	、填空题: (每空1分,共15分)
1.	一个二端元件,其上电压 u、电流 i 取关联参考方向,已知 u=20V,
	i=5A,则该二端元件(产生/吸收)100W的电功
	率。
2.	理想电压源的
	由与其相连的外电路决定的。
3.	KVL 是关于电路中
	于电路中
4.	. 线性电路线性性质的最重要体现就是
	性,它们反
	映了电路中激励与响应的内在关系。
5.	某一正弦交流电流的解析式为 $i=5\sqrt{2}\sin(100\pi t+60^\circ)$ A,则该
	正弦电流的有
	效值 I=A, 频率为 f=Hz, 初相ψ
	=。当t=1s
	时,该电流的瞬时值为A。
6.	线性一阶动态电路的全响应,从响应与激励在能量方面的关系来
	分析,可分解为

	响应之
--	-----

和。

7. 在互易二端口网络的各种参数中,只有______个是独立的,

而在对称二端口网

络的各种参数中,只有______个是独立的。

- 二、简单计算题: (每题 5 分, 共 40 分)
- 1. 己知 i₁=3A, i₃=6A, i₅=8A, i₆=-2A, 求电流 i₂、i₄。

2. 己知 R_1 =3 Ω , R_2 =2 Ω , R_3 =5 Ω , u_{S1} =-4V, u_{S2} =6V, u_{S3} =5V。 求电位 V_a 。

3. 求如图二端电路的等效电阻 R。

4. 试计算如图电路中的电压 I。

5. 某二端电路的电压 u 与电流 i 取关联参考方向,已知 u=30sin(314t+54°)V, i=10cos(314t+24°)A,试求该二端电路的 等效阻抗 Z,吸收的有功功率 P、无功功率 Q。

6. 如图所示电路中,R=4Ω,L=40mH,C=0. 25uF, \dot{U}_s =2∠20°V。

求:1)谐振频率 f_0 ,品质因数 Q; 2)谐振时电路中的电流 I。

7. 如 图 所 示 互 感 电 路 中 , 已 知 $L_1{=}0.~4H,\,L_2{=}2.~5H,\,M{=}0.~8H,\,i_1{=}i_2{=}10sin500t\,mA, 求 \,u_1\,.$

8. 试求如图二端口电路的 Z 参数 Z_{11} 、 Z_{12} 、 Z_{22} 。

三、分析计算题: (每题 9 分, 共 45 分)

(必须有较规范的步骤,否则扣分,只有答案者,该题得零分)

1. 如图所示电路,试用节点法求电流 I。

2. 如图所示电路, 求电阻 R 为何值时它获得最大功率 P_m , 且 P_m 为多大?

4. 如图所示电路,t=0 时将 S 合上,求 $t \ge 0$ 时的 i_1 、 i_L 、 u_L 。

5. 如图所示电路,已知 \dot{U}_s =50 \angle 0°V, \dot{I}_s =10 \angle 30°A, X_L =5 Ω , X_C =3 Ω ,求 \dot{U} 。

电路基础参考答案及评分标准

一、填空题: (每空1分,共15分)

- **1**. 吸收 **2**. 电压、电流 **3**. 支路(回路)电压、支路电流
- 4. 叠加、齐次 5. 5、50、60°、 $\frac{5}{2}\sqrt{6}$
- 6. 零输入、零状态 7. 3、2

二、简单计算题: (每题 5 分, 共 40 分)

1.
$$i_2=i_1+i_5-i_3-i_6=7A$$
 (3 $\%$) $i_4=i_5-i_6=10A$ (2 $\%$)

2.
$$U_{R1} = \frac{R_1}{R_1 + R_2}$$
 $(U_{S2} - U_{S1}) = 6V (2 \%)$ $V_a = U_{S1} + U_{R1} - U_{S3} = -3V (3 \%)$

3.
$$i = \frac{u - 5U_1}{3} + \frac{U_1}{1}$$
 (2 分)

$$\frac{u}{U_1 = 3} (2 \%) \qquad R = \frac{u}{i} = 9 \Omega \quad (1 \%)$$

4.
$$I = \frac{1}{2} \times 4$$
 (2分) + $\frac{2}{2}$ (2分) =3A (1分)

$$\frac{U_m}{I} = \frac{30 \angle 54^{\circ}}{10 \angle 114^{\circ}} = 3 \angle -60^{\circ}$$

5.
$$Z=I_m$$
 Ω (1分)

$$P = \frac{-\frac{1}{2}U_{m}I_{m}\cos\phi = \frac{1}{2} \times 30 \times 10 \times \cos(-60^{\circ})}{=75 \text{ W } (2 \text{ }\%)}$$

$$Q = \frac{1}{2} U_m I_m \sin \phi = \frac{1}{2} \times 30 \times 10 \times \sin(-60^\circ) = -75\sqrt{3} \text{ Var}$$

(2分)

6. 1)
$$f_0 = \frac{1}{2\pi\sqrt{LC}} = 1592 \text{ Hz} \quad (2 \%)$$

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = 100 \quad (2 \%)$$

2) 由谐振的特点可知:

$$I = \frac{U_s}{Z} = \frac{U_s}{R} = 0.5A$$
 (1 \(\frac{1}{2}\))

7.
$$u_1 = L_1 \frac{di_1}{dt} - M \frac{di_2}{dt}$$
 (3 分)

 $=0.4\times10\times500\times\cos500t-0.8\times10\times500\times\cos500t$ $=-2000\cos 500t = 2000\sin (500t - 90^{\circ}) \text{ mV } (2 \text{ } \%)$

8.
$$Z_{11}=15//(15+20)=10.5 \Omega$$
 (1分)

$$\frac{20}{Z_{12}=20+15+15} \times 15$$

$$Z_{22}=20//(15+15)=12 \Omega \quad (2 分)$$

三、分析计算题: (每题9分,共45分)

(必须有较规范的步骤,否则扣分,只有答案者,该题得零分)

(2分)

1. (9分)

设各独立节点及参考节点如图所示: (2分)

列节点方程:
$$U_1=20$$
 (1分)
$$-U_1+(1+\frac{1}{2})U_2-\frac{1}{2}U_3=-15-\frac{5I}{2} (1分) \\ -\frac{1}{6}U_1-\frac{1}{2}U_2+(\frac{1}{2}+\frac{1}{3}+\frac{1}{6})U_3=\frac{5I}{2}$$
 (1分)

列控制量方程:
$$I=\overline{^3}U_3$$
 (1分)

联立以上方程解得:
$$U_1=20V$$
 $U_2=-\frac{2}{3}V$ (1分) $U_3=18V$ (1分)

∴ $I=\frac{1}{3}U_3=6A$ (1分)

2. (9分)

断开 R,得一有源二端网络,(1分) 求戴维南等效电路:

$$U_{OC}=10-\frac{6}{6+12}\times12=6V$$
 (2 $\%$)

 R_{O} =3+6//12=7 Ω (2分)

: 当 R=Ro=7 Ω 时(2 分),R 获得的功率最大,其最大功率 P_m 为 $\frac{U^2oc}{4R_O} = \frac{9}{7} = 1.29W (2 分)$

3. (9分)

设各网孔电流及方向如图所示: (2分)

列网孔方程:
$$(4+2) I_1-2I_2=-20$$
 (1分) $I_2=4$ (1分)

联立解方程得: $I_1=-2A$ (1分) $I_2=4A$ (1分) 则 U_{4A} (上负下正) =2 (I_2-I_1) + $I_2=16V$ (1分)

∴ 4A 电流源发出的功率 P _发=4U_{4A}=64 W (2 分)

4. (9分)

1)求初始值

2)求稳态值

$$i_{1}(\infty) = \frac{12}{3+6/6} = 2A$$
 $i_{L}(\infty) = \frac{1}{2}i_{1}(\infty) = 1A$ (1分)

$$au=\frac{L}{\mathrm{Req}}=6+3//6=8\,\Omega$$
 (1分)
$$au=\frac{L}{\mathrm{Req}}=0.1\mathrm{s}$$
 (1分) 4)由三要素法公式:

$$i_{1}(t)=2+\frac{2}{9}e^{-10t}$$

$$i_{1}(t)=2+\frac{1}{9}e^{-10t}$$

$$i_{L}(t)=1+\frac{1}{3}e^{-10t}$$

$$A t \ge 0 \quad (1 \%)$$

$$U_{L}(t)=L\frac{di_{L}(t)}{dt} = -\frac{8}{3}e^{-10t}$$

$$V t \ge 0 \quad (1 \%)$$

$$\frac{-jX_C}{U = jX_L - jX_C} U_S \frac{jX_L \times (-jX_C)}{jX_L - jX_C} I_S \frac{jX_L \times (-jX_C)}{jX_L - jX_C} I_S$$

$$=75 \angle -120^\circ \text{ V} \quad (3 \%)$$