Informe de Análisis Exploratorio de Datos (EDA) – Parcial 2

1. Objetivo del Análisis

El propósito de este EDA es comprender la estructura, calidad y comportamiento de las variables incluidas en las bases de datos entregadas para el Parcial 2 de Finanzas Descentralizadas IV, con el fin de establecer una base sólida para el desarrollo del **Modelo de Machine Learning (Punto 1 y 2)**.

Las bases utilizadas fueron:

- base_modelo_40k.csv : 40.000 registros con variable objetivo CLIENTE_MORA .
- base_prueba_10k_sin_mora.csv : 10.000 registros sin variable objetivo (para predicción y validación final).

2. Exploración Inicial y Estructura

- Tamaños: 40.000 filas x 15 columnas (train) y 10.000 filas x 14 columnas (test).
- **Diferencia de esquema**: la única columna ausente en test es CLIENTE_MORA , correspondiente a la variable dependiente.
- Variables principales: EDAD , INGRESO , SCORE_DATACREDITO , SALDO_ROT , SALDO_FIJO , SALDO_SF , CRED_REESTRUCTURADO , TIENE_HIPOTECA , ESTADO_MORA_REAL , ESTADO_MORA_FIN , entre otras.
- **Tipos de datos**: predominan las numéricas (continuas o proporciones), y unas pocas categóricas binarias o discretas (SEXO), CRED_REESTRUCTURADO, TIENE_HIPOTECA).
- **Valores nulos**: proporciones insignificantes en todas las variables (<1%), no requieren imputación especial.

3. Variable Objetivo: CLIENTE_MORA

- Distribución: 36.855 clientes sin mora (0) y 3.145 con mora (1).
- Tasa de mora: 7,86% del total.
- Implicación: dataset altamente desbalanceado, por lo que el modelo requerirá técnicas de reponderación o balanceo (por ejemplo, scale_pos_weight o SMOTE).

4. Análisis Descriptivo de Variables Numéricas

• INGRESO : distribución sesgada a la derecha (cola larga). Los ingresos bajos están sobrerrepresentados.

- EDAD : concentrada entre 30 y 50 años.
- SCORE_DATACREDITO: se concentra entre 700 y 900 puntos.
- SALDO_ROT , SALDO_FIJO , SALDO_SF : presentan colas largas; algunos outliers en valores altos.
- **Conclusión general:** la población tiene perfiles de ingresos y scores variados, lo que podría ayudar a segmentar bien el riesgo crediticio.

5. Correlación con la Variable Objetivo (CLIENTE_MORA)

Se calcularon correlaciones punto-biseriales (equivalentes a Pearson con objetivo binario). Las variables con mayor asociación fueron:

Variable	Correlación (aprox.)	Interpretación
SCORE_DATACREDITO	-0.27	Score alto → menor probabilidad de mora.
ESTADO_MORA_FIN	+0.13	Mora final alta → mayor riesgo.
SALDO_ROT	+0.11	Saldos rotativos altos correlacionan con mora.
CRED_REESTRUCTURADO	+0.09	Clientes reestructurados tienden a mayor mora.
INGRESO	-0.04	Ingreso mayor reduce leve riesgo.
EDAD	-0.03	Clientes jóvenes presentan mayor mora relativa.

Conclusión: el score crediticio y las variables de comportamiento financiero son los principales predictores.

6. Variables Categóricas

- SEXO : proporción equilibrada (hombres/mujeres).
- CRED_REESTRUCTURADO: minoría significativa con impacto positivo en mora.
- TIENE_HIPOTECA : la mayoría no posee hipoteca.
- **Relaciones mixtas (boxplots)**: ingresos y scores difieren ligeramente entre clases, pero sin separación perfecta.

7. Comparación Train (40k) vs Test (10k)

- Distribuciones similares en medias y desviaciones estándar.
- No se observan desviaciones relevantes (**no hay data drift**), por lo que el modelo puede generalizar adecuadamente.

8. Hallazgos Principales

- 1. Dataset limpio, sin nulos significativos.
- 2. Fuerte desbalance en la variable objetivo (7,86% mora).
- 3. Variables predictivas relevantes: SCORE_DATACREDITO, SALDO_ROT, ESTADO_MORA_FIN, CRED_REESTRUCTURADO.
- 4. Las variables de ingresos y edad influyen, pero con menor peso.
- 5. No hay sesgos evidentes entre el conjunto de entrenamiento y testeo.

9. Conclusiones y Recomendaciones para el Punto 2

- Se confirma la viabilidad del dataset para modelado supervisado.
- El próximo paso debe abordar el **balanceo de clases** y la **optimización de hiperparámetros** en un modelo robusto como **XGBoost**.
- Se sugiere evaluar **umbral de probabilidad** para mantener una tasa de mora proyectada ≤ 2.5%, de acuerdo con la política de riesgo establecida.
- Las métricas clave a comparar serán: Recall, Precision, F1, ROC-AUC, y la diferencia entre Recall_test y Recall_10k (control de sobreajuste).

Estado final: el EDA evidencia coherencia, limpieza y potencial predictivo adecuado; se recomienda proceder con el desarrollo del **Modelo de Machine Learning (Punto 2)** bajo criterios de interpretabilidad y rentabilidad financiera.