A DICTIONARY OF CHEMICAL SOLUBILITIES INORGANIC

THE MACMILLAN COMPANY

NEW YORK - BOSTON - CHICAGO - DALLAS
ATLANTA - SAN FRANCISCO

MACMILLAN & CO., LIMITED LONDON · BOMBAY · CALCUTTA MELBOURNE

THE MACMILLAN CO. OF CANADA, Ltd. toronto

DICTIONARY

OF

CHEMICAL SOLUBILITIES

INORGANIC

FIRST EDITION

BY

ARTHUR MESSINGER COMEY, Ph.D.

SECOND EDITION

ENLARGED AND REVISED

BY

ARTHUR MESSINGER COMEY, Ph.D.

DIRECTOR, EASTERN LABORATORY, E. I. DU PONT DE NEMOURS AND CO.

AND

DOROTHY A. HAHN, Ph.D.

PROFESSOR OF CHEMISTRY, MT. HOLYOKE COLLEGE

Nem York
THE MACMILLAN COMPANY
1921

All rights reserved

With the facilities offered by the various scientific libraries at Harvard University, the Massachusetts Institute of Technology, and other libraries in Boston, it has been possible to collect nearly all the data relating to the subject. For the work before 1860 Professor Storer's work has been found invaluable.

The method pursued has been to form a preliminary list of compounds with more or less data by consulting the two most complete works on inorganic chemistry—Gmelin-Kraut's "Handbuch der anorganischen Chemie" and Graham-Otto-Michaelis's "Lehrbuch." These statements have been verified and elaborated by consulting the original memoirs in all the periodicals devoted to chemical literature which were obtainable. The "Jahresbericht der Chemie" also has been used extensively in tracing references, but the original memoirs have always been consulted and references given to them when possible.

It has been found impracticable to draw any distinction as to reliability between the various data given by different observers. It was manifestly impossible to attempt to verify experimentally the statements of those who have carried on the researches, for the most assiduous labor of many could only cover a small portion of the attested facts. Therefore, even when two statements are directly contradictory, both have been given with the authority for each. The only exception to this has been made when more recent discoveries have shown beyond any reasonable doubt the falsity of previous work. In this way some of the older manifestly inaccurate work has been omitted. In a majority of cases the more recent work may be considered to be the more accurate, but this is not the invariable rule. A Synchronistic Table of the more common periodicals is given in the Appendix, whereby it is easy to determine the date of the publication of a research to which reference is made.

It may be objected by the practical chemist that most of the work previous to 1850 might well have been omitted, but a great deal of this work possesses at least a historical value, and often furnishes facts which have not since been verified. Much of the earlier work, when obviously of less importance, has been printed in smaller type.

The aim has been to include in this volume all analyzed inorganic substances, that is, all substances which do not contain carbon, but exception has been made in the case of CO₂, CO, CS₂, the carbonates, cyanides, ferro-cyanides, etc., which are here included.

The work has been brought up to March, 1894, when this volume went to press, and the results of researches published since that time are not included in the present edition.

It is hoped that this book will fill to some extent the want that has been felt by chemists for a compilation of this nature. While it has been attempted to make the book as free from errors as possible, nevertheless it is naturally impossible to avoid many mistakes, and the compiler will be very grateful to those who may call his attention to any errors or omissions.

A. M. C.

PREFACE TO SECOND EDITION

During the twenty-five years which have elapsed since the publication of the first edition of this dictionary, a very large amount of work has been published in chemical periodicals, containing data concerning the solubility of inorganic chemical compounds. As it was impossible for the compiler of the first edition to devote the time necessary for the collecting of the published data, it was necessary to employ assistance, and Dr. Dorothy A. Hahn, Professor of Chemistry, Mt. Holyoke College, was engaged for this work. Dr. Hahn has collected the larger part of the material in this book, which work in spite of its arduous and tedious nature, she has performed in a most painstaking manner.

The compilation and arrangement of the data collected by Dr. Hahn, which devolved upon the original author, took much time. This, together with difficulties in printing, caused by the general conditions after the war, has delayed the publication until the present year, although the work was begun in 1916,

and it has only been brought up to January 1st of that year.

Since the publication of the first edition of this work, Dr. Atherton Seidell has brought out two editions of his book, entitled "Solubilities of Inorganic and Organic Substances," which covers quite a different field, as he considers only quantitative data and those only for the commoner substances. Dr. Seidell has followed the plan in most cases where there are several available solubility determinations of a substance, of selecting and averaging the more reliable results, and embodying them in tables. Although this undoubtedly facilitates ready reference, it has seemed better to adhere to the original plan of the first edition, and to publish all the data in the form of the original authorities with references and dates, so that the user may be at liberty to use his own judgment in selection. Some few of the tables arranged by Dr. Seidell, however, have seemed to possess decided advantages over any other published data and they have been incorporated in the present volume. It is desired also to acknowledge indebtedness to Dr. Seidell's work for certain other tables where the original sources were not available to the present compilers.

The same plan and arrangement used in the first edition has been followed with certain elaboration, however, of the arrangement of data on the solubility of two or more salts in a solvent, which is explained in the Explanatory Preface

Data published since the first edition on the cobalt and chromium ammonic compounds and those of the platinum group have been omitted, as it seemed that solubility data on those compounds possessed very little general interest

As stated in the preface of the first edition, while every possible atter been made to avoid errors, it is manifestly impossible to avoid many mis a work of this nature, and the compiler will be glad to have his attention to any errors or omissions.

WILMINGTON, Del., Jan., 1921.

en de la companya de la filipida de la companya de la co 1 th and

EXPLANATORY PREFACE

In order to reduce this volume to a convenient size the subject-matter has been abbreviated and condensed as far as seemed compatible with clearness; but it has been the aim not to use any abbreviations which are not at once intelligible without consulting the explanatory table. The more common chemical formulæ have been universally used, thereby saving a large amount of space without detracting from ready intelligibility to chemists.

The solubility of the substance in water is first given, the data being arranged chronologically in the longer articles. Then follow the specific gravities of the aqueous solutions, and also any data obtainable regarding their boiling-points; other physical data concerning solutions are not included. Following this is the solubility of the substance in other solvents—first the inorganic acids, then

alkali and salt solutions, and finally organic substances.

Owing to the great increase of data, published during the last twenty years, on the simultaneous solubility of two or more salts in a given solvent, it has been found necessary to plan some arrangement, whereby such data can easily be found, and the plan adopted is as follows: The data for the solubility of two salts in a solvent is placed under the salt which comes first according to the alphabetical arrangement in this dictionary, and the order of the data on various salts under the same heading follows the alphabetical order of the salts considered. Thus the data on the solubility of NH₄Cl+BaCl₂, NH₄Cl+CuCl₂, and NH₄Cl+PbCl₂, and NH₄Cl+(NH₄)₂SO₄ are placed under Ammonium Chloride and arranged in the given order. Certain exceptions have been made to this rule, where the data directly concerns the solubility of a salt in a solution of another salt, in which case, it is placed under the former. Numerous cross references, however, are given, which it is hoped will avoid confusion.

In many cases no definite distinction can be drawn between the phenomena of solution and decomposition. At present the theory of solution is in a confused state, and until what really takes place when a substance dissolves is thoroughly understood no distinct line can be drawn. The whole subject is unsettled at the present time; for while many chemists believe in the so-called "dissociation" theory, yet the "hydrate" theory is not without its supporters. It is not my intention to discuss the theoretical side of the question, which has been so well treated in many recent works. It is, however, obvious that the phenomena are essentially different, when, for example, sodium carbonate is dissolved in water, in which case the original salt is deposited on evaporation, and when iron is dissolved in sulphuric acid, and the solution deposits a sulphate of iron. Yet it is still the custom to speak of iron as soluble in sulphuric acid, although it would be much more accurate to say that the sulphuric acid was decomposed by the iron. It has thus been found impracticable to draw a sharp line between solu-

tion and decomposition, and the term "soluble" has in general been used where a solution of some sort is formed by the action of the solvent.

The matter of alphabetical arrangement of chemical compounds, in the present somewhat confused state of chemical nomenclature, has been a difficult question to decide. The plan followed has been practically that of the standard Dictionaries of Chemistry, whereby the compounds of metals with one of the non-metallic elements have been classified under the metals, while the salts of the other acids (the oxygen acids so called and some few others) have been arranged alphabetically under the acids. Thus barium chloride is found under barium, while barium chlorate is found under chloric acid. No exception has been made in the case of the rare metals, as is usually the custom in Dictionaries of Chemistry. Double salts are to be found under the word which comes first alphabetically; thus, "common alum," potassium aluminum sulphate, is found under aluminum sulphate as aluminum potassium sulphate (under sulphuric acid), but ammonia chrome alum is found under ammonium sulphate as ammonium chromium sulphate. In the same way the double sulphate and chromate of potassium is found under potassium chromate (chromic acid), and not under potassium sulphate (sulphuric acid). The double chloride of ammonium and magnesium is found under ammonium chloride (ammonium), while the double chloride of potassium and magnesium is found under magnesium chloride (magnesium). An exception is made, however, in the case of double compounds of salts of oxygen acids with salts containing a single non-metallic element, in which case they are always found under the oxygen acid. Thus the double sulphate and chloride of lead, PbSO₄, PbCl₂, is found under lead sulphate (sulphuric acid), and not under lead chloride (lead).

The above method in some cases widely separates analogous compounds, but it was found to be the only practical way to a strictly alphabetical arrangement, which is to necessary in a book containing so many very short articles.

The ammonia addition-products furnished another difficulty. While their nature is more or less definitely understood in the cobalt, platinum, etc., compounds, and a definite nomenclature is in general use, there is an absolute lack of anything of the kind in the less definite compounds. It is good usage to speak of cuprammonium compounds, but how shall we designate the analogous cadmium compounds? "Cadmammonium" has not yet received the sanction of chemists, and AlCl₃, NH₃ is a still worse case for naming. I have, therefore, not attempted to name these compounds, but classified them all under the salts to which the ammonia is added, affixing the word ammonia, thus: aluminum chloride ammonia, cadmium chloride ammonia, and also cupric chloride ammonia for the salt now almost universally known as cuprammonium chloride.

The ammonia compounds of cobalt, chromium, mercury, and the platinum metals are arranged alphabetically according to their universally accepted names, a list of which is given under each of those elements.

It has further been necessary to settle arbitrarily the question whether a substance should be considered as a double salt or a salt of a compound acid con-

and the second s

ABBREVIATIONS

abs.—absolute.
atmos.—atmosphere.
b.-pt.—boiling-point.
comp.—compound.
conc.—concentrated.
corr.—corrected.
cryst.—crystallised, crystalline
decomp.—decompose, decomposes,
decomposition, etc.
dil.—dilute.
eutec.—eutectic.
insol.—insoluble.
M.—a univalent Metal.
Min.—Mineral.
mol.—molecule.

m.-pt.—melting-point.
ord.—ordinary.
n.—normal.
ppt., pptd., etc.—precipitate, precipitated, etc.
pt.—part.
sat.—saturated.
sl.—slightly.
sol.—soluble.
sp. gr.—specific gravity.
supersat.—supersaturated.
t°=temperature in Centigrade degrees.
temp.—temperature.
tr. pt.—transition point.
vol.—volume.

ABBREVIATIONS OF REFERENCES

A.—Annalen der Pharmacie, edited by Liebig and others, 1832–39; continued as Annale Chemie und Pharmacie, 1840–73; continued as Justus Liebig's Annalen der Che

1874-1915+. 406 vols. A. ch.—Annales de Chimie et de Physique. Paris. 1st series, 1789–1816, 96 vols.; series, 1817–40, 78 vols.; 3rd series, 1841–63, 69 vols.; 4th series, 1864–73, 30 v 5th series, 1874–83, 30 vols.; 6th series, 1884–93, 30 vols.; 7th series, 1893–1903, 30 v 8th series, 1904–13, 30 vols.; 9th series, 1914+, 3 vols.

Acta Lund.—Acta Universitatis Lundensis, or Lunds Universitets Ars-skrift. Lund, 18 Am. Chemist.—The American Chemist. New York, 1870–77. 7 vols.

Am. Ch. J.—The American Chemical Journal, edited by Remsen. Baltimore, 1879-1 50 vols.

Am. J. Sci.—American Journal of Science and Arts, edited by Silliman, Dana, and oth New Haven. 1st series, 1818–45, 50 vols.; 2nd series, 1846–70, 50 vols.; 3rd series, 1871–95, 50 vols.; 4th series, 1896–1915+, 40 vols. Also numbered consecutively,

Analyst.—The Analyst. London, 1876–1915+. 45 vols. Ann. chim. farm.—Annali di chimica e di farmacologia. Milan, 1886–90. 5 vols.

Ann. des Mines.—See Ann. Min.

Paris. Ann. Min.—Annales des Mines.

Ann. Phil.—Annals of Philosophy. London. 1st series, 1813-20, 16 vols.; new ser 1821–26, 12 vols.

Ann. Phys.—See Pogg. and W. Ann. Apoth. Z.—Apotheker-Zeitung. Berlin. Arb. Kais. Gesundheitsamt.—Arbeiten aus dem Kaiserlichen Gesundheitsamte.

Arch. Néer. Sc.—Archives Néerlandaises des Sciences exactes et naturelles.

Arch. Pharm.—Archive der Pharmacie, continued from Archiv des Apothekervereins

Norddeutschland, which forms the 1st series. 1st series, 1822–34, 50 vols.; 2nd ser.

1835–72, 150 vols.; 3rd series, 1873–94+, 32 vols. Also numbered consecutive

which system is exclusively used after 3rd series, vol. 253 (1915).

Arch. sc. Phys. nat.—Archives des sciences physiques et naturelles de la Bibliothèc universelle de Génève.

A. Suppl.—Annalen der Chemie und Pharmacie. Supplement-Bande. Vol. i. 1861; vol. 1862-63; vol. iii. 1864-65; vol. iv. 1865-66; vol. v. 1867; vol. vi. 1868; vol. vii. 18 vol. viii. 1872.

B.—Berichte der deutschen chemischen Gesellschaft. Berlin, 1868-1915+. 48 vols.

Att. Acc. Linc.—Atti della reale accademia dei Lincei, rendconditi, etc.

B. A. B.—Sitzungsberichte der königlichen preussischen Akademie der Wissenschaften Berlin.

Belg. Acad. Bull.—Bulletin de l'Académie Royale des Sciences, des Lettres, et des Beau Arts de Belgique.

Berz. J. B.—Jahresbericht über die Fortschritte der physischen Wissenschaften, edited Berzelius. 1822-47. 30 vols.

Br. Arch.—Archiv des Apothekervereins im nördlichen Teutschland, etc., edited by Brand 1st series, 1822-31, 39 vols., corresponds to 1st series of Arch. Pharm.

Bull. Acad. Crac.—Bulletin international de l'Académie des Sciences de Cracovie.

Bull. Ac. St. Pétersb.—Bulletin de l'Académie Impériale des Sciences de St. Pétersbour Bull. Soc.—Bulletin des Séances de la Société chimique de Paris. 2nd series, 1864-88, vols.; 3rd series, 1889–1906, 36 vols.; 4th series, 1907–15+, 18 vols. Bull. Soc. chim. Belg.—Bulletin de la Société chimique Belgique.

Bull. Soc. ind. Mulhouse.—Bulletin de la Société industrielle de Mulhouse. 1828–49. 22 vo Bull. Soc. Min.—Bulletin de la société française de Minéralogie. 1878-1915+. 37 vols.

C. A.—Chemical Abstracts. American Chemical Society. New York.
C. C.—Chemisches Centralblatt, continued from Pharmaceutisches Centralblatt. C. B. Miner.—Centralblatt für mineralogie, Geologie und Palæontologie. Berlin.

Chem. Ind.—Die Chemische Industrie, edited by Jacobsen. Berlin.
Chem. Soc.—Journal of the Chemical Society of London. 1st series, 1849–62, 15 vols.; 2r series, 1863–78, 17 vols.; new series, 1878–1915+. The vols. are numbered consecutive from 1849. 1878 = vol. 32. Total, 108 vols.

Chem.-tech. Centr-Anz.—Chemisch-technischer Central-Anzeiger.

Chem. Weekbl.—Chemiker Weekblad.

Chem. Z.—See Ch. Z.

Chem. Zeitschr.—Chemische Zeitschrift. Ch. Gaz.—The Chemical Gazette. London, 1843–59. 17 vols.

Ch. Kal.—Chemiker Kalender, edited by Biedermann. Ch. Z.—Chemiker Zeitung.

Ch. Z. Repert.—Chemisches Repertorium Beiblatt zur Chemiker-Zeitung. Göthen.

Cim.—Il Cimento. Turin, 1852-54. 6 vols.

C. N.—The Chemical News. London, 1860-1915+. 112 vols. Comm.—Commentar zur Pharmacopœa germanica by Hager. Berlin, 1883. Compt. chim.—Comptes-rendus mensuels des Travaux chimiques, edited by Laurent and Gerhardt. 1845-51. 7 vols.

C. R.—Comptes-rendus hebdomadaires des Séances de l'Académie des Sciences. Paris, 1835-1915+. 161 vols.

Crell. Ann.—Chemische Annalen für die Freunde der Naturlehre, etc., edited by Crell. 1784-1803. 40 vols.

Dansk. Vid. For.—Oversigt over det kgl. danske Videnskabernes Selskabs Forhandlinger. Copenhagen.

Dingl.—Dingler's Polytechnisches Journal, edited by Dingler and others. 1820-1915+.

Edinb. Trans.—Transactions of the Royal Society of Edinburgh. 1788-1915+. 51 vols. Ed. J. Sci.—The Edinburgh Journal of Science. 1st series, 1824-29, 10 vols.; 2nd series, Ed. J. Sci.—The Edinburgh Journal of Science.

1829-32, 6 vols. Continued as Phil. Mag.

Electrochem. Ind.—Electrochemical Industry (Oct., 1902, to Dec., 1904) later Electrochemical and Metallurgical Industry. New York.

Elektrochem Z.—Elektrochemische Zeitschrift. Berlin.

Eng. Min. J.—The Engineering and Mining Journal. New York. Gazz. ch. it.—Gazzeta chimica italiana. Palermo, 1871–1915+. 45 vols.

Gilb. Ann.—Annalen der Physik, edited by Gilbert. 1st series, 1799–1808, 30 vols.; 2nd series, 1809–18, 30 vols.; 3rd series, 1819–24, 26 vols. Also numbered consecutively.

76 vols. Continued as Pogg. Gm.-K.—Gmelin-Kraut's Handbuch der anorganischen Chemie, 6te Auflage. 1877–1905.

7te Auflage, 1907–1915+. Gr.-Ot.—Graham-Otto's ausführliches Lehrbuch der anorganischen Chemie, 5te Auflage, by Michaelis. 1878-89.

Jahrb. Miner.—Jahrbuch für Mineralogie, Geologie und Palæontologie. Heidelberg. 1830–1832. Then. Neues Jahrbuch für Minerologie. Stuttgart. Jahrb. d. Pharm.—Jahresbericht der Pharmacie.

J. Am. Chem. Soc.—Journal of the American Chemical Society. New York, 1876-1915+. 37 vols.

J. Anal. Appl. Ch.—The Journal of Analytical and Applied Chemistry, edited by Hart. 1887-93. 7 vols.

J. B.—Jahresbericht über die Fortschritte der Chemie, u. s. w.

J. Chim. méd.—Journal de Chimie médicale, de Pharmacie, et de Toxicologie. 1st series, 1825–34, 10 vols.; 2nd series, 1835–44, 10 vols.; 3rd series, 1845–54, 10 vols.; 4th series, 1855–64, 10 vols.; 5th series, 1865–76. 12 vols.

Jena Zeit.—Jenaische Zeitschrift für Medicin und Naturwissenschaften.

J. Pharm.—Journal de Pharmacie et de Chimie. Paris. 2nd series, 1815–41, 27 vols.; 3rd series, 1842–64, 46 vols.; 4th series, 1865–79, 30 vols.; 5th series, 1879–94; 6th series, 1895–1909, 30 vols.; 7th series, 1910–15+, 10 vols.

J. Phys.—Journal der Physik, edited by Gren. 1790–98. 12 vols. Continued as Gilb. Ann. J. Phys. Ch.—The Journal of Physical Chemistry. Ithaca, N. Y.

J. pr.—Journal für praktische Chemie, edited by Erdmann, Kolbe, and v. Meyer: Leipzig.

1st series, 1834-69, 108 vols.; 2nd series, 1870-1915+. 92 vols.

J. russ. phys. Chem. Soc.—Journal de la Société physico-chemique russe. St. Pétersbourg.

J. Russ. Soc.—Journal of the Russian Chemical Society. St. Petersburg, 1869-1915+.

47 vols.

J. Soc. Chem. Ind.—Journal of the Society of Chemical Industry. London, 1882-1915+. 34 vols.

J. S. C. I.—See above.
J. Tok. Chem. Soc.—Journal of the Tokyo Chemical Society.
Kastn. Arch.—Archiv für die gesammte Naturlehre, edited by Kastner. Nuremberg, 1824— 35. 25 vols.

Listy Chemické.—Listy Chemické, edited by Preis and others. Prague. Lond. R. Soc. Proc.—See Roy. Soc. Proc.

Lund. Univ. Arsk.—Lunds Universitets Ars-skrift. Lund.

M.—Monatshefte für Chemie und verwandter Theile der anderer Wissenschaften. Vienn 1880-1915+. 36 vols.

M. A. B.—Sitzungsberichte der mathematisch-physikalischen Classe der kgl. bayerische

Akademie der Wissenschaften zu München. Mag. Pharm.—Magazin der Pharmacie. 1823–31. 36 vols.

Mém. Acad. St. Pétersb.—Mémoires de l'Académie Impériale des Sciences de Saint-Péter

M. Ch.—See M.

Mem. Coll. Sci. Kyoto.—Memoirs of the College of Science, Kyoto. Metall.—Metallurgie. Halle.

Miner. Jahrb.—Neues Jahrbuch fnr Mineralogie, etc. 1833-73. 40 vols. Miner. Mag.—Mineralogical Magazine. London. Miner. Mitt.—Mineralogische und petrographische Mitteilungen. Wien. Monit. Scient.—Le Moniteur Scientifique, edited by Quesnesville. Paris. N. Arch. Sc. ph. nat.—Nouvelles Archives des Sciences physiques et naturelles. Geneva. N. Cim:—Il nuovo Cimento. Pisa, 1855-61. 14 vols. N. Edinb. Phil. J.—New Edinburgh Philosophical Journal. 1819-64. 90 vols.

N. Jahrb. Miner.—Neues Jahrbuch für Mineralogie. Stuttgart. N. Jahrb. Pharm.—Neues Jahrbuch der Pharmacie. 1796–1840. 42 vols.

N. J. Pharm.—Neues Journal der Pharmacie für Aerzte, etc., edited by Trommsdorff. 1817-34. 27 vols.

N. Rep. Pharm.—Neues Repertorium für Pharmacie. 1852-76. 25 vols.

Continued as Pharm. Centralbl.—Pharmaceutisches Centralblatt. 1830-49. 20 vols.

Pharm. Era.—Pharmaceutical Era.

Pharm. J. Trans.—Pharmaceutical Journal and Transactions.

Pharm. Vierteljb.—Pharmaceutische Vierteljahresberichte.
Pharm. Weekbl.—Pharmaceutisches Weekblad.

Pharm. Ztg.—Pharmaceutische Zeitung. Phil. Mag.—The Philosophical Magazine. London. 1st series, 1814–26, 26 vols.; 2nd series, 1827-32, 11 vols.; 3rd series, 1832-50, 37 vols.; 4th series, 1851-75, 50 vols.; 5th series, 1876-1900, 50 vols.; 6th series, 1901-1915+, 30 vols.

Phil. Mag. Ann.—The Philosophical Magazine and Annals of Chemistry, etc. Corresponds

to Phil. Mag. 2nd series.

Phil. Trans.—The Philosophical Transactions of the Royal Society of London. 1665–1915+.

Phys. Rev.—The Physical Review.

Pogg.—Annalen der Physical Review.
Pogg.—Annalen der Physik und Chemie, edited by Poggendorf. 1st series, 1824–43, 60 vols.; 2nd series, 1844–53, 30 vols.; 3rd series, 1854–63, 30 vols.; 4th series, 1864–73, 30 vols.; 5th series, 1874–77, 10 vols. Continued as W. Ann.
Polyt. Centralbl.—Polytechnisches Centralblatt. 1st series, 1835–46, 12 vols.; 2nd series,

1847–73, 30 vols.

Proc. Am. A. A. S.—Proceedings of the American Association for the Advancement of

Science. Proc. Am. Acad.—Proceedings of the American Academy of Arts and Sciences. Boston, 1846-1915+. 50 vols.

Proc. Am. Phil. Soc.-Proceedings of the American Philosophical Society. Philadelphia.

Proc. Chem. Soc.—Proceedings of the Chemical Society of London.

Proc. K. Akad. Wet.—See Ver. K. Akad. Wet.

Proc. Soc. Manchester.—Proceedings of the Literary and Philosophical Society of Manchester.

Proc. Roy. Soc.—See Roy. Soc. Proc. Q. J. Sci.—Quarterly Journal of Science. London, 1816-26. 22 vols.

Rass. Min.—Rassegna mineraria, metallurgica e chimica.

Real. Ac. Linc.—Atti di Reale Accademia dei Lincei. Rome.

Rend. Ac. Linc. See Att. Ac. Linc. Rep. anal. Ch.—Repertorium der analytischen Chemie. 1881-87. 7 vols.

Rep. Brit. Assn. Adv. Sci.—Reports of the Meetings of the British Association for the Advancement of Science.

Répert. chim. appl.—Répertoire de Chimie pure et appliquée. Paris, 1858-63. 9 vols. Rep. Pharm.—Repertorium für die Pharmacie, edited by Buchner. 1st series, 1815-34, 50 vols.; 2nd series, 1835-48, 50 vols.; 3rd series, 1849-51, 10 vols. Continued as N. Rep. Repert.—See Rep. Pharm.

Pharm. Rev. gén. chim.—Revue génerale de chimie pure et appliquée. Rev. Mét.—Revue de Métallurgie. Paris.

Roy. Soc. Proc.—Proceedings of the Royal Society of London. 1832-1915+. 92 vols.

Roy. Soc. Trans.—Abstracts of Philosophical Transactions of the Royal Society of London. 1832-54. 6 vols. Continued with Roy. Soc. Proc.

R. t. c.—Recueil des Travaux chimiques des Pays-Bas. Leiden, 1882-1915+. 34 vols. Russ. Zeit. Pharm.—Pharmaceutische Zeitschrift für Russland. Scheik Verhandel.—Scheikundige Verhandelingen en Onderzoekingen, edited by Mulder.

Rotterdam, 1857-64. 3 vols. Scher. J.—Allgemeines Journal der Chemie, edited by Scherer. 1798-1810. 17 vols. Con-

tinued as Schw. J.

Schw. J.—Journal für Chemie und Physik, edited by Schweigger. 1st series, 1811–20, 30 vols.; 2nd series, 1821–30, 30 vols.; 3rd series, 1831–33, 9 vols. Continued as J. pr. Sill. Am. J.—American Journal of Science, edited by Silliman, etc. See Am. J. Sci.

Sitzungsb. böhms. Gesell.—Sitzungsberichte der königlichen böhmschen Gesellschaft der Wissenschaften in Prag.

Storer's Dict.—First Outlines of a Dictionary of Solubilities of Chemical Substances, by F. H. Storer. Boston, 1864.

Sv. V. A. F.—Ofversigt of kongl. Svenska Vetenskaps-Akademien Förhandlingar. Stock-

Sv. V. A. H.—Kongliga Svenska Vetenskaps-Akademiens Handlingar. Stockholm. Sv. V. A. H. Bih.—Bihang till kongl. Svenska Vetenskaps-Akademiens Handlingar. Stock-

Techn. J. B.—Jahresbericht über die Fortschritte der chemischen Technologie, edited by Wagner, Fischer, etc.
 Trans. Am. Electrochem. Soc.—Transactions of the American Electrochemical Society.

Philadelphia.

Trans. Faraday Soc.—Transactions of the Faraday Society. London. Trans. Roy. Soc.—Philosophical Transactions of the Royal Society of London.

Ver. K. Akad. Wet.—Verslag Koninkle Akademie van Wettenschappen, Amsterdam.
W. A. B.—Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften zu Wien.

W. Ann.—Annalen der Physik und Chemie, edited by Wiedemann. Continuation of Pogg. 1877–1899. 69 vols. 4th series, 1900–1915+. 48 vols.
W. Ann. Beibl.—Beiblätter zu Wiedemann's Annalen. Leipzig.
Z. anal.—Zeitschrift für analytische Chemie, edited by Fresenius. Wiesbaden, 1862–1915+.

* 1

54 vols.

Z. anorg.—Zeitschrift für anorganische Chemie, edited by Krüss. 1892–1915+. 93 vols. Z. B. H. Sal.—Zeitschrift für das Berg, Hütten, und Salinen-Wesen in dem preussischen Staate. Berlin.

Zeit. angew. Ch.—Zeitschrift für angewandte Chemie. Berlin, 1887-1915+. 29 vols.

Zeit. Chem.—Zeitschrift für Chemie und Pharmacie. 1st series, 1858–64, 6 vols.; 2nd series, "N. F.," 1865–71, 7 vols.
Zeit. d. allgem. öster. Apothekerv.—Zeitschrift des allgemeinen österreichischen Apotheker-

vereins.

Zeit. ges. Nat.—Zeitschrift für die gesammten Naturwissenschaften. Zeit. Krist.—Zeitschrift für Krystallographie und Mineralogie. 1877–1915+. 51 vols.

Zeit. Pharm.—See Russ. Zeit. Pharm. Z. Elektrochem.—Zeitschrift für Elektrochemie. Halle.

Z. Phys. Ch.—Zeitschrift für physikalische Chemie, edited by Oswald and van't Hoff. 1887–1915+. 90 vols.
Z. physiol. Chem.—Zeitschrift für physiologische Chemie. Strassburg.
Z. Ver. Zuckerind.—Zeitschrift des Verein der deutschen Zuckerindustrie.

DICTIONARY

OF

CHEMICAL SOLUBILITIES

INORGANIC

Actinium emanation.

Solubility coefficient of actinium emanation

in H₂O at room temp. is 2.

If the solubility of actinium emanation in H_2O is made=1, the relative solubility of the emanation in sat. KCl+Aq=0.9; in conc. $H_2SO_4=0.95$; in ethyl alcohol=1.1; in amyl alcohol=1.6; in benzaldehyde=1.7; in benzene=1.8; in toluene=1.8; in petroleum=1.9; in $CS_2=2.1$ at 18° .

(Hevesy, Phys. Zeit. 1911, 12. 1221.)

Air, Atmospheric.

See also Nitrogen and Oxygen.

100 vols. $\rm H_{2}O$ at 15° and 760 mm. absorb about 5 vols. atmospheric air. (Saussure.)

1 vol. H₂O at t° and 760 mm. pressure absorbs V vols. atmospheric air reduced to 760 mm. and 0°.

t°	v	to	v	to	v
0	0.02471	7	0.02080	14	0.01822
1	0.02406	8	0.02034	15	0.01795
2	0.02345	9	0.01192	16	0.01771
3	0.02287	10	0.01953	17	0.01750
4	0.02237	11	0.01916	18	0.01732
5	0.02179	12	0.01882	19	0.01717
6	0.02128	13	0.01851	20	0.01701

(Bunsen's Gasometry.)

11. H_2O absorbs cc. N and O from air at t° and 760 mm. pressure.

t°	cc.	cc.	ос.
	N	O	N + О
0	16.09	8.62	24.71
5	14.18	7.60	21.78
10	12.70	6.79	19.49
15	11.67	6.25	17.92
20	11.08	5.93	17.01

(Bunsen, Gasometr. Methoden, 2te Aufl. 209, 220.)

11. H₂O absorbs cc. N and O from air at t° and 760 mm. pressure (dry).

t°	cc. N	cc. · O	N+0	%0
10 15 20 25	15.47 13.83 12.76 11.78	7.87 7.09 6.44 5.91	23.34 20.92 19.20 17.69	33.74 33.86 33.55 33.40

(Roscoe and Lunt, Chem. Soc 55. 568.)

1 l. H₂O absorbs cc. N and O from air at t° and 760 mm.

t°	cc. N	cc. O	-%0
0	19.53	10.01	33.88
6.0	16.34	8.28	33.60
6.32	16.60	8.39	33.35
9.18	15.58	7.90	33.60
13.70	14.16	7.14	33.51
14.10	14.16	7.05	33.24

(Pettersson and Sondén, B. 22. 1439.)

1 l. H_2O absorbs cc. N (0° and 760 mm.) from atmospheric air at t° and 760 mm. pressure (dry).

to	cc. N	t°	cc. N	to	cc. N
0 2 4 6 8	19.14 18.20 17.34 16.54 15.81	10 12 14 16 18	15.14 14.53 13.98 13.48 13.03	20 22 24 25	12.63 12.27 11.95 11.81

(Hamberg, J. pr. (2) 33. 447.)

1 l. H₂O absorbs cc. N from air at t° an 760 mm. pressure.

to	cc. N	to	cc. N	to	cc. N
0	19.29	10	15.36	20	12.80
5	17.09	15	13.95	25	11.81

(Dittmar, Challenger Expedition, vol. 1. pt. 1.)

	.:::
Xν	าน

Roy
R. t.
Russ
Sche
Sche
Schr
Schr
Sill.
Sitz
Ston
Sv.

1 l. H ₂ O	sat.	with a	air at t°	and	760	mm. con-
tains	cc. (O (red	l. to 0°	and	760	mm.).

t°	cc. O	to	cc. O	t°	cc. O
0 1 2 3 4 5 6 7 8 9	10.187 9.910 9.643 9.387 9.142 8.907 8.682 8.467 8.260 8.063 7.873	11 12 13 14 15 16 17 18 19 20 21	7.692 7.518 7.352 7.192 7.038 6.891 6.730 6.614 6.482 6.356 6.233	22 23 24 25 26 27 28 29 30	6.114 5.999 5.886 5.776 5.669 5.564 5.460 5.357 5.255

(Winkler, B. 22. 1773.)

Sv. Sv.

1 vol. H₂O absorbs 0.01748 vol. air at 24.05° and 760 mm. pressure. (Winkler, B. 21. 2851.)

Te:

Tr: Tr: Ve

W

W

Z.

Z. Ze Ze Ze

ZZZZZ

Composition of the absorbed air between 0° and 24° is 34.91% O and 65.09% N (Bunsen); between 15° and 16°, 32.17% O and 67.83% N (König and Kranch, Z. anal. 19. 259); 32% O and 68% N (Regnault); at 0°, 35.1% O; 10°, 34.8% O; 20°, 34.3% O; 25°, 33.7% O (Winkler, B. 21. 2483). See also Roscoe and Lunt, and Pettersson and Sondén, page 1.

Solubility of atmos. oxygen and nitrogen in 1000 cc. H_2O at 760 mm. pressure (calc.).

Temp	Oxygen	Nitrogen	Temp	Oxygen	Nitroger
0° 1 23 4 5 6 7 8 9 10 112 13 14 15 6 17 18 19 20 22 23 24 22 24 22 26	Oxygen Cc. 10.19 9.91 9.64 9.39 9.14 8.68 8.47 7.69 7.52 7.19 7.04 6.35 6.10 5.98 5.86 5.75 5.64	CC. 18.45 17.99 17.55 17.12 16.71 16.30 15.91 15.54 15.18 14.83 14.50 14.19 13.89 13.61 13.33 13.07 12.83 12.57 12.34 12.12 11.91 11.71 11.52 11.33 11.14 10.96 10.79	29° 301 332 334 355 366 37 388 39 401 442 445 446 447 449 551 523 534 555	CC. 5.33 5.24 5.15 5.07 4.99 4.83 4.76 4.62 4.55 4.48 4.28 4.28 4.28 4.28 4.28 4.28 4.35 4	9.93 9.83 9.67 9.52 9.37 9.52 9.37 9.52 9.37 9.52 9.7 7.76 7.65 7.45 7.34 7.24 7.24 7.03
27 28	5.54 5.43	10.62 10.46	56 57	3.51 3.45	$6.92 \\ 6.81$

cc. c. cc. cc. c. cc. c. cc. c. cc. c.							
58° 3.39 6.71 80° 1.97 4.03 59 3.34 6.60 81 1.89 3.88 60 3.28 6.50 82 1.81 3.73 61 3.22 6.39 83 1.73 3.57 62 3.16 6.27 84 1.65 3.41 63 3.10 6.16 85 1.57 3.24 64 3.04 6.05 86 1.48 3.07 65 2.98 5.94 87 1.39 2.89 66 2.92 5.82 88 1.30 2.71 67 2.85 5.70 89 1.21 2.52 68 2.79 5.59 90 1.11 2.32 69 2.73 5.47 91 1.02 2.12 70 2.66 5.35 92 0.92 1.91 71 2.60 5.23 93 0.81 1.70	Temp	Oxygen	Nitrogen	Temp	Oxygen	Nitroge	
59 3.34 6.60 81 1.89 3.88 60 3.28 6.50 82 1.81 3.73 61 3.22 6.39 83 1.73 3.57 62 3.16 6.27 84 1.65 3.41 63 3.10 6.16 85 1.57 3.24 64 3.04 6.05 86 1.48 3.07 65 2.98 5.94 87 1.39 2.89 66 2.92 5.82 88 1.30 2.71 67 2.85 5.70 89 1.21 2.52 68 2.79 5.59 90 1.11 2.32 69 2.73 5.47 91 1.02 2.12 70 2.66 5.35 92 0.92 1.91 71 2.60 5.23 93 0.81 1.70 72 2.53 5.10 94 0.71 1.48 </td <td></td> <td>cc.</td> <td>cc.</td> <td></td> <td>cc.</td> <td>cc.</td>		cc.	cc.		cc.	cc.	
59 3.34 6.60 81 1.89 3.88 60 3.28 6.50 82 1.81 3.73 61 3.22 6.39 83 1.73 3.57 62 3.16 6.27 84 1.65 3.41 63 3.10 6.16 85 1.57 3.24 64 3.04 6.05 86 1.48 3.07 65 2.98 5.94 87 1.39 2.89 66 2.92 5.82 88 1.30 2.71 67 2.85 5.70 89 1.21 2.52 68 2.79 5.59 90 1.11 2.32 69 2.73 5.47 91 1.02 2.12 70 2.66 5.35 92 0.92 1.91 71 2.60 5.23 93 0.81 1.70 72 2.53 5.10 94 0.71 1.48 </td <td>58°</td> <td>3.39</td> <td>6.71</td> <td>80°</td> <td>1.97</td> <td>4.03</td>	58°	3.39	6.71	80°	1.97	4.03	
60 3.28 6.50 82 1.81 3.73 61 3.22 6.39 83 1.73 3.57 62 3.16 6.27 84 1.65 3.41 63 3.10 6.16 85 1.57 3.24 64 3.04 6.05 86 1.48 3.07 65 2.98 5.94 87 1.39 2.89 66 2.92 5.82 88 1.30 2.71 67 2.85 5.70 89 1.21 2.52 68 2.79 5.59 90 1.11 2.32 69 2.73 5.47 91 1.02 2.12 70 2.66 5.35 92 0.92 1.91 72 2.53 5.10 94 0.71 1.48 72 2.53 5.10 94 0.71 1.48 74 2.40 4.85 96 0.48 1.01 </td <td></td> <td></td> <td></td> <td></td> <td>1.89</td> <td>3.88</td>					1.89	3.88	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.28			1.81	3.73	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	61	3.22		83	1,73	3.57	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	62	3.16	6.27	84	1.65	3.41	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.10	6.16	85	1.57	3.24	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	64	3.04	6.05	86	1.48	3.07	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	65	2.98	5.94	87	1.39	2.89	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	66	2.92	5.82	88	1.30	2.71	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	67		5.70	89		2.52	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	68				1.11	2.32	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						2.12	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	70	2.66		92	0.92	1.91	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
75 2.33 4.72 97 0.37 0.77 76 2.26 4.59 98 0.27 0.52 77 2.19 4.45 99 0.13 0.25 78 2.12 4.32 100 0.00 0.00 79 2.04 4.18 0.00 0.00 0.00							
76							
77							
78 2.12 4.32 100 0.00 0.00 79 2.04 4.18 100 0.00 0.00							
79 2.04 4.18							
				100	0.00	· 0.0(
(777) 11 70	79	2.04	4.18				

(Winkler, B. 1901, 34. 1440.)

Absorption of atmospheric air by H_2O at and 760 mm, pressure. β = coefficient absorption. β_1 = "Solubility." (Soluble of the support of the support

t°	β	βι	t°	β	β_1
0 5 10 15 20 25 30 35 40 45 50	0.02881 2543 2264 2045 1869 1724 1606 1503 1418 1351 1297	2237 2011 1826 1671 1539 1420	55 60 65 70 75 80 85 90 95 100	0.01253 1216 1182 1156 1137 1126 1119 1113 1109 1105	09 08
				1 1100	

(Winkler, B. 1901, **34**. 1409.)

Sea-water absorbs less O and N from ϵ than pure H₂O, but the ratio between O and remains constant. In sea-water sat. with ϵ at 6.22° the oxygen was 33.50% of the tot gas absorbed. (Pettersson and Sondén.)

1 l. sea-water absorbs cc. N and O from at to and 760 mm. pressure.

to	cc. N	cc. O	и+о	% 0
0	14.41	7.77	22.18	35.03
5	13.22	6.93	20.15	34.39
10	12.08	6.29	18.37	34.24
15	11.01	5.70	16.71	34.11

(Tornoë, Norwegian North Atlantic Expe Chem. 18.) 1 l. sea water absorbs cc. N from air at to Alum, Ammonia. and 760 mm.

t°	cc. N	t°	cc. N	t°	cc. N
0	15.60	10	12.47	20	10.41
5	13.86	15	11.34	25	9.62

(Dittmar.)

1 l. sea-water absorbs cc. N (0° and 760 mm.) from atmospheric air at to and 760 mm. pressure (dry).

to	cc. N	t°	cc. N	t°	cc. N
0 2 4 6 8	14.85 14.20 13.60 13.04 12.53	10 12 14 16 18	12.06 11.62 11.23 10.87 10.54	20 22 24 25	10.25 9.98 9.73 9.62

(Hamberg.)

Absorption of air which is free from carbonic acid by H_2SO_4 at 18° and 760 mm. $\alpha =$ coefficient of solubility.

H ₂ SO ₄	4 a H ₂ SO ₄		α
98%	0.0173	70%	0.0055
90%	0.0107	60%	0.0059
80%	0.0069	50%	0.0076

(Tower, Z. anorg. 1906, 50, 388.)

Absolute alcohol absorbs 0.11 vol. gas from air, 1/s of which is O and 2/s, N. On mixing with an equal vol. H₂O, 2/s of the dissolved gas is given off. (Döbereiner.) 100 vols. alcohol (95.1%) absorb 14.1 vols. air. (Robinet, C. R. 58. 608.)

100 vols. petroleum absorb 6.8 vols. air.

""" off. of lavender" 6.89 ""

"" benzene "14.0" ""

(Robinet, Le.)

(Robinet, l.c.)

1 vol. ether at 760 mm. pressure absorbs 0.290 vols. air at 0°; 0.287 vols. at 10°; 0.286 vols. at 15°. (Christoff, Z. phys. Ch. 1912, 79. 459.)

Alcohol. C2H5OH.

эf

ir N

ìr

ď.

Sp. gr. of pure ethyl alcohol + Aq. at 25°.

% alcohol	Sp. gr.	% alcohol	Sp. gr.
0 2 5 6 10 15 20 25 30 35 40 45 50	0.997077 0.993359 0.988166 0.986563 0.980434 0.973345 0.966392 0.958946 0.950672 0.941459 0.931483 0.920850 0.909852	55 60 65 70 75 80 85 90 95 98 99 100	0.898502 0.886990 0.875269 0.863399 0.851336 0.839114 0.826596 0.813622 0.799912 0.791170 0.788135 0.785058

(Osborne, McKelvy and Bearce, Bureau of Standards, Sci. Paper No. 197.)

See Sulphate, aluminum ammonium.

Alum, Chrome.

See Sulphate, aluminum chromium.

Alum, Iron,

See Sulphate, aluminum ferric.

Alum, Potash.

See Sulphate, aluminum potassium.

Alumina.

See Aluminum oxide.

Aluminic acid, $H_2Al_2O_4 = Al_2O_8$, H_2O .

Aluminum hydroxide possesses acid properties, and salts corresponding to an acid of the above formula exist.

See Aluminum hydroxide.

Aluminates.

All aluminates are insol. in H₂O except those of K and Na (Fremy) and Ba (Beckmann, J. pr. (2) **26.** 385).

Barium aluminate, $BaAl_2O_4+4H_2O$.

Sol. in 10 pts. H₂O; can be recryst. from

alcohol. (Deville, J. pr. 87. 299.) +5H₂O. Sl. sol. in H₂O with decomp. (Allen, Am. Ch. J. 1900, 24. 313.)

+7H₂O. Sl. sol. in cold, not completely sol. in hot H₂O. Sol. in cold dil. HCl+Aq. (Beckmann, J. pr. (2) 26. 385.)

Ba₂Al₂O₅+5H₂O. Sol. in 20 pts. H₂O by

boiling. (Beckmann, B. 14. 2151.)

Insol. in alcohol.

Sl. sol. in H2O with decomp.; insol. in alcohol. (Allen, Am. Ch. J. 1900, 24. 311.) $Ba_3Al_2O_6+7-11H_2O$. Sol. in 15 pts. H_2O with decomp. into Ba₂Al₂O₅+5H₂O; insol. in alcohol. (Beckmann.)

Barium aluminate bromide, BaAl₂O₄, BaBr₂ +11H₂O.

Sol. in H₂O. (Beckmann, J. pr. (2) 26. 385, 474.)

Barium aluminate chloride, BaAl₂O₄, 3BaCl₂

 $+6H_2O.$

Sol. in H₂O. (Beckmann, l.c.) BaAl₂O₄, BaCl₂+11H₂O. Sol. in H₂O. (Beckmann, l.c.)

Barium aluminate iodide, BaAl₂O₄, BaI₂. Sol. in H₂O. (Beckmann, l.c.)

Calcium aluminate, CaO, Al₂O₃,

Decomp. by H2O but does not "set." Sol. in HCl; insol. in HNO₂, H₂SO₄, and HF. (Dufau, C. R. 1900, **131.** 543.)

 $Ca_2Al_2O_5+7H_2O$. Slowly decomp. by H₂O; sl. sol. in H₂O. (Allen, Am. Ch. J. 1900, 24. 316.) Ca₂Al₂O₆. Insol. in H₂O; not decomp. by

KOH+Aq; sol. in acids. (Tissier, C. R. 48. 627.)

Ppt; sl. sol. in H2O; insol. in +6H₂O. alcohol. (Allen, Am. Ch. J. 1900, 24. 316.) 3Al₂O₃.4CaO+3H₂O. Ppt. (Friedel, Bull. Soc. Min. 1903, 26. 121; C. C. 1904, I. 430.)

Cobalt aluminate.

"Thenard's or Leithner's blue." Insol. in H₂O.

CoAl₂O₄. Insol. in H₂O and acids. (Ebel-

Cobalt magnesium aluminate, [MgCo]Al2O4. "Spinel Blue." Insol. in H2O or.HCl+Aq. (Ebelmen.)

Glucinum aluminate, GlAl₂O₄.

Min. Chrysoberyll. Not attacked by acids, but decomp. by KOH + Aq.

Iron (ferrous) aluminate, FeAl₂O₄.

Min. Hercynite. Not attacked by acids.

Lithium aluminate, LiAlO₂.

Sol. in H₂O. (Weyberg, C. C. 1906, II.

Lithium hydrogen aluminate, LiHAl₂O₄+ 5H₂O.

Sl. sol. in H₂O; decomp. on boiling. (Allen, Am. Ch. J. 1900, 24, 310.)

Magnesium aluminate, MgAl₂O₄.

Min. Spinel. Insol. in H2O.

Insol. in HNO₃+Aq; very sl. sol. in HCl Aq; partly sol. in H₂SO₄ at boiling temp.

(Abich, Pogg. 23. 316.)
Sol. by standing 2 hours at 210° with a mixture of 3 pts. H₂SO₄ and 1 pt. H₂O, or by boiling with this mixture together with HF. (Mitscherlich, J. pr. 81, 108.)

Sl. sol. in HCl, HF, and H₂SO₄; insol. in HNO₃. (Dufau, Bull. Soc. 1901, (3) 25. 669.)

Manganous aluminate.

Insol. in H₂O and acids. (Ebelmen, A. ch. (3) 22. 225.)

Insol. in HCl+Aq; readily $MnAl_2O_4$.

attacked by HF, HNO₃ and H₂SO₄. Decomp. by fusion with alkali chlorate,

nitrate, oxide or carbonate. (Dufau, C. R. 1902, **135**. 963.)

Nickel aluminate.

Insol. in H₂O.

Potasssium aluminate, $K_2Al_2O_4+3H_2O$.

Decomp, by dissolving in pure H₂O with separation of Al₂O₃. (Fremy, A. ch. (3). 12. 362.) Can be recrystallised from water containing a little alkali, without decomposition. (Fremy.)

Insol. in alcohol.

Sodium aluminate, Na₂Al₂O₄.

Easily and completely sol. in cold H₂O. (Schaffgotsch, Pogg. 43. 117.) +4H₂O. Insol. in alcohol. (Allen, Am.

Ch. J. 1900, 24, 308.)

 $Na_6Al_2O_6$. Miscible with hot H_2O , and as sol. as NaOH in cold H_2O . Insol in alcohol but decomp. thereby. (Tissier, C. R. 43. 102.)

Strontium aluminate, Sr₃Al₂O₆+6H₂O.

Sl. sol. in H₂O (with slow decomp. in Aq. solution). (Allen, Am. Ch. J. 1900, 24. 314.)

Thallium aluminate, $Tl_4Al_2O_5+7H_2O$.

Not completely sol. in, but slowly hydrolysed by H_2O .

Readily sol. in dil. acids and in the fixed alkalies.

Insol. in abs. alcohol. (Hawley, J. Am. Chem. Soc. 1907, 29. 303.)

Zinc aluminate, ZnAl₂O₄.

Insol. in acids or alkalies. Min. Gahnite (Automolite).

+xH₂O. Sol. in KOH, and NH₄OH+Aq. (Berzelius.)

Aluminicoantimoniotungstic acid.

Ammonium aluminicoantimoniotungstate. $6(NH_4)_2O$, $2Al_2O_3$, $3Sb_2O_5$, $18WO_3+$ 17H₂O.

A shellac-like gum. (Daniels, J. Am. Chem. Soc. 1908, **30.** 1856.)

Barium aluminicoantimoniotungstate, 5BaO, $2Al_2O_3$, $3Sb_2O_5$, $18WO_3+6H_2O$.

Somewhat insol. in dil. HCl. J. Am. Chem. Soc. 1908, 30. 1857.)

Silver aluminicoantimoniotungstate, 6Ag₂O, $2Al_2O_3$, $3Sb_2O_5$, $18WO_3+12H_2O$.

Sol. in NH4OH+Aq but requires HNO3 (1:10) to dissolve it. (Daniels, J. Am. Chem. Soc. 1908, **30.** 1857.)

Aluminicoarseniotungstic acid.

Ammonium aluminicoarseniotungstate, $6(NH_4)_2O$, $2Al_2O_3$, $3As_2O_5$, $18WO_3$ + 14H₂O.

Sparingly sol. in H₂O. (Daniels, J. Am. Chem. Soc. 1908, 30, 1854.)

Barium aluminicoarseniotungstate, $2Al_2O_8$, $3As_2O_5$, $18WO_8+12H_2O$.

Very sl. sol. in H₂O

Sol. in very dil. HCl or HNO₃. (Daniels, J. Am. Chem. Soc. 1908, **30**. 1855.)

Cadmium aluminicoarseniotungstate, 4CdO, $2Al_2O_3$, $3As_2O_5$, $18WO_3+17H_2O$.

Sol. in dil. mineral acids and in strong NH40H+Aq. (Daniels, J. Am. Chem. Soc. 1908, **30.** 1855.)

Aluminicomolybdic acid.

Ammonium aluminicomolybdate, 3(NH₄)₂O, Al_2O_3 , $12MoO_3+19H_2O$.

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. 696.)

+20H₂O. More sol. in H₂O than potassium

aluminicomolybdate. (Struve, Bull. Acad. St. Petersb. 12. 147.)

+22H₂O. (Marckwald, Dissert. 1895.)

Barium aluminicomolybdate, 4BaO, Al₂O₃, 12MoO₂+14H₂O.

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. 712.)

Lead aluminicomolybdate, 4PbO, Al₂O₃, 12MoO₃+21H₂O.

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. 712.)

Potassium aluminicomolybdate, 3K₂O, Al₂O₃, 12MoO₃+20H₂O.

1 pt. of the salt is sol. in 40.67 pts. $\rm H_2O$ at 17°. Very difficultly sol. in acids. (Struve.) $\rm H_3Al(MoO_4)_3$, 2KHMoO₄. Sol. in $\rm H_2O$. (Parmentier, C. R. 94. 1713.)

Silver aluminicomolybdate, $4Ag_2O$, Al_2O_8 , $12MoO_8+16H_2O$.

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. 712.)

Sodium aluminicomolybdate, 3Na₂O, Al₂O₃, 12MoO₃+22H₂O.

Efflorescent. Easily sol. in H_2O . (Gentele J. pr. 81. 413.)

Aluminicophosphotungstic acid.

Ammonium aluminicophosphotungstate, 9(NH₄)₂O, 2Al₂O₃, 4P₂O₅, 9WO₃+13H₂O.

Sl. sol. in cold and in hot H_2O . (Daniels, J. Am. Chem. Soc. 1908, **30**, 1851.)

Barium aluminicophosphotungstate, 4BaO, $2Al_2O_3$, $4P_2O_6$, $9WO_3+13H_2O$.

Sl. sol. in H_2O . Sol. in very dil. HCl or HNO₃. (Daniels, J. Am. Chem. Soc. 1908, **30**. 1853.)

Silver aluminicophosphotungstate, $4Ag_2O$, $2Al_2O_3$, $4P_2O_5$, $9WO_3+6H_2O$.

Nearly insol. in H_2O . Sol. in NH_4OH and in dil. HNO_3 . Insol. in acetic acid. (Daniels, J. Am. Chem. Soc. 1908, **30**. 1852.)

Zinc aluminicophosphotungstate, 5ZnO, 2Al₂O₃, 4P₂O₅, 9WO₃+11H₂O.

Sol. in dil. acids and in a large quantity of conc. ammonia when NH₄Cl is present. (Daniels, J. Am. Chem. Soc. 1908, 30. 1853.)

Aluminicotungstic acid.

Ammonium aluminicotungstate, $3(NH_4)_2O$, Al_2O_3 , $9WO_3+4H_2O$.

Sol. in conc. HNO₃ and in conc. HCl. When the solution in conc. HCl was boiled, a yellow colored ppt. separated. (E. F. Smith, J. Am. Chem. Soc. 1903, **25**. 1230.)

Ammonium silver alumininicotungstate, 11Ag₂O, 21(NH₄)₂O, 4Al₂O₃, 36WO₃.

The dry salt is insol. in pure H₂O, but

readily sol. in H₂O containing NH₃ or HNO₃. (E. F. Smith, J. Am. Chem. Soc. 1903, 25. 1231.)

Barium aluminicotungstate, 8BaO, Al₂O₃, 9WO₃+7H₂O.

Not sol. in acids when dry. Somewhat decomp. by boiling with conc. HCl, HNO₃ or aqua regia. (Daniels, J. Am. Chem. Soc. 1908, **30**. 1848.)

Copper aluminicotungstate, 2CuO, Al₂O₃, 9WO₃+16½H₂O.

Sol. in large quantities of H₂O. (Daniels, J. Am. Chem. Soc. 1908, **30**. 1847.)

Mercurous aluminicotungstate, 5Hg₂O, Al₂O₃, 9WO₃:

Sl. sol. in $\rm H_2O$. Sol. in $\rm HNO_3(1:5)$. (Daniels, J. Am. Chem. Soc. 1908, **30.** 1849.)

Zinc aluminicotungstate, 1½ZnO, Al₂O₃, 9WO₃+8H₂O.

Insol. in H₂O. (Daniels, J. Am. Chem. Soc. 1908, **30**. 1850.)

ZnO, Al₂O₃, 9WO₃+20H₂O. Sol. in H₂O.

ZnO, Al_2O_3 , $9WO_3+20H_2O$. Sol. in H_2O (Daniels.)

Aluminum, Al.

Less easily attacked than ordinary metals (iron, copper, lead, zinc, tin) by air, H_2O , wine, beer, coffee, milk, oil, butter, fats, etc. Vinegar dissolves 0.349 g, from a sq. decimetre in 4 months, and 5 % NaCl+Aq, only 0.045 g. in the same time. (Ballaud, C. R. 114. 1536.)

The action of various substances contained in foods and drinks on compact Al as it occurs in utensils is very slight. Hard or soft water, whether cold or hot, showed no action in 8 days; 1% solutions of tartaric, tannic, and acetic acids had no action in same time, also 5% boric, carbolic, and salicylic acids. 4% and 10% acetic acid dissolved only 0.4 mg. of Al, while 10% acetic acid dissolved 19. mg. from a roughened piece of Al foil in 8 days. 1% soda solution dissolved 15 mg. in 8 days. (Rupp, Dingl. 283. 119.)

Similar results were obtained by Arche. (Dingl. 284, 255.)

Liquids which are ordinarily contained in foods and drinks do not attack sheet Al except in a very small degree. The following losses in weight in mg. by the action of the given liquids on 100 sq. centimetres sheet aluminum for 6 days were obtained:

Liquids			Loss in mg.
Claret	•		2.84
Hock		.	3.27
Brandy	•		1.08
5 % alcohol 5 % tartaric acid+Aq	•		0.61 1.69
1 % tartaric acid TAq	•		2.58
1 % " " 5 % acetic acid+Aq			3.58
1% " "		. 1	4.38

Sv.

Sv.

Tec

Tr

Tr

Z.

 \mathbf{z} .

ZI
Z
Z
ZZZZZ
\mathbf{z}
Z
\mathbf{z}
Z
Z
7
~

Roy	Liquids		Loss in mg.
R. to Rus Sche Sche Sche Sill. Sitz	5 % citric acid+Aq 1 % "" 5 % lactic acid+Aq 5 % butyric acid+Aq Coffee Tea Beer 4 % boric acid+Aq 5 % carbolic acid+Aq 1 % "" 1 % salicylic acid+Aq	 	2.15 1.90 4.77 1.31 0.50 0 1.77 0.23 0.49 6.35
Sto	(Tunna Ch	 774	2.

(Lunge, C.N. 65. 110.)

The apparent solubility of this metal in H₂O is due to the presence of minute quantities of Na. Absolutely pure Al does not lose any weight to H2O and the H2O remains perfectly clear. Also dil. acids remain perfeetly clear. (Moissan, C. R. 1895, 121. 794–98; C. C. 1896, I. 193.)

Sl. attacked by H₂O at 80°. (W. Smith, J. Soc. Chem. Ind. 1904, 23. 475.)

Easily sol. in dil. or conc. whether hot or cold; also in HBr, HI, or HF+ Aq. Insol. in dil. H₂SO₄+Aq (de la Rive); sl. attacked by cold, easily by hot conc. H₂SO₄. Not attacked by HNO₈+Aq even when conc. and boiling (Wöhler); easily sol. in dil. H₂SO₄, or HNO₃+Aq in vacuo (Weeren, B. 24. 1798); slowly sol. in 27 % HNO₃+Aq, 100 ccm. HNO₃+Aq requiring 2 months to dissolve 2 g. Al (Montemartini, Gazz. ch. it. 22. 397); very sl. sol. in most organic acids, but solubility is increased by presence of NaCl.

Not attacked by dil. or conc. HNO3 at ord. temp. but attacked by hot HNO₃. Attacked by H₈PO₄. (Smith, J. Soc. Chem. Ind. 1904,

23. 475.)

Completely sol. at 100° in two hours in HNO₃, sp. gr. 1.15-1.46. (Stillman, J. Am.

Chem. Soc. 1897, 19. 714.)

Very easily sol. in HNO_3 (contrary to the usual statement in text-books). (Woy, C. C. 190 , II. 94.)

Slowly attacked by HNO₃+Aq (20-25 %) at 25-30°. (Deventer, Chem. Weekbl. 1907,

4. 69.) Dil. HNO₃ or H₂SO₄ does not attack Al on account of formation of layer of gas. Action is increased by vacuum. Solutions of metallic chlorides, the metal of which is insol. and attaches itself to the Al (Pt, Au, Cu, Hg) increase the solubility, but when metal is soluble in the acid (Fe, Zn, etc.), there is no increase of solubility. (Ditte, C. R. 1890, **110.** 573.)

Violently attacked by dil. or conc. H₂PO₄+

Aq. (Winteler.)

Not attacked by solution of HCl in liquid HCN. (Kahlenberg, J. phys. Chem. 1902, **6.** 662.)

Very easily sol. in conc. or dil. KOH, or Aluminum borocarbide, Al₂C₂B₄₈. NaOH+Aq. Slowly attacked by NH₄OH+

Aq (Wohler); sol. in BaO_2H_2+Aq (Beck mann, J. pr. (2) 26. 385); slowly sol. in CaO₂H

Sol. in excess of 10 % KOH+Aq and i NaOH and LiOH+Aq; sol. in hot cone Ba(OH)₂, Sr(OH)₂ and Ca(OH)₂+Aq. (Aller Am. Ch. J. 1900, 24. 304-331.)

Attacked by hot conc. NH₄OH+A (Smith, J. Soc. Chem. Ind. 1904, 23. 475.) NH₄OH+Ac

Sl. attacked by sulphates, or nitrates + Ac but all chlorides, bromides, and iodides, excep those of the alkalies and alkaline earths, eve AlCl₈+Aq, dissolve the metal. Insol. i alum, or in NaCl+Aq, but sol. in alum-NaCl+Aq. (Tissier, C. R. 41. 362); sol. i NaCl+Aq (Deville, A. ch. (3) 43. 14); so in neutral FeCl₃+Aq in vacuo. (Weerer B. 24. 1798.) Violently attacked by CuCl₂-Aq. (Tommasi, Bull. Soc. (2) 37. 443.)

Rapidly sol. in K₂S₂O₈+Aq, more slowl sol. in (NH₄)₂S₂O₈+Aq. (Levi, Gazz. ch. i

1908, **38.** (1) 583.)

Attacked by (NH₄)₃PO₄+Aq. Sl. attacke by NaNO₃+Aq or KNO₃+Aq at 100' (Smith, J. Soc. Chem. Ind. 1904, 23. 475.)

Not affected by NH₄NO₃+Aq. (Hodgkir son, C. N. 1904, 90. 142.)

Attacked by POCl₃ at 100°. (Renitzer, F **13.** 845.)

Insol. in liquid NH₃. (Gore, Am. Ch. . 1898, **20.** 826.)

Insol. in liquid CO₂. (Büchner, Z. phys

Ch. 1906, 54. 674.)

Attacked by NOCl. (Sudborough, Chen Soc. 1891, **59.** 659.

92 %alcohol attacks Al less than H₂O. Pur Al is attacked less than commercial. (Hugor neng, J. Pharm. 1895, (6) 1. 537.)

Sol. in organic acids containing chloride (Smith, J. Soc. Chem. Ind. 1904, 23. 475.)

Acetic, tartaric and citric acids attack A only at first. Metal is covered by layer (hydrox de but on addition of haloid salta gradual solution ensues. (Ditte, C. R. 189) **127.** 919.)

Not attacked by sugar + Aq. (Klein, C. F.

102. 1170.)

Aluminum arsenide.

Decomp. by H₂O with evolution of AsH (Wöhler, Pogg. 11. 160.)

Decomp. by H₂O. (Fonzes-Diacon, C. I 1900, **130**. 1315.)

Aluminum boride, Al₂B₄.

Very slowly sol. in hot conc. HCl+Aq, an hot NaOH+Aq, but easily in moderatel strong warm HNO₃+Aq. (Hampe, A. 18) 75.)

Al₂B₂₄. Not attacked by HCl, or KOH-Aq. Scarcely attacked by boiling H₂SO Hot conc. HNO₃+Aq dissolves gradually by completely. (Hampe, l. c.)

Insol. in H_2O , HCl+Aq, H_2SO_4+Aq ,

Aq. (Hampe, l. c.)

Aluminum bromide, AlBr₈.

Anhydrous. Dissolved by H₂O with great violence and evolution of much heat. sol. in alcohol. More sol. in CS2 than AlI3. (Weber, Pogg. 103, 264.)

Sol. in SOCl₂. (Besson, C. R. 1896, 123.

Sol. in C₂H₅Br. (Plotnikoff, C. C. 1902, II. 617.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328); (Eidmann, C. C. 1899, II. 1014.)

Solubility of AlBr₃ in organic liquids.

Solvent	t°	Mols. per 100	t°	Mols. per 100	t°	Mols. per 100
Benzo- phenone	48° 45 42 38 50 60 70 80 90 100 110 120	0 8.5 13.8 18.3 21 23.4 25.7 28.1 30.6 33.4 36.3 39.6	130° 140 142 140 130 120 110 100 90 80 70 60	43.2 48.4 50 52.1 54.5 56.7 58.6 60.3 61.7 62.9 64.1 65.1	50° 38 50 60 70 80 85 90 93	66.0 67.2 70.7 74.2 78.3 83.3 86.7 90.7 94.8
Ethylene bromide	10° 6 2 -2 10	0 8.4 16.0 22.9 28.4	20° 30 40 50 60	33.9 40.1 47.2 55.1 63.6	70° 80 90 96	72.7 82.3 92.2 100
Benzoyl chloride	-0.5° -2.5 -5 10 30 50 70 80	0 6.5 13.0 17.4 24.6 31.8 40 44.3	85° 90 80 60 40 20 7 20	47 50.8 52.8 56 59.5 63.1 65.5 67.9	40° 60 70 80 90 96	72.6 79.4 83.9 89.2 95.8 100

(Menschutkin, Ann. Inst. Pol. P.-le-Gr., **13.** 1.)

+6H₂O. Very sol. in H₂O. +15H₂O. (Panfiloff, J. B. 1895. 785.)

Aluminum antimony bromide, 2AlBr₃, 5SbBr₅ $+24H_{2}O.$

Hygroscopic. Decomp. by H₂O. (Weinland, B. 1903, 36. 258.)

Aluminum potassium bromide, AlBr₃, KBr. Sol. in H₂O. (Weber, Pogg. 103. 267.)

Aluminum bromide ammonia, AlBrs, xNHs. Decomp. by H_2O . (Weber, Pogg. 103. 267.)

KOH+Aq; slowly sol. in hot conc. HNO₃+ | Aluminum perbromide carbon bisulphide, AlBr₈, Br₄, CS₂.

Sol. in ether, ethyl bromide, ethylene bromide and benzene; decomp. by H₂O. (Plotnikoff, J. Russ. phys. Chem. Soc. 1901, 33. 91; C. C. **1901,** I. 1193.)

2AlBr₃, Br₄, CS₂. Sol. in ether and benzene; insol. in petroleum ether. (Plotnikoff, l. c.)

Aluminum bromochloride, AlCl₂Br.

Deliquescent. Somewhat less violently dissolved by H₂O than is AlBr₃. (v. Bartal, Z. anorg. 1907, **55**. 154.)

 $+6H_2O$. Deliquescent. Sol. in H_2O without evolution of heat. (v. Bartal, Z. anorg.

1907, **55.** 155.)

Aluminum carbide, Al₄C₃.

Decomp. by fused KOH at 100°; insol. in fuming HNO₃ in the cold; decomp. by H₂O, and dil. acids. (Moissan, Bull. Soc. 1894, (3) 11. 1012; C. R. 1894, 119. 16–20.)

Insol. in acetone. (Naumann, B. 1904, 37.

Aluminum chloride, basic, Al₆O₁₄H₁₀, HCl. Easily sol. in H₂O. (Schlumberger, Bull. Soc. 1895, (3) **13.** 56.)

Aluminum chloride, AlCl₃.

Anhydrous. Very deliquescent. Sol. in H₂O with a hissing noise and evolution of heat. Solution of AlCl₃ in H₂O loses HCl on evaporation, and AlCl3 is finally wholly converted into Al₂O₃.

Sol. in 1.432 pts. H₂O at 15°. (Gerlach.) AlCl₃+Aq containing 19.15 % AlCl₂ boils at 103.4°; AlCl₃+Aq containing 38.3 % AlCl₃ boils at 112.8°. (Gerlach.)

Sp. gr. of AlCl₃+Aq at 15°.

%AlCls	Sp. gr.	%AlCls	Sp. gr.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21	1.0072 1.0144 1.0216 1.0289 1.0361 1.0435 1.0510 1.0585 1.0659 1.0734 1.0812 1.0890 1.0968 1.1047 1.1125 1.1207 1.1290 1.1372 1.1455 1.1537 1.1632	22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	1.1709 1.1795 1.1881 1.1968 1.2058 1.2149 1.2241 1.2331 1.2422 1.2518 1.2615 1.2711 1.2808 1.2905 1.3007 1.3109 1.3211 1.3313 1.3415 1.3522

(Gerlach, Z. anal. 8. 281.)

Roy

 ${f R}$. ${f t}$

 $\mathbf{R}_{\mathbf{u}\mathbf{s}_i}$

Sche

Sch

Sch

Sill

Sitz

Sto

Sv.

Sv.

Sv.

8

Sp. gr. at 20° of AlCl₈+Aq containing mg. mols. AlCl₃ per liter.

M.	Sp. gr.
0.01	1.00104
0.025	1.00282
0.05	1.00588
0.075	1.00870
0.10	1.01158
0.25	1.02911
0.55	1.05706
1.0	1.11054
1.5	1.16308
2.0	1.21378

(Jones & Pearce, Am. Ch. J. 1907, 38, 726.)

Sol. in 1 pt. strong alcohol at 12.5° (Wenzel); easily sol. in ether; sl. sol. in CS2; insol. in ligroine or benzene.

Difficultly sol. in AsBr₃. anorg. 1902, 29. 374.) (Walden, Z.

Sol. in AlBr. (Isbekow, Z. anorg. 1913, **84.** 26.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 826.)

Insol. in CS₂ at ord. temp. (Arctowski, Z. anorg. 1894, 6. 257.)

Sol. in benzonitrile. (Naumann, B. 1914, **47.** 1369.)

Difficultly sol. in acetone. (Naumann, B. 1904, **37.** 4328.)

Insol. in ethyl acetate. (Naumann, B. 1910, **43.** 314.) Insol. in methylal. (Eidmann, C. C. 1899, II. 1014.)

Solubility of AlCl₃ in organic liquids.

oolabaaty, or lile of damo inquito.						
Solvent	t°	Mols. per 100	to	Mols. per 100	to	Mols. per 100
Benzo- phenone	48° 44 39.5 50 60 70 80 90 100 110 120 125	0 8.5 13.8 18.3 21. 23.4 25.7 28.1 30.6 33.4 36.3 39.6	130° 125 120 110 100 90 80 70 60 80 100 120	43.2 48.4 50 52.1 54.5 56.7 58.6 60.3 61.7 62.9 64.1 65.1	130° 140 150 160 170 180 185 190 192 194	66.0 67.2 70.7 74.2 78.3 83.3 86.7 90.7 94.8 100
Benzoyl chloride		0 7.9 12.7 14.1 18.8 25.0	60° 70 80 90 93 90	33.0 37.5 42.2 47.1 48.7 50.6	70 60 40	52.9 55.1 57.2 61.0
(Menachutk	in Ar	n T	net	Pol	P .1	-Cr

Pol. P.-le-Gr., (Menschutkin, Inst. **13**. 1.)

Very deliquescent; very sol. ii +6H₂O. H₂O. Sol. in 0.25 pt. H₂O. (Thomson.)

Sol. in 2 pts. abs. alcohol at ordinary temp. and 1.5 pts. at b.-pt. (Thomson.)

Completely insol. in a solution of ether in H₂O sat. with HCl. (Havens, Am. J. Sci 1898, (4) **6.** 46.

Aluminum ammonium chloride, AlCl₃, NH₄C (Baud, A. ch. 1904, (8) 1. 46.)

Aluminum antimony chloride.

See Chlorantimonate, aluminum.

Aluminum barium chloride, 2AlCl₃, BaCl₂. (Baud, C. R. 1901, **133.** 869.)

Aluminum calcium chloride, basic.

3CaO, CaCl₂, Al₂O₃+10H₂O. (Steinmet:

Z. phys. Ch. 1905, 52. 466.) 10CaO, CaCl₂, 6Al₂O₃. Slowly decomp. b boiling H₂O. (Gorgeu, Bull. Soc. 1887, (2

Aluminum calcium chloride, 4AlCl₃, 3CaCl₂ (Baud, A. ch. 1904, (8) 1. 51.)

Aluminum nitrosyl chloride, AlCl₃, NOCl.

Deliquescent, and decomp. by H₂O. (Webe Pogg, 118. 471.)

Aluminum palladium chloride, AlCl₂, PdCl₂-10H₂O.

See Chloropalladite, aluminum.

Aluminum phosphorus pentachloride, AlCl PCl₅.

Decomp. violently by H₂O. (Baudrimont

Aluminum phosphoryl chloride, AlCl₃, POC Deliquescent. Sol. in H2O with decom-Sol. in warm POCl₃, from which it separat on cooling. (Casselmann, A. 98. 220.)

Aluminum platinum chloride, AlCl₃, PtCl₂ 15H₂O.

See Chloroplatinite, aluminum.

Aluminum potassium chloride, AlCl₃, KCl. Slowly deliquescent. Sol. in H₂O wi evolution of heat and decomp. (Degen, . **18.** 332.)

Aluminum selenium chloride, 2AlCl₃, SeCl₄ Sol. in H2O with evolution of heat as separation of traces of selenium. (Web Pogg. 104. 427.)

Aluminum sodium chloride, AlCl₃, NaCl. Much less deliquescent than AlCl. Sol. H₂O with evolution of heat. Upon evapors ing, NaCl crystallises out. (Wöhler.)

Aluminum strontium chloride, 4AlCl₃, 3SrC (Baud, A. ch. 1909, (8) **1.** 52.)

Aluminum sulphur chloride, 2AlCl₃, SCl₄. Decomp, by H₂O with evolution of mu

heat and separation of some sulphur. (Weber, Pogg, **104.** 421.) AlCl₃,SCl₄. 1901, **34.** 1757.) Decomp. by H₂O. (Ruff, B.

Aluminum tellurium chloride, 2AlCl₈, TeCl₄. Very sol. in dil. H_2SO_4+Aq . (Weber, J. pr. **76.** 313.)

Aluminum chloride ammonia, AlCl₂, NH₃. Sol. in H₂O. (Rose, Pogg, **24**. 248.) Completely sol. in H₂O. (Baud, C. R. 1901, **132.** 135.)

AlCl₃, 2NH₃. Very hygroscopic. (Still-

man, Am. Ch. J. 1895, 17. 750.) AlCl₃, 3NH₃. Decomp. by H₂O.

AlCl₃, 5NH₃. M. pt. 380°. (Baud, C. R. 1901, **132.** 135.)

AlCl₃, 6NH₃. Decomp. by H•O. (Stillman, Am. Ch J. 1895, 17. 752.) Somewhat hygroscopic. (Baud, C. R. 1901, 132. 135.)

Aluminum chloride nitric oxide, [2AlCl₃, NO. Very hygroscopic. Decomp. rapidly in the air. Sol. in KOH+Aq. (Thomas, C. R. 1895, **121.** 130.)

Aluminum chloride phosphine, 3AlCl₃, PH₃. Decomp. by H₂O or NH₄OH+Aq. (Rose Pogg, 24. 295.)

Aluminum chloride hydrogen sulphide.

Deliquescent. Decomp. by H₂O or NH₄OH +Aq. (Wöhler.)

Aluminum chloride sulphur dioxide, AlCla, SO₂.

Decomp. by H₂O, alcohol, or benzene. (Adrianowski, B. 12. 688.) 2AlCl₃, SO₂. (Baud, A. ch. 1904, (8) **1.** 32.)

Aluminum cobalt, Co₃Al₃.

Sol. in strong acids. (Brunck, B. 1901, 34. 2734.)

Aluminum copper, Cu₄Al₉.

Sol. in aqua regia; decomp. by HCl. (Brunck, B. 1901, 34. 2733.)

Aluminum fluoride, AlF₃.

Anhydrous. Not attacked by H₂O or acids, and only very slightly by boiling conc. H₂SO₄. Insol. in boiling KOH+Aq. (Deville, C. R. **42.** 49.)

(Naumann, B. Insol, in ethyl acetate.

1910, **43**. 314.) Insol. in acetone. (Naumann, B. 1904, 37.

4328.) $+\frac{1}{2}H_2O$. Insol. in H_2O . Sl. sol. in HF.

(Baud, C. R. 1902, 135. 1104.)

+H₂O. Completely but only sparingly sol. in H₂O. (Mazzuchelli, Real. Ac. Linc. 1907, (5) **16**, I. 775; Chem. Soc. 1907, **92**, (2). 549.) +3½H₂O. Two modifications: (1) Easily +3½H₂O. Two modifications: (1) Easily sol. in H₂O. Sol. in HF. (2) Insol. in H₂O. Sl. sol. in HF. (Baud, C. R. 1902, **135**. 1104.)

+7H₂O. Sol. in H₂O. (Deville, A. ch. (3) 61. 329.)

Min. Fluellite.

Very efflorescent. Sat. solution contains 3.85 g. AlF₃ per 100 g. at 11° and 1.2 g. at -0.2° . (Mazzucchelli, Real. Ac. Linc. 1907, (5) 16, I. 775; Chem. Soc. 1907, (2), 92. 549.) +8½H₂O.

Aluminum hydrogen fluoride, 3AlF2, 2HF+ 5H₂O.

Sol. in H₂O; precipitated by alcohol. (Deville.)

2AlF₃, HF+5H₂O. (Deville, A. ch. (6) 61. 329.)

Aluminum ammonium fluoride, AlFs, NH4F. Somewhat sol. in H₂O; insol. in H₂O containing NH₄OH or NH₄F. (Berzelius, Pogg. **1**. 45.)

Alfs, 2NH₄F+1.5H₂O. Sol. in 100 pts. H₂O at 16°. (Baud, C. R. 1902, **135**. 1338.) Alfs, 3NH₄F. Nearly insol. in H₂O; easily

sol. in dil. acids. (Petersen, J. pr. (2) 40. 35.) Quite easily sol. in H₂O, but insol. in NH₄F+Aq. (Helmholt, Z. anorg. 3. 129.)

Aluminum barium fluoride.

Apparently not obtained in pure state. (Röder.)

Aluminum calcium fluoride, AlF_3 , CaF_2+H_2O . Min. Evigtokite.

Aluminum calcium sodium fluoride, AlFa, CaF₂, NaF+H₂O. Min. Pachnolite.

Aluminum cobaltous fluoride, AlF₃, CoF₂+ 7H₂O.

Sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, **22.** 272.)

Aluminum cupric fluoride, 2AlF₃, CuF₂.

Very slowly but completely sol. in H₂O. (Berzelius.)

AlF₃, 2CuF₂+11H₂O. Sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, 22. 272-76.) $2AlF_3$, $3CuF_2+18H_2O$. Sol. in dil. HF+ Aq. (Weinland.)

Aluminum cupric hydrogen fluoride, AlF3, CuF₂, HF+8H₂O. Efflorescent in the air. Sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, **22.** 272.)

Aluminum iron (ferrous) fluoride, AlF₃, FeF_2+7H_2O .

Sl. sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, 22. 270.)

Aluminum lithium fluoride.

Insol. in H₂O. (Berzelius.)

Aluminum magnesium fluoride. 2AlF₂, MgF₂ (?). (Röder.)

эh

`h

Α.

1d

er,

in

xvi

Ro

R. $\mathbf{R}\mathbf{u}$

Z

Aluminum nickel fluoride, AlF₃, NiF₂+7H₂O. Sl. sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, 22. 271.)

Aluminum potassium fluoride, AlF2, 3KF. Very sl. sol. in acid solutions, and still less in H₂O. (Gay-Lussac and Thénard.) AlF₃, 2KF. As above.

Aluminum silicon fluoride. See Fluosilicate, aluminum.

Aluminum sodium fluoride. 2AIF₃, 3NaF. Min. Chiolite. AIF₃, 2NaF. Min. Chodneffite. AIF₃, 3NaF. Min. Cryolite. Sl. sol. in H₂O. Insol. in HCl+Aq. Decomp. by H₂SO₄, or by boiling with NaOH+Aq.

Aluminum strontium fluoride. As the Ba salt. (Röder.)

Aluminum thallous fluoride, 2AlF₃, 3TlF. Ppt. Sl. sol. in H₂O. (Ephraim, Z. anorg. 1909, **61**. 243.)

Aluminum zinc fluoride, AlF_3 , ZnF_2+7H_2O . Sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, 22. 272.) 2AlF₃, ZnF₂. Slowly but completely sol.

in H₂O. (Berzelius.)

Aluminum hydroxide, Al₂O₃, H₂O $=Al_2O_2(OH)_2$.

Dehydrated by conc. acids, without dissolv-

ing. (Becquerel, C. R., 67. 108.)
Min. Diaspore. Insol. in HCl+Aq, and not attacked by boiling conc. H₂SO₄, unless

it has been ignited. Al_2O_3 , $2H_2O = Al_2O(OH)_4$. Pptd. Al hydroxide, when boiled twenty hours with H₂O is insol. in acids and alkalies, and has the above composition. (St. Gilles, A. ch. (3) 46. 57.)

Min. Bauxite.

Soluble modifications—(a) Meta-aluminum hydroxide From basic Al acetate. H₂O and more readily in HC₂H₃O₂. aqueous solution is coagulated by traces of alkalies, many acids, and salts, while other acids and salts have no effect. Thus, 1 pt. H₂SO₄ in 1000 pts. H₂O, added to 7000 pts. of above solution containing 20 pts. Al₂O₃, converts the liquid into a nearly solid mass. Citric, tartaric, oxalic, chromic, molybdic, racemic, suberic, salicylic, benzoic, gallic, lactic, cinnamic, butyric, valeric, camphoric, picric, uric, meconic, comenic, and hemipinic acids act in the same way. HCl and HNO₃ have far less action, 600 mols. being necessary to produce the same effect as 1 mol. H₂SO₄. while acetic, formic, boric, arsenious, pyro- | nenschein.)

meconic, and opianic acids do not coagulate the solution, except when moderately conc. 1 pt. KOH in 1000 pts. H₂O coagulates 9000 pts. of the solution. NaOH, NH₄OH, and Ca(OH)₂ have the same effect.

The solution is not coagulated by acetates, unless added in large quantity, and even then the ppt. is redissolved when treated with H₂O. Nitrates and chlorides coagulate with difficulty; Na₂SO₄, MgSO₄, and CaSO₄+Aq, however, have as strong an action as a liquid containing the same amount of H₂SO₄. A teaspoonful of the solution introduced into the mouth solidifies at once from the action of the saliva. The ppt. formed by acids is not sol. in an ecessx of the acid, but by the long continued action of conc. H₂SO₄, especially if hot, the ppt. is dissolved; boiling conc. HCl+Aq also dissolves it, but less readily than H₂SO₄. The ppt. is sol. in boiling conc. KOH+Aq. The residue, when the solution is evaporated at 100°, has composition Al₂O₃, 2H₂O, and is insol. in acids. (Crum, Chem. Soc. 6. 225.)

(b) By Dialysis. Sol. in H2O, from which it is separated by extremely small amounts of various substances, as acids, ammonia, salts (especially K_2SO_4), caramel, etc. An excess of acid dissolves the coagulum. If the solution contains 0.5% Al₂O₃ or less, it may be boiled without change, but the hydroxide separates out suddenly when it is reduced to ½ its vol., and even very dil. solutions gelatinise spontaneously in a few days. The solution is not coagulated by alcohol or sugar.

(Graham, A. 121. 41.) Al₂O₃, 3H₂O = Al(OH)₃. Crystallised. Difficultly sol. in acids and alkalies. (Cossa, N. Clim. (2) 3. 228.) Insol. in boiling HCl+Aq. (Wöhler, A. 113. 249.) Sl. sol. in KOH+Aq; nearly insol. in cold H₂SO₄, HCl, HNO₃+Aq; very slowly sol. in hot HCl+Aq, more readily in hot H₂SO₄. (v. Bonsdorff, Pogg. 27. 275.) α-modification. Unstable. Changes into β-modification. Sol. in N-H₂SO₄ at ord. temp. Sol. in N-NaOH and in hot NaOH of concentration. SNaO. 100H-O. (Russ. 7.

concentration 5Na₂O, 100H₂O. anorg. 1904, 41. 226.)

β-modification. Insol. in N-H₂SO₄ at ord. temp. Difficulty sol. in warm N-NaOH, but easily sol. in hot NaOH of concentration 5Na₂O, 100H₂O. Its solubility in NaOH increases with increase in concentration of the hydroxyl ions. (Russ.)

δ-modification. Easily sol. in conc. H₂SO₄; only sl. sol. in HCl, HNO₃ or acetic acids, or in alkali+Aq. (Tommasi, C. C. 1905, II.

Min. Gibbsite. Sol. in HCl+Aq, and dil. H₂SO₄+Aq. Readily sol. in conc. KOH, and NaOH+Aq.

Precipitated. Completely insol, in H_2O or H_2CO_3+Aq . Easily sol, in acids when freshly pptd., but solubility diminishes on standing. Easily sol. in KOH or NaOH+Aq. (Son-

Herz (Z. anorg. 25. 155) found that aluminum hydroxide which has been dried in a vacuum dessicator requires for solution in NaOH+Aq. 3 atoms Na to 1 atom Al. Slade (Z. Elektrochem. 1911, 17. 261) was unable to obtain this result. Herz says Slade's SbCl₃+Aq. (Persoz.) error is due to insufficient shaking of the solution. (Herz, Z. Elektrochem. 1911, 17. 403.)

New solubility determinations verify the statement of Herz (Z. anorg. 25, 155) that the solubility of Al(OH)_s in NaOH+Aq is proportional to the concentration of NaOH. They do not, however, verify his statement that the ratio Na: Al in the solutions is always 3:1, for the author finds that the ratio Na: Al varies from 2:1 to 10:1 depending on the conditions of precipitation and the method and duration of drying of the Al(OH)₃. (Slade, Z. Elektrochem, 1912, 18. 1.)

Sl. sol. in NH₄OH+Aq when freshly pptd., but presence of NH4 salts diminish its solubility, and it separates out completely after

long standing. (Fresenius.)

Somewhat sol. in NH₄OH+Aq, the more readily the larger the vol. of H₂O. Somewhat sol. in (NH₄)₂CO₃+Aq, but less than in NH₄OH+Aq. Sl. sol. in dil. NH₄Cl+Aq, unless that salt be in large excess. It is finally wholly pptd. if allowed to stand several days.

18752 pts. NH₄OH+Aq (4 % NH₄OH) dissolve an amt. of Al(OH); corresponding to one pt. Al₂O₃; NH₄Cl prevents this solubility almost completely. (Hanamann, Pharm. Viertelj. 12. 527.)

Al(OH)₃, prepared by ppt. of a solution of Al(NO₃)₃ with NH₄OH, filtered and washed,

is insol. in NH4OH+Aq.

Al(OH)₃ prepared by pptn. of a solution of potassium aluminate with NH₄Cl, is sol. in a large excess of NH4OH if this is added to the ppt. at once. This modification which is sol. in NH4OH is unstable and easily goes over into the modification which is insol. in NH₄OH. (Renz, B. 1903, **36**, 2751.)

Conc. (NH₄)₂CO₃+Aq does not dissolve Al(OH)₃, and not a trace is dissolved by boiling conc. NH₄Cl+Aq. (Weeren, Pogg. 92. 97.)

With NH₄F+Aq, it forms a double salt, AlF₃, 3NH₄F, which is sol. in H₂O, but not in NH_4F+Aq . (Helmholt, Z. anorg. 3. 127.)

Insol. in (NH₄)₂S+Aq. (Malaguti and Durocher, A. ch. (3) 17. 421.) Fuchs found, on the contrary, that it is not wholly insol. in (NH₄)₂S+Aq. (Fresenius, Quant.)
Insol. in FeCl₃+Aq. (Béchamp.)
Determinations of the solubility of aluminum hydroxide in AlCl₃+Aq show that part

goes into solution to form a compound, while the greater part is in the colloidal form.

(Fischer, Z. anorg. 1904, 40. 46.)

Only sl. sol. in conc. Al₂(SO₄)₃+Aq, but solubility increases with decrease in concentration of Al₂(SO₄)₈ until it reaches a maximum at a concentration of 32 % Al₂(SO₄)₃ at 20°, 28 % at 40°, and 38 % at 60°. With further decrease in concentration of Al₂(SO₄)₃ comp. (Duboin, C. R. 1908, 146. 1028.)

the solubility of Al(OH)₃ in Al₂(SO₄)₃ diminishes. (Kremann, C. A. 1909. 2422.)

Insol. in HCN or cold KCN+Aq; but sl.

sol. in hot KCN+Aq. (Rose.)

Insol. in KC₂H₃O₂+Aq. (Osann, 1821.) When moist, sol. in H₂SO₃+Aq, from which it is repptd. on boiling. (Berthier, A. ch. (3) **7.** 76.)

Somewhat sol. in NaC₂H₃O₂+Aq. (Mer-

Not pptd. by NH₄OH+Aq in presence of Na citrate. (Spiller.) Sol. in ethyl amine, amyl amine, sinkaline,

ethyl picoline hydroxide, stibethylium hydroxide, triethyltoluenyl ammonium hydroxide+Aq. (Friedländer.)

Sol. in alkyl amines. (Renz. B. 1903, 36.

2751.)

Insol. in acetone. (Naumann, B. 1904, 37. 4328.)

Sol. to a considerable extent in $K_2C_4H_4O_6+$

Very sl. sol. in cane sugar +Aq. (Ramsey.) Solubility in glycerine + Aq containing about 60 % by vol. of glycerine. 100 cc. of the solution contain 0.25 g. Al₂O₈. (Müller, Z. anorg. 1905, 43. 322.)

Al₂O₃, 5H₂O. Insol. in H₂O, NH₄OH+ Aq and alcohol. Sol. in HCl and HNO2-Aq. 194.) (Zunino, Gazz. ch. it. 1900, 30 (1).

Al₆O₁₄H₁₀, "Trialuminum hydroxide." Not sol. in conc. acids in the cold; not sol. in KOH (cold) and only sl. sol. in hot KOH. Characterized by its solubility in exactly one mol. dil. HCl. Dil. solutions do not gelatinize even on long standing. Conc. solution of NH4Cl and other salts cause ppt. which redissolves on addition of H₂O.

Alkalies and alkali carbonates decomp. the salt with HCl and ppt. trialuminium hydroxide. H₂SO₄ and sol. sulphates give insol. compds. with the hydrate. HNO3 like HCl gives soluble compds. with the hydrate. (Structural formula given.) (Schlumberger, Bull. Soc. 1895, (5) 13. 41-65; C. C. 1895, I. 421.)

Aluminum iodide, AlI₃.

Anhydrous. Fumes on air and deliquesces. Sol. in H₂O with evolution of much heat. Sol. in CS2 and crystallizes from the hot sat. solution on cooling. (Weber.) Sol. in alcohol (Weber); ether and tetrachlormethane. (Gustavson.

Sol. in AlBr₃. (Isbekow, Z. anorg. 1913, 84. 26.)

+6H₂O. Very sol. in H₂O.

Aluminum mercuric iodide, AII_3 , $HgI_2 + 8H_2O$.

Very deliquescent; sol. in H₂O without de-

XV.

 $\mathbf{R}_{\mathbf{c}}$

 \mathbf{R}

 $\mathbf{R}_{\mathbf{t}}$

Sci

Scl

Sci

Sil

Sit

Sta

Aluminum potassium iodide, AlI₈, KI.

Sol. in H2O with evolution of much heat. (Weber, Pogg. 101. 469.)

Aluminum iodide ammonia, AlI₂, 3NH₃.

Decomp. by H₂O. (Weber, Pogg. 103. 263.)

Aluminum iodide mercuric oxviodide, 2AlIs. HgO, $3HgI_2+15H_2O$.

(Duboin, C. R. 1907, 145. 714.)

Aluminum iron, FeAl₃.

Readily sol. in strong HNO₃. (Brunck, B. 1901, **34.** 2734.)

Aluminum manganese, Mn₂Al₇.

Sol. in strong HCl. (Brunck, B. 1901, 34. 2735.)

Aluminum molybdenum, Al₄Mo.

Easily sol. in hot HNO; or HCl. (Wöhler, A. 1860, **115.** 103.)

Al₂Mo. (Guillet, C. R. 1901, 133. 293.)

AlMo. (Guillet.) AlMo4. Not attacked by dil. HCl+Aq. (Guillet.)

AlMo20. Not attacked by HCl+Aq. (Guillet.)

Aluminum nickel, Al₃Ni.

Sol. in strong acids. (Brunck, B. 1901, 34. 2734.)

Aluminum nitride, Al₂N₂.

Slowly attacked by hot or cold H₂O. Decomp. by acids and aqueous solutions of the alkalies, especially when they are concentrated. (Mallet, A. 186. 155.)

Easily decomp. H₂O when finely powdered. (Rossil, C. R. 1895, **121**. 942.)

Decomp. by moist air and by boiling H₂O

and by alkalis+Aq. (Franck, Ch. Z. 1897, **21**. 263.

Aluminum oxide, Al₂O₃.

Crystalline. Min. Corun ruby, emery. Insol. in acids. Min. Corundum, sapphire,

Amorphous. Ignited Al2O3 is insol. in acids except that it dissolves slowly when heated with a mixture of 1 pt. H₂SO₄ and 1 pt. H₂O. (Berzelius.) Slowly sol. in boiling

HCl+Aq. (Rose, Pogg. 52. 595.) Sol. in 22 pts. of a mixture of 8 pts. H₂SO₄ and 1 pt. H₂O. (Mitscherlich.) The lower the temperature at which Al₂O₃ has been heated, the more sol. is it in acids and alkalies. Solubility in (calcium sucrate+sugar)+

Aq. 1 l. solution containing 418.6 g. sugar and 34.3 g. CaO dissolves 1.35 g. Al₂O₅; 1 l. solution containing 296.5 g. sugar and 24.2 g. H₂SO₄ and aqu CaO dissolves 0.32 g. Al₂O₃; I l. solution conmolten alkali. taining 174.4 g. sugar and 14.1 g. CaO dis-1904, 337. 358.)

(Bodenbender, J. B. solves 0.19 g. Al₂O₃. **1865.** 600.)

Insol. in acetone. (Naumann, B. 1904, 37.

See also Aluminum hydroxide.

Aluminum peroxide, Al_2O_3 , $Al_2O_4+10H_2O$.

Ppt.; sol. in acids with decomp. (Terni, C. A. **1912**. 3068.)

Aluminum oxybromide.

Basic aluminum bromides containing three equivalents or less of Al₂O₃ to one of AlBr₃ are sol. in H2O. Those containing more than three equivalents are insol. (Ordway, Am. J. Sci. (2) 26. 203.)

Aluminum oxychloride.

Sol. in dil. acids or alkalies. Decomp. by H₂O. (Hautefeuille and Perrey, C. R. 100. 1220.)

Basic aluminum chlorides containing two equivalents or less of Al₂O₃ to one of AlCl₂ are sol. in H2O. Those containing more than

two equivalents are insol. (Ordway.) (Tommasi, Bull.

 A_1O_3 , $3AlCl_3+3H_2O$. (Tommasi, Soc. (2) 37. 443.) Al_2O_3 , $8AlCl_3+3H_2O$. (Tommasi.) $3Al_2O_3$, $AlCl_3+15H_2O$. (Tommasi.)

Aluminum phosphide, Al₃P.

Unstable. (Franck, Ch. Z. 1898, 22. 240.) Al₂P₂. Decomp. by H₂O. (Fonzes-Diacon,

C. R. 1900, 130. 1315.) Unstable. (Franck, Ch. Z. 1898, 22. 240.) Al₃P₇. Decomp. by H_2O and acids.

(Franck.) Decomp. by H₂O and acids. Al₃P₇.

(Franck, Ch. Z. 1898, 22. 288.) Al₅P₃. Unstable. (Franck, Ch. Z. 1898, **22.** 240.)

Aluminum platinum, Pt₃Al₁₀.

The Al is dissolved out by HCl. (Brunck, B. 1901, **34.** 2735.)

Aluminum selenide, Al₂Se₃.

Decomp. by H₂O. (Fonzes-Diacon, C. R. 1900, **130**. 1315.)

Aluminum silicide, Al₂Si₄.

More easily sol. in acids than Al. (Winkler, J. pr. **91.** 193.)

Aluminum chromium silicide, Al₂Cr₄Si₆.

Insol. in hot conc. HCl, HNO₃, H₂SO₄ and aqua regia. Sol. in cold HF or in HF+HNO₈. Sol. in molten alkali. Insol. in NaOH+Aq, KOCl+Aq or fused KClO₃ or KHSO₄. (Manchot and Kieser, A. 1904, 337, 356.)

Al₂Cr₄Si₃. Insol. in hot conc. HCl, HNO₃, H₂SO₄ and aqua regia. Sol. in HF and in molten alkali. (Manchot and Kieser, A.

Aluminum tungsten silicide.

Insol. in most acids and aqua regia. Easily sol. in HF, HNO, and in molten alkali. Not attacked by dil. NaOH+Aq. (Manchot and Kieser, A. 1904, 337. 360.)

Aluminum vanadium silicide, Al₂V₈Si₁₃.

Sol. in HF. Not attacked by hot conc. HCl, HNO₃, H₂SO₄ or aqua regia. Decomp. by fusing with NaOH. Stable toward fused KClO₈. (Manchot, A. 1907, 357, 134.)

Aluminum sulphide, AlS.

Decomp. by H₂O. Sol. in acids and alkalis. (Regelsberger, Z. Elektrochem, 1898, 4, 548.) Al_2S_3 . Decomp. in moist air and by H_2O . (Wöhler.) Insol. in acetone. (Naumann, B. 1904, 37, 4328.)

Aluminum chromium sulphide, Al₂S₈,CrS.

Sl. attacked by HCl+Aq. Gradually decomp. by HNO₃. (Houdard, C. R. 1907, **144.** 1115.)

Aluminum magnesium sulphide, Al₂S₃, MgS. Decomp. by H₂O, alcohol and acids. (Houdard, C. R. 1907, 144. 1116.)

Aluminum potassium sulphide.

Violently decomposed by H₂O. (St. Claire Deville, J. pr. 71. 293.) Does not exist. (Gratama, R. t. c. 3. 4.)

Aluminum silver sulphide, 5Al₂S₃, 4Ag₂S. (Cambi, Real. Ac. Linc. (5) 21, II. 838.)

Aluminum telluride.

Decomp. by H₂O. (Wöhler, Pogg. 11. 160.)

Aluminum titanide, Al₄Ti.

Not attacked by H2O or by cold HNO3. Sl. sol. in warm HNO₃. Sol. in cold conc. H₂SO₄ or HCl. Sol. in warm KOH+Aq.

(Levy, A. ch. 1902, (6) 25. 449.)
Sol. in HCl and in aqua regia. (Guillet.)
Al₃Ti. Sol. in hot dil. H₂SO₄ and in hot KOH+aq. Sol. in hot conc. acids. (Manchot, A. 1907, 357. 142.)

AlaTi₂. Aluminothermic product is sol. in

HCl and aqua regia. (Guillet.)

Aluminosulphuric acid, Al₂(SO₄H)₆+ 7 H₂O.

Sol. in H₂O with decomp. into Al₂(SO₄)₃ and H₂SO₄. (Silberberger, M. 1904, 25. 222.)

 $Diamide, N_2H_4$. See Hydrazine.

Amidochromic acid.

Amidochromates.

Do not exist. Those described by Darm- Neutral.

städter and Löwenthal are impure bichromates. (Wyrouboff, Bull. Soc. 1894, (3) 11. 845-53; C. C. 1894, II. 610.)

Ammonium amidochromate, (NH₄)NH₂CrO₃. Very sol. in H₂O. (Löwenthal, Z. anorg. 1894, **6**. 363.)

Is ammonium dichromate. (Wyrouboff, Bull. Soc. (3) 11. 845.)

Lithium amidochromate, LiNH₂CrO₃.

Very sol. in H₂O and acids. (Löwenthal. Z. anorg. 1894, 6. 364.)

Potassium amidochromate, KCrO₈NH₂.

Sol. only in H₂O. Sat. solution in H₂O contains 13 % of the salt. (Heintze, J. pr. (2) **4**. 214.)

Amidophosphoric acid, $HPO_3(NH_2) =$ $PO(NH_2)$ $(OH)_2$.

Sol. in H₂O, but decomp. on standing or by heat. (Stokes, Am. Ch. J. 15. 198.)

Aluminum amidophosphate.

Ppt. Sol. in NH₄OH+Aq. (Stokes.)

Ammonium amidophosphate, NH₄HPO₈(NH₉).

Very sol. in H₂O. (Stokes.) .

Barium amidophosphate, $BaPO_3(NH_2) + H_2O$.

Very sl. sol. in H_2O . (Stokes.) $BaH_2(PO_3NH_2)_2 + 2\frac{1}{4}H_2O$. Quite difficultly sol. in H₂O. (Stokes.)

Calcium amidophosphate, CaPO₂(NH₂).

Much less sol. in H₂O than Ba salt. (Stokes.)

CaH₂(PO₃NH₂)₂. Much less sol. in H₂O than the Ba salt. (Stokes.)

Chromic amidophosphate.

Ppt. Sol. in warm NH₄OH+Aq. (Stokes.)

Cobalt amidophosphate.

Neutral. Ppt. Acid. Sl. sol. in H₂O; sol. in NH₄OH+Aq.

Cupric amidophosphate.

Neutral. Sl. sol. in H₂O. Acid. Nearly insol. in H₂O.

Ferrous amidophosphate.

Neutral. Sol. in much H₂O, and in HC₂H₃O₂, or NH₄OH+Aq. Acid. Nearly insol. in H₂O or NH₄Cl+Aq. Sol. in NH₄OH+Aq.

Ferric amidophosphate.

Ppt. Sol. in excess of alkali

XV

amidophosphate and in NH₄OH+Aq. Insol. in HC₂H₃O₂+Aq.

Acid. As the neutral salt.

Hydroxylamine amidophosphate, (NH₈O)HPO₈(NH₂). Sl. sol. in H₂O. (Stokes.)

Lithium amidophosphate, LiHPO₃(NH₂). Sl. sol. in H.O. (Stokes.)

Magnesium amidophosphate, MgPO₃(NH₂) $+7H_2O.$

Very sl. sol, in H_2O ; quite easily sol, in dil. NH_4Cl+Aq . Sol, in $HC_2H_3O_2+Aq$. (Stokes.) $MgH_2(PO_3NH_2)_2+3\frac{1}{4}H_2O$. Insol. in NH₄Cl+Aq. (Stokes.)

Manganese amidophosphate.

Neutral. Ppt. Acid. Sl. sol. in H₂O.

Nickel amidophosphate. Sol. in $HC_2H_3O_2$ or H_2O . (Stokes.) Neutral. NH₄OH+Aq. Acid. Sl. sol. in H₂O.

Potassium amidophosphate, $K_2PO_8(NH_2)$. Very sol. in H2O and not decomp. by boiling. (Stokes.)

KHPO₃(NH₂). Easily sol. in cold H₂O; insol. in alcohol. (Stokes.)

Silver amidophosphate, Ag₂PO₃(NH₂).

Almost insol. in H₂O. Sol. in HNO₃ or $NH_4OH + Aq$. $AgHPO_3(NH_2)$. Sl. sol. in H_2O ; easily sol. in dil. HNO3 or HC2H3O2+Aq, also in

NH4OH+Aq.

Sodium amidophosphate, Na₂PO₈(NH₂).

Not deliquescent; very sol. in H₂O; pptd. from aqueous solution by alcohol. (Stokes.) NaHPO₄(NH₂)+½(?)H₂O. Nearly insol. in cold, and decomp. by hot H₂O. Insol. in alcohol.

Zinc amidophosphate.

Neutral. Perceptibly sol. in H₂O. Acid. Sl. sol. in H₂O; sol. in NH₄OH or $HC_2H_3O_2+Aq$.

Diamidophosphoric acid, PO(NH₂)₂OH. Sol. in cold H2O; almost insol. in alcohol; stable in the air but decomp, when heated and by boiling in aq. solution. (Stokes, Am. Ch. J. 1894, 16. 130.)

Barium diamidophosphate, [PO(NH₂)₂O]₂Ba. Very sol. in H2O; insol. in alcohol; aq. solution decomp. slowly. (Stokes, Am. Ch. J. 1894, **16.** 134.)

Magnesium diamidophosphate, [PO(NH₂)₂ Ol2Mg.

Sol. in H₂O: insol. in alcohol. (Stokes.)

Potassium diamidophosphate, PO(NH₂)₂OK. Sol. in H₂O; not deliquescent; insol. in alcohol. (Stokes.)

Silver diamidophosphate, PO(NH₂)₂OAg. Very stable; insol. in H₂O. Very sol. in NH₄OH+Aq. (Stokes.)

Sodium diamidophosphate, PO(NH₂)₂ONa. Sol. in H₂O; not deliquescent; insol, in alcohol. (Stokes.)

Diamidotrihydroxylphosphoric acid.

Silver diamidotrihydroxylphosphate, (AgO)₃P(NHAg)₂. (Stokes, Am. Ch. J. 1894, 16. 147.) Insol, in cold

 $(AgO)_3P(NH_2)_2$. Decomp. by cold H_2O . (Stokes.) $+2H_2O.$ Decomp. by boiling H₂O.

Amidoimidophosphoric acid.

(Stokes.)

 $\begin{array}{lll} \textbf{Amido} \textit{heximido} \textit{hepta} \textbf{phosphoric} & \textbf{acid,} & \textbf{OH.} \\ \textbf{PO.} (\textbf{NH}_2) [\textbf{NH.PO(OH)}_1 \textbf{s.NH.PO(OH)}_2 \end{array}$ $= P_7 N_7 O_{16} H_{16}$.

Known only in solution in H₂O. (Stokes, Am. Ch. J. 1898, 20. 758.)

Silver diamidopyrimidophosphate, NH(PO.NH₂.OAg)₂.

Almost insol. in H₂O; sol. in NH₄OH+Aq. (Stokes, Am. Ch. J. 1894, 16. 136.)

Silver amidotetrimido pentaphosphate, P₅N₅O₁₁H₃Ag₉.

Ppt. (Stokes, Am. Ch. J. 1898, 20, 752.)

Silver amidoheximidoheptuphosphate, P7N7O15H9Ag7.

Ppt.; decomp. by acetic acid. (Stokes, Am. Ch. J. 1898, 20. 759.)

Sodium amidodimidotriphosphate, $PO.ONa < \frac{NH.PO(ONa)_2}{NHPO(ONa)NH_2}$.

 $=P_3N_8O_7H_4Na_4+H_2O.$ Unstable; sol. in H_2O ; insol. in alcohol. (Stokes, Am. Ch. J. 1896, 18. 643.)

Sodium amidoheximidoheptaphosphate,

P7N7O15H9Na7.

Sol. in H₂O; pptd. by alcohol. (Stokes, Am. Ch. J. 1898, 20, 758.)

Amidophosphimic acid.

Silver amidophosphimate, P(NH) NH2(OAg)2. Decomp. by heat; decomp. in contact with H₂O. (Stokes, Am. Ch. J. 1894, 16. 139.) (AgO)₂P(NAg)(NHAg).(?) Sl. sol. NH40H+Aq. (Stokes, Am. Ch. J. 1894, 16. 149.)

Amidosulphonic acid, HOSO₂NH₂.

Easily sol. in H₂O, less easily in alcohol. (Berglund, B. 9. 252 and 1896.)

Very stable; less easily sol. in H₂O than its

K salt. (Raschig, A. 241. 177.)

Stable in air. Non-deliquescent when cold.

Sol. in 5 pts. H₂O at 0° and in 2½ pts. H₂O at 70°. Solution in H₂O can be boiled several minutes without decomp. Solubility is decreased by addition of H₂SO₄, so that if 1/5-1/4 pt. H₂SO₄ is added to H₂O, 100 pts. of the liquid dissolve only 3 pts. HOSO₂NH₂ in the cold. Pptd. from solution by HNO2 or glacial acetic acid, but not by HCl. Solubility is decreased by presence of NaHSO4. (Divers and Haga, Chem. Soc. 1896, 69. 1641.)

Amidosulphonates.

Easily sol. in H2O; sl. sol. in alcohol.

Aluminum amidosulphonate.

Very sol. in H₂O. (Berglund, Bull. Soc. (2) 29. 422.)

Ammonium amidosulphonate, (NH4)NH2SO3. Deliquescent. Sol. in H2O; insol. in alcohol.

Ammonium silver amidosulphonate, NH₄SO₃(NH₂), AgSO₃(NH₂). (Ephraim & Gurewitsch, B. 1910, 43. 148.)

Barium amidosulphonate, Ba(NH₂SO₃)₂. Sol. in 3 pts. H₂O. (Berglund, l.c.)

Cadmium amidosulphonate, Cd(NH₂SO₃)₂+ 5H₂O.

Very sol. in H₂O. (B.)

Calcium amidosulphonate, Ca(NH₂SO₃)₂+ 4H₂O.

Very sol. in H₂O. (B.)

Cobalt amidosulphonate, Co(NH₂SO₃)₂+ 3H₂O. Sol. in H₂O. (B.)

Copper amidosulphonate, Cu(NH2SO3)2+ 2H₂O.

Sol. in H_2O . (B.)

Gold (auric) potassium amidosulphonate, KaAu2(NSOa)a.

Very sl. sol. in cold, more easily sol. in hot |

H₂O. Sol. in dil. HCl+Aq. (Hofmann, B. 1912, 45, 1735.)

Lead amidosulphonate, Pb(NH₂SO₃)₂+H₂O. The most sol. of all amidosulphonates. (B.)

Lithium amidosulphonate. LiNH2SO3. Deliquescent. (B.)

Magnesium amidosulphonate. Very sol, in H₂O.

Manganese amidosulphonate, Mn(NH2SO3)2 +3H₂O.

Very sol. in H_2O . (B.)

Mercuric amidosulphonate, basic, Hg(HgOSO₃NH₂)₂.

Insol in 3.5 % HNO₃+Aq. Very sol in 3 % HCl+Aq. (Hofmann, B. 1912, **45**. 1733. $+2H_2O$. Insol in hot H_2O . Sol in KOH+ Aq. (Divers and Haga, Chem. Soc. 1896, 69. 1649.)

Mercuric potassium amidosulphonate, KHgNSO₃.

Very sl. sol. in cold H₂O and cold dil. KOH +Aq. Sol. in 3 % HCl+Aq. (Hofmann, B. 1912, **45**. 1732.)

Mercuric sodium amidosulphonate, NaHgNSO₃.

Nearly completely sol. in hot H₂O. (Hoffmann, B. 1912, **45.** 1734.)

Nickel amidosulphonate, Ni(NH2SO3)2+ 3H₂O. Sol. in H₂O. (B.)

Potassium amidosulphonate, KNH2SO3. Sol. in H₂O. (Berglund.)

Potassium silver amidosulphonate. NHAgSO₃K+H₂O.

Decomp. by H₂O; sol. in NH₄OH+Aq. (Hoffmann, B. 1912, 45. 1734.)

Silver amidosulphonate, AgNH₂SO₃. Sol. in 15 pts. H₂O at 19° (B.)

Sodium amidosulphonate, NaNH2SO3. Sol. in H₂O.

Strontium amidosulphonate, Sr(NH₂SO₂)₂+ 4H₂O. Sol. in H₂O.

Thallium amidosulphonate, TlNH₂SO₃. Sol. in H₂O.

Uranyl amidosulphonate. Sol. in H₂O.

Zinc amidosulphonate, Zn(NH₂SO₃)₂+4H₂(Sol. in H₂O.

X

 \mathbf{R}

St

St

 ${f T}$

Ţ

NA A AALL

Z

Z

 \mathbf{z}

ZZZZZZ

ZZ

Amidosulphurous acid.

Ammonium amidosulphite, NH2.SO2.NH4.

Very deliquescent. Decomp. in the air with loss of NH_3 . Sol. in H_2O with decomp. Sol. in anhydrous alcohol. Sl. sol. in dry. ether. (Divers, Chem. Soc. 1900, 77. 330.)

Ammonia, NH₃.

Very sol. in H₂O, with evolution of much heat.

1 vol. H_2O absorbs 670 vols. (½ pt. by weight) NH₃ at $+10^\circ$ and 29.8 in. pressure; sp. gr. of solution =0.875. (Davy.)

At low temperatures H₂O absorbs more than ½ its weight of NH₃, and sp. gr. of solution =0.850. (Dalton.) 100 pts. H₂O absorb 8.41 pts. NH₃ at 24°; 5.96 pts. at 55°. (Osann.)

1 vol. H₂O absorbs 780 vols. NH₃, 6 vols. H₄O increasing to 10 vols. sat. NH₄OH+Aq; 1 vol. sat. NH₄OH+Aq; 1 vol. sat. NH₄OH+Aq; 2 vol. sat. NH₅OH, Sat. Sat. NH₅OH, Sat.

(Otto.) 100 pts. H2O absorb in NH2 gas 47.7 pts. NH2 by

weight. (Berzelius.)

1 vol. H₂O absorbs 505 vols. NH₃ and vol. is increased to 1.5 vol., and sp. gr. becomes 0.900. (Urc.)

1 vol. H_2O at 0° and 760 mm. absorbs 1177.3

vols. NH₃. (Sims.) 1 vol. H₂O at 0° and 760 mm. absorbs 1146

vols. NH₃. (Roscoe and Dittmar.)
1 vol. H₂O at 0° and 760 mm. absorbs

1049.6 vols. NH₃. (Carius.) 1 vol. H₂O at 0° and 760 mm. absorbs 1270

vols. NH₃. (Berthelot.) 1 vol. H₂O at 0° and 760 mm. absorbs 1050 vols. NH₃. (Bunsen.)

100 cc. H₂O absorb 64.50 NHs. (Raoult.)

Solubility of NH₃ in H₂O at 760 mm. and to: 1 g. H₂O absorbs g. NH₃, according to Roscoe and Dittmar (A. 122. 347) (RD); and according to Sims (A. 118. 345) (S).

t°	g. NHs RD	g. NH ₃	t°	g. NH: RD	g. NH ₈
0 2 4 6 8	0.875 0.833 0.792 0.751 0.713 0.679	0.899 0.853 0.809 0.765 0.724 0.684	36 38 40 42 44 46	0.343 0.324 0.307 0.290 0.275 0.259	0 363 0.350 0.338 0 326 0.315 0.304
12 14	$0.645 \\ 0.612$	0.646 0.611	48 50 52	$0.244 \\ 0.229 \\ 0.214$	0.294 0.284 0.274
16 18 20 22	0.582 0.554 0.526 0.499	0.578 0.546 0.518 0.490	54 56 58	0.200 0.186	0.265 0.256 0.247
24 26	0.474 0.449	0.467 0.446 0.426	60 70 80		0.238 0.194 0.154
28 30 32 34	0.426 0.403 0.382 0.362	0.408, 0.393 0.378	90 98 100		0.114 0.082 0.074

Solubility of NH₃ by vol. in H₂O at 760 mm. and t°: 1 vol. H₂O at 760 mm. and t° dissolves V vols. NH₃ gas, vols. reduced to 0° and 760 mm.

t°	v	t°	! v
0	1049.60	13	759.55
1	1020.78	14	743.11
2	993.26	15	727.22
3	966.98	16	711.82
4	941.88	17	696.85
5	917.90	18	682.26
6	894.99	19	667.99
7	873.09	20	653.99
8	852.14	21	640.19
9	831.98	22	626.54
10	812.76	23	612.98
11	794.32	24	599.46
12	776.60	25	585.94

(Carius, A. 99. 144.)

Solubility of NH₃ in H₂O at P mm. pressure and 0°: 1 pt. H₂O absorbs pts. NH₃ at P mm. pressure and 0°.

P	Pts. NH ₃	, P	Pts. NH ₃			
10 20 30 40 50 75 100 125 150 175 200 250 300 350 400 450 500 650 700 750 800 850	0.044 0.084 0.120 0.149 0.175 0.228 0.275 0.315 0.351 0.382 0.411 0.465 0.515 0.607 0.646 0.690 0.731 0.768 0.872 0.906 0.937	900 950 1000 1050 1150 1250 1300 1350 1400 1450 1500 1650 1700 1750 1800 1950 2000	0.968 1.101 1.037 1.075 1.117 1.161 1.208 1.258 1.310 1.361 1.415 1.469 1.526 1.584 1.645 1.707 1.770 1.835 1.906 1.976 2.046 2.120 2.195			
(Roscoe and Dittmar, A. 112. 349.)						

In proportion as the temperature is higher, so much the more nearly does the solubility of NH3 in H2O conform to the law of Henry and Dalton, but only obeys it completely when the temperature is 100°, as is seen in the following table.

Solubility of NH₃ in H₂O at various pressure and temperatures: P=partial pressure, i. c. total pressure minus the tension of aqueous vapour at the given temperature; G=grams NH₃ dissolved in 1 g. H₂O at the given pressure; G at 760=grams NH₃ that would be contained in 1 g. H₂O if the solubility was proportional to the pressure.

		1		00	-	.00		
	G at P	G at 760	G at P	G at 760	G at P	G at 760	G at P	G at 760
20	0.082	3.113						
30	0.117	2.960				l		1
40	0.148	2.820						
60	0.169	2.522	0.119	1.513				
80	0.240	2.280	0.141	1.337	0.052	0.497	·	
100	0.280	2.127	0.158	1.200	0.064	0.490		
120	0.316	2.000	0.173	1.095	0.076	0.483		
140	0.346	1.880	0.187	1.017	0.088	0.476		
160	0.375	1.780	0.202	0.962 0.918	0.099	0.470		
180 200	0.398	1.684	0.207	0.918	0.109	0.462	• • • • •	
250 250	0.421	1.598	$0.232 \\ 0.266$	0.881	0.120	0.454	• • • • •	
300	0.472	1.434	0.200	0.810	0.145	0.440 0.426		• • • • •
350	0.519 0.563	1.315 1.223	$0.296 \\ 0.325$	0.750	$0.168 \\ 0.191$	0.420		• • • • •
400	0.606	1.152	0.353	0.705 0.670	$0.191 \\ 0.211$	0.402		• • • • •
450	0.650	1.100	0.378	0.638	$0.211 \\ 0.232$	0.399	••••	• • • • •
500	0.692	1.052	0.403	0.612	$0.252 \\ 0.251$	0.382	• • • • •	
550	0.032	1.012	0.425	0.512	0.269	0.372		
600	0.770	0.975	0.447	0.566	0.287	0.363		
650	0.809	0.946	0.470	0.550	0.304	0.355		
700	0.850	0.923	0.492	0.534	0.320	0.347	0.068	0.074
750	0.891	0.903	0.514	0.534 0.521	0.335	0.339	0.073	0.074
7.60	0.899	0.899	0.518	0.518	0.338	0.338	0.074	0.074
800	0.937	0.888	0.535	0.504	0.349	0.332	0.078	0.074
850	0.980	0.876	0.556	0.497	0.363	0.325	0.083	0.074
900	0.980 1.029	0.869	0.574	0.485	0.378	0.319	0.088	0.074
950	1.077	0.862	0.594	0.475	0.391	0.313	0.092	0.073
1000	1.126	0.855	0.613	0.466	0.404	0.307	0.096	0.073
1050	1.177	0.852	0.632	0.457	0.414	0.300	0.101	0.073
1100	1.230	0.850	0.651	0.450	0.425	0.294	0.106	0.073
1150	1.283	0.848	0.669	0.442	0.434	0.287	0.110	0.073
$\frac{1200}{1250}$	1.336	0.846	0.685	0.433	0.445	0.282	0.115	0.073
1300	1.338	0.844	0.704	0.428	0.454	0.276	0.120	0.073 0.073
1350	1.442	0.843	0.722	0.422	0.463	0.271 0.266	0.125	0.073
1400	1.496	0.842	0.741	0.417	0.472	0.260	0.130 0.135	0.073
1450	1.549 1.603	0.841	0.761 0.780	0.413 0.409	0.479 0.486	0.255	0.150	0.073
1500	1.656	0.840	0.780	0.409	0.480 0.493	0.250		
1600	1.758	0.835	0.801	0.400	0.493	0.242		
1700	1.758	0.000	0.881	0.394	0.530	0.237	1	1
1800	1.966	0.832 0.830	0.919	0.388	0.547	0.231		1
1900	2.070	0.828	0.955	0.382	0.565	0.226		1
2000	2.010	0.020	0.992	0.302	0.579	0.220		1
2100					0.594	0.215		1

(Sims, A. 118. 346.)

RRS S

S

S

Solubility of NH₃ in H₂O at temps. below Sp. gr. of NH₄OH+Aq, according to Ure in O°. One gram H₂O dissolves

grams NH ₃	Temp.
0.947	3.9°
1.115	—10°
1.768	—20°
2.781	30°
2.946	40°

(Mallet, Am. Ch. J. 1897, 19. 807.

The solubility of NH₈ in H₂O does not follow Dalton's law at ord. temp., but does at temp. near 100°. (Konowaloff, J. Russ. Phys. Chem. Soc. 1894, 26. 48; Chem. Soc. 1896, 70 (2). 351.

Sp. gr. of NH₄OH+Aq.

%NH:	Sp. gr.	%NH3	Sp. gr.
32.3*	0.8750	14.53	0.9435
29.25	0.8857	13.46	0.9476
26	0.9000	12.40	0.9513
25.37*	0.9054	11.56	0.9545
22.07	0.9166	10.82	0.9573
19.54	0.9255	10.17	0.9597
17.52	0.9326	9.6	0.9616
15.88	0.9385	9.5*	0.9632

(H. Davy, Elements, 1. 241.)

*By direct experiment. The other numbers were obtained by calculation, making no allowance for compensation.

Sp. gr. of NH₄OH+Aq at 16°, according to Otto in his Lehrbuch.

O 000 III IIID ZOIII DUOII.						
% NH3	Sp. gr.	% NH3	Sp. gr.			
% NH ₃ 12.000 11.875 11.750 11.625 11.500 11.375 11.250 11.125 11.000 10.950 10.875 10.750 10.625	Sp. gr. 0.9517 0.9521 0.9526 0.9531 0.9536 0.9545 0.9555 0.9555 0.9556 0.9559 0.9564	% NH ₃ 8.500 8.375 8.250 8.125 8.000 7.875 7.750 7.625 7.500 7.375 7.250 7.125 7.000	Sp. gr. 0.9650 0.9654 0.9659 0.9664 0.9669 0.9673 0.9683 0.9688 0.9692 0.9697 0.9702			
10.500	0.9574	6.875	0.9711			
10.375	0.9578	6.750	0.9716			
10.250	0.9583	6.625	0.9721			
10.125	0.9588	6.500	0.9726			
10.000	0.9593	6.375	0.9730			
9.875	0.9597	6.250	0.9735			
9.750 9.625 9.500 9.375	0.9602	6.125	0.9740			
	0.9607	6.000	0.9745			
	0.9612	5.875	0.9749			
	0.9616	5.750	0.9754			
9.250	0.9621	5.625	0.9759			
9.125	0.9626	5.500	0.9764			
9.000	0.9631	5.375	0.9768			
8.875	0.9636	5.250	0.9773			
8.750	0.9641	5.125	0.9778			
8.625	0.9645	5.000	0.9783			

% NH ₈	Sp. gr.	%NH3	Sp. gr.
27.940 27.633 27.038 26.751 26.500 25.175 23.850 22.525 21.200 19.875 18.550	0.8914 0.8937 0.8967 0.8983 0.9000 0.9045 0.9090 0.9133 0.9177 0.9227 0.9275	15.900 14.575 13.250 11.925 10.600 9.275 7.950 6.625 5.300 3.975 2.650	0.9363 0.9410 0.9455 0.9510 0.9564 0.9614 0.9662 0.9716 0.9768 0.9828 0.9887
17.225	0.9320	1.325	0.9945

Sp. gr., b.-pt., and vols. gas in NH₄OH+Aq.

% NH3	Sp. gr.	Bpt.	Vols. gas in 1 vol. liquid
35.3 32.6 29.9 27.3 24.7 22.2 19.8 17.4 15.1 10.5 8.3 6.2 4.1 2.0	0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.95 0.96 0.97 0.98	-3.3° +3.3° 10° 16.6° 23.3° 30° 36.6° 43.3° 50° 63.3° -70° 78.3° 86.1° 91.1°	494 456 419 382 346 311 277 244 211 180 147 116 87 57

(Dalton, in New System, 2. 422.)

Sp. gr. of NH₄OH+Aq sat. at t°.

to	Sp. gr.	t°	Sp. gr.	t°	Sp. gr.
0 1 2 3 4 5 6 7 8	0.8535 0.8561 0.8587 0.8611 0.8635 0.8658 0.8681 0.8703 0.8725	9 10 11 12 13 14 15 16 17	0.8746 0.8766 0.8785 0.8804 0.8823 0.8841 0.8858 0.8874 0.8889	18 19 20 21 22 23 24 25	0.8903 0.8916 0.8928 0.8940 0.8952 0.8963 0.8974 0.8984

(Carius, A. 99. 141.)

Sp. gr. of NH₄OH+Aq at 14°, according to Carius (A. 99. 148).

% NHs	Sp. gr.	% NH ₃	Sp. gr.
36.0	0.8844	35.2	0.8860
35.8	0.8848	35.0	0.8864
35.6	0.8852	34.8	0.8868
35.4	0.8856	34.6	0.8872

Sp.	gr.	of	NH ₄ OH+Aq	at	14°,	etcCont.
-----	-----	----	-----------------------	----	------	----------

Sp. gr. of	NH ₄ OH+A	1q at 14°	, etc.— $Cont$
% NH: .	Sp. gr.	% NH:	Sp. gr.
34.20 34.20 33.86 33.86 33.20 33.33	0.8877 0.8881 0.8885 0.8889 0.8894 0.8898 0.8903 0.8903 0.8911 0.8916 0.8925 0.8929 0.8934 0.8938 0.8944 0.8948 0.8957 0.8962 0.8967 0.8971 0.8967 0.8971 0.9066 0.9011 0.9016 0.9011 0.9021 0.9021 0.9026 0.9031 0.9036 0.9041 0.9047 0.9057 0.9063 0.9041 0.9047 0.9057 0.9063 0.9078 0.9089 0.90989 0.9089 0.90994 0.9111 0.9166 0.9111 0.9116 0.9122 0.9133 0.9139 0.9136 0.9156 0.9150 0.9156 0.9156 0.9156 0.9156 0.9156	22.2 21.8 21.6 21.4 21.0 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20	0.9185 0.9191 0.9197 0.9203 0.9209 0.9215 0.9221 0.9227 0.9233 0.9245 0.9251 0.9251 0.9251 0.9277 0.9283 0.9289 0.9271 0.9277 0.9283 0.9302 0.9302 0.9302 0.9302 0.9303 0.9321 0.9327 0.9333 0.9340 0.9353 0.9360 0.9441 0.94420 0.94434 0.94491 0.94491 0.94984 0.94984 0.94994 0.9560 0.9577 0.9574 0.9574 0.9574 0.9574 0.9574 0.9575 0.9574 0.9578

Sp. gr. of NH₄OH+Aq at 14°, etc.—Cont.

% NHs	Sp. gr.	% NH:	Sp. gr.
10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0	0.9593 0.9601 0.9608 0.9616 0.9623 0.9631 0.9639 0.9647 0.9654 0.9662 0.9670	5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0	0.9790 0.9799 0.9807 0.9815 0.9823 0.9831 0.9839 0.9847 0.9855 0.9863 0.9873
7.6 7.4 7.2 7.8 6.4 6.4 6.2 6.0	0.9677 0.9685 0.9693 0.9701 0.9709 0.9717 0.9725 0.9733 0.9741 0.9749	2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.0	0.9882 0.9890 0.9899 0.9907 0.9915 0.9924 0.9932 0.9941 0.9950 0.9959
5.8 5.6 5.4 5.2	0.9757 0.9765 0.9773 0.9781	0.8 0.6 0.4 0.2	0.9967 0.9975 0.9983 0.9991

Hager also gives a table in his Commentar zur Pharmacopoea, which is practically identical with those here given.

Strength of $NH_4OH + Aq$ of certain sp. gr. at 12°.

	1 kg. solu-		1 litre	consists of
Sp. gr.	tion con- tains g. NH ₃	tion con- tains g. NH ₃	H ₂ O in ec.	liquid NH:
0.870	384.4	334.5	535.5	464.5
0.880	347.2	305.5	574.5	425.5
0.890	311.6	277.3	612.7	387.3
0.900	277.3	249.5	650.5	349.5
0.910	244.9	222.8	687.2	312.8
0.920	213.4	196.3	723.7	276.3
0.930	182.9	170.1	759.9	240.1
0.940	152.9	143.7	796.3	203.7
0.950	124.2	118.0	832.0	168.0
0 960	97.0	93.1	866.9	133.1
0.970	70.2	68.0	902.0	98.0
0.980	45.3	44.3	935.7	64.3
0.990	21.0	20.7	969.3	30.7

(Wachsmuth, Arch. Pharm. (3) 8. 510.)

Sp. gr. of NH₄OH+Aq at 15°. (Most careful experiments.)

Sp. gr.	% NH ₈	Sp. gr.	% NH:
0.990	2.15	0.926	19.50
0.974	6.10	0.916	22.50
0.950	12.54	0.910	24.40

	•	
Sp. gr.	of NH ₄ OH+Aq	at 15°—Continued

Sp. gr.	% NH:	Sp. gr.	% NH ₃
0.900 0.890 0.885	27.70 31.40 33.5	0.882 0.880	34.8 35.5

(Grüneberg, Chem. Ind. 12. 97.)

The following table is calculated from the above by interpolation:—

% NH ₃	Sp. gr.	% NH ₃
1 05	0.935	16.90
2.15	0.930	18.35
3.30	0.925	19.80
4.50	0.920.	21.30
5.75	0 915	22.85
7.05	0.910	24.40
8.40	0.905	26.00
9.80	0.900	27.70
11 20	0.895	29.50
12.60	0.890	31.40
14.00	0.885	33.40
15.45	0.880	35.50
	2.15 3.30 4.50 5.75 7.05 8.40 9.80 11.20 12.60 14.00	2.15 0.930 3.30 0.925 4.50 0.920. 5.75 0.915 7.05 0.910 8.40 0.905 9.80 0.900 11 20 0.895 12.60 0.890 14.00 0.885

(Grüneberg.)

Sp. gr. of NH₄OH+Aq at 14°.

% HNs	Sp. gr.	% NH ₃	Sp. gr.
31	0.8933	15.6	0.9400
23.8	0.9116	11.7	0.9536
20.4	0.9246	5.1	0.9780

(Lunge and Smith, B. 17. 777.)

Sp. gr. of NH₄OH+Aq at 15°, according to Lunge and Wiernik (Zeit. f. angew. Ch. 1889, 183).

(Most carefully worked out and calculated.)

Sp. gr.	% NH:	1 l. contains g. NH ₈	Correction for == 1°
1.000	0.00	0.0	0.00018
0.998	0.45	4.5	0.00018
0.996	0.91	9.1	0.00019
0.994	1.37	13.6	0.00019
0.992	1.84	18.2	0.00020
0.990	2.31	22.9	0.00020
0.988	2.80	27.7	0.00021
0.986	3,30	32.5	0.00021
0.984	3.80	37.4	0.00022
0.982	4.30	42.2	0.00022
0.980	4.80	47.0	0.00023
0.978	5.30	51.8	0.00023
0.976	5.80	56.6	0.00024
0.974	6.30	61.4	0.00024
0.972	6.80	66.1	0.00025
0.970	7.31	70.9	0.00025
0.968	7.82	75.7	0.00026

Sp. gr. of NH4OH+Aq at 15°, etc.—Continued

 NH_3 is much less sol. in KOH, or NaOH + Aq than in H_2O .

Solubility of NH₃ in H₂O, and KOH+Aq of various strengths: 100 pts. solvent absorbs g. NH₃ at t°.

t.°	H ₂ O	KOH +Aq 11.25% K₂O	KOH +Aq 25.25% K ₂ O
0	90.00	72.00	49.50
8	72.75	57.00	37.50
16	59.75	46.00	28.50
24	49.50	37.25	21.75

(Raoult, A. ch. (5) 1. 262.)

100 pts. sat. KOH + Aq dissolve only 1 pt. NH_3 .

Solubility in NaOH+Aq is the same as in

KOH + Aq of the same strength.

NH₄Cl+Aq absorbs slightly less NH₂ than the same vol. H_2O . NaNO₈, and NH₄NO₃+Aq absorb almost the same amount NH₃ as the same vol. H_2O . (Raoult, l.c.)

Solubility of NH3 in 100 pts. Ca(NO3)2+Aq.

t°	H ₂ O	Ca(NO ₃) ₂ +Aq 28.38%Ca(NO ₃) ₂	Ca(NO ₃) ₂ +Aq 59.03%Ca(NO ₃) ₂	
0	90.00	96.25	104.50	
8	72.75	78.50	84.75	
16	59.75	65.00	70.50	

(Raoult, l.c.)

Solubility in salt solutions at 25°C.

(Abegg & Riesenfeld, Z. phys. Ch. 1902, **40**. 100.)

Solubility in salts+Aq at 35° C.

Salt	Concentration of the aq. solution	Mols. NH ₃ soluble in 1 liter of solution
KCl NaCl	0.5 normal	0.923 0.966
CH ₃ COOK		0.902
½(COOK) ₂ KOH	"	0.902 0.870
NaOH ⅓K₂CO₃	0.426 normal	$0.896 \\ 0.914$
½Na ₂ CO ₃	"	0.932

(Riesenfeld, Z. phys. Ch. 1903, 45. 462.)

The solubility of NH_3 in $NaNO_3$, NH_4NO_3 and in $AgNO_3$, $2NH_3+Aq$ is nearly the same as in pure H_2O . (Konowaloff, C. C. 1898, II. 659).

Distribution-coefficient of NH₃ between water and CHCl₃=26.3 at 20°; 24.9 at 25°; 23.2 at 30°.

The distribution-coefficient of NH₂ between CHCl₃ and a number of salt solutions has been determined for the purpose of studying the nature of metal-ammonia compounds in aqueous solution. (Dawson, Chem. Soc. 1900, 77. 1242.)

Distribution of NH₃ between H₂O and CHCl₃ at 18°.

0.9280 0.03506 1.921 0.07703 2.064 0.08350 2.274 0.09317 2.590 0.1083 3.700 0.1639 4.333 0.1996	NH ₃ concentration in aqueous solution. mols./litre	NH ₃ concentration in CfICl ₃ solution. mols./litre		
	1.921 2.064 2.274 2.590 3.700	0.07703 0.08350 0.09317 0.1083 0.1639		

(Dawson, Z. phys. Ch. 1909, 69. 120.)

Distribution of NH₃ between hydroxides+Aq and CHCl₃ at 18°.

Aqueous solution	NHs concentration in the aqueous solution. mols./litre	NH ₂ concentration in the CHCl ₃ solution. mols./litre.			
0.2-N. KOH 0.5-N. KOH 0.2-N. NaOH 0.5-N. NaOH 0.5-N. ½Ba(OH) ₂ 0.5-N. ½Ba(OH) ₂	1.949 1.978 2.016 1.944 2.076 3.397	0.0841 0.0951 0.0869 0.0907 0.08905 0.1560			

(Dawson, l.c.)

s

S

S

S

S

Ц

Distribution of NH₃ between Cu(OH)₂+Aq | Solubility of NH₃ in ethyl alcohol (absolute) and CHCl₃ at 18°.

Conc. of Cu(OH) ₂ equivalents/litre	NH: concentra- tion in aqueous solution. mols./litre	NH ₃ concentra- tion in CHCl ₃ solution. mols./litre			
0.041 0.0705 0.081	2.014 2.653 3.011	0.07968 0.1087 0.1247			

Dawson, l.c.)

Sol, in alcohol and ether.

Sol. in 3 pts. alcohol of 38°. (Boullay.) vol. alcohol of 0.829 sp. gr. absorbs about 50 vols. NH₃. (Davy.)

Much less sol. in ethyl, propyl, or amyl alcohol than in H2O. (Pagliano and Emo, Gazz. ch. it. 13. 278.)

t°	% NH:	Pts. NH ₃ per 100 pts. alcohol				
$0 \\ 6 \\ 11.7 \\ 14.7 \\ 17 \\ 22 \\ 28.4$	19.7 17.1 14.1 13.2 12.6 10.9 9.2	24.5 20.6 16.4 15.2 14.7 12.2 10.1				

(de Bruyn, R. t. c. 11. 112.)

1 vol. abs. alcohol at 20° and 760 mm. pressure absorbs 340 vols. NH3 gas. (Müller, W. Ann. 1891, **43.** 567.)

1 l. methyl alcohol sat. with NH3 contains 218 g. NH₃ at 0°; sp. gr. of solution = 0.770; coefficient of solubility = 425.0. (Delépine).

Solubility of NH3 in alcohol at to: weight NH3 = weight NH3 contained in a litre of solution sat. at 760 mm. and t°; sp. gr. = sp. gr. of solution; C = coefficient of solubility.

Temp.	Degree of Alcohol	100°	800	80°	70°	60°	50°
0°	Weight NH ₃ . Sp. gr C	130.5 0.782 209.5	146.0 0.783 245.0	206.5 0.808 390.0		246.0 0.830 504.5	304.5 0.835 697.7
10°	Weight NH ₃ . Sp. gr C	108.5 0.787 164.3	120.0 0.803 186.0	167.0 0.800 288.0		198.25 0.831 373.0	227.0 0.850 438.6
20°	Weight NH ₃ . Sp. gr C	75.0 0.791 106.6	97.5 0.788 147.8	119.75 0.821 190.5	137.5 0.829 223.0	152.5 0.842 260.8	182.7 0.869 338.2
30°	Weight NH ₃ . Sp. gr C	51.5 0.798 97.0	74.0 0.791 186.7	81.75 0.826 121.6	100.3	129.5 0.846 211.6	152.0 0.883 252.0

(Delépine, J. Pharm. (5) 25. 496.)

Solubility of NH₃ in methyl alcohol (absolute) at t°.

	<u> </u>		
t°	% NH3	Pts. NH ₃ per 100 pts. alcohol	
0 6 11.7 14.7 17 22 28.4	29.3 26.0 23.5 21.8 20.8 18.3 14.8	41.5 35.2 30.7 27.9 26.3 22.4 17.4	

(de Bruyn, l.c.)

Readily sol. in ether.

Sol. in 0.4 vol. petroleum from Amiano. (Saussure.)

1 vol. oil of turpentine absorbs 7.5 vols. NH₃ at 16°.

16°.

1 vol. oil of rosemary absorbs 9.75 vols. NH₃ at 29°.

1 vol. oil of lavender absorbs 47 vols. NH₃ at 20°. (Saussure.)

1 vol. caoutchine absorbs 3 vols. NH₃.

(Himly.)

Valerol absorbs much NH₃. (Gerhardt, A. ch. (3) 7. 278.)

1 vol. ether at 760 mm. pressure absorbs 17.13 vols. NH₃ at 0°; 12.35 vols. at 10° and 10.27 vols. at 15°. (Christoff, Z. phys. Ch. 1912, 79, 459.)

+H₂O. Colorless crystals.

+½H₂O. Large transparent crystals (Rupert, J. Am. Chem. Soc. 1909, **31.** 868.) Large transparent crystals.

Ammonia, with metal salts.

For the ammonia addition-products of metal salts, see under the respective metal salts, except in the case of Co, Cr, Hg, and the 1 vol. oil of lemon absorbs 8.5 vols. NH3 at | Pt metals, for which see cobalt ammonium, chromium ammonium, etc., compounds, for further reference. New data on Co and Cr ammonium compounds and those of the Pt metals, published since the first edition, has not been included in the present edition.

Ammonium amalgam, NH4, xHg.

Decomp. by H₂O, but more easily in presence of naphtha, alcohol, or ether.

Ammonium azoimide, N₄H₄=NH₄N₃.

Easily sol. in H₂O; sl. sol. in absolute alcohol, easily in 80% alcohol. Insol. in ether or benzene. (Curtius, B. 24. 3344.)

Ammonium cobalt azoimide, NH4N3, CoN6.

Rather sol. in H₂O. (Curtius and Rissom, J. pr. 1898, (2) 58, 302.)

Ammonium bromide, NH₄Br.

Easily sol, in H_2O with absorption of much heat.

 1 pt. NH₄Br dissolves in pts. H₂O at t°.

 t°
 Pts. H₂O
 t°
 Pts. H₂O
 t°
 Pts. H₂O

 10
 1.51
 30
 1.23
 100
 0.78

 16
 1.39
 50
 1.06
 ...
 ...

(Eder, W. A. B. 82. (2) 1284.)

NH₄Br+Aq containing 41.09% NH₄Br is sat. at 15°. (Gerlach.)

Sp. gr. of NH₄Br+Ag at 15°.

% NH₄Br	Sp. gr.	% NH ₄ Br	Sp. gr.
5 10 15	1.0326 1.0652 1.0960	20 30 41.09	1.1285 1.1921 1.2920

(Eder.)

Sp. gr. of NH₄Br+Aq at 16°.

~р.	8-1 04 41224	202 229 00 2	
% NH4Br	Sp. gr.	% NH ₄ Br	Sp. gr.
2	1.0119	22	1.1375
$\frac{2}{3}$	1.0181	23	1.1440
. 4	1.0242	24	1.1506
$\begin{array}{c} \cdot 4 \\ 5 \end{array}$	1.0303	25	1.1573
6	1.0364	26	1.1642
7	1.0425	27	1.1713
8 9	1.0486	28	1.1787
	1.0547	29	1.1862
10	1.0609	30	1.1938
11	1.0672	31	1.2018
12	1.0735	32	1.2098
13	1.0798	33	1.2180
14	1.0862	34	1.2260
15	1.0926	35	1.2342
16	1.0988	36 37	1.2425 1.2509
17 18	1.1051 1.1115	38	1.2509
19	1.1113	39	1.2679
20	1.1246	40	1.2765
$\frac{20}{21}$	1.1310	41	1.2850
	1.1010	1	2.2000

(Hager, Comm. 1883.)

25 g. NH_4Br+50 g. H_2O lower the temp. from 15.1° to -1.1°. (Rüdorff.)

Sol. in liquid NH₃ at —50°. (Moissan C. R. 1901, **133**. 713.)

Very sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 826.)

Sl. sol. in alcohol.

1 pt. NH₄Br dissolves in 32.3 pts. alcohol (0.806 sp. gr.) at 15°; 9.5 pts. at 78°. (Eder, *l.c.*)

100 pts. absolute methyl alcohol dissolve 12.5 pts. at 19°; 100 pts. absolute ethyl alcohol dissolve 3.22 pts. at 19°. (de Bruyn, Z. phys. Ch. 10. 783.)

Solubility in mixtures of methyl and ethyl alcohol at 25°.

P = % methyl alcohol in the solvent. G = g. NH_4Br in 10 cc. of the solution. S = sp. gr. of the sat. solution at $25^{\circ}/4^{\circ}$.

P	G	s
0.00 4.37 10.40 41.02 80.69 84.77 91.25 100.00	0.255 0.299 0.321 0.506 0.813 0.847 0.934 0.983	0.8065 0.8083 0.8117 0.8252 0.8501 0.8508 0.8551 0.8605

(Herz, Z. anorg. 1908, 60. 156.)

Solubility in mixtures of methyl and propyl alcohol at 25°.

P = % propyl alcohol in the solvent. G = g. NH_4Br in 10 cc. of the solution. S = Sp. gr. of the sat. solution at 25°/4°.

P	G	s
0 11.11 23.8 65.2 91.8 93.75	0.983 0.851 0.690 0.308 0.128 0.125 0.095	0.8605 0.8524 0.8426 0.8184 0.8097 0.8089 0.8059
		

(Herz, l.c.)

Solubility in mixtures of propyl and ethyl alcohol at 25°.

P=% propyl alcohol in the solvent. G=g, NH₄Br in 10 cc. of the solution. S=Sp. gr. of the sat. solution at 25°/4°.

P	G	s
0 8.1 17.85 56.6 88.6 91.2 95.2	0.255 0.251 0.237 0.163 0.111 0.105 0.104 0.095	0.8065 0.8062 0.8052 0.8048 0.8042 0.8049 0.8059 0.8059

(Herz, l.c.)

Sol. in 809 pts. ether (0.729 sp. gr.). (Eder, l.c.)

Sol. in acetone. (Eidmann, C. C. 1899. II, 1014); (Naumann, B. 1904, 37, 4328.)

Insol. in benzonitrile. (Naumann, B. 1914, 47, 1370.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in ethylacetate. (Naumann, B. 1910, 43. 314.)

Ammonium tribromide, NH4Br3.

Gives off Br in air. Sol. in H₂O. (Roozeboom, B. 14. 2398.)

Decomp. in the air. Very sol. in H₂O. (Chattaway, Chem. Soc. 1915, **107**. 106.)

Ammonium antimony bromide, 3NH₄Br, 2SbBr₈.

Easily sol. in abs. alcohol. (Caven, C. C. 1905. II, 293.)

7NH₄Br, 3SbBr₃. Easily sol. in abs. alcohol. (Caven, C. C. 1905. II, 293.) See also Bromantimonate, ammonium.

Ammonium bismuth bromide, NH₄Br, BiBr₃ +H₂O.

Deliquescent. Decomp. by H₂O. Sol. in alcohol. (Nicklès, C. R. **51**. 1097.)

Ammonium cadmium bromide, NH₄Br, CdBr₂+½H₂O.

Sol. in 0.73 pt. H₂O, 5.3 pts. abs. alcohol, 280 pts. ether (sp. gr. 0.729), and 24 pts. alcohol ether (1:1). (Eder, Dingl. 221. 89.) Sol. in H₂O without decomp. between 1

and 110.1°.
100 pts. of the solution contain at:

1° 14.8° 52.2° 110.1° 53.82 58.01 65.32 75.83 pts. of the salt. (Rimbach, B. 1905, **38.** 1555.)

4NH₄Br, CdBr₂. Sol. in 0.96 pt. H₂O, from which it is pptd. by alcohol or ether. (Eder.) Solubility in H₂O at t°.

Below 160° the salt is decomp. by H₂O; at 160° it is sol. in H₂O without decomp.

t°	100 pts. of the solution contain			C.V.L.		
U-	Pts. Cd	Pts. Br	Pts. NH4	Solid phase		
13.0 44.5 76.4 123.5	14.72 14.94 15.01 14.60 15.50 14.70	51.48 53.85 55.28 59.50	6.85 7.35 7.80 8.45	« « «		

(Rimbach, B. 1905, **38.** 1558.)

Not sol. in HBr+Aq without decomp. (Rimbach.)

Not sol. without decomp. in LiBr+Aq, See CaBr₂+Aq, MgBr₂+Aq, NiBr₂+Aq, or mide.

CoBr₂+Aq, even though very conc. solutions are used. Sol. without decomp. in ZnBr₂+Aq. (Rimbach, B. 1905, **38**. 1571.)

Ammonium chloromolybdenum bromide, 2NH₄Br, Cl₄Mo₃Br₂.

Decomp. by pure H₂O. Can be crystallized from HBr+Aq. Apparently sol. without decomp. in alcohol. (Blomstrand.)

Ammonium cuprous bromide.

 $4NH_4Br$, Cu_2Br_2 . Fairly stable in air. $2NH_4Br$, $Cu_2Br_2+H_2O$. Fairly stable in air. (Wells, Z. anorg. 1895, 10. 159.)

Ammonium cuprous bromide ammonia, NH₄Br, Cu₂Br₂, 3NH₃.

(Fleurent, C. R. 1891, 113. 1047.)

Ammonium cupric bromide, 2NH₄Br, CuBr₂ +2H₂O.

Very sol. in H_2O . (de Koninck, B. 21. 777 R.)

Ammonium iridium bromide.

See Bromiridate, ammonium.

Ammonium iron (ferric) bromide, (NH₄)FeBr₄+2H₂O.

Very deliquescent; sol. in H_2O . (Walden, Z. anorg. 1894, 7. 332.)

Ammonium lead bromide, 12NH₄Br, 7 PbBr₂ +7H₂O.

Decomp. on air, or with cold H₂O. (André, C. R. 96. 1502.)

 $6NH_4Br$, $PbBr_2+H_2O$. Decomp. by cold H_2O . (A.)

7NH₄Br, PbBr₂+1½H₂O. Stable on air; decomp. by cold H₂O. (A.)

None of the above compounds exist. (Wells.)

None of the above compounds exist. (Wells, Sill. Am. J. 146. 25.)

2NH₄Br, PbBr₂. Decomp. by H₂O. Sol. in conc. KOH+Aq and in strong acids. (Fonzes-Diacon, Bull. Soc. 1897, (3) 17.351.) NH₄Br, 3PbBr₂. (Wells.)

Ammonium magnesium bromide, NH₄Br, MgBr₂+6H₂O.

Deliquescent. Sol. in H_2O . (Lerch, J. pr. (2) 28. 338.)

Ammonium mercuric bromide, 2HgBr₂, NH₄Br.

Decomp. by H_2O into its constituent salts. (Rây, Chem. Soc. 1902, 81. 648.)

Ammonium molybdenum bromide, 2NH₄Br, MoBr₃+H₂O.

Easily sol. in H_2O . (Rosenheim, Z. anorg. 1905, 46. 322.)

Ammonium molybdenum bromide chloride.

See Ammonium chloromolybdenum bromide

Ammonium osmium bromide. See Bromosmate, ammonium.

Ammonium osmyl bromide, (NH₄)₂OsO₂Br₄. Sol. in H₂O. (Wintrebert, A. ch. 1903, (7) **28.** 95.)

Ammonium osmyl oxybromide, $(NH_4)_2OsO_3Br_2$.

(Wintrebert, A. ch. 1903 (7) 28. 117.)

Ammonium palladium bromide. See Bromopalladate, ammonium, and Bromopalladite, ammonium.

Ammonium platinum bromide. See Bromoplatinate, ammonium.

Ammonium rhodium bromide. See Bromorhodite, ammonium.

Ammonium selenium bromide. See Bromoselenate, ammonium.

Ammonium tellurium bromide. See Bromotellurate, ammonium.

Ammonium thallic bromide, NH₄Br, TlBr₃+ 2H₂O.

Sol. in H₂O. (Willm.) +4H₂O. Efflorescent. Sol. in H₂O. (Nicklès.) +5H₂O. Sol. in H₂O. (Nicklès.)

Ammonium stannous bromide (ammonium bromostannite), NH₄Br, SnBr₂+H₂O.

Sol. in H₂O. (Benas, C. C. **1884**. 958.) 2NH₄Br, SnBr₂. Sol. in H₂O. (Raymann and Preis, A. 223. 323.)

 $+H_2O$. Sol. in H_2O . (Benas, l.c.) +2H₂O. (Richardson, Am. Ch. J. 14. 96.) NH_4Br , $2SnBr_2(?)$. (Benas.)

Ammonium stannic bromide, 2NH₄Br, SnBr₄. See Bromostannate, ammonium.

Ammonium uranyl bromide, 2NH₄Br, UO₂Br₂ +2H₂O.

Very deliquescent, and sol. in H₂O. (Sendt-

Ammonium zinc bromide, 2NH₄Br, ZnBr₂. Deliquescent, and sol. in H₂O. (Bödeker,

J. B. 1860. 17.) $+H_2O$. Very deliquescent, and sol. in H_2O . (André, A. ch. (6) 3. 104.) $+xH_2O$. (Ephraim, Z. anorg. 1908, 59. 66.) $3NH_4Br$, $ZnBr_2$. Sol. in H_2O . Decomp. only by great dilution. (Jones & Knight, Am.

Ch. J. 1899, **22.** 136.) +H₂O. Not hygroscopic. (Ephraim, Z. anorg. 1908, 59. 66.)

Ammonium bromide arsenic trioxide. See Arsenite bromide, ammonium.

Ammonium bromide mercuric chloride. NH₄Br, 2HgCl₂.

Ppt. (Rây, Chem. Soc. 1902, 81. 649.)

Ammonium bromide mercuric iodide. 2NH₄Br, HgI₂.

Decomp. by H₂O. Sol. in alcohol without decomp. (Grossmann, B. 1903, **36.** 1602.) 3NH₄Br, 2HgI₂. Decomp. by H₂O. Sol. in alcohol without decomp. (Grossmann, B. 1903, **36.** 1602.)

Ammonium lead bromochloride, NH₄Pb₂Br₄Cl.

Decomp. by H₂C. (Fonzes-Diacon, Bull. Soc. 1897, (3) 17. 350.)

NH₄Pb₂Cl₄Br. Decomp. by H₂O. (Fonzes-Diacon, Bull. Soc. 1897, (3) 17. 349.)

Ammonium bromochloroiodide, NH₄ClBrI. Very stable; sol. in H₂O. (Chattaway, Chem. Soc. 1915, **107**. 108.)

Ammonium lead bromoiodide, NH₄PbBrI₂+ 2H₂O and NH₄Pb₂BrI₄. Decomp. by H₂O. Sol. in conc. KOH+Aq and in strong acids. (Fonzes-Diacon, Bull. Soc. 1897, (3) 17. 352.)

Ammonium bromiodobromide, NH4BrIBr. Decomp. in the air. Sol. in ether. (Jackson, Am. Ch. J. 1900, 24. 28.)

Ammonium chloride, NH4Cl.

(Sal-ammoniac.) Not deliquescent. Sol. in H₂O with reduction of temp.

Sol. in 2.24 pts. H_2O . (Wenzel.) NH_4Cl+Aq sat. at 10° has sp. gr. =1.072. (T.) Sol. in 2.72 pts. cold, and 1 pt. boiling H_2O . (M. R.,

Sol. in 2.72 pts. cold, and 1 pt. boiling H₂O. (M. R., and P.)
Sol. in 3 pts. H₂O at 18.75°. (Abl.)
Sol. in 6 pts. cold, and 1 pt. boiling H₂O. (Foureroy.)
100 pts. H₂O at 18.75° dissolve 36.75 pts. NH₄Cl.
NH₄Cl +Aq sat. at its b.-pt. (114.2°) contains 88.9
pts. NH₄Cl in 100 pts. of the solution. (Berglius.)
100 pts. H₂O at 15° dissolve 33-36 pts.; and at 100°,
100 pts. NH₄Cl. (Ure's Dict.)
NH₄Cl +Aq sat. at 15° has sp. gr. =1.075209, and contains at least 31.88 pts. NH₄Cl dissolved in every 100 pts. H₂O. (Michel and Krafft, A. ch. (3) 41. 478.)
NH₄Cl+Aq sat. at 10° contains 23.8% NH₄Cl.
(Eller.)
NH₄Cl +Aq sat. in the cold contains 14.3% NH₄Cl.

NH4Cl+Aq sat. in the cold contains 14.3% NH4Cl. (Foureroy.)
Sol. in 1 pt. H₂O at 113.5°, b.-pt. of sat. solution.

Sol. in 1 pt. 120 at 12.75°, forming a liquid of 1.08 sp. gr. (Karsten, 1840.)
Sol. in 2.727 pts. H₂O at 10°. (Gren's Handbuch.)

100 pts. H₂O at 718 mm. pressure and to dissolve pts. NH₄Cl.

	Pts. NH4Cl						Pt
0	28.40	30	41.72	60	55.04	90	
10	32.84	40	46.16	70	59.48	100	
20	37.28	50	50.60	80	63.92	110	

(Alluard, C. R. 59. 500.)

395.173.95.173.062.952.851

:8 .4 .1

87.1

S

S

S

 \mathbf{T}

		Sol	ıbili	ty in 1	q 00	ts. H ₂ () at t°.	
	t°	Pts. NH4Ci	t°	Pts. NH4Cl	t°	Pts. NH4CI	t°	Pts. NH.CI
	0 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 6 17 18 19 20	29.7 30.0 30.3 30.6 31.4 31.8 32.2 32.6 33.3 34.1 34.5 34.5 35.6 36.4 36.8 37.2	30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	41.482.711.604.444.945.882.711.604.444.945.504.444.945.504.949.594	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 80	55.27 56.27 56.72 56.75 57.72 58.77 59.27 59.72 60.27 61.22 61.23 62.38 63.44 63.9 64.51 65.6	90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	71.3 71.9 72.5 73.7 74.3 74.9 75.5 76.7 77.3 78.0 79.9 80.5 81.8 82.5 83.8
	$\frac{21}{22}$	37.6 38.0	51 52	50.9 51.3	81 82	66.2 66.7	111 112	84.4 85.1
7	23	38.4	53	51.8	83	67.3	113	85.7

54.7 89 70.7 (Mulder, calculated from his own and other observations. Scheik. Verhandel. 1864, 57.)

84

86

87 69.6

88 70.2

67.8

114

115

69.0 1115.65

52.3

52.8 85 68.4

53.2

53.7

54.2

54

56

57

58

38.8

39.7

40.1

40.5

40.9 | 59

25 39:3 55

26

27

28

29

Solubility in 100 pts. H₂O at t°.

t°	Pts. NH4Cl	t°	Pts. NH4Cl	to	Pts. NH ₄ Cl
0	29.7	10.8	33.9	64.9	57.9
6.2	32.2	31.6	42.2	90.6	67.2

(Lindström, Pogg. 136. 315.)

NH₄Cl +Aq sat. at 13-16° contains 26.16% NH₄Cl. (v. Hauer, J. pr. 103. 114.) Sol. in 2.72 pts. H₂O at 19°. (Schiff, A.

109. 326.) Sol. in 2.803 pts. H₂O at 15°. (Gerlach.) Sat. NH₄Cl+Aq at 75° contains 38.23% NH.Cl. (Tschugaeff, Z. anorg. 1914, 86. 161.) NH.Cl+Aq sat. at 30° contains 29.5% NH₄Cl. (Meerburg, C. C. 1904. II, 1362.)

Solubility in H₂O at t°.

	$1000 \text{ mols. } \mathbf{H}_2\mathbf{O}$	100 g. H ₂ O	
t°	dissolve .	dissolve	
	mols. NH₄Cl	g. NH ₄ Cl	
3.5	105.2	31.25	
25.0	129.7	38.5	
50.0	167.0	49.6	
		-5.0	

(Biltz and Marcus, Z. anorg. 1911, 71. 169.)

Solubility of NH Cl in H.O at to

Bombin	Bolubility of NH4OI in H2O at t.				
t°	g. NH4Cl in 100 g. of the solution	Solid phase			
- 0.45 - 1.25 - 1.70 - 3.05 - 4.45 - 6.4 - 8.25 - 9.7 - 11.9 - 13.25 - 14.70 - 15.4	0.78 1.98 2.75 4.6 6.67 9.23 11.4 13.1 15.3 16.7 18.15	1ce			
±-16.0	±19.5	Ice+NH ₄ Cl			
15.0 12.2 10.9 7.4 5.7 2.3 ± 1.1	19.7 20.0 20.3 21.1 21.7 22.3 22.6 22.7	NH ₄ Cl "" ""			

(Meerburg, Z. anorg. 1903, 37, 203.)

100 g. H₂O dissolve 29.5 g. NH₄Cl at 30.° (Schreinemakers, Arch. neer. Sc. (2) 15. 17.)

Spec. gravity of NH₄Cl+Aq. G=according to Gerlach at 15° (Z. anal. 8, 281); S=according to Schiff at 19° (A, 110, 74).

according to benin at 18				(M. 110.	1 = 1.
% NH4CI	Sp. gr.		NH,CI	Sp.	gr.
%	G	s	%	G	s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1.00316 1.00632 1.00948 1.01580 1.01580 1.02180 1.02481 1.02781 1.03081 1.03370 1.03658 1.03947 1.04325 1.04524 1.04524 1.04805	1.0058 1.0087 1.0116 1.0145 1.0174 1.0203 1.0263 1.0293 1.0322 1.0351 1.0380 1.0409 1.0438	17 18 19 20 21 22 23 24 25 26 26.297 27 28 29 30	1.05086 1.05367 1.05648 1.05929 1.06204 1.06479 1.06754 1.07029 1.07304 1.07375	1.0523 1.0551 1.0579 1.0606 1.0633 1.0660 1.0687
				111	5

For older determinations, see Storer's Dict.

Sp. gr. of NH₄Cl+Aq at 18°.

% NH ₄ Cl	Sp. gr.	% NH4Cl	Sp. gr.
5 10 15	1.0142 1.0289 1.0430	20 25	1.0571 1.0710

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. at 20°/4° of a normal solution of NH₄Cl=1.01454. (Haigh, J. Am. Chem. Soc. 1912, **34**. 1151.)

NH₄Cl+Aq containing 6.52% NH₄Cl has sp. gr. 20°/20°=1.0195. (Le Blanc & Rohland, Z. phys. Ch. 1896, **19**. 272.)

Temp. of maximum	g. mol. NH ₄ Cl in	
density of NH ₄ Cl+Aq	1000 g. H ₂ O	
2.640°	0.1899	
0.055°	0.5407	

(de Coppet, C. R. 1900, 131. 178.)

Sp. gr. of dil. NH₄Cl+Aq at 20.004° and 731 mm. (corr.)
Conc.=g. equiv. NH₄Cl per l. at 20.004°.

Conc.	Sp. gr.
0.0000 0.0001 0.0002 0.0005 0.0010 0.0020 0.0050 0.0100	1.000,000,0 1.000,001,8 1.000,003,7 1.000,009,3 1.000,018,5 1.000,036,9 1.000,091,3 1.000,180,3

(Lamb and Lee, J. Am. Chem. Soc. 1913, 35. 1688.)

Sp. gr. of dil. NH₄Cl+Aq.

NH ₄ Cl g. in 1000 g.	Sp. gr.
of solution	16°/16°
0	1.000000
0.4431	1.000150
0.9061	1.000304
1.8085	1.000606
3.5947	1.001196
7.7845	1.002562
15.3425	1.004994
31.2364	1.010018

(Dijken, Z. phys. Ch. 1897, 24. 107.)

B.-pt. of NH₄Cl+Aq, containing pts. NH₄Cl to 100 pts. H₂O. G=according to Gerlach (Z. anal. 26. 439); L=according to Legrand (A. ch. (2) 59. 436).

Bpt.	G	L	Bpt.	G	L
101° 102 103 104 105 106 107 108	6.5 12.8 19.0 24.7 29.7 34.6 39.6 45.0	7.8 13.9 19.7 25.2 30.5 35.7 41.3 47.3	109° 110 111 112 113 114 114.2 114.8	50.6 56.2 61.9 67.8 74.2 81.3	53.5 59.9 66.4 73.3 80.5 88.1 88.9

Sat NH₄Cl+Aq boils at 115.8° at 718 mm. pressure. (Alluard, C. R. 59. 500.)

NH₄Cl+Aq containing 74.2 pts. NH₄Cl to 100 pts. H₂O forms a crust at 113°; highest temperature observed, 114.8°. (Gerlach, Z. anal. 26. 426.)

NH₄Cl+Aq containing 10% NH₄Cl boils at 101.7°; 20% NH₄Cl, at 104.4°. (Gerlach.) NH₄Cl+Aq containing 10.6% NH₄Cl gives off NH₃ at 37°. (Leeds, Am. J. Sci. (3) 7. 197.)

When NH₄Cl+Aq is boiled, or even evap. on water bath, a little NH₃ is expelled. (Fresenius.)

30 pts. NH₄Cl mixed with 100 pts. H_2O lower the temp, from 13.3° to -5.1°, that is 18.4°. (Rüdorff, B. 2. 68.)

Freezing-point of sat. solution is -15.4, the same temp, which is caused by mixing 25 pts. NH₄Cl with 100 pts. snow. (Rüdorff, Pogg. 122. 337.)

Conc. HCl+Aq precipitates part of NH₄Cl from sat. NH₄Cl+Aq. (Vogel, J. pr. 2. 199.)

Solubility of NH₄Cl in HCl+Aq at 0°. NH₄Cl = mols. NH₄Cl (in milligrammes) dissolved in 10 cc. of the liquid; HCl = mols. HCl (in milligrammes) dissolved in 10 cc. of the liquid.

NH4Cl	HCl	Sum of mols.	Sp. gr.
46.125	0.0	46.125	1.076
43.6	2.9	46.5	1.0695
41.0	5.5	46.5	1.0705
39.15	7.85	47.0	1.0715
36.45	10.85	47.30	1.073
27.37	21.4	48.77	1.078
10.875	53.0	63.875	1.106
8.8	61.0	69.8	1.114

(Engel, Bull. Soc. (2) 45. 655.)

Solubility of NH₄Cl in HCl+Aq.

t°	HCl concentra- tion. g. mol. per 100 g. H ₂ O	Weight NH ₄ Cl dissolved in 1000 g. H ₂ O	Molecular solubility
0° " " 25° " "	0 1/4 1/2 1 0 1/4 1/2 1	298, 40 286, 43 271, 23 245, 35 395, 10 380, 85 366, 00 339, 05	5.59 5.36 5.08 4.60 7.40 7.13 6.85 6.35

(Armstrong & Eyre, Proc. R. Soc. (A.) 84.

Solubility in NH₄OH+Aq. NH₄Cl=mols. NH₄Cl (in mgs.) in 10 cc. solution; NH₃=mols. NH₃ (in mgs.) in 10 cc.

NH4Cl	NHs	Sp. gr.
46. 125	0	1.076
45. 8	5.37	1.067
45. 5	12.025	1.054
45. 125	23.4	1.044
44. 5	38.0	1.031
44. 0	47	1.025
43. 625	54.5	1.017
43. 125	80.0	0.993
44. 0	90.0	0.992
44. 375	95.5	0.983
49. 75	130	0.953
60. 0	169.75	0.931

(Engel, Bull. Soc. (3) 6. 17.)

 $NH_4Cl+BaCl_2$. 100 pts. H_2O dissolve 33.8 pts. $NH_4Cl+11.6$ pts. $BaCl_2$ at 20°. (Rüdorff, Pogg. 148. 467.)

Solubility of NH₄Cl and BaCl₂ in H₂O.

	t° Wt. per 100 NH4Cl BaCl2		Solid phase
T-			Solid phase
-16.2° 0 30 40 50	16.10 19.26 24.89 26.93 29.53	8.07 8.22 8.19 8.40 8.55	NH ₄ Cl+ BaCl ₂ .2H ₂ O

(Schreinemakers, Chem. Weekbl. 1910, 7, 333.) See also BaCl2+NH4Cl under BaCl2.

NH₄Cl+CdCl₂. Solubility of NH₄Cl and CdCl₂. See Ammonium cadmium chloride.

NH4Cl+CuCl2. Solubility of NH4Cl in H₂O at 30° in presence of varying amounts of

CuCl₂.

% by wt. CuCl ₂	% by wt. NH ₄ Cl	Solid phase
0 1.9 3.6 7.7 10.5 12.3 15.6 19.9 24.0 29.4 41.4 43.2 43.9	29.5 28.6 25.9 19.8 16.5 14.9 12.1 9.4 7.1 4.9 3.4 2.1 2.0	NH4Cl NH4Cl+CuCl2, 2NH4Cl. 2H2O CuCl2, 2NH4Cl. 2H2O "" "" "" "" "" "" "" "" ""

(Meerburg, Z. anorg. 1905, 45. 3)

NH₄Cl+PbCl₂. Solubility of NH₄Cl and PbCl₂ in H₂O at 22°.

~ O12 111 3		
g. equivalent in 1000 g. H ₂ O		Solid phase
NH4C1	₽bCl₂	
0.0	0.0749	PbCl ₂
$egin{array}{c} 0.1 \ 0.2 \end{array}$	$0.0325 \\ 0.0194$	**
0.2	0.0154	"
0.4	0.0138	"
0.5	0.0130	"
0.52	0.0127	PbCl ₂ +NH ₄ Cl,2PbCl ₂
0.55	0.0123	NH₄Cl, 2PbCl₂
0.6	0.0113	"
0.65	0.0105	"
0.7	0.0099	"
0.8	0.0087	. "
0.9	0.0083	
$^{1.0}_{1.2}$	0.0075	1 "
1.5	0.0073	"
2.0	0.0077	"
$\frac{1}{2}.5$	0.0092	"
3.0	0.0112	"
4.0	0.0182	60
5.0	0.0296	. "
6.0	0.0473	"
7.0	0.0774	
$7.29 \\ 7.29$	0.0898	NH ₄ Cl+NH ₄ Cl,2PbCl ₂ NH ₄ Cl
		C1

(Brönstedt, Z. phys. Ch. 1911, 77. 132.)

Solubility of NH₄Cl and 2PbCl₂,NH₄Cl in H₂O at 100°.

NH4Cl g. equivalent		PbCl ₂ g. equivalent		
in 1000 g. solution	in 1000 g. H ₂ O	in 1000 g. solution	in 1000 g. H ₂ O	Solid phase
1.277	1.404	0.160	0.176	NH ₄ Cl +2PbCl ₂ .H ₂ O

(Brönstedt, l. c.)

NH₄Cl+MgCl₂. Solubility of NH₄Cl and NH₄MgCl₈.6H₂O.

		In 10 mols.		
-	t°	g. mols. NH4Cl	g. mols. MgCl2	Solid phase
	3.5° 25 50	$ \begin{array}{r} \hline 27.5 \\ 42.1 \\ 62.9 \end{array} $	55.7 56.4 59.1	NH4Cl+NH4MgCl3.6H4O

(Biltz and Marcus, Z. anorg. 1911, 71. 170.)

Solubility of NH₄MgCl₃.6H₂O and MgCl₂. | NH₄Cl+NaCl. 100 pts. H₂O dissolve-6H₂O.

	In 1000 g	mol. H ₂ O		
t°	g. mol. NH4Cl	g. mol. MgCl ₂	Solid phase	
3.5° 25° 50°	0.5 0.5 0.8	99.5 103.8 111.2	MgCl ₂ . 6H ₂ O+ NH ₄ MgCl ₃ . 6H ₂ O	

(Biltz and Marcus, Z. anorg. 1911, 71. 170.)

NH₄Cl+NH₄NO₃. 100 pts. H₂O dissolve 29.1 pts. NH₄Cl+173.8 pts. NH₄NO₃ at 19.5°. (Rüdorff, B. 6. 482.)

NH₄Cl+Ba(NO₃)₂. 100 pts. H₂O dissolve at 18.5°-

	1	2	3	4	5
NH ₄ Cl Ba(NO ₃) ₂	36.7	38.6 8.6	38.06 16.73	39.18 17.02	8.9

2, sat. Ba(NO₃)₂+Aq treated with NH₄Cl; 3, sat. NH₄Cl+Aq treated with Ba(NO₃)₂; 4, simultaneous treatment of both salts with H₂O. (Karsten.)

NH₄Cl+KNO₃. 100 pts. H₂O dissolve at 18.5°—

	1	2	3	4	5	6
KNO ₃ NH ₄ Cl	29.9	30.56 44.33	37.68 37.98	38.62 39.84	36.7	34.2 38.8
		74.89	75.66	78.46		73.0

1 and 5, according to Mulder; 2, sat. KNO₃ +Aq treated with NH₄Cl; 3, sat. NH₄Cl+Aq treated with KNO₃; 4, simultaneous treatment of NH₄Cl and KNO₃ (Karsten); 6, by warming solution with excess of both salts, and cooling to 14.8°. The amount of excess of one or the other salt has no influence. (Rüdorff.)

 $NH_4Cl+NaNO_3$. Slowly sol. in sat. NaNO₃+Aq, at first to a clear solution, but afterwards NaCl separates out. (Karsten.)

NH₄Cl+KCl. 100 pts. H₂O dissolve—

		(Rüdorff) 15°	(Karsten) 18.75°		
KCl NH₄Ci	•	16.97 28.90	34.4	16.27 29.83	37.02
		(Rüdorff)	l I	(Mulder)	

	(Rüdorff) 22°		(Mulder) At bpt.	
KCl NH₄Ci	19.1 · 30.4	58.5	21.9 67.7	87.3

tain 30.61 pts. of the two salts at 13-16°. (v. Hauer, J. pr. 103. 114.)

	10-20°	(Mulder) 10°	10°	(v. Hauer) 13-16°
NH ₄ Cl . NaCl	35.8	19.50 30.00	33.3	18.8-20.3 24.6-26.1
	,	49.50		43.4-46.4

	(Kar 18.	sten) 75°	(Rüdorff) 18.7°	(Mulder) At bpt.		
NH4Cl NaCl	22.06 26.38		22.9 23.9	87.3 	78.5 22.3	40.4
	$\frac{1}{48.44}$		46.8		100.8	

Sp. gr. of sat. solution of NH4Cl+NaCl is 1.179. (Karsten.)

NH₄Cl+(NH₄)₂SO₄. 100 pts. H₂O dissolve 26.8 pts. NH₄Cl+46.5 pts. (NH₄)₂SO₄ at 21.5°. (Rüdorff, B. 6. 484.)

Solubility in (NH₄)₂SO₄+Aq at 30°.

Compositi solu	on of the tion	Solid phase		
% by wt. NH4Cl	% by wt. (NH ₄) ₂ SO ₄	Solid phase		
0 6.86 14.62 17.60 17.93 19.07 19.97 22.3 24.06 29.5	44 36.15 28.6 25.69 25.81 23.22 21.3 16.33 12.72	(NH ₄) ₂ SO ₄ " (NH ₄) ₂ SO ₄ +NH ₄ Cl NH ₄ Cl " " " "		

(Schreinemakers, Z. phys. Ch. 1909, 69. 562.)

NH₄Cl+CuSO₄. Sol. in sat. CuSO₄+Aq, at first to a clear solution, but a double sulphate of NH4 and Cu soon separates. (Karsten.)

NH₄Cl+MgSO₄. Slowly and difficultly sol. in sat. MgSO₄+Aq with subsequent separation of double sulphate. (Karsten.)

NH₄Cl+K₂SO₄. 100 pts. H₂O dissolve, at 18.75°-

		a	Ъ	С	
K ₂ SO ₄ NH ₄ Cl	10.8	11.1 38.2	13.26 37.94	13.28 37.92	36.7
		49.3	51.20	51.20	

In (a) NH₄Cl was added to sat. K₂SO₄+Aq. 100 pts. sat. solution of NH₄Cl+KCl con- In (b) K₂SO₄ was added to sat. NH₄Cl+Aq. In (c) NH₄Cl and K₂SO₄ were treated together with H2O. (Karsten.)

 \mathbf{R}

R

S

S

Si

S

S

S

S

T

100 pts. H_2O at 14° dissolve 14.1 pts. $K_2SO_4+36.8$ pts. $NH_4Cl=50.9$ pts. $K_2SO_4+NH_4Cl$, under all conditions. (Rüdorff, Pogg. 148. 565.)

100 pts. H₂O dissolve at b.-pt.—

K ₂ SO ₄ . NH ₄ Cl.	:	:	26.75	33.3- 33.9 90.4-111.8	87.3
				123.7-145.7	

(Mulder.)

NH₄Cl+Na₂SO₄. 100 pts. H₂O dissolve 28.9 pts. NH₄Cl+24.7 pts. Na₂SO₄, if NH₄Cl

+Aq sat. at 10° is sat. with Na₂SO₄ at 11°. 100 pts. H₂O dissolve 31.8 pts. NH₄Cl+ 9.0 pts. Na₂SO₄, if Na₂SO₄+Aq sat. at 10° is sat. with NH₄Ol at 11°. (Mulder, J. B. 1866. 68)

Sol. in sat. Na_2SO_4+Aq . (Karsten.) Sol. in sat. $ZnSO_4+Aq$. (Karsten.)

Sl. sol. in liquid NH₃ at —50°. (Moissan, C. R. 1901, **133**. 713.)

Very sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 826.)

Very sl. sol. in absolute alcohol.

100 pts. alcohol of 0.939 sp. gr. dissolve—at 4°8° 27° 38° 56°

11.2 12.6 19.4 23.6 30.1 pts. NH₄Cl. (Gerardin, A. ch. (4) 5. 129.)

14 pts. boiling highest rectified spirit dissolve 1 pt. NH4Cl. (Wenzel.)
100 pts. alcohol of—

0.900 sp. gr. dissolve 6.5 pts. NH₄Cl.
0.872 4.75 4.75 4.75

(Kirwan.)
Though somewhat soi. in pure absolute alcohol, NH₄Cl is absolutely insol. in alcohol in presence of methyl amine chlorides. (Winkles, A. 33. 324.)

100 pts. absolute methyl alcohol dissolve 3.35 pts. at 19°.

100 pts. absolute ethyl alcohol dissolve 0.62 pt. at 19°. (de Bruyn, Z. phys. Ch. 10. 783.)

Solubility of NH4Cl in methyl alcohol.

t°	Alcohol concentration, mol. g. alcohol for 1000 g. H ₂ O	Solubility in 1000 g. H ₂ O	Molecular solubility
0°	0	298.40	5.59
"	1/4	297.35	5.57
"	1/3	296.55	5.55
66	ĺĺĺ	292.65	5.47
"	3	283.15	5.30
25°	0	395.10	7.40
46	1/4	394.75	7.39
66	1/3	393.85	7.37
"	ĺíi	392.90	7.36
	3	386.20	7.23

(Armstrong and Eyre, Proc. R. Soc. Lond. (A) 84. 127.)

Solubility of NH4Cl in ethyl alcohol at 0°.

Alcohol concentration, mol. g. alcohol for 1000 g. H ₂ O	Solubility in 1000 g. H ₂ O	Molecular solubility
0	298.40	5.59
14	295.50	5.53
12	291.95	5.47
1	286.40	5.37
3	266.25	4.99

(Armstrong and Eyre, l.c.)

See also ammonium cupric chloride.

Solubility of NH4Cl in propyl alcohol.

t°	Alcohol concen- tration, mol. g. alcohol for 1000 g. H ₂ O	Solubility in 1000 g. H ₂ O	Molecular solubility
0° " " 25° " " "	0 1/4 1/2 1 0 1/4 1/2 1 1 1/2 1	298.46 295.40 291.30 284.00 395.10 393.50 390.80 384.80	5.59 5.53 5.45 5.32 7.40 7.37 7.32 7.21

(Armstrong and Eyre, l.c.)

Solubility in mixtures of methyl and ethyl alcohol at 25°.

P = % methyl alcohol in the solvent. G = g. NH_4Cl in 10 cc. of the solution. S = sp. gr. of the sat, solution at $25^{\circ}/4^{\circ}$.

P	G	8
0.00 4.37 10.40 41.02 80.69 84.77 91.25 100.00	0.0533 0.0583 0.0583 0.0658 0.118 0.217 0.227 0.247 0.276	0.7908 0.7909 0.7910 0.7957 0.8020 0.8026 0.8040 0.8062

(Herz, Z. anorg. 1908, 60. 155.)

Solubility in mixtures of methyl and propyl alcohol at 25°.

P = % propyl alcohol in the solvent. G = g. NH_4Cl in 10 cc. of the solution. S = Sp. gr. of the sat. solution at 25°/4°.

P	G	R
0 11.11 23.8 65.2 91.8	0.276 0.231 0.182 0.071. 0.026	0.8062 0.8035 0.8008 0.8005 0.8002
93.75 100.00	0.023 0.018	0.8000 0.8009(?)

(Herz, Z. anorg, 1908, 60, 157.)

Solubility in mixtures of propyl and ethyl alcohol at 25°.

P=% propyl alcohol in the solvent. G=g. NH₄Cl in 10 cc. of the solution. S=Sp. gr. of the sat. solution at 25°4°.

op. gr. of the sat. solution at 25 /4.					
P	G	S			
0 8.1 17.85 56.6 88.6 91.2 95.2	0.0533 0.0505 0.0455 0.0312 0.0210 0.0203 0.0190 0.0177	0.7908 0.7910 0.7916 0.7963 0.7963 0.8001 0.8003 0.8009			

(Herz, Z. anorg. 1908, 60. 160.)

Insol. in ether and CS₂. (Fordos and Gélis, A. ch. (3) **32**. 393.)

Very sl. sol. in acetone. (Krug and M'Elroy, J. anal. appl. Ch. 6. 184.)

Solubility of NH₄Cl in acetone+Aq at 25°. A=cc. acetone in 100 cc. acetone+Aq. NH₄Cl=millimols. NH₄Cl in 100 cc. of the

solution.

A	NH ₄ Cl	Sp. gr.
$egin{array}{c} 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 46.5 \\ boundary \\ 2 & phases \\ \end{array}$	585.1 534.1 464.6 396.7 328.5 283.7	1.0793 1.0618 1.0451 1.0263 0.99984 0.97998
85.7 upper 90	18.9 9.4	$0.8390 \\ 0.8274$

(Herz, Z. anorg. 1905, 45. 263.)

Solubility of NH₄Cl in glycerine+Aq at 25°. G=g. glycerine in 100 g. glycerine+Aq. NH₄Cl=millimols. NH₄Cl in 100 cc. of the solution.

G	NH4Cl	Sp. gr.
0	585.1	1.0793
13.28	544.6	1.0947
25.98	502.9	1.1127
45.36	434.4	1.1452
54.23	403.5	1.1606
83.84	291.4	1.2225
100	228.4	1.2617

(Herz, l.c.)

Insol. in acetone. (Naumann, B. 1904, 37. 4328.); (Eidmann, C. C. 1899. II, 1014.)

Insol. in anhydrous pyridine. Sol. in 97% pyridine+Aq, 95% pyridine+Aq and in 93% pyridine+Aq. (Kahlenberg, J. Am. Chem. Soc. 1908, 30. 1107.)

Insol. in CS₂. (Arctowski, Z. anorg. 1894, **6**. 257.)

Very sol. in ethyl amine. (Shinn, J. phys. Chem. 1907, 11. 538.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in ethyl acetate. (Naumann, B-1910, 43. 314.)

Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

Sol. in formic acid. (Zanninovich-Tessarin, Z. phys. Ch. 1896, **19**. 251.)

Ammonium antimony chloride, SbCl₆(NH₄)₂, SbCl₆(NH₄)₃.

Ppt. Decomp. by H₂O. (Weinland, B. 1905, **38**, 1085.)

 $SbCl_s(NH_4)$, $SbCl_5$, NH_4OH . Very deliquescent; sl. sol. in H_2O with decomp. (Weinland, B. 1901, **34**. 2635.)

Ammonium antimonous chloride, NH₄Cl, SbCl₃.

Deliquescent. (Dehérain, C. R. 52. 734.) 2NH₄Cl, SbCl₃+2H₂O. Permanent in dry air; decomp. by much H₂O. (Poggiale.) 3NH₄Cl, SbCl₃+3H₂O. As above.

Ammonium antimonic chloride, 3NH₄Cl, SbCl₅.

Decomp. by H₂O. (Dehérain, C. R. 52. 734.)

4NH₄Cl, SbCl₅. Decomp. by H₂O. (D.)

See also Chlorantimonate, ammonium.

Ammonium antimony platinum chloride, (Sb, Pt)Cl₆(NH₄)₂.
Ppt. (Weinland, B. 1905, **38.** 1084.)

Ammonium antimony tin chloride, (Sb,Sn)Cl₆(NH₄)₂.

Ppt. (Weinland, B. 1905, 38. 1085.)

Ammonium arsenyl chloride, 2NH₄Cl, AsOCl +½H₂O.

(Wallace, Phil. Mag. (4) 16. 358.)

Ammonium bismuth chloride, NH₄Cl, 2BiCl₃.

Deliquescent. (Dehérain, C. R. 54. 724.) 2NH₄Cl, BiCl₃. Decomp. by H₂O. (Arppe.) Pogg. 64. 237.)

+2½H₂O. (Rammelsberg.) 3NH₄Cl, BiCl₃. Decomp. by H₂O. (Arppe.) 5NH₄Cl, 2BiCl₃. (Rammelsberg.)

Ammonium bismuth potassium chloride, 2NH₄Cl, BiCl₃, KCl. (Dehérain, C. R. **54.** 724.)

Ammonium cadmium chloride, NH₄Cl, CdCl₂.

Solubility of NH₄Cl, CdCl₂ in H₂O at t°.

t° 100 pts. of	d NH4	g. in 100 solution	Grams 100 H;	Mols ree s olved mols
2.4° 13.44 14.1 16.0 15.07 15.1 41.2 17.46 18.1 63.8 19.73 20.1 105.9 23.52 24.2	82 2.56 61 2.89 92 3.34 70 4.01	33.45 38.96 43.99	42.74 50.26 63.83 78.54 109.33	3.25 3.83 4.86 5.98 8.30

(Rimbach, B. 1897, 30. 3076.)

 $+\frac{1}{2}$ H₂O. Sl. sol. in H₂O, alcohol, and wood spirit. (v. Hauer, W. A. B. 13. 449.)

4NH₄Cl, CdCl₂. Sol. in H₂O. (v. Hauer.) Decomp. by H₂O to NH₄Cl, CdCl₂. Decomp. increases with decrease of temp. 3.9° approximately wholly decomp. to NH4Cl, CdCl₂. At 113.9° very nearly all is 4NH4Cl, CdCl₂. (Rimbach, B. 1897, 30, 3077.)

Solubility of 4NH₄Cl, CdCl₂ in H₂O at t².

t°	Pts. dissolved in 100 pts. by weight of solution.			
	Cd	Cl	NH4	
3.9 16.1 40.2 58.5 112.9 113.9	5.75 6.93 9.91 12.50 16.66 16.51	18.17 20.26 23.84 26.53 31.79 32.71	7.37 7.97 8.92 9.35 10.78 11.30	

(Rimbach, B. 1897, 30, 3071.)

Sol. without decomp. in 37.3% HCl(d= 1.19) and 24.8% HCl(d=1.125). (Rimbach, B. 1905, 38, 1569,)

Solubility of 4NH₄Cl,CdCl₂+NH₄Cl in H₂O at t°.

	In 100 pts. by wt. of the solution			Composition of the solid phase	
t°	Pts. by wt. Cd	Pts. by wt. Cl	Pts. by wt. NH ₄	11ATOT 20	Mol. % Tetra- salt
1.0 13.2 40.1 58.2	2.82 2.76 3.16 3.51	17.11 18.84 22.56 25.21	7.82 8.71 10.49 11.72	59.0 74.0 71.0 69.0	41.0 26.0 29.0 31.0

(Rimbach, B. 1902, 35. 1300.)

Solubility of 4NH4Cl, CdCl2+NH4Cl, CdCl2 in H₂O at t°.

	In 100 pts. by wt. of the solution			Compos the soli	ition of d phase	
t°	Pts. by wt. Cd	Pts. by wt. Cl	Pts. by wt. NH4	Mol. % Mono- salt	Mol. % Tetra- salt	-
1.1 14.0 40.7 58.5	5.34 7.12 10.24 12.50	17.62 19.86 23.82 26.53	7.27 7.84 8.85 9.35	49.6 47.0 77.0	50.4 53.0 23.0	
(Rimbach, B 1902 35 1300)						

Sol. without decomp. in 50% LiCl+Aq, 33.3% CaCl₂+Aq and 50% MgCl₂+Aq. (Rimbach, B. 1905, **38**. 1569.)

Ammonium chloromolybdenum chloride, 2NH₄Cl, Cl₄Mo₃Cl₂+2H₂O.

Decomp. by pure H₂O; can be crystallized from HCl+Aq. (Blomstrand.)

Ammonium chromium chloride, 2NH₄Cl, CrCl₃+H₂O. Sol. in H2O with decomp. (Neumann, A.

 $+6H_2O = 2NH_4Cl$, $[CrCl_2.4H_2O]Cl + 2H_2O$.

Decomp. by H₂O and by Hygroscopic. alcohol. (Weinland, B. 1907, 40. 3770.)

Ammonium cobaltous chloride, NH₄Cl, CoCl₂ +6H₂O.

Deliquescent in moist air. Very easily sol. in H₂O. (Hautz, A. 66. 284.)

Ammonium cobaltous chloride ammonia, NH₄Cl, CoCl₂, NH₃. (F. Rose.)

Ammonium cuprous chloride, 4NH₄Cl.Cu₂Cl₂.

Decomp. in the air. 4NH₄Cl, 3Cu₂Cl₂. Decomp. by H₂O, not by alcohol. (Ritthausen, J. pr. 59, 369.)

Fairly stable in air. (Wells, Z. anorg. 1895,

Ammonium cupric chloride,

NH4Cl, CuCl2.

g. 2NH₄Cl,

Solubility of NH₄Cl, CuCl₂ in absolute alcohol at 25°

% CuCla	Solid phase	% CuCls	Solid phase
4.65	NH4Cl+NH4Cl,	12.90	NH ₄ Cl, CuCl ₂
4.74	CuCl ₂ NH ₄ Cl+NH ₄ Cl, CuCl ₂	34.92	NH4Cl, CuCl2+ CuCl2, CaH4OH
6.45	NH ₄ Cl, CuCl ₂	34.50	(1)

(Foote and Walden, J. Am. Ch. Soc. 1911, 33. 1032.)

 $+2\mathrm{H}_2\mathrm{O}$. Sol. in 2 pts. $\mathrm{H}_2\mathrm{O}$. (Hautz, A. 66. 280.)

Does not exist, (Meerburg, C. C. 1904. II,

 $2NH_4Cl$, $CuCl_2+2H_2O$. Easily sol. in H_2O . also in alcohol, even when absolute. (Cap and Henry, J. pr. 13. 184.)

Solubility of 2NH₄Cl, CuCl₂ in H₂O at t°.

CuCl ₂ in 100 g. of the solution	t°	Solid phase
3.87 5.88 8.78 9.97	-1.5° -2.48 -3.95 -4.60	ice " "
13.12 15.84 17.64 20.12 ±20.3 20.46 21.16 22.02 24.26 25.95	-6.40 -8.04 -9.24 -10.80 -11.0 -10 -5 0 +12 20	" " ice +2NH4Cl, CuCl2.2H2O 2NH4Cl, CuCl2.2H2O " " " "
27.70 30.47 33.24 36.13 39.25 43.36	30 40 50 60 70 80	

(Meerburg, Z. anorg. 1905, 45. 8.)

Somewhat sol. in liquid NH₈. and Kraus, Am. Ch. J. 1898, 20. 827.)

Is the only hydrate of 2NH4Cl, CuCl2 existing between —11° and +80°. (Meerburg, C. C. **1904**. II, 1362.) +3H₂O. (Bourgeois, Bull. Soc. 1898, (3) **19.** 786.)

Ammonium cupric chloride ammonia, 2NH₄Cl, CuCl₂, 2NH₈.

Decomp. by H₂O, less easily by alcohol. Decomp. by acids. (Ritthausen.)

Ammonium indium chloride, 2NH4Cl, InCla $+H_2O.$

Easily sol. in H₂O. (Meyer.)

Ammonium iodine chloride, NH₄Cl, ICl₈. More sol. in H₂O than KCl, ICl₃. (Filhol, J. Pharm. **25**. 441; Berz. J. B. **20**. (2) 110.)

Ammonium iridium trichloride. See Chloriridite, ammonium.

Ammonium iridium tetrachloride. See Chloriridate, ammonium.

Ammonium iron (ferrous) chloride, NH₄Cl,

Easily sol. in H₂O; insol. in alcohol. (Wink-

Ammonium iron (ferric) chloride, 2NH₄Cl, $FeCl_3+H_2O.$

Deliquescent. Sol. in H₂O without decomp. (Fritzsche); sol. in 3 pts. H₂O at 18.75°. (Abl.) Sol. in H₂O. (Walden, Z. anorg. 1894, 1.

Ammonium iron (ferric) potassium chloride, NH₄Cl, FeCl₃, KCl+1½H₂O.

Min. Kremersite. Deliquescent.

Ammonium lead chloride, NH₄Cl, 2PbCl₂+ $3H_2O$.

Sol. in H₂O without decomp. (?). (André, C. R. 96. 1502.)

6NH₄Cl, PbCl₂+H₂O. 9NH₄Cl, PbCl₂+1½H₂O. 9NH₄Cl, 2PbCl₂+2½H₂O. 10NH₄Cl, 2PbCl₂+2½H₂O. 11NH₄Cl, 2PbCl₂+3½H₂O. 18NH₄Cl, PbCl₂+4H₂O.

All these salts are decomp. by H2O. (André A. ch. (6) 3. 104.)

Of the salts prepared by André, only one NH₄Cl, 2PbCl₂ exists. (Wells, Sill. Am. J.

Solubility determinations show that NH₄Cl, 2PbCl₂ is the only double salt formed at 25°. (Foote, Am. Ch. J. 1907, 37. 121.) NH_4Cl , $PbCl_2+\frac{1}{8}H_2O$. (Wells, l.c.)

Ammonium lead tetrachloride.

See Chloroplumbate, ammonium.

(Franklin | Ammonium magnesium chloride, NH4MgCls $+6H_2O = NH_4Cl$, MgCl₂+6H₂O.

Deliquescent. Very sol. in H₂O. Sol. in 6 pts. cold H₂O. (Foureroy.).

Solubility in NH₄Cl+Ag at t°.

	Per 1	000 Mol. H ₂ O
. t°	Mol. NH₄Cl	Mol. MgCla
3.5° 25 0 50.0	27.5 42.1 62.9	55.7 56.4 59.1

(Biltz, Z. anorg, 1911, 71, 170.)

 $4NH_4Cl_5MgCl_2+33H_2O$. Sol. in H_2O . (Berthelot and André, A. ch. (6) 11. 294.)

Ammonium manganous chloride, NH4Cl, MnCl2+1/2H2O.

Sol. in 1½ pts. H₂O at ordinary temp. (Hautz, A. 66. 280); does not exist. (Saunders, Am. Ch. J. 14. 134.)

2NH₄Cl, MnCl₂+H₂O. Sol. in H₂O (Ram-

melsberg); does not exist. (Saunders.) +2H₂O. Easily sol. in H₂O, but with decomp. into NH₄Cl and MnCl₂. (Saunders.)

Ammonium manganic chloride, 2NH4Cl, MnCl₂.

Sol. in H₂O; less sol. in NH₄Cl+Aq. Un-

stable. (Neuman, M. 1894, 15. 490.)

+H₂O. Decomp. by H₂O. Sol. in HCl apparently without decomp. (Rice, Chem. Soc. 1898, 73. 260.)

Ammonium mercuric chloride, 2NH₄Cl. HgCl₂+H₂O (sal alembroth).

Sol. in 0.66 pt. H₂O at 10°, and in nearly every proportion of hot H2O.

every proportion of not H₂O.

NH₄Cl, HgCl₂. Easily sol. in H₂O.

+½H₂O. Easily sol. in H₂O. (Kane.)

2NH₄Cl, 3HgCl₂+4H₂O. Easily sol. in

H₂O. (Holmes, C. N. 5. 351.)

NH₄Cl, 2HgCl₂. Very sol. in H₂O. (Rây,

Chem. Soc. 1902, 81. 648.)

NH₄Cl, 5HgCl₂. (Strömholm, J. pr. 1902,

(2) 66 441.)

(2) 66. 441.)

Ammonium mercuric sodium chloride, NH4Cl, HgCl₂, 4NaCl (?).

Sol. in H₂O. (Kossmann, A. ch. (3) 27. 243.)

Ammonium molybdenum chloride, 2NH₄Cl, $MoCl_3+H_2O$.

Very sol. in H₂O. Nearly insol. in alcohol and ether. (Chilesotti, C. C. 1903. II, 652.) See also Ammonium chloromolybdenum

Ammonium molybdenum chloride iodide.

See Ammonium chloromolybdenum iodide.

R R HS S

X :

S g S

8 S TO ED j 7

(Nicklès, J. Pharm. (4) 1. 28.)

Ammonium tin (stannous) chloride (ammonium chlorostannite), NH_4Cl , $SnCl_2+H_2O$. Decomp. by H_2O . Resembles K salt. (Richardson, Am. Ch. J. 14, 93.)

Ammonium molybdenyl chloride, 2NH₄Cl, $M_0O_2Cl_2+2H_2O$. (Weinland, Z. anorg. 1905, 44. 98.)

2NH4Cl, MoOCl3. Sol. in H2O; insol. in H₂O sat. with HCl. (Klason, B. 1901, 34.

Ammonium nickel chloride, NH₄Cl, NiCl₂+ 6H₂O.

Deliquescent in moist air. Easily sol. in H₂O. (Hautz.) 4NH₄Cl, NiCl₂+7H₂O (?).

Ammonium osmium tetrachloride. See Chlorosmate, ammonium.

Ammonium osmium sesquichloride. See Chlorosmite, ammonium.

Ammonium osmyl chloride, (NH₄)₂OsO₂Cl₄. Sol. in H₂O. Decomp. by HCl. (Wintrebert, A. ch. 1903, (7) 28. 92.)

Ammonium osmyl oxychloride, $(NH_4)_2OsO_8Cl_2$.

Very sl. sol. in H₂O. Sol. in KOH+Aq with decomp. (Wintrebert, A. ch. 1903, (7) **28.** 116.)

Ammonium palladium chlorides.

See Chloropalladate, ammonium and chloropalladite, ammonium.

Ammonium rhodium dichloride, 4NH4Cl, $RhCl_2+3\frac{1}{2}H_2O$.

Sol. in H₂O, but decomp. slowly. (Willm. B. 16. 3033.)

Does not exist. (Leidié, A. ch. (6) 17. 277.)

Ammonium rhodium trichloride. See Chlororhodite, ammonium.

Ammonium rhodium chloride ammonium nitrate, Rh₂Cl₆, 6NH₄Cl, 2NH₄NO₈. See Chlororhodite nitrate, ammonium.

Ammonium ruthenium trichloride. See Chlororuthenite, ammonium.

Ammonium ruthenium tetrachloride. See Chlororuthenate, ammonium.

Ammonium tellurium chloride. See Chlorotellurate, ammonium.

Ammonium thallic chloride, 3NH4Cl, TlCl₃. Easily sol. in H₂O. (Willm.) +2H₂O. Easily sol. in H₂O and alcohol.

Ammonium thorium chloride, 8NH4Cl, ThCl4 +8H₂O.

Sol. in H₂O. (Chydenius.)

2NH₄Cl, SnCl₂+H₂O. Sol. in H₂O, but decomp. by boiling. (Rammelsberg.) Contains 2H₂O. (Richardson.) 4NH₄Cl, SnCl₂+3H₂O. Decomp. by H₂O. (Poggiale, C. R. **20.** 1182.)

Does not exist. (Richardson.)

Ammonium tin (stannic) chloride. See Chlorostannate, ammonium.

Ammonium titanium chloride, 2NH₄Cl, TiCl₄ $+2H_{2}O.$

Ppt.; decomp. in moist air; sol. in fuming HCl; insol. in ether. (Rosenheim, Z. anorg. 1901, 26. 242.)

Ammonium titanium chloride, 3NH4Cl, TiCl4. Sol. in H₂O.

6NH₄Cl, TiCl₄. Sol. in H₂O. (Rose.)

Ammonium tungsten chloride, $(NH_4)_3W_2Cl_9 =$ 3NH₄Cl, 2WCl₃.

Easily sol. in H₂O. Nearly insol. in most organic solvents. (Olsson, B. 1913, 46. 577.)

Ammonium uranyl chloride.

Very deliquescent, and sol. in H₂O. (Peligot.)

2NH₄Cl₂(UO₂)Cl₂+2H₂O. Solution at 15° contains in 100 g. 3.51 g., NH₄, 40.67 g. UO₂ and 19.15 g. Cl, hence there is considerable decomp. (Rimbach, B. 1904, 37. 466.)

Ammonium vanadium chloride, 2NH₄Cl, VCl_3+H_2O .

Difficulty sol. in H₂O and alcohol. (Stähler, B. 1904, **37.** 4412.)

Ammonium zinc chloride, NH₄Cl, ZnCl₂+ 2H₂O.

Deliquescent. Very sol. in H2O. (Hautz, A. 66. 287.) $2NH_4Cl$, $ZnCl_2$. Sol. in H_2O . (Rammels-

berg, Pogg. 94. 507.) + H_2O . Deliquescent in moist air. Sol. in 2/2 pt. cold H₂O with absorption of heat. Sol. in 0.28 pt. hot H₂O (Golfier-Bassayre, A. ch. 70. 344); sol. in $\frac{1}{2}$ pt. cold H_2O . (Hautz, A. 66. 287.)

3NH4Cl, ZnCl2. Sol. in H2O. (Marignac.) $+H_2O$. (Berthelot, A. ch. (6) 11. 294.) 4NH,Cl, ZnCl2. (Dehérain.)

 $6NH_4Cl$, $ZnCl_2+2/3H_2O$. (Berthelot, l.c.)

Ammonium chloride zinc oxychloride, 2ZnCl₂, 8NH₄Cl, ZnO. Sol. in a little H₂O, but decomp. by excess.

(André.) 3ZnCl₂, 10NH₄Cl, ZnO. As above. (André, A. ch. (6) 3. 88.)

Ammonium chloride antimony fluoride, NH4Cl, SbF3.

Easily sol. in H_2O . (de Haen, B. 21. 901 R.)

Ammonium chloride arsenic trioxide. See Arsenite chloride, ammonium.

Ammonium chloride bismuth bromide, 3NH₄Cl, BiBr₃+H₂O.

Deliquescent; decomp. by H₂O. (Muir, Chem. Soc. 31. 148.)

2NH₄Cl, BiBr₃+3H₂O. Decomp. by H₂O. (Muir.)

5NH₄Cl, 2BiBr₃+H₂O. Decomp. by H₂O. (Muir.)

Ammonium chloride chromic oxychloride, 2NH₄Cl, CrOCl₃.

Decomp. in the air. Sol. in conc. HCl without decomp. (Weinland, B. 1906, 39. 4045.)

Ammonium chloride cuprocupric thiosulphate, 2NH₄Cl, Cu₂O, CuO, 3S₂O₂.

See Thiosulphate ammonium chloride, cuprocupric.

Ammonium chloride lead iodide, 3NH₄Cl, PbI₂.

Decomp. with H₂O. (Behrens, Pogg. 62. 252.)

4NH₄Cl, PbI₂+2H₂O. Decomp. with H₂O. (Poggiale, C. R. 20. 1180.)

Ammonium chloride mercuric bromide, NH₄Cl, HgBr₂. (Edhem-Bey, Dissert. 1885.)

Ammonium chloride platinum sulphite. See Chloroplatosulphite, ammonium.

Ammonium chloride tin (stannous) bromide, 2NH₄Cl, SnBr₂+H₂O.

Sol. in H₂O. (Raymann and Preis, A. 223. 323.)

Ammonium dichloroiodide, NH₄Cl₂I.

Slowly decomp. when exposed to dry air at ord. temp. Very sol. in H_2O . (Chattaway, Chem. Soc. 1915, 107. 107.)

Ammonium tetrachloroiodide, NH₄Cl₄I.

Decomp. in the air. (Chattaway, Chem. Soc. 1915, 107. 107.)

Ammonium lead chloroiodide, $NH_4PbClI_2+2H_2O$ and $(NH_4)_2PbCl_2I_2+2H_2O$.

Sol. in KOH+Aq and in strong acids; decomp. by $\rm H_2O$. (Fonzes-Diacon, Bull. Soc. 1897, (3) 17. 348.)

Ammonium fluoride, NH4F.

Abundantly sol. in H₂O; sl. sol. in alcohol. (Marignac, Ann. Min. (5) 15. 221.)

Insol. in liquid NH₃. (Ruff and Geisel, B. 1903, **36**. 820.)

Almost insol, in liquid NH₃ at 50°. (Moissan, C. R. 1901, **133**. 713.)
Sol, in methyl alcohol. (Carrara, Gazz. ch. it. 1896, **26**. 119.)

Ammonium hydrogen fluoride, NH₄F, HF. Deliquescent in moist air. Sol. in H₂O.

Ammonium antimony fluoride, 2NH₄F, SbF₅.

Deliquescent; sol. in 0.9 pt. cold H₂O.
Insol. in alcohol or ether. (Flückinger, A.

84. 248.)

NH₄F, 4SbF₃. 3 pts. sol. in 2 pts. H₂O.

(Raad and Hauser, B. 1890, 23. R. 125.)

NH₄F, SbF₅. Easily sol. in H₂O. (Marignac, A. 145. 239.)

Ammonium bismuth fluoride, 2NH₄F, BiF₃. Insol. in H₂O. Rather difficultly sol. in acids. (Helmholt, Z. anorg. 3. 115.)

Ammonium cadmium fluoride, NH₄F, CdF₂. Insol. in H₂O. Sol. in acids on boiling. (Helmholt, Z. anorg. 3. 115.)

Ammonium chromium fluoride, 3NH₄F, CrF₃.

Easily sol. in H_2O . Sl. sol. in NH_4F+Aq . (Petersen, J. pr. (2) 40. 52.) $2NH_4F$, CrF_3+H_2O . (Wagner, B. 19. 896.)

Ammonium cobaltous fluoride, 2NH₄F, CoF₂ +2H₂O.

Sl. sol. in H₂O. (Wagner, B. **19**. 896.) Easily sol. in H₂O. (Helmholt, Z. anorg. **3**. 132.)

Ammonium columbyl fluoride.

See Fluoxycolumbate, ammonium.

Ammonium columbium fluoride oxyfluoride, 3NH₄F, CbF₅, CbOF₃.

See Fluoxycolumbate columbium fluoride, ammonium.

Ammonium copper fluoride, $2NH_4F$, CuF_2+2H_2O .

Insol. in H_2O . (Helmholt, Z. anorg. 3. 115.)

Nearly insol. in H_2O but decomp. thereby. (Haas, Ch. Z. 1908, **32**. 8.)

Ammonium glucinum fluoride, 2NH₄F, GlF₂. Sol. in H₂O. (Marignac, A. ch. (4) **30.** 51.) Very sol. in H₂O. (Helmholt, Z. anorg. **3.** 130.)

Ammonium iron (ferrous) fluoride, 2NH₄F, FeF₂. (Wagner, B. 19. 896.) NH₄F, FeF₂+2H₂O. (W.)

Ammonium iron (ferric) fluoride, $2NH_4F$, FeF_3 .

More sol. in H₂O than the corresponding K compound. Decomp. by boiling. (Nicklès, J. Pharm. (4) 7. 15.)

3NH₄F, FeF₃. Sl. sol. in H₂O. (Marignac, A. ch. (3) 60. 306.)

Easily sol. in acids. (Helmholt, Z. anorg. 3. 124.)

Ammonium manganic fluoride, 2NH₄F, MnF₄.

More sol. than the K salt. (Nicklès, C. R 65. 107.)

Contract of the Contract of th

True composition is 4NH₄F, Mn₂F₆. (Christensen, J. pr. (2) 34. 41.)

See also Fluomanganate, ammonium.

Ammonium manganyl fluoride.

See Fluoxymanganate, ammonium.

Ammonium molybdenum fluoride.

Insol. in H₂O. Sol. in HCl+Aq. (Berzelius.)

See also Fluomolybdate, ammonium.

Ammonium molybdenyl fluoride.

See Fluoxymolybdate, ammonium.

Ammonium nickel fluoride, 2NH₄F, NiF₂+ 2H₂O.

Sol. in H₂O. (Wagner, B. 19. 896.) Easily sol. in H_2O . (Helmholt, Z. anorg. 3. 143.)

Ammonium scandium fluoride, (NH₄)₈ScF₆. Easily sol. in H₂O. Aqueous solution is not decomp. by boiling. Decomp. by acids. (R. I. Meyer, Z. anorg. 1914, 86. 275.)

Ammonium silicon fluoride.

See Fluosilicate, ammonium.

Ammonium silver fluoride, 2NH4F, AgF+ H₂O.

Not hydroscopic. Sol. in H₂O; sol. in conc. NH₄F+Aq. Sol. in alcohol. (Grützner, Arch. Pharm. 1900, 238. 3.)

15NH₄F, AgF+4H₂O. More deliquescent than NH₄F. (Böhm, Dissert. 1906.)

Ammonium tantalum fluoride.

See Fluotantalate, ammonium.

Ammonium tantalyl fluoride.

See Fluoxytantalate, ammonium.

Ammonium tellurium fluoride, NH₄F, TeF₄. Decomp. by H₂O. (Högbom, Bull. Soc. (2) **35.** 60.)

Ammonium tin (stannous) fluoride, 2NH₄F, SnF2+2H2O.

Sol. in H₂O. (Wagner, B. 19. 896.)

Ammonium tin (stannic) fluoride, 2NH4F, SnF_4 .

See Fluostannate, ammonium.

Ammonium titanium sesquifluoride. See Fluotitanate, ammonium.

Ammonium titanyl fluoride.

See Fluoxypertitanate, ammonium.

Ammonium tungstyl fluoride.

See Fluoxytungstate, ammonium.

Ammonium uranyl fluoride. See Fluoxyuranate, ammonium.

Ammonium vanadium sesquifluoride. See Fluovanadate, ammonium.

Ammonium vanadyl fluoride.

Scc Fluoxyvanadate, ammonium.

Ammonium zinc fluoride, 2NH₄F, ZnF₂. Sol. in H_2O . (R. Wagner.)

+2H₂O. Very sl. sol. in H₂O. Easily sol. in dil. acids. (Helmholt.)

Ammonium zirconium fluoride. Sec Fluozirconate, ammonium.

Ammonium fluoride manganic oxyfluoride, 2NH₄F, MnOF₂.

Precipitate. (Nicklès.)

Sec also Fluoxymanganate, ammonium.

Ammonium fluoride molybdenum trioxide, 2NH₄F, M₀O₃.

Decomp. by H₂O. (Mauro, Gazz. ch. it. **18.** 120.)

Ammonium fluoride tungsten oxyfluoride. See Fluoxytungstate, ammonium.

Ammonium fluoride tungsten oxyfluoride ammonium tungstate, 4NH₄F, WO₂F₂, (NH₄)₂WO₄.

See Fluoxytungstate tungstate, ammonium.

Ammonium fluoride vanadium oxyfluoride.

See Fluoxyvanadate, and fluoxyhypovanadate, ammonium.

Ammonium hydroselenide, NH4HSe. Sol. in H₂O with decomp. (Bineau, A. ch.

(2) 67. 229.)

Ammonium hydrosulphide, NH4SH.

Sol. in H₂O and alcohol. Solutions decomp. on air.

Ammonium hydroxide, NH4OH. See Ammonia,

Ammonium imidosulphamide, $(S_2O_4N_3H_4)NH_4.$

(Hantzsch, B. 1905, 38. 1033.)

Ammonium iodide, NH₄I.

Very deliquescent. Sol. in 0.60 pt. H_2O . (Eder, Dingl. 221. 89.)

Sp. gr. of aqueous solution of NH₄I at 18° containing

50%NH4I. 10 1.0652 1.1397 1.2260 1.3260 1.4415 (Kohlrausch, W. Ann. 1879. 1.)

NH₄I+Aq containing 12.51% NH₄I has

sp. gr. 20°/20° =1.0846. NH₄I+Aq containing 19.19% NH₄I has sp. gr. 20°/20° =1.1359.

(Le Blanc and Rohland, Z. phys. Ch. 1896, **19.** 279.)

Very easily sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20. 826.)

Very sol. in liquid NH₃ at -50°. (Moissan, C. R. 1901, 133. 713.)

Sol. in SOCl₂. (Walden, Z. anorg. 1900, **25**. 216.)

Sol. in liquid SO₂. (Walden, Z. anorg.

1902, **30.** 160.)

Sol. in 4.0 pts. abs. alcohol. (Eder, l.c.) ether. (Eder, l.c.)

" 210 " 20 " alcohol-ether (1:1). (Eder,

Sol. in acetone. (Eidmann, C.C. 1899, II. 1014.); (Naumann, B. 1904, 37. 4328.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

Sl. sol. in benzonitrile. (Naumann, B. 1914, 47. 1369.)

Ammonium diodide, NH₄I₂.

Sol. in alcohol, ether, CS₂, and KI+Aq; less sol. in chloroform. (Guthrie, Chem. Soc. **(2) 1.** 239.)

Ammonium triiodide, NH₄I₃.

Sl. deliquescent. Sol. in little H₂O, but decomp. by much H₂O. (Johnson, Chem. Soc. **33.** 397.)

Ammonium antimony iodide, NH₄I, SbI₃+ 2H₂O.

Decomp. by H₂O. (Nicklès, C. R. 51. 1097.)

3NH₄I, 4SbI₃+9H₂O. Decomp. by H₂O, with separation of SbOI. Sol. in HC₂H₃O₂, HCl, and H₂C₄H₄O₆+Aq. Decomp. by CS₂. (Schäffer, Pogg. 109. 611.)

3NH₄I, SbI₈+3H₂O. As above. 4NH₄I, SbI₈+3H₂O. As above.

Ammonium bismuth iodide, NH₄I, BiI₃+ H₂O.

Deliquescent; decomp. by H₂O. (Nicklès,

C. R. **51.** 1097.) 4NH₄I, BiI₃+3H₂O. As above. (Linau,

Pogg. 111. 240.) $2NH_4I$, $BiI_3+2\frac{1}{2}H_2O$. Decomp. by H_2O , or MCl, MBr, or MI+Aq. (Nicklès, J. pr. (2) **39.** 116.)

Ammonium cadmium iodide, 2NH₄I, CdI₂+ 2H₂O.

Deliquescent. (Croft.)

Sol. at 15° in 0.58 pt. H₂O, 0.70 pt. abs. alcohol., 8.9 pts. ether (sp. gr. 0.729), and 1.8 pts. alcohol-ether (1:1). (Eder, Dingl. **221.** 89.)

100 pts. of the solution in H₂O contain 85.97 pts. of the salt at 14.5°. (Rimbach, B. 1905, **38.** 1563.)

NH₄I, $CdI_2+\frac{1}{2}H_2O$. Sol. at 15° in 0.90 pt. H₂O, 0.88 pt. abs. alcohol, and 2.4 pts. ether (sp. gr. 0.729). (Eder, l.c.) +H₂O. (Grossmann, Z. anorg. 1902, 33.

154.)

chloromolybdenum iodide, Ammonium $2NH_4I$, $Cl_4Mo_8I_2+2H_2O$.

Decomp. by H₂O. Cryst. from HI+Aq. (Blomstrand.)

Ammonium cuprous iodide, 2NH₄I, Cu₂I₂+ H₂O.

Decomp. on the air, or by H_2O , or alcohol. (Saglier, C. R. 104. 1440.) $+\frac{1}{2}H_2O$. Decomp. by H_2O with separa-

tion of Cu₂I₂. (Gossner, Zeit. Kryst. 1903, 38. 501.)

Ammonium cupric iodide ammonia, 2NH₄I, CuI_2 , $2NH_3+2H_2O$.

Insol. in H₂O or alcohol; sl. sol. in NH₄OH +Aq.

+6H₂O. Unstable. (Saglier, C. R. 104. 1440.)

NH₄I, 2CuI₂, 3NH₃. (Fleurent, C. R. 1891, **113.** 1047.)

Ammonium iridium diiodide, 2NH₄I, IrI₂. Insol in cold or hot H₂O, and in alcohol. Sol. in warm dil. acids. (Oppler.)

Ammonium iridium sesquiiodide. See Iodiridite, ammonium.

Ammonium iridium tetraiodide. See Iodiridate, ammonium.

Ammonium lead iodide, NH_4I , PbI_2+2H_2O . Decomp. by much H₂O. (Wells, Sill. Am.

J. 146. 25.) 4NH4I,3PbI2+6H2O. Sl. sol. in H_2O . (Mosnier, C. R. 1895, 120. 444.)

Sol. in H₂O with decomp. Sol. in strong KOH+Aq and in strong acids. (Fonzes-Diacon, Bull. Soc. 1897, (3) 17. 347.)

Ammonium magnesium iodide, NH₄I, MgI₂ +6H₂O.

Very deliquescent. (Lerch, J. pr. (2) 28. 338.)

Ammonium mercuric iodide, NH₄I, HgI₂+ H_2O .

Decomp. into its constituents by H_2O . (Boullay, A. ch. (2) 34. 345.)

Sol. without decomp. in alcohol and ether. NH₄I, 2HgI₂. Decomp. by H₂O. Sol. in Very sol. in alcohol, ether and KI+Aq. nitrobenzol. (Löw, Zeit. Kryst, 51. 138.)

Ammonium silver iodide, 2NH₄I, AgI.

Deliquescent. Decomp. by H₂O. (Poggiale.)

Ammonium thallic iodide, NH₄I, TlI₈. Sol. in H₂O. (Nicklès, J. Pharm. (4) 1. 32.)

Ammonium tin (stannous) iodide, NH₄I, SnI₂.

Decomp, by small amt, H₂O but completely sol. in a large amt. (Boullay, A. ch. (2) 34. 376.)

 $+1\frac{1}{2}H_2O$. (Personne.)

Ammonium zinc iodide, 2NH₄I, ZnI₂.

Extremely deliquescent, and sol. in H₂Q. (Rammelsberg, Pogg. 43. 665.)

X R RES

S S

S 2222 T

NH₄I, ZnI₂+4½H₂O, Hydroscopic. (Ephraim, Z. anorg. 1910, 67. 384.)

Ammonium iodide arsenic trioxide. See Arsenite iodide, ammonium.

Ammonium cobalt nitride. See Ammonium cobalt azoimide.

Ammonium ruthenium dihydronitrosobromide, NO.Ru₂H₂(NH₃)₆Br₃.2HBr.

Ppt. (Brizard, A. ch. 1900, (7) 21. 363.)

Ammonium ruthenium nitrosochloride, 3NH₄Cl.2HCl.NORu₂H₂Cl₃.

Ppt. (Brizard, A. ch. 1900, (7) 21. 354.)

Ammonium ruthenium dihydronitrosochloride, NO.Ru₂H₂(NH₃)₆Cl₃.2HCl.

Ppt. (Brizard, A. ch. 1900, (7) 21, 358.)

Ammonium peroxide, $(NH_4)_2O_2$.

M.-pt. -2°. Sl. sol. in ether without decomp. (D'Ans, B. 1913, 46. 3076.)

Sol. in alcohol; insol. in ether; decomp. slowly in aq. solution. (Melikoff, B. 1897, 30.

Ammonium hydrogen peroxide, (NH₄)₂O₂, H₂O₂.

Decomp. at ordinary temp. (Melikoff, B. 1898, **31.** 447.)

+H2O. Unstable; deliquesces at ordinary temp.; sol. in alcohol; insol. in light petroleum. (Melikoff, B. 1898, 31, 152.)

Ammonium selenide, (NH₄)₂Se.

Sol. in H2O with decomp. (Bineau, A. ch. (2) 67. 229.)

Stable in the air. Sol. in H₂O; aq. solution decomp. slowly. (Lenher and Smith, J. Am. Chem. Soc. 1898, 20. 277.)

Ammonium hydrogen selenide, NH4HSe. Sol. in H₂O. (Fabre, C. R. 103, 269.)

Ammonium monosulphide, (NH₄)₂S.

Decomp. on air. Sol. in H₂O, but solution decomposes rapidly.

Very sol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, **20.** 826.)

Ammonium disulphide, (NH₄)₂S₂.

Sol. in H2O with decomp. Does not exist. (Bloxam, Chem. Soc. 1895, **67.** 293.)

Ammonium tetrasulphide, (NH₄)₂S₄.

Easily sol. in H2O. Conc. solution is stable, dil. solution decomp. on air. Easily sol. in alcohol without decomp., but solution decomp. on the air more rapidly than the aqueous solution. (Fritzsche, J. pr. 32. 313.) + 14 H₂O. When dissolved in H₂O, it is at

once dissociated with deposition of S. (Blox-

am, Chem. Soc. 1895, 67. 303.)

Ammonium pentasulphide, (NH₄)₂S₅.

Decomp. on air. Sol. in H2O with separation of S. Sol. in alcohol without decomp., but solution decomposes quickly on standing. (Fritzsche, J. pr. 32. 313.)

Rapidly decomp. by H₂O with separation

of S. (Bloxam, Chem. Soc. 1895, 67. 298.) +H₂O. Decomp. by H₂O with separation of S. (Bloxam, Chem. Soc. 1895, 67. 298.)

Ammonium heptasulphide, (NH₄)₂S₇.

More stable on air, and less easily decom-

posed by H_2O than $(NH_4)_2S_5$. +1\(^1/_8H_2O. Decomp. by H_2O with separa-

tion of S. Slowly attacked by dil. HCl+Aq. (Bloxam, Chem. Soc. 1895, 67. 307.)

Tetrammonium heptasulphide, (NH₄)₄S₇+ 4H₂O.

Sol. in H₂O. Solution can be kept for a long time without depositing S. (Bloxam, Chem. Soc. 1895, 67. 298.)

Diammonium enneasulphide, (NH₄)₂S₉+ ½H₂O.

Decomposed by H₂O with separation of S. Not attacked by boiling dil. HCl+Aq on account of formation of a hard crust of S on the crystals. (Bloxam, Chem. Soc. 1895, **67.** 306.)

Tetrammonium enneasulphide, (NH₄)₄S₉.

Solution in H₂O deposits crystals of $(NH_4)_2S_5$ on standing. (Bloxam, Chem. Soc. 1895, 67. 302.)

+3½H₂O. Decomp. by H₂O with separation of S. (Bloxam, Chem. Soc. 1895, 67. 299.)

Ammonium polysulphides.

Conc. NH₃+Aq dissolves H₂S to form (NH₄)₂S,2NH₄SH. On dilution more H₂S is absorbed to form (NH₄)₂S,4NH₄SH, then (NH₄)₂S,8NH₄SH, then (NH₄)₂S,18NH₄SH and finally NH4SH. (Bloxam, Chem. Soc. 1895, 67. 284.)

Ammonium sulphide, copper $(NH_4)_2S$ 2CuS₃ (?).

Sol. in warm H₂O, but decomp. on standing. Warm KOH+Aq acts similarly; sl. sol. in NH₄OH+Aq, Na₂CO₃+Aq, or absolute alcohol. Insol in ether. Decomp. by dil. acids. (Priwoznik, B. 6. 1291.)

Correct formula is NH_4CuS_4 . Sl. sol. in H_2O . Decomp. by conc. and dil. acids. Easily sol. in NaOH. Sl. sol. in alcohol. (Biltz, B. 1907, 40. 976.)

Ammonium gold polysulphide, AuS:NH4.

(Hofmann, B. 1903, 36. 3092; B. 1904, 37. 245.)

Ammonium iridium pentadecasulphide, $IrS_{15}(NH_4)_3$.

Ppt. (Hofmann, B. 1904, **37.** 247.)

Ammonium palladium undecasulphide, $PdS_{11}(NH_4)_2 + \frac{1}{2}H_2O$.

Ppt. (Hofmann, B. 1904, 37. 248.)

Ammonium platinum pentadecasulphide, PtS₁₅(NH₄)₂+2H₂O.

Can be washed with CS₂ without decomp. Sol. in alcohol. Insol. in ether. (Hofmann, B. 1903, **36**. 3091.)

Ammonium stannic sulphide.

See Sulphostannate, ammonium.

Ammonium telluride, NH4HTe.

Easily sol. in H_2O . (Bineau, A. ch. (2) 67. 229.)

Ammonium sulphide ammonia, $(NH_4)_2S$, $2NH_8$.

Very unstable. (Bloxam, Chem. Soc. 1895, 67. 294.)

Ammonium acisulphomelid, (NSO.ONH₄)₈ (?).

(Hantzsch and Stuer, B. 1905, 38. 1039.)

Ammonplatindiamine comps.

See Platintriamine comps.

Ammondisulphonic acid, NH₃(SO₃H)₂.

Known only in its salts. (Claus, A. 158. 52 and 194.)

Contains 2 at. H less, and is identical with imidosulphonic acid NH(SO₂H)₂, which see. (Raschig, A. **241**. 161.)

Ammontrisulphonic acid, NH₂(SO₃H)₃.

Known only in its salts. (Claus, A. 158. 52 and 194.)

Contains 2 at. H less, and is nitrilosulphonic acid N(SO₃H)₃, which see. (Raschig, A. **241**. 161.)

Ammontetrasulphonic acid, NH(SO₃H)₄.

Known only in its salts. (Claus, A. 158. 52 and 194.)

Does not exist, but was impure nitrilosulphonic acid, which see. (Raschig, A. 241. 161.)

Anhydroarseniotungstic acid, H₈AsW₈O₂₈. See under Arseniotungstic acid.

Anhydrooxycobaltamine chloride,

 $\text{Co}_2(\text{NH}_3)_{10} \begin{bmatrix} \text{Cl} \\ \text{O(OH)} \end{bmatrix} \text{Cl}_4 + \text{H}_2\text{O}.$

Easily sol. in H₂O, but decomposes after a few minutes; can be recrystallized from dil. HCl+Aq. Precipitated from sat. H₂O solution by conc. HCl+Aq, or alcohol. (Vortmann, M. Ch. 6. 404.)

Co₂(NH₃)₁₀ (Cl₁)Cl₄. Sol. in H₂O. (Vortmann.)

Anhydrooxycobaltamine chloride mercuric chloride, Co₂(NH₃)₁₀(ClO₂H)Cl₄, 3HgCl₂.

Can be recryst. from very dil. hot HCl+Aq.

Can be recrystallized from H₂O containing HCl.

---- chloronitrate,

 $Co_2(NH_3)_{10}CI(O.OH)(NO_3)_4+H_2O.$

Can be recrystallized from dil. HCl+Aq. Co₂(NH₃)₁₀Cl(O.OH)Cl₂(NO₃)₂+H₂O. More easily sol. in H₂O than the preceding

comp.

chlorosulphate,

Co₂(NH₃)₁₀Cl(O.OH)(SO₄)₂.

- dichromate, [Co₂(NH₃)₁₀O.OH]₂(Cr₂O₇)₅ +8H₂O. Sl. sol. in H₂O.

---- nitrate, $Co_2(NH_3)_{10}(NO_3)(O.OH)(NO_3)_4$ + $H_2O.$

Sl. sol. in pure H_2O with immediate decomp. Can be recrystallized from H_2O containing HNO_3 .

Sl. sol. in cold H₂O. When crystallized from dil. H₂SO₄+Aq, is converted into—[Co₂(NH₂)₁₀O.OH]₂(SO₄)₅,H₂SO₄+3H₂O, which by further recrystallization from very

dil. H_2SO_4+Aq becomes—
[$Co_2(NH_3)_{10}O.OH]_2(SO_4)_5+8H_2O.$ Sl. sol. in cold $H_2O.$ (Vortmann.)

Anhydrophospholuteotungstic acid, H₃PW₅O₂₃.

See under Phosphotungstic acid.

Antimonic Acid.

Metantimonic acid, HSbO₃.

Very sl. sol. in H₂O; sol. in conc. HCl+Aq; sl. sol. in dil. HNO₃+Aq; easily sol. in tartaric acid+Aq; easily sol. in hot KOH, or NaOH+Aq; completely insol. in NH₄OH+

NaOH+Aq; completely insol. in NH₄OH+Aq; (Fremy, A. ch. (3) 23. 407.)

Sl. sol. in H₂O. Very sl. sol. in KOH and K₂CO₂+Aq. Insol. in NH₄OH+Aq. Insol. in HNO₃+H₂SO₄. Slowly sol. in cold, quickly in hot HCl+Aq. Sl. sol. in tartaric and oxalic acid and in KHC₂O₄+Aq. (Senderens, Bull. Soc. 1899, (3) 21. 48.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Pyroantimonic acid, H₄Sb₂O₇.

More sol. in H₂O and acids than H₃SbO₄. Sol. in cold NH₄OH, or KOH+Aq. (Fremy.) Slowly sol. in cold H₂O.

5.88 g. Sb₂O₅ in 1 l. H₂O at 15° 8.55 " " 1 l. " "25° 21.30 " " 1 l. " 60° (Delacroix, J. Pharm. 1897, **6**. 337–41.) X R

RHS

S

S

S

S

8

rozo

Sl. sol. in H₂O. Very sl. sol. in KOH and K₂CO₈+Aq. Insol. in NH₄OH+Aq, and in HNO₈+H₂SO₄. Slowly sol. in cold, quickly in hot HCl+Aq. Sl. sol. in tartaric acid, oxalic acid and KHC₂O₄+Aq. (Senderens, Bull. Soc. 1899, (3) 21. 48.)

Orthoantimonic acid, H₃SbO₄.

Sl. sol. in H₂O. Insol. in NH₄OH+Aq. Easily sol. in KOH+Aq. (Fremy.)

Does not exist. (Raschig, B. 18. 2745.) Has, however, been prepared by Daubrawa (A. 186. 110), Conrad (C. N. 40. 198), and Beilstein and Blaese (Bull. Ac. St. Petersb.

Very sol. in H₂O. (Delacroix, Bull Soc. 1899 (3) 21. 1049.)

Very sl. sol. in H₂O, in KOH and K₂CO₃+Aq. Slowly sol. in cold, quickly in hot HCl+Aq. Insol. in NH₄OH+Aq, and in HNO₃+H₂SO₄. Sl. sol. in tartaric acid, oxalic acid and KHC₂O₄+Aq. (Senderens, Bull. Soc. 1899, (3) 21. 52.)

+½H₂O. (Beilstein and Blaese.)

According to Beilstein and Blaese only one antimonic acid, H₃SbO₄, exists.

Tetrantimonic acid, $Sb_2O_5+4H_2O=H_8Sb_2O_9$. Slowly sol. in cold H₂O.

Solution sat. at to contains g. Sb2O5 per

litre-70° g. Sb₂O₅ 5.88 8.3-8.75 21.3053.89Decomp. in solution by heating to 100° or

Decomp. in solution by neating to 100° or long standing in the cold to Sb₂O₅, 3H₂O_. (Delacroix, Bull. Soc. 1899, (3) 21. 1049.)
Insol. in H₂O. Very sl. sol. in KOH and K₂CO₃+Aq. Slowly sol. in cold, quickly in hot HCl+Aq. Insol. in NH₄OH+Aq. Insol. in HNO₃+H₂SO₄. Sl. sol. in tartaric acid, oxalic acid and in KHC₂O₄+Aq. (Senderens, Bull. Soc. 1899. (3) 21. 51.) Bull. Soc. 1899, (3) 21. 51.)

Hexantimonic acid, $Sb_2O_5 + 6H_2O =$ H₁₂Sb₂O₁₁.

Sol. in H₂O to the extent of 22 g. Sb₂O₅ per l. but on standing becomes turbid and a white powder is pptd. until finally only 3 g. Sb₂O₅ are dissolved per l. (Senderens, Bull. Soc. 1899, (3) 21. 48-49.)

Antimonates.

a. Antimonates. From HSbOs. Some of the K and NH4 salts are sol. in H2O, the others are slightly sol. or insol.

β. Pyroantimonates. From H₄Sb₂O₇. As a class, insol. in H₂O, but decomp. thereby except in presence of large excess of alkali. (Fremy, A. ch. (3) 12. 499.)

Probably do not exist. (Beilstein and Blagse.)

Aluminum antimonate, Al₂O₃, 3Sb₂O₅ (?).

Ppt. Somewhat sol. in excess of Al salts + Aq. Insol. in $K_3Sb_2O_7+Aq$. Insol. in H_2O . Loses $3H_2O$ in the presence $Al(SbO_3)_3+15H_2O=AlH_6(SbO_4)_3+12H_2O$. Insol. in H_2O . Loses $3H_2O$ in the presence of H_2SO_4 and passes into $Co(SbO_3)_2+2H_2O$,

(Beilstein and Blaese, Bull. Ac. St. Ppt. Petersb. 33. 101.

 $Al(SbO_3)_3 + 7\dot{H}_2O = AlH_6(SbO_4)_3 + 4H_2O.$ Ppt. (B. and B.)

Al₂O₃, Sb₂O₅+9H₂O. Ppt. (Ebel, B. 22. 3043.)

Ammonium antimonate, NH₄SbO₃+2H₂O, Insol. in H_2O

 $+2\frac{1}{2}H_2O$. Insol. in H_2O . (Senderens, Bull. Soc. 1899, (3) **21.** 56.) +6 H_2O . See (NH₄)₂ $H_2Sb_2O_7+5H_2O$.

Ammonium pyroantimonate, (NH₄)₄Sb₂O₇.

Known only in solution. (NH₄)₂H₂Sb₂O₇+5H₂O.

Sol. in H₂O, but decomp. by standing or boiling into insol. salt. Insol. in alcohol. (Fremy, J. pr. 45. 215). Composition is NH₄SbO₃+6H₂O, according to Raschig (B. 18. 2743).

Barium antimonate, Ba(SbO₃)₂.

Ppt. Scarcely sol. in H2O. Slowly sol. in BaCl₂+Aq.

 $+2H_{2}O.$ Somewhat sol. in H₂O. Easily sol. in HCl+Aq. (Delacroix, Bull. Soc. 1899, (3) **21.** 1051.)

+5, or 6H₂O. Ppt. BaSb₄O₇+5H₂O. Sol. in conc. HCl. (Delacroix, Bull. Soc. 1899, (3) 21. 1051.) BaO, 3Sb₂O₅+5H₂O. Insol. in H₂O. In-

completely sol. in HCl. (Delacroix, l.c.)

BaO, $4\text{Sb}_2\text{O}_5 + 15\text{H}_2\text{O}$. (Delacroix, *l.c.*) 9BaO, $10\text{Sb}_2\text{O}_5 + 18\text{H}_2\text{O}$. Insol. in HCl+ Aq. (Delacroix, l.c.)

Bismuth antimonate, BiSbO₄+H₂O.

Insol. in H₂O; sol. in HCl+Aq. (Cavazzi, Gazz. ch. it. 15. 37.) $3Bi_2O_3$, $Sb_2O_5+H_2O$. Insol. in H_2O ; sol. in HCl+Aq. (Cavazzi.)

2Bi₂O₃, Sb₂O₅. As above. (Cavazzi.)

Cadmium antimonate, $Cd(SbO_3)_2 + 2H_2O$.

Insol. in H₂O. (Senderens, Bull. Soc. 1899, (3) **21.** .56.)

 $+3\frac{1}{2}H_2O$. Very sol. in H_2O . Sol. in HCl +Aq. (Ebel, Dissert. 1890.) + $5H_2O$. Insol. in H_2O . (Senderens, l.c.)

+6H₂O. Ppt. Insol. in H₂O. (Ebel, B. **22.** 3043.)

Calcium antimonate, Ca(SbO₃)₂.

 $+5\mathrm{H}_2\mathrm{O}$. Ppt. (Heffter, Pogg. 86. 418.) $+6\mathrm{H}_2\mathrm{O}$. Insol. in $\mathrm{H}_2\mathrm{O}$. (Senderens, Bull. Soc. 1899, (3) 21. 56.)

3CaO, 2Sb₂O₅+6H₂O. Min. Ullmanite.

Chromic antimonate, Cr(SbO₃)₃+14H₂O. Ppt. (Beilstein and Blaese.)

also insol. in H₂O. (Senderens, Bull. Soc. 1899, (3) 21. 55.)

+6H₂O. Ppt. (Ebel, B. **22**. 3043.) +7H₂O. Sl. sol. in H₂O. Sl. sol. in boiling solutions of cobalt salts.

+12H₂O. Ppt. (Heffter, Pogg. 86. 448.)

Cobaltous hydrogen antimonate, CoH₄(SbO₄)₂ $+H_2O.$

(Gorgeul, Ann. Phys. Beibl. 1897, 21. 198.)

Cupric antimonate, 3CuO, 2Sb₂O₅.

Ppt. (Beilstein and Blaese.) Cu(SbO₃)₂. Insol. in H₂O, acids, or alkalies. (Berzelius.)

+2H₂O. Insol. in H₂O. (Senderens, Bull.

Soc. 1899, (3) 21. 55.) +5H₂O. Ppt. (Ebel, B. 22. 3043.) Insol. in H₂O. (Senderens, *l.c.*)

CuO, 2Sb₂O₅+9H₂O. Insol. in H₂O. Sol. in Sb₂O₅, 4H₂O+Aq. (Delacroix, Bull. Soc.

1899, (3) **21.** 1054.) 2CuO, 3Sb₂O₅+10H₂O. Insol. in H₂O. Sol. in NH₄OH and in *tri*antimonic acid+Aq. (Delacroix, l. c.

CuO, 6Sb₂O₅+16H₂O. (Delacroix, l.c.)

Cupric antimonate ammonia, Cu(SbO₃)₂, $4NH_3+4H_2O$.

Insol. in H₂O and NH₄OH+Aq. (Schiff, A. 123. 39.) $CuSb_2N_8H_{21}O_{12} = Cu(ONH_4)OH$

 $2(NH_4SbO_3+2H_2O)$. (Raschig, B. 18. 2743.) Cu(SbO₈)₂,3NH₃+9H₂O. (Delacroix, Bull. Soc. 1901, (3) 25. 289.)

Glucinum antimonate, Gl(SbO₃)₂+6H₂O. Somewhat sol. in hot H₂O. Easily sol. in warm HCl. (Ebel, Dissert. 1890.)

Iron (ferrous) antimonate. Sl. sol. in H₂O. (Berzelius.)

Iron (ferric) antimonate.

Insol. in H₂O. (B.) Fe_2O_3 , $Sb_2O_5+7H_2O$. Ppt. (Ebel, B. 22.) 3043.)

 Fe_2O_3 , $2Sb_2O_5+11H_2O$. Ppt. (Beilstein and Blaese.) $Fe(SbO_3)_3 + 6\frac{1}{2}H_2O$. Ppt. (B. and B.)

Lead antimonate, basic, $Pb_3(SbO_3)_2(OH)_4 + 2H_2O = Pb_3(SbO_4)_2 + 4H_2O$.

Min. Bleinerite, Bindheimite. $2Pb(SbO_3)_2$, $PbO+11H_2O$. Ppt. (B. and

Lead antimonate, Pb(SbO₃)₂.

1

Insol. in H₂O. Incompletely decomp. by acids. (Berzelius.)

Naples Yellow. Insol. in H₂O.

 $+2H_2O$. Insol. in H_2O . (Senderens, Bull. Soc. 1899, (3) 21. 57.) +5**H**₂O. ` Ppt. (Ebel, B. 22. 3043.)

+6H₂O. Ppt. (Beilstein and Blaese.) $+9H_2O$. Insol. in H_2O . (Senderens, *l.c.*) Lead antimonate chloride, Pb(SbO₃)₂, PbCl₂. Min. Nadorite. Sol. in HCl, HNOs, and tartaric acid + Aq.

Lithium antimonate, LiSbO₃.

Sl. sol. in cold, sol. in hot H₂O, and crystallizes on cooling. Much more sol. than NaSbOa

+3H₂O. Ppt. Sl. sol. in H₂O. (Beilstein and Blaese.)

Magnesium antimonate, $Mg(SbO_3)_2 + 12H_2O$.

Sol. in hot, less sol. in cold H₂O. (Heffter.) Sol. in MgSO₄+Aq; insol. in KSbO₃+Aq. (Berzelius.)

Manganous antimonate, Mn(SbO₃)₂.

Difficultly sol. in H2O.

When heated, is sol. only in strong acids. +2H₂O. Insol. in H₂O. (Senderens, Bull. Soc. 1899, (3) 21. 56.

+5H₂O. Ppt. (Ebel, B. 22. 3043.) +6H₂O. Insol. in H₂O. (Senderens, *l.c.*) +7H₂O. Ppt. (Beilstein and Blaese.)

Mercurous antimonate.

Insol. in H₂O. (Berzelius.)

Mercuric antimonate, Hg(SbO₃)₂.

Insol. in H₂O, alkalies, and most acids. Sl. attacked by boiling H2SO4, and HCl+

+2H₂O. Insol. in H₂O. (Senderens, Bull. Soc. 1899, (3) 21. 55.)

 $+5H_2O$. Insol. in H₂O. (Senderens.) +6H₂O. Ppt. (Beilstein and Blaese.)

Nickel antimonate, Ni(SbO₃)₂+2H₂O.

Insol. in H₂O. (Senderens, Bull. Soc. 1899, (3) 21. 54.)

+5H₂O. Insol. in H₂O. (Senderens.) +6H₂O. Ppt. Insol. in H₂O. (Heffter, Pogg. 86, 446.) $+12H_2O$. Sl. sol. in H_2O . (Heffter.)

Potassium antimonate, KSbO₃.

Insol. in H₂O. Sol. in warm KOH+Aq, but separates nearly completely on cooling. By boiling with H₂O, or by standing for a long time with cold H2O, it gradually dissolves as 2KSbO₃+5H₂O, or K₂H₂Sb₂O₇+4H₂O, or $2KH_2SbO_4+3H_2O.$

Insol. in CS2. (Arctowski, Z. anorg. 1894, **6.** 257.)

 $+H_2O.$ Insol. in H₂O. (Senderens, Bull. Soc. 1899, (3) 21. 57.)

 $+1\frac{1}{2}H_2O'(=2KSbO_3+5H_2O)$ of Fremy). Easily sol. in H₂O, especially if warm. Solution is pptd: by NH₄Cl+Aq. (Fremy, A. ch. (3) 12. 499.)

 $+2\frac{1}{2}H_2O$. 100 pts. H_2O at 20° dissolve 2.81 pts. anhydrous salt; sp. gr. of solution * sat. at 18°=1.0263. Composition is given as K₂H₂Sb₂O₇+4H₂O. (Knorre and Olschewsky, B. 20. 3043.)

 $+3\frac{1}{2}H_2O$. Insol. in H_2O . (Senderens, *l.c.*)

Sl. sol. in H₂O.

(Naumann, B.

(Naumann, B.

pyroantimonate.

sulphantimonate,

AgH₂SbO₄.

 $+4\frac{1}{2}H_2O$.

J. 1898, **20.** 829.)

1909, 42. 3790.)

1904, 37. 3601.)

K₂H₂Sb₂O₇.

Potassium

II. 1014.)

2358.)

4329.)

Pharm. 1897, (6) 6. 533.)

 $2K_2O$, $3Sb_2O_5 + 10H_2O$.

Insol. in methyl acetate.

Insol. in ethyl acetate.

hydrogen

antimonate

 $KSbO_3$, $K_3SbS_4 + 5H_2O$.

(Delacroix, J. Pharm. 1897, 6. 337.) +10H₂O. (Delacroix, l.c.)

Potassium pyroantimonate, K₄Sb₂O₇.

Sol. in H₂O.

Deliquescent; decomp. by boiling with H2O into KSbO₈+5H₂O, by cold H₂O into K₂H₂Sb₂O₇+6H₂O. (Fremy.)
Does not exist. (Knorre and Olschewsky.)

Insol. in liquid NH3. (Franklin, Am. Ch.

Insol. in acetone. (Naumann, B. 1904, 37.

Insol. in acetone. (Eidmann, C. C. 1899,

+3½H₂O. Very difficultly sol. in hot or cold H₂O. (Knorre and Olschewsky, B. 18.

+6H₂O. Quite difficultly sol. in cold H₂O. Not precipitated by NH4Cl+Aq. Aqueous solution gradually decomposes. (Fremy.) +4H₂O. See 2KSbO₃+5H₂O.

Decomp. on air, and with cold H₂O. Sol.

 $+2\frac{1}{2}H_2O$. (Senderens, Bull. Soc. 1899, (3) **21.** 57.)

S 7

in hot H₂O. (Rammelsberg.) Silver antimonate.

Insol, in H_2O . (Berzelius.) $AgSbO_3+3H_2O=AgH_2SbO_4+2H_2O$. Eas-

Potassium

ily sol. in NH4OH+Aq, when freshly pptd. (Beilstein and Blaese.)

 $+1\frac{1}{2}H_2O$. Ppt. (Ebel, B. 22. 3043.)

Silver antimonate ammonia,

 $2NH_8+H_2O.$ (Beilstein and Blaese.)

Sodium antimonate, NaSbO₃.

Sol. in much H₂O, but soon becomes decomposed into Na₂H₂Sb₂O₇, +3¹ZH₂O, composition of Na₂H₂Sb₂O₇+

6H₂O, according to Beilstein and Blaese.

1000 pts. $H_2\bar{O}$ dissolve 0.31 pt. NaSbO₈+

3½H2O at 12.3°

1000 pts. alcohol of 15.8% dissolve 0.13 pt. NaSbO₃+3½H₂O at 12.3°.
1000 pts. alcohol of 25.6% dissolve 0.07 pt. NaSbO₃+3½H₂O at 12.3°.

tated.

Somewhat more sol. when freshly precipi-

Absolutely insol, in glacial HC₂H₃O₂.

Presence of NaOH or Na salts diminish solubility, while NH₄OH or K salts increase it | peau, C. R. 1896, 123. 1066.)

(Delacroix, J. slightly. (Beilstein and Blaese, Bull. Ac. St. Petersb. 33, 201.)

 $+4\frac{1}{2}H_2O$. Sol. in H_2O . (Delacroix, Bull. Soc. 1899, (3) 21. 1051.) $2Na_2O$, $3Sb_2O_5+10H_2O$. (Delacroix, *l. c.*) Na_2O , $3Sb_2O_5+11H_2O$. (Delacroix, *l. c.*)

um *pyro*antimonate, 6H₂O. Na₂H₂Sb₂O₇+ Sodium

Boiling H₂O dissolves $\frac{1}{350}$ pt. of this salt. (Fremy.) 1000 pts. H₂O dissolve 2.5 pts. salt. (Ebel, B. 22. 3044.) See also NaSbO2+ 31⁄6H₂O.

+5H₂O. (Knorre and Olschewsky.)

Strontium antimonate, $Sr(SbO_3)_2 + 6H_2O$.

Ppt. Less sol. in H₂O than SrSO₄. (Heffter, Pogg. 86. 418.)

Thallous antimonate, $TlSbO_3+2H_2O=$ $TlH_2SbO_4+H_2O.$

Somewhat sol, in H₂O, when freshly precipitated; insol. when dried. (Beilstein and Blaese.)

Tin (stannous) antimonate, 2SnO, Sb₂O₅.

Ppt. (Lenssen, A. 114. 113.) Sn(SbO₃)₂+2H₂O. Attacked with difficulty by acids or alkalies, most easily by hot conc. H_2SO_4 . (Schiff, A. 120. 55.) $2SnO_3Sb_2O_5+4H_2O$. $SnO_3Sb_2O_5$.

Tin (stannic) antimonate.

Insol, in H_2O . (Levol, A. ch. (3) 1. 504.)

Uranium antimonate, 5UO2, 3Sb2O5+15H2O. Ppt. Sol. in hot conc. HCl+Aq, and in UCl_3+Aq . (Rammelsberg.)

Zinc antimonate, $Zn(SbO_3)_2$.

Very slightly sol. in ${\rm H}_2{\rm O}$ (Berzelius); sol. in solutions of Zn salts.

+2H₂O. (Ebel, Dissert. **1890.**) Insol. in H₂O. (Senderens, Bull. Soc. 1899, (3) 21. 57.)

+5H₂O. Not wholly insol. in cold, moderately sol. in hot H₂O. (Ebel, Dissert. **1890**.) +6H₂O. Insol. in H₂O. (Senderens.)

Antimoniomolybdic acid.

Ammonium antimoniomolybdate, 5(NH₄)₂O, $4Sb_2O_5$, $7M_0O_3+12H_2O$.

Readily sol, in hot H₂O. (Gibbs, Am. Ch. J. 7. 392.)

Antimoniotungstic acid, 3Sb₂O₅, 4WO₃+ 11H₂O.

Sol. in H₂O. (Hallopeau, C. R. 1896, 123. 1068.)

Potassium antimoniotungstate, 3K₂O, 3Sb₂O₅, $4WO_8+4H_2O$.

Much more sol. in hot than in cold H_2O . Decomp. by HCl, H₂SO₄ and HNO₈. (Hallo-

+16H₂O. Much more easily sol. in hot than cold H2O. Decomp. by HCl, H2SO4, and HNO₃. (Hallopeau, l.c.) 6 K_2O , $48b_2O_5$, $12WO_3+25H_2O$.

Sl. sol. in H₂O. (Gibbs, Am. Ch. J. 7. 392.)

Antimoniuretted hydrogen. See Antimony hydride.

Antimonosomolybdic acid.

Ammonium antimonosomolybdate, $6(NH_4)_2O$, $3Sb_2O_3$, $17MoO_3+21H_2O$.

Insol. in cold H₂O. (Gibbs, Am. Ch. J. 7.

Antimonosophosphotungstic acid.

Potassium antimonosophosphotungstate, $12K_2O$, $5Sb_2O_3$, $6P_2O_5$, $22WO_3+48H_2O_5$, Nearly insol, in cold or warm H₂O. (Gibbs, Am. Ch. J. 7. 392.)

Antimonosotungstic acid.

Ammonium antimonosotungstate. Sol. in H₂O.

Barium antimonosotungstate, 4BaO, 6Sb₂O₃, $22WO_3 + 36H_2O$.

Precipitate; very sl. sol. in hot H₂O. (Gibbs, Am. Ch. J. 7. 313.)

Antimonous acid, HSbO₂.

(Long, J. Am. Chem. Soc. 1895, 17. 87.) $+1\frac{1}{2}H_2O$. Ppt. (Schaffner, A. **51.** 182.) H₂SbO₃. Ppt. (Clarke and Stallo, B. 13. 1793.)

Does not exist. (Guntz, C. R. 102. 1472.) H₄Sb₂O₅. When freshly pptd., is sol. in dil. KOH, and NaOH+Aq. Scarcely sol. in NH₄OH+Aq, or in (NH₄)₂CO₂, or KHCO₃+

Completely sol. in K_2CO_3 , and Na_2CO_3+ Aq, especially if warm. When recently pptd. is sl. sol. in succinic acid+Aq.

Calcium antimonite, CaSb₂O₄ (?).

Min. Romeite. Insol. in acids.

Cobaltous antimonite (?).

Sl. sol. in H₂O. (Berzelius.) Cuprous antimonite, Cu₆(SbO₈)₂.

Insol. in H₂O. Sol. in acids; most easily in conc. HCl+Aq. (Hausmann and Stromeyer, Schw. J. 19. 241.)

Cupric antimonite (?).

Insol. in H₂O. (Berzelius.)

CuSb₂O₅. Min. Ammiolite. CuSb₂O₄. Sol. in HCl+Aq, tartaric and citric acids. (Harding, Z, anorg. 1899, 20. 238.)

Iron (ferrous) antimonite (?).

More sol. in H₂O than the antimonate. (Dumas.)

Potassium antimonite, K₂O, 3Sb₂O₈.

Easily decomp. by cold H₂O. Not decomp. by KOH+Aq containing over 20.9% K₂O. (Coriminbocuf, C. R. 115. 1305.)

+3H₂O. As above. (C.)

Potassium antimonite iodide, K₂O, 8Sb₂O₃,

Insol. and not decomp. by cold or hot H_2O . Not decomp. by acids or alkalies. Aqua regia decomp. slowly. Tartaric acid dissolves gradually. (Grühl, Dissert. 1897.)

Sodium antimonite, $NaSbO_2 + 3H_2O$.

Difficultly sol. in H₂O. (Terreil, A. ch. (4) 7. 380.)

2Na₂O, 3Sb₂O₃+H₂O. Decomp. by H₂O, but not by NaOH+Aq containing 94.3 g. NaOH per l. (Corimimbouf.)
Na₂O, 2Sb₂O₃. Decomp. by H₂O but not by NaOH+Aq containing 188.6 g. NaOH

per I. (C.) Na₂O, 3Sb₂O₃. Decomp. by H₂O, but not containing 113.2 g. NaOH per 1. (C.) $+2H_2O = NaH_2(SbO_2)_3$. (Terreil.)

Antimony, Sb. Does not decomp. H₂O. Not attacked by HCl+Aq (Berzelius); slowly sol. in conc. HCl +Aq (Debray); slowly sol. in conc. warm HCl +Aq (Troost). Attacked by very conc. HCl +Aq only when finely divided (Schützenberger, Willm); very sl. attacked by dil. or conc. acid (Guntz). Not attacked by boiling HCl+Aq (Gmelin). By careful experiments, pure Sb is absolutely insol. in dil. or conc., hot or cold HCl+Aq, except when in contact with oxygen. (Ditte and Metzner, A. ch. (6) 29. 889.)

Insol. in dil. or cold cone., but sol. in hot conc. H₂SO₄. Oxidized but not dissolved by HNO₃+Aq. Easily and completely sol. in

aqua regia. Very slowly attacked by pure HNO₃+Aq of 1.51-1.42 sp. gr.; weaker acid has no marked action whether it contains NO₂ or not. HCl+ HNO₃ has no action if dil. or at low temp., but when even very dil. and KNO₂ is added, the action will begin. (Millon, A. ch. (3) 6. 101.)

Not attacked in 10 months by 2% HNOs +Aq. Sb is not dissolved by HNO₃+Aq of any concentration, a white powder being al-ways left, which is insol. in HNO₂+Aq or H₂O. (Montemartini, Gazz. ch. it. 22. 384.)

Insol. in alkalies+Aq. Somewhat sol. in distilled H₂O. More or less sol. in solutions of acids, alkalies and salts and in alcohol and ether. Only sl. sol. in a mixture of alcohol and ether. (Ruff and Al-

bert, B. 1905, 38. 54.) Alkaline H₂O₂ converts Sb into antimonic acid, but neutral H₂O₂ is without action. (Clark, Chem. Soc. 1893, **63**. 886.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 826.)

Easily attacked by pyrosulphuryl chloride. (Heumann and Köchlin, B. 16. 479.)

Sb is sol, in a mixture of HNO3 and tartari acid or other polybasic acids. (Czerwek, Z anal. 1906, 45. 507.)

Not attacked by a mixture of alcohol and

ether. (Cohen, Z. phys. Ch. 1904, 47. 12.)
½ cc. oleic acid dissolves 0.0007 g. Sb is 6 days. (Gates, J. phys. Ch. 1911, 15. 143. There are three modifications:

Ordinary gray metallic.

2. Black amorphous. Unstable at ord temp. By boiling with H2O is changed to metallic Sb.

3. Yellow. Very unstable. At -50° goe over rapidly into the ordinary black modifica tion. Sol. in CS2 at a little above -90° (Stock, B. 1903, 37. 898.)

Unstable above —90°. (Stock, B. 1905, 38

3837.)

Antimony arsenide, Sb₂As. (Descamps, C. R. 86, 1065.)

Antimony tribromide, SbBr2.

Deliquescent; decomp. by H₂O.

Very sol. in liquid NH₃. (Gore, Am. Cl. J. 1898, **20.** 826.)

Very sol. in warm liquid AsBr₃, forming solution with sp. gr. = 3.685 at 47°. (Retgers Z. phys. Ch. 1893, 11. 339.)

Sol. in S₂Cl₂. (Walden, Z. anorg. 1900, **25** 217.)

Sol. in AlBr₈. (Isbekow, Z. anorg. 1913 84. 27.)

Easily sol. in PCl₃ and PBr₃. (Walden, Z anorg. 1900, 25. 211.)

Sol. in alcohol and CS₂.

Sol. in ether forming two layers. (Hayes, ; Chem. Soc. 1902, 24, 360.)

Sol. in acctone. (Naumann, B. 1904, 3 4328.)

Solubility of SbBr₃ in organic liquids. Data in parentheses indicate labile equilib rium.

Solvent	t°	Mols. per 100	t°	Mols. per 100	to	Mols. per 100
Benzene	5.6° 4.5 15 25 35 45 55	0 1.9 3.0 4.3 6.0 8.6 12.1	65° 75 80 85 90 91.5 92.5	17.1 24.9 30.7 38.4 48.2 58.1 66.6	91.5° 90 85 90 92 94	73.7 76.7 84.9 91.4 94.8 100
Chlor- benzene	-45.2° -47 -40 -30 -20 -10	0 1.7 2.2 3.2 4.3 5.6	0° 10 20 30 40 50	7.2 9.2 11.8 15.4 20.8 28.1	60° 70 80 90 94	37.6 50.0 66.6 89.6 100
Brom- benzene	-31° -32 -25 -15 -5	0 2.6 4.4 6.9 9.9 13.4	15° 25 35 45 55 65	17.4 22.2 22.7 34.4 42.6 52.6	75° 85 90 94	65.2 81.1 90.0 100

Solubility of SbBr3 in	organic liquids.—Cont.
------------------------	------------------------

					·		
ic Z.	Solvent	t°	Mols. per 100	t°	Mols. per 100	t°	Mols. per 100
d n .)	Iod- benzene	—28.6° —30.5 —32 —20 —10	0 4.0 8.7 13.5 17.5 21.7	10° 20 30 40 50	26.3 31.5 37.3 43.7 50.7 58.5	70° 80 90 94	67.0 78.2 91.9 100
1.	Paradi- chlor- benzene	54.5° 51.5 48.5 55	0 6.3 12.8 18.7	65° 70 75 80	29.5 37.0 45.6 56.2	85° 90 94	68.9 85.2 100
28 1- 8.	Paradi- brom- benzene	88° 85 80 75 70	0 6.8 18.0 29.5 41.5	65° 70 75 80 85	52.0 59.1 66.5 74.4 83.0	90° 92 94	91.8 95.4 100
	Nitro- benzene	6° 1 - 4 - 9 -15 (-17)	0 8.6 17.0 24.0 29.7 (31.9)	—5° 5 15 25 35 45	32.3 35.3 38.8 42.8 47.4 52.8	55° 65 75 85 90 94	59.1 66.4 74.9 86.0 93.0 100
a s,	Metadi- nitro- benzene	90° 85 80 75 70 65	0 8.1 16.2 24.2 31.8 38.5 44.3	55° 50 47.5 50 55 60 65	49.1 53.0 54.4 56.1 58.8 62.2 66.2	70° 75 80 85 90 94	70.8 76.0 81.7 87.8 94.2 100
5. 3, Z.	Toluene	—93° —93.5 —70 —50 —30 —10 — 1	0.3 1.2 2.6 5.2 13.3 22.4	10° 20 30 (34) 40 50 60	28.8 36.7 47.5 (54.0) 51.5 56.3 62.3	70° 80 85 90 94	69.4 79.4 85.2 92.6 100
J. 7.	Ethyl- benzene	93° 60 40 20 10	0.1 0.4 1.0 2.3 3.9 6.4	10° 20 25 29 40 50	9.8 19.5 28.6 37.8 44.6 51.6	60°. 70 80 85 90 94	59.8 67.4 77.4 85 92.6 100
b- - 001	Propyl- benzene	-80° -60 -40 -30 -20 -10 -5	0.4 1.2 3.4 5.5 9.5 17.2 24.3	(—1.5°) (—20) 0 10 20 30 40	(33.3) (23.3) 25.8 27.8 30.5 34.1 38.6	50° 60 70 80 90 94	44.3 51.5 61.5 73.5 90 100
1 Jad 3.7	Isoamyl- benzen	70° 50 40 30 20 17 (15)	1.9 3.6 5.1 7.1 13.4 16.4 (19.4)	(—13°) —10 0 10 20 30 40	(24.9) 17 18.2 19.9 22.5 25.9 30.3	50° 60 70 80 90 94	35.8 43.3 54.0 68.5 90 100

(Menschutkin, Ann. Inst. Pol. P. le Gr. 13. 1.)

Antimony bromide with MBr.

See Bromantimonate, M. Also below.

Antimony hydrogen bromide, SbBrs, HBr+ 3H₂O.

Very hygroscopic. Decomp. by H₂O. (Weinland and Feige, B. 1903, **36.** 256.) See Metabromantimonic acid.

Antimony caesium bromide, 2SbBr₅, 3CsBr+ 2H₂O. Loses Br₂ in the air. (Weinland, B. 1903,

36. 257.)

Antimony calcium bromide, SbBr₂, CaBr₂+8H₂O.

Easily decomp. (Benedict, Proc. Am. Acad. 1895, 30. 9.)

Antimony glucinum bromide, 3SbBr₅, 2GlBr₂ +18H₂O.

Hydroscopic. Easily decomp. (Weinland, B. 1903, 36. 258.)

Antimony magnesium bromide, SbBr₃, MgBr₂ +8H₂O.

As Ca salt. (Benedict, Proc. Am. Acad. 1895, **30**. 9.)

Antimony potassium bromide, 10SbBr₃, 23KBr+27H₂O. (Herty, Am. Ch. J. 1894, **16**. 496.)

Antimony rubidium bromide, 2SbBr₃, 3RbBr. Decomp. by H₂O; can be recryst. from dil. HBr+Aq. (Wheeler, Z. anorg. 5. 258.)

HBr+Aq. (Wheeler, Z. anorg. 5. 258.) SbRb₂Br₆. Slowly loses Br₂ in the air. Decomp. by H₂O. (Weinland, B. 1903, 36. 259.)

10SbBr₃, 23RbBr (?). Cryst. from conc. HBr+Aq. (Wheeler.)

The composition assigned to this salt by Wheeler (Z. anorg. 5. 253) is incorrect. (Ephraim, B. 1903, 36. 1817.)

Antimony vanadium bromide, $SbBr_3$, VBr_4+7H_2O .

Hydroscopic. Decomp. by H₂O., Sol. in dil. HCl and in tartaric acid. (Weinland, B. 1903, **36**. 260.)

Antimony bromide potassium chloride, SbBr₃, 3KCl+1½H₂O.

Slowly deliquescent. Very sol. in H₂O. Sat. solution contains 120.5 g. to 100 cc.

 H_2O , and has sp. gr. = 1.9. Decomp. by much H_2O . (Atkinson, Chem.

Soc. 43. 290.)
Does not exist. (Herty, Am. Ch. J. 1894,

16. 497.)

See also Antimony chloride potassium bromide.

Antimony bromofluoride, SbF,Br.

Decomp. by H₂O. (Ruff, B. 1906, 39. 4319.)

Antimony trichloride, SbCl₈.

Deliquescent. Decomp. by H₂O with precipitation of SbOCl. This precipitation is prevented by tartaric, citric, or hydrochloric acid, or by conc. solutions of chlorides of alkalies and alkaline earths.

Solubility in H₂O. 100 pts. SbCl₃ sol. in pts. H₂O at t°.

t°	Pts. H ₂ O
0°	16.6
15°	12.3
20°	10.9
25°	10.1
30°	9.4
35°	8.7
40°	7.3
50°	5.2
60°	2.2

(Meerburg, Z. anorg. 1903, 33. 299.)

Solubility in HCl+Aq. 100 mol. H₂O dissolve mol. SbCl₃ in presence of mol. HCl at 20°.

Mol. HCl	Mol. SbCls
0 2.4 6.5 8.4 8.6 9.8 12.2 29.6	72.1-72.8 73.0 67.5 67.6 66.5 65.0 65.3 54.5
₽Ð.U	04.0

(Meerburg, Z. anorg. 1903, 33. 304.)

Solubility in HCl+Aq.

contourny in mor i and.				
100 mol. H ₂ O dissolve at 20°				
1	2	3	4	
Mol. SbCl ₃	Mol. HCl	Mol. SbOC1	Mol. HCl	
8.7 8.6 19.6 19.8	7.2 7 5 8.0 8.9	9.8 16.1 21.7 25.0 28.0	6.9 7.9 7.4 8.8 8.6	
37.5 44.0 63.7 69.1 66.1 69.8	8.7 6.8 6.2 5.6 4.6 5.3	32.0 35.8 59.5 61.0 62.7	7.9 7.9 6.4 6.5 4.4	
69.3 68.3	4.3 3.6			
	100 mc 1 Mol. SbCls 8.7 8.6 19.6 19.8 37.5 44.0 63.7 69.1 66.1 69.8	100 mol. H ₂ O o 1 2 Mol. Mol. HCl 8.7 7.2 8.6 7.5 19.6 8.0 19.8 8.9 37.5 8.7 44.0 6.8 63.7 6.2 69.1 5.6 66.1 4.6 69.8 5.3 69.3 4.3	100 mol. H ₂ O dissolve a 1	

1 & 2. (Meerburg, Z. anorg. 1903, **33**. 302.) 3 & 4. (Noodt, Z. anorg. 1903, **33**. 302.)

Somewhat sol. in liquid (CN)₂. (Centnerszwer, Bull. Soc. 1901, (3) 28. 405.)

Insol. in liquid NH₂. (Gore, Am. Ch. J.

1898, 20. 826.)
Easily sol. in PCl₃ and PBr₃. (Walden, Z. anorg. 1900, 25. 211.)

Sol. in S_2Cl_2 . (Walden, Z. anorg. 1900, 25. 217.)

嚷

Easily sol. in AsBr₃. (Walden, Z. anorg. 1902, 29. 374.)

Sol. in alcohol without decomp. Very sol in hot CS2, but solubility diminishes rapidly on cooling. (Cooke, Proc. Am. Acad. 13 72.)

1 g. SbCl₃ is sol. in 0.186 g. acetone at 18° Sp. gr. of sat. solution 18°/4° = 2.216. (Nau mann, B. 1904, 37. 4332.)

Sol. in ethyl acetate. (Naumann, B. 1904

37. 3601.)

1 pt. sol. in 16.97 pts. of ethyl acetate a 18°. Sp. gr. of set solution 180'. Sp. gr. of sat. solution $18^{\circ}/4^{\circ} = 1.7968$ (Naumann, B. 1910, 43, 320.)

Sol. in benzonitrile. (Naumann, B. 1914 **47.** 1369.)

Sol. in methylal. (Eidmann, C. C. 1899) II. 1014.)

Solubility of SbCl₃ in organic liquids. Data in parentheses indicate labile equilibrium.

	114441.						
Solvent	t°	Mols. per 100	t°	Mols. per 100	t°	Mols. per 100	-
Benzene	5.6° 4 1 10 20 30 40	0 2.6 7.1 10.1 13.1 16.8 21.4	50° 60 70 75 77.5 79 77.5	27.2 34.7 45.2 53.1 58.7 66.6 73.4	75° 70 62 67.5 73	78.5 83.3 89.3 94.2 100	E b
Chlor- benzene	-45.2° -47 -40 -30 -20 -15	0 2.2 3.6 6.0 9.0 11.6	-10° -5 0 (4) 10 20	114.4 19.4 28.1 (41.1) 32.5 38.7	30° 40 50 60 70 73	47.1 56.2 66.6 78.7 94.3	I
Brom- benzene	-31° -32.5 (-35) -30 -25 -20 -15 -10	0 3.4 (6.4) 4.8 7.6 10.7 14.1 17.8	5° 0 3 (6) (7) 10 20 30	21.7 26.6 31.8 (41.9) (50.0) 36.4 43.2 50.8	40° 50 60 65 70 73	59.2 68.8 80.6 87.2 95.0	
Iod- benzene	-28.6° -30 -35) -45) -45) -25) -15)	0 2.4 (11.7) (20.8) (27.2) (30.9) (33.9) (37.2)	(—5)° —34.5 —25 —15 —5 (—3) 5 15	(40.7) 10.7 16.4 24.7 39.1 (47.2) 44.5 48.7	25° 35 45 55 65 70 73	53.9 60.4 67.5 76.2 87.4 95.0	
Paradi- chlor- benzene	54.5° 50 45 40	0 6.3 15.5 28.0	39.5° 45 50 55	29.5 37.5 46.4 56.0	60° 65 70 73	66.5 78.1 91.1 100	
Paradi- brom- benzene	88° 85 80 75 70	0 5.9 15.8 25.7 35.7	65° 60 49.5 55 60	45.4 53.8 64.9 72.5 79.8	65° 70 73	87.1 95.2 100	
Nitro- benzene	6° 2 —2 —6 —10 —14 (—18) —16.5	7.0 12.1 16.5 20.3 23.5 (26.2) 25.2	-13.5° -10.5 -7.5 -6.5 -6.5 -6.5 -5 5	27.3 29.8 35.2 40.7 50.0 52.8 53.0 55.8	15° 25 35 45 55 65 70 73	59.2 63.0 67.6 72.8 79.0 87.2 92.7	

Solubility of SbCl₃ in organic liquids—Cont.

0 11

l. y 3.	Solvent	t°	Mols. per 100	t°	Mols. per 100	t°	Mols. per 100
°. 1 - £,	Metadi- nitro- benzene	90° 80 70 60 40 (20) (1) (—11)	0 14.3 25.3 33.8 45.6 (53.6) (59.9) (62.2)	(—10°) (10) (27.5) (28.5) 27.5 25 (20) (10)	(57.7) (62.4) (44.5) (50.0) 55.0 60.2 (66.2) (73.5)	(0°) 20 30 40 50 60 70 73	(78.1) 65.2 68.8 73.2 78.5 85.8 95.2 100
3. 1,	Toluene	-93° -94 -70 -50 -40 -30 -20	0 0.5 1.4 3.3 5.1 7.2	-10° 0 6 11 (<u>-8</u>) 20 30	14.4 22.1 28.6 35.7 (27.0) 40.5 47.6	40° 42.5 40 50 60 70 73	59.3 66.6 71.1 77.1 83.8 94.7
.	Ethyl- benzene	93°503010 0 10 20 30	0.1 0.6 1.1 3.6 5.6 0.4 16.8 27.2	35° 30 37 35 (33) (15) (25) 37	36.4 50 57.7 61.8 (65.7) (37.8) (47.5) 66.6	(36.8)° (33) 40 50 60 65 70 73	(68.1) (65.7) 70.3 77.3 85.5 90.3 95.6 100
l	Propyl- benzene	(—70°) (—50) (—40) (—30) (—20) (—10) (—5) (0) (1.5) (1)	(0.6) (2.8) (5.2) (8.8) (14.8) (25.1) (32.4) (43.3) (50) (51.1)	-70° -50 -40 -30 -20 -10 -5 0 5 7	0.2 1.5 3.0 5.5 9.7 16.2 20.5 26.2 35.6 41.6	8.5° 10 20 30 40 50 60 65 70 73	53.2 53.6 56.9 60.6 65.5 72 81 86.8 95.1 100
Lanca lancació	Iso- amyl- benzene	-80° -70' -60 -50 -40 (-30) (-25) (-22) (-20.5) (-22)	3 5.4 8.4 12.4 17.9 (27.3) (34.4) (40.7) (50) (54)		(17.1) (22.8) 29.3 36.6 45.6 (52.3) (60.3) (66.6) (44.2) (44.9)	10 20 30 40 50 60 65 70 73	46.3 48.8 52.5 57.3 63.4 71.4 81.7 88 95.5
'	(Menschutkin, Ann. Inst. Pol. Ple Gr., 13. 1.)						

Antimony hydrogen trichloride, 2SbCl₃, HCl $+2H_2O$.

Deliquescent. Decomp. by H₂O. Melts in crystal H₂O at 16°. (Engel, C. R. **106.** 1797.)

Antimony pentachloride, SbCl₅.

Deliquesces to SbCl₅+4H₂O, which can be crystallized out of a little H2O. Decomp. by more H₂O into SbO₂Cl. Sol. in a large amt. of H₂O, if it is added all at one time. Precipitation by H₂O is also hindered by presence of tartaric, or hydrochloric acid.

+H₂O. Deliquescent. Sol. in chloroform. (Anschütz and Evans, A. 239. 285.)

+4H₂O. Insol. in chloroform. (Anschütz and Evans.)

Antimony pentachloride with MCl.

See Chlorantimonate, M. See also below.

Antimony hydrogen pentachloride, SbCl₅, HCl+4½H₂O.

"Metachlorantimonic acid" according to Weinland and Schmid, (Z. anorg. 1905, 44.43.)

Very easily sol. in H₂O, alcohol, acetone and glacial acetic acid. Aqueous solution decomp. on standing with separation of Sb₂O₅ but remains clear in presence of 10% HCl. (Weinland and Schmid, Z. anorg. 1905, 44. 43.)

 $SbCl_5$, $5HCl+10H_2O$. Not deliquescent. Decomp. by H_2O . Melts in crystal H_2O at about 55°. (Engel, C. R. 106. 1797.)

Antimony antimonyl chloride, SbCl₃, SbCCl. More easily attacked by H₂O than SbCCl. (Bemmelen, Z. anorg. 1903, **33**. 293.)

Antimony antimonyl potassium chloride, SbCl₃, SbOCl, 2KCl.

Not deliquescent. Immediately decomp. by hot or cold H₂O; sol. in hot glacial HC₂H₃O₂, or in HCl. or tartaric acid + Ac.

or in HCl, or tartaric acid +Aq.
Insol. in KCl+Aq, hot or cold alcohol, CS₂, or ligroine. (Benedikt, Proc. Am. Acad. 29. 217.)

Antimony antimonyl rubidium chloride, SbCl₃, SbOCl, 2RbCl.

Sol. in very dil. HCl+Aq. (Wells, Am. J. Sci. 1897, (4) 3. 463.)

Antimony barium chloride, $SbCl_3$, $BaCl_2+\frac{3}{2}H_2O$.

Decomp. by H₂O.

Antimony cæsium chloride, SbCl₃, 6CsCl.

Decomp. by H₂O. Cryst. from dil. HCl+Aq. (Godeffroy, Arch. Pharm. (3) **12**. 47.) 2SbCl₃, 3CsCl. Decomp. by H₂O; sl. sol. rold, easily in hot dil. HCl+Aq. This is identical with the above salt. (Saunders, Am. Ch. J. **14**. 152.)

SbCl₄, 2CsCl. Sol. in boiling conc. HCl+Aq without decomp. (Setterberg, Oef. Vet.

Akad. 1882, 6. 23.)
SbCl₅, CsCl. Cryst. from HCl+Aq without

decomp. Decomp. by H₂O. (Setterberg, Oef. Vet. Akad. 1882, 6, 27.)

Antimony calcium chloride, SbCl₃, CaCl₂+8H₂O.

Easily decomp. (Benedict, Proc. Am. Acad. 1895, 30. 9.)

 $SbCl_5CaSbCl_5.OH+9H_2O.$ Deliquescent; sl. sol. in $H_2O.$ (Weinland, B. 1901, 34. 2635.)

Antimony chromium chloride,

CrCl₃, 3SbCl₅+13H₂O. (Weinland.) should be

[SbCl₆]₈[Cr(OH₂)₆]+7H₂O; and CrCl₃, SbCl₅+10H₂O should be [SbCl₆][Cr(OH₂)₄Cl₂]+6H₂O. (Pfeiffer, Z. anorg. 1903, **36**. 349.)

pentachloride, SbCl₅, Antimony glucinum chloride, SbCl₅, GlCl₂+ 3H₂O.

Very hydroscopic. Decomp. by H₂O. Very easily sol. in HCl. (Ephraim, B. 1903, 36, 1822.)

+4H₂O. Ppt. Decomp. by H₂O. Sol. in HCl. (Ephraim, B. 1903, **36.** 1822.)

Antimony hydrazine chloride, SbCl₃, 3N₂H₃Cl.

Sol. in conc. HCl+Aq; decomp. by H₂O. (Ferratini, C. A. 1912, 1613.)

Antimony lithium chloride, SbCl₃, 2LiCl+5H₂O.

Hydroscopic. Decomp. by H₂O. Very easily sol. in HCl. (Ephraim, B. 1903, **36**. 1821.)

+6H₂O. Decomp. by H₂O; easily sol. in HCl. (Ephraim, B. 1903, **36.** 1822.)

Antimony magnesium chloride, $SbCl_3$, $MgCl_2 + 5H_2O$.

Hydroscopic. Decomp. by H₂O. Can be cryst. from HCl without decomp. (Ephraim, B. 1903, **36**. 1823.)
28bCl. MgCl. Hygroscopic. Decomp.

2SbCl₃, MgCl₂. Hygroscopic. Decomp. by H₂O. Very sol. in HCl. (Ephraim.) SbCl₇MgSbCl₆MgOH+17H₂O. Hydroscopic. Sol. in H₂O with decomp. (Weinland, B. 1901, **34**. 2635.)

Antimony nitrosyl chloride, SbCl₅, NOCl.

Very deliquescent; decomp. by pure H₂O; sol. in H₂O containing tartaric acid. (Weber, Pogg. 123, 347.)

2SbCl₅, 5NOCl. Decomp. by H₂O. (Sudborough, Chem. Soc. **59**. 661.)

Antimony phosphorus chloride, SbCl₅, PCl₅.
Deliquescent. (Weber, Pogg. 125. 78.)

Antimony phosphoryl chloride, SbCl₅, POCl₃. Deliquescent. (Weber.)

Antimony platinum potassium chloride, (Sb, Pt) Cl_0K_2 .

Ppt. (Weinland, B. 1905, 38. 1086.)

Antimony potassium chloride, SbCl₃, 2KCl. Sol. in H₂O without decomp. (Jacquelain, A. ch. (2) **66.** 128.)

Not deliquescent. Immediately decomp, by hot or cold H₂O. Sol. in HCl, or tartaric acid-Aq. (Benedikt, Proc. Am. Acad. 29.

+2H₂O. Very efflorescent. SbCl₃, 3KCl. Deliquescent. Decomp. by hot H₂O. (Poggiale.)

+2H₂O. (Romanis, C. N. 49. 273.) Not obtained by Benedikt (*l.c.*)

10SbCl₂,23KCl. True composition of above salts. Sol. in H₂O. (Herty, Am. Ch. J. 1894, 16, 495.)

SbCl₃, 2KCl is the only true compound, all

B. 1903, 36. 2539.)
2SbCl₄, 3KCl. Deliquescent. Decomp. by
H₂O. (Bosek, Chem. Soc. 1895, 67. 516.)
SbCl₅KSbCl₅KOH. Hydroscopic. Sol. in
H₂O with decomp. (Weinland, B. 1901, 34.

2635.)

See also Antimony antimonyl potassium chloride.

Antimony rubidium chloride, SbCl., RbCl.

Decomp. on air or with H2O. (Saunders. Am. Ch. J. 14. 162.)

 $2SbCl_3,RbCl+H_2O.$ Decomp. on air. (Wheeler, Z. anorg. 5. 253.)

SbCl₈, 6RbCl. Decomp. by H₂O. (Godeffroy, Arch. Pharm. (3) 9. 343.)

Formula is 10SbCl₃, 23RbCl (?). (Saunders

Am. Ch. J. 14. 159.) 10SbCl₃, 23RbCl (?). Decomp. by H₂O; sol. in HCl+Aq. (Saunders.)
Formula is 3SbCl₃,7RbCl. (Wells and

Formula is 38bCl₈,7RbCl. (Wells and Foote, Am. J. Sci. 1897, (4) 3. 461.)
Composition assigned to this salt by Saunders (Am. Ch. J. 14. 155) is incorrect. (Ephraim, B. 1903, 36. 1817.)
38bCl₈, 5RbCl. As above. (Saunders.)
Formula is 28bCl₃, 3RbCl. (Wheeler.)
Rb₂8bCl₆. Ppt. Decomp. by H₂O. (Weinland, B. 1905, 38. 1083.)
Rb₂8bCl₅, 2Rb₅8bCl₆. Ppt. Decomp. by H₂O. (Weinland, B, 1901, 34. 2635.)

Antimony selenium chloride, SbCl₅, SeCl₄. Deliquescent. (Weber.)

Antimony selenyl chloride, SbCl₅, SeOCl₂. Very deliquescent. (Weber, Pogg. 125. 325.)

Antimony sodium chloride, SbCl₃, 3NaCl (?). Decomp. by much H₂O. (Poggiale.)

Antimony sulphur chloride, 2SbCl₅, 3SCl₂. Decomp. by H₂O.

SbCl₅, SCl₄. Sol. in dil. HNO₅+Aq. Mpt. 125-126° in an atmos. of chlorine. Violently decomp. by H₂O. (Ruff, B. 1904, **37.** 4515.)

Antimony thallium chloride, SbCl₈, 3TlCl.

Ppt. (Ephraim, Z. anorg. 1909, 61. 249.) SbCl₄, TlCl. (Ephraim and Barteczko, Z. anorg. 1909, 61. 251.)

2SbCl₄, 2TlCl, TlCl₂. Slowly decomp. by ld H₂O. (Ephraim and Barteczko, Z. cold H₂O. anorg. 1909, 61. 253.)

Antimony trichloride ammonia, SbCl₃, NH₃. Not very deliquescent. Decomp. by H₂O.

Antimony pentachloride ammonia, SbCl₅, 6NH:

Decomp. by H₂O. (Persoz.)

100

others being isomorphous mixtures. (Jordis, Antimony pentachloride cyanhydric acid, SbCl₅, 3HCN.

> Deliquescent; decomp. by H₂O. (Klein, A. 74. 85.)

> Antimony pentachloride nitric oxide, 2SbCl₅, NO.

> Decomp. by H₂O. (Besson, C. R. 108.) 1012.)

> Antimony pentachloride nitrogen peroxide, 3SbCl₅, 2NO₂.

Decomp. by H₂O. (Besson.)

Antimony pentachloride nitrogen sulphide, SbCl₅, N₄S₄.

Easily decomp. (Davis, Chem. Soc. 1906, 89. 1577.)

Decomp. by cold H₂O, HCl, H₂SO₄ and warm alcohol, also by boiling with KOH+Aq. Almost insol. in organic solvents. (Wölbling, Z. anorg. 1908, 57. 283.)

Antimony chloride potassium bromide, $SbCl_3.3KBr+1\frac{1}{2}H_2O.$

Very deliquescent. Decomp. by H₂O. (Atkinson, Chem. Soc. 43, 289.) 2SbCl₂,3KBr+2H₂O. (Atkinson.) SbCl₃,KBr+H₂O. (Atkinson.) Decomp. by much

Above are mixtures. (Herty, Am. Ch. J. 1894, 16. 497.)

See Antimony bromide potassium chloride.

Antimony chlorofluoride, SbCl₂F₂. (Swarts, Z. anorg. 1896, 12. 71.)

Antimony fluoiodide, SbF.I.

Slowly decomp. by H₂O. (Ruff, B. 1906, **39.** 4321.)

 $(SbF_5)_2I$. Sol. in H₂O with pptn. of I₂. (Ruff, B. 1906, **39**. 4321.)

Antimony trifluoride, SbF₃.

Deliquescent. Sol. in H₂O.

Solubility in H₂O at t°.

t°	100 g. of the solution con- tain g. SbF ₃	100 g. H ₂ O contain g. SbF ₃
0° 20 22.5 25 30	79.37 81.64 81.91 83.12 84.93	384.7 444.7 452.8 492.4 563.6

(Rosenheim, Z. anorg. 1909, 61, 189.) Solubility in HF+Aq at 0°.

Normality of HF+Aq	100 g. H ₂ O of the HF solution dissolve g. SbF ₂
2	474.9
1	432.5
0.5	404.0

(Rosenheim, Z. anorg. 1909, 61, 192.)

Solubility of SbF ₈ in salts+Aq at 0°.				
Salt	Normality of salt solution	100 g. H ₂ O of the salt solution dis- solve g. SbF ₃		
KC1	1 0.5 0.25 0.125	461.8 448.3 431.9 407.3		
KBr	1 0.5 0.25 0.125	448.7 450.0 455.6 417.2		
KNO ₈	1 0.5 0.25 0.125	458.2 451.9 418.3 401.4		
½K₂SO₄	1 0.5 0.25	419.9 408.5 406.6		
½K ₂ C ₂ O ₄	1 0.5 0.25 0.125	465.7 481.2 451.3 405.2		
½(NH ₄) ₂ C ₂ O ₄	0.5 0.25 0.125	431.9 442.3 433.3		
½K₂C₄H₄O₅	1 0.5 0.25 0.125	461.4 430.5 430.8 435.2		

(Rosenheim, Z. anorg. 1909, 61. 192.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 826.)

Antimony pentafluoride, SbF₅.

Sol. in H₂O. (Marignac, A. 145. 239.) Very hydroscopic; bpt. 155°. Sol. in H₂O with hissing. (Ruff, B. 1904, **37**. 678.) +2H₂O. (Ruff, B. 1904, **37**. 679.)

Antimony pentafluoride diantimony fluoride, $Sb_8F_{11} = 2SbF_8$, SbF_5 .

Hydroscopic; bpt. 390°. Easily sol. in H₂O. (Ruff, B. 1904, 37. 680.)

Antimony pentafluoride pentaantimony trifluoride, SbF₅, 5SbF₃.

B pt. 384° (corr.). (Ruff, B. 1904, 37.681.)

Antimony cæsium fluoride,

CsF.2SbF₃.

CsF,3SbF₃. 4CsF,7SbF₃. CsF,SbF₃. 2CsF,SbF₃.

(Wells, Am. J. Sci. 1901, (4) 11. 451.)

Antimony lithium fluoride, SbF₃, 2LiF.

Sol. in more than 20 pts. H₂O. (Flückinger, Pogg. 87. 245.) Easily sol. in H₂O. (Stein,

SbF₃, LiF. Eas Chem. Z. **13**. 357.)

Antimony potassium fluoride, SbF₃, 2KF.

Sol. in less than 2 pts. boiling, and in 9 pts.

cold H₂O. Insol. in alcohol or ether. SbF₃, KF. More sol. than SbF₃, 2KF. Sol. in 2.8 pts. H₂O. (Flückinger, Pogg. 87. 245.) SbF₅, KF. Easily sol. in H₂O. SbF₅, 2KF+2H₂O. Easily sol. in H₂O. (Marignac, A. 145, 239.)

Antimony sodium fluoride, SbF₈, 3NaF.

Sol. in 14 pts. cold, and 4 pts. boiling H₂O.

Sol. in HF. (Flückinger, Pogg. 87. 245.) SbF₃, NaF. 100 pts. cold H₂O dissolve 93 pts. 100 pts. hot H₂O dissolve 166 pts.

Stein, Wagners' J. B. 1887. 1160.)

4SbF₈, NaF. As NH₄ salt. (Raad and Hauser, B. 1890, **23**. R. 125.)

SbF₆, 2NaF. Easily sol. in H₂O. (Marignac, A. **145**. 329.)

Antimony thallium fluoride, TIF, SbF₃.

Sol. in H₂O without decomp. (Ephraim,

B. 1909, **42.** 4458.) TIF,2SbF₃. Sol. in H₂O without decomp. (Ephraim.)

TIF,3SbF2. Sol. in H2O without decomp. Decomp. by cold conc. H₂SO₄. (Ephraim.)

Antimony trifluoride ammonia, SbF₈, 2NH₂. Sl. sol. in liquid NH₂. (Ruff, B. 1906, 39. 4326.)

Antimony trifluoride ammonium chloride. SbF₃, NH₄Cl.

Easily sol. in H₂O. (de Haen, B. 21. 901 R.)

Antimony trifluoride ammonium sulphate, SbF_{8} , $(NH_4)_2SO_4$.

More sol. than K or Na salt. 1 pt. H₂O dissolves 1.4 pts. at 24° and 15 pts. at 100°. (de Haen, B. 21. 902 R.)

Antimony fluoride lithium chloride, SbF2, LiCl.

Sol. in H_2O . (Stein, Chem. Z. 13. 357.)

Antimony pentafluoride nitrosyl fluoride, SbF₅, NOF.

Hydroscopic. Decomp. by H₂O. Sol. in liquid NH₃ with decomp. Sl. sol. in NOCL. SiCl4, PCl3, AsCl3, SO2Cl2 and SOCl2. (Ruff, Z. anorg. 1908, 58. 334.)

Antimony trifluoride potassium chloride, SbF₂, KCl.

100 pts. H₂O dissolve 51 pts. at 24°, and 300 pts. at 100°. (de Haen, B. 21. 901 R.) Antimony *tri*fluoride potassium sulphate, SbF₃, K₂SO₄.

Sol. in H₂O. (de Haen.)

2SbF₃, K₂SO₄. Very sol. in H₂O. (Mayer, B. 1894, 27. R. 922.)

Antimony trifluoride sodium chloride, SbF₃,

Easily sol. in H₂O. (de Haen, B. 21. 901 R.)

Antimony trifluoride sodium sulphate, SbF₃, Na₂SO₄.

Sol, in H₂O. (de Haen.)

Antimony fluoiodide, SbF₅I.

Mpt. 80°; slowly decomp. by H₂O. (Ruff. B. 1906, 39. 4321.) (SbF₅)₂I. Mpt. 110-115°; decomp. by H₂O. (Ruff.)

Antimony fluosulphide, SbF₅S.

Very hygroscopic. Decomp. by H₂O. Sol. with decomp. in alcohol. Sol. in CCl4. (Ruff, B. 1906, 39, 4332.)

Antimony gold, Au₃Sb.

Insol. in equal pts. of HNO₃ and tartaric acids. (Roessler, Z. anorg. 1895, 9. 72.)

Antimony hydride, SbH₃.

Scarcely sol. in H₂O. 1000 ccm. H₂O absorb 4.12 cc. SbH₃ at 10.5°. Decomp. by long contact with H₂O; also by conc. H₂SO₄ or KOH+Aq. (Jones, Chem. Soc. 29. 641.)

Antimony trihydroxide, Sb_2O_3 , $2H_2O =$ $Sb_2O(OH)_4$

(Schaffner, A. 51. 182.)

Sb(OH)₃. Ppt. (Clarke and Stolla, B. 13. 1787.)

Does not exist. (Guntz, C. R. 102. 1472.) See Antimonous acid and antimony tri-

Antimony triiodide, SbI₃.

Decomp. by H₂O or 80% alcohol. Sol. in HI+Aq; sol. in boiling CS₂, and in boiling benzene, but separates out on cooling. Almost insol. in CHCl3. (Cooke, Proc. Am. Acad. (2) 5. 72.)

Easily sol. in AsBr₃. (Walden, Z. anorg. 1902, **29**. 374.)

Sol. in warm AsBr₃. Sp. gr. of a solution sat. at 40°, which solidifies at 37°, =3.720. This dissolves further AsI₃, whereby the mpt. sinks to 31° and sp. gr. rises to 3.801. By mixing the latter solution with a solution of AsI₃ in CH₂I₂, a liquid can be obtained with a sp. gr. of 3.702 at 20°. (Retgers, Z. phys. Ch. 1893, 11. 340.

Sol. in PCl3. (Beckmann, Z. anorg. 1906,

51. 110.) Sol. in SO₂Cl₂. (Walden, Z. anorg. 1900, **25**. 215.)

Sol. in SOCl2 and S2Cl2. (Walden, Z. anorg. 1900, **25.** 216.)

Sol. in AsCl₃. (Walden, Z. anorg, 1900, 25. 214.)

Sol. in SnCl₄. (Walden, Z. anorg. 1900, **25.** 218.)

Sol. in POCl₃. (Walden, Z. anorg. 1900, **25**. 212.)

Easily sol. in PCl₃ and PBr₃. (Walden, Z. anorg. 1900, 25. 211.)

Partly sol. in, and partly decomp. by alcohol or ether. (M'Ivor, Chem. Soc. (2) 14, 328.)

Insol. in oil of turpentine and CCl4.

100 pts. methylene iodide dissolve 11.3 pts. SbI₃ at 12°; sp. gr. of solution = 3.453. (Retgers, Z. anorg. 3. 343.)

Sol. in C_6H_6 . (Retgers, Z. phys. Ch. 1893,

Sol. in acetone. (Naumann, B. 1904, 37. 4328.)

Antimony pentaiodide, SbI₅.

Very unstable. (Pendleton, C. N. 48. 97.)

Antimony barium iodide, SbI_3 , $BaI_2 + 9H_2O$.

Decomp. by H_2O . Sol. in HCl, $HC_2H_3O_2$, or $H_2C_4H_4O_6+Aq$. CS_2 dissolves out SbI₃. (Schäffer, Pogg. 109. 611.)

Antimony cæsium iodide, 2SbI3,3CsI.

Sl. sol. in HI+Aq. Exists in two distinct forms. (Wells, Am. J. Sci. 1901, (4) 11. 455.)

Antimony potassium iodide, 2SbIs, 3KI+ 3H₂Ò.

Decomp. by H₂O. Sol. in HCl, HC₂H₃O₂, or H₂C₄H₄O₆+Aq. GS₂ dissolves out SbI₃. (Schäffer, Pogg. 109. 611.)

SbI₃, 2KI+2½H₂O. Decomp. by H₂O. (Nickles, J. Pharm. (3) 39. 116.)

Antimony rubidium iodide, 2SbI₃, 3RbI.

Decomp. by H₂O. (Wheeler, Z. anorg. 5. 259.)

Antimony sodium iodide, 2SbI₃, 3NaI+ 12H₂O.

As 2SbI₃, 3KI. (Schäffer, Pogg. 109. 611.)

Antimony thallous iodide, 2SbI3, 3TII.

Decomp. by H₂O and by HCl+Aq, also by alcohol. (Ephraim, Z. anorg. 1908, 58. 354.)

Antimony nitride, SbN.

Decomp. by heat. (Franz Fischer, B. 1910, **43**. 1471.)

Antimony trioxide, Sb₂O₃.

Very sl. sol. in H₂O. Sol. in 8900-10,000 pts. H₂O at 100°; 55,000-61,100 pts. at 15°. (Schulze, J. pr. (2) 27. 320.)

Sol. in HCl+Aq. Insol. in HNO₃+Aq, but not as insol. as metastannic acid. Sol. in cold fuming HNO₃ or H₂SO₄. Insol. in dil., but sol. in conc. alkalies, or alkali carbonates+

Aq. Sol, in cold NH₄Cl, or NH₄NO₂+Aq. Sol. in 15 pts. boiling SbCl₃. (Schneider,

Pogg. 108. 407.)

Sol. in HC2H3O2, or H2C4H4O6+Aq, and not pptd. from these solutions by H2O. Easily sol. in benzoic acid. Insol. in pyrotartaric acid. Very sol. in KHC4H4O6+Aq. Sol. in glycerine.

Somewhat sol. in H₃PO₄+Aq. (Köhler,

Dingl. 1885, 258. 520.)
Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20**. 826.

Sol. in lactic acid. (Kretzschmar, Ch. Z.

1888, 12. 943.)

Sol. in grape sugar solution to which Ca(OH)₂ has been added. (Vogel, B. 1885, 18, R. 38.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)

Sol. in glycerine in presence of alkalies.

(Köhler, Dingl. 1885, 258. 520.) Exists in a sol. colloidal modification. (Spring, B. 16. 1142.)
Min. Valentinite, Senarmontite.

+H2O. See Antimonous acid.

Antimony tetroxide, Sb₂O₄.

Insol. in H₂O. Slightly attacked by acids; hot conc. HCl+Aq acts only slightly. (Fresenius.)

Min. Cervantite. Sl. sol. in HCl+Aq.

Antimony pentoxide, Sb₂O₅.

Insol. in H₂O. Easily sol. in HCl+Aq. Sl.

sol. in conc. KOH+Aq. "Antimonoxyd" is sol. in glycerine in pres-

ence of alkalies.

100 g. glycerine, to which have been added 10 g. NaOH+Aq (1:1), dissolve 20.6 g. at b.-pt.; 20 g. NaOH+Aq (1:1), dissolve 36.0 g. at b.-pt.; 40 g. NaOH+Aq (1:1), dissolve 68.5 g. at b.-pt.; 80 g. NaOH+Aq (1:1), dissolve 93.0 g. at b.-pt.; 120 g. NaOH +Aq' (1:1), dissolve 119.2 g. at b.-pt. (Köhler, Dingl. **258.** 520.)

See also Antimonic acid.

Antimony nitrogen pentoxide, 2Sb₂O₅, N₂O₅. Not decomp. by H₂O. (Thomas, C. R. 1895**, 120**, 1116.)

Antimony oxybromide. See Antimonyl bromide.

Antimony oxychloride. See Antimonyl chloride.

Antimony oxyfluoride. See Antimonyl fluoride.

0

Antimony oxysulphide, Sb₂OS₂.

Min. Antimony blende (kermesite). Insol. in H2O or dil. acids, except HCl+Aq. (Schneider, Pogg. 110. 147.)

Antimony palladium, Sb₂Pd.

Sl. sol. in equal pts. of HNO2 and tartaric acids. (Roessler, Ž. anorg. 1895, **9.** 69.)

Antimony platinum, Sb₂Pt.

Insol. in equal pts. of HNO₃ and tartaric acids. (Roessler, Z. anorg. 1895, 9. 67.)

Antimony phosphide, SbP.

Insol. in benzene, ether, or CS₂. (M'Ivor, B. **6.** 1362.)

Antimony selenide, SbSe.

Chrétien, C. R. 1906, **142.** 1341.) Sb₃Se₄. (Chrétien, *l.c.*)

Šb₃Se₄. Chrétien, l.c. Sb₄Se₅.

Sol. in KOH+Aq. (Hofacker, A. Sb_2Se_3 . 107. 6.)

Sb₂Se₅. (Hofacker.)

Antimony selenide, with M selenide. See Selenoantimonates, M.

Antimony trisulphide, Sb₂S₃ (Kermes).

Insol, in H₂O and dil, acids.

1 l. H_2O dissolves 5.2 x 10-8 mols. pptd. Sb₂S₃ at 18°. (Weigel, Z. phys. Ch. 1907, 58. 294.)

Decomp. by conc. HNO₃ or H₂SO₄. Sol. in conc. HCl+Aq. Easily sol. in dil. KOH, NaOH, $(NH_4)_2S$, and K_2S+Aq . Sl. sol. in NH_4OH+Aq : very sl. sol. in $(NH_4)_2CO_3+Aq$; insol. in KSH+Aq. (Fresenius.) Sol. in a mixture of 50 pts. H_2O and 18 pts.

HCl (sp. gr. 1.16) even when completely sat. with H₂S. (Lang and Carson, J. Soc. Chem. Ind. 1902, **21**. 1018.)

Sl. sol. in H₂SO₃+Aq. (Guerout, C. R.

1872, **75**. 1276.)

Cryst. Sb₂S₃ is only sl. sol. in NH₄OH+

Aq (1 pt. in about 2000 pts. NH₃).

Pptd. amorphous Sb₂S₃ is appreciably more sol. (1 pt. in 600 pts. NH₃). (Garot, J. pr. 1843, 29. 83.)

Sl. sol. in hot 2% Na₂B₄O₇+Aq, still less sol. in cold. (Materne, C. C. 1906, II. 557.)

Insol. in NH₄Cl+Aq. Sol. in 14-15 pts. pure SbCl₃. (Schneider, Pogg. 108. 407.)

Slowly sol. in $H_2C_4H_4O_6+Aq$.

Sol. in boiling Na₃SbS₄+Aq. Sol. in hot citric, tartaric and oxalic acids. Sl. sol. in malic, benzoic, picric and pyrogallic acids. Insol. in formic and acetic acids. Especially easily sol. in citric and oxalic acids with addition of KNO₃, KNO₂ or KClO₃. (Bolton, C. N. 1878, 37. 86 and 99.)

Sol. in ethylamine sulphydrate+Aq. Min. Stibnite. Sol. in cold citric acid+Aq. (Bolton, C. N. 37. 14.)

Soluble modification. Sb2S3 may be obtained in a colloidal state in aqueous solution containing 1 pt. Sb₂S₃ to 200 pts. H₂O. This can be boiled without decomp., but Sb₂S₃ is pptd. by acids and salts.

HHO

Table of maximum dilution of solutions of acids and salts which cause pptn. of Sb₂S₃.

1:140 H₂SO₄ . 1:45 $H_2C_2O_4$ 1:65 K₂SO₄ (NH₄)₂SO₄ 1:130 1:1720MgSÖ₄. 1:2060MnSO4. 1:135 NaCl . BaCl₂ . 1:20501:5800 $MgCl_2$. CoCl₂ . 1:25001:75KNO₃ . 1:2500Fe₂Cl₆ 1:1250Ba(NO₃)₂ 1:35,000 $K_2Al_2(SO_4)_4$. $(NH_4)_2Fe_2(SO_4)_4$. 1:800 $K_2Cr_2(SO_4)_4$. 1:40,0001:18 KSbOC₄H₄O₆ (Schulze, J. pr. (2) 27. 320.)

Antimony trisulphide with M2S. See Sulphantimonites, M.

Antimony pentasulphide, Sb₂S₅.

Insol. in H₂O, or H₂O containing H₂S. Sol. in conc. HCl+Aq. Completely sol. in NH₄OH+Aq; traces dissolve in (NH₄)₂CO₃+ Aq. Fasily sol. in KOH, or NaOH+Aq, or in alkali sulphides+Aq. Sol. in 50 pts. cold dil. NH₄OH+Aq. (Geiger.)
Insol. in (NH₄)₂CO₃+Aq.
Insol. in cold, but sol. in hot alkali carbon-

ates+Aq. (Berzelius.)
Insol. in Na₈SbS₄+Aq.
When boiled with alcohol, ether, CS₂, oil of turpentine, etc., portion of the S is dissolved out. (Berzelius.)

CS₂ dissolves about 5% of the sulphur.

(Rammelsberg.)

Antimony pentasulphide with M2S. See Sulphantimonates, M.

Antimony sulphochloride, SbSCl₃.

Decomp. by moist air or H₂O. (Cloez, A. ch. (3) 30. 374.)

SbS₂Cl. Easily attacked by acids; insol. in

CS₂. (Ouvrard, C. R. 116, 1516.) Sb₂S₅Cl. (Ouvrard.) 2SbSCl, 3Sb₂S₃. Decomp. by dil. HCl+

Aq. (Schneider.) SbSCl, 7SbCl_s. Deliquescent; decomp. by H₂O. (Schneider, Pogg. **108**. **407**.)

Antimony sulphofluoride, SbF₈S.

See Antimony fluosulphide. Antimony sulphoiodide, SbSI.

Not attacked by H₂O, and decomp. only by conc. acids. Insol. in CS2. (Schneider,

Pogg. 110. 147.)
Sb₂S₁I₆. (Henry and Garot.)
Sb₂S₂I₅. Sol. in dry CS₂. Very easily decomp. (Ouvrard, C. R. 117. 108.)

Antimony sulphur dioxide, SbSO.

Ppt. (Faktor, C. C. 1900, I. 1211.)

Antimony telluride, SbTe.

Insol. in H₂O.

Sb₂Te₃. Insol. in H₂O. (Oppenheim, J. pr. **71.** 277.)

Antimonyl bromide, SbOBr.

Insol. in CS2. (Cooke, Proc. Am. Acad. 13.

Sl. sol. in liquid NH₃. (Gore, Am. Ch. J. 1898, 20. 826.)

Sb₄O₅Br₂. (M'Ivor, C. N. 29, 179.) 10Sb₄O₅Br₂, SbBr₃.

Antimonyl chloride.

From SbCl₃. SbOCl. Insol. in H₂O. Decomp. by boiling with H₂O; sol. in HCl+Aq. Insol. in alcohol or ether; sol. in Cs₂, CHCl₃, or C₆H₆. (Sabanajew, Zeit. Ch. **1871**. 204.)

Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20**. 826.) •

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Sb₄O₅Cl₂. Algaroth powder. Decomp. by H₂O. Sol. in HCl+Aq (Cooke, Proc. Am. Acad. 13. 1); tartaric acid+Aq. (Schäffer, A. **152.** 135.)

 $Sb_8O_{11}Cl_2$. (Cooke.) Sb_8OCl_{22} .

Sb41O50Cl28.

From SbCl₅. SbOCl₈. Deliquescent. Decomposed by H₂O. Sol. in H₂O. (Daubrawa, A. 184. 118.)

Does not exist. (Anschütz and Evans, A.

239. 285.)

Sb₈OCl₁₈. Deliquescent. Insol. in CS2: easily sol. in tartaric acid+Aq. (Williams, C. N. 24. 224.)

Sb₃O₄Cl₇. (Williams.) SbO₂Cl. Decomp. by hot H₂O into HSbO₃.

Antimonyl fluoride.

From SbF₃. Sb₄O₃F₆. Not deliquescent. (Flückiger, Pogg. 87. 249.)

Antimonyl cæsium fluoride, SbF4OH, CsF. (Wells, Am. J. Sci. 1901, (4) 11. 456.)

Antimonyl sodium fluoride, SbOF₃, NaF+ H₂O.

Deliquescent. Easily sol. in H₂O. (Marignac, A. 145. 239.)

Antimonyl iodide, Sb₄O₅I₂.

Difficultly sol. in solution of tartaric acid or tartrates. Decomp. by HCl, HNO₂, or H₂SO₄+Aq. Easily sol. in alkalies, or (NH₄)₂S+Aq. SbOI. Insol. in CS₂. (Cooke, Proc. Am.

Acad. (2) 5. 72.)

Antimonyl sulphide.

See Antimony oxysulphide.

Argon, A.

100 cc. H₂O dissolve 4.05 cc. argon at 13.9°. Critical t.—121.6° under 50.6 atmos. Bpt.—186.9°. Sp. gr. 19.9. (Rayleigh, C. N. 1895, 71. 51–62; 299–302; C. C. 1895. 467.)

Coefficient of absorption in H₂O at 12°= 0.0394; at $13.9^{\circ} = 0.0405$. (Ramsay, Phil. Trans. 1895, 186. A. 225.)

Absorption by H₂O at t°.

to.	Coefficient of absorption	
0° 10 20 30 40 50	0.0561 0.0438 0.0379 0.0348 0.0338 0.0343	

(Antropoff, Roy. Soc. Proc. 1910, 83. A. 480.)

Absorption of argon by H₂O at t° and 760 mm. pressure.

t°	Coefficient of absorption
0° 1 5 10 15 20	0.05780 0.05612 0.05080 0.04525 0.04099 0.03790
25 30 35 40 45 50	$\begin{array}{c} 0.03470 \\ 0.03256 \\ 0.03053 \\ 0.02865 \\ 0.02731 \\ 0.02567 \end{array}$

(Estreicher, Z. phys. Ch. 1899, 31. 184.)

1 l. H₂O at 38° absorbs 25.7 cc. A.

1 l. blood absorbs 25.3 cc. A. (Regnard

and Schloesing, C. R. 1897, 124. 303.) Not absorbed by members of the fatty series of organic compounds; with members of the aromatic series absorption was observed varying from 8% of the volume employed for benzene to 1% for aniline. (Berthelot, C. R. 1899, 129. 71.)

Arsenamide, As(NH₂)₃.

Insol. in liquid NH₃. Decomp. by H₂O. (Hugot, C. R. 1904, 139. 55.)

Arsenic, As.

Unaltered by pure H₂O. Insol. in HCl+Aq if air is excluded, but sl. sol. in presence of air. Not attacked by dil. H₂SO₄+Aq. Oxidized by conc. H₂SO₄, HNO₃, or aqua regia. Not attacked at 20° by HNO₃, conc. or dil., or containing NO₂; nor by HNO₃+HCl, as long as they do not act on each other; but if treated with the above mixture in extremely ether, and volatile oils. Decomp. by much dilute state, and a few drops of KNO₂+Aq | H₂O, or by boiling. (Gmelin.)

are added, the As is attacked at once. (Mil-

lon, A. ch. (3) 6. 101.)

Sol. in sea water; 0.009 mg. per lifer off Brittany; 0.01 to 0.09 mg. per liter near Azores. (Gautier, C. R. 1903, 137. 232.)
Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, **20**. 827.)

Insol. in liquid NH₃. (Hugot, A. ch. 1900, (7) **21**. 31.)

Insol. in NaOH, KOH, or NH4OH+Aq. Sol. in S₂Br₂. (Hannay, Chem. Soc. (2) 11.

Insol. in alcohol and ether.

Sol. in certain fatty oils.

Insol. in methylene iodide. (Retgers, Z. anorg. **3.** 343.)

½ ccm. oleic acid dissolves 0.0032 g. As in 6 days. (Gates, J. phys. Ch. 1911, **15**. 143.) Yellow modification. Very unstable. (Mc-Leod, C. N. 1894, 70. 139.)

Fairly stable in liquid air. (Thomson,

Chem. Soc. 1906, 90. (2) 745.) 100 ccm. CS2 dissolve at:

46° 20° 12° 0° —15° 2.0-2.5 1.0 g. As. 11

Less sol. in benzene and ethyl acetate. (Erdmann, Z. anorg. 1902, 32. 448.)

Arsenic acid. See page 59.

Arsenic bromide, AsBr₃.

Decomp. by H₂O. Completely sol. in about 3 pts. boiling H₂O, and much less, in presence of HBr. (Wallace, Phil. Mag. (4) **17.** 261.)

Sol. in CS₂

Sol. in AlBr₃. (Isbekow, Z. anorg. 1913,

Easily sol. in PCl₃ and PBr₃. Z. anorg. 1900, 25, 211.) Sol. in S₂Cl₂. (Walden, Z. anorg. 1900, **25.** 217.)

Arsenic cæsium bromide, 2AsBr3, 3CsBr.

Decomp. by H₂O; can be recryst. from conc. HBr+Aq. (Wheeler, Z. anorg. 4. 451.)

Arsenic rubidium bromide, 2AsBr₃, 3RbCl. As the corresponding Cs comp.

Arsenic bromide ammonia, AsBr₃, 3NH₃.

Decomp. by H₂O. (Besson, C. R. 110. 1258.)

Arsenic bromide copper, 2AsBr₃,7Cu.

Stable toward hot H2O. Decomp. by KOH. (Hilpert and Herrman, B. 1913, 46, 2224.)

Arsenic bromide silver, AsBr3, 3Ag.

Scarcely decomp. by cold H₂O. (Hilpert and Herrmann.)

Arsenic chloride, AsCl₃.

Miscible with little H2O, and with alcohol,

R

HHS

S

S

olive oil. Somewhat sol. in HCl+Aq.

Easily sol. in PCl₈ and PBr₈. (Walden, Z. anorg. 1900, 25. 211.)

Sol. in liquid CN. (Centnerszwer, J. russ. phys. Ges. 1901, 33. 545.)

Sol. in S₂Cl₂. (Walden, Z. anorg. 1900, 25. 217.)

Arsenic pentachloride, AsCl₅.

Fumes in the air with evolution of hydrogen chloride. Readily sol. in CS2, and absolute ether cooled to -30°. (Baskerville, J. Am. Chem. Soc. 1902, 24. 1070.)

Arsenic cæsium chloride, 2AsCl₃, 3CsCl.

Decomp. by H₂O. 100 pts. HCl+Aq (1.2 sp. gr.) dissolve 0.429 pt. salt. (Wheeler, Z. anorg. 4. 451.)

Arsenic iridium phosphorus chloride.

See Iridium phosphorus chloride arsenic chloride.

Arsenic rubidium chloride, 2AsCl₃, 3RbCl.

Decomp. by H₂O. 100 pts. HCl+Aq (sp. gr. 1.2) dissolve 2.935 pts. salt. (Wheeler, Z. anorg. 4. 451.)

Arsenic sulphur chloride, 2AsCl₃, 3SCl₂.

Decomp. by H₂O. (Rose.)

Above compound is a mixture. (Nilson, C. N. 81. 81.)

Arsenic chloride ammonia, 2AsCl₃, 7NH₃.

Decomp. by cold H₂O, with evolution of NH₃. From the solution crystallizes As₄Cl₂

N₂H₁₀O₈.
Sol. in alcohol without decomp. (Rose,

Pogg. 52. 62.)

Composition is AsCl₃, 4NH₃. (Besson. C. R. 110. 1258.)

Arsenic chloride copper, 2AsCl₃,7Cu.

Somewhat decomp. by H2O. Decomp. by KOH, or hot HCl. (Hilpert and Herrman, B. 1913, 46. 2224.)

Arsenic chloride silver, 2AsCl₂, 7Ag.

H₂O, NH₄OH and KOH split off Ag. (Hilpert and Herrmann.)

Arsenic trifluoride, AsF₈.

Sol. in H₂O with evolution of heat and decomposition. (Berzelius.) Easily sol. in benzene. (Moissan, C. R.

Miscible with alcohol and ether. (M'Ivor, C. N. 30. 169.)

Arsenic pentafluoride, AsF₅.

Sol. in H₂O, alkalies+Aq and liquid AsF₃ with evolution of heat. Absorbed by ether, alcohol and benzene with evolution of heat. (Ruff, B. 1906, **39.** 67.)

Miscible with oil of turpentine, and with Arsenic potassium fluoride, AsF5, KF+ ½H₂Ō.

 AsF_5 , $2KF+H_2O$

AsF₅, AsOF₃, 4KF+3H₂O. (Marignac, A. **145.** 237.)

Arsenic fluoride ammonia, 2AsF₃, 5NH₃.

Easily decomp. by H₂O. (Besson, C. R. **110.** 1258.)

Arsenic pentafluoride nitrosyl fluoride, AsF₅, NOF.

Decomp. by H_2O , fuming HCl, NaOH + Aq, dry ether and dry alcohol with evolution of NO. Sol. in conc. HNO₃, hot conc. H₂SO₄, boiling NOCl and AsF₃. Insol. in CCl₄ and CS₂. (Ruff, Z. anorg. 1908, **58**. 327.)

Arsenic trifluoride sulphur tetrachloride, 2AsF₈, SCl₄.

Very hydroscopic. Decomp. by H₂O and NaOH. Decomp. by thionyl chloride, CCl₄, CS₂, abs. alcohol and ether. Decomp. by ligroin, benzene and toluene. (Ruff, B. 1904, **37.** 4520.)

Arsenic hydride, AsH₈.

Sl. sol. in H₂O and alkali hydrates+Aq, with subsequent decomposition. H2O absorbs 1/5 vol. AsH3. Decomp. by conc. acids. Absorbed rapidly by oil of turpentine, slightly by fixed oils, and not at all by alcohol, ether, or KOH+Aq. (Gmelin.) Insol. in KOH+Alcohol. (Meissner.)

Not more sol. in alkaline solutions than in

pure H₂O. (Berzelius.) AsH. Solid. Insol. in H₂O, alcohol, ether,

and CS₂. (Wiederhold, Pogg. 118. 615.) Insol. in H₂O; sol. in methylene iodide, xylene, or in conc. KOH+Aq. (Retgers, Z. anorg. **4.** 403.)

Arsenic hydride boron bromide, AsH₈, BBr₃.

Easily decomp. Decomp. by H₂O. Appreciably sol. in AsH₃ or BBr₃. Insol. in CS₂. (Stock, B. 1901, **34.** 949.)

Arsenic diodide, As₂I₄.

Decomp. by H₂O or alkalies; easily sol, in alcohol, ether, chloroform, or carbon disulphide. (Bamberger and Phillip, B. 14. 2643.)

Not attacked by cold conc. H₂SO₄ or by cold fuming HNO₃. The latter oxidizes on warming. Decomp. by pyridine. Sol. in boiling acetic anhydride. (Hewitt and Winmill, Chem. Soc. 1907, 91. 962.)

Arsenic trüodide, AsI₈.

Sol. in 3.32 pts. boiling H₂O, and solution if boiled down deposits pure AsI, but if left to cool slowly, deposits crystals of As₂O₃ and AsOI.

Sl. sol. in HCl+Aq. Sol. in POCl₈, PCl₈ and PBr₈. (Walden, Z. anorg. 1900, 25. 212.)

Sol. in PCl₃. (Beckmann, Z. anorg. 1906, **51.** 110.)

Sol. in SOCl₂, S₂Cl₂ and SO₂Cl₂. (Walden, Z. anorg. 1900, 25. 216.)

Sol. in $SnCl_4$. (Walden, l.c.)

Easily sol. in AsBrs. (Walden, Z. anorg. 1902, **29.** 374.)

Sol. in AsCl₃. (Walden, Z. anorg. 1900, 25. 214.)

Sol. in alcohol without decomp.

Sol. in ether, benzene, chloroform, and CS2. 100 pts. methylene iodide dissolve 17.4 pts. AsI_3 at 12°. (Retgers, Z. anorg. 3. 343.)

Arsenic pentaiodide, AsIs.

More or less sol. in H₂O, alcohol, CHCl₃, ether and CS₂. (Sloan, C. N. 1882, 46. 194.)

Arsenic cæsium iodide, 2AsI₃, 3CsI.

Decomp. by H₂O; sol. in conc. HI+Aq. (Wheeler, Z. anorg. 4. 451.)

Arsenic rubidium iodide, 2AsI3, 3RbI.

As the corresponding Cs comp.

Arsenic sulphur iodide.

See Arsenic sulphoiodide.

Arsenic triiodide ammonia, 2AsIs, 9NHs.

Insol. in benzene. (Bamberger and Phillip, B. 14. 2643.) AsI₃, 4NH₃. (Besson, C. R. 110, 1258.)

Arsenic nitride, AsN.

Easily decomp. into As and N. (Hugot, C. R. 1904, 139, 56.)

Decomp. by heat. (Franz Fischer, B. 1910, 43. 1471.)

Arsenic suboxide, As₂O (?).

Insol. in H2O; decomp. by dil. acids or NH₄OH+Aq. Does not exist. (Geuther, A. 240, 208.)

Arsenic trioxide, As₂O₃.

"White arsenic" exists in two modificaaAs2O3,—crystalline, octahedral, opaque, porcelaneous, etc.; βAs_2O_3 ,—amor-

phous, vitreous, "arsenic glass."

The data concerning the solubility of As₂O₃ are very contradictory, the reasons being that (1) the solubility of the two modifications is different; (2) that the length of time necessary to effect solution differs in the two modifications; and (3) that there is a tendency of the amorphous As₂O₃ to go over into the crystalline state during the process of solution. aAs₂O₃ is also not easily moistened, especially when in a pulverulent condition, which is not the case with the β modification. (Winkler, J. pr. (2) 31. 247.)

The older data are very unreliable, but pos-

sess a certain historical interest.

(Baumé); 80 pts. (Navier); 200 pts. (Aschof and Nasse, 1812); 640 pts. (Hagen, 1796) boiling H_2O . 1 pt. AssO₂ is sol. in 7.72 pts. H_2O if a, or 9.33 pts. if β (Guibort); in 24 pts. H_2O if a, or 21 pts. if β (Taylor). Sol. in 53.3 pts. H_3O at 18.75°. (Abl.) Sol. in 30 pts. H_3O . (Nussembrock). After the solution in H_3O at 100° has been left standing at the different semigratures.

After the solution in $\rm H_2O$ at 100° has been left standing at ordinary temperatures—
1 pt. As₂O₂ remains dissolved in 16 pts. $\rm H_2O$ at 16°, and 20 pts. $\rm H_2O$ at 7° (Buoholz); in 33 pts. $\rm H_2O$ at 7° (Klaproth); in 38.45 pts. $\rm H_2O$ after 3 days, 55 pts. $\rm H_2O$ after 8 days, 64.50 pts. $\rm H_2O$ after 2.3 weeks at 10° (Fischer); in 33.52 pts. if $\rm As_2O_3$ was used, 55.66 pts. if $\rm SA_3C_3$ was used doubort); in 38 pts. if $\rm As_3C_3$ safter 6 months, 53.71 pts. if $\rm SA_3C_3$ after 48 hours (Taylor). When an excess of pulverised $\rm As_2O_3$ is left to digest for several days with cold $\rm H_2O$ —
1 pt. dissolves in 50 pts. (Bucholz); in 66 pts. (Fischer); in 80 pts. at 15° (Bergman); in 80 pts. if $\rm a$, and 103 pts. if $\rm B$ (Guibort); 96 pts. at 10° (Spelman); 96 pts. at 35.5° (Hahnemann); 320 pts. $\rm H_2O$ at 20° (Aschof and Nasse, 1812.) $\rm H_2O$ at 15.6° or below dissolves less than $\rm 14\%$ As₂O₃. (Dalton.)

(Dalton.)

(Dalton.) To dissolve 1 pt. As₂O₃ in 12 pts. H₂O, it is necessary to boil an excess of As₂O₃ with H₂O; if 1 pt. As₂O₂ is boiled with 12 pts. H₂O, considerable remains undissolved; and even with 1 pt. As₂O₃ to 50–60 pts. H₂O long continued boiling is necessary to effect solution. If a clear solution saturated by long boiling with an excess of As₂O₃ is poured off and evaporated continuously to $\frac{1}{2}$ its original bulk, no As₂O₃ to 6 pts. H₂O. (Fischer.) (Fischer.)

100 pts. aqueous solution of β As₂O₃ sat. at 15° contain 0.96 pt. As₂O₃, and 9.68 pts. when sat. at 100°.

(Guibort.)

tain 0.96 pt. As₂O₃, and 9.68 pts. when sat. at 100°. (Guibort.)

If 1 pt. nulvarized Λε₂O₄ be digasted 10 days at 19–25° in 5–10 pts. H₂O₄ resolution considers 1 pt. Λε(): to 50 pts. H₂O₄ A solution of same strength is obtained in 25 days by digesting 1 pt. As₂O₃ in 40 pts. H₂O₄. If 1 pt. As₂O₃ to immersed in 80 pts. H₂O₄, the resulting solution contains 1 pt. As₂O₃ to 90 pts. H₂O₄, if in 100 pts. H₂O₄, 1 pt. As₂O₃ to 180 pts. H₂O₄; if in 100 pts. H₂O₄ or 100 pts. H₂O₅ or 100 pts. H₂O₅

βAs₂O₃ dissolves more quickly and abundantly than αAs_2O_3 . The same amount H_2O which will take up 36–38 pts. βAs_2O_3 at 12–13° will dissolve only 12–14 pts. αAs_2O_3 , or 100 pts. H_2O dissolve 4 pts. βAs_2O_3 and 1.2–1.3 pts. αAs_2O_3 . By long boiling with H_2O , αAs_2O_3 is converted into βAs_2O_3 , and thus acquires the solubility of the latter, so that 100 pts. boiling H_2O can take up 11 pts. As₂O₃. But at low temperature β As₂O₃ is converted into α As₂O₃ when in contact with H₂O, so that the solution becomes weaker after a while, and retains only the proportion of As2O3 corresponding to the solubility of aAs₂O₃. Comminution, which hastens the rate of solubility of aAs₂O₃ without increasing 1 pt. As:0: is sol. in 10.55 pts. (Wenzel); 11.34 pts. (Fischer); 11.86 pts. in $\frac{1}{2}$ hour (Klaproth); 12.2 pts. (Bucholz); 15.0 pts. (Brandt; Bergman); 16.0 pts. (Bucholz); 24 pts. (Lametherië); 40 pts. (Pörner); 64 pts. ity of β As:03, as this is converted into α As:03

by the friction or contact with H₂O. As₂O₃, which has been rendered opaque by NH4OH, and that which has been crystallized from an

aqueous solution, are equally sol. in $\rm H_2O$. (Bussy, C. R. 24. 774; A. 64. 286.) 100 pts. $\rm H_2O$ dissolve 1.707 pts. $\rm \beta As_2O_3$ in 2½ years; 100 pts. boiling $\rm H_2O$ dissolve 11.46 pts. βAs_2O_3 in 3 hours, and 11.86 pts. in 12 hours; 10.14 pts. αAs_2O_3 in 3 hours, and 10.18 pts. in 12 hours. (Rose, Ann. Phys. (1) 36.

A cold sat, solution which stood over excess of As₂O₃ for 10 months at 10-20° contains 1.2% As₂O₈; hot sat. solution a few days after saturation contains 2.25-2.50% As₂O₃. If trace of HCl is present, the solution contains 3.8% As₂O₃. Hot sat. solution of porcelain mod. of As2O3 contains 4 days after saturation 2.4% As₂O₈ at 24°; after 82 days at 14°, 1.5%; after 4 months at 12°, 1.3% As₂O₃. (Bacaloglo, J. pr. 83. 111.)

According to later experiments, 1 pt. aAs₂O₈ dissolves in 355 pts. H₂O in 1 day at 15° while 1 pt. βAs₂O₃ dissolves in 108 pts. H₂O under the same conditions. 1 pt. aAs2O8 dissolves in 46 pts. H2O, if solution is prepared at 100°, and allowed to stand 24 hours at 15° while 1 pt. βAs₂O₈ dissolves in 30 pts. H₂O under the same conditions. (Büchner, N. Rep. Pharm. 22. 265.)

100 pts. H₂O dissolve pts. αAs₂O₃ and βAs₂O₃ at ordinary temperature:

Time	а АндОв	βA82O3
1 hour	0.023	1.589
3 hours	0.088	2.356
6 hours	0.353	3.666
12 hours	0.364	3.361
24 hours	0.956	3.306
2 days	1.627	2.629
4 days	1.814	2.429
1 week	1.673	1.763
3 weeks	1.776	1.713
21/4 years	1.712	1.707

In the solution of βAs₂O₃, octahedral crystals were deposited on the sides of the vessel after 12 hours, which continued to increase. There was no such deposit in the case of aAs₂O₈.

From the maxima in the above table, 100 pts. H₂O can dissolve 3.7 pts. βAs₂O₈ and 1.7 pts. aAs2Os at ordinary temperature.

100 pts. boiling H₂O dissolve 11.46 pts. 0 pts. aAs₂O₃ in 3 hours; and 10.176 pts. aAs2O in nkler, J. pr. (2) 31. 247.) issolve 1.75 pts. of a third agonal crystalline) at ore, and 2.75 pts. at 100°. oc. (2) 6. 179.) more rapidly in HCl+Aq ultz-Sellac, B. 4. 109.)

While 100 ccm. H₂O dissolve 0.8507 g. White 100 ccm. H₂O dissolve 0.8507 g.

As₂O₃ at 18.5°, 100 ccm. H₂O containing
1.3195 g. HCl dissolve 1.1513 g. βAs₂O₃;
containing 6.09 g. HCl, 1.2724 g. βAs₂O₃;
(Chodounsky, Listy Chemické, 13. 114.)
100 ccm. H₂O dissolve 1.495 g. As₂O₃ at
15°. (Wood, Chem. Soc. 1908, 93. 412.)

Solvibility of gravetelling As₂O₃ in H₂O₃

Solubility of crystalline As2O3 in H2O.

1 l. of the sat. solution contains at: 2° 15° 25° 39.8° b 12.006 16.566 20.384 29.302 60+g. As₂O₃ (Bruner, Z. anorg. 1903, 37, 456.)

Much more easily sol. in many acids than in H_2O . Easily sol. in fuming H₂SO₄. (Schultz-Sellac.)

100 pts. dilute H₂SO₄+Aq of various strengths dissolve at to.

t°	Pts. βAs ₂ O ₃	t°	Pts. βAs ₂ O ₃	Ratios of amts. dis- solved at 80°: 18.5°
80° 	1.0195 1.3664 1.1933	18.5°	$\begin{array}{c} 0.5422 \\ 0.7203 \\ 0.6522 \end{array}$	1.88:1 1.89:1 1.84:1

(Chodounsky, l.c.)

Decomp. by HNO₃ or aqua regia into As₂O₅. Sol. in H₂PO₄+Aq. (Bergman.)
More sol. in HCl+Aq than in H₂SO₄, or
HNO₃+Aq, and still less in HC₂H₃O₂+Aq.
Solubility in HCl+Aq.

Grams of As ₂ O ₃ per 100 cc. of solution
1.52 1.41 1.17 1.11 1.13 2.20 5.11 12.28 18.16

As the concentration of the acid increases, the solubility of the oxide decreases, a minimum being reached when the concentration of the solvent is about 3.2N. Beyond this point, an increase in the concentration of the solvent leads to a corresponding increase in the solubility. (Wood, Chem. Soc. 1908, 93. 413.)

Insol. in liquid CO₂. (Büchner, Z. phys.

Ch. 1906, 54. 674.) Easily sol. in cold $H_2C_2O_4+Aq$. man.)

When pulverized, it dissolves in hot H₂C₂O₄ +Aq, but separates out on cooling.

Easily sol. in hot benzoic acid+Aq.

Sol. in tartaric acid+Aq.

Easily sol. in alkali hydrates, or carbonates +Aq.

Easily sol. in NH₄ arsenite + Aq at 70-80°, crystallizing out on cooling. (Berzelius.)

Sol. in hot K₂C₂O₄+Aq.

Sol. in AsCl₃. (Penney and Wallace.) More sol. in Na₂B₄O₇+Aq than in H₂O. Very sl. sol. in absolute alcohol. (Vogel.)

Sol. in 80 pts. highly rectified spirit. (Wenzel.) When 1 pt. powdered As₂O₃ is digested 30 days in 10-40 pts. alcohol, a solution is formed containing 1 pt. As₂O₃ to 60 pts. alcohol; when 1 pt. As₂O₃ is digested with 60-150 pts. alcohol, a solution is formed containing 1 pt. As₂O₃ to 124-140 pts. alcohol. (Fischer.) Sol. in 70-80 pts. alcohol. (Thompson.)

Alcohol dissolves 0.446 pt. βAs₂O₃. (Rose, A. Phys. (1) **52.** 455.)

100 pts. alcohol dissolve pts. As₂O₃:

Vol. % of alcohol	aAs ₂ O ₃ at 15°	aAs ₂ O ₃ at bpt. of alcohol	βAs ₂ O ₃ at 15°
56 79 84 86 88	1.680 1.430 0.715 0.025	4.895 4.551 3.197 3.402	0.504 0.540 0.565 0.717 1.060

(Girardin, J. Pharm. (3) 46. 269.)

100 pts. absolute alcohol dissolve 0.446 pt. βAs_2O_3 in $2\frac{1}{4}$ years. (Winkler, J. pr. (2) 31. 347.)

Nearly insol. in ether.

100 pts. ether dissolve 0.454 pt. βAs_2O_3 .

Ether extracts 1 mg. As₂O₃ from sat. As₂O₃+Aq for every 15 cc. ether used; less is extracted when the solution is acidified with HCl, and almost none if acidified with H_2SO_4 or $H_2C_4O_6$. (Selmi, B. 13. 206.) αAs_2O_3 is sol. in 50 pts. boiling nitrobenzol.

 βAs_2O_3 is insol. in boiling nitrobenzol. (Auerbach, Z. anorg. 1903, **37**. 353.)

βAs₂O₈ dissolves in oil of turpentine, but aAs₂O₃ is insol. therein. aAs₂O₃ is very sl. sol. in benzene or petroleum ether, but more sol. in methyl alcohol, ethyl alcohol, ether, or chloroform. (Selmi.)

100 pts. CS₂ dissolve 0.001 pt. βAs₂O₃ in 2½ years. (Winkler.) Sl. sol. in the fatty oils.

1000 pts. castor-oil dissolve 1.33 pts. As₂O₃ at ordinary temperature, and 9 pts. at boiling temperature. 1000 pts. other oils dissolve 0.6-0.8 pt. As₂O₈ in the cold, and about 1.7 pts. on boiling. (Berzelius.)

Insol. in chinoline or aniline. (Hoffmann,

A. ch. (3) 9. 143, 169.)

Moderately sol. in chinolin. (Beckmann and Gabel, Z. anorg. 1906, 51. 236.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329); (Eidmann, C. C. 1899, II. 1014.)

Sol. in amyl alcohol and is divided between it and H₂O in the constant ratio of 1:5.47 at 25°. (Auerbach, Z. anorg. 1903, 37. 376.) (Menzies and Potter, J. Am. Chem. Soc. 1912. Min. Arsenolite.

Arsenic trioxide pentoxide, 3As₂O₃, 2As₂O₅ +3H₂O.

Decomp. by H₂O. (Joly, C. R. **100**. 1221.) $2As_2O_3$, $As_2O_5+H_2O$. Decomp. by H_2O .

 As_2O_3 , $As_2O_5+H_2O$. (Joly.)

Arsenic tetroxide, As₂O₄.

Sl. sol. in H_2O from which it is partially pptd. by alcohol. More easily sol. in alkali carbonates or HCl+Aq. Most easily sol. in NaOH or KOH+Aq. (Herbst, Dissert. 1894.)

Arsenic pentoxide, As₂O₅.

Deliquescent in moist air; slowly sol. in H₂O, forming H₃AsO₄, which see. Easly sol. in alcohol; much more sol. in alcohol than As₂O₃. Very sl. sol. in the fatty oils, 100 pts. of oil dissolving 0.2 pt. As₂O₅ in the cold, and 1 pt. with partial decomp. on boiling. (Berzelius.)

1000 pts. boiling poppy-oil dissolve 27 pts. As₂O₅; 1000 pts. boiling castor-oil dissolve 34 pts. As₂O₅. (Heimpel and Grundner.)

+4H₂O. Solubility in H₂O at t°.

t°	Pts. H ₈ AsO ₄ in100 pts. solution	t°	Pts. H ₃ AsO ₄ in 100 pts. solution
—55° —50 —45 —40 —35 —30 —25 —20 —15 —10	69.9 70.9 71.9 72.9 73.9 74.9 75.9 76.9 77.9 78.9	-5° 0 +5 10 15 20 25 30 35	80.0 81.0 82.1 83.3 84.7 86.3 88.0 90.1 92.8

(Menzies and Potter, J. Am. Chem. Soc. 1912, **34.** 1464.)

+5/2HO. Solubility in HO at to

1 /8x120. Dolubility in 1120 at 6.		
t°	Pts. H ₃ AsO ₄ in 100 pts. of solution	
+10° 20 30 40 50 60 70 80 90 100 110 120 130	88.4 89.1 89.8 90.5 91.2 91.9 92.6 93.2 93.8 94.4 95.0 95.6 96.2 96.8	

34. 1464.)

 $As_2O_5+4H_2O$ and $3As_2O_5+5H_2O$ are the only hydrates that can be isolated. (Menzies and Potter.)

See also Arsenic Acid.

Arsenic trioxide, with alkali haloid. See Arsenite, alkali haloid.

Arsenic sulphur trioxide, As₂O₃, SO₃.

Deliquescent; decomp. by H₂O. (Adie, Chem. Soc. **55.** 157.)

As₂O₃, 2SO₃. As above. (Adie.) As₂O₃, 3SO₃. (Weber, B. **19**. 3186.) As₂O₃, 4SO₃. As above. (Adie.) As_2O_3 , $6SO_3$. (Weber.) As_2O_3 , $8SO_3$. As above. (Adie.)

Arsenic oxychloride, etc.

See Arsenyl chloride, etc.

Arsenic phosphide, AsP.

Decomp. by H₂O. Not attacked by cold H₂SO₄ or HCl, and only sl. sol. therein on warming. Easily decomp. by HNO₅, KOH, NaOH, BaO₂H₂+Aq. Insol. in alcohol, ether, chloroform; sl. sol. in CS2.

P2As3O2. Product of action of H2O on above compound, which it resembles. (Jan-

owsky, B. **6.** 216.)

Arsenic monoselenide, As₂Se.

Insol. in most organic and inorganic solvents. Sol. very slowly in conc. HCl and H₂SO₄. Sol. in boiling alkali hydroxides+Aq. (Szarvasy, B. 1897, 30. 1245.)

Arsenic triselenide, As_2S_3 .

Partially sol. in KOH+Aq if boiled with it for a long time. (Uelsmann, A. 116. 123.)

Arsenic pentaselenide, As₂Se₅.

Insol. in most solvents, as conc. HCl. Sol. in alkali hydrates and sulpho-hydrates+Aq.

(Szarvasy, B. 1895, **28**. 2655–2656.) Insol. in H₂O, in dil. acids and in conc. HCl. Sl. sol. in warm HNO₃+Aq. Oxidized by cold fuming HNO3. Sol. in alkalies and in hot alkali carbonates + Aq. Insol. in alcohol, ether, CS₂, etc. (Clever, Z. anorg. 1895, 10. 129.)

Arsenic selenosulphide.

See Arsenic sulphoselenide.

Arsenic sulphide, As₃S.

Ppt. Insol. in NH₄OH or in colorless (NH₄)₂S+Aq. Sol. in yellow NH₄SH+Aq. (Scott, Chem. Soc. 1900, 77. 652.)

Arsenic disulphide, As_2S_2 .

Min. Realgar. Difficultly sol. in alkali sulphides+Aq. Partly dissolved by KOH+ Aq with decomposition. Sol. at 150° in a sealed tube in NaHCO₃+Aq, and crystallizes out on cooling. (Senarmont, A. ch. (3) 32. 158.)

Arsenic trisulphide, As₂S₈.

Insol, in H₂O when prepared in the dry way. but when prepared moist is very liable to go into the colloidal modification mentioned below. Insol. in H₂O containing H₂SO₄ HNO₃, HCl, H₂C₂O₄, HC₂H₃O₂, H₂C₄H₄O₅, CO₂, NH₄Cl, KNO₃, (NH₄)₂SO₄, MgSO₄. (Bontigny.)

Insol. in H2O. Traces are dissolved by H_2S+Aq . Sl. decomp. by boiling with H_2O , or long contact with cold H2O. (Fresenius.) 1 l. H₂O dissolves 2.1 x 10-6 mols. pptd. As₂S₃ at 18°. (Weigel, Z. phys. Ch. 1907, 58.

Insol. in dil. acids. Insol. in cold, and scarcely attacked by hot conc. HCl+Aq.

Easily decomp. by HNO3 or aqua regia. Easily sol. in cold KOH, NaOH, or NH4OH +Aq, also in alkali carbonates, or sulphates+

Aq. Sol. in hot KHSO₃+Aq. Sol. in citric acid, and alkali citrates+Aq. (Spiller.)

Slowly sol. in cold 2% Na₂B₄O₇+Aq. Easily sol. on heating. (Materne, C. C. 1906, II. 557.)

Insol. in CS₂. Min. Orpiment.

As₂S₃ may also be obtained in a colloidal form, sol. in H₂O. Sat. solution contains 34.46% As₂S₃; it is decomp. by standing, but may be boiled without undergoing decomposition; most acids and many salts ppt. As₂S₃ (Schulze, J. pr. (2) 25. 431.)

The following solutions cause pptn. of As₂S₃ in a solution of the colloidal modification, when added in the given state of dilution:-

**				
HCl+Aq .				1:555
TINO		•	•	
HNO3+Aq .	,	•		1:276
H_2SO_4+Aq .				1:255
TT CO	•	•	•	
H_2SO_3+Aq .	,	•	•	1:138
$H_2C_2O_4+Aq$.				1:65
H_3PO_4+Aq .				1:26
$HC_2H_3O_2+Ac$	נ			1:0.18
K_2SO_4+Aq	1	-	•	1:76
NIA SOLLA	•	•	•	$\hat{1}: 129$
Na_2SO_4+Aq	•	•	•	
$(NH_4)_2SO_4 + A$	\q			1:188
$CaSO_4+Aq$.				1:2780
$MgSO_4+Aq$.				1:2630
$ZnSO_4+Aq$.				1:3330
MnSO ₄ +Aq.		•	•	1:2860
MINDOATAG.	•	•	•	
NiSO4+Aq .	•	•	•	1:3440
$FeSO_4+Aq$.			•	1:2380
$Al_2(SO_4)_8 + Aq$	1			1:52600
Tl_2SO_4+Aq .				1:799
KCl+Aq .		_		1:137
KBr+Aq .		•	•	1:103
KI+Aq		•	•	$\hat{1}: \hat{5}\hat{5}$
777 T.70	•	•	•	
LiI+Aq .	•			1:127
NaCl+Âq .				1:212
NH ₄ Cl+Aq .			:	1:207
BaCl ₂ +Aq .		_	_	1:2860
CaCl2+Aq .		-	•	1:4370
Caois Tad .		•	•	
MgCl ₂ +Aq .	,	•		1:10000

$FeCl_3+Aq$				1:50000
AlCl ₈ +Aq				1:83000
$CrCl_3+Aq$				1:20000
$KNO_8 + Aq$				1:84
NaNO ₈ +Aq				1:117
NH_4NO_3+A				1:138
$Ba(NO_3)_2+A$				1:2080
$KClO_3+Aq$	•			1:88
$CaH_2(CO_3)_2$	+Aq			1:3120
$K_2C_2H_4O_6+$				1:85
$K_2C_2O_4+A_0$				1:81
$NaC_2H_3O_2+$				1:78
Urea+Aq				1:25
$(NH_4)_2$ Fe(S				1:1160
$K_2Al_2(SO_4)_4$				1:50000
$K_2Fe_2(SO_4)_4$	+Aq	. •	•	1:55500
$K_2Cr_2(SO_4)_4$				1:25000
$K_4 \text{Fe}(CN)_6$				1:67
$\mathrm{K_3Fe}(\mathrm{CN})_{6}$ -	+Aq	•	•	1:81

Cold conc. solutions of boric, arsenious, tartaric, benzoic, and salicylic acids, also cane sugar, or chloral hydrate cause no pptn. Absolute alcohol and glycerine may also be mixed with the solutions without causing pptn. (Schulze, J. pr. (2) 25. 442.)

+6H₂O; decomp. completely into As₂S₃ under a pressure of 6000 to 7000 atmos.

(Spring, Z. anorg. 1895, 10. 186.)

Arsenic pentasulphide, As₂S₅.

Insol. in H₂O. Sol. in NH₄OH, KOH, NaOH+Aq, and solutions of alkali sulphides and carbonates. Sol. in BaO₂H₂, and CaO₂H₂ +Aq.

Sol. in citric acid, and alkali citrates+Aq.

(Spiller.)

Alcohol dissolves out S on boiling. (Berzelius.)

Sol. in alkali arsenates + Aq. (Nilson, J. pr. (2) 14. 155.)

 $+H_2O$. (Nilson, l.c.)

Arsenic trisulphide, with M2S. See Sulpharsenites, M.

Arsenic pentasulphide, with M2S. See Sulpharsenates, M.

Arsenic sulphobromide, $AsS_2Br_3 = AsSBr +$

Decomp. by H₂O. (Hannay, Chem. Soc. **33.** 284.)

Arsenic sulphochloride, As₂S₅Cl.

Slowly decomp. by boiling H2O. Sol. in hot AsCl₃ without decomp. (Ouvrard, C. R. 116.

Decomp. by H_2O . $AsS_2Cl.$ Sol. in NH₄OH, and alkali carbonates+Aq. rard.)

AsS₂Cl. Slowly decomp. by boiling H₂O. Sol. in alkali carbonates and in NH4OH+Aq. (Ouvrard, C. R. 1893, **116**. 1517.)

Arsenic sulphoiodide, AsSI.

Insol. in alcohol, chloroform or carbon disulphide. (Schneider, J. pr. (2) 23. 486.) Formula is probably As₂S₈, AsI₃.

Slowly attacked by HCl+Aq; somewhat more easily by HNO₃+Aq. Easily sol. in KOH, or NH₄OH+Aq. (Schneider, J. pr. (2) 34. 505.)

2AsI₃, SI₆. Decomp. on air. (Schneider,

J. pr. (2) 36. 509.) As₄S₅I₂. Less sol. in CS₂ than AsI₃. (Ouvrard, C. R. 117. 107.)

As₂SI₄. (Ouvrard.)

See also Arsenyl sulphoiodide.

Arsenic sulphoselenide, As₂SeS₂.

Easily sol. in cold NH4SH+Aq. Nearly completely sol. in (NH₄)₂CO₃+Aq. (v. Gerichten, B. 7. 29.)

As₂SSe₂. More difficultly sol. than the preceding comp. in NH₄SH+Aq. (v. Gerichten.) $As_2Se_2S_3$. Sp. gr. = 6.402 at ca. 750°.

Insol. in most solvents. Easily sol. in alkali hydroxides and sulphides+Aq. (Szarvasy, B. 1895, **28.** 2661.)

 $As_2Se_3S_2$. Sp. gr. = 11.35 at 550-600°. Insol. in most solvents. Easily sol. in alkali hydroxides and sulphides + Aq. (Szarvasy, B. 1895, **28.** 2659.)

Arsenic telluride, As₂Te₂.

Sol. in HNO₃ and HNO₃+HCl+Aq. (Oppenheim, J. pr. 71. 266.)

As₂Te₃. As above. (Oppenheim.)

Arsenic acid, anhydrous, As₂O₅. See Arsenic pentoxide.

Metaarsenic acid, HAsO₃.

Slowly sol. in cold, quite easily sol. in hot H₂O, with considerable evolution of heat, and conversion into H₃AsO₄. (Kopp, A. ch. (3) **48.** 196.)

Orthoarsenic acid, H3AsO4.

Sol. in H₂O, with absorption of heat.

1 pt. As₂O₅ dissolves in 0.405 pt. H₂O at 12.5° , or 100 pts. H₂O dissolve 244.81 pts. As₂O₅ at 12.5°. (Vogel.)

Sol. in 0.5 pt. H₂O. (Thénard.) Sol. in 6 pts. cold H₂O, and more quickly in

2 pts. hot H₂O. (Bucholz.) 100 pts. H₂O at 15.56° dissolve 150 pts.

As₂O₅. (Ure's Dict.) H₂AsO₄+Aq sat. at 15° contains 15% As_2O_5 .

Sp. gr. of H_3AsO_4+Aq at 15°: a=sp. gr. if % is As₂O₅; b = sp. gr. if % is H₃AsO₄.

%	a	ь	%	a	ъ
5 10 15 20 25 30 35 40	1.042 1.085 1.134 1.187 1.245 1.306 1.378 1.453	1.0337 1.0690 1.1061 1.1457 1.1882 1.2342 1.2840 1.3382	45 50 55 60 65 70 75	1.540 1.635 1.742	1.3973 1.4617 1.5320 1.6086 1.6919 1.7827

(Schiff, A. 113. 183, calculated by Gerlach, Z. anal. 27. 303.)

Sp. gr. of H_8AsO_4+Aq at 15° : a=sp. gr. if % less sol. in $HC_2H_3O_2+Aq$. is As_2O_5 ; b=sp. gr. if % is H_8AsO_4 .

6.0	a	ь	%	<u>a</u>	. b
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 19 10 11 12 13 14 15 16 17 8 19 10 12 12 12 12 12 12 12 12 12 12 12 12 12	1.008 1.016 1.023 1.031 1.039 1.048 1.057 1.065 1.074 1.083 1.092 1.102 1.111 1.121 1.130 1.140 1.150 1.140 1.150 1.140 1.150 1.181 1.226 1.237 1.249 1.261 1.274 1.286 1.237 1.249 1.352 1.366 1.381 1.352 1.366 1.411 1.458 1.475 1.492 1.509 1.526 1.545	1.006 1.013 1.019 1.020 1.032 1.046 1.052 1.052 1.052 1.066 1.073 1.081 1.088 1.096 1.103 1.111 1.119 1.126 1.134 1.142 1.158 1.167 1.175 1.183 1.192 1.201 1.210 1.210 1.210 1.219 1.228 1.248 1.257 1.267 1.277 1.288 1.299 1.309 1.309 1.331 1.342 1.356 1.376 1.387 1.400	47 48 49 50 51 52 53 55 55 60 61 62 63 64 65 66 67 77 77 78 79 80 81 82 83 84 84 85 86 87 87 87 88 88 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	1.564 1.582 1.601 1.622 1.663 1.685 1.708 1.752 1.777 1.801 1.825 1.880 1.910 1.940 2.030 2.060 2.030 2.050 2.050 2.050 2.120 2.150	1.425 1.425 1.425 1.450 1.450 1.501 1.501 1.501 1.501 1.501 1.501 1.501 1.501 1.601 1.601 1.601 1.701 1.701 1.701 1.701 1.801 1.801 1.801 1.901

(Kopp, calculated by Gerlach, Z. anal. 27. 316.)

See also Arsenic pentoxide.

Pyroarsenic acid, H₄As₂O₇.

Very deliquescent; easily sol. in H2O with evolution of much heat, and conversion into H₃AsO₄.

Arsenates.

Arsenates of the alkali metals, and acid arsenates of the alkaline-earth metals are sol. | 6.) in H2O. Neutral and basic arsenates are easily sol in mineral acids, including HaAsO4; at 15°; in 381 pts. NH4Cl+Aq (1:7); in

The neutral alkaline-earth arsenates are less sol. in NH₄OH +Aq than in H₂O, but more sol. in NH₄Cl+ Aq (Field). The alkali arsenates are sol. in hot glycerine. (Lefèvre, C. R. 108. 1058.)

Aluminum arsenate, $Al_2(AsO_4)_2$.

Ppt. Insol. in H₂O; difficultly sol. in acids. (Coloriano, C. R. 103. 273.)

Insol. in acetone. (Naumann, B. 1904, 37.

2Al₂O₅, 3As₂O₅. Nearly unattacked by boiling H₂O; sol. in dil. acids. (Lefèvre, A. ch. (6) 27. 5.)

Aluminum potassium arsenate, 2Al₂O₃, 3K₂O, $3As_2O_5$.

(Lefèvre.)

Aluminum sodium arsenate, 2Al₂O₃, 3Na₂O, 3As₂O₅. (Lefèvre.)

Ammonium arsenate, $(NH_4)_3AsO_4+3H_2O$.

Difficultly sol, in H₂O. Less sol. in H₂O than (NH₄)₂HAsO₄. (Mitscherlich.) Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, **20.** 826.)

Ammonium hydrogen arsenate, (NH₄)₂HAsO₄.

Effloresces, giving off NH₂; more sol. in H₂O than (NH₄)₂AsO₄. (Salkowsky, J. pr. **104.** 129.)

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

Ammonium dihydrogen arsenate, NH4H2AsO4.

Not efflorescent. Very sol. in H₂O.

Ammonium barium arsenate, NH4BaAsO4+ ½H₂O.

Sol. by 10 days' contact in 1391 pts. H₂O; in 18,832 pts. of a mixture of 1 pt. NH4OH+ in 18,832 pts. of a mixture of 1 pt. NH₄OH+Aq and 3 pts. H₂O; in 227 pts. of a solution of 1 pt. NH₄Cl in 10 pts. H₂O; and in 2169 pts. of a solution of 1 pt. NH₄Cl in 10 pts. NH₄OH+Aq and 60 pts. H₂O. (Lefèvre, A. ch. 1892, (6) 27. 13.)

(NH₄)₂BaH₂(AsO₄)₂. Efflorescent. Insol. in H₂O; easily sol. in dil. HNO₃+Aq. (Baumann, Arch. Pharm. 36. 36.)

Ammonium calcium arsenate, NH₄CaAsO₄+ ½H₂O.

1000 pts. pure H₂O dissolve 0.20 pt. this salt: 1000 pts. NH, Cl+Aq (containing 50 pts. NH_4Cl) dissolve 4.15 pts. this salt; 900 pts. H_4O+100 pts. NH_4OH (sp. gr. =0.880) dissolve 0.01 pt. this salt. (Field, Chem. Soc. 11.

Soluble by 10 days' contact in 2167 pts. H₂O

43478 pts. NH₄OH+Aq (1:3); in 10570 pts. Ammonium magnesium arsenate. NH₄Cl+NH₄OH+Aq (1:10:60). (Lefèvre, A. ch. 1892, (6) **27**. 13.)

+6H₂O. Sol. in hot, very sl. sol. in cold H₂O; sl. sol. in NH₄Cl, and NH₄OH+Aq. (Wach, Schw. J. 12. 285.)

+7H₂O. (Bloxam, C. N. 54. 163.)

(NH₄)₂CaH₂(AsO₄)₂. Efflorescent. Insol. in H₂O; easily sol. in dil. HNO₃+Aq. (Baumann, Arch. Pharm. 36. 36.)

 $(NH_4)Ca_8H_2(AsO_4)_3+3H_2O.$

(NH4)Ca6H5(AsO4)6+3H2O. (Bloxam, C. N. 54. 163.)

Ammonium glucinum arsenate, NH4GlAsO4 +4½H₂O.

More stable than the corresponding potassium salt. (Bleyer, Z. anorg. 1912, 75. 291.)

Ammonium iron (ferric) dihydrogen arsenate, NH₄H₂AsO₄, FeAsO₄.

Hydrolyzed by H₂O.

Sol. in cold conc. HCl, hot HNO3, hot dil. H₂SO₄, and in hot arsenic acid+Aq containing 75% arsenic pentoxide.

Sol. in hot conc. NH4OH+Aq. Completely

hydrolyzed by caustic alkalies.

Insol. in conc. NH₄Cl+Aq and in 50% acetic acid. (Curtman, J. Am. Chem. Soc. 1910, **32.** 628.)

NH₄MgAsO₄.

Sl. sol. in H₂O. Sol. in acids.

Anhydrous salt is sol. in 2784 pts. H₂O at Annyarous sait is soi. in 2/84 pts. H₂O at 15°; in 15,904 pts. NH₄OH+Aq (1:3) (0.96 sp. gr.); in 1386 pts. NH₄Cl+Aq (1:70); in 886.7 pts. NH₄Cl+Aq (1:7); in 3014 pts. NH₄Cl (1 pt.)+NH₄OH (0.96 sp. gr.) (10 pts.)+Aq (60 pts.); in 32,827 pts. magnesia mixture. (Fracenius 7, cr. et al. 2,96) mixture. (Fresenius, Z. anal. 3. 206.)

Anhydrous salt is sol. in 4389 pts. NH₄NO₃ +Aq (1:50); in 2561.5 pts. KCl+Aq (1: 165); in 1422 pts. ammoniacal solution of 3.5 g. tartaric acid in 250 cc. H2O; in 933.5 pts. ammoniacal solution of 2.5 g. citric acid in 250 cc. H₂O. (Puller, Z. anal. 10. 62.)

+½H₂O.
Sol. in 2656 pts. H₂O at 15°; in 15,038 pts. NH₄OH+Aq (1:3) (0.96 sp. gr.); in 844 pts. NH₄Cl+Aq (1:7); in 1315 pts. NH₄Cl+Aq (1:70); in 2871 pts. NH₄Cl (1 pt.)+NH₄OH (0.96 sp. gr.) (10 pts.) +Aq (60 pts.). (Fresenius.)

1000 pts. pure H₂O dissolve 0.14 pt. salt: 1000 pts. NH4Cl+Aq (containing 100 pts. NH₄Cl) dissolve 0.95 pt. salt; 900 pts. H₂O +100 pts. NH₄OH (sp. gr. 0.880) dissolve 0.07 pt. salt. (Field, Chem. Soc. 11. 6.)

+6H₂O. Sl. efflorescent. Sl. sol. in H₂O.

Very sl. sol. in NH4OH+Aq.

Solubility of NH₄MgAsO₄+6H₂O in H₂O and NH₄ salts+Aq. Grams salt dissolved in 100 g. solvent.

t°	H₂O	5% NH4NO3+Aq	5% NH4Cl+Aq	NH4OH +Aq 1 pt. NH4OH + Aq (0.96) +4 pts. H2O	4% NH40H+ Aq+5% NH4Cl+Aq	4% ·NH ₄ OH + Aq +10% NH ₄ Cl+Aq
0° 20 30 40 50 60 70 80	0.03388 0.02066 0.02746 0.02261 0.02103 0.01564 0.02364	0.09216 0.11358 0.11758 0.13936 0.18945 0.21115 0.18880 0.18945	0.08397 0.12284 0.11264 0.19016 0.18889 0.21952 0.22092 0.23144	0.00874 0.00958 0.01173 0.01005 0.00902 0.00949 0.00912	0.01331	0.03165

(Wenger, Dissert. 1911.)

Ammonium manganous arsenate, $NH_4MnAsO_4+6H_2O$.

Nearly insol. in cold H2O; easily sol. in dil. acids; insol. in alcohol. (Otto, J. pr. 2. 414.)

Ammonium sodium arsenate, NH₄NaHAsO₄ +4H₂O

Sol. in H₂O. (Uelsmann, Zeit. f. ges. Nat. **23.** 347.)

Ammonium sodium hydrogen arsenate, $(NH_4)_8Na_8H_6(AsO_4)_4+6H_2O.$

Sol. in H₂O. (Filhol and Senderens, C. R. **94.** 649.)

Ammonium strontium arsenate, NH₄SrAsO₄

 $+\frac{1}{2}H_2O$. Sol. by 10 days' contact in 3229 pts. H₂O, in 11,586 pts. dil. NH₄OH+Aq, in 199 pts.

of a mixture of 1 pt. NH₄Cl in 7 pts. H₂O and in 1519 pts. of a solution of 1 pt. NH.Cl in 10 pts. $NH_4OH + Aq$ and 60 pts. H_2O . (Lefèvre, A. ch. 1892, (6) 27. 13.)

Ammonium uranyl arsenate, NH₄(UO₂)AsO₄ $+xH_2O$.

Insol. in H_2O , $HC_2H_3O_2$, and saline solutions as NH_4Cl+Aq ; sol. in mineral acids. (Puller, Z. anal. 10. 72.)

Ammonium vanadium arsenate

 $NH_4(VO_2)_2AsO_4$, and $(NH_4)_2HAsO_4+$ 2(VO₂)₂H₂AsO₄.

See Arseniovanadate, ammonium.

Ammonium arsenate tellurate.

See Arseniotellurate, ammonium.

Antimony arsenate (?).

Insol. in H₂O; insol. in acids after ignition, but when fresh is sol. in conc. boiling HCI+ Aq, and sl. sol. in HNO₃+Aq. (Dumas.)

Barium arsenate, Ba₃(AsO₄)₂.

1000 pts. pure H₂O dissolve 0.55 pt. Ba₃(AsO₄)₂; 1000 pts. NH₄Cl+Aq (containing 50 pts. NH₄Cl) dissolve 1.95 pts. Ba₃(AsO₄)₂; 900 pts. H₂O+100 pts. NH₄OH+Aq (sp. gr. =0.88) dissolve 0.03 pt. Ba₃(AsO₄)₂. (Field, Chem. Soc. 11. 6.)

Sol. in cold HNO₃, and HCl+Aq (Berzelius); H₂C₄H₄O₅, and HC₂H₃O₂+Aq. (An-

thon.)

Solubility in H2O is not increased by presence of NH4, Na, or K salts. (Laugier.)
Not pptd. in presence of Na citrate. (Spiller.)

+1½H₂O. (Salkowsky, J. pr. 104. 129.)

Barium hydrogen arsenate, BaHAsO4+ 1½H₂Ŏ.

Very sl. sol. in H₂O, but decomp. thereby into Ba₃(AsO₄)₂ and BaH₄(AsO₄)₂. (Berzelius.)

Sl. sol. in cold acids.

+H₂O. Sl. sol. in either BaCl₂+Aq or Na₂HAsO₄+Aq. (Maumené, J. B. 1864. **2**37.)

Barium tetrahydrogen arsenate, BaH₄(AsO₄)₂ +2H₂O.

Easily sol. in H₂O. (Setterberg, Berz. J. B. **26.** 206.)

Difficultly sol. in little, but decomp. by much H₂O. Easily sol in HCl+Aq, less easily in HC₂H₈O₂+Aq (Hörmann, Dissert, 1879.)

Barium arsenate, acid, BaO, 2As₂O₅+4H₂O. Very sl. sol. in H₂O. (Mitscherlich.)

Barium pyroarsenate, Ba₂As₂O₇.

Insol. in H2O, but decomp. thereby into BaHAsO₄+H₂O. (Lefèvre, C. R. 108. 1058.)

Barium potassium arsenate, BaKAsO₄. Sl. decomp. by cold H₂O; rapidly sol. in dil. acids. (Lefèvre, A. ch. (6) 27. 1.)

Barium sodium arsenate, BaNaAsO4+ 9H₂O. (Joly, C. R. 1887, 104. 1702.)

Barium arsenate chloride, 3Ba₃(AsO₄)₂, BaCl₂. Insol. in H₂O; sol. in dil. HNO₃+Aq. (Lechartier, C. R. 65. 172.)

Bismuth arsenate, basic, BiAsO₄, 3Bi₂O₃. Insol in H₂O. Sol in mineral acids. (Cavazzi, Gazz. ch. it. 14. 289.) 5Bi₂O₃, 2As₂O₅+8H₂O. Min. Rhagite. Easily sol. in HCl+Aq; sl. sol. in HNO3+ Aq.

Bismuth arsenate, $BiAsO_4 + \frac{1}{2}H_2O$.

Insol. in H₂O. Insol. in HNO₃+Aq in presence of H₈AsO₄, or alkali arsenates+Aq; sol. in HCl+Aq. (Salkowsky, J. pr. 104. 129.)

insol. Notwholly in HNO_3+Aq . (Schneider, J. pr. (2) 20. 418.)

Very sol. in H₈AsO₄+Aq. (Dumas.) Insol. in Bi(NO₃)₃+Aq. (Dumas.) Sol. in Bi(NO₃)₃+Aq. (Salkowsky.) Insol. in conc. Bi(NO₃)₃+Aq containing a

small quantity of HNO₃. (Schneider.)

Bismuth copper arsenate, Bi₂Cu₂₀As₁₀H₄₄O₇₀ $= Bi_2O_3$, 20CuO, $5As_2O_5 + 22H_2O$.

Min. Mixite. Decomp. by dil. HNO₃+Aq into insol. BiAsO₄, and Cu₃(AsO₄)₂, which goes into solution. (Dana.)

Bismuth uranyl arsénate, Bi₂(AsO₄)₂, $8BiO_3H_3$, $(UO_2)_3(AsO_4)_2$.

Min. Walpurgite.

(de Schulten.)

Cadmium arsenate, $Cd_3(AsO_4)_2$. $\begin{array}{lll} & \text{Ppt.} & (\text{Salkowsky, J. pr. 104. 129.}) \\ & 2\text{CdO, As}_2\text{O}_5. & (\text{Lefèvre, C. R. 110. 405.}) \\ & 5\text{CdO, 2As}_2\text{O}_5 + 5\text{H}_2\text{O}. & \text{Ppt. (Salkowsky.)} \end{array}$

Cadmium pyroarsenate, Cd₂As₂O₇.

Cadmium hydrogen arsenate, CdHAsO₄+ H₂O.

Decomp. by H₂O. (Demel, B. 12. 1279.) CdH₄(AsO₄)₂+2H₂O. Decomp. by excess of H₂O. (de Schulten, Bull. Soc. (3) 1. 473.)

Cadmium potassium arsenate, 2CdO, K₂O, As₂O₅.

(Lefèvre, C. R. 110. 405.)

Cadmium sodium arsenate, CdO, 2Na₂O, As_2O_5 .

Slowly sol. in dil. acids. (Lefèvre, C. R. **110.** 405.)

2CdO, 4Na₂O, 3As₂O₅. (Lefèvre.)

Cadmium arsenate bromide, 3Cd₃(AsO₄)₂, CdBr₂.

Sol. in very dil. HNO₃+Aq. (de Schulten, Bull. Soc. (3) 1. 472.)

Cadmium arsenate chloride, 3Cd₃(AsO₄)₂, $CdCl_2$.

Sol. in very dil. HNO₃+Aq. (de Schulten.)

Cæsium arsenate, Cs₂O, 2As₂O₅+5H₂O.

Ppt. (Ephraim, Z. anorg. 1910, 65. 246.)

Calcium arsenate, $Ca_3(AsO_4)_2 + 3H_2O$.

Ppt. Insol. in H₂O; sol. in H₃AsO₄+Aq. (Kotschoubey, J. pr. 49. 182.)

Calcium pyroarsenate, Ca₂As₂O₇.

Slowly decomp. by cold H₂O into CaHAsO₄ +1½H₂O. (Lefèvre.)

Calcium hydrogen arsenate, CaHAsO₄+

Insol. in H_2O . (Debray, A. ch. (3) **61**. 419.) + H_2O . Min. *Haidingerite*. Easily sol. in acids.

+2½H₂O. Min. Pharmacolite. Easily sol. in acids.

 $+3H_2O$. Insol. in H_2O ; sol. in HCl, HNO_3 , or H_3AsO_4+Aq ; also in $(NH_4)_2SO_4$, NH_4NO_3 , $NH_4C_2H_3O_2$, and NH_4Cl+Aq . (Pfaff.)

Calcium tetrahydrogen arsenate, CaH₄(AsO₄)₂.

Sol. in H₂O. (Graham.)

+H₂O. Sl. sol. in H₂O. Decomp. by much hot H₂O into H₃AsO₄ and Ca₃(AsO₄)₂. (Hörmann, Dissert. 1879.)

Calcium iron (ferric) arsenate, 6CaO, 4Fe₂O₃, 5As₂O₅+15H₂O (?).

Min. Arseniosiderite. Sol. in acids.

Calcium magnesium arsenate, $Ca_5H_2(AsO_4)_4$, $Mg_5H_2(AsO_4)_4+10H_2O$.

Min. Picropharmacolite. Easily sol. in acids.

 $Ca_3(AsO_2)_2$, $Mg_3(AsO_4)_2$. Sol. in HNO_3+Aq . (Kühn.)

Min. Berzeliite. Sol. in HNO₃+Aq. Ca₈Mg₅H₁₄(AsO₄)₁₄+49H₂O. Min. Wapplerite.

Calcium potassium arsenate, CaKAsO₄. (Lefèvre, A. ch. (6) 27. 5.)

Calcium sodium arsenate, CaNaAsO4.

(Lefèvre, A. ch. (6) 27. 1.) 4CaO, $2Na_2O$, $3As_2O_5$. Not attacked by boiling H_2O ; easily sol. in dil. acids. (Lefèvre.)

Calcium uranyl arsenate, $Ca(UO_2)_2(AsO_4)_2 + 8H_2O$.

Min. Uranospinite.

Calcium vanadium arsenate, CaHAsO₄, $2(VO_2)H_2AsO_4+8H_2O$.

See Arseniovanadate, calcium.

Calcium arsenate chloride, $Ca_3(AsO_4)_2$, $CaCl_2$. Insol. in H_2O ; sol. in dil. HNO_3+Aq . (Lechartier, C. R. 65. 172.) $3Ca_3(AsO_4)_2$, $CaCl_2$. As above. (Lechartier.)

Cerous arsenate, CeHAsO4.

Insol. in H₂O. Sol. in arsenic acid+Aq. (Berzelius.)

Ceric hydrogen arsenate, Ce(HAsO₄)₂+6H₂O.

Ppt. Insol. in H_2O and dil. acids. (Barbieri, B. 1910, 43. 2216.)

Ceric dihydrogen arsenate, Ce(H₂AsO₄)₄+
4H₂O.

Sol. in conc. HNO₃. (Barbieri l. c.)

Chromic arsenate, 2Cr₂O₃, 3As₂O₅.

Insol. in H_2O and conc. boiling acids. (Lefèvre, A. ch. (6) 27. 5.)

Chromic potassium arsenate, 2Cr₂O₃, 3K₂O, 3As₂O₅. (Lefèvre.)

Chromic sodium arsenate, 2Cr₂O₃, 3Na₂O, 3As₂O₅. (Lefèvre.)

Cobaltous arsenate, basic, 4CoO, As₂O₅. Easily sol. in acids. (Gentele, J. B. **1851**. 359.)

Co(CoOH)AsO₄. Insol. in H₂O; difficultly sol. in acids. (Coloriano.)

Cobaltous arsenate, $Co_3(AsO_4)_2 + 8H_2O$.

Ppt. Insol. even in boiling H_2O ; easily sol. in HNO_3 , HCl, and NH_4OH+Aq ; sol. in H_2AsO_4+Aq (Proust); sol. in dil. $FeSO_4+Aq$. (Karsten, Pogg. 60. 266.)

Min. Cobalt bloom, Erythrite. Easily sol. in

5CoO, 2As₂O₅+3H₂O. Insol. in H₂O; difficultly sol. in acids. (Coloriano, C. R. **103**. 273.)

2ĆoO, As₂O₆. Sl. attacked by boiling H₂O; easily sol. in dil. acids. (Lefèvre.)

Cobaltous hydrogen arsenate, CoH₄(AsO₄)₂: Sol. in H₂C.

Cobaltous potassium arsenate, CoKAsO₄. (Lefèvre.)

Cobaltous sodium arsenate, CoNaAsO₄. (Lefèvre.)

4CoO, 2Na₂O, 3As₂O₅. (Lefèvre.)

Cobaltous vanadium arsenate, $Co(VO_2)_2H_2(AsO_4)_2+8H_2O$. See Arseniovanadate, cobaltous.

Cobaltous arsenate ammonia, Co₃(AsO₄)₂, NH₂+7H₂O.

(Ducru, A. ch. 1901, (7) **22.** 185.) Co₃(AsO₄)₂, $2NH_3+6H_2O$. (Ducru, l. c.) Co₃(AsO₄)₂, $3NH_3+5H_2O$. (Ducru, l. c.)

Cuprous arsenate, $2Cu_2O$, As_2O_5 . (Hampe, Dissert. 1874.) $4Cu_2O$, As_2O_5 . (Hampe, l. c.)

Cuprous pyroarsenate, Cu₄As₂O₇.

Ppt. Sol. in NH₄OH or KOH+Aq. (Reichard, B. 1898, **31.** 2166.)

Cupric arsenate, basic, 8CuO, As₂O₅+12H₂O₅

Min. Chalcophyllite. Easily sol. in acids and NH₄OH+Aq.

6CuO, As₂O₅+3H₂O. Min. Aphanesite, Clioclasite. Sol. in acids and ammonia. 5CuO, As₂O₅+2H₂O. Min. Erinite. Sol. in HNO₃+Aq.

+5H₂O. Min. Cornwallite. Sol. in acids, and NH₄OH+Aq. +9H₂O. Min. Tirolite. 4CuO, As₂O₅+H₂O. Insol. in H₂O. (Debray, A. ch. (3) 61. 423.) Min. Olivenite. Sol. in acids, and NH4OH +Aq; decomp. by hot KOH+Aq. +7H2O. Min. Euchroite. Sol. in HNO3+ +4½H₂O. (Hirsch, C. C. 1891, I. 15.)

Cupric arsenate, Cu₃(AsO₄)₂. Insol. in H₂O. Easily sol. in HCl+Aq; sl. sol. in other acids; sol. in NH₄OH+Aq. (Coloriano, C. R. 103. 273.) Insol. in methyl acetate. (Naumann, B. 1909, **42.** 3790.) Insol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, **20.** 827.) +4H₂O. Decomp. by hot H₂O. (Debray.) +5H₂O. Min. Trichalcite. Easily sol. in cold HCl+Aa.

Cupric arsenate, acid, 5CuO, 2As₂O₅. Sol. in H₂SO₂+Aq. (Vogel.) $+3H_2O$. (Salkowsky.) +8, 9½, and 12½ H_2O . (Hirsch.) CuHAsO₄+ H_2O . Insol. in H_2O . (Coloriano.) +1½H₂O. Insol. in H₂O. (Debray, A. ch. (3) **61.** 419.) 8CuO, 3As₂O₅+12H₂O. (Hirsch.)

Cupric lead arsenate, 3CuO, PbO, As₂O₅+ 2H₂O. Min. Bayldonite. Nearly insol. in HNO₃+ Aa.

Cupric potassium arsenate, CuKAsO₄. Slowly sol. in NH₄OH+Aq; easily sol. in acids. (Lefèvre, A. ch. (6) 27. 5.) 8CuO, K2O, As2Os. Easily sol. in dil. acids.

(Lefèvre.) Cupric sodium arsenate, CuNaAsO₄. (Lefèvre.)

3CuO, Na₂O, 2As₂O₈. Very sol. in dil. acids. (Lefevre.) 2Cu₃(AsO₄)₂, NaH₂AsO₄+5H₂O. Ppt. 2Cu₂(AsO₄)₂, NaH₂AsO₄+5H₂O. (Hirsch, C. C. **1891**, I. 15.) 6Cu₂(AsO₄)₂, 2NaH₂AsO₄, Na₂HA 13½ H₂O, or 16H₂O. Ppt. (Hirsch.) Ppt. Na₂HAsO₄+ 3Cu₈(AsO₄)₂, Na₂HAsO₄+9½H₂O. Ppt. (Hirsch.) 4Cu₃(AsO₄)₂, Na₂HAsO₄+11H₂O.Ppt. (Hirsch.)

Cupric uranyl arsenate, Cu(UO2)2(AsO4)2+ 8H₂O.

(Werther, A. 68, 312.) Min. Zeunerite.

Maria de California.

Cupric vanadium arsenate, $Cu(VO_2)_2H_2(AsO_4)_2+3H_2O.$ See Arseniovanadate, cupric.

ammonia. $Cu_3(AsO_4)_2$, Cupric arsenate $3NH_8+4H_2O$.

Insol. in cold or hot H2O. (Damour, J. pr. **37.** 485.) 2CuO, As₂O₅, 4NH₈+3H₂O. Decomp. by

H₂O. (Schiff, A. 123, 42.)

Cupric arsenate calcium carbonate, 5CuO, $A_{S_2O_5}$, $CaCO_8+4H_2O$, or $9H_2O$.

Easily sol. in acids, and Min. Tyrolite. NH₄OH +Aq.

Cupric arsenate sodium chloride, 2Cu₃(AsO₄)₂, $NaCl+7\frac{1}{2}H_2O.$

Decomp. by hot H₂O. (Hirsch, Dissert. 1891.)

 $3Cu_8(AsO_4)_2$, $2NaCl+13\frac{1}{2}H_2O$.

 $+17\frac{1}{2}H_2O$. (Hirsch, *l.c.*) 5Cu₃(AsO₄)₂, 3NaCl+23H₂O. (Hirsch.)

Didymium arsenate, $Di_2H_3(AsO_4)_3$.

Ppt. Insol. in H₂O; sl. sol. in weak acids. (Marignac, A. ch. (3) 38. 164.) $5Di_2(AsO_4)_2$, $As_2O_5 + 3H_2O$. Ppt.

Glucinum arsenate, Gl₃(AsO₄)₂. Insol. in H₂O; sol. in H₃AsO₄+Aq. (Berzelius.)

Glucinum hydrogen arsenate, GlHAsO4.

Obtained in impure state by heating As₂O₅ with Gl(OH)₂ in a sealed tube at 220°. (Bleyer, Z. anorg. 1912, 75. 287.)

Glucinum tetrahydrogen arsenate, GlH₄(AsO₄)₂.

Very hydroscopic. (Bleyer, Z. anorg. 1912, 75. 287.)

Glucinum potassium arsenate, KGlAsO4, ½GlO +5H₂O.

Unstable. Amorphous. Easily hydrolyzed, giving more basic salts. (Bleyer, Z. anorg. 1912, 75. 289.)

sodium arsenate, NaGlAsO4, Glucinum 1⁄2GlO+6H2O.

Unstable. Easily hydrolyzed. (Bleyer, Z. anorg. 1912, 75. 290.)

(ferrous) arsenate,* Fe₃(AsO₄)₂+ Iron $6H_2O$ (?).

Ppt. Sl. sol. in NH₄OH+Aq. Insol. in (NH₄)₈AsO₄+Aq or other NH₄ salts+Aq. (Wittstein.)

+8H₂O. Min. Symplesite. Sol. in HCl+ Aq.

Iron (ferric) arsenate, basic, 16Fe₂O₈, As₂O₈ +24H₂O.

Insol. in NH₄OH+Aq. (Berzelius.) 2Fe₂O₃, As₂O₅+12H₂O. Insol. in NH₄OH

+Aq. 3Fe₂O₃, 2As₂O₅. 3Fe₂(AsO₄)₂, Fe₂O₆H₆+12H₂O. Min. 3Fe₂(AsO₄)₂, Easily sol. in ac decomp. by KOH+Aq.

Iron (ferric) arsenate, Fe₂O₃, As₂O₅.

Ppt. Insol. in H₂O. Decomp. by hot H₂O. Sol. in HCl, H2SO4 and HNO3. (Metzke, Z. anorg. 1898, 19, 473.)

+4H₂O. Min. HNO₂+Aq. HCl+Aq; insol. in HNO₂+Aq. When freshly pptd., sol. in NH₄OH+Aq. Sol. in HCl, or HNO₃+Aq. Insol. in HC₂H₃O₂, or NH₄ salts+Aq. (Wittstein.)

Sol. in warm H₂SO₃+Aq or (NH₄)₂SO₃+Aq. (Berthier, A. ch. (3) 7. 79.)

Iron (ferric) arsenate, acid, Fe₂O₃,3A_{S2}O₅ +16.7H₀O.

Ppt.; sl. sol. in acids with a yellow color, and in NH4OH+Aq with a red color. (Metzke, Z. anorg. 1898, 19. 476.)

 $2\text{Fe}_2\text{O}_3$, $3\text{As}_2\text{O}_5 + 12\text{H}_2\text{O}$. Insol. in H_2O or

 $HC_2H_3O_2+Aq.$

Sol. in mineral acids.

Sol. only in conc. H₃AsO₄+Aq.

Sol. in (NH₄)₃AsO₄, and other NH₄ salts

Sol. in (Wittstein.)
Sol. in NH₄OH+Aq.
+22½H₂O. Ppt. Sl. sol. in acids with a yellow color, and in NH₄OH+Aq with a red color. (Metzke, Z. anorg. 1898, 19. 475.)

Iron (ferroferric) arsenate, 6FeO, 3Fe₂O₃, $4As_2O_5+32H_2O$.

Insol. in H₂O. Sol. in HCl+Aq. Decomp. by KOH+Aq. (Wittstein, J. B. 1866. 243.)

Iron (ferric) lead arsenate, 5Fe₂(AsO₄)₂, $Pb_8(AsO_4)_2$.

Min. Carmine Spar. Carminite. Sol. in acids; KOH+Aq dissolves out As₂O₅. (Sandberger.)

Iron (ferric) potassium arsenate, 2Fe₂O₃, 3K₂O, 3As₂O₅.

Not attacked by boiling H₂O; easily sol. in dil. acids. (Lefèvre.) Fe₂C₃, K₂O, 2As₂O₅. (Lefèvre.)

Iron (ferric) sodium arsenate, Fe₂O₃, Na₂O, 2As₂O₅.

(Lefèvre.)

2Fe₂O₃, 3Na₂O, 3As₂O₅. (Lefèvre.)

Lanthanum arsenate, La2H3(AsO4)3.

(Frerichs and Smith.)

Doubtful. (Cleve, B. 11. 910.)

Lead arsenate, basic, 15PbO,2As₂O₅ (?). Ppt. (Strömholm, Z. anorg. 1904, **38**. 446.)

Lead arsenate, Pb₃(AsO₄)₂.

Insol. in H₂O, NH₄OH, or NH₄ salts+Aq. (Wittstein.)

Sol. in 2703.5 pts, HC₂H₂O₂+Aq containing 38.94% HC₂H₂O₂. (Bertrand, Monit. Scient. (3) 10. 477.

Sol. in sat. NaCl+Aq. (Becquerel, C. R.

20. 1523.)

Not pptd. in presence of Na citrate. (Spiller.)

Lead pyroarsenate, Pb2As2O7.

Insol. in H₂O or HC₂H₈O₂+Aq. Sol. in HCl, or HNO₈+Aq. (Rose.)

Decomp. by cold H₂O. (Lefèvre.) +H₂O=PbHAsO₄. Ppt. (Salkowsky, J. pr. 104. 109.)

Lead potassium arsenate, PbKAsO4. (Lefèvre, A. ch. (6) 27. 5.)

Lead sodium arsenate, PbNaAsO4.

(Lefèvre.) 4PbO, 2Na₂O, 3As₂O₅. Superficially decomp. by cold H2O. (Lefèvre.)

Lead arsenate chloride, 3Pb₃(AsO₄)₂, PbCl₂. Sol. in dil. HNO3+Aq. (Lechartier.)

Min. Mimetite. Sol. in HNO3, and KOH+

Lithium arsenate, Li₃AsO₄.

Ppt. Sol. in dil. acids and in HC2H3O2+ Aq. (de Schulten, Bull. Soc. (3) 1. 479.) LiH₂AsC₄+⁸/₂H₂O. Decomp. by H₂O into H₃AsO₄ and Li₂AsO₄. (Rammelsberg, Pogg. **128.** 311.)

Magnesium arsenate, Mg₃(AsO₄)₂.

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.

 $+7H_2O$, $+8H_2O$, $+10H_2O$, and $+22H_2O$. (Grühl, Dissert. 1897.)

+8H2O. Min. Hörnesite. Insol. in H2O; easily sol. in acids.

Magnesium hydrogen arsenate, MgHAsO4. +½H₂O. Insol. in H₂O. (de Schulten, C. R. 100. 263.)

 $+5H_2O$. (Schiefer.) $+6\frac{1}{2}H_2O$. Insol. in H_2O . 1000 pts. boiling

H₂O dissolve 1.5 pts. (Thompson.) Sol. in HNO₃+Aq before ignition, but insol. in acids after ignition. (Graham, A. 29.

+7H₂O. Min. Roesslerite. Sol. in HCl+

Magnesium tetrahydrogen arsenate, $MgH_4(AsO_4)_2$.

Very deliquescent; sol. in H₂O. (Schiefer.)

Magnesium potassium arsenate, MgKAsO4. Insol. in, but decomp. by cold H₂O. (Rose.)

Easily sol. in dil. acids. (Lefèvre.) +7H₂O. (Kinkelin, Dissert, 1893.) 4MgO, 2K₂O, 3As₂O₅. Not attacked by boiling H₂O; slowly sol. in dil. acids. (Lefèvre.)

Magnesium potassium hydrogen arsenate, $KMgH(AsO_4)_2+xH_2O$.

Decomp. by H₂O. (Kinkelin, D ssert. 1883.)

 $Mg_3KH_2(AsO_4)_3+5H_2O.$ (Chevron and Droixhe, J. B. 1888, 523.)

Magnesium potassium sodium arsenate, $Mg_2KNa(AsO_4)_2+10H_2O$.

(Kinkelin, Dissert. 1883.)

Magnesium sodium arsenate, MgNaAsO4. Insol. in H2O. Very sl. sol. in dil. acids. (Lefèvre.)

4MgO, 2Na₂O, 3As₂O₅. (Lefèvre.)

Magnesium vanadium arsenate. ${
m MgH_2(VO_2)_2(AsO_4)_2} + 9{
m H_2O}$ and ${
m MgHAsO_4}, 2({
m VO_2)H_2AsO_4} + 9{
m H_2O}.$

See Arseniovanadate, magnesium.

Magnesium arsenate chloride, Mg3(AsO4)2, MgCl₂.

Insol. in H₂O; sol. in dil. HNO₃+Aq. (Lechartier, C. R. 65, 172.)

Magnesium arsenate fluoride, Mg₃(AsO₄)₂, MgF2.

Insol. in H2O; sol. in dil. HNO3+Aq. (Lechartier.)

Manganous arsenate, basic, 6MnO, As₂O₅+ 3H₂O (?).

Min. Chondroarsenite. Easily and completely sol. in dil. HCl, and HNO3+Aq.

Manganous arsenate, $Mn_3(AsO_4)_2 + H_2O$.

Insol. in H2O; sl. sol. in acids. (Coloriano, C. R. 103. 273.) 5MnO, 2As₂O₅+5H₂O.

Insol. in H₂O. (Coloriano.)

2MnO, As₂O₅. Sl. decomp. by cold H₂O,

but rapidly on heating. (Lefèvre.)
MnHAsO₄+H₂O. Decomp. by boiling
H₂O into 5MnO, 2As₂O₅+5H₂O. Sol. in HNO_8 , H_2SO_4 , or H_8AsO_4+Aq .

Manganous tetrahydrogen arsenate, $MnH_4(AsO_4)_2$.

Deliquescent. Easily sol. in H₂O. (Schiefer.)

Manganous potassium arsenate, MnKAsO₄. (Lefèvre, A. ch. (6) 27. 5.)

Manganous sodium arsenate, MnNaAsO4. Very sol. in dil. acids. (Lefèvre.) 2MnO, $4Na_2O$, $3As_2O_5$. Not attacked by boiling H_2O ; very sol. in dil. acids. (Lefèvre.)

Manganous arsenate chloride, Mn₃(AsO₄)₂, MnCl₂.

Insol. in H_2O ; sol. in dil. HNO_3+Aq . (Lechartier, A. 58, 259.)

Manganic arsenate, $Mn_2(AsO_4)_2+2H_2O$. Insol. in H2O; sol. in acids.

Mercurous arsenate, (Hg₂)₃(AsO₄)₂. Insol. in H₂O; difficultly sol. in acids. (Coloriano, C. R. 103. 273.) Ppt. (Haack, C. C. 1890, II. 736.)

 $\mathrm{Hg_2}(\mathrm{AsO_3})_2$. Insol. in $\mathrm{H_2O}$, $\mathrm{HC_2H_3O_2}$, or alcohol. Decomp. by cold $\mathrm{HCl}+\mathrm{Aq}$. Sl. sol. in cold HNO₃+Aq, from which it is precipitated by NH₄OH as Hg₂HAsO₄. (Simon, Pogg. 41. 424.)

Mercurous hydrogen arsenate, Hg₂HAsO₄.

Insol. in H_2O , $HC_2H_3O_2$, or NH_4OH+Aq . Decomp. by cold HCl+Aq; sol. in cold HNO_3 +Aq without decomp; very sl. sol. without decomp. in NH₄NO₃+Aq. (Simon, Pogg. 41. 424.)

Mercuric arsenate, Hg₃(AsO₄)₂.

Ppt. Sol. in H₈AsO₄ or HNO₃+Aq. (Bergman.) Very sl. sol. in H2O. Easily sol. in HCl+Aq. Sl. sol. in HNO_3+Aq . Insol. in H_2AsO_4+Aq . (Haack, C. C. 1890, II. 736.)

Mercurous silver arsenate, Hg₂AgAsO₄. Sol. in hot conc. HNO₃. (Jacobsen, Bull. Soc. 1909, (4) 5. 948.)

Mercurous arsenate nitrate, Hg₃AsO₄, HgNO₂ $+H_2O.$

Insol. in H_2O or $HC_2H_3O_2$; sol. in HNO_3+ Aq. (Simon, Pogg. 41. 424.) 3Hg₃AsO₄, 2HgNO₃, 2Hg₂O. Ppt. (Haack.)

Molybdenum arsenate. Ppt.

Nickel arsenate, basic, 5NiO, As₂O₅.

 (Bergemann.) Ni(NiOH)AsO4. Difficultly attacked by acids or alkalies. (Coloriano, Bull. Soc. (2) **45.** 241.)

5NiO, $2As_2O_5 + 3H_2O$. As above.

Nickel arsenate, $Ni_8(AsO_4)_2$.

- (Bergemann.) +xH₂O. Insol. in H₂O. Sol. in H₃AsO₄, and conc. mineral acids. Easily sol. in $NH_4OH + Aq.$ +2H₂O. Insol. in H₂O; difficultly sol. in

acids. (Coloriano, Bull. Soc. 45. 241.) +8H2O. Min. Nickel-bloom, Annabergite.

Easily sol. in acids.

 $NiHAsO_4+H_2O.$ Sol. in H₂O. Difficultly attacked by acids. (Coloriano, C. R. 103. 274.)

Nickel potassium arsenate, 12NiO, 3K₂O, 5As₂O₅.

(Lefèvre.)

2NiO, K2O, As2O5. Rapidly sol. in dil. acids. (Lefèvre.)

Nickel sodium arsenate, NiNaAsO4.

Very slowly sol, in dil. acids. (Lefèvre.) 4NiO, 2Na₂O, 3As₂O₅. (Lefèvre.)

Nickel arsenate ammonia.

 $Ni_8(AsO_4)_2, NH_3 + 7H_2O.$ $Ni_{3}(AsO_{4})_{2},2NH_{3}+6H_{2}O.$ $Ni_{3}(AsO_{4})_{2},3NH_{3}+5H_{2}O.$

(Ducru, C. R. 1900, **131.** 703.)

Palladium arsenate (?).

Ppt.

Platinum arsenate (?).

Ppt. Sol. in HNO₈+Aq.

Potassium arsenate, K3AsO4.

Deliquescent. Very sol. in H₂O. (Graham, Pogg. 32. 47.)

Insol. in ethyl acetate. (Naumann, B. 1904, 37. 3601.)

Potassium hydrogen arsenate, K₂HAsO₄. Sol. in H₂O.

Potassium dihydrogen arsenate, KH₂AsO₄.

Sol. in 5.3 pts. H₂O at 6°, forming a solution of sp. gr. 1.1134. Much more sol. in hot H₂O. Insol. in alcohol.

Sol. in 26,666 pts. boiling conc. alcohol. (Wenzel.)

Potassium sodium hydrogen arsenate. KNaHAsO₄+16H₂O.

Sol. in H_2O .

 $K_3Na_3H_6(AsO_4)_4+9H_2O$. Sol. in H_2O , and not easily decomp. thereby into its constituents. (Filhol and Senderens, C. R. 95. 343.)

Potassium strontium arsenate, KSrAsO₄. (Lefèvre, C. R. 108, 1058.)

Potassium vanadium arsenate, K(VO₂)₂AsO₄ $+2\frac{1}{2}H_2O$.

See Arseniovanadate, potassium.

Potassium zinc arsenate, KZnAsO4. (Lefèvre.)

Potassium arsenate sulphate.

See Arseniosulphate, potassium.

Rhodium arsenate (?). Ppt.

Rubidium metaarsenate, RbAsO₃.

Sol. in H₂O. (Bouchonnet, C. R. 1907, **144.** 642.)

Rubidium arsenate, Rb₃AsO₄+2H₂O.

Very hydroscopic; sol. in H₂O to give an alkaline solution. Absorbs CO2 from the air. (Bouchonnet, l.c.)

Rubidium pyroarsenate, Rb₄As₂O₇. (Bouchonnet, l.c.)

Rubidium hydrogen arsenate, Rb₂HAsO₄+ $+H_2O.$

Absorbs CO_2 from the air. Very hydroscopic; sol. in H_2O . Insol. in alcohol. (Bouchonnet. l.c.)

Rubidium dihydrogen arsenate, RbH₂AsO₄.

Not hydroscopic. Very sol. in H₂O; aq. solution is acid to litmus. (Bouchonnet, *l.c.*)

Silver arsenate, Ag₃AsO₄.

Insol. in H₂O. Sol. in acids; easily sol. in H₈AsO₄+Aq. (Joly, C. R. 103. 1071.)

1 l. H₂O dissolves 0.0085 g. Ag₃AsO₄ at 20°. (Whitby, Z. anorg. 1910, 67, 108.)

Much less sol. in H₈AsO₄ than Ag₃PO₄.

(Graham.)

Sol. in NH₄OH+Aq. (Scheele.)

Sol. in (NH₄)₂CO₃+Aq. Insol. in NH₄ sulphate, nitrate, or succinate+Aq. (Witt-

Very sl. sol. in NH₄NO₃+Aq, more easily in HC₂H₃O₂+Aq. (Graham.)

Sol. in Na₂S₂O₃+Aq, but not so easily as

Ag₃PO₄. Not pptd. in presence of Na citrate.

(Spiller.) Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 829.)

Silver hydrogen arsenate, Ag₂HA₈O₄.

Decomp. by H₂O, with formation of Ag₃AsO₄. (Setterberg, Berz. J. B. **26**. 208.) AgH₂AsO₄. Decomp. by H₂O. (Joly, C. R. 103. 1071.)

Ag₂O, 2As₂O₅. Decomp. by H₂O. Rather sl. sol. in HNO₃+Aq. Very easily sol. in NH₄OH+Aq. (Hurtzig and Geuther, A. 111. 168.)

Silver arsenate ammonia, Ag₃AsO₄, 4NH₂. Easily sol. in H₂O. (Widmann, Bull, Soc. (2) 20. 64.)

Silver arsenate sulphate, 3Ag₂O, As₂O₅, SO₃. Decomp. by H₂O, with separation of Ag₃AsO₄; decomp. by dil. H₂SO₄+Aq. (Setterberg, Berz. J. B. 26. 209.)

Sodium arsenate, Na₃AsO₄+12H₂O.

Permanent in dry air. Sol. in 3.57 pts. H₂O at 15.5°. (Graham.) 100 pts. H₂O at 15.5° dissolve 28 pts. Na₃AsO₄+12H₂O. (Berzelius.) Sol. in 3.75 pts. H₂O at 17°; or 100 pts. H₂O at 17° dissolve 26.7 pts.; or sat. Na₂AsO₄+Aq at 17° contains 21.1% Na₃AsO₄+12H₂O or 10.4% Na₃AsO₄, and has sp. gr. 1.1186. (Schiff, A. 113. 350.)

Melts in crystal H₂O at 85.5°.

Sp. gr. of Na₈AsO₄+Aq at 17°. $\% = \% \text{Na}_3 \text{AsO}_4 + 12 \text{H}_2 \text{O}.$

%	Sp. gr.	-%	Sp. gr.	%	Sp. gr.
1 2 3 4 5 6 7 8	1.0053 1.0107 1.0161 1.0215 1.0270 1.0325 1.0380 1.0435	9 10 11 12 13 14 15 16	1.0490 1.0547 1.0603 1.0659 1.0716 1.0773 1.0830 1.0887	17 18 19 20 21 22	1.0945 1.1003 1.1061 1.1121 1.1179 1.1238

(Schiff, calculated by Gerlach, Z. anal. 8. 286.) "Arseniate of soda" dissolves in 60 pts. boiling alcohol. (Wenzel.)

 $+4\frac{1}{2}H_2O$. (Hall, Chem. Soc. 51. 93.) + $10H_2O$. Efflorescent. (Hall.)

Sodium hydrogen arsenate, Na₂HAsO₄+ 7H2O.

Not efflorescent. (Schiff.)

Solubility in Pb(NO₂)₂+Aq. A table is given which records the g. of As2Os in 100 cc. of the filtrate. (Curry, J. Am. Chem. Soc.

of the filtrate. (Curry, J. Am. Chem. Soc. 1915, **37**. 1685.) $+7!_2H_2O$. (Lescoeur, C. R. 104. 1171.) $+12H_2O$. (Efflorescent. Sol. in H_2O ; sol. in 1.79 pts. H_2O at 14°; or 100 pts. H_2O at 14° dissolve 56 pts. $Na_2HAsO_4+12H_2O$. Sat. Na_2HAsO_4+Aq contains 35.9% $Na_2HAsO_4+12H_2O$, or 16.5% Na_2HAsO_4 , and has sp. gr. = 1.1722. (Schiff, A. 113. 350. 382 pts. (Thomps.)

100 pts. H₂O at 7.2° dissolve 22.268 pts. (Thompson.)

100 pts. H₂O dissolve 17.2 pts. Na₂HAsO₄+ 12H2O at 0°, and 140.7 pts. at 30°. (Tilden, Chem. Soc. 45, 409.)

Melts in crystal H₀O at 28°. (Tilden.)

Sp. gr. of Na₂HA₅O₄+A₀ at 14°. $\% = \% \text{Na₀HAsO}_1 + 12\text{H₂O}_2$

50	Sp. gr.	1 %	Sp. gr.	%	Sp. gr.
1 2 3 4 5 6 7 8 9 . 10 11 12	1.0042 1.0084 1.0126 1.0168 1.0212 1.0256 1.0300 1.0344 1.0389 1.0434 1.0479	15 16 17 18 19 20 21 22 23 24 25	1.0665 1.0712 1.0759 1.0807 1.0855 1.0904 1.0953 1.1003 1.1052 1.1103 1.1153	29 30 31 32 33 34 35 36 37 38 39	1.1358 1.1410 1.1463 1.1516 1.1569 1.1623 1.1677 1.1731 1.1786 1.1841 1.1896
iã 14	1.0525 1.0571 1.0618	26 27 28	1.1204 1.1255 1.1306	40	1.1952

(Schiff, calculated by Gerlach, Z. anal. 8, 280.)

Insol. in alcohol. +13½H₂O. (Setterberg.)

Sodium dihydrogen arsenate, NaH2AsO4+ H₂().

More sol, in H2O than Na3AsO4 or Na₂HAsO₄. (Schiff.) +2H₂O. Efflorescent. (Joly and Duffet, C. R. 102. 1391.)

Sodium truhydrogen diarsenate, Na₈H₈(AsO₄)₂+3H₂O.

Sol. in H₂O. (Filhol and Senderens, C. R. 95, 343.)

Sodium strontium arsenate, NaSrAsO4.

Not attacked by boiling H2O. (Lefèvre.) +9H2O. Scarcely sol. in H2O. (Joly, C. R. 104. 905.)

+18H₂O. (Joly.)

Sodium uranyl arsenate, Na(UO2)AsO4. Ppt. (Werther, A, 68, 312.)

Sodium zinc arsenate, NaZnAsO4. Slowly sol, in dil. acids. (Lefèvre.) Na. ZnAs. Or. As above. (Lefèvre.)

Sodium arsenate fluoride, NasAsO4, NaF+ 12H₂O.

Sol. in 9.5 pts. H2O at 25°, and 2 pts. at 75°. (Briegleb, A. 97, 95.)

Sodium arsenate stannate, 6Na₂O, 2As₂O₅, $SnO_2 + 50H_2O$.

More difficultly sol. than sodium stannate. (Haeffely, Phil. Mag. (4) 10. 290.) 5Na₃AsO₄, Na₂SnO₃+60H₂O. (Prandtl, B. 1907, **40.** 2133.)

Sodium arsenate sulphate, NasAssO19. 2Na2SO4.

Sol. in H₂O. (Mitscherlich.) Na₄As₂O₇, Na₂SO₄. (Setterberg.)

Sodium arsenate tungstate, Na₄As₂O₇, Na₂W₃O₁₀+20H₂O.

See Arseniotungstate, sodium.

Strontium arsenate, Sr₃(AsO₄)₂.

Not attacked by boiling H₂O: easily sol, in dil. acids. (Lefèvre, A. ch. (6) 27. 5.)

Strontium pyroarsenate, Sr₂As₂O₇.

Decomp. by cold H2O into SrHAsO4+ 1½H₂O. (Lefèvre.)

Strontium hydrogen arsenate, SrHAsO4+ 11/2H2O.

Insol. in cold, but decomp. by hot H2O into a basic, and a sol. acid salt. 100 pts. HoO at 15.5° dissolve 0.284 pt. (Thompson, 1831.) Sol. in HC2H3O2, and very easily in HC1+

Aq. (Kotschoubey, J. pr. 49. 182.) Sol. in HNO₃+Aq.

SrH₄(AsO₄)₂+2H₂O. Partly sol. in H₂O. (Hörmann, Dissert, 1879.)

Strontium vanadium arsenate, SrHAsO4. $2(VO_2)H_2AsO_4+7\frac{1}{2}H_2O_1$

See Arseniovanadate, strontium.

Strontium arsenate chloride, 3Sr₃(AsO₄)₂, SrCl₂.

Insol. in H₂O; easily sol. in dil. HNO₃+Aq. (Lechartier, C. R. 65, 172.)

Thallous arsenate, Tl₃A₅O₄.

Sol. in H₂O. (Willm, A. ch. (4) 5. 5.)

Thallous hydrogen arsenate, Tl2HAsO4. Very easily sol. in H₂O. (Willm.)

Thallous dihydrogen arsenate, TlH2AsO4. Easily sol. in H₂O. (Willm.)

Thallic arsenate, $TlAsO_4+2H_2O$.

Insol. in H₂O; sol. in HCl+Aq; decomp. by NH₄OH, or KOH+Aq. (Willm.)

Thorium hydrogen arsenate, $Th(HAsO_4)_2$ + 6H₂O.

Insol. in H_2O or H_8AsO_4+Aq . (Berzelius.) Ppt.; insol. in H₂O. (Barbieri, C. A. 1911. 3385.)

 $Th(H_2AsO_4)_4+4H_2O$. Decomp. by H_2O . (Barbieri, l. c.)

Tin (stannous) arsenate, $SnHAsO_4 + \frac{1}{2}H_2O$. Insol. in H_2O . (Lenssen, A. 114, 113.)

Tin (stannic) arsenate, $2SnO_2$, As_2O_5 .

Ppt. Insol. in H₂O and dil. HNO₃+Aq.

(Haeffely, Phil. Mag. (4) 10. 290.) $Sn_3(AsO_4)_4+6H_2O$. Insol. in H_2O ; sol. in conc. HCl+Aq, and in aqua regia; insol. in HNO₃+Aq or H₂SO₄. (Williams, Proc. Soc.

Manchester, 15. 67.)

Colloidal. Very slowly sol. in H₂O, from which it is pptd. by HCl, HNO₃, or H₂SO₄+ Aq; also by BaCl₂, CaCl₂, NH₄Cl, and FeCl₃ +Aq, and by AgNO₃, or KI+Aq. Not pptd. by alcohol, HC₂H₈O₂, HgCl₂, Na₂CO₃, K₂CO₃, or (NH₄)₂CO₃+Aq. The pptd. jelly is readily sol. in conc. acids, and KOH, or NaOH+ Aq. (Williams, l.c.)

Tin (stannous) arsenate chloride, $Sn_3(AsO_4)_2$, $SnCl_2+2H_2O$.

Decomp. on air. (Lenssen, A. 114. 113.)

Titanium arsenate (?).

Insol. in H₂O. Sol. in titanic acid. arsenic acid, or HCl+Aq. Sol. in Ti salts+Aq. (Rose.)

Titanyl arsenate, 5TiO2, 2As2O5.

Sol. in acids without decomp. Scarcely attacked by KOH or by NH₄OH+Aq. (Reichard, B. 1894, **27.** 1026.)

Uranous arsenate, $U_3(AsO_4)_2$.

Ppt.

Uranous hydrogen arsenate, UH₂(AsO₄)₂+ 3H₂O.

Ppt. Sol. in HCl+Aq.

Uranyl arsenate, (UO₂)HAsO₄+4H₂O.

Insol. in H₂O, HC₂H₃O₂, and saline solutions, as NH₄Cl+Aq; sol. in the mineral acids; sol. in K₂CO₃+Aq. (Werther, A. 68. 313.

 $(\text{UO}_2)\text{H}_4(\text{AsO}_4)_2 + 3\text{H}_2\text{O}_{\bullet}$ (Werther.) (UO₂)₂As₂O₇. Insol. in H₂O; sol. in acids. $(UO_2)_3(AsO_4)_2+12H_2O.$ Min. Troegerite.

Vanadium dihydrogen arsenate, (VO2)H2AsO4 +4H₂O.

Easily sol. in H_2O . (Friedheim, B. 23. 2600.)

See Arseniovanadic acid.

Vanadium zinc arsenate, (VO₂)₂ZnH₂(AsO₄)₂ $+5\frac{1}{2}H_2O_1$, and $2(VO_2)H_2AsO_4+6\frac{1}{2}H_2O_2$ See Arseniovanadate, zinc.

Vanadyl arsenate, (VO)₂HAsO₄+H₂O.

Very slowly sol, in H₂O; insol, in alcohol;

easily sol. in HCl+Aq. (Berzelius.)
Composition given by Friedheim (B. 23. 2600).

Yttrium arsenate, YtHAsO4.

Ppt. Insol. in acetic, easily sol. in mineral acids.

Zinc arsenate, basic, 4ZnO, $As_2O_5+H_2O$.

(Friedel, J. B. 1866. 949.)

Min. Adamite. Easily sol. in dil. HCl+Aq, and is attacked by HC₂H₃O₂.

Zinc arsenate, $Zn_3(AsO_4)_2$.

(deSchulten, Bull Soc. (3) 2. 300.) +3H2O. Ppt. Sol. in HNO3, and H3AsO4 +Aq. (Köttig, J. pr. 48. 182.) +8H₂Ò. Min. Köttigite.

Zinc arsenate, acid, Zn_bH₂(AsO₄)₄. Easily sol. in cold HCl+Aq, less easily in cold HNO₈. Sol. in KOH, or NaOH+Aq (Gorguel, Dissert, 1894.

-3H₂O. Insol. in H₂O; sol. in H₃AsO₄, or

HNO₃+Aq. (Mitscherlich.) +5H₂O. Sol. in dil. HCl+Aq. (Demel, B. 12. 1279.) Could not be obtained, (Coloriano,

Bull. Soc. (2) 45. 709.)

2ZnO, As₂O₅. Very slowly decomp. by cold, rapidly by boiling H₂O. (Lefèvre.)

ZnHAsO₄+H₂O. Insol. in H₂O. (Debray, Bull. Soc. (2) **2.** 14.)

Decomp. by hot H₂O into 4ZnO, As₂O₅+ H₂O. (Coloriano, C. R. 103. 273.) $Zn(ZnOH)_2As_2O_7+7H_2O$ (Gorgeul.)

Zinc arsenate ammonia, Zn₃(AsO₄)₂, 2NH₃+ $3H_2O$.

Insol. in H₂O; sol. in acids, NH₄OH, or KOH+Aq. (Bette, A. **15.** 141.)

Zirconium arsenate, $2ZrO_2$, $As_2O_5 + \frac{5}{2}H_2O =$ $(ZrO)HAsO_4+\frac{3}{2}H_2O.$

Ppt. Insol. in H₂O or HCl+Aq. (Paykull, B. **6.** 1467.)

Perarsenic acid.

See Perarsenic acid.

Arsenicotungstic Acid.

Ammonium vanadium arsenicotungstate. See Arsenicovanadicotungstate, ammonium.

Arsenicovanadicotungstic acid.

Ammonium arsenicovanadicotungstate $16(NH_4)_2O_1$, $5As_2O_3$, $15V_2O_3$, $26WO_3$ + 101H₂O.

Sl. sol. in cold, readily sol. in hot H₂O. (Rogers, J. Am. Chem. Soc. 1903, 25. 308.)

Arsenimide, As₂(NH)₃.

Decomp. by H₂O. (Hugot, C. R. 1904, **139.** 56.)

Arsenioarsenic acid, 3As₂O₃, 2As₂O₅+ 3H₂O.

Decomp. by H₂O. (Joly, C. R. 100, 1221.) $3As_2O_3$, $As_2O_5+H_2O$. Decomp. by H_2O .

 As_2O_8 , $As_2O_5+H_2O$. Decomp. by H_2O . (Joly.)

See also Arsenic trioxide pentoxide.

Arseniochromic acid.

Ammonium arseniochromate, 2(NH₄)₂O, As_2O_5 , $4CrO_3+H_2O$.

(Friedheim and Mozkin, Insol. in H₂O.

Z. anorg. 1894, 6. 280.) 3(NH₄)₂O, As₂O₅, 8CrO₃. Decomp. by recryst. from H₂O. (Friedheim and Mozkin, Z. anorg. 1894, 6. 281.)

Potassium arseniochromate, 2K₂O, As₂O₅, 4CrO₃.

Decomp. by recryst. from H₂O. (Friedheim

and Mozkin, Z. anorg. 1894, 6. 275.) 2K₂O, As₂O₅, 4CrO₃+H₂O. Decomp. by recryst. from H₂O. (Friedheim and Mozkin, l. c.)

Arseniomolybdic acid, As₂O₅, 6MoO₃+ 10H₂O.

By recryst, from H₂O the comp, with 18H₂O is formed. (Pufahl, Dissert. 1888.)

+16H₂O. Sol. in H₃O. (Debray.) +18H₂O. Completely sol. in H₂O. Sp. gr. of sat. solution at 18.8° is 2.21. Easily sol. in abs. alcohol. Insol. in CS2, liq. hydrocarbons and CHCl3. (Pufahl, l.c.)

 As_2O_5 , $7MoO_3+14H_2O$. (Seyberth, B. 7. 391.)

 As_2O_5 , $18MoO_8+28H_2O$. Very sol. in H_2O . Sp. gr. of sat. solution at 18.3° = 2.45 and 1 cc. contains 2.16 g. acid. Easily sol. in absolute alcohol; insol. in CS2, liquid hydrocarbons and CHCl3. (Pufahl, l.c.)

Sol. in ether with subsequent separation into two layers. See Phosphotungstic acid.

(Drechsel, B. 20. 1452.)

w. Physical

+38H₂O. Efflorescent. When recryst. comp. with 28H₂O is formed. (Pufahl, l.c.) As₂O₅, 20MoO₈+27H₂O. Sl. sol. in HNO₃

+Aq. (Debray, C. R. 78. 1408.) Ammonium arseniomolybdate. (NH₄)₂O, As₂O₅, 2MoO₈+3H₂O

(Friedheim, Z. anorg. 1894, 6, 28.) +4H₂O. (Friedheim, *l.c.*) (NH₄)₂O, As₂O₅, 6MoO₃+2H₂O. Sl. sol. in cold H₂O; sol. in acids. (Debray.) +4H₂O. Sl. sol. in cold, very easily sol. in

hot H₂O. (Pufahl, l.c.)

 $2(NH_4)_2O$, As_2O_5 , $6MoO_3+6H_2O$. Sl. sol. H_2O . Cannot be recryst. therefrom. in H₂O. (Pufahl.)

+12H₂O. (Friedheim, Z. anorg. 1894, 6. 31.)

 $3(NH_4)_2O$, As_2O_5 , $6MoO_8+4H_2O$. (Friedheim, l.c.)

+8H₂O. (Friedheim, l.c.) (NH₄)₂O, 2H₂O, 7M₀O₃, As₂O₅+4H₂O. Sol. in hot H₂O. (Seyberth, B. **7**, 391.) Not obtained. (Pufahl.) 7(NH₄)₂O, 2As₂O₅, 14M₀O₃+28H₂O. (Friedheim, *l.e.*)

 $5(NH_4)_2O$, As_2O_5 , $16M_0O_3 + 5H_2O$. (Fried-

heim, Z. anorg. 1894, 6. 31.)

 $5(NH_4)_2O$, As_2O_5 , $16M_0O_3 + 9H_2O$. Nearly insol. in cold, sol. in boiling H₂O. Easily sol. in NH₄OH+Aq. (Gibbs, Am. Ch. J. 3. 402.) $+12H_2O$. (Pufahl, l.c.)

2(NH₄)₂O, As₂O₅, $18\text{MoO}_{3} + 17\text{H}_{2}\text{O}$. (Pufahl, l.c.)

 $3(NH_4)_2O$, As_2O_5 , $18M_0O_3 + 14H_2O$. sol. in H₂O and alcohol. (Kehrmann, Z. anorg. 1894, 7. 421.)

 $3(NH_4)_2O$, As_2O_5 , $20MoO_3$. Easily sol. in H_2O . (Debray, C. R. **78**. 1408.)

 $3(NH_4)_2O$, As_2O_5 , $24M_0O_8+12H_2O$. Decomposed by H₂O, especially when boiling. Easily sol. in NH₄OH+Aq, less easily sol. in warm H₂SO₄ and boiling H₃AsO₄+Aq. Sl. sol. in molybdic acid+Aq, HNO3, and conc. NH₄NO₃+Aq. (Pufahl, *l.c.*)

Barium arseniomolybdate, BaO, As₂O₅, $6\text{M}_{0}\text{O}_{3}+10\text{H}_{2}\text{O}$

Sl. sol. in H₂O. Partially decomp, by boil-(Pufahl, l.c.)

3BaO, As₂O₅, 6MoO₃. Sl. sol. in H₂O. (Pufahl, l.c.)

3BaO, As₂O₅, 7MoO₃. Ppt. (Seyberth.) 3BaO, As₂O₅, 18MoO₃. Decomp. by H₂O. (Pufahl, l.c.)

Cadmium arseniomolybdate, CdO, 2H₂O, As_2O_5 , $6MoO_3+11H_2O$.

(Pufahl.)

3CdO. $3H_2O$, As_2O_5 , $18M_0O_3+33H_2O$. (Pufahl.)

Cæsium arseniomolybdate, Cs2O, As2O5, 6MoO₃.

Sl. sol. in H₂O. (Pufahl, l.c.) 4Cs₂O, As₂O₅, 26MoO₃+15H₂O. Ppt. (Ephraim, Z. anorg. 1910, 65. 246.)

Calcium arseniomolybdate, CaO, As₂O₅, $6\text{MoO}_3 + 10\text{H}_2\text{O}$.

Rather difficultly sol. in cold H₂O. (Pufahl,

3CaO, As₂O₅, 6MoO₃. As Ba salt. (Pufahl, l.c.)

3CaO, As_2O_5 , $18MoO_3+32H_2O$. Very sol. in H_2O . Solution sat. at 18° has sp. gr. = 2.163. (Pufahl, l.c.)

Cobalt arseniomolybdate, CoO, $2H_2O$, As_2O_5 , $6\text{MoO}_3 + 11\text{H}_2\text{O}$.

(Pufahl.) 3CoO, 3 $3H_2O$, As_2O_5 , $18M_0O_3 + 33H_2O$. (Pufahl.)

Cupric arseniomolybdate, CuO, 2H₂O, As₂O₅, $6\text{MoO}_8 + 15\text{H}_2\text{O}$. (Pufahl.)

3CuO, $3H_2O$, As_2O_5 , $18M_0O_3+34H_2O$. (Pufahl.)

Lithium arseniomolybdate, Li₂O, As₂O₅, $6\text{MoO}_3 + 14\text{H}_2\text{O}$.

Very sol. in H_2O . (Pufahl, l.c.)

3Li₂O, As₂O₅, 18MoO₈+34H₂O. Solution sat. at 15° has sp. gr. of 2.481. (Pufahl, l.c.)

Magnesium arseniomolybdate, MgO, As₂O₅, $6\text{MoO}_3 + 13\text{H}_2\text{O}$.

Very sol. in H_2O . (Pufahl, l.c.) 3MgO, As_2O_5 , $18MoO_8+36H_2O$. Sol. in H₂O. (Pufahl, *l.c.*)

Manganese arseniomolybdate, MnO, 2H₂O, As_2O_5 , $6M_0O_3 + 11H_2O$. (Pufahl.)

3MnO, $3H_2O$, As_2O_5 , $18MoO_3+33H_2O$. (Pufahl.)

Nickel arseniomolybdate, NiO, 2H₂O, As₂O₅, $6\text{MoO}_3 + 11\text{H}_2\text{O}$.

(Pufahl.) $3H_2O$, As_2O_5 , $18M_0O_3+34H_2O$. 3NiO, (Pufahl.)

Potassium arseniomolybdate, K₂O, As₂O₅, $2\text{MoO}_3 + 5\text{H}_2\text{O}$.

Sol. in H₂O. (Friedheim, Z. anorg. 2. 314.) K_2O , As_2O_5 , $6MoO_3+5H_2O$. Sol. in hot H₂O without decomp. (Friedheim, Z. anorg. 1892, **2.** 330.)

K₂O, As₂O₅, 18MoO₃+25H₂O. Easily sol. in cold H₂O. Decomp. on dilution. (Pufahl, l.c.

 $3K_2O$, As_2O_5 , $18M_0O_3+26H_2O$. Easily sol. in H₂O. (Pufahl, *l.c.*) Insol. in H₂O.

3K₂O, As₂O₅, 20MoO₃. (Debray, C. R. 78. 1408.)

3K₂O, As₂O₅, 24M₀O₃+12H₂O. Somewhat sol. in H₂O acidified with HNO₃. (Pufahl, l.c.)

Rubidium arseniomolybdate, 3Rb₂O, 3As₂O₅, $5\text{MoO}_3 + 9\text{H}_2\text{O}$.

Easily sol. in H₂O. (Ephraim, Z. anorg. 1910, 65. 241.) Rb_2O , As_2O_5 , $6MoO_3$. Sl. sol. in H_2O .

(Pufahl, l.c.) Pptd. $4Rb_2O$, As_2O_5 , $18MoO_3+40H_2O$. (Ephraim, Z. anorg. 1910, 65. 241-4.)

Silver arseniomolybdate, 3Ag₂O, As₂O₅, $6\text{MoO}_3 + x\text{H}_2\text{O}$.

(Pufahl, Leipzig, **1888.**) 6Ag₂O, As₂O₅, 18MoO₃+22H₂O. Sl. sol. H₂O. Very sol. in NH₄OH and in dil. in H₂O. HNO3. (Pufahl, l.c.)

7Ag₂O, 2As₂O₅, 36MoO₃+30H₂O. Sl. sol. in cold, easily sol. in hot H₂O strongly acidified with HNO₈. (Pufahl, l.c.)

Sodium arseniomolybdate, Na₂O, As₂O₅, $2\text{MoO}_3+8\text{H}_2\text{O}$.

(Friedheim, Z. anorg. 1892, **2.** 357.) Na₂O, As₂O₅, $6MoO_3+12H_2O$. Very sol. in H₂O. Solution sat. at 19.8° has sp. gr. = 1.678. (Friedheim, *l.c.*)

 $3Na_2O$, As_2O_5 , $6MoO_3+11H_2O$, $+12H_2O$, and $+13H_2O$. Sl. sol. in cold H_2O . (Pufahl,

3Na₂O, As₂O₅, 18MoO₈+24H₂O. Easily sol. in H₂O. (Pufahl, *l.c.*) +30H₂O. Sl. sol. in cold H₂O. (Pufahl,

Strontium arseniomolybdate, SrO, As₂O₅, $6\text{MoO}_3+10\text{H}_2\text{O}$.

As Ba salt. (Pufahl, l.c.)

3SrO, As₂O₅, 6MoO₃. As Ba salt. (Pufahl, l.c.) 3SrO, As₂O₅, 18MoO₃+32H₂O. Very sol. in H₂O. (Pufahl, l.c.)

Thallium arseniomolybdate, 6Tl₂O, As₂O₅, $18\text{MoO}_3 + x\text{H}_2\text{O}$.

Ppt. (Pufahl.) $3T_{12}O$, $3H_{2}O$, $As_{2}O_{5}$, $18M_{0}O_{8}+3H_{2}O$. Ppt. (Pufahl.)

Zinc arseniomolybdate, ZnO, 2H₂O, As₂O₅, $6\text{MoO}_3 + 11\text{H}_2\text{O}$.

(Pufahl.) 3ZnO, As_2O_5 , $18MoO_3+37H_2O$. Very sol. in H₂O. (Pufahl.)

Arseniophosphovanadicotungstic acid.

Ammonium arseniophosphovanadicotungstate, 88(NH₄)₂O, 2As₂O₅, 12P₂O₅, 69V₂O₃, 148WO₃+484H₂O.

Sol. in H₂O. Insol. in alcohol and ether. (Rogers, J. Am. Chem. Soc. 1903, 25. 313.)

Arseniophosphovanadicovanadiotungstic acid.

Ammonium arseniophosphovanadicovanadiotungstate, $99(NH_4)_2^{-}O$, $2As_2O_5$, $12P_2O_5$, $6V_2O_3$, $66V_2O_5$, $191WO_3 + 522H_2O$.

Sl. sol, in cold H₂O. (Rogers, J. Am. Chem. Soc. 1903, 25. 314.)

Arseniophosphovanadiotungstic acid.

Ammonium arseniophosphovanadiotungstate, $82(NH_4)_2O$, $3As_2O_5$, $12P_2O_5$, $52V_2O_5$, 201WO₃+567H₂O.

Very sol. in warm H₂O. Insol. in organic solvents. (Rogers, J. Am. Chem. Soc. 1903. **25.** 312.)

Arseniosulphuric acid.

Ammonium arseniosulphate, $2(NH_4)_2O$, As_2O_5 , $2SO_3+3H_2O$.

Can be recryst. from H₂O. (Friedheim and Mozkin, Z. anorg. 1894, 6. 290.)

Potassium arseniosulphate, 2K2O, As2O5, $2SO_3+3H_2O$.

(Friedheim and Mozkin, Z. anorg. 1894, 6 289.)

 $5K_2O$, $A_{52}O_5$, $8SO_3+6H_2O$. (Friedheim and Mozkin, Z. anorg. 1894, 6. 291.)

Sodium arseniosulphate, 2Na₂O, As₂O₅, 2SO₃+3H₂O. (Friedheim and Mozkin, Z. anorg. 1894, 6. 290.)

Arseniotelluric acid.

Ammonium arseniotellurate, $2(NH_4)_2O$, As_2O_5 , TeO_5+4H_2O .

A8₂O₅, TeO₃+4H₂O. Sol. in H₂O. (Weinland, Z: anorg. 1901, 28. 65.) $4(NH_4)_2O$, $3A8_2O_5$, $2TeO_3+11H_2O$. Sol. in H₂O. (Weinland.)

Sodium arseniotellurate, 2Na₂O, As₂O₅, 2TeO₃+9H₂O. Ppt. (Weinland, l.c.)

Arseniotungstic acid, $3H_2O$, As_2O_5 , $16WO_3$ + $32H_2O = H_3AsW_3O_{28} + 16H_2O$ (α -an-hydroarsenioluteotungstic acid).

Sol. in H_2O . (Kehrmann, A. **245**. 45.) $3H_2O$, As_2O_5 , $19WO_3$ (?). Sp. gr. of sat. solution in H_2O is 3.279. (Fremery, B. **17**. 296.)

Is a mixture containing principally $H_2AsW_3O_{28}+16H_2O$. (Kehrmann.) As_2O_5 , $18WO_3+xH_2O$. Sol. in H_2O . (Kehrmann, Z. anorg. 1899, 22. 292.)

Aluminum ammonium arseniotungstate.

See Aluminicoarseniotungstate, ammonium.

Ammonium arseniotungstate, 4(NH₄)₂(), 2H₂O, As₂O₅, 6WO₃+3H₂().

Sl. sol. in cold H₂O or HNO₃+Aq; easily sol, in boiling H₂O. (Gibbs, Proc. Am. Acad. **16.** 135.)

7(NH₄)₂O, As₂O₅, 14WO₅,+17H₂O. Very sl. sol. even in boiling H₂O. (Fremery, l. c.) $3(NH_4)_2O$, As₂O₅, $16WO_5+16H_2O=(NH_4)_2AsW_8O_{28}+8H_2O$. Sol. in H₂O. (Kehrmann.)

5(NH₄)₂O, As₂O₅, 17W()₅+8H₂O. Can be recryst. from H₂O without decomp. Decomp. by long boiling with H₂O. (Kehrmann, Z. anorg. 1899, 22. 294.)

3(NH₄)₂O, As₂O₅, 18WO₃+14, or 18H₂O. Very sol. in cold H₂O. Can be recryst. from H₂O. (Kehrmann, *l.c.*)

 $3(NH_4)_2O$, As₂O₅, 21WO₅+xH₂O. Easily sol. in H₂O. Easily decomp. on recryst. (Kehrmann, l.c.)

3(NH₄)₂O, As₂O₅, 24WO₅+12H₂O. More sol. in H₂O than corresponding phosphotung-state. (Kehrmann, l.c.)

Barium arseniotungstate, 2BaO, As₂O₅, 16WO₃+xH₂O.

Sol. in H₂O. (Péchard, A. ch. (6) 22. 262.) 7BaO, As₂O₅, 22WO₅+54H₂O. Sol. in H₂O. Can be recryst. therefrom. (Kehrmann, *I.c.*)

Potassium arseniotungstate, 3K₂O, 3H₂O, As₂O₅, 6WO₃.

Insol. in H_2O . Readily sol. in alkali hydroxides +Aq. (Gibbs.) $3K_2O$, As_2O_5 , $16WO_3 + 16H_2O = K_5AsW_8O_{28}$

 $3K_2O$, As_3O_5 , $16WO_3 + 16H_2O = K_3AsW_5O_{28} + 8H_2O$. Sol. in H_2O . (Kehrmann.) $5K_2O$, As_2O_5 , $17WO_3 + 22H_2O$. Scarcely

 $5R_2O$, As_2O_6 , $17WO_3+22H_2O$. Scarcely sol. in cold H_2O . (Kehrmann, Z. anorg. 1899, **22**. 295.)

 $3K_2O_5$, As_2O_5 , $18WO_3+14H_2O$. Efflorescent. (Kehrmunn, *l.e.*)

 $3K_2O$, As_2O_5 , $19WO_3+16H_2O$ (?). Sol. in H_2O . (Fremery.)

Silver arseniotungstate, Ag₅AsW₈O₂₉.

Insol. in H₂O (Kehrmann, A. **245.** 55); perhaps identical with—

 $\hat{6}Ag_2O$, As_2O_5 , $16WO_3+11H_2O$. Insol. in H_2O . (Gibbs.)

Sodium arseniotungstate, $3Na_2O$, As_2O_5 , $3WO_3+20H_2O$.

Very sol. in H₂O. (Lefort, C. R. 92, 1461.)

Arsenious acid, HAsO2.

Solubility of HAsO₂ in amyl alcohol+Aq. at 25°.

 $a_w = mol.$ of HAsO₂ in 1 l. of H₂O. $a_a = mol.$ of HAsO₂ in 1 l. of amyl alcohol. h = partition coefficient.

8.W	a _a	h
0.0449	0.0082	5.48
0.0446	0.0083	5.38
0.0887	0.0164	5 41
0.0892	0.0161	5.53
0.1800	0.0324	5.55

(Auerbach, Z. anorg, 1903, 37, 356.)

Solubility of HAsO₂ in sat. H₃BO₃+Aq and amyl alcohol.

 $a_w = mol.$ of HAsO₂ in 1 l. of H₂O. $a_a = mol.$ of HAsO₂ in 1 l. of amyl alcohol. h = partition coefficient.

aw	8.8,	h
0.0859	0.0161	5.33
0.1720	0.0321	5.35

(Auerbach, l.c.)

Insol. in ethyl acetate. (Naumann, B. 1904, 37. 3601.)

See Arsenic trioxide.

Arsenites.

All arsenites, except those of the alkali metals, are partially or wholly insol. in H₂O, but easily sol. in acids; several are sol. in (NH₄)₂SO₄, NH₄NO₃, or NH₄Cl+Aq.

All basic arsenites are sol. in acids except those that give an insol. salt with the bases. Many are sol. in excess of As₂O₅+Aq.

Aluminum arsenite, Al₂O₃, As₂O₃.

Sl. sol. in boiling H₂O. Easily sol. in NaOH +Aq and in acids. (Reichard, B. 1894, 27. 1029.)

Aluminum arsenite iodide, AlI₃, 6As₂O₃+ 16H₂O.

(Grühl, Dissert. 1897.)

Ammonium arsenite, NH₄AsO₂.

Very sol. in H₂O. (Luynes, J. pr. **72**. 180.) Insol. in acetone. (Eidmann, C. C. **1899**, II. 1014); (Naumann, B. 1904, **37**. 4328.) (NH₄)₃AsO₃ (?). Sol. in H₂O. (Stavenhagen, J. pr. 1895, (2) **51**. 11.) (NH₄)₄As₂O₅. Very sol. in H₂O. Insol. in alcohol or ether. (Stein, A. **74**. 218.)

Could not be obtained. (Stavenhagen.)

Ammonium arsenite bromide, 2As₂O₃, NH₄Br. Sl. sol. in H₂O. (Rüdorff, B. **19**. 2679.)

Ammonium arsenite chloride, As₂O₃, NH₄Cl. Sl. sol. in H₂O. Sol. in warm dil. NH₄OH +Aq. (Rüdorff.)

Ammonium arsenite iodide, 2As₂O₈, NH₄I. Sl. sol. in boiling H2O. Sol. in warm dil. NH4OH+Aq. (Rüdorff.)

Antimony arsenite (?).

Ppt. Sol. in a small amount H₂O, but insol. in a large quantity. (Berzelius.) Completely sol. in KOH+Aq. (Reynolds.)

Barium arsenite, $Ba(AsO_2)_2$.

Easily sol. in H₂O when recently pptd., but insol. after being dried. Pptd. from aqueous solution by boiling. (Filhol, A. 68. 308.)

Only sl. sol. in H₂O. (Stavenhagen, J. pr.

1895, (2) 51. 18.)

Ras(AsO₃)₂. Sl. sol. in cold H₂O; sol. in (Stevenbagen, J. pr. hot H₂O and dil. acids. (Stavenhagen, J. pr. 1895, (2) 51. 17.)

BaH₄(AsO₃)₂. Ppt. (Bloxam, Chem. Soc. **15.** 281.

+34H₂O. Moderately sol. in cold, more easily sol. in hot H₂O. Insol. in alcohol. (Perper, Dissert. 1894.)

Easily sol. in H₂O. $Ba_2As_2O_5+2H_2O$. (Stavenhagen, J. pr. 1895, (2) **51.** 18.) +4H₂O. Sl. sol. in H₂O; also somewhat

sol. in alcohol. (Stein, A. 74. 218.) Sl. sol. in H₃AsO₄+Aq and BaO₂H₂+Aq.

(Dumas.) Sol. in NH₄Cl+Aq. (Wackenroder, A. 41.

316.) Not pptd. from solutions containing Na

citrate. (Spiller.) BaAs₄O₇. Sol. in H₂O. Less sol. in alcohol. (Reichard, B. 1894, 27. 1033.)

Bismuth arsenite, BiAsO₃+5H₂O (?).

Easily sol. in HNO₃+Aq. (Schneider, J.) p. (2) **20.** 419.)

Sl. sol. in H₂O. (Stavenhagen, J. pr. 1895, (2) **51**. 35.)

Cadmium arsenite, Cd₃(AsO₃)₂.

Sl. sol. in H₂O; easily sol. in NH₄OH+Aq and dil. acids. (Stavenhagen, l.c.) Cd₂As₂O₅. Ppt. (Reichard, B. 1898, 31. 2168.)

Sol. in acids without decomp.; insol. in

alkalis. (Reichard, B. 1894, 27. 1033.) 5CdO, As₂O₃+12H₂O. Not attacked by KOH, Ba(OH)₂ or alkali carbonates+Aq. Insol. in KCN+Aq. (Reichard, Ch. Z. 1902, **26.** 1145.)

Cæsium arsenite bromide, As₂O₃, CsBr.

Sol. in H₂O. (Wheeler, Z. anorg. 4. 451.)

Cæsium arsenite chloride, As₂O₃, CsCl. As above.

Cæsium arsenite iodide, As₂O₃, CsI. As above.

Calcium arsenite, Ca(AsO₂)₂.

Somewhat sol. in H₂O; sol. in Ca(OH)₂+

Aq or As₂O₃+Aq. (Simon, Pogg. 47. 417.) Ca₃(AsO₃)₂. Ppt. (Kühn, J. B. 1852. 379.) Only sl. sol. H₂O; readily sol. in dil. acids.

(Stavenhagen, l.c.)
Sol. in H_2O , insol. in alcohol. (Reichard, B. 1894, 27. 1036.)
3CaO, $2As_2O_3+3H_2O$. Sl. sol. in H_2O ; easily sol. in NH_4Cl+Aq ; sol. in As_2O_3+Aq .

(Stein.)

 $CaH_4(AsO_3)_2 + xH_2O$. Moderately sol. in H₂O. Insol. in abs. alcohol. (Perper, Dissert. 1894.)

 $\rm Ca_2As_2O_5.$ Sl. sol. in $\rm H_2O$; 1 pt. in 3000–4000 pts. $\rm H_2O$. Alkali chlorides increase solubility slightly. (Stavenhagen, l.c.)

Sl. sol. in H2O; insol. in H2O containing CaO2H2. (Berzelius.)
Not pptd. in presence of 4000-5000 pts. H₂O. (Hart-

Not pptt. In presence of 4000-5000 pts. H2O. (Harving, Lassaigne.)

Not pptd. from solutions containing NH4 salts; and when pptd. is sol. in (NH4)2SO4, NH4NO3, NH4C2H3O2, and NH4C1+Aq. (Gieseke and Schweigger.)

Sol. in NH4ASO2+Aq. (Schweigger.)

Sol. in CaCl2+Aq. (Ordway.)

Easily sol. in dil. acids. Nct pptd. from solutions containing sodium citrate. (Spiller.)

Calcium arsenite iodide, CaI_2 , $3As_2O_3$ +

12H₂O.

Sl. sol. in H₂O. Decomp. on heating. (Grühl, Dissert. 1897.)

Chromic arsenite, CrAsO₃.

Sol. in H₂O, but slowly decomp. by boiling. (Neville, C. N. 34. 220.)

Sol. in HCl; repptd. by NH,OH+Aq; sol. in KOH+Aq. (Reichard, B. 1894, 27. 1028.)

Cobaltous arsenite basic, 7CoO, As₂O₈.

Very sol. in dil., difficultly sol. in conc. H₂SO₄. Sol. in conc. NaOH and in conc. NH₄OH+Aq. (Reichard, Z. anal. 1903, 42. 10.)

Cobaltous arsenite, 3CoO, As₂O₃.

Sol. KOH+Aq with decomp. (Identical with salt of Girard). (Reichard, B. 1894, 27. 1031.)

+4H₂O. Sl. sol. in H₂O; easily sol. in acids. (Stavenhagen, J. pr. 1895, (2) 51. 39). 3CoO, 2As₂O₃+4H₂O. Sol. in HNO₃. (Girard, C. R. 1852, 34. 918.) Co₃H₅(AsO₃)₄. Insol. in H₂O; sol. in HNO₃, HCl, or NH₄OH+Aq. (Proust.) Sol. in NH₄OH+Aq when fres

Only sol. in KOH, or NaOH+Aq when formed in a solution containing an excess of those reagents. (Reynoso, C. R. 31. 68.)

Co₂As₂O₅. Ppt. (Reichard, B. 1898, 31.

2165.)

Sol. in HNO₃ and HCl+Aq. (Proust.)

Cupric arsenite, Cu(AsO₂)₂.

(Avery, J. Am. Chem. Soc. 1906, 28. 1161.) Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.)

+H₂O. Sl. sol. in H₂O. (Stavenhagen,

l.c.) +2H₂O. Sl. sol. in H₂O; insol. in alcohol.

(Stavenhagen, l.c.)
3CuO, As₂O₃. Ppt. (Stavenhagen, l.c.)
2CuO, As₂O₃. (Scheele's green.) Insol. in
H₂O; sol. in KOH+Aq, NH₂OH+Aq, and in most acids. Formula is Cu₃(AsÖ₃)₂+ 2H₂O. (Sharples, C. N. 35. 89.)

Sol. in NH4OH+Aq without decomp. Sol. in KOH+Aq with decomp. (Reichard, B. 1894, 27. 1026.)

Insol. in pyridine. (Schroeder, Dissert.

1901.) 5CuO, As₂O₃. Insol. in H₂O, sol. in acids, NH₄OH+Aq and conc. MOH+Aq. (Reichard, Ch. Z. 1902, 26. 1142.)

xCuO, yAs₂O₃. Min. Trippkëite. sol. in HNO₃ and in HCl+Aq. Easily

Didymium arsenite, Di₂H₃(AsO₃)₃.

Ppt. (Frerichs and Smith, A. 191. 355.) Does not exist. (Cleve, B. 11. 910.)

Glucinum arsenite iodide, GII₂, 3As₂O₃+ 8H₂O.

Decomp. by H₂O. (Grühl, Dissert. 1897.)

Gold (aurous) arsenite, 3Au₂O,As₂O₃.

Decomp. by light. (Reichard, B. 1894, **27**. 1027.)

Gold (auric) arsenite, AuAsO₃+H₂O.

Very sol. in H₂O, NH₄OH+Aq and dil. acids. (Stavenhagen, J. pr. 1895, (2) 51.28.)

Iron (ferrous) arsenite, FeO, As₂O₃.

Decomp, in the air when moist; sol. in NH₄OH+Aq when freshly pptd. (Reichard, B. 1894, 27. 1029-30.)

Sol. in NH4OH+Aq; Fe₂As₂O₅. Ppt. insol. in NH, arsenite, or other NH, salts+

Aq. (Wittstein.)

Iron (ferric) arsenite, basic, 4Fe₂O₃, As₂O₃+ 5H₂O.

Ppt. H₂O extracts As₂O₃. Sol. in conc. acids with separation of As2O3. Acetic acid is without action. (Bunsen and Berthold.

Sol. in NH₄OH+Aq when freshly pptd. (Reichard, B. 1894, 27. 1030.)

Fe₄As₂O₉. Ppt. (Reichard, B. 1898, 31. 2170.

+7H₂O. Sol. in NaOH, and KOH+Aq. "Ferric arsenite" is sl. sol. in Al₂(SO₄)₃+ Ag. (Kynaston, Dingl. 235, 326.)

Lanthanum arsenite, La₂H₃(AsO₃)₃.

Ppt. (Frerichs and Smith, A. 191. 355.) Does not exist. (Cleve, B. 11. 910.)

Lead arsenite, $Pb(AsO_2)_2 + xH_2O$.

Sl. sol. in H₂O. Insol. in KOH, but sol. in NaOH+Aq. (Berzelius.)

 $Pb_2As_2O_5$. Insol. in H₂O, NH₄OH, NH₄ arsenite, or other NH4 salts+Aq. (Wittstein.)

Pb₃(AsO₃)₂. Scarcely sol. in H₂O; easily sol. in HNO₃, or HC₂H₃O₂+Aq. Boiling H₂O dissolves some As₂O₃. Not completely insol. in KOH+Aq. (Streng, A. 129. 238.) Sol. in acetic acid; insol. in H₂O in the

presence of ammonium salts; sol. in NaOH+ Aq; sl. sol. in KOH+Aq. (Reichard, B. 1894, 27. 1024.)

 $+H_2O$. Sl. sol. in H_2O ; easily sol. in dil. acids. (Stavenhagen, J. pr. 1895, (2) 51. 33.

Lead arsenite chloride, Pb₅As₂O₈, 2PbCl₂.

Min. Ekdemite. Easily sol. in HNO3+Aq. and warm HCl+Aq.

Magnesium arsenite, Mg₃(AsO₃)₂.

Insol. in NH₄OH+Aq, but sol. in a large excess of NH₄Cl+Aq. (Rose.)

Very sol. in boiling H₂O and in dil. acids.

Sol. in NH₄Cl+Aq. (Reichard, B. 1894, 27. 1032.)

Very sol. in H₂O and dil. acids. (Stavenhagen, l.c.)

 $Mg_2As_2O_5+4H_2O$. Hydroscopic. Very sol. in $\rm H_2O$ and acids. (Stavenhagen, l.c.) $\rm 3MgO, 2As_2O_3 + 3H_2O, +15H_2O,$ and

+18H₂O. (Perper, Dissert. 1894.)

Magnesium arsenite iodide, MgI₂, 3As₂O₃+ 12H₂O.

Moderately sol. in H₂O. (Grühl, Dissert. 1897.)

Manganous arsenite, $Mn_3(AsO_3)_2+3H_2O$.

Sol. in H2O; insol. in alcohol; easily oxidized by moist air. (Stavenhagen, l.c.) 3MnO,2As₂O₃. (Reichard, B. 1894, 27.

1032.)

 $Mn_3H_2As_4O_{10}+4H_2O$. Sl. sol. in H_2O . Very sol. in acids and alkali. (Stavenhagen, Mn₅As₂O₈. Ppt. (Reichard, B. 1898, 31.

2165.)

Mercurous arsenite, Hg₂O,As₂O₃.

Decomp. by light. Decor (Reichard, B. 1894, 27, 1022.) Decomp. by H_2O .

Hg3AsO3. Only sl. sol. in H2O; sol. in dil. acids. (Stavenhagen, J. pr. 1895, (2) 51.

Gradually and completely decomposed by H₂O. (Reichard, Ch. Z. 1902, **26.** 1143.)

Mercuric arsenite, Hg₃(AsO₃)₂.

Sl. sol. in H₂O. (Stavenhagen, l.c.)

Decomp. more easily by H₂O than is the mercurous comp. (Reichard, Ch. Z. 1902, **26.** 1143.)

2HgO,As₂O₃. Not decomp. by boiling with H₂O. Undecomp. by boiling acids. Decomp. by KOH+Aq, K₂CO₃+Aq and NH₄OH+Aq. (Reichard, B. 1894, **27**, 1021.) Hg₅As₂O₈. Ppt. Decomp. by boiling H₂O. Very sl. sol. in H₂SO₄+HCl. (Reichard, B. 1898, **31.** 2170.)

Nickel arsenite, Ni₃(AsO₃)₂.

Insol. in H₂O; easily sol. in NH₄OH+Aq

(Proust.)

Ppt. (Reichard, B. 1898, **31**. 2165.) 3NiO,2As₂O₃. Sol. in NH₄OH+Aq (identical with salt of Girard). (Reichard, B. 1894, **27.** 1031.)

+4H₂O. Insol. in H₂O; sol. in NH₄OH+

Aq. (Proust.) Sol. in KOH+Aq. (Girard, C. R. 34. 918.)

2NiO, As₂O₃. Insol. in H₂O; sol. in NH₄OH +Aq; sol. in KOH+Aq. (Reynoso, C. R. **31.** 68.)

Platinum arsenite, Pt₃(AsO₃)₄.

Sol. in H₂O and alcohol; very unstable. (Stavenhagen, l.c.)

Potassium arsenite, KAsO₂.

Sol. in H₂O; sl. sol. in alcohol. (Pasteur, A. **68.** 309.)

Insol. in ethyl acetate. (Naumann, B. 1904, 37. 3601.)

Does not exist. (Stavenhagen, l.c.) K₂A₅O₃. Very sol. in H₂O; sol. in alcohol.

(Stavenhagen, l.c.) $K_4As_2O_5+6H_2O$. Very sol. in H_2O ; sol. in

alcohol. (Stavenhagen, l.c.) K₂As₄O₇+2H₂O. Sol. in H₂C; sl. sol. in

alcohol. (Pasteur, A. 68. 309.)

Potassium arsenite bromide, 4As₂O₃, 2KBr. More sol. in H2O than iodide. (Schiff and Sestini, A. 228. 72.)

2As₂O₃, KBr. (Rüdorff, B. 19. 2675.)

Potassium arsenite chloride, 2As₂O₃, KCl. Much more quickly sol. in hot H₂O than

bromide or iodide. (Rüdorff, B. 19. 2675.) As_2O_3 , KCl. Decomp. by H_2O .

Potassium arsenite iodide, 3As₂O₃, 2KI+ H₂O.

Sl. sol. in cold H₂O; sol. in 20 pts. boiling, and 40 pts. cold H₂O. (Emmet, Sill. Am. J. (2) 18. 583.)

6KAsO₂, 2KI+3H₂O. Sol. in H₂O and alcohol. Decomp. by acids. (Harms.)

2KH(AsO₂)₂, As₂O₃, 2KI. Sl. sol. in H₂O. (Harms, A. **91**. 371.)

2As₂O₃, KI. Very difficultly sol. even in boiling H₂O. Very easily sol. in KOH+Aq, but much less so in K₂CO₃+Aq. (Rüdorff, B. 19. 2670.)

Sol. in 40 pts. cold, 20 pts. hot H_2O ; sol. in alkalies. (Schiff and Sestini, A. 228. 72.)

Potassium arsenite sulphate, K₃AsO₃, 10K2SO4.

(Stavenhagen, Zeit. angew. ch. 1894, 8. 166.)

Rubidium arsenite, RbAsO₂.

Sol. in H₂O; aq. solution is alkaline to litmus. Insol. in alcohol. (Bouchonnet, C. R. 1907, **144**. 641.)

Rubidium arsenite bromide, As₂O₃, RbBr. Decomp. by H₂O. (Wheeler, Z. anorg. 4. **451.**)

Rubidium arsenite chloride, As₂O₃, RbCl. As above.

Rubidium arsenite iodide, As₂O₃, RbI. As above.

Silver arsenite, Ag₃AsO₃.

Insol. in H₂O. Not pptd. in presence of 20,000 pts. H₂O. (Harting.)

1 l. H₂O dissolves 0.0115 g. Ag₃AsO₃ at 20°. (Whitby, Z. anorg. 1910, 67, 108.) Only sl. sol. in H₂O and in dil. acids; readily

sol. in NH4OH+Aq and conc. acids. (Stavenhagen, l.c.)

Decomp. by light, by KOH+Aq and by NH₄OH+Aq. (Reichard, B. 1894, 27. 1022-23.)

Easily sol. in HNO₃+Aq and other acids. (Marcet.)

More easily sol. in HC₂H₃O₂+Aq than Ag₃PO₄; sl. sol. in HC₂H₃O₂+Aq. (Santos. C. N. 38. 94.)

Insol. in KOH+Aq. (Kühn, Arch. Pharm. **(2) 69.** 267.)

Easily sol. in NH4OH+Aq. (Marcet.) Insol. in NH4OH+Aq, but sol. therein in presence of alkali nitrates. (Santos, l.c.)
Incompletely sol. in (NH₄)₂CO₃,
(NH₄)₂SO₄, or NH₄NO₃+Aq. (Wittstein,

Repert. 51. 41.)

Decomp. by NH_4Cl+Aq . Sol. in $KAsO_2+$ $Aq. (K\ddot{u}hn, l.c.)$

Not pptd. in solutions containing sol. citrates. (Spiller.)

Sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Sl. sol. in methyl acetate. (Bezold, Dissert. **1908.**)

Insol. in ethyl acetate. (Hamers, Dissert. 1906); (Naumann, B. 1910, 43, 314.)

 $+H_2O$. Very sol. in H_2O , $NH_2OH + Aq$ and in dil. acids. (Stavenhagen, J. pr. 1895, (2) **51**. 29.)

2Ag₂O, As₂O₃. Ppt. (Pasteur, J. Pharm.

(3) **13**. 395.)

Could not be obtained. (Stavenhagen, l.c.) $3Ag_2O$, $2As_2O_3$. Sol. in cold $HC_2H_3O_2+$ Aq. (Santos.)

Sol. in NH.OH+Aq and in potassium arsenite+Aq. (Girard, C. R. 34. 918.)

Ppt. (Reichard, B. 1898, 31. 2167.) Could not be obtained. (Stavenhagen, l.c.)

Silver arsenite ammonia, 2Ag₂O, As₂O₃, 4NHs.

Insol. in H₂O or alcohol. (Girard.)

Sodium arsenites.

Correspond to potassium arsenites, but have not been obtained in crystalline form. All are very sol. in H₂O. (Pasteur, A. 68. 308. Na₃AsO₃. Very sol. in H₂O. (Stavenhagen, l.c.)

Insol. in ethyl acetate. (Naumann, B. 1904, **37.** 3602.)

Sodium arsenite bromide, 2As₂O₃, NaBr. Decomp. by warm H₂O. (Rüdorff, B. 21. 3052.)

Sodium arsenite iodide, 2As₂O₃, NaI. Decomp. by hot H₂O. (Rüdorff.)

Strontium arsenite, Sr₃(AsO₃)₂.

Sol. in H₂O. (Stavenhagen, l.c.) Sol. in H₂O, insol. in alcohol (identical with Stein). (Reichard, B. 1894, 27. 1036.) $Sr_2As_2O_5+2H_2O_{\cdot\cdot}$ Quite easily sol. in $H_2O_{\cdot\cdot}$

(Stein.) Sl. sol. in H_2C , SrO_2H_2+Aq , or H_3AsO_4+

Aq. (Dumas.) Very sl. sol. in alcohol. (Steip.)

Easily sol. in H₂O and in acids. (Staven-

hagen, J. pr. 1895, (2) 51. 17.) Sr₂As₄O₃. Moderately sol. in H₂O. (Reichard, B. 1894, 27. 1036.)

Strontium arsenite iodide, SrI₂, 3As₂O₃+ 12H₂O.

As Ba comp. (Grühl, Dissert. 1897.)

Thallium arsenite, Tl. AsC.

Sl. sol. in H₂O and alcohol; easily sol. in acids, especially in dil. H2SO4. (Stavenhager,

Tin (stannous) arsenite, Sn₃(AsO₃)₂.

Ppt.; decomp. by acids and alkali. (Reich-

ard, B. 1898, **31.** 2169.) +2H₂O. Sl. sol. in H₂O. Easily sol. in dil. acids and alkalies. (Stavenhagen, l.c.)

Tin (stannic) arsenite, $Sn_3(AsO_3)_4 + 5\frac{1}{2}H_2O$.

Sl. sol. in H₂O. (Stavenhagen, l.c.) 5SnO₂, 2As₂O₃. Ppt. Sol. in acids without decomp. (Reichard, B. 1894, **27**, 1025.) Sn₇As₂O₁₇. Ppt. (Reichard, B. 1898, 31. 2169.)

Uranium arsenite, UO_2 , As_2O_3 .

Insol. in NH₄OH+Aq; only sl. sol. KOH+ Aq. Sol. in acids. (Reichard, B. 1894, 27. 1029.)

Zinc arsenite, ZnO, As₂O₃.

Ppt. (Avery, J. Am. Chem. Soc. 1906, 28. 1163.)

3ZnO,As₂O₃. Sol. in acids without decomp. Easily sol. in NH₄OH+Aq. (Reichard, B. 1894, **27**. 1033.)

Arseniovanadic acid, As_2O_5 , $V_2O_5+2H_2O$.

Easily sol. in H₂O, but solution easily decomposes; crystallizes from H₂O with 10H₂O. Composition is vanadium dihydrogen arsenate (VO₂)H₂AsO₄. (Friedheim, B. 23. 2600.) +14, and +18H₂O. (Ditte, C. R. 102. 757.) Could not be obtained. (Friedheim.) 3As₂O₅, 2V₂O₅. (Berzelius.) Correct for-

mula is as above. (Friedheim.)

3H₂O, 7As₂O₅, 6V₂O₅. (Gibbs, Am. Ch. J. 7. 209.) Could not be obtained. (Friedheim.)

 $3H_2O$, $5As_2O_5$, $8V_2O_5+24H_2O$. (Gibbs.) Could not be obtained. (Friedheim.)

Arseniovanadates.

According to Friedheim (Z. anorg. 1892, 2. 319) the arseniovanadates are double arsenates of VO2 and NH4.

Ammonium arseniovanadate, (NH₄)₂O, $As_2O_5 2V_2O_5, +5H_2O.$

Efflorescent in dry air; sl. sol. in cold, by hot H₂Ó. decomp. Composition divanadium ammonium arsenate $= (VO_2)_2 (NH_4) AsO_4 + 2\frac{1}{2}H_2O.$ (Friedheim, B. 23. 2600.)

Sl. sol. in cold H₂O. Somewhat more easily sol. in hot H2O with separation of V2O5. (Schmitz-Dumont, Dissert. 1891.)

2(NH₄)₂O, 3As₂O₅ 2V₂O₅, +4H₂O. Cannot be crystallized from H₂C. Composition is $(NH_4)_2HAsO_4+2(VO_2)_2H_2AsO_4$. heim.)

Decomp. under H₂O to (NH₄)₂O, 2V₂O₅. $As_2O_6+5H_2O$. (Schmitz-Dumont, *l.c.*)

 $5(NH_4)_2O$, $4As_2O_5$, $2V_2O_5+18H_2O$. Sol. in (Ditte, C. R. 102. 1019.) Does not H₂O. l exist. (Friedheim, B. 23. 2605.)

 $\begin{array}{ll} \textbf{Calcium} & \textbf{arseniovanadate,} & 2\text{GaO,} & 3\text{Ass} \\ 2\text{V}_2\text{O}_5 + 21\text{H}_2\text{O} = \text{CaHAsO}_4 + 2(\text{VO}_2) \\ & \text{H}_2\text{AsO}_4 + 8\text{H}_2\text{O}. \end{array}$ 3As₂O₅,

Can be crystallized in presence of vanadic acid without decomp. (Friedheim.)

Sol. in H_2O . (Schmitz-Efflorescent. Dumont, l.c.)

Cobalt arseniovanadate, CoO, As₂O₅, V₂O₅+ $9H_2O = C_0(VO_2)_2H_2(A_3O_4)_2 + 8H_2O.$ Sol. in H₂O. (Friedheim.)

Copper arseniovanadate, CuO, As₂O₅, V₂O₅+ $4H_2O = Cu(VO_2)_2H_2(AsO_4)_2 + 3H_2O.$ Sol. in H₂O. (Friedheim.)

Magnesium arseniovanadate, MgO, As₂O₅, $V_2O_5 + 10H_2O = (VO_2)_2MgH_2(\bar{A}sO_4)_2 +$ 9H₂O.

Sol. in H₂O. (Friedheim,) Moderately sol. in H₂O. Solution decomp. on standing. (Schmitz-Dumont, l.c.)

2MgO, $3As_2O_5 2V_2O_5$, $+23H_2O = MgHAsO_4$ +2(VO_2)H₂AsO₄+9H₂O. Sol. in H₂O. (Friedheim.)

Sol. in H₂O but solution decomp. on evaporation. (Schmitz-Dumont, l.c.)

Potassium arseniovanadate, K₂O, As₂O₅, $2V_2O_5 + 5H_2O = (VO_2)_2KAsO_4 + 2\frac{1}{2}H_2O$.

Sol. in H_2O . (Friedheim.) Sl. sol. in cold H_2O . Partially decomp. on heating. (Schmitz-Dumont.)

 $\begin{array}{cccc} \text{Strontium} & \text{arseniovanadate,} & 2SrO, & 3As_2O_5, \\ & & 2V_2O_5 + 20H_2O = SrHAsO_4 + 2(VO_2)_2H_2 \\ & & AsO_4 + 7\frac{1}{2}H_2O. \end{array}$

Sol. in H₂O. (Friedheim.) +21H₂O. Easily sol. in H₂O. (Schmitz-Dumont.)

Zinc arseniovanadate, ZnO, As₂O₅, V₂O₅+ $6\frac{1}{2}H_2O = Zn(VO_2)_2H_2(AsO_4)_2 + 5\frac{1}{2}H_2O$. Sol. in H_2O . (Friedheim.)

2ZnO, $3As_2O_5$, $2V_2O_5+5H_2O$, and $+18H_2O$ = $ZnHAsO_4+2(VO_2)_2H_2AsO_4$, and $+6\frac{1}{2}H_2O$. Sol. in H₂O. (Friedheim.)

Arseniovanadicotungstic acid.

Ammonium arseniovanadicotungstate, $17(NH_4)_2O_2As_2O_5, 14\frac{1}{2}V_2O_3, 29WO_8 +$ 98H₂O.

Sl. sol. in cold H2O. Readily sol. in boiling H₂O. Insol. in alcohol, ether, benzene, CS₂, CHCl_s, acetone, nitrobenzene, aniline and acetic anhadride. (Rogers, J. Am. Chem. Soc. 1903, 25. 307.)

Arseniovanadicovanadic acid.

Ammonium arseniovanadicovanadate, $5(NH_4)_2O$, $12As_2O_5$, $12VO_2$, $6V_2O_5$ +

Sl. sol. in cold, sol. in hot H2O, from which crystallizes- $4(NH_4)_2O$, $9As_2O_5$, $9VO_2$, $8V_2O_5+11H_2O$. Sol. in H_2O . (Gibbs, Am. Ch. J. 7. 209.)

Arseniovanadicovanadiotungstic acid.

Ammonium arseniovanadicovanadiotungstate, $\begin{array}{l} 17(\mathrm{NH_4})_2\mathrm{O}, 2\mathrm{As}_2\mathrm{O}_5, 7\mathrm{V}_2\mathrm{O}_5, 4\mathrm{V}_2\mathrm{O}_3, 32\mathrm{WO}_8 \\ +73\mathrm{H}_2\mathrm{O}. \end{array}$

Sl. sol. in cold, readily sol. in boiling H₂O. (Rogers, J. Am. Chem. Soc. 1903, 25. 310.)

Arseniovanadiotungstic acid.

Ammonium arseniovanadiotungstate, $18(NH_4)_2O$, $2As_2O_5$, $13V_2O_5$, $39WO_3+$ 88H₂O.

Sol. in H₂O. Insol. in organic solvents. (Rogers, J. Am. Chem. Soc. 1903, 25. 306.)

Arseniuretted hydrogen, AsH₃. See Arsenic hydride.

Arsenochromic acid.

Potassium arsenochromate, K₄Cr₂As₂O₁₆+ 12H₂O.

Sol. in moderately conc. mineral acids. (Tarugi, C. C. 1897, II. 724.) $K_7Cr_3As_6O_{22}+24H_2O$. Ppt. Sol. in dil. warm acids. (Tarugi.)

Potassium hydrogen arsenochromate, $K_4H_6Cr_8As_2O_{16}$. (Tarugi, C. C. 1897, II. 724.)

Arsenosoarseniotungstic acid.

Potassium arsenosoarseniotungstate, 10K₂O, $4As_2O_5$, As_2O_3 , $21WO_3+2\bar{6}H_2O$.

Precipitate. Sol. in a large amount of hot H₂O. (Gibbs, Am. Ch. J. 7.313.)

Arsenosomolybdic acid.

Ammonium arsenosomolybdate, $3(NH_4)_2O$, $5As_2O_3$, $12MoO_3 + 24H_2O$. Sl. sol. in H₂O. (Gibbs, Am. Ch. J. 7. 313.)

Ammonium barium arsenosomolybdate, $3(NH_4)_2O$, 2BaO, $5As_2O_3$, $10MoO_3$ + 50H₂O.

Ppt. (Ephraim, Z. anorg. 1910, 66. 57.)

Ammonium cupric arsenosomolybdate, $(NH_4)_2O$, CuO, $2As_2O_3$, $4MoO_3 + 2H_2O$, and $2(NH_4)_2O$, CuO, $3As_2O_3$, $6MoO_3 +$ 13H₂O.

Ppts. (Ephraim, Z. anorg. 1910, 66, 58.)

Barium arsenosomolybdate, 3BaO, 2As₂O₃, $8\text{MoO}_{8} + 13\text{H}_{2}\text{O}$.

Very sl. sol. in H_2O . (Gibbs.)

Copper arsenosomolybdate, 2CuO, 3As₂O₃, 6MoO₈.

Sol. in H₂O. (Gibbs.)

arsenosomolybdate, Manganese 2MnO, $3As_2O_3$, $6MoO_3+6H_2O$, and $+15H_2O$. Insol. in H₂O. (Gibbs.)

 $5\text{MoO}_3 + 3\text{H}_2\text{O}$.

Easily sol. in H₂O. (Ephraim, Z. anorg. 1910, 66. 54.) $3K_2O$, As_2O_3 , $8MoO_3+18H_2O$. Easily sol.

in H₂O. (Ephraim.)

Sodium arsenosomolybdate, Na₂O, As₂O₈, $2\text{MoO}_8+6\text{H}_2\text{O}$.

Easily sol. in H₂O. (Ephraim, Z. anorg. 1910, 66. 56.) 2Ńa₂O, As_2O_3 , $4M_0O_3+13H_2O$. Ppt. (Ephraim.)

Zinc arsenosomolybdate, 2ZnO, 3As₂O₃, $6\text{MoO}_3 + 6\text{H}_2\text{O}$.

Sol. in H₂O. (Gibbs.)

Arsenosophosphotungstic acid.

Potassium arsenosophosphotungstate, 10K₂O, 14As₂O₃, 3P₂O₅, 32ŴO₃+28H₂O.

Moderately sol, in cold, very easily in hot

 H_2O . (Gibbs.) $7K_2O$, $2As_2O_5$, $4P_2O_5$, $60WO_3 + 55H_2O$. Sol. in hot H_2O with decomp. (Gibbs.)

Potassium sodium arsenosophosphotungstate, $5K_2O$, Na_2O , $2As_2O_8$, $2P_2O_5$, $12WO_8+$ 15H₂O. (Gibbs, Am. Ch. J. 7. 313.)

Arsenosotungstic acid.

Ammonium arsenosotungstate, $7(NH_4)_2O$, $2As_2O_3$, $18WO_3+18H_2O$. Sol, in H₂O. (Gibbs.)

Barium arsenosotungstate, 4BaO, As₂O₃, $9WO_3 + 21H_2O$.

Precipitate. Nearly insol. in H₂O. (Gibbs.)

Sodium arsenosotungstate, 9Na₂O, 8As₂O₃, 16WO₈+55H₂O.

Very sol, in H₂O. (Gibbs, Am. Ch. J. 7. 313.)

Arsenyl bromide, AsOBr.

H₂O dissolves out As₂O₃; insol. in alcohol. (Sérullas.)

+H₂O. (Wallace, Phil. Mag. (4) 17. 122.) $As_8O_9Br_6 = 2AsBr_8$, $3As_2O_3 + 12H_2O$.

Arsenvl bromide with MBr. See Arsenite bromide, M.

Arsenvi chloride, AsOCl.

Sol. in H₂O with decomp. +H₂O. (Wallace, Phil. Mag. (4) 16. 358.) As₈O₄Cl. (Wallace.)

Arsenyl chloride with MCl. See Arsenite chloride, M.

Arsenyl potassium fluoride, AsOF2, KF+

(Marignac, A. 145. 237.)

Potassium arsenosomolybdate, 3K₂O, As₂O₃, | Arsenyl iodide, As₃I₂O₁₁=2AsOI, 3As₂O₂+ 12H₂O.

> Decomp. by H₂O. (Wallace, Phil. Mag. (4) **17**. 122.)

> Sl. sol. in cold H₂O, less sol. in alcohol. (Plisson, J. Pharm. 14. 46.)

Arsenyl iodide with MI.

See Arsenite iodide, M.

Arsenyl sulphoiodide, $As_{13}I_9S_6O_9$.

Scarcely attacked by cold H₂O. Boiling H₂O extracts AsI₃. Decomp. by hot HNO₃ or H₂SO₄. Easily sol. in KOH, or NH₄OH+Aq. (Schneider, J. pr. (2) 36. 513.)

Arsine.

See Arsenic hydride.

Atmospheric air.

See Air, atmospheric.

Auriamine, Au(OH)₂NH₂.

(Jacobsen, C. R. 1908, 146, 1214.)

Diauriamine, Au₂(OH)₄NH.

(Jacobsen, C. R. 1908, 146, 1214.)

Sesquiauriamine, NAu₃, NH₃.

Decomp. by H₂O into NAu₃. (Raschig, A. 235. 341.)

Auric acid, HAu₂O₄.

Sol. in HBr, or HCl+Aq. (Krüss, B. 19.

Ammonium aurate.

See Auroamidoimide.

Barium aurate, BaAu₂O₄+5H₂O.

Sl. sol. in H₂O. (Weigand, Zeit. angew. Ch. 1905, **19.** 139.)

+6H₂O. Sl. sol. in H₂O. Sol. in dil. H₂SO₄ and in dil. HNO₃. Sol. in HCl. Decomp. by alcohol. (Meyer, C. R. 1907, **145**. 806.)

Calcium aurate (?).

Insol. in H_2O ; sol. in $CaCl_2+Aq$. (Fremy, A. ch. (3) 31. 485.) CaAu₂O₄+6H₂O. C. R. 1907, **145**. 806.) As Ba salt. (Meyer,

Magnesium aurate (?).

Ppt. Insol. in H_2O ; sol. in $MgCl_2+Aq$. (Pelletier.)

Potassium aurate, KAuO₂+3H₂O.

Very sol. in H₂O, and easily decomp. (Fremy, A. ch. (3) 31. 483.)

Sol. in alcohol; the solution in alcohol does not decomp. below 50°. (Figuier, A. ch. (3) 11.364.)

Potassium aurate sulphite, KAuO₂, 2K₂SO₃+ 5H₂O.

Sol. in H₂O with decomp. Nearly insol. in alkaline solutions. (Fremy, A. ch. (3) 31. 485.)

Sodium aurate, Na₂Au₂O₄+2H₂O.

Sol. in H2O. Sol. in dil. H2SO4, dil. HNO3, and HCl with decomp. Decomp. by alcohol. (Meyer, C. R. 1907, 145, 806.)

Strontium aurate, SrAu₂O₄+6H₂O. As Ba salt. (Meyer.)

Auriimide chloride, Au(NH)Cl. (Raschig.)

Auriimide nitrate, Au₂N₂H₂O, 2HNO₃, or AuN, HNO₃+½H₂O, or Au₂O(NH)₂, 2HNO.

Not deliquescent. Decomp. by hot H₂O into Au₂O(NH)₂. (Schottländer, J. B. 1884. 453.)

Auroamidoimide, $Au(HN)NH_2+3H_2O$.

(Fulminating gold.) Insol. in H₂O; not attacked by dil. acids; sol. in conc. acids, and in moderately dil. acids, when freshly precipitated. Insol. in alkalies or alcohol. Sol. in KCN+Aq.

Triauroamine, AusN+5H₂O.

Not decomp. by boiling dil. acetic acid, HNO₃, or H₂SO₄. (Raschig, A. 1886, 235.

Auricyanhydric acid, HAu(CN)4+1½H2O. Easily sol. in H₂O, alcohol, or ether.

See also Bromauricvanides.

Chlorauricvanides. Iodauricyanides.

Ammonium auricyanide, NH₄Au(CN)₄. Easily sol. in H2O or alcohol. Insol. in Barium, Ba. ether.

Cobaltous auricvanide, Co[Au(CN)₄]₂+9H₂O. Sl. sol. in cold, easily in hot H₂O. Sl. sol. in alcohol. (Lindbom.)

Potassium auricyanide, KAu(CN)₄+1½H₂O. Efflorescent. Sl. sol. in cold, easily in hot H₂O. Easily sol. in alcohol.

Silver auricyanide, AgAuCN₄.

Insol. in H_2O or HNO_3+Aq . Sol. in $NH_4OH + Aq.$

Diaurodiamine nitrate. See Auriimide nitrate.

Aurobromhydric acid. See Bromauric acid.

Aurobromic acid. See Bromauric acid.

Aurochlorhydric acid. See Chlorauric acid.

Aurochloric acid. See Chlorauric acid. Aurocvanhydric acid.

Aurocyanides with MCN.

See Cyanide, aurous with MCN.

Azinosulphonic acid.

Ammonium azinosulphonate, N₃SO₃NH₄. (Traube, B. 1914, 47. 944.)

Barium azinosulphonate, (N₈SO₃)₂Ba. (Traube, B. 1914, 47, 944.)

Potassium azinosulphonate, NaSOaK. Easily sol. in H2O. Can be cryst. from boiling abs. alcohol. (Traube, B. 1914, 47.

Sodium azinosulphonate, NaSOaNa. (Traube, B. 1914, 47, 944,)

Azoimide, HN₃.

Miscible with H₂O and alcohol. (Curtius and Radershausen, J. pr. (2) 43. 207.)

Stable in aq. solution; decomp. slowly by dil. boiling HCl. (Curtius, J. pr. 1898, (2) 58. 265.)

For salts of HN₃, see azoimide of metal under metal.

Azoimide, hydroxylamine, N₃H,2NH₂OH.

Sol. in H₂O. Gradually volatilizes at ord. temp. (Dennis, J. Am. Chem. Soc. 1907, 29. 22.)

Azophosphoric acid.

See Pyrophosphamic acid.

See Pyrophosphodiamic acid.

Deutazophosphoric acid.

Decomp. by H₂O and abs. alcohol. (Guntz. C. R. 1901, 133. 874.) Insol. in liquid NH3. (Gore, Am. Ch. J.

1898, **20.** 827.)

Barium amalgam, BaHg₁₃.

Stable in contact with liquid amalgam up to 30°. Can be cryst. from Hg without decomp. if temp. does not exceed 30°. (Kerp, Z. anorg. 1900, 25. 68.)

BaHg₁₂. Stable in contact with liquid amalgam from 30°-100°. Can be cryst. from Hg without decomp. at any temp. within these limits. (Kerp.)

Barium amide, Ba(NH₂)₂.

B.-pt. 280°. (Mentrel, C. C. 1903, I. 276.) Decomp. by H₂O. (Guntz and Mentrel, Bull. Soc. 1903, (3) 29. 578.)

Barium potassium amide.

See Potassium ammonobarate.

Barium ammonia, Ba(NH₃)6.

Takes fire in the air. Only sl. sol. in liquid. NH₃. Violently decomp. by H₂O. (Mentrel, C. R. 1902, 135. 740.)

Barium arsenide, Ba₈As₂.

Decomp. by H₂O. (Lebeau, C. R. 1899, **129.** 48.)

Barium azoimide, Ba(N₃)₂.

Very sl. hydroscopic; explosive.

12.5 pts. are sol. in 100 pts. H₂O at 0° 16.2 " " " 100 " H₂O " 10 H₂O " 10.5° 16.2 " 16.7 " H₂O "15° " " 100 " " " "100 " HO "17° 17.3 " 0.0172 pts. are sol. in 100 pts. abs. alcohol at

Insol. in ether. (Curtius, J. pr. 1898, (2)

58. 290.) See also Barium nitride.

Barium boride, BaB6

Sol. in fused oxidizing agents, not decomp. by H₂O; insol. in aq. acids; sl. sol. in conc. H₂SO₄, sol. in dil. and conc. HNO₃. (Moissan, C. R. 1897, 125, 634.)

Barium subbromide sodium bromide, BaBr, NaBr.

Decomp. by H₂O. (Guntz, C. R. 1903, **136.** 750.)

Barium bromide, BaBr₂, and $+2H_2O$.

100 pts. H₂O dissolve— 0° 20° 40° 60° 8 at 0° 80° 100°

104 114 123 135 149 pts. BaBr₂. 98

Sat. BaBr₂+Aq contains at:

-20° -9° +7° 16° 19° 40° 45.7 46.5 48.5 48.8 49.3 50.9%BaBr₂ 71° 76° 77° 104° 145° 160° 175°

55.1 55.5 55.6 56.6 60.5 59.4 60.3%BaBr₂ (Etard, A. ch. 1894, (7) 2. 540.)

Sp. gr. of BaBr₂+Aq at 19.5° containing: 5 10 15 20 25 30%BaBr 30%BaBr₂ 1.045 1.092 1.114 1.201 1.262 1.329

55%BaBr₂. 1.405 1.485 1.580 1.685 1.800 (Kremers, Pogg. 99. 444, calculated by Gerlach, Z. anal. 8. 285.)

BaBr₂+Aq containing 7.74% BaBr₂ has sp. gr. 20°/20°=1.0716.

BaBr₂+Aq containing 16.76% BaBr₂ has sp. gr. 20°/20° = 1.1674.

(Le Blanc and Rohland, Z. phys. Ch. 1896, **19.** 279.

Sat. BaBr₂+Aq boils at 113°. (Kremers, Pogg. 99. 43.)

Solubility in Bal. + Ag at to.

to	Sat. solution contains		
	% BaBr2	% BaI2	
16	4.7	57.9	
16	5.0	59.0	
+60	5.5	66.0	
135	9.3	67.3	
135	9.0	67.2	
170	11.0	67.4	
210	14.9	67.7	

(Etard, A. ch. 1894, (7) 3. 287.)

Very sol, in absolute alcohol. (Hünefeld.) 100 pts. absolute methyl alcohol dissolve 50 pts. BaBr. at 22.5°.

100 pts. absolute ethyl alcohol dissolve 3 pts. BaBr₂ at 22.5°. (de Bruyn, Z. phys. Ch.

10. 783.)

Sat. solution in 87% alcohol contains 6% BaBr₂. (Richards, Z. anorg. 3. 455.) 100 pts. absolute methyl alcohol dissolve

45.8 pts. $BaBr_2+2H_2O$ at 15° . 100 pts. 93.5% methyl alcohol dissolve 27.3 pts. $BaBr_2+2H_2O$ at 15° . 100 pts. 50% methyl alcohol dissolve 4 pts.

BaBr₂+2H₂O at 15°. (de Bruyn, Z. phys. Ch. 10. 787.)

100 g. BaBr₂+CH₃OH contain 0.4 g. BaBr₂ at the critical temp. (Centnerszwer, Z. phys. Ch. 1910, 72. 437.)

At 15°, 1 pt. by weight is sol. in: 36 pts. methyl alcohol, sp. gr. 0.709 " ethyl 207 [°] 0.8035652 " propyl " " 0.8085 (Rohland, Z. anorg. 1897; 15. 413.)

Nearly insol. in boiling amyl alcohol, 10 cem. dissolving only an amt. equal to 1.3 mg BaO. (Browning, Sill. Am. J. 144. 459.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328; Eidmann, C. C. 1899, II. 1014.)

Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

Difficultly sol. in methyl acetate. (Naumann, B. 1909, 42. 3789.)

Insol. in ethyl acetate. (Naumann, B. 1910, **43.** 314.)

Barium cadmium bromide, BaBr₂, CdBr₂+ 4H₂O.

Sol. in H₂O. (v. Hauer, W. A. B. 20. 40.)

Barium rhodium bromide. See Bromorhodite, barium.

Barium bromide ammonia, BaBr₂,8NH₃. Decomp. by H₂O. (Joannis, C. R. 1905, 140. 1244.)

Barium bromide hydrazine, BaBr2, 2N2H4. Hydroscopic. Very sol. in H₂O. Insol. in alcohol. (Franzen, Z. anorg. 1908, 60. 291.)

Barium bromofluoride, BaBr2, BaF2.

Insol. in and undecomp. by boiling alcohol. Sol. in HBr and in HNO₃. Decomp. by H₂O, hot H₂SO₄, dil. HCl, dil. HNO₃, or dil. acetic acid. (Defacqz, C. R. 1904, 138. 199.)

Barium carbide, BaC₂.

Decomp. by H₂O. (Maquenne, C. R. 144.

Sp. gr. 3.75. Easily decomp. by H₂O and dil. acids. (Moissan, Bull. Soc. 1894, (3) 11. 1008.)

Barium carbonyl, Ba(CO)₂.

Sol. in H₂O. (Guntz and Mentrel, Bull. Soc. 1903, (3) 29. 586.)

Barium subchloride, BaCl.

Decomp. by H₂O. (Guntz, C. R. 1903, **136.** 751.)

Barium subchloride sodium chloride, BaCl,

Decomp. by H₂O. (Guntz, C. R. 1903, **136.** 750.)

Barium chloride, $BaCl_2$, and $+2H_2O$.

Permanent in dry air.

100 pts. H₂O at t° dissolve (a) pts. BaCl₂ and (b) pts. BaCl₂+2H₂O.

t°	a	ь	· to	a	ъ
15.64	34.86	43.50	74.89	59.94	65.51
49.31	43.84	55.63	105.48	59.58	77.89

(Gay-Lussac, A. ch. (2) 11. 309.)

100 pts. H₂O at t° dissolve 32.62 +0.2711t pts. BaCl₂. (Kopp.)

100 pts. H2O dissolve pts. BaCl2+2H2O at to.

t°	Pts. BaCl ₂ +2H ₂ O	t°	Pts. BaCl ₂ +2H ₂ O
16.25 20.00 22.50 37.50 50.00	39.66 42.22 43.7 51.0 65.0	62.50 75.00 87.00 100	48.0 63.0 65.0 72.0

(Brandes.)

Sol. in 2.67 pts. H_2O at 18.75°. (Abl.) 1 pt. BaCl₂ is sol. in 2.86 pts. H_2O at 15.5°, and 1.67 pts. at boiling temp. (M. R. and P.) 100 pts. H_2O at 15.5° dissolve 20 pts. BaCl₂, and 43 pts. at 87.7°. (Ure's Dict.)

Solubility in 100 pts. H2O at to.

t°	Pts. BaCl ₂	t°	Pts. BaCl ₂
0	31.1	77.5	51:9
12.2	33.9	95.65	57.7
38.4	41.2	102.5	58.9
62.75	47.7	105	59.7

(Nordenskiold, Pogg. 136. 316.)

100 pts. H₂O dissolve pts. BaCl₂ at to.

t *	Pts. BaCl ₂	t°	Pts. BaCl ₂
9 30 37	33.2 38.1 40.0	50 58	43.7 45.9

(Gerardin, A. ch. (4) 5. 143.)

1 pt. $BaCl_2+2H_2O$ is sol. in 2.18 pts. H_2O at 21.5°, and the solution has sp. gr. =1.2878. (Schiff, A. 109. 326.)

1 pt. anhydrous BaCl₂ is sol. in 2.86 pts. H₂O at 15°. (Gerlach.)

P.

Solubility in 100 pts. H₂O at t°.

20142210 III 200 Ptb: 1220 41 1 1					
, t°	Pts. BaCl ₂	t°	Pts. BaCl ₂	t°	Pts. BaCl ₂
0 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 14 15 16 17 18 19 20 19 21 22 22 23 24 24 25 26 26 27 28 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	30.9 31.57 31.57 31.57 32.46 32.33 33.58 34.57 35.57 36.57 37.70 3	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 65 66 67 68 69 70 	39.7 40.02 40.57 41.36 41.69 42.57 43.69 44.7 43.69 44.7 45.36 46.7 47.69 47.69 48.8 49.4 49.4 49.4 49.4 49.4 49.4 49.	71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 104 104	49.703692555555555555555555555555555555555555

(Mulder, calculated from his own and other observations. Scheik. Verhandel. 1864. 45.)

The saturated solution contains—

60.3 pts. BaCl₂ to 100 pts. H₂O, and boils at 104.1° . (Mulder.)

60.1 pts. BaCl₂ to 100 pts. H₂O, and boils at 104.4°. (Legrand.)
61.8 pts. BaCl₂ to 100 pts. H₂O, and boils at 104.5°. (Griffith.)
59.58 pts. BaCl₂ to 100 pts. H₂O, and boils at 105.48° (Gay-Lussac); at 106° (Kremers).
54.1 pts. BaCl₂ to 100 pts. H₂O, and forms

crust at 104.4°; highest temperature observed, 104.9°. (Gerlach, Z. anal. 26. 426.)

Sat. BaCl₂+Aq contains at:

215° 100° 130° 144° 160° 180°

37.3 37.5 38.9 40.7 43.1%BaCl₂ 36 (Etard, A. ch. 1894, (7) 2. 535.)

Aq. solution contains 27.6% BaCl₂ at 30°. (Shreinemakers, C. C. 1910, I. 9.)

Solubility of BaCl₂+2H₂O in H₂O equals 1.745 mol.-litre at 30°. (Masson, Chem. Soc. 1911, 99. 1136.)

BaCls +Aq sat. at 8° has sp. gr. 1.27. (Anthon.) BaCls +Aq sat. at 15° has sp. gr. 1.282. (Michel and Krafit.)
BaCl₂+Aq sat. at 18.1° has sp. gr. 1.285, and contains 44.31 pts. BaCl₂+2H₂O to 100 pts. H₂O. (Karsten.)

Sp. gr. of BaCl2+Aq at 10.5°.

% BaCla	Sp. gr.	% BaCla	Sp. gr.
8.88	1.0760	27.53	$1.2245 \\ 1.2837$
18.24	1.1521	35.44	

(Kremers, Pogg. 99. 444.)

Sp. gr. of BaCl₂+Aq at 15°.

% BaCla	Sp. gr.	% BaCl ₂	Sp. gr.
1 2 3 4 5 6 7 8 9 10 11 12 13	1.00917 1.01834 1.02750 1.03667 1.04584 1.06554 1.07538 1.08523 1.09508 1.10576 1.11643 1.12711	14 15 .16 .17 .18 .19 .20 .21 .22 .23 .24 .25	1.13778 1.14846 1.15999 1.17152 1.18305 1.19458 1.20681 1.21892 1.23173 1.24455 1.25736

(Gerlach, Z. anal. 8. 283.)

Sp. gr. of BaCl₂+Aq at 21.5°.

pp. 61. or 2002 1 229 00 - 110 .			
% BaCl2+ 2H2O	Sp. gr.	% BaCl ₂ + 2H ₂ O	Sp. gr.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.0078 1.0147 1.0222 1.0298 1.0374 1.0452 1.0530 1.0610 1.0692 1.0776 1.0861 1.0947 1.1034 1.1122	16 17 18 19 20 21 22 23 24 25 26 27 28 29	1.1302 1.1394 1.1488 1.1584 1.1683 1.1783 1.1884 1.1986 1.2090 1.2197 1.2204 1.2413 1.2523 1.2636 1.2750
10	1.1211	00	1 2.2.00

(Schiff, calculated by Gerlach, l.c.)

Sp. gr. of BaCl2+Aq at 18°.

% BaCla	Sp. gr.	% BaCl2	Sp. gr.
5 10 15	1.0445 1.0939 1.1473	20 24 	1.2047 1.2559

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of BaCl₂+Aq at 20°.		
g. mols. BaCl2 per l.	Sp. gr.	
0. 01 0. 025 0. 05 0. 075 0. 10 0. 25 0. 40	1.001878 1.00475 1.00929 1.01369 1.01766 1.0456 1.0726	

(Jones and Pearce, Am. Ch. J. 1907, 38, 701.) $BaCl_2+Aq$ containing 6.94% $BaCl_2$ has sp. gr. $20^\circ/20^\circ=1.0640$.

BaCl₂+Aq containing 11.38% BaCl₂ has sp. gr. 20°/20° = 1.1086.

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 279.)

Sp. gr. of BaCla+Ag at 25°.

1-1-1 Out ou man	
BaCl ₂ +Aq	Sp. gr.
1-normal 1/2- " 1/4- " 1/8- "	1.0884 1.0441 1.0226 1.0114

(Wagner, Z. phys: Ch. 1890, 5. 35.)

Sp. gr. of BaCl₂+Aq.

to	Concentration of BaCl ₂ +Aq	Sp. gr.
25°	1 pt. BaCl ₂ in 3.684 pts. H ₂ O	1.2194
22.8	1 " " 52.597 " "	1.0145

(Hittorf, Z. phys. Ch. 1902, 39. 628.)

Temp. of Maximum Density.

Weight of BaCl ₂ in 1000 grams H ₂ O	Temp. of maximum density	Molecular reduc- tion of temp. of M. D.
0 6.73 10.42 20.83 41.72	3.982° 3.207° 2.783° 1.572° —0.843°	23.94 23.88 24.04 24.04

(De Coppet, C. R. 1897, 125. 533.)

BaCl₂+Aq containing 10% BaCl₂ boils at 100.6°. (Gerlach.)
BaCl₂+Aq containing 20% BaCl₂ boils at

101.9°. (Gerlach.)

B.-pt. of BaCl2+Aq containing pts. BaCl2 to 100 pts. H₂O. G=according to Gerlach (Z. anal. 26, 443); L=according to Legrand (A, ch. (2) 59, 452).

(11, 011, (2) 00	• 102/-	
Bpt.	G	L 🍎
100.5° 101.0 101.5 102.0 102.5 103.0 103.5 104.0 104.4	6.4 12.7 19.0 25.3 31.6 37.7 43.7 49.5	11.0 19.6 26.2 32.5 38.6 44.5 50.3 56.0 60.1
104.5	55.2	

Less sol, in H₂O containing HCl than in pure H₂O, and scarcely sol. in conc. HCl+Aq.

(Berzelius.)

Solubility of BaCl₂ in HCl+Aq at 0°. BaCl₂=no. ½ mols. (in milligrammes) dissolved in 10 cc. of the liquid; HCl=no. mols. (in milligrammes) contained in the same quantity of liquid.

BaCl ₂	HCl	Sum of mols.	Sp. gr.
29.45	0	29.45	·1.250
27.8	1.1	28.9	1.242
26.075	2.8	28.875	1.228
23.4	5.0	28.4	1.210
14.0	14.36	28.36	1.143
10.2	18.775	28.975	1.118
6.67	22.75	29.42	1.099
2.74	32.0	34.74	1.079
0.29	50.5	50.79	1.088

(Engel, Bull. Soc. (2) 45, 653,)

Sol. in about 8000 pts. conc. HCl+Aq. Sol. in about 20,000 pts. conc. HCl+Aq through which HCl gas was passed.

Practically insol. in conc. HCl+Aq containing 1/6 vol. ether. (Mar, Sill. Am. J. 143.

Solubility in HCl+Aq at 30°.

Composition of the solution		Calid whore		
% by wt. HCl	% by wt. BaCl ₂	Solid phase		
0 5.94 11.55 18.11 32.35 37.34 38.63	27.6 12.97 3.85 0.46 0.00 0.00 0.00	BaCl ₂ , 2H ₂ O "" "" BaCl ₂ , 2H ₂ O+BaCl ₂ , H ₂ O		

(Schreinemakers, Z. phys. Ch. 1909, 68, 89.)

Much less sol. in HNO_8+Aq than in H_2O , because Ba(NO₃)₂ is nearly insol. therein. (Wurtz.)

BaCl₂ is sol. in about—

4.00 pts. H₂O.

5.00 pts. NH₄OH+Aq (conc.).

5.33 pts. NH₄OH+Aq (1 vol. conc.: 3 vols.

5.33 pts. HCl+Aq (1 vol. conc.: 4 vols. H_2O).

8.00 pts. $HC_2H_3O_2+Aq$ (1 vol. commercial acid: 1 vol. H_2O).

6.00 pts. NH₄Cl+Aq (1 pt. NH₄Cl: 10 pts. H₂O)

6.00 pts. NH₄C₂H₈O₂+Aq (dil. NH₄OH+Aq neutralized by dil. HC₂H₃O₂+Aq.)
6.67 pts. NaC₂H₈O₂+Aq (commercial HC₂H₃O₂ neutralized by Na₂CO₃, and dil. with 4 vols. H₂O)

6.33 pts. $Cu(C_2H_8O_2)_2+Aq$. See Stolba (Z. anal. 2. 390).

5.67 pts. grape sugar (1 pt. grape sugar: 10 pts. H₂O). (Pearson, Zeit. Chem. 1869. 662.)

BaCl₂+NH₄Cl. Solubility of BaCl₂ in NH₄Cl+Ag at 30°.

Composition of the solution		Solid phase
% NH4Cl	% BaCl:	
0 5.71 10.06 13.84 20.00 24.69 25.79 26.06 27.47 29.5	27.6 22.16 18.36 15.42 10.89 8.33 7.95 7.99 3.56	BaCl _{2.2} H ₂ O' "" "" "" "" BaCl _{2.2} H ₂ O+NH ₄ Cl ""

(Schreinemakers, Z. phys. Ch. 1909, 66. 688.) See also under Ammonium chloride.

BaCl₂+Ba(OH)₂. Solubility of BaCl₂ in BaO+Aq at 30° .

Composition of the solution		
% by wt. BaO	% by wt. BaCl ₂	Solid phase
0 1.78	27.6 27.42	BaCl ₂ , 2H ₂ O
1.79	27.31	BaCl ₂ , 2H ₂ O+BaCl(OH), 2H ₂ O
2.33		BaCl(OH), 2H ₂ O
$\begin{vmatrix} 2.50 \\ 3.27 \end{vmatrix}$	21.46	"
	19.18 18.97	" BaCl(OH), 2H ₂ O+BaO, 9H ₂ O
4.29	7 7 7 7 7	" "
	18.10	" BaO, 9H₂O
4.60		"
4.45	10.77	"
4.00	U	

(Schreinemakers, Z. phys. Ch. 1909, 68. 88.) Sol. in CuCl2, NH4Cl+Aq at 30°. (Schreinemakers, Z. phys. Ch. 1909, 66. 688.)

The solubility data for the system BaCl₂+ CuCl₂+KCl+Aq have been determined at 40° and 60°. (Schreinemakers, C. C. 1915, I. 933.)

 ${f BaCl_2 + HgCl_2}$. Solubility of ${f BaCl_2 + HgCl_2}$ in ${f H_2O}$.

to	Gms. po	r 100 g. tion	Solid phase
	BaCl ₂	HgCl ₂	
10.4°	23.58	50.54	BaCl ₂ ,2H ₂ O+HgCl ₂
10.4 10.4 10.4	23.44 22.58 22.48	50.74 51.23 51.41	BaCl ₂ ,3HgCl ₂ , 6H ₂ O
10.4 10.4 25.0	$\begin{bmatrix} 22.10 \\ 21.64 \\ 23.02 \end{bmatrix}$	51.66 51.74 54.83	BaCl ₂ ,2H ₂ O+HgCl ₂

(Foote and Bristol, Am. Ch. J. 32. 248.)

Solubility of BaCl₂+HgCl₂ in H₂O.

_	Ter	np. =30			Temp. =0°
% HgCla	% BaCl2	Solid phase	% HgCl ₂	% BaCla	Solid phase
0 2.90 7.09 12.98 22.61 34.57 46.50 55.16 55.32 55.19 48.97 41.30 27.62 14.19 7.67	27.77 27.56 27.47 26.99 26.89 25.22 23.46 23.08 22.98 17.87 14.26 8.41 2.65 0	BaCl ₂ .2H ₂ O " " " " " " " " " " " " " " " " " "	0 14.25 36.20 .46.12 46.05 46.07 46.59 47.78 48.43 48.43 48.43 29.0 16.36 3.95	23.70 24.0 24.89 24.07 24.05 23.28 21.05 20.64 20.71 18.50 11.59 6.11 0	BaCl ₂ .2H ₂ O "" BaCl ₂ , 3HgCl ₂ .6H ₂ O + "" BaCl ₂ , 2H ₂ O BaCl ₂ , 3HgCl ₂ .6H ₂ O + BaCl ₂ , 3HgCl ₂ .6H ₂ O + HgCl ₂ "" Temp. =40°
			00.07	32.98	BaCl ₂ .2H ₂ O+HgCl ₂

(Schreinemakers, Ch. Weekbl. 1911, 7, 202.)

BaCl₂+KCl. Sol. in sat. KCl+Aq, at first without pptn. The KCl is pptd. after a time until a state of equilibrium is reached.

100 pts. H₂O at 16.6° dissolve 33.8–27.2 pts. KCl and 18.2–34.9 pts. BaCl₂. (Kopp, A. **34**. 267.)

100 g. sat. solution of BaCl2+KCl contain 13.83 g. BaCl₂ and 18.97 g. KCl at 25°. (Foote, Am. Ch. J. 32, 253.)

BaCl₂+Ba(NO₃)₂. BaCl₂ is sol. in sat. $Ba(NO_3)_2 + Aq.$

Solubility of BaCl₂+Ba(NO₃)₂ in H₂O. Both salts present in solid phase.

to	Gms. per solut		t°	Gms. per sol	100 gms.
	BaCl ₂	Ba(NO _{\$}) ₂		BaCl ₂	Ba(NOs)2
0 20 40 60	22.5 24.5 26.5 28.5	4.3 6.0 7.5 9.5	100 140 180 210	31 32 33 32	14 20 26 32

(Etard, A. Ch. (7) 2. 535.)

Very slowly sol. in sat. NaNO₃+Aq with separation of Ba(NO₃)₂.

Rapidly sol. in sat. KNO₃+Aq, forming Ba(NO₃)₂, which separates out. (Karsten.)

BaCl₂+NaCl. BaCl₂ is sol. in NaCl+Aq at first without separation of NaCl, which,

however, finally separates.

III EXCESS—								
1 2 3 4 5 6						6		
NaCl BaCl ₂	:	:		1	34.5	35.0	 19.4	60.3
				l	38.6		[54.7]	l

1, 2, and 3 are at 17°. (Kopp, A. 34. 268.) 4, 5, and 6 are at b.-pt. (Mulder.)

Solubility of BaCl₂+NaCl. 100 pts. H₂O dissolve pts. BaCl₂ and NaCl at t°.

to	Pts. BaCl ₂	Pts. NaCl	t°	Pts. BaCl ₂	Pts. NaCl
10	4.1	33.9	60	9.7	33.5
20	4.1	33.8	70	11.7	33.6
30	5.0	33.7	80	13.9	33.6
40	6.3	33.6	90	15.9	33.6
50	7.9	33.5	100	17.9	33.6

(Precht and Wittgen, B. 14. 1667.)

Solubility of BaCla+NaCl in HCl+Ag at 30°.

Dorabili	bottoming of Backs 11actimited + Aq at 60.				
Solid	phase, N	aCl	Solid phase, BaCl2+2H2O		
Sp. gr.	G. mol	l. litre	Sp. gr. of sat.	G. mo	l,-litre
solution	HCl	NaCl	solution	HCI	BaCl ₂
1.2018 1.1906 1.1801 1.1633 1.1512 1.1427 1.1289 1.1188 1.1258	0.0000 0.4575 0.969 1.786 2.412 3.052 4.152 5.950 7.205	5.400 4.932 4.386 3.589 2.978 2.463 1.628 0.630 0.268	1.2147 1.1789 1.1419 1.1068 1.0880 1.0895 1.1024	0.4709 1.107 1.622 2.234 3.041 3.953	1.745 1.468 1.122 0.861 0.592 0.307 0.124 0.020 0.00
	<u> </u>	· ~			

(Masson, Chem. Soc. 1911, 99. 1136.)

%HCl %NaCl %BaCl2 Solid phase	I O No CI	١.
	/011401	
0 23.85 3.8 NaCl, BaCl ₂ .2H ₂ O 4.84 18.07 2.27 " 12.02 9.55 0.82 " 17.20 4.65 0.29 " 23.16 1.54 0.00 " 28.66 0.47 0.00 " 36.51 0.12 0.00 NaCl+BaCl ₂ .H ₂ O	4 18.07 2 9.55 0 4.65 6 1.54 6 0.47	4.0

(Schreinemakers, Arch. Néer. Sc. ex. nat. (2) 15, 91.)

Insol in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.)

Solubility in alcohol: 100 pts. alcohol of given sp. gr. dissolve pts. of the anhydrous, and crystallized salt.

Sp. gr.	Pts. BaCl ₂	Pts. BaCl ₂ +2H ₂ O
0.900	1.00	1.56
0.848	0.29	0.43
0.834	0.185	0.32
0.817	0.09	0.06

(Kirwan.)

Insol. in abs. alcohol, or below 19° in alcohol of over 91%. Dil. alcohol dissolves less $BaCl_2$ than corresponds to the amount of H_2O present. (Gerardin, A. ch. (4) 5. 142.)

Solubility in 100 pts. alcohol at t°. D=sp. gr. of alcohol; S=solubility.

$\overline{D} = 0$.9904	D=	0.9848	D=0	0.9793	D=	0.9726
to	s	t°	S	t°	s	to	s
14 25 32 47 60	29.1 32.0 33.5 37.4 39.8	14 32 39 50 63	25.0 29.1 30.9 33.2 37.6	11 15 20 35 45	19.6 20.4 21.7 24.6 26.8	15 23 33 50	15.6 17.0 19.1 22.0

D =	0.9573	D=	0.9390	D=	0.8967	D=	0.8429
to	8	t°	s	to	s	t°	s
13 24 34 39 50	10 11.4 12.9 13.8 15.2	12 23 31 37 47	6.5 7.2 8.3 9.0 10.1	12 30 47	0.1 4.3 4.9	12 19 25 50 67	0.00 0.00 0.04 0.28 0.377

(Gerardin, A. ch. (4) 5. 142.)

Solubility in dil. alcohol of x% by weight at 15° .

% alcohol 0 10 20 30 40 60 80 Pts. BaCl₂, 2H₂O 30.25 23.7 18.0 12.8 9.3 3.4 0.5 (Schiff, A. 118. 365.)

Sol. in 6885-8108 pts. 99.3% alcohol at 14.5°, and in 1857 pts. at ebullition. (Fresenius.)

Solubility of BaCl ₂ in alcohol+A
--

t°	nlcohol	% BaCl ₂	Solid phase
30°	0	27.95	BaCl ₂ .2H ₂ O
"	32,67	10.63	**
"	50.16	5.68	46
"	66.72	2.23	"
"	92.53	0.05	**
"	94.83	0.07	BaCl ₂ .2H ₂ O+BaCl ₂ .H ₂ O
"	94.75	0.05	ei.
"	94,60	0.07	66
"	97.14		$BaCl_2.H_2O$
"	98.17	0.08	BaCl ₂ , H ₂ O+BaCl ₂
"	99.41		BaCl ₂
60°	0	31.57	BaCl ₂ , 2H ₂ O
"	16.68	20.16	11
"	34.10	13.21	"
"	66.02	2.82	"
"	88.55	0.25	. "
tÌ	90.11	0.09	BaCl ₂ .2H ₂ O+BaCl ₂ .H ₂ O
"	90.39		"
"	93.95		BaCl ₂ .H ₂ O

(Schreinemakers and Massink, Chem. Weekbl. 1910, 7. 213.)

100 pts. absolute methyl alcohol dissolve 2.18 pts. BaCl₂ at 15.5°, and 7.3 pts. BaCl₂, 2H₂O at 6°. (de Bruyn, Z. phys. Ch. 10. 783.) At 15° C. 1 pt. by weight is sol. in:—

78 pts. methyl alcohol of sp. gr. 0.790 7,000 " ethyl " " " 0.8035 100,000 " propyl " " " 0.8085 (Rohland, Z. anorg. 1897, **15**. 413.)

Absolutely insol. in boiling amyl alcohol. (Browning, Sill. Am. J. 144. 459.)

Absolutely insol. in acetic ether. (Cann, C. R. 102. 363.)

Very sl. sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.)

100 pts. by weight of glycerine dissolve 10 pts. BaCl₂ at 15.5°. (de Bruyn, Z. phys. Ch. 10. 783.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.) (Eidmann, C. C. 1899, II. 1014.) Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol, in anhydrous pyridine, 97% pyridine+Aq. and 95% pyridine+Aq. Sl. sol. in 93% pyridine+Aq. (Kahlenberg, J. Am. Chem. Soc. 1908, 30. 1107.)

+H₂O. Solution of monohydrate sat. at 6° contains 31.57% BaCl₂. (Schreinemakers, Chem. Weekbl. 1910, 7. 213.)

2.5 grams of the monohydrate are sol. in 100 cc. of methyl alcohol at 14°. (Kirschner, Z. phys. Ch. 1911, 76. 176.)

Exact solubility in methyl alcohol cannot be determined as $BaCl_2+H_2O$ separates out from a sat solution of the dihydrate. (Kirschner, Z. phys. ch. 1911, 76. 177.)

Barium cadmium chloride, BaCl₂,CdCl₂+ 4H₂O. Easily sol. in H₂O. (v. Hauer.)

Solubility in H₂O at t°.

t°	100 pts	100 pts. solution contain pts.			100 g. H ₂ O dissolve	100 mols. H ₂ O
	Cl	Ba	Cd	solution contain g. salt	g. salt	dissolve mola, of anhydrous salt
22.5	15.19	14.71	11.98	41.88	72.06	3.32
$\frac{32.9}{41.4}$	16.18 · 16.95	16.09 16.81	12.40 13.05	44.59 46.87	80.73 88.01	3.72 4.06
$\frac{53.4}{62.0}$	18.21 18.81	18.13 18.74	13.95 14.73	50.30 52.28	101.21 109.56	4.66
97.8	22.48	22.00	17.57	62.05	163.50	5.05 7.53
$108.3 \\ 109.2$	23.51 23.69	22.79 29.95	18.53 18.67	64.83	184.33 188.27	8.49 8.67

(Rimbach, B. 1897, 30, 3083.)

BaCl₂,2CdCl₂+5H₂O. Quite difficultly sol. in H₂O. (v. Hauer.)

Solubility in H₂O at t°.

t°	100 pts. by wt.	of solution cont	tain pts. by wt.	100 g. of	100 g. H ₂ O	100 mols. H ₂ O
L-	Cl	Ba	Cd	solution contain g. salt	dissolve g. salt	dissolve mols. of anhydrous salt
22.6 41.3 53.9 62.2 69.5 107.2	16.89 18.15 18.78 19.66 20.18 23.31 23.16	11.00 11.77 12.41 12.83 13.09 14.87 14.93	17.71 19.22 19.85 20.59 21.20 24.11 24.39	45.60 49.14 51.04 53.08 54.47 62.29 62.48	83.82 96.62 104.25 113.13 119.64 165.18 166.53	2.63 3.03 3.27 3.55 3.76 5.19 5.23

(Rimbach, B. 1897, 30. 3083.)

Barium mercuric chloride, basic, BaCl₂, HgO Barium zinc chloride, BaCl₂, ZnCl₂+4H₂O. +6H₂O.

Decomp. by H₂O. (André, C. R. 104. 431.)

Barium mercuric chloride, BaCl₂, 2HgCl₂+ 2H₂O.

Efflorescent in dry air; sol. in H₂O. (v.

Bonsdorff, Pogg. 17. 130.)

The salt BaCl₂, 2HgCl₂+2H₂O described by Bonsdorff does not form under the conditions which he gives. (Foote, Am. Ch. J. 1904, 32. 251.)

BaCl₂,3HgCl₂+6H₂O. Solubility determinations with mixtures of BaCl₂ and HgCl₂ show that these chlorides do not form a double salt at 25°, but that a transition temp. exists at about 17.2° below which the salt BaCl₂, 3HgCl2+6H2O forms. (Foote, Am. Ch. J. 1904, 32. 251.

+8H₂O. Less sol. in H₂O than the Sr and Mg double salts. (Swan, Am. Ch. J. 1898, 20.

Barium rhodium chloride, 3BaCl2, Rh2Cl5. See Chlororhodite, barium.

Barium stannous chloride, BaCl2, SnCl2+ 4H₂O.

Sol. in H₂O. (Poggiale, C. R. 20. 1183.)

Barium stannic chloride.

See Chlorostannate, barium.

Barium uranium chloride, BaCl₂, UCl₄. Decomp. by H₂O. (Aloy, Bull. Soc. 1899, (3) **21.** 265.)

Deliquescent, and sol. in H₂O. (Warner, C. N. 27, 271.)

Pptd. from warm solution only. (Ephraim, Z. anorg. 1910, 67. 381.) +2½H₂O. Pptd. from cold solution.

(Ephraim.)

Barium chloride hydrazine, BaCl₂, 2N₂H₄. Hydroscopic. (Franzen, Z. anorg. 1908, 60. 290.)

Barium chloride hydroxylamine, BaCl₂, 2NH₂OH.

Very sol. in H₂O. (Crismer, Bull. Soc. (3) **3.** 118.)

Barium chloride sulphuric anhydride, BaCl2, 2SO:

Decomp. by H₂O. (Schultz-Sellack, B. 4. 113.)

Barium chlorofluoride, BaClF.

Difficultly sol. in H₂O, but much more sol. than BaF₂. Decomp. by H₂O, so that when washed on filter, the filtrate contains more BaCl₂ than BaF₂. (Berzelius, Pogg. 1. 19.)

Insol. in and undecomp. by boiling alcohol; sol. in conc. HCl and HNO. Decomp. by hot H2O, hot H2SO4, dil. acetic acid, dil. HCl or dil. HNO. (Defacqz, C. R. 1904, 138. 198.)

Barium cyanamide, BaCN₂.

Decomp. by H₂O. (Frank, C. C. 1902, II.)

Barium subfluoride sodium fluoride, BaF, Barium hydroxide, BaO₂H₂. NaF.

Decomp. by H_2O . (Guntz, C. R. 1903, **136.** 750.)

Barium fluoride, BaF₂.

Scarcely sol. in H₂O (Berzelius); less sol. in H₂O than CaF₂...

1 liter H₂O dissolves 1630 mg. BaF₂ at 18°. (Kohlrausch, Z. phys. Ch. 1904, 50. 356.)

1605 mg. are contained in 1 l. of sat. solution at 18°. (Kohlrausch, Z. phys. Ch. 1908, **64.** 168.)

Insol. in molten MnCl₂, MnBr₂, MnI₂, MnCl₂+BaCl₂, MnBr₂+BaBr₂ and MnI₂+BaI₂. (Defacqz, A. ch. 1904, (8) 1. 350.) Easily sol. in HCl, HNO₃, or HF+Aq.

(Gay-Lussac and Thénard.) SI. sol. in liquid HF. (Franklin, Z. anorg.

1905, **46.** 2.) Insol. in ethyl acetate. (Naumann, B.

1910, 43. 314.) Sol. in an aqueous solution of sodium citrate. (Spiller.)

Barium tin (stannic) fluoride. See Fluostannate, barium.

Barium tellurium fluoride, BaF2, 2TeF4. Decomp. by H₂O. (Högbom, Bull. Soc. (2) **35.** 60.)

Barium titanium fluoride. See Fluotitanate, barium.

Barium titanyl fluoride, TiO₂F₂, BaF₂. See Fluoxypertitanate and fluoxytitanate, barium.

Barium uranyl fluoride. See Fluoxyuranate, barium.

Barium vanadyl fluoride. See Fluoxyvanadate, barium.

Barium zirconium fluoride, 3BaF₂, 2ZrF₄+ 2H₂O.

Insoluble precipitate. (Marignac.) See also Fluozirconate, barium.

Barium fluoiodide, BaF₂, BaI₂.

Decomp. by H₂O, dil. HCl, dil. HNO₃ or hot H2SO4. Sol. in HI and HNO3. Insol. in and undecomp. by boiling alcohol. Decomp. by dil. acetic acid. (Defacqz, C. R. 1904, **138**. 199.)

Barium hydride, BaH.

Decomp. by H₂O or HCl+Aq. (Winkler, B. **24.** 1979.) Decomp. by H₂O. (Guntz, C. R. 1901, **132.** 964.)

Barium hydrosulphide, BaS₂H₂.

Easily sol. in H₂O. Insol. in alcohol. +4H₂O. Sol. in H₂O, and the solution dissolves S. (Veley, Chem. Soc. 49. 369.)

100 pts. cold H₂O dissolve 5 pts. BaO₂H₂. boiling

(Davy.) 100 pts, H₂O at 20° dissolve 3.45 pts. BaO.

(Bineau, C. R. 41. 509.) 100 pts. H₂O at 13° dissolve 2.86 pts. BaO. ** 17.9

(Osann.)

100 pts. H₂O dissolve pts. BaO at t°.

t°	Pts. BaO	tº	Pts. BaO	t°	Pts. BaO
0 5 10 15 20 25	1.5 1.75 2.22 2.89 3.48 4.19	30 35 40 45 50 55	5.0 6.17 7.36 9.12 11.75 14.71	60 65 70 75 80	18.76 24.67 31.9 56.85 90.77

(Rosenthiel and Rühlmann, J. B. 1870, 314.)

100 pts. H₂O dissolve at 25° 55.08 millimols. BaO2H2. (Herz and Knoch, Z. anorg. 1904, 41. 315.)

Sp. gr. of BaO2H2+Aq.

%BaO	Sp. gr.	%BaO	Sp. gr.
30 19 2.6	1.6 1.3 1.03	1.8 0.9	· 1.02 1.01

(Dalton.)

Sp. gr. of BaO_2H_2+Aq at 18° containing 1.25% $BaO_2H_2=1.0120$; containing 2.5%=1.0253. (Kohlrausch, W. Ann. 1879, 6. 41.)

Sp. gr. of $BaO_2H_2 + Ag$ at 80°.

Sp. gr.	BaO ₂ H ₂ by volume	BaO ₂ H ₂ by weight	Sp. gr.	BaO ₂ H ₂ by volume	BaO ₂ H ₂ by weight
1.514 1.500 1.479 1.458 1.450 1.413 1.400 1.390 1.375 1.368 1.350 1.338 1.312 1.301 1.278 1.249 1.236	58. 22 56. 31 54. 14 49. 38 48. 99 45. 99 45. 00 44. 22 42. 40 41. 45 38. 60 37. 30 35. 02 34. 02 34. 02 31. 48 28. 14 26. 41	38. 45 37. 54 36. 60 33. 87 33. 72 32. 55 32. 14 31. 81 30. 84 26. 69 27. 88 26. 69 24. 67 22. 52 21. 36	1.219 1.200 1.195 1.174 1.152 1.129 1.125 1.114 1.100 1.076 1.062 1.049 1.040 1.031 1.022 1.015	24.53 23.00 22.15 19.83 17.78 16.01 15.80 14.56 13.06 9.16 • 7.55 6.51 5.18 4.78 3.90 3.37	20.12 19.17 18.53 16.89 15.43 14.18 14.04 13.07 11.87 9.83 8.62 7.20 6.26 5.02 4.67 3.84 3.34
·	/TT-C	CI ST	1000 00	0041	

(Haff, C. N. 1902, 86, 284.)

Insol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, **20**. 827.) More sol. in NaCl+Aq, KNO₃+Aq, or NaNO₃+Aq than in H₂O. (Karsten.) Not precipitated by alcohol.

Sol. with combination in absolute alcohol B.-pt. of BaO2H2.8H2O+Aq, etc.—Continued. and anhydrous methyl alcohol. Insol. in ether.

Insol, in acetone, (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)

Solubility in acetone +Aq at 25°.

A = cc. acetone in 100 cc. acetone + Aq. $\frac{\text{BaO}_2\text{H}_2}{2}$ =millimols. BaO₂H₂ in 100 cc. of the solution.

S=sp. gr. of the solution.

A	BaO ₂ H ₂	s
0 10 20 30 40 50 60	55.08 31.84 17.79 9.10 4.75 1.54 0.48 0.08	1.04790 1.01677 0.99268 0.97630 0.95605 0.93980 0.91790 0.89562

(Herz, Z. anorg. 1904, 41. 321.)

BaO₂H₂ is sol. in an aqueous solution of cane sugar (Hunton, Phil. Mag. (3) 11. 156); also in an aqueous sol. of mannite (Favre, A. ch. (3) 11. 76); sorbine (Pelouze); hot solution of quercite, separating on cooling (Dessaignes)

Decomp. by H2O free from car-+3H₂O. bonic acid. Sl. sol, in alcohol and ether. (Bauer, Z. anorg. 1905, 47, 416.)

Solubility in H₂O the same as that of the comp. with 8H2O. Insol. in alcohol and ether. (Bauer, Zeit. angew. Ch. 1903, 17. 341. Nearly insol. in alcohol and ether. (Bauer, Zeit. angew. Ch. 1903, 16. 349.

+8H₂O. Sol. in 20 pts. cold, and 3 pts. boiling H₂O (Graham); 17.5 pts. H₂O at 15.5°, and in all proportions of hot H₂O. (Hope.) Sol. in 19 pts. H₂O at 15°, and 2 pts. at 100°. (Wittstein.)

If BaO₂H₂+8H₂O is heated it dissolves in the crystal H2O and the solution has the following bots.

%BaO	49.05	50.05	52.43	53.72
Bpt.	103°	104°	105°	106°
%BaO	55.35	57.49	58.74	61.44
Bpt.	107°	108°	108.5°	109°

 $BaO_2H_2+3H_2O$ separates at 109°. Zeit. angew. Ch. 1903, 17. 345.)

B.-pt. of BaO₂H₂.8H₂O+A₂ at 732 mm

	- Por 01 - 00 2242102220 114 ab 102 mm,					
Bpt.	Time	%BaO				
78° (mpt.) 78 103 104 105 106 107	0 4' 6' 30" 6' 45" 7' 30" 9' 25" 10' 45"	48.45 48.45 49.05 50.05 52.43 53.72 55.35				

Bpt.	Time	%BaO
108 108.5 109 109 108 105	12' 	57.49 58.74 61.44 63.65 66.53 67.51 68.17

(Bauer, Z. anorg. 1905, 47. 407.)

Solubility in Ba(NO₈)₂+Aq at 25°. Solution sat. with respect to both Ba(NO₃)₂ and BaO₂H₂, 8H₂O.

Sp. gr. 25°/25°	g. BaO as Ba(OH)2 in 100 g. H ₂ O	g. Ba (NOs)s in 100 g. H ₂ O	
1.1448 1.1371 1.1288 1.1220 1.1133 1.1062 1.1044 1.1010 1.0975 1.0949 1.0937 1.0885 1.0864 1.0840 1.0790 1.0774 1.0771 1.0731 1.0751 1.0651 1.0626 1.0640 1.0538 1.0512	54.83 4.72 4.661 4.655 4.552 4.552 4.552 4.460 4.552 4.552 4.460 4.552 4.552 4.460 4.552 4.460 4.552 4.252 4.252 4.252	11.48 10.21 8.66 7.55 7.01 6.82 6.55 6.08 5.66 5.46 5.32 4.44 4.41 4.04 3.47 3.14 2.79 2.53 1.88 	
		J	

(Parsons and Corson, J. Am. Chem. Soc. 1910, 32. 1385.)

Solubility of Ba(OH)2+8H2O (solid phase) in MCl+Aq (mol. per litre of solution) at 25°.

Solution of	(Ol')	(OH')
LiCl " " KCl " NaCl " " RbCl	0 0.75 1.42 2.30 0.86 1.75 3.40 0 0.73 1.43 2.82 1.25	0.555 0.745 0.937 1.336 0.645 0.660 0.676 0.555 0.630 0.699 0.806 0.648

(Herz, Z. anorg. 1910, 67. 366.)

% NazO	%BaO	Solid phase
0 4.78 6.43 9.63 11.62 17.87 23.28 24.63 26.14 27.72 28.43 29.24 32.12 34.72	4.99 1.29 0.89 0.57 0.53 0.47 1.06 1.87 1.84 1.75 1.58 1.34 0.82 0.59	BaO. 9H ₂ O " " " " " " " " " " " " " " " " " BaO. 9H ₂ O + BaO. 4H ₂ O " " " BaO. 4H ₂ O + BaO. 2H ₂ O " " " " " " " " " " " " " " " " " " "
41.09 42	0.57	BaO.2H ₂ O+NaOH.H ₂ O NaOH.H ₂ O

(Schreinemakers, Z. phys. Ch. 1909, 68. 84.)

50% alcohol dissolves less than 0.5% of its wt. of $BaO_2H_2+8H_2O$. (Beckmann, J. pr. 1883, (2) 27. 138.)

Barium subiodide sodium iodide, BaI, NaI. Decomp. by H₂O. (Guntz, C. R. 1903, 136. 750.)

Barium iodide, BaI2.

Not deliquescent. Very sol. in H_2O and alcohol. 100 pts. of anhydrous salt dissolve: at 0° 19.5° 30° 40° 60° 90° 106° in 59 48 44 43 41 37 35 pts. H_2O . (Kremers, Pogg. 103. 66.)

Sp. gr. of BaI₂+Aq containing: 5 10 15 20 25 30%BaI₂ 1.045 1.091 1.143 1.201 1.265 1.333

35 40 45 50 55 60%BaI₂.
1.412 1.495 1.596 1.704 1.825 1.970
(Kremers, Pogg. 111. 63, calculated by Gerlach, Z. anal. 8. 279.)

Easily so Solubility

Easily sol. in alcohol. (Henry.) Sl. sol. in benzonitrile. (Naumann, B. 1914, 47. 1369.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328; Eidmann, C. C. 1899, II. 1014.)
Sol. in methyl acetate. (Naumann, B.

1909, 42. 3789.)
+2H₂O. At 15°C., 1 pt. by weight in sol. in:
22 pts. methyl alcohol sp. gr. 0.790
93 """ 0.8035
307 """ "" 0.8085

(Rohland, Z. anorg. 1897, 15. 413.)

+7H₂O. (Thomson, B. 10. 1343.)

4

The composition of the hydrates formed by BaI₂ at different dilutions is calculated from determinations of the lowering of the fr.-pt. produced by BaI₂ and of the conductivity and sp. gr. of BaI₂+Aq. (Jones, Am. Ch. J. 1905, **34**. 306.)

Barium iodide, basic, Ba(OH)I+9H₂O.

See Barium oxyiodide.

Barium bismuth iodide, BaI₂, 2BiI₃+18H₂O.
Deliquescent; decomp. by H₂O. (Linau, Pogg. 111. 240.)

Barium çadmium iodide, BaI₂, CdI₂+5H₂O. Deliquescent. (Croft.)

Barium mercuric iodide, BaI₂, 2HgI₂.

Decomp. by much H₂O. (Boullay.)

BaI₂, HgI₂. Sol. in H₂O. (Boullay.)

Sp. gr. of sat. solution = 3.575-3.588.

(Rohrbach, W. Ann. 20. 169.)

+5H₂O. (Duboin, C. R. 1906, 143. 314.)

2BaI₂, 3HgI₂+16H₂O. (Duboin, C. R.

1906, 142. 888.)

BaI₂, 5HgI₂+8H₂O. As the corresponding

Ca salt. (Duboin, C. R. 1906, 142. 888.)

3BaI₂, 5HgI₂+21H₂O. Very deliquescent.

(Duboin, C. R. 1906, 142. 889.)

Barium stannous iodide.

Very sol. in H₂O. (Boullay.)

Barium zinc iodide, BaI2, 2ZnI2.

Deliquescent, and sol. in H₂O. (Rammelsberg.) +4H₂O. Very hydroscopic. (Ephraim, Z. anorg. 1910, 67, 385.)

Barium nitride, Ba₂N₂.

Decomp. H₂O violently, not alcohol. (Maquenne, A. ch. (6) **29.** 219.) BaN₆.

See Barium azoimide.

Barium oxide, BaO.

Sol. in H₂O with evolution of heat. Easily sol. in dil. HNO₃, or HCl+Aq. Solubility in NaOH+Aq. See Barium

Solubility in Na₂O, HCl, +H₂O at 30°. (Schreinemakers, Z. phys. Ch. 1909, **68**. 98.) Solubility in Na₂O, NaCl, BaCl₂+Aq at 30°. (Schreinemakers.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20**. 827.)

Sol. with combination in absolute alcohol and anhydrous wood-spirit. Insol. in ether. Easily sol. in absolute methyl alcohol.

1 l. absolute ethyl alcohol sat. with BaO at 9° contains 213.8 g. BaO. (Berthelot, Bull. Soc. 8. 389.)

Sol. in methyl alcohol. (Neuberg and Neimann, Biochem. Z. 1906, 1. 173.) Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4829.)

In. 1014; Naumann, B. 1904, 37, 4329.)
Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

See also Barium hydroxide.

Barium peroxide, BaO2.

Insol. in H₂O; decomp. by boiling H₂O.

Sol. in acids with formation of hydrogen Barium sulphide, BaS.

dioxide. Forms hydrate with 8H2O; also 10H2O (Berthelot, A. ch. (5) 21. 157); also a compound BaO₂, H₂O₂, which is very unstable, sl. sol. in cold H₂O, and insol. in alcohol or ether. (Schöne, A. 192. 257.)

+8H₂O. 100 cc. pure H₂O dissolve 0.168 g. BaO₂+8H₂O; if H₂O contains 0.3 g. Ba(OH)₂+8H₂O, only 0.102 g. BaO₂+8H₂O are dissolved; if 0.6 g. Ba(OH)₂+8H₂O only 0.102 g. BaO₂+8H₂O only 0.102 g. BaO₂+8H₂O₂O₂+8H₂O₂O₂+8H₂O₂O₂+8H₂O₂O₂+8H₂O₂O₂+8H₂O₂O₂+8H₂O₂O₂+8H₂O₂O₂O₂+8H₂O₂O₂O₂+8H₂O₂O₂O₂+8H₂O₂O₂O₂O₂O₂+8H₂O₂O₂O₂O₂ 0.019 g. BaO₂+8H₂O are dissolved. (Schöne, A. 1878, 192. 266.)

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37. 4329.)

Barium oxybromide, Ba(OH)Br+2H2O. Decomp. by H₂O. (Beckmann, J. pr. (2)

BaBr₂,BaO+5H₂O. Sl. sol. in H₂O. (Tassilly, C. R. 1895, 120. 1340.)

Barium oxychloride, Ba(OH)Cl+2H2O. Decomp. by H₂O. (Beckmann, J. pr. (2) 26. 388, 474.)

Barium mercury oxychloride, BaCl2, HgO+ 6H₂O.

Décomp. by H2O. (André, C. R. 104. 431.)

Barium oxyiodide, Ba(OH)1+9H2O.

Decomp. by H2O and alcohol. (Beckmann, B. 14. 2154.)

BaI₂,BaO+9H₂O. Sl. sol. in H₂O. (Tassilly, C. R. 1895, 120, 1340.)

Barium oxysulphides, Ba₇O₄S₈+58H₂O, Ba₂OS+10H₂O, Ba₄OS₅+28H₂O.

Very unstable; decomp. by recrystallization into BaS2H2 and BaO2H2.

Barium phosphide, BaP2.

Decomp. by H₂O. (Dumas, A. ch. 32.

364.) Crystallized. Sol. in dil. acids; BasP2. insol. in conc. acids; decomp. by H2O. Insol. in organic solvents at ord. temp. (Jaboin, C. R. 1899, 129. 765.)

Barium selenide, BaSe.

Sol. in H2O with decomp. Sl. sol. in H₂O. (Favre, C. R. 102. 1469.)

Barium silicide, Ba₂Si.

(Jüngst, C. C. 1905, I. 195.) BaSis. Slowly decomp. by H₂O, not by NH₄OH+Aq. Rapidly decomp. by conc. NaOH. Sol. in HNOs, H₂SO₄ and H₂PO₄ with evolution of spontaneously inflammable gas. Sol. in HF and HCl. Sol. in acetic acid without evolution of gas. ch. min. 1904, III. 680.) (Moissan, Traité

Decomp. rapidly in both hot and cold H₂O. A. ch. (6) 29. 397.) (Bradley, C. N. 1900, 82. 150.) Not attacked by

Sol. in H₂O with decomp. Crystallized. Decomp. by H₂O.

Attacked by cold conc. HNO₃. (Mourlot, A. ch. 1899, (7) 17. 521.)

Cryst. modification is less readily acted on by air and other reagents than the amorphous modification; sol. in fuse oxidizing agents. (Mourlot, C. R. 1898, 126. 645.)

+H₂O. (Neuberg and Neimann, Biochem. Z. 1906, 1. 174.)

+6H₂O. Slowly sol. in boiling H₂O, with decomp.; insol. in, but decomp. by boiling alcohol. (Schöne.)

Barium sulphide, Ba₄S₇+25H₂O (?). Sol. in H₂O. (Schöne, Pogg. 112. 215.)

Barium trisulphide, BaS.

Sol. in large amount of boiling H2O. (Schöne, Pogg. 112. 215.)

Barium tetrasulphide, BaS4+H2O.

Easily sol. in H_2O , especially if hot; sol. in 2.42 pts. H_2O at 15°; insol. in CS_2 or alcohol. (Schöne, Pogg. 112. 224.) +2 H_2O . (Veley, Chem. Soc. 49. 369.)

Barium pentasulphide, BaS. Known only in solution.

Barium mercuric sulphide, BaS, HgS+5H2O. Sol. in H₂O. (Wagner, J. pr. 98. 23.)

Barium nickel sulphide, BaS, 4NiS. Sol, in warm conc. HCl. (Bellucci, C. A. 1909, 293.)

Barium stannic sulphide.

See Sulphostannate, barium.

Barium uranyl sulphide, 6BaS, UO2S+ $xH_2O(?)$.

Decomp. by HCl+Aq. (Remelé, Pogg. **124**. 159.)

Barvta.

See Barium oxide, BaO.

Beryllium, Be.

For beryllium and its salts, see Glucinum and the corresponding salts.

Bismuth, Bi.

Not attacked by H₂O. Very slowly attacked by HCl+Aq (Troost). Very sl. sol. in conc. HCl+Aq (Schützenberger, Willm). Not attacked by dil. HCl+Aq (Naquet and Hanriot). Very slowly attacked by cold HCl +Aq (Godeffroy). According to very careful experiments pure Bi is absolutely unattacked by hot or cold, dil. or conc. HCl+Aq except in presence of oxygen. (Ditte and Metzner,

Not attacked by dil. H2SO4+Aq. Decomp.

by hot cone. H₂SO₄. Easily sol. in dil. or conc. HNOs+Aq, or aqua regia.

Not attacked by pure HNO₃+Aq of 1.52 to 1.42 sp. gr. at 20°; violently attacked by a more dil. acid, but the acid becomes concentrated thereby. Conc. HNOs+Aq attacks only by heating or adding NO2. (Millon, A. ch. (3) 6. 95.

Insol. in liquid NH₈. (Gore, Am. Ch. J.

1898, 20. 827.

½ ccm. oleic acid dissolves 0.0091 g. Bi in 6 days. (Gates, J. phys. Chem. 1911, 15. 143.)

Bismuth arsenide, Bi₃As₄. (Descamp, C. R. 86, 1065.)

Bismuth dibromide, Bi₂Br₄.

Not known in a pure state. (Weber, Pogg. **107.** 599.)

Bismuth tribromide, BiBr₈.

in alcohol or ether.

Sol. in AlBr₃. (Isbekow, Z. anorg. 1913, 84. 27.)

Bismuth hydrogen bromide, BiBr₂, 2HBr+ 4H₂O.

Deliquescent.

Decomp. in the air. (Aloy, Bull. Soc. 1906. **(3) 35.** 398.)

Bismuth cæsium bromide, 2BiBrs, 3CsBr.

Ppt. Insol. in HBr. Sol. in HCl and in HNO₃. (Hutchins, J. Am. Chem. Soc. 1907, 29. 33.)

Bismuth potassium bromide, BiBr₃,2KBr. Decomp. by H₂O. (Aloy, Bull. Soc. 1906, (3) **35.** 398.)

Bismuth bromide ammonia, BiBr3, 3NH3.

Sol. in HCl+Aq. BiBr₈, 2NH₈ (?).

2BiBrs, 5NH3. Not deliquescent; not decomp. by H2O; easily sol. in dil. acids. (Muir, Chem. Soc. 29. 144.)

Bismuth bromide potassium chloride,

 $K_2BiCl_3Br_2+1\frac{1}{2}H_2O.$ Decomp. by H₂O. (Atkinson, Chem. Soc. **43.** 289.)

Bismuth dichloride, Bi₂Cl₄.

Very deliquescent. Decomp. by H₂O, dil. acids, or conc. NH4Cl+Aq. (Weber, Pogg. **107.** 596.)

Bismuth trichloride, BiCl.

Deliquescent. Decomp. by H₂O. Sol. in dil. HCl+Aq, and alcohol. Not decomp. by H₂O in presence of citrates. (Spiller.)

0.08 g. sol. in 100 ccm. liquid H₂S. (Antony, C. C. 1905, I. 1692.)

Moderately sol. in liquid NH₈. (Gore, Am.

Ch. J. 1898, **20.** 827.)

1 g. BiCl₃ is sol. in 5.59 g. acetone at 18°. Sp. gr. of sat. solution 18°/4°=0.9194. (Naumann, B. 1904, 37. 4331.)

Sol. in acetone and in methylal. (Eidmann,

C. C. **1899**, II. 1014.)

Sol. in benzonitrile. (Naumann, B. 1914, 47. 1369.)

Sol. in ethyl acetate. (Naumann, B. 1910, **43.** 314.)

1 pt. is sol. in 60.36 pts. ethyl acetate at 18°. Sp. gr at 18°/40°=0.9106. (Naumann, B. 1910, 43. 320.)

(Naumann, B. Sol. in methyl acetate.

1909. **42.** 3790.)

Bismuth chloride, Bi₃Cl₈ (?).

Decomp. by H₂O. (Dehérain, C. R. 54. 724.)

Very deliquescent. Decomp. by H₂O. Sol. Bismuth hydrogen chloride, 2BiCl₃, HCl+ 3H₂O.

> Not deliquescent. Decomp. by H₂O. (Engel, C. R. 106. 1797.) BiCl₃, 2HCl. (Jacquelain, A. ch. (2) 62. 363.)

Bismuth cæsium chloride, BiCl₂, 3CsCl.

Decomp. by H₂O. Sl. sol. in cold dil. HCl+ Aq, but easily sol. on warming. (Brigham, Am. Ch. J. **14.** 181.)

2BiCl₃, 3CsCl. As above. (Brigham.) BiCl₃, 6CsCl. Easily sol. in H₂O and dil. HCl+Aq. (Godeffroy, B. 8. 9.) Does not exist. (Brigham.)

Bismuth hydrazine chloride, BiCl₂, 3N₂H₄HCl,

Sol. in acids, from which it is pptd. by H₂O. (Ferratini, C. A. 1912, 1613.)

Bismuth nitrosyl chloride, BiCl₂, NOCl. Very deliquescent. Decomp. by H_2O . (Sudborough, Chem. Soc. 59. 662.)

Bismuth potassium chloride, BiCl₃, KCl+ H₂O.

Decomp. by H₂O. Cannot be recryst. except from conc. BiCl₃+HCl. Decomp. by HCl+Aq into BiCl₃, 2KCl+2H₂O. (Brigham, Am. Ch. J. 14. 167.)
BiCl₃, 2KCl. Decomp. by H₂O. (Arppe, Pogg. 64. 37.)

Deliquescent.

Sol. in H₂O with decomp. into the oxychloride when excess H₂O is used. (Aloy, Bull. Soc. 1906, (3) 35. 397.)

+2H₂O. Decomp. by H₂O. (Jacquelain, J. pr. 14. 1.)

Sol. in moderately conc. HCl+Aq. BiCl₃, 3KCl. Decomp. by H₂O. (Arppe.) Does not exist. (Brigham.)

Bismuth rubidium chloride, BiCls, RbCl+ H₂O.

Decomp. by H₂O; sol. in dil. HCl+Aq, from which BiCl₃, 3RbCl crystallizes. (Brigham, Am. Ch. J. 14. 174.)

BiCl₃, 3RbCl. Decomp. by H₂O; sol. in dil. HCl+Aq without decomp. (Brigham.)

BiCl₄, 6RbCl. Decomp. by H₂O; sol. in HCl+Aq (Godeffroy, B. 8. 9); does not exist. (Brigham.)

(Brigham.)

10BiCl₈, 23RbCl (?). As above. (Brigham.)

Bismuth sodium chloride, BiCl, 2NaCl+ H₂O.

+3H₂O. Decomp. by H₂O. (Arppe, Pogg. 64. 237.) BiCl₈, 3NaCl.

Bismuth thallous chloride, BiCla, 3TlCl. Ppt. (Ephraim, Z. anorg. 1909, 61. 254.) BiCls, 6TiCl. Ppt. (Ephraim.)

Bismuth chloride ammonia, 2BiCl_s, NH_s. Stable. (Dehérain, C. R. 54. 724.) BiCl_s, 2NH_s. (D.) BiCl₈, 3NH₈. (D.)

Bismuth chloride nitric oxide, BiCl₂, NO. Very hygroscopic. (Thomas, C. R. 1895, **121.** 129.)

Bismuth chloride nitrogen peroxide, BiCla,

Decomp. by moist air, but stable in dry air. (Thomas, C. R. 1896, 122, 612.)

Bismuth chloride selenide. See Bismuth selenochloride.

Bismuth trifluoride, BiF.

Insol. in H2O or alcohol. (Gott and Muir, Chem. Soc. 53. 138.)

Insol, in liquid NH3. (Gore, Am. Ch. J. 1898, 20, 827.)

Bismuth hydrogen fluoride, BiFs, 3HF.

Deliquescent. Decomp. by boiling H₂O. (Muir, Chem. Soc. 39. 21.)

Bismuth gold, Au₈Bi.

ANTEN . . .

Insol. in equal pts. of HNO₂ and tartaric acids. (Roessler, Z. anorg. 1895, 9. 71.)

Bismuthous hydroxide, Bi(OH)_a.

Sol, in strong acids. Insol. in solutions of alkalies, alkali carbonates, (NH₄)₂OO₃, or NH₄NO₃; or of amyl amine (Wurtz). When recently pptd. is sol. in NH₄Cl+Aq, but Sol. in HNO₃, and HI+Aq, from which it insol. in NH₄NO₃+Aq (Brett, 1837). Not is repptd. by H₂O or sloohol. Sol. in KI+Aq pptd. in presence of Na citrates (Spiller).

Solubility of freshly pptd. Bi(OH), in NaOH+Aq.

. NaOH per l.	g. Bi dissolved per l. at 20°	g. Bi dissolved per l. at 100°
400 320 240 200 160 120 80 40	0.16 0.11 0.11 0.10 0.08 0.07 0.04 trace	1.70 1.20 0.5 0.5 0.35 0.2
20 .	000	0.15

(Moser, Z. anorg. 1909, 61. 386.)

Solubility of freshly pptd. Bi(OH); in KOH+Aq.

KOH per l. g.	g. Bi dissolved per l. at 20°	g. Bi dissolved per l. at 100°
560 448 336	0.14 0.11 0.11	1.65 1.20
280 224 168	0.10 0.08 0.06	0.5
112 56 28	trace 0	0.3 0.2 0.15

(Moser, Z. anorg. 1909, 61, 386.)

 Bi_2O_3 , $2H_2O$. Bi_2O_8 , H_2O . (Muir, Chem. Soc. 32. 131.) See also Bismuth trioxide.

Bismuth tetrahydroxide, Bi₂O₄, H₂O. Bi₂O₄, 2H₂O. (Wernicke, Pogg. 141, 109.)

Bismuthic hydroxide (Bismuthic acid), Bi₂O₅, H₂O.

Insol. in H₂O; easily decomp. by acids. (Fremy, A. ch. (3) 12. 495.) Decomp. by H₂SO₄; not attacked by SO₂+Aq; neither dissolved nor decomp. by dil. HNO₃+Aq, but slowly converted into an allotropic modifica-tion (?). Partially decomp. by conc. HNOs. Slowly but wholly dissolved by hot conc.

HNO₃. Sl. sol. in conc. KOH+Aq. (Arppe.) Sol. in about 100 pts. boiling KOH+Aq, so conc. that it solidifies on removing the lamp. (Muir, Chem. Soc. 51. 77.)

Bi₂O₅, 2H₂O. (Bödeker, A. **123**, 61.) Does not exist. (Hoffmann and Geuther.)

Bismuth iodide, BiIs.

Not attacked by cold H2O, but by boiling BiOI is formed. 100 pts. absolute alcohol dissolve 3½ pts. salt at 20°. (Gott and Muir, Chem. Soc. 57. 138.)

or KOH+Aq. (Rammelsberg.)

	DIDITOTI	
Sl. sol, in liquid	l NH ₈ . (Franklin, Am. Ch.	E
100 g. absolute at 20°. (Gott and Sol. in acetone 4328.)	alcohol dissolve 3.5 g. BiI ₃ d Muir, Chem. Soc. 57 , 138.) c. (Naumann, B. 1904, 37 .	_
100 pts. methy Bil, at 12°, and	dene iodide dissolve 0.15 pt. very little more at higher Retgers, Z. anorg. 3. 343.) d acetate. (Naumann, B.	-
Bismuth hydroge (Arppe, Pogg.	en iodide, BiI ₈ , HI+4H ₂ O. 44. 248.)	1
	iodide, 3CsI,2BiI ₃ . a H ₂ O. (Wells, Am. J. Sci.	2
Bismuth calcium Deliquescent; Pogg. 111. 240.)	iodide, 2BiI ₈ , CaI ₂ +18H ₂ O. decomp. by H ₂ O. (Linau,	A CA CO CO
Bismuth magnes 12H ₂ O.	sium iodide, 2BiIs, MgI ₂ +	13
Deliquescent; Pogg. 111. 240.)	decomp. by H ₂ O. (Linau,	2000
Ppt. (Arppe, Bils, 3KI. (A Bils, 2KI. So +4H ₂ O. Sol. pptn., but decon Bils, 2KI, HI. 2Bils, 3KI+2 Bils, KI+H ₂ O C. R. 51, 1097.)	stre, C. R. 110. 1137.) l. in acetic ether. (Astre.) in small amt. H ₂ O without	
Deliquescent;	iodide, BiI ₃ , NaI+H ₂ O. decomp. by H ₂ O. (Nicklès, 12H ₂ O. As above. (Linau,	-
Bismuth zinc iod	lide, 2BiI ₃ , ZnI ₂ +12H ₂ O. ent. (Linau, Pogg. 111. 240.)	-
	ammonia, BiI _s , 3NH _s . I ₂ O. (Rammelsberg.)	-
Bismuth iodide 2 Sol. in H ₂ O.	zinc bromide. (Linau, Pogg. 111. 240.)	3
Bismuth nitride. Explosive. (F BiN. Ppt. D (Franklin, J. Am	Sischer, B. 1910, 43. 1471.) Decomp. by H ₂ O or dil. acids. L. Chem. Soc. 1905, 27. 847.)	6
	. Tr' A	1

Bismuth dioxide, Bi₂O₂.

Sol. in conc. HNO₃+Aq. Decomp. by strong acids, and boiling KOH+Aq. Decomp. by H₂O. (Tanatar, Z. anorg. 1901, 27. 438.)

Bismuth trioxide, Bi₂O₃.

Insol. in H₂O. Sol. in conc. acids.

Solubility of Bi₂O₃ in HNO₃+Aq at 20°.

' I			
	In 100 g. of the liquid phase		Solid phase
:	g. Bi ₂ O ₈	g. N ₂ O ₅	
	0.321	0.963	Bi ₂ O ₈ . N ₂ O ₅ . 2H ₂ O
1	0.337	0.982	"
	3.54	4.68	" ,
	6.37	7.17	"
	13.67	12.50	· "
	14.85	13.31	"
	18.74	15.90	${ m Bi_2O_8.N_2O_5.H_2O}$
	23.50	19.21	"
	23.50	19.29	"
	27.15	20.96	tt .
	28.11	21.64	. " .
	29.50	22.53	tt.
,	30.19	22.90	. "
,	31.48	23.70	"
	32.93	24.83	∫Bi ₂ O ₈ .N ₂ O ₅ .H ₂ O+
-	32.80	24.86	Bi ₂ O ₈ .3N ₂ O ₅ .10H ₂ O.
	32.67	24.70	Bi ₂ O ₈ .3N ₂ O ₅ .10H ₂ O.
_	32.59	24.60	
,	32.24	24.68	"
	30.74	25.13	· · ·
	29.83	25.30	u
	24.16	28.25	и
	16.62	35.40	u
	12.17	43.37	u .
t	11.66	46.62	ı .
۰	11.19	49.38	· · ·
	11.19	50.20	(u
	15.20	54.66	tt .
,	20.76	53.75	(1)
	27.85	51.02	$\left\{ egin{array}{l} \mathrm{Bi}_2\mathrm{O}_3.3\mathrm{N}_2\mathrm{O}_5.10\mathrm{H}_2\mathrm{O} + \\ \mathrm{Bi}_2\mathrm{O}_3.3\mathrm{N}_2\mathrm{O}_5.3\mathrm{H}_2\mathrm{O}. \end{array} \right\}$
	8.58	68.28	Bi ₂ O ₃ .3N ₂ O ₅ .3H ₂ O.
	4.05	74.90	"
	· ———		

(Rutten, Z. anorg. 1902, 30. 386.)

Solubility of Bi₂O₃ in HNO₃+Aq at t°.

Bolubility of Bl ₂ O ₈ in HNO ₈ +Aq at t ² .			
t°	%Bi2Os	%N:Os	Solid phase
9°	20.8 24.02 31.09 31.2	17.1 19.1 23.8 23.9	Bi ₂ O ₃ . N ₂ O ₅ . H ₂ O {Bi ₂ O ₃ . N ₂ O ₅ . H ₂ O+ Bi ₂ O ₅ . 3N ₂ O ₅ . 10H ₂ O
30°	34.2 28.2 16.1	26.5 29.6 47.7	Bi ₂ O ₃ .3N ₂ O ₅ .10H ₂ O
65°	5.55 27.62 40.80 37.82 35.73 4.59	7.44 22.46 31.60 35.80 47.02 77.90	Bi ₂ O ₃ . N ₂ O ₅ , H ₂ O +Bi ₂ O ₈ , 3N ₃ O ₅ . 10H ₃ O - 3N ₃ O ₅ . 10H ₃ O - 3N ₂ O ₅ . 10H ₂ O + Bi ₂ O ₃ . 3N ₂ O ₅ . 10H ₂ O + Bi ₂ O ₃ . 3N ₂ O ₅ . 3H ₂ O - Bi ₂ O ₃ . 3N ₂ O ₅ . 3H ₂ O

(Rutten.)

Solubility of Bi ₂ O ₃ in HNO ₃ +Aq at t°.			
t°	%Bi ₂ O ₂	%N2O1	Solid phase
72° 75° 80°	37.23 36.74 39.75	47.76 47.91 45.16	Bi ₂ O ₃ , 3N ₂ O ₅ , 4H ₂ O "
9° 20° 30° 50° 64° 65° 75.5°	31.2 32.8 34.2 36.9 40.6 40.8 45.4 45.9	23.9 24.8 26.4 28.9 31.1 31.6 34.6 35.6	Bi ₂ O ₈ , 3N ₂ O ₈ , 10H ₂ O + Bi ₂ O ₈ , N ₂ O ₈ , H ₂ O (t (t (t (t (t (t (t
11.5° 20° 50° 65°	25.36 27.85 32.22 35.73	52.57 51.02 49.29 47.02	Bi ₂ O ₅ , 3N ₂ O ₅ , 10H ₂ O + Bi ₂ O ₅ , 3N ₂ O ₅ , 3H ₂ O

(Rutten.)

Solubility in NaOH+Aq at 25°.

Conc. of NaOH	g. Bi ₂ O ₂ in 100 cc. of solution.
Mol/I.	Mean result.
1.0	0.0013 ± 0.0002
2.0	0.0026 ± 0.0002
3.0	0.0049 ± 0.0005

(Knox, Chem. Soc. 1909, 95, 1767.)

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

Min. Bismite. Easily sol. in HNO₈+Aq. See also Bismuthous hydroxide.

Bismuth tetroxide, Bi₂O₄.

Sol. in conc. HCI+Aq, with evolution of Cl; in oxygen acids with evolution of O. Less easily sol. in conc. H₂SO₄ than in HNO₃, or HCl+Aq.

Bismuth oxide, Bi₄O₉ (?). (Hoffmann and Geuther.)

Bismuth pentoxide, Bi₂O₅.

Sol. in dil. acids. Combines with H₂O to form bismuthic hydroxide, which see. (Hasebroek, B. 20. 213.)

Bismuth oxybromide, etc. See Bismuthyl bromide, etc.

Bismuth palladium, PdBi2.

Insol. in equal pts. HNO: and tartaric acids. (Roessler, Z. anorg. 1895, 9. 70.)

Bismuth platinum, PtBi2.

"何意.

Insol. equal pts. HNOs and tartaric acids. (Roessler, Z. anorg. 1895, 9. 69.)

Bismuth phosphide, BiP.

(Cavazzi.)

Bismuth *tri*selenide, Bi₂Se₃.

Insol. in H₂O, alkalies, or alkali sulphides +Aq; sl. attacked by HCl+Aq; oxidized by HNO₃+Aq. (Schneider, Pogg. 94. 628.) Min. Frenzelite.

Bismuth potassium selenide.

See Selenobismuthite, potassium.

Bismuth selenochloride, BiSeCl.

Not attacked by H₂O; very sl. sol. in HCl+ Aq; easily and completely sol. with decomp. in HNO₈+Aq. (Schneider.)

Bismuth disulphide, $Bi_2S_2+2H_2O$ (?). Insol. in H₂O. Decomp. by HCl+Aq.

Bismuth trisulphide, Bi₂S₈.

Insol. in H₂O.

1 l. H₂O dissolves 0.35 x 10⁻⁸ moles Bi₂S₃ at 18°. (Weigel, Z. phys. Ch. 1907, **58**. 294.)

Easily sol. in moderately dil. HNO₃+Aq, and cone. HCl+Aq, with separation of S. Insol. in alkalies, alkali sulphides, Na₂S₂O₃, or KCN+Aq; insol. in NH₄Cl, or NH₄NO₃+ Aq (Brett). Insol. in potassium thiocarbonate+Aq. (Rosenbladt, Z. anal. 26. 15.)

Insol. in alkali hydroxides or alkali hydrosulphides.

Insol. in 2N-(NH₄)₂S+Aq.
0.0090 g. Bi₂S₂ is sol. in 100 cc. N-Na₂S₂+Aq at 25°. (Knox, Chem. Soc. 1909, 95.

Somewhat sol. in Na₂S+Aq. 75 cc. of Na₂S+Aq (sp. gr. 1.06) dissolve an amt. of Bi₂S₃ corresponding to 0.031 g. Bi₂O₃. (Stillman, J. Am. Chem. Soc. 1896, 18. 683.)

Solubility in Na₂S+NaOH+Aq at 25°.

Conc. of Na ₃ S	. Conc. of NaOH	g. Bi ₂ S ₃ in 100 cc.
Mol./l.	Mol./l.	of solution
0.5	1.0	0.0185
1.0	1.0	0.0838

(Knox, Chem. Soc. 1909, 95. 1763.)

Bismuth sulphide pptd. from acid solution is not dissolved by subsequent treatment with K₂S+Aq. (Stone, J. Am. Chem. Soc. 1896, **18.** 1091.

Sol. in K₂S+Aq. (Ditte, C. R. 1895, 120. 187.)

Solubility in K₂S+KOH+A₂ at 25°.

Conc. of K2S	Cone. of KOH	g. Bi ₂ S ₂ in 100 cc.
Mol./l.	Mol./l.	of solution
0.5	1.0	0.0240
1.0	1.0	0.1230
1.25	1.25	0.2354

(Knox, Chem. Soc. 1909, 95. 1763.)

Solubility	in	alkali	sulphides+	- A a	at 25°
COLUMNITUY	TTY	arrant	SULPILLUES T	-A.U	au 20 .

Alkali sulphide	Conc. of alkalisulphide Mol./l.	g. Bi ₂ S ₃ in 100 cc. of solution
Na ₂ S	0.5 1.0 1.5	0.0040 0.0238 0.1023
K₂S	0.5 1.0 1.25	0.0042 0.0337 0.0639

(Knox, Chem. Soc. 1909, 95, 1762.)

Decomp. by FeCl₃+Aq. (Cammerer, C. C. 1891, II. 525.

Insol. in KCN+Aq. (Hoffmann, A. 1884, **223.** 134.)

Min. Bismuthinite. Easily sol. in HNO₃+ Aq.

Bismuth cuprous sulphide, Bi₂S₃, Cu₂S.

Insol. in H2O. Sol. with decomp. in HNOs +Aq. (Schneider, J. pr. (2) 40. 564.) Min. Emplectonite.

Bismuth potassium sulphide, Bi₂S₃, K₂S.

(Schneider, Pogg. 136. 460.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

 $Bi_2S_8,4K_2S+4H_2O.$ Decomp. by H_2O . Very sol. in K₂S+Aq. Efflorescent in dry air. (Ditte, C. R. 1895, 120. 186.)

See also Sulphobismuthite, potassium.

Bismuth silver sulphide, Bi₂S₃, Ag₂S.

Insol. in cold HCl, or HNO₃. Sol. in warm HNO₈ with separation of S, in boiling HCl with separation of H2S.

Min. Plenargyrite, Matildite. (Schneider, J. pr. 1890, (2) 41. 414.)

Bismuth sodium sulphide, Bi₂S₃, Na₂S. (Schneider.)

Bismuth sulphide telluride, Bi₂S₃, 2Bi₂Te₃. Min. Tetradymite. Sol. in HNO₃ with separation of S.

Bi₂S₂, 2Bi₂Te. Min. Joseite. As above.

Bismuth sulphobromide, BiSBr2.

(Muir and Eagles, Chem. Soc. 1895, 67. 91.)

Bismuth sulphochloride, BiSCl.

Insol. in H2O or dil. HCl+Aq. Sol. in conc. HCl, or HNO₃+Aq. Decomp. by alkalies+Aq. (Schneider, Pogg. 93. 464.)

Bismuth sulphoiodide, BiSI.

Not attacked by boiling H₂O, and dil. acids. Decomp. by hot conc. HCl+Aq, and HNO₃+ Aq. KOH+Aq dissolves out I_2 . (Schneider, Pogg. 110. 114.)

Bismuth telluride, Bi₂Te₃.

Min. Tetradymite. Sol. in HNOs+Aq. See also Bismuth sulphide telluride.

Bismuthic acid, HBiOs... See Bismuthic hydroxide.

Potassium bismuthate, KBiO₃.

Sol. in H₂O. (Arppe.) KH(BiO₃)₂. Insol. in H₂O.

Not decomp. by boiling H2O. (André, C. R. **113.** 860.)

No salts of HBiOs can exist. (Muir and Carnegie, Chem. Soc. 51. 77.)

Bismuthicotungstic acid.

Ammonium bismuthicotungstate, 3(NH₄)₂O, 2Bi₂O₃, 11WO₃+10H₂O.

A yellow oil which dries to a yellow glass. (E. F. Smith, J. Am. Chem. Soc. 1903, 25. 1232.)

Potassium bismuthicotungstate, 3K₂O, $2Bi_2O_8,11WO_8+15H_2O$.

A yellow oil which dried to a pale yellow glass. (E. F. Smith, J. Am. Chem. Soc. 1903, **25.** 1233.)

Strontium bismuthicotungstate, 3SrO, 2Bi₂O₃,11WO₃+11H₂O.

A yellow wax, insol. in pure H₂O, but sol. in H₂O containing a few drops HNO₈. (E. F. Smith, J. Am. Chem. Soc. 1903, 25. 1233.)

Bismuthyl bromide, BiOBr.

Insol. in H₂O; sol. in moderately conc.

HBr+Aq. Insol. in H_2O . (Herz, Z. anorg. 1903, 36.

348.) Bi₈O₉Br₆. Insol. in H₂O; easily sol. in conc. HCl, or HNO₃+Aq; less sol. in dil. $HNO_8+Aq.$

Bi11O13Br7. As the preceding comp. (Muir.)

Bismuthyl chloride, BiOCl.

Insol, in H₂O or dil. acids. Sol. in conc. HCl, or HNOs+Aq.

Insol. in liquid NHs. (Franklin, Am. Ch. J. 18<u>9</u>8, **20.** 827.)

Insol. in acetone. (Naumann, B. 1904, 37.

4329.) +H₂O. (Heintz, Pogg. 63. 55.)

+3H₂O. (Phillips, Br. Arch. (1) 39. 41.) Bi₇O₂Cl₃. (Arppe.)

BiO₂Cl₂. Insol. in H₂O; sol. in hot HCl, or HNO:+Aq. (Muir.)

Bismuthyl fluoride, BiOF.

Insol. in H2O; sol. in HCl, HBr, or HI+Aq. (Gott and Muir, Chem. Soc. 33. 139.) BiOF, 2HF. Insol, in H₂O.

96			BISM	UTHY
Not dec Sol. in HO (Schneider Insol. in 3BiO1,7 by HNO ₃ (Blyth, C. BiI ₃ , 5E Aq. Not Cooper, P. 4BiI ₃ , 4 Decomp. H ₂ SO ₄ : 8	iodide, BiO omp. by H ₂ ll+Aq. Do l, J. pr. 79. kCl, or K Bi ₂ O ₃ . Sol, i nsol, in k l, N. 1896, 7 bi ₂ O ₃ . Ppt. decomp. b harm. J. (3) bi ₃ O ₃ . Ea by HNO ₃ - omewhat s l ₂ +Aq. NH ₄) ₂ S, an	O or alka ecomp. b 424.) I+Aq. . in dil. ociling H 4. 200.) Sl. sol, y H ₂ O. 13. 254. asily sol. b-Aq. Slool, in F	HCl; de 20 and in HC2E (Fletche) in HC1. attack I2C4H4O6	tions. +Aq. comp. alkali. I ₃ O ₂ + er and l+Aq. ed by , and torer's
(Herma Bi ₂ O ₃ S. C. C. 188 Bi ₄ O ₃ S.	i sulphide, I nn, J. pr. 7 Insol. in 9, II. 641.)		(Scherpe	nberg,
Boracic a See Bor Borax.	ic acid.	dium		i
Boric aci	raborate, so id, <i>anhydror</i> con <i>tri</i> oxide.	us, B2O3.		
Sol. in Sl. sol.	ic acid, HE H ₂ O. in hot gla oc. 1911, 100	cial acet	ic acid.	(Holt,
Orthobor	ic acid, H ₈ 1 Sol. in 33 r " 25 " 3 (Be	ts. H ₂ O a	10°. 20°. 100°.	•
Sol. in 20 100 pts.) pts. H ₂ O at ; H ₂ O at 100° d	18.75°. (A issolve 2 p	bl.) s. (Ure's	Dict.)'
	10.16 6.12 4.73 3.55 2.97	H ₂ O at	lves in— 19°. 25°. 37.5°. 50°. 62.5°. 75°. 87.5°.	
Or, 100]	ots. H ₂ O dis 19° 25° 37.5°	3.9 pts. 6.8 " 7.8 "	H ₈ BO ₈ .	

50°

100°

62.5°

75° 87.5°

9.8

16.0

21.0 "

34.0 "

i 28.0

" "

.66

"

"

```
Or, sat. aqueous solution contains at—
                          3.75%H<sub>2</sub>BO<sub>3</sub>.
6.27 " "
            19°
            25°
                          7.32 "
            37.5°
50°
                                      "
                          8.96 "
                                      "
            62.5°
                         14.04 "
                                      "
                         17.44 "
                                      "
                         21.95 "
             87.5°
                         25.17 "
                                      46
           100°
(Brandes and Firnhaber, Arch. Pharm. 7. 50.)
   1 litre H<sub>2</sub>O dissolves at—
                         19.47 g. H<sub>3</sub>BO<sub>3</sub>.
29.20 " "
              0°
             12°
             20°
                         39.92 "
                                        "
             40°
                                        "
                         69.91 "
             62°
                                        "
                        114.16 "
             80°
                        168.15 "
            102
                        291.16 "
              (Ditte, C. R. 85. 1069.)
```

1 l. H₂O dissolves 0.901 mol. H₃BO₃ at 25°.

(Herz, Z. anorg. 1910, 66. 359.)

1 l. H_2O dissolves 0.898 mol. H_3BO_3 at 25°.

1 l. H_2O dissolves 0.898 mol. H_3BO_3 at 25°.

Sp. gr. of the solution=1.0168. (Müller, Z. phys. Ch. 1907, 57. 529.)

1 l. H_2O dissolves 0.887 mol. H_3BO_3 at 25° and 1.025 mol. at 30°. (Ageno and Valla, Ist. Ven. (VIII) 14. II, 331.)

Solubility in HoO at to

Boldonicy in 1120 at t .		
to	g. H ₈ BO ₈ in 100 g. of the solution	
0 12.2 21 31 40 50 60 69.5 80 99.5 108 115 120	2.59 3.69 4.90 6.44 8.02 10.35 12.90 15.58 19.11 23.30 28.10 36.7 45.0 52.4	

(Nasini and Ageno, Z. phys. Ch. 1909, 69.

Solubility curve for orthoboric acid in H₂O at various temp. up to 120°. (Nasini and Ageno, Gazz. ch. it. 1911, 41. (1) 131.

Sp. gr. of H₂BO₂+Aq sat. at 8°=1.014. (Anthon, A. 24. 241.) Sp. gr. of H₂BO₂+Aq sat. at 15°=1.0248. (Stolba, J. pr. 90. 457.)

Sp. gr. of H₂BO₂+Aq at 15°.

%H:BO:	Sp. gr.	%H ₂ BO ₂	Sp. gr.
1 2 3	1.0034 1.0069 1.0106	Sat. sol.	1.0147 1.015
	 		

(Gerlach, Z. anal. **28. 47**3.)

Sp. gr. of H_8BO_8+Aq at 18°. %H₃BO₃ 0.776 1.92 2.883.612 Sp. gr. 1.00291.0073 1.0109 1.0131 (Bock, W. Ann. 1887, 30, 638.)

Volatile with steam.

More sol. in dil. HCl+Aq than in H₂O. Sol. in warm conc. H₂SO₄, HCl, or HNO₃+ Aq.

Solubility in HCl+Ag at 25°.

Millimols HCl in	Millimois H ₃ BO ₃ in 10 ccm.
10 ccm. of the solution	of the sat, solution
7.0 13.7	9.01 7.69 6.66

(Herz, Z. anorg. 1910, 66. 359.)

Solubility of H₂BO₂ in HCl+Aq at 16°.

Normality of HCl	Normality of HaBOs
0, 0.130 0.260 0.390 1.30 2.16 4.32 6.00 7.08 8.74 9.51	0.907 0.895 0.870 0.842 0.645 0.542 0.308 0.338 0.327 0.327 0.338

(Herz, Z. anorg. 1902, 33, 354.)

Solubility in HF+Aq at 26°.

(1) Titer of HF	(2) Titer after saturation with H ₂ BO ₂ at 26°	(3) Titer after addition of mannitol	(3)-(2) equals free boric acid
3.21n.	1.61	2.36	0.75
2.80n.	1.25(1.40?)	2.21	0.96(0.81?)

The values 0.75 and 0.81 represent the solubility of H.BO. in the concentrations of fluorboric acid resulting from the original concentration of HF+Ag

(Abegg, Z. anorg. 1903, 35. 145.) Solubility of H₂BO₂ in acids+Aq at 26°.

		· · · · · · · · · · · · · · · · · · ·	
•	Acid	Normality of the acid	Normality of H:BO:
•	H ₂ SO ₄	0.548 2.74 5.48 8.75	0.746 0.518 0.312 0.092
•	HNO3	0.241 1.206 1.607 2.411 5.96	0.818 0.676 0.593 0.567 0.268

(Herz, Z. anorg. 1903, 34, 205.)

Solubility in KOH+Aq. See Borates, potassium. Solubility in NaOH+Aq. See Borates, sodium.

Solubility in LiCl+Aq at 25°.

Millimols LiCl in 10 ccm. of the solution	Millimols HaBOs in 10 ccm. of the sat. solution
7.1 10.3 22.3 37.2	9.01 8.13 7.65 6.42 5.02

(Herz, Z. anorg. 1910, 66. 359.)

Solubility in KCl+Aq at 25°.

Millimols KCl in	Millimols H ₃ BO ₃ in 10 ccm.
10 ccm. of the solution	of the sat. solution
1.9 7.9 15.6 30.6	9.01 9.20 9.44 9.80 10.75

(Herz.)

Solubility in RbCl+Ag at 25°.

Millimols RbCl in	Millimols H ₂ BO ₂ in 10 ccm.
10 ccm. of the solution	of the sat. solution
14.0 25.3	9.01 9.66 10.60

(Herz.)

Solubility in NaCl+Aq at 25°.

Millimols NaCl in 10 ccm. of the solution	Millimols HaBOs in 10 ccm. of the sat. solution
8.2 15.2 29.4	9.01 8.49 8.25 8.20

(Herz.)

Solubility in H₂O is increased by presence of KCl, KNO₃, K₂SO₄, NaNO₃ and Na₂SO₄. In general the solubility in H₂O is increased

by the presence of both electrolytes and nonelectrolytes. (Bogdan, C. C. 1903, II. 2.) Sol. in borax+Aq. (McLauchlan, Z. anorg.

1903, **37.** 371.) Sl. sol. in liquid NH₈. (Franklin, Am. Ch.

J. 1898, **20**. 827.)

Unattacked and undissolved by liquid NO₂. (Frankland, Chem. Soc. 1901, **79**. 1362.)
Sol. in 6 pts. alcohol (Wittstein), 5 pts. boiling alcohol (Wenzel). Only traces dissolve in anhydrous ether. (Schiff.) Sol. in 100 pts. ether. (Hager's Comm.) Sol. in. several essential oils.

1 l, H₂O sat. with amyl alcohol dissolves: 0.8952 mol. H₂BO₂ at 25°. (Auerbach, Z.

anorg. 1903, **37.** 357.)

Solubility of H₂BO₃ in amyl alcohol+Aq at t°. | Sp. gr. of amyl alcohol+Aq sat. with H₂BO₃. M=millimols H₂BO₃ in 1 l, of H₂O. | Sp. gr. of amyl alcohol+Aq sat. with H₂BO₃. | Sp. gr. of amyl alcohol+Aq sat. with H₂BO₃. | Gp. water in 1 l. of alcohol+ | d25°/4°

to	, M	A
15°	607.2 589.3 589.0 586.0 427.4 425.8 289.1 894.0 372.0 371.8	176.4 177.4 177.1 173.4 127.6 127.0 84.9 264.0 110.0 110.8
25°	301.2 180.8 49.15 51.04 26.02	85.7 54.0 15.45 15.45 8.05
35°	146.3	44.27

g, water in 1 l. of alcohol +	d25°/4°
32.481	0.82229
35.465	0.82324
37.339	0.82321
42.479	0.82392
45.175	0.82447
45.636	0.82456
47.883	0.82454
51.461	0.82527
52.043	0.82585
59.270	0.82699
63.179	0.82739
64.254	0.82779
66.403	0.82701
66.624	0.82670
68.253	0.82856
69.211	0.82884
75.610	0.82999(?)
(Mül	ller.)

(Müller, Z. phys. Ch. 1907, 57. 514.)

Solubility of H.BO. in amyl alcohol and NatCl+Ac at 25°

Water	phase	Amyl alcohol phase			
NaCl normality	rmality mol. HaBOs	aCl normality mol. HaBOs Sp. gr. 25°/4° 11. contains		1 l. contains	•
Naci normanty	mor. manos	5p. gr. 20 /±	mol. H ₂ O	mol. amyl alcohol	mol. H ₂ BO ₂
0.00 0.945 1.490 1.865 2.355 2.845 3.06	0.880 0.866 0.850 0.844 0.833 0.827 0.810	0.8296 0.8277 0.8268 0.8259 0.8254 0.8247 0.8241	4.10 3.55 3.27 3.03 2.86 2.62 2.39	8.39 8.49 8.54 8.56 8.59 8.62 8.66	0.2640 0.2638 0.2689 0.2724 0.2850 0.2877 0.2891
3.48 3.57 4.01 4.28	0.810 0.807 0.801 0.798	0.8240 0.8236 0.8233 0.8229	2.32 2.15 1.99 1.78	8.69 8.70 8.72 8.75	0.3006 0.3066 0.3162 0.3210

(Müller)

Solubility in hydroxy-compounds+Aq at 25°.

Organic substance	Mol. of organic substance in 100 mol. of the mixture	Mol. of boric acid sol.	Sp. gr. of the pure	Sp. gr. of the mixture
added		in 1 l. of solution	mixture	sat. with boric acid
Lactic acid	2.321	1.07	1.0252	1.0444
	6.819	1.61	1.0722	1.0986
	18.77	1.86	1.1405	1.1635
	36.33	2.08	1.2023	1.2254
Glycerine	24.64 46.75 67.71 90.58	1.208 2.132 2.96 3.78	1.1574 1.2370 1.2531	1.1707 1.2260 1.2526 1.2710

Solubility in hydroxy-compounds, etc.—Continued

Organic substance added	Mol. of organic sub- stance in 100 mol. of the mixture	Mol. of boric acid sol. in 1 l. of solution	Sp. gr. of the pure mixture	Sp. gr. of the mixture sat. with boric acid
Mannitol	0.790 0.810 0.945 1.585	1.007 1.015 1.029 1.136	1.0244 1.0288 1.0475	1.0425 1.0433
Dulcitol	0.065 0.130 , 0.260	0.8876 0.9078 0.9360	0.9995 1.0018 1.0060	1.0686 1.0212 1.0260

(Müller.)

Solubility of H_2BO_3 in alcohols +Aq at 25°. M=Mol. of alcohol in 100 mol. of alcohol +Aq. $H_3BO_3=Mol$. of H_3BO_2 in 1 l. of the solution. $d_1=Sp$. gr. of alcohol +Aq. $d_2=Sp$. gr. of alcohol +Aq sat. with H_3BO_3 .

Alcohol added	M	H ₈ BO ₃	dı	d ₂
Methyl alcohol	11.74 28.64 36.02 43.95 52.31	0.895 1.012 1.098 1.161 1.307 2.900	0.7924	0.890 1
Ethyl alcohol	8.996 22.28 44.46 55.62 79.89 88.10 99.26	0.829 0.800 0.729 0.700 0.893 1.105 1.527	0.7860	· 0 . 8353
n-Propyl alcohol	23.66	0.6437	0.9043	0.9193
	53.63	0.4569	0.8231	0.8570
	83.65	0.5776	0.8133	0.8466
	100	0.961	0.8010 ~	0.8297
i-Butyl alcohol	0.70	0.884	0.9923	1.0124
	2.15	0.857	0.9853	0.0038
	2.18	0.857	0.9855	0.0046
	71.4	0.323	0.8173	0.8351
	77.1	0.347	0.8133	0.8220
	85.6	0.4212	0.8081	0.8195
	100	0.6927	0.7984	0.8172
i-Amyl alcohol	0.448	0.883	0.9943	1.0132
	0.520	0.880	0.9936	1.0125
	0.525 ¹	0.880	0.9931	1.0123
	67.26 ²	0.2584	0.8232	0.829
	75.54	0.2722	0.8183	0.8253
	83.40	0.3190	0.8142	0.8223
	100	0.5703	0.8068	0.8223

¹ Water sat. with alcohol.

2 Alcohol sat. with water.

Easily sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.)

Solubility in acetone+Aq at 20°. A=ccm. acetone in 100 ccm. acetone+Aq. H₃BO₃=millimols H₃BO₃ in 100 ccm. of the solution.

A	H ₂ BO ₂
0	79.15
20	81.71
30	83.35
40	82.74
50	81.61
60	76.40
70	67.62
80	55.05
100	8.06

(Herz, Z. anorg. 1904, 41, 319.)

100 g. pure anhydrous ether dissolve 0.00775 g. H₃BO₂.

100 g, ether sat. with H₂O dissolve 0.2391 g. H₂BO₃.
 (J. A. Rose, Dissert. 1902.)

Sol. in 10 pts. glycerine. (Hager.)

100 pts. glycerine (sp. gr. 1.26 at 15.5°) dissolve pts. H₃BO₃ at t°.

t°	Pis. HaBOa	t°	Pts. HaBOs	t°	Pts. HaBOa
0 10 20 30	20 24 28 33	40 50 60 70	38 44 50 56	80 90 100	61 67 72

(Hooper, Ph. J, Trans. (3) 13. 258.)

Solubility of H₂BO₃ in glycerine+Aq at 25°. G=g. glycerine in 100 g. glycerine+Aq. H₂BO₃=Millimols H₂BO₃ in 100 cc. of the solution.

G	H ₂ BO ₃	Sp. gr.
0 7.15 20.44 31.55 40.95 48.7 69.2	90.1 90.1 90.6 92.9 97.0 103.0 140.2 390.3	1.0170 1.0379 1.0629 1.0897 1.1130 1.1328 1.1871 1.2719

(Herz, Z. anorg. 1905, 45. 268.)

Solubility of H₃BO₃ in organic acids+A₉ at 26°.

Acid	Normality of the acid	Normality of HaBOs
Acetic	0.570 2.85 5.70	0.887 0.538 0.268

Solubility of H₃BO₃, etc.—Continued.

Acid	Normality of the acid	Normality of H ₃ BO ₃
Tartaric	0.955 1.909 2.51 3.316	0.890 0.923 0.962 1.07

(Herz, Z. anorg. 1903, 34. 206.)

The solubility of H₂BO₃ in H₂O is increased by the presence of racemic acid.

Millimols racemic acid	Millimols boric acid		
in 10 ccm. of the solvent	in 10 ccm. of the solution		
0 6.3	9.01 9.86		
12.6	10,46		
24.7	11,65		

(Herz, Z. anorg. 1911, 70. 71.)

Solubility of H₃BO₃ in H₂O is increased by the presence of tartaric acid.

Millimols tartaric acid in 10 ccm. of the solvent	Millimols boric acid in 10 ccm. of the solution
0	9.01
7.5	10.00
15	10.70
30	12.07

(Herz, Z. anorg. 1911, 70, 71.)

Solubility in oxalic acid + Aq at 25°.

Millimols oxalic acid in 10 ccm. of the solution	Millimols H ₂ BO ₂ in 10 ccm. of the sat. solution
2.97 5.95 13.77	9.01 9.95 10.80 11.98

(Herz, Z. anorg. 1910, 66. 93.)

Solubility in H₂O is increased by the presence of urea, acetone or propyl alcohol. (Bogdan, C. C. 1903, II. 2.)

Readily sol. in hot glacial acetic acid. (Holt Chem. Soc. 1911, 100 (2). 720.)

Sol. in 250 pts. benzene. (Hager.)

Solubility of H₂BO₂ in mannite+Aq at t°.

Solid phase, H ₂ BO ₂					
to Mgmols. in 1		e. in 1 l.	.ll to	Mg-mols in 1 l.	
	Mannite	H ₂ BO ₂		Mannite	H ₃ BO ₃
. 25°	0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 1.043 1.409 1.781	0.887 0.951 1.015 1.039 1.071 1.102 1.142 1.173 1.244 1.404 1.521	30° "" "" "" "" "" "" "" "" "" "" "" "" ""	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	1.025 1.056 1.086 1.118 1.157 0.193 1.219 1.258

	Solid phase, mannite				
to .	Mg. mols, in 1 l.				
P	Mannite H ₃ BO ₃				
25°	1.075 1.1424	0 0.2646			
"	1.259	0.463			
"	1.265 1.354	$0.559 \\ 0.794$			
"	1.409 1.536	$egin{array}{c} 0.927 \ 1.243 \end{array}$			
"	1.781 ~	1.521			

·(Ageno and Valla, Ist. Ven. (VIII) 14. 331.)

Distribution between H₂O and amyl alcohol at 25°.

w=concentration of H₃BO₃ in H₂O layer expressed in millimols.

 $a = concentration of H_3BO_3$ in alcohol layer expressed in millimols.

w	a
265.8	76.6
196.5	59.5
159.6	47.5
126	37.1
87.9	33.2
75.2	22.7
64.6	19.76

(Abegg, Z. anorg. 1903, 35. 130.)

Partition of H₃BO₃ between water and mixtures of amyl alcohol and CS₂.

 $W = Millimols H_3BO_3$ in 10 ccm. of the aqueous layer.

G=Millimols H_3BO_3 in 10 ccm. of the amyl alcohol— CS_2 layer.

· ·			
Composition of the solvent mixture	G	w	W, G
75% by vol. amyl alcohol+25% by vol. CS ₂	0.145 0.275 0.429 0.589	0.624 1.198 1.844 2.565	4.31 4.36 4.30 4.45
50% by vol. amyl alcohol+ 50% by vol. CS ₂	0.145 0.259 0.364 0.555	0.756 1.353 1.946 2.889	5.47 5.21 5.34 5.22
25% by vol. amyl alcohol+ 75% by vol. CS ₂	0.085 0.175 0.264 0.384	0.699 1.467 2.165 3.129	8.24 8.40 8.12 8.14

(Herz, Z. Elektrochem. 1910, 16. 870.)

Distribution between HF+Aq and amyl alcohol at 25°.

c=HF concentration (millimols).

a=H₃BO₃ concentration in alcohol layer (expressed in millimols).

w=H₃BO₃ concentration in water layer (expressed in millimols).

•	•	
С	8.	W
500	14.3	71.2
"	19.2	99.2
"	25.3	144.2
"	114.3	979.0
250	30.1	144.5
"	37.0	194.8
"	56.8	· 321.5
"	108.0	652.0
125	39.0	170.5
"	47.2	214.0
ш	52.8	240.5
"	96.0	442.0
62.5	30.4	111.2
ii ii	39.4	151.8
"	65 (68?)	272.8
"	90.0	362.2
		ı

(Abegg, Z. anorg. 1903, 35. 131.)

See also Boron trioxide.

Pyroboric (tetraboric) acid, H₂B₄O₇.

Sol. in H₂O.

Sp. gr. of solutions of boric acid, calculated as H₂B₄O₇, containing—

6.3 1.27 1.91 2.54%H₂B₄O₇ 1.0034 1.0069 1.0106 1.0147 sp. gr.

Sat. solution at 15° has sp. gr. 1.015. (Gerlach, Z. anal. 28. 473.)
Insol. in hot glacial acetic acid. (Holt,

Chem. Soc. 1911, 100. (2) 720.)

Borates.

No borate is quite insol. in H₂O; the alkali borates are very sol. The less sol. borates are easily decomp. by H₂O; the easily sol. salts are also decomp., but less quickly. The less sol. borates are easily sol. in H₂BO₃, HNO₃, etc. They are more sol. in H₂O containing tartaric acid or potassium tartrate than in pure H₂O. (Souberain.) The normal borates of the alkaline-earths are sol. to no inconsiderable extent in H₂O, and more readily in hot, than in cold H₂O. (Berzelius, Pogg. 34. 568.) All borates are insol., or sl. sol. in alcohol.

Aluminum borate, 2Al₂O₃, B₂O₃.

Min. Jeremciewite. +3H₂O. Ppt. (Rose, Pogg. 91. 452.) 3Al₂O₃, B₂O₃. Crystallized. Insol. in HNO₃+Aq. (Ebelmen, A. ch. (3) 33. 62.) 3Al₂O₃, 2B₂O₂+7H₂O. Ppt. (Rose, l. c.)

Ammonium borate.

The system (NH₄)₂O,B₂O₃,H₂O at 60° has

been studied by Sborgi, (Real. Ac. Linc. 1915 (5) 24. I, 1225.) $2(NH_4)_2O_4B_2O_3+5H_2O_4$ (Sborgi.)

Ammonium diborate.

Difficultly sol. in acetone. (Naumann, B. 1904, **37.** 4328.)

Ammonium tetraborate, (NH₄)₂B₄O₇+4H₂O, or perhaps $NH_4H(BO_2)_2+1\frac{1}{2}H_2O$. Sol. in 12 pts. cold H2O; decomp. by heat. (Rammelsberg, Pogg. 90. 21.) Sol. in acctone. (Eidmann, C. C. 1899, II. 1014.)

+H₂O. (Arfvedson.)

Ammonium octoborate, (NH₄)₂B₈O₁₅+6H₂O. Sol. in 8 pts. cold, decomp. by boiling H_2O . (Rammelsberg, Pogg. 90. 21.) +4H₂O.

Min. Lardellerite. Sol. in H₂O with de-

Ammonium dekaborate, (NH₄)₂B₁₀O₁₆+ 6H₂O.

Permanent. Sol. in H2O. (Remmelshare) +8H₂O. (Atterberg, Bul. 22.

Ammonium dodckaborate, (NH₄)₂B₁₂O₁₀+ 9H₂O.

Sol. in hot H₂O. (Bechi, Sill. Am. J. (2) **17.** 129.)

'Ammonium perborate, NH4BO3. Sec Perborate, ammonium.

Ammonium calcium borate, (NH4)8CaB4O11 $= \operatorname{CaB}_4 \operatorname{O}_7 + 4(\operatorname{NH}_4)_2 \operatorname{O}_7$ (Ditte, C. R. 96, 1663.)

Ammonium magnesium borate.

Sol. in H2O, decomp. by boiling. (Rammelsberg, Pogg. 49, 451.)

Ammonium zinc borate, 4(NH₄)₂B₄O₇, $Zn(BO_2)_2+5H_2()$. (Ditte, C. R. 96, 1663.)

Barium borate, Ba(BO₂)₂.

Ppt. (Ouvrard, C. R. 1906, 142, 283.) +2H₂(). (Atterberg.) +4H₂O. (Benedikt, B. 7. 703.) Sol. in 3,300 pts. 45% alcohol.

7,800 50 " " 25,000 60 " 55,000 75 (Berg, Z. anal. 16. 25.)

> d, more readily in ace of ammonium 4. 568.) Sol. in ller.) Insol. in

> > y H₂O forming ard, C. R. 1906,

3BaO, B₂O₈. Easily sol. in mineral acids. Sl. attacked by dil. acetic acid. (Ouvrard, C. R. 1901, 132. 258.)

BaB₄O₁. Slowly sol. in warm dilute HNO₃ +Aq. (Ditte, C. R. 77. 892.)

+5H₂O. Sol. in 100 pts. cold, and more freely in hot H₂O. When freshly pptd. sol. in cold NH₄Cl+Aq (Wackenroder, A. 41. 315); NH₄NO₃+Aq (Brett, Phil. Mag. (3) 10. 96); and BaCl₂+Aq (Rose).

 $BaB_0O_{10}+13H_2O$. (Laurent, A. ch. (2) 67. 215.)

Ba₂B₂O₅. (Bloxam, Chem. Soc. 14. 143.) 5BaO, 2B₂O₈.

 $Ba_3B_{10}O_{18}+6H_2O$. Sol. in 100 pts. cold H₂O. Easily sol. in ammonium nitrate, or chloride, or barium chloride+Aq. (Rose, Pogg. 87. 1.)

 $Ba_2B_6O_{11}$. Easily sol. in warm dilute acids. +6H₂O.

+7H₂O.

+15H₂O. (Laurent, A. ch. (2) 67. 215.)

Barium borate bromide, 3BaO, 5B₂O₈, BaBr₂. (Ouvrard, C. R. 1906, **142**. 283.)

Barium borate chloride, 3BaO,5B₂O₃,BaCl₂. Unaffected by H2O. Sol. in acids. (Ouvrard, C. R. 1906, 142. 283.)

Bismuth borate, $BiBO_3 + 2H_2O$.

Ppt. Sl. sol. in H₂O. Decomp. by H₂S. Not decomp. by KOH+Aq. (Vanino, J. pr. 1906, (2) 74, 152.)

Cadmium borate, Cd₃(BO₃)₂.

Insol. in H₂O, easily sol. in dil. acids. (Ouvrard, C. R. 1900, 130. 174.)
Cd(BO₂)₂. Difficultly sol. in H₂O (Strom-

eyer); insol. in H_2O , sol. in HCl+Aq (Odling); easily sol. in warm NH_4Cl+Aq (Rose). (Guertler, Z. anorg. 1904, 40. 242.) 3CdO, $2B_2O_2+3H_2O$. Ppt. Sl. sol. in

H₂O. (Rose, Pogg. 88. 299.) CdO, 2B₂O₃+2H₂O. (Ditte, A. ch. 1883, (5) 30. 255.)

CdO, $4B_2O_3+10H_2O$. Sol. in H_2O ; decomp. on heating. (Ditte, A. ch. 1883, (5) 30. 255.)

Cadmium borate bromide, 6CdO, 8B₂O₃, CdBr2.

Insol. in H₂O and fuming HCl or HBr+Aq. (Rousseau and Allaire, C. R. 1894, 119. 72.)

Cadmium borate chloride, 6CdO, 8B₂O₈, CdCl₂.

(Rousseau and Allaire, C. R. 1894, 118. 1256.)

Cadmium borate iodide, 6CdO, 8B₂O₃,CdI₂. (Allaire, C. R. 1898, **127.** 557.)

Cæsium borate, Cs₂B₆O₁₀. Very sol. in H2O, less in alcohol. (Reischle, Z. anorg. 4. 116.)

Calcium borate, Ca(BO2)2.

Sl. sol. in H₂O; insol. in alkali chlorides, or boiling conc. acetic acid+Aq; sol. in cold or hot solutions of ammonium salts, especially ammonium nitrate, in CaCl2+Aq, and also easily sol. in dilute mineral acids at 50°. (Ditte, C. R. 80, 490, 561.) +2H₂O.

+4H₂O; two modifications of which one is very unstable. (van't Hoff and Meyer-

hoffer, A. 1906, 351, 101.) +6H₂O. When warmed in H₂O it goes over into CaB₂O₄+4H₂O. (van't Hoff and

Meverhoffer.

Sol. in H₂O without decomp.; 1 l. solution contains 2 g. salt. (Ditte, C. R. 96. 1663.) CaB₄O₇. Decomp. by H₂O. (Blount, C. N.

54. 208.) Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

+3H₂O. (Ditte, C. R. 96. 1663.)

+4H2O. Min. Bechilite.

+6H₂O. Min. Borocalcite. Sol. in acids. CaB₆O₁₀, +4H₂O

+8H₂O. Unstable. On standing in the solution in which it is formed it changes into $CaB_6O_{10} + 4H_2O$.

+12H₂O. Unstable. Goes over into (van't . Hoff and Meyer- $CaB_6O_{10} + 8H_2O$. hoffer, A. 1906, 351. 104.)

CaB₈O₁₈+12H₂O. (Ditte, C. R. 96. 1663.) 2CaO,B₂O₃. Insol. in H₂O, sol. in dil. acids. (Ouvrard, C. R. 1905, 141. 353.)

Ca₂B₆O₁₁. (Ditte, C. R. 77, 785.) +3H₂O. Min. Pandermite, Priceite. See 4CaO, 5B₂O₃+9H₂O,

+5H₂O. Min. Colemanite.

If all the Ca is in form of colemanite, the solution contains in 100 g., 4.8 g. H₂BO₃ and 0.1 g. CaO. (van't Hoff, B. A. B. 1907, 653.) $+7H_2O.$

 $+9H_2O$. (van't Hoff and Meyerhoffer, A. 1906, **351**. 101.)

3CaO, B₂O₃. Easily sol. in dil. acids. (Ouvrard, C. R. 1901, **132**. 258.)

3CaO, 5B₂O₃+9H₂O. (van't Hoff, B. A. B. 1906, II. 568.)

4CaO, 5B₂O₃+9H₂O. True composition of Pandermite. (van't Hoff, B. A. B. 1906, II. **572.**)

Calcium iron (ferrous) borate silicate. Ca₂FeB₂Si₂O₁₀.

Min. Homilite. Easily sol. in HCl+Aq.

Calcium magnesium borate, CaO, MgO, $3B_2O_3+6H_2O$.

Min. Hydroboracite. Somewhat sol. in H₂O. Easily sol. in warm HCl+Aq or HNO₈ +Aq 3CaO, 3MgO, 4B₂O₃. (Ditte, C. R. 77.

Calcium sodium borate, 2CaO, Na₂O, 5B₂O₃ +8H₂O.

(van't Hoff, B. A. B. **1907**, 303. $Ca_3B_{10}Q_{18}$, $Na_8B_5O_9+15$, or $24H_2O$.

Min. Natroborocalcite, Ulexite. by boiling with H₂O. Sol. in acids. Decomp.

Ca2Na4B12O22+15H2O. Min. Franklandite. Sl. sol. in H2O; easily sol. in HCl, and HNO₂+Aq.

Calcium borate bromide, 3CaO, 3B₂O₈, CaBr₂. Sl. attacked by H₂O. Very sol. in dilute acetic acid. (Ouvrard, C. R. 1905, 141, 1023.) 3CaO, 5B₂O₃, CaBr₂. Hardly attacked by cold H₂O or very dil. acetic acid. Sol. in strong acids, even when dilute. (Ouvrard, C. R. 1905, 141. 1023.)

Calcium borate chloride, Ca₃B₂O₆, CaCl₂.

Decomp, quickly by moist air or H₂O, slowly by absolute alcohol. (Chatelier, C. R. 99. 276.)

3CaO, 3B₂O₃, CaCl₂. 1905, **141.** 353.) (Ouvrard, C. R.

3CaO, 5B₂O₃, CaCl₂. Sl. attacked by cold H₂O and dil. acetic acid+Aq. Strong acids dissolve even when very dilute. (Ouvrard, C. R. 1905, 141, 352.)

Calcium borate silicate, 2CaO, B₂O₃, 2SiO₂ +H₂O.

Min. Datolite. Sol. in HCl+Aq with separation of gelatinous silica.

+2H₂O. Min. Botryolite. CaO, B₂O₃, SiO₂. Min. Danburite. sl. attacked by HCl+Aq before ignition.

Chromous borate.

Precipitate. Sol. in free acids; insol. in borax + Aq. (Moberg.)

Chromic borate, 7Cr₂O₃, 4B₂O₃.

Insol. in H₂O; sol. in excess of borax+Aq. (Hebberling, C. C. 1870, 122.)

Chromic magnesium borate, 3Cr₂O₃, 6MgO, .2B₂O₃.

Not attacked by acids. (Ebelmen, A. ch. (3) 33. 52.)

2Cr₂O₃, 9MgO, 3B₂O₃. (Mallard, C. R. 105. 1260.)

Cobaltous borate, 3CoO, 2B₂O₃+4H₂O.

Sl. sol, in H₂O. (Rose, Pogg. **88.** 299.) 3CoO, B₂O₃. (Mallard, C. R. **105.** 1260.) 2CoO, B₂O₃. (Ouvrard, C. R. 1900, **130.** 337.)

Cobaltous borate bromide, 6CoO, 8B₂O₃, CoBr₂.

(Rousseau and Allaire, C. R. 1894, **119.** 73.)

Cobaltous borate chloride, 6CoO, 8B₂O₈, CoCl₂.

(Rousseau and Allaire, C. R. 1894, 118. 1257.)

Cobaltous borate iodide, 6CoO, 8B₂O₃, CoI₂. (Allaire, C. R. 1898, **127.** 557.)

Cuprous borate, 3Cu₂O, 2B₂O₃.

(Guertler, Z. anorg. 1904, 38. 459.)

Cupric borate.

Composition depends on temperature and concentration of solutions. Boiling H₂O dissolves out all the boric acid. Sol. in acids; slowly sol. in hot conc. NH4Cl+Aq.

Cu(BO₂)₂. Insol. in cold dil. acids, even HF. Slowly sol. in hot conc. HCl. Not attacked by alkalics or alkali carbonates+Aq. (Guertler, Z. anorg. 1904, 38. 456.) Insol. in methyl acetate. (Naumann, B.

1909, 42. 3790.)

Cupric borate ammonia, CuB₄O₇, 4NH₃+ 6H₂O.

Efflorescent. Can be recrystallized from a little NH4OH+Aq. (Pasternack, A. 151. 227.)

Didymium borate, DiBO₈.

Insol. in H₂O acidulated with HCl+Aq. (Cleve, Bull. Soc. (2) 43. 363.)

Di₂(B₄O₇)₈. Insol. in H₂O; sol. in acids. (Frerichs and Smith, A. 191. 355.)

Glucinum borate, basic, 5GlO, B₂O₃.

Insol. in H2O; sol. in acids. (Krüss and Moraht, B. 23. 735.)

Iron (ferrous) borate.

Ppt. H₂O dissolves out all the boric acid. (Tünnerman.)

Iron (ferric) borate, Fe₂(BO₂)₆+3H₂O.

Ppt. Insol. in H₂O.

Min. Lagonite. Sol. in acids. 2Fe₂O₈, 3B₂O₃. (Mallard, C. R. 105. 1260.) $6\text{Fe}_2\text{O}_3$, $B_2\text{O}_3+6\text{H}_2\text{O}$. Ppt. (Rose, Pogg. 89. 473.)

 $9\text{Fe}_2\text{O}_3$, $B_2\text{O}_3+9\text{H}_2\text{O}$. Ppt. (Rose.)

Iron (ferric) magnesium borate, 3Fe₂O₃, 6MgO, 2B₂O₃.

Insol. in H₂O. Sol. in conc. HCl+Aq. (Ebelmen, A. ch. (3) 33. 53.) 2Fe₂O₃, 9MgO, 3B₂O₃. (Mallard, C. R.

105. 1260.)

Iron (ferroferric) magnesium borate, 3MgO, FeO, Fe₂O₃, B₂O₃.

Min. Ludwigite. Slowly sol. in HCl+Aq, when finely powdered.

Iron (ferrous) borate bromide, 6FeO, 8B₂O₈, FeBr2.

Slowly sol. in hot HNO₃+Aq. (Rousseau and Allaire, C. R. 116. 1445.)

Iron (ferrous) borate chloride, 6FeO, 8B2O3, FeCl₂.

Slowly sol. in hot HNO₃+Aq. (Rousseau and Allaire, C. R. 116. 1195.)

Lanthanum borate, 2La₂O₃, B₂O₃. (Nordenskjöld, Pogg. 114. 618.)

 $La_2(B_4O_7)_8$. Ppt. (Smith.) Formula is $La_2B_8O_{16}+xH_2O$. (Cleve, B. **11.** 910.)

Lead borate, basic,

2PbO, B₂O₃+2H₂O. Ppt. 4PbO, 3B₂O₃+4H₂O. Ppt.

+5H₂O. Ppt.

6PbO, 5B₂O₃+6H₂O. Ppt. 8PbO, $3B_2O_3+8H_2O$. Ppt.

9PbO, 5B₂O₃+9H₂O. Ppt. (Rose, Pogg. **87.** 470.)

Lead borate, $Pb(BO_2)_2 + H_2O$.

Insol. in H₂O. Easily sol. in dil. HNO₃, or boiling HC₂H₄O₂+Aq. Decomp. by H₂SO₄, HCl, also by boiling KOH, or NaOH+Aq. Insol. in alcohol. (Herapath, Phil. Mag. (3) **34.** 375.)

Sol. in NH₄Cl+Aq; sol. in sat. NaCl+Aq.

2PbO, 3B₂O₃+4H₂O. (Herapath.)

PbB₄O₇+4H₂O. Slightly sol. in pure H₂O, but insol, in solutions of Na salts as Na₂B₄O₇ +Aq. (Soubeiran.)

Lead borate chloride, $Pb(BO_2)_2$, $PbCl_2+H_2O$. Insol. in cold, very slowly decomp. by hot H_2O into its constituents. Easily sol. in dil. hot HNO₈+Aq; insol. in alcohol. (Herapath, Phil. Mag: (3) 34. 375.)

Lead borate nitrate, $Pb(BO_2)_2$, $Pb(NO_3)_2$ +

Insol. in alcohol. (Herapath.)

Lithium borate, LiBO₂.

Solubility in H₂O 100 g. H₂O dissolve g. LiBO₂ at t°.

to	g. LiBO2	t°	g. LiBO ₂
0	0.7	30	4.9
10	1.4	40	11.12
20	2.6	45	20.

(Le Chatelier, C. R. 1897, 124. 1094.)

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4329.)

Insol. in methyl acetate. (Naumann, B. 1909, **42**. 3790.) Insol. in ethyl acetate.

(Naumann, B.

1910, **43.** 314.) +8H₂O. ((Le Chatelier, Bull. Soc. 1899, (3) 21. 35.)

Efflorences in the air; slowly +16H₂O. sol. in cold H₂O, rapidly in hot H₂O. (Le Chatelier, C. R. 1897, 124, 1092.) Li₂H₄(BO₃)₂+14H₂O. (Reischle, Z. anorg.

4. 166.) Li₂B₂O₇. Deliquescent; easily sol. in H₂O. (Arrivedson, A. ch. 10. 82.)

Sol. in acetone. (Eidmann, C. C. 1899,

II. 1014.) Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

+5H₂O. Insol. in alcohol. (Filsinger, Arch. Ph. (3) 8. 198.)

insol. in alcohol. (Filsinger.) Li₂O, 4B₂O₃. Insol. in H₂O. (Le Chatelier. Bull. Soc. 1899, (3) 21, 35.)

+10H₂O. Sol. in H₂O; insol. in alcohol.

(Filsinger.) "Acid lithium borate" is less sol. than the

tetraborate. (Gmelin.) Li₂O, 5B₂O₃+10H₂O.

(Dukelski, C. A. **1908**. 1089.

Magnesium borate, Mg(BO₂)₂.

(Ditte, C. R. 77. 893.)

+3H₂O. Min. Pinnoite. +4H₂O. (Laurent, A. o (Laurent, A. ch. (2) 67. 215.) Insol. in cold or hot H₂O; easily +8H₂U. Insol. in cold or not H₂C, easily sol. in HCl+Aq. Decomp. by conc. HCl +Aq into H₃BO₄ and MgCl₂. (Wöhler.)
MgB₄O₇+8H₂O. (Popp, A. Suppl. 8. 1.)
MgO, 3B₂O₃+8H₂O. Very slowly sol. in H₂O. (Rose, A. 84. 221.)
Sol. in 75 pts. cold H₂O. (Rammelsberg,

Pogg. 49. 445.) 2MgO, B₂O₃. Insol. in H₂O, but sol. in Na₂CO₃+Aq. (Guertler, Z. anorg. 1904, 40.

236.) +H₂O. Very sl. sol. in 1/10 N HCl+Aq.

(van't Hoff, B. A. B. 1907, 658.) Min. Ascharite.

3MgO, B₂O₃. Insol. in H₂O; easily sol. in acids. (Ebelmen, A. 80. 208.)

Very sl. sol. in cold, but somewhat decomp.

by boiling H₂O. (Rammelsberg.) Somewhat sol. in cold H₂O. -9H₂O.

(Wöhler, Pogg. 28. 525.)

3MgO, 2B₂O₃. Sol. in warm H₂SO₄ or HNO₃+Aq. (Ditte, C. R. 77. 893.) MgO, 6B₂O₃+18H₂O = Mg(BO₂)₂, 10HBO₂

+13H₂O. (Rammelsberg, Pogg. 49. 445.) 3MgO, 4B₂O₃. Sol. in hot dil. acids; insol. in acetic acid. (Ditte, C. R. 77. 893.) 5MgO, 2B₂O₃+1½, and 3H₂O. Min. Szzibelyite. Difficultly sol. in HCl+Aq.

9MgO, B₂O₃. (Mallard, C. R. 105. 260.)

Magnesium manganous borate, 3Mg₂B₂O₅, $4Mn_2B_2O_5 + 7H_2O$.

Min. Sussexite. Sol. in HCl+Aq.

Magnesium potassium borate, KMg₂B₁₁O₁₉+ 9H₂O.

Min. Kaliborite. (Feit, Insol. in H₂O, Ch. Z. 1889, 13. 1188.

2MgO, 2K₂O, 11B₂O₃+20H₂O. Hoff and Lichtenstein, B. A. B. 1904, 936.)

Magnesium sodium borate, Mg2B6O11, $Na_2B_4O_7 + 30H_2O.$

Efflorescent. About as sol. in cold H₂O as borax; solution separates out a Mg borate on warming, which redissolves on cooling, Decomp. by boiling H₂O. (Rammelsberg.)

Magnesium strontium borate, 3MgO, 3SrO, 4B2O8.

Easily sol. in dil. acids. (Ditte, C. R. 77. 895.)

Li₂O, 3B₂O₃+6H₂O. Very sol. in H₂O; Magnesium borate bromide, 2Mg₃B₂O₁₀, MgBr₂ or 6MgO, 8B₂O₃, MgBr₂. (Rousseau and Allaire, C. R. 1894, 119, 71.)

> Magnesium borate chloride, 2Mg₈B₈O₁₅, MgCl₂.

> Min. Boracite. Insol, in H2O; slowly sol. in acids. (Kraut.)

Stassfurthite. Easily sol, in warm acids. (Bischof.)

Magnesium borate iodide, 6MgO, 8B₂O₃, MgI2.

(Allaire, C. R. 1898, 127, 556.)

Magnesium borate phosphate, Mg(BO₂)₂, $2MgHPO_4+7H_2O$. Min. Luneburgite.

Magnesium borate sulphate. 2Mg₃B₄O₉, $3M_{2}SO_{4}+12H_{2}O.$

Min. Magnesium sulphoborite. Sol. in mineral acids when ground. (Naupert, B. 1893, 26. 874.)

Manganous borate, MnB₄O₇ (?).

Insol. in H₂O (Berzelius); very sl. sol. in H₂O (Thomas, Am. Ch. J. 4. 358); decomp. by warm, slowly by cold H₂O. Sol. in MgSO 4 +Aq (Berzelius)

+3H₂O.(Endemann and Paisley, Zeit.

angew. Ch. 1903, 16. 176.)

+5H₂O. Ppt. (Endemann and Paisley.) Very hydroscopic. (Endemann, Am. Ch. J. 1903, 29. 72.)

3MnO, B₂O₃. (Mallard, C. R. **105**. 1260.) Not attacked by H₂O. Very sol. in acids.

Not attacked by H₂O. Very sol. in acids. (Ouvrard, C. R. 1900, 130, 336.)

3MnO, 2B₂O₃. (Mallard.)

MnH₄(BO₃)₂. Very sl. sol. in H₂O.

Solubility in 2% Na₂SO₄+Aq. At 18.5°,

0.77 g. MnH₄(BO₃)₂ are dissolved per litre;
at 40°, 0.65 g.; at 60°, 0.36 g.; at 80°, 0.12 g.

Solubility in 2% NaCl+Aq. 1 l. solution dissolves 1.31 g. salt at 18.2°; 0.6 g. at 59°;
and 0.29 g. at 80° and 0.29 g. at 80°

Solubility in 2%, CaCl₂+Aq. 1 1. CaCl₂+Aq dissolves 2.91 g. salt at 17.6°; 2.44 g. at 43.0°; 2.25 g. at 61°; and 1.35 g. at 80°. (Hartley and Ramage, Chem. Soc. 63. 129.)

Manganous borate bromide, 6MnO, 8B₂O₃, MnBr₂.

(Rousseau and Allaire, C. R. 1894, 119. 73.)

Manganous borate chloride, 6MnO, 8B2O3, MnCl₂.

(Rousseau and Allaire, C. R. 1894, 118. 1257.)

Molybdenum borate, MoO₂, 2B₂O₂ (?).

Insol. in H₂O; sol. in H₂BO₃+Aq. (Berzelius.)

Molybdenum borate, Mo₂O₈, B₂O₈.

Precipitate. Insol. in H₂O; sl. sol. in a solution of boric acid. (Berzelius.)

See Boromolybdic Acid.

Nickel borate, Ni(BO₂)₂+2H₂O.

Insol, in H₂O. Easily sol, in acids. Easily sol, in warm NH₄Cl+Aq. (Rose, Pogg. 88, 299.)

2NiO, B₂O₃+xH₂O. Easily sol. in acids.

(Rose.) 3NiO, 2B₂O₃+5H₂O. Easily sol. in acids. (Rose.)

3NiÓ,B₂O₈. Not attacked by H₂O; sol. in acids. (Ouvrard, C. R. 1900, 130. 337.)

Nickel borate bromide, 6NiO, 8B₂O₈, NiBr₂. (Rousseau, C. R. 1894, 119. 73.)

Nickel borate chloride, 6NiO,8B₂O₈,NiCl₂. (Rousseau, C. R. 1894, 118. 1257.)

Potassium borates.

Solubility of B₂O₃ in K₂O+Aq at 30°.

Solution contains		Solid phase
% by wt. K20 % by wt. B2O3		Soud phase
47.50		KOH, 2H₂O
46.45	0.72	
46.36	0.91	K ₂ O, B ₂ O ₃ , 2.5H ₂ O
40.51	1.25	"
36.82	1.80	"
36.72	1.85	" "
32.74	3.51	"
$29.63 \\ 26.89$	$6.98 \\ 12.12$	"
24.84	17.63	i ii
23.30	18.19	K-O 2B-O. 4H-O
16.21	13.10	K ₂ O, 2B ₂ O ₃ , 4H ₂ O
11.78	9.82	££
9.18	8.00	££
6.22	9.13	££
7.79	13.20	tt.
7.73	13.37	K ₂ O, 2B ₂ O ₃ , 4H ₂ O+
		K ₂ O, 5B ₂ O ₃ , 8H ₂ O
7.81	13.28	"
7.67 7.71	13.19	" " " " " " " " " " " " " " " " " " " "
7.71	13.21	K ₂ O, 5B ₂ O ₃ , 8H ₂ O
7.63	13.28	1 "
3.42	7.59	1 "
$\frac{1.80}{0.80}$	4.15 3.05	" .
0.51	3.19	et
0.33	4.58	K ₂ O, 5B ₂ O ₈ , 8H ₂ O+
3.00	-:	B(OH) ₈
0.38	4.51	- \
0.31	4.46	u
0.28	4.36	B(OH) ₃
	3.54	· · ·

At 30° only the three potassium borates K_2O , $B_2O_3+2.5H_2O$; K_2O , $2B_2O_3+4H_2O$ and K_2O , $5B_2O_3+8H_2O$ exist in stable form. (Dukelski, Z. anorg. 1906, **50**. 42.)

Potassium metaborate, KBO₂.

Sol. in small amount of H₂O. (Berzelius, Pogg. 34. 568.)

 $+1\frac{1}{2}H_2O$. Only stabile hydrate. (Dukelski, Z. anorg. 1906, **50**. 42.) $+1\frac{1}{2}H_2O$. (Atterberg, Bull. Soc. (2) **22**.

350.)

Potassium tetraborate, K₂B₄O₇.

Very sol. in H₂O.

 $+4H_2O$. (Atterberg, Bull. Soc. (2) 22. 350.)

Only stabile hydrate. (Dukelski, l. c.) +5 H_2O . Very sol. in H_2O ; more sol. than $K_2B_6O_{10}$ or $K_2B_{12}O_{18}$. +6 H_2O . (Atterberg, l. c.)

Potassium hexaborate, $K_2B_0O_{10}+5$, and $8H_2O$.

Easily sol. in H_2O . Does not exist. (Dukelski, l. c.)

Potassium dodekaborate, $K_2B_{12}O_{10}+10H_2O$. Sl. sol. in cold, very sol. in hot H_2O . (Laurent, A. ch. 67. 215.) = $K_2B_{10}O_{16}$. (Rammelsberg.) Does not exist. (Dukelski.)

Potassium borate fluoride, KBO₂, KF. Sol. in H₂O. (Schiff and Sestini, A. 228. 72.)

KBO₂, 2KF. Sol. in little, decomp. by much H₂O. Insol. in H₂O. (Schiff and Sestini, A. 228. 72.)

Rubidium borate, Rb₂B₄O₇.

Anhydrous. (Reischle, Z. anorg. 4. 166.) +6H₂O. Not deliquescent or efflorescent. Sol. in H₂O. (Reissig, A. 127. 33.)

Samarium borate, SmBO₃.

Insol. in H_2O ; sol. in HCl+Aq. (Cleve, Bull. Soc. (2) 43. 1670.)

Scandium borate, ScBO₃.

Sol. in dil. acids. (Crookes, Phil. Trans. 1910, 210. A. 364.)

Silver borate, AgBO₂.

Sl. sol. in H₂O. By washing with H₂O the boric acid is dissolved out. (Rose, Pharm. Centralbl. **1853**. 205.)

Sol. with decomp. in Na₂S₂O₃+Aq (Herschel); sol. in NH₄NO₃+Aq if pptd. cold.

1 l. H₂O dissolves ca. 6 x 10⁻² gram-atoms

1 l. H_2O dissolves ca. 6 x 10^{-2} gram-atoms at 25°. (Abegg and Cox, Z. phys. Ch. 1903, 46. 11.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

 $3Ag_2O$, $4B_2O_8$. (Rose, l. c.)

Sodium borates.

Solubility of B₂O₃ in Na₂O+Aq at 30°.

Solution	contains		10
% by wt. NasO	% by wt. R ₂ O ₈	Solid phase	2
42.00 40.85 41.37 38.85 34.44 29.39 28.61 27.78 26.13	2.71 5.10 5.55 3.73 2.51 2.38 2.44 2.75	NaOH, H ₂ O " Na ₂ O, B ₂ O ₃ , 4H ₂ O " " " " " " " " "	1 4 8
25.08 23.00 16.61 21.58	2.98 3.82 13.69 4.63	" " Na ₂ O ₂ B ₂ O ₃ , 4H ₂ O+	
20.58 18.31 15.32 13.25 12.39 8.85 5.81 4.00 1.88 1.38 1.84 2.02 2.40 4.08	4.69 4.97 6.21 8.18 9.12 10.49 6.94 4.76 2.41 5.16 7.36 7.36 7.36 7.48 17.20	Na ₂ O, B ₂ O ₃ , 8H ₂ O Na ₂ O, B ₂ O ₃ , 8H ₂ O """ "Na ₂ O, 2B ₂ O ₃ , 10Ĥ ₂ O """ """ """" """""""""""""""""""""""	
3.79 3.47 2.26 1.99 1.86 1.81 0.64	15.84 13.30 12.14 11.84 11.78 11.18 6.11 3.54	10H ₂ O Na ₂ O, 5B ₂ O ₃ , 10H ₂ O "" Na ₂ O, 5B ₂ O ₃ , 10H ₂ O +B(OH) ₃ B(OH) ₃ ""	

At 30°, only the four sodium borates Na₂O, B₂O₃+4H₂O; Na₂O, B₂O₃+8H₂O; Na₂O, 2B₂O₃+10H₂O; and Na₂O, 5B₂O₃+10H₂O exist as stable phases. (Dukelski, Z. anorg. 1906, 50. 46.)

Sodium metaborate, NaBO₂.

Anhydrous. Easily sol. in H₂O, with evolution of heat.

+H₂O. Easily sol. in H₂O. (Benedikt.) +2H₂O. Easily sol. in H₂O. (Benedikt,

B. 7. 703.) +3H₂O. Easily sol. in H₂O. (Berzelius.) +4H₂O. Sl. efflorescent. Sol. in hot, less sol. in cold H₂O. Melts at 57° in its crystal H₂O. (Dukelski, Z. anorg. 50. 42.) +4½H2O. (Atterberg, Z. anorg. 1906, 48.

+5½H₂O. (Atterberg.)

370.)

+8H₂O. (Atterberg.)

+4H2O and +8H2O are the only hydrates formed. (Dukelski.)

System Na₂O, B₂O₃, H₂O at 60° investigated by Sborgi. (Real. Ac. Linc. 1915, (5) **24.** I, 443.)

Sodium tetraborate, $Na_2B_4O_7$ (Borax).

100 g. H₂O dissolve at: 5° 10° 21.5° 30° 37.5°

1.3 1.6 5.6 g. anhydrous salt. 2.8 3.9

45° 50° 54° 55° 56° 57°

8.1 10.5 13.3 14.2 15.0 16.0 g. anhydrous salt. (Horn and van Wagener, Am. Ch. J. 1903,

30. 347.) (Naumann, B. Insol. in ethyl acetate.

1910, 43. 314.)

Sol. in amyl alcohol in the presence of metaarsenious acid and excess of H₃BO₃. (Auerbach, Z. anorg. 1903, 37. 358.) +4H₂O. +5H₂O.

100 g. H2O dissolve at:

65° 70° 80° 90° 100°

22.0 24.4 31.4 40.8 52.3 g. anhydrous salt. (Horn and van Wagener, Am. Ch. J. 1903, 30. 347.)

+6H₂O. Grows opaque in the air. (Bechi,

Sill. Am. J. (2) 17. 129.) +10H₂O. Only stabile hydrate. (Dukelski, Z. anorg. 50. 30.) Efflorescent on surface in dry air. Not efflorescent when free from Na₂CO₈. (Sims.)

Sol. in 12 pts. cold, and 2 pts. hot H₂O. Sat. cold Na₂B₄O₇ +Aq contains 9.23%, and sat. hot N₂B₄O₇ +Aq contains 33.33% Na₂B₄O₇. (Gmelin.) Sol. in 20 pts. cold. and 6 pts. boiling H₂O. (Wal-

lerius.)

lerius.)
Sol. in 15 pts. H₂O at 18.75°. (Abl.)
100 pts. H₂O at 15.5° dissolve 5 pts.; at 65°, 40 pts.; at 100°, 166 pts. Na₂B₄O₇+10H₂O. (Ure's Dictionary.)
100 pts. sat. Na₂B₄O₇+Aq at 105.5° contain 52.5 pts.
Na₂B₄O₇, or 100 pts. H₂O dissolve 110.54 pts. Na₂B₄O₇, or 1 pt. Na₂B₄O₇ is sol. in 0.9047 pt. H₂O at 105.5°. (Griffith, Quar. J. Sci. 18. 90.)

Solubility in 100 pts. H₂O at t°.

t°	Pts. Na 2B 4O7	Pts Na ₂ B ₄ O ₇ +10H ₂ O	t°	Pts. Na ₂ B ₁ O ₇	Pts. Na ₂ B ₄ O ₇ +10H ₂ O
0 10 20 30 40 50	1.49 2.42 4.05 6.00 8.79 12.93	2.83 4.65 7.88 11.90 17.90 27.41	60 70 80 90 100	18.09 24.22 31.17 40.14 55.16	40.43 57.85 76.19 116.66 201.43

(Poggiale, A. ch. (3) 8. 46.)

100 pts. H₂O dissolve 1.4 pts. Na₂B₄O₇ at

0°, and 55.3 pts. at 100°. (Mulder.)
Na₂B₄O₇+Aq sat. at 15° has sp. gr. =
1.0199, and contains 3.926 pts. Na₂B₄O₇ to
100 pts. H₂O. (Michel and Krafft, A. ch. (3) 41. 471.)

No-B.O-+Aq sat. at 17° has sp. gr.= J. pr. 97, 503.)

Sp. gr. of Na₂B₄O₇+Aq at 15°.

Na2B4O	NazB.Or +10HzO	Sp. gr.	%,0%,0%	Na1B40; +10H2O	Sp. gr.
1	0.52	1.0049	4	2.11	1.0199
2	1.06	1.0099	5	2.64	1.0249
3	1.59	1.0149	6	3.17	1.0299

(Gerlach, Z. anal. 28, 473.)

Sp. gr. of $Na_2B_4O_7 + Aq$ sat. at $15^\circ = 1.032$. (Gerlach.)

Sat. Na₂B₄O₇+Aq boils at 105.5°, and contains 110.5 pts. $Na_2B_4O_7$ to 100 pts. H_2O . (Griffith.)

Sat. Na₂B₄O₇+Aq forms a crust at 103° and contains 60.14 pts. Na₂B₄O₇ to 100 pts. H₂O; highest temp. observed, 104.3°. (Gerlach, Z. anal. 26, 427.)

B.-pt. of Na₂B₄O₇+Aq containing pts. $Na_2B_4O_7$ to 100 pts. H_2O .

Bpt.	Pts. Na ₂ B ₄ Q ₇	Bpt.	Pts. Na ₂ B ₁ O ₇
100.5°	8.64	103.0°	61.2
101.0	17.2	103.5	75.4
101.5	26.5	104.0	90.8
102.0	37.5	104.5	109.0
102.5	48.5	104.6	112.3

(Gerlach, Z. anal. 26. 452.)

M.-pt. of Na₂B₄O₇+10H₂O is 75.5°. (Tilden, Chem. Soc. 45. 407.)

Insol. in alcohol.

100 g. alcohol (0.941 sp. gr.) dissolve 2.48 g. at 15.5° (U. S. P.).

Sol in alcoholic solution of NaC₂H₈O₂. (Stromeyer.)

Sol. in 14.7 pts. glycerine of 1.225 sp. gr.

(Vogel.) Sol. in 1 pt. glycerine. (Schultze, Arch. Pharm. (3) 6. 149.)

100 g. glycerine dissolve 60,3 g. at 15.5° (U. S. P.)

Min. Tincal.

Sodium borate, Na₂B₈O₁₃+10H₂O.

Sol. in 5-6 pts. cold H₂O. (Bolley, A. 68. 122.) Perhaps sodium hydrogen tetraborate NaHB₄O₇+4½H₂O.

 $Na_2B_{10}O_{16}+10H_2O.$ Decomp. by H₂O. (Atterberg, Z. anorg. 48. 370.) Stabile. (Dukelski, Z. anorg. 50. 42.)

+11H₂O. (Laurent, C. R. 29. 5.)

Sodium borate fluoride, NaBO₂, 3NaF+ 4H₂O.

Sol. in H₂Q.

Basarow (B. 7. 112) considers this salt to be a mixture.

Na₂B₄O₇, 12NaF+22H₂O. Can be separated into its constituents by H₂O. (Berzelius, Berz. J. B. **23.** 96.)

Strontium borate, Sr(BO₂)₂.

(Ditte, C. R. **77.** 788.) Easily hydrated by H₂O forming SrO, B₂O₃ +2H₂O. Very sol. in dil. acetic acid. (Ouvrard, C. R. 1906, **142**, 282.) Insol. in acetone. (Naumann, B. 1904, 37.

4329.)

+2H₂O. (Ouvrard, l. c.) +4H₂O.(Ouyrard, l. c.)

 $+5H_2O$. 1 l. H_2O dissolves 2.3 g. at 10° . (Ditte, A. ch. 1883 (5) 30. 253.)

SrB₄O₇. Insol. in H₂O; sol. in dil. acids.

(Guertler, Z. anorg, 1904, 40. 243.) $+4H_2O$. Sol. in 130 pts. boiling H_2O . 100 pts. H₂O at 100° dissolve 7.7 pts. (Ure's Dict.). Easily sol. in cold NH4 salts+Aq; sol. in cold $HNO_3 + Aq$

2SrO,B₂O₃. Easily decomp. by H₂O forming B₂O₃, SrO, 4H₂O. Very sol. in acids. (Ouvrard, C. R. 1906, 142, 282.)

3SrO, B₂O₃. Less easily attacked by H₂O than Ca comp. Very sol. in mineral acids. Sl. attacked by dil. acetic acid. (Ouvrard, C. R. 1901, 132, 258.)

 SrB_6O_{10} . Very sl. sol. in H₂O; sol. in acids. (Laurent.)

 $SrB_8O_{81}+7H_2O$. Ppt. (Laurent.)

 $+12H_2O$. (Ditte.) Sr₃B₄O₉. Sol. in cold mineral acids and acetic acid. (Ditte, C. R. 77. 785.)

2SrO, 3B₂O₃. Easily sol. in acids. (Ditte, l. c.)

Strontium borate bromide, 3SrO, 5B₂O₃, SrBr₂.

As the chloride. (Ouvrard, C. R. 1906, **142.** 283.)

Strontium borate chloride, 3SrO, 5B₂O₃, $SrCl_2$.

Sl. attacked by cold H₂O, not attacked by dilute acetic acid. (Ouvrard, C. R. 1906, 142. 282.)

Thallous borate, $TIBO_2 + \frac{1}{2}H_2O$.

Decomp. in the air. (Buchtala, J. pr. 1913, (2) 88. 784.) Tl₂B₂O₇.

(Buchtala.)

Tl₂B₄O₇. Ppt. Sol. in boiling H in cold dil. H₂SO₄+Aq. (Crookes.) Ppt. Sol. in boiling H₂O; insol.

+2H₂O. (Buchtala, J. pr. 1913 (2) 88. 774.)

 $Tl_2B_6O_{10} + 3H_2O$. (Buchtala.) $Tl_2B_8O_{13}+4H_2O.$ (Buchtala.) $Tl_2B_{10}O_{16} + 8H_2O.$ (Buchtala.) $Tl_2B_{12}O_{19}+7H_2O$. (Buchtala.)

Thorium borate (?).

Precipitate. Insol. in H₂O and H₃BO₃+ Aq. (Berzelius.)

Tin (stannous) borate (?). Ppt. (Wenzel.)

Divanadyl borate.

Insol. in H₂O; sol. in H₃BO₃+Aq. (Ber-

Ytterbium borate, YbBO₃.

Insol. in conc. HCl; sol. in HF. (Cleve, Z. anorg. 1902, 32. 148.)

Yttrium borate.

Precipitate. (Berlin, Pogg. 43. 105.)

Zinc borate, 3ZnO, 2B₂O₃.

(Mallard, C. R. 105. 1260.)

(Maliard, C. R. 106, 1260.)

Decomp. by H₂O; very sol. in dil. acids.
(Ouvrard, C. R. 1900, 130, 336.)

ZnO, 2B₂O₈+4H₂O. Sol. in H₂O with decomp. (Ditte, A. ch. 1883, (5) 30, 256.)

3ZnO, 4B₂O₃+H₂O. Ppt. (Holdermann, Arch. Pharm. 1904, 242, 567.)

ZnO, 4B₂O₃+10H₂O. (Ditte, A. ch. 1883, (5) 30, 256.)

9ZnO, 4B₂O₃+9H₂O. Sl. sol. in H₃BO₃+Aq. (Rose, Pogg. 88. 299.) 3ZnO, B₂O₃. Insol. in mineral acids. (le Chatelier, C. R. 113. 1034.)

Zinc borate ammonia, ZnB₄O₇, 4NH₈+6H₂O. Easily sol. in NH₄OH, HC₂H₃O₂, H₂SO₄, HCl, and HNO₃+Aq. (Buchner, A. 151.

Zinc borate bromide, 6ZnO, 8B₂O₃, ZnBr₂. (Rousseau and Allaire, C. R. 116. 1446.)

Zinc borate chloride, 6ZnO,8B2O8,ZnCl2. Insol. in HCl. (Rousseau, C. R. 1894, 118. 1256.)

Zinc borate iodide, 6ZnO, 8B₂O₃, ZnI₂. (Allaire, C. R. 1898, 127, 556.)

Zirconium borate, (?). Insol. in H₂O.

Perboric acid. See Perboric Acid.

Boric phosphoric acid. See Phosphoboric acid.

Boric tungstic acid. See Borotungstic acid.

Boric acid sulphur trioxide. See Borosulphuric acid.

Borimide, B2(NH)8.

Decomp. by H₂O; insol. in all indifferent solvents; sol. in liquid NH₂+S to form a dark blue solution. (Stock, B. 1901, 34. 3044.)

Borimide hydrochloride, B₂(NH)₃,3HCl.

Decomp. by H2O; insol. in all ordinary organic solvents. (Stock, B. 1901, 34. 3045.)

Borofluorhydric acid, HBF4. See Fluoboric acid.

Borofluorides.

See Fluoborides.

Boromolybdic acid.

Sol. in H₂O. Decomp. by alcohol. (Berzelius.)

Boron, B.

(a) Amorphous. Somewhat sol. in pure H₂O, when not ignited. Salts and acids separate it out of aqueous solution. Upon evaporation of H₂O solution a crust is formed, which is only partially sol. in H₂O. (Berzelius, Pogg. 2. 113.) Decomp. by hot H₂SO₄ and cold moderately conc. HNO₃+Aq. Strongly ignited amorphous B is much less easily attended by response then freely. easily attacked by reagents than freshly pptd., and is insol. in H₂O. (Berzelius.) Insol. in caustic alkalies + Aq; also in alcohol and ether. Above boron was very impure. (Moissan, C. R. 114. 392.)

Pure B is not attacked by acids, but has a strong reducing action on KMnO₄+Aq, FeCl₃

+Aq, etc. (Moissan, C. R. 114. 617.)

Does not melt at 1500°. Readily sol. in conc. acids, as H₂SO₄, HNO₃, H₃PO₄; very sl. sol. in hydracids; decomp. H₂O at red heat. (Moissan, A. ch. 1895, (7) 6. 313-14.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1802, 20, 207 (2)

1898, 20. 827.)
(b) Crystallized. 1. Insol. in H₂O, HCl, or KOH-Aq. Very slightly and slowly attacked by boiling cone. H₂SO₄. Gradually sol. in hot cone. HNO₃. Formula is Al₂B₂₄. (Hampe, A. 183. 75.)

2. Very slightly attacked by conc. HCl or H₂SO₄; slowly but completely sol. in conc. HNO₃; insol. in KOH+Aq. Formula is

C₂Al₃B₄₃. (Hampe.) C₂Al₃B₄₄. Crystalline. Insol. in a solution of CrO₃ in H₂SO₄. Insol. in hot conc. HCl and H₃SO₄. Sol. in hot conc. HNO₃. (Biltz, B. 1910, **43**. 303.)

Boron tribromide, BBr3.

Sol. in H₂O or alcohol with decomp. (Nicklès, C. R. 60, 800.)

Boron phosphorus bromide, BBr₃, PBr₃.

Decomp. by H₂O.
Sol. in CS₂, and CHCl₃. Decomp. by alcohol, ether, etc. (Tarible, C. R. 116, 1521.)
BBr₂, PBr₅. Sl. sol. in cold, easily in hot CS₂. (Tarible.)

Boron bromide ammonia, BBr₃, 4NH₃.

Decomp. by H₂O and alkalies. (Besson, C. R. **114**. 542.)

Boron bromide phosphine, BBrs, PHs. Violently decomp. by H2O. (Besson, C, R. **113**. 78.)

Boron bromide phosphorus trichloride, 2BBrs,PCls.

Decomp. by H₂O. Sol. in BBr₃, PCl₃, CS₂, and CHCl₃. Insol. in petroleum ether. (Tarible, C. R. 1901, 132. 84.)

Boron bromide phosphorus pentachloride, 2BBrs.PCls.

Sol. in BBr, and CS2; decomp. by H2O2 insol. in light petroleum. (Tarible, C. R. 1901, **132**, 85.)

Boron bromide phosphorus diiodide, 2BBr_s, P214.

Sol. in BBr₃, CS₂, CHCl₃; insol. in light petroleum; decomp. by H2O. (Tarible, C. R. 1901, **132**. 205.)

Boron bromide phosphoryl chloride, BBr3, POCIs.

Very easily decomp. (Oddo and Tealdi, Gazz. ch. it. 1903, 33. (2) 431.)

Boron bromoiodide, BBr₂I.

Decomp. violently by H₂O. (Besson, C. R. **112.** 100.)

BBrI₂. (Besson, C. R. 112, 100.)

Boron bromosulphide, B₂S₃,BBr₃.

Decomp. by H₂O. (Stock, B. 1901, 34.) 3040.)

Boron carbide, B₆C.

Very stable; insol. in HF and in HNO₃; sol. in KOH at red heat. (Moissan, Bull. Soc. 1894, (3) 11. 1101.)

Insol. in acids; sol. in fused alkali. (Moissan, C. R. 1894, 118. 559.)

BC or B_2C_2 . Insol. in all the usual solvents. (Müllhäuser, Z. anorg. 5. 92.)

Boron trichloride, BCl₃.

Rapidly absorbed by H₂O and alcohol with decomposition.

Boron nitrosyl chloride, BCl₃, NOCl.

Decomp. violently by H₂O. (Geuther, J. pr. (2) 8. 854.)

Boron phosphoryl chloride, BCl₃, POCl₃.

Decomp. immediately by H₂O. (Gustavson, Zeit. Chem. 1870. 521.)

Boron chloride ammonia, 2BCl₂, 3NH₃.

Decomp. by H2O. (Berzelius, Pogg. 2. 147.)

Boron chloride phosphine, BCl₈, PH₃.

Decomp. by H₂O. (Besson, C. R. 110. 516.)

Boron chlorosulphide, B2S2,BCl2.

Decomp. by H₂O. (Stock, B. 1901, 34. 3040.)

Boron trifluoride, BF₃.

H₂O absorbs 700 vols. BF₂ gas to form a san.)

liquid of 1.77 sp. gr. On boiling, 1/5 of the BF3 is given off, and a residue boiling at 165-200°, with composition BF₃+2H₂O or HBO₂+

3HF, is left. (J. Davy, A. ch. 86. 178.) 1 ccm. H₂O absorbs at 0° and 762 mm. pressure 1.057 ccm. BF_3 .

1 vol. conc. H₂SO₄ of 1.85 sp. gr. absorbs 50 vols. BF₃.

Absorbed by alcohol with decomp.

Cold oil of turpentine absorbs 6.8% of BF₃.

Boron fluoride ammonia, BF₃,NH₃, BF₃, 2NH₈, and BF₈, 3NH₃.

Decomp. by H₂O.

Boron fluoride cyanhydric acid, BF₃, HCN. Very unstable. (Patein, C. R. 113. 85.)

Boron fluoride phosphine, 2BF₃, PH₃.

Very unstable at ordinary temp. Decomp. by H₂O. (Besson, C. R. 110. 80.)

Boron hydride, BH₃.

Not obtained free from H. Sl. sol. in H₂O. (Jones, Chem. Soc. 35. 41.)

See Cyclotriborene.

B₄H₁₀. B.-pt. 16-17° at 760 mm.

Very unstable. Takes fire spontaneously in the air.

Decomp. by H₂O, dil. HCl, and oxidized by conc. HNO₃ with explosive violence.

Absorbed by NaOH+Aq.
Decomp. by alcohol. Sol. in dry benzene.
(Stock, B. 1912, 45. 3562.)
-B₆H₁₂. B.-pt. 100° at atmospheric pressure.
Decomp. by H₂O. With aqueous alkalies, hydrogen is evolved. (Stock, B. 1912, 45.

B₈H. Insol. in HCl. Sol. in aqua regia and

Br₂+Aq. (Winkler, B. 1890, 23. 778.)
B₁₀H₁₄. M.-pt. 99.5°; not attacked by cold or boiling H₂O. Sol. in dil. NaOH+Aq. Sol. in alcohol, ether, benzene, and CS₂. (Stock, B. 1913, **46**. 3360.)

Boron iodide, Bl₃.

Very hygroscopic, and instantly decomp, by H₂O or alcohol. Very sol. in CS₂, CCl₄. C₈H₆; less sol. in PCl₈, AsCl₈, and a great many organic liquids. (Moissan, C. R. 112. 717.)

Boron iodide ammonia, BI₃, 5NH₃.

Decomp. by H₂O. (Besson, C. R. 114. 542.)

Boron iodophosphide, BI₂P.

Very hygroscopic; decomp. by H₂O. Not attacked by cold conc. H2SO4, even if fuming, but on heating decomposition takes place. Very sl. sol. in CS₂. Insol. in benzene, PCl₃, or CCl₄. (Moissan, C. R. **113**. 624.) Less hygroscopic than BI₂P, but

otherwise the properties are similar. (Mois-

```
Boron nitride, BN.
```

Insol. in H₂O, conc. HNO₃, conc. HCl+

Aq, or conc. solutions of alkalies.

Decomp. by hot conc. H₂SO₄ or HF. (Wöhler, A. 74. 70.)

Boron trioxide, B2O3.

Deliquescent. Sol. in H₂O with a large increase in temp. (Ditte, C. R. 85. 1069.)

1 pt. dissolvesat 18.75° in 47.01 pts. H₂O.
" 25° " 27.75" " " 18.73 " 37.5° " "

" 50° " 15.13 " " " 62.5° " 9.29 " " "·75° " " 7.28 5.58 " " 87.5° " "

"

" 100° 4.74 Or 100 pts. H₂O dissolve-

at 18.75° 2.13 pts. B₂O₃. 25° 3.60 " " " 37.5° 4.24 46 " " 50° 6.61 " " 62.5° 10.76 " 75° 13.73 " 87.5° " 17.92 " 100° " 21.09

(Brandes and Firnhaber, Arch. Pharm. 7. 50.)

1 litre H₂O dissolves-

11.00 g. B₂O₃. 16.50 "" 0° ąţ 12° 22.49 " " 20° " 40° 39.50 " 62° 64.50 " 95.00 " 80° " 102° 164.50 " (Ditte, C. R. 85. 1069.)

Sat. H₂O solution boils at 100°. (Brandes | Borosulphuric acid, BOHSO₄+SO₃.

and Firnhaber.) Sat. H₂O solution boils at 103.3°. (Grif-

fiths, Quar. J. Sci. 18. 90.)

Sol. in acetic acid, hot conc. HCl+Aq, HNO₂, and H₂SO₄. From the three latter it separates on cooling or dilution with H₂O.

Solubility in Na₂Ō+Aq at 30.

See Borates, sodium. Solubility in K₂O+Aq at 30°. See Borates, potassium.

Insol. in hot glacial acetic acid. (Holt, Chem. Soc. 1911, 100. (2) 720.)

Insol. in alcohol. (Graham.) Sol. in alcohol. (Berzelius, Ebelmen.)

Sol. in oils.

See also Boric acid.

Boron trioxide potassium fluoride, B_2O_8 , 2KF. Gradually sol, in H₂O. Decomp, by much H₂O. Insol. in alcohol. (Schiff and Sestini, A. **228.** 82.)

Boron oxychloride, BOCl.

(Gustavson, Zeit. Chem. 1870. 521.) BOCl₃. Slowly decomp. by H₂O. (Councler, J. pr. (2) 18, 399.)

Oxychlorides of either the above formulæ do not exist; the true formula for boron oxychloride is $B_8O_{11}Cl_2$. (Lorenz, A. 247. 226.)

Boron phosphide, BP.

Insol. in H₂O. Sol. in conc. boiling alkalies +Aq with decomp. Decomp. by HNO₈+Aq. (Besson, C. R. 113. 78.)

Insol. in PCl₈, AsCl₈, SbCl₈, CCl₄, and in fact in all known solvents.

Not attacked by boiling H₂O, conc. HCl, or HI+Aq. Sol. in conc. HNOs with decomp. on heating. Not attacked by cold H₂SO₄. (Moissan, C. R. 113: 726.)

B₅P₃. Not attacked by boiling conc. HNO₃
+Aq. Insol. in all solvents. (Moissan.)

Boron phosphoiodide.

See Boron iodophosphide.

Boron selenide, B₂Se₃.

Violently decomp. by H₂O. (Sabatier, C. R. 112. 1000.)

Boron trisulphide, B₂S₃.

Decomp. with violence with H₂O. Combines with alcohol and ether. (Fremy, A. ch. (3) 38. 312.)

Insol. in most solvents, but sl. sol. in PCl₃ without decomp.; more sol. in SCl2, but does not crystallize from the solution. (Moissan, C. R. **115.** 203.)

Boron trisulphide ammonia, B₂S₃,6NH₃.

Ppt. (Stock, B. 1901, 34, 3042.)

Boron pentasulphide, B₂S₅.

Decomp. by H₂O and alcohol. (Moissan, C. R. 115. 271.)

Decomp. by H₂O. (Schultz-Sellac, B. 4.

B(HSO₄)₄. Very deliquescent. Easily sol. in fuming H₂SO₄. (D'Arcy, Chem. Soc. **55**. 155.)

SO₂(0.BO)₂. Hydroscopic. Deliquescent. Sol. in H₂O with decomp. Decomp. by cold

Sol. in H_2O with decomp. Decomp. by cold alcohols. (Pictet, Bull. Soc. 1908, (4) 3. 1121.) (SO₃)₂B₂O₃. Hydroscopic. Deliquescent. Sol. in H_2O with decomp. Decomp. by cold alcohols. (Pictet, Bull. Soc. 1908, (4) 3. 1121.)

Borononotungstic acid, $H_4B_2W_9O_{82} +$ $22H_2O = 9WO_3$, B_2O_3 , $2H_2O + 22H_2O$.

Sol. in less than 1/9 pt. H₂O, and as easily sol. in alcohol and ether. Sp. gr. of aqueous solution is somewhat under 3. (Klein, A. ch. (5) **28.** 370.)

Aluminum borononotungstate, Al4(B2W00) $+65H_{2}O.$

Extremely sol. in H₂O. (Klein.)

Ammonium —, $(NH_4)_4B_2W_9O_{82}+18H_2O$ Quickly effloresces. (Klein.)

Barium borononotungstate, $Ba_2B_2W_0O_{32}+19H_2O$.

Sol. in 4 pts. cold, and less than $\frac{1}{2}$ pt. hot H_2O . (Klein.)

Cadmium —, $Cd_2B_2W_9O_{82}+18H_2O$.

Deliquescent.

100 pts, of salt dissolve in less than 8 pts. H₂O at 19°. Sp. gr. of solution is 3.28. (Klein.)

Sp. gr. of sat. solution at 15.6°/4° = 3.2887; at 16.2°/4° = 3.2868. (Kahlbaum, Z. anorg. 1902. 29. 229.)

Calcium ----, Ca₂B₂W₉O₈₂+15H₂O.

Sol. in $^{1}/_{10}$ pt. $H_{2}O$. Solution has sp. gr. = 3.10. (Klein.)

Cerium —, $Ce_4(B_2W_9O_{32})_8+57H_2O$.

Very sol. in H_2O ; sp. gr. of solution is over 3.

Chromium —, Cr₄(B₂W₉O₃₂)₈+74H₂O.

Very sol. in H_2O ; sp. gr. of solution is 2.80. (Klein.)

Cobalt —, $Co_2B_2W_4O_{32}+18H_2O$.

Very sol. in H_2O ; sp. gr. of solution sat. at $O^{\circ} = 3.36$ (Klein)

19°=3.36. (Klein.)
100 pts. H₂O dissolve 306.8 pts. anhydrous salt at 16.2°; 288 pts. at 18.5°; 299.7 pts. at 19.6°; 286 pts. at 21.8°.

Sp. gr. of solution sat. at 19.2°/4° = 3.1369. (Kahlbaum, Z. anorg. 1902, 29. 218.)

Copper -, Cu₂B₂W₀O₃₂+19H₂O.

25 pts. H_2O dissolve 100 pts. salt. Sp. gr. of solution = 2.6. (Klein.)

Lead —, $Pb_2B_2W_9O_{82}+11H_2O$.

Sl. sol. in cold, easily sol. in hot H_2O . (Klein.)

Lithium ——, (?).

Very sol. in H_2O . Sp. gr. of solution is about 3.

Magnesium —, $Mg_2B_2W_9O_{22}+22H_2O$. Very sol. in H_2O . (Klein.)

Manganous —, $Mn_2B_2W_9O_{82}+17H_2O$.

100 pts. dissolve in 13 pts. H₂O. Sp. gr. of solution at 19°=3.15. (Klein.)

Mercurous \longrightarrow , $3Hg_2O$, B_2O_8 , $9WO_8+$ $14H_2O$ (?).

Precipitate.

LE FOR SHIP WAY

Insol. in H₂O. (Klein.)

Sol. in 20,000 pts. dil. cold, and 1000 pts. boiling HNO₂+Aq of 1.42 sp. gr.

Nickel —, $Ni_2B_2W_9O_{82}+18H_2O$.

Very sol. in H₂O; sp. gr. of sat. solution at 19°=3.32.

100 pts. H₂O dissolve 261.6 pts. at 21.2°. Sp. gr. 15.75°/4° of solution=2.2959. (Kahlbaum, Z. anorg. 1902, **29**. 218.)

Potassium borononotungstate, K₄B₂W₉O₃₂+ 13H₂O.

5 pts. salt dissolve in 8 pts. H₂O at 19° to form a solution of 1.38 sp. gr. The solution sat. at 100° has sp. gr. of over 2. (Klein.)

Silver —, $Ag_4B_2W_9O_{33}+14H_2O$.

Very sl. sol. in H2O.

Sodium —, $Na_2H_2B_2W_9O_{32}+23H_2O$.

Very sol. in H_2O . Solution sat, at 19° contains 84 pts. salt to 16 pts. H_2O . (Klein.) Na₄B₂W₉O₃₂+12H₂O. Sol. in less than $^1/_3$ pt. H_2O .

Thallium —, $Tl_2B_2W_9O_{82}+5H_2O$.

Sl. sol. in hot H_2O and nearly insol. in cold H_2O : (Klein.)

Uranyl —, $(UO_3)_3(B_2W_9O_{80})_2+30H_2O$.

Very sol. in H_2O . (Klein.) Sp. gr. of solution = 3.1.

Zinc —, $Zn_2B_2W_9O_{32}+2H_2O$.

Very sol. in H_2O . Sp. gr. of solution = 3.15. (Klein.)

Borodecitungstic acid.

Barium borodecitungstate, $Ba_2B_2W_{10}O_{35} + 20H_2O$.

Sol. in H₂O. (Klein, C. R. 99. 35.)

Boroduodecitungstic acid, $H_8B_2W_{12}O_{48} = 4H_2O$, B_2O_8 , 12 WO_3 .

Known only in solution, which decomposes into borononotungstic acid and tungstic acid, when evaporated to a certain concentration. (Klein, C. R. 99. 35.)

Barium potassium born har der tungstate. 3BaO, K2O, Burgarian der der

Potassium —, $K_8B_2W_{12}O_{43}+21H_2O$.

Sol. in H_2O . (Klein.) $2K_2O$, $12WO_3$, $B_2O_3+18H_2O$. Sol. in H_2O . (Klein.)

Boroquatuordecitungstic acid, $H_{12}B_2W_{14}O_{51} = 6H_2O$, B_2O_3 , $14WO_3$.

Has not been obtained in the free state. (Klein, A. ch. (5) 28. 353.)

Barium boroquatuordecitungstate, Ba₈B₂W₁₄O₄₈=3BaO, B₂O₃, 14WO₃+ 5H₂O.

Sl. sol. in H₂O. (Klein.)

Barium sodium —, 3½BaO, 1½Na₂O, 5H₂O, B₂O₃, 14WO₃+29H₂O.

Potassium —, $3K_2O$, H_2O , B_2O_8 , $14WO_8 + 22H_2O$.

Sol. in H₂O. (Klein.)

Silver —, $Ag_6H_2B_2W_{14}O_{49}+7H_2O$.

Nearly insol. in cold H₂O. (Klein.)

Sodium —, $Na_4H_8B_2W_{14}O_{51}+29H_2O$. Sol. in H_2O (Klein.) Sodium strontium boroquatuordecitungstate, 3½SrO, 1½Na₂O, B₂O₃, 14WO₃+29H₂O. Decomp. by H₂O. (Klein.)

Boroundevigintitungstic acid.

Barium boroundevigintitungstate, 4BaO, B₂O₃, 19WO₃+30H₂O.

Can be cryst. from H₂O. (Ebenhusen, Dissert. 1905.)

Boroquattuoretvigintitungstic acid, B₂O₃, 24WO₃+66H₂O.

Deliquescent. Somewhat more sol. in H₂O than B₂O₃, 28WO₃+62H₂O. Also more stable. (Copaux, C. R. 1908, 147. 975.)

Barium boroquattuoretvigintitungstate, 5BaO, B₂O₃, 24WO₃+54H₂O.

100 pts. H₂O dissolve 50 pts. salt. (Copaux, A. ch. 1909, (8) 17. 217.) 6BaO, B₂O₈, 24WO₂+58H₂O. (Copaux,

l. c.) GBaO, B₂O₈, 24WO₈+58H₂O. (Copaux

Cadmium \longrightarrow , 5CdO, B₂O₃, 24WO₃+ 51H₂O.

Extremely sol. in H₂O. (Copaux, l. c.)

Calcium —, 5CaO, B_2O_3 , 24WO₃+44H₂O. Very sol. in H_2O . (Copaux, l. c.)

Lithium —, 15Li₂O, B₂O₈, 24WO₈+38H₂O. (Copaux, l. c.)

Magnesium —, 5MgO, B₂O₃, 24WO₃+ 42H₂O.

Very sol. in H₂O. (Copaux, l. c.)

Mercurous —, 9Hg₂O, B₂O₃, 24WO₃+ 25H₂O. (Copaux, l. c.)

Potassium \longrightarrow , $5K_2O$, B_2O_8 , $24WO_8+$

(Copaux, l. c.)

Sodium —, $5Na_2O$, B_2O_3 , $24WO_3+5H_2O$. As NH_4 salt. (Copaux, l. c.)

Boroquinquetvigintitungstic acid.

Potassium boroquinquetvigintitungstate, 5K₂O, B₂O₃, 25WO₃+34H₂O. (Ebenhusen, Dissert. 1905.)

Boroduodetrigintatungstic acid, B₂O₃, 28WO₃+62H₂O.

Decomp. in boiling aqueous solution. (Copaux, C. R. 1908, 147. 975.)

Potassium boroduodetrigintatungstate, 6K₂O, B₂O₃, 28WO₃+42H₂O.

Decomp. by boiling alkalies. (Copaux, A. ch. 1909 (8) 17, 217.)

Borovanadic acid.

Sol. in H_2O . Easily decomp. (Guyard, Bull. Soc. (2) 25. 354.)

Metabromantimonic acid, HSbBrs+3H2O.

Very hydroscopic. Loses Br₂ in the air. Decomp. by H₂O with separation of antimonic acid. (Weinland, B. 1903, 36. 256.)

Ammonium metabromantimonate, NH₄SbBr₆+H₂O.

Loses Br_2 in the air. Decomp. by H_2O . (Weinland, l. c.)

Iron (ferric) metabromantimonate, Fe(SbBr₈)₈+14H₂O.

Very hydroscopic. Decomp. by H_2O . (Weinland, l. c.)

Lithium metabromantimonate, LiSbBr₆+4H₂O.

Very hydroscopic. Loses Br_2 in the air. Decomp. by H_2O . (Weinland, $l.\ c.$)

Nickel metabromantimonate, Ni(SbBr₆)₂+ $12H_2O$.

Hydroscopic. Decomp. by H_2O . (Weinland, l. c.)

Potassium metabromantimonate, KSbBr₆+ H_2O .

Loses Br_2 in the air. Decomp. by H_2O . (Weinland, l. c.)

Bromarsenious acid.

See Arsenyl bromide.

Bromauric acid, HAuBr₄+3H₂O.

(Lengfeld, Am. Ch. J. 1901, 26, 329.) $+5H_2O$. Very sol. in H_2O . (Thomsen, J. pr. (2) 13, 337.)

 $+6\mathrm{H}_2\mathrm{O}$. Sol. in ether and CHCl_s without decomp. (Lengfeld, Am. Ch. J. 1901, 26. 329.)

Ammonium bromaurate, NH4AuBr4.

Ppt. (Gutbier, Z. anorg. 1914, 85. 358.)

Barium bromaurate.

Not deliquescent. Sol. in H_2O . (v. Bonsdorff, Pogg. 17. 261.)

Cæsium bromaurate, CsAuBr₄.

Sl. sol. in H₂O or alcohol. Insol. in ether. (Wells and Wheeler, Sill. Am. J. 144. 157.)
Ppt. (Gutbier, Z. anorg. 1914, 85. 360.)

Cerium bromaurate, CeAuBr₆+8H₂O. Sol. in H₂O. (Jolin, Bull. Soc. (2) **21**, 533.)

Didymium bromaurate, DiAuBr₆+9H₂O. Very deliquescent. Sol. in H₂O. (Cleve.)

Lanthanum bromaurate, LaAuBr₆+9H₂O. Sol. in H₂O. (Cleve.)

Magnesium bromaurate.

Deliquescent in moist air. (v. Bonsdorff.)

Manganese bromaurate.

Deliquescent. (v. Bonsdorff.)

Potassium bromaurate, KAuBr₄.

Sl. sol. in H₂O. More sol. in cold alcohol

than in H₂O. (v. Bonsdorff.) +2H₂O. Sol. in 5.12 pts. H₂O at 15°, 1.56 pts. at 40°, and 0.48 pt. at 67°. Decomp. by ether. Sl. sol. in KBr+Aq. (Schottländer, A. 217. 314.)

+5H₂O. Efflorescent. (v. Bonsdorff.)

Rubidium bromaurate, RbAuBr₄.

As cæsium bromaurate.

Ppt. (Gutbier, Z. anorg. 1914, 85. 359.)

Samarium bromaurate, SmAuBr₀+10H₂O.

Very deliquescent, (Cleve, Bull. Soc. (2) **43.** 165.)

Sodium bromaurate, NaAuBr4.

Slowly sol. in H₂O. (v. Bonsdorff.)

Zinc bromaurate, Zn(AuBr₄)₂.

Very deliquescent. (v. Bonsdorff.)

Bromauricyanhdric acid.

Not known in free state.

Barium bromauricyanide, Ba[Au(CN)₂Br₂]₂+ 10H₂O.

Very sol: in hot or cold H₂O, also in alcohol. (Lindbom, Lund. Univ. Arsk. 12. No. 6.)

Cadmium bromauricyanide, Cd[Au(CN)₂Br₂]₂ +6H₂O.

Very sol, in hot or cold H₂O, but solution is unstable. (Lindbom.)

Calcium bromauricyanide, Ca[Au(CN)₂Br₂]₂ +10H₂C.

Extremely sol. in H₂O and alcohol. (Lind-

Cobalt bromauricyanide, Co[Au(CN)₂Br₂]₂+ 9H₂O.

Moderately sol. in H₂O. Less sol. than other bromauricyanides. (Lindbom.)

Potassium bromauricyanide, KAu(CN)₂Br₂ +3H₂O.

Sol. in H₂O and alcohol.

Sodium bromauricyanide, NaAu(CN)₂Br₂+ 2H₂O.

Very sol. in H₂O or alcohol.

Strontium bromauricyanide, Sr[Au(CN)₂Br₂]₂ $+xH_2O$.

Very sol. in H2O or alcohol.

Zinc bromauricyanide, Zn[Au(CN)₂Br₂]₂+ 8H₂O.

Easily sol. in cold or hot H₂O.

.

ted HBr+Aq has a sp. s 82.02% HBr. (Cham-1. 70. 620.) This, or a ¿ leaves a residue, which !

distils unchanged at 125-125.5° under 785 mm. pressure, and contains 48.17% HBr (Topsoë); at 126° under 758 mm. pressure, and contains 46.83% HBr (Bineau); and has sp. gr. = 1.486 at 20° (Bineau); sp. gr. = 1.48 at 20° (Topsoë).

According to Roscoe (A. 116. 214) an acid of constant composition, obtained by boiling a stronger or a weaker acid, if distilled under 752–762 mm. pressure, contains 47.38-47.86% HBr, and boils at 126° at 760 mm. pressure; but the composition is dependent on the pressure, as, for example, under 1952 mm. pressure, the residue boils at 153°, and contains 46.3% HBr. (Roscoe.)

By conducting dry air through HBr+Aq an acid is obtained containing 51.65% HBr if at 16°, and 49.35% HBr if at 100° (Roscoc).

1 vol. H_2O dissolves $600 \pm \text{vols}$. HBr at 10° . (Berthelot, C. R. 76. 679.)

1 pt. H₂O at t° and 760 mm. pressure dissolves pts. HBr.

t°	Pts. HBr	t°	Pts. HBr	ίο	Pts. HBr
25 20 15 10	2.550 2.473 2.390 2.335	$ \begin{array}{c c} -5 & 0 \\ +10 & +25 \end{array} $	2.280 2.212 2.103 1.930	+50 +75 +100	1.715 1.505 1.300

(Roozeboom, R. t. c. 4. 107.)

Absorption by 1 pt. H₂O at t° and p pressure in mm.

 $t^{\circ} = -25^{\circ}$.

ģ	Pts. HBr	р	Pts. HBr
760	2.550	100	$2.056 \\ 1.755 \\ 1.10$
300	2.263	1	
140	2.120	0.5	

 $t^{\circ} = -20^{\circ}$.

р	Pts. HBr	р	Pts. HBr
760 375 180	2.473 2.267 2.119	130 20 	2.056 1.850

 $t^{\circ} = -15^{\circ}$.

p	Pts. HBr	q	Pts. HBr
760 470 250	2.390 2.266 2.119	175 102	2.056 1.980

 $t^{\circ} = -11.3^{\circ}$.

p	Pts. HBr	p	Pts. HBr
760	2.350	310	2.118
570	2.265	216	2.055

t٥	=	~~5°

p Pts. HBr		р	Pts HBr
760	2.280	430	$2.117 \\ 2.055$
730	2.264	298	

$t^{\circ} = 0^{\circ}$.

р	Pts. HBr	р	Pts. HBr
760	2.212	380	2.054
540	2.116	5	1.085

(Roozeboom, R. t. c. 4. 107.)

Sp. gr. of HBr+Aq.

Sp. gr.	% HBr	Temp.	Sp. gr.	% HBr	Temp.
1.055 1.075 1.089 1.097 1.118 1.131 1.164 1.200 1.232 1.253 1.302	7.67 10.19 11.94 12.96 15.37 16.92 20.65 24.35 27.62 29.68 33.84	14° 14° 14° 14° 14° 13° 13° 13°	1.335 1.349 1.368 1.419 1.431 1.438 1.451 1.460 1.485 1.490	36.67 37.86 39.13 43.12 43.99 44.62 45.45 46.09 47.87 48.17	13° 13° 13° 13° 13° 14° 14° 14°

(Topsoë, B. 3. 404.)

Sp. gr. of HBr+Aq at 14°.

% HBr	Sp. gr.	% HBr	Sp. gr.	% HBr	Sp. gr.
% HBr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Sp. gr. 1.007 1.014 1.021 1.028 1.035 1.043 1.050 1.058 1.065 1.073 1.081 1.089 1.097 1.106 1.114	% HBr 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	Sp. gr. 1.140 1.149 1.158 1.167 1.176 1.186 1.206 1.215 1.225 1.246 1.257 1.268	% HBr 35 36 37 38 39 40 41 42 43 44 45 46 47 48	8p. gr. 1. 314 1. 326 1. 338 1. 351 1. 363 1. 376 1. 403 1. 417 1. 431 1. 445 1. 459 1. 473 1. 487
16 17	1.122	33 34	1.290		:::

(Topsoë, calculated by Gerlach, Z. anal. 27. 316.)

Sp. gr. of HBr+Aq at 15°.

% HBr	Sp. gr.	% HBr	Sp. gr.	% HBr	Sp. gr.
5 10 15 20	1.038 1.077 1.177 1.159	25 30 35 40	1.204 1.252 1.305 1.365	45 50 	1.435 1.515

Only a "moderate degree of accuracy" is claimed for this table. (Wright, C. N. 23. 242.)

Sp. gr. of HBr+Aq at 15°.

<u></u>					
% HBr	Sp. gr.	н Вг	Sp. gr.	% HBr	Sp. gr.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.0082 1.0155 1.0230 1.0305 1.038 1.046 1.053 1.061 1.069 1.077 1.085 1.093 1.102 1.110 1.119	18 19 20 21 22 23 24 25 26 27 28 29 30 31	1.145 1.154 1.163 1.172 1.181 1.190 1.209 1.219 1.229 1.239 1.249 1.260 1.270 1.281	35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	1.314 1.326 1.338 1.350 1.362 1.375 1.388 1.401 1.415 1.429 1.444 1.459 1.474 1.490
16 17	1.127 1.136	33 34	1.292	50	1.513

(Biel, C. C. 1882, 148.)

Absorbed by alcohol with formation of

C₂H₅Br.

The composition of the hydrates formed by HBr at different dilutions is calculated from determinations of the lowering of the fr. pt. produced by HBr and of the conductivity and sp. gr. of HBr+Aq. (Jones, Am. Ch. J. 1905, 34, 326).

1905, **34.** 326.) +H₂O. (Roozeboom, R. t. c. **5.** 363.) +2H₂O. (Berthelot, A. ch. (5) **14.** 369.) (Pickering Chem. Soc.1894, **64** (2) 232.

Mpt. —11.2°. (Pickering, l. c.) +3H₂O. Mpt. —48.0°. (Pickering.) +4H₂O. Mpt. —55.8°. (Pickering.) +5H₂O. (Pickering.)

Bromhydric cyanhydric acid, 3HBr, 2HCN.

Decomp. by H_2O and alcohol. Insol. in ether. (Gautier, A. ch. (4) 17. 141.)

Bromic acid, HBrO3.

Known only in aqueous solution.

Solution evaporated on water bath decomposes when it contains 4.26%. HBrO₃. In vacuo, an acid containing 50.59% HBrO₃ corresponding to formula HBrO₃+7H₂O can be obtained.

Not decomp. by dil. HNO₃, or H₂SO₄+Aq. Conc. H₂SO₄ decomposes.

Alcohol and ether are quickly oxidized by HBrOs.

Bromates.

Most of the bromates are very sol. in H_2O , a few are sl. sol., but none are insol., the least sol. being AgBrO₂ and $Hg_2(BrO_3)_2$.

Aluminum bromate, Al(BrO₃)₃.

Deliquescent. (Rammelsberg, Pogg. 55.63.)

+9H₂O. Mpt. 62.3°. Less hygrescopic

than Al(ClO₃)₂. (Dobrosserdow, C. C. 1907. I, 1723.).

Ammonium bromate, NH₄BrO₈.

Decomposes spontaneously; sol. in H₂O. (Rammelsberg, Pogg. 52. 85.)

Barium bromate, Ba(BrO₃)₂.

Solubility of Ba(BrO₃)₂ in H₂O. 100 g. sat. Ba(BrO₈)₂+Aq at to contain g. anhydrous Ba(BrO₈)₂.

t°	grams Ba(BrOs)2	t°	Grams Ba(BrOs)2
Eutectic point -0.034° ±0.002° 0° +10° 20° 25° 30° 40°	0,280	50°	1.72
	0,286	60°	2.271
	0,439	70°	2.922
	0,652	80°	3.521
	0,788	90°	4.26
	0,95	98.7°	5.256
	1,31	*99.65°	5.39

*99.65° is bpt. at 740 mm.=100.39° at 760 mm.(Anschütz, Z. phys. Ch. 1906, 56. 240.)

100 g. sat. Ba(BrO₃)₂+Aq contain 0.793 g. $Ba(BrO_3)_2$ at 25°. Sp. gr. of the solution at $25^{\circ}/4^{\circ}=1.0038$. (Harkins J. Am. Chem. Soc. 1911, 33. 1815.)

Solubility of Ba(BrO₃)₂ in salts+Aq at 25°. C = concentration of salt in salt + Aq in milliequivalents per l. $d_1 = \text{Sp. gr. at } 25^{\circ}/4^{\circ} \text{ of salt } + \text{Aq.}$

S=solubility of Ba(BrO₃)₂ in salt+Aq expressed in milliequivalents per l. d₂=sp. gr. at 25°/4° of Ba(BrO₃)₂+salt+Aq.

22 Sp. 82						
Salt	C	d۱	8	d ₂		
None			40.18	1.0038		
KNO ₈	25.018 50.032 99.970	0.9985 1.0030 1.0033	43.86 47.03 52.13	1.0059 1:0081 1.0120		
Ba(NOz)2	25.018 50.039 99.97 199.95	1.0003 1.0025 1.0073 1.0183	36.77 34.74 32.63 30.95	1.0059 1.0083 1.0132 1.0233		
KBrO ₈	24.988 49.971 99.85	1.0001 1.0031 1.0093	26.53 17.37 8.76	1.0046 1.0062 1.0109		
Mg(NO ₈) ₂	100.0		52.57	1.0114		

(Harkins, J. Am. Chem. Soc. 1911, 33. 1815.)

 $+H_2O$. Sol. in 130 pts. cold, and 24 pts. boiling H₂O. (Rammelsberg, Pogg. 52. 81.) Decomp. by H₂SO., or HCl+Aq. Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4329.)

ALC: NO.

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Bismuth bromate.

Known only in solution, which decomp, on evaporation. (Rammelsberg, Pogg. 55. 76.)

Cadmium bromate, Cd(BrO₈)₂+H₂O.

Sol. in 0.8 pt. cold H₂O. (Rammelsberg, Pogg. 55. 74.)

+2H₂O. (Topsoë, J. B. 1872, 164.)

Cadmium bromate ammonia, Cd(BrO₃)₂, 3NH₈.

Decomp. by H₂O. (Rammelsberg, Pogg. **55.** 74.)

 $Cd(BrO_3)_2$, $4NH_3$. Ppt. (Ephraim, B. 1915, **48.** 51.)

Calcium bromate, Ca(BrO₃)₂+H₂O.

Sol. in 1.1 pts. cold H₂O. (Rammelsberg, Pogg. 52. 98.)

Cerous bromate, Ce(BrO₃)₃+9H₂O.

Easily sol. in H₂O. (Rammelsberg, Pogg. **55.** 63.)

Mpt. 49°; very sol. in H₂O with decomp. (James, J. Am. Chem. Soc. 1909, 31. 914.)

Cobaltous bromate, Co(BrO₃)₂+6H₂O. Sol. in 2.2 pts. cold H₂O; sol. in NH₄OH

+Aq. (Rammelsberg, Pogg. 55. 71.)

Cupric bromate, basic, 6CuO, Br₂O₅+10H₂O. Ppt. (Rammelsberg, Pogg. 55. 78.)

Cupric bromate, Cu(BrO₃)₂+6H₂O.

Easily sol. in H₂O. (Rammelsberg, Pogg. **52**. 92.)

Cupric bromate ammonia, Cu(BrO₃)₂, 4NH₃. Completely sol. in a little H2O, but decomp. by dilution.

Insol. in alcohol. (Rammelsberg, Pogg. 52. 92.)

Didymium bromate, Di(BrO₃)₃+9H₂O. Sol. in H₂O. (Marignac.)

Dysprosium bromate, Dy(BrO₃)₈+9H₂O.

Mpt. 78°. Easily sol. in H2O. Difficultly sol, in alcohol. (Jantsch, B. 1911, 44, 1275.)

Erbium bromate, Er(BrO₃)₈+9H₂O. Very sol. in alcohol and H₂O.

Glucinum bromate.

Deliquescent.

Iron (ferrous) bromate, Fe(BrO₃)₂.

Sol. in H₂O, but solution decomp. very

Iron (ferric) bromate, 5Fe₂O₃, Br₂O₅+30H₂O. Partially sol. in H₂O, with separation of a

more basic salt. Sol. in HBO₃+Aq. (Rammelsberg, Pogg. 55. 68.)

Lanthanum bromate, La(BrO₃)₂+9H₂O.

Sol. in 3½ pts. H₂O at 15°. (Marignac, Ann. Min. (5) 15. 274.) Mpt. 37.5° in its water of crystallization.

416 pts. are sol. in 100 pts. H_2O at 25°. (James, J. Am. Chem. Soc. 1909, 31. 913.)

Lead bromate, basic, 3PbO, Pb(BrO₈)₂+ 2H₂O.

Ppt. (Strömholm, Z. anorg. 1904, 38, 441.)

Lead bromate, Pb(BrO₈)₂.

Sl. sol, in H_2O . 13.37 x $10^{-1}g$, are contained in 1 liter of sat. solution at 20°. (Böttger, Z. phys. Ch. 1903, 46, 603.)

+H₂O. Sol. in 75 pts. cold H₂O. (Ram-

melsberg, Pogg. **52.** 96.)

Lithium bromate, LiBrOs.

Very deliquescent, and sol. in H₂O. (Ram-

melsberg, Pogg. A. 55. 63.)

Not deliquescent. (Politilitzin, B. 23. 545 R.)

Sp. gr. of solution sat. at 18°=1.833, and contains 60.4% LiBrO₈. (Mylius, B. 1897, **30.** 1718.)

+H₂O. Not deliquescent. (Potilitzin.)

Magnesium bromate, $Mg(BrO_3)_2+6H_2O$.

Efflorescent. Sol. in 1.4 pts. cold H₂O at 15°. Melts in its water of crystallization when heated. (Rammelsberg, Pogg. 52. 89.)

Mercurous bromate, basic, 2Hg₂O, Br₂O₅. Insol. in warm H₂O. Sol. in HNO₃+Aq. (Rammelsberg, Pogg. 55. 79.)

Mercurous bromate, Hg₂(BrO₃)₂.

Decomp. by H2O into basic salt. Difficultly sol. in HNO₈+Aq; easily sol. in HCl+Aq. (Rammelsberg.)

Mercuric bromate, basic, 2HgO, $Br_2O_5 + H_2O$. Slowly decomp. by cold, quickly by hot H₂O into oxide and an acid salt. Easily sol. in dil. acids. (Topsoë, W. A. B.

66, 2. 2.)

Mercuric bromate, HgBrO₃+2H₂O.

Sol. in 650 pts. cold, and 64 pts. boiling H₂O. Sl. sol. in HNO₃+Aq. Easily sol. in HCl+Aq. (Rammelsberg, Pogg. **55**. 79.)

Mercuric bromate ammonia.

Sol. with decomp. in HCl+Aq. (Storer's Dict.)

Neodymium bromate, $Nd(BrO_3)_3 + 9H_2O$.

Mpt. 66.7°. 146 pts. are sol. in 100 pts. H₂O at 25°. (James, J. Am. Chem. Soc. 1909, **31.** 915.)

Nickel bromate, Ni(BrO₃)₂+6H₂O.

Sol. in 3.58 pts. cold H₂O. (Rammelsberg, Pogg. 55. 69.)

Nickel bromate ammonia, Ni(BrO₈)₂, 2NH₈... Sol. in H₂O, with decomposition of the major portion. Insol. in alcohol. (Rammels-

berg, l. c.) Ni(BrO₃)₂, 6NH₃. Ppt. (Ephraim, B. 1915, 48. 50.)

Potassium bromate, KBrO₃. 100 pts. H₂O dissolve 6.58 pts. KBrO₃ at 15° (Rammelsberg). 100 pts. H₂O dissolve | 5.83 pts. KBrO₃ at 17.1° (Pohl., W., A. B., 6.

595); at 0°, 3.11 pts.; at 20°, 6.92 pts.; at 40°, 13.24 pts.; at 60°, 22.76 pts.; at 80°, 33.90 pts.; at 100° 49.75 pts. KBrO₃. Sat. solution boils at 104°. (Kremers, Pogg. 97. 5.)

1 l. $\rm H_2O$ at 25° dissolves 0.4715 moles KBrO₃. (Geffeken, Z. phys. Ch. 1904, 49. 206)

296.)

1 l. H₂O dissolves 0.478 mol. KBrO₈ at 25°. (Rothmund, Z. phys. Ch. 1909, 69. 539.)

Sp. gr. of KBrO₈+Aq at 19.5°.

			-		
%KBrO ₃	1.009	2	3	4	5
Sp. gr		1.016	1.024	1.031	1.039
%KBrO ₃	6	7	8	9	10
Sp. gr	1.0 4 6	1.054	1.062	1.070	1.079

(Gerlach, Z. anal. 8. 290.)

Solubility of KBrO₃ in salts+Aq at 25°.

Salt	Moles of KBrO ₃ sol. in 1 liter of						
	.5–N solution	N solution	2-N solution	3-N solution	4-N solution		
NaNOa NaCl	0.'5745 0.5220	0.6497 0.5616	0.7680 0.6042	0.9026 0.6244	1.031 0.640		

(Geffcken, Z. phys. Ch. 1904, 49. 296.)

Easily sol. in liquid HF. (Franklin, Z. anorg. 1905, 46. 2.)

Sl. sol. in alcohol. (Rammelsberg.) Insol. in absolute alcohol.

Solubility in organic compds. +Aq at 25°.

	Solvent	Mol. KBrO ₂ sol. in 1 litre
0.5-N "" "" "" "" "" "" "" "" ""	Water Methyl alcohol Ethyl alcohol Propyl alcohol Tert. amyl alcohol Tert. amyl alcohol Acetone Ether Formaldehyde Glycol Glycerine Mannitol Glucose Sucrose Utrea Dimethyl pyrone Ammonia Diethylamine Pyridine Pyridine Urethane Formamide Acetamide Glycocoll Acetic acid	
**	Phenol	0.426
"	Methylal (0.405
"	Methyl acetate	0.420
(T) 12	1 7 1 01	1000 00 700

(Rothmund, Z. phys. Ch. 1909, 69, 539.)

Insol. in acetone. (Eidmann, C. C: 1899, II. 1014; Naumann, B. 1904, 37. 4329.)
Insol. in ethyl acetate. (Naumann, B.

1910, **43**. 314.)

Insol. in methyl acetate. (Naumann, B. 1909. 42. 3790.)

Praseodymium bromate, Pr(BrO₃)₃+9H₂O.

Mpt. 56.5° . 190 pts. are sol. in 100 pts. H_2O at 25°. (James, J. Am. Chem. Soc. 1909, 31. 914.)

Samarium bromate, Sm(BrO₃)₃+9H₂O.

Mpt. 75°. 114 pts. are sol. in 100 pts. H₂O at 25°. Very sl. sol. in alcohol. (James, J. Am. Chem. Soc. 1909, 31. 915.)

Scandium bromate.

(Crookes, Roy. Soc. Proc. 1908, 80, A, 518.)

Silver bromate, AgBrO₈.

1 pt. $\rm H_2O$ dissolves 0.00810 pt. AgBrO₈ at 24.5°. (Noyes, Z. phys. Cb. 8, 248.) 1.5°. (Noyes, Z. phys. Ch. 6. 246.) Sol. in 595.3 pts. H₂O at 25°. Sol. in 320.4 pts. HNO₃+Aq (sp. gr. 1.21)

at 25°

Sol. in 2.2 pts. NH₄OH +Aq (sp. gr. 0.96) at 25°. (Longi, Gazz. ch. it. 13. 87.)
1 l. H₂O dissolves 1.71 g. AgBrO₃ at 27°. (Whitby, Z. anorg. 1910, 67. 108.)
Sl. sol. in H₂O. 1.59 x 10-4 g. are con-

tained in 1 liter of sat. solution at 20°. (Böttger, Z. phys. Ch. 1903, 46. 603.)

Insol. in HNO₈. (Löwig.) Easily sol. in $NH_4OH + Aq.$

Silver bromate ammonia, AgBrO₃, 2NH₃.

Decomp. in air or by H2O. (Rammelsberg, Pogg. 52. 94.)

Sodium bromate, NaBrO₈.

Water State

Sol. in 2.7 pts. H₂O at 15°. (Rammelsberg.) 100 pts. H₂O dissolve at— 0° 20° 40° 60° 80° 100° 27.54 34.48 50.25 62.5 75.75 90.9 pts. NaBrO₃.

(Kremers, Pogg. 94, 271.)

Easily forms supersaturated solutions. Sat. solution boils at 109°. (Kremers.) NaBrO₃+Aq containing 10.10% NaBrO₃ has sp.gr. 20°/20° = 1.0818.

NaBrO₃+Aq containing 11.09% NaBrO₃ has sp. gr. 20°/20°=1.0900.

(Le Blanc and Rohland, Z. phys. Ch. 1896 19. 278.)

Sp. gr. of NaBrO₃+Aq at 19.5°.

%NaBrO _s .	1.041	10	15
Sp. gr		1.083	1.129
%NaBrO ₃ .	20	25	30
Sp. gr	1.178	1.231	1.289

. in liquid NH₃. (Fränklin, **20.** 829.)

Insol. in methyl acetate. (Naumann, B.

1909, **42**. 3790.) Insol. in ethyl acetate. (Naumann, B. 1910, **43.** 314.)

Sodium bromate bromide, 3NaBrO₃, 2NaBr +3H₂O.

Decomp. by H₂O or alcohol. (Fritzsche.)

Strontium bromate, Sr(BrO₃)₂+H₂O.

Sol. in 3 pts. H₂O (Rammelsberg, Pogg. 52. 84); less sol. in H_2O than $SrBr_2 + 6H_2O$. (Löwig.)

Thallous bromate, TlBrOs.

Sl. sol. in hot H_2O ; easily sol. in $HNO_3 + Aq$. (Oettinger.)

Easily sol. in H₂O and dil. acids. (Ditte, A. ch. (6) 21. 145.)

Terbium bromate, $Tb(BrO_3)_3 + 9H_2O$.

Not deliquescent. (Potratz, C. N. 1905, 92, 3.)

Thallous bromate, TlBrO₈.

1 l. H₂O at 39.75° dissolves 2.216 x 10-2 . mol. (Noyes and Abbott, Z. phys. Ch. 1895, **16.** 130.)

Sl. sol. in H₂O. 3.46 x 10⁻¹ gram are contained in 1 liter of sat. solution at 20°. (Böttger, Z. phys. Ch. 1903, **46**, 603.)

Thallic bromate, Tl(BrO₃)₃+3H₂O.

Very hydroscopic. Easily decomp. by H₂O. (Gewecke, Z. anorg. 1912, **75.** 275.)

Thulium bromate, Tm₂(BrO₃)₆+18H₂O.

Pptd. from sat. aqueous solution by 95% alcohol

NH₄OH is the best precipitant. (James, J. Am. Chem. Soc. 1911, 33, 1342.)

Tin (stannous) bromate (?).

Insol. in H₂O; sol. in HCl+Aq.

Uranyl bromate, $4UO_8$, $3Br_2O_6+16H_2O$.

Sol. in H₂O. (Rammelsberg.)

Yttrium bromate, Y(BrO₃)₃+9H₂O.

More easily sol. in H_2O than $Y(IO_3)_3$. Sl. sol. in alcohol. Insol. in ether. (Cleve.)

Mpt. 74°. 168 pts. are sol. in 100 pts. H₂O at 25°

Sl. sol. in alcohol. (James, J. Am. Chem. Soc. 1909, **31.** 916.)

Zinc bromate, $Zn(BrO_3)_2+6H_2O$.

Sol. in 1 pt. cold H₂O. (Rammelsberg, Pogg. 52. 90.)

Zinc bromate ammonia, Zn(BrO₃)₂, 2NH₃+ 3H₂O.

Decomp. by H₂O and alcohol. Sol. in NH₂OH+Aq. (Rammelsberg, Pogg. **52.** 90.) $Zn(BrO_8)_2$, $4NH_8$. Ppt. (Ephraim, B. 1915, 48. 51.)

Perbromic acid.

See Perbromic acid.

Bromides.

Most bromides are sol. in H2O, many in alcohol, and some in ether.

AgBr and Hg2Br2 are insol. in H2O or acids; PbBr₂ and TlBr are sl. sol. therein. Cu₂Br₂ is insol. in H2O, sol. in acids.

Sec under each element.

Bromine, Br2.

1 pt. Br dissolves at 15° in 33 pts. H₂O.

(Löwig, Pogg. 14. 485.) 1 pt. Br dissolves at 15° in 31 pts. H₂O. (Dancer, Chem. Soc. 15, 477.)

Solubility of Br in 100 pts. H₂O at t°.

t°	Pts. Br.	to.	Pts. Br	t°	Pts. Br
5	3.600	15	3.226	25	3.167
10	3.327	20	3.208	30	3.126

(Dancer, l, c.)

A sat. aqueous solution of Br contains 4.05% Br at 0°; 3.80% Br at 3°; 3.33%Br at 10°. (Roozeboom, R. t. c. 3. 29, 59, 73, 84.) 1 l. H₂O dissolves 34 g. Br at 25°. (Jakow-kin, Z. phys. Ch. 1896, 20. 25.) 1 pt. is sol. in 30 pts. H₂O. (Dietze, Chem.

Soc. 1899, 76 (2) 150.)

100 pts. H₂O dissolve at: 0° 10.34° 19.96° 30.17° 40.03° 49.85° 4.167 3.740 3.578 3.437 3.446 3.522 pts. bromine.

Liquid bromine as such is insol. in H₂O: only the vapor dissolves. (Winkler, Ch. Z. 1899, 23. 688.) 11. H₂O dissolves 33.95 g. Br₂ at 25°. (Mc-

Lauchlan, Z. phys. Ch. 1903, 44, 617.)

Solubility of bromine vapor in H2O at tc.

a = coefficient of absorption.						
t°	a	to	а			
0 2 4 6	60.5	42	8.6			
2	54.1	44	7.9			
4	48.3	46	7.4			
6	43.3	48	6.9			
8	38.9	50	6.5			
10	35.1	52	6.1			
12	31.5	54	5.8			
14	28.4	56	5.4			
16	25.7	58	5.1			
18	23.4	60	4.9			
20	21.3	62	4.6			
22	19. 4	64	4.4			
24	17.7	66	4.2			
26	16.3	68	4.0			
28	15.0	70	3.8			
30	13.8	72	3.6			
32	12.7	74	3.4			
34	11.7	76	3.3			
36	10,9	78	3.1			
· 38	10.1	80	3.0			
40	9.4	1	1			

(Winkler, Ch. Z. 1899, 23. 688.)

Solubility of bromine vapor. (Mean of many determinations)

Ten	ap.	Pressure	Absorption coefficient			
20. 30. 40. 50. 60.	94° 46 38 31 25 04	56-13mm. 89-16 138-9 179-12 229-26 274-53 314-46 154-54 396-74	60.53 35.22 20.87 13.65 9.22 6.50 4.84 3.82 2.94			

Solubility of liquid bromine. (The mean of many determinations)

Temp.	0.0	10.34°	19.96°	30.17°	40.03°	49.85°
Pts. H ₂ O that dissolve 1 pt. Br ₂	24.0	26.74	27.94	29.10	29.02	28.38

Much less Bro is sol, in ice cold H2O in the presence of bromine hydrate.

Solubility in presence of bromine hydrate. (The mean of many determinations)

Temp.	. 0°	5.12°
Pts. H ₂ O that dissolve 1 pt. Br ₂	42.39	26.26

(Winkler, Ch. Z. 1899, 23, 688-689.)

Solubility of Br₂ in H₂O at $25^{\circ} = 0.21$ mols. in 1 l. (Bray, J. Am. Chem. Soc. 1910, 32. 398.)

Sp. gr. of Br₂+Aq containing pts. Br in 1000 pts. solution.

Pts. Br.	Sp. gr.	Pts, Br.	Sp. gr.
10.72 10.68 12.05 12.21	1.00901 1.00931 1.00995 1.01223	18.74-19.06 19.52-20.09 20.89-21.55 31.02-31.69	1.01491 1.01585 1.01807 1.02367

(Slessor, N. Edin, Phil. J. 7, 287.)

Sp. gr. of Br₂+Aq at 32.5°.

% Br2 by weight	Sp. gr.
0.7214	0.999814
1.1172	1.002520
1.6 44 8	1,006100
1.9956	1.008870
2.5960	1.013200

(Joseph, Chem. Soc. 1915, 107. 3.)

Sol, in conc. HCl, HBr, conc. solutions of bromides, and in liquid SO₂. (Sestini; Zeit. Chem. 1868. 718.)

Much more sol. in HCl+Aq than in H₂O. 100 ccm. HCl+Aq of 1.153 sp. gr. dissolve 36.4 g. Br at 12°.

More sol. in SrCl₂, and BaCl₂+Aq than in H₂O. (Berthelot, C. R. 100. 761.)

Bromine is not more sol. in KBr+Aq than

in H₂O (?). (Balard.)

KBr+Aq containing 1 pt. KBr to 6 pts. H₂O takes up as much Br as it already contains; when this solution is heated the dissolved Br is separated. 1 pt. KBr+1 pt. H₂O takes up twice as much Br as it already contains, much heat being evolved. This solution loses Br on exposure to the air or when heated. (Löwig.)

Solubility of Br₂ in KBr+Aq.

g. Mols. KBr per l. g. at. Br dissolved per l at 18.5° 0.00 0.4448 0.4282 0.01 0.4634 0.4490 0.02 0.4823 0.4671 0.03 0.5049 0.4925 0.04 0.5243 0.5101 0.05 0.5431 0.5301 0.06 0.5668 0.5530 0.07 0.5895 0.5636 0.08 0.6059 0.6920 0.09 0.6301 0.5981 0.1 0.6533 0.2 0.8718 0.8591 0.3 1.0549 1.0787 0.4 1.3124 1.2704 0.5 1.5436 0.6 1.7712 0.7 2.0006 1.9197 0.8 2.2354 2.1029 0.9 2.4851 2.3349			
0.01 0.4684 0.4490 0.02 0.4823 0.4671 0.03 0.5049 0.4925 0.04 0.5243 0.5101 0.05 0.5431 0.5301 0.06 0.5668 0.5530 0.07 0.5895 0.5636 0.08 0.6059 0.5920 0.09 0.6301 0.5981 0.1 0.6533 0.6488 0.2 0.8718 0.8591 0.3 1.0549 1.0787 0.4 1.3124 1.2704 0.5 1.5436 1.4731 0.6 1.7712 1.6717 0.7 2.0006 1.9197 0.8 2.2354 2.1029	g. Mols. KBr per l.	g. at. Br dissolved per l at 18.5°	g. at. Br dissolved per l. at 26.5°.
0.02 0.4823 0.4671 0.03 0.5049 0.4925 0.04 0.5243 0.5101 0.05 0.5431 0.5301 0.06 0.5668 0.5530 0.07 0.5895 0.5636 0.08 0.6059 0.5920 0.09 0.6301 0.5981 0.1 0.6533 0.6488 0.2 0.8718 0.8591 0.3 1.0549 1.0787 0.4 1.3124 1.2704 0.5 1.5436 1.4731 0.6 1.7712 1.6717 0.7 2.0006 1.9197 0.8 2.2354 2.1029	0.00	0.4448	0.4282
0.03 0.5049 0.4925 0.04 0.5243 0.5101 0.05 0.5431 0.5301 0.06 0.5668 0.5530 0.07 0.5895 0.5636 0.08 0.6059 0.5920 0.09 0.6301 0.5981 0.1 0.6533 0.6488 0.2 0.8718 0.8591 0.3 1.0549 1.0787 0.4 1.3124 1.2704 0.5 1.5436 1.4731 0.6 1.7712 1.6717 0.7 2.0006 1.9197 0.8 2.2354 2.1029	0.01	0.4634	0.4490
0.04 0.5243 0.5101 0.05 0.5431 0.5301 0.06 0.5668 0.5530 0.07 0.5895 0.5636 0.08 0.6059 0.5920 0.09 0.6301 0.5981 0.1 0.6533 0.6488 0.2 0.8718 0.8591 0.3 1.0549 1.0787 0.4 1.3124 1.2704 0.5 1.5436 1.4731 0.6 1.7712 1.6717 0.7 2.0006 1.9197 0.8 2.2354 2.1029	0.02	0.4823	0.4671
0.04 0.5243 0.5101 0.05 0.5431 0.5301 0.06 0.5668 0.5530 0.07 0.5895 0.5636 0.08 0.6059 0.5920 0.09 0.6301 0.5981 0.1 0.6533 0.6488 0.2 0.8718 0.8591 0.3 1.0549 1.0787 0.4 1.3124 1.2704 0.5 1.5436 1.4731 0.6 1.7712 1.6717 0.7 2.0006 1.9197 0.8 2.2354 2.1029			0.4925
0.05 0.5431 0.5301 0.06 0.5668 0.5530 0.07 0.5895 0.5636 0.08 0.6059 0.5920 0.09 0.6301 0.5981 0.1 0.6533 0.6488 0.2 0.8718 0.8591 0.3 1.0549 1.0787 0.4 1.3124 1.2704 0.5 1.5436 1.4731 0.6 1.7712 1.6717 0.7 2.0006 1.9197 0.8 2.2354 2.1029			0.5101
0.06 0.5668 0.5530 0.07 0.5895 0.5636 0.08 0.6059 0.5920 0.09 0.6301 0.5981 0.1 0.6533 0.6488 0.2 0.8718 0.8591 0.3 1.0549 1.0787 0.4 1.3124 1.2704 0.5 1.5436 1.4731 0.6 1.7712 1.6717 0.7 2.0006 1.9197 0.8 2.2354 2.1029			
0.07 0.5895 0.5636 0.08 0.6059 0.5920 0.09 0.6301 0.5981 0.1 0.6533 0.6488 0.2 0.8718 0.8591 0.3 1.0549 1.0787 0.4 1.3124 1.2704 0.5 1.5436 1.4731 0.6 1.7712 1.6717 0.7 2.0006 1.9197 0.8 2.2354 2.1029			0.5530
0.08 0.6059 0.5920 0.09 0.6301 0.5981 0.1 0.6533 0.6488 0.2 0.8718 0.8591 0.3 1.0549 1.0787 0.4 1.3124 1.2704 0.5 1.5436 1.4731 0.6 1.7712 1.6717 0.7 2.0006 1.9197 0.8 2.2354 2.1029			
0.09 0.6801 0.5981 0.1 0.6533 0.6488 0.2 0.8718 0.8591 0.3 1.0549 1.0787 0.4 1.3124 1.2704 0.5 1.5486 1.4731 0.6 1.7712 1.6717 0.7 2.0006 1.9197 0.8 2.2354 2.1029			
0.1 0.6533 0.6488 0.2 0.8718 0.8591 0.3 1.0549 1.0787 0.4 1.3124 1.2704 0.5 1.5436 1.4731 0.6 1.7712 1.6717 0.7 2.0006 1.9197 0.8 2.2354 2.1029			0.5981
0.2 0.8718 0.8591 0.3 1.0549 1.0787 0.4 1.3124 1.2704 0.5 1.5436 1.4731 0.6 1.7712 1.6717 0.7 2.0006 1.9197 0.8 2.2354 2.1029			
0.3 1.0549 1.0787 0.4 1.3124 1.2704 0.5 1.5436 1.4731 0.6 1.7712 1.6717 0.7 2.0006 1.9197 0.8 2.2354 2.1029			
0.4 1.3124 1.2704 0.5 1.5436 1.4731 0.6 1.7712 1.6717 0.7 2.0006 1.9197 0.8 2.2354 2.1029			
$ \begin{array}{c ccccc} 0.5 & & 1.5436 & & 1.4731 \\ 0.6 & & 1.7712 & & 1.6717 \\ 0.7 & & 2.0006 & & 1.9197 \\ 0.8 & & 2.2354 & & 2.1029 \\ \end{array} $		1.3124	1.2704
0.6 1.7712 1.6717 0.7 2.0006 1.9197 0.8 2.2354 2.1029		1.5436	1.4731
0.7 2.0006 1.9197 0.8 2.2354 2.1029			1.6717
0.8 2.2354 2.1029			
			2.1029

The above figures indicate that below a concentration of 0.1 g. mol. KBr per l. just enough Br is dissolved to form KBr₃, while above that concentration somewhat larger amounts of Br are dissolved, which is greater at the lower temp.

(Worley, Chem. Soc. 1905, 87. 1109.)

Solubility of Br₂ in NaBr+Aq at 25°.

g. NaBr per l.	gatoms Br2 per l.	Sp. gr.
92.6	2.479	1.213
160.5	4.345	1.372
205.8	6.195	1.515
255.8	8.575	1.678
319.7	13.65	1.997
359.0	16.04	2.137
	19.23	2.327
408.3	20.85	2.420

(Bell, J. Am. Chem. Soc. 1912, 34. 14.)

Solubility in salts+Aq. Solubility in 1 liter K₂SO₄+Aq at 25°.

K ₁ SO ₄ +Aq	g. Bromine
1-N	25.14
'/2-N	29.44
'/4-N	31.46
'/8-N	32.70
1/18-N	88.10

(Jakowkin, Z. phys. Ch. 1896, 20, 26.)

Solubility in 1 liter Na₂SO₄+Aq at 25°.

Na ₂ SO ₄ +Aq	g. Bromine
1-N	25.07
1/2-N	29.20
1/4-N	31.33
1/8-N	32.94
1/16-N	33.26

(Jakowkin, l. c.)

Solubility in 1 liter NaNO₃+Aq at 25°.

NaNO ₃ +Aq	g. Bromine
1-N	38.80
¹ / ₂ -N	31.35
¹ / ₄ -N	32.62
¹ / ₈ -N	33.33
¹ / ₁₀ -N	33.74

(Jakowkin, l. c.)

Solubility in salts+Aq at 25°.

Salt +Aq.	g. Br2 sol. in 1 liter
1/2-N.Ns2SO4	23.90
1/3-N.K2SO4	24.80
1/3-N.(NH4)2SO4	77.7
N.NoNO3	28.00
N.KNO3	28.95
N.NH4NO3	55.15
N.NaCl	55.90
N.KCl	57.40
N.NH4Cl	82.2

(McLauchlan, Z. phys. Ch. 1903, 44. 617.)

Solubility in HgBr₂+Aq at 25°.

	C.L.E. COMMEN.
Millimols. Br2	Millimols. Hg
2.125	0.
2.204	0.0560
2.216	0.0793
2.226	0.1284
2.231	0.2120 .

(Herz and Paul, Z. anorg. 1914, 85. 215.)

1 l. N.NH₄C₂H₃O₂+Aq dissolves 340.5 g. Br₂ at 25°. (McLauchlan, Z. phys. Ch. 1903, 44. 617.)

Miscible in all proportions with liquid NO₂. (Frankland, Chem. Soc. 1901, **79**. 1361.)

More sol. in alcohol than in H₂O; miscible with ether, CS₂, CHCl₃. (Sestini, Zeit. Chem. **1868.** 718.)

Somewhat soluble in glycerine. (Pelouze.) Sol. in benzene (Mansfield); insol. in benzene (Moride, A. ch. (3) 39, 452). Sol. in warm chloral, bromal; and iodal. (Löwig, Pogg. 14, 485.) Sol. in SCl₂ (Solly), and SP₁₂. Sol. in conc. HC₂H₂O₂+Aq. (Balard.) Sol. in aqueous solution of potassium, sodium, or calcium acetates. (Cahours.)

Solubility in CS2. 100 g. of the sat. solution contain at: --95° -110.5° ---116° 45.4 39.0 36.9 g. Br₂. (Arctowski, Z. anorg. 1896, 11. 274.)

Cryst. from CS₂ at —90° in fine needles. (Arctowski, Z. anorg. 1895, 10. 25.)

Sp. gr. of Br₂+CCl₄ at 32.5°.

% Br₂ by weight 1.54491.58014 1.6454 1.58060 1.7990 1.58168 1.58812 -2.66763.5833 1.59526 (Joseph, Chem. Soc. 1915, 107. 3.)

Sp. gr. of Br_i+nitrobenzene at 32.5°. % Br2 by weight Sp. gr. 1.5643 $1.20\overline{2}25$ 3.2323 1.214491.22518 4.6462 1.23603 6.1826 (Joseph, Chem. Soc. 1915, 107. 3.)

Very sol. in benzonitrile. (Naumann, B. 1914, 47. 1369.) (Eidmann, C. C. 1899, Sol. in acetone. II, 1014; Naumann, B. 1904, **37.** 4328.)

Partition of Br₂ between water and other solvents.

W=millimols Bromine in 10 ccm. of the aqueous layer.

G=millimols Bromine in 10 ccm. of the

other layer.				_
Other solvent	G	w	G/W	_
CCI4	1.949 7.008 12.171 39.880 54.574	0.0853 0.3085 0.5300 1.3132 1.5560	22.73 22.71 23.13 30.32 35.01	_
75% by vol. CCl +25% by vol. CS ₂	3.567 7.304 10.833 13.922 17.230 25.637 40.625 54.035	0.0985 0.1910 0.2900 0.3720 0.4580 0.6580 0.9940 1.2080	37.06 38.15 37.36 37.42 37.62 38.96 40.88 44.73	P
50% by vol. CCl ₄ + 50% by vol. CS ₂	3.592 6.820 10.148 13.866 16.616 42.975 55.965	0.0784 0.1487 0.2206 0.3065 0.3688 0.8086 0.9960	45.82 46.85 46.01 45.24 45.05 53.15 56.19	
25% by vol. CCl. +75% by vol. CS ₂	5.753 10.902 26.724 41.314 55.526	0.0884 0.1682 0.4970 0.6331 0.8520	65.05 64.82 65.65 65.26 65.17	-

Partition of Br2, etc.—Continued

Other solvent	G	w	G/W
$ ext{CS}_2$	7.750	0.1015	76.35
	10.600	0.1387	76.44
	14.696	0.1910	76.98
	17.999	0.2352	76.54
	26.345	0.3467	75.99
	40.625	0.5194	78.21
	57.038	0.7160	79.66

(Herz, Z. Elektrochem, 1910, 16. 871.)

Partition coefficient for bromine between CS. and H₂O at 25°C.

A = concentration of the water layer. C=concentration of the CS₂ layer.

		-
A	С	N=C/A
7.545 4.109. 2.660 2.544 1.740 1.2878 0.8073 0.5046	691.9 338.6 217.4 207.7 140.38 103.7 64.44 39.64	91.71 82.41 81.72 81.66 80.67 80.51 79.83 78.38
		<u> </u>

Partition coefficient for bromine between CHBr₃ and H₂O at 25°C.

A = concentration of the water layer.C=concentration of the CHBr₃ layer.

A	C	N=C/A
5.424 3.838 2.368 1.348 0.766 0.366	373.6 264.7 161.5 90.17 50.49 23.62	68.88 68.80 68.19 66.90 65.84 64.85

Partition coefficient for bromine between CCl4 and H₂O at 25°C.

A = concentration of the water layer. C = concentration of the CCl₄ layer.

A	С	N=C/A	
14. 42 10. 80 7. 901 7. 163 6. 803 5. 651 3. 216 2. 054 1. 266 0. 7711 0. 5761 0. 4476 0. 3803	545.2 372.2 252.8 225.8 218.5 172.6 94.84 58.36 35.92 21.53 15.72 12.09 10.27 6.691	37.82 34.44 32.01 31.52 32.12 30.54 29.48 28.41 28.37 27.92 27.26 27.02 27.00	
	2.002	200	

(Jakowkin, Z. phys. Ch. 1895, 18. 588.)

48 12 34 17 50 11

Partition of bromine between CCl₄ and salts+Aq.

A = concentration of Br in H₂O layer. C = concentration of Br in CCl₄ layer.

Partition of Br₂ between CCl₄ and NaNO₃+Aq at 25°.

NaNOs+Aq	A	C
1-N	7.905	316.7
1/2-N	8.763	319.5
1/4-N	9.033	315.7
1/4-N	9.200	316.7
1/16-N	9.399	319.3

(Jakowkin, Z. phys. Ch. 1896, 20, 25.)

Partition of Br₂ between CCl₄ and K₂SO₄+
Ac at 25°.

K28O4+Aq	A	C
1-N	5.982	255.4
'/2-N	6.843	253.4
'/4-N	7.354	252.8
· '/8-N	7.585	250.3
· /16-N	7.498	242.3

(Jakowkin, l. c.)

Partition of Br₂ between CCl₄ and Na₂SO₄+

Ag at 25°. C NugSO: +Aq 254.65.9341-N 6.838253.41/2-N 254.4 7.4021/4--N 252.87.609 7.713 251.21/10-N

(Jakowkin, l. c.)

Crystallizes at 4° with 10H₂O.

Bromine chloride, BrCl.

Sol. in H₂O, CS₂, ether, etc.

Bromine fluoride, BrFs.

Fumes in the air. Decomp. by H₂O. (Lebenu, C. R. 1905, **141**. 1019.)

Bromine oxides.

No oxides of bromine are known in the free state. See hypobromous, bromic, and perbromic acids.

Bromiridic acid.

Ammonium bromiridate, (NH₄)₂IrBr₆.

Less sol. in cold H₂O than the K salt. (Birnbaum, Zeit. Chem. **1865**. 22.)
Very sol. in cold H₂O. (Gutbier, B. 1909, **42**. 3910.)

Cæsium bromiridate, Cs2IrBr6.

Sol. in H₂O. (Gutbier, B. 1909, 42. 3911.)

Potassium bromiridate, K₂IrBr₆.

Moderately sol, in cold, more easily in hot 11,().

Insol. in alcohol or ether.
Sol. in cold H₂O and in HBr+Aq. (Gutbier, B. 1909, **42**, 3910.)

Rubidium bromiridate, Rb2IrBr6.

Very sol. in cold H₂(). Sol. in hot dil. HBr+Aq. (Gutbier, B. 1909, **42**. 3911.)

Sodium bromiridate.

Deliquescent. Easily sol. in H₂O, alcohol, or ether.

Bromiridous acid, H₆Ir₂Br₁₂+6H₂().

Easily sol. in H₂O, alcohol, or other. (Birr - baum, 1864.)

Ammonium bromiridite, (NH₄)₆Ir₂Br₁₂+II₂(1. Difficultly sol. in H₂O. (Birnbaum.)

Potassium bromiridite, K₆Ir₂Br₁₂+6H₂O. Efflorescent. Sol. in H₂O.

Silver bromiridite, AgoIr2Br12.

Ppt. Insol. in H2O or acids.

Sodium bromiridite, Na₆Ir₂Br₁₂+24II₂().

Efflorescent. Very sol. in H2O.

Bromocarbonatoplatindiamine carbonate, $\underset{\text{By}_0}{\text{CO}_3}[\text{Pt}(\text{N}_2\text{H}_6)_2]_2(\text{C}()_2)_2 + 4\text{H}_2()$.

Ppt

Bromocarbonatoplatindiamine carbonate bromoplatindiamine nitrate,

 $\frac{\text{CO}_3[\text{Pt}(\text{N}_2\text{H}_6)_2]_2(\text{CO}_3)_2}{\text{Br}_2}$, $2\text{Br}_2\text{Pt}(\text{N}_2\text{H}_6)_2$ (NO₃)₂,

Bromochloroplatindiamine chloride,

 $\frac{\mathrm{Br}}{\mathrm{Cl}} \mathrm{Pt}(\mathrm{N}_2\mathrm{H}_6)_2\mathrm{Cl}_2.$

Very sl. sol. in H2O. (Cleve.)

— chlorobromide, $\underset{Cl}{\operatorname{Br}} \operatorname{Pt} \underset{N_2H_0B_1}{\overset{N_2H_0Cl}{\operatorname{Cl}}}(?)$.

Very sl. sol. in H₂().

Bromochlororoplatinic acid.

Potassium bromochloroplatinate, K₂PtCl₄B₃ (Pitkin, J. Am. Chem. Soc. 2. 408.)

Mixture. (Herty, J. Am. Chem. Soc. 1898, 18. 130.)

K₂PtCl₄Br₂. Sl. sol. in cold H₂O; much more sol. in hot H₂O. (Pitkin.)

Mixture. (Herty.) K₂PtCl₃Br₃. As above.

K₂PtCl₂Br₄. (Pigeon, A. ch. 1894, (7) 2. 483.)

K₂PtClBr₃. (Pitkin.)

Bromochromic acid.

Potassium bromochromate, KCrO₂Br₂ = CrO₂(Br)OK.

Decomp. by H_2O . (Heintze, J. pr. (2) 4. 225.)

Dibromochromium chloride, [Cr(H₂O)₄Br₂]Cl+2H₂O.

Ppt. Nearly insol. in fuming HCl. (Bjerrum, B. 1907, 40, 2918.)

Bromohydroxyloplatindiamine bromide,

OH Pt(N2H6Br)2.

Very sl. sol. in H2O. (Cleve.)

---- chloride, ()H Pt(N₂H₆Cl)₂. Sol. in H₂() (Cleve.)

--- nitrate, $\stackrel{\text{()II}}{\text{Br}}$ Pt(N₂H₆NO₅)₂.

Very sl. sol. in cold, moderately sol. in hot H₂O. (Cleve.)

Bromohydroxyloplatinmonodiamine

nitrate, $_{OH}^{Br}$ Pt $_{NH_3NO_3}^{(NH_3)_2NO_3}$ +H₂O. Easily sol. in H₂O. (Cleve.)

Bromomercurosulphurous acid.

Ammonium bromomercurosulphite, NH₄S()₃HgBr.

Sol. in II₂O. (Burth, Z. phys. Ch. 9. 215.)

Potassium bromomercurosulphite, KS()₈HgBr.

As above. (B.)

Bromomolybdenum bromide, $Br_4Mo_3Br_2 = molybdenum \ di$ bromide, $MoBr_2$.

Insol. in H₂() or acids, or even in boiling aqua regia. Easily sol. in dilute, decomp. by conc. alkalies+Aq. (Blomstrand, J. pr. 82. 436.)

Bromomolybdenum chloride, Br₄Mo₈Cl₂+ 3H₂().

Insol. in acids. (Blomstrand.)

Bromomolybdenum chromate, Br₄Mo₃CrO₄+ 2H₂().

Insol. in dil. acids. Sol. in hot conc. HCl +Aq. Insol. in alkali chromates +Aq. (Atterberg.)

Bromomolybdenum fluoride, $Br_4Mo_2F_2+3H_2O$.

Insol. in H₂O. (Atterberg.)

Bromomolybdenum hydroxide, Br₄Mo₃(OH)₂.

Completely sol, in alkalies if not heated over 90°. (Atterberg.)
+2H₂O.

 $+2H_{2}O.$ $+8H_{2}O.$

Bromomolybdenum iodide hydroxide, 2Br₄Mo₂I₂, Br₄Mo₂(OH)₂+8H₂O. Precipitate. (Blomstrand, J. pr. 77. 92.)

Bromomolybdenum molybdate, Br₄Mo₃MoO₄ Precipitate. (Atterberg.)

Literatur

Bromomolybdenum phosphate, Br₄Mo₃H₄(PO₄)₂.

Precipitate. Insol. in H₂O. (Atterberg.)

Bromomolybdenum sulphate, Br₄Mo₂SO₄-3H₂O.

Precipitate. Sl. sol. in boiling H_2SO (Atterberg.)

Dibromomolybdous acid, MoOBr₂(OH) + 1½H₂O.

Sol. in H₂O. Very hydroscopic. (Wein

land, Z. anorg. 1905, 44. 86.)

Tetrabromomolybdous acid, MoBr₄(OH)+ 2H₂O. Sol. in H₂O. Hydroscopic. (Weinland

l. c.)

Diammonium pentabromomolybdite, MoBr₆O(NH₄)₂.

Hydroscopic. Sol. in H_2O . (Weinland l. c.)

Dicæsium pentabromomolybdite, MoBr₅OCs₂.

Hydroscopic. Sol. in H₂O. (Weinland l. c.)

Calcium tetrabromomolybdite, (MoBr₄O)₂C: +7H₂O.

Hydroscopic. Sol. in H2O. (Weinland, l. c

Monolithium tetrabromomolybdite, MoBr₄(OLi) +4H₂O.

Hydroscopic. Sol. in H_2O . (We inland l, c.)

Magnesium pentabromomolybdite, MoBr_b(OMg)+7H₂O.

Hydroscopic. Sol. in H₂O. (Weinland l. c.)

 $Monopotassium\ tetrabromomolybdite,\ MoBr_4(OK) + 2H_2O.$

Hydroscopic. Sol. in H₂O. (Weinland l. c.)

Dipotassium pentabromomolybdite,

 $\mathrm{MoBr_5OK_2}$. Hydroscopic. Sol. in $\mathrm{H_2O}$. (Weinland $l.\ c.$)

Dirubidium pentabromomolybdite, MoBr₅ORb₂.

Hydroscopic. Sol. in H₂O. (Weinland

Bromonitratoplatindiamine nitrate,

Br Pt N₂H₆NO₃. NO₃ Pt N₂H₆NO₃. Decomp. by H₂O. (Cleve.)

sulphate, $\stackrel{\text{Br}}{\text{NO}_3} \text{Pt}(N_2H_4)_2\text{SO}_4 + \text{H}_2\text{O}_4$.
Sl. sol. in H₂O.

Same State of the state of the same

Bromonitritoplatinsemidiamine nitrite, NO₂Br₂Pt(NH₃)₂NO₂.

SI. sol. in H₂O. (Blomstrand.)

Bromonitrous acid.

Platinum silver bromonitrite, PtAg₂Br₂(NO₂)₄.
Ppt. (Miolati, Gazz. ch. it. 1900, **30**, 588.)

Bromopalladic acid.

Ammonium bromopalladate, (NH₄)₂PdBr₆.
Difficultly sol. in cold H₂O. Decomp. by hot II₂O and by hot cone. H₂SO₄. (Cutbier,

B. 1905, 38, 1907.)

Cæsium bromopalladate, Cs2PdBr6.

Difficultly sol. in cold H₂O. Decomp. by hot II₂O or by hot conc. H₂SO₄. (Gutbier, l. c.)

Potassium bromopalladate, K2PdBr6.

Difficultly sol. in cold H_2O . Decomp. by hot H_2O or by hot conc. H_2SO_4 . (Gutbier, ℓ, e .)

Rubidium bromopalladate, Rb2PdBr6.

Insol. in cold H_2O . Decomp. by hot H_2O or by hot cone. H_2SO_4 . (Gutbier, l. c.)

Bromopalladious acid.

Ammonium bromopalladite, (NH₄)₂PdBr₄.

Very stable. Sol. in H_2O . (Smith, Z. anorg, 1894, 6, 381.)

Very sol, in cold H₂O. Can be cryst, from a very small amount of hot H₂O. (Gutbier, B. 1905, **38**, 2387.)

Barium bromopalladite.

Not deliquescent. Sol. in H₂O. (v. Bonsdorff.)

Cæsium bromopalladite, Cs2PdBr4.

Very sol, in H₂O. (Gutbier, B. 1905, 38, 2388.)

Manganese bromopalladite, MnPdBr4.

Sol. in H₂() and alcohol. (v. Bonsdorff.) +7H₂(). Very sol. in H₂O. (Smith, Z. anorg, 1894, **6**, 382.)

Potassium bromopalladite, K2PdBr4.

Easily sol, in H₂O; (Joannis, C. R. 95, 295.)

Very stable. Sol. in H₂O. (Smith, Z. anorg. 1894, **6**. 381.) +2H₂O. Unstable in the air. (Smith, *l. c.*)

Rubidium bromopalladite, Rb2PdBr4.

Can be cryst, from a very small amount of hot II₂(). (Gutbier, B. 1905, **38**. 2388.)

Sodium bromopalladite, Na₂PdBr₄+4½H₂O. Very deliquescent. Sol. in H₂O. (Smith, l. c.)

Strontium bromopalladite, $SrPdBr_4+6H_2()$. Stable in the air. Very sol. in H_2O . (Smith, $l.\ c.$)

Zinc bromopalladite.

Sol. in H2O. (v. Bonsdorff.)

Bromophosphatoplatindiamine phosphate, $BrPt(N_2H_0)_2+2H_2O$.

 \overrightarrow{PO}_{4} Sl. sol. in $H_{2}O$. (Cleve.)

Bromophosphoric acid.

Thorium bromophosphate, ThBr₄, 3(3ThO₂, 2P₂O₆).

Insol. in most acids and in fuscd alkalı carbonates. Decomp. by long boiling with conc. H₂SO₄. (Colani, C. R. 1909, **149**. 208.

Bromoplatinamine bromide,

Br₂Pt(NH₃Br)₂.

Sl. sol. in H₂C. (Cleve, Sv. V. A. H. 10, 9. 31.)

— nitrite, Br₂Pt(NH₂NO₂)₂. Very sl. sol. in H₂O. (Cleve.)

Bromoplatindiamine bromide, $Br_2Pt(N_2H_6)_2Br_2$.

Only sl. sol. in hot H₂O. (Cleve.)

— chloride, Br₂Pt(N₂H₆)₂Cl₂.
Very sl. sol. in H₂O. (Cleve.)

----- dichromate, $Br_2Pt(N_2H_6)_2Cr_2O_7$. Sl. sol, in H_2O_7 .

--- nitrate, Br₂Pt(N₂H₆NO₃)₂.

Sl. sol. in cold, rather easily sol. in hot $\mathrm{H}_2(\cdot)$. (Cleve.)

phosphate, $Br_2Pt[N_2H_0PO_2(OH)_2]_2+2H_2O$.

Rather easily sol. in hot H₂O. (Cleve.)

—— sulphate, Br₂Pt(N₂H₆)₂SO₄. Very sl. sol. in H₂O.

Bromoplatin*monodia*mine nitrate, $\operatorname{Br_2Pt} (\operatorname{NH_3})_2\operatorname{NO_3} + \operatorname{H_2O}.$

Easily sol. in H₂O.

Bromoplatinsemidiamine bromide, Br₃Pt(NH₃)₂Br.

Sl. sol. in cold H₂O. (Cleve.)

Bromodiplatindiamine anhydronitrate, Br₂Pt₂ (N₂H₆)₂(NO₅)₂. (NH₃NH₂)₂ Sol. in HNO₂+Ag. Bromodiplatindiamine chloride, $\operatorname{Br_2Pt_2(N_2H_6)_4Cl_4}$.

Ppt. (Cleve.)

nitrate, $Br_2Pt_2(N_2H_0)_4(NO_3)_4+2H_2O$. Moderately sol. in hot H_2O :

sulphate, $Br_2Pt_2(N_2H_0)_4(SO_4)_2+2H_2O$. Ppt. (Cleve.)

Bromoplatinic acid, H₂PtBr₆+9H₂O.

Very deliquescent, and sol. in H_2O , alcohol, ether, chloroform, or acetic acid. (Topsoë, J. B. 1868, 273.)

Ammonium bromoplatinate, (NH₄)₂PtBr₆. Sol. in 200 pts. H₂() at 15°. (Topsoč.) 100 pts. (NH₄)₂PtBr₆+Aq sat. at 20° contain 0.59 pt. dry salt. (Halberstadt, B. 17. 2965.)

Barium bromoplatinate, BaPtBr₆+10H₂O. Sl. deliquescent. Very sol. in H₂O.

Cæsium bromoplatinate, $C_{82}PtBr_6$. Sl. sol. in dil. HBr+Aq. (Obermaier, Dissert.)

Calcium bromoplatinate, CaPtBr₆+12H₂O. Sl. deliquescent. Very sol. in H₂O.

Cobalt bromoplatinate, CoPtBr₀+12H₂O. Deliquescent.

Copper bromoplatinate, CuPtBr₆+8H₂O. Very deliquescent; sol. in H₂O.

Lead bromoplatinate, PbPtBr6.

Easily sol. in H₂O, but decomp. by large amount.

Lead tetrabromoplatinate, [PtBr4(OH)2]Pb, PbOH.

Insol. in H₂O. (Miolati, C. C. **1900**, II. 310.)

Magnesium bromoplatinate, MgPtBr₀+ 12H₂O.

Not deliquescent.

.

Manganese bromoplatinate, MnPtBr₀+6H₂O.

Sol. in H₂O. +12H₂O. Sol. in H₂O.

Mercuric tetrabromoplatinate, [PtBr4(OH)2]Hg

Insol. in H₂O. (Miolati, C. C. **1900**, II. 810.)

Nickel bromoplatinate, NiPtBr₆+12H₂O. Deliquescent.

Potassium bromoplatinate, K₂PtBr₆. Sl. sol. in H₂O. Insol. in alcohol. (v. Bonsdorff, Pogg. 19. 344.)

Sol. in 10 pts. boiling H₂O. (Pitkin, C. N. 41. 218.)

100 pts. K₂PtBr₆+Aq sat. at 20° contain 2.02 pts. dry salt. (Halberstadt, B. 17. 2962.)

Praseodymium bromoplatinate, $PrBr_3$, $PtBr_3$ +10H₂O.

Deliquescent; very sol. in H₂O; sol. in HBr. Von Sel. iie, Z. anorg. 1898, **18**. 353.)

Rubidium bromoplatinate, Rb2PtBr6.

Sl. sol. in dil. HBr+Aq. (Obermaier. Dissert.)

Silver bromoplatinate, Ag₂PtBr₆.

Insol. in H₂O. (Miolati, C. C. **1900**, II. 810.)

Silver letrabromoplatinate, [PtBr₄(OH)₂]Ag₂. Ppt.; insol. in H₂O. (Miolati, l. c.)

Sodium bromoplatinate, Na₂PtBr₆+6H₂O. Easily sol. in H₂O and alcohol.

Strontium bromoplatinate, SrPtBr₀+10H₂O. Sl. deliquescent. Very sol. in H₂O.

Thallium tetrabromoplatinate, [PtBr₆(OH)₂]Tl₂.

Insol. in H₂O. (Miolati, C. C. 1900, II. 810.)

Ytterbium bromoplatinate, YbBr₃,3H₂PtBr₆ +30H₂O.

Ppt. (Cleve, Z. anorg. 1902, 32, 138.)

Zinc bromoplatinate, ZnPtBr₆+12H₂O. Sol. in H₂O.

Bromoplatinocyanhydric acid,

H2Pt(CN)4Br2.

See Perbromoplatinocyanhydric acid.

Potassium bromoplatinocyanide, 5K₂Pt(CN)₄, K₂Pt(CN)₄Br₂+18H₂O.

Sol. in H2O.

Bromoplatinous acid.

Potassium bromoplatinite, K₂PtBr₄+2H₂O. Extremely sol. in H₂O. (Billmann and Andersen, B. 1903, **36**. 1566.)

Bromopurpureochromium bromide, BrCr(NH₃)₅Br₂.

Less sol. in H_2O than chloropurpureochromium chloride. (Jörgensen, J. pr. (2) **25**. 83.)

bromoplatinate, BrCr(NH₈)₅PtBr₆. (Jörgensen, l. c.)

---- chloride, BrCr(NH₃)₅Cl₂.

More sol. in H_2O than the bromide. (Jörgensen, l. c.)

Bromopurpureochromium chromate, BrCr(NH₃)₆CrO₄.

Precipitate. (Jörgensen, l. c.)

- nitrate, $BrCr(NH_3)_5(NO_3)_2$.

More sol. than bromide and less than chloride. (Jörgensen, l. c.)

Bromopurpureocobaltic bromide, CoBr(NH₃)₅Br₂.

Sol. in 530 pts. H₂O at 16°. Insol. in alcohol, NH₄Br, KBr, or HBr+Aq. More sol. in hot H₂O containing a little HBr. (Jörgensen, J. pr. (2) 19. 49.)

Bromopurpureocobaltic mercuric bromide, CoBr(NH₃)₅Br₂, 3HgBr₂.

More sol, in H2O than the corresponding HgCl₂ salt. (J.)

---- bromoplatinate.

Very sl. sol. in cold H₂O. (J.)

- chloride, CoBr(NH3) cl2.

Difficultly sol. in cold H_2O , but much more easily than the bromide. Insol. in dil. HCl+Aq, and in alcohol.

- mercuric chloride, CoBr(NH₃)₅Cl₂, 3HgCl₂.

Sl. sol. in H₂O.

- chloroplatinate.

Nearly or quite insol. in H₂O. (J.)

--- chromate, CoBr(NH₃)₅Cr()₄. Nearly insol. in H₂O.

--- dithionate, CoBr(NH₃)₆S₂O₆.

Nearly insol. in H₂O.

— fluosilicate, CoBr(NH₃)₆SiF₆. Very sl. sol. in cold H₂O; insol. in alcohol.

- nitrate, CoBr(NH₃)₅(NO₃)₂.

More sol. in H2O than the bromide, but less than the chloride. Wholly insol. in dil. HNO₃+Aq or alcohol.

- oxalate, CoBr(NH₃)₆C₂O₄.

Nearly insol, in H₂O.

- sulphate, CoBr(NH₃)₅SO₄.

Can be crystallized from very dil. H₂SO₄+ Aq. Insol. in alcohol. +6H2O. Efflorescent.

Bromopurpureorhodium bromide, BrRh(NH3) Br2.

Much less easily sol. in H₂O than the chlorochloride. Insol. in dil. HBr+Aq and alcohol. (Jörgensen, J. pr. (2) 27. 433.)

- bromoplatinate, BrRh(NH₈),PtBr₆. Almost insol. in H₂O.

fluosilicate, BrRh(NH₈)₅SiF₆.

Sl. sol, in H₂O. Sol, in boiling NaOH+Aq as roseo salt.

Bromopurpureorhodium nitrate, BrRh(NH₈)₅(NO₈)₂.

Sl. sol, in H₂O, but much more sol, than the bromide.

Bromorhodous acid.

Ammonium bromorhodite, (NH₄)₂RhBr₅.

Sol. in H₂O. (Goloubkine; Chem. Soc. 1911, **100** (2) 45.) Sol. in H₂O. (Gutbier, B. 1908, **41**. 215.)

Barium bromorhodite, BaRhBrs.

Sol. in H₂O. (Goloubkine, l. c.)

Cæsium bromorhodite, Cs2RhBr5. Difficultly sol. in H_2O . (Gutbier, l. c.)

Potassium bromorhodite, K2RhBr6.

Very sol. in H_2O . (Goloubkine, l. c.) Sol. in H_2O . (Gutbier, l. c.)

Rubidium bromorhodite, Rb2RhBr6.

Sol. in H₂O. (Goloubkine, l. c.) Difficultly sol. in H₂O. (Gutbier, l. c.)

Sodium bromorhodite, Na₂RhBr₅. Very sol, in H₂O. (Goloubkine, l. c.)

Bromoruthenic acid.

Potassium bromoruthenate, K₂RuBr₆.

Very sol. in H₂O. (Howe, J. Am. Chem. Soc. 1904, 26. 946.)

Potassium aquobromoruthenate, K2Ru(H2O)Br5.

Ppt. (Howe, l. c.)

Rubidium bromoruthenate, Rb₂RuBr₆.

Sol. in H_2O . (Howe, l. c.)

Rubidium aquobromoruthenate. Rb₂Ru(H₂O)Br₅.

Ppt. (Howe, *l. c.*)

Bromoruthenious acid.

Cæsium bromoruthenite, CsRuBr₅+H₂O. Ppt. (Howe, J. Am. Chem. Soc. 1904, 26. 945.)

Potassium bromoruthenite, K2RuBr5.

Very sol, in H2O with decomp. Very sol. in dil. HBr. (Howe, l. c.)

Rubidium bromoruthenite, Rb₂RuBr₅+H₂O. Sol. in dil. HBr. (Howe, l. c.)

Bromoselenic acid.

Ammonium bromoselenate, (NH₄)₂SeBr₆.

Sol. in H₂O with decomp. (Muthmann and Schäfer, B. 26. 1008.)

Cæsium bromoselenate, Cs2SeBr6.

Sl. sol. in H2O. (Lenher, J. Am. Chem. Soc. 1898, 20. 571.)

Potassium bromoselenate, K2SeBr6.

As NH₄ salt. (M. and S.)

Rubidium bromoselenate, Rb₂SeBr₅. Less sol. in H₂O than K salt. (Lenher, l. c.)

Bromopyroselenious acid.

Ammonium bromopyroselenite, NH₄Br, 2SeO₂ +2H₂O.

More easily sol. in H₂O than corresponding Cl compound. (Muthmann and Schäfer, B. 1893, **26**. 1014.)

Potassium bromopyroselenite, KBr, 2SeO₂+ 2H₂O.

Sol. in H₂O. (Muthmann and Schäfer, B. 26. 1008.)

Bromosmic acid.

Ammonium bromosmate, (NH₄)₂OsBr₆.
Only sl. sol. in H₂O. (Rosenheim, Z. anorg. 1899, 21. 135.)

Cæsium bromosmate, Cs₂O_SBr₅. Nearly insol. in H₂O and dil. HBr. (Gutbier, B. 1913, **46**. 2103.)

Potassium bromosmate, K₂()₈Br₆.
Only sl. sol. in H₂(). (Rosenheim, *l. c.*)

Rubidium bromosmate, Rb₂O₈Br₆.
Difficultly sol. in H₂O and in dil. HBr. (Gutbier, *l. c.*)

Silver bromosmate, Ag₂()sBr₆.

Ppt., insol. in H₂(). (Rosenheim, l. c.)

Solium bromosmate, Na₂()sBr₆+4H₂(). Sol. in H₂(). (Rosenheim, l. c.)

Bromostannic acid, H₂SnBr₅+8H₂O. Very deliquescent. Sol. in H₂O. (Seubert, B. **20**. 794.)

Ammonium bromostannate, (NH₄)₂SnBr₆. Very deliquescent, and sol. in H₂O. (Raymann and Preis, A. **223**. 323.)

Cæsium bromostannate.

Sol. in H₂O. (Raymann and Preis.)

Calcium bromostannate, CaSnBr₀+6H₂O. Very deliquescent. Sol. in H₂O. (Raymann and Prois.)

Cobalt bromostannate, CoSnBr₀+10H₂O.
Deliquescent. (Raymann and Preis.)

Ferrous bromostannate, FeSnBr₆+6H₂O. Deliquescent. (Raymann and Press.)

Lithium bromostannate, Li₂SnBr₆+6H₂O. Extremely deliquescent. (Leteur, C. R. 113. 541.)

 $\begin{array}{c} \text{Magnesium bromostannate, MgSnBr}_6 + \\ 10 \text{H}_2 \text{O}. \end{array}$

Deliquescent. (Raymann and Preis.).

Manganous bromostannate, MnSnBr₅+6H₂O.

Deliquescent. (Raymann and Preis.)

Nickel bromostannate, NiSnBr₆+8H₂O. Deliquescent. (Raymann and Preis.)

Potassium bromostannate, K₂SnBr₅. Sol. in H₂O. (Topsoë.)

Rubidium bromostannate.

Sol. in H₂O. (Raymann and Preis.)

Sodium bromostannate, Na₂SnBr₆+6H₂O. Not deliquescent, but extremely sol. in H₂O. (Seubert, B. **20.** 796.)

Strontium bromostannate, SrSnBr₈+6H₂O. Very hydroscopic, and sol. in H₂O. (Raymann and Preis.)

Bromosulphatoplatindiamine sulphate,

 $\begin{array}{l} {\rm Br} > {\rm Pt}({\rm N_2H_6})_2{\rm SO_4} + {\rm H_2O}. \\ {\rm SO_4} > {\rm Pt}({\rm N_2H_6})_2{\rm SO_4} + {\rm H_2O}. \end{array}$

Rather easily sol. in hot H2O.

Bromosulphobismuthous acid.

Cuprous bromosulphobismuthite, 2Cu₂S, Bi₂S₃, 2BiSBr.

Stable in the air and insol. in H_2O at ord. temp. Partially decomp. by boiling H_2O . Decomp. by mineral acids with the evolution of H_2S . (Ducatte, C. R. 1902, 134. 1212.)

Lead bromosulphobismuthite, PbS,Bi_2S_3 ' 2BiSBr.

Insol. in H_2O . Decomp. by boiling H_2O . Decomp. by dil. mineral acids with evolution of H_2S . (Ducatte, $l.\ c.$)

Bromotantalum bromide, $(Ta_6Br_{12})Br_2 + 7H_2O$.

Stable in the air when in the solid state. Sol. in H_2O without decomp. Sol. in propyl alcohol. (Chapin, J. Am. Chem. Soc. 1910, 32. 328.)

Bromotantalum chloride, (Ta₆Br₁₂)Cl₂+7H₂O.

(Chapin, l. c.)

Bromotantalum hydroxide, $(Ta_6Br_{12})(OH)_2+10H_2O$.

Sl. sol. in HCl. Stable in the air below 100°.

Sol. in alcohol. Insol. in ether. (Chapin, l. c.)

Bromotantalum iodide, $(Ta_6Br_{12})I_2+7H_2O$. (Chapin, l. c.)

Bromotelluric acid.

Ammonium bromotellurate, (NH₄)₂TeBr₆.

Less sol. in H₂O than K salt. (Muthmann and Schmidt, B. 1893, 26. 1011.)

Cæsium bromotellurate, Cs2TcBrs.

Decomp. by H₂O,

100 pts. HBr+Aq (sp. gr. 1.49) dissolve 0.02 pt. at 22°

100 pts. IIBr+Aq (sp. gr. 1.08) dissolve 0.13 pt. at 22°

Insol. in alcohol. (Wheeler, Sill. Am. J. 145. 207.)

Potassium bromotellurate, K_2 TeBr₆+3H₂O. Sol. in little, decomp. by much H₂O. (v. Hauer.)

Contains 2H₂O. (Wheeler, Sill. Am. J.) 145. 2(37.)

Efflorescent.

100 pts. HBr+Aq (sp. gr. 1.49) dissolve 6.57 pts. at 22°

100 pts. HBr+Aq (sp. gr. 1.08) dissolve 62.90 pts. at 22°.

Anhydrous. Stable on air. (Wheeler.)

Rubidium bromotellurate, Rb₂TeBr₃.

Sol. in a little hot H2O, but H2TeOs sepurates on cooling.

100 pts. IIBr+Aq (sp. gr. 1.49) dissolve 0.25 pt. at 22°

100 pts. HBr+Aq (sp. gr. 1.08) dissolve 3.88 pts. at 22°. (Wheeler.)

Bromotetramine chromium bromide. $CrBr(NH_3)_4Br_2+H_2O$.

Easily sol. in H₂O. (Cleve.)

-- - chloride, CrBr(NH₈)₄Cl₂+H₂O. Sol. in II₂O. (Cleve.)

---- sulphate, CrBr(NH₈)₄SO₄+H₂O. Easily sol, in H₂O, (Cleve.)

Bromotetramine cobaltic sulphate,

 $BrCo(NII_3)_4SO_4$, or $Br_2Co_2(NH_3)_8(SO_4)_2$. Sol. in H₂O. (Vortmann and Blasberg, B. 22. 2052.)

Cadmium, Od.

Not attacked by H2O. Sol. in HCl, or dil.

II₃SO₄+Aq, but more easily in HNO₂+Aq. Sol. in IIC₂II₃O₂+Aq. Chemically pure Cd like Zn is almost insol. in dil. acids, with the exception of HNO₂. (Veccen, B. 1891, **24**, 1798.)

Sol. in HClO, +Aq without evolution of H. (Hendrixson, J. Am. Chem. Soc. 1904, 26. 75().)

Cadmium is sol. in molten CdCl2 and can be recryst, therefrom. (Auerbach, Z. anorg. 1001, 28. 42.)

From 4 g. Cd in 32 g. molten CdCl₂ at 650°, 2.197 g. were dissolved in 1/2 hr. (Helfenstein, Z. anorg. 1900, 23. 295.)

Moderately quickly sol. in K₂S₂O₈+Aq. More slowly sol. in (NH₄)₂S₂O₈+Aq. (Levi, Cinzz. ch. it. 1908, 38 (1) 583.)
Sol. in (NH₂)₂S₂O₈+Aq without evolution

of gas. (Turrentine, J. phys. Chem. 1907, 11. 027.)

Sol. in sulphostannates+Ag. (Storch, H 1883, 16. 2015.)

e de la compansión de l

½ ccm. oleic acid dissolves 0.0293 g. Cd in 6 days. (Gates, J. phys. Chem. 1911, 15. 143) Not attacked by sugar solution. (Klein and Berg, C. R. 102. 1170.)

Cadmium amalgam, Cd₂Hg₇.

Stable from 0°-44°. Can be cryst. from Hg without decomp. if temp. does not excerni 44°. (Kerp. Z. anorg. 1900, 25. 68.)

Cadmium amide, Cd(NH2)2.

Decomp. by H2O. (Bohart, J. phys. Chum 1915, 19. 543.)

Cadmium arsenide, Cd₃As.

(Descamps, C. R. 86. 1022.) Cd. As2. Sol. in dil. cold HNO. Attacked by aqua regia. (Granger, C. R. 1904, 138. 575.)

Cadmium azoimide, $Cd(N_3)_2$.

Ppt. (Curtius, J. pr. 1898, (2) 58. 294.)

Cadmium subbromide, Cd4Br7.

Decomp. by H₂O. (Morse and Jones, Am Ch. J. 1890, 12. 490.)

Cadmium bromide, CdBr₂.

Deliquescent. Very sol. in H₂O.

Solubility in H₂O at t°

		_	
t°	% CdBr2	't°	्द स्थाप्तः
-4 -1 +1 2 9	32.0 34.7 36.3 36.0 41.9	48 71 104 155 170	60.0 61.2 61.8 63.7 65.2
14 25	46.0 52.6	215 232	69.9 70.1
35	59.6	245	71.5

Solid phase above 100° is CdBr2+1,211,(1 (Etard, A. ch. 1894, (7) 2. 541.) See also under CdBr2+H2O and CdBr, + 4H₂O.

Sp. gr. of CdBr2+Aq at 19.5° containing 25 % CdBr., 5 - 10 15 20 1.260 1.043 1.0901.141 1.199 40 45 50 % CdBr. 1.326 1.400 1.481 1.578 1.680 (Kremers, calculated by Gerlach, Z. annl. 8. 280.)

CdBr₂+Aq containing 18.06% CdBr₃ lines. gr. 20°/20° = 1.1378.
CdBr₂+Aq containing 21.39% CdBr₂ lines. gr. 20°/20° = 1.1666.
(Le Blanc and Rohland, Z. phys. Ch. 1896, **19.** 282.)

Sp. gr. of CdBr₂+Aq containing 35.84°; CdBr₂=1.4231 at 19.4°/4°. (Hallwachs, W. Ann. 1899, 68. 27.)

Sp. gr. of CdBr₂+Ag at 18°/4°. %CdBr₂ 33.289 23.973 20.552 11.983 1.384 1.252 Sp. gr. 1.209 1.112 % CdBr. 3.734 6.543 1.927 Sp. gr. 1.106 1.030 1.017 (de Muynck, W. Ann. 1894, 53. 561.)

Sp. gr. of CdBr2+Aq at 18°. % CdBr₂ 10 15 1.0072 1.0431 1.0907 1.1432 1.1991 Sp. gr. °, CdBr₂ Sp. gr. 1.2605 1.3296 1.4052 1.4915 1.5467 (Grotrian, W. Ann. 1883, 18, 193.)

Sp. gr. of CdBr₂+Aq.

10	Sp. gr. at to	Sp. gr. at 18°
17.90	0.99901	0.99900
22.75	0.99702	
17.23	0.99949	0.99935
21.50	0.99863	
17.67	1.00008	1.00002
23.10	0.99896	
17.23	1.00119	0.00100
22.95	0.99986	
18.07	0.00308	1.00310
22.65	1.00212	
18.00	1	1.00750
	17.90 22.75 17.23 21.50 17.67 23.10 17.23 22.95 18.07 22.65	17.90 0.99901 22.75 0.99702 17.23 0.99949 21.50 0.99863 17.67 1.00008 23.10 0.99896 17.23 1.00119 22.95 0.99886 18.07 0.00308 22.65 1.00212

(Wershofen, Z. phys. Ch. 1890, 5, 493.)

Sp. or of CdBro+Ag at 20°

rp. gr. or Oudre Triq at 20.			
Normality of CdBr ₂ +Aq	€6CdBr2	Sp. gr.	
2.774 1.997	46.574 37.53	1.6198 1.4469	
0.973 0.5138	$\frac{22.53}{12.46}$	1.2293 1.1211	

(Forehheimer, Z. phys. Ch. 1900, 34. 29.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 827.)

Sol. in AlBr₃. (Isbekow, Z. anorg. 1913,

84, 27.) Sol. in HCl+Aq, HC₂H₃O₂, alcohol, or ether. (Berthemot, A. ch. 44, 387.)
Sol. in 0.94 pt. H₂O, 3.4 pts. abs. alcohol,

250 pts. ether, and 16 pts. alcohol-ether (1:1) (Eder, Dingl. 221. 89.)

Anhydrous CdBr2 is sol. in acctone. (Krug

and M'Elroy.)

1 g. CdBr₂ is sol. in 64.5 g. acetone at 18°. Sp. gr, of sat, solution 18°/4° = 0.8073. (Naumann, B. 1904, 37. 4337.)

Sol, in acetone. (Eidmann, C. C. 1899,

Insol. in mustard oil. (Mathews, J. phys. Chem. 1905, 9, 647.)

Difficultly sol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

(Naumann, B. Insol. in ethyl acetate.

1910, 43. 314.) Sol. in chinoline. (Beckmann and Gabel, Z. anorg. 1906, 51. 236.)

1.0

100 g. benzonitrile dissolve 0.857 g. CdBr2 at 18°. (Naumann, B. 1914, 47. 1370.)

Mol. weight determined in piperidine. (Ferchland, Z. anorg. 1897, **15**, 17.) $+H_2O$. Solubility in H_2O .

100 g. of the sat. solution contain at: 35° 40° 45° 60° 80° 100°

60.29 60.65 60.75 61.10 61.29 61.63 g. CdBr₂. (Dietz, Z. anorg. 1899, 20, 261.)

+1½H₂O. (Étard, A. ch. 1894, (7) **2.** 541.) +4H₂O. Efflorescent. (Rammelshere Efflorescent. (Rammelsberg, Pogg. 55. 241.)

Solubility in H₂O. 100 g. of the sat. solution contain at: 18° 30° 38°

37.92 48.90 56.90 61.84 g. CdBr₂. Sp. gr. of sat. solution at 18°=1.683. (Dietz, Z. anorg. 1899, 20, 261.)

100 g. sat. solution of CdBr.+4H.O in absolute alcohol contain 20.93 g. CdBr2 at

100 g. sat. solution of CdBr2+4H2O in absolute ether contain 0.4 g. CdBr2 at 15°. (Eder, Dingl. 221. 89.)

Cadmium hydrogen bromide.

Decomp. by H₂O. (Berthelot, C. R. 91. 1024.)

Cadmium cæsium bromide, CdBr2, CsBr.

Easily sol, in H₂O. (Wells and Walden, Z. anorg. 5. 270.)

CdBr₂, 2CsBr. Decomp. by H₂O into above comp. (W. and W.)
CdBr₂,3CsBr. Decomp. by H₂O into CdBr₂, CsBr. (W. and W.)

Cadmium potassium bromide, CdBr2, KBr+ ½H₂O.

Sol. in 0.79 pt. $\rm H_2O$ at 15°; pptd. by alcohol and ether. (Eder, Dingl. 221. 89.) + $\rm H_2O$. Sol. in $\rm H_2O$ without decomp. from 0.4°-112.5°. (Rimbach, B. 1905, 38, 1554.) 100 pts. of the solution contain at:

15.8° 50° 112.5° 53.75 58.68 68.25 78.10 pts. of the salt.

CdBr2, 4KBr. Sol. in 1.40 pts. H2O at 15°; pptd. by alcohol and ether. (Eder, Dingl. **221**. 89.)

Cannot be prepared in a pure state as it is decomp. by H2O below 160°. (Rimbach, B. 1905, **38.** 1560.)

Cadmium rubidium bromide, CdBr2, RbBr: Sol. in H2O without decomp. from 0.4° to 107.5°.

100 pts. of the solution contain at:

14.5° 49.2° 0.4° 107.5° 32.65 41.87 58.54 75.77 pts. of the salt. (Rimbach, B. 1905, 38. 1556.)

Sol. in H₂O without CdBr2, 4RbBr. decomp. from 0.5° to 114.5°. 100 pts. of the solution contain at:

51.5° 114.5° 0.5° 13.5° 79.04 pts. of the salt. 47.95 55.17 68.82 (Rimbach, B. 1905, 38. 1561.)

Company of the second

Cadmium sodium bromide, CdBr₂, NaBr+ 2½H₂().

Sol. at 15° in 1.04 pts. H₂O, 3.7 pts. abs. alcohol, and 190 pts. ether (sp. gr. 0.729). (Eder, Dingl. 221. 89.)

3CdBr₂, 2NaBr+6H₂O. Stable in conc. solutions and decomp. only by great dilution. (Jones and Knight, Am. Ch. J. 1899, 22, 134.)

Cadmium bromide ammonia, CdBr₂, 2NH₃. Can be crystallized out of warm NH₄OH+Aq. (Croft, Phil. Mag. 21. 356.) CdBr₂, 3NH₃. (Tassily, C. R. 1897, 124. 1022.)

CdBr2, 4NH3. Decomp. by H2O. (Croft.)

Cadmium bromide cupric oxide, CdBr₂, 3CuO+3H₂O. (Mailhe, A. ch. 1902, (7) 27, 383.)

Cadmium bromide hydrazine, CdBr₂, 2N₂H₄. Idasily sol. in NH₄OH+Aq. (Franzen, Z. anorg. 1908, **60**. 280.)

Cadmium bromide hydroxylamine, CdBr₂, 2NII₂OH.

Sol. in hot H₂O with formation of a basic salt. Sol. in dil. acids. Insol. in alcohol and other. (Adams, Am. Ch. J. 1902, 28, 218.)

Cadmium subchloride, Cd4Cl7.

Decomp. by H₂O and by acids. (Morse and Jones, Am. Ch. J. 1890, 12. 490.)

Cadmium chloride, CdCl2.

Sol. at 20° 40° 60° 80° 100° in 0.71 0.72 0.72 0.70 0.67 pts. H₂O. (Kremers. Pogg: **103**. 57.)

Sat. CdCl2+Aq contains % CdCl2 at to.

to	%CdCl2	t°	%CdCla
-7	43.5	120	63.0
+1	47.6	150	64.8
В	49.7	165	68.2
7	51.3	170	68.4
10	51.6	180 .	70.1
19	52.7	190	71.9
25	52:9	200	72.0
61	57.9	235	76.0
82	58.8	270	77.7

(Étard, A. ch. 1894, (7) 2. 536.)

· 100 mol. H₂O dissolve at: 19.3° 29.7° 40.1° 54.5° 10.94 12.74 13.15 13.16 mol. CdCl₂. (Sudhaus, Miner. Jahrb. Beil.-Bd. 1914, 37.

See also under CdCl₂+H₂O, CdCl₂+ 2½H₂O, and CdCl₂+4H₂O.

Sp. gr. of CdCl₂+Aq containing pts. CdCl₂ to 100 pts. H₂O. 13 26.9 41 pts. CdCl₂, 1.1068 1.2106 1.3100

114.2 pts. CdCl₂.

1.4060 1.5060 1.7266 (Kremers, Pogg. 103. 57.)

72.5

55.8

CdCl₂+Aq containing 8.91% CdCl₂ is sp. gr. 20°/20°=1.0715. (Le Blanc at Rohland, Z. phys. Ch. 1896, 19. 282.)

Sp. gr. of CdCl₂+Aq at room temp. ...

taining:
% CdCl₂ 1i.09 16.30 24.786
Sp. gr. 1.1093 1.1813 1.3199

gr. 1.1093 1.1813 1.3199 (Wagner, W. Ann. 1883, **18**. 266.)

Sp. gr. of CdCl₂+Aq at 18°/4°. % CdCl₂ 57.524 41.547 29.977 Sp. gr. 1.852 1.515 1.330

% CdCl₂ 21.431 14.761 Sp. gr. 1.210 1.142

(de Muynek, W. Ann. 1894, 53, 561.

Sp. gr. of CdCl2+Aq at 18°.

% CdCl2 Śp. gr. % CdCl: 1.0436 1.0063 1.09191.114 25 30 Sp. gr. % CdCl₂ 1.26201,3305 1.20071 100 40 45 50 Śp. gr. 1.4878 1.5775 1.6799

(Grotrian, W. Ann. 1883, 18. 193.)

Sp. gr. of CdCl₂+Aq at 25°.
Concentration of CdCl₂+Aq Sp. gr
1-normal 1,0779
1/2- " 1,0394
1/4- " 1,0197
1/8- " 1,0008
(Wagner, Z. phys. Ch. 1890, **5**. 30.

Sp. gr. of CdCl2+Aq.

%CdCl3	t°	Sp. gr. at to	Sp. gr
0 0503	17.59	0.99920	() 995
	24.27	0.99781	1
0.0999	17.70	0.99964	0.997
1	22.06	0.99833	
0.200	18.31	1.00038	1.180 - 2 2
	24.00	0.99920	
0.399	16.86	1.00239	1 (00)
	24.21	1.00083	
0.599	17.49	1.00406	1.184
1	25.12	1.00238	ł
0.769	17.58	1.00580	I ins'
	21.76	1.00496	}
0.997	17.55	1.00754	1 (86)
	19.65	1.00713	
0.997			1 (#47.

(Wershofen, Z. phys. Ch. 1890, 5. 402)

Sp. gr. of CdCl₂+Aq at t°.

t°	Normality of CdCl ₂ +Aq	g. CdCl ₂ in 100 g. of solution	Mg gr
20.5	3.80	44.42	1 AG a.A.
	2.61	34.22	1 30-a a
	1.76	25.90	1 34-a.A.
	1.29	19.91	1 140-a
	0.93	14.88	1 140-a
	0.52	8.84	1 100-ca

(Oppenheimer, Z. phys. Ch. 1898, 27. 444)

Sp. gr. of CdCl₂+Aq at t°.				Solubil	ity in N	TaCl+Aq at t°.		
t٩	Concent	ration of	CdCl ₂ +Aq	Sp. gr.	to.	100 g. H ₂ () dissolve	Solid phase
22	1 nt. CdC	le in 1.3	458 pts. H ₂ O	1.6128	υ- 	g. CdCl ₂	g. NaCl	Sour phase
18.7	1" "	" " 2.7 " " 53. " " 54.	005 " " 988 " " 18 " "	1.2896 1.0155 1.0152	19.3	111.30 116.64	7.52	CdCl ₂ +2½H ₂ O CdCl ₂ +2½H ₂ O+CdCl ₂ ,
17	1 " "	01.	479 " " 232 " "	1.0136 1.0076	·	85.15 40.01	12.19 25.67	2NaCl +3H ₂ O CdCl ₂ , 2NaCl +3H ₂ O "
(F	Littorf. Z.	phys. C	ch. 1902, 39. 6	328.)	1	5.96	36.76	CdCl ₂ , 2NaCl+3H ₂ O+
, -		F-927	2002, 5-10	,			35.84	NaCl NaCl
	Solubil	ity in K	Cl+Aq at t°.		29.7	129.65 132.67	9.63	CdCl ₂ +2½H ₂ O CdCl ₂ +2½H ₂ O +CdCl ₂ , 2NaCl+3H ₂ O
	100 g. H ₂ O	dissolve	~		}	123.54	10.10	CdCl ₂ , 2NaCl+3H ₂ O
t°	g. CdCl ₂	g. KCl	Solid pha	ISC	}	106.16	12.92 15.41	4.
19.3	111.30		0.101 1.014			43 74	27.46	"
19.0	59.59	6.70	CdCl ₂ +2½ CdCl ₂ +2½H ₂ C		Í	9.43	37.54	CdCl ₂ , 2NaCl+3H ₂ O+ NaCl
	26.98	11.09	KCl+H CdCl ₂ , KCl	2O			35.88	NaCl
	11.61	30.04	CdCl ₂ , KCl +H ₂	O +CdCl2,	40.1	133.85		CdCl2+H2O
	1.44	34.76	4KCl CdCl2, 4KCl	+KCl		137.03	15.14	CdCl ₂ +H ₂ O+CdCl ₂ , 2NaCl+3H ₂ O
		33.94	KCI			48.17	29.50 38.16	CdCl ₂ , 2NaCl+3H ₂ O CdCl ₂ , 2NaCl+3H ₂ O+
29.7	129.65 97.62	0.70	CdCl ₂ +3½			10.01	,	NaCl
	68.23	7.08	CdCl ₂ +2 \(\frac{1}{2}\) +2 \(\frac{1}{2}\) H ₂ (36.18	NaCl
		0.00	KCl+H	2()	54.5	133.90		CdCl2+H2O
	$\begin{vmatrix} 47.12 \\ 32.67 \end{vmatrix}$	9.89 13.06	CdCl₂, KCl "	十日4()		140.42	19.10	CdCl2+H2O+CdCl2,
	24.26	16.10	"			52.76	32.97	2NaCl+3H ₂ () CdCl ₂ , 2NaCl+3H ₂ ()
	15.99	25.97				22.53		CdCl2, 2NaCl+3H2O+
	15.47	33.58	CdCl2, KCl+H: 4KCl				00.00	NaCl
	2.42	37.66	CdCl2, 4KC		1	1	36.82	NaCl
		37.21	KCl		At 3	4.5°, CdC	$1_2+2\frac{1}{2}$	H ₂ O → CdCl ₂ +H ₂ O and
40.1	133.85 92.15	2.70	CdCl ₂ +1 CdCl ₂ +H ₂ O	+CdCl2,			w iner. Jal	ater. hrb. BeilBd. 1914, 37. 28.)
	51.90	11.50	KCl+F CdCl2, KCl		1			
	37.91	15.21 21.73	"		In	sol. in S	BbCl₃.	(Klemensiewicz, C. A.
	24.45	21.73			1909	0, 269.	mid NI	I3. (Franklin, Am. Ch.
	18.97	35.51	CalCla, KCI +H	2O+CdCls	J T 19	202 20 S	27.1	
			4KC	1	1 T~	.aol om d	and in	ethyl alcohol, furfurol, monochloracetate, ethyl
	2.98	40.45	CdCls, 4KC		1 07701	nocatata	et.nvi	oxalate, conyi muale,
		+0.00			∽lamv	d nitrite.	o-nitrot	omene, pyriame, piperi-
54.5		0.90	CdCla+		1 1	and qu	alm I Di	nvs. (,nem. 1088, 0, 401.)
	102.15	2.32	CdCl ₂ +H ₂ O KCl+		Insol. in anhydrous ether.			us ether. (Hampe, Ch.
	44.01	18.39	CdOls, KO		177.1	887. II. 8	47.)	
	26.13		CdCl2, KCl+F	₹2O +CdCi				methyl alcohol dissolve
	4.20	45.52	OdCls, 4KC		1 4 74		71 A+ I+	N D-
	1	43.00	KO		1 11	M 244 A	MODITIES P	thyl alcohol dissolve 1.52 (de Bruyn, Z. phys. Ch.
-					- Ints	പ്വവം മി	U LQ.O .	(an min or built our

(Sudhaus, Miner. Jahrb. Beil.-Bd. 1914, 37. 10. 783.)

10. 783.)

100 g. CdCl₂ + CH₃OH contain 1.5 g. CdCl₂.

438 - 1 - 1 - 2 -

at the critical temp. (Centnerszwer, Z. phys. | Cadmium cobaltous chloride, 2CdCl₂, CoCl₂ Ch. 1910, **72.** 437.

Somewhat sol. in acctone. (Krug and M'Elroy.) (Eid-

Sol. in acctone; insol. in methylal. mann, C. C. 1899, II, 1014.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Sol, in ethyl acetate. (Naumann, B. 1904, **37.** 3601.)

Difficultly sol. in ethylacetate. (Naumann,

B. 1910, 43, 314.)

Sol. in urethane. (Castoro, Z. anorg. 1899,

At 18°, 100 g. benzonitrile dissolve 0.06332 g. CdCl₂. (Naumann, B. 1914, 47, 1370.) Insol. in toluene. (Baxter and Hines, Am. Ch. J. 1904, 31, 222.)

Sol. in chinolin. (Beckmann and Gabel, Z. anorg. 1906, 51. 236.)

+H₂Ö. Solubility in H₂O.

100 g. of the sat. solution contain at: 10° 20° 40° 60°

57.35 57.77 57.47 57.5180° 100° 59.52 g. CdCl₂. 58.41

110° is bpt. of the sat. solution. (Dietz, Z. anorg. 1899, 20. 257.)

+21/2H2O. Solubility in H2O. 100 g. of the sat. solution contain at:

18° ---10° 30° 36° 44.35 47.37 52.53 50.27 57.91 g. CdCl₂. Sp. gr. of sat. solution = $1.74\tilde{1}$.

(Dietz, Z. anorg. 1899, 20, 257.)

+4H₂O. Solubility in H₂O. 100 g. of the sat. solution contain at: ()0 +10° ---()° +15° 43.58 49.39 55.58 59.12 g. CdCl₂. (Dietz, Z. anorg. 1899, 20, 257.)

+5H₂(). (Worobieff, Z. anorg. 1898, 18. 386.)

Cadmium hydrogen chloride, CdCl₂, 2HCl+ $7H_{2}()$.

Decomp. in air. (Berthelot, C. R. 91. 1024.)

Cadmium cæsium chloride, CdCl₂, 2CsCl.

Easily sol, in H₂O and dil. HCl+Aq; insol. in conc. HCl+Aq. (Godeffroy, B. 8. 9.)

Nearly insol. in CsCl+Aq. (Wells and

Walden, Z. anorg. 5. 266.)
CdCl₂, CsCl. Sl. sol. in H₂O; nearly insol. in CdCl₂+Aq. (Wells and Walden.)

Cadmium calcium chloride, 2CdCl2, CaCl2+ 7H₂().

Rather deliquescent, and very sol. in H2O. When ignited is only sl. sol. in H₂O with evolution of heat. (v. Hauer, J. pr. 63, 432.) CdCl₂, 2CaCl₂+12H₂O. Very deliques-CdCl₂, 2CaCl₂+12H₂O. cont (v. Houer.)

+12H₂O.

Deliquescent. Sol. in H_2O . (v. Hauer, W. A. B. **17.** 331.)

Cadmium cupric chloride, CdCl₂, CuCl₂+ 4H₂O.

Sol. in H₂O. (v. Hauer, W. A. B. 17. 331.)

Cadmium hydrazine chloride, CdCl₂, N₂H₄HČl.

Unstable in the air when moist. Very sol. in H_2O ; sl. sol. in alcohol; sol. in NH_3+Aq . (Curtius, J. pr. 1894, (2) 50. 334.) CdCl₂,2N₂H₄HCl+4H₂O. Very sol. in

H₂O; sl. sol. in alcohol. (Curtius, J. pr. 1894, (2) **50.** 335.)

Cadmium iron (ferrous) chloride, 2CdCl₂, $FeCl_2+12H_2O$.

Sol. in H₂O. (v. Hauer, W. A. B. 17. 331.)

Cadmium lithium chloride, CdCl₂, LiCl+ 3½H₂O.

Very deliquescent. Decomp, by solution in H₂O, but not in alcohol. (Chassevant, A. ch. (6) **30.** 39.)

Cadmium magnesium chloride, 2CdCl₂, $MgCl_2+12H_2O$.

D " in moist, stable in dry air. 20 with absorption of heat. Much more sol. in hot than in cold II₂O. (v. Hauer.)

Solubility in H₂O at t°.

1,0	G. Cd ₂ MgCl ₅ in 100 g. solution	G. Cd ₂ MgCl ₅ in 100 g. H ₂ O
2.4	45.61	83.86
20.8	49.69	98.77
45.5	53.51	115.10
67.2	58.14	138.90
121.8	65.48	189.69

(Rimbach, B. 1897, 30. 3084.)

CdCl₂, 2MgCl₂+12H₂O. Very deliquescent. (v. Hauer.)

Cadmium manganese chloride, 2CdCl₂, $MnCl_2+12H_2O$.

Deliquescent in moist, efflorescent in dry air. Sol. in H₂O. (v. Hauer.)

Cadmium nickel chloride, CdCl₂, 2NiCl₂+ 12H₂O.

Sol. in H_2O . (v. Hauer, W. A. B. 20. 40.) $2CdCl_2$, $NiCl_2+12H_2O$. Sol. in H_2O . (v. Hauer.)

Cadmium potassium chloride, CdCl₂, KCl+ ½H₂O.

Sol. in H₂O without decomp. (v. Hauer.)

+H₂O. 100 mol. H₂O dissolve at: 19.3° 29.7° 40.1° 54.5° 2.65 3.21 3.72 4.33 mol. CdCl₂, KCl+H₂O. (Sudhaus, Miner. Jahrb. Beil.-Bd. 1914, 37. 26.)

Solubility in H₂O at to.

t°.	G. CdKCl ₃ in 100 g. solution	G. CdKCl ₃ in 100 g. H ₂ O
2.6	21.87	27.99
15.9	26.60	36. 4
41.5	35.66	55.34
60.6	40.67	68.55
105.1	51.67	106.91

(Rimbach, B. 1897, 30, 3079.)

CdCl₂, 2KCl. 100 pts. H₂O at 15.5° dissolve 33.45 pts. Sl. sol. in alcohol. (Croft; Phil. Mag. (3) 21. 356.)

Solubility in salts + Aq at 16°.

CdCl2, 2KCl is sol. without decomp. in the following salt solutions at 16°.

Salt	Mols. salt in 100 mole	In 1 lits	Sp. gr.		
	H ₂ ()	CdCl2	KCl	RCI	solution
LiCl CaCl ₂ KCl	$9.3 \\ 3.8 \\ 2.378$	0.270	0.663 1.080 3.195	4.483 1.887	1.1380 1.2333 1.214

(Rimbach, B. 1905, 38. 1568,)

 $CdCl_2$, 4KCl. More sol, in H_2O than $CdCl_2$, KCl. (v. Hauer.)

100 g. H₂O dissolve at:

19.3° 29.7° 40.1° 54.5° 41.65 49.05 57.55 69.91 g. CdCl₂, 4KCl. (Sudhaus, Miner. Jahrb. Beil.-Bd. 1914, 37. 24.)

Solubility in H₂O at t°.

+o	100 pts. solution contain pts.			
	Cd Cl		К	
4.0 23.6 50.2 108.8 109.0	3.64 5.66 9.10 11.97 11.91	9.84 14.02 18.09 23.08 23.15	8.31 11.52 13.60 17.10 17.22	

(Rimbach, B. 1897, **30.** 3080.)

Decomp. by $H_2()$.

margarity

Can be recryst. without decomp. from LiCl, CaCl₂, or MgCl₂+Aq. (Rimbach, B. 1905, 38. 1565.)

The salt is sol, ... 'I ... '1 HCl+Aq containing 19.8 : . . ! IC : . . · mole H₂O at 16°.

1 l. of the solution contains 0.033 mole CdCl₂, 0.132 mole KCl and 8.828 mole HCl; sp. gr. of the solution = 1.1403. (Rimbach, B. 1905, 38. 1568.)

Cadmium rubidium chloride, CdCl₂, 2RbCl. Sol. in H₂O and HCl+Aq. (Godeffrov. B.

CdCl₂, RbCl. Solubility in H₂O at t°. 100 pts. by wt. of the solution contain pts. by wt. RbCl, CdCl2.

to.	Pts. RbCl, CdCl ₂
1.2	12.97
14.5	16.80
41.4	25.31
57.6	30.83
103.9	46.62

CdCl₂, RbCl is sol. in H₂O without decomp. from 0-104°. (Rimbach, B. 1902, **35**. 1303.)

CdCl₂, 4RbCl.

Solubility of CdCl₂, 4RbCl and CdCl₂, RbCl in H₂O at t°.

	In 100 pts. by wt. of the solution			Composition of the solid phase	
t°	Pts. by wt. Cd	Pts. by wt. Cl	Pts. by wt. Rb	Mol% mono- salt	Mol% tetra- salt
0.7 8.8 13.8 42.4 59.0 108.4	0.65 1.07 1.32 3.21 4.61 8.94	6.52 7.37 7.86 11.35 13.41 18.57	14.73 16.13 16.93 22.45 25.31 31.15	30 24 16 14 33	70 76 84 86 67

(Rimbach, B. 1902, 35. 1305.)

Decomp. by H₂O between 0° and 108°.

(Rimbach, B. 1905, 38. 1571.) Sol. in conc. HCl without decomp. (Rim-

bach, B. 1905, 38. 1571.)
Not sol. in CaCl₂+Aq and LiCl+Aq without decomp. (Rimbach, B. 1905, 38. 1571.)

Cadmium sodium chloride, CdCl₂, 2NaCl+ 3H₂O.

Sol. in 1.4 pts. H₂O at 16°. (Croft.) 100 mol. H₂O dissolve at:

19.3°	29.7°	40.1°	54.5°
3.93	4.29	4.73	5.18 mol. CdCl ₂ ,
			3N°C1 T3H O

Stable between 19° and 55°.

(Sudhaus, Miner. Jahrb. Beil.-Bd. 1914, 37. 25.)

Sl. sol, in alcohol or wood alcohol. (Croft.)

Cadmium strontium chloride, 2CdCl₂, SrCl₂+ •7H₂O.

Sol. in H₂O. (v. Hauer.)

Cadmium chloride ammonia, CdCl₂, 2NH₃.

Nearly insol. in H₂O. (v. Hauer.)

CdCl₂, $3NH_3 + \frac{1}{2}H_2C$. CdCl₂, $4NH_3 + \frac{1}{2}H_2C$. CdCl₂, $5NH_3$. (André, C. R. **104**. 908:) CdCl₂, $6NH_3$. Difficultly sol. in cold H_2C . (Schüler, A. **87**. 34.)

Cadmium chloride oxide, CdCl2, cupric 3CuO+3H2O.

Not decomp. by H2O. (Mailhe, A. ch. 1902, (7) 27. 378 and 174.)

Cadmium chloride hydrazine, CdCl₂, 2N₂H₄. Insol. in H2().

Sol. in NH4OH+Aq. (Franzen, Z. anorg. 1908, 60, 279.)

+H₂O. Insol. in H₂O; easily sol. in

NII (OH+Aq. (Curtius, J. pr. 1894, (2) 50. 345.)

Cadmium chloride hydroxylamine, CdCl2, 2NH₂OII.

Sl. sol. in cold, somewhat more in warm $\Pi_2()$. Very sol. in hydroxylamine+Aq. Very sl. sol. in alcohol and other organic solvents. (Crismer, Bull. Soc. (3) 3. 116.)

An solution sat. at 20° contains about 1%. (Antonoff, C. C. 1905, II. 810.)

Cadmium fluoride, CdF2.

Difficultly sol. in H2O. Easily sol. in HF+ Aq. (Berzelius, Pogg. 1, 26.)

Very sol. in II2O; insol. in 95% alcohol; sol. in HCl, H2SO4, or HNO2+Aq with evolution of HF. (Poulene, C. R. 116, 582.)

1 l. H₂O dissolves 0.289 mol. CdF₂ at 25° or 100 ec. sat. aqueous solution contains 4.36 g. Cally at 25°. (Jaeger, Z. anorg. 1901, 27. 35.)

 I. of 1.08-N HH dissolves 0.372 mol.
 CdF₂ at 25°. (Jaeger, Z. anorg. 1901, 27, 35.) Insol. in liquid NH₈. (Gore, Am. Ch. J. 1898, **20**. 827.)

Cadmium ceric fluoride, CdF₂,2CeF₄+7H₂O. Ppt. Decomp. by H₂O. (Rimbach, A. 1909, **368.** 106.)

Cadmium columbium fluoride. Nrc Fluocolumbate, cadmium.

Cadmium molybdenyl fluoride. See Fluoxymolybdate, cadmium.

Cadmium silicon fluoride. See Fluosilicate, cadmium.

Cadmium stannic fluoride. Ner Fluostannate, cadmium.

Cadmium titanium fluoride. Ner Fluotitanate, cadmium,

Cadmium zirconium fluoride. Ner Fluozirconate, cadmium.

Cadmous hydroxide, CdOH. Insol, in H2(). Decomp. by acids into cadmin salt. (Morso and Jones, Am. Ch. J.

Cadmium hydroxide, Cd()2II2.

12. (188.)

Insol, in H2O. 11. CdO2H2+Aq contains 0.0026 g. CdO2H2

(Bodländer, Z. phys. Ch. 1898, 27. at 25°. 66.)

Solubility in $H_2O = 2.6 \times 10^{-4}$. (Herz, Z. anorg. 1900, 24. 126.)

Sol. in acids; very sol. in NII4()II + Aq; insol. in KOH, NaOH, Na₂CO₃, K₂('()₃, and

(NH₄)₂CO₂+Aq. Easily sol. in (NH₄)₂SO₄, NH₄Cl, NH₄NO₃, and NH₄ succinate+Aq. (Wittstein.) Freshly pptd. CdO₂H₂ is sol. in alkali haloids + Aq. (Bersch, Z. phys. Ch. 1891, 8.

392.) Solubility in NH4OH+Aq increases with increase in concentration of NII4OII. (Euler, B. 1903, **36.** 3401.)

Solubility in NH₄OH+Aq at 25°.

NH ₃ norm.	g. CdO per l.
0 5 1.0 1.8 4.6	0.24 0.62 1.33 4.92

(Bonsdorff, Z. anorg. 1904, 41, 187.)

Insol, in ethyl, and methyl amine + Aq.

(Wurtz.) Very sl. sol, in HCN+Aq even when freshly pptd. (Schüler, A. 87. 48.)

Not pptd. in presence of Na citrate (Spiller), and many non-volatile organic substances. (Rose.)

Cadmium iodide, Cdl₂.

Sol. in 1.13 pts. H₂O at 15°. (Eder, Dingl. **221**. 89.) Sol. at 20° 40° 60° 80° 100°

in 1.08 1.00 0.93 0.86 0.75 pts. H₂().

(Kremers, Pogg. 103, 57.)

Sat. Cdl2+Aq contains at:

32" +10° 13° +2° 24° -4° 47.4% Cdle. 42.443.7 45.2 44.8 46.5940 135° 54° 64° 76° 95° 62.9% CdJ₂. 255° 54.7 52.455.149.5 50.1 202° 185° 202° 140° 165° 73.4 73.2 84.5% Cd1₂. 63.1 68.1 70.7

(Étard, A. ch. 1894, (7) 2. 545.)

Solubility in H₂O.

100 g. of the sat. solution contain at:

0° 50° 75° 46.02 49.35 52.65 56.08 g. Cd1₂. 44.39 (Dietz, Z. anorg. 1899, 20. 202.)

Sp. gr. of Cd I2+Aq containing pts. CdI2 to 100 pts. H₂O.

88.5 pts. CdI₂. 43.7 21.4 1.328 1.6139 1.1681

(Kremers, Pogg. 111. 60.)

Sp. gr. of CdI₂+Aq at 19.5° containing: 20 25 %CdI₂, 1.194 1.253 1,044 1.088 1,138

30 40 50 %CdI2. 45 1.319 1,395 1.476 1.575 1.680 (Kremers, calculated by Gerlach, Z. anal. 8. 285.)

Sp. gr. of CdI₂+Aq at 18°. % CdI₂ 1 5 10°. 15 Sp. gr. 1.0071 1.0425 1.0883 1,1392 1.1943

35 40 Sp. gr. 1.2550 1.3228 1.4000 1.4816 1.5741 (Grotrian, W. Ann. 1883, 18. 193.)

Sp. gr. of CdI₂+Aq.

g.CdI2 per l.	Sp. gr.	g.CdI2 per l.	Sp. gr.
98.85 197.7	1.08 1.162	289.5 400	1.237 1.328

(Barbier and Roux, Bull. Soc. 1890, (3) 3.

Sp. gr. of CdI₂+Aq.

'% CdI₂	t°	Sp. gr. at to	Sp. gr. at 18°
0.0429	17.68	0.99915	0.99908
0.100	22.88 17.55	0.99807 0.99965	0.99956
0.204	22.91 17.76	0.99363	
	22.79	0.99948	1.0005
0.399	17.40 24.30	0.00223 1.00082	1.0021
0.600	18.00		1.0038
0.800	17.44 23.11	1.00564 1.00442	1.0056
1.00	18.00	1,00112	1.0072

(Wershofen, Z. phys. Ch. 1890, 5. 493.)

Sp. gr. CdI₂+Aq at 18°/4° containing: 31.123 13.677 9.559 % CdI₂. 1.338 1.125 1.086 (de Muynek, W. Ann. 1894, 53. 561.)

CdI₂+Aq containing 10.97% CdI₂ has sp. gr. $20^{\circ}/20^{\circ} = 1.0982$.

CdI₂+Aq containing 16.53% CdI₂ has sp. gr. $20^{\circ}/20^{\circ} = 1.1562$.

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 282.)

Sp. gr. of CdI₂+Aq at 20°.

	_	
Normality of CdI ₂ +Aq	% CdI2	Sp. gr.
1.924 0.951 0.447 0.211	44.53 27.07 14.40 7.26	1.5807 1.2837 1.1355 1.0630

(Forchheimer, Z. phys. Ch. 1900, 34. 29.)

CdI₂+Aq containing 1 pt. CdI₂ in 2.2691 pts. H₂O at 17° has sp. gr. = 1.3341. (Hittorf, Z. phys. Ch. 1902, 39. 628.)

Sol. in sat. HI+Aq. Sol. in warm NH₄OH+Aq.

Insol. in liquid NH3. (Gore, Am. Ch. J. 1898, **20.** 827.)

Sl. sol. in liquid NH₂. (Franklin, Am. Ch. . J. 1898, **20.** 827.) Sol. in S₂Cl₂. (Walden, Z. anorg. 1900, 25.

Difficultly sol. in POCl₈. (Walden, Z. anorg. 1900, 25. 212.)

Nearly insol. in AsBrs. (Walden, Z. anorg. 1902, 29. 374.) Sol. in SO₂Cl₂. (Walden, Z. anorg. 1900,

25. 215.) Sol. in 15 pts. alcohol. (Vogel, N. Rep.

Pharm. 12. 393.)

Sol. in 0.98 pt. abs. alcohol. (Eder, Dingl. 221. 89.)

Sp. gr. of CdI₂+alcohol. Sp. gr. 20°/20° %CdI₂ 0.79497.280.8470

(Le Blanc and Rohland, Z. phys. Ch. 1896, **19**. 284.)

Sol. in 5.2 mols. methyl, 7 mols. ethyl, and 9.8 mols. propyl alcohol at 20°. (Timofejew, C. R. 112. 1224.)

Sol. in 3.6 pts. ether. (Eder, l. c.)

Sol. in 2.0 pts. alcohol-ether (1:1). (Eder, l. c.)
Very sl. sol. in anhydrous abs. ether.
(Hampe, Ch. Z. 1887, 11, 847.)

100 g. of sat. solution in abs. ether contain 0.143 g. CdI₂ at 12°. (Tyrer, Proc. Chem.

Soc. 1911, 27. 142.) Solubility in ether + Aq at 12°.

% H ₂ O in ether	% CdI2	% H ₂ O in ether	% CdI2	%H ₂ O in ether	% CdI2
0.0 0.10 0.30	0.78	0.50 0.70 0.90	4.77	1.10	7.30 8.27 8.68

(Tyrer, Proc. Chem. Soc. 27. 142.)

at 16° = 0.01% " 35° = 0.02% at 0° = 0.03% " 15.5° = 0.04% Solubility in benzene Solubility in ethyl ether at 0° " 20.3° = 0.05%

(Linebarger, Am. J. Sci. 1895, (3) 49. 52.) Sol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

1 g. CdI₂ is sol. in 4 g. acetone at 18°. Sp. gr. of sat. solution 18°/4° = 0.994. (Naumann, B. 1904, 37. 4338.)

Sp. gr. of CdI₂+acetone.

%CdI₂		Sp. gr. 20°/20°.
0 12.02		0.7998 0.8929
_		1 1 77 1 7000

(Le Blanc and Rohland, Z. phys. Ch. 1896, **19.** 284.)

Sol. in chinolin. (Beckmann and Gabel, Z. anorg. 1906, 51. 236.)

100 g. benzonitrile dissolve 1.6295 g. CdI₂ at 18°. (Naumann, B. 1914, 47. 1370.) Insol. in methylene iodide. (Retgers, Z.

anorg. 3. 343.)

Sl. sol. in ethylamine. (Shinn, J. phys. Chem. 1907, 11. 538.) Insol. in CS₂. (Arctowski, Z. anorg. 1849,

Solubility in methyl acetate = 0.7-1.5%; 2.1% at bpt. (Schröder and Steiner, J. pr. 1909, (2) 79. 49.)
Sol. in methyl acetate. (Naumann, B.

1909, 42. 3790.)

1 pt. is sol. in 54.3 pts. ethyl acetate at 18°. The sat. solution has $D18^{\circ}/4^{\circ} = 0.9145$. (Naumann, B. 1910, 43. 318.)

Insol. in mustard oil. (Mathews, J. phys. Chem. 1905, 9. 647.)

Mol. weight determined in piperidine, pyridine, methyl and ethyl sulphide. (Werner, Z. anorg. 1897, 15. 17.)

Cadmium hydrogen iodide, CdI_2 , $HI+3H_2O$. Decomp. in air. (Dobroserdow, C. C. 1900, II. 527.)

Cadmium cæsium iodide, CdI₂, CsI+H₂O. Sol. in H₂O without decomp. (Wells and Walden, Z. anorg. 5. 271.)

CdI₂, 2CsI. As above. CdI₂, 3CsI. Decomp. by H₂O into the above salt.

Cadmium hydrazine iodide, CdI₂,2N₂H₄HI. Sol. in H₂O. (Ferratini, C. A. 1912. 1612.)

Cadmium mercuric iodide.

Very sol, in H₂O. (Berthemot, J. Pharm. **14.** 613.)

CdI₂, 3HgI₂. Sol. in H₂O. Can be recrystallized in alcohol. (Clarke and Kebler, Am. Ch. J. 5, 235.)

Cadmium potassium iodide, CdI₂, KI+H₂O. Sol, in 0.94 pt. H₂O at 15°. (Eder, Dingl. **221.** 89.)

CdI₂, 2KI+2H₂O. D⁻¹ Extremely sol. in H₂O. So. pt. H₂O. Sl. sol. in alcohol and wood spirit, but

less than CdI₂. (Croft.) Sol. at 15° in 1.4 pts. absolute alcohol, 24.5 pts, ether (0.729 sp. gr.), and 4.5 pts. alcoholother (1:1). (Eder, l. c.)

Sp. gr. of K2CdI4+Aq at 18°. %K₂CdI₄ 1.0065 1.0384 1.0808 1.1269 1.1770 Sp. gr.

 $%K_2CdI_4$ 30 1.2313 1.2890 1.3557 1.4282 1.5065 Sp. gr. (Grotrian, W. Ann. 1883, 18. 193.)

%K2CdI4	t°.	Sp. gr. at to	Sp. gr. at 18°
0.0328 0.0596 0.0804 0.100	18 18 18 17.12 21.82	0.99962 0.99872	0.99895 0.99921 0.99938 0.99945
0.250 0.500 1.003	18 18 17.32 20.63	1.0068 1.0061	1.0007 1.0027 1.0067

(Wershofen, Z. phys. Ch. 1890, 5. 493.)

Sol. in ethyl acetate. (Naumann, B. 1904, **37.** 3601.)

Cadmium sodium iodide, CdI₂, 2NaI+6II₂().

Deliquescent. (Croft.) Sol. at 15° in 0.63 pt. H₂O, 0.86 pt. abs. alcohol, and 10.1 pts. ether (sp. gr. 0.729). (Eder, Dingl. 221. 89.)

Cadmium strontium iodide, Coll₂, Srl₂+ 8H₂O.

Deliquesces in moist, effloresces in dry air; sol, in H₂O. (Croft.)

Cadmium iodide ammonia, CdI₂, 2NII₃.

Decomp. by H₂O. (Rammelsberg.) CdI₂, 4NH₃. (Dawson and McCrae, Chem. Soc. 1900, 77, 1246.)

CdI₂, 6NH₃. Decomp. by H₂(); sol. in warm, less sol. in cold NH₄OH+Aq. (Rammelsberg.)

Cadmium iodide hydrazine, CdI₂, 2N₂H₄.

Easily sol. in warm NH₄OH+Aq. (Franzen, Z. anorg. 1908, 60. 281.)

Cadmium iodide hydroxylamine, CdI₂, 3NH₂OH.

Sol. in H₂O and alcohol. Insol. in ether. (Adams, Am. Ch. J. 1902, 28. 218.)

Cadmium iodide selenide, CdI₂, 3CdSe.

Easily decomp. (Fonzes-Diacon, C. R. 1900, **131.** 897.)

Cadmium iodosulphide, CdI, 2CdS. Ppt. (Naumann, B. 1904, 37. 4338.)

Cadmium suboxide, Cd₄O.

Decomp. by H₂O, acids and NH₄OH+Aq. (Tanatar, Z. anorg. 1901, 27. 433.) Cd₂O. Properties as cadmous hydroxide. (Morse and Jones.)

Cadmium oxide, CdO.

Insol. in H₂O. Sol. in acids. Sol. in NH₄OH+Aq. Insol. in (NH₄)₂CO₈+Aq. Easily sol. in NH₄Cl+Aq, less in NH₄NO₈+ | Aq. (Brett, 1837.)

Insol. in KOH, NaOH, K2CO3, and Na2CO3 | Cadmium sulphide, CdS. +Aq.See also Cadmium hydroxide. Solubility in (calcium sucrate+sugar)+ 1 l. solution containing 418.6 g. sugar and 34.3 g. CaO dissolves 0.22 g. CdO. 1 l. solution containing 174.4 g. sugar and 14.1 g. CaO dissolves 0.48 g. CdO.
(Bodenbender, J. B. 1865. 600.)
Insol. in acetone. (Naumann, B. 1904, 37. 4329.) Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.) Insol. in ethyl acetate. (Naumann, B. 1904, 37. 3601.) Cadmium peroxide, Cd₅O₈ or Cd₅O₅(?). (Haas.) CdO₂, Cd(OH)₂. (Kouriloff, A. ch. (6) 23. 431.) Very stable towards H₂O. Insol. in NH₄OH +Aq. (Haas, B. 1884, 17. 2253.) 4CdO₂, Cd(OH)₂. Ppt. Insol. in NaOH+ Aq. (Eykmann, C. C. **1905**, I. 1629.) 5CdO₂,CdO+3H₂O. Ppt. (Teletow, C. A. **1912**, 43.) Cadmium oxybromide, CdO, CdBr₂+H₂O. Decomp. by H₂O. (Tassily, C. R. 1897, **124.** 1023.) $+2H_{2}O$. Stable in dry air; insol. in H₂O. (Tassily, C. R. 1897, 124, 1022.) +3H₂O. Slowly decomp. by H₂O. (Tassily, C. R. 1897, **124.** 1022.) +7H₂(). (Mailhe, C. R. 1901, **132.** 1561.) Cadmium oxychloride, CdCl₂, CdO+H₂O. Sl. sol. in hot H2(). (Habermann, M. Ch. **5.** 432.) +7H₂O. (Mailhe, Bull. Soc. 1901, (3) 25. 791.) 2Cd(), CdCl2. Insol. in H2O, but slowly decomp. thereby. (Canzoneri, Gazz. ch. it. 1897, **27.** (2) 486.) Cadmium oxyiodide, CdO, CdI₂+H₂O. Decomp. by H₂O. (Tassily, C. R. 1897, **124.** 1023.) Stable in dry air; insol. in H₂O. +3H₂O. (Tassily, C. R. 1897, 124, 1022.) Cadmium phosphide, Cd₃P₂. Sol. in HCl+Aq with evolution of PHs. (Stromeyer.) Cd₂P. Sol. in conc. HCl+Aq. (Emmerling, B. 12. 152.) Easily decomp. by acids. (Kulisch, A. 231. CdP₂. Decomp. by boiling conc. HCl+Aq. (Renault, C. R. 76. 283.) Cadmium selenide, CdSe. Sol. in HCl+Aq. (Uelsmann, A. 116. 122.)

Easily decomp. by acids. (Fonzes-Diacon,

C. R. 1900, **131**. 897.)

.....

Insol. in H_2O . Solubility in H_2O at $16-18^{\circ} = 6.6 \times 10^{-6}$ mols. per l. (Biltz, Z. phys. Ch. 1907, 58. 291.) 1 l. H₂O dissolves 9.00 x 10-6 mols. CdS (artificial greenockite) at 18°.

1 l. H₂O dissolves 8.86 x 10⁻⁸ mols. pptd. CdS at 18°. (Weigel, Z. phys. Ch. 1907, 58. 294.) Difficultly sol. in hot dil. HCl+Aq. Easily (Stromeyer.) sol. in cold conc. HCl+Aq. Sol. in HNO_3+Aq (Meissner), and boiling dil. H_2SO_4+Aq (1:6). (A. W. Hoffmann, A. 115. 286.) Very sl. sol. in NH_4OH+Aq . (Wackenroder, Repert. 46. 226.) Insol. in KOH, or (NH₄)₂S+Aq. Appreciably sol. in an acid solution of NH₄Cl. (Baxter and Hines, Z. anorg. 1905, 44. 160.) Much more sol. in (NH₄)₂S+Aq than usually supposed. (Ditte, C. R. 85. 402.). Solubility increases by warming, and at 68° is twice that at ordinary temperatures. A sat. solution of (NH₄)₂S dissolves about 2 g. CdS Alkali sulphides dissolve much to a litre. less. (Ditte.) Fresenius (Z. anal. 20. 236) could not confirm the above. According to Fresenius, CdS is not appreciably sol. in (NH₄)₂S+Aq. Insol in Na₂SO₃ or KCN+Aq. (Fresenius.) Insol in NH₄Cl or NH₄NO₃+Aq. (Brett.) Sol. in alkali sulpho-molybdates, -tungstates, -vanadates, -arsenates, -antimonates, -stannates+Aq. (Storch, B. 16. 2015.)
Insol. in liquid NH₂. (Franklin, Am. Ch. J. 1898, **20.** 827.) Insol. in acetonc. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.) Insol. in ethyl acetate. (Naumann, B. 1910, **43.** 314.) Min. Greenockite. Sol. in HCl+Aq.

Colloidal.—Solution of 4 g. colloidal C in a litre H₂O remains transparent several days. If it contains 11 g. CdS in a litre, it is completely congulated in 24 hours. Solutions of salts of the following concentration cause an immediate coagulation in an aqueous solu-

tion of CdS containing 3.62 g. in a litre. 1:1615 KÇl 1:727 KBrΚÏ 1:57KCN 1:166KClO_s . 1:1666KNO₃. 1:1000 $K_2S_2O_0$ 1:5000 K₂SO₄ 1:833K3Fe(CN). 1:166 $K_4Fe(CN)_6$. .<1:100 1:400K₂CrO₄ 1:3571 K₂Cr₂O; 1:2666 NaCl Na2S2O8 1:981:333 NaHCO₃ 1:166 Na₂CO₃ Na₂HPO₄ 1:202

NaC ₂ H ₃ O ₂ Na benzoate (NH ₄) ₂ C ₂ O ₄ BaCl ₂ Ba(NO ₃) ₂ BaS ₂ O ₆ MgSO ₄ MnSO ₄ CdSO ₄ Cd(NO ₃) ₂ Pb(ClO ₃) ₂ Pb(C ₂ H ₃ O ₂) ₂ Hg(CN) Al ₂ (SO ₄) ₃ Alum	. 1:2451 . 1:10,000 . 1:588 . 1:11,764 . 1:8032 . 1:5617 . 1:41,666 . 1:22,222 . 1:250,000 . 1:285,714 . 1:209 . 1:147,058 . 1:20 . 1:20
Alum	
H ₂ SO ₄ . HC ₂ H ₃ O ₂ . H ₂ C ₂ O ₄ . Succinic acid	. 1:8000 . 1:15 . 1:23,255 . <1:100
Tartaric acid	. 1:333

(Prost, Belg. Acad. Bull. (3) 14. 312; J. B. 1887, 537.)

Cadmium pentasulphide, CdS₅.

Insol. in H_2O . (Schiff, A. 115. 74.) Mixture of CdS and S. (Follenius, Z. anal. 13. 412.)

Cadmium potassium sulphide, K₂Cd₃S₄. (Milbauer, Z. anorg. 1904, **42**. 439.)

Cadmium sodium sulphide, 3CdS, Na₂S.
Decomp. by H₂O. (Schneider, J. pr. (2) 8. 29.)

Cadmium sulphoiodide.

See Cadmium iodosulphide.

Cadmium telluride, CdTe.

Not attacked by dil. acids. Attacked in the cold only by HNO₃. (Tibbals, J. Am. Chem. Soc. 1909, **31**. 908.)

Cadmic acid.

Potassium cadmate.

Insol. in H_2O , but gradually decomp. when in contact therewith. (Meunier, C. R. 63. 330.)

Cæsium, Cs.

Decomp. H₂O with great violence. (Setterberg, A. 211. 100.)

Very sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.)

Cæsium acetylide acetylene, Cs₂C₂, C₂H₂.

Insol. in C₆H₆ and in CHCl₃. (Moissan, C. R. 1903, **136**. 1218.)

Cæsium amide, CsNH2.

Decomp. by H_2O . Very sol. in liquid NH_3 . (Rengade, C. R. 1905, 140. 1185.)

Cæsium ammonia, Cs,NH₃.

Sol. in liquid NH₃. (Moissan, C. R. 1903, **136**. 1177.)

Cæsium azoimide, CsN3.

Deliquescent. Stable in aq. solution. 224.2 pts. sol. in 100 pts. H_2O at 0° 307.4 ""... 100 " H_2O " 16° 1.0366 ""100 " abs. alcohol "16° Insol. in pure ether. (Curtius, J. pr. 1898, (2) 58. 283.)

Cæsium bromide, CsBr.

Ppt. (Chabrié, C. R. 1901, **132**. 679.) Sat. CsBr+Aq at 25° contains 55.23% CsBr. (Foote, Am. Ch. J. 1907, **37**. 125.)

Cæsium tribromide, CsBr3.

Sol. in H_2O ; decomp. by alcohols. (Wells, Sill. Am. J. 143. 17.)

Cæsium pentabromide, CsBr.

Very unstable. (Wells and Wheeler, Sill. Am. J. 144. 42.)

Cæsium cobalt bromide, Cs2CoBr4.

Decomp. by H_2O . (Campbell, Z. anorg. 1894, 8. 126.)

Decomp. by H₂O and by alcohol. (Campbell, Am. J. Sci. 1894, (3) **48**. 418.)

Cs₅CoBr₅. Decomp. by H₂O. (Campbell, Z. anorg. 1894, 8. 126.)
Decomp. by H₂O and by alcohol. (Campbell, Am. J. Sci. 1894, (3) 48. 418.)

Cæsium copper bromide, CsBr, CuBr₂.

Sol, in H₂O without decomp. (Wells and Walden, Z. anorg. 5, 304.)
2 CsBr, CuBr₂. (W. and W.)

Cæsium iridium bromide.

See Bromiridate, cæsium.

Cæsium iron (ferric) bromide, CsFeBr₄.

Sol. in H₂O. (Walden, Z. anorg. 1894, 7. 332.) Cs₂FeBr₅+H₂O. (Walden, Z. anorg. 1894.

 $Cs_2FeBr_5+H_2O$. (Walden, Z. anorg. 1894 7. 332.)

Cæsium lead bromide, CsBr, 2PbBr₂.

Nearly stable in aqueous solution. (Walden, Sill. Am. J. 145. 127.)

CsBr, PbBr₂. Decomp. by H₂O. (Walden.)

4CsBr, PbBr₂. As above.

Solubility determinations show that the double salts formed by exsium and lead bromides at 25° are CsPb₂Br₅, CsPbBr₃ and Cs₄PbBr₅. (Foote, Am. Ch. J. 1907, **37**. 125.)

Cæsium magnesium bromide, CsBr, $MgBr_2+6H_2O$.

Sol. in H₂O, (Wheeler and Campbell, Z. anorg. 5. 275.)

Cæsium mercuric bromide, CsBr, 2HgBr₂.

Not decomp. by H₂O. 100 pts. solution sat. at 16° contain 0.807 pt. CsBr, 2HgBr₂. Sl. sol. in hot strong alcohol, from which CsBr, HgBr₂ separates on cooling. (Wells, Sill. Am. J. 144. 221.)

CsBr, HgBr₂. Decomp. by H₂O into above salt. Sol. in alcohol without decomp. (Wells.)

2CsBr, HgBr₂. Decomp. by H₂O into CsBr, 2HgBr₂.

3CsBr, HgBr₂. As above.

Cæsium molybdenyl bromide, 2CsBr, MoOBr₃.

(Weinland and Knöll, Z. anorg. 1905, 44. 107.)

Cæsium nickel bromide, CsNiBrs.

Decomp. by H₂O. (Campbell, Z. anorg. 1894, 8, 126.)

Decomp. by H₂O and by alcohol. (Campbell, Am. J. Sci. 1894, (3) 48. 418.)

Cæsium osmium bromide.

See Bromosmate, cæsium.

Cæsium palladium bromide.

See Bromopalladate, cæsium and bromopalladite, cæsium.

Cæsium platinum bromide.

See Bromoplatinate, cæsium.

Cæsium ruthenium bromide.

See Bromoruthenite, cæsium.

Cæsium selenium bromide.

See Bromoselenate, cæsium.

Cæsium tellurium bromide.

See Bromotellurate, cæsium.

Cæsium thallic bromide, CsBr, TlBr₃. Sol. in H₂O with decomp. (Pratt, Z. anorg.

1895, 9. 19.)
By recryst, from H₂O, forms 3CsBr, 2TlBr₃.

(Pratt, Am. J. Sci. 1895, (3) 49. 403.) 3CsBr, 2TlBr₃. Can be recryst. unchanged from H₂O. (Pratt, Am. J. Sci. 1895, (3) 49. 402.)

Cæsium tin (stannic) bromide. See Bromostannate, cæsium.

Cæsium zinc bromide, 3CsBr, ZnBr₂. Sol. in H₂O. (Wells and Campbell, Z. anorg. **5.** 275.) 2CsBr, ZnBr₂. As above.

Cæsium bromide columbium oxybromide, 2CsBr, CbOBrs.

Unstable in moist air. Decomp. by H₂O. (Weinland, B. 1906, **39.** 3059.)

Cæsium bromochloride, CsBr2Cl.

Properties as C₈Br₃. (Wells.) C₈BrCl₂. As above. (Wells.)

Cæsium mercuric bromochloride, Cs₃HgCl₃Br₂.

Decomp. by H₂O finally to HgBr₂. (Wells, Sill. Am. J. **144**. 121.)
Cs₂HgCl₂Br. As above.

Cs₂HgCl₂Br. As above. CsHgClBr₂. As above. CsHg₂ClBr₄. As above. CsHg₅ClBr₁₀. As above.

Cæsium bromochloroiodide, CsBrClI.

More sol. in H_2O than in alcohol. Not decomp. at once by ether. (Wells.)

Cæsium bromoiodide, CsBrI2.

Decomp. by H₂O. Sol. in alcohol. Decomp. by ether with residue of CsBr. (Wells, Sill. Am. J. **143**. 17.)

CsBr₂I. More sol. in H₂O than in alcohol. Not decomp. by ether.

CsBr₂I + Aq sat. at 20° contains about 4.45% CsBr₂I. (Wells.)

Cæsium carbide, Cs2C2.

Decomp. by cold H_2O . (Moissan, C. R. 1903, 136, 1221.)

Cæsium chloride, CsCl.

Very deliquescent; sol. in H₂O and alcohol.

Solubility of CsCl at t°.

t°		Pts. by wt. of CsCl in 100 pts. solution
	0.3 10 20 30 40	61.9 63.5 64.9 66.3 67.4

(Hinrichsen, Z. phys. Ch. 1904, 50. 99.)

Solubility of CsCl at to.

		-	
t°	% CsCl	t°	% CsCl
0 10 20 30 40 50	61.7 63.6 65.1 66.4 67.5 68.0	60 70 80 90 100 119.4	69.7 70 71.4 72.2 73.0 74.4

(Berkeley, Trans. Roy. Soc. 1904, **203.** A. 208.)

A normal solution of CsCl has sp. gr. at $25^{\circ}=1.1076$. (Wagner, Z. phys. Ch. 1890, **5**. 36.)

Sp. gr. at 20°/4° of a normal solution of CsCl=1.125815. (Haigh, J. Am. Chem. Soc. 1912, **34**. 1151.)

Sp. gr. of CsCl+Aq.				
G. equiv. CsCl per l. at 18° Sp. gr. at 6°/6° Sp. gr. at 18°/18° Sp. gr. at 30°/30°				
0.504 1.602 2.007 3.994	1.06556 1.12962 1.25705 1.50514	1.06483 1.12825 1.25452 1.50100	1.06452 1.12750 1.25307 1.49859	

(Clausen, W. Ann. 1914, (4) 44. 1071.)

Solubility of CsCl+FeCl₃ in H₂O at 21°.

Substance added		Pts. by weight in 100 pts. of solution	
FeCl: grams	CsCl grams	FeCls	CsCl
0 0.6 1.4 2.2 2.0 3.8 4.6 5.4 6.2 35	65 11.6 10.2 8.8 7.4 6.0 4.6 2.8 1.4 0.2	0 0.45 2.1 5.24 7.8 8.93 15.34 21.65 27.96 48.71 83.89	65.0 55.18 52.38 51.44 47.70 41.15 25.25 14.96 8.42 0.94

(Hinrichsen, Z. phys. Ch. 1904, 50. 96.)

Solubility of CsCl+HgCl2 in H2O at 25°.

Solution contains		61-123
% CsCl	% HgCl2	Solid phase
65.61 65.78 62.36 57.01 52.35 51.08 49.30 45.95 45.23 38.63 17.03 1.53 0.61 0.40 0.44 0.41 0.25 0.00	0.00 0.215 0.32 0.64 1.23 1.44 1.49 1.69 1.73 1.32 0.51 0.42 2.64 2.91 3.78 4.68 5.65 7.09 6.90	CsCl CsCl+Cs ₃ HgCl ₅ Cs ₂ HgCl ₅ Cs ₃ HgCl ₅ Cs ₃ HgCl ₅ +Cs ₂ HgCl ₄ Cs ₂ HgCl ₄ +CsHgCl ₃ CsHgCl ₃ +CsHgCl ₅ CsHgCl ₃ +CsHg ₂ Cl ₅ CsHg ₂ Cl ₅ +CsHg ₆ Cl ₁₁ CsHg ₅ Cl ₁₁ +HgCl ₂ . HgCl ₂ +HgCl ₂ .

(Foote, Am. Ch. J. 1903, 30, 340.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.) 100 g. solution in acetone sat. at 25° contain 0.032 g. CsCl. (Foote and Haigh, J. insol. in conc. HCl+Aq.

Solubility of CsCl †-HgCl, in acctone at 25

Solution contains		Solul place	
% HgCla Sh CaCl		contra foundar.	
57.74	0.00	HgCl,	
57.79 57.74	$0.13 \\ 0.20$	HgCl ₂ †CsHg ₃ Cl ₁₁ CsHg ₅ Cl ₁₁	
52.54 49.83	$0.22 \\ 0.32$	11	
44.32)	0.50)	CsHg5Clr+CsHg5Cl.	
39.65	0.48	CallggCla	
$\begin{vmatrix} 28.48 \\ 26.96 \end{vmatrix}$	0.48	CallgoCla + CallgCla	
$ \begin{array}{c} 27.32 \\ 21.50 \end{array} $	0.61	C'sHgC'l ₂	
13.08	0.45 0.19	Mixtures of salts	
0.17	0.25	or states of sales	
0.02	$0.11 \\ 0.032$	ChCl	

(Foote and Haigh, J. Am. Ch. Soc. 1911, 33. 461.)

Insol, in methyl acctate. (Naumann, B **1909**, **42**, 3790.)

Solubility in glycol at ord, temp. 10,6 10.8%. (de Coninck, Belg. Acad. Bull. 1905. 359.)

Insol. in anhydrous pyridine and in 97°, pyridine+Aq. Sl. sol. in 95°; pyridine+Aq and in 93% pyridine+Aq. (Kahlenberg, J. Am. Chem. Soc. 1908, 30, 1107.)

Cæsium chromium chlcride, 20's0'l,0'r0'l,: $H_2()$.

Stable in the air. Sol, in H₂O, (Wells, Z anorg, 1895, 10, 182.) 2CsCl,CrCl₃+4H₂O; hydroscopic; very sol in II₂O. (Wells, *l. c.*)

Cæsium tetra-aquochromium chloride, CrCl₂(OH₂)₄,Cl, 2ChCl, Ppt. (Werner, B. 1901, 34, 1602.)

Cæsjum cobalt chloride, ('a('a('la + 211₂t).

Decomp. by H2O and alcohol. (Campbell.

Z. anorg, 1894, 8, 126.) Cs-CoCl. Decomp. by H₂() and by al-C-G C. J. omp. by H₂O and by atcohol. (Campbell, Z. anorg, 1894, 8, 126.)

Cæsium cuprous chloride, CaCl, CuaCla. Decomp. by H₂O into CuCl₂, CaCl. (Wells,

Z. anorg. 5, 306.) 3CsCl, Cu₂Cl₂. (Wells.) 6CsCl, Cu₂Cl₂. (Wells.)

Cæsium cupric chloride, 2CaCl, CuCls. Easily sol. in H₄() and dil. HCl+Ag; (Godeffroy, B. . | 8. 9.)

Sol. in small amount H₂O without decomp. (Wells and Dupee, Z. anorg. 5. 300.) +2H₂O. Efflorescent. (W. and D.) 3CsCl, 2CuCl₂+2H₂O.

CsCl, CuCl₂. Sol. in H₂O without decomp. (W. and D.)

Cæsium gold chloride. See Chloraurate, cæsium.

Cæsium iridium tetrachloride. See Chloriridate, cæsium.

Cæsium iron (ferric) chloride, CsFeCl₄+ ½H₂O.

Sol. in H_2O . Decomp. in the air. (Walden, Z. anorg. 1894, 7. 332.) $Cs_2FeCl_5+H_2O$. Sol. in H_2O . (Walden.) $Cs_3FeCl_0+H_2O$. Sol. in H_2O . (Walden.)

Cæsium lanthanum chloride, $C_{83}LaCl_6+4H_2O$.

Very hydroscopic. Easily sol. in H_2O . (R. J. Meyer, Z. anorg. 1914, 86. 273.)

Cæsium lead chloride, CsCl, 2PbCl₂.

Nearly stable in aqueous solution. (Campbell, Sill. Am. J. 145, 126.)
CsCl, PbCl₂. Decomp. by H₂O. (Campbell.)
4CsCl, PbCl₂. As above. (Campbell.)

Cæsium lead tetrachloride. Sec Chloroplumbate, cæsium.

Cæsium magnesium chloride, CsCl, MgCl₂+6H₂O.

Sol. in H_2O . (Wells and Campbell, Z. anorg. 5, 275.)

Cæsium manganous chloride, CsCl, MnCl₂+ 2H₂O.

Not deliquescent; sol. in H₂O. (Saunders, Am. Ch. J. 14. 143.)

2CsCl, MnCl₂. (Godeffroy.) +2½H₂O. (Godeffroy.)

+3H₂O. Sol. in H₂O. Conc. HCl+Aq precipitates anhydrous salt from aqueous solution. (Godeffroy, B. 8. 9.)

The only salt which exists contains 2H₂O. (Saunders, Am. Ch. J. **14**. 143.)

Cæsium manganic chloride, 2CsCl, MnCl₃. Easily decomp. (Meyer and Best, Z. anorg. 1899, **22**. 187.)

Cæsium mercuric chloride, CsCl, HgCl2.

100 pts. solution sat. at 17° contain 1.406 pts. CsHgCl_s. Not decomp. by H₂O. Insol. in absolute alcohol, but sol. on diluting with ¹/₃ vol. H₂O. (Wells, Sill. Am. J. **144**. 221.) 2CsCl, HgCl₂. Easily sol. in H₂O and dil. HCl+Aq; insol. in conc. HCl+Aq. (Godeffroy.)

3CsCl, HgCl₂. Decomp. by H₂O; on recrystallizing from H₂O, CsCl, HgCl₂ is finally formed. (Wells, Sill. Am. J. **144**. 221.)

CsCl, 5HgCl₂. Decomp. by H₂O. (Wells.) Solubility decomp. by H₂O. (I and HgCl₂ which exist at 25° are Cs₃HgCl₅, Cs₂HgCl₄, CsHgCl₃, CsHg₂Cl₅, CsHg₅Cl₁₁. (Foote, Am. Ch. J. 1903, **30**. 340.)

Cæsium molybdenum chloride, Cs₂MoCl₅+ . H₂C.

Sol. in H₂O. Nearly insol. in alcohol and ether. (Chilesotti, C. C. 1903, II. 652.)

Cæsium molybdenyl chloride, CsCl, MoO₂Cl₂+H₂O.

Hygroscopic. Decomp. by H₂O. (Weinland and Knöll, Z. anorg. 1905, 44. 93.)

2CsCl, MoO₂Cl₂. Hygroscopic. Decomp. by H₂O. (Weinland and Knöll, Z. anorg. 1905, **44**. 92.)

2CsCl, 6MoO₂Cl₂+22H₂O. Very hygroscopic. Decomp. by H₂O. (Weinland and Knöll, Z. anorg. 1905, 44. 94.) 2CsCl, MoOCl₃. Only sl. sol. in H₂O. (Nordenskjöld, B. 1901, 34. 1573.)

Cæsium neodymium chloride, $Cs_3NdCl_6+5H_2O$.

Very hydroscopic. Easily sol. in H_2O . (R. J. Meyer, Z. anorg. 1914, 86. 273.)

Cæsium nickel chloride, 2CsCl, NiCl₂.

As the corresponding Cu salt. C_SNiCl₈. Decomp. by H₂O and by alcohol. (Campbell, Am. J. Sci. 1894, (3) **48**. 418.)

Cæsium palladium dichloride. See Chloropalladite, cæsium.

Cæsium palladium tetrachloride. See Chloropalladate, cæsium.

Cæsium praseodymium chloride, $Cs_3PrCl_6 + 5H_2O$.

Very hydroscopic. Easily sol. in H_2O . (R. J. Meyer, Z. anorg. 1914, 86. 273.)

Cæsium rhodium chloride. See Chlororhodite, cæsium.

Cæsium ruthenium chloride.

See Chlororuthenite, cæsium and chlororuthenate, cæsium.

Cæsium oxyruthenium chloride, Cs₂RuO₂Cl₄.

Ppt.; decomp. by H₂O; sol. in cold HCl. (Howe, J. Am. Chem. Soc. 1901, 23. 779.)

Cæsium samarium chloride, Cs₂SmCl₂+ 5H₂O.

Very hydroscopic. Easily sol. in H₂O₂. (R. J. Meyer, Z. anorg. 1914, **86**, 273.)

Cæsium silver chloride, 2CsCl, AgCl. Easily decomp. by H₂O. (Wells and Wheeler, Sill. Am. J. **144**. 155.)

Cæsium tellurium chloride. See Chlorotellurate, cæsium.

Cæsium thallic chloride, 2CsCl, TlCl3.

By recryst. from H₂O forms 3CsCl, 2TlCl₃. (Pratt, Am. J. Sci. 1895, (3) **49**. 398.) +H₂O. Readily sol. in hot H₂O but 3CsCl,

+H₂O. Readily sol. in hot H₂O but 3CsCl, 2TlCl₃ cryst. from the solution. (Pratt, Am. J. Sci. 1895, (3) **49**. 399.)

J. Sci. 1895, (3) 49. 399.)
3CsCl, 2TlCl₃. Can be recryst. from H₂O without change. (Pratt, Am. J. Sci. 1895, (3) 49. 401.)

49. 401.)
3CsCl, TlCl₃+2H₂O. Sol. in 36.4 pts. H₂O at 17° and 3 pts. at 100°. (Godeffroy, Zeitsch. d. allgem. österr. Apothekerv. 1880. No. 9.)

Cæsium tin (stannic) chloride. See Chlorostannate, cæsium.

Cæsium titanium chloride, $TiCl_3$, $2CsCl + H_2O$.

Difficultly sol. in H_2O . (Stähler, B. 1904, 37. 4409.)

Cæsium tungsten chloride, Cs3WeCl9.

Nearly insol. in cold H₂O.

Sol. in a hot mixture of equal pts. H₂O and conc. HCl.

Nearly insol, in conc. HCl. Sol, in very dil. NaOH+Aq.

Nearly insol. in most organic solvents. (Olsson, B. 1913, 46. 574.)

Cæsium uranous chloride, Cs2UCl6.

As K salt. (Aloy, Bull. Soc. 1899, (3) 21. 264.)

Cæsium uranyl chloride, 2CsCl, $(UO_2)Cl_2$. Sol. in H_2O . (Wells, Z. anorg. 1895, 10. 183.)

100 pts. of the solution contain at 29.75°, 56.07 pts. UO₂Cl₂, 2CsCl. (Rimbach, B. 1904, **37**. 468.)

Pptd. from aq. solution by gaseous HCl. (Wells, Am. J. Sci. 1894, (3) 50. 251.)

Cæsium vanadium chloride, $Cs_2VdCl_5+H_2O$. Difficultly sol. in H_2O and alcohol. (Stähler, B. 1904, **37**. 4412.)

Cæsium zinc chloride, 3CsCl, ZnCl2.

1.3

Sol. in H_2O . (Wells and Campbell, Z. anorg. 5. 275.)

2C₈Cl, ZnCl₂. Easily sol. in H₂O and dil. HCl+Aq. Insol. in conc. HCl+Aq. (Godeffroy.)

Cæsium chloride chromic oxychloride, 2CsCl, CrOCl₃.

Decomp. in the air.

Sol. in conc. HCl without decomp. (Weinland, B. 1906, 39. 4045.)

Cæsium chloride columbium oxychloride, 2CsCl, CbOCl₃.

Decomp. by H_2O . (Weinland, B. 1906, 39, 3057.)

Cæsium chloroiodide, CsCl2I.

Properties as CsBrClI. (Wells.)

CsCl₄I. Sl. sol. in H_2O , from which it can be recrystallized without decomp. (Wells and Wheeler.)

Cæsium mercuric chloroiodide, Cs₂HgCl₂I₂.

Decomp. instantly by H₂O to HgI₂. (Wells.)

Cæsium fluoride, CsF.

Ppt. (Chabrié, C. R. 1901, **132**. 680.) +1½H₂C. 100 g. H₂O dissolve 366.5 g CsF at 15°. (de Forcrand, C. R. 1911, **152**. 1210.)

Cæsium hydrogen fluoride, CsHF₂. Ppt. (Chabrié, C. R. 1901, **132**. 680.)

Cæsium tantalum fluoride.

See Fluotantalate, cæsium.

Cæsium tellurium fluoride, CsF,TcF₄.

Decomp. by H₂O. (Wells, Am. J. Sci. 1901, (4) **12.** 190.)

Cæsium titanium fluoride. See Fluotitanate, cæsium.

Cæsium zirconium fluoride. See Fluozirconate, cæsium.

Cæsium hydride, CsH.

Decomp. by H_2O with evolution of H_2 . (Moissan, C. R. 1903, 136. 589.)

Cæsium hydroxide, CsOH.

Very deliquescent, and sol. in H₂O. Sol. in alcohol.

79.41% CsOH is contained in a sat. aq. solution at 15°. (de Forerand, C. R. 1909, 149. 1344.)

75.08% CsOH is contained in sat. aq. solution at 30°. (Schreinemakers, C. C. 1909, I. 11.)

Cæsium iodide, CsI.

Sol. in H₂O.

100 pts. H₂O dissolve 44 pts. CsI at 0°; 66.3 pts. at 14.5°; 160 pts. at 61°.

Sp. gr. of CsI+Aq sat. at 14°=1.393. (Betekoff, Bull. Soc. Pétersb. (4) 2. 197.)

Cæsium periodide.

Solubility determinations show that CsI. and CsI₅ are the only periodides of essium existing between —4° and +73°. (Foote, Am. Ch. J. 1903, 29, 203.)

Cæsium triiodide, CsI.

1 ccm. sat. CsI+Aq dissolves 0.0097 g. CsI₃, and sp. gr. of solution is 1.154. Only sl. decomp. by solution in H_2O . Much more sol. in alcohol than in H_2O . Not immediately decomp. by ether. (Wells, Sill. Am. J. 143. 17.)

Cæsium pentaiodide, CsIs.

Cæsium cobalt iodide, Cs2CoI4.

Decomp. by H₂O. (Campbell, Z. anorg. 1894, **8.** 12.)

Deliquescent; decomp. by H₂O and by alcohol. (Campbell, Am. J. Sci. 1894, (3) **48.** 418.)

Cæsium lead iodide, CsPbI₂.

Sl. sol. in hot CsI+Aq. (Wheeler, Sill. Am. J. **145.** 129.)

Cæsium mercuric iodide, CsI, 2HgI₂.

Decomp. by H_2O finally into HgI_2 . (Wells, Sill. Am. J. 144. 221.)

2CsI, 3HgI₂. Decomp. by H₂O finally into HgI_2 .

Csl, HgI₂. As above. 2CsI, HgI₂. Decomp. by H₂O; insol. in

3CsI, HgI₂. As above.

Cæsium silver iodide, CsI, AgI.

(Penfield, Z. anorg. 1. 100.) CsI, 2AgI. More sol. in hot than in cold acetone. (Marsh, Chem. Soc. 1913, 103. 782.)

Cæsium tellurium iodide.

See Iodotellurate, cæsium.

Cæsium thallic iodide, CsI, TlIs.

Decomp. by H₂O. (Pratt, Am. J. Sci. 1895, (3) **49.** 403.)

Cæsium zinc iodide, 3CsI, ZnI₂.

essum zinc iodide, 3Usl, Znl₂.

Sol. in H₂O. (Wells and Campbell, Z. H₂O at ordinary temp.; sol. in HCl, HNO₃, H₂SO₄. (Moissan, C. R. 1898, **129**. 589.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 2Col. 781. anorg. 5. 275.) 2CsI, ZnI₂. As above.

Cæsium oxide, Cs2O. Absorbs H₂O and CO₂ from the air. Decomp. by H₂O and by liquid NH₃. (Rengade, C. R. 1906, 143. 593.)

Cæsium dioxide, Cs₂O₂.

Decomp. by H₂O. (Rengade, C. R. 1905, **140.** 1537.)

Cæsium trioxide, Cs₂O₈.

Decomp. by H₂O. (Rengade, C. R. 1905, **140**. 1537.)

Cæsium tetroxide, Cs2O4.

Decomp. by H₂O. (Rengade, C. R. 1905, **140.** 1538.)

Cæsium sulphide, Cs₂S+4H₂O.

Deliquescent; very sol. in H_2O . (Biltz, Z. anorg. 1906, 48. 300.)

Cæsium disulphide, Cs₂S₂.

Anhydrous. Sol. in H2O. Hydroscopic. (Biltz, Z. anorg. 1906, 50. 72.) +H₂O. From Cs₂S₂+Aq. Hydroscopic.

(Biltz, Z. anorg. 1906, **50.** 72.)

Cæsium trisulphide, Cs₂S₃.

Anhydrous. Sol. in H2O. Not hydroscopic. (Biltz, Z. anorg. 1906, 50. 75.)

 $+H_2O$. From Cs_2S_3+Aq . (Biltz, Z. anorg. 1906, 50. 76.)

Cæsium tetrasulphide, Cs₂S₄.

Sol. in H₂O. Insol. in abs. alcohol. (Biltz, Z. anorg. 1906, 48. 305.)

Cæsium pentasulphide, Cs₂S₅.

Mpt. 2°. Not hydroscopic. Very sol. in cold 70% alcohol. (Biltz, B. 1905, 38. 129.)

Cæsium hydrogen sulphide, CsHS.

Deliquescent; very sol. in H₂O. (Biltz, Z. anorg. 1906, 48. 300.)

Cæsium copper tetrasulphide, CsCuS4.

Sl. sol. in cold H₂O.

Decomp. by conc. and dil. HCl, H₂SO₄ and HNO₃.

Sl. sol. in alcohol. (Biltz, B. 1907, 40. 978.)

Calcium, Ca.

Decomp. H₂O violently. Slowly attacked by cold H2SO4. Dil. H2SO4+Aq or HCl+Aq attack violently and dissolve. Dil. HNO₈+ Aq oxidizes, but fuming HNOs scarcely attacks even on boiling. (Bunsen and Matthiessen.) Not attacked by anhydrous alcohol. (Lies-Bodart and Jobin, A. ch. (3) 54. 364.)

Pure Ca is only very slowly decomp. by

1898, **20.** 827.)

1/2 ccm. oleic acid dissolves 0.0334 g. Ca in 6 days. (Gates, J. phys. Chem. 1911, 15. 143.)

Calcium amalgam, Ca₈Hg₄.

Decomp. H₂O readily. (Feré, C. R. 1898, **127.** 619.)

Rapidly decomp. in moist air. CaHg₅. (Schürger, Z. anorg. 1900, 25. 425.)

Calcium amide, Ca(NH2)2. (Moissan, A. ch. 1899, (7) 18. 326.)

Calcium ammonia, Ca, 4NH₃.

Decomp. at ordinary temp.; takes fire in contact with the air; sl. sol. in liquid NH₃. (Moissan, C. R. 1898, 127. 691.) (Kraus, J. Am. Chem. Soc. Ca,6NH₃.

1908, **30.** 665.)

Calcium arsenide, Ca₃As₂.

Decomp. by cold H₂O; insol. in cold furning HNO₃; very sol. in hot HNO₃. (Lebeau, C. R. 1899, **128**. 98.)

Calcium azoimide, $Ca(N_3)_2$.

Hydroscopic; explosive. 38.1 pts. sol. in 100 pts. at 0° H₂O ¹⁷ 15.2 45.0" 100 H_2O " 100 0.211 " " " abs. alcohol "16.

Sol. in H₂O; decomp. when heated and on standing in the air. (Dennis, Z. anorg. 1898, 17. 21.)

Insol. in pure ether. (Curtius, J. pr. 1898, (2) **58.** 286.)

Calcium boride, CaB₆.

Not decomp, by H₂O at 250°; sol. in fused oxidizing agents.

Insol. in aq. acids; sl. sol. in conc. H₂S()₄; sol. in dil. or conc. HNO3. (Moissan, C. R. 1897, **125**. 631–32.)

Calcium bromide, CaBr₂.

ŀ

-

Very deliquescent. 100 pts. H₂() dissolveat 0° 20° 60° 105° 40° 125 278 143 213312 pts. CaBr₂. (Kremers, Pogg. 103. 65.)

Sat. CaBr₂+Aq contains at: -22° -22° -14° -7° -5° −22° 50.5 52.6% CaBr2 50.252.552.6

+8° 20° 53.1 55.1 55.757.1 62.6% Callra (Étard, A. ch. 1894, (7) 2. 540.)

Sp. gr. of CaBr₂+Aq at 19.5° containing: 10 15 20 25 %CnBr2, 1.044 1.089 1.139 1.194 1.25%

40 50 % CaBr₂. 1.315 1.385 1.461 1.549 1.641 (Kremers, Pogg. 99. 444, calculated by Gerlach, Z. anal. 8. 285.)

Sl. sol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, **20.** 827.)

Very sol. in alcohol. (Henry.) Sol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4328.) Sol. in methyl acetate. (Naumann, B.

1909, 42. 3790.)

Sol, in ethyl acetate. (Naumann, B. 1910, **43.** 314.)

Insol, in benzonitrile. (Naumann, B. 1914, 47, 1370,)

+4II₂O. (Kuznetzov, C. A. 1911, 842.) 十6日20.

Calcium manganous bromide, Callulle, 1-

Sl. hydroscopie, Unstable, (Ephram, Z. amorg. 1910, 67, 377.)

Calcium mercuric bromide.

Decomp. by H₂O, (v. Bonsdorff.)

Calcium molybdenyl bromide, Calli. 2MoOBra-1-7HgO.

(Weinland and Knöll, Z. anorg. 1905, 44.

Calcium stannic bromide.

See Bromostannate, calcium.

Calcium bromide ammonia, Callra, 6811. Sol, in H₂O. (Rammelsberg, Pogg. 55, 239.)

Calcium bromide hydrazine, CaBr., 38 Ha.

Easily sol, in H₂O. (Franzen, Z. anorg, 1908, 60, 288.)

Calcium bromofluoride, Callry, Cal-

Decomp. by 11gO. (Defacqz, A. ch. 1901, (8) 1. 357.)

Calcium carbide, CaC'r.

Sp. gr. 2.22 at 18". Insol. in furning HNO, and cone, H2SO4 but readily decomp, by dil. neids and H₂O. (Moissan, Bull. See, 1894, (3) 11. (005.)

Insol, in HCl in the cold, but decomp, at red heat. Strong min, neids do not net in the cold; sol, in glacial acetic in the cold; sol, in fused alkali. (Venable, J. Arc. Chem. Soc. 1895, 17, 307-310.)

Calcium chloride, Calcium

Very deliquescent. Very sol, in H.O with evolution of heat.

Anhydrous CaCl₃ is sol, in 1.450 pts. 11₃ to the the lat. Anhydrous CaCl₃ is sol, in 1.55 pts. 11₃ to at 10.2 c. (Kremers, Pogs. 103, 05.)

Anhydrous CaCl₃ is sol, in 1.35 pts. 11₃ to at 20°, 0.83 pt. 140 at 40°, 0.72 pt. 11₃ to at 40°, CaCl₃ is sol, in 0.5 pt. 11₃ to 10°, caCl₃ is sol, in 0.5 pt. 11₃ to 10°, at 2.05 pt. at 10° comeding CaCl₃ is sol, in 1.5 pts. cald, and 0.8 pt. isoling 11₃ to 75 prescriptions.

(Four-roy.)
CaCls +Aq sat. in the cold contains 40.7% CaCls. (Pourroy.) CaCls+Aq sat. at 12.5° contains 53.8°; CaCls. (Hassonirats.)

100 pts. H₂O dissolve 165.7 pts. CaCl₂+6H₂O at 0°; 7141 pts. at 40°. (Tilden, Chem. Soc. 45, 409.)

100 pts. H₂O dissolve 60.3 pts. CaCl. from CaCla+6H2O at 0°, and solution has ap. gr. = 1.367. (Engel, Bull. Soc. (2) 47. 318.)

Solubility of CaCl₂+6H₂O in H₂O at t°.

to	Sat. solution contains % CaCl ₂	Sat. solution contains % CaCl ₂ +6H ₂ O
22 0 + 7.39 13.86 19.35 23.46 24.47 27.71 29.53	32.24 36.91 38.77 41.03 42.50 44.15 45.33 46.30 50.67	63.61 72.82 76.49 80.95 83.85 87.11 89.44 91.35 99.97

(Hammerl, W.A.B. **72, 2.** 287.) Solubility in 100 pts. H₂O at t°.

t°	Pts. CaCl2	t°	Pts.'CaCls
0	59.39	13.86	69.49
5	64.83	19.35	73.91
7.88	66.20	21.89	79.77

(ITermmerl, calculated by Bakhuis Rooze boom, R. t. c. 8. 5.)

Solubility in 100 pts. H₂O at t°.

boldomity in 100 pts. 1120 at t.					
t 0	Pts. CaCl ₂	L°	Pts. CaCl ₂	l°	Pts. CaCl ₂
0	49.6	19	72	38	108
1	50	20	74	39	109
2	51	21	75	40	110
3	52	22	77	41	111
4	53	23	79	42	111
5	54	24	80	43	113
6	55	25	82	44	114
7	56	26	84	45	115
8	57	27	87	46	116
9	58	28	89	47	117
10 11 12 13 14	60 61 62 63 65	29 30 31 32 33	91 93 96 98 100	48 49 50 51 52	117 118 119 120 .121 122
15	66	34	103	53	123
16	68	35	104	54	124
17	69	36	105	55	125
18	71	37	107	56	126
57	127	72	137	87	145
58	128	73	138	88	146
59	129	74	138	89	147
60	129	75	139	90	147
61	130	76	139	91	148
62	131	77	140	92	149
63	131	78	141	93	150
64	132	79	141	94	150
65 66 67 68 69 70	133 133 134 135 135 136 136	80 81 82 83 84 85 86	142 142 143 143 144 144 145	95 96 97 98 99 179.5	151 152 152 153 154 325

(Mulder, Scheik. Verhandel, 1864. 107.).

If solubility S=pts. anhydrous $CaCl_2$ in 100 pts. solution, S=32+0.2148t from -18° to $+6^{\circ}$; S=54.5+0.0755t from 50° to 120°. (Etard, C. R. 98, 1432.)

According to Bakhuis Roozeboom, the solubility of CaCl₂ varies according to the hydrate employed, and the following data were obtained as the result of very exact experiments,

Solubility of $CaCl_2+6H_2O$ in 100 pts. H_2O at t° .

t°	Pts. CaCl ₂	t°	Pts. CaCl ₂	t°	Pts. CaCl ₂
20.4	75.1	28.0	88.8	29.5	96.07
25.05	81.67	28.9	92.05	30.2	102.7

There are two modifications of $CaCl_2+4H_2O$, α and β .

Solubility of $CaCl_2+4H_2O\beta$ in 100 pts. H_2O at t°.

t°	Pts. CaCl ₂	t°	Pts. CaCl2
18.4 25 0 30.0	103 3 108.8 114.1	35.0 38.4	122.74 127.50

Solubility of CaCl₂+4H₂Oa in 100 pts. H₂O at t°.

t°	Pts. CaCl ₂	t°	Pts. CaCl2
22.0	92.67	35.95	107.21
24 7	95.59	40.00	115.3
29 8	100.6	45.00	129.9

Solubility of CaCl₂+2H₂O in 100 pts. H₂O at t°.

t°	Pts. CaCl ₂	to	Pts. CaCl ₂	t°	Pts. CaCl ₂
40 45 50 59.5 80.5	128.1 129.9 132.3 136.5 145.3	95.8 115 124 137	156.5 169.5 176.0 187.6	139 155 165 174	191.0 214.3 236.2 275.7

Solubility of CaCl₂+H₂O in 100 pts. H₂O at t°.

t°	Pts. CaCla
191	306
235	331

(Bakhuis Roozeboom, R. t. c. 8.1.)

Sp. gr	r. of	CaCl2	+Aa.
--------	-------	-------	------

% CaCl ₂	Sp. gr.	CaCl ₂	Sp. gr.	CaCl ₂	Sp. gr.
3.95	1.03	20.85	1.18	34.57	1.33
7.66	1.06	23.93	1.21	36.49	1.36
11.23	1.09	26.86	1.24	38.31	1.39
14.42	1.12	29.67	1.27	40.43	1.42
17.60	1.15	32.35	1.30	41.91	1.45

(Richter.)

Sp. gr. of CaCl₂+Aq at 19.5° containing pts. CaCl₂ to 100 pts. H₂O.

Pts. CaCl ₂	Sp. gr.	Pts. CaCl2	Sp. gr.
6.97	i.0545	36.33	1,2469
12.58	1.0954	50.67	1,3234
23.33	1.1681	62.90	1,3806

(Kremers, Pogg. 99, 444.)

Sp. gr. of CaCl₂+Aq. G=sp. gr. at 15° if % is CaCl₂, according to Gerlach; S=sp. gr. at 18.3° if % is CaCl₂+6H₂O, according to Schiff.

	to Schiff.	•				
%	G	S ;	%.	G	. . S	-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 22 32 24 25 6 27		1.0039 1.0079 1.0119 1.0159 1.0200 1.0241 1.0282 1.0323 1.0365 1.0407 1.0449 1.0534 1.0534 1.0577 1.0619 1.0706 1.0706 1.0794 1.0882 1.0882 1.0882 1.0927 1.1017 1.1062	36 37 38 39 40 41 42 43 44 44 45 46 47 48 49 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60	G -1.35610 1.36790 1.37970 1.39150 1.40330	.s 1.1575 1.1622 1.1671 1.1719 1.1768 1.1816 1.1865 1.1914 1.1963 1.2012 1.2062 1.2112 1.2162 1.2212 1.2262 1.2312 1.2363 1.2414 1.2516 1.2567 1.2618 1.2689 1.2773 1.2825 1.2877 1.2929	
28 29 30 31 32 33 34	1.27704 1.28789 1.29917 1.31045 1.32174 1.33602	1.1246 1.1292 1.1339 1.1386 1.1433 1.1480	63 64 65 66 67 68 69		1.2929 1.2981 1.3034 1.3087 1.3140 1.3193 1.3246 1.3300	
35	1.34430	1.1527	70	1	1.0000	1

(Calculated by Gerlach, Z. anal. 8, 283.)

Sp. gr. of CaCl Harmon of half molecules in 1000 g. H₂O; b=sp. gr. at 24.3 when a= $CaCl_2^2$ +6 H_2O (½ mol.=109.5 g.); c=sp. gr. at 24.3° when a= $CaCl_2$ (½ mol.=55.5 g.).

a.	b	c	£L.	b	r.
1 2 3 4 5 6	1.041 1.076 1.106 1.133 1.157 1.179	1.043 1.084 1.122 1.159 1.193 1.227	7 8 9 10 11	1.198 1.214 1.229 1.242 1.255	1.258

(Favre and Valson, C. R. 79. 968.)

Sp. gr. of CaCl₂+Aq at 18°.

% CaCl2	Sp. gr.	% CaCl2	Sp. gr.
5 10 15 20	1.0409 1.0852 1.1311 1.1794	25 30 35	1,2305 1,2841 1,3420

(Kohlrausch, W. Ann. 1879. 1.)

 $CaCl_2+Aq$ sat. at 0° has sp. gr. = 1.367. (Engel, Bull. Soc. 1887, (2) 47. 318.)

Sp. gr. of CaCl₂+Aq at 9.5°C.

Mass of salt per unit	Density of solution
mass of solution	(g. per ec.)
0.00191	1.00168
0.00381	1.00317
0.00570	1.00465
0.00759	1.00615
0.00947	1.00705
0.01320	1.01050

(McGregor, C. N. 1887, 55. 6.)

Sp. gr. of CaCl2+Aq at 25°.

Concentration of CaCl2+A(1.	Sp. gr.
1-normal 1/2- '' 1/4- '' 1/8- ''	1.0446 1.0218 1.0105 1.0050

(Wagner, Z. phys. Ch. 1890, 5. 36.)

Sp. gr. at 16°/4° of CaCl₂+Aq containing 12.1638% CaCl₂=1.10489. (Schönrock, Z. phys. Ch. 1893, 11. 768.)

Sp. gr. of CaCl2+Aq at 17.925°C.

CaCla	Sp. gr.	CaCl ₂	Sp. gr.	CaČl:	Sp. gr.
0.0 0.1 0.2 0.3 0.6 0.8 1.0 1.5 2 3 4 5 6 7 8 9	0.99869 0.99954 1.00037 1.00116 1.00201 1.00539 1.00703 1.01127 1.01548 1.02386 1.03238 1.04089 1.04951 1.05822 1.06680 1.07569 1.07569	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1.11206 1.12130 1.13067 1.14016 1.14969 1.15926 1.16920 1.17910 1.18897 1.19901 1.20901 1.22941 1.23969 1.25030 1.26092 1.27182 1.28271	33 34 35 36 37 38 39 40 41 42 43 44 45 47 49 50	1.31562 1.32689 1.33821 1.34956 1.36100 1.37242 1.38400 1.39489 1.40641 1.41770 1.42882 1.44007 1.45124 1.46238 1.47329 1.48450 1.49573 1.50676
11 12	1.09373 1.10288	31 32	1.29360 1.30461	51	1.51778

(Pickering, B. 1894, 27. 1385.)

Sp. gr. of CaCl2+Aq at to.

t°	to Concentration of CaCl2+Aq		
20	1 pt. CaCl ₂ in 7.1045 pts. H ₂ O	1.1062	
20	1 " " 164.25 " "	1.0032	

(Hittorf, Z. phys. Ch. 1902, 39. 628.)

Sp. gr. of CaCl2+Aq at 20°.

g. mols. CaCl ₂ per l.	Sp. gr.
0.010	1.000982
0.025	1.002539
0.050	1.004874
0.075	1.006814
0.10	1.008971
0.25	1.02267
0.50	1.04451
0.75	1.06641
1.00	1.08744

(Jones and Pearce, Am. Ch. J. 1907, 38. 696.)

Sat. CaCl₂+Aq forms a crust at 150°, and contains 178 pts. CaCl₂ to 100 pts. H₂O. (Gerlach.)

Sat. CaCl₂+Aq boils at 180°. (Rüdorff.)

B.-pt. of CaCl₂+Aq containing pts. CaCl₂ to 100 pts. H₂O. G=according to Gerlach (Z. anal. 26. 440); L=according to Legrand (A. ch. (2) 39. 43).

Bpt	G	L	Bpt.	G	L
101°	6.0	10	134°		117.2
102	11.5	16.5	135	119	
103	16.5	21.6	136		123.5
104	21.0	25.8	138		129.9
105	25.0	29.4	140	137.5	136.3
106	29.0	32.6	142	200.00	142.8
107	32.5	35.6	144		149.4
108	35.5	38.5	145	157	
109	38.5	41.3	146		156.2
110	41.5	44.0	148		163.2
111		46.8	150	178	170.5
112		49.7	152		178.1
113		52.6	154		186.0
114		55.6	155	200	
115	55.0	58.6	156		194.3
116		61.6	158		203.0
117		64.6	160	222	212.1
118]	67.6	162		221.6
119		70.6	164		231.5
120	69.0	73.6	165	245	
121	1	76.7	166		241.9
122 ·	1	79.8	168		252.8
123		82.9	170	268	264.2
124		86.0	172		276.1
125		89.1	174		285.5
126		92.2	175	292	
128		98.4	176		301.4
130	101	104.6	178	305	314.8
130.4	102.67		179.5		325.0
132		110.9	<u> </u>		

B.-pt. of CaCl2+Aq.

	-	-	
% CaCl ₂	Bpt.	% CaCl2	Bpt.
5.6 10.3 14.5	101° 102 103	17.5 20.0	104° 105

(Skinner, Chem. Soc. 61. 340.)

Less sol. in HCl+Aq than in $\rm H_2O$. HCl+Aq sat. at 12° dissolves 27% CaCl₂, which crystallizes out with 2H₂O. (Ditte, C. R. 92. 242.)

Solubility of CaCl₂ in HCl+Aq at 0°.

Sp. gr. of	g. per 100 cc. solution			
solutions	CaCl ₂	HCl		
1.367 1.344 1.326 1.310 1.283 1.250 1.238	51.45 46.45 42.80 36.77 29.84 20.12 11.29	0.0 3.32 5.83 10.66 15.84 23.05 34.62		

(Engel, C. R. 1887, 104, 434.)

الريانية