

16SrRNA Intermediate Bioinformatics Online Course: Int_BT_2019

16S rRNA analysis pipeline Taxonomic classification and alignment using the dada2 pipeline

Track Reads through DADA2 pipeline

```
getN <- function(x) sum(getUniques(x))
track.nbr.reads <- cbind(out, sapply(dadaF, getN), sapply(dadaR, getN), sapply(merge.reads, getN), rowSums(seqtab.nochim))

colnames(track.nbr.reads) <- c("input", "filtered", "denoisedF", "denoisedR", "merged", "nonchim")
rownames(track.nbr.reads) <- list.sample.names
head(track.nbr.reads)</pre>
```

##		input	filtered	denoisedF	denoisedR	merged	${\tt nonchim}$
##	Dog1	118343	84815	82888	83710	76306	35440
##	Dog10	79342	61952	60537	61130	54948	24103
##	Dog15	131483	91235	89781	90372	83013	48592
##	Dog16	114424	83564	81753	82442	74533	46006
##	Dog17	99610	72919	71427	72229	67364	42960
##	Dog2	108679	79668	77366	78301	69262	30129

Assign Taxonomy

taxa <- assignTaxonomy(seqtab.nochim, paste(MY_HOME, "/dada2_tutorial_dog/RefSeq-RDP16S_v3_May2018.fa.gz", sep=''
), multithread=TRUE) # change the path</pre>

RefSeq-RDP16S_v3_May2018.fa.gz

Three most common 16S databases: Silva, RDP and GreenGenes

Assign Taxonomy

Maintained:

- Silva version 132, Silva version 128, Silva version 123 (Silva dual-license)
- RDP trainset 16, RDP trainset 14
- GreenGenes version 13.8
- UNITE (use the General Fasta releases)

Contributed:

- RefSeq + RDP (NCBI RefSeq 16S rRNA database supplemented by RDP)
 - Reference files formatted for assignTaxonomy
 - Reference files formatted for assignSpecies
- GTDB: Genome Taxonomy Database (More info: http://gtdb.ecogenomic.org/)
 - Reference files formatted for assignTaxonomy
 - Reference files formatted for assignSpecies
- HitDB version 1 (Human InTestinal 16S rRNA)
- RDP fungi LSU trainset 11
- Silva Eukaryotic 18S, v132 & v128
- PR2 version 4.7.2+. SEE NOTE BELOW.

Assign Taxonomy

```
taxa.print <- taxa # Removing sequence rownames for display only
rownames(taxa.print) <- NULL
head(taxa.print)</pre>
```

```
##
        Kingdom
                   Phylum
                                   Class
                                                 Order
## [1,] "Bacteria" "Firmicutes"
                                   "Clostridia" "Clostridiales"
## [2,] "Bacteria" "Firmicutes"
                                   "Clostridia"
                                                  "Clostridiales"
## [3,] "Bacteria" "Bacteroidetes" "Bacteroidia" "Bacteroidales"
## [4,] "Bacteria" "Bacteroidetes" "Bacteroidia" "Bacteroidales"
## [5,] "Bacteria" "Firmicutes"
                                   "Clostridia" "Clostridiales"
## [6,] "Bacteria" "Firmicutes"
                                   "Clostridia" "Clostridiales"
##
        Family
                                Genus
## [1,] "Peptostreptococcaceae" "Clostridium XI"
## [2,] "Peptostreptococcaceae" "Clostridium XI"
## [3,] "Prevotellaceae"
                                "Alloprevotella"
## [4,] "Prevotellaceae"
                                "Alloprevotella"
## [5,] "Peptostreptococcaceae" "Clostridium XI"
## [6,] "Peptostreptococcaceae" "Clostridium XI"
##
        Species
## [1,] "Clostridium hiranonis(AB023970)"
## [2,] "Clostridium hiranonis(AB023970)"
## [3,] "Prevotellamassilia timonensis(NR 144750.1)"
## [4,] "Prevotellamassilia timonensis(NR 144750.1)"
## [5,] "Clostridium hiranonis(AB023970)"
## [6,] "Clostridium hiranonis(AB023970)"
```


Assign Taxonomy

```
write.csv(taxa, file="ASVs_taxonomy.csv")
saveRDS(taxa, "ASVs_taxonomy.rds")
```

	A	В	С	D	E	F	G	Н	1	J		K
1		Kingdom	Phylum	Class	Order	Family	Genus	Species				
2	ASV_1	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium_	hiranonis(AB	023970)		
3	ASV_2	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium_	hiranonis(AB	023970)		
4	ASV_3	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotell	Prevotellam	assilia_timon	ensis(NR_	1447	50.1)
5	ASV_4	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotell	Prevotellam	assilia_timon	ensis(NR_	1447	50.1)
6	ASV_5	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium_	hiranonis(AB	023970)		
7	ASV_6	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium_	hiranonis(AB	023970)		
8	ASV_7	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotell	Prevotellam	assilia_timon	ensis(NR_	1447	50.1)
9	ASV_8	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotell	Prevotellam	assilia_timon	ensis(NR_	1447	50.1)
10	ASV_9	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium_	hiranonis(AB	023970)		
11	ASV_10	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium	hiranonis(AB	023970)		
12	ASV_11	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotell	Prevotellam	assilia_timon	ensis(NR_	1447	50.1)
13	ASV_12	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium_	hiranonis(AB	023970)		
14	ASV_13	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotell	Prevotellam	assilia_timon	ensis(NR_	1447	50.1)
15	ASV_14	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium_	hiranonis(AB	023970)		
16	ASV_15	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotell	Prevotellam	assilia_timon	ensis(NR_	1447	50.1)
17	ASV_16	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotell	Prevotellam	assilia_timon	ensis(NR_	1447	50.1)
18	ASV_17	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium_	hiranonis(AB	023970)		
19	ASV_18	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotell	Prevotellam	assilia_timon	ensis(NR_	1447	50.1)
20	ASV_19	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium_	hiranonis(AB	023970)		
21	ASV_20	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotell	Prevotellam	assilia_timon	ensis(NR_	1447	50.1)
22	ASV_21	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotell	Prevotellam	assilia_timon	ensis(NR_	1447	50.1)
23	ASV_22	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium	hiranonis(AB	023970)		
24	ASV_23	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotell	Prevotellam	assilia_timon	ensis(NR_	1447	50.1)
25	ASV_24	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotell	Prevotellam	assilia_timon	ensis(NR	1447	50.1)
26	ASV_25	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotell	Prevotellam	assilia_timon	ensis(NR_	1447	50.1)

16SrRNA Intermediate Bioinformatics Online Course:

Assign Taxonomy

```
asv_headers <- vector(dim(seqtab.nochim)[2], mode="character")
count.asv.tab <- t(seqtab.nochim)
row.names(count.asv.tab) <- sub(">", "", asv_headers)
write.csv(count.asv.tab, file="ASVs_counts.csv")
saveRDS(count.asv.tab, file="ASVs_counts.rds")
```

_	Α	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P
1		Dog1	Dog10	Dog15	Dog16	Dog17	Dog2	Dog22	Dog23	Dog24	Dog29	Dog3	Dog30	Dog31	Dog8	Dog9
2	ASV_1	0	() (0	0	373	1926	0	0	0	0	0	0	0	0
3	ASV_2	0	() (0	0	0	0	955	0	0	921	0	0	0	0
4	ASV_3	242	() (0	0	0	0	0	0	0	0	0	1596	0	0
5	ASV_4	205	() (0	0	0	0	0	0	0	0	0	1625	0	0
6	ASV_5	0	() (0	0	276	1516	0	0	0	0	0	0	0	0
7	ASV_6	0	() (0	0	0	0	805	0	0	944	0	0	0	0
8	ASV_7	0	() (0	0	0	0	0	1747	0	0	0	0	0	0
9	ASV_8	223	() (0	0	0	0	0	0	0	0	0	1523	0	0
10	ASV_9	0	() (0	0	283	1453	0	0	0	0	0	0	0	0
11	ASV_10	0	() (0	0	277	1459	0	0	0	0	0	0	0	0
12	ASV_11	195	() (0	0	0	0	0	0	0	0	0	1536	0	0
13	ASV_12	0	() (0	0	322	1366	0	0	0	0	0	0	0	0
14	ASV_13	184	() (0	0	0	0	0	0	0	0	0	1479	0	0
15	ASV_14	0	() (0	0	0	0	806	0	0	857	0	0	0	0
16	ASV_15	170	() (0	0	0	0	0	0	0	0	0	1480	0	0
17	ASV_16	0	() (0	0	0	0	0	1645	0	0	0	0	0	0
18	ASV_17	0	() (0	0	270	1369	0	0	0	0	0	0	0	0
19	ASV_18	220	() (0	0	0	0	0	0	0	0	0	1373	0	0
20	ASV_19	0	() (0	0	0	0	772	0	0	798	0	0	0	0
21	ASV_20	174	() (0	0	0	0	0	0	0	0	0	1376	0	0
22	ASV_21	0	() (0	0	0	0	0	1524	0	0	0	0	0	0
23	ASV_22	0	() (0	0	0	0	743	0	0	720	0	0	0	0
24	ASV_23	188	() (0	0	0	0	0	0	0	0	0	1254	0	0
25	ASV_24	179	() (0	0	0	0	0	0	0	0	0	1260	0	0
26	ASV_25	154	() (0	0	0	0	0	0	0	0	0	1263	0	0
27	ASV_26	167	() (0	0	0	0	0	0	0	0	0	1238	0	0
28	ASV_27	0	() (0	0	0	0	689	0	0	716	0	0	0	0

16SrRNA Intermediate Bioinformatics Online Course:

Alignment

```
library(DECIPHER)
```

Tools for curating, analyzing, and manipulating biological sequences.

```
seqs <- getSequences(seqtab.nochim)
names(seqs) <- seqs # This propagates to the tip labels of the tree
alignment <- AlignSeqs(DNAStringSet(seqs), anchor=NA)</pre>
```


Construct Phylogenetic Tree

```
library(phangorn)
```

```
phang.align <- phyDat(as(alignment, "matrix"), type="DNA")
dm <- dist.ml(phang.align)
treeNJ <- NJ(dm) # Note, tip order != sequence order
fit = pml(treeNJ, data=phang.align)</pre>
```

It constructs a neighbor-joining tree.

- 1. Change sequence alignment output into phyDat structure.
- 2. Create distance matrix using dist.ml.
- 3. Perform neighbor joining.
- 4. Perform internal maximum likelihood.

Construct Phylogenetic Tree

```
fitGTR <- update(fit, k=4, inv=0.2)
fitGTR <- optim.pml(fitGTR, model="GTR", optInv=TRUE, optGamma=TRUE,
rearrangement = "stochastic", control = pml.control(trace = 0))</pre>
```

It fits a GTR+G+I (Generalized time-reversible with Gamma rate variation) maximum likelihood tree using the neighbor-joining tree as a starting point.

```
saveRDS(fitGTR, "phangorn.tree.RDS")
```

