Table of Contents

- 1 微積分
 - 1.1 ソフトマックス関数の概形(15点)
 - 1.2 3D関数のプロット(15点)
- 2 線形代数
 - 2.1 線形結合の確認(p.173, 5-39)(15点)
 - 2.2 解析解の確認(p.177, 5-60)(15点)
- 3 センター試験原題(10点)
- 4 数值改变(30点)

2020年度 数式処理演習 pair試験問題

cc by Shigeto R. Nishitani, 2020/11/26 実施

• file: ~/symboic_math/exams/20_pre_ans.ipynb

以下の問題をpythonで解き、LUNAへ提出せよ。LUNAへはipynbとpdf形式の2種類を提出する こと

微積分

ソフトマックス関数の概形(15点)

ソフトマックス関数

$$f(x) = \frac{1}{1+e^{-x}}$$

の増減、極値、凹凸を調べ、曲線y=f(x)の概形を描け、

X	$-\infty$	• • •	0	•••	∞
f(x)	0	7	0.5	7	0
f'(x)	0	+	+	+	0
f''(x)	0	+	0	_	0

3D関数のプロット(15点)

3変数のシグモイド関数で、1変数を固定すると次のような関数となる.

```
import numpy as np
```

```
def softmax(x,y):
    return np.exp(-x)/(np.exp(-x)+np.exp(-y)+np.exp(-1))
この関数を
```

```
x = np.arange(-4, 4, 0.5)

y = np.arange(-4, 4, 0.5)
```

線形代数

線形結合の確認(p.173, 5-39)(15点)

sympyを使って、 $w^T x$ で線形結合が得られることを確認せよ.

1.
$$w=egin{pmatrix} w_0 \ w_1 \ w_2 \end{pmatrix}$$
, $x=egin{pmatrix} x_0 \ x_1 \ x_2 \end{pmatrix}$ を作る.

- 2. wを転置する
- 3. ww.T*xx で線形結合となることを確認する
- 4. ww*xx.T では3x3の行列が得られることも確認せよ

解析解の確認(p.177, 5-60)(15点)

xdata=np.array([1,2,3,4])
ydata=np.array([0,5,15,24])

を対象データとして、(5-53)にしたがって、N=4, n=3で

$$y = a_0 + a_1 x + a_2 x^2$$

に対するfittingを行う。得られたデザイン行列Xは

$$X = egin{pmatrix} 1 & 1 & 1 \ 1 & 2 & 4 \ 1 & 3 & 9 \ 1 & 4 & 16 \end{pmatrix}$$

となる。(5-59)式の左辺の X^TX が3x3行列になることを確認せよ。

ヒント:

https://nbviewer.jupyter.org/github/daddygongon/jupyter_num_calc/blob/master/numerical_calc/の「正規方程式(Normal Equations)による解」の「python codeによる具体例」を参照せよ

センター試験原題(10点)

(2018大学入試センター試験 追試験 数学II・B 第2問)

a を正の実数とし, 放物線 $y=3x^2$ を C_1 ,放物線 $y=2x^2+a^2$ を C_2 とする. C_1 と C_2 の二つの共有点を x 座標の小さい順にA,Bとする. また, C_1 と C_2 の両方に第1象限で接する直線をl とする.

(1) Bの座標をa を用いて表すと $(m{\mathcal{P}},m{\mathcal{I}})$ である

直線l と二つの放物線 C_1,C_2 の接点のx 座標をそれぞれs,t とおく. l はx=s で C_1 と接するので, l の方程式は

と表せる. 同様に,l はx=t で C_2 と接するので,l の方程式は

$$y = \boxed{oldsymbol{\dagger}} tx - \boxed{oldsymbol{\dagger}} t^{rac{ au}{oldsymbol{\dagger}}} + a^2$$

とも表せる。これらにより、s,t は

$$s=rac{\sqrt{\mathcal{T}}}{\Box}a,\;\;t=rac{\sqrt{\mathcal{T}}}{\Box}a$$

である.

放物線 C_1 の $s \le x \le \mathcal{T}$ の部分 放物線 C_2 の \mathcal{T} $\le x \le t$ の部分, x 軸, および2直線 x=s, x=tで囲まれた図形の面積は

$$\frac{\boxed{\flat\sqrt{\lambda}-\boxed{\upsilon}}{\sqrt{\lambda}}$$

である.

数值改变(30点)

問3.において、放物線 C_1 が

$$y=2.9x^2$$

である場合について解きなさい。 ただし,係数が浮動小数点数に変わったので, $\boxed{m P}$, $\boxed{m d}$ などには浮動小数点数が入る.最後の図形の面積は, $1.284186\dots a^3$ となる.(30点)