

Fast Discovery of Pairwise Interactions in High Dimensions using Bayes

Tamara Broderick

Associate Professor EECS, MIT

Raj Agrawal, Jonathan H. Huggins, Brian L. Trippe

Person 1 Person 2 Person N

Environmental factors

Which genes/factors are associated with a health issue?

- Which genes/factors are associated with a health issue?
- Want small subset of p > N covariates

- Which genes/factors are associated with a health issue?
- Want small subset of p > N covariates (cf. LASSO)

- Which genes/factors are associated with a health issue?
- Want small subset of p > N covariates (cf. LASSO)
- Additive model often not enough: need interactions

- Which genes/factors are associated with a health issue?
- Want small subset of p > N covariates (cf. LASSO)
- Additive model often not enough: need interactions (now p² dims!)

Pairwise interactions in high dimensions

- Which genes/factors are associated with a health issue?
- Want small subset of p > N covariates (cf. LASSO)
- Additive model often not enough: need interactions (now p² dims!)

Pairwise interactions in high dimensions

- Which genes/factors are associated with a health issue?
- Want small subset of p > N covariates (cf. LASSO)
- Additive model often not enough: need interactions (now p^2 dims!)
- We provide: Fast, accurate (Bayes) method for interaction discovery

Pairwise interactions in high dimensions

- Which genes/factors are associated with a health issue?
- Want small subset of p > N covariates (cf. LASSO)
- Additive model often not enough: need interactions (now p² dims!)
- We provide: Fast, accurate (Bayes) method for interaction discovery
 - Better scaling in p & better accuracy than LASSO-based methods.
 Orders of magnitude faster than naive Bayesian inference

• Setup: Discovering main and interaction effects

- Setup: Discovering main and interaction effects
- Our method

- Setup: Discovering main and interaction effects
- Our method
 - A Bayesian generative model

- Setup: Discovering main and interaction effects
- Our method
 - A Bayesian generative model
 - Fast inference

- Setup: Discovering main and interaction effects
- Our method
 - A Bayesian generative model
 - Fast inference
 - Fast reporting of results

- Setup: Discovering main and interaction effects
- Our method
 - A Bayesian generative model
 - Fast inference
 - Fast reporting of results
- Experiments on simulated and real data

- Setup: Discovering main and interaction effects
- Our method
 - A Bayesian generative model
 - Fast inference
 - Fast reporting of results
- Experiments on simulated and real data

Goal: Parameter selection/estimation

Goal: Parameter selection/estimation under assumptions:

- Goal: Parameter selection/estimation under assumptions:
 - Sparsity: most main effects are negligible (interpretable)

- Goal: Parameter selection/estimation under assumptions:
 - Sparsity: most main effects are negligible (interpretable)
 - Strong hierarchy: Interaction only if main effects are present

- Goal: Parameter selection/estimation under assumptions:
 - Sparsity: most main effects are negligible (interpretable)
 - Strong hierarchy: Interaction only if main effects are present
- p^2 covariates: large $p \rightarrow$ statistical & computational challenge

Discovering main and interaction effects

- Goal: Parameter selection/estimation under assumptions:
 - Sparsity: most main effects are negligible (interpretable)
 - Strong hierarchy: Interaction only if main effects are present
- p^2 covariates: large $p \rightarrow$ statistical & computational challenge
- Our solution: using structure in covariates + sparsity assumptions to reduce to a problem *linear* in p

Roadmap

- Setup: Discovering main and interaction effects
- Our method
 - A Bayesian generative model
 - Fast inference
 - Fast reporting of results
- Experiments on simulated and real data

Roadmap

- Setup: Discovering main and interaction effects
- Our method
 - A Bayesian generative model
 - Fast inference
 - Fast reporting of results
- Experiments on simulated and real data

A Bayesian method: expert information, uncertainty quantification, regularization

1. Choose generative model

A Bayesian method: expert information, uncertainty quantification, regularization

1. Choose generative model

2. Compute posterior

A Bayesian method: expert information, uncertainty quantification, regularization

1. Choose generative model

2. Compute posterior

3. Report relevant summaries of the posterior

A Bayesian method: expert information, uncertainty quantification, regularization

1. Choose generative model

2. Compute posterior

3. Report relevant summaries of the posterior

- 1. New Bayesian generative model: **Sparse Kernel Interaction Model (SKIM)** to encode sparsity and strong hierarchy
- 2. Compute posterior
- 3. Report relevant summaries of the posterior

- 1. New Bayesian generative model: **Sparse Kernel Interaction Model (SKIM)** to encode sparsity and strong hierarchy [Carvalho et al 2009; Piironen, Vehtari 2017; Chipman 1996, Griffin & Brown 2017]
- 2. Compute posterior
- 3. Report relevant summaries of the posterior

- 1. New Bayesian generative model: **Sparse Kernel Interaction Model (SKIM)** to encode sparsity and strong hierarchy [Carvalho et al 2009; Piironen, Vehtari 2017; Chipman 1996, Griffin & Brown 2017]
- 2. Compute posterior
- 3. Report relevant summaries of the posterior

- 1. New Bayesian generative model: **Sparse Kernel Interaction Model (SKIM)** to encode sparsity and strong hierarchy [Carvalho et al 2009; Piironen, Vehtari 2017; Chipman 1996, Griffin & Brown 2017]
- **Kernel Interaction Sampler (KIS)**: Use kernel trick to run MCMC in O(p) time per iteration
- 3. Report relevant summaries of the posterior

- 1. New Bayesian generative model: **Sparse Kernel Interaction Model (SKIM)** to encode sparsity and strong hierarchy [Carvalho et al 2009; Piironen, Vehtari 2017; Chipman 1996, Griffin & Brown 2017]
- 2. **Kernel Interaction Sampler (KIS)**: Use kernel trick to run MCMC in O(p) time per iteration
- 3. Report relevant summaries of the posterior

- 1. New Bayesian generative model: **Sparse Kernel Interaction Model (SKIM)** to encode sparsity and strong hierarchy [Carvalho et al 2009; Piironen, Vehtari 2017; Chipman 1996, Griffin & Brown 2017]
- 2. **Kernel Interaction Sampler (KIS)**: Use kernel trick to run MCMC in O(p) time per iteration
- 3. Kernel Interaction Trick (KIT): Use kernel trick to report *all* non-negligible main and interaction effects in O(p) time

- 1. New Bayesian generative model: **Sparse Kernel Interaction Model (SKIM)** to encode sparsity and strong hierarchy [Carvalho et al 2009; Piironen, Vehtari 2017; Chipman 1996, Griffin & Brown 2017]
- 2. **Kernel Interaction Sampler (KIS)**: Use kernel trick to run MCMC in O(p) time per iteration
- 3. **Kernel Interaction Trick (KIT)**: Use kernel trick to report *all* non-negligible main and interaction effects in O(p) time

- 1. New Bayesian generative model: **Sparse Kernel Interaction Model (SKIM)** to encode sparsity and strong hierarchy [Carvalho et al 2009; Piironen, Vehtari 2017; Chipman 1996, Griffin & Brown 2017]
- Kernel Interaction Sampler (KIS): The remaining to run MCMC in O(p) time per iteration
 Kernel Interaction Trick (KIT): The run Motion of the run Motion of the run of the ru
- 3. Kernel Interaction Trick (KIT): Creation in C(p) time

• MCMC option 1: sample θ

• MCMC option 1: sample θ (p^2 parameters)

- MCMC option 1: sample θ (p^2 parameters)
 - Time cost: *O*(*p*²*N*)

- MCMC option 1: sample θ (p^2 parameters)
 - Time cost: *O*(*p*²*N*)

- MCMC option 1: sample θ (p^2 parameters)
 - Time cost: *O*(*p*²*N*)

- Mixing (1000 iters Stan):
 - Option #1: all \hat{R} > 1.05
 - Our method: all \hat{R} < 1.05

• MCMC option 2: use conditional conjugacy for θ

- MCMC option 2: use conditional conjugacy for θ
 - Compute and invert

$$X^{\top}X$$

- MCMC option 2: use conditional conjugacy for θ
 - Compute and invert

$$X^{\top}X$$
 + prior precision matrix

- MCMC option 2: use conditional conjugacy for θ
 - Compute and invert

$$X^{\top}X$$

- MCMC option 2: use conditional conjugacy for θ
 - Compute and invert

$$\Phi_2(X)^{\top}\Phi_2(X)$$

- MCMC option 2: use conditional conjugacy for θ
 - Compute and invert

$$\Phi_2(X)^{ op}\Phi_2(X)$$
 $X: N \times p$

- MCMC option 2: use conditional conjugacy for θ
 - Compute and invert

$$\Phi_2(X)^{\top}\Phi_2(X)$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

- MCMC option 2: use conditional conjugacy for θ
 - Compute and invert $\Phi_2(X)^\top \Phi_2(X)$ $X: N \times p$ $\Phi_2: N \times p^2$

• MCMC option 2: use conditional conjugacy for θ

• MCMC option 2: use conditional conjugacy for θ

• MCMC option 2: use conditional conjugacy for θ

• MCMC option 2: use conditional conjugacy for θ

• MCMC option 2: use conditional conjugacy for θ

• MCMC option 2: use conditional conjugacy for θ

• MCMC option 2: use conditional conjugacy for θ

• Compute and invert $\Phi_2(X)^\top \Phi_2(X)$ $X: N \times p$ $\Phi_2: N \times p^2$

• Naive time cost: $O(p^4N+p^6)$

• MCMC option 2: use conditional conjugacy for θ

• Compute and invert $\Phi_2(X)^\top \Phi_2(X)$ $X: N \times p$ $\Phi_2: N \times p^2$

- Naive time cost: $O(p^4N+p^6)$
- Woodbury time cost: $O(p^2N^2+N^3)$

• MCMC option 2: use conditional conjugacy for θ

• Compute and invert $\Phi_2(X)^\top \Phi_2(X)$ $X: N \times p$ $\Phi_2: N \times p^2$

 p^2

• Naive time cost: $O(p^4N+p^6)$

• Woodbury time cost: $O(p^2N^2+N^3)$

• MCMC option 2: use conditional conjugacy for θ

Compute and invert

$$\Phi_2(X)^{\top}\Phi_2(X)$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

 $p^{2} = p^{2}$ p^{2} p^{2} p^{2}

• Naive time cost: $O(p^4N+p^6)$

• Woodbury time cost: $O(p^2N^2+N^3)$

Compute and invert

$$\Phi_2(X)^{ op}\Phi_2(X)$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

• Compute and invert $\Phi_2(X)^\top \Phi_2(X)$ $X: N\times p$ $\Phi_2: N\times p^2$

use conditional conjugacy for $\theta^T \Phi_2(X)$

Compute and invert

$$\Phi_2(X)^{ op}\Phi_2(X)$$

 $X: N \times p$

 Φ_2 : $N \times p^2$

- Our approach: use conditional conjugacy for $heta^T\Phi_2(X)$
 - Compute and invert

 Φ_2 : $N \times p^2$

- Our approach: use conditional conjugacy for $heta^T\Phi_2(X)$
 - Compute and invert

$$\Phi_2(X)^{\top}\Phi_2(X)$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

- Our approach: use conditional conjugacy for $heta^T \Phi_2(X)$
 - Compute and invert

$$\Phi_2(X)\Phi_2(X)^{\top}\Phi_2(X)\Phi_2(X)^{\top}$$
 $X: N\times p$
 $\Phi_2: N\times p^2$

- Our approach: use conditional conjugacy for $heta^T\Phi_2(X)$
 - Compute and invert

$$\Phi_2(X)$$
 $\Phi_2(X)^{\top}$ $\Phi_2(X)$ $\Phi_2(X)^{\top}$
 $X: N \times p$
 $\Phi_2: N \times p^2$

- Our approach: use conditional conjugacy for $heta^T\Phi_2(X)$
 - Compute and invert

$$\Phi_2(X)\Phi_2(X)^{\top}$$
 $\Phi_2(X)\Phi_2(X)^{\top}$
 $X: N \times p$
 $\Phi_2: N \times p^2$

- Our approach: use conditional conjugacy for $heta^T\Phi_2(X)$
 - Compute and invert

$$\Phi_2(X)\Phi_2(X)^{ op}$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

- Our approach: use conditional conjugacy for $heta^T\Phi_2(X)$
 - Compute and invert

$$\Phi_2(X)\Phi_2(X)^{ op}$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

- Our approach: use conditional conjugacy for $heta^T\Phi_2(X)$
 - Compute and invert

$$\Phi_2(X)\Phi_2(X)^{ op}$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

• Our approach: use conditional conjugacy for $heta^T\Phi_2(X)$

• Compute and invert $\Phi_2(X)\Phi_2(X)^{\top}$

X: Nxp

 Φ_2 : $N \times p^2$

- Our approach: use conditional conjugacy for $heta^T\Phi_2(X)$
 - Compute and invert

$$\Phi_2(X)\Phi_2(X)^{ op}$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

- Our approach: use conditional conjugacy for $heta^T\Phi_2(X)$
 - Compute and invert

$$\Phi_2(X)\Phi_2(X)^{ op}$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

• Our approach: use conditional conjugacy for $\theta^T\Phi_2(X)$

Compute and invert

$$\Phi_2(X)\Phi_2(X)^{ op}$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

• Our approach: use conditional conjugacy for $\theta^T\Phi_2(X)$

Compute and invert

$$\Phi_2(X)\Phi_2(X)^{ op}$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

• Our approach: use conditional conjugacy for $\theta^T\Phi_2(X)$

Compute and invert

$$\Phi_2(X)\Phi_2(X)^{ op}$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

• Our approach: use conditional conjugacy for $\theta^T\Phi_2(X)$

Compute and invert

$$\Phi_2(X)\Phi_2(X)^{ op}$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

• Our approach: use conditional conjugacy for $\theta^T\Phi_2(X)$

Compute and invert

$$\Phi_2(X)\Phi_2(X)^{ op}$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

• Our approach: use conditional conjugacy for $\theta^T\Phi_2(X)$

Compute and invert

$$\Phi_2(X)\Phi_2(X)^{ op}$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

• Our approach: use conditional conjugacy for $\theta^T\Phi_2(X)$

Compute and invert

$$\Phi_2(X)\Phi_2(X)^{ op}$$
 $X: N \times p$
 $\Phi_2: N \times p^2$

- Kernel trick: O(p) cost
- Our time cost: $O(pN^2+N^3)$

• Can access posterior of $g = \theta^T \Phi_2$ in O(p) time per iteration

- Can access posterior of $g = \theta^T \Phi_2$ in O(p) time per iteration
- But our goal is to find main and interaction effects

- Can access posterior of $g = \theta^T \Phi_2$ in O(p) time per iteration
- But our goal is to find main and interaction effects
- Step A: Report posterior of θ_{x_i} or $\theta_{x_i x_j}$ in O(1) time

- Can access posterior of $g=\theta^T\Phi_2$ in O(p) time per iteration
- But our goal is to find main and interaction effects
- Step A: Report posterior of θ_{x_i} or $\theta_{x_i x_j}$ in O(1) time

$$e_i = [0, 0, \dots, 0, 1, 0, \dots, 0]$$

$$i^{\text{th}} \text{ position}$$

- Can access posterior of $g=\theta^T\Phi_2$ in $\mathcal{O}(p)$ time per iteration
- But our goal is to find main and interaction effects
- Step A: Report posterior of θ_{x_i} or $\theta_{x_i x_j}$ in O(1) time

$$e_i = [0,0,\dots,0,1,0,\dots,0]$$

$$g(e_i) = \theta_{x_i} + \theta_{x_i^2}$$
 i^{th} position

- Can access posterior of $g=\theta^T\Phi_2$ in ${\it O}(p)$ time per iteration
- But our goal is to find main and interaction effects
- Step A: Report posterior of θ_{x_i} or $\theta_{x_i x_j}$ in O(1) time

$$e_i = [0, 0, \dots, 0, 1, 0, \dots, 0]$$

$$i^{\text{th}} \text{ position}$$

$$g(e_i) = \theta_{x_i} + \theta_{x_i^2}$$
$$g(-e_i) = -\theta_{x_i} + \theta_{x_i^2}$$

- Can access posterior of $g=\theta^T\Phi_2$ in $\mathcal{O}(p)$ time per iteration
- But our goal is to find main and interaction effects
- Step A: Report posterior of θ_{x_i} or $\theta_{x_i x_j}$ in O(1) time

$$e_i = [0,0,\dots,0,1,0,\dots,0] \qquad \qquad g(e_i) = \theta_{x_i} + \theta_{x_i^2}$$

$$i^{\text{th}} \text{ position} \qquad \qquad g(-e_i) = -\theta_{x_i} + \theta_{x_i^2}$$

$$\frac{g(e_i) - g(-e_i)}{2} = \theta_{x_i}$$

- Can access posterior of $g=\theta^T\Phi_2$ in ${\it O}(p)$ time per iteration
- But our goal is to find main and interaction effects
- Step A: Report posterior of θ_{x_i} or $\theta_{x_i x_j}$ in O(1) time

$$e_i = [0,0,\dots,0,1,0,\dots,0] \qquad \qquad g(e_i) = \theta_{x_i} + \theta_{x_i^2}$$

$$i^{\text{th}} \text{ position} \qquad \qquad g(-e_i) = -\theta_{x_i} + \theta_{x_i^2}$$

$$\frac{g(e_i) - g(-e_i)}{2} = \theta_{x_i}$$

• Step B: Find $k \ll p$ sparse main effects: takes O(p) time

- Can access posterior of $g=\theta^T\Phi_2$ in ${\it O}(p)$ time per iteration
- But our goal is to find main and interaction effects
- Step A: Report posterior of θ_{x_i} or $\theta_{x_i x_j}$ in O(1) time

$$e_i = [0,0,\dots,0,1,0,\dots,0] \qquad \qquad g(e_i) = \theta_{x_i} + \theta_{x_i^2}$$

$$i^{\text{th}} \text{ position} \qquad \qquad g(-e_i) = -\theta_{x_i} + \theta_{x_i^2}$$

$$\frac{g(e_i) - g(-e_i)}{2} = \theta_{x_i}$$

- Step B: Find $k \ll p$ sparse main effects: takes O(p) time
- Step C: Report just the k^2 strong-hierarchy interaction effects: takes $O(k^2)$ time

Roadmap

- Setup: Discovering main and interaction effects
- Our method
 - A Bayesian generative model
 - Fast inference
 - Fast reporting of results
- Experiments on simulated and real data

Roadmap

- Setup: Discovering main and interaction effects
- Our method
 - A Bayesian generative model
 - Fast inference
 - Fast reporting of results
- Experiments on simulated and real data

• LASSO (pairs, hierarchical): $O(p^2)$ per iteration

• LASSO (pairs, hierarchical): $O(p^2)$ per iteration [Lim, Hastie 2015]

- LASSO (pairs, hierarchical): $O(p^2)$ per iteration [Lim, Hastie 2015]
- Our method: O(p) per iteration

- LASSO (pairs, hierarchical): $O(p^2)$ per iteration [Lim, Hastie 2015]
- Our method: O(p) per iteration
- Competitive empirically for moderate *p*:

Experiments: Simulated

Experiments: Simulated

• 36 different simulated data sets (so know true effects)

Experiments: Simulated

- 36 different simulated data sets (so know true effects)
 - Up to $p = 500 \rightarrow 125,000$ total parameters

- 36 different simulated data sets (so know true effects)
 - Up to $p = 500 \rightarrow 125,000$ total parameters

- 36 different simulated data sets (so know true effects)
 - Up to $p = 500 \rightarrow 125,000$ total parameters
- False discovery rate (FDR): proportion incorrect

- 36 different simulated data sets (so know true effects)
 - Up to $p = 500 \rightarrow 125,000$ total parameters
- False discovery rate (FDR): proportion incorrect

- 36 different simulated data sets (so know true effects)
 - Up to $p = 500 \rightarrow 125,000$ total parameters
- False discovery rate (FDR): proportion incorrect

• Simulated effects: 5 main, 10 interaction

- Simulated effects: 5 main, 10 interaction
- Covariates: Residential Building Data Set
 - Highly correlated: 20 of 105 capture 99% of variance

- Simulated effects: 5 main, 10 interaction
- Covariates: Residential Building Data Set
 - Highly correlated: 20 of 105 capture 99% of variance
- Key: (# correct effects): (# of incorrect effects)
 - Higher green is better: lower red is better

- Simulated effects: 5 main, 10 interaction
- Covariates: Residential Building Data Set
 - Highly correlated: 20 of 105 capture 99% of variance
- Key: (# correct effects): (# of incorrect effects)
 - Higher green is better: lower red is better

METHOD	#MAIN	#PAIR
PLASSO	2:5	3:21

- Simulated effects: 5 main, 10 interaction
- Covariates: Residential Building Data Set
 - Highly correlated: 20 of 105 capture 99% of variance
- Key: (# correct effects): (# of incorrect effects)
 - Higher green is better: lower red is better

METHOD	#MAIN	#PAIR
PLASSO	2:5	3:21
HLASSO	3:19	3:18

- Simulated effects: 5 main, 10 interaction
- Covariates: Residential Building Data Set
 - Highly correlated: 20 of 105 capture 99% of variance
- Key: (# correct effects): (# of incorrect effects)
 - Higher green is better: lower red is better

METHOD	#MAIN	#PAIR
Our method	3:0	3:0
PLASSO	2:5	3:21
HLASSO	3:19	3:18

Covariates and response: Auto MPG

- Covariates and response: Auto MPG
- N = 398, p = 6 (real-valued), but...

- Covariates and response: Auto MPG
- N = 398, p = 6 (real-valued), but...
- Augment p with 200 fake (noise) covariates
 - 21,321 total parameters

- Covariates and response: Auto MPG
- N = 398, p = 6 (real-valued), but...
- Augment p with 200 fake (noise) covariates
 - 21,321 total parameters
- Key: (# original effects): (# of fake effects)
 - No order to blue: lower red is better

- Covariates and response: Auto MPG
- N = 398, p = 6 (real-valued), but...
- Augment p with 200 fake (noise) covariates
 - 21,321 total parameters
- Key: (# original effects): (# of fake effects)
 - No order to blue: lower red is better

METHOD	#MAIN	#PAIR
PLASSO	4:0	2:78

- Covariates and response: Auto MPG
- N = 398, p = 6 (real-valued), but...
- Augment p with 200 fake (noise) covariates
 - 21,321 total parameters
- Key: (# original effects): (# of fake effects)
 - No order to blue: lower red is better

METHOD	#MAIN	#PAIR
PLASSO	4:0	2:78
HLASSO	6:46	4:38

- Covariates and response: Auto MPG
- N = 398, p = 6 (real-valued), but...
- Augment p with 200 fake (noise) covariates
 - 21,321 total parameters
- Key: (# original effects): (# of fake effects)
 - No order to blue: lower red is better

METHOD	#MAIN	#PAIR
Our method	3:0	1:0
PLASSO	4:0	2:78
HLASSO	6:46	4:38

We provide: fast, accurate detection of pairwise interactions

R Agrawal, BL Trippe, JH Huggins, and T Broderick. The Kernel interaction trick: Fast Bayesian discovery of pairwise interactions in high dimensions. *ICML* 2019. ArXiv:1905.06501

We provide: fast, accurate detection of pairwise interactions

R Agrawal, BL Trippe, JH Huggins, and T Broderick. The Kernel interaction trick: Fast Bayesian discovery of pairwise interactions

We provide: fast, accurate detection of pairwise (and higher-order) interactions

R Agrawal, BL Trippe, JH Huggins, and T Broderick. The Kernel interaction trick: Fast Bayesian discovery of pairwise interactions

We provide: fast, accurate detection of pairwise (and higher-order) interactions

Up next:

R Agrawal, BL Trippe, JH Huggins, and T Broderick. The Kernel interaction trick: Fast Bayesian discovery of pairwise interactions in high dimensions. *ICML* 2019. ArXiv:1905.06501

We provide: fast, accurate detection of pairwise (and higher-order) interactions

Up next:

Response types (binary, count, etc) & nonlinearity

R Agrawal, BL Trippe, JH Huggins, and T Broderick. The Kernel interaction trick: Fast Bayesian discovery of pairwise interactions in high dimensions. *ICML* 2019. ArXiv:1905.06501

Thanks to Pyro contributors! Martin Jankowiak, Du Phan, Neeraj Pradhan In Pyro: http://pyro.ai/numpyro/sparse_regression.html

We provide: fast, accurate detection of pairwise (and higher-order) interactions

Up next:

- Response types (binary, count, etc) & nonlinearity
- Improve scaling in N

R Agrawal, BL Trippe, JH Huggins, and T Broderick. The Kernel interaction trick: Fast Bayesian discovery of pairwise interactions in high dimensions. *ICML* 2019. ArXiv:1905.06501

Thanks to Pyro contributors! Martin Jankowiak, Du Phan, Neeraj Pradhan In Pyro: http://pyro.ai/numpyro/sparse regression.html

We provide: fast, accurate detection of pairwise (and higher-order) interactions

Up next:

- Response types (binary, count, etc) & nonlinearity
- Improve scaling in N

R Agrawal, BL Trippe, JH Huggins, and T Broderick. The Kernel interaction trick: Fast Bayesian discovery of pairwise interactions in high dimensions. *ICML* 2019. ArXiv:1905.06501

Thanks to Pyro contributors! Martin Jankowiak, Du Phan, Neeraj Pradhan In Pyro: http://pyro.ai/numpyro/sparse_regression.html

JH Huggins, T Campbell, M Kasprzak, and T Broderick. Scalable Gaussian process inference with finite-data mean and variance guarantees. *AISTATS* 2019.

R Agrawal, T Campbell, JH Huggins, and T Broderick. Data-dependent compression of random features for large-scale kernel approximation. *AISTATS* 2019.

We provide: fast, accurate detection of pairwise (and higher-order) interactions

Up next:

- Response types (binary, count, etc) & nonlinearity
- Improve scaling in N
- Applications!

R Agrawal, BL Trippe, JH Huggins, and T Broderick. The Kernel interaction trick: Fast Bayesian discovery of pairwise interactions in high dimensions. *ICML* 2019. ArXiv:1905.06501

Thanks to Pyro contributors! Martin Jankowiak, Du Phan, Neeraj Pradhan In Pyro: http://pyro.ai/numpyro/sparse_regression.html

JH Huggins, T Campbell, M Kasprzak, and T Broderick. Scalable Gaussian process inference with finite-data mean and variance guarantees. *AISTATS* 2019.

R Agrawal, T Campbell, JH Huggins, and T Broderick. Data-dependent compression of random features for large-scale kernel approximation. *AISTATS* 2019.

More in the Broderick Group

L Masoero, F Camerlenghi, S Favaro, T Broderick. More for less: Predicting and maximizing variant discovery under a fixed budget via Bayesian nonparametrics. https://arxiv.org/abs/1912.05516

- For fixed budget, there is trade-off in sequencing more genomes and sequencing at greater depth
- We provide new method for prediction of # new variants and optimal allocation of more genomes vs. depth
 - Lowest error when using pilot TCGA dataset to predict the number of new variants to be observed in the follow-up MSK-impact dataset (N=9593) across 197 highly variable, cancerous genes
 - (Only) our prediction can handle when sequencing depth changes between pilot and follow-up study
 - (Only) our method optimizes under fixed budget

T Broderick, R Giordano, R Meager. An Automatic Finite-Sample Robustness Metric: Can Dropping a Little Data Change Conclusions? In preparation.