07 Case study: comparing Twitter archives

H. David Shea

04 Aug 2021

Contents

Getting the data and distribution of tweets
Word frequencies
Comparing word usage
Changes in word use
Favorites and retweets

Getting the data and distribution of tweets

Word frequencies

Cleaning up tweet into text only words

```
remove_reg <- "&amp; |&lt; |&gt;"
tidy_tweets <- tweets %>%
    filter(!str_detect(text, "^RT")) %>% # remove re-tweets
    mutate(text = str_remove_all(text, remove_reg)) %>% # remove hypertext characters
    unnest_tokens(word, text, token = "tweets") %>%
    filter(
```


Figure 1: All tweets from the authors' (Julia Silge and David Robinson) accounts

```
!word %in% stop_words$word,
!word %in% str_remove_all(stop_words$word, "'"),
str_detect(word, "[a-z]")
)
```

Word frequencies

person	word	n	total	freq
David	@hadleywickham	308	20699	0.0148799
David	#rstats	269	20699	0.0129958
David	@jennybryan	213	20699	0.0102904
David	@quominus	206	20699	0.0099522
David	@hspter	185	20699	0.0089376
Julia	@selkie1970	570	74152	0.0076869
Julia	time	557	74152	0.0075116
Julia	@skedman	531	74152	0.0071610
Julia	day	437	74152	0.0058933
Julia	baby	392	74152	0.0052864

```
frequency <- frequency %>%
    select(person, word, freq) %>%
    pivot_wider(names_from = person, values_from = freq) %>%
    arrange(Julia, David)

frequency %>%
    slice_head(n = 10) %>%
    kable()
```

word	Julia	David
@accidentalart	1.35e-05	4.83e-05
@alicedata	1.35 e-05	4.83e-05
@alistaire	1.35 e-05	4.83e-05
@corynissen	1.35 e-05	4.83e-05
@jennybryans	1.35 e-05	4.83e-05
@jsvine	1.35 e-05	4.83e-05
@lewislab	1.35 e-05	4.83e-05
@lizasperling	1.35 e-05	4.83e-05
@ognyanova	1.35 e-05	4.83e-05
@rbloggers	1.35 e-05	4.83e-05

```
ggplot(frequency, aes(Julia, David)) +
    geom_jitter(
        alpha = 0.1,
        size = 2.5,
        width = 0.25,
        height = 0.25
) +
    geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5) +
    scale_x_log10(labels = percent_format()) +
    scale_y_log10(labels = percent_format()) +
    geom_abline(color = "red") +
    theme_light()

#> Warning: Removed 18075 rows containing missing values (geom_point).
#> Warning: Removed 18075 rows containing missing values (geom_text).
```

Comparing word usage

Calculate the log odds ratio between David and Julia.

$$\log \text{ odds ratio} = \ln \left(\frac{\left[\frac{n+1}{\text{total}+1}\right]_{\text{David}}}{\left[\frac{n+1}{\text{total}+1}\right]_{\text{Julia}}} \right)$$

Figure 2: Comparing the frequency of words used by Julia and David

Table 3: Words about equally likely to come from David or Julia's account during 2016

word	David	Julia	logratio
words	0.0037651	0.0037777	-0.0033403
science	0.0065261	0.0064760	0.0077095
idea	0.0057731	0.0059363	-0.0278814
email	0.0025100	0.0024285	0.0330273
file	0.0025100	0.0024285	0.0330273
purrr	0.0025100	0.0024285	0.0330273
test	0.0022590	0.0021587	0.0454498
account	0.0020080	0.0018888	0.0611982
api	0.0020080	0.0018888	0.0611982
sad	0.0020080	0.0018888	0.0611982

```
word_ratios %>%
   group_by(logratio < 0) %>%
   slice_max(abs(logratio), n = 15) %>%
   ungroup() %>%
   mutate(word = reorder(word, logratio)) %>%
   ggplot(aes(word, logratio, fill = logratio < 0)) +
   geom_col(show.legend = FALSE) +
   coord_flip() +
   ylab("log odds ratio (David/Julia)") +
   scale_fill_discrete(name = "", labels = c("David", "Julia")) +
   theme_light()</pre>
```

Changes in word use

Which words' frequencies have changed the fastest in the authors' Twitter feeds?

Figure 3: Comparing the odds ratios of words from the authors' accounts

```
words_by_time <- tidy_tweets %>%
    filter(!str_detect(word, "^@")) %>% # remove user names
    mutate(time_floor = floor_date(timestamp, unit = "1 month")) %>% # measure monthly
    count(time_floor, person, word) %>%
    group_by(person, time_floor) %>%
    mutate(time_total = sum(n)) %>%
    group_by(person, word) %>%
    mutate(word_total = sum(n)) %>%
    mutate(word_total = sum(n)) %>%
    rename(count = n) %>%
    filter(word_total > 30)

words_by_time %>%
    slice_head(n = 10) %>%
    kable(caption = "Data showing a person using a word in a given month")
```

Table 4: Data showing a person using a word in a given month

$time_floor$	person	word	count	$time_total$	$word_total$
2016-01-01	David	#rstats	2	315	205
2016-01-01	David	broom	2	315	34
2016-01-01	David	data	2	315	148
2016-01-01	David	ggplot2	1	315	37
2016-01-01	David	$_{ m time}$	2	315	56
2016-01-01	David	tweets	1	315	46
2016-01-01	Julia	#rstats	10	437	116
2016-01-01	Julia	blog	2	437	33
2016-01-01	Julia	data	5	437	105
2016-01-01	Julia	day	1	437	43

[&]quot;The count column tells us how many times that person used that word in that time bin, the time_total

column tells us how many words that person used during that time bin, and the word_total column tells us how many times that person used that word over the whole year."

```
nested_data <- words_by_time %>%
    nest(-word,-person)
nested data
#> # A tibble: 32 x 3
#>
     person word
                     data
                    t>
#>
     <chr> <chr>
#> 1 David #rstats <tibble [12 x 4]>
\# 2 David broom <tibble [10 x 4]>
#> 3 David data <tibble [12 x 4]>
\# 4 David ggplot2 <tibble [10 x 4]>
\#> 5 David time <tibble [12 x 4]>
#> 6 David tweets <tibble [8 x 4]>
#> 7 Julia #rstats <tibble [12 x 4]>
\#> 8 Julia blog <tibble [10 x 4]>
                     <tibble [12 x 4]>
#> 9 Julia data
#> 10 Julia day
                     <tibble [12 x 4]>
#> # ... with 22 more rows
nested_models <- nested_data %>%
    mutate(models = map(data, ~ glm(cbind(count, time_total) ~ time_floor, ., family = "binomial")
    ))
nested_models
#> # A tibble: 32 x 4
    person word data
                                       models
     \langle chr \rangle \langle chr \rangle \langle list \rangle
#> 1 David #rstats <tibble [12 x 4]> <glm>
\#> 2 David broom <tibble [10 x 4]> <glm>
\#> 3 David data <tibble [12 x 4]> <glm>
\# 4 David ggplot2 <tibble [10 x 4] > <glm>
\#> 5 David time <tibble [12 x 4]> <glm>
\# 6 David tweets <tibble [8 x 4] > <glm>
#> 7 Julia #rstats <tibble [12 x 4]> <glm>
\#> 8 Julia blog <tibble [10 x 4]> <glm>
#> 9 Julia data
                     <tibble [12 x 4]> <glm>
#> 10 Julia day
                     \langle tibble [12 x 4] \rangle \langle glm \rangle
#> # ... with 22 more rows
slopes <- nested_models %>%
    mutate(models = map(models, tidy)) %>%
    unnest(cols = c(models)) %>%
    filter(term == "time_floor") %>%
    mutate(adjusted.p.value = p.adjust(p.value))
top_slopes <- slopes %>%
  filter(adjusted.p.value < 0.05)
top_slopes %>%
    select(-data) %>%
    kable(caption = "Words which have changed in frequency at a moderately significant level in the aut
```

Table 5: Words which have changed in frequency at a moderately significant level in the authors' tweets

person	word	term	estimate	std.error	statistic	p.value	adjusted.p.value
David	ggplot2	time_floor	-1e-07	0e+00	-4.044928	0.0000523	0.0016225
Julia	#rstats	$time_floor$	0e + 00	0e + 00	-4.037323	0.0000541	0.0016225
Julia	post	$time_floor$	-1e-07	0e + 00	-3.457068	0.0005461	0.0158365
David	overflow	$time_floor$	1e-07	0e + 00	3.119265	0.0018130	0.0489518
David	stack	$time_floor$	1e-07	0e + 00	3.370386	0.0007506	0.0210176
David	#user2016	$time_floor$	-8e-07	2e-07	-5.266287	0.0000001	0.0000045

```
words_by_time %>%
   inner_join(top_slopes, by = c("word", "person")) %>%
   filter(person == "David") %>%
   ggplot(aes(time_floor, count / time_total, color = word)) +
   geom_line(size = 1.3) +
   labs(x = NULL, y = "Word frequency") +
   theme_light()
```


Figure 4: Trending words in David's tweets

```
words_by_time %>%
  inner_join(top_slopes, by = c("word", "person")) %>%
  filter(person == "Julia") %>%
  ggplot(aes(time_floor, count / time_total, color = word)) +
  geom_line(size = 1.3) +
  labs(x = NULL, y = "Word frequency") +
  theme_light()
```


Figure 5: Trending words in Julia's tweets

Favorites and retweets

```
tweets_julia <- read_csv("data/juliasilge_tweets.csv")</pre>
tweets_dave <- read_csv("data/drob_tweets.csv")</pre>
tweets <- bind_rows(tweets_julia %>%
                        mutate(person = "Julia"),
                    tweets dave %>%
                        mutate(person = "David")) %>%
    mutate(created_at = ymd_hms(created_at))
tidy_tweets <- tweets %>%
    filter(!str_detect(text, "^(RT|0)")) %>% # keep re-tweets and favorites
    mutate(text = str_remove_all(text, remove_reg)) %>% # remove hypertext characters
    unnest_tokens(word, text, token = "tweets", strip_url = TRUE) %>%
    filter(!word %in% stop_words$word,
           !word %in% str_remove_all(stop_words$word, "'"))
tidy_tweets %>%
    slice_head(n = 10) \%
    kable()
```

id	$created_at$	source	retweets	favorites	person	word
8.043655e + 17	2016-12-01 16:44:03	Twitter Web Client	0	0	Julia	score
8.043655e + 17	2016-12-01 16:44:03	Twitter Web Client	0	0	Julia	50
8.043650e + 17	2016-12-01 16:42:03	Twitter Web Client	0	9	Julia	snowing
8.043650e + 17	2016-12-01 16:42:03	Twitter Web Client	0	9	Julia	
8.043650e + 17	2016-12-01 16:42:03	Twitter Web Client	0	9	Julia	drinking
8.043650e + 17	2016-12-01 16:42:03	Twitter Web Client	0	9	Julia	tea
8.043650e + 17	2016-12-01 16:42:03	Twitter Web Client	0	9	Julia	
8.043650e + 17	2016-12-01 16:42:03	Twitter Web Client	0	9	Julia	#rstats
8.043650e + 17	2016-12-01 16:42:03	Twitter Web Client	0	9	Julia	

id	created_at	source	retweets	favorites	person	word
8.041571e+17	2016-12-01 02:56:10	Twitter Web Client	0	11	Julia	julie

```
totals <- tidy_tweets %>%
  group_by(person, id) %>%
  summarise(rts = first(retweets)) %>%
  group_by(person) %>%
  summarise(total_rts = sum(rts))

totals %>%
  kable()
```

person	total_rts
David	13014
Julia	1750

```
word_by_rts <- tidy_tweets %>%
    group_by(id, word, person) %>%
    summarise(rts = first(retweets)) %>%
    group_by(person, word) %>%
    summarise(retweets = median(rts), uses = n()) %>%
    left_join(totals) %>%
    filter(retweets != 0) %>%
    ungroup()

word_by_rts %>%
    filter(uses >= 5) %>%
    arrange(desc(retweets)) %>%
    slice_max(retweets, n = 10) %>%
    kable()
```

person	word	retweets	uses	total_rts
David	animation	85	5	13014
David	gganimate	75	6	13014
David	error	56	7	13014
David	start	56	6	13014
David	download	52	5	13014
Julia	tidytext	50	7	1750
David	introducing	45	6	13014
David	understanding	37	6	13014
David	ab	36	5	13014
David	bayesian	34	7	13014
David	modeling	34	5	13014
David	python	34	7	13014

```
word_by_rts %>%
  filter(uses >= 5) %>%
```


Figure 6: Words with highest median retweets

```
totals <- tidy_tweets %>%
   group_by(person, id) %>%
   summarise(favs = first(favorites)) %>%
    group_by(person) %>%
    summarise(total_favs = sum(favs))
word_by_favs <- tidy_tweets %>%
   group_by(id, word, person) %>%
    summarise(favs = first(favorites)) %>%
   group_by(person, word) %>%
   summarise(favorites = median(favs), uses = n()) %>%
   left_join(totals) %>%
   filter(favorites != 0) %>%
   ungroup()
word_by_favs %>%
   filter(uses >= 5) %>%
   group_by(person) %>%
```


Figure 7: Words with highest median favorites

[&]quot;In general, the same words that lead to retweets lead to favorites."