MATH GR5430 Machine Learning for Finance HomeWork 1 - QR Decomposition

Minze Li ml5163@columbia.edu

Sep 8, 2024

1 Definition and Properties

1.1 Definition

The QR decomposition (also known as the QR factorization) is a fundamental matrix decomposition used in numerical linear algebra. It factorizes a matrix A into a product of an orthogonal matrix Q and an upper triangular matrix R. This decomposition is especially useful when A is a tall and skinny matrix (i.e., it has more rows than columns).

For an m \times n matrix A with linearly independent columns ($m \ge n$), the QR decomposition is given by:

$$A = QR$$

where:

- Q is an m × n matrix with orthonormal columns $(Q^TQ = I_n)$
- R is an $n \times n$ upper triangular matrix

1.2 Properties

- 1. Orthogonality of Q:
 - The columns of the matrix Q are orthonormal, meaning they are orthogonal to each other and have unit length.
 - Mathematically, this can be expressed as $Q^TQ = I_n$, where I_n is the n × n identity matrix.
 - This property is essential for many applications, such as solving least squares problems and orthogonalization.

2. Triangularity of R:

- The matrix R is an upper triangular matrix, meaning that all elements below the main diagonal are zero.
- This triangular structure is essential for simplifying computations and solving systems of linear equations efficiently.
- The combination of the orthogonal matrix Q and the upper triangular matrix R allows for the development of numerically stable and efficient algorithms for various problems in linear algebra.

1.3 Common Uses

The QR decomposition has several important applications:

- 1. Solving linear least squares problems: The QR decomposition provides an efficient and numerically stable way to solve the linear least squares problem $argmin_x||Ax b||_2$.
- 2. Orthogonalization: The QR decomposition can be used to orthogonalize a set of vectors, which is useful in many numerical algorithms, such as the Gram-Schmidt process.
- 3. Eigenvalue problems: The QR algorithm, which is based on the QR decomposition, is a powerful method for computing eigenvalues and eigenvectors of matrices.
- 4. Singular value decomposition (SVD): The QR decomposition can be used as a first step in computing the SVD of a matrix.

1.4 uniqueness

If the matrix A has full column rank (i.e., its columns are linearly independent), then the QR decomposition is unique, provided that the diagonal entries of R are required to be positive.

This uniqueness property is important for ensuring consistency and reproducibility in numerical computations.

2 Performing QR Decomposition in NumPy

NumPy provides the numpy.linalg.qr() function to compute the QR decomposition.

```
np.linalg.qr(a, mode=mode)
```

2.1 Parameters

- 1. a: An array-like object with the dimensionality of at least 2, with the shape of (..., M, N).
- $2. \ mode: \{ \text{`reduced'}, \text{`complete'}, \text{`r'}, \text{`raw'} \}, \text{ optional}$

If K = min(M, N), then:

- 'reduced' (default): Returns Q, R with shapes (M, K) and (K, N).
- 'complete': Returns Q, R with shapes (M, M) and (M, N).
- 'r': Returns only R, of shape (K, N).
- 'raw': Returns the raw QR factorization results h, τ with dimensions (N, M), K.

2.2 Default Values

The default value of mode is 'reduced', which is reasonable for most use cases because:

- 1. It provides both Q and R matrices.
- 2. It saves memory by returning a reduced form when M > N.
- 3. It's sufficient for many applications like solving least squares problems.

However, the choice of mode depends on the specific application:

- Use 'complete' if you need the full orthogonal matrix Q.
- Use 'r' if you only need the upper triangular factor R.
- Use 'raw' for more advanced applications or when you need to handle the factorization manually.

2.3 Returns

When the mode parameter is set to 'reduced' or 'complete', the numpy.linalg.qr() function returns a named tuple with two attributes: Q and R.

- Q: An optional ndarray of float or complex numbers representing a matrix with orthonormal columns. If mode is set to 'complete', Q will be an orthogonal matrix (if a is real) or a unitary matrix (if a is complex). In this case, the determinant of Q may be either +1 or -1. If the input array a has more than two dimensions, a stack of matrices with the aforementioned properties will be returned.
- R: An optional ndarray of float or complex numbers representing the upper-triangular matrix. If the input array a has more than two dimensions, a stack of upper-triangular matrices will be returned.

When the mode parameter is set to 'raw', the function returns a named tuple with two attributes: h and τ .

• (h, τ) : Optional ndarrays of np.double or np.cdouble. The array h contains the Householder reflectors that generate the matrix Q along with the matrix R. The array τ contains the scaling factors for the reflectors.

3 Example

We can create a working example using a randomly-generated matrix:

```
# This is the Python Code of Homework 1
2 # Author: Minze Li
3 # Date: Sep 8, 2024
 4 # MATH GR5430 Machine Learning for Finance
5 import numpy as np
  {\tt rng} = {\tt np.random.default\_rng()} \ \# \ {\tt Create} \ \ {\tt a} \ \ {\tt random} \ \ {\tt number} \ \ {\tt generator}
  a = rng.normal(size=(10, 5)) # Create a random 10x5 matrix
9 print(a)
|q,r| = np. linalg. qr(a)
  print(q, r)
print (np. allclose (a, np. dot (q, r))) # Test if QR = A
14
15 q2, r2 = np.linalg.qr(a, mode='complete')
16 print (q2, r2)
  print(np.allclose(a, np.dot(q2, r2)))
17
r3 = np. linalg.qr(a, mode='r')
20 | print(np.allclose(r, r3)) # Test if R = R3
22 \mid h, tau = np.linalg.qr(a, mode='raw')
23 print(h, tau)
```

This example demonstrates:

- 1. Creating a random matrix a
- 2. Performing reduced QR decomposition, displaying Q and R matrices, and verifying the decomposition by reconstructing a from Q and R
- 3. Performing complete QR decomposition, displaying Q2 and R2 matrices, and verifying the decomposition by reconstructing a from Q2 and R2
- 4. Performing QR decomposition only returning R, proving R and R3 are equal
- 5. Performing raw QR decomposition, displaying h and τ

And here is the outputs of the example:

```
-2.04381298
                   -0.77736929
                                  0.24218269
                                                -0.05532419
                                                              -0.72578899
     -1.42802939
                   -1.87795501
                                  -0.44131166
                                                0.95490125
                                                               0.03982269
      1.15434388
                    -0.90420823
                                  -1.70505873
                                                -2.07776297
                                                              -1.44958343
                    0.24641222
                                                -1.94143691
                                                               1.97027348
     -0.75041777
                                  -0.1725188
     -0.37826909
                   -1.04522331
                                  -0.47599108
                                                -0.79015921
                                                                1.096496
a =
      -0.37483228
                    -1.1541198
                                  0.70195118
                                                 1.7145625
                                                              -2.08461522
      0.16277105
                    0.55547518
                                  0.28344157
                                                -0.2816453
                                                              -0.25438268
      0.90376429
                    0.95353656
                                   -0.443515
                                                0.00395152
                                                               1.21629109
                    0.70182954
                                  0.49919128
                                                -0.94774312
                                                              -0.17986485
      1.31475571
      -0.16454612
                    0.73960016
                                   1.35017875
                                                1.02123698
                                                              -0.51166492
      -0.61638397
                    0.10262763
                                  -0.11347702
                                                -0.20388276
                                                               0.47762403
      -0.43067269
                    -0.43959133
                                                              -0.28233864
                                  -0.01313831
                                                 0.21111782
      0.34813316
                    -0.57250475
                                  -0.35277205
                                                -0.25617169
                                                               0.46768665
      -0.22631498
                    0.24140201
                                  -0.32380601
                                                -0.55450635
                                                              -0.26187541
      -0.1140804
                    -0.3262688
                                  -0.0313457
                                                -0.30311053
                                                               -0.5399699
Q =
      -0.11304391
                    -0.36865513
                                   0.59705055
                                                 0.0553907
                                                               0.11075129
      0.04908936
                    0.18088768
                                   0.02359017
                                                -0.12094724
                                                               0.20298337
      0.27256203
                    0.18819897
                                  -0.29189739
                                                 0.39634493
                                                               -0.1921766
      0.39651101
                    0.01126531
                                   0.34818128
                                                -0.51778888
                                                              -0.13179801
                                                               0.07424617
      -0.04962469
                    0.31554138
                                   0.43955569
                                                -0.07741368
       3.31581138
                   1.69584246
                                -0.51484935
                                              -1.20400794
                                                            -0.13667183
           0.
                    2.61061102
                                 1.44934523
                                               0.18250374
                                                             1.64369367
 R =
           0.
                        0.
                                 1.97313133
                                               2.51491306
                                                            -1.97233174
           0.
                        0.
                                     0.
                                               2.60345939
                                                            -0.36705198
           0.
                        0.
                                     0.
                                                            -2.67442489
                                                   0.
```

$$Q_2 = \begin{bmatrix} -0.61638397 & 0.10262763 & -0.11347702 & -0.20388276 & 0.47762403 & 0.16644402 \\ -0.0566147 & 0.1250255 & 0.52952741 & -0.00538089 \\ -0.43067269 & -0.43959133 & -0.01313831 & 0.21111782 & -0.28233864 & -0.56108621 \\ 0.1641044 & 0.37032598 & 0.02482711 & 0.13159154 \\ 0.34813316 & -0.57250475 & -0.35277205 & -0.25617169 & 0.46768665 & 0.00444555 \\ -0.02887996 & 0.12205036 & -0.10974773 & 0.33829586 \\ -0.22631498 & 0.24140201 & -0.32380601 & -0.55450635 & -0.26187541 & 0.09164478 \\ -0.12615031 & 0.37750165 & -0.48895092 & -0.0608859 \\ -0.1140804 & -0.3262688 & -0.0313457 & -0.30311053 & -0.5399699 & 0.42332763 \\ 0.23574937 & -0.33817158 & 0.26882587 & 0.2733073 \\ -0.11304391 & -0.36865513 & 0.59705055 & 0.0553907 & 0.11075129 & 0.49567148 \\ -0.00948452 & 0.35274673 & -0.25302347 & -0.21279056 \\ 0.04908936 & 0.18088768 & 0.02359017 & -0.12094724 & 0.20298337 & -0.02973203 \\ 0.94145145 & 0.0664947 & -0.1089322 & -0.07057137 \\ 0.27256203 & 0.18819897 & -0.29189739 & 0.39634493 & -0.1921766 & 0.36324425 \\ 0.0672596 & 0.59283453 & 0.2990914 & 0.18354063 \\ 0.39651101 & 0.01126531 & 0.34818128 & -0.51778888 & -0.13179801 & -0.29396311 \\ -0.06081227 & 0.30091365 & 0.46637224 & -0.19437424 \\ -0.04962469 & 0.31554138 & 0.43955569 & -0.07741368 & 0.07424617 & -0.07013516 \\ -0.05381484 & 0.06789609 & -0.11293178 & 0.81736039 \\ \end{array}$$

	3.31581138	1.69584246	-0.51484935	-1.20400794	-0.13667183
$R_2 =$	0.	2.61061102	1.44934523	0.18250374	1.64369367
	0.	0.	1.97313133	2.51491306	-1.97233174
	0.	0.	0.	2.60345939	-0.36705198
	0.	0.	0.	0.	-2.67442489
	0.	0.	0.	0.	0.
	0.	0.	0.	0.	0.
	0.	0.	0.	0.	0.
	0.	0.	0.	0.	0.
	0.	0.	0.	0.	0.

$$h = \begin{bmatrix} 3.31581138 & 0.26644207 & -0.21537776 & 0.14001313 & 0.07057754 & 0.0699363 \\ -0.03036986 & -0.16862456 & -0.24530744 & 0.03070105 \\ 1.69584246 & 2.61061102 & 0.37520463 & -0.15476671 & 0.22735285 & 0.25620246 \\ -0.12543459 & -0.14009101 & -0.02484133 & -0.21295454 \\ -0.51484935 & 1.44934523 & 1.97313133 & 0.22063148 & 0.01967565 & -0.43408114 \\ -0.01610868 & 0.22306391 & -0.23183211 & -0.32283289 \\ -1.20400794 & 0.18250374 & 2.51491306 & 2.60345939 & 0.24429475 & 0.12304013 \\ 0.07179937 & -0.34961403 & 0.46815243 & 0.10285458 \\ -0.13667183 & 1.64369367 & -1.97233174 & -0.36705198 & -2.67442489 & -0.41513808 \\ -0.15986052 & 0.38495855 & -0.29521307 & -0.19333762 \end{bmatrix}$$

 $\tau = \begin{bmatrix} 1.61638397 & 1.46693565 & 1.38362725 & 1.39669712 & 1.35997221 \end{bmatrix}$

And all the np.allclose() return to be True.