Name: Durgesh Ninave

Roll No.: 20BCE173

Subject: OOP

o Practical Name: 5 A

Aim: that allows you to create an integer array of 18 elements with the following values: int A[] = {3, 2, 4, 5, 6, 4, 5, 7, 3, 2, 3, 4, 7, 1, 2, 0, 0, 0}. The program computes the sum of element 0 to 14 and stores it at element 15, computes the average and stores it at element 16 and identifies the smallest value from the array and stores it at element 17.

Methodology Followed:

```
import java.util.Scanner;
public class Array
{
       public static void main(String[] args) {
          Scanner it=new Scanner(System.in);
          int A[] = \{3, 2, 4, 5, 6, 4, 5, 7, 3, 2, 3, 4, 7, 1, 2, 0, 0, 0\};
         int sum=0;
         // use for loop for sum of element array index 0 to 14.
         for(int i=0;i<15;i++){
            sum+=A[i];
         }
         A[15]=sum;
         //find average for submission
         A[16]=(sum/15);
         int mx=0,mi=100000;
          // find minimum number
         for(int i=0;i<15;i++){
            if(mi>A[i])
            mi=A[i];
         }
         A[17]=mi;
         System.out.print("Array A is:");
         for(int i=0;i<18;i++){
            System.out.print(A[i]+" ");
          }
       }
}
```

Theoritical Principal Used:

In this program, I used for loop for find sum of elements 0 to 14 index and insert sum at 15 index. Average of element from 0 to 14 index insert at 16 index and minimum element insert at 17 index.

o <u>Input:</u>

-^...+

Output:

Array A is: 3245645732347125831

o Practical Name: 5 B

o Aim: sort given n numbers and display them in ascending and descending order.

o Methodology Followed:

```
import java.util.Scanner;
public class Sort
{
       public static void main(String[] args) {
          Scanner it=new Scanner(System.in);
    System.out.print("Enter Size of Array: ");
          int n=it.nextInt();
          int a[]=new int[n];//array declaration
    System.out.print("Enter Element of Array: ");
          //scan array's element
          for(int i=0;i<n;i++){
            a[i]=it.nextInt();
         }
          //sort array's element using swaping.
          for(int i=0;i<n-1;i++){
            for(int j=i+1;j<n;j++){
              if(a[j]<a[i]){
                 int temp;
                 temp=a[i];
                 a[i]=a[j];
                 a[j]=temp;
              }
            }
          }
          // print in Ascending Order.
          System.out.print("Array In Ascending Order: ");
          for(int i=0;i<n;i++){
            System.out.print(a[i]+" ");
          }
```

```
System.out.println();
    // print in Descending Order.
    System.out.print("Array In Descending Order : ");
    for(int i=n-1;i>=0;i--){
        System.out.print(a[i]+" ");
     }
    it.close();
}
```

Theoritical Principal Used:

In this program, I used for loop nested for loop for sort the array. Also used swap for compare 2 elements.

o **Input:**

- > Enter Size of Array: 10
- > Enter Element of Array: 13542108697

Output :

- Array In Ascending Order: 1 2 3 4 5 6 7 8 9 10
- Array In Descending Order: 10 9 8 7 6 5 4 3 2 1

o Practical Name: 5 C

o **Aim:** to add two given matrices and to multiply two given matrices.

Methodology Followed:

```
}
}
// print element of array A
System.out.println("Entered elements of array A: ");
for(int i=0;i<n1;i++){
  for(int j=0;j<m1;j++){
    System.out.print(a[i][j]+" ");
  System.out.println();
}
// get row and column for matrix A from user
System.out.print("Enter Row and Column for Matrix B:");
int n2=it.nextInt();
int m2=it.nextInt();
int b[][]=new int[n2][m2];
int m[][]=new int[n1][m2];
// get element for Matrix B
System.out.println("Enter Element of array B:");
for(int i=0;i<n2;i++){
  for(int j=0;j<m2;j++){
    b[i][j]=it.nextInt();
  }
}
//print Array B
System.out.println("Entered Element of array B:");
for(int i=0;i<n1;i++){
  for(int j=0;j<m1;j++){
    System.out.print(b[i][j]+" ");
  System.out.println();
}
//check condition for sum of 2 matrices.
if(n1==n2\&&m1==m2){
  System.out.println("Sum of array A and B:");
  //print sum of 2 matrix elements
  for(int i=0;i<n1;i++){
    for(int j=0;j<n2;j++){
      int sum=a[i][j]+b[i][j];
      System.out.print(sum+" ");
    }
    System.out.println();
  }
}
else{
  System.out.println("Sum of array A and B is not Possible");
```

```
}
          //check condition for multiplication of 2 matrices
          if(n2==m1){
            System.out.println("Multiplication of array A and B is: ");
            // matrix m is a Multiplication of 2 matrices
            for(int i=0;i<n1;i++){
              for(int j=0;j<m2;j++){
                 for(int k=0;k<m1;k++){
                   m[i][j]+=a[i][k]*b[k][j];
                 }
              }
            }
            //print multiplication of 2 matrices.
            for(int i=0;i<n1;i++){
              for(int j=0;j<m2;j++){
                System.out.print(m[i][j]+"");
              System.out.println();
            }
          }
       }
}
```

o **Theoritical Principal Used:**

➤ In this program, I used nested for loops for scan 2D array. If else statement is used for check sum and multiplication is possible or not. For sum and multiplication use for loop.

o <u>Input:</u>

```
Enter Row and Column for Matrix A: 33
```

> Enter Element of array A:

123

456

789

Enter Row and Column for Matrix B: 33

> Enter Element of array B:

123

456

789

Output:

> Entered elements of array A:

123

456

```
789
```

> Entered Element of array B:

123

456

789

> Sum of array A and B:

246

8 10 12

14 16 18

> Multiplication of array A and B is :

30 36 42

66 81 96

102 126 150

o Conclusion:

➤ In this programs, I used for loop and if else statement.