- 1. Determinar qué propiedades (reflexividad, simetría, antisimetría o transitividad) cumplen las siguientes relaciones y determinar cuáles son una relación de equivalencia o de orden (parcial o total).
 - a) $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x y \text{ es múltiplo de } 3\}$

Reflexividad. Como 0 es múltiplo de cualquier número y ademas $\forall x \in \mathbb{R}$ se cumple que x - x = 0, entonces R satisface reflexividad.

Simetría. Si (x - y) es un múltiplo de 3, entonces (y - x) también será múltiplo de 3, en particular el inverso de (x, y). De lo anterior decimos que R satisface la simetría.

Antisimetría. La antisimetría no se cumple en R, basta dar el contraejemplo (3,6) y (6,3) donde $3 \neq 6$.

Transitividad. Finalmente, la relación satisface la transitividad pues $\forall (x-y), (y-z)$ que es múltiplo de 3, también el número (x-z) satisface el ser múltiplo de 3.

Por lo tanto R es de equivalencia.

b) $R = \{(1,1), (2,2), (1,2), (2,1), (3,3), (3,4), (4,3), (4,4)\}$, donde $A = \{1,2,3,4\}$ Reflexividad. Como $\forall x \in A, \exists (x,x) \in R$ decimos que R es reflexiva.

Simetría. Como $(1,2),(3,4) \in R$ y $(2,1),(4,3) \in R$ entonces R es simétrica, para los pares (x,x) la simetría es por vacuidad.

Antisimetría. No se satisface.

Transitividad.

$$(1,1), (1,2) \sim (1,2)$$

 $(2,2), (2,1) \sim (2,1)$
 $(1,2), (2,1) \sim (1,1)$
 $(2,1), (1,2) \sim (2,2)$

Para el caso de 3 y 4 es similar, así R es transitiva.

Por lo tanto R es de equivalencia.

c) $R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (1,3), (1,4), (2,3)\}$, donde $A = \{1,2,3,4\}$ Reflexividad. Como $\forall x \in A, \exists (x,x) \in R$ decimos que R es reflexiva.

Simetría. Como $(1,2) \in R$ y $(2,1) \notin R$, entonces R no es simétrica.

Antisimetría. No se satisface.

Transitividad. El caso trascendente es que $\exists (1,2), (2,3) \in R$ y también $(1,3) \in R$

Por lo tanto R no es de equivalencia.

d) La relación en $A = \mathbb{R}$ definida por $a \sim b \iff a \leq b$

Por definición de \leq entonces todo numero es igual a si mismo por lo que $(a, a) \in R$, lo que hace a R reflexiva.

como no puede ser $a \sim b$, si a menor que b, que pase $b \sim a$ por lo que R no es simétrica.

R es una relación que cumple antisimetría pues si $x \le y$ y $y \le x$ entonces x = y.

También por definición de \leq satisface la transitividad.

Sim embargo al no haber mínimos ni cotas en \mathbb{R} no podemos hablar de un orden total.

e) La relación en A = P(X) definida por $A \sim B \iff A \subseteq B$ Como todo conjunto esta contenido en si mismo entonces $A \sim A$, por lo que R es reflexiva.

Sin embargo la simetría no se cumple pues si $A \subseteq B$ no necesariamente $B \subseteq A$.

La antisimetría se cumple de manera similar al problema anterior, pues si $A\subseteq B$ y $B\subseteq A$ entonces A=B.

Lo mismo ocurre con la transitividad pues si $A \subseteq B$ y $B \subseteq C$ entonces $A \subseteq C$.

Ademas hay un mínimo que es el conjunto \emptyset , por lo que estamos en un orden parcial.

• 2. Demostrar que la siguiente relación es de equivalencia e indicar quién es el conjunto cociente asociado. Sea $A = \{(a,b) \mid a,b \in \mathbb{Z}, b \neq 0\}$ y R la relación definida en A tal que $(a,b) \sim (c,d)$ si y sólo si ad = bc.

 $P.d\ R$ es reflexiva, simétrica y transitiva.

R es reflexiva.

 $\forall (a,b) \in A$ se debe satisfacer que $(a,b) \sim (a,b)$

$$(a,b) \sim (a,b)$$

 $ab = ba \ (por \ conmutaci\'on \ en \ ba)$
 $ab = ab$

Así, decimos que R es reflexiva.

R es simétrica.

Si $(a,b) \sim (c,d)$ entonces se deberá satisfacer que $(c,d) \sim (a,b)$

$$(a,b) \sim (c,d)$$

 $ad = cb$
 $cb = ad$ (por conmutación en ad)
 $cb = da$
 $(c,d) \sim (a,b)$

Así, R es simétrica.

R es transitiva.

Si $(a,b) \sim (c,d)$ y $(c,d) \sim (e,f)$ entonces se deberá satisfacer que $(a,b) \sim (e,f)$

$$(a,b) \sim (c,d)$$

 $ad = bc$

$$(c,d) \sim (e,f)$$

 $cf = de$

Por propiedades de los \mathbb{Z}

$$ad \bullet cf = bc \bullet de \text{ (por cancelación del producto en } \mathbb{Z})$$

$$af = be$$

$$(a, b) \sim (e, f)$$

Así concluimos que f es transitiva.

 $\therefore R$ es de equivalencia

El conjunto cociente asociado es $A/R = \{[(a,b)]_R \mid (a,b) \in A\}$, por la definición de la relación entonces:

$$A/R = \{\{(c,d)\} \mid (a,b) \in A \ y \ ad = bc\}$$

Por lo anterior podemos decir que los elementos de A/R son los \mathbb{Q} .

- 3. Diga cuál de las siguientes relaciones son funciones (justifica tu respuesta):
- a) $R \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$ definida como:

$$R = \{(1,2), (2,2), (3,3), (2,3), (1,1)\}$$

No es función pues 1 está relacionado con 1 y 2 y también 2 está relacionada con 2 y 3.

b) $S \subseteq \mathbb{N} \times \mathbb{N}$ definida como:

$$S = \{(n, m) \mid n < m\}$$

Es fácil ver que si n está en el dominio de S y n=1, entonces para cualquier m>1 en el codominio tendremos que n=1 va a satisfacer el estar relacionado con m>1, con lo que S no es función.

c) $T \subseteq (\mathbb{Z} \times \mathbb{Z}) \times \mathbb{Z}$ definida como:

$$T = \{((n, m), n + m) \mid n, m \in \mathbb{Z}\}\$$

Como no puede ser que $m \neq m$ o $n \neq n$, el valor para n + m debe ser único.

Pensemos en una m' que satisfaga n + m = n + m'

$$n + m = n + m'$$
$$m = m'$$

Lo mismo ocurre con una n' por lo que n+m es un valor único.

f es función pues n+m es un valor único para cualquier $n,m\in\mathbb{Z}$.

 \bullet 4. Sea $f:\mathbb{Q}\longrightarrow\mathbb{Z},$ con regla de correspondencia:

$$f\left(\frac{a}{b}\right) = a$$

Para toda $a.b \in \mathbb{Z}$, con $b \neq 0$. ¿Será que f está bien definida?. Justifica tu respuesta.

Como en \mathbb{Q} se tiene que $\frac{1}{2} = \frac{2}{4} = \frac{3}{6}$, si aplicamos la regla de correspondencia:

$$f\left(\frac{1}{2}\right) = 1$$
$$f\left(\frac{2}{4}\right) = 2$$
$$f\left(\frac{3}{6}\right) = 3$$

Como $f\left(\frac{1}{2}\right) \neq f\left(\frac{2}{4}\right) \neq f\left(\frac{3}{6}\right)$ y ademas $\frac{1}{2} = \frac{2}{4} = \frac{3}{6}$ podemos decir que:

$$f\left(\frac{1}{2}\right) = 1$$
$$f\left(\frac{1}{2}\right) = 2$$
$$f\left(\frac{1}{2}\right) = 3$$

De lo anterior decimos que f no está bien definida.

• 5. Sea $f: A \longrightarrow B$ y sean $Y_1, Y_2 \subseteq B$. Demuestra lo siguiente:

Para este ejercicio vamos a fijar la siguiente definición:

Definiciones

Def. Sean $f: A \longrightarrow B y X \subseteq A$

La **imagen directa** de X bajo f es el conjunto:

$$f[X] = \{ y \in B \mid \exists x \in X \ tal \ que \ f(x) = y \}$$

Def. Sean $f: A \longrightarrow B y Y \subseteq B$

La **imagen inversa** de Y bajo f es el conjunto:

$$f^{-1}[Y] = \{x \in A \mid \exists y \in Y \ tal \ que \ f(x) = y\}$$

a)
$$f^{-1}[\varnothing] = \varnothing$$

Sea $x \in f^{-1}[\varnothing]$, por definición de imagen inversa, existe $y \in \varnothing$ tal que

$$f(x) = y$$
!

Como no puede ser $y \in \emptyset$, entonces $f^{-1}[\emptyset] = \emptyset$

b)
$$f^{-1}[Y_1 \cup Y_2] = f^{-1}[Y_1] \cup f^{-1}[Y_2]$$

$$\subseteq$$
) $f^{-1}[Y_1 \cup Y_2] \subseteq f^{-1}[Y_1] \cup f^{-1}[Y_2]$

Sea $x \in f^{-1}[Y_1 \cup Y_2]$, por definición imagen inversa, entonces existe $y \in Y_1 \cup Y_2$ tal que:

$$f(x) = y$$

Por definición de unión, si $y \in Y_1 \cup Y_2$, entonces $y \in Y_1$ o $y \in Y_2$

Caso $y \in Y_1$. Como existe $y \in Y_1$ de forma que f(x) = y, por definición de imagen inversa concluimos que:

$$x \in f^{-1}[Y_1]$$

Caso $y \in Y_2$. Como existe $y \in Y_2$ de forma que f(x) = y, por definición de imagen inversa concluimos que:

$$x \in f^{-1}[Y_2]$$

Así podemos decir que $x \in f^{-1}[Y_1] \cup f^{-1}[Y_2]$

$$f^{-1}[Y_1 \cup Y_2] \subseteq f^{-1}[Y_1] \cup f^{-1}[Y_2]$$

$$\supseteq$$
) $f^{-1}[Y_1] \cup f^{-1}[Y_2] \subseteq f^{-1}[Y_1 \cup Y_2]$

Sea $x \in f^{-1}[Y_1] \cup f^{-1}[Y_2]$, por definición de unión

$$x \in f^{-1}[Y_1] \text{ o } x \in f^{-1}[Y_2]$$

Si $x \in f^{-1}[Y_1]$, por definición de imagen inversa, entonces existe $y \in Y_1$ tal que f(x) = y

Si $x \in f^{-1}[Y_2]$, por definición de imagen inversa, entonces existe $y \in Y_2$ tal que f(x) = y

como $y \in Y_1$ o $y \in Y_2$, entonces $y \in Y_1 \cup Y_2$ de forma que f(x) = y, por definición de imagen inversa concluimos que:

$$x \in f^{-1}[Y_1 \cup Y_2]$$

Así
$$f^{-1}[Y_1] \cup f^{-1}[Y_2] \subseteq f^{-1}[Y_1 \cup Y_2]$$

$$f^{-1}[Y_1 \cup Y_2] = f^{-1}[Y_1] \cup f^{-1}[Y_2] \blacksquare$$

c)
$$f^{-1}[Y_1 \cap Y_2] = f^{-1}[Y_1] \cap f^{-1}[Y_2]$$

$$\subseteq$$
) $f^{-1}[Y_1 \cap Y_2] \subseteq f^{-1}[Y_1] \cap f^{-1}[Y_2]$

Sea $x \in f^{-1}[Y_1 \cap Y_2]$, por definición de imagen inversa, existe $y \in Y_1 \cap Y_2$ tal que

$$f(x) = y$$

Por definición de intersección, $y \in Y_1$ y $y \in Y_2$.

Por $y \in Y_1$ de forma que f(x) = y, entonces $x \in f^{-1}[Y_1]$.

Por $y \in Y_2$ de forma que f(x) = y, entonces $x \in f^{-1}[Y_2]$.

Como $x \in f^{-1}[Y_1]$ y $x \in f^{-1}[Y_2]$, entonces $x \in f^{-1}[Y_1] \cap f^{-1}[Y_2]$

$$\therefore f^{-1}[Y_1 \cap Y_2] \subseteq f^{-1}[Y_1] \cap f^{-1}[Y_2]$$

$$\supseteq$$
) $f^{-1}[Y_1] \cap f^{-1}[Y_2] \subseteq f^{-1}[Y_1 \cap Y_2]$

Sea $x \in f^{-1}[Y_1] \cap f^{-1}[Y_2]$, por definición de intersección:

$$x \in f^{-1}[Y_1] \text{ y } x \in f^{-1}[Y_2]$$

Por $x \in f^{-1}[Y_1]$ de forma que f(x) = y, por definición de imagen inversa existe $y \in Y_1$

Por $x \in f^{-1}[Y_2]$ de forma que f(x) = y, por definición de imagen inversa existe $y \in Y_2$

Así $y \in Y_1 \cap Y_2$, como f(x) = y, entonces $x \in f^{-1}[Y_1 \cap Y_2]$

$$f^{-1}[Y_1] \cap f^{-1}[Y_2] \subseteq f^{-1}[Y_1 \cap Y_2]$$

$$\therefore f^{-1}[Y_1 \cap Y_2] = f^{-1}[Y_1] \cap f^{-1}[Y_2] \blacksquare$$

d)
$$f^{-1}[B] \setminus f^{-1}[Y_1] = f^{-1}[B \setminus Y_1]$$

$$\subseteq$$
) $f^{-1}[B]\setminus f^{-1}[Y_1]\subseteq f^{-1}[B\setminus Y_1]$

Sea $x \in f^{-1}[B] \setminus f^{-1}[Y_1]$ por definición de imagen inversa, existe $y \in f^{-1}[B] \setminus f^{-1}[Y_1]$ tal que f(x) = y

Por definición de diferencia, entonces $x \in f^{-1}[B]$ y $x \notin f^{-1}[Y_1]$. Así, de nuevo por definición de imagen inversa tenemos que:

Como $x \in f^{-1}[B]$, entonces existe $y \in B$ tal que f(x) = y.

Como $x \notin f^{-1}[Y_1]$, entonces $f(x) \neq y$.

De lo anterior podemos afirmar que $y \in B \setminus Y_1$ de forma que f(x) = y, por definición de imagen inversa, entonces:

$$x \in f^{-1}[B \backslash Y_1]$$

Así $f^{-1}[B] \setminus f^{-1}[Y_1] \subseteq f^{-1}[B \setminus Y_1]$

$$\supseteq)\ f^{-1}[B\backslash Y_1]\subseteq f^{-1}[B]\backslash f^{-1}[Y_1]$$

Sea $x \in f^{-1}[B \setminus Y_1]$, por definición de imagen inversa, entonces existe $y \in B \setminus Y_1$ tal que f(x) = y.

Por definición de diferencia:

$$y \in B$$
, y $y \notin Y_1$

Como $y \in B$ de forma que f(x) = y, entonces $x \in f^{-1}[B]$.

Como $y \notin Y_1$, entonces $f(x) \neq y$ de forma que $x \notin f^{-1}[Y_1]$.

De lo anterior podemos decir que $x \in f^{-1}[B] \setminus f^{-1}[B]$.

$$f^{-1}[B \setminus Y_1] \subseteq f^{-1}[B] \setminus f^{-1}[Y_1]$$

$$f^{-1}[B] \setminus f^{-1}[Y_1] = f^{-1}[B \setminus Y_1]. \blacksquare$$

• 6. Da un contraejemplo de una función $f:A\longrightarrow B$ y $X_1,X_2\subseteq A$ tales que:

$$f[X_1 \cap X_2] \neq f[X_1] \cap f[X_2]$$

Sea $A = \{1, 2, 3, 4\}$ y $B = \{1, 4, 9, 16\}$. Si $f : A \longrightarrow B$ con regla $f(a) = a^2$.

digamos que $X_1 = \{2, 3, 4\}$ y $X_2 = \{1, 2, 3\}$, la intersección $X_1 \cap X_2 = \{2, 3\}$.

Las imágenes directas de los conjuntos anteriores son:

$$f[X_1] = \{4, 9, 16\}$$
$$f[X_2] = \{1, 4, 9\}$$

Entonces $f[X_1 \cap X_2] = \{4, 9\}.$

Si hacemos la intersección de $f[X_1] = \{4, 9, 16\}$ con $f[X_2] = \{1, 4, 9\}$, tendremos que:

$$f[X_1] \cap f[X_2] = \{4, 9\}$$

De lo anterior vemos que $f[X_1 \cap X_2] = f[X_1] \cap f[X_2] = \{4, 9\}$. Por lo que hemos dado un contraejemplo valido que contradice la no igualdad dada.

- 7. Sean $f:A\longrightarrow B$ y $g:B\longrightarrow C$ funciones. Demuestre lo siguiente:
- a) si fy gson inyectivas, entonces $g\circ f$ es inyectiva

Sea x_1 y x_2 de forma que:

$$(g \circ f)(x_1) = g(f(x_1)) = g(f(x_2)) = (g \circ f)(x_1)$$

como g es inyectiva, entonces:

$$f(x_1) = f(x_2)$$

Como f es inyectiva, entonces:

$$x_1 = x_2$$

 $g \circ f$ es inyectiva

b) si fy gson sobreyectivas, entonces $g\circ f$ es sobreyectiva

sea $z \in C$ cualquiera, entonces por ser g suprayectiva:

$$\exists y \in B \text{ tal que}$$

 $g(y) = z$

También, sea $y \in B$ cualquiera, entonces por ser f suprayectiva:

$$\exists x \in A \text{ tal que}$$
$$f(x) = y$$

por igualdad de f(x) = y, entonces

$$(g \circ f)(x) = g(f(x)) = g(y) = z$$

Así $g \circ f$ es suprayectiva. \blacksquare

c) si f y g son biyectivas, entonces $g \circ f$ es biyectiva.

Para probar que $g \circ f$ es biyectiva, hay que probar que es inyectiva y sobreyectiva, lo cual se ha hecho en los dos incisos anteriores considerando f y g inyectivas y suprayectivas.

Así $g \circ f$ es biyectiva

- 8. Sean $f:A\longrightarrow B$ y $g:B\longrightarrow C$ functiones invertibles.
- a) Demuestre que $g \circ f$ es invertible

Para esta demostración vamos a fijar la siguiente definición:

Definiciones

Def. Sea funa función tal que $f:A\longrightarrow B,$ diremos que f es invertible si existe una función $g:B\longrightarrow A$ que satisface:

$$g \circ f = 1_A \text{ y}$$

 $f \circ g = 1_b$

denotaremos por f^{-1} a dicha función g, y le llamaremos la función inversa de f.

Como f es invertible, enot
nces existe f^{-1} tal que satisface:

$$f^{-1} \circ f = 1_A \text{ y}$$
$$f \circ f^{-1} = 1_B$$

De igual forma, como g es invertible, enotnces existe g^{-1} tal que satisface:

$$g^{-1} \circ g = 1_B \text{ y}$$
$$g \circ g^{-1} = 1_C$$

P.d. Hay que exhibir una función h que satisfaga:

$$h \circ (g \circ f) = 1_A \text{ y}$$

 $(g \circ f) \circ h = 1_C$

Sabemos que $g \circ f : A \longrightarrow C$, por lo que debe ser $h : C \longrightarrow A$.

Cómo f y g son invertibles enotnces $f^{-1}: B \longrightarrow A$ y $g^{-1}: C \longrightarrow B$, así propongamos:

$$h = f^{-1} \circ g^{-1}$$

De lo anterior $h: C \longrightarrow A$.

Por f sabemos que f(x) = y y por ser invertible, entonces $f^{-1}(y) = x$.

Para g sabemos que g(y) = z y por ser invertible, entonces $g^{-1}(z) = y$.

Como ya sabemos que efectivamente f^{-1} y g^{-1} son inversas de f y g, vamos a hacer la composición $h \circ (g \circ f)$, usando la propuesta que hicimos par h:

$$(h \circ (g \circ f))(x) = h((g \circ f)(x))$$
$$h((g \circ f)(x)) = h(g(f(x)))$$
$$h(g(f(x))) = h(g(y))$$
$$h(g(y)) = h(z)$$

vamos a probar que h(z) = x usando las inversas que ya mostramos para f y g usando a h:

Como $h = f^{-1} \circ g^{-1}$, entonces:

$$(f^{-1} \circ g^{-1})(z) = f^{-1}(g^{-1}(z))$$
$$f^{-1}(g^{-1}(z)) = f^{-1}(y)$$
$$f^{-1}(y) = x$$

Como h(z) = x, entonces h es inversa izquierda de $g \circ f$.

Ahora veremos que h cumpla con:

$$(g \circ f) \circ h = z$$

Como sabemos que f^{-1} y g^{-1} son inversas de f y g, vamos a hacer la composición de $(g \circ f) \circ h = z$:

$$((g \circ f) \circ h)(z) = (g \circ f)(h(z))$$
$$(g \circ f)(h(z)) = (g \circ f)(x)$$
$$(g \circ f)(x) = g(f(x))$$
$$g(f(x)) = g(y)$$
$$g(y) = z$$

Como $(g \circ f) \circ h = z$, entonces h es inversa izquierda de $g \circ f$.

Así podemos decir que $h = (g \circ f)^{-1}$

 $g \circ f$ es invertible

b) Demuestre que $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Retomando lo que probamos en el inciso anterior, sabemos que $(g \circ f)^{-1} = h = f^{-1} \circ g^{-1}$.

Pero vamos a desarrollar mas para no vernos tan flojos.

Como $g \circ f : A \longrightarrow C$, sabemos que $(g \circ f)^{-1} : C \longrightarrow A$

$$(g \circ f)^{-1}(z) = x$$

Ahora, vamos a ver la composición $f^{-1} \circ g^{-1}$, usando lo obtenido en el inciso anterior:

$$f^{-1} \circ g^{-1}(z) = f^{-1}(g^{-1}(z))$$
$$f^{-1}(g^{-1}(z)) = f^{-1}(y)$$
$$f^{-1}(y) = x$$

De lo anterior vemos que se cumple la igualdad $(g \circ f)^{-1} = h = f^{-1} \circ g^{-1}$.

$$\therefore (g\circ f)^{-1}=f^{-1}\circ g^{-1} \ \blacksquare$$

 \bullet 9. Sea $f:A\longrightarrow B$ inyectiva. Demostrar que si B es finito entonces A es finito y $\#A\leq \#B$

P.d. A es un conjunto finito y $\#A \leq \#B$.

Como f es una función inyectiva, entonces $\forall x_1, x_2 \in A$ si $f(x_1) = f(x_2)$ afirmamos que $x_1 = x_2$.

También por ser B finito, entonces #B = n, con $n \in \mathbb{N} - \{0\}$.

Por ser f función decimos que Dom(f) = A y ademas $Im(f) \subseteq B$.

De lo anterior

$$#Dom(f) = #A y$$

 $#Im(f) \le #B$

Por inyectividad tenemos que #Im(f) = #Dom(f).

Así $\#A \le \#B$ ■

• 10. Sea $f:A\longrightarrow B$ suprayectiva. Demostrar que si A es finito entonces B es finito y $\#B\leq \#A$

P.d. B es un conjunto finito y $\#A \leq \#B$.

Como f es una función biyectiva, entonces $\forall b \in B, \exists a \in A \text{ tal que } f(a) = b, i.e \ Im(f) = B$ también por ser A finito, entonces #A = n, con $n \in \mathbb{N} - \{0\}$.

Por ser f función decimos que Dom(f)=A, así el dominio es finito, ademas sabemos que $\#Im(f)\leq \#Dom(f).$

De lo anterior

$$\#Dom(f) = \#A y$$

$$\#Im(f) = \#B y$$

$$\#Im(f) \le \#Dom(f)$$

$$\#B \le \#A$$

Así queda demostrado que si $f:A\longrightarrow B$ es una función suprayectiva y A es finito, entonces B es finito y $\#B\le \#A$