BALLISTIC MISSILE DEFENSE ORGANIZATION 7100 Defense Pentagon Washington, D.C. 20301-7100

GEORGIA TECH GT-VTHR VLSI DESIGN VERIFICATION DOCUMENT

VLSI DEVELOPMENT REPORT REPORT NO. VDR-0142-90-007 FEBRUARY 15, 1991

GUIDANCE, NAVIGATION AND CONTROL DIGITAL EMULATION TECHNOLOGY LABORATORY

Contract No. DASG60–89–C–0142
Sponsored By
The United States Army Strategic Defense Command

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology Atlanta, Georgia 30332–0540

Contract Data Requirements List Item A006

Period Covered: Not Applicable

Type Report: As Required

DISTRIBUTION STATEMENT AApproved for Public Release

Distribution Unlimited

20010829 010

UL10306

DISCLAIMER

<u>DISCLAIMER STATEMENT</u> – The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation.

DISTRIBUTION CONTROL

- (1) <u>DISTRIBUTION STATEMENT</u> Approved for public release; distribution is unlimited.
- (2) This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause at DFARS 252.227–7013, October 1988.

GEORGIA TECH GT-VTHR VLSI DESIGN VERIFICATION DOCUMENT

FEBRUARY 15, 1991

Rafik Braham

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology Atlanta, Georgia 30332–0540

Eugene L. Sanders USASDC

Contract Monitor

Cecil O. Alford Georgia Tech

Project Director

Copyright 1991
Georgia Tech Research Corporation (GTRC)
Centennial Research Building
Atlanta, Georgia 30332

GEORGIA TECH GT-VTHR VLSI DESIGN VERIFICATION DOCUMENT

INTRODUCTION

There are eleven (11) Georgia Tech VLSI designs (see Table 1) in the AHAT Program. Each of these designs has been produced by Georgia Tech using the Genesil Silicon Compiler. Each design has passed the design verification process at Silicon Compiler Systems / Mentor Graphics and each has been fabricated in a bulk CMOS process (fabrication of certain chips was not complete when this document was released). Each of the Georgia Tech designs listed in Table 1 is being delivered to USASDC and to the Harris Corporation for conversion and fabrication in a rad—hard process. The program under which this work is done is AHAT (Advanced Hardened Avionics Technology). This document includes design information for the Georgia Tech thresholding chip, GT–VTHR.

Table 1. Georgia Tech Chip Set for AHAT

Design	DV Passed	Tape Delivered	Fabricated	Tested
GT-VFPU/1A	1/17/89	8/3/90	5/19/89	4/4/90
GT-VNUC				
GT-VTF				
GT-VTHR	12/11/90	2/15/91		
GT-VCLS	1/26/90	7/12/90	7/13/90	
GT-VCTR	2/8/90	7/12/90	7/13/90	
GT-VIAG				
GT-VDAG				
GT-VSNI	1/17/89	5/23/90	4/14/89	4/4/90
GT-VSM8	1/17/89	6/8/90	5/6/89	4/4/90
GT-VSF	9/12/89	7/19/90	7/13/90	

Table of Contents

0.	Design Verification Checklist	1
1.	Introduction	11
2.	Functional Description 2.1. Module adjust 2.1.1. Simple Thresholding 2.1.2. Adjusted Thresholding 2.2. Module adapt 2.3. Module host_stuff 2.4. Module store 2.5. Module store_ctrl	11 11 11 11 12 13 13
	2.6. Module clocks_etc2.7. Module output	13
3.	Computational Model	13
4.	Signal Descriptions	14
5.	Manufacturing Test	15
6.	Concluding Remarks	15
Аp	pendix A. Block Diagrams, Schematics, and Timing Diagrams	16
Ap	pendix B. Pin Description	53
Ap	pendix C. Key Parameters	55
	pendix D. PADRING.033	57
Ap	pendix E. Power Dissipation	59
	pendix F. Timing and Simulation Setup Files	64
Ap	Appendix G. Timing Reports Appendix G.1. Pixel_Clk, GUARANTEED, Max T, Min V Appendix G.2. Pixel_Clk, TYPICAL, Room T, 5.0 V Appendix G.3. Pixel_Clk, GUARANTEED, Room T, 5.0 V	65 65 75 84

List of Figures

1.	Thresholding Chip Block Diagram	16
2.	Counting of Pixels Above Threshold	17
3.	Simple-Adjust Threshold Hardware	18
4.	Adjust–Simple Threshold Selection	19
5.	Pixel Stream Spatial Organization	20
6.	Chart of Arithmetic Operations	21
7.	Pipeline Reservation Table	22
8.	L1 Norm Computation	23
9.	Inverting Buffer Tree Structure for Average	24
10.	Details of L1 Norm Hardware	25
11.	Adaptive Threshold Hardware	31
12.	Adaptive Threshold Computation	32
13.	Host Interface Module Block	35
14.	Host Interface Block Diagram, Table 1 and Table 2	37
15.	Host Interface Block Diagram	38
16.	host_stuff/interface Module	39
17.	Host Interface Timing (write cycle)	40
18.	Main Storage Organization and Control	41
19.	Schematic of FIFOs Pipe Structure	42
20.	Blocks in clocks_etc Module	43
21.	clocks_etc/state_mach Block Diagram	44
22.	Thresholding Operation	45
23.	Output Selection Logic	46
24.	invert and delay Blocks in Output Module	47
25.	output/state_mach Block Diagram	48
26.	Truncation Scheme for Adaptive Thresholding	49
27.	host_stuff/d_out_mux Block Diagram	50
28.	Upper Threshold Mode	51
29.	Running Sum Diagram	52

DV CHECKLIST

1.	DV CONTROL NUMBER:	
2.	CUSTOMER INFORMATION	
	Customer Name: Georgia Tech / CERL	Chip Name : <u>GT-VTHR</u>
	Address: 400 Tenth Street	FAX: (404) 894–3120
	CRB Room 377	
	Atlanta, GA 30332-0540	
	Project Manager: Dr. C. O. Alford	Phone: (404) 894–2505
	Design Engineer: Rafik Braham	Phone: (404) 894-2527
		Phone:
	Test Engineer: Joseph I. Chamdani	Phone: (404) 894–2527
3.	SERVICES INFORMATION _xx Design Verification Service only. PO #	
	Prototype Service and Design Verification. PO	
	1.8% Maintenance	"
	SCS Test Foundry Test C	ustomer Test
	When DV is complete, send verified physical database	
	Customer Y N Silicon Vendor	<u>Y</u> N
4.	DV CONTACT: Ying Chow	Phone : <u>(408) 371–2900</u>

5.	REGRESSION
	5. 1. GENESIL Version: 8.0.2 5. 2. Name of Session Log from recompile: rebuild.LOG 5. 3. Include DV regression.CMD: DV regression.001 (simulation and timing) 5. 4. Size of database (MB) : 124 Guess Density: 6250 1600 TK50 Tar xx wbak Apollo Cartridge
	(compressed) Sun Cartridge <u>xx</u>
6.	FUNCTIONAL INFORMATION (check when included)
	6. 1. Number of Transistors : _xx 6. 2. Key Parameters : _xx _ Testing 6. 3. DV pin description : _xx _ Testing 6. 4. Block Diagram : _xx _ Testing 6. 5. Functional Description : _xx _ Testing 6. 6. Timing Diagrams at Pins : _xx _ Testing 6. 7. Annotated Views : _xx _ Testing 6. 8. Chip Text Specification on tape : _xx Cythr_spec.012)
7.	PHYSICAL INFORMATION
	7. 1. Fabline Name: HP1 CN10A Customer-Specific: Y N Fabline GENECAL Directory on tape: Y N Fabline GENESIL Directory on tape: Y N Fabline Calibration Status: Production: xx Beta: Alpha: NOTE: If not a production fabline, then approval from SCS is required.
	7. 2. Plots: (check when included or indicate filename) Chip Route (D size): _xx Bonding Diagram (B size): _xx Route Filename: _rt PLOT 1.031 Bonding Filename: _ bd PLOT 1.031
	7. 3. Die Size : Reported Die Size : 404.9 x 400.0 square-mils
	Maximum Acceptable Die Size (+/- 2%) : 435 x 435 square-mils
	Minimum Acceptable Die Size (+/- 2%) : 300 x 300 square-mils
	7. 4. GENESIL Package Name: CPGA100hp Spec included? Y N Cavity/Well Size: 470 mils by 470 mils Non-GENESIL Supplied Package? Y N Vendor Name/Part #: KYOCERA KD-P85989 Foundry Approval? Y N
	7. 5. External Block: _none
	7. 6. LRAM: Y N LROM: Y N LPLA: Y N LogicCompiler Blocks: Y N
	7. 7. Test Pad (PM Pad) is included? Y N (Required for PS)

	7. 8.	Ring 9 VSS: Core 2 Ring 6							
		NP protection for nwell pad? Y N							
		TTL output pads or N Protection for inputs? Y N If yes, have you received silicon vendor approval? Y N							
	Error in PADRING.033 (PADRING.DRC)? Y N Hardcopy attached? Y N								
		ESD requirements Appr	oved by SCS? Y N						
8.	ELI	LECTRICAL INFORMATION							
	8. 1.	. Chip Frequency Specified in netlist: 2,67 MHz	arget frequency: 2.67 MHz						
		2. Power Dissipation: GENESIL = 0.85 W at 10 MHz Sp. Operating Voltage: from 4.5 Volts to 5.5 Volts	pec = W at MHz						
9.	SIM	MULATION							
	9. 1.	Number of Clocking Regimes : _1	PHASE A / PHASE B						
	9. 2.	2. Simulation Setup Files: Name:none / default Description:	_ Listings attached :						
		Affected Tests :							
		Name :							
		Affected Tests :							
		Name : Description :							
		Affected Tests :							
		Name :	Listings attached :						
		Description:							

	st Vector Set: tal No. of Vectors: _32,707
	OTE: Test vectors written one phase per vector have a maximum test frequency on the IMS Tester of the Tester of th
1.	Name: adap simp man.col.083 No of vectors: 4,425
	Description: tests adaptive and simple thresholding
•	
	Portions of Chip Tested : all
	Pass with GFL model?yes
	Pass with GSL model? <u>yes</u> Use for PS testing? <u>Y</u> N Pass Fight Test?
	Name: adapt4 5 man,col.083 No of vectors: 1,441 Description: tests adaptive thresholding
	Portions of Chip Tested :all
	Pass with GFL model? Use for PS testing? N Pass Fight Test? Use for PS testing? N
3.	Name:adapt_4_man.col.083 No of vectors:731 Description:tests adaptive thresholding
	Portions of Chip Tested :all
	Pass with GFL model?yes Use for PS testing?Y N Pass Fight Test?
	Name: _adapt 2f man.col.083 No of vectors: _2,576 Description: _tests adaptive thresholding (two frames)

	Pass with GFL model? yes Pass with GSL model? yes Pass Fight Test?	Use for PS testing?	Y	N
5.	Name: adapt adj man.col.083 Description: tests adaptive and adjusted	sted thresholding		
	Portions of Chip Tested : all			
	Pass with GFL model? yes Pass with GSL model? yes Pass Fight Test?	Use for PS testing?	Y	N
6.	Name: <u>adj2 man.col.083</u> Description: <u>tests adjusted threshole</u>	ding mode		
	Portions of Chip Tested :all			
	Pass with GFL model? yes Pass with GSL model? yes Pass Fight Test?	Use for PS testing?	Y	N
7.	Name: fifos man.col.083 Description: tests the fifo pipe struc	ture		
	Portions of Chip Tested : all			
	Pass with GFL model? ves Pass with GSL model? ves Pass Fight Test?	Use for PS testing?	<u>Y</u>	N
8.	Name: host inter man.col.083 Description: tests the host interface		_	No of vectors : _56
	Portions of Chip Tested : host interf	ace		
	Pass with GFL model? ves Pass with GSL model? ves Pass Fight Test?	Use for PS testing?	<u>Y</u>	N

O. Name: simp adap man.col.083 Description: tests simple and adaptive threshold	No of vectors: 2,084
Description: tests simple and adaptive uneshold	
Portions of Chip Tested : all	
Pass with GFL model? <u>yes</u>	
Pass with GSL model? <u>yes</u> Use for PS Pass Fight Test?	testing? \underline{Y} N
0. Name: simp adj adap.col.083	No of vectors : _13,044
Description: <u>tests all three thresholding modes</u>	
Portions of Chip Tested :all	
Pass with GFL model? <u>yes</u> Pass with GSL model? <u>yes</u> Use for PS	stesting? Y N
Pass Fight Test?	, comig. <u> </u>
1 Name: simp man col 083	No of vectors: 1.426
Description: tests simple thresholding	No of vectors : <u>1,426</u>
Description: <u>tests simple thresholding</u>	
Portions of Chip Tested :all Pass with GFL model?yes	
Portions of Chip Tested :all Pass with GFL model?yes	
Portions of Chip Tested : _all Pass with GFL model? _yes _ Pass with GSL model? _yes _ Pass Fight Test? Use for PS IMS Grouping within limitation? Y N (Required Tester clock frequency = _2.67 MHz	
Portions of Chip Tested : _all Pass with GFL model? _yes _ Pass with GSL model? _yes _ Pass Fight Test? IMS Grouping within limitation? Y N (Required Tester clock frequency = _2.67 MHz	s testing? Y N for PS only)
Portions of Chip Tested :all Pass with GFL model?yes_	S testing? Y N for PS only) Ran GSL with glitch detection
Portions of Chip Tested : _all Pass with GFL model? _yes _ Pass with GSL model? _yes _ Pass Fight Test? Use for PS IMS Grouping within limitation? Y N (Required Tester clock frequency = _2.67 MHz	S testing? Y N for PS only) Ran GSL with
Portions of Chip Tested :all Pass with GFL model?yes_ Pass with GSL model?yes_ Use for PS Pass Fight Test? IMS Grouping within limitation? Y N (Required Tester clock frequency =2.67 MHz_ Signals that must be glitch free: Y N Signal Name 1Begin frame out	Stesting? Y N for PS only) Ran GSL with glitch detection feature on? Y N
Portions of Chip Tested :all Pass with GFL model?yes Use for PS Pass Fight Test? IMS Grouping within limitation? Y N (Required Tester clock frequency =2.67 MHz	Stesting? Y N for PS only) Ran GSL with glitch detection feature on? Y N Y N
Portions of Chip Tested:all Pass with GFL model?yes Pass with GSL model?yes Use for PS Pass Fight Test? IMS Grouping within limitation? Y N (Required Tester clock frequency =2.67 MHz	Stesting? Y N for PS only) Ran GSL with glitch detection feature on? Y N Y N Y N Y N
Portions of Chip Tested :all Pass with GFL model?yes Use for PS Pass Fight Test? IMS Grouping within limitation? Y N (Required Tester clock frequency =2.67 MHz	Stesting? Y N for PS only) Ran GSL with glitch detection feature on? Y N Y N Y N Y N Y N Y N Y N Y N
Portions of Chip Tested:all Pass with GFL model?yes Use for PS Pass Fight Test? IMS Grouping within limitation? Y N (Required Tester clock frequency =2.67 MHz Signals that must be glitch free: Y N Signal Name 1Begin frame out 2Begin row out 3End frame out 4End row out 5N dr 6	Stesting? Y N for PS only) Ran GSL with glitch detection feature on? Y N Y N Y N Y N Y N Y N Y N Y N Y N
Portions of Chip Tested:all Pass with GFL model?yes_ Pass with GSL model?yes_ Use for PSP Pass Fight Test? IMS Grouping within limitation? Y N (Required Tester clock frequency =2.67 MHz Signals that must be glitch free: Y N Signal Name 1Begin frame out 2Begin row out 3End frame out 4End row out 5N dr 6 7	Stesting? Y N for PS only) Ran GSL with glitch detection feature on? Y N Y N Y N Y N Y N Y N Y N Y N Y N Y
Portions of Chip Tested:all Pass with GFL model?yes Use for PS Pass Fight Test? IMS Grouping within limitation? Y N (Required Tester clock frequency =2.67 MHz Signals that must be glitch free: Y N Signal Name 1Begin frame out 2Begin row out 3End frame out 4End row out 5N dr 6	Stesting? Y N for PS only) Ran GSL with glitch detection feature on? Y N Y N Y N Y N Y N Y N Y N Y N Y N Y

10. TIMING ANALYSIS

guaranteed cor 5.0V room junc tem		(required for Popular anteed commin operating max junction to	ner V	typical corner min operating V max junction tem	np
Cycle Setup/Hold Output Delay Violation	<u>xx</u>	Cycle Setup/Hold Output Delay Violation	_xx	Setup/Hold : Output Delay :	XX XX XX
Name :nomina Temperature : _55	O degrees C rst case cond	ition, maximum j	Vo	Listings attacellage: 4.50 V inperature, minimum Listings attacellage: 5.00 V ire, 5.0 V operating v	operating volt
				Listings attac	thed :

10. 4.	Critical	Boundary	Conditions:
--------	----------	----------	-------------

List critical paths here or annotate the timing report.
Attach additional pages if needed.

10. 5. Hold Time Violations : <u>none</u> (At <u>2.0</u> nsec.)

Clock Name:	Pixel clk			
	report	limit (+/-5%)	report	limit (+/-5%)
1. Phase 1 High	_198.6 ns	_210 ns		(1, 5.11)
2. Phase 2 High	185.9 ns	210 ns		
3. Symmetric Cycle	397.1 ns	420 ns		
4. Minimum Cycle	384.5 ns	420 ns		
Outputs				
	Name	load (pF	f) delay	limit
1. Begin frame out			25.9 ns	30 ns
2. Begin row out			25.8 ns	30 ns
3. End frame out			25.7 ns	30 ns
4 Fred many and		50.00	25.7 ns	30 ns
5. Pixel out[15:0]			26.1 ns	30 ns
6				
7.				
8.				
9				
Inputs				
-	Name	setu	•	hold
Jigita	Traile	report /		ort / limit
1		/ / / / / /	mmt top	/
2.				1
3.				7
4.				
5		/		7
6				
7.				1
8.		1		1
9				

11. DC CHARACTERISTICS

PARA- METER	S DESCRIPTION	CONDITIONS 0 to 70	CONDITIONS -55 to +125	MIN	MAX
DATA P	AD INPUT ONLY				
VIH	Input High Voltage			2.0V	
VIL	Input Low Voltage				0.8V
IIL .	Input Leakage	VSS <vin<vdd< td=""><td>VSS<vin<vdd< td=""><td>-10uA</td><td>10uA</td></vin<vdd<></td></vin<vdd<>	VSS <vin<vdd< td=""><td>-10uA</td><td>10uA</td></vin<vdd<>	-10uA	10uA
CIN	Input Capacitance				6.0pf
DATA F	AD OUTPUT ONLY				
VOH	Output High Voltage	VDD= 4.5V IOH=-2.2	VDD= 4.5V IOH=–2mA	2.4V	
VOL	Output Low Voltage	VDD=4.5V	VDD= 4.5V		0.4V
	· · · · · · · · · · · · · · · · · · ·	IOL = 6mA	IOL = 5mA		
IOZ	Output Leakage	VSS <vout<vdd< td=""><td>VSS<vout<vdd< td=""><td>-10uA</td><td>10uA</td></vout<vdd<></td></vout<vdd<>	VSS <vout<vdd< td=""><td>-10uA</td><td>10uA</td></vout<vdd<>	-10uA	10uA
	current(high Z)				
COUT	Output Capacitance				7.0pf
DATA F	AD INPUT/OUTPUT				
		·			
VOH	Output High Voltage	VDD= 4.5V	VDD= 4.5V	2.4V	
VOH		IOH=-2.2	IOH=-2mA	2.4V	0.4V
	Output High Voltage Output Low Voltage	IOH=-2.2 VDD= 4.5V	IOH=-2mA VDD= 4.5V	2.4V	0.4V
VOH	Output Low Voltage	IOH=-2.2	IOH=-2mA	2.4V 2.0V	0.4V
VOH VOL		IOH=-2.2 VDD= 4.5V	IOH=-2mA VDD= 4.5V		0.4V 0.8V
VOH VOL VIH	Output Low Voltage Input High Voltage Input Low Voltage Output leakage	IOH=-2.2 VDD= 4.5V	IOH=-2mA VDD= 4.5V		
VOH VOL VIH VIL IOZ	Output Low Voltage Input High Voltage Input Low Voltage Output leakage current (high Z)	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA</td><td>2.0V</td><td>0.8V 10uA</td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA	2.0V	0.8V 10uA
VOH VOL VIH VIL	Output Low Voltage Input High Voltage Input Low Voltage Output leakage	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA</td><td>2.0V</td><td>0.8V</td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA	2.0V	0.8V
VOH VOL VIH VIL IOZ	Output Low Voltage Input High Voltage Input Low Voltage Output leakage current (high Z) Input/Output Capacitar	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA</td><td>2.0V</td><td>0.8V 10uA</td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA	2.0V	0.8V 10uA
VOH VOL VIH VIL IOZ CIO	Output Low Voltage Input High Voltage Input Low Voltage Output leakage current (high Z) Input/Output Capacitar	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA</td><td>2.0V</td><td>0.8V 10uA</td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA	2.0V	0.8V 10uA
VOH VOL VIH VIL IOZ CIO CLOCK VIH VIL	Output Low Voltage Input High Voltage Input Low Voltage Output leakage current (high Z) Input/Output Capacitar I PAD Input High Voltage Input Low Voltage	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA VSS<vout<vdd< td=""><td>2.0V -10uA</td><td>0.8V 10uA 7.0pf</td></vout<vdd<></td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA VSS <vout<vdd< td=""><td>2.0V -10uA</td><td>0.8V 10uA 7.0pf</td></vout<vdd<>	2.0V -10uA	0.8V 10uA 7.0pf
VOH VOL VIH VIL IOZ CIO CLOCK VIH	Output Low Voltage Input High Voltage Input Low Voltage Output leakage current (high Z) Input/Output Capacitar Input High Voltage	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA</td><td>2.0V -10uA</td><td>0.8V 10uA 7.0pf</td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA	2.0V -10uA	0.8V 10uA 7.0pf

NOTE: All parameters at a supply voltage of VDD = 5V (+/- 10%).

Date ____/___

12. CUSTOMER COMMENTS

SCS Approval:

Technical Support Team Leader

Pre-	Verifica.	tion	Comments	(10/24)	(00 \
110	· v ci iiica	LIVII	Commicus	110/2	ti 201

	Pre-Verification Comments (10/24/90)
	The GSL simulation failed on 10 test vectors files (see section 9.3). The source of the GSL errors was
	determined originating from clocks etc/sp interface block which is a Logic Compiler block. If the
	compiler option of this block is changed to Standard Compiler all the test vector files pass GSL
	simulation. Therefore it is assumed that errors must have occured inside the GENESIL Autologic
	program, i.e., improper optimization or realization of the actual circuitry. This problem must be fixed by
	SCS / Mentor Graphics and approved by Georgia Tech / CERL prior to sending the chip database to
	silicon foundry.
	Post-Verification Comments (12/11/90) The above problem has been fixed by Mentor Graphics. All test vector files now pass GSL simulation.
13.	CUSTOMER APPROVAL
	The undersigned understands that if any design changes are initiated by the Customer subsequent to this sign—off, the Customer is liable for any charges imposed by Silicon Compiler Systems as agreed to in either the Design Verification Terms & Conditions or the Prototype Services Terms & Conditions. In addition, such changes require the DV process to be started from the beginning, which results in extended DV schedules.
	Customer Approval: Joseph I. Chamdani J.J. Chamdani. Date 10/24/90
	Title : Research Engineer I
14.	SCS APPROVAL Pre-Verification Comments
	SCS Approval : Date/

GT-VTHR: Thresholding Chip

1. Introduction

Thresholding is the last stage in preprocessing the pixel intensities before they are actually employed for useful processing. Normally, this function comes just before clustering..

2. Functional Description

The thresholding chip provides three types of thresholding: simple, adjusted and adaptive. It is composed of seven modules: adjust, adapt, host _stuff, store, store_ctrl, clocks_etc, and output (see Figure 1). Note that all figures referred to can be found in Appendix A.

2. 1. Module adjust

This module contains the circuitry necessary to compute the threshold for both simple and adjusted modes which are explained below.

2.1.1. Simple Thresholding

In this mode, all the pixels are compared to a fixed threshold. The threshold value is preloaded by the host into a 16-bit register reserved for this purpose. This value may change on a frame basis.

2.1.2. Adjusted Thresholding

The threshold value used in simple thresholding maybe too high or too low and thus not appropriate. One way to test the "appropriateness" of this value is to count, on a frame basis, the number of pixels whose intensity values exceed the threshold (Figure 2). If this number (N_0) is too high then the threshold is increased. If it is too low however, the threshold is decreased. Therefore two values are needed to control the number of supra—threshold pixels: a lower bound (N_1) and an upper bound (N_2) . At the end of each frame, the number of supra—threshold pixels is compared against the upper and lower bounds N_1 and N_2 , and the threshold is adjusted accordingly. If $N_1 < N_0 < N_2$, then the threshold is left unchanged (Figure 3).

 N_1 and N_2 are loaded by the host, and they can be changed on a frame bais. The value of N_0 is made accessible to the outside of the chip. The host may use it to determine appropriate values for N_1 and N_2 . Also the host may use the value of N_0 to compute a new threshold. This threshold can be loaded by the host processor and used in the simple thresholding mode.

A block diagram of the adjusted threshold hardware (combined with simple threshold) is shown in Figure 3 and Figure 4.

2. 2. Module adapt

Most of the chip circuitry consists of hardware necessary for the implementation of the adaptive thresholding algorithm. According to this algorithm, for every pixel, a threshold value is computed based on the intensities of the 8 surrounding pixels. Generally speaking, the threshold value is taken

as the average of pixel intensity plus some noise margin. Mathematically, this threshold value (theta) can be written as:

theta =
$$k_1 \times E(pixel_set) + k_2 \times L_1(pixel_set) + k_3$$
, (1)

where E denotes the average, L₁ the usual L₁ norm, namely $\sum_{i=0}^{7} |X_i - E(pixel_set)|$ and pixel_set the

set of the 8 pixels neighboring to the current pixel. Let us work out an example to illustrate these ideas.

Consider Figure 5, the pixels are designated by their arrival time (in clock cycles) relative to the present. At t = 0, the pixel $XZ^0 = X$ is being received and all the information required to compute the threshold for XZ^{-130} is available. The pixel_set of equation (1) consists of:

$$pixel_set = \{XZ^{-258}, XZ^{-257}, XZ^{-256}, XZ^{-131}, XZ^{-129}, XZ^{-3}, XZ^{-2}, XZ^{-1}\}.$$

Assuming uniform distribution, the average can be written as:

$$E = (XZ^{-258} + XZ^{-257} + XZ^{-256} + XZ^{-131} + XZ^{-129} + XZ^{-3} + XZ^{-2} + XZ^{-1}) \div 8. \tag{2}$$

The partial sums involved in the computation of thresholds are indicated in Figure 6(a). Because thresholds of some neighboring pixels share partial sums, the hardware is optimized to exploit this feature. Figure 6(b) shows how this is possible. At least 4 pipeline stages are necessary to compute the 8-point sums of E, and meet the processing requirements.

Figure 7 represents the reservation table for the 4-stage pipeline. As can be seen from the figure, once the first 8-point sum is delivered, a new sum is delivered every cycle thereafter, and the pipeline becomes 100% full.

The computation of L_1 can proceed only when the average becomes available. L_1 can explicitly be written as:

$$L_1 = |X_0 - E| + |X_1 - E| + |X_2 - E| + |X_3 - E| + |X_4 - E| + |X_5 - E| + |X_6 - E| + |X_7 - E|.$$
(3)

Figure 8 summarizes how L_1 is computed. Figure 9 and Figure 10 show further detail of the hardware implementation.

Figure 11 shows a block diagram and Figure 12 shows the details of the hardware circuitry that computes the adaptive threshold.

2. 3. Module host stuff

This module consists of the circuitry necessary to reset the chip, load constants into it, and read out data either for diagnostic purposes or for deciding on the thresholding mode to be used. Three blocks: reg0, reg1, and reg2 contain latches to store data loaded by the host (Figure 13 (a), (b), (c) respectively). The "controls" block, shown in Figure 14(a), selects the thresholding mode according to Table 1 and 2. The "decoder" block (Figure 14(b)), decodes the address to select which constant the host is attempting to write.

Under "host_stuff" module, there is another module called "interface". This module supports an asynchronous interface protocol. This module was imported from the spatial filtering chip (GT–VSF). The main role of the module is to generate the handshake signals read, write, data_dis, and dr_dis (Figure 15). The details of this module are described in the GT–VSF document, and the implementation details are shown in Figure 16. A simplified timing diagram of the protocol is given in Figure 17.

2. 4. Module store

This module contains 2 FIFOs 16-bit wide and 128-word deep each, and associated control, Figure 18 illustrates its organization in a block diagram form. Figure 19 shows the implementation details of the FIFOs structure.

2. 5. Module store ctrl

This module consists of the circuitry that controls the FIFOs. This module was imported from the spatial filtering chip. Its implementation details can be found in the GT-VSF design document. The FIFOs structure (in "store" module) is referred to as "pipe" in the spatial filtering literature.

2. 6. Module clocks etc

This module uses the intensity stream synchronization signals (end/begin row, end/begin frame) to detect the edges (first/last row/column). Based on the edge conditions, appropriate signals are generated to output the correct result (the output intensity is zero for the edges). Figure 20 and 21 show the various blocks of which "clock_etc" module is composed.

2. 7. Module output

This module contains the necessary circuity to output pixel intensity properly, based on the thresholding algorithm mode, threshold value(s), and validity of the pixel. A "dead" pixel is an invalid pixel which occurs between the last pixel of a row and the first pixel of the next row/frame. At every dead pixel this module forces the output pixel intensity to zero (Pixel_out[15:0] = 0). This module contains the following blocks:

mux0

: selects the threshold value to be used (Figure 22(a)).

mux1

: selects the intensity output (Pixel_out[15:0]). The logical circuits are shown in

Figure 23.

neuron

: compares the pixel intensity to the threshold value (Figure 22(b)).

inverters

: a bank of 16 inverters to invert the threshold value and send it to "neuron" block

Figure 24(a)).

delay

: delays the pixel intensity by 4 cycles (Figure 24(b)).

state mach : this block is a state machine that detects non valid pixels; when the output pixel

intensity is not valid, Pixel_out[15:0] = 0 appears on the intensity bus; Figure 25

shows the logical diagram of the "state_mach" block.

3. Computational Model

The thresholding chip is slightly complicated in terms of the numerical computations involved within the chip. Omitting some implementation details, the computational model can be described as follows.

Eight 16-bit integer (positive) numbers are added together to yield a 19-bit sum. This number, which will be called E(x) (for average) consists in reality of 2 fields. The 3 rightmost bits (LSBs) can be considered a fraction (the result of a division by 8). The remaining 16-bit field is the integer part of E(x).

The same eight 16-bit numbers are subtracted from E(x) each, and the absolute values of the 8 resulting differences are then added together. The result is a 21-bit number (18-bit integral, 3-bit fraction). This result is the L1 norm given by (3).

Next E(x) is multiplied by k1, which is a 16-bit real number such that $0 \le k_1 < 2$. The result is 35-bit long. The 14 LSBs are dropped, the final result is a 21-bit long (17-bit integral part, 4-bit fraction) positive number. It will be called Prod₁.

The norm L_1 is multiplied by k2, which is a 16-bit real number such that $-2 < k_2 < 2$. The result is 37-bit long. The 13 LSBs are dropped and the final result is a 24-bit number that will be called Prod₂. Next Prod₁ is added to Prod₂ and the result, 25-bit number, is added to k_3 (a 16-bit signed magnitude number).

The result is 26 bits long (including a sign bit). The 4 LSBs are truncated. Then bits 20 to 16 are ORed to yield theta[16]. The sign and bits 15 to 0 are passed without change. The final result is thus theta[16:0].

It is this number that is compared to the incoming pixel intensity, in case of course adaptive threshold mode is being employed.

Figure 26 is a diagram summary of the algorithm just described. Note that if simple or adjusted threshold mode is used, then the computation is straightforward. In particular there is no truncation involved.

4. Signal Descriptions

Pixel_clk: main clock. This clock is internally divided into standard non-overlapping two phase clocks (Phase_A and Phase_B).

Begin_row_in, End_row_in, Begin_frame_in, End_frame_in are active high synchronization inputs with VB(t) timing characteristics. Begin_row_out, End_row_out, Begin_frame_out, End_frame_out are active high synchronization outputs with SA(t) timing characteristics. These signals are described in detail in the "Signal Processing Host Interface Specifications" document. Their timing characteristics is VB(t).

Pixel_in[15:0] is a 16-bit input bus for pixel intensity (VB(t)). Pixel_out[15:0] is a 16-bit output bus for pixel intensity (SA(t)).

Data[15:0], Address[3:0], Ds[3:0], Id[3:0], Ios, Ode, N_d r are host interface signals. The bidirectional Data[15:0] bus (input VA(t) and output WA(t)) provides separate (from pixel intensity) write /read of: k_1 , k_2 , k_3 , fixed threshold values (for simple and adjusted threshold modes, and upper threshold value), counter max and min (N_1 and N_2 for adjusted), and for reading counter output N_0 and the running sum value. Other host interface signals are: four address lines Address[3:0], four device select lines Ds[3:0], four chip identification bits Id[3:0], input/output select Ios, read/write select Ode, and an acknowledge signal N_d r.

Other signals are: N_reset (active low chip reset line), Test (test mode enable input), and Theta16 (connected to theta[16] and used for testing purposes).

A complete list of pins with their timing attributes can be found in Appendix B.

5. Manufacturing Test

To improve the observability of the chip, the computed threshold is made accessible externally. The threshold least significant 16 bits appear on the host data bus when "test=1" and when the host enables the chip for read (Figure 27).

Twelve GENESIL test vector files have been created to provide manufacturing test vectors (a total of 32,707 vectors). These files can be found in the chip database:

adapt4_man.089 : tests adaptive thresholding. adapt4_5_man.089 : tests adaptive thresholding.

adap_simp_man.089 : tests adaptive and simple thresholding. adapt_2f_man.089 : tests adaptive thresholding (2 frames). : tests adaptive and adjusted thresholding.

adj2_man.089 : test adjusted thresholding mode. adj_man.089 : test adjusted thresholding.

simp_man.089 : test simple thresholding. simp_adap_man.089 : test simple and adaptive thresholding modes.

simp_adj_adap.089 : test all three thresholding modes. fifos_man.089 : tests the fifo pipe structure.

host_inter_man.089 : a relatively short file to test the host interface.

6. Concluding Remarks

Bimodal Thresholding:

To eliminate noise spikes, the pixel intensity is compared to an upper threshold value (Figure 28). If the intensity exceeds this value, then it is considered as noise and suppressed at the output.

Variable Frame Size:

The chip is capable of processing pixel frames with a variable size (number of rows and columns). This feature is useful in processing smaller frames faster.

Algorithm Enhancements:

As part of the adaptive thresholding algorithm, an intensity average for each pixel is computed (based on the 8 surrounding pixels). The average values for all the pixels of the same frame are summed and the result is made available to outside the chip. as a running sum average (Figure 29).

Appendix A. Block Diagrams, Schematics, and Timing Diagrams

Figure 1. Thresholding Chip Block Diagram

Figure 2. Counting of Pixels Above Threshold (in output/mux1 block)

Figure 3. Simple-Adjust Threshold Hardware

adjust

Figure 4. Adjust-Simple Threshold Selection (in adjust/logic3)

	4-	-132
ii.	•	:
pixel-in		
0	-128	-255
7	-129	-258
87	-130	-257
89	-131	-258
		discarded

Figure 5. Pixel Stream Spatial Organization

$S1 = XZ^{-3} + XZ^{-258}$	$S3 = XZ^{-2} + XZ^{-257}$	$S5 = XZ^{-1} + XZ^{-256}$
$S2 = S1 + XZ^{-131}$	$S4 = S3 + XZ^{-130}$	$S6 = S5 + XZ^{-129}$
$S7 = XZ^{0} + XZ^{-255}$	$S13 = XZ^{1} + XZ^{-254}$	$S15 = XZ^{2} + XZ^{-253}$
$S8 = S7 + XZ^{-128}$	$S14 = S13 + XZ^{-127}$	$S16 = S15 + XZ^{-128}$
S9 = S2 + S3	S11 = S4 + S5	S17 = S6 + S7
S10 = S9 + S6	S12 = S11 + S8	S18 = S17 + S14
S19 = S8 + S13 S20 = S19 + S16	ETC	

(a)

Figure 6. Chart of Arithmetic Operations

Figure 7. Pipeline Reservation Table

$$\theta = K1.E(X) + K2.L1 + K3$$
 $E(X) = \frac{\sum X}{8}i = \overline{X}$ $L1 = \sum |Xi - \overline{X}|$ $i = 0,1,2,3,4,5,6,7$

X2	X1	ХО
X4		хз
X7	Х6	X5

Figure 8. L1 Norm Computation

Figure 9. Inverting Buffer Tree Structure For Average

Figure 10. Details of L1 Norm Hardware (1 of 6).

Figure 10. Details of L1 Norm Hardware (2 of 6).

Figure 10. Details of L1 Norm Hardware (3 of 6).

Figure 10. Details of L1 Norm Hardware (4 of 6).

adapt/Add-Carry block

Figure 10. Details of L1 Norm Hardware (5 of 6).

Figure 10. Details of L1 Norm Hardware (6 of 6).

Figure 11. Adaptive Threshold Hardware

Figure 12. Adaptive Threshold Computation (1/3)

Figure 12. Adaptive Threshold Computation (2/3)

Figure 12. Adaptive Threshold Computation (3/3)

(a). reg0 Block

Figure 13. Host interface Module Block Diagram

(c). reg2 Block

Figure 13. Host Interface Module Block Diagram (Continued)

Figure 14. Host Interface Block Diagram (continued)

Table 1. Control Bits Assignment

controls[0] unused

controls[2:1] thresh-sel[1:0]

controls[3] thresh-mode (0: mono, 1: bi-modal)

Table2. Threshold Selection

thresh-sel [1:0]	threshold type
00	simple
. 01	adjusted
10	adaptive
11	unused

Figure 15. Host Interface Block Diagram

Figure 16. Host-stuff/interface module

Figure 17. Host Interface Timing (write cycle)

Figure 18. Main Storage Organization and Control

Figure 19. Schematic of Fifos Pipe Structure (Imported From GT-VSF Chip).

Figure 20. Blocks in clocks-etc Module.

Figure 21. clocks-etc/state-mach Block Diagram.

output/mux0

(a) Threshold Selection

(b) Low Threshold Operation

Figure 22. Thresholding Operation

Figure 23. Output Selection Logic (output/mux1 block)

theta[16:0]
$$\longrightarrow$$
 n-theta[16:0] (a)

Figure 24. invert and delay Blocks in Output Module

Figure 25. output/state-mach Block Diagram.

Figure 26. Truncation Scheme for Adaptive Thresholding

Figure 27. host-stuff/d-out-mux Block Diagram.

Figure 28. Upper threshold mode (in host-stuff module)

Figure 29. Running Sum Diagram

Appendix B. Pin Description

/********	**********************	****/
/*	Pin Description of GT-VTHR Thresholding Chip	*/
/**********	********************	****/

PIN#	W/B#	ABBREVIATED NAME	SIGNAL_NAME	PAD_TYPE	TIMING
В2	1	VCC	VCC	VCC CORNER	
B1	2	Data[2]	Data[2]	DATA IO	SA/WA
C2	3	Data[3]	Data[3]	DATA IO	SA/WA
C1	4	VSS	VSS	VSS RING	
D2	5	Data[4]	Data[4]	DATA IO	SA/WA
D1	6	Data[5]	Data[5]	DATA IO	SA/WA
E2	7		Data[6]	DATA IO	SA/WA
E1	8	Data[7]	Data[7]	DATA IO	SA/WA
F3	9	VCC	VCC	VCC RING	
F2	10	Data[8]	Data[8]	DATA IO	SA/WA
F1	11	Data[9]	Data[9]	DATA IO	SA/WA
G2	12	Data[10]	Data[10]	DATA IO	SA/WA
G3	13	Data[11]	Data[11]	DATA IO	SA/WA
G1	14	VCC	VCC	VCC RING	
Hl	15	Data[12]	Data[12]	DATA IO	SA/WA
H2	16	Data[13]	Data[13]	DATA IO	SA/WA
Н3	17	Data[14]	Data[14]	DATA IO	SA/WA
J1	18	Data[15]	Data[15]	DATA IO	SA/WA
J2	19	VSS	VSS	VSS RING	
K1	20	Theta16	Theta16	DATA OUT	SA
K2	21	Erow_O	End_row_out	DATA OUT	SA
L1	22	Efrm_O	End frame out	DATA OUT	SA
Ml	23	VCC	vcc	VCC RING	
L2	24	Brow_O	Begin row out	DATA OUT	SA
N1	25	-			
M2	26	VSS	vss	VSS CORNER	
N2	27		Begin_frame_out	DATA OUT	SA
МЗ	28	_ ` `	Pixel_in[0]	DATA IN	VB
N3	29	440	Pixel_in[1]	DATA IN	VB
M4	30	Pxl_I[2]	Pixel_in[2]	DATA IN	VB
N4	31	Pxl_I[3]	Pixel_in[3]	DATA IN	VB
M5	32	Pxl_I[4]	Pixel_in[4]	DATA IN	VB
N5	33	VCC	VCC	VCC CORE	
L6	34	Pxl_I(5)	Pixel_in[5]	DATA IN	VB
Мб	35	Px1_I[6]	Pixel_in[6]	DATA IN	VB
N6	36	Px1_I[7]	Pixel_in[7]	DATA IN	VB
м7	37	VCC	VCC	VCC CORE	
L7	38	Pxl_I[8]	Pixel_in[8]	DATA IN	VB
N7	39	Px1_I[9]	Pixel_in[9]	DATA IN	VB
N8		VSS	VSS	VSS RING	
М8	41	Pxl_I[10]	Pixel_in[10]	DATA IN	VB
L8	42	Px1_I[11]	Pixel_in[11]	DATA IN	VB
N9	43	Pxl_I[12]	Pixel_in[12]	DATA IN	VB
м9	44	Pxl_I(13]	Pixel_in[13]	DATA IN	VB
N10	45	Pxl_I[14]	Pixel_in[14]	DATA IN	VB
M10	46	Pxl_I[15]	Pixel_in[15]	DATA IN	VB
N11	47	Brow_I	Begin_row_in	DATA IN	VB
N12	48	Erow_I	End_row_in	DATA IN	VB
M11	49	Bfrm_I	Begin_frame_in	DATA IN	VB
N13	50				
M12	51				
M13	52	Efrm_I	End_frame_in	DATA IN	VB
L12	53	VCC	VCC	VCC RING	

3					
L13	54	Px1_0[0]	Pixel_out[0]	DATA OUT	SA
K12	55	Pxl_0[1]	Pixel_out[1]	DATA OUT	SA
K13	56	Px1_0[2]	Pixel_out[2]	DATA OUT	SA
J12	57	Px1_0[3]	Pixel_out[3]	DATA OUT	SA
J13	58	Pxl_0[4]	Pixel_out[4]	DATA OUT	SA
H11	59	Pxl_0[5]	Pixel_out[5]	DATA OUT	SA
H12	60	VSS	VSS	VSS RING	
H13	61	Pxl_0(6)	Pixel_out[6]	DATA OUT	SA
G12	62	Px1_0[7]	Pixel_out[7]	DATA OUT	SA
G11	63	Px1_0[8]	Pixel_out[8]	DATA OUT	SA
G13	64	Px1_0[9]	Pixel_out[9]	DATA OUT	SA
F13	65	VCC	VCC	VCC RING	
F12	66	Pxl_0[10]	Pixel_out[10]	DATA OUT	SA
F11	67	Pxl_0[11]	Pixel_out[11]	DATA OUT	SA
E13	68	Pxl_O[12]	Pixel_out[12]	DATA OUT	SA
E12	69	Pxl_0[13]	Pixel_out[13]	DATA OUT	SA
D13	70	Pxl_0[14]	Pixel_out[14]	DATA OUT	SA
D12	71	Pxl_0[15]	Pixel_out[15]	DATA OUT	SA
C13	72	nReset	N_reset	DATA IN	WA
B13	73	VSS	VSS	VSS RING	
C12	74	ID[0]	Id[0]	DATA IN	WA
A13	75	VCC	VCC	VCC CORNER	
B12	76	ID[1]	Id[1]	DATA IN	WA
A12	77	ID[2]	Id[2]	DATA IN	WA
B11	78	VSS	VSS	VSS CORE	
A11	79	ID[3]	Id[3]	DATA IN	WA
B10	80	DS[0]	Ds[0]	DATA IN	WA
A10	81	DS[1]	Ds[1]	DATA IN	WA
B9	82	VCC	VCC	VCC RING	673
A9	83	DS[2]	Ds [2]	DATA IN	WA
C8	-84	DS [3]	Ds[3]	DATA IN	WA
B8 A8	85 86	VCC VSS	VCC VSS	VCC CLOCK	
B7	87	Pxl Clk	Pixel clk	CLOCK	
C7	88	IOS	Ios	DATA IN	VB
A7	89	Test	Test	DATA IN	VA
A6	90	ODE	Ode	DATA IN	WA
B6	91	DR see note (3)		DATA OUT	PROP
C6	92	VSS	VSS	VSS CORE	2 1102
A5	93	Hadr[0]	Address[0]	DATA IN	WA
B5	94	Hadr[1]	Address[1]	DATA IN	WA
A4	95	Hadr[2]	Address[2]	DATA IN	WA
B4	96	Hadr[3]	Address[3]	DATA IN	WA
A3	97	Data[0]	Data[0]	DATA IO	SA/WA
A2	98	Data[1]	Data[1]	DATA IO	SA/WA
В3	99	VCC	VCC	VCC RING	
A1	100				
		•			

Note:

^{(1) &}quot;W/B#" is the wire bond number. "PIN#" is the alphanumeric pin location.

⁽²⁾ TIMING = SA/WA means the I/O data pad has SA output and WA (VA+VB) input timing attribute.

⁽³⁾ DR is a propagational output which depends on WA inputs (DS, ID, ODE). The slowest path at worst case condition is 28.6 ns (from ID[0] to DR output).

Appendix C. Key Parameters

```
Key Parameters Listing of Thresholding Chip (GT-VTHR)
/****************
KEY_PARAMETERS
) Key Parameters for Chip /mntb/theta/theta/theta
) TIME = Wed Feb 13 14:29:12 1991
) ROUTE VERSION = 8.00
) HEIGHT = 404.9 MILS
(=10284.4 \text{ u})
) WIDTH = 400.0 MILS
  ( = 10160.0 u )
) ROUTED = 1 (0=NO, 1=YES)
) TOTAL_WIRE_LENGTH = 1393033 MILS
   ( = 35383038. u )
) CORE AREA = 130090.5 SQUARE MILS
   ( = 83929188.5 u2 )
) PADRING_AREA = 31878.0 SQUARE_MILS
   ( = 20566410. u2 )
) PAD AREA = 27478.8 SQUARE MILS
   ( = 17728223. u2 )
) ROUTE_AREA = 75467.1 SQUARE_MILS
   (=48688356. u2)
)
) PERCENT_ROUTING_OF_CORE = 58 %
) PERCENT_ROUTING_OF_CHIP = 46 %
) PERCENT_CORE_OF_CHIP = 80.%
) PERCENT_PADRING_OF_CHIP = 19 %
) PERCENT_PAD_OF_PADRING = 86 %
) NETLIST_VERSION = 2.0
) NETLIST_EXISTS = 1 (0=NO,1=YES)
) PHASE A TIME = 198.6 NANOSECONDS
) PHASE B TIME = 185.9 NANOSECONDS
) SYMMETRIC TIME = 397.1 NANOSECONDS
) NUMBER OF TRANSISTORS = 123807
) POWER DISSIPATION = 853.03 MILLIWATTS @5V 10MHZ
) ROUTE_ESTIMATE_LVL = 0
) FLAT_ROUTE = 0 (0=NO, 1=YES)
) TECHNOLOGY_NAME = CMOS-1
) PACKAGE_SPECIFIED = 0 (0=NO,1=YES)
) FABLINE_NAME = HP2_CN10B
) COMPILER_TYPE = GCX
) FLOORPLAN VERSION = 8.0
) BOND_PAD_CNT = 96
) HEIGHT_ESTIMATE = 418.49 MILS
    ( = 10629.64 u )
) WIDTH_ESTIMATE = 430.65 MILS
   (=10938.50 u)
) FUSED = 1 (0=NO, 1=YES)
) FUSION_REQUIRED = 1 (0=NO,1=YES)
) PINOUT = 1 (0=NO,1=YES)
```

```
) PINOUT_REQUIRED = 1 (0=NO,1=YES)
) PLACED = 1 (0=NO,1=YES)
) PLACEMENT_REQUIRED = 1 (0=NO,1=YES)
)
)
) AREA = 161960.0 SQUARE_MILS
    ( = 104490115. u2 )
) OBJECT_TYPE = Chip
) AREA_PER_TRANSISTOR = 1.308165 SQUARE_MILS
    ( = 843.975717 u2 )
) PHYSICAL_IMPLEMENTATIONS_EXIST = 0 (0=NO,1=YES)
) CHECKPOINTS_EXIST = 1 (0=NO,1=YES)
) CAN_SET_FABLINE = 1 (0=NO,1=YES)
)
) Key Parameter Listing Complete
```

Appendix D. PADRING.033

OUTPUT RINGS REPORT Version 1

Noise contribution: (ma/nh) Speed0: 2.50 Speed1: 5.00 Speed2: 8.33 Speed3: 16.66 Limits: Maximum noise level: 100. Unacceptable level: 150

Combined power pads do not supply clean power to the core. Their use is discouraged

Ring under analysis: VDD

se_pad

EAST

POWER

	PAD NAME	EDGE	SPEED	DRIVE TYPE	PAD SUPPLY	COMMENT		
_								
	sw_pad	SOUTH		POWER				
	pixel_out[15]	WEST	1	CMOS	2	OK		
	pixel_out[14]	WEST	1	CMOS	2	OK		
	pixel_out[13]	WEST	1	CMOS	2	OK		
	pixel_out[12]	WEST	1	CMOS	2	OK		
	pixel_out[11]	WEST	1	CMOS	2	OK		
	pixel_out[10]	WEST	1	CMOS	2	OK		
	ring_vdd1[4]	WEST		POWER				
	pixel_out[9]	WEST	1	CMOS	3	OK .		
	pixel_out[8]	WEST	1	CMOS	3	OK		
	pixel_out[7]	WEST	1	CMOS	4	OK		
	pixel_out[6]	WEST	1	CMOS	4	OK		
	pixel out[5]	WEST	1	CMOS	4	OK		
	pixel_out[4]	WEST	1	CMOS	4	OK		
	pixel_out[3]	WEST	1	CMOS	4	OK		
	pixel_out[2]	WEST	1	CMOS	4	OK		
	pixel_out[1]	WEST	1	CMOS	4	OK		
	pixel_out[0]	WEST	1	CMOS	5	OK		
	ring_vdd1[3]	WEST		POWER				
	begin_frame_out	NORTH	1	CMOS	5	OK		
	begin_row_out	EAST	1	CMOS	5	oĸ		
	ring_vdd1[2]	EAST		POWER				
	end_frame_out	EAST	1	CMOS	8	OK		
	end_row_out	EAST	1	CMOS	8	OK		
	t16_pad	EAST	1	CMOS	6	OK		
	data_pads[15]	EAST	1	CMOS	6	OK		
	data_pads[14]	EAST	1	CMOS	6	OK ·		
	data_pads[13]	EAST	1	CMOS	6	OK		
	data_pads[12]	EAST	1	CMOS	6	OK		
	ring_vdd1[1]	EAST		POWER				
	data_pads[11]	EAST	1	CMOS	6	OK		
	data_pads[10]	EAST	1	CMOS	5	OK		
	data_pads[9]	EAST	1	CMOS	5	OK		
	data_pads[8]	EAST	1	CMOS	4	OK		
	ring_vdd1[0]	EAST		POWER				
	data_pads[7]	EAST	1	CMOS	4	OK		
	data_pads[6]	EAST	1	CMOS	4	OK		
	data_pads[5]	EAST	1	CMOS	4	OK		
	data_pads[4]	EAST	1	CMOS	4	OK		
	data_pads[3]	EAST	1	CMOS	4	OK		
	data_pads[2]	EAST	1	CMOS	4	OK		

ring_vdd1[5]	SOUTH		POWER		
data_pads[1]	SOUTH	1	CMOS	3	OK
data_pads[0]	SOUTH	1	CMOS	3	OK
DR pad	SOUTH	1	CMOS	3	OK

This ring has 6 more VDD pads than it needs Ring under analysis: VSS

	PAD NAME	EDGE	SPEED	DRIVE TYPE	PAD SUPPLY	COMMENT	
	ring_vss1[2]	WEST		POWER			
	pixel_out[15]	WEST	1	CMOS	2	OK	
	pixel_out[14]	WEST	1	CMOS	2	OK ·	
	pixel_out[13]	WEST	1	CMOS	2	OK	
	pixel out[12]	WEST	1	CMOS	2	OK	
	pixel out[11]	WEST	1	CMOS	2	OK	
	pixel_out[10]	WEST	1	CMOS	2	OK	
	pixel_out[9]	WEST	1	CMOS	2	OK	
	pixel_out[8]	WEST	1	CMOS	3	OK	
	pixel_out[7]	WEST	1	CMOS	3	OK	
	pixel_out[6]	WEST	1	CMOS	3	OK	
	ring_vss1[1]	WEST		POWER			
	pixel_out[5]	WEST	1	CMOS	3	OK	
	pixel_out[4]	WEST	1	CMOS	3	ok .	
	pixel out[3]	WEST		CMOS	3	OK	
	pixel out[2]	WEST	1	CMOS	. 3	OK	
	pixel out[1]	WEST	1	CMOS	3	OK	•
	pixel out[0]	WEST	1	CMOS	3	ок	
-	-						
•	<pre>begin_frame_out</pre>	NORTH	1	CMOS	3	OK	•
	ne_pad	NORTH		POWER			•
	begin row out	EAST	1	CMOS	3	ok ·	
	end frame out	EAST		CMOS	4	OK	
	end row out	EAST		CMOS	4	OK	
	t16 pad	EAST		CMOS	2	OK	
	data pads[15]	EAST		CMOS	2	OK	
	data_pads[14]	EAST		CMOS	2	OK	
	data pads[13]	EAST		CMOS	2	OK	•
	data pads[12]	EAST		CMOS	2	OK	
	data pads[11]	EAST		CMOS	2	OK	
	data pads[10]	EAST		CMOS	2	OK	
	data_pads[9]	EAST		CMOS	1	OK	•
	data pads[8]	EAST		CMOS	1	OK	•
	data_pads[7]	EAST		CMOS	1	OK	
	data_pads[7] data_pads[6]	EAST		CMOS	1	OK	
	data_pads[5]	EAST		CMOS	1	OK	
	data pads[4]	EAST		CMOS	1	OK	
	ring_vss1[0]	EAST		POWER	1	OIL.	
	data pads[3]	EAST		CMOS	1	ок	
	data_pads[3] data_pads[2]	EAST		CMOS	1	OK	
	acca_paus [2]	LAGI	1	CMOS	Δ.	OR	
	data_pads[1]	SOUTH	1	CMOS	1	ок	
	data_pads[0]	SOUTH	1	CMOS	1	OK	
	DR_pad	SOUTH	1	CMOS	1	OK	

This ring has 2 more VSS pads than it needs

Appendix E. Power Dissipation

```
Power Dissipation of Thresholding Chip (GT-VTHR)
/**********************
run TNET
DISP POWER
POWER
) Clock Pixel clk [clock=-9999]
) Reading Routing Data . . .
) INFO: longest net delay: 13.2ns
    Nets with delay longer than 10.0ns are recorded in ancilLary file LONG NET
) STD
) INFO: Nets loading, driving information can be found in ancillary file TA NET
) STD
) Back-annotating route capacitance for block power calculation. . .
) Power for block test_pad: 0.00mW(DC) 0.24mW(AC)
  Power for block t16_pad: 0.00mW(DC) 4.50mW(AC)
) Power for block sw_pad: 0.00mW(DC) 0.00mW(AC)
) Power for block store ctrl: 0.00mW(DC) 9.21mW(AC)
  Power for block store/mem2/fifo2: 0.00mW(DC) 53.13mW(AC)
) W: Node store/mem2/fifol/space_avail is not routed
  Power for block store/mem2/fifol: 0.00mW(DC) 54.09mW(AC)
  Power for block store/mem1/fifo2: 0.00mW(DC) 55.25mW(AC)
  Power for block store/meml/fifol: 0.00mW(DC) 54.08mW(AC)
) Power for block store/latches: 0.00mW(DC) 30.24mW(AC)
) Power for block se pad: 0.00mW(DC) 0.00mW(AC)
  Power for block ring vssl: 0.00mW(DC) 0.00mW(AC)
  Power for block ring vss0: 0.00mW(DC) 0.00mW(AC)
  Power for block ring vdd1: 0.00mW(DC) 0.00mW(AC)
  Power for block ring_vdd0: 0.00mW(DC) 0.00mW(AC)
) Power for block reset_pad: 0.00mW(DC) 1.25mW(AC)
  Power for block pixel_out[9]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel out[8]: 0.00mW(DC) 4.50mW(AC)
) Power for block pixel out[7]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel out[6]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[5]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[4]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[3]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[2]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[1]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[15]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[14]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[13]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[12]: 0.00mW(DC) 4.50mW(AC)
  Power for block pixel_out[11]: 0.00mW(DC) 4.50mW(AC)
   Power for block pixel_out[10]: 0.00mW(DC) 4.50mW(AC)
   Power for block pixel_out[0]: 0.00mW(DC) 4.50mW(AC)
   Power for block pixel in[9]: 0.00mW(DC) 0.34mW(AC)
   Power for block pixel in[8]: 0.00mW(DC) 0.33mW(AC)
   Power for block pixel in[7]: 0.00mW(DC) 0.36mW(AC)
  Power for block pixel in[6]: 0.00mW(DC) 0.39mW(AC)
  Power for block pixel in[5]: 0.00mW(DC) 0.39mW(AC)
  Power for block pixel in[4]: 0.00mW(DC) 0.44mW(AC)
   Power for block pixel_in[3]: 0.00mW(DC) 0.46mW(AC)
  Power for block pixel_in[2]: 0.00mW(DC) 0.45mW(AC)
  Power for block pixel in[1]: 0.00mW(DC) 0.54mW(AC)
  Power for block pixel_in[15]: 0.00mW(DC) 0.27mW(AC)
  Power for block pixel_in[14]: 0.00mW(DC) 0.28mW(AC)
) Power for block pixel in[13]: 0.00mW(DC) 0.23mW(AC)
```

```
Power for block pixel_in[12]: 0.00mW(DC) 0.21mW(AC)
   Power for block pixel_in[11]: 0.00mW(DC) 0.23mW(AC)
   Power for block pixel_in[10]: 0.00mW(DC) 0.29mW(AC)
   Power for block pixel in[0]: 0.00mW(DC) 0.54mW(AC)
   Power for block pixel_clk: 0.00mW(DC) 30.41mW(AC)
  Power for block output/state_mach: 0.00mW(DC) 0.58mW(AC)
) W: Node output/neuron/activity[7] is not routed
) W: Node output/neuron/activity[6] is not routed
) W: Node output/neuron/activity[5] is not routed
) W: Node output/neuron/activity[4] is not routed
) W: Node output/neuron/activity[3] is not routed
) W: Node output/neuron/activity[2] is not routed
) W: Node output/neuron/activity[1] is not routed
) W: Node output/neuron/activity[0] is not routed
) W: Node output/neuron/activity[16] is not routed
) W: Node output/neuron/activity[15] is not routed
) W: Node output/neuron/activity[14] is not routed
) W: Node output/neuron/activity[13] is not routed
) W: Node output/neuron/activity[12] is not routed
) W: Node output/neuron/activity[11] is not routed
) W: Node output/neuron/activity[10] is not routed
) W: Node output/neuron/activity[9] is not routed
) W: Node output/neuron/ADDAO COUT is not routed
) W: Node output/neuron/activity[8] is not routed
  Power for block output/neuron: 0.00mW(DC) 2.10mW(AC)
   Power for block output/mux1: 0.00mW(DC) 10.07mW(AC)
   Power for block output/mux0: 0.00mW(DC) 4.48mW(AC)
   Power for block output/inverters: 0.00mW(DC) 0.84mW(AC)
   Power for block output/delay: 0.00mW(DC) 8.61mW(AC)
   Power for block ode_pad: 0.00mW(DC) 0.22mW(AC)
   Power for block nw_pad: 0.00mW(DC) 0.12mW(AC)
   Power for block ne_pad: 0.00mW(DC) 0.00mW(AC)
   Power for block ios_pad: 0.00mW(DC) 0.32mW(AC)
)
   Power for block host_stuff/reg2: 0.00mW(DC) 14.70mW(AC)
)
   Power for block host stuff/reg1: 0.00mW(DC) 16.47mW(AC)
١
   Power for block host stuff/reg0: 0.00mW(DC) 19.49mW(AC)
) W: Node host_stuff/pdp/PORT9_EXT1[17] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[15] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[14] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[9] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[13] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[8] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[12] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[7] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[11] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[6] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[10] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[5] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[4] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[3] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[2] is not routed
) W: Node host_stuff/pdp/PORT9_EXT1[1] is not routed
) W: Node host stuff/pdp/PORT9 EXT1[0] is not routed
) W: Node host_stuff/pdp/ADDAO_COUT is not routed
   Power for block host_stuff/pdp: 0.00mW(DC) 2.05mW(AC)
   Power for block host_stuff/muxes: 0.00mW(DC) 10.26mW(AC)
   Power for block host_stuff/inverters: 0.00mW(DC) 0.50mW(AC)
   Power for block host_stuff/interface/wr_ctrl: 0.00mW(DC) 0.87mW(AC)
   Power for block host_stuff/interface/rd_ctrl: 0.00mW(DC) 1.17mW(AC)
   Power for block host_stuff/interface/dr_ctrl: 4.93mW(DC) 0.23mW(AC)
)
   Power for block host_stuff/decoder: 0.00mW(DC) 1.00mW(AC)
   Power for block host_stuff/d_out_mux: 0.00mW(DC) 5.36mW(AC)
```

```
Power for block host_stuff/controls: 0.00mW(DC) 1.54mW(AC)
  Power for block end_row_out: 0.00mW(DC) 4.50mW(AC)
  Power for block end_row_in: 0.00mW(DC) 0.74mW(AC)
  Power for block end_frame_out: 0.00mW(DC) 4.50mW(AC)
  Power for block end_frame_in: 0.00mW(DC) 0.73mW(AC)
  Power for block data_pads[9]: 0.00mW(DC) 4.79mW(AC)
  Power for block data_pads[8]: 0.00mW(DC) 4.79mW(AC)
  Power for block data_pads[7]: 0.00mW(DC) 4.76mW(AC)
  Power for block data_pads[6]: 0.00mW(DC) 4.70mW(AC)
  Power for block data pads[5]: 0.00mW(DC) 4.71mW(AC)
  Power for block data_pads[4]: 0.00mW(DC) 4.75mW(AC)
  Power for block data_pads[3]: 0.00mW(DC) 4.90mW(AC)
  Power for block data_pads[2]: 0.00mW(DC) 4.93mW(AC)
  Power for block data_pads[1]: 0.00mW(DC) 4.92mW(AC)
  Power for block data_pads[15]: 0.00mW(DC) 4.99mW(AC)
  Power for block data_pads[14]: 0.00mW(DC) 4.93mW(AC)
  Power for block data pads[13]: 0.00mW(DC) 4.86mW(AC)
  Power for block data_pads[12]: 0.00mW(DC) 4.84mW(AC)
  Power for block data pads[11]: 0.00mW(DC) 4.82mW(AC)
  Power for block data pads[10]: 0.00mW(DC) 4.82mW(AC)
  Power for block data pads[0]: 0.00mW(DC) 4.98mW(AC)
  Power for block core_vss: 0.00mW(DC) 0.00mW(AC)
  Power for block core vdd: 0.00mW(DC) 0.00mW(AC)
  Power for block clocks etc/state mach: 0.00mW(DC) 0.71mW(AC)
  Power for block clocks etc/sp interface: 0.00mW(DC) 8.19mW(AC)
  Power for block clocks etc/last row: 0.00mW(DC) 0.79mW(AC)
  Power for block clocks etc/first row: 0.00mW(DC) 0.79mW(AC)
  Power for block clocks etc/end row delay: 0.00mW(DC) 1.23mW(AC)
  Power for block clocks_etc/end_fr_delay: 0.00mW(DC) 0.66mW(AC)
  Power for block clocks_etc/beg_row_delay: 0.00mW(DC) 1.22mW(AC)
  Power for block clocks_etc/beg_fr_delay: 0.00mW(DC) 1.33mW(AC)
  Power for block begin_row_out: 0.00mW(DC) 4.50mW(AC)
  Power for block begin_row_in: 0.00mW(DC) 0.66mW(AC)
  Power for block begin_frame_out: 0.00mW(DC) 4.50mW(AC)
  Power for block begin_frame_in: 0.00mW(DC) 0.65mW(AC)
  Power for block adjust/logic3: 0.00mW(DC) 0.72mW(AC)
   Power for block adjust/logic2: 0.00mW(DC) 2.76mW(AC)
   Power for block adjust/logic11: 0.00mW(DC) 2.18mW(AC)
  Power for block adjust/logic10: 0.00mW(DC) 7.47mW(AC)
  Power for block adjust/logic0: 0.00mW(DC) 3.93mW(AC)
   Power for block adjust/invert3: 0.00mW(DC) 0.37mW(AC)
   Power for block adjust/invert2: 0.00mW(DC) 0.33mW(AC)
   Power for block adjust/invert1: 0.00mW(DC) 0.51mW(AC)
  Power for block adjust/invert0: 0.00mW(DC) 0.50mW(AC)
) W: Node adjust/add2/COUT is not routed
  Power for block adjust/add2: 0.00mW(DC) 2.53mW(AC)
  Power for block adjust/add1: 0.00mW(DC) 2.61mW(AC)
) W: Node adjust/add01/N2_N0[9] is not routed
) W: Node adjust/add01/N2_N0[8] is not routed
) W: Node adjust/add01/N2 N0[7] is not routed
) W: Node adjust/add01/N2 N0[6] is not routed
) W: Node adjust/add01/N2 N0[5] is not routed
) W: Node adjust/add01/N2 N0[4] is not routed
) W: Node adjust/add01/N2_N0[3] is not routed
) W: Node adjust/add01/N2_N0[15] is not routed
) W: Node adjust/add01/N2_N0[2] is not routed
) W: Node adjust/add01/N2 N0[1] is not routed
) W: Node adjust/add01/N2 N0[14] is not routed
) W: Node adjust/add01/N2 N0[0] is not routed
) W: Node adjust/add01/N2_N0[13] is not routed
) W: Node adjust/add01/N2_N0[12] is not routed
) W: Node adjust/add01/N2_N0[11] is not routed
```

```
) W: Node adjust/add01/N2 N0[10] is not routed
  Power for block adjust/add01: 0.00mW(DC) 2.16mW(AC)
) W: Node adjust/add00/N1 N0[9] is not routed
) W: Node adjust/add00/N1 N0[8] is not routed
) W: Node adjust/add00/N1 N0[7] is not routed
) W: Node adjust/add00/N1 N0[6] is not routed
) W: Node adjust/add00/N1_N0[5] is not routed
) W: Node adjust/add00/N1 N0[4] is not routed
) W: Node adjust/add00/N1_N0[3] is not routed
) W: Node adjust/add00/N1_N0[2] is not routed
) W: Node adjust/add00/N1_N0[1] is not routed
) W: Node adjust/add00/N1 N0[0] is not routed
) W: Node adjust/add00/N1 N0[15] is not routed
) W: Node adjust/add00/N1 N0[14] is not routed
) W: Node adjust/add00/N1 N0[13] is not routed
) W: Node adjust/add00/N1 N0[12] is not routed
) W: Node adjust/add00/N1 N0[11] is not routed
) W: Node adjust/add00/N1_N0[10] is not routed
   Power for block adjust/add00: 0.00mW(DC) 2.12mW(AC)
   Power for block addr pads[3]: 0.00mW(DC) 0.38mW(AC)
   Power for block addr_pads[2]: 0.00mW(DC) 0.19mW(AC)
   Power for block addr_pads[1]: 0.00mW(DC) 0.76mW(AC)
) Power for block addr pads[0]: 0.00mW(DC) 1.08mW(AC)
) W: Node adapt/v_add_1/ADDA1_COUT is not routed
) W: Node adapt/v add 1/ADDA2 COUT is not routed
) W: Node adapt/v_add_1/ADDA0_COUT is not routed
) Power for block adapt/v_add_1: 0.00mW(DC) 7.44mW(AC)
) W: Node adapt/v_add_0/ADDA1_COUT is not routed
) W: Node adapt/v_add_0/ADDA2_COUT is not routed
) W: Node adapt/v_add_0/ADDA0_COUT is not routed
) Power for block adapt/v_add_0: 0.00mW(DC) 6.69mW(AC)
) W: Node adapt/run_sum/run_sum[2] is not routed
) W: Node adapt/run sum/run sum[1] is not routed
) W: Node adapt/run sum/run sum[0] is not routed
  W: Node adapt/run_sum/ADDAO_COUT is not routed
  Power for block adapt/run_sum: 0.00mW(DC) 6.61mW(AC)
) W: Node adapt/mult_k2/STICKY[1] is not routed
) W: Node adapt/mult_k2/STICKY[0] is not routed
) W: Node adapt/mult_k2/k2xL1[9] is not routed
) W: Node adapt/mult k2/k2xL1[8] is not routed
) W: Node adapt/mult k2/k2xL1[7] is not routed
) W: Node adapt/mult k2/k2xL1[6] is not routed
) W: Node adapt/mult k2/k2xL1[5] is not routed
) W: Node adapt/mult_k2/k2xL1[4] is not routed
) W: Node adapt/mult_k2/k2xL1[3] is not routed
) W: Node adapt/mult_k2/k2xL1[2] is not routed
) W: Node adapt/mult_k2/k2xL1[1] is not routed
) W: Node adapt/mult_k2/k2xL1[0] is not routed
) W: Node adapt/mult_k2/k2xL1[12] is not routed
) W: Node adapt/mult k2/k2xL1[11] is not routed
) W: Node adapt/mult k2/k2xL1[10] is not routed
) W: Node adapt/mult k2/ZERO is not routed
) Power for block adapt/mult k2: 0.00mW(DC) 38.48mW(AC)
) W: Node adapt/mult k1/STICKY[1] is not routed
) W: Node adapt/mult k1/STICKY[0] is not routed
) W: Node adapt/mult k1/k1xavg[13] is not routed
) W: Node adapt/mult k1/k1xavg[12] is not routed
) W: Node adapt/mult k1/k1xavg[11] is not routed
) W: Node adapt/mult k1/k1xavg[10] is not routed
) W: Node adapt/mult k1/k1xavg[9] is not routed
) W: Node adapt/mult_k1/k1xavg[8] is not routed
) W: Node adapt/mult_k1/klxavg[7] is not routed
```

```
) W: Node adapt/mult k1/klxavg[6] is not routed
) W: Node adapt/mult k1/k1xavg[5] is not routed
) W: Node adapt/mult k1/k1xavg[4] is not routed
) W: Node adapt/mult k1/k1xavg[3] is not routed
) W: Node adapt/mult k1/k1xavg[2] is not routed
) W: Node adapt/mult_k1/k1xavg[1] is not routed
) W: Node adapt/mult k1/k1xavg[0] is not routed
) W: Node adapt/mult k1/ZERO is not routed
) Power for block adapt/mult k1: 0.00mW(DC) 35.28mW(AC)
) W: Node adapt/k3 add/thresh[3] is not routed
) W: Node adapt/k3 add/thresh[2] is not routed
) W: Node adapt/k3 add/thresh[1] is not routed
) W: Node adapt/k3 add/thresh[0] is not routed
) W: Node adapt/k3 add/ADDA0 COUT is not routed
) Power for block adapt/k3 add: 0.00mW(DC) 7.57mW(AC)
  Power for block adapt/k2_ctrl1: 0.00mW(DC) 1.17mW(AC)
  Power for block adapt/k2_ctrl0: 0.00mW(DC) 1.63mW(AC)
) W: Node adapt/k2_alu/ADDAO_COUT is not routed
  Power for block adapt/k2_alu: 0.00mW(DC) 5.06mW(AC)
) W: Node adapt/k2_add/ADDA0_COUT is not routed
  Power for block adapt/k2_add: 0.00mW(DC) 3.24mW(AC)
١
) W: Node adapt/kl add/ADDAO COUT is not routed
  Power for block adapt/kl add: 0.00mW(DC) 2.62mW(AC)
   Power for block adapt/avg_inv2: 0.00mW(DC) 4.19mW(AC)
   Power for block adapt/avg_inv1: 0.00mW(DC) 2.76mW(AC)
   Power for block adapt/avg_inv0: 0.00mW(DC) 3.33mW(AC)
   Power for block adapt/add carries: 0.00mW(DC) 2.24mW(AC)
   Power for block adapt/abs dif 7: 0.00mW(DC) 4.86mW(AC)
   Power for block adapt/abs dif 6: 0.00mW(DC) 6.45mW(AC)
   Power for block adapt/abs_dif_5: 0.00mW(DC) 9.02mW(AC)
  Power for block adapt/abs_dif_4: 0.00mW(DC) 7.21mW(AC)
  Power for block adapt/abs_dif_3: 0.00mW(DC) 8.88mW(AC)
  Power for block adapt/abs_dif_2: 0.00mW(DC) 5.56mW(AC)
  Power for block adapt/abs_dif_1: 0.00mW(DC) 6.07mW(AC)
  Power for block adapt/abs_dif_0: 0.00mW(DC) 7.50mW(AC)
  Power for block adapt/MSTflag: 5.31mW(DC) 0.11mW(AC)
) W: Node adapt/L1_add/ADDSUB3 COUT is not routed
) W: Node adapt/L1 add/L1[21] is not routed
) W: Node adapt/L1 add/ADDAO COUT is not routed
) Power for block adapt/L1 add: 0.00mW(DC) 10.12mW(AC)
) W: Node adapt/A0 3/ADDA1 COUT is not routed
) W: Node adapt/A0_3/ADDA3 COUT is not routed
) W: Node adapt/A0 3/ADDA2 COUT is not routed
) W: Node adapt/A0_3/ADDA0 COUT is not routed
  Power for block adapt/A0 3: 0.00mW(DC) 21.10mW(AC)
)
  Power for block ID pads[3]: 0.00mW(DC) 0.28mW(AC)
)
  Power for block ID pads[2]: 0.00mW(DC) 0.33mW(AC)
  Power for block ID pads[1]: 0.00mW(DC) 0.35mW(AC)
  Power for block ID_pads[0]: 0.00mW(DC) 0.32mW(AC)
   Power for block DS_pads[3]: 0.00mW(DC) 0.23mW(AC)
١
١
  Power for block DS_pads[2]: 0.00mW(DC) 0.22mW(AC)
١
   Power for block DS_pads[1]: 0.00mW(DC) 0.28mW(AC)
   Power for block DS_pads[0]: 0.00mW(DC) 0.31mW(AC)
)
  Power for block DR pad: 0.00mW(DC) 4.20mW(AC)
)
 Total power consumption (5.5V, 0 DegC 50pf/out_pad):
        DC:
                   10.24mW [10.24(core)+0.00(ring)]
)
        AC@10MHz: 836.69mW [629.97(core)+206.72(ring)]
```

TOTAL POWER: 846.93 mW

Appendix F. Timing and Simulation Setup Files

> worstcase.040:

```
LABEL Max junction T, min operating V
TEMP_VOLT 100 4.50
HOLDTIME_MARGIN 2.00
SELECT_EXT_CLOCK Pixel_clk
```

> nominal.040:

```
LABEL Room junction T, 5.0 operating V
TEMP_VOLT 55 5.00
HOLDTIME_MARGIN 2.00
SELECT_EXT_CLOCK Pixel_clk
```

> designinit.080:

```
func designinit {
  toggle Pixel_clk 0 '(0 5 10)
  tag Pixel_clk cycle rising
  tag Pixel_clk step both
  showtoggles
}
```

Appendix G. Timing Reports

Appendix G. 1. Pixel_Clk, GUARANTEED, Max T, Min V

**************************************			*****
Chip: /mntb/theta/theta/theta			Timing Analyzer
CLOCK REPORT MODE			
Fabline: HP2_CN10B Junction Temperature:100 deg C External Clock: Pixel_clk Included setup files: #0 worstcase (Max junctions)	Corner: GUARANT Voltage:4.50v ction T, min opera	EED	
	IMES (minimum)		
Phase 1 High: 198.6 ns	Phase 2 High:	185.9 ns	
Cycle (from Ph1): 208.2 ns	Cycle (from Ph2)	: 249.5	ns -
Minimum Cycle Time: 384.5 ns	Symmetric Cycle		97.1 ns
- CLOCK WO Minimum Phase 1 high time is 198.6	RST CASE PATHS		
** Clock delay: 7.4ns (206.0-198.6)			
	ulative Delay	Transitio	n
	206.0	fall	
pixel out[2]/pixel out	204.7	rise	
	204.2	rise	
_	190.2	rise	
<u> </u>	189.6	fall	
output/mux1/NNMUX213.SEL	189.0	rise	
-	187.5	fall	
output/mux1/NN N2	186.4	rise	
output/mux1/n state	184.9	fall	
output/neuron/activity[17]	184.9	fall	
	184.7	fall	
	183.3	fall	
	178.0	fall	
output/inverters/n theta[16]	177.9	fall	
output/inverters/n_theta[16]'	176.9	fall	
output/inverters/theta[16]	176.3	rise	
output/mux0/theta[16]	176.3	rise	
output/mux0/theta[16]'	158.6	rise	
output/mux0/NN_N34	158.1	fall	
output/mux0/adaptive16	157.5	rise	
output/mux1/adaptive16	157.5	rise	
output/mux1/adaptive16'	152.5	rise	
output/mux1/n adaptive16	151.8	fall	
adapt/MSTflag/n_adaptive16	149.6	fall	
adapt/MSTflag/n_adaptive16'	141.8	fall	
adapt/MSTflag/thresh[20]	140.3	rise	
adapt/k3_add/thresh[24]	140.3	rise	
adapt/k3_add/thresh[24]'	140.1	rise	
adapt/k3_add/ADDA0_OUT[24]	138.8	rise	
adapt/k3_add/sum1 [22]	131.3	fall	
adapt/k2_alu/sum1[22]	131.3	fall	

adapt/k2_alu/sum1[22]'	131.1	fall
adapt/k2_alu/ADDA0_OUT[22]	129.7	fall
adapt/k2_alu/sgn_prod2[18]	120.1	rise
adapt/k2_ctrl1/sgn_prod2[18]	120.0	rise
adapt/k2_ctrl1/sgn_prod2[18]'	114.7	rise
adapt/k2_ctrl1/n_prod2[18]	113.1	rise
adapt/k2_ctrl1/n_prod2[18]'	113.0	rise
adapt/k2_ctrl1/prod2[18]	112.1	fall
adapt/k2_add/k2xL1[32]	112.1	fall
adapt/k2_add/k2xL1[32]'	111.9	fall
adapt/k2_add/ADDA0_OUT[16]	110.4	fall
adapt/k2_add/k2xL10[0]	87.7	fall
adapt/mult_k2/k2xL10[0]	87.7	fall
adapt/mult_k2/k2xL10[0]'	86.2	fall
adapt/mult_k2/k2[0]	23.0	fall
host_stuff/reg0/k2[0]	22.5	fall
host_stuff/reg0/k2[0]'	17.7	fall
host_stuff/reg0/NNk21.clock_x	15.0	rise
host_stuff/reg0/PHASE_A	12.3	rise
pixel_clk/PHASE_A	11.2	rise
Pixel_clk	0.0	rise

Minimum Phase 2 high time is 185.9 ns set by:

** Clock delay: 7.0ns (192.9-185.9)

Node	Cumulative	Delay	Transition
<pre>output/mux1/(internal)</pre>	192.9		rise
output/mux1/NNMUX213.SEL	190.6		fall
output/mux1/NN_N1	189.7		rise
output/mux1/NN_N2	188.4		fall
output/mux1/n_state	187.6		rise
output/neuron/activity[17]	187.6		rise
output/neuron/activity[17]'	187.4		rise
output/neuron/ADDA0_OUT[17]	186.1		rise
output/neuron/n_theta[16]	180.0		fall
<pre>output/inverters/n_theta[16]</pre>	180.0		fall
output/inverters/n_theta[16]'	178.9		fall
output/inverters/theta[16]	178.4		rise
output/mux0/theta[16]	178.4		rise
output/mux0/theta[16]'	160.6		rise
output/mux0/NN_N34	160.1		fall
output/mux0/adaptive16	159.6		rise
output/mux1/adaptive16	159.5		rise
output/mux1/adaptive16'	154.5		rise
output/mux1/n_adaptive16	153.9		fall
adapt/MSTflag/n_adaptive16	151.6		fall
adapt/MSTflag/n_adaptive16'	143.8		fall
adapt/MSTflag/thresh[20]	142.3		rise
adapt/k3_add/thresh[24]	142.3		rise
adapt/k3_add/thresh[24]'	142.1		rise
adapt/k3_add/ADDA0_OUT[24]	140.9		rise
adapt/k3_add/sum1[22]	133.3		fall
adapt/k2_alu/sum1[22]	133.3		fall
adapt/k2_alu/sum1[22]'	133.2		fall
adapt/k2_alu/ADDA0_OUT[22]	131.7		fall
adapt/k2_alu/sgn_prod2[18]	122.1		rise
adapt/k2_ctrl1/sgn_prod2[18]	122.1		rise
adapt/k2_ctrl1/sgn_prod2[18]'	116.7		rise
adapt/k2_ctrl1/n_prod2[18]	115.2		rise
adapt/k2_ctrl1/n_prod2[18]'	115.0		rise
adapt/k2_ctrl1/prod2[18]	114.1		fall
adapt/k2_add/k2xL1[32]	114.1		fall

adapt/k2_add/k2xL1[32]'	113.9	fall
adapt/k2_add/ADDA0_OUT[16]	112.4	fall
adapt/k2_add/k2xL10[0]	89.8	fall
adapt/mult_k2/k2xL10[0]	89.7	fall
adapt/mult_k2/k2xL10[0]'	88.2	fall
adapt/mult_k2/L1[3]	24.9	fall
adapt/L1_add/L1[3]	24.6	fall
adapt/L1_add/L1[3]'	19.8	fall
adapt/L1_add/INTER2_VAL1[3]	17.9	fall
adapt/L1_add/PHASE_B	13.3	rise
pixel_clk/PHASE_B	11.2	rise
Pixel_clk	0.0	fall

Minimum cycle time (from Ph1) is 208.2 ns set by:

** Clock delay: 12.1ns (220.3-208.2)

"" Clock delay. 12.1115 (220.3-2)	00.2)	
Node	Cumulative Delay	Transition
<pre><put mux1="" nncountu4.mout_y[15]<="" pre=""></put></pre>	220.3	rise
output/mux1/NN_N50		fall
output/mux1/NN_N3	219.1	rise
output/mux1/NN_N34	218.0	fall
<pre><put mux1="" nncountu4.cout_y[13]<="" pre=""></put></pre>	217.0	rise
output/mux1/NN_N33	216.0	fall
<pre><put mux1="" nncountu4.cout_y[12]<="" pre=""></put></pre>	215.2	rise
output/mux1/NN_N32	214.2	fall
<pre><put mux1="" nncountu4.cout_y[11]<="" pre=""></put></pre>	213.4	rise
output/mux1/NN_N31	212.4	fall
<pre><put mux1="" nncountu4.cout_y[10]<="" pre=""></put></pre>	211.7	rise
output/mux1/NN_N14	210.7	fall
<pre><tput mux1="" nncountu4.cout_y[9]<="" pre=""></tput></pre>	210.1	rise
output/mux1/NN_N30	209.2	fall
<pre><tput mux1="" nncountu4.cout_y[8]<="" pre=""></tput></pre>	208.5	rise
output/mux1/NN_N29	207.5	fall
<pre><tput mux1="" nncountu4.cout_y[7]<="" pre=""></tput></pre>	206.8	rise
output/mux1/NN_N28	205.9	fall
<pre><tput mux1="" nncountu4.cout_y[6]<="" pre=""></tput></pre>	205.2	rise
output/mux1/NN_N27	204.2	fall
<pre><tput mux1="" nncountu4.cout_y[5]<="" pre=""></tput></pre>	203.6	rise
output/mux1/NN_N26	202.7	fall
<pre><tput mux1="" nncountu4.cout_y[4]<="" pre=""></tput></pre>	202.0	rise
output/mux1/NN_N25	201.0	fall
<pre><tput mux1="" nncountu4.cout_y[3]<="" pre=""></tput></pre>	200.2	rise
output/mux1/NN_N24	199.0	fall
<pre><tput mux1="" nncountu4.cout_y[2]<="" pre=""></tput></pre>	198.3	rise
<pre><tput mux1="" nncountu4.cout_y[1]<="" pre=""></tput></pre>	196.7	rise
output/mux1/NN_N22	195.8	fall
<pre><tput mux1="" nncountu4.cout_y[0]<="" pre=""></tput></pre>	195.1	rise
output/mux1/NN_N21	194.1	fall
output/mux1/NNCOUNTU4.cin_y	193.5	rise
output/mux1/NNMUX213.SEL	191.5	rise
output/mux1/NN_N1	190.0	fall
output/mux1/NN_N2	189.0	rise
output/mux1/n_state	187.4	fall
output/neuron/activity[17]	187.4	fall
output/neuron/activity[17]'	187.3	fall
output/neuron/ADDA0_OUT[17]	185.8	fall
output/neuron/n_theta[16]	180.5	fall
output/inverters/n_theta[16]	180.5	fall
output/inverters/n_theta[16]'	179.4	fall
output/inverters/theta[16]	178.8	rise
output/mux0/theta[16]	178.8	rise
output/mux0/theta[16]'	161.1	rise

output/mux0/NN_N34	160.6	fall
output/mux0/adaptive16	160.0	rise
output/mux1/adaptive16	160.0	rise
output/mux1/adaptive16'	155.0	rise
output/mux1/n_adaptive16	154.4	fall
adapt/MSTflag/n_adaptive16	152.1	fall
adapt/MSTflag/n_adaptive16'	144.3	fall
adapt/MSTflag/thresh[20]	142.8	rise
adapt/k3_add/thresh[24]	142.8	rise
adapt/k3_add/thresh[24]'	142.6	rise
adapt/k3_add/ADDA0_OUT[24]	141.4	rise
adapt/k3_add/sum1[6]	117.1	fall
adapt/k2_alu/sum1[6]	117.1	fall
adapt/k2_alu/sum1[6]'	117.0	fall
adapt/k2_alu/ADDA0_OUT[6]	115.5	fall
adapt/k2_alu/INTER3_VAL1[4]	107.4	fall
*adapt/k2_alu/(internal)	104.7	fall
adapt/k2_alu/prod1[4]	102.7	fall
adapt/k1_add/k1xavg[18]	102.7	fall
adapt/k1_add/k1xavg[18]'	102.3	fall
adapt/k1_add/ADDA0_OUT[2]	100.8	fall
adapt/k1_add/k1xavg0[0]	92.7	fall
adapt/mult_k1/k1xavg0[0]	92.7	fall
adapt/mult_k1/k1xavg0[0]'	92.1	fall
adapt/mult_k1/k1[2]	25.7	fall
host_stuff/reg0/k1[2]	24.8	fall
host_stuff/reg0/k1[2]'	17.8	fall
host_stuff/reg0/NNk11.clock_x	15.0	rise
host_stuff/reg0/PHASE_A	12.3	rise
pixel_clk/PHASE_A	11.2	rise
Pixel_clk	0.0	rise

Minimum cycle time (from Ph2) is 249.5 ns set by:

** Clock delay: 7.0ns (256.5-24	9.5)	
Node	Cumulative Delay	Transition
data_pads[15]/(internal)	256.5	fall
data_pads[15]/15	255.4	fall
data_pads[15]/data_out	255.1	rise
<_stuff/d_out_mux/data_out[15]	254.6	rise
<pre><stuff d_out_mux="" data_out[15]'<="" pre=""></stuff></pre>	239.9	rise
host_stuff/d_out_mux/d_out[15]	238.3	rise
<st_stuff d_out[15]'<="" d_out_mux="" td=""><td>237.9</td><td>rise</td></st_stuff>	237.9	rise
host_stuff/d_out_mux/NO[15]	235.2	rise
output/mux1/N0[15]	234.5	rise
output/mux1/N0[15]'	221.7	rise
* <ut mux1="" nncountu4.mout_y[15]<="" td=""><td>219.8</td><td>rise</td></ut>	219.8	rise
output/mux1/NN_N50	219.2	fall
output/mux1/NN_N3	218.6	rise
output/mux1/NN_N34	217.5	fall
<pre><put mux1="" nncountu4.cout="" pre="" y[13]<=""></put></pre>	216.5	rise
output/mux1/NN_N33	215.5	fall
<pre><put mux1="" nncountu4.cout_y[12]<="" pre=""></put></pre>	214.8	rise
output/mux1/NN_N32	213.7	fall
<pre><put mux1="" nncountu4.cout_y[11]<="" pre=""></put></pre>	213.0	rise
output/mux1/NN_N31	212.0	fall
<pre><put mux1="" nncountu4.cout_y[10]<="" pre=""></put></pre>	211.2	rise
output/mux1/NN_N14	210.3	fall
<pre><tput mux1="" nncountu4.cout_y[9]<="" pre=""></tput></pre>	209.6	rise
output/mux1/NN_N30	208.7	fall
<pre><tput mux1="" nncountu4.cout_y[8]<="" pre=""></tput></pre>	208.0	rise
output/mux1/NN_N29	207.1	fall

•		
<pre><tput mux1="" nncountu4.cout_y[7]<="" pre=""></tput></pre>	206.4	rise
output/mux1/NN_N28	205.4	fall
<pre><tput mux1="" nncountu4.cout_y[6]<="" pre=""></tput></pre>	204.8	rise
output/mux1/NN_N27	203.7	fall
<pre><tput mux1="" nncountu4.cout_y[5]<="" pre=""></tput></pre>	203.1	rise
output/mux1/NN_N26	202.2	fall
<pre><tput mux1="" nncountu4.cout_y[4]<="" pre=""></tput></pre>	201.5	rise
output/mux1/NN N25	200.5	fall
<pre><tput mux1="" nncountu4.cout_y[3]<="" pre=""></tput></pre>	199.8	rise
output/mux1/NN N24	198.5	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[2]<=""></tput></pre>	197.8	rise
<pre><tput mux1="" nncountu4.cout="" pre="" y[1]<=""></tput></pre>	196.2	rise
output/mux1/NN N22	195.3	fall
<pre><tput mux1="" nncountu4.cout_y[0]<="" pre=""></tput></pre>	194.6	rise
output/mux1/NN N21	193.6	fall
output/mux1/NNCOUNTU4.cin y	193.0	rise
output/mux1/NNMUX213.SEL	191.1	rise
output/mux1/NN_N1	189.5	fall
output/mux1/NN N2	188.5	rise
<u> </u>	186.9	fall
output/mux1/n_state		
output/neuron/activity[17]	186.9	fall
output/neuron/activity[17]'	186.8	fall
output/neuron/ADDA0_OUT[17]	185.3	fall
output/neuron/n_theta[16]	180.0	fall
output/inverters/n_theta[16]	180.0	fall
output/inverters/n_theta[16]'	178.9	fall
output/inverters/theta[16]	178.4	rise
output/mux0/theta[16]	178.4	rise
output/mux0/theta[16]'	160.6	rise
output/mux0/NN_N34	160.1	fall
output/mux0/adaptive16	159.6	rise
output/mux1/adaptive16	159.5	rise
output/mux1/adaptive16'	154.5	rise
output/mux1/n_adaptive16	153.9	fall
adapt/MSTflag/n_adaptive16	151.6	fall
adapt/MSTflag/n_adaptive16'	143.8	fall
adapt/MSTflag/thresh[20]	142.3	rise
adapt/k3_add/thresh[24]	142.3	rise
adapt/k3_add/thresh[24]'	142.1	rise
adapt/k3_add/ADDA0_OUT[24]	140.9	rise
adapt/k3_add/sum1[22]	133.3	fall
adapt/k2_alu/sum1[22]	133.3	fall
adapt/k2_alu/sum1[22]'	133.2	fall
adapt/k2_alu/ADDA0_OUT[22]	131.7	fall
adapt/k2_alu/sgn_prod2[18]	122.1	rise
adapt/k2_ctrl1/sgn_prod2[18]	122.1	rise
adapt/k2_ctrl1/sgn_prod2[18]'	116.7	rise
adapt/k2_ctrl1/n_prod2[18]	115.2	rise
adapt/k2_ctrl1/n_prod2[18]'	115.0	rise
adapt/k2_ctrl1/prod2[18]	114.1	fall
adapt/k2_add/k2xL1[32]	114.1	fall
adapt/k2_add/k2xL1[32]'	113.9	fall
adapt/k2 add/ADDAO OUT[16]	112.4	fall
adapt/k2_add/k2xL10[0]	89.8	fall
adapt/mult k2/k2xL10[0]	89.7	fall
adapt/mult k2/k2xL10[0]'	88.2	fall
adapt/mult_k2/L1[3]	24.9	fall
adapt/L1_add/L1[3]	24.6	fall
adapt/L1_add/L1[3]'	19.8	fall
adapt/L1_add/INTER2_VAL1[3]	17.9	fall
adapt/L1 add/PHASE B	13.3	rise
pixel clk/PHASE B	11.2	rise
and the second of the second o		7796

Pixel_clk

0.0

fall

Genesil Version v8.0.2 -- Wed Feb 13 16:51:58 1991

Chip: /mntb/theta/theta/theta ****************

Fabline: HP2 CN10B Junction Temperature: 100 deg C

Corner: GUARANTEED Voltage:4.50v

External Clock: Pixel clk

Included setup files:

#0 worstcase

(Max junction T, min operating V)

INPUT SETUP AND HOLD TIMES (ns) Input Setup Time Hold Time Ph1(f) Ph2(f) Ph1(f) Ph2(f) 39.3 21.2 -8.6 -12.3 Address[0] PATH 37.3 19.1 29.6 15.3 34.7 20.5 -6.8 -11.6 Address[1] PATH -2.8 -7.3 Address[2] PATH PATH Address[3] -6.1 -12.8 --- 7.5 --- 8.2 Begin frame in --- 6.6 PATH 8.2 --- 6.5 PATH Begin row in 3.0 5.8 3.4 6.3 2.6 55.7 PATH Data[0] 1.7 42.5 PATH Data[10] 3.3 6.1 3.1 6.0 3.0 5.9 PATH 1.8 42.3 Data[11] 2.0 40.5 PATH Data[12] 2.1 40.6 PATH Data[13] 38.7 2.7 5.6 2.6 PATH Data[14] 38.1 3.0 5.8 2.0 PATH Data[15] 52.7 Data[1] 2.2 3.2 6.0 PATH 52.3 2.5 3.0 5.7 PATH Data[2] Data[3] · 2.3 50.6 3.2 5.9 PATH 3.7 1.2 49.3 6.6 PATH Data[4] 0.9 46.7 3.9 6.8 PATH Data[5] 0.9 47.2 3.9 6.8 PATH Data[6] 3.8 Data[7] 1.2 46.3 6.6 PATH 1.5 3.6 Data[8] 46.0 6.4 1.5 44.1 3.5 6.4 PATH Data[9] -11.2 34.7 27.1 -7.2 PATH Ds[0] Ds[1] 34.5 26.8 -11.0 ~7.0 PATH -6.6 -10.6 Ds[2] 34.1 26.5 PATH 26.5 -10.7 Ds[3] 34.1 -6.7 PATH End_frame_in ___ 7.4 ---6.5 PATH 6.6 ---9.6 ---End row in PATH 34.9 27.2 -11.4 -7.4 Id[0] PATH 34.1 -10.6 Id[1] 26.4 -6.6 PATH -10.6 34.1 26.4 -6.6 Id[2] PATH 34.9 27.2 -11.4 -7.4 Id[3] PATH -1.3 Tos ---3.9 ---PATH -8.6 19.6 18.3 -10.5 N reset PATH Ode 31.5 22.8 -8.8 -4.4 PATH Pixel in[0] ------2.7 6.2 PATH Pixel in[10] ------1.8 6.4 PATH Pixel in[11] ---1.4 ---6.4 PATH ---___ Pixel in[12] 1.4 6.4 PATH ___ ---Pixel in[13] 1.6 6.5 PATH ------Pixel in[14] 1.9 6.5 PATH Pixel in[15] ---1.8 ___ 6.5 PATH Pixel in[1] ---2.8 ___ 6.2 PATH Pixel in[2] ___ 1.9 ___ 6.2 PATH Pixel in[3] ---3.6 ---6.3 PATH Pixel_in[4] ---2.0 ---6.3 PATH Pixel_in[5] 3.0 ___ 6.3

Pixel_in[6]		3.0		6.3	PATH
Pixel_in[7]		2.6		6.4	PATH
Pixel_in[8]		2.4		6.4	PATH
Pixel_in[9]		2.5		6.4	PATH
Test	17.6		-1.0		PATH

Genesil Version v8.0.2 -- Wed Feb 13 16:52:01 1991

Chip: /mntb/theta/theta/theta Timing Analyzer

OUTPUT DELAY MODE

#0 worstcase

Fabline: HP2_CN10B Junction Temperature:100 deg C Voltage:4.50v

Corner: GUARANTEED

External Clock: Pixel_clk

Included setup files:

(Max junction T, min operating V)

Dutput	-	OUT	PUT DELAYS	(ns)		
Begin_frame_out	Output	Ph1(r)	Delay	Ph2(r)	Delay	Loading(pf)
Begin_row_out 22.0 25.8 50.00 PATH Data[0] 21.0 24.8 50.00 PATH Data[10] 21.6 25.4 50.00 PATH Data[11] 21.8 25.5 50.00 PATH Data[12] 21.8 25.5 50.00 PATH Data[13] 21.8 25.6 50.00 PATH Data[14] 21.9 25.6 50.00 PATH Data[15] 21.9 25.6 50.00 PATH Data[17] 21.0 24.8 50.00 PATH Data[17] 21.2 25.0 50.00 PATH Data[17] 21.3 25.1 50.00 PATH Data[17] 21.4		Min	Max	Min	Max	
Data[0]	Begin_frame_out			22.1	25.9	50.00 PATH
Data[10] 21.6 25.4 50.00 PATH Data[11] 21.7 25.4 50.00 PATH Data[12] 21.8 25.5 50.00 PATH Data[13] 21.8 25.6 50.00 PATH Data[13] 21.8 25.6 50.00 PATH Data[14] 21.8 25.6 50.00 PATH Data[15] 21.8 25.6 50.00 PATH Data[15] 21.9 25.6 50.00 PATH Data[1] 21.0 24.8 50.00 PATH Data[2] 21.2 25.0 50.00 PATH Data[3] 21.2 25.0 50.00 PATH Data[4] 21.3 25.1 50.00 PATH Data[5] 21.3 25.1 50.00 PATH Data[6] 21.3 25.1 50.00 PATH Data[7] 21.3 25.1 50.00 PATH Data[8] 21.5 25.2 50.00 PATH Data[9] 21.6 25.3 50.00 PATH Data[9] 21.6 25.3 50.00 PATH End_row_out 21.6 25.4 50.00 PATH End_row_out 21.9 25.7 50.00 PATH End_row_out 21.9 25.7 50.00 PATH Pixel_out[10] 21.7 25.5 50.00 PATH Pixel_out[10] 21.6 25.4 50.00 PATH Pixel_out[10] 21.7 25.5 50.00 PATH Pixel_out[11] 21.6 25.4 50.00 PATH Pixel_out[12] 21.5 25.2 50.00 PATH Pixel_out[13] 21.7 25.5 50.00 PATH Pixel_out[14] 21.5 25.3 50.00 PATH Pixel_out[15] 21.5 25.3 50.00 PATH Pixel_out[14] 21.5 25.3 50.00 PATH Pixel_out[15] 21.5 25.3 50.00 PATH Pixel_out[16] 21.5 25.3 50.00 PATH Pixel_out[17] 21.5 25.9 50.00 PATH Pixel_out[18] 21.5 25.3 50.00 PATH Pixel_out[19] 21.5 25.3 50.00 PATH Pixel_out[10] 21.5 25.3 50.00 PATH Pixel_out[11] 21.5 25.3 50.00 PATH Pixel_out[12] 21.5 25.3 50.00 PATH Pixel_out[14] 21.5 25.3 50.00 PATH Pixel_out[15] 21.5 25.9 50.00 PATH Pixel_out[16] 21.5 25.9 50.00 PATH Pixel_out[17] 22.1 25.9 50.00 PATH Pixel_out[6] 21.9 25.7 50.00 PATH Pixel_out[8] 21.8 25.6 50.00 PATH Pixel_out[8]	Begin_row_out			22.0	25.8	50.00 PATH
Data[11]	Data[0]			21.0	24.8	50.00 PATH
Data[12]	Data[10]			21.6	25.4	50.00 PATH
Data[13]	Data[11]			21.7	25.4	50.00 PATH
Data[14]	Data[12]			21.8	25.5	50.00 PATH
Data[15] 21.9 25.6 50.00 PATH Data[1] 21.0 24.8 50.00 PATH Data[2] 21.2 25.0 50.00 PATH Data[3] 21.2 25.0 50.00 PATH Data[3] 21.2 25.0 50.00 PATH Data[4] 21.3 25.1 50.00 PATH Data[5] 21.3 25.1 50.00 PATH Data[6] 21.3 25.1 50.00 PATH Data[7] 21.4 25.2 50.00 PATH Data[8] 21.6 25.3 50.00 PATH Data[9] 21.6 25.3 50.00 PATH Data[9] 21.6 25.4 50.00 PATH End_frame_out 21.9 25.7 50.00 PATH End_row_out 21.9 25.7 50.00 PATH End_row_out 21.9 25.7 50.00 PATH Pixel_out[0] 21.8 28.6 50.00 PATH Pixel_out[10] 21.7 25.5 50.00 PATH Pixel_out[11] 21.6 25.4 50.00 PATH Pixel_out[12] 21.6 25.4 50.00 PATH Pixel_out[13] 21.6 25.4 50.00 PATH Pixel_out[14] 21.5 25.3 50.00 PATH Pixel_out[15] 21.5 25.3 50.00 PATH Pixel_out[16] 21.5 25.3 50.00 PATH Pixel_out[17] 21.5 25.0 50.00 PATH Pixel_out[18] 21.5 25.0 50.00 PATH Pixel_out[19] 22.2 26.0 50.00 PATH Pixel_out[1] 22.2 25.0 50.00 PATH Pixel_out[1] 22.2 25.9 50.00 PATH Pixel_out[1] 22.2 25.9 50.00 PATH Pixel_out[1] 22.1 25.9 50.00 PATH	Data[13]			21.8	25.6	50.00 PATH
Data[1] 21.0 24.8 50.00 PATH Data[2] 21.2 25.0 50.00 PATH Data[3] 21.2 25.0 50.00 PATH Data[4] 21.3 25.1 50.00 PATH Data[5] 21.3 25.1 50.00 PATH Data[6] 21.4 25.2 50.00 PATH Data[7] 21.5 25.2 50.00 PATH Data[8] 21.6 25.3 50.00 PATH Data[9] 21.6 25.4 50.00 PATH End_frame_out 21.9 25.7 50.00 PATH End_row_out 21.9 25.7 50.00 PATH N_dr 18.6 34.1 18.6 28.6 50.00 PATH Pixel_out[0] 22.3 26.1 50.00 PATH Pixel_out[10] 21.7 25.5 50.00 PATH Pixel_out[11] 21.7 25.5 50.00 PATH Pixel_out[12] 21.5 25.3 50.00 PATH Pixel_out[13] 21.7 25.5 50.00 PATH Pixel_out[14] 21.7 25.5 50.00 PATH Pixel_out[15] 21.4 25.2 50.00 PATH Pixel_out[15] 21.4 25.2 50.00 PATH Pixel_out[16] 21.3 25.1 50.00 PATH Pixel_out[17] 21.2 25.0 50.00 PATH Pixel_out[18] 21.2 25.0 50.00 PATH Pixel_out[19] 22.2 26.0 50.00 PATH Pixel_out[1] 22.1 25.9 50.00 PATH Pixel_out[1] 22.2 26.0 50.00 PATH Pixel_out[1] 22.1 25.9 50.00 PATH Pixel_out[1] 22.2 26.0 50.00 PATH Pixel_out[1] 22.1 25.9 50.00 PATH Pixel_out[2] 22.1 25.9 50.00 PATH Pixel_out[3] 22.1 25.7 50.00 PATH Pixel_out[9] 22.8 25.7 50.00 PATH Pixel_out[9] 22.8 25.7 50.00 PATH	Data[14]			21.8	25.6	50.00 PATH
Data[2] 21.2 25.0 50.00 PATH Data[3] 21.2 25.0 50.00 PATH Data[4] 21.3 25.1 50.00 PATH Data[6] 21.3 25.1 50.00 PATH Data[6] 21.4 25.2 50.00 PATH Data[7] 21.5 25.2 50.00 PATH Data[8] 21.6 25.3 50.00 PATH Data[9] 21.6 25.4 50.00 PATH End_frame_out 21.6 25.4 50.00 PATH End_row_out 21.9 25.7 50.00 PATH Pixel_out[0] 21.9 25.7 50.00 PATH Pixel_out[0] 22.3 26.1 50.00 PATH Pixel_out[0] 22.3 26.1 50.00 PATH Pixel_out[10] 21.6 25.4 50.00 PATH Pixel_out[11] 21.6 25.4 50.00 PATH Pixel_out[12] 21.7 25.5 50.00 PATH Pixel_out[13] 21.6 25.4 50.00 PATH Pixel_out[14] 21.5 25.3 50.00 PATH Pixel_out[15] 21.5 25.3 50.00 PATH Pixel_out[16] 22.1 25.9 50.00 PATH Pixel_out[17] 22.2 26.0 50.00 PATH Pixel_out[2] 22.2 26.0 50.00 PATH Pixel_out[2] 22.2 26.0 50.00 PATH Pixel_out[2] 22.2 26.0 50.00 PATH Pixel_out[1] 22.2 26.0 50.00 PATH Pixel_out[2] 22.2 26.0 50.00 PATH Pixel_out[3] 22.1 25.9 50.00 PATH Pixel_out[6] 22.1 25.7 50.00 PATH Pixel_out[8] 22.1 25.7 50.00 PATH Pixel_out[9] 22.8 25.7 50.00 PATH	Data[15]			21.9	25.6	50.00 PATH
Data[3] 21.2 25.0 50.00 PATH Data[4] 21.3 25.1 50.00 PATH Data[5] 21.3 25.1 50.00 PATH Data[6] 21.4 25.2 50.00 PATH Data[7] 21.5 25.2 50.00 PATH Data[8] 21.6 25.3 50.00 PATH Data[9] 21.6 25.4 50.00 PATH End_frame_out 21.9 25.7 50.00 PATH End_frame_out 2	Data[1]			21.0	24.8	50.00 PATH
Data[4] 21.3 25.1 50.00 PATH Data[5] 21.3 25.1 50.00 PATH Data[6] 21.4 25.2 50.00 PATH Data[7] 21.6 25.3 50.00 PATH Data[8] 21.6 25.3 50.00 PATH Data[9] 21.6 25.4 50.00 PATH End_frame_out 21.9 25.7 50.00 PATH End_row_out 21.7<	Data[2]				25.0	50.00 PATH
Data[5] 21.3 25.1 50.00 PATH Data[6] 21.4 25.2 50.00 PATH Data[7] 21.5 25.2 50.00 PATH Data[8] 21.6 25.3 50.00 PATH Data[9] 21.6 25.3 50.00 PATH Data[9] 21.6 25.3 50.00 PATH Data[9] 21.6 25.4 50.00 PATH Data[9] 21.9 25.7 50.00 PATH End_frame_out 21.9 25.7 50.00 PATH End_frame_out 21.9 25.7 50.00 PATH Pixel_out[10] 21.7 25.5 50.00 PATH Pixel_out[11] 21.6 <td>Data[3]</td> <td></td> <td></td> <td>21.2</td> <td>25.0</td> <td>50.00 PATH</td>	Data[3]			21.2	25.0	50.00 PATH
Data[6] 21.4 25.2 50.00 PATH Data[7] 21.5 25.2 50.00 PATH Data[8] 21.6 25.3 50.00 PATH Data[9] 21.6 25.4 50.00 PATH End_frame_out 21.9 25.7 50.00 PATH End_row_out 21.9 25.7 50.00 PATH Pixel_out[10] 22.3 26.1 50.00 PATH Pixel_out[11]	Data[4]			21.3	25.1	50.00 PATH
Data[7] 21.5 25.2 50.00 PATH Data[8] 21.6 25.3 50.00 PATH Data[9] 21.6 25.4 50.00 PATH End_frame_out 21.9 25.7 50.00 PATH End_row_out 21.9 25.7 50.00 PATH End_row_out 21.9 25.7 50.00 PATH Pixel_out[0] 22.3 26.1 50.00 PATH Pixel_out[10] 21.7 25.5 50.00 PATH Pixel_out[11] 21.6 25.4 50.00 PATH Pixel_out[12] 21.5 25.3 50.00 PATH Pixel_out[13] 21.4 25.2 50.00 PATH Pixel_out[14] 21.3 25.1 50.00 PATH Pixel_out[15] 21.2 25.0 50.00 PATH Pixel_out[1] 22.2 26.0 50.00 PATH Pixel_out[2] 22.2 26.0 50.00 PATH Pixel_out[3] 22.2 26.0 50.00 PATH Pixel_out[3] 22.2 26.0 50.00 PATH Pixel_out[3] 22.2 26.0 50.00 PATH Pixel_out[5] 22.2 25.9 50.00 PATH Pixel_out[5] 22.1 25.9 50.00 PATH Pixel_out[6] 22.1 25.9 50.00 PATH Pixel_out[6] 21.9 25.8 50.00 PATH Pixel_out[7] 21.9 25.8 50.00 PATH Pixel_out[8] 21.8 25.7 50.00 PATH Pixel_out[8] 21.8 25.7 50.00 PATH Pixel_out[9]	Data[5]			21.3	25.1	50.00 PATH
Data[8] 21.6 25.3 50.00 PATH Data[9] 21.6 25.4 50.00 PATH End_frame_out 21.9 25.7 50.00 PATH End_row_out 21.9 25.7 50.00 PATH Pixel_out[0] 22.3 26.1 50.00 PATH Pixel_out[10] 21.7 25.5 50.00 PATH Pixel_out[11] 21.5 25.3 50.00 PATH Pixel_out[14] 21.2 25.0 50.00 PATH Pixel_out[1]	Data[6]			21.4	25.2	50.00 PATH
Data[9] 21.6 25.4 50.00 PATH End_frame_out 21.9 25.7 50.00 PATH End_row_out 21.9 25.7 50.00 PATH End_row_out 21.9 25.7 50.00 PATH N_dr 18.6 34.1 18.6 28.6 50.00 PATH Pixel_out[0] 22.3 26.1 50.00 PATH Pixel_out[10] 21.7 25.5 50.00 PATH Pixel_out[11] 21.6 25.4 50.00 PATH Pixel_out[12] 21.5 25.3 50.00 PATH Pixel_out[13] 21.4 25.2 50.00 PATH Pixel_out[14] 21.3 25.1 50.00 PATH Pixel_out[15] 21.2 25.0 50.00 PATH Pixel_out[1] 22.2 26.0 50.00 PATH Pixel_out[2] 22.2 26.0 50.00 PATH Pixel_out[3] 22.1 25.9 50.00 PATH Pixel_out[4] 22.1 25.9 50.00 PATH Pixel_out[5] 22.1 25.9 50.00 PATH Pixel_out[6] 22.0 25.9 50.00 PATH Pixel_out[7] 21.9 25.8 50.00 PATH Pixel_out[8] 21.8 25.7 50.00 PATH Pixel_out[9] 21.8 25.6 50.00 PATH	Data[7]			21.5	25.2	50.00 PATH
End_frame_out	•				25.3	50.00 PATH
End_row_out				21.6	25.4	50.00 PATH
N_dr 18.6 34.1 18.6 28.6 50.00 PATH Pixel_out[0] 22.3 26.1 50.00 PATH Pixel_out[10] 21.7 25.5 50.00 PATH Pixel_out[11] 21.6 25.4 50.00 PATH Pixel_out[12] 21.5 25.3 50.00 PATH Pixel_out[13] 21.4 25.2 50.00 PATH Pixel_out[14] 21.2 25.0 50.00 PATH Pixel_out[15] 21.2 25.0 50.00 PATH Pixel_out[2] 22.2 26.0 50.00 PATH Pixel_out[3] 22.1 25.9 50.00 PATH Pixel_out[4] 22.1 25.9 50.00 PATH Pixel_out[6] 22.0 25.9 50.00 PATH Pixel_out[7]	- -					50.00 PATH
Pixel_out[0] 22.3 26.1 50.00 PATH Pixel_out[10] 21.7 25.5 50.00 PATH Pixel_out[11] 21.6 25.4 50.00 PATH Pixel_out[12] 21.5 25.3 50.00 PATH Pixel_out[13] 21.4 25.2 50.00 PATH Pixel_out[15] 21.2 25.0 50.00 PATH Pixel_out[1] 22.2 26.0 50.00 PATH Pixel_out[2] 22.2 26.0 50.00 PATH Pixel_out[3] 22.1 25.9 50.00 PATH Pixel_out[4] 22.1 25.9 50.00 PATH Pixel_out[6] 22.0 25.9 50.00 PATH Pixel_out[7] 21.9 25.7 50.00 PATH Pixel_out[8]	- -					
Pixel_out[10] 21.7 25.5 50.00 PATH Pixel_out[11] 21.6 25.4 50.00 PATH Pixel_out[12] 21.5 25.3 50.00 PATH Pixel_out[13] 21.4 25.2 50.00 PATH Pixel_out[15] 21.2 25.0 50.00 PATH Pixel_out[1] 22.2 26.0 50.00 PATH Pixel_out[2] 22.2 26.0 50.00 PATH Pixel_out[3] 22.1 25.9 50.00 PATH Pixel_out[4] 22.1 25.9 50.00 PATH Pixel_out[5] 22.0 25.9 50.00 PATH Pixel_out[6] 21.9 25.8 50.00 PATH Pixel_out[7] 21.8 25.7 50.00 PATH Pixel_out[9]		18.6	34.1			
Pixel_out[11] 21.6 25.4 50.00 PATH Pixel_out[12] 21.5 25.3 50.00 PATH Pixel_out[13] 21.4 25.2 50.00 PATH Pixel_out[14] 21.3 25.1 50.00 PATH Pixel_out[15] 21.2 25.0 50.00 PATH Pixel_out[2] 22.2 26.0 50.00 PATH Pixel_out[3] 22.1 25.9 50.00 PATH Pixel_out[4] 22.1 25.9 50.00 PATH Pixel_out[5] 22.0 25.9 50.00 PATH Pixel_out[6] 21.9 25.8 50.00 PATH Pixel_out[7] 21.8 25.7 50.00 PATH Pixel_out[9] 21.8 25.6 50.00 PATH	_					
Pixel_out[12] 21.5 25.3 50.00 PATH Pixel_out[13] 21.4 25.2 50.00 PATH Pixel_out[14] 21.3 25.1 50.00 PATH Pixel_out[15] 21.2 25.0 50.00 PATH Pixel_out[1] 22.2 26.0 50.00 PATH Pixel_out[2] 22.1 25.9 50.00 PATH Pixel_out[3] 22.1 25.9 50.00 PATH Pixel_out[4] 22.1 25.9 50.00 PATH Pixel_out[5] 22.0 25.9 50.00 PATH Pixel_out[6] 21.9 25.8 50.00 PATH Pixel_out[7] 21.8 25.7 50.00 PATH Pixel_out[8] 21.8 25.6 50.00 PATH						
Pixel_out[13] 21.4 25.2 50.00 PATH Pixel_out[14] 21.3 25.1 50.00 PATH Pixel_out[15] 21.2 25.0 50.00 PATH Pixel_out[1] 22.2 26.0 50.00 PATH Pixel_out[2] 22.1 25.9 50.00 PATH Pixel_out[3] 22.1 25.9 50.00 PATH Pixel_out[4] 22.1 25.9 50.00 PATH Pixel_out[5] 22.0 25.9 50.00 PATH Pixel_out[6] 21.9 25.8 50.00 PATH Pixel_out[7] 21.8 25.7 50.00 PATH Pixel_out[8] 21.8 25.6 50.00 PATH Pixel_out[9] 21.8 25.6 50.00 PATH						
Pixel_out[14] 21.3 25.1 50.00 PATH Pixel_out[15] 21.2 25.0 50.00 PATH Pixel_out[1] 22.2 26.0 50.00 PATH Pixel_out[2] 22.1 25.9 50.00 PATH Pixel_out[3] 22.1 25.9 50.00 PATH Pixel_out[4] 22.1 25.9 50.00 PATH Pixel_out[5] 22.0 25.9 50.00 PATH Pixel_out[6] 21.9 25.8 50.00 PATH Pixel_out[7] 21.9 25.7 50.00 PATH Pixel_out[8] 21.8 25.7 50.00 PATH Pixel_out[9] 21.8 25.6 50.00 PATH	-					
Pixel_out[15] 21.2 25.0 50.00 PATH Pixel_out[1] 22.2 26.0 50.00 PATH Pixel_out[2] 22.2 26.0 50.00 PATH Pixel_out[3] 22.1 25.9 50.00 PATH Pixel_out[4] 22.1 25.9 50.00 PATH Pixel_out[5] 22.0 25.9 50.00 PATH Pixel_out[6] 21.9 25.8 50.00 PATH Pixel_out[7] 21.9 25.7 50.00 PATH Pixel_out[8] 21.8 25.7 50.00 PATH Pixel_out[9] 21.8 25.6 50.00 PATH						
Pixel_out[1] 22.2 26.0 50.00 PATH Pixel_out[2] 22.2 26.0 50.00 PATH Pixel_out[3] 22.1 25.9 50.00 PATH Pixel_out[4] 22.1 25.9 50.00 PATH Pixel_out[5] 22.0 25.9 50.00 PATH Pixel_out[6] 21.9 25.8 50.00 PATH Pixel_out[7] 21.9 25.7 50.00 PATH Pixel_out[8] 21.8 25.7 50.00 PATH Pixel_out[9] 21.8 25.6 50.00 PATH	_					
Pixel_out[2] 22.2 26.0 50.00 PATH Pixel_out[3] 22.1 25.9 50.00 PATH Pixel_out[4] 22.1 25.9 50.00 PATH Pixel_out[5] 22.0 25.9 50.00 PATH Pixel_out[6] 21.9 25.8 50.00 PATH Pixel_out[7] 21.9 25.7 50.00 PATH Pixel_out[8] 21.8 25.7 50.00 PATH Pixel_out[9] 21.8 25.6 50.00 PATH	_					
Pixel_out[3] 22.1 25.9 50.00 PATH Pixel_out[4] 22.1 25.9 50.00 PATH Pixel_out[5] 22.0 25.9 50.00 PATH Pixel_out[6] 21.9 25.8 50.00 PATH Pixel_out[7] 21.9 25.7 50.00 PATH Pixel_out[8] 21.8 25.7 50.00 PATH Pixel_out[9] 21.8 25.6 50.00 PATH						
Pixel_out[4] 22.1 25.9 50.00 PATH Pixel_out[5] 22.0 25.9 50.00 PATH Pixel_out[6] 21.9 25.8 50.00 PATH Pixel_out[7] 21.9 25.7 50.00 PATH Pixel_out[8] 21.8 25.7 50.00 PATH Pixel_out[9] 21.8 25.6 50.00 PATH	-					
Pixel_out[5] 22.0 25.9 50.00 PATH Pixel_out[6] 21.9 25.8 50.00 PATH Pixel_out[7] 21.9 25.7 50.00 PATH Pixel_out[8] 21.8 25.7 50.00 PATH Pixel_out[9] 21.8 25.6 50.00 PATH	The state of the s			•		
Pixel_out[6] 21.9 25.8 50.00 PATH Pixel_out[7] 21.9 25.7 50.00 PATH Pixel_out[8] 21.8 25.7 50.00 PATH Pixel_out[9] 21.8 25.6 50.00 PATH	_					
Pixel_out[7] 21.9 25.7 50.00 PATH Pixel_out[8] 21.8 25.7 50.00 PATH Pixel_out[9] 21.8 25.6 50.00 PATH						
Pixel_out[8] 21.8 25.7 50.00 PATH Pixel_out[9] 21.8 25.6 50.00 PATH	_					
Pixel_out[9] 21.8 25.6 50.00 PATH						
- · ·	_					
Thetal6 21.8 25.7 50.00 PATH						
	Thetal6			21.8	25.7	50.00 PATH

NO VIOLATIONS

Hold time check margin: 2.0ns

Appendix G. 2. Pixel_Clk, TYPICAL, Room T, 5.0 V

```
****************
             Genesil Version v8.0.2 -- Wed Feb 13 17:07:28 1991
                                                            Timing Analyzer
Chip: /mntb/theta/theta/theta
****************
CLOCK REPORT MODE
                                    Corner: TYPICAL
Fabline: HP2 CN10B
                                Voltage:5.00v
  Junction Temperature:55 deg C
 External Clock: Pixel_clk
 Included setup files:
                          (Room junction T, 5.0 operating V)
  #0 nominal
______
                           CLOCK TIMES (minimum)
                            Phase 2 High: 95.6 ns
Phase 1 High: 102.5 ns
            -----
                                                -----
Cycle (from Ph1): 108.1 ns Cycle (from Ph2): 127.6 ns
Minimum Cycle Time: 198.2 ns
                                 Symmetric Cycle Time: 205.1 ns
                          CLOCK WORST CASE PATHS
Minimum Phase 1 high time is 102.5 ns set by:
  ** Clock delay: 2.9ns (105.4-102.5)
                             Cumulative Delay Transition
   pixel out[2]/(internal)
                                105.4
   pixel_out[2]/pixel_out
                                 104.7
                               104.7
   output/mux1/pixel out[2]
   output/mux1/pixel out[2]'
                                  98.1
                                                     rise
                                 97.7
97.4
   output/mux1/NN_N6
                                                    fall
   output/mux1/NNMUX213.SEL
                                                     rise
                                  96.6
                                                     fall
   output/mux1/NN N1
                               96.0
   output/mux1/NN N2
                                                     rise
   output/muxl/n_state
                                  95.2
                                                     fall
  output/neuron/activity[17] 95.2
output/neuron/activity[17] 95.2
output/neuron/activity[17] 95.1
output/neuron/ADDAO_OUT[17] 94.3
output/neuron/n_theta[16] 91.5
output/inverters/n_theta[16] 91.5
output/inverters/n_theta[16] 91.0
output/inverters/theta[16] 91.0
                                                     fall
                                                     fall
                                                     fall
                                                      fall
                                                      fall
                                                      fall
                                 90.7
   output/inverters/theta[16]
                                                      rise
   output/mux0/theta[16]
                                   90.7
                                                      rise
                                  82.2
81.9
   output/mux0/theta[16]'
                                                      rise
   output/mux0/NN N34
                                                      fall
   output/mux0/adaptive16
                                   81.6
                                                      rise
                                  81.6
   output/mux1/adaptive16
                                                      rise
   output/mux1/adaptive16'
                                    79.3
                                                      rise
   output/mux1/n adaptive16
                                    78.9
                                                      fall
                                   78.9
   adapt/MSTflag/n_adaptive16
                                                      fall
   adapt/MSTflag/n adaptive16'
                                   75.1
                                                      fall
                                   74.2
   adapt/MSTflag/thresh[20]
                                                      rise
                                   74.2
   adapt/k3 add/thresh[24]
                                                      rise
                                   74.1
   adapt/k3_add/thresh[24]'
                                                      rise
                                 73.4
   adapt/k3_add/ADDA0_OUT[24]
                                                      rise
   adapt/k3_add/sum1[22]
                                   69.4
                                                      fall
   adapt/k2_alu/sum1[22]
                                   69.4
                                                      fall
   adapt/k2_alu/sum1[22]'
                                   69.3
                                                      fall
   adapt/k2_alu/ADDA0_OUT[22]
                                  68.5
                                                      fall
   adapt/k2_alu/sgn_prod2[20]
                                   64.6
                                                      rise
```

adapt/k2_ctrl1/sgn_prod2[20]	64.6	rise
adapt/k2_ctrl1/sgn_prod2[20]'	62.0	rise
adapt/k2_ctrl1/n_prod2[20]	61.2	rise
adapt/k2_ctrl1/n_prod2[20]'	61.1	rise
adapt/k2_ctrl1/prod2[20]	60.6	fall
adapt/k2_add/k2xL1[34]	60.6	fall
adapt/k2_add/k2xL1[34]'	60.5	fall
adapt/k2_add/ADDA0_OUT[18]	59.7	fall
adapt/k2_add/k2xL10[0]	46.5	fall
adapt/mult_k2/k2xL10[0]	46.5	fall
adapt/mult_k2/k2xL10[0]'	45.7	fall
adapt/mult_k2/k2[0]	11.6	fall
host_stuff/reg0/k2[0]	11.6	fall
host_stuff/reg0/k2[0]'	9.1	fall
host_stuff/reg0/NNk21.clock_x	7.6	rise
host_stuff/reg0/PHASE_A	6.1	rise
pixel_clk/PHASE_A	6.1	rise
Pixel_clk	0.0	rise

Minimum Phase 2 high time is 95.6 ns set by:

** Clock delay: 3.2ns	(98.8 - 95.6)
-----------------------	---------------

"" Clock delay. 5.285 (90.0-95.		
Node	Cumulative Delay	Transition
output/mux1/(internal)	98.8	rise
output/mux1/NNMUX213.SEL	97.6	fall
output/mux1/NN_N1	97.0	rise
output/mux1/NN_N2	96.3	fall
output/mux1/n_state	95.9	rise
output/neuron/activity[17]	95.9	rise
output/neuron/activity[17]'	95.8	rise
output/neuron/ADDA0_OUT[17]	95.1	rise
output/neuron/n_theta[-16]	91.9	fall
output/inverters/n_theta[16]	91.9	fall
output/inverters/n_theta[16]'	91.3	fall
output/inverters/theta[16]	91.0	rise
output/mux0/theta[16]	91.0	rise
output/mux0/theta[16]'	82.5	rise
output/mux0/NN_N34	82.3	fall
output/mux0/adaptive16	82.0	rise
output/mux1/adaptive16	82.0	rise
output/mux1/adaptive16'	79.6	rise
output/mux1/n_adaptive16	79.3	fall
adapt/MSTflag/n_adaptive16	79.3	fall
adapt/MSTflag/n_adaptive16'	75.4	fall
adapt/MSTflag/thresh[20]	74.6	rise
adapt/k3_add/thresh[24]	74.6	rise
adapt/k3_add/thresh[24]'	74.5	rise
adapt/k3_add/ADDA0_OUT[24]	73.8	rise
adapt/k3_add/sum1[22]	69.7	fall
adapt/k2_alu/sum1[22]	69.7	fall
adapt/k2_alu/sum1[22]'	69.7	fall
adapt/k2_alu/ADDA0_OUT[22]	68.9	fall
adapt/k2_alu/sgn_prod2[20]	64.9	rise
adapt/k2_ctrl1/sgn_prod2[20]	64.9	rise
adapt/k2_ctrl1/sgn_prod2[20]'	62.3	rise
adapt/k2 ctrl1/n prod2[20]	61.5	rise
adapt/k2 ctrl1/n prod2[20]'	61.4	rise
adapt/k2_ctrl1/prod2[20]	60.9	fall
adapt/k2_add/k2xL1[34]	60.9	fall
adapt/k2_add/k2xL1[34]'	60.8	fall
adapt/k2_add/ADDA0_OUT[18]	60.0	fall
adapt/k2_add/k2xL10[0]	46.8	fall
-		

adapt/mult_k2/k2xL10[0]	46.8	fall
adapt/mult_k2/k2xL10[0]'	46.0	fall
adapt/mult_k2/L1[3]	11.9	fall
adapt/L1_add/L1[3]	11.9	fall
adapt/L1_add/L1[3]'	9.3	fall
adapt/L1_add/INTER2_VAL1[3]	8.3	fall
adapt/L1_add/PHASE_B	5.8	rise
pixel_clk/PHASE_B	5.8	rise
Pixel_clk	0.0	fall

Minimum cycle time (from Ph1) is 108.1 ns set by:

** Clock delay: 6.1ns (114.3-108.1)

output/neuron/n_theta[16]

output/inverters/theta[16]

output/mux0/theta[16]

output/mux0/theta[16]'

output/mux0/adaptive16

output/mux1/adaptive16

output/mux0/NN_N34

output/inverters/n_theta[16]

output/inverters/n_theta[16]'

oron acray. Orino (11110 10	J. 1,	
Node	Cumulative Delay	Transition
<pre><put mux1="" nncountu4.mout_y[15]<="" pre=""></put></pre>	114.3	rise
output/mux1/NN_N50	114.0	fall
output/mux1/NN_N3	113.6	rise
output/mux1/NN_N34	113.0	fall
<pre><put mux1="" nncountu4.cout_y[13]<="" pre=""></put></pre>	112.5	rise
output/mux1/NN_N33	112.0	fall
<pre><put mux1="" nncountu4.cout_y[12]<="" pre=""></put></pre>	111.6	rise
output/mux1/NN_N32	111.0	fall
<pre><put mux1="" nncountu4.cout_y[11]<="" pre=""></put></pre>	110.6	rise
output/mux1/NN_N31	110.1	fall
<pre><put mux1="" nncountu4.cout_y[10]<="" pre=""></put></pre>	109.7	rise
output/mux1/NN_N14	109.2	fall
<pre><tput mux1="" nncountu4.cout_y[9]<="" pre=""></tput></pre>	108.8	rise
output/mux1/NN_N30	108.3	fall
<pre><tput mux1="" nncountu4.cout_y[8]<="" pre=""></tput></pre>	108.0	rise
output/mux1/NN N29	107.5	fall
<pre><tput mux1="" nncountu4.cout_y[7]<="" pre=""></tput></pre>	107.1	rise
output/mux1/NN_N28	106.6	fall
<pre><tput mux1="" nncountu4.cout_y[6]<="" pre=""></tput></pre>	106.2	rise
output/mux1/NN N27	105.7	fall
<pre><tput mux1="" nncountu4.cout_y[5]<="" pre=""></tput></pre>	105.3	rise
output/mux1/NN_N26	104.9	fall
<pre><tput mux1="" nncountu4.cout_y[4]<="" pre=""></tput></pre>	104.5	rise
output/mux1/NN_N25	104.0	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[3]<=""></tput></pre>	103.5	rise
output/mux1/NN N24	102.9	fall
<pre><tput mux1="" nncountu4.cout_y[2]<="" pre=""></tput></pre>	102.5	rise
<pre><tput mux1="" nncountu4.cout="" pre="" y[1]<=""></tput></pre>	101.7	rise
output/mux1/NN N22	101.2	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[0]<=""></tput></pre>	100.8	rise
output/mux1/NN N21	100.3	fall
output/mux1/NNCOUNTU4.cin y	99.9	rise
output/mux1/NNMUX213.SEL	98.9	rise
output/mux1/NN N1	98.1	fall
output/mux1/NN N2	97.5	rise
output/mux1/n state	96.7	fall
output/neuron/activity[17]	96.7	fall
output/neuron/activity[17]'	96.6	fall
output/neuron/ADDAO OUT[17]	95.8	fall

93.0

93.0

92.5

92.1

92.1

83.7

83.4

83.1

83.1

fall

fall

fall

rise

rise

rise

fall

rise

rise

output/mux1/adaptive16'	80.7	rise
output/mux1/n_adaptive16	80.4	fall
adapt/MSTflag/n_adaptivel6	80.4	fall
adapt/MSTflag/n_adaptive16'	76.5	fall
adapt/MSTflag/thresh[20]	75.7	rise
adapt/k3_add/thresh[24]	75.7	rise
adapt/k3_add/thresh[24]'	75.6	rise
adapt/k3 add/ADDA0 OUT[24]	74.9	rise
adapt/k3_add/sum1[6]	62.0	fall
adapt/k2_alu/sum1[6]	62.0	fall
adapt/k2 alu/sum1[6]'	61.9	fall
adapt/k2 alu/ADDA0 OUT[6]	61.1	fall
adapt/k2 alu/INTER3 VAL1[4]	56.8	fall
*adapt/k2_alu/(internal)	55.3	fall
adapt/k2_alu/prod1[4]	54.2	fall
adapt/k1_add/k1xavg[18]	54.2	fall
adapt/k1_add/k1xavg[18]'	54.1	fall
adapt/k1_add/ADDA0_OUT[2]	53.3	fall
adapt/k1_add/k1xavg0[0]	49.0	fall
adapt/mult_k1/k1xavg0[0]	49.0	fall
adapt/mult_k1/k1xavg0[0]'	48.7	fall
adapt/mult_k1/k1[2]	12.8	fall
host_stuff/reg0/k1[2]	12.8	fall
host_stuff/reg0/k1[2]'	9.1	fall
host_stuff/reg0/NNk11.clock_x	7.6	rise
host_stuff/reg0/PHASE_A	6.1	rise
pixel_clk/PHASE_A	6.1	rise
Pixel_clk	0.0	rise

Minimum cycle time (from Ph2) is 127.6 ns set by:

** Clock delay: 2.9ns (130.5-12	7.6)		
Node	Cumulative	Delay	Transition
<pre>data_pads[15]/(internal)</pre>	130.5		fall
data_pads[15]/15	129.9		fall
data_pads[15]/data_out	129.8		rise
<_stuff/d_out_mux/data_out[15]	129.8		rise
<pre><stuff d_out_mux="" data_out[15]'<="" pre=""></stuff></pre>	122.8		rise
host_stuff/d_out_mux/d_out[15]	122.0		rise
<st_stuff d_out[15]'<="" d_out_mux="" td=""><td>121.7</td><td></td><td>rise</td></st_stuff>	121.7		rise
host_stuff/d_out_mux/N0[15]	120.3		rise
output/mux1/N0[15]	120.3		rise
output/mux1/N0[15]'	114.2		rise
* <ut mux1="" nncountu4.mout_y[15]<="" td=""><td>113.2</td><td></td><td>rise</td></ut>	113.2		rise
output/mux1/NN_N50	112.8		fall
output/mux1/NN_N3	112.5		rise
output/mux1/NN_N34	111.9		fall
<pre><put mux1="" nncountu4.cout_y[13]<="" pre=""></put></pre>	111.4		rise
output/mux1/NN_N33	110.9		fall
<pre><put mux1="" nncountu4.cout_y[12]<="" pre=""></put></pre>	110.4		rise
output/mux1/NN_N32	109.9		fall
<pre><put mux1="" nncountu4.cout_y[11]<="" pre=""></put></pre>	109.5		rise
output/mux1/NN_N31	109.0		fall
<pre><put mux1="" nncountu4.cout_y[10]<="" pre=""></put></pre>	108.6		rise
output/mux1/NN_N14	108.1		fall
<pre><tput mux1="" nncountu4.cout_y[9]<="" pre=""></tput></pre>	107.7		rise
output/mux1/NN_N30	107.2		fall .
<pre><tput mux1="" nncountu4.cout_y[8]<="" pre=""></tput></pre>	106.8		rise
output/mux1/NN_N29	106.3		fall
<pre><tput mux1="" nncountu4.cout_y[7]<="" pre=""></tput></pre>	106.0		rise
output/mux1/NN_N28	105.4		fall
<pre><tput mux1="" nncountu4.cout_y[6]<="" pre=""></tput></pre>	105.1		rise

output/mux1/NN_N27	104.6	fall
<pre><tput mux1="" nncountu4.cout_y[5]<="" pre=""></tput></pre>	104.2	rise
output/mux1/NN_N26	103.7	fall
<pre><tput mux1="" nncountu4.cout_y[4]<="" pre=""></tput></pre>	103.4	rise
output/mux1/NN_N25	102.8	fall
<pre><tput mux1="" nncountu4.cout_y[3]<="" pre=""></tput></pre>	102.4	rise
output/mux1/NN N24	101.8	fall
<pre><tput mux1="" nncountu4.cout_y[2]<="" pre=""></tput></pre>	101.4	rise
<pre><tput mux1="" nncountu4.cout="" pre="" y[1]<=""></tput></pre>	100.5	rise
output/mux1/NN N22	100.1	fall
<pre><tput mux1="" nncountu4.cout_y[0]<="" pre=""></tput></pre>	99.7	rise
output/mux1/NN_N21	99.2	fall
output/mux1/NNCOUNTU4.cin y	98.8	rise
output/mux1/NNMUX213.SEL	97.8	rise
output/mux1/NN N1	96.9	fall
output/mux1/NN N2	96.4	rise
output/mux1/n state	95.5	fall
output/neuron/activity[17]	95.5	fall
output/neuron/activity[17]'	95.5	fall
output/neuron/ADDAO OUT[17]	94.7	fall
output/neuron/n theta[16]	91.9	fall
output/inverters/n_theta[16]	91.9	fall
output/inverters/n_theta[16]'	91.3	fall
output/inverters/theta[16]	91.0	rise
output/mux0/theta[16]	91.0	rise
output/mux0/theta[16]'	82.5	rise
output/mux0/NN N34	82.3	fall
output/mux0/adaptive16	82.0	rise
output/mux1/adaptive16	82.0	rise
-	79.6	
output/mux1/adaptive16'	79.8	rise fall
output/mux1/n_adaptive16	79.3	
adapt/MSTflag/n_adaptive16		fall
adapt/MSTflag/n_adaptive16'	75.4	fall
adapt/MSTflag/thresh[20]	74.6	rise
adapt/k3_add/thresh[24]	74.6 74.5	rise
adapt/k3_add/thresh[24]' adapt/k3 add/ADDAO OUT[24]	74.5	rise rise
adapt/k3_add/sum1[22]	69.7	fall
adapt/k3_add/sum1[22] adapt/k2_alu/sum1[22]	69.7	fall
adapt/k2_alu/sum1[22]'	69.7	fall
-	68.9	fall
adapt/k2_alu/ADDA0_OUT[22]		rise
adapt/k2_alu/sgn_prod2[20]	64.9	
adapt/k2_ctrl1/sgn_prod2[20]	64.9	rise
<pre>adapt/k2_ctrl1/sgn_prod2[20]' adapt/k2_ctrl1/n_prod2[20]</pre>	62.3	rise
	61.5	rise
adapt/k2_ctrl1/n_prod2[20]'	61.4	rise
adapt/k2_ctrl1/prod2[20]	60.9	fall
adapt/k2_add/k2xL1[34]	60.9	fall
adapt/k2_add/k2xL1[34]'	60.8	fall
adapt/k2_add/ADDA0_OUT[18]	60.0	fall
adapt/k2_add/k2xL10[0]	46.8	fall
adapt/mult_k2/k2xL10[0]	46.8	fall
adapt/mult_k2/k2xL10[0]'	46.0	fall
adapt/mult_k2/L1[3]	11.9	fall
adapt/L1_add/L1[3]	11.9	fall
adapt/L1_add/L1[3]'	9.3	fall
adapt/L1_add/INTER2_VAL1[3]	8.3	fall
adapt/L1_add/PHASE_B	5.8	rise
pixel_clk/PHASE_B	5.8	rise
Pixel_clk	0.0	fall

Genesil Version v8.0.2 -- Wed Feb 13 18:54:05 1991

Chip: /mntb/theta/theta/theta

Timing Analyzer

Corner: TYPICAL

Fabline: HP2_CN10B Junction Temperature:55 deg C Voltage:5.00v

External Clock: Pixel_clk

Included setup files:

#0 nominal

SETUP AND HOLD MODE

(Room junction T, 5.0 operating V)

-	INPUT	SETUP AND HOL	D TIMES (n	ıs)	
Input	Setup	Time	Hold Ti	.me	
	Ph1(f)	Ph2(f)	Ph1(f)	Ph2(f)	
Address[0]	20.0	11.1	-5.0	-7.0	PATH
Address[1]	19.1	10.2	-4.0	-6.4	PATH
Address[2]	15.0	8.2	-1.7	-4.3	PATH
Address[3]	17.5	10.9	-3.6	-7.2	PATH
Begin_frame_in		4.1		1.9	PATH
Begin_row_in		4.1		1.9	PATH
Data[0]	1.6	28.9	1.1	2.7	PATH
Data[10]	1.2	22.0	1.3	3.0	PATH
Data[11]	1.2	21.7	1.3	3.0	PATH
Data[12]	1.3	20.8	1.3	2.9	PATH
Data[13]	1.3	20.7	1.2	2.9	PATH
Data[14]	1.5	19.7	1.1	2.8	PATH
Data[15]	1.1	19.3	1.3	3.0	PATH
Data[1]	1.5	27.3	1.2	2.8	PATH
Data[2]	1.5	27.0	1.1	2.8	PATH
Data[3] ·	1.4	26.1	1.2	2.9	PATH
Data[4]	1.1	25.6	1.4	3.1	PATH
Data[5]	1.0	24.3	1.4	3.1	PATH
Data[6]	0.9	24.6	1.4	3.1	PATH
Data[7]	1.1	24.0	1.4	3.1	PATH
Data[8]	1.2	23.8	1.3	3.0	PATH
Data[9]	1.2	22.8	1.3	3.0	PATH
Ds[0]	17.6	14.3	-6.2	-4.2	PATH
Ds[1]	17.5	14.2	-6.1	-4.1	PATH
Ds[2]	17.4	14.0	-6.0	-3.9	PATH
Ds[3]	17.4	14.0	-6.0	-3.9	PATH
End_frame_in		3.4		1.9	PATH
End_row_in		4.5		1.9	PATH
Id[0]	17.7	14.3	-6.3	-4.2	PATH
Id[1]	17.3	13.9	-5.8	-3.8	PATH
Id[2]	17.3	13.9	-5.9	-3.8	PATH
Id[3]	17.7	14.3	-6.3	-4.2	PATH
Ios		2.4		-1.0	PATH
N_reset	9.7	9.1	-5.8	-4.8	PATH
Ode	16.1	12.1	-5.1	-2.7	PATH
Pixel_in[0]		1.7		1.9	PATH
Pixel_in[10]		1.6		1.9	PATH
Pixel_in[11]		1.5		1.9	PATH
Pixel_in[12]		1.5		1.9	PATH
Pixel_in[13]		1.6		1.9	PATH
Pixel_in[14]		1.7		1.9	PATH
Pixel_in[15]		1.7		1.9	PATH
Pixel_in[1]		1.8		1.9	PATH
Pixel_in{2}		1.5		1.9	PATH
Pixel_in[3]		2.3	***	1.9	PATH
Pixel_in[4]		1.6		1.9	PATH
Pixel_in[5]		2.1		1.9	PATH

Pixel_in[6]		2.1		1.9	PATH
Pixel_in[7]		2.0		1.9	PATH
Pixel_in[8]		1.9		1.9	PATH
Pixel_in[9]		1.9		1.9	PATH
Test	9.1		-1.2		PATH

Genesil Version v8.0.2 -- Wed Feb 13 18:54:08 1991

Chip: /mntb/theta/theta Timing Analyzer

OUTPUT DELAY MODE

Fabline: HP2_CN10B Corner: TYPICAL
Junction Temperature:55 deg C Voltage:5.00v

External Clock: Pixel_clk

Included setup files:

#0 nominal (Room junction T, 5.0 operating V)

			YS (ns)	- 1	- 1.	
Output	Ph1(r)	_		Delay	Loading	g(pf)
	Min	Max	Min	Max		
Begin_frame_out			11.6	14.1	50.00	PATH
Begin_row_out			11.6	14.1	50.00	PATH
Data[0]			11.7	14.1	50.00	PATH
Data[10]			11.7	14.1	50.00	PATH
Data[11]			11.7	14.1	50.00	PATH
Data[12]			11.7	14.1	50.00	PATH
Data[13]			11.7	14.1	50.00	PATH
Data[14]			11.7	14.1	50.00	PATH
Data[15]			11.7	14.1	50.00	PATH
Data[1]			11.7	14.1	50.00	PATH
Data[2]			11.7	14.1	50.00	PATH
Data[3]			11.7	14.1	50.00	PATH
Data[4]			11.7	14.1	50.00	PATH
Data[5]			11.7	14.1	50.00	PATH
Data[6]			11.7	14.1	50.00	PATH
Data[7]			11.7	14.1	50.00	PATH
Data[8]			11.7	14.1	50.00	PATH
Data[9]			11.7	14.1	50.00	PATH
End_frame_out			11.6	14.1	50.00	PATH
End row out			11.6	14.1	50.00	PATH
N_dr	11.4	19.5	11.4	16.4	50.00	PATH
Pixel out[0]			11.6	14.1	50.00	PATH
Pixel out[10]			11.6	14.1	50.00	PATH
Pixel out[11]			11.6	14.1	50.00	PATH
Pixel_out[12]			11.6	14.1	50.00	PATH
Pixel out[13]			11.6	14.1	50.00	PATH
Pixel out[14]			11.6	14.1	50.00	PATH
Pixel out[15]			11.6	14.1	50.00	PATH
Pixel out[1]			11.6	14.1	50.00	PATH
Pixel_out[2]			11.6	14.1	50.00	PATH
Pixel out[3]			11.6	14.1	50.00	PATH
Pixel out[4]			11.6	14.1	50.00	PATH
Pixel out[5]			11.6	14.1	50.00	PATH
Pixel out[6]			11.6	14.1	50.00	PATH
Pixel out[7]			11.6	14.1	50.00	PATH
Pixel_out[8]			11.6	14.1	50.00	PATH
Pixel out[9]	-		11.6	14.1	50.00	PATH
Theta16			11.6	14.1	50.00	PATH

NO VIOLATIONS

Hold time check margin: 2.0ns

Appendix G. 3. Pixel_Clk, GUARANTEED, Room T, 5.0 V

*******	*******	******	******
Genesil Version v	8.0.2 Wed Feb 13	19:11:09 1991	
Chip: /mntb/theta/theta/theta			Timing Analyzer
*********	*****	******	*****
CLOCK REPORT MODE			
Fabline: HP2 CN10B	Corner: GUARA		
Junction Temperature:55 deg C			
External Clock: Pixel_clk	V010490.0.00	•	
Included setup files:			
-	om junction T, 5.0 or	perating V)	
	OCK TIMES (minimum)	450.0	
Phase 1 High: 161.2 ns	Phase 2 High:	150.9 ns	
Cycle (from Ph1): 169.3 ns	Cycle (from P)		
Minimum Cycle Time: 312.1 ns	Symmetric Cyc		
Allianda Cycle line. 512.1 II5	bynamecric cyc.		
	CK WORST CASE PATHS		
Minimum Phase 1 high time is 1			
** Clock delay: 6.0ns (167.2-1	61 2)		
Node	Cumulative Delay	Transition	n
pixel_out[2]/(internal)	167.2	fall	•
pixel out[2]/pixel out	166.0	rise	
output/mux1/pixel out[2]	165.7	rise	
output/mux1/pixel_out[2]'	154.4	rise	
output/mux1/NN N6	153.9	fall	
output/mux1/NNMUX213.SEL	153.4	rise	
output/mux1/NN N1	152.2	fall	
output/mux1/NN N2	151.3	rise	
output/muxl/n state	150.1	fall	
output/neuron/activity[17]	150.1	fall	
output/neuron/activity[17]'	150.0	fall	
output/neuron/ADDAO OUT[17]	148.8	fall	
output/neuron/n_theta[16]	144.4	fall	
output/inverters/n theta[16]		fall	
output/inverters/n_theta[16]'		fall	
output/inverters/theta[16]	143.1	rise	
output/mux0/theta[16]	143.1	rise	
output/mux0/theta[16]'	128.8	rise	
output/mux0/NN_N34	128.4	fall	
output/mux0/adaptive16	127.9	rise	
output/mux1/adaptive16	127.9	rise	
output/mux1/adaptive16'	123.9	rise	
output/mux1/n_adaptive16	123.4	fall	
adapt/MSTflag/n_adaptive16	121.5	fall	
adapt/MSTflag/n_adaptive16'	115.3	fall	
adapt/MSTflag/thresh[20]	114.1	rise	
adapt/k3 add/thresh[24]	114.1	rise	
adapt/k3 add/thresh[24]'	113.9	rise	
adapt/k3 add/ADDA0 OUT[24]	112.9	rise	
adapt/k3_add/sum1[22]	106.6	fall	
adapt/k2 alu/sum1[22]	106.6	fall	
adapt/k2 alu/sum1[22]'	106.5	fall	
adapt/k2_alu/ADDA0_OUT[22]	105.3	fall	
adapt/k2 alu/sgn prod2[18]	97.5	rise	

adapt/k2_ctrl1/sgn_prod2[18]	97.4	rise
adapt/k2_ctrl1/sgn_prod2[18]'	93.1	rise
adapt/k2_ctrl1/n_prod2[18]	91.8	rise
adapt/k2_ctrl1/n_prod2[18]'	91.7	rise
adapt/k2_ctrl1/prod2[18]	91.0	fall
adapt/k2_add/k2xL1[32]	91.0	fall
adapt/k2_add/k2xL1[32]'	90.8	fall
adapt/k2_add/ADDA0_OUT[16]	89.6	fall
adapt/k2_add/k2xL10[0]	71.0	fall
adapt/mult_k2/k2xL10[0]	71.0	fall
adapt/mult_k2/k2xL10[0]'	69.8	fall
adapt/mult_k2/k2[0]	18.6	fall
host_stuff/reg0/k2[0]	18.3	fall
host_stuff/reg0/k2[0]'	14.4	fall
host_stuff/reg0/NNk21.clock_x	12.2	rise
host_stuff/reg0/PHASE_A	10.0	rise
pixel_clk/PHASE_A	9.0	rise
Pixel_clk	0.0	rise

Minimum Phase 2 high time is 150.9 ns set by:

** (Clock	delay:	5.6ns	(156.6-150.9)
------	-------	--------	-------	--------------	---

Node	Cumulative Delay	Transition
<pre>output/mux1/(internal)</pre>	156.6	rise
output/mux1/NNMUX213.SEL	154.7	fall
output/mux1/NN_N1	154.0	rise
output/mux1/NN_N2	152.9	fall
output/mux1/n_state	152.3	rise
output/neuron/activity[17]	152.2	rise
output/neuron/activity[17]'	152.1	rise
output/neuron/ADDA0_OUT[17]	151.1	rise
output/neuron/n_theta[16]	146.0	fall
output/inverters/n_theta[16]	146.0	fall
output/inverters/n_theta[16]'	145.2	fall
output/inverters/theta[16]	144.7	rise
output/mux0/theta[16]	144.7	rise
output/mux0/theta[16]'	130.4	rise
output/mux0/NN_N34	130.0	fall
output/mux0/adaptive16	129.6	rise
output/mux1/adaptive16	129.5	rise
output/mux1/adaptive16'	125.5	rise
output/mux1/n_adaptive16	125.0	fall
adapt/MSTflag/n_adaptive16	123.2	fall
adapt/MSTflag/n_adaptive16'	116.9	fall
adapt/MSTflag/thresh[20]	115.7	rise
adapt/k3_add/thresh[24]	115.7	rise
adapt/k3_add/thresh[24]'	115.5	rise
adapt/k3_add/ADDA0_OUT[24]	114.5	rise
adapt/k3_add/sum1[22]	108.3	fall
adapt/k2_alu/sum1[22]	108.3	fall
adapt/k2_alu/sum1[22]'	108.2	fall
adapt/k2_alu/ADDA0_OUT[22]	107.0	fall
adapt/k2_alu/sgn_prod2[18]	99.1	rise
adapt/k2_ctrl1/sgn_prod2[18]	99.1	rise
adapt/k2_ctrl1/sgn_prod2[18]'	94.7	rise
adapt/k2_ctrl1/n_prod2[18]	93.5	rise
adapt/k2_ctrl1/n_prod2[18]'	93.3	rise
adapt/k2_ctrl1/prod2[18]	92.6	fall
adapt/k2_add/k2xL1[32]	92.6	fall
adapt/k2_add/k2xL1[32]'	92.5	fall
adapt/k2_add/ADDA0_OUT[16]	91.3	fall
adapt/k2_add/k2xL10[0]	72.7	fall
_		

adapt/mult_k2/k2xL10[0]	72.7	fall
adapt/mult_k2/k2xL10[0]'	71.4	fall
adapt/mult_k2/L1[3]	20.1	fall
adapt/L1_add/L1[3]	19.9	fall
adapt/L1_add/L1[3]'	16.1	fall
adapt/L1_add/INTER2_VAL1[3]	14.5	fall
adapt/L1_add/PHASE_B	10.7	rise
pixel_clk/PHASE_B	9.0	rise
Pixel_clk	0.0	fall

nimum cycle time (from Ph1) is	169.3 ns set by:	
** Clock delay: 9.8ns (179.1-16	9.3)	
Node	Cumulative Delay	Transition
<pre><put mux1="" nncountu4.mout_y[15]<="" pre=""></put></pre>	179.1	rise
output/mux1/NN_N50	178.5	fall
output/mux1/NN_N3	178.0	rise
output/mux1/NN_N34	177.2	fall
<pre><put mux1="" nncountu4.cout="" pre="" y[13]<=""></put></pre>	176.4	rise
output/mux1/NN_N33	175.5	fall
<pre><put mux1="" nncountu4.cout="" pre="" y[12]<=""></put></pre>	174.9	rise
output/mux1/NN_N32	174.1	fall
<pre><put mux1="" nncountu4.cout_y[11]<="" pre=""></put></pre>	173.4	rise
output/mux1/NN N31	172.6	fall
<pre><put mux1="" nncountu4.cout_y[10]<="" pre=""></put></pre>	172.0	rise
output/mux1/NN_N14	171.2	. fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[9]<=""></tput></pre>	170.7	rise
output/mux1/NN N30	170.0	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[8]<=""></tput></pre>	169.4	rise
output/mux1/NN N29	168.6	fall
<pre><tput mux1="" nncountu4.cout_y[7]<="" pre=""></tput></pre>	168.0	rise
output/mux1/NN N28	167.2	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[6]<=""></tput></pre>	166.7	rise
output/mux1/NN N27	165.9	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[5]<=""></tput></pre>	165.3	rise
output/mux1/NN N26	164.6	fall
<pre><tput mux1="" nncountu4.cout_y[4]<="" pre=""></tput></pre>	164.0	rise
output/mux1/NN N25	163.2	fall
<pre><tput mux1="" nncountu4.cout_y[3]<="" pre=""></tput></pre>	162.6	rise
output/mux1/NN N24	161.6	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[2]<=""></tput></pre>	161.0	rise
<pre><tput mux1="" nncountu4.cout="" pre="" y[1]<=""></tput></pre>	159.7	rise
output/mux1/NN_N22	159.0	fall
<pre><tput mux1="" nncountu4.cout="" pre="" y[0]<=""></tput></pre>	158.4	rise
output/mux1/NN_N21	157.6	fall
output/mux1/NNCOUNTU4.cin y	157.1	rise
output/mux1/NNMUX213.SEL	155.5	rise
output/mux1/NN N1	154.3	fall
output/mux1/NN N2	153.4	rise
output/mux1/n_state	152.1	fall
output/neuron/activity[17]	152.1	fall
output/neuron/activity[17]'	152.0	fall
output/neuron/ADDAO OUT[17]	150.8	fall
output/neuron/n theta[16]	146.5	fall
output/inverters/n theta[16]	146.5	fall
output/inverters/n theta[16]'	145.6	fall
output/inverters/theta[16]	145.1	rise
output/mux0/theta[16]	145.1	rise
output/mux0/theta[16]'	130.9	rise
output/mux0/NN N34	130.4	fall
output/mux0/adaptive16	130.4	rise
output/mux1/adaptive16	130.0	rise
ogchac\umax1\adabc14cto	130.0	1126

output/mux1/adaptive16'	126.0	rise
output/mux1/n_adaptive16	125.4	fall
adapt/MSTflag/n_adaptive16	123.6	fall
adapt/MSTflag/n_adaptive16'	117.4	fall
adapt/MSTflag/thresh[20]	116.1	rise
adapt/k3_add/thresh[24]	116.1	rise
adapt/k3_add/thresh[24]'	115.9	rise
adapt/k3_add/ADDA0_OUT[24]	114.9	rise
adapt/k3_add/sum1[6]	95.0	fall
adapt/k2_alu/sum1[6]	95.0	fall
adapt/k2_alu/sum1[6]'	94.9	fall
adapt/k2_alu/ADDA0_OUT[6]	93.7	fall
adapt/k2_alu/INTER3_VAL1[4]	87.1	fall
*adapt/k2_alu/(internal)	84.9	fall
adapt/k2_alu/prod1[4]	83.2	fall
adapt/k1_add/k1xavg[18]	83.2	fall
adapt/k1_add/k1xavg[18]'	82.9	fall
adapt/k1_add/ADDA0_OUT[2]	81.7	fall
adapt/k1_add/k1xavg0[0]	75.1	fall
adapt/mult_k1/k1xavg0[0]	75.1	fall
adapt/mult_k1/k1xavg0[0]'	74.6	fall
adapt/mult_k1/k1[2]	24.0	rise
host_stuff/reg0/k1[2]	23.3	rise
host_stuff/reg0/k1[2]'	13.5	rise
host_stuff/reg0/NNk11.clock_x	12.1	rise
host_stuff/reg0/PHASE_A	10.0	rise
pixel_clk/PHASE_A	9.0	rise
Pixel_clk	0.0	rise

Minimum cycle time (from Ph2) is 202.6 ns set by:

•			
** Clock delay: 5.6ns (208.3-20)	2.6)		
Node	Cumulative	Delay	Transition
<pre>data_pads[15]/(internal)</pre>	208.3		fall
data_pads[15]/15	207.4		fall
data_pads[15]/data_out	207.2		rise
<_stuff/d_out_mux/data_out[15]	206.7		rise
<pre><stuff d_out_mux="" data_out[15]'<="" pre=""></stuff></pre>	194.9		rise
host_stuff/d_out_mux/d_out[15]	193.6		rise
<st_stuff d_out[15]'<="" d_out_mux="" td=""><td>193.2</td><td></td><td>rise</td></st_stuff>	193.2		rise
host_stuff/d_out_mux/N0[15]	191.1		rise
output/mux1/N0[15]	190.5		rise
output/mux1/N0[15]'	180.2		rise
* <ut mux1="" nncountu4.mout_y[15]<="" td=""><td>178.6</td><td></td><td>rise</td></ut>	178.6		rise
output/mux1/NN_N50	178.1		fall
output/mux1/NN_N3	177.6		rise
output/mux1/NN_N34	176.7		fall
<pre><put mux1="" nncountu4.cout_y[13]<="" pre=""></put></pre>	175.9		rise
output/mux1/NN_N33	175.1		fall
<pre><put mux1="" nncountu4.cout_y[12]<="" pre=""></put></pre>	174.5		rise
output/mux1/NN_N32	173.6		fall
<pre><put mux1="" nncountu4.cout_y[11]<="" pre=""></put></pre>	173.0		rise
output/mux1/NN_N31	172.2		fall
<pre><put mux1="" nncountu4.cout_y[10]<="" pre=""></put></pre>	171.6		rise
output/mux1/NN_N14	170.8		fall
<pre><tput mux1="" nncountu4.cout_y[9]<="" pre=""></tput></pre>	170.3		rise
output/mux1/NN_N30	169.5		fall
<pre><tput mux1="" nncountu4.cout_y[8]<="" pre=""></tput></pre>	168.9		rise
output/mux1/NN_N29	168.2		fall
<pre><tput mux1="" nncountu4.cout_y[7]<="" pre=""></tput></pre>	167.6		rise
output/mux1/NN_N28	166.8		fall
<pre><tput mux1="" nncountu4.cout_y[6]<="" pre=""></tput></pre>	166.3		rise

output/mux1/NN_N27	165.5	fall
<pre><tput mux1="" nncountu4.cout_y[5]<="" pre=""></tput></pre>	164.9	rise
output/mux1/NN_N26	164.2	fall
<pre><tput mux1="" nncountu4.cout_y[4]<="" pre=""></tput></pre>	163.6	rise
output/mux1/NN_N25	162.8	fall
<pre><tput mux1="" nncountu4.cout_y[3]<="" pre=""></tput></pre>	162.2	rise
output/mux1/NN_N24	161.2	fall
<pre><tput mux1="" nncountu4.cout_y[2]<="" pre=""></tput></pre>	160.6	rise
<pre><tput mux1="" nncountu4.cout_y[1]<="" pre=""></tput></pre>	159.3	rise
output/mux1/NN_N22	158.5	fall
<pre><tput mux1="" nncountu4.cout_y[0]<="" pre=""></tput></pre>	158.0	rise
output/mux1/NN_N21	157.2	fall
output/mux1/NNCOUNTU4.cin_y	156.7	rise
output/mux1/NNMUX213.SEL	155.1	rise
output/mux1/NN_N1	153.8	fall
output/mux1/NN_N2	153.0	rise
output/mux1/n_state	151.7	fall
output/neuron/activity[17]	151.7	fall
output/neuron/activity[17]'	151.6	fall
output/neuron/ADDAO_OUT[17]	150.4	fall
output/neuron/n_theta[16]	146.0	fall
output/inverters/n_theta[16]	146.0	fall
output/inverters/n_theta[16]'	145.2	fall
output/inverters/theta[16]	144.7	rise
output/mux0/theta[16]	144.7	rise
output/mux0/theta[16]'	130.4	rise
output/mux0/NN_N34	130.0	fall
output/mux0/adaptive16	129.6	rise
output/mux1/adaptive16	129.5	rise
output/mux1/adaptive16'	125.5	rise
output/muxl/n_adaptive16	125.0	fall
adapt/MSTflag/n_adaptive16	123.2	fall
adapt/MSTflag/n_adaptive16'	116.9	fall
adapt/MSTflag/thresh[20]	115.7	rise
adapt/k3_add/thresh[24]	115.7 115.5	rise
adapt/k3_add/thresh[24]'		rise rise
adapt/k3_add/ADDAO_OUT[24]	114.5	
adapt/k3_add/sum1[22] adapt/k2_alu/sum1[22]	108.3 108.3	fall
-		fall
adapt/k2_alu/sum1[22]'	108.2	fall
adapt/k2_alu/ADDA0_OUT[22] adapt/k2_alu/sgn_prod2[18]	107.0 99.1	fall rise
adapt/k2_alu/sgn_prod2[18] adapt/k2_ctrl1/sgn_prod2[18]		
	99.1	rise
adapt/k2_ctrl1/sgn_prod2[18]' adapt/k2_ctrl1/n_prod2[18]	94.7	rise
	93.5	rise
adapt/k2_ctrl1/n_prod2[18]' adapt/k2 ctrl1/prod2[18]	93.3 92.6	rise fall
adapt/k2_add/k2xL1[32]		fall
adapt/k2_add/k2xL1[32]'	92.6 92.5	
adapt/k2_add/ADDA0_OUT[16]	91.3	fall
adapt/k2_add/k2xL10[0]	72.7	fall
adapt/k2_add/k2xL10[0] adapt/mult k2/k2xL10[0]	72.7	fall
adapt/mult_k2/k2xL10[0] adapt/mult k2/k2xL10[0]'	71.4	fall
_	20.1	fall
<pre>adapt/mult_k2/L1[3] adapt/L1 add/L1[3]</pre>	19.9	fall
adapt/L1_add/L1[3] adapt/L1_add/L1[3]'	16.1	fall
adapt/L1_add/L1[3] adapt/L1_add/INTER2_VAL1[3]	14.5	fall fall
adapt/L1_add/PHASE_B	10.7	
pixel_clk/PHASE_B	9.0	rise
Pixel_clk/PHASE_B Pixel_clk	0.0	rise fall
T TWGT OTK		fall

Genesil Version v8.0.2 -- Wed Feb 13 21:08:56 1991

Chip: /mntb/theta/theta/theta

Timing Analyzer ***********************

SETUP AND HOLD MODE

Fabline: HP2 CN10B Junction Temperature:55 deg C

Voltage:5.00v

Corner: GUARANTEED

External Clock: Pixel_clk

Included setup files:

#0 nominal (Room junction T, 5.0 operating V) INPUT SETUP AND HOLD TIMES (ns) Setup Time Hold Time Input Ph1(f) Ph2(f) Ph1(f) Ph2(f) 31.9 17.1 -6.9 -9.9 Address[0] PATH 30.2 15.4 -5.5 -9.4 PATH Address[1] -2.3 Address[2] 23.9 12.3 -6.0 PATH 28.2 16.6 -5.0 -10.5 PATH Address[3] 5.3 6.1 PATH ------Begin_frame_in 5.3 PATH ___ 6.7 ___ Begin_row_in 2.4 4.7 2.7 5.1 2.7 5.0 2.1 45.3 PATH Data[0] 34.6 1.4 Data[10] PATH 34.4 Data[11] 1.5 PATH Data[12] 1.7 32.9 2.5 4.9 PATH 4.8 Data[13] 1.8 33.0 2.4 PATH Data[14] 2.2 31.4 2.2 4.5 PATH Data[15] 1.7 31.0 2.4 4.7 PATH 1.8 42.9 2.6 4.9 Data[1] PATH Data[2] 2.1 42.6 2.4 4.7 PATH 1.9 41.2 2.5 4.8 Data[3] · PATH 1.0 40.1 3.0 5.4 Data[4] PATH Data[5] 0.8 38.0 3.1 5.5 PATH 3.2 Data[6] 0.8 38.4 5.5 PATH 3.0 Data[7] 1.0 37.7 5.4 PATH 2.9 37.4 5.2 Data[8] 1.2 PATH 35.8 1.3 2.8 5.2 Data[9] PATH -9.2 28.1 Ds[0] 22.0 -5.9 PATH 21.8 -9.0 27.9 -5.7 Ds[1] PATH 27.7 21.5 -8.7 -5.4 Ds[2] PATH 27.7 21.5 -8.7 -5.5 Ds[3] PATH --- 6.1 --- 7.8 End_frame_in ---5.3 PATH ---5.3 End_row_in PATH Id[0] 28.3 22.1 -9.3 -6.1 PATH 21.5 Id[1] 27.6 -8.7 -5.4 PATH Id[2] 27.6 21.5 -8.7 -5.4 PATH Id[3] 28.3 22.1 -9.3 -6.1 PATH Ios 3.2 ----1.1 PATH 15.8 14.8 25.4 18.5 -8.5 -7.0 N reset PATH -7.2 -3.7 0de PATH Pixel_in[0] ---2.2 ---5.0 PATH Pixel_in[10] ---1.5 ---5.2 PATH Pixel_in[11] ---1.2 ---5.2 PATH 1.2 --- 5.2 --- 5.2 --- 5.2 --- 5.3 ---Pixel_in[12] PATH ---Pixel_in[13] 1.3 PATH Pixel_in[14] ---1.6 PATH Pixel_in[15] ---1.5 PATH ---Pixel in[1] 2.3 ---5.0 PATH Pixel_in[2] ---1.6 ---5.0 PATH ---Pixel_in[3] 2.9 ---5.1 PATH ---1.7 Pixel_in[4] ---5.1 PATH Pixel_in[5] ---2.5 ___ 5.1 PATH

•					
Pixel_in[6]		2.5		5.1	PATH
Pixel_in[7]		2.2		5.1	PATH
Pixel_in[8]		2.0		5.2	PATH
Pixel_in[9]		2.1		5.2	PATH
Test	14.3		-0.8		PATH
_					

**********	******	*****	******
Genesil Version v8.0.2	Wed Feb 13	21:13:13 199	1
Chip: /mntb/theta/theta/theta			Timing Analyzer
**********	*****	******	******
Critial Paths (setup/hold):			
Fabline: HP2 CN10B	Corner: GUA		
Junction Temperature:55 deg C	Voltage:5.0		
External Clock: Pixel_clk	•		
Included setup files:			
	ction T, 5.0	operating V)	
Phone 1 Cotum time. 1 For /5 C.A.			
Phase 1, Setup time: 1.5ns (5.6-4. host stuff/reg2/(internal)	5.6	rise	
host stuff/reg2/data in[11]	3.7	fall	
data_pads[11]/data_in	3.2	fall	
data_pads[11]/data_in'	2.0	fall	
Data[11]	0.0	fall	
,			
Phase 1, Hold time: 2.7ns (5.8-3.1)		
host_stuff/reg0/data_in[11]	3.1	fall	
data_pads[11]/data_in	2.9	fall	
data_pads[11]/data_in'	1.7	fall	
Data[11]	0.0	fall	
Phase 2, Setup time: 34.4ns (39.2-4	. 8)		
output/mux1/(internal)	39.2	rise	
output/mux1/NNMUX213.SEL	37.4	fall	
output/mux1/NN N1	36.6	rise	
output/mux1/NN N2	35.6	fall	
output/mux1/n state	34.9	rise	
output/neuron/activity[17]	34.9	rise	
output/neuron/activity[17]'	34.7	rise	
output/neuron/ADDA0_OUT[17]	33.7	rise	
output/neuron/n_theta[11]	24.0	fall	
<pre>output/inverters/n_theta[11]</pre>	24.0	fall	
output/inverters/n_theta[11]'	22.8	fall	
output/inverters/theta[11]	22.3	rise	
output/mux0/theta[11]	22.3	rise	
output/mux0/theta[11]'	17.4	rise	
output/mux0/NN_N2	16.4	fall	
output/mux0/simple[11]	15.6	rise	
host_stuff/reg1/simple[11]	15.4	rise	
host_stuff/reg1/simple[11]'	6.5	rise	
host_stuff/reg1/data_in[11]	5.0	rise	
data_pads[11]/data_in	4.5	rise	
data_pads[11]/data_in' Data[11]	2.3 0.0	rise	
Data(II)	0.0	rise	
Phase 2, Hold time: 5.0ns (8.4-3.4)		
host_stuff/reg2/data_in[11]	3.4	fall	
data_pads[11]/data_in	2.9	fall	
data_pads[11]/data_in'	1.7	fall	
Data[11]	0.0	fall	

**************************************			*****
Chip: /mntb/theta/theta/theta		Ti	ming Analyzer
Critial Paths (setup/hold):			
Fabline: HP2_CN10B Junction Temperature:55 deg C External Clock: Pixel_clk Included setup files:	Corner: GUA Voltage:5.0	RANTEED	
Phase 1 Cotyp time: 1 Ang 15 5-4 1\			
Phase 1, Setup time: 1.4ns (5.5-4.1) host stuff/reg2/(internal)	5.5	rise	
host stuff/reg2/data in[10]	3.6	fall	
data pads[10]/data in	3.1	fall	
data_pads[10]/data_in'	2.0	fall	
Data[10]	0.0	fall	
Data[10]	0.0	1411	
Phase 1, Hold time: 2.7ns (5.7-3.0)			
host stuff/reg0/data in[10]	3.0	fall	
data pads[10]/data in	2.8	fall	
data_pads[10]/data_in'	1.7	fall	
Data[10]	0.0	fall	
2444[14]	•••		
Phase 2, Setup time: 34.6ns (38.7-4.1))		
output/mux1/(internal)	38.7	rise	
output/mux1/NNMUX213.SEL	36.9	fall	
output/mux1/NN N1	36.1	rise	
output/mux1/NN N2	35.1	fall	
output/mux1/n state	34.4	rise	
output/neuron/activity[17]	34.4	rise	
output/neuron/activity[17]'	34.3	rise	
output/neuron/ADDAO_OUT[17]	33.2	rise	
output/neuron/n_theta[10]	23.1	fall	
output/inverters/n_theta[10]	23.1	fall	
output/inverters/n_theta[10]'	21.7	fall	
output/inverters/theta[10]	21.2	rise	
output/mux0/theta[10]	21.2	rise	
output/mux0/theta[10]'	16.4	rise	
output/mux0/NN_N0	15.4	fall	
output/mux0/simple[10]	14.6	rise	
host_stuff/regl/simple[10]	14.5	rise	
host_stuff/reg1/simple[10]'	6.4	rise	
host_stuff/reg1/data_in[10]	4.9	rise	
data_pads[10]/data_in	4.4	rise	
data_pads[10]/data_in'	2.3	rise	
Data[10]	0.0	rise	
Dhon 2 Hold bins 5 10 4 2 2			
Phase 2, Hold time: 5.1ns (8.4-3.3) host_stuff/reg2/data_in[10]	3.3	fall	
	2.8	fall	
data_pads[10]/data_in			
data_pads[10]/data_in'	1.7	fall	
Data[10]	0.0	fall	

Genesil Version v8.0.2 -- Wed Feb 13 21:17:25 1991

Chip: /mntb/theta/theta/theta Timing Analyzer

OUTPUT DELAY MODE

Fabline: HP2_CN10B Junction Temperature:55 deg C Voltage:5.00v

Corner: GUARANTEED

External Clock: Pixel_clk

Included setup files:

#0 nominal

(Room junction T, 5.0 operating V)

-		PUT DELAYS				
Output	Ph1(r)	-	Ph2(r)	_	Loading	r(pf)
	Min	Max	Min	Max		
Begin_frame_out			17.9	21.0	50.00	PATH
Begin_row_out			17.8	20.9	50.00	PATH
Data[0]			17.0	20.1	50.00	PATH
Data[10]			17.5	20.6	50.00	PATH
Data[11]			17.5	20.6	50.00	PATH
Data[12]			17.6	20.7	50.00	PATH
Data[13]			17.6	20.7	50.00	PATH
Data[14]			17.7	20.8	50.00	PATH
Data[15]			17.7	20.8	50.00	PATH
Data[1]			17.0	20.1	50.00	PATH
Data[2]			17.1	20.2	50.00	PATH
Data[3]			17.2	20.3	50.00	PATH
Data[4]			17.2	20.3	50.00	PATH
Data[5]			17.3	20.4	50.00	PATH
Data[6]			17.3	20.4	50.00	PATH
Data[7] ·			17.4	20.5	50.00	PATH
Data[8]			17.5	20.6	50.00	PATH.
Data[9]			17.5	20.6	50.00	PATH
End_frame_out			17.7	20.9	50.00	PATH
End_row_out			17.7	20.8	50.00	PATH
N_dr	15.0	27.7	15.0	23.3	50.00	PATH
Pixel_out[0]			18.0	21.1	50.00	PATH
Pixel_out[10]			17.5	20.7	50.00	PATH
Pixel_out[11]			17.5	20.6	50.00	PATH
Pixel_out[12]			17.4	20.5	50.00	PATH
Pixel_out[13]			17.3	20.5	50.00	PATH
Pixel_out[14]			17.2	20.4	50.00	PATH
Pixel_out[15]			17.1	20.3	50.00	PATH
Pixel_out[1]			18.0	21.1	50.00	PATH
Pixel_out[2]			17.9	21.1	50.00	PATH
Pixel_out[3]			17.9	21.0	50.00	PATH
Pixel_out[4]			17.9	21.0	50.00	PATH
Pixel_out[5]			17.8	21.0	50.00	PATH
Pixel_out[6]			17.8	20.9	50.00	PATH
Pixel_out[7]			17.7	20.8	50.00	PATH
Pixel_out[8]			17.7	20.8	50.00	PATH
Pixel_out[9]			17.6	20.8	50.00	PATH
Theta16			17.7	20.8	50.00	PATH

Genesil Version v8.0.2 -- Wed Feb 13 21:18:44 1991

Timing Analyzer Chip: /mntb/theta/theta/theta

VIOLATION MODE

Fabline: HP2_CN10B

Corner: GUARANTEED

Junction Temperature:55 deg C Voltage:5.00v External Clock: Pixel_clk

Included setup files: #0 nominal

(Room junction T, 5.0 operating V)

_____ NO VIOLATIONS

Hold time check margin: 2.0ns