Lecture #5

Reading:

1.9-Atomic Orbitals

Topics: Hydrogen Atom Wavefunctions

I. Wavefunctions (orbitals) for the hydrogen atom $(\underline{H}\underline{\Psi} = \underline{E}\underline{\Psi})$

II. Shapes of H-atom wavefunctions: s orbitals

III. Radial probability distributions

ENERGY LEVELS (continued from Lecture #5)

The Rydberg formula can be used to calculate the frequency (and also the E or λ , using E = hv or λ = c/v) of light emitted or absorbed by any 1-electron atom or ion.

$$\begin{split} \nu &= \frac{Z^2 R_H}{h} \Biggl(\frac{1}{n_f^2} - \frac{1}{n_i^2} \Biggr) \\ &\qquad \nu &= \frac{Z^2 R_H}{h} \Biggl(\frac{1}{n_i^2} - \frac{1}{n_f^2} \Biggr) \\ &\qquad \qquad \text{for } n_f > n_f \end{split}$$

 $n_i > n_i$ in ______. Electrons absorb energy causing them to go from a lower to a higher E level.

n_i > n_f in ______. Electrons emit energy causing them to go from a higher to a lower E level.

I. WAVEFUNCTIONS (ORBITALS) FOR THE HYDROGEN ATOM

When solving $H\Psi = E\Psi$, the solutions are E_n and $\Psi(r,\theta,\phi)$.

 $\Psi(r,\theta,\phi)$ = stationary state wavefunction: time-independent In solutions for $\Psi(r,\theta,\phi)$, two new quantum numbers appear! A total of 3 quantum numbers are needed to describe a wavefunction in 3D.

- n ≡ principal quantum number
 n = 1, 2, 3 ∞
 determines binding energy
- l ≡ angular momentum quantum number

$$l = \frac{0, 1, 2, 3, \dots, n-1}{l \text{ is related to n}}$$
largest value of $l = n - 1$
determines angular momentum

m ≡ magnetic quantum number

To completely describe an orbital, we need to use all three quantum numbers:

$$\Psi_{nlm}(\mathbf{r},\theta,\phi)$$

The wavefunction describing the ground state is $\underline{\hspace{1cm}}^{100}$ (, ,) Using the terminology of chemists, the Ψ_{100} orbital is instead called the " $\underline{\hspace{1cm}}^{1s}$ " orbital.

An orbital is (the spatial part) of a wavefunction; n(shell) 1(subshell) m(orbital)

$$\ell = 0 \Rightarrow \underline{s}$$
 orbital $\ell = 1 \Rightarrow \underline{p}$ orbital $\ell = 2 \Rightarrow \underline{d}$ orbital $\ell = 3 \Rightarrow \underline{f}$ orbital for $\ell = 1$: $m = 0$ $\underline{p}_{\underline{x}}$ orbital, $m = \pm 1$ states combine to give $\underline{p}_{\underline{x}}$ and $\underline{p}_{\underline{y}}$ orbitals

	State label	wavefunction	orbital	E _n	$\mathbf{E}_{\mathbf{n}}[\mathbf{J}]$
n = 1					
! = 0	100	Ψ100	1s	$-R_{H}/1^{2}$	-2.18×10^{-18} J
$\mathbf{m} = 0$					
n = 2					
l = 0	200	200	2s		-5.45×10^{-19} J
$\mathbf{m} = 0$	200				
n = 2					
l = 1	211	211	2B_c		-5.45×10^{-19} J
m = +1					
n = 2				_	
l = 1	210	Ψ_{210}	2P_	$-R_{H}/2^{2}$	-5.45×10^{-19} J
$\mathbf{m} = 0$					
n = 2					
l = 1	21-1	Ψ_{21-1}	2P_	$-R_{H}/2^{2}$	-5.45×10^{-19} J
m = -1					

For $a^{\text{H-atom}(}$ orbitals with the same n value have the same energy: $E = -R_{\text{H}}/n^2$.

- Degenerate

 having the same energy
- For any principle quantum number, n, there are __n^2 degenerate orbitals in hydrogen (or any other 1 electron atom).

Energy Level Diagram

9 degenerate states at second excited energy level

II. SHAPES OF H-ATOM WAVEFUNCTIONS: S ORBITALS

THE PHYSICAL INTERPRETATION OF A WAVEFUNCTION

Max Born (German physicist, 1882-1970). The probability of finding a particle (the electron!) in a defined region is proportional to the square of the wavefunction.

$$[\Psi_{nlm}(r,\theta,\phi)]^2 = PROBABLITY DENSITY$$

probability of finding an electron per unit volume at r, θ , ϕ

To consider the shapes of orbitals, let's first rewrite the wavefunction as the product of a radial wavefunction, $R_{nl}(r)$, and an angular wavefunction $Y_{lm}(\theta,\phi)$

$$\Psi_{\text{nim}}(r,\theta,\phi)$$
] = $\frac{R_{\text{nim}}(r)}{r}$ x $\frac{Y_{\text{lm}}(r,\theta)}{r}$

for a ground state H-atom:

e H-atom:

$$\Psi_{100}(r,\theta,\phi) = \underbrace{\frac{2e^{-r/a_0}}{a_0^{-3/2}}}_{0} \times \underbrace{\left[\frac{1}{4\pi}\right]^{1/2}}_{0} = \underbrace{\frac{e^{-r/a_0}}{(\pi a_0^{-3})^{1/2}}}_{0}$$

$$R(r) = \underbrace{\frac{1}{4\pi}}_{0} \times \frac{1}{(\pi a_0^{-3})^{1/2}}$$

where
$$a_0 =$$
 Bohr radius (a constant) = 52.9 pm (

- For all s orbitals (1s, 2s, 3s, etc.), the angular wavefunction, Y, is a constant
- s-orbitals are spherically symmetrical independent of and .

Probability density plot of s orbitals: density of dots represent probability density

NODE: A value for r, θ , or ϕ for which Ψ (and Ψ^2) = _____. In general, an orbital has n-1 nodes.

RADIAL NODE: A value for $\underline{\hspace{0.1cm}}^{\Gamma}$ for which Ψ (and Ψ^2) = 0. In other words, a radial node is a distance from the radius for which there is no probability of finding an electron.

In general, an orbital has n-1-l radial nodes.

3s:
$$\frac{2}{1} - \frac{1}{1} - \frac{0}{1} = \frac{2}{1}$$
 radial nodes

III. RADIAL PROBABILITY DISTRIBUTION

Probability of finding an electron in a spherical shell of thickness dr at a distance r from origin.

Radial Probability Distribution (for s orbitals ONLY) = $4\pi r^2 \Psi^2 dr$

We can plot the radial probability distribution as a function of radius. Radial probability distribution for a hydrogen 1s orbital:

Maximum probability or most probable value of r is denoted r.m.p.

$$r_{mp}$$
 for a 1s H atom = $a_0 = 0.529 \times 10^{-10} \,\text{m} = 0.529 \,\text{Å}$ $a_0 \equiv BOHR$ radius

1913 Niels Bohr (Danish scientist) predicted quantized levels for H atom prior to

But, an electron does not have well-defined orbits! The best we can do is to find the probability of finding e⁻ at some position r.

Knowing only probability is one of main consequences of Quantum Mechanics. Unlike CM, QM is non-deterministic. The uncertainty principle forbids us from knowing r exactly.

5