Chinese me mainder Theorem:

Ex: In the first Century Sun-Tsu asked: A certain number is unknown.

When divided by 3 itthe remainder is 2, who divided by 5 the remainder; 3 3

When relativised by 7 the remainder; 2. What is the number?

This is esting us to solve :

X = Z mod 3 X = 3 mod 5 X = 2 mod 7.

The Chinese Remarder Theorem States this has a langue Salution:

Theren.

Let M., M., ..., M. be pairwise relatively prime integral & 9, 9, 9, 9, 9, and many integers. Then has a unique solution modulo $M = M_1 \cdot M_2 \cdot ... \cdot M_n$, $X \equiv 9$, mod M_1 $X \equiv 9$, mod M_2

X = an modern

The proof is constructive, if provides the substin:

eli Frost $\forall k = 1, 2, ..., n$ define $M_K = \frac{M}{M_K}$ that is $M_K = all M_i, m_i Hiplied$ except M_K . Since $gcd(m_i, M_K) = 1$ then $gcd(M_K, M_K) = 1$. This $\exists y_K$ S.t. $y_K = M_K^{-1} \mod M_K$.

Then X = a, M, y, + at M, y, + ... +a, M, y, (mod m).

Then by construction:

 $x \mod m_i = 0 + 0 + ... + a_2 M_i y_i + 0 + ... + 0$ = $a_2 \cdot 1 \mod m_i$ = $a_2 \cdot 1 \cdot ...$

This is very formulair. Let think about why its tree with the about example. Ex: Solve X = 2 md3 X = 3 mod 5 X = 2 mod 7. Our solution will have the form

X = 2: - + 3 - - - + 2 - -

We want 3. _ = & 2. _ = 0 when mod 3

=> needa 3 in enh

X = 2 · _ - _ + 3 · 3 · _ · _ + 2 · 3 · _ _

went 2: _ . _ & 2:3: _ = = 0 when mod 5

=) nock a 5

x = 2.5. _ · _ + 3.3 · _ · _ + 2-3.5 · _

way 2.5 _ - & 3.3 - _ = 0 who and 7

-> needa7

X = 2.5.7° _ + 3.3.7. _ + 2.3.5._

need 25.7. = 2 when mod 3

=> need 35 mod 3 35 mod 3 = 2 2 mod 3 = 2

need 3.3.7 = = 3 when mod 5

=) hered 21 mod 5 21 mod 5 = 1 1 most 5 = 1

need 2.3.5. _ = 2 when med 7

1 and 7 = 1 => need 75 mod 7 15 mid 7 =1

50 X=2.5.7.2 +3.3.7.1 +2.35.1 = 233 = 23 mod 105 Check 23 mod 3 = 2 23 mod 5 = 3 23 mod 7 = 2 -

X=1.6.7.3 + 2.5.7.5 + 3.5.6.4= 836 = 206 mod 2/0

Check: $206 \mod 5 \equiv 1$ $206 \mod 5 \equiv 2$ $206 \mod 7 \equiv 3$