ANALOG CIRCUITS DESIGN

AE8: DC-DC converters

Course overview

- 1. Introduction
- 2. The linear regulator
- 3. Switching regulators
- 4. Switching versus linear

1. Introduction: system overview

Typical portable device

Optimal use of power supplies

Heath dissipation & occupied area

Devices protection

1. Introduction: topologies overview

1. Introduction: Stabilization vs regulation

Stabilization:

Only attenuates variations of V_{NS}

$$r_Z \ll R lim$$

Load current peaks smoothing

$$I_R = I_Z + I_L = Cte$$

Large influence of temperature (Zener: 2mV/°C)

Shunt configuration

Regulation:

Reacts to variations of V_{NS}: permanent comparison of V_L with a reference (temperature compensated)

Correction with respect to variations:

of load current changes

of V_{NS} variations

Series configuration

1. Introduction: Line vs Load regulation

Two important features

How output voltage changes if input voltage changes (LiNe Regulation)?

$$\Delta V_{LNR} = \left(\frac{\Delta V_{L}}{\Delta V_{NS}}\right)_{I_{L}} = Cte$$

How output voltage changes if output current changes (LoaD Regulation)?

$$\Delta V_{LDR} = \left(\frac{\Delta V_{L}}{\Delta I_{L}}\right)_{V_{NS}} = Cte$$

2. The linear regulator: principle of operation

Feedback: the amplifier attempts to adjust its output voltage so that:

$$Vref = V_L \cdot \frac{R2}{R1 + R2} \qquad \longrightarrow \qquad V_L = Vref \cdot \left(1 + \frac{R1}{R2}\right)$$

Practical implementation

Amplifier must remain in linear region, i.e. $V_{NS} > V_{L}$

= Non-zero dropout voltage

Main limitation: non-inverting, attenuator

2. The linear regulator: some important features to check

2. The linear regulator: what does it look like?

2. The linear regulator: drop-out voltage issue

Why is drop-out voltage (V_{DO}) an issue?

Dissipated power:
$$P_D = (V_{NS} - V_L) \cdot I_L$$

Min. dissipated power:

$$P_D = V_{DO} \cdot I_L$$

efficiency:
$$\eta_{\text{max}} \approx \frac{V_{\text{L}}}{V_{\text{NS}}} = \frac{V_{\text{NS}} - V_{\text{DO}}}{V_{\text{NS}}} = 1 - \frac{V_{\text{DO}}}{V_{\text{NS}}}$$

Drop-out voltage impacts battery lifetime: example for $V_1 = 3.3V$, $I_1 = 30mA$

$$V_{DO} = 1.8V$$

$$V_{NS}$$
min = $V_L + V_{DO} = 5.1V$

4 cells

min. 1.28V per cells

battery lifetime ~ 10h

$$V_{DO} = 380 \text{mV}$$

 V_{NS} min = 3.68V

3 cells

min. 1.22V per cells

battery lifetime ~ 15h

 $V_{DO} = 110 \text{mV}$

 V_{NS} min = 3.44V

3 cells

min. 1.11V per cells

battery lifetime ~ 20h

Competitive advantage for Low Drop-Out (LDO) regulators

2. The linear regulator: ground current issue

When is ground current (I_{GND}) an issue?

Design target: I_Lmin >> I_{GND}

May be an isssue when $I_L = 0$ (sleep mode)

3. Switching regulators: the idea behind that

Why not a linear regulator?

The linear regulator dissipates power continuously = bad efficiency Solution: provide power when necessary to an energy "tank"

Principle of operation

Requires a capacitor to smooth the output voltage

Requires an inductor to limit current spikes in the capacitor when turning the switch on

3. Switching regulators: the idea behind that (2)

Current can't be zeroed instantaneously in an inductor: a second switch is required to close the path

Minimum required hardware

A filtering capacitor at the output

A combination of 2 switches and an inductor

3. Switching regulators: L & C in periodic steady state

duality principle:

inductor capacitor
current voltage
no current discontinuity through an inductor

no voltage discontinuity across a capacitor

Assumption: operation in the periodic steady state

$$v(t) = L \cdot \frac{di(t)}{dt}$$

$$i(t) = i(to) + \frac{1}{L} \cdot \int_{to}^{(to+t)} v(t) \cdot dt$$

$$i(to) = i(to+T)$$

$$i(to + T) - i(to) = 0$$

thus:
$$\int_{t_0}^{(t_0+T)} v(t) \cdot dt = \frac{1}{T} \cdot \int_{t_0}^{(t_0+T)} v(t) \cdot dt = 0$$

Average voltage across an inductor is zero in periodic steady state

Duality: average current through a capacitor is zero in periodic steady state

3. Switching regulators: BUCK converter

Average voltage across the inductor is zero, V_{Don} neglected (ideal diode):

$$(Vin-Vout) \cdot \theta T = Vout \cdot T \cdot (1-\theta)$$

$$\frac{Vout}{Vin} = \theta$$

3. Switching regulators: BOOST converter

Average voltage across the inductor is zero, V_{Don} neglected (ideal diode):

$$Vin \cdot \theta T = -(Vin - Vout) \cdot T \cdot (1 - \theta)$$

$$\frac{\text{Vout}}{\text{Vin}} = \frac{1}{1 - 6}$$

3. Switching regulators: BUCK-BOOST converter

Average voltage across the inductor is zero, V_{Don} neglected (ideal diode):

$$Vin \cdot \theta T = -Vout \cdot T \cdot (1 - \theta)$$

$$\frac{Vout}{Vin} = \frac{-\theta}{1 - \theta}$$

3. The switching regulator: what does it look like?

3. Switching regulators: output voltage regulation

PWM = Pulse Width Modulation : duty cycle θ is adjusted to keep Vout constant whatever the variations of Vin and lout

constant load: \bigvee Vin \bigvee \rightarrow I_L \bigvee \rightarrow lout \bigvee \rightarrow Vout \bigvee \rightarrow Vout \bigvee \rightarrow Vout \bigwedge

3. Switching regulators: efficiency & losses

No dissipative element in the circuit: theoretical efficiency $\eta = 100\%$!! Practically, $\eta < 100\%$ due to losses which come from:

power dissipated (P_{Tdiss}) in the switch (transistor):

- when switch is on (P_{Tdiss} = VCEsat * lin)

- during commutations

series resistance Rs of the inductor ($P_{Rdiss} = Rs I_L$)

power dissipated (P_{Ddiss}) in the diode ($P_{Ddiss} = VD_{on}*I_{D}$)

Use Shottky diodes!

series resistance R_{ESR} of the capacitor

ESR: Equivalent Series Resistor

4. Linear versus Switching

	Linear	Switching
Configurations	"BUCK" only	BOOST, BUCK, BUCK-BOOST
Efficiency	Typically low to average, high if V _{NS} -V _L =V _{DO}	High excepted for low load currents I _L
Temperature rise	High, depends on V _{NS} -V _L	Normally low
Design complexity	Low, low component count	Average to high typically more components compared to linear designs design may be difficult **
Size	large area if heathsink is mandatory	lower area compared to linear designs for high output power
Cost	low	average to high
Output noise	low	average to high

^{**} Fortunately, free design tools exist: WEBBENCH from Texas instruments, LTpowerCAD from Linear Technology and many more....

