

Universidad Don Bosco

Departamento de Ciencias Básicas

Ciclo 02 – 2021

Semana 13

Electricidad y Magnetismo

UNIDAD V: CAMPO MAGNETICO.

5.6 Ley de Biot-Savart.

- 5.6.1 Campo magnético alrededor de un conductor recto.
- 5.6.2 Campo magnético en el eje de una espira circular.

5.7 Fuerza magnética entre dos Conductores.

5.7 1 Definición de amperio (A).

5.8 Ley de Ampere.

5.8.1 Deducción y definición.

5.8 Ley de Ampere.

5.8.1 Deducción y definición.

5.9 Aplicaciones de la ley de Ampere.

- 5.9.1 Campo magnético en el interior y en el exterior de un conductor recto.
- 5.9.2 Campo magnético de un solenoide.
- 5.9.3 Campo magnético de un toroide.

Fuentes de Campo Magnético.

1. Campo magnético creado por una carga en movimiento:

El campo magnético...

- Es proporcional a |q| y a 1/r^2
- No se encuentra a lo largo de la línea que va de la carga al punto de análisis.
- También es proporcional a la rapidez v y al seno del ángulo φ.

Campo Magnético generado por una carga puntual.

Reuniendo todo lo anterior se obtiene que:

$$B = \frac{\mu_0}{4\pi} \frac{|q|v \operatorname{sen} \phi}{r^2}$$

Forma vectorial:

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$$
 (campo magnético de una carga puntual con velocidad constante)

Permeabilidad del espacio libre: $\mu_0 = 4\pi \times 10^{-7} \, \mathrm{T \cdot m/A}$

Vista desde atrás de la carga

El símbolo × indica que la carga se mueve hacia el plano de la página (se aleja del lector). Para estos puntos de campo, \vec{r} y \vec{v} están en el plano color beige, y \vec{B} es perpendicular a este plano.

Para estos puntos de campo, \vec{r} y \vec{v} están en el plano color dorado, y \vec{B} es perpendicular a este plano.

Campo Magnético generado por un elemento de corriente.

Tomando un diferencial para analizar el elemento:

$$dQ = nqA \ dl$$

$$dB = \frac{\mu_0}{4\pi} \frac{|dQ|v_d \operatorname{sen} \phi}{r^2} = \frac{\mu_0}{4\pi} \frac{n|q|v_d A \, dl \operatorname{sen} \phi}{r^2}$$

$$dB = \frac{\mu_0}{4\pi} \frac{I \, dl \, \text{sen} \, \phi}{r^2}$$

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I \, d\vec{l} \times \hat{r}}{r^2}$$

(campo magnético de un elemento de corriente)

Ley de Biot-Savart.

$$\vec{B} = \frac{\mu_0}{4\pi} \int \frac{I \, d\vec{l} \times \hat{r}}{r^2}$$

Vista a lo largo del eje del elemento de corriente

Para estos puntos de campo, \vec{r} y $d\vec{l}$ están en el plano color beige, y $d\vec{B}$ es perpendicular

Para estos puntos de campo, \vec{r} y $d\vec{l}$ encuentran en el plano color dorado, y $d\vec{B}$ es perpendicular a este plano.

Campo magnético en el eje de una espira circular.

$$dB = \frac{\mu_0 I}{4\pi} \frac{dl}{(x^2 + a^2)}$$

Las componentes del vector $d\vec{B}$ son

$$dB_{x} = dB\cos\theta = \frac{\mu_{0}I}{4\pi} \frac{dl}{(x^{2} + a^{2})} \frac{a}{(x^{2} + a^{2})^{1/2}}$$

$$dB_{y} = dB\sin\theta = \frac{\mu_{0}I}{4\pi} \frac{dl}{(x^{2} + a^{2})} \frac{x}{(x^{2} + a^{2})^{1/2}}$$

$$B_x = \frac{\mu_0 I a^2}{2(x^2 + a^2)^{3/2}}$$
 (sobre el eje de una espira circular)

$$B_x = \frac{\mu_0 I a^2}{2(x^2 + a^2)^{3/2}}$$

¿Qué sucede con el campo magnético si se tiene una bobina de N espiras?

$$B_x = \frac{\mu_0 N I a^2}{2(x^2 + a^2)^{3/2}}$$

¿Cuál será entonces el campo magnético en el centro de N espiras circulares?

$$B_x = \frac{\mu_0 NI}{2a}$$

Fuerza magnética entre dos Conductores.

Dos alambres paralelos que transportan cada uno una corriente estable y ejercen una fuerza magnética uno sobre el otro:

$$\frac{F_B}{\ell} = \frac{\mu_0 I_1 I_2}{2\pi a}$$

"Conductores paralelos que transportan corrientes en mismo sentido se atraen, y en sentidos opuestos de corriente se repelen"

La fuerza entre dos alambres paralelos es utilizada para definir el **ampere** de esta manera:

Cuando 2 x10^-7 N/m es la magnitud de la fuerza por unidad de longitud presente entre dos alambres largos y paralelos que llevan corrientes idénticas y están separados 1 m, se define la corriente en cada alambre como 1 A.

Ley de Ampere.

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = B \oint ds = \frac{\mu_0 I}{2\pi r} (2\pi r) = \mu_0 I$$

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I$$

Vista superior

Ley de Ampère: Si se calcula la integral de línea del campo magnético alrededor de una curva cerrada, el resultado es igual a μ_0 multiplicada por la corriente total encerrada: $\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{\rm enc}$.

Clasifique de menor a mayor las magnitudes de ∮ Bds para las trayectorias cerradas

Aplicaciones de la Ley de Ampere.

 Campo magnético en el interior y en el exterior de un conductor recto.

Campo magnético de un solenoide.

$$B = \mu_0 \frac{N}{\ell} I = \mu_0 n I$$

• Campo magnético de un toroide.

$$B = \frac{\mu_0 NI}{2\pi r}$$

Punto en el campo magnético	Magnitud del campo magnético
Distancia r desde el conductor	$B = \frac{\mu_0 I}{2\pi r}$
Sobre el eje de la espira	$B = \frac{\mu_0 I a^2}{2(x^2 + a^2)^{3/2}}$
En el centro de la espira	$B = \frac{\mu_0 I}{2a}$ (para N espiras, multiplique estas expresiones por N)
Dentro del conductor, $r < R$	$B = \frac{\mu_0 I}{2\pi} \frac{r}{R^2}$
Fuera del conductor, $r > R$	$B = \frac{\mu_0 I}{2\pi r}$
Dentro del solenoide, cerca del centro	$B = \mu_0 nI$
Fuera del solenoide	$B \approx 0$
Dentro del espacio encerrado por el embobinado, a una distancia <i>r</i> del eje de simetría. Fuera del espacio encerrado por el embobinado	$B = \frac{\mu_0 NI}{2\pi r}$ $B \approx 0$
	Distancia r desde el conductor Sobre el eje de la espira En el centro de la espira Dentro del conductor, $r < R$ Fuera del conductor, $r > R$ Dentro del solenoide, cerca del centro Fuera del solenoide Dentro del espacio encerrado por el embobinado, a una distancia r del eje de simetría.