

Corrigé du devoir maison n°9

Exercice 1

On définit une suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=7$ et la formule de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{2 + u_n}.$$

1. Pour tout $n \in \mathbb{N}$, on note

$$\mathcal{P}_n: 2 \leq u_{n+1} \leq u_n.$$

•

$$\left. \begin{array}{ll} u_1 & = \sqrt{2+7} = 3 \\ 2 & \leq u_1 \leq u_0 \end{array} \right\} \Longrightarrow \mathcal{P}_0 \text{ est vraie.}$$

• Soit $k \in \mathbb{N}$ tel que \mathcal{P}_k soit vraie, on a donc

$$2 \le u_{k+1} \le u_k$$
.

On ajoute 2:

$$4 \le 2 + u_{k+1} \le 2 + u_k$$
.

La fonction $x \mapsto \sqrt{x}$ est strictement croissante sur $[0, +\infty[$, donc

$$\sqrt{4} \le \sqrt{2 + u_{k+1}} \le \sqrt{2 + u_k}$$
$$2 \le u_{k+2} \le u_{k+1}.$$

La propriété \mathcal{P}_{k+1} est donc vraie.

• \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$:

$$\forall n \in \mathbb{N}, \ 2 \leq u_{n+1} \leq u_n.$$

- 2. D'après la question 1:
 - pour tout $n \in \mathbb{N}$, $u_{n+1} \le u_n$, donc $(u_n)_{n \in \mathbb{N}}$ est décroissante;
 - pour tout $n \in \mathbb{N}$, $2 \le u_n$, donc $(u_n)_{n \in \mathbb{N}}$ est minorée par 2.

Or toute suite décroissante minorée converge, donc $(u_n)_{n\in\mathbb{N}}$ converge.

On note ℓ la limite de $(u_n)_{n \in \mathbb{N}}$. Cette suite est minorée par 2, donc $\ell \ge 2$.

On « passe à la limite » dans la formule de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{2 + u_n},$$

donc

$$\ell = \sqrt{2 + \ell}$$

La limite ℓ est donc une solution dans $[2, +\infty[$ de l'équation $x = \sqrt{2 + x}$. On résout :

$$x = \sqrt{2+x} \iff x^2 = 2+x \iff x^2-x-2=0.$$

Avec la méthode habituelle (discriminant), on trouve deux racines : 2 et -1. Comme on résout dans $[2, +\infty[$, il n'y a qu'une solution : x=2; on a donc $\ell=2$.

Conclusion : $\lim u_n = 2$.

Exercice 2

Soit $n \in \mathbb{N}$. On calcule :

- $u_{6n} = \lfloor \cos\left(\frac{6n\pi}{3}\right) \rfloor = \lfloor \cos\left(2n\pi\right) \rfloor = \lfloor 1 \rfloor = 1$, donc $u_{6n} \longrightarrow 1$.
- $u_{6n+3} = \lfloor \cos\left(\frac{(6n+3)\pi}{3}\right)\rfloor = \lfloor \cos\left(2n\pi + \pi\right)\rfloor = \lfloor -1\rfloor = -1$, donc $u_{6n+3} \longrightarrow -1$.

Conclusion : $(u_n)_{n\in\mathbb{N}}$ possède deux suites extraites qui convergent vers des limites différentes, donc

$$(u_n)_{n\in\mathbb{N}}$$
 diverge.

Exercice 3

Pour tout entier naturel non nul n, on pose

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n} \qquad \text{et} \qquad v_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n+1}.$$

1. Pour comparer les nombres positifs $2\sqrt{n}\sqrt{n+1}$ et 2n+1, on compare leurs carrés :

$$(2\sqrt{n}\sqrt{n+1})^2 = 4n(n+1) = 4n^2 + 4n,$$
$$(2n+1)^2 = 4n^2 + 4n + 1.$$

Deux nombres positifs sont rangés dans le même ordre que leurs carrés et $4n^2 + 4n \le 4n^2 + 4n + 1$, donc

$$2\sqrt{n}\sqrt{n+1} \le 2n+1.$$

2. Pour tout $n \in \mathbb{N}^*$:

$$u_{n+1} - u_n = \left(\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} - 2\sqrt{n+1}\right) - \left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}} - 2\sqrt{n}\right)$$

$$= \sum_{k=1}^{n} \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{n+1}} - 2\sqrt{n+1} - \sum_{k=1}^{n} \frac{1}{\sqrt{k}} + 2\sqrt{n}$$

$$= \frac{1}{\sqrt{n+1}} - \frac{2\sqrt{n+1} \times \sqrt{n+1}}{\sqrt{n+1}} + \frac{2\sqrt{n} \times \sqrt{n+1}}{\sqrt{n+1}}$$

$$= \frac{1 - 2(n+1) + 2\sqrt{n}\sqrt{n+1}}{\sqrt{n+1}}$$

$$= \frac{-1 - 2n + 2\sqrt{n}\sqrt{n+1}}{\sqrt{n+1}}.$$

D'après la question 1, $-1-2n+2\sqrt{n}\times\sqrt{n+1}\leq 0$, donc $u_{n+1}-u_n\leq 0$. Par conséquent :

$$(u_n)_{n\in\mathbb{N}^*}$$
 est décroissante.

3. Pour tout $n \in \mathbb{N}^*$:

$$v_n - u_n = \left(\sum_{k=1}^n \sqrt{\frac{1}{k}} - 2\sqrt{n+1}\right) - \left(\sum_{k=1}^n \sqrt{\frac{1}{k}} - 2\sqrt{n}\right) = 2\sqrt{n} - 2\sqrt{n+1} = 2\left(\sqrt{n} - \sqrt{n+1}\right).$$

Pour calculer la limite, on multiplie et on divise par $\sqrt{n} + \sqrt{n+1}$??? :

$$\sqrt{n} - \sqrt{n+1} = \frac{\left(\sqrt{n} - \sqrt{n+1}\right)\left(\sqrt{n} + \sqrt{n+1}\right)}{\sqrt{n} + \sqrt{n+1}} = \frac{\sqrt{n^2} - \sqrt{n+1}^2}{\sqrt{n} + \sqrt{n+1}} = \frac{n - (n+1)}{\sqrt{n} + \sqrt{n+1}} = \frac{-1}{\sqrt{n} + \sqrt{n+1}}.$$

On en déduit $\lim (\sqrt{n} - \sqrt{n+1}) = 0$; et donc $\lim (v_n - u_n) = 0$.

Conclusion : $(u_n)_{n\in\mathbb{N}^*}$ est décroissante, $(v_n)_{n\in\mathbb{N}^*}$ est croissante et $\lim (v_n - u_n) = 0$, donc

$$(u_n)_{n\in\mathbb{N}^*}$$
 et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.

4. Les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes, donc elles convergent vers une même limite finie ℓ . En particulier,

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} - 2\sqrt{n} \longrightarrow \ell,$$

donc comme $2\sqrt{n} \longrightarrow +\infty$:

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \longrightarrow +\infty.$$

5. On sait que

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} - 2\sqrt{n} \longrightarrow \ell \quad \text{et} \quad 2\sqrt{n} \longrightarrow +\infty,$$

donc

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} - 2\sqrt{n} = o\left(2\sqrt{n}\right).$$

On en déduit

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \sim 2\sqrt{n}.$$