612 Example Sheet 4

Paul Hacking

28 March 2011

- (1) Let k be an infinite field. Let $f \in k[x_1, \ldots, x_n]$ be a nonzero polynomial. Show that there exist $a_1, \ldots, a_n \in k$ such that $f(a_1, \ldots, a_n) \neq 0$. [Hint: Use $k[x_1, \ldots, x_n] = k[x_1, \ldots, x_{n-1}][x_n]$ and induction on n].
- (2) Let R = k[x, y]. Let $S \subset R$ be the k-algebra generated by the monomials $x^i y^j$ for $j > \sqrt{2}i$. Show that S is not Noetherian. [Hint: If $\alpha \in \mathbb{R}$ is irrational then there are infinitely many rational numbers j/i such that $\alpha < j/i < \alpha + 1/i^2$.]
- (3) Let k be a field, $S = k[x_1, \ldots, x_n]$ the polynomial ring in n variables over k, and $\mathbb{A}^n_k = k^n$ the affine n-space over k with coordinates x_1, \ldots, x_n . Recall from class that $Z(J) \subset \mathbb{A}^n$ denotes the zero locus of an ideal $J \subset S$ and $I(X) \subset S$ denotes the ideal of polynomials vanishing on a subset $X \subset \mathbb{A}^n$.
 - (a) Let $X_1, X_2 \subset \mathbb{A}^n$. Verify that $I(X_1 \cup X_2) = I(X_1) \cap I(X_2)$.
 - (b) Let $\{J_i\}$ be a collection of ideals. Verify that $\bigcap Z(J_i) = Z(\sum J_i)$.
 - (c) Let $J_1, J_2 \subset S$ be ideals. Show that $Z(J_1 \cap J_2) = Z(J_1 \cdot J_2) = Z(J_1) \cup Z(J_2)$.
 - (d) Assume k is algebraically closed. Let $\{X_i\}$ be a collection of algebraic subsets of \mathbb{A}^n . Show that $I(\bigcap X_i) = \sqrt{\sum I(X_i)}$.
 - (e) Give an example of algebraic sets $X_1, X_2 \subset \mathbb{A}^2$ over an algebraically closed field k such that $I(X_1 \cap X_2) \neq I(X_1) + I(X_2)$.
- (4) (The Zariski topology)
 - (a) Show that the sets Z(J) for $J \subset S = k[x_1, ..., x_n]$ an ideal are the closed sets of a topology on \mathbb{A}_k^n , the Zariski topology.
 - (b) Describe the Zariski topology on \mathbb{A}^1 .

- (c) Let k be an infinite field. Show that, for the Zariski topology, a non empty open set $U \subset \mathbb{A}^n$ is dense (that is, the closure of U equals \mathbb{A}^n). In particular, the Zariski topology is *not* Hausdorff (because any two nonempty open sets intersect).
- (d) Let $k = \mathbb{C}$. Show that a Zariski open set of $\mathbb{A}^n = \mathbb{C}^n$ is an open set for the Euclidean topology. Show that a nonempty Zariski open set $U \subset \mathbb{A}^n$ is dense for the Euclidean topology.
- (5) Let k be an algebraically closed field. Recall that an algebraic set $X \subset \mathbb{A}^n$ is *irreducible* if there does *not* exist a decomposition $X = X_1 \cup X_2$, where $X_1, X_2 \subseteq X$ are proper algebraic subsets of X. We showed in class that any algebraic subset admits a decomposition

$$X = X_1 \cup \cdots \cup X_N$$

where each X_i is an irreducible algebraic set, and $X_i \nsubseteq X_j$ for $i \neq j$. Show that this decomposition is unique. (Then X_1, \ldots, X_N are called the *irreducible components* of X.)

- (6) Let k be an algebraically closed field. Let J be the ideal $(xy, yz, zx) \subset k[x, y, z]$. Describe the irreducible components of the associated algebraic set $X = Z(J) \subset \mathbb{A}^3$. Use your result to express \sqrt{J} as an intersection of prime ideals.
- (7) Let k be an algebraically closed field. Let $\mathfrak{p} \subset k[x,y]$ be a prime ideal. Show that either $\mathfrak{p}=0, \ \mathfrak{p}=(f)$ for some irreducible $f\in k[x,y],$ or $\mathfrak{p}=(x-a,y-b)$ for some $a,b\in k$. [Hint: If \mathfrak{p} is not principal then there exist $f,g\in \mathfrak{p}$ with no common factor in k[x,y]. Use Gauss' Lemma to show that f,g have no common factors in k(x)[y]. Conclude that there exists a nonzero $h\in k[x]\cap (f,g)$. Finally deduce that Z(f,g) is a finite set of points, so $\mathfrak{p}\supset (f,g)$ is the maximal ideal corresponding to one of these points.]
- (8) (Transcendence degree of a field extension) Let $k \subset K$ be a finitely generated field extension. We say that the transcendence degree of K/k equals n if there exist elements $t_1, \ldots, t_n \in K$ such that t_1, \ldots, t_n are algebraically independent over k (that is, they do not satisfy a polynomial equation over k, so the subfield $k(t_1, \ldots, t_n) \subset K$ is isomorphic to the field of rational functions in n variables over k) and $K/k(t_1, \ldots, t_n)$ is finite. Show that the transcendence degree is well defined. [Hint: Imitate the Steinitz exchange lemma used to prove that the dimension of a vector space is well defined.]