hpcscan version 1.1 Performance benchmarks on Shaheen II (KAUST)

Updated December 21, 2020

- 1 Shaheen II (KAUST)
- Test Case Memory
- 3 Test Case Grid
- 4 Test Case Comm
- Test Case FD_D2
- 6 Test Case PropaAc2
- Acknowledgements

- 1 Shaheen II (KAUST)
- 2 Test Case Memory
- 3 Test Case Grid
- 4 Test Case Comm
- Test Case FD_D2
- Test Case PropaAc2
- 7 Acknowledgements

Shaheen II (KAUST)

Machine Shaheen II / Cray XC40

- Computing nodes Intel Haswell 2.3 Ghz dual socket (16 cores / socket)
- RAM 128 GB with Peak memory BW 136.5 GB/s
- Peak performance Single Prec. 2.36 TFLOP/s / Double Prec. 1.18 TFLOP/s
- Interconnect Cray Aries with Dragonfly topology
 - 60 GB/s optical links between groups
 - 8.5 GB/s copper links between chassis
 - 3.5 GB/s backplane within a chassis
 - 5 GB/s PCIe from node to Aries router

- 1 Shaheen II (KAUST)
- 2 Test Case Memory
- 3 Test Case Grid
- 4 Test Case Comm
- 5 Test Case FD_D2
- Test Case PropaAc2
- 7 Acknowledgements

Test Case Memory - Description

- Fill grid (W = coef)
- Copy grid (W = U)
- Add grids (W = U + V)
- Multiply grids (W = U * V)
- Add and update grids (W = W + U)
- Grid size 4 GB (1000 x 1000 x 1000 points)

Test Case Memory - Results ¹

- 1 node with 1 to 32 threads
- Baseline kernel

Reproduce results with ./script/testCase_Memory/hpcscanMemory.sh Elapsed time about 4 minutes.

¹Updated Dec 22, 2020

Test Case Memory - Summary

- Measured memory BW between 91 to 122 GB/s (67-90 % of peak BW)
- Low BW 59 GB/s for Fill (43 % of peak BW)
- Multiply (= imaging condition) performs at 7.6 Gpoint/s

- 1 Shaheen II (KAUST)
- 2 Test Case Memory
- Test Case Grid
- 4 Test Case Comm
- Test Case FD_D2
- Test Case PropaAc2
- 7 Acknowledgements

Test Case Grid - Description

- Fill grid (U = coef)
- Max. diff (U-V)
- L1 norm between U and V
- Sum Abs(U)
- Sum Abs(U-V)
- Get max. grid U
- Get min. grid U
- Update pressure (used in propagator)
- Boundary condition (free surface at all edges)
- Small Grid size 500 MB (500 x 500 x 500 points)
- Medium Grid size 4 GB (1000 x 1000 x 1000 points)

Test Case Grid - Results ²

- 1 node / 32 threads
- Baseline kernel

Blue small grid / Red medium grid
ApplyBoundaryCondition performs at 713/846 GBytes (89/105 Gpoint/s)
Reproduce results with ./script/testCase_Grid/hpcscanGrid.sh
Elapsed time XX min.

²Updated Dec 23, 2020

Test Case Grid - Summary

- L1 Err., Get Min & Max: 125 GB/s close to peak BW (92 % Peak Mem. BW)
- Low perf for Fill: 54-58 GB/s (40-43 % Peak Mem. BW)
- Max Err. 72-91 GB/s (53-67 % Peak Mem. BW)
- Pressure update 6 GPoint/s (120 GB/s, 88 % Peak Mem. BW)

- 1 Shaheen II (KAUST)
- 2 Test Case Memory
- 3 Test Case Grid
- 4 Test Case Comm
- Test Case FD_D2
- Test Case PropaAc2
- 7 Acknowledgements

Test Case Comm - Description

Measure MPI communication bandwidth

MPI point to point communication

- Send with MPI_Send from proc X to proc 0 (Half-duplex BW)
- Send and receive with MPI_Sendrecv between proc X and proc 0 (Full-duplex BW)

MPI collective communication

- Exhange of halos used in FD kernel with MPI_Sendrecv
- Grid size 1000 x 1000 x 1000
- Domain decomposition with N1 x N2 x N3 subdomains

Test Case Comm - Results

- 8 MPI processes (1 per computing node)
- Baseline kernel

Table: Bandwidth GB/s ³

MPI#1	MPI#2	Send	Sendrecv	Halo exch.	Comm. size	Subdomains
0	1	8.5	15.3	-	47 MB	=.
0	2	8.3	15.3	-	47 MB	-
0	3	8.6	15.3	-	47 MB	-
0	4	8.5	15.3	-	47 MB	-
0	5	8.2	15.3	-	47 MB	-
0	6	8.5	15.3	-	47 MB	-
0	7	8.6	15.3	-	47 MB	-
All	All	-	-	5.0	128 MB	1 4 2
All	All	-	-	5.1	128 MB	1 2 4
All	All	-	-	2.0	96 MB	2 2 2

Reproduce results with ./script/testCase_Comm/runTestShaheen.sh Elapsed time 9 seconds

³Updated Sep 19, 2020

- 1 Shaheen II (KAUST)
- 2 Test Case Memory
- 3 Test Case Grid
- 4 Test Case Comm
- 5 Test Case FD_D2
- 6 Test Case PropaAc2
- 7 Acknowledgements

Test Case FD_D2 - Description

- Computation of second order derivatives with finite-differnce stencil
- Directionnal derivatives
 - Axis 1 $W = \partial_{x1}^2(U)$
 - Axis 2 $W = \partial_{x2}^2(U)$
 - Axis 3 $W = \partial_{x3}^2(U)$
- Laplacian
 - For 2D grids $W = \Delta(U) = \partial_{x1}^2(U) + \partial_{x2}^2(U)$
 - For 3D grids $W = \Delta(U) = \partial_{x1}^2(U) + \partial_{x2}^2(U) + \partial_{x3}^2(U)$
- Stencil order 2, 4, 8, 12 & 16
- Grid size
 - Small 500 × 500 × 500
 - Medium 1000 x 1000 x 1000

Test Case FD_D2 - Results

- 1 node with 32 threads / Baseline kernel ⁴

⁴Updated Sep 26, 2020

Test Case FD_D2 - Results

- ullet 1 node with 32 threads / Cache blocking kernel 5
- ./script/testCase_FD_D2/runSmallGridShaheen.sh & runMediumGridShaheen.sh

⁵Updated Sep 26, 2020

Test Case FD_D2 - Results

- 1 to 8 nodes with 32 threads/node
- Baseline kernel ⁶
- Strong scalabity: Grid 1000 x 1000 x 1000 (4 GB)
- Weak scalabity: Grids from 4 GB (1 proc) to 32 GB (8 proc)
- 3D Laplacian O8

⁶Updated Sep 26, 2020

Test Case FD_D2 - Summary

- Large benefit of cache blocking
- Significant effect of grid dimnsion and index (very bad performance for n3 without cache blocking)
- Min BW 50 GFLOP/s $(\partial_{x3}^2 \text{ O2}) = 2 \%$ peak BW [apparent Mem. BW 150 GB/s]
- lacktriangle Max BW 370 GFLOP/s (Δ O8) = 16 % peak BW [apparent Mem. BW 900 GB/s]
- Apparent Mem. BW 150-900 GB/s (110-660 % Peak Mem. BW) = shows data in-cache effect
- Typical stencils of interest for geophysical applications
 - Δ O4 BW = 8-10 GPoint/s
 - Δ O8 BW = 7-9 GPoint/s
 - Δ O12 BW = 3-5 GPoint/s
- Parallel efficiency with 8 nodes 55 to 86 % (depends on workload on Shaheen)

- 1 Shaheen II (KAUST)
- 2 Test Case Memory
- 3 Test Case Grid
- 4 Test Case Comm
- Test Case FD_D2
- 6 Test Case PropaAc2
- 7 Acknowledgements

Test Case PropaAc2 - Results

- preliminary results 7
- Eigen mode 1D model
- FD: Black O2, Blue O4, Pink O8, Red O12 / Square=Baseline
- ./paramAnalysis/propaAccuracy/runMars.sh

- 1 Shaheen II (KAUST)
- 2 Test Case Memory
- 3 Test Case Grid
- 4 Test Case Comm
- Test Case FD_D2
- Test Case PropaAc2
- 7 Acknowledgements

Acknowledgements

 $\bullet~$ KAUST ECRC and KSL for access and support on Shaheen II & Ibex