Evaluating the Zero-Shot Predictive Ability of Large Language Models for Continuous Glucose Monitoring Data

Junyan Tan (Samuel)¹, Irina Gaynanova¹

University of Michigan School of Public Health, Department of Biostatistics

Introduction

- Motivation: Increasing clinical usage of Continuous Glucose Monitoring (CGM) demands more accurate glucose forecasting.
- Limitation of Existing Methods: Traditional models require extensive training and overlook critical patient demographics (e.g., diabetes type, lifestyle), limiting clinical usefulness.
- **Proposed Solution**: We introduce a zero-shot Large Language Model (LLM) approach, converting CGM readings and demographic data into text prompts for direct glucose-level forecasting without additional training.

Data

Following the CGM forecasting benchmark established previously^[1], we preprocessed five public CGM datasets with summarized information below.

Interpolation & Segmentation

- Identify gaps in each subject's CGM measurements.
- Impute missing values with linear interpolation if the gap is below a threshold.
- Break the time series into separate segments when the gap exceeds the threshold.

Data Splitting

- Split each dataset into training, validation, and in-distribution (ID) test sets using 90% of subjects.
- For each subject, partition data chronologically, with validation and ID test sets each spanning 16 hours.
- Use the remaining 10% of subjects to form an out-of-distribution (OD) test set.

Figure 1. Example data processing on Weinstock et al. [6]

Dataset Information

Table 1. Demographic information (average) for each dataset (Raw data only).

Dataset	Diabetes	# of Subjects	Age	Sex (M/F)
Broll2021 ^[2]	Type 2	5	NA	NA
Colás2019 ^[3]	Type 1	208	59	103/104
Dubosson2018 ^[4]	Mixed	9	NA	6/3
Hall2018 ^[5]	Type 1	57	48	25/32
Weinstock2016 ^[6]	Type 1	200	68	106/94

Methodology

Figure 2. Baseline Workflow

Baseline Approach: We use a structured prompt to guide the LLM:

- Context: Patient background (type, demographics, insulin therapy).
- Constraints: Enforce valid CGM ranges (40–400 mg/dL).
- Scenario: Highlight events (big meal, exercise).
- Statistics: Provide key metrics (min, max, mean, std).
- Output: Instruct LLM to return only numerical forecasts.

Figure 3. Overview of RAG Process

Retrieval Augmented Generation (RAG): A novel approach to improve prediction accuracy by supplementing the prompt with additional information:

- Store historical CGM data in a vector database.
- Retrieve similar data based on embeddings.
- Append relevant info to the prompt for improved accuracy.

Example from the Broll Dataset

You are looking at CGM data of a type 2 diabetes patient. Each reading has a 5-minute interval, and the first reading is recorded at <timestamp>. For the given 24-hour interval, the glucose statistics are: . . .

- <RAG input>: Relevant historical data from the same or similar profiles: ...
- <RAG input end>

Glucose levels range from 40–400 mg/dL. Assume the patient continues with their current lifestyle.

Return only numerical forecasts; no additional commentary.

Results

- Comparable Performance: Preliminary results indicate that LLMs perform at least on par with traditional methods.
- Trend Awareness: LLMs effectively capture the trend and rate of change in CGM data.
- Periodicity Recognition: They recognize the inherent periodic nature of CGM data, even in out-of-distribution forecasts.
- Prompt Sensitivity: LLMs respond significantly to prompt modifications, demonstrating awareness of the forecasting context.

Context Recognition

Figure 4. Given Context: "Patient is type 2, on insulin therapy"

Figure 5. Given Context: "Patient is type 2, not on insulin therapy"

Scenario Adaptation

Figure 6. Scenario Prediction: The LLM adapts forecasts based on different real-life scenarios

Advantages Compared to Traditional Methods

- Context-Aware: While not necessarily the most accurate, LLMs remain valuable for incorporating contextual information and adapting predictions on the fly.
- Zero-Shot Ready: Requires little to no parameter tuning, enabling immediate use and lowering computational barriers.
- Cost-Effective: With advancements in distilled models (e.g., DeepSeek distilled Llama) and growing competition, LLM-based forecasting is becoming increasingly affordable.

Sergazinov, R., et al. (2023). GlucoBench: Curated List of Continuous Glucose Monitoring Datasets with Prediction Benchmarks. arXiv.

^[2] Broll, S., et al. (2021). Interpreting blood glucose data with R package iglu. *PLoS One*, 16(4), e0248560.

^[3] Colás, A., et al. (2019). Detrended fluctuation analysis in the prediction of type 2 diabetes mellitus in patients at risk: Model optimization and comparison with other metrics. *PLoS One*, 14(12), e0225817.

^[4] Dubosson, F., et al. (2018). The Open D1NAMO dataset: A multi-modal dataset for research on non-invasive type 1 diabetes management. *Informatics in Medicine Unlocked*, 13, 92–100.

^[5] Hall, H., et al. (2018). Glucotypes reveal new patterns of glucose dysregulation. *PLoS Biology*, 16(7), e2005143.

^[6] Weinstock, R. S., et al. (2016). Risk factors associated with severe hypoglycemia in older adults with type 1 diabetes. Diabetes Care, 39(4), 603-610.