

# **AML Laboratory**

# Weather Forecasting System

Yujia Jin, Jiaying Wang, Ouya Wang, Gaoge Zhao

# **Content**

- 1. Background
- 2. Introduction
- 3. Proposed Approach
- 4. Performance Assessment
- 5. Hardware
- 6. Deliverables
- 7. TimeLine
- 8. Estimated Budget











# **Background**

#### weather forecasting

Personal travel planning, agricultural production, aviation planning



02 03

The development of the computation ability

Neural network technology has a better performance

# Introduction

Aim: Predict the weather conditions around the test site.



Temperature, Humidity, Atmospheric pressure and Light intensity

# Challenges:

- 1. Work out and implement the nonlinear model.
- 2. The great demand for different kinds of data for training and testing.

# **Proposed Approach**

Multiclassification problem

Four weather patterns (rainy, sunny, cloudy and overcast)

ANNs/CNNs, RNNs, LSTM

Recurrent connection, parameter sharing, long-term memory

Data changes with time

# **Performance Assessment**

1. Calculate performance measures, draw intuitive graphs, tabulating data

2. Mean square error (MSE), Mean absolute error (MAE)

3. Graphs recording predicted and actual weather

etc

# **Hardware**

Arduino Nano 33 BLE Sense with headers



Grove - Sunlight Sensor



Grove - Temp & Humi & Barometer Sensor (BME280)



Grove - OLED Display 1.12"



#### **Deliverables**

Acquire atmospheric data for training with sensors and Arduino

Deliverables

Train the model with data acquired

Adapt the trained model to Arduino and set sensors and display

The Arduino system alone should be able to provide weather forecasts (LED screen)

#### **Time Line**

# **Project Planner**



# **Estimated Budget**

| Hardware Components                             | Prices/GBP |
|-------------------------------------------------|------------|
| Arduino Nano 33 BLE Sense with headers          | 26.12      |
| Grove - Sunlight Sensor                         | 8.92       |
| Grove - Temp & Humi & Barometer Sensor (BME280) | 17.92      |
| Grove - OLED Display 1.12"                      | 13.06      |
| Total                                           | 66.02      |

### References

- [1] Pal, N.R., Srimanta Pal, Jyotirmoy Das, and Kausik Majumdar, "SOFM-MLP: A Hybrid Neural Network for Atmospheric Temperature Prediction." IEEE Transactions on Geoscience and Remote Sensing, Vol.41, No, 12, pp.2783-2791. 2003
- [2] S. E. Haupt, J. Cowie, S. Linden, T. McCandless, B. Kosovic and S. Alessandrini, "Machine Learning for Applied Weather Prediction," 2018 IEEE 14th International Conference on e-Science (e-Science), Amsterdam, 2018, pp. 276-277, doi: 10.1109/eScience.2018.00047..
- [3] Y. Radhika and M. Shashi, "Atmospheric temperature prediction using support vector machines", International Journal of Computer Theory and Engineering, vol. 1, no. 1, pp. 1793-8201, 2009.
- [4] M. Hossain, B. Rekabdar, S. J. Louis and S. Dascalu, "Forecasting the weather of Nevada: A deep learning approach," *2015 International Joint Conference on Neural Networks (IJCNN)*, Killarney, 2015, pp. 1-6, doi: 10.1109/IJCNN.2015.7280812.
- [5] Dr S. Santosh Baboo and I. Khadar Shareef, "An efficient Weather Forecasting Model using Artificial Neural Network", International Journal of Environmental Science and Development, Vol. 1, No. 4, October 2010.
- [6] A. G. Salman, Y. Heryadi, E. Abdurahman and W. Suparta, "Single layer & multi-layer long short-term memory (LSTM) model with intermediate variables for weather forecasting", Procedia Comput. Sci., vol. 135, pp. 89-98, Jan. 2018.

Q&A