Работу выполнил Просвирин Кирилл, 712гр.

2 марта 2019 г., 9 марта 2019 г.

Маршрут IX

под руководством А.А. Казимирова

Лабораторная работа № 4.5.2

Интерференция лазерного излучения

Цель работы: исследовать зависимость видности интерференционной картины от разности хода интерферирующих лучей и от их поляризации.

В работе используется: Не-Ne лазер, интерферометр Майкельсона с подвижным зеркалом, фотодиод с усилителем, осциллограф C1-76, поляроид, линейка.

1. Теоретическая справка

Гелий-неоновый лазер

Схема лазера приведена на рис. 1. Газоразрядная трубка Т наполнена смесью гелия и неона. Торцы трубки закрыты плоскопараллельными стеклянными или кварцевыми пластинками П и П', установленными под углом Брюстера к оси трубки. Вследствие этого лазер генерирует линейно поляризованное излучение. Для излучения, распространяющегося вдоль оси интерферометра, наступает резонанс,

Рис. 1: Схема лазера

если на длине интерферометра L укладывается целое число m полуволн световых колебаний $L=m\lambda_m/2,$ что соответствует частотам

$$f_m = \frac{c}{\lambda_m} = \frac{mc}{2L},\tag{1}$$

где L — длина резонатора, m — целое число. Тогда можно сформулировать условие на разность частот излучения

$$\nu = f_{m+1} - f_m = \frac{c}{2L}. (2)$$

Таким образом, лазер будет генерировать сразу несколько световых волн с различными частотами. Каждую такую волну называют модой.

Также стоит отметить, что вследствие тепловых флуктуаций длина резонатора меняется, в результате чего моды «переползают» с одного края контура на другой, там исчезают, а на другом краю рождаются новые. Это приводит к медленным изменениям амплитуд колебаний в лазерных модах и числа самих мод.

Видность интерференционной картины.

Если в плоскости наблюдения сходятся под малым углом φ две плоских волны с длиной волны λ_0 , то наблюдается интерференционная картина в виде последовательности тёмных и светлых полос с расстоянием между полосами

$$\Delta x = \frac{\lambda_0}{\varphi}.\tag{3}$$

Для описания чёткости интерференционной картины в некоторой точке введен параметр видности γ :

$$\gamma = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},\tag{4}$$

где I_{max} и I_{min} — максимальная и минимальная интенсивности света интерференционной картины вблизи выбранной точки. Параметр γ меняется в пределах от 0 (полное исчезновение интерференционной картины) до 1 (наиболее чёткая картина).

Видность интерференционной картины зависит от:

1. Отношения амплитуд интерферирующих волн. Пусть в плоскости наблюдения интерферируют две волны с амплитудами A_m и B_m . Тогда интенсивность света в этой точке

$$I_m = A_m^2 + B_m^2 + 2A_m B_m \cos k_m l. (5)$$

Замечаем, что $I_{max}=(A_m+B_m)^2$, а $I_{min}=(A_m-B_m)^2$. Тогда, вводя параметр $\delta=B_m^2/A_m^2$, находим

$$\gamma_1 = \frac{2\sqrt{\delta}}{1+\delta},\tag{6}$$

2. Спектрального состава света и геометрической разности хода. Здесь без вывода примем на веру, что функция, которая описывает эту зависимость имеет вид

$$\gamma_2(l) = \frac{\sum_{n=1} A_n^2 \cos\left(\frac{2\pi\Delta\nu nl}{c}\right)}{\sum_{n=1} A_n^2},\tag{7}$$

где l — разность хода интерферирующих лучей, A_n^2 — интенсивность мод.

3. **Поляризации**. Если обе волны линейно поляризованы, а угол между плоскостями их поляризации равен β , то в последнем члене формулы (5) появится сомножитель $\cos \beta$

$$\gamma_3 = |\cos \beta|. \tag{8}$$

Из вышесказанного следует, что полная зависимость видности от угла между плоскостями поляризации интерферирующих волн, отношения их интенсивностей и разности хода определяется выражением

$$\gamma = \gamma_1 \gamma_2 \gamma_3. \tag{9}$$

2. Экспериментальна установка

Экспериментальная установка представляет собой интерферометр Майкельсона, смонтированный на вертикально стоящей плите. (рис. 2) Источником света служит гелий-неоновый лазер $(\lambda_0 = 632.8 \text{ нм})$. Луч лазера отражается от зеркала З и проходит призму полного внутреннего отражения ПФ (параллелепипед Френеля), на выходе из которой он имеет поляризацию, близкую к круговой. Далее луч света делится диагональной плоскостью делительной призмы ПД на два луча. Интенсивность света регистрируется фотодиодом Ф, свет на

Рис. 2: Схема установки

которой попадает через узкую щель в центре экрана. Щель ориентируется параллельно интерференционным полосам.

Рис. 3: Осциллограмма сигналов Ф

Осциллограммы сигналов фотодиода приведены на рис 3. Осциллограф используется для регистрации следующих сигналов: фоновой засветки (линия 0 — перекрыты оба луча 1 и 2); интенсивности света одного из пучков (линии 1 или 2 — перекрыт луч 2 или 1); максимума и минимума интенсивности интерференционной картины (открыты оба луча). При этом параметр δ , необходимый для расчёта γ_1 в формуле (7), определяется отношением

$$\delta = \frac{h_1}{h_2} \quad \left(\text{или } \frac{h_2}{h_1}\right). \tag{10}$$

Видность интерференционной картины рассчитывается по формуле:

$$\gamma = \frac{h_4 - h_3}{h_4 + h_3}. (11)$$

Измерив величины h_1, h_2, h_3 и h_4 , можно рассчитать γ и γ_1 , а затем определить видность при данной разности хода l для угла между плоскостями поляризации лучей $\beta = 0$ ($\gamma_3 = 1$):

$$\gamma_1(l) = \frac{\gamma}{\gamma_1};\tag{12}$$

или при $l=0, (\gamma_2=1)$ для известного угла β :

$$\gamma_3(|\cos\beta|) = \frac{\gamma}{\gamma_1}.\tag{13}$$

3. Измерения

1. Исследуем зависимость видности интерференционной картины от угла β поворота поляроида П1 при нулевой разности хода ($\gamma_2 = 1$). Для этого измерим величины h_1, h_2, h_3 и h_4 ,на экране осциллографа. Результаты измерений занесем в таблицу 1. Используя формулы (6), (10), (11), (13) рассчитаем коэффициент γ_3 .

β ,°	β, рад	h_1	h_2	h_3	h_4	δ	γ	γ_1	γ_3	$\cos \beta$
90	1,57	0,5	1,3	1,4	2,2	0,38	0,22	0,90	0,25	-0,00
80	1,40	0,4	1,3	1,4	2	0,31	0,18	0,85	0,21	0,17
70	1,22	0,4	1,3	1,3	2,2	0,31	0,26	0,85	0,30	0,34
60	1,05	0,6	1,2	1,1	2,8	0,50	0,44	0,94	0,46	0,50
50	0,87	1,2	1,3	1,1	4,1	0,92	0,58	1,00	0,58	0,64
40	0,70	1,6	1,3	1	4,7	1,23	0,65	0,99	0,65	0,77
30	0,52	2,9	1,3	1,5	6,8	2,23	0,64	0,92	0,69	0,87
20	0,35	3,2	1,1	1,6	7	2,91	0,63	0,87	0,72	0,94
10	$0,\!17$	2,7	1,1	1,3	6,4	2,45	0,66	0,91	0,73	0,98
0	0,00	2,3	1,1	1,1	5,7	2,09	0,68	0,94	0,72	1,00

Таблица 1: Измерения в зависимости от угла β

2. Построим график $\gamma_3(|\cos\beta|)$ и сравним его с теоретической зависимостью (13).

Рис. 4: График зависимости $\gamma_3(|\cos\beta|)$

3. Исследуем зависимость видности от разности хода между лучами. Для этого установите поляроид $\Pi 1$ в положение, в котором интерференционная картина видна наиболее чётко ($\alpha=0^\circ,\gamma_3=1$). Результаты измерений занесем в таблицу 2.

x, cm	h_1	h_2	h_3	h_4	δ	γ	γ_1	γ_2
9	2,4	0,8	1,4	4,6	0,33	0,53	0,87	0,62
11	2,2	2	1,2	7	0,91	0,71	1,00	0,71
13	2,2	1,7	1	6,5	0,77	0,73	0,99	0,74
15	2,1	1,6	0,8	6,6	0,76	0,78	0,99	0,79
18	2,1	0,8	1	4,8	0,38	0,66	0,89	0,73
20	2,1	0,5	1,2	4	0,24	0,54	0,79	0,68
22	2,2	2,8	2	8	1,27	0,60	0,99	0,60
24	2,2	1	1,8	4,5	0,45	0,43	0,93	$0,\!46$
26	2,6	1,6	2,8	5,6	0,62	0,33	0,97	0,34
28	2,4	0	2,4	2,6	0,00	0,04	1,00	0,04
34	2,5	3,2	5,5	5,8	1,28	0,03	0,99	0,03
40	2,8	0	2,7	2,8	0,00	0,02	1,00	0,02
44	2,8	2,5	4,6	5,8	0,89	0,12	1,00	0,12
50	3	0,6	3,2	3,8	0,20	0,09	0,75	0,11
54	2,8	0	2,7	3	0,00	0,05	1,00	0,05
58	2,6	1,2	4	4,7	0,46	0,08	0,93	0,09
60	3,2	2	4,8	5,7	0,63	0,09	0,97	0,09
64	2,6	3,8	6	6,5	1,46	0,04	0,98	0,04
66	2,6	3,6	5,5	6,8	1,38	0,11	0,99	0,11
68	2,6	2,6	4,2	6,2	1,00	0,19	1,00	0,19
70	2	2	2,8	4,6	1,00	$0,\!24$	1,00	$0,\!24$
72	2	1,5	2	4,5	0,75	0,38	0,99	$0,\!39$
74	2	1,2	1,7	4,4	0,60	$0,\!44$	0,97	$0,\!46$
76	2	1,6	1,5	5,5	0,80	$0,\!57$	0,99	$0,\!57$
78	2	1,6	1	6	0,80	0,71	0,99	0,72
80	2	0,7	0,9	4,2	0,35	0,65	0,88	0,74
82	2	1,4	1	5,5	0,70	0,69	0,98	0,70
84	2	0,5	1,1	3,7	0,25	$0,\!54$	0,80	0,68
86	2	1,6	1,5	5,4	0,80	$0,\!57$	0,99	0,57
88	2	0,8	1,3	4,9	0,40	0,58	0,90	0,64

Таблица 2: Измерения в зависимости от разности хода

Построим график зависимости видности $\gamma_2(x)$ от координаты блока Б2.

Рис. 5: График зависимости видности $\gamma_2(x)$

4. Обработка

По полученному графику определим примерный размер резонатора лазера:

$$L = 80 \text{ cm} - 15 \text{ cm} = 65 \text{ cm}$$

Тогда межмодовое расстояние равно:

$$\Delta \nu = rac{3 \cdot 10^8 \text{ м/c}}{2 \cdot 0.65 \text{ м}} = 2.3 \cdot 10^8 \text{ } \Gamma \text{ц}$$

Полуширина первого максимума на половине высоты:

$$l_{1/2} = 25 \text{ cm} - 15 \text{ cm} = 10 \text{ cm}$$

Диапазон частот, в котором происходит генерация продольных мод:

$$\Delta F = rac{c\sqrt{\ln 2}}{\pi l_{1/2}} = rac{3\cdot 10^8 \ \mathrm{m/c}\cdot 0.83}{3.1415\cdot 0.1 \ \mathrm{m}} = 8\cdot 10^8 \ \Gamma$$
ц

Оценим число генерируемых лазером продольных мод:

$$N \approx 1 + \frac{2\Delta F}{\Delta \nu} = 1 + \frac{2 \cdot 8}{2,3} = 5$$

5. Вывод

Исследуя видность интерференционной картины излучения гелий-неонового лазера мы измерили диапазон частот, в котором происходит генерация продольных мод. Точно определили размер резонатора. Зависимость $\nu_3(|\cos\beta|)$ оказалось линейной, но не проходит через ноль из-за неточности установки и измерений (поляроид не перекрывал свет полностью).