ECS659U/P/7026P Coursework – The problem

The Problem

- CIFAR-10 classification
 - Dataset is readily available online
- Classify every image in terms of 1 out of 10 classes
- Standard task for lectures & labs
- You will build a model on the training set & evaluate it on the test set

ECS659U/P/7026P Coursework – Your Task

Your Task

- Implement a specific model to solve the proble
 - If you solve it using your own model (some other model) you will get no marks
- Implement the training pipeline to train the model
- Explore techniques from weeks 5-8, and from external resources
- Goal is to get the highest possible accuracy

Specific Note

- This is an individual assignment
- No collaboration is allowed
- Do not use public slack module channels to ask a question
- Contact us in person

ECS659U/P/7026P Coursework – Deliverables

Deliverables

They are detailed in the CW sheet.

ECS659U/P/7026P Coursework – The Model

The Model

- An architecture to process images based on Convolutional Neural Networks
- Model architecture consists of Backbone (B_1, \ldots, B_N) and Classifier

ECS659U/P/7026P Coursework – The Backbone

The Backbone

- ullet Consists of N Blocks. The basic (minimum) implementation for each block consists of:
 - 1 Linear/MLP layer predicting a vector $a = [a_1, ..., a_K]$ with K elements from input tensor X:
 - $\circ a = g(\operatorname{SpatialAveragePool}(X)W)$, where g is a non-linear activation function
 - \circ SpatialAveragePool(X) calculates the spatial average **per channel** returning a vector of d channels
 - K Conv layers which are combined using a to produce a single output: $O = a_1 Conv_1(X) + \cdots + a_K Conv_K(X)$
- Other components can be added based on Weeks 5-8!!

ECS659U/P/7026P Coursework – The Classifier

The Classifier

- Takes as input the output of the last block
- It computes a mean feature $f = \operatorname{SpatialAveragePool}(O_N)$, O_N here is the output of the N_{th} block
- It passes *f* to a classifier
 - can be a softmax regression classifier, or an MLP
 - check also weeks 5-8

ECS659U/P/7026P Coursework – Assessment

Assessment

- 1. Read dataset and create dataloaders: 5%.
- 2. Create the model: 40%.
- 3. Create the loss and optimizer: 5%.
- 4. Write the training script to train the model. Provide in the report: 30%
 - the curves for the evolution of loss
 - the curves for the evolution of training and validation (test) accuracies.
 - all training details including hyper-parameters used.
- 5. Final model accuracy on CIFAR-10 Validation Set:
 - acc >95%: 20%
 - 85 < acc < 95% : 15%
 - 80 < acc< 85%: 10%
 - 70 < acc< 80% : 5%
 - acc < 70% : 0%