

CONTROL OF ELECTRICAL DRIVE SYSTEMS AND CONVERTERS

Tamas Kerekes

Control of Electrical Drive Systems and Converters

Lecture 1. Three phase converters

Sinusoidal modulation, harmonics, square wave operation, dc link current, converter model, dead-time, current control.

Problems: 8-10 and 8-7

Page: 225-243 in the book 'Power Electronics Converters, Application and Design. N. Mohan, T.M. Undeland and W.P. Robbins, John Wiley

ISBN 0-471-58408-8'

Lecture 2. Three-phase modulation

Sinusoidal modulation with added 3rd harmonic, 60 deg modulation, space vector modulation, discontinuous modulation.

Papers: The use of harmonic distortion to increase the output voltage, Simple Analytical and Graphical Methods for Carrier-Based PWM-VSI Drives

Lecture 3. Utility interface applications of power electronics

Interconnection of energy sources to the grid, control of switch mode interface, improved single and three phase utility interface.

Page: 475-480, 494 – 502 in the book 'Power Electronics Converters, Application and Design. N. Mohan, T.M. Undeland and W.P. Robbins, John Wiley ISBN 0-471-58408-8'

Lecture 4. Variable-frequency converter classifications

PWM-VSI, CSI, electromagnetic braking, speed control, square-wave vsi drive

Page: 418-432 in the book 'Power Electronics Converters, Application and Design. N. Mohan, T.M. Undeland and W.P. Robbins, John Wiley ISBN 0-471-58408-8'

Lecture 5. Soft-switching in PWM – converters

Hard and soft switching, classification of converters, basic resonant circuits, ZVS – VSI converters, phase shifted converters, resonant link inverters.

Page: 249-258,, 280-291 in the book 'Power Electronics Converters, Application and Design. N. Mohan, T.M. Undeland and W.P. Robbins, John Wiley ISBN 0-471-58408-8'

Soft-switching in PWM – converters

- Driver circuits for power switches
- Hard switching → losses during turn-ON/OFF
- Zero-voltage and zero-current switching
- Resonant circuits
- Series/Parallel Load Resonant (SLR) Converter
- ZVS-CV DC-DC and DC-AC Converter
- Resonant DC-Link Inverter
- High-Frequency-Link Inverter
- Overview of the power converters

Driver circuits for the power switches

 To switch on an IGBT a positive voltage has to be applied on the Gate-Emitter pins

To switch off, zero or negative voltage has to be

applied

 Where would you connect the ground of the two voltage sources V1 and V2?

Driver circuit with Isolated DC supply

Bootstrap circuit

Danfoss FC302 - IPC3

Ch1 – load current; Ch2-Ch3-Ch4 – output of leg A-B-C

Danfoss FC302 - IPC3

Effects of the parasitic inductance

 Large overshoot on the IGBT voltage is caused by the cable/track inductance

Hard switching of one inverter Leg

Figure 9-2 Switch-mode inductive current switchings.

- During the turn-on-off losses appear
- The power modules require cooling

Zero-voltage and zero-current switching

- Turn-off snubber circuits reduce the switch stress
- The losses are transferred in the snubber components (passive clamping)
- Passive clamping: the extra energy is burned on a resistor
- Active clamping improves the overall efficiency

Figure 9-3 Dissipative snubbers: (a) snubber circuits; (b) switching loci with snubbers.

Switch protection (push-pull converter)

- Transformer leakage inductance → voltage overshoot at turn-OFF
- MOSFET needs protection → RCD voltage clamping snubber

RCD snubber

Active clamping

- added auxiliary switches
- loss due to leakage is not dissipated over a resistance, but is transferred to the primary
- overall efficiency is improved

Active clamping

t0-t1: Q1 – Q2 are both conducting, voltage on C_{clamp} is V_{clamp}

 $t1-t2\colon Q1$ –OFF, voltage across Q1 is increasing to V_{clamp}

t2 – t3: clamping capacitor is charging

t3 – t4:voltage across Q4 is decreasing to 0, it can be turned ON

t4 – t5: clamping capacitor is discharging

t5 – t6: Q4 –OFF, voltage across Q4 is increasing to V_{clamp} , voltage across Q1 is decreasing to 0

t6 - t7: Q1 - ON

DIC with Passive clamping: $\eta = 85\%$

DIC with Active clamping: $\eta = 92\%$

Switching Trajectories

Figure 9-4 Zero-voltage-/zero-current-switching loci.

- comparison of hard- versus soft-switching
- in case of resonant converters the switches are stressed with higher voltage due to the resonant tank
- these converters need higher voltage-rating devices, which results in an increase in conduction loss

Classification of resonant converters

Load-resonant converters

Voltage-source series resonant converters

- Series-loaded resonant converters
- Parallel-loaded resonant converter
- Hybrid-resonant converters

Current-source parallel-resonant converters

Class E and subclass E resonant converters

Resonant-switch converters

Resonant switch DC-DC converters

- Zero current switching converters (ZCS)
- Zero voltage switching converters (ZVS)

Zero voltage switching, clamped-voltage converters

- Resonant DC-link converters
- High-Frequency-Link Integral-Half-Cycle converters

Undamped Series-Resonant Circuit

Figure 9-5 Undamped series-resonant circuit; i_L and v_c are normalized: (a) circuit; (b) waveforms with $I_{L0} = 0.5$, $V_{c0} = 0.75$.

- By applying a V_d voltage on the LC circuit the energy starts to oscillate between the two energy storage components
- Initial conditions at t₀: i_{L0} and V_{c0}
- •Electrical resonance occurs in an AC circuit when the two reactances which are opposite and equal cancel each other out: $X_1 = X_C$

Series-Resonant Circuit with Capacitor-Parallel Load

Figure 9-6 Series-resonant circuit with capacitor-parallel load (i_L and v_c are normalized): (a) circuit; (b) $V_{c0} = 0$, $I_{L0} = I_o = 0.5$.

 by loading the capacitor with a DC current I₀ the resonance is maintained

Impedance of a Series-Resonant Circuit

$$Q = \frac{\omega_0 L_r}{R} = \frac{1}{\omega_0 C_r R} = \frac{Z_0}{R}$$

$$Q - quality \ factor$$

Figure 9-7 Frequency characteristics of a series-resonant circuit.

- when w_s=w₀, Z_s is a pure resistance (current and voltage are in phase)
- for frequencies above w₀ the circuit acts as inductive, below w₀ as capacitive circuit
- Q is very sensitive to frequency deviation from w₀ at higher values of Q

Undamped Parallel-Resonant Circuit

$$\omega_0 = \sqrt{\frac{1}{L_r C_r}}$$

Figure 9-8 Undamped parallel-resonant circuit.

Excited by a current source

Impedance of a Parallel-Resonant Circuit

Figure 9-9 Frequency characteristics of a parallel-resonant circuit.

• for frequencies above w_0 the circuit acts as inductive, below w_0 as capacitive circuit

Resonance summary and facts

- for resonance to occur in any circuit it must have at least one inductor and one capacitor.
- resonance is the result of oscillations in a circuit as stored energy is passed from the inductor to the capacitor.
- resonance occurs when $X_L=X_C$ and the imaginary part of the transfer function is zero.
- at resonance the impedance of the circuit is equal to the resistance value as Z=R.
- at low frequencies the series circuit is capacitive as: $X_c > X_L$, this gives the circuit a leading power factor.
- at high frequencies the series circuit is inductive as: $X_L > X_C$, this gives the circuit a lagging power factor.
- the high value of current at resonance produces very high values of voltage across the inductor and capacitor in case of series resonance
- series resonance circuits are useful for constructing highly frequency selective filters. However, its high current and very high component voltage values can cause damage to the circuit.
- the most prominent feature of the frequency response of a resonant circuit is a sharp resonant peak in its amplitude characteristics.

Resonance summary and facts

- series resonance circuits are known as voltage resonance circuits
- resonant circuit stores the circuit energy in the magnetic field of the inductor and the electric field of the capacitor
- parallel resonance circuits at resonance will have a large circulating current between the inductor and the capacitor due to the energy of the oscillations, then parallel circuits produce current resonance.
- a parallel combination of L and C is used in filter networks to either select or reject AC frequencies
- as a **parallel resonance** circuit only functions on resonant frequency, this type of circuit is also known as an **Rejecter Circuit** because at resonance, the impedance of the circuit is at its maximum thereby suppressing or rejecting the current whose frequency is equal to its resonant frequency.
- as a series resonance circuit only functions on resonant frequency, this
 type of circuit is also known as an Acceptor Circuit because at
 resonance, the impedance of the circuit is at its minimum so easily
 accepts the current whose frequency is equal to its resonant frequency.

ZVS-CV DC-DC Converter

Zero Voltage Switching Clamped-Voltage

- DC-DC step-down converter
- ZVS-CV converters usually need two active switches and a few additional resonant elements because a resonant transition during the off interval of both switches is required and the voltage regulation is performed by the constantwitching frequency PWM controller
- two switches: T₊ and T₋
- L_f very small, the inductor current must reverse direction during each switching cycle
- C_f is large, so the load and C_f can be replaced by a V_0 in steady state, see Fig.9-34(b)

ZVS-CV DC-DC Converter

Figure 9-34 ZVS-CV dc-dc converter.

- T_+ conducting $i_L > 0$; $v_L > 0$
- T₊ is turned off at t₀ at zero voltage, since the voltage across the switch builds up slowly compared to the switching time
- Both switches are off
- At t₀' v_{oi}, voltage across C_{_} reaches zero and the current i_L flows through both C₊ and C_{_}
- After t₀' i_L decreases linearly and flows through D_{_}
- T_{_} is turned on and at t₀" i_L reverses direction and flows through T_{_}
- At t₁ T₋ is turned off at zero voltage
- After t₁-t₁' i₁ flows through D₊
- T+ is turned on at zero voltage when
 D₊ is conducting
- At t₂ i_L becomes positive and T₊ conducts
- At t₃ T₊ is turned off at zero voltage

ZVS-CV DC-DC Converter

• T_+ conducting $i_1>0$; $v_1>0$

- T₊ is turned off at t₀ at zero voltage, since the voltage across the switch builds up slowly compared to the switching time
- Both switches off as shown on 9-35(a), but the circuit can be redrawn as seen on 9-35(b)

Figure 9-35 ZVS-CV dc-dc converter; T_+ , T_- off.

• By considering I_{LO} constant during blanking time, V_{oi} would change linearly which simplifies the circuit analysis

ZVS-CV Principle Applied to DC-AC Inverters

- DC-DC converters can be modified to become DC-AC converters to be able to supply inductive loads
- Half-bridge configuration
- •Switching losses eliminated since turn on/off are at zero voltage, only if both switches conduct during each switching cycle
- Square wave mode or PWM mode
- Very large ripple in the output current

Figure 9-36 ZVS-CV dc-to-ac inverter: (a) half-bridge; (b) square-wave mode; (c) current-regulated mode.

Three-Phase ZVS-CV DC-AC Inverter

Figure 9-37 Three-phase, ZVS-CV dc-to-ac inverter.

- concept from figure 9-36(a) extended to three-phase configuration
- very large ripple in the output current

Output Regulation by Voltage Control

- ZVS-CV technique can be extended to single-phase DC_AC inverter with voltage cancellation: Figure 9-38(a)
- •Each leg operates at nearly 50% dutyratio, but phase delay is controlled to control the output V_{AB}

Figure 9-38 Voltage control by voltage cancellation: conventional switch-mode converter.

ZVS-CV with Voltage Cancellation

• Figure 9-36(a) can be modified by adding an inductance L_A , C_{A+} and C_{A-} to leg-A, same for leg-B

Resulting waveforms

Figure 9-39 ZVS-CV full-bridge dc-dc converter: (a) circuit; (b) idealized switch-mode waveforms; (c) ZVS-CV waveforms.

Three-Phase Resonant DC-Link Inverter

Figure 9-40 Resonant-dc-link inverter, basic concept: (a) basic circuit; (b) lossless $R_i = 0$; (c) losses are present.

Figure 9-41 Three-phase resonant-dc-link inverter.

• general two level three phase topology, switching losses can be minimized if the turn on-off is done at zero voltage using a resonant circuit introduced between the DC voltage source and the DC-link of the PWM inverter

High-Frequency-Link Inverter

- The input is a single-phase high-frequency AC voltage
- Switching losses are minimized if turned on-off during the zero crossing of the input voltage
- Basic principle for selecting integral half-cycles of the high-frequency ac input

Figure 9-42 High-frequency-link integral-half-cycle inverter.

- All switches are bi-directional: two switches in antiparallel with blocking diodes
- Output is a synthesized lowfrequency AC to drive a motor

High-Frequency-Link Inverter

Figure 9-43 Synthesis of low-frequency ac output.

• Low-frequency AC output is synthesized by selecting integral half-cycles of the high-frequency AC input

High-Frequency-Link Inverter

Figure 9-44 High-frequency ac to low-frequency three-phase ac converter.

- implementation is also possible to deliver three-phase AC output
- a parallel resonant filter is used, which is tuned to resonate at fin

Exercise

- Simulate Figure 9-5 and 9-6 using PLECS
- Modify 9-5 with a load resistance
- Discuss the waveforms

Lecture 1. Three phase converters

Sinusoidal modulation, harmonics, square wave operation, dc link current, converter model, dead-time, current control

Lecture 2. Three-phase modulation

Sinusoidal modulation with added 3rd harmonic, 60 deg modulation, space vector modulation, discontinuous modulation.

Lecture 3. Utility interface applications of power electronics

Interconnection of energy sources to the grid, control of switch mode interface, improved single and three phase utility interface.

Lecture 4. Variable-frequency converter classifications

PWM-VSI, CSI, electromagnetic braking, speed control, square-wave vsi drive

Lecture 5. Soft-switching in PWM – converters

Hard and soft switching, classification of converters, basic resonant circuits, ZVS – VSI converters, phase shifted converters, resonant link inverters.

Lecture 1. Three phase converters

- Topology of three phase VSI
- Carrier based modulation
- Spectrum of the PWM voltage waveforms
- Modulation index
- Overmodulation
- Effects of blanking time (dead-time)
- Current control

Lecture 2. Three-phase modulation

- With three phase system a rotating voltage vector is created
- ST-PWM with added 3rd harmonic
 - increase the linear range
- Space vector modulation
 - smallest current ripple can be acheived
- Discontinuous modulation
 - reduce the switching losses
- Analytical spectrum calculation
 - the spectrum can be determinated by using math. eq.
- Current measurement

Lecture 3. Utility interface applications of power electronics

- PV systems (single- and three-phase connection)
- Wind and small hydro
- Storage systems
- Active filters
- Bidirectional power flow
- Improved three-phase utility interface
- Electromagnetic interference

Lecture 4. Variable-frequency converter classifications

- Variable-frequency converter classifications
- Variable-frequency PWM-VSI drives electromagnetic braking
- Variable-frequency CSI drives
- Comparison of variable-frequency drives
- Line-frequency variable-voltage motor drives
- "Soft-start" of induction motors

Lecture 5. Soft-switching in PWM – converters

- Hard switching losses
- Zero-voltage and zero-current switching
- Resonant circuits
- Series/Parallel Load Resonant (SLR) Converter
- ZVS-CV DC-DC and DC-AC Converter
- Resonant DC-Link Inverter
- High-Frequency-Link Inverter

Control of Electrical Drive Systems and Converters

Lecture 1. Three phase converters

Sinusoidal modulation, harmonics, square wave operation, dc link current, converter model, dead-time, current control.

Problems: 8-10 and 8-7

Page: 225-243 in the book 'Power Electronics Converters, Application and Design. N. Mohan, T.M. Undeland and W.P. Robbins, John Wiley

ISBN 0-471-58408-8'

Lecture 2. Three-phase modulation

Sinusoidal modulation with added 3rd harmonic, 60 deg modulation, space vector modulation, discontinuous modulation.

Papers: The use of harmonic distortion to increase the output voltage, Simple Analytical and Graphical Methods for Carrier-Based PWM-VSI Drives

Lecture 3. Utility interface applications of power electronics

Interconnection of energy sources to the grid, control of switch mode interface, improved single and three phase utility interface.

Page: 475-480, 494 – 502 in the book 'Power Electronics Converters, Application and Design. N. Mohan, T.M. Undeland and W.P. Robbins, John Wiley ISBN 0-471-58408-8'

Lecture 4. Variable-frequency converter classifications

PWM-VSI, CSI, electromagnetic braking, speed control, square-wave vsi drive

Page: 418-432 in the book 'Power Electronics Converters, Application and Design. N. Mohan, T.M. Undeland and W.P. Robbins, John Wiley ISBN 0-471-58408-8'

Lecture 5. Soft-switching in PWM – converters

Hard and soft switching, classification of converters, basic resonant circuits, ZVS – VSI converters, phase shifted converters, resonant link inverters.

Page: 249-258,, 280-291 in the book 'Power Electronics Converters, Application and Design. N. Mohan, T.M. Undeland and W.P. Robbins, John Wiley ISBN 0-471-58408-8'

Feedback / improvement

- Different exercises ? ADD SOME HINTS AND QUESTIONS TO THE MAJOR STEPS OF THE EXERCISE.
- Focus more on?
- PED vs MCE theme ?

- Lecturer:
 - slides
 - presentations
 - explanations

Design tips for converters

- How do you determine the min.-max. DC-link capacitance?
- How do you determine the min.-max. switching frequency?
- How do you determine the break resistance?
- How do you determine the PI controller parameters?