Chapter 6

Cyclic Codes

In this chapter we will introduce a special, but still important, class of codes that have a nice mathematical structure. In particular it turns out to be easy to estimate the minimum distance of these codes.

6.1 Introduction to cyclic codes

Definition 6.1.1. An (n, k) linear code C over \mathbb{F}_q is called cyclic if any cyclic shift of a codeword is again a codeword, i.e. if

$$c = (c_0, c_1, \dots, c_{n-1}) \in C \Longrightarrow \widehat{c} = (c_{n-1}, c_0, \dots, c_{n-2}) \in C.$$

Example 6.1.1. The (7, 3) code over \mathbb{F}_2 that consists of the codewords

$$(0, 0, 0, 0, 0, 0, 0), (1, 0, 1, 1, 1, 0, 0), (0, 1, 0, 1, 1, 1, 0), (0, 0, 1, 0, 1, 1, 1), (1, 0, 0, 1, 0, 1, 1), (1, 1, 0, 0, 1, 0, 1), (1, 1, 1, 0, 0, 1, 0), (0, 1, 1, 1, 0, 0, 1)$$

can be seen to be a cyclic code.

The properties of cyclic codes are more easily understood if we treat words as polynomials in $\mathbb{F}_q[x]$. This means that if $(a_0, a_1, \dots, a_{n-1}) \in \mathbb{F}_q^n$ we associate the polynomial $a(x) = a_{n-1}x^{n-1} + \dots + a_1x + a_0 \in \mathbb{F}_q[x]$.

In the following we will not distinguish between codewords and codepolynomials.

The first observation is

Lemma 6.1.1. *If*

$$c(x) = c_{n-1}x^{n-1} + \dots + c_1x + c_0$$
 and $\widehat{c}(x) = c_{n-2}x^{n-1} + \dots + c_0x + c_{n-1}$

then

$$\widehat{c}(x) = xc(x) - c_{n-1}(x^n - 1)$$

64 Cyclic Codes

The lemma is proved by direct calculation.

Theorem 6.1.1. Let C be a cyclic (n, k) code over \mathbb{F}_q and let g(x) be the monic polynomial of lowest degree in $\mathbb{C}\setminus\{0\}$.

Then

1. g(x) divides c(x) for every $c \in C$.

2.
$$g(x)$$
 divides $x^n - 1$ in $\mathbb{F}_q[x]$.

$$3. k = n - \deg(g(x)).$$

We first note that g(x) is uniquely determined, since if there were two, their difference (since the code is linear) would have lower degree and would be a codeword.

Proof of the theorem.

It is clear from the definition of g(x) that $k \le n - \deg(g(x))$, since there are only $n - \deg(g(x))$ positions left.

If g(x) has degree s, then $g(x) = g_{s-1}x^{s-1} + \cdots + g_1x + g_0 + x^s$ so from Lemma 6.1.1 we get that $x^j g(x)$ is in C if $j \le n - 1 - s$. Therefore a(x)g(x) where $\deg(a(x)) \le n - 1 - s$ are also codewords of C.

It is also easy to see that $x^j g(x)$ where $j \le n - 1 - s$ are linearly independent codewords of C, so $k \ge n - s$, and we then have k = n - s, proving 3.

To prove 1, suppose $c(x) \in C$ then c(x) = a(x)g(x) + r(x) where $\deg(r(x)) < \deg(g(x))$. Since $\deg(a(x)) \le n - 1 - s$ we have that a(x)g(x) is a codeword and therefore that r(x) = c(x) - a(x)g(x) is also in the code. Since $\deg(r(x)) < \deg(g(x))$ this implies that r(x) = 0 and therefore g(x) divides c(x), and 1 is proved.

2 follows directly from the lemma since g(x) divides c(x) and also $\widehat{c}(x)$.

The polynomial g(x) in the theorem is called the *generator polynomial* for the cyclic code C.

Example 6.1.2. (Example 6.1.1 continued) We see that $g(x) = x^4 + x^3 + x^2 + 1$ and that the codewords all have the form $(a_2x^2 + a_1x + a_0)g(x)$ where $a_i \in \mathbb{F}_2$ and that $x^7 - 1 = (x^4 + x^3 + x^2 + 1)(x^3 + x^2 + 1)$.

So to a cyclic code corresponds a divisor of $x^n - 1$ and a natural question is therefore if there to any divisor of $x^n - 1$ corresponds a cyclic code. We answer that in the affirmative in

Theorem 6.1.2. Suppose $g(x) \in \mathbb{F}_q[x]$ is monic and divides $x^n - 1$.

Then $C = \{i(x)g(x)|i(x) \in \mathbb{F}_q[x], \deg(i(x)) < n - \deg(g(x))\}$ is a cyclic code with generator polynomial g(x).

Proof. It is obvious that C is a linear code, and if it is cyclic the generator polynomial is g(x) and hence the dimension is $n-\deg(g(x))$ so we only have to prove that C is cyclic.

To this end let $g(x) = g_{s-1}x^{s-1} + \dots + g_1x + g_0 + x^s$ and $h(x) = \frac{(x^n - 1)}{g(x)} = x^{n-s} + h_{n-s-1}x^{n-s-1} + \dots + h_1x + h_0$.

Let c(x) = i(x)g(x) where deg(i(x)) < n - s, then

$$\widehat{c}(x) = xc(x) - c_{n-1}(x^n - 1) = xi(x)g(x) - c_{n-1}h(x)g(x) = (xi(x) - c_{n-1}h(x))g(x).$$

Now $c_{n-1} = i_{n-s-1}$ so indeed $(xi(x) - c_{n-1}h(x))$ has deg < n - s and therefore $\widehat{c}(x)$ is also in C.

The two theorems combined tell us that we can study cyclic codes by studying the divisors of $x^n - 1$. In the case q = 2 and n odd we gave a method for finding divisors of $x^n - 1$ in Section 2.3.

Example 6.1.3. Binary cyclic codes of length 21

Using the algorithm of Section 2.3 we have

$$x^{21} - 1 = (x - 1)(x^6 + x^4 + x^2 + x + 1)(x^3 + x^2 + 1)(x^6 + x^5 + x^4 + x^2 + 1)(x^2 + x + 1)(x^3 + x + 1).$$

With $g(x) = (x^6 + x^4 + x^2 + x + 1)(x^3 + x^2 + 1)$ we get a (21, 12) binary code. With $g_1(x) = (x^6 + x^4 + x^2 + x + 1)(x^3 + x + 1)$ we also get a (21, 12) code.

6.2 Generator- and parity check matrices of cyclic codes

Let C be an (n, k) cyclic code over \mathbb{F}_q . As proved in Section 6.1 the code C has a generator polynomial g(x) of degree n-k, that is $g(x)=x^{n-k}+g_{n-k-1}x^{n-k-1}+\cdots+g_1x+g_0$ and we also saw that $x^jg(x)$, $j=0,1,\ldots,k-1$ gave linearly independent codewords. This means that a generatormatrix of C is

$$G = \left(\begin{array}{cccc} g_0 & g_1 & g_2 & \dots \\ 0 & g_0 & g_1 & \dots \\ 0 & 0 & g_0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{array}\right)$$

So G has as its first row the coefficients of g(x) and the remaining k-1 rows are obtained as cyclic shifts.

To get a parity check matrix we observe that $g(x)h(x) = x^n - 1$, since h(x) was defined exactly in this way and, if c(x) = i(x)g(x), we get that $c(x)h(x) = i(x)g(x)h(x) = i(x)(x^n - 1)$ so the polynomial c(x)h(x) does not contain any terms of degrees $k, k + 1, \ldots, n - 1$ and therefore $\sum_{i=0}^{n-1} c_i h_{j-i} = 0$ for $j = k, k+1, \ldots, n-1$, where $h_s = 0$ if s < 0.

From this we get that the vectors

$$(h_k, h_{k-1}, \ldots, h_0, 0, \ldots, 0), \ldots, (0, \ldots, h_k, h_{k-1}, \ldots, h_0)$$

66 Cyclic Codes

give n - k independent parity check equations so a parity check matrix is

$$H = \begin{pmatrix} h_k & h_{k-1} & h_{k-2} & \dots \\ 0 & h_k & h_{k-1} & \dots \\ 0 & 0 & h_k & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

So *H* has as its first row the coefficients of h(x) in reverse order and the remaining n - k - 1 rows are cyclic shifts of the first row. Therefore we have

Theorem 6.2.1. If C is an (n, k) cyclic code with generator polynomial g(x), then the dual code C^{\perp} is also cyclic and has generator polynomial $g^{\perp}(x) = h_0 x^k + \cdots + h_{k-1} x + h_k = x^k h(x^{-1})$ where $h(x) = \frac{x^n - 1}{g(x)}$

Example 6.2.1. For the code considered in Example 6.1.1 we get

$$G = \left(\begin{array}{ccccccccc} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{array}\right)$$

and

$$H = \left(\begin{array}{cccccccc} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{array}\right)$$

6.3 A theorem on the minimum distance of cyclic codes

In this section we prove a lower bound on the minimum distance of a cyclic code (the so-called BCH-bound).

Theorem 6.3.1. Let g(x) be the generator polynomial of a cyclic (n,k) code C over \mathbb{F}_q and suppose that g(x) has among its zeroes β^a , β^{a+1} , ..., β^{a+d-2} where $\beta \in \mathbb{F}_q^m$ has order n.

Then $d_{min}(C) \geq d$.

Proof.

$$H = \begin{pmatrix} 1 & \beta^{a} & \beta^{2a} & \dots & \beta^{a(n-1)} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & \beta^{a+d-2} & \beta^{2(a+d-2)} & \dots & \beta^{(n-1)(a+d-2)} \end{pmatrix}$$