Отчет по лабораторной работе №5

Модель хищник-жертва

Сорокин Андрей Константинович

Содержание

Цель работы	4
Задание	5
Теоретическая справка	6
Выполнение лабораторной работы	10
Библиотеки	10
Значения	10
Решение	10
Вывод графика №1	11
Вывод графика №2	11
Вывод графика №3	12
Стационарное состояние системы	13
Выводы	14

Список иллюстраций

0.1	Эволюция популяции жертв и хищников в модели Лотки-Вольтерры	7
0.2	Мягкая модель борьбы за существование	8
0.1	Вывод графика №1	11
0.2	Вывод графика №2	12
0.3	Вывод графика №3	13

Цель работы

Рассмотреть модель Лотки-Вольтерры, построить график зависимости численности хищников от численности жертв, численности видов при заданных начальных условиях. Найти стационарное состояние системы.

Задание

Для модели «хищник-жертва»:

$$\begin{cases} \frac{dx}{dt} = -0.42x(t) + 0.043x(t)y(t) \\ \frac{dy}{dt} = 0.44y(t) - 0.045x(t)y(t) \end{cases}$$

Построить график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0 = 4, y_0 = 13$. Найти стационарное состояние системы.

Теоретическая справка

Простейшая модель взаимодействия двух видов типа «хищник — жертва» - модель Лотки-Вольтерры. Данная двувидовая модель основывается на следующих предположениях: 1. Численность популяции жертв x и хищников y зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории) 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными 4. Эффект насыщения численности обеих популяций не учитывается 5. Скорость роста численности жертв уменьшается пропорционально численности хищников

$$\begin{cases} \frac{dx}{dt} = ax(t) - bx(t)y(t) \\ \frac{dy}{dt} = -cy(t) + dx(t)y(t) \end{cases}$$

В этой модели x — число жертв, y - число хищников. Коэффициент a описывает скорость естественного прироста числа жертв в отсутствие хищников, $\tilde{\mathbf{n}}$ - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (xy). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения)(рис. @fig:001).

Рис. 0.1: Эволюция популяции жертв и хищников в модели Лотки-Вольтерры

Математический анализ этой (жесткой) модели показывает, что имеется стационарное состояние (A), всякое же другое начальное состояние (B) приводит к периодическому колебанию численности как жертв, так и хищников, так что по прошествии некоторого времени система возвращается в состояние B.

Стационарное состояние системы (положение равновесия, не зависящее от времени решение) будет в точке: $x_0 = \frac{c}{d}$, $y_0 = \frac{a}{b}$. Если начальные значения задать в стационарном состоянии $x(0) = x_0$, $y(0) = y_0$, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период определяется начальными значениями численностей x(0),y(0). Колебания совершаются в противофазе. При малом изменении

модели

$$\begin{cases} \frac{dx}{dt} = ax(t) - bx(t)y(t) + \varepsilon f(x, y) \\ \frac{dy}{dt} = -cy(t) + dx(t)y(t) + \varepsilon g(x, y), & \varepsilon \ll 1 \end{cases}$$

(прибавление к правым частям малые члены, учитывающие, например, конкуренцию жертв за пищу и хищников за жертв), вывод о периодичности (возвращении системы в исходное состояние B), справедливый для жесткой системы Лотки-Вольтерры, теряет силу. Таким образом, мы получаем так называемую мягкую модель «хищникжертва». В зависимости от вида малых поправок f и g возможны следующие сценарии 1-3 (рис. @fig:002).

Рис. 0.2: Мягкая модель борьбы за существование

В случае 1 равновесное состояние A устойчиво. При любых других начальных условиях через большое время устанавливается именно оно.

В случае 2 система стационарное состояние неустойчиво. Эволюция приводит то к резкому увеличению числа хищников, то к их почти полному вымиранию. Такая система в конце концов попадает в область столь больших или столь малых значений x и y, что модель перестает быть применимой.

В случае 3 в системе с неустойчивым стационарным состоянием A с течением времени устанавливается периодический режим. В отличие от исходной жесткой модели Лотки-Вольтерры, в этой модели установившийся периодический режим не зависит от начального условия. Первоначально незначительное отклонение от стационарного состояния A приводит не к малым колебаниям около A, как в модели Лотки-Вольтерры, а к колебаниям вполне определенной (и не зависящей от малости отклонения) амплитуды. Возможны и другие структурно устойчивые сценарии

(например, с несколькими периодическими режимами).

Вывод: жесткую модель всегда надлежит исследовать на структурную устойчивость полученных при ее изучении результатов по отношению к малым изменениям модели (делающим ее мягкой).

В случае модели Лотки-Вольтерры для суждения о том, какой же из сценариев 1-3 (или иных возможных) реализуется в данной системе, совершенно необходима дополнительная информация о системе (о виде малых поправок f и g в нашей формуле). Математическая теория мягких моделей указывает, какую именно информацию для этого нужно иметь. Без этой информации жесткая модель может привести к качественно ошибочным предсказаниям. Доверять выводам, сделанным на основании жесткой модели, можно лишь тогда, когда они подтверждаются исследованием их структурной устойчивости

Выполнение лабораторной работы

Библиотеки

Подключаю все необходимые библиотеки

import numpy as np

import math

from scipy.integrate import odeint

import matplotlib.pyplot as plt

Значения

Ввод значений из своего варианта (39 вариант)

```
a = 0.42
```

b = 0.043

c = 0.44

d = 0.45

```
x0 = np.array([4,13])
```

t = np.arange(0,400,0.1)

Решение

Решение системы

def syst(x,t):

$$\begin{split} dx_1 &= -a * x[0] + b * x[0] * x[1] \\ dx_2 &= c * x[1] - d * x[0] * x[1] \\ return & [dx_1, dx_2] \end{split}$$

$$y = odeint(syst,x0,t)$$

Вывод графика №1

Вывод графика зависимости численности хищников от численности жертв(рис. @fig:003).

Рис. 0.1: Вывод графика №1

Вывод графика №2

Вывод графика изменения численности хищников(рис. @fig:004).

Рис. 0.2: Вывод графика №2

Вывод графика №3

Вывод графика изменения численности жертв(рис. @fig:005).

Рис. 0.3: Вывод графика №3

Стационарное состояние системы

Выводы

В результате проделанной работы мы рассмотрели модель Лотки-Вольтерры, построили график зависимости численности хищников от численности жертв. Построили график изменения численности видов при заданных начальных условиях. Нашли стационарное состояние системы.