Public Health Service Water Pollution Surveillance System

ANNUAL COMPILATION OF DATA October 1, 1962 - - - September 30, 1963

A Federal, State and Local cooperative report on water pollution surveillance of surface waters at selected locations throughout the United States

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
Public Health Service, Division of Water Supply and Pollution Control
Washington, D.C. 20201

RELATED PUBLICATIONS:

National Water Quality Network
Annual Compilation of Data, October 1, 1957–September 30, 1958
Public Health Service Publication No. 663 (1958 Edition)

National Water Quality Network Statistical Summary of Selected Data, October 1, 1957–September 30, 1958 Public Health Service Publication No. 663—Supplement 1

National Water Quality Network Annual Compilation of Data, October 1, 1958–September 30, 1959 Public Health Service Publication No. 663 (1959 Edition)

National Water Quality Network Annual Compilation of Data, October 1, 1959–September 30, 1960 Public Health Service Publication No. 663 (1960 Edition)

National Water Quality Network Plankton Population Dynamics, July 1, 1959–June 30, 1961 Public Health Service Publication No. 663—Supplement 2

National Water Quality Network Annual Compilation of Data, October 1, 1960–September 30, 1961 Public Health Service Publication No. 663 (1961 Edition)

National Water Quality Network Annual Compilation of Data, October 1, 1961–September 30, 1962 Public Health Service Publication No. 663 (1962 Edition)

PUBLIC HEALTH SERVICE PUBLICATION NO. 663 (Revised) (1963 Edition)

ACKNOWLEDGMENT

To increase the usefulness of the water quality data, annual compilations since 1958, including this one, have presented preliminary and unadjusted flow data for gaging stations at or near most of the Public Health Service Water Pollution Surveillance System sampling points. Final data may be obtained directly from the agency concerned. Any studies using the provisional flow data herein compiled should verify the data prior to completion of reports on such studies. For making the flow information available for this publication, grateful acknowledgment is made by the Public Health Service to:

The International Boundary and Water Commission, United States and Mexico

The International Joint Commission, United States and Canada

The U.S. Department of the Interior Bureau of Reclamation • Geological Survey

The U.S. Department of the Army Corps of Engineers • Lake Survey

FOREWORD

This is the sixth annual compilation of data from the Public Health Service Water Pollution Surveillance System (formerly the National Water Quality Network). During this year, the System was increased from 122 to 128 stations. In order to provide data in a form more useful for local or regional water pollution control officials and their staffs, the present compilation is published in 11 separate volumes. The surveillance data reported herein reveal additional findings on pesticides and other organic chemicals in surface waters and on trends in radioactivity and other areas.

The Public Health Service gratefully acknowledges the assistance to our Surveillance System of the participating local, State and Federal Government agencies and private industry. The success of this program depends, in a large measure, upon their continued interest and support.

GORDON E. McCallum, D. Sc.,

Assistant Surgeon General,
Chief, Division of Water Supply and Pollution Control

VOLUME 1

Northeast Basin

CONNECTICUT RIVER at Enfield Dam, Conn. below Northfield, Mass. at Wilder, Vt.

HUDSON RIVER below Poughkeepsie, N.Y.

LAKE ERIE at Buffalo, N.Y.

MERRIMACK RIVER above Lowell, Mass.

RARITAN RIVER at Perth Amboy, N.J.

ST. LAWRENCE RIVER at Massena, N.Y.

VOLUME 2

North Atlantic Basin

DELAWARE RIVER at Philadelphia, Pa. at Trenton, N.J. at Martins Creek, Pa.

POTOMAC RIVER at Washington, D.C. at Great Falls, Md. at Williamsport, Md.

SCHUYLKILL RIVER at Philadelphia, Pa.

SHENANDOAH RIVER at Berryville, Va.

SUSQUEHANNA RIVER at Conowingo, Md. at Sayre, Pa.

VOLUME 3

Southeast Basin

APALACHICOLA RIVER at Chattahoochee, Fla.

CHATTAHOOCHEE RIVER at Columbus, Ga. at Lanett, Ala. at Atlanta, Ga.

ESCAMBIA RIVER at Century, Fla.

ROANOKE RIVER at John H. Kerr Dam and Reservoir, Va.

SAVANNAH RIVER at Port Wentworth, Ga. at North Augusta, S.C.

TOMBIGBEE RIVER below Columbus, Miss.

VOLUME 4

Western Great Lakes and Lake Erie Basins

WESTERN GREAT LAKES

DETROIT RIVER at Detroit, Mich.

LAKE MICHIGAN at Gary, Ind. at Milwaukee, Wis.

LAKE SUPERIOR at Duluth, Minn.

ST. CLAIR RIVER at Port Huron, Mich.

ST. MARYS RIVER at Sault Ste. Marie, Mich.

LAKE ERIE BASIN

CUYAHOGA RIVER at Cleveland, Ohio

MAUMEE RIVER at Toledo, Ohio

VOLUME 5

Ohio and Tennessee River Basins

OHIO RIVER BASIN

ALLEGHENY RIVER at Pittsburgh, Pa.

CUMBERLAND RIVER at Clarksville, Tenn.

KANAWHA RIVER at Winfield Dam, W. Va.

LITTLE MIAMI RIVER at Cincinnati, Ohio

MONONGAHELA RIVER at Pittsburgh, Pa.

OHIO RIVER at Cairo, Ill. at Evansville, Ind. at Louisville, Ky.

at Cincinnati, Ohio at Huntington, W. Va. below Addison, Ohio at Toronto, Ohio

WABASH RIVER at New Harmony, Ind.

TENNESSEE RIVER BASIN

CLINCH RIVER above Kingston, Tenn. at Clinton, Tenn.

TENNESSEE RIVER at Pickwick Landing, Tenn. at Bridgeport, Ala. at Chattanooga, Tenn. at Lenoir City, Tenn.

VOLUME 6

Upper Mississippi River Basin

ILLINOIS RIVER near Grafton, Ill. at Peoria, Ill.

MISSISSIPPI RIVER at Cape Girardeau, Mo. at East St. Louis, Ill. at Burlington, Iowa at Dubuque, Iowa

at Lock and Dam 3 below St. Paul, Minn.

RAINY RIVER at Baudette, Minn. at International Falls, Minn.

RED RIVER (NORTH) at Grand Forks, N. Dak.

VOLUME 7

Missouri River Basin

BIG HORN RIVER at Hardin, Mont.

BIG SIOUX RIVER below Sioux Falls, S. Dak.

KANSAS RIVER at DeSoto, Kans.

MISSOURI RIVER at St. Louis, Mo. at Missouri City, Mo. at Kansas City, Kans. at St. Joseph, Mo. at Omaha, Nebr. at Yankton, S. Dak. at Bismarck, N. Dak. at Williston, N. Dak.

NORTH PLATTE RIVER above Henry, Nebr.

PLATTE RIVER above Plattsmouth, Nebr.

SOUTH PLATTE RIVER at Julesburg, Colo.

YELLOWSTONE RIVER near Sidney, Mont.

VOLUME 8

Southwest-Lower Mississippi River Basin

ARKANSAS RIVER at Pendleton Ferry, Ark. at Little Rock, Ark. near Forth Smith, Ark. near Ponca City, Okla. at Coolidge, Kans.

MISSISSIPPI RIVER at New Orleans, La. at Delta, La. at Vicksburg, Miss. at West Memphis, Ark. OUACHITA RIVER at Bastrop, La.

RED RIVER (SOUTH) at Alexandria, La. at Bossier City, La. at Index, Ark. at Denison, Tex. VERDIGRIS RIVER

VERDIGRIS RIVER at Nowata, Okla.

VOLUME 9
Colorado River and
Western Gulf Basins
COLORADO RIVER BASIN

ANIMAS RIVER
at Cedar Hill, N. Mex.

COLORADO RIVER
at Yuma, Ariz.
above Parker Dam, Ariz.-Calif.
near Boulder City, Nev.
at Page, Ariz.
at Loma, Colo.

GREEN RIVER
at Dutch John, Utah

SAN JUAN RIVER
at Shiprock, New Mex.

WESTERN GULF BASIN

RIO GRANDE at Brownsville, Tex. at Laredo, Tex. at El Paso, Tex. below Alamosa, Colo. SABINE RIVER near Ruliff, Tex.

VOLUME 10

Pacific Northwest and Alaska Basins

CLEARWATER RIVER

PACIFIC NORTHWEST

at Lewiston, Idaho
COLUMBIA RIVER
at Clatskanie, Oreg.
at Bonneville, Oreg.
at McNary Dam, Oreg.
at Pasco, Wash.
at Wenatchee, Wash.
at Northport, Wash.

PEND OREILLE RIVER at Albeni Falls Dam, Idaho

SNAKE RIVER at Ice Harbor Dam, Wash. at Wawawai, Wash. at Payette, Idaho

SPOKANE RIVER at Post Falls Dam, Idaho

WILLAMETTE RIVER at Portland, Oreg.

YAKIMA RIVER at Richland, Wash.

ALASKA BASIN

CHENA RIVER at Fairbanks, Alaska

SHIP CREEK at Anchorage, Alaska

VOLUME 11
California and the Great Basins

CALIFORNIA BASIN

KLAMATH RIVER near Keno, Oreg.

SACRAMENTO RIVER at Greens Landing above Courtland, Calif.

SAN JOAQUIN RIVER near Vernalis, Calif.

GREAT BASIN

BEAR RIVER above Preston, Idaho

TRUCKEE RIVER at Calif.-Nev. Border at Farad, Calif.

CONTENTS

	Рa
FOREWORD.	i
ACKNOWLEDGMENT	i
PUBLIC HEALTH SERVICE WATER POLLUTION SUR- VEILLANCE SYSTEM	
MAP OF SYSTEM SAMPLING STATIONS	
ANALYTICAL METHODS AND RELIABILITY OF DATA.	
WATER POLLUTION PARAMETERS	
Radioactivity	
Plankton Populations	
Organic Chemicals	
Chemical, Physical and Bacteriological Examinations]
Trace Elements and Other Determinations	1
The Benthos	1
Fish Populations	1
STREAM FLOW	1
BIBLIOGRAPHY	1
EXPLANATION OF ANALYTICAL DATA	1
BASIN DESCRIPTION (Southwest-Lower Mississippi)	2
MAP OF BASIN SAMPLING STATIONS (Southwest-Lower Mississippi)	2
ANALYTICAL AND FLOW DATA. (See Station Index)	vi
(
	vi

U. S. SUKT. OF INCS.

7614 U253P

Volume 8.—Southwest-Lower Mississippi River Basin

ANALYTICAL AND FLOW DATA INDEX

STATION	General Description Trace Elements, Strontium 90	Radioactivity Determinations	Plankton Populations	Organic Chemicals	Chemical, Physical and Bacteriological Analyses	Flow Data
	Page No.	Page No.	Page No.	Page No.	Page No.	Page No.
Arkansas River at Pendleton Ferry, Ark at Little Rock, Ark near Fort Smith, Ark near Ponca City, Okla at Coolidge, Kans	41-42	27 35 43 51 59–60	28-29 36-37 44-45 52-53 62-63	38 61	30 39 46 54–55 64–65	31 40 47 56 66
Mississippi River at New Orleans, La at Delta, La at Vicksburg, Miss at West Memphis, Ark	85-86	69 79 87 97	80–81 88–89	72 82 90 100	73-74 83 91-92 101-102	75 84 93 103
Ouachita River at Bastrop, La	105–106	107	108–109		110-111	112
Red River (South) at Alexandria, La. at Bossier City, La. at Index, Ark at Denison, Tex	131–132	125 133	126–127 134–135	118 — — 144	119-120 128 136 145-146	121 129 137 147
Verdigris River at Nowata, Okla	. 149–150	151	. 152–153	154	155–156	157

Dash (---) indicates no determination made.

CONTENTS

FOREWORD.	Page iii
ACKNOWLEDGMENT	
PUBLIC HEALTH SERVICE WATER POLLUTION SUR- VEILLANCE SYSTEM	1
MAP OF SYSTEM SAMPLING STATIONS	2
ANALYTICAL METHODS AND RELIABILITY OF DATA.	4
WATER POLLUTION PARAMETERS Radioactivity.	5
Plankton Populations	6
Organic Chemicals	7
Chemical, Physical, and Bacteriological Examinations	10
Trace Elements and Other Determinations	11
The Benthos.	12
Fish Populations.	13
TREAM FLOW	14
BIBLIOGRAPHY	15
EXPLANATION OF ANALYTICAL DATA	17
BASIN DESCRIPTION (North Atlantic)	23
MAP OF BASIN SAMPLING STATIONS (North Atlantic).	23
ANALYTICAL AND FLOW DATA. (See Station Index).	viii

Volume 8.—Southwest-Lower Mississippi River Basin

ANALYTICAL AND FLOW DATA INDEX

STATION	General Description Trace Elements, Strontium 90	Radioactivity Determinations	Plankton Populations	Organic Chemicals	Chemical, Physical and Bacteriological Analyses	Flow Data
*	Page No.	Page No.	Page No.	Page No.	Page No.	Page No.
Arkansas River at Pendleton Ferry, Ark	41-42 49-50	27 35 43 51 59–60	28-29 36-37 44-45 52-53 62-63	38 — — 61	30 39 46 54–55 64–65	31 40 47 56 66
Mississippi River at New Orleans, La at Delta, La at Vicksburg, Miss at West Memphis, Ark	77–78	69 79 87 97	70-71 80-81 88-89 98-99	72 82 90 100	73-74 83 91-92 101-102	75 84 93 103
Ouachita River at Bastrop, La	105-106	107	108–109	_	110-111	112
Red River (South) at Alexandria, La at Bossier City, La at Index, Ark at Denison, Tex	113-114 123-124 131-132 139-140	115 125 133 141	116–117 126–127 134–135 142–143	118 — — 144	119–120 128 136 145–146	121 129 137 147
Verdigris River at Nowata, Okla	149–150	151	152–153	154	155–156	157

Dash (—) indicates no determination made.

THE PUBLIC HEALTH SERVICE

Water Pollution Surveillance System

The Public Health Service program for providing fundamental information on the quality of the Nation's waters stems from Public Law 660, approved July 9, 1956, as amended by Public Law 87-88, July 20, 1961. Section 4(c) thereof states: "... the Secretary (of Health, Education, and Welfare) shall in cooperation with other Federal, State, and local agencies having related responsibilities, collect and disseminate basic data on chemical, physical, and biological water quality insofar as such data or other information relate to water pollution and the prevention and control thereof."

To fulfill this responsibility, the Public Health Service Water Pollution Surveillance System collects, interprets, and disseminates:

- a. Information on changes in water quality at key points in river systems, as such quality may be affected by changes in water use and development.
- b. Continuous information on the nature and extent of pollutants affecting water quality.
- c. Data which will be useful in the development of comprehensive water resources programs.
- d. Data which will assist State, interstate, and other agencies in their water pollution control programs, and in the selection of sites for legitimate water uses.

Some 50 sampling stations were established when the program started, October 1, 1957. By September 30, 1963, the number had grown to 128.

Each sampling location satisfies one or more of the following criteria:

- a. Major waterways used for public water supply, propagation of fish and wildlife, recreational purposes, and agricultural, industrial, and other legitimate uses.
 - b. Interstate, coastal, and international boundary waters.
- c. Waters on which activities of the Federal Government may have an impact.

Sampling station sites are fixed only after consultation with local, State, Federal and other agencies having related interests.

Active local participation is important in this operation. It assures maximum development of all information valuable both locally and nationally. Program costs are shared by the Federal Government and State and local agencies, those of the latter through contributions of laboratory and sampling manpower. Specifically, the State and local agencies perform certain of the conventional chemical analyses and collect samples for the newer, more complex examinations. The Public Health Service, in turn, performs the more complex determinations and makes the results available to the participants and to the public. In addition, the consultation, training facilities, and other resources of the Public Health Service are available to the cooperating agencies.

Locations of sampling stations in operation as of September 30, 1963, are shown on page 2. Descriptions of the stations, participating agencies, and other pertinent information are presented with the station data.

PHS Water Pollution Surveillance System

MAJOR RIVER BASINS OF THE UNITED STATES

Only after careful screening of needs in water resource development was a pattern set for analyses of water samples. All System samples are examined for:

- a. Radioactivity.
 - (1) Gross alpha.
 - (2) Gross beta.
 - (3) Strontium 90.
- b. Plankton populations.
- c. Coliform organisms.
- d. Organic chemicals.
- e. Biochemical, chemical, and physical measurements, including biochemical oxygen demand (BOD), dissolved oxygen (DO), chemical oxygen demand (COD), chlorine demand, ammonia nitrogen,

hydrogen ion concentration (pH), color turbidity, temperature, alkalinity, hardness, chloride, sulfate, phosphates and total dissolved solids.

f. Sodium, potassium, fluoride and trace elements.

Samples for groups c and e were collected and analyzed weekly. Samples for organic chemicals were collected and analyzed monthly and plankton organism examinations were conducted semimonthly. Water samples for analysis of suspended and dissolved gross alpha and beta radioactivity were submitted weekly. Strontium 90 analyses were made on composites of weekly samples accumulated over 3-month periods. Sodium, potassium, fluoride, and trace metals were also determined on 3-month composites of weekly samples. New parameters which are developed and found significant will be included as the program continues.

Analytical Methods and Reliability of Data

The physical, chemical and biochemical data documented in this publication are the result of efforts of the cooperating agencies. In general, about half of these measurements were contributed by their laboratories. Specifically, all measurements reported for temperature, pH, DO, BOD, COD, chlorine demand and ammonia nitrogen were performed by the participants at the sample collection point. In addition, about 45 of the participating groups regularly perform all or most of the determinations for the remaining parameters included in the data. Whenever possible, analyses for stable constituents not completed by the participants are completed in the central Water Quality laboratories. While individual laboratories make minor modifications to meet local conditions, the methods used in most cases are those published in the 11th edition, "Standard Methods for the Examination of Water and Wastewater" (22). For uniformity, the chlorine demand test is reported on the basis of the

starch-iodide titration procedure, and the chemical oxygen demand test is restricted to the use of 0.025 N reagents.

To assure continued reliability in the published data, frequent analysis of reference samples are made by each cooperating laboratory as an integral part of the overall program. Periodically a synthetic standard sample is provided to each participant for reference analysis. The reported results are reviewed. Any significant errors are called to the attention of the reporting laboratory and, after the cause of the errors has been determined, the previously submitted data are either corrected or discarded. From these findings, the analyses reported in this compilation are believed to be accurate to \pm 10 percent of the reported values.

The analytical methods used by the Public Health Service laboratories are described in the discussion of water quality parameters which follows, and are covered by references listed in the Bibliography.

Water Pollution Parameters

In the assessment of water pollution, all of the legitimate purposes for which raw waters can be used, and which may be affected by pollution, must be considered. These may range from the minimum requirements for navigation to the ultimate in water quality demanded for certain industrial processing. Standards differ considerably, therefore, according to water use.

For domestic use, water must be free of disease organisms, clear, colorless, taste- and odor-free, and have a relatively low dissolved mineral content. Agricultural water is judged primarily on its mineral content, especially with respect to the ratio of sodium to other cations, and the presence of boron. Water for fish propogation and recreational purposes must be relatively free from domestic and industrial pollution and must be able to sustain an active flora of the smaller aquatic organisms on which fish and wildlife feed. Industrial water quality demands run the gamut from the complete absence of minerals to a requirement of low temperature, the critical factor in water used for cooling. The effects of radio-active materials on these uses have not yet been fully appraised.

The various laboratory examinations made as part of this program are discussed below.

Radioactivity

Radioactivity, long recognized as a water contaminant from natural sources, has continued to grow in importance and health significance with the development of nuclear energy for both military and peaceful uses. Consequently, levels must be measured continually as new sources are established.

Gross alpha and beta measurements are made on both suspended and dissolved solids in the raw surface water samples. The total radioactivity in the dissolved solids provides a rough measure of the levels which may be found in a treated water, where water treatment removes substantially all of the suspended matter.

Beta activity levels generally reflect the variable contamination resulting from fallout and discharges from nuclear energy installations, institutions utilizing radioactive materials, and other manmade sources. The trend of gross beta radioactivity in samples received from 47 of the Public Health Service Water Pollution Surveillance System stations operating since 1957 is presented in Figure 1. During the first three quarters of the 1962 water year, renewed weapons testing resulted in a rise in gross beta radioactivity in surface waters of the United States. During the sec-

FIGURE I. GROSS BETA RADIOACTIVITY IN THE SURFACE WATERS OF THE UNITED STATES.

ond and third quarter of water year 1963, the national average activity reached a maximum of 75 pico curies per liter and then decreased. Beta levels have remained well below the Public Health Service Drinking Water Standard of 1,000 pc/l or $\mu\mu$ c/l (26).

Alpha levels reflect largely the activity added by uranium and thorium daughters. The waters of the United States can be characterized in a general way with respect to gross alpha radioactivity content. Gross alpha levels average less than 1 pc/l in east coast, Appalachian, Great Lakes, and Pacific Northwest States. On the Colorado Plateau, and along the eastern slope of the Rocky Mountains, natural radioactivity, principally from mineral deposits, results in average concentrations of about 20 pc/l.

Gross levels are most informative in ascertaining long-term trends or changes in water quality. By themselves, however, they are of limited value in assessing radiation exposure. Where gross results are consistently over the maximum permissible concentrations for mixed fission products, the identity of the specific radionuclides involved must be established.

Because of its significance in the environment, the concentration of strontium 90 in the total solids is also reported. In water year 1963, strontium 90 levels ranged from 0.4 to 11.3 pc/l. The national average reached a high of 3.8 pc/l during the fourth quarter (July, August, September 1963). Highest levels were in the north-central area of the coterminous United States where the average was approximately 6 pc/l for this quarter. All averages were less than the limit (10 pc/l) specified in the Public Health Service Drinking Water Standards (26). The levels of strontium 90 activity in waters of the United States since the first quarter of the 1959 calendar year are presented graphically in figure 2.

Plankton Populations

Geographical distribution of algae and other planktonic organisms are influenced by geologic and climatic factors, and result in distinctive plankton populations in different areas. Within each region, population

FIGURE 2. STRONTIUM - 90 IN SURFACE WATER OF THE UNITED STATES

changes are directly related to temperature, and the nature and concentration of organic and mineral substances which enter the aquatic environment. These substances may come from domestic sewage, industrial wastes, runoff from agricultural lands, irrigation discharges, or native rocks and soils. They may be basic nutrients, highly toxic, or metabolically inert. Planktonic organisms differ greatly in their sensitivity to the nutrient and toxic substances which are present. Some thrive only in water which is relatively free of nutrients while others multiply rapidly in water which has been greatly enriched. Large numbers of tolerant algae usually develop in waters containing abundant supplies of inorganic nitrogen and phosphorus resulting from the mineralization of domestic sewage. These nuisance populations may clog filters in municipal water plants, and produce objectional tastes and odors.

On the other hand, plankton populations may be eradicated by the introduction of toxic organic or mineral wastes. This is not desirable because some plankton organisms play essential roles in providing food and oxygen for higher forms of aquatic life, and in cleansing polluted waters.

Beginning at low nutrient levels, progressive enrichment of waters results in an increase in the variety and abundance of the plankton. However, as higher levels of enrichment are attained, the increase in total numbers of organisms is accompanied by a decrease in the number of kinds of organisms. This change is typical in populations which have been subjected to the wide spectrum of substances being introduced into

surface water in ever increasing amounts. Plankton counts, which provide information concerning the variety and abundance of organisms, are useful in detecting changes in the concentration of organic and mineral substances which enter water supplies.

METHODS OF ANALYSIS

Plankton samples are collected semimonthly at each station. A sample consists of 3 liters of raw water taken directly from the stream or from a treatment plant intake. Preservation is effected at the time of collection by the use of 30 ppm merthiolate.

Three types of analyses are performed:

- 1. Rotifers, crustacea, and other micro invertebrates are removed from a 1-liter aliquot of the sample by settling 24 hours. The sediment is placed in a special slide, $80 \times 50 \times 2$ mm., and the organisms are enumerated under a compound microscope at $100 \times$ magnification. The counts are reported as organisms per liter.
- 2. A "total live algae" count is obtained from 1 milliliter of the sample by scanning two 50-mm. strips on a Sedgwick-Rafter slide using 200×10^{-5} magnification and a Whipple micrometer disc. An appropriate correction factor is used to convert the counts to units per milliliter. Each single cell or natural aggregate of cells (colony) occupying up to 300 square microns (μ^2) is counted as 1 unit. Large colonies are enumerated according to a modified areal-unit method in which aggregates occupying $300-1,000\mu^2$ are counted as 2 units, those occupying $1,000-2,500\mu^2$ as 3 units, those $2500-5000\mu^2$ as 4 units, and those over $5,000\mu^2$ as 5 units. About 95 percent of cell aggregates fall into size 1 or 2.
- 3. Identification and proportional census of diatom species are done from sediment obtained by settling 1 liter of the sample 48 hours. A small aliquot of the sediment is placed on a No. 1 coverglass and dried on a warming table. The sediment is ashed on the coverglass by heating on a hotplate, and permanent slides are made with hyrax mounting medium. Counts are made with 90× apochromatic oil immersion objectives and 10× oculars containing a Whipple micrometer disc. Random

strip counts are made until the total number of units reaches 200 to 300. The same areal units are used as described for Sedgwick-Rafter counting.

Organic Chemicals

The Nation's water resources continue to receive increasing quantities of organic contaminants. Since 1940 the chemical industry, particularly in the manufacture of synthetic and petrochemicals, has experienced an enormous expansion that shows every sign of continuing. Each year millions of pounds of synthetic detergents, insecticides, herbicides, and similar domestic products find their way into our streams from household sewers, industrial waste discharges, and land runoff.

Effective and economical treatment methods for most of the complex organic materials remain to be developed. Even where treatment exists, residues may remain in sufficient quantity to cause water damage. These stable residues persist through sewage treatment, biological and chemical action of the stream, and water treatment processes, and finally reach the consumer in drinking water.

The presence of some of these materials, even at concentrations considerably less than I part per million, may impair water quality, most noticably in production of tastes and odors. Fishflesh tainting, also quickly noticed by the consumer, is another damage. Effects on water treatment, many of which are ill-defined at present, and impairment of water quality for industrial uses are being reported with increasing frequency. Essentially nothing is known of the possible immediate or long-term effects of these materials on human health. Such information is urgently needed.

The usual sanitary analyses are not effective in measuring these newer organic contaminants. Yet it is essential to know something of their concentrations and character. A method known as the "Carbon Adsorption Technique," developed by the Public Health Service, permits the concentration of these organic compounds from a large volume of water. Elution of the adsorbed materials with organic solvents, followed by chemical separation and testing, provides useful information concerning organic pollution and for assaying river systems for these substances.

Following continuous flow of about 5,000 gallons of water through the carbon adsorption column over a 7- to 10-day period at 0.5 gpm, material on the carbon adsorption column is extracted with two solvents, chloroform and alcohol. The residues are weighed. The concentration of these materials in the water sampled is then computed. See Explanation of Analytical Data, page 21.

CHLOROFORM EXTRACTS

The organic residue recovered from the carbon adsorption column by chloroform is very complex. It is desirable to separate the crude extract into certain broad chemical classes, and this can be done on the basis of solubility differences. The various classes or groups and their general significance are discussed briefly below.

Ether Insolubles

This group is usually a brown, humuslike powder, apparently composed to a large extent of carboxylic acids, ketones, and alcohols of complicated structure. Origin of the group, which is an indicator of "old" pollution, is believed to be partially oxidized sewage and industrial wastes. For example, the Ohio River at Cincinnati has been exposed to much industrial and sewage pollution, and hence large amounts of ether insoluble materials are found. Streams with little or no pollution history have little or no ether insolubles. Chloroform extracts contain from 0 to 30 percent of ether insoluble material.

Water Solubles

These substances are largely acidic and undistillable at moderate temperatures, but their solubility in ether indicates that the molecules are smaller and probably simpler than the ether-solubles. On the other hand, their water solubility practically requires the presence of several functional groups, such as hydroxy-acid, keto-acid, and keto-alcohol. Such compounds probably originate from partial oxidation of hydrocarbons or they may be natural substances. They have very little odor. These materials usually make up 10 to 20 percent of the total extract.

Weak Acids

This group is characterized by being removed from ether solution with sodium hydroxide but not with sodium bicarbonate. Phenols are the best known weak acids, and if present in the water, appear in this group. Other weakly acidic compounds include certain enols, imides, sulfonamides, and some sulfur compounds. This group of materials also occurs in nature. The weak acids are odorous, and commonly constitute 5 to 20 percent of the chloroform extract.

Strong Acids

These acids are usually carboxylic acids such as acetic, benzoic, salicylic or butyric. Although classified as strong in reference to carbonic acid, they are actually weak when compared with a mineral acid, such as sulfuric. Many of the compounds are used industrially, but may also be produced by natural processes, such as fermentation. Some of the materials are highly odorous. This fraction makes up from 5 to 20 percent of the total. The significance of the strong acids can be interpreted only in the light of stream pollution conditions.

Bases

These compounds are organic amines. Such materials as aniline and pyridine are amines of commerce. Lower amines may occur as a result of decomposition. Although odorous, the low concentrations found are not likely to cause objectionable conditions. However, in the case of specific amine-containing wastes the compounds can be of considerable significance. Generally, only 1 or 2 percent of the total extract is made up of the bases.

Neutrals

This group frequently constitutes the major portion of the chloroform extract. Neither basic nor acidic, the materials are less reactive and tend to persist in streams longer than many other types. Hydrocarbons, aldehydes, ketones, esters, and ethers are examples of neutral materials. The group lends itself to further fractionation by means of chromatographic separation into aliphatic, aromatic, and oxygenated subgroups: Aliphatics: This portion represents petroleum type hydrocarbons in a considerable state of purity, and is usually made up of mineral oil type of material. The percentage of aliphatics present yields important information about the possible source of pollution, since petroleum is the most likely source.

Aromatics: These are principally the coal tar hydrocarbons such as benzene, toluene, and a host of others, and their presence in any significant amount is a reliable indication of industrial pollution. Further, the materials can frequently be identified by infrared spectrophotometry. Some aromatic compounds which have been found in our rivers—and in our drinking water—include DDT, aldrin, endrin, dieldrin, phyenyl ether, orthonitrochlorobenzene, pyridine, phenol, and others. The materials are highly odorous, and may also be toxic. Their appearance in any quantity as pollutants should receive careful evaluation.

Oxygenated compounds (Oxys): These are the neutral compounds containing oxygen, such as aldehydes, ketones, and esters. They may have originated by direct discharge or may represent oxidation products from both natural and industrial materials. They help to indicate the "age" of the pollution, since pollution exposed to oxidation forces for a long time would be expected to contain large amounts of oxys. The oxy materials are odorous.

Losses

Manipulative losses inherent in this type of separation may amount to 10 to 15 percent. Losses greater than this may indicate that volatile components were lost from the sample. Such volatiles may have significance as pollutants.

ALCOHOL EXTRACTS

The alcohol extractables generally consist of materials more polar than the chloroform extractables. They often contain synthetic detergents, carboxylic acids and humic materials which may originate naturally or from oxidized products of domestic and industrial wastes. These classes of substances are not quantitatively recovered by the alcohol extraction. For example, this extraction recovers only 20 to 30 percent of the

synthetic detergents present. On waters of mixed industrial and domestic pollution, the chloroform and alcohol extractables may be about equal. On some streams where the industrial pollution is rather low and much natural pollution or sewage is present, the alcohol extractables may exceed the chloroform extractables by a factor of 4 to 6.

The alcohol extract is usually only partially soluble in water and most ordinary solvents. Very little further chemical separation of this material is currently practical. However, tests have revealed that synthetic detergents may make up 1 to 12 percent of the alcohol extract.

OTHER TESTS

Infrared spectra are routinely run on the total chloroform and alcohol extracts as well as the neutral, aliphatic, aromatic and oxygenated groups which are usually the most significant. Spectra of other groups are obtained when there is an indication that they may be significant. These spectra reveal something of the chemical structure of the materials, indicate differences and in certain instances provide a definite identification. In the case of the alcohol extracts, the infrared spectra will indicate the presence of synthetic detergents if the materials constitute a significant portion.

Thin layer chromatography has been applied successfully to the resolution of the aromatic and basic fractions of CCE. Gas chromatographic equipment with flame ionization, electron-capture and microcoulometric detectors have also been used freely in the identification of specific substances.

COMPOSITE ANALYSIS

Samples from certain locations have been selected for analysis on a quarterly composite basis. Stations that have collected at least 12 samples in a nearly consecutive manner and averaged 100 ppb. or less of chloroform extractables are selected for such analysis when certain other conditions are met. However, samples falling in this category are analyzed individually when the recovery of the chloroform extract is exceptionally high and/or it is unusual in its infrared spectrum or some other physical characteristic.

SPECIFIC IDENTIFICATIONS

Information about specific organic substances which were identified in carbon adsorption samples is given on the second page of the group associated with each station. The increased number of pesticide and other specific compounds identified, as compared to previous years, is partly associated with greater sensitivity in analytical methodology and may be partly a reflection of the increasing usage of these substances in the total environment.

Chemical, Physical, and Bacteriological Examinations

The various biochemical, chemical, physical, and bacteriological examinations generally performed by the participating laboratories are discussed below.

AMMONIA NITROGEN AND CHLORINE DEMAND

The cost of water treatment for domestic use is affected by the consumption of chlorine, with ammonia nitrogen being responsible for a large portion of the chlorine demand. The greater this demand, the more expensive is the treatment. The ammonia may originate from unstabilized domestic pollution, from industrial waste discharges, from run-off containing fertilizers used in farming operations or from all three. The presence of measurable quantities of nitrogen compounds, not necessarily ammonia, is also an indication of the fertility of the stream toward both macro- and micro-biological forms.

COLOR

Color in domestic water supplies is undesirable. Its removal in the water treatment process, whether it be from natural or industrial sources, may require large doses of chemicals and be expensive.

DISSOLVED OXYGEN, BIOCHEMICAL AND CHEMICAL OXYGEN DEMANDS

Biochemical processes, in which aquatic organisms attack and stabilize the organic matter present, require dissolved oxygen. If unstable oxidizable organic matter is present in excess, the organisms will multiply rapidly, consuming the oxygen present in the water, and bring about a foul, septic stream condition. The dissolved oxygen level thus serves to indicate the biochemical activity of the stream. High activity, resulting in low dissolved oxygen levels, will drive out game fish in favor of scavengers. Very low or zero oxygen levels will kill all fish and aquatic organisms dependent on dissolved oxygen for life. Temperature and reaeration rates also affect dissolved oxygen levels.

The 5-day biochemical oxygen demand (BOD) indicates the degree of unstabilized organic pollution from either domestic or industrial sources, to which the stream is being subjected. A significant demand will affect the fish and macroorganism population, and waters carrying a high BOD seldom contain game fish. On the other hand, game fish will thrive in streams in which the oxygen demand has been stabilized, as this condition is usually favorable for the growth of organisms on which fish feed.

The chemical oxygen demand analysis serves to support the findings of the biochemical oxygen demand test. It too may indicate to what extent the waste load of the stream has been stabilized, or it may indicate the presence of organic and inorganic pollution which is not readily oxidized by biological processes. Because the chemical oxygen demand can be determined quickly in comparison to the biochemical oxygen demand, the establishment of a correlation between the two parameters serves to reduce the number of the latter determinations required. The chemical demand results are nearly always higher than the biochemical demand.

TEMPERATURE

Temperature is particularly important to conservation and industry. A few degrees elevation in temperature due to cooling water discharges may seriously limit the capacity of a stream to support fish life. Also, high water temperatures increase the cost of cooling water for

industrial operations. Cooling towers and other equipment for handling cooling water must be engineered to the temperature levels normally encountered.

MINERAL CONSTITUENTS

These determinations include alkalinity, hydrogen-ion concentrations (pH), hardness, chlorides, sulfates, and total dissolved solids. The pH indicates whether water is acidic or alkaline, corrosive or passive. Alkalinity is a measure of the neutralization reserve present, or the extent to which the water can resist a change from an alkaline to an acid condition upon addition of acidic chemicals. This information is important to the water treatment plant operator and to many other water users.

Hardness is not only a measure of the soap consuming property, but is also of importance in the treatment of boiler waters, where removal of hardness is one of the most important functions. Chloride, sulfate, and total dissolved solids add further information on the gross dissolved mineral content carried by the stream. These are of great importance when considering the taste or palatability of water. They are also important when the water is being demineralized for specific industrial processes, since the cost of demineralization is a direct function of the dissolved solids content of the water. In addition, waters of high saline content are less desirable and may at times even be unfit for municipal, irrigation, and other uses.

TURBIDITY

Turbidity of water is due to the suspension of clay, silt, finely divided organic matter, microscopic organisms, and other similar materials. Its presence is of particular importance in water treatment processes and in the propagation of fish and other aquatic life.

COLIFORM ORGANISMS

Information about fecal pollution is essential to water quality measurements. Data on coliform bacteria, used as indicators of pollution, help to point up the trends in the effectiveness of treatment of domestic waste discharges.

The delayed-incubation membrane filter technique is used for the coliform examination, instead of the fermentation tube (MPN) method. The latter necessitates transport of water samples to the Water Quality Section laboratory for examination, with a time lapse between collection and examination that can significantly change their microbial content. Also, some of the many other bacteria present in raw water might overgrow or otherwise inhibit the demonstration of the coliform organisms. In the delayed-incubation membrane filter procedure, the bacteria are filtered out from the fluid samples immediately after collection and the filters sent to the Water Quality Section laboratory on a preservative medium. In the laboratory the membrane filters carrying the bacteria are transferred to a medium selective for coliform organisms, then incubated and counted. The resulting counts approach very closely the actual numbers of coliform bacteria present in the water samples at the time of collection.

Unusual populations of coliform bacteria may mean increased pollution and ensuing loss of water quality. The Public Health Service Water Pollution Surveillance System studies and reports the trends in sewage pollution on streams as indicated by the trends of coliform counts.

Trace Elements and Other Determinations

This year's trace element data differ somewhat from data reported in previous compilations in that the manner of obtaining the data has been modified and the program of elements measured altered. The trace metals measurements are now obtained from a 3.4 meter direct reading spectrograph. Tin, antimony, and bismuth have been discontinued; arsenic, boron, phosphorus, aluminum, and strontium have been added. Increased sensitivity for several elements has been attained, especially zinc, manganese, and beryllium, resulting in fewer indeterminate values.

Twice during the year, 3-month composites of the weekly samples were prepared and subjected to analysis. Examinations covered those elements included in the Public Health Service Drinking Water Standards (26), and other metals considered to have possible physiological or

toxicological significance. The ultimate goal of this phase of the program is to provide background data on all elements which may be found in water and which may be of significance in water quality management.

In carrying out the spectrographic examination, the sample is first passed through a membrane filter, .045 micron pore size, to remove all suspended matter. An aliquot of sample is then acidified with redistilled nitric acid and evaporated to a concentration containing 100 mg. of dissolved solids in 5.0 ml. A portion of the prepared sample is placed in a porcelain boat and sparked using a rotating disc, with concentrations of the 19 programed elements measured on the direct reader (12).

Waters of low dissolved solids content can be concentrated to a greater degree than those having a high dissolved solids content, thus accounting for the variable sensitivity shown in the tabulations. Values followed by an asterisk (*) show the limits of sensitivity at which the test was performed and indicate that the ion being measured was not detected at that level.

It is known that trace concentrations of some ions are subject to precipitation and adsorption on container surfaces during storage. This applies particularly to iron and manganese which are subject to oxidation. Hence, all the values reported by the spectrographic method represent the quantity of metal in solution at the time of analysis to within about 10 percent.

The measurement of sodium and potassium is performed using a flame procedure. Fluoride is determined with the SPADNS reagent using the method described by Bellack and Schouboe (3). Boron, previously measured by the curcumin procedure, is now reported from the spectrograph. Measurement of selenium has been eliminated due to the general absence of this element from the samples examined.

The concentrations of surface active agents, reported as alkyl benzene sulfonate (ABS), in the Nation's surface waters is reported for the first time on a number of selected stations. As the capability of determining this pollutant increases, efforts will be made to include all sampling points in the Surveillance System. The data presented here were obtained using a modification of the Standard Methods methylene blue procedure on an automatic analyzer.

The Benthos

Animals and plants that live in or on the bottom substrata of lakes and streams are known as the benthos. This biological community includes such common animals as immature insects, worms, clams, snails, and crustacea. The benthic populations found on a stream bottom are largely determined by the type of substrate. Bottoms consisting of soft silty sediments are normally inhabited by animals that are able to burrow into the sediments and feed on organic detritus in the sediments. These include worms, clams, and certain insect larvae. The number of species is usually small in these habitats. Shallow streams with shoals, rapids, and riffles have more available niches for animals to occupy and the normal benthic fauna usually includes a large variety of organisms.

The benthic populations provide a basic indicator of general water quality. Whereas the plankton organisms move downstream with the current, and fish are able to migrate considerable distances, the benthos is a population relatively fixed on the bottom and the animals are subject to the water flowing over them. The benthic populations will therefore be influenced by the quality of the water.

The animals that make up the benthos have various life cycles. Insects may exist as aquatic larvae living in the bottom for as long as 2 years. They then emerge as adults and mate. The female deposits fertilized eggs into the stream. Some of the class produce young which attach themselves to fish. Some of the worms reproduce asexually. An analysis of the age structure of certain forms in the benthos may provide information on past conditions of the water.

Under conditions of good water quality the benthos should include a variety of species with no one species being present in excessive numbers. If the water should become degraded, certain species in the population, intolerant of the changed environment, will die out; and as the water quality deteriorates, increased numbers of species in the benthos will be eliminated. The one or more species that survive may be able to develop very large populations. Toxic materials in the water or deposited on the bottom may effectively eliminate all bottom life.

At each station where bottom samples are taken an attempt is made to find areas of suitable substrate. From these areas, where pos-

sible, a series of at least six quantitative samples is taken by means of suitable dredges or samplers. In riffles the Surber squarefoot sampler is used. In deep rivers the Ekman or Peterson dredge is used (see Standard Methods, for the Examination of Water and Wastewater, 11th edition, pp. 572–582) (22). A general qualitative collection of invertebrate life is usually made at all stations.

The bottom materials are screened in the field using a screen with 28 meshes to the inch. The concentrated sample is preserved in alcohol and returned to the laboratory.

In the laboratory the sample is transferred to pans and the macroscopic organisms are separated from the sediment and detritus. The animals are then identified as near to species as possible, enumerated, and weighed. Specimens are preserved and retained for future reference.

During this year benthos data were gathered for stations in the Ohio and Tennessee River basins only and are presented with the descriptive material for the appropriate stations. A supplemental analysis of these data will be published separately.

Fish Populations

Fish are a biological end product of the aquatic environment. They are an important source of food, and sport fishing is one of our leading forms of recreation. The maintenance of fish life has been recognized by the Congress, and by States which have protective pollution control legislation, as an important and legitimate use of our Nation's waterways. In other words, in measuring fish populations at Surveillance System stations, we are not measuring a parameter that affects a water use as in the case of other measurements presented in this compilation, but rather a unique parameter that is in itself considered a beneficial water use.

The water quality requirements and tolerance of aquatic life to different types of contaminants vary tremendously. It is this variability in response which makes living aquatic organisms usable indicators of environmental disturbance. Fish require water relatively high in dissolved oxygen, and are intolerant of many chemical and physical con-

taminants resulting from agricultural, industrial and mining practices. However, the tolerance of different species varies, and man-induced changes of the environment often affect one species more than another, producing imbalanced populations which quite often favor the species less desirable economically.

Moderate amounts of putrescible wastes may enrich the habitat, resulting in great increases in standing crops of fish present. However, under such conditions, the more tolerant and adaptable species may comprise a disproportionate share of the total population, and very sensitive species may be eliminated altogether. The effect of toxic wastes may vary from complete elimination of populations to a reduction in reproductive capacity, growth and resistance to disease and parasitism.

Fish kills are a spectacular and obvious indication that an abrupt change has taken place in the environment. However, because of high mobility resulting in rapid recruitment, the fish population in a river or stream may return to normal levels within a very short time after a kill.

Chronic pollution, to which the fish population must adjust over a period of time, will be reflected in the kinds and relative abundance of the fish species present. In addition to the species composition, the condition of the fish, their growth, reproductive success and certainly their palatability are factors of considerable importance in evaluating the suitability of a body of water for supporting usable stocks of fish.

During the current water year, data on fish populations were gathered for some stations in the Ohio and Tennessee River basins only, and are presented in tables in volume 5 for the appropriate stations.

Fish samples at these stations were collected primarily with rotenone and with an electrofishing device. Five percent emulsified rotenone was applied at suitable sites, where an area of 1 to 3 acres could be blocked off with nets during the rotenoning operation. Such sites were usually in the form of small coves along the shoreline, the mouths of small tributaries, or behind the partial enclosure created by navigational lock walls. An electrical shocking device was used along the shoreline both during the day and at night. In a few cases, samples were also collected with trammel nets and with short, 25-foot haul seines. Sampling with nets and seines was limited because of the paucity of habitat in large rivers which is suitable for using these types of gear. With each method used sufficient sampling was done to collect as many species present as possible, and to obtain a measure of the relative abundance and size distribution of the various species. Every type of fishing gear is somewhat selective, and the data obtained may not be representative of the actual population composition present in the river at the time of sampling. However, the data obtained by a given method are quantitatively comparable and may be used to evaluate changes in the population composition resulting from natural and man-induced changes in the habitat. Comparisons should be based on samples collected with the same gear, during the same season of the year, and under similar conditions of stream flow and water temperature. These data will be particularly useful in determining the impact of changes in water quality on the fish populations of the Nation's rivers over long periods of time.

For convenience of comparison, the fish in the tables are grouped into six major categories based on food habits and methods of feeding:

- I. Large, sight feeding carnivores that feed on other fish. This group includes most game species.
- II. Species that feed primarily on insects. This group provides important forage for species in group I.
- III. Species that feed primarily on plankton and algae. These also provide important forage for group I species.
 - IV. Species that feed primarily on mollusks.

V. Omnivores that feed indiscriminately on plant and animal matter from the bottom.

VI. Scavengers that take any available food. Some of the species in this group may sometimes act as predators. The group also includes many important food fish, and species that are tolerant of degraded conditions.

Because foods and feeding habits vary with size, age, and availability of food, there may be considerable overlap between groups. The species listed were grouped according to available literature regarding the main foods of adult specimens of each species.

In the field the total length of the fish was routinely measured to the nearest inch class on a one-half inch interval. Thus a fish in the 5-inch class would measure from 4.5 inches to slightly under 5.5 inches. If the end of the tail touched the dividing line between two length classes, the fish was included in the higher classification. The percent total number and weight are carried to the nearest one-tenth of 1 percent in the tables. The one-tenth of 1 percent was arbitrarily selected for purposes of tabulation, and does not imply such a high level of sampling accuracy.

The fish are listed by common names in the tables according to American Fisheries Society Special Publication No. 2 (1960), A List of the Common and Scientific Names of Fishes From the United States and Canada, Second edition (1).

Stream Flow

Stream flow data have a most important role in the utilization of water quality parameters such as are included in this report. For this reason, average daily flow records are reported for most of the sampling stations in the System.

All flow data included in this compilation are *provisional* data furnished by the agencies credited, and are subject to revision by such agencies prior to any final publication. With the exceptions mentioned,

the flows are given as furnished to the Public Health Service.

The data were generally furnished in units of cubic feet per second. In general only the first three digits were considered significant. Because of machine limitations the data are reported here in thousand cubic feet per second. Even though three zeros may appear after the decimal, no artificial accuracy of measurement is implied. Only the first three digits should be considered significant. There are two exceptions:

(1) When the flow was over 1 million cubic feet per second, the first four digits are reported, and (2) at times when the Rio Grande flows were extremely low, the data were reported to tenths of a cubic foot per second. These figures are published showing 4 decimal places.

Flow data for sampling stations on the rivers of the Great Lakes

system are reported as the monthly mean flow, as computed by the U.S. Lake Survey. In certain other rivers, flow data were computed by the Public Health Service from information supplied by the gaging agency. The methods of computations are shown as footnotes to the data for the applicable stations.

BIBLIOGRAPHY

- 1. American Fisheries Society. A List of the Common and Scientific Names of Fishes from the United States and Canada. Special Publication No. 2. Second edition (1960).
- 2. Bell, Wm. E. National Water Quality Network Studies of Surface Waters. Proceedings of the Thirty-sixth Annual Meeting of the Oklahoma Water Pollution and Control Association, Oklahoma State University, Stillwater, Okla., November 30, 1962.
- 3. Bellack, E. and Schouboe, P. J. Rapid Photometric Determination of Fluoride in Water. Anal. Chem. 30: 2032-4 (1958).
- 4. Breidenbach, A. W. The Need for New Approaches to the Measurement and Identification of Organic Chemicals in Water. Presented at the 123d National Meeting of the American Chemical Society, Cincinnati, Ohio, January 16, 1963.
- 5. Breidenbach, A. W. and Lichtenberg, James J. Identification of DDT and Dieldrin in Rivers—A Report of the National Water Quality Network. Science, 141: 899 (September 1963).
- 6. Cheng, K. L. Determination of Traces of Selenium 3,3-Diaminobenzidine as Selenium (IV) Organic Reagent. Analytical Chemistry, 28: 1738 (1956).

- 7. Clark, H. F.; Kabler, P. W., and Geldreich, E. E. The Advantages and Limitations of the Membrane Filter. Water and Sewage Works, 104: 9 (1957).
- 8. Geldreich, Edwin E.; Kabler, Paul W.; Jeter, Harold L., and Clark, H. F. A Delayed Incubation Membrane Filter Test. J.A.P.H.A., 45: 11 (1955).
- 9. Green, Richard S. The Surveillance of Water Quality-Operation of the National Water Quality Network. Proceedings of the Tenth Southern Municipal and Industrial Waste Conference, Department of Civil Engineering, Duke University, Durham, N.C., April 1961.
- 10. Green, Richard S. Data Gathering and Monitoring Equipment in Water Supply and Water Pollution Control Programs. Presented before the Engineering and Sanitation Section, A.P.H.A., Miami Beach, Fla., October 17, 1962.
- 11. Harley, J. H. Radiochemical Determination of Strontium 90. In *Health and Safety Laboratory Manual of Standard Procedures*, prepared by the Radiochemistry and Environmental Studies Division, U.S.A.E.C., New York Operations Office, Revised Cover Sheet, August 1962.

- 12. Kopp, J. F. and Kroner, R. C. A Direct Reading Spectrographic Procedure for the Measurement of Nineteen Minor Elements in Natural Water. Presented at the 1964 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, March 2–6, 1964.
- 13. Kramer, Harry P., and Kroner, Robert C. Cooperative Studies in Laboratory Methodology. J.A.W.W.A., 51: 607 (1959).
- 14. McCallum, Gordon E. Measurement of Water Quality Through a National Sampling Network. Presented at the 122d Annual Meeting of the American Statistical Association, Minneapolis, Minn., September 8, 1962.
- 15. Middleton, F. M., and Lichtenberg, J. J. Measurements of Organic Contaminants in the Nation's Rivers. Industrial and Engineering Chemistry, 52: 99A (1960).
- 16. Palmer, C. Mervin. Algae in Water Supplies. PHS Publication No. 657. U.S. Government Printing Office, Washington, D.C. (1959).
- 17. Stierli, H., Orem, M. T., and Blair, R. D. Establishing a Water Quality Network Station—A Case History. Seventeenth Annual Purdue Industrial Waste Conference, Purdue University, Lafayette, Ind. (May 1962).
- 18. Weaver, Leo. The National Water Quality Network—1962. Presented at the Fourth Industrial Wastes Forum, Interstate Commission on the Potomac River Basin, Hagerstown, Md. (May 1962).
- 19. Weaver, Leo, Hoadley, Alfred W., and Baker, Stanley. Radioactivity in Surface Waters of the United States, 1957–62. Radiological Health Data, 4: 306 (June 1963).
- 20. Williams, L. G. Plankton Population Dynamics. National Water Quality Network, Supplement 2, PHS Pub. No. 663, Supplement 2, U.S. Government Printing Office, (1963).

- 21. Williams, L. G., and Scott, Carol. Diatoms of Major Waterways of the United States. Limnol. and Ocean. 7: 365 (1962).
- 22. A.P.H.A., A.W.W.A., and F.S.I.W.A. Standard Methods for the Examination of Water and Wastewater. Eleventh Edition. New York, N.Y. (1960).
- 23. U.S. Department of Health, Education, and Welfare, Public Health Service. Municipal Water Facilities Inventory as of January 1, 1958. PHS Publication No. 775, revised, 9 volumes, U.S. Government Printing Office (1964).
- 24. U.S. Department of Health, Education, and Welfare, Public Health Service. Municipal Waste Facilities, 1962 Inventory. PHS Publication No. 1065, 9 volumes, U.S. Government Printing Office (1963).
- 25. U.S. Department of Health, Education, and Welfare, Public Health Service. National Water Quality Network Operating Manual. (Mimeo.) Cincinnati, Ohio (1960).
- 26. U.S. Department of Health, Education, and Welfare, Public Health Service. Public Health Service Drinking Water Standards. Revised 1962. PHS Publication No. 956 (1962).
- 27. U.S. Department of Health, Education, and Welfare, Public Health Service, Robert A. Taft Sanitary Engineering Center. Water Quality Studies on the Columbia River (1954).
- 28. State Water Pollution Control Board, Sacramento, Calif. Water Quality Criteria, Publication No. 3A (1963).

Explanation of Analytical Data

RADIOACTIVITY DETERMINATIONS

In evaluating radioactivity data it should be noted that the reported errors represent counting errors only and the reported values are subject to other errors commonly associated with gross radioactivity analysis. (See Reference 22.)

A dash (—) in the count column signifies that no determination was made. An asterisk (*) following date of sample indicates that determinations are for composites of two or more samples taken on and before the date shown.

Strontium 90 determinations are reported in micro-microcuries per liter as measured from total solids in the sample composited for the quarter. A dash (—) indicates that no determination was made in that period.

PLANKTON POPULATION

Plankton data are reported on two pages. The first page lists the population size of various groups of algae. A coded number shows the

ten most abundant genera of algae and their count level. Code numbers used are identified on page 18. Blank spaces on the data sheets signify that counts of other genera were below a level of 150 per ml. The second page of plankton data lists the four dominant diatom species and their occurrence as a percent of the total diatom population. The percent of occurrence of all other diatom species is shown in the next column. Identification codes of species are given on page 19.

The detectable numbers per ml. of fungi, sheathed bacteria and protozoa are shown in the next two columns. The rotifer and crustacea totals per liter are listed together with the genera where these occurred at a count level of five or more per liter for rotifers and three or more per liter for crustacea. Nematode and miscellaneous animal form counts per liter appear in the last two columns.

A dash (—) indicates that no analysis was made. A zero count of each group is indicated by "o". Blank spaces under abundance and dominance columns indicate that the populations were too few to be included or were absent. Coding for abundant genera of rotifer and crustacea population levels are presented on page 20.

PLANKTON POPULATION

Identification Codes of Algae Genera and Count Levels of Most Abundant Genera

WEN HO COLD III			
KEY TO COUNT	15 Oscillatoria	Filamentous green algae	68 Cyclotella
LEVEL (per ml.)	16 Phormidium	46 Cladophora	69 Melosira
1 150 to 300	17 Raphidiopsis	47 Stichococcus	70 Rhizosolenia
2 301 to 600	18 Spirulina	48 Stigeoclonium	71 Stephanodiscus
β 601 to 1,200	19, 20, 21 Reserve	49 Reserve	72 Other genus
, 1,201 to 2,400	22 Other genus	50 Other genus	Pennate
5 2,401 to 4,800	23 Other genus	Green flagellates	73 Achnanthes
4,801 to 9,600	Coccoid green algae		74 Amphiprora
9,601 to 19,200	24 Actinastrum	51 Chlamydomonas including Carteria	75 Amphora
3 19,201 to 38,400	25 Ankistrodesmus	52 Euglena	76 Anomoeoneis
38,401 and over	26 Chlorella-type	53 Lepocinclis	77 Asterionella
	27 Chlorococcum	54 Pandorina	78 Caloneis
Code to ALGAE	28 Closterium	55 Phacotus	79 Cocconeis
GENERA (Producers)	29 Coelastrum	56 Phacus	80 Cymatopleura
Blue-green Algae		57 Trachelomonas	81 Cymbella
•	T: 1 .	58 Reserve	82 Diatoma
Agmenellum (Merismopedia)		59 Other genus	83 Diploneis
2 Anacystis (Microcystis)		Other pigmented flagellates	84 Fragilaria
3 Anacystis	33 Lagerheimia		85 Gomphonema
4 Coccochloris	34 Micractinium	60 Chromulina	86 Gyrosigma
5 Gomphosphaeria	35 Oocystis	61 Dinobryon	87 Navicula 88 Nitzschia
6, 07, 08 Reserve	36 Palmellococcus	62 Gymnodinium	89 Pleurosigma
9 Other genus	37 Pediastrum	63 Peridinium	
o Other genus	38 Scenedesmus	64 Reserve	90 Khoicosphenia 91 Surirella
Filamentous blue-greens	39 Staurastrum	65 Other genus	92 Synedra
	40 Tetradesmus	Diatoms	93 Tabellaria
1 Anabaena	41 Tetrastrum	(with chromatophores)	94, 95, 96 Reserve
2 Aphanizomenon	42, 43 Reserve	Centric	97 Other genus
3 Arthrospira	44 Other genus	66 Biddulphia	98 Other genus
4 Lyngbya	45 Other genus	67 Coscinodiscus	99 Other genus

PLANKTON POPULATION Identification Code for Diatom Species

			ntification Code for Diatom Species	No.	Species
No.	Species	No.	Species		Nitzschia denticula
oı	Achnanthes lanceolata	35	Diatoma elongatum		
02	Achnanthes minutissima	36	Diatoma vulgare	•	Nitzschia (Lancelolatae group)
03	Achnanthes sp.	37	Diatoma sp.	71	Nitzschia sp. (first)
04	Amphiprora paludosa	38	Diploneis smithii	/	Nitzschia sp. (second)
o5	Amphiprora sp.	39	Diploneis sp.	73	Opephora martyi
06	Amphora ovalis	40	Epithemia turgida	74	Pinnularia sp.
07	Amphora sp.	41	Epithemia sorex	75	Pleurosigma delicatulum
o8	Anomoeoneis exilis	42	Epithemia sp.	76	Rhoicosphenia curvata
09	Asterionella formosa	43	Eunotia sp. (first)	77	Rhizosolenia eriensis
10	Bacillaria paradoxa	44	Eunotia sp. (second)	78	Rhopalodia gibba
ΙI	Biddulphia laevis	45	Fragilaria capucina	79	Rhopalodia sp.
12	Caloneis amphisbaena	46	Fragilaria construens	8o	Stephanodiscus astraea var. minutula
13	Caloneis sp.	47	Fragilaria crotonensis	81	Stephanodiscus dubius
14	Ceratoneis arcus	48	Fragilaria pinnata	82	Stephanodiscus hantzschii
15	Cocconeis pediculus	49	Fragilaria sp.	83	Stephanodiscus niagarae
16	Cocconeis placentula	50	Frustulia sp.	84	Stephanodiscus sp.
17	Cocconeis sp.	51	Gomphonema olivaceum	85	Surirella brightwelli
18	Coscinodiscus rothii	52	Gomphonema sp.	86	Surirella ovata
19	Coscinodiscus (brackish)	53	Gyrosigma kutzingii	87	Surirella striatula
20	Coscinodiscus sp.	54	Gyrosigma sp.	•	
21	Cymatopleura solea	55	Hantzchia amphioxys	88	Surirella sp.
22	Cymatosira belgica	56	Melosira ambigua	89	Synedra acus
23	Cyclotella atomus	57	Melosira distans var. alpigena	90	Synedra pulchella
24	Cyclotella comta	58	Melosira granulata	91	Synedra nana
25	Cyclotella kutzingiana	59	Melosira binderana	92	Synedra ulna
26	Cyclotella meneghiniana	бо	Melosira islandica	93	Synedra vaucheriae
27	Cyclotella pseudostelligera	61	Melosira italica	94	Synedra sp.
28	Cyclotella stelligera	62	Melosira varians	95	Tabellaria fenestrata
29	Cyclotella striata	63	Meridion circulare	96	Tabellaria flocculosa
30	Cyclotella sp.	64	Navicula cryptocephala	97	Any entity not found above (first)
31	Cymbella ventricosa	65	Navicula sp. (first)	97 98	Any entity not found above (second)
32	Cymbella tumida	66	Navicula sp. (second)		Reserved for future entity
33	Cymbella sp.	67	Nitzschia acicularis	99	· ·
34	Denticula sp.	68	Nitzschia tryblionella	XX	Insignificant or population inadequate

PLANKTON POPULATION

Identification Codes of Microinvertebrate Genera and Count Levels of Most Abundant Genera

Genera of ROTIFERS	Code to	15 Philodina and similar	52 Daphnia and related gener
Key to counts per liter	MICROINVERTEBRATES	contracted bdelloids	53 Moina
5 to 10	Rotifers	16 Ploesoma	54 Polyphemus
21 to 40	o1 Asplanchna	17 Polyarthra 18 Pompholyx	55 to 72 Reserve
41 to 80	o2 Brachionus (also Platyias)	19 Proales	73 Other genus 74 Other genus
81 to 160 161 to 320	o3 Collotheca o4 Cephalodella	20 Rotaria 21 Synchaeta	75 Other genus
321 to 640	o5 Chromogaster	22 Trichocerca	Copepods
641 to 1,680 1,681 and over	o6 Euchlanis 07 Filinia	23 to 45 Reserve 46 Other genus	76 Cyclops, Euclops, and
Genera of CRUSTACEA Key to counts per liter	08 Gastropus 09 Hexarthra (also Pedalia)	47 Other genus 48 Other genus	Paracyclops 77 Diaptomus 78 to 97 Reserve
3 to 5	10 Kellicottia 11 Keratella	49 Other genus	98 Other genus
6 to 10 11 to 20	12 Lepadella	Cladocerans	99 Other genus
21 to 40	13 Monostyla (also Lecane)	50 Nauplii	Blank-Insignificant or
41 and over	14 Notholca	51 Bosmina and related genera	population inadequate

ORGANIC CHEMICALS

Although units of concentration may be assigned to the values reported herein (µg/l or parts per billion), it is essential that the user of these data consider additional associated information. Introspective examination of the data reported herein has indicated that comparison of concentration values obtained from samples of similar gallonage are more valid than samples of widely differing gallonage. In addition, recent experimental researches have shown that lower flow rates and lower sample volumes than those employed (5,000 gallons at 0.5 gpm) are substantially more efficient and should produce relatively higher concentration values with this method. The first in a series of changes designed to increase sampling efficiency is already underway at Water Pollution Surveillance System stations.

Concentration values reported for specific substances are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE. In light of an unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

Zeros when reported have been entered. A dash indicates that the respective results were not reported. An asterisk in the column

showing end of sample date indicates that the determinations are for composited samples taken on and before the date shown. The extent of compositing can be determined by examining the gallons filtered, which is the sum of the applicable individual samples immediately above it.

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

The data entered in each column are as reported. Concentrations of alkalinity and hardness are reported in milligrams per liter as CaCO₃. A dash signifies that the particular test was not performed. Zeroes when meaningful have been entered. An asterisk preceding a number should be read as "less than" the number following it.

TRACE ELEMENTS AND OTHER DETERMINATIONS

For a discussion of the sensitivity limits of the determinations performed with spectrographic methods, see page 11.

BASIN 10

SOUTHWEST-LOWER MISSISSIPPI

The Southwest-Lower Mississippi River basin contains 15 Public Health Service Water Pollution Surveillance System stations situated on 5 rivers. Four stations are on the Mississippi River mainstem below the confluence of the Ohio River, five are on the Arkansas River mainstem, and four are on the mainstem of the Red River. The Verdigris and the Ouachita Rivers, tributary to the Arkansas and Red Rivers, respectively, are also sampled.

Arkansas River: The headwaters of the Arkansas River are in the Rocky Mountains near Leadville, Colo. The river flows in a southeasterly course to its confluence with the Mississippi River. Irrigation places heavy demands on the stream in the semiarid and dry regions east of the mountains. Dissolved solids build up as a result of both natural and man-made pollution above Tulsa, Okla., and are subsequently reduced by dilution from other streams in Arkansas. Pueblo, Colo., is the only large community to use the Arkansas River as a municipal supply. The Verdigris River drains from eastern Kansas southward through Oklahoma and is confluent with the Arkansas River near Muskogee, Okla.

Red River: The Red River begins in the high plains of Texas. South of Amarillo in Palo Duro Canyon, the stream is degraded by rising salty ground water from several natural sources in this basin. Oil field pollution is being rapidly corrected. The Red River is subsequently diluted by the Washita River which enters Lake Texoma above Denison Dam and thereafter by several large tributaries. However, the variability of rainfall, and the operation of Denison Dam cause fluctuating mineral concentrations in the lower portion of this river. One municipality uses the Red River as a source of supply. The Red River is confluent to the Atchafalaya River which is a distributary of the lower Mississippi.

Ouachita River: The Ouachita River flows southward from central Arkansas and, in its lower reach, becomes the Black River. The Black River is tributary to the Red River about 30 miles downstream from Alexandria, La.

The Surveillance System station at West Memphis, Ark., monitors inflow to the lower Mississippi River and the New Orleans station monitors the discharge of the Mississippi to the Gulf of Mexico. Twin stations are installed at Delta, La., and Vicksburg, Miss., in order to

adequately monitor pollution in the presence of incomplete mixing of tributary flows from the Yazoo River.

During August and September 1963, at West Memphis, Vicksburg, and New Orleans and in July at Delta, the Mississippi River contained the pesticides, dieldrin and endrin. These are the first identifications, but not the first occurrences, of endrin by the PHS Water Pollution Surveillance System in surface waters and they were found at and upstream from an area where major fish kills have been observed in late fall-early winter every year since 1960. These positive identifications were made possible by development of improved analytical techniques involving thin-layer chromatography, electron-capture and microcoulometric titration gas chromatography, and infrared spectroscopy. The public health significance of the calculated pesticide concentrations is unknown. However, the necessity for an increased surveillance effort is apparent.

In this basin the high phytoplankton populations in the Arkansas, Red, and Verdigris Rivers (exceeding 100,000/milliliter) are contrasted with the low counts in the Mississippi and Ouachita Rivers. The algae of the upper Arkansas and Red Rivers are dominated by pennate c but centric diatoms dominate elsewhere. The Arkansas, Red, and gris Rivers develop a diverse algal population during the summer n being unusually rich in a wide variety of blue-green, green and brown forms. The basin is unique in having high winter popu of the yellow-brown flagellate Chrysococcus. The dominant diatoms include Stephanodiscus hantzschii, S. astraea var. minutula sira ambigua, M. granulata, Cyclotella meneghiniana, and Coscinrothii. The more abundant pennate diatoms include Nitzschia sī Synedra ulna in the Arkansas River, and Diploneis smithii in t River.

Rotifer populations are generally high throughout the ba flecting the high algae counts. The highest rotifer count ever refor any network station was 15,190/liter at Alexandria on the Rec September 3, 1963. The most abundant forms were Keratei Trichocerca.

BASIN 2

NORTH ATLANTIC

The North Atlantic basin contains 10 Water Pollution Surveillance System stations in 3 major river systems.

Potomac River: The Potomac River drains the eastern slope of the Allegheny Mountains. The headwaters are in mountainous terrain. The river is tidal below Great Falls, Md., just upstream from Washington, D.C., and discharges to Chesapeake Bay. The average annual temperature is about 54° F., average precipitation is 38 inches, and average snowfall ranges from 30 inches at the headwaters to 5 inches near the mouth. The major tributary to the Potomac is the Shenandoah River. There are industrial developments in the upper reaches of both the Shenandoah and Potomac Rivers. Hydroelectric power plant operations on the Shenandoah exert a major influence on the flow regimen. The Potomac is the interstate boundary separating Maryland and Virginia for a large portion of its length.

Susquehanna River: The Susquehanna River is the largest stream in the United States which discharges to the Atlantic Ocean. Its headwaters are in the State of New York and it flows in a southerly course across Pennsylvania to discharge into the head of Chesapeake Bay. From the northern to the southern portion of the basin, annual precipitation varies from 42 to 40 inches, snowfall from 50 to 35 inches, average summer temperatures from 66° to 76° F., and average winter temperatures from 22° to 34° F. Surveillance stations are located near the points where the river enters and leaves Pennsylvania.

Delaware River: The Delaware rises in the western slope of the Catskill Mountains of east central New York and flows southerly into Delaware Bay. Average annual precipitation varies from 50 inches at the headwaters to 40 inches in the lower watershed. Corresponding winter temperatures are 23° and 36° F.; summer temperatures are 66° and 76° F.; and snowfall, 50 inches and 30 inches or less. The Delaware forms the State boundary between New York and Pennsylvania and between Pennsylvania and New Jersey. The lower reach is polluted by industrial and municipal wastes. The Schuylkill River is a major tributary to the Delaware and this river flows through coal producing areas. There is some acid mine drainage present in addition to munic-

adequately monitor pollution in the presence of incomplete mixing of tributary flows from the Yazoo River.

During August and September 1963, at West Memphis, Vicksburg, and New Orleans and in July at Delta, the Mississippi River contained the pesticides, dieldrin and endrin. These are the first identifications, but not the first occurrences, of endrin by the PHS Water Pollution Surveillance System in surface waters and they were found at and upstream from an area where major fish kills have been observed in late fall-early winter every year since 1960. These positive identifications were made possible by development of improved analytical techniques involving thin-layer chromatography, electron-capture and microcoulometric titration gas chromatography, and infrared spectroscopy. The public health significance of the calculated pesticide concentrations is unknown. However, the necessity for an increased surveillance effort is apparent.

In this basin the high phytoplankton populations in the Arkansas, Red, and Verdigris Rivers (exceeding 100,000/milliliter) are contrasted with the low counts in the Mississippi and Ouachita Rivers. The algae

of the upper Arkansas and Red Rivers are dominated by pennate diatom but centric diatoms dominate elsewhere. The Arkansas, Red, and Verd gris Rivers develop a diverse algal population during the summer month being unusually rich in a wide variety of blue-green, green and yellow brown forms. The basin is unique in having high winter population of the yellow-brown flagellate Chrysococcus. The dominant centric diatoms include Stephanodiscus hantzschii, S. astraea var. minutula, Meisira ambigua, M. granulata, Cyclotella meneghiniana, and Coscinodisce rothii. The more abundant pennate diatoms include Nitzschia spp. al Synedra ulna in the Arkansas River, and Diploneis smithii in the River.

Rotifer populations are generally high throughout the basin, flecting the high algae counts. The highest rotifer count ever record for any network station was 15,190/liter at Alexandria on the Red Riv September 3, 1963. The most abundant forms were Keratella a Trichocerca.

ARKANSAS RIVER AT PENDLETON FERRY, ARKANSAS

This is the last Water Pollution Surveillance System station on the Arkansas River before confluence with the Mississippi, 44 miles downstream. Samples are collected from the ferry at approximately midstream.

The nearest community above this station is Pine Bluff, Arkansas which is approximately 40 miles upstream. About 20% of the sewage from this city of 44,000 is treated by lagooning and the balance is discharged without treatment into the river. No use is made of the Arkansas River in this area for either irrigation or municipal supply.

145

re-

ed

er, nd

Arkansas River at Pendleton Ferry, Station Location: Arkansas Southwest-Lower Mississippi River Major Basin: Arkansas River-Van Buren to Mouth Minor Basin: 33°59' Latitude 91°23' Longitude Station at: 44 Miles above mouth: March 30, 1959 **Activation Date:** Arkansas State Water Pollution Control Sampled by: Commission Arkansas State Water Pollution Control Field Analysis by: Commission Arkansas State Board of Health Other Cooperating Agencies: Hydrologic Data: At Little Rock, Arkansas Nearest pertinent gaging station: Gaging station U.S. Geological Survey operated by: 158,201 square miles; 22,241 square Drainage area at miles probably noncontributing gaging station: Period of record: 1927 to present Average discharge 42,250 cfs. in record period: 536,000 cfs. Maximum discharge in record period: Minimum discharge in record period: 850 cfs.

Remarks: Flows regulated by operations of power plants and

upstream storage reservoirs.

ALKYL BENZENE SULFONATE (ABS)

mg/1

Date

Composite Interval 10/1/62 to 12/31/62 Analysis by wet or flame Νa methods. Results in mg/1Cd Analysis by Spectrographic methods. Results in micrograms Ag liter РЬ Cr Вα

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

ELEMENTAL ANALYSES

4/1/63

92

10

*5

*50

80

38

18

*50

*3

*25

*.13

3

*1.3

5

*5

*13

15

*25

100

525

5.8

to /30/63

.40

STR	ONT	IUM	90 ACTIVIT		
Composite Interval	pc/l	+	Composite Interval	pc/i	+
October to December	-	-	April to June	5.5	.5
January to March	-	_	July to September	-	

⁺ at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration * ug/l
	·	
İ		
	l	

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fraction of CCE, and may be assigned the units ofug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values. See page 21.

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER-VAN BUREN TO MOUTH

STATION LOCATION ARKANSAS RIVER AT

PENDLETON FERRY, ARKANSAS

52

SAMPLE TAKEN PATEON PAT	DATE									RADIOACTI	VITY IN	WATER					1	1	PADIOACTIV	TV IN P	MICTON	
10. DAY YR. MO. DAY PR/I # PR/		E	ATE OF				ALPH	i.A.				ĺ		BETA				DATE OF				
Ac DAY YR. Mo. DAY Pe/I ± Pe	TAKEN	1	NATION	BUSPEN	DED		DISSOL	VED		TOTAL		SUSPEND	ED		D D	TOTAL		DETERMI-				
5 29 63 6 19* 3 2 4 3 7 4 57 15 60 16 117 22 6 26 63 7 23* 7 5 1 4 8 6 38 15 58 15 96 21 7 31 63 8 16* 4 3 0 4 4 5 73 28 59 37 132 46 8 28 63 9 25* 1 1 0 1 2 4 3 4 3 12 15 28 18 30	MO. DAY YR.	М	O. DAY	pc/l	=		pc/l		±	pc/l	#	pc/l	±				±					
	5 29 63 6 26 63 7 31 63 8 28 63	8	5 19* 7 23* 3 16* 9 25*	3 7 4	3	2 5 3 1		0 0	3 4 4 1	7 8 4 1	4 6 5	57 38 73 23	15 15 28 12 12	60 58 59 47	16 15 37 17	117 96 132 70	22 21 46 21	MO. DAY		=	pc/g	

RADIOACTIVITY DETERMINATIONS

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER VAN BUREN TO MOUTH

STATION LOCATION ARKANSAS RIVER AT

PENDLETON FERRY, ARKANSAS

52

					Al	LGAE (Nu	mber pe	r milliliter	,			INF	DT		N	OST	AE	UND	AN	T AL	GAE	- Gen	era an	d Cou	nt Lev	el per	ml. (5	See te	xt for	Codes)	
:	DAT OF SAME			BLUE-	GREEN	GREE	:N	FLAGEL (Pigme	LATED	DIATO	омѕ	INE DIAT SHE	LLS	15	ST	2n	ID	ЗR	D	4TI	-	5тн	6	тн	71	н	8т	н	9ті	н	10	TH
нтиок	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	аюээоэ	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL						
68899		63 63 63	4500 2700 3100 17900 16300	50 2050	0 0 90	330 320 4170	100 0 20	180 150 680 250 840	20 0 0	1140 1270 8700	990 840 2570	750 750 2970	150 70 960	68 68 68 68	5 3 3	88 88 88	2 3 4	52 87 51 71	1 1 1 4	52	1 3	87 88	1 9	2 3 4 2		3 2		3	24 38	1	97	1

PLANKTON POPULATION

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER-VAN BUREN TO MOUTH

STATION LOCATION ARKANSAS RIVER AT

PENDLETON FERRY, ARKANSAS

052

	DAT	E		DON	MINAN'	T SPEC	CIES C	F DIA	TOMS .	AND			L					- 1	A I C F	3 0	IN	VER	7	EBR	ATE	. 5						
5	OF AMP	LE										À .	blej	<u> </u>			R	OTI	FERS						CR	US:	TAC	EΑ				62
			1	<u> </u>		ND		RD	4	ГН	<u>ES</u>	957	tifio md.						AND COU	odes)	LEVEL				GEN	ERA (See	AND C	Cod	r LEVE	L		E. J.
						1		İ		Ì	N E	B B A	Pe de	NUM-	<u>1s</u>	T_	2 N	D	3rd		<u>4</u> TH	<u> 5</u> 1	Ή	NUM-	_ 1 s1		2 _N		3 _R	D	. D	4 5
MONTH	DAY	YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SPECIE PERCENT	FUNGI AND SHEATHED BACTERIA Number per mi.	PROTOZOA (Identifiable) Number per ml.	BER PER LITER	GENUS	COUNT LEVEL	SERUS	COUNT LEVEL	GENUS	1	TENUS COURT LEVEL		COUNT LEVEL	BER PER LITER	GENUS	COUNT LEVEL	CENUS	COUNT LEVEL	CERUS	COURT LEVEL	NEMATODES (Identifiable) Number per liter	OTHER ANIMAL FORMS (Number per lifer)
68899	1971411118	63 63	26 26 26 26 26	42 39 41	20 30 27 82 82	41 34 15	70 82 70 27 27	3 6 13	82 56 82 92 23	2 4 6	7 122 17 25 19	-	-											1111								

PLANKTON POPULATION

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER VAN BUREN TO MOUTH

STATION LOCATION ARKANSAS RIVER AT

PENDLETON FERRY, ARKANSAS

DATE					<u> </u>	CHLORINE	DEMAND									TOTAL	
OF SAMPIE DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	SOLIDS mg/l	per 100 :
5 13 63 5 29 63 5 29 63 6 12 63 6 12 63 7 10 63 7 17 63 7 24 63 9 18 63 9 18 63 9 24 63 9 25 63	24.0 	3 • 6 5 • 8	7.7 7.9 7.6 8.2 7.7 6.1 7.5 8.1 7.9	2.7 	25 	2.2 	7.0 		82 168 222 176 475 485 390 140 172 290 210 205	110 110 112 114 118 106 80 108 94 164 126 98	92 	40 	325 	8	• 1 • 1 • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	291 	3406 59(18(10006 97(601 25)

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Little Rock, Arkansas Operated by U.S. Geological Survey

STATE

Arkansas

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Arkansas River-Van Buren to Mouth

STATION LOCATION

Arkansas River at

Pendleton Ferry, Arkansas

Эау	October	November	December	January	February	March	April	May	June	July	August	September
1	46.100 42.600	28.100 40.500	21.500 30.700	16.800	8.810 8.060	8.810	12.800	34.900	9.080	11.900	10.600	3.600
2 3 4	39.800	44.000	32.100	17.300 16.800	8.810	13.600	12.400 12.100	51.900 55.100	9.890 10.800	22.000 19.300	10.200 11.400	4.200 4.580
4	41.200	39.800	29.300	16.300	9.890	16.800	11.100	48.900	11.100	14.800	13.300	4.450
5	44.700	31.400	26.300	15.400	10.800	20.300	11.800	40.500	10.800	11.900	17.800	4.320
6	53.500	25.100	23.900	13.600	10.500	22.700	19.800	30.000	9.890	11.000	17.800	4.100
7	62.800 59.200	21.500 20.300	22.700	15.000	9.080	23.300	22.700	23.900	9.080	11.400	17.800	3.700
8	48.200	22.700	23.900 24.500	17.300 19.300	8.560 8.810	22.700 19.800	20.300 17.300	20.300 18.300	9.080 9.080	11.400 10.600	16.300 12.400	3.310
9 LO	39.800	27.500	23.900	19.300	9.350	20.900	14.500	15.800	8.310	9.800	9.800	3.500 5.200
LJ.	33.500	32.100	22.100	20.900	9.890	28.700	12.100	14.000	7.830	9.400	9.050	6.700
2	35.600	32.800	19.800	26.300	9.890	35.600	10.800	12,100	7.600	8.700	8.520	6.700
.3 .4	38.400	31.400	16.800	28.100	9.890	37.700	10.200	11.100	7.600	7.820	7.820	5.950
.4 .5	34.200 30.000	28.100 25.700	15.000 16.800	26.900 25.100	9.350 8.810	34.900 32.800	10.200	10.800 10.200	7.830 7.600	8.520 8.880	7.820	8.700
L)	30.000	2). 100		27.100	0.010	32,000	10.200	10.200	(.000	0.000	7.300	16.800
16	32.100	23.300	16.800	22.700	9.350	37.700	9.620	9.080	8.060	8.350	6.400	18.300
L7	29.300 26.900	19.800	15.400 14.000	19.300 16.800	10.500	46.100	9.080	8.060	8.810	8.180	5.650	16.800
1.8 1.9	32.100	17.300 15.000	12.800	15.800	10.500 10.200	54.300 55.100	8.310 7.830	7.830 6.980	9.890 9.620	13.300 13.800	6.250 6.700	14.800 12.800
20	41.900	13.600	11.400	13.600	9.620	51.100	7.390	6.780	9.080	18.800	6.400	10.600
21	46.800	12.800	10.200	13.600	9.350	48.200	6,980	6.590	8.060	27.500	6.400	9.400
22	49.600	12.100	10.500	13.200	8.810	46.800	6.780	6.590	7.390	28.100	5.950	9.800
23 24	44.700	11.100	12.400	13.200	8.810	46.100	6.590	6.220	8.060	26.400	4.950	10.200
24 25	36.300 31.400	11.400 12.400	20.300 31.400	12.100 10.200	8.810 8.810	44.000 40.500	6.220	6.050	8.310	23.600	4.320	9.400
-	31.400	12.400	31.400	1.0.200	0.010	40.500	5.890	5.740	7.390	20.400	4.580	11.900
26	30.000	12.400	30.700	9.080	8.560	37.000	5.600	5.600	6.590	17.300	5.350	14.800
27 28	29.300 27.500	11.800 11.800	23.300 17.300	7.830 7.600	8.560 8.060	31.400 23.300	5.600 6.220	5.890 6.400	6.050 5.600	12.400 11.000	5.500	12.800
29	25.700	12.100	15.400	7.830	0.000	18.300	7.390	7.600	5.460	11.000	4.950 4.700	9.800 8.520
30	23.900	12.800	14.500	8.810		16.800	14.000	8.060	5.740	11.900	4.100	7.650
a.	22.700		15.400	9.350		15.000		8.560	•	11.400	3.500	, ,

ARKANSAS RIVER AT LITTLE ROCK, ARKANSAS

This Public Health Service Water Pollution Surveillance System station is located about midway between the Fort Smith and Pendleton Ferry stations in central Arkansas. Samples are collected at the pipe yard of the Little Rock Water Department. The influences of salt which affect quality upstream at Fort Smith have been moderated at Little Rock by the influx of waters with low mineral concentrations. The nearest community which discharges wastes to the river is Morrilton, Arkansas, 57 miles upstream. This sampling point serves as a field test station for pollution surveillance equipment being considered for use in the Surveillance System.

Station Location: Arkansas River at Little Rock, Arkansas Major Basin: Southwest-Lower Mississippi River Minor Basin: Arkansas River-Van Buren to Mouth Station at: 34°45' Latitude 92°16' Longitude Miles above mouth: 167 estimated Activation Date: July, 1963 Sampled by: Arkansas Water Pollution Control Commission Field Analysis by: Arkansas Water Pollution Control Commission Other Cooperating Arkansas State Board of Health Agencies: Hydrologic Data: Nearest pertinent At Little Rock, Arkansas gaging station: Gaging station U.S. Geological Survey operated by: Drainage area at 158,201 square miles with 22,241 gaging station: square miles probably non-contributing Period of record: 1927 to present Average discharge 42,250 cfs. in record period: Maximum discharge in record period: 536,000 cfs. Minimum discharge in record period: 850 cfs.

Remarks: Flows affected by operations of power plants and

reservoirs.

ALKYL BENZENE SULFONATE (ABS)

		Composite	Intervo
Analysis by wet or flame methods. Results in mg/1	F Na K		
	Zn		
	Cq		
	As		
Analysis	В		
Ьу	p.		
Spectro-	Fe		
graphic	Мо		
methods.	Mn		
Results	Al Be		
in	Cu		
micrograms	Ag		
per	Ni		
liter	Co		
	Pb		
	Cr		
	v		
	Ва		
	Sr		

ELEMENTAL ANALYSES

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation. STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+ -	Composite Interval	pc/i	+
October to December	1	-	April to June	-	-
January to March	-	1	July to September	4.8	.4

⁺ at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration*

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

See page 21.

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER-VAN BUREN TO MOUTH

STATION LOCATION ARKANSAS RIVER AT

LITTLE ROCK, ARKANSAS 131

RADIOACTIVITY DETERMINATIONS

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER-VAN BUREN TO MOUTH

STATION LOCATION ARKANSAS RIVER AT

LITTLE ROCK, ARKANSAS

131

			T	DO	MINAN	T SPE	CIES C	F DIA	TOMS	AND		1	F						итс	R	011	N V	ER	T E	EBR	AT	E S						
	DAT	•		PERCE	NT OF	TOTA	L DIA	TOMS	(See text	for Code	e)	¥2	3				RO	OTI	FER	s						CR	US	TAC	ΕA			1	z z
	AMP	LE	1	ST	2	ND	3	RD	4	TH	S3	트를 급	景音								T LEVE	<u></u>		_		GEN	(See			IT LEVE			Ed.
					İ	İ		İ		į	NEC	A B	P de	NUM-	15		2 _{NI}		<u>3</u> R		<u>4</u> T	_	5TF		NUM-	<u>1s</u>		2 N		3R		2 J. 12	1 k
_			9	Ę	, so	Ę	S	Ę	8	Ę	R SF	P E E	1 2 4	BER PER		LEVEL		LEVEL		LEVEL		LEVEL		LEVEL	BER PER		tever		LEVEL		13.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100
MONTH	٠,	=		PERCENT	SPECIES	PERCENT	I C	CENT	ECIE	PERCENT	OTHER SPECIES PERCENT	FUNGI AND SHEATHED BACTERIA Number per mi.	PROTOZOA (Identifiable) Number per ml.	LITER		15	, i	2	5		5	12		7	LITER	s	121	5	MT E		COUNT LEYEL	NEMATODES (Identifiable) Number per liter	OTHER ANIMAL FORMS (Number per liter)
2	DAY	YEA	SPECI	1 2	SPI	E E	SPECI	PER	1 de	2	5	3	2	İ	GENUS	COUNT	CENUS	COUNT	CENUS	COUNT	GENUS	COUNT	CEKUS	COURT		GEKUS	COURT	GENUS	COUNT	GENUS	00	E ST	E C
						1		Ì								1		\Box		П				\Box									
9	4	63		ļ		ļ					ĺ	-	-	-	,	İ									-		1 1					-	-
				į	ĺ	į		į		į																	1 1					ĺ	
			}	ļ				ŀ		ļ			İ]		į				i			İ				iΙ						
i				į		į		İ	1							!				!			ļ				1						
				!		l					İ				ĺ	İ	i						İ								i	ļ	
				İ		İ		ĺ		İ				ĺ									ŀ		- 1							- 1	
- 1						ļ		į		[İ								- 1		J		!						
							1									1	į						į		ĺ				İΙ			l	
ı	-		İ					į		İ						!					į		ļ									- 1	
	- 1	ļ								!							i						į	- 1							H	- 1	
ĺ															İ		į						į										
			İ													!	ļ	İ						- 1								-	
	ı	ı													ĺ		İ						j				!		!			- 1	
		ı	İ						ſ	Ì		ĺ					- 1				į		1	-]		i				1 1		
İ	Í	- 1	ļ										ĺ					- 1							1		!						
- 1		ı	į													i	İ				i		į		J								
	ļ		į	ļ	į		j											ĺ			-	l			- 1							i i	
	ľ		ŀ	i	- 1		!					- 1					į		i		- 1		ļ		-								
1			į		į	ĺ	i			į		!				İ	ļ		İ		Ì		į	- 1	ſ							1	
	ļ		- 1		ł		į	ļ				1									!		- 1	-								i	
ĺ	İ		-	ĺ	ļ	-		ĺ			ł						İ		ì			ĺ	į	ı	ı								
- 1	- }		į		į		İ	ĺ	į				1			1	- 1		j		į		ļ										
			-		- 1	Ì	-		[Ì				ĺ]						- 1	į							
i		- 1			- 1		ı		ĺ	- {		j	- 1				j		į		İ		- 1			ļ							
			ļ		ĺ		į		Ì			ĺ	ŀ	1			1		į		į	- 1	- 1	Ì		i				i			
			ł				-		ŀ	İ				- 1			ļ		i						1	į						i	
			į	i	l				i	1		ĺ	1			i	j		į		i		i		İ	- 1				į			
	- 1		j		İ	ĺ	j		į					}					į		į		ļ	-		ı				į			
]	!			ļ		- 1		1	1	Í					!		1		1			j				ļ			
				- 1	ļ		Ì	1	- 1			ļ	1				1		İ		į	- [İ		İ								
	1	-	į		İ	- 1	-				- 1	ł	Ì					-	į		- !		į		-	į				į			
		- 1	ļ					- 1	- 1		Į						-	-1	ļ		-		ļ		İ	į							
			<u>_</u> _						i						i				i		!					ł				- 1	- 1		

PLANKTON POPULATION

PLANKTON POPULATION

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER-VAN BUREN TO MOUTH

STATION LOCATION ARKANSAS RIVER AT

LITTLE ROCK, ARKANSAS

-	TAC	E			Α	LGAE (Nu	mber pe	r milliliter)			INTE	DT		MOST.	ABU	NDAN	IT ALC	AE -	Gener	a and (Count	t Lavel ne	r ml. (S	ee te	et for Cod	es)
	OF	'		BLUE-	GREEN	GREE	:N	FLAGEL (Pigme	LATED ented)	DIAT	омѕ	INE DIAT SHE	OM LLS	1st	2 _{ND}	1	3RD	4тн		TH	6т	1	7тн	8тн	- 1	9тн	10тн
моитн	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS COUNT LEVEL	GENUS	COUNT LEVEL	COUNT LEVEL	GENUS	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS COUNT LEVEL	GENUS	COUNT LEVEL	GENUS COUNT LEVEL	GENUS COUNT LEVEL
9	4	63	6200	970	110	2410	20	90	0	1760	880	970	520	3 3	38	3	25 2	25	2 44	+ 2							

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER-VAN BUREN TO MOUTH

STATION LOCATION ARKANSAS RIVER AT

LITTLE ROCK, ARKANSAS

7 23 63 7 31 4959 86 25 8 56 1 9 1 4641 179 71 108 2 17 26 2 1 21 2 9 6	
Total Strong St	1 1
7 23 63 7 31 4959 86 25 8 56 1 9 1 4641 179 71 108 2 17 26 2 1 21 2 9 6	TRONG BASES LOSS
	1 0 3 3 1 5

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER-VAN BUREN TO MOUTH

STATION LOCATION ARKANSAS RIVER AT

LITTLE ROCK, ARKANSAS

131

DAT		Π						CHLORINE	DEMAND	AMMONIA-							PHOSPHATES	TOTAL	COLIFORMS
OF SA YAG	1	\dashv	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/I	рН	B,O,D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	CHLORIDES mg/l	Mg/I	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
7 24 7 3 3 8 2 2 8 2 8 9 4 9 1	7 2 8 4 1 8 4	63 63 63 63 63	28.5 29.0 28.0 	6.5 7.9 6.8 - 7.5 10.8 7.4 8.7	7.8 7.8 7.6 7.4 8.5 8.1 7.9	.6 2.2 .7 .9 5.4 .9 .7	28 26 10 28 19 58	1.2 1.1 2.0 	4 • 8 4 • 0 6 • 2 		150 95 174 220 195 170 434 -	96 80 70 92 112 110 - 98 -	116 122 140 152 110 188	20 30 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5070 3025 *255 *47	964 560 650 104	• 3 • 0 0	502 453 517 450 500 986	4800

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Little Rock, Arkansas Operated by U.S. Geological Survey STATE

Arkansas

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Arkansas River-Van Buren to Mouth

STATION LOCATION

Arkansas River at

Little Rock, Arkansas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	46.100	28.100	21.500	16.800	8.810	8.810	12.800	34.900	9.080	11.900	10.600	3.600
2	42.600	40.500	30.700	17.300	8.060	10.200	12.400	51.900	9.890	22.000	10.200	4.200
3	39.800	44.000	32.100	16.800	8.810	13.600	12.100	55.100	10.800	19.300	11.400	4.580
4	41.200	39.800	29.300	16.300	9.890	16.800	11.100	48.900	11.100	14.800	13.300	4.450
5	44.700	31.400	26.300	15.400	10.800	20.300	11.800	40.500	10.800	11.900	17.800	4.320
6 7 8 9	53.500 62.800 59.200 48.200 39.800	25.100 21.500 20.300 22.700 27.500	23.900 22.700 23.900 24.500 23.900	13.600 15.000 17.300 19.300 19.300	10.500 9.080 8.560 8.810 9.350	22.700 23.300 22.700 19.800 20.900	19.800 22.700 20.300 17.300 14.500	30.000 23.900 20.300 18.300 15.800	9.890 9.080 9.080 9.080 8.310	11.000 11.400 11.400 10.600 9.800	17.800 17.800 16.300 12.400 9.800	4.100 3.700 3.310 3.500 5.200
11	33,500	32.100	22.100	20.900	9.890	28.700	12.100	14.000	7.830	9.400	9.050	6.700
12	35,600	32.300	19.800	26.300	9.890	35.600	10.300	12.100	7.600	8.700	8.520	6.700
13	38,400	31.400	16.800	28.100	9.890	37.700	10.200	11.100	7.600	7.820	7.820	5.950
14	34,200	28.100	15.000	26.900	9.350	34.900	10.200	10.800	7.830	8.520	7.820	8.700
15	30,000	25.700	16.800	25.100	8.810	32.800	10.200	10.200	7.600	8.880	7.300	16.800
16	32.100	23.300	16.800	22.700	9.350	37.700	9.620	9.080	8.060	8.350	6.400	18.300
17	29.300	19.800	15.400	19.300	10.500	46.100	9.080	8.060	8.810	8.180	5.650	16.800
18	26.900	17.300	14.000	16.800	10.500	54.300	8.310	7.830	9.890	13.300	6.250	14.800
19	32.100	15.000	12.800	15.800	10.200	55.100	7.830	6.980	9.620	13.800	6.700	12.800
20	41.900	13.600	11.400	13.600	9.620	51.100	7.390	6.780	9.080	18.800	6.400	10.600
21	46.800	12.800	10.200	13.600	9.350	48.200	6.980	6.590	8.060	27.500	6.400	9.400
22	49.600	12.100	10.500	13.200	8.810	46.800	6.780	6.590	7.390	28.100	5.950	9.800
23	44.700	11.100	12.400	13.200	8.810	46.100	6.590	6.220	8.060	26.400	4.950	10.200
24	36.300	11.400	20.300	12.100	8.810	44.000	6.220	6.050	8.310	23.600	4.320	9.400
25	31.400	12.400	31.400	10.200	8.810	40.500	5.890	5.740	7.390	20.400	4.580	11.900
26 27 28 29 30 31	30.000 29.300 27.500 25.700 23.900 22.700	12.400 11.800 11.800 12.100 12.800	30.700 23.300 17.300 15.400 14.500 15.400	9.080 7.830 7.600 7.830 8.810 9.350	8.560 8.560 8.060	37.000 31.400 23.300 18.300 16.800 15.000	5.600 5.600 6.220 7.390 14.000	5.600 5.890 6.400 7.600 8.060 8.560	6.590 6.050 5.600 5.460 5.740	17.300 12.400 11.000 11.000 11.900 11.400	5.350 5.500 4.950 4.700 4.100 3.500	14.800 12.800 9.800 8.520 7.650

ARKANSAS RIVER NEAR FORT SMITH, ARKANSAS

The Public Health Service Water Pollution Surveillance System station near Fort Smith, Arkansas is located at the Oklahoma-Arkansas State line. Samples are collected at U. S. Highway 64 Bridge.

Upstream from Fort Smith and below Ponca City, the Salt Fork of the Arkansas River and the Cimarron River contribute heavy salt loadings. These are diluted by Verdigris, Grand, Illinois, and Canadian River flows so that total dissolved solids concentrations are generally between 350 and 700 mg/l.

The principal industry in the Ponca City-Fort Smith area is petroleum production and refining. Many of the fields in this area were developed prior to development of adequate brine disposal techniques. Consequently, these old fields still are a source of salt loading which is flushed from evaporation ponds during the rainy season.

The characteristics of the upstream salt sources were investigated in the Arkansas-Red River Water Quality Conservation Project conducted by the Public Health Service. A final report is scheduled to be available in 1964.

Station Location:

Arkansas River near Fort Smith, Arkansas

Southwest-Lower Mississippi River

Minor Basin:

Major Basin:

Arkansas River-Tulsa to Van Buren

Station at:

35°24' Latitude 94°26' Longitude

Miles above mouth:

362

Activation Date:

August 17, 1959

Sampled by:

Arkansas Water Pollution Control Commission

Field Analysis by:

Arkansas Water Pollution Control Commission

U

U.S. Public Health Service Arkansas State Board of Health

Other Cooperating Agencies:

Hydrologic Data:

Nearest pertinent gaging station:

At Van Buren, Arkansas

Gaging station operated by:

U.S. Geological Survey

Drainage area at gaging station:

150,483 square miles including 22,241 probably noncontributing.

Period of record:

1927 to present

Average discharge in record period:

32,080 cfs.

Maximum discharge in record period:

ecord period: 850,000 cfs.

Minimum discharge in record period:

300 cfs.

Remarks: Flows regulated by operation of power plants and reservoirs.

ALKYL BENZENE SULFONATE (ABS)

mg/1

Date

ELEMENTAL ANALYSES

		*****	• ′	TE MINAL	1.	363	
				Composi	le.	Intervo	,
				10/1/62	_	4/1/6	3
				12/31/6	2	6/30/c	5
	Analysis by	/ F		-		.55	_
	wet or flan	ne N	a	~		195	
	Results in mg/1	K		_		6.9	
		Zr	١١	_	٦	9	
	1	Co	1	-		*9	
		As		-		*50	
	Analysis	В		-		112	
	by	p.		-		43	
	Spectro-	Fe	l	-		77	
	graphic	Мо	l	-		*47	
l	methods.	Mn		_		*5	ĺ
ı	Results	ΑI				*43	I
ı	in	Ве		~		*.22	ĺ
l	•••	Cu		-	l	4	ı
	micrograms	Ag		_		*2.2	
	per	Ni		-		9	
	liter	Co		-		*9	
		РЬ		-		*22	
		Cr		-		26	
		v		-		*43	
		Ba		-		133	
	1	Sr		_ [761	

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation. STRONTIUM 90 ACTIVITY

,				70 AC11411	•	
	Composite Interval	pc/1	+	Composite Interval	pc/	+
	October to December	-	1	April to June	_	_
	January to March	-	-	July to September	6.7	.6

⁺ at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration*
1		
İ		
	i	1

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

See page 21.

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

ARKANSAS RIVER-TULSA TO VAN BUREN

STATION LOCATION ARKANSAS RIVER NEAR

FORT SMITH, ARKANSAS

SAMPLE DATE OF ALPHA SAMPLE DETERMINATION SUSPENDED DISSOLVED TOTAL SUSPENDED DISSOLVED TOTAL DATE OF GROSS ACTIVITY DETERMINATION ALPHA BETA	DATE							RADIOACTI	VITY IN	WATER						1	RADIOAC	TIVITY IN PL	ANKTON	
MO. DAY YR. MO. DAY Pc/l ± pc/l ± pc/l ± pc/l ± pc/l ± pc/l ± pc/l ± pc/l ± mo. DAY pc/g ± pc/g = 4 24 63 5 22* 6 6 4 0 3 6 5 72 30 76 31 148 43 5 22 63 6 24* 10 8 1 3 11 9 89 33 64 9 153 34 6 6 6 6 3 7 23* 2 2 0 5 5 2 5 81 13 77 42 158 44 6 6 6 3 7 31 63 8 16* 25 16 2 5 27 17 266 83 86 40 352 92 8 28 63 9 25* 3 3 3 4 6 5 5 31 24 73 29 104 38		DAT	TEOF			ALPHA						BETA				DATE OF	1	GROSS .	CTIVITY	
MO. DAY VR. MO. DAY Pe/I ± Pe/I ± Pe/I ± Pe/I ± Pe/I ± Pe/I ± Pe/I ± Pe/I ± MO. DAY Pe/g ± Pe/g = 4 24 63 5 22* 6 4 0 3 6 5 72 30 76 31 148 43 5 22 63 6 24* 10 8 1 3 11 9 89 33 64 9 153 34 6 6 26 63 7 23* 2 2 2 0 5 5 2 5 81 13 77 42 158 44 6 2 6 6 3 7 23* 2 5 16 2 5 27 17 266 83 86 40 352 92 8 28 63 9 25* 3 3 3 4 6 6 5 31 24 73 29 104 38		DET	ERMI-	SUSPENDI	ED [DISSOLVE	D	TOTAL		SUSPENDI	ED	DISSOLVE	:D	TOTAL		NATION	AL	PHA	BETA	\
4 24 63 5 22* 6 4 0 3 6 5 72 30 76 31 148 43 5 22 63 6 24* 10 8 1 3 11 9 89 33 64 9 153 34 6 6 26 63 7 23* 2 2 2 0 5 2 5 81 13 77 42 158 44 7 31 63 8 16* 25 16 2 5 27 17 266 83 86 40 352 92 8 28 63 9 25* 3 3 3 4 6 5 31 24 73 29 104 38				pc/l	#	pc/I	±	pe/l	±	pc/l	土	pc/l	±	pc/l	±	MO. DAY	pc/g	±	pc/g	±
	**************************************	мо. 5 6 7 8 9	22# 24# 23# 16# 25#	6 10 2 25 3	± 4 8 2 16 3	0 0 1 0 2	3 3 5 5	6 11 2 27 6	5 9 5 17 5	72 89 81 266 31	± 30 33 13 83 24	76 64 77 86 73	31 9 42 40 29	148 153 158 352 104	43 34 44 92 38			PHA	BETA	

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER-TULSA TO VAN BUREN

STATION LOCATION ARKANSAS RIVER NEAR

FORT SMITH, ARKANSAS

053

	DA.	F	_	PERC	ENT C	F TOT	AL DI	ATOMS	ATOMS	AND for Cod	es)	Ma Ma	- FE				ROT	IFE	RS			ERT	EBR	CR	US	TAC	ΕA			
	AMI	PLE	1	ST		םאַ2		3rd	4-4	ТН	ES	₽ Ji	ifiab		L		GENER (S			VT LEVI	£L.			GEN	ERA (Se	AND C	OUNT Code	LEVE	L	SH S
				1		İ		ļ	1	į	ENT E	N B	Iden	NUM- BER	<u>1s</u>	_	2 _{ND}	3		4т		<u>5тӊ</u>	NUM- BER	1 s	r_	2 NI		3RI	D ,	F 150
MONTH	DAY	YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SPECIES PERCENT	FUNGI AND SHEATHED BACTERIA Number per mi.	PROTOZOA (Identifiable) Number per ml.	PER LITER	GERUS	COUNT LEVEL	GENUS COUNT LEVEL		COUNT LEVEL	SONUS	COUNT LEVEL	GENUS COUNT LEVEL	PER LITER	SENUS	COUNT LEVEL	SHARS	COUNT LEVEL	SID KING	COUNT LEVEL	Number per liter OTHER ANIMAL FORMS
5 6 6 7 7 8 8 9	17 13 15 12 19 37 15 21 11 18	63	82 67 18 26 47	51	26	23 11 17 26 19	5 9 2 2 8 8 8 8 6 5 6 5 7 3	2 5 6 14 2 10 2 13	5667 82 70	3 13 8	36 10] -		1120	1 :	8 5	2 6						01111111011							0 1

PLANKTON POPULATION

PLANKTON POPULATION

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER-TULSA TO VAN BUREN

STATION LOCATION ARKANSAS RIVER NEAR

FORT SMITH, ARKANSAS

DAT	F			Al	GAE (Nu	mber pe	r milliliter,	,			INE	рт 1		MOS	T AE	UND	AN	r ALG	AE -	Gener	a and	Count	Level	per t	nl. (Se	e tex	t for C	odee)		
SAMP	- 1		BLUE-	GREEN	GREE	N.	FLAGEL (Pigme	LATED nted)	DIATO	OMS	INE DIAT SHE	OM LS	1st	2	ND.	ЗR	D	4тн	5	ТН	6т	н	7тн	1	8тн		9тн		1 От	H
MONTH	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	GENUS	COUNT LEVEL	CENUS	COUNT LEVEL		COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS COUNT LEVEL	
4 17 5 15 6 12 6 19 7 7 15 8 21 9 18	63333333 663333333 66333333	17000 2200 21800 14500 23200 4700 2106 * * * *	220	70 180 290 140 0 0 210	900 12800 4330 5540 	290	170 1990 - 290 90	0 190 0 20	1100 2240 4180 8110 - 1570 1300	110 5480 5330 7440 1280 420	1060 1690 3420 3070 580 550	460 3370 1510 950 230 590	17 17 67 68 38 69	6 8 2 3 2 8	9 2	71 35 24 38 52 38	4 4 5	71 68 69 50	4 2 4 7 4 7	6 3 3 2 4 2 2	38 26 71	3	68 69 51	3 2 3	35 51 35 35 71	2 1 3		2 1 3	5 9 2 5 3 2 3 7	2

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARKANSAS RIVER-TULSA TO VAN BUREN

STATION LOCATION ARKANSAS RIVER NEAR

FORT SMITH, ARKANSAS

53

DATE						CHLORINE	DEMAND	<u> </u>				1					
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/i	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml,
3 63 4 10 63 4 11 63 4 17 63 5 15 63 5 12 63 6 19 63 5 10 63 7 10 63 7 17 63 7 17 63 7 17 63 8 14 63 8 14 63 8 14 63 8 14 63 8 14 63 8 14 63 9 18 63 9 18 63 9 18 63 9 24 63	20.00 20.00 20.00 17.00 19.8 26.00 	3.9 -3.9 3.2 9.2 7.3 -6.6 7.2 -1 10.3 5.6 8.0 9.3 10.6 -1 8.0 9.3 10.6 8.4	7.8 7.7 7.8 7.9 8.1 7.8 8.4 7.8 7.8 7.7 7.8 8.0 7.8 7.8 7.7 7.8 8.1 7.9	1 · 8	110 110 110 108 103 70 42 31 	1.1 1.0 2.2 3.0 1.7 	3 • 4 • 4 • 6 • 2 · · · · · · · · · · · · · · · · · ·		265 2866 265 3134 169 2797 1000 16300 16900 16900 16900 16900 16900 16900 16900 16900 2297 2500 2500 2500 2500 2500 2500 2500 250	116 150 116 180 176 82 118 150 - 126 138 152 100 128 96 130 104 134 160 104	215 233 215 279 119 178 212 204 242 204 360 310 170 250 170 260 190 176 176 176 176 176 176 176 176 176 176	35 80 35 40 40 40 10 10 10 50 55 10	1600 2300 1600 75 8000 1500 41 25808 8 - 10200 7000 6500 1426 *25 *25 15000 400	60 85 60 80 20 40 78 126 175 165 90 175 87 87 87 87 87 87 87 87 87 87 87 87 87	1 • 1 • 7 1 • 4 • 9 • 0 • 0	709 945 709 985 7390 5219 8215 1318 - 0 14000 450 9470 9540 6890 595 59	3500 \$100 \$100 \$100 \$100 \$2000 \$6000 \$700

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Van Buren, Arkansas Operated by U.S. Geological Survey STATE

Arkansas

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Ark. River-Tulsa to Van Buren

STATION LOCATION

Arkansas River near

Fort Smith, Arkansas

ау	October	November	December	January	February	March	April	May	June	July	August	September
1	40.000	37.600	21.500	11.400	7.150	6.400	6.400	44.800	9.320	11.700	15.200	3.800
2	42.400	28.100	18.700	10.600	6.650 6.400	6.400 5.940	10.300 22.100	32.900 24.500	8.460 6.900	10.600 11.400	16.200 14.300	3.200 2.480
3 4	49.600 61.000	22.700 19.200	16.700 16.200	7.920 8.730	5.360	5.140	18.700	19.200	7.400	11.400	15.200	2.160
4 5	61.000	17.700	18.700	9.640	5.940	4.720	14.700	15.200	7.650	11.000	10.600	3.010
6	47.200	17.200	20.900	12.500	6.650	5.710	11.700	12.100	6.900	9.000	8.190	6.330
	35.200	19.200	19.700	11.700	6.900	10.200	9.640	10.600	5.820	9.320 8.460	7.650 7.150	7.400 7.150
7 3	28.700	26.300	18.700	15.200	7.400	17.200	7.200	9.640 8.730	5.820 6.400	7.150	6.400	5.710
9	32.900 39.200	26.900 26.900	18.200 13.800	19.700 21.500	7.400 7.400	17.700 15.700	6.900 7.150	8.460	6.650	7.920	6.650	7.130
	31.500	24.500	12.500	20.900	5.820	14.300	7.400	7.920	5.820	8.190	6.650	18.700
1 2	25.100	21.500	14.300	18.200	6.170	13.800	7.400	7.400	6.650	7.920	5.600	20.900
3	20.900	19.200	14.300	16.700	8.460	22.700	6.650	6.400	6.900	6.650 8.460	4.940 5.940	18.700 16.200
4	16.200	16.200	12.500	15.200	8.730	32.200	5.940	5.600 4.830	7.150 6.900	8.460	6.650	14.300
.5	12.100	12.900	12.100	12,900	8.460	30.100	5.140	4.030	0.900	0.400		
,	16.200	10.300	11.000	12.500	7.920	28,700	4.520	4.620	6.900	9.450	6.170	10.600
.6	36.000	9.320	8.730	11.000	7.400	28.100	4.940	4.940	5.710	24.200	6.170	8.730 10.300
.7 .8	39,200	8.730	8.190	11.000	6.650	27.500	5.040	5.250	4.300 5.040	26,900 23,900	6.170 4.830	10.300
.9	42.400	8.190	9.320	10.600	6.400	26.900	4.940	5.140 4.940	6.900	23.700	4.100	9.320
20	34.400	6.900	9.640	11.000	7.150	26.900	4.830	4.940	0.900	•		
	06 000	7.920	17.900	9.640	6.900	26.300	4.520	4.200	5.820	18.700	4.720	10.600 16.700
21	26.900 24.500	8.460	30.100	6.900	6.650	25.700	3.900	4.000	4.520	14.700	5.940 5.940	12.900
22	24.500	7.920	28.100	7.400	6.400	22.700	3.400	4.100	4.100 3.600	10.300 10.300	5.250	9.000
23 24	25.700	6.400	18.700	6.650	5.940	18.700	4.000	3.800 3.400	3.200	9.960	4.830	8.190
25	24.500	7.400	13.800	6.400	5.040	12.100	4.200	3.400	3,200		_	_ 1.00
-		r 01:0	12.100	8.190	5.140	10.300	5.710	3.600	4.200	9.960	3.800	7.400 6.900
26	22.700 20.900	5.940 6.400	10.300	8.190	5.820	11.000	12.600	5.040	8.140	9.320 7.650	2.900 3.300	6.900
27 28	18,200	15.200	10.600	5.710	5.940	9.960	33.900	5.940	26.900 23.900	6.400	4.830	6.650
40 20	19.200	23.300	12.100	5.040		8.730	52.900	7.650 8.730	16.200	8.730	4.720	5.140
29 30	37.600	23.900	12.500	5.820		7.920	52.900	9.640	20.250	9.960	4.100	
31	40.800	- -	12.100	6.170		7.650		,				

7.7			.	
*				
!				
				· ·
				- - - - -
				1 (0)
11 may 1 may				
1000				

ARKANSAS RIVER NEAR PONCA CITY, OKLAHOMA

This station is located approximately fifty river miles downstream from the Oklahoma-Kansas State line. Samples are taken from the downstream side of old U.S. Highway 60 Bridge, east of Ponca City.

There is no known municipal use made of this river upstream from Ponca City and below Coolidge. The closest city is Arkansas City, Kansas, located at the State line.

The region is largely agricultural with industrialization in the Wichita area. Hutchinson, Kansas is the site of a salt mine and some natural salt is contributed by Rattlesnake Creek. Oil fields are located in the vicinity of Great Bend, Kansas.

The Arkansas River at Ponca City, Oklahoma has shown high phosphate concentrations, averaging over 1 ppm since October 1962, presumably from farm fertilization.

A very high population of algae appeared in the plankton sample from Ponca City, Oklahoma which was collected April 15, 1963. This followed a sharp increase of algae during March. The sample of April 15 had a total count of 316,800 per milliliter with over 250,000 of these being diatoms.

A variety of algae were present in the August 5 sample. Total algae numbered over 22,000. An unusually large population of 1,070 per liter of the rotifer Keratella was also present. These observations indicate organic enrichment of the water.

Station Location: Arkansas River near Ponça City, Ck Lahoma Date Major Basin: Southwest-Lower Mississippi River Minor Basin: Arkansas River, Kans. - Colorado Line Station at: 36°42' Latitude 97°03' Longitude Miles above mouth: 644 Activation Date: April 7, 1958 Sampled by: Ponca City Water Department Field Analysis by: Ponca City Water Department U.S. Public Health Service Other Cooperating Oklahoma State Department of Health \gencies: Hydrologic Data: Nearest pertinent At Ralston, Oklahoma gaging station: Gaging station U.S. Geological Survey operated by: Drainage area at 54,465 square miles, 7,615 square gaging station: miles probably noncontributing Period of record: 1925 to present Average discharge 4,749 cfs. in record period: Maximum discharge in record period: 179,000 cfs. Minimum discharge in record period: 14 cfs.

> Salt Fork, Arkansas River enters between Pollution Surveillance System station and gaging station. Flows affected by operations of John Martin Reservoir (Colorado) and Great Salt Plains Reservoir (Oklahoma).

ALKYL BENZENE SULFONATE (ABS)

mg/1

		Composite	Interval
		10/1/62	4/1/63
		10/1/02 to 12/31/62	+ 0
Analysis by	F	.55	6/30/63
wet or flame methods.		160	470
Results in mg/1	κ	7.8	12
	Zn	*8	10
	Cq	*8	*10
	As	*82	*96
Analysis	8	102	144
by	p.	*41	*48
Spectro-	Fe	49	24
graphic	Мо	*28	*39
methods.	Mn	* 2	* 5
	ΑI	-	*48
Results	Ве	*.2	*.2
in	Cu	9	* 5
micrograms	Ag	* 2	* 2
per	Ni	* 4	*10
liter	Co	*16	*10
	Pb	*41	*24
	Cr	* 4	24
	v	* 8	*48
	Ва	262	96
	Sr	1310	1110

ELEMENTAL ANALYSES

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+	Composite Interval	pc/1	+
October to December	2.2	•3	April to June	5.9	.5
January to March	-	-	July to September	6.5	.9

[±] at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration* ug/l
ľ		

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values. See page 21.

OKLAHOMA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER NEAR

PONCA CITY, OKLAHOMA

1

														T		RADIOACTIV			
DATE						RADIOACTI	VITY IN V	WATER		BETA				DA	TE OF TERMI-		GROSS AC		
DATE SAMPLE	DATE OF			ALPHA						DISSOLVE		TOTAL		DE NA	TION	ALPH	Α	BETA	
TAKEN	DETERMI-	SUSPEND	ED	DISSOLVE		TOTAL		SUSPENDE	±	pc/l	#	pc/l	#		DAY	pe/g	土	pc/g	1
DAY YR.	MO. DAY	pe/l	±	pc/1	±	pc/l	±	pc/l	-=-								1		Ì
					1 1			142	66	41	15	183	68	1	- 1		1 1		
1 62	10 23	-	-		-	-	-			66	17	145	66	- 1	l		1 1		1
	10 31		-	_	-	-	-	79	64		29	57	38	- 1	1		1 1		
	1 - 1	_	_	-	- 1	_	-	30	25	27		58	38		i i		1 1		1
15 62		1	2	8	5	9	5	32	23	26	30		39	- 1	1				1
22 62	11 28			_	1 - 1	_	- 1	22	25	21	30	43					1 1		
	12 22	-	1	3	4	4	5	32	30	39	36	71	47		ì		1 1		1
26 62	12 12*	1	3		5	5	5	34	26	46	34	80	43	1	l		1 1		1
24 62	1 23*	C	2	5		-	9	20	28	32	40	52	49	- 1	i i		1		1
28 63	2 20*	1	2	1.2	9	13		42	27	4.2	31	84	41	- 1	1		1 1		-
25 63	3 11*	3	4	1	4	4	6		10	88	10	217	14	- [Į.		1 1		1
	4 8*	2	3	11	5	13	6	129		58	38	83	39				i l		1
	5 17*	o	1 0	0	6	0	6	25	7	84	40	152	51	l l	İ		1 1		1
	6 13*	1	1 3	2	5	. 3	6	68	32			555	82						- 1
31 63		5	9	3	4	8	10	445	80	110	19	374	149	- 1	1		1		- 1
24 63	7 10*	30	22	2		32	22	305	148	69	18				1		ł		- 1
29 63				9		9	9	7	3	81	21	88	21				1		- 1
26 63		0	0	2		12	7	98	22	64	19	162	29				-		- 1
30 63	10 22*	10	6	4	ا د	12	1 .			1	1	1	1 1	- 1			-	ļ	- 1
	1	\	ļ	1	1	ľ	1	l	1		1	1	1	l			1	Į	ı
		1	1	1	1		1			!		1	1 !	1			- 1		ł
	ì	1	Ì	1	1		1		ļ	Į.	1		1	i			1	Ì	-
		l .	Ì	1			1			1		İ		1			ł	1	-
	1	ļ		Į.	1	1	1	i	1		1	İ	1 1	1				1	١
			1		1	į.	1	i	1	1	1	1		- 1			1	l	- 1
				Į	1	ĺ	1	1		ł	ì	\	'				1	l	
	1	1	1		1		1	ł	1	1	1	1				1	1	l	
	1	1		1	ļ	ł	1	1	1	1	1	l	1			ì	1	1	
		1	ļ	1	1			1		1	1	1				1	l	Į	
	\			1		İ	1	1	}	1	1	1	1			i			
	1		Į.	1	l	1	ì	1	1	Ì	ļ	1		i		i	ł	1	
	Į.		-	1	l l	1	1	1	1	Į.	1	1	1			1	ł		
	1	1	ļ		1		1	1	i	1	1	ł	1	1 1		i	l l	1	
		l	1		Ì	Į.	Į	1	i	1	1			l i		ì		1	
	i	1	1	1	1	1		1	1	1	1	l l		i i			- 1	1	
	ì		- 1	Ì	i i	Į.	1	1	1	i	1		1	1		1		l	
	ì		- {	i	- 1	1	1	1	Į.		1		1	1 1		ì	- 1	İ	
	1	İ	- 1	ì	Į	1	ì		Į.	1	- 1	1	1	1 1		ì		1	
	- 1	1	Į	1		1	1			1	1	1		1				1	
	1		-	1		1	1			1	ı		1			1		1	
	1	1	1	1	Ì	i	-		1		1		-]	ļ	1	
	1	l	1	1	-		-	1			-		- 1			1	l		
	1	Į.	İ	1	-	1			1	1									
		1	ì	1		1		1	1	i	-	1	l				1		
		l	- 1	1		1		1	ļ	ì	1	I		1					_

RADIOACTIVITY DETERMINATIONS

PLANKTON POPULATION

OKLAHOMA

MAJOR BASIN

STATE

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER NEAR

PONCA CITY, OKLAHOMA

DAT	= '		DO PERCE	MINAN NT O	T SPE	CIES	OF DI	ATOMS	AND for Code	ta)	<	Ę						міс	RO	O I N	VE	RT	EBR	ΑТ	ES						
SAME	PLE		ST	2	ND		3RD		TH	ES	, E -	inble.		T-		GE	OT NERA	AND CO	s Ууут	LEVEL			 	CR	US'	AND C	E A	T LEVE	CL.		¥ .
							1			SPECIE	I AND BACTERIA per ml.	(Identifiable) er per ml.	NUM-	1	ST	21		3RI		4тн		5тн	NUM-	15		2 text fo		3r		. ts	FORMS liter)
MONTH	YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SE PERCE	FUNGI SHEATHED E Number p	PROTOZOA (? Number ;	BER PER LITER	CERUS	COUNT LEVEL	GENUS	COUNT LEYEL	ernu*	COUNT LEYEL		LEVEL	GENUS	BER PER LITER	GENUS	COUNT LEVEL	оения	COUNT LEVEL	GENUS	COUNT LEVEL	NEMATOBES (Identifiable) Number per liter	OTHER ANIMAL. I
4 20 5 20 6 3 6 17 7 1 7 17 8 5 8 19 9 3		482 977 26 51 711 712 26 71 26 26 26 26	27 23 15 20 22 14 30 13 38 30 22 40	23 26 51 85 51 70 51 82 72 65 82 26	15 10 13 12 13 19 13 9 11 21 25 37 19	7: 20 7: 7: 8: 8: 8: 6: 7: 5: 1: 2: 6: 7: 7: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8:	8 7 10 10 11 11 9 7 12 8 11 16 9 8	26 488 72 72 51 82 66 73 57 22 77 26 82 77 82 82 82 82 82 82 82 82 82 82 82 82 82	3 4.8 7 6 8 9 5 0 8 9 6	8379516692795743 936	400111111111111111		1 2 0 0 1 0 0 1 0 2 1 6290 2 1 1070 2010		8	22	4	11	3	13 2	2	.1 1	000000000000000000000000000000000000000	50	2					- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-00000000000000000000000000000000000000

PLANKTON POPULATION

STATE

OKLAHOMA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER. KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER NEAR

PONCA CITY, OKLAHOMA

DATE			Al	GAE (Nur	nber pe	r milliliter)				INE			- 			INDA	1 -			1	_	- 1	_				9тн		01	тн
OF SAMPLE		BLUE-	GREEN	GREE	N	FLAGELI (Pigme)		DIATO	MS	DIAT	LS	15	T	2 _N t)	3RD	4	TH	5π	1	6TH	1	7тн	+	3TH -	+	_	+-	_	
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL		COUNT LEVEL	GENUS	3	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL		COUNT LEVEL	- 1	COUNT LEVEL	- 1	COUNT LEVEL		COUNT LEVEL
0 1 62 0 15 62 11 5 62 12 1 9 62 12 17 62 12 17 63 2 18 63 3 4 63 3 18 63 4 15 63 4 15 63 4 20 63 6 17 63 7 1 63 7 1 63 7 1 63 8 19 63 9 16 63	1000 51000 73400 23700 7400 1300 2400 31800 7400 31690 128700 55000 54000 * * 22400 300 52700 *	410 1160 700 0 0 0 20 2730 1180 0 550 70 390	210 50 20 40 920 7730 14810 3570 2600 20 460 190	790 110 150 90 30 70 170 420 17850 41030 20480 27010 8030 3260		1950 340 70 330 220 90 840 1500 2810 4750 3360 1510 90 1270	4450 40 2820 3570 80 0 0 0 - 40 20	3850 32130 98280 87700 1850 29690 	153330 11760 6970 880 14030	1530 150 480 70 30 180 2600 240 10040 21840 14950 21130	3110 1040 3600 1140 1390 120 1280 670 2020 11130 3650 3080 8650	88 88 88 65 51 52 52 68 88 68 68 24	7864131 36379971 4	88	785311 2637976 4 5	888 669 51 685 726 738 25 26	1 6 8 8 1 7 2 2 6 1 7 2 2 5 5 3 3 2 2	1 5 4 3 1 4 2 6 7 5 5 3 3 3 3	17 85 88 26 17 26	5 4 3 1 6 7 5 5 3 3	38	1157543	97 91	431 115643 2 2	35 55 30 3 3 3	431 1 5543 2 2	38 71	1 5 5 6 2 2 2 E	2 7 7 7 51 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 5 4 3 1

OKLAHOMA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER NEAR

PONCA CITY, OKLAHOMA

1

DATE		1				CHLORINE	DEMAND									TOTAL	COUPONIE
OF SAMPU	(Degrees	DISSOLVED OXYGEN mg/l	pH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)		SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10 1 6	2 16.0	_	8.3	_	-	_	-	-	106	120	190	15	950	75	• 7 • 8	451 561	-
10 8 6		-	8.2	_	-	-	-	-	157	156	250	15 10	500 210	100 120	1.0	822	_
10 15 6		-	8.5	-	-	_	_		238 260	196 208	316 320	10	143	135	.8	900	-
10 22 6			8 • 4 8 • 4	_	_	-		_	274	204	332	10	*25	140	1.0	900	_
10 29 6 11 5 6		_	8.4	_	_	_	_	_	286	216	328	5	*25	140	-	922	-
11 5 6 11 12 6		_	7.7	_	_ ,	_	_	_	306	216	340	5	*25	145	1.1	990	-
11 19 6		_	8 . 2	_	-	_	-	-	312	216	348	0	*25	155	1•2	1000	-
11 26 6			8 • 4	-	-	-	-	-	255	218	330	5	*25	145	•9	970	-
12 3 6		-	8 • 2		-	-	-	-	210	206	340	5	*25	162	-	828	-
12 10 6		-	8.1	-	-	-	-	-	280	218	328	5	*25	140	. 8	980	_
12 17 6		-	8.3	-	-	-	-	~	280	230	370	5	*25 *25	150 145	1 • 4 1 • 0	1005 1032	_
12 24 6	- 1	-	8.3	-	-	-	-	-	310	218	368	_	*25 *25	115	1.0	830	
1 7 6	- 1		8 • 1	-	-	_	_	-	352	212 264	324 400	_	*25	150	1.2	1090	_
1 14 6			8•0 8•0	-	_	-	-	-	364	266	412	_	*25	155	1.5	1125	
1 21 6		_	7.8	_			_	_	384	280	432	-	*25	170	1.7	1180	_
1 28 6			7.8	_	_	_	_	_	310	230	370	_	*25	145	1.6	995	_
2 11 6	-	-	8 • 2	_	_	-]		236	192	260	5	160	125	• 9	800	
2 18 6			8 • 2	_	_	-	-	-	304	220	368	5	95	185	1.3	1030	_
2 25 6		-	8 • 4	-	-	-	-	-	334	220	376	0	*25	190	1•1	1090	_
3 4 6	3 13.0	-	8 • 4	-	-	-	-	-	320	200	350	5	*25	160	• 9	1090	
3 11 6		-	7.9	-	-	-	-	~	200	180	270	5	500	110	•6	740	
3 18 6		-	8.3	_	- 1	~	-	~	230	180	280	10	130	130	•8	790	-
3 25 6		-	8 • 4	-	-	-	-	-	290	180	330	5	*25	150	• 9	990	
4 1 6		-	8 • 4	-	-	-	-	-1	300	164	300	5	*25	165	• 3 • 5	970	_
4 8 6		-	8 • 4	_	-	-	_	-	270 300	148 112	290 308	5 5	*25 *25	164 176	• 4	970 1010	_
4 22 6		-	7.2	!		-1	_	<u> </u>	430	164	320	5	*25	176	• 5	1100	_
4 22 6		-	8.3	_	_		_		370	168	330	5	*25	176	•6	1060	_
5 6 6		-	8.4	_	_	_	_	_	390	168	330	10	*25	164	.5	1050	
5 13 6		_	8 • 4	_	-	_	-	_	380	172	330	5	*25	180	1.0	1190	_
5 20 6		-	8 • 4	-	-		-	-	410	184	330	5	*25	170	• 9	1170	-
5 27 6		-	8 • 4	- }	-	-	-		400	144	300	0	45	164	1.3	1120	-
6 3 6		-	8 • 2	- 1	-	-	-	-	180	142	196	20	1000	80	• 3	530	-
6 10 6		-	8 • 3	-	-	-	-	-	190	142	200	20	300	76	• 6	620	-
6 17 6		-	8 • 4	-	-	-	-	-	350	124	250	10	150	120	•8	920	_
6 24 6	3 24.0	-	8 • 4	-	-	-	-	~	230	148	260	20	200	96	• 8	620	-
	1		1				1										

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

OKLAHOMA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER NEAR

PONCA CITY, OKLAHOMA

DATI								CHLORINE	DEMAND									TOTAL	
OF SAN			TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	I-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	SOLIDS mg/l	per 100 mL
7 1 8 1 1 5 2 2 7 8 1 2 2 6 8 1 2 9 9 9 1 6 3 3 0	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3	25.5 29.0 26.0 29.5 28.0 27.5 23.0 21.5 27.0 21.0 24.0		8.4 8.4 7.9 8.1 8.4 8.4 7.9 8.1 8.4 7.5						250 320 54 150 290 390 340 430 130 170 290	170 166 114 122 126 164 156 120 98 144 136 184	300 290 180 230 290 330 350 160 180 260	5 10 15 5 5 0 10	550 200 3000 1000 *25 *25 *25 *65 1000 69	120 136 46 64 88 130 150 130 164 40 566 104	1.0 1.0 .5 .8 .9 .7 .4	800 860 310 410 570 880 1030 900 850 1110 310 490 480 810	

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Ralston, Oklahoma Operated by U.S. Geological Survey STATE

Oklahoma

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Ark. River, Kans-Colo Line to Tulsa

STATION LOCATION

Arkansas River near

Ponca City, Oklahoma

Day	October	November	December	January	February	March	April	May	June	July	August	September
), coo	1.800	2.620	1.430	1.200	1.700	1.800	1.170	2.280	4.400	2.200	1.400
1	4.900 4.200	1.700	2.900	1.480	1.300	1.700	1.670	1.340	2.200	4.000	1.870	.802
2 3 4	4.100	1.780	2.800	1.540	1.400	1.700	1.610	1.400	2.540	3.600	1.720	•758
3	4.400	1.700	2.710	1.700	1.500	1.850	1.540	1.340	3.510	3.200	1.560	.846
4 5	4.400	1.610	2.900	2.360	1.600	1.980	1.520	1.270	4.080	2.710	1.400	1.880
	4.200	1.580	2.710	2.360	1.700	2.200	. 1.540	1.180	2.620	2.450	1.260	12.300
6 7	4.000	1.540	2.540	2.450	1.750	2.280	1.520	1.120	2.200	2.280	1.150	16.400
í	3.800	1.490	2.280	2.540	1.870	2.280	1.480	1.100	2.360	2.080	1.040	12.200
8	3.700	1.460	2.200	3.000	1.950	2.450	1.400	1.150	2.450	1.800	.970	11.800
9 .0	3.800	1.430	2.070	2.900	2.030	2.900	1.360	1.120	2.080	1.600	.920	9.550
1.	3,700	1.420	1.800	2.450	2.120	3.400	1.340	1.010	1.920	1.740	.857	8.200
2	3.400	1.390	1.700	1.800	2.280	3.900	1.320	•960	1.750	4.490	•769	6.730
2	3.100	1.360	1.600	1.500	2.200	4.200	1.310	.920	1.600	18.300	.758	6.460
3	3.000	1.340	1.700	1.200	2.050	4.200	1.260	.920	1.450	14.400	•703	5.150
5	3.000	1.340	1.880	1.000	1.870	5.020	1.240	.846	1.310	8.850	•648	4.300
6	2,800	1.340	1.670	1.000	1.720	4.000	1.220	.802	1.300	11.400	•593	4.000
.7	2.710	1.320	1.580	1.100	1.690	3.300	1.190	•940	1.300	11.400	•560	3.900
8	2.540	1.350	1.720	1.200	1.800	3.000	1.170	.868	1.260	7.180	.560	4.200
ă	2.540	1.350	1.780	1.100	1.880	2.620	1.120	.769	1.540	4.300	.692	3.700
9 0	2.540	1.360	1.930	1.000	1.820	2.540	1.100	.725	2.200	3.700	.648	3.000
1	2.360	1.360	1.950	.950	1.750	2.360	1.100	.659	2.200	4.000	.648	2.900
1 2	2.200	1.380	1.900	.900	1.720	2.200	1.100	. 659	1.900	4.200	.637	3.000
2	2.050	1.390	1.850	.900	1.720	2.200	1.050	•637	2.020	3.700	•758	2.800
3 4	1.980	1.400	1.850	.900	1.720	2.080	1.090	.615	2.360	3.400	.692	2.360
5	1.870	1.460	1.600	.900	1.670	1.970	1.110	.604	1.920	3.000	.604	2.200
5	1.780	1.560	1.500	.900	1.670	1.870	1.120	. 659	1.780	2,620	.560	2.020
7	1.700	1.640	1.300	.900	1.700	1.820	1.170	.714	3.480	2,280	•549	1.880
ġ	1.690	1.720	1.300	.900	1.690	1.800	1.170	•703	4.900	2.120	•549	1.750
9	1.720	1.900	1.380	•950	-	1.780	1.160	3.810	5.020	3.000	.714	1.560
7 8 9 0	1.720	2.120	1.380	1.000		1.740	1.140	5.180	4.780	3.400	1.070	1.400
i	2.080		1.350	1.100		1.770		3.100	•	2.900	i.540	

ARKANSAS RIVER AT COOLIDGE, KANSAS

The Coolidge, Kansas station is located 1 1/2 miles downstream from the Colorado-Kansas State line. Samples are taken from the south bank, 50 feet below the U.S.G.S. gaging station.

Fifty miles upstream, John Martin Dam creates a storage reservoir for irrigation usage. At times, this reservoir has been completely drained in order to satisfy appropriations.

The nearest pollutional sources to the Coolidge station are Holly and Lamar, Colorado; six and thirty-four miles upstream, respectively. These two communities are below John Martin Dam and discharge a total ROD population equivalent of 5,800.

Station Location:	Arkansas River at Coolidge, Kansas	ALKYL BENZENE SULFONATE (AB
Major Basin:	Southwest-Lower Mississippi River	Date mg/l
Minor Basin:	Arkansas River, KansColorado Line to Tulsa	
Station at:	38°02' Latitude 102°01' Longitude	
Miles above mouth:	1,099	
Activation Date:	March 24, 1958	
Sampled by:	U.S. Geological Survey	
Field Analysis by:	U.S. Public Health Service	0
Other Cooperating Agencies:	Kansas State Board of Health Colorado State Department of Public Health	
Hydrologic Data:		
Nearest pertinent gaging station:	Near Coolidge, Kansas	
Gaging station operated by:	U.S. Geological Survey	
Drainage area at gaging station:	25,410 square miles with 1,708 square miles probably noncontributing.	
Period of record:	1950 to present	
Average discharge in record period:	187 cfs.	
Maximum discharge in re	cord period: 60,000 cfs.	
Minimum discharge in re	cord period: 0 cfs.	

Flows affected by storage, transmountain diversions, power, and irrigation usage.

'L BENZENE ONATE (ABS) ELEMENTAL ANALYSES

<u> </u>		Composite	Interval
		10/1/62	4/1/63
		12/31/62	6/30/63
Analysis by	F	.40	1.2
wet or flame methods.	Na	550	470
Results in mg/1	к	16	12
	Zn	*80	*38
	Cq	*40	*38
	As	*400	*384
Analysis	В	360	538
by	p.	*100	*192
Spectro-	Fe	170	77
graphic	Мо	*40	*50
methods.	Mn	_	*19
	ΑI	_	*192
Results	Ве	*1	*1
in	Си	*40	*19
micrograms	Ag	*8	*10
per	Ni	*40	*38
liter	Co	*80	*38
	Pb	*100	*96
j	Cr	*20	*96
	v	*40	*192
	Ва	18	*8
	Sr	5000	2750

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+	Composite Interval	pc/1	+
October to December	1.0	.2	April to June	6.6	1.0
January to March	-	1	July to September	-	-

± at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration*
		Ć.

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

See page 21.

KANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER AT

COOLIDGE, KANSAS

2

						RADIOACTI	ZITY IN V	VATER							RADIOACTIV			
DATE	DATE OF DETERMI-					KADIOACII	7111 114 4	TAILE		BETA		DATE OF DETERMI-		GROSS ACTIVITY				
SAMPLE				ALPHA		D TOTAL		SUSPENDI	SUSPENDED		D	TOTAL		NATION	ALPH		BETA	
TAKEN	NATION	SUSPENDI			<u>_</u> +	pc/l	-	pc/l	#	pc/l	±	pc/l	±	MO. DAY	pc/g	<u>=</u>	pc/g	+
DAY YR.	MO. DAY	pc/l	_=	pc/l	-	pc/s		pe//										- 1
	1	_	_		~	1.6	26	0	26	82	45	82	52			1		-
1 62	10 22	၁	5	14	26	14	20		55	26	88	32	104					1
8 62	11 1		-	-	-	-	-	6 7	6	319	136	326	136			1	ļ	ı
14 62	11 16	-	-	-	-	-	-	•	5	24	75	28	75	1 1		-	l	- 1
22 62	12 22	-	-	- 1	-	- '	-	4		26	90	37	90	1 1				
29 62	11 17	_		-	-	-	-	11	6		75	46	90			1		
5 62	12 22	C	4	16	19	16	19	0	59	46	83	70	101	i i				
12 62	11 30		1 - 1	-	- 1		- 1	60	58	10			180	1				
12 62	12 6	-	-	-	-	-	~	170	110	288	140	458						
26 62	12 18	2	5	39	24	41	25	42	62	142	95	184	113				i	
3 62	12 31	4	5	29	22	33	23	37	35	69	54	106	64			- 1		
10 62	1 3		_	_	-	_	-	30	66	51	97	81	117	İ				
17 62	1 9	4	5	47	23	51	24	27	64	127	99	154	118	ŀ	i	- 1		
24 62	1 9		-		-	_	- 1	57	69	141	99	198	121	ł	1	l		
	1 ~ 1	2	5	53	26	55	26	35	62	149	101	184	119		ł			
2 63		8	8	58	29	66	30	5	63	148	95	153	114	ŀ			1	
7 63	1 18	_	1 - 1	48	28	53	30	0	315	197	162	197	354	1		1		
14 63	1 24	5	10		34	72	34	ō	49	1.17	86	117	99				Į.	
21 63	2 8	0	5	72	29	35	29	20	59	128	97	148	114		1			
28 63	2 14	0	5	35		26	22	29	31	69	45	98	55		1	1	1	
4 63	2 18	4	6	22	21		23	31	37	48	54	79	65				1	
11 63	2 25	٥	3	26	23	26		37	62	37	88	74	108				1	
19 63	3 7	3	6	32	24	35	25	16	62	101	89	117	108	İ	İ			
25 63	3 7	8	5	18	14	26	15	35	58	59	87	94			ļ		1	
4 62	3 20	4		28	21	32	22	48	34	145	53	193	63	l		1	1	
11 63	3 25	5	6	58	28	63	29		8	75	45	98	46	ĺ	ì			
18 63	4 1	2		40	26	42	26	23	1	109	45	156			1			
25 63	4 8	4	5	61	26	65	26	47	32		143	142	1 1			- 1	1	
2 63	4 18	1	1	29	20	30	20	29	13	113		209	-				Ì	
8 63		0	4	49	2.2	49	22	98	68	111	80	89			1	Į	ļ	
. 15 63		1	6	13	21	14	22] 2	28	87	46	1			-		1	
22 63	1	1	1	3	17	4	17	9		191	43	200	1 1		1		ì	
29 63	1	Ī		39	20	39	20	32		66		98			1	- 1		
6 63		1 0		46	23	46	23	7	10	16		23			1		1	
13 63	_	٥ ا	1	15	19	15	19	2	6	84		86			1			
20 63		0	ī	28	27	28	27	13	6	153		166		i i	1	ì	1	
		1 1	lī	12	20	13	20	22	14	140		162			ì		i	
27 63		٥		44	1-	44	27	45	14	142		187			1		1	
3 63	1	2		34	1	36	23	0	228	90	86	90						
10 63	l _	191	1 -	1 0	1	191	15	2933	153	189	55	3122				ì	1	
5 17 63		1		15	1 -	55	30	604		183	83	787	132	1 1		- 1	1	
24 63	7 10	40	42	1 15	1-1	1	1	1	1	1	1	1	- 1	l	1	- 1	1	

RADIOACTIVITY DETERMINATIONS

KANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIV5R

MINOR BASIN

RADIOACTIVITY DETERMINATIONS

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER AT

COOLIDGE, KANSAS

DATE SAMPLE TAKEN					RADIOACTIVITY IN WATER													RADIOACTIVITY IN PLANKTON					
	-	DATE OF DETERMI- NATION	ALPHA BETA											DATE OF DETERMI-		GROSS ACTIVITY							
	1		RMI-	SUSPENDED		DISSOLVED		TOTAL		SUSPENDED		DISSOLVI	ED	TOTAL		NATI	ION .	ALPH	A	BETA	<u> </u>		
	-	_	DAY	pc/l	±	pc/I	±	pc/i	±	pc/l	±	pc/l	±	pc/l	±	MO.	DAY	pc/g	±	pc/g	±		
	М	7 2 8 8 8 8 8 8 9 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DAY 15 24 6 7 14 21 27 6								3 5 6 7				45 145 145 96 738 100 88								

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

KANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER AT

COOLIDGE, KANSAS

											CHLOROF	ORM EXTRA	CTABLES				
DATE OF SA				EX	TRACTABL	ES	ļ				NEUTRALS						
MONTH BB DAY Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	HTNOM	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOS5	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 14 62 11 5 62 12 10 62 1 7 63 2 11 63 4 2 63 5 6 63 6 3 63 7 1 63 7 17 63 8 13 63	11 12 2 3 4 5 7	12 17 19 25 22 16	#	193 273 258 169 377 260 374 382 184 334 - OW UNKN ESTIMAT LOW FLC	ΈD	172 234 237 152 328 232 321 267 136 239	0 2 1 - 1 - 2 4 - 7	8 13 7 5 - 8 - 27 - 34	4 7 6 - 5 - 8 - 19 - 17	0000	1 1 0 0 - 1 1 - 1 1 - 1	1 -	000000000000000000000000000000000000000	2 2 - 2 - 3 11 - 9 -	2 4 1 - 2 - 12 - 5 -	010000000000000000000000000000000000000	5 8 4 3 5 21 21

KANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER AT

COOLIDGE, KANSAS

002

																		_			_						
DATE	PERCI	MINANT SPE	CIES OF DIA L DIATOMS (TOMS AND See text for Codes	,	≤	(e)				R		FER		<u>0 I N</u>		ER	TF	BR	CRU		FAC	ΕA		1		
SAMPLE	1st	2ND	3RD	4тн	S	ER.	iable I.								LEVEL					GENE	See	AND C	OUN'	LEVE	_		E E
	<u> </u>		1		E T	I AND BACTERIA per ml.	entij er m	NUM-	1 s	гΤ	2 _N		3 _R I		4тн		5TH		NUM-	1 st	1	2 _N		3 _R		#	7 F
MONTH DAY YEAR	SPECIES 	SPECIES	SPECIES	SPECIES	OTHER SPECI PERCENT	FUNGI SHEATHED I	PROTOZOA (Identifiabl Number per ml.	BER PER LITER	CENUS	COUNT LEVEL	GENUS	COURT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	BER PER LITER		COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	NEMATODES (Identifiable) Number per liter	OTHER ANIMAL FORMS (Number per liter)
10	5 16 5 16 87 21 87 28 92 38 87 50 92 15 92 29 51 23 92 31 92 33 92 36 67 66 92 80 71 43	75 12 2 10 69 16 5 10 87 29 92 29 71 11 86 10 34 19 31 2 18 87 12 71 11 12 18 34 3 92 19	92 11 71 9 75 12 71 9 12 6 38 8 2 9 71 4 13 13 12 9 72 10 2 3 75 7	67 7 7 9 8 8 7 7 5 9 8 8 4 3 3 5 5 4 2 1 9 8 8 8 7 7 5 8 8 7 7 0 5 5 7 1 8 6 7 7 7 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	544 61 43 25 61 44 33 51 37 15 11 28	100	0000	32200	222										400101000000100001110111	52	1					000101000000100001110111	0000-0-00000-0010

PLANKTON POPULATION

PLANKTON POPULATION

STATE

KANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER AT

COOLIDGE, KANSAS

DA.	TE				Al	LGAE (Nu	mber pe					INE	RT	<u> </u>		MOST	AB	סאטו	ANT	ALC	AE .	Gene	ra and	l Cou	nt Lev	el per	ml. (Se	e tex	t for Cod	les)	
OI SAM		E		BLUE-	GREEN	GREE	:N	FLAGEL (Pigme		DIAT	OMS	DIAT SHE	COM LLS	1 s	T	2n	D	3 _{RI}	D	4тн		тн	6	TH	71	ГН	8тн		9тн	10	Отн
моитн		TOT AEVE	.L.	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	•	COUNT LEVEL	GENUS	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS		GENUS COUNT LEVEL	GENUS	COUNT LEVEL
10	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00000000000000000000000000000000000000	7000000000000041000111	10 00 50 00 00 00 00 00 00 00 00 00 00 00	10 0 90 40 70 0 0 0 0 0 0 40 40 80 80 	000000000000000000000000000000000000000	10 40 40 60 00 20 90 60 40 40 20 40 40 40 40 40 40 40 40 40 4	130 0 0 110 40 40 00 00 00 00	70 70 40 250 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9810 5260 640 290 440 380 440 1210 990 240 530 620 3230 - 2420	00 70 40 40 40 40 40 40 20 40 20 40 20 40 40 40 40 40 40 40 40 40 40 40 40 40	990 250 3110 540 1080 510 1640 660 1540 460 550 70 920 680 370	92 81 92 92 88 92 88	223542 1 21 224	91 92 91 88	2 2 5 4 1 1 2	74 88 88	1 3 2 4	92 87 78 89	1 1 3 8 1 8	2 1 7 2	89 89	1 2		!					

KANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER AT

COOLIDGE, KANSAS

2

D/	TE	T						CHLORINE	DEMAND									TOTAL	
OF SA	-	(TEMP. (Degrees entigrade)	mg/i	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
_	1 (62		_		_	_	_	-	-	166	188	1630	0	*25	2400	•0	4100	_
		62	_	_	8.0	_	-	-	-	-	176	170	1470	0	*25	2250	•0	4030	~
10 1		62	_	-	7.8	-	_		-	-	168	188	1580	0	*25	2400	•0	4170	_
10 2		62	_	-	-	-	-	-		-	158	180	1560	0	*25	2300	•0	4070	_
10 2		62	-	-	-	_	-	-	-	-	168	200	1560	0	*25	2300	•0	4043 4060	_
		62	-	-	8.0	-	-	-	-	-	204	186	1540	0 5	*25 *25	2200 2200	.0	4000	_
11 1		62	-	-	8.0	-	-	-	-	-	198 156	196 216	1560 1550	0	240	2300	1 .0	3980	_
11 1		62	-	-	8.0	_	_	_	_	-	147	190	1570	l ŏ	130	2300	.0	4000	-
11 2		62	-	-	7.9	_	_	_	-	_	126	150	1540	Ιŏ	140	2100	•0	3930	-
		62	-	-	8 • 0 8 • 1	_	_	_	_	_	100	182	1440	ه ا	120	2200	•0	3900	_
12 1 12 1		62 62	_	-	8.0	_	_	-	_	_	150	204	1570	5	*25	2150	•0	3840	_
12 1 12 2		62	_		7.9	_	_	_	_	_	152	204	1740	-	145	2400	• 0	4170	-
	- 1	63	_	_	7.9			_	_	-	_	228	1700	-	*25	2300	•0	3970	-
		63	_	_	8.0	_	_	_	-	-	160	216	1490	-	*25	2000	• 0	3840	-
		63	_	_	7.8	-	_	-	_	-	196	280	1890	-	*25	2800	•0	3835	1
1 2		63	-	-	7.9	_	_	-	-	-	156	236	1630	-	*25	3100	• 0	4102	_
1 2		63	_	-	7.9	-	-	-	-	-	160	250	1700	_	*25	2400	• 1	4300	_
-		63	_	-	7.9	_	_	-	-	-	120	210	1500	-	230	2100	•0	3600 3730	-
2 1	1	63	-	-	7.7	-	_	-	_	-	130	208	1540	5	*25	2200 2050	.0	3850	_
2 1		63	-	-	7.8	-	_	-	-	-	132	220	1460	0	140	2200	.0	3850	_
2 2		63	-] -	7.8	-	_	-	-	_	134 134	220	1530 1570	5	*25	2350	.0	4000	_
		63	-	-	7•5	-	_	_	_		140	210	1560	1 6	*25	2200	.0	4000	-
		63	-	-	7.9	-	-	_	_		144	210	1610	0	110	2200	.0	4140	_
		63	-	-	7 • 4	-	_	_	_	-	152	200	1640	l ő	110	2400	• 0	4170	_
3 2		63	-	_	7•5 7•5	_	_	_	_		155	196	1700	l ŏ	97	2400	• 0	4100	_
		63	_		8.0	_	_	_	_	_	90	188	1400	5	400	1840	•0	3300	-
		63	_	_	7.2	_	_	_	_		140	212	1650	5	35	2300	• 0	3900	-
		63	_	_	7.4	_	_	-	_	_	175	200	1650	5	*25	2300	•0	4100	-
		63	_	_	, • =	_	-	_	_	-	165	192	1850	0	*25	2500	•0	4200	-
		63	_	-	-	_	-	_	-	-	190	140	1950	5	*25	2400	• 0	4000	-
		63	_	-	-	-	-	-	-	-	165	180	1750	0	*25	2400	•0	4100	_
		63	-	-	-	-	-	-	-	-	180	168	1600	5	*25	2350	• 0	4200	
	7	63	-	-	-	-	-	-	-	-	135	160	1800	5	*25	2350	•0	4100 3900	_
		63	-	-	-	_	-	-	-	-	150	188	1600	5	*25 *25	2200 2500	:0	4200	_
		63	-	-	-	-	_	-	-	-	155	162	1800 850	25	3000	840	.0	1560	_
		63	-	-	-	-	_	-	_	_	75	160 132	1200	15	1400	1460		2800	-
6 2	4	63	-	-	-	-	-	-	_	_	100	1 122	1200	1 19	1 - 30	1,30			

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

KANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

ARK. RIVER, KANS-COLO LINE TO TULSA

STATION LOCATION ARKANSAS RIVER AT

COOLIDGE, KANSAS

OF \$	ATE	PLE	TEMP.	DISSOLVED	рН	B,O.D. mg/l	C.O.D. mg/l	CHLORINE	DEMAND 24-HOUR	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
MONTH	DAY	YEAR	Centigrade)	mg/l				mg/l	mg/l	ING/1						2400	•0	4100	
7 1 7 2 7 8 8 1 2 8 9 9	8 5 2 5 1 3 2 7 3 9	88888888888888888888888888888888888888		-							170 195 210 35 180 190 145	178 166 160 158 132 162 202 146 160 200 210	1800 1700 1650 1900 600 1700 1250 1250 1450	55505550850	*25 *25 *25 *200 *25 *200 *200 *200 *200	2350 2800 2400 2400 2400 2500 2500 2000	000000000000000000000000000000000000000	4100 4200 4400 730 4100 4000 3270 3740 2600 4300 3400	

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Coolidge, Kansas Operated by U.S. Geological Survey STATE

Kansas

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Ark. River, Kans-Colo Line to Tulsa

STATION LOCATION

Arkansas River at

Coolidge, Kansas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	.016	.028	•091	.115	.165	•144	•060	.027	.095	.032	•034	010
2	.014	.026	.102	.125	•160	.140	.032	.010	.042	.031	.024	.013 .055
3 4	.0083	.024	.106	.132	.150	.136	.178	•0088	.034	.029	.0061	.021
	.0094	•028	.129	.140	•193	.136 .144	.360	.0066	.026	.027	.0040	.0053
5	•010	.027	.114	.148	.186	•159	• 360	.0061	.022	.031 .024	.0030	.0032
6	.010	.026	.110	.144	·174	•167 •167	•355	.0088	.019	•0094	.0032	00.20
7 8	.0094	.024	.110	.144	.178	،167	• 377	.010	.018	.0066	.0025	.0032 .0038
Ö	.0083	.023	.121	•163	.174	·144	• 394	.0083	.018	•0050	.0018	.0036
9 .0	.0066	.026	.121	.159	.171	.125	• 382	.0083	.017	.0047	.0042	.032
	.0061	.027	.117	.110	.163	.133	• 372	.0061	.016	.0043	.0040	•032 •025
1 2 3 4	.0094	.042	.125	.062	.155 .140	.133	• 355	•0061	.010	•0040	•0035	
5	.014	-045	.125	•068	.140	.136	• 350	.0056	.0040	.0050	•0039	•014
う	.012	.045	.125	.071	.145	-133	.366	.0061	.0027	.0037	.0030	-014
4 5	.013	.045	.133 .136	.074	.150	-125	.285	.0066	.0030	.0034	.0042	•030
>	.014	.040	•136	.077	.160	·12i	.163	.0056	.0050	.0030	.0020	•038 •032
6	.014	.031	•133	•079	.163	.129	.110	•0050	000	0000		
.7 8	.019	•036	.140	•080	.163	.129	.091	.0056	.290 .400	.0020	.0020	.028
8	.024	· 040	.140	•068	•163	•136	.070	.0043	.236	.0017	.0035	.014
9	.022	.070	.129	.062	.152	•133	.063	.0056		.0030	.033	•0057
U	.017	.102	•133	•066	.152	.125	.067	.0047	.133 .063	.0017 .0014	.073 .030	.0030
_	.023	•098	.129	.070	155				.005	.0014	050ء	.0028
2 2	.027	.087	.114	.067	.155 .163	.110	.060	.0040	•053	.0010	.046	.0081
3 4	.027	.091	.102	.064	• 403	•106	•053	.0056	• 548	.0005	۰046	.016
4	.034	.077	.064	.070	.155 .155	.102	•053	•0056	•280	.0005	.021	.012
5	.036	.084	.060	.066	•155	.095	.053	•0040	•193 •148	.0015	•0061	.084
_	Ā				•195	.091	•051	.0037	.148	•0056	.0045	•236
6	.031 .022	.084	.064	.068	.148	.084	.042	•0030	.098	•0020	00.25	2/2
7 3	.022	.084	.076	.070	•144	.087	•036	.0050	.063	.0040	.0035 .0042	• 3 65
)	.026	•098	•086	.072	-144	.073	•038	.0040	.049	•986	.012	• 359
Ó	.026	.102	•098	•066		.060	•034	.0061	.042	.900 .413	.022	.220
	.028	.095	.104	.071		۰053	•032	.0047	.038	•413 •168	.022	.107
	•020		.110	.084		.070	-	.0040	ىر. د	.057	.016	.079

MISSISSIPPI RIVER AT NEW ORLEANS, LOUISIANA

This station is the lowermost Pollution Surveillance System station on the Mississippi River. Samples are taken at the municipal water treatment plant intake.

Twenty miles upstream, primary sewage treatment plant effluent from a population of approximately 194,000 and wastes from petrochemical industries at Baton Rouge are discharged to the river. The river is navigable to ocean-going vessels upstream as far as Baton Rouge.

Municipal water supplies in the area include New Orleans, Westwego, Gretna and Algiers, Louisiana, and Jefferson Parish.

During August and September the chlorinated hydrocarbon insecticides, endrin and dieldrin, were detected in carbon filter samples from this station. (See page 68.)

Station Location:	Mississippi River at New Orleans, Louisiana
Major Basin:	Southwest-Lower Mississippi River
Minor Basin:	Lower Mississippi-Natchez to Gulf
Station at:	29°58' Latitude 90°08' Longitude
Miles above mouth:	105
Activation Date:	December 12, 1957
Sampled by:	New Orleans Sewage and Water Board
Field Analysis by:	Louisiana State Department of Health
Other Cooperating Agencies:	None
Hydrologic Data:	
Nearest pertinent gaging station:	At Red River Landing, La.
Gaging station operated by:	U.S. Army Corps of Engineers
Drainage area at gaging station:	1,243,000 square miles
Period of record:	1935 to 1961.
Average discharge in record period:	468,000 cfs.
Maximum discharge in re	cord period:
Minimum discharge in re	cord period:
Remarks:	

ALKYL BENZENE SULFONATE (ABS)

Date	mg/1	·	7	Composite	Interval
3-7-63	0.16			10/1/62	4/1/63
3-7-63	0.03		- 1	12/31/62	6/30/63
3-21-63	0.05	Analysis by F		.23	.25
3-28-63 4-4-63	0.04	wet or flame	٧a	26	14
4-11-63 4-18-63	0.04 0.03	Results in k	<	3.7	3.8
4-22-63	0.04	1	Zn	9	6
5-16-63 5-30-63	0.05 0.05		Cq	*2	*2
6-6-63	0.06		As	*25	*22
6-13-63	0.05	Analysis E	в	36	40
6-27-63	0.08	by F	р.	*12	19
7-3-63 7-11-63	0.05	Spectro-	Fe	59	17
7-18-63 7-25-63	0.06	graphic	Мо	20	16
8-8-63	0.06	methods.	Mn	.6	*1.1
8-15-63 8-22-63	0.09		Αl	_	16
8-29-63	0.03	Results	Ве	*.06	*.06
9-5-63 9-12-63	0.07	in o	Cu	2	5
9-26-63	0.08	micrograms	Ag	*. 5	*.6
		per	Ni	*1	*2
		liter	Co	*5	*2
			Pb	*12	*6
			Cr	*1	*6
			٧	*2	*11
			Ba	37	57
			Sr	133	123

ELEMENTAL ANALYSES

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

STRONTIUM 90 ACTIVITY

Composite Interval	pc/l	+	Composite Interval	pc/ì	+
October to December	1.9	.4	April to June	-	1
January to March	-	_	July to September	4.5	.4

[±] at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration* ug/1
8/5 - 8/8/63	Indrin	.074
8/5 - 8/8/63	Dieldrin	.013
9/6 - 9/12/63	Endrin	.062
9/6 - 9/12/63	Dieldrin	.032
9/13 - 9/20/63	Pndrin	.083
9/13 - 9/20/63	Dieldrin	.024

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/l. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

See page 21.

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER MISSISSIPPI-NATCHEZ TO GULF

STATION LOCATION MISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

DATE						RADIOACT	VITY IN	WATER							RADIOACTIV	TY IN PLA	NKTON	
SAMPLE	DATE OF			ALPH	Ā					BETA				DATE OF DETERMI- NATION		GROSS A	CTIVITY	
TAKEN	DATE OF DETERMI- NATION	SUSPE	NDED	DISSOL	/ED	TOTAL		SUSPEND	ED	DISSOLVE	:D	TOTAL			ALPH		BETA	
MO. DAY YR.	MO. DAY	pc/l	±	pc/l	±	pc/l	#	pc/l	±	pc/l	#	pe/i	#	MO. DAY	pe/g	<u> </u>	pc/g	<u> </u>
	11 27 11 20 11 16 12 21* 1 18* 2 8* 3 11* 5 17* 6 1.7* 7 17* 9 23*				2 2 2 2 - 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			15 4 33 3 10 22 4 19 69 58 20 33 8 2 1	13 11 29 7 7 7 7 6 20 8 12 3 3 3 4	182337731522255892335	889899968848556	33666 200 417 417 419 4199 582 405 25	154 311 111 118 228 1466 7					

PLANKTON POPULATION

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-NATCHEZ TO GULF

STATION LOCATION MISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

		1	DOI	MINAN'	r SPE	CIES O	F DIA	TOMS .	AND								- 1	d I C	R	0 1 1	4 V	ER	r e e	3 R /	ATI	E S						
DAT OF SAME	-		PERCE	NT OF	TOTA	L DIAT	OM5 (See text	for Code	-	I AND BACTERIA per ml.	ible)				R (OTI	FER	5	T LEVE			-		CR	US	TAC	E A	T LEVE	L.		SWS
- J		 1	ST	2	ND	3	RD	4	TH.	SPECIES	AND ACTI	rntifie r ml.	NUM-	1 s	- 1	2 _N		3RI		4TH		5тн		им-	1 s	1	2 n		3RI	<u> </u>	Les .	r liter
МОМТН	YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SPE PERCEN	FUNGI SHEATHED B	PROTOZOA (Identifiabl Number per ml.	BER PER LITER	GENUS	COUNT LEVEL	SENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL		B P L	ER ER TER	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL	NEMATODES (Identifiable) Number per liter	OTHER ANIMAL FORM (Number per liter)
10 15 11 6 11 19 12 17 1 21 2 18 3 18 4 15 6 6 17 7 15 8 19 9 16	62 62 62 63 63 63 63 63 63 63 63		20 37 46 33 63 55 55 25 33 45 20 22 36 36 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37	56 57 82 82 80 80 80	18 25 24 31 22 34 29 21 22 14 13 18 13 16 25 5	580 266 58 567 567 566 577 566 576 566 576 566 578	15 6 9 7 8 7 21 9 12 11 9 4 9	26 82 82 26 91 56 57 27 26 20 95 57 26 55 57 26 82 82 82 82	12 68 7 1 4 2 4 8 8 7 4 3 3 8 1 1 3 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	355 266 13 22 11 167 73 23 34 11 21 10 33 41 12 11 74 96	90		0 14 18 0 0 2 8 9 1 0 0 0 1 3 3 3 4 5 5 0 0 0 4 4 1 3 6 8 -	22	3 3 3 3 3	17 17 11	2	2	1	11	1			0000001000000110000015-	50	3	51	1			000000000000000000000000000000000000000	000000000000000000000000000000000000000

PLANKTON POPULATION

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-NATCHEZ TO GULF

STATION LOCATION MISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

DATE				A	LGAE (Nu	nber pe	r milliliter	,			INE	RT		N	rost	AE	UND	ANT	ALG	AE -	Gener	a and	Coun	t Leve	l per	ml. (8	See te:	ct for C	Codes)	
OF SAMPLE	1		BLUE-	GREEN	GREE	N	FLAGELI (Pigme		DIATO	OMS	DIAT	MO	1 s	т	2 N	D	3 _R c	,	4тн	5	ТН	6т	Н	7т	Н	8т	н	9тн		1 Отн
MONTH	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL	GENUS		COUNT LEYEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL	GENUS COUNT LEVEL
10 15 6 6 6 11 19 6 6 12 17 6 6 12 2 4 6 6 6 7 15 6 6 17 15 6 6 8 19 6 6 9 9 6 6 6 10 6 6 6 6 10 6 6 6 6 10 6 6 6 6 10 6 6 6 6 10 6 6 6 6 6 10 6 6 6 6 6 6 6 6 6	222222233333333333333333333	2600 600 800 900 1300 1300 1400 200 300 400 700 500 600 700 600	0 0 0 0 30	40 0 0 70 20 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 40 20 0 0 20 30 20 20 20 20 40 150 20 20 20 20 20 20 20 20 20 20 20 20 20	000000000000000000000000000000000000000	00 20 30 30 40 40 40 40 40 40 40 60 70 90	110 70 40 0 0 0 0 0 0 0 0 0 0 0	1270 350 590 430 1140 700 860 740 1210 1210 660 790 290 380 520 460 1260 1220	1010 170 80 0 70 90 290 110 110 130 20 40 90 240 90 50 50	680 170 360 210 340 330 230 570 510 510 6530 1760 150 250 250 250 250 250 250 250 250 250 2	120 100 30 70 20 20 150 110 220 110 220 310 310 310 0 140 50 20	69 71 69 71 68 71 71 71 71 71 69 71 68	12 3 1 3 3 3 2 2 1 2 2 1 2 2	69 69 71 69 68	1 2 2 1 1	92	2	88]	. 7:	1 1									

ORGANIC CHEMICALS RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-NATCHEZ TO GULF

STATION LOCATION MISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

DATE OF S	AMPI	,		E	CTRACTABL	FE					CHI ODOE	ORM EXTR	CTABLES				
BEGINNING		מא									NEUTRALS		CIVEES				
MONTH DAY YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	JOHOOJA	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 23 62 11 19 62 12 18 62 1 10 63 2 1 63 3 6 63 3 26 63 4 23 63 5 20 63 5 20 63 6 14 63 8 1 63 8 22 63 9 6 63 9 13 63	11 12 1 2 3 3 4 4 4 5 5 6 6 6 7 7 7 8 8 8 8 9 9	27 25 31	66746 66740 64479 64460 64460 658752 655153 96552 96592 5501965 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	107 133 137 134 129 130 147 132 115 132 76 109 127 148 79 94 103 139 113 110	3538684428453964471071 2333455443363538323533	848 9466 963 793 883 768 4156 864 677 877 79	001-4-12-1-1-2-1-1-0-1-1-0-1	497 -7-14-68-9-9-10-10-10-	10 13 15 - 22 - 15 - 10 - 12 - 10 - 14 -	0111-1-2	1 1 2 - 1 - 1 - 2 -	8 11 12 - 16 - 17 - 10 - 10 - 10 - 10	1000	354 6 6 4 - 4 5 5 4 5	132 3 4 2 3 3 3 3 3 3 3		443-4-6-3-7-8-4-2-4-

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-NATCHEZ TO GULF

STATION LOCATION MISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

20

	ATE							CHLORINE	DEMAND									TOTAL	
=	AMPI	-	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	I-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/i	HARDNESS ·mg/l	(scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/I	coliforms per 100 ml.
10	4	62	21.1	6.3	6.7	• 5	14	1.0	3.9	•5	25	116	151	15	100	60	• 2	255	3000
10 1		62	21•1	6.4	7.6	• 2	11	• 8	3•7	• 2	28	126	159	25	85	83	•2	307	6000
		62	20.0	7 • 3	7.5	1.1	12	1.0	2.8	• 4	38 37	133	172	25	85	74	•2	305	730
		62	19•4	7 • 8	7.6	•6	10	•8	3.7	• 3	31	120	161	15	115	66	•2	251	2000
		62	17.8	8.3	7.8	1.2	10	. 8	3.6	• 3	32	122	161	25	90	66	•2	255	2000
11		62	14.4	8.6	7.9	1.2	95	1.2	3 • 8	• 4	26	121	155	25	68	61	•1	261	1200
		62	15.0	9.2	7.8	• 7	9	1.6	3 • 8	• 3	30	132	170	25	35	55	• 2	262	500
		62	11•7 9•4	8 • 6	7•9 7•8	•9 •8	18 16	1.2	3 • 8 2 • 9	•3	30 41	129 120	168 174	15	68 78	71 77	•2	306 342	1400
11 2		62	8.9	9.7	7.8	2.4	18	1.6	4.0	-5	42	111	180	15	78	91	1	322	1200
		62	8.9	9.2	8.0	1.2	17	1.7	4.7	• 3	31	106	159	20	63	74	•1	284	1600
12 2	20	62	6.7	10.8	7.9	2.6	23	1.7	3.9	•7	37	113	163	20	68	60	• 1	284	20000
		62	5 • 0	11.7	8 • 1	2 • 8	20	1.8	4 • 5	• 4	39	129	172	15	26	66	•1	297	_
1 .		63	5.0	11.1	7.8 7.7	2 • 5 2 • 4	17 15	1.8	4.8	•4	38 30	140	176 149	10 15	41 108	51 56	•2	284 254	3300
		63	3 • 3 2 • 8	12.1	2.0	2 • 4	11	8	6.3	4	38	101	149	20	73	52	1	270	1000
		63	2 • 2	11.2	7.7	1.6	15	3.8	7 • 1	•6	33	100	138	15	103	51	•1	240	1900
	31	63	2 • 2	12.5	7.7	3 • 1	15	• 6	7 • 2	• 6	34	113	152	20	108	54	• 2	267	1000
2		63	3 • 3	13 • 1	7•6	2.7	11	• 7	6•4	•7	29	96	138	15	48	59 59	•1	232	600 670
- 1		63	3.9	12.6	7•8 7•8	2.7	18 11	•5	6.3	• 9	32 30	110	147 145	30 35	38	59 50	•1	250 254	100
	21	63	4•4	11.7	7.0	2•6	1 1		-		30	113	_ 145]]	-				40000
		63	4 • 4	12.1	7.6	2.5	18	.4	7.0	.7	29	99	140	15	64	62	•1	224	-
3	7	63	6.7	11.7	7.6	2 • 3	14	• 6	7 • 3	• 6	35	112	154	40	48	64	• 2	220	500
- 1		63	10.0	10.7	7 • 8	2 • 2	17	-8	7.3	•6	32	107	142	50	115	57	•2	243	500
		63	10.0	7.7	7•7 7•8	2•6 1•5	47	• 5	7•3 8•9	• 3	23 18	90 74	116	50 30	520 288	42 34	•1	200	3100 1700
3 4		63	12•8 15•6	8.5	7.5	1.6	24	2.9	6.8	8	16	71	105	40	230	32	i	181	1400
		63	15.0	8.0	7.6	• 4	20	2.2	6.6	• 4	24	71	105	50	190	48	•1	180	1000
4	18	63	17.2	7 • 8	7.5	1.0	21	1.8	6 • 4	• 4	19	81	122	30	170	47	•1	204	3000
		63	18.9	7 • 6	7.9	•8	25	1.9	5.7	• 5	20	93	129	25	145	49	• 1	243	1000
5	- 1	63	19•4	7.7	8.0	•9 •4	16	1 • 4	3.9	• 2	24	102	146	20 30	73 45	51 63	•1	213 253	1000
5		63	21 • 1	7.1	7.9	• 4	18	1.0	4.0	.5	24	88	129	30	103	50	1	273	1000
		63	23.9	7.2	8.0	.9	32	1.5	4.1	• 5	26	111	158	30	68	63	• 2	148	1800
		63	25.6	6.9	7.9	•2	14	1.3	3.7	• 5	26	124	177	20	78	77	• 1	294	1700
6	- 1	63	23 • 3	7.0	7 • 8	•6	21	1.7	5 • 1	• 4	26	118	170	25	218	70 57	•1	275	45000 930
6	13	63	25•6	5.6	7.8	•6	18	1.6	4.9	• 4	23	105	141	30	133	21		227	730

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-NATCHEZ TO GULF

STATION LOCATION MISSISSIPPI RIVER AT

NEW ORLEANS, LOUISIANA

20

DATE			<u> </u>	l	Ī	CHLORINE	DEMAND	1	<u> </u>	1		T	· · · · · ·		T -		<u> </u>
OF SAMPLE	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D, mg/l	C.O.D. mg/l	1-HOUR	24-HOUR	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
6 20 63 6 27 63 7 3 63 7 11 63 7 25 63 8 15 63 8 29 63 9 12 63 9 12 63 9 12 63 9 27 63	27.2 28.3 28.3 28.3 28.3 30.0 28.9 29.4 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30	6.0 6.2 5.2 6.2 6.7 4.7 4.1 5.5 5.6 5.5 5.6 6.2 5.3	7.9 8.0 7.8 7.9 7.8 7.8 8.0 8.0 8.0 8.2 8.0	2.0 1.0 1.3 .1 .7 1.3 .5 1.1 1.6 1.0 1.5 7	14 12 14 13 14 7 10 10 10 12 11 12	1.0 1.5 1.2 1.2 1.3 1.4 1.7 1.6 1.3 1.9 .9	4.8.6.6.8.6.5.1.2.6.1.9.4.7.4	42433455455557	29938490619502555 433333333	112 110 107 119 126 109 114 123 120 123 115 118	153 160 156 168 179 158 153 1567 167 167 167	25 30 20 20 25 25 25 20 30 30 25 10	73 50 73 63 63 97 83 22 63 97 ***********************************	55 66 67 64 67 59 62 68 59 67 59 67 59 67	· 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2	257 265 272 369 311 272 251 295 301 287 286	1700 1600 25000 600 930 800 2500 2000 4300 6000 1500 3000

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Red River Landing, Louisiana Operated by U.S. Geological Survey STATE

Louisiana

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Lower Mississippi-Natchez to Gulf

STATION LOCATION

Mississippi River at

New Orleans, Louisiana

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2	218.000	212.000	254.000 260.000	215.000 224.000	223.000 208.000	217.000 216.000	864.000 871.000	245.000 248.000	309.000 305.000	239.000 236.000	232.000 229.000	164.000 164.000
3 4 5	212.000 214.000 214.000	204.000 203.000 201.000	268.000 272.000 274.000	237.000 256.000 275.000	196.000 186.000 183.000	216.000 223.000 226.000	876.000 879.000 881.000	255.000 273.000 288.000	305.000 314.000 319.000	231.000 228.000 225.000	220.000 214.000 209.000	157.000 157.000 160.000
6 7 8	214.000 216.000 218.000	201.000 201.000 201.000	275.000 277.000 275.000	285.000 283.000 280.000	180.000 177.000 176.000	231.000 237.000 242.000	882.000 875.000 862.000	309.000 333.000 358.000	320.000 318.000 309.000	221.000 220.000 220.000	205.000 200.000 203.000	164.000 167.000 168.000 162.000
9 10	221.000 228.000	199.000 196.000	264.000 245.000	276.000 273.000	179.000 179.000	250.000 260.000	849.000 849.000	376.000 378.000	301.000 292.000	218.000 216.000	205.000	158.000
11 12 13 14 15	239.000 249.000 253.000 256.000 253.000	193.000 188.000 186.000 186.000	230.000 218.000 204.000 195.000 196.000	274.000 276.000 274.000 269.000 255.000	185.000 188.000 192.000 209.000 228.000	280.000 343.000 431.000 506.000 564.000	840.000 832.000 823.000 811.000 789.000	371.000 362.000 349.000 334.000 319.000	283.000 274.000 266.000 257.000 253.000	216.000 216.000 210.000 200.000 198.000	199.000 201.000 199.000 201.000 201.000	156.000 156.000 156.000 154.000 150.000
16 17 18 19 20	245.000 237.000 234.000 228.000 230.000	181.000 181.000 184.000 188.000 209.000	198.000 198.000 196.000 192.000 182.000	238.000 223.000 219.000 219.000 244.000	243.000 258.000 269.000 281.000 289.000	611.000 649.000 676.000 698.000 707.000	754.000 713.000 664.000 595.000 550.000	309.000 298.000 288.000 278.000 270.000	251.000 255.000 259.000 264.000 268.000	197.000 197.000 197.000 197.000	193.000 192.000 191.000 190.000 187.000	148.000 147.000 150.000 151.000 151.000
21 22 23 24 25	237.000 239.000 236.000 236.000 239.000	234.000 247.000 258.000 268.000 272.000	176.000 167.000 160.000 156.000 155.000	236.000 236.000 242.000 247.000 255.000	288.000 283.000 278.000 275.000 269.000	724.000 745.000 770.000 779.000 793.000	491.000 431.000 392.000 356.000 319.000	264.000 260.000 258.000 260.000 265.000	271.000 271.000 271.000 268.000 264.000	199.000 205.000 206.000 208.000 210.000	185.000 180.000 171.000 163.000 158.000	156.000 156.000 156.000 153.000 151.000
26 27 28 29 30 31	243.000 241.000 234.000 226.000 219.000 216.000	272.000 272.000 270.000 262.000 254.000	154.000 157.000 161.000 172.000 190.000 206.000	266.000 274.000 273.000 263.000 252.000 241.000	254.000 235.000 225.000	806.000 818.000 831.000 840.000 848.000 856.000	292.000 271.000 257.000 250.000 245.000	276.000 286.000 298.000 307.000 314.000 315.000	254.000 243.000 238.000 234.000 232.000	213.000 215.000 223.000 226.000 232.000 232.000	157.000 157.000 157.000 160.000 164.000 164.000	146.000 144.000 144.000 141.000 137.000

NOTE: After July 12 discharge was measured at Tarbert Landing, Mississippi, 4.6 miles upstream from Red River Landing, Louisiana.

MISSISSIPPI RIVER AT DELTA, LOUISIANA

This station is located on the west bank of the Mississippi River immediately upstream from the mouth of the Yazoo River. Samples are collected at the Corps of Engineers pier at the Delta Casting Yard about two miles north of the U.S. Highway 80 Bridge.

There are no significant upstream pollution sources in the area. The city of Vicksburg with a population of approximately 35,000 on the east bank utilizes the Mississippi River as a source of drinking water.

During July 1963, both endrin and dieldrin were detected in carbon adsorption method samples from this station. (See page 78.)

Station Location:	Mississippi River at Delta, Louisiana
Major Basin:	Southwest-Lower Mississippi River
Minor Basin:	Lower Mississippi-Yazoo Rivers
Station at:	32°20' Latitude 90°55' Longitude
Miles above mouth:	432
Activation Date:	October 6, 1958
Sampled by:	Warren County Health Department
Field Analysis by:	Mississippi State Board of Health U.S. Public Health Service
Other Cooperating Agencies:	Louisiana State Department of Health
Hydrologic Data:	
Nearest pertinent gaging station:	Near Vicksburg, Mississippi
Gaging station operated by:	U.S. Geological Survey
Drainage area at gaging station:	1,144,500 square miles
Period of record:	1928 to present
Average discharge in record period:	563,600 cfs.
Maximum discharge in re	ecord period: 2,080,000 cfs.
Minimum discharge in re	ecord period: 99,400 cfs.

siana ALKYL BENZENE SULFONATE (ABS)

mg/l

Date

1	l	Composite	Interval
1		10/1/62	4/1/63 to
		12/31/62	6/30/63
Analysis by	F	.30	.30
wet or flame	,	24	15
methods.	Nα	44	13
Results in	κ	3.7	4.3
mg/1			56
	Zn	*5	
	Cq	*3	*2
	As	*25	*20
Analysis	В	34	33
ьу	p.	*6	*10
Spectro-	Fe	94	13
graphic	Мо	*3	15
1	Mn	*1.3	*1
methods.	ΑI	-	12
Results	Ве	*.06	*.05
in	Cu	*3	18
micrograms	Ag	*.5	*.5
per	Ni	*3	8
liter	Co	*5	*2
	Pb	*6	*5
	Cr	*1	*5
	\ <u>\</u>	*3	*10
	Ba	63	59
1	Sr	131	117

ELEMENTAL ANALYSES

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

STRONTIUM 90 ACTIVITY

Composite Interval	pc/l	+	Composite Interval	pc/1	+
October to December	2.1	.5	April to June	3.3	.5
January to March	-	_	July to September	_	-

⁺ at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration* ug/l
7/1 - 7/8/63	Endrin	.022
7/1 - 7/8/63	Dieldrin	.022

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

See page 21.

Remarks:

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

DELTA, LOUISIANA

DATE	L							RADIOACT	NI_YTIVI	WATER							RADIOACTIV	ITY IN PLA	NKTON	
SAMPLE	1	ATE OF ETERMI- NATION				ALPH	A					BETA				DATE OF DETERMI- NATION		GROSS A		
TAKEN		NATION	sus	PEND		DISSOL	VED	TOTAL		SUSPEND	ED	DISSOLVE	ED	TOTAL		NATION	ALPF	IA	BETA	
MO. DAY YR.	. м	O. DAY	pc/l		土	pc/l	==	pc/l	#	pc/I	±	pc/l	生	pc/l	土	MO, DAY	pc/g	±	pc/g	±
10 3 62 10 16 62 11 19 62 12 17 62 12 17 62 1 21 63 2 18 63 4 15 63 5 20 63 6 17 63 7 15 63 8 19 63 9 16 63	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 7 9 *** 2 20 *** 2 26 *** 2 24 ** 7 30 *** 0 10 **		2 	2 - 1 1 2 5 14 6 2 1		1 10011001111100	3 - - 3 1 3 1 8 8 30 9	2 1 1 1 2 5 14 6 6 3 1	29 30 23 16 26 28 79 77 154 70 17 16	15 30 17 9 8 9 16 18 49 22 9 8	15 14 27 19 18 21 39 25 10 20 32	889998858789	44 44 50 35 44 49 118 116 189 80 37 48	17 31 19 12 12 18 19 50 23 12 12	MO. DAY	pc/g	±	pc/g	#

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

DELTA, LOUISIANA

054

				TOUR AND								N	4 I C	R	0 1 1	1 V	E R	T	EBR								
DATE	PERC	MINANT SPE	CIES OF DIA	See text for Codes	J	¥ Z) le)				RO	OT!	FER	S	T LEVE					GEN	J S ERA	AND	E A	T LEVE	-	- 1	FORMS liter)
SAMPLE	1st	2ND	3RD	4тн	ES	I AND BACTERIA per ml.	tifial ml.								4TI		5тн	,-		1 st	7	<i>text fo</i> 2N		3RI	\exists	_ b	liter.
					PECI	Y E	Tden.	NUM- BER	1 ST	_	2 _N	<u> </u>	<u>3r</u>	1 =	411	╁╁	<u> </u>	4	NUM- BER	131	-	<u>Z, IX</u>	_	JA		e bie	Per
MONTH DAY YEAR	SPECIES	SPECIES	SPECIES	SPECIES	OTHER SI PERCI	FUNGI SHEATHED E Number p	PROTOZOA (Identifiable) Number per ml.	PER LITER		COUNT LEVEL	GENUS	COUNT LEVE	CENUS	COUNT LEVE	SENUS	COUNT LEV	GENUS	COUNT LEY	PER LITER	CERUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	(Identifiable) Number per liter	OTHER ANIMAL
10 3 62 10 16 62 11 7 62 11 19 62 12 3 62 12 17 63 1 21 63 2 18 63 3 18 63 4 15 63 5 66 3 5 20 63 5 20 63 6 17 63 7 15 63 7 15 63 8 19 63 9 16 63	56 80 45 49 80 82 85 80 80 80 80 80 80 80 80 80 80 80 80 80	26 15 83 9 56 19 80 28 82 17 80 19 80 20 92 17 82 9 82 37 56 12 57 14	58 15 80 10 97 12 58 8 45 5 56 12 57 8 56 9 57 10 56 15 56 8 26 10 26 7 26 8	26 119 56 55 58 57 31 4 6 5 5 7 9 2 6 8 9 2 9 9 2 6 6 5 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	398 222 19 7: 2619 23 388 93 23 20 97 17	0 0 0 - - - - - - - - - - -	0000-000-	1 12 - 0 1 0 1 - 0 1 71	211111	1	2	2							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100						110100100001000300111000	

PLANKTON POPULATION

PLANKTON POPULATION

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

DELTA: LOUISIANA

54

DATE			Al	.GAE (Nu	mber pe	r milliliter,)			INE	RT		моѕ	T AE	UND	ANT	ALG	AE -	Gener	a and (Count	t Level per	ml. (S	See te	xt jor	Codes)	_
OF SAMPLE		BLUE-	GREEN	GREE	N.	FLAGEL (Pigme		DIATO	омѕ	DIAT	OM	1 st	2	Φ	3r	р	4тн	5	тн	6т	н	7тн	8т	н	9ті	н	10т	Ή
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	GENUS.	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS COUNT LEVEL	COUNT LEVEL
0 3 62 16 62 1 7 62 1 19 62 2 1 63 2 1 63 2 1 63 3 1 63 3 1 63 4 1 1 63 3 1 63 4 1 1 63 3 1 63 4 1 1 63 4 1 1 63 5 6 6 63 5 7 1 63 7 7 1 63 7 7 1 63 7 7 1 63 7 7 1 63 8 9 3 63 8 9 9 1 63	900 800 1700 1600 5700 2800 1100 5000 1600 200 200 200 200 200 2700 * 1	000000000000000000000000000000000000000	120 50 80 00 20 40 00 20 00 00 00 00 00 00 00 0	20 40 110 70 20 220 70 1130 810 840	000000000000000000000000000000000000000	40 40 380 110 0 20 20 20 20 330 20 50 50	70 00 00 110 170 00 00 00 00 00 00 00 00 00 00 00 00 0	1030 130 260 950 570 180 990 290 3120	110 130 90 130 360 20 70 110 200 200 220 420 420 420 240	420 150 150 950 240 2090 260 1550 1350 530	800 500 1800 1500 1100 1500 1500 1500 15	71 69 71 71 71 71 71 71 69	3 6 5 5 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9 1 1 2 9 1 5 1 9 1 1 8 1 1 8 1 1	51 29 44	2		2 6	3 1									

LOUISIANA

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

SOUTHWEST-LOWER MISSISSIPPI RIVER

MAJOR BASIN

STATE

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

DELTA, LOUISIANA

						,													
		OF S			-	E	XTRACTABI	LES						ORM EXTR	ACTABLES				
	GINN	ING	+-'	END		1							NEUTRALS	5			,		
MONTH	DAY	YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	Loss
11 12 3	3 4 21 3	62	11 12 3 5	15 10 11 29 11	4627 * 3280 3579 3645	84 117 126 166 154	28 33 - 44 71 45	56 84 - 82 95 109	0 1 - 1 4 2	6 8 - 12 18 13	14 16 - 15 21 15	22 - 1 3 1	_ 2		00-1111	33-586	1 1 3 6 4	1 1 1 1 1	3 3 7 13 4

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

DELTA, LOUISIANA

54

DATE OF SAMPLE	per 100 ml.
7 15 63 28 7 6 6 7 9 1 4 11 4 2 13 4 0 41 110 145 10 280 45 7 30 5 63 31 1 6 8 7 8 1 2 16 4 4 13 2 0 14 110 143 5 250 58 7 29	
8 19 63 25.6 6.8 8.4 1.4 13 4.8 16.2 .1 14 110 154 15 225 78 .0 29 3 63 9 16 63	_

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Vicksburg, Mississippi Operated by U.S. Geological Survey STATE

Louisiana

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Lower Mississippi-Yazoo Rivers

STATION LOCATION

Mississippi River at

Delta, Louisiana

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	276.000	268.000	340,000	340.000	294.000	296.000	1329.000	357,000	450.000	292.000	298,000	195,000
2	275.000	259.000	342.000	370.000	276,000	299.000	1320.000	370.000	450.000	288.000	295,000	194.000
3 4	274.000	253.000	349.000	391.000	260.000	306.000	1325.000	383.000	459.000	284.000	285,000	194.000
	277.000	251.000	354.000	408.000	244.000	326.000	1328.000	415.000	472.000	277.000	274.000	210.000
5	284.000	255.000	365.000	413.000	238.000	335.000	1331.000	455.000	475.000	271.000	268.000	215.000
6	286.000	255.000	379.000	416.000	237.000	344.000	1328.000	497.000	493.000	269.000	260.000	218.000
7	286.000	257.000	377.000	400.000	237.000	350.000	1326.000	535.000	466.000	271.000	256.000	212.000
8	286.000	255.000	342.000	389.000	248.000	359.000	1316.000	558.000	445.000	274.000	254.000	200,000
9	294.000	252.000	306.000	382.000	257.000	367.000	1295.000	565.000	427.000	275.000	252.000	193.000
LO	. 307.000	250.000	285.000	381.000	273.000	395.000	1277.000	557.000	416.000	274.000	254.000	192.000
1.	342.000	251.000	267.000	381.000	285,000	519.000	1255.000	534.000	397.000	267.000	257.000	194.000
2	342.000	252.000	260.000	379.000	306.000	650.000	1224.000	503.000	384.000	258.000	263.000	194.000
.3 .4	333.000	250.000	263.000	367.000	330.000	786.000	1170.000	467.000	369.000	254.000	266.000	193.000
	325.000	245.000	275.000	341.000	350,000	865.000	1110.000	440.000	359.000	249.000	264.000	191.000
.5	312.000	242.000	286.000	325.000	375.000	945.000	1050.000	414.000	362.000	248.000	258.000	190.000
.6	304.000	249.000	281.000	307.000	380.000	985.000	980.000	394.000	369,000	248,000	246.000	187.000
-7	295.000	265.000	269.000	293.000	384,000	1030.000	885.000	373.000	376.000	251.000	237.000	184.000
8	290.000	280.000	256.000	285.000	388.000	1067,000	800.000	364.000	385.000	249.000	234.000	185.000
9	287.000	301.000	248.000	290.000	390.000	1095.000	702.000	353.000	394.000	246.000	235.000	186.000
0	285.000	330.000	234.000	299.000	391.000	1137.000	630.000	341.000	396.000	248.000	228.000	188.000
1	287.000	350.000	227.000	316.000	388,000	1181.000	550.000	334.000	393,000	249.000	216.000	192.000
2	289.000	363.000	212.000	325.000	378.000	1215.000	480.000	343.000	392.000	250.000	206.000	190.000
3	293.000	373.000	205.000	338.000	370.000	1237.000	428.000	357.000	390.000	260,000	201.000	187.000
4	304.000	380.000	206.000	350.000	358.000	1253.000	390.000	374.000	381.000	268.000	198.000	187.000
5	320.000	380.000	210.000	367.000	343.000	1265.000	373.000	397.000	370.000	276.000	196.000	186.000
6	319.000	376.000	215.000	373.000	330.000	1274.000	359.000	430.000	355.000	284.000	199.000	185.000
7	307.000	368.000	227.000	372.000	317.000	1281.000	349.000	458.000	333.000	290.000	198.000	182.000
8	291.000	354.000	247.000	364.000	305.000	1293.000	341.000	464.000	306.000	295.000	197.000	
9	288.000	345.000	270.000	347.000		1300.000	341.000	467.000	300.000	298.000	197.000	180.000
0	283.000	339.000	290.000	329.000		1308.000	345.000	469.000	297.000	301.000		178.000
1.	279.000	•	305.000	310.000		1312.000	312.000	456.000	-51.000	300.000	196.000 196.000	176.000

MISSISSIPPI RIVER AT VICKSBURG, MISSISSIPPI

This sampling point is at the raw water intake of the city of Vicksburg, Mississippi. It is immediately below the mouth of the Yazoo River which drains northwestern Mississippi. During high spring flows, most of the water is from the Yazoo River, while during low flows, most of the water is from the Mississippi River.

There are no known significant industrial or municipal sources of pollution above the immediate vicinity of the station. The city of Vicksburg (population approximately 41,000) obtains its supply from the **river**. Most of the industries use city water and are located downstream from the station.

During August and September 1963, the chlorinated hydrocarbon insecticides, endrin and dieldrin, were detected in carbon filter samples from this station. (See page 86.)

Station Location:

Mississippi River at Vicksburg,

Mississippi

Major Basin:

Southwest-Lower Mississippi River

Minor Basin:

Lower Mississippi-Yazoo Rivers

Station at:

32°19' Latitude 90°54' Longitude

Miles above mouth:

431

Activation Date:

1957-1959; reactivated May 1961

Sampled by:

Vicksburg Water Department

Field Analysis by:

Vicksburg Water Department

Other Cooperating Agencies:

Mississippi State Board of Health

Hydrologic Data: Negrest pertinent

Near Vicksburg, Miss.

gaging station:

Gaging station operated by:

U.S. Geological Survey

Drainage area at

1,144,500 square miles

gaging station:

Period of record:

1928 to present

Average discharge in record period:

563,600 cfs.

Maximum discharge in record period:

2,080,000 cfs.

Minimum discharge in record period:

99,400 cfs.

Remarks:

ALKYL BENZENE SULFONATE (ABS)

Date

ELEMENTAL ANALYSES mg/1Analysis by wet or flame methods. Results in mg/1 Analysis by Spectrographic methods. Results in micrograms

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

STRONTIUM 90 ACTIVITY

Composite Interval

4/1/63

14

*2

*2

*2

32

*10

7

9

*1

*****10

5

*2

*2

*5

*5

*10

46 102

*.5

*.05

3.8

to 6/30/63

.30

10/1/62

to 12/31/62

23

Zn

Cd *3

Cυ

Ag

Ni

Co *5

Pb 19

lCr

٧

Ва

per

liter

3.4

9

56

49

105

138

*3

1.3

*.06

6

*3

*1

*3

94

213

*.5

.31

Composite Interval	pc/l	+	Composite Interval	pc/ì	+
October to December	2.0	.3	April to June	-	-
January to March	-	_	July to September	4.2	.4

[±] at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration* ug/l
8/5 - 8/15/63	Endrin	.020
8/5 - 8/15/63	Dieldrin	.005
9/9 - 9/18/63	Fndrin	.020
9/9 - 9/18/63	Dieldrin	.004

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values. See page 21.

MISSISSIPPI

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

VICKSBURG, MISSISSIPPI

DATE						RADIOACT	IVITY IN	WATER										
SAMPLE TAKEN	DATE OF DETERMI-			ALPHA						BETA					RADIOACTIV			
	NATION	SUSPEN		DISSOLVE		TOTAL		SUSPEND	ED	DISSOLVE	ED	TOTAL		DATE OF DETERMI- NATION			CTIVITY	
MO. DAY YR.	MO. DAY	pc/l	± .	pc/l	<u>+</u>	pc/l	±	pc/i	±	pc/l	T ±	pe/I	±		ALPH		BETA	
													 	MO. DAY	pc/g	<u> </u>	pc/g	. :
8 662222 8 6622225 1 5 2 662222 1 1 2 6 6622 2 2 5 6 6222 1 1 2 6 6622 2 2 1 1 1 2 6 6 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	11 13 11 21 11 17 11 29	15123113211334533242522354113511	4 2 1	110111300121110111000010111	111111111111111111111111111111111111111	26134226212545634352623454123622	1421111412322223121322221763164311	235188075141751598447955802488207514175123647955802488207515	87 12 88 88 11 8 14 13 15 10 45 17 8 4 12 9 5 14 15 12 14 13 11 11 11 11 11 11 11 11 11 11 11 11	13 16 71 20 17 17 24 22 23 29 32 23 29 23 24 24 24 25 36 37 37 37 47 47 47 47 47 47 47 47 47 47 47 47 47	88388793599595498499465888845445	15 79 42 438 35 314 35 35 35 35 35 35 35 35 35 35 35 35 35	1138 1211111127973371366111653657442017118987	MO. DAY	pc/g	*	pc/g	

RADIOACTIVITY DETERMINATIONS

PLANKTON POPULATION

STATE

MISSISSIPPI

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

VICKSBURG, MISSISSIPPI

		DO	MINAN	T SPE	TIFS O	F DIA	TOMS	AND								N	110	R	011	N V	ER	TI	EBR.	ATE	: 5						
DATE OF		PERCI	NT OF	TOTA	L DIAT	OM5 (See text f	or Codes		ERIA L	sle)				RO	DTI	FER	5	TIEVE	1		-		C R GEN	US	TAC	E A	LEVE	_	1	SM C
SAMPLE	1	ST	2	ND	31	RD	41	TH	ES	AND BACTE per ml.	tifial ml.								T LEVE							AND C	1		-		For
									SPECI	BA	lden per	NUM-	<u>1st</u>		2 _{NI}		3RI	_	4 _T	-	5т	_	NUM- BER	1 s1	_	2n		<u>3</u> R	1 2	7 56 ES	MAL
DAY YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SF PERCE	FUNGI SHEATHED J Number p	PROTOZOA (Identifiable) Number per ml.	BER PER LITER		COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	PER LITER	SENUS	COUNT LEVEL	GENUS	COUNT LEVEL	CERUS	COUNT LEVE	NEMATODES (Identifiable) Number per liter	OTHER ANIMAL FORMS (Number per liter)
10	26 97 86 87 86 88 88 88 87 55 56 88 87 55 56 56 56 56 56 56 56 56 56 56 56 56	157 30 66 33 37 7 7 7 7 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 6 5 8 5 8	13 23 6 24 12 9 12 20 14 28 11 12 19 32 15 8 13	20 82 80 56 66 45 56 82 22 56 26 58 26 26	11 15 6 10 6 8 20 11 11 9 21 8 5 11	56 58 8 8 8 9 8 2 5 7 5 6 6 6 8 8 0 7 1 2 6 5 7 7 2 6 5 7 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	11 14 5 7 4 5 6 5 11 8 8 8 6 3 7 3 7 7 3 4	47 50 18 17 24 24 23 24 45 16 22 28 18 24 15 22	-	-		11		177 2		17	1					-00 10 00 00 00 00 15 10 00 10 00	50	2	51	2	76	1		10000000100000011110000

PLANKTON POPULATION

STATE

MISSISSIPPI

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

VICKSBURG, MISSISSIPPI

DA'	TE				A	LĢAE (Nu	mber pe	r milliliter)			INE	DT			TZON	AB	UND	AN	T AL	GA	E - G	ener	a and	Coun	t Lev-	el per	ml. (See to	ext for	Code	n)	
SAMI	F	E		BLUE-	GREEN	GREE	N.	FLAGEL (Pigme		TAIG	омѕ	DIAT	OM	15	1	2n	\neg	3R	ī	4ті	-	5т	i	6т		71	<u> </u>	81		9т	- -	_	Этн
моитн		YEAR	OTAL.	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL		COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS .	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL
10		22 22 22 23 33 33 33 33 33 33 33 33 33 3	600 1200 1300 4300 1400 2700 3600 1700 2600 2400 2400 2400 2400 2000 1700 *	0000000000 I 0000	0 0 30 40 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	120 180 250 240 0 0 110 0 400 400 400 420	000000000000000000000000000000000000000	90 120 30 270 120 20 210 40 40 130 20 40 130 70 40 250	50 0 0 0 0 40 0 0 110 290 40 0 270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	320 520 810 2990 1380 2650 1390 1070 1100 400 400 370 370 370 370 370 0	40 70 440 90 130	230 210 810 910 380 1120 620 590 130 6420 1220 1750 260 500	80 170 400 160 240 250 0 110 340 130 250 180 230 40 70 40	71 71 71 71 71 71 71 71 71 71 71 71 71 7	2434343343 13113 143	65 68	2 3 1 2 2 2 3 2 1 1 2	92 68 92 65	1 1 1	68 51 69	1	82	1										

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

MISSISSIPPI

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

VICKSBURG, MISSISSIPPI

BEGINNING END	-	E/	XTRACTABL	_ES	ļ				CHLOROF	ORM EXTR	ACTABLES				
MONTH DAY YEAR	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
10 12 62 10 2 11 12 62 11 12 12 7 62 12 1 1 7 63 2 13 63 2 2 3 13 63 3 2 2 4 8 63 4 1 5 7 63 6 1 7 8 63 7 1 8 5 63 8 1 9 9 63 9 1	1 5400# 5000# 5000# 5400# 5400# 5400# 5400# 5400# 5400# 5400# 5400#	111 142 131 143 96 79 90 107 60 86	146 35 35 35 37 40 226 13 ED	65 85 107 97 93 77 52 64 67 38 50 35	011 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	4669-100-6-111-100-	6 11 14 - 19 - 10 - 11 - 9 -	1 1 3 - 2 - 2 - 1 - 1	1 1 2 - 2 - 1 - 1 - 1 - 1 - 1	4 8 9 - 15 - 6 - 8 - 7	010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	234-7-3-6-4-	1 1 3 4 - 3 - 4 - 4 4 1	0 1 1 - 1 - 1 - 3 3	1 3 3 7 7 3 5 7 4 7

MISSISSIPPI

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

VICKSBURG, MISSISSIPPI

21

	DATE SAMP	IF	темр.	DISSOLVED				CHLORINE	DEMAND										
MONTH			(Degrees Centigrade)	OXYGEN mg/l	рH	B.O.D. mg/i	C.O.D. mg/l	T-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/i	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10		62 62	22.5	-	8 • 2	~	-	_	-	-	-	80	124	_	240	_	_		
10		62	22.0		8 • 1 8 • 2	_	-	-	-	~	-	114	140	-	250		-	_	_
		62	21.0	_	8.0	_	-	_	-	-	•	86	120	-	300	-	-	-	_
		62	19.0	-	7.8				_	_	1 1	114	128	-	160	-	-	-	-
11	5	62	16.0	-	7.9	-	_		_	_	_	90 96	126 128	-	160	-	-	-	_
		62	13.0	-	8.0	-	-	_	-	_	_	116	160	_	160	-	-	-	-
		52	13.0	-	8 • 0	-	_	_		-	-	124	168	_	220 160	_	_	-	_
		52	12.0	-	7•9	-	-	-	-	-	_	60	160	~	200	_	_	_	_
12	3 0	52	13.0		7.9	-	-	-	-	-	-	80	150	_	130		-		_
		52	7.0	_	7•8 8•0	_	_	-	-	-	-	112	140	-	150			_	_
		52	8.0	_	8.0	_	_	_	-	-	-	130	148	-	110	-	-	-	-
		52	7.0	_	8 • 0		_	_	_	_	-	140	150	-	140	-	-		-
1		53	7.0	-	7.9	-	_	_		_	_	130	156 132	_	120	-	-	-	-
1 :		53	6.0	-	8.0	_	-	_	_	_		100	120	_	160 160	-	-	-	-
		53	4.0	-	8 • 1	-	-	-	-	-	-	96	132	_	140	_	_ [_	_
		53	3 • 0	-	8 • 1	-	-	-	-	_	_	76	130	_	160	-	[_
2		53	4.0	-	8 • 0	-	-	-	-	-		100	130		140	_	_		_
		53	5 • 0	-	8 • 2	-	-	-	-	-	-	80	140	-	120		-	_	_
		33	4 • 0 6 • 0	_	8 • 0 7 • 9	-	-	-	-	-	-	80	130	-	120	-	-	-	_
3		33	8.0	_	8.0	-	_	-	-1	-	-	90	130	-	180	-	-	-	-
		3	11.0	_ [8.0	_	_	-	_	-	-	80	120	-	140	-	-	-	_
		3	11.0	-	7.8	_	_	_		_ [-	80	110	-	700	-	-	-	-
	25 6	3	12.0	-	7.9	_	_	_			-	80	80	-	800	-	- [-	_
4	1 6		13.0	-	7.6	_	_		[_	80 80	90 86	-	350		~	-	-
4			14.0	-	7 • 8	_	-	_	-	-		60	96	_	320 240	-	-	-	_
			17.0	-	7•7	-	-	-	-			90	110	_	160	_	-	-	-
			19.0	-	7.9	-	-	-	-	-	- 1	90	114	- 1	240		_		_
		- 1	20.0	-	8.0	-	-	-	-		-	120	148	-	160	-	_	_	
5 5 1			21.0	=	7•9 8•0	_	-	-	-	-	-	106	128	-	350	_	-	- 1	_
			25.0	- 1	8.0	_		~	-	-		80	100	-	250	-	-	-	-
			23.0	-	7.9	_		_	_	_	-	130	140	-	350	-		-	-
6		- 1	23.0	_	7.7	_	_	_	- 1		-	120	160	-	350	~	-	- 1	-
			26.0		7.7	_	_	-	-	=	_	116	144 128	-	450	~	-	-	-
- [-		3	28.0	-	8.0	-	_ [-	-1	_		120	120	_	200		~	-	-
6 2	4 6	3	28.0	-	7.6	-	-	-	-	_	_	132	140	_ [120			-	-
												ے ر د	140		200	-	-	-	-

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MISSISSIPPI

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-YAZOO RIVERS

STATION LOCATION MISSISSIPPI RIVER AT

VICKSBURG, MISSISSIPPI

21

DATE			<u> </u>				CHLORINE	DEMAND								1		
OF SAMPI	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/I	pH	B,O.D. mg/l	C,O,D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/I	ALKALINITY mg/l		COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
7 15 7 21 7 29 8 5 8 12 8 19 8 26 9 3 9 9 16 6	633333333333333333333333333333333333333	27.0 29.0 28.0 28.0 29.0 318.0 29.0 28.0 24.0		7.8 7.8 7.8 7.8 7.8 7.6 7.8 7.8 7.8 8.0 7.8 8.0							106 122 138 112 104 122 120 126 130 90 120 120	124 138 122 112 116 132 150 120 120		3550 3550 2300 1500 1000 1100 1180				

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Vicksburg, Mississippi Operated by U.S. Geological Survey STATE

Mississippi

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Lower Mississippi-Yazoo Rivers

STATION LOCATION

Mississippi River at

Vicksburg, Mississippi

October	November	December	January	February	March	April	May	June	July	August	September
276.000	268.000	340.000	340.000	294.000	296.000	1329,000	357 000):50 coo	200.000	000 000	105.000
		342.000	370.000	276,000							195.000
			391.000	260.000	306.000						194.000 194.000
			408.000	244.000	326.000						210.000
284.000	255.000	365.000	413.000	238.000	335.000	1331.000	455.000	475.000	271.000	268.000	215.000
286.000	255.000	379.000	416.000	237.000	344.000	1328,000	497-000	703.000	260 mm	260,000	218.000
				237.000	350.000	1326,000	535,000				212.000
				248.000	359.000						200.000
				257.000	367.000						193.000
307.000	250,000	285.000	381.000	273.000	395.000	1277.000	557.000	416.000	274.000	254.000	192.000
342.000	251.000	267.000	381.000	285.000	519.000	1255.000	534,000	397,000	267.000	257 000	194.000
				306.000	650.000	1224.000					194.000
				330.000	786.000	1170.000					193.000
				350.000	865.000	1110.000					191.000
312.000	242.000	286.000	325.000	375.000	945.000	1050.000	414.000	362.000	248.000	258.000	190.000
304.000	249.000	281.000	307.000	380.000	985.000	980.000	394,000	369,000	8h8.000	alı6 mm	187.000
					1030.000	885.000					184.000
				388.000	1067.000	800.000	364.000				185.000
				390.000	1095.000	702.000	353.000				186.000
285.000	330.000	234.000	299.000	391.000	1137.000	630.000	341.000	396.000	248.000	228.000	188.000
287.000	350.000	227.000	316.000	388.000	1181.000	550,000	334.000	393,000	Sp6-000	216 000	192.000
				378.000	1215.000	480.000					190.000
				370.000	1237.000	428.000	357.000				187.000
					1253.000	390.000	374.000				187.000
320.000	380.000	210.000	367.000	343.000	1265.000	373.000	397.000	370.000	276.000	196.000	186.000
319.000	376.000	215.000	373.000	330.000	1274.000	359.000	430,000	355,000	284,000	199,000	185.000
				317.000	1281.000	349.000	458.000				182.000
				305.000	1293.000	341.000	464.000	306.000			180.000
					1300.000	341.000	467.000	300.000			178.000
	339.000		-		1308.000	345.000	469.000	297.000	301,000		176.000
279.000		305.000	310.000		1312.000		456.000		300.000	196.000	_,0.00
	276.000 275.000 277.000 284.000 286.000 286.000 286.000 294.000 307.000 342.000 342.000 342.000 325.000 295.000 287.000 287.000 287.000 289.000 287.000 289.000 293.000 304.000 304.000 304.000 304.000	276.000 268.000 275.000 259.000 274.000 253.000 277.000 251.000 284.000 255.000 286.000 255.000 286.000 257.000 286.000 257.000 342.000 252.000 342.000 252.000 333.000 250.000 342.000 245.000 325.000 245.000 304.000 249.000 295.000 280.000 295.000 330.000 287.000 350.000 287.000 363.000 289.000 363.000 289.000 363.000 287.000 376.000 304.000 376.000 319.000 376.000 319.000 376.000 320.000 385.000 281.000 376.000 321.000 354.000 320.000 354.000 320.000 354.000 320.000 354.000 339.000 354.000 288.000 354.000 288.000 354.000 288.000 354.000 288.000 354.000 288.000 354.000	276.000 268.000 340.000 275.000 259.000 342.000 274.000 253.000 349.000 277.000 251.000 354.000 284.000 255.000 379.000 286.000 257.000 377.000 286.000 257.000 342.000 294.000 257.000 342.000 294.000 252.000 366.000 307.000 250.000 285.000 342.000 251.000 267.000 342.000 252.000 260.000 333.000 250.000 263.000 325.000 245.000 275.000 304.000 249.000 281.000 295.000 265.000 269.000 295.000 265.000 269.000 290.000 280.000 256.000 287.000 301.000 248.000 287.000 350.000 234.000 287.000 350.000 227.000 289.000 363.000 212.000 289.000 363.000 212.000 304.000 376.000 215.000 319.000 376.000 215.000 319.000 376.000 215.000 319.000 376.000 215.000 319.000 376.000 215.000 319.000 376.000 215.000 319.000 376.000 215.000 319.000 376.000 215.000 288.000 345.000 247.000 288.000 345.000 270.000 288.000 345.000 270.000 288.000 345.000 270.000 288.000 345.000 270.000	276.000 268.000 340.000 340.000 275.000 259.000 342.000 370.000 274.000 253.000 349.000 391.000 284.000 251.000 354.000 408.000 284.000 255.000 365.000 413.000 286.000 257.000 377.000 400.000 286.000 257.000 377.000 400.000 286.000 255.000 342.000 389.000 294.000 252.000 366.000 382.000 307.000 250.000 285.000 381.000 342.000 252.000 260.000 379.000 342.000 252.000 260.000 379.000 342.000 252.000 260.000 379.000 333.000 250.000 263.000 367.000 325.000 245.000 275.000 341.000 394.000 249.000 281.000 393.000 295.000 265.000 269.000 293.000 295.000 360.000 256.000 285.000 287.000	276.000 268.000 340.000 340.000 294.000 275.000 259.000 342.000 370.000 276.000 274.000 253.000 349.000 391.000 260.000 277.000 251.000 354.000 408.000 214.000 284.000 255.000 377.000 416.000 237.000 286.000 257.000 377.000 400.000 237.000 286.000 257.000 377.000 400.000 237.000 286.000 257.000 377.000 400.000 237.000 286.000 257.000 342.000 389.000 248.000 294.000 252.000 306.000 381.000 273.000 342.000 251.000 267.000 381.000 285.000 342.000 252.000 260.000 379.000 306.000 342.000 251.000 267.000 381.000 285.000 342.000 252.000 260.000 379.000 306.000 333.000 250.000 263.000 367.000 380.000 394.0	276.000 268.000 340.000 340.000 294.000 296.000 275.000 259.000 342.000 370.000 276.000 299.000 274.000 253.000 349.000 391.000 260.000 306.000 277.000 251.000 354.000 408.000 244.000 326.000 284.000 255.000 379.000 416.000 237.000 344.000 286.000 257.000 377.000 400.000 237.000 350.000 286.000 257.000 377.000 400.000 237.000 350.000 286.000 257.000 377.000 400.000 237.000 350.000 286.000 257.000 377.000 400.000 237.000 350.000 286.000 252.000 366.000 382.000 257.000 367.000 342.000 251.000 267.000 381.000 273.000 395.000 342.000 252.000 260.000 379.000 366.000 519.000 342.000 251.000 267.000 381.000 375.000 366.000	276.000 268.000 3\(\text{images} \) 3\(\text{images} \) 3\(\text{images} \) 275.000 259.000 3\(\text{images} \) 3\(\text{images} \) 276.000 259.000 3\(\text{images} \) 3\(\text{images} \) 000 27\(\text{images} \) 000 25\(\text{images} \) 000 3\(\text{images} \) 000 2\(\text{images} \) 000 25\(\text{images} \) 000 3\(\text{images} \) 000 2\(\text{images} \) 000 3\(\text{images} \) 000 2\(\text{images} \) 000 3\(\text{images} \) 000 2\(\text{images} \) 000 3\(\text{images} \) 000 2\(\text{images} \) 000 3\(\text{images} \) 000 2\(\text{images} \) 000 3\(\text{images} \) 000 2\(\text{images} \) 000 3\(\text{images} \) 000 2\(\text{images} \) 000 3\(\text{images} \) 000 2\(\text{images} \) 000 3\(\text{images} \) 000 2\(\text{images} \) 000 2\(\text{images} \) 000 3\(\text{images} \) 000 2\(\text{images} \) 000 3\(\text{images} \) 000 2\(\text{images} \	276.000 268.000 340.000 340.000 294.000 296.000 1329.000 357.000 275.000 259.000 342.000 370.000 276.000 299.000 1320.000 370.000 277.000 253.000 349.000 399.000 266.000 366.000 1326.000 370.000 277.000 251.000 354.000 4406.000 2444.000 3266.000 1328.000 415.000 485.000 2544.000 255.000 365.000 413.000 238.000 335.000 1331.000 455.000 3844.000 255.000 377.000 4416.000 237.000 335.000 1331.000 455.000 386.000 257.000 377.000 4406.000 237.000 350.000 1326.000 535.000 2866.000 255.000 347.000 389.000 248.000 359.000 1326.000 535.000 2944.000 252.000 366.000 389.000 248.000 359.000 1326.000 535.000 2944.000 252.000 366.000 382.000 257.000 367.000 1295.000 565.000 342.000 250.000 265.000 381.000 273.000 395.000 1277.000 557.000 342.000 252.000 265.000 379.000 306.000 519.000 1255.000 534.000 342.000 252.000 265.000 379.000 306.000 650.000 1224.000 503.000 3333.000 250.000 265.000 379.000 306.000 650.000 1224.000 503.000 325.000 245.000 275.000 341.000 350.000 865.000 1170.000 467.000 325.000 245.000 265.000 375.000 384.000 365.000 1170.000 467.000 325.000 245.000 265.000 375.000 384.000 365.000 1050.000 440.000 295.000 265.000 265.000 385.000 384.000 365.000 1050.000 440.000 295.000 265.000 265.000 285.000 375.000 384.000 1050.000 440.000 312.000 249.000 256.000 265.000 385.000 384.000 1030.000 865.000 373.000 295.000 265.000 265.000 265.000 385.000 375.000 365.000 1050.000 440.000 285.000 373.000 380.000 1095.000 1050.000 440.000 385.000 373.000 384.000 373.	276.000 268.000 340.000 340.000 294.000 296.000 1329.000 357.000 450.000 275.000 259.000 342.000 370.000 260.000 1320.000 370.000 450.000 277.000 251.000 354.000 391.000 260.000 366.000 1320.000 363.000 459.000 284.000 255.000 365.000 413.000 238.000 335.000 1331.000 455.000 475.000 284.000 255.000 365.000 413.000 238.000 335.000 1331.000 455.000 475.000 286.000 1326.000 1326.000 415.000 475.000 286.000 1326.000 1326.000 415.000 475.000 286.000 1326.000 1326.000 1326.000 415.000 475.000 286.000 257.000 377.000 400.000 237.000 350.000 1326.000 555.000 466.000 286.000 2555.000 342.000 389.000 248.000 359.000 1316.000 555.000 466.000 294.000 255.000 366.000 382.000 257.000 367.000 1295.000 565.000 427.000 307.000 250.000 285.000 381.000 273.000 395.000 1277.000 557.000 416.000 333.000 250.000 250.000 263.000 367.000 330.000 786.000 1170.000 467.000 369.000 312.000 242.000 286.000 379.000 366.000 355.000 1277.000 557.000 416.000 359.000 312.000 242.000 286.000 379.000 367.000 366.000 1170.000 467.000 369.000 312.000 242.000 286.000 379.000 366.000 650.000 1170.000 467.000 369.000 325.000 242.000 286.000 325.000 375.000 345.000 1170.000 467.000 369.000 312.000 242.000 286.000 325.000 375.000 385.000 1370.000 369.000 312.000 242.000 286.000 325.000 375.000 385.000 1170.000 467.000 359.000 312.000 242.000 286.000 325.000 380.000 985.000 100.000 374.000 359.000 312.000 242.000 286.000 285.000 385.000 375.000 385.000 385.000 373.000 385.000 373.000 385.000 385.000 373.000 385.000 373.000 385.000 373.000 385.000 373.000 385.000 373.000 385.000 373.000 385.000 373.000 374.000 385.000 373.000 374.000 385.000 373.000 374.000 385.000 373.000 374.000 385.000 373.000 374.000 375.00	276.000 268.000 340.000 340.000 294.000 296.000 1329.000 357.000 450.000 292.000 277.000 259.000 349.000 370.000 276.000 299.000 1320.000 370.000 450.000 288.000 277.000 253.000 349.000 351.000 260.000 360.000 1325.000 380.000 472.000 281.000 277.000 255.000 354.000 408.000 2444.000 326.000 1328.000 445.000 477.000 277.000 284.000 277.000 255.000 365.000 413.000 277.000 277.000 286.000 1328.000 445.000 277.000 286.000 277.000 377.000 400.000 277.000 350.000 1328.000 477.000 477.000 277.000 286.000 277.000 377.000 400.000 277.000 350.000 1326.000 575.000 475.000 277.000 286.000 257.000 377.000 400.000 277.000 350.000 1326.000 575.000 475.000 277.000 286.000 257.000 377.000 350.000 1326.000 575.000 445.000 271.000 286.000 252.000 360.000 360.000 257.000 367.000 1205.000 555.000 445.000 271.000 274.000 274.000 275.000 377.000 250.000 285.000 382.000 257.000 367.000 1205.000 555.000 445.000 274.000 275.000 377.000 250.000 285.000 381.000 273.000 397.000 1205.000 557.000 445.000 274.000 275.000 382.000 250.000 285.000 381.000 273.000 395.000 1205.000 557.000 445.000 274.000 275.000 382.000 250.000 265.000 379.000 306.000 650.000 1224.000 557.000 384.000 258.000 333.000 250.000 265.000 379.000 306.000 650.000 1224.000 557.000 384.000 258.000 325.000 379.000 360.000 650.000 1124.000 557.000 384.000 258.000 325.000 275.000 384.000 350.000 865.000 1110.000 440.000 359.000 248.000 255.000 265.000 265.000 375.000 381.000 375.000 385.000 11724.000 360.000 384.000 288.000 288.000 286.000 325.000 375.000 380.000 985.000 11724.000 360.000 386.000 286.000 286.000 325.000 375.000 380.000 985.000 11724.000 360.000 386.000 286.000 325.000 375.000 380.00	276.000 269.000 340.000 340.000 294.000 296.000 1329.000 370.000 450.000 286.000 295.000 277.000 253.000 349.000 391.000 266.000 306.000 1329.000 370.000 450.000 286.000 285.000 277.000 253.000 349.000 391.000 260.000 366.000 1325.000 450.000 286.000 285.000 277.000 255.000 365.000 413.000 244.000 326.000 1326.000 433.000 450.000 284.000 285.000 277.000 27

MISSISSIPPI RIVER AT WEST MEMPHIS, ARKANSAS

This station is located on the west shore of the Mississippi River. Samples are collected from the floating dock of Oklahoma-Mississippi River Products Company.

During August and September 1963, the chlorinated hydrocarbon insecticides, endrin and dieldrin, were detected in samples from this station. (See page 96.)

Raw sewage from a connected population of 19,400 is discharged within a half mile upstream by West Memphis, Arkansas. Across the river, Memphis, Tennessee discharges raw sewage from a population of 475,500 through four outfalls, of which three are upstream and one is downstream. A rising trend in coliform densities over a six-year period of record has been observed at this station.

MEDIAN	COLIFORM	BACTERIA/100 m	1.

Water Year	<u>1958</u>	1959	1960	1961	1962	1963
Autumn		19,000	13,000	16,000	23,000	38,000
Winter	-	8,600	3,800	4,400	12,000	12,000
Spring	6,500	13,000	18,000	23,000	38,000	43,000
Summer	11,000	25,000	25,000	28,000	48,000	30,000

Station Location:		ALKYL BEN SULFONAT	
	a durat Laura Masissippi Divay	Date	mg/1
Major Basin:	Southwest-Lower Mississippi River	3-4-63 3-10-63	0.10 0.11
Minor Basin:	Lower Mississippi-Cairo to Helena	4-22-63 4-29-63	0.06 0.07
Station at:	35°07' Latitude 90°10' Longitude	5-6-63 5-13-63 5-20-63	0.06 0.06 0.06
Miles above mouth:	725	5-27-63	0.08
Activation Date:	January 1958	6-3-63 6-10-63 6-17-63 6-24-63	0.07 0.05 0.04 0.08
Sampled by:	Memphis (Tonnessee) Light, Gas and Water Division	7-1-63	0.08
Field Analysis by:	Memphis (Tonnessee) Light, Gas and Water Division	7-8-63 7-15-63 7-22-63 7-29-63	0.05 0.05 0.07 0.07
Other Cooperating Agencies:	Arkansas State Board of Health Tennessee Department of Public Health	8-5-63 8-12-63	0.07
Hydrologic Data:		8-19-63 8-25-63	0.05
Nearest pertinent gaging station:	At Memphis, Tennessee	9-3-63 9-9-63	0.08
Gaging station operated by:	U.S. Geological Survey	9-23-63 9-30-63	0.09 0.11
Drainage area at gaging station:	932,800 square miles		
Period of record:	1933 to present		
Average discharge in record period:	460,800 cfs.		
Maximum discharge in	record period: 1,980,000 cfs.		
Minimum discharge in	record period: 79,200 cfs.	L	<u> </u>

ABS)

ELEMENTAL ANALYSES					
	Composite Interval				
Ì		10/1/62	4/1/63		
		to 12/31/62	6/30/63		
Analysis by	F	. 23	.30		
wet or flame methods.	Na	23	14		
Results in mg/1	κ	3.8	3.7		
	Zn	7	6		
	Ċа	*2	*3		
	As	*24	*25		
Analysis	В	38	42		
by	P·	*12	45		
Spectro-	Fe	19	42		
graphic	Мо	19	14		
methods.	Mn	•6	*1.5		
Results	ΑI	-	36		
	Ве	*.06	*.08		
in	Cu	2	5		
micrograms	Ag	*.5	*.8		
per	Ni	*1	*3		
liter	Co	*5	*3		
	РЬ	12	*8		
	Cr	*1	*8		
	٧	*2	15		
	Ва	79	53		
l	Sr	92	132		

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+	Composite Interval	pc/1	+
October to December	2.0	.3	April to June	3.6	.4
January to March	-	_	July to September	-	

[±] at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration*
8/13 - 8/20/63	Endrin	.019
8/13 - 8/20/63	Dieldrin	.002
9/3 - 9/9/63	Endrin	.026
9/3 - 9/9/63	Dieldrin	.015

*Concentration values, where shown, are calculated from quantitative gas chroma-tographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values. See page 21.

Remarks:

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

STATION LOCATION MISSISSIPPI RIVER AT

WEST MEMPHIS, ARKANSAS

22

DATE						RADIOACTI	VITY IN	WATER							RADIOACTIVI	TY IN PLA	NKTON	
SAMPLE	DATE OF DETERMI-			ALPHA				1		BETA				DATE OF		GROSS A		
TAKEN	NATION	SUSPEND	ED	DISSOLVE	D	TOTAL		SUSPEND	ED	DISSOLVI	ED	TOTAL		DATE OF DETERMI- NATION	ALPHA	`	BETA	
MO. DAY YR.	MO. DAY	pc/l	土	pc/l	±	pe/l	土	pe/l	±	pc/l	±	pc/l	±	MO. DAY	pc/g	±	pc/g	±
	10 25 11 8 11 8 11 13 11 23 12 21* 1 16* 3 18* 4 17* 5 20* 6 13* 7 3* 8 16* 9 23*	0 1 2 1 6 1 3 2 1 1 0	- 3 - 2 1 2 2 3 1 6 2 1 1 1 1		1 1 1 1 2 2 2	0 - 2 1 2 1 2 3 3 2 2 3 2	1131131223262122	11 32 35 107 98 56 9 19 39 82 27 142 47 24 3 4	7 44 357 7 32 7 9 5 3 4 4 6 7 6 1 6 8 3 4 4	23 99 37 36 18 28 10 22 20 36 39 32 35 32 7	8390699948499946	34 41 72 143 116 84 27 29 61 102 63 181 79 59 36 31	11 36 36 20 9 31 11 6 15 68 13 12 5 7		he's B		pe/ 9	4

RADIOACTIVITY DETERMINATIONS

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

STATION LOCATION MISSISSIPPI RIVER AT

WEST MEMPHIS. ARKANSAS

022

				T CRE	CIES 0	E DIA	томѕ	AND		ı							4 1 C	R	01.0	ı v	ER	T E	BR.	АТЕ	E 5						
DATE	F	ERCE	NT OF	TOTA	L DIA	OMS I	See text	jor Code	,	I AND BACTERIA per ml.	bles				R (OT I	FER	S	T LEVEL			-	1	CR	US	TAC	EA	T LEVE			S .
SAMPLE	1	5T	2	ND	3	RD	4	TH	ES	50.4	ıtifia ml.		-	- 1					T LEVEL		E	\dashv						it LEVE			FORMS liter)
				İ				į	ENT	P BA	Iden Per	NUM- BER	15	_	_2 _N	-	<u>3</u> R	-	<u>4T</u>		<u>5тн</u>	=	NUM- BER	1 s		21	ID .	3 _R	<u>P</u>	E E	Per
MONTH DAY YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SPECIF	FUNGI SHEATHED E Number p	PROTOZOA (Identifiable) Number per ml.	PER LITER	GENUS	COUNT LEVEL	SERUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVE	PER LITER	SEXUS	COUNT LEVE	GENUS	COUNT LEVE	GENUS	COUNT LEVEL	NEMATODES (Identifiable) Number per liter	OTHER ANIMAL !
10	20 56 82 82 82 82 82 82 82 82 82 82 82 82 82	23 34 38 31 37 56 65 68 24 51 22 7 22 7 35 7 35 7 35 7 35 7 35 7 35 7	82 56 82 80 9	22 17 21 14 13 8 6 25 21 21 11 18 6 3	80 82 58 58 97 97 92 85 85 61 56 56 57 56 82 82 82 83 84 85 85 85 85 85 85 85 85 85 85 85 85 85	14 13 16 14 13 5 8 5 11 14 8 7 10 3 19 10 17 3	58 56 71 1 56 80 82 2 7 92 2 7 92 3 50 8 8 2 8 2 7 92 8 8 2 8 2 8 8 2 8 8 2 8 8 8 8 8 8 8	1088310454113365269	42 31 28 15 25 19 21 19 21 15 38 13 19 20 27 12 22 43 4 17	70		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	111 2 22 11	5	22 11	5							1000010000011001307010	76	1					000010000000000000000	000000-00000000000000000000000000000000

PLANKTON POPULATION

PLANKTON POPULATION

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

STATION LOCATION MISSISSIPPI RIVER AT

WEST MEMPHIS, ARKANSAS

DATE		·········	A	LGAE (Nu	mber pe	r milliliter	.)			INE	PT		M	10ST	ABI	JNDA	NT A	LGA	E - (ener	and	Coun	t Lével	per i	ml. (See	text fo	or Code	es)
OF SAMPLE		BLUE-	GREEN	GREE	EN	FLAGEL (Pigme	LATED ented)	DIAT	oms	DIAT	МО	1s	ī	2 _N	T	3rd	Τ.	TH	5 1	1	6т		7т	1	8тн	T :	тн	1 Отн
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE		COUNT LEVEL	GENUS	COUNT LEVEL	GENUS		COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL	GENUS COUNT LEVEL		COUNT LEVEL	GENUS COUNT LEVEL
10	500 600 1200 900 1700 5100 3300 3000 4000 1400 1700 1600 2200 2900 2900 2900 1900	0 0 50 0	0 10 0 50 20 0 0 110 0 0 29 0 0 20 0 20 0 0 0 0 0 0 0 0 0 0	0 100 180 20 90 220 30 20 110 290 440 370 550 390 330 5410	000000000000000000000000000000000000000	0 20 70 9 160 30 130 210 150 40 80 70 110	0 0 0 0 0 0 0 0 0 190 0 0 190 0 0 0 0 0	270 350 520 620 1260 920 3080 2460 1910 2770 1230 950 310 1080 1870 930 620	230 140 450 90 200 170 110 200 800 130 130 190 680 430 560	320 310 900 1880 2950 340 770 880 420 2810 2810 2810 550 370 90	140 410 160 200 480 20 220 220 480 670 350 240 740 70 480	71 69 71 71 71 71 71 71 71 71 71 71 71 69 69	212435544535132 233	69 69 69 69 69 69 71 71 68 68 38	24 !! 21 22 2 2 2 2 2 2 1	59 2 58 1 17 1 92 2 24 1	77 38	1	68	1								

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

....

STATION LOCATION MISSISSIPPI RIVER AT

WEST MEMPHIS, ARKANSAS

22

													ORM EXTR.	ACTABLES				
DATE	OF SA				E	TRACTABL	.ES					NEUTRALS		CIVETES				
BEGIZK YAG	YEAR	HTNOM	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDȘ	STRONG ACIDS	BASES	Loss
10 9 8 13	62 63 63	10 8 9	16 20 9 14	2460# 2080 4488	96 196 217 146 ESTIMAT	15 57 68 50	81 139 149 96	0 1 2 1	3 17 22 12	8 18 20 17	1 2 1	1 2 2 2 2 2	6 14 15	01111	2 5 8 8	1454	0 1 1 1 1	1 11 10 7

ORGANIC CHEMICALS
RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

STATION LOCATION MISSISSIPPI RIVER AT

WEST MEMPHIS, ARKANSAS

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER MISSISSIPPI-CAIRO TO HELENA

STATION LOCATION MISSISSIPPI RIVER AT

WEST MEMPHIS, ARKANSAS

22

	DATE SAM		TEMP.	DISSOLVED				CHLORINE	DEMAND										
MONTH	DAY	YEAR	(Degrees Centigrade)	OXYGEN	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
8 9 9	19 25 39 16 30 12 30	63 63 63 63	28.2 26.8 29.2 27.0 23.9 24.0 21.3	6.7 6.4 7.3 7.0 7.3 8.0 7.7	8.1 8.0 7.9 8.0 8.0 8.0	1.2 .5 .5 .6 .6 .8	15 13 25 9 41 10 6	2.1 2.0 - 2.7 2.9 - 1.8	18 - 9 8 8 6 8 4 • 8	•11 •00 •00 •00 •00 •00	15 16 17 18 19	103 108 95 110 108 118 116	152 162 155 172 163 164 172	17 14 12 11 11 17 11	100 110 65 60 35 100 45	577 633 699 699 711 76 77	• 4 • 3 • 2 • 1 • 1	256 264 254 284 290 288 298	10000 22000

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Memphis, Tennessee Operated by U.S. Geological Survey STATE

Arkansas

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Lower Mississippi-Cairo to Helena

STATION LOCATION

Mississippi River at

West Memphis, Arkansas

												
Day 	October	November	December	January	February	March	April	May	June	July	August	September
1	202.000	217.000	308.000	363.000	195.000	265,000	1266.000	340.000	434.000	224.000	221.000	178.000
2	209.000	215.000	319.000	363.000	188.000	273.000	1251.000	358.000	429.000	217.000	209.000	185.000
3	215.000	206.000	319.000	349.000	186.000	269.000	1232,000	404.000	411.000	213.000	208.000	181.000
4	217.000	208.000	299.000	333.000	183.000	256.000	1213.000	461.000	397.000	221.000	208.000	171.000
5	221.000	213.000	252.000	322.000	181.000	260.000	1184.000	492.000	385.000	232.000	202.000	161.000
6	236.000	217.000	211.000	319.000	186.000	273.000	11.60.000	489.000	363.000	236.000	200,000	158.000
7	254.000	221.000	197.000	322.000	209.000	315.000	1128.000	461.000	333.000	230.000	206.000	159.000
8	262.000	226.000	193.000	322.000	236.000	424.000	1086.000	432.000	306.000	222,000	209.000	163.000
9	265.000	228.000	199.000	310.000	262.000	603.000	1033.000	406.000	291.000	215.000	213.000	164.000
.0	260.000	213.000	208,000	291.000	284.000	755-000	971.000	387.000	282.000	204.000	215.000	156.000
ı	252.000	195.000	217.000	254.000	304.000	861.000	884.000	363.000	286.000	195.000	209.000	148.000
2	248.000	193.000	221.000	219.000	317.000	923.000	789.000	340.000	302.000	195.000	199.000	146.000
3 4	238.000	202.000	219.000	209.000	326.000	959.000	695.000	326,000	324.000	193.000	199.000	151.000
	224.000	224.000	21,3.000	213.000	328.000	987.000	615.000	317.000	342.000	188.000	200.000	154.000
.5	222.000	254.000	204.000	219.000	328.000	1004.000	552.000	306.000	354.000	181.000	206.000	156.000
.6	232.000	275.000	188.000	232,000	324,000	1029.000	503.000	295,000	363.000	181,000	208,000	159.000
-7	236.000	297.000	173.000	250.000	322.000	1060.000	458.000	295.000	354.000	188.000	204.000	159.000
.8	236.000	322.000	159.000	267.000	315.000	1087.000	414.000	302.000	340.000	195.000	190,000	156.000
.9	234.000	342.000	149.000	280.000	308.000	1124.000	365.000	308.000	335.000	192.000	180,000	151.000
: O	240.000	354.000	148.000	297.000	297.000	1160.000	326.000	328.000	333.000	193.000	173.000	146.000
1	256.000	354.000	156.000	322.000	284.000	1199.000	302.000	347.000	313.000	199.000	170,000	144.000
22	258.000	345.000	168.000	340.000	269.000	1227,000	291.000	401.000	282.000	206.000	173.000	143.000
23	242.000	331.000	180.000	347.000	248.000	1251.000	284.000	434.000	262.000	215.000	180.000	141.000
24	226.000	315.000	186,000	338,000	226.000	1271.000	277.000	445.000	252,000	226.000	178.000	136.000
:5	222.000	308.000	200.000	322.000	221.000	1281.000	275.000	442.000	246.000	238.000	175.000	126.000
6	224.000	304.000	217.000	306.000	224.000	1296.000	280.000	445.000	246,000	246.000	173.000	124,000
7	224.000	304.000	238.000	273.000	230.000	1301,000	286.000	442.000	244.000	252.000	171.000	129.000
8	224.000	304.000	260.000	242.000	244.000	1306.000	293.000	414.000	240.000	248.000	171.000	132.000
9 0	221.000	302,000	284.000	219.000		1301.000	308.000	399.000	236.000	238.000	168.000	129.000
Ø	217.000	302.000	31.7.000	209,000		1296.000	328.000	406.000	232,000	228.000	166.000	128.000
1	208.000		347.000	204.000		1281.000	•	421.000		226.000	168.000	

OUACHITA RIVER AT BASTROP, LOUISIANA

The site of this Water Pollution Surveillance station is approximately 14 miles downstream from the Arkansas-Louisiana State line. Samples are collected from the east bank, 7 miles west of Bastrop.

The Ouachita River is navigable at this point and the flow is regulated by navigation locks and dams. The principal agricultural activity in this area is cotton raising. Crossett, Arkansas is the nearest upstream community above the station; this is the site of a pulp mill.

Station Location: Ouachita River at Bastrop, Louisiana Major Basin: Southwest-Lower Mississippi River Minor Basin: Quachita River Station at: 32°47' Latitude 91°48' Longitude Miles above mouth: 215 Activation Date: August 14, 1961 Sampled by: Louisiana Wildlife and Fisheries Commission Field Analysis by: Louisiana Wildlife and Fisheries Commission U.S. Public Health Service Other Cooperating Louisiana Stream ControlCommission Agencies: Louisiana State Board of Health Hydrologic Data: Nearest pertinent Near Arkansas-Louisiana State line gaging station: Gaging station U.S. Geological Survey operated by: Drainage area at 10,787 square miles gaging station: Period of record: 1958 to present Average discharge in record period: Maximum discharge in record period: _

Minimum discharge in record period: __

Remarks: Flows affected by operations of Lakes Ouachita,

Hamilton, Catherine, and Greeson, and by navi-

gation pools. Records incomplete; discharge computed only when stage is below bank-full.

ALKYL BENZENE SULFONATE (ABS)

ELEMENTAL ANALYSES

		Composite	Interval
		10/1/62	4/1/63
		12/31/62	6/30/63
Analysis by	F	.27	.25
wet or flame methods.	Na	46	42
Results in mg/1	K	2,2	2,9
	Zn	160	67
	Cq	*2	*3
	As	*20	*24
Analysis	В	95	120
by	p.	5	36
Spectro-	Fe	135	156
graphic	Мо	*2	* 6
methods.	Mn	*1	*3.6
	ΑI	-	14
Results	Ве	*.05	*.06
in	Cu	67	34
micrograms	Ag	*.4	*.6
per	Ni	50	* 3
liter	Со	*4	*3
	РЬ	*5	*6
	Cr	*1	*6
	٧	*2	*12
	Ва	120	96
	Sr	700	360

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation. STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+	Composite Interval	pc/1	+
October to December	1.6	.3	April to June	1	-
January to March	-	-	July to September	4.5	.6

± at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration*
	·	
		3

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

See page 21.

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

OUACHITA RIVER

STATION LOCATION DUACHITA RIVER AT

BASTROP, LOUISIANA

DATE						RADIOACTI	VITY IN	WATER						<u> </u>	RADIOACTIVI	TY IN PLA	NKTON	
SAMPLE	DATE OF DETERMI-			ALPHA						BETA				DATE OF		GROSS A		
TAKEN	NATION	SUSPEND		DISSOLVE	D	TOTAL		SUSPEND	ED	DISSOLVE	D	TOTAL		DETERMI- NATION	ALPHA		BETA	
MO. DAY YR.	MO. DAY	pe/l	±	pc/l	<u> </u>	pc/l	±	pc/l	±	pe/l	#	pe/l	±	MO. DAY	pe/g	±	pc/g	±
10 23 62	11 15 11 20	- C O 1 3 1 0 0 2 1 0 0 1 2	1 0 0 1 2 1 1 1 1 1 1 1	0	1 2 1 4 1 1 1 1 1 2 2	101115272131023	1 1 2 1 4 1 1 1 1 2	80 1 2 7 11 49 21 100 52 30 71 28 13 7	8 10 5 5 6 6 6 6 6 7 7 7 9 4 4 13 6 6 6 12	19 13 18 19 18 16 20 37 87 56 49 68 44 27 23	8 14 7 6 8 8 7 10 10 20 8 5 4 15 8 10 15	99 14 20 26 29 29 58 187 108 79 139 72 400 59	11 17 9 8 10 9 12 12 26 6 20 10 12 19					

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

OUACHITA RIVER

STATION LOCATION OUACHITA RIVER AT

BASTROP, LOUISIANA

085

_	DAT		Ι,	DO	MINAN TO TO	T SPE	CIES O	F DIA	TOMS /	AND	, 1										0 I N	v	ΕR	T E	BR								
	SAME		_	ST		ND		RD	41		S	if AND BACTERIA per ml.	iable, I.						FER AND C		LEVEL			┥		GEN	US	AND CO	A	LEVE	L		2 Z
			-								SPECIE	BAC Per n	denti) ver m	NUM-	1 sT	\cdot \top	2 _N 1		3 _R 1		4тн	Т	5TH		NUM-	1 s		2 ND		3 _{R1}		ite.	11. FO
MONTH	DAY	YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SP PERCE	FUNGI SHEATHED I	PROTOZOA (Identifiable) Number per ml.	BER PER LITER		COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEYEL	GENUS	COUNT LEVEL	BER PER LITER	SORADS	COUNT LEVEL		COUNT LEVEL	GENUS	COUNT LEYEL	NENATODES (Identifiable) Number per liter	OTHER ANIMAL FORMS (Number per liter)
100 101 111 112 122 222 223 334 445 5566 6888 999	15 19 3 17 21 4 18 4 18 15 6	62	5775955 9556 56556 95666 64	11 18 13 22 73 15 58 31 59 40	82 92 92	10 12 11 21 9 13 15 26 18 11 25	65 56 57 92 82 70	9 10 8 6 7 14 21 7 5	92 10 43 64 26 28 10 9 92 62 89 95	6 6 7 2 5 7 6 6 5	45 64 55 60 42 10 60 61 61 62 22 4	40030		864 55 20 00 00 153 18 207 0 28 3 	11	7 526 2	17 17 11	3 3	11	4	22	3	13	3	000000000004011111111	76		53	1			000000000000000000000000000000000000000	000000000000000000000000000000000000000

PLANKTON POPULATION

PLANKTON POPULATION

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

OUACHITA RIVER

STATION LOCATION OUACHITA RIVER AT

BASTROP, LOUISIANA

DA	TE	Ξ			Al	LGAE (Nu	mber pe	r milliliter)			INE	RT	ī		MOS	T A	SUNE	DAN	T AL	GAE	- Gen	era an	d Cour	t Level 1	er n	nl. (See t	ext for	Codes)
SAM	IPL			BLUE-	GREEN	GREE	EN.	FLAGEL (Pigme	LATED ented)	DIAT	омѕ	DIAT	гом	1	ST	21		3R		4TH	1	5тн	1	тн	7тн	T	8тн	9т	$\overline{}$	10тн
момтн		YEAR	TOTAL	COCCOID	FILA- MENT- OUS	000000	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	GENUS	COUNT LEVEL		COOK! LEVEL	GENUS COUNT LEVEL	SANAS	COUNT LEYEL	COUNT LEVEL
10	77 L L L L L L L L L L L L L L L L L L	22222233333333333333333333333333333333	3700 200 100 200 100 200 200 400 200 400 400 400 500 300 500 300	000000000	20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	170 70 00 300 300 200 900 400 200 200 900 1100 200		230 30 20 20 40 60 70 20 290 70 310 290 70 50	100 00 00 20 240 70 110 40 260 110 30 0110	210 100 0 600 600 1100 0 180 400 130 200 200 200 170 160	0 50 30 70 180 180	60 40 00 20 90 30 40 110 20 20 100 20 50	0 0 30 30 40 150 50 150 150 150 110 40	71 64 51	3	51	2	65	1											

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

OUACHITA RIVER

STATION LOCATION OUACHITA RIVER AT

BASTROP, LOUISIANA

_	DATE F SAM		TEMP.	DISSOLVED				CHLORINE	DEMAND							:			
MONTH	DAY	YEAR	(Degrees Centigrade)	OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10 10 10	1 8 15	62 62	24.5 23.0 21.5	7.1 6.7 5.6	7.6 6.8 6.8	-	- 1	-	_	-	79 140	20 22	68 80	25 30	*25 *25	11 16	•0	205 284	-
10	19	62	20.0	-	7•3 7•5	_	-	-		-	82	24	52	15	*25	8	•0	221	-
10	29	62	18.5	5 • 4 6 • 5	7.3	_	_ =	-	-	-	39 83	20 24	36 72	30 35	*25 *25	7 20	•1	113	_
11 11	5 12	62 62	16.0 15.5	6 • 4 7 • 2	7•0 8•0	_	_	_	-	-	74 92	28 28	52 60	20 15	*25 *25	8 10	•0	205 146	_
11 12	19	62 62	13.0 13.0	7.5 8.0	8 • 2 7 • 7	-	-	_	-	1 1	119 208	24	72 96	20	*25	14	•0	320	-
12	17	62	10.6	7.4	8 • 1	_	-	_	_	-	128	28	76	10 20	*25 *25	10 13	•0	520 275	_
12	31 7	62 63	8 • O 7 • O	8 • 2	7.6 7.6	_	-	~	-	. 1	201 214	34 28	112 92		*25 *25	18 13	•0	415 415	_
1	14 21	63 63	7.0 7.0	8.8	7.6 7.2	_	-	-	-	-	150	28	76	-	*25	15	•1	315	-
1	28	63	4.0	9.4	7.4	-	-	_	-	1 1	140 152	32 28	100 136	_	*25 *25	19 12	•0	340 306	_
2	4 11	63 63	4 • 0 3 • 0	9 • 4 8 • 4	7•7 7•5	_	_		1 1	-	94 200	26 30	56 100	15	*25 *25	16 13	•0	225 400	_
2	18 25	63	3 • 0 8 • 3	8 • 5 8 • 4	7 • 2 7 • 7	-	-	-	-	-	224 104	28 16	104 72	10	175 *25	15 16	•0	455	-
3	4	63	11 • 2 16 • 1	9.6 8.4	7.6 7.2	-	-	~	-	-	180	8	84	10	*25	13	•0	235 420	-
3	18	63	17.2	8 • 2	6.2	-	-		_	-	28 24	18 20	44 40	25 30	*25 *25	13 8	•0	115 100	_
3 4	25	63	20.6	7.4	6 • 4 6 • 7	-	_		_	-	30 50	16 12	40 44	40 40	*25 *25	12 13	•0	110 155	_
4	8	63 63	17•5 17•5	5.0 8.0	6 • 8 6 • 9	-	-	_	-		70	24	60	50	*25	15	•ŏ	220	-
4	23	63	22.8	6 • 4	6.9	-	-	-	_	-	100 85	20 36	58 68	35 40	*25 *25	31 16	•0	270 250	
4 5	6	63	23•2 22•8	6•2 6•4	6.6	_	-	_	_	-	120 45	24 20	68 40	35 60	*25 *25	15 8	•0	270 128	-
5		63	25•0 25•1	4•4 4•6	7•3 6•4	-	-	_	-	1 1	53 63	24 32	48 56	50 60	*25 *25	12 15	•0	148 195	
6	- 1	63 63	27•8 30•2	5.6 10.2	6 • 6 8 • 8	-	-	-	_	-	125	28	68	25	*25	14	•0	320	_
6	16	63	-	-	-	_	_	_	-	-	123 135	28 34	76 80	25 40	*25 *25	13 16	•0	270 310	_
6	. 1	63	30.0 30.0	4.8	6.4	_	-	-	1 1	-	132 165	30 22	76 100	30 30	*25 *25	21 18	•0	350 410	_
7	8	63	31•0	6 • 4	6•2	-	-	-	-	-	176	38	112		*25	19	• ŏ	440	-
				l															

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

LOUISIANA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

OUACHITA RIVER

STATION LOCATION OUACHITA RIVER AT

BASTROP, LOUISIANA

DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND					1					
DAY YEAR	(Degrees	OXYGEN	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/I	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l		COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/I	COLIFORMS
7 17 6 7 22 6 8 5 6 8 26 6 9 16 6	3 30 • 0 3 - 3 -	5.0	6.8 6.4 - -			11111		111111111111111111111111111111111111111	280 826 192 130 168		40 60 104 76	5 60 25 10	*25555 *22555 *22555	20 16 19 21 16 25	•0	600 100 230 460 330 390	

STREAM FLOW DATA - 1962-1963

STATE

Louisiana

Thousand Cubic Feet per Second

MAJOR BASIN

Southwest-Lower Mississippi River

PROVISIONAL -- SUBJECT TO REVISION

MINOR BASIN

Ouachita River

Gaging Station near Arkansas-Louisiana State Line Operated by U.S. Geological Survey STATION LOCATION

Ouachita River at

Bastrop, Louisiana

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	2.380	6.000	6.200	2,650	3,510	2.350	15.200	13.000	1.130	.902	2.010	1.290
2	2.380	4.910	7.130	2.940	3.550	3.370	11.600	15.700	1.120	.961	2.040	1.340
3	2.030	5.170	7.390	3.440	3.410	6.150	8.570	16.300	1.060	.925	2.080	1.200
3 4	1.610	5.270	7.250	3.670	3.300	9.910	6.730	16.900	-987	-856	2.030	.800
5	1.760	5.270	6.450	3.540	3.080	14.100	5.780	17.200	.882	.7 25	1.660	.690
6	1.970	5.280	5.590	3.400	2.810	15.000	4.590	17.600	.724	.602	1.060	•754
7 8 9	2.120	5.170	4.600	3.430	2.220	15.800	4.410	17.400	•686	. 55 6	.789	.782
8	2.800	4.910	3.870	3.570	1.820	16.000	4.410	16.600	.645	.690	•927	• 7 73
9	3.080	4.680	2.970	4.350	1.710	16.300	6.120	15.300	.617	.783	•975	.869
10	3.380	4.700	2.560	5.190	1.670	16.400	8.420	13.000	.636	.769	1.010	.836
11	5.000	5.350	2.680	5.460	1.650	16.300	9.010	11.300	. 582	.709	1.020	.836
12	6.140	6.290	2.750	5.080	1.820	15.700	8.680	8.000	.494	.695	1.110	.816
12 13 14	6.930	6.680	2.870	4.720	2.130	15.000	7.000	6.000	.499	.760	1.230	.836
14	7.050	6.650	2.870	4.220	2.950	15.300	5.680	4.010	• 506	-794	1.180	.956
15	6.720	6.520	3.240	3.490	4.240	15.800	5.000	2.800	. 508	.949	1.040	1.070
16	6.160	6.010	3.690	3.000	4.890	16.300	3.810	2.050	.563	1.000	.872	1.010
17	5.720	5.790	3.760	3.140	4.990	16.800	3.610	1.760	•597	3.000	.916	1.030
1.8	7.000	5.540	3.440	3.26 0	4.740	17.400	3.020	1.780	.608	4.000	1.020	.966
19	11.000	5.330	3.010	3. 370	4.760		2.370	1.780	.724	6.000	.941	.886
20	12.800	5.220	2.550	3.480	4.610		2.040	1.790	1.020	9.150	.900	.751
21	13.100	5.210	2.230	3.460	4.150		1.780	1.550	•932	10.200	.843	.732
22	13.100	5.210	2.180	3.220	3.600		2.020	1.250	. 960	10.000	.785	.651
23	12.700	5.210	2.140	2.910	3.330		2.100	1.100	.904	8.000	.671	.628
24	11.000	5 . 360	2.400	3.030	2.760		2.300	•986	.981	5.600	.552	.583
25	10.900	5.4 9 0	2.590	3.150	2.490		2.320	1.120	1.080	5.610	•590	. 529
26	11.000	5.600	2.690	3, 390	2.360		1.860	1.180	1.020	5.000	.587	.550
27	10.500	5.570	2.690	3.370	2.320		1.340	1.240	1.030	4.050	. 584	.536
28	8.000	4.000	2.640	3.590	2.290		1.440	1.370	•959	4.670	.648	.601
29 30 31	7.640	3.530	2.630	3.790			4.000	1.350	.927	4.090	.639	.650
30	7.280	4.660	2.570	3.870			9.000	1.210	.945	3.390	1.220	.719
31	6.920		2.520	3.720		15.600		1.170		3.000	1.200	

Note: Stage above 19.0 ft. March 19-30; no discharge record computed.

RED RIVER AT ALEXANDRIA, LOUISIANA

This Pollution Surveillance station monitors the quality of the Red River before discharge into the Atchafalaya River system. Samples are collected from U.S. Highway 165 Bridge. Chloride concentrations at this river location may at times exceed the Public Health Service Drinking Water Standards. Organic pollution is the principal problem at this station. Bossier City, Shreveport, Alexandria, and Fineville, Louisiana discharge raw sewage from a total of about 238,000 people to the Red River above this station. Barksdale AFB at Shreveport and Ingland AFB at Alexandria contribute raw sewage from approximately 8,500 and 5,000 persons, respectively. Three miles above the station the Veterans Administration Hospital discharges raw waste from a population of 500.

The diatom Stephanodiscus astraea comprised 96% of the diatoms from this station on June I. Diatoms comprised 38% of the total algae count which was composed of several genera of blue greens, greens and flagellates.

The August 19 sample was characterized by the dominance of the diatom <u>Coscinodiscus</u> which represented 91% of diatoms. A large variety of green algae and a large population of rotifers numbering 2,832 per liter was unusual for this station.

The summertime dominance of the diatoms Stephanodiscus astraea and Coscinodiscus together with large varieties of green algae and large rotifer populations reflect the organic loadings discharged upstream. The September 3 rotifer population of 15,190 per liter was the highest ever recorded at a System station.

Station Location:	Red River at Alexandria, Louisiana	ALKYL BEN	
Major Basin:	Southwest-Lower Mississippi River	Date	mg/1
Major basin;	Southwest-hower rississippi kiver	7-1-63	0.08
Minor Basin:	Lower Red River below Denison	7-8-63	0.07
		7-15-63	0.10
Station at:	31°19' Latitude 92°26' Longitude	7-29-63	0.07
Miles above mouth:	121	8-12-63	0.13
Activation Date:	November 18, 1957	8-19-63	0.11
		9-3-63	0.08
Sampled by:	Alexandria Water Department	9-9-63	0.06
Field Analysis by:	Louisiana State Department of Health,	9-23-63	0.11
riela Allarysis by:	Alexandria Laboratory	9-30-63	0.12
Other Cooperating Agencies:	Louisiana State Department of Health		
Hydrologic Data:			
Nearest pertinent gaging station:	At Alexandria, Louisiana		
Gaging station operated by:	U.S. Army Corps of Engineers		
Drainage area at gaging station:	67,500 square miles		
Period of record:	1928 to present		
Average discharge in record period:	32,530 cfs.		
Maximum discharge in re	cord period: 233,000 cfs.		
Minimum discharge in re	cord period: 873 cfs.		
Remarks:			

LKYL BENZENE ULFONATE (ABS)

<u> </u>		Composite	Interval
		10/1/62	4/1/63
		12/31/62	6/30/63
Analysis by	F	.36	.30
wet or flame methods.	Na	78	73
Results in mg/1	K	3.8	4.7
	Zn	*8	*4
i -	Cq	*4	*4
	As	*40	*40
Analysis	В	76	60
by	p.	*10	30
Spectro-	Fe	58	22
graphic	Мо	*4	22
methods.	Mn	*2	*4
	ΑI	-	20
Results	Ве	*.1	*.1
in	Cu	*4	*4
micrograms	Ag	*.8	*1
per	Ni	*4	*4
liter	Co	*8	*4
	Pb	*10	*10
	Cr	*2	*10
	v	*14	*20
	Ва	56	86
	Sr	740	250

ELEMENTAL ANALYSES

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+	Composite Interval	pc/i	+
October to December	3.9	.6	April to June	4.0	.4
January to March	-	-	July to September	-	-

± at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration* ug/1

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values. See page 21.

^{*}Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

RADIOACTIVITY DETERMINATIONS

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

ALEXANDRIA, LOUISIANA

DATE	_							RADIOACTI	VITY IN	WATER					T I		RADIOACTIVI	TY IN DIA	NKTON	
SAMPLE		DETE	E OF			ALPHA						BETA				DATE OF		GROSS A		
TAKEN	_	NAT	ION	SUSPEN		DISSOLV	D	TOTAL		SUSPEND	ED	DISSOLVE	D	TOTAL		DETERMI-	ALPH		BETA	
MO. DAY YR.	4	мо.	DAY	pc/l	±	pc/l	±	pc/l	土	pe/l	±	pc/l	±	pc/l	±	MO. DAY	pc/g	±	pc/g	T ±
10 1 62 10 8 62 10 15 62 10 22 62		1112122123456789	211482 22**	0 - - 4 13 2 1 1 2 4 C	2 6 8 2 2 2 2 4 1 1 1	0 0 1 0 2 0 1 1 0 1 4 3	122231213234	0 4 14 2 3 1 3 5 0 2 5 3	2 1 68332343234	74 77 41 43 42 122 94 43 44 88 66 74 6 12 9	38 12 30 67 7 19 16 7 5 6	34 22 16 9 13 30 38 25 47 48 37 43 26	20 16 17 8 8 15 16 10 8 8 17 16 28	108 29 57 52 55 153 117 73 82 113 113 122 54 49 52 30	43 20 34 22 22 69 50 14 11 21 22 40 29 18 17 29	MO. DAY	pc/g	#	pc/g	#

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

ALEXANDRIA, LOUISIANA

042

DATE								TOMS			<u> </u>							MIC	R	01	N V	ER	т	EBR	АТ	E S						
OF SAMPLE	E		ST		ND	31		See text		<u> </u>	I AND BACTERIA per ml.	able)		,		R	OT	AND C	SOUN	T LEVI	EL				C R	US	TAC AND (EA	T LEVE			Si _
TT									-	ECIES	AND BAC1	lentifi er ml	NUM-	1 s	т	2 N		3R		4T		5T	н	NUM-	1 s		e text je 2 N		3R		. 5	For
МОИТН	YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SPECI PERCENT	FUNGI SHEATHED I	PROTOZOA (Identifiable) Number per ml.	BER PER LITER	CERUS	COUNT LEVEL	GENUS	COUNT LEVEL	SUNSS	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL	BER PER LITER	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	CERUS	COUNT LEVEL	(Identifiable) Number per liter	OTHER ANIMAL FORMS (Number per liter)
11	333333333333333333333333333333333333333	58 18 8 0 2 2 8 2 0 8 2 0 8 2 1 8 8 1 8 1 8 9 1 8 1 8	98 79 25 34 72 43 48 96 96 91 42	26 92 57 26 92 26 38 38 59 26 26 26 26 26	10 9 1 6 24 18 10 19 32 1 13 9 12 2 2 2	27 82	6 9 3 4 11 5 15 8	18 58 56 71 9 80 26 57 9 58 82	5 6 2 3 5 4	28 62 47 1 1 10 44 32 9 9 16 8 3 25 7 7 6 1 17 16 14	80		0 	111 111 222 22 111 112 222 22	2 2 3 6 5 6 7 8 9	22	1 554 789	177 22 177 22 2 177 177	4 4 6 7 8	17 2 17 17 15	5	11 11 21 18 48 9		0601001000060301010010	50	2					200000000000000000000000000000000000000	000-000-0000000000000000000000000000000

PLANKTON POPULATION

PLANKTON POPULATION

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

ALEXANDRIA, LOUISIANA

OF SAMPLE TO	TOTAL	BLUE -	FILA- MENT- OUS	GREE	FILA-	FLAGEL (Pigmo		DIATO	омѕ	INE DIAT SHE	OM.	1 s1		2ND	38		T ALG	1	TH	6т		7т	<u> </u>	8т	Т	9ті			Отн
7 A KEYH O DY4 C C C C C C C C C C C C C C C C C C C		COCCOID	MENT-	COCCOID	MENT-	CREEN							-																011
					ous	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	COUNT LEVEL		COUNT LEVEL	GENUS		COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL
1 14 62 2 3 62 2 14 62 1 7 63 1 15 63 2 4 63 2 15 63 3 1 63 3 18 63	7100 2200 500 00 100 100 300 200 7100 8300 7100	600000000000000000000000000000000000000	120 30 0 0 20 0 0 180 20	700 250 140 0 0 40 480 420 40 0	000000000	710 370 50 0 20 40 30 1340 130	20 0 0 0 0 0 3850 2350	1370 700 150 0 50 30 90 90 2380 1910	4140 870 140 30 20 60 130 50 290	1120 120 60 20 20 20 480 840 130	80 150 200 80 80 200 60 220 400 250	86 67 65 65	5 7	1 4	52	1		2		25 17						69	1	91	1
4 17 63 5 1 63 5 15 63 6 1 63	9300 9100 600 3900 18100 5400 9400 4400	40 0 0	20 360 0 400 3010 170 660 20	590 2790 20 1470 2960 1610 1060 850	0000000	20 310 290 20 110 770 0	180 170 20 40 50 20	110 6120 4160 440 1410 5090 2980 5490 3230	70 2070 1320 70 440 4320 500 2050 210	90 1280 800 70 920 380 830 520 370	90 880 230 220 320 930 430 250 310	68 71 71 68	5 3 4 2 5 3 6 6	5 3 6 3	35 11 68	2 4 2	88 2 71 3 11 1 9 3 38 2 38 1	3 24 1 92 2 83	2 3	68 38 24 11	3	41	3	51	1	35 17 55	1		
	5600 16300 28300	60 600 500	370 3640 680	1950 3790 2230	0	100 240 110	20	2690 2410 1190	370 5830 23510	580 1010 630	40 4020 6640	92	5 3 5 1	8 2 7 5 7 5	68	3	45 2 67 3 83	8 8	3 3	24 35	3	11 97	3 2	35 17	3 2	38 1		25 68	

LOUISIANA

ORGANIC CHEMICALS RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

SOUTHWEST-LOWER MISSISSIPPI RIVER

MAJOR BASIN MINOR BASIN

STATE

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

ALEXANDRIA, LOUISIANA

	DAT	of s	AUDI	F		F	CTRACTABL	FS	T				CHLOROF	ORM EXTR	ACTABLES				
		IING		ND			1	ī					NEUTRALS						
MONTH	DAY	YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL,	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
12 2 3 6	7 4 4 4	62 63	12 2 3 6	15 12 15 12 26	5080 5270 4220 5280 6380	157 159 182 113 139	44 29 51 37 39	113 130 131 76 100	0 1 2 1 0	11 6 11 9 10	18 12 19 15 15	21 21 1	2 1 2 1 1	14 10 15 12 13	0	53756	21422	1 1 1 1 1 1	757 45

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

ALEXANDRIA, LOUISIANA

	DATE F SAM		TEMP.	DISSOLVED				CHLORINE	DEMAND										
MONTH	DAY	YEAR	(Degrees Centigrade)	OXYGEN mg/l	На	B.O.D. mg/l	C,O,D, mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10	8	62	25.0 27.0	8 • 1	7.4		18	2.1	6.8	• 1	171	118	236	20	164	101	•-1	595	5300
10	15	62	28.0	7.9 7.3	7•9 7•8	_	19	2 • 4	7 • 8	• 1	176	106	223	20	128	84	1	602	5300
10	22	62	23.0	6.2	7.6	_	16 24	2.0	6 • 5 7 • 6	•1	106	75	136	30	204	56	•1	376	13000
10	29	62	21.0	8.3	7.7	_	21	2.4	7.2	•1	70 72	75	124	30	700	48	•1	281	20000
11	5	62	15.0	8.5	7.7	_	23	2.2	7.2	•1	115	65 72	109	40	300	44	•1	283	3400
11	19	62	15.0	9.0	7.7	_	21	2.6	7.5	• 1	99	78	153 138	20	570		•1	422	47000
11	26	62	15.0	9•8	7.7	-	56	2.0	7.9	• 2	121	105	165	40 40	188 74	58. 56	•1	376	14000
12	3	62	15.0	6.9	7.6	-	54	1.7	7.4	• 2	74	85	132	40	1700	46	•1	433 312	9400 24000
12	10	62	12.0	9.3	7.3	-	27	3 • 2	8.6	• 2	105	68	146	30	610	63	•1	381	33000
12	17	62	9.0	10.8	7.7	<u> </u>	22	2.9	7.6	• 2	130	75	157	30	460	74	1	436	42000
1	3	53				~	-	-	-	-	-	-	~	-	-	-		.50	42000
1	7	63	10.0 7.0	10.1	7.5	-	26	3.6	7.9	•2	98	64	131	40	230	46	.1	361	-
1	21	63	5.0	10.8	7.8 7.6	-	24	2 • 8	7.7	•1	87	62	120	40	240	50	•1	314	48000
1	28	63	3.0	13.0	7.7	_	20 19	2 • 4	7.4	• 2	94	71	131	40	152	53	•1	332	33000
2	4	63	8.0	11.3	7.7	1.2	17	2.9	7.0	•2	131	92	171	30	120	74	•1	459	55000
2	11	63	10.0	10.8	7.8	1.6	17	3 • 3 3 • 0	6 • 9 5 • 9	• 1	174	101	223	30	164	104	•2	599	40000
2	18	63	10.0	11.6	7.8	1.00	9	4.0	9.0	•1	172 159	110	219	30	108	109	•1	588	_
2	25	63	11.0	11.0	7.5	2 • 6	29	3.5	9.1	• 2	111	134 95	232	40	150	80	•1	567	43000
3	4	63	17.0	9.4	7.6	2 • 1	22	3.8	10.0	• 2	86	116	164 159	40 50	134	61	•1	404	1000
3	11	53	18.0	9.0	7.6	1.1	22	2.9	9.7	.1	50	60	82		128	33	•1	347	6000
3	18	63	19.0	8.0	7.6	1.3	23	2.3	9.6	•1	73	67	116	50 30	148 270	44	•1	213	9100
3	25	63	19.0	8 • 2	7.8	-	22	2.8	8.9	• 2	33	58	76	50	245	17	•1	283 173	18000 16000
4	1	63	21.0	8.0	7.7	1.0	21	3.0	8.3	• 2	38	58	78	50	335	17	1	168	11000
4	8	63	20.0	8 • 4	7.6	1.1	22	2.9	8.1	•1	52	69	96	30	300	24	1	222	13000
4	22	63	26.0	7•9	7.7	1.7	20	2.6	7.3	•1	101	93	158	30	70	59	•ī	385	7000
4	29	63	26.0	8 • 4	7.7	-	17	2 • 8	6 • 4	•1	162	152	228	20	60	94	•1	584	7900
5	6	63	25.0	6 • 4	7.7	1.7	41	3 • 7	10.8	• 2	43	64	90	60	1080	19	-	192	25000
5	13	63	25.0	6.6	7.7	1.0	23	3 • 1	8.3	•1	60	59	90	40	520	20	•1	223	-
5 5	20	63	28.0 30.0	7•1 7•5	7.6	1.5	24	2.7	6.9	• 2	73	65	102	30	160	34	•1	265	-
6	3	63	30.0	7.2	8.0 7.8	1.8 1.7	19	2.6	6 • 4	•1	106	109	180	20	92	_	•1	415	4900
6	10	63	32.0	8.0	8.3	3.1	16 12	2 • 4 2 • 9	6.7 8.1	• 2	180	134	264	20	64	124		663	3500
6	17	63	31.0	7.4	8.0	2 • 1 4 • 5	27	2.7	7.9	•0	148	140	236	20	54	96	• 1	583	
6	24	63	31.0	8.4	8.3	3.3	15	2.6	6.8	• 1	156 195	138 171	252 296	20	52	111	• 1	620	5500
7	8	63	32.0	8.5	8.3	3.6	22	2.4	6.8	•1	118	140	296	10 20	32 30	127 63	•1	741	2800
7	15	53	31.0	8.5	8.1	4.7	13	2.5	7.7	•1	256	119	216	20	24	39	:0	484 857	2800
										• •	2,0	***/	2,0	20	۲+	0 9	. • • • • • • • • • • • • • • • • • • •	00/	4100

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

ALEXANDRIA, LOUISIANA

42

DATE	T						CHLORINE	DEMAND					1					
OF SAMPL		TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	Не	B,O.D. mg/l	C,O,D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/i	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
7 22 6 7 29 6 8 12 6	63 63 63 63	33.0 31.0 31.0 29.0 29.0	5.6 7.6 7.3 7.1 8.4	7.8 7.5 8.4 8.0 8.0	1.6 1.7 2.1 3.6 6.8	20 24 -21 20 18 - 25	3.7 2.9 3.8 3.2 2.8	7.7 8.1 6.9 8.7 7.6	•1 •1 •1 •1 •1	148 129 105 257 250 236	80 58 85 88 97 194	152 123 146 216 220 340	20 20 20 20 20 20 20	300 245 60 49 46 51	49 34 90 98 - 141	•1 •0 •1 •1 •1	455 388 398 764 747 - 845	6200 3000 13000 8000 10000 5000

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Alexandria, Louisiana Operated by U.S. Army Corps of Engineers STATE

Louisiana

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Lower Red River below Denison

STATION LOCATION

Red River at

Alexandria, Louisiana

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	12.600	12.200	23.800	20.800	11.100	7.290	20,300	10.600	6.250	6.420	8.810	2.920
2 3 4	12.200	12.400	48.000	19.300	11.000	8.180	19.700	22.300	6.250	6.140	8.190	2.980
3	11. <i>6</i> 00	18.700	52.200	17.900	11.000	8.660	17.400	45.100	6.550	5.800	7.890	2.990
	10.700	27.400	50.200	16.800	11.100	9.080	14.900	50.600	6.710	5.370	7.890	3.110
5	9.900	28.100	46.200	16.200	11.000	9.310	13.300	51.300	6.930	5.170	7.890	3.290
6	10.000	25.700	40.700	15.600	10.700	10.700	12.300	48.900	6.930	5.080	7.710	3.590
7	11.200	23,200	36.70 0	15.400	10.500	13.500	12.300	45.600	6.930	5.170	8.190	4.530
8	14.200	20.800	35.500	15.200	10.200	16.500	12.100	41.300	6.780	5.170	8.810	5.710
9	16.200	18.100	35.500	15.900	9.920	17.500	12.100	36.800	6.550	5.300	8.750	6.280
LO.	15.300	16.200	33.800	19.300	9.550	17.200	11.800	32.700	6.170	5.370	8.500	6.490
u.	13.100	14.800	30.400	24.200	9.140	17.200	11.900	28.700	5.850	5.500	7-790	6.280
2	11.400	14.500	27.700	26 .6 00	8.990	18.000	12.600	25.200	5.500	5.500	7.300	5.850
.3 .4	10.800	15.300	25.400	25.200	8.800	18.900	13.900	22.100	5.100	5.370	6.650	5.500
	10.300	15.900	24.500	23.400	8.500	18.700	14.200	19.100	4.800	5.300	6.010	5.000
.5	10.000	16.200	23.500	21.000	8.350	18.900	13.200	17.300	4.730	5.080	5.250	4.510
.6	10.200	15.600	22.600	19.300	7.940	22.700	12.900	16.100	4.800	4.880	4.510	4.400
-7	10.800	14.800	22.000	18.200	7.240	28.400	12.000	15.200	5.100	4.710	4.080	4.730
.8	15.300	13.500	21.300	17.400	8.500	30.400	11.400	13.800	5.220	5.210	4.000	4.730
.9	30.000	12.400	20.800	16.600	10.200	29.700	10.800	12.700	5.220	8.180	4.000	4.510
: 0	37.700	11.800	20.500	16.300	12.700	30.400	10.700	11.700	5.100	10.100	4.000	3.800
21.	38.900	11.600	19.800	16.000	12.700	29.000	10.400	10.400	4.730	10.900	4.000	3.230
22	34.700	11.100	18.700	15.700	11.700	28.000	10,200	9.350	4.500	11.300	3.500	2.880
23	30.700	10.700	18.700	15.400	10.500	27.000	9.720	8.450	4.730	11.900	3.320	2.750
24	26.400	10.500	19.500	14.900	9.890	25.700	9.120	7.750	5.130	12.200	3.190	2.750
5	22.900	10.300	17.200	14.300	9.230	26.500	8.520	7.460	5.840	12.000	3.150	2.750
26	21.100	10.500	16.500	14.000	8.450	30.000	8,200	7.350	6.830	11.700	3.150	2.650
27	20.500	10.500	15.300	13.300	7.680	32.800	8.080	7.240	7.160	11.200	3.110	2.490
.8	20.200	10.200	15.900	12.800	7.290	30.500	8.300	7.350	6.950	10.700	2.990	2.230
9 30	18.900	10.000	19.800	12.200		26.700	8.520	7。350	6.830	10.500	2.920	2.100
30	16.200	11.600	22.400	12.000		22.900	8.750	7.120	6.630	10.200	2.920	2.000
31.	14.000		22.400	11.500		20.600		6,550		9.690	2.920	

1111				
		•		A CONTRACTOR
				Control of the second
				All of the Charles
Ample Commence				ı
			·	Processor Constitution
		•		A PARTIES AND A
				ودوسين والالالود
	<u>'</u>			- Addition and the
Separation of the second				, et all Villelina en a les appe
				Anna tame
				desaulversen verschen d
				0
				Tracket of
	INI			
				Accommons to de la la della de
				- Andrews - Control

RED RIVER AT BOSSIER CITY, LOUISIANA

Samples are collected from the intake of the municipal water treatment plant. This station is located approximately 35 miles below the Arkansas-Louisiana State line.

Rossier City is the only municipality known to draw its supply from the Red River. The variability of mineral concentration has required the installation of a reservoir and a plan to pump from the river only at times when satisfactory quality prevails.

Station Location:	Red River At Bossier City, Louisiana
Major Basin:	Southwest-Lower Mississippi River
Minor Basin:	Lower Red River Below Denison
Station at:	32°29' Latitude 93°45' Longitude
Miles above mouth:	310
Activation Date:	June 18, 1962
Sampled by:	Bossier City Department of Water and Sewage
Field Analysis by:	Bossier City Department of Water and Sewage U.S. Public Health Service
Other Cooperating Agencies:	Louisiana Stream Control Commission Louisiana State Board of Health
Hydrologic Data:	
Nearest pertinent gaging station;	At Shreveport, Louisiana
Gaging station operated by:	U.S. Army Corps of Engineers
Drainage area at gaging station:	60,613 square miles
Period of record:	1928 to present
Average discharge in record period:	25,420 cfs.
Maximum discharge in rec	ord period: 303,000 cfs.
Minimum discharge in rec	ord period: 690 cfs.

Remarks: Flows affected by operations of Lake Texoma (Denison Dam) and Texarkana Reservoir.

ALKYL BENZENE	
SULFONATE (ABS	

mg/1

0.05

0.07

0.07

0.03

0.06

0.06

0.04

0.03

0.09

Date

7-2-63

7-9-63

7-30-63

8-7-63

8-14-63

8-22-63

9-3-63

9-10-63 9-17-63

		Composite	Interval
		10/1/62	4/1/63
		12/31/62	6/30/63
Analysis by	F	.20	.20
wet or flame methods.	Nα	53	63
Results in mg/1	К	3.9	4.3
	Zn	88	*5
	Cd	*3	*5
	As	*32	*48
Analysis	В	69	26
by	p.	*8	*24
Spectro-	Fe	134	12
graphic	Мо	*3	*24
methods.	Mn	*1.6	*4.7
memous.	ΑI	_	*24
Results	Ве	*.08	*.12
in	Cυ	16	*5
micrograms	Ag	*.6	*1.2
per	Ni	*3	*5
liter	Co	*6	*5
	Pb	*8	*12
	Cr	*2	*12
	V	*13	*24
	Ba	*130	79
	Sr	592	191

ELEMENTAL ANALYSES

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+	Composite Interval	pc/1	+
October to December	2.0	.3	April to June	1	_
January to March	-	1	July to September	5.0	.4

[±] at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration* ug/1
		1

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

See page 21.

LOUISIANA

MAJOR BASIN

SOUTHWEST_LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

BOSSIER CITY, LOUISIANA

118

DATE				RADIOACTIVITY I	WATER					T		RADIOACTIVI	CY IN PLA	NKTON	
SAMPLE	DATE OF DETERMI-		ALPHA		T T		BETA				DATE OF			CTIVITY	
TAKEN	NATION	SUSPENDED	DISSOLVED	TOTAL	SUSPEND	ED	Dissolvi	ED	TOTAL		DETERMI- NATION	ALPHA		BETA	
MO. DAY YR.	MO. DAY	pc/l ±	pc/I ±	pe/! ±	pe/I	±	pc/l	±	pc/I	#	MO. DAY	pc/g	Ι±	pc/g	T ±
1C 23 62 10 30 62 11 27 62 11 27 62 12 14 62 12 12 63 2 12 63 3 26 63 3 26 63 3 20 63 3 20 63 3 20 63 4 16 63 5 29 63 6 25 63 8 22 63	11 26 11 28	10 2 9 7 2 7 10 0 0 5 1 3 5 4 3 1 5 1 0	00 1 1 1 1 2 2 2 1 1 2 2 2 1 1 1 1 1 2 2 3 3 3 3	104953921005135532530	11 8 339 297 244 155 58 36 28 7 157 55 143 169 133 125 21	300 77 325 18 615 144 141 10 222 77 20 12 9 20 18 44 44 44	15 17 16 20 79 38 40 49 28 50 1 41 40 54 46 52 48 35	9 8 5 7 14 6 9 15 19 18 18 7 4 4 4 8 8 9 10 22 22	53 24 359 376 282 195 107 64 83 198 197 177 69 40 40	311 6 26 23 61 46 21 24 22 10 21 21 22 21 21 22 21 22 21 22 21 22 22					

RADIOACTIVITY DETERMINATIONS

PLANKTON POPULATION

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

BOSSIER CITY, LOUISIANA

	DAT			DON	INANI	SPEC	IES O	F DIAT	OM5 A	ND											0 I N	V E	RT	EBR							
ç	OF	٠ ا				TOTAL	L DIAT		See text je		1	I AND BACTERIA per mL	able)				GENE	ERA.	FER!	5 DUNT	LEVEL				GEN	ERA	AND CO	A DUN'	T LEVEL	-	PRMS er
				51		!	5	(D	-4	Н	CIES	AND SACT	entifi r ml	NUM-	1 st	Т	2 _{NE}		3RE		4 _{TH}	Т	5тн	NUM-	1 st		2 N E		3 _{RD}		liter HAL FC per lib
MONTH	DAY	YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SPECI PERCENT	FUNGI SHEATHED F	PROTOZOA (Identifiable) Number per ml.	BER PER LITER		COUNT LEVEL	GENUS	COUNT LEVEL	CENUS	COUNT LEVEL	13	COUNT LEVEL	COUNT LEVEL	BER PER LITER	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	Number per liter OTHER ANIMAL FORM
10 11 12 12	9 20 4 11 26	62 62 62 62			38 57 56 57	24				3 11 1 5	28 19 11 40	- - - -	- - -	10100										0 0							101000
1233445	22 19 6 20 2 16	63	80 71 92	83 26	92 72 58	7	51 26 56	1 7	71 92 55	7 3	51 35	- - -	- - -	0 0 18 0 159			17	3	15	1				0 0							0 0 0 0 1 0 0 0 0 0
5 6 6 7 7 8 8	21 3 18 2 9 7	63 63 63 63 63 63 63	80 26 18 26 18 18	32 38 26 31 94 55	26 38 26 26 18 26 56	27 22 22 24 24 8	38 82	15 8 16 12	82 18 67 38 67 47	6 12 7 4	7 13 26 24 26 4 28	330 - -		- - 11	22	1								- - - 1							
9 9	3 16	63	91		18 26	_	26 82		70 84	5 6	10 23	-												-							

PLANKTON POPULATION

STATE

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

BOSSIER CITY, LOUISIANA

DA	TE			,	A	LGAE (Nu	mber pe	r milliliter	r)			INE	RT	T		MOST	r AE	SUNE)AN	T AL	GAE	- Gen	era an	d Cou	nt Lei	el per	ml.	(See 1	ext fo	r Code	201	
SAM				BLUE-	GREEN	GREE	EN	FLAGEL (Pigm	LATED ented)	DIAT	OMS	DIA	гом	1s		2 N	I	3R		4тн		5тн	1 -	тн	T =	TH	8		91	1		Этн
МОМТН		YEAR	TOTAL	COCCOID	FILA- MENT- OUS	СОССОІВ	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS		COUNT LEVEL		COUNT LEVEL		COURT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL
0 9 1 20 2 4 2 11 2 26 1 22		62 62 62 62 62 63	1300 5200 100 200 1800 200	30 20 0 0	170 50 20 20 0	200 1580 0 20 290 20	0 0 0	200 200 20 20 220 40	0	210 2860 50 0 570 70	660 450 50 150 730 110	90 720 20 0 150	340 60 130	83 69 83	4		4			51	1										i	
2 19 3 6 3 20 4 2 4 16 5 7	6 6	63 63 63 63 63	13700 500 600 500 8300	80 00 00 0	210 20 0 840	670 0 20 0 2140	0 0	2980 40 70 90 550	150 70 90	4450 130 260 220 3380	170 130 130 90 690	1810 40 70 130 1580	290 330 130 370 420	69	1					62			38				25	1				
5 21 6 3 6 18 7 2 7 9 8 7 8 19	6	63 63 63 63 63	1700 3200 4700 11000 12400 9400	20 20 130 110 0	0 90 530 1250 3450 40	290 810 1360 4690 4990 900	000000	90 20 570 240 70 70	0 20 0 200 20 40	70 810 1190 1430 1500 1360 7920	20 530 1010 660 2970 2530 400	40 420 400 1100 730 860 530	330	83 67 35 11	3 4 5	88 68 68 92 88 35	3 2 4 4	35 11 83 24 38	3 4	88 : 11 :	2 2 3 2 3 3	7 1 6 1 6 3 5 3	88	1 1 2 3	38		17	2	83 25 30	1	62	1 1 2
9 3 9 16	6	63 63 63	300 33200 28800		0 14040 12440	70 4330 3020	0 0 0	90 390	!	170 970 810	20 12810 11070	170 650 140	240 1980 1940			17 88		11 35		25						i I		, ,	68 71		44 25	
														1																		

LOUISIANA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

BOSSIER CITY, LOUISIANA

118

_	DATE OF SAMPLE							CHLORINE	DEMAND									TOTAL	
MONTH 0	F SAN	YEAR	TEMP. {Degrees Centigrade}	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	(scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/I	per 100 ml.
100 101 111 111 112 22 23 33 34 44 55 55 66 66 77 77	93330 56274 1122219 266222162 129311252 17142129311252917	666666666666666666666666666666666666666			7.7 8.0 7.7 8.0 8.2 8.0 7.8 7.7 7.6 9.7 7.4 7.7 6.9 7.4 7.7 7.4 7.7			mg/1	1		77 640 30 1208 600 1050 1422 1542 344 944 400 222 1064 1366 1366 1366 1366 2650	72 766 666 66 -100 74 82 100 146 120 60 64 96 104 136 132 144 98 136 126 66	124 108 120 76 120 136 188 224 120 100 100 120 250 250 250 250 250 250 270 370 300	20 15 20 20 20 20 25 10 5 5 5 5 5 5 5 20 20 20 20 20 20 20 20 20 20 20 20 20	*25 *25 480	55 35 35 15 925 820 1000 125 1002 825 17 38 95 105 105 105 105 105 105 105 10	1	387 247 268 160 523 315 455 610 435 172 1987 128 160 2190 4970 4970 4970 4970 4970 5360 6000 9000 720	100 2000 2000 4500 *8 1000
7 8 8 8 9 9	30 7 14 22 3 10 18	63 63 63 63	- - - - - -			-	-		-		105 200 155 250 280	84 130 132 124 116	300 210 280 330 360 340 370	10 10 5 0	*25 *25 *25 *25 *25	100 70 118 175 175 215 225	•0	380 720 860 840 910 980	-

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Shreveport, Louisiana Operated by U.S. Geological Survey

STATE

Louisiana

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Lower Red River below Denison

STATION LOCATION

Red River at

Bossier City, Louisiana

Da	October	77		_								
	Oc coser	November	December	January	February	March	April	May	June	July	August	September
1	8.340	17.400	59.700	13.800	9.860	5.390	14,900	40.100	6.460	1. 000		· · · · · · · · · · · · · · · · · · ·
2	7.460	29.500	54.200	13.500	10.100	5.390	13.100	52.600	6.860	4.290	6.280	3.020
3 4	8.120	30.800	44.500	13.100	9.860	6.090	11.200	53.500	7.080	3.710	6.280	3.020
4	8.780	26.900	38.200	13.500	9.620	8.660	9.860	49.000	6.650	3.420	6.090	2.880
5	12.900	22.800	34.800	13.500	9.380	13.500	8.430	41.900	6.650	4.000	6.860	2.750
_	70.000	(50	14.000	0.000	4.440	8.900	3-290
6	19.200	19.600	34.200	13.100	8.900	16.300	7.960	36.300	6.280	4.440	0 000	
7	19.200	17.900	34.800	13.500	8.430	15.800	7.510	31.200	5.720	4.440	8.900	3-850
8	15.800	15.500	35.500	17.700	7.960	14.500	7.720	27.800	5.390		8.430	3.710
9	13.200	14.500	30,800	25.800	7.510	14.900	9.620	23.900	4.900	4.600	7.510	3.420
10	11.800	14.500	27.500	27.800	7.080	16.700	11.200	21.000	4.440	4.600	6.650	3.020
								E1.000	4.440	4.290	5.910	2.630
11	10.700	15.800	24.500	25.800	6.460	15.800	12.100	18.200	4.290	h 000	5	1-
12	10.400	16.500	22.800	22.100	6.090	14.500	12.100	15.800	4.290	4.290	5.390	2.140
13 14	10.400	16.500	22.200	19.800	5.910	13.800	11.800	14.900	4.750	4.440	4.440	1.920
	10.700	15.800	21.600	18.800	5.910	21.000	10.700	14.200	4.900	4.140	3.850	2.260
15	10.700	14.200	20.100	18.200	6.460	28.400	9.860	12.800	4.750	3.710	3.710	2.750
							,	12.000	4.750	4.140	3.850	2.750
16	16.500	12.600	19.600	17.200	6.860	30.500	9.140	11.800	4.750	10 700	- 0	
17	31.500	10.900	19.600	16.300	7.080	30.500	9.140	10.400	4.600	10.700	3.850	2.750
18	42.900	9.440	19.600	15.400	6.650	29.100	9.140	9.620		13.500	3.710	2.630
19	42.900	8.340	18.700	14.900	6.280	27.800	8.900	8.430	3.710 3.420	13.100	3.560	2.380
20	38.200	7.680	17.900	14.200	6.090	27.100	8.190	6.860		12.800	3.290	2.260
					,-	211200	0.190	0.000	4.140	12.800	2.880	2.380
21	33.500	8.120	17.400	13.500	5.910	26.500	7.080	6.090	5.060	10.100		
22	27.500	8.780	16.100	13.100	5.390	24.600	6.090	6.090	6.460	13.100	2.750	2.630
23 24	22.800	9.000	14.800	12.800	5.230	25.200	5.910	6.090		11.500	2.880	2.510
24	21.100	9.440	13.500	12.800	4.900	29.100	6.280	6.460	7.720	9.860	2.880	2.030
25	22.200	9.220	12.600	12.100	4.600	33.300	7.080	6.650	7.720	8.430	2.630	1.810
					74000	JJ. 300	1.000	0.000	7.080	7.9 6 0	2.260	1.700
26	22.800	8.340	12.900	11.200	4.600	29.800	7.510	6.280	6.860	a 200		
27	20.500	8.560	15.100	10.700	4.440	23.900	7.720	5.390	6.460	7.720	2.260	1.590
28	17.400	9.440	16.100	9.860	4.600	19.800	8.660	5.230		7.720	2.380	1.700
29	14.800	11.200	16.500	8.900		19.800	11.800		5.910	7.080	2.380	1.810
30	12.900	41.200	16.100	8,900		20.400	15.800	5.230	5.560	6.090	2.510	2.030
31.	12.600		15.100	9.140		18.200	12.000	5.720 6.280	5.060	5.390	2.630	2.140
-			-,	J. 2.10		10.200		0.200		5.560	2.880	

RED RIVER AT INDEX, ARKANSAS

This station is located at the point where the Red River ceases to form the Arkansas-Texas boundary and flows through Arkansas. Samples are collected from U.S. Highway 71 Bridge.

Blue River, Boggy Creek and the Kiamichi River are confluent to the Red River from Oklahoma in the reach above Index and below Denison. Bois D'Arc Creek and Pecan Bayou are the principal tributaries entering from Texas. These tributaries drain an area whose rainfall averages about 40 inches per year.

Nearly all the municipalities in the Red River basin discharge wastes into the river or its tributaries. The two cities nearest to the Index station are DeKalb, Texas and New Boston, Texas at 36 and 25 miles above the station. Both of these communities operate secondary sewage treatment plants and serve a total population of 4,815.

Rotifer populations at this station increased from essentially none in July to 3,000 per liter in the September 2, 1963 sample. Concurrently, total algae counts increased to a maximum of 18,000 in the September 25 sample.

Red River at Index, Arkansas Station Location: Major Basin: Southwest-Lower Mississippi River Lower Red River below Denison Minor Basin: 33°33' Latitude 94°02' Longitude Station at: Miles above mouth: February 24, 1957 Activation Date: Sampled by: Arkansas State Water Pollution Control Commission Arkansas State Water Follution Field Analysis by: Control Commission U.S. Public Health Service Other Cooperating Arkansas State Board of Health Agencies: Hydrologic Data: Nearest pertinent At Index, Arkansas gaging station: Gaging station U.S. Geological Survey operated by: 48,030 square miles with 5,936 square Drainage area at miles probably noncontributing gaging station: Period of record: 1936 to present Average discharge 12,680 cfs. in record period: Maximum discharge in record period: 297,000 cfs.

378 cfs.

Minimum discharge in record period:

Remarks: Flows affected by operations of Denison Dam.

ALKYL BENZENE SULFONATE (ABS)

mg/l

0.06

0.06

0.06

0.07

0,14

Date

7-3-63 7-17-63

7-31-63

8-14-63

8-28-63

	ELEMENTAL ANALYSES									
			Composite	Interval						
			10/1/62	4/1/63						
			12/31/62	6/38/63						
	Analysis by	F	.30	.40						
	wet or flame methods.	Na	132	120						
ı	Results in mg/1	Κ	6,8	6.0						
		Zn	*6	13						
		Cd	*3	*7						
		As	*28	* 67						
	Analysis	В	85	50						
	by	p.	*7	*34						
	Spectro-	Fe	95	17						
	graphic	Мо	*3	*34						
	methods.	Mn	*1.4	*6.7						
		ΑI	-	*34						
	Results	Ве	*.07	*.17						
	in	Cu	5	7						
	micrograms	Ag	*.6	*1.7						
	per	Ni	*3	*7						
	liter	Co	*6	*7						
		Pb	*7	*17						
		Cr	*2	*17						
		V	*13	*34						
		Ва	52	87						

268

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

686

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+	Composite Interval	nc/i	+
Interval	pc/ i		Interval	,	
October to December	3.3		April to June	5.3	.7
January to March	-	1	July to September	4.9	.7

+ at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration* ug/i
	,	
		}

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values. See page 21.

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

INDEX, ARKANSAS

43

DATE	\vdash								RADIOACTI	VITY II	WATER		~				,	, 				
SAMPLE	1,	DATE	COF RMI-			ALP	iA.				1		BETA				-	ļ	RADIOACTI			
					-	DISSOI	VED		TOTAL		SUSPEN	DED			TOTAL		-	DATE OF DETERMI-				
MO. DAY YR.	. M	10.	DAY	pc/l	±	pc/l		#	pe/ľ	±	pc/l	±					1				BETA	
TAKEN MO. DAY VR. 10 3 62 10 10 62 11 20 62 12 19 62 12 3 63 3 13 63 5 23 63 5 23 63 6 19 63 7 28 63 9 23 63	1 1 1 1	0 2 2 2 2 2 2 2 3 4 2 2 7 9 0	21 28* 24* 25* 8*	Pe/I	-	ptssoi	2 1 0 5 0 1 1 1 0 1	# 142330232555		± -425418425555	76 30 43 35 26 9 304 87 0	<u></u>	36 46 37 32 30 101 61 11 34 43	42 29 18 19 19 9 12 31 32 38	66 89 72 58 39 405 148 11 45	±		DATE OF DETERMINATION MO. DAY	ALP	GROSS	ACTIVITY	
					1000																	

RADIOACTIVITY DETERMINATIONS

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

INDEX. ARKANSAS

						VEC. 01	- 511	TOMS A	ND								М	I C	RC	O I N	V E	R_T	EBR.	ATE	. s					
DAT	E	P	ERCE	NT OF	TOTAL	L DIAT	OMS (See text fo	r Codes		ERIA	ble)				RO	TIF	ERS	IINT	LEVEL				C R GEN	US	AND COL	NT L	EVEL	-{	SE C
SAMP		15	ST_	21	1D	3F	₹D	4 <u>T</u>	H	ES	AND BACTE per mL	tifial ml.								LEVEL	T .		 	-	\neg	text for C		3 _{RD}	-	ro.
										SPECI	I BA	Iden per	NUM- BER	1st	-	2 _{ND}		3RD	_	4TH	_	TH	NUM- BER	1 S1		ZND	_		DES able) er liter	1MAI
монтн	YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SI PERCI	FUNGI SHEATHED Number	PROTOZOA (Identifia Number per ml.	PER LITER	į į	COUNT LEVE		COUNT LEVEL	GENUS	COUNT LEVE	GENUS		COUNT LEVE	PER LITER	GENUS	COURT LEYI			GENUS	NEMATODE: (Tdentifiable Number per I	OTHER ANIMAL FORMS (Number per liter)
10 10 11 1 11 12 17 17 17 17 17 17 17 17 17 17 17 17 17	62223333333333333333333333333333333333	38326 56 3838 3882 71822667 1826 71826	32 14 62 92 15 14 15 12 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18	55 81 26 73 92 80 92 26 80 65 80 38 38	10 10 2 9 11 23 28 15 24 10 23 24 17 16 4 33 15 17		7 7 1 6 10 3 14 11 11 7 9 12 13 16	26/29/29/29/29/29/29/29/29/29/29/29/29/29/	3 1 5 6 3 9 7 5 6 5 10 12 14 5 12 10	41 34 64 18 4 65 59 20 17 51 25 36 23 34 15 12 28	500		-3 -0 0 1 0 1 0 1 0 8 1 8 2 2 2 1 5 4 7 1 3 3 6 8 8 10 8	22 22 22 11	14 6797	17 9 11 2 2	5 7 7	15 7 7 7 17	5 6 6	22	5 3 6	7 2 17 4 117 4 2 2 2 2 3	0 0 0		1					

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

INDEX, ARKANSAS

DATE				Α	LGAE (Nu	mber p	er milliliter	,			INE		T		MOST	AE	UND	AN'	T ALG	AE -	Gene	ra and	Cour	nt Lev	el per	ml. (5	See ti	ert for (odee)	
SAMPL			BLUE-	GREEN	GREE	EN	FLAGEL (Pigme		DIAT	омѕ	DIA	гом	15		2 N	1	3 _R I	1	4тн		ТН	6		71		8т		9тн		Отн
МОМТН	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	GENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL		GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL	1	GENIIS	COUNT LEVEL
10 10 11 8 11 19 6 11 17 6 11		3700 6100 7000 1000 1400 11000 2200 30600 10000 2200 4500 4500 2500 8700 6200 11400 11700 18500	140 540 60 90 0 20 2900 180 0 130 50 0 1160 220 255 1550	20 720 0 0 0 20 20 380 310 360 790 40 1330 1010 730 2950	410 540 40 270 260 40 1640 260 2460 2900 2130 1620 3960 977 2300 2240 4690	000000000000000000000000000000000000000	40 380 0 200 0 590 4870 220 40 310 360 240 200 110 110	0 20 0 0 0 0 570 * 1	380 1640 800 180 300 1300 6590 1500 1220 400 540 350 1760 1060 1980 1010 1260	2630 2590 460 400 110 730 690 2770 660 920 2330 220 1300 5930 2440 2490 7520 7900	700 1400 500 400 400 39500 1100 34800 3500 2700 1700 16500 3200 700	360 500 800 800 440 800 1300 2100 420 750 1830 3100 680 90 1700 450 1330	69 68 83 71 51 65 88 71 35 26 35 38 67 88 88 92	4 3 3 1 2 7 3 5 4 3 3 2 4 4 5 5	83 51 51 65 51 92 68 26 35 88 35 11 68 83	3 1 1 25 23 33324334	71 71 68 38 68 82 83 88 38 92 71 87	1 15 23 322233333	35	1 52 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3 4 13 22211223	92 87 87 71 88 38 24 12 25	4 1 2 1 1 2 2 3	88 91 88 17 51	3 1 2 2 1 1 2 2 3	26 71 26 44 25 51 30 38 38 68	3 1 2 2 1 1 1 2 1	35 17	22 1 22 8: L 44	7 2 4 1 3 1 4 1

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

ARKANSAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

INDEX, ARKANSAS

DATE						CHLORINE	DEMAND									TOTAL	COLIFORMS
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pH	B.O.D. mg/l	G.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/i	ALKALINITY mg/l	HARDNESS mg/I	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
10 20 62 11 20 62 19 62 19 63 12 12 13 63 12 13 63 12 13 63 13 63 13 63 13 63 14 63 14 63 14 63 15 63 17 63 18 63 19 63 19 63 19 63 19 63 19 63 19 63 19 63 19 63 19 63 10 63			7.7 7.6 7.8 7.9 7.9 7.9 7.9						270 212 200 234 138 104 600 2290 2290 2250 250 250 250	146 122 122 104 104 120 122 150	324 3004 3000 3306 172 148 33404 2290 4050 3360	50555550	05555550055555555555555555555555555555	190 158 158 187 155 170 180 250 175 188 205 260 184	.0 .0 .0 .0 .0 .0 .0 .0	391 765 760 852 710 800 820 670 400 320 850 940 91010 760 830 980 1030 870	

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station at Index, Arkansas Operated by U.S. Geological Survey STATE

Arkansas

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Lower Red River below Demison

STATION LOCATION

Red River at

Index, Arkansas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	5.600	19.100	37.400	6.660	6.010							Och comes
2	8.470	16.300	29.400	6.440	5.800	2,380	4.350	37.400	2			
	14.600	14.600	27.000	5.010		3.390	3.600		3-530	3-530	3.560	2.290
3	14.600	12.700	25.800		5-600	3-900	3.390	33.900	4.050	3.900	3.560 4.880	3.210
5	12.700			4.200	4.830	3.900		27.000	3.320	3-750	5.660	3.280
7	12.100	9.920	26.400	5.400	4.500	3.460	3.060	21.200	3.120	3.900	5.860	
,					• • •	3.400	3.120	19.100	2.680	4.050		3.070
6	9.000	7.140	27.000	7.400	4.350					4.000	5.060	2.700
7	7.400	6.220	22.300	12.700	4.050	3-390	4.500	16.700	2.300	2		
8	6.900	7.400	18.100	15.400		3.900	6.440	13.800		3.320	4.340	2.120
9	7.140	7.400	15.400		3-460	4.200	6.660	9.600	2.120	3.390	4.180	1.580
10	7.140			13.400	2.800	3.900	6.220		2.120	4.050	3.860	1.340
70	1.140	7.140	13.800	9.600	2.570	4.350	5.800	7.140	2.820	3-900	2.640	1.720
	_				•		2.000	6.220	3.600	2.800	2.020	2,400
11	6.900	6.900	13.000	7.920	3.060	E 070						2.400
12	6.220	5.800	11.300	7.140	3.530	5.010	5 .20 0	6.010	3.900	2.800	0.000	0.000
13 14	10.400	4.830	9.600	6.900		7.660	4.500	5.400	4.050	2.800	2.290	2.580
14	21.200	4.500	9.920	6.440	3.530	12.300	4.200	4.830	3.900		2.940	2.640
15	27.600	3.900			3.260	11.600	5.200	4.500		2.470	3.000	2.400
-/	21.000	3.500	10.200	6.010	2.570	9.920	6.010	4.660	3.000	3.430	2.880	1.860
						, , ,	0.010	4.000	2.230	5.600	2.640	1.500
16	36.600	3.320	9.600	5.800	2.230	9.600	6 000	1				
17	35 .2 00	3.390	9.000	5.600	2.170	8.440	6.220	4.660	2.960	6.010	2.290	1.910
18	25.800	4.350	8.720	4.660	2.030		5.400	3.530	4.200	8.680	1.810	2.460
19	19.100	5.200	8.180	5.010		7.140	4.050	3.120	4.830	10.600	1.860	
2Ó	13.800	5.800	6.900		1.910	6.440	3.320	3.750	5.200	8.060		2.240
	13.000	,.000	0.900	5.600	1.850	6.010	3.000	4.200	5.200		2.340	1.620
	20 (00			4			0	,,,,,	7.20	5.080	2.020	1.300
21	10.600	6.010	5.800	6.010	1.800	5.800	3.600	4.660	1			
22	8.180	5.010	6.010	6.220	1.780	10.500	4.660		4.500	4.180	1.460	1.160
23	7.400	3.530	6.660	6.010	1.780			5.010	4.350	4.340	1.380	1.100
24	7.660	3.900	8.720	6.440	1.820	17.200	5.200	4.660	4.200	4.260	1.760	1.370
25	7.660	5.200	10.200			15.000	4.830	3.530	3.750	4.100	1.860	1.720
-,	1.000	7.200	10.200	6.010	1.950	9.600	3.750	2.800	3.320	4.100	1.860	
n¢	r 000	F (00							تبر ار	7.200	7.000	1.720
26	5.800	5.600	10.900	5.200	2.030	7.920	2.860	3.060	3.600	2 5/0		
27	5.010	6.220	10.600	5.200	1.990	13.400	3.390			3.560	2.180	1.760
28	5.400	27.600	9.600	6.440	1.990	14.200	7 960	3.390	3.750	3.140	2.240	1.760
29	8.200	53.000	8.180	7.400	** >>		7.860	3.530	3.000	4.430	2.290	1.670
9ó	11.600	50.400	6.660			10.200	25.800	3.390	2.380	5.660	2.340	1.300
). 31	18.100	JU. 400		7.660		7.400	36. <i>6</i> 00	3.600	2.570	5.060	2.400	1.240
) <u>.</u>	TO* TOO		6.440	6.900		5.600		3.530		3.860	2.070	1.50

Station Location:	Red River at Denison, Texas	ALKYL BEN	
Major Basin:	Southwest-Lower Mississippi River	Date	mg/1
•	The second of th	7-1-63	0.08
Minor Basin:	Lower Red River below Denison	7-8-63	0.05
		7-15-63	0.06
Station at:	33°49' Latitude 96°34' Longitude	7-22-63	0.06
		7-29-63	0.07
Miles above mouth:	726	8-5-63	0.07
Activation Date:	August 4, 1958	8-12-63	0.08
Sampled by:	U.S. Army Corps of Ingineers	8-19-63	0.08
		8-26-63	0.06
Field Analysis by:	Denison Water Department	9-3-63	0.04
Other Cooperating	Texas State Department of Health	9-9-63	0.04
Agencies:	ione deate separtment of featur	9-23-63	0.12
Hydrologic Data:		9-30-63	0.08
Nearest pertinent gaging station:	Ft. Denison Dam, Denison, Texas		
Gaging station operated by:	U.S. Army Corps of Engineers		
Drainage area at gaging station:	39,720 square miles with 5,936 square miles probably noncontributing		
Period of record:	1923 to present		
Average discharge in record period:	5,201 cfs.		
Maximum discharge in re	cord period: 201,000 cfs.		
Minimum discharge in re	cord period: 12 cfs.		

Remarks: Flows affected by regulation at Denison Dam.
Gaging station at various sites within 2 miles prior to October 1961.

NE ABS)

CELIVIE		12 / 11 17 12 / 0		
		Composite	Interval	
		10/1/62	4/1/63	
		to 12/31/62	to 6/30/63	
Analysis by	F	.45	.50	
wet or flame methods.	Nα	195	200	
Results in mg/l	κ	12	7.1	
	Zn	105	15	
	С٩	*10	*10	
	As	*50	*50	
Analysis	В	144	93	
Ьу	p.	*50	*49	
Spectro-	Fe	36	*20	
graphic	Мо	*10	49	
methods.	Mn	*2	*10	l
	ΑI	-	*49	l
Results	Ве	*.25	*.25	l
in	Cu	22	29	ı
micrograms	Ag	*2	*2.5	
per	Ni	*5	*10	
liter	Co	*20	*10	
	РЬ	*50	*25	
	Cr	*5	*25	
	٧	*50	*50	
	Ва	204	93	
	Sr	971	480	

ELEMENTAL ANALYSES

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+	Composite Interval	pc/l	+
October to December	5.0	.4	April to June	1	_
January to March	-	-	July to September	5.6	.5

⁺ at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration* ug/l
•		

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values. See page 21.

TEXAS

RADIOACTIVITY DETERMINATIONS

MAJOR BASIN SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

DENISON, TEXAS

. .

DATE							RADIOACT	IVITY "												4
SAMPLE	DATE DETER NATIO	OF MI			ALPHA		KADIOACI	IAIIA IV	WATER											
TAKEN			SUSPEND	DED	DISSOLVE		TOTAL				BETA					 	RADIOACTIV	ITY IN P	LANKTON	
MO. DAY YR.	MO. I	DAY	pc/l	±	pc/l	T ±	pc/l	±	SUSPEND	,	DISSOLV	ED	TOTAL			DATE OF DETERMI-		GROSS	ACTIVITY	
		İ							pc/i	±	pc/l	#	pc/I	T ±		NATION	ALPH	A	BET.	Ā
10 1 62	11	7	_	_	_	-	_	۱ ـ		١				-		MO. DAY	pc/g	±	pc/g	T ±
10 8 62			0	2	2	5	2	6	20 21	28	52		72	46		1 1				
10 15 62			-	-	-	-	-	_		29	1 54	40	43	49					1	- 1
	12 2		_	-	_	-	_	_	3	4	128	20	131	20		1			1	- 1
10 29 62			-	1 -	_	-			4	24	28	31	32	39				1		İ
	12 1		٥	2	1	4	1	4	24	28	45	37	69	46]			1	
12 31 62	1 30		С	2	2	5	ž	5	36	30	41	35	77	46						
1 28 63	2 20		٥	2	3	8	ã	8	2 5	30	29	39	31	49		1 1		1	1	
2 25 63	3 1:		C	2	12	7	12	7	13	32	51	48	56	58		1 1		ı		1
3 26 63	4 19		0	0	0	2	ōl	2	2	15	45	19	58	24		1 1		1	I	
4 29 63	5 22		٥١	0	. 5	5	5	5	0	3	48	19	50	19		1 !		1		1
5 27 63	6 17	- 1	1	3	0	5	1 /	6	16	1 6	43	36	43	36		1 1		1		1
6 24 63	7 23	- 1	0	1	0	4	ōl	4	2	14	47	19	63	24						1
7 29 63	8 19		0	0	3	5	3	5	4	4	27	52	29	52				1		ı
8 26 63	9 23		٥	1	1	5	īl	5	4	3	32	19	36	19				1		1
9 30 63	10 23	*	٥	0	0	5	õ	5	7	3 15	33	19	37	19						1
			ı	1		- 1	-]		١	15	23	37	23	40	ı			1		1
ĺ			1	- 1			J	- 1	- 1		İ	- 1								1
i			ł	- 1	į]		I		1		ŀ	- 1						
- 1			ŀ	- 1			1	- 1	i		Ì		l	- 1						1
1			ł	- 1	i		1		(- 1	1	ı	1	j		1				
İ					İ		1		Ī	i	ŀ					į.				1
f			- 1	1	1		l			- 1	1		1	i		ļ				i
ŀ		1	1	- 1]	- 1	i			l		l		1	f			i I		1
ł			1	i		- 1		í		ı		- 1	j	- 1	ı					ı
		- 1	ł	- 1	1		i		1		- 1	ļ	1	1	- 1	i		1		[
ľ		- [ļ	1	- 1						1	- 1	1	- 1	- 1	ı				1
i i				- 1	l			- 1	i	- 1	1	- 1				!				İ
i		- 1	1	1	i		1		1	-	1	- 1	- 1	- 1		1				i
1			1	- 1			ı	- 1			1				- 1	!	- 1			ĺ
1			- 1		1			- 1		J	i			- 1	- 1	- 1		1		l
Í		- 1			i			- 1		ı		ſ		İ			[- 1		
		1	}		i			1		- 1	i		i	1		į.		[
1		1	ļ	J	1		ł	1	1	- 1	i i	ı				1				
ĺ			1	- 1	1		l	- 1	1	- 1	1		1	- 1	- 1	ŀ	ł			
i					1	1	I		1		1		i		1	1				
i		ĺ	}		1		i		ł		İ		1	- 1		ł		ļ		
į		Ì					- 1	- 1	l	- 1			1	- 1		ļ			ľ	
		1	- 1		1	- 1	ľ										ļ	- 1		
ļ		1	1			ı	ļ		ĺ		ł		ŀ	- 1	-	İ		- 1		
					ł	1]		i		1		1	H	ĺ	ļ	1		[

TEXAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

DENISON. TEXAS

044

			DON	IINAN'	T SPEC	CIES O	F DIA	TOMS A	AND			l						MIC	R	10	N V	ER	т	EBR	ATE	S						
DATI OF SAMP			ERCE	NT OF	TOTA	L DIAT	OMS (See text f	or Codes		ERIA	ible)				GE	OT	AND C	S	T LEVE	L.				C R	U S ERA	AND C	OUN,	T LEVE	-		FORMS liter)
JAME		1:	ST	2	ND !	31	₹D	47	Н	CIES	I AND BACTER per ml.	entific r ml.	NUM-	15	т	21		3 R		es) 4T		5т	H	NUM-	1 st		2N		3R	D	ite	r lite
монтн Баү	YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SPECI PERCENT	FUNGI SHEATHED B	PROTOZOA (Identifiab Number per ml.	BER PER LITER	CERUS	COUNT LEVEL	GENUS	COUNT LEVEL	CENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	BER PER LITER	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	NEMATODES (Identifiable) Number per liter	OTHER ANIMAL
10 1	622662663663663663663663	38 38 38 38 38 97 82 36 38 38	83 89 71 92 485 65 73 72 61	70 26	5 6 14 3 1 37 22 16 8 22 16 4	26 71 26 71 80 80 71 64 56 82 15	41 3 2 1 8 3 4 3 1 6 4 6 5	92 70 92 92 92 92 23 32 46	3 1 1 2 3 3 2 1 3 4	663399225557712144141410	50 40 	-	82 0 0 0 0 1 23 1 0 7 93 126 0 0 0 0 0 1 0 0	22	2 2 4 4	2	1 1 1 1 1 2 7 7 4	17		1417	1	46	1	12 0 1 2 1 0 3 3 3 3 0 1 21 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0	76		50		51	2		0000000000000000000000

PLANKTON POPULATION

STATE

TEXAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

DENISON. TEXAS

DATE			A	LGAE (N	ımber p	er milliliter	-)														_								44
OF SAMPLE		BLUE-	GREEN	1		FLAGEL	LATED	DIAT	OM5	DIA	ERT TOM	-		MOS	TA	BUNI	DAN	IT AL	GΑ	E - G	nero	a and C	ount	Level pe	er ml.	(See	text jo	r Code	s)
- T			1		T T	(Pigme	ented)		OMS		LLS	1	ST	21	ĮD.	35	ΩS	4т		5T#		6т≀	- 1	7тн	1	TH	97	1	10 _{TH}
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	000000	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	- 1	COUNT LEVEL		COUNT LEVEL	GENUS	OUNT LEVEL	GENUS COUNT LEVEL		COUNT LEVEL	GENUS	COUNT LEVEL	COUNT LEVEL
10	12600 4900 1100 2000 500 2700 800 2100 500 100 300 400 200 900 500 1100 6700	1530 180 0 100 0 20 20 20 80 0 0 0 0 0 0 0 0 0 0 0 0	210 20 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0	1140 380 720 370 150 130 480 20 130 80 70 270 60 0 140 280 230	000000	1000 20 180 0 200 200 240 110 190 0 0 50 0 40 90 20	990000000000000000000000000000000000000	1080 380 110 80 70 110 130 350 40 80 00 100 90 120 0170 90	7620 3890 90 460 200 1720 0 250 80 0 250 40 200 40 200 60 60 60 60 60 60 60 60 60 60 60 60 6	00 70 110 00 00 150 70 200 0 40 20 150 20 350 0 170 130 30 30 30 30 30 30 30 30 30 30 30 30 3	450 380 400 260 310 1300 220 80 0 220 80 0 0 220 80 0 0 220 80 0 0 270 370	83 83 83 65 65 51 83	5 2 2 4 3 1 1 1 1 2	68 51 35	3 2 1	26 35	1	26	3	25	+		\top	-	-	-	40		1771

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

TEXAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

DENISON, TEXAS

												CI II ODOF	ORM EXTR	ACTABLES				
DATE OF					EX	TRACTABL	ES	<u> </u>				NEUTRALS		CIABLES		ı		
MONTH DAY YEAR	+	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10	22233333333	1 2 3 4 5 6 7 8	12 * 14 11 20	5000 5780 5630 16410 5070 5090 5350 5020 5020 5030 5050	188 214 186 197 202 223 150 170 214 217 250 186 262	58 46 67 57 318 50 58 48 729 58 117	130 168 119 140 171 165 100 112 166 143 121 128 145	2 - 2 - 4 - 1 -	14 16 - 18 - 21 - 18	17 18 19 16 17	1 2 2 - 1 0	1 - 1 - 1 1	15 15 16 13 14	111010101121		11 (5) 5 (6) (5) (7)	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 - 9 - 6 - 15 - 10

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

TEXAS

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

DENISON, TEXAS

1.1.

DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND						<u> </u>				
MONTH DAY YEAR	(Degrees Centigrade)	OXYGEN mg/l	pH	B.O.D, mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10 2 62 10 10 62 10 20 62 11 2 7 62 11 2 7 62 11 2 7 62 12 18 62 12 18 62 12 18 63 1 5 63 1 2 5 63 2 12 63 3 12 63 3 12 63 3 12 63 3 12 63 3 12 63 3 12 63 4 2 63 4 2 63 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	24.4 23.3 23.3 22.2 21.1 18.8 15.5 4.4 4.3 11.1 9.4 7.7 5.5 6.6 6.7 10.0 11.1 13.3 14.4 15.5 6.7 11.1 14.4 15.5 11.6 11.7 11.7 11.7 11.7 11.7 11.7 11.7		8.8 7.6 6.6 7.6 6.6 7.6 6.6 7.6 8.8 7.6 8.8 7.6 8.8 7.6 8.8 7.6 8.8 7.6 8.8 7.6 8.8 7.6 8.8 7.6 8.8 7.6 8.8 7.6 8.6 7.6 8.6 7.6 8.6 7.7 7.6 8.6 7.7 7.6 8.6 8.6 7.7 7.7 7.6 8.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7			mg/1	mg/1			110 108 108 112 110 110 108 108 112 108 111 106 110 112 98 98 102 98 104 102 - 108 106 106 108 110 108 110 108 108 108 108 108 108	32900 38900 3600 3600 3600 3600 3600 3600 3600 3					mg/l	200 5 200 10 220 10 5 5 3 3 5 20 5 47 37 - *3 10 - *33 10 - 50 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

TEXAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

LOWER RED RIVER BELOW DENISON

STATION LOCATION RED RIVER AT

DENISON, TEXAS

DAT OF SA				DISSOLVED				CHLORINE	DEMAND									TOTAL	
MONTH		YEAR	TEMP. (Degrees Centigrade)	OXYGEN	рΗ	B.O.D. mg/l	C.O.D. mg/l	I-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	Mg/I	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/I	COLIFORMS per 100 ml.
7 173 173 173 173 173 173 173 173 173 17	3 4 5 6 6 7 6 7 6	633333333	24.4 24.4 26.6 25.5 24.4 26.6 24.4		7.4 7.4 7.4 7.4 7.2 7.2 7.2						1111	120 122 120 122 124 112 - 110 118 114	380 385 390 394 410 400 360 380		ଜେବଟନନ । ଜେବଟ		1 1 1 1 1 1		55553

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL-SUBJECT TO REVISION

Gaging Station near Denison, Texas Operated by U.S. Army Corps of Engineers STATE

Texas

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Lower Red River below Denison

STATION LOCATION

Red River at

Denison, Texas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	.135	3.990	10.300	• 500	3.400	1.200	1.480	0.050				
2	2.770	3.690	5,960	3.300	3.500	1.000	3.580	2.250	1.500	4.400	4.920	0.000
3	2.860	1.770	4.740	3.100	3.320	• 336	3.500	3.280	.100	5.940	3-580	2.290
4	2.660	.432	4.880	2.410	.226	• 220	3.520	3.640	-200	5.980	3.700	200
5	2.760	. 666	4.880	2.770	•387	.131	3.100	2.640	7.140	6.330	4.660	1.840
					• 301	1.850	3.450	.111	11.800	7.620	5.300	4.960
6	3.510	2.930	5.150	. 348	-					1.020	•208	2.520
7	3.340	2.990	5.320	• 540	.700	1.570	4.220	-070	12.200	C 00-		
ė	2.530	2.380	4.530	.706	•694	1.370	. 341	2.560	12.200	6.080	5.510	2.480
ğ	3.190	1.910		2.420	- 548	1.490	• 300	2.680		3.760	5.860	2.730
ló	5.360	2.060	3.040	4.000	- 788	1.720	2.700	2.500	12.200	1.180	5-930	3.040
.0	7.300	2.000	3.150	4.800	.719	.160	2.240		15.000	4.790	5.780	•266
•	0.00						~* ~~~	1.940	25.800	4.780	5.660	
ı	8.960	2.640	4.630	4,200	•566	•087	2 020			•	7.000	3-420
2	10.000	2.290	4.800	3.000	4.050	2.270	3.030	1.970	37.500	4-730	2.990	1
.3	9.870	3.770	4.800	.519	3.920	2.380	2.200	.113	43.200	4.880	1 920	4.720
.4	9.960	4.130	4.700	1.150	3.550		3-140	.071	43.200	4.900	1.830	5.140
.5	9.450	4.240	4.600	2.140	2.070	2.950	3.320	.124	43,200	3.820	5.090	5.470
				E . T-10	2.070	1.870	1.100	1.360	40.800		5•360	5.620
6	9.200	4.220	3.000	4.450					70.000	-255	5.220	3.660
7	9.060	4.190	3.000		1.360	1.260	3-140	1.500	32,200			
ė	9.790	340	4.500	4.310	.419	.147	2.460	1.530	32.200	3.250	5-110	2.530
ā	8.680	• 378		3.740	. 362	.107	2.370	1.500	30.200	5.220	5.430	4.720
9	5.500	3.260	4.600	3.820	2.150	1.520	2.400		26.500	4.810	3.160	4.690
•	2.700	3.200	4.500	4.760	2.840	1.430	2.060	.200	20.600	5-060	1.660	5.020
,	0.070	2 26-					2.000	.156	20.600	5.260	5.260	5.020
1 2 3 4	2.870	3.360	4.500	4.250	2.960	1.750	0.00	_			/•200	5.130
۷.	.203	6.450	4.600	3.000	2.980		-838	1.150	20.300	2.820	F 220	1
3	3.560	9-590	3.000	3.300	3.060	1.790	- 534	.260	20.300	2.620	5.330	4.790
+	4.130	9.590	2.000	2.600	.178	•960	.204	1.280	20.300	5.010	5.270	1.900
5	3.990	9.370	.600	3.180		•095	1.620	386	19.700		5.340	•425
				J.100	.115	.611	-516	-232	13.900	5.300	5.480	4.660
5	3.980	9.150	4.600	2 210					*3.200	5.280	1.650	4.320
	3.700	8.270	4.700	3.340	2.630	1.480	· 549	.837	10.000			
}	1.080	8.710		3-400	1.540	1.190	436		10.200	4.220	•165	4.670
7 3 9	•339		4.900	3-400	2.400	1.890	2.090	.241	6.640	2.970	4.920	5.610
		9.150	5.000	3.430		1.520	.420	.581	5.320	3.760	5.130	
,	3.190	10.300	3.200	3.410		1.740		.103	5.050	2.740	4.920	6.500
•	2.620		.400	3.360		-800	2.600	.600	7-280	5.460		6.300
						• 000		2.410		6.990	5.320 5.440	3.550

VERDIGRIS RIVER AT NOWATA, OKLAHOMA

The Verdigris River begins in southeast Kansas and flows southward to its junction with the Arkansas River near Muskogee, Oklahoma. This station is located twenty miles downstream from the Kansas-Oklahoma State line. Samples are taken from the municipal water plant intake.

Three Kansas communities with a total population of 30,500 discharge a BOD population equivalent of 12,200 into this stream within 100 river miles.

Oolagah Reservoir is being constructed about 20 miles downstream so that the sampling point will eventually be in pool. Station Location:

Verdigris River at Nowata, Oklahoma

Major Basin:

Southwest-Lower Mississippi River

Minor Basin:

Verdigris River

Station at:

36°42' Latitude 95°43' Longitude

Miles above mouth:

120

Activation Date:

March 19, 1962

Sampled by:

Nowata Water Department

Field Analysis by:

Nowata Water Department U.S. Public Health Service

Other Cooperating

Oklahoma State Department of Health

Agencies:

Hydrologic Data:

Nearest pertinent

Near Lenapah, Oklahoma

gaging station:

Gaging station U.S. Army Corps of Engineers operated by:

Drainage area at gaging station:

3,639 square miles

Period of record:

1938 to present

Average discharge in record period:

2,254 cfs.

Maximum discharge in record period:

137,000 cfs.

Minimum discharge in record period:

0 cfs.

Remarks:

ALKYL BENZENE SULFONATE (ABS)

UNAI	E (Abb ,	'	L LLIVIE	•		
ate	mg/1	ſ			Composite	Interval
		-			10/1/62	4/1/63
		- 1			to 12/31/62	to 6/30/63
		Ī		F	.31	.35
		1	wet or flame methods .	Nα	36	56
			Results in mg/1	Κ	3.5	4.1
				Zn	*7	*4
				Cq	*4	*4
				As	*35	*42
			Analysis	В	39	9
			Ьу	P·	*9	*21
			Spectro-	Fe	32	21
			graphic	Мо	*4	*21
			methods.	Mn	*1.8	4.3
				ΑI	-	17
			Results	Ве	*.09	*.11
			in	Cu	4	*4
			micrograms	Ag	* .7	1.1
			per	Ni	*4	*4
			liter	Co	*7	*4
				Pb	9	*11
				Cr	2	*11
				V	*4	*21
				Ва	19	70
	1			Sr	630	247

ELEMENTAL ANALYSES

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+	Composite Interval	pc/1	+
October to December	2.5	.3	April to June	4.2	.5
January to March	_	-	July to September	_	1

[±] at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration* ug/l

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

See page 21.

^{*}Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

OKLAHOMA

MAJOR BASIN MINOR BASIN SOUTHWEST-LOWER MISSISSIPPI RIVER

RADIOACTIVITY DETERMINATIONS

VERDIGRIS RIVER

STATION LOCATION VERDIGRIS RIVER AT

NOWATA, CKLAHOMA

DATE	·					RADIOACT	IVITY IN	WATER										
SAMPLE	DATE OF DETERMI-			ALPHA				1		BETA					RADIOACTIV	TV 11. 51.		
TAKEN	NATION	SUSPEND		DISSOLVE	D	TOTAL		SUSPENE	ED	DISSOLV				DATE OF DETERMI-				
DAY YR.	MO, DAY	pc/l	±	pc/l	±	pc/l	±	pc/i	Ι±	pc/l	T #	TOTAL		NATION .	ALPH	GROSS AC		
		1 .	1		1					F-7,	-	pe/l	±	MO. DAY	pc/g	<u> </u>	BETA	
	11 15	0	3	0	1	0	3	63	70	18	7	0.5				+	pc/g	4
	11 14	1	2	0	1	1	2	25	14	17	a	81	70	1 1				
	12 17	1	1	0	2	1	2	24	9	36	11	42	16	1 1		1 1		
	11 21	1	1	1	2	2	2	3	11	33	15	60	14	1 1		1 1		1
29 62		0	1	1	1	1	1	9	5	23	8	36	19			1 1		
	12 27	0	1	1	2	1	2	2	12	25	16	32	9	1 1				
	12 28	1	1	4	4	5	4	4	12	36	17	27	20					
	12 6	0	1	2	3	2	3	10	11	65	, ,	40	21	1 1		1 1		
	12 18	0	1	1	2	1	2	22	12	63	16	75	19	1 1		1 1		ı
3 62	1 7	0	1	1	2	1	2	40	5	63	18	85	22			1 1		1
10 62	1 3]	S	1	0	0	ō	1	6	6	41	6	103	8					
17 62	1 10	1	1	0	1	ī	ī	Ĭ	12	34	11	47	13	1 1				
24 62	1 14	1	1 1	1	2	2	2	34	6	57	18	35	22	1 1		1		1
31 62	1 14	0	1	2	3	2	3	12	6	37	8	91	10			1 1		
7 63	1 24	35	17	1	1	36	17	238	90		9	49	11	1 1				
14 63	1 24	2	2	1	2	3	3	32	15	39	15	277	102	1 1		1 1		
21 63	2 1	٥	1	ō	3	ől	3	5	10	43	17	75	23	1 1		1 1		1
28 63	2 11	c	1	o i	i	ő	ī	-		34	15	39	18	1 1				1
4 63	2 18	0	1	2	3	2	3	4 5	6	37	9	4.1	11	1 1				
11 63	2 26	1	ī	1	2	2	2	-	6	37	9	42	11	1 1		1 1		
25 63	3 11	i	1	ō	î	1	1	7	15	28	18	35	23	}				
4 63	3 20	ãl	2	2	3	2		15	10	71	17	86	20					
11 63	3 25	44	24	1	2	45	3	6	23	60	29	66	37					1
18 63	4 1	2	2	2	2		24	393	57	46	9	439	58					1
25 63	4 10	2	2	7	4	4 9	2	86	- 8	47	8	133	11					
29 63	5 31*	ī	1	5	3	1	4	9	12	59	17	68	21					
27 63	6 25*	اة	2	I		6	3	18	7	39	10	57	12					1
	8 6#	2	2	0	2	0	3	6	23	51	26	57	35					1
	8 23*	6		- 1	1	2	2	56	15	47	16	103	22					1
		ان	1	1	2	1]	2	21	7	34	16	55	17	1 1				1
20 03 11	0 4*	١٠	0	1	2	1	2	9	5	51	16	60	17	1 1		1		1
1	i	}	ļ					i	- 1			- 1	-	1 1				l
	- 1			f				1		ł		ļ	1	1 1				
		}		ļ		-	- 1					İ						
1			1		- 1		- 1	i		- 1	- 1		- 1	1 1	i			
i		1	1	ı		- 1		- 1	ı		ł	ł						l
	1	ļ			- 1			ŀ		ļ	- 1	1		i i	l	- 1		1
			- 1	İ				ļ	- 1			1	- 1					ĺ
ļ		ĺ	- 1	}		ļ		j	l	ļ	l		- 1		l	J		
]	İ	- 1	i				- 1	1				1			1			ĺ
j]	1]			i				l			- 1		İ			1
1	1		- 1	1								i	- 1	1	- 1		1	1

STATE

OKLAHOMA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

VERDIGRIS RIVER

STATION LOCATION VERDIGRIS RIVER AT

NOWATA, OKLAHOMA

				TOME AND								M]	CR	0 1 1	V V	ER.	ΓE	BRA	TE	s				,	
DATE	DOM PERCEN	INANT SPEC	L DIATOMS (See text for Codes	,	ERIA	ble.			G	ROT	IFE.	COUN	T LEVE	L		-	Т	GEN	ERA (Se	TACEA AND COU text for Co	NT LE	EVEL	1	RMS r.)
SAMPLE	1 sT	2 _{ND}	3RD	4тн	SIES.	AND BACTE per mi.	ntifia . ml.		1 ST		2ND		RD	4TI		5тн	\dashv $_{\scriptscriptstyle \sf N}$	лом- -	1st	- 1	2 _{ND}		BRD	iller liter	r lite
MONTH DAY YEAR	SPECIES PERCENT	SPECIES	SPECIES	SPECIES PERCENT	OTHER SPECI PERCENT	FUNGI A SHEATHED B Number pe	PROTOZOA (Identifiable) Number per ml.	NUM- BER PER LITER	GENUS COUNT LEVEL		LEVEL		COUNT LEVEL	9 2 2 3 3 3	COUNT LEVEL	GENUS	품 품	BER PER .ITER	GENUS	COUNT LEVEL	GENUS		COUNT LEVEL	NEMATOBE (Identifiabl Number per	OTHER ANIMAL FORMS (Number per liter)
10	92 12 28 27 97 52 26 29 92 69 27 22 86 66 91 40 92 24 80 38 82 49 82 49 82 67 26 86 26 70	36 11 32 26 38 57 24 82 15 33 86 18 58 12 26 38 58 26 18 58 26 4 82 13	71 7 80 14 57 3 22 26 3 57 12 71 3 93 10 71 7 58 9 89 10 80 2 56 3 56 5	26 6 92 6 80 10 71 2 58 11 51 3 36 7 26 8 26 8 40 1 2 2 64 1 2 2 64 7 2 2	64 38 51 11 12 40 25 13 22 11 10 45 10			2 0 0 15 21 10 2 30000		2 3	11 1 1 2 1 2 2 1 2 2 1 2	2	2 5	17	5	15	3	01001000116663	500 777 50	2				000000000000000000000000000000000000000	0 0 0 0 0 0 0 0

STATE

OKLAHOMA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

VERDIGRIS RIVER

STATION LOCATION VERDIGRIS RIVER AT

NOWATA, OKLAHOMA

α	TAC	E			Al	_GAE (Num	ber pe	r milliliter) -			INE	RT	Γ	N	10ST	ABU	NDA	NT AI	GAI	- Ge	nera an	d Cou	nt Lev	el Der	ml. (S	See te:	st for	Codes	A	
SA	OF	LE		BLUE-	GREEN	GREEN	٧	FLAGEL (Pigme	LATED ented)	DIATO	омѕ	DIAT	OM	1 s	- 1	2n	- 1	BRD	41	- 1	5тн	- ī -	TH	7:		8ті	-	9ті		10	тн
MONTH	DAY	YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	COUNT LEVEL	GENUS	COURT LEVEL	GENUS	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL
10 1 11 1 1 1 1 2 1 2 1 1 2 2 1 3 3 1 4 4 1 5 5 6 6 1 8 8 1 9 9 1	2 15 15 17 2 18 18 18 11 15 16 16 13 16 13 16 13 16 16 16 16 16 16 16 16 16 16 16 16 16	622222333333333333333333333333333333333	100 900 52400 11100 2100 1300 100 400 3500 19200 700 12400 5700 8500 1400 2300 900 2800 4000 3700 5900 4100	0 0 120 270 0 0 0 0 40 20 20 0 0 80 60 160 360	50 0 40 0 0 0	0 40 660 410 120 120 0 20 450 0 90 450 750 130 400 290 380 500 290 380 500	0000000000000000000000	20 120 290 4680 790 330 1280 270 1120 90 60 1040 850 870 1530	80 210 480 0 0 0 1640 * 1210 1320 70 180 60 40 80 130 50	10 330 50300 5110 660 240 90 70 990 2560 6270 970 1530 2340 2140 2140 2120	200 3300 7900 1700 1280 1100 2030 5100 2400 8800 3100 400 2700 1120 2700 900 1100 520	60 80 1700 1040 120 0 70 40 230 1190 270 420 500 270 1220 800 540 830	270 370 180 170 40 20 270 70	68 69 57 92 59 59 64	18533 147 5443 423335	68 71 68 51 52 68 63 71 71 24 34	8 7 6 6 6 6 8 9 9 6 9 6 9 6 9 6 9 6 9 6 9 6	1 4 8 4 9 1 6 1	92 69 51 71 68 65	3 3 1 2	51 60 91 51 69 51	1 88 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 1 2	40 3	1 1 2		1	91			

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

OKLAHOMA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

VERDIGRIS RIVER

STATION LOCATION VERDIGRIS RIVER AT

NOWATA, OKLAHOMA

														ORM EXTR	ACTABLES				
	DATE		MPLE			E)	TRACTABL	.ES			····		NEUTRALS		CIABLES				
HTNOM	DAY	YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 11 12 1 3 4 5 6 7 7 8 9	6 6 22 6 6 1 1 1	622333333333333333333333333333333333333	11 12 2 3 4 5 6 7	20 16 14 14 21 19 9 8 10 9	5250 5770 50770 48650 43125 51255 51250 37400 500	120 212 183 183 236 184 212 127 238 188 199	32 70 88 45 136 77 85 49 137 67 89	88 142 95 138 100 107 127 78 101 121 110	01314221672	8 19 27 10 39 17 11 37 18	147 202 329 395 140 3	0112213-2	1 1 1 3 2 2 2 1 4 - 2	23 18 16 28 24 29 15 33	12001322200-2	4 8 11 4 15 11 13 7 22 13	14824553519	13323231213	4 8 16 4 26 9 10 7 15 9

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

OKLAHOMA

MAJOR BASIN

SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

VERDIGRIS RIVER

STATION LOCATION VERDIGRIS RIVER AT

NOWATA, OKLAHOMA

	T	· · · · · ·	Γ											OKLANO			109
DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND							T		i	1
DAY YEAR	(Degress Centigrade)	OXYGEN mg/l	рH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/I	COLIFORMS per 100 ml.
10	-	2.7 - 2.66 5.17 - 3.80 11.45 9.47 13.81 16.1 - 5.29 9.66 9.7 8.11 7.66 - 9.7 8.10 7.99 5.66	7.77.78.88.23.96 - 8.91.97.88.97.88.97.88.97.88.97.88.98.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.19.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.89.28.18.78.28.18.78.28.18.78.28.18.29.28.18.29.28.29.28.29.28.29.28.29.28.29.28.29.28.29.28.29.28.29.28.29.28.29.28.29.29.29.29.29.29.29.29.29.29.29.29.29.					1.42.933.44.30.17.00.00.2.2.00.0	20 35 50 753 	88 116 152 172 180 - 196 200 190 198 164 198 132 224 220 224 220 218 240 204 192 160 136 188 176 204 212 192	108 140 188 216 240 252 256 256 225 268 272 180 268 272 268 372 310 288 292 288 292 240 212 232 240 240 217 217 218 217 218 218 218 218 218 218 218 218 218 218	25 20 10 5 10 5 5 15 15 10 15 5 10 10 10 10 10 10 10 10 10 10 10 10 10	3725 *255	20 23 34 38 41 46 46 46 46 46 46 46 46 46 46	.00 .00 .00 .01 .00 .11 .00 .00 .00 .00	165 238 294 352 390 426 430 429 430 420 470 335 420 415 510 515 470 465 500 574 390 460 410 420 440 530 280	21000 300 900 170 260 50 9500 - 10000 2000 760 50 1000 100 3400 1100 - 50 100 190 50 150000 3500 900 2600 500 1300 700 900 1000 1000 2000 2000 2000 1000 100

OKLAHOMA

MAJOR BASIN

ASIN SOUTHWEST-LOWER MISSISSIPPI RIVER

MINOR BASIN

VERDIGRIS RIVER

STATION LOCATION VERDIGRIS RIVER AT

NOWATA, OKLAHOMA

109

DATE					MITROGEN mg/l 1-HOUR 24-HOUR mg/l	CHLORINE DEMAND										TOTAL	
DAY PEAR YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/1		PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 mi.									
6 10 63 6 17 63 7 1 8 63 7 15 63 7 122 63 8 11 63 8 19 63 8 19 63 8 19 63 9 16 63 9 16 63 9 9 16 63 9 9 16 63	25.0 26.5 31.0 28.0 31.0 26.0 31.0 27.0 27.0	10.1 3.2 5.3 7.1 6.8 6.6 6.6 4.4 10.1 4.8 8.1 8.0 8.8 8.4 6.4 6.4 8.0	8 · 6 · 8 · 9 · 4 · 4 · 4 · 8 · 9 · 8 · 8 · 8 · 4 · 4 · 8 · 9 · 9 · 9 · 9 · 9 · 9 · 9 · 9 · 9					.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	75 105 55 50 110 200 120 120 130 110 150 174	100 100 104 120 110 120 124	180 240 120 210 200 2790 180 168 188 200 220 220	5 5 5 0 0 0 5	*20555525555555 **2***1********************	21 30 40 40 45 43 33 563 443 43 47 50	000000000000000000000000000000000000000	280 350 370 390 380 510 270 460 410 380 480 520 550	4300 320 100 100 *11 1200 *11 400 400 400 350

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Lenapah, Oklahoma Data Supplied by U.S. Army Corps of Engineers STATE

Oklahoma

MAJOR BASIN

Southwest-Lower Mississippi River

MINOR BASIN

Verdigris River

STATION LOCATION

Verdigris River at

Novata, Oklahoma

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	15.800	. 358	1.960	• 373	.303	.220	.639	.102	.403	.155	.062	.028
2	12.600	.306	1.700	.403	.293	.240	.616	.122	.251	.114	.062	.024
3	5.780	- 358	1.300	. 388	.298	.242	• 550	.139	.168	.080	.058	.022
3 4	5.310	.301	•999	.513	.303	1.310	.490	.101	.115	.058	.050	.032
5	4.860	.242	•793	3.380	. 344	1.920	.419	.124	•081	.044	.044	.032
6	3.910	.218	.663	7.590	•373	1.190	-373	.161	.067	.036	.043	.030
7	2.730	.197	.616	7 .68 0	.490	1.440	. 358	.15 5	.058	.030	.194	.023
8	1.550	.180	• 593	4.230	•6 3 9	1.770	. 358	.144	.052	.023	.168	.023
9	1.260	.170	. 471	3.820	.616	1.730	• 331	.168	.050	.020	.075	.026
10	1.190	.159	• 373	3-570	•639	5.880	.321	.202	.048	.017	.056	.028
Ll	1.090	.153	. 344	2.980	.616	6.080	.308	.202	.046	.024	.194	.027
12	.766	.155	. 324	2.100	-571	4.600	.306	.168	.039	.029	.141	.025
L3	.529	.157	.306	1.300	.471	4.690	.296	.137	.032	.038	.102	.022
<u> 4</u>	.471	.150	.291	.800	.571	4.860	.264	.114	.028	.040	.193	.021
L 5	.571	.141	.283	. 616	• 509	5.040	.248	.087	.026	.044	.220	.020
16	•593 •471	.141	. 301	. 529	.388	4.600	.246	.072	.079	.056	.106	.018
.7	.471	.143	. 303	- 593	. 331	2.860	.246	.063	1.930	.058	.068	.017
.8	.403	.159	. 306	• <i>5</i> 93	.316	1.480	.248	.057	1.150	.050	.056	.016
19 20	•373	.170	. 308	. 540	.286	1.580	.262	.052	.550	.041	.054	.015
20	. 358	.178	1.170	- 520	.301	1.660	.264	.050	.713	.034	.053	.014
21 22	.306	.182	.639	. 560	.298	1.400	.240	.047	1.130	.031	.079	.013
2	.281	.199	.571	.580	.267	1.130	.226	.045	1.220	.027	.083	.016
23	.269	.189	.550	. 520	.271	.821	.197	.043	1.620	.025	.067	.026
23 24	.264	.182	.529	- 450	.274	.639	.184	.042	1.480	.023	.056	.031
25	.257	.174	.529 .471	.400	.274	. 550	.172	.041	1.260	.021	.046	.029
26	.246	.209	.419	. 388	.240	.509	.155	.048	1.190	.020	.040	.030
27	.246	.843	- 373	- 373	.222	- 550	.143	•735	1.090	.981	.032	.030
27 28	.240	1.780	• 373	• 373	.216	.571	.136	1.800	.968	.476	.031	.031
9	.240	2.100	. 388	. 358		•571	.124	•970	.490	.189	.033	.032
X O	.255	1.970	. 358	. 331		- 571	.112	1.020	.235	.120	.031	.032
31.	.264		. 331	.313		• 593		.713		.075	.032	

