Statistical Analysis & Reporting in R

Jacob O. Wobbrock, Ph.D.

The Information School | DUB Group

University of Washington

wobbrock@uw.edu

© Jacob O. Wobbrock, Ph.D.

Table of Analyses

Proportion & Association

Samples	Categories	Tests
1	2	One-sample χ² test, binomial test
1	≥2	One-sample χ^2 test, multinomial test
2	≥2	Two-sample χ^2 test, G-test, Fisher's exact test

Assumptions & Distributions

Normality: Shapiro-Wilk test Anderson-Darling test Homoscedasticity: Levene's test Brown-Forsythe test Sphericity: Mauchly's test of sphericity Distribution tests: Kolmogorov-Smirnov test χ^2 goodness-of-fit test

Analyses of Variance

Factors	Levels	<u>B</u> etween or <u>W</u> ithin	Parametric Tests & Linear (Mixed) Models	Nonparametric Tests & Generalized Linear (Mixed) Models
1	2	В	Independent-samples t-test	Mann-Whitney <i>U</i> test
1	2	W	Paired-samples t-test	Wilcoxon signed-rank test
1	≥2	В	One-way ANOVA	Kruskal-Wallis test
1	≥2	W	One-way repeated measures ANOVA	Friedman test
≥2	≥2	В	Factorial ANOVA Linear Model (LM)	Aligned Rank Transform (ART) Generalized Linear Model (GLM)
≥2	≥2	W	Factorial repeated measures ANOVA Linear Mixed Model (LMM)	Aligned Rank Transform (ART) Generalized Linear Mixed Model (GLMM)

Analysis Categories

Credit: This table is adapted from the "Fit Y by X" dialog in SAS® JMP™. http://jmp.com/

†All of the parametric tests in the previous table are forms of linear regression.

‡See the tests of proportion in the previous table.

Independent Variable (X)

./data/Proportions/

One sample

Samples	Response Categories	Test Name	Exact Test?	R Code
1	2	Binomial test	Yes, use with N≤200	<pre># df is a long-format data table w/columns for subject (S) and 2-category outcome (Y) df\$S = factor(df\$S) # Subject id is nominal (unused) df\$Y = factor(df\$Y) # Y is an outcome of 2 categories xt = xtabs(~ Y, data=df) # make counts binom.test(xt, p=0.5, alternative="two.sided")</pre>
1	≥2	Multinomial test	Yes, use with <i>N</i> ≤200	<pre># df is a long-format data table w/columns for subject (S) and N-category outcome (Y) library(XNomial) # for xmulti df\$S = factor(df\$\$S) # Subject id is nominal (unused) df\$Y = factor(df\$Y) # Y is an outcome of ≥2 categories xt = xtabs(~ Y, data=df) # make counts xmulti(xt, rep(1/length(xt), length(xt)), statName="Prob") # the following gives the same result library(RVAideMemoire) # for multinomial.test multinomial.test(df\$Y)</pre>
		One-sample Pearson Chi-Squared test	No, use with N>200	<pre># df is a long-format data table w/columns for subject (S) and N-category outcome (Y) df\$S = factor(df\$S) # Subject id is nominal (unused) df\$Y = factor(df\$Y) # Y is an outcome of ≥2 categories xt = xtabs(~ Y, data=df) # make counts chisq.test(xt)</pre>

One sample

Samples	Response Categories	Test Name	Exact Test?	Report
1	2	Binomial test	Yes, use with N≤200	"Out of 60 outcomes, 19 were 'x' and 41 were 'y'. A two-sided exact binomial test indicated that these proportions were statistically significantly different from chance ($p < .05$)."
1	≥2	Multinomial test	Yes, use with N≤200	"Out of 60 outcomes, 17 were 'x', 8 were 'y', and 35 were 'z'. An exact multinomial test indicated that these proportions were statistically significantly different from chance ($p < .0001$)."
		One-sample Pearson Chi-Squared test	No, use with N>200	"Out of 60 outcomes, 17 were 'x', 8 were 'y', and 35 were 'z'. A one-sample Pearson Chi-Squared test indicated that these proportions were statistically significantly different from chance ($\chi^2(2, N=60) = 18.90, p < .0001$)."

Two samples

Samples	Response Categories	Test Name	Exact Test?	R Code
2	≥2	Fisher's exact test	Yes, use with <i>N</i> ≤200	# df is a long-format data table w/subject (S), categorical factor (X) and outcome (Y) df\$S = factor(df\$S) # Subject id is nominal (unused) df\$X = factor(df\$X) # X is a factor of $m \ge 2$ levels df\$Y = factor(df\$Y) # Y is an outcome of $n \ge 2$ categories xt = xtabs(\sim X + Y, data=df) # make $m \times n$ crosstabs fisher.test(xt)
		G-test	No, use with N>200	<pre># df is a long-format data table w/subject (S), categorical factor (X) and outcome (Y) library(RVAideMemoire) # for G.test df\$S = factor(df\$S) # Subject id is nominal (unused) df\$X = factor(df\$X) # X is a factor of m ≥ 2 levels df\$Y = factor(df\$Y) # Y is an outcome of n ≥ 2 categories xt = xtabs(~ X + Y, data=df) # make m × n crosstabs G.test(xt)</pre>
		Two-sample Pearson Chi-Squared test	No, use with N>200	# df is a long-format data table w/subject (S), categorical factor (X) and outcome (Y) df\$S = factor(df\$S) # Subject id is nominal (unused) df\$X = factor(df\$X) # X is a factor of $m \ge 2$ levels df\$Y = factor(df\$Y) # Y is an outcome of $n \ge 2$ categories xt = xtabs(\sim X + Y, data=df) # make $m \times n$ crosstabs chisq.test(xt)

Two samples

Samples	Response Categories	Test Name	Exact Test?	Report
2	≥2	Fisher's exact test	Yes, use with N≤200	"Table 1 shows the counts of the 'x', 'y', and 'z' outcomes for each of 'a' and 'b'. Fisher's exact test indicated a statistically significant association between X and Y ($p < .0001$)."
		<i>G</i> -test	No, use with N>200	"Table 1 shows the counts of the 'x', 'y', and 'z' outcomes for each of 'a' and 'b'. A G -test indicated a statistically significant association between X and Y ($G(2) = 21.40$, $p < .0001$)."
		Two-sample Pearson Chi-Squared test	No, use with N>200	"Table 1 shows the counts of the 'x', 'y', and 'z' outcomes for each of 'a' and 'b'. A two-sample Pearson Chi-Squared test indicated a statistically significant association between X and Y ($\chi^2(2, N=60) = 19.88, p < .0001$)."

Table 1

			Y	
		X	y	Z
V	a	3	26	1
X	b	14	9	7

Post hoc comparisons

Post hoc tests – One sample

Samples	Response Categories	Omnibus Test	Contrast Test	R Code
1	≥2	Multinomial test	Binomial test	<pre># xt is a table of counts for each category of Y library(RVAideMemoire) # for multinomial.multcomp multinomial.multcomp(xt, p.method="holm") # xt shows levels</pre>
1	≥2	One-sample Pearson Chi-Squared test	Chi-Squared test	<pre># xt is a table of counts for each category of Y library(RVAideMemoire) # for chisq.multcomp chisq.multcomp(xt, p.method="holm") # xt shows levels # for the Chi-Squared values, use qchisq(1-p, df=1), where p is the pairwise p-value.</pre>
1	≥2	Multinomial test, One-sample Pearson Chi-Squared test	Binomial tests	# A different kind of post hoc test for one sample. For Y's response categories (x,y,z) , # test each proportion against chance. $x = binom.test(sum(df\$Y == "x"), nrow(df), p=1/3)$ # proportion of "x" rows $y = binom.test(sum(df\$Y == "y"), nrow(df), p=1/3)$ # proportion of "y" rows $z = binom.test(sum(df\$Y == "z"), nrow(df), p=1/3)$ # proportion of "z" rows $z = binom.test(sum(df\$Y == "z"), nrow(df), p=1/3)$ # proportion of "z" rows $z = binom.test(sum(df\$Y == "z"), nrow(df), p=1/3)$ # proportion of "z" rows $z = binom.test(sum(df\$Y == "z"), nrow(df), p=1/3)$ # proportion of "z" rows $z = binom.test(sum(df\$Y == "z"), nrow(df), p=1/3)$ # proportion of "z" rows $z = binom.test(sum(df\$Y == "z"), nrow(df), p=1/3)$ # proportion of "z" rows $z = binom.test(sum(df\$Y == "z"), nrow(df), p=1/3)$ # proportion of "z" rows $z = binom.test(sum(df\$Y == "z"), nrow(df), p=1/3)$ # proportion of "z" rows $z = binom.test(sum(df\$Y == "z"), nrow(df), p=1/3)$ # proportion of "z" rows $z = binom.test(sum(df\$Y == "z"), nrow(df), p=1/3)$ # proportion of "z" rows $z = binom.test(sum(df\$Y == "z"), nrow(df), p=1/3)$ # proportion of "z" rows $z = binom.test(sum(df\$Y == "z"), nrow(df), p=1/3)$ # proportion of "z" rows $z = binom.test(sum(df\$Y == "z"), nrow(df), p=1/3)$ # proportion of "z" rows $z = binom.test(sum(df\$Y == "z"), nrow(df), p=1/3)$ # proportion of "z" rows $z = binom.test(sum(df\$Y == "z"), nrow(df), nrow(df),$

Post hoc tests - One sample

Samples	Response Categories	Omnibus Test	Contrast Test	Report
1	≥2	Multinomial test	Binomial test	"Pairwise comparisons using exact binomial tests, corrected with Holm's sequential Bonferroni procedure, indicated that the proportions of 'x' and 'z' and 'y' and 'z' were statistically significantly different ($p < .05$), but that the proportions of 'x' and 'y' were not."
1	≥2	One-sample Pearson Chi-Squared test	Chi-Squared test	"Pairwise comparisons using Pearson Chi-Squared tests, corrected with Holm's sequential Bonferroni procedure, indicated that the proportions of 'x' and 'z' were statistically significantly different ($\chi^2(1, N=52) = 5.02, p < .05$), as were the proportions of 'y' and 'z' ($\chi^2(1, N=43) = 14.96, p < .001$), but that the proportions of 'x' and 'y' were only marginal ($\chi^2(1, N=25) = 3.24, p = .072$)."
1	≥2	Multinomial test, One-sample Pearson Chi-Squared test	Binomial tests	"Three post hoc binomial tests, corrected with Holm's sequential Bonferroni procedure, indicated that the proportions of 'y' and 'z' were statistically significantly different from chance ($p < .05$), but not the proportion of 'x'. Specifically, the proportion of 'y' at 8 was significantly lower than 20, and the proportion of 'z' at 35 was significantly higher than 20."

Post hoc tests – Two samples

Samples	Response Categories	Omnibus Test	Contrast Test	R Code
2	≥2	Fisher's exact test	Fisher's exact test for 2×2 crosstabs	<pre># xt is an m × n crosstabs with categories X and Y library(RVAideMemoire) # for fisher.multcomp fisher.multcomp(xt, p.method="holm")</pre>
2	≥2	<i>G</i> -test	G-test	<pre># xt is an m × n crosstabs with categories X and Y library(RVAideMemoire) # for G.multcomp G.multcomp(xt, p.method="holm") # xt shows levels</pre>
2	≥2	Two-sample Pearson Chi-Squared test	Chi-Squared test	<pre># xt is an m × n crosstabs with categories X and Y library(RVAideMemoire) # for chisq.multcomp chisq.multcomp(xt, p.method="holm") # xt shows levels # for the Chi-Squared values, use qchisq(1-p, df=1), where p is the pairwise p-value.</pre>
2	≥2	Fisher's exact test, G-test, Two-sample Pearson Chi-Squared test	Binomial tests	<pre># A different kind of post hoc test for two samples. For X's categories (a,b) and Y's # response categories (x,y,z), test each proportion of Y within each level of X against # chance. # df is a long-format data table w/subject (S), categorical factor (X) and outcome (Y). ax = binom.test(sum(df[df\$X == "a",]\$Y == "x"), nrow(df[df\$X == "a",]), p=1/3) ay = binom.test(sum(df[df\$X == "a",]\$Y == "y"), nrow(df[df\$X == "a",]), p=1/3) az = binom.test(sum(df[df\$X == "a",]\$Y == "z"), nrow(df[df\$X == "a",]), p=1/3) p.adjust(c(ax\$p.value, ay\$p.value, az\$p.value), method="holm") bx = binom.test(sum(df[df\$X == "b",]\$Y == "x"), nrow(df[df\$X == "b",]), p=1/3) by = binom.test(sum(df[df\$X == "b",]\$Y == "y"), nrow(df[df\$X == "b",]), p=1/3) bz = binom.test(sum(df[df\$X == "b",]\$Y == "z"), nrow(df[df\$X == "b",]), p=1/3) p.adjust(c(bx\$p.value, by\$p.value, bz\$p.value), method="holm")</pre>

Post hoc tests – Two samples

Samples	Response Categories	Omnibus Test	Contrast Test	Report
2	≥2	Fisher's exact test	Fisher's exact test for 2×2 crosstabs	"Three <i>post hoc</i> Fisher's exact tests, one for each 2×2 crosstabulation of X and Y, corrected with Holm's sequential Bonferroni procedure, indicated that there were statistically significant associations for $(a,b)\times(x,y)$ $(p<.001)$ and $(a,b)\times(y,z)$ $(p<.01)$, but not for $(a,b)\times(x,z)$."
2	≥2	<i>G</i> -test	<i>G</i> -test	"Pairwise comparisons using G -tests, corrected with Holm's sequential Bonferroni procedure, indicated that (a,x) vs . (a,y) , (a,z) vs . (b,x) , (a,z) vs . (a,y) , (b,y) vs . (a,y) , and (b,z) vs . (a,y) were all statistically significantly different $(p < .05)$. Furthermore, (a,x) vs . (b,x) $(p = .055)$ was marginal, as was (a,z) vs . (b,y) $(p = .060)$. The eight other possible pairwise comparisons were not statistically significant."
2	≥2	Two-sample Pearson Chi-Squared test	Chi-Squared test	"Pairwise comparisons using Pearson Chi-Square tests, corrected with Holm's sequential Bonferroni procedure, indicated that (a,x) vs . (a,y) , (a,z) vs . (b,x) , (a,z) vs . (a,y) , (b,y) vs . (a,y) , (b,z) vs . (a,y) were all statistically significantly different $(p < .05)$. Furthermore, (a,x) vs . (b,x) $(p = .076)$ was marginal. The nine other possible pairwise comparisons were not statistically significant."
2	≥2	Fisher's exact test, G-test, Two-sample Pearson Chi-Squared test	Binomial tests	"Three <i>post hoc</i> binomial tests, corrected with Holm's sequential Bonferroni procedure, indicated that, within 'a', the proportions of 'x', 'y', and 'z' were all significantly different from chance (i.e., 10 each) ($p < .01$). Three similar tests within 'b' indicated that none of the proportions of 'x', 'y', or 'z' significantly differed from chance (i.e., 10 each)."

Assumptions & Distributions

./data/Assumptions/

ANOVA Assumptions

Assumption	Test Name	Context of Use	R Code
Normality	Shapiro-Wilk test (on response in each condition)	t-test, ANOVA, LM, LMM	# assume df has two factors (X1,X2) each w/two levels (a,b) and continuous response Y shapiro.test(df[df $\$$ X1 == "a" & df $\$$ X2 == "a",] $\$$ Y) # condition a,a shapiro.test(df[df $\$$ X1 == "a" & df $\$$ X2 == "b",] $\$$ Y) # condition a,b shapiro.test(df[df $\$$ X1 == "b" & df $\$$ X2 == "a",] $\$$ Y) # condition b,a shapiro.test(df[df $\$$ X1 == "b" & df $\$$ X2 == "b",] $\$$ Y) # condition b,b
Normality	Shapiro-Wilk test (on residuals)	t-test, ANOVA, LM, LMM	<pre># assume df has two factors (X1,X2) each w/two levels (a,b) and continuous response Y m = aov(Y ~ X1*X2, data=df) # make anova model shapiro.test(residuals(m)) qqnorm(residuals(m)); qqline(residuals(m)) # Q-Q plot</pre>
Normality	Anderson-Darling test (on response in each condition)	t-test, ANOVA, LM, LMM	<pre># assume df has two factors (X1,X2) each w/two levels (a,b) and continuous response Y library(nortest) # for ad.test ad.test(df[df\$X1 == "a" & df\$X2 == "a",]\$Y) # condition a,a ad.test(df[df\$X1 == "a" & df\$X2 == "b",]\$Y) # condition a,b ad.test(df[df\$X1 == "b" & df\$X2 == "a",]\$Y) # condition b,a ad.test(df[df\$X1 == "b" & df\$X2 == "b",]\$Y) # condition b,b</pre>
Normality	Anderson-Darling test (on residuals)	t-test, ANOVA, LM, LMM	<pre># assume df has two factors (X1,X2) each w/two levels (a,b) and continuous response Y library(nortest) # for ad.test m = aov(Y ~ X1*X2, data=df) # make anova model ad.test(residuals(m)) qqnorm(residuals(m)); qqline(residuals(m)) # Q-Q plot</pre>

ANOVA Assumptions

Assumption	Test Name	Context of Use	Report
Normality	Shapiro-Wilk test (on response in each condition)	t-test, ANOVA, LM, LMM	"To test the assumption of conditional normality, a Shapiro-Wilk test was run on the response Y for each combination of levels of factors X1 and X2. All combinations were found to be statistically non-significant except condition (b,b), which showed a statistically significant deviation from normality ($W = .794$, $p < .01$)."
Normality	Shapiro-Wilk test (on residuals)	t-test, ANOVA, LM, LMM	"To test the normality assumption, a Shapiro-Wilk test was run on the residuals of a between-subjects full-factorial ANOVA model. The test was statistically non-significant ($W = .988$, $p = .798$), indicating compliance with the normality assumption. A Q-Q plot of residuals visually confirms the same (Figure 1)."
Normality	Anderson-Darling test (on response in each condition)	t-test, ANOVA, LM, LMM	"To test the assumption of conditional normality, an Anderson-Darling test was run on the response Y for each combination of levels of factors X1 and X2. All combinations were found to be statistically non-significant except condition (b,b), which showed a statistically significant deviation from normality ($A = 1.417$, $p < .001$)."
Normality	Anderson-Darling test (on residuals)	t-test, ANOVA, LM, LMM	"To test the normality assumption, an Anderson-Darling test was run on the residuals of a between-subjects full-factorial ANOVA model. The test was statistically non-significant ($A = 0.329$, $p = .510$), indicating compliance with the normality assumption. A Q-Q plot of residuals visually confirms the same (Figure 1)."

Normal Q-Q Plot

ANOVA Assumptions

Assumption	Test Name	Context of Use	R Code
Homoscedasticity, a.k.a. homogeneity of variance	Levene's test	t-test, ANOVA, LM, LMM	<pre># assume df has two factors (X1,X2) each w/two levels (a,b) and continuous response Y library(car) # for leveneTest, Anova leveneTest(Y ~ X1*X2, data=df, center=mean) # if a violation occurs and only a t-test is needed, use a Welch t-test t.test(Y ~ X1, data=df, var.equal=FALSE) # Welch t-test # if a violation occurs and an ANOVA is needed, use a White-adjusted ANOVA m = aov(Y ~ X1*X2, data=df) Anova(m, type=3, white.adjust=TRUE)</pre>
Homoscedasticity, a.k.a. homogeneity of variance	Brown-Forsythe test	t-test, ANOVA, LM, LMM	<pre># assume df has two factors (X1,X2) each w/two levels (a,b) and continuous response Y library(car) # for leveneTest, Anova leveneTest(Y ~ X1*X2, data=df, center=median) # if a violation occurs and only a t-test is needed, use a Welch t-test t.test(Y ~ X1, data=df, var.equal=FALSE) # Welch t-test # if a violation occurs and an ANOVA is needed, use a White-adjusted ANOVA m = aov(Y ~ X1*X2, data=df) Anova(m, type=3, white.adjust=TRUE)</pre>
Sphericity	Mauchly's test of sphericity	repeated measures ANOVA	<pre># assume df has subjects (S), one between-Ss factor (X1), and one within-Ss factor (X2) library(ez) # for ezANOVA df\$S = factor(df\$S) # Subject id is nominal m = ezANOVA(dv=Y, between=c(X1), within=c(X2), wid=S, type=3, data=df) # use c() for >1 factors m\$Mauchly # p<.05 indicates a sphericity violation for within-Ss effects</pre>

ANOVA Assumptions

Assumption	Test Name	Context of Use	Report
Homoscedasticity, a.k.a. homogeneity of variance	Levene's test	<i>t</i> -test, ANOVA, LM, LMM	"To test the homoscedasticity assumption, Levene's test was run on a between-subjects full-factorial ANOVA model. The test was statistically significant (F(3, 56) = 3.97 , $p < .05$), indicating a departure from homoscedasticity."
Homoscedasticity, a.k.a. homogeneity of variance	Brown-Forsythe test	<i>t</i> -test, ANOVA, LM, LMM	"To test the homoscedasticity assumption, the Brown-Forsythe test was run on a between-subjects full-factorial ANOVA model. The test was statistically significant ($F(3, 56) = 3.75, p < .05$), indicating a departure from homoscedasticity."
Sphericity	Mauchly's test of sphericity	repeated measures ANOVA	"To test the sphericity assumption for repeated measures ANOVA, Mauchly's test of sphericity was run on a mixed factorial ANOVA model with a between-subjects factor X1 and a within-subjects factor X2. The test was statistically significant for both X2 ($W = .637$, $p < .01$) and X1×X2 ($W = .637$, $p < .01$), indicating sphericity violations. Accordingly, the Greenhouse-Geisser correction was used when reporting these ANOVA results."

Distributions

Distribution	Parameterization	R Distribution Funcs	R Code
Normal	mean (μ): mean standard deviation (σ): sd	_norm: dnorm pnorm qnorm rnorm	# assume df has one factor (X) w/two levels (a,b) and continuous response Y library(MASS) # for fitdistr fa = fitdistr(df[df $\$$ X == "a",] $\$$ Y, "normal") $\$$ estimate # create fit for X.a ks.test(df[df $\$$ X == "a",] $\$$ Y, "pnorm", mean=fa[1], sd=fa[2]) fb = fitdistr(df[df $\$$ X == "b",] $\$$ Y, "normal") $\$$ estimate # create fit for X.b ks.test(df[df $\$$ X == "b",] $\$$ Y, "pnorm", mean=fb[1], sd=fb[2])
Lognormal	mean (μ): meanlog standard deviation (σ): sdlog	_lnorm: dlnorm plnorm qlnorm rlnorm	<pre># assume df has one factor (X) w/two levels (a,b) and continuous response Y library(MASS) # for fitdistr fa = fitdistr(df[df\$X == "a",]\$Y, "lognormal")\$estimate # create fit for X.a ks.test(df[df\$X == "a",]\$Y, "plnorm", meanlog=fa[1], sdlog=fa[2]) fb = fitdistr(df[df\$X == "b",]\$Y, "lognormal")\$estimate # create fit for X.b ks.test(df[df\$X == "b",]\$Y, "plnorm", meanlog=fb[1], sdlog=fb[2])</pre>
Poisson	lambda (λ): lambda	_pois: dpois ppois qpois rpois	<pre># assume df has one factor (X) w/two levels (a,b) and nonnegative integer response Y library(fitdistrplus) # for fitdist, gofstat fa = fitdist(df[df\$X == "a",]\$Y, "pois") # create fit for X.a gofstat(fa) fb = fitdist(df[df\$X == "b",]\$Y, "pois") # create fit for X.b gofstat(fb)</pre>
Negative Binomial	theta (θ): size mu (μ): mu	_nbinom: dnbinom pnbinom qnbinom rnbinom	<pre># assume df has one factor (X) w/two levels (a,b) and nonnegative integer response Y library(fitdistrplus) # for fitdist, gofstat fa = fitdist(df[df\$X == "a",]\$Y, "nbinom") # create fit for X.a gofstat(fa) fb = fitdist(df[df\$X == "b",]\$Y, "nbinom") # create fit for X.b gofstat(fb)</pre>

Distributions

Distribution	Parameterization	R Distribution Funcs	Report
Normal	mean (μ): mean standard deviation (σ): sd	_norm: dnorm pnorm qnorm rnorm	"Figure 2 shows the distributions of response Y for both levels of factor X. To test whether these distributions were normally distributed, a Kolmogorov-Smirnov test was run on Y for both levels of X. The test for level 'a' was statistically non-significant ($D = .158$, $p = .404$), as was the test for level 'b' ($D = .104$, $p = .867$), indicating non-detectable deviations from a normal distribution for both levels."
Lognormal	mean (μ): meanlog standard deviation (σ): sdlog	_lnorm: dlnorm plnorm qlnorm rlnorm	"Figure 3 shows the distributions of response Y for both levels of factor X. To test whether these distributions were lognormally distributed, a Kolmogorov-Smirnov test was run on Y for both levels of X. The test for level 'a' was statistically non-significant ($D = .096$, $p = .918$), as was the test for level 'b' ($D = .161$, $p = .375$), indicating non-detectable deviations from a lognormal distribution for both levels."
Poisson	lambda (λ): lambda	_pois: dpois ppois qpois rpois	"Figure 4 shows the distributions of response Y for both levels of factor X. To test whether these distributions were Poisson distributed, a Chi-Squared goodness-of-fit test was run on Y for both levels of X. The test for level 'a' was statistically non-significant ($\chi^2(3, N=30) = 2.62, p = .454$), as was the test for level 'b' ($\chi^2(4, N=30) = 2.79, p = .593$), indicating non-detectable deviations from a Poisson distribution for both levels."
Negative Binomial	theta (θ): size mu (μ): mu	_nbinom: dnbinom pnbinom qnbinom rnbinom	"Figure 5 shows the distributions of response Y for both levels of factor X. To test whether these distributions were negative binomially distributed, a Chi-Squared goodness-of-fit test was run on Y for both levels of X. The test for level 'a' was statistically non-significant ($\chi^2(4, N=30) = 1.74, p = .783$), as was the test for level 'b' ($\chi^2(3, N=30) = 1.27, p = .737$), indicating non-detectable deviations from a negative binomial distribution for both levels."

Distribution Tests

Distribution	Parameterization	R Distribution Fns	R Code
Exponential	rate (λ): rate	_exp: dexp pexp qexp rexp	<pre># assume df has one factor (X) w/two levels (a,b) and continuous response Y library(MASS) # for fitdistr fa = fitdistr(df[df\$X == "a",]\$Y, "exponential")\$estimate # create fit for X.a ks.test(df[df\$X == "a",]\$Y, "pexp", rate=fa[1]) fb = fitdistr(df[df\$X == "b",]\$Y, "exponential")\$estimate # create fit for X.b ks.test(df[df\$X == "b",]\$Y, "pexp", rate=fb[1])</pre>
Gamma	shape (α): shape rate (β): rate	_gamma: dgamma pgamma qgamma rgamma	<pre># assume df has one factor (X) w/two levels (a,b) and continuous response Y library(MASS) # for fitdistr fa = fitdistr(df[df\$X == "a",]\$Y, "gamma")\$estimate # create fit for X.a ks.test(df[df\$X == "a",]\$Y, "pgamma", shape=fa[1], rate=fa[2]) fb = fitdistr(df[df\$X == "b",]\$Y, "gamma")\$estimate # create fit for X.b ks.test(df[df\$X == "b",]\$Y, "pgamma", shape=fb[1], rate=fb[2])</pre>

Distribution Tests

Distribution	Parameterization	R Distribution Fns	Report
Exponential	rate (λ): rate	_exp: dexp pexp qexp rexp	"Figure 6 shows the distributions of response Y for both levels of factor X. To test whether these distributions were exponentially distributed, a Kolmogorov-Smirnov test was run on Y for both levels of X. The test for level 'a' was statistically non-significant ($D = .107$, $p = .849$), as was the test for level 'b' ($D = .119$, $p = .742$), indicating non-detectable deviations from an exponential distribution for both levels."
Gamma	shape (α): shape rate (β): rate	_gamma: dgamma pgamma qgamma rgamma	"Figure 7 shows the distributions of response Y for both levels of factor X. To test whether these distributions were Gamma distributed, a Kolmogorov-Smirnov test was run on Y for both levels of X. The test for level 'a' was statistically non-significant ($D = .116$, $p = .773$), as was the test for level 'b' ($D = .143$, $p = .526$), indicating non-detectable deviations from a Gamma distribution for both levels."

./data/Parametric/

One factor

Factors	Levels	Between or Within Subjects	Test Name	R Code
1	2	Between	Independent- samples <i>t</i> -test	<pre># df has subjects (S), one between-Ss factor (X) w/levels (a,b), and continuous response (Y) df\$S = factor(df\$S) # Subject id is nominal (unused) df\$X = factor(df\$X) # X is a 2-level factor t.test(Y ~ X, data=df, var.equal=TRUE) # use var.equal=FALSE if heteroscedastistic</pre>
1	2	Within	Paired-samples t-test	<pre># df has subjects (S), one within-Ss factor (X) w/levels (a,b), and continuous response (Y) library(reshape2) # for dcast df\$S = factor(df\$S) # Subject id is nominal df\$X = factor(df\$X) # X is a 2-level factor df2 <- dcast(df, S ~ X, value.var="Y") # make wide-format table t.test(df2\$a, df2\$b, paired=TRUE) # homoscedasticity is irrelevant for a paired-samples t-test</pre>
1	≥2	Between	One-way ANOVA	<pre># df has subjects (S), one between-Ss factor (X) w/levels (a,b,c), and continuous response (Y) df\$S = factor(df\$S) # Subject id is nominal (unused) df\$X = factor(df\$X) # X is a 3-level factor m = aov(Y ~ X, data=df) # fit model anova(m)</pre>

One factor

Factors	Levels	Between or Within Subjects	Test Name	Report
1	2	Between	Independent- samples <i>t</i> -test	"The mean of 'a' was 14.63 ($SD = 2.13$) and of 'b' was 11.01 ($SD = 1.75$). This difference was statistically significant according to an independent-samples t -test ($t(58) = 7.18$, $p < .0001$)."
1	2	Within	Paired-samples <i>t</i> -test	"The mean of 'a' was 13.15 ($SD = 2.53$) and of 'b' was 14.37 ($SD = 2.16$). This difference was statistically significant according to a paired-samples t -test ($t(29) = -2.14$, $p < .05$)."
1	≥2	Between	One-way ANOVA	"The mean of 'a' was 13.74 ($SD = 2.84$), of 'b' was 14.15 ($SD = 2.65$), and of 'c' was 9.08 ($SD = 4.29$). These differences were statistically significant according to a one-way ANOVA ($F(2, 57) = 14.18$, $p < .0001$)."

Note: "SD" stands for "standard deviation," i.e., the spread of values around the mean.

One factor

Factors	Levels	Between or Within Subjects	Test Name	R Code
1	≥2	Within	One-way repeated measures ANOVA	<pre># df has subjects (S), one within-Ss factor (X) w/levels (a,b,c), and continuous response (Y) library(ez) # for ezANOVA df\$S = factor(df\$S) # Subject id is nominal df\$X = factor(df\$S) # X is a 3-level factor m = ezANOVA(dv=Y, within=c(X), wid=S, type=3, data=df) # use c() for >1 factors m\$Mauchly # p<.05 indicates a sphericity violation m\$ANOVA # use if no violation # if there is a sphericity violation, report the Greenhouse-Geisser or Huynh-Feldt correction p = match(m\$Sphericity\$Effect, m\$ANOVA\$Effect) # positions of within-Ss effects in m\$ANOVA m\$Sphericity\$GGe.DFn = m\$Sphericity\$GGe * m\$ANOVA\$DFn[p] # Greenhouse-Geisser DFs m\$Sphericity\$GGe.DFd = m\$Sphericity\$GGe * m\$ANOVA\$DFn[p] # Huynh-Feldt DFs m\$Sphericity\$HFe.DFn = m\$Sphericity\$HFe * m\$ANOVA\$DFn[p] # Huynh-Feldt DFs m\$Sphericity\$HFe.DFd = m\$Sphericity\$HFe * m\$ANOVA\$DFd[p] m\$Sphericity # show results # the following also performs the equivalent repeated measures ANOVA, but does not address sphericity m = aov(Y ~ X + Error(S/X), data=df) summary(m)</pre>

One factor

Factors	Levels	Between or Within Subjects	Test Name	Report
1	≥2	Within	One-way repeated measures ANOVA	"The mean of 'a' was 14.04 ($SD = 2.98$), of 'b' was 11.95 ($SD = 1.98$), and of 'c' was 11.40 ($SD = 2.75$). Mauchly's test of sphericity indicated no sphericity violation ($W = .926$, $p = .499$), allowing for an uncorrected repeated measures ANOVA, which showed statistically significant differences ($F(2, 38) = 6.57$, $p < .01$)."

Multiple between-Ss factors

Factors	Levels	Between or Within Subjects	Test Name	R Code
≥2	≥2	Between	Factorial ANOVA	<pre># df has subjects (S), two between-Ss factors (X1,X2) each w/levels (a,b), and continuous response (Y) library(ez) # for ezANOVA df\$S = factor(df\$S) # Subject id is nominal df\$X1 = factor(df\$X1) # X1 is a 2-level factor df\$X2 = factor(df\$X2) # X2 is a 2-level factor m = ezANOVA(dv=Y, between=c(X1,X2), wid=S, type=3, data=df) # use c() for >1 factors m\$Levene # if p<.05, we have a violation of homoscedasticity, so use a White-adjusted ANOVA m = ezANOVA(dv=Y, between=c(X1,X2), wid=S, type=3, data=df, white.adjust=TRUE) # heteroscedastic m\$ANOVA # the following also performs the equivalent factorial ANOVA m = aov(Y ~ X1*X2, data=df) anova(m)</pre>
			Linear Model (LM)	<pre># df has subjects (S), two between-Ss factors (X1,X2) each w/levels (a,b), and continuous response (Y) df\$S = factor(df\$S) # Subject id is nominal (unused) df\$X1 = factor(df\$X1) # X1 is a 2-level factor df\$X2 = factor(df\$X2) # X2 is a 2-level factor m = lm(Y ~ X1*X2, data=df) anova(m)</pre>

Multiple between-Ss factors

Factors	Levels	Between or Within Subjects	Test Name	Report
≥2	≥2	Between	Factorial ANOVA	"Figure 8 shows an interaction plot with ± 1 standard deviation error bars for X1 and X2. A factorial ANOVA indicated a statistically significant effect on Y of X1 (F(1, 56) = 9.35, $p < .01$) and X2 (F(1, 56) = 4.30, $p < .05$), but not of the X1×X2 interaction (F(1, 56) = 0.42, $n.s.$)."
			Linear Model (LM)	"Figure 8 shows an interaction plot with ± 1 standard deviation error bars for X1 and X2. An analysis of variance indicated a statistically significant effect on Y of X1 (F(1, 56) = 9.35, $p < .01$) and X2 (F(1, 56) = 4.30, $p < .05$), but not of the X1×X2 interaction (F(1, 56) = 0.42, $n.s.$)."

Figure 8

Factors	Levels	Between or Within Subjects	Test Name	R Code
≥2	≥2	Within	Factorial repeated measures ANOVA	<pre># df has subjects (S), two within-Ss factors (X1,X2) each w/levels (a,b), and continuous response (Y) library(ez) # for ezANOVA df\$\$ = factor(df\$\$\$) # Subject id is nominal df\$\$X1 = factor(df\$\$X1) # X1 is a 2-level factor df\$\$X2 = factor(df\$\$X2) # X2 is a 2-level factor m = ezANOVA(dv=Y, within=c(X1,X2), wid=S, type=3, data=df) # use c() for >1 factors m\$Mauchly # p<.05 indicates a sphericity violation m\$ANOVA # use if no violation # if there is a sphericity violation, report the Greenhouse-Geisser or Huynh-Feldt correction p = match(m\$Sphericity\$Effect, m\$ANOVA\$Effect) # positions of within-Ss effects in m\$ANOVA m\$Sphericity\$GGe.DFn = m\$Sphericity\$GGe * m\$ANOVA\$DFn[p] # Greenhouse-Geisser DFs m\$Sphericity\$HFe.DFn = m\$Sphericity\$GFe * m\$ANOVA\$DFn[p] # Huynh-Feldt DFs m\$Sphericity\$HFe.DFd = m\$Sphericity\$HFe * m\$ANOVA\$DFn[p] # Huynh-Feldt DFs m\$Sphericity\$HFe.DFd = m\$Sphericity\$HFe * m\$ANOVA\$DFd[p] m\$Sphericity # show results # the following also performs the equivalent repeated measures ANOVA, but does not address sphericity m = aov(Y ~ X1*X2 + Error(S/(X1*X2)), data=df) summary(m)</pre>

Factors	Levels	Between or Within Subjects	Test Name	Report
≥2	≥2	Within	Factorial repeated measures ANOVA	"Figure 9 shows an interaction plot with ± 1 standard deviation error bars for X1 and X2. A factorial repeated measures ANOVA indicated a statistically significant effect on Y of X1 (F(1, 14) = 5.45, $p < .05$), but not of X2 (F(1, 14) = 0.18, $n.s.$), or of the X1×X2 interaction (F(1, 14) = 0.12, $n.s.$)."

Factors	Levels	Between or Within Subjects	Test Name	R Code
≥2	≥2	Within	Linear Mixed Model (LMM)*	<pre># df has subjects (S), two within-Ss factors (X1,X2) each w/levels (a,b), and continuous response (Y) library(lme4) # for lmer library(lmerTest) library(car) # for Anova df\$S = factor(df\$S) # Subject id is nominal df\$X1 = factor(df\$X1) # X1 is a 2-level factor df\$X2 = factor(df\$X2) # X2 is a 2-level factor contrasts(df\$X1) <- "contr.sum" contrasts(df\$X2) <- "contr.sum" m = lmer(Y ~ X1*X2 + (1 S), data=df) Anova(m, type=3, test.statistic="F")</pre>

^{*}The LMM sample code uses a random <u>intercept</u> for <u>subject</u> (S). There are also random <u>slope</u> models, which are used when the response changes at different rates for each subject over a repeated factor. A 2-minute random slope example of county population growth over time can be seen here (https://www.youtube.com/watch?v=YDe6F7CXjWw). A free webinar on the topic of random intercept and random slope models is available here (https://thecraftofstatisticalanalysis.com/random-intercept-random-slope-models/).

Factors	Levels	Between or Within Subjects	Test Name	Report
≥2	≥2	Within	Linear Mixed Model (LMM)	"Figure 9 shows an interaction plot with ± 1 standard deviation error bars for X1 and X2. A linear mixed model analysis of variance indicated a statistically significant effect on Y of X1 (F(1, 42) = 4.42, $p < .05$), but not of X2 (F(1, 42) = 0.22, $n.s.$), or of the X1×X2 interaction (F(1, 42) = 0.12, $n.s.$)."

Figure 9

Post hoc comparisons

Post hoc pairwise comparisons – One factor

Factors	Levels	Omnibus Test	Test Name	B/W	R Code
1	≥2	One-way ANOVA	Independent samples t-test	Btwn	<pre># df has subjects (S), one between-Ss factor (X) w/levels (a,b,c), and continuous response (Y) library(multcomp) # for glht, mcp summary(glht(m, mcp(X="Tukey")), test=adjusted(type="holm")) # m is from aov # the following also performs the same contrast tests library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X, adjust="tukey", mode="linear.predictor", type="Score"))</pre>
1	≥2	One-way repeated measures ANOVA	Paired samples t-test	Within	<pre># df has subjects (S), one within-Ss factor (X) w/levels (a,b,c), and continuous response (Y) library(reshape2) # for dcast df2 <- dcast(df, S ~ X, value.var="Y") # make wide-format table ab = t.test(df2\$a, df2\$b, paired=TRUE) # a vs. b ac = t.test(df2\$a, df2\$c, paired=TRUE) # a vs. c bc = t.test(df2\$b, df2\$c, paired=TRUE) # b vs. c p.adjust(c(ab\$p.value, ac\$p.value, bc\$p.value), method="holm")</pre>

Post hoc pairwise comparisons – One factor

Factors	Levels	Omnibus Test	Test Name	B/W	Report
1	≥2	One-way ANOVA	Independent samples <i>t</i> -test	Btwn	"Pairwise comparisons using independent-samples t -tests, corrected with Holm's sequential Bonferroni procedure, indicated that 'a' and 'c' ($t(57) = 4.41$, $p < .0001$) and 'b' and 'c' ($t(57) = 4.80$, $p < .0001$) were statistically significantly different, but that 'a' and 'b' were not ($t(57) = -0.39$, $n.s.$)." "Simultaneous pairwise comparisons using Tukey's HSD test indicated that 'a' and 'c' ($t(57) = 4.41$, $p < .0001$) and 'b' and 'c' ($t(57) = 4.80$, $t(57) = $
1	≥2	One-way repeated measures ANOVA	Paired samples t-test	Within	"Three <i>post hoc</i> paired-samples <i>t</i> -tests, corrected with Holm's sequential Bonferroni procedure, indicated that 'a' and 'b' $(t(19) = 3.14, p < .05)$ and 'a' and 'c' $(t(19) = 3.39, p < .01)$ were statistically significantly different, but that 'b' and 'c' were not $(t(19) = 0.65, n.s.)$."

Note: "Tukey's HSD" test stands for "Tukey's Honestly Significant Difference" test.

Post hoc pairwise comparisons – Multiple factors

Factors	Levels	Omnibus Test	Test Name	B/W	R Code
≥2	≥2	Factorial ANOVA, Linear Model (LM)	Independent samples <i>t</i> -test	Btwn	<pre># df has subjects (S), two between-Ss factors (X1,X2) each w/levels (a,b), and continuous response (Y) library(multcomp) # for glht library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X1*X2)), test=adjusted(type="holm")) # m is from aov or lm # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X1*X2, adjust="tukey", mode="linear.predictor", type="Score"))</pre>
≥2	≥2	Factorial repeated measures ANOVA	Paired samples t-test	Within	<pre># df has subjects (S), two within-Ss factors (X1,X2) each w/levels (a,b), and continuous response (Y) library(reshape2) # for dcast df2 <- dcast(df, S ~ X1 + X2, value.var="Y") # make wide-format table aa_ab = t.test(df2\$a_a, df2\$a_b, paired=TRUE) # aa vs. ab aa_ba = t.test(df2\$a_a, df2\$b_a, paired=TRUE) # aa vs. ba aa_bb = t.test(df2\$a_a, df2\$b_b, paired=TRUE) # aa vs. bb ab_ba = t.test(df2\$a_b, df2\$b_a, paired=TRUE) # ab vs. ba ab_bb = t.test(df2\$a_b, df2\$b_b, paired=TRUE) # ab vs. bb ba_bb = t.test(df2\$b_a, df2\$b_b, paired=TRUE) # ba vs. bb p.adjust(c(aa_ab\$p.value, aa_ba\$p.value, aa_bb\$p.value, ab_ba\$p.value, ab_bb\$p.value, ba_bb\$p.value), method="holm")</pre>
≥2	≥2	Linear Mixed Model (LMM)	Paired samples <i>t</i> -test	Within	<pre># df has subjects (S), two within-Ss factors (X1,X2) each w/levels (a,b), and continuous response (Y) library(multcomp) # for glht library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X1*X2)), test=adjusted(type="holm")) # m is from lmer # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X1*X2, adjust="tukey", mode="kenward-roger", type="Score"))</pre>

Post hoc pairwise comparisons – Multiple factors

Factors	Levels	Omnibus Test	Test Name	B/W	Report
≥2	≥2	Factorial ANOVA, Linear Model (LM)	Independent samples t-test	Btwn	"Pairwise comparisons using independent-samples t -tests, corrected with Holm's sequential Bonferroni procedure, indicated that (b,a) vs . (a,b) showed a statistically significant difference (t (56) = 3.63, p < .01), and that (a,b) vs . (b,b) was marginal (t (56) = -2.62, p = .057). The other four comparisons showed no statistically significant differences." "Simultaneous pairwise comparisons using Tukey's HSD test indicated that that (b,a) vs . (a,b) showed a statistically significant difference (t (56) = 3.63, t < .01), and that (a,b) t
≥2	≥2	Factorial repeated measures ANOVA	Paired samples t-test	Within	"Six <i>post hoc</i> paired-samples <i>t</i> -tests, corrected with Holm's sequential Bonferroni procedure, indicated that (a,a) vs . (b,b) showed a statistically significant difference ($t(14) = 3.10$, $p < .05$), and that (a,b) vs . (b,b) was marginal ($t(14) = 2.65$, $p = .096$). The other four comparisons showed no statistically significant differences."
≥2	≥2	Linear Mixed Model (LMM)	Paired samples <i>t</i> -test	Within	"Pairwise comparisons using paired-samples <i>t</i> -tests, corrected with Holm's sequential Bonferroni procedure, indicated that no pairs were statistically significantly different." "Simultaneous pairwise comparisons using Tukey's HSD test indicated that no pairs were statistically significantly different."

Note: "Tukey's HSD" test stands for "Tukey's Honestly Significant Difference" test.

Variance-Covariance Structures

Variance-Covariance Structures

Optional when fitting linear mixed models (LMMs)

Abbreviation	Name	Description	R Code
ID	Scaled identity	All variances are equal, and all covariances are zero. Default for nlme::lme.	<pre># df has subjects (S), one within-Ss factor (X) w/levels (a,b,c), and continuous response (Y) library(nlme) # for lme library(car) # for Anova library(emmeans) # for emmeans df\$S = factor(df\$S) # Subject id is nominal df\$X = factor(df\$X) # X is a 3-level factor contrasts(df\$X) <- "contr.sum" m = lme(Y ~ X, random=~1 S, data=df, weights=varIdent(form=~X)) # ID getVarCov(m, type="marginal") # get VCV matrix anova(m) # for F-test Anova(m, type=3, test.statistic="Chisq") # for chisq test summary(emmeans(m, pairwise ~ X, adjust="holm")) # post hoc tests</pre>
DIAG	Diagonal	All variances can differ, and all covariances are zero. Default in SPSS.	<pre># See R Code for ID. Only the blue model building line changes to: m = lme(Y ~ X, random=~1 S, data=df, weights=varIdent(form=~1 X)) # DIAG</pre>
CS	Compound symmetry	All variances are equal, and all covariances are equal. Default in JMP.	<pre># See R Code for ID. Only the blue model building line changes to: m = lme(Y ~ X, random=~1 S, data=df, correlation=corCompSymm(form=~1 S)) # CS</pre>
CSH	Heterogeneous compound symmetry	All variances can differ; otherwise, like CS.	<pre># See R Code for ID. Only the blue model building line changes to: m = lme(Y ~ X, random=~1 S, data=df, correlation=corCompSymm(form=~1 S),</pre>

Note: The lme4::lmer function does not allow specifying common variance-covariance (VCV) structures for repeated factors or residuals. Therefore, we must use nlme::lme for this. For a list of common VCV structures, see https://www.ibm.com/docs/en/spss-statistics/26.0.0?topic=statistics/26.0.0?topic=statistics/26.0.0?topic=statistics-covariance-structures. For a treatment in R, see https://rpubs.com/samuelkn/CovarianceStructuresInR.

Note: The correlation parameter sets covariances (matrix off-diagonal), and the weights parameter sets variances (matrix on-diagonal). Above, when weights=varIdent(form=~X), the variances are required to be equal, which is the default when weights is unspecified. When weights=varIdent(form=~1|X), the variances are allowed to differ.

Variance-Covariance Structures

Optional when fitting linear mixed models (LMMs)

Abbreviation	Name	Description	R Code
AR1	First-order autoregressive	All variances are equal, and all covariances decrease the further apart they are.	<pre># See R Code for ID. Only the blue model building line changes to: m = lme(Y ~ X, random=~1 S, data=df, correlation=corAR1(form=~1 S)) # AR1</pre>
ARH1	Heterogeneous first-order autoregressive	All variances can differ; otherwise, like AR1.	<pre># See R Code for ID. Only the blue model building line changes to: m = lme(Y ~ X, random=~1 S, data=df, correlation=corAR1(form=~1 S),</pre>
ARMA11	_	All variances are equal, and all covariances decrease the further apart they are, influenced by a moving average.	# See R Code for ID. Only the blue model building line changes to: $m = lme(Y \sim X, random=\sim1 S, data=df, correlation=corARMA(form=\sim1 S, p=1, q=1))$ # ARMA11 # Note that $(p,q)=(1,0)$ would be AR1. The 'q' parameter determines the moving average.
ТР	Toeplitz	All variances are equal, and covariances are equal across adjacent pairs, equal again across skipadjacent pairs, and so on.	<pre># See R Code for ID. Only the blue model building line changes to: m = lme(Y ~ X, random=~1 S, data=df, correlation=corARMA(form=~1 S, p=2, q=0)) # TP</pre>
ТРН	Heterogeneous Toeplitz	All variances can differ; otherwise, like TP.	<pre># See R Code for ID. Only the blue model building line changes to: m = lme(Y ~ X, random=~1 S, data=df, correlation=corARMA(form=~1 S, p=2, q=0),</pre>
UN	Unstructured	All variances and covariances can differ. A completely unpatterned matrix. Default for lme4::lmer.	<pre># See R Code for ID. Only the blue model building line changes to: m = lme(Y ~ X, random=~1 S, data=df, correlation=corSymm(form=~1 S),</pre>

Note: See ?nlme::corClasses for additional variance-covariance structures usable by nlme::lme.

./data/Nonparametric/

One factor

Factors	Levels	Between or Within Subjects	Test Name	R Code
1	2	Between	Mann-Whitney <i>U</i> test	<pre># df has subjects (S), one between-Ss factor (X) w/levels (a,b), and continuous response (Y) library(coin) df\$S = factor(df\$S) # Subject id is nominal (unused) df\$X = factor(df\$X) # X is a 2-level factor wilcox_test(Y ~ X, data=df, distribution="exact")</pre>
1	2	Within	Wilcoxon signed-rank test	<pre># df has subjects (S), one within-Ss factor (X) w/levels (a,b), and continuous response (Y) library(coin) df\$S = factor(df\$S) # Subject id is nominal df\$X = factor(df\$X) # X is a 2-level factor wilcoxsign_test(Y ~ X S, data=df, distribution="exact")</pre>
1	≥2	Between	Kruskal-Wallis test	<pre># df has subjects (S), one between-Ss factor (X) w/levels (a,b,c), and continuous response (Y) library(coin) df\$S = factor(df\$S) # Subject id is nominal (unused) df\$X = factor(df\$X) # X is a 3-level factor kruskal_test(Y ~ X, data=df, distribution="asymptotic")</pre>
1	≥2	Within	Friedman test	<pre># df has subjects (S), one within-Ss factor (X) w/levels (a,b,c), and continuous response (Y) library(coin) df\$S = factor(df\$S) # Subject id is nominal df\$X = factor(df\$X) # X is a 3-level factor friedman_test(Y ~ X S, data=df, distribution="asymptotic")</pre>

Note: The Mann-Whitney *U* test is also known as the Wilcoxon rank-sum test, not to be confused with the Wilcoxon signed-rank test.

One factor

Factors	Levels	Between or Within Subjects	Test Name	Report
1	2	Between	Mann-Whitney <i>U</i> test	"The median of 'a' was 13.26 ($IQR = 5.01$) and of 'b' was 14.98 ($IQR = 6.19$). This difference was statistically significant according to a Mann-Whitney U test ($Z = -2.44$, $p < .05$)."
1	2	Within	Wilcoxon signed-rank test	"The median of 'a' was 11.92 ($IQR = 2.35$) and of 'b' was 10.74 ($IQR = 2.29$). This difference was statistically significant according to a Wilcoxon signed-rank test ($Z = 2.11, p < .05$)."
1	≥2	Between	Kruskal-Wallis test	"The median of 'a' was 13.96 ($IQR = 5.98$), of 'b' was 11.50 ($IQR = 3.49$), and of 'c' was 9.62 ($IQR = 1.61$). These differences were statistically significant according to a Kruskal-Wallis test ($\chi^2(2, N=60) = 17.77, p < .001$)."
1	≥2	Within	Friedman test	"The median of 'a' was 8.37 ($IQR = 1.71$), of 'b' was 8.97 ($IQR = 2.21$), and of 'c' was 9.97 ($IQR = 3.56$). These differences were statistically significant according to a Friedman test ($\chi^2(2, N=60) = 7.90, p < .05$)."

Note: "IQR" stands for "interquartile range," i.e., the distance between the top and bottom of the box in a boxplot (25% - 75% quartile range).

Multiple factors

Factors	Levels	Between or Within Subjects		R Code
≥2	≥2	Between	Aligned Rank Transform (ART)	<pre># df has subjects (S), two between-Ss factors (X1,X2) each w/levels (a,b), and continuous response (Y) library(ARTool) df\$S = factor(df\$S) # Subject id is nominal (unused) df\$X1 = factor(df\$X1) # X1 is a 2-level factor df\$X2 = factor(df\$X2) # X2 is a 2-level factor m = art(Y ~ X1*X2, data=df) anova(m)</pre>
			Generalized Linear Model (GLM)*	See "Generalized Linear (Mixed) Models: Distributions and canonical links"
≥2	≥2	Within	Aligned Rank Transform (ART)**	<pre># df has subjects (S), two within-Ss factors (X1,X2) each w/levels (a,b), and continuous response (Y) library(ARTool) df\$S = factor(df\$S) # Subject id is nominal df\$X1 = factor(df\$X1) # X1 is a 2-level factor df\$X2 = factor(df\$X2) # X2 is a 2-level factor m = art(Y ~ X1*X2 + (1 S), data=df) # S is a random factor anova(m)</pre>
			Generalized Linear Mixed Model (GLMM)*	See "Generalized Linear (Mixed) Models: Distributions and canonical links"

^{*} GLMs and GLMMs are not actually nonparametric; they are generalized regression models that support tests on data not amenable to ANOVA.

^{**}The Aligned Rank Transform within-subjects sample code uses a random <u>intercept</u> for <u>subject</u> (S). There are also random <u>slope</u> models, which are used when the response changes at different rates for each subject over a repeated factor. A 2-minute random slope example of county population growth over time can be seen here (https://www.youtube.com/watch?v=YDe6F7CXjWw). A free webinar on the topic of random intercept and random slope models is available here (https://thecraftofstatisticalanalysis.com/random-intercept-random-slope-models/).

Multiple factors

Factors	Levels	Between or Within Subjects	Test Name	Report
≥2	≥2	Between	Aligned Rank Transform (ART)	"Figure 10 shows boxplots for all levels of X1×X2. A nonparametric analysis of variance based on the Aligned Rank Transform indicated no statistically significant effect on Y of X1 (F(1, 56) = 1.98, $n.s.$), or of X2 (F(1, 56) = 0.81, $n.s.$), but there was a statistically significant X1×X2 interaction (F(1, 56) = 13.65, $p < .001$)."
			Generalized Linear Model (GLM)	See "Generalized Linear (Mixed) Models: Distributions and canonical links"
≥2	≥2	Within	Aligned Rank Transform (ART)	"Figure 11 shows boxplots for all levels of X1×X2. A nonparametric analysis of variance based on the Aligned Rank Transform indicated no statistically significant effect on Y of X1 (F(1, 42) = 1.85, $n.s.$) or of the X1×X2 interaction (F(1, 42) = 1.93, $n.s.$), but there was a statistically significant effect of X2 (F(1, 42) = 24.97, $p < .0001$)."
			Generalized Linear Mixed Model (GLMM)	See "Generalized Linear (Mixed) Models: Distributions and canonical links"

Figure 10

Figure 11

Post hoc comparisons

Post hoc pairwise comparisons – One factor

Factors	Levels	Omnibus Test	Test Name	B/W	R Code
1	≥2	Kruskal-Wallis test	Mann-Whitney <i>U</i> test	Btwn	<pre># df has subjects (S), one between-Ss factor (X) w/levels (a,b,c), and continuous response (Y) ab = wilcox.test(df[df\$X == "a",]\$Y, df[df\$X == "b",]\$Y) # a vs. b ac = wilcox.test(df[df\$X == "a",]\$Y, df[df\$X == "c",]\$Y) # a vs. c bc = wilcox.test(df[df\$X == "b",]\$Y, df[df\$X == "c",]\$Y) # b vs. c p.adjust(c(ab\$p.value, ac\$p.value, bc\$p.value), method="holm")</pre>
1	≥2	Friedman test	Wilcoxon signed-rank test	Within	<pre># df has subjects (S), one within-Ss factor (X) w/levels (a,b,c), and continuous response (Y) library(reshape2) # for dcast df2 <- dcast(df, S ~ X, value.var="Y") # make wide-format table ab = wilcox.test(df2\$a, df2\$b, paired=TRUE) # a vs. b ac = wilcox.test(df2\$a, df2\$c, paired=TRUE) # a vs. c bc = wilcox.test(df2\$b, df2\$c, paired=TRUE) # b vs. c p.adjust(c(ab\$p.value, ac\$p.value, bc\$p.value), method="holm")</pre>

Post hoc pairwise comparisons – One factor

Factors	Levels	Omnibus Test	Test Name	B/W	Report
1	≥2	Kruskal-Wallis test	Mann-Whitney <i>U</i> test	Btwn	"Three post hoc Mann-Whitney U tests, corrected with Holm's sequential Bonferroni procedure, indicated that 'a' and 'b' ($W = 309$, $p < .01$) and 'a' and 'c' ($W = 343$, $p < .001$) were statistically significantly different, but that 'b' and 'c' were marginal ($W = 264$, $p = .086$)."
1	≥2	Friedman test	Wilcoxon signed-rank test	Within	"Three post hoc Wilcoxon signed-rank tests, corrected with Holm's sequential Bonferroni procedure, indicated that 'a' and 'c' ($V = 32$, $p < .05$) and 'b' and 'c' ($V = 43$, $p < .05$) were statistically significantly different, but that 'a' and 'b' were not ($V = 83$, $n.s.$)."

Post hoc pairwise comparisons – Multiple factors

Factors	Levels	Omnibus Test	Test Name	B/W	R Code
Transform (ART) Transform (Contrasts (ART-C) Within Contrasts (ART-C) Within Library (dplyr) # for %>% pipe art.con(m, ~ X1*X2, adjust="holm") %>% # run ART-C for X1 × X2 summary() %>% # add significance stars to the output mutate(sig. = symnum(p.value, corr=FALSE, na=FALSE, cutpoints = c(0, .001, .01, .05, .10, 1), symbols = c("***", "**", "*", """, """))) Mann-Whitney U test # df has subjects (S), two between-Ss factors (X1,X2) each w/levels (a,b), are aa_ab = wilcox.test(df[df\$X1 == "a" & df\$X2 == "a",]\$Y, df[df\$X1 == "b" & df\$Xa=bb = wilcox.test(df[df\$X1 == "a" & df\$X2 == "a",]\$Y, df[df\$X1 == "b" & df\$Xa=bb = wilcox.test(df[df\$X1 == "a" & df\$X2 == "b",]\$Y, df[df\$X1 == "b" & df\$Xa=bb = wilcox.test(df[df\$X1 == "a" & df\$X2 == "b",]\$Y, df[df\$X1 == "b" & df\$Xa=bb = wilcox.test(df[df\$X1 == "a" & df\$X2 == "b",]\$Y, df[df\$X1 == "b" & df\$Xa=bb = wilcox.test(df[df\$X1 == "a" & df\$X2 == "b",]\$Y, df[df\$X1 == "b" & df\$Xa=bb = wilcox.test(df[df\$X1 == "a" & df\$X2 == "b",]\$Y, df[df\$X1 == "b" & df\$Xa=bb = wilcox.test(df[df\$X1 == "a" & df\$X2 == "b",]\$Y, df[df\$X1 == "b" & df\$Xa=bb = wilcox.test(df[df\$X1 == "a" & df\$X2 == "a",]\$Y, df[df\$X1 == "b" & df\$Xa=bb = wilcox.test(df[df\$X1 == "a" & df\$X2 == "a",]\$Y, df[df\$X1 == "b" & df\$Xa=bb = wilcox.test(df[df\$X1 ==		1	<pre>art.con(m, ~ X1*X2, adjust="holm") %>% # run ART-C for X1 × X2 summary() %>% # add significance stars to the output mutate(sig. = symnum(p.value, corr=FALSE, na=FALSE,</pre>		
		# df has subjects (S), two between-Ss factors (X1,X2) each w/levels (a,b), and continuous response (Y) aa_ab = wilcox.test(df[df\$X1 == "a" & df\$X2 == "a",]\$Y, df[df\$X1 == "a" & df\$X2 == "b",]\$Y) aa_ba = wilcox.test(df[df\$X1 == "a" & df\$X2 == "a",]\$Y, df[df\$X1 == "b" & df\$X2 == "a",]\$Y) aa_bb = wilcox.test(df[df\$X1 == "a" & df\$X2 == "a",]\$Y, df[df\$X1 == "b" & df\$X2 == "b",]\$Y) ab_ba = wilcox.test(df[df\$X1 == "a" & df\$X2 == "b",]\$Y, df[df\$X1 == "b" & df\$X2 == "a",]\$Y) ab_bb = wilcox.test(df[df\$X1 == "a" & df\$X2 == "b",]\$Y, df[df\$X1 == "b" & df\$X2 == "b",]\$Y) ba_bb = wilcox.test(df[df\$X1 == "b" & df\$X2 == "a",]\$Y, df[df\$X1 == "b" & df\$X2 == "b",]\$Y) p.adjust(c(aa_ab\$p.value, aa_ba\$p.value, aa_bb\$p.value, ab_bb\$p.value, ba_bb\$p.value), method="holm")			
			Wilcoxon signed-rank test	Within	<pre># df has subjects (S), two within-Ss factors (X1,X2) each w/levels (a,b), and continuous response (Y) library(reshape2) # for dcast df2 <- dcast(df, S ~ X1 + X2, value.var="Y") # make wide-format table aa_ab = wilcox.test(df2\$a_a, df2\$a_b, paired=TRUE) aa_ba = wilcox.test(df2\$a_a, df2\$b_a, paired=TRUE) aa_bb = wilcox.test(df2\$a_a, df2\$b_b, paired=TRUE) ab_ba = wilcox.test(df2\$a_b, df2\$b_a, paired=TRUE) ab_bb = wilcox.test(df2\$a_b, df2\$b_b, paired=TRUE) ba_bb = wilcox.test(df2\$b_a, df2\$b_b, paired=TRUE) p.adjust(c(aa_ab\$p.value, aa_ba\$p.value, aa_bb\$p.value, ab_ba\$p.value, ab_bb\$p.value, ba_bb\$p.value), method="holm")</pre>

Post hoc pairwise comparisons – Multiple factors

Factors	Levels	Omnibus Test	Test Name	B/W	Report
≥2 ≥2	≥2	Aligned Rank Transform (ART)	Aligned Rank Transform Contrasts (ART-C)	Btwn	"Post hoc pairwise comparisons conducted with the ART-C procedure, and corrected with Holm's sequential Bonferroni procedure, indicated that (a,b) vs. (b,b) showed a statistically significant difference ($t(56) = 3.42, p < .01$), as did (b,a) vs. (b,b) ($t(56) = 3.21, p < .05$). No other pairwise comparisons were significantly different."
			(5)	Within	"Post hoc pairwise comparisons conducted with the ART-C procedure, and corrected with Holm's sequential Bonferroni procedure, indicated that (a,a) vs. (a,b) showed a statistically significant difference ($t(42) = -4.43$, $p < .001$), as did (a,b) vs. (b,a) ($t(42) = 4.38$, $p < .001$). The test of (a,a) vs. (b,b) was marginal ($t(42) = -2.49$, $p = .067$), as was the test of (b,a) vs. (b,b) ($t(42) = -2.44$, $p = .067$). No other pairwise comparisons were statistically significant or marginal."
			Mann-Whitney <i>U</i> test	Btwn	"Six post hoc Mann-Whitney U tests, corrected with Holm's sequential Bonferroni procedure, indicated that (a,b) vs . (b,b) showed a statistically significant difference ($W = 179$, $p < .05$), and that (b,a) vs . (b,b) did as well ($W = 184$, $p < .05$). The othe four comparisons showed no statistically significant differences."
			Wilcoxon signed-rank test	Within	"Six post hoc Wilcoxon signed-rank tests, corrected with Holm's sequential Bonferroni procedure, indicated that (a,a) vs. (a,b) showed a statistically significant difference ($V = 4$, $p < .01$), as did (a,b) vs. (b,a) ($V = 113$, $p < .01$). The test of (a,a) vs. (b,b) was marginal ($V = 19$, $p = .072$). The other three comparisons showed no statistically significant differences."

Generalized Linear (Mixed) Models

./data/GLM/ ./data/GLMM/

Terminology

Generalize to Responses Unsuitable to ANOVA?

^{*}Random factors enable the modeling of correlated responses, i.e., within-subjects data, repeated measures data, longitudinal data, panel data, etc.

GLM / GLMM

Distributions and canonical links

Distribution	Link	Typical Uses	R code for GLM (between-Ss)	R code for GLMM (within-Ss)
Normal	identity	Linear regression: Equivalent to the linear model (LM) or linear mixed model (LMM)	<pre>library(car) # for Anova df\$S = factor(df\$S) df\$X1 = factor(df\$X1) df\$X2 = factor(df\$X2) contrasts(df\$X1) <- "contr.sum" contrasts(df\$X2) <- "contr.sum" m = glm(Y ~ X1*X2, data=df, family=gaussian) Anova(m, type=3, test.statistic="F")</pre>	<pre>library(lme4) # for glmer, lmer library(lmerTest) library(car) # for Anova df\$\$\$ = factor(df\$\$\$\$) df\$\$\$X1 = factor(df\$\$X1) df\$\$\$X2 = factor(df\$\$X2) contrasts(df\$\$X1) <- "contr.sum" contrasts(df\$\$X2) <- "contr.sum" #m = glmer(Y ~ X1*X2 + (1 S), data=df, family=gaussian) #deprecated m = lmer(Y ~ X1*X2 + (1 S), data=df) # equivalent, use instead Anova(m, type=3, test.statistic="F")</pre>
Binomial	logit	Logistic regression: Dichotomous responses (i.e., nominal responses with two categories)	<pre>library(car) # for Anova df\$S = factor(df\$S) df\$X1 = factor(df\$X1) df\$X2 = factor(df\$X2) df\$Y = factor(df\$Y) # nominal response contrasts(df\$X1) <- "contr.sum" contrasts(df\$X2) <- "contr.sum" m = glm(Y ~ X1*X2, data=df, family=binomial) Anova(m, type=3)</pre>	<pre>library(lme4) # for glmer library(lmerTest) library(car) # for Anova df\$\$\$ = factor(df\$\$\$) df\$\$X1 = factor(df\$\$X1) df\$\$X2 = factor(df\$\$X2) df\$\$Y = factor(df\$\$Y) # nominal response contrasts(df\$\$X1) <- "contr.sum" contrasts(df\$\$X2) <- "contr.sum" m = glmer(Y ~ X1*X2 + (1 S), data=df, family=binomial) Anova(m, type=3)</pre>

Notes: A normal distribution is also known as a Gaussian distribution. Logistic regression is also known as binomial regression.

GLM / GLMM

Distributions and canonical links

Distribution	Link	Typical Uses	Report for GLM (between-Ss)	Report for GLMM (within-Ss)
Normal	identity	Linear regression: Equivalent to the linear model (LM) or linear mixed model (LMM)	"Figure 12a shows an interaction plot with ± 1 standard deviation error bars for X1 and X2. An analysis of variance based on linear regression indicated a statistically significant effect on Y of X1 (F(1, 56) = 7.06, $p < .05$), but not of X2 (F(1, 56) = 1.02, $n.s.$). Also, the X1×X2 interaction was not statistically significant (F(1, 56) = 2.74, $n.s.$)."	"Figure 12b shows an interaction plot with ± 1 standard deviation error bars for X1 and X2. A linear mixed model analysis of variance indicated no statistically significant effect on Y of X1 (F(1, 42) = 2.44, <i>n.s.</i>) or of X2 (F(1, 42) = 0.00, <i>n.s.</i>), but there was a statistically significant X1×X2 interaction (F(1, 42) = 5.17, $p < .05$)."
Binomial	logit	Logistic regression: Dichotomous responses (i.e., nominal responses with two categories)	"Figure 13a shows the number of 'x' and 'y' outcomes for each level of X1 and X2. An analysis of variance based on logistic regression indicated a statistically significant effect on Y of X1 ($\chi^2(1, N=60) = 6.05, p < .05$) and of the X1×X2 interaction ($\chi^2(1, N=60) = 8.63, p < .01$), but not of X2 ($\chi^2(1, N=60) = 2.27, n.s.$)."	"Figure 13b shows the number of 'x' and 'y' outcomes for each level of X1 and X2. An analysis of variance based on mixed logistic regression indicated no statistically significant effect on Y of X1 ($\chi^2(1, N=60) = 1.02, n.s.$) or of X2 ($\chi^2(1, N=60) = 1.02, n.s.$), but there was a statistically significant X1×X2 interaction ($\chi^2(1, N=60) = 6.52, p < .05$)."

Figure 12a

Figure 12b

Figure 13a

Figure 13b

GLM / GLMM

Distributions and canonical links

Distribution	Link	Typical Uses	R code for GLM (between-Ss)	R code for GLMM (within-Ss)
Multinomial	logit	Multinomial logistic regression: Polytomous responses (i.e., nominal responses with more than two categories)	<pre>library(nnet) # for multinom library(car) # for Anova df\$\$ = factor(df\$\$) df\$\$X1 = factor(df\$\$X1) df\$\$X2 = factor(df\$\$X2) df\$\$Y = factor(df\$\$Y) # nominal response contrasts(df\$\$X1) <- "contr.sum" contrasts(df\$\$X2) <- "contr.sum" m = multinom(Y ~ X1*X2, data=df) Anova(m, type=3)</pre>	<pre>library(mlogit) # for mlogit.data library(lme4) # for glmer library(lmerTest) library(car) # for Anova df\$\$\$\$ = factor(df\$\$\$\$) df\$\$X1 = factor(df\$\$X1) df\$\$X2 = factor(df\$\$X2) df\$\$Y = factor(df\$\$Y) # nominal response # use the multinomial-Poisson (m-P) transformation (Baker 1994) df2 <- as.data.frame(</pre>

Note: Multinomial logistic regression is also known as nominal logistic regression.

Distributions and canonical links

Distribution	Link	Typical Uses	Report for GLM (between-Ss)	Report for GLMM (within-Ss)
Multinomial	logit	Multinomial logistic regression: polytomous responses (i.e., nominal responses with more than two categories)	"Figure 14a shows the number of 'x', 'y', and 'z' outcomes for each level of X1 and X2. An analysis of variance based on multinomial logistic regression indicated a statistically significant effect on Y of X1 $(\chi^2(2, N=60) = 10.46, p < .01)$, of X2 $(\chi^2(2, N=60) = 15.21, p < .001)$, and a marginal X1×X2 interaction $(\chi^2(2, N=60) = 5.09, p = .078)$."	"Figure 14b shows the number of 'x', 'y', and 'z' outcomes for each level of X1 and X2. An analysis of variance based on mixed Poisson regression using the multinomial-Poisson transformation (Baker 1994) indicated no statistically significant effect on Y of X1 ($\chi^2(2, N=60) = 2.32, n.s.$) or X2 ($\chi^2(2, N=60) = 0.30, n.s.$), but there was a statistically significant X1×X2 interaction ($\chi^2(2, N=60) = 11.39, p < .01$)."

Figure 14a

Figure 14b

Distributions and canonical links

Distribution	Link	Typical Uses	R code for GLM (between-Ss)	R code for GLMM (within-Ss)	
Ordinal	cumulative logit	Ordinal logistic regression: Ordinal responses (e.g., Likert scales)	<pre>library(MASS) # for polr library(car) # for Anova df\$\$ = factor(df\$\$\$) df\$\$X1 = factor(df\$\$X1) df\$\$X2 = factor(df\$\$X2) df\$\$Y = ordered(df\$\$Y) # ordinal response contrasts(df\$\$X1) <- "contr.sum" contrasts(df\$\$X2) <- "contr.sum" m = polr(Y ~ X1*X2, data=df, Hess=TRUE) Anova(m, type=3)</pre>	<pre>library(ordinal) # for clmm library(RVAideMemoire) # for Anova.clmm df\$\$ = factor(df\$\$\$) df\$\$X1 = factor(df\$\$X1) df\$\$X2 = factor(df\$\$X2) df\$\$Y = ordered(df\$\$Y) # ordinal response contrasts(df\$\$X1) <- "contr.sum" contrasts(df\$\$X2) <- "contr.sum" df2 <- as.data.frame(df) # Anova.clmm fails without this m = clmm(Y ~ X1*X2 + (1 S), data=df2, link="logit") # or "probit" Anova.clmm(m)</pre>	
Poisson	log	Poisson regression: Counts, rare events (e.g., gesture recognition errors, 3-pointers per quarter, number of "F" grades)	<pre>library(car) # for Anova df\$\$ = factor(df\$\$) df\$\$X1 = factor(df\$\$X1) df\$\$X2 = factor(df\$\$X2) contrasts(df\$\$X1) <- "contr.sum" contrasts(df\$\$X2) <- "contr.sum" m = glm(Y ~ X1*X2, data=df, family=poisson) # use family=quasipoisson if overdispersed Anova(m, type=3)</pre>	<pre>library(lme4) # for glmer library(lmerTest) library(car) # for Anova df\$\$\$ = factor(df\$\$\$\$) df\$\$\$X1 = factor(df\$\$X1) df\$\$\$X2 = factor(df\$\$X2) contrasts(df\$\$X1) <- "contr.sum" contrasts(df\$\$X2) <- "contr.sum" m = glmer(Y ~ X1*X2 + (1 S), data=df, family=poisson) Anova(m, type=3)</pre>	

Notes: Ordinal logistic regression is also known as cumulative logistic regression. When count data is overdispersed, it means the variance of the distribution is greater than its mean. For mildly overdispersed count distributions, family=quasipoisson can be used with glm but not with glmer. For greater overdispersion, use negative binomial regression.

Distributions and canonical links

Distribution	Link	Typical Uses	Report for GLM (between-Ss)	Report for GLMM (within-Ss)		
Ordinal	cumulative logit Ordinal logistic regression: Ordinal responses (e.g., Likert scales)		"Figure 15a shows the distribution of Likert responses (1-7) for each combination of X1 and X2. An analysis of variance based on ordinal logistic regression indicated a statistically significant effect on Y of X2 ($\chi^2(1, N=60) = 6.14, p < .05$), but not of X1 ($\chi^2(1, N=60) = 1.65, n.s.$) or of the X1×X2 interaction ($\chi^2(1, N=60) = 0.05, n.s.$)."	"Figure 15b shows the distribution of Likert responses (1-7) for each combination of X1 and X2. An analysis of variance based on mixed ordinal logistic regression indicated no statistically significant effect on Y of X1 (χ^2 (1 N =60) = 0.02, $n.s.$) or of X2 (χ^2 (1, N =60) = 1.00, $n.s.$), but there was a statistically significant X1×X2 interaction (χ^2 (1, N =60) = 4.22, p < .05)."		
Poisson	log	Poisson regression: Counts, rare events (e.g., gesture recognition errors, 3-pointers per quarter, number of "F" grades)	"Figure 16a shows an interaction plot with ± 1 standard deviation error bars for X1 and X2. An analysis of variance based on Poisson regression indicated a statistically significant effect on Y of the X1×X2 interaction ($\chi^2(1, N=60) = 3.84, p < .05$), but not of either X1 ($\chi^2(1, N=60) = 0.17, n.s.$) or X2 ($\chi^2(1, N=60) = 1.19, n.s.$)."	"Figure 16b shows an interaction plot with ± 1 standard deviation error bars for X1 and X2. An analysis of variance based on mixed Poisson regression indicated a statistically significant effect on Y of X1 ($\chi^2(1, N=60) = 18.10, p < .0001$), but not of X2 ($\chi^2(1, N=60) = 1.47, n.s.$) or of the X1×X2 interaction ($\chi^2(1, N=60) = 0.26, n.s.$)."		

Figure 15a

Responses by X1, X2

Figure 15b

Responses by X1, X2

Figure 16a

Figure 16b

Distributions and canonical links

Distribution	Link	Typical Uses	R code for GLM (between-Ss)	R code for GLMM (within-Ss)	
Zero-Inflated Poisson	log	Zero-inflated Poisson regression: Counts and rare events with a large proportion of zeroes	<pre>library(pscl) # for zeroinfl library(car) # for Anova df\$\$ = factor(df\$\$\$) df\$\$X1 = factor(df\$\$X1) df\$\$X2 = factor(df\$\$X2) contrasts(df\$\$X1) <- "contr.sum" contrasts(df\$\$X2) <- "contr.sum" m = zeroinfl(Y ~ X1*X2, data=df, dist="poisson") Anova(m, type=3)</pre>	<pre>library(glmmTMB) # for glmmTMB library(car) # for Anova df\$S = factor(df\$S) df\$X1 = factor(df\$X1) df\$X2 = factor(df\$X2) contrasts(df\$X1) <- "contr.sum" contrasts(df\$X2) <- "contr.sum" m = glmmTMB(Y ~ X1*X2 + (1 S), data=df, family=poisson,</pre>	
Negative Binomial	log	Negative binomial regression: Same as Poisson but for use in the presence of overdispersion	<pre>library(MASS) # for glm.nb library(car) # for Anova df\$\$ = factor(df\$\$\$\$\$) df\$\$X1 = factor(df\$\$X1) df\$\$X2 = factor(df\$\$X2) contrasts(df\$\$X1) <- "contr.sum" contrasts(df\$\$X2) <- "contr.sum" m = glm.nb(Y ~ X1*X2, data=df) Anova(m, type=3)</pre>	<pre>library(lme4) # for glmer.nb library(lmerTest) library(car) # for Anova df\$\$\$ = factor(df\$\$\$) df\$\$\$X1 = factor(df\$\$X1) df\$\$\$X2 = factor(df\$\$X2) contrasts(df\$\$X1) <- "contr.sum" contrasts(df\$\$X2) <- "contr.sum" m = glmer.nb(Y ~ X1*X2 + (1 S), data=df) Anova(m, type=3)</pre>	

Notes: Negative binomial regression can be used when count data is overdispersed, which means the variance of the distribution is greater than its mean.

Distributions and canonical links

Distribution	Link	Typical Uses	Report for GLM (between-Ss)	Report for GLMM (within-Ss)	
Zero-Inflated Poisson	log Zero-inflated Poisson regression: Counts and rare events with a large proportion of zeroes		"Figure 17a shows histograms of Y by X1 and X2. An analysis of variance based on zero-inflated Poisson regression indicated a statistically significant effect on Y of the X1×X2 interaction ($\chi^2(1, N=60) = 8.14, p < .01$), and a marginal effect of X2 ($\chi^2(1, N=60) = 3.11, p = .078$). There was no statistically significant effect of X1 on Y ($\chi^2(1, N=60) = 0.29, n.s.$)."	"Figure 17b shows histograms of Y by X1 and X2. An analysis of variance based on zero-inflated mixed Poisson regression indicated a statistically significant effect on Y of X1 ($\chi^2(1, N=60) = 4.58, p < .05$) but neither of X2 ($\chi^2(1, N=60) = 0.05, n.s.$) nor the X1×X2 interaction ($\chi^2(1, N=60) = 2.31, n.s.$)."	
Negative Binomial	log Negative binomial regression: Same as Poisson but for use in the presence of overdispersion		"Figure 18a shows an interaction plot with ± 1 standard deviation error bars for X1 and X2. An analysis of variance based on negative binomial regression indicated a statistically significant effect on Y of X1 ($\chi^2(1, N=60) = 13.46, p < .001$), but not of X2 ($\chi^2(1, N=60) = 0.07, n.s.$) or the X1×X2 interaction ($\chi^2(1, N=60) = 0.92, n.s.$)."	"Figure 18b shows an interaction plot with ± 1 standard deviation error bars for X1 and X2. An analysis of variance based on mixed negative binomial regression indicated a statistically significant effect on Y of X ($\chi^2(1, N=60) = 8.66, p < .01$) and X2 ($\chi^2(1, N=60) = 6.99, p < .01$), but not of the X1×X2 interaction ($\chi^2(1, N=60) = 2.23, n.s.$)."	

Figure 17a

Figure 17b

Figure 18a

Figure 18b

Distributions and canonical links

Distribution	Link	Typical Uses	R code for GLM (between-Ss)	R code for GLMM (within-Ss)	
Zero-Inflated Negative Binomial	log	Zero-inflated negative binomial regression: Same as Zero-Inflated Poisson but for use in the presence of overdispersion	<pre>library(pscl) # for zeroinfl library(car) # for Anova df\$\$ = factor(df\$\$\$) df\$\$X1 = factor(df\$\$X1) df\$\$X2 = factor(df\$\$X2) contrasts(df\$\$X1) <- "contr.sum" contrasts(df\$\$X2) <- "contr.sum" m = zeroinfl(Y ~ X1*X2, data=df, dist="negbin") Anova(m, type=3)</pre>	<pre>library(glmmTMB) # for glmmTMB library(car) # for Anova df\$\$\$\$ = factor(df\$\$\$\$) df\$\$\$X1 = factor(df\$\$X1) df\$\$\$X2 = factor(df\$\$X2) contrasts(df\$\$X1) <- "contr.sum" contrasts(df\$\$X2) <- "contr.sum" m = glmmTMB(Y ~ X1*X2 + (1 S), data=df, family=nbinom2,</pre>	
Gamma, including Exponential	inverse, but log is often used because 1/0 is undefined	Gamma regression: Exponentially distributed responses (e.g., income, wait times)	<pre>library(car) # for Anova df\$\$ = factor(df\$\$\$) df\$\$X1 = factor(df\$\$X1) df\$\$X2 = factor(df\$\$X2) contrasts(df\$\$X1) <- "contr.sum" contrasts(df\$\$X2) <- "contr.sum" m = glm(Y ~ X1*X2, data=df, family=Gamma) # family=Gamma(link="log") can also be used Anova(m, type=3)</pre>	<pre>library(lme4) # for glmer library(lmerTest) library(car) # for Anova df\$\$ = factor(df\$\$) df\$\$X1 = factor(df\$\$X1) df\$\$X2 = factor(df\$\$X2) contrasts(df\$\$X1) <- "contr.sum" contrasts(df\$\$X2) <- "contr.sum" m = glmer(Y ~ X1*X2 + (1 S), data=df, family=Gamma) # family=Gamma(link="log") can also be used Anova(m, type=3)</pre>	

Notes: Gamma distributions are parameterized by *shape* and *scale* (or sometimes *rate*, which is the inverse of scale). Exponential distributions are special cases of Gamma distributions where the shape always equals 1.

The GLMM sample code uses a random <u>intercept</u> for <u>subject</u> (S). There are also random <u>slope</u> models, which are used when the response changes at different rates for each subject over the repeated factor(s). A random slope example of county population growth over time can be seen here (https://www.youtube.com/watch?v=YDe6F7CXjWw). A free webinar on the topic of random intercept and random slope models is available here (https://thecraftofstatisticalanalysis.com/random-intercept-random-slope-models/).

Distributions and canonical links

Distribution	Link	Typical Uses	Report for GLM (between-Ss)	Report for GLMM (within-Ss)	
Zero-Inflated Negative Binomial	log	Zero-inflated negative binomial regression: Same as Zero-Inflated Poisson but for use in the presence of overdispersion	"Figure 19a shows histograms of Y by X1 and X2. An analysis of variance based on zero-inflated negative binomial regression indicated no statistically significant effects on Y of X1 ($\chi^2(1, N=60) = 0.43, n.s.$), X2 ($\chi^2(1, N=60) = 1.28, n.s.$), or the X1×X2 interaction ($\chi^2(1, N=60) = 0.10, n.s.$)."	"Figure 19b shows histograms of Y by X1 and X2. An analysis of variance based on zero-inflated mixed negative binomial regression indicated a statistically significant effect on Y of X1 ($\chi^2(1, N=60) = 31.09, p < .0001$) and a marginal X1×X2 interaction ($\chi^2(1, N=60) = 3.p = .075$), but no detectable effect of X2 ($\chi^2(1, N=60) = 0.26, n.s.$)."	
Gamma, including Exponential	inverse, but log is often used because 1/0 is undefined	Gamma regression: Exponentially distributed responses (e.g., income, wait times)	"Figure 20a shows an interaction plot with ± 1 standard deviation error bars for X1 and X2. An analysis of variance based on Gamma regression indicated no statistically significant effect on Y of X1 ($\chi^2(1, N=60) = 0.40, n.s.$) or X2 ($\chi^2(1, N=60) = 0.58, n.s.$), but the X1×X2 interaction was marginal ($\chi^2(1, N=60) = 3.26, p = .071$)."	"Figure 20b shows an interaction plot with ± 1 standard deviation error bars for X1 and X2. An analysis of variance based on mixed Gamma regression indicated no statistically significant effect on Y of X1 ($\chi^2(1, N=60) = 1.25, n.s.$) or of X2 ($\chi^2(1, N=60) = 0.29, n.s.$), but there was a statistically significant X1×X2 interaction ($\chi^2(1, N=60) = 10.84, p < .001$)."	

Figure 19a

Figure 19b

Figure 20a

Figure 20b

Generalized Linear (Mixed) Models

Post hoc comparisons

Post hoc pairwise comparisons – One factor

Factors	Levels	Omnibus Model	Test	B/W	R Code
1	≥2	Linear regression	Z-test	Btwn, Within	<pre># df has subjects (S), one factor (X) w/levels (a,b,c), and continuous response (Y) library(multcomp) # for glht, mcp summary(glht(m, mcp(X="Tukey")), test=adjusted(type="holm"))</pre>
			Z-test	Btwn	<pre># df has subjects (S), one between-Ss factor (X) w/levels (a,b,c), and continuous response (Y) library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X, adjust="tukey", mode="linear.predictor", type="Score"))</pre>
			t-test	Within	<pre># df has subjects (S), one within-Ss factor (X) w/levels (a,b,c), and continuous response (Y) library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X, adjust="tukey", mode="kenward-roger", type="Score"))</pre>
1	≥2	Logistic regression	Z-test	Btwn, Within	<pre># df has subjects (S), one factor (X) w/levels (a,b,c), and dichotomous response (Y) library(multcomp) # for glht, mcp summary(glht(m, mcp(X="Tukey")), test=adjusted(type="holm")) # the following also performs the equivalent contrast tests library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X, adjust="tukey", mode="linear.predictor", type="Score"))</pre>

Note: Between-subjects models are from GLMs; within-subjects models are from GLMMs.

Factors	Levels	Omnibus Model	Test	B/W	Report
1	≥2	Linear regression	Z-test	Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the 'a' vs. 'b' difference was statistically significant ($Z = 2.52$, $p < .05$), but those of 'a' vs. 'c' ($Z = 1.16$, n.s.) and 'b' vs. 'c' ($Z = -1.36$, n.s.) were not."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the 'a' vs . 'b' difference was statistically significant ($Z = 2.52$, $p < .05$), but those of 'a' vs . 'c' ($Z = 1.16$, $n.s$.) and 'b' vs . 'c' ($Z = -1.36$, $n.s$.) were not."
			Z-test, t-test	Within	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that 'a' vs. 'b' was not statistically significantly different ($Z = 0.27$, $n.s.$), but 'a' vs. 'c' ($Z = 2.38$, $p = .052$) and 'b' vs. 'c' ($Z = 2.11$, $p = .070$) were marginal."
					"Pairwise comparisons using <i>t</i> -tests, corrected with Holm's sequential Bonferroni procedure, indicated that 'a' vs. 'b' was not statistically significantly different ($t(38) = -0.27$, $n.s.$), but 'a' vs. 'c' ($t(38) = -2.38$, $p = .068$) and 'b' vs. 'c' ($t(38) = -2.11$, $p = .083$) were marginal."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that neither 'a' vs. 'b' $(t(38) = -0.27, n.s.)$ nor 'b' vs. 'c' $(t(38) = -2.11, n.s.)$ were detectably different, but 'a' vs. 'c' was marginal $(t(38) = -2.38, p = .057)$."

Factors	Levels	Omnibus Model	Test	B/W	Report
1	≥2	Logistic regression	Z-test	Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that 'a' vs. 'b' was statistically significantly different ($Z = 2.53$, $p < .05$), as was 'a' vs. 'c' ($Z = 3.64$, $p < .001$), but not 'b' vs. 'c' ($Z = 1.61$, n.s.)."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that 'a' vs. 'b' was statistically significantly different ($Z = 2.53$, $p < .05$), as was 'a' vs. 'c' ($Z = 3.64$, $p < .001$), but not 'b' vs. 'c' ($Z = 1.61$, n.s.)."
				Within	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that 'a' vs. 'c' was statistically significantly different ($Z = 2.98$, $p < .01$), as was 'b' vs. 'c' ($Z = 2.53$, $p < .05$), but not 'a' vs. 'b' ($Z = 0.64$, $n.s.$)."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that 'a' vs. 'c' was statistically significantly different ($Z = 2.98$, $p < .01$), as was 'b' vs. 'c' ($Z = 2.53$, $p < .05$), but not 'a' vs. 'b' ($Z = 0.64$, n.s.)."

Factors	Levels	Omnibus Model	Test	B/W	R Code
1	≥2	Multinomial logistic regression	Pairwise multinomial logistic regression	Btwn	<pre># df has subjects (S), one between-Ss factor (X) w/levels (a,b,c), and polytomous response (Y) library(nnet) # for multinom library(car) # for Anova df2 <- df[df\$X == "a" df\$X == "b",] # a vs. b df2\$X = factor(df2\$X) contrasts(df2\$X) <- "contr.sum" m = multinom(Y ~ X, data=df2) ab = Anova(m, type=3) df2 <- df[df\$X == "a" df\$X == "c",] # a vs. c df2\$X = factor(df2\$X) contrasts(df2\$X) <- "contr.sum" m = multinom(Y ~ X, data=df2) ac = Anova(m, type=3) df2 <- df[df\$X == "b" df\$X == "c",] # b vs. c df2\$X = factor(df2\$X) contrasts(df2\$X) <- "contr.sum" m = multinom(Y ~ X, data=df2) bc = Anova(m, type=3) p.adjust(c(ab\$`Pr(>Chisq)`, ac\$`Pr(>Chisq)`, bc\$`Pr(>Chisq)`), method="holm")</pre>

Factors	Levels	Omnibus Model	Test	B/W	R Code
1	≥2	Multinomial logistic regression via the multinomial-Poisson transformation (Baker 1994)	Pairwise mixed Poisson regression	Within	<pre># df has subjects (S), one within-Ss factor (X) w/levels (a,b,c), and polytomous response (Y) # df2 was produced by mlogit.data and has a logical response (Y) and alt factor library(lme4) # for glmer library(lme71 for Anova df3 <- df2[df2\$X == "a" df2\$X == "b",] # a vs. b df3\$X = factor(df3\$X) contrasts(df3\$X) <- "contr.sum" m = glmer(Y ~ X*alt + (1 S), data=df3, family=poisson) a = Anova(m, type=3) ab = a[grep(":alt", rownames(a)),] df3 <- df2[df2\$X == "a" df2\$X == "c",] # a vs. c df3\$X = factor(df3\$X) contrasts(df3\$X) <- "contr.sum" m = glmer(Y ~ X*alt + (1 S), data=df3, family=poisson) a = Anova(m, type=3) ac = a[grep(":alt", rownames(a)),] df3 <- df2[df2\$X == "b" df2\$X == "c",] # b vs. c df3\$X = factor(df3\$X) contrasts(df3\$X) <- "contr.sum" m = glmer(Y ~ X*alt + (1 S), data=df3, family=poisson) a = Anova(m, type=3) bc = a[grep(":alt", rownames(a)),] p.adjust(c(ab\$`Pr(>Chisq)`, ac\$`Pr(>Chisq)`, bc\$`Pr(>Chisq)`), method="holm")</pre>

Factors	Levels	Omnibus Model	Test	B/W	Report
1	≥2	Multinomial logistic regression	Pairwise multinomial logistic regression	Btwn	"Three <i>post hoc</i> multinomial logistic regressions, one for each pair of X's levels, corrected with Holm's sequential Bonferroni procedure, indicated that the number of 'x', 'y', and 'z' responses was statistically significantly different for 'a' vs . 'b' $(\chi^2(2, N=40) = 11.81, p < .01)$, 'a' vs . 'c' $(\chi^2(2, N=40) = 6.62, p < .05)$, and 'b' vs . 'c' $(\chi^2(2, N=40) = 17.33, p < .001)$."
		Multinomial logistic regression via the multinomial-Poisson transformation (Baker 1994)	Pairwise mixed Poisson regression	Within	"Three <i>post hoc</i> mixed Poisson regressions, one for each pair of X's levels, corrected with Holm's sequential Bonferroni procedure, indicated that the number of 'x', 'y', and 'z' responses was marginally different for 'a' vs. 'c' $(\chi^2(2, N=40) = 7.82, p = .060)$, but 'a' vs. 'b' $(\chi^2(2, N=40) = 4.06, n.s.)$ and 'b' vs. 'c' $(\chi^2(2, N=40) = 3.48, n.s.)$ were not detectably different."

Factors	Levels	Omnibus Model	Test	B/W	R Code
1	≥2	Ordinal logistic regression	Z-test	Btwn	<pre># df has subjects (S), one between-Ss factor (X) w/levels (a,b,c), and ordinal response (Y) library(multcomp) # for glht, mcp summary(glht(m, mcp(X="Tukey")), test=adjusted(type="holm"))</pre>
				Btwn, Within	<pre># df has subjects (S), one factor (X) w/levels (a,b,c), and ordinal response (Y) library(multcomp) # for adjusted library(emmeans) # for as.glht, pairs, emmeans summary(as.glht(pairs(emmeans(m, ~ X))), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X, adjust="tukey", mode="linear.predictor", type="Score"))</pre>
1	≥2	Poisson regression	Z-test	Btwn, Within	<pre># df has subjects (S), one factor (X) w/levels (a,b,c), and count response (Y) library(multcomp) # for glht, mcp summary(glht(m, mcp(X="Tukey")), test=adjusted(type="holm")) # the following also performs the equivalent contrast tests library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X, adjust="tukey", mode="linear.predictor", type="Score"))</pre>

Factors	Levels	Omnibus Model	Test	B/W	Report
1	≥2	Ordinal logistic regression	Z-test	Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that Likert scores for 'a' vs. 'c' were statistically significantly different $(Z = 2.78, p < .05)$, but not for 'a' vs. 'b' $(Z = 0.85, n.s.)$ or 'b' vs. 'c' $(Z = 1.82, n.s.)$."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that Likert scores for 'a' vs. 'c' were statistically significantly different ($Z = -2.78$, $p < .05$), but not for 'a' vs. 'b' ($Z = -0.85$, n.s.) or for 'b' vs. 'c' ($Z = -1.82$, n.s.)."
	for 'a' vs. 'c' were statistically significantly different $(Z = 2.57, 1)$	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that Likert scores for 'a' vs. 'c' were statistically significantly different $(Z = 2.57, p < .05)$, and for 'a' vs. 'b' were marginal $(Z = 2.20, p = .056)$, but Likert scores for 'b' vs. 'c' were not statistically significantly different $(Z = 0.42, n.s.)$."			
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that Likert scores for 'a' vs . 'c' were statistically significantly different ($Z = -2.57$, $p < .05$), for 'a' vs . 'b' were marginal ($Z = -2.20$, $p = .071$), and for 'b' vs . 'c' were not statistically significantly different ($Z = -0.42$, $n.s$.)."

Factors	Levels	Omnibus Model	Test	B/W	Report
1	≥2	Poisson regression	Z-test	Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the 'b' vs. 'c' $(Z = -2.81, p < .05)$ and 'a' vs. 'c' $(Z = -2.33, p < .05)$ differences were statistically significant, but not the 'a' vs. 'b' difference $(Z = 0.50, n.s.)$."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the 'b' vs. 'c' difference was statistically significant ($Z = -2.81$, $p < .05$), but the 'a' vs. 'c' difference was only marginal ($Z = -2.33$, $p = .053$), and the 'a' vs. 'b' difference was not statistically significant ($Z = 0.50$, $n.s.$)."
				Within	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the 'a' vs. 'c' difference was statistically significant ($Z = 3.21$, $p < .01$), but differences for 'a' vs. 'b' and 'b' vs. 'c' were not."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the 'a' vs . 'c' difference was statistically significant ($Z = 3.21$, $p < .01$), but differences for 'a' vs . 'b' and 'b' vs . 'c' were not."

Factors	Levels	Omnibus Model	Test	B/W	R Code
1	≥2	regression library (mul library (emm	<pre># df has subjects (S), one between-Ss factor (X) w/levels (a,b,c), and count response (Y) library(multcomp) # for adjusted library(emmeans) # for as.glht, pairs, emmeans summary(as.glht(pairs(emmeans(m, ~ X))), test=adjusted(type="holm"))</pre>		
				Within	<pre># df has subjects (S), one within-Ss factor (X) w/levels (a,b,c), and count response (Y) library(multcomp) # for glht, mcp summary(glht(m, mcp(X="Tukey")), test=adjusted(type="holm"))</pre>
			t-test		<pre># df has subjects (S), one within-Ss factor (X) w/levels (a,b,c), and count response (Y) library(multcomp) # for glht library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X, adjust="tukey", mode="linear.predictor", type="Score"))</pre>

Factors	Levels	Omnibus Model	Test	B/W	Report
1	≥2	Zero-inflated Poisson regression	Z-test	Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the 'a' vs . 'b' $(Z = 3.28, p < .01)$ and 'b' vs . 'c' $(Z = -3.14, p < .01)$ differences were statistically significant, but not the 'a' vs . 'c' difference $(Z = -0.29, n.s.)$."
				Within	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the 'a' vs. 'c' difference was statistically significant ($Z = 3.29$, $p < .01$), but the 'a' vs. 'b' ($Z = 1.43$, n.s.) and 'b' vs. 'c' ($Z = 1.75$, n.s.) differences were not."
			t-test		"Pairwise comparisons using <i>t</i> -tests, corrected with Holm's sequential Bonferroni procedure, indicated that the 'a' vs. 'c' difference was statistically significant ($t(53) = 3.29, p < .01$), but the 'a' vs. 'b' ($t(53) = 1.43, n.s.$) and 'b' vs. 'c' ($t(53) = 1.75, n.s.$) differences were not."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the 'a' vs. 'c' difference was statistically significant ($t(53) = 3.29$, $p < .01$), but the 'a' vs. 'b' ($t(53) = 1.43$, $n.s.$) and 'b' vs. 'c' ($t(53) = 1.75$, $n.s.$) differences were not."

Factors	Levels	Omnibus Model	Test	B/W	R Code
1	≥2	Negative binomial regression	Z-test	Btwn, Within	<pre># df has subjects (S), one factor (X) w/levels (a,b,c), and continuous response (Y) library(multcomp) # for glht, mcp summary(glht(m, mcp(X="Tukey")), test=adjusted(type="holm")) # the following also performs the equivalent contrast tests library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X, adjust="tukey", mode="linear.predictor", type="Score"))</pre>
1	≥2	Zero-inflated negative binomial regression	Z-test	Btwn	<pre># df has subjects (S), one between-Ss factor (X) w/levels (a,b,c), and count response (Y) library(multcomp) # for adjusted library(emmeans) # for as.glht, pairs, emmeans summary(as.glht(pairs(emmeans(m, ~ X))), test=adjusted(type="holm"))</pre>
			t-test	Within	<pre># df has subjects (S), one within-Ss factor (X) w/levels (a,b,c), and count response (Y) library(multcomp) # for glht, mcp summary(glht(m, mcp(X="Tukey")), test=adjusted(type="holm"))</pre>
					<pre># df has subjects (S), one within-Ss factor (X) w/levels (a,b,c), and count response (Y) library(multcomp) # for glht library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X, adjust="tukey", mode="linear.predictor", type="Score"))</pre>

Factors	Levels	Omnibus Model	Test	B/W	Report
1	≥2	Negative binomial regression	Z-test	Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the 'a' vs. 'c' $(Z = -2.81, p < .01)$ and 'b' vs. 'c' $(Z = -3.21, p < .01)$ differences were statistically significant, but not the 'a' vs. 'b' difference $(Z = 0.40, n.s.)$."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the 'a' vs. 'c' $(Z = -2.81, p < .05)$ and 'b' vs. 'c' $(Z = -3.21, p < .01)$ differences were statistically significant, but not the 'a' vs. 'b' difference $(Z = 0.40, n.s.)$."
				Within	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the 'a' vs. 'c' $(Z = 4.14, p < .001)$ and 'b' vs. 'c' $(Z = 3.98, p < .001)$ differences were statistically significant, but not the 'a' vs. 'b' difference $(Z = 0.20, n.s.)$."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the 'a' vs. 'c' ($Z = 4.14$, $p < .001$) and 'b' vs. 'c' ($Z = 3.98$, $p < .001$) differences were statistically significant, but not the 'a' vs. 'b' difference ($Z = 0.20$, n.s.)."

Factors	Levels	Omnibus Model	Test	B/W	Report
1	≥2	Zero-inflated negative binomial regression	Z-test	Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the 'a' vs. 'c' $(Z = -2.35, p < .05)$ and 'b' vs. 'c' $(Z = -2.90, p < .05)$ differences were statistically significant, but not the 'a' vs. 'b' difference $(Z = 0.78, n.s.)$."
				Within	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the 'a' vs. 'c' difference was statistically significant ($Z = 3.16$, $p < .01$), but not the 'a' vs. 'b' ($Z = 1.53$, n.s.) or the 'b' vs. 'c' ($Z = 1.96$, n.s.) differences."
			<i>t</i> -test		"Pairwise comparisons using <i>t</i> -tests, corrected with Holm's sequential Bonferroni procedure, indicated that the 'a' vs. 'c' difference was statistically significant ($t(52) = 3.16$, $p < .01$), but not the 'a' vs. 'b' ($t(52) = 1.53$, $n.s.$) or the 'b' vs. 'c' ($t(52) = 1.96$, $n.s.$) differences."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the 'a' vs . 'c' difference was statistically significant ($t(52) = 3.16$, $p < .01$), but not the 'a' vs . 'b' ($t(52) = 1.53$, $n.s$.) or the 'b' vs . 'c' ($t(52) = 1.96$, $n.s$.) differences."

Post hoc pairwise comparisons – One factor

Factors	Levels	Omnibus Model	Test	B/W	R Code
1		Gamma regression, including Exponential regression	<i>Z</i> -test	Btwn, Within	<pre># df has subjects (S), one factor (X) w/levels (a,b,c), and continuous response (Y) library(multcomp) # for glht, mcp summary(glht(m, mcp(X="Tukey")), test=adjusted(type="holm")) # the following also performs the equivalent contrast tests library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X, adjust="tukey", mode="linear.predictor", type="Score"))</pre>

Post hoc pairwise comparisons – One factor

Factors	Levels	Omnibus Model	Test	B/W	Report
1	≥2	Gamma regression, including Exponential regression	Z-test	Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the 'a' vs . 'b' difference was statistically significant ($Z = 3.44$, $p < .01$), but differences from the other two pairwise comparisons were not."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the 'a' vs . 'b' difference was statistically significant ($Z = 3.44, p < .01$), but differences from the other two pairwise comparisons were not."
				Within	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the 'a' vs. 'c' difference ($Z = -3.87$, $p < .001$) and the 'b' vs. 'c' difference ($Z = -3.63$, $p < .001$) were statistically significant, but not the 'a' vs. 'b' difference ($Z = -0.30$, $n.s.$)."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the 'a' vs. 'c' difference ($Z = -3.87$, $p < .001$) and the 'b' vs. 'c' difference ($Z = -3.63$, $p < .001$) were statistically significant, but not the 'a' vs. 'b' difference ($Z = -0.30$, $n.s.$)."

Factors	Levels	Omnibus Model	Test	B/W	R Code
≥2	≥2 Linear regre	Linear regression	Z-test	Btwn	<pre># df has subjects (S), two between-Ss factors (X1,X2) each w/levels (a,b), and continuous response (Y) library(multcomp) # for glht library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X1*X2)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X1*X2, adjust="tukey", mode="linear.predictor", type="Score"))</pre>
			t-test	Within	<pre># df has subjects (S), two within-Ss factors (X1,X2) each w/levels (a,b), and continuous response (Y) library(multcomp) # for glht library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X1*X2)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X1*X2, adjust="tukey", mode="kenward-roger", type="Score"))</pre>
≥2	≥2	Logistic regression	Z-test	Btwn, Within	<pre># df has subjects (S), two factors (X1,X2) each w/levels (a,b), and dichotomous response (Y) library(multcomp) # for glht library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X1*X2)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X1*X2, adjust="tukey", mode="linear.predictor", type="Score"))</pre>

Factors	Levels	Omnibus Model	Test	B/W	Report
≥2	≥2	Linear regression	<i>Z</i> -test	Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the (a,a) $vs.$ (b,a) difference was statistically significant ($Z = -3.05$, $p < .05$), as was the (b,a) $vs.$ (a,b) difference ($Z = 2.59$, $p < .05$). The other pairwise comparisons were not statistically significantly different." "Simultaneous pairwise comparisons using Tukey's HSD test indicated that the (a,a) $vs.$ (b,a) difference was statistically significant ($Z = -3.05$, $p < .05$), as was the (b,a) $vs.$ (a,b) difference ($Z = 2.59$, $p < .05$). The other pairwise comparisons were not statistically significantly different."
			t-test	Within	"Pairwise comparisons using <i>t</i> -tests, corrected with Holm's sequential Bonferroni procedure, indicated that the (a,a) vs . (b,a) difference was marginal ($t(42) = -2.71$, $p = .058$). No other pairwise comparisons were statistically significant or marginal." "Simultaneous pairwise comparisons using Tukey's HSD test indicated that the (a,a) vs . (b,a) difference was statistically significant ($t(42) = -2.71$, $p < .05$). The other pairwise comparisons were not statistically significant."

Factors	Levels	Omnibus Model	Test	B/W	Report
≥2	2 ≥2	Logistic regression	Z-test	Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the (a,a) $vs.$ (b,a) difference was statistically significant ($Z = -2.85, p < .05$). Furthermore, the (a,a) $vs.$ (a,b) difference was marginal ($Z = -2.40, p = .083$). No other pairwise comparisons were detectably different or marginal."
				significant ($Z = -2.85, p < .05$). Furthermore, the	"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the (a,a) $vs.$ (b,a) difference was statistically significant ($Z = -2.85$, $p < .05$). Furthermore, the (a,a) $vs.$ (a,b) difference was marginal ($Z = -2.40$, $p = .078$). No other pairwise comparisons were detectably different or marginal."
				Within	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the (a,a) vs. (b,a) and (a,a) vs. (a,b) differences were both marginal (both: $Z = 2.45$, $p = .086$). No other pairwise comparisons were detectably different or marginal."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the (a,a) $vs.$ (b,a) and (a,a) $vs.$ (a,b) differences were both marginal (both: $Z = 2.45$, $p = .068$). No other pairwise comparisons were detectably different or marginal."

Factors	Levels	Omnibus Model	Test	B/W	R Code
≥2	≥2	Multinomial logistic regression	Pairwise multinomial logistic regression	Btwn	<pre># df has subjects (S), two between-Ss factors (X1,X2) each w/levels (a,b), and polytomous response (Y) library(net) # for multinom library(car) # for Anova df\$X12 = with(df, interaction(X1,X2)) # make combined factor for contrasts df2 <- df[df\$X12 == "a.a" df\$X12 == "a.b",] # aa vs. ab df2\$X12 = factor(df2\$X12) contrasts(df2\$X12) <- "contr.sum"</pre>

Factors	Levels	Omnibus Model	Test	B/W	R Code
≥2	≥2	Multinomial logistic regression	Pairwise multinomial logistic regression	Btwn	<pre># Continued from previous slide # df2 <- df[df\$X12 == "a.b" df\$X12 == "b.b",] # ab vs. bb df2\$X12 = factor(df2\$X12) contrasts(df2\$X12) <- "contr.sum" m = multinom(Y ~ X12, data=df2) ab_bb = Anova(m, type=3) df2 <- df[df\$X12 == "b.a" df\$X12 == "b.b",] # ba vs. bb df2\$X12 = factor(df2\$X12) contrasts(df2\$X12) <- "contr.sum" m = multinom(Y ~ X12, data=df2) ba_bb = Anova(m, type=3) p.adjust(c(aa_ab\$\Pr(>Chisq) aa_bb\$\Pr(>Chisq) aa_bb\$\Pr(>Chisq) aa_bb\$\Pr(>Chisq) ab_bb\$\Pr(>Chisq) ab_bb\$</pre>

Factors	Levels	Omnibus Model	Test	B/W	R Code
≥2.	≥2	Multinomial logistic regression via the multinomial-Poisson transformation (Baker 1994)	Pairwise mixed Poisson regression	Within	<pre># df has subjects (S), two within-Ss factors (X1,X2) each w/levels (a,b), and polytomous response (Y) # df2 was produced by mlogit.data and has a logical response (Y) and alt factor library(lmet) # for glmer library(car) # for Anova df2\$X12 = with(df2, interaction(X1,X2)) # make combined factor for contrasts df3 <- df2[df2\$X12 == "a.a" df2\$X12 == "a.b",] # aa vs. ab df3\$X12 = factor(df3\$X12) <- "contr.sum" m = glmer(Y ~ X12*alt + (1 S), data=df3, family=poisson) a = Anova(m, type=3) aa_ab = a[grep(":alt", rownames(a)),] df3 <- df2[df2\$X12 == "a.a" df2\$X12 == "b.a",] # aa vs. ba df3\$X12 = factor(df3\$X12) <- "contr.sum" m = glmer(Y ~ X12*alt + (1 S), data=df3, family=poisson) a = Anova(m, type=3) aa_ba = a[grep(":alt", rownames(a)),] df3 <- df2[df2\$X12 == "a.a" df2\$X12 == "b.b",] # aa vs. bb df3\$X12 = factor(df3\$X12) <- "contr.sum" m = glmer(Y ~ X12*alt + (1 S), data=df3, family=poisson) a = Anova(m, type=3) aa_ba = a[grep(":alt", rownames(a)),] df3 <- df2[df2\$X12 == "a.a" df2\$X12 == "b.b",] # aa vs. bb df3\$X12 = factor(df3\$X12) <- "contr.sum" m = glmer(Y ~ X12*alt + (1 S), data=df3, family=poisson) a = Anova(m, type=3) aa_bb = a[grep(":alt", rownames(a)),] # Continued on next slide #</pre>

Factors	Levels	Omnibus Model	Test	B/W	R Code
≥2	≥2	Multinomial logistic regression via the multinomial-Poisson transformation (Baker 1994)	Pairwise mixed Poisson regression	Within	<pre># Continued from previous slide # df3 <- df2[df2\$x12 == "a.b" df2\$x12 == "b.a",] # ab vs. ba df3\$x12 = factor(df3\$x12) contrasts(df3\$x12) <- "contr.sum" m = glmer(Y ~ x12*alt + (1 S), data=df3, family=poisson) a = Anova(m, type=3) ab_ba = a[grep(":alt", rownames(a)),] df3 <- df2[df2\$x12 == "a.b" df2\$x12 == "b.b",] # ab vs. bb df3\$x12 = factor(df3\$x12) <- "contr.sum" m = glmer(Y ~ x12*alt + (1 S), data=df3, family=poisson) a = Anova(m, type=3) ab_bb = a[grep(":alt", rownames(a)),] df3 <- df2[df2\$x12 == "b.a" df2\$x12 == "b.b",] # ba vs. bb df3\$x12 = factor(df3\$x12) contrasts(df3\$x12) - "contr.sum" m = glmer(Y ~ x12*alt + (1 S), data=df3, family=poisson) a = Anova(m, type=3) ba_bb = a[grep(":alt", rownames(a)),] p.adjust(c(aa_ab\$'Pr(>Chisq)', aa_bb\$'Pr(>Chisq)', aa_bb\$'Pr(>Chisq)', ab_bb\$'Pr(>Chisq)', ab_bb\$'P</pre>

Factors	Levels	Omnibus Model	Test	B/W	R Code
≥2	≥2	Multinomial logistic regression	Pairwise multinomial logistic regression	Btwn	"Six <i>post hoc</i> multinomial logistic regressions, one for each combination of the levels of X1 and X2, corrected with Holm's sequential Bonferroni procedure, indicated that the (a,a) $vs.$ (a,b) difference was statistically significant ($\chi^2(2, N=30) = 13.58, p < .01$), as was the (a,b) $vs.$ (b,a) difference ($\chi^2(2, N=30) = 20.00, p < .001$). No other pairwise comparisons were statistically significant."
		Multinomial logistic regression via the multinomial- Poisson transformation (Baker 1994)	Pairwise mixed Poisson regression	Within	"Six <i>post hoc</i> mixed Poisson regressions, one for each combination of the levels of X1 and X2, corrected with Holm's sequential Bonferroni procedure, indicated that the difference in the number of 'x', 'y', and 'z' responses was marginal for (a,b) $vs.$ (b,b) ($\chi^2(2, N=30)=8.68, p=.078$). No other pairwise comparisons were detectably different or marginal."

Factors	Levels	Omnibus Model	Test	B/W	R Code
≥2	≥2	Ordinal logistic regression	Z-test	Btwn, Within	<pre># df has subjects (S), two factors (X1,X2) each w/levels (a,b), and ordinal response (Y) library(multcomp) # for adjusted library(emmeans) # for as.glht, pairs, emmeans summary(as.glht(pairs(emmeans(m, ~ X1*X2))), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X1*X2, adjust="tukey", mode="linear.predictor", type="Score"))</pre>
≥2	≥2	Poisson regression	Z-test	Btwn, Within	<pre># df has subjects (S), two factors (X1,X2) each w/levels (a,b), and count response (Y) library(multcomp) # for glht library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X1*X2)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X1*X2, adjust="tukey", mode="linear.predictor", type="Score"))</pre>
≥2	≥2	Zero-inflated Poisson regression	Z-test	Btwn	<pre># df has subjects (S), two between-Ss factors (X1,X2) each w/levels (a,b), and count response (Y) library(multcomp) # for adjusted library(emmeans) # for as.glht, pairs, emmeans summary(as.glht(pairs(emmeans(m, ~ X1*X2))), test=adjusted(type="holm"))</pre>
			t-test	Within	<pre># df has subjects (S), two within-Ss factors (X1,X2) each w/levels (a,b), and count response (Y) library(multcomp) # for glht library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X1*X2)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X1*X2, adjust="tukey", mode="linear.predictor", type="Score"))</pre>

Factors	Levels	Omnibus Model	Test	B/W	R Code
≥2	≥2	Ordinal logistic regression	Z-test	Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the (a,a) vs. (b,b) difference was marginal ($Z = 2.55$, $p = .065$). No other pairwise comparisons were statistically significant or marginal."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the (a,a) $vs.$ (b,b) difference was marginal ($Z = -2.55, p = .053$). No other pairwise comparisons were statistically significant or marginal."
				Within	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that no comparisons were statistically significant or marginal."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that no comparisons were statistically significant or marginal."
≥2	≥2	Poisson regression	Z-test	Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that no comparisons were statistically significant or marginal."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that no comparisons were statistically significant or marginal."
				Within	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the following differences were statistically significant: (a,a) vs. (b,a) ($Z = 3.25$, $p < .01$); (b,a) vs. (a,b) ($Z = -3.78$, $p < .001$); and (a,b) vs. (b,b) ($Z = 2.76$, $p < .05$). Furthermore, the (a,a) vs. (b,b) difference was marginal ($Z = 2.20$, $P = .083$). No other comparisons were statistically significant or marginal."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the following differences were statistically significant: (a,a) $vs.$ (b,a) ($Z = 3.25$, $p < .01$); (b,a) $vs.$ (a,b) ($Z = -3.78$, $p < .001$); and (a,b) $vs.$ (b,b) ($Z = 2.76$, $p < .05$). No other comparisons were statistically significant or marginal."

Factors	Levels	Omnibus Model	Test	B/W	R Code
≥2	≥2	Zero-inflated Poisson regression	Z-test	Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that no comparisons were statistically significant or marginal."
			<i>t</i> -test Within	"Pairwise comparisons using <i>t</i> -tests, corrected with Holm's sequential Bonferroni procedure, indicated that the (a,a) $vs.$ (b,a) difference was statistically significant ($t(51) = 2.89, p < .05$). No other comparisons were detectably different."	
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the (a,a) vs. (b,a) difference was statistically significant ($t(51) = 2.89, p < .05$). No other comparisons were detectably different."

Factors	Levels	Omnibus Model	Test	B/W	R Code
≥2	≥2	Negative binomial regression	Z-test	Btwn, Within	<pre># df has subjects (S), two factors (X1,X2) each w/levels (a,b), and continuous response (Y) library(multcomp) # for glht library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X1*X2)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X1*X2, adjust="tukey", mode="linear.predictor", type="Score"))</pre>
≥2	≥2	Zero-inflated negative binomial regression	Z-test	Btwn	<pre># df has subjects (S), two between-Ss factors (X1,X2) each w/levels (a,b), and count response (Y) library(multcomp) # for adjusted library(emmeans) # for as.glht, pairs, emmeans summary(as.glht(pairs(emmeans(m, ~ X1*X2))), test=adjusted(type="holm"))</pre>
			t-test	Within	<pre># df has subjects (S), two within-Ss factors (X1,X2) each w/levels (a,b), and count response (Y) library(multcomp) # for glht library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X1*X2)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X1*X2, adjust="tukey", mode="linear.predictor", type="Score"))</pre>
≥2	≥2	Gamma regression, including Exponential regression	Z-test	Btwn, Within	<pre># df has subjects (S), two factors (X1,X2) each w/levels (a,b), and continuous response (Y) library(multcomp) # for glht library(emmeans) # for emm, emmeans summary(glht(m, emm(pairwise ~ X1*X2)), test=adjusted(type="holm")) # or, using the Tukey HSD correction instead of Holm's summary(emmeans(m, pairwise ~ X1*X2, adjust="tukey", mode="linear.predictor", type="Score"))</pre>

Factors	Levels	Omnibus Model	Test	B/W	R Code
≥2	≥2	Negative binomial regression		Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the differences between (a,a) vs. (b,b) ($Z = -2.82$, $p < .05$) and (a,b) vs. (b,b) ($Z = -3.25$, $p < .01$) were statistically significant. In addition, the difference between (b,a) vs. (a,b) was marginal ($Z = 2.34$, $p = .078$). No other differences were statistically significant or marginal."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the differences between (a,a) $vs.$ (b,b) ($Z = -2.82$, $p < .05$) and (a,b) $vs.$ (b,b) ($Z = -3.25$, $p < .01$) were statistically significant. In addition, the difference between (b,a) $vs.$ (a,b) was marginal ($Z = 2.34$, $p = .090$). No other differences were statistically significant or marginal."
				Within	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the differences between (a,a) vs. (b,a) ($Z = -3.06$, $p < .05$), (a,a) vs. (a,b) ($Z = -2.85$, $p < .05$), and (a,a) vs. (b,b) ($Z = -3.89$, $p < .001$) were all statistically significant. No other comparisons were statistically significant."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the differences between (a,a) $vs.$ (b,a) ($Z = -3.06$, $p < .05$), (a,a) $vs.$ (a,b) ($Z = -2.85$, $p < .05$), and (a,a) $vs.$ (b,b) ($Z = -3.89$, $p < .001$) were all statistically significant. No other comparisons were statistically significant."
≥2	≥2	Zero-inflated negative binomial regression	Z-test	Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that no comparisons were statistically significant or marginal."
			t-test Within	Within	"Pairwise comparisons using <i>t</i> -tests, corrected with Holm's sequential Bonferroni procedure, indicated that these differences were statistically significant: (a,a) $vs.$ (b,a) $(t(50) = -2.95, p < .05)$; (a,a) $vs.$ (b,b) $(t(50) = -3.87, p < .01)$; (b,a) $vs.$ (a,b) $(t(50) = -4.81, p < .0001)$. No other comparisons were detectably different."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that these differences were statistically significant: (a,a) $vs.$ (b,a) $(t(50) = -2.95, p < .05)$; (a,a) $vs.$ (b,b) $(t(50) = -3.87, p < .01)$; (b,a) $vs.$ (a,b) $(t(50) = 4.04, p < .01)$; and (a,b) $vs.$ (b,b) $(t(50) = -4.81, p < .001)$. No other comparisons were detectably different."

Factors	Levels	Omnibus Model	Test	B/W	R Code
≥2	≥2	Gamma regression, including Exponential regression	Z-test	Btwn	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that no comparisons were statistically significant."
		-0.			"Simultaneous pairwise comparisons using Tukey's HSD test indicated that no comparisons were statistically significant."
				Within	"Pairwise comparisons using Z-tests, corrected with Holm's sequential Bonferroni procedure, indicated that the (a,a) vs. (b,a) difference was statistically significant ($Z = 3.18$, $p < .01$). Also, the (b,a) vs. (b,b) difference was statistically significant ($Z = -2.89$, $p < .05$). No other pairwise comparisons were statistically significant."
					"Simultaneous pairwise comparisons using Tukey's HSD test indicated that the (a,a) vs. (b,a) difference was statistically significant ($Z = 3.18$, $p < .01$). Also, the (b,a) vs. (b,b) difference was significant ($Z = -2.89$, $p < .05$). No other pairwise comparisons were statistically significant."

Proportion & Association:

- Fisher, R.A. (1922). On the interpretation of χ^2 from contingency tables, and the calculation of *P. Journal of the Royal Statistical Society 85* (1), pp. 87-94. https://doi.org/10.2307/2340521
- Mehta, C.R. and Patel, N.R. (1983). A network algorithm for performing Fisher's exact test in r × c contingency tables. Journal of the American Statistical
 Association 78 (382), pp. 427-434. https://doi.org/10.2307/2288652
- Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Series 5,* vol. 50, no. 302, pp. 157-175. https://doi.org/10.1080/14786440009463897
- Sokal, R.R. and Rohlf, F.J. (1981). Biometry: The Principles and Practice of Statistics in Biological Research. Oxford, England: W. H. Freeman. https://books.google.com/books?id=C-OTQgAACAAJ

Distributions:

- Anderson, T.W. and Darling, D.A. (1952). Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes. *Annals of Mathematical Statistics 23* (2), pp. 193-212. https://www.jstor.org/stable/2236446
- Anderson, T.W. and Darling, D.A. (1954). A test of goodness of fit. Journal of the American Statistical Association 49 (268), pp. 765-769. https://www.jstor.org/stable/2281537
- Conover, W.J. (1972). A Kolmogorov goodness-of-fit test for discontinuous distributions. Journal of the American Statistical Association 67 (339), pp. 591-596. https://doi.org/10.2307/2284444
- Kolmogorov, A.N. (1933). Sulla determinazione empirica di una legge di distributione. Giornale dell'Istituto Italiano degli Attuari 4, pp. 83-91.
- Massey, F.J. (1951). The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association 46 (253), pp. 68-78.
 https://doi.org/10.2307/2280095
- Shapiro, S.S. and Wilk, M.B. (1965). An analysis of variance test for normality (complete samples). *Biometrika 52* (3/4), pp. 591-611. https://doi.org/10.2307/2333709
- Smirnov, H. (1939). Sur les écarts de la courbe de distribution empirique. Recueil Mathématique (Matematiceskii Sbornik) 6, pp. 3-26.

ANOVA Assumptions:

- Brown, M.B. and Forsythe, A.B. (1974). Robust tests for the equality of variances. *Journal of the American Statistical Association 69* (346), pp. 364-367. https://doi.org/10.2307/2285659
- Greenhouse, S.W. and Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika 24 (2), pp. 95-112. https://doi.org/10.1007/BF02289823
- Levene, H. (1960). Robust tests for equality of variances. In *Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling*, I. Olkin, S.G. Ghurye, H. Hoeffding, W.G. Madow and H.B. Mann (eds.). Palo Alto, CA: Stanford University Press, pp. 278-292.
- Mauchly, J.W. (1940). Significance test for sphericity of a normal *n*-variate distribution. *The Annals of Mathematical Statistics* 11 (2), pp. 204-209. https://www.jstor.org/stable/2235878
- Welch, B.L. (1951). On the comparison of several mean values: An alternative approach. Biometrika 38 (3/4), pp. 330-336. https://doi.org/10.2307/2332579
- White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48 (4), pp. 817-838. https://doi.org/10.2307/1912934

Linear Models (LM):

- Fisher, R.A. (1921). On the "probable error" of a coefficient of correlation deduced from a small sample. *Metron 1* (4), pp. 3-32. https://hdl.handle.net/2440/15169
- Fisher, R.A. (1925). Statistical Methods for Research Workers. Edinburgh, Scotland: Oliver and Boyd.
- Student. (1908). The probable error of a mean. Biometrika 6 (1), pp. 1-25. https://doi.org/10.2307/2331554
- Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. *Transactions of the American Mathematical Society 54* (3), pp. 426-482. https://doi.org/10.2307/1990256

Linear Mixed Models (LMM):

- Frederick, B.N. (1999). Fixed-, random-, and mixed-effects ANOVA models: A user-friendly guide for increasing the generalizability of ANOVA results. In *Advances in Social Science Methodology*, B. Thompson (ed.). Stamford, CT: JAI Press, pp. 111-122. http://eric.ed.gov/?id=ED426098
- Littell, R.C., Henry, P.R. and Ammerman, C.B. (1998). Statistical analysis of repeated measures data using SAS procedures. *Journal of Animal Science 76* (4), pp. 1216-1231. https://doi.org/10.2527/1998.7641216x
- Pinheiro, J.C. and Bates, D.M. (2000). Mixed-Effects Models in S and S-PLUS. New York: Springer. https://link.springer.com/book/10.1007/b98882
- Schuster, C. and von Eye, A. (2001). The relationship of ANOVA models with random effects and repeated measurement designs. *Journal of Adolescent Research 16* (2), pp. 205-220. https://doi.org/10.1177/0743558401162006
- Ware, J.H. (1985). Linear models for the analysis of serial measurements in longitudinal studies. *American Statistician 39* (2), pp. 95-101. https://doi.org/10.2307/2682803

Classic Nonparametric Tests:

- Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. *Journal of the American Statistical Association* 32 (200), pp. 675-701. https://doi.org/10.2307/2279372
- Kruskal, W.H. and Wallis, W.A. (1952). Use of ranks in one-criterion variance analysis. *Journal of the American Statistical Association 47* (260), pp. 583-621. https://doi.org/10.2307/2280779
- Mann, H.B. and Whitney, D.R. (1947). On a test of whether one of two random variables is stochastically larger than the other. *Annals of Mathematical Statistics 18* (1), pp. 50-60. https://www.jstor.org/stable/2236101
- Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin 1 (6), pp. 80-83. https://doi.org/10.2307/3001968

Aligned Rank Transform (ART):

- Elkin, L.A., Kay, M., Higgins, J. and Wobbrock, J.O. (2021). An aligned rank transform procedure for multifactor contrast tests. *Proceedings of the ACM Symposium on User Interface Software and Technology (UIST '21)*. New York: ACM Press, pp. 754-768. https://doi.org/10.1145/3472749.3474784
- Higgins, J.J., Blair, R.C. and Tashtoush, S. (1990). The aligned rank transform procedure. *Proceedings of the Conference on Applied Statistics in Agriculture*. Manhattan, Kansas: New Prairie Press, pp. 185-195. http://newprairiepress.org/agstatconference/1990/proceedings/18/
- Higgins, J.J. and Tashtoush, S. (1994). An aligned rank transform test for interaction. *Nonlinear World 1* (2), pp. 201-211.
- Hodges, J.L. and Lehmann, E.L. (1962). Rank methods for combination of independent experiments in the analysis of variance. *Annals of Mathematical Statistics 33* (2), pp. 482-497. https://www.jstor.org/stable/2237528
- Salter, K.C. and Fawcett, R.F. (1985). A robust and powerful rank test of treatment effects in balanced incomplete block designs. *Communications in Statistics:* Simulation and Computation 14 (4), pp. 807-828. https://doi.org/10.1080/03610918508812475
- Salter, K.C. and Fawcett, R.F. (1993). The ART test of interaction: A robust and powerful rank test of interaction in factorial models. *Communications in Statistics: Simulation and Computation 22* (1), pp. 137-153. https://doi.org/10.1080/03610919308813085
- Wobbrock, J.O., Findlater, L., Gergle, D. and Higgins, J.J. (2011). The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures.
 Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI '11). New York, NY: ACM Press, pp. 143-146.
 https://doi.org/10.1145/1978942.1978963

Generalized Linear Models (GLM):

 Nelder, J.A. and Wedderburn, R.W.M. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A 135 (3), pp. 370-384. https://doi.org/10.2307/2344614

Generalized Linear Mixed Models (GLMM):

• Breslow, N.E. and Clayton, D.G. (1993). Approximate inference in generalized linear mixed models. *Journal of the American Statistical Association 88* (421), pp. 9-25. https://doi.org/10.2307/2290687

Binomial Regression:

- Stiratelli, R., Laird, N. and Ware, J.H. (1984). Random-effects models for serial observations with binary response. *Biometrics 40* (4), pp. 961-971. https://doi.org/10.2307/2531147
- Gilmour, A.R., Anderson, R.D. and Rae, A.L. (1985). The analysis of binomial data by a generalized linear mixed model. *Biometrika 72* (3), pp. 593-599. https://doi.org/10.2307/2336731

Multinomial Regression:

- Baker, S.G. (1994). The multinomial-Poisson transformation. The Statistician 43 (4), pp. 495-504. https://doi.org/10.2307/2348134
- Begg, C.B. and Gray, R. (1984). Calculation of polychotomous logistic regression parameters using individualized regressions. Biometrika 71 (1), pp. 11-18. https://www.jstor.org/stable/2336391
- Guimaraes, P. (2004). Understanding the multinomial-Poisson transformation. *The Stata Journal 4* (3), pp. 265-273. https://www.stata-journal.com/article=st0069

Ordinal Regression:

- McKelvey, R.D. and Zavoina, W. (1975). A statistical model for the analysis of ordinal level dependent variables. *Journal of Mathematical Sociology 4* (1), pp. 103-120. https://doi.org/10.1080/0022250X.1975.9989847
- McCullagh, P. (1980). Regression models for ordinal data. *Journal of the Royal Statistical Society, Series B 42* (2), pp. 109-142. https://www.jstor.org/stable/2984952
- Winship, C. and Mare, R.D. (1984). Regression models with ordinal variables. American Sociological Review 49 (4), pp. 512-525. https://doi.org/10.2307/2095465
- Hedeker, D. and Gibbons, R.D. (1994). A random-effects ordinal regression model for multilevel analysis. *Biometrics 50* (4), pp. 933-944. https://www.jstor.org/stable/2533433
- Agresti, Alan (2010). Analysis of Ordinal Categorical Data (2nd Ed). Hoboken, NJ: John Wiley & Sons, Inc. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470594001

Poisson Regression:

- Vermunt, J.K. (1997). Log-linear Models for Event Histories. Thousand Oaks, CA: Sage Publications. https://us.sagepub.com/en-us/nam/log-linear-models-for-event-histories/book6350
- von Bortkiewicz, L. (1898). Das Gesetz der Kleinen Zahlen (The Law of Small Numbers). Leipzig, Germany: Druck und Verlag von B.G. Teubner. https://books.google.com/books?id=o_k3AAAAMAAJ

Negative Binomial Regression:

• Hilbe, J.M. (2011). *Negative Binomial Regression, 2nd ed*. Cambridge, UK: Cambridge University Press. https://www.amazon.com/Negative-Binomial-Regression-Joseph-Hilbe/dp/0521198151

Post Hoc Comparisons:

- Boik, R.J. (1979). Interactions, partial interactions, and interaction contrasts in the analysis of variance. Psychological Bulletin 86 (5), pp. 1084-1089. https://doi.org/10.1037/0033-2909.86.5.1084
- Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6 (2), pp. 65-70. http://www.jstor.org/stable/4615733
- Kenward, M.G. and Roger, J.H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. *Biometrics* 53 (3), pp. 983-997. https://doi.org/10.2307/2533558
- Kramer, C.Y. (1956). Extension of multiple range tests to group means with unequal numbers of replications. *Biometrics 12* (3), pp. 307-310. https://doi.org/10.2307/3001469
- Marascuilo, L.A. and Levin, J.R. (1970). Appropriate post hoc comparisons for interaction and nested hypotheses in analysis of variance designs: The elimination of Type IV errors. *American Educational Research Journal* 7 (3), pp. 397-421. https://doi.org/10.3102/00028312007003397
- Satterthwaite, F.E. (1946). An approximate distribution of estimates of variance components. *Biometrics Bulletin 2* (6), pp. 110-114. https://doi.org/10.2307/3002019
- Tukey, J.W. (1949). Comparing individual means in the analysis of variance. Biometrics 5 (2), pp. 99-114. https://doi.org/10.2307/3001913
- Tukey, J.W. (1953). *The Problem of Multiple Comparisons*. Princeton, NJ: Princeton University.