

DIMENSIONAMIENTO DE CONDUCTOR PRINCIPAL PARA MOTOR

OBJETIVO

"Dada la información técnica metodológica, el alumno al término de la clase, deberá dimensionar correctamente el conductor principal de alimentación para uno o varios motores eléctricos"

Para un motor

CONDUCTORES PARA ALIMENTAR A CARGAS CONCENTRADAS

$$P = k * U * I * Cos \emptyset * \eta$$

A). Por capacidad de corriente:

$$I = \frac{P}{k * U * Cos \emptyset * \eta}$$

Donde:

I : Corriente nominal del motor (A).

P : Potencia nominal del motor (W).

U : Potencia nominal del motor (V).

Cos \varnothing : Factor de potencia del motor.

n : Eficiencia del motor.

K : 1 para circuitos monofásicos

 $\sqrt{3}$ para circuitos trifásicos

El calibre se selecciona calculando la corriente de diseño "I_d":

 $I_d = 1,25*I$

TABLA DE DATOS TECNICOS TW - 80 (mm²)									
0111000	***					DEAG		D. 15 (1)	
CALIBRE	N°	DIAMETRO	DIAMETRO	ESPESOR	DIAMETRO	PESO		RAJE (*)	
CONDUCTOR	HILOS	HILO		AISLAMIENTO	EXTERIOR		AIRE	DUCTO	
mm²		mm	mm	mm	mm	Kg/Km	A	A	
				ALAMBRES					
1.5	1	1.36	1.36	0.7	2.8	20	18	14	
2.5	1	1.74	1.74	0.8	3.4	31	30	24	
4	1	2.21	2.21	0.8	3.9	45	35	31	
6	1	2.70	2.70	0.8	4.3	64	50	39	
10	1	3.51	3.51	1	5.6	107	74	51	
				CABLES					
1.5	7	0.52	1.50	0.7	2.9	21	18	14	
2.5	7	0.66	1.92	0.8	3.5	32	30	24	
4	7	0.84	2.44	8.0	4.0	48	35	31	
6	7	1.02	2.98	0.8	4.6	68	50	39	
10	7	1.33	3.99	1	6.0	114	74	51	
16	7	1.69	4.67	1	6.7	172	99	68	
25	7	2.13	5.88	1.2	8.3	269	132	88	
35	7	2.51	6.92	1.2	9.3	364	165	110	
50	19	1.77	8.15	1.4	11.0	490	204	138	
70	19	2.13	9.78	1.4	12.6	690	253	165	
95	19	2.51	11.55	1.6	14.8	959	303	198	
120	37	2.02	13	1.6	16.2	1192	352	231	
150	37	2.24	14.41	1.8	18.0	1476	413	264	
185	37	2.51	16.16	2	20.2	1837	473	303	
240	37	2.87	18.51	2.2	22.9	2392	528	352	
300	37	3.22	20.73	2.4	25.5	3002	633	391	

B). Por caída de tensión:

$$\Delta U = \frac{K_V * L * I_d * Cos\emptyset}{S}$$

Donde:

S : Sección del conductor (mm²).

L : Distancia hasta la carga (m).

I_d : Corriente de diseño del conductor (A).

 $Cos \varnothing$: Factor de potencia del motor.

%∆U : Caída de tensión en porcentaje dividido entre 100.

U : Tensión nominal de la red de alimentación.

K_V : 0,0357 para circuitos monofásicos

0,0309 para circuitos trifásicos

Ejemplo

P = 40 HP $\cos \phi = 0.80$ $\eta = 0.85$

www.tecsup.edu.pe

Ejercicio 1

Instalación por ductos

P = 20 HP

$$\cos \phi = 0.80$$

 $\eta = 0.85$

U = 440VL = 60m

		TABL	A DE DATOS	TECNICOS TI	HW - 90 (mm	²)		
CALIBRE	NUMERO	DIAMETRO	DIAMETRO	ESPESOR	DIAMETRO	PESO	AMPE	RAJE (*)
CONDUCTOR	HILOS	HILO	CONDUCTOR	AISLAMIENTO	EXTERIOR		AIRE	DUCTO
mm²		mm	mm	mm	mm	Kg/Km	Α	Α
2.5	7	0.66	1.92	8.0	3.5	32	37	27
4	7	0.84	2.44	8.0	4.1	47	45	34
6	7	1.02	2.98	8.0	4.6	67	61	44
10	7	1.33	3.99	1.1	6.2	117	88	62
16	7	1.69	4.67	1.5	7.7	186	124	85
25	7	2.13	5.88	1.5	8.9	278	158	107
35	7	2.51	6.92	1.5	10	375	197	135
50	19	1.77	8.15	2	12.3	520	245	160
70	19	2.13	9.78	2	13.9	724	307	203
95	19	2.51	11.55	2	15.7	981	375	242
120	37	2.02	13	2.4	18	1245	437	279
150	37	2.24	14.41	2.4	19.4	1508	501	318
185	37	2.51	16.16	2.4	21.1	1866	586	361
240	37	2.87	18.51	2.4	23.5	2416	654	406
300	37	3.22	20.73	2.8	26.5	3041	767	462
400	61	2.84	23.51	2.8	29.3	3846	908	541
500	61	3.21	26.57	2.8	32.3	4862	1037	603

Ejercicio 2

• Instalación aérea

P = 75 HP

$$\cos \phi = 0.80$$

 $\eta = 0.85$

$$U = 380V$$

L = 45m

www.tecsup.edu.pe

Para varios motores

PARA VARIOS MOTORES

PARA VARIOS MOTORES

A) Por capacidad de corriente:

$$I = \frac{P}{k * U * Cos \emptyset * \eta}$$

$$I_d = 1,25I_1 + I_2 + I_3$$

$$I_1 \rangle I_2 \rangle I_3$$

			TABL	4 DE DATOS	TECNICOS TH	ЧW - 90 (mm	1 ²)		
	CALIBRE	NUMERO	DIAMETRO	DIAMETRO	ESPESOR	DIAMETRO	PESO	AMPE	RAJE (*)
	CONDUCTOR	HILOS	HILO	CONDUCTOR	AISLAMIENTO	EXTERIOR		AIRE	DUCTO
	mm²		mm	mm	mm	mm	Kg/Km	Α	Α
	2.5	7	0.66	1.92	0.8	3.5	32	37	27
	4	7	0.84	2.44	8.0	4.1	47	45	34
	6	7	1.02	2.98	8.0	4.6	67	61	44
	10	7	1.33	3.99	1.1	6.2	117	88	62
	16	7	1.69	4.67	1.5	7.7	186	124	85
	25	7	2.13	5.88	1.5	8.9	278	158	107
	35	7	2.51	6.92	1.5	10	375	197	135
	50	19	1.77	8.15	2	12.3	520	245	160
	70	19	2.13	9.78	2	13.9	724	307	203
	95	19	2.51	11.55	2	15.7	981	375	242
	120	37	2.02	13	2.4	18	1245	437	279
	150	37	2.24	14.41	2.4	19.4	1508	501	318
	185	37	2.51	16.16	2.4	21.1	1866	586	361
	240	37	2.87	18.51	2.4	23.5	2416	654	406
	300	37	3.22	20.73	2.8	26.5	3041	767	462
1	400	61	2.84	23.51	2.8	29.3	3846	908	541
	500	61	3.21	26.57	2.8	32.3	4862	1037	603
									i i

PARA VARIOS MOTORES

B) Por caída de tensión:

$$\Delta U = \frac{K_V * L * \sum I_{di} * Cos \emptyset_i}{S}$$

Donde:

S : Sección del conductor (mm²).

L : Distancia hasta el grupo de motores (m).

I_{di}: Corriente de diseño del motor "i" (A).

Cos ∅ : Factor de potencia del motor "i".

%∆U : Caída de tensión en porcentaje dividido entre 100.

U : Tensión nominal de la red de alimentación (V).

K_v: 0,0357 para circuitos monofásicos

0,0309 para circuitos trifásicos

Ejemplo

P1= 50HP

 $Cos\phi = 0.78$

P2= 25HP

 $Cos\phi = 0.88$

P3= 15HP

Cosφ=0.86

L= 60m

Motor 1

Motor 2 www.tecsup.edu.piMotor 3

Ejercicio 01

En el siguiente esquema eléctrico, la alimentación es 3Φ , 440 Vac, el conductor es en aire, determinar el conductor alimentador de los motores.

www.tecsup.edu.pe

Circuito trifásico

Donde:

- IAG: Interruptor general
- IA1: Interruptor termo magnético para motor 1.
- IA2: Interruptor termo magnetico para motor 2.
- IA3: Interruptor termo magnético para motor 3.

Caso práctico

 Se posee 3 motores eléctricos trifásicos de 380V, los cuales accionan, mecanismos de tracción; en un régimen de servicio continuo.

Motor	Potencia (HP)	Tensión (V)	Cosφ	n (eficiencia)	Distancia TG (m)
M1	5	380	0.87	0.90	35
M2	10	380	0.85	0.88	50
M3	20	380	0.89	0.87	78

TABLA 5-XIII MOTORES TRIFÁSICOS DE CORRIENTE ALTERNA, CORRIENTE A PLENA CARGA EN AMPÈRES

(promedio para todas las velocidades y frecuencias)

НР	Motor	r de indu	rotor b	tor de jaula de ardilla y obinado peres			*Motor síncrono de factor de potencia l Amperes			
	110 V	120 V	380 V	440 V	550 V	2300 V	220 V	440 V	550 V	2300 V
1/2	4.0	2.0	1.2	1.0	0.8					
3/4	5.6	2.8	1.6	1.4	1.1					
1	7.0	3.5	2.0	1.8	1.4					
1 ½	10.0	5.0	2.9	2.5	2.0					
2	13.0	6.5	3.8	3.3	2.6					
3	_	9.0	5.2	4.5	4.0					
5	_	15.0	8.7	7.5	6.0					
1%	_	22.0	15.0	11.0	9.0					
10	_	27.0	16.0	14.0	11.0					
15	-	40.0	23.0	20.0	16.0					
20	-	52.0	30.0	26.0	21.0					
25	_	64.0	37.0	32.0	26.0	7.0	54	27	22	5.4
30	-	78.0	45.0	39.0	31.0	8.5	65	33	26	6.5
40	_	104.0	60.0	52.0	41.0	10.5	86	43	35	8.0
50	_	125.0	73.0	63.0	50.0	13.0	108	54	44	10.0
60	_	150.0	87.0	75.0	60.0	16.0	128	64	51	12.0
75	_	185.0	107.0	93.0	74.0	19.0	161	81	65	15.0
100	_	246.0	143.0	123.0	98.0	25.0	211	106	85	20.0
125	_	310.0	180.0	155.0	124.0	31.0	264	132	106	25.0
150	_	360.0	208.0	180.0	144.0	37.0		158	127	30.0
200	_	480.0	278.0	240.0	192.0	48.0		210	168	40.0

A) Por capacidad de corriente:

•
$$I_{Nm1} = \frac{746 * HP}{\sqrt{3} * U * n * Cos \varphi} = \frac{746 * 5}{\sqrt{3} * 380 * 0.9 * 0.87} = 7.24A$$

•
$$I_{Nm2} = \frac{746 * HP}{\sqrt{3} * U * n * Cos \varphi} = \frac{746 * 10}{\sqrt{3} * 380 * 0.88 * 0.85} = 15.15 A$$

•
$$I_{Nm3} = \frac{746 * HP}{\sqrt{3} * U * n * Cos \varphi} = \frac{746 * 20}{\sqrt{3} * 380 * 0.87 * 0.89} = 29.27A$$

Corriente de diseño:

• $I_{Dm1} = 1.25 * 7.24A = 9.05A$

• $I_{Dm2} = 1.25 * 15.15A = 18.94A$

• $I_{Dm3} = 1.25 * 29.27A = 36.58A$

Determinando sección del conductor

Los conductores que alimentan un motor deben tener una capacidad de conducción no menor que el 125% de su corriente nominal

	Pason por la tecnogia
Sección de conductor de cobre (mm2)	Corriente máxima admisible (A)
1	9.6
1.5	
2.5	18
4	
6	31
10	43
16	59
25	77
35	96
50	116
70	148
95	180

www.tecsup.edu.pe

B) Por caída de tensión:

$$\Delta U_{M1} = \frac{0.0309 * 35m * 9.05A * 0.87}{1.5mm^2} = 5.7V < 3\%(380V)$$

$$\Delta U_{M2} = \frac{0.0309 * 50m * 18.94A * 0.85}{4mm^2} = 6.22V < 3\%(380V)$$

$$\Delta U_{M3} = \frac{0.0309 * 78m * 36.58A * 0.89}{10mm^2} = 7.84V < 3\%(380V)$$

www.tecsup.edu.pe

Selección de conductores eléctricos individuales por cada motor, cumplen con el requisito de la corriente y la caída de tensión. Ahora se calculará para el conductor principal, osea el que llega hasta el T.G. (Tablero General)

A) Por capacidad de corriente:

$$I = \frac{P}{k * U * Cos \emptyset * \eta}$$

$$I_1 \rangle I_2 \rangle I_3$$

$$I_d = 1.25 I_1 + I_2 + I_3$$

160-108 (a) CEN

"Los conductores que alimentan a un grupo de 2 o mas motores deben tener una capacidad de corriente no menor que 125% de la corriente nominal a plena carga del motor mayor, mas la corriente nominal a plena carga de todos los otros motores del grupo"

Sabemos que las corrientes de diseño de cada motor son:

- $I_{Nm,1} = 7.24A$
- $I_{Nm2} = 15.15A$
- $I_{Nm3} = 29.27A$

Entonces:

$$I_{Nm3} > I_{Nm2} > I_{Nm1}$$

Por lo tanto:

$$I_{DT} = 1.25 * I_{Nm3} + I_{Nm2} + I_{Nm1}$$

Calculando obtenemos:

$$I_{DT} = 1.25 * I_{Nm3} + I_{Nm2} + I_{Nm1}$$

$$I_{DT} = 1.25 * 29.27 + 15.15 + 7.24 = 58.97A$$

Sección del conductor principal

Sección de conductor de cobre (mm2)	Corriente máxima admisible (A)
1	9.6
1.5	13
2.5	18
4	24
6	31
10	43
16	59
25	77
35	96
50	116
70	148
95	180

www.tecsup.edu.pe

B) Por caída de tensión:

$$\Delta U_T = \frac{0.0309 * 100m * \sum (9.05A * 0.87 + 18.94A * 0.85 + 36.58A * 0.89)}{16mm^2}$$

$$\Delta U_T = 10.91V < 2\%(380V) = 7.6V$$

NO cumple ambos criterios para el dimensionado del conductor principal

Utilizamos 25mm2

$$\Delta U_T = 6.98V < 2\%(380V) = 7.6V$$

Sección del conductor principal

Sección de conductor de cobre (mm2)	Corriente máxima admisible (A)
1	9.6
1.5	13
2.5	18
4	24
6	31
10	43
16	59
25	77
35	96
50	116
70	148
95	180

www.tecsup.edu.pe

Dimensionamiento de las llaves

Determinando I_N de las llaves termomagnéticas

•
$$I_{Nm1} = 7.24A < I_{A1} < 18A (2.5mm^2)$$

•
$$I_{Nm2} = 15.15A < I_{A2} < 24A (4mm^2)$$

•
$$I_{Nm3} = 29.27A < I_{A3} < 43A (10mm^2)$$

Obteniendo un valor comercial

FE83/...

INTERRUPTORES TERMOMAGNETICOS TRIPOLARES CURVA C

Esquema	Tipo	N° polos	Vn (V)	lcu*	In (A)	Código
	3P	3	230/400	10kA	6	FE83/6
1/2 3/4 5/6					10	FE83/10
* * *					16	FE83/16
1-1-1					20	FE83/20
Γ Γ Γ					25	FE83/25
555					32	FE83/32
					40	FE83/40
2/1 4/3 6/5					50	FE83/50
					63	FE83/63

* 230V a.c. (IEC 60898)

Valores comerciales de llaves termomagnéticas

• I_{A1} : FE83/16 - 230/400 - 10KA

• I_{A2} : FE83/20 - 230/400 - 10KA

• I_{A3} : FE83/40 - 230/400 - 10KA

Dimensionamiento de llave térmica general

 Teniendo en cuenta que la corriente de diseño del conductor principal fue de:

$$I_D = 58.97 A$$

Por ello se eligió un conductor de:

$$25 mm^2 = \Rightarrow I_D = 77A$$

Dimensionamiento de llave térmica general **⊕** ⊤€0

- Se utilizará un conductor de 25 mm² el cual soporta como máximo 77A
- La intensidad nominal de la llave termomagnética general deberá encontrarse en el rango de:

$$58.97A < I_{AG} < 77A (25mm^2)$$

Catálogo - Interruptores Termomagnéticos Megatiker serie MR

MR7013/...

Interruptor Termomagnético MR125 (incluye bornes)

Versión	Vn (V c.a.)	Icu (KA)	In (A)	Artículo Nº	
3P	500	16	16	MR7013/16	*
			20	MR7013/20	*
			32	MR7013/32	*
			40	MR7013/40	*
			50	MR7013/50	*
			63	MR7013/63	*
			80	MR7013/80	*
			100	MR7013/100	*
			125	MR7013/125	*

Interruptor Termomagnético MR250

Versión	Vn (V c.a.)	Icu (KA)	In (A)	Artículo Nº
3P	500	22	200	MR7313/200
			250	MR7313/250

Configuración final del tablero

FE83/16 - 230/400 - 10KA

FE83/40 - 230/400 - 10KA

FE83/20 - 230/400 - 10KA

www.tecsup.edu.pe

Ejercicio

Para una instalación de 380 volts se desea dimensionar un alimentador para 4 motores de inducción de:

- a) 50HP, $\cos \phi = 0.87$, $\eta = 0.92$
- b) 75HP, Cos ϕ =0.85, η =0.87
- c) 100HP, Cos ϕ = 0.92, η =0.92
- d) 125 HP, $Cos\phi=0.77$, $\eta=0.85$