Plan du cours

I.	Int	roduction	1
n.	Foi	nction affine	1
	1.	Définition	1
	2.	Réprésentation graphique d'une fonction affine	2
		a) Propriétés	2
		b) Comment représenter graphiquement	
		une fonction affine	4
m.	Va	riations et signe d'une fonction affine	7
	1.	Variations d'une fonction affine	7
	2.	Signe d'une fonction affine	9

Chapitre 2: Fonctions affines

I. Introduction

(Voir cahier d'exercices)

II. Fonction affine

1. Définition

Définition

Une fonction f, définie sur \mathbb{R} , est **affine** s'il existe deux réels m et p tel que, pour tout x, f(x) = mx + p.

Où m est le coefficient directeur et p est l'ordonnée à l'origine.

Exemples:

(a) $f: x \mapsto -2x + 7$ est une fonction affine car -2x + 7 = mx + p avec $\begin{cases} m = -2 \\ p = 7 \end{cases}$

(b) $f: x \mapsto \frac{8x - 5}{9}$ est une fonction affine $\operatorname{car} \frac{8x - 5}{9} = \frac{8}{9}x - \frac{5}{9} = mx + p \quad \text{avec} \quad \begin{cases} m = \frac{8}{9} \\ p = -\frac{5}{9} \end{cases}$

(c) $f: x \mapsto 11x$ est une fonction affine $\operatorname{car} 11x = mx + p \quad \operatorname{avec} \quad \left\{ \begin{array}{l} m = 11 \\ p = 0 \end{array} \right.$

On dit alors que f est une fonction linéaire.

(d) $f: x \mapsto 450$ est une fonction affine $car \ 450 = mx + p \quad avec \quad \left\{ \begin{array}{l} m = 0 \\ p = 450 \end{array} \right.$

On dit alors que f est une fonction constante.

(e) $f: x \mapsto 11 - \sqrt{2}x$ est une fonction affine $\operatorname{car} 11 - \sqrt{2}x = -\sqrt{2}x + 11 = mx + p \quad \operatorname{avec} \quad \left\{ \begin{array}{l} m = -\sqrt{2} \\ p = 11 \end{array} \right.$

- (f) $f: x \mapsto 12x^2 + 30$ n'est pas une fonction affine.
- (g) $f: x \mapsto \frac{3}{x} \frac{1}{2}$ n'est pas une fonction affine.

Définition

Soit f une fonction affine définie sur \mathbb{R} par f(x) = mx + p.

- Si p = 0 alors f(x) = mx. La fonction f est alors une fonction linéaire.
- Si m = 0 alors f(x) = p. La fonction f est alors une fonction constante.

2. Réprésentation graphique d'une fonction affine

a) Propriétés

Propriété

Soit $f: x \mapsto mx + p$ une fonction affine. La représentation graphique d'une fonction affine est **une droite**.

On appelle m le coefficient directeur et p l'ordonnée à l'origine. Autrement dit, p est l'ordonnée du point d'intersection de la droite représentative de f avec l'axe des ordonnées, soit l'image de 0 par la fonction f.

Remarques:

- Lorsque la fonction est linéaire, elle est représentée par une droite passant par l'origine du repère.
- Lorsque la fonction est constante, elle est représentée par une droite parallèle à l'axe des abscisses.

Chapitre 2: Fonctions affines

Propriété

Soient f une fonction affine définie par f(x) = mx + p et (d) la droite qui la représente dans un repère.

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points **quelconques** de (d).

•
$$m = \frac{f(x_B) - f(x_A)}{x_B - x_A} = \frac{y_B - y_A}{x_B - x_A} = \frac{\Delta y}{\Delta x}$$

Lorsque $\Delta x = x_B - x_A = 1$, alors $\Delta y = y_B - y_A = m$

• p est l'image de 0 par la fonction f, c'est donc l'ordonnée du point d'intersection de la droite représentative de f avec l'axe des ordonnées.

Exemples : A partir des représentations graphiques ci-dessous, retrouver l'expression algébrique de chaque fonction.

b) Comment représenter graphiquement une fonction affine

• En utilisant 2 points et leur image :

On veut représenter graphiquement la fonction affine $f: x \mapsto \frac{1}{3}x + 2$. On sait que la représentation graphique de f est une droite. Pour tracer une droite, il suffit de connaître **deux points** de celle-ci. Pour cela nous allons choisir deux abscisses quelconques et calculer ensuite

Pour tracer une droite, il suffit de connaître **deux points** de celle-ci. Pour cela, nous allons choisir deux abscisses quelconques et calculer ensuite l'image de chacune d'elles par la fonction f.

X									
f(x)									

On place ensuite les deux points dont les coordonnées se lisent en colonnes dans le tableau et on trace la droite.

• En utilisant le coefficient directeur (m) :

On veut représenter graphiquement la fonction affine $g: x \mapsto 2x + 3$.

La fonction g est une fonction affine, donc sa représentation graphique est une droite d.

Son ordonnée à l'origine est égale à p=3, donc le point A(0;3) appartient à d.

Le coefficient directeur est m=2, donc $\frac{\Delta y}{\Delta x}=2$ cest-à-dire $\Delta y=2\times \Delta x$. On choisit par exemple $\Delta x=1$; on obtient alors $\Delta y=2$.

En partant de A, on se déplace de 1 en abscisses, et alors de 2 en ordonnées.

Exemples : A partir des expressions algébriques de chaque fonction, tracer les représentations graphiques de celle-ci dans un repère orthonormé.

On définit deux fonctions affines telles que f(x) = -5x + 1 et $g(x) = \frac{1}{4}x - 3$

III. Variations et signe d'une fonction affine

1. Variations d'une fonction affine

Définition

Une fonction f **est croissante** sur un intervalle I signifie que sur l'intervalle I, si les valeurs de la variable x augmentent, alors les images f(x) augmentent aussi.

Traduction mathématique : Pour tous x_1 et x_2 de l tels que $x_1 \le x_2$, alors $f(x_1) \le f(x_2)$.

(On dit qu'une fonction croissante conserve lordre.)

Illustration graphique:

Définition

Une fonction f **est décroissante** sur un intervalle l signifie que sur l'intervalle l, si les valeurs de la variable x augmentent, alors les images f(x) diminuent aussi.

Traduction mathématique : Pour tous x_1 et x_2 de l tels que $x_1 \le x_2$, alors $f(x_1) \ge f(x_2)$.

(On dit qu'une fonction décroissante inverse lordre.)

Illustration graphique:

Théorème

Soit f une fonction affine définie par : f(x) = mx + p.

- f est croissante si, et seulement si, m > 0.
- f est constante si, et seulement si, m = 0.
- f est décroissante si, et seulement si, m < 0.

DEMONSTRATION:

Soient x_1 et x_2 deux nombres réels tels que $x_1 < x_2$ et une fonction affine f telle que f(x) = mx + p

On a
$$f(x_2) - f(x_1) = (mx_2 + p) - (mx_1 + p) = mx_2 + p - mx_1 - p = mx_2 - mx_1$$

Donc $f(x_2) - f(x_1) = m(x_2 - x_1)$.

On sait que $x_1 < x_2$ donc $x_2 - x_1 > 0$. Le signe de $f(x_2) - f(x_1)$ est alors le même que celui de m.

Trois cas sont possibles:

- Si m > 0 alors $f(x_2) f(x_1) > 0$ soit $f(x_2) > f(x_1)$ Donc f est croissante.
- Si m = 0 alors $f(x_2) f(x_1) = 0$ soit $f(x_2) = f(x_1)$ Donc f est constante.
- Si m < 0 alors $f(x_2) f(x_1) < 0$ soit $f(x_2) < f(x_1)$ Donc f est décroissante.

Construction des tableaux de variations.

On en déduit les tableaux de variations possibles de f, selon le signe de m.

• Pour m > 0:

• Pour m < 0:

2. Signe d'une fonction affine

Soit f(x) = mx + p une fonction affine, avec $m \neq 0$.

On cherche ici pour quelle valeur de x, la fonction f s'annule.

On résout
$$f(x) = 0 \Leftrightarrow mx + p = 0 \Leftrightarrow x = -\frac{p}{m}$$
.

La fonction affine
$$f(x) = mx + p$$
 s'annule pour $x = -\frac{p}{m}$.

On en déduit les tableaux de signes possibles de f, selon le signe de m.

• Pour m > 0:

• Pour m < 0

X	$-\infty$		$-\frac{p}{m}$		$+\infty$
f(x) = mx + p		+	0	_	

Exemples : Dresser le tableau de signes des fonctions affines définies par f(x) = 2x + 5 et g(x) = -3x + 6.

1) On cherche le réel x qui a pour image 0 par f. Pour cela on résout léquation $2x + 5 = 0 \Leftrightarrow x = -\frac{5}{2}$

On sait que m=2>0, donc la fonction f est croissante. On en déduit le tableau de signes de f :

X	$-\infty$		$-\frac{5}{2}$		$+\infty$
Signe de $2x + 5$		_	0	+	

2) On cherche le réel x qui a pour image 0 par g. Pour cela on résout léquation $-3x + 6 = 0 \Leftrightarrow x = 2$

On sait que m=-3<0, donc la fonction g est décroissante. On en déduit le tableau de signes de g :

X	$-\infty$	2	$+\infty$
Signe de $-3x + 6$		+	_