АФІННІ ФУНКЦІЇ ТА НЕРІВНОСТІ

І Нерівності

Remarque n°1.

Зазначені властивості залишаються дійсними з символами < ; ≥ і ≤

Propriété n°1.

Нехай a і b — два дійсних числа. $a > b \Leftrightarrow a - b > 0$

preuve:

Негайно, тому що, за визначенням, $a > b \Leftrightarrow a-b \in \mathbb{R}_+^*$

Propriété n°2.

Нехай
$$a,b$$
 і c — три дійсні числа, а d — ненульове дійсне число.

$$a>b \Leftrightarrow a+c>b+c$$

$$a>b \Leftrightarrow a-c>b-c$$
Si $d>0$

$$a>b \Leftrightarrow ad>bd$$

$$a>b \Leftrightarrow ad>bd$$

$$a>b \Leftrightarrow ad

$$a>b \Leftrightarrow ad>bd$$$$

preuve:

•
$$a > b \Leftrightarrow a - b > 0 \Leftrightarrow a + c - c - b > 0 \Leftrightarrow (a + c) - (b + c) > 0 \Leftrightarrow a + c > b + c$$

• Si
$$d>0$$
 $a>b \Leftrightarrow a-b>0 \Leftrightarrow d(a-b)>0 \Leftrightarrow ad-bd>0 \Leftrightarrow ad>bd$ правило знаків

• Інші еквівалентності доводяться так само, як ці дві Їх залишають як вправу.

Propriété n°3.

Нехай a, b, c і d — чотири дійсні числа.

I
$$a < b$$
 et $c < d$ notim $a + c < b + d$

preuve:

I
$$a < b$$
 et $c < d$ потім $a - b < 0$ et $c - d < 0$ donc $(a - b) + (c - d) < 0$ (сума двох від'ємних чисел) Або $(a - b) + (c - d) < 0 \Leftrightarrow a + c - b - d < 0 \Leftrightarrow (a + c) - (b + d) < 0 \Leftrightarrow a + c < b + d$

Exemple n°1.

I
$$x \ge 3$$
 et $y \ge 12$ notim $x + y \ge 3 + 12$

Remarque n°2. Ybaza

Ця властивість не працює з відніманням, ось контрприклад: 1<2 et 3<10 тоді як 1-3>2-10

II Інтервали

Définition n°1. Спосіб бачити набір дійсних чисел

Множина дійсних чисел, позначена \mathbb{R} , ϵ множиною абсцис точок градуйованої лінії.

Définition n°2. Інтервали

Нехай a і b — два дійсні числа, інтервали \mathbb{R} — це частини \mathbb{R} визначені так:

Інтервал	Множина дійсних чисел <i>х</i> така, що:	Графічне представлення
[a; b]	$a \leq x \leq b$	$\begin{array}{c c} \hline \\ \hline a & b \\ \hline \end{array} \rightarrow$
]a ; b[a < x < b	$\frac{}{a} \qquad \qquad b \boxed{}$
[a ; b[$a \leq x < b$	
]a ; b]	$a < x \leq b$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$[a ; +\infty[$	$a \leqslant x$ ми також можемо писати $x \geqslant a$	${a}$
]a ; +∞[a < x ми також можемо писати $x > a$	$a \rightarrow a$
$]-\infty ; b]$	$x \leq b$	$\xrightarrow{\hspace*{1cm}b}$
]-∞ ; b[x < b	$\xrightarrow{b} \boxed{\hspace{1cm}}$

Remarque n°3.

- → Інтервали [a;b],]a;b[, [a;b[et]a;b[є обмеженими інтервалами, а a і b називаються межами.
- \rightarrow Амплітуда інтервалу варто b-a
- ightharpoonup [a; b] ϵ замкненим інтервалом і]a; b[ϵ відкритим інтервалом.
- $\rightarrow \mathbb{R} =]-\infty ; +\infty[$

III Les inéquations

Définition n°3.

Нерівність невідомого x - це нерівність, яка може бути істинною для певних значень x, які потім називаються рішеннями. Розв'язати цю нерівність у \mathbb{R} означає знайти всі дійсні розв'язки.

Exemple n°2. Опишіть розв'язки нерівності

держави:

Розв'яжіть нерівність $-3x+7 \ge 11$ і запишіть усі розв'язки у вигляді інтервалу та зобразіть його графічно.

Відповідь:

$$-3x+7 \ge 11 \Leftrightarrow -3x \ge 4 \Leftrightarrow x \le -\frac{4}{3} \Leftrightarrow x \in \left] -\infty ; -\frac{4}{3} \right]$$

$$-\frac{4}{3}$$

Remarque n°4.

Ми маємо на увазі propriété n°2:

При розв'язуванні нерівності,

- додавання або віднімання того самого дійсного числа до кожного члена не змінює порядок,
- множення або ділення членів на те саме додатне число не змінює порядок,
- множення або ділення членів на те саме від'ємне число змінює порядок.

Напрям варіації та знак афінної функції IV

По всьому абзацу, $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto mx + p \end{cases}$ з m і p дійсні числа, ϵ афінною функцією.

Propriété n°4. Відкликати

Для будь-якої афінної функції збільшення функції пропорційне зростанню змінної:

 $a \neq b$ потім

$$m = \frac{f(b) - f(a)}{b - a}$$

preuve:

Comme f est affine, pour tout $x \in \mathbb{R}$, f(x) = mx + p avec $p \in \mathbb{R}$.

Pour
$$a \neq b$$
, on peut écrire :
$$\frac{f(b)-f(a)}{b-a} = \frac{mb+p-(ma+p)}{b-a} = \frac{mb-ma+p-p}{b-a} = \frac{m(b-a)}{b-a} = m$$

Remarque n°5. Напрямок зміни афінної функції

Попередня властивість говорить нам, що якщо m>0, то зображення розташовуються в тому ж порядку, що й абсциси (ми говоримо, що функція зростає), а якщо m<0, то зображення розташовуються в порядку, протилежному порядку абсцис (ми говоримо: що функція спадна).

Варіаційні таблиці

Définition n°4.

Корінь афінної функції

Припустимо $m \neq 0$.

Ми називаємо корінь f дійсного числа x_0 таким, що $f(x_0)=0$

Propriété n°5.

$$x_0 = \frac{-p}{m}$$

Remarque n°6.

Точка координати $(x_0;0)$ ϵ точкою перетину кривої, що представляє f , з віссю абсцис.

Propriété n°6.

Ознака афінної функції

Таблиці знаків

Exemple n°3.

для
$$g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -2x+3 \end{cases}$$
, $m=-2$ et $p=3$

• Подібно до m < 0, ми маємо наступну таблицю варіацій:

х	$-\infty$	+ ∞
g(x)	+ ∞	$-\infty$

Позуємо $x_0 = \frac{-p}{m} = \frac{-3}{-2} = 1,5$, тоді ми знаємо, що лінія, яка представляє функцію g, перетинає вісь абсцис у точці (1,5;0), і ми маємо таку таблицю знаків:

x	$-\infty$		1,5		$+\infty$
g(x)		+	•	_	

V Короткий зміст курсу

Зазначені властивості залишаються дійсними з символами < ; \geq i \leq

Soient a, b et c trois nombres réels et d un nombre réel non nul.

$$a > b \Leftrightarrow a-b > 0$$

$$a>b \Leftrightarrow a+c>b+c$$

$$a > b \Leftrightarrow a - c > b - c$$

Si
$$d > 0$$

$$a > b \Leftrightarrow a d > b d$$

$$a > b \Leftrightarrow a d < b d$$

$$a > b \Leftrightarrow \frac{a}{d} > \frac{b}{d}$$

$$a > b \Leftrightarrow \frac{a}{d} < \frac{b}{d}$$

бути a,b,c et d чотири дійсних числа.

Si
$$a < b$$
 et $c < d$ alors $a + c < b + d$

Попередження: нерівності можна складати, але не можна віднімати.

- → Інтервали [a;b],]a;b[, [a;b[et]a;b[є обмеженими інтервалами, а a і b називаються межами.
- \rightarrow Амплітуда інтервалу варто b-a
- **→** [a : b] є замкненим інтервалом і]a : b[є відкритим інтервалом.
- $\rightarrow \mathbb{R} =]-\infty ; +\infty[$

Résoudre une inéquation

Énoncé:

Розв'яжіть нерівність $-3x+7 \ge 11$ і запишіть усі розв'язки у вигляді інтервалу та зобразіть його графічно.

$$-3x+7 \ge 11 \Leftrightarrow -3x \ge 4 \Leftrightarrow x \le -\frac{4}{3} \Leftrightarrow x \in \left[-\infty; -\frac{4}{3}\right]$$

Réponse :

m < 0

m>0

f строго зменшується

f строго зростає

Варіаційні таблиці

Таблиці знаків

m<0					
x	$-\infty$	x_0		$+\infty$	
f(x)	+	•	_		

