# Security of distributed Model Predictive Control under False Data injection

#### Rafael Accácio NOGUEIRA

2022-12-09







https://bit.ly/3g3S6X4











- Electricity Distribution System
- Heat distribution
- Water distribution
- Traffic management (include your problem here)





- Electricity Distribution System
- Heat distribution
- Water distribution
- Traffic management (include your problem here)



"Necessity is the mother of invention"



- Electricity Distribution System
- Heat distribution
- Water distribution
- Traffic management

(include your problem here)





- Electricity Distribution System
- Heat distribution
- Water distribution
- Traffic management (include your problem here)





- Multiple systems interacting
- Coupled by constraints
   Technical/ Comfort
- Optimization objectives
   Minimize energy consumption
   Maximize user satisfaction
   Follow a trajectory
- Solution  $\rightarrow$  MPC





- Multiple systems interacting
- Coupled by constraints
  - Technical / Comfort
- Optimization objectives
  - Maximize energy consumption
     Maximize user satisfaction
- Solution  $\rightarrow$  MPC





- Multiple systems interacting
- Coupled by constraints
  - Technical/ Comfort
- Optimization objectives
  - Minimize energy consumptionMaximize user satisfactionFollow a trajectory
- Solution  $\rightarrow$  MPC





- Multiple systems interacting
- Coupled by constraints
  - Technical/ Comfort
- Optimization objectives
  - Minimize energy consumption
  - Maximize user satisfaction
  - Follow a trajectory
- Solution  $\rightarrow$  MPC





- Multiple systems interacting
- Coupled by constraints
  - Technical/ Comfort
- Optimization objectives
  - Minimize energy consumption
  - Maximize user satisfaction
  - Follow a trajectory
- Solution  $\rightarrow$  MPC





- Multiple systems interacting
- Coupled by constraints
  - Technical/ Comfort
- Optimization objectives
  - Minimize energy consumption
  - Maximize user satisfaction
  - Follow a trajectory
- Solution  $\rightarrow$  MPC





- Multiple systems interacting
- Coupled by constraints
  - Technical/ Comfort
- Optimization objectives
  - Minimize energy consumption
  - Maximize user satisfaction
  - Follow a trajectory
- Solution → MPC





- Multiple systems interacting
- Coupled by constraints
  - Technical/ Comfort
- Optimization objectives
  - Minimize energy consumption
  - Maximize user satisfaction
  - Follow a trajectory
- Solution → MPC



- We need an optimization problem
  - Decision variable is the control sequence
  - Objective function to optimize
    - System's Model (states and inputs)
    - Other constraints to respect



- We need an optimization problem
  - Decision variable is the control sequence
  - Objective function to optimize
  - System's Model (states and inputs)



- We need an optimization problem
  - Decision variable is the control sequence
  - Objective function to optimize
  - System's Model (states and inputs)
  - Other constraints to respect (QoS, technical restrictions, ....



- We need an optimization problem
  - Decision variable is the control sequence
  - Objective function to optimize
  - System's Model (states and inputs)
  - Other constraints to respect (QoS, technical restrictions, ...



- We need an optimization problem
  - Decision variable is the control sequence
  - Objective function to optimize
  - System's Model (states and inputs)
  - Other constraints to respect (QoS, technical restrictions, ...)



- We need an optimization problem
  - Decision variable is the control sequence
  - Objective function to optimize
  - System's Model (states and inputs)
  - Other constraints to respect (QoS, technical restrictions, ...)

minimize 
$$\frac{J(\boldsymbol{x}[0|k],\boldsymbol{u}[0:N-1|k])}{\boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k])} \overset{\forall \xi \in \{1,\dots,N\}}{\underset{h_1(\boldsymbol{x}|\xi-1|k|,\boldsymbol{u}[\xi-1|k]) = 0}{\forall \xi \in \{1,\dots,N\}}}$$
 subject to



- We need an optimization problem
  - Decision variable is the control sequence (Over horizon N)
  - Objective function to optimize
  - System's Model (states and inputs)
  - Other constraints to respect (QoS, technical restrictions, ...)



- We need an optimization problem
  - Decision variable is the control sequence (Over horizon N)
  - Objective function to optimize
  - System's Model (states and inputs)
  - Other constraints to respect (QoS, technical restrictions, ...)



- We need an optimization problem
  - Decision variable is the control sequence (Over horizon N)
  - Objective function to optimize
  - System's Model (states and inputs)
  - Other constraints to respect (QoS, technical restrictions, ...)

$$\begin{aligned} & \underset{\boldsymbol{u}[0:N-1|k]}{\text{minimize}} & & J(\boldsymbol{x}[0|k], \boldsymbol{u}[0:N-1|k]) \\ & & \boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \\ & \text{subject to} & & g_i(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \leqslant 0 \\ & & h_j(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) = 0 \end{aligned} \right\} \begin{matrix} \forall \xi \in \{1, \dots, N\} \\ \forall i \in \{1, \dots, m\} \\ \forall j \in \{1, \dots, p\} \end{matrix}$$



- We need an optimization problem
  - Decision variable is the control sequence (Over horizon N)
  - Objective function to optimize
  - System's Model (states and inputs)
  - Other constraints to respect (QoS, technical restrictions, ...)

$$\begin{aligned} & \underset{\boldsymbol{u}[0:N-1|k]}{\text{minimize}} & & J(\boldsymbol{x}[0|k],\boldsymbol{u}[0:N-1|k]) \\ & & \boldsymbol{x}[\boldsymbol{\xi}|\boldsymbol{k}] = f(\boldsymbol{x}[\boldsymbol{\xi}-1|k],\boldsymbol{u}[\boldsymbol{\xi}-1|k]) \\ & \text{subject to} & & g_i(\boldsymbol{x}[\boldsymbol{\xi}-1|k],\boldsymbol{u}[\boldsymbol{\xi}-1|k]) \leqslant 0 \\ & & h_j(\boldsymbol{x}[\boldsymbol{\xi}-1|k],\boldsymbol{u}[\boldsymbol{\xi}-1|k]) = 0 \end{aligned} \right\} \overset{\forall \boldsymbol{\xi} \in \{1,\ldots,N\}}{\forall i \in \{1,\ldots,m\}}$$



- We need an optimization problem
  - Decision variable is the control sequence (Over horizon N)
  - Objective function to optimize
  - System's Model (states and inputs)
  - Other constraints to respect (QoS, technical restrictions, ...)

$$\begin{aligned} & \underset{\boldsymbol{u}[0:N-1|k]}{\text{minimize}} & & J(\boldsymbol{x}[0|k],\boldsymbol{u}[0:N-1|k]) \\ & & \boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) \\ & \text{subject to} & & g_i(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) \leqslant 0 \\ & & h_j(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) = 0 \end{aligned} \right\} \begin{matrix} \forall \xi \in \{1,\ldots,N\} \\ \forall i \in \{1,\ldots,m\} \\ \forall j \in \{1,\ldots,p\} \end{matrix}$$



- We need an optimization problem
  - Decision variable is the control sequence (Over horizon N)
  - Objective function to optimize
  - System's Model (states and inputs)
  - Other constraints to respect (QoS, technical restrictions, ...)

$$\begin{aligned} & \underset{\boldsymbol{u}[0:N-1|k]}{\text{minimize}} & & J(\boldsymbol{x}[0|k],\boldsymbol{u}[0:N-1|k]) \\ & \boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) \\ & \text{subject to} & & g_i(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) \leqslant 0 \\ & & h_j(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) = 0 \end{aligned} \right\} \begin{array}{l} \forall \xi \in \{1,\ldots,N\} \\ \forall i \in \{1,\ldots,m\} \\ \forall j \in \{1,\ldots,p\} \end{aligned}$$



- We need an optimization problem
  - Decision variable is the control sequence (Over horizon N)
  - Objective function to optimize
  - System's Model (states and inputs)
  - Other constraints to respect (QoS, technical restrictions, ...)

minimize 
$$J(\boldsymbol{x}[0|k], \boldsymbol{u}[0:N-1|k])$$
 
$$\boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \begin{cases} \boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \\ g_i(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \leq 0 \\ h_j(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) = 0 \end{cases} \begin{cases} \forall \xi \in \{1, \dots, N\} \\ \forall i \in \{1, \dots, m\} \\ \forall j \in \{1, \dots, p\} \end{cases}$$



#### In a nutshell

Find optimal control sequence





10

In a nutshell

#### Find optimal control sequence







In a nutshell

Find optimal control sequence, apply first element





In a nutshell

Find optimal control sequence, apply first element, rinse repeat





In a nutshell

Find optimal control sequence, apply first element, rinse repeat  $\rightarrow$  Receding Horizon





In a nutshell

Find optimal control sequence, apply first element, rinse repeat  $\rightarrow$  Receding Horizon





#### Nothing is perfect

- Problems
  - Complexity of calculation
  - Topology (Geographical distribution)
  - Flexibility (Add/remove parts)
  - Privacy
- Solution: Divide and Conquer (distributed MPC)
  - Break calculation
  - Make Systems Communicate



#### Nothing is perfect

#### Problems

- Complexity of calculation
- Topology (Geographical distribution)
- Flexibility (Add/remove parts)
- Privacy
- Solution: Divide and Conquer (distributed MPC)
  - Break calculation
  - Make Systems Communicate



- Problems
  - Complexity of calculation
  - Topology (Geographical distribution)
  - Flexibility (Add/remove parts)
  - Privacy
- Solution: Divide and Conquer (distributed MPC)
  - Break calculation
  - Make Systems Communicate



- Problems
  - Complexity of calculation
  - Topology (Geographical distribution)
  - Flexibility (Add/remove parts)
  - Privacy
- Solution: Divide and Conquer (distributed MPC)
  - Break calculation
  - Make Systems Communicate



- Problems
  - Complexity of calculation
  - Topology (Geographical distribution)
  - Flexibility (Add/remove parts)
  - Privacy
- Solution: Divide and Conquer (distributed MPC)
  - Break calculation
  - Make Systems Communicate



- Problems
  - Complexity of calculation
  - Topology (Geographical distribution)
  - Flexibility (Add/remove parts)
  - Privacy
- Solution: Divide and Conquer (distributed MPC)
  - Break calculation
  - Make Systems Communicate



- Problems
  - Complexity of calculation
  - Topology (Geographical distribution)
  - Flexibility (Add/remove parts)
  - Privacy
- Solution: Divide and Conquer (distributed MPC)
  - Break calculation
  - Make Systems Communicate



- Problems
  - Complexity of calculation
  - Topology (Geographical distribution)
  - Flexibility (Add/remove parts)
  - Privacy
- Solution: Divide and Conquer (distributed MPC)
  - Break calculation
  - Make Systems Communicate



- Problems
  - Complexity of calculation
  - Topology (Geographical distribution)
  - Flexibility (Add/remove parts)
  - Privacy
- Solution: Divide and Conquer (distributed MPC)
  - Break calculation
  - Make Systems Communicate



- We break the MPC into multiple
- Make them Communicate
  - Many flavors to choose from









- We break the MPC into multiple
- Make them Communicate
  - Many flavors to choose from











- We break the MPC into multiple
- Make them Communicate
  - Many flavors to choose from
    - Hierarchical/Anarchical
    - Sequential/Parallel
    - Synchronous/Asynchronous
    - Bidirectional/Unidirectional











- We break the MPC into multiple
- Make them Communicate, But how?
  - Many flavors to choose from
    - Hierarchical / Anarchical
    - Sequential/Parallel
    - Synchronous/Asynchronous
    - Bidirectional/Unidirectional











- We break the MPC into multiple
- Make them Communicate, But how?
  - Many flavors to choose from<sup>1</sup>
    - Hierarchical / Anarchical
    - Sequential/Paralle
    - Synchronous/Asynchronous
    - Bidirectional/Unidirectional











- We break the MPC into multiple
- Make them Communicate, But how?
  - Many flavors to choose from<sup>1</sup>
    - Hierarchical/Anarchical
    - Sequential/Paralle
    - Synchronous/Asynchronous
    - Bidirectional/Unidirectional











- We break the MPC into multiple
- Make them Communicate, But how?
  - Many flavors to choose from
    - Hierarchical/Anarchical
    - Sequential/Parallel
    - Synchronous/Asynchronous













- We break the MPC into multiple
- Make them Communicate, But how?
  - Many flavors to choose from
    - Hierarchical/Anarchical
    - Sequential/Parallel
    - Synchronous/Asynchronous

















- We break the MPC into multiple
- Make them Communicate, But how?
  - Many flavors to choose from<sup>1</sup>
    - Hierarchical/Anarchical
    - Sequential/Parallel
    - Synchronous/Asynchronous
    - Bidirectional/Unidirectional













- We break the MPC into multiple
- Make them Communicate . But how?
  - Many flavors to choose from<sup>1</sup>
    - Hierarchical/Anarchical
    - Sequential/Parallel
    - Synchronous/Asynchronous
    - Bidirectional/Unidirectional



















- We break the MPC into multiple
- Make them Communicate . But how?
  - Many flavors to choose from<sup>1</sup>
    - Hierarchical/Anarchical
    - Sequential/Parallel
    - Synchronous/Asynchronous
    - Bidirectional/Unidirectional















- Coordinator → Hierarchical
- Bidirectional
- $\bullet \ \ \mathsf{No} \ \mathsf{delay} \to \mathsf{Synchronous}$
- ullet Agents solve local problems ullet Until
- Variables are updated Conv





- Coordinator → Hierarchical
- Bidirectional
- $\bullet \ \ \mathsf{No} \ \mathsf{delay} \to \mathsf{Synchronous}$
- ullet Agents solve local problems ullet Until
- Variables are updated Convergence





- Coordinator → Hierarchical
- Bidirectional
- $\bullet \ \ \mathsf{No} \ \mathsf{delay} \to \mathsf{Synchronous}$
- ullet Agents solve local problems ullet Until
- Variables are updated Convergence





- Coordinator → Hierarchical
- Bidirectional
- No delay  $\rightarrow$  Synchronous
- Agents solve local problems | Until
- Variables are updated Convergence





- Coordinator → Hierarchical
- Bidirectional
- No delay  $\rightarrow$  Synchronous
- Agents solve local problems Until
- Variables are updated







- Coordinator → Hierarchical
- Bidirectional
- No delay  $\rightarrow$  Synchronous
- Agents solve local problems | Until
- Variables are updated







- Coordinator → Hierarchical
- Bidirectional
- No delay  $\rightarrow$  Synchronous
- Agents solve local problems | Until
- Variables are updated





### Negotiation works if agents comply.

But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?



Negotiation works if agents comply. But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?



Negotiation works if agents comply. But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?



Negotiation works if agents comply. But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?



Negotiation works if agents comply. But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?



Negotiation works if agents comply. But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?



#### Literature



• [Vel+17a; CMI18] present attacks





- [Vel+17a; CMI18] present attacks
  - Objective function
    - Selfish Attack
    - Fake weights
    - Fake reference
  - Fake constraints
  - Liar agent





- [Vel+17a; CMI18] present attacks
  - Objective function
    - Selfish Attack
    - Fake weights
    - Fake reference
    - Fake reference
  - Fake constraints
  - Liar agent





- [Vel+17a; CMI18] present attacks
  - Objective function
    - Selfish Attack
    - Fake weights
    - Fake reference
  - Fake constraints
  - Liar agent





- [Vel+17a; CMI18] present attacks
  - Objective function
    - Selfish Attack
    - Fake weights
    - Fake reference
  - Fake constraints
  - Liar agent



#### Literature



- [Vel+17a; CMI18] present attacks
  - Objective function
    - Selfish Attack
    - Fake weights
    - Fake reference
  - Fake constraints
  - Liar agent

Deception Attacks



#### Literature



- [Vel+17a; CMI18] present attacks
  - Objective function
    - Selfish Attack
    - Fake weights
    - Fake reference
  - Fake constraints
  - Liar agent



#### Literature



- [Vel+17a; CMI18] present attacks
  - Objective function
    - Selfish Attack
    - Fake weights
    - Fake reference
  - Fake constraints
  - Liar agent



#### Literature



- [Vel+17a; CMI18] present attacks
  - Objective function
     Salfish Attack
    - Selfish Attack
    - Fake weights
    - Fake reference
  - Fake constraints
  - Liar agent



**Deception Attacks** 

#### Literature



- [Vel+17a; CMI18] present attacks
  - Objective function
     Solfish Attack
    - Selfish Attack
    - Fake weights
    - Fake reference
  - Fake constraints

Liar agent

Deception Attacks (Internal change)





- We are in coordinator's shoes
- What matters is the interface
  - Attacker changes communication







- We are in coordinator's shoes
- What matters is the interface
  - Attacker changes communication
    - False Data Injection





- We are in coordinator's shoes
- What matters is the interface
  - Attacker changes communication
    - False Data Injection





- We are in coordinator's shoes
- What matters is the interface
  - Attacker changes communication
    - False Data Injection





- We are in coordinator's shoes
- What matters is the interface
  - Attacker changes communication
    - False Data Injection



## Consequence of an attack

Attack modifies optimization problem

Optimum value is shifted



Original minimum.



Minimum after attack.



#### Consequence of an attack

#### Attack modifies optimization problem

Optimum value is shifted



Original minimum.



Minimum after attack.



#### Consequence of an attack

- Attack modifies optimization problem
  - Optimum value is shifted



Original minimum.



Minimum after attack.



- We can recover by
  - Ignoring attacker
  - Recuperating original behavior (at least trying)



- We can recover by
  - Ignoring attacker
  - Recuperating original behavior (at least trying)



- We can recover by
  - Ignoring attacker
  - Recuperating original behavior (at least trying)



Ignore attacker.



- We can recover by
  - Ignoring attacker
  - Recuperating original behavior (at least trying)



Ignore attacker.



Recover original behavior.



- We can recover by
  - Ignoring attacker
  - Recuperating original behavior (at least trying)



Ignore attacker.



Recover original behavior.



- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
  - Detection/Isolation
  - Mitigation



- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
  - Detection/Isolation
  - Mitigation



- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
  - ① Detection/Isolation
  - Mitigation



- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
  - ① Detection/Isolation
  - Mitigation



- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
  - ① Detection/Isolation
  - Mitigation



- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
  - ① Detection/Isolation
  - Mitigation



- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
  - ① Detection/Isolation
  - Mitigation



- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
  - ① Detection/Isolation
  - Mitigation



Attack free

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
  - ① Detection/Isolation
  - Mitigation

Attack free When attack detected



- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
  - ① Detection/Isolation
  - 2 Mitigation

Attack free When attack detected



- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
  - ① Detection/Isolation
  - Mitigation

```
Attack free
When attack detected
```



- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
  - ① Detection/Isolation
  - Mitigation

```
Attack free
When attack detected
```



|                                  | Decomposition | Resilient/Robust  | Detection             | Mitigation              |
|----------------------------------|---------------|-------------------|-----------------------|-------------------------|
| [Vel+17a]<br>[Mae+21]            | Dual          | Robust (Scenario) | NA                    | NA                      |
| [Vel+17b]<br>[Vel+18]            | Dual          | Robust (f-robust) | NA                    | NA                      |
| [CMI18]                          | Jacobi-Gauß   | -                 |                       |                         |
| [Ana+18]<br>[Ana+19]<br>[Ana+20] | Dual          | Resilient         | Analyt./Learn.        | Disconnect (Robustness) |
| Our                              | Primal        | Resilient         | Active Analyt./Learn. | Data reconstruction     |



|                                  | Decomposition | Resilient/Robust  | Detection             | Mitigation              |
|----------------------------------|---------------|-------------------|-----------------------|-------------------------|
| [Vel+17a]<br>[Mae+21]            | Dual          | Robust (Scenario) | NA                    | NA                      |
| [Vel+17b]<br>[Vel+18]            | Dual          | Robust (f-robust) | NA                    | NA                      |
| [CMI18]                          | Jacobi-Gauß   | -                 |                       |                         |
| [Ana+18]<br>[Ana+19]<br>[Ana+20] | Dual          | Resilient         | Analyt./Learn.        | Disconnect (Robustness) |
| Our                              | Primal        | Resilient         | Active Analyt./Learn. | Data reconstruction     |



|                                  | Decomposition | Resilient/Robust  | Detection             | Mitigation              |
|----------------------------------|---------------|-------------------|-----------------------|-------------------------|
| [Vel+17a]<br>[Mae+21]            | Dual          | Robust (Scenario) | NA                    | NA                      |
| [Vel+17b]<br>[Vel+18]            | Dual          | Robust (f-robust) | NA                    | NA                      |
| [CMI18]                          | Jacobi-Gauß   | -                 |                       |                         |
| [Ana+18]<br>[Ana+19]<br>[Ana+20] | Dual          | Resilient         | Analyt./Learn.        | Disconnect (Robustness) |
| Our                              | Primal        | Resilient         | Active Analyt./Learn. | Data reconstruction     |



|                                  | Decomposition | Resilient/Robust  | Detection             | Mitigation              |
|----------------------------------|---------------|-------------------|-----------------------|-------------------------|
| [Vel+17a]<br>[Mae+21]            | Dual          | Robust (Scenario) | NA                    | NA                      |
| [Vel+17b]<br>[Vel+18]            | Dual          | Robust (f-robust) | NA                    | NA                      |
| [CMI18]                          | Jacobi-Gauß   | -                 | -                     | -                       |
| [Ana+18]<br>[Ana+19]<br>[Ana+20] | Dual          | Resilient         | Analyt./Learn.        | Disconnect (Robustness) |
| Our                              | Primal        | Resilient         | Active Analyt./Learn. | Data reconstruction     |



|                                                           | Decomposition | Resilient/Robust  | Detection             | Mitigation              |
|-----------------------------------------------------------|---------------|-------------------|-----------------------|-------------------------|
| [Vel+17a]<br>[Mae+21]                                     | Dual          | Robust (Scenario) | NA                    | NA                      |
| $ \begin{array}{c} [Vel + 17b] \\ [Vel + 18] \end{array}$ | Dual          | Robust (f-robust) | NA                    | NA                      |
| [CMI18]                                                   | Jacobi-Gauß   | -                 | _                     | -                       |
| [Ana+18]<br>[Ana+19]<br>[Ana+20]                          | Dual          | Resilient         | Analyt./Learn.        | Disconnect (Robustness) |
| Our                                                       | Primal        | Resilient         | Active Analyt./Learn. | Data reconstruction     |



|                                                           | Decomposition | Resilient/Robust  | Detection             | Mitigation              |
|-----------------------------------------------------------|---------------|-------------------|-----------------------|-------------------------|
| [Vel+17a]<br>[Mae+21]                                     | Dual          | Robust (Scenario) | NA                    | NA                      |
| $ \begin{array}{c} [Vel + 17b] \\ [Vel + 18] \end{array}$ | Dual          | Robust (f-robust) | NA                    | NA                      |
| [CMI18]                                                   | Jacobi-Gauß   | -                 | _                     | -                       |
| [Ana+18]<br>[Ana+19]<br>[Ana+20]                          | Dual          | Resilient         | Analyt./Learn.        | Disconnect (Robustness) |
| Our                                                       | Primal        | Resilient         | Active Analyt./Learn. | Data reconstruction     |



### State of art

#### Security dMPC

|                                                                     | Decomposition | Resilient/Robust  | Detection             | Mitigation              |
|---------------------------------------------------------------------|---------------|-------------------|-----------------------|-------------------------|
| [Vel+17a]<br>[Mae+21]                                               | Dual          | Robust (Scenario) | NA                    | NA                      |
| $ \begin{array}{c} \text{[Vel+17b]} \\ \text{[Vel+18]} \end{array}$ | Dual          | Robust (f-robust) | NA                    | NA                      |
| [CMI18]                                                             | Jacobi-Gauß   | -                 | -                     | -                       |
| [Ana+18]<br>[Ana+19]<br>[Ana+20]                                    | Dual          | Resilient         | Analyt./Learn.        | Disconnect (Robustness) |
| Our                                                                 | Primal        | Resilient         | Active Analyt./Learn. | Data reconstruction     |



### State of art

#### Security dMPC

|                                                           | Decomposition | Resilient/Robust  | Detection             | Mitigation              |
|-----------------------------------------------------------|---------------|-------------------|-----------------------|-------------------------|
| [Vel+17a]<br>[Mae+21]                                     | Dual          | Robust (Scenario) | NA                    | NA                      |
| $ \begin{array}{c} [Vel + 17b] \\ [Vel + 18] \end{array}$ | Dual          | Robust (f-robust) | NA                    | NA                      |
| [CMI18]                                                   | Jacobi-Gauß   | -                 | -                     | -                       |
| [Ana+18]<br>[Ana+19]<br>[Ana+20]                          | Dual          | Resilient         | Analyt./Learn.        | Disconnect (Robustness) |
| Our                                                       | Primal        | Resilient         | Active Analyt./Learn. | Data reconstruction     |



- 1 Vulnerabilities in distributed MPC based on Primal Decomposition
- Resilient Primal Decomposition-based dMPC for deprived systems
- Resilient Primal Decomposition-based dMPC using Artificial Scarcity
- 4 Conclusion



- 1 Vulnerabilities in distributed MPC based on Primal Decomposition
- 2 Resilient Primal Decomposition-based dMPC for deprived systems
- Resilient Primal Decomposition-based dMPC using Artificial Scarcity
- 4 Conclusion



- 1 Vulnerabilities in distributed MPC based on Primal Decomposition
- 2 Resilient Primal Decomposition-based dMPC for deprived systems
- 3 Resilient Primal Decomposition-based dMPC using Artificial Scarcity
- 4 Conclusion



- 1 Vulnerabilities in distributed MPC based on Primal Decomposition
- Resilient Primal Decomposition-based dMPC for deprived systems
- 3 Resilient Primal Decomposition-based dMPC using Artificial Scarcity
- 4 Conclusion



1 Vulnerabilities in distributed MPC based on Primal Decomposition What is the Primal Decomposition? How can an agent attack? Consequences















#### Allocation $\theta_i$

























Allocation  $oldsymbol{ heta}_i$ Dissatisfaction  $oldsymbol{\lambda}_i$ 





- Objective is sum of local ones
- Constraints couple variables
- $oldsymbol{0}$  Allocate  $oldsymbol{ heta}_i$  for each agent
- They solve local problems and
- $oldsymbol{3}$  Send dual variable  $oldsymbol{\lambda}_i$
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i + \lambda_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{\mathcal{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$



- Objective is sum of local ones
- Constraints couple variables
- lacktriangle Allocate  $heta_i$  for each agent
- They solve local problems and
- $\odot$  Send dual variable  $\lambda_i$
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1,...,oldsymbol{u}_M} & \sum_{i \in \mathcal{M}} J_i(oldsymbol{x}_i,oldsymbol{u}_i) \ & ext{s.t.} & \sum_{i \in \mathcal{M}} oldsymbol{h}_i(oldsymbol{x}_i,oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & & ext{ For each } i \in \mathcal{M} \end{array}$$

$$egin{aligned} u_i \ ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: \lambda_i \end{aligned}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$



- Objective is sum of local ones
- Constraints couple variables
- lacksquare Allocate  $oldsymbol{ heta}_i$  for each agent
- ② They solve local problems and
- $oldsymbol{3}$  Send dual variable  $oldsymbol{\lambda}_i$
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1, \ldots, oldsymbol{u}_M} & \sum_{i \in \mathcal{M}} J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & \mathrm{s.t.} & \sum_{i \in \mathcal{M}} oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & \downarrow & \mathsf{For \ each} \ i \in \mathcal{M} \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{8}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$



- Objective is sum of local ones
- Constraints couple variables
- lacksquare Allocate  $oldsymbol{ heta}_i$  for each agent
- They solve local problems and
- $oldsymbol{3}$  Send dual variable  $oldsymbol{\lambda}_i$
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1, \ldots, oldsymbol{u}_M} & \sum _{i \in \mathcal{M}} J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & \mathrm{s.t.} & \sum _{i \in \mathcal{M}} oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & & \downarrow & \mathsf{For \ each} \ i \in \mathcal{M} \end{array}$$

$$egin{array}{ll} ext{minimize} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: \lambda_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$



- Objective is sum of local ones
- Constraints couple variables
- $oldsymbol{0}$  Allocate  $oldsymbol{ heta}_i$  for each agent
- They solve local problems and
- $\odot$  Send dual variable  $\lambda_i$
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1,...,oldsymbol{u}_M} & \sum _{i\in \mathbb{M}} J_i(oldsymbol{x}_i,oldsymbol{u}_i) \ & ext{s.t.} & \sum _{i\in \mathbb{M}} oldsymbol{h}_i(oldsymbol{x}_i,oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & & \downarrow & \mathsf{For \ each} \ i \in \mathbb{M} \end{array}$$

$$egin{array}{ll} ext{minimize} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: \lambda_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{\mathcal{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$



- Objective is sum of local ones
- Constraints couple variables
- **11** Allocate  $\theta_i$  for each agent
- They solve local problems and
- **3** Send dual variable  $\lambda_i$
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1,...,oldsymbol{u}_M} & \sum _{i\in \mathbb{M}} J_i(oldsymbol{x}_i,oldsymbol{u}_i) \ & ext{s.t.} & \sum _{i\in \mathbb{M}} oldsymbol{h}_i(oldsymbol{x}_i,oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & & \downarrow & \mathsf{For \ each} \ i \in \mathbb{M} \end{array}$$

$$egin{array}{ll} ext{minimize} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: \lambda_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{8}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$



- Objective is sum of local ones
- Constraints couple variables
- $oldsymbol{0}$  Allocate  $oldsymbol{ heta}_i$  for each agent
- They solve local problems and
- $oldsymbol{3}$  Send dual variable  $oldsymbol{\lambda}_i$
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1,...,oldsymbol{u}_M} & \sum _{i\in \mathbb{M}} J_i(oldsymbol{x}_i,oldsymbol{u}_i) \ & ext{s.t.} & \sum _{i\in \mathbb{M}} oldsymbol{h}_i(oldsymbol{x}_i,oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & & \downarrow & \mathsf{For \ each} \ i \in \mathbb{M} \end{array}$$

$$egin{array}{ll} & \min _{oldsymbol{u}_i} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: oldsymbol{\lambda}_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{8}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$



- Objective is sum of local ones
- Constraints couple variables

- **1** Allocate  $\theta_i$  for each agent
- They solve local problems and
- $\odot$  Send dual variable  $\lambda_i$
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} ext{minimize} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: oldsymbol{\lambda}_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)} \boldsymbol{\lambda}[k]^{(p)})$$



- Objective is sum of local ones
- Constraints couple variables

- **1** Allocate  $\theta_i$  for each agent
- They solve local problems and
- $oldsymbol{3}$  Send dual variable  $oldsymbol{\lambda}_i$
- Allocation is updated (respecting global constraint)

$$egin{aligned} & \min & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: oldsymbol{\lambda}_i \end{aligned}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{\$}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$



#### Until everybody is equally dissatisfied









- $\lambda_i$  is the only interface
- ullet  $\lambda_i$  depends on local parameters
- ullet Malicious agent modifies  $oldsymbol{\lambda}_i$





- $\lambda_i$  is the only interface
- ullet  $oldsymbol{\lambda}_i$  depends on local parameters
- ullet Malicious agent modifies  $oldsymbol{\lambda}_i$





- $\lambda_i$  is the only interface
- $oldsymbol{\lambda}_i$  depends on local parameters
- Malicious agent modifies  $oldsymbol{\lambda}_i$





- ullet  $oldsymbol{\lambda}_i$  is the only interface
- ullet  $oldsymbol{\lambda}_i$  depends on local parameters
- Malicious agent modifies  $oldsymbol{\lambda}_i$

$$ilde{oldsymbol{\lambda}}_i = \gamma_i(oldsymbol{\lambda}_i)$$



#### Liar, Liar, Pants of fire



- $\lambda \ge 0$  means dissatisfaction
- $\lambda = 0$  means complete satisfaction

- Attacker satisfied only if it really is
- Attacker is greedy  $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing  $\lambda_b > \lambda_a \rightarrow \gamma(\lambda_b) > \gamma(\lambda_a)$
- Invertible
- If  $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$



#### Liar, Liar, Pants of fire



- $\lambda \ge 0$  means dissatisfaction
- $\lambda = 0$  means complete satisfaction

- Attacker satisfied only if it really is
- Attacker is greedy  $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing  $\lambda_b > \lambda_a \rightarrow \gamma(\lambda_b) > \gamma(\lambda_a)$
- Invertible
- If  $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$



#### Liar, Liar, Pants of fire



- $\lambda \ge 0$  means dissatisfaction
- $\lambda = 0$  means complete satisfaction

- Attacker satisfied only if it really is
- Attacker is greedy  $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing  $\lambda_b > \lambda_a \rightarrow \gamma(\lambda_b) > \gamma(\lambda_a)$
- Invertible
- If  $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$



#### Liar, Liar, Pants of fire



- $\lambda \ge 0$  means dissatisfaction
- $\lambda = 0$  means complete satisfaction

- Attacker satisfied only if it really is
- Attacker is greedy  $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing

- Invertible
- If  $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$



#### Liar, Liar, Pants of fire



- $\lambda \ge 0$  means dissatisfaction
- $\lambda = 0$  means complete satisfaction

### Assumptions

Attacker satisfied only if it really is

• 
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy  $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing

- Invertible
- If  $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$



#### Liar, Liar, Pants of fire



- $\lambda \ge 0$  means dissatisfaction
- ullet  $\lambda=0$  means complete satisfaction

### Assumptions

Attacker satisfied only if it really is

• 
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy  $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing

- Invertible
- If  $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$



#### Liar, Liar, Pants of fire



- $\lambda \ge 0$  means dissatisfaction
- $\lambda = 0$  means complete satisfaction

### Assumptions

Attacker satisfied only if it really is

• 
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy  $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing

- Invertible
- If  $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$



#### Liar, Liar, Pants of fire



- $\lambda \ge 0$  means dissatisfaction
- $\lambda = 0$  means complete satisfaction

#### Assumptions

• Attacker satisfied only if it really is

• 
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy  $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing

$$\lambda_b > \lambda_a \to \gamma(\lambda_b) > \gamma(\lambda_a)$$

- Invertible
- If  $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$



# How does an agent lie?

#### Liar, Liar, Pants of fire



- $\lambda \ge 0$  means dissatisfaction
- ullet  $\lambda=0$  means complete satisfaction

### Assumptions

Attacker satisfied only if it really is

• 
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy  $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing  $\lambda_b > \lambda_a \rightarrow \gamma(\lambda_b) > \gamma(\lambda_a)$
- Invertible
- If  $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$



# How does an agent lie?

#### Liar, Liar, Pants of fire



- $\lambda \ge 0$  means dissatisfaction
- $\lambda = 0$  means complete satisfaction

### Assumptions

• Attacker satisfied only if it really is

• 
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy  $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing  $\lambda_b > \lambda_a \rightarrow \gamma(\lambda_b) > \gamma(\lambda_a)$
- Invertible
- If  $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$



- Agent 1 is non-cooperative
- ullet It uses  $ilde{oldsymbol{\lambda}}_1=\gamma_1(oldsymbol{\lambda}_1)= au_1Ioldsymbol{\lambda}_1$
- We can observe 3 things
  - Global minimum when  $\tau_1 = 1$
  - Agent 1 benefits if  $\tau_1$  increases (inverse otherwise)
  - All collapses if too greedy



- Agent 1 is non-cooperative
- It uses  $\tilde{\lambda}_1 = \gamma_1(\lambda_1) = \tau_1 I \lambda_1$
- We can observe 3 things
  - Global minimum when  $\tau_1 = 1$
  - Agent 1 benefits if \(\tau\_1\) increases
     (inverse otherwise)
  - All collapses if too greedy



- Agent 1 is non-cooperative
- It uses  $\lambda_1 = \gamma_1(\lambda_1) = \tau_1 I \lambda_1$
- We can observe 3 things
  - Global minimum when  $\tau_1=1$
  - Agent 1 benefits if  $\tau_1$  increases (inverse otherwise)
  - All collapses if too greedy



- Agent 1 is non-cooperative
- It uses  $\tilde{\boldsymbol{\lambda}}_1 = \gamma_1(\boldsymbol{\lambda}_1) = \tau_1 I \boldsymbol{\lambda}_1$
- We can observe 3 things
  - Global minimum when  $\tau_1=1$
  - Agent 1 benefits if  $\tau_1$  increases (inverse otherwise)
  - All collapses if too greedy





- Agent 1 is non-cooperative
- It uses  $\tilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- We can observe 3 things
  - Global minimum when  $\tau_1 = 1$
  - Agent 1 benefits if  $\tau_1$  increases (inverse otherwise)
  - All collapses if too greedy





- Agent 1 is non-cooperative
- It uses  $ilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- We can observe 3 things
  - Global minimum when  $\tau_1 = 1$
  - Agent 1 benefits if  $\tau_1$  increases (inverse otherwise)
  - All collapses if too greedy





- Agent 1 is non-cooperative
- It uses  $ilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- We can observe 3 things
  - Global minimum when  $\tau_1 = 1$
  - Agent 1 benefits if  $\tau_1$  increases (inverse otherwise)
  - All collapses if too greedy





- Agent 1 is non-cooperative
- It uses  $ilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- We can observe 3 things
  - Global minimum when  $\tau_1 = 1$
  - Agent 1 benefits if  $\tau_1$  increases (inverse otherwise)
  - All collapses if too greedy



- But can we mitigate these effects?
- Yes! (At least in some cases)



- But can we mitigate these effects?
- Yes! (At least in some cases)



- But can we mitigate these effects?
- Yes! (At least in some cases)



- But can we mitigate these effects?
- Yes! (At least in some cases)



### Outline

Resilient Primal Decomposition-based dMPC for deprived systems
 Analyzing deprived systems
 Building an algorithm
 Applying mechanism



- Unconstrained Solution  $\mathring{\boldsymbol{U}}_{i}^{\star}[k]$
- $\bar{\Gamma}_i \mathring{U}_i^{\star}[k] \geq \theta_i[k] \rightarrow \mathsf{Scarcity}$ 
  - Solution projected onto boundary
  - Same as with equality constraints<sup>2</sup>

$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \left\| \boldsymbol{U}_{i}[k] \right\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] \leq \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$



- Unconstrained Solution  $\mathring{\boldsymbol{U}}_{i}^{\star}[k]$
- $\bar{\Gamma}_i \mathring{m{U}}_i^{\star}[k] \geq m{ heta}_i[k] 
  ightarrow \mathsf{Scarcity}$ 
  - Solution projected onto boundary
  - Same as with equality constraints<sup>2</sup>

$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \left\| \boldsymbol{U}_{i}[k] \right\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] \leq \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$



- Unconstrained Solution  $\mathring{\boldsymbol{U}}_{i}^{\star}[k]$
- $\bar{\Gamma}_i \mathring{m{U}}_i^{\star}[k] \geq m{ heta}_i[k] 
  ightarrow \mathsf{Scarcity}$ 
  - Solution projected onto boundary
  - Same as with equality constraints

$$\begin{array}{ll}
\text{minimize} & \frac{1}{2} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k] \\
\text{subject to} & \bar{\Gamma}_i \boldsymbol{U}_i[k] \leq \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]
\end{array}$$





- Unconstrained Solution  $\mathring{m{U}}_i^{\star}[k]$
- $\bar{\Gamma}_i \mathring{\boldsymbol{U}}_i^{\star}[k] \geq \boldsymbol{\theta}_i[k] \rightarrow \text{Scarcity}$ 
  - Solution projected onto boundary
    - Same as with equality constraints<sup>2</sup>

minimize 
$$\frac{1}{U_i[k]} \|U_i[k]\|_{H_i}^2 + f_i[k]^T U_i[k]$$
subject to 
$$\bar{\Gamma}_i U_i[k] \le \theta_i[k] : \lambda_i[k]$$





- Unconstrained Solution  $\mathring{m{U}}_i^{\star}[k]$
- $ar{\Gamma}_i \mathring{m{U}}_i^{\star}[k] \geq m{ heta}_i[k] 
  ightarrow \mathsf{Scarcity}$ 
  - Solution projected onto boundary
  - Same as with equality constraints<sup>2</sup>

$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] \leq \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$





- Unconstrained Solution  $\mathring{m{U}}_i^{\star}[k]$
- $\bar{\Gamma}_i \mathring{\boldsymbol{U}}_i^{\star}[k] \geq \boldsymbol{\theta}_i[k] \rightarrow \mathsf{Scarcity}$ 
  - Solution projected onto boundary
  - Same as with equality constraints<sup>2</sup>

minimize 
$$\frac{1}{U_i[k]} \| U_i[k] \|_{H_i}^2 + f_i[k]^T U_i[k]$$
  
subject to  $\bar{\Gamma}_i U_i[k] \le \theta_i[k] : \lambda_i[k]$ 





- Unconstrained Solution  $\mathring{m{U}}_i^{\star}[k]$
- $\bar{\Gamma}_i \mathring{m{U}}_i^{\star}[k] \geq m{ heta}_i[k] 
  ightarrow \mathsf{Scarcity}$ 
  - Solution projected onto boundary
  - Same as with equality constraints<sup>2</sup>

minimize 
$$\frac{1}{U_i[k]} \| U_i[k] \|_{H_i}^2 + f_i[k]^T U_i[k]$$
  
subject to  $\bar{\Gamma}_i U_i[k] = \theta_i[k] : \lambda_i[k]$ 





- No Scarcity
  - → All constraints satisfied
  - → No coordination needed
    - → No incentive to cheat

- Scarcity
  - → Competition
  - → Consensus/Compromis
  - → Agents may cheat



- No Scarcity
  - → All constraints satisfied
  - → No coordination needed
  - → No incentive to cheat

- Scarcity
  - → Competition
  - → Consensus/Compromis
    - → Agents may cheat <a href="mailto:aprilloom">a</a>



- No Scarcity
  - → All constraints satisfied
  - → No coordination needed
  - → No incentive to cheat

- Scarcity
  - → Competition
  - → Consensus/Compromise
    - → Agents may cheat



- No Scarcity
  - → All constraints satisfied
  - → No coordination needed
  - → No incentive to cheat

- Scarcity
  - → Competition
  - → Consensus/Compromise
  - → Agents may cheat



- No Scarcity
  - → All constraints satisfied
  - → No coordination needed
  - → No incentive to cheat

- Scarcity
  - → Competition
  - → Consensus/Compromise
  - → Agents may cheat



#### But why?

- No Scarcity
  - → All constraints satisfied
  - → No coordination needed
  - → No incentive to cheat

### Scarcity

- → Competition
- → Consensus/Compromise
- ightarrow Agents may cheat  $rac{\pi}{10}$



- No Scarcity
  - → All constraints satisfied
  - → No coordination needed
  - → No incentive to cheat

- Scarcity
  - → Competition
  - → Consensus/Compromise
  - ightarrow Agents may cheat  $\overline{w}$



- No Scarcity
  - → All constraints satisfied
  - → No coordination needed
  - → No incentive to cheat

- Scarcity
  - → Competition
  - → Consensus/Compromise
  - ightarrow Agents may cheat  $\overline{w}$



#### But why?

- No Scarcity
  - → All constraints satisfied
  - → No coordination needed
  - → No incentive to cheat

- Scarcity
  - → Competition
  - $\,\to\, \mathsf{Consensus}/\mathsf{Compromise}$
  - → Agents may cheat



CentraleSupélec

### Analysis

### Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize 
$$\frac{1}{U_i[k]} \| U_i[k] \|_{H_i}^2 + f_i[k]^T U_i[k]$$
  
subject to  $\bar{\Gamma}_i U_i[k] = \theta_i[k] : \lambda_i[k]$ 

$$oldsymbol{\lambda}_i[k] = -P_ioldsymbol{ heta}_i[k] - oldsymbol{s}_i[k]$$

- $P_i$  is time invariant
- $s_i[k]$  is time variant



### Analysis

#### Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize 
$$\frac{1}{2} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$
  
subject to  $\bar{\Gamma}_i \boldsymbol{U}_i[k] = \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$ 

$$oldsymbol{\lambda}_i[k] = -P_ioldsymbol{ heta}_i[k] - oldsymbol{s}_i[k]$$

- $P_i$  is time invariant
- $s_i[k]$  is time variant



### Analysis

#### Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize 
$$\frac{1}{U_i[k]} \| U_i[k] \|_{H_i}^2 + f_i[k]^T U_i[k]$$
  
subject to  $\bar{\Gamma}_i U_i[k] = \theta_i[k] : \lambda_i[k]$ 

$$oldsymbol{\lambda}_i[k] = -P_ioldsymbol{ heta}_i[k] - oldsymbol{s}_i[k]$$

- $P_i$  is time invariant
- $s_i[k]$  is time variant



### Analysis

#### Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize 
$$\frac{1}{2} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$
  
subject to  $\bar{\Gamma}_i \boldsymbol{U}_i[k] = \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$ 

$$oldsymbol{\lambda}_i[k] = -P_ioldsymbol{ heta}_i[k] - oldsymbol{s}_i[k]$$

- $P_i$  is time invariant
- $s_i[k]$  is time variant



### Analysis

#### Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize 
$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] = \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$

$$\lambda_i[k] = -P_i \theta_i[k] - s_i[k]$$

- $P_i$  is time invariant
- $s_i[k]$  is time variant



## Analysis

### Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize 
$$\frac{1}{2} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$
  
subject to  $\bar{\Gamma}_i \boldsymbol{U}_i[k] = \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$ 

$$\lambda_i[k] = -P_i \theta_i[k] - s_i[k]$$

- $P_i$  is time invariant
- $s_i[k]$  is time variant



## Analysis

### Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize 
$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] = \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$

$$\boldsymbol{\lambda}_i[k] = -P_i\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- $P_i$  is time invariant
- $s_i[k]$  is time variant



## Analysis

### Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize 
$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] = \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$

$$\lambda_i[k] = -\frac{P_i}{\theta_i}[k] - s_i[k]$$

- P<sub>i</sub> is time invariant
- $s_i[k]$  is time variant



## Analysis

### Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize 
$$\frac{1}{2} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$
  
subject to  $\bar{\Gamma}_i \boldsymbol{U}_i[k] = \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$ 

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- P<sub>i</sub> is time invariant
- $s_i[k]$  is time variant



## Analysis

#### Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize 
$$\frac{1}{U_i[k]} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$
  
subject to  $\bar{\Gamma}_i \boldsymbol{U}_i[k] = \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$ 

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- ullet  $P_i$  is time invariant
- $s_i[k]$  is time variant



#### Under attack!

- Normal behavior
  - Affine solution

$$\lambda_i[k] = -P_i \theta_i[k] - s_i[k]$$

• Under attack  $\rightarrow \lambda_i = T_i[k]\lambda_i$ • Parameters modified

- But wait! P<sub>i</sub> is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!



- Normal behavior
  - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack  $\rightarrow \lambda_i = T_i[k]\lambda_i$ 
  - Parameters modified

- But wait! P<sub>i</sub> is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!



- Normal behavior
  - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack  $ightarrow ilde{\lambda}_i = T_i[k]\lambda_i$ 
  - Parameters modified

- But wait!  $P_i$  is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!



- Normal behavior
  - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack  $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$ 
  - Parameters modified

- But wait! P<sub>i</sub> is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!



- Normal behavior
  - Affine solution

$$\boldsymbol{\lambda}_i[k] = -P_i\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack  $ightarrow ilde{oldsymbol{\lambda}}_i = T_i[k] oldsymbol{\lambda}_i$ 
  - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i[k] = -T_i[k]P_i\boldsymbol{\theta}_i[k] - T_i[k]\boldsymbol{s}_i[k]$$

- But wait!  $P_i$  is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!



- Normal behavior
  - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack  $\rightarrow \tilde{\boldsymbol{\lambda}}_i = T_i[k]\boldsymbol{\lambda}_i$ 
  - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

- But wait!  $P_i$  is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!



- Normal behavior
  - Affine solution

$$\boldsymbol{\lambda}_i[k] = -P_i\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack  $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$ 
  - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

- But wait!  $P_i$  is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!



- Normal behavior
  - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack  $\rightarrow \tilde{\boldsymbol{\lambda}}_i = T_i[k]\boldsymbol{\lambda}_i$ 
  - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

- But wait!  $P_i$  is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!



- Normal behavior
  - Affine solution

$$\boldsymbol{\lambda}_i[k] = -P_i\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack  $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$ 
  - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

- But wait!  $P_i$  is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!



- Normal behavior
  - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack  $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$ 
  - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

- But wait!  $P_i$  is not supposed to change!
- ullet Change o Probably an Attack! Let's take advantage of this!



#### Assumption

### We know nominal $\bar{P}_i$

• If we estimate  $\hat{P}_i[k]$  and  $\hat{\tilde{s}}_i[k]$  such as:

$$\tilde{\lambda}_i[k] = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\boldsymbol{s}}}_i[k]$$

• If 
$$\left\|\hat{\tilde{P}}_i[k] - \bar{P}_i \right\|_{\scriptscriptstyle E} > \epsilon_P o \mathsf{Attack}$$

• Ok, but how can we estimate  $\widehat{\tilde{P}}_i[k]$ ?



### Assumption

## We know nominal $\bar{P}_i$

• If we estimate  $\hat{P}_i[k]$  and  $\hat{\tilde{s}}_i[k]$  such as:

$$\tilde{\lambda}_i[k] = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\mathbf{s}}}_i[k]$$

• If 
$$\left\|\hat{\tilde{P}}_i[k] - \bar{P}_i\right\|_F > \epsilon_P o ext{Attack}$$

• Ok, but how can we estimate  $\hat{\tilde{P}}_i[k]$ ?



### Assumption

## We know nominal $\bar{P}_i$

• If we estimate  $\hat{P}_i[k]$  and  $\hat{\tilde{s}}_i[k]$  such as:

$$\tilde{\lambda}_i[k] = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\mathbf{s}}}_i[k]$$

• If 
$$\left\|\hat{\tilde{P}}_i[k] - \bar{P}_i\right\|_F > \epsilon_P o ext{Attack}$$

• Ok, but how can we estimate  $\hat{\tilde{P}}_i[k]$ ?



### Assumption

## We know nominal $\bar{P}_i$

• If we estimate  $\hat{P}_i[k]$  and  $\hat{\tilde{s}}_i[k]$  such as:

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\boldsymbol{s}}}_i[k]$$

• If 
$$\left\|\hat{\tilde{P}}_i[k] - \bar{P}_i \right\|_F > \epsilon_P o ext{Attack}$$

• Ok, but how can we estimate  $\hat{\tilde{P}}_i[k]$ ?



#### Assumption

## We know nominal $\bar{P}_i$

• If we estimate  $\hat{P}_i[k]$  and  $\hat{\tilde{s}}_i[k]$  such as:

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\boldsymbol{s}}}_i[k]$$

- ullet If  $\left\| \hat{ ilde{P}}_i[k] ar{P}_i 
  ight\|_F > \epsilon_P o ext{Attack}$
- Ok, but how can we estimate  $\hat{\tilde{P}}_i[k]$ ?



#### Assumption

## We know nominal $\bar{P}_i$

• If we estimate  $\hat{P}_i[k]$  and  $\hat{\tilde{s}}_i[k]$  such as:

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\boldsymbol{s}}}_i[k]$$

- If  $\left\|\hat{\tilde{P}}_i[k] \bar{P}_i \right\|_F > \epsilon_P o \mathsf{Attack}$
- Ok, but how can we estimate  $\hat{\tilde{P}}_i[k]$ ?



#### Assumption

## We know nominal $\bar{P}_i$

• If we estimate  $\hat{P}_i[k]$  and  $\hat{\tilde{s}}_i[k]$  such as:

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\boldsymbol{s}}}_i[k]$$

- If  $\left\| \hat{\tilde{P}}_i[k] \bar{P}_i \right\|_F > \epsilon_P o \mathsf{Attack}$
- Ok, but how can we estimate  $\hat{\tilde{P}}_i[k]$ ?



Rafael Accácio Nogueira

- We estimate  $\hat{\tilde{P}}_i[k]$  and  $\hat{\tilde{s}}_i[k]$  simultaneously using RLS
- Challenge: Online estimation during negotiation fails
  - Update function couples  $heta_i^p$  and  $\lambda_i^p o$  low input excitation
- Solution: Send a random<sup>3</sup> sequence to increase excitation until convergence.



<sup>&</sup>lt;sup>3</sup>A random signal has persistent excitation of any order (

Rafael Accácio Nogueira

- We estimate  $\hat{\tilde{P}}_i[k]$  and  $\hat{\tilde{s}}_i[k]$  simultaneously using RLS
- Challenge: Online estimation during negotiation fails
  - ullet Update function couples  $heta_i^p$  and  $\lambda_i^p o$  low input excitation
- Solution: Send a random<sup>3</sup> sequence to increase excitation until convergence.



<sup>&</sup>lt;sup>3</sup>A random signal has persistent excitation of any order (

- We estimate  $\hat{\tilde{P}}_i[k]$  and  $\hat{\tilde{s}}_i[k]$  simultaneously using RLS
- Challenge: Online estimation during negotiation fails
  - ullet Update function couples  $oldsymbol{ heta}_i^p$  and  $oldsymbol{\lambda}_i^p o$  low input excitation
- Solution: Send a random<sup>3</sup> sequence to increase excitation until convergence.



- We estimate  $\hat{\tilde{P}}_i[k]$  and  $\hat{\tilde{s}}_i[k]$  simultaneously using RLS
- Challenge: Online estimation during negotiation fails
  - Update function couples  $oldsymbol{ heta}_i^p$  and  $oldsymbol{\lambda}_i^p o$  low input excitation
- Solution: Send a random<sup>3</sup> sequence to increase excitation until convergence.



Rafael Accácio Nogueira

- We estimate  $\hat{\tilde{P}}_i[k]$  and  $\hat{\tilde{s}}_i[k]$  simultaneously using RLS
- Challenge: Online estimation during negotiation fails
  - Update function couples  $oldsymbol{ heta}_i^p$  and  $oldsymbol{\lambda}_i^p o$  low input excitation
- Solution: Send a random<sup>3</sup> sequence to increase excitation until convergence.



# Estimating $\hat{P}_i[k]$

- We estimate  $\hat{\tilde{P}}_i[k]$  and  $\hat{\tilde{s}}_i[k]$  simultaneously using RLS
- Challenge: Online estimation during negotiation fails
  - Update function couples  $oldsymbol{ heta}_i^p$  and  $oldsymbol{\lambda}_i^p o$  low input excitation
- Solution: Send a random<sup>3</sup> sequence to increase excitation until convergence.





# Classification of mitigation techniques

- Active (Resilient)
  - Detection/Isolation
  - Mitigation



# Classification of mitigation techniques

- Active (Resilient)
  - Detection/Isolation
  - Mitigation ??



#### Reconstructing $\lambda_i$

- Now, we have  $\hat{\tilde{P}}_i[k]$ 
  - Since  $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
  - We can recover  $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

• Reconstruct  $\lambda_i$ 

$$\hat{oldsymbol{\lambda}}_i^{ ext{rec}} = -ar{P}_i oldsymbol{ heta}_i - \widehat{T}_i \widehat{ar{\hat{oldsymbol{s}}}}_i [k]$$

$$oldsymbol{\lambda}_i^{\mathsf{nod}} = egin{cases} ilde{\lambda}_i, & \mathsf{if} \ \mathsf{attack} \ detected \ ilde{\lambda}_i, & \mathsf{otherwise} \end{cases}$$



#### Reconstructing $\lambda_i$

- Now, we have  $\hat{\tilde{P}}_i[k]$ 
  - Since  $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
  - We can recover  $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

• Reconstruct  $\lambda_i$ 

$$\hat{\boldsymbol{\lambda}}_{i}^{\mathrm{rec}} = -\bar{P}_{i}\boldsymbol{\theta}_{i} - \widehat{T_{i}[k]^{-1}}\widehat{\tilde{\boldsymbol{s}}}_{i}[k]$$



#### Reconstructing $\lambda_i$

- Now, we have  $\hat{\tilde{P}}_i[k]$ 
  - Since  $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
  - We can recover  $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

• Reconstruct  $\lambda_i$ 

$$\hat{oldsymbol{\lambda}}_i^{ ext{rec}} = -ar{P}_i oldsymbol{ heta}_i - \widehat{T}_i \widehat{ar{\hat{oldsymbol{s}}}}_i [k]$$

$$oldsymbol{\lambda}_i^{ ext{pod}} = egin{cases} ilde{oldsymbol{\lambda}}_i, & ext{if attack detected} \ ilde{oldsymbol{\lambda}}_i, & ext{otherwise} \end{cases}$$



#### Reconstructing $\lambda_i$

- Now, we have  $\hat{\tilde{P}}_i[k]$ 
  - Since  $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
  - We can recover  $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

• Reconstruct  $\lambda_i$ 

$$\overset{\scriptscriptstyle\mathsf{rec}}{\pmb{\lambda}}_i = -ar{P}_i \pmb{\theta}_i - \widehat{T_i[k]^{-1}} \widehat{\tilde{\pmb{s}}}_i[k]$$

$$oldsymbol{\lambda}_i^{ ext{nod}} = egin{cases} ilde{\lambda}_i^{ ext{rec}}, & ext{if attack detected} \ ilde{oldsymbol{\lambda}}_i, & ext{otherwise} \end{cases}$$



#### Reconstructing $\lambda_i$

- Now, we have  $\hat{\tilde{P}}_i[k]$ 
  - Since  $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
  - We can recover  $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

ullet Reconstruct  $oldsymbol{\lambda}_i$ 

$$\overset{\scriptscriptstyle\mathsf{rec}}{\pmb{\lambda}}_i = -ar{P}_i \pmb{\theta}_i - \widehat{T}_i \widehat{\pmb{[}k]}^{-1} \widehat{\hat{\pmb{s}}}_i [k]$$

$$oldsymbol{\hat{\lambda}}_i^{ ext{mod}} = egin{cases} \hat{oldsymbol{\lambda}}_i, & ext{if attack detected} \ \hat{oldsymbol{\lambda}}_i, & ext{otherwise} \end{cases}$$



## Complete Mechanism



- Supervise exchanges by inquiring the agents
- Estimate how they will behave

#### Two Phases

- Detect which agents are non-cooperative
- $lue{}$  Reconstruct  $oldsymbol{\lambda}_i$  and use in negotiation





- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- Detect which agents are non-cooperative
- ullet Reconstruct  $oldsymbol{\lambda}_i$  and use in negotiation





- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- Detect which agents are non-cooperative
- oxdot Reconstruct  $oldsymbol{\lambda}_i$  and use in negotiation





- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- Detect which agents are non-cooperative
- lacksquare Reconstruct  $oldsymbol{\lambda}_i$  and use in negotiation





- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- Detect which agents are non-cooperative
- 2 Reconstruct  $\lambda_i$  and use in negotiation





- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- 1 Detect which agents are non-cooperative
- **2** Reconstruct  $\lambda_i$  and use in negotiation























































- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 5 Section 105
  - Agent Laborta (dMPC)
  - Agent I cheats (RPdMPC-DS)





- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
  - N Nominal
  - Agent I cheats (dMPC)
  - S Agent I cheats (RPdMPC-DS)





- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
  - Ament Laborta (dMBC)
  - Agent I cheats (RPdMPC-DS)





- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
  - Nominal
  - Agent I cheats (GMPC-DS)





- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
  - Nominal
  - Agent I cheats (dMPC)
  - S Agent I cheats (RPdMPC-DS)





- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
  - Nominal
  - Agent I cheats (dMPC)
  - S Agent I cheats (RPdMPC-DS)





- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
  - Nominal
  - Agent I cheats (dMPC)
  - S Agent I cheats (RPdMPC-DS)





- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
  - Nominal
  - Agent I cheats (dMPC)
  - S Agent I cheats (RPdMPC-DS)



#### Temporal





Temperature in house I. Error  $E_I(k)$ .

Nominal, S Selflish, C Corrected



Applying mechanism

### Temporal





Temperature in house I. Error  $E_I(k)$ .

- Agent starts cheating in k=6
- S Agent increases its comfort
- Restablish behavior close to §



### Temporal





Temperature in house I. Error  $E_I(k)$ .

- Agent starts cheating in k=6
- S Agent increases its comfort
- Restablish behavior close to f



### Temporal





Temperature in house I. Error  $E_I(k)$ .

- Agent starts cheating in k=6
- S Agent increases its comfort
- Restablish behavior close to f



### Temporal





Temperature in house I. Error  $E_I(k)$ .

- Agent starts cheating in k=6
- S Agent increases its comfort



#### Costs

Objective functions  $J_i$  (Normalized error %)

| Agent  | Selfish | Corrected |
|--------|---------|-----------|
| ı      | -36.3   | 0.503     |
| Ш      | 21.671  | -0.547    |
| Ш      | 17.387  | -0.004    |
| IV     | 17.626  | -0.09     |
| Global | 3.526   | 0.016     |



#### Costs

Objective functions  $J_i$  (Normalized error %)

| Agent  | Selfish | Corrected |
|--------|---------|-----------|
| ı      | -36.3   | 0.503     |
| Ш      | 21.671  | -0.547    |
| Ш      | 17.387  | -0.004    |
| IV     | 17.626  | -0.09     |
| Global | 3.526   | 0.016     |



### Outline

Resilient Primal Decomposition-based dMPC using Artificial Scarcity Relaxing some assumptions Adapting the algorithm Applying mechanism



## Relaxing scarcity assumption

- Systems are not completely deprived
  - We can't change our constraints to equality ones anymore
  - Nor use the simpler update equation

minimize 
$$\frac{1}{U_i[k]} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$
subject to 
$$\bar{\Gamma}_i \boldsymbol{U}_i[k] \leq \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{8}(\boldsymbol{\theta}[k]^{(p)} + \boldsymbol{\rho}^{(p)} \boldsymbol{\lambda}[k]^{(p)})$$



### Relaxing scarcity assumption

#### Systems are not completely deprived

- We can't change our constraints to equality ones anymore
- Nor use the simpler update equation

minimize 
$$\frac{1}{U_i[k]} \| U_i[k] \|_{H_i}^2 + f_i[k]^T U_i[k]$$
  
subject to  $\bar{\Gamma}_i U_i[k] \le \theta_i[k] : \lambda_i[k]$   
 $\theta[k]^{(p+1)} = \operatorname{Proj}^{\mathbb{S}}(\theta[k]^{(p)} + \rho^{(p)}\lambda[k]^{(p)})$ 



# Relaxing scarcity assumption

- Systems are not completely deprived
  - We can't change our constraints to equality ones anymore
  - Nor use the simpler update equation

minimize 
$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] \leq \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$



# Relaxing scarcity assumption

- Systems are not completely deprived
  - We can't change our constraints to equality ones anymore
  - Nor use the simpler update equation

minimize 
$$\frac{1}{U_i[k]} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$
  
subject to  $\bar{\Gamma}_i \boldsymbol{U}_i[k] \leq \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$ 

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{\mathcal{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$



#### Solution for $\lambda_i[k]$

### Instead of having one single affine solution

$$\boldsymbol{\lambda}_i[k] = -P_i\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now, we may have multiple (Piecewise affine function)

$$\lambda_i[k] = \begin{cases} -P_i^{(0)}\theta_i[k] - s_i^{(0)}[k], & \text{if } \theta_i[k] \in \mathcal{R}_{\lambda_i}^0 \\ \vdots & \vdots \\ -P_i^{(2^{n_{\text{ineq}}}-1)}\theta_i[k] - s_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \theta_i[k] \in \mathcal{R}_{\lambda}^{2^{n_{\text{ineq}}}-1} \end{cases}$$



#### Solution for $\lambda_i[k]$

### Instead of having one single affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now, we may have multiple (Piecewise affine function)

$$\boldsymbol{\lambda}_i[k] = \begin{cases} -P_i^{(0)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^0 \\ \vdots & \vdots \\ -P_i^{(2^{n_{\text{ineq}}}-1)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^{2^{n_{\text{ineq}}}-1} \end{cases}$$



#### Solution for $\lambda_i[k]$

Instead of having one single affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now, we may have multiple (Piecewise affine function)

$$\boldsymbol{\lambda}_i[k] = \begin{cases} -P_i^{(0)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^0 \\ \vdots & \vdots \\ -P_i^{(2^{n_{\mathsf{ineq}}-1)}}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(2^{n_{\mathsf{ineq}}-1)}}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^{2^{n_{\mathsf{ineq}}-1}} \end{cases}$$



#### Solution for $\lambda_i[k]$

Instead of having one single affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now, we may have multiple (Piecewise affine function)

$$\boldsymbol{\lambda}_i[k] = \begin{cases} -P_i^{(0)} \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^0 \\ \vdots & \vdots \\ -P_i^{(2^{n_{\text{ineq}}}-1)} \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^{2^{n_{\text{ineq}}}-1} \end{cases}$$



#### Solution for $\lambda_i[k]$

Instead of having one single affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now, we may have multiple (Piecewise affine function)

$$\boldsymbol{\lambda}_i[k] = \begin{cases} -P_i^{(0)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}^0_{\boldsymbol{\lambda}_i} \\ \vdots & \vdots \\ -P_i^{(2^{n_{\text{ineq}}}-1)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}^{2^{n_{\text{ineq}}}-1}_{\boldsymbol{\lambda}_i} \end{cases}$$



### Solution for $\lambda_i[k]$ (Continued)





#### Solution for $\lambda_i[k]$ (Continued)



Separation surfaces depend on state and local parameters.

Unknown by the coordinator.



#### Solution for $\lambda_i[k]$ (Continued)





#### Solution for $\lambda_i[k]$ (Continued)





#### Solution for $\lambda_i[k]$ (Continued)





#### Solution for $\lambda_i[k]$ (Continued)





#### Solution for $\lambda_i[k]$ (Continued)





#### Solution for $\lambda_i[k]$ (Continued)





$$\boldsymbol{\lambda}_{i}[k] = \begin{cases} -P_{i}^{(0)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(0)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{0} \\ \vdots & \vdots \\ -P_{i}^{(2^{n_{\text{ineq}}}-1)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{2^{n_{\text{ineq}}}-1} \end{cases}$$
 Scarcity Sparsity

All constraints active 
$$-P_i^{(0)}\theta_i[k] - s_i^{(0)}[k] \qquad \rightarrow \qquad -P_i\theta_i[k] - s_i[k]$$
 None constraints active 
$$-P_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}\theta_i[k] - s_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}[k] \qquad \rightarrow \qquad \mathbf{0}$$



$$\boldsymbol{\lambda}_{i}[k] = \begin{cases} -P_{i}^{(0)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(0)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{0} \\ \vdots & \vdots \\ -P_{i}^{(2^{n_{\text{ineq}}}-1)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{2^{n_{\text{ineq}}}-1} \end{cases}$$
 Scarcity

All constraints active 
$$-P_i^{(0)}\theta_i[k] - s_i^{(0)}[k] \qquad \rightarrow \qquad -P_i\theta_i[k] - s_i[k]$$
 None constraints active 
$$-P_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}\theta_i[k] - s_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}[k] \qquad \rightarrow \qquad \mathbf{0}$$



$$\boldsymbol{\lambda}_{i}[k] = \begin{cases} -P_{i}^{(0)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(0)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{0} \\ \vdots & \vdots \\ -P_{i}^{(2^{n_{\text{ineq}}}-1)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{2^{n_{\text{ineq}}}-1} \end{cases} \quad \text{Scarcity} \quad \text{Sparsity}$$

All constraints active 
$$-P_i^{(0)}\theta_i[k] - s_i^{(0)}[k] \qquad \rightarrow \quad -P_i\theta_i[k] - s_i[k]$$
 None constraints active 
$$-P_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}\theta_i[k] - s_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}[k] \qquad \rightarrow \quad \mathbf{0}$$



$$\boldsymbol{\lambda}_{i}[k] = \begin{cases} -P_{i}^{(0)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(0)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{0} \\ \vdots & \vdots \\ -P_{i}^{(2^{n_{\text{ineq}}}-1)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{2^{n_{\text{ineq}}}-1} \end{cases}$$
 Scarcity Sparsity

All constraints active 
$$\begin{array}{ccc} -P_i^{(0)} \boldsymbol{\theta_i}[k] - \boldsymbol{s_i^{(0)}}[k] & \rightarrow & -P_i \boldsymbol{\theta_i}[k] - \boldsymbol{s_i}[k] \\ \text{None constraints active} & -P_i^{\left(2^{n_{\text{ineq}}}-1\right)} \boldsymbol{\theta_i}[k] - \boldsymbol{s_i^{\left(2^{n_{\text{ineq}}}-1\right)}}[k] & \rightarrow & 0 \end{array}$$



$$\boldsymbol{\lambda}_{i}[k] = \begin{cases} -P_{i}^{(0)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(0)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{0} \\ \vdots & \vdots \\ -P_{i}^{(2^{n_{\text{ineq}}}-1)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{2^{n_{\text{ineq}}}-1} \end{cases}$$
 Scarcity Sparsity

All constraints active 
$$-P_i^{(0)} \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k] \qquad \rightarrow \quad -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$
 None constraints active 
$$-P_i^{\left(2^{n_{\text{ineq}}}-1\right)} \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{\left(2^{n_{\text{ineq}}}-1\right)}[k] \quad \rightarrow \quad \boldsymbol{0}$$



#### Under attack!

$$\tilde{\boldsymbol{\lambda}}_i[k] = T_i[k]\boldsymbol{\lambda}_k$$

$$\tilde{\pmb{\lambda}}_i[k] = \begin{cases} -\widetilde{P_i}^{(0)} \pmb{\theta}_i[k] - \widetilde{\pmb{s}_i}^{(0)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^0 \\ \vdots & \vdots \\ -\widetilde{P_i}^{(2^{n_{\text{ineq}}}-1)} \pmb{\theta}_i[k] - \widetilde{\pmb{s}_i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^{2^{n_{\text{ineq}}}-1}_{\pmb{\lambda}_i} \end{cases}$$

- ullet If we can estimate  $\widetilde{P}_i^{\,(0)}$  we can use same strategy than before
- ullet Problem: We don't known in which region  $oldsymbol{ heta}_i$  is
- Solution: Let's force it using Artificial Scarcity



#### Under attack!

$$\tilde{\boldsymbol{\lambda}}_i[k] = T_i[k]\boldsymbol{\lambda}_k$$

$$\tilde{\pmb{\lambda}}_i[k] = \begin{cases} -\widetilde{P_i}^{(0)} \pmb{\theta}_i[k] - \widetilde{\pmb{s}_i}^{(0)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^0 \\ \vdots & \vdots \\ -\widetilde{P_i}^{(2^{n_{\text{ineq}}}-1)} \pmb{\theta}_i[k] - \widetilde{\pmb{s}_i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^{2^{n_{\text{ineq}}}-1}_{\pmb{\lambda}_i} \end{cases}$$

- ullet If we can estimate  $\widetilde{P}_i^{\,(0)}$  we can use same strategy than before
- ullet Problem: We don't known in which region  $heta_i$  is
- Solution: Let's force it using Artificial Scarcity



#### Under attack!

$$\tilde{\boldsymbol{\lambda}}_i[k] = T_i[k]\boldsymbol{\lambda}_k$$

$$\tilde{\pmb{\lambda}}_i[k] = \begin{cases} -\tilde{P_i}^{(0)} \pmb{\theta}_i[k] - \tilde{\pmb{s}_i}^{(0)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^0 \\ \vdots & \vdots \\ -\tilde{P_i}^{(2^{n_{\text{ineq}}}-1)} \pmb{\theta}_i[k] - \tilde{\pmb{s}_i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^{2^{n_{\text{ineq}}}-1}_{\pmb{\lambda}_i} \end{cases}$$

- If we can estimate  $\widetilde{P}_i^{\,(0)}$  we can use same strategy than before
- Problem: We don't known in which region  $\theta_i$  is
- Solution: Let's force it using Artificial Scarcity



#### Under attack!

$$\tilde{\boldsymbol{\lambda}}_i[k] = T_i[k]\boldsymbol{\lambda}_k$$

$$\tilde{\pmb{\lambda}}_i[k] = \begin{cases} -\tilde{P}_i^{(0)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(0)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^0 \\ \vdots & \vdots \\ -\tilde{P}_i^{(2^{n_{\text{ineq}}}-1)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^{2^{n_{\text{ineq}}}-1}_{\pmb{\lambda}_i} \end{cases}$$

- If we can estimate  $\widetilde{P}_i^{\,(0)}$  we can use same strategy than before
- Problem: We don't known in which region  $\theta_i$  is
- Solution: Let's force it using Artificial Scarcity



#### Under attack!

$$\tilde{\boldsymbol{\lambda}}_i[k] = T_i[k]\boldsymbol{\lambda}_k$$

$$\tilde{\pmb{\lambda}}_i[k] = \begin{cases} -\tilde{P}_i^{(0)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(0)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^0 \\ \vdots & \vdots \\ -\tilde{P}_i^{(2^{n_{\text{ineq}}}-1)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^{2^{n_{\text{ineq}}}-1}_{\pmb{\lambda}_i} \end{cases}$$

- ullet If we can estimate  $\widetilde{P}_i^{\,(0)}$  we can use same strategy than before
- Problem: We don't known in which region  $\theta_i$  is
- Solution: Let's force it using Artificial Scarcity



#### Under attack!

$$\tilde{\boldsymbol{\lambda}}_i[k] = T_i[k]\boldsymbol{\lambda}_k$$

$$\tilde{\pmb{\lambda}}_i[k] = \begin{cases} -\tilde{P}_i^{(0)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(0)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^0 \\ \vdots & \vdots \\ -\tilde{P}_i^{(2^{n_{\text{ineq}}}-1)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^{2^{n_{\text{ineq}}}-1}_{\pmb{\lambda}_i} \end{cases}$$

- ullet If we can estimate  $\widetilde{P}_i^{\,(0)}$  we can use same strategy than before
- ullet Problem: We don't known in which region  $oldsymbol{ heta}_i$  is
- Solution: Let's force it using Artificial Scarcity



#### Under attack!

$$\tilde{\boldsymbol{\lambda}}_i[k] = T_i[k]\boldsymbol{\lambda}_k$$

$$\tilde{\pmb{\lambda}}_i[k] = \begin{cases} -\tilde{P}_i^{(0)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(0)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^0 \\ \vdots & \vdots \\ -\tilde{P}_i^{(2^{n_{\text{ineq}}}-1)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^{2^{n_{\text{ineq}}}-1}_{\pmb{\lambda}_i} \end{cases}$$

- $\bullet$  If we can estimate  $\widetilde{P}_i^{\,(0)}$  we can use same strategy than before
- Problem: We don't known in which region  $\theta_i$  is
- Solution: Let's force it using Artificial Scarcity



Who is it? Who is it?

#### Assumption

We known a point  $\overset{\circ}{\theta}_i$  which activates all constraints<sup>4</sup>

$$\theta_{i(2)}$$

$$\lambda_{i(1)} = 0$$

$$\lambda_{i(2)} \neq 0$$

$$\lambda_{i(2)} = 0$$

$$\lambda_{i(2)} = 0$$

$$\lambda_{i(1)} \neq 0$$

$$\lambda_{i(1)} \neq 0$$

$$\lambda_{i(2)} \neq 0$$

$$\lambda_{i(2)} = 0$$

CentraleSupélec

<sup>&</sup>lt;sup>4</sup>If we have local constraints, we suppose this point respects then

Who is it? Who is it?

### Assumption

We known a point  $\overset{\circ}{ heta}_i$  which activates all constraints<sup>4</sup>

$$\theta_{i(2)}$$

$$\lambda_{i(1)} = 0$$

$$\lambda_{i(2)} \neq 0$$

$$\lambda_{i(2)} = 0$$

$$\lambda_{i(2)} = 0$$

$$\lambda_{i(1)} \neq 0$$

$$\lambda_{i(1)} \neq 0$$

$$\lambda_{i(2)} \neq 0$$

$$\lambda_{i(2)} = 0$$

CentraleSupélec

<sup>&</sup>lt;sup>4</sup>If we have local constraints, we suppose this point respects them.

Rafael Accácio Nogueira

# Artificial Scarcity

Who is it? Who is it?

### Assumption

We known a point  $\overset{\circ}{\theta}_i$  which activates all constraints<sup>4</sup>



CentraleSupélec

Who is it? Who is it?

### Assumption

We known a point  $\check{ heta}_i$  which activates all constraints<sup>4</sup>



CentraleSupéleo

<sup>&</sup>lt;sup>4</sup>If we have local constraints, we suppose this point respects them.

Who is it? Who is it?

### Assumption

We known a point  $\overset{\circ}{\theta}_i$  which activates all constraints<sup>4</sup>



CentraleSupélec

Who is it? Who is it?

### Assumption

We known a point  $\overset{\circ}{\theta}_i$  which activates all constraints<sup>4</sup>



CentraleSupélec

<sup>&</sup>lt;sup>4</sup>If we have local constraints, we suppose this point respects them.

Who is it? Who is it?

### Assumption

We known a point  $\overset{\circ}{\theta}_i$  which activates all constraints<sup>4</sup>



- How to known the radius?
  - We don't.
  - Let's estimate  $\widehat{\widetilde{P}}_i^{(0)}[k]$  nonetheless



<sup>4</sup>If we have local constraints, we suppose this point respects them.

Who is it? Who is it?

#### Assumption

We known a point  $\overset{\circ}{\boldsymbol{\theta}}_i$  which activates all constraints<sup>4</sup>



- How to known the radius?
  - We don't.
  - Let's estimate  $\widehat{\widetilde{P}}_{i}^{(0)}[k]$  nonetheless



<sup>4</sup>If we have local constraints, we suppose this point respects them.

# Artificial Scarcity

Who is it? Who is it?

### Assumption

We known a point  $\overset{\circ}{\theta}_i$  which activates all constraints<sup>4</sup>



- How to known the radius?
  - We don't.
  - Let's estimate  $\widehat{\widetilde{P}}_i^{(0)}[k]$  nonetheless



<sup>4</sup>If we have local constraints, we suppose this point respects them.

- Iterative method to estimate parameters of multimodal models<sup>5</sup>
- We give multiple observations  $m{ heta}_i^o[k]$  and  $ilde{m{\lambda}}_i^o[k]$
- At each step we calculate
  - lacktriangle the probability of each  $(\widetilde{P}_i^{(n)}[k],\widehat{\hat{s}}_i^{(n)}[k])$  having generated each  $ilde{\lambda}_i^o[k]$
  - mew estimates  $(\widetilde{P}_i^{(n)}[k],\widehat{s}_i^{(n)}[k])$  based on the probabilities
- At the end we have
  - Parameters with associated region index
  - Observations with associated region index
- We consult the index associated to  $\overset{\circ}{ heta}_i$
- We recover the associated parameter, i.e.,  $\widehat{\tilde{P}}_i^{(0)}[k]$

CentraleSupélec

<sup>&</sup>lt;sup>5</sup>Such as our PWA function using some tricks

- Iterative method to estimate parameters of multimodal models<sup>5</sup>
- We give multiple observations  $m{ heta}_i^o[k]$  and  $ilde{m{\lambda}}_i^o[k]$
- At each step we calculate
  - lacksquare the probability of each  $(\widetilde{P}_i^{(n)}[k], \widehat{s}_i^{(n)}[k])$  having generated each  $ilde{\lambda}_i^o[k]$
  - mew estimates  $(P_i^{(n)}[k], \hat{s}_i^{(n)}[k])$  based on the probabilities
- At the end we have

- Parameters with associated region index
- Observations with associated region index
- We consult the index associated to  $\overset{\circ}{\theta_i}$
- $\bullet$  We recover the associated parameter, i.e.,  $\widehat{\widetilde{P}}_i^{(0)}[k]$



<sup>&</sup>lt;sup>5</sup>Such as our PWA function using some tricks

- Iterative method to estimate parameters of multimodal models<sup>5</sup>
- We give multiple observations  $m{ heta}_i^o[k]$  and  $ilde{m{\lambda}}_i^o[k]$
- At each step we calculate
  - lacksquare the probability of each  $(\widetilde{P}_i^{(n)}[k], \widehat{s}_i^{(n)}[k])$  having generated each  $ilde{\lambda}_i^o[k]$
  - mew estimates  $(P_i^{(n)}[k], \hat{s}_i^{(n)}[k])$  based on the probabilities
- At the end we have
  - Parameters with associated region index
  - Observations with associated region index
- We consult the index associated to  $\overset{\circ}{\theta_i}$
- $\bullet$  We recover the associated parameter, i.e.,  $\widehat{\widetilde{P}}_i^{(0)}[k]$

CentraleSupélec

<sup>&</sup>lt;sup>5</sup>Such as our PWA function using some tricks

- Iterative method to estimate parameters of multimodal models<sup>5</sup>
- ullet We give multiple observations  $oldsymbol{ heta}_i^o[k]$  and  $ilde{oldsymbol{\lambda}}_i^o[k]$
- At each step we calculate
  - lacksquare the probability of each  $(\widetilde{P}_i^{(n)}[k],\widetilde{s}_i^{(n)}[k])$  having generated each  $ilde{\lambda}_i^o[k]$
  - M new estimates  $(P_i^{(n)}[k], \hat{s}_i^{(n)}[k])$  based on the probabilities
- At the end we have
  - Parameters with associated region index
  - Observations with associated region index
- ullet We consult the index associated to  $\overset{\circ}{ heta}_i$
- $\bullet$  We recover the associated parameter, i.e.,  $\widehat{\widetilde{P}}_i^{(0)}[k]$

CentraleSupélec

<sup>&</sup>lt;sup>5</sup>Such as our PWA function using some tricks

- Iterative method to estimate parameters of multimodal models<sup>5</sup>
- ullet We give multiple observations  $oldsymbol{ heta}_i^o[k]$  and  $ilde{oldsymbol{\lambda}}_i^o[k]$
- At each step we calculate
  - $\qquad \qquad \textbf{(b)} \ \ \, \text{the probability of each} \ \, (\widehat{\widetilde{P}}_i^{(n)}[k],\widehat{\widetilde{s}}_i^{(n)}[k]) \ \, \text{having generated each} \ \, \widetilde{\lambda}_i^o[k]$
  - Moreover new estimates  $(\widetilde{P}_i^{(n)}[k],\widehat{\widetilde{s}}_i^{(n)}[k])$  based on the probabilities
- At the end we have

- Parameters with associated region index
- Observations with associated region index
- We consult the index associated to  $\overset{\circ}{\theta}_{i}$
- We recover the associated parameter, i.e.,  $\widehat{\tilde{P}}_i^{(0)}[k]$

CentraleSupélec

- Iterative method to estimate parameters of multimodal models<sup>5</sup>
- ullet We give multiple observations  $oldsymbol{ heta}_i^o[k]$  and  $ilde{oldsymbol{\lambda}}_i^o[k]$
- At each step we calculate
  - $\textbf{ (b)} \ \ \, \text{the probability of each } (\widehat{\widetilde{P}}_i^{(n)}[k],\widehat{\widetilde{s}}_i^{(n)}[k]) \ \, \text{having generated each } \widehat{\boldsymbol{\lambda}}_i^o[k]$
  - ${\Bbb M}$  new estimates  $(\widetilde{P}_i^{(n)}[k],\widehat{\hat{s}}_i^{(n)}[k])$  based on the probabilities
- At the end we have
  - Parameters with associated region index
  - Observations with associated region index
- We consult the index associated to  $\overset{\circ}{\theta}_i$
- We recover the associated parameter, i.e.,  $\widehat{\widetilde{P}}_i^{(0)}[k]$

CentraleSupélec

<sup>&</sup>lt;sup>5</sup>Such as our PWA function using some tricks

- Iterative method to estimate parameters of multimodal models<sup>5</sup>
- ullet We give multiple observations  $oldsymbol{ heta}_i^o[k]$  and  $ilde{oldsymbol{\lambda}}_i^o[k]$
- At each step we calculate
  - $\textbf{ ($\widehat{\widetilde{P}}_i^{(n)}[k]$, $\widehat{\widetilde{s}}_i^{(n)}[k]$) having generated each $\widetilde{\pmb{\lambda}}_i^o[k]$}$
  - ${f M}$  new estimates  $(\widehat{\widetilde{P}}_i^{(n)}[k],\widehat{\widetilde{s}}_i^{(n)}[k])$  based on the probabilities
- At the end we have

- Parameters with associated region index
- Observations with associated region index
- We consult the index associated to  $\overset{\circ}{\theta}_i$
- We recover the associated parameter, i.e.,  $\widehat{\tilde{P}}_i^{(0)}[k]$

CentraleSupélec

<sup>&</sup>lt;sup>5</sup>Such as our PWA function using some tricks

- Iterative method to estimate parameters of multimodal models<sup>5</sup>
- ullet We give multiple observations  $oldsymbol{ heta}_i^o[k]$  and  $ilde{oldsymbol{\lambda}}_i^o[k]$
- At each step we calculate
  - $\textbf{ ($\widehat{\widetilde{P}}_i^{(n)}[k]$, $\widehat{\widetilde{s}}_i^{(n)}[k]$) having generated each $\widetilde{\pmb{\lambda}}_i^o[k]$}$
  - $extbf{M}$  new estimates  $(\hat{\widetilde{P}}_i^{(n)}[k],\hat{\widetilde{s}}_i^{(n)}[k])$  based on the probabilities
- At the end we have

- Parameters with associated region index
- Observations with associated region index
- We consult the index associated to  $\overset{\circ}{ heta}_i$
- We recover the associated parameter, i.e.,  $\widehat{\widetilde{P}}_i^{(0)}[k]$

CentraleSupélec

- Iterative method to estimate parameters of multimodal models<sup>5</sup>
- ullet We give multiple observations  $oldsymbol{ heta}_i^o[k]$  and  $ilde{oldsymbol{\lambda}}_i^o[k]$
- At each step we calculate
  - $\textbf{ (b)} \ \ \, \text{the probability of each } (\widehat{\widetilde{P}}_i^{(n)}[k],\widehat{\widetilde{s}}_i^{(n)}[k]) \ \, \text{having generated each } \widehat{\boldsymbol{\lambda}}_i^o[k]$
  - ${\bf M}$  new estimates  $(\hat{\tilde{P}}_i^{(n)}[k],\hat{\tilde{s}}_i^{(n)}[k])$  based on the probabilities
- At the end we have
  - 1 Parameters with associated region index
  - Observations with associated region index
- We consult the index associated to  $\overset{\circ}{\theta}_i$
- We recover the associated parameter, i.e.,  $\hat{\widetilde{P}}_i^{(0)}[k]$

CentraleSupélec

- Iterative method to estimate parameters of multimodal models<sup>5</sup>
- We give multiple observations  $\theta_i^o[k]$  and  $\tilde{\lambda}_i^o[k]$
- At each step we calculate
  - $lackbox{lack}$  the probability of each  $(\widehat{\widetilde{P}}_i^{(n)}[k],\widehat{\widetilde{s}}_i^{(n)}[k])$  having generated each  $\widetilde{m{\lambda}}_i^o[k]$
- At the end we have

- Parameters with associated region index
- Observations with associated region index
- We consult the index associated to  $\tilde{\theta}_i$
- We recover the associated parameter, i.e.,  $\widehat{\widetilde{P}}_{z}^{(0)}[k]$

CentraleSupélec

- Iterative method to estimate parameters of multimodal models<sup>5</sup>
- ullet We give multiple observations  $oldsymbol{ heta}_i^o[k]$  and  $ilde{oldsymbol{\lambda}}_i^o[k]$
- At each step we calculate
  - lacksquare the probability of each  $(\hat{\widetilde{P}}_i^{(n)}[k],\hat{\widetilde{s}}_i^{(n)}[k])$  having generated each  $\widetilde{m{\lambda}}_i^o[k]$
  - ${f M}$  new estimates  $(\hat{\widetilde{P}}_i^{(n)}[k],\hat{\widetilde{s}}_i^{(n)}[k])$  based on the probabilities
- At the end we have

- 1 Parameters with associated region index
- Observations with associated region index
- ullet We consult the index associated to  $\stackrel{\circ}{ heta}_i$
- $\bullet$  We recover the associated parameter, i.e.,  $\widehat{\widetilde{P}}_i^{(0)}[k]$

CentraleSupélec

- Iterative method to estimate parameters of multimodal models<sup>5</sup>
- We give multiple observations  $\theta_i^o[k]$  and  $\tilde{\lambda}_i^o[k]$
- At each step we calculate
  - **(E)** the probability of each  $(\widehat{\widetilde{P}}_{i}^{(n)}[k], \widehat{\widetilde{s}}_{i}^{(n)}[k])$  having generated each  $\widetilde{\lambda}_{i}^{o}[k]$
- At the end we have

- Parameters with associated region index
- Observations with associated region index
- We consult the index associated to  $\tilde{\theta}_i$
- $\bullet$  We recover the associated parameter, i.e.,  $\widehat{\widetilde{P}}_{i}^{(0)}\lceil k \rceil$

CentraleSupélec

#### Same same, but different

#### Assumption

### We know nominal $ar{P}_i{}^{(0)}$

Detection

$$\left\|\widehat{\widetilde{P}}_{i}^{(0)}[k] - \bar{P}_{i}^{(0)}\right\|_{F} \geqslant \epsilon_{P_{i}^{(0)}}$$

$$\widehat{T_i[k]^{-1}} = \bar{P}_i^{(0)} \widehat{\tilde{P}}_i^{(0)}[k]^{-1}.$$

$$\hat{oldsymbol{\lambda}}_i = \widehat{T_i[k]^{-1}} \tilde{oldsymbol{\lambda}}_i.$$



Same same, but different

### Assumption

### We know nominal $\bar{P}_i^{(0)}$

Detection

$$\left\| \widehat{\widetilde{P}}_{i}^{(0)}[k] - \bar{P}_{i}^{(0)} \right\|_{F} \geqslant \epsilon_{P_{i}^{(0)}}$$

$$\widehat{T_i[k]^{-1}} = \bar{P}_i^{(0)} \widehat{\widetilde{P}}_i^{(0)}[k]^{-1}.$$

$$\hat{oldsymbol{\lambda}}_i = \widehat{T_i[k]^{-1}} \tilde{oldsymbol{\lambda}}_i$$



Same same, but different

### Assumption

We know nominal  $\bar{P}_i^{(0)}$ 

Detection

$$\left\| \hat{\tilde{P}}_{i}^{(0)}[k] - \bar{P}_{i}^{(0)} \right\|_{F} \ge \epsilon_{P_{i}^{(0)}}$$

$$\widehat{T_i[k]^{-1}} = \overline{P_i}^{(0)} \widehat{P_i}^{(0)}[k]^{-1}.$$

$$\hat{oldsymbol{\lambda}}_i = \widehat{T_i[k]^{-1}} \tilde{oldsymbol{\lambda}}_i.$$



Same same, but different

### Assumption

We know nominal  $\bar{P}_i^{(0)}$ 

Detection

 $\left\| \hat{\tilde{P}}_{i}^{(0)}[k] - \bar{P}_{i}^{(0)} \right\|_{F} \ge \epsilon_{P_{i}^{(0)}}$ 

$$\widehat{T_i[k]^{-1}} = \bar{P}_i^{(0)} \widehat{\hat{P}}_i^{(0)}[k]^{-1}.$$

$$\hat{oldsymbol{\lambda}}_i = \widehat{T_i[k]^{-1}} \tilde{oldsymbol{\lambda}}_i.$$



Same same, but different

### Assumption

We know nominal  $\bar{P}_i^{(0)}$ 

Detection

$$\left\| \hat{\tilde{P}}_{i}^{(0)}[k] - \bar{P}_{i}^{(0)} \right\|_{F} \ge \epsilon_{P_{i}^{(0)}}$$

$$\widehat{T_i[k]^{-1}} = \bar{P}_i^{(0)} \widehat{\hat{P}}_i^{(0)}[k]^{-1}.$$

$$\hat{\boldsymbol{\lambda}}_i = \widehat{T_i[k]^{-1}} \tilde{\boldsymbol{\lambda}}_i.$$













### Example



### District Heating Network (4 Houses)

- Houses modeled using 3R-2C
- Not enough power
- Period of 5h  $(T_s = 0.25h)$ 
  - 3 scenarios
    - Nominal
    - Agent I cheats (dMPC)
    - S Agent I cheats (RPdMPC-AS)



Applying mechanism

### Example



### District Heating Network (4 Houses)

- Houses modeled using 3R-2C
- ullet Not enough power (Change  $(oldsymbol{x}_0,oldsymbol{w}_0)$ )
- Period of  $5h (T_s = 0.25h)$
- 3 scenarios
  - Nominal
  - Agent I cheats (dMPC)
  - S Agent I cheats (RPdMPC-AS)



### Results

### Temporal



Temperature in house I. Error  $E_I(k)$ .









### Results

### Temporal













### Results

### Costs

Objective functions  $J_i$  (Normalized error %)

| Agent  | Selfish | Corrected |
|--------|---------|-----------|
| 1      | -36.489 | -0.0      |
| П      | 35.813  | 0.0       |
| Ш      | 29.225  | 0.0       |
| IV     | 37.541  | 0.0       |
| Global | 10.689  | -0.0      |



- Unfortunately EM is not magic
  - Slow convergence
  - Dependency on initialization
    - No guarantees of achieving global optimal
- Some "solutions":
  - Force some parameters to converge faster (case dependant)
  - Run multiple times with different initialization and pick best
  - Associate with other methods of the same family



- Unfortunately EM is not magic
  - Slow convergence
    - Dependency on initialization
      - No guarantees of achieving global optimal
- Some "solutions":
  - Force some parameters to converge faster (case dependant)
  - Run multiple times with different initialization and pick best
  - Associate with other methods of the same family



- Unfortunately EM is not magic
  - Slow convergence
  - Dependency on initialization
    - No guarantees of achieving global optimal
- Some "solutions":
  - Force some parameters to converge faster (case dependant)
  - Run multiple times with different initialization and pick best
  - Associate with other methods of the same family



- Unfortunately EM is not magic
  - Slow convergence
  - Dependency on initialization
    - No guarantees of achieving global optimal
- Some "solutions":
  - Force some parameters to converge faster (case dependant)
  - Run multiple times with different initialization and pick bes
  - Associate with other methods of the same family



- Unfortunately EM is not magic
  - Slow convergence
  - Dependency on initialization
    - No guarantees of achieving global optimal
- Some "solutions":
  - Force some parameters to converge faster (case dependant)
  - Run multiple times with different initialization and pick best
  - Associate with other methods of the same family



- Unfortunately EM is not magic
  - Slow convergence
  - Dependency on initialization
    - No guarantees of achieving global optimal
- Some "solutions":
  - Force some parameters to converge faster (case dependant)
  - Run multiple times with different initialization and pick best
  - Associate with other methods of the same family



- Unfortunately EM is not magic
  - Slow convergence
  - Dependency on initialization
    - No guarantees of achieving global optimal
- Some "solutions":
  - Force some parameters to converge faster (case dependant)
  - Run multiple times with different initialization and pick best
  - Associate with other methods of the same family



- Unfortunately EM is not magic
  - Slow convergence
  - Dependency on initialization
    - No guarantees of achieving global optimal
- Some "solutions":
  - Force some parameters to converge faster (case dependant)
  - Run multiple times with different initialization and pick best
  - Associate with other methods of the same family



# Too good to be true!

#### It's a kind of magic!

- Unfortunately EM is not magic
  - Slow convergence
  - Dependency on initialization
    - No guarantees of achieving global optimal
- Some "solutions":
  - Force some parameters to converge faster (case dependant)
  - Run multiple times with different initialization and pick best
  - Associate with other methods of the same family



## Outline



- How can an agent attack? ✓
  - Attacker can change the communication to receive more ressources.
- What are the consequences of an attack? ✓
  - Suboptimality and maybe instability
- Can we mitigate the effects?
  - Yes! By exploring the scarcity of the systems!



- How can an agent attack? ✓
  - Attacker can change the communication to receive more ressources.
- What are the consequences of an attack?
  - Suboptimality and maybe instability
- Can we mitigate the effects?
  - Yes! By exploring the scarcity of the systems!



- How can an agent attack? ✓
  - Attacker can change the communication to receive more ressources.
- What are the consequences of an attack?
  - Suboptimality and maybe instability
- Can we mitigate the effects?
  - Yes! By exploring the scarcity of the systems!



- How can an agent attack? ✓
  - Attacker can change the communication to receive more ressources.
- What are the consequences of an attack?
  - Suboptimality and maybe instability
- Can we mitigate the effects?
  - Yes! By exploring the scarcity of the systems!



- How can an agent attack? ✓
  - Attacker can change the communication to receive more ressources.
- What are the consequences of an attack? ✓
  - Suboptimality and maybe instability
- Can we mitigate the effects?
  - Yes! By exploring the scarcity of the systems!



- How can an agent attack? ✓
  - Attacker can change the communication to receive more ressources.
- What are the consequences of an attack? ✓
  - Suboptimality and maybe instability
- Can we mitigate the effects?
  - Yes! By exploring the scarcity of the systems!



- How can an agent attack? ✓
  - Attacker can change the communication to receive more ressources.
- What are the consequences of an attack? ✓
  - Suboptimality and maybe instability
- Can we mitigate the effects? ✓
  - Yes! By exploring the scarcity of the systems!



- Insights from the analysis of the solutions of the optimization problems
  - We found some parameters that are constant when there is no cheating
  - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
  - Straightforward if system is scarce
  - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?



- Insights from the analysis of the solutions of the optimization problems
  - We found some parameters that are constant when there is no cheating
  - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
  - Straightforward if system is scarce
  - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?



- Insights from the analysis of the solutions of the optimization problems
  - We found some parameters that are constant when there is no cheating
  - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
  - Straightforward if system is scarce
  - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?



- Insights from the analysis of the solutions of the optimization problems
  - We found some parameters that are constant when there is no cheating
  - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
  - Straightforward if system is scarce
  - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?



- Insights from the analysis of the solutions of the optimization problems
  - We found some parameters that are constant when there is no cheating
  - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
  - Straightforward if system is scarce
  - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?



- Insights from the analysis of the solutions of the optimization problems
  - We found some parameters that are constant when there is no cheating
  - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
  - Straightforward if system is scarce
  - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?



- Insights from the analysis of the solutions of the optimization problems
  - We found some parameters that are constant when there is no cheating
  - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
  - Straightforward if system is scarce
  - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?



- Insights from the analysis of the solutions of the optimization problems
  - We found some parameters that are constant when there is no cheating
  - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
  - Straightforward if system is scarce
  - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?



- Insights from the analysis of the solutions of the optimization problems
  - We found some parameters that are constant when there is no cheating
  - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
  - Straightforward if system is scarce
  - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?





- Partial/incremental reconstruction of cheating matrix
- Study of robustness + noise
- Resilient strategy with soft constraints
- Recursive EM (or alternative)
- ...



- Partial/incremental reconstruction of cheating matrix
- Study of robustness + noise
- Resilient strategy with soft constraints
- Recursive EM (or alternative)
- ...



- Partial/incremental reconstruction of cheating matrix
- Study of robustness + noise
- Resilient strategy with soft constraints
- Recursive EM (or alternative)
- ...



- Partial/incremental reconstruction of cheating matrix
- Study of robustness + noise
- Resilient strategy with soft constraints
- Recursive EM (or alternative)
- ...



- Partial/incremental reconstruction of cheating matrix
- Study of robustness + noise
- Resilient strategy with soft constraints
- Recursive EM (or alternative)

• ...



- Partial/incremental reconstruction of cheating matrix
- Study of robustness + noise
- Resilient strategy with soft constraints
- Recursive EM (or alternative)
- ...



#### Thank you!

 ${\begin{tabular}{l} Repository\\ https://github.com/Accacio/thesis\\ \end{tabular}}$ 



Contact rafael.accacio.nogueira@gmail.com



# For Further Reading I



K.J. Åström and B. Wittenmark. <u>Adaptive Control</u>. Addison-Wesley series in electrical and computer engineering: Control engineering. Addison-Wesley, 1989. ISBN: 9780201097207. DOI: 10.1007/978-3-662-08546-2\ 24.



José M Maestre, Rudy R Negenborn, et al.

<u>Distributed Model Predictive Control made easy.</u> Vol. 69. Springer, 2014. ISBN: 978-94-007-7005-8.



Wicak Ananduta et al. "Resilient Distributed Model Predictive Control for Energy Management of Interconnected Microgrids". In: Optimal Control Applications and Methods 41.1 (2020), pp. 146–169. DOI: 10.1002/oca.2534. URL: https://onlinelibrary.wiley.com/doi/pdf/10.1002/oca.2534.



# For Further Reading II



José M. Maestre et al. "Scenario-Based Defense Mechanism Against Vulnerabilities in Lagrange-Based Dmpc". In: Control Eng Pract 114 (2021), p. 104879. ISSN: 0967-0661. DOI: 10.1016/j.conengprac.2021.104879.



Pablo Velarde et al. "Vulnerabilities in Lagrange-Based Distributed Model Predictive Control". In:

Optimal Control Applications and Methods 39.2 (Sept. 2018), pp. 601–621. DOI: 10.1002/oca.2368.



Wicak Ananduta et al. "Resilient Distributed Energy Management for Systems of Interconnected Microgrids". In:

2018 IEEE Conference on Decision and Control (CDC). 2018, pp. 3159–3164. DOI: 10.1109/CDC.2018.8619548.



# For Further Reading III



Wicak Ananduta et al. "A Resilient Approach for Distributed MPC-Based Economic Dispatch in Interconnected Microgrids". In: 2019 18th European Control Conference (ECC). 2019, pp. 691–696. DOI: 10.23919/ECC.2019.8796208.



P. Chanfreut, J. M. Maestre, and H. Ishii. "Vulnerabilities in Distributed Model Predictive Control based on Jacobi-Gauss Decomposition". In: 2018 European Control Conference (ECC). June 2018, pp. 2587–2592. DOI: 10.23919/ECC.2018.8550239.



Pablo Velarde et al. "Scenario-based defense mechanism for distributed model predictive control". In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE. Dec. 2017, pp. 6171–6176. DOI: 10.1109/CDC.2017.8264590.

# For Further Reading IV



Pablo Velarde et al. "Vulnerabilities in Lagrange-Based DMPC in the Context of Cyber-Security". In:

2017 IEEE International Conference on Autonomic Computing (ICAC). July 2017, pp. 215–220. DOI: 10.1109/ICAC.2017.53.



## Conditions

**♦** back

One way to ensure this, is to make the original constraint (??) to have at most as many rows as columns, i.e.,  $\#u_{\max} \leq n_u$ , although it may be a little restrictive.



# $\theta$ dynamics

**√** back

$$\boldsymbol{\theta}^{(p+1)} = \mathcal{A}_{\boldsymbol{\theta}} \boldsymbol{\theta}^{(p)} + \mathcal{B}_{\boldsymbol{\theta}}[k]$$

where

$$\mathcal{A}_{\theta} = \begin{bmatrix} I - \frac{M-1}{M} \rho^{(p)} P_{1} & \frac{1}{M} \rho^{(p)} P_{2} & \dots & \frac{1}{M} \rho^{(p)} P_{M} \\ \frac{1}{M} \rho^{(p)} P_{1} & I - \frac{M-1}{M} \rho^{(p)} P_{2} & \dots & \frac{1}{M} \rho^{(p)} P_{M} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{M} \rho^{(p)} P_{1} & \frac{1}{M} \rho^{(p)} P_{2} & \dots & I - \frac{M-1}{M} \rho^{(p)} P_{M} \end{bmatrix}$$

$$\mathcal{B}_{\theta}[k] = \begin{bmatrix} -\frac{M-1}{M} \rho^{(p)} s_{1}[k] + \frac{1}{M} \rho^{(p)} s_{2}[k] \cdots - \frac{1}{M} \rho^{(p)} s_{M}[k] \\ \frac{1}{M} \rho^{(p)} s_{1}[k] - \frac{M-1}{M} \rho^{(p)} s_{2}[k] \cdots - \frac{1}{M} \rho^{(p)} s_{M}[k] \\ \vdots & \vdots \\ \frac{1}{M} \rho^{(p)} s_{1}[k] + \frac{1}{M} \rho^{(p)} s_{2}[k] \cdots - \frac{M-1}{M} \rho^{(p)} s_{M}[k] \end{bmatrix}$$

