

Course > Section 2: Continuo... > 2.2 Assessment: Co... > Questions 3 and 4: ...

Questions 3 and 4: ACT scores, part 2

In this 3-part question, you will convert raw ACT scores to Z-scores and answer some questions about them.

Convert **act_scores** to Z-scores. Recall from <u>Data Visualization</u> (the second course in this series) that to standardize values (convert values into Z-scores, that is, values distributed with a mean of 0 and standard deviation of 1), you must subtract the mean and then divide by the standard deviation. Use the mean and standard deviation of **act_scores**, not the original values used to generate random test scores.

Question 3a

1.0/1.0 point (graded)

What is the probability of a Z-score greater than 2 (2 standard deviations above the mean)?

0.023		✓
0.023		
Submit	You have use	d 3 of 10 attempts

Question 3b

1/1 point (graded)

What score value corresponds to 2 standard deviations above the mean (Z = 2)?

In this 4-part question, you will write a function to create a CDF for ACT scores.

Write a function that takes a value and produces the probability of an ACT score less than or equal to that value (the CDF). Apply this function to the range 1 to 36.

Question 4a

1.0/1.0 point (graded)

What is the minimum score such that the probability of that score or lower is at least .95?

Question 4b

1.0/1.0 point (graded)

Use <code>qnorm</code> to determine the expected 95th percentile, the value for which the probability of receiving that score or lower is 0.95, given a mean score of 20.9 and standard deviation of 5.7.

Question 4c

1.0/1.0 point (graded)

As discussed in the Data Visualization course, we can use <code>quantile</code> to determine sample quantiles from the data.

Make a vector containing the quantiles for [p < -seq(0.01, 0.99, 0.01)], the 1st through 99th percentiles of the data. Save these as $[sample_quantiles]$.

In what percentile is a score of 26?

Note that a score between the 98th and 99th percentile should be considered the 98th percentile, for example, and that quantile numbers are used as names for the vector sample quantiles.

Question 4d

1.0/1.0 point (graded)

Make a corresponding set of theoretical quantiles using qnorm over the interval $p \leftarrow seq(0.01, 0.99, 0.01)$ with mean 20.9 and standard deviation 5.7. Save these as theoretical_quantiles on the y-axis versus theoretical_quantiles on the x-axis.

Which of the following graphs is correct?

Submit

You have used 1 of 2 attempts

© All Rights Reserved