Considering Energy Consumption in IPA Towards Sustainable AI: Experiment Design

Regan Willis, Chase Bryson, Osasuyi Agho

Motivation

- Recall: IPA adjusts ML system pipelines to consider accuracy, latency, and cost at different request volumes.
- IPA does not consider energy consumption as a metric to tune for.
- Lower energy consumption is better for the environment.

IPA will be more widely adopted if it provides an energy consumption

measurement.

Experiment Question

- Does energy consumption expand the adaptation search space for IPA?
 - Are there adaptations for some pipelines that may have the similar accuracy, latency, and cost, but differing energy consumption?
 - More accurate models are larger, requiring more energy
 - Larger models take longer to run, raising latency
- Future Goal: A user of IPA can set an energy consumption SLA.
- Regardless of the experiment result, adding energy consumption as a metric in IPA can inform user choices.
 - Energy consumption can be difficult to measure and is often not prioritized by developers.

Experiment Design

- Run different weights and batch sizes of YOLOv7, measure energy consumption, and collect information on accuracy and latency.
 - Independent variables:
 - YOLOv7 weights
 - Batch size
 - Dependent variables:
 - Accuracy
 - Latency
 - Energy Consumption
 - Control Variables
 - Dataset -> 496 images from COCO validation set 2017
 - Network pretraining dataset
 - Constant <u>hardware</u> (CPU)
- Three averaged trials to increase the signal-to-noise ratio of the energy consumption measurement
- Measure energy:
 - Bare Metal Experiment Pattern: uses perf

Search Space

Weights: 7 YOLOv7 weights

• Batch sizes: 10, 32

Model	Test Size	AP ^{test}	AP ₅₀ ^{test}	AP ₇₅ ^{test}	batch 1 fps	batch 32 average time
YOLOV7	640	51.4%	69.7%	55.9%	161 <i>fps</i>	2.8 ms
YOLOV7-X	640	53.1%	71.2%	57.8%	114 <i>fps</i>	4.3 ms
YOLOv7-W6	1280	54.9%	72.6%	60.1%	84 <i>fps</i>	7.6 <i>m</i> s
YOLOv7-E6	1280	56.0%	73.5%	61.2%	56 fps	12.3 <i>ms</i>
YOLOv7-D6	1280	56.6%	74.0%	61.8%	44 fps	15.0 <i>ms</i>
YOLOV7-E6E	1280	56.8%	74.4%	62.1%	36 fps	18.7 ms

Results: Energy Consumption vs. Accuracy

Results: Energy Consumption vs. Latency

- Bigger, more accurate models generally have a greater latency.
- Again, batch size has less relevance on latency than model weights.

Results

Analysis

- Energy consumption is heavily correlated with both accuracy and latency.
- Energy consumption is correlated more with latency than accuracy.
- IPA will be benefited by the addition of an energy consumption metric.

Future Work Directions

- Repeat experiment on different hardware
- Add energy consumption metric into IPA code
- Sensitivity analysis
- Experimenting with other pipeline types
- GPU processing
- Real-time energy consumption tracking
- Expanding energy consumption measurement methods
- Providing carbon footprint information