1 Übung 04

1.1 H 4-1

a)

$$\begin{split} g|_{A^0} &= \{(1,z) \mid 1 \in A, z = f(x) = 1 \in M\} \\ g|_{A^1} &= \{(x,z) \mid x \in A \land f(x) = z \in M\} \\ g|_{A^2} &= \{(xy,z) \mid x,y \in A \land z = f(x) \cdot f(y)\} \\ &\vdots \\ g|_{A^{n+1}} &= \{(u \cdot v,z) \mid u \in A^n, v \in A \land z = g|_{A^n}(u) \cdot f(v)\} \end{split}$$

gist ein Morphismus weil es die folgen Eigenschaften erfüllt:

- -das Einselement wird abgebildet durch $g|_{A^0}$
- $\ \forall x, y \in A : g(x \cdot y) = g(x) \cdot g(y)$
- b) Sei $f: A \mapsto M$ eine surjektive Abbildung. Nach *Theorem 2.4a* gibt es einen Morphismus $g: A^* \mapsto M$ mit $g|_A = f$. Da f bereits surjektiv ist, so ist g trivialerweise auch surjektiv und somit ein Epimorphismus.

1.2 H 4-2

1.3 H 4-3

• (a): $L = \{a, aaa\}^* = \{\epsilon, a, aa, aaa, aaaa, ...\} = \{a\}^*$:

 $\{a\}^*$ hat lediglich eine Äquivalenzklasse: $[a]=a^*$, demzufolge gilt dasselbe auch für $\{a,aaa\}^*$. Das syntaktische Monoid besteht demnach auch nur aus dieser einen Äquivalenzklasse.

• (b): $L = \{ba\}^*$ im Monoid $\{a, b\}^*$ hat folgendes syntaktisches Monoid:

$$\{[a] = a(ba)^*, [b] = (ba)^*b, [ab] = (ab)^*, [ba] = (ba)^*\}$$

• (c): $L = \{2, 3, 6\}$ im Monoid (N, max):

$$[1] = \{0, 1\}$$

$$[2] = [3] = \{2, 3\}$$

$$[6] = \{4, 5, 6\}$$

$$[42] = \{x \in \mathbb{N} : x > 6\}$$

• (d): $L = \{7\}$ im Monoid $(\mathbb{Z}, +)$:

Zu L gibt es unendlich viele Äquivalenzklassen: $[1] = \{6\}, [2] = \{5\}, \ldots$, welche alle die Form [x] = y mit x + y = 7 haben.

Demnach ist das syntaktische Monoid $M/\sim_\{7\}$ ebenfalls unendlich:

$$\{[x] = y \text{ mit } y \in \mathbb{Z} \land x + y = 7\}$$

• (e): $L = \{(n, n) : n \in \mathbb{N}\}$ im Monoid $(\mathbb{N}, +)^2$:

Für diese Sprache gibt es ebenfalls unendlich viele Äquivalenzklassen:

$$[(x,y)] = \{(u,v) \in \mathbb{N}^2 \text{ mit } x + u = y + u\}$$

Das syntaktische Monoid enthält alle Äquivalenzklassen dieser Form.