Randomized Quicksort

(CLRS textbook: chapter 7)

Input: Set *S* of *n* distinct keys

Input: Set *S* of *n* distinct keys

Output: The keys of S in increasing order

Input: Set *S* of *n* distinct keys

Output: The keys of *S* in increasing order

Input: Set *S* of *n* distinct keys

Output: The keys of *S* in increasing order

RQS(S) (* recursive, divide-and-conquer algorithm *)

▶ If *S* is empty then return.

Input: Set *S* of *n* distinct keys

Output: The keys of S in increasing order

- ▶ If *S* is empty then return.
- ▶ If |S| = 1 then output the key in S and return.

Input: Set *S* of *n* distinct keys

Output: The keys of S in increasing order

- ▶ If *S* is empty then return.
- ▶ If |S| = 1 then output the key in S and return.
- ► Select a key *p* (called a "pivot") uniformly at random from *S*.

Input: Set *S* of *n* distinct keys

Output: The keys of *S* in increasing order

- ▶ If *S* is empty then return.
- ▶ If |S| = 1 then output the key in S and return.
- Select a key p (called a "pivot") uniformly at random from S. (each key of S is equally likely to be selected as pivot.)

Input: Set *S* of *n* distinct keys

Output: The keys of *S* in increasing order

- ▶ If *S* is empty then return.
- ▶ If |S| = 1 then output the key in S and return.
- Select a key p (called a "pivot") uniformly at random from S. (each key of S is equally likely to be selected as pivot.)
- ▶ By comparing p to every other key in S, split the set S into two subsets:

Input: Set *S* of *n* distinct keys

Output: The keys of *S* in increasing order

- ▶ If *S* is empty then return.
- ▶ If |S| = 1 then output the key in S and return.
- ➤ Select a key *p* (called a "pivot") uniformly at random from *S*. (each key of *S* is equally likely to be selected as pivot.)
- ▶ By comparing p to every other key in S, split the set S into two subsets:
 - ► $S_{<} = \{ s \in S \mid s < p \}$

Input: Set *S* of *n* distinct keys

Output: The keys of S in increasing order

- ▶ If *S* is empty then return.
- ▶ If |S| = 1 then output the key in S and return.
- Select a key p (called a "pivot") uniformly at random from S. (each key of S is equally likely to be selected as pivot.)
- ▶ By comparing p to every other key in S, split the set S into two subsets:
 - ▶ $S_{<} = \{s \in S \mid s < p\}$

Input: Set *S* of *n* distinct keys

Output: The keys of S in increasing order

RQS(S) (* recursive, divide-and-conquer algorithm *)

- ▶ If *S* is empty then return.
- ▶ If |S| = 1 then output the key in S and return.
- Select a key p (called a "pivot") uniformly at random from S. (each key of S is equally likely to be selected as pivot.)
- ▶ By comparing p to every other key in S, split the set S into two subsets:
 - ► $S_{<} = \{s \in S \mid s < p\}$
 - ► $S_{>} = \{ s \in S \mid s > p \}$

(doing this for |S| = n takes n - 1 key comparisons)

Input: Set *S* of *n* distinct keys

Output: The keys of S in increasing order

RQS(S) (* recursive, divide-and-conquer algorithm *)

- ▶ If *S* is empty then return.
- ▶ If |S| = 1 then output the key in S and return.
- Select a key p (called a "pivot") uniformly at random from S. (each key of S is equally likely to be selected as pivot.)
- ▶ By comparing p to every other key in S, split the set S into two subsets:
 - ▶ $S_{<} = \{s \in S \mid s < p\}$
 - ► $S_> = \{s \in S \mid s > p\}$

(doing this for |S| = n takes n - 1 key comparisons)

► *RQS*(*S*_<);

Input: Set *S* of *n* distinct keys

Output: The keys of S in increasing order

RQS(S) (* recursive, divide-and-conquer algorithm *)

- ▶ If *S* is empty then return.
- ▶ If |S| = 1 then output the key in S and return.
- Select a key p (called a "pivot") uniformly at random from S. (each key of S is equally likely to be selected as pivot.)
- ▶ By comparing p to every other key in S, split the set S into two subsets:
 - ▶ $S_{<} = \{s \in S \mid s < p\}$
 - ► $S_> = \{ s \in S \mid s > p \}$

(doing this for |S| = n takes n - 1 key comparisons)

 $ightharpoonup RQS(S_<)$; output p;

Input: Set *S* of *n* distinct keys

Output: The keys of S in increasing order

RQS(S) (* recursive, divide-and-conquer algorithm *)

- ▶ If *S* is empty then return.
- ▶ If |S| = 1 then output the key in S and return.
- Select a key p (called a "pivot") uniformly at random from S. (each key of S is equally likely to be selected as pivot.)
- ▶ By comparing p to every other key in S, split the set S into two subsets:
 - ▶ $S_{<} = \{s \in S \mid s < p\}$
 - ► $S_> = \{s \in S \mid s > p\}$

(doing this for |S| = n takes n - 1 key comparisons)

 $ightharpoonup RQS(S_{<})$; output p; $RQS(S_{>})$

2, 8, 7, 1, 3, 4, 6, 5

2, 8, 7, 1, 3, 4, 6, 5

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4, 5

1, 2, 3, 4, 5, 6

1, 2, 3, 4, 5, 6

1, 2, 3, 4, 5, 6

1, 2, 3, 4, 5, 6

1, 2, 3, 4, 5, 6

1, 2, 3, 4, 5, 6, 7

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

In every RQS(S) execution:

In every RQS(S) execution:

► Two keys are compared if and only if one of them is selected as a pivot.

In every RQS(S) execution:

- Two keys are compared if and only if one of them is selected as a pivot.
- ► Two keys are compared at most once.

In every RQS(S) execution:

- Two keys are compared if and only if one of them is selected as a pivot.
- Two keys are compared at most once.
- ▶ If two keys are "split apart" in different sets by a pivot (like 2 and 7 are split apart by pivot 4) then they are never compared.

Fix some input *S* with *n* distinct keys.

- Fix some input *S* with *n* distinct keys.
- ightharpoonup Run RQS(S)

- Fix some input *S* with *n* distinct keys.
- ightharpoonup Run RQS(S)
- ▶ Let C = number of key comparisons done by RQS(S)

- Fix some input *S* with *n* distinct keys.
- ightharpoonup Run RQS(S)
- Let C = number of key comparisons done by RQS(S)
- ▶ What is the worst-case value of *C*?

- Fix some input *S* with *n* distinct keys.
- ightharpoonup Run RQS(S)
- ▶ Let C = number of key comparisons done by RQS(S)
- ▶ What is the worst-case value of *C*?

$$C=(n-1)$$

- Fix some input *S* with *n* distinct keys.
- ightharpoonup Run RQS(S)
- Let C = number of key comparisons done by RQS(S)
- ▶ What is the worst-case value of *C*?

$$C = (n-1) + (n-2)$$

- Fix some input *S* with *n* distinct keys.
- ightharpoonup Run RQS(S)
- Let C = number of key comparisons done by RQS(S)
- ▶ What is the worst-case value of *C*?

$$C = (n-1) + (n-2) + \ldots + 2 + 1$$

- Fix some input *S* with *n* distinct keys.
- ightharpoonup Run RQS(S)
- Let C = number of key comparisons done by RQS(S)
- ▶ What is the worst-case value of *C*?

$$C = (n-1) + (n-2) + \ldots + 2 + 1 = \frac{n(n-1)}{2}$$

- Fix some input *S* with *n* distinct keys.
- ightharpoonup Run RQS(S)
- Let C = number of key comparisons done by RQS(S)
- ▶ What is the worst-case value of *C*?

$$C = (n-1) + (n-2) + \ldots + 2 + 1 = \frac{n(n-1)}{2}$$
 i.e, $\Theta(n^2)$

- Fix some input *S* with *n* distinct keys.
- ightharpoonup Run RQS(S)
- Let C = number of key comparisons done by RQS(S)
- ▶ What is the worst-case value of *C*?

$$C = (n-1) + (n-2) + \ldots + 2 + 1 = \frac{n(n-1)}{2}$$
 i.e, $\Theta(n^2)$

▶ What is the expected ("average") value of *C*?

- Fix some input *S* with *n* distinct keys.
- ightharpoonup Run RQS(S)
- Let C = number of key comparisons done by RQS(S)
- ▶ What is the worst-case value of *C*?

$$C = (n-1) + (n-2) + \ldots + 2 + 1 = \frac{n(n-1)}{2}$$
 i.e, $\Theta(n^2)$

▶ What is the expected ("average") value of C? (over all the possible random pivot selections by RQS(S))

- Fix some input *S* with *n* distinct keys.
- ightharpoonup Run RQS(S)
- Let C = number of key comparisons done by RQS(S)
- ▶ What is the worst-case value of *C*?

$$C = (n-1) + (n-2) + \ldots + 2 + 1 = \frac{n(n-1)}{2}$$
 i.e, $\Theta(n^2)$

- ▶ What is the expected ("average") value of C? (over all the possible random pivot selections by RQS(S))
- ▶ More precisely: what is E(C)?

Let $z_1 < z_2 < \ldots < z_i < \ldots < z_j < \ldots < z_n$ be the keys of S in ascending order

- Let $z_1 < z_2 < \ldots < z_i < \ldots < z_j < \ldots < z_n$ be the keys of S in ascending order
- ightharpoonup Run RQS(S)

- Let $z_1 < z_2 < \ldots < z_i < \ldots < z_j < \ldots < z_n$ be the keys of S in ascending order
- ightharpoonup Run RQS(S)
- Note that RQS(S) compares z_i and z_j at most once (and only if, at some point, it selects z_i or z_j as a pivot)

- Let $z_1 < z_2 < \ldots < z_i < \ldots < z_j < \ldots < z_n$ be the keys of S in ascending order
- ► Run RQS(S)
- Note that RQS(S) compares z_i and z_j at most once (and only if, at some point, it selects z_i or z_j as a pivot)

Let
$$c_{ij} = \left\{ egin{array}{ll} 1 & \textit{RQS}(S) \ ext{compares} \ z_i \ ext{and} \ z_j \end{array}
ight.$$

- Let $z_1 < z_2 < \ldots < z_i < \ldots < z_j < \ldots < z_n$ be the keys of S in ascending order
- ► Run *RQS*(*S*)
- Note that RQS(S) compares z_i and z_j at most once (and only if, at some point, it selects z_i or z_j as a pivot)

$$\mathsf{Let}\ c_{ij} = \left\{ \begin{array}{ll} 1 & RQS(S) \ \mathsf{compares}\ z_i \ \mathsf{and}\ z_j \\ 0 & \mathsf{otherwise} \end{array} \right.$$

- Let $z_1 < z_2 < \ldots < z_i < \ldots < z_j < \ldots < z_n$ be the keys of S in ascending order
- ► Run *RQS*(*S*)
- Note that RQS(S) compares z_i and z_j at most once (and only if, at some point, it selects z_i or z_j as a pivot)

Let
$$c_{ij} = \begin{cases} 1 & RQS(S) \text{ compares } z_i \text{ and } z_j \\ 0 & \text{otherwise} \end{cases}$$

This is an indicator random variable

- Let $z_1 < z_2 < \ldots < z_i < \ldots < z_j < \ldots < z_n$ be the keys of S in ascending order
- ► Run RQS(S)
- Note that RQS(S) compares z_i and z_j at most once (and only if, at some point, it selects z_i or z_j as a pivot)

Let
$$c_{ij} = \begin{cases} 1 & RQS(S) \text{ compares } z_i \text{ and } z_j \\ 0 & \text{otherwise} \end{cases}$$

This is an indicator random variable

▶ The total number of key comparisons done by RQS(S) is:

- Let $z_1 < z_2 < \ldots < z_i < \ldots < z_j < \ldots < z_n$ be the keys of S in ascending order
- ► Run *RQS*(*S*)
- Note that RQS(S) compares z_i and z_j at most once (and only if, at some point, it selects z_i or z_i as a pivot)

Let
$$c_{ij} = \begin{cases} 1 & RQS(S) \text{ compares } z_i \text{ and } z_j \\ 0 & \text{otherwise} \end{cases}$$

This is an indicator random variable

▶ The total number of key comparisons done by RQS(S) is:

$$C = \sum_{1 \le i \le j \le n} c_{ij}$$

- Let $z_1 < z_2 < \ldots < z_i < \ldots < z_j < \ldots < z_n$ be the keys of S in ascending order
- ► Run RQS(S)
- Note that RQS(S) compares z_i and z_j at most once (and only if, at some point, it selects z_i or z_i as a pivot)

Let
$$c_{ij} = \begin{cases} 1 & RQS(S) \text{ compares } z_i \text{ and } z_j \\ 0 & \text{otherwise} \end{cases}$$

This is an indicator random variable

▶ The total number of key comparisons done by RQS(S) is:

$$C = \sum_{1 \le i < j \le n} c_{ij}$$

 \blacktriangleright We want to compute E(C)

Number of comparisons done by RQS(S): $C = \sum_{1 \le i < j \le n} c_{ij}$

Number of comparisons done by
$$RQS(S)$$
: $C = \sum_{1 \leq i < j \leq n} c_{ij}$

$$E(c_{ij}) =$$

Number of comparisons done by RQS(S): $C = \sum_{1 \leq i < j \leq n} c_{ij}$

$$E(c_{ij}) = 1 \cdot \Pr[c_{ij} = 1]$$

Number of comparisons done by
$$RQS(S)$$
: $C = \sum_{1 \leq i < j \leq n} c_{ij}$

$$E(c_{ij}) = 1 \cdot \Pr[c_{ij} = 1] + 0 \cdot \Pr[c_{ij} = 0]$$

Number of comparisons done by RQS(S): $C = \sum_{1 \leq i < j \leq n} c_{ij}$

$$E(c_{ij}) = 1 \cdot \Pr[c_{ij} = 1] + 0 \cdot \Pr[c_{ij} = 0]$$

= $\Pr[c_{ij} = 1]$

Number of comparisons done by RQS(S): $C = \sum_{1 \leq i < j \leq n} c_{ij}$

$$E(c_{ij}) = 1 \cdot \Pr[c_{ij} = 1] + 0 \cdot \Pr[c_{ij} = 0]$$

= $\Pr[c_{ij} = 1]$
= $\Pr[z_i \text{ and } z_j \text{ are compared}]$

Number of comparisons done by RQS(S): $C = \sum_{1 \leq i < j \leq n} c_{ij}$

$$E(c_{ij}) = 1 \cdot \Pr[c_{ij} = 1] + 0 \cdot \Pr[c_{ij} = 0]$$

= $\Pr[c_{ij} = 1]$
= $\Pr[z_i \text{ and } z_j \text{ are compared}]$

$$E(C) = E(\sum_{1 \leq i < j \leq n} c_{ij})$$

Number of comparisons done by RQS(S): $C = \sum_{1 \leq i < j \leq n} c_{ij}$

$$E(c_{ij}) = 1 \cdot \Pr[c_{ij} = 1] + 0 \cdot \Pr[c_{ij} = 0]$$

= $\Pr[c_{ij} = 1]$
= $\Pr[z_i \text{ and } z_j \text{ are compared}]$

$$E(C) = E(\sum_{1 \le i < j \le n} c_{ij})$$

$$= \sum_{1 \le i < j \le n} E(c_{ij}) \text{ by linearity of expectations}$$

Number of comparisons done by RQS(S): $C = \sum_{1 \leq i < j \leq n} c_{ij}$

$$E(c_{ij}) = 1 \cdot \Pr[c_{ij} = 1] + 0 \cdot \Pr[c_{ij} = 0]$$

= $\Pr[c_{ij} = 1]$
= $\Pr[z_i \text{ and } z_j \text{ are compared}]$

$$E(C) = E(\sum_{1 \le i < j \le n} c_{ij})$$

$$= \sum_{1 \le i < j \le n} E(c_{ij}) \text{ by linearity of expectations}$$

$$= \sum_{1 \le i < j \le n} \Pr[z_i \text{ and } z_j \text{ are compared}]$$

► We just proved:

Lemma:
$$E(C) = \sum_{1 \le i < j \le n} \Pr[z_i \text{ and } z_j \text{ are compared}]$$

► We just proved:

Lemma:
$$E(C) = \sum_{1 \le i < j \le n} \Pr[z_i \text{ and } z_j \text{ are compared}]$$

► We will later prove:

Lemma: For
$$i < j$$
, $Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

► We just proved:

Lemma:
$$E(C) = \sum_{1 \le i < j \le n} \Pr[z_i \text{ and } z_j \text{ are compared}]$$

► We will later prove:

Lemma: For
$$i < j$$
, $Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

▶ By combining these two lemmas:

$$E(C) = \sum_{1 \le i < j \le n} \frac{2}{j - i + 1}$$

▶ We just proved:

Lemma:
$$E(C) = \sum_{1 \le i < j \le n} \Pr[z_i \text{ and } z_j \text{ are compared}]$$

► We will later prove:

Lemma: For
$$i < j$$
, $Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

▶ By combining these two lemmas:

$$E(C) = \sum_{1 \le i < j \le n} \frac{2}{j-i+1} = \ldots = 2n(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n})$$

► We just proved:

Lemma:
$$E(C) = \sum_{1 \le i < j \le n} \Pr[z_i \text{ and } z_j \text{ are compared}]$$

► We will later prove:

Lemma: For
$$i < j$$
, $Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

▶ By combining these two lemmas:

$$E(C) = \sum_{1 \le i \le j \le n} \frac{2}{j-i+1} = \ldots = 2n(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n})$$

▶ It is known that $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$ is $O(\log n)$.

▶ We just proved:

Lemma:
$$E(C) = \sum_{1 \le i < j \le n} \Pr[z_i \text{ and } z_j \text{ are compared}]$$

► We will later prove:

Lemma: For
$$i < j$$
, $Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

▶ By combining these two lemmas:

$$E(C) = \sum_{1 \le i < j \le n} \frac{2}{j-i+1} = \ldots = 2n(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n})$$

▶ It is known that $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$ is $O(\log n)$. [In fact, for $n \ge 2$, $H_n \le (\log_e n) + 1$.]

▶ We just proved:

Lemma:
$$E(C) = \sum_{1 \le i < j \le n} \Pr[z_i \text{ and } z_j \text{ are compared}]$$

► We will later prove:

Lemma: For
$$i < j$$
, $Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

By combining these two lemmas:

$$E(C) = \sum_{1 \le i < j \le n} \frac{2}{j-i+1} = \ldots = 2n(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n})$$

- ▶ It is known that $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$ is $O(\log n)$. [In fact, for $n \ge 2$, $H_n \le (\log_e n) + 1$.]
- ► Therefore:

Theorem: E(C) is $O(n \log n)$

It now remains to prove:

Lemma: For i < j, $\Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

It now remains to prove:

Lemma: For i < j, $Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

Some intuition first:

For i = 1 and j = n, $Pr[z_1 \text{ and } z_n \text{ are compared}] =$

It now remains to prove:

Lemma: For i < j, $Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

Some intuition first:

For i = 1 and j = n, $\Pr[z_1 \text{ and } z_n \text{ are compared}] = \frac{2}{n}$ Since z_1 and z_n are the smallest and largest element in S,

It now remains to prove:

Lemma: For i < j, $Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

Some intuition first:

For i = 1 and j = n, $Pr[z_1 \text{ and } z_n \text{ are compared}] = \frac{2}{n}$ Since z_1 and z_n are the smallest and largest element in S, they will be compared by RQS(S) if and only if the first pivot that RQS(S) selects among the n elements of S is

It now remains to prove:

Lemma: For i < j, $Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

Some intuition first:

For i = 1 and j = n, $Pr[z_1 \text{ and } z_n \text{ are compared}] = \frac{2}{n}$ Since z_1 and z_n are the smallest and largest element in S, they will be compared by RQS(S) if and only if the first pivot that RQS(S) selects among the n elements of S is z_1 or z_n .

It now remains to prove:

Lemma: For i < j, $\Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

Some intuition first:

For i = 1 and j = n, $Pr[z_1 \text{ and } z_n \text{ are compared}] = \frac{2}{n}$

Since z_1 and z_n are the smallest and largest element in S, they will be compared by RQS(S) if and only if the first pivot that RQS(S) selects among the n elements of S is z_1 or z_n .

Note that j - i + 1 = n, so the lemma is correct in this case!

It now remains to prove:

Lemma: For i < j, $\Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

Some intuition first:

For i = 1 and j = n, $Pr[z_1 \text{ and } z_n \text{ are compared}] = \frac{2}{n}$

Since z_1 and z_n are the smallest and largest element in S, they will be compared by RQS(S) if and only if the first pivot that RQS(S) selects among the n elements of S is z_1 or z_n .

Note that j - i + 1 = n, so the lemma is correct in this case!

In our example: n = 8, $z_1 = 1$ and $z_n = 8$, and $Pr[z_1 \text{ and } z_n \text{ are compared}] = \frac{2}{8} = \frac{1}{4}$.

▶ For any i and j = i + 1, $Pr[z_i \text{ and } z_j \text{ are compared}] =$

It now remains to prove:

Lemma: For i < j, $\Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

Some intuition first:

For i = 1 and j = n, $Pr[z_1 \text{ and } z_n \text{ are compared}] = \frac{2}{n}$

Since z_1 and z_n are the smallest and largest element in S, they will be compared by RQS(S) if and only if the first pivot that RQS(S) selects among the n elements of S is z_1 or z_n .

Note that j - i + 1 = n, so the lemma is correct in this case!

In our example: n=8, $z_1=1$ and $z_n=8$, and $\Pr[z_1 \text{ and } z_n \text{ are compared}] = \frac{2}{8} = \frac{1}{4}$.

For any i and j = i + 1, $Pr[z_i \text{ and } z_j \text{ are compared}] = 1!$

It now remains to prove:

Lemma: For i < j, $\Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

Some intuition first:

For i = 1 and j = n, $Pr[z_1 \text{ and } z_n \text{ are compared}] = \frac{2}{n}$

Since z_1 and z_n are the smallest and largest element in S, they will be compared by RQS(S) if and only if the first pivot that RQS(S) selects among the n elements of S is z_1 or z_n .

Note that j - i + 1 = n, so the lemma is correct in this case!

In our example: n=8, $z_1=1$ and $z_n=8$, and $\Pr[z_1 \text{ and } z_n \text{ are compared}] = \frac{2}{8} = \frac{1}{4}$.

For any i and j = i + 1, $Pr[z_i \text{ and } z_j \text{ are compared}] = 1!$ (do you see why?)

$$ightharpoonup |Z_{ij}| =$$

- ► $|Z_{ij}| = j i + 1$.
- ▶ Initially, Z_{ij} is entirely contained in (the set of keys) S.

- ▶ $|Z_{ij}| = j i + 1$.
- ▶ Initially, Z_{ii} is entirely contained in (the set of keys) S.
- ► RQS(S) keeps selecting pivots and uses them to split S into smaller and smaller subsets until it gets subsets of size one or zero.

- ► $|Z_{ij}| = j i + 1$.
- ▶ Initially, Z_{ij} is entirely contained in (the set of keys) S.
- RQS(S) keeps selecting pivots and uses them to split S into smaller and smaller subsets until it gets subsets of size one or zero.
- As long as RQS(S) selects pivots that are **not** in Z_{ij} , then Z_{ij} remains contained in one of the subsets formed by the pivots,

- ► $|Z_{ij}| = j i + 1$.
- ▶ Initially, Z_{ij} is entirely contained in (the set of keys) S.
- RQS(S) keeps selecting pivots and uses them to split S into smaller and smaller subsets until it gets subsets of size one or zero.
- As long as RQS(S) selects pivots that are not in Z_{ij} , then Z_{ij} remains contained in one of the subsets formed by the pivots, and z_i and z_j remain uncompared.

- ► $|Z_{ij}| = j i + 1$.
- ▶ Initially, Z_{ij} is entirely contained in (the set of keys) S.
- ► RQS(S) keeps selecting pivots and uses them to split S into smaller and smaller subsets until it gets subsets of size one or zero.
- As long as RQS(S) selects pivots that are not in Z_{ij} , then Z_{ij} remains contained in one of the subsets formed by the pivots, and z_i and z_j remain uncompared.
- At some point, RQS(S) must select a pivot p in Z_{ij} , because it must split Z_{ij} into smaller sets.

- ► $|Z_{ij}| = j i + 1$.
- ▶ Initially, Z_{ij} is entirely contained in (the set of keys) S.
- RQS(S) keeps selecting pivots and uses them to split S into smaller and smaller subsets until it gets subsets of size one or zero.
- As long as RQS(S) selects pivots that are not in Z_{ij} , then Z_{ij} remains contained in one of the subsets formed by the pivots, and z_i and z_j remain uncompared.
- At some point, RQS(S) must select a pivot p in Z_{ij} , because it must split Z_{ii} into smaller sets.
- ▶ Consider the first time RQS(S) selects a pivot p in Z_{ij} .

Proof: Let
$$Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}$$
. $|Z_{ij}| = j - i + 1$

- **...**
- ▶ Consider the first time RQS(S) selects a pivot p in Z_{ij} .

Proof: Let
$$Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}$$
. $|Z_{ij}| = j - i + 1$

- **...**
- ▶ Consider the first time RQS(S) selects a pivot p in Z_{ij} .
- ► There are 2 possible cases:

Proof: Let
$$Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}$$
. $|Z_{ij}| = j - i + 1$

- **...**
- ▶ Consider the first time RQS(S) selects a pivot p in Z_{ij} .
- ▶ There are 2 possible cases:
 - 1. If $z_i then$

Proof: Let
$$Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}$$
. $|Z_{ij}| = j - i + 1$

- **.**..
- ▶ Consider the first time RQS(S) selects a pivot p in Z_{ij} .
- ► There are 2 possible cases:
 - 1. If $z_i then <math>z_i$ and z_j are never compared

Proof: Let
$$Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}$$
. $|Z_{ij}| = j - i + 1$

- ▶ Consider the first time RQS(S) selects a pivot p in Z_{ij} .
- ► There are 2 possible cases:
 - 1. If $z_i then <math>z_i$ and z_j are never compared
 - 2. If $p = z_i$ or $p = z_j$ then

Proof: Let
$$Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}$$
. $|Z_{ij}| = j - i + 1$

- **...**
- ▶ Consider the first time RQS(S) selects a pivot p in Z_{ij} .
- ► There are 2 possible cases:
 - 1. If $z_i then <math>z_i$ and z_j are never compared
 - 2. If $p = z_i$ or $p = z_j$ then z_i and z_j are compared.

Proof: Let
$$Z_{ij} = \{z_i, z_{i+1}, \dots, z_j\}$$
. $|Z_{ij}| = j - i + 1$

- **.**..
- ▶ Consider the first time RQS(S) selects a pivot p in Z_{ij} .
- ▶ There are 2 possible cases:
 - 1. If $z_i then <math>z_i$ and z_i are never compared
 - 2. If $p = z_i$ or $p = z_j$ then z_i and z_j are compared.
- So:

$$Pr[z_i \text{ and } z_j \text{ are compared}] = Pr[p = z_i \text{ or } p = z_j]$$

Proof: Let
$$Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}$$
. $|Z_{ij}| = j - i + 1$

- **.**..
- ▶ Consider the first time RQS(S) selects a pivot p in Z_{ij} .
- ▶ There are 2 possible cases:
 - 1. If $z_i then <math>z_i$ and z_j are never compared
 - 2. If $p = z_i$ or $p = z_j$ then z_i and z_j are compared.
- So:

$$Pr[z_i \text{ and } z_j \text{ are compared}] = Pr[p = z_i \text{ or } p = z_j \mid p \in Z_{ij}]$$

Proof: Let
$$Z_{ij} = \{z_i, z_{i+1}, \dots, z_j\}$$
. $|Z_{ij}| = j - i + 1$

- **.**..
- ▶ Consider the first time RQS(S) selects a pivot p in Z_{ij} .
- ► There are 2 possible cases:
 - 1. If $z_i then <math>z_i$ and z_j are never compared
 - 2. If $p = z_i$ or $p = z_j$ then z_i and z_j are compared.
- So:

$$\Pr[z_i \text{ and } z_j \text{ are compared}] = \Pr[p = z_i \text{ or } p = z_j \mid p \in Z_{ij}]$$
 $= \frac{2}{j-i+1}$

Lemma: For i < j, $\Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

Proof: Let
$$Z_{ij} = \{z_i, z_{i+1}, \dots, z_j\}$$
. $|Z_{ij}| = j - i + 1$

- **.**..
- ▶ Consider the first time RQS(S) selects a pivot p in Z_{ij} .
- ► There are 2 possible cases:
 - 1. If $z_i then <math>z_i$ and z_i are never compared
 - 2. If $p = z_i$ or $p = z_j$ then z_i and z_j are compared.
- So:

$$\Pr[z_i \text{ and } z_j \text{ are compared}] = \Pr[p = z_i \text{ or } p = z_j \mid p \in Z_{ij}]$$
 $= \frac{2}{j-i+1}$

The last equality holds because:

(1)
$$|Z_{ii}| = j - i + 1$$

Lemma: For i < j, $\Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

Proof: Let
$$Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}$$
. $|Z_{ij}| = j - i + 1$

- **.**..
- ▶ Consider the first time RQS(S) selects a pivot p in Z_{ij} .
- ▶ There are 2 possible cases:
 - 1. If $z_i then <math>z_i$ and z_j are never compared
 - 2. If $p = z_i$ or $p = z_j$ then z_i and z_j are compared.
- So:

$$\Pr[z_i \text{ and } z_j \text{ are compared}] = \Pr[p = z_i \text{ or } p = z_j \mid p \in Z_{ij}]$$

$$= \frac{2}{j-i+1}$$

The last equality holds because:

(1) $|Z_{ij}| = j - i + 1$, and (2) each key in Z_{ij} is equally likely to be the selected pivot $p \in Z_{ii}$.

Lemma: For i < j, $Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{i-i+1}$

Proof: Let
$$Z_{ij} = \{z_i, z_{i+1}, \dots, z_j\}$$
. $|Z_{ij}| = j - i + 1$

- ▶ Consider the first time RQS(S) selects a pivot p in Z_{ii} .
- There are 2 possible cases:
 - 1. If $z_i then <math>z_i$ and z_i are never compared
 - 2. If $p = z_i$ or $p = z_i$ then z_i and z_i are compared.
- So:

$$\Pr[z_i \text{ and } z_j \text{ are compared}] = \Pr[p = z_i \text{ or } p = z_j \mid p \in Z_{ij}]$$
 $= \frac{2}{j-i+1}$

The last equality holds because:

(1) $|Z_{ii}| = j - i + 1$, and (2) each key in Z_{ii} is equally likely to be the selected pivot $p \in Z_{ii}$.

Note: The exact argument uses conditional probabilities.

▶ We just proved:

Lemma:
$$E(C) = \sum_{1 \le i < j \le n} \Pr[z_i \text{ and } z_j \text{ are compared}]$$

► We will later prove:

Lemma: For
$$i < j$$
, $Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{2}{j-i+1}$

By combining these two lemmas:

$$E(C) = \sum_{1 \le i < j \le n} \frac{2}{j-i+1} = \ldots = 2n(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n})$$

- ▶ It is known that $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$ is $O(\log n)$. [In fact, for $n \ge 2$, $H_n \le (\log_e n) + 1$.]
- ► Therefore:

Theorem:
$$E(C)$$
 is $O(n \log n)$

