• Potenziale generato da un dipolo elettrico

- Due cariche elettriche q_1 e q_2 giacciono nel piano xy, con coordinate (x_1, y_1) e (x_2, y_2) rispettivamente.
 - Si definiscano due funzioni che descrivono, in un punto generico (x, y), una il potenziale coulombiano e l'altra il campo elettrico, generati dalle due cariche.
- Si definiscano due funzioni che permettano, per coordinate arbitrarie delle cariche, anch'esse arbitrarie, q_1 e q_2 , di disegnare:
 - 1) la superficie del potenziale per x e y compresi in [-5, 5];
 - 2) le curve di livello del potenziale nello stesso intervallo.
- Si disegni la superficie del potenziale e le corrispondenti curve di livello con:
 - 1) $q_1 = 1$, $q_2 = +1$, $(x_1, y_1) = (-3, -3)$, $(x_2, y_2) = (1, 1)$
 - 2) $q_1 = 1$, $q_2 = -1$, $(x_1, y_1) = (-3, -3)$, $(x_2, y_2) = (1, 1)$
 - 3) $q_1 = 1$, $q_2 = +1$, $(x_1, y_1) = (-3, -3)$, $(x_2, y_2) = (-2.7, -2.7)$
- Si definisca una terza funzione che disegni sul piano xy l'orientazione del campo elettrico punto per punto. A questo scopo si utilizzi la primitiva grafica Arrow. Si generi una matrice M 15x15 di frecce, di lunghezza opportunamente ridotta in funzione delle dimensioni del plot, orientate come il campo elettrico in quel punto (suggerimento: nel punto i-esimo la freccia va da (x_i, y_i) al punto $(x_i, y_i) + \vec{E}(x_i, y_i)$ ed è opportunamente normalizzata).
- \bullet Coniche Si risolva il seguente sistema di equazioni rispetto alle variabili y, z

$$\begin{cases} z = \frac{1}{2} + \lambda x \\ z^2 = x^2 + y^2 \end{cases} \tag{1}$$

Si definisca la soluzione come funzione del parametro λ .

Si disegni la variabile y soluzione del sistema, al variare di $x \in [-3,3]$ nei seguenti casi: $\lambda = 0, 0.5, 1, 2$

Si utilizzi il comando Manipulate per mostrare l'intersezione delle due superfici definite dalle due equazioni del sistema al variare del parametro λ (si considerino $x \in [-3,3]$). $y \in [-3,3]$).