

For more Subjects

https://www.studymedia.in/fe/notes

PA	_42	9	8
		•	•

SEAT No.:	
[Total	No. of Pages: 4

[5924]-7

F.E. (Electrical Engineering) BASIC ELECTRICAL ENGINEERING

(2019 Pattern) (Semester - I/II) (103004)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable data wherever necessary.
- 5) Use of non-programmable calculator is allowed.
- **Q1)** a) Calculate power factor angle and power factor in following cases: [4]
 - i) $Z = 10 + i10 \Omega$
 - ii) $Z = 30 j20 \Omega$
 - b) If a single-phase AC supply is connected to RC circuit, answer the following. [6]
 - i) Draw circuit digram indicating all voltage drop and current.
 - ii) Write equation for impedance and current.
 - iii) Draw the phasor diagram.
 - c) A coil of 100mH is connected in series with 25Ω resistance across 230V, 50 Hz supply. Find [8]
 - i) Inductive reactance and impedance
 - ii) Current trhough circuit
 - iii) Voltage drop across each element
 - iv) Active power

OR

P.T.O.

Q 2)	a)		A sinusoidal voltage $V = V_m \sin \omega t$ applied across pure resistance circularity expression active power consumed by the circuit.			
	b)	_	For the capacitance of $100\mu F$ is connected across single phase volume by $v = 100 \sin (314t)$ volts. Find	tage [6]		
		i)	Frequency of supply in Hz			
		ii)	Capacitive reactance			
		iii)	Equation of current			
	c)	A resistance 20Ω . inductance of 50mH and capacitor of $75\mu F$ are connected in series across 230V, variable frequency supply. [8]				
		Calo	culate:			
		i)	The frequency at which resonance will occur			
		ii)	Current flowing through circuit			
		iii)	Power factor			
Q3)	a)	Stat	te the advantages of 3– ph system over 1-ph system (any 3):	[3]		
	b)	What are the different losses in the transformer? In which party t place and how to minisie them.				
	c)		three phase load having per phase impedance $(30 + j40)\Omega$ is connected star across 400V, 50Hz, 3-phase AC supply. [8]			
		Det	ermine:			
		i)	Line and phase voltage			
		ii)	Line and phase current			
		iii)	Power factor and power factor angle			
		iv)	Active, reactive power			
			OR			
Q4)	a)	Stat	te following statements are true or false with justification.	[3]		
		i)	In transformer, as the load current increases, iron losses increases	ase.		
		ii)	In transformer, as the load current increases, copper losses incre	ease.		
	b)	Der	ive emf equation of a single-phase transformer.	[6]		
	c)	pha	w circuit diagram for delta load (RL types) connected across to see balanced supply and derive relation between line and phase curvoltage. Also draw the phasor diagram.			
[592	24]-7		2			

Q5) a) Define following terms:

[4]

- i) Active and passive network
- ii) Linear and non-linear network
- b) Find the current following through 2Ω resistance using KVL. (Refer Fig. 5(b) **[6]**

c) Determine equivalent resistance between XY Refer Fig. 5(c). [8]

Figure Q5c)

OR

Q6) a) State and explain KCL and KVL.

[4]

- b) i) Three resistance each 60Ω are connected in delta, draw its equivalent star.
 - ii) Three resistance each 60Ω are connected in star, draw its equivalent delta.

[6]

[8]

c) Write the steps to find current I_L in given circuit using Thevenin's theorem.

Fig Q6c)

[5924]-7

- **Q7)** a) State following statements are true or false with justification. [3]
 - i) A wire is having resistance of 10Ω . If the length of wire is doubled, then new resistance is 5Ω .
 - ii) A wire is having resistance of 10Ω . If the diameter of wire is doubled, then new resistance is 2.5Ω .
 - b) Explain construction, working of Lithium Ion Battery. [6]
 - c) Derive the formula for insulation resistance of a single core cable. State the factors affecting insulation resistance. [8]

OR

- **Q8)** a) State the three conditions of fully charged lead acid battary. [3]
 - b) Explain construction, working and applications of Lead acid Battery. [6]
 - c) A wire is having resistance 10Ω , 20° C, Its RTC at 0° C is $0.004/^{\circ}$ C. Calculate :
 - i) RTC at 20°C
 - ii) Resistance of wire at 50°C
 - iii) The temperature at which resistance increases to 15Ω .

[5924]-7

4