MID-SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4002 SEMESTER: Spring 2016

MODULE TITLE: Engineering Mathematics 2 DURATION OF EXAMINATION: 45 minutes

LECTURER: Prof. N. Kopteva PERCENTAGE OF TOTAL MARKS: 25%

Please, do NOT open this paper until ANNOUNCED by your lecturer

EVERYBODY IS SUPPOSED TO START AT THE SAME TIME

(a) Evaluate the indefinite integral $\int \frac{x-2}{\sqrt[3]{x+4}} dx$. Hint: use an appropriate substitution

2%

2%

- (b) Calculate the area between $y = 2^x x^{-2}$ and the x-axis for $1 \le x \le 3$. 2%
- (c) Express as a definite integral and then evaluate the limit of the Rie- $\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{c_i^2+1}\,\triangle x$, where $c_i\in[x_{i-1},x_i]$, and we use

the partition P with $x_i = -1 + \frac{2i}{n}$ for i = 0, 1, ..., n and $\triangle x \equiv$ $x_i - x_{i-1}$.

- (d) Evaluate $\frac{d}{dx} \left(\int_{x^2}^{3+x^3} \sin \sqrt{t+1} \ dt \right)$. 1%
- (e) Find an upper bound for the error E_T in the Trapezoidal Rule approximation of the definite integral $\int_0^3 e^{-2x} \, dx$, using n subintervals. Choose n such that $E_T \leq 10^{-4}$. Hint: evaluate $M_2 \equiv \max_{x \in [0,3]} \left| \frac{d^2}{dx^2} e^{-2x} \right|$.

2%

2 Evaluate the indefinite integral $\int \sin^4 x \ dx$. 3%

3 Find the average value of the function $\frac{x+3}{x^2+4x+5}$ on the interval [-2,0]. 4%

4 Evaluate the indefinite integral $\int x^2 e^{3x} dx$. (Hint: use integration by parts.) 4%

5 Perform a partial fraction expansion of $\frac{9-x}{x(x^2-6x+9)}$;

then evaluate the indefinite integral $\int \frac{9-x}{x(x^2-6x+9)} dx$. 5%