CSE 221: Algorithms Balanced trees

Mumit Khan

Computer Science and Engineering **BRAC** University

References

- T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Second Edition. The MIT Press, September 2001.
- Erik Demaine and Charles Leiserson, 6.046J Introduction to Algorithms. MIT OpenCourseWare, Fall 2005. Available from: ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/ 6-046JFall-2005/CourseHome/index.htm
- Robert Sedgewick, Left-Leaning Red-Black Trees. 2008.

Last modified: November 9, 2009

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.

Contents

- Balanced trees
 - Introduction
 - 2-3-4 trees
 - Red-Black trees
 - Conclusion

3 / 22

Contents

- Balanced trees
 - Introduction
 - 2-3-4 trees
 - Red-Black trees
 - Conclusion

Mumit Khan Licensed under CSE 221: Algorithms

Need for balanced trees

• The lookup and insertion time in a binary search tree is O(h):

```
Best case when the tree is balanced, h = \lfloor \lg n \rfloor = O(\lg n)
Worst case when the tree is linear, then h = O(n)
```

Mumit Khan Licensed under [™] CSE 221: Algorithms 4/22

Best case when the tree is balanced,
$$h = \lfloor \lg n \rfloor = O(\lg n)$$

Worst case when the tree is *linear*, then $h = O(n)$

Licensed under @@@@ 4 / 22 Mumit Khan CSE 221: Algorithms

Best case when the tree is balanced, $h = \lfloor \lg n \rfloor = O(\lg n)$ Worst case when the tree is *linear*, then h = O(n)


```
Best case when the tree is balanced, h = |\lg n| = O(\lg n)
Worst case when the tree is linear, then h = O(n)
```

• So how can we guarantee $O(\lg n)$ performance in a binary search tree?

Need for balanced trees

• The lookup and insertion time in a binary search tree is O(h):

```
Best case when the tree is balanced, h = |\lg n| = O(\lg n)
Worst case when the tree is linear, then h = O(n)
```

• So how can we guarantee $O(\lg n)$ performance in a binary search tree? Keep it balanced of course!

Need for balanced trees

• The lookup and insertion time in a binary search tree is O(h):

Best case when the tree is balanced, $h = |\lg n| = O(\lg n)$ Worst case when the tree is *linear*, then h = O(n)

• So how can we guarantee $O(\lg n)$ performance in a binary search tree? Keep it balanced of course!

How do we balance a tree?

Best case when the tree is balanced, $h = |\lg n| = O(\lg n)$ Worst case when the tree is *linear*, then h = O(n)

• So how can we guarantee $O(\lg n)$ performance in a binary search tree? Keep it balanced of course!

How do we balance a tree?

 Self-balancing binary search trees – Red-Black, AVL, etc. trees.

Best case when the tree is balanced, $h = |\lg n| = O(\lg n)$ Worst case when the tree is *linear*, then h = O(n)

• So how can we guarantee $O(\lg n)$ performance in a binary search tree? Keep it balanced of course!

How do we balance a tree?

- Self-balancing binary search trees Red-Black, AVL, etc. trees.
- 2 Bounded depth n-ary trees 2-3-4, B, etc. trees.

Mumit Khan

Contents

- Balanced trees
 - Introduction
 - 2-3-4 trees
 - Red-Black trees
 - Conclusion

2-3-4 trees

Definition (2-3-4 tree)

Generalize binary search tree to allow multiple keys per node, and ensure that all the leaves are at the same depth.

Mumit Khan Licensed under CSE 221: Algorithms 6/22

2-3-4 trees

Definition (2-3-4 tree)

Generalize binary search tree to allow multiple keys per node, and ensure that all the leaves are at the same depth.

Result: perfectly balanced tree

Definition (2-3-4 tree)

Generalize binary search tree to allow multiple keys per node, and ensure that all the leaves are at the same depth.

Result: perfectly balanced tree

2-node one key, two children (just like in a BST)

3-node two keys, three children

4-node three keys, four children

Definition (2-3-4 tree)

Generalize binary search tree to allow multiple keys per node, and ensure that all the leaves are at the same depth.

Result: perfectly balanced tree

2-node one key, two children (just like in a BST)

3-node two keys, three children

4-node three keys, four children

Courtesy of Robert Sedgewick http://www.cs.princeton.edu/~rs/talks/LLRB/RedBlack.pdf

Mumit Khan

• Compare search key against keys in a node.

Balanced trees

Searching in a 2-3-4 tree

- Compare search key against keys in a node.
- Find interval containing associated search key.

Balanced trees

Mumit Khan Licensed under

Searching in a 2-3-4 tree

- Compare search key against keys in a node.
- Find interval containing associated search key.

Balanced trees

Recursively follow associated link.

Mumit Khan Licensed under @@@@

Searching in a 2-3-4 tree

- Compare search key against keys in a node.
- Find interval containing associated search key.

Balanced trees

Recursively follow associated link.

Mumit Khan Licensed under CSE 221: Algorithms 7 / 22

- Search to bottom for insertion position of key B.
- 2-node at bottom: convert to 3-node

Mumit Khan CSE 221: Algorithms 8 / 22 Licensed under @

- Search to bottom for insertion position of key B.
- 2-node at bottom: convert to 3-node

Mumit Khan

Licensed under @

CSE 221: Algorithms

- Search to bottom for insertion position of key X.
- 3-node at bottom: convert to 4-node

Mumit Khan CSE 221: Algorithms 9 / 22 Licensed under

9 / 22

Inserting into a 2-3-4 tree

- Search to bottom for insertion position of key X.
- 3-node at bottom: convert to 4-node

Mumit Khan CSE 221: Algorithms Licensed under

- Search to bottom for insertion position of key H.
- 4-node at bottom: no room for key!
- Must split node to make room for new key.

Mumit Khan Licensed under CSE 221: Algorithms 10 / 22

- Search to bottom for insertion position of key H.
- 4-node at bottom: no room for key!
- Must split node to make room for new key.

Mumit Khan Licensed under CSE 221: Algorithms 10 / 22

- Search to bottom for insertion position of key H.
- 4-node at bottom: no room for key!
- Must split node to make room for new key.

Licensed under CSE 221: Algorithms Mumit Khan 10 / 22

Splitting a 4-node in a 2-3-4 tree

Idea is to move the middle element to the parent, making room for one more key.

Mumit Khan

11 / 22

Idea is to move the middle element to the parent, making room for one more key.

Mumit Khan Licensed under CSE 221: Algorithms Idea is to move the middle element to the parent, making room for one more key.

Mumit Khan

11 / 22

Splitting a 4-node in a 2-3-4 tree

Idea is to move the middle element to the parent, making room for one more key.

Question

What if the parent is a 4-node too!

Mumit Khan Licensed under @@@@ CSE 221: Algorithms

Splitting a 4-node in a 2-3-4 tree

Idea is to move the middle element to the parent, making room for one more key.

Question

What if the parent is a 4-node too!

Solution: Split the parent too, potentially creating a new root.

Mumit Khan Licensed under @@@@ CSE 221: Algorithms 11/22

Insertion in action

Insert 4 into an empty 2-3-4 tree

Mumit Khan

Insert 4 into an empty 2-3-4 tree – done

CSE 221: Algorithms 12 / 22 Mumit Khan Licensed under @@@@

Insert 6

Mumit Khan

Insertion in action

Insert 6 – done

Mumit Khan

Insertion in action

Insert 12

Insert 12 – done

Insert 15

Insert 15: No room, so split node

Insert 15: Room available after splitting

Mumit Khan Licensed under CSE 221: Algorithms 12 / 22

12 / 22

Insertion in action

Mumit Khan Licensed under CSE 221: Algorithms

Insertion in action

Mumit Khan

Licensed under @@@@

CSE 221: Algorithms

12 / 22

Insertion in action

Mumit Khan CSE 221: Algorithms Licensed under

Mumit Khan Licensed under @@@@ CSE 221: Algorithms 12 / 22

12 / 22

Mumit Khan CSE 221: Algorithms Licensed under

Insertion in action

Mumit Khan Licensed under @@@@ CSE 221: Algorithms 12 / 22

Licensed under @@@@

Insertion in action

Insertion in action

Insert 8: Room available after splitting

CSE 221: Algorithms 12 / 22 Mumit Khan Licensed under

Mumit Khan CSE 221: Algorithms 12 / 22 Licensed under

Insertion in action

Mumit Khan Licensed under [™] CSE 221: Algorithms 12 / 22

• Search and insert operations on a 2-3-4 tree is bounded by the height of the tree, so O(h).

Balanced trees

13 / 22

- Search and insert operations on a 2-3-4 tree is bounded by the height of the tree, so O(h).
- Maximum height occurs when all nodes are 2-nodes, so for a tree with n keys, we have $n+1 > 2^h$, since there are n+1external nodes at height h.

Licensed under @@@@ CSE 221: Algorithms Mumit Khan

Balanced trees

- Search and insert operations on a 2-3-4 tree is bounded by the height of the tree, so O(h).
- Maximum height occurs when all nodes are 2-nodes, so for a tree with n keys, we have $n+1 > 2^h$, since there are n+1external nodes at height h.
- Minimum height occurs when all nodes are 4-nodes, so for a tree with *n* keys: we have $n+1 \le 4^h$. So, $n+1 \le 4^h = 2^{2h}$.

Analysis of 2-3-4 tree

- Search and insert operations on a 2-3-4 tree is bounded by the height of the tree, so O(h).
- Maximum height occurs when all nodes are 2-nodes, so for a tree with n keys, we have $n+1 > 2^h$, since there are n+1external nodes at height h.
- Minimum height occurs when all nodes are 4-nodes, so for a tree with n keys: we have $n+1 < 4^h$. So, $n+1 < 4^h = 2^{2h}$.
- This provides bounds on n. Taking logarithms of both sides:

$$h \leq \lg(n+1) \leq 2h$$

This proves that $h = \Theta(\lg n)$.

Balanced trees

- Search and insert operations on a 2-3-4 tree is bounded by the height of the tree, so O(h).
- Maximum height occurs when all nodes are 2-nodes, so for a tree with n keys, we have $n+1 > 2^h$, since there are n+1external nodes at height h.
- Minimum height occurs when all nodes are 4-nodes, so for a tree with n keys: we have $n+1 < 4^h$. So, $n+1 < 4^h = 2^{2h}$.
- This provides bounds on n. Taking logarithms of both sides:

$$h \leq \lg(n+1) \leq 2h$$

This proves that $h = \Theta(\lg n)$.

• The bounded depth property guarantees that all operations are $O(h) = O(\lg n)$ in a 2-3-4 tree.

Summary of 2-3-4 trees

Positives

Summary of 2-3-4 trees

Positives

• All leaves are the same depth – bounded depth.

- All leaves are the same depth bounded depth.
- ② Search and insert operations are $O(\lg n)$ in the worst case.

- All leaves are the same depth bounded depth.
- 2 Search and insert operations are $O(\lg n)$ in the worst case.

Negatives Different types of nodes in the tree

- All leaves are the same depth bounded depth.
- 2 Search and insert operations are $O(\lg n)$ in the worst case.

Negatives Different types of nodes in the tree – complicates the data structures needed.

Summary of 2-3-4 trees

Positives

- All leaves are the same depth bounded depth.
- 2 Search and insert operations are $O(\lg n)$ in the worst case

Negatives Different types of nodes in the tree – complicates the data structures needed.

Key question

Is there something that provides $O(\lg n)$ performance with the same advantages of binary tree format?

- All leaves are the same depth bounded depth.
- 2 Search and insert operations are $O(\lg n)$ in the worst case

Negatives Different types of nodes in the tree – complicates the data structures needed.

Key question

Is there something that provides $O(\lg n)$ performance with the same advantages of binary tree format? YES - Red-Black trees!

15 / 22

Contents

- Balanced trees
 - Introduction
 - 2-3-4 trees
 - Red-Black trees
 - Conclusion

Definition

Red-Black tree Red-Black tree is a binary search tree with the following properties:

Definition

Red-Black tree Red-Black tree is a binary search tree with the following properties:

• Every node is either red or black.

Definition

Red-Black tree Red-Black tree is a binary search tree with the following properties:

- Every node is either red or black.
- 2 The root and external nodes (leaves) are black.

Definition

Red-Black tree Red-Black tree is a binary search tree with the following properties:

- Every node is either red or black.
- 2 The root and external nodes (leaves) are black.
- If a node is red, then its parent is black.

16 / 22

Definition

Red-Black tree Red-Black tree is a binary search tree with the following properties:

- Every node is either red or black.
- 2 The root and external nodes (leaves) are black.
- 3 If a node is red, then its parent is black.
- All simple paths from any node x to a descendant external node or leaf have the same number of black nodes.

Mumit Khan Licensed under CSE 221: Algorithms

Definition

Red-Black tree Red-Black tree is a binary search tree with the following properties:

- Every node is either red or black.
- The root and external nodes (leaves) are black.
- If a node is red, then its parent is black.
- 4 All simple paths from any node x to a descendant external node or leaf have the same number of black nodes. This number is called the black-height(x).

Definition

Red-Black tree Red-Black tree is a binary search tree with the following properties:

- Every node is either red or black.
- 2 The root and external nodes (leaves) are black.
- 3 If a node is red, then its parent is black.
- All simple paths from any node x to a descendant external node or leaf have the same number of black nodes. This number is called the black-height(x).

The data structure needed for a Red-Black tree is a binary search tree with an extra color bit for each node.

Mumit Khan Licensed under © CSE 221: Algorithms 16/22

Mumit Khan

Licensed under

1. Every node is either red or black.

Mumit Khan Licensed under @@@@ CSE 221: Algorithms 17 / 22

2. The root and external nodes (leaves) are black.

Mumit Khan Licensed under CSE 221: Algorithms 17 / 22

3. If a node is red, then its parent is black.

Mumit Khan Licensed under @@@@ CSE 221: Algorithms 17 / 22

4. All simple paths from any node x to a descendant external node or leaf have the same number of black nodes = black-height(x).

2-node

3-node

4-node

2-node

3-node

4-node

3-node

4-node

Mumit Khan

Licensed under

Mumit Khan

Licensed under

Mumit Khan

Licensed under

Key observation

Red-black tree is simply another way of representing a 2-3-4 tree!

Mumit Khan CSE 221: Algorithms 18 / 22 Licensed under

Balanced trees

Height of a red-black tree

 Merge the red nodes into their black parents.

 Merge the red nodes into their black parents.

- Merge the red nodes into their black parents.
- Produces a 2-3-4 tree with height h'.

Licensed under @@@@ 20 / 22 Mumit Khan CSE 221: Algorithms

• We have $h' \ge h/2$, since at most half the nodes on any path are red.

Height of a red-black tree (continued)

- We have $h' \ge h/2$, since at most half the nodes on any path are red.
- Number of external nodes or leaves is n + 1, so we have:

$$n+1 \ge 2^{h'} \Rightarrow \lg(n+1) \ge h' \ge h/2 \Rightarrow h \le 2\lg(n+1).$$

Height of a red-black tree (continued)

- We have $h' \geq h/2$, since at most half the nodes on any path are red.
- Number of external nodes or leaves is n + 1, so we have:

$$n+1 \ge 2^{h'} \Rightarrow \lg(n+1) \ge h' \ge h/2 \Rightarrow h \le 2\lg(n+1).$$

Theorem

A red-black tree with n keys has height $h \le 2 \lg(n+1) = O(\lg n)$.

Mumit Khan Licensed under CSE 221: Algorithms 20 / 22

Summary of red-black trees

Positives

21 / 22

Summary of red-black trees

Positives

● Very simple data structure – a binary search tree with an extra bit for encoding the color.

Mumit Khan Licensed under CSE 221: Algorithms

Positives

- Very simple data structure a binary search tree with an extra bit for encoding the color.
- 2 Search and insert operations are $O(\lg n)$ in the worst case.

Positives

- Very simple data structure a binary search tree with an extra bit for encoding the color.
- ② Search and insert operations are $O(\lg n)$ in the worst case.

Negatives Insert and remove operations require a series of rotations to maintain the black-height property.

Summary of red-black trees

Positives

- Very simple data structure a binary search tree with an extra bit for encoding the color.
- ② Search and insert operations are $O(\lg n)$ in the worst case.

Negatives Insert and remove operations require a series of rotations to maintain the black-height property.

Key question

How do Red-black trees compare with 2-3-4 trees in terms of performance and data structure complexity?

Conclusion

• Binary search tree guarantees a performance of O(h), but h can vary from $O(\lg n)$ in the best-case to O(n) in the worst-case.

22 / 22

- Binary search tree guarantees a performance of O(h), but h can vary from $O(\lg n)$ in the best-case to O(n) in the worst-case.
- To have $O(\lg n)$ worst-case performance, the solution is use balanced trees.

Licensed under @@@@ CSE 221: Algorithms Mumit Khan

Conclusion

- Binary search tree guarantees a performance of O(h), but h can vary from $O(\lg n)$ in the best-case to O(n) in the worst-case.
- To have $O(\lg n)$ worst-case performance, the solution is use balanced trees. Two approaches: Bounded depth *n*-ary tree in which that all the leaves are at the same depth.

22 / 22

Conclusion

- Binary search tree guarantees a performance of O(h), but h can vary from $O(\lg n)$ in the best-case to O(n) in the worst-case.
- To have O(lg n) worst-case performance, the solution is use balanced trees. Two approaches:
 Bounded depth n-ary tree in which that all the leaves are at the same depth. Example: B-trees, 2-3-4 trees.

Mumit Khan Licensed under CSE 221: Algorithms

Conclusion

- Binary search tree guarantees a performance of O(h), but h can vary from $O(\lg n)$ in the best-case to O(n) in the worst-case.
- To have $O(\lg n)$ worst-case performance, the solution is use balanced trees. Two approaches:
 - Bounded depth *n*-ary tree in which that all the leaves are at the same depth. Example: B-trees, 2-3-4 trees.
 - Self-balancing binary trees Binary trees that are self-balancing through a series of transformations (AVL trees), or use pseudo-depth (Red-Black trees).

worst-case.

• Binary search tree guarantees a performance of O(h), but h can vary from $O(\lg n)$ in the best-case to O(n) in the

- To have $O(\lg n)$ worst-case performance, the solution is use balanced trees. Two approaches:
 - Bounded depth *n*-ary tree in which that all the leaves are at the same depth. Example: B-trees, 2-3-4 trees.
 - Self-balancing binary trees Binary trees that are self-balancing through a series of transformations (AVL trees), or use pseudo-depth (Red-Black trees).

Questions to ask (and remember)

Conclusion

- Binary search tree guarantees a performance of O(h), but h can vary from $O(\lg n)$ in the best-case to O(n) in the worst-case.
- To have $O(\lg n)$ worst-case performance, the solution is use balanced trees. Two approaches:
 - Bounded depth *n*-ary tree in which that all the leaves are at the same depth. Example: B-trees, 2-3-4 trees.
 - Self-balancing binary trees Binary trees that are self-balancing through a series of transformations (AVL trees), or use pseudo-depth (Red-Black trees).

Questions to ask (and remember)

• What's the equivalence of a 2-3-4 tree and Red-Black tree?

- Binary search tree guarantees a performance of O(h), but h can vary from $O(\lg n)$ in the best-case to O(n) in the worst-case.
- To have $O(\lg n)$ worst-case performance, the solution is use balanced trees. Two approaches:
 - Bounded depth *n*-ary tree in which that all the leaves are at the same depth. Example: B-trees, 2-3-4 trees.
 - Self-balancing binary trees Binary trees that are self-balancing through a series of transformations (AVL trees), or use pseudo-depth (Red-Black trees).

Questions to ask (and remember)

- What's the equivalence of a 2-3-4 tree and Red-Black tree?
- Why is the data structure in implementing a 2-3-4 tree considered complex?

- Binary search tree guarantees a performance of O(h), but h can vary from $O(\lg n)$ in the best-case to O(n) in the worst-case.
- To have $O(\lg n)$ worst-case performance, the solution is use balanced trees. Two approaches:
 - Bounded depth *n*-ary tree in which that all the leaves are at the same depth. Example: B-trees, 2-3-4 trees.
 - Self-balancing binary trees Binary trees that are self-balancing through a series of transformations (AVL trees), or use pseudo-depth (Red-Black trees).

Questions to ask (and remember)

- What's the equivalence of a 2-3-4 tree and Red-Black tree?
- Why is the data structure in implementing a 2-3-4 tree considered complex?
- What are some of the disadvantages of a Red-Black tree?