# Lecture No. 05

**Question**: Suppose A is a  $4 \times 4$  matrix and **b** is a vector in  $\mathbb{R}^4$  with the property that  $A\mathbf{x} = \mathbf{b}$  has a unique solution. Explain why the columns of A must span  $\mathbb{R}^4$ .

**Solution**: We are given that the system  $A\mathbf{x} = \mathbf{b}$  has unique solution for  $\mathbf{b} \in \mathbb{R}^4$ , which means that the augmented matrix of the system in echelon form has a pivot element in every row and the columns of A are linearly independent and span  $\mathbb{R}^3$ .

# 5.1 Homogeneous Linear System

A system of linear equations is said to be homogeneous if it can be written in the form  $A\mathbf{x} = \mathbf{0}$ , where A is an  $m \times n$  matrix and  $\mathbf{0}$  is the zero vector in  $\mathbb{R}^m$ .

**Trivial and Nontrivial Solution**: The zero solution is usually called the trivial solution. For a given equation  $A\mathbf{x} = \mathbf{0}$ ; the important question is whether there exists a nontrivial solution, that is, a nonzero vector  $\mathbf{x}$  that satisfies  $A\mathbf{x} = \mathbf{0}$ .

**Remark**: The homogeneous equation  $A\mathbf{x} = \mathbf{0}$  has a nontrivial solution if and only if the equation has at least one free variable.

**Example**: Determine if the following homogeneous system has a nontrivial solution.

$$3x_1 + 5x_2 - 4x_3 = 0$$

$$-3x_1 - 2x_2 + 4x_3 = 0$$

$$6x_1 + x_2 - 8x_3 = 0$$

Solution: The augmented matrix is

$$\begin{bmatrix} 3 & 5 & -4 & 0 \\ -3 & -2 & 4 & 0 \\ 6 & 1 & -8 & 0 \end{bmatrix} \sim \begin{bmatrix} 3 & 5 & -4 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & -9 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 3 & 5 & -4 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The reduced echelon form is

$$\begin{bmatrix} 3 & 0 & -\frac{4}{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{ccc} x_1 & & -\frac{4}{3}x_3 & = & 0 \\ & & & & = & 0 \\ & & & & 0 & = & 0 \end{array}$$

which gives  $x_1, x_2$  are basic variables and  $x_3$  is free variable.

**Example**: A single linear equation can be treated as a very simple system of equations. Describe all solutions of the homogeneous system

$$10x_1 - 3x_2 - 2x_3 = 0.$$

**Solution**: From the given equation  $10x_1 - 3x_2 - 2x_3 = 0$  we have

$$x_1 = \frac{1}{10}(3x_2 + 2x_3)$$

the solution of the system can be written as

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} 3/10 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1/5 \\ 0 \\ 1 \end{bmatrix}.$$

The above form of the solution is known as parametric vector form of the solution of homogeneous system.

#### Parametric Vector Form:

$$\mathbf{x} = s\mathbf{u} + t\mathbf{v}, \quad (s, t \in \mathbb{R}).$$

Example: If possible write the nontrivial solution of the following system in para-

$$x_1 + 2x_2 - 3x_3 = 0$$

metric form.  $2x_1 + x_2 - 3x_3 = 0$ 

$$-x_1 + x_2 =$$

**Solution**: The augmented matrix of the given homogeneous system of linear equations is

$$\begin{bmatrix} 1 & 2 & -3 & 0 \\ 2 & 1 & -3 & 0 \\ -1 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 3 & -3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus we have  $-3x_2 + 3x_3 = 0$  and  $x_1 + 2x_2 - 3x_3 = 0$ , if we let  $x_3 = t$  where  $t \in \mathbb{R}^3$  then the parametric vector from of the solution is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{x} = t\mathbf{v}$$

where 
$$\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
.

**Example**: Solve the nonhomogeneous system of linear equations

$$3x_1 + 5x_2 - 4x_3 = 7$$

$$-3x_1 - 2x_2 + 4x_3 = -1$$

$$6x_1 + x_2 - 8x_3 = -4$$

Solution: The augmented matrix is

$$\begin{bmatrix} 3 & 5 & -4 & 7 \\ -3 & -2 & 4 & -1 \\ 6 & 1 & -8 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{4}{3} & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} x_1 & -\frac{4}{3}x_3 & = & -1 \\ x_2 & = & 2 \\ 0 & = & 0 \end{array}$$

Thus  $x_1 = -1 + \frac{4}{3}x_3$ ,  $x_2 = 2$ , and  $x_3$  is free. In parametric form we can write the solution as

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 + \frac{4}{3}x_3 \\ 2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} \frac{4}{3} \\ 0 \\ 1 \end{bmatrix}.$$

or

$$\mathbf{x} = \mathbf{p} + x_3 \mathbf{v}$$

where

$$\mathbf{p} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} \frac{4}{3} \\ 0 \\ 1 \end{bmatrix}.$$

Notice that  $\mathbf{p}$  is a particular solution of the nonhomogeneous system and the second part is the solution of the associated homogeneous system of the given system, i.e.,  $x_3\mathbf{v}$  is the solution of the homogeneous system



Figure 5.1: Relation between solution of nonhomogenous and homogenous systems

**Example**: Describe and compare the solution sets of  $x_1 + 5x_2 - 3x_3 = 0$  and  $x_1 + 5x_2 - 3x_3 = -2$ .

**Solution**: The solution of the nonhomogenous equation i.e.,  $x_1 + 5x_2 - 3x_3 = -2$  is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -5 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}.$$

Where as the solution of the homogenous equation  $x_1 + 5x_2 - 3x_3 = 0$  is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} -5 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}.$$

**Theorem**: Suppose the equation  $A\mathbf{x} = \mathbf{b}$  is consistent for some given  $\mathbf{b}$ , and let  $\mathbf{p}$  be a solution. Then the solution set of  $A\mathbf{x} = \mathbf{b}$  is the set of all vectors of the form  $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$ , where  $\mathbf{v}_h$  is any solution of the homogeneous equation  $A\mathbf{x} = \mathbf{0}$ .



Figure 5.2: Solution of nonhomogenous system

**Remark**: The above result apply only to an equation  $A\mathbf{x} = \mathbf{b}$  that has at least one solution. If the linear system is inconsistent the off course the solution set is empty.

Writing a solution set (of a consistent system) in parametric vector form:

- 1. Row reduce the augmented matrix to reduced echelon form.
- 2. Express each basic variable in terms of any free variables appearing in an equation.
- 3. Write a typical solution  $\mathbf{x}$  as a vector whose entries depend on the free variables, if any.
- 4. Decompose  $\mathbf{x}$  into a linear combination of vectors (with numeric entries) using the free variables as parameters.

**Example**: Describe the solutions of the following system in parametric vector form. Also, give a geometric description of the solution set and compare it to the homogeneous system of linear system

**Solution**: The augmented matrix is

$$\begin{bmatrix} 2 & 2 & 4 & 8 \\ -4 & -4 & -8 & -16 \\ 0 & -3 & -3 & 12 \end{bmatrix} \sim \begin{bmatrix} 2 & 2 & 4 & 8 \\ 0 & 0 & 0 & 0 \\ 0 & -3 & -3 & 12 \end{bmatrix} \sim \begin{bmatrix} 2 & 2 & 4 & 8 \\ 0 & -3 & -3 & 12 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The solution of the system is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 8 \\ -4 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}.$$

The associated homogeneous system has solution  $x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$  which is a line passing through origin and the the solution of nonhomogeneous system is a line parallel to this line but passing through the point  $\begin{bmatrix} 8 \\ -4 \\ 0 \end{bmatrix}$ .

**Example**: Describe the solutions of the following system in parametric vector form. Also, give a geometric description of the solution set and compare it to the homogeneous system of linear system

**Solution**: The augmented matrix is

$$\begin{bmatrix} 1 & 2 & -3 & 5 \\ 2 & 1 & -3 & 13 \\ -1 & 1 & 0 & -8 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -3 & 3 & 3 \\ 0 & 3 & -3 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -3 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

and repeat the same procedure as we did in he above example.

**Example**: Describe the solutions of the following system in parametric vector form (if possible). Also, give a geometric description of the solution set and compare it to the homogeneous system of linear system

$$\left[\begin{array}{ccccc}1&0&1&1&-1\\0&-1&-2&-1&5\\0&0&0&7\end{array}\right]$$
 The third row gives us  $0=7$  which is absurd and hence

system is inconsistent.

**Example**: Describe the solutions of the following system in parametric vector form (if possible). Also, give a geometric description of the solution set and compare it to the homogeneous system of linear system

Solution: The augmented matrix is

$$[A \quad \mathbf{0}] = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 2 & -1 & 0 & 1 & 0 \\ 1 & 1 & 3 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & -1 & -2 & -1 & 0 \\ 0 & 1 & 2 & 1 & 0 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & -1 & -2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

The solution set is

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}.$$

### 5.2 Some Practice Problems

Question: If possible write the nontrivial solution of the following system in para-

Question: Use the relationship between the solution of nonhomogeneous system of linear equation and homogeneous linear system to find the solution of the linear

**Question**: Describe all the solutions of homogeneous linear system  $A\mathbf{x} = \mathbf{0}$  in parametric vector form where A is equivalent to the following matrix

**Question**: Does the equation  $A\mathbf{x} = \mathbf{0}$  have a nontrivial solution and does the equation  $A\mathbf{x} = \mathbf{b}$  have at least one solution for every possible  $\mathbf{b}$ . If A is a  $3 \times 3$  matrix with three pivot positions.

### CHAPTER 6

# Lecture No. 06

**Question**: Describe all the solutions of homogeneous linear system  $A\mathbf{x} = \mathbf{0}$  in parametric vector form where A is equivalent to the following matrix

Solution: The equations from the given matrix are

$$x_1 - 2x_2 + 3x_3 - 6x_4 + 5x_5 = 0$$
$$x_4 + 4x_5 - 6x_6 = 0$$
$$x_6 = 0$$

and the parametric form of the solution is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -29 \\ 0 \\ 0 \\ -4 \\ 1 \\ 0 \end{bmatrix}.$$

Concept: Consider the vector equation 
$$c_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 7 \\ -1 \\ 2 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 5 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

What is the solution of the above vector equation? There are two possibilities

- 1. The vector equation has only trivial solution (the vectors are linearly independent)
- 2. The vector equation has nontrivial solution (the vectors are linearly dependent)

Solve the system and decide the vectors are linearly independent or dependent.

# 6.1 Linearly Independent set of vectors

An indexed set of vectors  $\{\mathbf{v}_1,...,\mathbf{v}_p\}$  in  $\mathbb{R}^n$  is said to be **linearly independent** if the vector equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = 0$$

has only the trivial solution.

The set  $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$  is said to be **linearly dependent** if there exist weights  $\{c_1, ..., c_p\}$ , **not all zero**, such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = 0.$$

**Example**: Let 
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
,  $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$ , and  $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ .

- Determine if the set  $\{v_1, v_2, v_3\}$  is linearly independent.
- If possible, find a linear dependence relation among the vectors  $\mathbf{v}_1, \mathbf{v}_2$ , and  $\mathbf{v}_3$ }

**Solution**: The augmented matrix corresponding to the vector equation  $c_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{0}$  is

$$\begin{bmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

So we have the following equations

$$\begin{array}{cccc} x_1 & & - & 2x_2 = & 0 \\ & x_2 & + & x_3 = & 0 \\ & & 0 = & 0 \end{array}$$

and say  $x_3 = 2$ , then we have the following linear combination

$$4\mathbf{v}_1 - 2\mathbf{v}_2 + 2\mathbf{v}_3 = \mathbf{0}.$$

**Example**: Find the value(s) of h for which the vectors are linearly dependent.

$$\left[\begin{array}{c} 3\\-6\\1 \end{array}\right], \left[\begin{array}{c} -6\\4\\-3 \end{array}\right], \left[\begin{array}{c} 9\\h\\3 \end{array}\right].$$

**Solution**: We have to choose the the values of h such that the vector equation

$$c_1 \begin{bmatrix} 3 \\ -6 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -6 \\ 4 \\ -3 \end{bmatrix} + c_3 \begin{bmatrix} 9 \\ h \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

has nontrivial solution. The augmented matrix of the system is

$$\begin{bmatrix} 3 & -6 & 9 & 0 \\ -6 & 4 & h & 0 \\ 1 & -3 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 & 0 \\ -6 & 4 & h & 0 \\ 3 & -6 & 9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 & 0 \\ 0 & -14 & h + 18 & 0 \\ 0 & 3 & 0 & 0 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -3 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -14 & h + 18 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & h + 32 & 0 \end{bmatrix}.$$

In order to system has nontrivial solution h + 32 = 0, which gives the required value of the h.

**Linear Independence of Matrix Columns**: Suppose we have a matrix  $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ ... \ \mathbf{a}_n]$ . We can consider the columns of this matrix as a set of vectors  $\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n\}$  and then we can talk about the **linearly independence** or **linearly dependence** of the vectors of this set, i.e.,

$$c_1\mathbf{a}_1 + c_2\mathbf{a}_2 + \dots + c_n\mathbf{a}_n = \mathbf{0}.$$

Each linear dependence relation among the columns of A corresponds to a non-trivial solution of  $A\mathbf{x} = \mathbf{0}$ . Thus we have the following important fact.

The columns of a matrix A are linearly independent if and only if the equation  $A\mathbf{x} = 0$  has only the trivial solution.

**Example**: Check whether the columns of the matrix  $A = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0 \end{bmatrix}$  are linearly independent.

**Solution**: We should check whether the homogeneous system  $A\mathbf{x} = \mathbf{0}$  has only trivial solution? For this we take the augmented matrix

$$\begin{bmatrix} 0 & 1 & 4 & 0 \\ 1 & 2 & -1 & 0 \\ 5 & 8 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & -2 & 5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 13 & 0 \end{bmatrix}$$

It is clear that the homogeneous system has only trivial solution, hence the columns of the matrix are linearly independent.

**Example**: Given  $\begin{bmatrix} 4 & 3 & -5 \\ -2 & -2 & 4 \\ -2 & -3 & 7 \end{bmatrix}$ , observe that the first column minus three

times the second column equals the third column. Find a nontrivial solution of  $A\mathbf{x} = \mathbf{0}$ .

**Solution**: The one nontrivial solution of the system is

$$\begin{bmatrix} 4 \\ -2 \\ -2 \end{bmatrix} - 3 \begin{bmatrix} 3 \\ -2 \\ -3 \end{bmatrix} - 1 \begin{bmatrix} -5 \\ 4 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Hence  $c_1 = 1, c_2 = -3$  and  $c_3 = -1$ .

**Sets of one or two vectors**: The set of one non zero vector is always linearly independent.

Example: Determine if the following sets of vectors are linearly independent

1. 
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -9 \\ -3 \end{bmatrix}$$
 Linearly dependent.

2. 
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -9 \\ 2 \end{bmatrix}$$
 Linearly independent.

**Remark**: A set of two vectors  $\{v_1; v_2\}$  is linearly dependent if at least one of the vectors is a multiple of the other. The set is linearly independent if and only if neither of the vectors is a multiple of the other.

#### Theorem: Characterization of Linearly Dependent Sets

An indexed set  $S = \{\mathbf{v}_1, ..., \mathbf{v}_p\}$  of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

In fact, if S is linearly dependent and  $\mathbf{v}_1 \neq 0$ , then some  $\mathbf{v}_j$  (with j > 1) is a linear combination of the preceding vectors,  $\mathbf{v}_1, ..., \mathbf{v}_{j-1}$ .

**Remark**: The above result does not say that every vector in a linearly dependent set is a linear combination of the preceding vectors.

A vector in a linearly dependent set may fail to be a linear combination of the other vectors.

**Example**: Let 
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
,  $\mathbf{v}_2 = \begin{bmatrix} -9 \\ 2 \\ 0 \end{bmatrix}$ . Describe the set spanned by  $\mathbf{v}_1$  and  $\mathbf{v}_2$ ,

and explain why a vector  $\mathbf{w}$  is in  $Span\{\mathbf{v}_1, \mathbf{v}_2\}$  if and only if  $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{w}\}$  is linearly dependent. See the figure below.



Figure 6.1: Span of two vectors

**Theorem**: If a set contains more vectors than there are entries in each vector, then the set is **linearly dependent**. That is, any set  $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$  in  $\mathbb{R}^n$  is linearly dependent if p > n.

**Remark**: The above result says nothing about the case in which the number of vectors in the set does not exceed the number of entries in each vector.

**Theorem**: If a set  $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$  in  $\mathbb{R}^n$  contains the zero vector, then the set is linearly dependent.

**Example**: Determine whether the given vectors are linearly dependent or linearly independent.

1. 
$$\begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
,  $\begin{bmatrix} -9 \\ 2 \\ 0 \end{bmatrix}$ ,  $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$  and  $\begin{bmatrix} -1 \\ 4 \\ 5 \end{bmatrix}$  Linearly dependent.

2. 
$$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
,  $\begin{bmatrix} -9 \\ 0 \end{bmatrix}$ ,  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$  Linearly dependent.

3. 
$$\begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}$$
,  $\begin{bmatrix} -9 \\ 0 \\ 0 \end{bmatrix}$ ,  $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$  Linearly dependent.

4. 
$$\begin{bmatrix} 3 \\ 1 \\ 0 \\ 2 \end{bmatrix}$$
,  $\begin{bmatrix} -9 \\ 1 \\ 0 \\ 3 \end{bmatrix}$ ,  $\begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$  We can't say anything we have to check the vector equation.

### 6.2 Some Practice Problems

**Question**: Find a non trivial solution  $A\mathbf{x} = \mathbf{0}$  where A is equivalent to the following

matrix 
$$\begin{bmatrix} 2 & 3 & 5 \\ -5 & 1 & -4 \\ -3 & -1 & -4 \\ 1 & 0 & 1 \end{bmatrix}$$
. Notice that the third column is the sum of the first two

columns. (You don't need any computations for the answer of this question)

**Question**: Without any computations decide whether the given vectors are linearly dependent or linearly independent.

$$1. \quad \left[ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right], \left[ \begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right], \left[ \begin{array}{c} 3 \\ 5 \\ 7 \end{array} \right].$$

$$2 \quad \left[ \begin{array}{c} 3 \\ 1 \end{array} \right], \left[ \begin{array}{c} -9 \\ 0 \end{array} \right], \left[ \begin{array}{c} 1 \\ 1 \end{array} \right].$$

3. 
$$\begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -9 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix}$$