

# Notes on Maple for Calculus

Author: Fei Ye

Institute: QCC-CUNY

Date: 2020-10-14

Version: 1.0

## Contents

| Int                  | roduction                           | 1  |
|----------------------|-------------------------------------|----|
| 1                    | Basics in Maple                     | 2  |
| Pa                   | rt 1 - Calculus I                   | 9  |
| 2                    | Limits                              | 9  |
| 3                    | Derivatives                         | 18 |
| 4                    | Application of Differentiation      | 32 |
| 5                    | Integrals                           | 44 |
| 6                    | Application of Integrals I          | 49 |
| _                    |                                     | 53 |
| Part 2 - Calculus II |                                     |    |
| 7                    | Applications of Integrals II        | 53 |
| 8                    | Calculus of Inverse Functions       | 56 |
| 9                    | Techniques of Integration           | 67 |
| 10                   | Further Applications of Integration | 70 |
| 11                   | Infinite Sequences and Series       | 73 |

## Introduction

This is a book written for Maple labs for Calculus I and II. The companion textbook is Stewart's Calculus book.

Maple 2018 was used for Calculus II and Maple 2019 was used for Calculus I.

The resource can be found at https://github.com/fyemath/maple4calc.

Comments and suggestions are very welcome.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



by-nc-sa license icon

## Chapter Basics in Maple

## 1.1 What should I do after I opened Maple

Once you opened Maple, you will see the following Maple Start document.



Maple start page screenshot

If you already know what you want to do, then you may open a new document by clicking New Document icon in the start document. The following shows what an new (empty document) looks like.



Maple new document page screenshot

In this new document you may type in text under Text mode or evaluate a Maple syntax in the Math mode. (See the following picture).

If you want to explore some featured sample documents, you may go to Start.mw document and click on different icons to open a new document.

• You may alway reopen the start page by click the home icon to reopen the start page. For Calculus, the most useful document is Calculus.

If you click the Calculus icon on the Start page and click OK, you will see the following document.



Maple text and Math modes screen shot



Maple reopen start page screenshot



Maple start page screen shot with Calculus highlighted



Maple Calculus document page screen shot

## 1.2 Basic Operators

The first thing to know when learn something new is where and how to get help. In Maple, you may simply type

#### ?keyword

to open a help page (a new window).

For example, the command ?operators will lead you to descriptions of arithmetic operators in Maple.

|                 | addition | subtraction | multiplication | division      | exponentiation |
|-----------------|----------|-------------|----------------|---------------|----------------|
| Maple Operators | +        | _           | *              | /             | ^              |
| In writing      | x + 2    | a-b         | 2x             | $\frac{p}{a}$ | $b^5$          |
| In Maple        | x+2      | a-b         | 2*x            | p/q           | b^5            |

## 1.3 How to define a function

A function is an assignment, for a given input x, we assignment an output y under a certain rule. Maple take this idea to define functions. The command to define a function has the following form.

function name:= independent variable -> function rule

Here := means "defined/assigned to be" and -> may be understood as "plug in".

#### Example 1.1

Define the following function in Maple and find the value f(0.999).

$$f(x) = \frac{x}{x - 1}$$

Solution The function name is f, the independent variable is x and the function rule is  $\frac{x}{x-1}$ . So the function can be defined in Maple by the following command.

$$f := x -> x/(x-1)$$

Once the function is define, you may find the function value by the command f(0.999).

Remark The assignment operator := to the left-hand side the value of the right-hand side. The left-hand side normally is a name and the right-hand side is a value or expression.

## Exercise 1.1

Define the following function in Maple and find the value f(2.0001).

$$g(x) = \frac{x^3}{(x-2)^2}$$

## 1.4 Initially known mathematical functions

Maple has many predefined functions which can be used to create new functions. To see all initially known mathematical functions in maple, you may use the help command ?functions and click the hyperlinked "initial functions" in the description shown in the new window.



Maple function help page screenshot

Some frequently used functions are listed in tables below.

| absolute value | square root    |         | n-th root surd(,n) | natural exponential exp() |        | logarithmic log(),log[b](),ln() |         |
|----------------|----------------|---------|--------------------|---------------------------|--------|---------------------------------|---------|
| abs()          |                |         |                    |                           |        |                                 |         |
|                |                |         |                    |                           |        |                                 |         |
|                | sine           | cosine  | tangent            | cotangent                 | secant | cosecant                        |         |
|                | sin()          | cos()   | tan()              | cot()                     | sec()  | csc()                           |         |
|                |                |         |                    |                           |        |                                 |         |
|                | inverse        | inverse |                    | inverse                   |        | inverse                         | inverse |
| verse sine     | cosine tangent |         | cotangent          |                           | secant | cosecant                        |         |

arccot()

arcsec()

arccsc()

Another initially know function that we will use is the piecewise function.

arctan()

piecewise(condition1, expression1, condition2, expression2, expression3)

#### Example 1.2

arcsin()

Define the following function in Maple and evaluate pwf(3)

arccos()

$$pwf(x) = \begin{cases} \sqrt{\sin(x)} & x < -1\\ \frac{\sqrt[3]{x}}{|x+2|} & -1 \le x < \pi\\ \ln(e^x + 2) & \text{otherwise.} \end{cases}$$

Solution The function can be defined by the following command.

pwf:=x->piecewise(x<-1, 
$$sqrt(sin(x))$$
, x>=-1 and xsurd(x, 3)/abs(x+2),  $ln(exp(x)+2)$ )

The value pwf(3) can be obtained by the command pwf(3).

### Exercise 1.2

Define the following function in Maple and evaluate q(1)

$$q(x) = \begin{cases} |x-2|/\sqrt{x} & x > \frac{pi}{2} \\ (x-1)\tan(x) & 0 \le x < \frac{\pi}{2} \\ \sqrt[5]{\log_2(1+e^x)} & \text{otherwise} \end{cases}$$

#### 1.5 Plot functions

In Maple, you may plot a single variable function easily using the command

plot(expression, domain, options)

or plot several single variable functions together using

In the command, options may be omitted, but the domain must be given. To see details about available options, you may run the command ?plot in Maple.

#### Example 1.3

Plot the functions  $f(x) = x^2$  in red and l(x) = 2x + 1 in blue over the domain [-1, 2].

Solution Here are the command and the output

#### Exercise 1.3



Screen shot of the output generated by plotting of two function Plot the piecewise function in Exercise ?? over the domain [-2,4].

## Exercise 1.4

Plot the functions  $f(x) = \ln(x+5)$  and  $g(x) = 3\cos(2x+1) + 4$  over the domain  $[-\pi, \pi]$ .



## Chapter Limits

## 2.1 Understand limits using tangent lines

Intuitively, the limit of a function f at x = a is a fixed value L that values of the function f(x) approach as the values of  $x \neq a$  approach a.

The slope of a tangent line to the graph of a functions is a limit of slopes of secant lines. This can be visualized easily using Maple with the support of the package Student [Calculus1].

Like predefined functions in Maple, package consists of predefine commands for Maple. The package Student serves for studying Calculus and other subject interactively. The subpackage Student[Calculus1] focus mainly on Calculus as the name indicated.

As different package has different focus and serves for different purpose, Maple won't load a specific package until you run the command with(package\_name). For example, the command with(Student[Calculus1]) will load the subpackage Calculus1.

#### Example 2.1

Observe how do secant lines of the function  $f(x) = x^3 - 2$  approach to the tangent line at x = 1.

Solution Load the Student [Calculus1] package using with().

with(Student[Calculus1])

Use TangentSecantTutor from the loaded package to observe changes of secant lines.

TangentSecantTutor(x^3-1, x=1)

Exercise 2.1 Explore the package Student, in particular the subpackage Student [Calculus1]. You can use the command ?Student to get help.

Find the slope of the tangent line to the function  $f(x)=2x^3+\frac{1}{x^2}$  at x=1 using the TangentSecantTutor command.

## 2.2 Estimate limits numerically or graphically

To estimate a limit  $\lim_{x\to a} f(x)$  numerically, one may pick some values close to a and evaluate the function. In Maple, the calculation can be done by using the repetition statement for counter in array do statement end to:

Example 2.2 Estimate the limit  $\lim_{x\to 0} \frac{\sin x}{x}$  by approximations.

Solution First, we pick some values close to 0, for example -0.01, -0.001, -0.0001, 0.001, 0.0001 and assign them to an expression.

$$sq:=[-0.01, -0.001, -0.0001, 0.0001, 0.001, 0.01]$$

Now we find the function values using two new commands instead of defining the function a priori.

```
for t in sq do evalf(subs(x=t, sin(x)/x)) end do;
```

Graphs provide visual intuition which helps understand and solve problems. Recall, the command plot(expression, domain, option) produces a graph of the function defined by the expression over your choice of domain.

#### Example 2.3

Determine whether the limit  $\lim_{x\to 0} \frac{1}{1-\cos x}$  exists.

Solution Apply the *plot* function to the expression over the domain (-0.5, 0.5).

$$plot(1/(1-cos(x)), x=-0.5..0.5)$$

The graph shows that the function  $y = \frac{1}{1-\cos x}$  goes to  $\infty$  when x approaches 0. So the limit is an infinite limit.

## Exercise 2.2

Estimate the limit  $\lim_{t\to 0} \frac{1-\cos x}{x}$  numerically.

#### Exercise 2.3

Determine whether the limit  $\lim_{x\to 1} \frac{\sin x}{|x-1|}$  exists using the graph.

## 2.3 Evaluate limits

Maple provides the following command to evaluate a limit

The direction may be omitted when evaluating a two-side limit.

#### Example 2.4

Determine whether the limit  $\lim_{x\to 0} \frac{|x|}{x}$  exists.

Solution You may find the left and right limits using the following commands.

$$limit(abs(x)/x, x=0, left);$$

limit(abs(x)/x, x=0, right);

It turns out that  $\lim_{x\to 0} \frac{|x|}{x}$  does not exist because the left limit and the right limit are different.

Example 2.5

Evaluate the limit 
$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$
, where  $f(x)=\frac{1}{x}$ .

Solution The limit can be obtained using the following command.

$$limit((1/(x+h)-1/x)/h, h=0)$$

#### Exercise 2.4

Determine whether the limit  $\lim_{x\to 1/2} \frac{2x-1}{|2x^3-x^2|}$  exists.

Exercise 2.5

Evaluate the limit 
$$\lim_{t\to 0} \frac{\sqrt{x+t} - \sqrt{x}}{t}$$
.

## 2.4 Learn limit laws using LimitTutor

Suppose the limits of two functions f and g at the same point x = a exist (equal finite numbers). Then the limit operation commutes with addition/subtraction, multiplication/division and power.

In Maple, you may use the command LimitTutor(function, position, direction), which is again supported by the subpackage Student[Calculus1], to learn how to evaluate a limit using limit laws and theorems.

Note that LimitTutor employs all limits laws available in Calculus including the L'Hopital rule which will be taught in Calculus 2.

To avoid L'Hopital's Rule when using LimitTutor, it's better to rationalize the expression first. For radicals, you may use the command rationalize(). When rationalization involves trigonometric functions, we will have to do it "manually" using the command simplify(expr, trig). For example, the following command will output  $sin^x(x)$ .

$$simplify((1 - cos(x))*(1 + cos(x)), trig)$$

Example 2.6

Evaluate 
$$\lim_{x\to 0} \frac{1-\cos x}{x}$$
.

Solution We will do the calculations in two ways.

Load the subpackage *Student* [Calculus1] if it was not loaded.

with(Student[Calculus1])

Method 1: Use the following command to evaluate the limit.

LimitTutor((1-cos(x))/x, x=0)

You will see an interactive windows pop out. You can choose the see the procedure step-by-step.

Method 2: Rationalize the numerator first and then evaluate the limit using LimitTutor f:=simplify((1 - cos(x))(1 + cos(x)), trig)/(x(1 + cos(x))); LimitTutor(f, x = 0);

Can you tell the difference?

### Exercise 2.6

Evaluate  $\lim_{x\to 0}\frac{(x+2)(\cos x-1)}{x^2-x}$  using LimitTutor.

## 2.5 Squeeze Theorem

Comparison is a very useful tool in problem solving. Squeeze theorem is such an example

Theorem 2.1 ([) queeze Theorem Suppose that

$$f(x) \le g(x) \le h(x)$$

and

$$\lim_{x\to c} f(x) = L = \lim_{x\to c} h(x).$$

Then

$$\lim_{x \to c} g(x) = L.$$

Let's use Maple to understand the statement.

### Example 2.7

Graph the functions f(x) = -x,  $g(x) = x \cos \frac{1}{x}$  and h(x) = x in the same coordinate system. What's the limit of g(x) as x approaches 0.

Solution We use the plot() command to graph the functions together.

$$plot([-x, x*cos(1/x), x], x=-1...1, discont, color=[red, blue, red])$$

From the graph, we see that the  $\lim_{x\to c} f(x) = 0$  as it is squeezed by two limits which are both 0.

## Exercise 2.7

Graph the functions f(x) = -x,  $g(x) = x \sin \frac{1}{x}$  and h(x) = x in the same coordinate system. What's the limit of g(x) as x approaches 0.



Squeeze Theorem demonstration

## 2.6 Continuity

A function f is continuous at x = a if f(a) is defined and  $\lim_{x \to a} f(x) = f(a)$ . Intuitively, a function is continuous if the graph has no hole or jump.

#### Example 2.8

Use graph to determine if the function

$$f(x) = \begin{cases} x & x \le -1 \\ 1/(x-1) & -1 < x < 1 \\ 3 - x & 1 \le x \le 2 \\ \sin(x-2) + 1 & x > 2 \\ -2 & x = 2 \end{cases}$$

is continuous over  $(-\infty, \infty)$ . Find the discontinuities and verify them using the definition and properties of continuity.

Solution First we define the function.

f := x -> piecewise(x <= -1, x, -1 < x and x < 1, 
$$1/(x - 1)$$
, 1 <= x and x < 2, 3 - x, 2 < x,  $sin(x - 2) + 1$ , -2)

We first check visually whether the graph has holes or jumps.

In the above command, the option discont = [showremovable] is used to show removable discontinuities.



An example shows three types of discontinuities

From the graph, we can tell that the function has discontinuities which can also be found using Maple.

discont(f(x), x)

Maple gives three discontinuities  $\{-1, 1, 2\}$ .

Let's first find limits at all three values.

discontset:=[-1, 1, 2];
for a in discontset do limit(f(x), x=a) end do;

You will find that limits do not exist at -1 and 1. The limit at 2 is 1. However, g(2) = -2. So f has three discontinuities at x = -1, x = 1 and x = 2.

Exercise 2.8 Determine if the function

$$f(x) = \begin{cases} -x^2 + 2 & x \le 1\\ \frac{1}{x-2} & 1 < x < 2\\ 2\cos x - 1 & \text{otherwise} \end{cases}$$

is continuous over  $(-\infty, \infty)$ . Find all discontinuities if they exist and verify them using the definition.

## 2.7 Continuity and Limit of a Composite Function

Continuous functions behave under composition. The composition of continuous functions is still continuous over its domain. More generally,

Theorem 2.2 (L) t f be a function continuous at x = L. Suppose that  $\lim_{x \to c} g(x) = L$ . Then  $\lim_{x \to c} f(g(x)) = f(L)$ .

In general, the limit does not commute with composition.

#### Example 2.9

Let

$$f(x) = x^3$$
 and  $g(x) = \begin{cases} 1 & x = 0 \\ 2x - 1 & \text{otherwise} \end{cases}$ 

Verify that

$$\lim_{x\to 0} f(g(x)) = f(\lim_{x\to 0} g(x)).$$

Is is true that

$$\lim_{x \to 0} g(f(x)) = g(\lim_{x \to 0} f(x))?$$

Solution We first define f and g in Maple

```
f:=x->x^2;
g:=x->piecewise(x=0, 1, 2x-1);
Evaluate limits for f \circ g.
```

The results verify that the limit commutes with composition if the outside function is continuous.

Evaluate limits for  $g \circ f$ 

```
limit(f(g(x)), x=0);
f(limit(g(x), x=0));
```

The results show that the limit may not commute with composition if the outside function is not continuous.

### Exercise 2.9

Find three functions f, g, h and a value c such that f(g(x)) is continuous,

$$\lim_{x\to c} f(h(x)) = f(\lim_{x\to c} h(x))$$

and

$$\lim_{x\to c}h(g(x))\neq h(\lim_{x\to c}g(x)).$$

## 2.8 Intermediate Value Theorem

A very important result about continuity is the intermediate value theorem (IVT for short).

Theorem 2.3 ([) ntermediate Value Theorem] Let f be a function continuous over the interval [a, b]. Suppose that  $f(a) \neq f(b)$  and N is a number between f(a) and f(b). Then there exists a number  $c \in (a, b)$  such that f(c) = N.

In particular, if f(a)f(b) < 0 then there exists a number c such that f(c) = 0.

#### Example 2.10

Determine whether the equation

$$\sin^2 x + 2x - 1 = 0$$

has the solution in (-1,1). Estimate the solution if it exists.

Solution We first use the left hand side of the equation to define a function eql.

```
eql:=x - \sin(x)^2 + 2 \cdot x - 1
```

Now lets verify that eql is continuous over [-1,1] using the command iscont().

```
iscont(eql(x), x=-1..1)
```

The result is *True*. We may apply the IVT. Let's check if the value  $eql(-1) \cdot eql(1) < 0$ .

```
evalf(eql(-1)*eql(1))
```

Here evalf() convert the symbolic answer to the (approximate) numerical value.

Since the product is negative, applying the IVT, we know there exists a solution between (-1,1).

This can also be seen from the graph using the command.

```
plot(eql(x), x=-1..1)
```

To estimate the solution, you may use the Maple command

```
evalf(solve(eql(x) = 0, x))
```

or you may repeatedly apply IVT to find an approximate solution.

```
m:=10;
a:=-1;
b:=1;
for n from 1 to m do
    c[n] := (a + b)/2;
```

## Exercise 2.10

Find an integer k such that the equation

$$\cos^2 x + 3x - 2 = 0$$

has a solution in (k, k + 1). Estimate the solution.

## Chapter Derivatives

#### 3.1 Derivative Functions

What makes derivative so important in modern mathematics is the ideal of linearly approximating curves using tangent lines. Geometrically, the derivative of a function f at a point x = a is the slope of the line tangent to f at x = a. Using limits (if it exists), the derivative is defined as

$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Consider a as a variable, we may define a function called the derivative function. In terms of limits, the derivative function of a function f, denoted by f' is given by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Using limit laws, we can show that differentiable functions are continuous.

Geometrically, the graph of differentiable function locally is flat without any hole or jump.

All elementary functions are differentiable over their domain. But there are also many functions which are not differential everywhere in their domain.

#### Example 3.1

Use the graph of the function f(x) = |x - 1| to identify a x value where f is not differential. Verify your finding using the definition of differentiability.

Solution First plot the function.

```
f:= x-> abs(x);
plot(f(x), x=-2..2);
```

You will see the function is not flat near x = 1. To verify that, we calculate the limit of the difference quotient for all x and then evaluate the resulting function at x = 1.

```
diffquot:=(f(x+h)-f(x))/h;
derlimit:= limit(diffquot, h=0);
evalf(subs(x=1, derlimit));
```

## Exercise 3.1

Determine whether the function

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

is differential at x = 0 using the definition of the differentiability.



Determine whether the function

$$f(x) = \begin{cases} x^2 \cos\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

is differential at x = 0 using the definition of the differentiability.

### Exercise 3.3

Using the definition to find the derivative for  $y = \sin x$ .

## 3.2 Calculating Derivatives

Calculating a derivative in Maple is as easy as calculating a limit. The command for differentiation is diff(function, variable). For higher derivatives, you may simply repeat the variable or use [variable\$n] to indicate the n times differentiation.

### Example 3.2

Calculate the first derivative and the second derivative for the function

$$f(x) = \frac{2}{\sqrt{2\sin^2 x + 1}}.$$

Solution First represent the function rule simply by f.

$$f:=2/(sqrt(2*(sin(x))^2+1))$$

Calculate the first derivative and denote the derivative by f1.

```
f1:=diff(f, x);
```

Calculate the second derivative and denote the derivative by f2. You may use one of the following three commands.

```
f2:=diff(f1, x);
f2:=diff(f, x, x);
f2:=diff(f, [x$2]);
```

Maple also has a tutoring command for differentiation: DiffTutor(function, variable) which is again supported by the subpackage Student[Calculus1]. However, DiffTutor only works for the first derivative.

#### Example 3.3

Calculate the derivative for  $g(x) = \frac{x^2 - 2x - x^{-3}}{\sqrt{x}}$  by hand and compare your calculation the the result given by DiffTutor.

Solution By hand, we may simplify the expression using rational exponents first and then apply derivative rules.

$$g'(x) = (x^{\frac{3}{2}} - 2x^{\frac{1}{2}} - x^{-\frac{7}{2}})' = \frac{3}{2}\sqrt{x} - \frac{1}{\sqrt{x}} + \frac{7}{2x^4\sqrt{x}} = \frac{3x^5 - 2x^4 + 7}{2x^4\sqrt{x}}.$$

To see the result from *DiffTutor*, we use the following command. Remember to load the *Student[Calculus1]* first.

with(Student[Calculus1]):
DiffTutor((x^2-2\*x-x^(-3))/sqrt(x), x);

Here is how does the output look like

$$\frac{d}{dx} \left( \frac{x^2 - 2x - \frac{1}{x^3}}{\sqrt{x}} \right)$$

$$= \frac{\frac{d}{dx} \left( x^5 - 2x^4 - 1 \right) x^{7/2} - \left( x^5 - 2x^4 - 1 \right) \frac{d}{dx} \left( x^{7/2} \right)}{x^7} \qquad [quotient]$$

$$= \frac{\left( \frac{d}{dx} \left( x^5 \right) + \frac{d}{dx} \left( -2x^4 \right) + \frac{d}{dx} \left( -1 \right) \right) x^{7/2} - \left( x^5 - 2x^4 - 1 \right) \frac{d}{dx} \left( x^{7/2} \right)}{x^7} \qquad [sim]$$

$$= \frac{\left( \frac{d}{dx} \left( x^5 \right) + \frac{d}{dx} \left( -2x^4 \right) \right) x^{7/2} - \left( x^5 - 2x^4 - 1 \right) \frac{d}{dx} \left( x^{7/2} \right)}{x^7} \qquad [constant]$$

$$= \frac{\left( \frac{d}{dx} \left( x^5 \right) - 2 \frac{d}{dx} \left( x^4 \right) \right) x^{7/2} - \left( x^5 - 2x^4 - 1 \right) \frac{d}{dx} \left( x^{7/2} \right)}{x^7} \qquad [constantmittiple]$$

$$= \frac{\left( -8x^3 + \frac{d}{dx} \left( x^5 \right) \right) x^{7/2} - \left( x^5 - 2x^4 - 1 \right) \frac{d}{dx} \left( x^{7/2} \right)}{x^7} \qquad [power]$$

$$= \frac{\left( 5x^4 - 8x^3 \right) x^{7/2} - \left( x^5 - 2x^4 - 1 \right) \frac{d}{dx} \left( x^{7/2} \right)}{x^7} \qquad [power]$$

$$= \frac{\left( 5x^4 - 8x^3 \right) x^{7/2} - \frac{7(x^5 - 2x^4 - 1) \frac{d}{dx} \left( x^{7/2} \right)}{x^7} \qquad [power]$$

$$= \frac{d}{dx} \left( \frac{x^2 - 2x - \frac{1}{x^3}}{\sqrt{x}} \right) = \frac{\left( 5x^4 - 8x^3 \right) x^{7/2} - \frac{7(x^5 - 2x^4 - 1) x^{5/2}}{2}}{x^7} \qquad [power]$$

The derivative of a function obtained by the DiffTutor command

## Exercise 3.4

Calculate the first derivative for the function  $y = 2x^{-1} - 3\sqrt{x}$  by hand and by Maple. Compare two results. Are they different? If so, can you explain the difference?

## Exercise 3.5

Calculate the first derivative for the function  $y = x(\sin(x))^{-1}$  by hand and by Maple. Compare two results. Are they different? If so, can you explain the difference?

## Exercise 3.6

Calculate the first derivative for the function  $y = \frac{\cos(x) + \sin x}{x}$  by hand and by Maple. Compare two

results. Are they different? If so, can you explain the difference?



## Exercise 3.7

Calculate the 3-th derivative for the function  $y = \sin x \cos x$  by hand and by Maple. Can you find a formula for the *n*-th derivative of the function?

### 3.3 Chain Rule

Let f(x) and g(x) be two differentiable functions. Then the derivative of the composite function f(g(x)) can be calculated using the following formula

$$(f(g(x)))' = f'(g(x))g'(x).$$

Why there is an extra factor g'(x)? This is mainly because  $g(x+h) \approx g(x) + g'(x)h$ .

Now let's use Maple to understand the chain rule. In Maple, the symbol for composition is Q, that is, in Maple the composition  $f \circ g$  is given by f@g.

Since we will evaluate derivative functions, in addition to the command diff(expression, variable), we will also use D(function) (variable) to find the derivative function. One major difference between those two commands is that D is designed to differentiate functions, whereas diff is for differentiating expressions.



A screen shot from Maple shows a comparison between the commands D and diff

#### Example 3.4

Let  $f(x) = \sin x$ , g(x) = 2x and  $F(x) = 2\sin x \cos x$ . Find f'(g(x)), (fg)'(x),  $(f \circ g)'(x)$  and F'(x)? Compare the derivatives and draw a conclusion.

Solution We first define the functions.

```
f:=x->\sin(x);
g:=x->2*x;
```

```
F:=x->2*sin(x)*cos(x);
```

Find the derivative functions

```
Der_f_g:=D(f)(g(x)); # f'(g(x))
Der_fg:=diff(f(x)g(x), x); # (fg)'(x)
Der_fog:=D(f@g)(x); # (fog)'(x)
Der_F:=D(F)(x); # F'(x)
```

To compare the derivatives, we use the command expand and simplify to rewrite the expressions.

```
simplify(expand(Der_f_g));
simplify(expand(Der_fg));
simplify(expand(Der_fog));
simplify(expand(Der_F));
```

From the outputs, we see that  $(f \circ g)'(x) = F'(x)$ . Why they are the same? This is because  $\sin(2x) = 2\sin x \cos x!$ .

```
\begin{split} f &:= x \to \sin(x); \\ g &:= x - 2^{2}x, \\ F &:= x - 2^{2}x \sin(x) * \cos(x); \\ expand(f(2x) - F(x)); \\ f &:= x \to \sin(x) \\ g &:= x \to 2x \\ F &:= x \to 2\sin(x)\cos(x) \\ 0 \\ Der f g &:= D(f) (g(x)); \# f(g(x)) \\ Der f g &:= D(f)(g(g)(x)); \# (g(g)(x)) \\ Der f g &:= D(f)(g(g)(x)); \# (g(g)(x)) \\ Der f g &:= D(f)(g(g)(x)); \# (g(g)(x)) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x + 2\sin(x) \\ Der f g &:= 2\cos(x) x
```

An example about the chain rule solved using Maple

Remark You may also use D(unapply(f(x)\*g(x), x))(x) to calculate the derivative of the product function (fg)(x) = f(x)g(x).

The chain rule is almost unavoidable in calculation of derivatives. Sometimes, using chain rule will simplify the calculation.

#### Example 3.5

Consider the function  $f(x) = \frac{1}{\sin x + \cos x}$ .

- 1. Find the derivative function f'(x) using DiffTutor. Which rule of derivative was applied first?
- 2. Find the point where the tangent line of f is horizontal over the domain  $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ .
- 3. Find an equation of the tangent line at (0,1).
- 4. Plot the tangent line and the function together over the domain  $(-\frac{1}{2}, \frac{1}{2})$ .

Solution You may use quotient rule to find the derivative. However, the chain rule may be a better choice because  $\frac{1}{\sin x + \cos x} = (\sin x + \cos x)^{-1}$ . Let's try *DiffTutor*.

```
restart; # Use `restart` to clear the internal memory.
with(Student[Calculus1]);
f:=1/(sin(x)+cos(x));
DiffTutor(f, x);
```

You see that the chain rule was applied first.

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{1}{\cos(x) + \sin(x)} \right) \\ &= \left( \frac{\mathrm{d}}{\mathrm{d}_x X 0} \left( \frac{1}{x^{20}} \right) \right|_{x^{20} = \cos(x) + \sin(x)} \frac{\mathrm{d}}{\mathrm{d}x} \left( \cos(x) + \sin(x) \right) & [\mathit{chain}] \\ &= \left( \frac{\mathrm{d}}{\mathrm{d}_x X 0} \left( \frac{1}{x^{20}} \right) \right|_{x^{20} = \cos(x) + \sin(x)} \right) \left( \frac{\mathrm{d}}{\mathrm{d}x} \cos(x) + \frac{\mathrm{d}}{\mathrm{d}x} \sin(x) \right) & [\mathit{sum}] \\ &= \left( \frac{\mathrm{d}}{\mathrm{d}_x X 0} \left( \frac{1}{x^{20}} \right) \right|_{x^{20} = \cos(x) + \sin(x)} \right) \left( -\sin(x) + \frac{\mathrm{d}}{\mathrm{d}x} \sin(x) \right) & [\cos] \\ &= \left( \frac{\mathrm{d}}{\mathrm{d}_x X 0} \left( \frac{1}{x^{20}} \right) \right|_{x^{20} = \cos(x) + \sin(x)} \right) (\cos(x) - \sin(x)) & [\sin] \\ &= -\frac{\cos(x) - \sin(x)}{(\cos(x) + \sin(x))^2} & [\mathit{power}] \\ &= \frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{1}{\cos(x) + \sin(x)} \right) = -\frac{\cos(x) - \sin(x)}{(\cos(x) + \sin(x))^2} \end{split}$$

A example that chain rule was applied first by DiffTutor

To find the points where the tangent line is horizontal, we need to solve the equation f'(x) = 0.

$$solve(diff(f, x)=0)$$

To find the tangent line, we find the derivative f'(0). One way is to use unapply.

unapply(diff(
$$f$$
,  $x$ ),  $x$ )(0)

You may also use eval(expression, variable=value).

$$eval(diff(f, x), x=0)$$

Since f'(0) = -1, the tangent line at (0,1) is defined by y = -x + 1.

$$y := -x+1$$

Now let's verify visually that y = -x + 1 is the tangent line.

$$plot([f, y], x=-1/2..1/2)$$

## Exercise 3.8

Let 
$$f(x) = \sin x$$
,  $g(x) = \frac{\pi}{2} - x$  and  $h(x) = \cos x$ . Find  $f'(g(x))$ ,  $(fg)'(x)$ ,  $(f \circ g)'(x)$  and  $h'(x)$ .

Compare the derivatives and draw a conclusion.

## Exercise 3.9

Let  $f(x) = x^2$  and  $g(x) = \cos x$  and  $h(x) = \frac{1}{2}(\cos(2x) + 1)$ . Find f'(g(x)), (fg)'(x),  $(f \circ g)'(x)$  and h'(x). Compare the derivatives and draw a conclusion.

### Exercise 3.10

Consider the function  $F(x) = \sin^2(\frac{\pi(x^2+1)}{3})$ .

- 1. Define three functions f, g and h so that F(x) = f(g(h(x))).
- 2. Describe how the derivative function F'(x) was calculated by DiffTutor.
- 3. Find the point where the tangent line of F is horizontal over the domain (0,1).
- 4. Find an equation of the tangent line of F at  $(1, \frac{3}{4})$ .
- 5. Plot the tangent line and the function together over the domain  $(\frac{1}{2}, \frac{3}{2})$ .

## 3.4 Implicit Differentiation

Implicit differentiation is an application of the chain rule. It provides a way to find the slope of a tangent line of a function implicitly defined by an equation, that is, the dependent variable is not isolated.

In Maple, there are two useful commands that help us understand implicit defined functions. The command implicitplot(equation, domain, range, options) supported by the package plots can be used to graph an implicitly defined function. The command implicitdiff(function, dependent variable, independent variable) can be used to find derivatives implicitly.

#### Example 3.6

Graph the function y of x defined by  $x^2 + 2y^2 = 2x + 4y$  with it tangent line at (2,0) over the domain (1,3) and range (-1,2).

Solution Let's first assign an name to the equation. (Run restart first if x and y were previously used an names.)

```
restart;
eqnf:=x^2+2*y^2=2*x+4*y;
```

Now let's find the derivative function, and its value at (0, 1).

```
D_eqnf:=implicitdiff(eqnf, y, x);
slope:=eval(D_eqnf, {x=2, y=0});
```

Let's define the tangent line

```
tangentline:= y=slope*(x-2)+0
```

Now we are ready to plot the function with the tangent line together.

```
with(plots);
implicitplot([eqnf, tangentline], x=1..3, y=-1..2, color=[red, blue]);
```

Remark Another way, which is more flexible, to put two or more graphs together is to use the command display(graph1, graph2) which is supported by the package plots. For example, the following commands will show two curves in a single picture.

```
with(plots):
g1 := implicitplot(x^2+y^2=1, x=-1...1, y=0...1):
g2 := plot(1-abs(x), x=-1..1):
display(g1, g2, title="Two Together");
```

Note that we use colone: at the end of a command to hide the output.

#### Exercise 3.11

For the ellipse  $x^2 - xy + y^2 = 4$ , find the locations of all horizontal tangent lines and plot them implicitly on the same graph as the relation over the interval  $-3 \le x \le 3$  and  $-3 \le y \le 3$ .

## Exercise 3.12

Find an equation of the line tangent to the curve  $x^2 + (x - y)^3 = 9$  at x = 1. (You may want to use solve and subs to find the y when x = 1).

#### Exercise 3.13

Find all points (x,y) on the curve of  $|x|^{2/3} + |y|^{2/3} = 8$  where lines tangent to the curve at (x,y)is perpendicular to the line x - y = 1. (Use ?solve to learn how to solve a system of equations in Maple).

## 3.5 Rates of Change and Derivatives

Given a function y = f(x), the average rate of change of f is the difference quotient

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

 $\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}.$  The instantaneous rate of change is the limit  $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$  which is exactly the derivate of f. However, in science, economy and many other field, the same concept bears different names. For example, the velocity is the instantaneous rate of change of the position function; the marginal cost is the derivative of the cost function.

Now let's use Maple to help us understand such kind of application of derivatives.

#### Example 3.7

The position function of a particle moving along a straight line after t seconds is  $s(t) = 2t^3 - 6t^2 - 18t + 1$  meters.

- 1. Find the time t that the particle is at the rest.
- 2. Find the distance the particle moved in the first 5 seconds.
- 3. Plot the s(t), v(t) and a(t) for  $0 \le t \le 5$  together.
- 4. When the particle is speeding up?
- 5. Confirm you answer in 3. using graph of the speed function.

Solution Let's first define if position function

```
s:= t->2*t^3-6*t^2-18*t+1
```

The particle at rest when the velocity is 0. To find t, we find v(t) first and then solve t from v(t) = 0.

```
v:=D(s);
solve({v(t)=0, t>0}, t); # assuming t>0.
```

From the output, you will find that after 3 second the particle is temporarily at rest.

The particle moves forward if v(t) > 0 and backward if v(t) < 0. You may use the previous output or apply the command **solve** for those two inequalities. Either way, you will find from t = 0 to t = 3, v(t) < 0 and v(t) > 0 for  $0 < t \le 5$ . So the total distance should be calculated as

```
totdist:= abs(s(3)-s(0))+abs(s(5)-s(3))
```

The acceleration function a(t) = v'(t). To plot those three functions together, you may use **plot**.

```
a:=D(v);
plot([s(t), v(t), a(t)], t=0..5, color=[black, blue, red]);
```

The speed function of the particle is |v(t)|. When v(t) > 0 and a(t) > 0, the particle is speeding up. When v(t) < 0 and a(t) < 0, the particle is also speeding up. So the particle is speeding up if v(t)a(t) > 0. Similarly, the particle is slowing down if v(t)a(t) < 0.

```
solve({v(t)*a(t)>0, t>0}, t)
```

It shows that the particle is speeding up when t < 1 or t > 3. This can also be seen from the graph of the speed function.

```
plot(abs(v(t)), t=0...5)
```

### Exercise 3.14

The position function of a particle moving along a straight line after t seconds is  $s(t) = t^3 - 6t^2 - 15t + 2$  meters.

- 1. Find the time t that the particle is at the rest.
- 2. Find the distance the particle moved in the first 5 seconds.
- 3. Plot the s(t), v(t) and a(t) for  $0 \le t \le 5$  together.
- 4. When the particle is speeding up?
- 5. Confirm you answer in 3. using graph of the speed function.

## Exercise 3.15

Suppose that the profit obtained from the sale of x calculators is given by  $P(x) = -0.05x^2 + 4x + 25$ . Use the marginal profit function to estimate the profit from the sale of the 51st calculator.

## 3.6 Related Rates

Stewart suggests the following general steps for solving problems about related rates.

- 1. Read the problem carefully. (What quantities are known? What is the unknown rate of change?)
- 2. Draw a diagram if possible.
- 3. Introduce notations. Assign symbols to all quantities that are functions of time.
- 4. Express the given information and the required rate in terms of derivatives.
- 5. Write an equation that relates the various quantities of the problem. If necessary, use the geometry of the situation to eliminate one of the variables by substitution.
- 6. Use the Chain Rule to differentiate both sides of the equation with respect to the shared independent variable, say t.
- 7. Substitute the given information into the resulting equation and solve for the unknown rate.

In Maple, the quantities that shared by the same independent variable should be written in function notations. See the following example for details.

#### Example 3.8

A spherical shaped balloon is inflated at a constant rate  $2 \text{ cm}^3/\text{s}$ . Find the relative rate growth of the diameter when its 10 cm wide.

Solution The volume of a sphere is given by  $V = \frac{4\pi}{3}r^3$ . In this equation, both V and r are functions of the time t. In Maple, we will use V(t) and r(t) for the volume and the radius.

eqn 
$$v:=V(t)=4*Pi/3*(r(t))^3$$

We know that at a certain time r(t) = 10/2 = 5, and  $\frac{d}{dt}V(t)|_{r(t)=5} = 2$ . What is asked is  $\frac{d}{dt}r(t)|_{r(t)=5}$ . The two rates are related by the equation obtained by differentiating both side of the equation  $eqn_v$ .

```
D_eqn_v:=diff(eqn_v, t)
```

In the above equation, we need to solve the derivative of r with respect to t. Let's first simplify notations.

```
\begin{array}{l} D_-v:=& \mathrm{diff}(V(t),\ t);\\ D_-r:=& \mathrm{diff}(r(t),\ t);\\ D_-r:=& \mathrm{solve}(D_-eqn_\_v,\ D_\_r);\\ \\ \mathrm{Now\ we\ plugin}\ D_-v=& \mathrm{2\ and}\ r(t)=& \mathrm{5\ to\ find\ the\ value\ for\ }D_-r.\\ \\ \mathrm{subs}(\{D_-v=&2,\ r(t)=&5\},\ D_-r)\ \#\ or\ using\ eval(D_-r,\ \{D_-v=&2,\ r(t)=&5\}) \end{array}
```

#### Exercise 3.16

A cylindrical cup with radius 5 cm is being filled with coffee at a rate of 2 cm<sup>3</sup>/s. How fast is the height of the coffee increasing?

## Exercise 3.17

Two cars start moving from the same point. One travels north at 30 mph and the other travels west at 50 mph. At what rate is the distance between the cars changing one hour later?

#### Exercise 3.18

Sands dumping from a truck to the ground at a constant rate  $5 \text{ m}^3/\text{s}$  is creating a circular cone. Find a relation between the rate of growth of the radius of the base and the rate of growth of the height of cone, when the base is 6 m and the heigh is 4 m.

#### 3.7 Linearizations

Let f be the function differentiable at x = a. The linearization of f at x = a is defined to be the function L(x) = f'(a)(x-a) + f(a). For any value b near a, the function value f(b) is approximately the same as L(b). This method is called linear approximation. The tangent line approximation is fundamental to almost every application of the derivative.

#### Example 3.9

Find the linearization L(x) of the function  $f(x) = \sqrt[3]{(x+7)}$  at x=1 and use this linearization to estimate f(0.99). How large is the error?

Solution We first find the slope fr the linearization which is the derivative f'(1).

```
f:=x->surd(x+7, 3); # or <math>f:=x->(x+7)^{(1/3)}
m:=simplify(D(f)(1)); # this is the slope (simplified).
```

Now we define the linearization L(x) and estimate f(0.99) using L(0.99).

```
L:=x-m*(x-1)+f(1);

L(0.99);
```

The error may be calculated based on the output of the follow command.

```
f_L:=f(0.99)-L(0.99);
```

The results shows that the linear approximation is slightly over estimated with an error less than  $4 \times 10^{-7}$ .

### Exercise 3.19

Find the linear approximation L(x) of the function  $f(x) = \frac{\sqrt{x}}{x+1}$  at x = 1. Use this linearization to approximate f(1.02).

## Exercise 3.20

Find the linear approximation L(x) of the function  $f(x) = \cos(2x)$  at x = 0. Use this linearization to approximate f(0.1).

### Exercise 3.21

Find the linear approximation L(x) of the function  $f(x) = \sqrt{x^2 + 5}$  at x = 2. Use this linearization to approximate f(2.03).

#### 3.8 Newton's Method

In science and engineering, many problems may be eventually reduced to nonlinear equations which likely has no algebraic (analytic) solution. In such a situation, numerical solutions are hoped for applications. We've seen a method to find a numerical solution using the intermediate value theorem. However, it is not very effective. Using linearization, a root-finding algorithm was developed by Newton and other mathematicians. The idea is to use the x-coordinates of tangent lines to approximate a root of an equation. Let's see an example first using the Maple command NewtonsMethod(function, starting point, options) which is again supported by the subpackage Student [Calculus1].

#### Example 3.10

Starting at x = -1.5, obtain a solution of  $\sin x - \frac{x}{2} = 0$  by Newton's method.

Solution First load Student [Calculus1] use with ().

```
with(Student[Calculus1])
```

Now apply the NewtonsMethod command

```
NewtonsMethod(sin(x)-x/2, x=-1.5)
```

To see the graph, you may add the option output=plot.

```
NewtonsMethod(sin(x)-x/2, x=-1.5, showroot=true, output=plot)
```

How does Newton's methods work? It's an iteration process. Consider the equation f(x) = 0. Suppose f is differentiable. To find a solution, we pick an initial value  $x_0$  first. The x-value  $x_1$  of the x-intercept of the linearization  $L_0(x) = f'(x_0)(x - x_0) + f(x_0)$  should produce a value that is closer. The value  $x_1$  is given by the formula

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Iteratedly applying the above idea, we get the iteration formula

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}.$$

Remark How many times should be iterated? It depends on the sizes of acceptable errors and a maximum number of iteration.

If the x-values produced from two successive iterates is sufficiently small, say  $|x_n - x_{n-1}| < e_1$ , and the function value at  $x = x_n$  is sufficiently small, say  $f(x_n) < e_2$ , where  $e_1$  and  $e_2$  are acceptable errors, then we may say f(x) = 0 has a solution at  $x = x_n$ .

If after iterated a maximum number of times and a solution was not found, then we may have to change the initial value or using other methods.

If it happens that  $f'(x_n) = 0$ , then the iteration process fails.

The above algorithm may be realized using the following Maple codes.

```
tol := 10^(-3);
N := 100;
f := x -> sin(x) - 1/2*x;
m := D(f);
newton := x -> evalf(x - f(x)/m(x)); # Newton's formula
x := -1.5;

for i to N do
    x := newton(x);
    if abs(x - newton(x)) < tol and abs(f(x)) < tol then
        break;
    eli i = N then</pre>
```

```
error "Newton's method did not converge";
end if;
end do;
print(x);
```

If you don't want to check the size of error, the code can be simplified using the composite symbol @ in Maple.

```
restart; f := x \rightarrow \sin(x) - 1/2*x; m := D(f); newton := x \rightarrow evalf(x - f(x)/m(x)); N:=100 x[N] := evalf((newton@@N)(-1.5)); \# @@N means that newton compose with itself N times.
```

## Exercise 3.22

Using Newton's Method to find solutions of the polynomial equation  $x^3 - x^2 + 1 = 0$ .

## Exercise 3.23

Using Newton's Method to find solutions of the equation  $\cos x = \frac{x}{2}$ .

#### Exercise 3.24

Using Newton's Method to find the solution of the equation  $\tan x - 2x = 0$  in the interval [1, 2]. Among 1 and 2, which is a better initial value? Why?

## Chapter Application of Differentiation

## 4.1 Maximum and Minimum Values

If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers c and d in [a, b].

A critical value of a function f is a number c in its domain such that either f'(c) = 0 or f'(c) does not exist.

To find the absolute maximum and minimum values of f over [a, b], we do the following.

- 1. Find the values of f at the critical values in [a, b].
- 2. Find the values of f(a) and f(b).
- 3. The largest of the values from Steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

To find critical values, we solve the equation f'(x) = 0 and look at where f'(x) is undefined. In Maple, you can use the command CriticalPoints(function, variable) which is supported by the subpackage Student [Calculus1].

#### Example 4.1

Find the absolute maximum and minimum values of the function  $f(x) = |x^2 - 2x - 3|$  over the interval [0, 4].

Solution First defined the function.

```
f:=x->abs(x^2-2*x-3)

Find critical points.

with(Student[Calculus1]):
   Cpts:=CriticalPoints(f(x), x);

Let's put endpoints and critical points in [0,4] in a list.

lst:=[op(remove(c->c<0 or c>4, Cpts)),0,4];

# The op function extracts elements from the list.

# The remove function removes removes the elements of Cpts in [0,4]

# The remove function use a Boolean-valued procedure as a condition.

# A procedure can be considered as a function. This is why we use ->.
```

Evaluate the function at each point in the list.

```
fc:=f^{(1st)} # ^ is the element-wise operator.
```

Find the maximum and minimum.

```
fmax:=max(fc);
fmin:=min(fc);
```

You may use the following code to display at where the function reaches an extremum.

```
for c in lst do
   if f(c) = fmax then print(The maximum value of f(x) over [0, 4] is*%f(c) = fmax);
   elif f(c)=fmin then print(The minimum value of f(x) over [0, 4] is*%f(c) = fmin);
   end if;
end do;
```

Remark The above solution is still the method using Calculus but with the assistant of Maple. Indeed, Maple has the commands maximize(f(x), x=a..b) and minimize(f(x), x=a..b) which produce the maximum and minimum of a function f(x) over an interval [a, b].

## Exercise 4.1

Find the absolute maximum and minimum values of the function  $f(x) = x^3 - 3x + 1$  over the interval [0, 2].

#### Exercise 4.2

Find the absolute maximum and minimum values of the function  $f(x) = 2\cos x - x - 1$  over the interval [-2, 1].

#### 4.2 The Mean Value Theorem

Rolle's Theorem states that if a function f is continuous on the closed interval [a, b], differentiable on the open interval (a, b) and f(a) = f(b), then there exists a point c in (a, b) such that f'(c) = 0.

Using Maple, you can verify this theorem for a function f graphically using the following command RollesTheorem(f(x), x = a..b) which is supported by the subpackage Student[Calculus1].

#### Example 4.2

Let f(x) = (x-1)(x+1)(x-2). Graph the function f(x) from -1 to 2 indicate the points between -1 and 2 where tangent line is horizontal. Find values x = c in (-1, 2) at where the tangent line is horizontal.

Solution Define the function.

#### restart:

$$f:=x->(x-1)*(x+1)*(x-2)$$

Now let's create the graph of the function and the horizontal tangent line.

## with(Student[Calculus1]):

RollesTheorem((x-1)\*(x+1)\*(x-2), x = -1..2);



(x-1)(x+1)(x-2) = (x-1)(x+1)(x-2), a graph showing (x-1)(x+1)(x-2), the line connecting the end points, tangents parallel to the line connecting the end points.

A demonstration of Rolle's theorem

To find the values x = c. We solve the equation f'(x) = 0.

$$solve({D(f)(x)=0, x>-1, x<2}, x)$$

A generalization of Rolle's theorem is the Mean Value Theorem.

If a function f is continuous on the closed interval [a,b] and differentiable on the open interval (a,b), then there exists a point c in (a,b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

or equivalently,

$$f(b) = f(a) + f'(c)(b - a).$$

The subpackage Student[Calculus1] also provides a command MeanValueTheorem(f(x), x = a..b) to illustrate the Mean Value Theorem.

#### Example 4.3

Let f(x) = (x-1)(x+1)(x-2). Graph the function f(x) from -2 to 3 indicate the points between -2 and 3 where tangent line is parallel to the secant line passing through (-2, f(-2)) and (3, f(3)).

Find the values x = c where the tangent line is parallel to the secant line.

Solution Define the function.

#### restart:

```
f:=x->(x-1)*(x+1)*(x-2)
```

Now let's create the graph of the function and the horizontal tangent line.

#### with(Student[Calculus1]):

MeanValueTheorem(f(x), x = -2..3);



The Mean Value Theorem is illustrated for the function (x-1)(x+1)(x-2) = (x-1)(x+1)(x-2).

A demonstration of Mean Value Theorem

Find the slope msec of the secan line.

```
a:= -2;
b:= 3;
msec:=(f(a)-f(b))/(a-b);
Solve the equation f'(x) = msec for c.
```

 $solve({D(f)(x)=msec, x>-2, x<3}, x)$ 

Note that in Rolle's theorem and Mean Value Theorem, the continuity and differentiability conditions are crucial.

### Example 4.4

Consider the floor function  $f(x) = \begin{cases} 1 & x < 0 \\ 2 & x \ge 0 \end{cases}$ . Use a graph to show that there is no tangent line

that is parallel to the secant line through (-1,1) and (1,2).

Solution First define the function.

```
restart:
f := x->piecewise(x<0, 1, 2);
Now let's find the second line.
a := -1; # left endpoint
b := 1; # right endpoint
msec:=(f(b)-f(a))/(b-a); # slope of secant line
secline:=f(a) + msec*(x-a); # secant line
Plot the function and the secant line together.
plot([f(x), secline], x=a..b, discont=true);
Now try the MeanValueTheorem command.
with( Student[Calculus1] ):
MeanValueTheorem( f(x), a..b );</pre>
```

# Exercise 4.3

Let  $f(x) = \cos x$ . Graph the function from  $-\frac{2\pi}{3}$  to  $\frac{4\pi}{3}$  and indicate the points in  $[-\frac{2\pi}{3}, \frac{4\pi}{3}]$  where the derivative f'(x) is 0. Find the tangent points where the slope of the tangent line is 0.

#### Exercise 4.4

Let  $f(x) = x^4 - 3x^2 + 1$ . Graph the function f(x) from -1 to 2 indicate the points between -1 and 2 where tangent line is parallel to the secant line passing through (-1, f(-1)) and (2, f(2)). Find the tangent points where the tangent line is parallel to the secant line.

#### Exercise 4.5

Consider the floor function f(x) = |x|. Use a graph to show that there is no tangent line that is parallel to the secant line through (-1,1) and (2,2).

# 4.3 Derivatives and the Shape of a Graph

Given a function f(x), we know that f(x) is increasing on an interval if f'(x) > 0 on that interval and f(x) is decreasing on an interval if f'(x) < 0 on that interval. By Mean Value theorem, f(x) is a constant on an interval if f'(x) = 0 on that interval.

To determine over which interval a function f(x) is increasing/decreasing, we need to find out the domain of f'(x) and the critical points and then use test points to determine the sign of f'(x).

Using first derivative, we can test local extrema at critical points.

Theorem 4.1 (S) pose that c is a critical point of a continuous function f.

- 1. If f' changes from positive to negative at c, then f has a local maximum at c.
- 2. If f' changes from negative to positive at c, then f has a local minimum at c.
- 3. If f' does not change signs at c, then f has no local extremum at c.

Another method to determine local extremum is to use second derivative.

Theorem 4.2 (S) pose f is a twice differentiable function on an interval I.

- 1. If f'' > 0 over I, then f is concave upward on I.
- 2. If f'' < 0 over I, then f is concave downward on I.

Base on the observation on concavity, we have the following second derivative test.

Theorem 4.3 (S) pose that f'' is continuous near c.

- 1. If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.
- 2. If f'(c) = 0 and f''(c) < 0, then f has a local maximum at c.

#### Example 4.5

Find local extrema, the intervals on which  $f(x) = \frac{x}{x^2+1}$  is increasing or decreasing and the intervals on which f(x) is concave up or concave down.

Solution First we define the function and find the derivatives.  $f:=x->x/(x^2+1)$ ; df:=D(f); ddf:=D(D(f));

Now let's find critical points using Student[Calculus1] subpackage. with(Student[Calculus1]): CriticalPoints(f(x),x)

Find the intervals of monotonicity (using test points).

df(t) # where t is a test point in an interval, you replace it by a number.

Determine local extrema and find values.

g(c) # suppose c is a critical point.

Find critical points of the derivative function g'(x) and determine intervals of concavity.

CriticalPoints(df(x),x);

ddf(t); # evaluate the second derivative at a test point \$t\$.

From the outputs, we know that f is decreasing on  $(-\infty, -1) \cup (1, \infty)$  and increasing on (-1, 1). It has a local minimum  $f(-1) = -\frac{1}{2}$  and a local maximum  $f(1) = \frac{1}{2}$ .

The function is concave cup on  $(-\sqrt{3},0) \cup (\sqrt{3},\infty)$  and concave down on  $(-\infty,-\sqrt{3}) \cup (0,\sqrt{3})$ .

# Exercise 4.6

Let  $f(x) = \sin x + \cos x$  be a function defined over the interval  $[0, 2\pi]$ . Find local extrema, the intervals on which f is increasing or decreasing and the intervals on which f(x) is concave up or concave down.

# 4.4 Limits at Infinity and Asymptotes

Limits at infinity can provide information on the end behaviors of a curve such as horizontal and vertical asymptotes.

When the limit of a function is an infinite limits, we will get a vertical asymptotes.

The function f has a horizontal asymptote y=b if  $\lim_{x\to\infty}f(x)=b$  or  $\lim_{x\to-\infty}f(x)=b$ .

The function f has a horizontal asymptote x=a if  $\lim_{x\to a^+}f(x)=\infty$ ,  $\lim_{x\to a^-}f(x)=\infty$ ,  $\lim_{x\to a^+}f(x)=-\infty$  or  $\lim_{x\to a^-}f(x)=-\infty$ .

The function f has a slant asymptote y = mx + b if  $\lim_{x \to \infty} (f(x) - (mx + b)) = 0$  or  $\lim_{x \to -\infty} (f(x) - (mx + b)) = 0$ .

For rational functions, we have the following results. Suppose  $p(x)=a_nx^n+\cdots+a_1x+a_0$  and  $q(x)=b_mx^m+\cdots+a_1x+a_0$ 

$$\lim_{x \to \infty} \frac{p(x)}{q(x)} = \begin{cases} 0 & \text{if } n < m \\ \frac{a_n}{b_m} & \text{if } n = m \\ \pm \infty & \text{if } n > m \end{cases}$$

In the last case, the sign agrees with the sign of  $\frac{a_n}{b_m}$ .

The limit at the negative infinity of a rational function is similar.

In Maple, to find limits, we use the command limit(f(x), x=a) or LimitTutor(f(x), x=a) supported by Student[Calculus1]. To find asymptotes, you may use the command Asymptotes(f(x), x) which is again supported by Student[Calculus1].

#### Example 4.6

Evaluate the following limits.

- $1. \lim_{x \to \infty} \sqrt{x^2 + 1},$
- $2. \lim_{x \to -\infty} \frac{x^3 1}{\sqrt{9x^6 x}}$
- 3.  $\lim x \sin(\frac{1}{x})$ .

Solution Use LimitTutor to find limits step-by-step

```
with(Student[Calculus1]);
LimitTutor(sqrt(x^2+1), x=infinity);
LimitTutor((x^3-1)/(9*x^6-x), x=-infinity);
LimitTutor(x*sin(1/x), x=infinity);
```

# Example 4.7

Find asymptote of the function  $f(x) = \frac{x^3 + 2x^2 - 3x - 1}{x^2 - 1}$  and plot the graph of f and its asymptotes together with x in [-5, 5] and y in [-10, 10].

Solution Define the function first.

#### restart:

```
f:=x-> (x^3+2*x^3-3*x-1)/(x^2-1);
```

Find and plot asymptotes. Here, it's better to use implicitplot because vertical asymptotes are not functions of x.

```
with(Student[Calculus1]):
asym := Asymptotes(f(x), x);
with(plots):
asymplots := implicitplot(asym, x = -5 .. 5, y = -10 .. 10):
```

Plot the function f and use display to put the graph and asymptotes together.

```
Grphf:=plot(f(x), x=-5..5, y=-10..10, discont=true):
display(asymplots, Grphf); # display is supported by the plots package.
```

# Exercise 4.7

Evaluate the following limits.

- $1. \lim_{x \to \infty} \sqrt{x} \sin(\frac{1}{x}),$   $2. \lim_{x \to -\infty} \frac{\sqrt{9x^6 + 1}}{x^3 + x}.$

# Exercise 4.8



A graphs of rational functions with its asymptotes

Find asymptote of the function  $f(x) = \frac{2x^3 - 3x^2 - 5x + 2}{x^2 + 1}$  and plot the graph of f and its asymptotes together with x in [-5, 5] and y in [-10, 10].

# Exercise 4.9

Find asymptote of the function  $f(x) = \frac{8 \sin x}{x^2 + 1} + \frac{x^2 - x}{x^2 - 1}$  and plot the graph of f and its asymptotes together with x in [-10, 10] and y in [-20, 20].

# 4.5 Curve Sketching

To plot the graph of a function in maple, we simply use the command plot(function, widows, options).

On the other hand, we can sketch the graph using calculus, more precisely, monotonicity, concavity, vertical asymptotes, horizontal asymptotes, periods, symmetries, local extrema, intercepts etc.

#### Example 4.8

Sketch and plot the graph of the function  $g(x) = \frac{2x+1}{x-2}$ .

Solution First define the function

$$g:=x->(2*x+1)/(x-2)$$

Find the domain of the function.

$$solve((x-2)!=0, x)$$

Find the x-intercepts.

```
solve(g(x)=0, x)
   Find the y-intercept
   g(0)
   Check whether x=2, where the function is undefined, is a vertical asymptote.
   limit(g(x), x=2, left);
   limit(g(x), x=2, right);
   Find horizontal asymptotes
   limit(g(x), x=infinity);
   limit(g(x), x=-infinity);
   Then we find derivative functions.
   dg:=D(g);
                 # first derivative
   ddg:=D(dg); # second derivative
   Find all critical points. This can be done by finding using the Student [Calculus1] subpackage.
   with(Student[Calculus1]):
   CriticalPoints(g(x),x);
   Find the intervals of monotonicity (using test points).
   dg(t) # where t is a test point in an interval, you replace it by a number.
   Determine local extrema and find values.
   g(c) # suppose c is a critical point.
   Find critical points of the derivative function g'(x) and determine intervals of concavity.
   CriticalPoints(dg(x),x);
                # evaluate the second derivative at a test point $t$.
   ddg(t);
   Sketch the graph using above obtained information and compare with Maple plot output.
   plot(g(x), x=a..b) # Plot the function in the window [a, b].
Exercise 4.10
   Sketch and plot the graph of the function h(x) = \frac{x-1}{x+2}.
```

41

Exercise 4.11

Sketch and plot the graph of the function  $g(x) = x\sqrt{4-x}$ .

# 4.6 Optimization Problems

To solve a optimization problem in Calculus, the key is to represent the quantity to be optimized by a function of other quantities and then find the extremum value using the extreme value theorem.

#### Example 4.9

Among rectangles with the same perimeter 16 centimeters, there is one that has the largest area. Find the dimension of that rectangle.

Solution Suppose the length is x and the width is y. The area is a function of x and y.

```
A := (x, y) \rightarrow x * y;
```

We know that the perimeter is 16 which provides a relation between x and y.

```
prm:=2x+2y=16;
```

Solve for y and plug it in to the area function.

```
wd:=solve(prm, y);
y:=unapply(wd, x); # define y as a function of x
Ar:=unapply(A(x,y(x)),x); # Translate the area function into a function of x.
```

To find the maximum area, you may use maximize or using the following commands. Note that x > 0.

```
Amx := \max(Ar^{(solve(D(Ar)(x) = 0, x))}); # Find critical points, evaluate, and find the maximum xvalue := \operatorname{solve}(Ar(x) = Amx, x); # Find the length x such that the area is the largest. yvalue := \operatorname{y(xvalue)}; # Find the width y such that the area is the largest.
```

# Exercise 4.12

Find the rectangle with the minimal perimeter among rectangles with the area 36 square inches.

# Exercise 4.13

Find the point on the parabola  $y^2 = 2x$  that is closest to the point (1, -4).

# 4.7 Antiderivatives

An antiderivative of a function f over an interval I is any function F such that F'(x) = f(x) for all x in I.

Antiderivatives are closely related to integration. In Maple, you may use int(f(x), x) or IntTutor(f(x), x) supported by Student[Calculus1] to find an antiderivative of f(x).

#### Example 4.10

Find an antiderivative of the function  $f(x) = x^3 - \frac{1}{\sqrt{x}}$  by hand and by Maple respectively. Use diff to check your answer.

Solution To find an antiderivative by hand, rewrite the function using negative rational exponent and apply the formula

$$\frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{1}{r+1} x^{r+1} \right) = x^r.$$

In this question, an antiderivative is  $F(x) = \frac{1}{4}x^4 - 2\sqrt{x}$ .

Define the function first.

```
restart:
```

```
f:=x-x^3-1/sqrt(x);
```

Find an antiderivative using *int* and using *IntTutor* for a step-by-step solution.

F:=int(f(x), x); # may define a function using unapply(int(f(x), x), x).

```
with(Student[Calculus1]):
```

TutorF:=IntTutor(f(x), x);

Verify using diff.

diff(F, x);

diff(TutorF, x);

# Exercise 4.14

Find an antiderivative of the function  $f(x) = x^2 - 3 + 8\sin(x)$  by hand and by Maple respectively. Use diff to check your answer.

# Exercise 4.15

Find an antiderivative of the function  $f(x) = \frac{x^3 - 2x + 1}{\sqrt{x}}$  by hand and by Maple respectively. Use diff to check your answer.

#### Exercise 4.16

Find the most general antiderivative of the function  $f(x) = \tan x \sec x + 1$  by hand and by Maple respectively. Use diff to check your answer.

# Chapter Integrals

# 5.1 Definite Integrals

In mathematics, the area of a region is measured by comparing it to squares of a fixed size. For example, the area of a dimension 1 by 3 rectangle equals the sum of three dimension 1 by 1 squares. For irregular shaped regions, the idea is similar. We slice the region into thin slices and estimate the area of each slice using a rectangle and then take the sum. In other words, the area of any region can be expressed as an infinite sum of rectangles of infinitesimal width. More precisely, to find the (signed) area under a curve y = f(x) from a to b can be approximated using the Riemann Sum

$$R_N = \sum_{i=1}^{N} f(x_i^*)(x_i - x_{i-1}),$$

where  $x_i$  is a partition of the interval [a, b] and  $x_i^*$  is a sample point in  $[x_{i-1}, x_i]$ .

If the limit  $R_N$  exists as the partition is getting finer and finer, that is  $\max(x_i - x_{i-1}) \to 0$  and gives the same value for any possible choice of sample points, then we say the function f is integrable on [a, b] and define the definite integral of f on [a, b] as

$$\int_{a}^{b} f(x) dx = \lim_{\max(x_{i} - x_{i-1}) \to 0} R_{n}.$$

For an integrable function, we may approximate the definite integral by choosing left, lower, midpoint, right, upper sample points and take a regular subdivision of the interval as a partition, that is, take  $x_i = a + i\Delta_x$ , where  $\Delta_x = \frac{b-a}{N}$ 

In Maple, we can use the following command to view and find Riemann sums approximately RiemannSum(f(x), x = a..b, method, output, other options), where the method can be left, lower, midpoint, random, right, or upper, and the output can be value, sum, plot or animation. For details, you may use ?RiemannSum to open the help page. Again, to run the command RiemannSum you need to first load the subpackage Student [Calculus1].

#### Example 5.1

Find approximately the definite integral of the function  $f(x) = x^3$  from 0 to 2.

Solution Load the package and apply the command.

```
with(Student[Calculus1]):
RiemannSum(x^3, x =0..2, method = right,
    partition=50, output = plot,
    boxoptions=[filled = [color = blue, transparency = .5]]);
```

Without using RiemannSum, you will also write your own program to approximate the integral. For example

### Solution [Another solution]

#### restart:

```
f:=x->x^3;  # define the integrand
a:=0:  # define the lower integral limit
b:=2:  # define the right integral limit
Delta[x]:=(b-a)/N;  # define size of a regular subdivision
x[i]:=a+i*Delta[x];  # sample points using right endpoints
RS:=Sum(Delta[x]*f(x[i]), i=1..N);  # find the sum
limit(RS, N=infinity);  # evaluate the sum numerically.
```

Remark In the above code, you may use sum which slightly more flexible than Sum. Indeed, Sum(F,k=0..n) = sum(F,k=0..n,parametric). For details, see Maple sum/details.

# Exercise 5.1

Approximate the definite integral of the function  $f(x) = \frac{x}{x+1}$  on the interval [0, 1].

# Exercise 5.2

Approximate the definite integral of the function  $f(x) = \frac{x}{x+1}$  on the interval [0,3].

# Exercise 5.3

Approximate the definite integral of the function  $f(x) = \cos x$  on the interval  $[0, \pi/2]$ .

# 5.2 The Fundamental Theorem of Calculus

To evaluate definite integrals or find antiderivatives, we can use the Fundamental Theorems of Calculus.

Theorem 5.1 ([) undamental Theorem of Calculus I] If f is continuous on [a, b], then the function g defined by

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \mathrm{d}t = f(x)$$

Theorem 5.2 ([) undamental Theorem of Calculus II] If f is continuous on [a, b] and F is an antiderivative of f on [a, b], then

$$\int_{a}^{b} f(t)\mathrm{d}t = F(a) - F(b).$$

In maple, we can use int(f(x), x=a..b) or IntTutor(f(x), x=a..b) to find integrals.

### Example 5.2

Find the derivative the function

$$g(x) = \int_0^x \sin(t) dt$$

and verify the Fundamental Theorem of Calculus I.

Solution Define the integrand.

$$f:=t->sin(t)$$

Define g as a function via the integral

$$g:=x->int(f(t), t=1..x)$$

Find the derivative function of g

$$dg:=x->diff(g(x), x)$$

Compare g' with f.

evalb(dg(x)=f(x)) # evalb evaluates expression involving relational operators

# Exercise 5.4

Use Maple to find the derivative of the following function

$$g(x) = \int_0^{\tan x} \sqrt{t} dt$$

and verify your answer using the Fundamental Theorem of Calculus I (find the derivate by hand).

#### Exercise 5.5

Find 
$$g(x) = \int_0^x \sqrt{1 - t^2} dt$$
 and verify that  $g'(x) = \sqrt{1 - x^2}$  and  $\int_0^1 \sqrt{1 - t^2} dt = g(1) - g(0)$ .

# 5.3 Indefinite Integrals

When calculating a definite integral, we first find an antiderivative and then apply the Fundamental Theorem of Calculus. To be convenient, we use the  $\int f(x)dx$  to denote the most general antiderivative of f and call it the indefinite integral of f.

In Maple, you may use int, IntTutor or Int to find an integral, where Int should be used with value if you want to see the evaluated integral. Again, IntTutor is supported by Student[Calculus1].

#### Example 5.3

Find the indefinite integral

$$\int (x^3 - \sin x) \mathrm{d}x.$$

Show the steps.

Solution Define the integrand.

restart:

 $f:=x->x^3-\sin(x);$ 

Find the indefinite integral step-by-step using IntTutor.

with(Student[Calculus1]):

IntTutor(f(x), x);



Find the indefinite integral

$$\int (\sqrt{x^3} - \sec^2 x) \mathrm{d}x.$$

Show the steps.

# Exercise 5.7

Find the indefinite integral

$$\int \left(\frac{x^2+1}{\sqrt{x}} - \tan x \sec x\right) \mathrm{d}x.$$

Show the steps.

# 5.4 The Substitution Rule

Among techniques of integration, one basic rule is the substitution rule.

If g'(x) is continuous on [a, b] and f is continuous on the range of u = g(x), then

$$\int_a^b f(g(x))g'(x)\mathrm{d}x = \int_{g(a)}^{g(b)} f(u)\mathrm{d}u.$$

In Maple, we can use the command Change(Int(f(x), x=a..b), u=g(x), new variables), supported by the package IntegrationTools, to change a variable, where the 3rd argument is optional and required only if the number of new symbols in the substitution is not equal to the number of old variables. Note that in the first argument, you may keep the symbols a and b or omit =a..b.

# Example 5.4

Use substitution to find the following integral.

$$\int_{1}^{2} x \sqrt{x^2 + 1} \mathrm{d}x.$$

Solution When using substitution to find a definite integral, it's better to find the indefinite integral first and then use the Fundamental Theorem of Calculus to find the value..

In this question, we may use the substitution  $u = x^2 + 1$ .

Let's use Maple to see how variables will be changed.

First define the function.

$$f:=x->x*sqrt(x^2+1)$$

Load the package IntegrationTools

with(IntegrationTools)

Find the indefinite integral by the substitution  $u = x^2 + 1$ .

Evaluate integral in u and substitute back to x.

```
G:=unapply(value(FInt), u);
FF:=unapply(G(x^2+1), x);
```

Apply the Fundamental Theorem of Calculus I to find the definite integral.

$$Ans:=FF(2)-FF(1)$$

Now let's check the answer using the int(f(x), x=a..b) command.

$$int(f(x), x=1..2)$$

#### Exercise 5.8

Find the definite integral  $\int_0^4 \frac{\sin(\sqrt{x})}{\sqrt{x}} dx$  using substitution.

# Exercise 5.9

Find the definite integral  $\int_1^2 \frac{2x}{\sqrt{x^2+1}} dx$  using substitution.

# Chapter Application of Integrals I

# 6.1 Areas Between Curves

By the definition of integral, we see that the area between two curves, is the difference of areas "under" each curve. Here "under" is relative, it depends on how you slice the area.

If the slices are vertical, then the area between two curves y = T(x) and y = B(x) from a to b is given by

$$\int_{a}^{b} |T(x) - B(x)| \mathrm{d}x.$$

If the slices are horizontal, then the word "under" should be understood horizontally and the area between two curves x = R(y) and x = L(y) from c to d may be calculated by

$$\int_{c}^{d} |R(y) - L(y)| \mathrm{d}y.$$

Before you setup the interval, it's better to plot the curves first.

### Example 6.1

Plot the curves  $y = x^2$  and  $y = 2x - x^2$ , and find the enclosed area

Solution Define the functions.

```
y[1]:=x->x^2:
y[2]:=x->2*x-x^2:
```

Plot the curves and shade the enclosed area

Curves:=plot(
$$[y[1](x), y[2](x)], x=-1...2$$
, color= $[red, blue]$ )

From the graph, we see the curves intersect at two points. Let's find the x-coordinates of the intersection points which are the integral limits.

$$pts:=solve(y[1](x)=y[2](x), x)$$

Determine the upper and lower limits of the integral.

```
a:=min(pts):
b:=max(pts):
```

Setup the integral and evaluate

```
Area:=Int(abs(y[1](x)-y[2](x)), x=0..1);
```



A plot of two curves

ValArea:=value(Area);

#### Example 6.2

Find the area enclosed by the curves y = x - 1 and  $y^2 = 2x + 6$ .

Solution Note the second curve does not define a function of x. So let's just define the curves as equations.

```
C[1]:=y=x+1:
C[2]:=y^2=2x+6;
```

Plot the two curves use *implicitplot* which is supported by *plot*.

```
with(plots): implicitplot([C[1],C[2]], x=-5...5, y=-5...5, color=[red, blue]);
```

From the graph, we see that it's better to integrate along y-axis. So we need to solve for x from the equations and view it as a function of y.

```
x[1]:=unapply(solve(C[1], x), y);
x[2]:=unapply(solve(C[2], x), y);
```

Find the y-coordinate of the intersection points and setup integral limits.

```
ycord:=solve(x[1](y)=x[2](y), y);
a:=min(ycord):
b:=max(ycord):
```



An implicit plot of two curves

Setup the integral with respect to y and evaluate.

Area:=Int(abs(x[1](y)-x[2](y)), y=a..b);
ValArea:=value(Area);

# Exercise 6.1

Find the area of the region bounded by  $y = \sin x$ ,  $y = \cos x$ , x = 0 and  $x = \pi/2$ .

# Exercise 6.2

Find the area between the curve  $x = y^2 - 4y$  and  $x = 2y - y^2$ .

# Exercise 6.3

Find the area of the ellipse  $\frac{x^2}{4} + \frac{y^2}{9} = 1$ .



# Chapter Applications of Integrals II

# 7.1 Volume of Revolution

In terms of definite integrals, the volume of a solid obtained by rotating a region about the x-axis can be calculated by

 $\int_a^b \pi(r_1(x)^2-r_2(x)^2)\mathrm{d}x \qquad \mathrm{disk/washer\ method},$   $\int_a^b 2\pi r(y)h(y)\mathrm{d}y \qquad \mathrm{shell\ method\ method},$ 

or

$$\int_{a}^{b} 2\pi r(y)h(y)dy \qquad \text{shell method method}$$

where  $r_1(x)$ ,  $r_2(x)$  and r(x) represents the radius and h(x) represents the height of a cylindrical shell.

In practice, it's better to recognize the shape of a cross section, find the volume of a slice of the solid and then set up the integral.

In the following, you will see some tools/commands from Maple which are very helpful to calculate the volume of a solid.

In Maple, the following command, supported by the package Student [Calculus1], can be used to get the graph, the integral and the volume of the solid obtained by rotation the region bounded by f(x), g(x), x = a and x = b.

VolumeOfRevolution(f(x), g(x), x = a...b, opts)

To learn what options does the command VolumeOfRevolution have, you may type

#### ?VolumeOfRevolution

in the Math mode and hit enter. You will see the help page.



Maple help page for VolumeOfRevolution command

Example 7.1 Show the solid obtained by rotating the region bounded by  $y = x^2$  and y = x about y-axis. Set up an integral for the volume. Find the volume.

#### Solution

```
#Load the package
with(Student[Calculus1])

#Show the solid

VolumeOfRevolution(x^2, x, x = 0 .. 1, axis = vertical, output = plot)

#Set up an integral

VolumeOfRevolution(x^2, x, x = 0 .. 1, axis = vertical, output = integral)

#Find the volume

VolumeOfRevolution(x^2, x, x = 0 .. 1, axis = vertical, output = value)

The outputs in Maple can be seen in the following picture
```

Visualize the solid  $Volume Of Revolution \{x^2, x, x = 0..1, \alpha x is = vertical, output = plot\}$   $The solid of revolution created on <math>0 \le x \le 1$  by rotation of  $f(x) = x^2 \text{ and } g(x) = x \text{ about the axis } x = 0.$ Setup the integral  $Volume Of Revolution \{x^2, x, x = 0..1, \alpha x is = vertical, output = integral\}$   $\int_0^1 -2 \pi x^2 (x - 1) dx$ Find the volume  $Volume Of Revolution \{x^2, x, x = 0..1, \alpha x is = vertical, output = value\}$ 

Volume of Revolution Example

Remark 1. If you change the function to VolumeOfRevolutionTutor, you will see an interactive popup windows which does exactly the same thing.

2. If the rotation axis is not an axis of the coordinate system, you need add the option distancefromaxis = numeric into the function. For example, if in the above example, the rotation is about y = -2, then the Maple command should be the following

VolumeOfRevolution( $x^2$ , x, x = 0 .. 1, axis = vertical, distancefromaxis = -2, output = integration

- Exercise 7.1 Find the volume of the solid obtained by rotating the region bounded by  $y = x^3$ , x = 0, y = 1 about y-axis
- Exercise 7.2 Find the volume of the solid obtained by rotating the region bounded by  $y = x^3$ , y = 0, x = 1 about (a) y = 0, and (b) x = 2.

# Chapter Calculus of Inverse Functions

# 8.1 Inverse Functions

Maple package Student [Calculus1] provides the following command

InversePlot(
$$f(x)$$
,  $x = a..b$ );

which graphs the original function f(x) and the inverse function  $f^{-1}(x)$  together over the interval [a,b].

You will see clearly that the graphs of a function and its inverse are symmetric with respect to the line y = x.

#### Example 8.1

- 1. Graph the function  $f(x) = x^3 2$ , its inverse function, and the line y = x over the interval [-2, 2].
- 2. Find the inverse function.

Solution One way to plot the function and its inverse together is to use the following command which is supported by the package *Student* [Calculus1].

InversePlot(
$$x^3-3$$
,  $x = -2...2$ )

Here is the output in Maple



Graph of a pair of functions inverse to each other

Another way to plot the function f and its inverse g together uses the plot function.

$$plot([f(x), g(x), x], x = -2 ... 4, y = -5 ... 5, color = [red, black, blue])$$

To find the inverse function, we replace f(x) by y, then switch x and y, and solve for y. In Maple, you may use the command solve(equation/inequality, variable) to solve an equation or an inequality (even system of equations/inequalities).

In this example, we may find the inverse function by type in the following command. Note I have switch x and y.

$$solve(x=y^3, y)$$

To find the derivative of the inverse function of a function f at a given point x = a, we may apply the formula

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}.$$

In Maple, we may use the following commands to calculate the value of the derivative function.

Calculate the derivative of the function f.

Find  $f^{-1}(a)$  which is the solution of the equaiton f(x) = a.

$$solve(f(x)=a, x)$$

Plug in the formula to evaluate.

$$eval(subs(x=f^{-1}(a), 1/f'(x)))$$

### Example 8.2

Find  $(f^{-1})'(0)$ , where  $f(x) = \cos(x)$  and  $0 \le x \le \pi$ .

Solution Find the derivative of f

Find the value of  $f^{-1}(0)$ 

$$solve(cos(x)=0, x)$$

Apply the formula

$$eval(subs(x=Pi/2, -1/sin(x)))$$

Using Maple, we find  $(f^{-1})'(0) = -1$ .

# Exercise 8.1

- 1. Graph the function  $f(x) = 3 + 2\sin x$ , its inverse function, and the line y = x over the interval [-2, 2].
- 2. Find the value  $(f^{-1})'(5)$ .

# 8.2 Logarithmic and Exponential Functions

# 8.2.1 Basic properties and graphs

The natural logarithmic function  $y = \ln(x)$  is defined by  $\ln(x) = \int_1^x \frac{1}{t} dt$ .

The natural exponential function  $y = e^x$  is defined as the inverse function of  $y = \ln(x)$ .

From the definition, we have very important identities

$$\ln(e^x) = x$$
 and  $e^{\ln x} = x$ .

Using those two identities, we may define general exponential functions and general logarithmic function, and deduce the Law of Logarithms and Law of Exponents.

For any positive number  $b \neq 1$ , we have  $b^x = (e^{\ln b})^x = e^{x \ln b}$ .

For any positive number  $b \neq 1$ , we define  $y = \log_b x$  to be the inverse function of  $y = b^x$ 

By solving  $x = b^y$  for y, we find that  $\log_b x = \frac{\ln x}{\ln b}$ . This identity is called the change of base property.

How do graphs of logarithmic functions and exponential functions look like?

### Example 8.3

Graph the following functions together.

$$y = \ln x$$
,  $y = e^x$ ,  $y = 2^x$ ,  $y = \log_2 x$ ,  $y = x$ .

Solution In Maple, the logarithm  $\log_b x$  is given by  $\log[b](x)$ . When b = e, you simply use  $\ln(x)$  for  $\ln x$ . When b = 10, you may also use  $\log(x)$  or  $\log(x)$  for  $\log_{10} x$ .

The exponent  $b^x$  is given by  $b \hat{x}$  in Maple. When b = e, you may also use exp(x) to represent  $e^x$ .

To graph the functions together with different colors, we use the following command

$$plot([ln(x), exp(x), 2^x, log[2](x), x], x=-5..5, color=[blue, green, purple, yellow, red])$$

Here is the output

### Exercise 8.2

Graph the following functions together.

$$y = \log_3 x, \qquad y = 3^x, \qquad y = (1/3)^x, \qquad y = \log_{1/3} x.$$

Find the pairs that are symmetric to each other with respect to a certain line.

#### Exercise 8.3



Logarithmic and exponential functions

Graph the following functions together.

$$y = 0.5^x$$
,  $y = 2^x$ ,  $y = 5^x$ .

Describe the monotonicity (increasing/decreasing) of the functions?

Fix an input x. Describe how y-values change when bases changes from small number to bigger number?

# Exercise 8.4

Graph the following functions together.

$$y = \log_{0.5} x,$$
  $y = \log_2 x,$   $y = \log_5 x.$ 

Describe the monotonicity (increasing/decreasing) of the functions?

Fix an input x. Describe how y-values change when bases changes from small number to bigger number?

# 8.2.2 Differentiation and integration of logarithmic and exponential functions

In Maple, one way to do differentiation and integration is to use the Calculus Palette on the left side.

The other way is to use the commands diff(f(x), x), int(f(x), x), and int(f(x), x=a..b).

Supported by the Student[Calculus1] package, Maple also provides the tutor commands DiffTutor() and IntTutor() which can show step-by-step solution of differentiation and integration.



Calculus Palette in Maple

Note you may also access tutor commands from the Start page (click the home button in the toolbar and look for Calculus).

# Example 8.4

Find y', where  $y = \ln(x^3 + 5x + 1)$ .

Solution Using diff:

 $diff(ln(x^3+5*x+1), x)$ 

We get

$$y' = \frac{3x^2 + 5}{x^3 + 5x + 1}.$$

Type in (assume that with (Student [Calculus1]) was run)

 $DiffTutor(ln(x^3+5*x+1), x)$ 

and hit enter you will see

By click Next Step or All Steps you will see detailed solution with rules used.

#### Example 8.5



DiffTutor Example

Evaluate the integral

$$\int \frac{e^x - 1}{e^x + 1} \mathrm{d}x.$$

Solution Using int:

$$int((exp(x)-1)/(exp(x)+1), x)$$

We get

$$\int \frac{e^x - 1}{e^x + 1} dx = 2 \ln(e^x + 1) - x + C.$$

Type in (assume that with (Student [Calculus1]) was run)

IntTutor((
$$\exp(x)-1$$
)/( $\exp(x)+1$ ), x)

and hit enter you will see

By click Next Step or All Steps you will see detailed solution with rules used.

# Exercise 8.5

Find the derivative  $\frac{dy}{dx}$ , where  $y = \ln |\cos x|$ 

# Exercise 8.6

Find the derivative  $\frac{dy}{dx}$ , where  $y = x^{\cos x}$ 

# Exercise 8.7

Evaluate the integral

$$\int \frac{\left(e^{4x} + e^{2x}\right)}{e^{3x}} dx$$



IntTutor Example

# Exercise 8.8

Evaluate the integral

$$\int 2^{3x} dx$$

# 8.3 Solve differential equations

In Maple, you may solve the equation y'(x) = ky(x) + c (which is called an ODE) using the command dsolve({ics, eq}), where ics stands for initial condition y(0) = c and eq stands for the differential equation. Without the ics, dsolve will provide a general solution.

Example 8.6 Find the function f(x) which satisfies the differential equation f'(x) = kf(x) with f(0) = 5 and f(2) = 3.

Solution Use the following command

$$dsolve({f(0)=5, f'(x)=k f(x)})$$

we get  $f(x) = 5e^{kx}$ .

To find k, we solve the equation  $3 = 5e^{2k}$  by

 $solve(3=5*e^(2*k), k)$ 

which shows that  $k = \frac{\ln 3 - \ln 5}{2} \approx -0.255$ . Here we use *evalf(%)* (% represents the previous result) to get the approximation.

So the function f is given by

$$f(x) = 5e^{\frac{x(\ln 3 - \ln 5)}{2}} \approx 5e^{-0.255x}$$

# Exercise 8.9

Find the function y which satisfies the differential equation y'(x) = ky(x) with y(0) = 2 and y(5) = 11.

# 8.4 Inverse Trigonometric Functions

# 8.4.1 Domains and Ranges

To define the inverse function, the original function must be a one-to-one function. For a trigonometric function, we have to restrict the function over a specific domain to ensure that the function is one-to-one. For simplicity, we pick domains near the origin for trigonometric functions. To be more precise, we consider the following trigonometric functions:

$$y = \sin x$$
,  $-\pi/2 \le x \le \pi/2$  and  $-1 \le y \le 1$ ;

$$y = \cos x$$
,  $0 \le x \le \pi$  and  $-1 \le y \le 1$ ;

$$y = \tan x$$
,  $-\pi/2 < x < \pi/2$  and  $-\infty < y < \infty$ .

Their inverse functions are

$$y = \arcsin x$$
,  $-\pi/2 \le y \le \pi/2$  and  $-1 \le x \le 1$ ;

$$y = \arccos x$$
,  $0 \le y \le \pi$  and  $-1 \le x \le 1$ ;

$$y = \arctan x$$
,  $-\pi/2 < y < \pi/2$  and  $-\infty < x < \infty$ .

To see the graphs of the functions, we may use the plot(f(x), x = a..b, opts) command. Or, to graph f,  $f^{-1}$  and y = x together, we may also use the command InversePlot(f(x), x = a..b, opts) supported by the package Student[Calculus1].

### Example 8.7

Graph the following functions together.

$$y = \tan x,$$
  $y = \arctan x,$   $y = x.$ 

Solution #load the package "Student[Calculus1]". with(Student[Calculus1]) #plot the functions InversePlot $(\tan(x),x=-Pi/2..Pi/2)$ 

Here is the output



Tangent and arctangent functions

# Exercise 8.10

Graph the following functions together over an appropriate domain.

$$y = \cot x, \qquad y = \operatorname{arccot} x, \qquad y = x.$$

What's the domain and range of  $y = \operatorname{arccot} x$ ?

#### 8.4.2 Differentiation and integration of inverse trigonometric functions

In the section {#Differentiation and integration of logarithmic and exponential functions}, we learned to how use Maple to learn differentiation and integration.

Now let find derivatives and integrals of some inverse trigonometric functions.

# Example 8.8

Find y', where  $y = \operatorname{arccot} x$ .

Solution Surely, we may use diff or DiffTutor to find the derivative.

Here let's me introduce to you another command implicitdiff.

We've learned that (see {#Inverse Functions}) to find the inverse function, we switch x and y and then solve for y. When finding the derivative, we don't have to solve for y instead, we want y' which is implicitly defined by an equation. In this case, we have  $x = \operatorname{arccot} y$ .

Enter the following commands in Maple, you will find  $y' = -\frac{1}{x^2+1}$ .

where % is a ditto operator that allows you to refer to a previously computed result in Maple.

Exercise 8.11

Find the derivative of  $y = \operatorname{arcsec} x$ 

Exercise 8.12

Find the derivative of  $y = \operatorname{arccsc} x$ 

For integrals of inverse trigonometric function, you may need the method of integration by parts.

Use DiffTutor to find antiderivatives of inverse trigonometric functions.

Exercise 8.13

Evaluate the integral

$$\int \arcsin x dx$$

Exercise 8.14

Evaluate the integral

$$\int \arctan x dx$$

Exercise 8.15

Evaluate the integral

$$\int \sec x dx$$

# 8.5 L'Hospital's Rule

In Maple, supported by the package, Student[Calculus1], the command LimitTutor can show step-by-step solutions of evaluating limits.

Example 8.9

Evaluate the limit

$$\lim_{x\to\infty} (1+x)^{1/\ln(x)}$$

Solution # load the package Student[Calculus1]. with (Student[Calculus1]) #Find the limit step-by-step using LimitTutor ( $(1+x)^{(1/\ln(x))}$ , x = infinity)

# Exercise 8.16

Estimate the limit

$$\lim_{x\to 1}\frac{x^2-2x+1}{x^2-x}$$

by graphing and verify your estimation.

# Exercise 8.17

Evaluate the limit

$$\lim_{x \to \infty} x - \ln(x).$$

# Exercise 8.18

Evaluate the limit

$$\lim_{x \to \infty} x \tan(\frac{1}{x}).$$

# Chapter Techniques of Integration

# 9.1 Integrations of trigonometric functions

When evaluating integrations of trigonometric functions, one idea is to reduce the total degree (power) of trigonometric functions using trigonometric identities.

In Maple, you may use the command combine to rewrite the expression.

#### Example 9.1

Rewrite  $\cos^4 x$  into an expression with single terms and evaluate the integral  $\int \cos^4 x dx$ .

#### Solution

You may compare the above solution with the solution given by IntTutor((cos(x))^4, x).

# Exercise 9.1

Evaluate the integral

$$\int \tan^5 x dx$$

# Exercise 9.2

Evaluate the integral

$$\int \sin 5x \sin^2 x dx$$

# 9.2 Trigonometric Substitution

Surely, you may learn some trigonometric substitution tricks using IntTutor.

Here I want to introduce another useful command which when integrating functions, we may need to complete a square and then do a substitution. In Maple, we can complete squares using the command CompleteSquare(f, x) which supported by the package Student[Precalculus].

#### Example 9.2

Evaluate the integral

$$\int \frac{1}{x^2 + x + 1} \mathrm{d}x.$$

Solution

We first complete the square for the denominator.

#load package Student[Precalculus]
with(Student[Precalculus])
#Complete square for the denominator
CompleteSquare(x^2+x+1, x)

Now you may try *DiffTutor* and/or evaluate it by hand.

#load package Student[Calculus1]
with(Student[Calculus1])
DiffTutor(1/%, x)



Evaluate the integral

$$\int \sqrt{3 + 2x - x^2} \mathrm{d}x$$

### Exercise 9.4

Evaluate the integral

$$\int_0^{\pi/2} \frac{\cos t}{\sqrt{1+\sin^2 t}} \mathrm{d}t$$

# 9.3 Integrations of Rational Functions by Partial Fractions

In Maple, we can factor a polynomial using the command factor(polynomial) or find partial fraction decomposition using convert(function, parfrac).

#### Example 9.3

Find the sum of partial fractions for the rational function

$$f(x) = \frac{x^3 + 4x + 3}{x^4 + 5x^2 + 4}$$

Solution This can be done easily in Maple:

# use the command convert convert( $(x^3+4*x+3)/(x^4+5x^2+4)$ , parfrac)

# Exercise 9.5

Find the sum of partial fractions for the rational function 
$$f(x)=\frac{x^4}{\left(x^2-x+1\right)\left(x^2+2\right)^2}.$$

Exercise 9.6

Find the sum of partial fraction and evaluate the integral

$$\int \frac{2}{3x^2 + 2x - 1} \mathrm{d}x$$

Exercise 9.7

Find the sum of partial fraction and evaluate the integral

$$\int \frac{x^3 + 6x - 2}{x^4 + 6x^2} \mathrm{d}x$$

Exercise 9.8

Find the sum of partial fraction and evaluate the integral

$$\int \frac{\sin x}{\cos^2 x - 3\cos x} dx$$

# Chapter Further Applications of Integration

# 10.1 Arc Lengths and Areas of Surfaces of Revolutions

Arc length:

The length L of an arc: y = f(x),  $a \le x \le b$  is

$$L = \int_a^b \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \, \mathrm{d}x = \int_{f(a)}^{f(b)} \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \, \mathrm{d}y.$$

Surface area of a revolution

The area S of the surface rotating an arc:  $y = f(x), a \le x \le b$  about the x-axis is

$$S = 2\pi \int r \mathrm{d}s = 2\pi \int y \mathrm{d}s,$$

and about the y-axis is

$$S = 2\pi \int r \mathrm{d}s = 2\pi \int x \mathrm{d}s,$$

where

$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dy.$$

The integral limits depend on whether you use dx or dy in the integral.

In Maple, the package Student[Calculus1] provides commands to investigate arc length and surface area of revolutions: ArcLength(f(x), x = a..b, opts)} SurfaceOfRevolution(f(x), x = a..b, opts)}

#### Example 10.1

Set up an integral and evaluate the integral for the length of the curve defined by

$$f(x) = \sqrt{x}, \qquad 1 < x < 4.$$

Plot f(x) together with the arc length function in the same coordinate system.

#### Solution

# Load the package

with(Student[Calculus1])

# Set up an integral

ArcLength(sqrt(x),x=1..4,output=integral)

# Evaluate the integral

ArcLength(sqrt(x),x=1..4)

# Plot the function and the arc length function

ArcLength(sqrt(x), x=1..4, output=plot)

#### Example 10.2

Set up an integral and evaluate the integral for the area of the surface obtained by rotating the curve defined by

$$f(x) = \sqrt{x}, \qquad 1 \le x \le 4$$

about the y-axis. Plot the surface of the revolution.

#### Solution

# Load the package (skip if the package was already loaded)

with(Student[Calculus1])

# Plot the surface

SurfaceOfRevolution(sqrt(x), x=1..4, output=plot, axis=vertical)

# Set up an integral

SurfaceOfRevolution(sqrt(x),x=1..4,output=integral, axis=vertical)

# Evaluate the integral

SurfaceOfRevolution(sqrt(x),x=1..4, axis=vertical)

# Exercise 10.1

Set up an integral and evaluate the integral for the length of the arc defined by

$$f(x) = \ln x, \qquad 1 \le x \le 2.$$

Plot f(x) together with the arc length function in the same coordinate system.

# Exercise 10.2

Plot the surface obtained by rotating the curve defined by

$$f(x) = \frac{\cos x}{x}, \qquad 0 \le x \le 4\pi$$

about the y-axis. Set up an integral for the area of the surface.

# Exercise 10.3

Find the area of the surface obtained by rotating the curve defined by

$$f(x) = \sqrt{1 + x^2}, \qquad 0 \le x \le 3.$$

# Chapter Infinite Sequences and Series

# 11.1 Introduction to Sequences and Series

A sequence is a list of numbers in a definite order (indexed by integers). A series may be considered as the limit of the sequence of partial sums.

When the sequence is explicitly defined by an mathematical expression  $a_n = f(n)$ , Maple has the following command to list numbers of the sequence seq(f, i=m..n, step).

### Example 11.1

Find the first 10 terms of the sequence  $\left\{\frac{1}{n(n+1)}\right\}_{n=1}^{\infty}$ . Determine whether the sequence  $\left\{\frac{1}{n(n+1)}\right\}$  is convergent or divergent.

#### Solution

# using seq

$$seq(1/(n*(n+1)), n=1..10)$$

The sequence converges to 0.

For a series  $\sum a_n$ , normally it is not easy to find explicit expression for the partial sum  $s_n = \sum_{k=1}^n a_k$ . However, if sequence is defined by an mathematical expression  $a_n = f(n)$ , we may find values of partial sums recursively use a for/from loop statement in Maple:

```
for *counter* from *initial* by *increment* to *final* do
    statement_sequence;
end do;
```

#### Example 11.2

Find the first 20 partial sums  $s_k = \sum_{n=1}^n a_n$  of the infinite series

$$\sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots.$$

Determine whether the series  $\sum_{n=0}^{\infty} \frac{1}{2^n}$  is convergent or divergent.

#### Solution

# Set up s when n=0

```
# Find 10 terms using `for/from loop`

for n from 1 to 10 do
    s:=s+1/(2^n);
end do;

The series converges to 2.

Of course, we may also use for/from loop to list numbers of a sequence.

Solution Second solution to example ??.

# using `for/from loop`

for n from 1 to 10 do
    1/(n*(n+1);
end do:
```

When the sequence is defined by a recurrence formula like the Fibonacci sequence, we will need to Maple how to interpret the formula. For that purpose, we use a procedure, which encloses a sequence of statements between proc(...) and end proc, to define the formula in Maple.

For example, the following is a procedure that defines a function  $a(x) = \sqrt{x} - \frac{1}{\sqrt{x}}$ :

```
a:=proc(x) sqrt(x)-1/sqrt{x}; end proc;
```

To structure codes in a procedure, you may use Code Edit Region which can be find in the Insert menu. To execute codes within this region, click Execute Code from the Edit menu, or use the shortcut command Ctrl+E.

#### Example 11.3

The Fibonacci sequence is defined by fib(0) = 0, fib(1) = 1 and fib(n) = fib(n-1) + fic(n-2). Find the first 20 Fibonacci numbers.

Solution We first define a function fib(n) which returns the n-th Fibonacci number.

```
fib := proc (n::nonnegint)
   if 2 <= n then
       return fib(n-1)+fib(n-2):
   else
       return n:
   end if;
end proc</pre>
```

Now we can use either seq() or for/from loop.

$$seq(fib(n), n=0..19)$$

# Exercise 11.1

Find the first 20 terms of the sequence

$$\{\sin\frac{\pi}{n}\}_{n=1}^{\infty}.$$

Determine whether the sequence  $\{\sin\frac{\pi}{n}\}$  is convergent or divergent.

# Exercise 11.2

Find the first 20 partial sums  $s_k = \sum_{n=1}^n a_n$  of the infinite series

$$\sum_{n=0}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots.$$

Determine whether the series  $\sum_{n=0}^{\infty} \frac{1}{n}$  is convergent or divergent.

# Exercise 11.3

Find the 20th to 30th Fibonacci numbers.

# 11.2 Power Series

A power series is a series with a variable x:

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots.$$

More generally, a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \cdots$$
 (11.1)

is called a power series at a.

We call a positive number R the radius of convergence of the power series (11.1) if the power series converges whenever |x - a| < R and diverges whenever |x - a| > R.

If a function f has a power series representation, i.e.

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n, \qquad |x-a| < R,$$

then its coefficients are given by  $c_n = \frac{f^{(n)}(a)}{n!}$ .

#### Example 11.4

Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(-2)^n x^n}{n^3}.$$

#### Solution

# Find the abs( $a_{n+1}/a_n$ )

$$q:=abs((-2)^{(n+1)}(n+1)^3/(-2)^{(n+1)}(n+1)^3);$$

# Find the limit of q

r:=limit(simplify(q), n=infinity)

# Find the interval of convergence

solve(abs(x)<1/r, x)

# Example 11.5

Find the Taylor expansion of the function  $f(x) = \frac{1}{x-2}$  at x=0 up to the 5-th order. Plot f(x) and the 5-th order Taylor polynomial together.

#### Solution

# Find the Taylor expansion.

ftaylor:=taylor(
$$1/(x-2)$$
, x = 0, 5)

# convert the Taylor series into a polynomial

fpoly:=convert(ftaylor, polynom)

# Plot the functions

$$plot([1/(x-2), fpoly], x=-1..1)$$

### Exercise 11.4

Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(-4)^n x^n}{\sqrt{n}}.$$

Exercise 11.5

Find the Taylor expansion of the function  $f(x) = \sin x$  at x = 0 up to the 5-th order. Plot f(x)and the 5-th order Taylor polynomial together over the interval  $[-\pi, \pi]$ .

# 11.3 Taylor Expansion

Let f(x) be a function. Assume that the k-th order derivatives  $f^k(a)$  exist for  $k=1,2,\ldots,n$ . The polynomial

$$T_n(x) = \sum_{k=0}^n \frac{f^{(n)}(a)}{k!} (x-a)^k$$

is called the n-th degree Taylor polynomial of f at a.

Let f(x) be a function has derivative at a up to all orders. Set

$$R_n(x) = \sum_{k=n+1}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k, \qquad |x-a| < R,$$

which is called the reminder of the Taylor series

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k.$$

If

$$\lim_{n \to \infty} R_n(x) = 0$$

 $\lim_{n\to\infty}R_n(x)=0$  for |x-a|< R, then f(x) is the sum of the Taylor series on the interval, that is

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k, \qquad |x - a| < R.$$

If  $|f^{n+1}x| \leq M$  for  $|x-a| \leq d$ , then the reminder  $R_n$  satisfies the follow inequality

$$|R_n(x)| \le \frac{M}{n+1} |x-a|^{n+1} \quad \text{for} \quad |x-a| \le d.$$

Roughly speaking, the absolute value of the reminder  $|R_n(x)|$  determines how accurate the Taylor polynomial approximation.

#### Example 11.6

Approximate function  $f(x) = \sin x$  by the degree 3 Taylor polynomial at x = 1.

#### Solution

# Find the Taylor series.

fTs:=taylor(sin(x), x = 0, 4)

# Convert the Taylor series into a polynomial

fTp:=convert(fTs, polynom)

# Evaluate the Taylor polynomial at 1

subs(x=1, fpolyapprox)

# Example 11.7

Plot the function

$$g(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0\\ 0 & x = 0 \end{cases}$$

and its 5-th order Taylor polynomial over the domain [-2..2]. What can you conclude?

#### Solution

# Define a piece-wisely defined function.

g:=piecewise(
$$x!=0$$
,  $exp(-1/x^2)$ , 0)

# Find Taylor polynomial of degree 5.

for n to 5 do T := 
$$(\text{eval}(\text{diff}(g(x), x$n), x = 0))*x^n/\text{factorial}(n)+T \text{ end do}$$

# Plot the functions

The graphs of the functions are shown in the picture.



A non-analytic smooth function

In the solution, x\$n is a shortcut option for x, x, x, x, x in the diff command.

# Exercise 11.6

Approximate function  $f(x) = e^x$  by the degree 5 Taylor polynomial at x = 1.

# Exercise 11.7

Compare the function  $y = \sin x$  with its degree 10 Taylor polynomial at x = 0.