ACH2053 - Introdução à Estatística

Aula 11: Informação de Fisher

Valdinei Freire

valdinei.freire@usp.br

http://www.each.usp.br/valdinei

Escola de Artes, Ciências e Humanidades - USP

2025

Estatística e Estimadores

Seja um modelo paramétrico F_{θ} com espaço de parâmetros $\Omega \subseteq \mathbb{R}^d$ e seja $\mathbf{X} = (X_1, \dots, X_n) \sim F_{\theta}$ para algum $\theta \in \Omega$. Um **estimador pontual** $\hat{\theta}$ de θ é uma estatística $r : \mathbb{R}^n \to \Omega$, com o propósito de estimar θ .

Exemplo: considere uma variável aleatória X e n amostras i.i.d. de X, x_1, x_2, \ldots, x_n . Construa um estimador para a esperança de X, isto é, $\mu = \mathsf{E}[X]$.

Considere o estimador:

$$T = \frac{\sum_{i=1}^{n} x_i}{n},$$

Lembre-se que o próprio estimador é uma variável aleatória:

- ightharpoonup $E[T] = \mu$, isto é, T tem viés nulo.
- $ightharpoonup Var[T] = \frac{Var[X]}{n}.$

Teorema do Limite Central

Se as variáveis aleatórias X_1,\ldots,X_n formam uma amostra aleatória de tamanho n de uma distribuição com média μ e desvio padrão σ $(0<\sigma<\infty)$, então para cada x

$$\lim_{n \to \infty} \Pr\left(\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \le x\right) = \Phi(x),$$

е

$$\lim_{n \to \infty} \Pr\left(\frac{\sum_{i=1}^{n} X_n - n\mu}{\sqrt{n}\sigma} \le x\right) = \Phi(x),$$

onde $\Phi(x)$ denota a c.d.f. da distribuição normal padrão.

Exemplo: X é exponencial

4 / 10

Informação de Fisher

- Nem todo estimador é o somatório de variáveis aleatórias, por exemplo, TRI.
- Pergunta: existe algo parecido com o Teorema do Limite Central para qualquer estimador?
- Resposta: Informação de Fisher
 - 1. quantidade de informação que uma amostra de dado tem sobre um parâmetro desconhecido
 - 2. intuitivamente, mais dado produz mais informação, mais dado informativo produz mais ainda informação
 - a medida de informação pode ser utilizada para obter limites sobre a variância de estimadores
 - 4. a medida de informação permite aproximar a variância de estimadores para amostras grandes

Informação de Fisher: preliminares

Considere uma variável aleatória X tal que a p.d.f. é dada por $f(x|\theta)$, onde θ é um parâmetro desconhecido. Considere as seguintes condições:

- ightharpoonup sabe-se que $\theta \in \Omega$, e Ω é um intervalo aberto.
- $ightharpoonup x \in S$, sendo S conhecido e $f(x|\theta) > 0$ para todo $x \in S$ e $\theta \in \Omega$.
- defina $\lambda(x|\theta) = \log f(x|\theta)$, isto é, o loglikelihood.
- ightharpoonup assuma que $\lambda(x|\theta)$ possui segunda derivada e defina:

$$\lambda'(x|\theta) = \frac{\partial}{\partial \theta} \lambda(x|\theta) \qquad \mathrm{e} \qquad \lambda''(x|\theta) = \frac{\partial^2}{\partial \theta^2} \lambda(x|\theta)$$

Informação de Fisher: definição

Seja X uma variável aleatória com p.d.f. $f(x|\theta)$ e que todas as condições anteriores seja atendida. A Informação de Fisher $I(\theta)$ na variável aleatória X é definida por:

$$I(\theta) = \mathsf{E}_{\theta}[\lambda'(X|\theta)^2]$$

A Informação de Fisher também pode ser calculada por:

$$I(\theta) = -\mathsf{E}_{\theta}[\lambda''(X|\theta)]$$

ou

$$I(\theta) = \mathsf{Var}_{\theta}[\lambda'(X|\theta)]$$

Informação de Fisher: sobre amostras

Seja X_1,\ldots,X_n variáveis aleatórias com p.d.f. conjunta $f(x_1,\ldots,x_n|\theta)$ e que todas as condições anteriores seja atendida. Defina $\lambda(x_1,\ldots,x_n|\theta)=\log f(x_1,\ldots,x_n|\theta).$

A Informação de Fisher $I(\theta)$ na amostra aleatória X_1,\dots,X_n é definida por:

$$I(\theta) = \mathsf{E}_{\theta}[\lambda'(X_1,\ldots,X_n|\theta)^2]$$

Quando as variáveis aleatórias são independentes condicionadas em θ tem-se que:

$$I(\theta) = -\mathsf{E}_{\theta}[\lambda''(X_1, \dots, X_n | \theta)]$$
$$= -\sum_{i=1}^n \mathsf{E}_{\theta}[\lambda''(X_i | \theta)] = \sum_{i=1}^n I_i(\theta)$$

8 / 10

onde $I_i(\theta)$ é a Informação de Fisher na variável aleatória X_i .

Exemplo: TRI

Limite de Cramér-Rao

Theorem

Seja X_1, \ldots, X_n variáveis aleatórias com p.d.f. conjunta $f(x_1, \ldots, x_n | \theta)$ e que todas as condições anteriores seja atendida. Seja T um estimador para θ sem viés. Então:

$$\mathit{Var}_{\theta}[T] \geq rac{1}{\sum_{i=1}^{n} I_{i}(\theta)}$$

Theorem

Suponha que em um problema arbitrário o M.L.E. $\hat{\theta}_n$ é determinado resolvendo a equação $\lambda'(x_1,\ldots,x_n|\theta)=0$ e que todas as condições anteriores seja atendida. Então, a distribuição de $\hat{\theta}_n$ pode ser aproximada por uma distribuição normal com média θ e variância $\frac{1}{\sum_{i=1}^n I_i(\theta)}$.