语法分析

魏恒峰

hfwei@nju.edu.cn

2020年12月2日

输入: 词法单元流 & 语言的语法规则

输出: 语法分析树 (Parse Tree)

语法分析举例

(Expr)

if (

(Stmt)

(Stmt)

语法分析阶段的主题之一: 上下文无关文法

```
\langle \text{Stmt} \rangle \rightarrow \langle \text{Id} \rangle = \langle \text{Expr} \rangle;
            \langle Stmt \rangle \rightarrow \{ \langle StmtList \rangle \}
           \langle Stmt \rangle \rightarrow if (\langle Expr \rangle) \langle Stmt \rangle
\langle StmtList \rangle \rightarrow \langle Stmt \rangle
\langle StmtList \rangle \rightarrow \langle StmtList \rangle \langle Stmt \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Id} \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Num} \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Expr} \rangle \langle \text{Optr} \rangle \langle \text{Expr} \rangle
                    \langle \mathrm{Id} \rangle \to \mathbf{x}
                    \langle \mathrm{Id} \rangle \to \mathbf{v}
            \langle \text{Num} \rangle \rightarrow 0
            \langle \text{Num} \rangle \rightarrow 1
            \langle \text{Num} \rangle \rightarrow 9
            \langle \text{Optr} \rangle \rightarrow >
            \langle \text{Optr} \rangle \rightarrow +
```

语法分析阶段的主题之二: 构建语法分析树

						(5	$\operatorname{Stmt} \rangle$							
if	((Expr))						(St	$\mathrm{mt}\rangle$			
if	(\(\bar{\text{Expr}}\)	(Optr)	(Expr)							(St	mt			
if	$(\overline{\langle Id \rangle})$	(Optr)	(Expr)							(St	$\mathrm{mt}\rangle$			
if	(x	(Optr)	(Expr)							St	mt			
if	(x	>	(Expr)							(St	$\mathrm{mt}\rangle$			
if	(x	>	(Num)							(St	$\mathrm{mt}\rangle$			
if	(x	>	9							(St	$\mathrm{mt}\rangle$			
if	(x	>	9) -	{				(S	$_{ m tm}$	tList			}
if	(x	>	9		{ (Stn	ntList				($Stmt\rangle$		}
if	(x	>	9		{	(S	$\operatorname{tmt}\rangle$					$\operatorname{Stmt}\rangle$		
if	(x	>	9		$\langle \mathrm{Id} \rangle$	=	(Expr)	;				Stmt		
if	(x	>	9		x	=	$\langle \text{Expr} \rangle$					Stmt		
if	(x	>	9		(x	=	(Num)					Stmt		
if	(x	>	9		(x	=	0				($\operatorname{Stmt} \rangle$		
if	(x	>	9		(x			;	$\langle Id \rangle$	=		(Expr)		; }
if	(x	>	9		(x			;	У	=		$\langle \text{Expr} \rangle$; }
if	(x	>	9		(x	=			У	=	(Expr	(Optr)	(Expr)	; }
if	(x	>	9		(x	=				=	$\langle Id \rangle$	$\langle \text{Optr} \rangle$	$\langle Expr \rangle$; }
if	(x	>	9		(x	=			У	=	У	$\langle \text{Optr} \rangle$	$\langle \text{Expr} \rangle$; }
if	(x	>	9		(x	=				=	у	+	$\langle \mathrm{Expr} \rangle$; }
if	(x	>	9		(x	=				=		+	(Num)	; }
if	(x	>	9) -	(x	=	0	;	у	=	У	+	1	; }
									-		4 □ ▶	< A → <	3 → 4 3	· 1

语法分析阶段的主题之三: 错误恢复

报错、恢复、继续分析

只考虑无二义性的文法

这意味着,每个句子对应唯一的一棵语法分析树

今日份主题: LR 语法分析器

自底向上的、

不断归约的、

基于句柄识别自动机的、

适用于LR 文法的、

LR 语法分析器

自底向上构建语法分析树

根节点是文法的起始符号 <math>S

叶节点是词法单元流 w\$

仅包含终结符号与特殊的文件结束符 \$

自底向上构建语法分析树

根节点是文法的起始符号 S

每个中间非终结符节点表示使用它的某条产生式进行归约

叶节点是词法单元流 w\$

仅包含终结符号与特殊的文件结束符 \$

自顶向下的"推导"与 自底向上的"归约"

$$E \underset{\mathrm{rm}}{\Longrightarrow} T \underset{\mathrm{rm}}{\Longrightarrow} T * F \underset{\mathrm{rm}}{\Longrightarrow} T * \mathbf{id} \underset{\mathrm{rm}}{\Longrightarrow} F * \mathbf{id} \underset{\mathrm{rm}}{\Longrightarrow} \mathbf{id} * \mathbf{id}$$

$$(1) E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \rightarrow T * F$$

(4)
$$T \rightarrow F$$

$$(5) F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

$$w = id * id$$

 $E \Leftarrow T \Leftarrow T * F \Leftarrow T * id \Leftarrow F * id \Leftarrow id * id$

"推导"
$$(A \rightarrow \alpha)$$
 与 "归约" $(A \leftarrow \alpha)$

$$S \triangleq \gamma_0 \implies \dots \gamma_{i-1} \implies \gamma_i \implies \gamma_{r+1} \implies \dots \implies r_n = w$$
$$S \triangleq \gamma_0 \iff \dots \gamma_{i-1} \iff \gamma_i \iff \gamma_{r+1} \iff \dots \iff r_n = w$$

自底向上语法分析器为输入构造反向推导

LR 语法分析器

L: 从左向右 (Left-to-right) 扫描输入

R:构建反向 (Reverse) 最右推导

"反向最右推导"与"从左到右扫描"相一致

LR 语法分析器的状态

在任意时刻, 语法分析树的上边缘与剩余的输入构成当前句型

$$E \Longleftarrow T \twoheadleftarrow T * F \Longleftarrow T * \mathbf{id} \Longleftarrow F * \mathbf{id} \Longleftarrow \mathbf{id} * \mathbf{id}$$

LR 语法分析器使用<mark>栈</mark>存储语法分析树的上边缘

它包含了语法分析器目前所知的所有信息

板书演示"栈"上操作

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \rightarrow T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

两大操作: 移人输入符号 与 按产生式归约

直到栈中仅剩开始符号 S, 且输入已结束, 则成功停止

基于栈的 LR 语法分析器

Q₁:何时归约?(何时移入?)

 Q_2 : 按哪条产生式进行归约?

基于栈的 LR 语法分析器

(1)
$$E \rightarrow E + T$$

- (2) $E \rightarrow T$
- (3) $T \rightarrow T * F$
- (4) $T \rightarrow F$
- (5) $F \rightarrow (E)$
- (6) $F \rightarrow \mathbf{id}$

为什么第二个 F 以 T*F 整体被归约为 T?

这与枝的当前状态 "T*F" 相关

LR 分析表指导 LR 语法分析器

	<u>.</u>				AC	LION		====	(COTO)
_ 1	犬态		id	+	*	()	\$	E	T	F
	0		s5			s4			1	2	3
	1			s6				acc			- [
Ì	2			r2	s7		r2	r2	ĺ		
	3			r4	r4		r4	r4			Ì
ĺ	4		s5			s4			8	2	3
1	5			r 6	r6		r6	r6	}		
	6		s5	v		s4			l	9	3
	7		s5			54			ļ		10
1	8		ļ	s6			s11		Ì		ļ
	9			r1	s7		r1	r1			
	10		}	r3	r3		r3	r3	1		
	11			r5	r5		_ r5	r5			

在当前状态 (编号)下,面对当前文法符号时,该采取什么动作

ACTION 表指明动作, GOTO 表仅用于归约时的状态转换

状:		1			A C	TION			[GOTO)
1/1/	765 		id	+	*	()	\$	E	T	F
Ī	0		s 5			s 4			1	2	3
	1			s6				acc			
1	2			r2	s7		r2	r2	ĺ		
	3			r4	r4		r4	r4	1		
ď	4		s5			s4			8	2	3
	5			r 6	r6		r6	r6			
- 6	6		s5	v		s4			l	9	3
1	7		s5			54					10
- 8	8			s6			s11)		ļ
	9			r1	s7		r1	r1			
1	0		}	r3	r3		r3	r3	1		
1	1			r5	r5		r5	r5			

sn	移入输入符号,并进入状态 n
rk	使用k 号产生式进行归约
gn	转换到状态 n
acc	成功接受, 结束
空白	错误

再次板书演示"栈"上操作:移入与归约

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \rightarrow T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

,	犬态				AC	TION				GOT)
1	人心	į	id	+	*	()	\$	E	T_{\perp}	F
	0		s5			s4			1	2	3
	1			s6				acc			
Ì	2			r2	s7		\mathbf{r}^2	r2	ĺ		
1	3			r4	r4		r4	r4	1		
ĺ	4		s5			s4			8	2	3
1	5			r6	r6		r6	r6	}		
	6		s5	4.		s4			l	9	3
	7		s5			s 4)		10
1	8			s6			s11)		
	9			r1	s7		r1	r1	J		
	10		}	r3	r3		r3	r3	1		
	11			r5	r5		r5	r5]		

$$w = \mathbf{id} * \mathbf{id}$$
\$

栈中存储语法分析器的状态 (编号), "编码" 了语法分析树的上边缘

```
1: procedure LR()
                                                                 \triangleright 或 Push(S, \$_{s_0})
        PUSH(S, s_0)
 2:
        token \leftarrow NEXT-TOKEN()
 3:
        while (1) do
4:
 5:
            s \leftarrow \text{Top}(S)
            if ACTION[s, token] = s_i then
                                                                               ▷ 移入
6:
                                                            \triangleright 或 PUSH(S, token<sub>s:</sub>)
                PUSH(S, i)
 7:
                 token \leftarrow NEXT-TOKEN()
 8:
            else if ACTION[s, token] = r_i then
                                                                 \triangleright 归约; i:A\to\alpha
9:
                 |\alpha| 次 Pop(S)
10:
                s \leftarrow \text{Top}(S)
11:
                 PUSH(S, GOTO[s, A]) > 转换状态; 或 PUSH(S, A_{GOTO[s, A]})
12:
            else if ACTION[s, token] = acc then
                                                                               > 接受
13:
14:
                 break
            else
15:
                 ERROR(...)
16:
```

行号	栈 =	二 符号	输入	动作
(1)	0	\$	id * id \$	移入到 5
(2)	0.5	\$ id	* id \$	按照 $F \rightarrow id$ 归约
(3)	0.3	F	* id \$	按照 $T \rightarrow F$ 归约
(4)	0 2	T	* id \$	移入到 7
(5)	027	\$ T *	id \$	移入到 5
(6)	0275	\$ T * id •	≟ \$	接照 $F \to id$ 归约
(7)	02710	T * F	\$	按照 $T \rightarrow T * F$ 归约
(8)	0 2	\$ T	\$	按照 $E \rightarrow T$ 归约
(9)	01	$E_{\underline{}}$	\$	接受

w = id * id\$ 的分析过程

如何构造 LR 分析表?

,	犬态		 -		AC'	LION			[GOT)
1.	人心:		id	+	*	()	\$	E	T	F
	0		s5			s4			1	2	3
	1			s6				acc			
Ì	2			r2	s7		r2	r2	ĺ		J
	3			r4	r4		r4	r4			Ì
ĺ	4	١.	s5			s4			8	2	3
	5			ŗ6	т6		r6	r6	}		
	6	١.	s5	v		s 4			l	9	3
	7		s5			s 4			ļ		10
	8			s6			s11]		
	9			r1	s7		r1	r1			1
	10		}	r3	r3		r3	r3	1		
	11			r5	r5		_ r5	r5]

在当前状态 (编号)下,面对当前文法符号时,该采取什么动作

状态是什么?如何跟踪状态?

状态				AC	TION			[COTO)
11/10		id	+	*	()	\$	E	T	F
0	7	s5			s 4	-		1	2	3
1			s6				acc			
2		ļ	r2	s7		r2	r2	ĺ		
3			r4	r4		r4	r4			
4		s5			s4	_		8	2	3
5			ŗ6	r6		r6	r6			
6		s5	v		s4			l	9	3
7		s_5			s 4					10
8		ļ	s6			s11		1		
9			r1	s7		r1	r1			
10		}	r3	r3		r3	r3	1		
11	╛		r5	r5		r5	r5			_

状态是语法分析树的上边缘, 存储在栈中

可以用自动机跟踪状态变化 (自动机中的路径 ⇔ 栈中符号/状态编号)

何时归约? 使用哪条产生式进行归约?

11	态			AC	TION			[OTO)
_ 1/	(18)	id	+	*	()	\$	E	T_{\perp}	F
	0	 s5			s 4			1	2	3
	1		s6				acc			
Ì	2		r2	s7		r2	r2	ĺ		
l	3		r4	r4		r4	r4	1		
ĺ	4	s5			s4			8	2	3
	5		r 6	r6		r6	r6			
	6	s5	v		s4			l	9	3
	7	s5			54					10
	8		s6			s11)		
	9		r1	s7		r1	r1			
	10	}	r3	r3		r3	r3	1		
	11		r5	r5		r5	r5			_

必要条件: 当前状态中, 已观察到某个产生式的完整右部

对于 LR 文法, 这是当前唯一的选择

何时归约? 使用哪条产生式进行归约?

Definition (句柄 (Handle))

在输入串的 (唯一) 反向最右推导中, **如果**下一步是逆用产生式 $A \to \alpha$ 将 α 归约为 A, 则称 α 是当前句型的**句柄**。

最右句型	句柄	归约用的产生式
$id_1 * id_2$	id_1	$F o \mathrm{id}$
$F*id_2$	F	$T \to F$
$T * id_2$	\mathbf{id}_2	$F o \mathbf{id}$
T * F	T * F	$T \to T * F$
T	<i>T</i>	$E \rightarrow T$

LR 语法分析器的关键就是高效寻找每个归约步骤所使用的句柄。

句柄可能在哪里?

Theorem

存在一种 LR 语法分析方法, 保证句柄总是出现在栈顶。

句柄可能在哪里?

Theorem

存在一种 LR 语法分析方法, 保证句柄总是出现在栈顶。

图 4-29 一个最右推导中两个连续步骤的两种情况

 $S \xrightarrow[\mathrm{rm}]{*} \alpha Az \xrightarrow[\mathrm{rm}]{*} \alpha \beta Byz \xrightarrow[\mathrm{rm}]{*} \alpha \beta \gamma yz \quad S \xrightarrow[\mathrm{rm}]{*} \alpha BxAz \xrightarrow[\mathrm{rm}]{*} \alpha Bxyz \xrightarrow[\mathrm{rm}]{*} \alpha \gamma xyz$

26 / 74

可以用自动机跟踪状态变化

(自动机中的路径 ⇔ 栈中符号/状态编号)

Theorem

存在一种 LR 语法分析方法, 保证句柄总是出现在栈顶。

在自动机的当前状态识别可能的句柄 (观察到的完整右部) (自动机的当前状态 ⇔ 栈顶)

LR(0) 句柄识别有穷状态自动机 (Handle-Finding Automaton)

28 / 74

LR(0) 句柄识别自动机

为给定的文法 G构造相应的句柄识别自动机

该自动机用于识别该文法 G 所允许的所有可能的句柄

LR(0) 句柄识别自动机

状态是什么?

Definition (LR(0) 项 (Item))

文法 G 的一个 LR(0) 项是 G 的某个产生式加上一个位于体部的点。

$$A \rightarrow XYZ$$

$$A \rightarrow \cdot XYZ$$

$$A \to X \cdot YZ$$

$$A \to XY \cdot Z$$

$$A \to XYZ$$

(产生式 $A\epsilon$ 只有一个项 $A \rightarrow \cdot$)

Definition (LR(0) 项 (Item))

文法 G 的一个 LR(0) 项是 G 的某个产生式加上一个位于体部的点。

$$A o XYZ$$
 $A o \cdot XYZ$ $A o XYZ$ $A o XYZ$ $A o XYZ o$ (产生式 $A \epsilon$ 只有一个项 $A o \cdot$)

项指明了语法分析器已经观察到了某个产生式的哪些部分

点指示了栈顶, 左边 (与路径) 是栈中内容, 右边是期望看到的文法符号串

点指示了栈顶, 左边 (与路径) 是栈中内容, 右边是期望看到的文法符号串

Definition (项集)

项集就是若干**项**构成的集合。

因此, 句柄识别自动机的一个状态可以表示为一个项集

33 / 74

状态刻画了"当前观察到的针对所有产生式的右部的前缀"

Definition (项集)

项集就是若干项构成的集合。

因此,句柄识别自动机的一个<mark>状态</mark>可以表示为一个<mark>项集</mark>

Definition (项集族)

项集族就是若干**项集**构成的集合。

因此, 句柄识别自动机的状态集可以表示为一个项集族

33 / 74

LR(0) 句柄识别自动机

项、项集、项集族

Definition (增广文法 (Augmented Grammar))

文法 G 的增广文法是在 G 中加入产生式 $S' \to S$ 得到的文法。

目的:告诉语法分析器何时停止分析并接受输入符号串

当语法分析器 \mathbf{n} \mathbf{n}

Definition (增广文法 (Augmented Grammar)) 文法 G 的<mark>增广文法</mark>是在 G 中加入产生式 $S' \to S$ 得到的文法。

目的:告诉语法分析器何时停止分析并接受输入符号串

当语法分析器 \mathbf{n} \mathbf{n}

注: 此"接受"(输入串) 非彼"接受"(句柄识别自动机)

LR(0) 句柄识别自动机

注: 此"接受"(输入串) 非彼"接受"(句柄识别自动机)

LR(0) 句柄识别自动机

初始状态是什么?

点指示了栈顶, 左边 (与路径) 是栈中内容, 右边是期望看到的文法符号串

(0)
$$E' \to E$$

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \rightarrow T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

 $\text{closure}(\{[E' \to \cdot E]\})$

LR(0) 句柄识别自动机

状态之间如何转移?

板书演示 LR(0) 句柄识别自动机的构造过程


```
SetOfItems CLOSURE(I) { J=I; repeat for (J \text{ phose} \land \varphi A \rightarrow \alpha B \beta) for (G \text{ obse} \land \varphi \land \varphi B \land \varphi) if (G \text{ obse} \land \varphi \land \varphi \land \varphi B \land \varphi) (G \text{ obse} \land \varphi \land \varphi \land \varphi B \land \varphi) if (G \text{ obse} \land \varphi \land \varphi B \land \varphi) if (G \text{ observation} B \land \varphi \land \varphi B \land \varphi) (G \text{ observation} B \land \varphi \land \varphi B \land \varphi) (G \text{ observation} B \land \varphi \land \varphi) (G \text{ observation} B \land \varphi) (G \text{ observation}
```

$$J = \text{Goto}(I, \textbf{X}) = \text{Closure}\Big(\Big\{[A \to \alpha X \cdot \beta] \Big| [A \to \alpha \cdot X \beta] \in I\Big\}\Big)$$

$$(X \in N \cup T \cup \{\$\})$$

图 4-33 规范 LR(0) 项集族 的计算

42 / 74

LR(0) 分析表

			ACT	GOTO					
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r3	r3	r3	r3	r3	r3			
11	r_5	r5	r5	r5	r5	r5			

GOTO 函数被拆分成 ACTION 表 (针对终结符) 与 GOTO 表 (针对非终结符)

$(1) \ [A \to \alpha \cdot a\beta] \in I_i \land a \in T \land \text{GOTO}(I_i, a) = I_j \implies \text{ACTION}[i, a] \leftarrow sj$

			GOTO						
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r3	r3	r3	r3	r3	r3			
11	r_5	r5	r5	r5	r5	r5			

(2) GOTO $(I_i, A) = I_j \implies \text{ACTION}[i, A] \leftarrow gj$

←□ ト ←団 ト ← 重 ト ・ 重 ・ 夕 ♀ ○

 $\begin{array}{c|c}
I_{\gamma} \\
E \to T \\
T \to T & * F
\end{array}$

 $\frac{I_{10}}{T \to T * F}.$

			ACT		GOT	0			
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r_6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r_3	r3	r3	r3	r3	r3			
11	r_5	r5	r5	r5	r5	r5			

(3) $[k:A \to \alpha \cdot] \in I_i \land A \neq S' \implies \forall t \in T \cup \{\$\}$. ACTION[i,t] = rk

			ACT	ACTION										
	id	+	*	()	\$	E	T	F					
0	s5			s4			g1	g2	g3					
1		s6				acc								
2	r2	r2	s7, r2	r2	r2	r2								
3	r4	r4	r4	r4	r4	r4								
4	s5			s4			g8	g2	g3					
5	r6	r6	r6	r6	r6	r6								
6	s5			s4				g9	g3					
7	s5			s4					g10					
8		s6			s11									
9	r1	r1	s7, r1	r1	r1	r1								
10	r3	r3	r3	r3	r3	r3								
11	r_5	r5	r5	r5	r5	r5								

(4)
$$[S' \to S \cdot] \in I_i \implies \text{ACTION}[i, \$] \leftarrow acc$$

4 D > 4 A > 4 B > 4 B > 9 Q Q

46 / 74

LR(0) 分析表

$$(1) \ [A \to \alpha \cdot a\beta] \in I_i \land a \in T \land \mathsf{GOTO}(I_i,a) = I_j \implies \mathsf{ACTION}[i,a] \leftarrow sj$$

- (2) $GOTO(I_i, A) = I_j \implies ACTION[i, A] \leftarrow gj$
- (3) $[k:A \to \alpha \cdot] \in I_i \land A \neq S' \implies \forall t \in T \cup \{\$\}$. Action[i,t] = rk
- (4) $[S' \to S \cdot] \in I_i \implies \text{ACTION}[i, \$] \leftarrow acc$

Definition (LR(0) 文法)

如果文法 G 的LR(0) 分析表是无冲突的,则 G 是 LR(0) 文法。

			GOTO						
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r3	r3	r3	r3	r3	r3			
11	r_5	r5	r5	r5	r5	r5			

非 LR(0) 分析表/文法

LR(0) 分析表每一行(状态) 所选用的归约产生式是相同的

			ACT	ION			GOTO		
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r_2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r_6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r3	r3	r3	r3	r3	r3			
11	r_5	r5	r5	r5	r5	r5			

归约时不需要向前看,这就是"0"的含义

LR(0) 语法分析器

L: 从左向右 (Left-to-right) 扫描输入

R: 构建反向 (Reverse) 最右推导

0: 归约时无需向前看

LR(0) 自动机与栈之间的互动关系

向前走 ⇔ 移入

回溯 ⇔ 归约

自动机才是本质, 栈是实现方式

(用栈记住"来时的路",以便回溯)

SLR(1) 分析表

,	状态				AC'	LION			GOTO		
1	人心		id	+	*	()	\$	E	T	F
	0		s5			s4			1	2	3
	1			s6				acc			- (
Ì	2			r2	s7		$\mathbf{r}2$	r2	ĺ		J
	3			r4	r4		r4	r4			Ì
ĺ	4		s5			s4			8	2	3
1	5			ŗ6	r6		r6	r6			
(6	١.,	s5	v		s4			l	9	3
	7		s5			s 4			ļ		10
1	8			s6			s11		1		
1	9			r1	s7		r1	r1)		1
	10			r3	r3		r3	r3	1		
	11			r5	r5		_ r5	r5]

归约:

(3) $[k:A \to \alpha \cdot] \in I_i \land A \neq S' \implies \forall t \in \text{Follow}(A)$. ACTION[i,t] = rk

Definition (SLR(1) 文法)

如果文法 G 的SLR(1) **分析表**是无冲突的,则 G 是 SLR(1) 文法。

无冲突: ACTION 表中每个单元格最多只有一种动作

状态	ACTION						GOTO		
10.763	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2	ĺ		
3		r4	r4		r4	r4			1
4	s5			s4	_		8	2	3
5		r6	r6		r6	r6			
6	s5	4.		s4			l	9	3
7	s5			54			ļ		10
8		s6			s11		1		
9		r1	s7		r1	r1			
10	}	r3	r3		r3	r3	1		
11		r5	r5		r5	r5			

两类可能的冲突: "移入/归约"冲突、"归约/归约"冲突

非 SLR(1) 文法举例

$$S \rightarrow L = R \mid R$$

 $L \rightarrow * R \mid id$
 $R \rightarrow L$

$$= \in \text{Follow}(R) \implies \text{Action}(I_2, =) \leftarrow r5$$

 $[S \to L \cdot = R] \in I_2 \implies ACTION(I_2, =) \leftarrow s6$

即使考虑了 $= \in Follow(A)$,对该文法来说仍然不够因为,这仅仅说明在某个句型中,a可以跟在A后面

该文法没有 \mathbf{V} $R = \cdots$ 开头的最右句型

希望 LR 语法分析器的每个状态能**尽可能精确**地 指明**哪些输入符号可以跟在句柄** $A \rightarrow \alpha$ **的后面** 希望 LR 语法分析器的每个状态能**尽可能精确**地 指明**哪些输入符号可以跟在句柄** $A \rightarrow \alpha$ **的后面**

在 LR(0) 自动机中,某个项集 I_j 中包含 $[A \to \alpha \cdot]$ 则在之前的某个项集 I_i 中包含 $[B \to \beta \cdot A\gamma]$

这表明只有 $a \in FIRST(\gamma)$ 时, 才可以进行 $A \to \alpha$ 归约

希望 LR 语法分析器的每个状态能**尽可能精确**地 指明**哪些输入符号可以跟在句柄** $A \rightarrow \alpha$ **的后面**

在 LR(0) 自动机中,某个项集 I_j 中包含 $[A \to \alpha \cdot]$ 则在之前的某个项集 I_i 中包含 $[B \to \beta \cdot A\gamma]$

这表明只有 $a \in \text{First}(\gamma)$ 时, 才可以进行 $A \to \alpha$ 归约

但是, 对 I_i 求闭包时, 仅得到 $[A \rightarrow \cdot \alpha]$, 丢失了 $FIRST(\gamma)$ 信息

Definition (LR(1) 项 (Item))

$$[A \to \alpha \cdot \beta, \mathbf{a}] \qquad (a \in T \cup \{\$\})$$

此处, a 是**向前看符号**, 数量为 1.

Definition (LR(1) 项 (Item))

$$[A \to \alpha \cdot \beta, {\color{red} a}] \qquad (a \in T \cup \{\$\})$$

此处, a 是**向前看符号**, 数量为 1.

思想: α 在栈顶, 且输入中开头的是可以从 βa 推导出的符号串

LR(1)句柄识别自动机

```
[A \to \alpha \cdot B\beta, \mathbf{a}] \in I \qquad (a \in T \cup \{\$\})
SetOfItems CLOSURE(I) {
         repeat
                  for (I中的每个项 [A \rightarrow \alpha \cdot B\beta, a])
                           for (G'中的每个产生式B \to \gamma)
                                    \mathbf{for} ( \mathrm{FIRST}(\beta a)中的每个终结符号 b ) 将 [B \to \gamma, b] 加人到集合 I中;
         until 不能向I 中加入更多的项;
         return I;
                   \forall b \in \text{First}(\beta a). [B \to \gamma, b] \in I
```

58 / 74

LR(1)句柄识别自动机

```
SetOfItems GOTO(I,X) { 将 J 初始化为空集; for (I 中的每个项 A \to \alpha \cdot X\beta,a) 将项 A \to \alpha \cdot X\beta,a 加入到集合 A \to \alpha \cdot X\beta,a 加入到集合 A \to \alpha \cdot X\beta,a 和 A \to \alpha \cdot
```

LR(1)句柄识别自动机

初始状态: CLOSURE($[S' \rightarrow \cdot S, \$]$)

板书演示: LR(1) 自动机的构造过程

板书演示: LR(1) 自动机的构造过程

	First	Follow
\overline{S}	$\{c,d\}$	\$
C	$\{c,d\}$	$\{c,d,\$\}$

LR(1) 自动机构建 LR(1) 分析表

$$(1) \ [A \to \alpha \cdot a\beta, {\color{red}b}] \in I_i \land a \in T \land \texttt{GOTO}(I_i, a) = I_j \implies \texttt{ACTION}[i, a] \leftarrow sj$$

(2)
$$goto(I_i, A) = I_j \implies action[i, A] \leftarrow gj$$

(3)
$$[k: A \to \alpha, \mathbf{a}] \in I_i \land A \neq S' \implies \text{ACTION}[i, \mathbf{a}] = rk$$

(4)
$$[S' \to S, \$] \in I_i \implies ACTION[i, \$] \leftarrow acc$$

LR(1) 自动机构建 LR(1) 分析表

$$(1) \ [A \to \alpha \cdot a\beta, {\color{red}b}] \in I_i \land a \in T \land \texttt{GOTO}(I_i, a) = I_j \implies \texttt{ACTION}[i, a] \leftarrow sj$$

(2)
$$goto(I_i, A) = I_j \implies action[i, A] \leftarrow gj$$

$$(3) \ [k:A\to\alpha\cdot, {\color{red}a}]\in I_i\wedge A\neq S' \implies \text{Action}[i, {\color{red}a}]=rk$$

(4)
$$[S' \to S, \$] \in I_i \implies ACTION[i, \$] \leftarrow acc$$

Definition (LR(1) 文法)

如果文法 G 的LR(1) 分析表是无冲突的,则 G 是 LR(1) 文法。

LR(1) 通过**不同的向前看符号**, 区分了状态对 (3,6), (4,7) 与 (8,9)

LR(0)、SLR(1)、LR(1) 的<mark>归约</mark>条件

$$[k:A \to \alpha \cdot] \in I_i \land A \neq S' \implies \forall t \in T \cup \{\$\}. \text{ ACTION}[i,t] = rk$$

$$[k:A \to \alpha \cdot] \in I_i \land A \neq S' \implies \forall t \in \overline{\text{Follow}(A)}. \text{ ACTION}[i,t] = rk$$

$$[k: A \to \alpha, \mathbf{a}] \in I_i \land A \neq S' \implies \text{ACTION}[i, \mathbf{a}] = rk$$

LR(1) 虽然强大, 但是生成的 LR(1) 分析表可能过大, 状态过多

LR(1) 虽然强大, 但是生成的 LR(1) 分析表可能过大, 状态过多

LALR(1): 合并具有相同核心 LR(0)项的状态 (忽略不同的向前看符号)。

 状态	A	СТЮ	GC	GOTO	
10.00	С	d	\$	S	\overline{C}
0	s3	s4		1	2
1			acc	ł	
2	s6	s7			5
3	s3	s4		ļ	8
4 5	r3	r3		Ì	,
5			r1		
6	s6	s7			9
7			r3	Ì	
8	r2	r2			1
9			r2		

	 状态	A	CTION	GOTO		
	100.005	С	d	\$	S	C
	0	s36	s47		1	2
	1			acc	}	
1	2	s36	s47			5
	36	s36	s47		ļ	89
	47	r3	r3	r3	l	
	5			r 1		
	89	r2	r2	r2		

———— 状态	A	CTIO	GC	то	
1/1/27	С	d	\$	S	\overline{C}
0	s3	s4		1	2
1			acc	ł	
2	s6	s7			5
3	s3	s 4			8
4	r3	r3		Ì	
5			r1		
6	s6	s7			9
7			r3	İ	
8	r2	r2			
9			r2		

44	态	A	ACTION			
111		C	\overline{d}	\$	\mathcal{S}	C
	0	s36	s47		1	2
	1			acc	}	
	2	s36	s47			5
	36	s36	s47		1	89
Ē	4 7	r3	r3	r3		
	5			r1		
	89	r2	r2	r2		

Q: GOTO 函数怎么办?

 状态	A	CTIO	GC	GOTO	
17.75	С	d	\$	S	C
0	s3	s4		1	2
1			acc	ł	
2	s6	s7			5
3	s3	s4			8
4	r3	r3		ľ	
5			r1		
6	s6	s7			9
7			r3	l	
8	r2	r2			
9			r2		

状态	A	CTION	GOTO		
المال المال	С	d	\$	S	C
0	s36	s47		1	2
1			acc	}	
2	s36	s47			5
36	s36	s47		ļ	89
47	r3	r3	r3	1	
5			r 1		
89	r2	r2	r2		

Q: GOTO 函数怎么办?

A: 可以合并的状态的 GOTO 目标 (状态) 一定也是可以合并的

Theorem

LALR(1) 分析表不会引入移入/归约冲突。

Theorem

LALR(1) 分析表不会引入移入/归约冲突。

反证法

假设合并后出现 $[A \to \alpha \cdot, a]$ 与 $[B \to \beta \cdot a \gamma, b]$

则在 LR(1) 自动机中,

存在某状态同时包含 $[A \rightarrow \alpha \cdot, a]$ 与 $[B \rightarrow \beta \cdot a \gamma, c]$

Theorem

LALR(1) 分析表可能会引入归约/归约冲突。

$$L(G) = \{acd, ace, bcd, bce\}$$

$$S' \rightarrow S$$

$$S \rightarrow a \ A \ d \mid b \ B \ d \mid a \ B \ e \mid b \ A \ e$$

$$A \rightarrow c$$

$$B \rightarrow c$$

Theorem

LALR(1) 分析表可能会引入归约/归约冲突。

$$L(G) = \{acd, ace, bcd, bce\}$$

$$S' \rightarrow S$$

$$S \rightarrow a \ A \ d \mid b \ B \ d \mid a \ B \ e \mid b \ A \ e$$

$$A \rightarrow c$$

$$B \rightarrow c$$

$$\{[A \rightarrow c \cdot, d], [B \rightarrow c \cdot, e]\}$$

$$\{[A \rightarrow c \cdot, e], [B \rightarrow c \cdot, d]\}$$

$$\{[A \rightarrow c \cdot, d/e], [B \rightarrow c \cdot, d/e]\}$$

好消息: 善用 LR 语法分析器, 处理二义性文法

69 / 74

表达式文法

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E
ightarrow E + T \mid T$$
 $T
ightarrow T * F \mid F$
 $F
ightarrow (E) \mid \mathbf{id}$

$$E
ightarrow TE'$$
 $E'
ightarrow +TE'\mid \epsilon$
 $T
ightarrow FT'$
 $T'
ightarrow *FT'\mid \epsilon$
 $F
ightarrow (E)\mid {f id}$

表达式文法: 使用 SLR(1) 语法分析方法

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$I_{0}\colon E'\to E\\ E\to E+E\\ E\to E+E\\ E\to (E)\\ E\to \mathrm{id} \\ I_{1}\colon E'\to E\\ E\to E+E\\ E\to E+$$

 $\{+,*\}\subseteq \mathrm{Follow}(E)$

表达式文法: 使用 SLR(1) 语法分析方法

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$\{+,*\}\subseteq \mathrm{Follow}(E)$

考虑到结合性与优先级:

状态		ACTION					
1人心	id	+	*	()	\$	E
0	s3			s2			1
1		s4	s5			acc	
2	s3			s2			6
3		r4	r4		r4	r4	
4	s3			s2			7
5	s3			s2			8
6		s4	s5		s9		
7		r1	s5		r1	r1	
8		r2	r2		r2	r2	
9		r3	r3		r3	r3	

条件语句文法

 $stmt \rightarrow if expr then stmt$

 $S' \rightarrow S$

if expr then stmt else stmt

other

 $S \rightarrow i S e S + i S + a$

条件语句文法: 使用 SLR(1) 语法分析方法

$$S' \rightarrow S$$

$$S \rightarrow i S e S + i S + a$$

I_0 :	$S' \rightarrow \cdot S$ $S \rightarrow \cdot i SeS$	I_3 :	$S o a \cdot$
	$S \to iS$ $S \to a$	<i>I</i> ₄ :	$S \rightarrow iS \cdot eS$ $S \rightarrow iS$ $S \rightarrow iS \cdot eS$
I_1 :	$S' \to S \cdot$	<i>I</i> ₅ :	$S \rightarrow iSe \cdot S$ $S \rightarrow iSeS$ $S \rightarrow iS$
I_2 :	$S \rightarrow i \cdot SeS$ $S \rightarrow i \cdot S$ $S \rightarrow i SeS$,	$S \rightarrow a$
	$S \rightarrow iS$ $S \rightarrow a$	16:	$S \rightarrow iSeS$

状态		ACTION				
1 八心	i	е	а	\$	S	
0	s2		s3		1	
1				acc		
2	s2		s3		4	
3	-	r3		r3)	
4	1	s5		r2	ļ	
5	s2		s3		6	
6	1	r1		r1		

 $e \in \text{Follow}(S)$

$$\operatorname{ACTION}[4,e] = s5$$

Thank You!

Office 926 hfwei@nju.edu.cn

74 / 74