TEMA 4. Continuidad de funciones de una variable real Análisis Matemático

Profesor: José Ángel Cid

Grao en Enxeñaría Informática Departamento de Matemáticas Universidad de Vigo. Una función

$$f:A\to B$$

consiste en dos conjuntos, el dominio

$$A = Dom(f)$$

y el rango

$$B = Rang(f),$$

y en una regla que asigna a cada elemento $x \in A$ un único elemento $y \in B$. Esta correspondencia se denota como y = f(x) o $x \to f(x)$.

Una función

$$f:A\to B$$

consiste en dos conjuntos, el dominio

$$A = Dom(f)$$

y el rango

$$B = Rang(f),$$

y en una regla que asigna a cada elemento $x \in A$ un único elemento $y \in B$. Esta correspondencia se denota como y = f(x) o $x \to f(x)$. Se define la imagen de f como el conjunto

$$Im(f) = f(A) = \{f(x) : x \in A\}.$$

Una función

$$f:A\rightarrow B$$

consiste en dos conjuntos, el dominio

$$A = Dom(f)$$

y el rango

$$B = Rang(f),$$

y en una regla que asigna a cada elemento $x \in A$ un único elemento $y \in B$. Esta correspondencia se denota como y = f(x) o $x \to f(x)$. Se define la imagen de f como el conjunto

$$Im(f) = f(A) = \{f(x) : x \in A\}.$$

Si $A \subset \mathbb{R}$ y $B \subset \mathbb{R}$ son subconjuntos de números reales, se dice que $f: A \subset \mathbb{R} \to \mathbb{R}$ es una función real de una variable real.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

La función $f: A \to B$, donde $A \subset \mathbb{R}$ y $B \subset \mathbb{R}$, se dice que es:

- 2 Sobreyectiva $\Leftrightarrow \forall y \in B \quad \exists x \in A/f(x) = y$.

- 2 Sobreyectiva $\Leftrightarrow \forall y \in B \quad \exists x \in A/f(x) = y$.
- Biyectiva si y sólo si es inyectiva y sobreyectiva.

- 1 Inyectiva $\Leftrightarrow x_1 \neq x_2 \in A \Rightarrow f(x_1) \neq f(x_2)$.
- 2 Sobreyectiva $\Leftrightarrow \forall y \in B \quad \exists x \in A/f(x) = y$.
- 3 Biyectiva si y sólo si es inyectiva y sobreyectiva.
- Creciente $\Leftrightarrow x_1 \leq x_2 \in A \Rightarrow f(x_1) \leq f(x_2)$.

- **2** Sobreyectiva $\Leftrightarrow \forall y \in B \quad \exists x \in A/f(x) = y$.
- 3 Biyectiva si y sólo si es inyectiva y sobreyectiva.
- Creciente $\Leftrightarrow x_1 \leq x_2 \in A \Rightarrow f(x_1) \leq f(x_2)$.

- **2** Sobreyectiva $\Leftrightarrow \forall y \in B \quad \exists x \in A/f(x) = y$.
- 3 Biyectiva si y sólo si es inyectiva y sobreyectiva.
- Creciente $\Leftrightarrow x_1 \leq x_2 \in A \Rightarrow f(x_1) \leq f(x_2)$.
- **1** Estrictamente creciente $\Leftrightarrow x_1 < x_2 \in A \Rightarrow f(x_1) < f(x_2)$.

- **2** Sobreyectiva $\Leftrightarrow \forall y \in B \quad \exists x \in A/f(x) = y$.
- 3 Biyectiva si y sólo si es inyectiva y sobreyectiva.
- Creciente $\Leftrightarrow x_1 \leq x_2 \in A \Rightarrow f(x_1) \leq f(x_2)$.
- **©** Estrictamente creciente $\Leftrightarrow x_1 < x_2 \in A \Rightarrow f(x_1) < f(x_2)$.
- **©** Estrictamente decreciente $\Leftrightarrow x_1 < x_2 \in A \Rightarrow f(x_1) > f(x_2)$.

- **2** Sobreyectiva $\Leftrightarrow \forall y \in B \quad \exists x \in A/f(x) = y$.
- 3 Biyectiva si y sólo si es inyectiva y sobreyectiva.
- Creciente $\Leftrightarrow x_1 \leq x_2 \in A \Rightarrow f(x_1) \leq f(x_2)$.
- **Section** Estrictamente creciente $\Leftrightarrow x_1 < x_2 \in A \Rightarrow f(x_1) < f(x_2)$.
- **②** Estrictamente decreciente $\Leftrightarrow x_1 < x_2 \in A \Rightarrow f(x_1) > f(x_2)$.
- Monótona si y sólo si es creciente o decreciente.

- **1** Inyectiva $\Leftrightarrow x_1 \neq x_2 \in A \Rightarrow f(x_1) \neq f(x_2)$.
- **2** Sobreyectiva $\Leftrightarrow \forall y \in B \quad \exists x \in A/f(x) = y$.
- 3 Biyectiva si y sólo si es inyectiva y sobreyectiva.
- Creciente $\Leftrightarrow x_1 \leq x_2 \in A \Rightarrow f(x_1) \leq f(x_2)$.
- Estrictamente creciente $\Leftrightarrow x_1 < x_2 \in A \Rightarrow f(x_1) < f(x_2)$.
- **②** Estrictamente decreciente $\Leftrightarrow x_1 < x_2 \in A \Rightarrow f(x_1) > f(x_2)$.
- Monótona si y sólo si es creciente o decreciente.
- Estrictamente monótona si y sólo si es estrictamente creciente o estrictamente decreciente.

- **2** Sobreyectiva $\Leftrightarrow \forall y \in B \quad \exists x \in A/f(x) = y$.
- 3 Biyectiva si y sólo si es inyectiva y sobreyectiva.
- Creciente $\Leftrightarrow x_1 \leq x_2 \in A \Rightarrow f(x_1) \leq f(x_2)$.
- **6** Estrictamente creciente $\Leftrightarrow x_1 < x_2 \in A \Rightarrow f(x_1) < f(x_2)$.
- **©** Estrictamente decreciente $\Leftrightarrow x_1 < x_2 \in A \Rightarrow f(x_1) > f(x_2)$.
- Monótona si y sólo si es creciente o decreciente.
- Estrictamente monótona si y sólo si es estrictamente creciente o estrictamente decreciente.
- **1** Acotada superiormente $\Leftrightarrow \exists M > 0 / f(x) \leq M \quad \forall x \in A$.

- **1** Inyectiva $\Leftrightarrow x_1 \neq x_2 \in A \Rightarrow f(x_1) \neq f(x_2)$.
- **2** Sobreyectiva $\Leftrightarrow \forall y \in B \quad \exists x \in A/f(x) = y$.
- 3 Biyectiva si y sólo si es inyectiva y sobreyectiva.
- Creciente $\Leftrightarrow x_1 \leq x_2 \in A \Rightarrow f(x_1) \leq f(x_2)$.
- Estrictamente creciente $\Leftrightarrow x_1 < x_2 \in A \Rightarrow f(x_1) < f(x_2)$.
- **©** Estrictamente decreciente $\Leftrightarrow x_1 < x_2 \in A \Rightarrow f(x_1) > f(x_2)$.
- Monótona si y sólo si es creciente o decreciente.
- Estrictamente monótona si y sólo si es estrictamente creciente o estrictamente decreciente.
- **1** Acotada superiormente $\Leftrightarrow \exists M > 0 / f(x) \leq M \quad \forall x \in A$.
- **①** Acotada inferiormente $\Leftrightarrow \exists m > 0 / m \le f(x) \quad \forall x \in A$.

- **2** Sobreyectiva $\Leftrightarrow \forall y \in B \quad \exists x \in A/f(x) = y$.
- Biyectiva si y sólo si es inyectiva y sobreyectiva.
- Creciente $\Leftrightarrow x_1 \leq x_2 \in A \Rightarrow f(x_1) \leq f(x_2)$.
- Estrictamente creciente $\Leftrightarrow x_1 < x_2 \in A \Rightarrow f(x_1) < f(x_2)$.
- **©** Estrictamente decreciente $\Leftrightarrow x_1 < x_2 \in A \Rightarrow f(x_1) > f(x_2)$.
- Monótona si y sólo si es creciente o decreciente.
- Estrictamente monótona si y sólo si es estrictamente creciente o estrictamente decreciente.
- **1** Acotada superiormente $\Leftrightarrow \exists M > 0 / f(x) \leq M \quad \forall x \in A$.
- **①** Acotada inferiormente $\Leftrightarrow \exists m > 0 / m \le f(x)$ $\forall x \in A$.
- Acotada si y sólo si es acotada superior e inferiormente.

Dadas dos funciones $f:A\to B$ y $g:C\to D$ de tal forma que $B\subset C$ se define la función compuesta $g\circ f:A\to D$ como

$$(g \circ f)(x) := g(f(x)), \quad \forall x \in A.$$

Dadas dos funciones $f:A\to B$ y $g:C\to D$ de tal forma que $B\subset C$ se define la función compuesta $g\circ f:A\to D$ como

$$(g \circ f)(x) := g(f(x)), \quad \forall x \in A.$$

DEFINICIÓN

Dada $f: A \to B$ se dice que $f^{-1}: B \to A$ es la función inversa de f si

$$f^{-1}(f(x)) = x$$
, $\forall x \in A$ y $f(f^{-1}(y)) = y$, $\forall y \in B$.

Dadas dos funciones $f:A\to B$ y $g:C\to D$ de tal forma que $B\subset C$ se define la función compuesta $g\circ f:A\to D$ como

$$(g \circ f)(x) := g(f(x)), \quad \forall x \in A.$$

DEFINICIÓN

Dada $f: A \to B$ se dice que $f^{-1}: B \to A$ es la función inversa de f si

$$f^{-1}(f(x)) = x$$
, $\forall x \in A$ y $f(f^{-1}(y)) = y$, $\forall y \in B$.

Proposición

Dada $f: A \to B$ existe su función inversa $f^{-1}: B \to A$ si y sólo si f es biyectiva.

Definición (Definición de límite)

Sean $f:(a,b)\subset\mathbb{R}\to\mathbb{R}$ y $x_0\in(a,b)$. Se dice que el límite de f(x) cuando x tiende a x_0 es igual a $I\in\mathbb{R}$ (se escribe $\lim_{x\to x_0}f(x)=I$ ó $f(x)\to I$ cuando x tiende a x_0) si

$$\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,/\, 0 < |x - x_0| < \delta \Rightarrow |f(x) - I| < \varepsilon.$$

En otras palabras, f(x) está tan próximo del límite l "como nosotros queramos" siempre que $x \neq x_0$ esté "suficientemente próximo" a x_0 .

Definición (Definición de límite)

Sean $f:(a,b)\subset\mathbb{R}\to\mathbb{R}$ y $x_0\in(a,b)$. Se dice que el límite de f(x) cuando x tiende a x_0 es igual a $I\in\mathbb{R}$ (se escribe $\lim_{x\to x_0}f(x)=I$ ó $f(x)\to I$ cuando x tiende a x_0) si

$$\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,/\, 0 < |x - x_0| < \delta \Rightarrow |f(x) - I| < \varepsilon.$$

En otras palabras, f(x) está tan próximo del límite l "como nosotros queramos" siempre que $x \neq x_0$ esté "suficientemente próximo" a x_0 .

Definición (Definición de límite)

Sean $f:(a,b)\subset\mathbb{R}\to\mathbb{R}$ y $x_0\in(a,b)$. Se dice que el límite de f(x) cuando x tiende a x_0 es igual a $I\in\mathbb{R}$ (se escribe $\lim_{x\to x_0}f(x)=I$ ó $f(x)\to I$ cuando x tiende a x_0) si

$$\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,/\, 0 < |x - x_0| < \delta \Rightarrow |f(x) - I| < \varepsilon.$$

En otras palabras, f(x) está tan próximo del límite l "como nosotros queramos" siempre que $x \neq x_0$ esté "suficientemente próximo" a x_0 .

En la definición de $\lim_{x \to x_0} f(x) = I$ no importa $f(x_0)$ (el valor de f en x_0), sólo importan los valores de f en los puntos x próximos a x_0 , pero con $x \neq x_0$.

DEFINICIÓN (Definición de límites laterales)

Se definen los límites laterales por la izquierda y por la derecha, respectivamente, como

$$\lim_{x \to x_0^-} f(x) = I \Leftrightarrow \forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,/\, 0 < x_0 - x < \delta \Rightarrow |f(x) - I| < \varepsilon.$$

DEFINICIÓN (Definición de límites laterales)

Se definen los límites laterales por la izquierda y por la derecha, respectivamente, como

$$\lim_{x \to x_0^-} f(x) = I \Leftrightarrow \forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,/\, 0 < x_0 - x < \delta \Rightarrow |f(x) - I| < \varepsilon.$$

DEFINICIÓN (Definición de límites laterales)

Se definen los límites laterales por la izquierda y por la derecha, respectivamente, como

$$\lim_{x \to x_0^-} f(x) = I \Leftrightarrow \forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,/\, 0 < x_0 - x < \delta \Rightarrow |f(x) - I| < \varepsilon.$$

$$\lim_{x \to x_0^+} f(x) = I \Leftrightarrow \forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,/\, 0 < x - x_0 < \delta \Rightarrow |f(x) - I| < \varepsilon.$$

PROPOSICIÓN

$$\lim_{x \to x_0} f(x) = I \Longleftrightarrow \lim_{x \to x_0^-} f(x) = I = \lim_{x \to x_0^+} f(x)$$

PROPOSICIÓN

$$\lim_{x \to x_0} f(x) = I \Longleftrightarrow \lim_{x \to x_0^-} f(x) = I = \lim_{x \to x_0^+} f(x)$$

Proposición

$$\lim_{x \to x_0} f(x) = I \iff \lim_{x \to x_0^-} f(x) = I = \lim_{x \to x_0^+} f(x)$$

Por tanto si no existe alguno de los límites laterales o existen pero son distintos no existe $\lim_{x\to x_0} f(x)$.

PROPOSICIÓN

Sean
$$f, g:(a,b)\subset\mathbb{R}\to\mathbb{R}$$
 y $x_0\in(a,b)$. Si $\lim_{x\to x_0}f(x)=l_1$ y $\lim_{x\to x_0}g(x)=l_2$ entonces:

PROPOSICIÓN

Sean
$$f, g: (a, b) \subset \mathbb{R} \to \mathbb{R}$$
 $y x_0 \in (a, b)$. Si $\lim_{x \to x_0} f(x) = l_1 y$

 $\lim_{x \to x_0} g(x) = l_2$ entonces:

PROPOSICIÓN

Sean
$$f, g: (a, b) \subset \mathbb{R} \to \mathbb{R}$$
 $y x_0 \in (a, b)$. Si $\lim_{x \to x_0} f(x) = l_1$ $y = \lim_{x \to x_0} g(x) = l_2$ entonces:

PROPOSICIÓN

Sean
$$f, g: (a, b) \subset \mathbb{R} \to \mathbb{R}$$
 $y x_0 \in (a, b)$. Si $\lim_{x \to x_0} f(x) = l_1 y$

 $\lim_{x \to x_0} g(x) = l_2$ entonces:

- $\lim_{x \to x_0} (f(x) \cdot g(x)) = I_1 \cdot I_2.$

PROPOSICIÓN

Sean
$$f, g: (a, b) \subset \mathbb{R} \to \mathbb{R}$$
 $y x_0 \in (a, b)$. Si $\lim_{x \to x_0} f(x) = l_1 y$

 $\lim_{x \to x_0} g(x) = l_2$ entonces:

- $\lim_{x \to x_0} (f(x) \cdot g(x)) = I_1 \cdot I_2.$

EJERCICIO

Calcular los siguientes límites:

EJERCICIO

Calcular los siguientes límites:

$$\lim_{x \to 1} \frac{x - x^2}{\sqrt{x}}$$

EJERCICIO

Calcular los siguientes límites:

$$1 \lim_{x \to 1} \frac{x - x^2}{\sqrt{x}}$$

$$\lim_{x \to 1} \frac{x - x^2}{\sqrt{x}}$$

$$\lim_{x \to 1} \frac{x - x^2}{x - \sqrt{x}}$$

Asíntotas Verticales

DEFINICIÓN

Sean $f:(a,b)\subset\mathbb{R}\to\mathbb{R}$ y $x_0\in(a,b).$ Se dice que

$$\lim_{x \to x_0} f(x) = +\infty \Leftrightarrow \forall M > 0 \,\exists \delta = \delta(M) > 0 \,/\, 0 < |x - x_0| < \delta \Rightarrow f(x) > M$$

EJERCICIO

Escribir las definiciones de
$$\lim_{x \to x_0} f(x) = -\infty$$
, $\lim_{x \to x_0^-} f(x) = \pm \infty$ y $\lim_{x \to x_0^+} f(x) = \pm \infty$.

Asíntotas Verticales

Diremos que la recta $x=x_0$ es una asíntota vertical de la función f si $\lim_{x\to x_0^-}f(x)=\pm\infty$ ó $\lim_{x\to x_0^+}f(x)=\pm\infty$.

EJERCICIO

Calcular las asíntontas verticales de la función $f(x) = \frac{x-1}{x^2+x-2}$.

Asíntotas Horizontales

Sea $f:A\to\mathbb{R}$. Si A no está acotado superiormente, entonces podemos estudiar el comportamiento de f(x) cuando $x\to+\infty$ con $x\in A$. En tal caso, diremos que

$$\lim_{x \to +\infty} f(x) = L \stackrel{\text{def}}{\Leftrightarrow} \tag{2.1}$$

$$\forall \varepsilon > 0, \exists M = M(\varepsilon) > 0 : x \in A, x > M \Rightarrow |f(x) - L| < \varepsilon.$$

Asíntotas Horizontales

Sea $f:A\to\mathbb{R}$. Si A no está acotado superiormente, entonces podemos estudiar el comportamiento de f(x) cuando $x\to+\infty$ con $x\in A$. En tal caso, diremos que

$$\lim_{x \to +\infty} f(x) = L \stackrel{\text{def}}{\Leftrightarrow} \tag{2.1}$$

$$\forall \varepsilon > 0, \exists M = M(\varepsilon) > 0 : x \in A, x > M \Rightarrow |f(x) - L| < \varepsilon.$$

Análogamente, si A no está acotado inferiormente, podemos estudiar el comportamiento de f(x) cuando $x \to -\infty$ con $x \in A$. En tal caso, diremos que

$$\lim_{x \to -\infty} f(x) = L \stackrel{\text{def}}{\Leftrightarrow} \tag{2.2}$$

$$\forall \varepsilon > 0, \exists M = M(\varepsilon) < 0 \, : \, x \in A, \, x < M \, \Rightarrow \, |f(x) - L| < \varepsilon.$$

Asíntotas Horizontales

Sea $f:A\to\mathbb{R}$. Si A no está acotado superiormente, entonces podemos estudiar el comportamiento de f(x) cuando $x\to+\infty$ con $x\in A$. En tal caso, diremos que

$$\lim_{x \to +\infty} f(x) = L \stackrel{\text{def}}{\Leftrightarrow} \tag{2.1}$$

$$\forall \varepsilon > 0, \exists M = M(\varepsilon) > 0 : x \in A, x > M \Rightarrow |f(x) - L| < \varepsilon.$$

Análogamente, si A no está acotado inferiormente, podemos estudiar el comportamiento de f(x) cuando $x \to -\infty$ con $x \in A$. En tal caso, diremos que

$$\lim_{x \to -\infty} f(x) = L \stackrel{\text{def}}{\Leftrightarrow} \tag{2.2}$$

$$\forall \varepsilon > 0, \exists M = M(\varepsilon) < 0 \ : \ x \in A, \ x < M \ \Rightarrow \ |f(x) - L| < \varepsilon.$$

Si se cumple (2.1) o (2.2) se dice que la recta y=L es una *asíntota horizontal* de la gráfica y=f(x) en la dirección $x\to +\infty$ o $x\to -\infty$, respectivamente.

Calcular las asíntontas horizontales de las siguientes funciones:

Calcular las asíntontas horizontales de las siguientes funciones:

Calcular las asíntontas horizontales de las siguientes funciones:

- $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ f(x) = \frac{\sin x}{x}.$ $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{x^2}{x^2 + 1}.$

Sea $f:A\to\mathbb{R}$, donde suponemos que A es un conjunto no acotado. Diremos que la recta y=mx+n, $(m\neq 0)$, es una asíntota oblicua de la gráfica y=f(x) en la dirección $x\to +\infty$, si se cumple que

$$\lim_{x \to +\infty} (f(x) - mx - n) = 0.$$
 (2.3)

Sea $f:A\to\mathbb{R}$, donde suponemos que A es un conjunto no acotado. Diremos que la recta y=mx+n, $(m\neq 0)$, es una asíntota oblicua de la gráfica y=f(x) en la dirección $x\to +\infty$, si se cumple que

$$\lim_{x \to +\infty} (f(x) - mx - n) = 0. \tag{2.3}$$

De (2.3) se deduce que y=mx+n es una asíntota oblícua de la función y=f(x) en la dirección $x\to +\infty$ si, y solamente si, se cumplen las siguientes condiciones

De igual forma se definen las asíntotas oblicuas en la dirección $x \to -\infty$.

Sea $f:A\to\mathbb{R}$, donde suponemos que A es un conjunto no acotado. Diremos que la recta y=mx+n, $(m\neq 0)$, es una asíntota oblicua de la gráfica y=f(x) en la dirección $x\to +\infty$, si se cumple que

$$\lim_{x \to +\infty} (f(x) - mx - n) = 0. \tag{2.3}$$

De (2.3) se deduce que y=mx+n es una asíntota oblícua de la función y=f(x) en la dirección $x\to +\infty$ si, y solamente si, se cumplen las siguientes condiciones

De igual forma se definen las asíntotas oblicuas en la dirección $x \to -\infty$.

Sea $f:A\to\mathbb{R}$, donde suponemos que A es un conjunto no acotado. Diremos que la recta y=mx+n, $(m\neq 0)$, es una asíntota oblicua de la gráfica y=f(x) en la dirección $x\to +\infty$, si se cumple que

$$\lim_{x \to +\infty} (f(x) - mx - n) = 0. \tag{2.3}$$

De (2.3) se deduce que y=mx+n es una asíntota oblícua de la función y=f(x) en la dirección $x\to +\infty$ si, y solamente si, se cumplen las siguientes condiciones

De igual forma se definen las asíntotas oblicuas en la dirección $x \to -\infty$.

• Determinar las asíntotas de la función $f(x) = \sqrt{x^2 + 1}$.

• Calcular las asíntotas de la función $y = \frac{x^3}{x^2 - 1}$

Definición (Función continua)

Sean $f:(a,b)\subset\mathbb{R}\to\mathbb{R}$ y $x_0\in(a,b).$ Se dice que f es continua en x_0 si

$$\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,/\, |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

Diremos que f es continua en (a, b) si es continua en cada punto $x_0 \in (a, b)$.

Intuitivamente la condición anterior nos dice f(x) está "arbitrariamente próximo" a $f(x_0)$ siempre que x esté "suficientemente próximo" a x_0 . La relación fundamental entre límites y continuidad se expresa en el siguiente teorema.

$$f$$
 es continua en $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$

Las funciones continuas poseen las siguientes propiedades.

$$f$$
 es continua en $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$

Las funciones continuas poseen las siguientes propiedades.

PROPOSICIÓN

Sean $f, g: (a, b) \subset \mathbb{R} \to \mathbb{R}$ y $x_0 \in (a, b)$. Si f y g son funciones continuas en x_0 entonces:

$$f$$
 es continua en $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$

Las funciones continuas poseen las siguientes propiedades.

PROPOSICIÓN

Sean $f, g: (a, b) \subset \mathbb{R} \to \mathbb{R}$ y $x_0 \in (a, b)$. Si f y g son funciones continuas en x_0 entonces:

1 $f \pm g$ es una función continua en x_0 .

$$f$$
 es continua en $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$

Las funciones continuas poseen las siguientes propiedades.

PROPOSICIÓN

Sean $f, g: (a, b) \subset \mathbb{R} \to \mathbb{R}$ y $x_0 \in (a, b)$. Si f y g son funciones continuas en x_0 entonces:

- **1** $f \pm g$ es una función continua en x_0 .
- 2 $f \cdot g$ es una función continua en x_0 .

$$f$$
 es continua en $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$

Las funciones continuas poseen las siguientes propiedades.

Proposición

Sean $f, g: (a, b) \subset \mathbb{R} \to \mathbb{R}$ y $x_0 \in (a, b)$. Si f y g son funciones continuas en x_0 entonces:

- **1** $f \pm g$ es una función continua en x_0 .
- ② $f \cdot g$ es una función continua en x_0 .
- **3** $\frac{f}{g}$ es una función continua en x_0 , siempre que $g(x_0) \neq 0$.

La composición de funciones continuas también es continua.

PROPOSICIÓN

Sean $f:(a,b)\subset\mathbb{R}\to\mathbb{R}$, $g:(c,d)\subset\mathbb{R}\to\mathbb{R}$, $x_0\in(a,b)$ y $f((a,b))\subset(c,d)$.

Si f es continua en x_0 y g es continua en $f(x_0)$ entonces la función compuesta $g \circ f$ es continua en x_0 .

OBSERVACIÓN

Todas las funciones elementales (potencias, exponenciales, logaritmos, trigonométricas, trigonométricas inversas, hiperbólicas e hiperbólicas inversas) son continuas en su dominio, así como aquellas funciones que se obtienen combinando las anteriores mediante sumas, productos, cocientes (con denominador distinto de cero) y composiciones. Las principales propiedades de las funciones elementales, así como sus dominios e imágenes se suponen conocidas.

El siguiente resultado es de gran importancia en el cálculo de límites porque nos dice que si f es continua entonces podemos intercambiar la función con el límite.

TEOREMA (Continuidad y cálculo de límites)

Sean
$$f:(a,b)\subset\mathbb{R}\to\mathbb{R}$$
, $x_0\in(a,b)$ y $\{x_n\}\subset(a,b)$ tal que $\{x_n\}\to x_0$. Entonces

$$\lim_{n\to\infty} f(x_n) = f\left(\lim_{n\to\infty} x_n\right) = f(x_0).$$

1 Discontinuidad evitable: existe $\lim_{x \to x_0} f(x) \in \mathbb{R}$, pero $\lim_{x \to x_0} f(x) \neq f(x_0)$. Este tipo de discontinuidad se llama evitable porque redefiniendo $f(x_0) = \lim_{x \to x_0} f(x)$ se evita la discontinuidad (cambiando el valor de la función en un único punto la función se hace continua).

- **1 Discontinuidad evitable**: existe $\lim_{x \to x_0} f(x) \in \mathbb{R}$, pero $\lim_{x \to x_0} f(x) \neq f(x_0)$. Este tipo de discontinuidad se llama evitable porque redefiniendo $f(x_0) = \lim_{x \to x_0} f(x)$ se evita la discontinuidad (cambiando el valor de la función en un único punto la función se hace continua).
- Oiscontinuidad esencial de primera especie: puede ser de dos tipos.

- **1 Discontinuidad evitable**: existe $\lim_{x \to x_0} f(x) \in \mathbb{R}$, pero $\lim_{x \to x_0} f(x) \neq f(x_0)$. Este tipo de discontinuidad se llama evitable porque redefiniendo $f(x_0) = \lim_{x \to x_0} f(x)$ se evita la discontinuidad (cambiando el valor de la función en un único punto la función se hace continua).
- ② Discontinuidad esencial de primera especie: puede ser de dos tipos.

De salto: existen los límites laterales, pero $\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$. Se dice que que el salto es **finito** si los dos límites laterales son finitos, mientras que si alguno de ellos es infinito se dice que el salto es **infinito**.

- **Oiscontinuidad evitable**: existe $\lim_{x \to x_0} f(x) \in \mathbb{R}$, pero $\lim_{x \to x_0} f(x) \neq f(x_0)$. Este tipo de discontinuidad se llama evitable porque redefiniendo $f(x_0) = \lim_{x \to x_0} f(x)$ se evita la discontinuidad (cambiando el valor de la función en un único punto la función se hace continua).
- ② Discontinuidad esencial de primera especie: puede ser de dos tipos.

De salto: existen los límites laterales, pero $\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$. Se dice que que el salto es **finito** si los dos límites laterales son finitos, mientras que si alguno de ellos es infinito se dice que el salto es **infinito**.

De tipo infinito: si $\lim_{x \to x_0} f(x) = \infty$ ó $\lim_{x \to x_0} f(x) = -\infty$.

- **1 Discontinuidad evitable**: existe $\lim_{x \to x_0} f(x) \in \mathbb{R}$, pero $\lim_{x \to x_0} f(x) \neq f(x_0)$. Este tipo de discontinuidad se llama evitable porque redefiniendo $f(x_0) = \lim_{x \to x_0} f(x)$ se evita la discontinuidad (cambiando el valor de la función en un único punto la función se hace continua).
- Oiscontinuidad esencial de primera especie: puede ser de dos tipos.

De salto: existen los límites laterales, pero $\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$. Se

dice que que el salto es **finito** si los dos límites laterales son finitos, mientras que si alguno de ellos es infinito se dice que el salto es **infinito**.

De tipo infinito: si $\lim_{x \to x_0} f(x) = \infty$ ó $\lim_{x \to x_0} f(x) = -\infty$.

3 Discontinuidad esencial de segunda especie: al menos uno de los límites laterales $\lim_{x \to x_0^-} f(x)$ ó $\lim_{x \to x_0^+} f(x)$ no existe.

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ○臺 ・ 夕�@

TEOREMA (Teorema de Bolzano)

Sea $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ una función continua tal que f(a)f(b)<0. Entonces existe $x\in(a,b)$ tal que f(x)=0.

Como consecuencia inmediata del teorema de Bolzano se obtiene el siguiente resultado.

COROLARIO (TEOREMA DEL VALOR INTERMEDIO PARA FUNCIONES CONTINUAS)

Sea $f : [a,b] \subset \mathbb{R} \to \mathbb{R}$ una función continua tal que f(a) < c < f(b) (o bien f(a) > c > f(b)). Entonces existe $x \in (a,b)$ tal que f(x) = c.

Otro teorema importante sobre funciones continuas es el siguiente.

TEOREMA (Teorema de Weierstrass)

Sea $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ una función continua en el intervalo cerrado y acotado [a,b].

Entonces f alcanza sus valores máximo y mínimo en el intervalo [a,b], es decir, existen $x_0, x_1 \in [a,b]$ tales que

$$f(x_0) \le f(x) \le f(x_1), \quad \forall x \in [a, b].$$