solution assignment 10

leela madhuri

January 2021

1 question

The input frequency for the given counters 1 MHz, the output frequency observes at Q4 is

explaination $\mathbf{2}$

The time period doubles for very successive pass from one flip-flop to other. Let the initial time period and frequency be T,F as the time period is getting doubles so time period at $Q_1 = 2T$

Similarly at $Q_2=4T$; at $Q_3=8T$; at $Q_4=16T$

so the time period is getting increased in the form of 2^nT where n can take the value of required output.

So, frequency at Q_4 can be $F = \frac{1}{T \text{ at } Q_4}$

 $F{=}\frac{1}{16}$ (as initially F=1MHz so T at initial=1 sec) Also frequency can be written as $F{=}\frac{1}{2^4}=\frac{1}{16}{=}62.5 \rm KHz$