

What is a sensor?

A Sensor is a device that provides data (measurements) about a physical system.

Cramples:

- · accelerometer
 - · gynscope
 - LIDAR
 - · our eyes, etc.

In practice, sensor usually convert

physical signals to volts. The reason:

volts signals can be amplified

(electrical circuits is the basis

of ow technological advance)

volts signals can be recaded

by computer

Developing "good" sensor is a major effort.

All sensors have limitations (e.g., environmental temperature range for nominal
performance). Major take in developing
a sensor are:

· Identify sensor's purpose

. Obtain the best possible performance despite design limitating · Identify sensor's specifications a.ka, properties - Static sensor specifications (independent of time; related to the static response of the sensor) - Dynamic sensor specifications (related to the transient response of the senson;

PULL 1

Static sensor specifications (next lecture: dynamic) "Specifying, a sensor means identifying He sensor's "model": measure (possibly a Vector! whee)

Sensor model: $\sqrt{=f(y)}$

um

Note: u,, um do not appear in f.
That is, for identifying senter specifications
we few on the map from y to Vonly.
· y à te input to the model f(.)
Accuracy and Precision
Sentor performance à usually described
in terms of:

· Precision

and accuracy - god precision

Sensor Curre

Assume (for simplicity) that y is scalar, between ymin and yman.

The sensor curve is a property of the sensor. By inverting V = f(y) we may be able to determine $y = f^{-1}(V)$

Why we "may be able to, determine y by inverting f()?

· Sometimes, we have an ambiguous sensor curve (fromt 1-1):

Need to limit input y to either leftor right of you to avoid ambiguity.

(i.e., senter shall be used only on systems

$$V = ay$$
 ($a = slope$)

In the linear case, Men y=0, then V=0 (and næ versa). Instead, Men 'the Sensor curre is affire:

Finding the sensor curre

Assume you can conduct experiments where y is known (or observed by a sensor whose specifications you already Know).

Then, to determine f, you may: vary y, measure V, and plot the data.

Note: Not as simple as that;

noise will corrupt the approximation of the real cure

Calibration curve (approximates sensor cure)

Calibration curve is the approximation to the sensor curve that we get when we experientally determine the sensor curve.

Idealy,
$$|f^{-1}(v) - \hat{f}^{-1}(v)| \ge 0 + V$$
.
(i.e., $||f^{-1} - \hat{f}^{-1}|| \ge 0$)

Note: Calibration accuracy is different from the sensor accuracy me defined earlier (see accuracy vs. precision discussion).

Calibration errors

· Scule factor error

a saffire alibration arrive affire curve

1 a - â | û He scale fator error

Notice that even a small bras be can result to large 11f-1-f-11 (see 19,-4,1).

Suppose re know the sonsor curve but ne digitally quantite the data.

Ostpot vange = [Vmin, Vman]

In pot vange = [ymin, ymax]
5 = bin size = Vman-Vmin
= quantization resultion
Mere N = number of bins logN = bits we allocate Quantifation errors 15.
· Quantited sensor curre

fg is the quantited sentr

Note: f has many flat regions = o need for N > 1

Summary
Calibration accuracy 1
Calibration accuracy is
· Mile
· (non-lineauty)
· (non-lineauty) · scale factor error
bias
· quantization.