Algoritmi Avanzati, A.A. 2016–2017

Seconda prova parziale

Venerdì 23 dicembre 2016

- Riportare il proprio nome, cognome e numero di matricola in cima a questo foglio e a tutti i fogli, di bella e di brutta copia.
- Al termine dello svolgimento della prova, è necessario riconsegnare *tutti* i fogli, comprese le brutte copie e il presente testo. In caso di riconsegna parziale la prova non verrà valutata.
- Il presente foglio non deve riportare alcuna scritta ad eccezione dei dati di identificazione.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- L'esercizio 1 vale 20 punti. Le 8 domande dell'esercizio 2 valgono 1.5 punti ciascuna (+1.5 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset di 12 campioni composti da due feature scalari $x_{i1} \in [0, 1]$ e $x_{i2} \in [0, 10]$, i = 1, ..., 12, come variabili indipendenti e una classe a due valori $y_i \in \{\text{Natale}, \text{Capodanno}\}$ come valore da prevedere:

i	x_{i1}	x_{i2}	y_i
1	0.52	7.3	Natale
2	0.22	2.3	Capodanno
3	0.72	4.4	Natale
4	0.98	3.6	Capodanno

i	x_{i1}	x_{i2}	y_i
5	0.81	5.8	Natale
6	0.92	8.6	Capodanno
7	0.88	0.6	Capodanno
8	0.03	8.2	Capodanno

i	x_{i1}	x_{i2}	y_i
9	0.61	1.5	Natale
10	0.43	9.4	Natale
11	0.37	6.5	Natale
12	0.13	9.7	Capodanno

- 1.1) Stimare l'entropia della variabile Y sulla base del dataset.
- **1.2)** Costruire la radice dell'albero di decisione considerando per ciascuna delle due variabili le soglie del primo e del secondo quartile (25% e 50% delle distribuzioni), utilizzando l'impurità di Gini come criterio.
- 1.3) Costruire il secondo livello dell'albero di decisione considerando per ciascuna variabile la sola soglia della mediana.

Esercizio 2

Per ciascuna delle seguenti domande, riportare nel foglio protocollo il numero della risposta ritenuta corretta. Si prega di non segnare in alcun modo le domande e le risposte sul foglio.

In caso di incertezza è consentito motivare una risposta con una riga di testo.

- 1. Per quale dei seguenti motivi è spesso opportuno usare la mediana della distribuzione come soglia per binarizzare una variabile continua, invece della media?
 - (a) Perché la mediana non risente molto della presenza di valori estremi (outliers).
 - (b) Gli altri due motivi sono entrambi validi.
 - (c) Perché il calcolo della mediana, non richiedendo somme e divisioni, è computazionalmente più efficiente del calcolo della media
- 2. Quale linkage criterion tende a generare dendrogrammi più bilanciati?
 - (a) Il single linkage.
 - (b) Il linkage criterion non ha influenza sul bilanciamento.
 - (c) Il complete linkage.
- 3. Qual è la definizione dell'Impurità di Gini di una variabile casuale Y?
 - (a) La probabilità di errore nel prevedere un esito $y \in Y$ se si sceglie un valore casuale \tilde{y} con la stessa distribuzione di probabilità.
 - (b) La probabilità di errore nel prevedere un esito $y \in Y$ se si sceglie un valore casuale \tilde{y} con distribuzione di probabilità uniforme.
 - (c) La probabilità di prevedere correttamente un esito $y \in Y$ se si sceglie un valore casuale \tilde{y} con distribuzione di probabilità uniforme.
- 4. Quale tra i seguenti algoritmi visti a lezione **non** è greedy?
 - (a) La costruzione di un albero di decisione.
 - (b) La selezione iterativa delle feature sulla base dell'informazione mutua.
 - (c) Il calcolo dell'entropia di una variabile casuale.
- 5. Ad ogni iterazione dell'algoritmo di clustering agglomerativo gerarchico su una matrice di distanze, come si scelgono i due cluster da aggregare?
 - (a) Si scelgono i due cluster aventi distanza minima o massima, a seconda del linkage criterion scelto.
 - (b) Si scelgono sempre i due cluster aventi distanza massima.
 - (c) Si scelgono sempre i due cluster aventi distanza minima.
- 6. L'entropia di una variabile casuale Y...
 - (a) ... dipende soltanto dalla distribuzione di probabilità di Y.
 - (b) ... dipende soltanto dal dominio di Y.
 - (c) ... dipende sia dalla distribuzione di probabilità, sia dal dominio di Y.
- 7. L'impurità di Gini di una variabile casuale Y...
 - (a) ... dipende soltanto dalla distribuzione di probabilità di Y.
 - (b) ... dipende soltanto dal dominio di Y.
 - (c) ... dipende sia dalla distribuzione di probabilità, sia dal dominio di Y.
- 8. Se abbiamo una collezione di punti della forma (x, x^2) , con $x \in [-1, 0]$ distribuito uniformemente, che valore ha il coefficiente di correlazione fra le due coordinate?
 - (a) $\rho = 0$, perché la relazione non è lineare.
 - (b) $\rho > 0$, perché x^2 è sempre positivo.
 - (c) $\rho < 0$, perché la relazione fra la prima e la seconda coordinata è decrescente.