Differential Geometry Notes of 03/25/2013

Pramook Khungurn

April 3, 2013

1 Isometries

- In this note, S and \bar{S} will always denote regular surfaces.
- Definition 1.1. A difference phism $\varphi: S \to \bar{S}$ is an isometry if for all $p \in S$ and all pairs $w_1, w_2 \in T_p(S)$, we have

$$\langle w_1, w_2 \rangle_p = \langle d\varphi_p(w_1), d\varphi_p(w_2) \rangle_{\varphi(p)}.$$

The surfaces S and \bar{S} are then said to be isometric.

- In other words, φ is an isometry if the differential $d\varphi$ preserves the inner product.
- Proposition 1.2. φ is an isometry if and only if it preserves the first fundamental form.

Proof. (\rightarrow) Suppose φ is an isometry. Then,

$$I_p(w) = \langle w, w \rangle_p = \langle d\varphi_p(w), d\varphi_p(w) \rangle_{\varphi(p)} = I_{\varphi(p)}(d\varphi_p(w))$$

for all $w \in T_p(S)$.

 (\leftarrow) Suppose φ preserves the first fundamental form; that is,

$$I_p(w) = I_{\varphi(p)}(\mathrm{d}\varphi_p(w))$$

for all $w \in T_p(S)$. Then,

$$2\langle w_1, w_2 \rangle = I_p(w_1 + w_2) - I_p(w_1) - I_p(w_2)$$

$$= I_{\varphi(p)}(\mathrm{d}\varphi_p(w_1 + w_2)) - I_{\varphi}(p)(\mathrm{d}\varphi_p(w_1)) - I_{\varphi}(p)(\mathrm{d}\varphi_p(w_2))$$

$$= 2\langle \mathrm{d}\varphi_p(w_1), \mathrm{d}\varphi_p(w_2) \rangle_{\varphi(p)},$$

and φ is an isometry.

isometric to S.

- Definition 1.3. A map φ: V → \(\bar{S}\) of a neighborhood V of p ∈ S is a local isometry at p if there exists a neighborhood \(\bar{V}\) of φ(p) ∈ \(\bar{S}\) such that φ: V → \(\bar{V}\) is an isometry.
 If there exists a local isometry ino \(\bar{S}\) at every p ∈ S the surface S is said to be locally isometric to \(\bar{S}\) we say that S and \(\bar{S}\) are locally isometric to each other if S is locally isometric to \(\bar{S}\) and \(\bar{S}\) is locally
- It is clear that if $\varphi: S \to \bar{S}$ is a diffeomorphism and a local isoemetry for every $p \in S$, then ϕ is a local isometry globally.
- It may happen that two surfaces are locally isometric without being globally isometric.

• Let $U = \{(u, v) : 0 < u < 2\pi, -\infty < v < \infty\}$

Let $\bar{\mathbf{x}}: U \to \mathbb{R}^3$ be given $\bar{\mathbf{x}}(u,v) = (\cos u, \sin u, v)$, which is a parameterization of a cylinder.

Let $\mathbf{x}: \mathbb{R}^2 \to \mathbb{R}^3$ be the map $\mathbf{x}(u, v) = p_0 + uw_1 + vw_2$ where $p_0, w_1, w_2 \in \mathbb{R}^3$ and w_1 and w_2 are unit orthogonal vectors. (That is, \mathbf{x} is a parametermization of a plane.)

Define $\varphi = \mathbf{x} \circ \bar{\mathbf{x}}^{-1}$, which is a map from a coordinate neighborhood of a cylinder to a plane.

We have that φ is a local isometry.

In particular, each vector w tangent to the cylinder at a point $p \in \bar{x}(U)$ is tangent to a curve $\bar{\mathbf{x}}(u(t), v(t))$ where (u(t), v(t)) is a curve in U. Thus, $w = \bar{\mathbf{x}}_u u' + \bar{\mathbf{x}}_v v'$.

On the other hand, $d\phi(w)$ is tangent of the curve $\varphi(\bar{\mathbf{x}}(u(t), v(t))) = \mathbf{x}(u(t), v(t))$. As a result, we have that $d\varphi_p(w) = \mathbf{x}_u u' + \mathbf{x}_v v'$.

We have that

$$\begin{split} \bar{\mathbf{x}}_u &= (-\sin u, \cos u, 0) \\ \bar{\mathbf{x}}_v &= (0, 0, 1) \\ \bar{E} &= \langle \bar{\mathbf{x}}_u, \bar{\mathbf{x}}_u \rangle = 1 \\ \bar{F} &= \langle \bar{\mathbf{x}}_u, \bar{\mathbf{x}}_v \rangle = 0 \\ G &= \langle \bar{\mathbf{x}}_v, \bar{\mathbf{x}}_v \rangle = 1 \\ E &= \langle \mathbf{x}_u, \mathbf{x}_u \rangle = \langle w_1, w_1 \rangle = 1 \\ F &= \langle \mathbf{x}_u, \mathbf{x}_v \rangle = \langle w_1, w_2 \rangle = 0 \\ G &= \langle \mathbf{x}_v, \mathbf{x}_v \rangle = \langle w_2, w_2 \rangle = 1. \end{split}$$

Therefore,

$$I_p(w) = \bar{E}(u')^2 + \bar{F}u'v' + \bar{G}(v')^2 = E(u')^2 + Fu'v' + G(v')^2 = I_{\varphi(p)}(d\varphi_p(w)).$$

Notee that this isometry cannot be extended to the entire cylinder because the cylinder is not even homeomorphic to a plane. The idea is that any simple closed curve in a plane can be shrunk continuously to a point without leaving the plane. This property is preserved under a homeomorphism. However, a parallel to the cylinder cannot be shrunk continuously to a point. So, there does not exist a homeomorphism between a plane an a point

• Proposition 1.4. Assume the existence of a paramerization $\mathbf{x}: U \to S$ and $\bar{\mathbf{x}}: U \to \bar{S}$ such that $E = \bar{E}, F = \bar{F}, \text{ and } G = \bar{G}.$ Then the map $\varphi = \bar{\mathbf{x}} \circ \mathbf{x}^{-1}$ is a local isometry.

Proof. Let $p \in \mathbf{x}(U)$ and $w \in T_p(S)$. Then, w is tangent of a curve $\mathbf{x}(\alpha(t))$ at t = 0, where $\alpha(t) = (u(t), v(t))$ is a curve in U. Thus, w may be written as:

$$w = \mathbf{x}_u u' + \mathbf{x}_v v'.$$

By definition, the vector $d\varphi_p(w)$ is tangent to the curve $\varphi(\mathbf{x}(\alpha(t))) = \bar{\mathbf{x}} \circ \mathbf{x}^{-1} \circ \mathbf{x}(\alpha(t)) = \bar{\mathbf{x}}(\alpha(t))$. Hence,

$$d\varphi_p(w) = \bar{\mathbf{x}}_u u' + \bar{\mathbf{x}}_v v'.$$

Since,

$$I_p(w) = E(u')^2 + Fu'v' + G(v')^2$$
$$I_{\omega(p)}(d\varphi_p(w)) = \bar{E}(u')^2 + \bar{F}u'v' + \bar{G}(v')^2,$$

we can conclude that $I_p(w) = I_{\phi(p)}(\mathrm{d}\varphi_p(w))$ for all $p \in \mathbf{x}(U)$. So, φ is a local isoemetry.

 \bullet Let S be surface of revolution and let

$$\mathbf{x}(u,v) = (f(v)\cos u, f(v)\sin u, g(v)),$$

where $a \le v \le b$, $0 < u < 2\pi$, and f(v) > 0, be a paramieterization of S.

The coefficients of the first fundamental form of S with respect to \mathbf{x} is given by:

$$E = (f(v))^2,$$
 $F = 0,$ $G = (f'(v))^2 + (g'(v))^2.$

• The **caternary** is a curve given by:

$$x = a \cosh v$$
$$z = av$$

where $-\infty < v < \infty$.

• The surface of revolution of the caternary has the following parameterizaton:

$$\mathbf{x}(u, v) = (a \cosh v \cos u, a \cosh v \sin u, av)$$

where $0 < u < 2\pi$, and $-\infty < v < \infty$. The coefficients of the fundamental forms are:

$$E = a^2 \cosh^2 v,$$
 $F = 0,$ $G = a^2 (1 + \sinh^2 v) = a^2 \cosh^2 v.$

This surface of revolution is called the **cartenoid**.

• The **helicoid** is a regular surface of revolution given by the parametermization:

$$\bar{\mathbf{x}}(\bar{u},\bar{v}) = (\bar{v}\cos\bar{u},\bar{v}\sin\bar{v},a\bar{u})$$

where $0 < \bar{u} < 2\pi$ and $-\infty < \bar{v} < \infty$.

Let us make the following change of parameter:

$$\bar{u} = u$$
$$\bar{v} = a \sinh v$$

where $0 < u < 2\pi$ and $-\infty < v < \infty$.

This is possible since the map is one-to-one. (Hyperbolic sine is a bijection.) Moreover, the Jacobian

$$\begin{vmatrix} \partial \bar{u}/\partial u & \partial \bar{u}/\partial v \\ \partial \bar{v}/\partial u & \partial \bar{v}/\partial v \end{vmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & a\cosh v \end{bmatrix} = a\cosh v$$

is non-zero everywhere. (Therefore, this change of variable is a diffeomorphism.)

Therefore, we have another parametermization of the helicoid:

$$\bar{x}(u,v) = (a \sinh v \cos u, a \sinh v \sin u, au)$$

relative to which the first fundamental form is given by:

$$E = a^2 \cosh^2 v, \qquad F = 0, \qquad G = a^2 \cosh^2 v.$$

It follows that the cartenoid and the helicoid are locally isometric.

• The one-sheeted cone (minus the vertex) is given by:

$$z = +k\sqrt{x^2 + y^2}$$

where $(x, y) \neq (0, 0)$.

We shall show that the one-sheeted cone is locally isometric to a plane. The idea is to show that a cone minus a generator can be "rolled" onto a piece of a plane.

Let $U \subseteq \mathbb{R}^2$ be the open set given in polar coordinates (ρ, θ) where $0 < \rho < \infty$ and $0 < \theta < 2\pi \sin \alpha$ with 2α $(0 < 2\alpha < \pi)$ is the angle at the vertex of the cone. (That is, $\cot \alpha = k$.) Let $F: U \to \mathbb{R}^2$ be the map

$$F(\rho,\theta) = \left(\rho \sin \alpha \cos \left(\frac{\theta}{\sin \alpha}\right), \rho \sin \alpha \sin \left(\frac{\theta}{\sin \alpha}\right), \rho \cos \alpha\right).$$

We have that F(U) is contained in the cone. This is because

$$k\sqrt{x^2 + y^2} = \cot \alpha \sqrt{\rho^2 \sin^2 \alpha} = \rho \cos \alpha = z.$$

Moreover, when θ takes all the values from the interval $(0, 2\pi \sin \alpha)$, we have that $\theta / \sin \alpha$ takes the all values from the interval $(0, 2\pi)$. Hence, all points except those with $\theta = 0$ (the generator) are covered by F(U).

We can check easily that F and dF are one-to-one in U. Therefore, F is a difference of U onto the cone minus a generator.

We shall now show that F is an isometry. First, realize that U may be thought of as a regular surface, parameterized by:

$$\bar{\mathbf{x}}(\rho, \theta) = (\rho \cos \theta, \rho \sin \theta, 0)$$

with $0 < \rho < \infty$ and $0 < \theta < 2\pi \sin \alpha$.

The coefficients of the first fundamental form is given by:

$$\bar{E} = 1,$$
 $\bar{F} = 0,$ $\bar{G} = \rho^2.$

On the other hand, the coefficients of the first fundamental form of the cone relative to F is given by:

$$E=1,$$
 $\bar{F}=0,$ $\bar{G}=\rho^2.$

So, the cone is locally isometric to the plane.

- The fact that we can compute lengths of curves on a surface S by using only its first fundamental form allows us to introduce a notion of "intrinsic" distance for points in S.
- We may define the **intrinsic distance** d(p,q) between two points of S as the infimum of the length of curves on S joining p and q.

This distance is clearly greater than or equal to the distance ||p-q|| between p and q as points in \mathbb{R}^3 . It may be shown that the distance d is invariant uder isometries.

• The notion of isometry is the natural concept of equivalence for the metric properties of regular surfaces.

A diffeomorphism captures the equivalence from the point of view of differentiability.

2 Conformal Maps

• Definition 2.1. A diffeomorphism $\varphi: S \to \bar{S}$ is called a conformal map if for all $p \in S$ and all $v_1, v_2 \in T_p(S)$, we have

$$\langle \mathrm{d}\phi_p(v_1), \mathrm{d}\phi_p(v_2) \rangle_{\varphi(p)} = \lambda^2(p) \langle v_1, v_2 \rangle_p$$

where $\lambda^2(p)$ is a nowhere-zero differentiable function on S.

The surfaces S and \bar{S} are then said to be conformal.

A map $\varphi: V \to \bar{S}$ of a neighborhood V of $p \in S$ into \bar{S} is a local conformal map at p if there exists a neighborhood \bar{V} of $\varphi(p)$ such that $\varphi: V \to \bar{V}$ is a conformal map.

If for each $p \in S$, there exists a local conformal map at p, the surface S is said to be locally conformal to \bar{S} .

• The geomeetric meaning of the above definition is that the angles (but not necessarily the lengths) are preserved by conformal maps.

In fact, let $\alpha: I \to S$ and $\beta: I \to S$ be two curves in S which intersects at t = 0. Their angle θ at t = 0 is given by:

$$\cos \theta = \frac{\langle \alpha', \beta' \rangle}{|\alpha'||\beta'|}.$$

A conformal map $\varphi: S \to \bar{S}$ maps these curves into curves $\varphi \circ \alpha: I \to \bar{S}$ and $\varphi \circ \beta: I \to \bar{S}$, which intersect at t=0 and make an angle $\bar{\theta}$ given by:

$$\cos \bar{\theta} = \frac{\langle \mathrm{d}\varphi(\alpha').\mathrm{d}\varphi(\beta')\rangle}{|\mathrm{d}\varphi(\alpha')||\mathrm{d}\varphi(\beta')|} = \frac{\lambda^2 \langle \alpha', \beta' \rangle}{\lambda^2 |\alpha'||\beta'|} = \cos \theta.$$

- Proposition 2.2. Let $\mathbf{x}: U \to S$ and $\bar{x}: U \to \bar{S}$ be parametermizations such that $E = \lambda^2 \bar{E}$, $F = \lambda^2 \bar{F}$, $G = \lambda^2 \bar{G}$ in U, where λ^2 is a nowhere-zero differentiable function in U. Then, the map $\varphi = \bar{x} \circ \mathbf{x}^{-1}$: $\mathbf{x}(U) \to \bar{S}$ is a local conformal map.
- Local conformality is easily seen to be an equivalence relation; that is, if S_1 is locally conformal to S_2 , and S_2 is locally conformal to S_3 , then S_1 is locally conformal to S_3 .
- Theorem 2.3. Any two regular surfaces are conformal.

The proof is based on the possibility of parametrizing a neighborhood of any point of a regbular surface in such a way that he coefficients of the first fundamental form are $E = \lambda^2(u, v) > 0$, F = 0, and $G = \lambda^2(u, v)$. Such a coordinate system is called **isothermal**. Once the existence of an isothermal coordinate sysmete of a regular surface S is assume, then S is clearly conformal to a plane. So, by composition, it is locally conformal to any other surface.