

Optimal control for walking robots

Theory and practice with Crocoddyl

Nicolas Mansard

Gepetto, LAAS-CNRS & ANITI

#03: Transcription, from OCP to NLP

Optimal control problem

$$x_0 = \hat{x}$$

$$\dot{x}(t) = f(x(t), u(t))$$

initial dynamics

deterministic dynamics

$$\min_{\substack{\{x\}:t\to x(t)\\\{u\}:t\to u(t)}} \int_0^T l(x(t),u(t))dt + l_T(x(T))$$
s.t. $\forall t, \dot{x}(t) = f(x(t),u(t))$

Optimal control problem (OCP) with continuous variables (infinite-dimension)

$$\min_{\substack{\{x\}:t\to x(t)\\\{u\}:t\to u(t)}} \int_0^T l(x(t),u(t))dt + l_T(x(T)) \qquad \min_{\substack{\{x\}=\theta_{x_1}...\theta_{x_n}\\\{u\}=\theta_{u_1}...\theta_{u_n}}} \sum_t l(x(t|\theta),u(t|\theta)) + l_T(x(T|\theta))$$
s.t. $\forall t, \dot{x}(t) = f(x(t),u(t))$
s.t. at some $t, \dot{x}(t|\theta) = f(t|\theta_x,\theta_u)$

Nonlinear optimization problem (NLP) with static variables (finite dimension)

 θ_{x} θ_{u} represents the continuous $\underline{x},\underline{u}$ trajectories

 $\{u\}$ is easy to represent (piecewise polynomials)

- what about $\{x\}$?
- Collocation: $\{x\}$ is represented by another polynomials

 $\{u\}$ is easy to represent (piecewise polynomials) – what about $\{x\}$?

• Collocation: $\{x\}$ is represented by another polynomials

The solution to $\dot{x}(t) = f(x(t), u(t))$ is not polynomial

The dynamics is only checked at some remote points

 $\{u\}$ is easy to represent (piecewise polynomials)

- what about $\{x\}$?
- Shooting: {x} is represented by and integrator and only evaluated sparsely

Polynomials(θ_u)

$$\theta_{x} = (x_{1}, \dots x_{T})$$

```
\{u\} is easy to represent (piecewise polynomials) – what about \{x\}?
```

Shooting: {x} is represented by and integrator
 and only evaluated sparsely

Problems:

The state is sparsely and approximately known
You may need an accurate integrator (complex+costly)

Shooting as control-only problem

$$\min_{\{u\}=(u_0..u_{T-1})} \sum_{t} l(x(u_0..u_{t-1}|x_0), u_t) + l_T(x(u_0..u_{T-1}))$$

where $x(u_0...u_{t-1}|x_0)$ if a function of $\{u\}$

- Unconstrained optimization
- □ The function $\{u\} \rightarrow \{x\}$ is numerically unstable

Shooting, pro and cons

- Easy to implement
 - Integrator, derivatives, Newton-descent
- Side effect: you can focus on efficiency

- Numerically unstable
- The initial-guess θ_{xu} should be meaningful
- At then end, maybe we don't care so much ...

Front-end / back-end separation solve second Discretize first, solve second

Front end

Formulation of the motion problem, system model, constraints Discretization

Formulation of a static optimization problem with constraints

Back end

Resolution of the static optimization problem

Formulation transcription

Front end

Formulation of a static nonlinear optimization problem (NLP)

Resolution by convex optimization

Back end

Markovian optimal control problems

Solving with SQP

$$\min_{y} c(y) \quad s.t. \quad g(y) \ge 0$$

• Lagrangian:

$$\mathcal{L}(y,\lambda) = c(y) - \lambda^T g(y)$$

Solving with Newton method:

$$\nabla^2 \mathcal{L} = \begin{pmatrix} \nabla^2 c - \lambda^T \nabla^2 g & \nabla g^T \\ \nabla g & 0 \end{pmatrix}$$

Resulting KKT system

ſ	L_{xx}				L_{xu}			-I	F_x^T			7	$\begin{bmatrix} \Delta x_0 \end{bmatrix}$		$\int L_x$	1
		٠.				٠			٠.	٠			:		:	
			L_{xx}	T			L_{xu}			-I	F_x^T		Δx_{T-1}		L_x	l
	L_{ux}			L_{xx}	L_{uu}				F_u^T		-I	_	$\begin{vmatrix} \Delta x_T \\ \Delta u_0 \end{vmatrix}$		$egin{array}{c} L_x \ L_u \end{array}$	
	L_{ux}	٠.			Duu				- u	٠.			$\begin{bmatrix} \Delta a_0 \\ \vdots \end{bmatrix}$	= -	E_u :	
		••	L_{ux}			٠.	L_{uu}			٠.	F_u^T		$\left \begin{array}{c} \vdots \\ \Delta u_{T-1} \end{array} \right $		L_u	
	-I		Lux				$\boldsymbol{\omega}_{uu}$				- u	_	$\begin{vmatrix} \Delta a_I - 1 \\ \lambda_0 \end{vmatrix}$	-	f_0	l
	F_x	-I			F_u								λ_1		f_1	
١		٠.	٠.			٠						İ	:		:	l
			F_x	-I			F_u						$\left[\begin{array}{c}\lambda_{T-1}\end{array}\right]$		Lf_{T-1}	

