Modules for \mathfrak{sl}_2 are completely reducible

One of the purposes of representation theory (=the study of modules) is to detect properties of the underlying rings/algebras/Lie algebras. In this workshop we will show that the representation theory of \mathfrak{sl}_2 is as easy as it could possibly be. It will not be clear from this workshop, but it is nevertheless true, that the reason for this is that \mathfrak{sl}_2 is a simple Lie algebra.

Recall that \mathfrak{sl}_2 has basis $\{e, f, h\}$ subject to the relations

$$[e,f] = h,$$
 $[h,e] = 2e,$ $[h,f] = -2f.$

Thus a representation of \mathfrak{sl}_2 is just a (finite-dimensional, complex) vector space V together with three maps E, F, H: V \rightarrow V satisfying

$$EF - FE = H$$

 $HE - EH = 2E$
 $HF - FH = -2F$.

Recall that a module (or representation) V is called completely reducible if

$$V \cong S_1 \oplus ... \oplus S_t$$

for some simple modules $S_1, ..., S_t$.

At the last workshop, we worked out what the simple \mathfrak{sl}_2 -modules are. For a representation $V \neq 0$, we found an eigenvector $0 \neq w_0 \in V$ for H such that $Ew_0 = 0$.

(A) Given such a w_0 , we produced $w_i := \frac{1}{i!} F^i w_0$. We proved that at some stage $Fw_i = 0$, and that

$$V(m) := \operatorname{Span}\{w_0, \dots, w_m\}$$

is a submodule of V, for some integer $m \ge 0$.

- (B) Each V(m) is a simple module with one-dimensional weight spaces with weights $m, m-2, \ldots, -m$.
- (C) The V(m) are the only simple modules.

Today we will show that an arbitrary \mathfrak{sl}_2 -module V is completely reducible; that is, $V \cong V(m_1) \oplus \cdots \oplus V(m_t)$ for some non-negative integers m_1, \ldots, m_t .

1. Using induction in dim V show that it is enough to prove that if $W \subseteq V$ is a proper submodule, there there exists another proper submodule W' such that $V = W \oplus W'$.

Solution: We use induction in dim V. The base step is clear, since if dim V = 1, then V is simple. Assume that modules with any dimension $n < \dim V$ are completely reducible. Then if W is a proper submodule of V, dim W $< \dim V$, and if W has a complement W', then dim W' $< \dim V$ as well. By the induction, $W \cong V(\ell_1) \oplus \cdots \oplus V(\ell_r)$ and $W' \cong V(m_1) \oplus \cdots \oplus V(m_s)$ are completely reducible, and so is their direct sum $V \cong V(\ell_1) \oplus \cdots \oplus V(\ell_r) \oplus V(m_1) \oplus \cdots \oplus V(m_s)$.

Hence we search for such a W'.

2. Show that in order to prove the existence of W', it is enough to construct a submodule $U \neq 0$ such that $W \cap U = 0$.

Solution: If we find such a U, then $U \oplus W$ is a submodule of V. If $V = U \oplus W$ we are done by Q1. If not, replace W by $U \oplus W$ (which is strictly larger) and repeat.

Recall that $v_0 \in V$ is called a **highest weight vector** if it is an eigenvector of $H: V \to V$, and further $Ev_0 = 0$. We will construct U in Q2 as follows:

- we will find a highest weight vector $v_0 \in V$ such that $v_0 \notin W$;
- by fact (A), using v_0 we can generate a submodule of V (denote it by U), which by fact (B) is simple;
- since $v_0 \notin W$, $W \cap U$ is a proper submodule of U; but U is simple, so we deduce $W \cap U = 0$.

The remaining questions construct the required v_0 .

3. By considering the module V/W, use facts (A) and (B) to conclude that there exists $v_0 \in V$ such that

$$v_0 \notin W$$
, $(H - m)v_0 \in W$ and $Ev_0 \in W$ (1)

for some $m \ge 0$.

Solution: Consider the \mathfrak{sl}_2 -module V/W. Then plugging this module into the chain of logic found under the blue box (the summary from last workshop!), we can find $0_{\mathrm{V/W}} \neq v_0 + \mathrm{W}$, which is an eigenvector of H (with eigenvalue m say), such that $\mathrm{E}(v_0 + \mathrm{W}) = 0_{\mathrm{V/W}}$. Translating these three conditions, we see that they correspond to $v_0 \notin \mathrm{W}$, $\mathrm{H}(v_0 + \mathrm{W}) = m(v_0 + \mathrm{W})$, and $\mathrm{E}v_0 + \mathrm{W} = \mathrm{W}$, respectively. Or, in other words, $v_0 \notin \mathrm{W}$, $\mathrm{H}(\mathrm{H} - m)v_0 \in \mathrm{W}$, and $\mathrm{E}v_0 \in \mathrm{W}$.

We will 'adjust' v_0 by adding elements of W (but preserving the three properties in (1)) until it becomes a highest weight vector of weight m.

4. Show that every element of W can be written uniquely as the sum of eigenvectors for H. (Remember that we are assuming by induction that W is completely reducible since $\dim W < \dim V$.)

Solution: By the induction hypothesis $W \cong V(\ell_1) \oplus \cdots \oplus V(\ell_r)$. By the construction of the basis of $V(\ell_i)$ in Fact (A), each of the basis elements is an eigenvector of H. Thus an arbitrary element of W can be written as the sum of elements in some $V(\ell_i)$, and each of these elements in this sum can be written as the sum of eigenvectors. Thus every element of W can be written as the sum of eigenvectors of H.

5. Using Q4, how can we ensure that $(H - m)v_0$ has eigenvalue m? We make this modification, and so in what follows assume that $(H - m)v_0 \in W_m$.

Solution: By Q3 $(H - m)v_0 \in W$, so by Q4 we can write

$$(\mathbf{H}-m)v_0=u_1+u_2+\cdots+u_t$$

where the u_i are eigenvectors of H (say with eigenvalues λ_i). If u_1 does not have eigenvalue m, then

$$(H-m)\cdot \frac{1}{\lambda_1-m}u_1 = \frac{\lambda_1-m}{\lambda_1-m}u_1 = u_1,$$

thus

$$(\mathbf{H}-m)(v_0-\frac{u_1}{\lambda_1-m})=u_2+\cdots+u_t.$$

Continuing in this way, by suitably subtracting things from v_0 , we can assume that $(H - m)v_0$ has eigenvalue m.

6. (a) By computing HEv_0 using the \mathfrak{sl}_2 relations, and using Q5, show that

$$(H - (m+2))Ev_0 \in W_{m+2}.$$

Solution: Observe that

$$HEv_0 = EHv_0 + 2Ev_0 = E(H - m)v_0 + (m + 2)Ev_0$$

thus

$$(H - (m+2))Ev_0 = E\underbrace{(H - m)v_0}_{\in W_m} \in W_{m+2},$$
(2)

where $E \cdot W_m \subseteq W_{m+2}$ as in the last workshop.

(b) Further, using Q4 or otherwise, show that $Ev_0 \in W_{m+2}$.

Solution: Since $Ev_0 \in W$, again by Q4 we can write

$$\mathbf{E}v_0 = y_1 + \dots + y_s$$

with each y_i an eigenvector of H (with eigenvalue μ_i say). Then

$$(H-(m+2))Ev_0=(\mu_1-(m+2))y_1+\cdots+(\mu_s-(m+2))y_s.$$

If $\mu_i \neq m+2$ then by definition $y_i \notin W_{m+2}$. Hence the only way that the right hand side can belong to W_{m+2} is if $Ev_0 \in W_{m+2}$.

7. Using the structure of the $V(\ell_i)$ making up W, justify why $E: W_m \to W_{m+2}$ is surjective. Hence we can find $w \in W_m$ such that $Ew = Ev_0$.

Solution: By construction of the basis of the $V(\ell_i)$ it is clear that

$$V(\ell_i)_m \to V(\ell_i)_{m+2}$$

is surjective. Since W is the sum of these, $W_m \to W_{m+2}$ is surjective.

After replacing v_0 by v_0-w (which is nonzero since $v_0\notin W$), we can thus assume that $Ev_0=0$. This replacement does not effect the fact that $v_0\notin W$, and also it does not effect the fact that $(H-m)v_0\in W_m$. Set $w_0:=(H-m)v_0$. If $w_0=0$ then indeed v_0 is an eigenvector of H satisfying $Ev_0=0$ and so we are done. Hence for the remainder of this workshop we assume that $w_0\neq 0$ and aim for a contradiction.

8. Use your answer to Q6 to show that $Ew_0 = 0$.

Solution: Since $Ev_0 \in W_{m+2}$ (by Q6(b)), the left hand side of (2) is zero. Hence $0 = E(H - m)v_0 = Ew_0$.

Define $v_i := \frac{1}{i!} F^i v_0$ and $w_i := \frac{1}{i!} F^i w_0$, so by last workshop $w_j = 0$ for j > m.

9. By induction (or otherwise), prove that

$$Hv_i = (m-2i)v_i + w_i$$
 for all $i \ge 0$
 $Ev_i = (m-i+1)v_{i-1} + w_{i-1}$ for all $i \ge 1$.

Solution: This is very similar to Workshop 3 Q3.

10. Deduce from the first formula that for i > m, we have $v_i \in V_{m-2i}$. As in the last workshop, there exists a j such that $v_j \neq 0$ and $v_{j+1} = 0$. By the first formula, deduce that $j \geq m$.

Solution: As in the statement of Q9, $w_i = 0$ for all i > m. Hence the first formula in Q9 shows that $Hv_i = (m-2i)v_i$ for all i > m, i.e., $v_i \in V_{m-2i}$ for all i > m. Since $w_m \ne 0$, the first formula clearly shows that $v_m \ne 0$.

11. Keeping the j from Q10, substitute i = j + 1 into the second formula of Q9 and deduce that $0 = (m - j)v_j + w_j$. If j = m reach a contradiction, and if j > m reach another contradiction.

Solution: The j in Q10 satisfies $j \neq m$. If j = m the formula $0 = (m - j)v_j + w_j$ in the question shows that $w_j = 0$, which is a contradiction. On the other hand, if j > m then $0 = (m - j)v_j + 0$, so $v_j = 0$, which contradicts the fact $v_j \neq 0$.

Please hand in your solution to Q8, Q9, Q10 and Q11 by the start of lecture on Monday 6 November.