### **Airbnb Prices & Venues Data Analysis of Munich**

This article was written as part of final capstone project for IBM Data Science Professional Certification in Coursera. In this article I will share the difficulties I faced and also some concepts that I implemented.

This article will contain the following steps that are necessary for any Data Science project:

- 1. Problem statement
- 2. Data Collection
- 3. Data Preprocessing
- 4. Machine Learning
- 5. Visualization
- 6. Result

#### **Problem Statement**

As a turist, people always want to stay in a nice neighborhood with reasonable prices. However, it is hard to assess if you are not a local. In this project, we will look to these neighborhoods with k mean machine learning algorithm, clustering them in to categories. At the end, we will decide which neighborhoods are convenient to stay.

On the other hand, we can look from the Airbnb owner's perspective to show them if their appartments are in the better neighborhood comparing to other ones.

#### **Data Collection**

To consider the above problem the data is collected as following:

For Airbnb prices, I searched and found a great website where there is a list included with approxiametly 10000 entry of Airbnb adverts. Each advert has its coordinate, neighborhood, nightly price and type of the apartment. This quality data base provides a lot of quality information so that we reduce steps in preparing database such as finding the coordinates of neighborhoods and matching them with average prices

In addition to Airbnb prices, I used Foursquare API to get the most common venues of given Borough of Munich. Finally, JSON data was available as well with the Airbnb prices so that they were perfect combination for our project

### **Data Preprocessing**

First of all the data scraped from the website has to be clean.

|   | id     | name                                                        | host_id | host_name | neighbourhood_group | neighbourhood                    | latitude | longitude | room_type          | price |
|---|--------|-------------------------------------------------------------|---------|-----------|---------------------|----------------------------------|----------|-----------|--------------------|-------|
| 0 | 36720  | Beautiful 2<br>rooms flat,<br>Glockenbach                   | 158413  | Gabriela  | NaN                 | Ludwigsvorstadt-<br>Isarvorstadt | 48.13057 | 11.56929  | Entire<br>home/apt | 95    |
| 1 | 49309  | Sublet -<br>Apartment<br>with Balcony<br>in Downtown<br>(1) | 224802  | Damien    | NaN                 | Ludwigsvorstadt-<br>Isarvorstadt | 48.12456 | 11.55567  | Private<br>room    | 40    |
| 2 | 97945  | Deluxw-<br>Apartm. with<br>roof terrace                     | 517685  | Angelika  | NaN                 | Hadern                           | 48.11476 | 11.48782  | Entire<br>home/apt | 80    |
| 3 | 114695 | Apartment<br>Munich/East<br>with sundeck                    | 581737  | Stephan   | NaN                 | Berg am Laim                     | 48.11923 | 11.63726  | Entire<br>home/apt | 95    |
| 4 | 127383 | City<br>apartment<br>next to<br>Pinakothek                  | 630556  | Sonja     | NaN                 | Maxvorstadt                      | 48.15198 | 11.56486  | Entire<br>home/apt | 120   |
| 4 |        |                                                             |         |           |                     |                                  |          |           |                    |       |

First of all, I dropped columns like name, host name and id, group etc. Then, we have a cleaner data to work with.

|   | id     | neighbourhood                | latitude | longitude | room_type       | price |
|---|--------|------------------------------|----------|-----------|-----------------|-------|
| 0 | 36720  | Ludwigsvorstadt-Isarvorstadt | 48.13057 | 11.56929  | Entire home/apt | 95    |
| 1 | 49309  | Ludwigsvorstadt-Isarvorstadt | 48.12456 | 11.55567  | Private room    | 40    |
| 2 | 97945  | Hadern                       | 48.11476 | 11.48782  | Entire home/apt | 80    |
| 3 | 114695 | Berg am Laim                 | 48.11923 | 11.63726  | Entire home/apt | 95    |
| 4 | 127383 | Maxvorstadt                  | 48.15198 | 11.56486  | Entire home/apt | 120   |

However, we need to go few more steps more to make this long data list longer. Groupby is a perfect answer to get averages for each neighborhood, removing some outliers' prices higher than 2000 Euro. Here is the boxplot of the prices.



|    | Area | Avg yield        | Avg price | £/sqft | 5yr +/- | Explore data |
|----|------|------------------|-----------|--------|---------|--------------|
| 0  | BR1  | 3.5%             | £448,605  | £461   | +21%    | Explore data |
| 1  | BR2  | 3.5%             | £475,289  | £459   | +18%    | Explore data |
| 2  | BR3  | 3.5%             | £432,717  | £489   | +18%    | Explore data |
| 3  | BR4  | 6 <del>+</del> 6 | £570,326  | £461   | +18%    | Explore data |
| 4  | BR5  | 3.3%             | £445,724  | £412   | +21%    | Explore data |
| 5  | BR6  | 3.3%             | £505,405  | £450   | +19%    | Explore data |
| 6  | BR7  | 3.0%             | £582,654  | £483   | +21%    | Explore data |
| 7  | BR8  | 3.7%             | £384,646  | £345   | +24%    | Explore data |
| 8  | CR0  | 4.0%             | £363,083  | £432   | +21%    | Explore data |
| 9  | CR2  | 3.5%             | £400,905  | £429   | +21%    | Explore data |
| 10 | CR4  | 4.1%             | £376,319  | £433   | +22%    | Explore data |
|    |      |                  |           |        |         |              |

## Next step is to use **Groupby:**

|                                                            | id           | latitude  | longitude | price      |
|------------------------------------------------------------|--------------|-----------|-----------|------------|
| neighbourhood                                              |              |           |           |            |
| Allach-Untermenzing                                        | 2.485720e+07 | 48.185855 | 11.465515 | 104.214286 |
| Altstadt-Lehel                                             | 2.456336e+07 | 48.137648 | 11.581302 | 158.171875 |
| Au-Haidhausen                                              | 2.186245e+07 | 48.128345 | 11.593697 | 114.542777 |
| Aubing-Lochhausen-Langwied                                 | 2.542403e+07 | 48.156345 | 11.420487 | 96.602273  |
| Berg am Laim                                               | 2.196426e+07 | 48.126613 | 11.630081 | 96.606635  |
| Bogenhausen                                                | 2.321498e+07 | 48.151770 | 11.625256 | 93.848723  |
| Feldmoching-Hasenbergl                                     | 2.405110e+07 | 48.205644 | 11.540910 | 97.292035  |
| Hadern                                                     | 2.547486e+07 | 48.117823 | 11.484957 | 83.829630  |
| Laim                                                       | 2.238008e+07 | 48.137006 | 11.508123 | 91.911458  |
| Ludwigsvorstadt-Isarvorstadt                               | 2.271899e+07 | 48.129925 | 11.562916 | 141.768786 |
| Maxvorstadt                                                | 2.269014e+07 | 48.150448 | 11.565523 | 116.842007 |
| Milbertshofen-Am Hart                                      | 2.415293e+07 | 48.186282 | 11.566901 | 87.632035  |
| Moosach                                                    | 2.847124e+07 | 48.180258 | 11.521115 | 88.582329  |
| Neuhausen-Nymphenburg                                      | 2.247708e+07 | 48.153873 | 11.533594 | 104.026247 |
| Obergiesing                                                | 2.296481e+07 | 48.111455 | 11.586711 | 103.824934 |
| Pasing-Obermenzing                                         | 2.427333e+07 | 48.150086 | 11.463243 | 100.737778 |
| Ramersdorf-Perlach                                         | 2.486991e+07 | 48.105595 | 11.626658 | 82.430622  |
| Schwabing-Freimann                                         | 2.346025e+07 | 48.171757 | 11.592170 | 102.291874 |
| Schwabing-West                                             | 2.332794e+07 | 48.163969 | 11.570419 | 108.276570 |
| Schwanthalerhöhe                                           | 2.221381e+07 | 48.136602 | 11.540022 | 131.410377 |
| Sendling                                                   | 2.186637e+07 | 48.117640 | 11.544175 | 114.029478 |
| Sendling-Westpark                                          | 2.241257e+07 | 48.116751 | 11.525741 | 107.761780 |
| $Thalkirchen-Obersendling-Forstenried-F\"urstenried-Solln$ | 2.307993e+07 | 48.092621 | 11.518454 | 97.771712  |
| Tudering-Riem                                              | 2.561613e+07 | 48.124694 | 11.682527 | 124.843333 |
| Untergiesing-Harlaching                                    | 2.119057e+07 | 48.107136 | 11.570519 | 98.902941  |

Here we see the neighborhoods with location data.



# **Foursquare Venues**

After defining our key data, and we can get the all venues of Munich easily and here we see the list of venues.

|   | Neighborhood        | Neighborhood Latitude | Neighborhood Longitude | Venue                    | Venue Latitude | Venue Longitude | Venue Category      |
|---|---------------------|-----------------------|------------------------|--------------------------|----------------|-----------------|---------------------|
| 0 | Allach-Untermenzing | 48.185855             | 11.465515              | Trattoria Olive          | 48.189905      | 11.466970       | Trattoria/Osteria   |
| 1 | Allach-Untermenzing | 48.185855             | 11.465515              | Würmtalhof               | 48.188834      | 11.460680       | German Restaurant   |
| 2 | Allach-Untermenzing | 48.185855             | 11.465515              | Sportforum Allach        | 48.186011      | 11.468422       | Gym                 |
| 3 | Allach-Untermenzing | 48.185855             | 11.465515              | Sport Bittl Lagerverkauf | 48.186025      | 11.468463       | Sporting Goods Shop |
| 4 | Allach-Untermenzing | 48.185855             | 11.465515              | Netto Marken-Discount    | 48.184247      | 11.461317       | Supermarket         |

However, this data is only the beginning. Next, using categories and machine learning algorithm, we will discover similar and distinct parts of the city.

To understand the neighborhoods, we need look to the frequency of categories for each locations. After that, more complex job is to find out the number of clusters, meaning similar locations will be in same the category.

|   | Neighborhood                   | 1st Most Common<br>Venue | 2nd Most<br>Common Venue | 3rd Most Common<br>Venue | 4th Most Common<br>Venue | 5th Most Common<br>Venue |
|---|--------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 0 | Allach-Untermenzing            | Sporting Goods<br>Shop   | Light Rail Station       | Supermarket              | German<br>Restaurant     | Bus Stop                 |
| 1 | Altstadt-Lehel                 | Café                     | Bavarian<br>Restaurant   | Hotel                    | Coffee Shop              | Plaza                    |
| 2 | Au-Haidhausen                  | Italian Restaurant       | Bar                      | French Restaurant        | Cocktail Bar             | Bakery                   |
| 3 | Aubing-Lochhausen-<br>Langwied | Bus Stop                 | Indian Restaurant        | Soccer Field             | Bakery                   | German<br>Restaurant     |
| 4 | Berg am Laim                   | Hotel                    | Supermarket              | Asian Restaurant         | Dog Run                  | Bus Stop                 |

For example, in Altstadt-Lehel area, there are mostly cafe, restaurants and hotel because it is in the city center.

### K-Mean Machine Learning Algorithm

Finding out how many categories will suit the city best is another challenge. For that, we need to try different K values with a loop and decide it properly.



In the graph, we see that, after k=4, we have little incremental gain in terms of distortion of data. Thus, we select 4, which means, we categorize neighborhoods in 4 different categories and explore their similarities.

As you can guess, looking the list of venues are not enough, visualizing in the map is a key point to evaluate the similarities. Here is the map of Munich in four categories.



# **Similarities in Clusters**

### 1. Less areas of attraction - Red

|    | latitude  | 1st Most Common<br>Venue | 2nd Most Common<br>Venue | 3rd Most Common<br>Venue | 4th Most Common<br>Venue | 5th Most Common<br>Venue |
|----|-----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 0  | 48.185855 | Sporting Goods<br>Shop   | Light Rail Station       | Supermarket              | German Restaurant        | Bus Stop                 |
| 3  | 48.156345 | Bus Stop                 | Indian Restaurant        | Soccer Field             | Bakery                   | German Restaurant        |
| 16 | 48.105595 | Bus Stop                 | Hotel                    | Supermarket              | Market                   | Garden Center            |

# 2. City center area with cafes, bars and restaurants - Purple

|    | latitude  | 1st Most Common<br>Venue | 2nd Most Common<br>Venue | 3rd Most Common<br>Venue | 4th Most Common<br>Venue | 5th Most Common<br>Venue |
|----|-----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 1  | 48.137648 | Café                     | Bavarian Restaurant      | Hotel                    | Coffee Shop              | Plaza                    |
| 2  | 48.128345 | Italian Restaurant       | Bar                      | French Restaurant        | Cocktail Bar             | Bakery                   |
| 5  | 48.151770 | Gym / Fitness<br>Center  | Café                     | Cocktail Bar             | Coffee Shop              | Chinese Restaurant       |
| 9  | 48.129925 | Café                     | Vietnamese<br>Restaurant | Italian Restaurant       | Burger Joint             | Bar                      |
| 10 | 48.150448 | Café                     | Art Museum               | Steakhouse               | History Museum           | Indian Restaurant        |
| 11 | 48.186282 | Bus Stop                 | Bank                     | Doner Restaurant         | Greek Restaurant         | Café                     |
| 13 | 48.153873 | Italian Restaurant       | Bakery                   | Pizza Place              | Sushi Restaurant         | Ice Cream Shop           |
| 14 | 48.111455 | Hotel                    | Italian Restaurant       | Park                     | Café                     | Bus Stop                 |
| 15 | 48.150086 | Italian Restaurant       | Café                     | Drugstore                | Coffee Shop              | Supermarket              |

## 3. Local areas with mostly supermarkets - Blue

|    | latitude  | 1st Most Common<br>Venue | 2nd Most Common<br>Venue | 3rd Most Common<br>Venue | 4th Most Common<br>Venue | 5th Most Common<br>Venue |
|----|-----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 4  | 48.126613 | Hotel                    | Supermarket              | Asian Restaurant         | Dog Run                  | Bus Stop                 |
| 6  | 48.205644 | Supermarket              | Club House               | Liquor Store             | Italian Restaurant       | Drugstore                |
| 7  | 48.117823 | Supermarket              | German Restaurant        | Asian Restaurant         | Sushi Restaurant         | Soccer Field             |
| 8  | 48.137006 | Supermarket              | Bank                     | Bakery                   | Bookstore                | German Restaurant        |
| 12 | 48.180258 | Bakery                   | Supermarket              | Plaza                    | Gym                      | Light Rail Station       |
| 21 | 48.116751 | Drugstore                | Supermarket              | Bakery                   | Post Office              | Hotel                    |
| 24 | 48.107136 | Bakery                   | Café                     | Hotel                    | Pharmacy                 | Indian Restaurant        |

## 4. Special area of city with big fair halls - Yellow

|    | latitude  | 1st Most Common<br>Venue | 2nd Most Common<br>Venue | 3rd Most Common<br>Venue | 4th Most Common<br>Venue | 5th Most Common<br>Venue |
|----|-----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 23 | 48.124694 | Auto Workshop            | Yoga Studio              | Field                    | Fast Food<br>Restaurant  | Farmers Market           |

### **Price vs Venues**

### Visualization

Now, it is come to see if neighborhoods and Airbnb prices are correlated.



**Result** 

As a result, it is obvious to observe that city center (purple) points with bars, cafes and

restaurants have higher prices compared to other locations because they offer a lot attraction

in the area. One distinct point is the yellow point. When we get more information about

Munich, we understand that there is big fair halls there, which attract a lot of people from the

world to stay there during the fairs, which effects the prices of Airbnb naturally. In addition,

as a tourist in Munich, for example, if you are coming to Oktoberfest, it looks like it is better

to stay in blue point areas like Laim, Giesing and Hadern

References

http://data.insideairbnb.com/

https://developer.foursquare.com/

Görkem Kosar, Munich, Germany

https://www.linkedin.com/in/gorkemkosar/