CSC 525: Computer Networks

Satellite Communication Networks

- The primary reason is coverage
 - Rural areas
 - Oceans, mountains, polar areas
 - Enough market?
- Recent Low Earth Orbit (LEO) constellations make it possible to compete with terrestrial networks on low-latency communication and general Internet services.
 - How to design this kind of networks?

Satellites

- Altitude: distance from sea level
 - Geostationary (at 35,786 km)
 - Medium Earth Orbit (> 2000 km)
 - Low Earth Orbit (< 2000 km)
- Tradeoff
 - Coverage, number of satellites required
 - Latency
- https://upload.wikimedia.org/wikipedia/commons/b/b4/Comparison_satell ite_navigation_orbits.svg

Low Earth Orbit (LEO) Sat Networks

- Use satellites in LEO to provide Internet access.
- Challenges:
 - Provide good coverage and good network services
 - With low cost
- A number of failed projects in the 90's
 - Teledesic, Iridium, GlobalStar
- Revived and gaining momentum in recent years
 - Starlink (US, 12k sats), Kuiper (US, 3k sats), OneWeb
 (Europe, 7k sats), Telesat (Canada, 1.7k sats)
 - Satellite miniaturization, lower launching cost, better antenna and communication technology.

General Architecture

(a) one relay LEO/ground station

(b) multiple relay LEOs/ground stations

(c) multiple interconnected relay LEOs

LEO Constellations

Fig. 11: Constellation trajectories. (a) Telesat $T1-27\times13$, 1,015 km, 98.98° (b) Kuiper $K1-34\times34$, 630 km, 51.9° (c) Starlink $S1-72\times22$, 550 km, 53°. Satellites are black dots, while orbits are marked in red.

System	Altitude (km)	Inclination (°)	Planes	Satellites per plane	Number of satellites	
Telesat	1,015	98.98	6	13	298	
	1,325	50.88	20	11	290	
OneWeb	1,200	87.9	12	49	716	
	1,200	55	8	16		
SpaceX	550	53	72	22	1,584	
Amazon	630	51.9	17	34	578	

TABLE I: Summary of the initial-phase orbit characteristics of each constellation. All four designs have already been approved by FCC.

System	Altitude (km)	Inclination (°)	Planes	Satellites per plane	State	Number of satellites
Telesat	1,015	98.98	27	13	P	1,671
	1,325	50.88	40	33	P	
OneWeb	1,200	87.9	36	49	P	
	1,200	55	32	72	P	6,372
	1,200	40	32	72	P	
SpaceX	540	53.2	72	22	P	
	550	53	72	22	A	
	560	97.6	6	58	P	4,408
	560	97.6	4	43	P	
	570	70	36	20	P	
Amazon	590	33	28	28	A	
	610	42	36	36	A	3,236
	630	51.9	34	34	A	

TABLE II: Summary of the orbit characteristics of the complete constellations. A represents shells approved by the FCC, while P represents pending changes.

Starlink constellation (phase 1)

• https://starlink-g1.gcgbarbosa.com/

• This paper tries to reverse engineering the Starlink network design.

How to connect ISLs

ISL: inter satellite links

How to do routing

- Source routing:
 - Every ground station knows all the satellites and their orbits, can compute shortest paths, and instruct the satellites where to forward the packets.
 - Computationally doable

Latency (NYC – LON)

Only use overhead sats.

Good but not great.

Need to use more visible atellites.

Figure 7: NYC to London RTTs via overhead satellites.

Use more satellites

Better than great circle RTT

JND-LON

Better than Internet RTT, but not great circle RTT. Need the help of the 2nd layer of satellites.

Sides links of Phase 2 sats

Summary

Recorded video by the author

https://youtu.be/AdKNCBrkZQ4