Generations

- Zeroth Generation
 - Mechanical (1642 1945)
- First Generation
 - Vacuum tube (1945 1955)
- Second Generation
 - Transistor (1955 1965)
- Third generation
 - Integrated Circuit (1965 -1980)
- Fourth Generation
 - Personal Computers and VLSI (1980 now)

Zeroth Generation - ABACUS

Mechanical Calculating Machines

5000 BC A very old abacus A more modern abacus.

Abacus

- Early predecessor of the computers
- Able to
 - perform calculations &
 - Store data
- Widely used by
 - Merchants
 - Traders
 - Mathematicians, etc
 - In Asia, Europe & Africa

Zeroth Generation – contd.

- Blaise Pascal
- French mathematician
- Invented a Calculating Machine
- In 1642
- Unable to construct it completely

Zeroth Generation - cond. The Differential Motor

- Differencial Engine/ Analytical Engine/
 Difference Engine
- Charles Babbage 1822
- steam driven calculating machine
- size of a room
- used to compute entries in navigational tables
 - find the first 30 prime numbers in two and a half minutes
- received government grant
 - first for the computer research

Difference engine

First Generation 1945-1955

- World war II,1939-1945
- German troops sent encrypted messages
- British needed to decode German messages encrypted
- Built an electronic computer
 - vacuum tubes

Vacuum Tubes

- sealed glass or metallic containers
- size of a light bulb
- evacuated to a vacuum degree
 - •Vacuum a space or container from which the air has been completely or partly removed
- directed flow of electrons

Disadvantages - vacuum tubes

- Large in size
 - 1 vacuum tube = 1 light bulb
- Slow
- High maintenance
- Produces lots of heat
- Very unreliable
- Requires bulky power supplies
- High voltages
 - Risk of electric shocks

ENIAC 1943 - 1946

ENIAC - Electronic Numerical Integrator And Computer

\$3,000,000 - cost

15 000 square feet

ENIAC

- 18,000 vacuum tubes
- weighed 30 tons
- Duration of an average run without some failure was only a few hours
- When it ran
 - the lights in Philadelphia dimmed!
- Stored twenty, 10-digit decimal numbers (max)
- Input: IBM card reader
- Output: Punched cards, lights

ENIAC - Programming

It took days to change ENIAC's program

ENIAC

Programming required rewiring of the machine,

Major characteristics

Vacuum Tubes

Large, not very reliable, generated a lot of heat

Magnetic Drum Storage

Memory device that rotated under a read/write head

Card Readers & Magnetic Tape Drives

Development of these sequential auxiliary storage

devices

First Generation 1945-1955

- relied on machine language to perform operations,
- and they could only solve one problem at a time.

John Von Neumann

- Consultant in ENIAC project
- Proposed some improvements
 - The stored program concept
 - store the program and data in the computer's memory
 - Binary processing of data
 - use binary arithmetic with 0's and 1's for each digit
- basis for all modern digital computers

Second Generation 1955-1965

Transistor

- Element of an integrated circuit (IC)
 - » acts like a gate and
 - » can open or close the circuit to electrical changes
- Invented at Bell Labs in 1948
 - » by John Bardeen, Walter Brattain, William Shockley

- Won the Nobel prize for physics in 1956
- revolutionized computing within 10 years
- replace vacuum tube computers

Second Generation 1955-1965

- Transistor more
 - electronic switch
 - alternatively allows electronic signals to pass
 - alternate between "ON" and "OFF"
 - Frequency is high
 - many millions times per second
 - binary
 - made from semi-conducting material
 - Silicon, germanium

Transistor - more

- The advantages of transistors:
 - Smaller in size than vacuum tubes
 - Needed no warm-up time
 - More reliable
 - Consumes less energy
 - Faster

Second Generation 1955-1965

- Transistorized
 Computers (1954 1965)
 - IBM 7094 (scientific) and 1401 (business)
 - Digital EquipmentCorporation (DEC) PDP-1
 - Univac 1100 and many others

CDC 6600 – University of Texas - 1964

Workstations were available to only a few.

Most had to use punched cards handed in through a window

Source: http://ed-thelen.org/comp-hist/vs-cdc-6600.jpg

Characteristics

Transistor

- Replaced vacuum tube,
- fast, small, durable, cheap

Magnetic Cores

- Replaced magnetic drums,
- information available instantly
- first computers that stored their instructions in their memory

Programming Languages

Assembly languages & high-level programming languages
e.g. FORTRAN

Mainframes

Wiring in CDC7600

150 000 transistors in IBM-S.

here's the rest of its 33 foot length

Console of IBM-Stretch (1959)

Minicomputers

Mini-computer: PDP-12 (1969)

Third Generation 1965-1980

Integrated Circuit

- invented by Robert Noyce , 1958
- many transistors on a single chip

Third Generation 1965-1980

- IBM 360
- DEC PDP-8 and PDP-11
- Cray-1
 supercomputer
 and many others.

IBM 360

Characteristics

Integrated Circuits

- Replaced circuit boards,
- smaller, cheaper, faster, more reliable.
- Computers for the first time became accessible to a mass audience

Operating System

 Allowed to run many different applications at one time with a program that monitored the memory.

Terminal

An input/output device with a keyboard and screen

By 1968 you could buy a 1.3 MHz CPU with half a megabyte of RAM (512 KB) and 100 MB hard drive for a mere **US\$1.6 million.**

Dumb terminals or workstations were used to tie into the mainframes:

Photo taken at Computer Science History Museum, San Jose, CA, by Dr. Robert Walker on VLSI Trip to Silicon Valley

Fourth Generation 1980 – Now

Large-scale Integration

- Great advances in chip technology
- Very Large Scale Integration (VLSI)
 - 10,000's transistors on a single chip

Pentium 4 contains 42 million transistors

The Shrinking Computer

Fourth Generation 1980 – Now

- PC Era was born!
- First PC's were sold as kits
 - Intel 4004 chip, 1971
 - located all the components of the computer
 - central processing unit
 - Memory
 - input/output controls
 - » on a single chip

PCs from the 1980's

The Apple 1 which was sold as a do-it-yourself kit (without the lovely case seen here)

Apple computer and IBM made the first commercial PC's

The rest is History!

Fourth Generation 1980 – Now

- Characteristics
 - GUIs,
 - the mouse and other handheld devices.
- these small computers became more powerful,
- they could be linked together to form networks,
- eventually led to the development of the Internet.