

ENM Settings Overview

University of Florida

Created by Shelly Gaynor

BiotaPhy

Ecological Niche Modeling

MaxEnt

• uses the **principle of maximum entropy** on presence-only data to predicted the species' potential geographic distribution (or niche)

MaxEnt

- MaxEnt used only presence and pseudo-absences for model development
- No "best" algorithm for modeling (Qiao et al. 2015, Methods Ecol Evol), but MaxEnt generally performs well across evaluation criteria (Aguirre-Gutierrez et al. 2013, PLoS One)

What does it do?

- Makes predictions about the probability that conditions are suitable for a given taxa to occur (does not calculate a true probability of occurrence!)
- Models should be chosen that are as similar as possible to prior expectations while also being consistent with the data.

Important notes:

The grids must all have the same geographic bounds and cell size (i.e. all the ascii file headings must match each other perfectly)

A Brief Tutorial on Maxent

By Steven J. Phillips, AT&T Research

This tutorial gives a basic introduction to use of the MaxEnt program for maximum entropy modelling of species' geographic distributions, written by Steven Phillips, Miro Dudik and Rob Schapire, with support from AT&T Labs-Research, Princeton University, and the Center for Biodiversity and Conservation, American Museum of Natural History. For more details on the theory behind maximum entropy modeling as well as a description of the data used and the main types of statistical analysis used here, see:

https://biodiversityinformatics.amnh.org/open_source/maxent/Maxent_tutorial2017.pdf

MAXENT SETTINGS SUMMARY

INPUT

Occurrence Records

Training layers

Only one species at a time

Select species specific training layers

Samples	E	nvironmental layers		
le nsiaceae_mixentready_20210625.csv Browse	Directory/File /Users/sh	nellygaynor/Dropbox/Works	Browse	
✓ Galax_urceolata	☑ bio_14	Continuous	0	
	⊘ bio_15	Continuous	0	
Pyxidanthera_barbulata	✓ bio_18	Continuous	0	
	☑ bio_3	Continuous	0	
Pyxidanthera_brevifolia	☑ bio_7	Continuous	0	
	☑ bio_8	Continuous	0	
Shortia_galacifolia	☑ bio_9	Continuous	0	
	⊘ elev	Continuous	0	
/ Linear features		Create response o	curves Cre	eate output directory
Quadratic features	-	Make pictures of predic		
Product features	Do jac	kknife to measure variable import Output format Logistic		Shared layers
Threshold features		Output file type asc	0	Select projection laye
/ Hinge features Output dire	ectory :cological_Niche_Modeli	ing/Output/Galax_urcestata	Browse	Jerest projection laye
Auto features Projection	layers directory/file climate_p	rocessing/PresentLayers/all	Browse	

OUTPUT SETTINGS

Output Type	Math	Meaning
Raw	Entropy value = h	Not interpretable
Cumulative	% of max raw value = r	Not interpretable
Logistic	$\frac{\exp(h) * r}{1 + (\exp(h) * r)}$	Conditional probability of occurrence.
Cloglog	$1 - \exp(-\exp(h) * r)$	Probability of presence.

OUTPUT SETTINGS

BASIC SETTINGS

FEATURE CLASS

= used to transform the original predictor

Feature type	Interpretation	Constraint	Shape
Linear	Continuous variable	The <i>mean</i> of each environmental variable at an unknown location should be close to the mean of that variable in known occurrence locations.	
Quadratic	Square of the variable	The <i>variance</i> of each environmental variable at an unknown location should be close to the variance of that variable in known occurrence locations.	
Product	Pairs of continuous variables – allows for interactions	The co-variance of two environmental variables at an unknown location should be close to the co-variance of those variables in known occurrence locations.	

Hinge	As threshold type, but response after the	The mean above the knot of each environmental variable at an unknown location should be close to the mean above	l\
	threshold (knot) is linear	the knot of that variable in known occurrence locations.	

BASIC SETTINGS

Maximum Entropy Parameters

REPLICATION SETTINGS

Replication Type	Definition
Subsample	Presence points are repeatedly split into random training and testing subsets.
Bootstrap	Presence points are sampled with replacement for equal size training and testing subsets.
Crossvalidate	Presence points are repeatedly split into equal-sized "folds" of random training and testing subsets.

REPLICATION SETTINGS

Cross validation = resampling to evaluate model's performance with limited data

4-fold cross-validation

REGULARIZATION MULTIPLIER

 Regularization multiplier (rm) then aims to reduce overfitting of the model:

Regularization multiplier 1

• Determines the penalty associated with including variables or their transformations in the model.

PROJECTION SETTINGS

0.05

x10⁻³

1.0

#0.6 # 0.5

PROJECTION

PROJECTION SETTINGS

SETTINGS

SETTINGS

MaxEnt Demo

- Files for this activity can be found in "Demo/Manual/Ecological_Niche_Modeling/"
- Try out the demo!
- R-based ENM
 - Cross-validation and data partitioning
 - Advance model comparisons
 - Evaluating ENMs