

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호 :

10-2003-0083652

Application Number

출 원 년 월 일 Date of Application 2003년 11월 24일

NOV 24, 2003

출 원 Applicant(s) 인 :

경상남도 외 1명 KYONGSANGNAM-DO, et al.

2004

년 01

월 09

일

특

허

청

COMMISSIONER

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0003

【제출일자】 2003.11.24

【발명의 명칭】 돼지 유래의 신규한 성장특이유전자의 염기서열

【발명의 영문명칭】 Novel growth related genes from swine

【출원인】

【명칭】 경상남도

【출원인코드】 2-1998-700639-1

【출원인】

【성명】 김철욱

【출원인코드】 4-1998-025596-2

【대리인】

【성명】 이덕록

【대리인코드】 9-1998-000461-7

【포괄위임등록번호】 2003-050652-8

【포괄위임등록번호】 1999-048511-1

【발명자】

【성명】 김철욱

【출원인코드】 4-1998-025596-2

【발명자】

【성명의 국문표기】 여정수

【성명의 영문표기】 YEO,Jung Sou

【주민등록번호】 500510-1800817

【우편번호】 706-092

【주소】 대구광역시 수성구 지산2동 화성맨션 107동 301호

【국적】 KR

【발명자】

【성명의 국문표기】 이정규

【성명의 영문표기】 LEE, Jung Gyu

【주민등록번호】 580303-1923714

102⁰030083652 출력 일자: 2004/1/13

【우편번호】 660-080

【주소】 경상남도 진주시 이현동 235-1번지 덕산아파트 407호

【국적】 KR

【발명자】

【성명의 국문표기】 송영민

【성명의 영문표기】SONG, Young Min【주민등록번호】561025-1830315

【우편번호】 660-320

【주소】 경상남도 진주시 상대동 현대아파트 109동 1307호

【국적】 KR

【발명자】

【성명의 국문표기】 조광근

【성명의 영문표기】CHO, Kwang Keun【주민등록번호】591221-1531620

【우편번호】 130-080

【주소】 서울특별시 동대문구 이문동 삼성래미안아파트 203동 1304호

【국적】 KR

【발명자】

【성명의 국문표기】 정기화

【성명의 영문표기】CHUNG,Ki Hwa【주민등록번호】570505-1917220

【우편번호】 660-764

【주소】 경상남도 진주시 상대2동 상대한보아파트 103동 709호

【국적】 KR

【발명자】

【성명의 국문표기】 김일석

【성명의 영문표기】 KIM, II Suk

【주민등록번호】 570910-1772810

【우편번호】 442-370

【주소】 경기도 수원시 팔달구 매탄동 동남빌라 10동 202호

【국적】 KR

【발명자】

【성명의 국문표기】 진상근

【성명의 영문표기】JIN, Sang Keun【주민등록번호】600518-1920513

【우편번호】 660-110

【주소】 경상남도 진주시 평거동 401번지 벽산 동신아파트 101동 903호

【국적】 KR

【발명자】

【성명의 국문표기】 박수현

【성명의 영문표기】PARK,Su Hyun【주민등록번호】750228-2829619

【우편번호】 660-010

【주소】 경상남도 진주시 중안동 1-1번지

【국적】 KR

【발명자】

【성명의 국문표기】 정지원

【성명의 영문표기】 JUNG.Ji Won

【주민등록번호】 800926-2831216

【우편번호】 660-340

【주소】 경상남도 진주시 상평동 275-73번지

【국적】 KR

【발명자】

【성명의 국문표기】 이민정

【성명의 영문표기】LEE,Min Jung【주민등록번호】810527-2918414

【우편번호】 660-330

【주소】 경상남도 진주시 하대동 304-12번지

【국적】 KR

【발명자】

【성명의 국문표기】 권은정

【성명의 영문표기】 KWON, Eun Jung

【주민등록번호】 730525-2829214

【우편번호】 660-770

【주소】 경상남도 진주시 주약동 금호석류마을 110동 101호

【국적】 KR

【발명자】

【성명의 국문표기】 조은석

【성명의 영문표기】 CHO,Eun Segk

【주민등록번호】 791228-1829221

【우편번호】 660-290

【주소】 경상남도 진주시 주약동 161-8번지

【국적】 KR

[발명자]

【성명의 국문표기】 조확래

【성명의 영문표기】 CHO,Hwok Rai

【주민등록번호】 790707-1891918

【우편번호】 636-803

【주소】 경상남도 의령군 의령읍 동동리 1063번지

【국적】 KR

【발명자】

【성명의 국문표기】 신선민

【성명의 영문표기】SHIN, Sun Min【주민등록번호】830711-2829610

【우편번호】 660-300

【주소】 경상남도 진주시 가좌동 주공아파트 101동 1307호

【국적】 KR

【발명자】

【성명의 국문표기】 남희선

【성명의 영문표기】 NAM, Hee Sun

【주민등록번호】 831002-2829713

【우편번호】 660-080

【주소】 경상남도 진주시 이현동 우신파크맨션 1308호

【국적】 KR

≥0030083652 출력 일자: 2004/1/13

【발명자】

【성명의 국문표기】 홍연희

【성명의 영문표기】HONG, Yeon Hee【주민등록번호】770817-2923114

【우편번호】 660-080

【주소】 경상남도 진주시 이현동 유신맨션 1동 407호

【국적】 KR

【발명자】

【성명의 국문표기】 홍성광

【성명의 영문표기】HONG, Sung Kwang【주민등록번호】641217-1930411

【우편번호】 667-911

【주소】 경상남도 하동군 진교면 양포리 산 100번지

【국적】 KR

【발명자】

【성명의 국문표기】 강양수

【성명의 영문표기】KANG, Yang Su【주민등록번호】571101-1889812

【우편번호】 660-330

【주소】 경상남도 진주시 하대동 654-2 대영아파트 102동 1209호

【국적】 KR

【발명자】

【성명의 국문표기】 하영주

【성명의 영문표기】HA, Young Joo【주민등록번호】570903-1917112

【우편번호】 664-910

【주소】 경상남도 사천시 곤양면 금정리 산 18번지

【국적】 KR

【발명자】

【성명의 국문표기】 노정만

【성명의 영문표기】ROU, Jeong Man【주민등록번호】611121-1925713

1020030083652

호20030083652 출력 일자: 2004/1/13

【우편번호】 676-804

【주소】 경상남도 함양군 함양읍 백천리 1463번지

【국적】 KR

【발명자】

【성명의 국문표기】 곽석준

【성명의 영문표기】 KWACK,Suk Chun

【주민등록번호】 530216-1845717

【우편번호】 660-778

【주소】 경상남도 진주시 하대2동 101번지 현대아파트 106동 1007호

【국적】 KR

【발명자】

【성명의 국문표기】 최인호

【성명의 영문표기】 CHOI, In Ho

【주민등록번호】 640729-1253820

【우편번호】 157-220

【주소】 서울특별시 강서구 방화동 개화아파트 107동 902호

【국적】 KR

【발명자】

【성명의 국문표기】 김병우

【성명의 영문표기】KIM,Byeong Woo【주민등록번호】720505-1899319

【우편번호】 627-841

【주소】 경상남도 밀양시 상동면 금산리 147번지

【국적】 KR

【심사청구】 청구

【핵산염기 및 아미노산 서열목록】

【서열개수】 5

【서열목록의 전자파일】 첨부

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의

한 출원심사 를 청구합니다. 대리인

이덕록 (인)

【수수료】

【기본출원료】 17 면 29,000 원

【가산출원료】 0 면 0 원

【우선권주장료】0건0원【심사청구료】5항269,000원

【합계】 298,000 원

【요약서】

【요약】

본 발명은 돼지 유래의 신규한 성장특이유전자에 관한 것으로, DNA 마이크로어레이 기술을 이용하여 돼지의 성장율을 증가시키는 데 관여하는 신규한 성장특이유전자를 제공하는 뛰어난 효과가 있다. 따라서, 본 발명 돼지의 성장특이유전자를 사료 등에 이용하여 돼지의 일당증체량을 증가시키거나 성장능력이 우수한 종돈개량에 응용할 수 있다.

【색인어】

돼지, 성장특이유전자, 성장률, 일당증체량

【명세서】

【발명의 명칭】

돼지 유래의 신규한 성장특이유전자의 염기서열{Novel growth related genes from swine}
【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 돼지 유래의 신규한 성장특이유전자에 관한 것으로, 보다 상세하게는, 본 발명은 돼지의 근육 및 지방조직에서 특이적으로 발현되는 신규한 성장특이유전자의 염기서열에 관한 것이다.
- 분자생물학의 발전은 가축의 유전육종분야에도 막대한 영향을 미치게 되어 돼지의 유전 자 연관지도(genetic linkage map)와 양적형질 지도(quantitative trait loci, QTL map) 작성에 있어서도 많은 발전을 가져왔다. 특히 경제형질과 연관된 QTL의 맵핑(mapping)이나 여러 형질에 영향을 미칠 것으로 추정되고 있는 후보유전자(candidate gene)들을 발견하여 양돈산업에도 직접적인 응용이 가능하게 되었다. 현재까지 돼지의 게놈 맵핑은 세계적으로 공식화된 PiGMaP(Internetional Pig Genome Mapping Project) consortium map (Archibald 등, 1995)과 USDA(United States Department of Agriculture) gene map(Rohrer 등, 1994) 등과 같은 협동연구가들에 의해 마커와 유전자가 결합된 약 1,800개의 마커를 확보하여 돼지의 연관지도를 작성하고 있다(Archibald, 1994; Marklund 등, 1996; Rohrer 등, 1996). 또한 최근에는 QTL 스캔(scan)을 통해 경제적으로 중요한 형질에 대한 연관 DNA 마커를 확인하는 연구도 활발하게 진행되고 있다(Nielsen 등, 1996)

- 돼지의 유전자 지도의 작성은 양적형질과 연관된 특이적 마커를 식별하는데 있어 중요한 과정인데(Andersson 등, 1994; Archibald, 1994; Schook 등, 1994), 돼지의 6번 염색체상에 존 재하는 마커와 경제적으로 중요한 성장형질 또는 도체형질간의 연관성에 근거하여 유전적 연관 지도를 작성하게 되었다(Clamp 등, 1992; Louis 등, 1994; Chevaletn 등, 1996).
- 4> 돼지의 개량목표의 대상이 되는 형질은 복당산자수, 육돈의 성장률, 사료효율, 등지방층과 관련된 도체율과 정육율의 증가이다. 일반적으로 일당증체량과 사료효율간의 유전상관계수는 매우 높아 돼지의 성장률을 개량하면 사료이용도 동시에 개량된다. 사료를 제한 급여시킬때 일당증체량의 유전력은 0.14~0.76으로서 평균 0.30이며, 이때 일당증체량과 사료효율간의유전상관계수는 -1.07 ~-0.93로서 평균 -1.0으로 보고하여 일당증체량과 사료효율 간에는 매우 높은 상관관계가 있다는 것을 알 수 있다. 그러므로 일당증체량은 비육돈의 증체능력을 나타내는 중요한 형질이 된다.
- 종래에는 돼지에 존재하는 유전적 차이를 시험하기 위해 노던 블랏팅, 디퍼렌셜 디스플레이, 유전자 발현의 순차적 분석 및 닷 블랏 분석과 같은 mRNA 수준에서 유전자 발현을 분석하는 몇몇 기술들이 사용되었지만, 이들 방법들은 다수의 발현 산물들을 동시에 분석하는데 있어서는 부적절한 단점을 가지고 있었다. 최근에는 이러한 단점들을 보완하기 위해 cDNA 마이크로어레이와 같은 신기술이 개발되었다. cDNA 마이크로어레이는 많은 생물들에서 유전자 발현을연구함에 있어 가장 강력한 수단이 되고 있다. 이 기술은 폴리몰피즘 스크리닝과 유전체 DNA 클론의 맵핑 뿐만 아니라 수많은 유전자들의 동시 발현과 대규모의 유전자 발견에 적용되었다.이미 알려져 있거나 혹은 미확인의 유전자들로부터 전사된 RNA을 정량적으로 분석하는 고도의RNA 발현 분석 기술인 것이다.

- 상기로부터 본 발명자는 돼지의 특정 조직에서 성장에 관여하는 유전자의 발현 프로파일을 검색함에 있어 cDNA 마이크로어레이 기술을 도입하고 이로부터 밝혀진 특이유전자를 이용하여 성장능력이 우수한 종돈 개량에 응용하고자 하였다.
- 따라서, 본 발명의 목적은 돼지의 근육과 지방 조직에서 분리한 총 RNA로부터 제작한 프로브를 집적한 기질에 돼지의 근육과 지방 조직에서 얻은 표적 DNA를 혼성화시켜 성장에 관여하는 특이유전자의 발현 프로파일을 검색하고자 한다.
- 또한, 본 발명의 다른 목적은 상기에서 검색된 특이유전자를 시퀀싱하여 유전자의 염기 서열을 제공하고자 한다.

【발명이 이루고자 하는 기술적 과제】

- 본 발명의 상기 목적은 돼지의 근육과 지방 조직에서 분리한 총 RNA로부터 PCR을 통해 수천개의 ESTs를 얻고 이를 클로닝하여 염기서열을 데이터베이스에서 분석 및 검색하고, PCR를 통해 상기 ESTs를 증폭한 후 분리 정제하여 DNA 칩 어레이를 이용하여 대조군과 함께 슬라이드 에 어레이한 다음, 성장특이유전자의 발현 프로파일을 검색하기 위해 돼지의 근육과 지방 조직 에서 분리한 총 RNA로부터 표적 DNA를 제조하고, 상기 슬라이드(프로브 DNA)와 표적 DNA를 혼 성화(hybridization)시킨 다음, 이를 스캐닝하고 이미지 파일을 분석하여 돼지의 성장에 관여 하는 특이유전자의 발현양상을 조사한 후, 이를 시퀀싱하여 상기 유전자의 염기서열을 밝힘으 로써 달성하였다.
- <10> 이하, 발명의 구성을 구체적으로 설명한다.

【발명의 구성 및 작용】

- 본 발명은 돼지의 근육과 지방 조직에서 ESTs의 확보 및 염기서열 정보 확인단계; 상기 ESTs를 이용하여 프로브 DNA 제조단계; 돼지의 근육과 지방 조직에서 얻은 형광물질이 결합된 표적 DNA(ESTs)와 상기 프로브 DNA의 혼성화, 스캐닝 및 이미지 파일 분석단계; 돼지의 성장에 관여하는 특이유전자의 발현 프로파일 검색단계; 및 상기 유전자의 시퀀싱단계로 구성된다.
- <12> 본 발명 돼지의 성장에 관여하는 신규한 특이유전자는 하기의 단계로부터 검색된다:
- <13> 돼지의 근육과 지방조직에서 분리한 총 RNA로부터 PCR을 통해 4434개의 ESTs를 얻고,
- <14> DNA 칩 어레이를 이용하여 상기 ESTs를 효모대조군과 함께 슬라이드에 어레이하고,
- 돼지의 근육과 지방 조직에서 분리한 총 RNA로부터 시아닌 3-dCTP 또는 시아닌 5-dCTP이 결합된 표적 DNA를 제조하고,
- <16> 상기 슬라이드(프로브 DNA)와 표적 DNA를 혼성화(hybridization)시키고 이를 스캐닝하고 이미지 파일을 분석하여 돼지의 성장에 관여하는 특이유전자의 발현양상을 조사하고,
- <17> 상기 유전자를 시퀀싱하여 염기서열을 밝혀냄.
- 본 발명은 돼지의 성장에 관여하는 특이유전자인 서열목록 서열 1 내지 5에 기재된 신규한 성장인자 I, II, IV 및 V 의 염기서열을 제공한다.
- <19>이하, 본 발명의 구체적인 구성을 실시예를 통해 설명하지만, 본 발명의 권리범위가 이들 실시예에만 한정되는 것은 아니다.

<20> [실시예]

<21> 실시예 1 : 돼지의 성장에 관여하는 특이유전자의 발현 프로파일의 검색

대지의 성장에 관여하는 특이유전자의 발현 프로파일을 검색하기 위해, 가고시마 버크셔종의 근육과 지방 조직에 분리한 총 RNA로부터 프로브 DNA를 제작하고, 상기 조직의 총 RNA에 형광물질을 결합시켜 표적 DNA를 제작하여 이들을 혼성화시킨 다음 스캐닝하고 이미지 파일을 분석하여 돼지의 성장에 관여하는 특이유전자를 검색하고 이를 클로닝하여 염기서열을 밝혀내었다.

<23> 제조예 1: 프로브 DNA의 제조 및 어레이

우선, 슬라이드글라스에 부착하기 위해 PCR에 의해 증폭된 cDNA인 프로브 DNA를 제작하였다. 가고시마 버크셔종(체중이 30 kg 및 90 kg인 것을 선택함)의 등심부위의 근육 및 지방조직에서 RNA 분리 키트(독일 퀴아젠사)를 사용하여 메뉴얼에 따라 총 RNA를 분리하고 oligo(dT) column을 이용하여 mRNA를 분리하였다. 상기에서 분리한 mRNA 시료에 SP6, T3 정방향프라이머, T7 역방향 프라이머(영국 아머샴 파마시아 바이오테크)를 사용하여 RT-PCR을 실시하고 cDNA를 합성하였다. 각 PCR 반응물의 총 부피는 100 μℓ로 하였다. 100 pM의 정방향 프라이머와 역방향 프라이머 각각을 96-웰 PCR 플레이트(영국 제네틱스)에 옮겼다. 각 웰에는 2.5 mM dNTP, 10 次CR 버퍼, 25 mM MgCl₂, 0.2 μg의 DNA 주형, 2.5 유닛의 Taq 폴리머라아제가 포함되게 하였다. PCR은 GeneAmp PCR 시스템 5700(캐나다 AB 어플라이드 바이오시스템)에서 다음의조건 하에서 실시하였다: 94℃에서 30초, 58℃에서 45초, 72℃에서 1분으로 총 30 사이클.

<25> 증폭된 DNA의 크기는 아가로우즈 젤 전기영동에서 확인하였다. PCR 산물을 96-웰 플레이트에서 에탄올 침전을 실시한 후 건조시켜 -20℃에서 저장하였다.

<27>

<26> 상기에서 준비된 총 4434개의 cDNA(ESTs)를 클로닝하여 돼지가 가지고 있는 유전자의 염 기서열을 분석하고, 이들의 정보는 NCBI를 통해 알아내었다. 정보를 가진 유전자들을 다시 PCR 을 통해 분리정제한 다음, 총 4434개의 cDNA(ESTs)가 놓여질 자리와 배치도를 만든 후, 총 4434개의 cDNA(ESTs)와 300개의 효모 대조군을 1.7 cm² 면적에 배열하였다. 그 후, 마이크로그 리드 II(바이오로보틱스)를 이용하여 CMT-GAPSTM 아미노실레인(aminosilane)이 코팅된 현미경 용 슬라이드글라스(코닝사 제품)에 프로브 DNA를 점적하였다. 스플릿 핀을 이용하여 마이크로 그리드 II(MicroGrid II)로 프로브 DNA를 프린트하였다. 그 후 핀 장치를 마이크로플레이트 내 웰에 접근시켜 상기 용액을 슬라이드글라스에 주입하였다(1~2 nL). 프로브 DNA를 프린팅한 후 , 슬라이드를 건조시키고, 점적시킨 DNA와 슬라이드를 스트라타링커TM(미국 스트라타진)을 이 용하여 90 mJ에서 UV-크로스링킹으로 결합시키고, 실온에서 2분 동안 0.2% SDS로 두 번 세척하 고, 실온에서 2분 동안 3차 증류수로 한번 세척하였다. 세척 후, 슬라이드를 95℃ 수조에 2분 동안 침지시키고, 억제제(blocking solution, pH7.4의 인산염 완충액 300 mL에 1.0 g NaBH₄를 녹인 용액과 무수 에탄올 100 mL를 혼합한 용액)를 첨가하여 15분 동안 차단하였다. 그 후, 상 기 슬라이드를 실온에서 1분 동안 0.2% SDS로 3번 세척하고, 실온에서 2분 동안 3차 증류수로 한번 세척하고, 대기 중에서 건조시켰다.

제조예 2: 표적 DNA의 제조 및 혼성화(hybridization)

돼지 근육 및 지방 조직에서 성장에 관여하는 특이유전자를 검색하기 위한 표적 DNA를
제조하기 위해, 체중 30 kg과 90 kg의 가고시마 버크셔종(Kagoshima Berkshire)에서 등심부위
(longissimus dorsi) 근육조직을 채취하였다. 지방 조직은 체중 30 kg의 가고시마 버크셔종에

서 얻었다. 근육과 지방조직을 5~8 mm 길이로 자른 다음 액체질소로 냉동시켜 -70℃에서 보관하였다.

프적 DNA를 제조하기 위해 트리졸™ 키트(라이프 테크놀로지) 매뉴얼에 따라 0.2~1.0 g의 실험군과 대조군 조직에서 총 RNA를 분리하였다. 글래스-테프론 또는 폴리트론 균질기로 조직 50~100 mg 당 1 mL의 트리졸™을 조직 시료에 넣고 파쇄하였다. 4℃에서 12,000 g으로 10분 동안 원심분리한 후 상등액을 1 mL씩 분취(aliquot)하였다. 여기에 200 ℓℓ의 클로로포름을 첨가하고 15초 동안 볼텍싱하고 15분 동안 얼음에 놓아 둔 후 4℃에서 12,000 g로 10분 동안 원심분리하였다. 동량의 클로로포름을 첨가하고 15초 동안 볼텍싱한 후 15분 동안 얼음에 놓아두었다. 이를 4℃에서 12,000 g로 10분 동안 원심분리한 후 상등액을 새 튜브로 옮기고 500 ℓℓ의 이소프로판을을 첨가하고 볼텍싱하고 얼음에 15분 동안 놓아두었다. 얼음을 냉각시키고 4℃에서 12,000 g로 5분 동안 원심분리하고 상등액을 분리하고 여기에 75% 냉 에탄을 1 mL을 첨가한 후 4℃에서 12,000 g로 5분 동안 원심분리하였다. 상등액을 취하여 클린벤취에서 30분 동안 얼음에서 건조시킨 다음 RNase가 제거된 물이나 DEPC 물 20ℓℓ로 RNA를 녹였다. 총 DNA 농도를 40 ℓℓ명/17 ℓℓ로 하여 전기영동을 준비하였다.

30> 표준 펄스트 스트랜드 cDNA 합성법(standard first-strand cDNA)에 따라 표적 DNA를 얻었다. 간단히 말해, Schuler(1996)의 방법에 따라, 총 RNA 40 μg과 올리고 dT-18mer 프라이머(인비트로젠 라이프 테크놀로지)를 혼합하고 이를 65℃에서 10분 동안 가열한 후 4℃에서 5분 간 냉각하였다. 그 후, 1 μl의 25 mM dATP, dGTP 및 dTTP 혼합액, 1 μl의 1 mM dCTP(프로메가) 및 2 μl의 1 mM 시아닌 3-dCTP 혹은 2 μl의 1 mM 시아닌 5-dCTP, 20 units의 RNase 저해제(인비트로젠 라이프 테크놀로지), 100 units의 M-MLV RTase, 2 μl의 10×펄스트 스트랜드 완충액을 첨가

한 후 피펫을 이용하여 혼합하였다. 반응혼합액을 38℃에서 2시간 동안 인큐베이션한 후, 에탄올 침전에 따라 미결합 상태의 뉴클레오티드를 제거하였다. 이때 사용한 물은 DEPC 처리된 살균수를 사용하였다.

- 혼성화 후, 슬라이드는 2%SC, 0.1% SDS 혼합액으로 실온에서 5분 동안 댄싱 셰이커
 (Dancing shaker)에서 격렬하게 교반하면서 4번 세척하였다. 그 후, 상기 슬라이드를 0.2%SC
 로 5분 동안 2번 세척하고, 0.1%SC로 실온에서 5분 동안 세척하였다.
- 상기 슬라이드는 스캔어레이 5000(GSI 루모닉스 버젼 3.1)에서 50 四의 픽셀 사이즈로 스캔하였다. 시아닌 3-dCTP로 표지된 표적 DNA는 565 nm에서 스캔하고, 시아닌 5-dCTP로 표지된 표적 DNA는 670 nm에서 스캔하였다. 2개의 형광강도는 시아닌 3-dCTP, 시아닌 5-dCTP로 표지된 스팟의 선 스캐닝에 따라 표준화하였다. 다시 상기 슬라이드를 스캔어레이 4000XL에서 10 四의 픽셀 사이즈로 스캔하였다. 이로부터 얻은 TIFF 이미지 화일을 퀀트어레이 소프트웨어 버젼 2.1(Quantarray software version 2.1)에서 분석하고, 배경을 자동제거하였다. 각 스팟의 강도는 퀀트어레이에서 마이크로소프트 엑셀로 변환하였다.
- <34> 그 결과, 하기 5개의 신규한 성장특이유전자를 밝혀내었다.
- <35> 1. GF(growth factor) I gene: 서열목록 서열 1

<36>	company outpetetet consistent enterpasses consistent established	en.
	gagaccagca aatactatgt gaccatcatt gatgcccag gacacagaga cttcatcaaa	60
	aacatgatta caggacate caggetgae tgtgetgtee tgattgttge tgetggtgtt	120
	ggtgaatttg aagstggtat ctocaagaac gggcagaooc gogagcatgs tettetgget	180
	tacaccteg gtgtgaaaca gctgattgtt ggtgtcaaca aaatggattc caccgagcca	240
	ccatacagtic agaagagata cgaggasatic gttaaggaag tcagcaccta cattaagsaa	300
	attegetaca accetgacae agtageattt gtgecaattt etggttggaa tggtgacaae	380
	atgctggagc caagtgctaa tatgccttgg ttcaagggat ggaaagtcac ccgcaaagat	420
	ggzagtgoca gtggcaccac gctgctggza gctttggatt gtatoctacc accaactogt	480
	occastigaca agoctetigog actigococte caggatigitet ataasattigg aggoattigge	540
	actgtooctg tgggoogagt ggagactggt gttctcaaac ctggcatggt ggttaocttt	600
	getecagtea atgtaacaac tgaagteaag tetgttgaaa tgeaccatga agetttgagt	660
<37>	2. GF(growth factor)Ⅱgene: 서열목록 서열 2	
<38>		
	gdørdøt oggørete ætetetet æterogge øetrogge eggenøre	60
	lgigerag æggigica tooglacti: tgraceic gogloactg gyggegea	120
	greggen atalatg gamilga gyyrtatg gregitaga talagiga	180
	cannote coassant than cassangle asserber advatator	240
	cttiggtæm ticatcagga tocactiggg taccactggg æggtggott otgetgæat.	300
	ogencalat citclagga agiclaggi cactilocag clanggiag angregia	330
	cecatttt talegatea tgietaeran gageeggg eteattgan tgeleetgat	420
	cacacaac coatalgad agodtogt cagloaggg gygloadg toccagat	480
	tenterca energy temany temperating energy	530
<39>	3. GF(growth factor)Ⅲ gene: 서열목록 서열 3	
<40>		
	gtigitætt tænizigni gtigææn gdigæltigg ægatæltig ægiælalti	60
	torætgig: cactaræg aggetatt cægicttic tiætgetgi araætgæg	120
	इस्हों स्वारं स्वारं क्षेत्र क्षेत्र क्षेत्र स्वारं क्षेत्र स्वारं क्षेत्र स्वारं स्वारं स्वारं स्वारं स्वारं	180
	ttactagg atgament gragamit grafittiga ængigiga taggræga	240
	ætgtgæ todgittic tæggætt giltoætgg tialigæc octigdge	300
	ogtatatte etttagatga accantigat ettettaatig tagetticat agetgangaa	330
	agroater cardardt taragen egnataar agroada algignata	420
	acticageg extictates egylighted egylighte desagliac testescent	480

4. GF(growth factor)IVgene: 서열목록 서열 4

tczytytac agytogatc acagyaggy oggactana gyactana gytyttagc

539

<42>

CELLIAGE CERTAIN CELLIAGE CERTAIN CELLIAGE CELLI	60
tdcarge tardglgagildca tggggg taddid graagt	Te)
සැයයන අයද දැන්න අයද දැන්න අයද දැන්න අයද සියද සියද සියද සියද සියද සියද සියද සි	\mathbf{B}
THE THE SECRETARY STANDARY STREETS SECRETARY SERVERS SECRETARY SERVERS SECRETARY SECRETARY SERVERS SECRETARY SERVERS SECRETARY SERVERS SECRETARY SERVERS SECRETARY SERVERS SECRETARY SERVERS SECRETARY SECRETARY SERVERS SECRETARY SERVERS SECRETARY SERVERS SECRETARY SEC	20
ANTALE CARREST CHARGE CHARGE CHARGE CHARGE	Œ
tottcateggalgggegggattataggalgalggg	36)
telegrategraziezza eredetat ecanane terletezzeraran	419

<43>

5. GF(growth factor) V gene: 서열목록 서열 5

<44>

tatatagen ogentrægt anatoggic tegonagga gygnasenc aggrandt	ക
appointat anatoppa tangggt gravatara taxtraxtar organggg	120
generate general agreement that the state of	180
ttatagggt grængre atææætt tærægræ ttattægt æætrææga	240
gregators arrested gregated exported contents.	300
tettegtert agrangiac taagettaac agritagrage agrittitiac acancalogg	360
and a statement of the	420
tglagrag: ttataalg ttaglttcag cancand gradanc gigttoota	480
ctaractat gtaggitta graggag	507

<45>

상기 결과로부터, 본 발명은 돼지의 근육 및 지방조직에서 성장에 관여하는 신규한 특이 유전자의 염기서열을 밝혀냄으로써, 이들 특이유전자들을 이용하여 성장능력이 우수한 종돈을 개량하는데 사용가능하며, 상기 유전자들을 이용한 유전자 기능분석용 DNA 칩의 개발이 가능하며, 돼지 품종별 및 조직별 성장유전자의 발현 차이를 비교할 수 있고, 상기 유전자를 이용한 사료 등을 제조하여 돼지의 일당증체량을 증가시켜 농가의 소득 향상에 이바지할 수 있는 기반을 마련한 것이다.

【발명의 효과】

상기 실시예를 통하여 살펴본 바와 같이, 본 발명은 돼지 유래의 신규한 성장특이유전자에 관한 것으로 DNA 마이크로어레이 기술을 이용항여 돼지의 성장율을 증가시키는 데 관여하는

신규한 성장특이유전자를 제공하는 뛰어난 효과가 있다. 따라서, 본 발명 돼지의 성장특이유 전자를 사료 등에 이용하여 돼지의 일당증체량을 증가시키거나 성장능력이 우수한 종돈개량에 응용할 수 있으므로 양돈산업상 매우 유용한 발명인 것이다.

【특허청구범위】

【청구항 1】

서열목록 서열 1에 기재된 가고시마 버크셔(Kagoshima Berkshire) 유래의 성장특이유전 자의 염기서열.

【청구항 2】

서열목록 서열 2에 기재된 가고시마 버크셔(Kagoshima Berkshire) 유래의 성장특이유전 자의 염기서열.

【청구항 3】

서열목록 서열 3에 기재된 가고시마 버크셔(Kagoshima Berkshire) 유래의 성장특이유전 자의 염기서열.

【청구항 4】

서열목록 서열 4에 기재된 가고시마 버크셔(Kagoshima Berkshire) 유래의 성장특이유전자의 염기서열.

【청구항 5】

서열목록 서열 5에 기재된 가고시마 버크셔(Kagoshima Berkshire) 유래의 성장특이유전 자의 염기서열.

【서열목록】

<110> KIM, Chulwook Gyeongsangnam-do <120> Novel growth related genes
from swine <160> 5 <170> Kopatent In 1.71 <210> 1 <211> 660 <212> DNA
<213> Kagoshima Berkshire <400> 1 gagaccagca aatactatgt gaccatcatt gatgccccag

gacacagaga cttcatcaaa	60	aacatgatta	caggcacatc	ccaggctgac	tgtgctgtcc	
tgattgttgc tgctggtgtt	120	ggtgaatttg	aagctggtat	ctccaagaac	gggcagaccc	
gcgagcatgc tcttctggct	180	tacaccctgg	gtgtgaaaca	gctgattgtt	ggtgtcaaca	
aaatggattc caccgagcca	240	ccatacagtc	agaagagata	cgaggaaatc	gttaaggaag	
tcagcaccta cattaagaaa	300	attggctaca	accctgacac	agtagcattt	gtgccaattt	
ctggttggaa tggtgacaac	360	atgctggagc	caagtgctaa	tatgccttgg	ttcaagggat	
ggaaagtcac ccgcaaagat	420	ggcagtgcca	gtggcaccac	gctgctggaa	gctttggatt	
gtatcctacc accaactcgt	480	ccaactgaca	agcctctgcg	actgcccctc	caggatgtct	
ataaaattgg aggcattggc	540	actgtccctg	tgggccgagt	ggagactggt	gttctcaaac	
ctggcatggt ggttaccttt	600	gctccagtca	atgtaacaac	tgaagtcaag	tctgttgaaa	
tgcaccatga agctttgagt	660					
660 <210> 2 <211>	530 <212	S> DNA <2	213> Kago	oshima Berks	shire <400>	2
gctgactgat cgggagaatc	agtctatctt	aatcaccgga	gaatccgggg		60	
gctgactgat cgggagaatc tgtgaacacg aagcgtgtca	•			caggaaagac		
	tccagtactt	tgccacaatc	gccgtcactg	caggaaagac gggagaagaa	60	
tgtgaacacg aagcgtgtca	tccagtactt gcaaaatgca	tgccacaatc ggggactctg	gccgtcactg gaagatcaga	caggaaagac gggagaagaa tcatcagtgc	60 120	
tgtgaacacg aagcgtgtca gaaggaggaa cctactcctg	tccagtactt gcaaaatgca ttggcaacgc	tgccacaatc ggggactctg caagaccgtg	gccgtcactg gaagatcaga aggaacgaca	caggaaagac gggagaagaa tcatcagtgc actcctctcg	60 120 180	
tgtgaacacg aagcgtgtca gaaggaggaa cctactcctg caaccccctg ctcgaggcct	tccagtactt gcaaaatgca ttggcaacgc tccacttcgg	tgccacaatc ggggactctg caagaccgtg taccactggg	gccgtcactg gaagatcaga aggaacgaca aagctggctt	caggaaagac gggagaagaa tcatcagtgc actcctctcg ctgctgacat	60 120 180 240	
tgtgaacacg aagcgtgtca gaaggaggaa cctactcctg caaccccctg ctcgaggcct ctttggtaaa ttcatcagga	tccagtactt gcaaaatgca ttggcaacgc tccacttcgg agtctagagt	tgccacaatc ggggactctg caagaccgtg taccactggg cactttccag	gccgtcactg gaagatcaga aggaacgaca aagctggctt ctaaaggcag	caggaaagac gggagaagaa tcatcagtgc actcctctcg ctgctgacat aaagaagcta	60 120 180 240 300	
tgtgaacacg aagcgtgtca gaaggaggaa cctactcctg caaccccctg ctcgaggcct ctttggtaaa ttcatcagga cgaaacatat cttctagaga	tccagtactt gcaaaatgca ttggcaacgc tccacttcgg agtctagagt tgtctaacaa	tgccacaatc ggggactctg caagaccgtg taccactggg cactttccag gaagccagag	gccgtcactg gaagatcaga aggaacgaca aagctggctt ctaaaggcag ctcattgaaa	caggaaagac gggagaagaa tcatcagtgc actcctctcg ctgctgacat aaagaagcta tgctcctgat	60 120 180 240 300 360	

3 <211> 539 <212> DNA <213> Kagoshima Berkshire <400> 3 gttgttcctt taaatatgat gttgccacaa gctgcattgg agactcattg cagtaatatt 60 tccaatgtgc cacctacaag agagatactt caagtctttc ttactgatgt acacatgaag 120 gaagtaattc agcagttcat tgatgtcctg agtgtagcag tcaagaaacg tgtcttgtgt 180 ttacctaggg atgaaaacct gacagcaaat gaagttttga aaacgtgtga taggaaagca 240 aatgttgcaa tcctgttttc tgggggcatt gattccatgg ttattgcaac ccttgctgac 300 cgtcatattc ctttagatga accaattgat cttcttaatg tagctttcat agctgaagaa 360 aagaccatgc caactacctt taacagagaa gggaataaac agaaaaataa atgtgaaata 420 ccttcagaag aattetetaa agatgttget getgetgetg etgaeagtee taataaacat 480 tcagtgtacc agatcgaatc acaggaaggg cgggactaaa ggaactacaa gctgttagc 4 <211> 539 <210> 419 <212> DNA <213> Kagoshima Berkshire <400> 4 catttatgag ggctacgcgc tgccgcacgc catcatgcgc ctggacctgg cgggccgcga 60 teteacegae tacetgatga agatecteae tgagegtgge tacteettet gaceaeaget 120 gagcgcgaga tcgtgcgcga catcaaggag aagctgtgct acgtggccct ggacttcgag 180 aacgagatgg cgacggccgc ctcctcctcc tccctggaaa agagctacga gctgccagac 240 gggcaggtca tcaccatcgg 300 tccttcatcg gtatggagtc caacgagege tteegetgee eggagaeget etteeagece ggcgggcatt cacgagacca cctacaacag catcatgaag 360 tgtgacatcg acatcaggaa ggacctgtat gccaacaacg tcatgtcggg gggcaccac 419 <210> 5 <211> 507 <212> DNA <213> Kagoshima Berkshire <400> 5 tatatagaac cgaatcacgt acactgggcc tgaccaagca gggccaaaac aaggcaacct 60 aggaggttat aaaataggta tacgcgcgct

120 ggacaactag ggctccgcca taagccatcc

gacacataca tactcactac ccgaacgcgg

tttcctggtc gtcgatgttg cgggctgcag
taccagccac ttattaagtt acatccacga
tggtagccgc tgcccgctta ccctgcgcag
cgatagccgc cgctttttac acaccatcgg
cgtctatggt agcagctgcg gcgaccgccg
caaccaccct gccaataccc gtgttcccta
507

180 ttataggct gccaaccgcc atacacacct
240 gggctctgta ccacccctaa gcagtggcag
300 tgttggtgct agctccgtcc taagcttccc
360 cggactagac accgttggtt gcagcgtaag
420 tgtagccagc ttactacatg ttagtttcag
480 ctccaactct gtcggtttca gccgcag