# **ИТМО**

# РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3.11

"Вынужденные электромагнитные колебания в последовательном колебательном контуре"

Группа: 1.3.1

Студент: Стафеев И.А., Голованов Д.И., Да-

нилов Н.О., Игнатьев А.Ю. Преподаватель: Рудель А.Е. К работе допущен: Работа выполнена: Отчет принят:

#### 1 Цель работы

- Изучение вынужденных колебаний и явления резонанса напряжений в последовательном колебательном контуре
- Построение резонансной кривой и определение резонансной частоты
- Определение активного сопротивления и добротности колебательного контура

## 2 Объект исследования

Вынужденных колебаний и явление резонанса напряжений в последовательном колебательном контуре

#### 3 Метод экспериментального исследования

Экспериментальный

## 4 Рабочие формулы и исходные данные

1. Закон Ома для неоднородного участка цепи, содержащего катушку индуктивности

$$IR = \Delta \varphi + \mathcal{E}_{SI} + \mathcal{E}(t) \tag{1}$$

2. ЭДС самоиндукции

$$\mathscr{E}_{SI} = -L\frac{dI}{dt} \tag{2}$$

3. Переписанный закон Ома 1, где  $\omega_0=\frac{1}{\sqrt{LC}}$  - частота собственных свободных колебаний в LC-контуре без затуханий,  $\beta=\frac{R}{2L}$  - коэффициент затухания

$$\frac{d^2q}{dt^2} + 2\beta \frac{dq}{dt} + \omega_0^2 q = \frac{\mathcal{E}_0}{L} \cos \Omega t \Leftrightarrow U_R(t) + U_C(t) + U_L(t) = \mathcal{E}_0 \cos \Omega t$$
 (3)

4. Частное решение дифференциального уравнения

$$q(t) = q_0 \cos(\Omega t - \psi) \tag{4}$$

5. Сила тока в LC-контуре,  $\varphi=\psi-\frac{\pi}{2}$  - сдвиг фаз между током и внешней ЭДС,  $I_0=\Omega q_0$  - амплитуда силы тока

$$I(t) = \frac{dq}{dt} = I_0 - \Omega q_0 \sin(\Omega t - \psi) = I_0 \cos(\Omega t - \psi + \frac{\pi}{2}) = I_0 \cos(\Omega t - \varphi)$$
 (5)

6. Напряжение на резисторе

$$U_R(t) = I_0 R \cos(Gt - \varphi) \tag{6}$$

7. Напряжение на катушке индуктивности

$$U_L(t) = L\frac{dI}{dt} = -\Omega L I_0 \sin\left(\Omega t - \varphi\right) = \Omega L I_0 \cos\left(\Omega t - \varphi + \frac{\pi}{2}\right)$$
 (7)

8. Импеданс цепи

$$X(\Omega) = \sqrt{R^2 + \left(\Omega L - \frac{1}{\Omega C}\right)^2} \tag{8}$$

9. Амплитуда силы тока в цепи

$$I_0(\Omega) = \frac{\mathscr{E}_0}{\sqrt{R^2 + \left(\Omega L - \frac{1}{\Omega C}\right)^2}} \tag{9}$$

10. Фазовый сдвиг между током и ЭДС источника

$$\varphi\left(\Omega\right) = \arctan\left(\frac{\Omega L - \frac{1}{\Omega C}}{R}\right) \tag{10}$$

11. Резонансная частота для активного сопротивления

$$\Omega_{R_{res}} = \Omega_0 = \frac{1}{\sqrt{L_C}} \tag{11}$$

12. Резонансная частота для емкости

$$\Omega_{C_{res}} = \Omega_0 \sqrt{1 - 2\left(\frac{\beta}{\Omega_0}\right)^2} \tag{12}$$

13. Резонансная частота для индуктивности

$$\Omega_{L_{res}} = \frac{\Omega_0}{\sqrt{1 - 2\left(\frac{\beta}{\Omega_0}\right)^2}} \tag{13}$$

14. Добротность контура

$$Q = \frac{U_{C_{\text{res}}}}{\mathcal{E}_{0}} \tag{14}$$

15. Связь добротности и ширины резонансной кривой,  $\Delta\Omega$  - ширина резонансной кривой на высоте равной  $\frac{1}{\sqrt{2}}$  от максимальной (в резонансе)

$$Q = \frac{\Omega_0}{\Delta\Omega} \tag{15}$$

# 5 Измерительные приборы:

| № | Наименование                                          | Предел измерений     | $\Delta_{\scriptscriptstyle  m M}$ |
|---|-------------------------------------------------------|----------------------|------------------------------------|
| 1 | Полоса пропускания                                    | 0 МГц - 100 МГц      |                                    |
| 2 | Коэффициент отклонения                                | 1 мВ/дел - 10 В/дел  | ±3%                                |
| 3 | Коэффициент разверстки                                | 1 нс/дел - 100 с/дел | $\pm 0.002\%$                      |
| 4 | Частотный диапазон синуса и меандра                   | 1 мкГц - 10 МГц      | $\pm 10^{-4}$                      |
| 5 | Частотный диапазон пилообразного сигнала              | 1 мкГц - 300 кГц     | $\pm 10^{-4}$                      |
| 6 | Установки уровня на 1 к $\Gamma$ ц (ампл. $A \ge 1$ ) | 1 мкВ - 6 B          | $\pm (0.01A + 10 \text{MB})$       |

Таблица 1 — Измерительные приборы

# 6 Схема установки

Схема лабораторной установки показана на рисунке 1:

- 1. Синусоидальный сигнал с генератора (1) подается на блок  $\Phi\Pi$ 9-11 (2), содержащий катушку индуктивности
- 2. Осциллограф (3) показывает выходное (измеряемое на конденсаторе) напряжение.
- 3. Блок "Магазин емкостей" (4) используется для выбора емкости конденсатора, включенного в колебательный контур.



Рисунок 1 — Лабораторная установка



Рисунок 2 — Схема лабораторной установки

## Прямые измерения

Таблица 2 — Измерения для задания N1

| f, Гц                 | 1092 | 1125 | 1158 | 1192 | 1225 | 1258 | 1292 | 1392 | 1492 | 1592 | 1692 | 1792 | 1892 | 1992 | 2092 |
|-----------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| $U_{\text{вых}}$ , мВ | 608  | 712  | 792  | 832  | 856  | 824  | 796  | 680  | 568  | 480  | 408  | 344  | 312  | 278  | 296  |

Таблица 3 — Измерения для задания №2

| $C$ , н $\Phi$ | $f_{\mathrm{pac}_{}^{\mathrm{q}}},$ Гц | f, Гц | $K_x$ , MKC | $K_y$ , мВ |
|----------------|----------------------------------------|-------|-------------|------------|
| 1              | 15915                                  | 12476 | 20          | 100        |
| 3              | 9188                                   | 7519  | 50          | 200        |
| 10             | 5032                                   | 4033  | 50          | 100        |
| 30             | 2905                                   | 2316  | 100         | 200        |
| 100            | 1589                                   | 1208  | 200         | 200        |
| 300            | 915                                    | 680   | 500         | 200        |

# Расчёт результатов косвенных измерений

$$\begin{split} f_{\mathrm{pac}_{}^{\mathbf{H}}} &= \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} = \frac{1}{2\pi} \sqrt{\frac{1}{0.1~\Gamma_{\mathrm{H}} \cdot 10^5~\Phi} - \frac{75^2~\mathrm{Om}^2}{4 \cdot 0.1^2~\Gamma_{\mathrm{H}}^2}} = 1590~\Gamma\mathrm{I}$$
 
$$\Omega_0 &= 2\pi \cdot f_{\mathrm{pac}_{}^{\mathbf{H}}} = 9993~\mathrm{pag}/\mathrm{c}. \end{split}$$

По графику 3 определяем, что  $f=1225~\Gamma \text{ц} \neq f_{\text{расч}}$  По графику определяем  $\Delta\Omega=367~\Gamma \text{ц}.~Q_{\text{расч}}=\frac{f}{\Delta\Omega}=\frac{1225~\Gamma \text{ц}}{367~\Gamma \text{ц}}=3.34$   $Q_{\text{теор}}=\frac{1}{R}\sqrt{\frac{L}{C}}=\frac{1}{75~\text{Ом}}\sqrt{\frac{0.1~\Gamma \text{h}}{10^5~\Phi}}=13.33.$  Значение отличается от посчитанного на графике.

С помощью линейной регрессии была аппроксимирована зависимость  $\Omega_0^2=\frac{1}{LC}-\frac{R^2}{4L^2}$   $k=\frac{1}{L}=6.16\Leftrightarrow L=\frac{1}{6.16}=0.16$  Гн

$$-b = \frac{R^2}{4L^2} = -4819734 \Leftrightarrow R = \sqrt{4L^2 \cdot b} = \sqrt{4 \cdot 0.16^2 \cdot 4819734} = 713$$
Ом

# 9 Расчет погрешностей

$$\begin{split} & \Delta_L = L \cdot 0.1 \\ & \Delta_R = R \cdot 0.1 \\ & \Delta_C = C \cdot 0.1 \\ & \frac{d\Omega}{dL} = -\frac{2L - C\,R^2}{2\,C\,L\,\sqrt{\frac{4L - C\,R^2}{C}}\,|L|}}; \; \frac{d\Omega}{dC} = -\frac{|L|}{L\,C^2\,\sqrt{-\frac{R^2\,C - 4\,L}{C}}}; \; \frac{d\Omega}{dR} = -\frac{R}{2|L|\sqrt{-\frac{C\,R^2 - 4\,L}{C}}} \\ & \Delta_\Omega = \sqrt{(\frac{d\Omega}{dL}\Delta_L)^2 + (\frac{d\Omega}{dC}\Delta_C)^2 + (\frac{d\Omega}{dR}\Delta_R)^2} = 79.9 \approx 80 \\ & \frac{dQ}{dL} = \frac{1}{2CR\,\sqrt{\frac{L}{C}}}; \; \frac{dQ}{dC} = -\frac{L}{2\,R\,\sqrt{\frac{L}{C}}\,C^2}; \; \frac{dQ}{dR} = -\frac{\sqrt{L}}{\sqrt{C}\,R^2} \\ & \Delta_Q = \sqrt{(\frac{dQ}{dL}\Delta_L)^2 + (\frac{dQ}{dC}\Delta_C)^2 + (\frac{dQ}{dR}\Delta_R)^2} = 1.63 \\ & \Delta_{L_{\mathrm{pacu}}} = 2 \cdot \mathrm{stderr}(L_{\mathrm{pacu}}) = 2 \cdot 0.0094 \; \Gamma_{\mathrm{H}} = 0.0188 \approx 0.02 \\ & \Delta_{R_{\mathrm{pacu}}} = 2 \cdot \mathrm{stderr}(R_{\mathrm{pacu}}) = 379 \; \mathrm{OM} \end{split}$$

stderr получены во время линейной регресии с помощью кода.

#### 10 Графики



Рисунок 3 — График зависимости амплитуды  $U_{\text{вых}}$  от частоты  $\omega$ 



Рисунок 4 — График зависимости  $\Omega_0^2(\frac{1}{C})$ 

(ось oX логарифмическая)

#### 11 Окончательные результаты

$$\begin{split} f_{\text{теор}} &= (1590 \pm 80) \; \Gamma \text{п;} \; \varepsilon_{f_{\text{теор}}} = \frac{80}{1590} 100\% = 5\% \\ f_{\text{эксп}} &= 1225 \; \Gamma \text{п} \not\in (1590 \pm 80) \; \Gamma \text{п} \\ Q_{\text{теор}} &= (13.33 \pm 1.63); \; \varepsilon_{Q_{\text{теор}}} = \frac{1.63}{13.33} \cdot 100\% = 12\% \\ Q_{\text{эксп}} &= 3.34 \not\in (13.33 \pm 1.63) \\ L_{\text{эксп}} &= (0.16 \pm 0.02) \; \Gamma \text{h}; \; \varepsilon_{L_{\text{эксп}}} = \frac{0.02}{0.16} \cdot 100\% = 13\% \\ L &= 0.1 \; \Gamma \text{h} \not\in (0.16 \pm 0.02) \; \Gamma \text{h} \\ R_{\text{эксп}} &= (713 \pm 379) \; \text{Ом;} \; \varepsilon_{R_{\text{эксп}}} = \frac{379}{713} \cdot 100\% = 53\% \\ R &= 75 \; \text{Ом} \not\in (713 \pm 379) \; \text{Ом} \end{split}$$

# 12 Выводы и анализ результатов работы

В ходе выполнения лабораторной работы было найдено экспериментальное значение резонансной частоты для напряжения на конденсаторе. Полученное значение не входит в доверительный интервал теоретического значения. Экспериментальная добронтость контура также не входит в доверительный интервал теоретического значения.

При помощи линейной регрессии был построен график зависимости квадрата резонансной частоты от обратной емкости, и на его основе получены значения индуктивности и активного сопротивления, которые также не совпадают с номинальными.

Было установлено, что зависимость амплитуды выходного напряжение от частоты входного подтверждает теоретическую, достигая своего максимума при частоте резонанса. Сильную разницу экспериментальных и реальных значений можно объяснить различными факторами: качеством компонентов цепи, отличием от номинальных показателей, человеческим фактором во время съемки замеров, приближением в расчетной математической модели и прочим.