

Vorstellung eines Diplomarbeitsthemas

Scheduling-Modelle zur Performance-Vorhersage komponentenbasierter Software-Architekturen

Henning Groenda (s_groend@ira.uka.de)

Lehrstuhl Software-Entwurf und –Qualität Institut für Programmstrukturen und Datenorganisation (IPD) Fakultät für Informatik, Universität Karlsruhe (TH)

Umfeld

- Komponentenbasierte Software-Entwicklung
- Auswirkungen der Software-Architektur
- Vorhersage nicht-funktionaler Eigenschaften

Rahmen und Umgebung

- modellbasierte Performance-Vorhersage
- Palladio Komponentenmodell
- Vorhersage durch Analyse oder Simulation

Problemstellung Beispiel (Schematisch)

Prozessorzuteilung ohne Präemption

Prozessorzuteilung mit Präemption

Problembeschreibung Beispiel (kurze Laufzeit)

Problembeschreibung Beispiel (lange Laufzeit)

Problembeschreibung

 Ungenaue Vorhersage bei nebenläufigen Systemen mit mehreren Prozessoren oder Kernen

 Ungenaue Vorhersage bei synchronisationslastigen Systemen

Ziele

Analyse der Einflüsse von Nebenläufigkeit und Synchronisation auf die Vorhersage

- Anpassbare Scheduler-Modellierung
- Modellierung von Synchronisations-Mechanismen
- Effekte der beiden Punkte auf Genauigkeit der Performance-Vorhersage feststellen

Organisation Arbeitspakete & Zeitplan

