ML01 — Demystifying Machine Learning: introduction

Romain Gautron

CIAT

March 5, 2019

Platform for Big Data in Agriculture

Introduction to ML

- → What is Machine Learning?
- \rightarrow What can I do with ML?
- → What is the fundamental problem we want to solve?
- \rightarrow The best algorithm for problem solving

- Terminology
- 2 Supervised Learning introduction
- The problem of induction
- 4 Q&A

A bunch of words with loose definitions

AI & ML

Artificial intelligence

Doing equal or better than human reasoning with a machine

Machine Learning

Modelling reality from data to predict an outcome or identify patterns

Symbolic

Using human readable concepts

if color is red and texture is silky then apple else lemon

Numeric

Using statistical tools
1980-present

$$y = 2x^2 - 16x + 7$$

if y > 0 then apple else lemon

Supervised VS Unsupervised

Numerical Machine Learning

Unsupervised Learning

Trying to find an internal structure to the data

Supervised Learning

Unsupervised Learning example

Figure: Spectral clustering

Data mining

- Terminology
- 2 Supervised Learning introduction
- The problem of induction
- 4 Q&A

Classification VS Regression

Regression task examples

Data

Data	Prediction
soil samples from top soil layer	organic matiere content
forces acting on a chisel and speed	soil moisture
zoometric measurements of the animals before slaughter	weight for beef cattle 150 days 2 to 222 d. before slaughter
vegetation indices, spectral bands of red band NIR	estimation of grassland biomass

Drodiction

Classification task examples

Data	Prediction
dairy cow movements and rumination activity	pregnancy
Spectral features from hyperspectral imaging	weed vs Zea mays
1553 color pig face images	pig face recognition
20 chemical components from rice samples	geographical origin of the sample

Algorithm examples

Classification

(Regularized) Logistic Regression, Linear Discriminant Analysis, Support Vector Machine, Classification Trees, Boosted Classification Trees, Random Forest, (Deep) Neural Networks

Regression

(Regularized) Linear Regression, Support Vector Regressor, Regression Trees, Boosted Regression Trees, Random Forest, (Deep) Neural Networks

Classification \neq Clustering

Clustering VS Classification

<u>Unlabeled data for training</u> Finding an internal structure

Unsupervised

<u>Labelled data for training</u> What is the label for an unseen object?

Supervised

- Terminology
- Supervised Learning introduction
- The problem of induction
- 4 Q&A

Problematic

Limited sample to learn general patterns for population

The problem of supervised learning

Illustration of overfitting

Illustration of overfitting

Illustration of overfitting

Underfitting-Overfitting regression example

Underfitting-Overfitting classification example

Bias Variance Tradeoff

How to correctly generalize what we learnt from samples?

Does the best algorithm exist?

No-free-lunch-theroem Wolpert, D.H., Macready, W.G. (1997)

There is no best algorithm for general problem solving. Each algorithm has its own inductive bias. A particular bias is necessary to best solve a problem.

Inductive bias (1)

An inductive bias is a constraint limiting the space of solutions. It prioritizes one solution over others with assumptions. As a consequence it is easier to search a solution in that limited space.

Rote learner = no inductive bias

Inductive bias (2)

Deep Learning inductive bias

Is Deep Learning best for everything? No

Convolutional Neural Newtorks: spatial translation invariance inductive bias Recurrent Neural Networks: temporal translation invariance inductive bias

 \hookrightarrow Best for image classification/regression, some time series problems, natural language processing

What did we learn?

- \rightarrow Numeric ML = Unsupervised + Supervised Learning
- \rightarrow Supervised Learning = Regression + Classification
- \rightarrow Fundamental pb of Supervised Learning = How to generalize rules from samples to population? We have to avoid **overfitting**
- \rightarrow There is no best algorithm for solving all problems

- Terminology
- Supervised Learning introduction
- The problem of induction
- 4 Q&A

Q&A

