NCTU - Human and Machine lab

Chapter 3 — Kinematics and Inverse Kinematics

- 3.1 Introduction
- 3.2 Link Connection
- 3.3 Example for Kinematics
- 3.4 Frames of Convention
- 3.5 Inverse Kinematics
- 3.6 PUMA 560
- 3.7 Repeatability and Accuracy

3.1 Introduction

fiOTU - Hymen and Machine Let

- Definition: The science of motion which treats motion without regard to the forces that cause it.
- □ **Trajectory:** Position, Velocity and Acceleration.
- □ Link type: Revolute, Prismatic, Spherical, Screw.

notu- Human and Machine la

- $\ \ \Box \ T_N = A_1 * A_2 * \cdots * A_N \$ where N=number of links.
- \square Denavit-Hartenberg model (D-H model): (a, d, θ, α)
 - $\square a_i$: link length
 - \Box d_i : distance between two normals
 - \bullet θ_i : angle between two links
 - $\square \alpha_i$: link twist

^^^^^^**nctu**

- Steps to establish the relationship between two coordinate systems
 - A. Select the coordinate frame
 - ① Define the origin of joint coordinates n at the intersection of the axis of the joint n+1 and the common normal between joint n and the joint n+1
 - $\begin{tabular}{ll} \hline \textbf{2} & \textbf{The } Z_n \ \mbox{axis of joint coordinate } n \ \mbox{is aligned with the axis} \\ & \mbox{of joint n+1} \\ \hline \end{tabular}$

$$\vec{X}_n = \vec{Z}_{n-1} \times \vec{Z}_n \text{ or } \vec{X}_n = \vec{Z}_n \times \vec{Z}_{n-1}$$

3.2 Link Connection

#CDI - Human and Machine Jak

- Steps to establish the relationship between two coordinate systems
 - B. Find A_n transformation between coordinates frames n-1 and n
 - $^{ ext{ }}$ Rotate around Z_{n-1} and angle $heta_n$
 - $^{\circ}$ Translate along Z_{n-1} a distance d_n
 - ${}_{3}$ Translate along the new X axis, X_{n} , a distance a_{n}
 - ullet Rotate around X_n a twist angle $lpha_n$

$$A_n = Rot(z, \theta_n) * Trans(0, 0, d_n) * Trans(a_n, 0, 0) * Rot(x, \alpha_n)$$

$$= \begin{pmatrix} c\theta_n & -s\theta_n c\alpha_n & s\theta_n s\alpha_n & a_n c\theta_n \\ s\theta_n & c\theta_n c\alpha_n & -c\theta_n s\alpha_n & a_n s\theta_n \\ 0 & s\alpha_n & c\alpha_n & d_n \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{BASE}} \overbrace{A_1 \ A_2 \ A_N} \xrightarrow{\text{TOOL}}$$

$$POS = BASE * T_N * TOOL$$

$$T_N = A_1 * A_2 * \cdots * A_N$$

3.2 Link Connection

- □ In the case of prismatic joint, the origin of the coordinate frame for a prismatic joint is coincident with the next defined link origin.
- $lue{}$ The zero position is defined when $d_n=0$, $a_n=0$
- \square A_n matrix is reduced to

$$A_n = \begin{pmatrix} c\theta_n & -s\theta_n c\alpha_n & s\theta_n s\alpha_n & 0 \\ s\theta_n & c\theta_n c\alpha_n & -c\theta_n s\alpha_n & 0 \\ 0 & s\alpha_n & c\alpha_n & d_n \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ Where } \theta_n \text{ is a fixed number}$$

0.2 Link Conficenci

NCTU - Human and Machine lab

NOTU - Human and Machine lab

- □ Remarks:
 - \blacksquare For revolute joint, θ is joint variable.
 - □ For prismatic joint, d is a joint variable.
 - $lue{}$ In the case of prismatic joint, the length a_n has no meaning and is set to zero.
 - $lue{}$ The origin of the coordinate frame for a prismatic joint is coincident with the next defined link origin. The zero position is defined when $d_n=0$.

3.3 Example for Kinematics

A. Stanford Arm

Kinematic Table θ Joint d a α Joint variable -90° 1 θ_1 0 0 θ_1 2 90° θ_2 d_2 0 θ_2 3 0° 0 0° d_3 d_3 θ_4 -90° θ_4 4 0 0 90° 5 0 0 θ_5 θ_5 0° 0 6 θ_6 0 θ_6

3.3 Example for Kinematics

3 ACTU- Human and M

B. Yasukawa Arm

Kinematic Table				
joint	θ	d	а	α
1	$ heta_1$	0	0	-90°
2	$ heta_2$	0	a_2	0°
3	$ heta_3$	0	a_3	0°
4	$ heta_4$	0	0	90°
5	$ heta_5$	0	0	0°

3.3 Example for Kinematics Outs Remark and the c. PUMA 560 Kinematic Table Joint θ d a α

Kinematic Table				
Joint	θ	d	а	α
1	$ heta_1$	d_1	0	90°
2	θ_2	d_2	a_2	0°
3	θ_3	0	a_3	-90°
4	$ heta_4$	d_4	0	90°
5	θ_5	0	0	-90°
6	θ_6	0	0	0°

3.3 Example for Kinematics

$$A_{1} = \begin{pmatrix} C_{1} & 0 & S_{1} & 0 \\ S_{1} & 0 & -C_{1} & 0 \\ 0 & 1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_{2} = \begin{pmatrix} C_{2} & -S_{2} & 0 & a_{2}C_{2} \\ S_{2} & C_{2} & 0 & a_{2}S_{2} \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_{3} = \begin{pmatrix} C_{3} & 0 & -S_{3} & a_{3}C_{3} \\ S_{3} & 0 & C_{3} & a_{3}S_{3} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_{4} = \begin{pmatrix} C_{4} & 0 & S_{4} & 0 \\ S_{4} & 0 & -C_{4} & 0 \\ 0 & 1 & 0 & d_{4} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_{5} = \begin{pmatrix} C_{5} & 0 & -S_{5} & 0 \\ S_{5} & 0 & C_{5} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_{6} = \begin{pmatrix} C_{6} & -S_{6} & 0 & 0 \\ S_{6} & C_{6} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

19 NGTU - Human and Machine

- Existence:
 - \square Problem: given T_N solve θ_1 to θ_N
 - □ Basically, this is a nonlinear problem.
 - □ It can be solved by numerical methods (for N=6)
 - Do not have the closed-form solution for general types of robot manipulators
 - Then why industrial robots are designed to be wrist partitioned?

3.5 Inverse Kinematics

NOTU- Human and Machine lab

- Workspace:
 - The volume of space which the end-effector of the manipulator can reach
 - □ Dexterous Workspace:
 - The volume of space which the robot end-effector of the manipulator can reach with all orientations
 - □ Reachable Workspace:
 - The volume of space which the robot end-effector of the manipulator can reach in at least one direction

- Algebraic vs Geometric
 - □ For a 3R robot manipulator with the following space:

joint	d	а	α
1	d_1	0	90°
2	0	a_2	0°
3	0	a_3	0°

 $\hfill\Box$ Find the T_3 matrix and solve its corresponding solutions by both the algebraic and geometric approaches

3.5 Inverse Kinematics

$$A_{1} = \begin{pmatrix} C_{1} & 0 & S_{1} & 0 \\ S_{1} & 0 & -C_{1} & 0 \\ 0 & 1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} C_2 & -S_2 & 0 & a_2 C_2 \\ S_2 & C_2 & 0 & a_2 S_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_3 = \begin{pmatrix} C_3 & -S_3 & 0 & a_3C_3 \\ S_3 & C_3 & 0 & a_3S_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T_{3} = \begin{pmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \begin{array}{c} \text{Direction} \qquad \qquad \\ \text{Position} \\ \\ S_{1}C_{2}C_{3} - C_{1}S_{2}S_{3} & -C_{1}C_{2}S_{3} - C_{1}S_{2}C_{3} & | C_{1} \\ S_{1}C_{2}C_{3} - S_{1}S_{2}S_{3} & -S_{1}C_{2}S_{3} - S_{1}S_{2}C_{3} & | C_{1} \\ S_{2}C_{3} + C_{2}S_{3} & -S_{2}S_{3} + C_{2}C_{3} & | 0 \\ 0 & 0 & 0 & 1 \\ \end{array}$$

Algebraic solution: From the fourth column (why not from the third column?)

$$\frac{P_{y}}{P_{x}} = \frac{S_{1} \left[a_{2}c_{2} + a_{3}c(\theta_{2} + \theta_{3}) \right]}{C_{1} \left[a_{2}c_{2} + a_{3}c(\theta_{2} + \theta_{3}) \right]}$$

 \Box Check if $a_2c_2+a_3c_{23}=0$ if it is not 0 then solve θ_1 , this will yield 2 solutions

$$\begin{split} T_3 &= T_1 \cdot {}^1T_3 = A_1 \, {}^1T_3 \\ A_1^{-1}T_3 &= {}^1T_3 = A_2 \cdot A_3 \\ \begin{pmatrix} C_1 & S_1 & 0 & 0 \\ 0 & 0 & 1 & -d_1 \\ S_1 & -C_1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} C_{23} & -S_{23} & 0 & a_2C_2 + a_3C_{23} \\ S_{23} & C_{23} & 0 & a_2S_2 + a_3S_{23} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{split}$$

3.5 Inverse Kinematics

From:
$$p_x C_1 + p_y S_1 = a_2 C_2 + a_3 C_{23}$$
 (1) $f_1 = p_x C_1 + p_y S_1$ Let $f_2 = p_z - d_1$

Rearrange (1) and (2)

$$f_1 - a_2 C_2 = a_3 C_{23}$$
 (3)

$$f_2 - a_2 S_2 = a_3 S_{23}$$
 (4)

rige (1) and (2) Square and Sum (3) and (4)
$$f_1 - a_2 C_2 = a_3 C_{23} \qquad \text{(3)} \qquad \qquad f_1^2 + f_2^2 + a_2^2 - 2a_2 f_1 C_2 - 2a_2 f_2 S_2 = a_3^2$$

$$f_2 - a_2 S_2 = a_3 S_{23}$$
 (4) $2a_2 f_1 C_2 + 2a_2 f_2 S_2 = f_1^2 + f_2^2 + a_2^2 - a_3^2$

 $heta_2$ can be found (2 solutions)

Square and Sum (1) and (2)

$$f_1^2 + f_2^2 = a_2^2 + a_3^2 + 2a_2a_3(C_2C_{23} + S_2S_{23})$$

$$= a_2^2 + a_3^2 + 2a_2a_3C_3$$

$$C_3 = \frac{f_1^2 + f_2^2 - a_2^2 - a_3^2}{2a_2a_2}$$

Derive the corresponding S_3 , then find $tan\theta_3$, it should give 4 solution for 4 configurations. Then check the joint limits for each configuration.

Geometric solution

$$\theta_1 \\ \tan \theta_1 = \frac{p_y}{p_x}$$

(2 solutions)

 θ_2 and θ_3

Let
$$R = \sqrt{1 p_x^2 + 1 p_y^2}$$

Rotate around Z_0 an angle θ_1 to remove the effect of $j^\#1$ rotation

$${}^{1}p_{x} = p_{x}C_{1} + p_{y}S_{1} = j$$
 ${}^{1}p_{y} = p_{z} - d_{1} = f_{2}$

$${}^{\scriptscriptstyle 1}p_{\scriptscriptstyle y} = p_{\scriptscriptstyle z} - d_{\scriptscriptstyle 1} = f$$

$$\begin{aligned}
^{1}p_{x} &= p_{x}C_{1} + p_{y}S_{1} = f_{1} \\
^{1}p_{y} &= p_{z} - d_{1} = f_{2} \\
\theta_{3} &= \pi - \phi \\
\cos \phi &= \frac{a_{2}^{2} + a_{3}^{2} - R^{2}}{2a_{2}a_{3}}
\end{aligned}$$

$$\cot \psi = \frac{^{1}p_{y}}{^{1}p_{x}} \\
\cos \alpha &= \frac{R^{2} + a_{2}^{2} - a_{3}^{2}}{2Ra_{2}} \\
\theta_{2} &= \psi - \alpha$$

$$\tan \psi = \frac{{}^{1}p_{y}}{{}^{1}p_{x}}$$

$$\cos \alpha = \frac{R^2 + a_2^2 - a_2^2}{2Ra_2}$$

3.6 PUMA 560

- □ PUMA 560
 - Wrist partitioned type
 - Primary joints: for the positional workspace
 - Minor joint: for the orientation workspace
- □ The industrial robot manipulators usually consist of minor joint intersecting at the same point.

29

BCTII - Human and Machine Jak

PUMA 560

Find A_1 to A_6 and T_6

$$T_6 = \begin{pmatrix} f_{11} & f_{12} & f_{13} & p_x \\ f_{21} & f_{22} & f_{23} & p_y \\ f_{31} & f_{32} & f_{33} & p_z \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{bmatrix} \sim \end{bmatrix}$$

Kinematics Table					
Joint	θ	d	а	α	
1	θ_1	0	0	-90°	
2	θ_2	0	a ₂	0°	
3	θ_3	d_3	a ₃	90°	
4	θ_4	d ₄	0	-90°	
5	θ_5	0	0	90°	
6	θ_6	0	0	0°	

Algebraic solution

$$A_1^{-1} \cdot T_6 = {}^{1}T_6 = A_2 \cdot A_3 \cdot A_4 \cdot A_5 \cdot A_6$$

$$\begin{pmatrix} C_1 & S_1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ -S_1 & C_1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f_{11} & f_{12} & f_{13} & p_x \\ f_{21} & f_{22} & f_{23} & p_y \\ f_{31} & f_{32} & f_{33} & p_z \\ 0 & 0 & 0 & 1 \end{pmatrix} = {}^1T_6 = \begin{pmatrix} \vdots & \vdots & \vdots & S_{23}d_4 + C_{23}a_3 + a_2C_2 \\ \vdots & \vdots & \vdots & -C_{23}d_4 + S_{23}a_3 + a_2S_2 \\ \vdots & \vdots & \vdots & d_3 \\ \vdots & \vdots & \vdots & 1 \end{pmatrix}$$

3.6 PUMA 560

30

NOTU - Human and Machine lab

$$-S_1 p_x + C_1 p_y = d_3$$

Let
$$p_x = p \cos \phi$$

$$p_{v} = p \sin \phi$$

- $\hfill\Box$ Two configurations:
 - \square (-) Righty: θ_2 moves the wrist in the positive Z_0 direction
 - \Box (+) Lefty: θ_2 moves the wrist in the negative Z_0 direction

With $p = \sqrt{p_x^2 + p_y^2}, \phi = A \tan 2(p_y, p_x)$

$$C_1 S \phi - S_1 C \phi = \frac{d_3}{p}$$

$$\sin(\phi - \theta_1) = \frac{d_3}{p}$$

$$\therefore \cos(\phi - \theta_1) = \pm \sqrt{1 - \frac{d_3^2}{p^2}}$$

$$\therefore \phi - \theta_1 = A \tan 2 \left[\frac{d_3}{p}, \pm \sqrt{1 - \frac{d_3^2}{p^2}} \right]$$

 $\theta_1 = A \tan 2(p_y, p_x) - A \tan 2(d_3, \pm \sqrt{p_x^2 + p_y^2 - d_3^2})$

From

$$C_1 P_X + S_1 P_Y = S_{23} d_4 + C_{23} a_3 + a_2 C_2$$
 (1)

$$-P_Z = -C_{23}d_4 + S_{23}a_3 + a_2S_2$$
 (2)

$$-S_1 P_X + C_1 P_Y = d_3 (3)$$

Square and Sum (1), (2) and (3)

$$a_3C_3 + d_4S_3 = \frac{P_X^2 + P_Y^2 + P_Z^2 - a_2^2 - a_3^2 - d_3^2 - d_4^2}{2a_2} = M$$

$$\therefore \theta_3 = A \tan 2(M, \pm \sqrt{a_3^2 + d_4^2 - M^2}) - A \tan 2(a_3, d_4)$$

$$\therefore \theta_3 = A \tan 2(M, \pm \sqrt{a_3^2 + d_4^2 - M^2}) - A \tan 2(a_3, d_4)$$

- Two configurations:
 - $\square \ (-) \begin{cases} \text{Righty and above} \\ \text{Lefty and below} \end{cases}$
 - Righty and below Lefty and above

3.6 PUMA 560

N**CTU - Human and Machine lab**

- Definition:
 - Above (elbow wrist): position of the wrist of the righty (lefty) arm with respect the shoulder system has negative (positive) coordinates values along the Y_2 axis
 - Above (below wrist): position of the wrist of the righty (lefty) arm with respect the shoulder system has positive (negative) coordinates values along the Y_2 axis

33

NCTU - Human and Machine lab

Get

$$T_3^{-1} \cdot T_6 = {}^3T_6 = A_4 \cdot A_5 \cdot A_6$$

$$\begin{pmatrix} C_1C_{23} & S_1C_{23} & -S_{23} & -a_2 - a_2C_3 \\ -S_1 & C_1 & 0 & -d_3 \\ C_1S_{23} & S_1S_{23} & C_{23} & -a_2S_3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f_{11} & f_{12} & f_{13} & p_x \\ f_{21} & f_{22} & f_{23} & p_y \\ f_{31} & f_{32} & f_{33} & p_z \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} - & - & 0 \\ - & - & - & 0 \\ - & - & - & d_4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$C_{1}C_{23}P_{x} + P_{y}S_{1}C_{23} - P_{z}S_{23} = a_{2} + a_{2}C_{3} \qquad \Rightarrow \theta_{23} \ can \ be \ solved$$

$$C_{1}S_{23}P_{x} + P_{y}S_{1}S_{23} + P_{z}C_{23} = d_{4} + a_{2}S_{3} \qquad \Rightarrow \theta_{2} = \theta_{23} - \theta_{3}$$

Solve for $j^{\#}4,5,6$

om
$${}^{3}T_{6} = \begin{pmatrix} C_{4}C_{5}C_{6} - S_{4}S_{6} & -C_{4}C_{5}S_{6} - S_{4}C_{6} & C_{4}S_{5} & 0 \\ S_{4}C_{5}C_{6} + C_{4}S_{6} & -S_{4}C_{5}S_{6} + C_{4}C_{6} & S_{4}S_{5} & 0 \\ -S_{5}C_{6} & S_{5}S_{6} & C_{5} & d_{4} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(*)

3.6 PUMA 560

34

NCTU - Human and Machine lab

From C_4S_5 , S_4S_5 in (*)

$$\tan\theta_4 = \frac{S_4S_5}{C_4S_5} = \frac{S_4}{C_4} \quad \text{If only S_5} \neq 0$$

- 2 solutions depend on the signs of S_5
- ☐ Flip and non-Flip
- Wrist up and Wrist down

From
$${}^4T_6 = A_5 \cdot A_6$$

$${}^{4}T_{6} = \begin{pmatrix} \dots & \dots & S_{5} & 0 \\ \dots & \dots & -C_{5} & 0 \\ \dots & \dots & 0 & 0 \\ \dots & \dots & 0 & 1 \end{pmatrix}$$

 $heta_5$ can be solved

From S_5, C_6, S_5, S_6 in (*), θ_6 can also be solved

When $\theta_5=0$, from (*)

We have
$$-C_4S_6 - S_4C_6 = -S_{46} \\ -S_4S_6 + C_4C_6 = C_{46}$$

Then θ_{46} can be solved Choose the previous θ_4 Then $\theta_6=\theta_{46}-\theta_4$ Check joint ranges

35

DOTH Village and Machine Lab

- □ Geometric solutions:
 - 1. Choose the wrist point as the reference.
 - 2. Divide it into the position and orientation workspaces.

3.6 PUMA 560

36

NCTU - Human and Machine lab

- In the positional work space, find P_{ω} from $POS = [n \ o \ a \ p]$
 - Project the position into the (X_0,Y_0) plane and determine θ_1 , also 2 configurations exist
 - b) Rotate around Z_0 a $-\theta_1$ to remove the effect
 - c) Angles θ_2 and θ_3 can be determined similar to the case of

 $\phi = \tan^{-1} \frac{a_3}{d_4}$

except that an offset a_3 exist. It can be incorporated into link3. Then an expanded link3 is formed

344 \.....\light

- □ In the orientation workspace
 - The end-effector needs to have lengths in at least two different directions.

3.6 PUMA 560

0CTU- Human and Machine Jah

- $\hfill\Box$ Assume: The end-effector h_y in the o_e direction and h_z in the a_e direction.
- $\hfill\Box$ First derive h_y and h_z represented in the wrist coordinates.
- \Box Find $^wh_{\scriptscriptstyle \mathcal{V}}$ and $^wh_{\scriptscriptstyle \mathcal{Z}}$
- wh_z can be used to determine the feasibilities of θ_4 , θ_5 . Then the effect of wh_z can be removed. wh_y can be used to determine the feasibility of θ_6 .
- □ Practice: find the joint solutions for Stanford Arm

3.7 Repeatability and Accuracy

□ Repeatability: the precision with which a manipulator can return to a previous taught point.

NOTU - Human and Machine lab

- □ **Accuracy**: the precision with which a manipulator can reach a specified Cartesian point.
 - Related to the inverse kinematics and bounded by the repeatability
- □ Robot calibration (based on a small-error model)
 - Modeling: what causes the errors
 - Geometrical error
 - Non-geometrical
 - Measurement
 - Calibration model
 - Compensation
- □ Reference: papers related to Robot Calibration and Compensation