EE798T Course Project Automatic Antenna Tracking System

Pratyush Gupta [200717] Anshuman Barnwal [200259]

1 Introduction

The problem statement is to design a ground station antenna tracking system that dynamically points a directed antenna at a moving UAV. Assuming that the drone is friendly, the antenna would also be receiving the kinematics of the UAV from some of the packets that it receives.

2 Methodology

2.1 Control Strategy for the Antenna

- 1. Introduce more advanced and optimal control algorithms for individual axis control.
- 2. Couple both controllers to get a faster response by changing both angles simultaneously.
- 3. Develop a method to predict the response time given the current orientation (ϕ, θ) and the desired orientation (ϕ^r, θ^r) , say Δt_a .
- 4. Analyse the path traced by the antenna top over the sphere S_a .

2.2 Prediction for Correct Reference Angles

We would need to do the following:

- 1. Setup the scripts that intimate kinematics data as IP packets between the onboard computer and the antenna controller.
- 2. Work out an optimal model based on current and past kinematics of the UAV that would predict the pose at $t + \Delta t$, let P(t), which can be directly translated to antenna orientation $P_a(t)$.
- 3. To maximise directed tracing, introduce waypoints instead of allowing the antenna control to directly go to $P_a(t + \Delta t_p)$.
- 4. Decide the scheme of choosing waypoints on the sphere S_a , described above.
- 5. Simulate a UAV with its pose being broadcasted on a computer and tune the above
- 6. Demonstrate a UAV localized by the motion capture setup. This would be a test environment where we would know the ground truth of the orientation of antenna as well as kinematics of the drone.
- 7. Demonstrate a UAV localized outdoors using GPS and with no ground truth.

3 Timeline

04 Mar - 09 Mar	Get familiar with current antenna control and motion capture system, demonstrate the current status in-flight and benchmark the timings
11 Mar - 16 Mar	Create control algorithms as in section 2.1
18 Mar - 23 Mar	Setup connection scripts between onboard and antenna controller. Simulate a virtual UAV and broadcast it's pose within MoCap.
01 Apr - 06 Apr	Test within MoCap using actual drone's pose and communication
08 Apr - 13 Apr	Test outdoors with only GPS pose estimates
15 Apr - 20 Apr	Buffer period

4 Hardware

We would require the access to the antenna, as well as access to the Qualysis motion capture system for getting a testing environment that provides feedback of antenna orientation and UAV pose estimates that could be treated as ground truth.

We would also require a UAV with an onboard computer and connection module for the antenna.