

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS DE CRATEÚS

CURSOS: CIÊNCIA DA COMPUTAÇÃO e SISTEMAS DE INFORMAÇÃO

DISCIPLINA: MATEMÁTICA DISCRETA

PROFESSORA: LÍLIAN DE OLIVEIRA CARNEIRO

ALUNO(A):_

AVALIAÇÃO

Orientações:

- ♣ Faça o download da avaliação. Caso algum imprevisto aconteça você terá acesso ao documento sem precisar de Internet;
- Resolva a avaliação em uma folha de seu caderno ou em papel A4 ou em papel almaço;
- As questões devem ser resolvidas com caneta para que as fotos ou a digitalização saiam com uma boa qualidade (existem alguns aplicativos que fazem digitalização, como o Google Drive). Caso faça à lápis, garanta que as questões fiquem legíveis;
- Indique a qual questão cada resposta está associada;
- A Todas as questões devem ser justificadas. Questões sem justificativa não serão aceitas;
- ♣ Digitalize ou tire foto de cada uma das resposta, nomeando o arquivo. Exemplo: Q1.a-b-c-d (indicando que o arquivo possui os itens a), b) c) e d) da Questão 1). Após concluir a sua avaliação envie-a pelo Portfolio do Solar;
- Durante a correção da avaliação o aluno pode ser solicitado a explicar as suas resoluções.

QUESTÕES

- 1. Determine se as seguintes afirmações são verdadeiras (V) ou falsas (F). Se a afirmação for verdadeira, demonstre-a; se for falsa, apresente um contra-exemplo. (1,6)
 - (a) Sejam R e S são relações sobre um conjunto A. Se R e S simétricas, então $R \cap S$ também é simétrica. ()

(b) Seja \mathbb{Z} o conjunto dos números inteiros. Considere os subconjuntos:

$$T_0=\{n\in\mathbb{Z}|n=3k, ext{para algum }k\in\mathbb{Z}\}; T_1=\{n\in\mathbb{Z}|n=3k+1, ext{para algum }k\in\mathbb{Z}\}$$
 e $T_2=\{n\in\mathbb{Z}|n=3k+2, ext{para algum }k\in\mathbb{Z}\}.$ A coleção $\{T_0,T_1,T_2\}$ é uma partição de $\mathbb{Z}.$ ()

- (c) A matriz $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ representa uma relação de ordem parcial. ()
- (d) O grafo orientado abaixo representa uma relação de equivalência. ()

- 2. Dadas as relações definidas abaixo, determine se a relação é reflexiva, simétrica, antissimétrica e/ou transitiva. Caso a relação satisfaça uma dada propriedade, justifique ou demonstre (relações genéricas); em caso contrário, apresente um contraexemplo. (3,2)
 - (a) Seja $R \subseteq \mathbb{Z}^2$ definida por $R = \{(x, y) : 2 \mid (x y)\}.$
 - (b) Seja $S \subseteq \mathbb{Z}^2$ definida por $S = \{(x, y) : x \neq y\}$.
 - (c) Seja T uma relação sobre $A = \{1,2,3,4\}$ definida por $T = \{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,1),(4,4)\}.$
 - (d) Seja U uma relação sobre $A = \{1, 2, 3, 4\}$ definida por $U = \{(3, 4)\}$.
- 3. Para cada uma das relações da Questão 2, classifique-a em relação de equivalência e/ou relação de ordem. Justifique a sua classificação. (0,8)
- 4. Para cada uma das relações definidas abaixo, determine o fecho reflexivo, simétrico e transitivo. (1,6)
 - (a) $R = \{(x, y) \in \mathbb{Z}^2 | x < y \}$. (0,6)
 - (b) Seja T uma relação sobre $A = \{1,2,3,4\}$ definida por $T = \{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,1),(4,4)\}.$ (0,5)
 - (c) Seja S uma relação sobre $A = \{1, 2, 3, 4\}$ definida por $U = \{(4, 2), (2, 4)\}$. (0,5)
- 5. Dado o conjunto parcialmente ordenado ({1,2,4,5,12,20},|). (**0,8**)
 - (a) Encontre os elementos maximais.
 - (b) Encontre os elementos minimais.
 - (c) Existe um elemento máximo? Justifique.
 - (d) Existe um elemento mínimo? Justifique.