Задача 1. а) ($Pewemo \ \Im pamoc \phi ena$) Выпишем в ряд целые числа от 2 до n. Подчеркнём число 2 и сотрём числа, делящиеся на 2. Первое неподчёркнутое число подчеркнём и сотрём числа, делящиеся на него, и т. д. Будем действовать так, пока каждое число от 2 до n не будет либо подчёркнуто, либо стёрто. Докажите, что мы подчеркнём в точности простые числа от 1 до n. б) Пусть очередное число, которое мы хотим подчеркнуть, больше \sqrt{n} . Докажите, что нестёртые к этому моменту числа от 2 до n простые. в) Какие числа, меньшие 100, простые?

Определение 1. Назовём $u\partial eanom$ в множестве целых чисел $\mathbb Z$ любое подмножество I с такими свойствами:

- 1) если $a \in I$ и $b \in I$, то и $a + b \in I$ (сумма любых двух чисел из идеала также принадлежит этому идеалу);
- 2) если $a \in I$, $n \in \mathbb{Z}$, то $na \in I$ (умножая число из идеала на *любое целое*, мы получаем число из этого идеала).

Задача 2. Верно ли, что разность любых двух чисел из идеала также принадлежит этому идеалу?

Задача 3. Какие из следующих множеств являются идеалами в \mathbb{Z} : **a)** \mathbb{Z} ; **б)** \mathbb{N} ; **в)** множество чётных целых чисел; **r)** множество нечётных целых чисел; **д)** $\{0\}$: **e)** множество чисел, делящихся на 17.

Задача 4. (*Теорема об идеалах в* \mathbb{Z}) Пусть r — наименьшее положительное число, принадлежащее идеалу I. Докажите, что **a**) любое число из I делится на r; **б**) I состоит из всех целых чисел, делящихся на r.

Задача 5. Пусть a и b — целые числа, не равные одновременно нулю, J — множество чисел вида ax + by, где x и y целые, и r — наименьшее положительное число в J. Докажите, что

а) J — идеал; б) r делится на (a,b); в) a и b делятся на r; г) r=(a,b), то есть J состоит из всех чисел, делящихся на (a,b).

Задача 6. Пусть a и b — целые числа, причем (a,b)=1. Докажите, что

а) найдутся такие целые x и y, что ax + by = 1; б) если ca делится на b, где c — целое, то c делится на b.

Задача 7. (Основная теорема арифметики) Докажите следующие утверждения:

- а) если p простое число, m и n целые, и $mn \, \dot{\,}\, p$, то либо $m \, \dot{\,}\, p$, либо $n \, \dot{\,}\, p$;
- **б)** для каждого целого n > 1 найдутся такие простые p_1, \ldots, p_k , что $n = p_1 \cdot \cdots \cdot p_k$;
- в) (каноническое разложение) Для каждого целого n>1 найдутся такие различные простые p_1,\ldots,p_k и натуральные α_1,\ldots,α_k , что $n=p_1^{\alpha_1}\cdot\cdots\cdot p_k^{\alpha_k}$;
- г) разложения из пунктов б) и в) единственны с точностью до порядка сомножителей.

Задача 8. Назовём чётное число n чётнопростым, если n не раскладывается в произведение двух чётных чисел. (Например, 6 — чётнопростое, а 12 — нет.) Какие пункты задачи 2 будут верны, если заменить в условии целые числа на чётные, а простые — на чётнопростые?

Задача 9. Числа a, b, c, n натуральные, $(a, b) = 1, ab = c^n$. Найдутся ли такие целые x и y, что $a = x^n, b = y^n$?

Задача 10. Решите в натуральных числах уравнение $x^{42} = y^{55}$.

Задача 11. Найдите каноническое разложение числа **a)** 2010; **б)** 2011; **в)** 17!; г) C_{20}^{10} .

Задача 12. При каких натуральных k число (k-1)! не делится на k?

Задача 13. а) ($Teopema\ Лежандра$) Докажите, что простое число p входит в каноническое разложение числа n! в степени $[n/p] + [n/p^2] + [n/p^3] + \dots$ (где [x] — это *целая часть* числа x).

С какого момента слагаемые в этой сумме станут равными нулю?

б) Сколько у 2000! нулей в конце его десятичной записи? **в)** Может ли n! делиться на 2^n $(n \ge 1)$?

Задача 14. Число p простое. Докажите, что C_p^k делится на p, если 0 < k < p.

Задача 15. ($\mathit{Малая}\ meopema\ \Phiepma$) Пусть p — простое число, n — целое число. Докажите, что

а) $n^p - n$ делится на p; б) если (n, p) = 1, то $n^{p-1} - 1$ делится на p.

Задача 16*. а) Числа p и q простые, $2^p - 1 \vdots q$. Докажите, что $q - 1 \vdots p$. б) Простое ли $2^{13} - 1$?

Задача 17*. Может ли быть целым число **a)** $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n}$; **b)** $\frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \ldots + \frac{1}{2n+1}$?

Определение 2. *Наименьшим общим кратным* ненулевых целых чисел a и b называется наименьшее натуральное число, которое делится на a и на b. Обозначение: [a,b] или HOK(a,b).

Задача 18. а) Как, зная канонические разложения чисел a и b, найти (a,b) и [a,b]? **б)** Найдите [192,270]. **в)** Докажите, что $ab = (a,b) \cdot [a,b]$. г) Верно ли, что [a,b]/a и [a,b]/b взаимно просты?

Задача 19. Докажите, что любое общее кратное целых чисел a и b делится на [a,b].

Задача 20. Про натуральные числа a и b известно, что (a,b)=15, [a,b]=840. Найдите a и b.

Задача 21. Найдите
$$\frac{\mathrm{HOK}(1,\,2,\,3,\,\dots,\,99)}{\mathrm{HOK}(2,\,4,\,6,\,\dots,\,200)}.$$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 3 3 4 4 5 5 5 гдеабабв	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $