Statistics One

Lecture 8

Multiple Regression

Three segments

- Intro to multiple regression
- Matrix algebra
- Estimation of coefficients

Lecture 8 Segment 1 Intro to Multiple Regression

Multiple Regression

- Important concepts/topics
 - Multiple regression equation
 - Interpretation of regression coefficients
 - Standard vs. sequential regression

Simple vs. multiple regression

- Simple regression
 - Just one predictor (X)
- Multiple regression
 - Multiple predictors (X1, X2, X3, ...)

Multiple regression

- Multiple regression equation
 - Just add more predictors (multiple Xs)

$$\hat{Y} = B_0 + B_1 X_1 + B_2 X_2 + B_3 X_3 + \dots + B_k X_k$$

$$\hat{\mathbf{Y}} = \mathbf{B}_0 + \Sigma(\mathbf{B}_k \mathbf{X}_k)$$

Multiple regression

Multiple regression equation

 \hat{Y} = predicted value on the outcome variable \hat{Y}

 B_0 = predicted value on Y when all X = 0

 X_k = predictor variables

 B_k = unstandardized regression coefficients

 $Y - \hat{Y} = residual$ (prediction error)

k = the number of predictor variables

Model R and R²

- R = multiple correlation coefficient
 - $-R = r_{\Upsilon\Upsilon}$
 - The correlation between the predicted scores and the observed scores
- R²
 - The percentage of variance in Y explained by the model

Multiple regression: Example

- Outcome measure (Y)
 - Faculty salary (Y)
- Predictors (X1, X2, X3)
 - Time since PhD (X1)
 - # of publications (X2)
 - Gender (X3)

Descriptive Statistics

	N	Mean	Std. Deviation	Skew	Kurtosis
SALARY	150	64,115.17	17,110.15	.25	55
TIME	150	8.09	5.24	.49	34
PUBS	150	15.49	7.51	.37	.17

Multiple regression: Example

- Gender
 - Male = 0
 - Female = 1

Multiple regression: Example

• $\hat{Y} = 46,911 + 1,382(TIME) + 502(PUBS) + -3,484(G)$

Coefficients

	Unstandardized Coefficients		Standardized Coefficients		
	В	Std. Error	Beta	t	р
(Constant)	46,910.49	3,401.423		13.791	.000
TIME	1382.07	235.980	.423	5.857	.000
PUBS	501.73	164.480	.220	3.050	.003
GENDER	-3,483.65	2,438.766	102	-1.428	.155

Model Summary

Model	R	R Square
1	.513	.263

Types of multiple regression

- Standard
- Sequential (aka hierarchical)
 - The difference between these approaches is how they handle the correlations among predictor variables

Types of multiple regression

- If X1, X2, and X3 are not correlated then type of regression analysis doesn't matter
 - See Venn diagram on next slide

Orthogonal predictors

Types of multiple regression

- If predictors are correlated then different methods will return different results
 - See Venn diagram on next slide

Correlated predictors

Standard

- All predictors are entered into the regression equation at the same time
- Each predictor is evaluated in terms of what it adds to the prediction of Y that is different from the predictability offered by the others
- Overlapping areas are assigned to R² but not to any individual B

Standard

X1: a

X2: e

X3: c

Model R²: a+b+c+d+e

Sequential

- Predictors are entered into the regression equation in ordered steps; the order is specified by the researcher
- Each predictor is assessed in terms of what it adds to the equation at its point of entry
- Often useful to assess the change in R² from one step to another

Step 1: X1; Step 2: X2 + X3

X1: a + b

X2: e

X3: c

Step 1 Model R²: a+b

Step 2 Model R²: a+b+c+d+e

Multiple Regression

- Important concepts/topics
 - Multiple regression equation
 - Interpretation of regression coefficients
 - Standard vs. sequential regression

© 2012 Andrew Conway