Differentiation (অন্তরীকরণ)

সীমা (Limit) সম্পর্কিত ঃ

১। সীমার ধর্মাবলী (Properties of Limit) ঃ

(i)
$$\lim_{x \to a} \{f_1(x) \pm f_2(x)\} = \lim_{x \to a} f_1(x) \pm \lim_{x \to a} f_2(x)$$
 (iii) $\lim_{x \to a} \frac{f_1(x)}{f_2(x)} = \frac{\lim_{x \to a} f_1(x)}{\lim_{x \to a} f_2(x)}$

(ii) $\lim_{x\to a} \{f_1(x) \times f_2(x)\} = \lim_{x\to a} f_1(x) \times \lim_{x\to a} f_2(x)$ (iv) $\lim_{x\to a} (constant) = constant$ ২। সীমার সূত্রসমূহ (Laws of Limit) ঃ

(i)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
, $\lim_{x \to 0} \frac{x}{\sin x} = 1$ (ii) $\lim_{x \to 0} \frac{\tan x}{x} = 1$, $\lim_{x \to 0} \frac{x}{\tan x} = 1$

(iii)
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$
 (iv) $\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$

(v)
$$\lim_{x \to 0} (1+x)^{1/x} = e$$
 (vi) $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$ (vii) $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$

৩। স্যান্ডউইচ উপপাদ্য (Sandwich Theorem) ३ যখন ত্রিকোণমিতিক ও বীজগাণিতিক ফাংশন একসাথে থাকে তখন লিমিট নির্ণয়ের জন্য ত্রিকোণমিতিক ফাংশনের রেঞ্জ দিয়ে শুরু করে ধীরে ধীরে L. H. L (left Hand Limit) এবং R. H. L (Right hand limit) বের করতে হয়। L. H. L = R. H. L হলে লিমিটের অন্থিত্ব থাকবে।

$$L.H.L = \lim_{x \to a^{-}} f(x)$$

$$R.H.L = \lim_{x \to a^{+}} f(x)$$

৪। বিচ্ছিন্নতা ও অবিচ্ছিন্নতা ঃ x=a বিন্দুতে f(x) ফাংশন অবিচ্ছিন্ন হবে যদি

$$(i)$$
 $\lim_{x \to a} f(x)$ এর অছিত্ব থাকে এবং (ii) $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a)$ হয় ।

অন্তরীকরণ (Differentiation) সম্পর্কিত ঃ

১। মূল নিয়মের সংজ্ঞানুসারে,
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$e + \frac{d}{dx}(\ln x) = \frac{1}{x}$$
 $e + \frac{d}{dx}(\log_a x) = \frac{1}{x}\log_a e$ $e + \frac{d}{dx}(\sin x) = \cos x$

$$33 + \frac{d}{dx}(\sec x) = \sec x \tan x$$

$$32 + \frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$38 + \frac{d}{dx} \left(\frac{1}{x} \right) = \frac{-1}{x^2}$$

$$\mathfrak{d} \vdash \frac{d}{dx} \{ constant \times f(x) = (constant) \frac{d}{dx} f(x) \}$$

যেমন ৪
$$\frac{d}{dx}(5\sin x) = 5\frac{d}{dx}(\sin x) = 5\cos x$$

$$36 + \frac{d}{dx}(u \pm v) = \frac{du}{dx} \pm \frac{dv}{dx}$$

$$39 \cdot \frac{d}{dy}(uv) = u \frac{dv}{dy} + v \frac{du}{dy}$$

$$3b + \frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

$$\lambda \delta : \frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

$$38 + \frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$
 $80 + \frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$

$$3 + \frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

$$22 + \frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$$

$$\vartheta \vdash \frac{d}{dx}(sec^{-1}x) = \frac{1}{x\sqrt{x^2-1}}$$

$$8 + \frac{d}{dx}(\csc^{-1}x) = \frac{-1}{x\sqrt{x^2-1}}$$

Note 1: মূল নিয়মে অন্তরীকরণ করার জন্য প্রয়োজনীয় সূত্র

(i)
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots + x^n$$

(ii)
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \infty$$

(iii)
$$e^{-x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots \infty$$

(iv)
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \dots \infty$$

$$(v) \ln (1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots \infty$$
 [**\overline{\sigma} -1 \leq x < 1]

[শার্ত
$$-1 \leqslant x < 1$$
]

(vi)
$$\log_a x = \log_a e \times \log_e x = \log_a e \times \ln x$$

$$\textbf{Note 2: } \log_x y = \frac{\ln y}{\ln x} \text{ যোমনঃ } y = \log_x a = \frac{\ln a}{\ln x} \text{ } \therefore \text{ } \frac{dy}{dx} = \frac{\ln x \cdot \frac{d}{dx}(\ln a) - \ln a \cdot \frac{d}{dx}(\ln x)}{(\ln x)^2} \text{ } = \frac{-\ln a}{x(\ln x)^2}$$

Note 3: (i)
$$2 \tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2} = \sin^{-1} \frac{2x}{1+x^2} = \cos^{-1} \frac{1-x^2}{1+x^2}$$

(ii)
$$\tan^{-1} \frac{1-x}{1+x} = \tan^{-1} 1 - \tan^{-1} x$$
 যেমনঃ $\tan^{-1} \frac{a-bx}{a+bx} = \tan^{-1} \frac{a\left(1-\frac{bx}{a}\right)}{a\left(1+\frac{bx}{a}\right)}$

$$= \tan^{-1} 1 - \tan^{-1} \left(\frac{bx}{a}\right)$$

Note 4: অন্তরীকরণে ত্রিকোণমিতিক প্রতিস্থাপন

$$\sqrt{a^2-x^2}$$
 $ightarrow$ প্রতিস্থাপন $x=a\sin\theta/a\cos\theta$

যেমন ঃ
$$\sin^{-1}(2x\sqrt{1-x^2})$$
 এর ক্ষেত্রে $x=\sin\theta$ ধরি (কারন $a=1$)

$$\sqrt{a^2 + x^2}$$
 \rightarrow প্রতিস্থাপন $x = a \tan \theta / a \cot \theta$

$$\sqrt{{
m x}^2-{
m a}^2}
ightarrow$$
 প্রতিষ্থাপন ${
m x}={
m a}\,{
m sec}\,\theta/{
m a}\,{
m cosec}\,\theta$

$$\sqrt{\frac{1+x}{1-x}}$$
, $\sqrt{\frac{1-x}{1+x}}$ \longrightarrow প্রতিস্থাপন $x = \cos\theta$

$$\frac{2x}{1-x^2}$$
, $\frac{2x}{1+x^2}$, $\frac{1-x^2}{1+x^2}$ \longrightarrow প্রতিন্থাপন $x=\tan\theta$ [অথবা Note 3 এর (i)নং সূত্রের সাহায্যে করা better]

$$\frac{1+x}{1-x}$$
, $\frac{1-x}{1+x}$ \longrightarrow প্রতিস্থাপন $x = \tan \theta$ [অথবা Note 3 এর (ii) নং সূত্রের সাহায্যে করা better]

Note: 58 (i)
$$\frac{\cos x}{1+\sin x} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2\sin^2 \frac{x}{2}\cos^2 \frac{x}{2}} = \frac{\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)}{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \cos^2 \frac{x}{2}}{\sin^2 \frac{x}{2}} =$$

$$\frac{\cos\frac{x}{2} - \sin\frac{x}{2}}{\cos\frac{x}{2} + \sin\frac{x}{2}} = \frac{\cos\frac{x}{2}(1 - \tan\frac{x}{2})}{\cos\frac{x}{2}(1 + \tan\frac{x}{2})} = \frac{\tan\frac{\pi}{4} - \tan\frac{x}{2}}{1 + \tan\frac{\pi}{4}\tan\frac{x}{2}} = \tan(\frac{\pi}{4} - \frac{x}{2}) \left[\because \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}\right]$$

(ii) একইভাবে ,
$$\frac{\cos x}{1-\sin x} = \frac{\cos^x/2 + \sin^x/2}{\cos^x/2 - \sin^x/2} = \tan(\frac{\pi}{4} + \frac{x}{2})$$

$$(iii)\frac{\sin x}{1+\cos x} = \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\frac{x}{2}} = \tan\frac{x}{2} \text{ (iv) } \frac{\sin x}{1-\cos x} = \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{2\sin^2\frac{x}{2}} = \cot\frac{x}{2}$$

২৫। পরামিতিক ফাংশন ঃ x=f(t), y=f(t) হলে $\frac{dy}{dx}=\frac{dy/dt}{dx/dt}$

যেমনঃ
$$x = 2t^2$$
, $y = 4t \div \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{4}{4t} = \frac{1}{t}$

$$\forall \forall \frac{d}{dx}(u^{v}) = u^{v}(\frac{v}{u}\frac{du}{dx} + \ln u\frac{dv}{dx}) \quad \text{(For Admission Test)}$$

২৭। ম্যাকলরিনের উপপাদ্য ঃ
$$f(x)=f(0)+xf^{'}(0)+rac{x^{2}}{2!}f^{''}(0)+rac{x^{3}}{3!}\;f^{'''}(0)+\cdots+rac{x^{n}}{n!}f^{n}(0)+\cdots\infty$$

২৮।
$$(\mathbf{x}_1,\mathbf{y}_1)$$
 বিন্দুতে স্পর্শকের সমীকরণ, $y-y_1=(rac{\mathrm{d} y}{\mathrm{d} x})_{(\mathbf{x}_1,y_1)}\,(\mathbf{x}-\mathbf{x}_1\,)$

২৯।
$$(x_1,y_1)$$
 বিন্দুতে অভিলম্বের সমীকরণ , $y-y_1=rac{-1}{(rac{\mathrm{d} y}{\mathrm{d} x})_{(x_1,y_1)}}(x-x_1)$

৩০।
$$(i)$$
 স্পর্শকটি x অক্ষের ধনাত্মক দিকের সাথে $heta$ উৎপন্ন করলে, $rac{\mathrm{d} y}{\mathrm{d} x} = an heta$

$$(ii)$$
 স্পর্শকটি x অক্ষের সমান্তরাল হলে, $\frac{dy}{dx}=\tan\,0^\circ=0$

$$(iii)$$
 স্পর্শকটি x অক্ষের উপর লম্ব হলে, $rac{dx}{dy}=\cot 90^\circ=0$

(ব্যাখ্যা ঃ
$$\frac{dy}{dx} = \tan 90^\circ \Rightarrow \frac{dx}{dy} = \frac{1}{\tan 90^\circ} = \cot 90^\circ = 0$$
)

$$(iv)$$
 স্পর্শকটি স্থানাংকের অক্ষদ্বয়ের সাথে সমান সমান কোণ উৎপন্ন করলে, $rac{dy}{dx}= an(\pm 45^\circ)=\pm 1$

৩১। বেগ ,
$${
m v}=rac{{
m d} s}{{
m d} t}$$
 ৩২। সমবাহু ত্রিভুজের ক্ষেত্রফল $=rac{\sqrt{3}}{4}a^2$

৩৩। বৃত্তের ক্ষেত্রফল $=\pi r^2$

৩৪। বৃত্তের পরিধি = 2πr

৩৫। গুরুমান/ সর্বোচ্চ মান এবং লঘুমান/ সর্বনিমুমান এর জন্য , f'(x)=0 অর্থাৎ $rac{dy}{dx}=0$

 $\mathbf{Remember}: rac{\mathrm{d}y}{\mathrm{d}x}$ এর মান কোন বিন্দুতে শূন্য (0) হওয়া সম্ভব না হলে ঐ বিন্দুতে গুরুমান বা লঘুমান থাকবে না।

যেমনঃ
$$y=x^3-6x^2+24x+4$$
 হলে $\frac{\mathrm{d}y}{\mathrm{d}x}=3x^2-12x+24=3(x^2-4x+8)$

$$=3(x^2-2.x.2+2^2+4)=3\{(x-2)^2+4\}$$

 $(x-2)^2$ এর সর্বনিম্ন মান $0 \div 3\{(x-2)^2+4\}$ এর সর্বনিম্ন মান $= 3 \times 4 = 12$

 $rac{\mathrm{d} y}{\mathrm{d} x}$ এর মান কখনই শূন্য (0) হওয়া সম্ভব না $\therefore y$ ফাংশনের কোন গুরুমান বা লঘুমান নেই ।

৩৬। f''(x) < 0 অর্থাৎ $rac{d^2y}{dx^2} < 0$ হলে $x = x_1$ বিন্দুতে গুরুমান/ সর্বোচ্চ মান থাকবে।

৩৭। f''(x)>0 অর্থাৎ $rac{d^2y}{dx^2}>0$ হলে $x=x_1$ বিন্দুতে লঘুমান/ সর্বনিম্ন মান থাকবে।

 ${\bf Remember}: {\bf x}={\bf x}_1$ বিন্দুতে $f''({\bf x})=0$ হলে ${\bf x}={\bf x}_1$ বিন্দুতে $f'''({\bf x})$ এর মান বের করতে হবে। আবার $f'''({\bf x})=0$ হলে $f^{iv}({\bf x})$ এর মান ${\bf x}={\bf x}_1$ বিন্দুতে বের করতে হবে। এভাবে,

$$f^{-2n({ t Consp.})}\left(x_{_{1}}
ight)\!>\!0$$
 বা <0 হলে গুরুমান, লঘুমান থাকবে।

$$f^{2n+1($$
বিজোড় $)} \; (x_{_1}) \! > \! 0 \;$ বা $< 0 \;$ হলে গুরুমান লঘুমান থাকবে না ।

অর্থাৎ $f^{\prime\prime\prime}(x_1)>0$ বা <0 এর ক্ষেত্রে গুরুমান, লঘুমান থাকবে না

$$f^{iv}(x_1)>0$$
 বা <0 এর ক্ষেত্রে গুরুমান, লঘুমান থাকবে।