ZAMAN UNIVERSITY

Data Structures and Algorithms

Chapter 6

Graphs

- Terminology and Representations
- Graph Traversals
- Shortest-Paths Problems
- Minimum-Cost Spanning Trees

What is Graph?

- Graphs provide the ultimate in data structure flexibility
- Graphs can model both real-world systems and abstract problems
- Here is a small sampling of the range of problems that graphs are applied to:
 - Modeling connectivity in computer and communications networks;
 - Representing a map as a set of locations with distances between locations; for computing shortest routes between locations;
 - Modeling flow capacities in transportation networks;
 - Finding a path from a starting condition to a goal condition; for example, in artificial intelligence problem solving;
 - Modeling computer algorithms, showing transitions from one program state to another;
 - o And ...

Example of Graphs

b. A Directed Graph (Digraph)

c. A Weighted Graph

- Terminology and Representations
- Graph Traversals
- Shortest-Paths Problems
- Minimum-Cost Spanning Trees

Terminology

- A graph G consist of
 - 1. Set of vertices V (called nodes), $V = \{v_1, v_2, v_3, ...,\}$ and
 - 2. Set of edges E (i.e., $E = \{e_1, e_2, e_3, ...\}$)
- Thus, a graph can be represents as G = (V, E), where V is a finite and non empty set at vertices and E is a set of pairs of vertices called edges.
- Consider a graph G in *Figure c*, then the vertex V and edge E can be represented as: $V = \{0, 1, 2, 3, 4\}$ and $E = \{(0,1), (0,4), (1,3), (3,2), (2,4), (4,1)\}$.

Representations

- There are two standard ways of maintaining a graph *G* in the memory of a computer:
 - Sequential representation of a graph using adjacent;
 - Linked representation of a graph using linked list.

Adjacency Matrix Representation

- Graph G = (V, E) with n vertices, is an $n \times n$ matrix.
- The adjacency matrix A of a directed graph *G* can be represented with the following conditions:
 - $A_{ij} = 1$ {if there is an edge from V_i to V_j or if the edge (i, j) is member of E.}
 - \circ $A_{ij} = o$ {if there is no edge from V_i to V_j }

A =		0	1	2	3	4
	O	О	1	0	0	1
	1	О	0	0	1	0
	2	О	0	0	0	1
	3	О	0	1	O	0
	4	0	1	0	0	0

Adjacency Matrix Representation for Directed Weighted Graph

- The adjacency matrix A for a directed weighted graph $G = (V, E, W_e)$ can be represented:
 - o $A_{ij} = W_e$ {if there is an edge from V_i to V_j then represent its weight W_{ij} }
 - A_{ij} = -1 {if there is no edge from V_i to V_j }

A =		0	1	2	3	4
	O	-1	3	-1	-1	4
	1	-1	-1	-1	2	-1
	2	-1	-1	-1	-1	1
	3	-1	-1	7	-1	-1
	4	-1	1	-1	-1	-1

Linked List Representation

• In this representation (also called adjacency list representation), graph is stored as linked structure.

Linked List Representation for Direct Weighted Graph

Write a program to represent graph as Adjacent Matrix and Linked List

- Terminology and Representations
- Graph Traversals
- Shortest-Paths Problems
- Minimum-Cost Spanning Trees

Graph Traversals

- As in tree, traversing a graph consists of visiting each vertex only one time
- Simple traversal algorithms used for trees CANNOT be applied in graph, since graphs may include cycles, thus the tree traversal algorithms would result infinite loops.
- To prevent this, for each visited vertex will be marked to avoid revisiting.

- Terminology and Representations
- Graph Traversals
 - Depth First Search
 - o Breadth First Search
- Shortest-Paths Problems
- Minimum-Cost Spanning Trees

Graph Traversals: Depth First Search (s, G) - Iterative

- 1. Initialize: Set Stack = { s }, VisitedList = { }
- 2. Terminate if Stack is empty
- 3. Select a vertex, n, from Stack
- 4. Visit n and save n to VisitedList
- Expand: Define Successors m of vertex n in G. For each successor, m, insert m in Stack only if m ∉ [Stack U VisitedList]
- 6. Loop: Go to step 2

Animation of Depth First Search

https://commons.wikimedia.org

- Terminology and Representations
- Graph Traversals
 - o Depth First Search
 - Breadth First Search
- Shortest-Paths Problems
- Minimum-Cost Spanning Trees

Graph Traversals: Breadth First Search (s, G)

- 1. Initialize: Set Queue = { s }, VisitedList = { }
- 2. Terminate if Queue is empty
- 3. Select a vertex, n, from Queue
- 4. Visit n and save n to VisitedList
- Expand: Define Successors m of vertex n in G. For each successor, m, insert m in Queue only if m ∉ [Queue U VisitedList]
- 6. Loop: Go to step 2

Animation of Breadth First Search

https://commons.wikimedia.org

Write functions of **Depth First Search** and **Breadth First Search** based on pseudo-code in the slide.

(22)

To be continued...