Piotr Durniat

I rok, Fizyka Wtorek, 8:00-10:15 Data wykonania pomiarów: 08.04.2025

Prowadząca: dr Iwona Mróz

Ćwiczenie nr 19

Pomiary stałej grawitacji G (ważenie Ziemi)

Spis treści

1	Wstęp teoretyczny	2
2	Opis doświadczenia	2
3	Opracowanie wyników pomiarów 3.1 Tabele pomiarowe	2 2 2
4		2
5	Wnioski	3
6	Wykresy	4

1 Wstęp teoretyczny

Siła grawitacji

Siłę grawitacji F dla dwóch ciał o masach m_1 i m_2 oddalonych o r można wyrazić wzorem:

$$F = G \frac{m_1 m_2}{r^2} \tag{1}$$

gdzie:

 \bullet G - stała grawitacji

Metoda wagi skręceń Cavendisha

Metoda wagi skręceń Cavendisha jest jedną z metod wyznaczania stałej grawitacji G. Waga skręceń składa się z dwóch ciężarków o masie m zawieszonych na obu końcach pręta, który jest zawieszony na cienkiej sprężystej nici będącej osią obrotu. W pobliżu tych kulek umieszcza się dwa duże ciężkie kulki o masie M. Wówczas siła grawitacji działająca na kulki m wywołuje skręcenie nici aż do momentu, w którym siła grawitacji zrównoważy siłę sprężystości nici.

2 Opis doświadczenia

3 Opracowanie wyników pomiarów

- 3.1 Tabele pomiarowe
- 3.2 Wyznaczanie położeń środkowych

$$b_{01} = \frac{\frac{b_1 + b_3}{2} + b_2}{2} = \frac{b_1}{4} + \frac{b_2}{2} + \frac{b_3}{4} \rightarrow \text{pierwsze ustawienie};$$
$$b_{02} = \frac{\frac{b_1 + b_3}{2} + b_2}{2} = \frac{b_1}{4} + \frac{b_2}{2} + \frac{b_3}{4} \rightarrow \text{drugie ustawienie}.$$

4 Ocena niepewności pomiaru

4.1 Niepewność Δb

$$\Delta(\Delta b) = \dots$$

4.2 Niepewność T

$$\Delta T = 30s$$

4.3 Niepewność G

Wzór (18) z instrukcji ONP:

$$\Delta y = \sum_{k=1}^{K} \left| \frac{\partial f}{\partial x_k} \Delta x_k \right| \tag{2}$$

Wzór na stałą grawitacji:

$$G = \frac{\pi^2 r^2 d\Delta b}{MT^2 L} \tag{3}$$

Pochodne cząstkowe:

$$\frac{\partial G}{\partial \Delta b} = \frac{\pi^2 r^2 d}{M T^2 L} = \frac{G}{\Delta b} \tag{4}$$

$$\frac{\partial G}{\partial \Delta T} = \frac{-2\pi^2 r^2 d}{MT^3 L} = \frac{-2G}{T} \tag{5}$$

Finalnie:

$$\Delta G = \left| \frac{-2G}{T} \Delta_T \right| + \left| \frac{G}{\Delta b} \Delta_{\Delta b} \right| \tag{6}$$

5 Wnioski

6 Wykresy

Rysunek 1: Wykres zależności wychylenia od czasu

Literatura