Given b, t ER, and b>1, t>1. Then I nEN, st. bi < t. Pt: 4 NEN, 6>1 $b'^{n} - 1 = (b'^{-1})(b'^{n-1} + b'^{n-2} + \cdots + 1)$ $= \frac{1}{2} \binom{n-1}{b-1} + \frac{1}{b} \binom{n-2}{b-1} + \cdots + \binom{b-1}{b-1}$ $(:b'>1) \geq (b'-1) + (b'-1) + \cdots + (b'-1) = n(b'-1)$ Since b>1, we have $b^{\frac{1}{n}}>1$ (If $0 \le b^{\frac{1}{n}} \le 1$, $b=(b^{\frac{1}{n}})^n \le 1$ Take $b' = b^{n}$. Hence we have $b - 1 \ge n(b^{n} - 1)$ Now let $m \in IN$, s.t. $m > \frac{b-1}{+-1}$. Then $b-1 \ge m(b^{\frac{1}{m}}-1) > \frac{b-1}{+-1}(b^{\frac{1}{m}}-1)$ $\Rightarrow | > \frac{1}{t-1} (|b^{\frac{1}{m}} - 1|) \Rightarrow | t-1 > |b^{\frac{1}{m}} - 1| \Rightarrow | t> |b^{\frac{1}{m}} - 1|$ pt of the problem. Fix b>1, Y>0. Let A= {wer | b"< y } O (non-empty)

(i) If yz1, then 6 <1 < / > > -1 < A.

(ii) If 0<Y<1, then $\frac{1}{y}>1$, and b>1, by Lemma, $\exists N\in IN$ s.t. $\left(\frac{1}{y}\right)^{\frac{1}{n}} < b \Rightarrow \frac{1}{y} < b^n \qquad y > b^{-n} \Rightarrow -n \in A$ 1. If y>0, b>1, A+\$.

1 (bld-above)

(i) If $0 < y \le 1$, then $b > 1 \ge y \Rightarrow 1$ is an upper bound of A.

 $\exists n \in \mathbb{N}$, sit. $b > y^{\frac{1}{n}} \Rightarrow b^n > y \Rightarrow n = an upper bound$ (ii) If Y>1, then by Lemma

i. By the least-upper-bound property, sup A = X exists.

 $\binom{3}{b}$ $\binom{b}{b} = y$

Suppose $b^{x} > y$, then $\frac{b^{x}}{y} > 1 \Rightarrow \exists n \in \mathbb{N}$, s.t. $\frac{b^{x}}{y} > b^{n} \Rightarrow b^{x-n} > y$. $\exists \overline{x}$, where $x - n < \overline{x} < x$ s.t. $b^{\overline{x}} < y < b^{x-n} \rightarrow x$

Suppose $b^{x} < y$, then $\frac{y}{b^{x}} > | \Rightarrow \exists n \in \mathbb{N}$ s.t. $\frac{y}{b^{x}} > | b^{n} \Rightarrow y > | b^{x+n}$.

 $x+\frac{1}{n}\in A \Rightarrow \sup A \neq x$

|x| = y

(Uniqueness)

Suppose 3 distinct $\chi_1, \chi_2 \in \mathbb{R}$ s.t. $b = \gamma$, $b = \gamma$, and let $\chi_1 \geq \chi_2$.

Then $0 = b^{\chi_1} b^{\chi_2} = b^{\chi_2} (b^{\chi_1 - \chi_2} - 1)$

 $\Rightarrow \begin{vmatrix} \chi_1 - \chi_2 \\ - | = 0 \Rightarrow \begin{vmatrix} \chi_1 - \chi_2 \\ - | = \end{vmatrix} = \begin{vmatrix} \chi_1 - \chi_2 = 0 \Rightarrow \chi_1 = \chi_2 \\ - \chi_2 = 0 \Rightarrow \chi_1 = \chi_2 \end{vmatrix}$

i. The solution for b= y is unique.