- Data Science Roles
- Business Person
- The Programmer
- The Enterprise
- The Web Company
- Data Cleaning and Quality
- Data Cleaning
 - · Missing data
 - Entity resolution
 - · unit mismatch
- Dealing with Dirty Data Statistician view
 - · process that produces data
 - distortion some samples are corrupted by a process
 - Selection Bias likelihood of a sample depends on its value
 - Left and Right Censorship users come and go from our scrutiny
 - Dependence samples are supported to be independent, but are not (ex: social networks)
 - · Add new models for each type of imperfection
 - cannot model everything
 - what's the best trade-off between accuracy and simplicity
- Dirty Data Database View
 - results are absolute (relational model)
 - · improving the quality of the values in the dataset
- Dirty Data Expert View
 - The data doesn't look right
 - Domain experts have implicit model of the data that they can test again...
- Dirty Data Data Scientist
 - · combination of all of the above
- Data Quality Problems
 - (Source) Data is dirty on its own
 - · transformation corrupt data
 - · clean datasets screwed up by integration
 - "Rare" errors can become frequent after transformation/integration
 - Clean datasets can suffer "bit rot": data loses value/accuracy over time
 - Any combination of the above
- Where does Dirty Data Come from?
 - · extract transform load process
- Dirty Data Problems
 - Parsing text into fields
 - · Naming conventions
 - · Missing required field
 - · Primary key violation
 - Licensing/Privacy issues prevent use of the data as you would like
 - · Different representations
 - Fields too long
 - · Redundant Records
 - Formatting issues especially dates
- The meaning of Data Quality
 - Data Interpretation

- data is useless unless we know all the rules behind it
- · Data Suitability
 - can you get answer from available data
 - use of proxy data
 - · relevant data is missing
- Data Quality Continuum
 - · Data and information are not static
 - · Flows in a data collection and usage process
 - Data gathering
 - data delivery
 - data storage
 - data integration
 - data retrieval
 - data mining/analysis
- Data Acquisition and Usage
- Data Gathering
 - Experimentation, observation, and collection
 - · Sources of problem
 - manual entry
 - approximations, surrogates SW/HW constraints
 - No uniform standards for content and formats
 - Parallel data entry (duplicates)
 - Measurement or sensor errors
- Data Gather Potential Solutions
 - Preemptive:
 - Process architecture (build in integrity checks)
 - Process management (reward accurate data entry, sharing, stewards)
 - Retrospective
 - cleaning focus (duplicate removal, merge/purge, name/addr matching, field value standardization)
 - Diagnostic focus (automated detection of glitches)
- Data Delivery
 - · Destroying/mutilating information by bad pre-processing
 - inappropriate aggregation
 - NULLs converted to default values
 - · Loss of data:
 - Buffer overflows
 - Transmission problems
 - No checks
- Data Delivery Potential Solutions
 - Build reliable transmission protocols: use a relay server
 - · Verification: checksums, verification parser
 - Do the uploaded files fit an expected pattern?
 - · Relationships
 - Dependencies between data streams and processing steps?
 - · Interface agreements
 - Data quality commitment from data supplier
- Data Storage
 - · physical storage

- potential issue but storage is cheap
- · problems in logic
 - Poor metadata:
 - Data feeds derived from programs or legacy sources what does it mean?
 - Inappropriate data models
 - · Missing timestamps, incorrect normalization, etc
 - Ad-hoc modifications
 - Structure the data to fit the GUI
 - Hardware / software constraints
 - Data transmission via Excel spreadsheets, Y2K
- Data Storage Potential Solutions
 - · Metadata: document and publish data specifications
 - Planning: assume that everything bad will happen
 - can be very difficult to anticipate all problems
 - Dat exploration
 - use data browsing and data mining tools to examine the data
 - does it meet the specifications you assumed?
 - · has something changed?
- Data Retrieval
 - · Exported data sets are often a view of the actual data
 - problems occur because:
 - · source data or need for derived data not properly understood
 - just plain mistakes: inner join vs. outer join, not understanding NULL values
 - Computational constraints: Full history too expensive
 - supply limited snapshot instead
- Data Mining and Analysis
 - Problems in the analysis
 - Scale and performance
 - Confidence bounds?
 - Black boxes and dart boards
 - Attachment to models
 - Insufficient domain expertise
 - Casual empiricism (use arbitrary number to support a pre-conception)
- Retrieval and Mining Potential Solutions
 - Data exploration
 - Determine which models and techniques are appropriate
 - Find data bugs
 - Develop domain expertise
 - Continuous analysis
 - are the results stable? How do they change?
 - Accountability
 - make the analysis part of the feedback loop
- Data Quality Constraints and Data Integration
- Data quality constraints
 - · Capture many data quality problems using schema's static constraints
 - NULLs not allowed, field domains, foreign key constraints, etc
 - · Many other quality problems are due to problems in workflow
 - Can be captured by dynamic constraints
 - E.g. orders above 200 are processed by biller 2

- The constraints follow an 80-20 rule
 - a few constraints capture most cases
 - thousands of constraints to capture the last few cases
- Constraints are measurable data quality metrics?
- Data Quality Metrics
 - · We want a measurable quantity
 - indicates what is wrong and how to improve
 - Realize that DQ is messy problem, no set of numbers will be perfect
 - · Metrics should be directionally correct with improvement in data use
 - · Types of metrics
 - static vs. dynamic constraints
 - operational vs. diagnostic
- Examples of Data Quality Metrics
 - Conformance to schema: evaluate constraints on a snapshot
 - Conformance to business rules: evaluate constraints on DB changes
 - Accuracy: perform expensive inventory or track complaints (proxy)
 - audit samples
 - · accessibility
 - interpretability
 - · glitches in analysis
 - · successful completion of end-to-end process
- Technical approaches
 - multi-disciplinary approach to attack data quality problems
 - no one approach solves all the problems
 - · process management: ensure proper procedures
 - statistics: focus on analysis find an repair anomalies in data
 - database: focus on relationships ensure consistency
 - metadata / domain expertise
 - what does the data mean? how to interpret?
- Data Integration
 - combine data sets (acquisitions, across departments)
 - · common source of problems
 - Heterogeneous data: no common key, different field formats
 - approximate matching
 - Different definitions: what is a customer account, individual, family?
 - Time synchronization
 - does the data relate to the same time periods?
 - are the time windows compatible?
 - Legacy data: spreadsheets, ad-hoc structures
- Duplicate Record Detection
 - Resolve multiple different entries:
 - entity resolution, reference reconciliation, object ID/consolidation
 - · Remove duplicates: Merge/purge
 - · Record Linking (across data sources)
 - Approximate Match (accept fizziness)
 - House holding (special case)
 - different people in same house?
- Processing/Standardization
 - convert to canonical form

- example: mailing addresses
- More Sophisticated Techniques
 - · Use evidence from multiple fields
 - Positive and Negative instances are possible
 - Use evidence from linkage pattern with other records
 - · clustering-based approaches
- Lots of Additional problems
 - Examples
 - address vs number, street ...
 - units
 - differing constraints
 - multiple versions and schema evolution
 - other metadata
- Data Integration Solutions
 - Commercial Tools
 - Significant body of research in data integration
 - many tools for address matching, schema mapping are available
 - Data browsing and exploration
 - many hidden problems and message meanings: must extract metadata
 - view before and after results
 - did the integration go the way you thought?

- Estimation

- Estimation
 - Statistical Inference
 - making conclusion based on data in random samples
 - example
 - · use data to guess the value of an unknown number
 - create an estimate of the unknown quantity
 - depends on the random sample taken
- Assumptions
 - example
 - estimate the number of planes
 - see a plane with the number 44
 - The main assumption
 - The serial numbers of planes we see are uniform random sample drawn with replacement from 1,2,3,...N
- Estimation
 - If you saw the serial numbers 1 23 48 57 92
 - 92 is N
- The Largest Number Observed
 - Is it likely to be close to N?
 - How likely?
 - How close?
 - · Some options:
 - Could try to calculate probabilities and draw a probability histogram
 - Could simulate and draw an empirical histogram
- Verdict on the Estimate
 - The largest serial number observed is likely to be close to N
 - But, it is also likely to underestimate N

- · Another idea for an estimate
 - average of the serial numbers observed ~ N/2
- · New estimate: 2 times the average of seen
- Bias
 - · Biased estimate
 - on average across all possible samples, the estimate is either too high or too low
 - Bias creates a systematic error in one direction
 - · Good estimates typically have low bias
- Variability
 - The value of an estimate varies from one sample to another
 - High variability makes it hard to estimate accurately
 - · Good estimates typically have low variability
- Bias-Variance Tradeoff
 - · The max has low variability, but it is biased
 - It under estimates the number of planes
 - 2*average has little bias, but it is highly variable
 - It over estimates the number of planes
 - Which one to choose?
 - Pick based on your utility?
- Statistics
- Normal Distributions, Mean, Variance
 - The mean of a set of values is the average of the values
 - · variance is a measure of the width of a distribution
 - standard deviation is the square root of variance
 - · normal distribution is characterized by mean and variance
- Properties of the mean
 - Balance point of the histogram
 - Not the "half-way point" of the data (median)
 - If the histogram is skewed, then the mean is pulled away from the median in the direction of the tail
- Defining Variability
 - · measure variability around the mean
- Standard deviation
 - · measures roughly how far off the values are from the average
- Central Limit Theorem
 - · If the samples are
 - A large set
 - drawn at random with replacement
 - Then no matter what the distribution of the population
 - probability distribution of the sample average is roughly bell-shaped (normal distribution)
 - The distribution of sum (or mean) of n identically-distributed random variables X_i approaches a normal distribution as n -> infinity
 - Common parametric statistical tests assume normally-distributed data, but depend on sample mean and variance
 - Tests work reasonably well for data that are not normally distributed as long as the samples are not too small
- Bounds and Normal Approximations
 - · Chebychev's Inequality

- no matter what the shape of the distribution, the proportion of values in the range "average +- z SDs" is at least 1 - 1/z^2
- Correcting Distributions
 - many statistical tools assume data are normally distributed
- Other Import Distributions
 - Poisson: distribution of counts that occur at a certain "rate"
 - observed frequency of a given term in a corpus
 - number of visits to a web site in a fixed time interval
 - number of web site clicks in an hour
 - Exponential: interval between two such events
 - Zipf/Pareto/Yule distributions
 - govern frequencies of different terms in a document, or web site visits
 - Binomial/Multinomial
 - number of counts of events
 - example: 6 die tosses out of n trials
 - Understand your data's distribution before apply any model