Analyse

Maxime Muller

May 13, 2025

Contents

1	Primitives et équations differentielles			
	1.1	Equations differentielles de type : $y' = f \dots \dots \dots \dots \dots \dots \dots \dots \dots$		
	1.2	Recherche de primitives		
	1.3	Equations differentielles de la forme $y' = ay + f$ ou $y' = ay + f$		
	1.4	Equation $y' = ay + f$		
2	Intégration			
	2.1	Intégrale et aire		
		Primitive d'une fonction		
	2.3	Intégrales et primitives		

Chapter 1

Primitives et équations differentielles

1.1 Equations differentielles de type : y' = f

Definition 1.1.1 (Primitive). Soit :

$$F: I \longrightarrow \mathbb{R}$$

 $x \longmapsto F(x)$

F est une primitive de f ssi F'(x) = f(x). On note F' = f

Theorem 1.1.1 (Primitive d'une fonction continue). Si f est continue, alors l'équation y' = f admet au moins une solution.

Theorem 1.1.2 (Unicité de la primitive). Deux primitives d'une même fonction sont égales à une constante près.

Proof. Soient F_1 et F_2 , deux primitives de f. On a : $F_1' = f$ et $F_2' = f$. D'ou, par différence de fonctions dérivables, $F_1 - F_2$ est dérivable.

$$(F_1 - F_2)' = F_1' - F_2' = f - f = 0$$
 D'ou on a : $F_1 - F_2 = a, a \in \mathbb{R}$

Corollary 1.1.1 (Propriété : unicité de la solution). Si $x_0 \in I \subset \mathbb{R}$ et $F(x_0) = y_0$, alors on a :

$$\exists ! F : x \mapsto F(x), F' = f$$

Proof. Supposons :
$$\exists (F;G) \in \mathcal{F}(\mathbb{R},\mathbb{R})^2$$
 t.q.
$$\begin{cases} F' = G' = f \\ F(x_0) = G(x_0) = y_0 \\ F \neq G \end{cases}$$

Donc, d'après Theorem 1.1.2 $\exists a \in \mathbb{R}^*, F(x) = G(x) + a$

$$F(x_0) = G(x_0) \Leftrightarrow y_0 = y_0 + a$$

 $\Leftrightarrow a = 0 \text{ absurde!}$

Donc
$$F = G$$

1.2 Recherche de primitives

Pour identifier une primitive de f on peut :

- 1. Reconnaitre la dérivée d'une fonction de réference
- 2. Adapter éventuellement le coefficient

3. Reconnaitre une des formules suivantes :

Fonction reconnue	Primitive
$u'u$ $u'u^n$ $u'\cdot v'\circ u$	

Table 1.1: Formules de primitives

Corollary 1.2.1 (Propriétés de la primitive). • Si F est une primitive de f, alors aF est une primitive de f.

• Si F et G sont des primitives de f et g respectivement, alors F+G est une primitive de f+g

Example (Exemples). • $f_1(x) = \frac{7x}{x^2+1} \Rightarrow F_1(x) = \frac{7}{2} \ln|x^2+1|$

- $f_2(x) = 2x(x^2 + 3) \Rightarrow F_2(x) = \frac{1}{2}(x^2 + 3)^2$ $f_3(x) = \cos x \sin^3 x \Rightarrow F_3(x) = \frac{1}{4}\sin^4(x)$
- $f_4(x) = x^3 \sqrt{x} = x^{\frac{7}{2}}, \Rightarrow F_4(x) = \frac{2}{9} x^{\frac{9}{2}} = \frac{2}{9} x^4 \sqrt{x}$

Equations differentielles de la forme y' = ay + f ou y' = ay + f1.3

Equation de la forme y' = ay1.3.1

L'équation différentielle y'=ay est une equation différentielle du premier ordre linéaire et homogène à coefficient constant. Cette équation (E_0) s'écrit également souvent y' - ay = 0

Corollary 1.3.1 (Propriétés). Les solutions de (E_0) sont de la forme :

$$\lambda e^{ax}, C \in \mathbb{R}$$

Si on ajoute la condition initiale $y(x_0) = y_0$, on a une solution unique.

Corollary 1.3.2 (Propriété). Si (E_0) a deux solutions y_1 et y_2 : $\forall k \in \mathbb{R}$ ky_1 est solution et $y_1 + y_2$ est solution.

Equation de la forme y' = ay + b

L'équation différentielle y' = ay + b est appelée équation différentielle linéaire du premier ordre à coefficient constant avec second membre constant. Elle s'écrit également y' - ay = b.

Corollary 1.3.3 (Propriétés). Les solutions sont de la forme :

$$y = \lambda e^{ax} - \frac{b}{a}$$

Example (Exemple). Résoudre l'équation différentielle $(E) \Leftrightarrow -2y' = 7y + 6$.

On a : $(E) \Leftrightarrow y' = -\frac{7}{2}y - 3$. On reconnait une équation de la forme y' = ay + b avec $a = -\frac{7}{2}$ et b = -3. $\frac{b}{a} = \frac{6}{7}$. Les solutions sont donc de la forme $y(x) = \lambda e^{-\frac{7}{2}x} + \frac{6}{7}, \lambda \in \mathbb{R}$

1.4 Equation y' = ay + f

L'équation différentielle y'=ay+f avec $a\in\mathbb{R}^*$, et f un fonction est une équation différentielle linéaire du premier ordre à coefficient constant avec second membre.

Corollary 1.4.1 (Solutions Particulières). Si φ est une solution particulière de cette équation, alors y est une solution de l'équation si et seulement si $y-\varphi$ est solution de l'équation homogène : y'-ay=0

Chapter 2

Intégration

Intégrale et aire 2.1

Cas d'une fonction positive sur un intervalle donné. 2.1.1

Definition 2.1.1 (Intégrale). Soit $f \in C^0([a;b],\mathbb{R}^+)$ de courbe représentative \mathcal{C}_f dans un repère

On appelle intégrale de a à b de la fonction f notée $\int_a^b dx$ l'aire du domaine délimité par \mathcal{C}_f , (Ox) et les droites déquation x = a, x = b.

Figure 2.1: Défintion de l'intégrale

Remark (Unités). L'aire du domaine est exprimée en unités d'aire (u.a) égale à l'aire du parallelogramme engendré par \vec{i} et \vec{j} .

- Si le repère est orthogonal, le parallelogramme est un rectangle.
- Si le repère est orthonormé, le parallelogramme est un carré.

Example (Exemples). $I_1=\int_0^1 x dx$ On reconnait un triangle rectangle de base 1 et de hauteur 1. $I_1=\frac{1\times 1}{2}=\frac{1}{2}$. $I_2=\int_1^2 2x+1 dx$ On reconnait un parallelogramme rectangle. $I_2=\frac{(3+5)1}{2}=4$

Remark (Variable muette). La variable d'intégration est muette :

$$\int_{b}^{a} f(x)dx = \int_{b}^{a} f(u)du = \int_{b}^{a} f(t)dt \dots$$

Corollary 2.1.1 (Propriétés). Soit $f, g \in C^0([a; b], \mathbb{R}^+)$, soit $c \in [a; b]$, soit $\lambda \in \mathbb{R}$

Corollary 2.1.2 (Relation de Chasles).

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx \int_{c}^{b} f(x)dx.$$

Corollary 2.1.3 (Valeur moyenne). La valeur moyenne μ de f entre a et b est la valeur tel que l'integrale de f est égale au rectangle de hauteur μ .

$$\mu = \frac{1}{b-a} \int_{b}^{a} f(x)dx$$

Corollary 2.1.4 (Linéarité et Ordre). .

- $\int_a^b \lambda f(x) + g(x) dx = \lambda \int_a^b f(x) dx + \int_a^b g(x) dx$ $\forall x \in [a, b], f(x) \le g(x) \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$

Pour l'ordre, il n'y a pas d'équivalence.

Figure 2.2: La relation de Chasles

Figure 2.3: μ , la valeur moyenne d'une fonction

2.1.2 Cas d'une fonction négative sur un intervalle donné

Definition 2.1.2 (Intégrale d'une fonction négative). Soit $f \in C^0([a;b], \mathbb{R}^-)$.

L'intégrale de f entre a et b est l'opposé de l'aire géométrique du domaine délimité par, C_f , (Ox), x=a et x=b. C'est donc une aire algébrique et non géométrique.

Figure 2.4: Intégrale d'une fonction négative

Corollary 2.1.5 (Propriétés). Les propriétés sont les mêmes que pour les fonctions négatives, voir Corollary 2.1.1.

2.1.3 Cas d'une fonction de signe quelconque

Figure 2.5: Décomposition d'une fonction sur des intervalles ou le signe est monotne

Definition 2.1.3 (Integrale d'une fonction de signe quelconque). Soit $f \in C^0([a;b],\mathbb{R})$, pour définir l'intégrale de f entre a et b on utilise Chasles pour décomposer f sur des intervalles où f est de signe constant :

$$\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{d} f dx + \int_{d}^{e} f dx + \int_{e}^{b} f dx$$

Corollary 2.1.6 (Propriétés). On a les mêmes propriétés que sur les fonctions de signe constant (voir Corollary 2.1.1).

Corollary 2.1.7 (Simplification).

$$\int_{a}^{a} f(x)dx = 0$$

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Proof.

$$0 = \int_a^a f(x) dx = \int_a^b f(x) dx + \int_b^a f(x) dx \Rightarrow \int_a^b f(x) dx = -\int_b^a f(x) dx \, \Box$$

Corollary 2.1.8 (Fonctions périodiques). Soit $f \in C^0(\mathbb{R}, \mathbb{R})$, t.q. f(x+T) = f(x), soit $\lambda \in \mathbb{R}$

$$\int_{a}^{b} f(x)dx = \int_{a+\lambda T}^{b+\lambda T} f(x)dx$$

Corollary 2.1.9 (Fonctions paires). Soit $f \in C^0$, f(x) = f(-x).

$$\int_a^b f(x)dx = \int_{-b}^{-a} f(x)dx \Rightarrow \int_{-a}^a f(x)dx = 2\int_0^a f(x)dx$$

Corollary 2.1.10 (Fonctions impaires). Soit $f \in C^0$ t.q. f(x) = -f(-x)

$$\int_{-a}^{a} f(x)dx = 0$$

Corollary 2.1.11 (Fonctions bornées). Soit $f \in C^0 \Rightarrow \exists (M; m) \in \mathbb{R}^2, \forall x \in [a; b] m \leq f(x) \leq M$.

$$\Rightarrow m \le \mu \le M$$

$$\Rightarrow (b-a)m \le \int_a^b f(x)dx \le (b-a)M$$

Remark (Intégrale d'une fonction constante). Soit $k \in \mathbb{R}$

$$\int_{a}^{b} k dx = k(b - a)$$

2.2 Primitive d'une fonction

Theorem 2.2.1 (Théorème fondamentale de l'analyse).

$$\int_{a}^{b} f'(x)dx = f(b) - f(a)$$

*

2.3 Intégrales et primitives

Theorem 2.3.1 (Théorème fondamentale). Soit $f \in C^0(I \subset \mathbb{R}, \mathbb{R})$, soit $a \in I$. $F \longmapsto \int_a^x f(t)dt$ est dérivable sur I et F'(x) = f(x).

Proof. Soit $f \in C^0(I, \mathbb{R}^+)$, f croissante. Soit $a \in \mathbb{R}$, soit $F : x \mapsto \int_a^x f(x) dx$. Montrons que F'(x) = f(x). Soit $h \in \mathbb{R}_+^*$

$$F(x+h) - F(x) = \int_{x}^{x+h} f(x)dx$$

On peut donc l'encadrer avec deux rectangles, hf(x) et hf(x+h). D'où :

$$f(x) \le \frac{F(x+h) - F(x)}{h} \le f(x+h)$$

On fait tendre h vers 0. D'après le théorème des gendarmes, il existe bien une limite pour $\frac{F(x+h)-F(x)}{h}$ et : $\lim_{h\to 0^+}(\frac{F(x+h)-F(x)}{h})=f(x)$. On montre le même résultat pour $h\in\mathbb{R}_-^*$. On peut donc conclure :

$$\lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = F'(x) = f(x) \square$$

*

Remark (Activité). • Si $h \in \mathbb{R}_0^-$, rien ne change.

- Le théorème des gendarmes démontre aussi <u>l'existence de la limite</u>.
- On a bien $\int_a^a f(x)dx = 0$

Corollary 2.3.1 (Existence de la primitive). Si $f \in C^0$, f admet des primitives

Corollary 2.3.2 (Calcul d'intégrales). Soit $f \in C^0(I, \mathbb{R})$, soit $(a; b) \in \mathbb{R}^2$.

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Notation.

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$