Spring 2021 MATH231 Section CDQ Discussion

WF 9-10am

This document can be found here or on my website. I will continue update it until the end of semester.

Contact

- TA for section CDQ: Xinran Yu
- Email: xinran4@illinois.edu. Please included MATH231 in your email subject.
- Office hour: Wed 10-11am¹

Zoom

- Please use your cameras and microphones in breakout rooms.
- Interrupt me/using the "Raise Hand" feature on Zoom to ask questions.
- You can call me into your breakout room/return to the main room to ask for help.
- It is also possible for me to join your breakout rooms randomly to check if you have any questions.

Worksheet

- Worksheet can be found on Moodle under Groupwork folder.
- Ask for hints when you get stuck on a problem.

Submission

- Submit on Moodle under Groupwork folder.
- 1 submission per group. Once a file is uploaded, everyone in the same group will be able to see/edit the file. ²
- Group remains the same until each midterm.
- 1st worksheet of the week is due on **Thursday** at **8AM** CST. ³
- 2nd worksheet of the week is due on **Saturday** at **8AM** CST.
- Worksheet solutions available at 12:30PM CST on the due date.

Grading

Worksheets are graded with 2, 1 or 0.

- 2 the worksheet uploaded is satisfactory
- 1 the worksheet uploaded is unsatisfactory and needs improvement. Your TA will comment on what should be improved for next time.
- 0 the worksheet was not uploaded

¹Office hour is run for all students in MATH231

²Groups are assigned randomly by Moodle

³Central Standard Time

Contents

1	Worksheet 1	3
2	Worksheet 2	4
3	Worksheet 3	5
4	Worksheet 4	6
5	Worksheet 5	7
6	Worksheet 6	8
7	Worksheet 7	9
8	Worksheet 8	9
9	Worksheet 9	10
10	Worksheet 10	11
11	Worksheet 11	12
12	Worksheet 12	13
13	Worksheet 13	15
14	Worksheet 14	16
15	Worksheet 15	17
16	Worksheet 16	18
17	Worksheet 17	19
18	Worksheet 18	20
19	Worksheet 19	21
20	Worksheet 20	22
21	Worksheet 21	23

Recall

Theorem 1.1 (Fundamental Theorem of Calculus). Ref p.26

Part 1 If f(x) is **continuous** over an interval [a,b], and the function F(x) is defined by

$$F(x) = \int_{a}^{x} f(t) dt, \quad x \in [a, b],$$

then F'(x) = f(x) over [a, b].

Part 2 If f(x) is **continuous** over an interval [a,b], and F(x) is any antiderivative of f(x) i.e. F'(x) = f(x), then

$$\int_{a}^{b} f(x) dx = F(a) - F(b).$$

Example 1.2. Let

$$g(x) = \int_{a}^{b(x)} f(t) \, \mathrm{d}t.$$

Apply chain rule and FTC

$$g'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \int_{c}^{b(x)} f(t) \, \mathrm{d}t = b'(x) \cdot f(b(x)).$$

Recall

• Substitution rule/Change of variable: let u = g(x), then

$$\int f(g(x)) \cdot g'(x) dx = \int f(u) du.$$
 (Q1-3)

• Compute area between curves.

(Q4-7)

- Draw the graph.
- Find intersection points by solving f(x) = g(x), say they are x = a and x = b.
- Area = $\int_a^b f(x) g(x) dx$.

Volume of a solid of revolution: Slices of volume are circles. Ref

$$Vol = \int_{a}^{b} \pi f(x)^{2} dx.$$

Q3. Slices are squares/triangles.

$$Vol = \int_{a}^{b} Area of slices dx.$$

E.g.

$$Vol = \int_{a}^{b} f(x)^{2} dx.$$

Volume by cylindrical shells:

$$Vol = \int_{a}^{b} 2\pi r \cdot f(x) \, \mathrm{d}x.$$

Rotation about y-axis: r = x. Rotation about the vertical line x = a: r = |a - x|.

Recall

- Since $\sin x$ is oscillating between -1 and 1, $\lim_{x\to\infty}\sin x$ does not exists.
- \bullet we can use L'Hopital's Rule to compute indeterminate forms " $\frac{0}{0}$ " and " $\frac{\infty}{\infty}$ ".

Theorem 5.1 (L'Hopital's Rule).

Assumptions:

$$f(x) \rightarrow 0$$
 as $x \rightarrow a$,
 $g(x) \rightarrow 0$,
 $g'(x) \neq 0$.

Conclusion:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Warning: check the assumptions before applying L'Hopital's Rule.

Integration by parts:

$$(uv)' = u'v + uv' \implies \int u \, dv = uv - \int v \, du.$$

Choose u based on which of these comes first, (search "integration by parts what to choose as u"):

- (1) Logarithmic functions: $\ln x$
- (2) Inverse trigonometric functions: $\arcsin x$
- (3) Algebraic functions: x
- (4) Trigonometric functions: $\sin x$
- (5) Exponential functions: e^x

Worksheet 8

Recall: $1 + \tan^2 x = \sec^2 x$.

Substitution rule/Change of variable: let u = g(x), then

$$\int f(g(x)) \cdot g'(x) \, \mathrm{d}x = \int f(u) \, \mathrm{d}u.$$

Integration by parts:

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u.$$

Partial fractions decomposition: Find A, B such that

$$\frac{1}{(x-a)(x-b)} = \frac{A}{x-a} - \frac{B}{x-b}.$$

The following table is from this website

Factor in denominator	Term in partial fraction decomposition
ax+b	$rac{A}{ax+b}$
$(ax+b)^k$	$rac{A_1}{ax+b}+rac{A_2}{\left(ax+b ight)^2}+\cdots+rac{A_k}{\left(ax+b ight)^k}$, $k=1,2,3,\ldots$
ax^2+bx+c	$\frac{Ax+B}{ax^2+bx+c}$
$\left(ax^2+bx+c\right)^k$	$rac{A_{1}x+B_{1}}{ax^{2}+bx+c}+rac{A_{2}x+B_{2}}{\left(ax^{2}+bx+c ight)^{2}}+\cdots+rac{A_{k}x+B_{k}}{\left(ax^{2}+bx+c ight)^{k}},k=1,2,3,\ldots$

Typo in solution

WS10 Q3.

$$\frac{Ax+B}{x^2+4} + \frac{Cx+D}{(x^2+4)^2} + \frac{E}{x-1} + \frac{F}{(x-1)^2} + \frac{G}{(x-1)^3}.$$

Improper integrals: There are two types of improper integrals $\int_a^b f(x) dx$:

- (1) a or b (or both) infinite, e.g $\int_1^\infty \frac{1}{x} dx$.
- (2) The function f(x) blows up in the interval [a,b], e.g $\int_0^1 \ln x \, dx$.

To compute improper integrals, e.g.:

$$\int_{1}^{\infty} \frac{1}{x} \, \mathrm{d}x = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x} \, \mathrm{d}x.$$

Simpson's rule: Let x_i 's be equally spaced points,

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 4f(x_{n-1}) + f(x_n)).$$

Coefficient is 4 for odd $i, i \neq 0, n$; coefficient is 2 for even $i, i \neq 0, n$.

If you want to use the formula $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan(\frac{x}{a}) + C$, for complex a. Recall how we obtain this formula. We do trig substitution, $x = a \tan \theta$, and use the identity $1 + \tan^2 \theta = \sec^2 \theta$. This identity is still valid for complex θ . So with $x = i \tan \theta$, $\theta = \arctan(-ix)$,

$$I = \int \frac{1}{x^2 - 1} dx = \int \frac{1}{x^2 + i^2} dx$$
$$= \int \frac{1}{i^2 \tan^2 \theta + i^2} i \sec^2 \theta d\theta$$

(Here we need the derivative of $\tan \theta$, but you can check this is $\sec^2 \theta$ in the complex case)

$$= -i \int \frac{1}{\sec^2 \theta} \sec^2 \theta \, d\theta = -i\theta + C = -i \arctan(-ix) + C.$$

The above checked our formula is valid for complex a. Hence, we can plug in the value of arctan

$$\arctan t = \frac{1}{i} \ln \sqrt{\frac{1+it}{1-it}} = \frac{i}{2} \left[\ln(1-it) - \ln(1+it) \right].$$

So

$$\arctan(-ix) = \frac{1}{i} \ln \sqrt{\frac{1+x}{1-x}} = \frac{i}{2} \left[\ln(1-x) - \ln(1+x) \right].$$

$$I = -i \cdot \frac{i}{2} \left[\ln(1-x) - \ln(1+x) \right] + C = \frac{1}{2} \left[\ln(1-x) - \ln(1+x) \right] + D.$$

Note that D should be a real constant as I is real.

Let ds be the arclength differential.

Arc length:

$$L = \int ds = \int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx.$$

Surface area:

$$A = \int 2\pi x \, \mathrm{d}s = \int 2\pi x \cdot \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \, \mathrm{d}x.$$

Force =
$$\int \rho g \cdot \operatorname{depth}(y) \cdot \operatorname{width}(y) dy$$
.

Integral test: If f(x) is continuous, positive and decreasing on $[N, \infty)$. Then

$$\int_{N}^{\infty} f(x) \, \mathrm{d}x \text{ converges } \implies \sum_{n=N}^{\infty} f(n) \text{ converges;}$$

$$\int_{N}^{\infty} f(x) \, \mathrm{d}x \text{ diverges } \implies \sum_{n=N}^{\infty} f(n) \text{ diverges.}$$

Warning: check the assumptions before applying integral test.

Geometric series:

$$\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + r^3 \dots = \begin{cases} \frac{1}{1-r} & \text{if } |r| < 1\\ \infty & \text{if } |r| \ge 1 \end{cases}$$

Integral test: If f(x) is continuous, positive and decreasing on $[N, \infty)$. Then

$$\int_{N}^{\infty} f(x) dx \text{ converges } \implies \sum_{n=N}^{\infty} f(n) \text{ converges;}$$

$$\int_{N}^{\infty} f(x) dx \text{ diverges } \implies \sum_{n=N}^{\infty} f(n) \text{ diverges.}$$

Error estimate: Assume $\sum_{n=1}^{\infty} a_n$ converges

$$S = \overbrace{a_1 + a_2 + \dots + a_n}^{\text{partial sum } S_n} + \underbrace{a_{n+1} + a_{n+2} + \dots}_{\text{reminders } R_n}.$$

Note that the first term in R_n is a_{n+1} ,

$$\int_{n+1}^{\infty} f(x) \, \mathrm{d}x < R_n < \int_{n}^{\infty} f(x) \, \mathrm{d}x.$$

Alternating series test: Suppose that we have a series $\sum a_n$ and either $a_n = (-1)^n b_n$ or $a_n = (-1)^{n+1} b_n$ where $b_n \ge 0$ for all n. If

- $\bullet \lim_{n\to\infty}b_n=0;$
- $\{b_n\}$ is a decreasing sequence the series,

then $\sum_{n} a_n$ is convergent.

Ratio test: Let $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$

- $L < 1, \sum_{n} a_n$ convergent;
- L > 1, $\sum_{n} a_n$ divergent;
- L = 1 no conclusion.

Comparison test: If a_n , $b_n > 0$ and $a_n \le b_n$ for all large n then

- $\sum b_n$ converges, then a_n also converges;
- $\sum a_n$ diverges, then b_n also diverges.

Limit comparison test: Given $\sum a_n$, $\sum b_n$, with a_n , $b_n > 0$ If $\lim_{n \to \infty} \frac{a_n}{b_n} = C$ for some $C \neq 0$, $C \neq \infty$. Then $\sum a_n$ and $\sum b_n$ either both converge or both diverge.

Ratio test: Let $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$

- L < 1, $\sum_{n} a_n$ converges absolutely;
- L > 1, $\sum_{n} a_n$ diverges;
- L=1 no conclusion.

Root test: Let $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$

- $L < 1, \sum_{n} a_n$ converges absolutely;
- L > 1, $\sum_{n} a_n$ diverges;
- L = 1 no conclusion.

Radius of convergence: For a power series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n,$$

where a and c_n are numbers. The **radius of convergence** is a number $R \in [0, \infty]$ s.t.

- the series converges if |x a| < R;
- the series diverges if |x a| > R.

To find R, compute $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. Apply ratio test and check the boundary case.

Recall

Ratio test: Let $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$

- $L < 1, \sum_{n} a_n$ converges absolutely;
- L > 1, $\sum_{n} a_n$ diverges;
- L = 1 no conclusion.

Power series expansion: Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$, for |x| < R then we can differentiate and integrate f(x):

•
$$f'(x) = \sum_{n=1}^{\infty} na_n x^{n-1}$$
;