CONCORDIA UNIVERSITY FACULTY OF ENGINEERING AND COMPUTER SCIENCE DEPARTMENT OF MECHANICAL INDUSTRIAL AND AEROSPACE ENGINEERING

NAME:

ID:

WRITE YOUR ANSWERS IN THE BOXES. SHOW ALL YOUR WORK, NEATLY, IN THE FOLLOWING SPACE.

PROBLEM I [6 pts]

Energy is added to a piston-cylinder arrangement, and the piston is withdrawn in such a way that the temperature (i.e., the quantity PV) remains constant. The initial pressure and volume are 200 kPa and 2 m³, respectively. If the final pressure is 100 kPa,

- Calculate the work done by the ideal gas on the piston.

When
$$W_{12} : 277 \ P_{2}$$

Work done [kJ]

 $277 \ P_{1}$
 $277 \ P_{2}$

Will $277 \ P_{2}$

Will $277 \ P_{2}$

Then $200 \ P_{2}$
 $200 \ P_{2}$

PROBLEM II [12 pts]

A cylinder device fitted with a piston contains initially argon gas at 100kPa and 27°C occupying a volume of 0.4 m³. The argon gas is first compressed while **the temperature** is **held constant** until the volume reaches 0.2 m³. Then the argon is allowed to expand while **the pressure** is **held constant** until the volume becomes 0.6 m³.

Determine the total amount of net heat transferred to the argon in kJ.

Consider Argon as an ideal gas with: $C_v=0.3122 \text{ kJ/kg K}$; $C_p=0.5203 \text{ kJ/kg K}$; R=0.2081 kJ/kg K

Net heat transferred [kJ]

-mass of the Atgon:

$$M = \frac{P_1 V_1}{R T_1} : \frac{100 \times 0.4}{0.2001 \times 300} = 0.6467 \text{ kg.} 1$$

- Process from $O \rightarrow O$ isothermal:

 $W_{12} : P_1 V_1 | N_2 = 100 \times 0.4 | N_2 = 27.7 \text{ kg}$

- Process from $O \rightarrow O$ isoberic

 $W_{23} : P_1 (V_3 - V_2)$
 $W_{23} : P_1 (V_3 - V_2)$
 $W_{23} : P_2 (V_3 - V_2)$
 $W_{23} : 200 \times (0.6 - 0.2) : 80 \text{ kg} 2$

- Net Heet transferred:

 $W_{23} : V_1 = V_2 = V_3 + V_3 = V_3 =$

with
$$T_3 = T_2 V_3 = 300 0.6 = 900 K. (2)$$

Then: $Q_{nel} = (0.6407)(0.3122)(900-300)$
 $+ (-27.7 + 80)$

MIDTERM

ENGR251/4 Fall 17

PROBLEM(II 12 pts]

Argon gas flows steadily with a velocity of 50 m/s into an adiabatic turbine at 1500 kPa and 450°C. The gas leaves the turbine at 140 kPa with a velocity of 140 m/s. The inlet area of the turbine is 55 cm². The power output of the turbine is measured to be 180 kW.

- Determine the exit temperature of the argon.

Consider Argon as an ideal gas with: $C_v=0.3122$ kJ/kg K; $C_p=0.5203$ kJ/kg·K; R=0.2081 kJ/kg K

Exit Temperature であった。
compulation of mi:
$m_1 = m_2 = m$ $Q_1 = \frac{P_1}{P_2} = \frac{0.2081 \times 723}{1500} = 0.1003 m^3/kg (3)$
$\dot{m} = \frac{A_1 V_1}{U_1} = \frac{0.0055 \times 50}{0.1003} = 2.742 \text{ kg/s} (3)$
1st law of thoma:
DEX and DEP are neglected Steedy State The condition of the conditio
$W = -i\pi \left(CP \left(7_{2} - 7_{1} \right) + \frac{2V_{2}^{2} - V_{1}^{2}}{2 \times 1000} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2$
Then: \ T_2=580.4 K 2