1 The original option

Theorem (Residue Theorem). Let f be analytic in the region G except for the isolated singularities $\alpha_1, \alpha_2, ..., \alpha_m$. If γ is a closed rectifiable curve in G which does not pass through any of the points α_k and if $\gamma \approx 0$ in G, then

$$\frac{1}{2\pi i} \int_{\gamma} f\left(x^{\mathbf{N} \in \mathbb{C}^{N \times 10}}\right) = \sum_{k=1}^{m} n(\gamma; a_k) \operatorname{Res}(f; a_k).$$

Theorem (Maximum Modulus). Let G be a bounded open set in $\mathbb C$ and suppose that f is a continuous function on \overline{G} which is analytic in G. Then

$$\max\left\{|f(z)|\,:\,z\in\overline{\mathsf{G}}\right\}=\max\left\{|f(z)|\,:\,z\in\mathfrak{d}\mathsf{G}\right\}$$

First some large operators both in text: $\iiint_Q f(x, y, z) dx dy dz$ and $\prod_{\gamma \in \Gamma_{\tilde{C}}} \partial(\tilde{X}_{\gamma})$; and also on display

$$\iiint_{Q} f(w, x, y, z) dw dx dy dz \leq \oint_{\partial Q} f'\left(\max\left\{\frac{\|w\|}{|w^{2} + x^{2}|}; \frac{\|z\|}{|y^{2} + z^{2}|}; \frac{\|w \oplus z\|}{|x \oplus y|}\right\}\right).$$