We have also carried out 113 opw Prague-type and Paris-type band calculations for silicon, and published some preliminary empirically adjusted solutions [7, 8]. Unfortunately, the only well-established interband transition energy, from the experimental point of view-including the exact location in the reduced zone of the initial and final energy levels—is the indirect band gap, $\Delta_1^m - \Gamma_{25'}$, as was also the case a year ago [7, 8]. (The paper by Dresselhaus and Dresselhaus [5] contains a comprehensive review of the present state of our experimental knowledge of the band structure of silicon and germanium.) In Figure 9 we show the outcome of an empirically adjusted 113 opw Prague-type band calculation for silicon, also based on a three-parameter adjustment scheme $[\Delta v(111), \Delta v(220),$ and $\Delta v(311)$]. In the present instance, the indirect band gap was set equal to its experimental value in the $E^*(\text{EXPT})$ scheme $(\Delta_1^m - \Gamma_{25'} = 1.13 \text{ eV})$; $L_1 - L_{3'}$ was set equal to our best present estimate, 3.4 eV; and $\Gamma_{2'}-\Gamma_{25'}$ was set equal to 4.05 ± 0.1 eV, which is the value quoted by Cardona, Shaklee, and Pollak [79] on the basis of their electroreflectivity measurements. (This value was obtained by following the direct band gap in the germanium-silicon alloy system from pure

Figure 9. Energy band structure of silicon (spin-orbit splitting neglected).