DTC	P0442	EVAPORATIVE EMISSION CONTROL SYSTEM LEAK DETECTED (SMALL LEAK)
DTC	P0455	EVAPORATIVE EMISSION CONTROL SYSTEM LEAK DETECTED (GROSS LEAK)
		•
DTC	P0456	EVAPORATIVE EMISSION CONTROL SYSTEM LEAK DETECTED (VERY SMALL LEAK)

CIRCUIT DESCRIPTION

The circuit description can be found in the EVAP INSPECTION PROCEDURE (see page 05-822).

INSPECTION PROCEDURE

Refer to the EVAP INSPECTION PROCEDURE (see page 05-822).

MONITOR DESCRIPTION

The ECM tests the Evaporative Emissions (EVAP) system using the fuel tank pressure sensor, Canister Close Valve (CCV), and EVAP VSV. The ECM closes the EVAP system and creates negative pressure (vacuum) into it. The ECM then monitors the internal pressure using the fuel tank pressure sensor (refer to the Leak Check graphic).

P0442, P0455 and P0456

A leak in the evaporative emission system prompts the ECM to set DTC P0442, P0455 or P0456.

The ECM checks if the EVAP has leaks. First, the ECM opens the EVAP VSV while the CCV is closed. After a sufficient amount of time has passed, a high negative pressure(vacuum) will develop in the fuel tank as air is drawn into the intake manifold. The EVAP VSV is then closed. The ECM then monitors the pressure increase (loss of vacuum) in the fuel tank. If the pressure rises beyond a specified amount, the ECM determines that the system has a leak, turns on the MIL and outputs a DTC.

The ECM has separate DTCs for small and large leaks:

- (1) DTC P0442 is set when the internal fuel tank pressure has a large increase and the EVAP system has a small leak.
- (2) DTC P0455 is set when the EVAP system has a very large leak. The ECM tries to create negative pressure (vacuum) in the fuel tank by opening the EVAP VSV while the CCV is closed. However, the fuel tank pressure does not decrease beyond a specified threshold.
- (3) DTC P0456 is set when the internal fuel tank pressure increases slightly and the EVAP system has a very small leak.

DIAGNOSTICS – SFI SYSTEM (1MZ–FE/3MZ–FE)

DTC No.	DTC Detection Condition	Trouble Area
P0442 P0455 P0456	 Cold engine start. EVAP VSV has been operated and turned OFF, sealing negative pressure (vacuum) in system. ECM begins to monitor fuel tank pressure increase and one of the following occurs (2 trip detection logic): (a) Rapid, sharp increase in pressure occurs, indicating small leak in EVAP system. DTC P0442 is set. (b) Negative pressure (vacuum) is not strong enough, indicating large hole in EVAP system. DTC P0455 is set. (c) Increase in pressure above expected amount occurs, indicating small leak in EVAP system. DTC P0456 is set. 	Vacuum hose has cracks, holes, or is blocked, damaged or disconnected Fuel tank cap incorrectly installed Fuel tank cap has cracks or is damaged Open or short in vapor pressure sensor circuit Vapor pressure sensor Open or short in EVAP VSV circuit EVAP VSV Open or short in CCV circuit CCV Fuel tank has cracks, holes, or is damaged Charcoal canister has cracks, holes, or is damaged Fuel tank over fill check valve cracks, or is damaged ECM

MONITOR STRATEGY

Required sensors / components (Main)	CCV, EVAP canister, EVAP hose, Fuel cap, Fuel tank and Purge VSV	
Required sensors / components (Related)	ECT, FTP, IAT, MAF and VSS (Vehicle Speed Sensor)	
Frequency of operation	Once per driving cycle	
Duration	Within 90 seconds	
MIL operation	2 driving cycles	
Sequence operation	None	

TYPICAL ENABLING CONDITIONS

P0442, P0455 and P0456:

The monitor will run whenever the following DTCs are not present	See page 05–507
Altitude	Below 8,000 ft (2,400 m)
Battery voltage	11 V or more
FTP sensor	Not detected
IAT at engine start – ECT at engine start	-7 to 11.1°C (-12.6 to 20°F)
EVAP VSV and CCV	Not operated by scan tool
EVAP purge duty cycle	6 % or more (varies with MAF)
Refuel	Not refueled with engine running
EVAP pressure	–1.7 kPa (12.75 mmHg) or more

P0456 (EVAP 0.02 inch leak):

ECT at engine start	4.4 to 32°C (40 to 90°F)	
IAT at engine start	4.4 to 32°C (40 to 90°F)	
IAT	4.4°C (40°F) or more	
Vehicle speed Steady speed		
Time after engine start Below 50 minutes		
EVAP pressure change	Minimum change (driving on fairy smooth road)	
Fuel tank level	Below 90 %	
0.04 inch leak	Not detected	
CCV malfunction	Not detected	
Vehicle speed	Below 130 km/h (81.25 mph)	
EVAP VSV malfunction	Not detected	

P0455 and P0442 (EVAP gross leak, EVAP 0.04 inch leak):

ECT at engine start	4.4 to 35°C (40 to 95°F)
IAT at engine start	4.4 to 35°C (40 to 95°F)
IAT	4.4°C (40°F) or more
Vehicle speed change	Steady speed
Time after engine start	Below 50 minutes
Fuel tank level	Below 90 %

TYPICAL MALFUNCTION THRESHOLDS

P0456 (EVAP 0.02 inch leak):

Both of the following conditions A and B are met	-
A. FTP changes for 5 seconds when FTP is –2.27 kPa (–17 mmHg)	0.07 kPa (0.5 mmHg) or more
B. FTP changes for 5 seconds when FTP is –2.67 kPa (–20 mmHg)	0.07 kPa (0.5 mmHg) or more

P0442 (EVAP 0.04 inch leak):

Both of the following Conditions A and B are met	-
A. FTP changes for 5 seconds when FTP is –2.67 kPa (–20 mmHg)	0.16 kPa (1.2 mmHg) or more
B. FTP changes for 5 seconds when FTP is –2.27 kPa (–17 mmHg)	0.16 kPa (1.2 mmHg) or more

P0455 (EVAP gross leak):

FTP when vacuum introduction completed	-0.933 kPa (-7 mmHg) or more

MONITOR RESULT

Refer to page 05-516 for detailed information.

The test value and test limit information are described as shown in the following table. Check the monitor result and test values after performing the monitor drive pattern (see page 05–518).

- TID (Test Identification Data) is assigned to each emissions–related component.
- TLT (Test Limit Type):
 - If TLT is 0, the component is malfunctioning when the test value is higher than the test limit.
 - If TLT is 1, the component is malfunctioning when the test value is lower than the test limit.
- CID (Component Identification Data) is assigned to each test value.
- Unit Conversion is used to calculate the test value indicated on generic OBD II scan tools.

TID \$02: EVAP system – LEV II Vacuum monitor

TLT	CID	Unit Conversion	Description of Test Data	Description of Test Limit
1	\$01	Multiply by 0.183 (mmHg)	Test value of EVAP VSV stuck close: Determined by fuel tank pressure change during vacuum introduction	Malfunction criteria for EVAP VSV stuck closed
0	\$02	Multiply by 0.0655 (seconds)	Test value of EVAP VSV stuck open: Determined by duration that fuel tank pressure is higher than criteria	Malfunction criteria for EVAP VSV stuck open
0	\$03	Multiply by 0.0655 (seconds)	Test value of canister closed valve (CCV): Determined by duration that fuel tank pressure is lower than criteria	Malfunction criteria for Canister Closed Valve (CCV)
0	\$04	Multiply by 0.0458 (mmHg)	Test value 0.04 inch leak: Determined by fuel tank pressure change	Malfunction criteria for 0.04 inch leak
0	\$05	Multiply by 0.0458 (mmHg)	Test value 0.02 inch leak: Determined by fuel tank pressure change	Malfunction criteria for 0.02 inch leak