

```
In [ ]: # prompt: Write a ternary operator statement to calculate the PWM duty cycle.
        # cycle should be determined based on the following conditions:
        # 1) If the temperature value (Temp) is greater than or equal to 50 and the in
        # switch (Switch) is pressed (1), then:
        # a) If the system mode (Mode) is automatic (1), set PWM Duty to 75.
        # b) Otherwise, set PWM Duty to 50.
        # 2) If the above conditions are not met, set PWM Duty to 25.
        # In C
        #include <stdio.h>
        int main() {
          int Temp = 60; // Example temperature value
          int Switch = 1; // Example switch state (pressed)
          int Mode = 1; // Example system mode (automatic)
          int PWM Duty;
          PWM Duty = (Temp >= 50 \&\& Switch == 1)? ((Mode == 1)? 75 : 50) : 25;
          printf("PWM Duty Cycle: %d\n", PWM Duty);
          return 0;
In [ ]: # prompt: A cashier has currency notes of denominations 10, 50 and 100. If the
        # withdrawn is input through the keyboard in hundreds, find the total number of
        # currency notes of each denomination the cashier will have to give to the
        # withdrawer.
        amount = int(input("Enter the amount to be withdrawn (in hundreds): "))
        if amount < 0:</pre>
            print("Invalid amount")
        else:
            num 100 = amount
            amount %= 100
            num 50 = amount // 50
            amount %= 50
            num 10 = amount // 10
            amount %= 10
            if amount != 0:
                print("Cannot dispense exact amount with given denominations.")
                print("Number of 100 notes:", num 100)
                print("Number of 50 notes:", num 50)
                print("Number of 10 notes:", num 10)
In [ ]: # prompt: Write a program to display all leap years between two given years
        # (inclusive).Input the start year and end year from the user.Print all leap y
```

that range, one per line. in C

```
int main() {
            int start year, end year;
            printf("Enter the start year: ");
            scanf("%d", &start year);
            printf("Enter the end year: ");
            scanf("%d", &end year);
            printf("Leap years between %d and %d are:\n", start year, end year);
            for (int year = start year; year <= end year; year++) {</pre>
                 if ((year % 4 == 0 && year % 100 != 0) || (year % 400 == 0)) {
                     printf("%d\n", year);
                }
            }
            return 0;
In [ ]: # prompt: Write a C program that takes a string as input from the user. The pr
        # then calculate and print the sum of the ASCII values of all the characters i
        # string
        #include <stdio.h>
        #include <string.h>
        int main() {
            char str[100];
            int sum = 0;
            printf("Enter a string: ");
            fgets(str, sizeof(str), stdin); // Use fgets to prevent buffer overflow
            // Remove the trailing newline character if present
            str[strcspn(str, "\n")] = 0;
            for (int i = 0; i < strlen(str); i++) {</pre>
                sum += (int)str[i];
            }
            printf("Sum of ASCII values: %d\n", sum);
            return 0;
```

In []: # prompt: Maximum possible score in the particular game is 1000. Assume score

user. Calculate the percantage of the user's score in relation to the maximu

Convert userScore to float to make sure that the division is accurate in C

#include <stdio.h>

available score.

```
#include <stdio.h>
        int main() {
            float userScore;
            float percentage;
            printf("Enter the user's score: ");
            scanf("%f", &userScore);
            // Calculate the percentage
            percentage = (userScore / 1000) * 100;
            printf("The user's score percentage is: %.2f%\n", percentage);
            return 0;
In [ ]: # prompt: Write a C program to convert specified days into years, weeks and da
        # Note: Ignore leap year.
        #include <stdio.h>
        int main() {
            int days, years, weeks;
            printf("Enter the number of days: ");
            scanf("%d", &days);
            years = days / 365;
            weeks = (days % 365) / 7;
            days = days - (years * 365) - (weeks * 7);
            printf("Years: %d\n", years);
            printf("Weeks: %d\n", weeks);
            printf("Days: %d\n", days);
            return 0;
In [ ]: # prompt: Write a C program to convert a binary number (input as a string) int
        # decimal equivalent.
        #include <stdio.h>
        #include <string.h>
        #include <math.h>
        int main() {
            char binary[100];
            int decimal = 0, power = 0;
            printf("Enter a binary number: ");
            scanf("%s", binary);
```

```
if (binary[i] == '1') {
                    decimal += pow(2, power);
                } else if (binary[i] != '0') {
                     printf("Invalid binary number.\n");
                     return 1; // Indicate an error
                power++;
            }
            printf("Decimal equivalent: %d\n", decimal);
            return 0:
In [ ]: # prompt: Write a program in C that takes an integer input n
        # (1 \le n \le 10,000) and performs the following operations:
        # If n is divisible by both 3 and 5, print "RadhaKrushna".
        # If n is divisible by 3 but not by 5, print "Radha".
        # If n is divisible by 5 but not by 3, print "Krushna".
        #include <stdio.h>
        int main() {
            int n;
            printf("Enter an integer (1 \le n \le 10,000): ");
            scanf("%d", &n);
            if (n < 1 || n > 10000) {
                printf("Invalid input. Please enter a number between 1 and 10,000.\n")
                 return 1; // Indicate an error
            }
            if (n \% 3 == 0 \&\& n \% 5 == 0) {
                printf("RadhaKrushna\n");
            } else if (n % 3 == 0) {
                printf("Radha\n");
            } else if (n % 5 == 0) {
                printf("Krushna\n");
            } else {
                // Handle cases where n is not divisible by 3 or 5 (optional)
                // printf("Neither divisible by 3 nor 5\n");
            }
            return 0;
```

int len = strlen(binary);

for (int i = len - 1; i >= 0; i--) {

```
In []: # prompt: check if n is a prime number:
    # If it is, print "Prime".
    # If not, print the sum of all digits in n that are odd.
    # If there are no odd digits, print "No Odd Digits".
    # Constraints: Use only nested if-else and avoid using external libraries for
```

```
# In C
#include <stdio.h>
#include <stdbool.h>
// Function to check if a number is prime
bool is_prime(int n) {
    if (n <= 1) {
        return false;
    if (n <= 3) {
        return true;
    if (n % 2 == 0 || n % 3 == 0) {
        return false;
    for (int i = 5; i * i <= n; i = i + 6) {
        if (n \% i == 0 || n \% (i + 2) == 0) {
            return false;
   return true;
}
int main() {
    printf("Enter an integer: ");
    scanf("%d", &n);
   if (n == 2) {
        printf("Prime\n");
        return 0;
   }
    if (is_prime(n)) {
       printf("Prime\n");
    } else {
        int sum_of_odd_digits = 0;
        int temp = n;
        bool has_odd_digit = false;
        while (temp > 0) {
            int digit = temp % 10;
            if (digit % 2 != 0) {
                sum of odd digits += digit;
                has_odd_digit = true;
            temp /= 10;
        }
        if (has odd digit) {
            printf("%d\n", sum_of_odd_digits);
        } else {
```

```
}
            return 0;
In [ ]: # prompt: Write a program in cto check whether a number is a Krishnamurty numb
        # of digits equals the number
        #include <stdio.h>
        // Function to calculate factorial of a number
        int factorial(int n) {
            int fact = 1;
            for (int i = 1; i \le n; i++) {
                fact *= i;
            return fact;
        }
        int main() {
            int num, originalNum, digit, sum = 0;
            printf("Enter a number: ");
            scanf("%d", &num);
            originalNum = num; // Store the original number
            while (num > 0) {
                digit = num % 10;
                sum += factorial(digit);
                num /= 10;
            }
            if (sum == originalNum) {
                printf("%d is a Krishnamurty number.\n", originalNum);
            } else {
                printf("%d is not a Krishnamurty number.\n", originalNum);
            return 0;
In [\ ]: # prompt: Write a program to print all prime numbers from 1 to 300. (Hint: Use
        #include <stdio.h>
        #include <stdbool.h>
        // Function to check if a number is prime
        bool is_prime(int n) {
            if (n <= 1) {
                return false;
```

printf("No Odd Digits\n");

}

```
for (int i = 2; i * i <= n; i++) {
                if (n % i == 0) {
                    return false;
                }
            return true;
        int main() {
            printf("Prime numbers from 1 to 300:\n");
            for (int i = 2; i \le 300; i++) {
                if (is prime(i)) {
                    printf("%d ", i);
            printf("\n");
            return 0;
In [ ]: # prompt: Write a C program that accepts a sequence of different values and ca
        # value.
        # The sum of the values before the maximum value is 0, if there are no values
        # after the maximum value is 0, if there are no values after the maximum. with
        #include <stdio.h>
        #include <limits.h>
        int main() {
            int n, i, max val, max index;
            int sum_before = 0, sum_after = 0;
            printf("Enter the number of values: ");
            scanf("%d", &n);
            int values[n];
            printf("Enter the values:\n");
            for (i = 0; i < n; i++) {
                scanf("%d", &values[i]);
            }
            // Find the maximum value and its index
            max_val = INT_MIN;
            \max index = -1;
            for (i = 0; i < n; i++) {
                if (values[i] > max val) {
                    max val = values[i];
                    max index = i;
                }
            }
            if (\max index == -1) {
```

```
return 1;
            }
            // Calculate the sum before the maximum value
            for (i = 0; i < max index; i++) {
                sum before += values[i];
            }
            // Calculate the sum after the maximum value
            for (i = max index + 1; i < n; i++) {
                sum after += values[i];
            }
            printf("Sum of values before the maximum value: %d\n", sum before);
            printf("Sum of values after the maximum value: %d\n", sum after);
            return 0;
        }
In [ ]: # prompt: rite a C program to print the following character number pyramid as:
        # 1
        # B B
        # 2 3 4
        # D D D D
        # 5 6 7 8 9
        #include <stdio.h>
        int main() {
            int num = 1;
            char ch = 'A';
            for (int i = 1; i \le 5; i++) {
                for (int j = 1; j \le i; j++) {
                    if (i % 2 != 0) {
                        printf("%d ", num++);
                    } else {
                        printf("%c ", ch++);
                    }
                }
                printf("\n");
                if (i % 2 == 0) {
                    ch = ch - i + 1; // Reset the character for the next row if it's a
                    ch = ch + 'A' - '0'; // Convert back to the appropriate character
                }
            return 0;
```

printf("No values entered.\n");

In []: # prompt: Write a C program that asks the user to enter a password. If the ent # statement to allow the user to try again up to 3 times before displaying an

```
#include <stdio.h>
#include <string.h>
int main() {
   char password[20];
   char correct_password[20] = "password123"; // Replace with your desired pa
   int attempts = 0;
    retry:
    printf("Enter the password: ");
   scanf("%s", password);
   if (strcmp(password, correct_password) == 0) {
        printf("Password correct!\n");
   } else {
        attempts++;
        if (attempts < 3) {</pre>
            printf("Incorrect password. Please try again.\n");
            goto retry;
        } else {
            printf("Too many incorrect attempts. Access denied.\n");
        }
   }
    return 0;
```