Estimating Evolutionary Parameters for Protein Low Complexity Regions using an Approximate Bayesian Computation

Alexander Turco

November 28, 2022

Overview

Background information				
Research Questions/Explorations				
Experimental Approach				
Results				
Conclusion and Future Work				

What are LCR's?

Saccharomyces cerevisiae SRP40 Protein LCRs

- >CAA82171.1(298-316) complexity=2.18 (15/1.90/2.20) tpassnestpsasssssan

Shannon's Entropy - MAYBE

$$H = -L \sum p_i log_2(p_i)$$

LCR's Present in Unique Ways

Homorepeats

Consecutive iterations of a single residue

LCR's Present in Unique Ways

Homorepeats

Consecutive iterations of a single residue

Direpeats

Consecutive iterations of two ordered, different residues

LCR's Present in Unique Ways

Homorepeats

Consecutive iterations of a single residue

Direpeats

Consecutive iterations of two ordered, different residues

Tandem Repeats

Sequence of residues which are repeated a number of times

LCR's are Hypermutable

mam domain	Size (bp)	Amino Acid Substitutions	Amino Acid/ Total Substitutions
Unique	933	26	0.15
Repetitive	810	47	0.42

¹Newfeld, Smoller, and Yedvobnick, 1991

Proposed Mechanisms of LCR Evolution

1. Polymerase Slippage/Slipped Strand Mispairing

Polymerase Slips Forward

Polymerase Slips Backwards

²Levinson and Gutman, 1987; Sehn, 2015

Proposed Mechanisms of LCR Evolution

2. Unequal Recombination

³Mirkin, 2007

Why Care about LCRs and Their Evolution?

Huntington's Disease

Genetic Recombination

Neisseria meningitidis

What will this Study Explore?

- Estimation of evolutionary parameters (mutation rate, indel rates)
- Various models of insertions and deletions
- Summary statistics which best explain data

What Approach will be Taken?

Bayesian Statistics: Model-based statistical inference

$$p(D|\theta) \tag{1}$$

Likelihood

What Approach will be Taken?

Bayesian Statistics: Model-based statistical inference

$$p(D|\theta) \tag{1}$$

Likelihood

$$p(\theta|D)$$

(2)

Posterior

Why use an ABC-MCMC

► The increasing complexity and magnitude of available data can make the likelihood difficult to calculate

$$p(D|\theta)$$

Why use an ABC-MCMC

Calculation of the likelihood is replaced with a simulation step

MCMC for ABC

- **①** Propose a move from θ to θ' according to a transition kernel $q(\theta, \theta')$.
- ② Generate simulated dataset D' using θ' and calculate S'.
- **3** If $\rho(S', S) \leq \epsilon$ continue to 4, otherwise remain at θ and go to 1.
- Calculate

$$\alpha(\theta, \theta') = min(1, \frac{\pi(\theta')q(\theta', \theta)}{\pi(\theta)q(\theta, \theta')})$$

- **5** Accept θ' with probability α , otherwise stay at θ .
- Return to 1.

³Marjoram et al., 2003

 $\bullet \ \ \, \text{Propose a move from } \theta \text{ to } \theta' \text{ according to the normal distribution}$

- **①** Propose a move from θ to θ' according to the normal distribution
- ② Create a random protein sequence and mutate over many generations using θ' to generate simulated Dataset D'

- **①** Propose a move from θ to θ' according to the normal distribution
- ② Create a random protein sequence and mutate over many generations using θ' to generate simulated Dataset D'
- lacktriangle Calculate summary statistics for simulated dataset D'

- **①** Propose a move from θ to θ' according to the normal distribution
- ② Create a random protein sequence and mutate over many generations using θ' to generate simulated Dataset D'
- lacktriangle Calculate summary statistics for simulated dataset D'
- If $d(S', S) \leq \epsilon$, go to next step, otherwise stay at θ and return to 1

- **①** Propose a move from θ to θ' according to the normal distribution
- ② Create a random protein sequence and mutate over many generations using θ' to generate simulated Dataset D'
- lacktriangle Calculate summary statistics for simulated dataset D'
- **①** If $d(S',S) \leq \epsilon$, go to next step, otherwise stay at θ and return to 1
- **5** Accept θ' with probability ?? Ask Brian ab this again lol

- **①** Propose a move from θ to θ' according to the normal distribution
- ② Create a random protein sequence and mutate over many generations using θ' to generate simulated Dataset D'
- lacktriangle Calculate summary statistics for simulated dataset D'
- **①** If $d(S',S) \leq \epsilon$, go to next step, otherwise stay at θ and return to 1
- **3** Accept θ' with probability ?? Ask Brian ab this again lol
- Return to step 1

Simulation Step - MAYBE

Results

Conclusion/Future Work