Corrigé de l'exercice 1

- ▶1. Convertir les cinq mesures suivantes en radians : 244°, 120°, 217°, 261° et 340°. La conversion est en fait une simple règle de proportionnalité : il faut multiplier par $\frac{\pi}{180}$. Par exemple pour la première mesure, on obtient avec simplification : $244 \times \frac{\pi}{180} = \frac{61\pi}{45}$ rad. De même pour les autres mesures, on trouve alors respectivement : $\frac{61\pi}{45}$ rad, $\frac{2\pi}{3}$ rad, $\frac{217\pi}{180}$ rad, $\frac{29\pi}{20}$ rad et $\frac{17\pi}{9}$ rad.
- ▶2. Convertir les cinq mesures suivantes en degrés : $\frac{38\pi}{36}$, $\frac{56\pi}{36}$, $\frac{50\pi}{45}$, $\frac{22\pi}{15}$ et $\frac{24\pi}{15}$ rad. On effectue alors la proportionnalité inverse : il faut multiplier par $\frac{180}{\pi}$. Après simplification, voici les résultats : 190°, 280°, 200°, 264°et 288°.
- ▶3. Déterminer les mesures principales des angles suivants en radians : $\frac{39\pi}{23}$, $\frac{43\pi}{27}$, $\frac{120\pi}{15}$, $\frac{97\pi}{8}$ et $\frac{-16\pi}{10}$ rad. Une mesure d'angle en radians est définie modulo 2π , c'est-à-dire que l'ajout ou la suppression d'un tour (qui vaut 2π ou 360°) ne change pas un angle.

Concrètement, avec le premier angle de la question, on remarque que :

$$\frac{39\pi}{23} \equiv \frac{-7\pi}{23} + \frac{46\pi}{23} \equiv \frac{-7\pi}{23} + 2\pi \equiv \frac{-7\pi}{23} \ (2\pi).$$

De même pour les autres mesures, on trouve alors respectivement : $\frac{-7\pi}{23}$ rad, $\frac{-11\pi}{27}$ rad, 0 rad, $\frac{\pi}{8}$ rad et $\frac{2\pi}{5}$ rad.

▶4. Des angles ont été placés sur le cercle trigonométrique ci-dessous, représentés en rouge par les points $M_0,\ M_1,\ M_2$ et M_3 . Lire leurs mesures principales en radians (les lignes vertes, grises et bleues représentent des angles multiples de $\frac{\pi}{3}$, de $\frac{\pi}{4}$ et de $\frac{\pi}{5}$).

Les réponses sont directement données sur le cercle trigonométrique ci-dessous :

Les points M_0 , M_1 , M_2 et M_3 définissent alors respectivement les angles $\frac{-\pi}{2}$, 0, $\frac{-3\pi}{5}$ et $\frac{\pi}{3}$ rad.

▶5. Placer les angles suivants sur le cercle trigonométrique : $\frac{\pi}{6}$, π , $\frac{-\pi}{5}$ et $\frac{6\pi}{5}$ rad. Les réponses sont directement données sur le cercle trigonométrique ci-dessous :

Ajoutons une simple remarque pour la dernière mesure, qui n'est pas principale : il faut effectuer en premier lieu une simplification, comme à la question 3. On obtient alors :

$$\frac{6\pi}{5} \equiv \frac{-4\pi}{5} \ (2\pi).$$

Corrigé de l'exercice 2

▶1. Convertir les cinq mesures suivantes en radians : 56°, 86°, 151°, 40° et 190°.

La conversion est en fait une simple règle de proportionnalité : il faut multiplier par $\frac{\pi}{180}$.

Par exemple pour la première mesure, on obtient avec simplification : $56 \times \frac{\pi}{180} = \frac{14\pi}{45}$ rad.

De même pour les autres mesures, on trouve alors respectivement : $\frac{14\pi}{45}$ rad, $\frac{43\pi}{90}$ rad, $\frac{151\pi}{180}$ rad, 2π , 19π

$$\frac{2\pi}{9}$$
 rad et $\frac{19\pi}{18}$ rad.

▶2. Convertir les cinq mesures suivantes en degrés : $\frac{\pi}{3}$, $\frac{\pi}{5}$, $\frac{27\pi}{18}$, $\frac{5\pi}{4}$ et $\frac{38\pi}{20}$ rad.

On effectue alors la proportionnalité inverse : il faut multiplier par $\frac{180}{\pi}$.

Après simplification, voici les résultats : 60° , 36° , 270° , 225° et 342° .

▶3. Déterminer les mesures principales des angles suivants en radians : $\frac{100\pi}{9}$, $\frac{64\pi}{22}$, $\frac{118\pi}{29}$, $\frac{92\pi}{28}$ et $\frac{-114\pi}{17}$ rad. Une mesure d'angle en radians est définie modulo 2π , c'est-à-dire que l'ajout ou la suppression d'un tour (qui vaut 2π ou 360°) ne change pas un angle.

Concrètement, avec le premier angle de la question, on remarque que :

$$\frac{100\pi}{9} \equiv \frac{-8\pi}{9} + \frac{108\pi}{9} \equiv \frac{-8\pi}{9} + 12\pi \equiv \frac{-8\pi}{9} \ (2\pi).$$

De même pour les autres mesures, on trouve alors respectivement : $\frac{-8\pi}{9}$ rad, $\frac{10\pi}{11}$ rad, $\frac{2\pi}{29}$ rad, $\frac{-5\pi}{7}$ rad et $\frac{-12\pi}{17}$ rad.

▶4. Des angles ont été placés sur le cercle trigonométrique ci-dessous, représentés en rouge par les points M_0, M_1, M_2 et M_3 . Lire leurs mesures principales en radians (les lignes vertes, grises et bleues représentent des angles multiples de $\frac{\pi}{3}$, de $\frac{\pi}{4}$ et de $\frac{\pi}{5}$).

Les réponses sont directement données sur le cercle trigonométrique ci-dessous :

Les points M_0 , M_1 , M_2 et M_3 définissent alors respectivement les angles $\frac{-\pi}{2}$, 0, $\frac{-2\pi}{3}$ et $\frac{3\pi}{5}$ rad.

▶5. Placer les angles suivants sur le cercle trigonométrique : π , $\frac{3\pi}{5}$, $\frac{-2\pi}{5}$ et $\frac{9\pi}{6}$ rad.

Les réponses sont directement données sur le cercle trigonométrique ci-dessous :

Ajoutons une simple remarque pour la dernière mesure, qui n'est pas principale : il faut effectuer en premier lieu une simplification, comme à la question 3. On obtient alors :

$$\frac{9\pi}{6} \equiv \frac{-\pi}{2} \ (2\pi).$$