

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Sia $Ax=b\,\mathrm{un}$ sistema lineare. Quale delle seguenti affermazioni è corretta:

($\Delta x = ext{errore su}\,x, \; \Delta b = ext{errore su}\,b$)

- a. Nessuna delle precedenti.
- $\bigcirc \ \ \mathbf{b}. \quad \tfrac{|x||}{||\Delta x||} \leq ||A||||A^{-1}||\tfrac{||b||}{||\Delta b||}$

La risposta corretta è: $rac{||\Delta x||}{||x||} \leq ||A||||A^{-1}|| rac{||\Delta b||}{||b||}$

Domanda 2

Risposta non data

Punteggio max.: 1,00 Siano x = 3.89167 e y = 0.45678.

Quanto vale e z = x - y in $\mathcal{F}(10, 4, -5, 5)$?

- a. 0.3434 × 10⁰.
- O b. 3.434.
- O c. 3.4343.

La risposta corretta è: 3.434.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Se A è una matrice n imes n definita positiva, allora:

- a. Gli autovalori di A sono tutti non negativi.
- \bigcirc b. A è simmetrica.
- ⊙ c. Gli autovalori di A sono tutti positivi. ✓

La risposta corretta è: Gli autovalori di A sono tutti positivi.

Domanda 4

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Se A è una matrice n imes n allora:

- \bigcirc a. $||A||_1 = \rho(A^T A)$.
- b. Nessuna delle precedenti.
- $\bigcirc \ {\rm c.} \ ||A||_1 = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2}.$

La risposta corretta è: Nessuna delle precedenti.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Se A è una matrice quadrata n imes n, allora il numero di condizionamento è definito:

$$\bigcirc \text{ a. } K(A) = ||A^T||||A||.$$

b.
$$K(A) = ||A^{-1}||||A||$$
.
✓

O c. Sono entrambe esatte.

La risposta corretta è: $K(A) = ||A^{-1}||||A||$.

Domanda 6

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Il problema lineare ai minimi quadrati $min||Ax-b||_2^2$, con A matrice $m\times n$ e (m>n), si puo' risolvere utilizzando le equazioni normali quando:

$$\bigcap$$
 a. $rg(A) = 0$.

$$\bigcirc$$
 b. $rg(A) = m$.

$$igotimes$$
 c. $rg(A) = n$.

La risposta corretta è: rg(A) = n.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Sia $\Pi(x)$ il polinomio che interpola i punti $(x_i,f(x_i))$, con $\,i=0,\ldots,n.$ Vale:

- \bigcirc a. Se $n \to \infty$ dell'errore $\Pi(x) f(x) \to \infty$.
- \bigcirc b. Se $n \to \infty$ dell'errore $\Pi(x) f(x) \to 0$.
- c. Nessuna delle precedenti.

La risposta corretta è: Nessuna delle precedenti.

Domanda 8

Risposta corretta

Punteggio attenuto 1,00 su 1,00 Il Metodo di Bisezione per risolvere l'equazione F(x)=0 in [a,b] con F(a)F(b)<0:

- a. Converge ad una soluzione dell'equazione in [a, b].
- \bigcirc b. Converge all'unica soluzione dell'equazione in [a,b].
- \bigcirc c. Non converge in [a,b].

La risposta corretta è: Converge ad una soluzione dell'equazione in [a,b].

Risposta corretta

Punteggio attenuto 1,00 su 1,00 Sia $f:\mathbb{R}^n o\mathbb{R}$ differenziabile. Vale:

- igodeligap a. Se x^* è un minimo globale per f allora $abla f(x^*) = 0$. \checkmark
- \bigcirc b. Se $\nabla f(x^*) = 0$ allora x^* è un minimo locale per f.
- c. Nessuna delle precedenti.

La risposta corretta è: Se x^* è un minimo globale per f allora $\nabla f(x^*) = 0$.

Domanda 10

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Se

$$U = \begin{bmatrix} 2 & 1 & 2 \\ 3 & 3 & 3 \\ -\frac{2}{3} & 2 & 1 \\ \frac{1}{3} & 3 & 3 \\ \frac{1}{3} & 2 & -\frac{2}{3} \end{bmatrix}$$

Allora:

- a. U è simmetrica e definita positiva.
- b. U è ortogonale. ✓
- c. U è simmetrica ma non definita positiva.

La risposta corretta è: U è ortogonale.

Risposta errata

Punteggio ottenuto 0,00 su 1,00 Sia ${\cal A}$ la matrice:

$$A = \begin{bmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \\ 0.5 & 0.6 \end{bmatrix}$$

Quale è il risultato dell'istruzione Python B = A[-1,:]?

Scegli un'alternativa:

$$\begin{tabular}{c} \bullet & \text{a.} \\ & B = \begin{bmatrix} 0.2 \\ 0.4 \\ 0.6 \end{bmatrix} \\ \end{tabular}$$

- O b. $B = [0.1 \ 0.2]$
- C. Nessuna delle precedenti

La risposta corretta è: Nessuna delle precedenti

Li	a risposta corretta è: Sono entrambe errate.
Risposta corretta Punteggio ottenuto 1,00 su 1,00	Se $A=U\Sigma V^T$ è la decomposizione SVD di una matrice A $m\times n$, allora: a. Gli elementi della diagonale di Σ sono strettamente positivi. b. Nessuna delle precedenti. c. Gli elementi della diagonale di Σ sono non negativi. \checkmark
Li	.a risposta corretta è: Gli elementi della diagonale di Σ sono non negativi.

Risposta non data

Punteggio max: 1,00 Se A è una matrice $n \times n$ simmetrica, allora:

- a. A non ammette la decomposizione di Cholesky.
- b. A ammette la decomposizione di Cholesky solo se è e definita positiva.
- A ammette sempre la decomposizione di Cholesky.

La risposta corretta è: A ammette la decomposizione di Cholesky solo se è e definita positiva.

Domanda 17

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia A n imes n non singolare, con A = LR fattorizzazione di Gauss, allora la soluzione del sistema Ax = b si ottiene risolvendo:

$$\bigcirc$$
 a. $\begin{cases} Lx = y \\ Rx = y \end{cases}$

$$lacktriangledown$$
 b. $\begin{cases} Ly=b \ \checkmark \\ Rx=y \end{cases}$ \circlearrowleft c. $\begin{cases} Ly=Pb \\ Rx=y \end{cases}$

$$\bigcirc$$
 c.
$$\begin{cases} Ly = Pb \\ Rx = y \end{cases}$$

La risposta corretta è: $\left\{ egin{array}{l} Ly=b \\ Rx=y \end{array}
ight.$

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Sia $f: \mathbb{R}^2 \to \mathbb{R}$ definita come $f(x_1,x_2)=x_1^2+x_2^2$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(1,1)^T$ e $\alpha=1/2$, allora:

- \bigcirc a. $x^{(1)} = (2, 2)^T$.
- **●** b. $x^{(1)} = (0,0)^T$. ✓
- \bigcirc c. $x^{(1)} = (3/2, 3/2)^T$.

La risposta corretta è: $x^{(1)} = (0,0)^T$.

Domanda 19

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Un metodo di discesa garantisce:

- \bigcirc a. $f(x_k) < f(x_{k+1}) \quad \forall k$
- \bigcirc b. $f(x_k) = f(x_{k+1}) \quad \forall \ k$
- c. Nessuna delle precedenti.

La risposta corretta è: Nessuna delle precedenti.

