Some Formulas

• Line Equations: The equation of the line segment connecting \mathbf{r}_0 and \mathbf{r}_1 :

$$\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t\mathbf{r}_1 \qquad 0 \le t \le 1$$

The equation of the line containing \mathbf{r}_0 in the direction \mathbf{v} :

$$\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}$$
 $-\infty < t < \infty$

• Plane Equations: The equation of the plane with normal vector **n** and containing **r**₀:

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$$

The equation of the plane in scalar form, when $\mathbf{n} = \langle a, b, c \rangle$ and $\mathbf{r} = \langle x, y, z \rangle$:

$$ax + by + cz + d = 0$$
 d constant.

• Arc Length Integrals: The length of the curve C given by $\mathbf{r}(t)$ for $a \le t \le b$:

$$\int_a^b |\mathbf{r}'(t)| \, \mathrm{d}t$$

An integral of a function f with respect to arc length on C is:

$$\int_{a}^{b} f(\mathbf{r}(t))|\mathbf{r}'(t)| dt = \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^{2} + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^{2} + \left(\frac{\mathrm{d}z}{\mathrm{d}t}\right)^{2}} dt$$

where $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$.

• Tangent Planes to Surfaces: If a surface S is of the form z = g(x, y), the tangent plane at $P(x_0, y_0, z_0)$ is:

$$z - z_0 = g_x(x_0, y_0)(x - x_0) + g_y(x_0, y_0)(y - y_0).$$

If S is a level surface f(x, y, z) = k, the tangent plane at $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$ has normal vector ∇f , so the equation is:

$$f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0) = 0, \quad \text{or} \quad \nabla f \cdot (\mathbf{r} - \mathbf{r}_0) = 0.$$

If S is parameterized in vector form by $\mathbf{r}(u, v)$, the tangent plane at $\mathbf{r}_0 = \mathbf{r}(u_0, v_0)$ has normal vector $\mathbf{r}_u \times \mathbf{r}_v$, so the equation is:

$$(\mathbf{r}_u \times \mathbf{r}_v) \cdot (\mathbf{r} - \mathbf{r}_0)$$

• Implicit Function Theorem: If a curve satisfies the equation F(x,y)=0, if F_x and F_y are continuous, and $F_y\neq 0$, then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x}{F_y}.$$

If a surface satisfies F(x, y, z) = 0 with F_x, F_y , and F_z continuous with $F_z \neq 0$, then

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
 and $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

• Cylindrical Coordinates: Volume differential: $dV = r dr d\theta dz$

$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = z$, $x^2 + y^2 = r^2$, $\tan \theta = \frac{y}{x}$

• Spherical Coordinates: Volume differential: $dV = \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$

$$x = \rho \sin \phi \cos \theta$$
, $y = \rho \sin \phi \cos \theta$, $z = \rho \cos \phi$, $\rho^2 = x^2 + y^2 + z^2$

• Line Integrals: C a curve parameterized by $\mathbf{r}(t)$, $a \leq t \leq b$. f(x, y, z) a function.

$$\int_C f(x, y, z) ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt$$

 $\mathbf{F} = \langle P, Q, R \rangle$ a vector field:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_C P dx + Q dy + R dz.$$

• Surface Integrals: S parameterized by $\mathbf{r}(u,v)$ where $(u,v) \in D$, f(x,y,z) a function.

$$\iint_{S} f(x, y, z) \, dS = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| \, dA.$$

F a vector field:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA.$$

• Fundamental Theorem of Line Integrals:

$$\int_C (\nabla f) \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

where the curve C is the curve given by $\mathbf{r}(t)$ where $a \leq t \leq b$.

• Green's Theorem: $\mathbf{F} = \langle P, Q \rangle$ is a 2-dimensional vector field.

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \oint_C P \, dx + Q \, dy = \iint_D (Q_x - P_y) \, dA$$

where C is the positively oriented boundary of the 2-dimensional region D.

• Stokes' Theorem: $\mathbf{F} = \langle P, Q, R \rangle$ is a 3-dinmensional vector field.

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$$

where C is the positively oriented boundary of the oriented surface S in 3-dimensional space.

• Divergence Theorem: $\mathbf{F} = \langle P, Q, R \rangle$ is a vector field.

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} \operatorname{div}(\mathbf{F}) \, dV$$

where S is the positively oriented boundary of the 3-dimensional region E.