(SEM II) EVEN SEMESTER

MAJOR EXAMINATION: 2021-2022

ENGINEERING ECONOMICS

Time: 3 Hrs.

Max. Marks: 50

Note: Attempt all questions. Each question carries equal marks.

1. Attempt any Four parts of the following.

 $(4 \times 5 = 20)$

- (a) What are the determinants of demand?
 - (b) Explain the price elasticity of demand with the help of curves.
 - (x) What are the steps involved in decision-making?
- (d) Briefly discuss opportunity cost, incremental cost, and implicit & explicit cost.
- Discuss production planning. Also, differentiate between average product, marginal product, and total product.
- Explain the concept of perfect competition market structure. Also, discuss its features.
- 2. Attempt any Three parts of the following.

 $(3 \times 5 = 15)$

- (a) Define Managerial Economics. Discuss its application in an engineering perspective.
- **(b)** Differentiate between micro-economic and macro-economics. Also, discuss the nature of micro-economics.
- (c) How elasticity of demand can be helpful in managerial decision-making?
- (d) Define demand. Also, discuss the law of demand.

3. Attempt any Three parts of the following.

 $(3 \times 5 = 15)$

- (a) Establish a relationship between the short-run cost curve and marginal cost curve.
- (b) Briefly explain fixed cost, variable cost, and marginal cost with the help of curves.
- Differentiate between oligopoly and monopolistic competition market structure.
- (d) Discuss various concepts of national income with respective formulas.

Year: I Semester: Even

Major Examination: 2021-22

Human Values & Professional Ethics-1

Max Marks: 50

Time: 2 Hrs.

Note: Attempt ALL questions. Each question carries equal marks.

te:	Att	empt ALL questions. Each question carries equal marks	Marks	CO	BL	PC
	Att	empt any Four parts of the following. "A value is a belief that something is good and desirable."	5	1	5	8
		Critically evaluate the nature and functions of values				
		considering the above statement.			1	7
	b)	Do 'prosperity' and 'wealth' differ? Analyse the consequences	5	2	4	
		of our incorrect understanding of the concepts of 'prosperity'		an and	- 38	
		and 'wealth'.			_	
	6)	Critically examine the divergent views that exist on the	5	6	5	6
		linkages of religion and ethics.				
	d)	What are the important elements of Professional Ethics?	5	5	2	6
	e)	Summarize your views about the basic guidelines to be	5	6	3	6
		followed for value education.				
	A	Spell out and explain some important values that lie at the	5	3	2	9
		core of good relationships.				
Q2	2. At	ttempt any Three parts of the following.				
	a)			1	2	8
		from morals and ethics? Also explain at least five important				
		human values.				

b)	"There is a need for value education in technical and professional courses." Critically evaluate this statement.	d 5	1	1 !	5 8
« C)	Which are the four orders of nature and how are the interdependent?	, 5	2	2 2	? 7
d)	Critically examine the concepts of natural acceptance and experiential validation as mechanisms of self-exploration.	5	4	. 3	8
Q3. A	ttempt any Three parts of the following.				
a)	"Ethics is the science of ideal involved in human life." Considering this statement, comment on the scientific nature of ethics.		1	4	8
b)	How would you judge whether a human action/behaviour is subject to ethical enquiry or not?	5	4	3	8
c)	What are the basic principles that guide activities covered under Corporate Social Responsibility?	5	2	3	7
d)	What are the basic tenets of IEEE Code of Ethics for Engineers?	5	4	2	8

BCS-154 Subject Code

B. Tech. (ECS)

1st YEAR SEMESTER-II

MAJOR EXAMINATION: 2021-2022

BASICS OF PROGRAMMING SKILLS

Max Marks: 50

Time: 3 Hrs.

Note: Answer all questions. Each question carries equal marks.

te: A	nswer all questions. Each question carr	Marks	CO	BL	PO	ΡI
3. A	Attempt any Five parts of the following.	Marks				Code
)			COI	Ll	PO2	1.1.
• ()	What is the main purpose of an operating	2	COI			
(a)	system? What are the different types of			,60		
	anoting systems?			L1		
% (b)	Design a flowchart and algorithm to find	2		LI		
(40)	the greatest number among three					
	numbers.	2	CO2	L3	PO2	1.1.
(c)	Describe the conditional and	2	CO2		102	
	increment/decrement operators with					a a
	suitable programs.	2	CO3	L3	PO2	1.1.
(d)	Explain the array of pointers with suitable	2	COS		102	
	example of programs.		CO2	L3	PO2	1.1.
(e)	Write a program in C to sum two	2	002			
	matrices.	2	CO3	L3	PO2	1.1.1
(f)	What is string? How it is different from array of characters?					2.3
V-V	What are the differences between	2	CO3	L2	PO2	1.1.1
(g)	structure and union?					
). A	Attempt any Two parts of the following.		•			
(a)	Describe the compiler, interpreter,	5	CO2	Ll	PO2	1.1.1
	assembler. Write the name of compilers					
	that are used in C programs.					
(b)	Describe about basic components of a	5	CO3	L1	PO2	1.1.4
	computer with a neat block diagram.					
(c)	What is machine language, assembly	5	CO4	Ll	PO2	1.1.1
	language and high-level language?					
3. A	Attempt any Two parts of the following.					
(8)	Discuss various data types used in C	5	COI	LI	PO2	1.1.1
-	with suitable examples.					

	(F)	Write a program in C to make simple	5	CO3	L3	PO2	1.1.4
		calculator which has functionality of		. 8			
		addition, subtraction, multiplication,					
		division, and modulus.					
	(c)	Define all type of storage classes with	5	CO4	L3	PO2	1.1.1
		example. Write a program in C to print					
		the prime numbers between 1 to 100.	,				
	Q4. A	ttempt any Two parts of the following.					
	(2)	Define the calling function, called	5	CO2	L2	PO2	1.1.1
		function, and function prototype			52	102	1.1.1
		declaration with suitable examples.					
-	(b)	Write a program in C to print the repeated	5	CO5	L5	PO2	1.1.2
		elements of an array and print how many		003	LJ	102	1.1.2
		times elements are repeated in the array?					
1	(c)	Write a program in C to reverse a string,	5	CO4	L4	PO2	1.1.1
		and concatenate two strings without using			124	102	1.1.1
		predefined string functions.					
	Q5. A	Attempt any Two parts of the following.		,			
	(4:5)	Define structure with syntax. Write a	5	CO5	L3	PO2	1.1.1
		program in C that compares two given	,		<i>پ</i> ري	102	1.1.1
	W -	dates using structure. Date contains three			or to	2	
		members namely date, month, and year.			٨.	1 01	
		If, the dates are equal, then display					
		message as 'equal' otherwise 'unequal'.					
	(b)	Define the different types of pointers with	5	CO5	L3	PO2	1.1.3
		their syntax. Write a program in C to print					
	Ma)	the array elements using pointer.	-	001		5.0.	
	(6)	Describe the following functions: (i) gets()	5	CO4	L1	PO2	1.1.4
		(ii) getche()					
		(iii) getch()					
		(iv) malloc()					
		(v) calloc()					
		, ,		1			

BL – Bloom's Taxonomy Levels (1- Remembering, 2- Understanding, 3 plying, 4 – Analyzing, 5 – Evaluating, 6 - Creating)

CO – Course Outcomes

PO - Program Outcomes

PI Code - Performance Indicator Code

BCS-154

BEC-151 Subject Code

Roll. No 2 0 2 1

B. Tech.

Year: I Semester: II

Major Examination: 2021-2022

Fundamentals of Electronics Engineering

Time: 3 Hrs.

Max Marks: 50

Note: Attempt ALL questions. ALL questions carry equal marks.

	Attempt ALL questions. ALL questions Attempt any Five parts of the following.	Marks	CO	BL	PO	PI Code
~ 1.		2	1	1	1	1.3.1
1)	Explain the need of stabilization of Q point.	2	2	3	1	1.3.1
).	Why is temperature co-efficient of semiconductors	2	_			
	is negative?			2	1	1.3.1
<u>.)</u>	State function of 'Gate', 'Source' and 'Drain'	2	4	2	1	1.5.1
	terminals of FET.					
)	Simplify the following Boolean expression.	2	3	3	2	2.1.3
,	W'X(Z'+YZ) + X(W+Y'Z)					
:)	Implement Y= (1,4,5,6,7) in SOP form using AOI	2	3	2	2	2.1.3
5)	logic.					
F	Explain the operations of Enhancement and	2	1	4	1	1.3.1
1,	Depletion type N-channel MOSFET.					
- g)	Op-amp is mostly used as an integrator than a	2	2	2,4	1	1.3.1
5)	differentiator. Explain why?					
Q2	. Attempt any two parts of the following	-				
a)	i. Define active region and saturation region in a	5	1,2	1,5	2	1.3.1
	silicon diode.					
	ii. In the reverse-bias region the saturation current					
	of a silicon diode is about 0.1 A (T 20°C).	-				7,
	Determine its approximate value if the					
	temperature is increased 40°C.					

5)	 Explain the working of positive clamper with proper circuit diagram and draw the waveforms at input and output of clamper. 	5	2	3,4	2	2.1.2
	ii. Design and explain a clipper circuit that clips any portion of the input AC waveform below +4 volts using proper diagram.			٠.		
(4)	Derive the expression for the following parameters of half wave rectifier circuits.	5	4	1,2	1	2.1.3
	i. Average d.c Current (ldc) ii. Average d.c Voltage (Vdc) iii. R.M.S value of current (ltms)					
	iv. Ripple factor(η) and Ripple efficiency(γ)					
Q3.	Attempt any Two parts of the following.					
*	Draw input and output characteristics of common emitter configuration. Calculate static forward resistance if applied forward bias voltage is 0.8 V and corresponding diode current is 150 mA.	5	2	4,5	2	2.1.3
b)	i. What do you understand by collector reverse saturation current? In which configuration does it have a greater value? ii. For the common base circuit, determine I_c and V_{CB} . Assume the transistor to be of silicon. $I_E = \frac{I_C}{R_E = 1.5 \text{ k}\Omega}$ $V_{EE} = 8 \text{ V} + \frac{I_C}{V_{CC} = 18 \text{ V}}$	5	2,4	2,4,5	2	2.1.3
N	i. Explain the concept of early effect and current gain of the BJT. ii. Are the collector and emitter terminals of a transistor interchangeable? What is the physical difference between the emitter and collector?	5	2	3,4	2	1.3.

24.	Attempt any Two parts of the following.					
)	i. Derive relationship between transcond	uctance 5	1,2	2,4,5	2 2.	1.3
	(gm), amplification factor (m) and	l drain				
	resistance (gd) of FET.					
	ii. A JFET has values of V _{GS} (off) = -	8V and				
	I _{DSS} = 16 mA. Determine the values of	V _{GS} , I _D				
	and V _{DS} for the circuit.					
	$\begin{array}{c} +10\mathrm{V} \\ \downarrow \\ 22\mathrm{k\Omega} \lessapprox R_{D} \\ \downarrow \\ \downarrow \\ R_{G} \lessapprox 1\mathrm{M}\Omega \end{array}$					
)	i. Simplify the given SOP equation to	using K- 5	3	4,5	2	2.1.3
	map			\ .	\	
	$y = F(A,B,C,D) = \Sigma m(2,3,6,7) +$	4				
	Σd(8,10,11,15)					
	ii. Convent the following into decim	al				
	number					
	a. (121) ₁₆ b. (324) ₈					
:)	i. What are the constructional d	lifferences 5	2	,3 2,	3 2	2.1.
	between a FET and MOSFET? W	hat effect				
	do they have on the current of	conduction				
	mechanism of a MOSFET?					
	Simplify the expressions,			1		
	 ii. Simplify the expressions, 1. Y= ABC + ABC + AC 					

Page - 2

Q5.	Attempt any Two parts of the following.					
a)	What is Cathode Ray Oscilloscope? Explain its advantages and performance parameter with the help of basic block diagram.	5	6	1,3	1	1.3.1
ψ)	Why is inverting amplifier called a scale changer? Derive the expression with the help of neat and clean diagram.	5	4	3,4	1	1.3.1
·c)	 i. Differentiate between ideal and practical Opamp. ii. Explain voltage transfer characteristics of open loop configuration of Op-amp with the help of proper diagram. 	5	2,4	3,4,5	1	1.3.1

BL-Bloom's Taxonomy Levels (1-Remembering, 2-Understanding, 3-Applying, 4-Analysing, 5-Evaluating, 6-Creating)

CO – Course Outcomes

PO – Program Outcomes

PI Code – Performance Indicator Code

YEAR: I, SEMESTER: II

MAJOR EXAMINATION: 2021-2022

FUNDAMENTALS OF COMMUNICATION SYSTEMS

Time: 3 Hrs.

Max Marks: 50

Note: Attempt ALL questions. ALL questions carry equal marks.

ote: A	Attempt ALL questions. ALL questions Attempt any Five parts of the following.	Marks	CO	BL	PO	PI Code
(a)	Draw the block diagram of a communication system and explain the	2	CO1	1	1	1.3.
	function of each block.	2	CO3	3	1	1.3.1
b)	An FM radio link has a frequency deviation of 30 kHz. The modulating frequency is 3 kHz. Calculate the bandwidth needed for the link. What will be the bandwidth if the deviation is reduced to 15 kHz?			,		
c)	What are the different type of signals? Differentiate between periodic and aperiodic signal.	2	CO4	2	1	1.3.1
d)	What is Nyquist rate? Discuss aliasing effect.	2	CO4	2		2.1.3
¢)	What is Time division multiplexing? Differentiate between Synchronous and asynchronous TDM.	2	CO5	1	1	2.1.3

	A)	Define the term modulation index. what is	2	CO1	l	1	1.3.1
		over modulation, under modulation					
		and 100% modulation related to AM.					
-	g)	Discuss about the concepts of frequency	2	CO5	2	1	1.3.1
		reuse and channel assignment in mobile					
		communication					
Q2	. At	tempt any Two parts of the following.					
	A)	Discuss DSB-SC-AM with diagram &	5	COI	2	l	2.1.2
		drive the mathematical expression for					
		bandwidth and power for the wave.					
	Ь	When the percentage modulation is 75, an	5	COI	3	1	2.1.3
		AM transmitter produces 10kW. How			0.74	16%	
		much of this is carrier power?. What					
		would be the percentage saving in power					
		if the carrier & one of the sidebands were					
		suppressed before transmission took					
		place?					
	7	Explain the VSB-SC with its frequency	5	COI	3	1	2.1.3
		spectrum. Mention Some of its					
		advantages, disadvantages & applications.					
•	Q3.	Attempt any Two parts of the following.					
	2	An angle modulated signal has the form	5	CO2	3	1	2.1.3
		$v(t) = 100cos[2\pi f_c t +$					
		$4 \sin 2000\pi t$] where $fc = 5MHz$					
					-		

		i) Determine the average transmitted	ł					
		power						
		ii) Determine the peak phase	e					
		deviation						
		iii) Determine the peak frequency						
		deviation						
		iv) Is this FM or a PM signal?						
		Explain						
-	b)	Discuss the indirect methods for	5	CO3	2	1	2.1.3	1
		generation a wide-band FM signal.						
4	Q	Discuss phase modulation (PM) signal	5	CO3	2	1	1.3.1	1
		with suitable diagram. Drive the equation						
		for phase and frequency deviation for PM						
		signal.						
Q4.	Atte	empt any Two parts of the following.						
a	1)	State Sampling theorem with suitable	5	CO4	1,2,3	1	2.1.3	
		figure. Further Determine the Nyquist						
		sampling rate and the Nyquist sampling						
		interval for the following signals.						
		i. $\sin{(2000\pi t)}$						
		ii. $sin(4000\pi t) + sin(6000\pi t)$						
P)	Discuss pulse width modulation (PWM)	5	CO4	1,2	1	2.1.3	
		with diagram. Compare PAM, PWM and						
		PPM pulse modulation techniques.						
	_			1				

Page - 2

BEC-152

05	E)	Explain pulse code modulation (PCM) with suitable block diagram. Also elaborate each component of PCM systems.	5	CO4	2	1	2.1.3
4.	3)	What are the different types of noise in signal? Define (i) Signal to noise ratio (ii) Figure of Merits	5	CO5	1	1	1.3.1
41-46	(dr	Discuss the evolution of mobile communication from 1G to 5G.	5	CO5	2	1	1.3.1
	c)	Discuss the following: i. CDMA ii. GSM iii. LAN	5	CO5	3	1	1.3.1

BL – Bloom's Taxonomy Levels (1- Remembering, 2- Understanding, 3 – Applying,

4 - Analysing, 5 - Evaluating, 6 - Creating)

CO – Course Outcomes

PO - Program Outcomes

PI Code – Performance Indicator Code

YEAR: I SEMESTER: II

EVEN SEMESTER EXAMINATION, 2021-2022

Ordinary and Partial Differential Equations

Time: 03 Hrs.

Max. Marks: 50

Note: Answer all questions.

Q1.	Attempt any five parts of the following.	Marks	CO	BL	PO	PI			
				5.00	1	Code			
(8)	Solve the following simultaneous differential	2	1,6	3	1	1.1.1			
,	equations		14.	1					
	$\frac{dx}{dt} - y = e^t, \frac{dy}{dt} + x = \sin t, \text{ given } x(0) = 0 = y(0).$								
(b)	Solve the following P.D.E. by the method of	2	2,6	3	1	1.1.1			
	separation of variable: $2u_x + 3u_y + 5u = 0$ with					2			
	$u(0,y)=\lambda e^{-v}.$								
(e)	Solve, $\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + (x^2 + 2)y = e^{\frac{1}{2}(x^2 + 2x)}$.		at the and		1	1.1.1			
(d)	State and prove Rodrigue's formula.	. 2	3,6	3	1	1.1.1			
(e)	Find the complete and singular integrals of $z = px +$	2	2,6	3	1	1.1.1			
	qy + pq.		2.6	2	1	1.1.1			
(f)	Evaluate the value of $J_{\frac{1}{2}}$ and $J_{-\frac{1}{2}}$.	2	3,6	3					
(g)	Solve $r + s - 2t = (y - 1)e^x$.	2	2,6	3,	1	1,1.1			
Q2.	ttempt any two parts of the following.								
(8)	Solve $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{e^x} + \sin(x+3)$	5	1,6	3	1	1.1.1			
(b)	Solve, $y'' - 2y' + 2y = e^x \tan x$ by method of	5	1,6	3	1	1.1.1			
	variation of parameter.								
(c) .	Solve $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = \frac{1}{x} + \log x \sin(\log x)$.	5	1,6	3	1	1.1.1			
Q3.	Attempt any two parts of the following.								
(a)	Prove that (i) $\int_{-1}^{1} (x^2 - 1) P_{n+1} P'_n dx =$	5	3,6	3	1	1.1.1			
	$\frac{2n(n+1)}{(2n+1)(2n+3)}.$								
	(ii) $\int J_3(x)dx = -J_2 - \frac{2}{x}J_1$.								
			-						

			-	3	1	1.1.
(p)	Solve in series the differential equation $x \frac{d^2y}{dx^2} + \frac{dy}{dx}$	5	3,6			
	y = 0.			22	1	1.1.
(c)	Show that (i) $nP_n = xP'_n - P'_{n-1}$.	5	3,6	2,3		
	(ii) $xJ'_n = nJ_n - xJ_{n+1}.$					
Q4.	Attempt any two parts of the following.	See				1.1.
(a)	Solve (i) $(mz - ny)p + (nx - lz)q = lx - my$.	5	2,6	3	1	1.1.
	(ii) $(D^2 + 6DD' + 9D'^2)z = 6x + 2y +$					
	e^{2x+y} .					
(b)	Use Charpit's method to find the complete integral of	5	2,4,6	3	1	1.1.1
	following P.D.E. $(p^2 + q^2)x = pz$.	-				-24
(c)	1 C.1 PDF (2 1)m	5	2,4,6	3	1	1.1.1
	$(z-2x^2)q = 2(x-yz)$ and the integral which					
	passes through the lines $x = 1, y = 0$.					
Q5	C.I. C.II.					
(1)	$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}$	5	4,5,6	3	_1	1.1.1
	and $x = 0$ is initially at rest in its equilibrium					
1	position. If it is set vibrating by giving to each of its					
	points on initial velocity $\lambda x(l-x)$, find the	¥				
1	displacement of the string at any distance $'x'$ from one					
	end at any time t.		1.5.6	2	1	1 1 1
*W		5	4,5,6	3	1	1.1.1
	equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ subject to the boundary					
	conditions $u(o,t) = 0, u(l,t) = 0, (t > 0)$ and the		,e*			
	initial condition $u(x, 0) = x$, l being the length of the					
÷	bar.		- 4			
(x)	An initially long uniform plate is bounded by two	5	4,5,6	3	1	1.1.1
	parallel edges and an end at right angle to them. The			8 8		
	breadth in π , the end is maintained at a temperate			4		
	100°C at all points and other edges are at 0°C. Find					
	the state temperature.					