Nombres complexes 1

Exercice 1.1. — Parmi les complexes suivants, combien y a-t-il de produits distincts de deux d'entre eux? Calculer tous ces produits, puis leurs conjugués.

$$\alpha = i$$
 $\delta = -1+2i$ $\eta = -1-2i$ $\beta = 1+i$ $\epsilon = 3i+5$ $\iota = 2-i$ $\zeta = -i+3$ $\theta = 9+i$

Exercice 1.2. — Résoudre sur ℂ les équations suivantes et placer les points correspondants sur le plan complexe.

(
$$\alpha$$
) $iz = 2 + 3i$

$$(\gamma)$$
 $-1 + i + (2 - i)z = i$

$$(\beta) (2i+3)z = 5+i$$

(
$$\alpha$$
) $iz = 2 + 3i$ $(\gamma) -1 + i + (2 - i)z = i$ (δ) $(2i + 3)z = 5 + i$ (δ) $(1 + i)z + 2 = 3 - i$

Exercice 1.3. — Combien y a-t-il de façons de former un produit entre deux des nombres complexes suivants? Calculer tous ces produits, puis leurs conjugués.

$$\alpha = \sqrt{2} + i\sqrt{3}$$

$$\beta = \sqrt{3} - i\sqrt{3}$$

$$\gamma = \sqrt{2} - i\sqrt{2}$$

$$\delta = \sqrt{3} + i\sqrt{2}$$

$$\epsilon = -\sqrt{5} + i\sqrt{2}$$

$$\zeta = \sqrt{3} - i\sqrt{5}$$

Exercice 1.4. — Écrire sous forme algébrique les nombres complexes suivants:

$$\alpha = \frac{1}{i}$$

$$\beta = -\frac{2}{1 - i\sqrt{3}}$$

$$\gamma = \frac{1}{(1 + 2i)(3 - i)}$$

$$\delta = \frac{3 + 5i}{4 - i}$$

$$\epsilon = \frac{(1 + 2i)(3 - i)}{1 - 2i}$$

$$\zeta = (1 - i)^4$$

$$\eta = (3 + 2i)(1 - i)$$

$$-(2 + i)^2 + (3 + i)^3$$

$$\iota = \frac{1 - 5i}{2 + i} + \frac{1 + 5i}{2 - i}$$

Exercice 1.5. — On cherche l'ensemble de $z \in \mathbb{C} \setminus \{i\}$ pour lesquels $\frac{z^2}{z-i} \in \mathbb{R}$. La rédaction ci-dessous estelle correcte? « Soit $z \in \mathbb{C} \setminus \{i\}$. On a :

$$\frac{z^2}{z-i} \in \mathbb{R} \iff \frac{\operatorname{Im}(z^2)}{\operatorname{Im}(z)-1} = 0 \iff \frac{2\operatorname{R\acute{e}}(z)\operatorname{Im}(z)}{\operatorname{Im}(z)-1} = 0$$
$$\iff \operatorname{R\acute{e}}(z) = 0 \text{ ou } \operatorname{Im}(z) = 0.$$

L'ensemble cherché est donc la réunion des deux droites d'équations x = 0 et y = 0. »

Exercice 1.6. — Pour tout complexe z, on pose

$$P(z) = z^3 + (-2 + 3i)z^2 + (13 - i)z + (-6 - 10i).$$

Écrire sous forme algébrique les nombres complexes P(i), P(3) et P(1+i)

Exercice 1.7. — Écrire en fonction de \overline{z} , les conjugués des complexes suivants :

$$\alpha = 2 + 3iz$$

$$\beta = (1 + iz)(1 + 2z)$$

$$\gamma = \frac{1 + iz}{3 + z}$$

$$\delta = \frac{3z^2 - 2iz + 4}{2z - 3i}$$

Exercice 1.8. — Déterminer une condition nécessaire et suffisante sur $z \in \mathbb{C}$ pour que $Z = z^2 + z + 1$ soir réel.

Exercice 1.9. — Soit $z \in \mathbb{C} \setminus \mathbb{R}$. Trouver p et q réels tels que $z^2 + pz + q = 0$.

Exercice 1.10. — Résoudre les équations suivantes

(
$$\alpha$$
) $3z-(3-i)\overline{z}=1-2i$;

(
$$\beta$$
) $2z + 6\overline{z} = 3 + 2i$;

$$(\gamma)$$
 $(3+4i)z-5\overline{z}=2i$.

Exercice 1.11. — Établir que pour tout n entier non nul, le nombre $(1+i)^n + (1-i)^n$ est réel et $(1+i)^n$ – $(1-i)^n$ est imaginaire pur.

Exercice 1.12. — À quelle condition sur les complexes a et b a-t-on : $\forall n \in \mathbb{N}, a^n + b^n \in \mathbb{R}$?

Exercice 1.13. — L'assertion « $\exists (a,b) \in \mathbb{C}^2 : \forall z \in$ $\mathbb{C}, \overline{z} = az + b$ » est-elle vraie?

Exercice 1.14. — Résoudre sur ℂ les équations suivantes:

(
$$\alpha$$
) $(1+i)z+1-i=0$

(
$$\epsilon$$
) $i\overline{z} + 5 = z$

$$(\beta) (1-i)\overline{z} + 1 + i = 0$$

$$(\gamma) \quad z = 2\overline{z} - 2 + 6i$$

$$(\zeta) (1+ia)z+1-i=0,$$

 $(\delta) \ 2z + i\overline{z} = 5 - 4i$

Exercice 1.15. — On désire résoudre l'équation $R\acute{e}(z^3) = 1 + Im(z^3)$ d'inconnue $z \in \mathbb{C}$. La rédaction suivante est-elle correcte?

« Soit $z \in \mathbb{C}$. On a :

$$R\acute{e}(z^3) = 1 + Im(z^3) \iff \frac{z^3 + \bar{z}^3}{2} = 1 + \frac{z^3 - \bar{z}^3}{2}$$
$$\iff \bar{z}^3 = 1 \iff \bar{z} = 1 \iff z = 1 \text{ }$$

2 Module et distance

Exercice 2.1. — Calculer (où *t* désigne un réel) :

$$\alpha = |(8-2i)(-3+7i)| \qquad \delta = |(1+i)^{2018}|$$

$$\beta = |(3-2i)^4| \qquad \epsilon = |\cos t + i\sin t|$$

$$\gamma = \left|\frac{2+5i}{3+4i}\right| \qquad \zeta = \left|\frac{1}{2+3i} + \frac{1}{1+i}\right|$$

Exercice 2.2. — Démontrer l'inégalité de Cauchy-Schwarz

$$\forall z, w \in \mathbb{C}, \left| \operatorname{R\acute{e}}(\overline{z}w) \right| \leq |z| |w|.$$

Exercice 2.3. — Démontrer l'inégalité triangulaire :

$$\forall z, z' \in \mathbb{C}, |z + z'| \le |z| + |z'|,$$

avec égalité ssi : $(z = 0 \text{ ou } \exists \lambda \in \mathbb{R}_+, z' = \lambda z)$.

Exercice 2.4. — Soient $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ le demiplan supérieur strict et $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ le disque unité ouvert. Montrer que l'application suivante est bien définie et bijective :

$$f: \mathbb{H} \to \mathbb{D}, z \mapsto \frac{z-i}{z+i}.$$

(La notation « \mathbb{H} » pour le demi-plan vient de la géométrique hyperbolique.)

Exercice 2.5. — On cherche les racines carrées de 3-4i. La rédaction ci-dessous est-elle correcte? « Soient $a, b \in \mathbb{R}$, et z = a + ib. On a :

$$z^{2} = 3 - 4i \iff (a + ib)^{2} = 3 - 4i \iff \begin{cases} a^{2} - b^{2} = 3\\ 2ab = -4\\ a^{2} + b^{2} = 25 \end{cases}$$
$$\iff (a^{2} = 14 \text{ et } b^{2} = 11 \text{ et } ab = -2)$$
$$\iff (a = \pm\sqrt{14} \text{ et } b = \pm\sqrt{11} \text{ et } ab = -2)$$

Les deux racines carrées de 3-4i sont donc $\sqrt{14}-i\sqrt{11}$ et son conjugué. »

Exercice 2.6. — Résoudre dans \mathbb{C} les équations :

$$z^{2} = 4 z^{2} - (5 - 14i)z - 24 - 10i = 0$$

$$z^{2} = -9 z^{2} + 2\sqrt{2}iz - 2(1 + i) = 0$$

$$z^{2} = -8 + 6i iz^{2} + (4i - 3)z + i - 5 = 0$$

$$z^{2} = 5 - 12i (1 + i)z^{2} + 1 - i = 0$$

Exercice 2.7. — Résoudre $z^2 = \frac{1+i}{\sqrt{2}}$ sur \mathbb{C} . En déduire les valeurs de $\cos(\pi/8)$ et $\sin(\pi/8)$.

Exercice 2.8. —

- (α) Tout nombre entier est-il de la forme k(k+1), avec $k \in \mathbb{Z}$?
- (β) Tout nombre réel est-il de la forme x(x+1), avec $x \in \mathbb{R}$?
- (γ) Montrer que l'on peut mettre -1+i sous la forme d'un produit d'un nombre complexe α par $\alpha+1$. Trouver tous les complexes α qui conviennent. Montrer que tout nombre complexe peut s'écrire sous la forme $\alpha(\alpha+1)$, avec $\alpha \in \mathbb{C}$.

Exercice 2.9. — Soit a un nombre complexe donné. Résoudre dans $\mathbb C$ l'équation

$$z^2 - 2(1-i)z + a^2 - 2i = 0.$$

Pour quelles valeurs de *a* cette équation possède-telle au moins une racine réelle?

Exercice 2.10. — Résoudre dans $\mathbb C$ l'équation

$$iz^3 - (1+i)z^2 + (1-2i)z + 6 + 8i = 0$$

sachant qu'elle possède une solution réelle.

Exercice 2.11. — [Systèmes somme-produit] Trouver les couples $(x, y) \in \mathbb{C}^2$ satisfaisant les systèmes d'équations suivants.

(
$$\alpha$$
)
$$\begin{cases} x+y=2\\ xy=2, \end{cases}$$
 (β)
$$\begin{cases} x+y=3i\\ xy=-1-3i, \end{cases}$$

Exercice 2.12. — [Automorphismes du disque] On note $\mathbb D$ et on appelle « disque unité ouvert » l'ensemble $\{z\in\mathbb C\mid |z|<1\}$. Soit $a\in\mathbb D$. Montrer que l'application suivante est bien définie :

$$\phi_a = \mathbb{D} \to \mathbb{D}, z \mapsto \frac{z - a}{1 - \overline{a}z}$$

3 Exponentielle et arguments

Exercice 3.1. — Mettre sous forme exponentielle les nombres complexes suivants

$$\alpha = -3$$

$$\beta = -2i$$

$$\gamma = 1+i$$

$$\delta = 1-i$$

$$\epsilon = 1+i\sqrt{3}$$

$$\zeta = \frac{1+i\sqrt{3}}{1-i}$$

Exercice 3.2. — Pour chacun des nombres complexes z suivants, donner sa forme algébrique et représenter dans le plan complexe le point d'affixe z:

$$\begin{array}{c|cccc} \alpha=e^{\frac{i\pi}{3}} & & \delta=e^{\frac{i2\pi}{3}} & & \eta=2e^{\frac{i5\pi}{6}} \\ \beta=e^{\frac{i\pi}{4}} & & \epsilon=e^{i\pi} & & \iota=3e^{-\frac{i3\pi}{4}} \\ \gamma=e^{\frac{i\pi}{2}} & & \zeta=\sqrt{2}e^{\frac{i\pi}{4}} & \theta=2e^{-\frac{i\pi}{3}} \end{array}$$

Exercice 3.3. — Mettre sous forme algébrique les nombres complexes suivants :

$$\alpha = (1+i)^{21}$$

$$\beta = \left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$$

Exercice 3.4. — Calculer de deux façons différentes le nombre complexe $z = \frac{1+i}{\sqrt{3}+i}$ et en déduire les valeurs de $\cos\frac{\pi}{12}$ et de $\sin\frac{\pi}{12}$.

Exercice 3.5. — Déterminer les nombres entiers n tels que $(\sqrt{3} - i)^n$ soit réel.

Exercice 3.6. — Soit $\theta \in \mathbb{R}$. Résoudre dans \mathbb{C} l'équation

$$z^2 - 2(\cos\theta)z + 1 = 0.$$

Exercice 3.7. — [Astuce du losange] Soient θ et θ' deux nombres réels. Écrire sous forme exponentielle le nombre complexe $z=e^{i\theta}+e^{i\theta'}$. Application : écrire $1+e^{i\frac{\pi}{3}}$ et $e^{i\frac{4\pi}{3}}-1$ sous forme exponentielle. **Cette technique est à retenir!**

Exercice 3.8. — Soit $\mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$ l'ensemble des complexes de module un, c'est-à-dire le cercle unité.

- (α) Montrer que pour tout $z \in \mathbb{U}$, $\bar{z} = \frac{1}{z}$.
- (β) Montrer que pour tout $z \in U \setminus \{1\}$, $\frac{z+1}{z-1} \in i\mathbb{R}$.

Exercice 3.9. — Soit $\mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$ le cercle unité.

- (a) Déterminer $\{a+b \mid (a,b) \in \mathbb{U}^2\}$.
- (β) Soit $r \in [0,2]$. Déterminer $\{(a,b) \in \mathbb{U}^2 \mid a+b=r\}$.
- (γ) Soit $a, b, c \in \mathbb{U}$ tels que a + b + c = 1. Montrer que a, b ou c vaut 1.

Exercice 3.10. —

Résoudre sur $\mathbb C$ les équations suivantes :

 $(\alpha) |z-1| = |z|$ $(\gamma) z + \overline{z}^2 = 0$ $(\beta) |z+1| = |z| + 1$ $(\delta) a\overline{z} = z, a \in \mathbb{C}$

Exercice 3.11. — Soit $f: \mathbb{C} \to \mathbb{C}$ définie par $f(z) = \frac{z + |z|}{2}$. Déterminer les valeurs prises par f.

Exercice 3.12. — Résoudre sur \mathbb{C} l'équation $e^z = 3\sqrt{3} - 3i$.

Exercice 3.13. — Soit θ un réel distinct de π modulo 2π .

- (α) Mettre sous forme algébrique le nombre complexe $Z=1+e^{i\theta}+e^{i2\theta}+e^{i3\theta}+e^{i4\theta}+e^{i5\theta}$.
- (β) En déduire le calcul des sommes suivantes :

$$S_5 = 1 + \cos\theta + \cos 2\theta + \cos 3\theta + \cos 4\theta + \cos 5\theta$$

$$\Sigma_5 = \sin\theta + \sin 2\theta + \sin 3\theta + \sin 4\theta + \sin 5\theta.$$

Exercice 3.14. —

- (α) Soit $z = e^{i\theta}$, avec $\theta \in]0, \pi[$. Déterminer le module et un argument de 1 + z et $1 + z + z^2$.
- (β) Soient z et z' deux nombres complexes de module 1 tels que $zz' \neq 1$. Démontrer que $\frac{z+z'}{1+zz'}$ est réel et préciser son module.
- (γ) (Théorème de l'angle au centre) Soient a et b deux nombres dans $\mathbb{C}\setminus\{1\}$ et de module 1. Montrer que

$$2\arg\left(\frac{a-1}{b-1}\right) \equiv \arg\frac{a}{b} \left[2\pi\right].$$

4 Trigonométrie

Exercice 4.1. — Dans plusieurs contextes (notamment la résolution de l'équation différentielle de l'oscillateur harmonique), on tombe sur des fonctions de la forme $u\cos(\omega t) + v\sin(\omega t)$ (pour un certain couple $(u,v) \in \mathbb{R}^2$) ou $A\cos(\omega t + \phi)$ (pour une certaine *amplitude* $A \in \mathbb{R}_+$, et une certaine *phase* $\phi \in \mathbb{R}$). Ces fonctions sont en fait les mêmes. Soit u et v deux nombres réels non tous les deux nuls (c'est-à-dire tels que $(u,v) \neq (0,0)$). Soit $A = \sqrt{u^2 + v^2}$ le module de u + iv et ϕ un argument de u + iv. Alors

$$\forall x \in \mathbb{R}$$
, $u \cos x + v \sin x = A \cos(x - \phi)$.

Exercice 4.2. — Écrire $\sqrt{3}\cos(2t) + \sin(2t)$ sous forme d'un cosinus déphasé.

Exercice 4.3. — Lorsque l'on ajoute des signaux de fréquence différente, ils se compensent plus ou moins ce qui aboutit à une nouvelle fréquence « fixe », mais à une amplitude qui varie elle aussi de façon périodique. Cet exercice permet de comprendre ce phénomène. Soient p et q des réels. Montrer que

$$\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

En déduire une écriture de la fonction $t \mapsto \cos(10t) + \cos(9t)$ sous la forme d'un produit de cosinus. Établir une formule semblable pour une somme de sinus.

Exercice 4.4. — Linéariser $\cos^2(x)$, $\sin^2(x)$, $\cos^3(x)$, $\sin^4(x)$, $\cos^4(x)\sin^3(x)$.

Exercice 4.5. — [« Valeur efficace »] On considère un courant électrique modélisé par la fonction une fonction I(t) périodique de période T. Sa « valeur efficace » est par définition sa *moyenne quadratique* c'est-à-dire

$$I_{\text{eff}} := \sqrt{\frac{1}{T} \int_0^T I(t)^2 dt}.$$

Supposons maintenant que la période $T=2\pi$ et que le signal est sinusoïdal d'amplitude A>0, autrement dit $I(t)=A\sin(t)$. Calculer $I_{\rm eff}$ en fonction de A.

Exercice 4.6. — Soit $\theta \in \mathbb{R}$.

- (α) Écrire $e^{i3\theta}$ en fonction de $e^{i\theta}$. En déduire l'expression de $\cos 3\theta$ en fonction de $\cos \theta$ et celle de $\sin 3\theta$ en fonction de $\sin \theta$.
- (β) Calculer de même $\sin 5θ$ en fonction de $\sin θ$.

5 Nombres complexes et géométrie

Exercice 5.1. — Placer sur le plan les points A, B et C d'affixes a = 4i, b = 2 + 3i et c = 4 + 2i. Montrer que ces points sont alignés. Donner une équation et un paramétrage de la droite qui les contient.

Exercice 5.2. — Placer sur le plan les points dont les affixes sont 1+2i, 11+2i et 3+6i. Que remarque-t-on? Le démontrer.

Exercice 5.3. — On considère l'application

$$\phi: \mathbb{C} \to \mathbb{C}, z \mapsto -\overline{z}.$$

Géométriquement, à quoi correspond l'application ϕ ? Même question pour $\psi : \mathbb{C} \to \mathbb{C}$, $z \mapsto i\overline{z}$.

Exercice 5.4. —

- (α) Interpréter géométriquement l'inégalité de Cauchy-Schwarz et l'inégalité triangulaire et leurs cas d'égalité.
- (β) Montrer que $\forall z, w \in \mathbb{C}$, $|\text{Im}(\bar{z}w)| \le |z| \cdot |w|$ et préciser le cas d'égalité. Interpréter géométriquement, ainsi que le cas d'égalité.

Exercice 5.5. —

- (α) Donner une équation et un paramétrage de la médiatrice des deux points A et B d'affixes a = 2 + 2i et b = -2 + 5i.
- (β) Soit C le point d'affixe c = i. Calculer les coordonnées du centre du cercle circonscrit au triangle ABC. Quel est son rayon?

Exercice 5.6. — Placer sur le plan les points dont les affixes sont 5-i, -3+2i et -5-3i. Que dire de ce triangle? Le démontrer.

Exercice 5.7. — Représenter graphiquement les ensembles suivants.

$$A = \{z \in \mathbb{C} \mid 2\operatorname{R\acute{e}}(z) + \operatorname{Im}(z) \le 0\}$$

$$B = \{z \in \mathbb{C} \mid R\acute{e}(z) - 2\operatorname{Im}(z) \ge 2\}$$

Exercice 5.8. — Représenter graphiquement les ensembles suivants.

$$A = \{z \in \mathbb{C} \mid |\operatorname{R\acute{e}}(z)| + |\operatorname{Im}(z)| \le 3\}$$

$$B = \{z \in \mathbb{C} \mid \max(|R\acute{e}(z)|, |Im(z)|) \le 2\}$$

Exercice 5.9. — Placer sur le plan les points d'affixes 2-i, 2+4i, -2+i et -2-4i. Que remarque-t-on? Le démontrer.

Exercice 5.10. — Placer sur le plan les points d'affixes 5i, -5, -3-4i et 4+3i. Que remarque-t-on? Le démontrer.

Exercice 5.11. — On considère la droite $\Delta = \{(x,y) \in \mathbb{R}^2 \mid y = -x\}$. Si M est un point du plan de coordonnées (x,y), quelles sont les coordonnées du symétrique M' de M par rapport à Δ ? Si z est l'affixe de M et z' est l'affixe de M', que vaut z' en fonction de z? Mêmes questions avec $\Delta = \{(x,y) \in \mathbb{R}^2 \mid y = x\sqrt{3}\}$.

Exercice 5.12. — Montrer que toute droite du plan admet une équation du type $\overline{\alpha}z + \alpha \overline{z} = b$, avec α un certain complexe non nul et $b \in \mathbb{R}$. Que représente α ?

Exercice 5.13. — Placer sur le plan les points d'affixes 2-i, 1+2i, -2+i et -1-2i. Que remarque-t-on? Le démontrer.

Exercice 5.14. — [Identité du parallélogramme] Soit *ABCD* un parallélogramme. Montrer que

$$AC^2 + BD^2 = 2(AB^2 + BC^2).$$

(Ceci est difficile à montrer sans nombres complexes!)

Exercice 5.15. — Soit $z \in \mathbb{C}$. Montrer que

$$\frac{|\operatorname{Re} z| + |\operatorname{Im} z|}{\sqrt{2}} \le |z| \le |\operatorname{Re} z| + |\operatorname{Im} z|.$$

Interpréter en termes de carrés et de cercles.

Exercice 5.16. — On considère une feuille de papier millimétré. Est-il possible de placer trois points en certaines intersections de telle sorte qu'ils forment les sommets d'un triangle équilatéral?

Exercice 5.17. — Représenter graphiquement les ensembles suivants.

$$A = \{z \in \mathbb{C} \mid z = \overline{z}\}$$

$$B = \{z \in \mathbb{C} \mid z + \overline{z} = 0\}$$

$$C = \{ z \in \mathbb{C} \mid z + \overline{z} = 2 \}$$

$$D = \{ z \in \mathbb{C} \mid z - \overline{z} = 2 \}$$

$$E = \{ z \in \mathbb{C} \mid z + i\overline{z} = 2 \}$$

Racines de l'unité 6

Exercice 6.1. — Résoudre dans C les équations suivantes et représenter graphiquement leurs solutions.

$$(\alpha) z^3 = 1$$

$$(\eta) z^6 + 1 = 0$$

(B)
$$z^3 = -1$$

$$(\beta) \ z^{3} = -1
(\gamma) \ z^{3} = i
(\delta) \ z^{4} = -1
(\epsilon) \ z^{4} = -i
(\zeta) \ z^{4} = -8 + 8\sqrt{3}i$$

$$(\iota) \ z^{5} = \frac{(1 + i\sqrt{3})^{4}}{(1 + i)^{2}}
(\theta) \ z^{3} + 3z^{2} + 3z = 0
(\kappa) (2z + 3)^{3} = 1
(\lambda) \ z^{3} = (2i + 1)^{3}$$

$$(\gamma)$$
 $z^3 =$

$$(0)$$
 $-3 + 2 - 2 + 2 - 4$

$$(\delta) \quad z^4 = -1$$

$$(\theta) \ \ z^3 + 3z^2 + 3z = 0$$

$$(\epsilon)$$
 $z' = -i$

$$(2z+3)^3=1$$

$$(\zeta) \quad z^4 = -8 + 8\sqrt{3}i$$

$$(\lambda) z^3 = (2i+1)^3$$

Exercice 6.2. — On note $j = e^{i2\pi/3}$.

- (α) Vérifier que $i^3 = 1$.
- (β) Calculer $1 + j + j^2$.
- (γ) Simplifier j(j+1).
- (δ) Simplifier $\frac{j}{i^2+1}$ et $\frac{j+1}{i-1}$
- (ϵ) Soit $(x, y, z) \in \mathbb{R}^3$. Montrer que

$$(x+y+z)(x+jy+j^2z)(x+j^2y+jz)$$

= $x^3 + y^3 + z^3 - 3xyz$.

 (ζ) Calculer: $\sum_{k=0}^{2018} j^k$

Exercice 6.3. — [Caractérisation des triangles équilatéraux] On note comme d'habitude $j = e^{2i\pi/3}$. Soit ABC un triangle. Montrer les équivalences suivantes :

- (α) ABC équilatéral direct $\iff a+jb+j^2c=0 \iff a-b=-j^2(c-b).$
- (β) ABC équilatéral indirect $\Leftrightarrow a + j^2b + jc = 0$.
- (γ) En déduire :

ABC équilatéral $\iff a^2+b^2+c^2=ab+bc+ca$.

Exercice 6.4. — Résoudre dans C les équations sui-

$$(\alpha)$$
 $z^8 - 15z^4 - 16 = 0.$

$$(\beta) \left(\frac{z}{z-1}\right)^n = 1, (n \in \mathbb{N}^*).$$

$$(\gamma) (z-1)^5 = (z+1)^5.$$

$$(\delta) \left(\frac{z+1}{z-1}\right)^3 + \left(\frac{z-1}{z+1}\right)^3 = 0.$$

$$(\epsilon)$$
 $z^4 - z^3 + z^2 - z + 1 = 0.$

$$(\zeta) \quad z^7 = \bar{z}.$$

Exercice 6.5. — L'objectif de cet exercice est de construire un pentagone régulier à la règle (sousentendu non graduée) et au compas.

 (α) Dans cette question, on veut prouver que

$$\cos\left(\frac{2\pi}{5}\right) = \frac{\sqrt{5} - 1}{4}.$$

Soit $u = e^{2i\pi/5}$. Montrer que $1 + u + u^2 + u^3 + u^4 =$ 0. En notant $a = u + u^4$ et $b = u^2 + u^3$, montrer que a + b = -1 et que ab = -1, puis trouver aet b. Conclure.

 (β) On donne $(O, \overrightarrow{OI}, \overrightarrow{OJ})$ un repère orthonormé direct du plan euclidien. Soit \mathscr{C}_1 le cercle unité de centre O et M le milieu de [OJ]. Le cercle \mathscr{C}_2 de centre M passant par I intersecte la droite (OJ) en deux points, on note N celui d'ordonnée négative. Le cercle \mathscr{C}_3 de centre I passant par N intersecte le cercle \mathcal{C}_1 en deux points Aet B, le point A étant celui d'ordonnée positive. Montrer que A, I, B sont trois points consécutifs d'un pentagone régulier inscrit dans C_1 . (Indication: calculer la distance AI.)

Exercice 6.6. — (Périodes de Gauß) Soit ζ_7 = exp $\left(i\frac{2\pi}{7}\right)$, $A = \zeta_7 + \zeta_7^2 + \zeta_7^4$ et $B = \zeta_7^3 + \zeta_7^5 + \zeta_7^6$. Calculer A + B et AB, puis en déduire A et B.

Exercice 6.7. — En s'inspirant de l'exercice sur le pentagone, montrer que $\cos(2\pi/7)$ est racine de $8X^3$ + $4X^2 - 4X - 1$. Ce résultat permet-il de construire un heptagone régulier? 1

^{1.} Carl Friedrich Gauß a montré en 1796 — à seulement 19 ans! — comment construire à la règle et au compas un polygone régulier à 17 côtés et surtout, a déterminé presque complètement quels polygones régulier sont constructibles. En 1837, Pierre Laurent Wantzel a résolu définitivement le problème, et on sait maintenant que l'heptagone régulier n'est pas constructible. Tous ces résultats sont difficiles.

7 Isométries planes

Exercice 7.1. — [Isométries d'un triangle équilatéral] Soit $\mathcal{T} = ABC$ un triangle équilatéral. Trouver six isométries laissant \mathcal{T} invariant. Montrer qu'il n'y en a pas d'autres.

Exercice 7.2. — Soient A, B, C, D deux à deux distincts, d'affixes a, b, c et d. Montrer que ABCD est un carré direct ssi (a + c = b + d) et a + bi = c + di.

Exercice 7.3. — Soit ABC un triangle direct. Soit D (resp. E) tel que DBA (resp. ACE) soit direct et isocèle rectangle en D (resp. E). Soit L tel que $\overrightarrow{CL} = \overrightarrow{DB}$.

- (α) Faire une figure et construire D, E et L.
- (β) Montrer en utilisant les affixes des points que DLE est isocèle rectangle en E.

Exercice 7.4. — [Théorèmes de Thébault et de Van Aubel]

Soit *ABCD* un quadrilatère direct. On construit quatre carrés qui s'appuient extérieurement sur les côtés [*AB*], [*BC*], [*CD*] et [*DA*]. Les centres respectifs de ces carrés sont notés *P*, *Q*, *R*, et *S*.

- (α) (Théorème de Thébault) Dans le cas particulier où ABCD est un parallélogramme, montrer que PQRS est un carré, en utilisant les nombres complexes ou pas.
- (β) Dans le cas général, montrer que dans le carré construit sur [AB], on a $p = \frac{a ib}{1 i}$. Démontrer des relations analogues pour les autres carrés.
- (γ) Calculer $\frac{s-q}{r-p}$ et montrer le théorème de Van Aubel : *PQRS* est un *pseudo-carré*, c'est-à-dire que ses diagonales sont de même longueur et se croisent à angle droit.

Exercice 7.5. — [Point de Vecten]

Soit ABC un triangle direct. On construit trois carrés qui s'appuient extérieurement sur les côtés [AB], [BC] et [CD]. Les centres respectifs de ces carrés sont notés P, Q et R. Le but est de montrer que (AQ), (BR) et (CP) sont concourantes. Le point de concours est appelé *point de Vecten* du triangle.

- (α) Montrer que dans le carré construit sur [AB], on a $p=\frac{a-ib}{1-i}$. Démontrer des relations analogues pour les autres carrés.
- (β) Montrer que ABC et PQR ont même centre de gravité.
- (γ) Montrer que (AQ) et (PR) sont perpendiculaires. Conclure.

Exercice 7.6. — [Théorème de Napoléon] Soit ABC un triangle direct. Soient P, Q, R tels que CBP, ACQ et BAR soient des triangles équilatéraux directs. On note U, V, W les centres de gravité respectifs de ces trois triangles équilatéraux. Montrer que UVW est équilatéral, de même centre de gravité que ABC, en utilisant la caractérisation des triangles équilatéraux.

Exercice 7.7. — [Isométries d'un carré] Soit $\mathscr{C} = ABCD$ un carré. Trouver huit isométries laissant \mathscr{C} invariant. Montrer qu'il n'y en a pas d'autres.

Exercice 7.8. — Soient A et B deux points d'affixes a et b, M un point d'affixe z et M' son symétrique par rapport à la droite (AB), dont on note z' l'affixe. Montrer que

$$z' = \frac{b-a}{\overline{b}-\overline{a}} \cdot \overline{z} + \frac{a\overline{b}-b\overline{a}}{\overline{b}-\overline{a}}.$$

8 Similitudes planes

Exercice 8.1. — Déterminer les éléments caractéristiques des transformations représentées par :

$$z \mapsto (1-i)z+i; \quad z \mapsto i\bar{z}+1-i; \quad z \mapsto 2i\bar{z}+3; \quad z \mapsto \bar{z}+1.$$

Exercice 8.2. — Écrire en coordonnée complexe la rotation d'angle $\pi/4$ et de centre d'affixe 2 + 3i et la réflexion d'axe d'équation y = 2x + 1.

Exercice 8.3. — Écrire en coordonnée complexe les deux similitudes (directe et indirecte) envoyant les points d'affixes 2 et 3 sur ceux d'affixes i et i et trouver leurs éléments caractéristiques.

Exercice 8.4. — Soit ABCD un quadrilatère tel que $\overrightarrow{AB} \neq \overrightarrow{CD}$. Montrer que le centre de la similitude directe envoyant A sur C et B sur D est aussi le centre de la similitude directe envoyant A sur B et C sur D.

Exercice 8.5. — Soit $a \in \mathbb{C}^*$, et soit f la similitude directe du plan représentée par $z \mapsto a^2z + a - 1$.

Déterminer l'ensemble des paramètres *a* pour lesquels *f* est :

(i) une translation; (ii) une homothétie de rapport -4; (iii) une rotation d'angle $\pi/2$.

Exercice 8.6. — Soit *ABC* un triangle tel que *C* soit l'image de *B* par la rotation de centre *A* et d'angle $\pi/2$. Soit *s* une similitude envoyant *A* sur *B* et *B* sur *C*.

- (α) Que peut valoir s(C)?
- (β) On suppose que s est directe. Déterminer son centre Ω . On l'exprimera comme barycentre de A, B et C.
- (γ) Si la similitude est indirecte, déterminer son centre et son axe.

Exercice 8.7. — Soit ABCD un carré direct de côté 1, et soient E et F deux points tels que AEFD soit un rectangle direct, avec AE > 1. Dans la suite on note l = AE.

Montrer que qu'il existe une similitude directe s envoyant A (resp. E, F et D) sur C (resp. B, E et F) ssi l est égal au nombre d'or $(1+\sqrt{5})/2$.

Exercice 8.8. — Soit ABC un triangle rectangle en A et non isocèle. La médiatrice de [BC] recoupe le demicercle circonscrit en I. On considère deux points $D \in [AB]$ et $E \in [AC]$ tels que BD = CE. Montrer que IDE est rectangle isocèle en I.

(Indication : considérer la similitude directe qui envoie le couple (B, D) sur le couple (C, E).)

Exercice 8.9. — [d'après bac Amérique du sud 2004] Soient A et B_0 deux points et soit s la similitude directe de centre A, de rapport $\frac{1}{2}$ et d'angle $\frac{3\pi}{4}$. On considère la suite de points $(B_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence $\forall n \in \mathbb{N}, B_{n+1} = s(B_n)$.

- (α) Faire une figure avec $AB_0 = 8$ et placer les points B_n jusqu'à n = 4.
- (β) Montrer que pour tout $n \in \mathbb{N}$, les triangles AB_nB_{n+1} et $AB_{n+1}B_{n+2}$ sont semblables.
- (γ) Dans la suite, on considère le sous-ensemble du plan $S = \bigcup_{n \in \mathbb{N}} [B_n B_{n+1}]$. C'est une ligne brisée en forme de spirale. Sa longueur est-elle finie ou infinie? Dans le premier cas, calculer sa longueur.

Exercice 8.10. — Soit ABC un triangle direct non rectangle isocèle, et soit P (resp. Q, R) tel que BCP (resp. CAQ, ABR) soit direct isocèle rectangle en P (resp. Q et R).

- (α) Montrer que \overrightarrow{AP} et \overrightarrow{QR} sont orthogonaux et de même norme.
- (β) Montrer que les droites (AP), (BQ) et (CE) sont concourantes.