

Definice

- RAID = Redundant Array of Inexpensive / Independent Disks (vícenásobné pole levných / nezávislých disků)
- metoda zabezpečení dat při selhání pevného disku
- ukládání dat na více disků, kdy jsou data při selhání některého z nich zachráněna

TYPY DISKOVÝCH POLÍ

- zabezpečení závisí na zvoleném typu pole
- typy jsou označovány čísly
 - RAID 0
 - RAID 1
 - RAID 5
 - RAID 6
 - a další...

- Používá se převážně v místech, kde jsou cenná data (servery)
- V ŽÁDNÉM PŘÍPADĚ NENAHRAZUJE ZÁLOHOVÁNÍ DAT !!!

- není vlastně skutečný RAID:
 - žádné redundantní informace
 - žádná ochrana uložených dat
 - při poruše členu pole dochází ke ztrátě dat
- kapacita = součet všech členů
- Realizuje se dvěma způsoby:
 - Zřetězení = linear
 - Prokládání = stripping
 - výhoda vyšší rychlost

RAID 0 – realizace

- Zřetězení
 - postupné ukládání na několik disků (zaplní 1., 2.,)
- výhoda:
 - zvětšení kapacity kdykoliv přidáním členu
 - při poruše nepřijdete o všechna data

RAID 0 - realizace

- Prokládání
 - data jsou ukládána cyklicky střídavě
 - stejně velké části
- výhoda:
 - Zrychlení čtení a zápisu dat než u RAID 1

RAID 0 - realizace

- Zrcadlení (mirroring)
 - nejjednodušší, efektivní
 - druhý disk zrcadlí tatáž data
 - při poruše 1 disku lze data čerpat z kopie (o žádná nepřijdete)
 - teoreticky se může zvýšit rychlost čtení a snížit odezva (záleží na řadiči)
 - zápis může být pomalejší (data na 2 HDD)

- vyžaduje minimálně 3 členy pole (2+1 disk)
- data se zapisují postupně na disky a na ten poslední se zapíše parita
- výhodou je paralelní přístup k datům (větší blok dat je rozprostřen mezi více disků) = větší rychlost čtení
- odolný vůči výpadku 1 disku (paritní nebo datový)

nižší rychlost zápisu (výpočet a uložení paritní informace)

- obdoba pole RAID 5
 - používá 2 paritní disky (obsahují samoopravné kódy)
 - na každém je parita vypočtena jiným způsobem
 - kvůli přetížení paritních disků jsou i zde paritní data uložena střídavě na ostatní disky
 - výhodou je odolnost proti výpadku 2 disků
 - nevýhodou je pomalejší zápis

datatechlab.com A2 **A**3 **A**1 Ap Aq **B**1 **B**2 Bq **B**3 Bp C₁ Cp Cq C2 **C**3 D1 D2 D3 Dp Dq 0 disc 1 3 4 7 disc disc disc disc **E**3 Eq E1 **E**2 Ep

UKLÁDÁNÍ DAT DO RAID

- Softwarově
 - Zápis obsluhuje operační systém
 - Nejlevnější řešení
 - Nízká rychlost
- Hardwarově
 - nedostatky odstraněny pomocí řadiče ten se stará o RAID a CPU není tolik zatěžován
 - pozor, některé levné řadiče přesto mohou být řízeny softwarově!

RAID – PORUCHA DISKU

- pokud jeden člen (disk) pole selže, dostane se pole do tzv. degradovaného stavu
 - výkon je nižší, ale pole stále funguje a všechna data jsou k dispozici
- Průběh opravy:
 - technik vymění disk za nový
 - začíná rekonstrukce pole (údaje jsou dopočítány a zapsány na nový disk)
 - po rekonstrukci je pole synchronizováno a funguje jako dříve

SAS 5G8 600GB 108

SAS 6G6

SAS 6G0 600GB 10k

KOMBINOVANÁ DISKOVÁ POLE

- pro lepší zabezpečení lze pole kombinovat
 - např. RAID 1 + 0 kombinuje RAID 0 a RAID 1
 - zrcadlení (Mirroring) zvyšuje zabezpečení
 - prokládání (Stripping) zvyšuje rychlost
 - dražší, ale poskytuje vysoký výkon a zabezpečení

KOMBINOVANÁ DISKOVÁ POLE

RAID 50 RAID 5+0 RAID 0 RAID 5 RAID 5 А3 A1 A2 $A_{\!\scriptscriptstyle D}$ Α4 Aρ B2 C2 Dp Вр В3 В4 C1 C3 C4 D2 D3 D4 Dp D1 Disk 1 Disk 2 Disk 0 Disk 3 Disk 4 Disk 5

VYUŽITÍ RAID – NAS

NAS = Network Attached Storage

VYUŽITÍ RAID – NAS

