Universal Turing Machine

Introduzione

La macchina universale di Turing è una macchina in grado simulare qualsiasi altra macchina di Turing e, per farlo riceve in input la descrizione della macchina di Turing M da simulare e la stringa che M deve computare.

La macchina di Turing Universale è canonicamente implementata come una MT a 3 nastri dove:

- T1 contiene la descrizione di M
- T2 contiene la stringa codificata che la macchina descritta sul primo nastro deve codificare
- T3 contiene lo stato iniziale della macchina di Turing descritta sul T1

Nel nostro caso avremo una macchina di Turing Universale U={ Σ , Γ , δ , q_0 , q_f } dove:

- $\Gamma_U = \{ \square, 0, 1 \}$
- $\Sigma_U = \{0, 1\}$

Che simula la seguente macchina M = $\{\Sigma, \Gamma, \delta, q_0, q_f\}$ dove:

- $Q_M = \{q1, q2, ..., qn\}$
- $\Gamma_U = \{a_1, a_2,, a_n\} (a_1 = \square)$
- $q_0 = q_1$
- $q_f = q_2$

Codifica

Arrivati a questo punto dobbiamo stabilire un metodo di codifica che però, come è emerso a lezione, all'aumentare dei caratteri utilizzati aumenta la complessità della macchina di Turing Universale. Pertanto, si è deciso di utilizzare la seguente codifica:

- $q_i = 1^i$ (es. $q_5 = 111111$)
- a_i = 1ⁱ
- L, S, R = 1, 11, 11
- 0 funge da suffisso, ossia da simbolo separatore
- 10 rappresentano il simbolo blank

Input

- T1 101101011101110101011010110
- T2 110110110 (codifica di aaa)
- T3 1

Algoritmo/Funzionamento

La macchina U in q₀ compara dapprima lo stato corrente di T1 con lo stato in T3:

- Se gli stati sono gli stessi , U passa a q₁ e procede a riposizionare la testina di T3 all'inizio.
- Se gli stati sono differenti, da q₆ fino a q₁₁ procede a muovere la testina di T1 sulla prossima transizione.

In seguito in q2 la macchina U compara il simbolo nello stato corrente di T1 con il simbolo di T2:

- Se i simboli non sono uguali U procede allo stato q_{12} e ,dallo stato q_7 fino al q_{11} muove U alla prossima transizione di M.
- Se i simboli sono uguali U si muove in q₃ e inoltre T2 e T3 sono cambiati come descritto dalla transizione tramite gli stati in seguito descritti.

Prima U scrive mediante gli stati q_4 q_5 un nuovo stato di M in T3. Dopo U va in q_{13} che si sposta fino in q_{17} per scrivere il nuovo simbolo in T2.

Mentre scrivere un nuovo stato risulta semplice, scrivere un nuovo simbolo risulta più complicato poiché i simboli differiscono in lunghezza. Inoltre, non dobbiamo solamente scrivere il nuovo simbolo codificato, ma anche shiftare a sinistra o destra qualsiasi cosa segua questo simbolo in T2, a seconda che il simbolo sia più grande o più piccolo del precedente:

- Dallo stato q₁₄ fino al q₁₆ è gestito il caso in cui il nuovo simbolo sia più grande
- Dallo stato q₁₈ fino al q₂₁ è gestito il caso in cui il simbolo sia più piccolo

In seguito, passa allo stato q_{22} che fino allo stato q_{30} muove la testina di T2 all'inizio simbolo codificato, che ora sarebbe sotto la testina di M, a seconda del simbolo di movimento; se T2 viene spostato oltre l'inizio o la fine , è aggiunto il simbolo codificato del blank 10.

Lo stato q_{25} riavvolge T1 all'inizio in modo tale da essere pronto per una nuova ricerca delle transizioni con ora , i nuovi simboli e stati codificati di T2 e T3.

Infine passa in q_{31} che fino q_{33} controlla cosa se T3 mantiene la codifica per il secondo stato di M(lo stato finale) e se è cosi U accetta, altrimenti U va indietro a q_0 e riinizia il processo da capo.