

CLAIMS

We claim:

1. A memory system having a reduced refresh rate in a sleep mode, comprising:
 3. a dynamic memory;
 4. an error correction code (ECC) memory allocation circuit for identifying non-critical bit addresses in said dynamic memory and allocating said addresses as ECC addresses when entering from an active mode to sleep mode;
 9. an ECC encoder for encoding critical bits with error correction codes, said error correction codes being stored in said ECC addresses;
 12. a refresh execution circuit for reducing said refresh rate in said sleep mode and increasing said refresh rate in said active mode; and
 15. a ECC decoder for decoding said critical bits encoded with said error correction codes when reentering said active mode.
1. 2. A memory system as recited in claim 1 further comprising a storage device for storing sleep mode refresh rate data.
1. 3. A memory system as recited in claim 2 wherein said storage device comprises a fusible link.
1. 4. A memory system as recited in claim 1 further comprising:
 3. a storage device for storing a plurality of sleep

- 4 mode refresh rate data; and
5 a temperature sensor, wherein said refresh
6 execution circuit selects one of said sleep mode
7 refresh rate data according to operating temperature.
- 1 5. A memory system as recited in claim 4 wherein said
2 storage device comprises a fusible link.
- 1 6. A memory system as recited in claim 4 wherein said
2 refresh rate is reduced by a 2X factor for each decade
3 Celsius reduction in operating temperature.
- 1 7. A memory system as recited in claim 1 wherein said
2 error correction codes comprises one of Reed-Solomon
3 code and Bose-Chaudhuri-Hocquenghem code.
- 1 8. A memory system as recited in claim 1 wherein said
2 ECC memory allocation circuit stores perallocated
3 addresses in said dynamic memory.
- 1 9. A memory system as recited in claim 1 wherein said
2 ECC memory allocation assigns ECC addresses dynamically
3 to the last byte of each word address.
- 1 10. A method for reducing the refresh rate of a memory
2 in sleep mode, comprising the steps of:
3 switching from an active mode to a sleep mode;
4 identifying non-critical bit addresses;
5 encoding critical bits with an error correction
6 code (ECC);
7 storing ECC codes at said non-critical bit
8 addresses;

20102010 COPIES - 02000

9 reducing a refresh rate for said memory;
10 performing error correction on said critical bits
11 using said ECC codes when reentering active mode; and
12 discarding said ECC bits.

1 11. A method for reducing the refresh rate of a memory
2 in sleep mode as recited in claim 10 further comprising
3 the step of:

4 determining an operating temperature for said
5 memory; and

6 selecting one of a plurality of refresh rates
7 based on said operating temperature of said memory.

1 12. A method for reducing the refresh rate of a memory
2 in sleep mode as recited in claim 11 further comprising
3 the step of:

4 reducing said operating temperature by a 2X factor
5 for each decade Celsius reduction in operating
6 temperature.

1 13. A method for reducing the refresh rate of a memory
2 in sleep mode as recited in claim 10 further comprising
3 the step of:

4 preallocating addresses in memory to store non-
5 critical bits.

1 14. A method for reducing the refresh rate of a memory
2 in sleep mode as recited in claim 10 further comprising
3 the step of:

4 storing said ECC codes for a word at a last byte
5 address for said word.

1 15. A computer readable medium embodying instructions
2 for causing a computer to take steps to reduce the
3 refresh rate of a memory in sleep mode, the steps
4 comprising:

5 switching from an active mode to a sleep mode;
6 identifying non-critical bit addresses;
7 encoding critical bits with an error correction
8 code (ECC);
9 storing ECC codes in said non-critical bit
10 addresses;
11 reducing a refresh rate for said memory;
12 performing error correction on said critical bits
13 using said ECC codes when reentering active mode; and
14 discarding said ECC bits.

1 16. A computer readable medium embodying instructions
2 for causing a computer to take steps to reduce the
3 refresh rate of a memory in sleep mode as recited in
4 claim 15, the steps further comprising:

5 reducing said operating temperature by a 2X factor
6 for each decade Celsius reduction in operating
7 temperature.

1 17. A computer readable medium embodying instructions
2 for causing a computer to take steps to reduce the
3 refresh rate of a memory in sleep mode as recited in
4 claim 15, the steps further comprising:

5 preallocating addresses in memory to store non-
6 critical bits.

1 18. A computer readable medium embodying instructions
2 for causing a computer to take steps to reduce the

3 refresh rate of a memory in sleep mode as recited in
4 claim 15, the steps further comprising:

5 storing said ECC codes for a word in a last byte
6 byte address for said word.

1 19. A computer readable medium embodying instructions
2 for causing a computer to take steps to reduce the
3 refresh rate of a memory in sleep mode as recited in
4 claim 15 wherein said error correction codes comprise
5 Reed-Solomon code.

1 20. A computer readable medium embodying instructions
2 for causing a computer to take steps to reduce the
3 refresh rate of a memory in sleep mode as recited in
4 claim 15 wherein said error correction codes comprise
5 Bose-Chaudhuri-Hocquenghem code.