Machine Learning

Training a supervised model

A network of ML methods

The conventional bar to entry... Im

Low-code AutoML (H2O Flow)

Python 3.8.17 (default, Jul 5 2023, 20:44:21) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32 Type "help", "copyright", "credits" or "license" for more information. >>> import h2o >>> h2o.init() H₂O FLOW Flow Cell Data Model Score Admin Help Untitled Flow >> FLOWS HELP assist ∩ Help **☆** ← → Using Flow for the first time? Assistance Quickstart Videos Routine Description importFiles Import file(s) into H2O Or, view example Flows to explore and learn ■ importSqlTable Import SQL table into H₂O H₂O. Get a list of frames in H₂O **X** splitFrame Split a frame into two or more frames STAR H2O ON GITHUB! Merge two frames into one (*) Star getModels Get a list of models in H₂O GENERAL **getGrids** Get a list of grid search results in H2O getPredictions Get a list of predictions in H₂O Flow Web UI ... **≡** getJobs Get a list of jobs running in H2O ... Importing Data ... Building Models runAutoML Automatically train and tune many models ... Making Predictions buildModel Build a model ... Using Flows **②** importModel Import a saved model · ...Troubleshooting Flow predict Make a prediction Flow packs are a great way to explore and importFiles learn H2O. Try out these Flows and run them in your browser. Browse installed packs... H₂O REST API Import Files Routes Q Schemas Search: Enter a file or directory path and press the Enter key Selected Files: (No files selected)

Unsupervised ML 🖂

15

UMAP_1

tSNE_1

Input vector

Conventional supervised ML RAM TEXAS A&M

GLM

30 25 20 15 10 05 00 -0.5

Lasso/Ridge/Elastic network

$$\frac{\sum_{i=1}^{n} (y_i - x_i^J \hat{\beta})^2}{2n} + \lambda \left(\frac{1 - \alpha}{2} \sum_{j=1}^{m} \hat{\beta}_j^2 + \alpha \sum_{j=1}^{m} |\hat{\beta}_j| \right)$$

Naïve Bayes model

using Bayesian probability terminology, the above equation can be written as

Reinforcement learning

Deep learning models

No-Code Generalized ML

Ensemble modeling R

Cross-validated

fold 1

fold 1

fold 1

fold 1

fold 1

Performance enhancing

fold 2 fold 2 fold 2 fold 2 fold 2 fold 3 fold 3 fold 3 fold 3 fold 3 fold 4 fold 4 fold 4 fold 4 fold 4 fold 5 fold 5 fold 5 fold 5 fold 5 Round 2 Round 1 Round 3 Round 4 Round 5 **Bootstrapped** Original Data Bootstrapping Aggregating Ensemble classifer **Bagging**

Stacking

Robustness enhancing

Transfer learning methods 🦸 🌃

Foundational models

<u>Broad Training Data</u>: trained on extensive datasets, which require substantial computational resources. This training allows them to learn a wide range of tasks and skills during the initial phase.

<u>Self-Supervision</u>: Generally, use self-supervision techniques during training where labels or targets are generated from the data itself, rather than relying solely on human-labeled data.

<u>Large Parameter Count</u>: Typically contains at least billions of parameters to enable them to capture complex patterns and relationships in the data.

<u>Applicability Across Contexts</u>: Applicable across a wide range of contexts, can be secondarily fine-tuned for specific tasks with minimal adjustments, making them highly versatile.

Foundation models R

Model Type	Implementation & Key Features	Use Cases
Memory Networks	LSTMExternal memory for handling long-term dependenciesRead and write operations.	Question-answeringDialogue systems
Causal Language Modeling (CLM)	GPT, LlamaAutoregressive model that predicts sequential tokens.Unidirectional context.	Text generationSummarization
Masked Language Modeling (MLM)	BERT, RoBERTaInput tokens are maskedModel predicts context.Bidirectional context.	Text classificationSentiment analysisNamed entity recognition
Sequence-to-Sequence (Seq2Seq)	T5Encoder-decoder architecture.Handles input-output transformations.	Machine translationSummarizationQuestion-answering

Interpreting the quality of an AI/ML model

		Predicted condition		Sources: [1][2][3][4][5][6][7][8][9] view -talk-edit	
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}$
condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate $= \frac{FN}{P} = 1 - TPR$
Actual	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN),	False positive rate (FPR), probability of false alarm, fall-out = $\frac{FP}{N}$ = 1 - TNR	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1 - FPR
	Prevalence = P/P+N	Positive predictive value (PPV), $precision$ $= \frac{TP}{PP} = 1 - FDR$	False omission rate (FOR) = $\frac{FN}{PN}$ = 1 - NPV	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) = FP/PP = 1 - PPV	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$
	Balanced accuracy (BA) = TPR + TNR 2	F ₁ score = 2PPV×TPR = 2TP PPV+TPR = 2TP+FP+FN	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) =√TPR×TNR×PPV×NPV -√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = $\frac{TP}{TP + FN + FP}$

Natural language processing A TEXAS A&M

Interpreting the quality of an AI/ML model

		Predicted condition		Sources: [1][2][3][4][5][6][7][8][9] view -talk-edit	
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}$
condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate $= \frac{FN}{P} = 1 - TPR$
Actual	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN),	False positive rate (FPR), probability of false alarm, fall-out = $\frac{FP}{N}$ = 1 - TNR	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1 - FPR
	Prevalence = P/P+N	Positive predictive value (PPV), $precision$ $= \frac{TP}{PP} = 1 - FDR$	False omission rate (FOR) = $\frac{FN}{PN}$ = 1 - NPV	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) = FP/PP = 1 - PPV	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$
	Balanced accuracy (BA) = TPR + TNR 2	F ₁ score = 2PPV×TPR = 2TP PPV+TPR = 2TP+FP+FN	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) =√TPR×TNR×PPV×NPV -√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = $\frac{TP}{TP + FN + FP}$

Evaluating a regressive model R IM TEXAS A&M

Metric	Benefits	Limitations
R-squared (R²)	- High values = a good fit- a measure of the proportion of variance	 Influenced by the sample size & # of predictors May not be reliable when there are outliers or non-linear relationships in the data
Adjusted R-squared (R²_adj)	- Similar to R ² Takes into account the number of predictors - Provides a more accurate assessment of the model's performance when there are multiple predictors	- May be less informative when there are only a few predictors in the model
Mean Squared Error (MSE)	- Measures the average squared difference between the predicted and actual values	 Provides a measure of the magnitude of the errors in the model
Mean Absolute Error (MAE)	- Measures the average absolute difference between the predicted and actual values	 Provides a measure of the magnitude of the errors in the model
Root Mean Squared Error (RMSE)	 Measures the square root of the average squared difference between the predicted and actual values 	- Provides a measure of the magnitude of the errors in the model