Simulated events and rate results, along with input configurations, are systematically archived for easy access and future analysis. Additionally, all interpolators used in the process are preserved for future applications.

Equations

Detectable Unlensed rates:

$$R_{U} = \int dz_{s} \frac{dV_{c}}{dz_{s}} \frac{R_{m}(z_{s})}{1 + z_{s}} \left\{ \Theta[\rho(z_{s}, \theta) - \rho_{th}] P(\theta) d\theta \right\}$$

 z_s : GW source redshift, $\frac{dV_c}{dz_s}$: Differential co-moving volume, $\frac{1}{1+z_s}$: Time dilation correction factor, $R_m(z_s)$: source frame merger rate density, θ : GW source parameters, P: probability distribution, ρ : SNR, ρ_{th} : SNR threshold, Θ : Heaviside function to select detectable GW events.

Detectable Lensed rates:

$$R_{L} = \int dz_{s} \frac{dV_{c}}{dz_{s}} \tau(z_{s}) \frac{R_{m}(z_{s})}{1 + z_{s}} \mathcal{O}_{images}(z_{s}, \theta, \mu_{i}, \Delta t_{i}, \rho_{th})$$
$$P(\theta)P(\theta_{L}|\mathsf{SL}, z_{s})P(\beta|\mathsf{SL})d\theta d\beta d\theta_{L}dz_{s}$$

 $\tau(z_s)$: Optical-depth of strong lensing, θ_L : lens parameters, β : source position, μ : image magnification, Δt : image time delay, \mathcal{O} : operator to select decretable lensed GW events, i: index of images of a lensed event, SL: strong lensing condition.

Acknowledgements

The authors express their sincere appreciation for the significant contributions that have been instrumental in completing this research. Special thanks are extended to the academic advisors for their invaluable guidance and steadfast support. The collaborative efforts and enriching discussions with research colleagues significantly enhanced the study's quality. Acknowledgement is given to the Department of Physics, The Chinese University of Hong Kong, for the Postgraduate Studentship that facilitated this research. Further gratitude is extended to the Netherlands Organisation for Scientific Research (NWO) for their support. The authors also recognize the contributions of individuals who added empirical depth to this work. Appreciation is conveyed for the computational resources provided by the LIGO Laboratory, supported by National Science Foundation Grants No. PHY-0757058 and No. PHY-0823459.

References

[]ref-Janquart2023 Janquart, J, M Wright, S Goyal, J C L Chan, A Ganguly, Á Garrón, D Keitel, et al. 2023. "Follow-up Analyses to the O3 LIGO-Virgo-KAGRA Lensing Searches." *Monthly Notices of the Royal Astronomical Society* 526 (3): 3832–60. https://doi.org/10.1093/mnras/stad2909.

Wempe, Ewoud, Léon V. E. Koopmans, A. Renske A. C. Wierda, Otto Akseli Hannuksela, Alberto Agnello, Cyril Bonvin, Bendetta Bucciarelli, et al. 2022. "A Lensing Multi-Messenger Channel: Combining LIGO-Virgo-Kagra Lensed Gravitational-Wave Measurements with Euclid Observations." https://arxiv.org/abs/2204.08732.

Wierda, A. Renske A. C., Ewoud Wempe, Otto A. Hannuksela, Léon V. E. Koopmans, Alberto Agnello, Cyril Bonvin, Bendetta Bucciarelli, et al. 2021. "Beyond the Detector Horizon: Forecasting Gravitational-Wave Strong Lensing." *The Astrophysical Journal* 921 (1): 154. https://doi.org/10.3847/1538-4357/ac1bb4.