$10_{118} \ (K10a_{88})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 2.17049 \times 10^{128} u^{55} + 7.04965 \times 10^{128} u^{54} + \dots + 1.13515 \times 10^{129} b + 3.31225 \times 10^{128}, \\ &- 6.03461 \times 10^{129} u^{55} - 1.05486 \times 10^{130} u^{54} + \dots + 3.29192 \times 10^{130} a + 8.03066 \times 10^{131}, \\ &u^{56} + 3 u^{55} + \dots - 86 u - 29 \rangle \\ I_2^u &= \langle u^7 - u^5 + 2 u^4 + 2 u^3 + 3 u^2 + 2 b - 1, \ 2 u^7 - u^6 - u^5 + 5 u^4 + 3 u^3 + 3 u^2 + 2 a + 2, \\ &u^8 - u^6 + 2 u^5 + 3 u^4 + 2 u^3 - u^2 + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 64 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{array}{l} \text{I. } I_1^u = \langle 2.17 \times 10^{128} u^{55} + 7.05 \times 10^{128} u^{54} + \cdots + 1.14 \times 10^{129} b + 3.31 \times \\ 10^{128}, \ -6.03 \times 10^{129} u^{55} - 1.05 \times 10^{130} u^{54} + \cdots + 3.29 \times 10^{130} a + 8.03 \times \\ 10^{131}, \ u^{56} + 3 u^{55} + \cdots - 86 u - 29 \rangle \end{array}$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.183316u^{55} + 0.320439u^{54} + \cdots - 36.3951u - 24.3951 \\ -0.191208u^{55} - 0.621035u^{54} + \cdots - 24.1471u - 0.291791 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.329942u^{55} + 0.877435u^{54} + \cdots + 2.17359u - 17.4475 \\ -0.228740u^{55} - 0.774692u^{54} + \cdots - 38.4713u - 3.68817 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.00194160u^{55} + 0.125899u^{54} + \cdots + 24.9331u - 7.18816 \\ -0.0511468u^{55} - 0.283014u^{54} + \cdots - 27.4710u - 5.28083 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.143680u^{55} - 0.426284u^{54} + \cdots - 13.1771u - 13.3885 \\ 0.0842120u^{55} + 0.155045u^{54} + \cdots - 15.2642u - 4.53960 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.374524u^{55} + 0.941474u^{54} + \cdots - 12.2480u - 24.1033 \\ -0.191208u^{55} - 0.621035u^{54} + \cdots - 24.1471u - 0.291791 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0225711u^{55} - 0.655623u^{54} + \cdots + 8.05046u - 6.26808 \\ 0.0691731u^{55} + 0.270220u^{54} + \cdots + 4.64014u + 4.46620 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.120671u^{55} - 0.252131u^{54} + \cdots + 25.1490u - 10.2596 \\ -0.0170410u^{55} - 0.154222u^{54} + \cdots - 24.0061u - 3.26683 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.0612869u^{55} 0.0909872u^{54} + \cdots 11.4095u 14.5506$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{56} + 3u^{55} + \dots - 86u - 29$
c_2	$u^{56} - u^{54} + \dots - 12u + 1$
c_3	$u^{56} + 3u^{55} + \dots - 23u + 1$
c_4	$u^{56} - 3u^{55} + \dots + 23u + 1$
c_5, c_8	$u^{56} + u^{55} + \dots - 21u - 1$
c_6, c_{10}	$u^{56} - u^{55} + \dots + 21u - 1$
	$u^{56} - 3u^{55} + \dots + 86u - 29$
<i>c</i> ₉	$u^{56} - u^{54} + \dots + 12u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{56} - 13y^{55} + \dots - 26246y + 841$
c_2, c_9	$y^{56} - 2y^{55} + \dots - 526y + 1$
c_3, c_4	$y^{56} + 5y^{55} + \dots - 155y + 1$
c_5, c_6, c_8 c_{10}	$y^{56} - 41y^{55} + \dots - 91y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.783480 + 0.627461I		
a = 0.378022 - 0.391050I	1.26494 - 1.26950I	4.50876 + 0.89106I
b = -0.230315 + 0.038880I		
u = -0.783480 - 0.627461I		
a = 0.378022 + 0.391050I	1.26494 + 1.26950I	4.50876 - 0.89106I
b = -0.230315 - 0.038880I		
u = -0.867481 + 0.465833I		
a = -0.535992 - 1.067720I	-3.60092 - 1.79783I	-4.19052 + 2.40869I
b = -0.486169 - 0.719576I		
u = -0.867481 - 0.465833I		
a = -0.535992 + 1.067720I	-3.60092 + 1.79783I	-4.19052 - 2.40869I
b = -0.486169 + 0.719576I		
u = 0.671481 + 0.714028I		
a = -0.790076 - 0.970719I	-1.91385 + 4.83850I	-2.53419 - 6.95729I
b = -0.1029550 - 0.0679357I		
u = 0.671481 - 0.714028I		
a = -0.790076 + 0.970719I	-1.91385 - 4.83850I	-2.53419 + 6.95729I
b = -0.1029550 + 0.0679357I		
u = -0.907848 + 0.325017I		
a = -0.02327 - 1.45567I	2.56248 - 7.32114I	3.13433 + 7.29187I
b = 1.32128 - 0.52561I		
u = -0.907848 - 0.325017I		
a = -0.02327 + 1.45567I	2.56248 + 7.32114I	3.13433 - 7.29187I
b = 1.32128 + 0.52561I		
u = 0.614585 + 0.660088I		
a = 0.771966 - 0.367815I	-3.06725 - 0.91106I	-2.78612 + 2.04256I
b = 0.794571 - 0.247178I		
u = 0.614585 - 0.660088I		
a = 0.771966 + 0.367815I	-3.06725 + 0.91106I	-2.78612 - 2.04256I
b = 0.794571 + 0.247178I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape	
u =	0.495818 + 0.985480I			
a =	-0.66594 - 1.42520I	-1.18098 + 5.45507I	-4.29936 - 4.75401I	
b =	-1.291500 - 0.294118I			
u =	0.495818 - 0.985480I			
a =	-0.66594 + 1.42520I	-1.18098 - 5.45507I	-4.29936 + 4.75401I	
b =	-1.291500 + 0.294118I			
u =	-1.048230 + 0.400499I			
a =	0.072661 + 0.652197I	3.06725 - 0.91106I	2.78612 + 2.04256I	
	-1.230370 + 0.109087I			
u =	-1.048230 - 0.400499I			
a =	0.072661 - 0.652197I	3.06725 + 0.91106I	2.78612 - 2.04256I	
	-1.230370 - 0.109087I			
u =	= -1.13343			
a =	= 1.35973	1.54290	6.38460	
	= -1.44691			
u =	-0.874453 + 0.768327I			
a =	0.122940 - 1.406550I	1.91385 - 4.83850I	2.53419 + 6.95729I	
b =	1.197120 - 0.303609I			
	-0.874453 - 0.768327I			
a =	0.122940 + 1.406550I	1.91385 + 4.83850I	2.53419 - 6.95729I	
b =	<u> </u>			
u =	0.987700 + 0.648175I			
a =	0.09787 - 1.65319I	-2.03150 + 6.02280I	-3.73094 - 6.75893I	
	$\frac{-1.007190 - 0.370280I}{0.007700 - 0.640175I}$			
u =	0.987700 - 0.648175I			
a =	0.09787 + 1.65319I	-2.03150 - 6.02280I	-3.73094 + 6.75893I	
	$\frac{-1.007190 + 0.370280I}{0.330262 + 0.747020I}$			
	-0.330263 + 0.747920I	F 000F0 4 04F00F	0.05000 . 0.5000	
a =	0.02506 - 1.66118I	-5.38278 - 1.94709I	-9.07863 + 3.78322I	
b =	0.063233 - 0.654816I			

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.330263 - 0.747920I		
a = 0.02506 + 1.66118I	-5.38278 + 1.94709I	-9.07863 - 3.78322I
b = 0.063233 + 0.654816I		
u = -0.768372 + 0.912758I		
a = 0.078803 + 0.713454I	-3.96282I	0. + 12.03346I
b = -0.213245 + 1.196470I		
u = -0.768372 - 0.912758I		
a = 0.078803 - 0.713454I	3.96282I	0 12.03346I
b = -0.213245 - 1.196470I		
u = 0.768710 + 0.080853I		
a = -1.18088 + 1.64494I	5.38278 - 1.94709I	9.07863 + 3.78322I
b = 1.224820 - 0.066557I		
u = 0.768710 - 0.080853I		
a = -1.18088 - 1.64494I	5.38278 + 1.94709I	9.07863 - 3.78322I
b = 1.224820 + 0.066557I		
u = -0.417667 + 0.587372I		
a = -0.020230 + 0.413680I	-2.12732 - 2.99186I	-13.6584 + 6.9170I
b = 1.13926 + 1.00938I		
u = -0.417667 - 0.587372I		
a = -0.020230 - 0.413680I	-2.12732 + 2.99186I	-13.6584 - 6.9170I
b = 1.13926 - 1.00938I		
u = -1.28361		
a = -1.43131	-3.28334	-1.95800
b = 0.991270		
u = 0.695004 + 0.172107I		
a = 0.37195 - 1.39210I	5.06898 + 2.94565I	6.46008 - 3.65784I
b = -1.46649 - 0.46691I		
u = 0.695004 - 0.172107I		
a = 0.37195 + 1.39210I	5.06898 - 2.94565I	6.46008 + 3.65784I
b = -1.46649 + 0.46691I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.951068 + 0.899353I		
a = -0.187043 + 0.873695I	-5.00346 + 9.83371I	0
b = 0.179049 + 1.120190I		
u = 0.951068 - 0.899353I		
a = -0.187043 - 0.873695I	-5.00346 - 9.83371I	0
b = 0.179049 - 1.120190I		
u = 0.531582 + 0.418877I		
a = 0.345342 - 1.304770I	-1.26494 + 1.26950I	-4.50876 - 0.89106I
b = 0.165425 - 0.641483I		
u = 0.531582 - 0.418877I		
a = 0.345342 + 1.304770I	-1.26494 - 1.26950I	-4.50876 + 0.89106I
b = 0.165425 + 0.641483I		
u = -0.246039 + 1.330330I		
a = -0.109393 + 0.201685I	1.17763 - 1.90833I	0
b = -0.925946 + 0.365281I		
u = -0.246039 - 1.330330I		
a = -0.109393 - 0.201685I	1.17763 + 1.90833I	0
b = -0.925946 - 0.365281I		
u = 1.36704		
a = -0.0603515	3.28334	0
b = 1.39639		
u = 0.606940 + 0.092167I	1 18800 1 000007	0.00007 . 0.100007
a = 0.587067 + 0.957007I	-1.17763 - 1.90833I	2.60907 + 2.19068I
b = 0.141834 + 0.920236I		
u = 0.606940 - 0.092167I	1 17700 + 1 000007	0.00007 0.100007
a = 0.587067 - 0.957007I	-1.17763 + 1.90833I	2.60907 - 2.19068I
b = 0.141834 - 0.920236I		
u = 0.964815 + 1.009120I	F 06000 0 0 45655	
a = -0.473801 + 0.532980I	-5.06898 - 2.94565I	0
b = 0.301392 + 0.797095I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.964815 - 1.009120I		
a = -0.473801 - 0.532980I	-5.06898 + 2.94565I	0
b = 0.301392 - 0.797095I		
u = -0.584292 + 0.088844I		
a = 0.95463 + 3.53861I	1.18098 + 5.45507I	4.29936 - 4.75401I
b = -1.181570 - 0.095549I		
u = -0.584292 - 0.088844I		
a = 0.95463 - 3.53861I	1.18098 - 5.45507I	4.29936 + 4.75401I
b = -1.181570 + 0.095549I		
u = -1.29911 + 0.91025I		
a = 0.216573 + 1.073080I	-15.5452I	0
b = -1.42481 + 0.50052I		
u = -1.29911 - 0.91025I		
a = 0.216573 - 1.073080I	15.5452I	0
b = -1.42481 - 0.50052I		
u = 1.33347 + 0.88382I		
a = -0.220110 + 0.911869I	5.00346 + 9.83371I	0
b = 1.41775 + 0.50903I		
u = 1.33347 - 0.88382I		
a = -0.220110 - 0.911869I	5.00346 - 9.83371I	0
b = 1.41775 - 0.50903I		
u = -0.44552 + 1.55785I		
a = 0.212043 + 0.191232I	-2.56248 + 7.32114I	0
b = 1.114910 + 0.395467I		
u = -0.44552 - 1.55785I		
a = 0.212043 - 0.191232I	-2.56248 - 7.32114I	0
b = 1.114910 - 0.395467I		
u = -1.16393 + 1.16318I		
a = 0.188659 - 0.820953I	2.03150 - 6.02280I	0
b = 1.234890 - 0.135915I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.16393 - 1.16318I		
a = 0.188659 + 0.820953I	2.03150 + 6.02280I	0
b = 1.234890 + 0.135915I		
u = -1.34569 + 0.94875I		
a = 0.236623 + 0.596957I	2.12732 - 2.99186I	0
b = -1.32213 + 0.64789I		
u = -1.34569 - 0.94875I		
a = 0.236623 - 0.596957I	2.12732 + 2.99186I	0
b = -1.32213 - 0.64789I		
u = -0.299877		
a = -4.00586	-1.54290	-6.38460
b = 1.49366		
u = 1.63614 + 0.85817I		
a = 0.236114 - 0.548173I	3.60092 + 1.79783I	0
b = -1.130060 - 0.065159I		
u = 1.63614 - 0.85817I		
a = 0.236114 + 0.548173I	3.60092 - 1.79783I	0
b = -1.130060 + 0.065159I		

$$\text{II. } I_2^u = \langle u^7 - u^5 + 2u^4 + 2u^3 + 3u^2 + 2b - 1, \ 2u^7 - u^6 - u^5 + 5u^4 + 3u^3 + \\ 3u^2 + 2a + 2, \ u^8 - u^6 + 2u^5 + 3u^4 + 2u^3 - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{7} + \frac{1}{2}u^{6} + \dots - \frac{3}{2}u^{2} - 1 \\ -\frac{1}{2}u^{7} + \frac{1}{2}u^{5} + \dots - \frac{3}{2}u^{2} + \frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{6} - \frac{1}{2}u^{5} + \dots - u - 1 \\ -\frac{1}{2}u^{7} + \frac{1}{2}u^{5} + \dots + u + \frac{1}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{7} - \frac{1}{2}u^{5} + \dots + \frac{3}{2}u + 1 \\ -\frac{1}{2}u^{5} + \frac{1}{2}u^{4} + \dots + \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{2}u^{7} + u^{6} + \dots + \frac{1}{2}u - 1 \\ -\frac{1}{2}u^{5} + \frac{1}{2}u^{4} + \dots - \frac{3}{2}u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{7} + \frac{1}{2}u^{6} + \dots - \frac{1}{2}u^{3} - \frac{3}{2} \\ -\frac{1}{2}u^{7} + \frac{1}{2}u^{5} + \dots - \frac{3}{2}u^{2} + \frac{1}{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{7} + \frac{1}{2}u^{4} + \dots - \frac{1}{2}u + \frac{1}{2} \\ -\frac{1}{2}u^{7} - u^{4} - u^{3} - \frac{3}{2}u^{2} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{7} - \frac{1}{2}u^{6} + \dots - \frac{3}{2}u + \frac{1}{2} \\ \frac{1}{2}u^{7} - u^{6} + 2u^{4} - u^{3} - \frac{3}{2}u^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^7 + u^6 + u^5 5u^4 10u^3 14u^2 + 4u 1$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^8 - u^6 - 2u^5 + 3u^4 - 2u^3 - u^2 + 1$
c_2	$u^8 - u^7 + u^6 + u^5 - 2u^4 - u^3 - 3u^2 - 2u - 1$
<i>c</i> ₃	$u^{8} + 4u^{7} + 10u^{6} + 16u^{5} + 15u^{4} + 8u^{3} + u^{2} - u - 1$
c_4	$u^8 - 4u^7 + 10u^6 - 16u^5 + 15u^4 - 8u^3 + u^2 + u - 1$
c_5,c_{10}	$u^8 - 3u^6 - u^5 + 4u^4 + 3u^3 - 3u^2 - 3u + 1$
c_{6}, c_{8}	$u^8 - 3u^6 + u^5 + 4u^4 - 3u^3 - 3u^2 + 3u + 1$
C ₇	$u^8 - u^6 + 2u^5 + 3u^4 + 2u^3 - u^2 + 1$
<i>c</i> ₉	$u^8 + u^7 + u^6 - u^5 - 2u^4 + u^3 - 3u^2 + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^8 - 2y^7 + 7y^6 - 12y^5 + 5y^4 - 12y^3 + 7y^2 - 2y + 1$
c_2, c_9	$y^8 + y^7 - y^6 - 13y^5 - 6y^4 + 13y^3 + 9y^2 + 2y + 1$
c_3, c_4	$y^8 + 4y^7 + 2y^6 - 18y^5 - 5y^4 - 22y^3 - 13y^2 - 3y + 1$
c_5, c_6, c_8 c_{10}	$y^8 - 6y^7 + 17y^6 - 31y^5 + 42y^4 - 45y^3 + 35y^2 - 15y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.564069 + 0.825728I		
a = 1.16899 - 1.40408I	-6.39156I	0. + 8.17644I
b = 1.168990 - 0.247374I		
u = -0.564069 - 0.825728I		
a = 1.16899 + 1.40408I	6.39156I	0 8.17644I
b = 1.168990 + 0.247374I		
u = -0.747139		
a = -1.89022	-4.69721	-8.73000
b = -0.283291		
u = -1.33844		
a = 0.308010	4.69721	8.73000
b = -1.29891		
u = 0.468348 + 0.438200I		
a = -0.445605 - 1.005710I	-1.62267 + 2.99663I	2.80411 - 6.12718I
b = 0.737885 - 0.854835I		
u = 0.468348 - 0.438200I		
a = -0.445605 + 1.005710I	-1.62267 - 2.99663I	2.80411 + 6.12718I
b = 0.737885 + 0.854835I		
u = 1.13851 + 1.06522I		
a = 0.067722 - 0.648589I	1.62267 + 2.99663I	-2.80411 - 6.12718I
b = -1.115770 - 0.497712I		
u = 1.13851 - 1.06522I		
a = 0.067722 + 0.648589I	1.62267 - 2.99663I	-2.80411 + 6.12718I
b = -1.115770 + 0.497712I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ \left (u^8 - u^6 - 2u^5 + 3u^4 - 2u^3 - u^2 + 1)(u^{56} + 3u^{55} + \dots - 86u - 29) \right $
c_2	$(u^8 - u^7 + \dots - 2u - 1)(u^{56} - u^{54} + \dots - 12u + 1)$
c_3	$(u^{8} + 4u^{7} + 10u^{6} + 16u^{5} + 15u^{4} + 8u^{3} + u^{2} - u - 1)$ $\cdot (u^{56} + 3u^{55} + \dots - 23u + 1)$
c_4	$(u^8 - 4u^7 + 10u^6 - 16u^5 + 15u^4 - 8u^3 + u^2 + u - 1)$ $\cdot (u^{56} - 3u^{55} + \dots + 23u + 1)$
c_5	$(u^8 - 3u^6 + \dots - 3u + 1)(u^{56} + u^{55} + \dots - 21u - 1)$
c_6	$(u^8 - 3u^6 + \dots + 3u + 1)(u^{56} - u^{55} + \dots + 21u - 1)$
c_7	$ (u^8 - u^6 + 2u^5 + 3u^4 + 2u^3 - u^2 + 1)(u^{56} - 3u^{55} + \dots + 86u - 29) $
<i>c</i> ₈	$(u^8 - 3u^6 + \dots + 3u + 1)(u^{56} + u^{55} + \dots - 21u - 1)$
<i>C</i> 9	$(u^8 + u^7 + \dots + 2u - 1)(u^{56} - u^{54} + \dots + 12u + 1)$
c_{10}	$(u^8 - 3u^6 + \dots - 3u + 1)(u^{56} - u^{55} + \dots + 21u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7	$(y^8 - 2y^7 + 7y^6 - 12y^5 + 5y^4 - 12y^3 + 7y^2 - 2y + 1)$ $\cdot (y^{56} - 13y^{55} + \dots - 26246y + 841)$
c_2, c_9	$(y^8 + y^7 - y^6 - 13y^5 - 6y^4 + 13y^3 + 9y^2 + 2y + 1)$ $\cdot (y^{56} - 2y^{55} + \dots - 526y + 1)$
c_3, c_4	$(y^8 + 4y^7 + 2y^6 - 18y^5 - 5y^4 - 22y^3 - 13y^2 - 3y + 1)$ $\cdot (y^{56} + 5y^{55} + \dots - 155y + 1)$
c_5, c_6, c_8 c_{10}	$(y^8 - 6y^7 + 17y^6 - 31y^5 + 42y^4 - 45y^3 + 35y^2 - 15y + 1)$ $\cdot (y^{56} - 41y^{55} + \dots - 91y + 1)$