Ejercicios

1. El modelo de Volterra-Lotka estudia la evolución de un sistema formado por dos poblaciones una de depredadores y otra de presas que conforman un ecosistema cerrado.

$$\dot{x}_1 = ax_1 - cx_1x_2$$

 $\dot{x}_2 = -bx_2 + dx_1x_2$
 $a, b, c, d \in \mathbb{R}^+$,

donde x_1 representa la población de presas; x_2 la de depredadores; a la tasa de nacimiento de las presas, que es función de la cantidad de alimento que reciben; b es la tasa de defunción de los depredadores; c y d modelan la interacción entre los depredadores y las presas.

- a) Simular el modelo de Volterra-Lotka para parámetros fijos, por ejemplo a=b=c=d=1. Emplear para ello tanta Matlab como Simulink. Emplear distintas condiciones iniciales. Obtener tanto un gráfico de la evolución temporal de los estados como el diagrama de fases.
- b) Modificar el modelo, de modo que el parámetro a pase a ser un una función periódica $a = \frac{a_0}{2}\sin(\omega t) + \frac{a_0}{2}$. Estudiar el efecto de la frecuencia en el modelo.
- 2. El modelo de Lorenz, fue propuesto en 1963 por Edward Lorenz como un modelo simplificado de convección atmosférica.

$$\dot{x}_1 = \sigma(x_2 - x_1)$$

$$\dot{x}_2 = x_1(\rho - x_3) - x_2$$

$$\dot{x}_3 = x_1x_2 - \beta x_3$$

$$\sigma, \rho, \beta \in \mathbb{R}^+$$

Para los valores $\sigma=10,\ \beta=8/3, \rho=28$ el sistema exhibe soluciones caóticas; para casi todas las condiciones iniciales el sistema converge a un conjunto invariante conocido con el nombre de Atractor de Lorentz.

- a) Utilizar tanto Matlab como Simulink para simular el modelo de Lorenz. Emplear para ello los parámetros indicados más arriba.
- b) Comprobar mediante simulación, que para $\rho < 1$, el sistema converge a su único punto de equilibrio. Para $\rho = 1$ el sistema sufre una bifurcación de horquilla, Obtener los puntos de equilibrio del sistema y comprobarlo.
- 3. La siguiente ecuación diferencial, define un modelo lineal, conocido a veces como el modelo Masa-Muelle-Amortiguador,

$$m\ddot{y} + c\dot{y} + ky = F(t),$$

donde y es la posición del sistema, m representa la masa, c es un coeficiente de amortiguamiento, y k es una constante recuperadora, F(t) representa una fuerza externa. El modelo es genérico en el sentido de que reproduce el símil mecánico de sistemas de muy diverso tipo.

- a) Obtener el modelo equivalente en variable de estados, de modo que una variable de estado sea la posición del sistema y y la otra la velocidad \dot{y}
- b) Simular el modelo para valores $m=2.5Kg,\ c=0.6Ns/m$ y k=0.4N/m, empelando Matlab. Considerar los siguientes casos,

- c) La señal de entrada F es nula. Probar para distintos valores de las condiciones iniciales: y(0) = 1, $\dot{y}(0) = 0$; y(0) = 0, $\dot{y}(0) = 1$; y(0) = 1, $\dot{y}(0) = 1$. Representar la evolución temporal de los estado durante un intervalo de 50s.
- d) La señal de entrada es una fuerza constante de 1N.
- e) La señal de entrada es una sinusoide de frecuencia 0.1rad/s. Representar en un mismo gráfico la evolución temporal de la señal de entrada y de la señal de salida en un intervalo de 200s. ¿Qué desfase se observa entre la entrada y la salida para un tiempo mayor a 50s? ¿Está estabilizada la señal de salida?
- f) repetir el apartado 3e), para señales sinusoidales de frecuencias, 0.4rad/s y 1rad/s ¿Cuánto tarda en estabilizarse la señal en estos casos? ¿Qué conclusión se puede extraer del análisis de los resultados de estos dos últimos ejercicios?
- 4. Empleando las ecuaciones 2.35 y 2.36 para el modelo de un péndulo invertido sin par externo,
 - a) Linealizar el sistema en torno al punto de equilibrio $\theta = \pi$.
 - b) simular mediante matlab tanto el sistema original como el linealizado. Emplear para ello m=g=l=b=1. Considerar como condiciones iniciales para X_1 distintos ángulos cada vez más alejados de π y p $x_2=0$ en todos los casos. Representar en un mismo gráfico la evolución temporal de x_1 para el sistema original y el linealizado. Discutir la validez de la aproximación lineal en función del las condiciones iniciales empleadas.
- 5. Dado el sistema,

$$\dot{x}_1 = -x_1(1 - x_1^2 - x_2^2) + x_2$$
$$\dot{x}_2 = -x_2(1 - x_1^2 - x_2^2) - x_1$$

- a) Obtener un diagrama de fases del sistema, empleando para ello Matlab. Comprobar gráficamente que el círculo $x_1^2 + x_2^2 = 1$ marca el límite de la región de estabilidad del punto de equilibrio del sistema (0,0). Pista: una manera clara de obtener el resultado es integrar para un intervalo de tiempo negativo, en ese caso, el límite de estabilidad se convierte en un ciclo límite.
- b) Comprobar que el resultado de integrar el sistema para un tiempo negativo es idéntico a obtener las soluciones del sistema presentado en el ejemplo 2.4.7, tomando $\mu = 1$.