

Universidad Nacional del Litoral

Facultad de Ingeniería y Ciencias Hídricas

Estadística

Mg. Susana Vanlesberg: Profesor Titular **Analista Juan Pablo Taulamet:** Profesor Adjunto

:: Anexo ::	
TABLAS	DE INFERENCIA

Parámetro	Supuesto	Estimador	Distribución del estimador	Intervalo de confianza
ή	σ conocido	١ %	$\overline{x} \sim N \left(\mu, \frac{\sigma}{\sqrt{n}}\right)$	$\left(\frac{1}{x} \pm Z_{\left(1-\frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}}\right)$
π	σ desconocido,n > 30	- x	$\frac{-}{x} \sim N \left(\mu, \frac{S}{\sqrt{n}} \right)$	$\begin{pmatrix} \frac{1}{x} \pm Z_{\left(1-\frac{\alpha}{2}\right)} \frac{S}{\sqrt{n}} \end{pmatrix}$
π	σ desconocido, n < 30	- x	$\frac{\overline{x} - \mu}{S'} = t_{(n-1)}$	$\left(\frac{x}{x} \pm t_{\left(1-\frac{\alpha}{2};n-1\right)} \frac{S'}{\sqrt{n}}\right)$
σ^2	Población normal	S^2	$\frac{n>30}{\sigma^2} = \chi^2_{\scriptscriptstyle (n-1)} \ \ \ \phi \ \ \frac{(n-1).S^{12}}{\sigma^2} = \chi^2_{\scriptscriptstyle (n-1)}$	$\left(\frac{n.S^2 }{\mathcal{X}_{\left(\frac{\alpha}{2},n-1\right)}^2} \ \le \ \sigma^2 \ \le \ \frac{n.S^2}{\mathcal{X}_{\left(\frac{\alpha}{2},n-1\right)}^2}\right)$
u	Población normal	d	$Z = \frac{p - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$	$\left(p \pm Z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\pi(1-\pi)}{n}}\right)$
$\mu_x - \mu_y$	$\sigma_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$\frac{1}{x} - \frac{1}{x}$	$\overline{x} - \overline{y} \sim N \left(\mu_x - \mu_y, \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}} \right)$	$\left(\left(\frac{x}{x} - \frac{y}{y}\right) \pm \left Z_{\left(1 - \frac{\alpha}{2}\right)} \right \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}\right)$
$\mu_x - \mu_y$	σ_x, σ_y desconocidas $n > 30$	$\frac{-}{x-y}$	$\overline{x} - \overline{y} \sim N \left(\mu_x - \mu_y, \sqrt{\frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}} \right)$	$\left(\left(\overline{x} - \overline{y} \right) \ \pm \ Z_{\left(1 - \frac{\alpha}{2} \right)} \ \sqrt{\frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}} \right)$

$\mu_x - \mu_y$	σ_x, σ_y desconocidas pero iguales $n < 30$	$\frac{x}{y-x}$	$\frac{\bar{x} - \bar{y} - (\mu_x - \mu_y)}{Sw \cdot \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}} = t_{(n_x + n_y - 2)}$ $Sw \cdot \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}$ $con Sw = \sqrt{\frac{(n_x - 1) \cdot S^{12} + (n_y - 1) \cdot S^{12}}{n_x + n_y - 2}}$ $\delta con Sw = \sqrt{\frac{n_x \cdot S^2 + n_y \cdot S^2}{n_x \cdot S^2 + n_y \cdot S^2}}$	$\left(\frac{-}{(x-y)} \pm t_{\left(1-\frac{\alpha}{2}\right)} \cdot S_{w} \cdot \sqrt{\frac{1}{n_{x}} + \frac{1}{n_{y}}}\right)$
$\mu_x - \mu_y$	σ_x, σ_y desconocidas y distintas $n < 30$	$-\frac{x}{y}$	$\frac{\bar{x} - \bar{y} - (\mu_x - \mu_y)}{\left \frac{S_1^{12}}{x} + \frac{S_1^{12}}{y} \right } = t_y$ $\sqrt{\frac{S_1^{12}}{n_x} + \frac{S_1^{12}}{n_y}} = t_y$ $\frac{\left(\frac{S_1^{12}}{x} + \frac{S_1^{12}}{y} \right)^2}{\left(\frac{S_1^{12}}{n_x} \right)^2}$ $con \ v = \frac{\left(\frac{S_1^{12}}{x} + \frac{S_1^{12}}{y} \right)^2}{\left(\frac{S_1^{12}}{n_x} \right)^2} - 2$ $\frac{\left(\frac{S_1^{12}}{x} + \frac{S_1^{12}}{n_x} \right)^2}{\left(\frac{S_1^{12}}{n_x} \right)^2} + \frac{\left(\frac{S_1^{12}}{n_y} \right)^2}{\left(\frac{S_1^{12}}{n_x} \right)^2}$	$\left(\overline{(x-\overline{y})} \pm t_{\left(1-\frac{\alpha}{2}\right),v} \sqrt{\frac{S_x^2+S_y^2}{n_x+n_y}}\right)$
π_1 – π_2	Poblaciones normales	$p_1 - p_2$	$\frac{\pi_1(\zeta)}{1}$	$ \left(\Delta p \pm Z_{\left(1-\frac{\alpha}{2}\right)} \left(I \right) \right) $ $ \left(I \right) = \sqrt{\frac{\pi_1 \left(1 - \pi_1 \right)}{n_1} + \frac{\pi_2 \left(1 - \pi_2 \right)}{n_2} } $
$\frac{\sigma_x^2}{\sigma_y^2}$	Poblaciones normales	$\frac{S_x^2}{\frac{S_x^2}{y}}$	$F = \frac{\frac{S_x^2}{x}}{\frac{S_y^2}{\sigma_y^2}}$	$\left(\frac{S_{x}^{2}}{S_{y}^{2}}(I) \leq \frac{\sigma_{x}^{2}}{\sigma_{y}^{2}} \leq \frac{S_{x}^{2}}{S_{y}^{2}}(II)\right)$ $(I) = \frac{1}{F\left(\frac{\alpha}{2}, x_{x}-1, x_{y}-1\right)} (II) = F\left(\frac{\alpha}{2}, x_{y}-1, x_{x}-1\right)$

Parámetro	Supuesto	Estimador	Distribución del estimador	Intervalo de confianza
α	Población Normal	a	$a \sim N \left(\alpha, \sqrt{\sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right)} \right)$	$\left \left(a \pm \left Z_{1-\frac{\alpha}{2}} \right \right \sqrt{\sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{n} \left(x_i - \bar{x} \right) \right)} \right $
β	Población Normal	q	$b \sim N \left(eta, \sqrt{rac{\sigma^2}{\sum_{i=1}^n \left(x_i - ar{x} ight)}^2} ight)$	$\left\{b\pm Z_{\left(1-rac{lpha}{2} ight)} \sqrt{rac{\sigma^2}{\sum\limits_{i=1}^n\left(x_i-ar{x} ight)}} ight\}$

Varianza de la Predicción	Varianza del Pronóstico
$\sigma^2(\hat{Y}_h) = \sigma^2 \left(\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_{i=1}^n (X_i - \overline{X})^2} \right)$	$\sigma^{2} \left(Y_{i} - \hat{Y}_{h} \right) = \sigma^{2} \left(1 + \frac{1}{n} + \frac{\left(X_{h} - \overline{X} \right)^{2}}{\sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}} \right)$

Intervalo para el Pronóstico	$\left(\hat{Y}_h \pm t_{n-2;1rac{lpha}{2}}\hat{\sigma}_{pron} ight) \ \hat{\sigma}_{pron} = \hat{S}_{y/x} \ \sqrt{1+rac{1}{n}+rac{\left(X_h-ar{X} ight)^2}{i}}$
Intervalo para la Predicción	$\left(\hat{Y}_h \pm t \int_{n-2;1-rac{lpha}{2}} \hat{\mathcal{O}}_{pred} ight) \ \hat{\mathcal{O}}_{pred} = \hat{S}_{\scriptscriptstyle \mathcal{Y}\!/x} \sqrt{rac{1}{n} + rac{(x_h - ar{x})^2}{i}}$