Homework 1

a) $A^{1}B+B^{2}C+C^{1}A=AB^{2}+BC^{2}+CA^{2}$

A	B C	A'	B	C,	A'B+B'C+C'A
$\overline{\mathcal{O}}$	ပ]	1	1	0	0+1+0= 1
Ö	0)	1	0	1	1+0+0= 1
0	1	1	0	0	1+0+0= 1
]	6 0	0	1	1	0+0+1= 1
)	0	0	1	0	071+0= 1
) 6	G	0	1	0+0+1= 1
1	1 (0	0	0	0+0+0=

A	В	<u> </u>	A,	B	()	AB'+BC'+CA'
0	೦)	1	1	0	0+0+1= 1
Ö	l	6	1	0)	0+1+0= 1
0	1	\	1	0	0	0+0+1= 1
]	6	Ö	0	1)	1+0+0= 1
)	O		0	1	٥	1+0+0=
	l	6	ල	0	1	0+1+0= 1
1	1	(0	0	0	0+0+0= 0

* Equality is valid for both sides of the equation.

X	Y	Z	X (YOZ)		
O	0		0(1)-	0	
0	J	0	0(1)=	0	•
0	J	1	0(0)=	O	
	0	0	1(0)=	Q	_
	0		1(1)2	1	
1	J	0	1(1)=	1	
J	J	\	1(0)=	D	

$$X Y Z XY = XZ$$
 $0 0 1 0 0 0 = 0$
 $0 1 0 0 0 0 = 0$
 $0 1 1 0 0 0 = 0$
 $1 0 0 0 0 0 = 0$
 $1 0 0 0 0 0 = 0$
 $1 0 1 0 0 0 0 = 0$
 $1 0 1 0 0 0 0 = 0$
 $1 0 1 0 0 0 0 = 0$

X Equality is valid for both sides of the equation.

a) 234 1221 +2205 3663

19+5+1=10 3 left over MUST be base 7 e Answer 10-3=7 remaining

6.6=36 b) multiple of 36 116 x 76=10070 must be base 9,4,6,3,12,18 $(2a7b)(a+a^{2}b)=a^{4}+7a$ a=6, (7(6)+6), (6+6+6)=48.48, a+n=6+6=1 wangbase! $\alpha = 9, (7(9) + 6)(9 + 8) + 6) = (69)(96) = 6624, 94 = 6624$ holds time, $(1a+a^{2}+6)=a^{4}+1a$ for base 9

3x6=18 after early out is & Must be 18-8 which to then base is Los multiple 0 2 2,5 $\chi \alpha = 2, (2^{2}+2(2)+3), (4.2^{2}+5(2)+6) = 352$ verify; 5(24)+6(23)+8(2)+8= 152 base is not 2 $\chi = 5, (5^{\frac{7}{4}} - 2(5) + 3) \cdot (4.5^{\frac{7}{4}} - 5(5) + 6) = 169$ ve(ify; 5(54)+6(53)+8(5)+8 \$169 a-lo, (102+2(10)+3). (4.10+5(10)+6)=56088 456 vealty & 5 (104) + 6 (103) + 8 (10) + 9 = 56089 Base = lo holds true for multiple
of lo after carry

2048	2	0	
1024	2	Ō	
512	12	0	•
256	2	0	•
128	2	0	
64	2	C	
32	12	0	
9 (2	0	
8	2	O	_
4	2	0	- A
7	12		_

 $(2046)_{10} = (160000000000)_{2}$ 123 comp1; (011111111)

e)
$$2+10+16+\frac{1}{2}+\frac{1}{10}+\frac{1}{16}=28.6625$$

$$(26.6625)_{10}+0(?)_{16}$$

$$\frac{28|16|C}{1|16|C_{MSB}}$$

$$\frac{3.6625}{3.6625}$$

$$\frac{3.6}{3.6}$$

$$\frac{3.6$$

AND:

OR:

Not:

Not:

P,: A+A+E =A+E

P, :
$$(A \cdot B^{2}) + (A \cdot B) + B = A(B + B^{2}) + B = A + B$$

P_2: $B(A + B) = AB + BB = AB + B$

$$Y = AB + B + A = A(B + 1) + B = B(A + 1) + A$$

$$Y = A + B$$
Answer

