Visualizing Multilevel Models

Andy Grogan-Kaylor

7 Mar 2023 10:23:29

Introduction

An evolving set of notes on visualizing results from multilevel models.

When this document is presented in *slide show format*, some slides may be long, and you may need to *scroll down* to see the full slide. In slide show format use the left and right arrow keys to navigate through the slides. b will make the text bigger. s will make the text smaller.

The examples below use the simulated_multilevel_data.dta file from *Multilevel Thinking*. Here is a direct link to download the data.

Organizing Questions

Try to think about some of the advantages and disadvantages of different approaches to visualizing multilevel models. In multilevel models, we don't want to just *control for* variation, but to start to *explore* the variation. Put concretely:

- Some approaches use dots. Some approaches use lines. Some approaches use dots and lines.
- Some approaches use the raw unadjusted data. Other approaches use adjusted or model predicted data.
- Some approaches attempt to show the Level 2 specific regression lines; some approaches only show an average regression line.
- What approaches might work well with *large numbers* of Level 2 units? What approaches might work well with *smaller numbers* of Level 2 units?

What approach(es) do you prefer?

Setup

I am not terrifically fond of Stata's default s2color graph scheme. Therefore I make use of the michigan graph scheme available at: https://agrogan1.github.io/Stata/michigan-graph-scheme/

. set scheme michigan

Stata's s1color scheme would also would be an option as would be Asjad Naqvi's incredible schemepack: https://github.com/asjadnaqvi/stata-schemepack

Get Data

- . use "https://github.com/agrogan1/multilevel-thinking/raw/main/simulate-and-analyze-main/simulate-analyze-main/simulat
- > ultilevel-data/simulated_multilevel_data.dta", clear

Scatterplots

- . twoway scatter outcome warmth
- . graph export myscatter.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myscatter.png saved as PNG format

Figure 1: Scatterplot

Simple Linear Fit

- . twoway lfit outcome warmth
- . graph export mylinear.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mylinear.png saved as PNG format

Linear Fit With Confidence Interval

- . twoway lfitci outcome warmth
- . graph export mylfitci.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mylfitci.png saved as PNG format

Combine Scatterplot and Linear Fit

- . twoway (scatter outcome warmth) (lfit outcome warmth)
- . graph export myscatterlinear.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myscatterlinear.png saved as PNG format

Figure 2: Linear Fit

Figure 3: Linear Fit With Confidence Interval

Figure 4: Scatterplot and Linear Fit

Spaghetti Plots (spagplot)

```
. spagplot outcome warmth, id(country)
```

```
. graph export myspaghetti.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myspaghetti.png saved as PNG format
```

Small Multiples

I use the aspect option to adjust the aspect ratio of the graph for better visual presentation. I also use the mcolor(%30) option to create some transparency in the dots of the scatterplot, which helps the presentation of these small multiples. The mcolor(%30) option could be useful in the other graphs in this tutorial as well.

Multivariate (Predicted) Relationships

A sometimes unacknowledged point is that graphs—unless we take steps to correct this—reflect unadjusted, or bivariate associations. We may sometimes wish to develop a graphs that reflect the adjusted or predicted estimates from our models.

In multilevel models, *prediction* is a complex question. The procedures below outline graphs that incorporate predictions using the variables, but do not include predictions that incorporate the random effects. (This will be added!)

Figure 5: Spaghetti Plot

Figure 6: Small Multiples

Using Predicted Values

Estimate The Model

. mixed outcome warmth physical_punishment i.group $\mid\mid$ country: // estimate MLM Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -9668.0859
Iteration 1: log likelihood = -9668.0859

Computing standard errors:

Mixed-effects ML regression

Group variable: country

Number of obs = 3,000

Number of groups = 30

Obs per group:

min = 100

avg = 100.0

max = 100

Wald chi2(3) = 401.00

Wald chi2(3) = 401.00Log likelihood = -9668.0859 Prob > chi2 = 0.0000

outcome	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
warmth physical_punishment	.961837 8457672	.0581809 .0798128	16.53 -10.60	0.000	.8478046 -1.002197	1.075869
2.group _cons	1.084409 51.64797	.2200548 .4645466	4.93 111.18	0.000	.6531099 50.73748	1.515709 52.55847

Random-effects parameters	Estimate	Std. err.	[95% conf.	interval]
<pre>country: Identity</pre>	3.403	.9717558	1.944438	5.955659
var(Residual)	36.01911	.9346952	34.23295	37.89847

LR test vs. linear model: chibar2(01) = 200.29

Prob >= chibar2 = 0.0000

Generate Predicted Values

. predict outcome_hat // predict yhat
(option xb assumed)

Graph With twoway Syntax

- . twoway (scatter outcome_hat warmth) (lfit outcome_hat warmth)
- . graph export mypredictedvalues.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mypredictedvalues.png saved as PNG format
- . twoway (lfit outcome_hat warmth)
- . graph export mypredictedvalues2.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mypredictedvalues2.png saved as PNG format

Spaghetti Plot With Predicted Values

- . spagplot outcome_hat warmth, id(country)
- . graph export myspaghetti2.png, width(1500) replace as PNG format

Figure 7: Spaghetti Plot With Predicted Values

margins and marginsplot

Estimate The Model

. mixed outcome warmth physical_punishment i.group || country: // estimate MLM Performing EM optimization: Performing gradient-based optimization:

Iteration 0: log likelihood = -9668.0859
Iteration 1: log likelihood = -9668.0859

Computing standard errors:

Mixed-effects ML regression Group variable: country	Number of obs = Number of groups = Obs per group:	-,
	min =	100
	avg =	100.0
	max =	100
	Wald chi2(3) =	401.00
Log likelihood = -9668.0859	Prob > chi2 =	0.0000

outcome	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
warmth	.961837 8457672	.0581809	16.53	0.000	.8478046 -1.002197	1.075869
physical_punishment 2.group	1.084409	.2200548	-10.60 4.93	0.000	.6531099	1.515709
_cons	51.64797	.4645466	111.18	0.000	50.73748	52.55847

Random-effects parameters	Estimate	Std. err.	[95% conf. interval]
country: Identity			

var(_cons)	3.403	.9717558	1.944438	5.955659
var(Residual)	36.01911	.9346952	34.23295	37.89847

LR test vs. linear model: chibar2(01) = 200.29

Prob >= chibar2 = 0.0000

Generate Predicted Values At Specified Values With margins

Expression: Linear prediction, fixed portion, predict()

1._at: warmth = 1
2._at: warmth = 2
3._at: warmth = 3
4._at: warmth = 4
5._at: warmth = 5
6._at: warmth = 6

 $7._{at}$: warmth = 7

Delta-method Margin std. err. P>|z| [95% conf. interval] _at#group 1 1 50.4999 .3983539 126.77 0.000 49.71914 51.28066 1 2 51.58431 .3994365 129.14 0.000 50.80143 52.36719 2 1 51.46174 .3809288 135.10 0.000 50.71513 52.20834 2 2 52.54615 0.000 51.79797 53.29432 .38173 137.65 0.000 52.42357 3 1 .371884 140.97 51.6947 53.15245 3 2 53.50798 .3723656 143.70 0.000 52.77816 54.23781 53.38541 4 1 .3718315 143.57 0.000 52.65664 54.11419 55.19888 54.46982 0.000 53.74077 4 2 .3719738 146.43 5 1 54.34725 .3807751 142.73 0.000 53.60094 55.09355 5 2 55.43166 .3805823 145.65 0.000 54.68573 56.17759 6 1 55.30909 .398109 138.93 0.000 54.52881 56.08937 56.3935 .397607 0.000 57.17279 6 2 141.83 55.6142 7 1 56.27092 57.0996 .4228024 133.09 0.000 55.44225 7 2 57.35533 .4220306 135.90 0.000 56.52817 58.1825

Graph With marginsplot

- . marginsplot // plot of predicted values
 Variables that uniquely identify margins: warmth group
- . graph export mymarginsplot.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mymarginsplot.png saved as PNG format

Curvilinear and Linear Fits

Random Effects

Figure 8: Predicted Values From margins and marginsplot