Topology 2 Notes

Lucas Simon

© 2015 Judith Packer, All Rights Reserved

1 March 6, 2015

NOTICE: Reminder, there is an open book exam on the 11th, next week on Wednesday. There will be four multipart questions during the 55 minute exam.

Back to the two-torus, we identify the sides of $I \times I$ Let $Y = S^1 \times S^1$ and $Y^1 = A \cup B$. We showed last time that $H_q(Y, Y^1) \cong H_1(E^2, \dot{E}^2) = \mathbb{Z}$ for q = 2 and 0 otherwise. Recall from the long exact sequence in homology, we have

$$H_2(Y^1) \cong 0 \xrightarrow{i_*} H_2(Y) \xrightarrow{j_*} H_2(Y, Y^1) \xrightarrow{\partial_2} H_1(Y^1) \cong \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{i_*} H_1(Y) \xrightarrow{j_*} H_1(Y, Y^1) = 0$$

then we get the sequence

$$0 \to H_2(Y) \xrightarrow{j_*} H_2(Y, Y^1) \cong \mathbb{Z} \xrightarrow{\partial_2} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{i_*} H_1(Y) \xrightarrow{j_*} 0$$

Then we have $\operatorname{im}(j_*) \cong H_2(Y) \cong \ker(\partial_*)? = H_2(Y, Y^1) \cong \mathbb{Z}$.

We make a guess before diving into the mess, $H_2(Y) \cong \mathbb{Z}$. So $j_*(n) = dn$ for |d| > 1? If $\operatorname{im}(j_*) \cong \ker i_*$. But then $\mathbb{Z}/|d|\mathbb{Z}$ would be a subgroup of $H_1(Y^1)$, which is a contradition since every free abelian group is torsion free.

So if $H_2(Y, Y^1) \neq 0$, then j_* is onto $H_2(Y, Y^1) \cong \mathbb{Z}$. We want to show ∂_* is the zero map for $H_2(Y, Y^1) \cong \mathbb{Z} \to H_1(Y^1) \cong \mathbb{Z} \oplus \mathbb{Z}$.

Notice that a mpa $\mathbb{Z} \xrightarrow{M} \mathbb{Z} \oplus \mathbb{Z}$ for $\ker(M) = |d|\mathbb{Z}$. Then by algebra

$$\mathbb{Z} \xrightarrow{M} \mathbb{Z} \oplus \mathbb{Z}$$

$$\downarrow^{\pi} \stackrel{M}{\longrightarrow} \mathbb{Z} \oplus \mathbb{Z}$$

$$\mathbb{Z}/\ker(M)$$

Recall part of diagram from page 202

$$H_{2}(E^{2}, \dot{E}^{2}) \xrightarrow{\cong \tilde{\partial_{*}}} H_{1}(\dot{E}^{2})$$

$$\downarrow \cong f_{*} \qquad \qquad \downarrow \cong f_{*}$$

$$H_{2}(Y, Y^{1}) \xrightarrow{\cong \partial_{*}} H_{1}(Y^{1})$$

Looking at the graph of the boundary, the generator for $H_1(\dot{E}^2)$ is $T_{e_1} + T_{e_2} + T_{e_3} + T_{e_4}$ where $T_{e_1}(x) = (x,0)$, $T_{e_2}(x) = (1,x)$, $T_{e_3}(x) = (1-x,1)$, $T_{e_4}(x) = (0,1-x)$,

LOOK AT IMAGE AND FILL IN DETAILS

therefore f_* of the generators of $H_1(\dot{E}^2)$ is $f_*(T_{e_1} + T_{e_2} + T_{e_3} + T_{e_4}) = f_*(T_{e_1}) + f_*(T_{e_2}) + f_*(T_{e_3}) + f_*(T_{e_4}) = 0$.

Therefore $\partial_* = (f_*) \circ \tilde{\partial_*} f_*^{-1} = 0$. Then we have the exact sequence

$$0 \xrightarrow{\partial_*} H_1(Y^1) \cong \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{i_*} H_1(Y) \to 0$$

hence i_* is an isomorphism. Therefore we have the following computation for Y, the torus

$$H_q(Y) = 0$$
 $q \ge 2\mathbb{Z}q = 2\mathbb{Z} \oplus \mathbb{Z}q = 1\mathbb{Z}q = 0$

Now we condsider the homology of the real projective plane \mathbb{RP}^2 . Let $g: E^2 \to E^2/\sim$ relation on the boundary. Let $X=g(E^2)$ and $X^1=g(\dot{E}^2)=S^1$. Remark, we can go through the same proof from the torus involving deformation retracts, excision, and the 5-lemma: to prove $H_1(E^2, \dot{E}^2) \xrightarrow{f_*\cong} H_q(X, X^1)$ go through as before to show

$$H_q(E^2, \dot{E}^2) \xrightarrow{g_* \cong} H_q(X, X^1) = \mathbb{Z}q = 20$$
otherwise

Now look back at the long exact sequence

$$H_3(X,X^1) \longrightarrow H_2(X^1) \longrightarrow H_2(X) \longrightarrow H_2(X,X^1) \cong \mathbb{Z}H_1(X^1) \xrightarrow{\hat{\theta}_*} H_1(X) \xrightarrow{\hat{j}_*} H_1(X,X^1) \cong 0$$

Then we look at the generators

FINISH with IMAGE....

the ∂_* is multiplication by 2!

2 March 9, 2015 (Monday)

We have an exam on Wednesday. This covers chapter II sections 1-6 and chapter III sections 1-3. Overview of material

- (1) Definition of singular n-cubes: $C_n(X) = Q_n(X)/D_n(X)$ where $T: I^n \to X$ is degenerate if for one of the coordinates, T is invariant.
- (2) Boundary map $\partial_n(T) = \sum_{j=1}^n [A_j T B_j T]$. Note that $\partial_{n-1} \circ \partial n = 0$. We have n-cycles $Z_n(X) = \ker(\partial_n)$ and n-boundaries $B_n(X) = \operatorname{im}(\partial_{n+1})$.
- (3) We get the homology groups $H_n(X) = Z_n(X)/B_n(X)$ and we have the augmentation map $\varepsilon : C_n(X) \to \mathbb{Z}$ where $\tilde{Z}_0 = \ker(\varepsilon_*)$. We have $B_0(X) \subset Z_n(X)$ so we get the reduced homology $\tilde{H}_0(X) = \tilde{Z}_0(X)/B_0(X) \subset H_0(X)$.
- (4) We get homomophisms in homoloy from continuous maps $f: X \to Y$. We obtain $f_*: H_n(X) \to H_n(Y)$ for $n \ge 0$ and $f_*: \tilde{H}_0(X) \to \tilde{H}_0(Y)$. If $f,g: X \to Y$ are homotopic then there is a $F: X \times I \to I$ such that F(x,0) = f(x) and F(x,1) = g(x). Then $f_* = g_*$ on $H_n(X) \to H_n(Y)$ and $\tilde{H}_0(X) \to \tilde{H}_0(Y)$.

- (5) We say spaces X and Y are homotopic if there exists continuous functions $f: X \to Y$ and $f: Y \to X$ such that $f \circ g \simeq id_X$ and $f \circ g \simeq id_Y$. If X and *Y* are homotopy equivalent then $f_*: H_n(X) \xrightarrow{\cong} H_n(Y)$ for each $n \geq 0$.
- (6) Let $A \subseteq X$ then A is said to be a deformation retraction of X if there exists $r: X \to A$ such that r is homotopic to the identity map on X, id_X . If A is a deformation retract of X then $i_*: H_n(A) \xrightarrow{\cong} H_n(X)$ and $r_*: H_n(X) \xrightarrow{\cong} H_n(A)$. (7) Homology of a pair (X, A). We have $C_n(X, A) = C_n(X)/C_n(A)$ and
- we have $\partial_n : C_n(X,A) \to C_{n-1}(X,A)$ where $\partial_{n-1} \circ \partial_n = 0$ for all $n \geq 1$. We have the relative n-boundaries $B_n(X,A) = \operatorname{im} \partial_{n+1} \subset Z_n(X,A)$. We have the relative homology group $H_n(X, A) = Z_n(X, A)/B_n(X, A)$.
 - (8) Using the short exact sequence of chain complexes

$$0 \longrightarrow C_{\bullet}(A) \stackrel{i}{\longrightarrow} C_{\bullet}(X) \stackrel{j}{\longrightarrow} C_{\bullet}(X,A) \longrightarrow 0$$

We get the long exact sequence:

ADD SNAKING LONG EXACT SEQUENCE

(9) Let $f:(X,A)\to (Y,B)$; that is, $f:X\to Y$ where $f(A)\subseteq B$. We can apply the five lemma to get

$$H_n(A) \longrightarrow H_n(X) \longrightarrow H_n(X,A) \longrightarrow H_{n-1}(A)$$

$$\downarrow f_* \qquad \qquad \downarrow f_* \qquad \qquad \downarrow f_* \qquad \qquad \downarrow f_*$$

$$H_n(B) \longrightarrow H_n(Y) \longrightarrow H_n(Y,B) \longrightarrow H_{n-1}(B)$$

- (10) We then got the excision theorem: Let (X, A) be a pair of topological spaces and suppose $W \subseteq A$ such that $\bar{W} \subset Int(A)$. Then $i_* : H_n(X \sim W, A \sim W)$ W) $\rightarrow H_n(X, A)$ for $n \ge 0$ is an isomorphism.
- (11) Once we got this theorem, we were able to deduce the homology groups of the n-sphere. Then $S^n \subseteq E^{n+1}$, with $S^n = \{(x_1, ..., x_{n+1} : \sum_{i=1}^{n+1} (x_i)^2 = 1\}$. For $n \ge 1$ this gives

$$H_1(S^n) = \begin{cases} \mathbb{Z} & \text{if } q \in \{0, n\} \\ 0 & \text{otherwise} \end{cases}$$

- (12) From proposition 2.4, we get that $H_q(E_n, S^{n-1}) = \mathbb{Z}$ for q = n and 0 otherwise.
- (13) If $f: S^n \to S^n$ is a continuous map, define deg(f) as the integer k such
- that $f_*([1]_{\tilde{H}_n(S^n)}) = k \cdot [1]_{\tilde{H}_n(S^n)}$ (14) Suspension: If $f: S^n \to S^n$ is continuous, then we get the suspension $\Sigma f: S^{n+1} \to S^{n+1}$, we have $def(f) = deg(\Sigma f)$.

 (15) Finite regular graphs (X, X^0) where $X^0 = \{v_i\}_{i=1}^n$ and $X^1 = \{e_i\}_{j=1}^k$ we
- have $f_i:[0,1]\to \bar{e}_i\subset X^1$ where $\bar{e}_i=\{v\}\cup e_i\cup \{v'\}$ where $v\neq v'$. Then

$$H_q(X, X^0) = \begin{cases} \mathbb{Z}^k & \text{for } q = 1\\ 0 & \text{otherwise} \end{cases}$$

(16) Theorem 3.4: If (X, X^0) be a finite regular graph with P path components, n vertices, and k edges.

$$H_q(X) = \begin{cases} \mathbb{Z}^{p - (n - k)} = \mathbb{Z}^{p - \chi(X, X^0)} & \text{if } q = 1\\ \mathbb{Z}^p & \text{if } q = 0\\ 0 & \text{otherwise} \end{cases}$$

Note this implies $\tilde{H}_0(X) = \mathbb{Z}^{p-1}$. We write S^1 as a graph.

3 Meyer-Vietoris Exact Sequence

Imagine a torus, look at pieces *A* and *B* which have nonempty intersection that looks like a disjoint union of cylinders, and each subset looks like a cylinder. All pieces deformation retract to circles.

Therefore, we know the homology of A, B, and $A \cap B$. The inclusion maps

$$i: A \cap B \hookrightarrow A$$
 $j: A \cap B \hookrightarrow B$
 $k: A \hookrightarrow A \cup B$ $l: B \hookrightarrow A \cup B$

We have the induced morphisms in homology

$$i_*: H_n(A \cap B) \hookrightarrow H_n(A)$$
 $j_*: H_n(A \cap B) \hookrightarrow H_n(B)$ $k_*: H_n(A) \hookrightarrow H_n(A \cup B)$ $l_*: H_n(B) \hookrightarrow H_n(A \cup B)$

So consider maps

$$\phi_* := (i_*, j_*) : H_n(A \cap B) \to H_n(A) \oplus H_n(B) \text{ for all } n \ge 0$$

$$\psi_* := k_* - l_* : H_n(A) \oplus H_n(B) \to H_n(A \cup B)$$

where
$$\psi_*([S], [T]) = k_*([S]) - l_*([T])$$

Theorem: Let A and B be subspaces of a topological space X such that $X = \operatorname{Int}(A) \cup \operatorname{Int}(B)$. Then there exists a natural homomorphism $\Delta_* : H_n(X) \to H_{n-1}(A \cap B)$ for all $n \geq 1$ giving the following long exact sequence in homology:

$$\cdots \longrightarrow H_n(A \cap B)$$

Note that in degree 0 the sequence works in reduced homology.

Question: What do we mean by Δ_* being natural?

Given (X, A, B) and (X', A', B') and a continuous map $f : X \to X'$ such that $f(A) \subseteq A'$ and $f(B) \subset B'$. Then the following diagram commutes:

$$H_{n}(A \cap B) \xrightarrow{\phi_{*}} H_{n}(A) \oplus H_{n}(B) \xrightarrow{\psi_{*}} H_{n}(X) \xrightarrow{\Delta_{*}} H_{n-1}(A \cap B)$$

$$\downarrow f_{*} \qquad \qquad \downarrow f_{*} \times f_{*} \qquad \qquad \downarrow \downarrow$$

$$H_{n}(A' \cap B') \xrightarrow{\phi'_{*}} H_{n}(A') \oplus H_{n}(B') \xrightarrow{\Delta'_{*}} H_{n}(X') \xrightarrow{\longrightarrow} H_{n-1}(A' \cap B')$$

Proof. Let $\mathcal{U} = \{A, B\}$ be a "special" open cover. From the book, we have an isomorphism $\sigma_*: H_n(X,\mathcal{U}) \xrightarrow{\cong} H_n(X)$, the restricted chain $C_n(X,\mathcal{U})$ can be written as $C_n(X,\mathcal{U}) = C_n(A) + C_n(B) \subset C_n(X)$. Recall that we have maps on chains

$$i_{\sharp}: C_n(A \cap B) \to C_n(A)$$
 $j_{\sharp}: C_n(A \cap B) \to C_n(A)$ $k'_{\sharp}: C_n(A) \to C_n(X, \mathcal{U}) \hookrightarrow C_n(X)$ $k'_{\sharp}: C_n(B) \to C_n(X, \mathcal{U}) \hookrightarrow C_n(X)$

Then there exists a homomorphism

$$\Phi: C_n(A \cap B) \xrightarrow{i_{\sharp} \times j_{\sharp}} C_n(A) \oplus C_n(B)$$

$$\Psi: C_n(A) \oplus C_n(B) \xrightarrow{k'_{\ast} - l'_{\ast}}$$

Now consider the following complexes

$$C = (C_{\bullet} = C_{\bullet}(A \cap B), \partial_{\bullet})$$

$$D = (D_{\bullet} = C_{\bullet}(A) \oplus C_{\bullet}(B), \partial'_{\bullet} = (\partial_{\bullet}, \partial_{\bullet}))$$

$$\mathcal{E} = (E_{\bullet} = C_{n}(X, \mathcal{U}), \partial_{\bullet})$$

You can check that the following diagram has exact rows and commutes

$$0 \longrightarrow C_n(A \cap B) \xrightarrow{\Phi_n} C_n(A) \oplus C_n(B) \xrightarrow{\Psi_n} C_n(X, \mathcal{U}) \longrightarrow 0$$

$$\downarrow^{\partial_n} \qquad \qquad \downarrow^{\partial'_n} \qquad \qquad \downarrow^{\partial_n}$$

$$0 \longrightarrow C_n(A \cap B) \xrightarrow{\Phi_{n-1}} C_n(A) \oplus C_n(B) \xrightarrow{\Psi_{n-1}} C_n(X, \mathcal{U}) \longrightarrow 0$$

We have $Im(\Phi_n) = \ker \Psi_n$. Therefor we have the short exact sequence of chain complexes

$$0 \to \mathcal{C} \xrightarrow{\Phi} \mathcal{D} \xrightarrow{\Psi} \mathcal{E} \to 0$$

giving us a long exact sequence with boundary maps $\Delta_n: H_n(\mathcal{E}) \to H_{n-1}(\mathcal{C})$. Because σ_* is an isomorphism, we have the natural map.

4 March 16, 2015 (Monday)

Suppose A and B are subsets of X such that $\operatorname{int}(A) \cup \operatorname{int}(B) = X$. Let ϕ_* : $(i_*, j_*) : H_n(A \cap B) \to H_n(A) \oplus H_n(B)$ and $\psi_* = k_* - k_* : H_n(A) \oplus H_n(B) \to H_n(X)$. The for all $n \geq 1$ there is a natural isomorphism $\Delta_* : H_n(X) \to H_{n-1}(A \cap B)$ giving us the short exact sequence

$$0 \to C_n(A \cap B) \to C_n(A) \oplus C_n(B) \to C_n(X) \to 0$$

Giving us a long exact sequence

OMITTED... Add later

Moreover, if $A \cap B \neq \emptyset$ we can use reduced homology in dimension 0. **Examples:**

(1) Homology of the torus $X = S^1 \times S^1$. We take two sleeves A and B which each deformation retract to a circle, and their intersection deformation retracts of a disjoint union of two circles. Drawing out the long exact sequence, we get the part

$$0 \xrightarrow{\psi_*} H_2(X) \xrightarrow{\Delta_*} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\phi_*} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\psi_*} H_1(X) \xrightarrow{\Delta_*} \tilde{H}_0(A \cap B) \cong \mathbb{Z} \to 0$$

Recall that Δ_* is one to one, so its image is the kernel of ϕ_* . Likewise, the image of $\phi_* = \ker(\psi_*)$, and $\Delta_* : H_1(X) \to \tilde{H}_0(A \cap B)$ is onto. We must choose generators on our topological space, so $H_1(A \cap B) = \mathbb{Z}(\text{gen1}) \oplus \mathbb{Z}(\text{gen2})$. Then $\phi_*(m,n) = (m-n,m-n) \in H_1(A) \oplus H_1(B)$. Hence the kernel of ϕ_* is the image of Δ_* , so it's isomorphic to \mathbb{Z} . Then, the image of ϕ_* is the diagonal, which is the kernel of ϕ_* . Now, we look at the short exact sequence

$$0 \to H_1(A) \oplus H_1(B)/\mathrm{im}\phi_* = \ker\psi_* \xrightarrow{\psi_*} H_1(X) \xrightarrow{\Delta_*} \mathbb{Z} \to 0$$

Notice $\{(m, n) : m, n \in \mathbb{Z}\}/\{(l, l) : l \in \mathbb{Z}\}$, which is \mathbb{Z} . (observe this quotient is just \mathbb{Z}^2/\mathbb{Z}). Now we can look at

$$0 \to \mathbb{Z} \to H_1(X) to \mathbb{Z} \to 0$$

Because the term on the right is free, the sequence splits.

(2) We can use induction to find the homology groups of the spheres using overlapping overhemispheres.

Jordan-Brauer Separation Theory: (Related to the Jordan curve theorem) Let $\gamma:[0,1]\to\mathbb{R}^2$ be a simple closed curve so that $\gamma(0)=\gamma(1)$. Let $\mathcal{C}=\{\gamma(t):0\leq t\leq 1\}$. Then $\mathbb{R}^2\sim\mathcal{C}$. In homological terms, we only need to show $H_0(\mathbb{R}^2\sim\mathcal{C})\cong\mathbb{Z}^2$ or $\tilde{H}_0(\mathbb{R}^2\sim\mathcal{C})\cong\mathbb{Z}$. Consider $\mathbb{R}^2\sim\mathcal{C}$ on S^2 . Let (0,0) be the inside of the curve. Put S62 on "top of" (0,0). Using the inverse of stereographic projection, we may take the curve onto S^2 . Call it $\tilde{\mathcal{C}}$. We can show that $\tilde{H}_0(S^2\sim\tilde{\mathcal{C}})\cong\mathbb{Z}$.

Theorem(Jordan-Brauer Separation Theorem) Let $A \subset S^n$ with $n \ge 1$. and suppose A is homeomorphic to S^k for $0 \le k \le n-1$, then

$$\tilde{H}_q(S^n - A) = \begin{cases} \mathbb{Z} & q = n - k - 1 \\ 0 & q \neq n - k - 1 \end{cases}$$

For n = 2, k = 1, we have the original theorem.

Lemma 6.1 Let *Y* be a subset of *S*ⁿ that is homeomorphic to intervals I^k for $0 \le k \le n$. Then the reduced homology of $\tilde{H}_q(S^n \sim Y) = 0$ for $q \in \mathbb{N} \cup \{0\}$.

5 March 18, 2015

Jordan Brauer Separation Theorem - Continued

Lemma 6.1 Let $Y \subset S^n$ that is homeomorphic to a k-cube I^k for $0 \le k \le n$. Then $\tilde{H}_i(S^n \sim Y) = 0$ for each $i \in \mathbb{N} \cup \{0\}$. True for $Y = h(I^0) = \text{single}$ point. We have $\tilde{H}_i(S^n \sim \{pt\}) \cong \tilde{H}_i(\mathbb{R}^n) \cong 0$ for each $n \ge 0$. Assume now that if $f_j : I^j \to S^n$ are homeomorphisms onto their image $0 \le j \le k-1 < n$, then $\tilde{H}_i(S^n \sim f_j(I^j)) = 0$ for each $i \in \mathbb{N} \cup \{0\}$. Now let $h : I^k \to S^n$ be a homeomorphism onto its image. We have to show $\tilde{H}_i(S^n \sim h(I^k))$ for each $i \in \mathbb{N} \cup \{0\}$. Let $Y_0 = h([0, \frac{1}{2}] \times I^{k-1})$, $Y_1 = h([\frac{1}{2}, 1] \times I^{k-1})$, so $Y = Y_0 \cup Y_1 = h(I_k)$. Note $Y_0 \cap Y_1 = h(\{\frac{1}{2}\} \times I^{k-1})$ which is in the homeomorphic image of $I^k - 1$. Not $\tilde{H}_i(S^n \sim Y_0 \cap Y_1) = 0$ for each $i \ge 0$, by induction hypothesis. We have $Y_0, Y_1, Y, Y_0 \cap Y_1$ all closed and let $A = S^n \sim Y_0$ and $B = S^n \sim Y_1$, which are open. Note $A \cup B = S^n \sim (Y_0 \cap Y_1)$ and $A \cap B = S^n \sim (Y_0 \cup Y_1) = S^n \sim Y$. We use the Meyer-Vietoris sequence

$$\tilde{H}_k(A \cup B) \xrightarrow{\Delta_*} \tilde{H}_i(A \cap B) \xrightarrow{\phi_*} \tilde{H}_i(A) \oplus \tilde{H}_i(B) \xrightarrow{\psi_*} \tilde{H}_i(A \cup B)$$

We have $\tilde{H}_{i+1}(A \cup B) = 0$ an $\tilde{H}_i(A \cup B) = 0$, therefore ϕ_* is an isomorphism. Suppose by way of contradiction that $\exists [s] \in \tilde{H}_i(A \cap B)$ such that $[s] \neq 0$. Then $\phi_*([s]) = ((i_0)_*([s]), (i_1)_*([s])) \neq 0$ in $\tilde{H}_i(A) \oplus \tilde{H}_i(B)$.

Now fix n, by induction on k. Then $\tilde{H}_i(A)$

 $Y_{0,0} \cup Y_{0,1} = Y_0 \sim \text{k-cube so } S^n \sim Y_{0,0} \text{ and } S^n \sim Y_{0,1} \text{ are open an ... Look at page 63-65 for the proof.}$

Applications?:

6 March 20, 2015 (Friday)

Proposition: Let $A \subset S^n$ with A homeomorphic to S^{n-1} . Then write $S^n \sim A \cong X_1 \coprod X_2$ where X_1 and X_2 are two path-components of $S^n \sim A$. Then $\partial X_1 = \partial X_2$.

We are interested in finding the relationship between the fundamental group of *X* and it's first homology group.

Definition: Let *G* be a discrete group. The commutator subgroup [G, G] is the smallest subgroup of *G* that contains $\{aba^{-1}b^{-1} : a, b \in G\}$.

Theorem (group theory): Let G be a discrete group then [G,G] is a normal subgroup and G/[G,G] is abelian. Also, if $\phi:G\to A$ is a group homomorphism into an abelian group A, then $[G,G]\subset \ker\phi$.

Proof. Let $aba^{-1}b^{-1}$ and consider $g(aba^{-1}b^{-1})g^{-1}$ for some $g \in G$. This equals $gag^{-1}gbg^{-1}ga^{-1}b^{-1}b^{-1}$. This simplifies to $a'b'(a')^{-1}(b')^{-1}$ for $a'=gag^{-1}$ and $b'=gbg^{-1}$. Therefore $g[G,G]g^{-1}\subset [G,G]$, hence is normal. We know G/[G,G] is abelian since $aba^{-1}b^{-1}\mapsto 1$ under the quotient map.

Similarly, if $\phi: G \to A$ is a homomorphism with A abelian, we have $\phi(aba^{-1}b^{-1}) = A$, hence $[G,G] \subset \ker \phi$.

Let *X* be a path connected space and fix some $\{x_0\} \subset X$. We want to show there is a homomorphism $h_X : \pi_1(X, x_0) \to H_1(X)$ and moreover $\pi_1(X, x_0) / [\pi_1(X, x_0), \pi_1(X, x_0)]$.

We now define $h_X: \pi_1(X,x_0) \to H_1(X)$. Let $\alpha \in \pi_1(X,x_0)$. Suppose $f: I \to X$ is a loop based at x_0 with $[f] = \alpha$. Since $\partial f = -(A_1f - B_1f) = f(1) - f(0) = 0$, $f \in Z_1(X)$. Define $h_X(\alpha) = [f]$ where f is a loop representing α . Suppose f and g are homotopic maps, hence both representing $\alpha \in \pi_1(X,x_0)$, we want $h_X(f) = h_X(g)$. $F: I \times I \to X$ such that F(x,0) = f(x) and F(x,1) = g(x). We have $F \in C_2(X)$ since $F: I^2 \to X$. We check that $g = f + \partial F$. Then $[g] = [f + \partial F] = [f]$ in $H_1(X)$. Then h_X is well-define. Next we show that this map is infact a homomorphism. $h_X(f_1 \cdot f_2) = h_X(f_1) + h_X(f_2)$. Recall that

$$f_1 \cdot f_2 = \begin{cases} f_1(2t) & 0 \le t \le \frac{1}{2} \\ f_2(2t-1) & \frac{1}{2} \le t \le 1 \end{cases}$$

After break, we'll show $[f_1 \cdot f_2]_{H_1(X)} = [f_1]_{H_1(X)} + [f_2]_{H_1(X)}$

7 March 30, 2015 (Monday)

Today we study the relationship between $H_1(X)$ and $\pi_1(X, x_0)$ for a path connected space X.

Theorem: Fix $x_0 \in X$ in a path connected space X. Then, there is agroup homomorphism

$$h_x: \pi_1(X, x_0) \to H_1(X)$$

Moreover, h_X is surjective and its kernel is

$$[\pi_1(X, x_0), \pi_1(X, x_0)]$$

Proof. Recall for $\alpha \in \pi_1(X, x_0)$ is represented by $f_\alpha: [0,1] \to X$ with $f_\alpha(0) = f_\alpha(1) = x_0$. Then $h_X(\alpha) = [f_\alpha]$ where $f_\alpha \in Z_1(X)$ and $\partial f_\alpha = 0$. Suppose $f,g: [0,1] \to X$ with $f(0) = f(1) = g(0) = g(1) = x_0$ that both represent $\alpha \in \pi_1(X,x_0)$. Then f,g are homotopic as loops in X. So there exists $F: [0,1] \times [0,1] \to X$ with F(x,0) = f(x) and F(x,1) = g(x) for each $x \in X$. Also, $F(0,y) = x_0 = F(1,y)$ for each $y \in [0,1]$. We view $F \in Q_2(X)/D_2(X) = C_2(X)$. Then $\partial F: [0,1] \to X$ is given by $\partial F(x) = -[F(1,x) - F(0,x)] + [F(x,1) - F(x,0)] = -[T_{x_0} - T_{x_0}] + g(x) - f(x)$. Therefore $\partial F(x) + f(x) = g(x)$. Notice that the homology classes are equal; that is, $[f] = [g] \in H_1(X)$. We now show h_X preserves group multiplication. Let $\alpha, \beta \in \pi_1(X,x_0)$ with $\alpha = [f]$ and $\beta = [g]$. We have $f: [0,1] \to X$ and $g: [0,1] \to X$ with $f(0) = f(1) = x_0 = g(0) = g(1)$. Then $\alpha \cdot \beta = [g \star f]$. We set

$$g \star f(x) = \begin{cases} f(2x) & 0 \le x \le \frac{1}{2} \\ g(2x - 1) & \frac{1}{2} \le x \le 1 \end{cases}$$

We want to show $h_X([g \star f]) = h_X([g]) + h_X([f])$. We define $T : [0,1] \times [0,1] \to X$ with $T \in Q_2(X)$ by

$$T(x_1, x_2) = \begin{cases} f(x_1 + 2x_2) & x_1 + 2x_2 \le 1\\ g(\frac{x_1 + 2x_2 - 1}{x_1 + 1}) & 1 \le x_1 + 2x_2 \end{cases}$$

Then we have

$$\begin{split} \partial T(x) &= -(T(1,x) - T(0,x)) + T(x,1) - T(x,0) \\ &= -g(\frac{1+2x-1}{1+1}) + \begin{cases} f(2x) & 0 \le x \le \frac{1}{2} \\ g(2x-1) & \frac{1}{2} \le x \le 1 \end{cases} \\ &+ g(\frac{x+2-1}{x+1}) - g(x) \\ \partial T(x) &= -g(x) + g \star f(x) + g(1) - f(x) \end{split}$$

Notice $g(1) \in D_1(X)$ hence $f+g+\partial T=g\star f$ in $H_1(X)$, so $[f]+[g]=[g\star f]$ therefore $h_X([g]\star [f])=h_X([g])+h_X([f])$. Fill in the gaps that h_X is a homomorphism is surjective into $H_1(X)$ and $\ker(h_X)=[\pi_1(X,x_0),\pi_1(X,x_0)]$. You can also check that $h_X:\pi_1(X,x_0)\to H_1(X)$ is natural in the following sense: Let (X,x_0) and (Y,y_0) be path connected spaces with base points x_0 and y_0 respectively. Let $\phi:X\to Y$ be a basepoint preserving map; that is $\phi(x_0)=y_0$. Then there exists a homomorphism $\phi_*:\pi_1(X,x_0)\to\pi_1(Y,y_0)$ given by $\phi_*(f_\alpha)=\phi\circ f_\alpha$ such that the following diagram commutes:

$$\begin{array}{ccc}
\pi_1(X, x_0) & \xrightarrow{\phi_*} & \pi_1(Y, y_0) \\
\downarrow^{h_X} & & \downarrow^{h_Y} \\
H_1(X) & \xrightarrow{\phi_*} & H_1(Y)
\end{array}$$

Adjoining cells to spaces: Let X, Y be topological spaces and $A \subset Y$ a subspace. Let $f: A \to X$ by a continuous map. Define an equivalence relation on $Y \coprod X$ by $x \sim f(x)$ for any $x \in A$. We call this space X^* . This is also notated $Y \cup_f X$ in other books.

The process we described is called attaching Y to X.

Observe that Y may not always be embedded into $Y \cup_f X$. Consider Y = [0,1], $A \subset Y$ by $A = \{0,1\}$, and $X = S^2 \subset \mathbb{R}^3$. Define $f: A \to S^2$ given by f(0) = f(1) = (0,0,1). Now suppose X is fixed and let $Y = \coprod_{i=1}^k E_i^n$ for $n,k \in \mathbb{N}^+$ with $E_i^n = \{(x_i) \in \mathbb{R}^n: \sum x_i^2 \le 1\}$. Let $A = \coprod_{i=1}^n S_i^{n-1}$ where each $S_i^{n-1} \subset E_i^n$ where each $S_i^{n-1} \subset E_i^n$ with the boundary $\dot{E}_i^n = S_i^{n-1}$. The question is, how do we compute the (relative) homology groups of $Y \cup_f X$?

8 April 1, 2015 (Wednesday)

Recall $X = \coprod_{i=1}^k E_i^n$ and $Y = \coprod_{i=1}^n S_i^{n-1}$. We have $S^{n-1} \subseteq E^n$. Let X be a compact Hausdorff space. The map $f: A \to X$ defined as the restriction of a continuous function $f: S^{n-1} \to X$. We let $X^* = Y \cup_f X$ and $\pi: Y \coprod X \to X^* = X \coprod Y / \sim$. Note that π is one to one on X into X^* therefore X is a subspace X^* , but π may not be one to one on Y.

Lemma: (EXERCISE) Let (X, A) and (Y, B) be pairs of spaces where $B \subseteq A \subseteq X$ and $Y \subseteq X$. Suppose that B is a deformation retract of A, and Y is a deformation retract of X. Then the inclusion map $i : (Y, B) \hookrightarrow (X, A)$ induces an isomorphism $i_* : H_q(Y, B) \to H_q(X, A)$ in relative homology.

Proof. Trivial. This proof comes from two long exact sequences in homology and the five-lemma. \Box

Theorem: Let X^* and X be as described from above. Then

$$H_q(X^*, X) = \begin{cases} 0 & q \neq n \\ \mathbb{Z}^k & q = n \end{cases}$$

Proof. For each i we have a map $\pi_i = \pi|_{E_n^{(i)}} : (E_i^n, S_i^{n-1}) \to (X^*, X)$, thus we obtain $(\pi|_{E_n^{(i)}})_* : H_q(E_i^n, S_i^{n-1}) \to H_q(X^*, X)$. We thus obtain $H_q(X^*, X) = \bigoplus_{i=1}^k (\pi_i)_* (H_q(E_i^n, S_i^{n-1}))$.

Let $D_i^n = \{x \in \mathbb{R}^n : ||x|| \le \frac{1}{2}\} \subseteq E_i^n$. Note $S_i^{n-1} \subseteq E_i^n - D_i^n$. Let $\mathcal{D}_i = \prod_i (D_i^n) \subset X^*$. Let $a_i \in \mathcal{D}_i = \pi_i(0)$ with $0 \in D_i^n \subseteq E_i^n$ with $a_i \in \mathcal{D}_i$ Let $\mathcal{D} = \bigcup_{i=1}^k \mathcal{D}_i \subset X^*$. Let $A^0 = \bigcup_{i=1}^k \subset \mathcal{D} \subseteq X^*$. For each i with $1 \le i \le k$. We have $(\mathcal{D}_i, \mathcal{D}_i - \{a_i\}) \subseteq (X^*, X' = X^* - A^0)$, then $(\mathcal{D}, \mathcal{D} - A^0) \subset (X^*, X' = X^* - A^0)$. So by the second problem in the last problem, we have

$$H_q(\mathcal{D}, \mathcal{D} - A^0) = \bigoplus_{i=1}^k H_q(\mathcal{D}_i, (\mathcal{D} - A^0) \cap \mathcal{D}_i)$$
$$= \bigoplus_{i=1}^k H_q(\mathcal{D}_i, \mathcal{D}_i - \{a_i\})$$

We now note that $X = \pi(X)$ is a deformation retract of $X^* - A^0$. Since

$$X^* - A^0 = X^* - \bigcup_{i=1}^k \{a_i\}$$

$$= \pi(\coprod_{i=1}^k E_i^n \coprod X) - \pi(\coprod \{0\}_i \coprod \varnothing)$$

$$= \pi(\coprod_{i=1}^k (E_i^n - \{0\}) \coprod X)$$

which deforms to

$$\pi(\coprod_{i=1}^{k} S_i^{n-1} \coprod X) = X$$

So by the next lemma, the inclusion $i:(X^*,\pi(X))\to (X^*,X^*-A^0)$ induces an isomorphism $(i)_*:H_q(X^*,X)\stackrel{\cong}{\to} H_q(X^*,X^*-A^0)$. Consider the inclusion $\Phi:(\mathcal{D},\mathcal{D}-A^0)\to (X^*,X^*-A^0)$. We claim $\Phi_*:H_q(\mathcal{D},\mathcal{D}-A^0)\stackrel{\cong}{\to} H_q(X^*,X^*-A^0)$.

Let $W = X^* - \mathcal{D}$ which is open since \mathcal{D} is closed. Then

$$\begin{split} \bar{W} &= X^* - \text{Int}(\mathcal{D}) \\ &= X^* - \pi(\bigcup_{i=1}^k \text{Int}(D_i^n)) \\ &= X^* - \pi(\bigcup_{i=1}^k \{x \in \mathbb{R}^n : \|x\| < \frac{1}{2}\}) \qquad \subseteq \text{Int}(X^* - A^0) = X^* - A^0 \end{split}$$

By the excision theorem $\Phi_*: H_q(X^*-W, (X^*-A^0)-W) \to H_q(X^*, X^*-A^0)$ is an isomorphism for each $q \in \mathbb{N}$. That is $\Phi_*: H_q(\mathcal{D}, \mathcal{D}-A^0) \to H_q(X^*, X^*-A^0)$ is an isomorphism for each $q \in \mathbb{N}$.

Using these facts, $(i_*)^{-1} \circ \Phi_*$: $H_q(\mathcal{D}, \mathcal{D} - A^0) \to H_q(X^*, X)$ is an isomorphism for each $q \in \mathbb{N}$. To finish the theorem, note

$$H_q(\mathcal{D}, \mathcal{D} - A^0) = \bigoplus_{i=1}^k H_q(D_i, D_i - \{0\})$$

$$= \bigoplus_{i=1}^k H_q(E_i^n, S_i^{n-1})$$

$$= \begin{cases} 0 & q \neq n \\ \mathbb{Z}^k & q = n \end{cases}$$

Corollary: Let $X \to X^*$ where $X^* = U \bigcup_f X$ as in the previous theorem. Then $i_*: H_q(X) \to H_q(X^*)$ is an isomorphism except for possibly $q \in \{n, n-1\}$. For those values of q we have the long exact sequence

$$0 \to H_n(X) \to H_n(X^*) \to H_n(X^*, X) \to H_{n-1}(X) \to H_{n-1}(X^*) \to 0$$

Proof. For q > n we have $H_{q+1}(X^*, X) = 0$. Look at the photo for the rest of the details.

9 3 March, 2015 (Friday)

We give \mathbb{RP}^n the quotient topology from S^n .

Theorem: \mathbb{RP}^n is homeomorphic to $E_1^n \cup_f \mathbb{RP}^{n-1}$ for

$$f: \dot{E}_1^n = S^{n-1} \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \mathbb{RP}^{n-1} = S^{n-1} / \sim$$

Proof. Recall $S^n \subseteq \mathbb{R}^{n+1}$ is the set $E^N_+ \cup E^n_- \cup S^{n-1}$. When attaching cells, we view $E^n = \{(x_1, \ldots, x_n) : \sum_{i=1}^n x_i^2 = \leq 1\}$ and S^{n-1} is the boundary of E_n . Observe that E^n_+ is homeomorphic to E^n by

$$(x_1,\ldots,x_n,x_{n+1})\mapsto \left(\frac{x_1}{\sqrt{1-x_{n+1}^2}},\ldots,\frac{x_1}{\sqrt{1-x_{n+1}^2}}\right)$$

This map takes the image of S^{n-1} in E_+^n to S^{n-1} . Then, consider the diagram

$$S^{n-1} \xrightarrow{\pi_{n-1}} \mathbb{RP}^{n-1}$$

$$\downarrow \iota$$

$$E_+^n \xrightarrow{\pi_n} \mathbb{RP}^n$$

We have a map $E_+^n \coprod \mathbb{RP}^{n-1} \to \mathbb{RP}^n$ by the diagram: if $x \in E_+^n$, $\pi_n(x) \in \mathbb{RP}^n$ and if $l \in \mathbb{RP}^{n-1}$ with $\iota(l) \in \mathbb{RP}^n$. Now we chack that is $y \in S^{n-1}$, $\iota \circ \pi_{n-1}(y) = \pi_n(y) \in \mathbb{RP}^n$. Observer this map is surjective and if it's continuous, and only not 1-1 on S^{n-1} from the diagram. Since \mathbb{RP}^n is compact Hausdorff, $\mathbb{RP}^n \cong E_+^n \bigcup_f \mathbb{RP}^{n-1}$.

Definition: A **finite CW-complex** (or a **cell-complex**) is a topological space *X* with a filtration

$$\varnothing = X^{(-1)} \subseteq X^{(0)} \subseteq X^{(1)} \subseteq \cdots \subseteq X^{(n)} = X$$

where you get from the (j-1)-skeleton X^{j-1} to the j-skeleton X^{j} by attaching a finite number of j-cells

$$\coprod_{i=1}^{k_j} E_i^j$$

along the boundaries

$$\coprod_{i=1}^{k_j} S_i^{j-1}$$

via continuous maps $f_i: S_i^{j-1} o X^{(j-1)}$ such that

$$X^{(j)} = \left[\prod_{i=1}^{k_j} E_i^j \right] \bigcup_f X^{(j-1)}$$

Examples:

- (1) We get S^n from S^{n-1} by attaching the lower and upper hemispheres of S^n along S^{n-1} .
 - (2) \mathbb{RP}^n is obtained from the last theorem.

(3)

10 April 6, 2015 (Monday)

Before talking about homology with coefficients, we need tensor products.

Tensor Products: Observe that the category of abelian groups is equivalent to the category of \mathbb{Z} -modules. For \mathbb{Z} -modules A,B, we have $A \times B = \{(a,b)|a \in A \text{ and } b \in B\}$. Let $F(A \times B)$ be the free abelian group generated by the pairs (a,b). This is the collection of finite sums of the generators, or more generally

$$\{\sum m_i(a_i,b_i)|m_i\in\mathbb{Z} \text{ and all but finitely many } m_i=0\}$$

Let $R(A \times B)$ be the subgroup of $F(A \times B)$ generated by elements of the form

$$(a_1+a_2,b)+(-1)(a_1,b)+(-1)(a_2,b) \quad (a,b_1+b_2)+(-1)(a,b_1)+(-1)(a,b_2)\\ (ma,b)+(-1)m(a,b) \qquad \qquad (a,mb)+(-1)m(a,b)$$

for $a, a_1, a_2 \in A$, $b, b_1, b_2 \in B$, and $m \in \mathbb{Z}$. We define

$$A \otimes B = A \otimes_{\mathbb{Z}} B = F(A \times B) / R(A \times B)$$

We omit \mathbb{Z} from \otimes since we only look at \mathbb{Z} -modules, but in general, it's a wise idea to specify the ring your modules are over. The **simple tensors** are the elements under the image of this quotient map. They are of the form

$$\pi(1 \cdot (a,b)) = a \otimes b$$

They have the following nice properties:

$$(a_1 + a_2) \otimes b = a_1 \otimes b + a_2 \otimes b$$
$$a \otimes (b_1 + b_2) = a \otimes b_1 + a \otimes b_2$$
$$m(a \otimes b) = (ma) \otimes b = a \otimes (mb)$$

Proposition: Tensor products satisfy the following universal mapping property:

$$\begin{array}{ccc}
A \times B & \xrightarrow{\phi} \mathbb{Z} \\
\otimes \downarrow & & \\
A \otimes B
\end{array}$$

That is; for any bilinear map $\phi: A \times B \to \mathbb{Z}$ factors uniquely through $A \otimes B$. This means that there exists a unique map $\hat{\phi}: A \otimes B \to \mathbb{Z}$ such that $\phi = \hat{\phi} \circ \otimes$.

Definition: Given a chain complex $C = (C_{\bullet}, \partial_{\bullet})$, we define the **chain complex with coefficients** as

$$\mathcal{C} \otimes G = (C_{\bullet} \otimes G, \partial'_{\bullet} = \partial_{\bullet} \otimes \mathbb{1}_{G})$$

Clearly, we need to check that this is in fact a chain complex, but we also need to understand what the tensor product of morphisms actually means! We have the map $\partial_n \times 1_G : F(C_n \times G) \to F(C_{n-1} \times G)$ is defined by

$$(\partial_n \times \mathbb{1}_G) \left(m \sum_{i=1}^N (a_i, g_i) \right) = \sum_{i=1}^N (\partial_n (a_i), g_i)$$

Now, we must quotient by the induced relations $R(C_n \times G)$. I'll give one of them, but leave the rest as an exercise!

$$(\partial_n \times \mathbb{1}_G)[(c_1 + c_2, g) - (c_1, g) - (c_2, g)]$$

$$= (\partial_n (c_1 + c_2), g) + (-1)(\partial_n (c_1), g) + (-1)(\partial_n (c_2), g)$$

$$= (\partial_n (c_1) + \partial_n (c_2), g) + (-1)(\partial_n (c_1), g) + (-1)(\partial_n (c_2), g)$$

Consider the diagram

$$\{C_n \otimes G \xrightarrow{\partial'_n} C_{n-1} \otimes G\} = \{C_n \otimes G \xrightarrow{\partial_n \otimes \mathbb{1}_G} C_{n-1} \otimes G\}$$

We have the maps $\partial'_n(c \otimes g) = \partial_n(c) \otimes g$. Since

$$0 \otimes g = 0(1 \otimes g) = 1 \otimes 0 = 0$$

and

$$(\partial'_{n-1} \circ \partial'_n)(c \otimes g) = (\partial_{n-1} \circ \partial_n)(c) \otimes g = 0 \otimes g$$

for each $c \otimes g \in C_n \otimes G$, the "complex" with coefficients in G is indeed a complex! Now we can define the homology by

$$H_n(C_{\bullet} \otimes G) = \frac{Z_n(C_{\bullet} \otimes G)}{B_n(C_{\bullet} \otimes G)}$$

The exact and boundary elements are given the obvious definition; that is, the abstract definition.

Question: When does $H_n(C_{\bullet} \otimes G) = H_n(C_{\bullet}) \otimes G$. For \mathbb{Z} , this is trivial since for any \mathbb{Z} -module M, $M \otimes \mathbb{Z} = M$ (note this holds true over any ring as well). We answer this question using the universal coefficient theorem.

11 April 8, 2015 (Wednesday)

Let (X, A) be a pair of topological spaces, G and abelian group, and

$$0 \to C_{\bullet} \to D_{\bullet} \to E_{\bullet} \to 0$$

a short exact sequence of chain complexes. We form the complexes of local coefficients. Observe that in general $- \otimes_{\mathbb{Z}} G$ is only right exact; that is,

$$C_{\bullet} \otimes G \to D_{\bullet} \otimes G \to E_{\bullet} \otimes G \to 0$$

is exact. We can form $H_n(C_{\bullet} \otimes G) = H_n(A; G)$, $H_n(D_{\bullet} \otimes G) = H_n(X; G)$, and $H_n(E_{\bullet} \otimes G) = H_n(X, A; G)$, but it's not clear if a long exact sequence exists.

Claim: However, if the original short exact sequence is split, then the complex with local coefficients is exact. It becomes clear since the complex is isomorphic to

$$0 \to C_{\bullet} \to C_{\bullet} \oplus E_{\bullet} \to E_{\bullet} \to 0$$

and because $(C_{\bullet} \oplus E_{\bullet}) \otimes G = (C_{\bullet} \otimes G) \oplus (E_{\bullet} \otimes G)$, the claim becomes obvious. In this case, we can get a long exact sequence! Since $C_n(X, A)$ is still a free abelian group, we can get the desired long exact sequence

$$\cdots \xrightarrow{\delta_{k+1}} H_k(A;G) \to H_k(X;G) \to H_k(X,A;G) \xrightarrow{\delta_k} H_{k-1}(A;G) \to \cdots$$

from homological methods.

Definition Let A be an abelian group. a free resolution for A is a short exact sequence

$$0 \to R \xrightarrow{i} F \xrightarrow{\pi} A \to 0$$

where $R \subset F$ and F is a free abelian group.

Factoid: Any abelian group A has a free resolution. Notice that for the free abelian group generated from A, F(A), has elements of the form

$$\sum_{i=1}^{N} m_i[a_i] \text{ for } m_i \in \mathbb{Z} \text{ and } a_i \in A$$

Consider the homomorphism $\pi : F(a) \to A$ given by

$$\pi(\sum_{i=1}^{N} m_i[a_i]) = \sum_{i=1}^{N} m_i a_i$$

The kernel of this map is a subgroup of F(A). Then, we have the free resolution

$$0 \to R = \ker(\pi) \xrightarrow{\iota} F(A) \xrightarrow{\pi} A \to 0$$

In general, given any free resolution, $0 \to R \to F \to A \to 0$, and for G an abelian group, $-\otimes_{\mathbb{Z}} G$ is still right-exact on this sequence, but we have a tool which measures the failure for left exactness. This is called the *Tor* functor. We define it as

$$Tor_{\mathbb{Z}}^{1}(A;G) := \ker(R \xrightarrow{\iota \otimes \mathbb{1}_{G}} F)$$

Remark: Tor(A; G) is independent of the free resolution.

Theorem:(Universal Coefficient Theorem for Homology) For a chain complex C_{\bullet} , there is a short exact sequence

$$0 \to H_n(X) \otimes G \to H_n(X;G) \to Tor(H_{n-1}(X);G) \to 0$$

12 April 10, 2015

Theorem: (6.2/ Universal Coefficient Theorem) Let $(C_{\bullet}, \partial_{\bullet})$ be a chain complex of free abelian groups with corresponding homology groups $\{H_k(C_{\bullet})\}_{k \in \mathbb{N}_+}$. Then, there exists a collection of short exact sequences

$$0 \to H_n(X) \otimes G \to H_n(X;G) \to Tor(H_{n-1}(X);G) \to 0$$

Corollary: Let G be an abelian group, and (X, A) a pair of topological spaces, then we have the long exact sequence with coefficients in G:

$$\cdots \rightarrow H_{k+1}(X,A;G) \xrightarrow{\delta_{k+1}} H_k(A;G) \rightarrow H_k(X;G) \rightarrow H_k(X,A;G) \xrightarrow{\delta_k} H_{k-1}(A;G) \rightarrow \cdots$$

These groups are given by

$$H_n(X;G) \cong H_n(X) \otimes G \oplus Tor(H_n(X),G)$$

 $H_n(X,A;G) \cong H_n(X,A;G) \oplus Tor(H_n(X,A),G)$

Observe that the splitting is noncanonical:

Proposition: Let $f:(X,A) \to (Y,B)$ be a map of pairs, with corresponding homology maps $f_*: H_n(X) \to H_n(Y)$ and $f_*: H_n(X) \to H_n(Y)$. The splitting just mentioned in noncanonical.

Proof. Consider a free resolution of *G*

$$0 \to G_1 \xrightarrow{j} G_0 \xrightarrow{\tau} G \to 0$$

Dedekind? proved that this implies G_0 is a free abelian group and G_1 a subgroup of a free abelian group which is also free. Since the groups in C_{\bullet} are free, tensoring our chain complex with the short exact sequence in the hypothesis gives

$$0 \to C_n \otimes G_1 \xrightarrow{Id_{C_{\bullet}} \otimes j} C_n \otimes G_0 \xrightarrow{Id_{C_{\bullet}} \otimes \tau} C_n \otimes G \longrightarrow 0$$

$$\downarrow^{\partial_n \otimes Id_{G_1}} \qquad \downarrow^{\partial_n \otimes Id_{G_0}} \qquad \downarrow^{\partial_n \otimes Id_{G}}$$

$$0 \to C_{n-1} \otimes G_1 \xrightarrow{Id_{C_{\bullet}} \otimes j} C_{n-1} \otimes G_0 \xrightarrow{Id_{C_{\bullet}} \otimes \tau} C_{n-1} \otimes G \longrightarrow 0$$

This commuting diagram gives a short exact sequence of chain complexes giving us a long exact sequence of homology groups for the chain complexes $\{C_{\bullet} \otimes G_1, \partial_n\}$, $\{C_{\bullet} \otimes G_0, \partial'_n\}$, $\{C_{\bullet} \otimes G_1 \partial_n\}$, we have the corresponding long exact sequence

$$\cdots \xrightarrow{\delta_{q+1}} H_q(C_{\bullet} \otimes G_1) \xrightarrow{J_*} H_q(C_{\bullet} \otimes G_0) \xrightarrow{T_*} H_q(C_{\bullet} \otimes G) \xrightarrow{\delta_q} \cdots$$

Remark: If F is a free abelian gruop, and $\{C_{\bullet}, \partial_{\bullet}\}$ is a chain complex, then tensoring this chain complex yields a complex $\{C_{\bullet} \otimes F, \partial'_{\bullet}\}$ with the property $H_n(C_{\bullet} \otimes G) = H_n(C_{\bullet}) \otimes G$. Notice that this implies that our long exact sequence found in the previous proposition is a long exact sequence of free abelian groups isomorphic to

$$\cdots \xrightarrow{\delta_{q+1}} H_q(C_{\bullet}) \otimes G_1 \xrightarrow{J_*} H_q(C_{\bullet}) \otimes G_0 \xrightarrow{T_*} H_q(C_{\bullet}) \otimes G \xrightarrow{\delta_q} \cdots$$

We construct this map

$$H_q(C_{\bullet}) \otimes G \xrightarrow{\iota_*} H_q(C_{\bullet} \otimes G)$$

by sending $[f] \otimes g \mapsto [f \otimes g]$ for f a homology class and g an element of the group.

13 April 13, 2015 (Monday)

More universal coefficient theorem.

Example We have already seen

$$H_n(\mathbb{RP}^2) = \begin{cases} 0 & n \ge 2 \\ \mathbb{Z}_2 & n = 1 \\ \mathbb{Z} & n = 0 \end{cases}$$

Given $G = \mathbb{Z}/2 = \mathbb{Z}/2\mathbb{Z}$,

$$H_n(\mathbb{RP}^2; \mathbb{Z}/2) = (H_n(\mathbb{RP}^2) \otimes \mathbb{Z}/2) \oplus Tor(H_{n-1}(\mathbb{RP}^2), \mathbb{Z}/2)$$

Then

$$H_n(\mathbb{RP}^2; \mathbb{Z}/2) = \begin{cases} (0 \otimes \mathbb{Z}/2) \oplus Tor(\mathbb{Z}/2, \mathbb{Z}/2) & n = 2 \\ (\mathbb{Z}/2 \otimes \mathbb{Z}/2) \oplus Tor(\mathbb{Z}, \mathbb{Z}/2) & n = 1 \\ \mathbb{Z} \otimes \mathbb{Z}/2 \oplus Tor(\{0\}, \mathbb{Z}/2) & n = 0 \end{cases}$$

so

$$H_n(\mathbb{RP}^2; \mathbb{Z}/2) = \begin{cases} \mathbb{Z}/2 & n \in \{0,1,2\} \\ 0 & n \geq 3 \end{cases}$$

Exercise: Show Tor(G, A) = 0 for any free abelian group A. Let G be an abelian group and G_0, G_1 abelian free groups, and

$$0 \rightarrow G_1 \rightarrow G_0 \rightarrow G \rightarrow 0$$

a free resolution. A is a free abelian group, so we write $A=\bigoplus_{\alpha\in\Sigma}[\mathbb{Z}]_{\alpha}$, so for $i\in\{0,1\}$

$$G_i \otimes A = G_i \otimes \left(\bigoplus_{\alpha \in \Sigma} [\mathbb{Z}]_{\alpha} \right) = \bigoplus_{\alpha \in \Sigma} [G_i]_{\alpha}$$

Since $(- \otimes A)$ is a right exact functor,

$$\bigoplus_{\alpha \in \Sigma} G_1 \to \bigoplus_{\alpha \in \Sigma} G_0 \to \bigoplus_{\alpha \in \Sigma} G \to 0$$

is an exact sequence. Then,

$$\mathit{Tor}_1(G,A) = \ker \left\{ igoplus_{lpha \in \Sigma} G_1
ightarrow igoplus_{lpha \in \Sigma} G_0
ight\}$$

Hence $Tor_1(G, A) = 0$.

For the trivial topological space $X = \{*\}$ and G an abelian group,

$$H_n(X,G) = \begin{cases} (H_n(X) \otimes G) \oplus Tor(H_{n-1}(*),G) & n \ge 1\\ (\mathbb{Z} \otimes G) \oplus Tor(0,G) & n = 0 \end{cases}$$
$$= \begin{cases} 0 & n \ge 1\\ G & n = 0 \end{cases}$$

Cohomology! Given a chain complex $(C_{\bullet}, \partial_{\bullet})$ and an abelian group G, we form a cochain complex $(C^{\bullet}, \delta^{\bullet})$ as follows: Given a fixed n, let $f_1, f_2 \in Hom(C_n, G)$. Define $f_1 + f_2$ as

$$(f_1 + f_2)(l) = f_1(l) + f_2(l)$$

for $l \in C_n$. It is a quick exercise to show that the additive structure gives an abelian group structure on $Hom(C_n, G)$; denote it by C^n . Consider the following diagram:

$$\cdots \xrightarrow{\partial_{n+2}} C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots$$

Observe that composition of ψ with ∂_n gives a map $C_n \to G$. It's a quick exercise to show this defines a group homomorphism $\delta^{n-1}: C^{n-1} \to C^n$. Because $(\delta^n \circ \delta^{n-1})(\psi) = \psi \circ (\partial_n \circ \partial_{n+1}) = 0$, the induced maps are differentials. Therefore, we can rightly give $(C^{\bullet}, \delta^{\bullet})$ the name of a **cochain complex**. Notice that the indices go up in index; ie, we have the diagram

$$\cdots \xrightarrow{\delta^{n-2}} C^{n-1} \xrightarrow{\delta^{n-1}} C^n \xrightarrow{\delta^n} C^{n+1} \xrightarrow{\delta^{n+1}} \cdots$$

Definition: Given a cochain complex $(C^{\bullet}, \delta^{\bullet})$, we define the **cohomology** of it as

$$H^{n}(C^{\bullet}) = \frac{\ker\{\delta^{n}: C^{n} \to C^{n+1}\}}{\operatorname{im}\{\delta^{n-1}: C^{n-1} \to C^{n}\}} = \frac{Z^{n}}{B^{n}}$$

We call Z^n and B^n the **n-cocycles** and **n-coboundaries**, respecitively.

14 April 15, Wednesday

Given a topological space X with a subspace A, and G an abelian group, we have the singular chain complexes $(C_{\bullet}(X), \partial_{\bullet}), (C_{\bullet}(A), \partial_{\bullet}), \text{ and } (C_{\bullet}(X, A), \partial_{\bullet}).$ Dualizing these complexes with $\text{Hom}_{\mathbb{Z}}(-, G)$ gives the cochain complexes $(C^{\bullet}(A; G), \delta^{\bullet}), (C^{\bullet}(X; G), \delta^{\bullet}), \text{ and } (C^{\bullet}(X, A; G), \delta^{\bullet})$ where

$$C^{n}(A;G) = \operatorname{Hom}(C_{n}(A),G)$$

$$C^{n}(X;G) = \operatorname{Hom}(C_{n}(X),G)$$

$$C^{n}(X,A;G) = \operatorname{Hom}(C_{n}(X,A),G)$$

We have the corresponding cohomology groups

$$H^{n}(C^{\bullet}(A;G)) = \frac{Z^{n}(A;G)}{B^{n}(A;G)}$$
$$H^{n}(C^{\bullet}(X;G)) = \frac{Z^{n}(X;G)}{B^{n}(X;G)}$$
$$H^{n}(C^{\bullet}(X,A;G)) = \frac{Z^{n}(X,A;G)}{B^{n}(X,A;G)}$$

Given three cochain complexes $(C^{\bullet}, \delta^{\bullet})$, $(D^{\bullet}, \delta^{\bullet})$, and $(E^{\bullet}, \delta^{\bullet})$, and morphisms $f^{\bullet}: C^{\bullet} \to D^{\bullet}$ and $g^{\bullet}: D^{\bullet} \to E^{\bullet}$ such that the following diagram of exact sequences commutes

we can apply the same methodology as before to get the long exact sequence

$$0 \longrightarrow H^{0}(E^{\bullet}) \longrightarrow H^{0}(D^{\bullet}) \longrightarrow H^{0}(C^{\bullet}) >$$

$$\stackrel{\wedge}{\longrightarrow} H^{1}(E^{\bullet}) \longrightarrow H^{1}(D^{\bullet}) \longrightarrow H^{1}(C^{\bullet}) >$$

$$\stackrel{\wedge}{\longrightarrow} H^{2}(E^{\bullet}) \longrightarrow H^{2}(D^{\bullet}) \longrightarrow H^{2}(C^{\bullet}) >$$

$$\stackrel{\wedge}{\longrightarrow} H^{2}(D^{\bullet}) \longrightarrow H^{2}(C^{\bullet}) >$$

of cohomology groups. Hence we have the long exact sequence

$$0 \longrightarrow H^{0}(C^{\bullet}(X,A;G)) \longrightarrow H^{0}(C^{\bullet}(X;G)) \longrightarrow H^{0}(C^{\bullet}(A;G)) \longrightarrow H^{0}(C^{\bullet}(A;G)) \longrightarrow H^{1}(C^{\bullet}(X,A;G)) \longrightarrow H^{1}(C^{\bullet}(X;G)) \longrightarrow H^{1}(C^{\bullet}(A;G)) \longrightarrow H^{1}(C^{\bullet}(X;G)) \longrightarrow H^{1}(C^{\bullet}(A;G)) \longrightarrow H^{1}(C^{\bullet}(A;G)$$

on relative pairs. These details are left for the reader!

15 April 17, Friday

Proposition: For a fixed abelian group *G*, and a split short exact sequence

$$0 \to F \xrightarrow{i} H \xrightarrow{\pi} K \to 0$$

applying the functor $\operatorname{Hom}(-,G)$ preserves split exactness; that is, the following sequence is exact

$$0 \to \operatorname{Hom}(K,G) \to \operatorname{Hom}(H,G) \to \operatorname{Hom}(F,G) \to 0$$

Corollary: For each $n \ge 0$, and for any abelian group G, and any pair of topological spaces (X, A), the following sequence is exact:

$$0 \to \operatorname{Hom}(C_n(X,A),G) \to \operatorname{Hom}(C_n(X),G) \to \operatorname{Hom}(C_n(A),G) \to 0$$

This implies we have a split exact sequence of cochain complexes

$$0 \to C^{\bullet}(X, A; G) \to C^{\bullet}(X; G) \to C^{\bullet}(A; G) \to 0$$

Proposition: Note if $f:(X,A)\to (Y,B)$ is a map of pairs, we obtain cochain maps

$$C^{\bullet}(A;G) \to C^{\bullet}(B;G)$$

$$C^{\bullet}(X;G) \to C^{\bullet}(Y;G)$$

$$C^{\bullet}(X,A;G) \to C^{\bullet}(Y,A;G)$$

for a fixed abelian group *G*. Then we have the following diagram useful for the five lemma

$$H^{k-1}(C^{\bullet}(B;G)) \xrightarrow{\Delta^{k-1}} H^{k}(C^{\bullet}(Y,B;G) \longrightarrow H^{k}(C^{\bullet}(Y;G)) \xrightarrow{\Delta^{k}} \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H^{k-1}(C^{\bullet}(A;G)) \xrightarrow{\Delta^{k-1}} H^{k}(C^{\bullet}(X,A;G) \longrightarrow H^{k}(C^{\bullet}(X;G)) \xrightarrow{\Delta^{k}} \cdots$$

$$\cdots \xrightarrow{\Delta^{k}} H^{k}(C^{\bullet}(B;G)) \longrightarrow H^{k-1}(C^{\bullet}(Y,B;G))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\cdots \xrightarrow{\Delta^{k}} H^{k}(C^{\bullet}(A;G)) \longrightarrow H^{k-1}(C^{\bullet}(X,A;G))$$

Definition: Now we want to capture homotopic spaces under cochain morphisms. Given a map of cochain complexes $f^{\bullet}: C^{\bullet} \to D^{\bullet}$, we define a **cochain homotopy** of cochain complexes by the following commutative diagram

$$\cdots \xrightarrow{\delta^{k-2}} C^{k-1} \xrightarrow{\delta^{k-1}} C^{k} \xrightarrow{\delta^{k}} C^{k+1} \xrightarrow{\delta^{k}} \cdots$$

$$s^{k-1} \xrightarrow{f^{k-1}} f^{k} \xrightarrow{s^{k+1}} f^{k+1} \xrightarrow{s^{k+1}} s^{k+1} \xrightarrow{s^{k+1}} \cdots$$

$$\cdots \xrightarrow{\delta^{k-2}} D^{k-1} \xrightarrow{\delta^{k-1}} D^{k} \xrightarrow{\delta^{k}} D^{k+1} \xrightarrow{\delta^{k}} \cdots$$

with the condition

$$f^k = \delta^{k-1} \circ s^{k-1} + s^{k+1} \circ \delta^k$$

Definition: We say cochain maps $f^{\bullet}, g^{\bullet}: C^{\bullet} \to D^{\bullet}$ are homotopic if for each k

$$f^k - g^k = \delta^{k-1} \circ s^{k-1} + s^{k+1} \circ \delta^k$$