Московский Государственный Технический университет им. Н.Э.Баумана. Билет для вступительных испытаний в магистратуру. 2022 г. Кафедра "Программное обеспечение ЭВМ и информационные технологии" (ИУ-07), направление подготовки 09.04.04 программная инженерия

Билет №ИМ 07.13

Задание 1 (8 баллов)

Методом Симпсона вычислите значение интеграла таблично заданной функции:

X	1	2	3	4	5	
у	5	1	3	6	0	

Задание 2 (8 баллов)

Определите число отказов страниц (страничных неудач) при использовании алгоритма LRU-k и следующем порядке запросов страниц 1 2 3 4 1 2 5 1 2 4 3 4 с учетом того, что в памяти одновременно может находиться не более четырех страниц, считая k=1.

Задание 3 (8 баллов)

Система \mathbb{N}^1 использует четырёхтритное кодирование для латинских букв и некоторого количества дополнительных символов (A=0000,B=0001,C=0002,D=0010 и т.д.), в то время как Система \mathbb{N}^2 – трёхтритное (A = 000, B=001, C= 002, D=010 и т.д.). Однажды Система \mathbb{N}^1 отправила Системе \mathbb{N}^2 некоторое сообщение, которое было распознано как "СЈМLЕUDHBKYE". Что за сообщение отправляла Система \mathbb{N}^1 ?

Задание 4 (8 баллов)

Найдите минимальную СДНФ и минимальную СКНФ для функции f(A,B,C,D), заданной таблично:

A	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
В	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
С	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
D	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
f	1	0	0	0	0	0	0	1	0	1	1	1	1	0	1	1

Задание 5 (8 баллов)

Дано сбалансированное двоичное дерево поиска, состоящее из элементов F,G,A,Q,P,Q,T,D,E,G,F. Покажите поэтапное изменение дерева после удаления корня.

Задание 6 (8 баллов)

Вася и Петя договорились, что переменная типа float кодируется 32 битами, причем первый бит используется для знака числа (0 — положительный, 1 — отрицательный), следующие 8 битов — для порядка, а оставшиеся 23 бита — для мантиссы. Десятичная запись числа получается по формуле:

десятичное значение
$$= (-1)^{\mathtt{shak}} \cdot (1 + \frac{\mathtt{M}}{2^{23}}) \cdot 2^{\mathtt{P}}$$

, где M – значение мантиссы в десятичной системе счисления как целого беззнакового числа. P – значение порядка в десятичной системе счисления как целого знакового числа в прямом коде.

Также, переменная типа int представляется 4 байтами, причём в прямом коде. А переменная типа boolean требует 1 байта, но значение false принимает только при равенстве всех битов нулю.

Вася отправляет Пете переменные a (int), b (int), c (boolean), записанные в виде непрерывной последовательности битов, но Петя перепутал порядок следования и типы переменных, потому считывает последовательность битов в переменные f (boolean), g (float), h (int).

Какие значения переменных увидел Петя, если Вася отправил a=65536, b=22, c=false?

Задание 7 (12 баллов)

Одноканальная СМО обслуживает пуассоновский поток заявок, интенсивность которого составляет $\lambda=1$. Время обслуживания одной заявки распределено по закону Эрланга третьего порядка $f(t)=\frac{\mu(\mu t)^2}{2}\exp^{-\mu t},\ \mu=6$. Если заявка приходит в момент времени, когда канал занят, то она получает отказ в обслуживании. Найдите вероятность отказа в обслуживании заявки (в стационарном режиме).

Задание 8 (12 баллов)

Постройте явную разностную схему методом разностной аппроксимации для краевой задачи

$$\frac{\partial u(x,t)}{\partial t} = a \frac{\partial^2 u(x,t)}{\partial x^2} + f(x,t), 0 < x < l, 0 < t \le T$$

$$u(x,0) = \phi(x), 0 \le x \le l$$

$$u(0,t) = \mu_1(t), 0 \le t \le T$$

$$u(l,t) = \mu_2(t), 0 \le t \le T$$

Задание 9 (12 баллов)

Результаты регистрации продолжительности обслуживания заявок в системе массового обслуживания (СМО) представлены следующим интервальным вариационным рядом

номер интервала	1	2	3	4
интервал времени обслуживания	0-1	1-2	2-3	3-4
частота	14	10	14	12

Используя критерий Пирсона (χ^2) с уровнем значимости α =0.05, обоснуйте предположение, что время обслуживания распределяется по равномерному закону.

Для справки: таблица значений критических точек распределения χ^2

					1 1	1	/ L	
Число степеней сво	боды 1		2	3	4	5	6	7
χ^2 при $\alpha{=}0.05$	3.8	841	5.991	7.815	9.488	11.07	12.592	14.067

Задание 10 (16 баллов)

Выведите сложность указанного алгоритма для лучшего и худшего случаев. Указанный алгоритм: сортировка расчёсткой (comb sort).