

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2001-332543

(P2001-332543A)

(43)公開日 平成13年11月30日 (2001.11.30)

(51)Int.Cl.
H 01 L 21/312
21/768
// C 09 D 177/00

識別記号

F I
H 01 L 21/312
C 09 D 177/00
H 01 L 21/90

テ-ヨード(参考)
A
S
P

審査請求 有 請求項の数14 O.L (全 18 頁)

(21)出願番号 特願2001-70745(P2001-70745)
(22)出願日 平成13年3月13日 (2001.3.13)
(31)優先権主張番号 特願2000-75130(P2000-75130)
(32)優先日 平成12年3月17日 (2000.3.17)
(33)優先権主張国 日本 (JP)
(出願人による申告) 国等の委託研究の成果に係る特許出願 (平成12年新エネルギー・産業技術総合開発機構「電子デバイス製造プロセスで使用するエッティングガスの代替ガス・システム及びプロセスの研究開発」委託研究、産業活力再生特別措置法第30条の適用を受けるもの)

(71)出願人 000005821
松下電器産業株式会社
大阪府門真市大字門真1006番地
(72)発明者 青井 信雄
大阪府門真市大字門真1006番地 松下電器
産業株式会社内
(74)代理人 100077931
弁理士 前田 弘 (外7名)

(54)【発明の名称】層間絶縁膜、その形成方法及び配線の形成方法

(57)【要約】

【課題】層間絶縁膜となる有機高分子膜を有機高分子の架橋部位を切断することなく多孔質化すると共に、有機高分子膜に分子レベルのサイズを有し且つ連続していない空孔を均一に分散させる。

【解決手段】同一分子内に3つ以上の官能基群を持つことにより3次元構造を有している第1の架橋分子と、同一分子内に2つの官能基群を持つことにより2次元構造を有している第2の架橋分子とを重合させて3次元重合高分子からなる層間絶縁膜を形成する。3次元重合高分子の内部には、第1の架橋分子と第2の架橋分子とが重合することにより形成された分子レベルの多数の空孔が分散している。

$$Y_1 - R_2 - Y_2$$

(但し、 R_2 は第2の有機骨格であり、 Y_1 は第4の官能基群であり、 Y_2 は第5の官能基群であり、 Y_1 と Y_2 とは同種又は異種である。) で表わされ、

前記3次元重合高分子は、前記第1の官能基群 (X_1) と前記第4の官能基群 (Y_1) とが結合すると共に前記第2の官能基群 (X_2) と前記第5の官能基群 (Y_2) とが結合することにより形成された複数のユニットの第3の官能基群 (Z) 同士が結合することにより形成され、

【特許請求の範囲】

【請求項1】 3次元構造を有する第1の架橋分子と2次元構造を有する第2の架橋分子とが重合することに形成され、内部に分子レベルの多数の空孔を有する3次元重合高分子からなることを特徴とする層間絶縁膜。

【請求項2】 前記第1の架橋分子は、同一分子内に3つ以上の官能基群を有する第1の有機分子であり、前記第2の架橋分子は、同一分子内に2つの官能基群を有する第2の有機分子であり、

前記3次元重合高分子は、前記第1の有機分子の3つ以上の官能基群と前記第2の有機分子の2つの官能基群とが結合することにより形成されていることを特徴とする請求項1に記載の層間絶縁膜。

【請求項3】 前記第1の有機分子は、

【化1】

(但し、 R_1 は第1の有機骨格であり、 X_1 は第1の官能基群であり、 X_2 は第2の官能基群であり、 X_1 と X_2 とは同種又は異種である。) で表わされ、

前記第2の有機分子は、

【化2】

(但し、 R_2 は第2の有機骨格であり、 Y_1 は第3の官能基群であり、 Y_2 は第4の官能基群であり、 Y_1 と Y_2 とは同種又は異種である。) で表わされ、

前記3次元重合高分子は、前記第1の官能基群 (X_1) と前記第3の官能基群 (Y_1) とが結合すると共に前記第2の官能基群 (X_2) と前記第4の官能基群 (Y_2) とが結合することにより形成され、

前記分子レベルの空孔は、前記第1の有機骨格 (R_1) と前記第2の有機骨格 (R_2) とによって囲まれる領域に形成されていることを特徴とする請求項2に記載の層間絶縁膜。

【請求項4】 前記第1の有機分子は、

【化3】

(但し、 R_1 は第1の有機骨格であり、 X_1 は第1の官能基群であり、 X_2 は第2の官能基群であり、 Z は第3の官能基群であり、 X_1 と X_2 とは同種又は異種である。) で表わされ、

前記第2の有機分子は、

【化4】

前記分子レベルの空孔は、前記複数のユニットにおける前記第1の有機骨格 (R_1) と前記第2の有機骨格 (R_2) とによって囲まれる領域にそれぞれ形成されていることを特徴とする請求項2に記載の層間絶縁膜。

【請求項5】 3次元構造を有する第1の架橋分子と2次元構造を有する第2の架橋分子とを重合させることにより、内部に分子レベルの多数の空孔を有する3次元重合高分子からなる層間絶縁膜を形成することを特徴とする層間絶縁膜の形成方法。

【請求項6】 前記第1の架橋分子は、同一分子内に3つ以上の官能基群を有する第1の有機分子であり、前記第2の架橋分子は、同一分子内に2つの官能基群を有する第2の有機分子であり、

前記3次元重合高分子は、前記第1の有機分子の3つ以上の官能基群と前記第2の有機分子の2つの官能基群とを結合させることにより形成することを特徴とする請求項5に記載の層間絶縁膜の形成方法。

【請求項7】 前記第1の有機分子は、

【化5】

(但し、 R_1 は第1の有機骨格であり、 X_1 は第1の官能基群であり、 X_2 は第2の官能基群であり、 X_1 と X_2 とは同種又は異種である。) で表わされ、

前記第2の有機分子は、

【化6】

(但し、 R_2 は第2の有機骨格であり、 Y_1 は第3の官能基群であり、 Y_2 は第4の官能基群であり、 Y_1 と Y_2 とは同種又は異種である。) で表わされ、

前記3次元重合高分子は、前記第1の官能基群 (X_1) と前記第3の官能基群 (Y_1) を結合させると共に前記第2の官能基群 (X_2) と前記第4の官能基群 (Y_2) を結合させることにより形成し、

前記分子レベルの空孔は、前記第1の有機骨格 (R_1) と前記第2の有機骨格 (R_2) とによって囲まれる領域に形成することを特徴とする請求項6に記載の層間絶縁

3

膜の形成方法。

【請求項8】 前記第1の有機分子は、

【化7】

(但し、R₁は第1の有機骨格であり、X₁は第1の官能基群であり、X₂は第2の官能基群であり、Zは第3の官能基群であり、X₁とX₂とは同種又は異種である。)で表わされ、前記第2の有機分子は、

【化8】

(但し、R₂は第2の有機骨格であり、Y₁は第4の官能基群であり、Y₂は第5の官能基群であり、Y₁とY₂とは同種又は異種である。)で表わされ、前記3次元重合高分子は、前記第1の官能基群(X₁)と前記第4の官能基群(Y₁)とを結合させると共に前記第2の官能基群(X₂)と前記第5の官能基群(Y₂)とを結合させることにより複数のユニットを形成した後、該複数のユニットの前記第3の官能基群(Z)同士を結合させることにより形成し、

前記分子レベルの空孔は、前記複数のユニットにおける前記第1の有機骨格(R₁)と前記第2の有機骨格(R₂)とによって囲まれる領域にそれぞれ形成することを特徴とする請求項6に記載の層間絶縁膜の形成方法。

【請求項9】 3次元構造を有する第1の架橋分子と2次元構造を有する第2の架橋分子とが重合することに形成され、内部に分子レベルの多数の空孔を有する3次元重合高分子からなる層間絶縁膜を形成する工程と、前記層間絶縁膜の上に表面バリア膜を形成する工程と、前記表面バリア膜の上にマスクを形成する工程と、前記表面バリア膜及び前記層間絶縁膜に対して前記マスクを用いてエッチングを行なって、前記表面バリア膜及び前記層間絶縁膜に凹部を形成する工程と、前記凹部に金属材料を埋め込んで、前記金属材料からなる配線を形成する工程とを備えていることを特徴とする配線の形成方法。

【請求項10】 3次元構造を有する第1の架橋分子と2次元構造を有する第2の架橋分子とが重合することに形成され、内部に分子レベルの多数の空孔を有する3次元重合高分子からなる層間絶縁膜を形成する工程と、前記層間絶縁膜の上にマスクを形成する工程と、前記層間絶縁膜に対して前記マスクを用いてエッチングを行なって、前記層間絶縁膜に凹部を形成する工程と、前記凹部の側壁に側壁バリア膜を形成する工程と、前記側壁バリア膜が形成されている前記凹部に金属材料

10

を埋め込んで、前記金属材料からなる配線を形成する工程とを備えていることを特徴とする配線の形成方法。

【請求項11】 前記層間絶縁膜を形成する工程と前記マスクを形成する工程との間に、前記層間絶縁膜の上に表面バリア膜を形成する工程をさらに備え、前記凹部を形成する工程は、前記表面バリア膜及び前記層間絶縁膜に対して前記マスクを用いてエッチングを行なって、前記表面バリア膜及び前記層間絶縁膜に前記凹部を形成する工程を含むことを特徴とする請求項10に記載の配線の形成方法。

【請求項12】 前記第1の架橋分子は、同一分子内に3つ以上の官能基群を有する第1の有機分子であり、前記第2の架橋分子は、同一分子内に2つの官能基群を有する第2の有機分子であり、前記3次元重合高分子は、前記第1の有機分子の3つ以上の官能基群と前記第2の有機分子の2つの官能基群とを結合させることにより形成することを特徴とする請求項9又は10に記載の配線の形成方法。

【請求項13】 前記第1の有機分子は、

【化9】

(但し、R₁は第1の有機骨格であり、X₁は第1の官能基群であり、X₂は第2の官能基群であり、X₁とX₂とは同種又は異種である。)で表わされ、前記第2の有機分子は、

【化10】

(但し、R₂は第2の有機骨格であり、Y₁は第3の官能基群であり、Y₂は第4の官能基群であり、Y₁とY₂とは同種又は異種である。)で表わされ、

前記3次元重合高分子は、前記第1の官能基群(X₁)と前記第3の官能基群(Y₁)とを結合させると共に前記第2の官能基群(X₂)と前記第4の官能基群(Y₂)とを結合させることにより形成し、

前記分子レベルの空孔は、前記第1の有機骨格(R₁)と前記第2の有機骨格(R₂)とによって囲まれる領域に形成することを特徴とする請求項12に記載の配線の形成方法。

【請求項14】 前記第1の有機分子は、

【化11】

50 (但し、R₁は第1の有機骨格であり、X₁は第1の官

能基群であり、 X_2 は第2の官能基群であり、 Z は第3の官能基群であり、 X_1 と X_2 とは同種又は異種である。)で表わされ、

前記第2の有機分子は、

【化12】

(但し、 R_2 は第2の有機骨格であり、 Y_1 は第4の官能基群であり、 Y_2 は第5の官能基群であり、 Y_1 と Y_2 とは同種又は異種である。)で表わされ、

前記3次元重合高分子は、前記第1の官能基群(X_1)と前記第4の官能基群(Y_1)とを結合させると共に前記第2の官能基群(X_2)と前記第5の官能基群(Y_2)とを結合させることにより複数のユニットを形成した後、該複数のユニットの前記第3の官能基群(Z)同士を結合することにより形成し、

前記分子レベルの空孔は、前記複数のユニットにおける前記第1の有機骨格(R_1)と前記第2の有機骨格(R_2)とによって囲まれる領域にそれぞれ形成することを特徴とする請求項12に記載の配線の形成方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、低い比誘電率を有していると共に、機械強度、耐熱性及び基板との密着性に優れた層間絶縁膜及びその形成方法、並びに前記層間絶縁膜に配線を形成する方法に関する。

【0002】

【従来の技術】従来、超LSIの層間絶縁膜として用いられる有機高分子膜としては、芳香族系の分子が重合してなり耐熱性に優れた高分子膜、ポリイミド誘導体からなる高分子膜、ポリアリルエーテル誘導体からなる高分子膜、ポリキノリン誘導体からなる高分子膜、ポリバラキシレン誘導体からなる高分子膜等が知られている。

【0003】これらの有機高分子膜は、炭素を主成分とするため、超LSIの層間絶縁膜として従来から用いられてきたシリコン酸化膜に比べて、構成分子の分極率が小さいので比誘電率が低い。このため、高分子膜は比誘電率が低い層間絶縁膜として注目されている。

【0004】炭素を主成分とする有機高分子膜の比誘電率は、2.4～3.0程度であって、シリコン酸化膜の比誘電率である3.3～4.5程度に比べて低い。もっとも、シリコン酸化膜においても、有機成分が導入された有機SOG膜では、2.9程度の比誘電率を持つものが知られている。

【0005】ところで、近時においては、層間絶縁膜の比誘電率をより低くすることが望まれ、層間絶縁膜の多孔質化が検討されている。

【0006】

【発明が解決しようとする課題】層間絶縁膜を多孔質化すると、比誘電率を大きく低下させることは可能である

が、層間絶縁膜の機械強度、耐熱性及び基板との密着性の低下を招くという新たな問題が発生する。

【0007】この問題は、層間絶縁膜における多孔質化が、有機高分子の架橋密度を低減させることにより実現されるという原理的な欠陥に基づいて発生する。以下、この原理的な欠陥について説明する。

【0008】有機高分子膜の機械強度は、架橋密度が高いほど大きい。ところが、従来の有機高分子膜の多孔質化は、有機高分子における架橋部位を切断することにより実現されてきたため、有機高分子膜の機械強度を保つ分子のネットワークが部分的に切断されてしまうので、機械強度の低下は免れない。層間絶縁膜の機械強度が低下すると、層間絶縁膜を化学的機械研磨(CMP)により平坦化すると、配線構造が破壊してしまうという問題が発生する。

【0009】また、有機高分子の架橋部位を切断すると、有機高分子膜からなる層間絶縁膜に対して後に熟処理工程が加わったときに層間絶縁膜が軟化して、多層配線構造が変形したり又は破壊したりするという問題が発生する。

【0010】また、有機高分子における架橋部位を切断すると、有機高分子膜と基板との間の架橋部位も切断されてしまうので、層間絶縁膜と基板との密着性が低下するという問題も発生する。

【0011】また、従来の多孔質有機高分子膜においては、空孔のサイズに統計的なばらつき(サイズ分布)が存在することが避けられないと共に、空孔の分散状態が不均一になってしまふ。このため、層間絶縁膜の膜質が均一でなくなるので、超LSIにおける一層の微細化の要求には応えられないという問題がある。

【0012】また、超LSIが一層の微細化すると、従来の多孔質有機高分子膜によると、デザインルールに近いサイズを持つ空孔の存在が避けられなくなるため、パターン欠陥を引き起こすという問題が発生する。

【0013】さらに、従来の多孔質有機高分子膜においては、多数の空孔が連続しているため、層間絶縁膜中に水分、エッティングガス又は洗浄液等が侵入する事態が避けられないでの、膜質の劣化が起きるという問題が発生する。

【0014】前記に鑑み、本発明は、有機高分子の架橋部位を切断することなく有機高分子膜を多孔質化することにより、層間絶縁膜の機械強度、耐熱性及び基板との密着性を向上させ、また、分子レベルのサイズを有し且つ連続していない空孔を均一に分散させることにより、超LSIにおける一層の微細化の要求に応えられると共にプロセスにおいて膜質の劣化が起らぬようすることを第1の目的とし、前記の層間絶縁膜に該層間絶縁膜の特性を劣化させることなく配線を形成できるようにすることを第2の目的とする。

【0015】

【課題を解決するための手段】前記の第1の目的を達成するため、本発明に係る層間絶縁膜は、3次元構造を有する第1の架橋分子と2次元構造を有する第2の架橋分子とが重合することに形成され、内部に分子レベルの空孔を有する3次元重合高分子からなる。

【0016】本発明に係る層間絶縁膜によると、3次元構造を有する第1の架橋分子と2次元構造を有する第2の架橋分子とが重合することに形成された3次元重合高分子の内部に分子レベルの空孔が形成されているため、従来の多孔質膜のように架橋部位を切断することなく多数の空孔を形成することができると共に、分子レベルのサイズを有し且つ連続していない空孔を均一に分散させることができる。

【0017】従って、本発明に係る層間絶縁膜は、機械強度、耐熱性及び基板との密着性において優れており、また、超LSIにおける一層の微細化の要求に応えられると共にプロセスにおいて膜質の劣化が起こらない。

【0018】本発明に係る層間絶縁膜において、第1の架橋分子は、同一分子内に3つ以上の官能基群を有する第1の有機分子であり、第2の架橋分子は、同一分子内に2つの官能基群を有する第2の有機分子であり、3次元重合高分子は、第1の有機分子の3つ以上の官能基群と第2の有機分子の2つの官能基群とが結合することにより形成されていることが好ましい。

【0019】このようにすると、内部に分子レベルの多数の空孔を有する3次元重合高分子を確実に形成することができる。

【0020】本発明に係る層間絶縁膜において、第1の架橋分子を構成する第1の有機分子は、

【0021】

【化13】

(但し、R₁は第1の有機骨格であり、X₁は第1の官能基群であり、X₂は第2の官能基群であり、X₁とX₂とは同種又は異種である。)で表わされ、

【0022】第2の架橋分子を構成する第2の有機分子は、

【0023】

【化14】

(但し、R₂は第2の有機骨格であり、Y₁は第3の官能基群であり、Y₂は第4の官能基群であり、Y₁とY₂とは同種又は異種である。)で表わされ、

【0024】3次元重合高分子は、第1の官能基群(X₁)と第3の官能基群(Y₁)とが結合すると共に第2の官能基群(X₂)と第4の官能基群(Y₂)とが結合

することにより形成され、分子レベルの空孔は、第1の有機骨格(R₁)と第2の有機骨格(R₂)とによって囲まれる領域に形成されていることが好ましい。

【0025】このようにすると、3次元重合高分子における、第1の架橋分子の第1の有機骨格と第2の架橋分子の第2の有機骨格とによって囲まれる領域に分子レベルの多数の空孔を確実に形成することができる。

【0026】また、本発明に係る層間絶縁膜において、第1の架橋分子を構成する第1の有機分子は、

【0027】

【化15】

(但し、R₁は第1の有機骨格であり、X₁は第1の官能基群であり、X₂は第2の官能基群であり、Zは第3の官能基群であり、X₁とX₂とは同種又は異種である。)で表わされ、

【0028】第2の架橋分子を構成する第2の有機分子は、

【0029】

【化16】

(但し、R₂は第2の有機骨格であり、Y₁は第4の官能基群であり、Y₂は第5の官能基群であり、Y₁とY₂とは同種又は異種である。)で表わされ、

【0030】3次元重合高分子は、第1の官能基群(X₁)と第4の官能基群(Y₁)とが結合すると共に第2の官能基群(X₂)と第5の官能基群(Y₂)とが結合することにより形成された複数のユニットの第3の官能基群(Z)同士が結合することにより形成され、分子レベルの空孔は、複数のユニットにおける第1の有機骨格(R₁)と第2の有機骨格(R₂)とによって囲まれる領域にそれぞれ形成されていることが好ましい。

【0031】このようにすると、各ユニットにおける、第1の架橋分子の第1の有機骨格と第2の架橋分子の第2の有機骨格とによって囲まれる領域に分子レベルの空孔を形成することができると共に、各ユニットが互いに結合することにより3次元重合高分子が形成されているため、該3次元重合高分子の内部に分子レベルの多数の空孔を分散させることができる。

【0032】前記の第1の目的を達成するため、本発明に係る層間絶縁膜の形成方法は、3次元構造を有する第1の架橋分子と2次元構造を有する第2の架橋分子とを重合させることにより、内部に分子レベルの空孔を有する3次元重合高分子からなる層間絶縁膜を形成する。

【0033】本発明に係る層間絶縁膜の形成方法によると、3次元構造を有する第1の架橋分子と2次元構造を

有する第2の架橋分子とを重合することに形成した3次元重合高分子の内部に分子レベルの空孔を形成するため、従来の多孔質膜のように架橋部位を切断することなく多数の空孔を形成することができると共に、分子レベルのサイズを有し且つ連続していない空孔を均一に分散させることができる。

【0034】従って、本発明に係る層間絶縁膜の形成方法によると、機械強度、耐熱性及び基板との密着性において優れており、また超LSIにおける一層の微細化の要求に応えられると共にプロセスにおいて膜質の劣化が起こらない層間絶縁膜を形成することができる。

【0035】本発明に係る層間絶縁膜の形成方法において、第1の架橋分子は、同一分子内に3つ以上の官能基群を有する第1の有機分子であり、第2の架橋分子は、同一分子内に2つの官能基群を有する第2の有機分子であり、3次元重合高分子は、第1の有機分子の3つ以上の官能基群と第2の有機分子の2つの官能基群とを結合させることにより形成するが好ましい。

【0036】このようにすると、内部に分子レベルの多数の空孔を有する3次元重合高分子を確実に形成することができる。

【0037】本発明に係る層間絶縁膜の形成方法において、第1の架橋分子を構成する第1の有機分子は、

【0038】

【化17】

(但し、R₁は第1の有機骨格であり、X₁は第1の官能基群であり、X₂は第2の官能基群であり、X₁とX₂とは同種又は異種である。)で表わされ、

【0039】第2の架橋分子を構成する第2の有機分子は、

【0040】

【化18】

(但し、R₂は第2の有機骨格であり、Y₁は第3の官能基群であり、Y₂は第4の官能基群であり、Y₁とY₂とは同種又は異種である。)で表わされ、

【0041】3次元重合高分子は、第1の官能基群(X₁)と第3の官能基群(Y₁)とを結合させると共に第2の官能基群(X₂)と第4の官能基群(Y₂)とを結合させることにより形成し、分子レベルの空孔は、第1の有機骨格(R₁)と第2の有機骨格(R₂)とによって囲まれる領域に形成するが好ましい。

【0042】このようにすると、3次元重合高分子における、第1の架橋分子の第1の有機骨格と第2の架橋分子の第2の有機骨格とによって囲まれる領域に分子レベ

ルの多数の空孔を確実に形成することができる。

【0043】本発明に係る層間絶縁膜の形成方法において、第1の架橋分子を構成する第1の有機分子は、

【0044】

【化19】

(但し、R₁は第1の有機骨格であり、X₁は第1の官能基群であり、X₂は第2の官能基群であり、Zは第3の官能基群であり、X₁とX₂とは同種又は異種である。)で表わされ、

【0045】第2の架橋分子を構成する第2の有機分子は、

【0046】

【化20】

20 (但し、R₂は第2の有機骨格であり、Y₁は第4の官能基群であり、Y₂は第5の官能基群であり、Y₁とY₂とは同種又は異種である。)で表わされ、

【0047】3次元重合高分子は、第1の官能基群(X₁)と第4の官能基群(Y₁)とを結合させると共に第2の官能基群(X₂)と第5の官能基群(Y₂)とを結合させることにより複数のユニットを形成した後、該複数のユニットの第3の官能基群(Z)同士を結合させることにより形成し、分子レベルの空孔は、複数のユニットにおける第1の有機骨格(R₁)と第2の有機骨格(R₂)とによって囲まれる領域にそれぞれ形成するが好ましい。

30 【0048】このようにすると、各ユニットにおける、第1の架橋分子の第1の有機骨格と第2の架橋分子の第2の有機骨格とによって囲まれる領域に分子レベルの空孔を形成することができると共に、各ユニットを互いに結合することにより3次元重合高分子を形成するため、該3次元重合高分子の内部に分子レベルの多数の空孔を分散させることができる。

【0049】前記の第2の目的を達成するため、本発明40 に係る第1の配線形成方法は、3次元構造を有する第1の架橋分子と2次元構造を有する第2の架橋分子とが重合することに形成され、内部に分子レベルの多数の空孔を有する3次元重合高分子からなる層間絶縁膜を形成する工程と、層間絶縁膜の上に表面バリア膜を形成する工程と、表面バリア膜の上にマスクを形成する工程と、表面バリア膜及び層間絶縁膜に対してマスクを用いてエッチングを行なって、表面バリア膜及び層間絶縁膜に凹部を形成する工程と、凹部に金属材料を埋め込んで、金属材料からなる配線を形成する工程とを備えている。

50 【0050】本発明に係る第1の配線形成方法による

11

と、層間絶縁膜の上に表面バリア膜を形成しておいてから該表面バリア膜の上にマスクを形成するため、マスクとなる膜を形成する工程において、原料ガスが層間絶縁膜の空孔に侵入する事態を回避できるので、層間絶縁膜の比誘電率が高くなることを防止できる。このため、層間絶縁膜の空孔のサイズを、原料ガスが侵入してしまう程度の大きさにまで拡大できるので、層間絶縁膜の比誘電率を大きく低減することができる。

【0051】前記の第2の目的を達成するため、本発明に係る第2の配線形成方法は、3次元構造を有する第1の架橋分子と2次元構造を有する第2の架橋分子とが重合することに形成され、内部に分子レベルの多数の空孔を有する3次元重合高分子からなる層間絶縁膜を形成する工程と、層間絶縁膜の上にマスクを形成する工程と、層間絶縁膜に対してマスクを用いてエッチングを行なつて、層間絶縁膜に凹部を形成する工程と、凹部の側壁に側壁バリア膜を形成する工程と、側壁バリア膜が形成されている凹部に金属材料を埋め込んで、金属材料からなる配線を形成する工程とを備えている。

【0052】本発明に係る第2の配線形成方法によると、凹部の側壁に側壁バリア膜を形成しておいてから、凹部に金属材料を埋め込んで配線を形成するため、配線となる金属膜を形成する工程において、金属材料のガスが層間絶縁膜の空孔に侵入する事態を回避できるので、層間絶縁膜の比誘電率が高くなることを防止できる。このため、層間絶縁膜の空孔のサイズを、金属材料のガスが侵入してしまう程度の大きさにまで拡大できるので、層間絶縁膜の比誘電率を大きく低減することができる。

【0053】本発明に係る第2の配線形成方法は、層間絶縁膜を形成する工程とマスクを形成する工程との間に、層間絶縁膜の上に表面バリア膜を形成する工程をさらに備え、凹部を形成する工程は、表面バリア膜及び層間絶縁膜に対してマスクを用いてエッチングを行なつて、表面バリア膜及び層間絶縁膜に凹部を形成する工程を含むことが好ましい。

【0054】このようにすると、マスクとなる膜を形成する工程において、原料ガスが層間絶縁膜の空孔に侵入する事態を回避できるので、層間絶縁膜の比誘電率が高くなることをより確実に防止することができる。

【0055】本発明に係る第1又は第2の配線形成方法において、第1の架橋分子は、同一分子内に3つ以上の官能基群を有する第1の有機分子であり、第2の架橋分子は、同一分子内に2つの官能基群を有する第2の有機分子であり、3次元重合高分子は、第1の有機分子の3つ以上の官能基群と第2の有機分子の2つの官能基群とを結合させることにより形成することが好ましい。

【0056】このようにすると、内部に分子レベルの多数の空孔を有する3次元重合高分子からなる層間絶縁膜を確実に形成することができる。

【0057】本発明に係る第1又は第2の配線形成方法

12

において、第1の架橋分子を構成する第1の有機分子は、

【0058】

【化21】

10 (但し、R₁は第1の有機骨格であり、X₁は第1の官能基群であり、X₂は第2の官能基群であり、X₁とX₂とは同種又は異種である。) で表わされ、

【0059】第2の架橋分子を構成する第2の有機分子は、

【0060】

【化22】

(但し、R₂は第2の有機骨格であり、Y₁は第3の官能基群であり、Y₂は第4の官能基群であり、Y₁とY₂とは同種又は異種である。) で表わされ、

【0061】3次元重合高分子は、第1の官能基群(X₁)と第3の官能基群(Y₁)とを結合させると共に第2の官能基群(X₂)と第4の官能基群(Y₂)とを結合させることにより形成し、分子レベルの空孔は、第1の有機骨格(R₁)と第2の有機骨格(R₂)とによって囲まれる領域に形成することが好ましい。

【0062】このようにすると、層間絶縁膜を構成する3次元重合高分子における、第1の架橋分子の第1の有機骨格と第2の架橋分子の第2の有機骨格とによって囲まれる領域に分子レベルの多数の空孔を確実に形成することができる。

【0063】本発明に係る第1又は第2の配線形成方法において、第1の架橋分子を構成する第1の有機分子は、

【0064】

【化23】

40 (但し、R₁は第1の有機骨格であり、X₁は第1の官能基群であり、X₂は第2の官能基群であり、Zは第3の官能基群であり、X₁とX₂とは同種又は異種である。) で表わされ、

【0065】第2の架橋分子を構成する第2の有機分子は、

【0066】

【化24】

50

(但し、 R_2 は第2の有機骨格であり、 Y_1 は第4の官能基群であり、 Y_2 は第5の官能基群であり、 Y_1 と Y_2 とは同種又は異種である。) で表わされ、

【0067】3次元重合高分子は、第1の官能基群(X_1)と第4の官能基群(Y_1)とを結合させると共に第2の官能基群(X_2)と第5の官能基群(Y_2)とを結合させることにより複数のユニットを形成した後、該複数のユニットの第3の官能基群(Z)同士を結合させることにより形成し、分子レベルの空孔は、複数のユニットにおける第1の有機骨格(R_1)と第2の有機骨格(R_2)とによって囲まれる領域にそれぞれ形成することが好ましい。

【0068】このようにすると、層間絶縁膜を構成する3次元重合高分子の各ユニットにおける、第1の架橋分子の第1の有機骨格と第2の架橋分子の第2の有機骨格とによって囲まれる領域に分子レベルの空孔を形成することができると共に、各ユニットを互いに結合することにより3次元重合高分子を形成するため、該3次元重合高分子の内部に分子レベルの多数の空孔を分散させることができる。

【0069】

【発明の実施の形態】(第1の実施形態)以下、本発明の第1の実施形態に係る層間絶縁膜及びその製造方法について、図1(a)及び(b)を参照しながら説明する。

【0070】第1の実施形態は、図1(a)に示すように、それぞれが4つの官能基群を持つことにより3次元構造を有する10個の第1の架橋分子と、それぞれが2つの官能基群を持つことにより2次元構造を有する12個の第2の架橋分子(直鎖状の架橋分子)とが、第1の架橋分子の4つの官能基群と第2の架橋分子の2つの官能基群とが化学結合することにより、3つの6角形が互いの2辺を共有してなるユニットを形成している。

【0071】尚、官能基群とは、1個又は複数個の官能基からなり、分子と分子とが結合することができる箇所を意味し、官能基の化学的な数を問わない。例えば、2つのカルボキシル基(官能基)は、1つのアミノ基(官能基)と結合して1つのイミド環を形成するが、2つのカルボキシル基と1つのアミノ基とは1つの結合部位を形成するため、2つのカルボキシル基及び1つのアミノ基は、それぞれ1つの官能基群となる。

【0072】図1(a)に示すユニットが多数個互いに重合することにより、図1(b)に示すようなダイアモンド構造を有する3次元重合高分子を形成しており、該3次元重合高分子によって、層間絶縁膜が構成されている。尚、図1(b)において、一点鎖線は図1(a)に示すユニットを表わしている。

【0073】第1の実施形態によると、3次元重合高分子の内部には多数の空孔が形成されているため、必然的に層間絶縁膜の内部には多数の空孔が形成されており、

これによって、層間絶縁膜の比誘電率は低くなっている。

【0074】また、第1の実施形態によると、第1の架橋分子と第2の架橋分子とが化学結合することにより形成されたユニットが重合して3次元重合高分子を形成することにより、該3次元重合高分子の内部に多数の空孔が形成されているので、従来の多孔質膜のように架橋部位を切断することなく、多数の空孔を形成することができる。従って、第1の実施形態に係る層間絶縁膜は、従来の多孔質膜に比べて架橋密度が高くなっているので、機械強度、耐熱性及び基板との密着性において優れている。

【0075】(実施例1)以下、第1の実施形態に係る層間絶縁膜及びその形成方法の具体的な実施例について、図2(a)、(b)及び図3を参照しながら説明する。

【0076】まず、4つの官能基群を有する第1の架橋分子として、図2(a)に示すような、4つのアミノ基を有するアダマンタン誘導体(以下、テトラアミノアダマンタン誘導体と称する。)を用いると共に、2つの官能基群を有する第2の架橋分子として、図2(b)に示すようなベンゼンテトラカルボン酸誘導体を用いる。

【0077】次に、テトラアミノアダマンタン誘導体(第1の架橋分子)とベンゼンテトラカルボン酸誘導体(第2の架橋分子)とを、N-メチルピロリドン(NMP)に溶解すると共に1:2のモル比で混合して混合溶液を作成する。この混合溶液における固形分の含有量は約15重量%とする。

【0078】次に、混合溶液を室温で約30分間攪拌した後、5mlの混合溶液をシリコン基板上に、4000rpmの回転数で回転塗布して塗布膜を形成する。その後、塗布膜をホットプレートにより250℃の温度下で乾燥した後、窒素雰囲気下の400℃の温度下で30分間の熱処理を行なうことにより、塗布膜を焼成して400nmの厚さを有する層間絶縁膜を形成する。

【0079】ところで、テトラアミノアダマンタン誘導体とベンゼンテトラカルボン酸誘導体とは、溶液中でポリアミック酸をするので、N-メチルピロリドンからなる溶媒に溶ける。

【0080】また、塗布膜に対して熱処理を行なうと、10個のテトラアミノアダマンタン誘導体と12個のベンゼンテトラカルボン酸誘導体とは、互いに重合して、図3に示すような、ダイアモンド構造を有する網目状の重合高分子膜(かご状の重合高分子膜)を形成する。この場合、ダイアモンド構造を有する網目状の重合高分子膜の内部には多数の空孔cが形成される。尚、図3において、aはテトラアミノアダマンタン誘導体を示し、bはベンゼンテトラカルボン酸誘導体を示し、cは分子レベルの空孔を示している。

【0081】実施例1によると、空孔cが分子レベルの

サイズを有すると共に網目状の重合高分子膜の内部に均一に分散しているため、層間絶縁膜の比誘電率は極めて低い。

【0082】また、網目状の重合高分子膜がダイアモンド構造を有しているため、層間絶縁膜の機械強度は大きい。

【0083】水銀プローバーを用いてCV法により、層間絶縁膜の容量を測定した後、層間絶縁膜の膜厚から比誘電率を計算したところ、比誘電率は1.8であった。

【0084】また、テトラアミノアダマンタン誘導体とベンゼンテトラカルボン酸誘導体との混合比が変化すると、比誘電率は変化するが、テトラアミノアダマンタン誘導体とベンゼンテトラカルボン酸誘導体とを1:2のモル比で混合すると、比誘電率は最小となる。

【0085】尚、実施例1においては、第1の架橋分子と第2の架橋分子との重合反応としては、アミノ基とカルボキシル基とが反応するイミド形成反応を用いたが、この反応系に限られるものではなく、アミド結合反応、エーテル結合反応、C-C結合反応又はC-N結合反応等の反応系を用いてもよい。

【0086】(実施例2)以下、第1の実施形態に係る層間絶縁膜及びその形成方法の具体的な実施例について、図4(a)～(c)、図5(a)、(b)、図6(a)、(b)及び図7を参照しながら説明する。

【0087】まず、4つの官能基を有する第1の架橋分子を合成する工程について説明する。

【0088】図4(a)に示すように、1-ブロモアダマンタンとベンゼンとをAIC₁₃を触媒として反応させて、1, 3, 5, 7-テトラフェニルアダマンタンを得た後、図4(b)に示すように、1, 3, 5, 7-テトラフェニルアダマンタンのフェニル基のパラ位をヨウ素化して、図4(c)に示す1, 3, 5, 7-テトラキス(4-ヨウドフェニル)アダマンタンを得る。

【0089】次に、図5(a)及び(b)に示すように、1, 3, 5, 7-テトラキス(4-ヨウドフェニル)アダマンタンを、パブリングにより供給されるCO₂の存在下でsecブチリチウムを触媒として反応させてカルボキシル化することにより、1, 3, 5, 7-テトラキス(4-カルボキシラートフェニル)アダマンタン(第1の架橋分子)を得る。

【0090】次に、図6(a)に示すように、1, 3, 5, 7-テトラキス(4-カルボキシラートフェニル)アダマンタン(第1の架橋分子)とテトラアミノベンゼン(第2の架橋分子)とを共重合反応させて、図6(b)に示すようなベンツイミゾール骨格を形成すると、図7に示すような、ダイアモンド構造を有する網目状の重合高分子膜であるポリベンツイミダゾールが得られる。

尚、図7において、aは1, 3, 5, 7-テトラキス(4-カルボキシラートフェニル)アダマンタン(第1の架橋分子)を示し、bはテトラアミノベンゼン(第2の

架橋分子)を示し、cは分子レベルの空孔を示している。

【0091】実施例2によると、空孔cが分子レベルのサイズを有すると共に網目状の重合高分子膜の内部に均一に分散しているため、層間絶縁膜の比誘電率は極めて低い。

【0092】また、網目状の重合高分子膜がダイアモンド構造を有しているため、層間絶縁膜の機械強度は大きい。

【0093】水銀プローバーを用いてCV法により、層間絶縁膜の容量を測定した後、層間絶縁膜の膜厚から比誘電率を計算したところ、比誘電率は1.7であった。

【0094】また、層間絶縁膜の弾性率をナノインデンターにより測定したところ、約15GPaの値が得られた。

【0095】尚、実施例2では、第1の架橋分子として、1, 3, 5, 7-テトラキス(4-カルボキシラートフェニル)アダマンタンを用いたが、これに代えて、テトラキス(4-カルボキシラート)アダマンタン等を用いてもよい。

【0096】また、第2の架橋分子としては、テトラアミノベンゼンを用いることによりベンツイミゾール骨格(ポリベンツイミゾール)を形成したが、テトラアミノベンゼンに代えてジハイドロキシジアミノベンゼンを用いることにより、ベンツオキサゾール骨格(ポリベンツオキサゾール)を形成してもよい。

【0097】(第2の実施形態)以下、本発明の第2の実施形態に係る層間絶縁膜及びその製造方法について、図8(a)及び(b)を参照しながら説明する。

【0098】第2の実施形態は、図8(a)に示すように、3つの官能基群を持つことにより3次元構造を有する第1の架橋分子と、2つの官能基群を持つことにより2次元構造を有する第2の架橋分子とが、第1の架橋分子の3つの官能基群と第2の架橋分子の2つの官能基群とが化学結合することにより、2つの6角形が互いの2頂点を共有してなるかご状のユニット(マクロマー)を形成していると共に、各かご状のユニットの内部には分子サイズの空孔が形成されている。尚、第1の実施形態と同様、官能基群とは、1個又は複数個の官能基からなりり、分子と分子とが結合することができる箇所を意味し、官能基の化学的な数を問わない。

【0099】図8(a)に示すような、内部に空孔を有する多数のかご状のユニットが、2次元構造又は3次元構造を有する第3の架橋分子を介して重合することにより、図8(b)に示すような3次元重合高分子が形成されており、該3次元重合高分子によって層間絶縁膜が構成されている。

【0100】第2の実施形態によると、それぞれが空孔を有する多数のユニットが重合することにより3次元重合高分子を形成するため、該3次元重合高分子には多数

の空孔が分散している。従って、層間絶縁膜の内部には多数の空孔が存在しているので、層間絶縁膜の比誘電率は低くなっている。

【0101】また、第2の実施形態によると、空孔を有する多数のかご状のユニットが重合することにより3次元重合高分子を形成するため、従来の多孔質膜のように架橋部位を切断することなく、多数の空孔を形成することができます。従って、第2の実施形態に係る層間絶縁膜は、従来の多孔質膜に比べて架橋密度が高くなっているので、機械強度、耐熱性及び基板との密着性において優れている。

【0102】尚、第2の実施形態に係る層間絶縁膜は、第1の実施形態に係る層間絶縁膜のようにダイアモンド構造を有していないため、第1の実施形態に比べると機械強度は劣るが、LSIの集積化プロセスにおけるメタルCMP等の処理には十分に耐える機械強度を有している。

【0103】(実施例)以下、第2の実施形態に係る層間絶縁膜及びその形成方法の具体的な実施例について、図9(a)、(b)、図10及び図11を参照しながら説明する。

【0104】まず、3つの官能基群を有する第1の架橋分子として、図9(a)に示すような、3つのアミノ基を有するベンゼン誘導体(以下、トリフェニルベンゼン誘導体と称する。)を用いると共に、2つの官能基群を有する第1の架橋分子として、図9(b)に示すような、4つのカルボキシル基を有するフェナントレン誘導体に水酸基を導入したもの(以下、水酸基を有するフェナントレン誘導体と称する。)を用いた。

【0105】次に、トリフェニルベンゼン誘導体(第1の架橋分子)と水酸基を有するフェナントレン誘導体(第2の架橋分子)とを2:3のモル比で反応させる。このようにすると、3個のトリフェニルベンゼン誘導体と2個の水酸基を有するフェナントレン誘導体とが反応することにより、図10の左側部分に示すような、かご状のユニットaが得られる。尚、図10において、bはトリフェニルベンゼン誘導体を示し、cは水酸基を有するフェナントレン誘導体を示し、dはかご状のユニットaの内部に形成された空孔を示す。

【0106】次に、図10に示すように、かご状のユニットをジフルオロベンゼンとNaH(水素化ナトリウム)との共存化で架橋させることにより、図11に示すような3次元の重合高分子の溶液を合成した。尚、図11において、aはかご状のユニットを示し、dは空孔を示し、eはジフルオロベンゼンが有していたベンゼン環を示している。

【0107】次に、重合高分子の溶液から重合高分子を分離精製した後、該重合高分子をN-メチルピロリドンに約15重量%溶解させて溶解液を作成し、その後、5mLの溶解液をシリコン基板上に、4000rpmの回

転数で回転塗布して塗布膜を形成した。その後、塗布膜をホットプレートにより250°Cの温度下で乾燥した後、窒素雰囲気下の400°Cの温度下で30分間の熱処理を行なうことにより、塗布膜を焼成して450nmの厚さを有する層間絶縁膜を形成した。

【0108】水銀プローバーを用いてCV法により、層間絶縁膜の容量を測定した後、層間絶縁膜の膜厚から比誘電率を計算したところ、比誘電率は1.9であった。

【0109】尚、実施例2においては、第1の架橋分子と第2の架橋分子との重合反応としては、アミノ基とカルボキシル基とが反応するイミド形成反応を用いたが、この反応系に限られるものではなく、アミド結合反応、エーテル結合反応、C-C結合反応又はC-N結合反応等の反応系を用いてもよい。

【0110】また、かご状のユニット同士の重合反応としては、エーテル結合反応を用いたが、この反応系に限られるものではなく、アミド結合反応、C-C結合反応又はC-N結合反応等の反応系を用いてもよい。

【0111】また、第1の架橋分子と第2の架橋分子とを架橋させる第3の架橋分子は、2次元構造を有していてもよいし3次元構造を有していてもよい。

【0112】(第3の実施形態)以下、本発明の第3の実施形態である、第1又は第2の実施形態に係る層間絶縁膜に配線を形成する方法について、図12(a)～(c)及び図13(a)、(b)を参照しながら説明する。

【0113】まず、図12(a)に示すように、トランジスタ等の素子が形成された半導体基板10の上に、1μmの厚さを有する第1又は第2の実施形態に係る層間絶縁膜11を形成した後、窒素雰囲気中における200°Cの温度下で3分間の熱処理を行ない、その後、窒素雰囲気中における400°Cの温度下で30分間焼成することにより、層間絶縁膜11を硬化させる。

【0114】次に、CVD法により、層間絶縁膜11の上に、10nmの厚さを有するポリイミド膜よりなる表面バリア膜12を形成した後、CVD法により、表面バリア膜12の上にシリコン酸化膜13を形成し、その後、シリコン酸化膜13の上に、配線構形成領域に開口部を有するレジストパターン14を形成する。

【0115】次に、シリコン酸化膜13に対してレジストパターン14をマスクにドライエッティングを行なって、図12(b)に示すように、シリコン酸化膜13よりなるハードマスク13Aを形成する。

【0116】次に、表面バリア膜12及び層間絶縁膜11に対して、レジストパターン14及びハードマスク13Aをマスクにドライエッティングを行なって、図12(c)に示すように、350nmの深さを有する配線溝15を形成する。このドライエッティング工程において、レジストパターン14は消滅する。

【0117】次に、図13(a)に示すように、配線溝

15の側壁及び底部並びにハードマスク13Aの上に全面に亘って、10nmの厚さを有するポリイミド膜となる側壁バリア膜16を形成した後、該側壁バリア膜16の上に、CVD法によりチタンナイトライド又はタンタルナイトライドよりなり5nmの厚さを有する密着層17を形成し、その後、めっき法により密着層17の上に800nmの厚さを有する銅膜18を配線溝15が埋まるように形成する。

【0118】次に、CMP法により、銅膜18、密着層17及び側壁バリア膜16におけるハードマスク13Aの上に存在する部分を除去すると、図13(b)に示すように、銅膜18及び密着層17よりなる埋め込み配線19が得られる。

【0119】尚、第3の実施形態においては、表面バリア膜12及び層間絶縁膜11に配線溝15を形成したが、これに代えて、表面バリア膜12及び層間絶縁膜11に半導体基板10に達するコンタクトホールを形成し、該コンタクトホールに銅膜又はアルミニウム膜を埋め込んで、コンタクトを形成してもよい。アルミニウム膜を用いる場合には、密着層17は形成しなくてもよい。

【0120】また、第3の実施形態においては、表面バリア膜12及び側壁バリア膜16として、ポリイミド膜を用いたが、これに代えて、CVD法又はスパッタ法により形成されるダイアモンドライクカーボン膜等のように、有機材料を主成分とし且つガスを透過させないような膜を用いることができる。

【0121】第3の実施形態によると、層間絶縁膜11の上に表面バリア膜12を形成しておいてから、CVD法により、ハードマスク13Aとなるシリコン酸化膜13を形成するため、シリコン酸化膜13を形成するための原料ガスが層間絶縁膜11の空孔に侵入して空孔内に堆積する事態を回避でき、これにより、層間絶縁膜11の比誘電率が高くなることを防止することができる。具体的には、CVD法によりポリイミド膜を形成すると、層間絶縁膜11の空孔のサイズよりも大きいサイズを有するポリイミドのクラスターが層間絶縁膜11の上に堆積されるので、原料ガスが層間絶縁膜11の空孔に侵入する事態を防止できる。

【0122】従って、層間絶縁膜11の空孔のサイズを、原料ガスが侵入してしまう程度の大きさまで拡大することができるので、層間絶縁膜11の比誘電率を一層低減することができる。

【0123】また、第3の実施形態によると、配線溝15の側壁及び底部に側壁バリア膜16を形成しておいてからCVD法により密着層17を形成するため、密着層17を形成するための原料ガスが層間絶縁膜11の空孔に侵入して堆積する事態を回避でき、これにより、層間絶縁膜11の比誘電率が高くなることを防止することができる。

【0124】

【発明の効果】本発明に係る層間絶縁膜およびその製造方法によると、従来の多孔質膜のように架橋部位を切断することなく多数の空孔を形成することができると共に、分子レベルのサイズを有し且つ連続していない空孔を均一に分散させることができるので、機械強度、耐熱性及び基板との密着性において優れており、また、超J-SIにおける一層の微細化の要求に応えられると共にプロセスにおいて膜質の劣化が起らぬ層間絶縁膜を実現することができる。

【0125】本発明に係る第1の配線形成方法によると、マスクとなる膜を形成する工程において、原料ガスが層間絶縁膜の空孔に侵入する事態を回避できるため、層間絶縁膜の比誘電率を大きく低減することができる。

【0126】本発明に係る第2の配線形成方法によると、配線となる金属膜を形成する工程において、金属材料のガスが層間絶縁膜の空孔に侵入する事態を回避できるため、層間絶縁膜の比誘電率を大きく低減することができる。

【図面の簡単な説明】

【図1】(a)及び(b)は、第1の実施形態に係る層間絶縁膜の形成方法を示す概念図である。

【図2】(a)は、第1の実施形態に係る層間絶縁膜の形成方法の実施例1に用いる第1の架橋分子の構造を示す図であり、(b)は第1の実施形態に係る層間絶縁膜の形成方法の実施例2に用いる第2の架橋分子の構造を示す図である。

【図3】第1の実施形態に係る層間絶縁膜の形成方法の実施例1により形成される3次元重合高分子の構造を示す図である。

【図4】(a)～(c)は、第1の実施形態に係る層間絶縁膜の形成方法の実施例2に用いられる第1の架橋分子を合成するための化学反応を示す図である。

【図5】(a)、(b)は、第1の実施形態に係る層間絶縁膜の形成方法の実施例2に用いられる第1の架橋分子を合成するための化学反応を示す図である。

【図6】(a)、(b)は、第1の実施形態に係る層間絶縁膜の形成方法の実施例2の共重合反応を示す図である。

【図7】第1の実施形態に係る層間絶縁膜の形成方法の実施例2により形成される3次元重合高分子の構造を示す図である。

【図8】(a)及び(b)は、本発明の第2の実施形態に係る層間絶縁膜の形成方法を示す概念図である。

【図9】(a)は、第2の実施形態に係る層間絶縁膜の形成方法に用いる第1の架橋分子の構造を示す図であり、(b)は第2の実施形態に係る層間絶縁膜の形成方法に用いる第2の架橋分子の構造を示す図である。

【図10】第2の実施形態に係る層間絶縁膜の形成方法により形成されるかご状のユニットの構造を示す図であ

る。

【図11】第2の実施形態に係る層間絶縁膜の形成方法により形成される3次元重合高分子の構造を示す図である。

【図12】(a)～(c)は、第3の実施形態に係る配線形成方法の各工程を示す断面図である。

【図13】(a)、(b)は、第3の実施形態に係る配線形成方法の各工程を示す断面図である。

【符号の説明】

10 半導体基板

- 1 1 層間絶縁膜
- 1 2 表面バリア膜
- 1 3 シリコン酸化膜
- 1 3 A ハードマスク
- 1 4 レジストパターン
- 1 5 配線溝
- 1 6 側壁バリア膜
- 1 7 密着層
- 1 8 銅膜
- 1 9 埋め込み配線

【図1】

【図2】

【図9】

【図3】

【図11】

【図4】

【図12】

【図5】

1,3,5,7-tetrakis(4-iodophenyl)adamantane

(a)

1,3,5,7-tetrakis(4-carboxylatophenyl)adamantane

(b)

【図13】

(a)

(b)

【図6】

(a)

1,3,5,7-tetrakis(4-carboxylatophenyl)adamantane

(b)

【図7】

【図8】

(a)

(b)

【図10】

a

