Exercise of Chapter 3

Written by Hsin-Jung, Wu.

My mail is hsinjungwu@gmail.com

- 1. Which of the following sets are compact? Which are connected?
 - (a) $\{(x_1, x_2) \in \mathbb{R}^2 \mid |x_1| \le 1\}$

Solution: Not compact but connected.

(b) $\{x \in \mathbb{R}^n \mid ||x|| \le 10\}$

Solution: Both compact and connected.

(c) $\{x \in \mathbb{R}^n \mid 1 \le ||x|| \le 2\}$

Solution: Both compact and connected.

(d) $\mathbb{Z} = \{ \text{integers in } \mathbb{R} \}$

Solution: Neither compact nor connected.

(e) A finite set in \mathbb{R}

Solution: Compact but not connected.

- (f) $\{x \in \mathbb{R}^n \mid ||x|| = 1\}$ (distinguish between the cases n = 1 and $n \ge 2$)

 Solution: Compact. If n = 1 it is not connected, but if n = 2 it is connected.
- (g) Perimeter of the unit square in \mathbb{R}^2 Solution: Both compact and connected.
- (h) The boundary of a bounded set in \mathbb{R} Solution: Compact but not connected.
- (i) The rationals in [0,1]

Solution: Neither compact nor connected.

(j) A closed set in $[0, 1]$

Solution: Connected, but it cannot determined. Since [0.2, 0.5] is connected, but $(0.2, 0.5) \cap [0, 1]$ is not connected.

It is easy to check, then I omit it.

2. Prove that a set $A \subset \mathbb{R}^n$ is not connected iff we can write $A \subset F_1 \bigcup F_2$, where F_1, F_2 are closed, $A \cap F_1 \cap F_2 = \emptyset$, $F_1 \cap A \neq \emptyset$, $F_2 \cap A \neq \emptyset$.

Solution: (\Rightarrow) Since A is not connect, there are two disjoint nonempty open sets U_1 and U_2 such that $A \subset U_1 \cup U_2$. Choose $F_1 = \operatorname{cl}(U_1)$, $F_2 = \operatorname{cl}(U_2)$, then $A \subset F_1 \cup F_2$. It is clearly to see that $A \cap F_1 \neq \emptyset$, $A \cap F_2 \neq \emptyset$. For $x \in A \cap F_1 \cap F_2$, since $x \in A \subset U_1 \cup U_2$, may assume $x \in U_1$. Thus there is an $\varepsilon > 0$ such that $D(x,\varepsilon) \subset U_1$, and we know $x \notin U_2$, so $x \in \operatorname{acc}(U_2)$. Choose ε above, then $D(x,\varepsilon) \cap U_1 \cap U_2 \neq \emptyset$, a contradiction.

- (\Leftarrow) Choose an open set $O_i = \bigcup D(x,1)$ for $x \in F_i$. Since $F_i \cap A \subset O_i \cap A$ then $O_i \cap A \neq \emptyset$. It is easy to see that $A \subset O_1 \cup O_2$. Claim $A \cap O_1 \cap O_2$ is empty. Given $y \in A \cap O_1$, since $A \subset F_1 \cup F_2$, then $y \in F_1$ or F_2 . If $y \in F_1$, then $y \notin F_2$. Otherwise $y \in A \cap F_1 \cap F_2$. So $y \notin O_2$. Similarly if $y \in F_2$, so $A \cap O_1 \cap O_2 = \emptyset$.
- 3. Proof that in \mathbb{R}^n , a bounded infinite set A has an accumulation point.

Solution: cl(A) is bounded, since A is bounded. Since cl(A) is closed, then it is compact. By Section 3.1 Exercise 1, there must have an accumulation point of A.

4. Show that a set A is bounded iff there is a constant M such that $d(x, y) \leq M$ for all $x, y \in A$. Give a plausible definition of the diameter of a set and reformulate your result.

Solution: Suppose A is bounded, pick $z \in A$, d(z, y) < M for all $y \in A$. Then for all $x, y \in A$, choose N = 2M, $d(x, y) \le d(x, z) + d(z, y) \le 2M = N$. On

the other hand it is trivial.

The diameter of the set is the $\sup\{d(x,y)\mid x,y\in A\}$. A set A is bounded iff the diameter of A is finite. \Box

- 5. Show that the following set are not compact, by exhibiting an open cover with no finite subcover.
 - (a) $\{x \in \mathbb{R}^n \mid ||x|| < 1\}$ Solution: Consider U_n be 1/(n+1)(n+2) < ||x|| < 1/n.
 - (b) \mathbb{Z} , the integers in \mathbb{R}

Solution: Choose

$$U_n = D(k, 1/2) \begin{cases} & \text{if } n = 2k \text{ for } k \in \mathbb{N} \cup \{0\} \\ & \text{if } n = -2k - 1 \text{ for } k \in -\mathbb{N} \end{cases}$$

6. Suppose that F_k is a sequence of compact nonempty sets satisfying the nested set property such that diameter $\{F_k\} \to 0$ as $k \to \infty$. Show that there is exactly one point in $\bigcap \{F_k\}$. (By definition, diameter $(F_k) = \sup \{d(x,y) \mid x,y \in F_k\}$). Solution: By nested property, there is at least one point in $\bigcap \{F_k\}$. If x_1 and x_2 in $\bigcap \{F_k\}$, then

$$0 \le d(x_1, x_2) \le \sup\{d(x, y) \mid x, y \in F_k\} = \text{diameter } (F_k)$$

Let $k \to \infty$, then we have $0 \le d(x_1, x_2) \le 0$. So $x_1 = x_2$.

7. Let x_k be a sequence in \mathbb{R}^n that converges to x and let $A_k = \{x_k, x_{k+1}, \dots\}$. Show that $\{x\} = \bigcap_{k=1}^{\infty} \operatorname{cl}(A)$. Is this true in any metric space? Solution: It is easy to see $\operatorname{cl}(A_k) = \{x\} \bigcup A_k$. Hence $x \in \bigcap \operatorname{cl}(A_k)$. Suppose $y \neq x \in \bigcap \operatorname{cl}(A_k)$, then $y \in \operatorname{cl}(A_k)$ for all k. But $y \neq x$, then $y \in A_k$ for all k. So $y \in \bigcap A_k$, a contradiction. (Since $\bigcap A_k = \emptyset$.)

Yes. It is true.

8. Let $A \subset \mathbb{R}^n$ be compact and let x_k be a Cauchy sequence in \mathbb{R}^n with $x_k \in A$. Show that x_k converges to a point in A.

Solution: Since x_k is a Cauchy sequence, then may assume $x_k \to x$, where $x \in \mathbb{R}^n$. Since A is compact, then A must be closed. By **proposition 2.7.6i**, we have $x \in A$.

- 9. Determine (by proof or counterexample) the truth or satisfy of the following statements:
 - (a) $(A \text{ is compact in } \mathbb{R}^n) \Rightarrow (\mathbb{R}^n \backslash A \text{ is connected}).$ $Solution: \text{ False; } A = \{x \in \mathbb{R}^n \mid 1 \leq ||x|| \leq 2\} \text{ is compact, but } \mathbb{R}^n \backslash A \text{ is not connected.}$
 - (b) (A is connected in \mathbb{R}^n) \Rightarrow ($\mathbb{R}^n \setminus A$ is connected).

 Solution: False; same example as in **a**.
 - (c) $(A \text{ is connected in } \mathbb{R}^n) \Rightarrow (A \text{ is open or closed}).$ Solution: False [a,b] is connected but is neither open nor closed
 - (d) $(A = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}) \Rightarrow (\mathbb{R}^n \setminus A \text{ is connected}).$ Solution: False for n = 1, true for $n \ge 2$.

It is easy to check, then I omit it.

10. A metric space M is said to be **locally path-connected** if each point in M has a neighborhood U such that U is a path-connected. (This terminology differs somewhat from that of some topology books.) Show that (M is connected and locally path-connected) \iff (M is path-connected).

Solution: (\Leftarrow) Trivial.

(⇒) Given $x_0, y \in M$, if $y \in U_{x_0}$, then done. If $y \notin U_{x_0}$, choose $x_1 \in U_{x_0}$, check $y \in U_{x_1}$ or not. Repeat this progress, if $y \in U_{x_i}$ for some i, then done. Otherwise, $y \notin \bigcup U_{x_i}$. It is easy to see that $\bigcup U_y$ for $y \notin \bigcup U_{x_i}$. Then $M \subset U_{x_0}$

 $\left(\bigcup U_{x_i}\right)\bigcup\left(\bigcup U_y\right)$. Since $M\cap\left(\bigcup U_{x_i}\right)$ is not empty, and $M\cap\left(\bigcup U_y\right)$ is not empty. then $M\cap\left(\bigcup U_{x_i}\right)\cap\left(\bigcup U_y\right)$ is empty. Then M is not connected, a contradiction.

- 11. (a) Prove that if A is connected in a metric space M and $A \subset B \subset \operatorname{cl}(A)$. Solution: If B is disconnected, let open sets U and V separate B. Choose $x \in B \cap U$, claim $A \cap U$ is not empty. If $x \in A$, then $x \in A \cap U$. Otherwise x is an accumulation point of A. Since U is open, there exists $\varepsilon > 0$, such that $D(x,\varepsilon) \subset U$. But there must be some $x_n \in A$, such that $x_n \in D(x,\varepsilon)$. So $x_n \in A \cap U$. Hence $A \cap U$ is nonempty. Similarly $A \cap V$ is not empty. $A \cap U \cap V \subset B \cap U \cap V = \emptyset$, then $A \cap U \cap V = \emptyset$. So open sets U and V separate A, a contradiction.
 - (b) Not solved.
 - (c) Not solved.
 - (d) Not solved.
 - (e) Not solved.
- 12. Let S be a set of real numbers that is nonempty and bounded above. Let $-S = \{x \in \mathbb{R} \mid -x \in S\}$. Prove that

- (a) -S is bounded below.
- (b) $\sup S = -\inf(-S)$.

Solution: It is easy, then I omit it.

13. Let M be a complete metric space and F_n be a collection of closed nonempty subsets (not necessarily compact) of M such that $F_{n+1} \subset F_n$ and diameter $(F_n) \to 0$. Prove that $\bigcap_{n=1}^{\infty} F_n$ consists of a single point; compare Exercise 6.

Solution: Pick $x_n \in F_n$, claim x_n is a Cauchy sequence. Given $\varepsilon > 0$, there is an integer N > 0 such that $\operatorname{diam}(F_n) < \varepsilon$ whenever $n \geq N$, then $|x_k - x_m| \leq \operatorname{diam}(F_N) < \varepsilon$, for $k, m \geq N$. Since x_k and $x_m \in F_N$, and M is complete, may say $x_n \to x$. Let $S_n = \{x_i \mid i \geq n\} \bigcup \{x\}$, it is clearly that S_n is compact. Then $x \in \bigcap S_n \subset \bigcap F_n$. Let $y \in \bigcap F_n$, and $0 \leq d(x,y) \leq \operatorname{diam}(F_n)$. Let $n \to \infty$, we have d(x,y) = 0. Hence x = y.

14. (a) A point $x \in A \subset M$ is said to be **isolated** in the set A if there is a neighborhood U of x such that $U \cap A = \{x\}$. Show that this is equivalent ti saying that there is an $\varepsilon > 0$ such that for all $y \in A$, $y \neq x$, we have $d(x,y) > \varepsilon$.

Solution: (\Leftarrow) Since $U \cap A = \{x\}$, there there is an $\varepsilon > 0$ such that $D(x, 2\varepsilon) \subset U$, so $D(x, 2\varepsilon) \cap A = \{x\}$. Hence for all $y \neq x \in A$, $d(y, x) \geq 2\varepsilon > \varepsilon$.

- (\Rightarrow) Suppose there is an $\varepsilon > 0$ such that $d(x,y) > \varepsilon$ for $y \neq x$. Then choose $U = D(x,\varepsilon)$, so $U \cap A = \{x\}$.
- (b) A set is called *discrete* if all its points are isolated. Give some examples. Show that a discrete set is compact iff it is finite.

Solution: Examples: \mathbb{Z} ; \mathbb{N} .

- (\Leftarrow) Let $A = \{x_1, \ldots, x_n\}$ be a finite set, for all cover $\{U_i\}$ of A. we can choose subcover $\{U_{i_j} \mid 1 \leq j \leq n\}$ covers A, where U_{i_j} contains x_j . Hence A is compact.
- (⇒) Since A is compact, choose cover $\{U_x\}$ of A, where $U_x \cap A = \{x\}$ for all $x \in A$. Then we can find finite subcovers $\{U_{x_i}\}$ such that $A \subset \bigcup U_{x_i}$. Hence $\bigcup \{x_i\} \subset A \subset (\bigcup \{U_{x_i}\}) \cap A = \bigcup \{x_i\}$ then A is finite.

15. Let $K_1 \subset M_1$ and $K_2 \subset M_2$ be path-connected (respectively, connected, com-

pact). Show that $K_{\times}K_2$ is path-connected (respectively, connected, compact) in $M_1 \times M_2$.

Solution: It is not difficulty, the I omit it.

16. If $x_k \to x$ in a normed space, prove that $||x_k|| \to ||x||$. Is the converse true? Use this to prove that $\{x \in \mathbb{R}^n \mid ||x|| < 1\}$ is closed, using sequences.

Solution: Since $x_k \to x$, then for each $\varepsilon > 0$, there is an integer N > 0 such that $||x_k - x|| < \varepsilon$, for $k \ge N$.

$$\left| \|x_k\| - \|x\| \right| \le \|x_k - x\| < \varepsilon$$

then $\lim_{k\to\infty} ||x_k|| = ||x||$.

Yes. Since $||x_k|| \to ||x||$, then

$$\lim_{k \to \infty} ||x_k|| \le \lim_{k \to \infty} ||x_k - x|| + \lim_{k \to \infty} ||x||.$$

So
$$||x|| \le \lim_{k \to \infty} ||x_k - x|| + ||x||$$
, hence $\lim_{k \to \infty} ||x_k - x|| = 0$

The next question is not difficulty, then I omit it.

- 17. Solution: Not solved. \Box
- 18. Let $F_n \subset \mathbb{R}^n$ be defined by $F_n = \{x \mid x \geq 0 \text{ and } 2 1/n \leq x^2 \leq 2 + 1/n\}$. Show that $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$. Use this to show the existence of $\sqrt{2}$.

Solution: It is easy, then I omit it. \Box

19. Let $V_n \subset M$ be open sets such that $\operatorname{cl}(V_n)$ is compact, $V_n \neq \emptyset$, and $\operatorname{cl}(V_n) \subset V_{n-1}$. Prove $\bigcap_{n=1}^{\infty} V_n \neq \emptyset$.

Solution: You may consider $\operatorname{cl}(V_{n-1}) \supset V_{n-1} \supset \operatorname{cl}(V_n)$.

20. Prove that a compact subset of a metric space must be closed as follows: Let x be in the complement of A. For each $y \in A$, choose disjoint neighborhoods U_y of y and V_y of x. Consider the open cover $\{U_y\}$ of A to show the complement of A is open.

Solution: Since A is compact, there exists finite subcover $\{U_{y_k}\}$ covers A. Since $\left(\bigcap\{V_{y_k}\}\right)$ is open and $\left(\bigcap\{V_{y_k}\}\right)\bigcap\left(\bigcup\{U_{y_k}\}\right)$ is empty, then $\left(\bigcap\{V_{y_k}\}\right)\subset A^c$. Hence A^c is open, then A is closed.

- 21. (a) Prove: a set $A \subset M$ is connected iff \emptyset and A are the only subsets of A that are open and closed relative to A. (A set $U \subset A$ is called **open relative** to A if $U = V \cap A$ for some open set $V \subset M$; "closed relative to A" is defined similarly.)
 - (b) Prove that \emptyset and \mathbb{R}^n are the only subsets of \mathbb{R}^n that are both open and closed.

Solution: It is not hard to proof, then I omit it. \Box

22. Find two subsets $A, B \subset \mathbb{R}^2$ and a point $x_0 \in \mathbb{R}^2$ such that $A \cup B$ is not connected but $A \cup B \cup \{x_0\}$ is connected.

Solution: Choose $A = \{(x,0)|x>0\}, B = \{(x,0)|x<0\}, \{x\} = \{(0,0)\}$

23. Let \mathbb{Q} denote the rationals in \mathbb{R} . Show that both \mathbb{Q} and the irrationals $\mathbb{R}\setminus\mathbb{Q}$ are not connected.

Solution: You may consider \mathbb{Q} is dense in \mathbb{R} .

24. Prove that a set $A \subset M$ is not connected if we can write A as the disjoint union of two set B and C such that $B \cap A \neq \emptyset$, $C \cap A \neq \emptyset$, and neither of the set B or C has a point of accumulation belonging to the other set.

Solution: (\Rightarrow) Since A is disconnected, choose B and C be disjoint open sets separate A. W.l.o.g. given $x \in B$, there is an $\varepsilon > 0$, such that $D(x, \varepsilon) \subset B$, but $D(x, \varepsilon) \cap C = \emptyset$. If $x \in C$. So x is not an accumulation point of C.

(\Leftarrow) Choose $V = \bigcup D(x, d(x, C)/2)$ for $x \in B$, $U = \bigcup D(x, d(x, B)/2)$ for $x \in C$. It is clearly that d(x, C) > 0 for $x \in B$, since x is not an accumulation point of C. Then U, V both open, $U \bigcup V \supset B \bigcup C \supset A$, $U \cap A \supset B \cap A$ is

	nonempty, $V \cap A$ is also nonempty. And it is easy to see that $U \cap V$ is empty
25.	Prove that there is a sequence of distinct integers $n_1, n_2, \dots \to \infty$ such that
	$\lim_{k \to \infty} \sin n_k \text{ exists.}$
	Solution: Look Exercise (3).
26.	Show that the completeness property of $\mathbb R$ may be replaced by the Nested Inter-
	val Property. If $\{F_n\}$ is a sequence of closed bounded intervals in $\mathbb R$ such that
	$F_{n+1} \subset F_n$ for all $n = 1, 2, 3, \ldots$, then there is at least one point in $\bigcap F_n$.
	Solution: Choose $x_i = \inf(F_i)$, since F_i is bounded and closed interval in \mathbb{R}
	then $x_i \in F_i$. So $\{x_i\}$ is monotone increasing sequence. By completeness of \mathbb{R}
	$x_i \to x$ for some $x \in \mathbb{R}$. And $x \in F_n$ for all n , since x is an accumulation point
	of $S_n = \{x_i i \geq n\} \subset F_n$ and F_n is closed, then $x \in F_n$ for all n . Hence $\bigcap F_n$ is
	nonempty.
27.	Let $A \subset \mathbb{R}$ be a bounded set. Show that A is closed iff for every sequence
	$x_n \in A$, $\limsup x_n \in A$ amd $\liminf x_n \in A$.
	Solution: It is not hard, then I omit it.
28.	Let $A \subset M$ be connected and contain more than one point. Show that every
	point of A is an accumulation point of A .
	Solution: If x is not an accumulation point of A, choose $\{x\}$ and $A\setminus\{x\}$. Use
	Exercise (26), where $\{x\} = B$, $A \setminus \{x\} = C$.
29.	Let $A = \{(x, y) \in \mathbb{R}^2 \mid x^4 + y^4 = 1\}$. Show that A is compact. Is it connected?
	Solution: It is easy, then I omit it.
30.	Let U_k be a sequence of open bounded sets in \mathbb{R}^n . Prove or disprove:
	(a) $\bigcup_{k=1}^{\infty} U_k$ is open.

	(b) $\bigcap_{k=1}^{\infty} U_k$ is open.
	(c) $\bigcap_{k=1}^{\infty} \left(\mathbb{R}^n \backslash U_k \right)$ is closed.
	(d) $\bigcap_{k=1}^{\infty} \left(\mathbb{R}^n \backslash U_k \right)$ is compact.
	Solution: It is easy, then I omit it. $\hfill\Box$
31.	Suppose $A \subset \mathbb{R}^n$ is not compact. Show that there exists a sequence $F_1 \supset F_2 \supset$
	$F_3 \cdots$ of closed sets such that $F_k \cap A \neq \emptyset$ for all k and
	$\Big(\bigcap_{k=1}^{\infty} F_k\Big) \bigcap A = \emptyset$
	Solution: If A is not closed, then choose $x \in cl(A) \setminus A$, there exists $x_k \to x$ where
	$x_k \in A$ for all k . Choose $F_n = \{x_i i \geq n\} \bigcup \{x\}$, then $F_n \supset F_{n+1}$ and $F_n \cap A$ is
	not empty for all n . But $\left(\bigcap_{n=1}^{\infty} F_n\right) \cap A$ is empty.
	If A is closed but not bounded, Choose $F_n = \{ x \ge n\}$, then $F_n \supset F_{n+1}$ and
	$F_n \cap A$ is not empty for all n . Since if $F_n \cap A$ is empty for some n , then A is
	bounded. And it is clearly that $\left(\bigcap_{n=1}^{\infty} F_n\right) \cap A$ is empty.
32.	Let x_n be a sequence in \mathbb{R}^3 such that $ x_{n+1} - x_n \le 1/(n^2 + n), n \ge 1$. Show
	that x_n converges.
	Solution: It is easy, then I omit it. $\hfill\Box$
33.	Solution: Not Solved. \Box

35. Let $a \in \mathbb{R}$ and define the sequence a_1, a_2, \ldots in \mathbb{R} by $a_1 = a$, and $a_n = a_{n-1}^2 - a_{n-1} + 1$ if n > 1. For what $a \in \mathbb{R}$ is the sequence

(a) Monotone?

34. Solution: Not Solved.

(b) Bounded?

Compute the limits in the cases of convergence.

Solution: It is easy, then I omit it.

36. Let $A \subset \mathbb{R}^n$ be uncountable. Prove that A has an accumulation point.

Solution: If A is bounded, then by Exercise (3), we complete the proof. If A is unbounded, let $A_n = \{x \in A \mid ||x|| \le n\}$. Since A is uncountable then there must be some A_k infinite but A_{k-1} is finite. By Exercise (3) again, A_k must has an accumulation point x. So x is the accumulation point of A.

- 37. Let $A, B \subset M$ with A compact, B closed, and $A \cap B = \emptyset$.
 - (a) Show that there is an $\varepsilon > 0$ such that $d(x, y) > \varepsilon$ for all $x \in A$ and $y \in B$,
 - (b) Is **a** true if A, B are merely closed?

Solution: You may look the Appendix C.

38. Show that $A \subset M$ is not connected iff there exist two disjoint open sets U, V such that $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$, and $A \subset U \cup V$.

Solution: Look Exercise (24)

39. Let $F_1 = [0, 1/3] \bigcup [2/3, 1]$ be obtained from [0, 1] by removing the middle third. Repeat, obtaining

$$F_2 = [0, 1/9] \bigcup [2/9, 1/3] \bigcup [2/3, 7/9] \bigcup [8/9, 1]$$

In general, F_n is a union of intervals and F_{n+1} is obtained by removing the middle third of these intervals. Let $C = \bigcap_{n=1}^{\infty} F_n$, the **Cantor set**. Prove:

- (a) C is compact.
- (b) C has infinitely many points [Hint: look at the endpoints of F_n].

	(d) C is <i>perject</i> , that is, it is closed with no isolated.	
	(e) Show that C is totally disconnect ; that is, if $x, y \in C$ and $x \neq y$ th	en
	$x \in U$ and $y \in V$ where U and V are open sets that disconnected C .	
	Solution: You may look $p.41 \sim p.42$, Principle of Mathematical Ana	al-
	$ysis,\ 3nd,\ Rudin.$	
40.	Solution: Not solved.	

(c) $int(C) = \emptyset$.