

Linear Equations

CE282: Linear Algebra

Computer Engineering Department Sharif University of Technology

Hamid R. Rabiee

Maryam Ramezani

Vectors & Linear Equation

☐ Consider this simple system of equations,

$$x - y = 1$$
$$3x + 2y = 11$$

Vectors & Linear Equation

☐ Can be expressed as a matrix-vector multiplication

$$x - 2y = 1$$
$$3x + 2y = 11$$

$$\begin{bmatrix}
1 & -2 \\
3 & 2
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} = \begin{bmatrix}
1 \\
11
\end{bmatrix}$$

- \square Matrix Equation: Ax = b
- \square *A* is often called **coefficient matrix**

Vectors & Linear Equation

☐ Also, Can be expressed as linear combination of cols:

$$x - 2y = 1$$
$$3x + 2y = 11$$

$$\underbrace{\begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} 1 \\ 11 \end{bmatrix}}_{b}$$

$$x \begin{bmatrix} 1 \\ 3 \end{bmatrix} + y \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 11 \end{bmatrix} = b$$

 \square Same for n equation, n variable

Idea Of Elimination

☐ Subtract a multiple of equation (1) from (2) to eliminate a variable

$$x - 2y = 1$$
$$3x + 2y = 11$$

multiply equation 1 by 3

Subtract to eliminate 3x

$$x - 2y = 1$$
$$8y = 8$$

$$\underbrace{\begin{bmatrix} 1 & -2 \\ 0 & 8 \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} 1 \\ 8 \end{bmatrix}}_{c}$$

A has become a upper triangle matrix *U*

Elementary Row Operations

☐ Elementary Row Operations

- 1. (Replacement) Replace one row by the sum of itself and a multiple of another row.
- 2. (Interchange) Interchange two rows.
- 3. (Scaling) Multiply all entries in a row by a nonzero constant.

Definition

Two matrices are called **row equivalent** if there is a sequence of elementary row operations that transforms one matrix into the other.

Note

- ☐ It is important to note that row operations are reversible. If two rows are interchanged, they can be returned to their original positions by another interchange.
- ☐ If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

Idea Of Elimination (Row Reduction Algorithm)

☐ The **pivots** are on the diagonal of the triangle after elimination (boldface 2 below is the first pivot)

$$2x + 4y - 2z = 2$$

$$4x + 9y - 3z = 8$$

$$-2x - 3y + 7z = 10$$

$$2x + 4y - 2z = 2$$

$$1y + 1z = 4$$

$$4z = 8$$

- \square Step 1: subtract (1) from (2) to eliminate x's in (2)
- \square Step 2: subtract (1) from (3) to totally eliminate x
- \square Step 3: subtract new (2) from new (3)

Definition

The variables corresponding to pivot columns in the matrix are called

basic variables.

The other variables are called a free variable.

$$\begin{bmatrix} x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & x & x \\ 0 & 0 & 0 & x \end{bmatrix} \begin{bmatrix} x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & 0 & x \\ 0 & 0 & 0 & x \end{bmatrix}$$

Echelon form

Definition

A leading entry of a row refers to the leftmost nonzero entry in a nonzero row

Definition

- ☐ A rectangular matrix is in **echelon form** (or **row echelon form**) if it has the following three properties:
 - 1. All nonzero rows are above any rows of all zeros.
 - 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
 - 3. All entries in a column below a leading entry are zeros.

$$\begin{bmatrix} 2 & -3 & 2 & 1 \\ 0 & 1 & -4 & 8 \\ 0 & 0 & 0 & \frac{5}{2} \end{bmatrix}$$
Echelon form

Reduced Echelon Form

Definition

- ☐ If a matrix in echelon form satisfies the following additional conditions, then it is in **reduced echelon form** (or **reduced row echelon form**):
 - 1. The leading entry in each non-zero row is 1.
 - 2. Each leading 1 is the only non-zero entry in its columns.

$$\begin{bmatrix} 1 & 0 & 0 & 29 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Reduced Echelon form

Existence and Uniqueness Questions

Two fundamental questions about a linear system:

- 1. Is the system consistent? That is, does at least one solution exist?
- 2. If a solution exists, is it the only one? That is, is the solution unique?

Elementary Row Operations

Example

☐ Augmented matrix for a linear system:

$$\begin{bmatrix} 1 & 0 & -5 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$x - 5z = 1$$
$$y + z = 4$$
$$0 = 0$$

$$\begin{bmatrix} 1 & 0 & -5 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{l} x - 5z = 1 \\ y + z = 4 \\ 0 = 0 \end{array} \qquad \begin{cases} x = 1 + 5z \\ y = 4 - z \\ z \text{ is free variable} \end{cases}$$

- \Box x, y: basic variable z: free variable
- ☐ This system is consistent, because the solution set can be described explicitly by solving the reduced system of equations for the basic variables in terms of the free variables.

Existence and Uniqueness Questions

Theorem

A linear system is consistent if and only if the rightmost column of the augmented matrix is not a pivot column – that is, if and only if an echelon form of the augmented matrix has no row of the form $\begin{bmatrix} 0 & \cdots & 0 & b \end{bmatrix}$ with nonzero b.

- ☐ If a linear system is consistent, then the solution set contains either:
 - ☐ A unique solution, when there are no free variables
 - □Infinitely many solutions, when there is at least one free variable

Find all solutions of a linear system

- 1. Write the augmented matrix of the system.
- 2. Use the row reduction algorithm to obtain an equivalent augmented matrix in echelon form. Decide whether the system is consistent. If there is no solution, stop; otherwise, go to the next step.
- 3. Continue row reduction to obtain the reduced echelon form.
- 4. Write the system of equations corresponding to the matrix obtained in step 3.
- 5. Rewrite each nonzero equation from step 4 so that its one basic variable is expressed in terms of any free variables appearing in the equation.

Existence Of Solutions

Fact

The equation Ax = b has a solution if and only if b is a linear combination of the columns of A.

Existence of Solutions

Example

Let
$$A = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}$$
 and $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. Is the equation $Ax = b$ consistent for all possible b_1, b_2, b_3 ?

Solution

Row reduce the augmented matrix for Ax = b:

$$\begin{bmatrix} 1 & 3 & 4 & b_1 \\ -4 & 2 & -6 & b_2 \\ -3 & -2 & -7 & b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 14 & 10 & b_2 + 4b_1 \\ 0 & 7 & 5 & b_3 + 3b_1 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 14 & 10 & b_2 + 4b_1 \\ 0 & 0 & 0 & b_3 + 3b_1 - \frac{1}{2}(b_2 + 4b_1) \end{bmatrix}$$

The third entry in column 4 equals $b_3 + 3b_1 - \frac{1}{2}(b_2 + 4b_1)$. The equation Ax = b is not consistent for every b because some choices of b can make $b_1 - \frac{1}{2}b_2 + b_3$ nonzero.

Homogeneous Linear Systems

Definition

- \square A system of linear equations is said to be homogeneous if it can be written in the form Ax = 0, where A is a matrix and 0 is the zero vector.
- ☐ Trivial solution: Ax = 0 always has at least one solution, namely, x = 0 (the zero vector)
- \square Nontrivial solution: The non-zero solution for Ax = 0.

Fact

The homogenous equation Ax = 0 has a nontrivial solution if and only if the equation has at least one free variable.

$$\begin{pmatrix} 1 & 3 & 4 & 0 \\ 2 & -1 & 2 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Review

Lines in \mathbb{R}^2						
Normal Form	General Form	Vector Form	Parametric Form			
$n \cdot x = n \cdot p$	ax + by = c	x = p + td	$\begin{cases} x = p_1 + td_1 \\ y = p_2 + td_2 \end{cases}$			

3

Lines and Planes in $\mathbb R$					
	Normal Form	General Form	Vector Form	Parametric Form	
Lines	$ \begin{cases} n1 \cdot x = n1 \cdot p1 \\ n2 \cdot x = n2 \cdot p2 \end{cases} $	$ \begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \end{cases} $	x = p + td	$\begin{cases} x = p_1 + td_1 \\ y = p_2 + td_2 \\ z = p_3 + td_3 \end{cases}$	
Planes	$n \cdot x = n \cdot p$	ax + by + cz = d	x = p + su + tv	$\begin{cases} x = p_1 + su_1 + tv_1 \\ y = p_2 + su_2 + tv_2 \\ z = p_3 + su_3 + tv_3 \end{cases}$	

Nonhomogeneous Systems & General Solution

Example

Describe all solutions of
$$A\mathbf{x} = \mathbf{b}$$
, where: $A = \begin{bmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 7 \\ -1 \\ -4 \end{bmatrix}$

$$\begin{bmatrix} 3 & 5 & -4 & 7 \\ -3 & -2 & 4 & -1 \\ 6 & 1 & -8 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{4}{3} & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Example

Describe all solutions of
$$Ax = 0$$
, where: $A = \begin{bmatrix} 1 & 0 & -8 & -7 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 \end{bmatrix}$.

Nonhomogeneous Systems & General Solution

Question

Can we change the order of columns in an augmented matrix???

$$ax + by + cz = d$$

$$\{a'x + b'y + c'z = d'$$

$$a''x + b''y + c''z = d''$$
Is equivalent to
$$ax + cz + by = d$$

$$\{a'x + cz + by = d'$$

$$a''x + cz + by = d''$$

Conclusion

Theorem

Let *A* be an $m \times n$ matrix. Then the following statements are logically equivalent.

That is, for a particular *A*, either they are all true statements or they are all false.

- a. For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- b. Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- c. The columns of A span \mathbb{R}^m .
- d. A has a pivot position in every row.

Note

If *A* does not have a pivot in every row, that does not mean that Ax = b does not have a solution for some given vector b. It just means that there are some vectors b for which Ax = b does not have a solution.

Elementary Row Operations

Extra Resource

If you want to learn more about elementary row operations and echelon form, this video is recommended!

Reference

- Linear Algebra and Its Applications, David C. Lay
- Linear Algebra Done Right, Axler, Chapter 3.D
- Introduction to Linear Algebra, Strange, Chapter 2.1, 2.2
- http://vmls-book.Stanford.edu/vmls-slides.pdf