Základy spojité optimalizace

Ladislav Láska

23. února 2010

Obsah

1	Úvod			
	1.1	Úloha	, cílová funkce, množina řešení	
	1.2	Dělení	na jednotlivé disciplíny optimalizace	
	1.3	Motiva	ační úloha	
		1.3.1	Lineární programování	
		1.3.2	Celočíslené programování	
		1.3.3	Nelineární programování	
		1.3.4	Parametrické programování	
		135	Vícekriteriální programování	

1 Úvod

1.1 Úloha, cílová funkce, množina řešení

Definice Úloha matematického programování (optimalizace) rozumíme úlohu

$$\min_{x \in M} f(x)$$

kde $f: \mathbb{R}^n \to \mathbb{R}$.

Definice Funkci f(x) nazýváme **cílovou**, účelovou, kriteriální, objektivní funkcí.

Definice Množinu M nazýváme množinou přípustných řešení. Prvek $x \in M$ nazýváme přípustným řešením optimalizační úlohy. Prvek $x_0 \in M$ nazveme optimálním řešením.

1.2 Dělení na jednotlivé disciplíny optimalizace

- 1. Volný extrém $\min_M f(x)$
- 2. Vázaný extrém $\min_M f(x), M \subset \mathbb{R}^n$
 - (a) Lineární programování: $\min_M cx$, $M = \{x | A_x \{=, <, >\} b\}$, kde $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in b^m$
 - (b) Nelineární programování: $\min_M f(x), M = \{x|g_j(x) < 0 (j=1,...,m)\}, f,g_j: \mathbb{R}^n \to \mathbb{R}$
 - i. Konvexní a zobecněné konvexní programování f,g_j konvexní, dále pak kvadratické a hyperbolické programování
 - ii. Nekonvexní (speciální typy)
 - (c) Celočíselné programování: Lineární/nelineární programování, navíc podmínky pro celočíselnost Ax*b, aby $x\in\mathbb{N}.$
 - (d) Parametrické programování: Lineární/nelineární programování, navíc parametr $\min_{M(U)}c(\lambda)^Tx,\ c(x)=c+C\lambda,\ M(U)=\{x|A(U)x*b(U)\}$
 - (e) Vícekriteriální (vektorové) programování: $\min_M f(x), f(x) = \{f_1(x), ..., f_s(x)\}$
 - (f) Dynamické programování hledání optimální strategie
 - (g) Spojité programování (optimalizační procesy)
 - (h) Teorie her optimální strategie dvou hráčů
 - (i) Semiinfinitní programování nekonečně mnoho podmínek

1.3 Motivační úloha

1.3.1 Lineární programování

 $V_1,...,V_n$ - výrobci vyrábějící výrobek V v množstvích $a_i>0$ $S_1,...,S_k$ - spotřebitelé požadující výrobek V v množstvích $b_j>0$. Známe cenu za dopravu jednotky výrobku V z V_i do S_j - $c_{i,j}\geq 0$.

Předpoklad: ceny za dopravu rostou lineárně.

Cíl: minimalizovat celkové náklady na dopravu.

Hledáme: množství $x_{i,j} \ge 0$ - kolik výrobce V_i dodá S_j .

Cílová funkce

$$f(x) = \sum_{i} \sum_{j} c_{i,j} x_{i,j} \tag{1}$$

na množině řešení

$$M = \{x_{i,j} | \sum_{i=1}^{m} x_{i,j} = b_j \forall j, \sum_{i=1}^{m} x_{i,j} = a_i \forall i, \sum_{i} a_i = \sum_{i} b_j, x_{i,j} \ge 0 \forall i \forall j \}$$
 (2)

Všechno je lineární - úloha lineárního programování.

1.3.2 Celočíslené programování

Pokud nelze položky libovolně dělit (například lidi), můžeme přidat celočíselnou podmínku do množiny řešení:

$$x_{i,j} \mathbb{N}_0 \forall i \forall j$$
 (3)

1.3.3 Nelineární programování

Zrušíme předpoklad lineárního růstu cen (tedy cena závisí na množství)

$$f(x) = \sum_{i} \sum_{j} c_{i,j}(x_{i,j}) x_{i,j}$$
(4)

$$c_{i,j} = C_{i,j} + c_{i,j} x_{i,j}$$

1.3.4 Parametrické programování

Produkce není pevná a závisí na parametru: $a_i = \lambda a'_i$. Ostatní vztahy můžou zůstat třeba jako u lineárního programování.

1.3.5 Vícekriteriální programování

Minimalizovat ceny za dopravu, maximalizovat zisky.

$$\min\{f(x), g(x)\}\tag{5}$$

$$f(x) = \sum_{i} \sum_{j} c_{i,j} x_{i,j} \tag{6}$$

$$g(x) = -Zisk(x_{i,j}) (7)$$