ក្រសួងអប់រំយុវជន និងកិទ្បា
វិទ្យាល័យមេតូឌីស្ទកម្ពុជា
ប្រឡងសញ្ញាប់ត្រមធ្យមសិក្សាទុតិយត្តមិ
ឈ្មោះ នឹងហត្ថលេខាអនុរក្ស៖

លេខបន្ទប់៖
លេខតុ៖
មធាពយេនដេ៖

សម័យបទ្បង៖ ២០ សីហា ២០១៨

នាមត្រកូលនឹងនាមខ្លួន៖

ថ្ងៃខែឆ្នាំកំណើត៖

ចេក្ខជនមិនត្រូវធ្វើសញ្ញាសម្គាល់អ្វីមួយនៅលើសន្លឹកច្រទ្បងទ្បើយៗ សន្លឹកច្រទ្បងដែលមានសញ្ញាសម្គាល់នឹងត្រូវបានពិន្ទុសូន្យៗ

វិញ្ញាសា៖ គណិតវិទ្យាថ្នាក់សង្គម រយ:ពេល៖ ៩០ នាទី ពិន្ទុ ៖ ៧៤

លេខសម្លាត់៖

ពិន្ទួសរុប

សេចក្តីណែនាំ៖ ១. បេក្ខជនត្រូវគូសខ្វែងនៅទំព័រទី២ ផ្នែកខាងលើដែលត្រូវកាត់ចេញ។

២. បេក្ខជនត្រូវសរសេរចម្លើយនៃសំណួរបន្តនៅលើទំព័រទី២ ទី៣ និងទី៤។

ទិញ្ញាសានី១ (ចាក់ឌុបឆ្នាំ ២០១៧ ថ្នាក់សង្គម)

I. គណនាលីមីត៖

$$\lim_{x \to +\infty} \frac{x^2 + x + 1}{x^2 + 1}$$

2.
$$\lim_{x\to 3} \frac{x^3-27}{\sqrt{x+6}-3}$$

$$\lim_{x\to 0} \frac{e^x + e^{-x}}{2}$$

II. ក្នុងថង់មួយមានប៊ូលពណ៌សចំនួន៣ និងប៊ូលពណ៌ក្រហមចំនួន៦។ គេចាប់យកប៊ូល៣ ក្នុងពេលតែមួយចេញពីថង់ដោយចៃដន្យ។ រកប្រូបាបនៃព្រឹត្តិការណ៍ខាងក្រោម៖

A: ច៊ូលទាំងបីមានពណ៌ស

B: ច៊ូលទាំងបីមានពណ៌ក្រហម

មានប៊ូលមួយពណ៌ក្រហម និងពីរទៀតពណ៌ស

III. គណនាអាំងតេក្រាលខាងក្រោម៖

n.
$$I = \int_{1}^{3} (3x^2 + 2x + 1) dx$$
 2. $J = \int_{0}^{1} (2e^x - 1) dx$

8.
$$J = \int_0^1 (2e^x - 1) dx$$

គ.
$$K = \int_1^2 \left(x + \frac{1}{x^2} \right) dx$$

IV. គេមានសមីការ $9x^2 + 25y^2 = 225$ ។

ក. បង្ហាញថាសមីការនេះជាសមីការអេលីប។ រកប្រវែងអ័ក្សតូច ប្រវែងអ័ក្សធំ និងកូអរដោនេនៃកំពូលទាំងពីរ។

2. សង់អេលីបនេះ។

 ${f V}$. គេមានអនុគមន៍ ${f f}$ កំណត់លើ ${\Bbb R}-\{2\}$ ដោយ ${f f}({f x})=rac{{f x}^2-{f x}-1}{{f x}-2}$ ។ យើងតាង ${f C}$ ជាក្រាបរបស់វា លើតម្រុយអរតូណរម៉ាល់ $\left(0,ec{\bf i},ec{f j}
ight)$

1. សិក្សាលីមីតនៃអនុគមន៍ f ត្រង់ $-\infty$ និងត្រង់ $+\infty$ ។

2. សិក្សាអថេរភាព និងសង់តារាងអថេរភាពនៃអនុគមន៍ f ។

3. a. រកចំនួនពិត a, b, c ដែលគ្រប់ $x \neq 2$; $f(x) = ax + b + \frac{c}{x-2}$ ។

b. គេតាង ${
m d}$ ដែលមានសមីការ ${
m y}={
m x}+1$ ។ បង្ហាញថា ${
m d}$ ជាអាស៊ីមតូតនៃ ${
m C}$ ត្រង់ $+\infty$ និង $-\infty$ ។ សិក្សាទីតាំងនៃក្រាប C ធៀបនឹងបន្ទាត់ d ។

c. សង់ក្រាប C និង បន្ទាត់ d ។

$$= \lim_{x \to +\infty} \frac{x^2 \left(1 + \frac{1}{x} + \frac{1}{x^2}\right)}{x^2 \left(1 + \frac{1}{x^2}\right)} = \frac{1 + 0 + 0}{1 + 0} = 1 \qquad \text{Howe} \\ \lim_{x \to +\infty} \frac{x^2 + x + 1}{x^2 + 1} = 1$$

8. $\lim_{x\to 3} \frac{x^3-27}{\sqrt{x+6}-3}$ (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$= \lim_{x \to 3} \frac{\left(x^3 - 3^3\right)\left(\sqrt{x+6} + 3\right)}{\left(\sqrt{x+6} - 3\right)\left(\sqrt{x+6} + 3\right)} = \lim_{x \to 3} \frac{\left(x - 3\right)\left(x^2 + 3x + 9\right)\left(\sqrt{x+6} + 3\right)}{\left(x+6\right) - 9}$$
$$= \left(3^2 + 3 \cdot 3 + 9\right)\left(\sqrt{3+6} + 3\right) = 27 \times 6 = 162$$

ដូចនេះ
$$\lim_{x\to 3} \frac{x^3 - 27}{\sqrt{x+6} - 3} = 162$$

II. ប្រូបាបនៃព្រឹត្តិការណ៍ខាងក្រោម៖

A: ប៊ូលទាំងបីមានពណ៌ស

តាមរូបមន្ត
$$P(A) = \frac{n(A)}{n(S)}$$
 ដោយ $n(A) = C(3,3) = \frac{3!}{(3-3)!3!} = \frac{1}{0!} = \frac{1}{1} = 1$
$$n(S) = C(9,3) = \frac{9!}{(9-3)!3!} = \frac{9 \times 8 \times 7 \times 6!}{6! \times 3 \times 2 \times 1} = 84$$

ពេហ្ន
$$P(A) = \frac{n(A)}{n(S)} = \frac{1}{84}$$
 ដូចនេះ $P(A) = \frac{1}{84}$

B: ប៊ូលទាំងបីមានពណ៌ក្រហម

តាមរូបមន្ត
$$P(B) = \frac{n(B)}{n(S)}$$
 ដោយ $n(S) = 84$

$$\mathrm{n(B)} = \mathrm{C}(6,3) = \frac{6!}{(6-3)!3!} = \frac{6 \times 5 \times 4 \times 3!}{3! \times 3 \times 2 \times 1} = 20$$

ពេលន
$$P(B) = \frac{n(B)}{n(S)} = \frac{20}{84} = \frac{5}{21}$$
 ដូចនេះ $P(B) = \frac{5}{21}$

c: មានប៊ូលមួយពណ៌ក្រហម និងពីរទៀតពណ៌ស

តាមរូបមន្ត
$$P(C) = \frac{n(C)}{n(S)}$$
 ដោយ $n(S) = 84$

$$\mathrm{n(C)} = \mathrm{C}(6,1) \times \mathrm{C}(3,2) = \frac{6!}{(6-1)!1!} \times \frac{3!}{(3-2)!2!} = \frac{6 \times 5!}{5! \times 1!} \times \frac{3 \times 2 \times 1}{1! \times 2 \times 1} = 18$$

គេហ៊ុន
$$P(C) = \frac{n(C)}{n(S)} = \frac{18}{84} = \frac{3}{14}$$
 ដូចនេះ $P(C) = \frac{3}{14}$

$$\text{ fi. I} = \int_{1}^{3} \left(3x^2 + 2x + 1\right) dx = \left[3\frac{x^3}{3} + 2\frac{x^2}{2} + x\right]_{1}^{3} = 3^3 + 3^2 + 3 - (1^3 + 1^2 + 1) = 27 + 9 + 3 - 3 = 36$$

ដូចនេះ I = 36

$$\mathbf{\tilde{n}}.\ K = \int_{1}^{2} \left(x + \frac{1}{x^{2}}\right) dx = \int_{1}^{2} \left(x + x^{-2}\right) dx = \left[\frac{x^{2}}{2} + \frac{x^{-2+1}}{-2+1}\right]_{1}^{2} = \left[\frac{x^{2}}{2} - \frac{1}{x}\right]_{1}^{2} = \frac{2^{2}}{2} - \frac{1}{2} - \left(\frac{1^{2}}{2} - \frac{1}{1}\right) = 2 - 1 + 1 = 2$$

ដូចនេះ K = 2

IV. ក. បង្ហាញថាសមីការ $9x^2 + 25y^2 = 225$ ជាសមីការអេលីប

ដោយ
$$9x^2 + 25y^2 = 225$$
 \Leftrightarrow $\frac{9x^2}{225} + \frac{25y^2}{225} = \frac{225}{225}$ \Leftrightarrow $\frac{x^2}{25} + \frac{y^2}{9} = 1$ \Leftrightarrow $\frac{(x-0)^2}{5^2} + \frac{(y-0)^2}{3^2} = 1$ ជាសមីការអេលីបដែលមានផ្ចិត(0,0)

ដូចនេះ សមីការ $9x^2 + 25y^2 = 225$ ជាសមីការអេលីប

រកប្រវែងអ័ក្សតូច ប្រវែងអ័ក្សធំ និងកូអរដោនេនៃកំពូលទាំងពីរ

ដោយសមីការអេលីបមានរាង $\frac{(x-0)^2}{5^2} + \frac{(y-0)^2}{3^2} = 1$ គេបាន h = 0, k = 0, a = 5, b = 3

- ប្រវែងអ័ក្សតូច = 2b = 2(3) = 6
- ប្រវែងអ័ក្សធំ= 2a = 2(5) = 10

- $\mathring{\mathsf{n}}$ N $V_2(\mathsf{h}-\mathsf{a},\mathsf{k})$ \Rightarrow $V_2(-5,0)$

 ${f V}$. 1. សិក្សាលីមីតនៃអនុគមន៍ ${f f}$ ត្រង់ $-\infty$ និងត្រង់ $+\infty$

$$\lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} \frac{x^2-x-1}{x-2} = \lim_{x\to -\infty} \frac{x^2\left(1-\frac{1}{x}-\frac{1}{x^2}\right)}{x\left(1-\frac{2}{x}\right)} = -\infty \frac{(1-0-0)}{1-0} = -\infty \quad \text{Is: } \lim_{x\to -\infty} f(x) = -\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 - x - 1}{x - 2} = \lim_{x \to +\infty} \frac{x^2 \left(1 - \frac{1}{x} - \frac{1}{x^2}\right)}{x \left(1 - \frac{2}{x}\right)} = +\infty \frac{(1 - 0 - 0)}{1 - 0} = +\infty \quad \text{ifis: } \lim_{x \to +\infty} f(x) = +\infty$$

• ដើរីវេ

$$\begin{split} f'(x) &= \left(\frac{x^2 - x - 1}{x - 2}\right)' = \frac{\left(x^2 - x - 1\right)'(x - 2) - (x - 2)'\left(x^2 - x - 1\right)}{(x - 2)^2} \\ &= \frac{(2x - 1)(x - 2) - \left(x^2 - x - 1\right)}{(x - 2)^2} = \frac{2x^2 - 4x - x + 2 - x^2 + x + 1}{(x - 2)^2} = \frac{x^2 - 4x + 3}{(x - 2)^2} \end{split}$$

$$f'(x) = 0 \Leftrightarrow x^2 - 4x + 3 = 0$$
 មានឫស $x_1 = 1; x_2 = 3$

• តារាសញ្ញាដេរីវេ f'(x)

X	$-\infty$		1	2	2	3	+0	٥
f'(x)		+	0	_	_	0	+	

- បរមាធៀប
 - \circ ត្រង់ $x=1; \ f'(x)=0$ ហើយប្តូរសញ្ញាពី + ទៅ- គេបាន f មានអតិបរមាធៀបមួយ គឺ $f(1)=rac{1^2-1-1}{1-2}=1$
 - \circ ត្រង់ x=3; f'(x)=0 ហើយប្តូរសញ្ញាពី ទៅ + គេបាន f មានអប្បបរមាធៀបមួយ គឺ $f(3)=\frac{3^2-3-1}{3-2}=5$
- តារាងអថេរភាពនៃ f

X	$-\infty$	1	2	2	3	+∞
f'(x)	+	0	_	_	0	+
f(x)	$-\infty$, 1 ,	<u>√</u> _∞	+∞ 、	* 5 -	+∞

3. a. រកចំនួនពិត a, b, c ដែលគ្រប់ $x \neq 2$; $f(x) = ax + b + \frac{c}{x-2}$

$$\begin{split} f(x) &= ax + b + \frac{c}{x - 2} &\iff \frac{x^2 - x - 1}{x - 2} &= ax + b + \frac{c}{x - 2} \\ &\Leftrightarrow \frac{(x - 2)(x + 1) + 1}{x - 2} &= ax + b + \frac{c}{x - 2} \\ &\Leftrightarrow x + 1 + \frac{1}{x - 2} &= ax + b + \frac{c}{x - 2} \end{split}$$

ដោយផ្ទឹមមេគុណ យើងបាន a = 1; b = 1; c = 1

b. បង្ហាញថា $d:\ y=x+1$ ជាអាស៊ីមតូតនៃ C ត្រង់ $+\infty$ និង $-\infty$

$$\lim_{x\to\pm\infty}[f(x)-(x+1)]=\lim_{x\to\pm\infty}\left[x+1+\frac{1}{x-2}-(x+1)\right]=\lim_{x\to\pm\infty}\frac{1}{x-2}=0$$

ដូចនេះ បន្ទាត់
$$d: y = x + 1$$
 ជាអាស៊ីមតូតនៃ C

សិក្សាទីតាំងនៃក្រាប C ធៀបនឹងបន្ទាត់ d

C:
$$y = x + 1 + \frac{1}{x - 2}$$
; $d: y = x + 1 \implies y_c - y_d = x + 1 + \frac{1}{x - 2} - (x + 1) = \frac{1}{x - 2}$

ក្រសួងអប់រំយុវជន នឹងកីទ្បា	
វិទ្យាល័យមេតូឌីស្ទកម្ពុជា	
ប្រឡងសញ្ញាច់ត្រមធ្យមសិក្សាទុតិយត្តមិ	
ឈ្មោះ នឹងហត្ថលេខាអនុវក្ស៖	

ឍឧបន្ទប់៖
លេខតុ៖
មធាលប្រទង្គ៖

សម័យបទ្បង៖ ២០ សីហា ២០១៨

នាមត្រកូលនឹងនាមខ្លួន៖

ថ្ងៃខែឆ្នាំកំណើត៖

ហត្ថលេខា៖ លេខសម្ងាត់៖

ចេក្ខជនមិនត្រូវធ្វើសញ្ញាសម្គាល់អ្វីមួយនៅលើសន្លឹកប្រទ្បងទ្បើយៗ សន្លឹកប្រទ្បងដែលមានសញ្ញាសម្គាល់នឹងត្រូវបានពិន្ទស<u>ុ</u>ន្យៗ

·%-----

វិញ្ញាសា៖ គណិតវិទ្យាថ្នាក់សង្គម រយ:ពេល៖ ៩០ នាទី ពិន្ទុ ៖ ៧៩

លេខសម្ងាត់៖

ពិន្ទសរុប

សេចក្តីណែនាំ៖ ១. បេក្ខជនត្រូវគូសខ្វែងនៅទំព័រទី២ ផ្នែកខាងលើដែលត្រូវកាត់ចេញៗ

២. បេក្ខជនត្រូវសរសេរចម្លើយនៃសំណួរបន្តនៅលើទំព័រទី២ ទី៣ និងទី៤។

ទិញ្ញាសានី២ (ចាក់ដុចឆ្នាំ ৬০១៦ ថ្នាក់សង្គម)

I. (១០ពិន្ទុ) គណនាលីមីត៖

$$\mathbf{\tilde{n}.} \lim_{x \to 1} \left(3x^3 - 4x \right)$$

8.
$$\lim_{x\to 2} \frac{x^3-8}{\sqrt{x+2}-2}$$

$$\mathbf{\tilde{n}}. \lim_{x \to +\infty} \left(\ln x - x^2 \right)$$

II. (១៥ពិន្ទុ) គណនាអាំងតេក្រាល

n.
$$I = \int_{1}^{2} (1-3x^{2}) dx$$

8.
$$J = \int_2^3 \frac{1}{x^2} dx$$

$$\mathbf{\tilde{n}.} K = \int_0^1 \left(\frac{1}{x+e} - 1 \right) dx$$

III. (១០ពិន្ទុ) ប្រអប់មួយមានឃ្លីពណ៌ក្រហមចំនួន៣ និងឃ្លីពណ៌ខៀវចំនួន៥។ គេចាប់ឃ្លី២ចេញពីប្រអប់ដោយចៃដន្យ។ រកប្រូបាបនៃព្រឹត្តិការណ៍ខាងក្រោម៖

A: ឃ្លីទាំងពីរមានពណ៌ក្រហម

B: ឃ្លីទាំងពីរមានពណ៌ខៀវ

c: ឃ្លីមួយក្នុងមួយពណ៌

IV. (១០ពិន្ទុ) រកសមីការស្តង់ដានៃអេលីបដែលមានកំណុំមួយស្ថិតត្រង់ចំណុច $F_1(-2,0)$ និង កំពូលពីរស្ថិតត្រង់ ចំណុច A(-3,0) និង B(3,0)។

 ${f V}$. (៣០ពិន្ទុ) ${f f}$ ជាអនុគមន៍កំណត់លើ ${f I}={\Bbb R}-\{-2,2\}$ ដោយ ${f f}({f x})=rac{2{f x}^2}{{f x}^2-4}$ ។

- ក. សិក្សាលីមីតនៃ f ត្រង់ $-\infty$, -2, 2 និង $+\infty$ ។ ទាញរកសមីការអាស៊ីមតូតដេក និង អាស៊ីមតូតឈរនៃក្រាបតាង f ។
- ខ. សិក្សាអថេរភាព និង សង់តារាងអថេរភាពនៃ f ។
- គ. សង់នៅក្នុងតម្រុយអរតូណរម៉ាល់ $\left(\mathbf{o}, \vec{\mathbf{i}}, \vec{\mathbf{j}}\right)$ ក្រាបតាង \mathbf{f} ។

ដូចនេះ
$$\lim_{x\to 1} (3x^3 - 4x) = -1$$

$$8. \lim_{x \to 2} \frac{x^3 - 8}{\sqrt{x + 2} - 2}$$
 (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$\begin{split} &= \lim_{x \to 2} \frac{\left(x^3 - 2^3\right)}{\left(\sqrt{x + 2} - 2\right)} \times \frac{\left(\sqrt{x + 2} + 2\right)}{\left(\sqrt{x + 2} + 2\right)} = \lim_{x \to 2} \frac{\left(x - 2\right)\left(x^2 + 2x + 4\right)\left(\sqrt{x + 2} + 2\right)}{\left(x + 2\right) - 4} \\ &= \lim_{x \to 2} \left(x^2 + 2x + 4\right)\left(\sqrt{x + 2} + 2\right) = \left(2^2 + 2 \cdot 2 + 4\right)\left(\sqrt{2 + 2} + 2\right) = 48 \end{split}$$

ដូចេនេះ
$$\lim_{x \to 2} \frac{x^3 - 8}{\sqrt{x + 2} - 2} = 48$$

គ.
$$\lim_{x\to +\infty} (\ln x - x^2)$$
 (មានរាងមិនកំណត់ $+\infty - \infty$)

$$=\lim_{x\to +\infty} x^2 \left(\frac{\ln x}{x^2} - 1\right) = +\infty (0-1) = -\infty \qquad \text{if is: } \lim_{x\to +\infty} \left(\ln x - x^2\right) = -\infty$$

ដូចនេះ
$$\lim_{x \to +\infty} (\ln x - x^2) = -\infty$$

II. គណនាអាំងតេក្រាល

គឺ.
$$K = \int_0^1 \left(\frac{1}{x+e} - 1\right) dx = \left[\ln|x+e| - x\right]_0^1 = \ln|1+e| - 1 - (\ln|0+e| - 0) = \ln(1+e) - 1 - \ln e$$

$$= \ln(1+e) - 1 - 1 = \ln(1+e) - 2$$
ដូចនេះ $K = \ln(1+e) - 2$

III. ប្រូបាបនៃព្រឹត្តិការណ៍ខាងក្រោម៖

A: ឃ្លីទាំងពីរមានពណ៌ក្រហម

តាមរូបមន្ត
$$P(A) = \frac{n(A)}{n(S)}$$
 ដោយ $n(A) = C(3,2) = \frac{3!}{(3-2)!2!} = \frac{3 \times 2!}{1!2!} = 3$
$$n(S) = C(8,2) = \frac{8!}{(8-2)!2!} = \frac{8 \times 7 \times 6!}{6! \times 2 \times 1} = 28$$

ពេញន
$$P(A) = \frac{n(A)}{n(S)} = \frac{3}{28}$$
 ដូចនេះ $P(A) = \frac{3}{28}$

B: ឃ្លីទាំងពីរមានពណ៌ខៀវ

តាមរូបមន្ត
$$P(B) = \frac{n(B)}{n(S)}$$
 ដោយ $n(S) = 28$; $n(B) = C(5,2) = \frac{5!}{(5-2)!2!} = \frac{5 \times 4 \times 3!}{3! \times 2 \times 1} = 10$

ពេលន
$$P(B) = \frac{n(B)}{n(S)} = \frac{10}{28} = \frac{5}{14}$$
 ដូចនេះ $P(B) = \frac{5}{14}$

c: ឃ្លីមួយក្នុងមួយពណ៌

តាមរូបមន្ត
$$P(C) = \frac{n(C)}{n(S)}$$
 ដោយ $n(S) = 28$; $n(C) = C(3,1) \times C(5,1) = \frac{3!}{2!1!} \times \frac{5!}{4!1!} = 3 \times 5 = 15$

គេបាន
$$P(C)=rac{n(C)}{n(S)}=rac{15}{28}$$
 ដូចនេះ $P(C)=rac{15}{28}$ រៀបរៀងដោយ ស៊ី សំអុន

IV. រកសមីការស្តង់ដានៃអេលីប

ដោយ អរដោនេនៃកំណុំ និងកំពូលរបស់អេលីប គឺ ថេរ គេបានសមីការស្តង់ដានៃអេលីបគឺ

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

- កំពូល A(-3,0) គឺ $\,V_1(h-a,k)\,$ គេហ្ ន $h-a=-3\,\,$; $k=0\,\,$
- កំពូល $\mathrm{B}(3,0)$ គឺ $\mathrm{V}_2(\mathrm{h}+\mathrm{a},\mathrm{k})$ គេហ្នេ $\mathrm{h}+\mathrm{a}=3$; $\mathrm{k}=0$ គេបាន

$$\begin{cases} h-a = -3 \\ h+a = 3 \end{cases}$$

$$2h = 0 \Rightarrow h = 0; a = 3$$

- កំណុំ $F_1(-2,0)$ គឺ F(h-c,k) គេហ្ន h-c=-2 $\Rightarrow c=2$
- ដោយ $c^2 = a^2 b^2$ $\Rightarrow b^2 = a^2 c^2 = 9 4 = 5$

គេបាន សមីការអេលីប គឺ $\frac{(x-0)^2}{3^2} + \frac{(y-0)^2}{5} = 1$ ដូចនេះ សមីការស្តង់ដាអេលីប គឺ $\frac{x^2}{9} + \frac{y^2}{5} = 1$ សង់អេលីប ផ្ចិតនៃអេលីបគឺ I(0,0)

V. ក. សិក្សាលីមីតនៃ f ត្រង់ $-\infty$, -2, 2 និង $+\infty$

$$\lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} \frac{2x^2}{x^2-4} = \lim_{x\to -\infty} \frac{2x^2}{x^2\left(1-\frac{4}{x^2}\right)} = \frac{2}{1-0} = 2 \quad \text{Imiss} \left[\lim_{x\to -\infty} f(x) = 2\right]$$

$$\lim_{x\to -2} f(x) = \lim_{x\to -2} \frac{2x^2}{x^2-4} = \pm \infty \quad \mbox{iis: } \lim_{x\to -2} f(x) = \pm \infty$$

$$\lim_{x\to 2} f(x) = \lim_{x\to 2} \frac{2x^2}{x^2 - 4} = \pm \infty \qquad \text{Imis: } \overline{\lim_{x\to 2} f(x) = \pm \infty}$$

$$\begin{split} &\lim_{x\to 2} f(x) = \lim_{x\to 2} \frac{2x^2}{x^2-4} = \pm\infty & \text{if is: } \lim_{x\to 2} f(x) = \pm\infty \\ &\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{2x^2}{x^2-4} = \lim_{x\to +\infty} \frac{2x^2}{x^2\left(1-\frac{4}{x^2}\right)} = \frac{2}{1-0} = 2 & \text{if is: } \lim_{x\to +\infty} f(x) = 2 \end{split}$$

ទាញរកសមីការអាស៊ីមតូតដេក និង អាស៊ីមតូតឈរនៃក្រាបតាង f

- ដោយ $\lim_{x \to +\infty} \mathrm{f}(x) = 2$ ដូចនេះ បន្ទាត់ y = 2 ជាអាស៊ីមតូតដេក
- ដោយ $\lim_{x \to -2} f(x) = \pm \infty$ ហើយ $\lim_{x \to 2} f(x) = \pm \infty$ ដូចនេះ បន្ទាត់ x = -2 និង x = -2 ជាអាស៊ីមតូតឈរ

$$f^{'}(x) = \left(\frac{2x^{2}}{x^{2}-4}\right)^{'} = \frac{\left(2x^{2}\right)^{'}\left(x^{2}-4\right)-\left(x^{2}-4\right)^{'}\left(2x^{2}\right)}{\left(x^{2}-4\right)^{2}} = \frac{4x\left(x^{2}-4\right)-2x\left(2x^{2}\right)}{\left(x^{2}-4\right)^{2}} = \frac{4x^{3}-16x-4x^{3}}{\left(x^{2}-4\right)} = \frac{-16x}{\left(x^{2}-4\right)}$$

$$f'(x) = 0 \Leftrightarrow -16x = 0 \Rightarrow x = 0$$

• តារាសញ្ញាដេវីវេ f'(x)

X		$-\infty$		-2		0		2	+∞
f'(x)		+		+	0	_		_

- ត្រង់ $x=0; \ f'(x)=0$ ហើយប្តូរសញ្ញាពី ទៅ + គេបាន f មានអតិបរមាធៀបមួយ គឺ $f(0)=\frac{2(0)^2}{0^2-4}=0$
- តារាងអថេរភាពនៃ f

X	-∞ _	2 ()	2 +∞
f'(x)	+	+ () –	_
f(x)	+∞ 2	_∞ () ∞	+∞ 2

គ. សង់នៅក្នុងតម្រុយអរតូណរម៉ាល់ $\left(\mathbf{o}, \vec{\mathbf{i}}, \vec{\mathbf{j}}\right)$ ក្រាបតាង \mathbf{f}

ក្រសួងអប់រំឃុវជន នឹងកីទ្បា	
វិទ្យាល័យមេតូឌីស្ទកម្ពុជា	
ប្រឡងសញ្ញាប់ត្រមធ្យមសិក្សាទុតិយត្តម <u>ិ</u>	
ឈ្មោះ នឹងហត្ថលេខាអនុរក្ស៖	

លេខបន្ទប់៖	
លេខតុ៖	
ផពរាពប្រទេវង្គ	

សម័យបឡង៖ ២០ ស៊ីហា ២០១៨

នាមត្រកូលនឹងនាមខ្លួន៖

ថ្ងៃខែឆ្នាំកំណើត៖

ហត្ថលេខា៖ លេខសម្ងាត់៖

បេក្ខជនមិនត្រូវធ្វើសញ្ញាសម្គាល់អ្វីមួយនៅលើសន្លឹកប្រទ្បងទ្បើយ។ សន្លឹកប្រទ្បងដែលមានសញ្ញាសម្គាល់នឹងត្រូវបានពិន្ទស្នន្យ។

·≽-----

វិញ្ញាសា៖ គណិតវិទ្យាថ្នាក់សង្គម ឈៈពេល៖ ៩០ នាទី ពិន្ទុ ៖ ៧៥

លេខសម្ងាត់៖

ពិន្ទួសរុប

សេចក្តីណែនាំ៖ ១. បេក្ខជនត្រូវគូសខ្វែងនៅទំព័រទី២ ផ្នែកខាងលើដែលត្រូវកាត់ចេញៗ

២. បេក្ខជនត្រូវសរសេរចម្លើយនៃសំណួរបន្តនៅលើទំព័រទី២ ទី៣ និងទី៤។

ទិញ្ញាសានី៣ (ចាក់ឌុបឆ្នាំ ២០១៥ ថ្នាក់សង្គម)

- I. (១០ពិន្ទុ) ក្នុងថង់មួយមានឃ្លីពណ៌សចំនួន៣ និងឃ្លីពណ៌ខៀវចំនួន៥។ គេចាប់យកឃ្លី២គ្រាប់ក្នុងពេលតែមួយចេញពីក្នុងថង់ ដោយចៃដន្យ។ រកប្រូបាបនៃព្រឹត្តិការណ៍ខាងក្រោម៖
 - n. «គេចាប់បានឃ្លើពណ៌ខៀវទាំងពីរ»
 - ខ. «គេចាប់បានឃ្លីមួយក្នុងមួយពណ៌»
- II. (១០ពិន្ទុ) គណនាលីមីតខាងក្រោម៖

$$\lim_{x\to 1} \frac{x^2-1}{x^2-3x+2}$$

2.
$$\lim_{x\to 1} \frac{x-1}{\sqrt{x}-1}$$

III. (១៥ពិន្ទ) គណនាអាំងតេក្រាលខាងក្រោម៖

ក. គណនា
$$I = \int_2^3 (3x^2 + 3x - 1) dx$$

$${f 2}.\ f(x)=rac{1+2x}{\left(x^2-4x
ight)+\left(4-x
ight)}$$
 ។ បង្ហាញថា $f(x)=rac{1}{1-x}-rac{3}{4-x}$ ។ ចូរគណនា $J=\int_2^3 f(x)dx$ ។

- IV. (១០ពិន្ទុ) គេមានប៉ារ៉ាបូលមួយមានកំពូលនៅត្រង់ចំណុច $_{\mathrm{O}(0,0)}$ និង កំណុំ $_{\mathrm{F}}$ ស្ថិតនៅលើអ័ក្សអរដោនេ។
 - ក. រកសមីការស្តង់ដានៃប៉ារ៉ាបូលនេះ បើគេដឹងថាវាកាត់តាមចំណុច A(2,6) ។
 - ខ. រកតម្លៃនៃ \mathbf{x} បើ $\mathbf{B}\left(\mathbf{x}_1,\frac{3}{2}\right)$ ស្ថិតនៅលើប៉ារ៉ាបូលនេះ។ ចូរសង់ប៉ារ៉ាបូលនេះ។
- v. (៣០ពិន្ទុ) គេមានអនុគមន៍ f ដែល $f(x) = \frac{x^2 x 3}{x + 1}$ និង គេតាងដោយ (C) ក្រាបនៃអនុគមន៍ f ។
 - ក. រកដែនកំណត់នៃអនុគន៍ f ។
 - ខ. បង្ហាញថា $f(x) = x-2-\frac{1}{x+1}$ ។
 - គ. បង្ហាញថាបន្ទាត់ដែលមានសមីការ y=x-2 ជាអាស៊ីមតូតទ្រេតនៃក្រាប (C) ។
 - <mark>ឃ. សិក្សាអថេរភាព និងសង់ក្រាបនៃ</mark> f ។

តាមរូបមន្ត
$$P(A) = \frac{n(A)}{n(S)}$$
 ដោយ $n(A) = C(5,2) = \frac{5!}{(5-2)!2!} = \frac{5 \times 4 \times 3!}{3! \times 2 \times 1} = 10$ $n(S) = C(8,2) = \frac{8!}{(8-2)!2!} = \frac{8 \times 7 \times 6!}{6! \times 2 \times 1} = 28$

ពេញន
$$P(A) = \frac{n(A)}{n(S)} = \frac{10}{28} = \frac{5}{14}$$
 ដូចនេះ $P(A) = \frac{5}{14}$

ខ. «គេចាប់បានឃ្លីមួយក្នុងមួយពណ៌» តាង B : «គេចាប់បានឃ្លីមួយក្នុងមួយពណ៌»

វាមរូបមន្ត
$$P(B) = \frac{n(B)}{n(S)}$$
 ដោយ $n(S) = 28$; $n(B) = C(3,1) \times C(5,1) = \frac{3 \times 2!}{2!1!} \times \frac{5 \times 4!}{4!1!} = 3 \times 5 = 15$

ពេញន
$$P(B) = \frac{n(B)}{n(S)} = \frac{15}{28}$$
 ដូចនេះ $P(B) = \frac{15}{28}$

II. គណនាលីមីត៖

ក.
$$\lim_{x\to 1} \frac{x^2-1}{x^2-3x+2}$$
 (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$= \lim_{x \to 1} \frac{(x-1)(x+1)}{(x-1)(x-2)} = \lim_{x \to 1} \frac{x+1}{x-2} = \frac{1+1}{1-2} = -2 \quad \text{In } \frac{x^2-1}{x^2-3x+2} = -2$$

 $2.\lim_{\mathbf{x}\to 1}rac{\mathbf{x}-1}{\sqrt{\mathbf{x}}-1}$ (មានរាងមិនកំណត់ $rac{0}{0}$)

$$=\lim_{x\to 1}\frac{(x-1)}{(\sqrt{x}-1)}\times\frac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)}=\lim_{x\to 1}\frac{(x-1)\left(\sqrt{x}+1\right)}{x-1}=\lim_{x\to 1}\left(\sqrt{x}+1\right)=\sqrt{1}+1=2$$

ដូចនេះ
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1} = 2$$

III. គណនាអាំងតេក្រាល៖

$$\begin{aligned} & \tilde{\mathbf{n}}. \ \mathbf{I} = \int_{2}^{3} \left(3x^{2} + 3x - 1 \right) \mathrm{d}x = \left[3\frac{x^{3}}{3} + 3\frac{x^{2}}{2} - x \right]_{2}^{3} = 3^{3} + 3\frac{3^{2}}{2} - 3 - \left(2^{3} + 3\frac{2^{2}}{2} - 2 \right) = 27 + \frac{27}{2} - 3 - 8 - \frac{12}{2} + 2 \\ & = 18 + \frac{15}{2} = \frac{36 + 15}{2} = \frac{51}{2} \quad \text{Wis: } \boxed{\mathbf{I} = \frac{51}{2}} \end{aligned}$$

$${f 2.}\ f(x)=rac{1+2x}{\left(x^2-4x
ight)+\left(4-x
ight)}$$
 ; បង្ហាញថា $f(x)=rac{1}{1-x}-rac{3}{4-x}$

$$\text{thu} \quad \frac{1}{1-x} - \frac{3}{4-x} = \frac{4-x-3(1-x)}{(1-x)(4-x)} = \frac{4-x-3+3x}{4-x-4x+x^2} = \frac{1+2x}{\left(x^2-4x\right)+(4-x)} = f(x)$$

ដូចនេះ
$$f(x) = \frac{1}{1-x} - \frac{3}{4-x}$$

$$\begin{split} J &= \int_{2}^{3} \left(\frac{1}{1-x} - \frac{3}{4-x} \right) \mathrm{d}x = \left[-\ln|1-x| + 3\ln|4-x| \right]_{2}^{3} = -\ln|1-3| + 3\ln|4-3| - (-\ln|1-2| + 3\ln|4-2|) \\ &= -\ln 2 + 3\ln 1 + \ln 1 - 3\ln 2 = -4\ln 2 \end{split}$$

ដូចនេះ $J = -4 \ln 2$

IV. គេមានប៉ារ៉ាបូលមួយមានកំពូលនៅត្រង់ចំណុច ${
m o}(0,0)$ និង កំណុំ ${
m F}$ ស្ថិតនៅលើអ័ក្សអរដោនេ។

- ក. រកសមីការស្ទង់ដានៃប៉ារ៉ាបូល ដោយ កំពូល o(0,0) និង កំណុំ F ស្ថិតនៅលើអ័ក្សអរដោនេ គេបាន អ័ក្សឆ្លុះជាអ័ក្សឈរ គេបាន សមីការស្តង់ដានៃប៉ារ៉ាបូលគឺ $(x-h)^2 = 4p(y-k)$
 - កំពូល(h,k) គឺ កំពូល o(0,0) $\Rightarrow h = 0, k = 0$
 - ប៉ារ៉ាបូលកាត់តាមចំណុច A(2,6) គេបាន $(2-0)^2 = 4p(6-0)$ $\Leftrightarrow 4 = 24p \Rightarrow p = \frac{4}{64} = \frac{1}{16}$
- គេបាន សមីការប៉ារ៉ាបូលគឺ $x^2=\frac{4}{16}y$ \Leftrightarrow $x^2=\frac{1}{4}y$ ដូចនេះ ប៉ារ៉ាបូលមានសមីការ $x^2=\frac{1}{4}y$
- $\mathbf{2}$. រកតម្លៃនៃ \mathbf{x}_1 បើ B $\left(x_1,\frac{3}{2}\right)$ ស្ថិតនៅលើប៉ារ៉ាបូលនេ គេបាន $x_1^2=\frac{1}{4}(\frac{3}{2})$ \Leftrightarrow $x_1=\pm\sqrt{\frac{3}{8}}$ \Leftrightarrow $x_1=\pm\frac{\sqrt{3}\cdot\sqrt{8}}{8}$ \Leftrightarrow $x_1=\pm\frac{\sqrt{6}}{8}$

v. ក. រកដែនកំណត់នៃអនុគន៍ f

ដោយ $f(x) = \frac{x^2 - x - 3}{x + 1}$; f(x) មានន័យលុះត្រាតែ $x + 1 \neq 0 \Leftrightarrow x \neq -1$

ដូចនេះ ដែនកំណត់នៃអនុគមន៍ $\overline{\mathbf{f}}$ គឺ $\mathbf{D}_{\mathbf{f}} = \mathbb{R} - \{-1\}$

ខ. បង្ហាញថា $f(x) = x - 2 - \frac{1}{x + 1}$

 $\text{im} \ \ x-2-\frac{1}{x+1}=\frac{(x-2)(x+1)-1}{x+1}=\frac{x^2+x-2x-2-1}{x+1}=\frac{x^2-x-3}{x+1}=f(x)$

ដូចនេះ
$$f(x) = x-2-\frac{1}{x+1}$$

$$\text{im} \ \lim_{x \to \pm \infty} \left[f(x) - (x-2) \right] = \lim_{x \to \pm \infty} \left[x - 2 - \frac{1}{x+1} - (x-2) \right] = \lim_{x \to \pm \infty} \frac{-1}{x+1} = 0$$

ដូចនេះ បន្ទាត់ y = x-2 ជាអាស៊ីមតូតទ្រេតនៃក្រាបC

ឃ. សិក្សាអថេរភាព និងសង់ក្រាបនៃ f

• ដើរីវេ

$$\begin{split} f'(x) &= \left(\frac{x^2 - x - 3}{x + 1}\right)' \\ &= \frac{\left(x^2 - x - 3\right)'(x + 1) - (x + 1)'\left(x^2 - x - 3\right)}{(x + 1)^2} \\ &= \frac{(2x - 1)(x + 1) - \left(x^2 - x - 3\right)}{(x + 1)^2} = \frac{2x^2 + 2x - x - 1 - x^2 + x + 3}{(x + 1)^2} = \frac{x^2 + 2x + 2}{(x + 1)^2} \end{split}$$

 $f'(x) = 0 \Leftrightarrow x^2 + 2x + 2 = 0; \quad \Delta = b^2 - 4ac = 4 - 4(1)2 = -4 < 0$ សញ្ញាយកតាមមេគុណ a

• តារាងសញ្ញា f'(x)

X	$-\infty$	-1	+∞
f'(x)	+		+

• តារាងអថេរភាពនៃ f

X	$-\infty$	-1	+∞
f'(x)	+	-	H
f(x)		+∞	+∞

• សង់ក្រាប

•
$$C \cap (y'oy)$$
 $\vec{n} x = 0$; $\Rightarrow y = \frac{0^2 - 0 - 3}{0 + 1} = -3$

$$\circ \ C \cap (x'ox) \ \vec{\tilde{n}} \ \ y = 0 \ \Rightarrow \ x^2 - x - 3 = 0; \quad \Delta = b^2 - 4ac = (-1)^2 - 4(1)(-3) = 13 \ \Rightarrow \ x = \frac{1 \pm \sqrt{13}}{2}$$

ក្រសួងអប់រំយុវជន និងកិទ្បា	
វិទ្យាល័យមេតូឌីស្ទកម្ពុជា	
ប្រឡងសញ្ញាប់ត្រមធ្យមសិក្សាទុតិយត្តមិ	
ឈ្មោះ នឹងហត្ថលេខាអនុរក្ស៖	

លេខបន្ទប់់៖	
លេខតុ៖	
ផពរាពប្រទេសន	

សម័យបទ្បង៖ ២០ សីហា ២០១៨

នាមត្រកូលនឹងនាមខ្លួន៖

ថ្ងៃខែឆ្នាំកំណើត៖

ហត្ថលេខា៖ លេខសម្ងាត់៖

បេក្ខជនមិនត្រូវធ្វើសញ្ញាសម្គាល់អ្វីមួយនៅលើសន្លឹកប្រទ្បងទ្បើយៗ សន្លឹកប្រទ្បងដែលមានសញ្ញាសម្គាល់នឹងត្រូវបានពិន្ទុស្នន្យៗ

·%<-----

វិញ្ញាសា៖ គណិតវិទ្យាថ្នាក់សង្គម រយ:ពេល៖ ៩០ នាទី ពិន្ទុ ៖ ៧៥

លេខសម្ងាត់៖

ពិន្ទួសរុប

សេចក្តីណែនាំ៖ ១. បេក្ខជនត្រូវគូសខ្វែងនៅទំព័រទី២ ផ្នែកខាងលើដែលត្រូវកាត់ចេញ។

២. បេក្ខជនត្រូវសរសេរចម្លើយនៃសំណួរបន្តនៅលើទំព័រទី២ ទី៣ និងទី៤ៗ

ទិញ្ញាសានី៤ (បាក់ដុបឆ្នាំ ២០១៤ លើកទី២ ថ្នាក់សង្គម)

I. (១៥ពិន្ទុ) គណនាលីមីត៖

$$\mathbf{\tilde{n}}. \lim_{x \to -3} \frac{x^2 + 6x + 9}{x^2 + 4x + 3}$$

$$\lim_{x\to 0} \frac{\sin^2 x}{-3x}$$

$$\lim_{x\to 0} \frac{\sqrt{2+x}-\sqrt{2-x}}{x}$$

$$\lim_{x\to+\infty} (2e^x + 2x - 2)$$

II. (១០ពិន្ទុ) ក្នុងអាងចញ្ចឹមត្រីមួយមានត្រីពណ៌ក្រហម៤ និងត្រីពណ៌ស៣។ គេចាប់ត្រី២មកដាក់ក្នុងអាងថ្មីដោយចៃដន្យ។ រកប្រូបាប នៃព្រឹត្តិការណ៍ខាងក្រោម៖

- n. «ត្រីពណ៌ក្រហមទាំងពីរ»
- 8. «ត្រីពណ៌សទាំងពីរ»
- ក. «ត្រីមួយក្នុងមួយពណ៌»

III. (២៥ពិន្ទុ) គេមានអនុគមន៍ $f(x) = \frac{(x+2)(x-2)}{(1-x)}$ ។

- ក. រកដែនកំណត់ f(x) ។
- **ខ.** បង្ហាញថា $f(x) = -x 1 + \frac{3}{x 1}$ ។
- គ. សិក្សាអថេរភាពនិង សង់ក្រាប C នៃអនុគមន៍ $f(x) = \frac{(x+2)(x-2)}{(1-x)}$ ។

IV. (១៥ពិន្ទ) គណនាអាំងតេក្រាលនៃអនុគមន៍ខាងក្រោម៖

$$\hat{\mathbf{n}}. I = \int_{1}^{3} (2x^{2} - 3x + 1) dx$$

$${f 2}.\ f(x)=rac{2x+1}{x^2-5x+4}$$
 ។ បង្ហាញថា $f(x)=rac{-1}{x-1}+rac{3}{x-4}$ ។ រួចគណនា $J=\int_2^3 f(x)dx$ ។

គ. គេមានអនុគមន៍ $f(x) = x \ln x$ ។ គណនាដេរីវេf'(x) នៃអនុគមន៍f(x) នៅលើចន្លោះ[1,e]។ ទាញរកអាំងតេក្រាល $K = \int_1^e \ln x dx$ ។

v. (១០ពិន្ទុ) រកសមីការស្តង់ដានៃអេលីបដេលមានកំពូលទាំងពីរជាចំណុច (4,0) និង (–4,0) និង មានកំណុំ មួយនៅត្រង់ចំណុច (3,0) រួចសង់អេលីបនេះ។

ពី.
$$\lim_{x\to -3} \frac{x^2 + 6x + 9}{x^2 + 4x + 3}$$
 (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$= \lim_{x \to -3} \frac{(x+3)(x+3)}{(x+1)(x+3)} = \lim_{x \to -3} \frac{x+3}{x+1} = \frac{-3+3}{-3+1} = \frac{0}{-2} = 0 \qquad \text{ifis: } \lim_{x \to -3} \frac{x^2+6x+9}{x^2+4x+3} = 0$$

$$\mathbf{2}.\lim_{\mathbf{x}\to 0}rac{\sin^2\mathbf{x}}{-3\mathbf{x}}$$
 (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$= \lim_{x \to 0} \frac{1}{-3} \cdot \frac{\sin x}{x} \cdot \sin x = \frac{1}{-3} (1)(0) = 0 \qquad \text{ifis: } \boxed{\lim_{x \to 0} \frac{\sin^2 x}{-3x} = 0}$$

គ.
$$\lim_{x\to 0} \frac{\sqrt{2+x}-\sqrt{2-x}}{x}$$
 (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$\begin{split} &= \lim_{x \to 0} \frac{\left(\sqrt{2+x} - \sqrt{2-x}\right)}{x} \times \frac{\left(\sqrt{2+x} + \sqrt{2-x}\right)}{\left(\sqrt{2+x} + \sqrt{2-x}\right)} = \lim_{x \to 0} \frac{2 + x - (2-x)}{x\left(\sqrt{2+x} + \sqrt{2-x}\right)} = \lim_{x \to 0} \frac{2x}{x\left(\sqrt{2+x} + \sqrt{2-x}\right)} \\ &= \frac{2}{\sqrt{2+0} + \sqrt{2-0}} = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2} \qquad \text{if is: } \lim_{x \to 0} \frac{\left(\sqrt{2+x} - \sqrt{2-x}\right)}{x} = \frac{\sqrt{2}}{2} \end{split}$$

$$\lim_{x\to+\infty}(2\mathrm{e}^x+2\mathrm{x}-2)=2(+\infty)+2(+\infty)-2=+\infty \qquad \text{if is: } \lim_{x\to+\infty}(2\mathrm{e}^x+2\mathrm{x}-2)=+\infty$$

II. រកប្រូបាបនៃព្រឹត្តិការណ៍៖

ក. «ត្រីពណ៌ក្រហមទាំងពីរ» តាង A : «ត្រីពណ៌ក្រហមទាំងពីរ»

តាមរូបមន្ត
$$P(A) = \frac{n(A)}{n(S)}$$
 ដោយ $n(A) = C(4,2) = \frac{4!}{(4-2)!2!} = \frac{4 \times 3 \times 2!}{2! \times 2 \times 1} = 6$ $n(S) = C(7,2) = \frac{7!}{(7-2)!2!} = \frac{7 \times 6 \times 5!}{5! \times 2 \times 1} = 21$

ពេលន
$$P(A) = \frac{n(A)}{n(S)} = \frac{6}{21} = \frac{2}{7}$$
 ដូចនេះ $P(A) = \frac{2}{7}$

2. «ត្រីពណ៌សទាំងពីរ» តាង B : «ត្រីពណ៌សទាំងពីរ»

តាមរូបមន្ត
$$P(B) = \frac{n(B)}{n(S)}$$
 ដោយ $n(B) = C(3,2) = \frac{3!}{(3-2)!2!} = \frac{3 \times 2!}{1! \times 2!} = 3$; $n(S) = 21$

គេហ៊ុន
$$P(B) = \frac{n(B)}{n(S)} = \frac{3}{21} = \frac{1}{7}$$
 ដូចនេះ $P(B) = \frac{1}{7}$

គ. «ត្រីមួយក្នុងមួយពណ៌» តាង C : «ត្រីមួយក្នុងមួយពណ៌»

តាមរូបមន្ត
$$P(C) = \frac{n(C)}{n(S)}$$
 ដោយ $n(C) = C(4,1) \times C(3,1) = \frac{4 \times 3!}{3!1!} \times \frac{3 \times 2!}{2!1!} = 4 \times 3 = 12$; $n(S) = 21$

គេបាន
$$P(C) = \frac{n(C)}{n(S)} = \frac{12}{21} = \frac{4}{7}$$
 ដូចនេះ $P(C) = \frac{4}{7}$

III. ក. រកដែនកំណត់ f(x) ; $f(x) = \frac{(x+2)(x-2)}{1-x}$

$$f(x)$$
 មានន័យលុះត្រាតែ $1-x \neq 0 \quad \Leftrightarrow \ x \neq 1 \quad$ ដូចនេះ $oxed{ text{tashuhikshapes}}$ ប្រៀងដោយ ស៊ិ សំអន $oxed{ text{9d}}$

ដូចនេះ
$$f(x) = -x-1 + \frac{3}{x-1}$$

- **គ.** សិក្សាអថេរភាពនិង សង់ក្រាប C
 - ដើរីវេ

$$f'(x) = \left(\frac{(x+2)(x-2)}{1-x}\right)' = \left(\frac{x^2-4}{1-x}\right)' = \frac{(x^2-4)'(1-x)-(1-x)'(x^2-4)}{(1-x)^2}$$
$$= \frac{2x(1-x)+(x^2-4)}{(1-x)^2} = \frac{2x-2x^2+x^2-4}{(1-x)^2} = \frac{-x^2+2x-4}{(1-x)^2}$$

 $f'(x) = 0 \quad \Leftrightarrow \ -x^2 + 2x - 4 = 0 \quad ; \Delta = b^2 - 4ac = (2)^2 - 4(-1)(-4) = 4 - 16 = -12 < 0$

គេបានf'(x) មានសញ្ញាដូចមេគុណ a

• តារាងសញ្ញា f'(x)

X	$-\infty$	1	+∞
f'(x)	_		_

• លីមីត

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x^2 - 4}{1 - x} = \mp \infty$$
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 4}{1 - x} = \pm \infty$$

• តារាងអថេរភាពនៃ f

- សង់ក្រាប
 - \circ ក្រាប(c) កាត់អ័ក្សអរដោនេ ពេលx=0 $\Rightarrow y=f(0)=\frac{(0+2)(0-2)}{1-0}=-4$
 - \circ ក្រាប (c) កាត់អ័ក្សអាប់ស៊ីស ពេល y=0 \Leftrightarrow $0=\frac{(x+2)(x-2)}{(1-x)}$ \Leftrightarrow $x=-2; \ x=2$

$$\begin{aligned} & \tilde{\mathbf{n}}.\ \mathbf{I} = \int_{1}^{3} \left(2x^{2} - 3x + 1\right) \mathrm{d}x = \left[2\frac{x^{3}}{3} - 3\frac{x^{2}}{2} + x\right]_{1}^{3} = 2\frac{3^{3}}{3} - 3\frac{3^{2}}{2} + 3 - \left(2\frac{1^{3}}{3} - 3\frac{1^{2}}{2} + 1\right) = 18 - \frac{27}{2} + 3 - \frac{2}{3} + \frac{3}{2} - 1 \\ & = 20 - 12 - \frac{2}{3} = \frac{22}{3} \quad \text{HVIS: } \boxed{\mathbf{I} = \frac{22}{3}} \end{aligned}$$

8.
$$f(x) = \frac{2x+1}{x^2-5x+4}$$
; បង្ហាញថា $f(x) = \frac{-1}{x-1} + \frac{3}{x-4}$

$$\lim \mathop{\text{tim}} \frac{-1}{x-1} + \frac{3}{x-4} = \frac{-(x-4) + 3(x-1)}{(x-1)(x-4)} = \frac{-x+4+3x-3}{x^2-5x+4} = \frac{2x+1}{x^2-5x+4} = f(x)$$

ដូចនេះ
$$f(x) = \frac{-1}{x-1} + \frac{3}{x-4}$$

គណនា
$$J = \int_2^3 f(x) dx$$

$$\begin{split} J &= \int_2^3 f(x) dx = \int_2^3 \left(\frac{-1}{x-1} + \frac{3}{x-4} \right) dx = \left[-\ln|x-1| + 3\ln|x-4| \right]_2^3 \\ &= -\ln|3-1| + 3\ln|3-4| - (-\ln|2-1| + 3\ln|2-4|) = -\ln 2 + 3\ln 1 + \ln 1 - 3\ln 2 = -4\ln 2 \end{split}$$

ដូចនេះ
$$J=-4\ln 2$$

គ. គេមានអនុគមន៍ $f(x) = x \ln x$ គណនាដេវីវេ f'(x)

$$f^{'}(x) = (x \ln x)^{\prime} = x^{\prime} \ln x + x (\ln x)^{\prime} = \ln x + x \left(\frac{1}{x}\right) = \ln x + 1 \quad \text{However} \quad f^{'}(x) =$$

ទាញរកអាំងតេក្រាល $K = \int_1^e \ln x dx$

$$\begin{split} K &= \int_{1}^{e} \ln x \mathrm{d} x = \int_{1}^{e} \left(\ln x + 1 - 1 \right) \mathrm{d} x = \int_{1}^{e} (\ln x + 1) \mathrm{d} x - \int_{1}^{e} 1 \mathrm{d} x = \int_{1}^{e} (\ln x)' \mathrm{d} x - [x]_{1}^{e} \\ &= [\ln x]_{1}^{e} - [x]_{1}^{e} = \ln e - \ln 1 - (e - 1) = 2 - e \quad \text{Hiss.} \quad \boxed{K = 2 - e} \end{split}$$

v. រកសមីការស្ទង់ដានៃអេលីប

ដោយ កំពូល កំណុំមានអរដោនេថេរ គេបាន អ័ក្សទទឹងស្របអ័ក្សអាប់ស៊ីស នោះ សមីការស្តង់ដា នៃអេលីបគឺ

• សង់អេលីប

•
$$\frac{(x-h)^2}{a^2} + \frac{(y-h)^2}{b^2} = 1$$

- កំពូល $V_1(h+a,k)$ គឺ $(4,0) \Rightarrow h+a=4$; k=0
- កំពូល $V_2(h-a,k)$ គឺ $(-4,0) \Rightarrow h-a=-4; \quad k=0$

$$\begin{cases} h + a = 4 \\ \underline{h - a = -4} \end{cases}$$

$$2h = 0 \Rightarrow h = 0; a = 4$$

- កំណុំ F(h+c,0) គឺ $(3,0) \Rightarrow h+c=3 \Rightarrow c=3$
- $c^2 = a^2 b^2 \implies b^2 = a^2 c^2 = 4^2 3^2 = 16 9 = 7$ ដូចនេះ អេលីបមានសមីការ $\frac{x^2}{16} + \frac{y^2}{7} = 1$

ផ្ចិតនៃអេលីបគឺ I(0,0)

ក្រសួងអប់រំឃុវជន នឹងកីឡា	
វិទ្យាល័យមេតុឌីស្ទកម្ពុជា	
ប្រឡងសញ្ញាប់ត្រមធ្យមសិក្សាទុតិយត្តម <u>ិ</u>	
ឈ្មោះ នឹងបាត្ថលេខាអនុវក្ស៖	

លេខបន្ទប់់៖
លេខតុ៖
rennance ark o

សម័យបទ្បង៖ ២០ ស៊ីហា ២០១៨

នាមត្រកូលនឹងនាមខ្លួន៖

ថ្ងៃខែឆ្នាំកំណើត៖

លេខសម្ងាត់៖ ហត្ថលេខា៖

ចេក្ខជនមិនត្រូវធ្វើសញ្ញាសម្គាល់អ្វីមួយនៅលើសន្លឹកច្រទ្បងទ្បើយៗ សន្លឹកច្រទ្បងដែលមានសញ្ញាសម្គាល់នឹងត្រូវបានពិន្ទុសូន្យៗ

វិញ្ញាសា៖ គណិតវិទ្យាថ្នាក់សង្គម រយ:ពេល៖ ៩០ នាទី ពិន្ទុ ៖ ៧៤

លេខសម្លាត់៖

ពិន្ទួសរុប

សេចក្តីណែនាំ៖ ១. បេក្ខជនត្រូវគូសខ្វែងនៅទំព័រទី២ ផ្នែកខាងលើដែលត្រូវកាត់ចេញ។

២. បេក្ខជនត្រូវសរសេរចម្លើយនៃសំណួរបន្តនៅលើទំព័រទី២ ទី៣ និងទី៤។

ទិញ្ញាសានី៥ (ចាក់ងុបឆ្នាំ ២០១៤ លើកទី១ ថ្នាក់សង្គម)

I. (១៥ពិន្ទុ) គណនាលីមីត៖

n.
$$\lim_{x \to -\infty} \frac{(2x^2 - 3)(1 - x)}{(5 + 2x)(2 - x^2)}$$
 2. $\lim_{x \to 1} \frac{2 - \sqrt{x + 3}}{x^2 - 1}$

8.
$$\lim_{x\to 1} \frac{2-\sqrt{x+3}}{x^2-1}$$

$$\mathbf{\tilde{n}}. \lim_{x \to +\infty} \ln \frac{x+1}{x-1}$$

II. (១៥ពិន្ទុ)នៅក្នុងធុងមួយគេមានប៊ូលក្រហម៤ ប៊ូលស៣ និងប៊ូលខៀវ១។ គេចាប់យកប៊ូល៣ក្នុងពេលតែមួយចេញពីធុងដោយចៃដន្យ។

- ក. រកប្រូបាបដែល «គេចាប់បានប៊ូលក្រហមពីរ និងមួយទៀតមិនក្រហម»
- ខ. រកប្រូបាបដែល «គេចាប់បានប៊ូលក្រហមទាំងបី»
- គ. រកប្រូបាបដែល «គេចាប់បានយ៉ាងតិចប៊ូលក្រហមពីរ»

III. (៣០ពិន្ទុ) គេមានអនុគមន៍ f កំណត់លើ $\mathbb R$ ដោយ $f(x)=rac{1}{1+\mathrm{e}^x}+rac{2}{9}x$ និង C តាងក្រាបរបស់ f ។

- 1. អនុគមន៍ g កំណត់លើ ${\mathbb R}$ ដោយ ${
 m g}({
 m x}) = 2{
 m e}^{2{
 m x}} 5{
 m e}^{{
 m x}} + 2$ ។
 - ក. ផ្ទៀងផ្ទាត់់ថា $g(x) = (2e^x 1) (e^x 2)$ ។
 - ខ. ទាញយកតាមតម្លៃនៃ x ចំពោះសញ្ញានៃ g(x) ។
- 2. $\ddot{\mathbf{n}}$. $\ddot{\mathbf{n}}$ $\lim_{\mathbf{x} \to +\infty} f(\mathbf{x})$ $\ddot{\mathbf{s}}$ $\ddot{\mathbf{h}}$ $\lim_{\mathbf{x} \to -\infty} f(\mathbf{x})$ \mathbf{f}
 - $oldsymbol{2}$. អនុគមន៍ f មានដេរីវេ f' ។ បង្ហាញថាចំពោះគ្រប់ចំនួនពិត x គេបាន f'(x) និង g(x) មានសញ្ញាដូចគ្នា។
 - គ. សិក្សាអថេរភាពនៃអនុគមន៍ f លើ R ។

IV. (១៥ពិន្ទុ)

- ក. គណនាអាំងតេក្រាល $I = \int_1^5 (x^2 + 2x 3) dx$ ។
- ${f 2}.$ បង្ហាញថាគ្រប់ចំនួនពិត ${f x}$; ${f x}
 eq 1$ គេបាន ${2{f x}^2 3{f x} + 2 \over {f x} 1} = 2{f x} 1 + {1 \over {f x} 1}$ ។ រួចទាញរក ${f I} = \int_2^3 {2{f x}^2 3{f x} + 2 \over {f x} 1} d{f x}$ ។

I. គណនាលីមីត៖

$$\ddot{\mathbf{n}}$$
. $\lim_{x \to -\infty} \frac{\left(2x^2 - 3\right)(1 - x)}{\left(5 + 2x\right)\left(2 - x^2\right)}$ (មានរាងមិនកំណត់ $\frac{\infty}{\infty}$)

$$= \lim_{x \to -\infty} \frac{x^2 \cdot x \left(2 - \frac{3}{x^2}\right) \left(\frac{1}{x} - 1\right)}{x \cdot x^2 \left(\frac{5}{x} + 2\right) \left(\frac{2}{x^2} - 1\right)} = \frac{(2 - 0)(0 - 1)}{(0 + 2)(0 - 1)} = \frac{-2}{-2} = 1 \quad \text{if is: } \lim_{x \to -\infty} \frac{\left(2x^2 - 3\right)(1 - x)}{(5 + 2x)\left(2 - x^2\right)} = 1$$

8.
$$\lim_{x\to 1} \frac{2-\sqrt{x+3}}{x^2-1}$$
 (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$\begin{split} &= \lim_{\mathbf{x} \to 1} \frac{\left(2 - \sqrt{\mathbf{x} + 3}\right) \left(2 + \sqrt{\mathbf{x} + 3}\right)}{\left(\mathbf{x}^2 - 1\right) \left(2 + \sqrt{\mathbf{x} + 3}\right)} = \lim_{\mathbf{x} \to 1} \frac{4 - (\mathbf{x} + 3)}{\left(\mathbf{x}^2 - 1\right) \left(2 + \sqrt{\mathbf{x} + 3}\right)} = \lim_{\mathbf{x} \to 1} \frac{-(\mathbf{x} - 1)}{(\mathbf{x} - 1)(\mathbf{x} + 1) \left(2 + \sqrt{\mathbf{x} + 3}\right)} \\ &= \frac{-1}{(1 + 1) \left(2 + \sqrt{1 + 3}\right)} = \frac{-1}{2(4)} = -\frac{1}{8} \quad \text{However} \\ &\lim_{\mathbf{x} \to 1} \frac{2 - \sqrt{\mathbf{x} + 3}}{\mathbf{x}^2 - 1} = -\frac{1}{8} \end{split}$$

ក. រកប្រូបាបដែល «គេចាប់បានប៊ូលក្រហមពីរ និងមួយទៀតមិនក្រហម»

តាង A : «គេចាប់បានប៊ូលក្រហមពីរ និងមួយទៀតមិនក្រហម»

វាមរូបមន្ត
$$P(A) = \frac{n(A)}{n(S)}$$
 ដោយ $n(A) = C(4,2) \times C(3,1) + C(4,2) \times C(1,1) = \frac{4!}{2!2!} \times \frac{3!}{2!1!} + \frac{4!}{2!2!} \times \frac{1!}{0!1!}$ $= \frac{4 \times 3 \times 2!}{2!2 \times 1} \times \frac{3 \times 2!}{2!} + \frac{4 \times 3 \times 2!}{2!2 \times 1} \times 1 = 6 \times 3 + 6 = 24$ $n(S) = C(8,3) = \frac{8!}{5!3!} = \frac{8 \times 7 \times 6 \times 5!}{5!3 \times 2 \times 1} = 56$

ពេលន
$$P(A) = \frac{n(A)}{n(S)} = \frac{24}{56} = \frac{3}{7}$$
 ដូចនេះ $P(A) = \frac{3}{7}$

2. រកប្រូប្បាបដែល «គេចាប់បានប៊ូលក្រហមទាំងបី» តាង B : «គេចាប់បានប៊ូលក្រហមទាំងបី»

តាមរូបមន្ត
$$P(B) = \frac{n(B)}{n(S)}$$
 ដោយ $n(B) = C(4,3) = \frac{4!}{1!3!} = \frac{4 \times 3!}{3!} = 4$; $n(S) = 56$

គេហ៊ុន
$$P(B) = \frac{4}{56} = \frac{1}{14}$$
 ដូចនេះ $P(B) = \frac{1}{14}$

គ. រកប្រូប្បាបដែល «គេចាប់បានយ៉ាងតិចប៊ូលក្រហមពីរ» តាង C : «គេចាប់បានយ៉ាងតិចប៊ូលក្រហមពីរ»

តាមរូបមន្ត
$$P(C) = \frac{n(C)}{n(S)}$$
 ដោយ $n(C) = C(4,2) \times C(3,1) + C(4,2) \times C(1,1) + C(4,3) = 24 + 4 = 28$ $n(S) = 56$

គេបាន
$$P(C) = \frac{n(C)}{n(S)} = \frac{28}{56} = \frac{1}{2}$$
 ដូចនេះ $P(C) = \frac{1}{2}$

 $ext{III.}$ 1. $ext{ n.}$ អនុគមន៍ g កំណត់លើ $\mathbb R$ ដោយ $g(x) = 2e^{2x} - 5e^x + 2$ ផ្ទៀងផ្ទាត់ថា $g(x) = (2e^x - 1)$ $(e^x - 2)$ $(e^x - 2)$

ដោយ
$$(2e^x-1)(e^x-2)=2e^x\cdot e^x-4e^x-e^x+2=2e^{2x}-5e^x+2=g(x)$$

ដូចនេះ
$$g(x) = (2e^x - 1)(e^x - 2)$$
 រៀបរៀងដោយ ស៊ឺ សំអុន

$$\mathbf{\tilde{y}} \ g(x) = 0 \quad \Leftrightarrow \ (2e^x - 1) \ (e^x - 2) = 0 \quad \Rightarrow \begin{bmatrix} 2e^x - 1 = 0 \ \Leftrightarrow \ e^x = \frac{1}{2} \ \Leftrightarrow \ x = -\ln 2 \\ e^x - 2 = 0 \ \Leftrightarrow \ e^x = 2 \ \Leftrightarrow \ x = \ln 2 \end{bmatrix}$$

តារាងសញ្ញា g(x)

X	$-\infty$		$-\ln 2$		ln 2		+∞
g(x)		+	0	_	0	+	

ដូចនេះ g(x) > 0 ពេល $x \in (-\infty, -\ln 2) \cup (\ln 2, +\infty)$; g(x) < 0 ពេល $x \in (-\ln 2, \ln 2)$

2. $\lim_{x \to +\infty} f(x)$ $\lim_{x \to -\infty} f(x)$

$$\begin{split} &\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \left(\frac{1}{1+e^x} + \frac{2}{9}x\right) = 0 + \frac{2}{9}(+\infty) & \text{tis: } \lim_{x\to +\infty} f(x) = +\infty \\ &\lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} \left(\frac{1}{1+e^x} + \frac{2}{9}x\right) = \frac{1}{1+0} + \frac{2}{9}(-\infty) = -\infty & \text{tis: } \lim_{x\to -\infty} f(x) = -\infty \end{split}$$

ខ. អនុគមន៍ f មានដេរីវេ f' បង្ហាញថាចំពោះគ្រប់ចំនួនពិត x គេបាន f'(x) និង g(x) មានសញ្ញាដូចគ្នា

$$\begin{split} f^{'}(x) &= \left(\frac{1}{1+e^x} + \frac{2}{9}x\right)^{'} = -\frac{e^x}{(1+e^x)^2} + \frac{2}{9} = \frac{-9e^x + 2\left(1+e^x\right)^2}{9\left(1+e^x\right)^2} = \frac{-9e^x + 2 + 4e^x + 2e^{2x}}{9\left(1+e^x\right)^2} \\ &= \frac{2e^{2x} - 5e^x + 2}{9\left(1+e^x\right)^2} = \frac{g(x)}{9\left(1+e^x\right)^2} \quad \text{imu } 9\left(1+e^x\right)^2 > 0; \ \forall x \in \mathbb{R} \quad \text{inus } f^{'}(x) \text{ is sumany } g(x) \end{split}$$

ដូចនេះ f'(x) និង g(x) មានសញ្ញាដូចគ្នា

គ. សិក្សាអថេរភាពនៃអនុគមន៍ f លើ ℝ

X	$-\infty$		$-\ln 2$		ln 2		+∞
f'(x)		+	0	_	0	+	

- ត្រង់ $x = -\ln 2$; f'(x) = 0 ហើយប្តូរសញ្ញាពី + ទៅ គេបាន f មានអតិបរមាធៀបមួយគឺ $f(-\ln 2) = \frac{1}{1+\frac{1}{2}} \frac{2\ln 2}{9} = \frac{2}{3} \frac{2\ln 2}{9} = \frac{6-\ln 4}{9}$
- ត្រង់ $x = \ln 2$; f'(x) = 0 ហើយប្តូរសញ្ញាពី ទៅ + គេបាន f មានអប្បបរមាធៀបមួយគឺ $f(\ln 2) = \frac{1}{1+2} + \frac{2\ln 2}{9} = \frac{1}{3} + \frac{2\ln 2}{9} = \frac{3+\ln 4}{9}$

តារាងអថេរភាពនៃ f

		•					
X	$-\infty$		$-\ln 2$		$\ln 2$		+∞
f'(x)		+	0	_	0	+	
f(x)	$-\infty$,,,,	6-ln 4 9		3+ln 4 9	/	+ ∞

ក្រសួងអប់រំឃុវជន និងកិទ្បា	
វិទ្យាល័យមេតូឌីស្ទកម្ពុជា	
ប្រឡងសញ្ញាច់ត្រមធ្យមសិក្សាទុតិយត្តមិ	
ឈ្មោះ នឹងហត្ថលេខាអនុវក្ស៖	

លេខបន្ទប់៖
លេខតុ៖
មធាលបេទងេ៖

សម័យបទ្បង៖ ២០ ស៊ីហា ២០១៨

នាមត្រកូលនឹងនាមខ្លួន៖

ថ្ងៃខែឆ្នាំកំណើត៖

ហត្ថលេខា៖ លេខសម្ងាត់៖

ចេក្ខជនមិនត្រូវធ្វើសញ្ញាសម្គាល់អ្វីមួយនៅលើសន្លឹកប្រទ្បងទ្បើយៗ សន្លឹកប្រទ្បងដែលមានសញ្ញាសម្គាល់នឹងត្រូវបានពិន្ទស<mark>ុ</mark>ន្យៗ

វិញ្ញាសា៖ គណិតវិទ្យាថ្នាក់សង្គម រយ:ពេល៖ ៩០ នាទី ពិន្ទុ ៖ ៧៤

លេខសម្លាត់៖

ពិន្ទួសរុប

សេចក្តីណែនាំ៖ ១. បេក្ខជនត្រូវគូសខ្វែងនៅទំព័រទី២ ផ្នែកខាងលើដែលត្រូវកាត់ចេញ។

២. បេក្ខជនត្រូវសរសេរចម្លើយនៃសំណួរបន្តនៅលើទំព័រទី២ ទី៣ និងទី៤ៗ

<u>ទិញ្ញាសានី៦</u>

I. (១០ពិន្ទ) ចូរគណនាតម្លៃនៃលីមីតខាងក្រោម៖

$$\lim_{x\to 2} \frac{\sqrt{x+2}-2}{x^2-4}$$

$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1}$$

6.
$$\lim_{x \to +\infty} \frac{3x^2 - 2x + 1}{2x + 1}$$

II. (១០ពិន្ទុ) ប្រអប់មួយមានឃ្លីក្រហមចំនួន 6គ្រាប់ និងឃ្លីសចំនួន 4គ្រាប់។ គេចាប់យកឃ្លី 4 ចេញពីប្រអប់ដោយចៃដន្យ។ ចូររកប្រុ បាបនៃព្រឹត្តិការណ៍ខាងក្រោម៖

A :«ចាប់បានឃ្លីពណ៌សទាំង 4 គ្រាប់ »

B:«ចាប់បានឃ្លីពណ៌ក្រហមទាំង 4 គ្រាប់»

C:«ចាប់បានឃ្លើពណ៌ស 3 និង ឃ្លើពណ៌ក្រហម 1 »

III. (១០ ពិន្ទុ) ចូរគណនាអាំងតេក្រាលខាងក្រោម៖

n.
$$I = \int_{1}^{2} (x^2 - 2x + 1) dx$$
 2. $J = \int_{0}^{1} (x^3 + e^x) dx$

8.
$$J = \int_{0}^{1} (x^3 + e^x) dx$$

គ.
$$K = \int_1^e \left(\frac{1}{x} - 1\right) dx$$

IV. (១៥ ពិន្ទូ) គេមានសមីការ $4x^2 + 9y^2 = 36$ ។

a. ចូរបង្ហាញថាសមីការខាងលើជាសមីការអេលីប។

ь. ចូររកប្រវែងអ័ក្សតូច ប្រវែងអ័ក្សធំ រួចរកកូអរដោនេនៃកំពូលទាំងពីរ និង កូអរដោនេនៃកំណុំទាំងពីរ។

c. ចូរសង់អេលីប ក្នុងតម្រុយកូអរដោនេ។

 \mathbf{V} . (៣០ ពិន្ទុ) គេមានអនុគមន៍ \mathbf{f} មួយ ដែលកំណត់ដោយ $\mathbf{y} = \mathbf{f}(\mathbf{x}) = \frac{\mathbf{x}^2 + 3\mathbf{x} - 3}{\mathbf{x} - 1}$ មានក្រាបតំណាង $\mathbf{f}(\mathbf{C})$

ក. ចូររកដែនកំណត់នៃអនុគមន៍_{ហើ}

ខ. ចូរគណនា $\lim_{x\to +\infty} f(x)$; $\lim_{x\to 1} f(x)$ ។

គ. រកសមីការអាស៊ីមតូតឈរ និង សមីការអាស៊ីមតូតទ្រេត។

 ${\bf w}$. គណនាដេរីវេ ${\bf f}'({\bf x})$ និង សិក្សាសញ្ញាដេរីវេ ${\bf f}'({\bf x})$ ។

ង. សង់តារាងអថេរភាព និង សង់ក្រាប(C) ។

I. គណនាតម្លៃនៃលីមីត៖

$$\ddot{\mathbf{n}}$$
. $\lim_{\mathbf{x} \to 2} \frac{\sqrt{\mathbf{x} + 2} - 2}{\mathbf{x}^2 - 4}$ (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$= \lim_{x \to 2} \frac{\left(\sqrt{x+2} - 2\right)\left(\sqrt{x+2} + 2\right)}{\left(x^2 - 4\right)\left(\sqrt{x+2} + 2\right)} = \lim_{x \to 2} \frac{x + 2 - 2^2}{\left(x^2 - 2^2\right)\left(\sqrt{x+2} + 2\right)} = \lim_{x \to 2} \frac{x - 2}{\left(x - 2\right)(x+2)\left(\sqrt{x+2} + 2\right)}$$

$$= \lim_{x \to 2} \frac{1}{(x+2)\left(\sqrt{x+2} + 2\right)} = \frac{1}{(2+2)\left(\sqrt{2+2} + 2\right)} = \frac{1}{4(4)} = \frac{1}{16}$$

Lim
$$\frac{\sqrt{x+2}-2}{x^2-4} = \frac{1}{16}$$

2.
$$\lim_{x\to 1} \frac{x^2 - 3x + 2}{x^2 - 1}$$
 (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$= \lim_{x \to 1} \frac{(x-1)(x-2)}{x^2-1^2} = \lim_{x \to 1} \frac{(x-1)(x-2)}{(x-1)(x+1)} = \lim_{x \to 1} \frac{x-2}{x+1} = \frac{1-2}{1+1} = -\frac{1}{2}$$

ដូចនេះ
$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1} = -\frac{1}{2}$$

គ.
$$\lim_{x\to +\infty} \frac{3x^2-2x+1}{2x+1}$$
 (មានរាងមិនកំណត់ $\frac{\infty}{\infty}$)

$$= \lim_{x \to +\infty} \frac{x^2 \left(3 - \frac{2}{x} + \frac{1}{x^2}\right)}{x \left(2 + \frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{x \left(3 - \frac{2}{x} + \frac{1}{x^2}\right)}{2 + \frac{1}{x}} = \frac{+\infty (3 - 0 + 0)}{2 + 0} = +\infty$$

ដូចនេះ
$$\lim_{x \to +\infty} \frac{3x^2 - 2x + 1}{2x + 1} = +\infty$$

II. រកប្រូបាចនៃព្រឹត្តិការណ៍ខាងក្រោម៖

A :«ចាប់បានឃ្លីពណ៌សទាំង 4 គ្រាប់ »

តាមរូបមន្ត
$$P(A) = \frac{n(A)}{n(S)}$$
 ដោយ $n(A) = C(4,4) = \frac{4!}{(4-4)!4!} = \frac{1}{0!} = \frac{1}{1} = 1$
$$n(S) = C(10,4) = \frac{10!}{(10-4)!4!} = \frac{10 \times 9 \times 8 \times 7 \times 6!}{6!4 \times 3 \times 2 \times 1} = 210$$

គេហ៊ុន
$$P(A) = \frac{n(A)}{n(S)} = \frac{1}{210}$$
 ដូចនេះ $\boxed{P(A) = \frac{1}{210}}$

B:«ចាប់បានឃ្លីពណ៌ក្រហមទាំង 4 គ្រាប់»

តាមរូបមន្ត
$$P(B) = \frac{n(B)}{n(S)}$$
 ដោយ $n(B) = C(6,4) = \frac{6!}{(6-4)!4!} = \frac{6 \times 5 \times 4!}{2!4!} = \frac{6 \times 5}{2 \times 1} = 15$

$$n(S) = 210$$

$$\text{Imms} \ \mathrm{P(B)} = \frac{\mathrm{n(B)}}{\mathrm{n(S)}} = \frac{15}{210} = \frac{3 \times 5}{3 \times 7 \times 5 \times 2} = \frac{1}{14} \quad \text{Imms} \ \mathrm{P(B)} = \frac{1}{14}$$

C:«ចាប់បានឃ្លើពណ៌ស 3 និង ឃ្លីពណ៌ក្រហម 1 »

តាមរូបមន្ត
$$P(C) = \frac{n(C)}{n(S)}$$
 ដោយ $n(C) = C(4,3) \times C(6,1) = \frac{4!}{1!3!} \times \frac{6!}{5!1!} = \frac{4 \times 3!}{3!} \times \frac{6 \times 5!}{5!} = 4 \times 6 = 24$ $n(S) = 210$

III. គណនាអាំងតេក្រាល៖

$$\begin{split} & \text{ ii. I} = \int_{1}^{2} \left(x^2 - 2x + 1 \right) \mathrm{d}x = \left[\frac{x^3}{3} - \frac{2x^2}{2} + x \right]_{1}^{2} = \frac{2^3}{3} - 2^2 + 2 - \left(\frac{1^3}{3} - 1^2 + 1 \right) = \frac{8}{3} - 4 + 2 - \frac{1}{3} \\ & = \frac{7}{3} - 2 = \frac{7 - 6}{3} = \frac{1}{3} \quad \text{ if is: } \boxed{I = \frac{1}{3}} \end{split}$$

2.
$$J = \int_0^1 (x^3 + e^x) dx = \left[\frac{x^4}{4} + e^x \right]_0^1 = \frac{1^4}{4} + e^1 - \left(\frac{0^4}{4} + e^0 \right) = \frac{1}{4} + e - 1 = \frac{1 - 4}{4} + e = -\frac{3}{4} + e$$

$$\text{QUIS: } \boxed{J = -\frac{3}{4} + e}$$

$$\mathbf{\tilde{n}}.\ K = \int_{1}^{e} \left(\frac{1}{x} - 1\right) dx = \left[\ln|x| - x\right]_{1}^{e} = \ln e - e - (\ln 1 - 1) = 1 - e - 0 + 1 = 2 - e$$

IV. a. បង្ហាញថាសមីការ $4x^2 + 9y^2 = 36$ ជាសមីការអេលីប

$$4x^2 + 9y^2 = 36$$
 $\Leftrightarrow \frac{4x^2}{36} + \frac{9y^2}{36} = \frac{36}{36}$ $\Leftrightarrow \frac{x^2}{9} + \frac{y^2}{4} = 1$ $\Leftrightarrow \frac{(x-0)^2}{3^2} + \frac{(y-0)^2}{2^2} = 1$ ជាសមីការអេលីប មានផ្ចិត(0,0)

ដូចនេះ សមីការ $4x^2 + 9y^2 = 36$ ជាសមីការអេលីប

ь. រកប្រវែងអ័ក្សតូច ប្រវែងអ័ក្សធំ រកកូអរដោនេនៃកំពូលទាំងពីរ និង កូអរដោនេនៃកំណុំទាំងពីរ ដោយ សមីការអេលីបគឺ $\frac{(x-0)^2}{3^2} + \frac{(y-0)^2}{2^2} = 1$ គេបាន

🖙 អ័ក្សធំជាអ័ក្សដេក

$$h = 0; k = 0;$$
 $a = 3; b = 2$; $c^2 = a^2 - b^2 = 9 - 4 = 5$ $\Rightarrow c = \sqrt{5}$

- ប្រវែងអ័ក្សតូច = 2b = 2(2) = 4
- ប្រវែងអ័ក្ស $\dot{\mathbf{n}}$ = 2a = 2(3) = 6
- \mathring{n} \mathfrak{N} V_1 (h-a,k); V_2 $(h+a,k) \Rightarrow V_1(-3,0)$; $V_2(3,0)$
- ກໍ່ຖືກ $F_1(h-c,k)$; $F_2(h+c,k)$ \Rightarrow $F_1(-\sqrt{5},0)$; $F_2(\sqrt{5},0)$

c. សង់អេលីប ក្នុងតម្រុយកូអរដោនេ

២៣

$${f V}$$
. ${f n}$. រកដែនកំណត់នៃអនុគមន៍f ដោយ $y=f(x)=rac{x^2+3x-3}{x-1}$ គេបាន $f(x)$ មានន័យលុះត្រាតែ $x-1
eq 0 \iff x
eq 1$

ដូចនេះ ដែនកំនត់នៃអនុគមន៍ f គឺ $D_f = \mathbb{R} - \{1\}$ រៀបរៀងដោយ ស៊<mark>ុំ សំអុន</mark>

$$\lim_{x \to \pm \infty} f(x)$$

$$\lim_{x\to\pm\infty}f(x)=\lim_{x\to\pm\infty}\frac{x^2+3x-3}{x-1}=\lim_{x\to\pm\infty}\frac{x^2}{x}=\pm\infty\quad\text{ifis:}\quad\lim_{x\to\pm\infty}f(x)=\pm\infty$$

ដូចនេះ
$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 + 3x - 3}{x - 1} = \pm \infty$$

ជួបនេះ
$$\lim_{x\to 1} f(x) = \pm \infty$$

គ. រកសមីការអាស៊ីមតួតឈរ និង សមីការអាស៊ីមតួតទ្រេត

- ដោយ $\lim_{x \to 1} f(x) = \pm \infty$ **ដូចនេះ** បន្ទាត់ x = 1 ជាសមីការអាស៊ីមតូត $\overline{ }$ $\overline{ }$ $\overline{ }$

ដូចនេះ បន្ទាត់ y = x + 4 ជាសមីការអាស៊ីមតូតទ្រេត

\mathbf{w} . គណនាដេរីវេ $\mathbf{f}'(\mathbf{x})$ និង សិក្សាសញ្ញាដេរីវេ $\mathbf{f}'(\mathbf{x})$

$$\begin{split} f'(x) &= \left(\frac{x^2 + 3x - 3}{x - 1}\right)' = \frac{\left(x^2 + 3x - 3\right)'(x - 1) - (x - 1)'\left(x^2 + 3x - 3\right)}{(x - 1)^2} = \frac{(2x + 3)(x - 1) - \left(x^2 + 3x - 3\right)}{(x - 1)^2} \\ &= \frac{2x^2 - 2x + 3x - 3 - x^2 - 3x + 3}{(x - 1)^2} = \frac{x^2 - 2x}{(x - 1)^2} \end{split}$$

$$f'(x) = 0 \quad \Leftrightarrow x^2 - 2x = 0 \quad \Leftrightarrow x(x - 2) = 0 \quad \Rightarrow \left[\begin{array}{c} x = 0 \\ x - 2 = 0 \end{array} \right. \Rightarrow x = 2$$

តារាសញ្ញាដេរីវេ f'(x)

Х	$-\infty$		0	-	1	2	+~
f'(x)		+	0	_	_	0	+

បរមាធៀប

- ត្រង់ x=0; f'(x)=0 ប្តូរសញ្ញាពី + ទៅ- គេបាន f មានអតិបរមាធៀបមួយ គឺ $f(0)=\frac{0^2+3(0)-3}{0-1}=3$
- ត្រង់ x = 2; f'(x) = 0 ប្តូរសញ្ញាពី ទៅ + គេបាន f មានអប្បបរមាធៀបមួយ គឺ $f(2) = \frac{2^2 + 3(2) 3}{2 1} = 7$

ង. សង់តារាងអថេរភាព និង សង់ក្រាប(C)

• តារាងអថេរភាពនៃ f

x	$-\infty$	0	1	1	2		+∞
f'(x)	+	0	_	_	0	+	
f(x)		, 3 ,	-∞	+∞	7	<i></i> ^	+∞

• ក្រាប C

ក្រសួងអប់រំឃុវជន និងកីទ្បា	
វិទ្យាល័យមេតូឌីស្ទកម្ពុជា	
ប្រឡងសញ្ញាប់ត្រមធ្យមសិក្សាទុតិយត្តមិ	
ឈ្មោះ នឹងហត្ថលេខាអនុរក្ស៖	

លេខបគ្ចប់៖
លេខតុ៖
មធាលប្រទង្រ៖

សម័យបទ្បង៖ ២០ ស៊ីហា ២០១៨

នាមត្រកូលនិងនាមខ្លួន៖

ថ្ងៃខែឆ្នាំកំណើត៖

ចេក្ខជនមិនត្រូវធ្វើសញ្ញាសម្គាល់អ្វីមួយនៅលើសន្លឹកប្រទ្បងទ្បើយៗ សន្លឹកប្រទ្បងដែលមានសញ្ញាសម្គាល់នឹងត្រូវបានពិន្ទស<mark>ុ</mark>ន្យៗ

វិញ្ញាសា៖ គណិតវិទ្យាថ្នាក់សង្គម រយ:ពេល៖ ៩០ នាទី ពិន្ទុ ៖ ៧៤

លេខសម្លាត់៖

ពិន្ទួសរុប

សេចក្តីរំលានាំ៖ ១. បេក្ខជនត្រូវគូសខ្វែងនៅទំព័រទី២ ផ្នែកខាងលើដែលត្រូវកាត់ចេញ។

២. បេក្ខជនត្រូវសរសេរចម្លើយនៃសំណួរបន្តនៅលើទំព័រទី២ ទី៣ និងទី៤ៗ

ទិញ្ញាសានី៧

I. (១០ពិន្ទ) ចូរគណនាតម្លៃនៃលីមីតខាងក្រោម៖

n.
$$\lim_{x\to 1} \frac{x^2-1}{\sqrt{x}-1}$$

8.
$$\lim_{x\to 2} \frac{x^3-8}{\sqrt{x+2}-2}$$

n.
$$\lim_{x\to 1} \frac{x^2 + 4x - 5}{x - 1}$$

II. (១០ពិន្ទុ) ក្នុងថង់មួយមានប៊ូលខៀវចំនួន 3 និងប៊ូលពណ៌ខ្មៅចំនួន 5។ គេចាប់យកប៊ូល 2 ចេញពីថង់ដោយចៃដន្យ។ ចូររកប្រូបាប នៃព្រឹត្តិការណ៍ខាងក្រោម៖

- ក. « គេចាប់បានប៊ូលពណ៌ខៀវទាំងអស់ »
- ខ. «គេចាប់បានប៊ូលពណ៌ខ្មៅទាំងអស់»
- គ. «គេចាប់បានប៊ូលមួយក្នុងមួយពណ៌»

III. (១០ពិន្ទុ) ចូរគណនាអាំងតេក្រាលខាងក្រោម៖

n.
$$I = \int_{1}^{3} x^{2} dx$$

8.
$$J = \int_{1}^{4} (2x^2 - 4x + 4) dx$$

8.
$$J = \int_1^4 (2x^2 - 4x + 4) dx$$
 6. $K = \int_1^3 (x^2 + \frac{1}{x} - e^x) dx$

IV. (១៥ពិន្ទ) គេមានសមីការ $16x^2 + 9y^2 = 144$ ។

- ក. បង្ហាញថាសមីការនេះជាសមីការអេលីប។
- ខ. ចូររកប្រវែងអ័ក្សធំ ប្រវែងអ័ក្សតូច កូអរដោនេនៃកំពូលទាំងពីរ និងកូអរដោនេនៃកំណុំទាំងពីរ។
- គ. ចូរសង់អេលីប។

v. (៣០ពិន្ទុ) អនុគមន៍ f កំណត់ដោយ $y = f(x) = \frac{x^2 - 3x - 3}{x - 2}$ មានក្រាបតំណាង (C) ។

- ក. ចូររកដែនកំណត់នៃអនុគមន៍ f ។
- ${f 2.}$ ចូរគណនា $\lim_{x o 2} f(x)$; $\lim_{x o -\infty} f(x)$; $\lim_{x o +\infty} f(x)$ ។ រួចទាញរកសមីការអាស៊ីមតូតឈរនៃក្រាប (C) ។
- គ. ចូរបង្ហាញថា $f(x) = x 1 + \frac{-5}{x 2}$ ។ រួចទាញរកសមីការអាស៊ីមតូតទ្រេត។
- ${f w}$. សិក្សាអថេរភាព សង់តារាងអថេរភាព និង សង់ក្រាប ${
 m (C)}$ ។

ក. $\lim_{x\to 1} \frac{x^2-1}{\sqrt{x}-1}$ (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$= \lim_{x \to 1} \frac{\left(x^2 - 1\right)\left(\sqrt{x} + 1\right)}{\left(\sqrt{x} - 1\right)\left(\sqrt{x} + 1\right)} = \lim_{x \to 1} \frac{\left(x - 1\right)\left(x + 1\right)\left(\sqrt{x} + 1\right)}{x - 1} = \lim_{x \to 1} \left(x + 1\right)\left(\sqrt{x} + 1\right) = (1 + 1)\left(\sqrt{1} + 1\right) = 4$$

ដូចនេះ
$$\lim_{x \to 1} \frac{x^2 - 1}{\sqrt{x} - 1} = 4$$

8. $\lim_{x\to 2} \frac{x^3-8}{\sqrt{x+2}-2}$ (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$= \lim_{x \to 2} \frac{\left(x^3 - 2^3\right)\left(\sqrt{x+2} + 2\right)}{\left(\sqrt{x+2} - 2\right)\left(\sqrt{x+2} + 2\right)} = \lim_{x \to 2} \frac{\left(x - 2\right)\left(x^2 + 2x + 2^2\right)\left(\sqrt{x+2} + 2\right)}{x + 2 - 2^2}$$

$$= \lim_{x \to 2} \frac{\left(x - 2\right)\left(x^2 + 2x + 4\right)\left(\sqrt{x+2} + 2\right)}{x - 2} = \lim_{x \to 2} \left(x^2 + 2x + 4\right)\left(\sqrt{x+2} + 2\right) = \left(2^2 + 2(2) + 4\right)\left(\sqrt{2+2} + 2\right)$$

$$= 12(4) = 48$$

ដូចនេះ
$$\lim_{x\to 2} \frac{x^3-8}{\sqrt{x+2}-2} = 48$$

គ. $\lim_{x\to 1} \frac{x^2+4x-5}{x-1}$ (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$= \lim_{x \to 1} \frac{(x-1)(x+5)}{x-1} = \lim_{x \to 1} (x+5) = 1+5 = 6 \qquad \text{III.} \\ \lim_{x \to 1} \frac{x^2 + 4x - 5}{x-1} = 6$$

II. រកប្រូបាបនៃព្រឹត្តិការណ៍៖

ក. « គេចាប់បានប៊ូលពណ៌ខៀវទាំងអស់ » តាង A : « គេចាប់បានប៊ូលពណ៌ខៀវទាំងអស់ »

តាមរូបមន្ត
$$P(A) = \frac{n(A)}{n(S)}$$
 ដោយ $n(A) = C(3,2) = \frac{3!}{(3-2)!2!} = \frac{3 \times 2!}{1!2!} = \frac{3}{1} = 3$ $n(S) = C(8,2) = \frac{8!}{6!2!} = \frac{8 \times 7 \times 6!}{6! \times 2 \times 1} = 28$

គេហ្ន
$$P(A) = \frac{n(A)}{n(S)} = \frac{3}{28}$$
 ដូចនេះ $P(A) = \frac{3}{28}$

2. «គេចាប់បានប៊ូលពណ៌ខ្មៅទាំងអស់» តាង B: « គេចាប់បានប៊ូលពណ៌ខ្មៅទាំងអស់ »

តាមរូបមន្ត
$$P(B) = \frac{n(B)}{n(S)}$$
 ដោយ $n(B) = C(5,2) = \frac{5!}{(5-2)!2!} = \frac{5 \times 4 \times 3!}{3!2 \times 1} = 10;$ $n(S) = 28$

ពេញន
$$P(B) = \frac{n(B)}{n(S)} = \frac{10}{28} = \frac{5}{14}$$
 ដូចនេះ $P(B) = \frac{5}{14}$

គ. «គេចាប់បានប៊ូលមួយក្នុងមួយពណ៌» តាង C: « គេចាប់បានប៊ូលមួយក្នុងមួយពណ៌ »

តាមរូបមន្ត
$$P(C) = \frac{n(C)}{n(S)}$$
 ដោយ $n(C) = C(3,1) \times C(5,1) = \frac{3!}{2!1!} \times \frac{5!}{4!1!} = \frac{3 \times 2!}{2!} \times \frac{5 \times 4!}{4!} = 3 \times 5 = 15$ $n(S) = 28$

គេហន
$$\mathrm{P(C)}=\frac{\mathrm{n(C)}}{\mathrm{n(S)}}=\frac{15}{28}$$
 ដូចនេះ $\boxed{\mathrm{P(C)}=\frac{15}{28}}$ រៀបរៀងដោយ ស៊ី សំអុន

$$\tilde{\mathbf{n}}. \, \mathbf{I} = \int_{1}^{3} \mathbf{x}^{2} d\mathbf{x} = \left[\frac{\mathbf{x}^{3}}{3}\right]_{1}^{3} = \frac{3^{3}}{3} - \frac{1^{3}}{3} = \frac{27 - 1}{3} = \frac{26}{3} \qquad \text{Figs.} \, \int_{1}^{3} \mathbf{x}^{2} d\mathbf{x} = \frac{26}{3}$$

8.
$$J = \int_{1}^{4} (2x^{2} - 4x + 4) dx = \left[\frac{2x^{3}}{3} - \frac{4x^{2}}{2} + 4x \right]_{1}^{4} = \frac{2(4)^{3}}{3} - 2(4)^{2} + 4(4) - \left(\frac{2(1)^{3}}{3} - 2(1)^{2} + 4(1) \right)$$

$$= \frac{128}{3} - 16 - \frac{2}{3} - 2 = \frac{126}{3} - 18 = \frac{126 - 54}{3} = \frac{72}{3} = 24 \quad \text{Hiis: } J = 24$$

$$\begin{split} & \mathbf{\tilde{n}}. \ \mathrm{K} = \int_{1}^{3} \left(\mathrm{x}^{2} + \frac{1}{\mathrm{x}} - \mathrm{e}^{\mathrm{x}} \right) \mathrm{d}\mathrm{x} = \left[\frac{\mathrm{x}^{3}}{3} + \ln |\mathrm{x}| - \mathrm{e}^{\mathrm{x}} \right]_{1}^{3} = \frac{3^{3}}{3} + \ln 3 - \mathrm{e}^{3} - \left(\frac{1^{3}}{3} + \ln 1 - \mathrm{e}^{1} \right) = \frac{27}{3} + \ln 3 - \mathrm{e}^{3} - \frac{1}{3} - 0 + \mathrm{e}^{3} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils} \\ & = \frac{26}{3} + \ln 3 - \mathrm{e}^{3} + \mathrm{e} \quad \text{Hils}$$

IV. \mathbf{n} . បង្ហាញថាសមីការ $16x^2 + 9y^2 = 144$ ជាសមីការអេលីប

$$\begin{aligned} 16x^2 + 9y^2 &= 144 \quad \Leftrightarrow \frac{16x^2}{144} + \frac{9y^2}{144} = \frac{144}{144} \\ &\Leftrightarrow \frac{x^2}{9} + \frac{y^2}{16} = 1 \\ &\Leftrightarrow \frac{(x-0)^2}{3^2} + \frac{(y-0)^2}{4^2} = 1 \end{aligned} \qquad \text{ជាសមីការអេលីប ដែលមានផ្ចិត $(0,0)$$$

ដូចនេះ សមីការ $16x^2 + 9y^2 = 144$ ជាសមីការអេលីប

 $m{2}$. ប្រវែងអ័ក្សធំ ប្រវែងអ័ក្សតូច កូអរដោនេនៃកំពូលទាំងពីរ និងកូអរដោនេនៃកំណុំទាំងពីរ ដោយ អេលីបមានសមីការ $rac{(\mathbf{x}-\mathbf{0})^2}{3^2}+rac{(\mathbf{y}-\mathbf{0})^2}{4^2}=1$ គេបាន

$$a = 4; b = 3;$$
 $c^2 = a^2 - b^2 = 16 - 9 = 7 \implies c = \sqrt{7}$

- 🖙 អ័ក្សធំជាអ័ក្សឈរ
 - ប្រវែងអ័ក្សធំ = 2a = 2(4) = 8

 - $\mathring{\mathsf{n}}$ $\mathring{\mathsf{n}}$ $\mathring{\mathsf{n}}$ $\mathring{\mathsf{N}}$ $V_1(h,k-a); V_2(h,k+a) \Rightarrow V_1(0,-4); V_2(0,3)$
 - $\circ \; \mathring{\tilde{\mathsf{n}}} \mathring{\mathsf{n}} \mathring{\mathsf{n}} \; \mathrm{F}_{1}(\mathsf{h},\mathsf{k}-\mathsf{c}); \; \mathrm{F}_{2}(\mathsf{h},\mathsf{k}+\mathsf{c}) \quad \Rightarrow \; \mathrm{F}_{1}(\mathsf{0},-\sqrt{7}); \; \mathrm{F}_{2}(\mathsf{0},\sqrt{7})$

គ. សង់អេលីប

ស៊ី សំអុន

ដោយ $y = f(x) = \frac{x^2 - 3x - 3}{x - 2}$ ដោយ f(x) មានន័យលុះត្រាតែ $x - 2 \neq 0$ $\Leftrightarrow x \neq 2$

ដូចនេះ $D_f = \mathbb{R} - \{2\}$

 ${f 2}.$ គណនា $\lim_{{f x} o 2} f({f x}); \ \lim_{{f x} o -\infty} f({f x}); \ \lim_{{f x} o +\infty} f({f x})$ ។ រួចទាញរកសមីការអាស៊ីមតូតឈរនៃក្រាប $({f C})$

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - 3x - 3}{x - 2} = \pm \infty$$

ដូចនេះ
$$\lim_{x\to 2} f(x) = \pm \infty$$

$$\lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} \frac{x^2-3x-3}{x-2} = \lim_{x\to -\infty} \frac{x^2}{x} = -\infty \quad \text{ifis: } \lim_{x\to -\infty} f(x) = -\infty$$

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{x^2-3x-3}{x-2} = \lim_{x\to +\infty} \frac{x^2}{x} = +\infty \quad \text{figs: } \lim_{x\to +\infty} f(x) = +\infty$$

ដោយ $\lim_{x\to 2} f(x) = \pm \infty$ ដូចនេះ បន្ទាត់ x = 2 ជាអាស៊ីមតូតឈរ

គ. បង្ហាញថា $f(x) = x - 1 + \frac{-5}{x - 2}$ រួចទាញរកសមីការអាស៊ីមតូតទ្រេត

$$\text{shut} \ x-1+\frac{-5}{x-2}=\frac{(x-1)(x-2)-5}{x-2}=\frac{x^2-2x-x+2-5}{x-2}=\frac{x^2-3x-3}{x-2}=f(x)$$

ដូចនេះ
$$f(x) = x - 1 + \frac{-5}{x - 2}$$
 ដោយ $\lim_{x \to \pm \infty} \frac{-5}{x - 2} = 0$ ដូចនេះ បន្ទាត់ $y = x - 1$ ជាអាស៊ីមតូតទ្រេត

ឃ. សិក្សាអថេរភាព សង់តារាងអថេរភាព និង សង់ក្រាប(C)

$$\begin{split} f'(x) &= \left(\frac{x^2 - 3x - 3}{x - 2}\right)' = \frac{\left(x^2 - 3x - 3\right)' \left(x - 2\right) - \left(x - 2\right)' \left(x^2 - 3x - 3\right)}{(x - 2)^2} \\ &= \frac{(2x - 3)(x - 2) - \left(x^2 - 3x - 3\right)}{(x - 2)^2} = \frac{2x^2 - 4x - 3x + 6 - x^2 + 3x + 3}{(x - 2)^2} = \frac{x^2 - 4x + 9}{(x - 2)^2} \end{split}$$

$$f^{'}(x) = 0 \Leftrightarrow x^2 - 4x + 9 = 0; \; \Delta = b^2 - 4ac = 16 - 4(1)(9) = -20 < 0 \Rightarrow f^{'}(x)$$
មានសញ្ញាតាមមេគុណ $a = b^2 - 4ac = 16 - 4(1)(9) = -20 < 0$

• តារាងសញ្ញា f'(x)

X	$-\infty$	2	+∞
f'(x)	+		+

• តារាងអថេរភាពនៃ f

Х	$-\infty$	2	+∞
f'(x)	+		+
f(x)		+∞	+∞ -∞

• សង់ក្រាប (C)

•
$$C \cap (y'oy)$$
 $\vec{\mathbf{n}} x = 0 \Rightarrow y = \frac{3}{2}$

•
$$C \cap (x'ox)$$
 $\overset{\blacksquare}{\mathbf{n}} y = 0 \Rightarrow x = \frac{3 \pm \sqrt{21}}{2}$

រៀបរៀងដោយ ស៊ុំ សំអុន

២៨

ក្រសួងអប់វិយុវជន នឹងកីទ្បា		លេខបន្ទប់៖
វិទ្យាល័យមេតូឌីស្ទកម្ពុជា		លេខតុ៖
ប្រឡងសញ្ញាច់ត្រមធ្យមសិក្សាទុតិយត្តមិ		មណ្ឌលប្រទ្បង៖
ឈ្មោះ នឹងហត្ថលេខាអនុរក្ស៖	សម័យបទ្បង៖ ២០ ស៊ីហា ២០១៨	
	នាមត្រកូលនឹងនាមខ្លួន៖	
	ថ្ងៃខែឆ្នាំកំពេរាិ៍ត៖	

បេក្ខជនមិនត្រូវធ្វើសញ្ញាសម្គាល់អ្វីមួយនៅលើសន្លឹកប្រទ្បងឡើយៗ សន្លឹកប្រទ្បងដែលមានសញ្ញាសម្គាល់នឹងត្រូវបានពិន្ទស្នន្យៗ

·≽-----

វិញ្ញាសា៖ គណិតវិទ្យាថ្នាក់សង្គម រយ:ពេល៖ ៩០ នាទី ពិន្ទុ ៖ ៧៥

លេខសម្ងាត់៖

ពិន្ទួសរុប

សេចក្តីរំលានាំ៖ ១. បេក្ខជនត្រូវគូសខ្វែងនៅទំព័រទី២ ផ្នែកខាងលើដែលត្រូវកាត់ចេញៗ ២. បេក្ខជនត្រូវសរសេរចម្លើយនៃសំណួរបន្តនៅលើទំព័រទី២ ទី៣ និងទី៤ៗ

<u>ទិញ្ញាសានី៨</u>

- I. (១៥ពិន្ទុ) ក្នុងប្រអប់ប៊ិចមួយមានប៊ិចពណ៌ខៀវ 5 ដើម និងប៊ិចពណ៌ក្រហម 6 ដើម។ គេបានដកយកប៊ិច 4 ដើមចេញមកក្រៅ ដោយចៃដន្យ។ ចូររកប្រូបាបនៃព្រឹត្តិការណ៍ខាងក្រោម៖
 - A : «គេចាប់បានចិចពណ៌ខៀវទាំង 4 ដើម»
 - B: «គេចាប់បានប៊ិចពណ៌ខៀវ 2 ដើម និង ប៊ិចពណ៌ក្រហម 2 ដើម»
 - C: «គេចាប់បានប៊ិចក្រហមយ៉ាងតិច 1 ដើម»
- II. (១០ពិន្ទុ) ចូរគណនាតម្លៃនៃលីមីតខាងក្រោម៖

$$\lim_{x\to 1} \frac{x^3-1}{x^2-1}$$

8.
$$\lim_{x\to 0} \frac{x^2-2x}{\sqrt{9+x}-3}$$

$$\mathbf{\tilde{n}}. \lim_{x \to 1} \frac{x^2 + 4x - 5}{x^2 - 2x + 1}$$

III. (១០ពិន្ទ<u>ុ</u>)

ត. គណនា
$$I = \int_0^1 \left(1 + \frac{1}{x} + \frac{1}{x^2}\right) dx$$
 ។

$$\mathbf{g}$$
. គេមាន $\mathbf{f}(\mathbf{x}) = \frac{\mathbf{x}^2 - 5\mathbf{x} + 5}{1 - \mathbf{x}}$ ។ ចូរបង្ហាញថា $\mathbf{f}(\mathbf{x}) = -\mathbf{x} + 4 + \frac{1}{1 - \mathbf{x}}$ ។ រួចគណនា $\mathbf{K} = \int_0^2 \mathbf{f}(\mathbf{x}) d\mathbf{x}$

IV. (១០ពិន្ទ) គេមានសមីការអេលីប $25x^2 + 4y^2 = 100$ ។

- ក. ចូរសរសេរសមីការស្តង់ដានៃអេលីបនេះ រួចទាញរកកូអរដោនេនៃកំពូលទាំងពីរ និងកូអរដោនេនៃកំណុំទាំងពីរ។
- ខ. ចូររកប្រវែងអ័ក្សធំ និង ប្រវែងអ័ក្សតូច រួចសង់អេលីបនេះ។
- ${f V}$. (៣០ពិន្ទុ) គេអោយអនុគមន៍ ${f f}$ កំណត់ដោយ ${f f}({f x})=rac{{f x}^2-5{f x}+7}{{f x}-2}$ មានក្រាបតំណាង ${f (C)}$ ។
 - **ក**. រកដែនកំណត់នៃអនុគមន៍ f ។
 - ខ. គណនា $\lim_{x\to 2} f(x)$; $\lim_{x\to +\infty} f(x)$ ។ ទាញរកសមីការអាស៊ីមតូតឈរនៃក្រាប C ។
 - គ. រកតម្លៃនៃចំនួនពិត a, b និង c ដែលធ្វើអោយ $f(x)=ax+b+\frac{c}{x-2}$ ។ បង្ហាញថា បន្ទាត់ d ដែលមានសមីការ $y=x-3+\frac{1}{x-2}$ ជាអាស៊ីមតូតទ្រេតនៃក្រាប C ត្រង់ $\pm\infty$ ។
 - <mark>ឃ. សិក្សាអថេរភាព និងសង់ក្រាប</mark> C។

I. រកប្រូបាបនៃព្រឹត្តិការណ៍ខាងក្រោម៖

A : «គេចាប់បានចិចពណ៌ខៀវទាំង 4 ដើម»

តាមរូបមន្ត
$$P(A) = \frac{n(A)}{n(S)}$$
 ដោយ $n(A) = C(5,4) = \frac{5!}{(5-4)!4!} = \frac{5 \times 4!}{1!4!} = 5$
$$n(S) = C(11,4) = \frac{11!}{(11-4)!4!} = \frac{11 \times 10 \times 9 \times 8 \times 7!}{7! \times 4 \times 3 \times 2 \times 1} = 330$$

គេហ៊ុន
$$P(A) = \frac{n(A)}{n(S)} = \frac{5}{330} = \frac{1}{66}$$
 ដូចនេះ $P(A) = \frac{1}{66}$

B: «គេចាប់បានច៊ិចពណ៌ខៀវ 2 ដើម និង ច៊ិចពណ៌ក្រហម 2 ដើម»

$$\text{negues} \ \mathrm{P(B)} = \frac{\mathrm{n(B)}}{\mathrm{n(S)}} \quad \text{imw} \ \mathrm{n(B)} = \mathrm{C(5,2)} \times \mathrm{C(6,2)} = \frac{5!}{3!2!} \times \frac{6!}{4!2!} = \frac{5 \times 4 \times 3!}{3! \times 2 \times 1} \times \frac{6 \times 5 \times 4!}{4! \times 2 \times 1} = 150$$

គេហ៊ុន
$$P(B) = \frac{n(B)}{n(S)} = \frac{150}{330} = \frac{5}{11}$$
 ដូចនេះ $P(B) = \frac{5}{11}$

C: «គេចាប់បានប៊ិចក្រហមយ៉ាងតិច 1 ដើម»

តាមរូបមន្ត
$$P(C) = 1 - P(A)$$
 ដោយ $P(A) = \frac{1}{66}$

$$\Rightarrow$$
 P(C) = 1 - $\frac{1}{66} = \frac{66 - 1}{66} = \frac{65}{66}$ **4618:** P(C) = $\frac{65}{66}$

II. គណនាលីមីត

ក. $\lim_{x\to 1} \frac{x^3-1}{x^2-1}$ (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$= \lim_{x \to 1} \frac{(x-1)\left(x^2 + x + 1\right)}{(x-1)(x+1)} = \lim_{x \to 1} \frac{x^2 + x + 1}{x+1} = \frac{1^2 + 1 + 1}{1+1} = \frac{3}{2} \quad \text{huss} \quad \lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1} = \frac{3}{2}$$

8. $\lim_{x\to 0} \frac{x^2-2x}{\sqrt{9+x}-3}$ (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$= \lim_{x \to 0} \frac{\left(x^2 - 2x\right)\left(\sqrt{9 + x} + 3\right)}{\left(\sqrt{9 + x} - 3\right)\left(\sqrt{9 + x} + 3\right)} = \lim_{x \to 0} \frac{x(x - 2)\left(\sqrt{9 + x} + 3\right)}{9 + x - 9} = \lim_{x \to 0} (x - 2)\left(\sqrt{9 + x} + 3\right)$$

$$= (0 - 2)\left(\sqrt{9 + 0} + 3\right) = -2(6) = -12$$

$$\lim_{x \to 0} \frac{x^2 - 2x}{\sqrt{9 + x} - 3} = -12$$

គ. $\lim_{x\to 1} \frac{x^2 + 4x - 5}{x^2 - 2x + 1}$ (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$= \lim_{x \to 1} \frac{(x-1)(x+5)}{(x-1)(x-1)} = \lim_{x \to 1} \frac{x+5}{x-1} = \pm \infty \qquad \text{figs.} \\ \lim_{x \to 1} \frac{x^2 + 4x - 5}{x^2 - 2x + 1} = \pm \infty$$

III. ក. គណនា I

$$I = \int_{1}^{e} \left(1 + \frac{1}{x} + \frac{1}{x^{2}} \right) dx = \left[x + \ln|x| - \frac{1}{x} \right]_{1}^{e} = e + \ln e - \frac{1}{e} - \left(1 + \ln 1 - \frac{1}{1} \right) = e + 1 - \frac{1}{e} - 1 - 0 + 1 = e + 1 - \frac{1}{e} - -$$

ដូចនេះ
$$I = e + 1 - \frac{1}{e}$$

$$\text{thu} - x + 4 + \frac{1}{1 - x} = \frac{(-x + 4)(1 - x) + 1}{1 - x} = \frac{-x + x^2 + 4 - 4x + 1}{1 - x} = \frac{x^2 - 5x + 5}{1 - x} = f(x)$$

ដូចនេះ
$$f(x) = -x + 4 + \frac{1}{1-x}$$

គណនា K

$$\begin{split} \mathrm{K} &= \int_0^2 f(\mathrm{x}) \mathrm{d} \mathrm{x} = \int_0^2 \left(-\mathrm{x} + 4 + \frac{1}{1 - \mathrm{x}} \right) \mathrm{d} \mathrm{x} = \left[-\frac{\mathrm{x}^2}{2} + 4 \mathrm{x} - \ln|1 - \mathrm{x}| \right]_0^2 \\ &= -\frac{2^2}{2} + 4(2) - \ln|1 - 2| - \left(-\frac{0^2}{2} + 4(0) - \ln 1 \right) = -2 + 8 - 0 + 0 + 0 - 0 = 6 \end{split}$$

IV. (១០ពិន្ទ) គេមានសមីការអេលីប ។

ក. សរសេរសមីការស្តង់ដានៃអេលីប $25x^2 + 4y^2 = 100$

$$\begin{split} 25x^2 + 4y^2 &= 100 \quad \Leftrightarrow \frac{25x^2}{100} + \frac{4y^2}{100} = \frac{100}{100} \\ &\Leftrightarrow \frac{x^2}{4} + \frac{y^2}{25} = 1 \\ &\Leftrightarrow \frac{(x-0)^2}{2^2} + \frac{(y-0)^2}{5^2} = 1 \quad \text{ជាសមីការស្តង់ដានៃអេលីប ដែលមានផ្ចិត}(0,0) \end{split}$$

ទាញរកកូអរដោនេនៃកំពូលទាំងពីរ និងកូអរដោនេនៃកំណុំទាំងពីរ ដោយ សមីការស្តង់ដានៃអេលីបគឺ $\frac{({
m x}-0)^2}{2^2}+\frac{({
m y}-0)^2}{5^2}=1$ គេបាន

🖙 អ័ក្សធំជាអ័ក្សឈរ

$$^{\text{LSF}}$$
 h = 0, k = 0 , a = 5, b = 2, $c^2 = a^2 - b^2 = 25 - 4 = 21$ \Rightarrow c = $\sqrt{21}$

•
$$\mathring{\mathbf{n}}$$
 \mathbb{N} $V_1(h, k-a)$; $V_2(h, k+a) \Rightarrow V_1(0, -5)$, $V_2(0, 5)$

$$\circ \stackrel{\bullet}{\mathsf{n}} \mathring{\mathsf{n}} \mathring{\mathsf{n}} \, \mathrm{F}_1(\mathsf{h},\mathsf{k}-\mathsf{c}); \, \mathrm{F}_2(\mathsf{h},\mathsf{k}+\mathsf{c}) \quad \Rightarrow \, \mathrm{F}_1(\mathsf{0},-\sqrt{21}); \, \mathrm{F}_2(\mathsf{0},\sqrt{21})$$

2. រកប្រវែងអ័ក្សធំ ប្រវែងអ័ក្សតូច និង សង់អេលីប

• ប្រវែងអ័ក្សធំ =
$$2a = 2(5) = 10$$

• សង់អេលីប

v. ក. រកដែនកំណត់នៃអនុគមន៍ f

ដោយ
$$f(x)=\frac{x^2-5x+7}{x-2}$$
 $f(x)$ មានន័យលុះត្រាតែ $x-2\neq 0$ $\Leftrightarrow x\neq 2$ ដូចនេះ ដែនកំណត់នៃអនុគមន៍ f គឺ $D_f=\mathbb{R}-\{2\}$

$$\lim_{x\to 2} f(x) = \lim_{x\to 2} \frac{x^2 - 5x + 7}{x-2} = \pm \infty \qquad \text{ifin} \ \lim_{x\to 2} f(x) = \pm \infty$$

$$\lim_{x\to\pm\infty}f(x)=\lim_{x\to\pm\infty}\frac{x^2-5x+7}{x-2}=\lim_{x\to\pm\infty}\frac{x^2}{x}=\pm\infty \qquad \text{ifis: } \lim_{x\to\pm\infty}f(x)=\pm\infty$$

• ទាញរកសមីការអាស៊ីមតូតឈរនៃក្រាប C

ដោយ $\lim_{x\to 2} f(x) = \pm \infty$ ដូចនេះ បន្ទាត់ x = 2 ជាសមីការអាស៊ីមតូតឈរ

គ. • រកតម្លៃនៃចំនួនពិត a, b និង c ដែលធ្វើអោយ $f(x) = ax + b + \frac{c}{x-2}$

$$f(x) = ax + b + \frac{c}{x-2} \Leftrightarrow \frac{x^2 - 5x + 7}{x-2} = ax + b + \frac{c}{x-2}$$
$$\Leftrightarrow \frac{(x-3)(x-2) + 1}{x-2} = ax + b + \frac{c}{x-2}$$
$$\Leftrightarrow x-3 + \frac{1}{x-2} = ax + b + \frac{c}{x-2}$$

ធ្វឹមមេគុណគេបាន ${
m a}=1, {
m b}=-3, {
m c}=1$

ដូចនេះ a = 1, b = -3, c = 1

ullet បង្ហាញថា បន្ទាត់ ${
m d}$ ដែលមានសមីការ ${
m y}={
m x}-3$ ជាអាស៊ីមតូតទ្រេតនៃក្រាប ${
m C}$ ត្រង់ $\pm\infty$

ឃើងមាន
$$y = f(x) = x - 3 + \frac{1}{x - 2}$$
 ដោយ $\lim_{x \to \pm \infty} \frac{1}{x - 2} = 0$

ដូចនេះ បន្ទាត់ d: y = x-3 ជាអាស៊ីមតូតទ្រេតនៃក្រាប C ត្រង់ $\pm \infty$

ឃ. សិក្សាអថេរភាព និងសង់ក្រាប C

• ដើរីវេ

$$\begin{split} f'(x) &= \left(\frac{x^2 - 5x + 7}{x - 2}\right)' = \frac{\left(x^2 - 5x + 7\right)'(x - 2) - (x - 2)'\left(x^2 - 5x + 7\right)}{(x - 2)^2} \\ &= \frac{(2x - 5)(x - 2) - \left(x^2 - 5x + 7\right)}{(x - 2)^2} = \frac{2x^2 - 4x - 5x + 10 - x^2 + 5x - 7}{(x - 2)^2} = \frac{x^2 - 4x + 3}{(x - 2)^2} \end{split}$$

$$f^{'}(x)=0 \quad \Leftrightarrow \ x^2-4x+3=0 \quad$$
 មានឫស $x_1=1; \ x_2=3$

• តារាងសញ្ញាដេរីវេ f'(x)

X	$-\infty$		1	2	2	3		+∞
f'(x)		+	0	_	_	0	+	

បរមាធៀប

- \circ ត្រង់ $x=1; \ f'(x)=0$ ប្តូរសញ្ញាពី + ទៅ- គេបាន f មានអតិបរមាធៀបមួយ គឺ $f(1)=\frac{1^2-5(1)+7}{1-2}=-3$
- \circ ត្រង់ $x=3; \ f'(x)=0$ ប្តូរសញ្ញាពី ទៅ + គេបាន f មានអប្បបរមាធៀបមួយ គឺ $f(3)=\frac{3^2-5(3)+7}{3-2}=1$
- តារាងអថេរភាពនៃ f

• ក្រាប C
$$(C) \cap (y'oy) \; \vec{\overline{n}} \; x = 0 \quad \Rightarrow \; y = -\frac{7}{2}$$

ក្រសួងអប់រំយុវជន នឹងកីទ្បា	
វិទ្យាល័យមេតូឌីស្ទកម្ពុជា	
ប្រឡងសញ្ញាច់ត្រមធ្យមសិក្សាទុតិយត្តមិ	
ឈ្មោះ នឹងហត្ថលេខាអនុវក្ស៖	

លេខបន្ទប់៖	
លេខតុ៖	
អ្នកប្ រជ្រាស់ មេ	

សម័យបទ្បង៖ ២០ ស៊ីហា ២០១៨

នាមត្រកូលនឹងនាមខ្លួន៖

ហត្ថលេខា៖ លេខសម្ងាត់៖

បេក្ខជនមិនត្រូវធ្វើសញ្ញាសម្គាល់អ្វីមួយនៅលើសន្លឹកប្រទ្បងទ្បើយៗ សន្លឹកប្រទ្បងដែលមានសញ្ញាសម្គាល់នឹងត្រូវបានពិន្ទុស្នន្យៗ

·*-----

វិញ្ញាសា៖ គណិតវិទ្យាថ្នាក់សង្គម រយ:ពេល៖ ៩០ នាទី ពិន្ទុ ៖ ៧៥

លេខសម្ងាត់៖

ពិន្ទួសរុប

សេចក្តីណែនាំ៖ ១. បេក្ខជនត្រូវគូសខ្វែងនៅទំព័រទី២ ផ្នែកខាងលើដែលត្រូវកាត់ចេញៗ

២. បេក្ខជនត្រូវសរសេរចម្លើយនៃសំណួរបន្តនៅលើទំព័រទី២ ទី៣ និងទី៤ៗ

ទិញ្ញាសានី៩

I. (១០ពិន្ទុ) គណនាលីមីត៖

n.
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$

8.
$$\lim_{x \to +\infty} \frac{x^4 - 5x}{x^2 - 3x + 1}$$

$$\mathbf{\tilde{n}}. \lim_{x \to +\infty} \left(x^3 - x^2 + 5 \right)$$

- II. (១០ពិន្ទុ) ក្នុងប្រអប់មួយមានខ្មៅដែពណ៌ខៀវ 5 ដើម និង ខ្មៅដែពណ៌ក្រហម 4 ដើម។ សិស្សម្នាក់បានចាប់យកខ្មៅដៃ 3 ព្រមគ្នា ចេញពីប្រអប់ដោយចៃដន្យ។
 - ក. រកប្រូបាបដែល «សិស្សយកបានខ្មៅដៃពណ៌ខៀវ 2 ដើម និង ខ្មៅដៃពណ៌ក្រហម 1 ដើម»
 - ខ. រកប្រូបាបដែល «សិស្សយកបានខ្មៅដែពណ៌ដូចគ្នា»។

III. (១០ពិន្ទុ) គណនាអាំងតេក្រាលខាងក្រោម៖

$$I = \int_{1}^{3} (x-2+3x^{2}) dx$$

$$K = \int_0^1 (-4x^2 + 5x + 7) dx$$

- IV. (១៥ពិន្ទ) អេលីប ${
 m E}$ មួយមានសមីការ $25{
 m x}^2+12{
 m y}^2=300$ ។
 - ក. រកកូអរដោនេផ្ចិត កំណុំ និងកំពូល នៃអេលីប E ។
 - $oldsymbol{2}$. រកកូអរដោនេនៃចំណុចប្រសព្វរវាងអេលីប ${f E}$ និងអ័ក្សទាំងពីរនៃតម្រុយកូអរដោនេ។ រួចសង់អេលីប ${f E}$ ។
- V. (៣០ពិន្ទុ) គេឲ្យអនុគមន៍ f កំណត់ដោយ $f(x) = \frac{x^2 + x + 4}{x + 1}$ ហើយមានក្រាប C ។
 - **ក**. រកដែនកំណត់នៃអនុគមន៍ f។
 - 2. គណនា $\lim_{x\to -1} f(x)$, $\lim_{x\to +\infty} f(x)$ ។
 - <mark>គ. សរសេរសមីការអាស៊ីមតូតឈរ និង អាស៊ីមតូតទ្រេតនៃក្រាប C ។</mark>
 - **ឃ**. សិក្សាសញ្ញាដេរីវេ f'(x) នៃអនុគមន៍ f ។
 - ង. សង់តារាងអថេរភាព អាស៊ីមតូត និង ក្រាប ${
 m C}$ នៃអនុគមន៍ ${
 m f}$ ។

I. គណនាលីមីត៖

$$\frac{1}{x} \cdot \lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$
 (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$= \lim_{x \to 2} \frac{(x-2)(x+2)}{x-2} = \lim_{x \to 2} (x+2) = 2+2 = 4 \qquad \text{ifis: } \lim_{x \to 2} \frac{x^2-4}{x-2} = 4$$

2.
$$\lim_{x\to +\infty} \frac{x^4-5x}{x^2-3x+1}$$
 (មានរាងមិនកំណត់ $\frac{\infty}{\infty}$)

$$=\lim_{x\to+\infty}\frac{x^4}{x^2}=\lim_{x\to+\infty}x^2=+\infty\quad\text{ifis:}\quad\lim_{x\to+\infty}\frac{x^4-5x}{x^2-3x+1}=+\infty$$

គ.
$$\lim_{x\to +\infty} (x^3 - x^2 + 5)$$
 (មានរាងមិនកំណត់ $+\infty - \infty$)

$$=\lim_{x\to+\infty}x^3\left(1-\frac{1}{x}+\frac{5}{x^3}\right)=+\infty\quad\text{ifil} \ \lim_{x\to+\infty}\left(x^3-x^2+5\right)=+\infty$$

II. ក. រកប្រូបាបដែល «សិស្សយកបានខ្មៅដែពណ៌ខៀវ 2 ដើម និង ខ្មៅដែពណ៌ក្រហម 1 ដើម» តាង A : «សិស្សយកបានខ្មៅដែពណ៌ខៀវ 2 ដើម និង ខ្មៅដែពណ៌ក្រហម 1 ដើម»

THUTS
$$P(A) = \frac{n(A)}{n(S)}$$
 in w $n(A) = C(5,2) \times C(4,1) = \frac{5!}{3!2!} \times \frac{4!}{3!1!} = \frac{5 \times 4 \times 3!}{3!2 \times 1} \times \frac{4 \times 3!}{3!} = 40$

$$n(S) = C(9,3) = \frac{9!}{6!3!} = \frac{9 \times 8 \times 7 \times 6!}{6!3 \times 2 \times 1} = 84$$

$$\text{imis } P(A) = \frac{n(A)}{n(S)} = \frac{40}{84} = \frac{10}{21} \quad \text{is:} \boxed{P(A) = \frac{10}{21}}$$

ខ. រកប្រូបាបដែល «សិស្សយកបានខ្មៅដែពណ៌ដូចគ្នា» តាង B : «សិស្សយកបានខ្មៅដែពណ៌ដូចគ្នា»

តាមរូបមន្ត
$$P(B) = \frac{n(B)}{n(S)}$$
 ដោយ $n(B) = C(5,3) + C(4,3) = \frac{5!}{2!3!} + \frac{4!}{1!3!} = \frac{5 \times 4 \times 3!}{2 \times 1 \times 3!} + \frac{4 \times 3!}{3!} = 14$

$$n(S) = 84$$

គេបាន
$$P(B) = \frac{n(B)}{n(S)} = \frac{14}{84} = \frac{1}{6}$$
 ដូចនេះ $P(B) = \frac{1}{6}$

III. គណនាអាំងតេក្រាល៖

$$\begin{split} & I = \int_{1}^{3} \left(x - 2 + 3x^{2} \right) dx = \left[\frac{x^{2}}{2} - 2x + \frac{3x^{3}}{3} \right]_{1}^{3} = \frac{3^{2}}{2} - 2(3) + 3^{3} - \left(\frac{1^{2}}{2} - 2(1) + 1^{3} \right) \\ & = \frac{9}{2} - 6 + 27 - \frac{1}{2} + 2 - 1 = 26 \quad \text{Gis: } \overline{I} = 26 \\ & K = \int_{0}^{1} \left(-4x^{2} + 5x + 7 \right) dx = \left[\frac{-4x^{3}}{3} + \frac{5x^{2}}{2} + 7x \right]_{0}^{1} = \frac{-4(1)^{3}}{3} + \frac{5(1)^{2}}{2} + 7(1) - \left(\frac{-4(0)^{3}}{3} + \frac{5(0)^{2}}{2} + 7(0) \right) = \frac{49}{6} \end{split}$$

ដូចនេះ
$$K = \frac{49}{6}$$

 ${f IV.}$ ក. រកកូអរដោនេផ្ចិត កំណុំ និងកំពូល នៃអេលីប ${f E}$

ដោយ អេលីប ${
m E}$ មានសមីការ $25{
m x}^2+12{
m y}^2=300$ គេបាន

$$25x^{2} + 12y^{2} = 300 \quad \Leftrightarrow \frac{25x^{2}}{300} + \frac{12y^{2}}{300} = \frac{300}{300}$$
$$\Leftrightarrow \frac{x^{2}}{12} + \frac{y^{2}}{25} = 1$$
$$\Leftrightarrow \frac{(x-0)^{2}}{\left(\sqrt{12}\right)^{2}} + \frac{(y-0)^{2}}{5^{2}} = 1$$

$$a = 5$$
; $b = \sqrt{12}$; $c^2 = a^2 - b^2 = 25 - 12 = 13 \Rightarrow c = \sqrt{13}$

- $\hat{\mathbf{g}}$ $\hat{\mathbf{n}}$ (h, k) \Rightarrow $\hat{\mathbf{g}}$ $\hat{\mathbf{n}}$ (0,0)
- ที่ $\mathring{\mathsf{n}}$ $\mathring{\mathsf{h}}$ $\mathsf{F}_1(\mathsf{h},\mathsf{k}-\mathsf{c});\; \mathsf{F}_2(\mathsf{h},\mathsf{k}+\mathsf{c}) \quad \Rightarrow \; \mathsf{F}_1\left(0,-\sqrt{13}\right);\; \mathsf{F}_2\left(0,\sqrt{3}\right)$
- $oldsymbol{2}$. រកកូអរដោនេនៃចំណុចប្រសព្ទរវាងអេលីប $oldsymbol{\mathrm{E}}$ និងអ័ក្សទាំងពីរនៃតម្រួយកូអរដោនេ
 - $E \cap (x'ox)$ show y = 0 shows $25x^2 + 12(0)^2 = 300$ $\Rightarrow x^2 = \frac{300}{25}$ $\Rightarrow x = \pm \sqrt{12} = \pm 2\sqrt{3}$
 - $E \cap (y'oy)$ ពេល x = 0 គេបាន $25(0)^2 + 12y^2 = 300$ $\Rightarrow y^2 = \frac{300}{12}$ $\Rightarrow y = \pm \sqrt{25} = \pm 5$ សង់អេលីប E

v. ក. រកដែនកំណត់នៃអនុគមន៍ f

ដោយ $f(x)=\frac{x^2+x+4}{x+1}$; f(x) មានន័យលុះត្រាតែ $x+1\neq 0$ $\Leftrightarrow x\neq -1$ ដូចនេះ ដែនកំណត់នៃអនុគមន៍ f គឺ $D_f=\mathbb{R}-\{-1\}$

ខ. គណនា $\lim_{x \to -1} f(x)$, $\lim_{x \to +\infty} f(x)$

$$\begin{split} &\lim_{x\to -1} f(x) = \lim_{x\to -1} \frac{x^2+x+4}{x+1} = \pm\infty & \text{ if is: } \lim_{x\to -1} f(x) = \pm\infty \\ &\lim_{x\to \pm\infty} f(x) = \lim_{x\to \infty} \frac{x^2+x-4}{x+1} = \lim_{x\to \pm\infty} \frac{x^2}{x} = \pm\infty & \text{ if is: } \lim_{x\to \pm\infty} f(x) = \pm\infty \end{split}$$

- **គ.** សរសេរសមីការអាស៊ីមតូតឈរ និង អាស៊ីមតូតទ្រេតនៃក្រាប C
 - ដោយ $\lim_{x \to -1} f(x) = \pm \infty$ ដូចនេះ បន្ទាត់ x = -1 ជាអាស៊ីមតូតឈរ
 - $f(x) = \frac{x^2 + x + 4}{x + 1} = x + \frac{4}{x + 1}$ ដោយ $\lim_{x \to +\infty} \frac{4}{x + 1} = 0$ ដូចនេះ បន្ទាត់ y = x ជាអាស៊ីមតូតទ្រេត

ឃ. សិក្សាសញ្ញាដេរីវេ f'(x) នៃអនុគមន៍ f

$$\begin{split} f'(x) &= \left(\frac{x^2 + x + 4}{x + 1}\right)' = \frac{\left(x^2 + x + 4\right)'(x + 1) - (x + 1)'\left(x^2 + x + 4\right)}{(x + 1)^2} = \frac{(2x + 1)(x + 1) - \left(x^2 + x + 4\right)}{(x + 1)^2} \\ &= \frac{2x^2 + 2x + x + 1 - x^2 - x - 4}{(x + 1)^2} = \frac{x^2 + 2x - 3}{(x + 1)^2} \\ f'(x) &= 0 \quad \Leftrightarrow \quad x^2 + 2x - 3 = 0 \quad \text{insight} \ x_1 = 1; \ x_2 = -3 \end{split}$$

បរមាធៀប

- ត្រង់ x = -3; f'(x) = 0 ប្តូរសញ្ញាពី + ទៅ គេបាន f មានអតិបរមាធៀបមួយ គឺ $f(-3) = \frac{(-3)^2 3 + 4}{-3 + 1} = -5$
- ត្រង់ $x=1;\;f'(x)=0$ ប្តូរសញ្ញាពី ទៅ + គេបាន f មានអប្បបរមាធៀបមួយ គឺ $f(1)=\frac{1^2+1+4}{1+1}=3$
- ង. សង់តារាងអថេរភាព អាស៊ីមតូត និង ក្រាប ${
 m C}$ នៃអនុគមន៍ ${
 m f}$
 - តារាងអថេរភាពនៃ f

x	$-\infty$	-3	_	1	1		+∞
f'(x)	+	0	_	-	0	+	
f(x)		-5	-∞	+8	3	<i>,</i> *	+∞

- ក្រាប C
 - $\circ \ (\mathrm{C}) \cap (\mathrm{y'oy}) \ \text{inv} \ \mathrm{x} = 0 \quad \text{ifns} \ \mathrm{y} = \frac{0^2 + 0 + 4}{0 + 1} = 4$

ក្រសួងអប់រំយុវជន និងកីទ្បា		លេខបន្ទប់៖
វិទ្យាល័យមេតូឌីស្ទកម្ពុជា		លេខកុ៖
ប្រឡងសញ្ញាច់ត្រមធ្យមសិក្សាទុតិយត្តមិ		មណ្ឌលប្រទ្បង៖
ឈ្មោះ នឹងហត្ថលេខាអនុរក្ស៖	សម័យបទ្បង៖ ២០ សីហា ២០១៨	
	នាមត្រកូលនឹងនាមខ្លួន៖	
	ថ្ងៃខែឆ្នាំកំណេីត៖	

បេក្ខជនមិនត្រូវធ្វើសញ្ញាសម្គាល់អ្វីមួយនៅលើសន្លឹកប្រទ្បងទ្បើយៗ សន្លឹកប្រទ្បងដែលមានសញ្ញាសម្គាល់នឹងត្រូវបានពិន្ទុស្នន្យៗ

·×-----

វិញ្ញាសា៖ គណិតវិទ្យាថ្នាក់សង្គម រយ:ពេល៖ ៩០ នាទី ពិន្ទុ ៖ ៧៤

លេខសម្ងាត់៖

ពិន្ទសរុប

សេចក្តីណែនាំ៖ ១. បេក្ខជនត្រូវគូសខ្វែងនៅទំព័រទី២ ផ្នែកខាងលើដែលត្រូវកាត់ចេញ។ ២. បេក្ខជនត្រូវសរសេរចម្លើយនៃសំណួរបន្តនៅលើទំព័រទី២ ទី៣ និងទី៤។

ទិញ្ញាសានី១០

- I. (១០ពិន្ទុ) ក្នុងថតតុមួយមានសៀវភៅគណិតវិទ្យា 7 ក្បាល និងសៀវភៅភាសាខ្មែរ 5 ក្បាល។ សិស្សម្នាក់បានយកសៀវភៅ 4 ក្បាល ព្រមគ្នាចេញពីថតតុដោយចៃដន្យ។
 - ក. រកប្រូបាបដែល «សិស្សយកបានសៀវភៅគណិតវិទ្យាទាំង 4 ក្បាល» ។
 - ខ. រកប្រូបាបដែល «សិស្សយកបានសៀវភៅភាសាខ្មែរ 1 ក្បាលយ៉ាងតិច» ។

II. (១០ពិន្ទុ) គណនាលីមីត៖

$$\lim_{x\to 1} \frac{x^2-1}{x^2-3x+2}$$

8.
$$\lim_{x\to 2} \frac{2-\sqrt{2+x}}{x^2-4}$$

$$\lim_{x\to 0} \frac{x}{\sqrt{3}-\sqrt{x+3}}$$

III. (១០ពិន្ទុ) គណនាអាំងតេក្រាលខាងក្រោម៖

$$\int_{0}^{2} \left(\frac{1}{1-x} - 3x + 1 \right) dx$$

8.
$$\int_{1}^{2} \left(\frac{2}{x^2} + 3 - x \right) dx$$

$$\mathbf{\tilde{n}.} \int_1^3 \left(\frac{x^2 - 3x + 2}{2 - x} \right) dx$$

- IV. (១៥ពិន្ទុ) រកសមីការស្តង់ដានៃអេលីបមួយដែលមានកំណុំមួយនៅត្រង់ចំណុច (0,2) និងកំពូលពីរនៅត្រង់ចំណុច (0,-3) និង (0,3)។ រួចរកប្រវែងអ័ក្សតូច ប្រវែងអ័ក្សធំ និងសង់អេលីប។
- **v.** (៣០ពិន្ទុ) គេមានអនុគមន៍ f កំណត់ដោយ $y = f(x) = \frac{x^2 4}{x 1}$ មានក្រាបតំណាង C ។
 - 🤋. ចូររកដែនកំណត់នៃអនុគមន៍ f ។
 - ២. គណនា $\lim_{x \to 1} f(x)$; $\lim_{x \to \pm \infty} f(x)$ ។ រួចទាញរកសមីការអាស៊ីមតូតឈរ។
 - ៣. បង្ហាញថា $f(x)=x+1-rac{3}{x-1}$ ។ រួចបង្ហាញថាបន្ទាត់ d ដែលមានសមីការ y=x+1 ជាអាស៊ីមតូតទ្រេតនៃក្រាប C ខាង $+\infty$ ។
 - ៤. គណនាដេរីវេ f'(x) និងសិក្សាសញ្ញាដេរីវេ f'(x) ។
 - ៥. ក.សង់តារាងអថេរភាពនៃ f។
 - ខ. សិក្សាទីតាំងធៀបរវាងក្រាប ${
 m C}$ និងបន្ទាត់ ${
 m d}$ ។
 - គ. សង់ក្រាប C និងបន្ទាត់ d ក្នុងតម្រុយតែមួយ។

ក. រកប្រូបាបដែល «សិស្សយកបានសៀវភៅគណិតវិទ្យាទាំង 4 ក្បាល»

តាង A : «សិស្សយកបានសៀវភៅគណិតវិទ្យាទាំង 4 ក្បាល»

តាមរូបមន្ត
$$P(A) = \frac{n(A)}{n(S)}$$
 ដោយ $n(A) = C(7,4) = \frac{7!}{3!4!} = \frac{7 \times 6 \times 5 \times 4!}{3 \times 2 \times 1 \times 4!} = 35$
$$n(S) = C(12,4) = \frac{12!}{8!4!} = \frac{12 \times 11 \times 10 \times 9 \times 8!}{8! \times 4 \times 3 \times 2 \times 1} = 495$$

ពេហ្ន
$$P(A) = \frac{n(A)}{n(S)} = \frac{35}{495} = \frac{7}{99}$$
 ដូចនេះ $P(A) = \frac{7}{99}$

2. រកប្រូបាបដែល «សិស្សយកបានសៀវភៅភាសាខ្មែរ 1 ក្បាលយ៉ាងតិច» តាង B : «សិស្សយកបានសៀវភៅភាសាខ្មែរ 1 ក្បាលយ៉ាងតិច»

តាមរូបមន្ត
$$P(B) = 1 - P(A) = 1 - \frac{7}{99} = \frac{99 - 7}{99} = \frac{92}{99}$$
 ជុំបនេះ $P(B) = \frac{92}{99}$

II. គណនាលីមីត៖

 $\lim_{x\to 1} \frac{x^2-1}{x^2-3x+2}$ (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$= \lim_{x \to 1} \frac{(x-1)(x+1)}{(x-1)(x-2)} = \lim_{x \to 1} \frac{x+1}{x-2} = \frac{1+1}{1-2} = -2 \quad \text{III.} \quad \frac{x^2-1}{x^2-3x+2} = -2$$

2. $\lim_{x\to 2} \frac{2-\sqrt{2+x}}{x^2-4}$ (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$\begin{split} &= \lim_{\mathbf{x} \to 2} \frac{\left(2 - \sqrt{2 + \mathbf{x}}\right) \left(2 + \sqrt{2 + \mathbf{x}}\right)}{(\mathbf{x} - 2)(\mathbf{x} + 2) \left(2 + \sqrt{2 + \mathbf{x}}\right)} = \lim_{\mathbf{x} \to 2} \frac{4 - (2 + \mathbf{x})}{(\mathbf{x} - 2)(\mathbf{x} + 2) \left(2 + \sqrt{2 + \mathbf{x}}\right)} = \lim_{\mathbf{x} \to 2} \frac{-(\mathbf{x} - 2)}{(\mathbf{x} - 2)(\mathbf{x} + 2) \left(2 + \sqrt{2 + \mathbf{x}}\right)} \\ &= \frac{-1}{(2 + 2) \left(2 + \sqrt{2 + 2}\right)} = -\frac{1}{16} \quad \text{QUS: } \lim_{\mathbf{x} \to 2} \frac{2 - \sqrt{2 + \mathbf{x}}}{\mathbf{x}^2 - 4} = -\frac{1}{16} \end{split}$$

គ. $\lim_{x\to 0} \frac{x}{\sqrt{3}-\sqrt{x+3}}$ (មានរាងមិនកំណត់ $\frac{0}{0}$)

$$= \lim_{x \to 0} \frac{x\left(\sqrt{3} + \sqrt{x+3}\right)}{\left(\sqrt{3} - \sqrt{x+3}\right)\left(\sqrt{3} + \sqrt{x+3}\right)} = \lim_{x \to 0} \frac{x\left(\sqrt{3} + \sqrt{x+3}\right)}{3 - (x+3)} = \lim_{x \to 0} \frac{x\left(\sqrt{3} + \sqrt{x+3}\right)}{-x} = \frac{\sqrt{3} + \sqrt{0+3}}{-1}$$

ដូចនេះ
$$\lim_{x\to 0} \frac{x}{\sqrt{3} - \sqrt{x+3}} = -2\sqrt{3}$$

III. គណនាអាំងតេក្រាល៖

ដូចនេះ
$$\int_0^2 \left(\frac{1}{1-x} - 3x + 1 \right) dx = -4$$

8.
$$\int_{1}^{2} \left(\frac{2}{x^{2}} + 3 - x \right) dx = \left[-\frac{2}{x} + 3x - \frac{x^{2}}{2} \right]_{1}^{2} = -\frac{2}{2} + 3(2) - \frac{2^{2}}{2} - \left(-\frac{2}{1} + 3(1) - \frac{1^{2}}{2} \right) = 3 - \frac{1}{2} = \frac{5}{2}$$

ដូចនេះ
$$\int_{1}^{2} \left(\frac{2}{x^2} + 3 - x \right) dx = \frac{5}{2}$$

$$\text{gus:} \left[\int_1^3 \left(\frac{x^2 - 3x + 2}{2 - x} \right) dx = 0 \right]$$

- IV. រកសមីការស្តង់ដានៃអេលីបដែលមានកំណុំ (0,2) និងកំពូល រួចរកប្រវែងអ័ក្សតូច ប្រវែងអ័ក្សធំ និងសង់អេលីប ពីវ (0,-3) និង (0,3) ដោយ អាប់ស៊ីសនៃកំពូល និងកំណុំថេរ គេបាន អ័ក្សធំនៃអេ លីបជាអ័ក្សឈរ
 - សមីការស្តង់ដានៃអេលីបគឺ $\frac{(x-h)^2}{h^2} + \frac{(y-k)^2}{a^2} = 1$
 - គេហ៊ុន h = 0; k - a = -3; k + a = 3

$$\begin{cases} k - a = -3 \\ \underline{k + a = 3} \end{cases}$$

$$2k = 0 \implies k = 0; \implies a = 3$$

- \circ $\mathring{\mathbf{n}}\mathring{\mathbf{n}}\mathring{\mathbf{n}}(0,2)$ $\mathring{\mathbf{n}}\mathbf{F}(\mathbf{h},\mathbf{k}+\mathbf{c})\Rightarrow\mathbf{h}=0;\ \mathbf{k}+\mathbf{c}=2\Rightarrow\mathbf{c}=2$

• $c^2 = a^2 - b^2$ \Rightarrow $b^2 = a^2 - c^2 = 3^2 - 2^2 = 5$ ដូចនេះ សមីការអេលីបគឺ $\frac{x^2}{5} + \frac{y^2}{9} = 1$

- - ប្រវែងអ័ក្សតូច = $2b = 2(\sqrt{5})$
 - ប្រវែងអ័ក្សធំ = 2a = 2(3) = 6
 - សង់អេលីប

v. ១. រកដែនកំណត់នៃអនុគមន៍ f

ដោយ
$$y = f(x) = \frac{x^2 - 4}{x - 1}$$
 ; $f(x)$ មានន័យលុះត្រាតែ $x - 1 \neq 0$ $\Rightarrow x \neq 1$

ដូចនេះ ដែនកំណត់នៃ \mathbf{f} គឺ $\mathbf{D}_{\mathbf{f}} = \mathbb{R} - \{1\}$

 $oldsymbol{ ilde 0}$. គណនា $\lim_{x o 1} f(x)$; $\lim_{x o \pm \infty} f(x)$ រួចទាញរកសមីការអាស៊ីមតូតឈរ

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 4}{x - 1} = \pm \infty$$

ដូចនេះ
$$\lim_{x \to 1} f(x) = \pm \infty$$

$$\lim_{x\to\pm\infty}f(x)=\lim_{x\to\pm\infty}\frac{x^2-4}{x-1}=\lim_{x\to\pm\infty}\frac{x^2}{x}=\pm\infty\quad\text{if is: }\lim_{x\to\pm\infty}f(x)=\pm\infty$$

ដូចនេះ
$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$

ដោយ
$$\lim_{x \to 1} f(x) = \pm \infty$$
 ដូចនេះ បន្ទាត់ $x = 1$ ជាអាស៊ីមតូតឈរ

 \mathbf{m} . បង្ហាញថា $f(x) = x + 1 - \frac{3}{x - 1}$

$$\text{imw } x + 1 - \frac{3}{x - 1} = \frac{(x + 1)(x - 1) - 3}{x - 1} = \frac{x^2 - 1 - 3}{x - 1} = \frac{x^2 - 4}{x - 1} = f(x) \quad \text{ims:} \quad f(x) = x + 1 - \frac{3}{x - 1} = \frac{3$$

បង្ហាញថាបន្ទាត់ ${
m d}$ ដែលមានសមីការ ${
m y}={
m x}+1$ ជាអាស៊ីមតូតទ្រេតនៃក្រាប ${
m C}$ ខាង $\pm\infty$

ដោយ
$$\lim_{x \to \pm \infty} \frac{-3}{x-1} = 0$$
 ដូចនេះ បន្ទាត់ $y = x+1$ ជាអាស៊ីមតូតទ្រេត

$$f'(x) = \left(\frac{x^2 - 4}{x - 1}\right)' = \frac{\left(x^2 - 4\right)'(x - 1) - (x - 1)'\left(x^2 - 4\right)}{(x - 1)^2} = \frac{2x(x - 1) - \left(x^2 - 4\right)}{(x - 1)^2} = \frac{x^2 - 2x + 4}{(x - 1)^2}$$

 $f'(x) = 0 \Leftrightarrow x^2 - 2x + 4 = 0$; $\Delta = b^2 - 4ac = (-2)^2 - 4(1)4 = -12 < 0$; f'(x) យកសញ្ញាតាមមេគុណឧ

• តារាងសញ្ញា f'(x)

X	$-\infty$	1	+∞
f'(x)	+		+

•
$$f'(x) > 0$$
; ind $x \in (-\infty, 1) \cup (1, +\infty)$

៥. ក. សង់តារាងអថេរភាពនៃ f

x	$-\infty$	1		+∞
f'(x)	+		+	
f(x)		+∞	-∞	+∞

2. សិក្សាទីតាំងធៀបរវាងក្រាប C និងបន្ទាត់ d

(C):
$$y = x + 1 - \frac{3}{x - 1}$$
; (d): $y = x + 1$ ings $y_c - y_d = x + 1 - \frac{3}{x - 1} - (x + 1) = -\frac{3}{x - 1}$

•
$$y_c - y_d > 0$$
 \Leftrightarrow $-\frac{3}{x-1} > 0$ \Leftrightarrow $x-1 < 0$ \Leftrightarrow $x < 1$ ដូចនេះ $\boxed{C$ ស្ថិតនៅលើ d ពេល $x < 1$

•
$$y_c - y_d < 0 \quad \Leftrightarrow -\frac{3}{x-1} < 0 \quad \Leftrightarrow \ x-1 > 0 \ \Leftrightarrow \ x > 1$$
 ដូចនេះ $\boxed{C$ ស្ថិតនៅក្រោម ៤ ពេល $x > 1$

គ. សង់ក្រាប C និងបន្ទាត់ d ក្នុងតម្រួយតែមួយ

• (C)
$$\cap$$
 (y'oy) $\vec{\mathbf{n}} = 0$; $\Rightarrow y = \frac{0^2 - 4}{0 - 1} = 4$

• (C)
$$\cap$$
 (x'ox) $\ddot{\mathbf{n}}$ y = 0; \Rightarrow x²-4 = 0 \Rightarrow x = \pm 2

ក្រសួងអប់រំឃុវជន និងកិទ្បា		លេខបន្ទប់៖
វិទ្យាល័យមេតូឌីស្ទកម្ពុជា		ឈខតុ៖
ប្រឡងសញ្ញាប័ត្រមធ្យមសិក្សាទុតិយត្តមិ		មធ្បាល់ប្រទ្បូង៖
ឈ្មោះ នឹងហត្ថលេខាអនុរក្ស៖	សម័យបទ្បង៖ ២០ ស៊ីហា ២០១៨	
	នាមត្រកូលនឹងនាមខ្លួន៖	
	ថ្ងៃខែឆ្នាំកំពេរាិ៍ត៖	
	ហត្ថលេខា៖	លេខសម្ងាត់៖
បេក្ខជនមិនត្រូវធ្វើសញ្ញាសម្គាល់អ្វីមួយនៅលើ	សន្លឹកប្រទ្បងទ្បើយៗ សន្លឹកប្រទ្បងដែលមានសញ្ញា	
.%		
វិញ្ញាសា៖ គណិតវិទ្យាថ្នាក់សង្គម រយ:ពេល	៖ ៩០ នាទី ពិឝ្ទុ ៖ ៧៤	លេខសម្ងាត់៖
ពីន្ទុសរុប សេចក៏ប៉ែពនាំ៖ ១		សេវិកាត់ចេញ។

បក្ខជនត្រូវតុសខ្វេងនោទ៧រទ២ ធ្នេកខាងលេះដលត្រូវកាតចេញ។
 បក្ខជនត្រូវសរសេរចម្លើយនៃសំណួរបន្តនៅលើទំព័រទី២ ទី៣ និងទី៤។

ទិញ្ញាសានី១១ (ថ្នាក់សង្គម)

- I. (១៥ពិន្ទុ) អេលីប ${
 m E}$ មួយមានសមីការទូទៅ៖ $9{
 m x}^2+4{
 m y}^2+18{
 m x}-24{
 m y}+9=0$ ។
 - ក. រកសមីការស្តង់ដានៃអេលីប ${f E}$ ។
 - ខ. រកប្រវែងអ័ក្សធំ និង អ័ក្សតូច ហើយរកកូអរដោនេនៃ ផ្ទិត កំពូល និង កំណុំនៃអេលីប ${f E}$ ។
- II. (៣០ពិន្ទុ) អនុគមន៍ f កំណត់ចំពោះ $x \neq -2$, $x \neq 2$ ដោយ $y = f(x) = \frac{x^2}{4-x^2}$ និងមានក្រាប C ។
 - ក. គណនា $\lim_{x \to -2} f(x)$, $\lim_{x \to 2} f(x)$ និង $\lim_{x \to \pm \infty} f(x)$ ។ ទាញរកសមីការអាស៊ីមតូតឈរ និងអាស៊ីមតូតទ្រេតនៃក្រាប $\mathbb C$ ។
 - ខ. សិក្សាសញ្ញានៃដេរីវេ f'(x) និងសង់តារាងអថេរភាពនៃ f ។
 - គ. គណនា f(-3) និង f(3) ហើយក្រាប C នៃអនុគមន៍ f ។

C/2	
សំអុ	
4,℃	

លេខបន្ទប់៖	
ផពពព្រះនេះង៖	

សម័យបទ្បង៖ ២០ ស៊ីហា ២០១៨

នាមត្រកូលនឹងនាមខ្លួន៖

ថ្ងៃខែឆ្នាំកំណេីត៖

ហត្ថលេខា៖ លេខសម្ងាត់៖

បេក្ខជនមិនត្រូវធ្វើសញ្ញាសម្គាល់អ្វីមួយនៅលើសន្លឹកប្រទ្បងទ្បើយ។ សន្លឹកប្រទ្បងដែលមានសញ្ញាសម្គាល់នឹងត្រូវបានពិន្ទស្នន្យ។

·≽-----

វិញ្ញាសា៖ គណិតវិទ្យាថ្នាក់សង្គម រយ:ពេល៖ ៩០ នាទី ពិន្ទុ ៖ ៧៥

លេខសម្ងាត់៖

ពិន្ទួសរុប

សេចក្តីរំលានាំ៖ ១. បេក្ខជនត្រូវតូសខ្វែងនៅទំព័រទី២ ផ្នែកខាងលើដែលត្រូវកាត់ចេញៗ ២. បេក្ខជនត្រូវសរសេរចម្លើយនៃសំណូរបន្តនៅលើទំព័រទី២ ទី៣ និងទី៤ៗ

ទិញ្ញាសានី១២ (ថ្នាក់សង្គម)

សំណួរ

I. (១០ពិន្ទុ) គណនាលីមីត៖

$$\mathbf{\tilde{n}.} \lim_{x \to 1} \frac{1 - x^2}{x^2 + 2 - 3x}$$

- II. (១០ពិន្ទុ) គ្រូបន្ទុកថ្នាក់បានជ្រើសរើសប្រធានក្រុមវេនសំអាតថ្នាក់ថ្ងៃចំនួន 6 នាក់នៃថ្នាក់រៀនមួយដែលមាន សិស្សប្រុសចំនួន20 នាក់ និងសិស្សស្រីចំនួន 15នាក់ ។ គណនាប្រូបាបខាងក្រោម៖
 - A «ប្រធានក្រុមសុទ្ធតែប្រុស»
 - B «ប្រធានក្រុមសុទ្ធតែស្រី»
 - с «ប្រធានក្រុមមានប្រុស3 នាក់ និងស្រី3 នាក់» ។
- III. (១០ពិន្ទុ) គេឲ្យ $A(x) = \frac{x+1}{(x-1)^2}$ ចំពោះគ្រប់ $x \neq 1$ ។
 - ក. រកចំនួនពិត a និង b ដើម្បីឲ្យ $A(x)=rac{a}{x-1}+rac{b}{(x-1)^2}$ ចំពោះគ្រប់ x
 eq 1 ។
 - 8. គណនា $I(x) = \int A(x) dx$ ។
- IV. (៣០ពិន្ទុ) គេឲ្យអនុគមន៍ f កំណត់ដោយ $f(x) = \frac{2x^2 + 3x 5}{x + 2}$ ហើយមានក្រាប C ។
 - ក. រកដែនកំណត់ និងសិក្សាសញ្ញាដេរីវេនៃអនុគមន៍f ។
 - ខ. សរសេរសមីការអាស៊ីមតូតឈរ និងអាស៊ីមតូតទ្រេតនៃក្រាប C ។
 - គ. សង់តារាងអថេរភាពនៃអនុគន៍ f និងសង់ក្រាប C ។
 - ${f w}$. ដោះស្រាយវិសមីការ ${2{f x}^2+3{f x}-5\over {f x}+2} < 2{f x}-1$ ដោយប្រើក្រាប ${f C}$ ។

ር ፎ

	ទម្លើយ
2 E 2	
<u>ද</u>	

C/2	
សំអ	
4,℃	

- ក. a. កំណត់លីមីតនៃអនុគមន៍ f និង g ត្រង់ $+\infty$ និង $-\infty$ ។
 - b. បង្ហាញថាបន្ទាត់ (Δ) ដែលមានសមីការ y=x ជាអាស៊ីមតូតនៃក្រាប (c) ។
 - c. សិក្សាអថេរភាពនៃអនុគមន៍ f និង អនុគមន៍ g លើ $\mathbb R$ ។
 - d. សង់តារាងអថេរភាពនៃអនុគមន៍ f និង អនុគមន៍ g ។
- ខ. ចំពោះគ្រប់ចំនួនពិត x គេតាង h(x) = f(x) g(x) ។
 - a. បង្ហាញថាគ្រប់ចំនួនពិត x, h'(x) = 1 g(x) ។
 - b. ទាញយកទិសដៅអថេរភាពនៃអនុគមន៍ h លើសំណុំចំនួនពិត។
 - c. ស្រាយបញ្ជាក់ថាក្រាប (c) និង (c') មានចំណុចប្រសព្វតែមួយគត់ដែលមានអាប់ស៊ីសរបស់វាតាងដោយ α នៅលើចន្លោះ [1,2] ។
 - d. សិក្សាទៅតាមតម្លៃនៃ α ទីតាំងធៀបគ្នារវាង (c) និង (c') ។
- គ. សង់បន្ទាត់ (Δ) និងក្រាប (c) និង (c') ។
- ${f w}$. ចំពោះគ្រប់ចំនួនពិត ${f x}$ គេតាង $heta({f x})=\int_0^x {f h}(t)dt$ ។
 - a. ប្រើអាំងតេក្រាលដោយផ្នែកគណនា $heta(\mathbf{x})$ ។
 - b. ទាញយកជារាងកន្សោមសនិទាននៃ α ផ្ទៃក្រឡាជា ${
 m cm}^2$ នៃដែនដែលអមដោយក្រាប ${
 m (c)}$ និង ${
 m (c')}$, អ័ក្សអរដោនេ និង បន្ទាត់ ដែលមានសមីការ ${
 m x}=\alpha$ ។