Chapter 3: Integration by Substitution

Objectives:

1. Find integrals by means of an appropriate substitution

3.1 **Differential of a Function**

Look at the following integrals:

- $\int 3x^2(x^3+1)^8 dx$
- $\bullet \qquad \int \frac{3x^2 1}{x^3 x} dx$
- $\int x e^{x^2} dx$

These integrals might look complicated, but they can be integrated using the technique of "Integration by Substitution".

Integration by substitution enables us to reduce a given integral to one with which we are familiar. The technique is very powerful and covers a great range of problems. Unfortunately, it is not possible to give a general rule for choosing the required substitution, but this will come with experience gained through practice.

The differential of y = f(x) is defined as

$$dy = \frac{dy}{dx} \cdot dx$$

$$dy = f'(x) \cdot dx$$

Find the differential of the following functions: Example 1:

(a)
$$y = 4x^2 + 3x - 7$$
 (b) $u = 3\sin 4t$

(b)
$$u = 3 \sin 4$$

Solution:

(a)
$$\frac{dy}{dx} =$$

The differential of y is

(b)
$$\frac{du}{dt} =$$

The differential of u is

3.2 Integration by substitution of the form $\int [f(x)]^n \cdot f'(x) dx$

We notice that one function of the product is the differential coefficient of the other function. We can solve the problem by a substitution which leads the integral to one of the standard integrals.

Let
$$u = f(x)$$
, then $\frac{du}{dx} = f'(x)$. Expressing in differential form: $du = f'(x)dx$

$$\int \left[f(x) \right]^n \cdot f'(x) dx = \int u^n du = \frac{u^{n+1}}{n+1} + C, \text{ where } n \neq -1 \text{ (Standard Integral)}$$

Hence $\int \left[\int f(x) \right]^n \cdot f'(x) \, dx = \frac{\left[f(x) \right]^{n+1}}{n+1} + C \quad \text{where } n \neq -1$

or $\int u^n du = \frac{u^{n+1}}{n+1} + C \quad \text{where } n \neq -1$

Example 2: $\int (x^2 + 3)^5 2x \, dx$ Ans: $\frac{1}{6}(x^2 + 3)^6 + C$

Choose substitution: Let u =

Find differential: du =

Substitute x by u completely: $\int (x^2 + 3)^5 2x \, dx =$

(Integrate, then substitute x back)

Example 3: $\int 3x \sqrt{1-2x^2} dx$ Ans: $-\frac{1}{2}(1-2x^2)^{3/2} + C$

Example 4:
$$\int (e^x + 1)^3 e^x dx$$

 $Ans: \frac{1}{4} \left(e^x + 1 \right)^4 + C$

Solution

Integration by substitution of the form $\int [f(x)]^n \cdot f'(x) dx$ can be summarised by the following example.

To find $\int 6x^2 (2x^3 - 3)^7 dx$:

	Recommended Procedure	In this example:
Step 1	Choose <i>u</i> as some expression that appears in the integrand. (This may require some trial and error to find the correct expression for <i>u</i>)	$Let u = 2x^3 - 3$
Step 2	Find $\frac{du}{dx}$ and obtain the differential of u .	$\frac{du}{dx} = 6x^2$ $or du = 6x^2 dx$
Step 3	Substitute the values of <i>u</i> and <i>du</i> into the original integral.	$\int 6x^2 \cdot (2x^3 - 3)^7 dx$ $= \int (2x^3 - 3)^7 \cdot 6x^2 dx$ $= \int u^7 du$
Step 4	Integrate w.r.t. <i>u</i> (Using standard formulae)	$=\frac{u^8}{8}+C$
Step 5	Write the answer in terms of x	$=\frac{\left(2x^3-3\right)^8}{8}+C$

Ans: $\ln |x^3 - x| + C$

Ans: $\frac{2}{3} \ln |x^3 - 4| + C$

Integration by substitution of the form 3.3

Let's look at an integral in which the numerator is the differential of the denominator.

Let
$$u = f(x)$$

then
$$du = f'(x) dx$$

$$\int \frac{f'(x)}{f(x)} dx = \int \frac{1}{u} du = \ln |u| + C \quad \text{(Standard Integral)}$$

i.e.
$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C$$

Example 5: Find
$$\int \frac{3x^2-1}{x^3-x} dx$$

Example 6:
$$\int \frac{2x^2}{x^3 - 4} dx$$

Example 7:
$$\int \frac{e^{2x}}{e^{2x}+1} dx$$

xample 7:
$$\int \frac{e^{2x}}{e^{2x}+1} dx$$
 Ans: $\frac{1}{2} \ln |e^{2x}+1| + C$

3.4 Integration by substitution of the form $\int e^{f(x)} \cdot f'(x) dx$

Let u = f(x), then du = f'(x) dx

$$\int e^{f(x)} f'(x) dx = \int e^{u} du = e^{u} + C \quad \text{(Standard Integral)}$$

$$\int e^{f(x)} f'(x) dx = e^{f(x)} + C$$

Example 8:
$$\int 3x^2 e^{x^3} dx$$

Ans: $e^{x^3} + C$

3.5 Other Substitutions by Inspection

Some integrals do not fit in any of the types previously studied. Other substitutions are then needed.

Example 9:
$$\int (t\sqrt{t-1})dt$$

Ans:
$$\frac{2}{5}(t-1)^{\frac{5}{2}} + \frac{2}{3}(t-1)^{\frac{3}{2}} + C$$

3.6 Integration By Substitution & The Definite Integral

When evaluating a definite integral involving substitution (i.e. change of variable from x to u), it is necessary to change the limits for x to the corresponding values of u.

Example 10: Evaluate
$$\int_0^2 x e^{x^2} dx$$
 Ans: 26.80 Solution:

Tutorial 3

1. Find the following integrals, by using the suitable substitutions.

(a)
$$\int 2x(x^2+1)^5 dx$$
 (b) $\int x(x^2-3)^4 dx$ (c) $\int t e^{3-2t^2} dt$

(b)
$$\int x(x^2-3)^4 dx$$

(c)
$$\int t e^{3-2t^2} dt$$

(d)
$$\int \frac{x}{1 - 2x^2} \, dx$$

(e)
$$\int \frac{x}{(4-x^2)^2} dx$$
 (f)
$$\int \sin^2 \theta \cos \theta d\theta$$

(f)
$$\int \sin^2 \theta \cos \theta \, d\theta$$

(g)
$$\int \frac{dx}{x \ln x}$$

(h)
$$\int \frac{5e^{2x}}{\sqrt{1-e^{2x}}} dx$$

*(i)
$$\int \frac{x+1}{\sqrt{x+2}} dx$$

*(j)
$$\int \frac{1}{\sqrt{x} + x} \, dx$$

(k)
$$\int t^3 \sin t^4 dt$$

2. Evaluate the following definite integrals.

(a)
$$\int_{0}^{1/2} y \sqrt{\frac{1}{4} - y^2} \, dy$$
 (b) $\int_{1}^{2} \frac{e^{1/t}}{t^2} \, dt$

(b)
$$\int_{1}^{2} \frac{e^{\frac{1}{t}}}{t^{2}} dt$$

$$(c) \int_0^4 \frac{4x}{\sqrt{2x+1}} dx$$

- A 1.25F capacitor, that has an initial voltage of 25.0V, is charged with a current that varies 3. with time according to the equation $i = t\sqrt{t^2 + 6.83}$. The formula for the voltage across a capacitor is $V_c = \frac{1}{C} \int i \, dt$ volts.
 - Show that the general equation of the voltage across the capacitor is given by $V_c = 0.267(t^2 + 6.83)^{\frac{3}{2}} + k$, where k is a constant
 - (b) Find the value of k.
 - Hence, find the voltage across the capacitor at 1.00s.
- If a circular disk of radius r carries a uniform electrical charge, then the electric potential on 4. the axis of the disk at a point a from its centre is given by the equation

$$V = k \int_0^r \frac{x}{\sqrt{x^2 + a^2}} \, dx$$

where k is a constant depending on the charge density. Integrate to find V as a function of *r* and *a*.

Find the root-mean-square (rms) value of $i = t^{\frac{1}{2}}e^{-t^2}$ A from t = 1s to t = 2s. 5.

Miscellaneous Exercises

- 1. Find the results of the integrals.
 - *(a) $\int \sin^3 x \, dx$ (Hint: use $\sin^2 x = 1 \cos^2 x$ and let $u = \cos x$)

*(b)
$$\int (27e^{9x} + e^{12x})^{1/3} dx$$

*(c)
$$\int \frac{3}{x \ln x} dx$$

*(d) $\int x\sqrt{4-x} \ dx$ (Hint: let u = 4-x and represent x in term of u)

*(e)
$$\int e^{2x} \sqrt{1 + 4e^x} \, dx$$

*(f)
$$\int \tan^3 x \, dx$$

*(g)
$$\int \sec^6 t \, dt$$

*(h)
$$\int \tan^3 x \sec x \, dx$$

*(i)
$$\int \sin^2 x \cos^4 x \, dx$$

*(j)
$$\int \cos^4 2x \sin^3 2x \ dx$$

*(k)
$$\int \sin^3 \theta \cos^3 \theta \, d\theta$$

2. Integrate the following:

*(a)
$$\int \frac{x^3}{\sqrt{1-x^2}} dx$$

*(b)
$$\int x(2x-5)^3 dx$$

*(c)
$$\int t^3 \sqrt{1-t^2} \ dt$$

*(d)
$$\int \frac{dx}{3+\sqrt{x+2}}$$

*(e)
$$\int \frac{2x+1}{(x-3)^6} dx$$

*(f)
$$\int \frac{\sqrt{x^3 - 4}}{x} \, dx$$

*3. Evaluate
$$\int_0^{\frac{\pi}{4}} \frac{\cos 2x}{1 + \sin^2 2x} dx$$
.

- *4. By using the substitution $x = \tan \theta$, or otherwise, find $\int \frac{1}{\left(1+x^2\right)^2} dx$.
- *5. By using the substitution $t-1 = \sin \theta$, or otherwise, find $\int \sqrt{1-(t-1)^2} dt$.

Multiple Choice Questions

1. To find the integral $\int \frac{x-2}{\sqrt{x^2-4x+1}} dx$ by substitution method, we should let

(a)
$$u = x - 2$$

(b)
$$u = x^2 - 4x + 1$$

(c)
$$u = 2x - 4$$

(d)
$$u = x$$

2. Which of the following integrals **cannot** be found using the substitution method?

(a)
$$\int \frac{1}{1+x^2} \, dx$$

(b)
$$\int \frac{x}{1+x^2} dx$$

(c)
$$\int x^2 e^{x^3} dx$$

(d)
$$\int 4\cos^2 x \sin x \, dx$$

- 3. To find $\int x\sqrt{x^2+1} \ dx$,
 - (a) let u = x

- (b) let $u = \sqrt{x}$
- (c) let u = x + 1
- (d) let $u = x^2 + 1$

Answers

1. (a)
$$\frac{(x^2+1)^6}{6} + C$$

(b)
$$\frac{1}{10}(x^2-3)^5+C$$

(c)
$$-\frac{1}{4}e^{3-2t^2} + C$$

(d)
$$-\frac{1}{4}\ln\left|1-2x^2\right| + C$$
 (e) $\frac{1}{2(4-x^2)} + C$

(e)
$$\frac{1}{2(4-x^2)} + C$$

(f)
$$\frac{1}{3}\sin^3\theta + C$$

(g)
$$ln|lnx|+C$$

(h)
$$-5\sqrt{1-e^{2x}}+C$$

(i)
$$\frac{2}{3}(x+2)^{\frac{3}{2}} - 2(x+2)^{\frac{1}{2}} + C$$

(j)
$$2 \ln(1 + \sqrt{x}) + C$$

$$(k) - \frac{1}{4}\cos t^4 + C$$

$$4. \quad V = k \left(\sqrt{r^2 + a^2} - a \right)$$

Miscellaneous Exercises

1. (a)
$$-\cos x + \frac{\cos^3 x}{3} + C$$
 (b) $\frac{1}{4} (27 + e^{3x})^{\frac{4}{3}} + C$

(b)
$$\frac{1}{4} \left(27 + e^{3x} \right)^{\frac{4}{3}} + C$$

(c)
$$3 \ln \left| \ln x \right| + C$$

(d)
$$\frac{2}{5} (4-x)^{\frac{5}{2}} - \frac{8}{3} (4-x)^{\frac{3}{2}} + C$$

(e)
$$\frac{1}{40}(1+4e^x)^{\frac{5}{2}} - \frac{1}{24}(1+4e^x)^{\frac{3}{2}} + C$$

(f)
$$\frac{1}{2}\tan^2 x + \ln\left|\cos x\right| + C$$

(g)
$$\frac{1}{5} \tan^5 t + \frac{2}{3} \tan^3 t + \tan t + C$$

(h)
$$\frac{1}{3} \sec^3 x - \sec x + C$$

(i)
$$\frac{x}{16} - \frac{\sin 4x}{64} + \frac{\sin^3 2x}{48} + C$$

(j)
$$-\frac{1}{10}\cos^5 2x + \frac{1}{14}\cos^7 2x + C$$

$$\text{(k) } \frac{1}{6}\cos^6\theta - \frac{1}{4}\cos^4\theta + C$$

or
$$\frac{1}{4}\sin^4\theta - \frac{1}{6}\sin^6\theta + C$$

2. (a)
$$\frac{1}{3}(1-x^2)^{\frac{3}{2}} - (1-x^2)^{\frac{1}{2}} + C$$

(b)
$$\frac{1}{20}(2x-5)^5 + \frac{5}{16}(2x-5)^4 + C$$
 or $\frac{1}{80}(2x-5)^4(8x+5) + C_1$

(c)
$$\frac{1}{5} (1-t^2)^{\frac{5}{2}} - \frac{1}{3} (1-t^2)^{\frac{3}{2}} + C$$

(d)
$$2(3+\sqrt{x+2})-6\ln(3+\sqrt{x+2})+C$$
 or $2\sqrt{x+2}-6\ln(3+\sqrt{x+2})+C_1$

(e)
$$\frac{-1}{2}(x-3)^{-4} - \frac{7}{5}(x-3)^{-5} + C$$
 or $\frac{1-5x}{10(x-3)^5} + C_1$

(f)
$$\frac{2}{3}(x^3-4)^{\frac{1}{2}} - \frac{4}{3}\tan^{-1}\frac{\sqrt{x^3-4}}{2} + C$$

3.
$$\frac{\pi}{8}$$

4.
$$\frac{1}{2} \left[\tan^{-1} x + \frac{x}{1+x^2} \right] + C$$

5.
$$\frac{1}{2} \left[\sin^{-1}(t-1) + (t-1)\sqrt{1-(t-1)^2} \right] + C$$

MCQ 1. (b)

2. (a)

3. (d)