CS217 – Algorithm Design and Analysis

Homework 5

Not Strong Enough

May 6, 2020

 Γ_1

Consider the induced bipartite subgraph $H_n[L_i \cup L_{i+1}]$, show that for i < n/2 the graph has a matching of size $|L_i| = \binom{n}{i}$

Proof. We do this by induction.

- 1. The initial step is that if n = 1, 2, the theorem is correct. This is trivial since in these conditions we only need to consider i = 0 and $|L_i| = 1$. Since L_0 and L_1 is connected, there is at least one edge between them.
- 2. the inductive assumption is that for n=1,2...k, the theorem is correct, the inductive step proves that for n=k+1 it is correct. In below, write each vertex v in H_{k+1} by its bitcode $b_v=\overline{B_1B_2...B_{k+1}}$, where B_i is the coordinate of the vertex in dimension i.
- 3. Now prove the theorem is true for (n,i), where n=k+1. If edge (v,v') is in the matching M, we call v and v' are matched. And each two matched points in H_n has exactly one bit different comparing their bitcodes. More generally, let L_i in H_n be $L_{i,n}$.

We form the matching by:

A. First, consider the collection $L_{i,k+1}^{(1)} = \{v \in L_i : b_v = \overline{b_u 1}\}$, and consider the first k bits. Then the collection equals $L_{i-1,k}$. It is obvious that i-1 < k/2 and by assumption, there is a matching $M_{i-1,k}$ from $L_{i-1,k}$ to $L_{i,k}$. Let the vertex v in $L_{i,k+1}^{(1)}$ matches v' that:

 $b_v = \overline{b_t 1}, b_{v'} = \overline{b_{u'} 1}$ where $u \in L_{i-1,k}, u' \in L_{i,k}$ and u, u' are matched by $M_{i-1,k}$. This matching is obviously correct. Now denote the matched vertices in $L_{i,k}$ by matching $M_{i-1,k}$ be $L_{i,k}^{(1)}$, and the rest in $L_{i,k}$ be $L_{i,k}^{(2)}$.

- B. Now consider the rest vertices in $L_{i,k+1}$ (denoted by $L_{i,k+1}^{(2)}$). They are in forms of $\{v: b_v = \overline{b_t 0}, u \in L_{i,k}\}$. Consider the subset that: $\{v: b_v = \overline{b_t 0}, u \in L_{i,k}\}$. We matches these points to $L_{i+1,k+1}$ by the following rule:
 - v is matched by v' if $b_v = \overline{b_t 0}, b_{v'} = \overline{b_t 1}$. Since $u \in L_{i,k}^{(2)}$, all matched v' are not ever matched before.
 - C. Now consider the last part that $\{v: b_v = \overline{b_t 0}, u \in L_{i,k}^{(1)}\}$.
- C1. If i < k/2, there is a matching $M_{i,k}$ from $L_{i,k}$ to $L_{i+1,k}$. Let v matches v' that $b_v = \overline{b_t 0}, b_{v'} = \overline{b_{u'} 0}$ and u, u' are matched by $M_{i,k}$.
 - C2. Otherwise, there is $i \ge k/2, i-1 < (k+1)/2$ so there is k=2u. And we consider that:

(How to get this??) If k = 2i, there is a set of disjoint paths from L_{i-1} to L_{i+1} . (this may be done by some symmetry?) If so, the set of all vertices of $L_{i,k}$ in these paths is our $L_{i,k}^{(1)}$ and has a matching to $L_{i+1,k}$, adding 0 at the end of each bitcode gets what we need. (just like extends $L_{i,k}^{(1)-L_{i+1,k}}$ to $L_{i,k+1}^{(1)}-L_{i+1,k+1}$).

My idea of exercise 5 is to prove the "how to get this" part first. And then by our construction in exercise 4, choose the $L_{i-1}^{(1)}$ part to go to two side.