5

Keep Learning

grade 84.61%

Graded quiz on Cartesian Plane and Types of Function

	LATEST SUBMISSION GRADE 84.61%		
1.	Which of the following points in the Cartesian Plane have positive x -coordinate and negative y -coordinate?	1 / 1 point	
	\bigcirc $(0,0)$		
	◎ (7, −1)		
	\bigcirc $(-4,5)$		
	\bigcirc (5,7)		
	\checkmark Correct The x -coordinate, 7 , is positive, and the y -coordinate, -1 , is negative.		
2.	Which of the following points is in the first quadrant of the Cartesian Plane?	1/1 point	
	Correct The first quadrant is defined to be all points in the Cartesian plane whose coordinates are both positive.		
3.	Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$	1 / 1 point	
	Suppose that the distances from A to B,C,D are ${\bf 5.3,2.1,}$ and ${\bf 11.75,}$ respectively.		
	Which of the following points is the nearest neighbor to the point A in the set S ?		
	\checkmark Correct The distance from A to C is 2.1 and that is smaller than the distance from A to any other element of $S.$		
4.	Find the distance between the points $A=(2,2)$ and $B=(-1,-2)$. $\bigcirc \ \ -25$	1/1 point	

✓ Correct

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$

In this case we have:

$$\sqrt{(-1-2)^2 + (-2-2)^2} = \sqrt{(-3)^2 + (-4)^2} = \sqrt{25} = 5$$

5. Find the slope of the line segment between the points A=(0,1) and B=(1,0).

1 / 1 point

- O 1
- $\bigcirc \sqrt{2}$
- \bigcirc 0

✓ Correc

The slope of this line segment is $\frac{0-1}{1-0}=-1$

6. Find the point-slope form of the equation of the line with slope -2 that goes through the point (5,4).

0 / 1 point

- \bigcirc (5,4)
- y 5 = -2(x 4)
- y-4=-2(x-5)

Y Incorrect

Remember that the point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$

In this case, the slope m=-2 is given. But this equation uses m=2 instead.

7. Which of the following equations is for a line with the same slope as y=-3x+2?

1 / 1 point

$$y = -3x - 8$$

$$\bigcirc y = 8x - 3$$

$$\bigcirc \ y = 5x$$

$$\bigcirc \ y = 5x + 2$$

✓ Correc

The slope-intercept formula for a line is y=mx+b, where m is the slope and b is the y-coordinate of the point where the line hits the y-axis.

This line has slope m=-3 which is the same slope as the given line.

8. Which of the following equations is for a line with the same y-intercept as y=-3x+2?

0 / 1 point

$$\bigcirc y = 8x - 3$$

	$\bigcirc \ y=5x+2$	
	$\bigcirc y = 5x$	
	X Incorrect The the slope-intercept formula for a line is $y=mx+b$, where m is the slope and b is the y -coordinate of the point where the line hits the y -axis. This line does share a slope ($m=-3$) with the given line, but does not have the same y -intercept.	
9.	How many lines contain both the point $A=(1,1)$ and the point $B=(2,2)$?	1 / 1 point
	infinitely many	
	12	
	None	
	✓ Correct	
	The line with equation $y=x$ is the one and only line that meets the stated requirements.	
10.	Suppose that we have two sets, $A=\{a,b\}$ and $Z=\{x,y\}$. How many different functions $F:A\to Z$ are possible?	1 / 1 point
	○ There are none	
	O 1	
	There are infinitely many	
	4	
	✓ Correct	
	A function $F:A o Z$ is a rule which assigns an element $F(a)\in Z$ to each element $a\in A.$	
	There are two elements in A ; namely, a and b . For each of these elements, there are two assignment choices we could make: x and y .	
	Here are the four possible functions:	
	F(a)=x, F(b)=y, OR	
	F(a)=y, F(b)=x, OR	
	F(a)=x, F(b)=x, OR	
	F(a) = y, F(b) = y.	
4.4		
11.	How many graphs contain both the point $A=\left(0,0\right)$ and the point $B=\left(1,1\right)$	1 / 1 point
	Infinitely many	
	○ None	
	O 1	

The graphs of $f(x)=x, g(x)=x^2, h(x)=x^3, s(x)=x^4, \ldots$ all contain both A and B

12.	Suppose that $g:\mathbb{R} o \mathbb{R}$ is a continuous function whose graph intersects the x -axis more than once.
	Which of the following statements is true?

1 / 1 point

- O All of the above.
- $\bigcirc g$ is strictly decreasing.
- $\bigcirc g$ is strictly increasing.
- igotimes g is neither strictly increasing nor strictly decreasing.

The function g fails the horizontal line test, so it can neither be strictly increasing nor strictly decreasing.

13. Find the slope of the line segment between the points A=(1,1) and B=(5,3).

1 / 1 point

- O 4
- \odot $\frac{1}{2}$
- O 2
- $\bigcirc \sqrt{20}$

✓ Correct

The slope of this line segment is $\frac{3-1}{5-1}=\frac{1}{2}$, where 3-1 is the rise and 5-1 is the run.