TD 2. TRIGONOMÉTRIE

I. Rappels de trigonométrie

I.1. Exercice

Montrez sans vous soucier du domaine de définition que $\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$. En déduire une formule analogue pour $\tan(a-b)$.

Sans souci des domaines de définition,

$$\tan(a+b) = \frac{\sin(a+b)}{\cos(a+b)} = \frac{\sin a \cos b + \sin b \cos a}{\cos a \cos b - \sin a \sin b}$$

$$= \frac{\tan a + \tan b}{1 - (\tan a)(\tan b)},$$
(13)

où l'on a divisé numérateur et dénominateur par $\cos a \cos b$. En utilisant l'identité a - b = a + (-b), (13) et le fait que tan est impaire (car sin est impaire et cos est paire), on obtient

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + (\tan a)(\tan b)}.$$
 (14)

Quand a et b sont tous deux très petits, (13) et (14) nous disent quelque chose d'agréable : $\tan(a+b) \approx \tan(a) + \tan(b)$ et $\tan(a-b) \approx \tan(a) - \tan(b)$.

Remarque. – Ceci cautionne les calculs effectués sous l'approximation de Gauss (ou paraxiale) en optique géométrique. Une justification fréquemment donnée pour celle-ci est que $\tan'(0)=1$ donc $\tan(x)\approx x$ quand x est petit, mais ce n'est qu'à moitié satisfaisant. On vérifiera par exemple que l'approximation de $\tan(0.1-0.099)$ par $\tan(0.1)-\tan(0.099)$ est correcte à 1% près (notre calcul le dit) tandis que l'appoximation de $\ln(1.1-0.99)$ par $\ln(1.1)-\ln(1.099)$ affiche une erreur relative de 9.9% - c'est beaucoup. Le « \approx » dans $\tan(x)\approx x$ est bien meilleur que le « \approx » dans $\ln(1+x)\approx x$; mais il faudra attendre le TD sur les développements limités pour donner un sens précis à cette phrase.

I.2. Exercice

Réoudre sur $[0; 2\pi[$ puis sur $[-\pi; \pi[$ puis sur \mathbb{R} le système suivant :

$$\begin{cases} \cos(x) \leqslant \frac{1}{2} \\ \sin(x) \geqslant -\frac{\sqrt{2}}{2}. \end{cases}$$

On trace le cercle trigonométrique :

Sur $[0, 2\pi[$, x est solution si $\pi/3 \le x \le 5\pi/4$, autrement dit

$$S = \left\{ x \in [0, 2\pi] : \begin{cases} \cos(x) \leqslant 1/2 \\ \sin(x) \geqslant -\sqrt{2}/2 \end{cases} \right\} = [\pi/3, 5\pi/4].$$

Sur $[-\pi, \pi[$, x est solution si $x \in [-\pi, -3\pi/4] \cup [\pi/3, \pi[$. Finalement sur \mathbb{R} ,

$$S = \left\{\theta + 2k\pi : \theta \in \left[\frac{\pi}{3}, \frac{5\pi}{4}\right], k \in \mathbb{Z}\right\}.$$

I.3. Exercice

1. Déterminer la valeur exacte de sin(x) dans chacun des cas suivants :

a.
$$cos(x) = \frac{1}{3}$$
 et $x \in \left[0; \frac{\pi}{2}\right[$

b.
$$cos(x) = \frac{1}{3}$$
 et $x \in [-\pi; 0[$.

2. Déterminer la valeur exacte de cos(x) dans chacun des cas suivants :

a.
$$\sin(x) = \frac{4}{5}$$
 et $x \in \left[0; \frac{\pi}{2}\right[$

b.
$$\sin(x) = \frac{4}{5}$$
 et $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$.

1. a. $\sin(x) = \frac{2\sqrt{2}}{3}$.

b.
$$\sin(x) = -\frac{2\sqrt{2}}{3}$$
.

2. a.
$$\cos(x) = -\frac{3}{5}$$
.

b.
$$\cos(x) = \frac{3}{5}$$
.

La relation $\cos^2(x) +$ $\sin^2(x) = 1$ pour tout xest une forme du théorème de PYTHAGORE, si les sin et cos sont définis à partir d'un triangle rectangle (comme au collège).

I.4. Exercice

Sachant que $cos(x) = \frac{1}{4}$ et $x \in [0; \pi/2[$, calculer $cos(2x + \frac{\pi}{3})$.

Puisque $x \in \left[0, \frac{\pi}{2}\right[, \, 2x \in [0, \pi[\text{ et donc } \sin(2x) \geqslant 0. \text{ De plus,} \right]$

$$\cos(2x) = 2\cos^2(x) - 1 = -\frac{7}{8}.$$

Mais alors

$$\cos\left(2x + \frac{\pi}{3}\right) = \cos(2x)\cos(\pi/3) - \sin(2x)\sin(\pi/3)$$
$$= -\frac{7}{16} - \frac{\sqrt{3}}{2}\sin(2x)$$
$$= -\frac{7}{16} - \frac{\sqrt{3}}{2}\sqrt{1 - (7/8)^2},$$

où l'on a utilisé la positivité de sin(2x) à la dernière ligne. Finalement,

$$\cos(2x + \pi/3) = -\frac{7}{16} - \frac{\sqrt{3}}{2}\sqrt{\frac{15}{64}} = -\frac{7 + 3\sqrt{5}}{16}.$$

I.5. Exercice

Tracer dans un repère les courbes représentatives des fonctions suivantes :

$$f(x) = \cos(x), f_1(x) = 2\cos(x), f_2(x) = \cos(2x), f_3(x) = \cos\left(x + \frac{\pi}{2}\right).$$

I.6. Exercice

Résoudre sur \mathbb{R} les équations suivantes (vous indiquerez combien il y a de solutions et le nombre de points du cercle trigonométrique nécessaires pour les représenter) :

a.
$$\cos\left(2x + \frac{\pi}{2}\right) = \cos\left(x - \frac{\pi}{3}\right)$$

b.
$$\sin\left(x - \frac{\pi}{3}\right) = \sin\left(x + \frac{\pi}{3}\right)$$

c.
$$\sin\left(x - \frac{\pi}{3}\right) = \cos(2x)$$

d. $\tan(3x) = 1$

d.
$$tan(3x) = 1$$

e.
$$\sin(2x) = 2\sin(3x + \frac{\pi}{4})\cos(x)$$
.

a. D'après le cours, pour tous nombres réels a et b, $\cos(a) = \cos(b)$ si et seulement s'il existe $k \in \mathbb{Z}$ tel que $a = b + 2k\pi$ ou $a = -b + 2k\pi$. Ici donc

$$\forall x \in \mathbb{R}, \cos\left(2x + \frac{\pi}{2}\right) = \cos\left(x - \frac{\pi}{3}\right) \iff \exists k \in \mathbb{Z}, \begin{cases} 2x + \frac{\pi}{2} = x - \frac{\pi}{3} + 2k\pi, \text{ ou} \\ 2x + \frac{\pi}{2} = \frac{\pi}{3} - x + 2k\pi \end{cases}$$

$$\iff \exists k \in \mathbb{Z}, \begin{cases} x = -\frac{5\pi}{6} + 2k\pi, \text{ ou} \\ 3x = -\frac{\pi}{6} + 2k\pi, \text{ ou} \\ x = -\frac{\pi}{18} + 2k\pi/3. \end{cases}$$

Il y a une infinité de solutions dans R, représentées par 4 points sur le cercle trigonométrique:

b. D'après le cours, pour tous nombres réels a et b, $\sin(a) = \sin(b)$ si et seulement s'il existe $k \in \mathbb{Z}$ tel que $a = b + 2k\pi$ ou $a = \pi - b + 2k\pi$. Ici donc

$$\forall x \in \mathbb{R}, \sin\left(x - \frac{\pi}{3}\right) = \sin\left(x + \frac{\pi}{3}\right) \iff \exists k \in \mathbb{Z}, \begin{cases} x - \frac{\pi}{3} = x + \frac{\pi}{3} + 2k\pi, \text{ ou} \\ x - \frac{\pi}{3} = \pi - x - \frac{\pi}{3} + 2k\pi \end{cases}$$

$$\iff \exists k \in \mathbb{Z}, \ 2x = \pi + 2k\pi$$

$$\iff \exists k \in \mathbb{Z}, \ x = \frac{\pi}{2} + k\pi$$

$$(15)$$

On n'a retenu que la seconde ligne dans (15) car la première ne donne aucune solution. Il y a 2 solutions sur le cercle trigonométrique.

Pourquoi un nombre fini de points sur le cercle trigonométrique? Quand \mathbb{R} s'enroule autour du cercle trigonométrique, plusieurs solutions se recouvrent au même point.

c. Plusieurs méthodes : ou bien on utilise que $\sin(x-\pi/3) = \cos(x-\pi/3-\pi/2)$, ou bien que $cos(2x) = sin(2x + \pi/2)$. Appliquons la seconde méthode.

$$\forall x \in \mathbb{R}, \sin\left(x - \frac{\pi}{3}\right) = \cos(2x) \iff \sin\left(x - \frac{\pi}{3}\right) = \sin(2x + \pi/2)$$

$$\iff \exists k \in \mathbb{Z}, \begin{cases} x - \frac{\pi}{3} = 2x + \pi/2 + 2k\pi, \text{ ou } \\ x - \frac{\pi}{3} = \pi - 2x - \pi/2 + 2k\pi \end{cases}$$

$$\iff \exists k \in \mathbb{Z}, \begin{cases} -x = 5\pi/6 + 2k\pi, \text{ ou } \\ 3x = 5\pi/6 + 2k\pi, \text{ ou } \\ x = 5\pi/18 + k2\pi/3. \end{cases}$$

Il y a une infinité de solutions dans R, représentées par 4 points sur le cercle trigonométrique.

d. D'après le cours page 15, pour tous réels a et b, $\tan(a) = \tan(b) \iff b = a + k\pi$ avec $k \in \mathbb{Z}$. Or $tan(\pi/4) = 1$. Donc

$$\forall x \in \mathbb{R}, \tan(3x) = 1 \iff \exists k \in \mathbb{Z}, 3x = \pi/4 + k\pi$$

 $\iff \exists k \in \mathbb{Z}, x = \pi/12 + k\pi/3.$

Il y a une infinité de solutions dans R, représentées par 6 points sur le cercle trigonométrique.

e. D'après la formule d'addition des sinus, pour tout réel x, $\sin(2x) = 2\sin(x)\cos(x)$. Par conséquent

$$\forall x \in \mathbb{R}, \sin(2x) = 2\sin\left(3x + \frac{\pi}{4}\right)\cos(x) \iff 2\sin(x)\cos(x) = 2\sin\left(3x + \frac{\pi}{4}\right)\cos(x)$$

$$\iff \begin{cases} \cos(x) = 0, \text{ ou} \\ 2 = 0, \text{ ou} \\ \sin(x) = \sin\left(3x + \frac{\pi}{4}\right). \end{cases}$$

Le deuxième cas est exclu, tandis que cos(x) = 0 si et seulement si x s'écrit sous la forme $\pi/2 + k\pi$ avec $k \in \mathbb{Z}$. On se ramène à résoudre la dernière équation,

$$\sin(x) = \sin\left(3x + \frac{\pi}{4}\right) \iff \exists k \in \mathbb{Z}, \begin{cases} x = 3x + \frac{\pi}{4} + 2k\pi, \text{ ou} \\ x = \pi - 3x - \frac{\pi}{4} + 2k\pi \end{cases}$$

$$\iff \exists k \in \mathbb{Z}, \begin{cases} -2x = \frac{\pi}{4} + 2k\pi, \text{ ou} \\ 4x = \frac{3\pi}{4} + 2k\pi \end{cases}$$

$$\iff \exists k \in \mathbb{Z}, \begin{cases} x = -\frac{\pi}{8} + k\pi, \text{ ou} \\ x = \frac{3\pi}{16} + k\pi/2. \end{cases}$$

Finalement il y a une infinité de solutions dans \mathbb{R} , représentées par 2+2+4=8points sur le cercle trigonométrique.

I.7. Exercice

On pose $f(x) = \sqrt{3}\cos(x) + \sin(x)$.

- 1. Ecrire f(x) sous la forme $A\cos(x-\varphi)$ puis sous la forme $A\sin(x+\varphi)$.
- 2. Résoudre dans \mathbb{R} les équations f(x) = 2 et f(x) = 10.

Peut-on ramenerà une équation avec sin cos ? Oui.

12/10 (fin)

se

Cet exercice est important, il faut savoir le faire en vue des exercices

I.8 et II.6.

a. On cherche A positif. D'après le cours $A^2 = \sqrt{3}^2 + 1^2 = 4$, donc A = 2. Puis

$$\forall x \in \mathbb{R}, \sqrt{3}\cos(x) + \sin(x) = 2\left(\frac{\sqrt{3}}{2}\cos(x) + \frac{1}{2}\sin(x)\right)$$

$$= 2\left(\cos(\pi/6)\cos(x) + \sin(\pi/6)\sin(x)\right)$$

$$= 2\cos(x - \pi/6), \tag{16}$$

d'après la formule d'addition des cos. De même,

$$\forall x \in \mathbb{R}, \sqrt{3}\cos(x) + \sin(x) = 2\left(\frac{\sqrt{3}}{2}\cos(x) + \frac{1}{2}\sin(x)\right)$$
$$= 2\left(\sin(\pi/3)\cos(x) + \cos(\pi/3)\sin(x)\right)$$
$$= 2\sin(x + \pi/3),$$

d'après la formule d'addition des sin.

b. D'après (16),

$$f(x) = 2 \iff 2\cos(x - \pi/6) = 2 \iff \cos(x - \pi/6) = 1.$$

C'est le cas si et seulement si $x = \pi/6 + 2k\pi$ avec $k \in \mathbb{Z}$. L'équation f(x) = 10 n'a pas de solutions, comme on peut le voir de deux manières :

— Pour tout $x \in \mathbb{R}$,

$$-\sqrt{3}-1 \leqslant \sqrt{3}\cos(x) + \sin(x) \leqslant \sqrt{3}+1;$$

or
$$1 + \sqrt{3} \le 2.8 < 10$$
.

— D'après (16), pour tout $x \in \mathbb{R}$,

$$-2 \leqslant \sqrt{3}\cos(x) + \sin(x) \leqslant 2;$$

or 2 < 10.

I.8. Exercice

Résoudre dans $\ensuremath{\mathbb{R}}$ les équations suivantes :

1.
$$\frac{\sqrt{2}}{2}\cos(x) + \frac{\sqrt{2}}{2}\sin(x) = \frac{\sqrt{3}}{2}$$

2.
$$\cos(x) - \sin(x) = \frac{\sqrt{6}}{2}$$
.

a. Pour tout x dans \mathbb{R} ,

$$\frac{\sqrt{2}}{2}\cos(x) + \frac{\sqrt{2}}{2}\sin(x) = \frac{\sqrt{2}}{2}\cos\left(\frac{\pi}{4}\right) + \sin(x)\sin\left(\frac{\pi}{4}\right)$$
$$= \cos\left(x - \frac{\pi}{4}\right).$$

Donc

$$\frac{\sqrt{2}}{2}\cos(x) + \frac{\sqrt{2}}{2}\sin(x) = \frac{\sqrt{3}}{2} \iff \cos\left(x - \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$$

$$\iff \cos\left(x - \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{6}\right)$$

$$\iff \exists k \in \mathbb{Z}, \begin{cases} x - \frac{\pi}{4} = \frac{\pi}{6} + 2k\pi, \text{ ou } \\ x - \frac{\pi}{4} = -\frac{\pi}{6} + 2k\pi. \end{cases}$$

$$\iff \exists k \in \mathbb{Z}, \begin{cases} x = \frac{5\pi}{12} + 2k\pi, \text{ ou } \\ x = \frac{\pi}{12} + 2k\pi. \end{cases}$$

b. Pour tout x dans \mathbb{R} ,

$$\begin{aligned} \cos(x) - \sin(x) &= \sqrt{2} \left[\frac{\sqrt{2}}{2} \cos(x) - \frac{\sqrt{2}}{2} \sin(x) \right] \\ &= \sqrt{2} \left[\cos\left(\frac{\pi}{4}\right) \cos(x) - \sin\left(\frac{\pi}{4}\right) \sin(x) \right] \\ &= \sqrt{2} \cos\left(x + \frac{\pi}{4}\right) \end{aligned}$$

Donc

$$\begin{aligned} \cos(x) - \sin(x) &= \frac{\sqrt{6}}{2} \iff \sqrt{2}\cos\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{6}}{2} \\ &\iff \cos\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2} \\ &\iff \cos\left(x + \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{6}\right) \\ &\iff \exists k \in \mathbb{Z}, \begin{cases} x + \frac{\pi}{4} = \frac{\pi}{6} + 2k\pi, \text{ ou } \\ x + \frac{\pi}{4} = -\frac{\pi}{6} + 2k\pi. \end{cases} \\ &\iff \exists k \in \mathbb{Z}, \begin{cases} x = -\frac{\pi}{12} + 2k\pi, \text{ ou } \\ x = -\frac{5\pi}{12} + 2k\pi. \end{cases} \end{aligned}$$

II. Fonctions trigonométriques réciproques

II.1. Exercice

Donner les valeurs des arccosinus et arcsinus de $0, 1, -1, \frac{-1}{2}, \frac{1}{2}, \frac{-\sqrt{2}}{2}, -\frac{\sqrt{3}}{2}$. Donner les valeurs des arctangentes de $0, 1, \sqrt{3}, -\sqrt{3}/3$.

On présente les résultats sous la forme d'un tableau :

χ	0	1	-1	-1/2	1/2	$-\sqrt{2}/2$	$-\sqrt{3}/2$	$\sqrt{3}$	$-\sqrt{3}/3$
arccos(x)	$\pi/2$	0	π	$2\pi/3$	$\pi/3$	$3\pi/4$	$5\pi/6$		
arcsin(x)	0	$\pi/2$	$-\pi/2$	$-\pi/6$	$\pi/6$	$-\pi/4$	$-\pi/3$		
$\arctan(x)$	0	$\pi/4$						$\pi/3$	$-\pi/6$

II.2. Exercice

Déterminer une valeur possible de x écrite en fonction de arcsin, arccos, arctan dans chacun des cas suivants :

a.
$$\begin{cases} \cos(x) = 1/3 \\ \sin(x) = 2\sqrt{2}/3 \end{cases}$$
 b.
$$\begin{cases} \cos(x) = -1/3 \\ \sin(x) = 2\sqrt{2}/3 \end{cases}$$
 c.
$$\begin{cases} \cos(x) = 1/3 \\ \sin(x) = -2\sqrt{2}/3 \end{cases}$$
 d.
$$\begin{cases} \cos(x) = -1/3 \\ \sin(x) = -2\sqrt{2}/3 \end{cases}$$

Dans chaque cas, l'existence de solutions est garantie par le fait que $(1/3)^2 + (2\sqrt{2}/3)^2 = 1/9 + 8/9 = 1$.

	arcsin	arccos	arctan
a	$x = \arcsin(2\sqrt{2}/3)$	$x = \arccos(1/3)$	$x = \arctan(2\sqrt{2})$
b	$x = \pi - \arcsin(2\sqrt{2}/3)$	$x = \arccos(-1/3)$	$x = \pi + \arctan(-2\sqrt{2})$
c	$x = \arcsin(-2\sqrt{2}/3)$	$x = -\arccos(1/3)$	$x = \arctan(-2\sqrt{2})$
d	$x = \pi - \arcsin(2\sqrt{2}/3)$	$x = -\arccos(-1/3)$	$x = \pi + \arctan(2\sqrt{2}).$

II.3. Exercice*

En vous appuyant sur un cercle trigonométrique, que pouvez-vous dire de arccos(-x), arcsin(-x), arctan(-x)?

Pour tout $x \in [-\pi/2, \pi/2]$, $\arcsin(-x) = -\arcsin(x)$ et $\arccos(-x) = \pi/2 - \arccos(x)$. Pour tout $x \in \mathbb{R}$, $\arctan(-x) = -\arctan(x)$.

II.4. Exercice*

Soit f la fonction définie par $f(x) = \arctan(x) + \arctan(1/x)$. Quel est l'ensemble de définition de f? Calculer f'(x). Que peut-on en déduire?

f est définie sur l'ensemble \mathbb{R} privé de 0, qui est la réunion des deux intervalles $]-\infty,0[$ et $]0,+\infty[$. Par composition, f est dérivable sur ces deux intervalles, et d'après la formule de dérivation d'une composée,

$$\forall x \in]-\infty, 0[\cup]0, +\infty[\ f'(x) = \frac{1}{1+x^2} - \frac{1}{x^2} \cdot \frac{1}{1+x^{-2}} = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0.$$

Or une fonction dérivable sur un intervalle, et dont la dérivée est nulle, est constante sur cet intervalle. Donc f est constante sur $]-\infty,0[$ et sur $]0,+\infty[$. Pour connaître les valeurs de ces constantes, évaluons f en -1 et 1 respectivement. On obtient :

$$\forall x \in]-\infty, 0[, \arctan(x) + \arctan(1/x) = f(-1) = -\pi/2$$
(17)

$$\forall x \in]0, +\infty[, \arctan(x) + \arctan(1/x) = f(1) = \pi/2.$$
 (18)

II.5. Exercice

Résoudre sur \mathbb{R} les équations suivantes :

$$(E_1): 2\sin^2(x) + 7\sin(x) + 3 = 0$$

$$(E_2): 3\sin^2(x) - 5\sin(x) - 2 = 0.$$

Pour résoudre (E_1) on se ramène à une equation du second degré en posant $S=\sin(x)$:

$$(E_1^*): 2S^2 + 7S + 3 = 0.$$

On cacule : $\Delta = 49 - 24 = 5^2$, les deux solutions réelles sont

$$S^{+} = \frac{-7+5}{4} = -\frac{1}{2}, \quad S^{-} = \frac{-7-5}{4} = -3.$$

x est donc solution si et seulement si $\sin(x) = -\frac{1}{2}$ ou $\sin(x) = -3$. Or pour tout x réel on sait que $-1 \le \sin(x) \le 1$,on ne conserve donc que la première équation, que l'on sait résoudre :

$$\forall x \in \mathbb{R}, \ \sin(x) = -1/2 \iff \sin(x) = \sin(-\pi/6) \iff \exists k \in \mathbb{Z}, \ \begin{cases} x = -\pi/6 + 2k\pi, \ \text{ou} \\ x = 7\pi/6 + 2k\pi. \end{cases}$$

On procède de même pour (E_2) :

$$(E_2^*): 3S^2 - 5S - 2 = 0.$$

Si l'on a une bonne mémoire, on se souvient de l'exercice I.9 page 10 qui demandait de résoudre la même équation. Sinon ce n'est pas grave, on calcule Δ et on trouve

$$S^{+} = \frac{5+7}{6} = 2, \quad S^{-} = \frac{5-7}{6} = -1/3.$$

On se donne θ tel que $\sin(\theta) = -1/3$, par exemple $\theta = \arcsin(-1/3)$, puis

$$\exists k \in \mathbb{Z}, \begin{cases} x = \theta + 2k\pi, \text{ ou} \\ x = \pi - \theta + 2k\pi. \end{cases}$$

II.6. Exercice

Résoudre sur \mathbb{R} les équations suivantes :

$$\begin{aligned} (E_1): & -2\cos(x) + 2\sin(x) = 1 \\ (E_2): & 3\cos(x) - 2\sin(x) = \frac{\sqrt{13}}{2} \\ (E_3): & -5\cos(x) - 3\sin(x) = 1. \end{aligned}$$

C'est très semblable à l'exercice I.8 sauf que nous avons maintenant les fonctions trigonométriques réciproques à disposition.

$$\begin{split} (E_1) &\iff 2\sqrt{2} \left(-\frac{\sqrt{2}}{2} \cos(x) + \frac{\sqrt{2}}{2} \sin(x) \right) = 1 \\ &\iff \cos(x) \cos(-\pi/4) + \sin(x) \sin(-\pi/4) = \frac{\sqrt{2}}{4} \\ &\iff \cos(x + \pi/4) = \frac{\sqrt{2}}{4}. \end{split}$$

Posons $\alpha = \arccos(\sqrt{2}/4)$. Alors x est solution de (E_1) si et seulement si $\cos(x + \pi/4)$ est égal à $\cos(\alpha)$, soit

$$\exists k \in \mathbb{Z}, \ \begin{cases} x = \alpha - \pi/4 + 2k\pi, \ \text{ou} \\ x = -\alpha - \pi/4 + 2k\pi. \end{cases}$$

De même, posant $\beta = -\arccos(3\sqrt{13}/13)$,

$$\begin{split} (\mathsf{E}_2) \iff \sqrt{13} \left(\frac{3\sqrt{13}}{13} \cos(x) - \frac{2\sqrt{13}}{13} \sin(x) \right) &= \frac{\sqrt{13}}{2} \\ \iff \cos(x) \cos(\beta) + \sin(x) \sin(\beta) &= \frac{1}{2} \\ \iff \cos(x - \beta) &= \cos(\pi/3) \\ \iff \exists k \in \mathbb{Z}, \begin{cases} x = \pi/3 + \beta + 2k\pi, \text{ ou} \\ x &= -\pi/3 + \beta + 2k\pi. \end{cases} \end{split}$$

Finalement, en posant $\gamma = \pi + \arctan(3/5)$ et $\delta = \arccos(\sqrt{34}/34)$,

$$\begin{split} (\mathsf{E}_3) &\iff \sqrt{34} \left(-\frac{5\sqrt{34}}{34} \cos(x) - \frac{3\sqrt{34}}{34} \sin(x) \right) = 1 \\ &\iff \cos(x) \cos(\gamma) + \sin(x) \sin(\gamma) = \frac{\sqrt{34}}{34} \\ &\iff \cos(x - \gamma) = \cos(\delta) \\ &\iff \exists k \in \mathbb{Z}, \begin{cases} x = \delta + \gamma + 2k\pi, \text{ ou} \\ x = -\delta + \gamma + 2k\pi. \end{cases} \end{split}$$

à vous de jouer!

Les $\sqrt{13}$ se simplifient, on en profite.

Les $\sqrt{34}$ ne se simplifient pas, on continue malgré tout.