

Aprendizagem e Extração de Conhecimento Perfil Sistemas Inteligentes @ MiEl/4° & MEl/1° – 1° Semestre

Cesar Analide, Filipe Gonçalves, Paulo Novais

O que é aprender?

O que é aprender?

Definição de Aprendizagem

Definição de Aprendizagem

- Aprendizagem (http://priberam.pt/dlpo/aprendizagem):
 - o Ato ou efeito de aprender; Tempo durante o qual se aprende; Experiência que tem quem aprendeu.

- Aprendizagem Simbólica
- Raciocínio Baseado em Casos
- Aprendizagem por Reforço
- Redes Neuronais Artificiais
- Algoritmos Genéticos e Evolucionários
- Inteligência de Grupo
- Máquinas de Vetores de Suporte
- Árvores de Decisão
- Segmentação
- Classificação
- e muitos outros...

Exemplos de Sistemas de Aprendizagem

	Α.	В	C	_ Z
1				
2				
3				
4				
5				
6				
_				

Raciocínio Baseado em Casos – Case Based Reasoning

o Procedimento de resolução de problemas baseado na solução de problemas passados similares

- Raciocínio Baseado em Casos Case Based Reasoning
- Aprendizagem por Reforço Reinforcement Learning
 - o Resolução de problemas através de noção de recompensa/penalização por ações executadas no ambiente

- Raciocínio Baseado em Casos Case Based Reasoning
- Aprendizagem por Reforço Reinforcement Learning
- Redes Neuronais Artificiais Artificial Neural Networks
 - O Sistemas conexionistas inspirados por modelos de funcionamento do cérebro humano

- Raciocínio Baseado em Casos Case Based Reasoning
- Aprendizagem por Reforço Reinforcement Learning
- Redes Neuronais Artificiais Artificial Neural Networks
- Algoritmos Genéticos Genetic Algorithms
 - o Resolução de problemas por otimização de desempenho, inspirado no processo da evolução das espécies

- Raciocínio Baseado em Casos Case Based Reasoning
- Aprendizagem por Reforço Reinforcement Learning
- Redes Neuronais Artificiais Artificial Neural Networks
- Algoritmos Genéticos Genetic Algorithms
- Inteligência de Grupo *Particle Swarm Optimization*
 - o Método de otimização pela melhoria iterativa de soluções baseada em medidas de qualidade

- Raciocínio Baseado em Casos Case Based Reasoning
- Aprendizagem por Reforço Reinforcement Learning
- Redes Neuronais Artificiais Artificial Neural Networks
- Algoritmos Genéticos Genetic Algorithms
- Inteligência de Grupo *Particle Swarm Optimization*
- Máquinas de Vetores Suporte Support Vector Machines
 - Resolução de problemas pela construção de (hiper)planos que dividem os dados em grupos coerentes

 Paradigma de computação em que a característica essencial do sistema se revela pela sua capacidade de aprender de modo autónomo e independente;

- A característica diferenciadora dos algoritmos de Aprendizagem Automática é a de que são algoritmos data-driven;
 - Um hipotético algoritmo aprenderia o que é uma mesa pela definição algorítmica da configuração de uma mesa;
 - Um algoritmo de Aprendizagem Automática aprende sem necessidade de que seja codificada a solução do problema;
 - Um algoritmo de Aprendizagem Automática aprende a partir de diversos exemplos de mesas, reconhecendo se um determinado objeto é ou não é uma mesa.

- Aprendizagem com Supervisão:
 - Há conhecimento sobre os resultados esperados;
 - o É possível atuar no comportamento do sistema com vista a melhorar os resultados;
 - O sistema procura fazer uma abstração dos dados de input como função para o output;
 - o É possível criar um "professor" para intervir na melhoria do sistema;
 - Problemas de otimização:
 - Se o output é caracterizado por valores discretos, designam-se problemas de classificação;
 - Se o output é caracterizado por valores contínuos, dizem-se problemas de regressão;

- Aprendizagem sem Supervisão:
 - Não há conhecimento sobre os resultados a procurar;
 - Não é possível intervir diretamente no comportamento do sistema;
 - A solução depende da capacidade de se encontrarem dependências ou estruturas entre os dados de input;
 - Não é possível o recurso ao conceito de "professor", uma vez que não há forma de afirmar quais os resultados corretos;
 - A maior desvantagem é a de as técnicas a usar terem de "descobrir" relações nos próprios dados;
 - Problemas de descoberta de conhecimento:
 - Segmentação: procura de grupos de dados que partilhem características idênticas;
 - Associação: procurar de fortes relações de semelhança entre os dados;

- Aprendizagem por Reforço:
 - Não há conhecimento sobre os resultados a procurar...
 - Mas há a capacidade para informar sobre a qualidade dos resultados (bom/mau);
 - O feedback ao sistema não é instantâneo, é atrasado no tempo;
 - A característica temporal é muito importante;
 - As ações sobre o sistema (output) alteram o estado que o próprio sistema servirá como input em iterações seguintes;
 - O sistema atua na procura de maximizar um determinado valor de recompensa (ou minimizar um valor de penalização);
 - O sistema atua sem conhecimento específico sobre o problema;
 - A resolução de problemas passa pelo balanceamento entre:
 - a exploração de novos espaços de procura (exploration)
 - a exploração do conhecimento detido pelo sistema (exploitation).

- Regressão
- Baseados em Instâncias
 - o Modelos baseados em exemplos descritores das características importantes na resolução de problemas

- Regressão
- Baseados em Instâncias
- Regularização
 - Extensão dos modelos de regressão, que favorece a seleção de modelos mais simples em detrimento de outros mais complexos,
 visando maior capacidade de generalização

- Regressão
- Baseados em Instâncias
- Regularização
- Árvores de Decisão
 - o Construção de modelos de decisão pela análise do conteúdo dos dados entre os diversos atributos do problema

- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
 - Métodos de inferência estatística fundamentados no teorema de Bayes, descrevendo a probabilidade de um evento baseada em conhecimento anterior relacionado com o evento

- Regressão
- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
- Segmentação
 - o Métodos de agrupamento de dados baseado em métricas de similaridade ou dissemelhança

- Regressão
- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
- Segmentação
- Regras de Associação
 - o Extração de regras que melhor descrevem o relacionamento entre os dados dos atributos

- Regressão
- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
- Segmentação
- Regras de Associação
- Redes Neuronais Artificiais
 - Modelos inspirados na estrutura e funcionamento do cérebro humano, destinados à generalização de comportamentos identificados nos dados

- Regressão
- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
- Segmentação
- Regras de Associação
- Redes Neuronais Artificiais
- Deep Learning
 - Uma especialização de RNAs, com especial enfoque na identificação de características (features) nos dados e em grandes volumes de informação

- Regressão
- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
- Segmentação
- Regras de Associação
- Redes Neuronais Artificiais
- Deep Learning
- Redução de Dimensionalidade
 - o Através da estrutura dos dados, procura uma descrição dos dados que reduza a sua quantidade e complexidade

- Regressão
- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
- Segmentação
- Regras de Associação
- Redes Neuronais Artificiais
- Deep Learning
- Redução de Dimensionalidade
- Ensemble
 - o Combinação de modelos de aprendizagem mais "fracos" para a criação de soluções mais robustas

- Regressão
- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
- Segmentação
- Regras de Associação
- Redes Neuronais Artificiais
- Deep Learning
 - Redução de Dimensionalidade
 - Ensemble

Universidade do Minho

Escola de Engenharia Departamento de Informática

> Aprendizagem e Extração de Conhecimento Perfil Sistemas Inteligentes @ MiEl/4° & MEl/1° – 1° Semestre

> > Cesar Analide, Filipe Gonçalves, Paulo Novais