Выборный Евгений Викторович email: evybornyi@hse.ru

Математический анализ Тема 2: Предел и непрерывность функции

Москва 2015

Точки сгущения

Пусть \mathfrak{X} — некоторое множество действительных чисел.

 $\mathfrak{X} \subset \mathbb{R}$

Определение

Точка x является **предельной точкой** (точкой сгущения) множества \mathfrak{X} , если в любой проколотой окрестности точки x есть точки из множества \mathfrak{X} .

Данное определение естественным образом обобщается на случай, когда x — это один из символов: $+\infty$, $-\infty$ или ∞ .

Свойства

- ① Предельная точка может как принадлежать, так и не принадлежать множеству. Пример: x = 1 предельная точка для отрезка [0,2] и для интервала (0,1).
- В любой окрестности предельной точки содержится бесконечно много точек множества \mathcal{X} .
- У конечного множества нет предельных точек.
- Предельные точки множества всех значений последовательности являются ее частичными пределами. Обратное верно не всегда.

Докажите эти свойства!

Определение предела функции

Пусть $f: \mathcal{X} \to \mathbb{R}$ — функция, заданная на множестве $\mathcal{X} \subset \mathbb{R}$. Пусть x_0 — предельная точка (конечная или бесконечная) множества \mathcal{X} . Рассмотрим поведение функции f вблизи x_0 .

Определение предела (на языке окрестностей)

Говорят, что число f_0 (или символы $\pm\infty$, ∞) является **пределом функции** f=f(x) при $x \to x_0$ ($x \in \mathcal{X}$), если для любой окрестности V точки f_0 найдется окрестность U точки x_0 такая, что

$$\forall x \in U \cap \mathfrak{X}, \ x \neq x_0 \Rightarrow f(x) \in V.$$

В этом случае пишут:

$$\lim_{x o x_0} f(x) = f_0$$
 или $f(x) o f_0$ при $x o x_0$.

Перепишем данное определение на "языке $\varepsilon-\delta$ " в случае конечного предела f_0 и конечной точки x_0 .

Определение предела (на "языке $\varepsilon-\delta$ ")

Говорят, что число f_0 является **пределом функции** f = f(x) при $x \to x_0$ $(x \in \mathfrak{X})$, если

$$\forall \varepsilon > 0 \; \exists \delta > 0: \; \forall x \in \mathcal{X} \quad |f(x) - f_0| < \varepsilon \; \mathsf{при} \; 0 < |x - x_0| < \delta.$$

Определение предела функции

На "языке $\varepsilon-\delta$ " можно аналогично сформулировать определения бесконечных пределов ($f_0=\infty$ или $\pm\infty$), а также пределов на бесконечности ($x_0=\infty$ или $\pm\infty$).

Упражнения

- ① Выпишете все эти определения и отрицания к ним. Приведите примеры соответствующих функций. Покажите эквивалентность определений на "языке $\varepsilon-\delta$ " и исходного определения предела.
- ullet Докажите, что определение предела функции $a(n): \mathbb{N} \to \mathbb{R}$ при $n \to +\infty$ $(n \in \mathbb{N})$ полностью совпадает с определением предела последовательности $a_n = a(n)$.

Примеры

ullet Пусть $f(x) o +\infty$ при $x o -\infty$, и функция f определена на всей оси. По определению

$$\lim_{x \to -\infty} f(x) = +\infty \quad \Leftrightarrow \quad \forall x > 0 \ \exists \Delta > 0 : \ \forall x < -\Delta \quad f(x) > \varepsilon.$$

В качестве примера можно привести f(x) = -x.

ullet Несложно видеть, что $\lim_{x o 0} 1/x = \infty$. Действительно:

$$orall \mathcal{E} > 0 \; \exists \delta = 1/\mathcal{E}: \; |1/x| > \mathcal{E}$$
 при $0 < |x| < \delta.$

Определение предела функции

На "языке $\varepsilon-\delta$ " можно аналогично сформулировать определения бесконечных пределов ($f_0=\infty$ или $\pm\infty$), а также пределов на бесконечности ($x_0=\infty$ или $\pm\infty$).

Упражнения

- ① Выпишете все эти определения и отрицания к ним. Приведите примеры соответствующих функций. Покажите эквивалентность определений на "языке $\varepsilon-\delta$ " и исходного определения предела.
- ② Докажите, что определение предела функции $a(n): \mathbb{N} \to \mathbb{R}$ при $n \to +\infty$ $(n \in \mathbb{N})$ полностью совпадает с определением предела последовательности $a_n = a(n)$.

Примеры

f O Пусть $f(x) o +\infty$ при $x o -\infty$, и функция f определена на всей оси. По определению:

$$\lim_{x \to -\infty} f(x) = +\infty \quad \Leftrightarrow \quad \forall \varepsilon > 0 \; \exists \Delta > 0 : \; \forall x < -\Delta \quad f(x) > \varepsilon.$$

В качестве примера можно привести f(x) = -x.

② Несложно видеть, что $\lim_{x\to 0}1/x=\infty$. Действительно:

$$orall \mathcal{E} > 0$$
 $\exists \delta = 1/\mathcal{E}: \ |1/x| > \mathcal{E}$ при $0 < |x| < \delta.$

Левый и правый предел функции

Предположим, что точка x_0 является точкой сгущения для множества точек из области определения $\mathfrak X$ функции f, которые строго больше x_0 . Тогда, определяя предел, можно считать, что x стремится к x_0 приближаясь к точке x_0 только справа $(x>x_0)$.

Определение (Правый и левый предел)

Говорят, что число f_0 (или символы $\pm\infty$, ∞) является **правым пределом функции** f=f(x) при $x\to x_0$ ($x\in \mathcal{X}$), если для любой окрестности V точки f_0 найдется окрестность U точки x_0 такая, что

$$\forall x \in U \cap \mathfrak{X}, \ x > x_0 \quad \Rightarrow \quad f(x) \in V.$$

В этом случае пишут:

$$\lim_{x o x_0 + 0} f(x) = f_0$$
 или $f(x) o f_0$ при $x o x_0 + 0$.

На языке $\varepsilon - \delta$ (в случае конечного f_0) получаем:

$$\forall \varepsilon > 0 \,\, \exists \delta > 0: \quad x_0 < x < x_0 + \varepsilon \,\, \Rightarrow \,\, |f(x) - f_0| < \varepsilon.$$

Аналогично определяется и левый предел, при этом пишут $x \to x_0 - 0$ или $x \nearrow x_0$.

Примеры вычисления пределов по определению

 $igl _{x o 4} \sqrt{x} = 2$. Доказательство. Если arepsilon < 2, то

$$\begin{split} |\sqrt{x}-2| < \varepsilon &\quad \Leftrightarrow \quad 2-\varepsilon < \sqrt{x} < 2+\varepsilon &\quad \Leftrightarrow \quad 4-4\varepsilon+\varepsilon^2 < x < 4+4\varepsilon+\varepsilon^2 \\ &\quad \Leftrightarrow \quad -4\varepsilon+\varepsilon^2 < x-4 < 4\varepsilon+\varepsilon^2. \end{split}$$

Следовательно, выбирая $\delta=4\varepsilon-\varepsilon^2$, получаем, что

$$|x-4|<\delta\quad\Rightarrow\quad -4\varepsilon+\varepsilon^2< x-4< 4\varepsilon-\varepsilon^2< 4\varepsilon+\varepsilon^2\quad\Rightarrow\quad |\sqrt{x}-2|<\varepsilon,$$

что и требовалось доказать. Для случая $\varepsilon \geq 2$ можно просто взять $\delta = 1$.

$$|\arctan(1/x) - \pi/2| < \varepsilon \quad \Leftrightarrow \quad \pi/2 - \varepsilon < \arctan(1/x) < \pi/2 + \varepsilon \quad \Leftrightarrow \quad \arctan(1/x) > \pi/2 - \varepsilon$$
$$\Leftrightarrow \quad 1/x > \tan(\pi/2 - \varepsilon) \quad \Leftrightarrow \quad 0 < x < (\tan(\pi/2 - \varepsilon))^{-1}.$$

Следовательно, если выбирать $\delta=1/\lg(\pi/2-\varepsilon)$, то

$$0 < x < \delta \implies |\arctan(1/x) - \pi/2| < \varepsilon.$$

Свойство левого и правого предела функции

Утверждение

Пусть функция f определена в некоторой проколотой окрестности точки x_0 . Предел функции f=f(x) при $x\to x_0$ существует и равен f_0 тогда и только тогда, когда существует как левый, так и правый предел f(x) при $x\to x_0$, и они оба равны f_0 .

$$f_0 = \lim_{x \to x_0} f(x) \quad \Leftrightarrow \quad f_0 = \lim_{x \to x_0 + 0} f(x) = \lim_{x \to x_0 - 0} f(x).$$

Доказательство

Необходимость (\Rightarrow) . Имеем:

$$f_0 = \lim_{x \to x_0} f(x) \quad \Leftrightarrow \quad \forall \varepsilon > 0 \; \exists \delta > 0: \; 0 < |x - x_0| < \delta \; \Rightarrow \; f(x) \in \mathcal{O}_{\varepsilon}(f_0).$$

Поскольку из $x_0-\delta < x < x_0$ следует, что $0<|x-x_0|<\delta$, получаем, что предел слева существует и равен f_0 . Аналогично для предела справа.

Достаточность (\Leftarrow). Имеем:

$$\begin{split} f_0 &= \lim_{x \to x_0 + 0} f(x) \quad \Leftrightarrow \qquad \forall \varepsilon > 0 \; \exists \delta_1 > 0: \; x_0 < x < x_0 + \delta_1 \; \Rightarrow \; f(x) \in O_\varepsilon(f_0), \\ f_0 &= \lim_{x \to x_0 - 0} f(x) \quad \Leftrightarrow \qquad \forall \varepsilon > 0 \; \exists \delta_2 > 0: \; x_0 - \delta_2 < x < x_0 \; \Rightarrow \; f(x) \in O_\varepsilon(f_0). \end{split}$$

Выбирая $\delta = \min(\delta_1, \delta_2)$, получаем то, что $f(x) \in O_{\varepsilon}(f_0)$ при $0 < |x - x_0| < \delta$.

Определение предела по Гейне

Пусть f(x) — функция, заданная на множестве \mathfrak{X} , а z — предельная точка (конечная или бесконечная) множества \mathfrak{X} .

Теорема

Предел функции f(x) при $x \to z$ существует и равен w тогда и только тогда, когда существует и равен w предел **последовательности** значений функции $f(x_n)$ на произвольной последовательности x_n такой, что $x_n \in \mathcal{X}, \ x_n \neq z$ при $\forall n \in \mathbb{N}$ и $x_n \to z$ при $n \to +\infty$.

$$\lim_{x\to z} f(x) = w \quad \Leftrightarrow \quad \forall \ \{x_n\}_{n=1}^{\infty} : \ x_n \in \mathfrak{X}, \ x_n \neq z, \ x_n \to z \quad \lim_{n\to\infty} f(x_n) = w.$$

На основании этой теоремы можно предложить другое эквивалентное определение предела.

Определение предела функции по Гейне

Говорят, что предел функции f(x) при $x \to z$ существует и равен w, если для любой последовательности x_n такой, что $x_n \in \mathcal{X}, \ x_n \ne z$ при $\forall n \in \mathbb{N}$ и $x_n \to z$ при $n \to \infty$, предел последовательности значений функции $f(x_n)$ существует и равен w.

Доказательство эквивалентности определений по Коши и по Гейне

$$\lim_{x\to z} f(x) = w \quad \Leftrightarrow \quad \forall \ \{x_n\}_{n=1}^{\infty}: \ x_n \in \mathcal{X}, \ x_n \neq z, \ x_n \to z \quad \lim_{n\to \infty} f(x_n) = w.$$

Необходимость (\Rightarrow). По определению предела:

$$\lim_{x\to z} f(x) = w \quad \Leftrightarrow \quad \forall \varepsilon > 0 \; \exists \delta > 0: \; f(x) \in \mathcal{O}_{\varepsilon}(w) \; \text{при} \; \forall x \in \dot{\mathcal{O}}_{\delta}(z), \; x \in \mathfrak{X}.$$

Пусть x_n — произвольная последовательность точек из $\mathfrak X$ такая, что $x_n o z$ при $n o +\infty$ и $x_n
eq z$. Тогда по определению предела последовательности:

$$x_n \to z \quad \Rightarrow \quad \exists N > 0 : \ \forall n \ge N \quad x_n \in O_{\delta}(z).$$

Поскольку $x_n \neq z$, то $x_n \in \dot{O}_\delta(z)$ при $n \geq N$. Следовательно,

$$\forall \varepsilon > 0 \ \exists N > 0 : \ f(x_n) \in O_{\varepsilon}(w) \ \forall n \geq N,$$

то есть последовательность $f(x_n)$ стремится к w.

Доказательство эквивалентности определений по Коши и по Гейне

$$\lim_{x\to z} f(x) = w \quad \Leftrightarrow \quad \forall \ \{x_n\}_{n=1}^{\infty}: \ x_n \in \mathcal{X}, \ x_n \neq z, \ x_n \to z \quad \lim_{n\to\infty} f(x_n) = w.$$

Достаточность (\Leftarrow). Предположим обратное: предел по Гейне существует и равен w, а по Коши — нет. Тогда по определению предела (по Коши):

$$\lim_{x\to z} f(x)\neq w \quad \Leftrightarrow \quad \exists \varepsilon_0>0: \ \forall \delta>0 \ \exists x=x(\delta)\in \dot{O}_\delta(z), \ x\in \mathfrak{X}: \quad f(x)\notin O_\varepsilon(w).$$

Выбирая последовательность значений $\delta=\delta_n=1/n$ получаем последовательность x_n такую, что $f(x_n)\notin O_{\varepsilon}(w)$ при $\forall n\in\mathbb{N}$ и $x_n\to z$ при $n\to+\infty$. Следовательно, $\lim_{n\to\infty}f(x_n)\neq w$, что противоречит определению предела по Гейне.

Пример

Рассмотрим функцию $f(x)=\sin(1/x)$ в окрестности точки x=0. Пусть

$$x_n = \left(\frac{\pi}{2} + 2\pi n\right)^{-1}, \quad y_n = \left(-\frac{\pi}{2} + 2\pi n\right)^{-1}.$$

Очевидно, что $x_n \to 0$ и $y_n \to 0$ при $n \to \infty$, но $f(x_n) = 1$, а $f(y_n) = -1$ при любых $n \in \mathbb{N}$. Следовательно, предел $\lim_{x \to 0} f(x)$ не существует!

Свойства предела функции

Свойства пределов функций аналогичны свойствам пределов последовательностей.

Пусть f(x), g(x) определены в некоторой окрестности x_0 и $f(x) o f_0$, $g(x) o g_0$ при $x o x_0$.

- Единственность. Предел функции определен однозначно.
- Арифметические свойства пределов
 - $\exists \lim_{x \to x_0} (af(x) + bg(x)) = af_0 + bg_0,$
 - $\exists \lim_{x \to x_0} f(x)g(x) = f_0g_0,$
 - § Если $g_0 \neq 0$, то $\exists \lim_{x \to x_0} f(x)/g(x) = f_0/g_0$.
- **④** Переход к пределу в неравенствах. Если $f(x) \le g(x)$ при x из некоторой окрестности x_0 , то $f_0 \le g_0$.
- **④** Лемма "о двух милиционерах". Пусть h(x) функция, определенная в некоторой окрестности x_0 , и $f(x) \le h(x) \le g(x)$. Тогда, если $f_0 = g_0 = A$, то существует предел $\lim_{x \to \infty} h(x) = A$.
- **©** Сохранение знака. Если $f_0 > 0$ (или $f_0 < 0$), то f(x) > 0 (соответственно f(x) < 0) в некоторой проколотой окрестности x_0 .

Упражнения

Доказать эти свойства, используя как определение предела по Коши, так и определение по Гейне

Замена переменных в пределе

Пусть функция g(x) определена в некоторой проколотой окрестности x_0 , а функция f(y) определена в некоторой проколотой окрестности y_0 .

Теорема (Замена переменных в пределе)

Пусть существуют пределы:

$$\lim_{x\to x_0} g(x) = y_0, \qquad \lim_{y\to a} f(y) = z,$$

и $g(x) \neq y_0$ для x, достаточно близких к x_0 . Тогда

$$\exists \lim_{x \to x_0} f(g(x)) = z.$$

В качестве x_0 , y_0 и z могут фигурировать символы $\pm \infty$ и ∞ .

Доказательство

Доказательство проведем, используя определение предела по Гейне:

$$\forall \{x_n\}: \ x_n \neq x_0, \ x_n \rightarrow x_0 \quad \Rightarrow \quad g(x_n) \rightarrow y_0, \ g(x_n) \neq y_0 \quad \Rightarrow \quad f(g(x_n)) \rightarrow z, \ (n \rightarrow +\infty).$$

Непрерывность функции

Определение

Функция f(x), определенная в некоторой окрестности точки x_0 , называется **непрерывной** в точке x_0 , если существует предел f(x) при $x \to x_0$ и он равен значению функции f в этой точке:

$$\exists \lim_{x \to x_0} f(x) = f(x_0).$$

Функция f(x) называется **непрерывной на интервале**, если она непрерывна в каждой его точке.

Функция f(x) называется **непрерывной на отрезке** [a,b], если она непрерывна на интервале (a,b) и

$$\exists \lim_{x \to a+0} f(x) = f(a), \qquad \exists \lim_{x \to b-0} f(x) = f(b).$$

Замечание

Если функция f(y) непрерывна в точке y_0 , и $g(x) o y_0$ при $x o x_0$ то

$$\lim_{x\to x_0} f(g(x)) = f\left(\lim_{x\to x_0} g(x)\right) = f(y_0).$$

Пример непрерывной функции

Функция $f(x) = \sin(x)$ — непрерывна на всей оси.

Убедимся в непрерывности синуса в произвольной точке x_0 . Необходимо проверить, что

$$\lim_{x \to x_0} \sin(x) = \sin(x_0).$$

По определению предела:

$$\lim_{\substack{x\to x_0\\ x\to x_0}}\sin(x)=\sin(x_0)\quad\Leftrightarrow\quad\forall \varepsilon>0\,\,\exists \delta>0:\,\,|\sin(x)-\sin(x_0)|<\varepsilon\,\,\text{при}\,\,|x-x_0|<\delta.$$

Пользуясь формулой для разности синусов и неравенством $|\sin(x)| < |x|$, получаем, что

$$|\sin(x)-\sin(x_0)|=2\left|\sin\left(\frac{x-x_0}{2}\right)\cos\left(\frac{x+x_0}{2}\right)\right|\leq 2\left|\sin\left(\frac{x-x_0}{2}\right)\right|\leq |x-x_0|.$$

Выбирая $\delta = \varepsilon$, получаем, что

$$\forall \varepsilon > 0 \quad |\sin(x) - \sin(x_0)| < \varepsilon \text{ при } |x - x_0| < \delta.$$

Что и требовалось показать.

Упражнение

Проведите аналогичное доказательство для cos(x).

Первый замечательный предел

Лемма

$$\cos(x) < \frac{\sin(x)}{x} < 1$$
, при $0 < |x| < \frac{\pi}{2}$.

Доказательство

Поскольку $\sin(x)/x$ и $\cos(x)$ — четные функции, то неравенство необходимо проверить только для $0 < x < \pi/2$.

Сравним площадь треугольника ΔOAB , сектора OAB и треугольника ΔOAC :

$$\begin{split} S_{\Delta OAB} &= \frac{1}{2}|BD||OA| = \frac{1}{2}\sin(x).\\ S_{\text{cektop}(OAB)} &= \frac{1}{2}r^2x = \frac{x}{2}.\\ S_{\Delta OAC} &= \frac{1}{2}|AC||OA| = \frac{1}{2}\operatorname{tg}(x). \end{split}$$

$$S_{\Delta OAB} < S_{\mathsf{cektop}(OAB)} < S_{\Delta OAC} \quad \Rightarrow \quad \sin(x) < x < \frac{\sin(x)}{\cos(x)} \quad \Rightarrow \quad \cos(x) < \frac{\sin(x)}{x} < 1.$$

Первый замечательный предел

Утверждение (Первый замечательный предел)

$$\lim_{x\to 0}\frac{\sin(x)}{x}=1.$$

Доказательство

Доказательство основано на неравенстве:

$$\cos(x)<\frac{\sin(x)}{x}<1,\quad \text{при } 0<|x|<\frac{\pi}{2}.$$

Поскольку cos(x) — непрерывная функция:

$$\lim_{x\to 0}\cos(x)=\cos(0)=1.$$

Следовательно, достаточно перейти к пределу при $x \to 0$ в неравенстве, используя лемму "о двух милиционерах".

Первый замечательный предел

Замечание

Функция $\frac{\sin(x)}{x}$ не является непрерывной при x=0, поскольку не определена в этой точке, но если мы рассмотрим функцию

$$f(x) = \begin{cases} \frac{\sin(x)}{x} & x \neq 0; \\ 1 & x = 0, \end{cases}$$

то f(x) будет непрерывна на всей оси.

Примеры вычисления пределов

Несколько примеров на вычисление пределов:

здесь мы воспользовались арифметическими свойствами предела.

здесь мы воспользовались арифметическими свойствами предела, теоремой о замене переменных в пределе и тем, что

$$\lim_{x\to 0} \arcsin(x) = 0.$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \left\{ 1 - \cos(x) = 2\sin^2\left(\frac{x}{2}\right) \right\} = 2\lim_{x \to 0} \frac{\sin^2(x/2)}{x^2} = \left\{ x/2 = z, \ x = 2z \right\} = \frac{2}{4} \left(\lim_{z \to 0} \frac{\sin(z)}{z} \right)^2 = \frac{1}{2}.$$

Свойства непрерывных функций

Локальные свойства непрерывных функций следуют из соответствующих свойств пределов.

Пусть f(x) и g(x) определены в некоторой окрестности x_0 и непрерывны в точке x_0 .

- **1** Линейная комбинация h(x) = a f(x) + b g(x) непрерывных функций непрерывна.
- **②** Произведение h(x) = f(x)g(x) непрерывных функций непрерывно.
- **§** Если $g(x_0) \neq 0$, то **отношение** непрерывных функций h(x) = f(x)/g(x) непрерывно.
- **© Сохранение знака.** Если $f(x_0) > 0$ (или $f(x_0) < 0$), то f(x) > 0 (соответственно, f(x) < 0) в некоторой окрестности x_0 .
- **©** Сложная функция h(x) = f(g(x)), составленная из двух непрерывных функций, непрерывна. Здесь f(x) должна быть определена и непрерывна не в окрестности точки x_0 , а в точке $g(x_0)$.

Упражнения

Доказать эти свойства, используя соответствующие свойства пределов. Показать, что если условия, наложенные на f и g, не справедливы, то свойства могут и не выполняться. Приведите различные примеры.

Многочлены и рациональные функции

Определение

Функцию P(x) вида:

$$P(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n,$$

где $n \in \mathbb{N}$, $a_i \in \mathbb{R}$ и $a_0 \neq 0$, называют **многочленом** (или полиномом) степени n.

Утверждение

Многочлены непрерывны на всей оси.

Данное утверждение следует непосредственно из свойств непрерывных функций и из непрерывности постоянной функции f(x)=1 и линейной функции g(x)=x.

Определение

Функцию R(x) вида:

$$R(x) = \frac{P_1(x)}{P_2(x)}$$

где $P_1(x)$ и $P_2(x)$ — полиномы, называют рациональной функцией от x.

Утверждение

Рациональные функции непрерывны на всей своей области определения.

Классификация разрывов функций

Критерий непрерывности

Функция f, определенная в окрестности точки x_0 , непрерывна в точке x_0 тогда и только тогда, когда существуют как левый, так и правый пределы f в этой точке, и они равны $f(x_0)$:

$$f(x_0+0)=f(x_0-0)=f(x_0).$$
 (*)

Следовательно, возникает следующая классификация точек разрыва функций:

- **③** Говорят, что x_0 точка разрыва **1-го рода**, если оба односторонних предела существуют и конечны, но не выполнено одно из равенств в (*).
- \odot Говорят, что x_0 точка разрыва **2-го рода**, если один из односторонних пределов не существует или бесконечен.

Иногда отдельно выделяют случай, где правый и левый предел совпадают:

$$f(x_0+0)=f(x_0-0),$$

но они не равны $f(x_0)$ или $f(x_0)$ не определено. Такие точки называют устранимыми точками разрыва функции f. Действительно, функция

$$\tilde{f}(x) = \begin{cases} f(x) & x \neq x_0; \\ f(x_0 + 0) & x = x_0, \end{cases}$$

отличающаяся от f лишь в точке x_0 , будет непрерывной.

Бесконечно большие и бесконечно малые функции

Определение

Функция $\alpha(x)$, определенная в некоторой окрестности x_0 , называется **бесконечно малой** при $x \to x_0$, если она стремится к 0 при $x \to x_0$:

$$\lim_{x\to x_0}\alpha(x)=0.$$

Определение

Функция A(x), определенная в некоторой окрестности x_0 , называется **бесконечно большой** при $x \to x_0$, если она стремится к ∞ при $x \to x_0$:

$$\lim_{x\to x_0} A(x) = \infty.$$

Аналогичные определения используются и в случае других предельных процессов, таких как $x \to \pm \infty$, $x \to \infty$, $x \to x_0 \pm 0$ и др.

Бесконечно большие и бесконечно малые функции

Основные свойства

- Функция f(x) стремится к числу f_0 при $x \to x_0$ тогда и только тогда, когда разность $\alpha(x) = f(x) f_0$ является бесконечно малой функцией.
- Сумма, разность, произведение двух бесконечно малых функций это бесконечно малая функция.
- Произведение бесконечно малой функции на ограниченную функцию это бесконечно малая функция.
- ullet Если A(x) бесконечно большая функция, то 1/A(X) это бесконечно малая функция.

Примеры

Функции x, x^2 , $\sin(x)$ являются бесконечно малыми при $x \to 0$.

Бесконечно большие и бесконечно малые функции

Теорема

Функция f(x) является непрерывной в точке x_0 тогда и только тогда, когда любое бесконечно малое приращение аргумента приводит к бесконечно малому приращению функции.

Доказательство

Необходимо показать, что

$$\lim_{x o x_0} f(x) = f(x_0) \quad \Leftrightarrow \quad orall \; lpha(z) \quad |f(x_0 + lpha(z)) - f(x_0)| \; - \; \mathsf{бесконечна} \; \mathsf{малая},$$

где $\alpha(z)$ — бесконечно малая функция z. Дальнейшее доказательство полностью аналогично доказательству эквивалентности определений предела по Коши и по Гейне.

Упражнения

Проведите полностью данное доказательство, а также доказательства основных свойств бесконечно больших и бесконечно малых.

Как данная теорема связана с теоремой о непрерывности сложной функции?

Определение

Две функции f(x) и g(x), определенные и не равные 0 в некоторой проколотой окрестности точки x_0 , являются **асимптотически эквивалентными**, если

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=1.$$

Записывают это следующим образом:

$$f(x) \sim g(x) \quad (x \to x_0).$$

Свойства

- ullet Рефлексивность: $f(x) \sim f(x)$
- ullet Симметричность: $f(x) \sim g(x) \Leftrightarrow g(x) \sim f(x)$.
- ullet Транзитивность: $f(x) \sim g(x), \ g(x) \sim h(x) \Rightarrow f(x) \sim h(x)$

Упражнение

Докажите данные свойства, исходя из свойств предела функции.

Определение

Две функции f(x) и g(x), определенные и не равные 0 в некоторой проколотой окрестности точки x_0 , являются асимптотически эквивалентными, если

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1.$$

Записывают это следующим образом:

$$f(x) \sim g(x) \quad (x \to x_0).$$

Свойства

① Рефлексивность: $f(x) \sim f(x)$.

ullet Симметричность: $f(x) \sim g(x) \Leftrightarrow g(x) \sim f(x)$.

© Транзитивность: $f(x) \sim g(x), \ g(x) \sim h(x) \Rightarrow f(x) \sim h(x).$

Упражнение

Докажите данные свойства, исходя из свойств предела функции.

Лемма 1

Пределы эквивалентных функций совпадают:

$$f(x) \sim g(x), \ f(x) \rightarrow A \quad \Rightarrow \quad g(x) \rightarrow A$$

Доказательство

$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} \left(f(x) \cdot \frac{g(x)}{f(x)} \right) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} \frac{g(x)}{f(x)} = A \cdot 1 = A.$$

Лемма 2

Произведения и отношения эквивалентных функций — эквивалентны:

$$f(x) \sim g(x), \ h(x) \sim r(x) \quad \Rightarrow \quad f(x)h(x) \sim g(x)r(x), \ f(x)/h(x) \sim g(x)/r(x).$$

Доказательство

$$\lim_{x \to x_0} \frac{f(x)h(x)}{g(x)r(x)} = \lim_{x \to x_0} \frac{f(x)}{g(x)} \cdot \frac{h(x)}{r(x)} = \lim_{x \to x_0} \frac{f(x)}{g(x)} \cdot \lim_{x \to x_0} \frac{h(x)}{r(x)} = 1 \cdot 1 = 1,$$

$$\lim_{x \to x_0} \frac{f(x)/h(x)}{g(x)/r(x)} = \lim_{x \to x_0} \frac{f(x)}{g(x)} \cdot \frac{r(x)}{h(x)} = \lim_{x \to x_0} \frac{f(x)}{g(x)} \cdot \lim_{x \to x_0} \frac{r(x)}{h(x)} = 1 \cdot 1 = 1.$$

Из Лемм 1 и 2 следует важная для вычисления пределов теорема.

Теорема

Предел произведения или отношения двух функций не изменится, если одну из них (или обе) заменить эквивалентными функциями.

Примеры эквивалентных функций

- **1** $\sin(x) \sim x$, $\pi pu x \rightarrow 0$;
- **3** $1 \cos(x) \sim \frac{x^2}{2}$, при $x \to 0$;
- **4** $x^2 + 3x + 5 \sim x^2$, при $x \to +\infty$;
- **5** $x^2 + 3x + 5 \sim 5$, при $x \to 0$;

Замечание

Если пара функций эквивалентна, то это еще не означает, что их разность мала. Например, $x^2+3x+5\sim x^2$ при $x\to +\infty$, но их разность 3x+5 является бесконечно большой величиной при $x\to +\infty$.

Сравнение бесконечно малых

Определение

Говорят, что функция f(x) имеет меньший порядок чем g(x) при $x o x_0$, если

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0,$$

при этом пишут:

$$f(x) = o(g(x)), \quad (x \to x_0).$$

Из определения следует, что f(x) = o(g(x)) тогда и только тогда, когда $f(x) = \alpha(x)g(x)$, где $\alpha(x)$ — бесконечно маленькая функция, при $x \to x_0$.

Если $\alpha(x)$ — бесконечно маленькая функция, то $\alpha(x) = o(1)$, и наоборот.

Символ o(1) и o(g(x)) часто используют в формулах, подразумевая, что вместо этого символа в формуле стоит некоторая, вообще говоря неизвестная, функция обладающая соответствующими свойствами.

Пример

$$\frac{\sin(x)}{x} \sim 1 \quad \Leftrightarrow \quad \frac{\sin(x)}{x} = 1 + o(1) \quad \Leftrightarrow \quad \sin(x) = x(1 + o(1)) = x + o(x).$$

Показательная функция

Функцию $f(x) = a^{\mathsf{x}}$, где a > 1 — фиксированное действительное число, называют показательной функцией.

Величина a^x естественным образом определяется для рациональных x>0:

$$a^{x}=\sqrt[n]{a^{m}},\quad$$
где $x=rac{m}{n}\in\mathbb{Q}.$

Для иррациональных значений x показательная функция определяется как предел значений $f(x_n)$, где x_n — рациональные приближения числа x ($x_n \in \mathbb{Q}$: $x_n \to x$, при $n \to +\infty$). Хорошо известно, что

$$a^0 = 1$$
, $a^{x+y} = a^x a^y$, $a^{-1} = \frac{1}{a}$, $a^{xy} = (a^x)^y$, $(ab)^x = a^x b^x$.

Определяющие свойства

Функция f(x) является показательной функцией a^x тогда и только тогда, когда:

- f(1) = a
- $f(x+y) = f(x) \cdot f(y)$ для любых x и y.

Ни одно из этих трех условий не является излишним.

Примеры вычисления пределов

Пример 1

Докажем, что

$$\lim_{x\to+\infty}a^x=+\infty,\quad (a>1).$$

Действительно, для любого E>0 достаточно взять $\Delta=\log_a E.$ Тогда при $x>\Delta$ будет $a^x>E.$ Следовательно,

$$\forall E > 0 \; \exists \Delta > 0 : \; x > \Delta \; \Rightarrow \; a^x > E.$$

Аналогично вычисляются следующие пределы:

$$\lim_{x \to -\infty} a^x = 0, \qquad (a > 1),$$

$$\lim_{x \to +\infty} a^x = 0, \quad \lim_{x \to -\infty} a^x = +\infty, \qquad (0 < a < 1),$$

$$\lim_{x \to +0} \log_a x = -\infty, \quad \lim_{x \to +\infty} \log_a x = +\infty, \qquad (a > 1).$$

Упражнение

Проведите полностью соответствующие доказательства.

Примеры вычисления пределов

Пример 2

Докажем, что

$$\lim_{x\to +\infty}\frac{a^x}{x}=+\infty,\quad (a>1).$$

Нам известно, что для $n ∈ \mathbb{N}$

$$\lim_{n\to+\infty}\frac{a^n}{n}=+\infty.$$

Выбирая n = n(x) так, что $n \le x < n+1$, получаем, что

$$\frac{a^{x}}{x} \ge \frac{a^{n}}{n+1} = \frac{a^{n}}{n} \frac{1}{1+1/n} \to +\infty, \quad (x \to +\infty).$$

Аналогично вычисляются следующие пределы:

$$\lim_{x \to +\infty} \frac{a^x}{x^k} = +\infty, \quad (a > 1, \ k > 0),$$

$$\lim_{x \to +\infty} \frac{\log_a(x)}{x^k} = 0, \quad \lim_{x \to +0} x^k \log_a(x) = 0, \quad (a > 1, k > 0).$$

Упражнение

Проведите полностью соответствующие доказательства.

Второй замечательный предел

Теорема (Второй замечательный предел)

$$\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=\lim_{x\to0}\left(1+x\right)^{\frac{1}{x}}=e.$$

Доказательство

Пусть для начала $x \to +\infty$. Выберем натуральное n=n(x) такое, что $n \le x < n+1$. Следовательно,

$$\left(1+\frac{1}{n+1}\right)^n<\left(1+\frac{1}{x}\right)^x<\left(1+\frac{1}{n}\right)^{n+1}.$$

Очевидно, левая и правая часть данного неравенства стремится к e при $x \to +\infty$.

Теперь рассмотрим случай $x \to -\infty$:

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = \lim_{t \to +\infty} \left(1 - \frac{1}{t}\right)^{-t} = \lim_{t \to +\infty} \left(\frac{t-1}{t}\right)^{-t} = \lim_{t \to +\infty} \left(\frac{t}{t-1}\right)^t =$$

$$= \lim_{t \to +\infty} \left(1 + \frac{1}{t-1}\right)^t = \lim_{t \to +\infty} \left(1 + \frac{1}{t-1}\right)^{t-1} \left(1 + \frac{1}{t-1}\right) = e \cdot 1 = e.$$

Второй замечательный предел

Второй замечательный предел

$$\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=\lim_{x\to0}\left(1+x\right)^{\frac{1}{x}}=e.$$

Следствия

1 $\ln(1+x) \sim x$ при $x \to 0$. Действительно:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{1/x} = \ln\left(\lim_{x \to 0} (1+x)^{1/x}\right) = \ln(e) = 1.$$

② $e^x - 1 \sim x$ при $x \to 0$. Выполнив замену переменной в пределе, получаем:

$$\lim_{x \to 0} \frac{e^{x} - 1}{x} = \{x = \ln(1 + t); \ t = e^{x} - 1; \ x \to 0 \ \Rightarrow \ t \to 0\} = \lim_{t \to 0} \frac{t}{\ln(1 + t)} = 1.$$

 $oldsymbol{0}$ $(1+x)^{lpha}-1\sim lpha x$ при x o 0. Учитывая, что $lpha \ln(1+x) o 0$, получаем:

$$\lim_{x\to 0}\frac{(1+x)^\alpha-1}{\alpha x}=\lim_{x\to 0}\frac{\mathrm{e}^{\alpha\ln(1+x)}-1}{\alpha x}=\lim_{x\to 0}\frac{\alpha\ln(1+x)}{\alpha x}=\lim_{x\to 0}\frac{\ln(1+x)}{x}=1.$$

Теорема о промежуточном значении

Теорема о нуле непрерывной функции

Пусть функция f(x) непрерывна на [a,b] и принимает на концах отрезка значения разных знаков: f(a)f(b)<0. Тогда существует точка $c\in(a,b)$, для которой f(c)=0.

Доказательство

Пусть для определенности f(a) < 0 и f(b) > 0. Положим $a_0 = a$, $b_0 = b$.

Рассмотрим c_0 — середину отрезка $[a_0, b_0]$: $c_0 = (a_0 + b_0)/2$.

- **1** Если $f(c_0) = 0$, то положим $c = c_0$.
- ullet Если $f(c_0) < 0$, то положим $a_1 = c_0$, $b_1 = b_0$.

Повторяя данную операцию для отрезка $[a_1,b_1]$ и далее при необходимости, получаем последовательности $\{a_n\}$ и $\{b_n\}$. Если точку c удается найти на конечном шаге n, то теорема доказана.

Предположим, что найти точку c не удалось. По построению: a_n не убывает, b_n не возрастает и $b_n-a_n=(b-a)/2^n$. Следовательно, a_n и b_n сходятся к общему пределу $c\in (a,b)$. Остается показать, что f(c)=0. Учитывая непрерывность f, получаем, что $f(a_n)\to f(c)$ и $f(b_n)\to f(c)$ при $n\to +\infty$. Следовательно,

$$f(a_n) < 0$$
, $f(b_n) > 0$ \Rightarrow $f(c) \le 0$, $f(c) \ge 0$ \Rightarrow $f(c) = 0$.

Теорема о промежуточном значении

Теорема о промежуточном значении

Пусть функция f(x) непрерывна на отрезке [a,b] и $f(a) \neq f(b)$. Тогда любое число d из интервала с концами f(a) и f(b) является значением функции f(x) в некоторой точке $c \in (a,b)$: f(c) = d.

Доказательство

Достаточно применить теорему о нуле непрерывной функции к функции $f_1(x) = f(x) - d$.

Замечание

Условие непрерывности функции f(x) существенно для данных теорем. Рассмотрите пример $f(x) = \mathrm{sign}(x)$ на [-1,1].

Обратная функция

Теорема об обратной функции

Пусть функция y = f(x) строго монотонна и непрерывна на отрезке [a,b]. Тогда существует обратная к y = f(x) функция x = g(y), и она строго монотонна и непрерывна на отрезке с концами в точках f(a) и f(b).

Доказательство

Пусть для определенности f(x) строго возрастает, следовательно, f(b) > f(a).

- ① Существование. Уравнение f(x) = y для фиксированного $y \in [f(a), f(b)]$ имеет единственное решение x = g(y). Существование решения следует из теоремы о промежуточном значении, а единственность из монотонности функции f(x).
- **②** Монотонность. Пусть $y_0 < y_1$ и $x_0 = g(y_0), \ x_1 = g(y_1).$ Тогда $f(x_0) = y_0$ и $f(x_1) = y_1$. Учитывая, что f(x) строго возрастает и $y_0 < y_1$, получаем, что $x_0 < x_1$. Следовательно, $g(y_0) < g(y_1)$, то есть g(y) также строго возрастает.
- **© Непрерывность**. Докажем непрерывность g(y) в точке y_0 . Возьмем произвольное $\varepsilon > 0$. Пусть

$$g(y_0) = x_0, \quad y_1 = f(x_0 - \varepsilon), \quad y_2 = f(x_0 + \varepsilon).$$

Выбирая $\delta = \min(y_0 - y_1, y_2 - y_0)$, получаем, что

$$|y - y_0| < \delta \quad \Rightarrow \quad y_1 < y < y_2 \quad \Rightarrow \quad g(y_1) < g(y) < g(y_2) \quad \Rightarrow \quad x_0 - \varepsilon < g(y) < x_0 + \varepsilon.$$

Теоремы Вейерштрасса

Первая теорема Вейерштрасса

Функция f(x), непрерывная на отрезке [a,b], является ограниченной на этом отрезке:

$$\exists C > 0: \ \forall x \in [a, b] \ |f(x)| < C.$$

Вторая теорема Вейерштрасса

Функция f(x), непрерывная на отрезке [a,b], достигает на этом отрезке своего наибольшего и наименьшего значения:

$$\exists x_{1,2} \in [a,b]: \quad f(x_1) = \inf_{x \in [a,b]} f(x), \quad f(x_2) = \sup_{x \in [a,b]} f(x).$$

Замечание

Условие непрерывности функции f(x) на отрезке существенно для данных теорем.

Рассмотрите пример f(x) = 1/x на интервале (0,1).