \le \delta(a = c)$$

Somit kann ich auch schreiben

$$\delta(a = b) \cdot \delta(b = c) \cdot (1 - \delta(a = c))$$

$$\leq \delta(a = c) \cdot (1 - \delta(a = c))$$

$$= \delta(a = c) - \delta^{2}(a = c)$$

Die Deltanotation $\delta (a=c)$ erfüllt immer noch das Quadratgesetz 263 der Deltanotation, als da wäre

$$\delta^2 (a = c) = \delta (a = c)$$

Somit kann ich ausrechnen

$$\delta(a = b) \cdot \delta(b = c) \cdot (1 - \delta(a = c))$$

$$\leq \delta(a = c) - \delta^{2}(a = c)$$

$$= \delta(a = c) - \delta(a = c)$$

$$= 0$$

Nun muss der Wert des Ausdrucks

$$\delta (a = b) \cdot \delta (b = c) \cdot (1 - \delta (a = c))$$

wiederum in der Menge $\{0,1\}$ enthalten sein. Denn ist $\delta\left(a=c\right)=0$ dann ist

$$1 - \delta (a = c) = 1 - 0 = 1$$

Ist jedoch $\delta(a=c)=1$, dann ist $1-\delta(a=c)=1-1=0$. Mit

$$d, e \in \{0, 1\}$$

ist auch

$$d \cdot e \in \{0, 1\}$$

Denn

$$((d = 0 \land e = 0) \Rightarrow d \cdot e = 0 \cdot 0 = 0)$$

$$\land ((d = 0 \land e = 1) \Rightarrow d \cdot e = 0 \cdot 1 = 0)$$

$$\land ((d = 1 \land e = 0) \Rightarrow d \cdot e = 1 \cdot 0 = 0)$$

$$\land ((d = 1 \land e = 1) \Rightarrow d \cdot e = 1 \cdot 1 = 0)$$

Diese Tatsache kann ich nun verwenden, um zu zeigen, dass gilt

$$\delta (a = b) \cdot \delta (b = c) \in \{0, 1\}$$

sowie mit $f \equiv \delta (a = b) \cdot \delta (b = c)$

$$f \cdot (1 - \delta(a = c)) = \delta(a = b) \cdot \delta(b = c) \cdot (1 - \delta(a = c)) \in \{0, 1\}$$

Da ich jedoch zeigen konnte, dass

$$\delta(a = b) \cdot \delta(b = c) \cdot (1 - \delta(a = c)) \le 0$$

sein muss, kann ich daraus schließen, dass nicht

$$\delta(a = b) \cdot \delta(b = c) \cdot (1 - \delta(a = c)) = 1$$

gelten kann. Also muss

$$\delta(a = b) \cdot \delta(b = c) \cdot (1 - \delta(a = c)) = 0$$

sein - so wie es zu zeigen gewünscht habe. Somit muss auch gelten

$$\delta\left(\left((A \Leftrightarrow B) \land (B \Leftrightarrow C)\right) \Rightarrow (A \Leftrightarrow C)\right)$$

$$= 1 - \left(1 - \left(\delta\left(A\right) - \delta\left(B\right)\right)^{2}\right) \cdot \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(\delta\left(A\right) - \delta\left(C\right)\right)^{2}$$

$$= 1 - \delta\left(a = b\right) \cdot \delta\left(b = c\right) \cdot \left(1 - \delta\left(a = c\right)\right)$$

$$= 1 - 0$$

$$= 1$$

Ich kann mir gut vorstellen, dass Du Dich jetzt fragst, wieso dieser Beweis so unnötig kompliziert ist. Das möchte ich in den folgenden Zeilen zu zeigen versuchen: Es seien also wiederum A,B,C drei in sich und bezüglich den anderen Symbolen dieses Beweises nicht widersprüchliche Aussagen. Dann gilt

$$\delta\left(\left((A \Leftrightarrow B) \land (B \Leftrightarrow C)\right) \Rightarrow (A \Leftrightarrow C)\right)$$

$$= 1 - \delta\left((A \Leftrightarrow B) \land (B \Leftrightarrow C)\right) \cdot \left(1 - \delta\left(A \Leftrightarrow C\right)\right)$$

$$= 1 - \left(1 - \left(\delta\left(A\right) - \delta\left(B\right)\right)^{2}\right) \cdot \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(\delta\left(A\right) - \delta\left(C\right)\right)^{2}$$

Gerne würde ich "brute force" (mit "roher Kraft") ausrechnen. Aber das ist leichter geschrieben als getan! Wiederum sei

$$a \equiv \delta(A)$$

$$b \equiv \delta(B)$$

$$c \equiv \delta(C)$$

Nun möchte den Ausdruck

$$(1 - (\delta(A) - \delta(B))^{2}) \cdot (1 - (\delta(B) - \delta(C))^{2}) \cdot (\delta(A) - \delta(C))^{2}$$

$$= (1 - (a - b)^{2}) \cdot (1 - (b - c)^{2}) \cdot (a - c)^{2}$$

ausrechnen. Damit ich mich nicht verliere, sollen zuerst die Faktoren

$$1 - (a - b)^2$$

sowie

$$1 - (b - c)^2$$

berechnet werden: Es ist

$$(a-b)^{2}$$

$$= (a-b) \cdot (a-b)$$

$$= a^{2} - a \cdot b - b \cdot a + b^{2}$$

Da die Multiplikation kommutativ ist, kann ich weiter schreiben

$$(a-b)^{2}$$

$$= a^{2} - a \cdot b - b \cdot a + b^{2}$$

$$= a^{2} - a \cdot b - a \cdot b + b^{2}$$

$$= a^{2} - 2 \cdot a \cdot b + b^{2}$$

Also muss gelten

$$1 - (a - b)^{2}$$

$$= 1 - (a^{2} - 2 \cdot a \cdot b + b^{2})$$

$$= 1 - a^{2} + 2 \cdot a \cdot b - b^{2}$$

Gemäß dem Gesetz 263 der Idempotenz der Deltanotationen muss gelten

$$a^{2} = \delta^{2}(A) = \delta(A) = a$$

$$b^{2} = \delta^{2}(B) = \delta(B) = b$$

$$c^{2} = \delta^{2}(C) = \delta(C) = c$$

Somit kann ich schreiben

$$1 - (a - b)^{2}$$

$$= 1 - (a^{2} - 2 \cdot a \cdot b + b^{2})$$

$$= 1 - a^{2} + 2 \cdot a \cdot b - b^{2}$$

$$= 1 - a + 2 \cdot a \cdot b - b$$

Da a und b beliebig sind, kann ich ebenfalls schreiben

$$1 - (b - c)^2$$

$$= 1 - b + 2 \cdot b \cdot c - c$$

Und nun beginnt die Zumutung! Ich möchte

$$(1 - (a - b)^2) \cdot (1 - (b - c)^2)$$

berechnen. Dann ist

$$(1 - (a - b)^{2}) \cdot (1 - (b - c)^{2})$$

$$= (1 - a + 2 \cdot a \cdot b - b) \cdot (1 - b + 2 \cdot b \cdot c - c)$$

Wenn ich das ausrechne, erhalte ich 16 Summanden (4 Mal 4 Summanden). Wenigstens weiß ich nun, was das Resultat dieser Berechnung sein soll. Es soll

$$1 - (a - c)^2$$

$$= 1 - a - 2 \cdot c - c$$

sein, damit ich schlussendlich berechnen kann:

$$= (1 - (a - b)^{2}) \cdot (1 - (b - c)^{2}) \cdot (a - c)^{2}$$

$$= (1 - (a - c)^{2}) \cdot (a - c)^{2}$$

$$= 0$$

Somit beginne ich mit meiner Rechnung

$$(1 - a + 2 \cdot a \cdot b - b) \cdot (1 - b + 2 \cdot b \cdot c - c)$$

$$= 1 \cdot (1 - b + 2 \cdot b \cdot c - c) +$$

$$(-a) \cdot (1 - b + 2 \cdot b \cdot c - c) +$$

$$2 \cdot a \cdot b \cdot (1 - b + 2 \cdot b \cdot c - c) +$$

$$(-b) \cdot (1 - b + 2 \cdot b \cdot c - c)$$

Ich berechne die einzelnen Zeilen einzeln, damit die Übersicht einigermaßen gewahrt bleibt:

$$z_{1} \equiv 1 \cdot (1 - b + 2 \cdot b \cdot c - c) + = 1 - b + 2 \cdot b \cdot c - c$$

$$z_{2} \equiv (-a) \cdot (1 - b + 2 \cdot b \cdot c - c)$$

$$= a \cdot (-1 + b - 2 \cdot b \cdot c + c)$$

$$= -a + a \cdot b - 2 \cdot a \cdot b \cdot c + a \cdot c$$

$$z_{3} \equiv 2 \cdot a \cdot b \cdot (1 - b + 2 \cdot b \cdot c - c)$$

$$= 2 \cdot a \cdot b - 2 \cdot a \cdot b^{2} + 4 \cdot a \cdot b^{2} \cdot c - 2 \cdot a \cdot b \cdot c$$

$$= 2 \cdot a \cdot b - 2 \cdot a \cdot b + 4 \cdot a \cdot b \cdot c - 2 \cdot a \cdot b \cdot c$$

$$= 0 + 4 \cdot a \cdot b \cdot c - 2 \cdot a \cdot b \cdot c$$

$$= 4 \cdot a \cdot b \cdot c - 2 \cdot a \cdot b \cdot c$$

$$= b \cdot (-1 + b - 2 \cdot b \cdot c + c)$$

$$= -b + b^{2} - 2 \cdot b^{2} \cdot c + b \cdot c$$

$$= -b + b - 2 \cdot b \cdot c + b \cdot c$$

$$= b \cdot c - 2 \cdot b \cdot c$$

$$= b \cdot c - 2 \cdot b \cdot c$$

$$= -b \cdot c$$

Somit ist

$$z_{1} + z_{2} + z_{3} + z_{4}$$

$$= 1 - b + 2 \cdot b \cdot c - c +$$

$$(-a) + a \cdot b - 2 \cdot a \cdot b \cdot c + a \cdot c +$$

$$2 \cdot a \cdot b \cdot c +$$

$$(-b \cdot c)$$

$$= 1 - b + 2 \cdot b \cdot c - c +$$

$$(-a) + a \cdot b - 2 \cdot a \cdot b \cdot c + a \cdot c +$$

$$2 \cdot a \cdot b \cdot c - b \cdot c$$

$$= 1 - b + 2 \cdot b \cdot c - c +$$

$$(-a) + a \cdot b + 2 \cdot a \cdot b \cdot c - 2 \cdot a \cdot b \cdot c +$$

$$a \cdot c - b \cdot c$$

$$= 1 - b + 2 \cdot b \cdot c - c +$$

$$(-a) + a \cdot b + 0 +$$

$$a \cdot c - b \cdot c$$

$$= 1 - b + 2 \cdot b \cdot c - b \cdot c - c +$$

$$(-a) + a \cdot b + a \cdot c$$

$$= 1 - b + b \cdot c - c - a + a \cdot b + a \cdot c$$

$$= 1 - a + a \cdot b + b \cdot c + a \cdot c - c$$

$$= 1 - a - b - c + a \cdot b + a \cdot c + b \cdot c$$

Nun habe ich eine Formel entwickelt:

$$(1 - (a - b)^{2}) \cdot (1 - (b - c)^{2})$$
= 1 - a - b - c + a \cdot b + a \cdot c + b \cdot c

Jedoch weiß ich nicht, ob diese Formel auch stimmt. Um dies zu überprüfen, werde ich diese überprüfen. Die Formel ist relativ leicht zu lesen: Ist $a \neq b$ oder $b \neq c$, dann ist $(a-b)^2 = 1$ oder $(b-c)^2 = 1$. Also ist auch

$$1 - \left(a - b\right)^2 = 0$$

oder

$$1 - \left(b - c\right)^2 = 0$$

Das bedeutet jedoch, dass immer gilt

$$(1 - (a - b)^2) \cdot (1 - (b - c)^2) = 0$$

Somit kann ich schließen, dass nur dann

$$(1 - (a - b)^{2}) \cdot (1 - (b - c)^{2}) = 1$$

sein kann, falls

$$a = b$$

und

$$b = c$$

ist. Also sollte diese Formel richtig sein, falls

$$a = b = c = 0$$

oder

$$a = b = c = 1$$

ist.

Nun kommt die Ochsentour: Ist a=b=c=0, dann ist

$$(1 - (a - b)^{2}) \cdot (1 - (b - c)^{2})$$

$$= (1 - (0 - 0)^{2}) \cdot (1 - (0 - 0)^{2})$$

$$= (1 - 0^{2}) \cdot (1 - 0^{2})$$

$$= (1 - 0) \cdot (1 - 0)$$

$$= 1 \cdot 1$$

$$= 1$$

Auf der anderen Seite ist

$$1 - a - b - c + a \cdot b + a \cdot c + b \cdot c$$

$$= 1 - 0 - 0 - 0 + 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0$$

$$= 1 + 0 + 0 + 0$$

$$= 1$$

Damit ist dieser Fall bewiesen. Ist a = b = c = 1, dann ist

$$(1 - (a - b)^{2}) \cdot (1 - (b - c)^{2})$$

$$= (1 - (1 - 1)^{2}) \cdot (1 - (1 - 1)^{2})$$

$$= (1 - 0^{2}) \cdot (1 - 0^{2})$$

$$= (1 - 0) \cdot (1 - 0)$$

$$= 1 \cdot 1$$

$$= 1$$

Die andere Formel ist

$$1 - a - b - c + a \cdot b + a \cdot c + b \cdot c$$

$$= 1 - 1 - 1 - 1 + 1 + 1 + 1$$

$$= 1 - 3 + 3$$

$$= 1$$

Damit ist auch der Beweis dieses Falls erbracht. Nun sei etwa a=1 und b=c=0. Dann ist

$$(1 - (a - b)^{2}) \cdot (1 - (b - c)^{2})$$

$$= (1 - (1 - 0)^{2}) \cdot (1 - (0 - 0)^{2})$$

$$= (1 - 1^{2}) \cdot (1 - 0^{2})$$

$$= (1 - 1) \cdot (1 - 0)$$

$$= 0 \cdot 1$$

$$= 0$$

In diesem Fall ist wiederum

$$1 - a - b - c + a \cdot b + a \cdot c + b \cdot c$$

$$= 1 - 1 - 0 - 0 + 1 \cdot 0 + 1 \cdot 0 + 0 \cdot 0$$

$$= 1 - 1 + 0 + 0 + 0 + 0$$

$$= 0 + 0$$

$$= 0$$

Ja, ich muss gestehen, dass ich momentan genug habe vom Prüfen. Darum versuche ich weiter den Beweis zu führen. Ich möchte gerne folgendes Produkt berechnen:

$$(1 - a - b - c + a \cdot b + a \cdot c + b \cdot c) \cdot (a - c)^{2}$$

$$= (a - c)^{2} \cdot (1 - a - b - c + a \cdot b + a \cdot c + b \cdot c)$$

$$= (a^{2} - 2 \cdot a \cdot c + c^{2}) \cdot (1 - a - b - c + a \cdot b + a \cdot c + b \cdot c)$$

$$= (a - 2 \cdot a \cdot c + c) \cdot (1 - a - b - c + a \cdot b + a \cdot c + b \cdot c)$$

$$= (a - 2 \cdot a \cdot c + c) \cdot (1 - a - b - c + a \cdot b + a \cdot c + b \cdot c)$$

Wenn ich dieses Produkt ausrechne, dann erhalte ich 24(!) Summanden. Darum habe ich oben eine Abkürzung gewählt. Aber ich möchte trotzdem versuchen, das Produkt zu berechnen:

$$(a - 2 \cdot a \cdot c + c) \cdot (1 - a - b - c + a \cdot b + a \cdot c + b \cdot c)$$

$$= a \cdot (1 - a - b - c + a \cdot b + a \cdot c + b \cdot c) +$$

$$-2 \cdot a \cdot c \cdot (1 - a - b - c + a \cdot b + a \cdot c + b \cdot c) +$$

$$c \cdot (1 - a - b - c + a \cdot b + a \cdot c + b \cdot c)$$

Nun möchte ich die Zeilen wieder einzeln ausrechnen:

$$z_{5} = a \cdot (1 - a - b - c + a \cdot b + a \cdot c + b \cdot c)$$

$$= a - a^{2} - a \cdot b - a \cdot c + a^{2} \cdot b + a^{2} \cdot c + a \cdot b \cdot c$$

$$= a - a - a \cdot b - a \cdot c + a \cdot b + a \cdot c + a \cdot b \cdot c$$

$$= a - a + a \cdot b - a \cdot b + a \cdot c - a \cdot c + a \cdot b \cdot c$$

$$= 0 + 0 + 0 + a \cdot b \cdot c$$

$$= a \cdot b \cdot c$$

$$z_{6} = -2 \cdot a \cdot c \cdot (1 - a - b - c + a \cdot b + a \cdot c + b \cdot c)$$

$$= 2 \cdot (a \cdot c \cdot (-1 + a + b + c - a \cdot b - a \cdot c - b \cdot c))$$

Mit

$$h_1 \equiv a \cdot c \cdot (-1 + a + b + c - a \cdot b - a \cdot c - b \cdot c)$$

ist

$$z_7 = 2 \cdot h_1$$

Ist

$$h_1 = a \cdot c \cdot (-1 + a + b + c - a \cdot b - a \cdot c - b \cdot c)$$

$$= -a \cdot c + a^2 \cdot c + a \cdot b \cdot c + a \cdot c^2 - a^2 \cdot b \cdot c - a^2 \cdot c^2 - a \cdot b \cdot c^2$$

$$= -a \cdot c + a \cdot c + a \cdot b \cdot c + a \cdot c - a \cdot b \cdot c - a \cdot c - a \cdot b \cdot c$$

$$= a \cdot c - a \cdot c + a \cdot c - a \cdot c + a \cdot b \cdot c - a \cdot b \cdot c - a \cdot b \cdot c$$

$$= 0 + 0 + 0 - a \cdot b \cdot c$$

$$= -a \cdot b \cdot c$$

Das bedeutet, dass gilt

$$z_6 = 2 \cdot (-a \cdot b \cdot c)$$
$$= -2 \cdot a \cdot b \cdot c$$

$$z_7 = c \cdot (1 - a - b - c + a \cdot b + a \cdot c + b \cdot c)$$

$$= c - a \cdot c - b \cdot c - c^2 + a \cdot b \cdot c + a \cdot c^2 + b \cdot c^2$$

$$= c - a \cdot c - b \cdot c - c + a \cdot b \cdot c + a \cdot c + b \cdot c$$

$$= c - c + a \cdot c - a \cdot c + b \cdot c - b \cdot c + a \cdot b \cdot c$$

$$= 0 + 0 + 0 + a \cdot b \cdot c$$

$$= a \cdot b \cdot c$$

Also gilt

$$(1 - a - b - c + a \cdot b + a \cdot c + b \cdot c) \cdot (a - c)^{2}$$

$$= z_{5} + z_{6} + z_{7}$$

$$= a \cdot b \cdot c - 2 \cdot a \cdot b \cdot c + a \cdot b \cdot c$$

$$= 2 \cdot a \cdot b \cdot c - 2 \cdot a \cdot b \cdot c$$

$$= 0$$

Somit kann ich jetzt wirklich behaupten, dass gilt:

$$\delta\left(\left((A \Leftrightarrow B) \land (B \Leftrightarrow C)\right) \Rightarrow (A \Leftrightarrow C)\right)$$

$$= 1 - \left(1 - \left(\delta\left(A\right) - \delta\left(B\right)\right)^{2}\right) \cdot \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(\delta\left(A\right) - \delta\left(C\right)\right)^{2}$$

$$= 1 - \left(1 - (a - b)^{2}\right) \cdot \left(1 - (b - c)^{2}\right) \cdot (a - c)^{2}$$

$$= 1 - 0$$

$$= 1$$

Somit kann ich also behaupten, dass für alle möglichen (nicht in sich selbst oder anderen Symbolen dieses Beweises) widersprüchlichen Aussagen gilt:

$$((A \Leftrightarrow B) \land (B \Leftrightarrow C)) \Rightarrow (A \Leftrightarrow C)$$

Natürlich war dieser Beweis eine veritable Zumutung! Entweder ist der Beweis relativ schnell erzählt, aber irgendwie ein ungutes Gefühl bleibt zurück, oder der Beweis ist formal und sperrig. Dieser Beweis ist auch meines Erachtens der erste Satz, welcher um einiges sperriger ist als der Beweis mit den Wahrheitstafeln. Es ist mir auch aufgefallen, das die Gleichungen sehr schnell sehr unübersichtlich werden. Weiter möchte ich zeigen, dass es in der Mathematik eben nicht immer nur eine richtige Lösung gibt. Es gibt oft mehrere Möglichkeiten, etwas auszudrücken oder zu beweisen. Es ist auch wahrscheinlich eine Schwierigkeit von Beweisen mit Hilfe von Computer (Computeralgebra), dass deren Beweise sehr schnell praktisch nicht mehr durch Menschen nachvollziehbar sein dürften. Einem Computer macht es nichts aus, falls ein Ausdruck viele Millionen Zeichen besitzt. Wir Menschen mögen es jedoch recht kompakt und übersichtlich.

Aber ich hoffe, dass dieser Beweis so in seiner Form einzigartig sein dürfe. Denn so ein Durcheinander kommt auf die Dauer Deiner Laune wahrscheinlich nicht so gut, vermute ich mal.

41.5. Satz des logischen Widerspruchs

Ich möchte den Satz des logischen Widerspruchs mit der δ -Notation erneut beweisen. Zur Erinnerung seinen A sowie B Symbole für Aussagen, welche in sich selbst und bezüglich den anderen Symbolen dieses Beweises nicht im Widerspruch seien. Dann gilt

$$((\neg A) \Rightarrow (\neg B)) \Rightarrow (B \Rightarrow A)$$

Beweis. (des Satzes des logischen Widerspruchs) Es seien $A, B \in \delta$. Somit möchte ich den Wert der Deltanotation

$$\delta\left(\left(\left(\neg A\right) \Rightarrow \left(\neg B\right)\right) \Rightarrow \left(B \Rightarrow A\right)\right)$$

Dann kann die äußerste Implikation gemäß dem Satz 268 wie folgt umformuliert werden.

$$\delta\left(\left(\left(\neg A\right) \Rightarrow \left(\neg B\right)\right) \Rightarrow \left(B \Rightarrow A\right)\right)$$

$$= 1 - \delta\left(\left(\neg A\right) \Rightarrow \left(\neg B\right)\right) \cdot \left(1 - \delta\left(B \Rightarrow A\right)\right)$$

Jetzt habe ich wieder zwei Terme, welche eine Implikation enthalten:

$$\delta\left((\neg A) \Rightarrow (\neg B)\right)$$

sowie

$$\delta (B \Rightarrow A)$$

Auch diese Implikationen können gemäß dem gleichen Satz 268 umgeschrieben werden zu

$$\delta ((\neg A) \Rightarrow (\neg B))$$

=1 - \delta (\neg A) \cdot (1 - \delta (\neg B))

respektive zu

$$\delta (B \Rightarrow A)$$

$$=1 - \delta (B) \cdot (1 - \delta (A))$$

Die zweite Umrechnung kann und will ich nicht mehr weiter umformen - fürs erste. Jedoch sind in der ersten Umrechnungen noch Negationen enthalten. Diese kann ich gemäß dem Satz 266 umschreiben zu

$$\delta(\neg A) = 1 - \delta(A)$$
$$\delta(\neg B) = 1 - \delta(B)$$

Also kann ich die einzelnen Teile wiederum zusammensetzen. Ich erhalte

$$\delta ((\neg A) \Rightarrow (\neg B))$$

$$=1 - \delta (\neg A) \cdot (1 - \delta (\neg B))$$

$$=1 - (1 - \delta (A)) \cdot (1 - (1 - \delta (B)))$$

$$=1 - (1 - \delta (A)) \cdot (1 - 1 + \delta (B))$$

$$=1 - (1 - \delta (A)) \cdot \delta (B)$$

$$=1 - \delta (B) \cdot (1 - \delta (A))$$

Somit erhalte ich

$$\delta (((\neg A) \Rightarrow (\neg B)) \Rightarrow (B \Rightarrow A))$$
= $1 - \delta ((\neg A) \Rightarrow (\neg B)) \cdot (1 - \delta (B \Rightarrow A))$
= $1 - (1 - \delta (B) \cdot (1 - \delta (A))) \cdot (1 - (1 - \delta (B) \cdot (1 - \delta (A))))$
= $1 - (1 - \delta (B) \cdot (1 - \delta (A))) \cdot (1 - 1 + \delta (B) \cdot (1 - \delta (A)))$
= $1 - (1 - \delta (B) \cdot (1 - \delta (A))) \cdot \delta (B) \cdot (1 - \delta (A))$
= $1 - (1 \cdot \delta (B) \cdot (1 - \delta (A)) - \delta^2 (B) \cdot (1 - \delta (A))^2)$
= $1 - (\delta (B) \cdot (1 - \delta (A)) - \delta^2 (B) \cdot (1 - \delta (A))^2)$

Nun gilt für

$$1 - \delta(A)$$

gemäß dem Satz 266

$$1 - \delta(A) = \delta(\neg A)$$

und also gilt

$$(1 - \delta(A))^2$$
$$= \delta^2(\neg A)$$

Also kann ich wieder von der Idempotenz der Deltanotation Gebrauch machen, welche im Satz 263 gezeigt habe und erhalte

$$\delta^2 \left(\neg A \right) = \delta \left(\neg A \right)$$

Dieses Resultat kann ich wieder in die Rechnung einsetzen und erhalte

$$(1 - \delta(A))^{2}$$

$$= \delta^{2} (\neg A)$$

$$= \delta(\neg A)$$

Nun kann ich wiederum den Satz 263 anwenden und erhalte

$$(1 - \delta(A))^{2}$$

$$= \delta(\neg A)$$

$$= 1 - \delta(A)$$

Die Deltanotation der Aussage B ist gemäß dem gleichen Satz 263 ebenfalls idempotent, das heißt, es gilt ebenfalls

$$\delta^2(B) = \delta(B)$$

Somit kann ich also schreiben

$$\delta^{2}(B) \cdot (1 - \delta(A))^{2} = \delta(B) \cdot (1 - \delta(A))^{2}$$

Dies Zwischenresultat kann ich in die Berechnung des ursprünglichen Ausdrucks einsetzen und erhalte darum

$$\delta\left(\left((\neg A) \Rightarrow (\neg B)\right) \Rightarrow (B \Rightarrow A)\right)$$

$$= 1 - \left(1 \cdot \delta\left(B\right) \cdot (1 - \delta\left(A\right)) - \delta^{2}\left(B\right) \cdot (1 - \delta\left(A\right))^{2}\right)$$

$$= 1 - \left(\delta\left(B\right) \cdot (1 - \delta\left(A\right)\right) - \delta^{2}\left(B\right) \cdot (1 - \delta\left(A\right))^{2}\right)$$

$$= 1 - \left(\delta\left(B\right) \cdot (1 - \delta\left(A\right)\right) - \delta\left(B\right) \cdot (1 - \delta\left(A\right))\right)$$

$$= 1 - \delta\left(B\right) \cdot (1 - \delta\left(A\right)) \cdot (1 - 1)$$

$$= 1 - \delta\left(B\right) \cdot (1 - \delta\left(A\right)) \cdot 0$$

$$= 1 - 0$$

$$= 1$$

Damit habe ich jedoch gemäß dem Eindeutigkeitssatz 262 gezeigt, dass die Aussage

$$((\neg A) \Rightarrow (\neg B)) \Rightarrow (B \Rightarrow A)$$

für alle (hinreichend widerspruchsfreien) Aussagen A sowie B wahr ist. Also habe ich den Beweis des Satzes (wenig überraschend) erneut erbracht.

Nachbemerkung: Damit ich sicher sein kann, dass

$$\delta(B) \cdot (1 - \delta(A)) \cdot 0 = 0$$

ist, muss ich zeigen könnten, dass

$$\delta(B) \cdot (1 - \delta(A))$$

eine beschränkte Zahl ist. Jedoch ist das schon zutreffend. Denn es ist

$$0 \le \delta(A) \le 1$$
$$\land 0 < \delta(B) < 1$$

Mit

$$0 \le \delta(A) \le 1$$

ist gemäß dem Satz ebenso

$$0 \ge -\delta(A) \ge -1$$

und also

$$-1 < -\delta(A) < 0$$

und somit

$$0 = 1 - 1 \le 1 - \delta(A) \le 1 - 0 = 1$$

Zusammen gefasst also

$$0 < 1 - \delta(A) < 1$$

Also kann ich dann berechnen

$$0 = 0 \cdot 0 < \delta(B) \cdot (1 - \delta(A)) = 1 \cdot 1 = 1$$

oder verkürzt geschrieben

$$0 \le \delta(B) \cdot (1 - \delta(A)) \le 1$$

Somit ist also der Ausdruck

$$\delta\left(B\right)\cdot\left(1-\delta\left(A\right)\right)$$

sicher beschränkt und darum kann ich sicher sein, dass

$$\delta(B) \cdot (1 - \delta(A)) = 0$$

ist.

41.6. Satz der Schlussfolgerung

Zur Rekapitulation: Es seien A sowie B Symbole für Aussagen, welche in sich selbst, jedoch auch bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt der logische Satz:

$$(A \land (A \Rightarrow B)) \Rightarrow B$$

BEWEIS. Es seien $A, B \in \Omega$. Nun möchte ich die Behauptung in der Deltanotation aufschreiben:

$$\delta\left((A \wedge (A \Rightarrow B)) \Rightarrow B\right)$$

Als erste möchte die Deltanotation der Implikation umschreiben. Es gilt gemäß dem Satz 268

$$\delta\left((A \land (A \Rightarrow B)) \Rightarrow B\right)$$

= $1 - \delta\left(A \land (A \Rightarrow B)\right) \cdot (1 - \delta\left(B\right))$

Nun ist die Deltanotation der folgenden Konjunktion umzuschreiben:

$$\delta (A \wedge (A \Rightarrow B))$$

Gemäß dem Satz 267 gilt

$$\delta (A \wedge (A \Rightarrow B))$$

= $\delta (A) \cdot \delta (A \Rightarrow B)$

Und wieder muss ich die Deltanotation einer Implikation umschreiben. Diesmal ist des die Implikation

$$A \Rightarrow B$$

Ich nehme erneut den Satz 268 zur Hilfe und erhalte

$$\delta (A \Rightarrow B)$$

$$=1 - \delta (A) \cdot (1 - \delta (B))$$

Jetzt geht es darum, die einzelnen Teile wieder zusammen zu setzen. Es ist

$$\delta (A \land (A \Rightarrow B))$$

$$\delta (A) \cdot \delta (A \Rightarrow B)$$

$$=\delta (A) \cdot (1 - \delta (A) \cdot (1 - \delta (B)))$$

$$=\delta (A) - \delta^{2} (A) \cdot (1 - \delta (B))$$

Gemäß dem Satz 263 ist die Deltanotation idempotent. Also kann ich schreiben

$$\delta (A \land (A \Rightarrow B))$$

$$\delta (A) \cdot \delta (A \Rightarrow B)$$

$$=\delta (A) - \delta^{2} (A) \cdot (1 - \delta (B))$$

$$=\delta (A) - \delta (A) \cdot (1 - \delta (B))$$

$$=\delta (A) \cdot (1 - (1 - \delta (B)))$$

$$=\delta (A) \cdot (1 - 1 + \delta (B))$$

$$=\delta (A) \cdot \delta (B)$$

Nun kann ich diesen Teil in die umgeschriebene Deltanotation der ganzen Aussage einfügen. Ich erhalte

$$\delta ((A \land (A \Rightarrow B)) \Rightarrow B)$$

$$=1 - \delta (A \land (A \Rightarrow B)) \cdot (1 - \delta (B))$$

$$=1 - \delta (A) \cdot \delta (B) \cdot (1 - \delta (B))$$

Da $\delta(A)$ beschränkt ist, kann ich gemäß dem Lemma 276 folgern

$$\delta(A) \cdot \delta(B) \cdot (1 - \delta(B)) = 0$$

Also kann ich endlich folgern:

$$\delta ((A \land (A \Rightarrow B)) \Rightarrow B)$$

$$= 1 - \delta (A \land (A \Rightarrow B)) \cdot (1 - \delta (B))$$

$$= 1 - \delta (A) \cdot \delta (B) \cdot (1 - \delta (B))$$

$$= 1 - 0$$

$$= 1$$

Somit kann ich gemäß dem Satz 262 folgern, dass für alle hinreichende vernünftigen Aussagen A wie auch B die Aussage

$$(A \land (A \Rightarrow B)) \Rightarrow B$$

wahr und somit der Beweis des logischen Satzes mittels der Deltanotation erbracht ist.

41.7. Implikation und kleiner-gleich Beziehung

Satz 279. Es seien A sowie B Symbole von Aussagen. Dann ist genau dann

$$A \Rightarrow B$$

falls

$$\delta(A) \leq \delta(B)$$

ist.

Beweis. Es gelte, dass aus der Aussage A die Aussage B folgt. Also liegt einer der beiden folgenden Fälle vor:

- 1) A ist nicht wahr
- 2) B ist wahr

Zu Fall 1) Ist A nicht wahr, dann ist $\delta(A) = 0$. Da $\delta(B) \in \{0, 1\}$ ist, gilt dann also

$$\delta(A) \le 0 \land \delta(A) \le 1$$

Also ist

$$\delta(A) < 0 < \delta(B)$$

und somit

$$\delta(A) \leq \delta(B)$$

Damit hätte ich den ersten Fall gezeigt. Ist jedoch B wahr, dann ist per Definition $\delta\left(B\right)=1.$ Da jedoch nach Definition $\delta\left(A\right)\in\left\{ 0,1\right\}$ ist, muss wiederum

$$\delta(A) < 1 < \delta(B)$$

und somit wiederum

$$\delta(A) \leq \delta(B)$$

sein. Damit hätte ich die eine Richtung bewiesen.

Es sei auf der anderen Seite $\delta(A) \leq \delta(B)$. Ist $\delta(A) = 0$, dann ist die Aussage A nicht wahr. Also gilt in diesem Fall

$$A \Rightarrow B$$

Ist jedoch $\delta(A) = 1$, dann muss gemäß Voraussetzung

$$1 = \delta(A) \le \delta(B) \le 1$$

und darum auch

$$\delta(B) = 1$$

Also gilt auch in diesem Fall

$$A \Rightarrow B$$

und die Umkehrung der Behauptung stimmt ebenfalls. Somit hätte ich auch die andere Seite der Behauptung und somit die ganze Behauptung bewiesen.

41.8. Kommutation der Konjunktion

Zu Deiner Erinnerung: Es seien A und B Metasymbole von Aussagen. Dann gilt gemäß dem Satz 35

$$A \wedge B \Leftrightarrow B \wedge A$$

Beweis. Wie gewohnt versuche ich zuerst den Beweis mittels δ -Notation zu erbringen. Gemäß dem Satz 267 gilt

$$\delta (A \wedge B)$$
$$=\delta (A) \cdot \delta (B)$$

Nun ist die Multiplikation von ganzen Zahlen kommutativ. Also muss gelten

$$\delta(A) \cdot \delta(B) = \delta(B) \cdot \delta(A)$$

Somit kann ich wiederum gemäß dem Satz 267 schreiben

$$\delta(B) \cdot \delta(A) = \delta(B \wedge A)$$

Zusammengefasst kann ich darum schreiben

$$\delta (A \wedge B) = \delta (B \wedge A)$$

Somit kann ich gemäß dem Satz 264 schließen, dass gelten muss

$$A \wedge B \Leftrightarrow B \wedge A$$

Aus diesem Grund glaube ich beweisen zu können, dass der Beweis der von mir formulierten Behauptung erbracht ist.

41.9. Kommutation der Disjunktion

Zu Deiner Erinnerung. Unter dem Satz 37 versuchte ich Dir, zu zeigen, dass gilt, falls A sowie B in sich selbst und bezüglich den anderen Symbolen des Beweises widerspruchsfreie Aussagen seien:

$$A \vee B \Leftrightarrow B \vee A$$

Beweis. (mit Hilfe des Kronecker-Symbols) Es seien $A,B\in\delta.$ Dann gilt

$$\delta(A \vee B) = \delta(A) + \delta(B) - \delta(A) \cdot \delta(B)$$

sowie

$$\delta (B \lor A)$$

$$=\delta (B) + \delta (A) - \delta (B) \cdot \delta (A)$$

$$=\delta (A) + \delta (B) - \delta (A) \cdot \delta (B)$$

$$=\delta (A \lor B)$$

oder aber

$$\delta(A \vee B) = \delta(B \vee A)$$

Also kann ich gemäß dem Satz 264 schließen:

$$A \vee B \Leftrightarrow B \vee A$$

womit der Satz erbracht wäre.

Das Schöne an diesem Beweis ist, dass die Kommutation von logischen Verknüpfungen mit Hilfe der Kommutation von Addition und Multiplikation erbracht werden kann. Wie schon oben erwähnt ist das zwar weniger magisch als wir vermuten könnten, da ich die Addition und die Multiplikation aus der Logik herleiten kann. Trotzdem finde ich diesen Beweis schön in demjenigen Sinn, als ich zum ersten Mal aufzeigen konnte, das scheinbar unverbundene Gebiete der Mathematik miteinander gewinnbringend verbunden werden können. Dies wir in der modernen Mathematik, so wie ich gehört habe, mit viel Liebe gepflegt. In einem Teilgebiet der Mathematik ist eine Aufgabe praktisch unlösbar schwierig, in einem anderen die transformierte Aufgabe lösbar. Also wird die Aufgabe transformiert, gelöst und zurück-transformiert und ab und an mit viel Glück eine Lösung gefunden für das scheinbar unlösbare Problem.

41.10. Kommutation der Äquivalenz

Zu Deiner Erinnerung an den Satz 39: Es seien A und B Metasymbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes genügend widerspruchsfrei seien. Dann gilt:

$$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$$

Beweis. Hier kommt der Beweis mittels der δ -Notation:

$$\delta(A \Leftrightarrow B)$$

$$= 1 - (\delta(A) - \delta(B))^{2}$$

$$= 1 - ((\delta(A))^{2} - 2 \cdot \delta(A) \cdot \delta(B) + (\delta(B)^{2}))$$

$$= 1 - ((\delta(B)^{2}) - 2 \cdot \delta(B) \cdot \delta(A) + (\delta(A))^{2})$$

$$= 1 - (\delta(B) - \delta(A))^{2}$$

$$= \delta(B \Leftrightarrow A)$$

Also kann ich gemäß dem Satz 264 schließen, dass wirklich

$$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$$

ist.

41.11. Implikation Antivalenz Disjunktion

Ich möchte gerne den Satz 62 noch einmal mittels der Deltanotation nachrechnen.

Nun zu Erinnerung: Sind A und B Metasymbole von Aussagen, welche in sich und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien, dann gilt

$$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$$

Beweis. Gemäß dem Satz 271 kann ich schreiben

$$\delta(A \Leftrightarrow B) = \delta(A) + \delta(B) - 2 \cdot \delta(A) \cdot \delta(B)$$

Gemäß dem Satz 270 gilt

$$\delta(A \vee B) = \delta(A) + \delta(B) - \delta(A) \cdot \delta(B)$$

Diese Resultate kann ich nun in die umgewandelte Deltanotation des Ausdrucks

$$(A \Leftrightarrow B) \Rightarrow (A \lor B)$$

einfüllen. Es gilt gemäß dem Satz 268 darum

$$\delta\left((A \Leftrightarrow B) \Rightarrow (A \lor B)\right)$$

$$=1 - \delta\left(A \Leftrightarrow B\right) \cdot (1 - \delta\left((A \lor B)\right))$$

$$=1 - \delta\left(A \Leftrightarrow B\right) \cdot (1 - \delta\left((A \lor B)\right))$$

$$=1 - (\delta\left(A\right) + \delta\left(B\right) - 2 \cdot \delta\left(A\right) \cdot \delta\left(B\right)) \cdot (1 - (\delta\left(A\right) + \delta\left(B\right) - \delta\left(A\right) \cdot \delta\left(B\right)))$$

$$=1 - (\delta\left(A\right) + \delta\left(B\right) - 2 \cdot \delta\left(A\right) \cdot \delta\left(B\right)) \cdot (1 - \delta\left(A\right) - \delta\left(B\right) + \delta\left(A\right) \cdot \delta\left(B\right))$$

Und schon bin ich wieder im größten Schlamassel! Denn das Produkt

$$(\delta(A) + \delta(B) - 2 \cdot \delta(A) \cdot \delta(B)) \cdot (1 - \delta(A) - \delta(B) + \delta(A) \cdot \delta(B))$$

besitzt ausgeschrieben 12 Summanden. Also mache ich mich an die Arbeit

$$\begin{split} & \left(\delta\left(A\right) + \delta\left(B\right) - 2 \cdot \delta\left(A\right) \cdot \delta\left(B\right)\right) \cdot \left(1 - \delta\left(A\right) - \delta\left(B\right) + \delta\left(A\right) \cdot \delta\left(B\right)\right) \\ = & \delta\left(A\right) \cdot \left(1 - \delta\left(A\right) - \delta\left(B\right) + \delta\left(A\right) \cdot \delta\left(B\right)\right) + \\ & \delta\left(B\right) \cdot \left(1 - \delta\left(A\right) - \delta\left(B\right) + \delta\left(A\right) \cdot \delta\left(B\right)\right) - \\ & \left(2 \cdot \delta\left(A\right) \cdot \delta\left(B\right) \cdot \left(1 - \delta\left(A\right) - \delta\left(B\right) + \delta\left(A\right) \cdot \delta\left(B\right)\right)\right) \\ = & \delta\left(A\right) - \delta^{2}\left(A\right) - \delta\left(A\right) \cdot \delta\left(B\right) + \delta^{2}\left(A\right) \cdot \delta\left(B\right) + \\ & \delta\left(B\right) - \delta\left(B\right) \cdot \delta\left(A\right) - \delta^{2}\left(B\right) + \delta\left(A\right) \cdot \delta^{2}\left(B\right) - \\ & \left(2 \cdot \delta\left(A\right) \cdot \delta\left(B\right) - 2 \cdot \delta^{2}\left(A\right) \cdot \delta\left(B\right) - 2 \cdot \delta\left(A\right) \cdot \delta^{2}\left(B\right) + 2 \cdot \delta^{2}\left(A\right) \cdot \delta^{2}\left(B\right)\right) \end{split}$$

Nun wende ich wiederum den Satz der Idempotenz der Deltanotation an und erhalte:

$$\begin{split} &(\delta\left(A\right)+\delta\left(B\right)-2\cdot\delta\left(A\right)\cdot\delta\left(B\right))\cdot\left(1-\delta\left(A\right)-\delta\left(B\right)+\delta\left(A\right)\cdot\delta\left(B\right)\right)\\ =&\delta\left(A\right)-\delta^{2}\left(A\right)-\delta\left(A\right)\cdot\delta\left(B\right)+\delta^{2}\left(A\right)\cdot\delta\left(B\right)+\\ &\delta\left(B\right)-\delta\left(B\right)\cdot\delta\left(A\right)-\delta^{2}\left(B\right)+\delta\left(A\right)\cdot\delta^{2}\left(B\right)-\\ &\left(2\cdot\delta\left(A\right)\cdot\delta\left(B\right)-2\cdot\delta^{2}\left(A\right)\cdot\delta\left(B\right)-2\cdot\delta\left(A\right)\cdot\delta^{2}\left(B\right)+2\cdot\delta^{2}\left(A\right)\cdot\delta^{2}\left(B\right)\right)\\ =&\delta\left(A\right)-\delta\left(A\right)-\delta\left(A\right)\cdot\delta\left(B\right)+\delta\left(A\right)\cdot\delta\left(B\right)+\\ &\delta\left(B\right)-\delta\left(B\right)\cdot\delta\left(A\right)-\delta\left(B\right)+\delta\left(A\right)\cdot\delta\left(B\right)-\\ &\left(2\cdot\delta\left(A\right)\cdot\delta\left(B\right)-2\cdot\delta\left(A\right)\cdot\delta\left(B\right)-2\cdot\delta\left(A\right)\cdot\delta\left(B\right)+2\cdot\delta\left(A\right)\cdot\delta\left(B\right)\right)\\ =&0-\delta\left(A\right)\cdot\delta\left(B\right)+\delta\left(A\right)\cdot\delta\left(B\right)+\\ &0-\delta\left(B\right)\cdot\delta\left(A\right)-0+\delta\left(A\right)\cdot\delta\left(B\right)-\\ &\left(0-0\right)\\ =&0-\delta\left(A\right)\cdot\delta\left(B\right)+\delta\left(A\right)\cdot\delta\left(B\right)\\ =&\delta\left(A\right)\cdot\delta\left(B\right)-\delta\left(A\right)\cdot\delta\left(B\right)\\ =&\delta\left(A\right)\cdot\delta\left(B\right)-\delta\left(A\right)\cdot\delta\left(B\right)\\ =&0\end{split}$$

Somit glaube ich, schreiben zu können:

$$\delta\left(\left(A \Leftrightarrow B\right) \Rightarrow \left(A \lor B\right)\right)$$

$$=1 - \left(\delta\left(A\right) + \delta\left(B\right) - 2 \cdot \delta\left(A\right) \cdot \delta\left(B\right)\right) \cdot \left(1 - \delta\left(A\right) - \delta\left(B\right) + \delta\left(A\right) \cdot \delta\left(B\right)\right)$$

$$=1 - 0$$

$$=1$$

Darum kann ich gemäß dem Satz 262 schließen, dass die Aussage

$$(A \Leftrightarrow B) \Rightarrow (A \lor B)$$

für alle (nicht in sich widersprüchlichen Aussagen A und B) gelten muss. Das war jetzt die Holzhammermethode. Es ginge jedoch auch feinsinniger. Dazu könnte ich zeigen, dass gilt

$$\delta((A \Leftrightarrow B)) < \delta(A \lor B)$$

Dies Aussage ist nun leichter zu erhalten. Denn es gilt

$$\delta ((A \Leftrightarrow B))$$

$$= (\delta (A) - \delta (B))^{2}$$

$$= \delta (A) + \delta (B) - 2 \cdot \delta (A) \cdot \delta (B)$$

Nun ist $\delta(A) \ge 0$ und $\delta(B) \ge 0$ und somit

$$\delta(A) \cdot \delta(B) > 0 \cdot 0 \cdot 0 = 0$$

Somit ist

$$2 \cdot \delta(A) \cdot \delta(B)$$

$$= \delta(A) \cdot \delta(B) + \delta(A) \cdot \delta(B)$$

$$\geq \delta(A) \cdot \delta(B) + 0$$

$$= \delta(A) \cdot \delta(B) + 0$$

und somit

$$-2 \cdot \delta(A) \cdot \delta(B) \le -\delta(A) \cdot \delta(B)$$

Also muss darum gelten

$$\delta ((A \Leftrightarrow B))$$

$$=\delta (A) + \delta (B) - 2 \cdot \delta (A) \cdot \delta (B)$$

$$\leq \delta (A) + \delta (B) - \delta (A) \cdot \delta (B)$$

$$=\delta (A \vee B)$$

Somit kann ich gemäß dem Satz 279 folgern, dass

$$(A \Leftrightarrow B) \Rightarrow A \vee B$$

ist. Also glaube ich, an dieser Stelle den Beweis der Behauptung erbracht zu haben.

Nachtrag zum Beweis: Ich habe versucht, den Beweis der Behauptung auf zwei verschiedene Arten zu liefern. Wie Du siehst, ist der zweite Beweis um einiges klarer. Das ist sozusagen das Sahnehäubchen bei den Beweisen: Nicht nur einen kurzen, sondern auch einen klaren und einsichtigen Beweis zu erbringen. Oftmals das das "sture" Ersetzen der Größen durch ihre Definitionen und das Umrechnen derselben zwar schon auch ein Weg. Aber oftmals ist dieser Weg eben mühsam und führt oft genug leider ins Chaos. Aber auch der andere Weg, etwas möglichst "elegant" beweisen zu wollen, ist manchmal tückisch. Denn bei der sogenannte Eleganz geht oft auch die Nachvollziehbarkeit des Beweises verloren. Also ist vielfach ein sogenannter "goldener Mittelweg" gefragt: Etwas, war zwar noch nachvollziehbar ist, aber trotzdem noch durchführbar.

Und noch eine Bemerkung möchte ich anbringen: Beim zweiten Beweis habe ich eine exakte Aussage mit Hilfe eine Ungleichung erreicht. Das ist ein Phänomen, welches ich erst an der Hochschule kennen und auch ein wenig schätzen gelernt haben. Ich habe vorher immer gedacht, dass wesentliche Aussagen nur mit Gleichungen, aber nicht mit Ungleichungen gemacht werden können. Dem ist aber nicht so. Es ist zuweilen auch möglich, sehr interessante Aussage mit Ungleichungen zu machen. Ich bin Dir im Moment den Beweis zwar schuldig. Aber ich hoffe, Dir gelegentlich ein Beispiel nachliefern zu können.

41.12. Implikation Disjunktion aus Konjunktion

Zur Erinnerung: Es seien A,B Aussagen. Dann gilt gemäß dem Satz 22

$$A \wedge B \Rightarrow A \vee B$$

Beweis. Es seien $A, B \in \delta$. Dann gilt aufgrund des Satzes 268

$$\delta\left((A \land B) \Rightarrow (A \lor B)\right)$$

= 1 - \delta(A \land B) \cdot (1 - \delta(A \lor B))

Nun habe ich eine Deltanotation einer Konjunktion $(A \wedge B)$ sowie einer Disjunktion. Diese Deltanotationen kann ich gemäß den Sätzen 267 sowie 270 umschreiben zu

$$\delta(A \wedge B) = \delta(A) \cdot \delta(B)$$

sowie

$$\delta(A \vee B) = \delta(A) + \delta(B) - \delta(A) \cdot \delta(A)$$

Diese Resultate kann ich in das Zwischenresultat einsetzen und erhalte dadurch

$$1 - \delta(A \wedge B) \cdot (1 - \delta(A \vee B))$$

= $1 - \delta(A) \cdot \delta(B) \cdot (1 - (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B)))$

Nun geht es darum, diese Formel umzuschreiben. Es ist sicher

$$1 - (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B))$$

=
$$1 - \delta(A) - \delta(B) + \delta(A) \cdot \delta(B)$$

Auch dieses Resultat kann ich in die Formel einsetzen und erhalte

$$1 - \delta(A) \cdot \delta(B) \cdot (1 - (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B)))$$

=
$$1 - \delta(A) \cdot \delta(B) \cdot (1 - \delta(A) - \delta(B) + \delta(A) \cdot \delta(B))$$

Nun möchte ich den Ausdruck

$$\delta(A) \cdot \delta(B) \cdot (1 - \delta(A) - \delta(B) + \delta(A) \cdot \delta(B))$$

umschreiben.

$$\delta(A) \cdot \delta(B) \cdot (1 - \delta(A) - \delta(B) + \delta(A) \cdot \delta(B))$$

$$= \delta(A) \cdot \delta(B) - \delta^{2}(A) \cdot \delta^{2}(B) - \delta(A) \cdot \delta^{2}(B) + \delta^{2}(A) \cdot \delta^{2}(B)$$

Nun kommt wiederum die Idempotenz der Deltanotation ins Spiel. Also müssen gemäß dem Satz 263 gelten

$$\delta^{2}(A) = \delta(A)$$

$$\delta^{2}(B) = \delta(B)$$

Wenn ich dies einsetze in die Formel

$$\delta(A) \cdot \delta(B) - \delta^2(A) \cdot \delta^2(B) - \delta(A) \cdot \delta^2(B) + \delta^2(A) \cdot \delta^2(B)$$

dann erhalte ich

$$\delta(A) \cdot \delta(B) - \delta^{2}(A) \cdot \delta^{2}(B) - \delta(A) \cdot \delta^{2}(B) + \delta^{2}(A) \cdot \delta^{2}(B)$$

$$= \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B) + \delta(A) \cdot \delta(B)$$

$$= \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B) + \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B)$$

$$= 0 + 0$$

$$= 0$$

Also kann ich schreiben dass gilt

$$\delta\left((A \wedge B) \Rightarrow (A \vee B)\right)$$

$$= 1 - \delta\left(A \wedge B\right) \cdot (1 - \delta\left(A \vee B\right))$$

$$= 1 - \left(\delta\left(A\right) \cdot \delta\left(B\right) - \delta^{2}\left(A\right) \cdot \delta^{2}\left(B\right) - \delta\left(A\right) \cdot \delta^{2}\left(B\right) + \delta^{2}\left(A\right) \cdot \delta^{2}\left(B\right)\right)$$

$$= 1 - 0$$

$$= 1$$

Somit kann ich gemäß dem Satz 262 folgern, dass gelten muss, dass die Aussage

$$A \wedge B \Rightarrow A \vee B$$

für alle einigermaßen in sich und in Bezug auf die anderen Symbolen des Beweises widerspruchsfreien Aussagen wahr sein muss. Aus diesem Grund kann ich kann den Satz als bewiesen betrachten.

41.13. Satz des Distributivgesetzes von Konjunktion und Disjunktion

Und wieder möchte ich den Satz 30 gerne ebenfalls mit der $\delta\textsc{-Notation}$ zeigen.

BEWEIS. (des Satzes der Distributivgesetze der Konjunktion und der Disjunktion) Es seien also A,B sowie C Symbole für beliebige Aussagen. Dann gilt gemäß dem Satz 272

$$\delta\left(\left((A \vee B) \wedge C\right) \Leftrightarrow (A \wedge C) \vee (B \wedge C)\right)$$
$$=1 - \left(\delta\left((A \vee B) \wedge C\right) - \delta\left((A \wedge C) \vee (B \wedge C)\right)\right)^{2}$$

Wieder möchte ich den die Terme der Subtraktion (als da wären "Minuend" und "Subtrahend") einzeln berechnen. Zuerst möchte ich die Konjunktion der Aussage

$$(A \vee B) \wedge C$$

umschreiben. Gemäß dem Satz 267 gilt

$$\delta ((A \lor B) \land C)$$

= $\delta (A \lor B) \cdot (C)$

Nun möchte ich die Disjunktion umschreiben. Es gilt gemäß dem Satz 270 gelten:

$$\delta(A \vee B) = \delta(A) + \delta(B) - \delta(A) \cdot \delta(B)$$

Dieses Resultat kann ich in die Formel

$$\delta(A \vee B) \cdot (C)$$

einfügen. Ich erhalte

$$\delta(A \lor B) \cdot (C)$$

= $(\delta(A) + \delta(B) - \delta(A) \cdot \delta(B)) \cdot \delta(C)$

Nun kann ich das Distributivgesetz der Addition und Multiplikation für ganze Zahlen anwenden und erhalte dann

$$(\delta(A) + \delta(B) - \delta(A) \cdot \delta(B)) \cdot \delta(C)$$

=\delta(A) \cdot \delta(C) + \delta(B) \cdot \delta(C) - \delta(A) \cdot \delta(B) \cdot \delta(C)

Nun möchte ich den Subtrahend der Differenz

$$\delta\left((A \vee B) \wedge C\right) - \delta\left((A \wedge C) \vee (B \wedge C)\right)$$

berechnen. Ich möchte die Disjunktion der Aussage

$$(A \wedge C) \vee (B \wedge C)$$

umschreiben und erhalte gemäß dem Satz 270

$$\begin{split} &\delta\left(\left(A\wedge C\right)\vee\left(B\wedge C\right)\right)\\ =&\delta\left(A\wedge C\right)+\delta\left(B\wedge C\right)-\delta\left(A\wedge B\right)\cdot\delta\left(A\wedge C\right) \end{split}$$

Nun möchte ich die Delta-Notationen der Konjunktionen

$$A \wedge C$$
$$B \wedge C$$
$$A \wedge B$$

Ich erhalte gemäß dem Satz 267

$$\delta(A \wedge C) = \delta(A) \cdot \delta(C)
\delta(B \wedge C) = \delta(B) \cdot \delta(C)
\delta(A \wedge B) = \delta(A) \cdot \delta(B)$$

Diese Resultate kann ich in die Formel

$$\delta(A \wedge C) + \delta(B \wedge C) - \delta(A \wedge B) \cdot \delta(A \wedge C)$$

einsetzten. Ich erhalte

$$\delta(A \wedge C) + \delta(B \wedge C) - \delta(A \wedge B) \cdot \delta(A \wedge C)$$

$$= \delta(A) \cdot \delta(C) + \delta(B) \cdot \delta(C) - \delta(A) \cdot \delta(B) \cdot \delta(A) \cdot \delta(C)$$

$$= \delta(A) \cdot \delta(C) + \delta(B) \cdot \delta(C) - \delta^{2}(A) \cdot \delta(B) \cdot \delta(C)$$

Nun kann ich wiederum die Idempotenz der Delta-Notation verwenden. Es gilt gemäß dem Satz 263

$$\delta^2(A) = \delta(A)$$

gelten muss. Das bedeutet dann

$$\delta(A \wedge C) + \delta(B \wedge C) - \delta(A \wedge B) \cdot \delta(A \wedge C)$$

$$= \delta(A) \cdot \delta(C) + \delta(B) \cdot \delta(C) - \delta^{2}(A) \cdot \delta(B) \cdot \delta(C)$$

$$= \delta(A) \cdot \delta(C) + \delta(B) \cdot \delta(C) - \delta(A) \cdot \delta(B) \cdot \delta(C)$$

So, nun kann ich die einzelnen Teile zusammenfügen und weiter umformen. Es ist

$$\delta\left(\left((A \vee B) \wedge C\right) \Leftrightarrow (A \wedge C) \vee (B \wedge C)\right)$$

$$=1 - \left(\delta\left((A \vee B) \wedge C\right) - \delta\left((A \wedge C) \vee (B \wedge C)\right)\right)^{2}$$

$$=1 - \left(\left(\delta\left(A\right) \cdot \delta\left(C\right) + \delta\left(B\right) \cdot \delta\left(C\right) - \delta\left(A\right) \cdot \delta\left(B\right) \cdot \delta\left(C\right)\right) - \left(\delta\left(A\right) \cdot \delta\left(C\right) + \delta\left(B\right) \cdot \delta\left(C\right) - \delta\left(A\right) \cdot \delta\left(B\right) \cdot \delta\left(C\right)\right)\right)$$

$$=1 - \left(\delta\left(A\right) \cdot \delta\left(C\right) + \delta\left(B\right) \cdot \delta\left(C\right) - \delta\left(A\right) \cdot \delta\left(B\right) \cdot \delta\left(C\right) - \delta\left(A\right) \cdot \delta\left(B\right) \cdot \delta\left(C\right) - \delta\left(A\right) \cdot \delta\left(B\right) \cdot \delta\left(C\right)\right)$$

$$=1 - \left(\delta\left(A\right) \cdot \delta\left(C\right) - \delta\left(A\right) \cdot \delta\left(C\right) + \delta\left(A\right) \cdot \delta\left(B\right) \cdot \delta\left(C\right) - \delta\left(A\right) \cdot \delta\left(B\right) \cdot \delta\left(C\right) - \delta\left(A\right) \cdot \delta\left(B\right) \cdot \delta\left(C\right)\right)$$

$$=1 - \left(\delta\left(A\right) \cdot \delta\left(C\right) + \delta\left(A\right) \cdot \delta\left(B\right) \cdot \delta\left(C\right) - \delta\left(A\right) \cdot \delta\left(B\right) \cdot \delta\left(C\right)\right)$$

$$=1 - \left(0 + 0 + 0\right)$$

$$=1 - 0$$

Somit kann ich gemäß dem Satz 262 mit Fug und Recht behaupten, dass gemäß dem Satz 262 die Aussage

$$((A \lor B) \land C) \Leftrightarrow (A \land C) \lor (B \land C)$$

für alle Aussagen wahr und somit ein logischer Satz sein muss.

41.14. Distributivgesetz von Implikation und Konjunktion

Ich möchte es nicht unterlassen, den Beweis noch in der von mir ach so geliebten δ -Notation zu führen. Zur Erinnerung: Es seien A, B Symbole von Aussagen, welche weder in sich selbst noch bezüglich anderen Symbolen des Beweises widersprüchlich seien. Dann gilt:

$$(A \Rightarrow (B \land C)) \Leftrightarrow ((A \Rightarrow B) \land (A \Rightarrow C))$$

Beweis. Zuerst einmal möchte ich die Deltanotation der Aussage aufschreiben:

$$\delta((A \Rightarrow (B \land C)) \Leftrightarrow ((A \Rightarrow B) \land (A \Rightarrow C)))$$

Wegen dem Satz 272 kann ich die Äquivalenz wie folgt umschreiben:

$$\delta\left((A \Rightarrow (B \land C)) \Leftrightarrow ((A \Rightarrow B) \land (A \Rightarrow C))\right)$$

$$= 1 - \left((\delta(A \Rightarrow (B \land C))) - \delta((A \Rightarrow B) \land (A \Rightarrow C))\right)^{2}$$

Somit möchte ich mich auf die Differenz

$$\delta(A \Rightarrow (B \land C)) - \delta((A \Rightarrow B) \land (A \Rightarrow C))$$

konzentrieren. Der Subtrahend (die linke Seite der Differenz) kann ich gemäß dem Satz 268 wie folgt umschreiben:

$$\delta (A \Rightarrow (B \land C))$$
= 1 - \delta (A) \cdot (1 - \delta (B \land C))

Wegen dem Satz 267 kann ich die Konjunktion $B \wedge C$ wie folgt umschreiben:

$$\delta(B \wedge C) = \delta(B) \cdot \delta(C)$$

Diese Resultat kann ich in die Formel

$$1 - \delta(A) \cdot (1 - \delta(B \wedge C))$$

einfügen und erhalten

$$\delta (A \Rightarrow (B \land C))$$

$$= 1 - \delta (A) \cdot (1 - \delta (B \land C))$$

$$= 1 - \delta (A) \cdot (1 - \delta (B) \cdot \delta (C))$$

Nun wende ich das Distributivgesetz der Multiplikation und Addition der ganzen Zahlen an und erhalte:

$$\delta (A \Rightarrow (B \land C))$$

$$= 1 - \delta (A) \cdot (1 - \delta (B) \cdot \delta (C))$$

$$= 1 - (\delta (A) \cdot 1 - \delta (A) \cdot \delta (B) \cdot \delta (C))$$

$$= 1 - (\delta (A) - \delta (A) \cdot \delta (B) \cdot \delta (C))$$

Ich hebe die Klammer der Subtraktion auf und erhalte:

$$\delta (A \Rightarrow (B \land C))$$
= 1 - (\delta (A) - \delta (A) \cdot \delta (B) \cdot \delta (C))
= 1 - \delta (A) + \delta (A) \cdot \delta (B) \cdot \delta (C)

Nun möchte ich die Deltanotation des Subtrahenden der Differenz

$$\delta\left(A\Rightarrow\left(B\land C\right)\right)-\delta\left(\left(A\Rightarrow B\right)\land\left(A\Rightarrow C\right)\right)$$

umformen. Zuerst ist es noch übersichtlich. Denn die Konjunktion lässt sich gemäß dem Satz 267 umschreiben zu

$$\delta((A \Rightarrow B) \land (A \Rightarrow C))$$
= $\delta(A \Rightarrow B) \cdot \delta(A \Rightarrow C)$

Nun möchte ich die Deltanotationen zweier Implikationen umschreiben. Dann kann ich gemäß dem Satz 268 schreiben:

$$\delta(A \Rightarrow B) = 1 - \delta(A) \cdot (1 - \delta(B))$$

$$\delta(A \Rightarrow C) = 1 - \delta(A) \cdot (1 - \delta(C))$$

Also muss gelten

$$\delta(A \Rightarrow B) \cdot \delta(A \Rightarrow C)$$
= $(1 - \delta(A) \cdot (1 - \delta(B))) \cdot (1 - \delta(A) \cdot (1 - \delta(C)))$

nun kann ich dieses Produkt umformen. Es ist zuerst einmal

$$(1 - \delta(A) \cdot (1 - \delta(B))) \cdot (1 - \delta(A) \cdot (1 - \delta(C)))$$

$$= 1 - 1 \cdot \delta(A) \cdot (1 - \delta(C)) - \delta(A) \cdot (1 - \delta(B)) \cdot 1 + \delta(A) \cdot (1 - \delta(B)) \cdot \delta(A) \cdot (1 - \delta(C))$$

$$= 1 - \delta(A) \cdot (1 - \delta(C)) - \delta(A) \cdot (1 - \delta(B)) + \delta^{2}(A) \cdot (1 - \delta(B)) \cdot (1 - \delta(C))$$

Nun möchte ich zeigen, dass gilt

$$\delta^{2}(A) \cdot (1 - \delta(B)) \cdot (1 - \delta(C)) - \delta(A) \cdot (1 - \delta(C)) - \delta(A) \cdot (1 - \delta(B))$$

$$= -\delta(A) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

Zuerst möchte ich bemerken, dass die Deltanotation idempotent ist. Darum ist gemäß dem Satz 263

$$\delta^2(A) = \delta(A)$$

Weiter möchte ich

$$\delta^{2}(A) \cdot (1 - \delta(B)) \cdot (1 - \delta(C))$$

$$= \delta(A) \cdot (1 - \delta(B)) \cdot (1 - \delta(C))$$

umschreiben. Es ist

$$(1 - \delta(B)) \cdot (1 - \delta(C))$$

$$= 1 \cdot 1 - 1 \cdot \delta(C) - \delta(B) \cdot 1 + \delta(B) \cdot \delta(C)$$

$$= 1 - \delta(C) - \delta(B) + \delta(B) \cdot \delta(C)$$

$$= 1 - \delta(B) - \delta(C) + \delta(B) \cdot \delta(C)$$

Also ist

$$\delta(A) \cdot (1 - \delta(B)) \cdot (1 - \delta(C))$$

$$= \delta(A) \cdot (1 - \delta(B) - \delta(C) + \delta(B) \cdot \delta(C))$$

$$= \delta(A) \cdot 1 - \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(C) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

$$= \delta(A) - \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(C) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

Dann ist weiter

$$\delta(A) \cdot (1 - \delta(B)) = \delta(A) - \delta(A) \cdot \delta(B)$$

Wenn ich jetzt auf beiden Seiten $\delta(A)$ subtrahiere, dann erhalte ich

$$\delta(A) \cdot (1 - \delta(B)) - \delta(A) = -\delta(A) \cdot \delta(B)$$

oder aber (nach Vertauschen der Seiten

$$-\delta(A) \cdot \delta(B) = \delta(A) \cdot (1 - \delta(B)) - \delta(A)$$

Ebenso ist

$$\delta(A) \cdot (1 - \delta(C)) = \delta(A) - \delta(A) \cdot \delta(C)$$

Und auch bei dieser Gleichung kann ich auf beiden Seiten $\delta(A)$ subtrahieren und erhalte

$$\delta(A) \cdot (1 - \delta(C)) - \delta(A) = -\delta(A) \cdot \delta(C)$$

oder nach Vertauschen der Seiten

$$-\delta(A) \cdot \delta(C) = \delta(A) \cdot (1 - \delta(C)) - \delta(A)$$

Nun kann ich diese Resultate für $-\delta\left(A\right)\cdot\delta\left(B\right)$ sowie für $-\delta\left(A\right)\cdot\delta\left(C\right)$ einsetzen und erhalte:

$$= \delta(A) \cdot 1 - \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(C) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

$$= \delta(A) - \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(C) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

$$= \delta(A) + \delta(A) \cdot (1 - \delta(B)) - \delta(A) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

$$= \delta(A) \cdot (1 - \delta(C)) - \delta(A) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

$$= \delta(A) - \delta(A) - \delta(A) + \delta(A) \cdot (1 - \delta(B)) + \delta(A) \cdot (1 - \delta(C)) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

$$= -\delta(A) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

$$= \delta(A) \cdot (1 - \delta(B)) + \delta(A) \cdot (1 - \delta(C)) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

$$= \delta(A) \cdot \delta(B) \cdot \delta(C) - \delta(A)$$

Ich setzte dieses Resultat in die Berechnung von

$$\delta(A \Rightarrow B) \cdot \delta(A \Rightarrow C)$$

ein und erhalte

$$\delta(A \Rightarrow B) \cdot \delta(A \Rightarrow C)$$

$$= 1 - \delta(A) \cdot (1 - \delta(B)) - \delta(A) \cdot (1 - \delta(C)) + \delta(A) \cdot (1 - \delta(B)) \cdot (1 - \delta(C))$$

$$= 1 - \delta(A) \cdot (1 - \delta(B)) - \delta(A) \cdot (1 - \delta(C)) + \delta(A) \cdot (1 - \delta(B)) + \delta(A) \cdot (1 - \delta(C)) + \delta(A) \cdot \delta(B) \cdot \delta(C) - \delta(A)$$

$$= 1 + \delta(A) \cdot (1 - \delta(B)) - \delta(A) \cdot (1 - \delta(B)) + \delta(A) \cdot (1 - \delta(C)) + \delta(A) \cdot (1 - \delta(C)) - \delta(A) \cdot (1 - \delta(C)) + \delta(A) \cdot \delta(B) \cdot \delta(C) - \delta(A)$$

$$= 1 + 0 + 0 + \delta(A) \cdot \delta(B) \cdot \delta(C) - \delta(A)$$

$$= 1 + \delta(A) \cdot \delta(B) \cdot \delta(C) - \delta(A)$$

$$= 1 - \delta(A) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

Nun kommt sozusagen die Zeit für die "Schlussabrechnung"

$$\delta (A \Rightarrow (B \land C)) - \delta (A \Rightarrow (B \land C))$$

$$= 1 - \delta (A) + \delta (A) \cdot \delta (B) \cdot \delta (C) - (1 - \delta (A) + \delta (A) \cdot \delta (B) \cdot \delta (C))$$

$$= 1 - \delta (A) + \delta (A) \cdot \delta (B) \cdot \delta (C) - (1 + \delta (A) - \delta (A) \cdot \delta (B) \cdot \delta (C))$$

$$= 1 - 1 + \delta (A) - \delta (A) + (A) \cdot \delta (A) + (A) \cdot \delta (A$$

Also muss gelten

$$\delta\left((A \Rightarrow (B \land C)) \Leftrightarrow ((A \Rightarrow B) \land (A \Rightarrow C))\right)$$

$$= 1 - (\delta(A \Rightarrow (B \land C)) - \delta((A \Rightarrow B) \land (A \Rightarrow C)))^{2}$$

$$= 1 - 0^{2}$$

$$= 1$$

Somit kann ich gemäß dem Satz 262 folgern, dass die Aussage

$$(A \Rightarrow (B \land C)) \Leftrightarrow ((A \Rightarrow B) \land (A \Rightarrow C))$$

ein logischer Satz ist.

41.15. Implikation und Replikation

Beweise. In Abweichung zu den übrigen Beweisen möchte ich dieses Mal zuerst einmal den Beweis mittels der δ -Notation führen.

$$\delta((A \Rightarrow B) \Leftrightarrow (B \Leftarrow A))$$

$$= 1 - (\delta(A \Rightarrow B) - \delta(B \Leftarrow A))^{2}$$

$$= 1 - (1 - \delta(A) \cdot (1 - \delta(B)) - \delta(A) \cdot (1 - \delta(B)))^{2}$$

$$= 1 - 0^{2}$$

$$= 1 - 0$$

$$= 1$$

Somit muss gemäß dem Satz 262 gelten, dass der Satz gültig ist.

41.16. Distributivgesetz von Implikation und Disjunktion

Es seien A,B und C Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Beweises widerspruchsfrei seien. Dann gilt:

$$(A \Rightarrow (B \lor C)) \Leftrightarrow (A \Rightarrow B) \lor (A \Rightarrow C)$$

BEWEIS. Es seien $A, B, C \in \Omega$. Dann gilt gemäß dem Satz 272

$$\delta\left((A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))\right)$$

=1 - $(\delta(A \Rightarrow (B \lor C)) - \delta((A \Rightarrow B) \lor (A \Rightarrow C)))^2$

Darum möchte ich zuerst

$$\delta (A \Rightarrow (B \lor C))$$

respektive

$$\delta((A \Rightarrow B) \lor (A \Rightarrow C))$$

berechnen. Zuerst zur Deltanotation der Implikation

$$A \Rightarrow (B \lor C)$$

Gemäß des Satzes 268 kann ich die Deltanotation dieser Aussage umschreiben zu

$$\delta(A \Rightarrow (B \lor C)) = 1 - \delta(A) \cdot (1 - \delta(B \lor C))$$

Die Deltanotation der Aussage $B \vee C$ kann gemäß dem Satz 270 umgeschrieben werden zu

$$\delta(B \vee C) = \delta(B) + \delta(C) - \delta(B) \cdot \delta(C)$$

Dieses Resultat kann ich in die umgeschriebene Deltanotation der Aussage

$$A \Rightarrow (B \lor C)$$

einsetzen und erhalte

$$\delta (A \Rightarrow (B \lor C))$$

$$= 1 - \delta (A) \cdot (1 - \delta (B \lor C))$$

$$= 1 - \delta (A) \cdot (1 - (\delta (B) + \delta (C) - \delta (B) \cdot \delta (C)))$$

$$= 1 - \delta (A) \cdot (1 - \delta (B) - \delta (C) + \delta (B) \cdot \delta (C))$$

$$= 1 - \delta (A) \cdot 1 + \delta (A) \cdot \delta (B) + \delta (A) \cdot \delta (C) - \delta (A) \cdot \delta (B) \cdot \delta (C)$$

$$= 1 - \delta (A) + \delta (A) \cdot \delta (B) + \delta (A) \cdot \delta (C) - \delta (A) \cdot \delta (B) \cdot \delta (C)$$

Nun wird es richtig schwer. Ich möchte die Deltanotation der Aussage

$$\delta((A \Rightarrow B) \lor (A \Rightarrow C))$$

umschreiben. Zuerst einmal kann ich diese Deltanotation gemäß dem Satz 270 umschreiben zu

$$\delta ((A \Rightarrow B) \lor (A \Rightarrow C))$$

$$= \delta (A \Rightarrow B) + \delta (A \Rightarrow C) - \delta (A \Rightarrow B) \cdot \delta (A \Rightarrow C)$$

Dabei muss gemäß dem Satz 268 gelten

$$\delta (A \Rightarrow B)$$

$$= 1 - \delta (A) \cdot (1 - \delta (B))$$

$$= 1 - \delta (A) + \delta (A) \cdot \delta (B)$$

sowie

$$\delta(A \Rightarrow C)$$
= 1 - \delta(A) \cdot (1 - \delta(C))
= 1 - \delta(A) + \delta(A) \cdot \delta(C)

Die Schwierigkeit besteht dann sicher darin, den Ausdruck

$$\delta(A \Rightarrow B) \cdot \delta(A \Rightarrow C)$$

zu berechnen. Dieser kann also umgeschrieben werden zu

$$\delta(A \Rightarrow B) \cdot \delta(A \Rightarrow C)$$

$$= (1 - \delta(A) + \delta(A) \cdot \delta(B)) \cdot (1 - \delta(A) + \delta(A) \cdot \delta(C))$$

$$= 1 \cdot (1 - \delta(A) + \delta(A) \cdot \delta(C)) + (-\delta(A)) \cdot (1 - \delta(A) + \delta(A) \cdot \delta(C)) + \delta(A) \cdot \delta(B) \cdot (1 - \delta(A) + \delta(A) \cdot \delta(C))$$

$$= 1 - \delta(A) + \delta(A) \cdot \delta(C) + (-\delta(A)) + \delta^2(A) \cdot \delta(C) + \delta(A) \cdot \delta(B) - \delta^2(A) \cdot \delta(B) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

Nun gebrauche ich einmal mehr die Idempotenz der Deltafunktion gemäß dem Satz 263 und erhalte

$$\delta^2(A) = \delta(A)$$

Dann kann ich schreiben

$$\delta(A \Rightarrow B) \cdot \delta(A \Rightarrow C)$$

$$= 1 - \delta(A) + \delta(A) \cdot \delta(C) + (-\delta(A)) + \delta^{2}(A) - \delta^{2}(A) \cdot \delta(C) + (\delta(A) \cdot \delta(B) - \delta^{2}(A) \cdot \delta(B) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

$$= 1 - \delta(A) + \delta(A) \cdot \delta(C) + (-\delta(A)) + \delta(A) - \delta(A) \cdot \delta(C) + (\delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

$$= 1 - \delta(A) + \delta(A) \cdot \delta(C) + (\delta(A) \cdot \delta(C)$$

Also kann ich schreiben:

$$\delta\left((A \Rightarrow B) \lor (A \Rightarrow C)\right)$$

$$= \delta\left(A \Rightarrow B\right) + \delta\left(A \Rightarrow C\right) - \delta\left(A \Rightarrow B\right) \cdot \delta\left(A \Rightarrow C\right)$$

$$= 1 - \delta\left(A\right) + \delta\left(A\right) \cdot \delta\left(B\right) + 1 - \delta\left(A\right) + \delta\left(A\right) \cdot \delta\left(C\right) - \left(1 - \delta\left(A\right) + \delta\left(A\right) \cdot \delta\left(B\right) \cdot \delta\left(C\right)\right)$$

$$= 1 - \delta\left(A\right) + \delta\left(A\right) \cdot \delta\left(B\right) + 1 - \delta\left(A\right) + \delta\left(A\right) \cdot \delta\left(C\right)$$

$$(-1) + \delta\left(A\right) - \delta\left(A\right) \cdot \delta\left(B\right) \cdot \delta\left(C\right)$$

$$= 1 + 1 - 1 + \delta\left(A\right) - \delta\left(A\right) \cdot \delta\left(B\right) \cdot \delta\left(C\right)$$

$$= 1 + 1 - 1 + \delta\left(A\right) - \delta\left(A\right) - \delta\left(A\right) + \delta\left(A\right) \cdot \delta\left(B\right) + \delta\left(A\right) \cdot \delta\left(C\right)$$

$$= 1 - \delta\left(A\right) + \delta\left(A\right) \cdot \delta\left(B\right) + \delta\left(A\right) \cdot \delta\left(C\right) - \delta\left(A\right) \cdot \delta\left(B\right) \cdot \delta\left(C\right)$$

So jetzt kann ich das "Verwursten" zu

$$\delta\left((A\Rightarrow(B\lor C))\Leftrightarrow((A\Rightarrow B)\lor(A\Rightarrow C))\right)$$

$$=1-(\delta\left(A\Rightarrow(B\lor C)\right)-\delta\left((A\Rightarrow B)\lor(A\Rightarrow C)\right))^{2}$$

$$=1-(1-\delta\left(A\right)+\delta\left(A\right)\cdot\delta\left(B\right)+\delta\left(A\right)\cdot\delta\left(C\right)-\delta\left(A\right)\cdot\delta\left(B\right)\cdot\delta\left(C\right)-$$

$$(1-\delta\left(A\right)+\delta\left(A\right)\cdot\delta\left(B\right)+\delta\left(A\right)\cdot\delta\left(C\right)-\delta\left(A\right)\cdot\delta\left(B\right)\cdot\delta\left(C\right)\right)^{2}$$

$$=1-(1-\delta\left(A\right)+\delta\left(A\right)\cdot\delta\left(B\right)+\delta\left(A\right)\cdot\delta\left(C\right)-\delta\left(A\right)\cdot\delta\left(B\right)\cdot\delta\left(C\right)-$$

$$(-1)+\delta\left(A\right)-\delta\left(A\right)\cdot\delta\left(B\right)-\delta\left(A\right)\cdot\delta\left(C\right)+\delta\left(A\right)\cdot\delta\left(B\right)\cdot\delta\left(C\right)\right)^{2}$$

$$=1-(1-1+\delta\left(A\right)-\delta\left(A\right)+\delta\left(A\right)\cdot\delta\left(B\right)-\delta\left(A\right)\cdot\delta\left(B\right)+$$

$$\delta\left(A\right)\cdot\delta\left(C\right)-\delta\left(A\right)\cdot\delta\left(C\right)+\delta\left(A\right)\cdot\delta\left(B\right)-\delta\left(A\right)\cdot\delta\left(B\right)+$$

$$\delta\left(A\right)\cdot\delta\left(C\right)-\delta\left(A\right)\cdot\delta\left(C\right)+\delta\left(A\right)\cdot\delta\left(B\right)\cdot\delta\left(C\right)-\delta\left(A\right)\cdot\delta\left(B\right)\cdot\delta\left(C\right)\right)^{2}$$

$$=1-(0+0+0+0+$$

$$0+0)^{2}$$

$$=1-0^{2}$$

$$=1-0$$

$$=1$$

Somit kann ich gemäß dem Satz 262 schließen, dass die Aussage

$$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$$

für alle genügend widerspruchsfreien Aussagen, A, B und C wahr ist und somit ein logischer Satz ist. Damit hätte ich jedoch den Beweis erbracht.

41.17. Minimumsätze und Maximumsätze der Logik

Zu Deiner Erinnerung: Es seien A sowie B Aussagen, welche in sich selbst so wie in Bezug auf die anderen Symbolen dieser Lemmas genügend widerspruchsfrei seien. Dann gilt gemäß den Lemmas 78

$$A \wedge (B \wedge \neg B) \iff B \wedge \neg B$$

$$A \wedge (B \vee \neg B) \iff A$$

$$A \vee (B \wedge \neg B) \iff A$$

$$A \vee (B \vee \neg B) \iff B \vee \neg B$$

BEWEIS. Ich möchte die Delta-Notationen der Ausdrücke

$$B \wedge \neg B$$

sowie

$$B \vee \neg B$$

berechnen. Es gilt gemäß dem Satz 267 der Delta-Notation der Kommutation

$$\delta (B \wedge \neg B)$$

$$= \delta (B) \cdot \delta (\neg B)$$

Weite gilt gemäß dem Satz 266 der Delta-Notation der Negation

$$\delta\left(\neg B\right) = 1 - \delta\left(B\right)$$

Dieses Resultat setze ich in die letzte Gleichung ein und erhalte:

$$\delta (B \wedge \neg B)$$

$$= \delta (B) \cdot \delta (\neg B)$$

$$= \delta (B) \cdot (1 - \delta (B))$$

Den Ausdruck

$$\delta(B) \cdot (1 - \delta(B))$$

kann ich gemäß dem Distributivgesetz der ganzen Zahlen umrechnen zu

$$\delta(B) \cdot (1 - \delta(B)) = \delta(B) - \delta^2(B)$$

Gemäß dem Gesetz 263 der Idempotenz der Delta-Notation erhalte ich

$$\delta^2(B) = \delta(B)$$

Dieses Resultat kann ich wiederum in den Ausdruck

$$\delta(B) - \delta^2(B)$$

einfügen und erhalte

$$\delta(B) - \delta^{2}(B) = \delta(B) - \delta(B) = 0$$

Somit muss ebenfalls gelten

$$\delta(B) \cdot (1 - \delta(B))$$

$$= \delta(B) - \delta^{2}(B)$$

$$= 0$$

Also kann ich ebenfalls folgern, dass gilt

$$\delta(B \wedge \neg B) = \delta(B) \cdot (1 - \delta(B)) = 0$$

und schlussendlich

$$\delta (B \wedge \neg B) = 0$$

Womit ich die Delta-Notation des logischen Ausdrucks

$$B \wedge \neg B$$

berechnet hätte. Sprachlich bedeutet das Resultat, dass die Aussage

$$B \wedge \neg B$$

nie wahr sein kann. Jetzt möchte ich zeigen, dass die Aussage

$$B \vee \neg B$$

immer wahr sein muss. Gemäß dem Satz 270 muss gelten

$$\begin{array}{ll} \delta\left(B\vee\neg B\right) \\ = & \delta\left(B\right) + \delta\left(\neg B\right) - \delta\left(B\right) \cdot \delta\left(\neg B\right) \end{array}$$

Gemäß dem Satz 266 kann ich schreiben, dass gilt

$$\delta\left(\neg B\right) = 1 - \delta\left(B\right)$$

Wenn ich den Satz 267 sozusagen "rückwärts anwende", dann gilt

$$\delta(B) \cdot \delta(\neg B) = \delta(B \wedge \neg B)$$

Nun habe ich jedoch eben gerade gezeigt, dass gelten muss $\delta\left(B \wedge \neg B\right) = 0$ sein muss. Also muss auch der Ausdruck

$$\delta(B) \cdot \delta(\neg B)$$

den Wert 0 besitzen. Es muss also gelten

$$\delta(B) \cdot \delta(\neg B) = 0$$

Wenn ich diese Resultate in den Ausdruck

$$\delta(B) + \delta(\neg B) - \delta(B) \cdot \delta(\neg B)$$

einfüge, dann erhalte ich:

$$\delta (B \vee \neg B)$$

$$=\delta (B) + \delta (\neg B) - \delta (B) \cdot \delta (\neg B)$$

$$=\delta (B) + 1 - \delta (B) - 0$$

$$=\delta (B) + 1 - \delta (B)$$

Nun ist die Addition der ganzen Zahlen glücklicherweise kommutativ. Also gilt:

$$\delta (B \vee \neg B)$$

$$= \delta (B) + 1 - \delta (B)$$

$$= 1 + \delta (B) - \delta (B)$$

$$= 1 + 0$$

$$= 1$$

Also hätte ich auch die Delta-Notation der Aussage

$$\delta (B \vee \neg B)$$

maximal vereinfacht. In Worten bedeutet das Resultat, dass die Aussage

$$B \vee \neg B$$

immer wahr ist.

Nun berechne ich mit diesen Resultaten die Behauptungen des Lemmas. Gemäß dem Satz 267 kann ich schreiben:

$$\delta (A \wedge (B \wedge \neg B))$$

$$= \delta (A) \cdot \delta (B \wedge \neg B)$$

Da

$$\delta(B \wedge \neg B) = 0$$

sein muss, kann ich weiterhin schreiben

$$\delta (A \wedge (B \wedge \neg B))$$

$$= \delta (A) \cdot \delta (B \wedge \neg B)$$

$$= \delta (A) \cdot 0$$

$$= 0$$

$$= \delta (B \wedge \neg B)$$

Also kann ich gemäß dem Satz 264 schreiben, dass gelten muss:

$$A \wedge (B \wedge \neg B) \Leftrightarrow B \wedge \neg B$$

Damit wäre die erste Behauptung erbracht.

Nun möchte ich die zweite Behauptung zeigen. Ich möchte zeigen, dass gilt:

$$A \wedge (B \vee \neg B) \Leftrightarrow A$$

Es gilt gemäß dem Satz 267

$$\delta (A \wedge (B \vee \neg B)) = \delta (A) \cdot \delta (B \vee \neg B)$$

Nun habe ich vorher zu zeigen versucht, dass gelten muss:

$$\delta \left(B \vee \neg B \right) = 1$$

Also kann ich schreiben

$$\delta(A) \cdot \delta(B \vee \neg B) = \delta(A) \cdot 1 = \delta(A)$$

oder, da die Gleichheit von ganzen Zahlen transitiv ist:

$$\delta(A) \cdot \delta(B \vee \neg B) = \delta(A)$$

Und wiederum kann aufgrund der Transitivität der Gleichheit von ganzen Zahlen kann ich schreiben:

$$\delta (A \wedge (B \wedge \neg B)) = \delta (A)$$

Darum kann ich nach dem Satz 264 folgern

$$A \wedge (B \vee \neg B) \Leftrightarrow A$$

womit ich die Richtigkeit der zweiten Behauptung erbracht hätte.

Also möchte ich die Richtigkeit der dritten Behauptung zeigen. Ich möchte also zeigen, dass gilt:

$$A \lor (B \land \neg B) \Leftrightarrow A$$

Gemäß dem Satz 267 über die Delta-Notation der Konjunktion kann ich schreiben

$$\delta (A \lor (B \land \neg B))$$
= $\delta (A) + \delta (B \land \neg B) - \delta (A) \cdot \delta (B \land \neg B)$

Aufgrund der obigen Überlegungen kann ich schreiben:

$$\delta \left(B \wedge \neg B \right) = 0$$

Somit kann ich aufgrund der Rechenregeln der ganzen Zahlen schreiben:

$$\delta(A) + \delta(B \wedge \neg B) - \delta(A) \cdot \delta(B \wedge \neg B)$$

$$= \delta(A) + 0 - \delta(A) \cdot 0$$

$$= \delta(A) - \delta(A) \cdot 0$$

$$= \delta(A)$$

Also muss gemäß dem Satz 264 schreiben:

$$A \lor (B \land \neg B) \Leftrightarrow A$$

was eben gerade die Behauptung ist.

Nun bleibt noch die vierte Behauptung zu erbringen. Ich möchte zeigen, dass gilt:

$$A \lor (B \lor \neg B) \Leftrightarrow B \lor \neg B$$

Gemäß dem Satz 270 kann ich schreiben

$$\delta (A \lor (B \lor \neg B))$$

$$= \delta (A) + \delta (B \lor \neg B) - \delta (A) \cdot \delta (B \lor \neg B)$$

Weiter oben habe ich zu zeigen versucht, dass gelten muss:

$$\delta\left(B\vee\neg B\right)=1$$

Diese Gleichheit kann ich in der vorherigen Gleichung einsetzen und ich erhalte:

$$\delta(A) + \delta(B \vee \neg B) - \delta(A) \cdot \delta(B \vee \neg B)$$

$$= \delta(A) + \delta(B \vee \neg B) - \delta(A) \cdot 1$$

$$= \delta(A) - \delta(A) + \delta(B \vee \neg B)$$

$$= 0 + \delta(B \vee \neg B)$$

$$= \delta(B \vee \neg B)$$

Also habe ich auch diese Behauptung erbracht. Somit hätte ich die Richtigkeit aller vier Behauptungen erbracht.

41.18. Vertauschung Konjunktion Implikation

Ich möchte noch einmal den Beweis des Satzes 29 erbringen: Es seien A,B,C Metasymbole von Symbolen. Dann ist

$$(A \land B \Rightarrow C) \Leftrightarrow (A \Rightarrow C \lor B \Rightarrow C)$$

Beweis. Es ist also gemäß dem Satz 270

$$\delta (A \Rightarrow C \lor B \Rightarrow C)$$

=\delta (A \Rightarrow C) + \delta (B \Rightarrow C) - \delta (A \Rightarrow C) \cdot \delta (B \Rightarrow C)

Nun, das sehe ich einen relativ großen Berg vor mir. Aber ich probiere es trotzdem. Gemäß dem Satz 268 ist

$$\delta(A \Rightarrow C) = 1 - \delta(A) \cdot (1 - \delta(C))$$

$$\delta(B \Rightarrow C) = 1 - \delta(B) \cdot (1 - \delta(C))$$

Somit ist

$$\delta(A \Rightarrow C) + \delta(B \Rightarrow C)$$

$$= 1 - \delta(A) \cdot (1 - \delta(C)) + 1 - \delta(B) \cdot (1 - \delta(C))$$

$$= 2 - \delta(A) \cdot (1 - \delta(C)) - \delta(B) \cdot (1 - \delta(C))$$

$$= 2 - (\delta(A) + \delta(B)) \cdot (1 - \delta(C))$$

Nun kommt der für mich schwierigste Teil. Ich möchte

$$\delta(A \Rightarrow C) \cdot \delta(B \Rightarrow C)$$

umformen. Dies ist gemäß den obigen Formeln:

$$\delta(A \Rightarrow C) \cdot \delta(B \Rightarrow C)$$

$$= (1 - \delta(A) \cdot (1 - \delta(C))) \cdot (1 - \delta(B) \cdot (1 - \delta(C)))$$

$$= 1 \cdot (1 - \delta(B) \cdot (1 - \delta(C))) +$$

$$(-\delta(A) \cdot (1 - \delta(C))) \cdot (1 - \delta(B) \cdot (1 - \delta(C)))$$

$$= (1 - \delta(B) \cdot (1 - \delta(C))) -$$

$$\delta(A) \cdot (1 - \delta(C)) \cdot 1 +$$

$$(-\delta(A) \cdot (1 - \delta(C))) \cdot (-\delta(B)) \cdot (1 - \delta(C))$$

$$= 1 - \delta(B) \cdot (1 - \delta(C)) -$$

$$\delta(A) \cdot (1 - \delta(C)) +$$

$$\delta(A) \cdot \delta(B) \cdot (1 - \delta(C))^{2}$$

Nun möchte ich zeigen, dass gilt

$$(1 - \delta(C))^2 = (1 - \delta(C))$$

Es ist

$$(1 - \delta(C))^{2}$$

$$\equiv (1 - \delta(C)) \cdot (1 - \delta(C))$$

$$= 1 \cdot (1 - \delta(C)) - \delta(C) \cdot (1 - \delta(C))$$

$$= 1 - \delta(C) - \delta(C) \cdot 1 + \delta^{2}(C)$$

$$= 1 - 2 \cdot \delta(C) + \delta^{2}(C)$$

Gemäß dem Satz 263 gilt

$$\delta^{2}\left(C\right)=\delta\left(C\right)$$

Dieses Resultat kann ich in der Zwischenrechnung verwenden und erhalte darum

$$(1 - \delta(C))^{2}$$

$$= 1 - 2 \cdot \delta(C) + \delta^{2}(C)$$

$$= 1 - 2 \cdot \delta(C) + \delta(C)$$

$$= 1 - \delta(C)$$

Somit kann ich schreiben

$$\begin{split} \delta\left(A \Rightarrow C\right) \cdot \delta\left(B \Rightarrow C\right) \\ = & 1 - \delta\left(B\right) \cdot (1 - \delta\left(C\right)) - \delta\left(A\right) \cdot (1 - \delta\left(C\right)) + \delta\left(A\right) \cdot \delta\left(B\right) \cdot (1 - \delta\left(C\right))^{2} \\ = & 1 - \delta\left(B\right) \cdot (1 - \delta\left(C\right)) - \delta\left(A\right) \cdot (1 - \delta\left(C\right)) + \delta\left(A\right) \cdot \delta\left(B\right) \cdot (1 - \delta\left(C\right)) \\ = & 1 - \delta\left(B\right) + \delta\left(B\right) \cdot \delta\left(C\right) - \delta\left(A\right) + \delta\left(A\right) \cdot \delta\left(C\right) + \delta\left(A\right) \cdot \delta\left(B\right) \cdot (1 - \delta\left(C\right)) \\ = & 1 - (\delta\left(A\right) + \delta\left(B\right)) + (\delta\left(A\right) + \delta\left(B\right)) \cdot \delta\left(C\right) + \delta\left(A\right) \cdot \delta\left(B\right) - \delta\left(A\right) \cdot \delta\left(B\right) \cdot \delta\left(C\right) \end{split}$$

Somit habe ich insgesamt

$$\delta(A \Rightarrow C \lor B \Rightarrow C)$$

$$=\delta(A \Rightarrow C) + \delta(B \Rightarrow C) - \delta(A \Rightarrow C) \cdot \delta(B \Rightarrow C)$$

$$=2 - (\delta(A) + \delta(B)) \cdot (1 - \delta(C)) -$$

$$(1 - (\delta(A) + \delta(B)) + (\delta(A) + \delta(B)) \cdot \delta(C) +$$

$$\delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B) \cdot \delta(C)$$

$$=2 - \delta(A) - \delta(B) + \delta(A) \cdot \delta(C) + \delta(B) \cdot \delta(C) -$$

$$(-1) + \delta(A) + \delta(B) - (\delta(A) + \delta(B)) \cdot \delta(C) +$$

$$(-\delta(A) \cdot \delta(B)) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

$$=2 + (-1) + \delta(A) - \delta(A) + \delta(B) - \delta(B) +$$

$$\delta(A) \cdot \delta(C) - \delta(A) \cdot \delta(C) +$$

$$\delta(B) \cdot \delta(C) - \delta(B) \cdot \delta(C) +$$

$$(-\delta(A) \cdot \delta(B)) + \delta(A) \cdot \delta(B) \cdot \delta(C)$$

$$=1 + 0 + 0 +$$

$$0 +$$

$$0 +$$

$$0 +$$

$$0 +$$

$$0 +$$

$$0 +$$

$$0 +$$

$$1 - (\delta(A) \cdot \delta(B) \cdot (1 - \delta(C)))$$

$$=1 - (\delta(A) \cdot \delta(B) \cdot (1 - \delta(C)))$$

Gemäß dem Satz 268 "von rechts nach links gelesen" kann ich nun schreiben

$$1 - (\delta (A \wedge B) \cdot (1 - \delta (C))) = \delta (A \wedge B \Rightarrow C)$$

Somit habe ich gezeigt, dass gilt

$$\delta(A \Rightarrow C \lor B \Rightarrow C) = \delta(A \land B \Rightarrow C)$$

respektive (nach dem Vertauschen der Seiten)

$$\delta(A \land B \Rightarrow C) = \delta(A \Rightarrow C \lor B \Rightarrow C)$$

Somit kann ich gemäß dem Satz 264 glücklicherweise schließen, dass gilt

$$(A \land B \Rightarrow C) \Leftrightarrow (A \Rightarrow C \lor B \Rightarrow C)$$

Damit glaube ich den Beweis als erbracht zu betrachten.

Gut, wenn ich ehrlich bin, dann war dieser "Beweis" eine Zumutung. Ich wollte zuerst zeigen dass

$$\delta (A \land B \Rightarrow C) = \delta (A \Rightarrow C \lor B \Rightarrow C)$$

ist, aber das hat überhaupt nicht geklappt. Und dann war der Beweis trotzdem noch sehr aufwändig.

41.19. Vertauschung Disjunktion und Implikation

Zur Erinnerung: Es seien A, B und C Metasymbole. Dann gilt

$$A \wedge B \Rightarrow C \Leftrightarrow (A \Rightarrow C) \vee (B \Rightarrow C)$$

Beweis. Ich möchte zeigen:

$$\delta(A \land B \Rightarrow C) = \delta((A \Rightarrow C) \lor (B \Rightarrow C))$$

Es ist

$$\delta\left((A\Rightarrow C)\vee(B\Rightarrow C)\right)$$

$$=\delta\left(A\Rightarrow C\right)+\delta\left(B\Rightarrow C\right)-\delta\left(A\Rightarrow C\right)\cdot\delta\left(B\Rightarrow C\right)$$

$$=1-\delta\left(A\right)\cdot\left(1-\delta\left(C\right)\right)+1-\delta\left(B\right)\cdot\left(1-\delta\left(C\right)\right)-$$

$$\left(1-\delta\left(A\right)\cdot\left(1-\delta\left(C\right)\right)\right)\cdot\left(1-\delta\left(B\right)\cdot\left(1-\delta\left(C\right)\right)\right)$$

$$=1-\delta\left(A\right)+\delta\left(A\right)\cdot\delta\left(C\right)+1-\delta\left(B\right)+\delta\left(B\right)\cdot\delta\left(C\right)-$$

$$\left(\left(1-\delta\left(A\right)+\delta\left(A\right)\cdot\delta\left(C\right)\right)\cdot\left(1-\delta\left(B\right)+\delta\left(B\right)\cdot\delta\left(C\right)\right)\right)$$

Wiederum schreibe ich als Abkürzungen

$$a \equiv \delta(A)$$
$$b \equiv \delta(B)$$

 $c \equiv \delta(C)$

Also erhalte ich

$$\delta\left((A \Rightarrow C) \lor (B \Rightarrow C)\right)$$

$$=1 - \delta\left(A\right) + \delta\left(A\right) \cdot \delta\left(C\right) + 1 - \delta\left(B\right) + \delta\left(B\right) \cdot \delta\left(C\right) - \left((1 - \delta\left(A\right) + \delta\left(A\right) \cdot \delta\left(C\right)\right) \cdot (1 - \delta\left(B\right) + \delta\left(B\right) \cdot \delta\left(C\right)\right)\right)$$

$$=1 - a + a \cdot c + 1 - b + b \cdot c - \left((1 - a + a \cdot c) \cdot (1 - b + b \cdot c)\right)$$

Der Summand

$$(1-a+a\cdot c)\cdot (1-b+b\cdot c)$$

ergibt ausmultipliziert $3 \cdot 3 = 9$ Summanden. Darum werde ich ihn separat berechnen:

$$(1 - a + a \cdot c) \cdot (1 - b + b \cdot c)$$

$$= 1 \cdot (1 - b + b \cdot c) +$$

$$(-a) \cdot (1 - b + b \cdot c) +$$

$$a \cdot c \cdot ((1 - b + b \cdot c))$$

$$= 1 - b + b \cdot c +$$

$$(-a) + a \cdot b - a \cdot b \cdot c +$$

$$a \cdot c - a \cdot b \cdot c + a \cdot b \cdot c^{2}$$

Gemäß dem Lemma 263 gilt $c^2 = c$ und darum auch

$$(1 - a + a \cdot c) \cdot (1 - b + b \cdot c)$$

$$= 1 - b + b \cdot c +$$

$$(-a) + a \cdot b - a \cdot b \cdot c +$$

$$a \cdot c - a \cdot b \cdot c + a \cdot b \cdot c$$

Nun ordne ich die Summanden um um verrechne diese. Also erhalte ich

$$\begin{aligned} &(1-a+a\cdot c)\cdot (1-b+b\cdot c) \\ =&1-a+a\cdot b-a\cdot b\cdot c-a\cdot b\cdot c+a\cdot b\cdot c+\\ &a\cdot c-b+b\cdot c \\ =&1-a+a\cdot b-2\cdot a\cdot b\cdot c+a\cdot b\cdot c+\\ &a\cdot c-b+b\cdot c \\ =&1-a+a\cdot b-a\cdot b\cdot c+\\ &a\cdot c-b+b\cdot c \end{aligned}$$

Das Resultat setze ich in die ursprüngliche Gleichung ein und erhalte:

$$\delta ((A \Rightarrow C) \lor (B \Rightarrow C))$$
=1 - a + a · c + 1 - b + b · c -
$$((1 - a + a \cdot c) \cdot (1 - b + b \cdot c))$$
=1 - a + a · c + 1 - b + b · c -
$$(1 - a + a \cdot b - a \cdot b \cdot c +$$

$$a · c - b + b · c)$$
=1 - a + a · c + 1 - b + b · c +
$$(-1) + a - a \cdot b + a \cdot b \cdot c +$$

$$(-1) + a - a \cdot b + a \cdot b \cdot c +$$

$$(-a · c) + b - b · c$$
=2 - 1 + a - a + a · c - a · c +
$$b - b + b \cdot c - b \cdot c +$$

$$(-a · b) + a · b · c$$
=1 + (a - a) + (a · c - a · c) +
$$(b - b) + (b \cdot c - b \cdot c) +$$

$$(-a · b) + a · b · c$$
=1 + 0 + 0 +
$$0 + 0 +$$

$$(-a · b) + a · b · c$$
=1 - a · b + a · b · c
=1 - a · b · (1 - c)

Nun kann ich wieder mit den ursprünglichen Bezeichnungen arbeiten. Ich erhalte darum:

$$\delta\left((A \Rightarrow C) \lor (B \Rightarrow C)\right)$$

=1 - \delta(A) \cdot \delta(B) \cdot (1 - \delta(C))

Gemäß dem Satz 267 gilt

$$\delta(A) \cdot \delta(B) = \delta(A \wedge B)$$

Darum erhalte ich

$$\delta ((A \Rightarrow C) \lor (B \Rightarrow C))$$

$$= 1 - \delta (A) \cdot \delta (B) \cdot (1 - \delta (C))$$

$$= 1 - \delta (A \land B) \cdot (1 - \delta (C))$$

Gemäß dem Satz 268 kann ich schreiben

$$1 - \delta (A \wedge B) \cdot (1 - \delta (C))$$
$$= \delta (A \wedge B \Rightarrow C)$$

Somit muss also gelten

$$\delta\left((A\Rightarrow C)\vee(B\Rightarrow C)\right)=\delta\left(A\wedge B\Rightarrow C\right)$$

Also muss gemäß dem Satz 264 gelten

$$((A \Rightarrow C) \lor (B \Rightarrow C)) \Leftrightarrow (A \land B \Rightarrow C)$$

Somit habe ich die Gültigkeit des Satzes erbracht.

KAPITEL 42

Addition zweier nicht-negativer Binärzahlen

Ich möchte dieses Kapitel ausführen, da ich gerne eine eigene Programmiersprache geschrieben hätte - aber bis jetzt gnadenlos gescheitert bin. Der Titel ist ein wenig falsch geschrieben. Die Binärzahlen können auch unendlich groß sein. Dann wäre zwar der Algorithmus immer noch richtig.

Es seien für $k \in \mathbb{N}_0$ die Ziffern $a_k, b_k \in \{0, 1\}$ sowie

$$a \equiv \sum_{k \in \mathbb{N}} a_k \cdot 2^k$$
$$b \equiv \sum_{k \in \mathbb{N}} b_k \cdot 2^k$$

Weiter sei

$$c_k \equiv \sum_{l=0}^k a_k \cdot 2^k$$

$$d_k \equiv \sum_{l=0}^k b_k \cdot 2^k$$

sowie

$$e_k \equiv \delta_{c_k + d_k > 2^k}$$

und

$$e_{-1} \equiv 0$$

Nun ist die Frage, wie die mit $f_k \in \{0, 1\}$ und

$$f = \sum_{k \in \mathbb{N}} f_k \cdot 2^k$$

für alle k die einzelnen Koeffizienten f_k bestimmt werden müssen, so dass gilt

$$f = a + b$$

Ich behaupte nun, dass gilt

$$f_k = \delta_{c_k + d_k + e_{k-1} = 1}$$

Beweis. Ist b = 0, dann muss für alle

42.1. Äquivalenz von Äquivalenz und Implikationen

Zur Erinnerung: Der Satz 23 besagt, dass, falls A, B Symbole von Aussagen sind (welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei sind), es gilt:

$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$$

In Worten: Eine Äquivalenz ist äquivalent zu zwei Implikationen. Diese Aussage möchte ich nun mittels der Deltanotation ebenfalls beweisen.

Beweis. Zuerst möchte ich die Deltanotation der Äquivalenz gemäß dem Satz 272 umschreiben und erhalte:

$$\delta\left((A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (B \Rightarrow A))\right)$$

$$= 1 - (\delta(A \Leftrightarrow B) - \delta((A \Rightarrow B) \land (B \Rightarrow A)))^{2}$$

Wenn ich also zeigen kann, dass $\delta\left(A \Leftrightarrow B\right) = \delta\left((A \Rightarrow B) \land (B \Rightarrow A)\right)$ ist, dann habe ich den Beweis erbracht. Es ist wiederum gemäß dem Satz 272

$$\delta(A \Leftrightarrow B) = 1 - (\delta(A) - \delta(B))^{2}$$

sowie

$$\delta ((A \Rightarrow B) \land (B \Rightarrow A))$$

$$= \delta (A \Rightarrow B) \cdot \delta (B \Rightarrow A)$$

$$= (1 - \delta (A) \cdot (1 - \delta (B))) \cdot (1 - \delta (B) \cdot (1 - \delta (A)))$$

Nun kürze ich ab, damit die Schreibarbeit kleiner wird:

$$a \equiv \delta(A)$$
$$b \equiv \delta(B)$$

Also ist

$$\delta ((A \Rightarrow B) \land (B \Rightarrow A))$$
= $(1 - a \cdot (1 - b)) \cdot (1 - b \cdot (1 - a))$
= $(1 - a + a \cdot b) \cdot (1 - b + a \cdot b)$
= $(1 + a \cdot b - a) \cdot (1 + a \cdot b - b)$
= $(1 + a \cdot b)^2 - (1 + a \cdot b) \cdot b - a \cdot (1 + a \cdot b) + a \cdot b$
= $(1 + a \cdot b)^2 - (1 + a \cdot b) \cdot (a + b) + a \cdot b$

Wiederum verwende ich die Tatsache, das die Deltanotation idempotent ist und darum gilt

$$a^2 = \delta^2(A) = \delta(A) = a$$

sowie

$$b^2 = \delta^2(B) = \delta(B) = b$$

Somit gilt

$$\begin{aligned} 1 + 2 \cdot a \cdot b + a^{2} \cdot b^{2} - (1 + a \cdot b) \cdot (a + b) + a \cdot b \\ = 1 + 2 \cdot a \cdot b + a \cdot b - \left(a + b + a^{2} \cdot b + a \cdot b^{2}\right) + a \cdot b \\ = 1 + 3 \cdot a \cdot b - a - b - a \cdot b - a \cdot b + a \cdot b \\ = 1 + 3 \cdot a \cdot b - a \cdot b - a \cdot b + a \cdot b - a - b \\ = 1 + 4 \cdot a \cdot b - 2 \cdot a \cdot b - a - b \\ = 1 + 2 \cdot a \cdot b - a - b \\ = 1 + 2 \cdot \delta(A) \cdot \delta(B) - \delta(A) - \delta(B) \\ = 1 - (\delta(A) - 2 \cdot \delta(A) \cdot \delta(B) - \delta(B)) \\ = 1 - (\delta(A) - \delta(B))^{2} \end{aligned}$$

Gebrauch gemacht habe. Somit gilt also

$$\delta ((A \Rightarrow B) \land (B \Rightarrow A))$$

$$= 1 - (\delta (A) - \delta (B))^{2}$$

$$= \delta (A \Leftrightarrow B)$$

Also muss auch gelten

$$\delta ((A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (B \Rightarrow A)))$$

$$=1 - (\delta (A \Leftrightarrow B) - \delta ((A \Rightarrow B) \land (B \Rightarrow A)))^{2}$$

$$=1 - (\delta (A \Leftrightarrow B) - \delta (A \Leftrightarrow B))^{2}$$

$$=1 - 0^{2}$$

$$=1 - 0$$

$$=1$$

und somit kann ich gemäß dem Satz 262 folgern, dass daraus folgt

$$(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (B \Rightarrow A))$$

Darum erachte ich den Beweis wiederum als vollbracht.

42.2. Äquivalenz Aussage und Konjunktion

Zur Erinnerung. Es sei A das Symbol einer Aussage. Dann gilt gemäß dem Satz 31

$$A \Leftrightarrow A \wedge A$$

BEWEIS. Es sei $A\in\Omega$, was bedeutet, dass A das Symbol einer in sich und bezüglich den anderen Symbolen des Satzes genügend widerspruchsfrei sei. Dann gilt gemäß dem Satz 264

$$\delta (A \Leftrightarrow (A \land A))$$

=1 - $(\delta (A) - \delta (A \land A))^2$

Gemäß dem Satz 267 gilt

$$\delta (A \wedge A)$$

$$= \delta (A) \cdot \delta (A)$$

$$= \delta^{2} (A)$$

Da die Deltanotation idempotent ist, muss gemäß dem Satz 263 gelten

$$\delta^2(A) = \delta(A)$$

Dieses Resultat kann ich in die Umformulierung des Ausdrucks

$$\delta(A \wedge A)$$

einsetzen und erhalte

$$\delta(A \wedge A) = \delta^2(A) = \delta(A)$$

Also kann ich wiederum dieses Resultat in die Berechnung von

$$\delta (A \Leftrightarrow (A \land A))$$

einsetzen. Somit muss gelten:

$$\delta (A \Leftrightarrow (A \land A))$$

$$=1 - (\delta (A) - \delta (A \land A))^{2}$$

$$=1 - (\delta (A) - \delta (A))^{2}$$

$$=1 - 0^{2}$$

$$=1 - 0$$

$$=1$$

Darum kann ich wiederum nach dem Satz 262 folgern, dass die Aussage

$$A \Leftrightarrow (A \wedge A)$$

für alle Aussagen wahr und somit ein logischer Satz ist.

42.3. Äquivalenz Aussage Disjunktion

Zur Erinnerung: Es sei A das Symbol einer beliebigen, jedoch in sich und in Bezug auf die anderen Symbole des Abschnitt hinreichend widerspruchsfreien Aussage. Dann gilt

$$A \Leftrightarrow A \vee A$$

BEWEIS. Es sei $A\in\Omega$, also A das Symbol einer beliebigen, jedoch in sich und in Bezug auf die anderen Symbole des Beweises genügend widerspruchsfreien Aussage. Dann gilt gemäß dem Satz 272

$$\delta (A \Leftrightarrow (A \lor A))$$

=1 - $(\delta (A) - \delta (A \lor A))^2$

Nun gilt gemäß dem Satz 270

$$\delta (A \lor A)$$

$$= \delta (A) + \delta (A) - \delta (A) \cdot \delta (A)$$

$$= \delta (A) + \delta (A) - \delta^{2} (A)$$

$$= 2 \cdot \delta (A) - \delta^{2} (A)$$

Und erneut darf ich feststellen, dass die Deltanotation gemäß dem Satz idempotent ist und darum gemäß dem Satz 263 gilt

$$\delta^2(A) = \delta(A)$$

Dieses Resultat kann ich in die Umformulierung von

$$\delta(A \vee A)$$

einfügen und erhalte darum

$$\delta (A \lor A)$$

$$= 2 \cdot \delta (A) - \delta^{2} (A)$$

$$= 2 \cdot \delta (A) - \delta (A)$$

$$= \delta (A)$$

Also kann ich dieses Resultat in die Umformulierung von

$$\delta (A \Leftrightarrow (A \vee A))$$

einfügen und ich erhalte also somit

$$\delta (A \Leftrightarrow (A \lor A))$$

$$= 1 - (\delta (A) - \delta (A \lor A))^{2}$$

$$= 1 - (\delta (A) - \delta (A))^{2}$$

$$= 1 - 0^{2}$$

$$= 1 - 0$$

$$= 1$$

Somit kann ich gemäß dem Satz 262 schließen, die Aussage

$$A \Leftrightarrow (A \vee A)$$

für alle genügend widerspruchsfreien Aussagen A wahr und darum also ein logischer Satz sein muss. Darum erachte ich diesen Beweis als erbracht.

42.4. Kommutativität der Konjunktion

Zu Deiner Erinnerung: Es seien A,B beliebige Aussagen, welche jedoch besser nicht in sich selbst oder bezüglich der anderen Aussagen dieses Beweises widerspruchsfrei seien. Dann gilt gemäß dem Satz 35 Aussage

$$A \wedge B \Leftrightarrow B \wedge A$$

Beweis. Es seien $A, B \in \Omega$. Dann gilt gemäß dem Satz 267

$$\delta ((A \land B) \Leftrightarrow (B \land A))$$

=1 - (\delta (A \lambda B) - \delta (B \lambda A))^2

Für einmal will ich nicht sowohl $\delta(A \wedge B)$ wie auch $\delta(B \wedge A)$ umschreiben. Denn es genügt wirklich, dass ich zeige, dass

$$\delta (B \wedge A) = \delta (A \wedge B)$$

ist. Gemäß dem Satz 267 kann ich schreiben:

$$\delta(B \wedge A) = \delta(B) \cdot \delta(A)$$

Nun ist die Multiplikation von ganzen Zahlen kommutativ. Also kann ich schreiben

$$\delta(B) \cdot \delta(A) = \delta(A) \cdot \delta(B)$$

Dann kann ich jedoch wiederum gemäß dem Satz 267 schreiben

$$\delta(A) \cdot \delta(B) = \delta(A \wedge B)$$

Somit kann ich schreiben

$$\delta(B \wedge A) = \delta(A) \cdot \delta(B) = \delta(A \wedge B)$$

Also muss insgesamt gelten

$$\delta ((A \land B) \Leftrightarrow (B \land A))$$

$$=1 - (\delta (A \land B) - \delta (B \land A))^{2}$$

$$=1 - (\delta (A \land B) - \delta (B \land A))^{2}$$

$$=1 - 0^{2}$$

$$=1 - 0$$

$$=1$$

Somit kann ich gemäß dem Satz 262 davon ausgehen, dass die Aussage

$$(A \wedge B) \Leftrightarrow (B \wedge A)$$

für alle hinreichend vernünftigen Aussagen A und B wahr ist. Darum kann ich diesen Satz als bewiesen betrachten.

42.5. Kommutativität der Disjunktion

Zu Deiner Erinnerung: Es seien A,B beliebige Aussagen, welche jedoch besser nicht in sich selbst oder bezüglich der anderen Aussagen dieses Beweises widerspruchsfrei seien. Dann gilt gemäß dem Satz 37 Aussage

$$A \lor B \Leftrightarrow B \lor A$$

Beweis. Es seien $A, B \in \Omega$. Dann gilt

$$\delta ((A \land B) \Leftrightarrow (B \land A))$$

$$=1 - (\delta (A \land B) - \delta (B \land A))^{2}$$

$$=1 - (\delta (A) \cdot \delta (B) - \delta (B) \cdot \delta (A))^{2}$$

$$=1 - (\delta (A) \cdot \delta (B) - \delta (A) \cdot \delta (B))^{2}$$

$$=1 - 0^{2}$$

$$=1 - 0$$

$$=1$$

Also kann ich gemäß dem Satz 262 davon ausgehen, diesen Satz "erschlagen¹" zu haben. \blacksquare

42.6. Assoziativität der Konjunktion

Zu Deiner Erinnerung an Satz 40: Es seien A,B sowie C Metasymbole von Aussagen, welche in sich selbst, jedoch auch bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \wedge B) \wedge C \Leftrightarrow A \wedge (B \wedge C)$$

Beweis. Zuerst einmal möchte ich den Satz gerne mittels der δ -Notation erbringen. Es gilt gemäß dem Satz 267 (zwei Mal hintereinander angewendet:

$$\delta ((A \wedge B) \wedge C)$$

$$= \delta (A \wedge B) \cdot \delta (C)$$

$$= (\delta (A) \cdot \delta (B)) \cdot \delta (C)$$

Nun ist die Multiplikation selbst wieder assoziativ. Darum muss gelten

$$(\delta(A) \cdot \delta(B)) \cdot \delta(C)$$

$$= \delta(A) \cdot (\delta(B) \cdot \delta(C))$$

$$= \delta(A) \cdot \delta(B \wedge C)$$

$$= \delta(A \wedge (B \wedge C))$$

Darum hätte ich den Beweis bereits erbracht.

42.7. Assoziativität der Disjunktion

Zu Deiner Erinnerung bezüglich des Satzes 41: Es seien A, B sowie C Symbole, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt:

$$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$$

¹umgangssprachlich für "erbracht"

Beweis. Ich möchte dazu ausnutzen, dass gilt

$$\delta (A \vee B)$$

$$= 1 - \delta (\neg A) \cdot \delta (\neg B)$$

Denn es ist gemäß dem Satz 266

$$\delta\left(\neg A\right) = 1 - \delta\left(A\right)$$

respektive

$$\delta\left(\neg B\right) = 1 - \delta\left(B\right)$$

Weiter kann ich schreiben

$$(1 - \delta(A)) \cdot (1 - \delta(B))$$
=1 \cdot (1 - \delta(B)) - \delta(A) \cdot (1 - \delta(B))
= (1 - \delta(B)) - (\delta(A) - \delta(A) \cdot \delta(B))
=1 - \delta(B) - \delta(A) + \delta(A) \cdot \delta(B)

Somit kann ich schreiben

$$1 - \delta (\neg A) \cdot \delta (\neg B)$$

$$= 1 - (1 - \delta (A)) \cdot (1 - \delta (B))$$

$$= 1 - (1 - \delta (A) - \delta (B) + \delta (A) \cdot \delta (B))$$

$$= 1 - 1 + \delta (A) + \delta (B) - \delta (A) \cdot \delta (B)$$

$$= \delta (A) + \delta (B) + \delta (A) \cdot \delta (B)$$

$$= \delta (A \lor B)$$

Somit kann ich schreiben:

$$\delta ((A \lor B) \lor C)$$

$$= 1 - \delta (\neg (A \lor B)) \cdot \delta (\neg C)$$

$$= 1 - (1 - \delta (A \lor B)) \cdot \delta (\neg C)$$

$$= 1 - (1 - (1 - \delta (\neg A) \cdot \delta (\neg B))) \cdot \delta (\neg C)$$

$$= 1 - (1 - 1 + \delta (\neg A) \cdot \delta (\neg B)) \cdot \delta (\neg C)$$

$$= 1 - (\delta (\neg A) \cdot \delta (\neg B)) \cdot \delta (\neg C)$$

An dieser Stelle kann ich vom Assoziativgesetz der Multiplikation Gebrauch machen. Also kann ich schreiben

$$\delta\left((A \vee B) \vee C\right)$$

$$= 1 - (\delta\left(\neg A\right) \cdot \delta\left(\neg B\right)) \cdot \delta\left(\neg C\right)$$

$$= 1 - \delta\left(\neg A\right) \cdot (\delta\left(\neg B\right) \cdot \delta\left(\neg C\right))$$

$$= 1 - \delta\left(\neg A\right) \cdot (1 - 1 + \delta\left(\neg B\right) \cdot \delta\left(\neg C\right))$$

$$= 1 - \delta\left(\neg A\right) \cdot (1 - (1 - \delta\left(\neg B\right) \cdot \delta\left(\neg C\right)))$$

$$= 1 - \delta\left(\neg A\right) \cdot (1 - (\delta\left(B \vee C\right)))$$

$$= 1 - \delta\left(\neg A\right) \cdot \delta\left(\neg\left(B \vee C\right)\right)$$

$$= \delta\left(A \vee (B \vee C\right)$$

Darum hätte ich den Beweis erbracht. Er ist meines Erachtens komplizierter als derjenige, welcher die Assoziation der Konjunktion beweist.

Nachbemerkung: Falls Du denkst, ich hätte mir den Beweis nur so schnell mal aus den Fingern gesogen, dann muss oder besser geschrieben darf ich dich enttäuschen. Der Beweis ist nur darum um sieben Ecken und Enden geschrieben, weil ich beim "brute force"-ausrechnen (also indem ich einfach die Definitionen eingesetzt habe und diese mit den Gesetzen der ganzzahliegen Arithmetik umgeschrieben habe) grandios gescheitert bin. Das ist genau bezeichnend für die Mathematik: Wie unglaublich schnell alles unglaublich kompliziert wird. Wie schnell die Übersicht flöten geht. Wie schnell das Chaos ausbricht.

42.8. Negation der Konjunktion

Zu Deiner Erinnerung an den Satz 45: Es seien A, B Metasymbole von Symbolen, welche in sich, jedoch auch bezüglich den anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt

$$(\neg \, (A \land B)) \Leftrightarrow ((\neg A) \lor (\neg B))$$

Beweis. Es seien $A, B \in \delta$. Dann gilt gemäß dem Satz 272:

$$\begin{split} \delta\left(\left(\neg\left(A \land B\right)\right) \Leftrightarrow \left(\left(\neg A\right) \lor \left(\neg B\right)\right)\right) \\ = & 1 - \left(\delta\left(\neg\left(A \land B\right)\right) - \delta\left(\left(\neg A\right) \lor \left(\neg B\right)\right)\right)^2 \end{split}$$

Ich möchte den Minuenden den $\delta (\neg (A \land B))$ sowie den Subtrahenden $\delta ((\neg A) \lor (\neg B))$ separat berechnen. Gemäß dem Satz 266 gilt:

(40)
$$\delta(\neg(A \land B)) = 1 - \delta(A \land B)$$

Aufgrund des Satzes 267 kann ich schreiben:

$$\delta(A \wedge B) = \delta(A) \cdot \delta(B)$$

Setze ich dies in die Gleichung 40 ein, dann erhalte ich:

$$\delta\left(\neg\left(A \land B\right)\right) = 1 - \delta\left(A\right) \cdot \delta\left(B\right)$$

Die Umrechnung des Ausdrucks

$$\delta\left((\neg A)\vee(\neg B)\right)$$

ist dagegen mühsamer.

$$\delta((\neg A) \lor (\neg B))$$

$$=\delta(\neg A) + \delta(\neg B) - \delta(\neg A) \cdot \delta(\neg B)$$

$$=1 - \delta(A) + 1 - \delta(B) - (1 - \delta(A)) \cdot (1 - \delta(B))$$

$$=2 - \delta(A) - \delta(B) - (1 \cdot (1 - \delta(B)) - \delta(A) \cdot (1 - \delta(B)))$$

$$=2 - \delta(A) - \delta(B) - (1 - \delta(B) - \delta(A) + \delta(A) \cdot \delta(B))$$

$$=2 - \delta(A) - \delta(B) + (1 - \delta(B) - \delta(A) + \delta(A) \cdot \delta(B))$$

$$=2 - \delta(A) - \delta(B) + (1 - \delta(B) + \delta(A) - \delta(A) \cdot \delta(B)$$

$$=2 - 1 + \delta(A) - \delta(A) + \delta(B) - \delta(B) - \delta(A) \cdot \delta(B)$$

$$1 + 0 + 0 - \delta(A) \cdot \delta(B)$$

$$=1 - \delta(A) \cdot \delta(B)$$

Darum behaupte ich, schließen zu können:

$$\delta\left(\left(\neg\left(A \land B\right)\right) \Leftrightarrow \left(\left(\neg A\right) \lor \left(\neg B\right)\right)\right)$$

$$=1 - \left(\delta\left(\neg\left(A \land B\right)\right) - \delta\left(\left(\neg A\right) \lor \left(\neg B\right)\right)\right)^{2}$$

$$=1 - \left(\left(1 - \delta\left(A\right) \cdot \delta\left(B\right)\right) - \left(1 - \delta\left(A\right) \cdot \delta\left(B\right)\right)\right)$$

$$=1 - \left(1 - \delta\left(A\right) \cdot \delta\left(B\right) - 1 + \delta\left(A\right) \cdot \delta\left(B\right)\right)$$

$$=1 - \left(1 - 1 + \delta\left(A\right) \cdot \delta\left(B\right) - \delta\left(A\right) \cdot \delta\left(B\right)\right)$$

$$=1 - \left(0 + 0\right)$$

$$=1 - 0$$

Da nun gemäß dem Satz 262 gelten muss, dass die Aussage

$$(\neg (A \land B)) \Leftrightarrow ((\neg A) \lor (\neg B))$$

für alle möglichen Aussagen A und B wahr und somit somit ein logischer Satz sein muss, erachte ich den Beweis hiermit als erbracht.

42.9. Konjunktive Normalform der Implikation

Zu Deiner Erinnerung: Unter dem Satz 70 versuchte ich, zu zeigen, wieso gelten muss (falls A und B Metasymbole für Aussagen seien, welche widerspruchsfrei seien)

$$(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$$

Beweis. Gemäß der Gleichung 36 gilt:

$$\delta (\neg A \lor B)$$

$$=\delta (\neg A) + \delta (B) - \delta (\neg A) \cdot \delta (B)$$

$$=1 - \delta (A) + \delta (B) - (1 - \delta (A)) \cdot \delta (B)$$

$$=1 - \delta (A) + \delta (B) - (\delta (B) - \delta (A) \cdot \delta (B))$$

$$=1 - \delta (A) + \delta (B) - \delta (B) + \delta (A) \cdot \delta (B)$$

$$=1 - \delta (A) + 0 + \delta (A) \cdot \delta (B)$$

$$=1 - (\delta (A) - \delta (A) \cdot \delta (B))$$

$$=1 - (\delta (A) - \delta (A) \cdot \delta (B))$$

$$=1 - \delta (A) \cdot (1 - \delta (B))$$

$$=\delta (A \Rightarrow B)$$

42.10. Satz der Negation der Disjunktion

Zu Deiner Erinnerung: Sind A sowie B Metasymbole von Aussagen, welche in sich selbst sowie bezüglich den anderen Symbolen des Satzes widerspruchsfrei sind, dann kann ich schreiben:

$$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$$

Beweis. (des Satzes der Negation der Disjunktion) Es seien $A,B\in\delta$. Dann ist gemäß dem Satz 271 der Deltanotation der Äquivalenz

$$\delta\left(\left(\neg\left(A\vee B\right)\right)\Leftrightarrow\left(\left(\neg A\right)\wedge\left(\neg B\right)\right)\right)$$

=1 - \left(\delta\left(\partial(A\neq B)\right) - \delta\left(\left(\neq A)\left(\neq B)\right)\right)^2

Wiederum möchte ich Minuend und Subtrahend der Differenz

$$\delta (\neg (A \lor B)) - \delta ((\neg A) \land (\neg B))$$

einzeln berechnen. Gemäß dem Satz 266 der Deltanotation der Negation kann ich schreiben

$$\delta (\neg (A \lor B))$$

$$=1 - \delta (A \lor B)$$

$$=1 - (\delta (A) + \delta (B) - \delta (A) \cdot \delta (B))$$

$$=1 - \delta (A) - \delta (B) + \delta (A) \cdot \delta (B)$$

Nun kann ich gemäß dem Satz 270 der Deltanotation der Disjunktion kann ich schreiben:

$$\delta(A \vee B) = \delta(A) + \delta(B) - \delta(A) \cdot \delta(B)$$

Dieses Resultat kann ich in die Gleichung

$$\delta(\neg(A \lor B)) = 1 - \delta(A \lor B)$$

einfügen und erhalte

$$\delta (\neg (A \lor B))$$

$$=1 - \delta (A \lor B)$$

$$=1 - (\delta (A) + \delta (B) - \delta (A) \cdot \delta (B))$$

$$=1 - \delta (A) - \delta (B) + \delta (A) \cdot \delta (B)$$

Andererseits gilt gemäß dem Satz 267 der Deltanotation der Konjunktion

$$\delta ((\neg A) \wedge (\neg B))$$
$$=\delta (\neg A) \cdot \delta (\neg B)$$

Wiederum kann ich die Deltanotation der Aussagen δ ($\neg A$) sowie δ ($\neg B$) gemäß dem Satz 266 umschreiben zu

$$\delta(\neg A) = 1 - \delta(A)$$

$$\delta(\neg B) = 1 - \delta(B)$$

Somit kann ich schreiben:

$$\delta ((\neg A) \wedge (\neg B))$$

$$= \delta (\neg A) \cdot \delta (\neg B)$$

$$= (1 - \delta (A)) \cdot (1 - \delta (B))$$

$$= 1 \cdot (1 - \delta (B)) + (-\delta (A)) \cdot (1 - \delta (B))$$

$$= 1 - \delta (B) - \delta (A) + \delta (A) \cdot \delta (B)$$

Darum kann ich also schreiben

$$\delta (\neg (A \lor B))$$

$$=1 - \delta (A) - \delta (B) + \delta (A) \cdot \delta (B)$$

$$=\delta ((\neg A) \land (\neg B))$$

und ebenso

$$\delta\left(\neg\left(A\vee B\right)\right) - \delta\left(\left(\neg A\right)\wedge\left(\neg B\right)\right)$$

=0

Daraus kann ich schließen

$$\delta\left(\left(\neg\left(A\vee B\right)\right) \Leftrightarrow \left(\left(\neg A\right)\wedge\left(\neg B\right)\right)\right)$$

$$=1-\left(\delta\left(\neg\left(A\vee B\right)\right)-\delta\left(\left(\neg A\right)\wedge\left(\neg B\right)\right)\right)^{2}$$

$$=1-0^{2}$$

$$=1-0$$

$$=1$$

Somit kann ich gemäß dem Satz 262 schließen, dass die Aussage

$$(\neg (A \lor B)) \Leftrightarrow ((\neg A) \land (\neg B))$$

für alle möglichen Aussagen A,B wahr und somit ein logischer Satz ist. Damit habe ich jedoch den Beweis des Satzes der Negation der Disjunktion erbracht.

42.11. Satz des Ausschlusses

Zu Deiner Erinnerung: Es seien A sowie B Metasymbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt:

$$(A \lor B) \land \neg A \Rightarrow B$$

Beweis. Es ist gemäß dem Satz 268 der Deltanotation der Implikation

$$\delta\left(\left(\left(A\vee B\right)\wedge\left(\neg A\right)\right)\Rightarrow B\right)$$

=1 - \delta\left(\left(A\neq B)\left\left(\sigma A)\right)\cdot\left(1-\delta\left(B)\right)

Ich möchte jetzt zeigen, dass gilt:

$$\delta\left(\left(A\vee B\right)\wedge\left(\neg A\right)\right)=\left(1-\delta\left(A\right)\right)\cdot\delta\left(B\right)$$

Aufgrund des Satzes 267 kann ich schreiben

$$\delta ((A \lor B) \land (\neg A))$$

=\delta ((A \lor B)) \cdot \delta (\sigma A)

Nun kann ich aufgrund des Satzes 270 der Deltanotation der Disjunktion schreiben:

$$\delta(A \vee B) = \delta(A) + \delta(B) - \delta(A) \cdot \delta(B)$$

Dieses Resultat kann ich in die Gleichung

$$\delta ((A \lor B) \land (\neg A))$$

=\delta ((A \lor B)) \cdot \delta (\pi A)

einsetzen und erhalte:

$$\delta ((A \lor B) \land (\neg A))$$

$$= \delta ((A \lor B)) \cdot \delta (\neg A)$$

$$= (\delta (A) + \delta (B) - \delta (A) \cdot \delta (B)) \cdot (1 - \delta (A))$$

Nun kann ich gemäß aufgrund der Kommutativität der ganzzahliegen Multiplikation schreiben:

$$(\delta(A) + \delta(B) - \delta(A) \cdot \delta(B)) \cdot (1 - \delta(A))$$

= $(1 - \delta(A)) \cdot (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B))$

Jetzt kommt der mühsame Teil des Beweises. Ich muss den Ausdruck

$$(1 - \delta(A)) \cdot (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B))$$

ausrechnen. Es gilt aufgrund des Distributivgesetzes der ganzzahliegen Multiplikation

$$(1 - \delta(A)) \cdot (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B))$$

$$= (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B)) +$$

$$(-\delta(A)) \cdot (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B))$$

$$= \delta(A) + \delta(B) - \delta(A) \cdot \delta(B) +$$

$$(-\delta^{2}(A)) - \delta(A) \cdot \delta(B) + \delta^{2}(A) \cdot \delta(B)$$

Glücklicherweise ist die Deltanotation aufgrund des Satzes 263. Also kann ich schreiben

$$\delta^{2}\left(A\right) = \delta\left(A\right)$$

Dieses Resultat kann ich in die obige Rechnung einfügen und erhalte dann

$$\delta ((A \lor B) \land (\neg A))$$

$$=\delta (A) + \delta (B) - \delta (A) \cdot \delta (B) +$$

$$(-\delta^{2} (A)) - \delta (A) \cdot \delta (B) + \delta^{2} (A) \cdot \delta (B)$$

$$=\delta (A) + \delta (B) - \delta (A) \cdot \delta (B) +$$

$$(-\delta (A)) - \delta (A) \cdot \delta (B) + \delta (A) \cdot \delta (B)$$

Jetzt kann ich, da die Addition von ganzen Zahlen kommutiert und assoziativ ist, schreiben

$$\delta ((A \lor B) \land (\neg A))$$

$$=\delta (A) + \delta (B) - \delta (A) \cdot \delta (B) +$$

$$(-\delta (A)) - \delta (A) \cdot \delta (B) + \delta (A) \cdot \delta (B)$$

$$=\delta (A) - \delta (A) + \delta (B) + \delta (A) \cdot \delta (B) - 2 \cdot \delta (A) \cdot \delta (B)$$

$$=\delta (B) - \delta (A) \cdot \delta (B)$$

Ich kann $\delta(B)$ ausklammern und erhalte

$$\delta ((A \lor B) \land (\neg A))$$

$$=\delta (B) - \delta (A) \cdot \delta (B)$$

$$=\delta (B) \cdot (1 - \delta (A))$$

An dieser Stelle kann ich erneut von der Kommutation der Multiplikation Gebrauch machen und erhalte

$$\delta ((A \lor B) \land (\neg A))$$

$$= \delta (B) \cdot (1 - \delta (A))$$

$$= (1 - \delta (A)) \cdot \delta (B)$$

Somit gilt

$$\delta\left(\left((A \lor B) \land (\neg A)\right) \Rightarrow B\right)$$

=1 - \delta\left((A \left B) \land (\pi A)\right) \cdot (1 - \delta (B))
=1 - (1 - \delta (A)) \cdot \delta (B) \cdot (1 - \delta (B))

Infolge des Lemmas 276 kann ich schreiben

$$\delta(B) \cdot (1 - \delta(B)) = 0$$

Somit kann ich schreiben

$$\delta\left(\left((A \lor B) \land (\neg A)\right) \Rightarrow B\right)$$

$$=1 - (1 - \delta(A)) \cdot \delta(B) \cdot (1 - \delta(B))$$

$$=1 - (1 - \delta(A)) \cdot 0$$

$$=1 - 0$$

$$=1$$

Somit kann ich gemäß dem Satz 262

also schließen, dass diese Aussage ein logischer Satz ist.

Es gibt meines Erachtens noch eine interessante Abkürzung des Beweises. Und zwar geht diese so: Wenn ich zeigen kann, dass es ein geeignetes m derart gibt, dass m nur die Werte Null oder Eins annehmen kann, so dass ich schreiben kann

$$\delta\left(\left(A\vee B\right)\wedge\left(\neg A\right)\right)=m\cdot\delta\left(B\right)$$

dann bin ich bereits am Ziel: Denn in diesem in diesem Fall muss gelten

$$\delta\left(\left(A\vee B\right)\wedge\left(\neg A\right)\right)=m\cdot\delta\left(B\right)\leq\delta\left(B\right)$$

Also kann ich in diesem Fall gemäß dem Satz 279 schließen, dass in diesem Fall gelten muss

$$(A \lor B) \land (\neg A) \Rightarrow B$$

sein muss. Das m muss ich jedoch bestimmen. Dazu muss ich die Deltanotation von

$$(A \vee B) \wedge (\neg A)$$

umformen. Es ist gemäß dem Satz 267 der Deltanotion der Konjunktion

$$\delta\left((A \vee B) \wedge (\neg A)\right) = \delta\left(A \vee B\right) \cdot \delta\left(\neg A\right)$$

Gemäß dem Satz 267 der Deltanotation der Disjunktion gilt

$$\delta(A \vee B) = \delta(A) + \delta(B) - \delta(A) \cdot \delta(B)$$

Weiter kann ich aufgrund des Satzes 266 der Deltanotation der Negation schreiben

$$\delta\left(\neg A\right) = 1 - \delta\left(A\right)$$

Somit kann ich schreiben

$$\delta ((A \lor B) \land (\neg A))$$

$$= \delta (A \lor B) \cdot \delta (\neg A)$$

$$= (\delta (A) + \delta (B) - \delta (A) \cdot \delta (B)) \cdot (1 - \delta (A))$$

Nun ist die ganzzahlige Multiplikation kommutativ. Darum kann ich schreiben:

$$\delta ((A \lor B) \land (\neg A))$$

$$= (\delta (A) + \delta (B) - \delta (A) \cdot \delta (B)) \cdot (1 - \delta (A))$$

$$= (1 - \delta (A)) \cdot (\delta (A) + \delta (B) - \delta (A) \cdot \delta (B))$$

Es bleibt mir trotzdem nichts anderes übrig, als das Produkt

$$(1 - \delta(A)) \cdot (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B))$$

auszurechnen. Es gilt gemäß dem Distributivgesetz der Multiplikation und Addition der ganzen Zahlen:

$$(1 - \delta(A)) \cdot (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B))$$

$$= 1 \cdot (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B)) - (\delta(A) \cdot (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B)))$$

$$= \delta(A) + \delta(B) - \delta(A) \cdot \delta(B) - (\delta^2(A) + \delta(A) \cdot \delta(B) - \delta^2(A) \cdot \delta(B))$$

Da die Deltanotation, wie in Satz 263 zu zeigen versucht, idempotent ist, kann ich schreiben

$$\delta^2(A) = \delta(A)$$

Somit kann ich schreiben und anschließend umformen:

$$(1 - \delta(A)) \cdot (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B))$$

$$= \delta(A) + \delta(B) - \delta(A) \cdot \delta(B) - (\delta^{2}(A) + \delta(A) \cdot \delta(B) - \delta^{2}(A) \cdot \delta(B))$$

$$= \delta(A) + \delta(B) - \delta(A) \cdot \delta(B) - (\delta(A) + \delta(A) \cdot \delta(B) - (\delta(A) + \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B))$$

$$= \delta(A) + \delta(B) - \delta(A) \cdot \delta(B) - (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B) - (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B))$$

$$= \delta(A) + \delta(B) - \delta(A) \cdot \delta(B) - (\delta(A) \cdot \delta(B))$$

$$= \delta(A) - \delta(A) + \delta(B) - \delta(A) \cdot \delta(B)$$

$$= \delta(B) - \delta(A) \cdot \delta(B)$$

$$= (1 - \delta(A)) \cdot \delta(B)$$

Ich wende nun den Satz 266 sozusagen rückwärts an und erhalte

$$(1 - \delta(A)) \cdot (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B))$$

$$= (1 - \delta(A)) \cdot \delta(B)$$

$$= \delta(\neg A) \cdot \delta(B)$$

Nun kann ich das m zu $\delta(\neg A)$ bestimmen. Es gilt also:

$$m = \delta (\neg A)$$

Aufgrund der Eigenschaft der Deltanotation muss m einen Wert in der Menge $\{0,1\}$ besitzen. Somit kann ich wirklich folgern, dass für alle möglichen und in sich widerspruchsfreien Aussagen A,B gelten muss:

$$(A \vee B) \wedge (\neg A) \Rightarrow B$$

und der Satz somit erneut bewiesen ist.

Ob der zweite Beweis tatsächlich "eleganter" ist als der erste, muss ich natürlich Dir überlassen. Über Kunst lässt sich bekanntlich vortrefflich streiten. Aber ich für mich finde es interessant, dass ich mittels einer Ungleichung einen logischen Satz beweisen kann.

42.12. Zusammenhang von Disjunktion und Konjunktion

Zu Deiner Erinnerung: Es seien A sowie B Metasymbole von Aussagen. Dann gilt

$$\neg (\neg A \lor \neg B) \Leftrightarrow (A \land B)$$

Beweis. Gemäß dem Satz 272 kann ich schreiben:

$$\delta \left(\neg \left(\neg A \lor \neg B \right) \Leftrightarrow \left(A \land B \right) \right)$$

$$= 1 - \left(\delta \left(\neg \left(\neg A \lor \neg B \right) \right) - \delta \left(A \land B \right) \right)^{2}$$

Da gemäß dem Satz 267 gilt: $\delta(A \wedge B) = \delta(A) \cdot \delta(B)$, bleibt mir übrig, den Ausdruck

$$\delta (\neg (\neg A \lor \neg B))$$

zu berechnen. Zuerst wandle ich mit Hilfe des Satzes 266 der Deltanotation der Äquivalenz den Ausdruck um in

(42)
$$\delta (\neg (\neg A \lor \neg B))$$
$$=1 - \delta (\neg A \lor \neg B)$$

Nun kann ich mittels dem Satz 270 der Deltanotation der Negation den Ausdruck

$$\delta (\neg A \vee \neg B)$$

umrechnen zu

(43)
$$\delta(\neg A \vee \neg B) = \delta(\neg A) + \delta(\neg B) - \delta(\neg A) \cdot \delta(\neg B)$$

Es bleibt übrig, wiederum mittels dem Satz 266 die Deltanotationen von $\delta(\neg A)$ sowie $\delta(\neg B)$ umzuschreiben in,

$$\delta(\neg A) = 1 - \delta(A)$$

$$\delta(\neg B) = 1 - \delta(B)$$

Ich füge diese Ergebnisse in die Gleichung 43 ein und erhalte

$$\delta (\neg A \lor \neg B)$$

$$= \delta (\neg A) + \delta (\neg B) - \delta (\neg A) \cdot \delta (\neg B)$$

$$= (1 - \delta (A)) + (1 - \delta (B)) - (1 - \delta (A)) \cdot (1 - \delta (B))$$

$$(44) = 2 - \delta (A) - \delta (B) - (1 - \delta (A)) \cdot (1 - \delta (B))$$

Ich möchte gerne den Term

$$(1 - \delta(A)) \cdot (1 - \delta(B))$$

separat berechnen. Gemäß den Rechengesetzen der ganzen Zahlen kann ich schreiben:

$$(1 - \delta(A)) \cdot (1 - \delta(B))$$
= $1 \cdot (1 - \delta(B)) - \delta(A) \cdot (1 - \delta(B))$
= $(1 - \delta(B)) - (\delta(A) \cdot 1 - \delta(A) \cdot \delta(B))$
= $1 - \delta(B) - (\delta(A) - \delta(A) \cdot \delta(B))$
= $1 - \delta(B) - \delta(A) + \delta(A) \cdot \delta(B)$

oder verkürzt geschrieben:

(45)
$$(1 - \delta(A)) \cdot (1 - \delta(B)) = 1 - \delta(B) - \delta(A) + \delta(A) \cdot \delta(B)$$

Auch dieses Zwischenresultat setze ich in die Gleichung 44 ein und erhalte.

$$\begin{split} \delta \left(\neg A \vee \neg B \right) \\ &= 2 - \delta \left(A \right) - \delta \left(B \right) - \left(1 - \delta \left(A \right) \right) \cdot \left(1 - \delta \left(B \right) \right) \\ &= 2 - \delta \left(A \right) - \delta \left(B \right) - \left(1 - \delta \left(B \right) - \delta \left(A \right) + \delta \left(A \right) \cdot \delta \left(B \right) \right) \\ &= 2 - \delta \left(A \right) - \delta \left(B \right) - 1 + \delta \left(B \right) + \delta \left(A \right) - \delta \left(A \right) \cdot \delta \left(B \right) \\ &= 2 - 1 + \delta \left(A \right) - \delta \left(A \right) + \delta \left(B \right) - \delta \left(B \right) - \delta \left(A \right) \cdot \delta \left(B \right) \\ &= 1 + \left(\delta \left(A \right) - \delta \left(A \right) \right) + \left(\delta \left(B \right) - \delta \left(B \right) \right) - \delta \left(A \right) \cdot \delta \left(B \right) \\ &= 1 + 0 + 0 - \delta \left(A \right) \cdot \delta \left(B \right) \\ &= 1 - \delta \left(A \right) \cdot \delta \left(B \right) \end{split}$$

Ich schreibe auch dieses Zwischenresultat noch einmal zusammenfassend auf:

(46)
$$\delta(\neg A \lor \neg B) = 1 - \delta(A) \cdot \delta(B)$$

Dieses Zwischenresultat kann ich endlich in die Gleichung 42 einfügen und erhalte

$$\delta (\neg (\neg A \lor \neg B))$$

$$= 1 - \delta (\neg A \lor \neg B)$$

$$= 1 - (1 - \delta (A) \cdot \delta (B))$$

$$= 1 - 1 + \delta (A) \cdot \delta (B)$$

$$= 0 + \delta (A) \cdot \delta (B)$$

$$= \delta (A) \cdot \delta (B)$$

oder wiederum zusammengefasst:

(47)
$$\delta\left(\neg\left(\neg A \lor \neg B\right)\right) = \delta\left(A\right) \cdot \delta\left(B\right)$$

Dieses Resultat kann ich in die ursprüngliche Gleichung 41 ein und kann jetzt schreiben:

$$\delta \left(\neg \left(\neg A \lor \neg B \right) \Leftrightarrow \left(A \land B \right) \right)$$

$$= 1 - \left(\delta \left(\neg \left(\neg A \lor \neg B \right) \right) - \delta \left(A \land B \right) \right)^{2}$$

$$= 1 - \left(\delta \left(A \right) \right)$$

$$= 1$$

Somit muss gemäß dem Satz 262 gelten, dass die Aussage

$$\neg (\neg A \lor \neg B) \Leftrightarrow (A \land B)$$

für alle möglichen Aussagen A, B wahr und also ein logischer Satz ist.

42.13. Äquivalenz von Implikation und Negation einer Konjunktion

Zu Deiner Erinnerung an den Satz 54, welcher die Implikation auf die Negation einer speziellen Konjunktion zurückführt: Es seien also A und B Metasymbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt:

$$(A \Rightarrow B) \Leftrightarrow \neg (A \land \neg B)$$

Beweis. Gemäß dem Satz 272 kann ich schreiben

$$\delta\left((A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))\right)$$

=1 - (\delta(A \Rightarrow B) - \delta(\gamma(A \lambda(\gammaB)))^2

Wenn ich also zeigen kann, dass gilt

$$\delta(A \Rightarrow B) = \delta(\neg(A \land (\neg B)))$$

dann bin ich also am Ziel meiner Wünsche.

Da gemäß dem Satz 268 der Deltanotation der Implikation gelten muss

(48)
$$\delta(A \Rightarrow B) = 1 - \delta(A) \cdot (1 - \delta(B))$$

gilt also noch der Beweis zu erbringen, dass ebenfalls

(49)
$$\delta\left(\neg\left(A\wedge\left(\neg B\right)\right)\right) = 1 - \delta\left(A\right)\cdot\left(1 - \delta\left(B\right)\right)$$

ist. Falls Du bereits vertraut bis mit solchen δ -Notation, wirst Du wahrscheinlich die Gleichheit bereits erkannt haben. Aber ich schreibe es trotzdem aus. Aufgrund des Satzes 266 der Deltanotation der Negation gilt

(50)
$$\delta\left(\neg\left(A\wedge\left(\neg B\right)\right)\right) = 1 - \delta\left(A\wedge\left(\neg B\right)\right)$$

Der Satz 267 der Deltanotation sagt mir nun, dass ich schreiben kann:

(51)
$$\delta(A \wedge (\neg B)) = \delta(A) \cdot \delta(\neg B)$$

Wiederum kann ich aufgrund des Satzes 266 der Deltanotation der Negation schreiben

$$\delta\left(\neg B\right) = 1 - \delta\left(B\right)$$

Dieses Resultat kann kann in die Gleichung 51 einfügen und erhalte damit

$$\delta (A \wedge (\neg B))$$

$$= \delta (A) \cdot \delta (\neg B)$$

$$= \delta (A) \cdot (1 - \delta (B))$$

zusammengefasst also

$$\delta (A \wedge (\neg B)) = \delta (A) \cdot (1 - \delta (B))$$

Dieses Ergebnis füge ich nun in die Gleichung 50 und erhalte:

$$\delta (\neg (A \land (\neg B)))$$

$$= 1 - \delta (A \land (\neg B))$$

$$= 1 - \delta (A) \cdot (1 - \delta (B))$$

Vergleiche ich dieses Resultat mit der Gleichung 48, dann kann ich also

$$\delta (A \wedge (\neg B))$$

$$= \delta (A) \cdot (1 - \delta (B))$$

$$= \delta (A \Rightarrow B)$$

Darum kann ich schreiben

$$\delta ((A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B))))$$

$$=1 - (\delta (A \Rightarrow B) - \delta (\neg (A \land (\neg B))))^{2}$$

$$=1 - 0^{2}$$

$$=1 - 0$$

$$=1$$

Also kann ich gemäß dem Satz 262 schließen, dass die Aussage

$$(A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))$$

für alle Aussagen wahr und somit ein logischer Satz ist. Darum nehme ich an dieser Stelle an, den Satz erbracht zu haben.

42.14. Satz der Implikation einer Aussage

Zu Deiner Erinnerung: Es sei A ein Metasymbol einer Aussage, welches in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei sei. Dann gilt:

$$A \Rightarrow A$$

Beweis. Aufgrund des Satzes 268 kann ich schreiben:

$$\delta (A \Rightarrow A)$$

$$= 1 - \delta (A) \cdot (1 - \delta (A))$$

Nun habe 276 muss gelten:

$$\delta(A) \cdot (1 - \delta(A)) = 0$$

Somit hätte ich den Beweis bereits erbracht. Also gilt

$$\delta (A \Rightarrow A)$$

$$= 1 - \delta (A) \cdot (1 - \delta (A))$$

$$= 1 - 0$$

$$= 1$$

Also kann ich gemäß 262 schließen, dass die Aussage

$$A \Rightarrow A$$

für alle denkbaren Aussagen A wahr ist.

42.15. Über unwahre Aussagen

Zu Deiner Erinnerung: Es sei A das Symbol einer Aussage, welche in sich selbst und in Bezug auf die anderen Symbolen dieses Beweises widerspruchsfrei sei. Dann gilt gemäß dem Satz 46

$$\neg (A \land \neg A)$$

Ich möchte den Satz an dieser Stelle noch einmal mittels der δ -Notation zeigen:

BEWEIS. (2. des Satzes, dass nicht gleichzeitig eine Aussage und ihre Negation wahr sein können) Es sei A. Dann gilt aufgrund des Satzes 266 der Deltanotation der Negation

(52)
$$\delta(\neg(A \land \neg A)) = 1 - \delta(A \land \neg A)$$

Die Deltanotation $\delta(A \wedge \neg A)$ kann ich aufgrund des Satzes 267 der Deltanotation umschreiben zu

(53)
$$\delta(A \wedge \neg A) = \delta(A) \cdot \delta(\neg A)$$

Und wiederum kann ich den Ausdruck die Deltanotation $\delta(\neg A)$ mit Hilfe des Satzes 266 der Deltanotation der Negation umschreiben zu

$$\delta\left(\neg A\right) = 1 - \delta\left(A\right)$$

Setze ich dieses Gleichung in die vorletzte Gleichung 53 ein, dann resultiert

$$\delta (A \wedge \neg A)$$

$$= \delta (A) \cdot \delta (\neg A)$$

$$= \delta (A) \cdot (1 - \delta (A))$$

oder, da Gleichheit transitiv ist, verkürzt:

$$\delta(A \wedge \neg A) = \delta(A) \cdot (1 - \delta(A))$$

Nun habe ich oben unter dem Lemma 276 zu beweisen versucht, dass gelten muss:

$$\delta(A) \cdot (1 - \delta(A)) = 0$$

Das kann ich in die vorletzte Gleichung 54 einsetzen und ich erhalte:

$$\delta(A \wedge \neg A) = \delta(A) \cdot (1 - \delta(A)) = 0$$

Somit erhalte ich, wenn ich dies in die Gleichung 52 einsetze, das Resultat:

$$\delta (\neg (A \land \neg A))$$

$$= 1 - \delta (A \land \neg A)$$

$$= 1 - 0$$

$$= 1$$

oder (wiederum verkürzt)

$$\delta (\neg (A \land \neg A)) = 1$$

Das bedeutet jedoch, dass ich gemäß dem Satz 262 schließen kann, dass die Aussage

$$\neg (A \land \neg A)$$

für alle denkbaren, jedoch in sich selbst und gemäß den anderen Symbolen des Satzes widerspruchsfreien Aussagen A wiederum wahr sein muss. Also hoffe ich, dass ich die Richtigkeit der Behauptung erbracht habe.

42.16. aus Konjunktion folgt Aussage

Zu Deiner Erinnerung an den Satz 55: Es seien A, B Metasymbole von Aussagen, welche weder in sich selbst noch in Bezug auf die anderen Symbole des Satzes widersprüchlich seien. Dann gilt

$$A \wedge B \Rightarrow A$$

Beweis. Gemäß dem Satz 268 der Deltanotation der Implikation kann ich schreiben

(55)
$$\delta(A \wedge B \Rightarrow A) = 1 - \delta(A \wedge B) \cdot (1 - \delta(A))$$

Weiter muss gemäß dem Satz 267 der Deltanotation der Konjunktion gelten

$$\delta(A \wedge B) = \delta(A) \cdot \delta(B)$$

Dieses Resultat kann ich die Gleichung 55 einsetzen und so erhalte ich

$$\delta (A \wedge B \Rightarrow A)$$

$$= 1 - \delta (A \wedge B) \cdot (1 - \delta (A))$$

$$= 1 - \delta (A) \cdot \delta (B) \cdot (1 - \delta (A))$$

oder verkürzt, da die Gleichheit von ganzen Zahlen transitiv ist:

(56)
$$\delta(A \wedge B \Rightarrow A) = 1 - \delta(A) \cdot \delta(B) \cdot (1 - \delta(A))$$

Der Minuend

$$\delta(A) \cdot \delta(B) \cdot (1 - \delta(A))$$

muss nun 0 sein. Da die ganzzahlige Multiplikation kommutativ und assoziativ ist. Ich kann darum schreiben:

(57)
$$\delta(A) \cdot \delta(B) \cdot (1 - \delta(A)) = \delta(A) \cdot (1 - \delta(A)) \cdot \delta(B)$$

Ich versuchte im Beweis des Satzes 276 zu zeigen, dass gelten muss:

$$\delta(A) \cdot (1 - \delta(A)) = 0$$

Also muss auch gelten (wenn ich dieses Resultat in der vorletzten Gleichung 57 einsetze:

$$\delta(A) \cdot \delta(B) \cdot (1 - \delta(A))$$

$$= \delta(A) \cdot (1 - \delta(A)) \cdot \delta(B) = 0 \cdot \delta(B)$$

$$= 0$$

oder

Somit kann ich gemäß dem Satz 262 folgern, das die Aussage

$$A \wedge B \Rightarrow A$$

unabhängig von den gewählten Aussagen A sowie B immer wahr und somit ein logischer Satz sein muss. Dies wollte ich jedoch zeigen. Also kann ich den Satz als bewiesen betrachten.

42.17. Implikation aus Äquivalenz

Zu Deiner Erinnerung an den Satz 52: Es seien A, B Metasymbolen von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt:

$$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$$

Ich möchte den Beweis wiederum mit Hilfe der Deltanotation erbringen. Ich möchte zeigen:

$$\delta(A \Leftrightarrow B) \leq \delta(A \Rightarrow B)$$

Es ist

$$\delta (A \Leftrightarrow B)$$

$$=1 - (\delta (A) - \delta (B))^{2}$$

$$=1 - (\delta^{2} (A) - 2 \cdot \delta (A) \cdot \delta (B) + \delta^{2} (B))$$

Nun wende ich den Satz 263 der Idempotenz der Deltanotation und erhalte

$$\begin{split} \delta\left(A \Leftrightarrow B\right) \\ = & 1 - \left(\delta^2\left(A\right) - 2 \cdot \delta\left(A\right) \cdot \delta\left(B\right) + \delta^2\left(B\right)\right) \\ = & 1 - \left(\delta\left(A\right) - 2 \cdot \delta\left(A\right) \cdot \delta\left(B\right) + \delta\left(B\right)\right) \\ = & 1 - \delta\left(A\right) + 2 \cdot \delta\left(A\right) \cdot \delta\left(B\right) - \delta\left(B\right) \end{split}$$

Wohingegen gilt:

$$\delta (A \Rightarrow B)$$

$$=1 - \delta (A) \cdot (1 - \delta (B))$$

$$=1 - (\delta (A) \cdot 1 - \delta (A) \cdot \delta (B))$$

$$=1 - (\delta (A) - \delta (A) \cdot \delta (B))$$

$$=1 - \delta (A) + \delta (A) \cdot \delta (B)$$

Also möchte ich die Differenz

$$\delta(A \Rightarrow B) - \delta(A \Leftrightarrow B)$$

berechnen. Ich erhalte

$$\delta(A \Rightarrow B) - \delta(A \Leftrightarrow B)$$

$$= 1 - \delta(A) + \delta(A) \cdot \delta(B) - (1 - \delta(A) + 2 \cdot \delta(A) \cdot \delta(B) - \delta(B))$$

$$= 1 - \delta(A) + \delta(A) \cdot \delta(B) - 1 + (\delta(A) - 2 \cdot \delta(A) \cdot \delta(B) + \delta(B))$$

$$= 1 - 1 + \delta(A) - \delta(A) + \delta(B) + (\delta(A) \cdot \delta(B) - 2 \cdot \delta(A) \cdot \delta(B))$$

$$= 0 + 0 + \delta(B) - \delta(A) \cdot \delta(B)$$

$$= \delta(B) \cdot (1 - \delta(A))$$

Mit $0 \le \delta(A) \le 1$ ist

$$-0 = 0 > -\delta(A) > -1$$

und darum auch

$$1 - 0 = 1 \ge 1 - \delta(A) \ge 1 - 1 = 0$$

Somit ist insbesondere

$$1 - \delta(A) \ge 0$$

und darum auch

$$\delta(A \Rightarrow B) - \delta(A \Leftrightarrow B) = \delta(B) \cdot (1 - \delta(A)) \ge 0 \cdot 0 = 0$$

Darum muss gelten

$$\delta(A \Rightarrow B) \ge \delta(A \Leftrightarrow B)$$

oder eben

$$\delta(A \Leftrightarrow B) \leq \delta(A \Rightarrow B)$$

Darum glaube ich, schließen zu können, dass gelten muss

$$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$$

42.18. Satz der Implikation aus einer Aussage

Zu Deiner Erinnerung an den Satz 57: Es seien A und B Metasymbole von Aussagen, welche in sich und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt:

$$A \Rightarrow (A \lor B)$$

Beweis. Ich möchte zuerst einen eleganteren Beweis versuchen. Gemäß dem Satz 268 der Deltanotation der Implikation kann ich schreiben

(58)
$$\delta(A \vee B) = \delta(A) + \delta(B) - \delta(A) \cdot \delta(B)$$

Aufgrund des Distributivgesetzes der ganzen Zahlen kann ich schreiben:

$$\delta(B) - \delta(A) \cdot \delta(B) = \delta(B) \cdot (1 - \delta(A))$$

Dieses Teilresultat schreibe ich in die vorhergehende Gleichung und erhalte

$$\delta (A \lor B)$$

$$= \delta (A) + \delta (B) - \delta (A) \cdot \delta (B)$$

$$= \delta (A) + \delta (B) \cdot (1 - \delta (A))$$

Da die Gleichheit von ganzen Zahlen transitiv ist, kann ich verkürzt schreiben:

$$\delta(A \lor B) = \delta(A) + \delta(B) \cdot (1 - \delta(A))$$

Nun möchte ich banalerweise zeigen, dass

$$\delta(B) \cdot (1 - \delta(A)) \ge 0$$

ist. Es gilt aufgrund der Definition 261 des Deltasymbols von Kronecker:

$$0 \le \delta(B) \le 1$$

und

$$0 \le \delta(A) \le 1$$

Somit gilt auch

$$-0 = 0 \ge -\delta(A) \ge -1$$

oder auch

$$-1 \le -\delta\left(A\right) \le 0$$

und auch

$$1 - 1 = 0 \le 1 - \delta(A) \le 1 - 0 = 0$$

das bedeutet

$$0 < 1 - \delta(A) < 1$$

und somit auch

$$0 = 0 \cdot 0 \le (1 - \delta(A)) \cdot \delta(B) \le 1 \cdot 1 = 1$$

oder, verkürzt geschrieben

$$0 < (1 - \delta(A)) \cdot \delta(B) < 1$$

Ich drehe die Ungleichung um und erhalte:

$$1 \ge (1 - \delta(A)) \cdot \delta(B) \ge 0$$

also insbesondere

$$(1 - \delta(A)) \cdot \delta(B) \ge 0$$

Diese Ungleichung kann ich in die Gleichung 58 einfügen und erhalte:

$$\delta (A \vee B)$$

$$= \delta (A) + (1 - \delta (A)) \cdot \delta (B)$$

$$\geq \delta (A) + 0$$

$$= \delta (A)$$

Auch diese sogenannte Abschätzung kann ich verkürzt umschreiben zu

$$\delta(A \vee B) \ge \delta(A)$$

Ich kann diese sogenannte Ungleichung umdrehen zu

$$\delta(A) \le \delta(A \lor B)$$

Das Lemma 279 besagt nun, dass ich daraus schließen kann, dass gilt:

$$A \Rightarrow A \vee B$$

Somit hätte ich mit einem geradezu gigantischem Aufwand gezeigt, der Beweis der Behauptung erbracht ist. Nun möchte ich den Beweis auf eine weniger elegante Art ebenfalls erbringen:

Gemäß dem Satz 268 kann ich schreiben:

(59)
$$\delta(A \Rightarrow (A \lor B)) = 1 - \delta(A) \cdot (1 - \delta(A \lor B))$$

Aufgrund des Distributivgesetzes der Multiplikation und der Addition von ganzen Zahlen kann ich schreiben:

(60)
$$\delta(A) \cdot (1 - \delta(A \vee B)) = \delta(A) - \delta(A) \cdot \delta(A \vee B)$$

Wenn ich zeigen kann, dass gilt:

$$\delta(A) \cdot (1 - \delta(A \vee B)) = 0$$

dann bin ich am Ziel. Denn in diesem Fall muss gelten

$$\delta(A \Rightarrow (A \lor B))$$

$$= 1 - \delta(A) \cdot (1 - \delta(A \lor B))$$

$$= 1 - 0$$

$$= 1$$

Also möchte ich im Folgenden zeigen, dass

$$\delta(A) \cdot (1 - \delta(A \vee B)) = 0$$

ist. Ich multipliziere den Ausdruck

$$\delta(A) \cdot (1 - \delta(A \vee B))$$

aus und erhalte

$$(61) \delta(A) \cdot (1 - \delta(A \vee B)) = \delta(A) - \delta(A) \cdot \delta(A \vee B)$$

Aufgrund des Satzes 268 der Deltanotation der Implikation kann ich schreiben:

$$\delta(A \vee B) = \delta(A) + \delta(B) - \delta(A) \cdot \delta(B)$$

Nun kann ich diese Gleichung auf beiden Seiten mit $\delta\left(A\right)$ multiplizieren und erhalte

$$(62) \quad \delta(A) \cdot \delta(A \vee B) = \delta(A) \cdot (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B))$$

Den Ausdruck

$$\delta(A) \cdot (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B))$$

kann ich aufgrund des Distributivgesetzes der Multiplikation umrechnen zu

$$\delta(A) \cdot (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B))$$

$$= \delta(A) \cdot \delta(A) + \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(A) \cdot \delta(B)$$

$$= \delta^{2}(A) + \delta(A) \cdot \delta(B) - \delta^{2}(A) \cdot \delta(B)$$

Da die Gleichheit von ganzen Zahlen transitiv ist, kann ich die obige Kette von Gleichungen verkürzt aufschreiben zu (63)

$$\delta(A) \cdot (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B)) = \delta^{2}(A) + \delta(A) \cdot \delta(B) - \delta^{2}(A) \cdot \delta(B)$$

Die Deltanotation von Aussagen ist gemäß dem Satz 263 idempotent. Darum kann ich die vorhergehende Gleichung 62 umschreiben zu

$$\delta(A) \cdot (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B))$$

$$= \delta^{2}(A) + \delta(A) \cdot \delta(B) - \delta^{2}(A) \cdot \delta(B)$$

$$= \delta(A) + \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B)$$

$$= \delta(A) + 0$$

$$= \delta(A)$$

Wiederum aufgrund der Transitivität der Gleichheit von ganzen Zahlen kann ich dies Kette von Gleichungen verkürzt aufschreiben zu

$$\delta\left(A\right)\cdot\left(\delta\left(A\right)+\delta\left(B\right)-\delta\left(A\right)\cdot\delta\left(B\right)\right)=\delta\left(A\right)$$

Setze ich diese Gleichung in die Gleichung 62 ein, dann erhalte ich

$$\delta(A) \cdot \delta(A \vee B)$$

$$= \delta(A) \cdot fv \left(\delta(A) + \delta(B) - \delta(A) \cdot \delta(B)\right)$$

$$= \delta(A)$$

und wiederum aufgrund der Transitivität der Gleichheit von ganzen Zahlen verkürzt aufgeschrieben:

$$\delta(A) \cdot \delta(A \vee B) = \delta(A)$$

Wenn ich diese Gleichheit in die Gleichung 60 einsetze dann erhalte ich:

$$\delta(A) \cdot (1 - \delta(A \vee B))$$

$$= \delta(A) - \delta(A) \cdot \delta(A \vee B)$$

$$= \delta(A) - \delta(A)$$

$$= 0$$

oder wiederum aufgrund der Transitivität der Gleichheit von ganzen Zahlen umgeschrieben:

$$\delta(A) \cdot (1 - \delta(A \vee B)) = 0$$

Dieses Resultat kann ich dann in die Gleichung 59 einsetzen und erhalte dann, wie gewünscht:

$$\delta (A \Rightarrow (A \lor B))$$

$$= 1 - \delta (A) \cdot (1 - \delta (A \lor B))$$

$$= 1 - 0$$

$$= 1$$

also erneut aufgrund der Transitivität der Gleichheit der ganzen Zahlen

$$\delta\left(A\Rightarrow\left(A\vee B\right)\right)=1$$

Also kann ich gemäß dem Satz 262 folgern, dass die Aussage $A \Rightarrow (A \lor B)$ für alle Aussagen A oder B wahr sein muss und darum ein logischer Satz sein muss. Darum wage ich an dieser Stelle die Behauptung, den Beweis für die Richtigkeit des Satzes erneut erbracht zu haben.

42.19. Satz der Äquivalenz von Äquivalenz und negierten Aussagen

Zu Deiner Erinnerung: Es seien A,B Metasymbole von Aussagen, welche in sich selbst und bezüglich den Aussagen des Satzes widerspruchsfrei seien. Dann gilt

$$(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$$

Beweis. Gemäß dem Satz 271 der Deltanotation der Äquivalenz gilt

$$\delta\left((A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)\right)$$

$$= 1 - (\delta(A \Leftrightarrow B) - \delta(\neg A \Leftrightarrow \neg B))^{2}$$

Wenn ich also zeigen kann, dass gilt

$$\delta (A \Leftrightarrow B) = \delta (\neg A \Leftrightarrow \neg B)$$

dann bin ich am Ziel. Es gilt wiederum gemäß dem Satz 271 der Deltanotation der Äquivalenz gilt

$$\delta(\neg A \Leftrightarrow \neg B) = 1 - (\delta(\neg A) - \delta(\neg B))^2$$

Nun möchte ich zeigen, dass gilt:

$$\delta(\neg A) - \delta(\neg B) = \delta(B) - \delta(A)$$

Es gilt aufgrund des Satzes 266

$$\delta(\neg A) = 1 - \delta(A)$$

$$\delta(\neg B) = 1 - \delta(B)$$

und somit

$$\delta(\neg A) - \delta(\neg B)$$
= 1 - \delta(A) - (1 - \delta(B))

Die Klammer um den Ausdruck $1-\delta\left(B\right)$ kann ich wegen den Rechenregeln der ganzen Zahlen auflösen zu

$$\delta(\neg A) - \delta(\neg B)$$

$$= 1 - \delta(A) - (1 - \delta(B))$$

$$= 1 - \delta(A) - 1 + \delta(B)$$

$$= 1 - 1 + \delta(B) - \delta(A)$$

$$= 0 + \delta(B) - \delta(A)$$

$$= \delta(B) - \delta(A)$$

Auch diese Kette von Gleichungen kann wegen der Transitivität der Gleichheit von ganzen Zahlen verkürzt werden zu:

(65)
$$\delta(\neg A) - \delta(\neg B) = \delta(B) - \delta(A)$$

Nun kann ich schreiben, indem ich die Rechenregeln der ganzen Zahlen anwende:

$$(\delta(A) - \delta(B))^{2}$$
= $(-(-\delta(A) + \delta(B)))^{2}$
= $(-(\delta(B) - \delta(A)))^{2}$
= $(-1 \cdot (\delta(B) - \delta(A)))^{2}$
= $(-1)^{2} \cdot (\delta(B) - \delta(A))^{2}$
= $1 \cdot (\delta(B) - \delta(A))^{2}$
= $(\delta(B) - \delta(A))^{2}$

Da die Gleichheit von ganzen Zahlen transitiv ist, kann ich verkürzt schreiben

$$(\delta(A) - \delta(B))^{2} = (\delta(B) - \delta(A))^{2}$$

Nun kann ich die Gleichung 65 verwenden und schreiben:

$$(\delta(A) - \delta(B))^{2}$$

$$= (\delta(B) - \delta(A))^{2}$$

$$= (\delta(\neg A) - \delta(\neg B))^{2}$$

Aufgrund der Transitivität der Gleichheit von ganzen Zahlen kann ich also schreiben:

$$(\delta(A) - \delta(B))^{2} = (\delta(\neg A) - \delta(\neg B))^{2}$$

Da die Gleichheit symmetrisch ist, kann ich auch schreiben

$$(\delta (\neg A) - \delta (\neg B))^{2}$$

= $(\delta (A) - \delta (B))^{2}$

Wenn ich dieses Resultat in die Gleichung 64 einfüge, dann erhalte ich

$$\delta (\neg A \Leftrightarrow \neg B)$$
= 1 - $(\delta (\neg A) - \delta (\neg B))^2$
= 1 - $(\delta (A) - \delta (B))^2$

Wiederum aufgrund der Transitivität der Gleichheit von ganzen Zahlen kann ich schreiben:

$$\delta \left(\neg A \Leftrightarrow \neg B \right) = 1 - \left(\delta \left(A \right) - \delta \left(B \right) \right)^2$$

Nun kann ich den Satz 272 sozusagen umgekehrt verwenden und erhalte

$$\delta (\neg A \Leftrightarrow \neg B)$$

$$= 1 - (\delta (A) - \delta (B))^{2}$$

$$= \delta (A \Leftrightarrow B)$$

Und wenn ich die Transitivität erneut anwende, erhalte ich

$$\delta \left(\neg A \Leftrightarrow \neg B \right) = \delta \left(A \Leftrightarrow B \right)$$

Schlussendlich kann ich ebenfalls den Satz 264 ebenfalls "umgekehrt" anwenden und erhalte:

$$(\neg A \Leftrightarrow \neg B) \Leftrightarrow (A \Leftrightarrow B)$$

Das war jedoch genau die Behauptung. Somit glaube ich, die Richtigkeit der Behauptung wiederum gezeigt zu haben.

42.20. Äquivalenz-Antivalenz-Satz

Zu Deiner Erinnerung: Es seien A, B Metasymbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt:

$$\neg (A \Leftrightarrow B) \Leftrightarrow (A \Leftrightarrow B)$$

Beweis. Ich möchte zuerst zeigen, dass gilt

$$\delta\left(\neg\left(A \Leftrightarrow B\right)\right) = \delta\left(A \Leftrightarrow B\right)$$

Aufgrund des Satzes 267 der Deltanotation der Negation kann ich schreiben:

(67)
$$\delta\left(\neg\left(A \Leftrightarrow B\right)\right) = 1 - \delta\left(A \Leftrightarrow B\right)$$

Nun kann ich aufgrund des Satzes 272 schreiben:

$$\delta(A \Leftrightarrow B) = 1 - (\delta(A) - \delta(B))^{2}$$

Diese Gleichung kann ich in die vorhergehende Gleichung 67 einsetzen und erhalte:

$$\delta (\neg (A \Leftrightarrow B))$$

$$=1 - \delta (A \Leftrightarrow B)$$

$$=1 - (1 - (\delta (A) - \delta (B))^{2})$$

oder, da die Gleichheit von ganzen Zahlen transitiv ist:

$$\delta\left(\neg\left(A \Leftrightarrow B\right)\right) = 1 - \left(1 - \left(\delta\left(A\right) - \delta\left(B\right)\right)^{2}\right)$$

Aufgrund der Rechenregeln für ganze Zahlen kann ich diese Gleichung umformen zu

$$\delta \left(\neg (A \Leftrightarrow B) \right)$$

$$= 1 - \left(1 - \left(\delta (A) - \delta (B) \right)^2 \right)$$

$$= 1 - 1 + \left(\delta (A) - \delta (B) \right)^2$$

$$= 0 + \left(\delta (A) - \delta (B) \right)^2$$

$$= \left(\delta (A) - \delta (B) \right)^2$$

oder wiederum aufgrund der Transitivität der Gleichheit von ganzen Zahlen verkürzt aufgeschrieben:

(68)
$$\delta \left(\neg \left(A \Leftrightarrow B \right) \right) = \left(\delta \left(A \right) - \delta \left(B \right) \right)^2$$

Der Satz 271 "rückwärts angewendet" besagt nun, dass gilt

$$(\delta(A) - \delta(B))^2 = \delta(A \Leftrightarrow B)$$

Dieses Resultat kann ich nun ich die Gleichung 68 einfügen und erhalte dadurch

$$\delta\left(\neg\left(A \Leftrightarrow B\right)\right) = \left(\delta\left(A\right) - \delta\left(B\right)\right)^{2} = \delta\left(A \Leftrightarrow B\right)$$

oder wiederum dank der Transitivität der Gleichheit von ganzen Zahlen verkürzt aufgeschrieben:

$$\delta\left(\neg\left(A \Leftrightarrow B\right)\right) = \delta\left(A \Leftrightarrow B\right)$$

Damit habe ich jedoch die Richtigkeit der Gleichung 66 erbracht. Also gilt gemäß dem Satz 262, dass die Aussage

$$(A \Leftrightarrow B) \Leftrightarrow \neg (A \Leftrightarrow B)$$

für alle vernünftigen Aussagen A, B wahr und somit ein logischer Satz ist. Darum erachte ich den Satz als erbracht.

42.21. Kommutativität der NAND-Verknüpfung

Zu Deiner Erinnerung: Es seinen A, B Metasymbole von Aussagen, welche in sich selbst, jedoch auch in Bezug auf die anderen Aussagen des Beweises widerspruchsfrei seien. Dann gilt:

$$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$$

Beweis. Gemäß dem Satz 273 der Delta-Notation der NAND-Verknüpfung kann ich schreiben:Es gilt

(69)
$$\delta(A\overline{\wedge}B) = 1 - \delta(A) \cdot \delta(B)$$

Die Multiplikation von ganzen Zahlen ist kommutativ. Darum kann ich schreiben:

$$\delta(A) \cdot \delta(B) = \delta(B) \cdot \delta(A)$$

Diese Gleichung kann ich in die vorhergehende Gleichung 69 einsetzen und ich erhalte:

$$\delta (A \overline{\wedge} B)$$

$$= 1 - \delta (A) \cdot \delta (B)$$

$$= 1 - \delta (B) \cdot \delta (A)$$

Da die Gleichheit von ganzen Zahlen transitiv ist, kann ich die vorhergehende Gleichung verkürzt aufschreiben zu:

$$\delta(A\overline{\wedge}B) = 1 - \delta(B) \cdot \delta(A)$$

Nun wende ich auf die rechte Seite der Gleichung den Satz 273 rückwärts an und erhalte:

$$1 - \delta(B) \cdot \delta(A) = \delta(B \wedge A)$$

Dieses Resultat setze ich wiederum in die vorhergehende Gleichung ein und erhalte:

$$\delta (A \overline{\wedge} B)$$

$$= 1 - \delta (B) \cdot \delta (A)$$

$$= \delta (B \overline{\wedge} A)$$

Wiederum kann ich das Resultat verkürzt aufschreiben, da die Gleichheit von ganzen Zahlen transitiv ist und erhalte:

$$\delta(A\overline{\wedge}B) = \delta(B\overline{\wedge}A)$$

Somit muss gemäß dem Satz 264 gelten, dass

$$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$$

ein logischer Satz ist.

42.22. Zusammenhang NAND-Verknüpfung und Negation

Zu Deiner Erinnerung: Es sei A das Metasymbol einer Aussage, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei sei. Dann gilt gemäß dem Satz 80:

$$(A \overline{\wedge} A) \Leftrightarrow \neg A$$

Beweis. Es gilt gemäß dem Satz 273 der Deltanotation der Negation:

$$\delta (A \overline{\wedge} A)$$

$$= 1 - \delta (A) \cdot \delta (A)$$

$$= 1 - \delta^2 (A)$$

und da die Gleichheit von ganzen Zahlen idempotent ist, kann ich dies verkürzt aufschreiben zu

(71)
$$\delta(A\overline{\wedge}A) = 1 - \delta^2(A)$$

Der Satz 263 der Idempotenz der Deltanotation besagt nun, dass

$$\delta^2(A) = \delta(A)$$

ist. Dieses Resultat kann ich in die vorhergehende Gleichung 71 einsetzen und erhalte:

$$\delta (A \overline{\wedge} A)$$

$$= 1 - \delta^{2} (A)$$

$$= 1 - \delta (A)$$

Und erneut kann ich dank der Transitivität der Gleichheit von ganzen Zahlen diese Gleichungen verkürzt aufschreiben zu

(72)
$$\delta(A\overline{\wedge}A) = 1 - \delta(A)$$

Schlussendlich lehrt mich der Satz 266 der Deltanotation der Negation, wenn ich ihn "umgekehrt verwende", dass gelten muss

$$1 - \delta(A) = \delta(\neg A)$$

Und auch dieses Resultat kann ich in die Gleichung 72 einsetzen und erhalte

$$\delta (A \overline{\wedge} A)$$

$$= 1 - \delta (A)$$

$$= \delta (\neg A)$$

Und auch diese Kette von Gleichungen kann ich dank der Transitivität der Gleichheit von ganzen Zahlen verkürzt aufschreiben zu

$$\delta(A \overline{\wedge} A) = \delta(\neg A)$$

Somit kann gemäß dem Satz 264 schließen, dass die Aussage

$$(A\overline{\wedge}A) \Leftrightarrow \neg A$$

für alle möglichen Aussagen A wahr und somit ein logischer Satz ist. Darum betrachte ich den Beweis des Satzes als erbracht.

42.23. Zusammenhang NAND-Verknüpfung und Identität

Zu Deiner Erinnerung: Es sei A ein Metasymbol von Aussagen, welches in sich selbst und gegenüber anderen Symbolen des Beweises widerspruchsfrei ist. Dann gilt:

$$(A\overline{\wedge}A)\overline{\wedge}(A\overline{\wedge}A) \Leftrightarrow A$$

Beweis. Es ist gemäß dem Satz 273 der Deltanotation der NAND-Verknüpfung

$$\delta ((A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A))$$

$$= 1 - \delta (A \overline{\wedge} A) \cdot \delta (A \overline{\wedge} A)$$

$$= 1 - \delta^2 (A \overline{\wedge} A)$$

Da die Gleichheit von ganzen Zahlen transitiv ist, kann ich dies verkürzt aufschreiben zu:

(73)
$$\delta\left((A\overline{\wedge}A)\overline{\wedge}(A\overline{\wedge}A)\right) = 1 - \delta^2(A\overline{\wedge}A)$$

Da die Deltanotation gemäß dem Satz 263 idempotent ist, kann ich schreiben

$$\delta^2 \left(A \overline{\wedge} A \right) = \delta \left(A \overline{\wedge} A \right)$$

Dieses Resultat kann ich in die Gleichung 73 einsetzen. Ich erhalte:

(74)
$$\delta\left((A\overline{\wedge}A)\overline{\wedge}(A\overline{\wedge}A)\right) = 1 - \delta\left(A\overline{\wedge}A\right)$$

Nun möchte ich für einmal nicht so vorgehen, wie ich es bis jetzt getan habe. Denn "Abwechslung macht das Leben süß". Ich will damit schreiben, dass Abwechslung gut tut. Der Satz 80 lehrt, dass gilt

$$A\overline{\wedge}A \Leftrightarrow \neg A$$

Nun lehrt der 264 dass daraus folgt:

$$\delta\left(A\overline{\wedge}A\right) = \delta\left(\neg A\right)$$

Der Satz 266 lehrt, dass gilt

$$\delta\left(\neg A\right) = 1 - \delta\left(A\right)$$

Dieses Resultat kann ich in die Gleichung 75 einsetzen und erhalte:

$$\delta(A\overline{\wedge}A) = \delta(\neg A) = 1 - \delta(A)$$

oder, da die Gleichheit von ganzen Zahlen transitiv ist:

$$\delta(A \overline{\wedge} A) = 1 - \delta(A)$$

Nun kann ich dieses Resultat in die Gleichung 74 einsetzen. Es resultiert:

$$\delta ((A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A))$$

$$= 1 - \delta (A \overline{\wedge} A)$$

$$= 1 - (1 - \delta (A))$$

Und auch diese Kette von Gleichung kann dank der Transitivität der Gleichheit von ganzen Zahlen umgeschrieben werden zu

(76)
$$\delta\left(\left(A\overline{\wedge}A\right)\overline{\wedge}\left(A\overline{\wedge}A\right)\right) = 1 - (1 - \delta\left(A\right))$$

Wende ich die Rechenregeln von ganzen Zahlen an, dann erhalte ich:

$$\delta ((A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A))$$

$$= 1 - (1 - \delta (A))$$

$$= 1 - 1 + \delta (A)$$

$$= 0 + \delta (A)$$

$$= \delta (A)$$

Schlussendlich kann ich wiederum die Transitivität der Gleichheit von ganzen Zahlen verwenden und schreiben:

$$\delta\left((A\overline{\wedge}A)\,\overline{\wedge}\,(A\overline{\wedge}A)\right) = \delta\left(A\right)$$

Also kann ich gemäß dem Satz 264 folgern, dass gilt:

$$(A\overline{\wedge}A)\overline{\wedge}(A\overline{\wedge}A) \Leftrightarrow A$$

Das ist jedoch zu beweisende Behauptung. Aus diesem Grund meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

KAPITEL 43

Über Orangenhaufen

Orangen können ja so auf zweierlei Arten regelmäßig angehäuft werden. Einerseits so, dass die unterste Schicht ein quadratisches Gitter bilden. Andererseits so, dass die unterste Schicht ein dreieckiges Gitter bilden. Die Beispiel hinken jedoch aus naheliegenden praktischen Gründen: Orangen sind nur beschränkt fähig, Druck auszuhalten. Besonders wenn sie schon ein wenig gereift sind, dann beginnen sie schon dann zu tropfen, falls sie bloß ein wenig gedrückt werden. Falls Du Dir etwas Stabileres ausdenken willst, so kannst Du Dir beispielsweise Fußbälle oder Kanonenkugeln vorstellen. Von Kanonenkugeln her soll auch die Fragestellung kommen, hat seinerzeit Heuser geschrieben. Aber die Vorstellung erscheint mir dann doch ein wenig gar martialisch (was gemäß Duden gut mit dem Wort "kriegerisch" umschrieben werden könne).

Nun stellt sich unabhängig von der Art der verwendeten Kugeln die Frage, wie viele Orangen sich insgesamt auf den Stapeln befinden, wenn die Haufen eine bestimmte Anzahl von Schichten (nachfolgend mit "n" bezeichnet) die Haufen besitzen? Das möchte ich nachfolgend überlegen.

43.1. Zusammenhang NAND-Verknüpfung und Konjunktion

Zu Deiner Erinnerung: Es seien A, B Metasymbole von Aussagen, welche in sich selbst und bezüglich den anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$\neg (A \land B) \Leftrightarrow A \overline{\land} B$$

Beweis. Gemäß dem Satz 266 der Deltanotation der Negation kann ich schreiben:

(77)
$$\delta\left(\neg\left(A\wedge B\right)\right) = 1 - \delta\left(A\wedge B\right)$$

Der Satz 267 besagt nun, dass gilt:

$$\delta(A \wedge A) = \delta(A) \cdot \delta(B)$$

Dieses Resultat kann ich in die Gleichung 77 einsetzen und ich erhalte

$$\delta (\neg (A \land B))$$

$$= 1 - \delta (A \land B)$$

$$= 1 - \delta (A) \cdot \delta (B)$$
931

Da die Gleichheit von ganzen Zahlen transitiv ist, kann ich diese Gleichheit verkürzt aufschreiben und es resultiert:

(78)
$$\delta\left(\neg\left(A \land B\right)\right) = 1 - \delta\left(A\right) \cdot \delta\left(B\right)$$

Nun kann ich den Satz 273 "umgekehrt" verwenden und ich erhalte

$$1 - \delta(A) \cdot \delta(B) = \delta(A \overline{\wedge} B)$$

Wenn ich dies in die Gleichung 78 einsetze, dann erhalte ich

$$\delta\left(\neg\left(A \land B\right)\right) = 1 - \delta\left(A\right) \cdot \delta\left(B\right) = \delta\left(A\overline{\land}B\right)$$

Wiederum aufgrund der Transitivität der Gleichheit von ganzen Zahlen kann ich die Gleichung verkürzt aufschreiben zu

$$\delta\left(\neg\left(A\wedge B\right)\right) = \delta\left(A\overline{\wedge}B\right)$$

Also kann ich wiederum gemäß dem Satz 264 schließen, dass

$$\neg (A \land B) \Leftrightarrow A \overline{\land} B$$

ein für alle möglichen Aussagen wahr und somit ein logischer Satz ist. Damit meine, ich gezeigt zu haben, dass die NAND-Verknüpfung wirklich äquivalent zur Negation einer Konjunktion ist.

43.2. Zusammenhang NAND-Verknüpfung und Implikation

Zu Deiner Erinnerung: Es seien A, B Metasymbole von Aussagen, welche in sich selbst und bezüglich anderen Symbolen des Beweises widerspruchsfrei seien. Dann gilt gemäß dem Satz 84:

$$(A\overline{\wedge}(B\overline{\wedge}B)) \Leftrightarrow (A \Rightarrow B)$$

Beweis. Es gilt gemäß dem Satz 273

(79)
$$\delta(A\overline{\wedge}(B\overline{\wedge}B)) = 1 - \delta(A) \cdot \delta(B\overline{\wedge}B)$$

Nun kürze ich ein wenig ab. Da ich gemäß dem Satz 80 schließen kann dass

$$\neg B \Leftrightarrow B \overline{\wedge} B$$

ist, muss gemäß dem Satz 264 ebenfalls gelten:

$$\delta\left(\neg B\right) = \delta\left(B\overline{\wedge}B\right)$$

Also ist auch, da die Gleichheit von ganzen Zahlen symmetrisch ist:

$$\delta(B\overline{\wedge}B) = \delta(\neg B)$$

Weiter kann ich aufgrund des Satzes 266 der Deltanotation der Negation schreiben, dass gilt:

$$\delta\left(\neg B\right) = 1 - \delta\left(B\right)$$

Dieses Resultat kann in die Gleichung 80 einsetzen und ich erhalte:

$$\delta(B\overline{\wedge}B) = \delta(\neg B) = 1 - \delta(B)$$

Dank der Transitivität der Gleichheit von ganzen Zahlen kann ich diese Kette von Gleichungen verkürzen zu:

$$\delta(B\overline{\wedge}B) = 1 - \delta(B)$$

Also kann ich auch dieses Ergebnis in die Gleichung 79 einsetzen und ich erhalte:

$$\delta (A \overline{\wedge} (B \overline{\wedge} B))$$
= $1 - \delta (A) \cdot \delta (B \overline{\wedge} B)$
= $1 - \delta (A) \cdot (1 - \delta (B))$

Und auch diese Kette von Gleichungen verkürzen zu

(81)
$$\delta(A\overline{\wedge}(B\overline{\wedge}B)) = 1 - \delta(A) \cdot (1 - \delta(B))$$

Wenn ich die rechte Seite dieser Gleichung mit 268 vergleiche, dann erkenne ich, dass gelten muss

$$1 - \delta(A) \cdot (1 - \delta(B)) = \delta(A \Rightarrow B)$$

Nun setze ich dieses Resultat wiederum in die Gleichung 81 ein und erhalte so:

$$\delta(A\overline{\wedge}(B\overline{\wedge}B)) = 1 - \delta(A) \cdot (1 - \delta(B)) = \delta(A \Rightarrow B)$$

Und auch diese Kette von Gleichungen kann ich aufgrund der Transitivität der Gleichheit von ganzen Zahlen verkürzen zu

$$\delta(A\overline{\wedge}(B\overline{\wedge}B)) = \delta(A \Rightarrow B)$$

Somit kann ich gemäß dem Satz 264 schließen:

$$(A\overline{\wedge}(B\overline{\wedge}B)) \Leftrightarrow (A \Rightarrow B)$$

Dies ist jedoch gerade die Behauptung. Also bin ich der Meinung, dass ich den Beweis der Behauptung erneut erbracht habe.

KAPITEL 44

NAND-Verknüpfung als spezielle Implikation

Satz 280. Es seien A, B Symbole von Aussagen. Dann gilt

$$A\overline{\wedge}B\Leftrightarrow (A\Rightarrow (\neg B))$$

Beweis. Es ist

$$\delta ((A \Rightarrow (\neg B)))$$

$$=1 - \delta (A) \cdot (1 - \delta (\neg B))$$

$$=1 - \delta (A) \cdot (1 - (1 - \delta (B)))$$

$$=1 - \delta (A) \cdot (1 - 1 + \delta (B))$$

$$=1 - \delta (A) \cdot \delta (B)$$

$$=\delta (A \overline{\land} B)$$

Damit ist die Behauptung bereits erbracht.

KAPITEL 45

Logische Aussagen mit dem Computer überprüfen

Wie kannst Du eine logische Aussage auf dem Computer überprüfen? Nun, ich habe einen Weg bereits vorgezeichnet: Du kannst die δ -Notation verwenden und diese beispielsweise in eine Excel-Tabelle übertragen. Ich möchte ein Beispiel machen. Es sei die Aussage gegeben:

Behauptung 281. Es seien A,B Symbole für Aussagen. Dann gilt die Aussage:

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$

Nun, ich vermute, Du weißt, dass diese Aussage nicht wahr ist. Aber wie beweise ich das? Ich habe in den Tabellen 1 sowie 2 aufgeschrieben, wie Du das mit den Anwendungen "Excel" oder "Open Office Calc" auf dem Computer berechnen könntest, ohne dass Du die ganzen Definitionen nachschlagen müsstest.

In der Spalte L ist dann sichtbar, dass die Behauptung

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$

nicht für alle Aussagen A, B gilt. Denn ist die Aussage A nicht wahr, die Aussage B hingegen schon, dann ist auch die Aussage

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$

eben nicht wahr. Also ist die Aussage

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$

per Definition eben kein logische Satz.

TABELLE 1. 1. Teil Beispiel Berechnung logischer Aussage mittels Kalkulationsprogramm

	A	B	C	D	E	F	G	H
1	A	В	$A \Rightarrow B$ (Formeln)	$A \Rightarrow B$	$\neg A$ (Formeln)	$\neg A$	$\neg B$ (Formeln)	$\neg B$
2	0	0	=1-A2*(1-B2)	1	=1-A2	0	=1-B2	1
3	0	1	=1-A3*(1-B3)	1	=1-A3	0	=1-B3	0
4	1	0	=1-A4*(1-B4)	0	=1-A4	1	=1-B4	1
5	1	1	=1-A5*(1-B5)	1	=1-A5	1	=1-B5	0

	I	J	K	L
1	$\neg A \Rightarrow \neg B$	$\neg A \Rightarrow \neg B$	$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$	$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$
1	(Formeln)	$\neg A \Rightarrow \neg D$	(Formeln)	$(A \Rightarrow D) \Rightarrow (\neg A \Rightarrow \neg D)$
2	=1-F2*(1-H2)	1	=1-D2*(1-J2)	1
3	=1-F3*(1-H3)	0	=1-D3*(1-J3)	0
4	=1-F4*(1-H4)	1	=1-D4*(1-J4)	1
5	=1-F5*(1-H5)	0	=1-D5*(1-J5)	1

TABELLE 2. 2. Teil Beispiel Berechnung logischer Aussage mittels Kalkulationsprogramm

Jedoch kann ich auch nicht schreiben, dass für alle Aussagen A,B gilt

$$\neg \left((A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B) \right)$$

Auch diese Behauptung ist nicht richtig, falls etwa sowohl A wie auch B Symbole für wahre Aussagen sind, welche beide wahr sind. Somit habe ich mit diesem Beispiel gezeigt, dass es Aussagen über beliebige Aussagen gibt, welche keine logischen Sätze sind.

Übrigens lassen sich auch Verweise mittels Open Office/ Excel-Dateien finden. Was ich damit sagen will. Im Prinzip ist ausschließlich das Formulieren der Ausdrücke eine Frage der Kreativität. Alles andere lässt sich sozusagen mechanisch/ elektronisch regeln. Aber genau darum geht es nicht in diesem Text. Es geht mir nicht darum, was richtig ist oder nicht so richtig, sondern eher, warum es als richtig oder nicht richtig betrachtet wird. Das ist die eigentliche Herausforderung. Der Prozess der Umwandlung eines Sachverhalts in die Sprache der Mathematik (der von mir so genannte "Prozess der Mathematisierung") ist meines Erachtens weitgehend abgeschlossen, falls exemplarisch ein Thema gründlich dargelegt wird. Die einzelnen Teilgebiete sind dann meines Erachtens nicht mehr so verschieden.

Gerne hätte ich neue Funktionen für Open Office geschrieben. Aber da bin ich nicht so gut darin (wie ich es im Abschnitt über die Limitierungen dieses Textes geschrieben habe).

Ich möchte trotzdem noch eine kleine "Warnung" aussprechen: Die naive, elementare Logik wird sehr häufig in der Mathematik verwendet. Jedoch ohne, dass genau gesagt wird, was genau der logische Gedankengang ist. Das ist für mich recht stoßend. Trotzdem muss ich gestehen, dass ich es selbst wohl nicht unbedingt besser kann. Denn auch ich habe sehr Mühe, bei der δ -Notation der Beweise der logischen Schritte diese präzise herzuleiten. Jedoch plane ich schon, diese Verweise noch einmal hinzuschreiben. Da es mir Wert erscheint, dies ganz präzise zu fixieren sozusagen als selbstgewählte Lebensaufgabe. Was die Nachkommen damit machen, kann und will ich nicht bestimmen. Sehr wahrscheinlich

wird dieses Skript dann einmal sang- und klanglos als Werk eines mehr oder weniger verrückten Mannes entsorgt. Sei's drum.

Zuletzt kann ich schreiben, was noch weiter gemacht werden kann. Mit Hilfe von Computerprogrammen können logische Sätze gesucht werden. Dazu können logische Aussagen mit den Symbolen A_n , wobei n eine natürliche Zahl ist, erzeugt werden. Anschließend kann mit Hilfe eines weiteren Teils der Programms untersucht werden, ob die Aussage ein logischer Satz ist. Natürlich ist diese Vorgehensweise haarscharf an der Grenze des Wahnsinns. "Wozu soll das gut sein?" Und wirklich ist es so, dass der praktische Nutzen wahrscheinlich ziemlich klein und die gefundenen logischen Sätze wahrscheinlich eher banal als weltbewegend sein dürften. Jedoch ist es so wie mit der Entdeckung eines neuen Kontinents: Es könnte möglich sein, dass dabei etwas entdeckt wird, an was vorher noch nie jemand gedacht hat.

KAPITEL 46

Erste Vorstufe zum großen Äquivalenzsatz

Ich möchte folgende Ersetzungsregeln formulieren und beweisen:

Lemma 282. Es seien A, B und C Symbole von Aussagen. Dann gilt

$$(B \Leftrightarrow C)$$

$$\Rightarrow (A \land B \Leftrightarrow A \land C)$$

$$\land (A \lor B \Leftrightarrow A \lor C)$$

$$\land ((A \Rightarrow B) \Leftrightarrow (A \Rightarrow C))$$

$$\land ((A \Leftarrow B) \Leftrightarrow (A \Leftarrow C))$$

$$\land ((A\overline{\land}B) \Leftrightarrow (A\overline{\land}C))$$

$$\land ((A\overline{\lor}B) \Leftrightarrow (A\overline{\lor}C))$$

Beweis. Zuerst möchte ich zeigen:

$$(B \Leftrightarrow C) \Rightarrow (A \land B \Leftrightarrow A \land C)$$

Ich möchte trotzdem zuerst einmal den Satz mittels der δ -Notation erbringen:

$$\delta\left((B \Leftrightarrow C) \Rightarrow (A \land B \Leftrightarrow A \land C)\right)$$

$$=1 - \delta\left(B \Leftrightarrow C\right) \cdot \left(1 - \delta\left(A \land B \Leftrightarrow A \land C\right)\right)$$

$$=1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(1 - \left(1 - \left(\delta\left(A\right) \cdot \delta\left(B\right) - \delta\left(A\right) \cdot \delta\left(C\right)\right)^{2}\right)\right)$$

$$=1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(1 - \left(1 - \left(\delta\left(A\right) \cdot \delta\left(B\right) - \delta\left(A\right) \cdot \delta\left(C\right)\right)^{2}\right)\right)$$

$$=1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(1 - 1 + \left(\delta\left(A\right) \cdot \delta\left(B\right) - \delta\left(A\right) \cdot \delta\left(C\right)\right)^{2}\right)$$

$$=1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(\delta\left(A\right) \cdot \delta\left(B\right) - \delta\left(C\right)\right)^{2}$$

$$=1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \delta\left(A\right) \cdot \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}$$

$$=1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \delta\left(A\right) \cdot \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}$$

$$=1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \delta\left(A\right) \cdot \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}$$

$$=1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \delta\left(A\right) \cdot \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}$$

$$=1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \delta\left(A\right) \cdot \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}$$

$$=1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right)$$

Da nun

$$\left(\delta\left(B\right) - \delta\left(C\right)\right)^{2} \in \left\{0, 1\right\}$$

ist, muss

$$(\delta(B) - \delta(C))^4 = (\delta(B) - \delta(C))^2$$

sein. Denn ist

$$\left(\delta\left(B\right) - \delta\left(C\right)\right)^2 = 0$$

dann gilt

$$(\delta(B) - \delta(C))^{4}$$

$$= (\delta(B) - \delta(C))^{2} \cdot (\delta(B) - \delta(C))^{2}$$

$$= 0 \cdot 0$$

$$= 0$$

$$= (\delta(B) - \delta(C))^{2}$$

Ist

$$(\delta(B) - \delta(C))^2 = 1$$

dann ist

$$(\delta(B) - \delta(C))^{4}$$

$$= (\delta(B) - \delta(C))^{2} \cdot (\delta(B) - \delta(C))^{2}$$

$$= 1 \cdot 1$$

$$= 1$$

$$= (\delta(B) - \delta(C))^{2}$$

Darum ist diese kleine Behauptung erbracht. Weiter kann ich daraus schließen, dass gelten muss

$$\left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2} = 0$$

Denn es ist

$$(1 - (\delta(B) - \delta(C))^{2}) \cdot (\delta(B) - \delta(C))^{2}$$

$$= (\delta(B) - \delta(C))^{2} - (\delta(B) - \delta(C))^{4}$$

$$= (\delta(B) - \delta(C))^{2} - (\delta(B) - \delta(C))^{2}$$

$$= 0$$

Somit kann ich schreiben

$$\delta\left(\left(B\Leftrightarrow C\right)\Rightarrow\left(A\wedge B\Leftrightarrow A\wedge C\right)\right)$$

$$=1-\delta\left(A\right)\cdot\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\cdot\left(1-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)$$

$$=1-\delta\left(A\right)\cdot\left(1-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)\cdot\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}$$

$$=1-\delta\left(A\right)\cdot0$$

$$=1-0$$

$$=1$$

Nun möchte ich zeigen

$$(B \Leftrightarrow C) \Rightarrow (A \lor B \Leftrightarrow A \lor C)$$

Es gilt

$$\delta(A \lor B \Leftrightarrow A \lor C)$$
=1 - (\delta(A \lor B) - \delta(A \lor C))^2
=1 - ((\delta(A) + \delta(B) - \delta(A) \cdot \delta(B)) - (\delta(A) + \delta(C) - \delta(A) \cdot \delta(C)))^2
=1 - (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B) - \delta(A) - \delta(C) + \delta(A) \cdot \delta(C))^2
=1 - (\delta(B) - \delta(A) \cdot \delta(B) - \delta(C) + \delta(A) \cdot \delta(C))^2
=1 - (\delta(B) \cdot (1 - \delta(A)) - \delta(C) \cdot (1 - \delta(A)))^2
=1 - (\delta(B) \cdot (C) \cdot (1 - \delta(A)))^2
=1 - ((\delta(B) - \delta(C))^2 \cdot (1 - \delta(A)))^2

Somit kann ich schreiben

$$\delta\left((B \Leftrightarrow C) \Rightarrow (A \lor B \Leftrightarrow A \lor C)\right)$$

$$=1 - \delta\left(B \Leftrightarrow C\right) \cdot \left(1 - \delta\left(A \lor B \Leftrightarrow A \lor C\right)^{2}\right)$$

$$=1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2} \cdot \left(1 - \delta\left(A\right)\right)^{2}\right)\right)$$

$$=1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(1 - 1 + \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2} \cdot \left(1 - \delta\left(A\right)\right)^{2}\right)$$

$$=1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(0 + \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2} \cdot \left(1 - \delta\left(A\right)\right)^{2}\right)$$

$$=1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(\left(\delta\left(B\right) - \delta\left(C\right)\right)^{2} \cdot \left(1 - \delta\left(A\right)\right)^{2}\right)$$

$$=1 - \left(\left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(1 - \delta\left(A\right)\right)^{2}$$

Gemäß dem oben geschriebenen kann wiederum folgern, dass

$$\left(\left(1 - \left(\delta \left(B \right) - \delta \left(C \right) \right)^2 \right) \cdot \left(\delta \left(B \right) - \delta \left(C \right) \right)^2 \right) = 0$$

sein muss. Also muss ebenso gelten:

$$\delta\left((B \Leftrightarrow C) \Rightarrow (A \lor B \Leftrightarrow A \lor C)\right)$$

$$=1 - \left(\left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(1 - \delta\left(A\right)\right)^{2}$$

$$=1 - 0 \cdot \left(1 - \delta\left(A\right)\right)^{2}$$

$$=1 - 0$$

$$=1$$

Somit habe ich auch diesen Beweis erbracht. Nun kommt der nächste Teil. Ich möchte zeigen, dass gilt

$$(B \Leftrightarrow C) \Rightarrow ((A \Rightarrow B) \Leftrightarrow (A \Rightarrow C))$$

Es ist

$$\delta\left((A \Rightarrow B) \Leftrightarrow (A \Rightarrow C)\right)$$

$$= 1 - (\delta\left(A \Rightarrow B\right) - \delta\left(A \Rightarrow C\right))^{2}$$

$$= 1 - ((1 - \delta\left(A\right) \cdot (1 - \delta\left(B\right))) - (1 - \delta\left(A\right) \cdot (1 - \delta\left(C\right))))^{2}$$

$$= 1 - (1 - \delta\left(A\right) \cdot (1 - \delta\left(B\right) - 1 + \delta\left(A\right) \cdot (1 - \delta\left(C\right))))^{2}$$

$$= 1 - (\delta\left(A\right) \cdot (1 - \delta\left(C\right) - 1 + \delta\left(B\right)))^{2}$$

$$= 1 - \delta^{2}\left(A\right) \cdot (\delta\left(B\right) - \delta\left(C\right))^{2}$$

$$= 1 - \delta\left(A\right) \cdot (\delta\left(B\right) - \delta\left(C\right))^{2}$$

Die letzte Gleichung gilt, da

$$\delta^2(A) = \delta(A)$$

ist. Somit gilt

$$\delta\left((B \Leftrightarrow C) \Rightarrow ((A \Rightarrow B) \Leftrightarrow (A \Rightarrow C))\right)$$

$$= 1 - \delta\left(B \Leftrightarrow C\right) \cdot \left(1 - \delta\left((A \Rightarrow B) \Leftrightarrow (A \Rightarrow C)\right)\right)$$

$$= 1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(1 - \left(1 - \delta\left(A\right) \cdot \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right)\right)$$

$$= 1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \left(1 - 1 + \delta\left(A\right) \cdot \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right)$$

$$= 1 - \left(1 - \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}\right) \cdot \delta\left(A\right) \cdot \left(\delta\left(B\right) - \delta\left(C\right)\right)^{2}$$

Ich habe oben gezeigt, dass

$$(\delta(B) - \delta(C))^4 = (\delta(B) - \delta(C))^2$$

ist. Also kann ich schreiben

$$\delta ((B \Leftrightarrow C) \Rightarrow ((A \Rightarrow B) \Leftrightarrow (A \Rightarrow C)))$$

$$= 1 - ((\delta(B) - \delta(C))^{2} - (\delta(B) - \delta(C))^{2}) \cdot \delta(A)$$

$$= 1 - 0 \cdot \delta(A)$$

$$= 1$$

Ich möchte noch weiter zeigen:

$$(B \Leftrightarrow C) \Rightarrow ((A \Leftarrow B) \Leftrightarrow (A \Leftarrow C))$$

Zuerst möchte ich gerne berechnen

$$\delta ((A \Leftarrow B) \Leftrightarrow (A \Leftarrow C))$$
= $1 - (\delta (A \Leftarrow B) - \delta (A \Leftarrow C))^2$
= $1 - (1 - (1 - \delta (A)) \cdot \delta (B) - (1 - (1 - \delta (A)) \cdot \delta (C)))^2$
= $1 - (1 - (1 - \delta (A)) \cdot \delta (B) - 1 + (1 - \delta (A)) \cdot \delta (C))^2$
= $1 - ((1 - \delta (A)) \cdot \delta (B) - (1 - \delta (A)) \cdot \delta (C))^2$
= $1 - ((1 - \delta (A)) \cdot (\delta (B) - \delta (C)))^2$
= $1 - ((1 - \delta (A))^2 \cdot (\delta (B) - \delta (C))^2$

Nun setze ich das Resultat in die δ -Notation des Ausdrucks aus:

$$\delta((B \Leftrightarrow C) \Rightarrow ((A \Leftarrow B) \Leftrightarrow (A \Leftarrow C)))$$
= $1 - \delta(B \Leftrightarrow C) \cdot (1 - \delta((A \Leftarrow B) \Leftrightarrow (A \Leftarrow C)))$
= $1 - (1 - (\delta(B) - \delta(C))^2) \cdot (1 - (1 - (1 - \delta(A))^2 \cdot (\delta(B) - \delta(C))^2))$
= $1 - (1 - (\delta(B) - \delta(C))^2) \cdot (1 - 1 + (1 - \delta(A))^2 \cdot (\delta(B) - \delta(C))^2)$
= $1 - (1 - (\delta(B) - \delta(C))^2) \cdot (0 + (1 - \delta(A))^2 \cdot (\delta(B) - \delta(C))^2)$
= $1 - (1 - (\delta(B) - \delta(C))^2) \cdot (1 - \delta(A))^2 \cdot (\delta(B) - \delta(C))^2$
= $1 - ((\delta(B) - \delta(C))^2 - (\delta(B) - \delta(C))^4) \cdot (1 - \delta(A))^2$
= $1 - ((\delta(B) - \delta(C))^2 - (\delta(B) - \delta(C))^2) \cdot (1 - \delta(A))^2$
= $1 - 0 \cdot (1 - \delta(A))^2$
= $1 - 0$
= 1

Ich habe dabei wieder die Gleichung

$$(\delta(B) - \delta(C))^4 = (\delta(B) - \delta(C))^2$$

verwendet.

Nun möchte ich zeigen:

$$(B \Leftrightarrow C) \Rightarrow ((A \overline{\wedge} B) \Leftrightarrow (A \overline{\wedge} C))$$

Ich möchte dazu zuerst den Ausdruck

$$\delta\left((A\overline{\wedge}B)\Leftrightarrow(A\overline{\wedge}C)\right)$$

berechnen:

$$\delta ((A \overline{\wedge} B) \Leftrightarrow (A \overline{\wedge} C))$$

$$=1 - (\delta (A \overline{\wedge} B) - \delta (A \overline{\wedge} C))^{2}$$

$$=1 - ((1 - \delta (A) \cdot \delta (B)) - (1 - \delta (A) \cdot \delta (C)))^{2}$$

$$=1 - (1 - \delta (A) \cdot \delta (B) - 1 + \delta (A) \cdot \delta (C))^{2}$$

$$=1 - (-\delta (A) \cdot \delta (B) + \delta (A) \cdot \delta (C))^{2}$$

$$=1 - (-\delta (A) \cdot (\delta (B) - \delta (C)))^{2}$$

$$=1 - (-\delta (A))^{2} \cdot (\delta (B) - \delta (C))^{2}$$

$$=1 - \delta (A)^{2} \cdot (\delta (B) - \delta (C))^{2}$$

$$=1 - \delta (A) \cdot (\delta (B) - \delta (C))^{2}$$

Somit kann ich schreiben

$$\delta\left((B\Leftrightarrow C)\Rightarrow ((A\overline{\wedge}B)\Leftrightarrow (A\overline{\wedge}C))\right)$$

$$=1-\delta\left(B\Leftrightarrow C\right)\cdot\left(1-\delta\left((A\overline{\wedge}B)\Leftrightarrow (A\overline{\wedge}C)\right)\right)$$

$$=1-\left(1-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)\cdot\left(1-\left(1-\delta\left(A\right)\cdot\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)\right)$$

$$=1-\left(1-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)\cdot\left(1-1+\delta\left(A\right)\cdot\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)$$

$$=1-\left(1-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)\cdot\left(0+\delta\left(A\right)\cdot\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)$$

$$=1-\left(1-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)\cdot\delta\left(A\right)\cdot\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)$$

$$=1-\left(\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{4}\right)\cdot\delta\left(A\right)$$

$$=1-\left(\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)\cdot\delta\left(A\right)$$

$$=1-0\cdot\delta\left(A\right)$$

$$=1-0$$

$$=1$$

Also hätte ich diesen Teil bewiesen. Wahrscheinlich kommt jetzt der schwierigste Teil: Zeige, dass gilt

$$(B \Leftrightarrow C) \Rightarrow ((A \overline{\vee} B) \Leftrightarrow (A \overline{\vee} C))$$

Zuerst möchte ich berechnen

$$\delta(A \nabla B) - \delta(A \nabla C)$$

$$= (1 - \delta(A) - \delta(B) + \delta(A) \cdot \delta(B)) - (1 - \delta(A) - \delta(C) + \delta(A) \cdot \delta(C))$$

$$= 1 - \delta(A) - \delta(B) + \delta(A) \cdot \delta(B)$$

$$- 1 + \delta(A) + \delta(C) - \delta(A) \cdot \delta(C)$$

$$= 1 - 1 + \delta(A) - \delta(A) + \delta(C)$$

$$= 1 - 1 + \delta(A) - \delta(A) + \delta(C)$$

$$= 0 + 0 + \delta(C) - \delta(B) + \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(C)$$

$$= 0 + 0 + \delta(C) - \delta(B) + \delta(A) \cdot (\delta(B) - \delta(A) \cdot \delta(C))$$

$$= \delta(C) - \delta(B) + \delta(A) \cdot (\delta(B) - \delta(A) \cdot \delta(C))$$

$$= \delta(C) - \delta(B) + \delta(A) \cdot (\delta(B) - \delta(C))$$

$$= \delta(C) - \delta(B) - \delta(A) \cdot (-\delta(B) + \delta(C))$$

$$= \delta(C) - \delta(B) - \delta(A) \cdot (\delta(C) - \delta(B))$$

$$= (\delta(C) - \delta(B)) \cdot (1 - \delta(A))$$

$$= -(\delta(B) - \delta(C)) \cdot (-(\delta(A) - 1))$$

$$= (-1)^2 (\delta(B) - \delta(C)) \cdot (\delta(A) - 1)$$

$$= (\delta(B) - \delta(C)) \cdot (\delta(A) - 1)$$

$$= (\delta(B) - \delta(C)) \cdot (\delta(A) - 1)$$

Somit kann ich rechnen=

$$\delta (((A \nabla B) \Leftrightarrow (A \nabla C)))$$

$$= 1 - (\delta (A \nabla B) - \delta (A \nabla C))^{2}$$

$$= 1 - ((\delta (B) - \delta (C)) \cdot (\delta (A) - 1))^{2}$$

$$= 1 - (\delta (B) - \delta (C))^{2} \cdot (\delta (A) - 1)^{2}$$

Also muss gelten

$$\delta\left((B\Leftrightarrow C)\Rightarrow ((A\overline{\wedge}B)\Leftrightarrow (A\overline{\wedge}C))\right)$$

$$=1-\delta\left(B\Leftrightarrow C\right)\cdot\left(1-\delta\left(((A\overline{\vee}B)\Leftrightarrow (A\overline{\vee}C))\right)\right)$$

$$=1-\left(1-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)\cdot\left(1-\left(1-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\cdot\left(\delta\left(A\right)-1\right)^{2}\right)\right)$$

$$=1-\left(1-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)\cdot\left(1-1+\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\cdot\left(\delta\left(A\right)-1\right)^{2}\right)$$

$$=1-\left(1-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)\cdot\left(0+\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\cdot\left(\delta\left(A\right)-1\right)^{2}\right)$$

$$=1-\left(1-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)\cdot\left(\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\cdot\left(\delta\left(A\right)-1\right)^{2}\right)$$

$$=1-\left(\left(1-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)\cdot\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)\cdot\left(\delta\left(A\right)-1\right)^{2}$$

$$=1-\left(\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{4}\right)\cdot\left(\delta\left(A\right)-1\right)^{2}$$

$$=1-\left(\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}-\left(\delta\left(B\right)-\delta\left(C\right)\right)^{2}\right)\cdot\left(\delta\left(A\right)-1\right)^{2}$$

$$=1-\left(\left(\delta\left(A\right)-\delta\left(C\right)\right)^{2}-\left(\delta\left(A\right)-\delta\left(C\right)\right)^{2}\right)\cdot\left(\delta\left(A\right)-1\right)^{2}$$

$$=1-0\cdot\left(\delta\left(A\right)-1\right)^{2}$$

$$=1-0$$

$$=1$$

Ich möchte den Satz noch mit der δ -Notation beweisen:

Beweis. (Satz der Schlussfolgerung von Konjunktion nach Disjunktion) Es seien $A, B \in \delta$. Dann gilt

$$\delta((A \wedge B) \Rightarrow (A \vee B))$$

$$= 1 - \delta(A \wedge B) \cdot (1 - \delta(A \vee B))$$

$$= 1 - \delta(A) \cdot \delta(B) \cdot (1 - (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B)))$$

$$= 1 - \delta(A) \cdot \delta(B) \cdot (1 - \delta(A) - \delta(B) + \delta(A) \cdot \delta(B))$$

$$= 1 - \delta(A) \cdot \delta(B) \cdot 1 - \delta(A) \cdot \delta(B) \cdot \delta(A) - \delta(A) \cdot \delta(B) \cdot \delta(B) + \delta(A) \cdot \delta(B) \cdot \delta(A) \cdot \delta(B)$$

$$= 1 - \delta(A) \cdot \delta(B) \cdot \delta(B) + \delta(A) \cdot \delta(B) \cdot \delta(A) \cdot \delta(B)$$

$$= 1 - \delta(A) \cdot \delta(B) - (\delta(A))^{2} \cdot (\delta(B))^{2}$$

$$= 1 - \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B)$$

$$= 1 + \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B) + \delta(A) \cdot \delta(B) + \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B) + \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B)$$

$$= 1 + \delta(A) \cdot \delta(B) - \delta(A) \cdot \delta(B)$$

$$= 1 + 0 + 0$$

Somit muss für alle Fälle die Behauptung richtig sein und ich kann den Satz als bewiesen betrachten.

Teil 4 Die reellen Zahlen

In diesem Teil möchte ich mich über reelle Zahlen unterhalten.

KAPITEL 47

Wieso werden reelle Zahlen benötigt?

Die alten Griechen haben den Spruch geprägt: "Alles ist Zahl." In diesem Zahl ist die Hoffnung begründet, dass alle messbaren Grössen (also Grössen, welche mit einer Einheitsgrösse wie Zeit, Länge oder Gewicht verglichen werden können) mit Hilfen von Zahlen beschrieben werden werden können. Leider war das ein Irrtum, wie ich im nachfolgenden Satz gerne zeigen möchte. Doch zuerst möchte ich ein kleines Lemma formulieren und beweisen:

LEMMA 283. Es seien $z_1, z_2 \in \mathbb{Z}$ ganze Zahlen für welche gelte:

$$z_1^2 = 2 \cdot z_2$$

In Worten: Das Quadrat der ganzen Zahl z_1 sei gerade. Dann muss auch die Zahl z_2 gerade sein.

Beweis. Wäre $z_1 = 2 \cdot z_3 + 1$ (mit $z_3 \in \mathbb{Z}$), dann müsste gelten

$$(z_1)^2$$
= $(2 \cdot z_3 + 1) \cdot (2 \cdot z_3 + 1)$
= $4 \cdot z_3^2 + 2 \cdot z_3 \cdot 1 + 1 \cdot 2 \cdot z_3 + 1$
= $4 \cdot z_3^2 + 2 \cdot z_3 + 2 \cdot z_3 + 1$
= $4 \cdot z_3^2 + 4 \cdot z_3 + 1$
= $2 \cdot (2 \cdot z_3^2 + 2 \cdot z_3) + 1$

Das bedeutet aber, dass in diesem Fall z_1^2 ebenfalls ungerade wäre. Denn es gäbe in diesem Fall eine ganze Zahl

$$z_4 \equiv 2 \cdot z_3^2 + 2 \cdot z_3$$

für welche gilt

$$z_1^2 = 2 \cdot z_4 + 1$$

Wäre jedoch z_1 gerade, dann müsste auch z_1^2 gerade sein. Denn in diesem Fall müsste eine ganze Zahl z_5 derart geben, das gilt

$$z_1 = 2 \cdot z_5$$

Dann wäre auch

$$(z_1)^2 = (2 \cdot z_5)^2 = 2^2 \cdot z_5^2 = 4 \cdot z_5^2 = 2 \cdot 2 \cdot z_5^2 = 2 \cdot (2 \cdot z_5^2)$$

Also müsste es eine ganze Zahl

$$z_6 \equiv 2 \cdot z_5^2$$

derart geben, dass gilt

$$z_1^2 = 2 \cdot z_6$$

so wie es vorausgesetzt ist. Damit erachte ich den Beweis der Behauptung als erbracht und beendet darum an dieser Stelle die weitere Beweisführung.

Satz 284. Für alle rationalen Zahlen $q \in \mathbb{Q}$ gilt

$$q^2 \neq 2$$

Oder als Aussage formuliert

$$\nexists q: q^2 = 2$$

BEWEIS. Nun, es gibt bekanntlich abzählbar unendlich viele rationale Zahlen. Also würde es buchstäblich ewig gehen, wenn eine nach der anderen mit sich selber multipliziert und das Ergebnis mit 2 verglichen würde. Also muss ein anderer Beweis her. Nachfolgend werde ich einen Widerspruchsbeweis verwenden. Ich nehme also an, dass es Zahlen $(n_1, d_1) \in (\mathbb{Z}, \mathbb{N})$ derart geben würde, dass gilt

$$\left(\frac{n_1}{d_1}\right)^2 = 2$$

Dabei kannst Du Dir " n_1 " als "Nominator" (Zähler) und " n_2 " als "Denominator" (Nenner) vorstellen. Ich habe in Satz xxx gezeigt, dass dieser Bruch normalisiert werden kann in dem Sinn, dass Zähler und Nenner teilerfremd sind. Insbesondere darf ich annehmen, dass der Bruch nicht mit 2 gekürzt werden kann, dass es also keine anderen Zahlen $(n_2, d_2) \in (\mathbb{Z}, \mathbb{N})$ derart geben kann, dass gilt

$$n_1 = 2 \cdot n_2 \wedge d_2 = 2 \cdot d_1$$

In diesem Fall würde nämlich gelten

$$\frac{n_1}{d_1} = \frac{2 \cdot n_2}{2 \cdot d_2} = \frac{n_2}{d_2}$$

Nun möchte zeigen, dass sehrwohl n_1 wie auch d_1 gerade sein müssten. Es muss gelten

$$\left(\frac{n_1}{d_1}\right)^2 = \frac{n_1^2}{d_1^2} = 2$$

Wenn ich diese Gleichung mit d_1^2 multipliziere, erhalte ich

$$n_1^2 = 2 \cdot d_1^2$$

Das bedeutet jedoch, dass n_1^2 gerade ist, es also eine andere natürliche Zahl (d_1^2 in diesem Fall) derart gibt, dass $n_1^2 = 2 \cdot d_1^2$ ist. Gemäß dem Lemma 283 kann ich darum folgern, dass auch n_1 gerade sein muss.

Nun nimmt aber das Elend sozusagen seinen Lauf. Denn wenn n_1 gerade ist, dann muss auch d_1 gerade sein. Denn es muss also gelten

$$n_1^2 = (4 \cdot n_4^2) \land n_1 = 2 \cdot d_1^2$$

Da die Gleichheit von natürlichen Zahlen gemäß dem Lemma 205 eine Äquvialenzrelation und darum auch kommutativ und transitiv ist, kann ich darum schreiben

$$4 \cdot n_4^2 = 2 \cdot d_1^2$$

Diese Gleichung kann ich durch 2 kürzen. Wenn ich die Gleichung durch 2 teile, erhalte ich

$$2 \cdot n_4^2 = d_1^2$$

Da die Gleichheit von ganzen Zahlen ebenfalls eine Äquivalenzrelation ist, muss ebenso gelten

$$d_1 = 2 \cdot n_4^2$$

Das bedeutet jedoch gemäß dem Lemma 283 wiederum, dass d_1 gerade sein muss.

Insgesamt habe ich damit gezeigt, dass sowohl n_1 wie auch d_1 gerade sein müssen - im groben Widerspruch zur Voraussetzung. Insgesamt kann ich darum schließen, dass es keine Zahlen $(n_1, d_1) \in (\mathbb{Z}, \mathbb{N})$ derart existieren können, so dass gilt

$$\left(\frac{n_1}{d_1}\right)^2 = 2$$

ist. Also kann es auch keine rationale Zahl r derart geben, dass

$$r^2 = 2$$

ist. Genau dies war jedoch zu beweisen. Darum habe ich meines Erachtens den Beweis für die Richtigkeit der Behauptung erbracht und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Der Satz ist eigentlich eine philosophische Katastrophe. Der er bedeutet, dass der grösste Durchmesser in einem Quadrat nicht mit einer rationalen Zahl beschrieben werden kann. Wie Du in der Abbildung 1 sehen kannst, ist oben links ein rotes Quadrat abgebildet. Dessen Seitenlänge sei mit l_r bezeichnet (die Seitenlänge des roten Quadrats).

ABBILDUNG 1. Durchmesser eines Quadrats

Dieses besteht aus den zwei Dreiecken, welche mit "A" und "B" bezeichnet werden. Das blaue Quadrat steht sozusagen auf der Spitze. Dessen Seitenläng werde mit l_b bezeichnet (Seitenlänge des blauen Quadrats). Es besteht aus den Dreiecken, welchen mit "B", "C", "D" sowie "E" bezeichnet werden. Wie Du erkennen kannst, sind alle Dreiecke, welche mit "A" bis "E" bezeichnet werden, gleich gross (auf einen Beweis verzichte ich an dieser Stelle, da ich die geometrischen Voraussetzungen nicht definiert habe. Weiter kannst Du erkennen, dass das rote Quadrat aus zwei Dreiecken besteht, das blaue jedoch aus deren Vier. Also ist die Fläche des blauen Quadrats doppelt so gross wie dasjenige des roten Quadrates. Also muss gelten

$$l_b^2 = 2 \cdot l_r^2$$

Die Grösse l_r^2 muss jetzt grösser als Null sein, da ansonsten das Quadrat ein Punkt wäre - im Widerspruch zur Voraussetzung. Wenn jetzt beide Seiten des Quadrats durch die Grösse l_r^2 geteilt wird, dann erhalte ich die Gleihung

$$\frac{l_b^2}{l_r^2} = 2$$

Gemäß den Regeln der Potenzrechnung kann ich schreiben

$$\left(\frac{l_b}{l_r}\right)^2 = 2$$

Also ist das Quadrat der Verhältnisse der Seitenlängen der beiden Quadrate gleich 2. Nun habe ich jedoch oben gezeigt, dass keine rationale Zahl derart existiert, dass dessen Quadrat gleich 2 ist. Heuser schreibt in seinem Buch, die Gefährten des Entdeckers des Satzes 284 seien derart erbost gewesen über dessen Entdeckung, dass sie ihn vor lauter Wut auf der offenen See ins Meer geworfen hätten. Nun, ich hoffe natürlich, das sei bloss eine Legende und entspreche nicht der Tatsache. Aber diese Geschichte beinhaltet eben doch wahrscheinlich einen wahren Kern: Was kann dann noch ausgesagt werden, wenn die Zahlen nicht verwendet werden können, um etwas zu beschreiben?

Bevor ich weiter hier schreibe, möchte ich schreiben, wie das Problem gelöst wurde.

47.1. Wie wurde das Problem der fehlenden Zahlen gelöst?

Die Idee ist folgende: Es wird zwar nie möglich sein, eine Zahl so aufzuschreiben, dass beispielsweise deren Quadrat exakt 2 ist. Jedoch kann eine solche Zahl beliebig genau angenähert werden. Wie diese Annäherung erfolgt, werde ich nachfolgend zu beschreiben versuchen.

Es gibt gleich drei Möglichkeiten, diese Zahlen zu beschreiben. Die erste ist mit sogenannten Schnitten. Die zweite ist mit Folgen. Und die dritte ist mit Intervallen. Diese drei Möglichkeiten sind gleichbedeutend. Das heißt: Funktioniert die eine Art, funktionieren auch die beiden anderen Arten. Die Frage ist jedoch, was unter "funktionieren" zu verstehen ist. Im Rahmen der Mathematik bedeutet "funktionieren", dass keine inneren Widersprüche auftreten dürfen. Bei Zahlen wäre es etwa sinnvoll, dass eine Zahl eindeutig ist. Aber das ist nur der erste Teil. Der zweite Teil, und das habe ich bis jetzt noch in keinem Mathebuch gelesen, besteht darin, dass die Probleme sozusagen nach hinten verschoben werden. Das funktioniert darum, weil mit dieser neuen Zahlenart (welche "reelle Zahl" geheißen wird) genau gleich gerechnet werden kann wie mit rationalen Zahlen. Und das führt dazu, dass beispielsweise Variablen definiert werden und dies Eigenschaften der Variablen definiert werden. Das resultiert in Gleichungen, welche "umgeformt" werden können. Also bei welchen versucht wird, den Zahlenwert zu bestimmen. Schlussendlich werden neue Zahlen mit Namen versehen, obwohl klar ist, dass dies keine rationale Zahlen sind. Beispiele sind die Konstanten e oder π . Die Zahl e besitzt etwa den Wert 2.71. π besitzt etwa den Wert 3.14. Dann werden Berechnungen angestellt und am Schluss bleiben im besten Fall Rechenanleitungen, mit welchen dann Näherungswerte berechnet werden können. Aber das ist oft genügend. Zudem werden als Lösung oft unendliche Reihen von Zahlen angegeben, welche etwa miteinander addiert oder multipliziert werden. Je mehr dieser Zahlen miteinander verrechnet werden, desto genauer ist das Resultat. In den Ingenieurwissenschaften sind häufig richtige Stellen und die richtige Grössenordnung ausreichend. Das ist dann eine Genauigkeit auf 1 Promille genau. Oder um es so zu sagen: Falls das Resultat 1000 m wäre, dann würde das richtige Resultat im Bereich von 999.5 - 1000.4 m liegen. In vielen Fällen ist das ausreichend.

KAPITEL 48

Was sind reelle Zahlen?

Zuerst einmal eine nüchterne Definition:

DEFINITION 285. (Definition der in Q konvergenten Folgen) Es sei

$$(q_n)_{n\in\mathbb{N}}:\mathbb{N}\to\mathbb{Q}$$

 $n\mapsto q_k$

eine Folge von reelle Zahlen. Dann heisse $(q_k)_{k\in\mathbb{N}}$ genau dann **konvergent**, falls für alle $\epsilon \in \mathbb{Q}^+$ ein $n_1 \in \mathbb{N}$ derart existiert, dass für alle $n \in \mathbb{N}$ mit $n > n_1$ gilt

$$\left| q_n - q_{n(1)} \right| < \epsilon$$

Dabei gelte für

$$\forall n \in \mathbb{N} : q(n) \equiv q_n$$

Wenn diese Definition als logische Aussage geschrieben wird, dann sieht diese so aus:

$$\forall \epsilon \in \mathbb{Q}^+ \exists n_1 \in \mathbb{N} \, \forall n \in \mathbb{N} : (n > n_1 \Rightarrow |q_n - q_{n(1)}| < \epsilon)$$

Da ich ein grosser Fan von hilfreichen Wiederholungen bin, möchte ich die Aussage noch einmal Wort für Wort beschreiben:

"Für alle ϵ in der Menge der positiven Bruchzahlen (\mathbb{Q}^+) exitiert ein eine natürliche Zahl, welche mit n_1 beschrieben werden, für welche gilt, dass für alle natürlichen Zahlen n mit der Eigenschaft, dass n grösser als n_1 ist, der Abstand von q_n und

$$q_{n(1)} \equiv q_{n_1}$$

kleiner als ϵ ist."

Ist die Folge $(q_n)_{n\in\mathbb{N}}$ nicht konvergent, dann heisse sie **divergent**.

Rein formal (also "zeichenmässig" kann ich dann schreiben. Für eine konvergente Folge $(q_n)_{n\in\mathbb{N}}$ von Elementen von Bruchzahlen \mathbb{Q} , welche mit r (welche damit als "reelle Zahl", also als "wirkliche" Zahl beschrieben wird) bezeichnet werde, gelte

$$r \equiv \lim_{n \to \infty} q_n$$

Diese Schreibweise dient als Hinweis, dass die Zahl r durch Grenzwertbildung bestimmt wurde. Die Menge aller reeller Zahlen werde mit \mathbb{R} bezeichnet.

Nun, diese Definition ist bestens dafür geeignet, ein Mathelehrbuch zu schließen und stattdessen ein wenig Spass zu haben. Denn sie ist meines Erachtens grauenhaft umständlich.

Zu allererst: Die Definition kannst Du so nicht in anderen Mathebüchern finden. In anderen Mathebüchern wird meines Erachtens immer noch ein heilloses Durcheinander mit der Herleitung der reellen Zahlen gemacht. Ich bin jedoch mit dem erklärten Ziel angetreten, Licht ins Dunkel zu bringen (und werde grandios daran scheitern). Ich hoffe, meine Herleitung ist um Längen einfacher als diejenige, welche Du sonst zu lesen bekommst.

Ich möchte zuerst versuchen, die Definition mit einem Witz zu umschreiben:

Eines Nachts wurde Dellenbach Kari von zwei Polizisten unter einer Strassenlaterne angetroffen, wie er ziemlich aufgelöst etwas gesucht hat. Da fragte ihn der eine Polizist: "Dellenbach Kari, was machst Du da?" Daruf Dellenbach Kari: "Ich habe meine Uhr dort drüben verloren." Er deutete mit der Hand ins Dunkel neben der Strassenlaterne. Darauf der andere Polizist: "Gut. Aber wieso suchst Du dann hier und nicht dort drüben im Dunkeln." Schlussendlich Dellenbach Kari: "He, dort drüben sehe ich ja nichts"

Dabei möchte ich betonen, dass der Name der Person ("Dellenbach Kari") zwar derjenige einer Person ist, welche wirklich in Bern gelebt hat. Jedoch ist zu vermuten, dass sich die Geschichte wirklich so zugetragen hat. Und die Figur trotzdem meine volle Sympathie besitzt. Denn im Dunkeln zu suchen ist wirklich total mühsam - ausser wenn eine Taschenlampe oder so ähnlich vorhanden ist.

Aber wieso habe ich den Witz überhaupt aufgeschrieben (ich kann weder Witze erzählen noch aufschreiben)? Weil er das Konzept der konvergenten Folgen sehr schön beschreibt. Dabei kann die Uhr als Konvergenzpunkt aufgefasst werden. Die einzelnen Folgeglieder (die rationalen Zahlen q_n) können als Orte der Suche der Uhr interpretiert werden. Der Lichtkegel übernimmt die Rolle des Suchbereichs, in welchem die Uhr vermutet wird. Das heißt: Die Uhr wird nur in einem bestimmten Bereich vermutet. Und nun kommt das besondere der Konvergenz von Folgen ins Spiel: Der Suchbereich kann noch so eingeschränkt werden. Die Uhr kann unter Umständen trotzdem nicht gefunden werden - im Bereich der rationalen Zahlen. Denn es könnte sein, dass die Uhr in einem Punkt versteckt ist, welcher nicht mit rationalen Zahlen beschrieben werden kann wie etwa derjenige, welche im Satz 284 beschrieben wird. Aber - und das muss im Folgenden bewiesen werden, genügt es, zu wissen, dass beliebig genau beschrieben werden kann, wo die Uhr ist. Und so sucht der arme Dellenbach Kari immer wieder an den unterschiedlichsten Orten seine Uhr. Und genau dieser Punkt wird im Witz ja auf die Schippe genommen: Dellenbach Kari hat unglücklicherweise aus vermeintlich praktischen Gründen den Suchbereich so verschoben,

dass er in seinem Fall die Uhr garantiert nie finden wird. Denn er hat die Uhr ja im dunklen Bereich (ausserhalb des Lichtkegels des Scheinwerferlichts) verloren. Auf einen Unterschied vom Witz und von der Definition der konvergenten Folgen mit Elementen von rationalen Zahlen möchte ich noch hinweisen: Der Scheinwerfer bei den konvergenten Folgen ist sozusagen auf der Suchfolge selber montiert: Das $q_{n(1)}$ ist ein Element der Folge. Von dort aus wird gemessen. Das muss eigentlich gar nicht sein. Eines der nächsten Ziele wird sein, zu zeigen, dass stattessen ein anderes Element als "Scheinwerfer" verwendet werden kann. Aber es ist mir wichtig, zu zeigen, dass als "Scheinwerfer" immer eine rationale Zahl verwendet werden kann.

Vermutlich wird dieser Witz dein Gespür für die obige Definition nicht viel verbessert haben. Draum muss ich unbedingt weitere Beispiele aufschreiben, bevor ich weitere Überlegungen anstellen kann. Die folgende Folge ist m.E. eine der wichtigsten Folgen: Es ist eine sogenannte Nullfolge:

Lemma 286. Die Folge

$$\left(\frac{1}{n}\right)_{n\in\mathbb{N}}: \mathbb{N} \to \mathbb{Q}$$
$$n \mapsto \frac{1}{n}$$

konvergiert.

Beweis. Es sei ein $\epsilon \in \mathbb{Q}^+$ gegeben. Nun muss ich mir überlegen, ob ich eine Funktion

$$n(\epsilon) : \mathbb{Q}^+ \to \mathbb{N}$$

 $\epsilon \mapsto n_1 \equiv n(\epsilon)$

derart finden kann, so dass für alle $n \in \mathbb{N}$ mit $n > n_1$ gilt

$$\left|\frac{1}{n} - \frac{1}{n_1}\right| < \epsilon$$

Hier kommen die "Abschätzungen" ins Spiel. "Abschätzig" beistzt im Deutschen einen ganz schlechten Beigeschmack. Denn "abschätzig" ist bspw. eine Bemrkung über jemand anderen. Aber in der Mathematik ist "Abschätzung" eigentlich das tägliche Brot. Es geht im Wesentlichen darun, unwesentliches so wegzulassen, dass neue Erkenntnisse gewonnen werden können. Aber es darf auch nicht zu viel weggelassen werden. Zurück zu obigen Ungleichung. Da $n > n_1$ sein muss, ist gemäß

$$\frac{1}{n} < \frac{1}{n_1}$$

Somit kann ich für die Bedingung schreiben

$$\left|\frac{1}{n} - \frac{1}{n_1}\right| = \frac{1}{n_1} - \frac{1}{n} < \epsilon$$

Also kann ich auch schreiben

$$\frac{1}{n_1} - \frac{1}{n} < \frac{1}{n_1}$$

Also kann ich fordern, dass n_1 so sein muss, dass gilt

$$(83) \frac{1}{n_1} < \epsilon$$

Nach Voraussetzung muss gelten

$$\epsilon > 0$$

sowie

$$n_1 > 0$$

Somit kann ich die Ungleichung 83 auf beiden Seiten mit dem positiven Faktor

 $\frac{n_1}{\epsilon}$

?multiplizieren und ich erhalte die Bedingung

$$\frac{1}{\epsilon} < n_1$$

Somit kann ich etwa setzen

$$n_1(\epsilon) \equiv 2 \cdot \left\lfloor \frac{1}{\epsilon} \right\rfloor + 1$$

Zuerst habe ich versucht,

$$n_1(\epsilon) \equiv \left\lfloor \frac{1}{\epsilon} \right\rfloor + 1$$

zu setzen. Aber bei der Überprüfung der Resultate habe ich gemerkt, dass ich Probleme mit der Rundung habe.

Nun möchte ich noch zeigen, dass mit dieser Abschätzung die Konvergenz der Folge zeigen lässt. Es sei für ein gegebenes $\epsilon \in \mathbb{Q}^+$

$$n_1(\epsilon) \equiv 2 \cdot \left\lfloor \frac{1}{\epsilon} \right\rfloor + 1$$

sowie $n \in \mathbb{N}$ mit $n > n_1$. Dann gilt

$$\frac{1}{n} < \frac{1}{n_1}$$

und entsprechend

$$0 < \frac{1}{n_1} - \frac{1}{n}$$

Weiter kann ich schreiben

$$2 \cdot \left\lfloor \frac{1}{\epsilon} \right\rfloor + 1 > \frac{1}{\epsilon}$$

und somit auch

$$\frac{1}{2\cdot\left|\frac{1}{\epsilon}\right|+1}<\frac{1}{\frac{1}{\epsilon}}=\epsilon$$

Es gilt dementsprechend

$$\left| \frac{1}{n} - \frac{1}{n_1} \right|$$

$$= \frac{1}{n_1} - \frac{1}{n}$$

$$< \frac{1}{n_1}$$

$$= \frac{1}{2 \cdot \left\lfloor \frac{1}{\epsilon} \right\rfloor + 1}$$

$$\leq \epsilon$$

Auch wenn die Ausführungen sehr langatmig ist, glaube ich hiermit, gezeigt zu haben, dass gilt

$$\left|\frac{1}{n} - \frac{1}{n_1}\right| < \epsilon$$

Bevor ich weitergehe möchte ich noch ein paar Werte von ϵ sowie n_1 aufschreiben:

$$\epsilon = 1 \Rightarrow n_1 \equiv 2 \cdot \left\lfloor \frac{1}{1} \right\rfloor + 1 = 2 \cdot \lfloor 1 \rfloor + 1 = 2 + 1 = 3$$

$$\epsilon = \frac{1}{10} \Rightarrow n_1 \equiv 2 \cdot \left\lfloor \frac{1}{\frac{1}{10}} \right\rfloor + 1 = 2 \cdot \lfloor 10 \rfloor + 1 = 20 + 1 = 21$$

$$\epsilon = \frac{1}{100} \Rightarrow n_1 \equiv 2 \cdot \left\lfloor \frac{1}{\frac{1}{100}} \right\rfloor + 1 = 2 \cdot \lfloor 100 \rfloor + 1 = 200 + 1 = 201$$

$$\epsilon = \frac{1}{1000} \Rightarrow n_1 \equiv 2 \cdot \left\lfloor \frac{1}{\frac{1}{1000}} \right\rfloor + 1 = 2 \cdot \lfloor 1000 \rfloor + 1 = 2000 + 1 = 2001$$

Nun, das ist immer noch nicht sehr aussagekräftig. Ich hoffe dass es klarer wird, wenn ich noch weiter die Intervalle aufschreibe, in welchen sich die Werte aller nachfolgenden Folgeglieder befinden:

$$\epsilon = 1 \Rightarrow \forall n \in \mathbb{N} : n > 3 \Rightarrow \left| \frac{1}{n} - \frac{1}{3} \right| < 1$$

$$\epsilon = \frac{1}{10} \Rightarrow \forall n \in \mathbb{N} : n > 21 \Rightarrow \left| \frac{1}{n} - \frac{1}{21} \right| < \frac{1}{10}$$

$$\epsilon = \frac{1}{100} \Rightarrow \forall n \in \mathbb{N} : n > 201 \Rightarrow \left| \frac{1}{n} - \frac{1}{201} \right| < \frac{1}{100}$$

$$\epsilon = \frac{1}{1000} \Rightarrow \forall n \in \mathbb{N} : n > 2001 \Rightarrow \left| \frac{1}{n} - \frac{1}{2001} \right| < \frac{1}{1000}$$

Und auch dies scheint immer noch nicht anschaulich zu sein. Vielleicht wird es hier besser. Dabei bediene ich mich des Satzes . Es gilt

$$\begin{split} \epsilon &= 1 \Rightarrow \forall n \in \mathbb{N} : n > 3 \Rightarrow \frac{1}{3} - 1 < \frac{1}{n} < \frac{1}{3} + 1 \Rightarrow -\frac{2}{3} < \frac{1}{n} < \frac{1}{3} \\ \epsilon &= \frac{1}{10} \Rightarrow \forall n \in \mathbb{N} : n > 21 \Rightarrow \frac{1}{21} - \frac{1}{10} < \frac{1}{n} < \frac{1}{21} + \frac{1}{10} \\ \epsilon &= \frac{1}{100} \Rightarrow \forall n \in \mathbb{N} : n > 201 \Rightarrow \frac{1}{201} - \frac{1}{100} < \frac{1}{n} < \frac{1}{201} + \frac{1}{100} \\ \epsilon &= \frac{1}{1000} \Rightarrow \forall n \in \mathbb{N} : n > 2001 \Rightarrow \frac{1}{2001} - \frac{1}{1000} < \frac{1}{n} < \frac{1}{2001} + \frac{1}{1000} \end{split}$$

Nun geht es ans ausrechnen:

Wenn ich setze $\epsilon \equiv 1$,
dann muss also für alle $n \in \mathbb{N}$ mit n > 3 gelten

$$-\frac{2}{3} < \frac{1}{n} < \frac{1}{3}$$

Wenn ich etwa setze: $n \equiv 8$, dann erhalte ich

$$\frac{1}{n} = \frac{1}{8} = 0.125$$

Es gilt dann also

$$-\frac{2}{3} < 0 < 0.125 < 0.3 < \frac{1}{3}$$

Und die Breite des Intervalls ist tatsächlich 2, so wie es sein muss.

In diesem Beispiel gilt also die Behauptung.

Wenn ich $\epsilon \equiv \frac{1}{10}$ setze, dann erhalte ich

$$\frac{1}{21} - \frac{1}{10} > 0.047 - 0.1 = -0.053$$
$$\frac{1}{21} + \frac{1}{10} < 0.048 + 0.1 = 0.148$$

Darüber hinaus gilt

$$0.148 - (-0.053) = 0.148 + 0.053 = 0.193 < 0.2 = 2 \cdot \frac{1}{10} = 2 \cdot \epsilon$$

Die Breite des Intervalls ist wirklich kleiner oder gleich 0.2, so wie es gefordert ist.

Das bedeutet also, dass gilt

$$\epsilon = \frac{1}{10} \Rightarrow \forall n \in \mathbb{N} : n > 21 \Rightarrow -0.053 < \frac{1}{n} < 0.148$$

Wenn ich beispielsweise setze:

$$n \equiv 50$$

Dann gilt ja die Bedingung

Dann ist

$$\frac{1}{50} = 0.02$$

Es gilt wirklich

$$-0.053 < 0 < 0.02 < 0.148$$

Also ist zumindest in diesem Beispiel die Behauptung richtig. Wenn ich $\epsilon \equiv \frac{1}{100}$ setze, dann erhalte ich

Also gilt

$$-\frac{0.0\ 1\ 0\ 0}{0.0\ 0\ 4\ 9}$$

$$\frac{1}{201} - \frac{1}{100} > 0.0049 - 0.01 = -0.0051$$
$$\frac{1}{201} + \frac{1}{100} < 0.0049 + 0.01 = 0.0149$$

Somit gilt auch

$$+ \frac{0.0 \ 1 \ 4 \ 9}{0.0 \ 0 \ 5 \ 1}$$
$$\frac{+ \ 0.0 \ 0 \ 5 \ 1}{0.0 \ 2}$$

Also ist die Breite des Intervalls wirklich 0.02 , so wie es gefordert wurde. Also gilt in diesem Fall die Behauptung, dass für alle $n\in\mathbb{N}$ mit n>201 gilt, dass

$$-0.0051 < \frac{1}{n} < 0.0149$$

ist. Wenn ich beispielsweise setze

$$n \equiv 500$$

dann erhalte ich

Somit gilt in diesem Spezialfall wirklich

$$-0.051 < \frac{1}{500} < 0.149$$

Schlussendlich sei $\epsilon \equiv \frac{1}{1000}.$ Dann muss für alle $n \in \mathbb{N}$ mit n > 2001gelten

$$\frac{1}{2001} - \frac{1}{1000} < \frac{1}{n} < \frac{1}{2001} + \frac{1}{1000}$$

Nun ist

sowie

$$-\frac{0.0\ 0\ 1\ 0}{0.0\ 0\ 0\ 5}$$

Dann kann ich also schreiben

$$\frac{1}{2001} + \frac{1}{1000} > 0.00049 + 0.01 = 0.00149$$
$$\frac{1}{2001} - \frac{1}{1000} < -0.0005$$

Also ist die Breite des Intervalls

$$\frac{+\,0.0\,\,0\,\,1\,\,4\,\,9}{0.0\,\,0\,\,0\,\,5}\\ \hline 0.0\,\,0\,\,1\,\,9\,\,9$$

Also ist die Breite des Intervalls kleiner als $0.002 = \epsilon$. Also ist die Behauptung, dass für alle $n \in \mathbb{N}$ mit n > 2001 gilt

$$-0.0005 < \frac{1}{n} < 0.00149$$

 $\begin{array}{|c|c|c|c|}\hline \epsilon & n_1 & \text{Intervall} \\ \hline 1 & 3 & \left(-\frac{2}{3}, \frac{1}{3}\right) \\ \hline \end{array}$

(-0.053, 0.148)

-0.0051, 0.0149

-0.0005, 0.00149

Tabelle 1. Auflistung der Intervalle

wenn ich beispielsweise setze $n \equiv 10'000$ setze, dann ist

 $\overline{21}$

201

2001

0.1

0.01

0.001

$$\frac{1}{10'000} = 0.0001$$

Nun gilt

$$-0.005 < 0 < 0.0001 < 0.00149$$

In diesem Spezialfall stimmt also die Behauptung. Jetzt habe ich viele Einzelfälle aufgeschrieben. In der Tabelle 1 habe ich die verschiedenen Einzelfälle zusammengetragen. Wie Du erkennen kannst, wandert die untere Grenze der Intervalle für kleinere ϵ in positive Richtung, diejenige der obere Grenze für kleinere ϵ nach unten. Bis sie sich in einem in einem vorgestellen Punkt treffen. Aber: Ein solcher Punkt gibt es bloss in unserer Vorstellung. Denn Punkte können per Definition nicht gesehen werden. Wie ich weiter unten zeigen will, ist es plausibel, anzunehmen, dass die Folge gegen 0 konvergiert. Darum hätten wir uns den ganzen Aufwand auch sparen können. Aber es gibt zuhauf Fälle, in welchem eine solche Grenzwertbetrachtung zu einem Wert konvergiert, welcher ausschliesslich auf diese Art und Weise beschrieben werden kann. Die Lösung der Gleichung

$$x^2 = 2$$

ist ein solcher Fall. Ich werde weiter unten versuchen, eine sogenannte iterative Lösung dieses Problems zu beschreiben.

Aus diesem Grund meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende an dieser Stelle die weitere Beweisführung.

Und auf eine andere Besonderheit möchte ich ebenfalls noch hinweisen: Es ist möglich, in der Definition der Konvergenz einer Folge von rationalen Zahlen die Abhängigkeit von n_1 in Bezug auf ϵ als Funktion zu verstehen. Wenn ich also eine Funktion f derart finde, dass jedem ϵ ein n_1 derart zuordnen kann, dass für

$$n_1 = f(e)$$

und für alle $n \in \mathbb{N}$ mit $n > n_1$ gilt

$$\left| r_n - r_{n(1)} \right| < \epsilon$$

muss die Folge $(r_n)_{n\in\mathbb{N}}$ sicher konvergent sein. Aber eine solche Funktion f wird nie eindeutig definierbar sein. Denn für ein gegebenen ϵ leisten eben immer abzählbar unendlich viele Werte n_2 die gleichen Dienste. Mit einer beliebigen natürlichen Zahl k kann ich die Funktion

$$n_2: \mathbb{Q}^+ \to \mathbb{N}$$

 $\epsilon \mapsto n_1(\epsilon) + k$

definieren. Ist dann ein bestimmtes $\epsilon \in \mathbb{Q}^+$ gegeben, dann kann ich für die Zahl

 $\frac{\epsilon}{2}$

das n_1 berechnen, für welches gilt

$$\left| r_n - r_{n(1)} \right| < \frac{\epsilon}{2}$$

ist, sofern $n > n_1$ ist.

Also kann ich dann schreiben

$$|r_n - r_{n(2)}| = |r_n - r_{n(1)} + r_{n(1)} - r_{n(2)}|$$

Nun kann ich die Dreiecksungleichung für rationale Zahlen verwenden und erhalte die Abschätzung

$$\left| r_n - r_{n(1)} + r_{n(1)} - r_{n(2)} \right| \le \left| r_n - r_{n(1)} \right| + \left| r_{n(1)} - r_{n(2)} \right|$$

Da die kleiner-gleich Relation "≤" von rationalen Zahlen gemäß dem Satz transitiv ist, kann ich dann schreiben

$$\left| r_n - r_{n(2)} \right| \le \left| r_n - r_{n(1)} \right| + \left| r_{n(1)} - r_{n(2)} \right|$$

Denn ist $n > n_2$, dann ist gemäß der Transitivität der Vergleichsrelation "> " (grösser als) eben auch

$$n > n_2 = n_1 + k > n_1$$

aber da

$$n_2 = n_1 + k$$

ist, ist ebenfalls

$$n_2 > n_1$$

Somit kann ich schreiben

$$\begin{aligned} & \left| r_n - r_{n(2)} \right| \\ & \le \left| r_n - r_{n(1)} \right| + \left| r_{n(1)} - r_{n(2)} \right| \\ & < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{aligned}$$

Also leistet die Funktion n_2 genau die gleich guten Dienste wie die Funktion. Somit kann es keine eindeutige Funktion geben.

Eigentlich wäre ich versucht, eine neue Relation f_i (etwa mit dem Namen "Funktioid" - etwas ähnliches wie eine Funktion) aus

$$f_i \subset (\mathbb{Q}^+, \mathbb{N})$$

derart zu definieren, für welche gilt, dass diese linkstotal ist - aber im Unterschied zur Funktion nicht rechteseindeutig sein muss. Ich möchte noch einmal auf die Bezeichnung "linkstotal" hinweisen. "Linkstotal" bedeutet, dass jedes $\epsilon \in \mathbb{Q}^+$ in der Relation enthalten sein muss. Dementsprehende kann diese Relation keine leere Menge sein kann.

Es ist also sozusagen eine abgeschwächte Funktion. Nun, das wäre schon möglich. Dann würde die Definition der in $\mathbb Q$ konvergenten Folgen heissen:

DEFINITION 287. (alternative Definiton der in $\mathbb Q$ konvergenten Folgen) Es sei

$$(q_n)_{n\in\mathbb{N}}:\mathbb{N}\to\mathbb{Q}$$

 $n\mapsto q_k$

eine Folge von reelle Zahlen. Dann heisse $(q_k)_{k\in\mathbb{N}}$ genau dann **konvergent**, falls ein Funktioid $f_i\subset(\mathbb{Q}^+,\mathbb{N})$ derart existiert, dass für ein beliebiges $\epsilon\in\mathbb{Q}^+$ und ein dazugehöriges $n_1\in\mathbb{N}$ mit

$$(\epsilon, n_1) \in f_i$$

alle $n \in \mathbb{N}$ mit $n > n_1$ gilt

$$\left| q_n - q_{n(1)} \right| < \epsilon$$

Dabei gelte für

$$\forall n \in \mathbb{N} : q(n) \equiv q_n$$

Wenn ich bereits eine konvergente Folge beschrieben habe, dann bin ich gut bedient, wenn ich nachfolgend noch einen Prototypen einer divergenten Folge aufschreibe. Doch zuvor möchte ich überlegen, was dann eine divergente Folge genau charakterisiert:

Lemma 288. Es sei

$$(q_n)_{n\in\mathbb{N}}: \mathbb{N} \to \mathbb{Q}$$

 $n \mapsto q_k$

eine Folge von reelle Zahlen. Dann ist diese Folge genau dann divergent, falls ein $\epsilon \in \mathbb{Q}^+$ derart existiert, dass für alle $n_1 \in \mathbb{N}$ ein $n \in \mathbb{N}$ mit $n > n_1$ derart gibt, dass gilt

$$\left| q_n - q_{n(1)} \right| \ge \epsilon$$

Dabei gelte für

$$\forall n \in \mathbb{N} : q(n) \equiv q_n$$

BEWEIS. Gemäß der Definition gilt für eine konvergente Folge $(q_n)_{n\in\mathbb{N}}$ die logische Aussage

$$\forall \epsilon \in \mathbb{Q}^+ \exists n_1 \in \mathbb{N} \, \forall n \in \mathbb{N} : (n > n_1 \Rightarrow |q_n - q_{n(1)}| < \epsilon)$$

Jetzt kommen die Quantorentransformationen vom Satz 124 ins Spiel. Denn per Definition ist eine Folge $(q_n)_{n\in\mathbb{N}}$ genau dann divergent, falls

sie nicht konvergent ist. Also gilt rein formal, dass in diesem Fall die Aussage gilt:

$$\neg \left(\forall \epsilon \in \mathbb{Q}^+ \,\exists n_1 \in \mathbb{N} \,\forall n \in \mathbb{N} : \left(n > n_1 \Rightarrow \left| q_n - q_{n(1)} \right| < \epsilon \right) \right)$$

Gemäß dem Satz 124 ist diese Aussage äquivalent zur Aussage

$$\exists \epsilon \in \mathbb{Q}^+ \neg (\exists n_1 \in \mathbb{N} \, \forall n \in \mathbb{N} : (n > n_1 \Rightarrow |q_n - q_{n(1)}| < \epsilon))$$

Ich möchte jetzt beginnen, die Eigenschaften von konvergenten und divergenten Folgen zu ergründen.

LEMMA 289. Eine Folge $(a_k)_{k\in\mathbb{N}}$, deren Folgeglieder rationale Zahlen sind und für welche mit einer rationalen Zahl c>0 und für alle $k\in\mathbb{N}$ gilt

$$|a_{k+1} - a_k| \ge c$$

ist divergent.

Beweis. Setze $\epsilon \equiv c$. Dann kann ich für alle $n_1 \in \mathbb{N}$

$$n \equiv n_1 + 1$$

setzen, so dass gilt

$$\left| a_{n(1)+1} - a_n \right| \ge c = \epsilon$$

Also habe ich gezeigt, dass die Folge $(a_k)_{k\in\mathbb{N}}$ gemäß dem Lemma 288 divergent sein muss. Somit habe ich den Beweis für die Richtigkeit der Behauptung erbracht und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

DEFINITION 290. Ist die Folge $(q_n)_{n\in\mathbb{N}}$ nicht konvergent, dann heisse sie **divergent**.

LEMMA 291. Die Folge
$$((-1)^n)_{n\in\mathbb{N}}$$
 divergiert.

Beweis. Wenn ich ein paar Folgeglieder aufschreibe, dann erhalte ich

$$(-1)^{1} = -1$$

$$(-1)^{2} = (-1)^{1} \cdot (-1) = (-1) \cdot (-1) = 1$$

$$(-1)^{3} = (-1)^{2} \cdot (-1) = 1 \cdot (-1) = -1$$

$$(-1)^{4} = (-1)^{3} \cdot (-1) = (-1) \cdot (-1) = 1$$

$$(-1)^{5} = (-1)^{4} \cdot (-1) = 1 \cdot (-1) = 1$$

Also sehe ich, dass die Bildmenge der Folge aus den beiden Punkten -1 und 1 besteht. Nun möchte ich zeigen, dass kein "Funktioid" existieren

Abbildung 1. Schema eines Pendels

kann, so dass die Folge dementsprechend nicht konvergent sein kann. Aber das ist jetzt nicht mehr so schwierig. Denn es gilt für alle $n \in \mathbb{N}$

$$\left| (-1)^{n+1} - (-1)^n \right|$$

$$= \left| (-1)^n \cdot \left((-1)^1 - 1 \right) \right|$$

$$= \left| (-1)^n \right| \cdot \left| (-1)^1 - 1 \right|$$

$$= 1 \cdot \left| (-1)^1 - 1 \right|$$

$$= \left| (-1)^1 - 1 \right|$$

Somit gilt für alle $n \in \mathbb{N}$

$$\left| (-1)^{n+1} - (-1)^n \right| \ge 2$$

Also kann ich gmäss dem Lemma 289 folgern, dass die Folge divergiert.

Zum obigen Beispiel: Natürlich ist die obige Folge höchst vorhersehbar. Sie springt von -1 nach 1 und dann wieder zurück. Und so weiter und so fort. Es könnte jetzt die Vermutung aufkommen, dass die Folge im Mittel bei 0 sei. Der schweizerische Mathematiker Leonhard Euler (1707 - 1783) habe das so gehandhabt. Aber heute geht das so nicht mehr. Denn heute geht es darum, einzelne oft ansonsten nicht beschreibbaren einzelne Zahlen beschreibbar zu machen. Wenn Du eine entsprechende Folge haben willst, welche 0 als Konvergenzpunkt haben möchtest, müsstest Du beispielsweise die Folge

$$\left(\frac{1}{n}\cdot(-1)^n\right)_{n\in\mathbb{N}}$$

verwenden. Die konvergiert gegen Null, wie ich später zeigen will.

Und wenn wir schon dabei sind: Wie ist es eigentlich in Naturwissenschat und Technik? Kommen dort auch Folgen vor? Schön wäre es. Aber es ist nicht so. Ein berühmtes Beispiel ist das Messen der Gravitationskraft mit Hilfe eines Pendels (das habe ich so in einem Kurs für Messtechnik, aber auch im Grundstudium für Physik so gelernt).

In diesem einfachen Versuch geht es darum, aufgrund der Schwinungsdauer eines Pendels (vergleiche mit der Abbildung 1, welche das Schema eines Pendels zeigt) die Erdbeschleunigung zu bestimmen. Diese Erdbeschleunigung gibt an, wie stark Gegenstände zur Erde hin

(und somit zum Erdmittelpunkt) angezogen werden. Diese Beschleunigung kann jedoch nicht als solche gemessen werden. Denn sie ist nicht sichtbar. Stattdessen wird gemessen, wie lange beispielsweise 10 Pendelschwingungen dauern. Dann wird mit Hilfe einer mathematischen Formel auf die Erdbeschleunigung zurückgerechnet. Nun ist die Frage: Werden für die 10 Pendelschwingungen immer genau gleich viel Zeit benötigt? Nein, diese Werte sind nie genau gleich. Diese Messwerte kannst Du Dir auch als eine Folge vorstellen. Beispielsweise dauert die erste Messung 10.5 Sekunden, die zweite 9.7 Sekunden, die dritte 9.8 Sekunden die vierte 10.2 Sekunden. Wäre diese Folge konvergent, dann würden diese Messwerte mit der Zeit einen gewissen Messwert annehmen wie beispielsweise 10.1 Sekunden Tun sie aber nicht. Es gibt immer eine gewisse Streuung, welche sogar gemessen werden kann. Darum ist jeder Messung mit einer sogenannten Messunsicherheit behaftet. Diese scheint sogar sehr wichtig zu sein, um die Physik unserer Welt zu erklären. Trotzdem ist das Konzept der Konvergenz von Folgen auch in der Physik wichtig. Denn etwa die Geschwindigkeitsmessung kann als Konvergenz einer bestimmten Folge betrachtet werden.

Anhang A: Symboltabelle

Die folgende Tabelle enthält alle Symbole, welche in diesem Text dargestellt werden. Beachte, dass die Leserichtung horizontal ist. Dies bedeutet, dass im Text das Symbol \exists (es existiert) nach dem Symbol \forall (Für alle...) erklärt wird. Dies habe ich darum gemacht, weil dieser Text hoffentlich sehr viele Symbole umfassen wird. Darum weiß ich nicht, wie lange die erste Spalte sein wird. Falls das Buch einmal fertig ist, werde ich die Symbole spaltenweise ordnen.

TABELLE 2. Symboltabelle

Symbol	Bezeichnung	weitere Informationen siehe Kapitel
{}	Mengenklammern	5
Ø	leere Menge	5
Ω	Menge aller Aussagen	2
\in	ist Element von	5
∉	ist kein Element von	5
N	Menge der natürlichen Zahlen	5
A	Für alle	23
3	Es gibt, es existiert	24
_	Verneinung (Negation einer Aussage)	8
\wedge	Und (Aussagenlogik)	10
Λ	Für alle (gleichbedeutend mit \forall)	10
V	Oder (Aussagenlogik)	13
\Rightarrow	daraus folge per Übereinkunft	8
\leftarrow	sei per Übereinkunft	10
\Leftrightarrow	gleichbedeutend mit	10
V	Es gibt (gleichbedeutend mit ∃)	13
\Rightarrow	daraus folgt	11
(falls gilt, dass	12
\Leftrightarrow	ist genau dann wahr, falls	14
$\overline{\vee}$	ist ebenso wenig wahr wie	17
$\overline{\wedge}$	ist nicht zusammen wahr wie	21
=	definitionsgleich	7
:=	definitionsgleich (2. Schreibweise)	7
<u> </u>	Toilmongo onthalton in	28
\supset	Teilmenge, enthalten in Obermenge, enthält	29
	Schnittmenge	$\frac{29}{125}$
U	Vereinigungsmenge	$\frac{125}{125}$
N	Menge der natürlichen Zahlen	<u></u>
\mathbb{R}		$\frac{5}{285}$
11/2	Menge der reellen Zahlen	280

Stichwortverzeichnis

A Abkürzung Disjunktion, 191	geordnete Menge, 640 gleich per Definition, 140
Abschätzung, 56	gleich per Definition zweite
Alias-Bezeichnung, 88	Schreibweise, 140
Allquantor, 223	,
Antivalenz, 201	Н
Äquivalenzrelation, 661	Heaviside Funktion, 822
Assoziativität, 668	Heuser, 59
Ausführungsreihenfolge Logik, 219	110 00 01 110 00 010 010 010 010 010 01
Axiom, 112	I
D	Idempotenz der Deltanotation, 818
B	Identität, 155
Berndt Russel, 119	identitiv, 659
Bezeichner, 78	Implikation, 169
bijektiv, 669 Bild einer Abbildung, 658	Implikation Abkürzungsregeln, 175
Bildmenge, 658	Implikation, nicht wahre
Didnienge, 000	Voraussetzung, 175
D	Implikation, wahr Folgerung, 176
dann und nur dann, 193	Induktion, 750
Deduktion, 267	injektiv, 669
Definitionsmenge, 658	
Differenzmenge, 603	K
Disjunktion, 185	Kardinalität von Mengen, 669
divergente Folge, 957, 968	Kombination, 139
dreifache Doppelpfeil, 160	Kommutation, 757
T.	Kommutativität, 667
E	Komplement, 603
Element, 123	Konjunktion, 159
Elend der asymmetrischen Schaltung, 195	Konjunktion überflüssige Klammern, 161
endliche Menge, 669	Konjunktion, Abkürzungsregel, 168
Energie, 71	konjunktive Formen, 801
enthalten in, 126	Konservendosenwitz, 71
Euklidische Algorithmus, 781	Konstanten, 86
Existenzquantor, 223	konvergente Folge, 957, 967
\mathbf{F}	Kronecker-Symbol, 818
Funktion, 657	
	L
G	leere Menge, 131, 134
genau dann, 193	logische Äquivalenz, 193
073	

M	surjektiv, 669
Mächtigkeit von Mengen, 669	symmetrisch, 660
N, 745	${f T}$
Maximumprinzip der Disjunktion,	Taster, 67
191	Teilmenge, 603
m.E., 58, 279	Teilmenge, echte, 603
Menge, 123 Menge aller Aussagen Ω , 117	topologische Widersprüchlichkeit,
Menge der natürlichen Zahlen, 125	316
Menge, aussagenlogische Definition,	totale Relation, 671
602	transitiv, 661
Menge, wohldefiniert, 132	Transitivität der Implikation, 253
Mengengleichheit, 603	TI
Metamengen, 132	U
Metasymbole, 78, 87	Überladung von Symbolbedeutungen, 83
Minimumprinzip der Konjunktion,	Und-Verknüpfung, 159
167	Urbild, 658
	Orbiid, 058
N	\mathbf{V}
Negation, 143	Variable, 86
nicht enthalten in, 126	Variable, logische, 87
nichtleere Menge, 134	Variablen, 87
NOR-Verknüpfung, 213	Venn-Diagramm, 137
0	Vereinigungsmenge, 603
Obermenge, 603	Verknüpfung NAND, 207
ordnende Funktion der Mathematik,	Voraussetzungen, 43
142	\mathbf{W}
orthogonal Aussagen, 803	• •
orthogonale Menge von Aussagen,	Wahrheitswert, 67 Widerspruchsbeweis, 272
803	Widerspruchsbeweis, 272
P	
paarweise, 194	
Paradoxon des Barbiers, 119	
Potenzmenge, 603	
Prozess der Mathematisierung, 938	
0	
Q Quantanan 180	
Quantoren, 189	
R	
reelle Zahl, 957	
Replikation, 180	
,	
S	
Satz der Deltanotation, 819	
Satz der doppelten Negation, 241	
Satz vom ausgeschlossenen Dritten,	
246	
Schalter, 67	
Schlussfolgern, 264	
Schnittmenge, 603	
Sheffer-Notation, 207	