Dynamically Inconsistent Preferences¹

Xiaoxiao Hu (Wuhan University)

April 15, 2020

¹Based on Chapter 2 and 4 of *Bounded Rationality and Industrial Organization* (Spiegler, 2011)

- In the previous lectures, we have learned sampling-based reasoning and coarse reasoning.
 - Sampling-based reasoning: examine a small part in detail and extrapolate naively
 - Coarse reasoning: exhibit "coarse representation" of the entire available data
- These consumers are boundedly rational.

- Facing those bounded rational consumers, firms may use complex pricing strategies or spurious variety to explore the bounded rational consumers.
- Complex pricing strategies:
 - ► Firms deliberately confuse consumers, or *obfuscate*.
 - ▶ Firms use complex price patterns as a discrimination device.
- Spurious variety:
 - ► Firms have an incentive to create an impression of a differentiated product in order to weaken competitive pressures.

- Complex pricing strategies and spurious variety are very common when firms face (these and other types of) bounded-rational consumers.
- This week, we will introduce another type of bounded rationality: dynamic inconsistency.
- Complex pricing strategies and spurious variety are also results of firms' profit maximizing strategies.

Dynamically Inconsistent Preferences

- "Dynamically Inconsistent Preferences" simply means changes of tastes from time to time.
- In real-life, such phenomena are very common.
- The change in preferences could be due to
 - the mere passage of time, or
 - the presence of a particular contingency.
- The following examples illustrate this idea.

Example: Present bias

- Present-biased individual always place more weight on the current welfare compared to the future welfare.
- As time goes by, and tomorrow becomes today, such individual would change the preference ranking.
- For instance, such individual may say
 - I will start eating healthy next week.
 - ▶ I will wake up early tomorrow morning and do exercises.
 - ▶ I will do the assignments tomorrow.
 - etc.

Example: Temptations

- Consider a two-stage decision problem.
- In the first stage, you choose a restaurant.
- In the second stage, while at the restaurant, you decide which dish to order.
- You are on a diet, so from the point of view of the first stage, eating steak is inferior to eating salad.
- If you could commit yourself to a particular dish ex-ante, you would commit to eating salad rather than steak.
- However, once at the restaurant, facing a menu that contains both salad and steak, you are tempted by the latter and go for it.

Example: Dynamic implications of reference-point effects

- Imagine that you are considering signing up for a service.
- Before you sign up, you are willing to pay at most \$20.
- Suppose that at the time you are offered the service contract, the stated price is \$20.
- After you sign up for it, the firm raises the price unexpectedly to \$25.
- You are still able to cancel the deal at no cost.
- From your point of view before you signed up, you would prefer to cancel.
- However, having signed up, your point of view has changed; you
 weigh the pros and cons differently, and decide that you do not
 want to cancel.

The Multi-selves Model

- Dynamic inconsistent individuals have changing tastes.
- The most widely practiced modeling tool is the "multi-selves model."
- Decision maker is modelled as a collection of different players ("selves") having idiosyncratic preferences.
- We assign a self to a decision node, in the same way that we would assign a player to a node in an extensive-form game.

The Multi-selves Model

- We will apply this tool to two-period decision problems to analyze the Temptation problem.
- Recall the example of temptatation:
 - In period 1, you prefer salad to steak;
 - However, in period 2, if facing a menu containing steak, you cannot resist it.
 - ▶ In period 1, you choose which restaurant to go to;
 - ► In period 2, you choose one dish from the menu.

The Multi-selves Model

- In period 1, consumer chooses a menu *A*, which contains a non-empty subset of the set of consumption decisions *Z*.
- In period 2, he chooses an element from *A*.
- Self $j \in \{1,2\}$ moves in period j and has preference relation \succsim_j over Z.
- In the previous example,
 - $ightharpoonup Z = \{steak, salad\}$
 - ▶ $salad \succ_1 steak$
 - ▶ $steak \succ_2 salad$

Sophisticated Consumers

- Sophisticated consumers are aware of the taste change.
- In our example, self 1 will choose the menu {salad} in period 1, and consequently, self 2 will be forced to eat salad in period 2.

Naivete

- Full naivete means that in period 1, self 1 believes that self 2 has identical preferences.
- In our example, self 1 is indifferent between the menu {salad} and {steak, salad} in period 1.
- Partial naivete is in-between sophistication and full naivete.
- We will discuss two types of partial naivete later.

Contracting with Different types of consumers

- Consumers of different levels of sophistication display different preferences over menus in preriod 1.
- We will see how firm(s) would contract with each type of consumers.
- The main focus is the monopoly model.

Monopoly Pricing

The Monopoly Model

- Consider a monopolistic firm that interacts with a population of consumers with changing tastes.
- In period 1
 - ▶ Firm sets price scheme $t: X \to \mathbb{R}$.
 - ▶ *X* is the set of actions that a consumer can take in period 2.
 - ▶ *t* specifies a transfer (possibly negative) from consumer to firm.
 - Consumer chooses whether to accept the scheme.
 - ► Consumer's outside option is 0.
- In period 2
 - ▶ If consumer accepts a price scheme, he is committed to it.
 - ► Consumer chooses one action $x \in X$ and pays the transfer t(x).

Consumer's preference

To capture the time-inconsistency,

- In period 1, consumer's willingness to pay for any action is given by the function $u: X \to \mathbb{R}$;
- In period 2, his willingness to pay is given by the function $v: X \to \mathbb{R}$.

Facing a pricing scheme *t*, consumer's evaluation is

- In period 1: u(x) t(x);
- In preiod 2: v(x) t(x).

The Monopoly Model

- Let c(x) denote the cost that firm incurs when consumer takes action x.
- Assume that each of the functions u c, v c, and u v attains a non-negative maximum at a unique point.

Sophisticated Consumers

- Sophisticated consumer is aware that self 2's preferences will be given by *v*.
- In period 1, firm and consumer agree on v, and thus which action would be taken given a price scheme.
- All firm needs to fix is a pair (x^*, T^*) , where x^* is the action consumer chooses in period 2 and $T^* = t(x^*)$ is the payment he makes.
- Therefore, we can set t(x) to be arbitrarily large for any $x \neq x^*$.

Sophisticated Consumers

• Firm's problem is

$$\max_{x} T - c(x)$$

s.t. $u(x) - T \ge 0$.

• The solution is

$$x^* = \arg\max_{x} (u(x) - c(x))$$
$$T^* = u(x^*)$$

- In period 1, naive consumer believes that self 2's preferences will still be given by *u*.
- In period 1, Firm and consumer disagree on which action would be taken in period 2.
- The price scheme can be summarized by a 4-tuple (x^u, T^u, x^v, T^v) .
 - (x^u, T^u) is the action-payment pair in the event that consumer's willingness to pay is u;
 - (x^v, T^v) is the action-payment pair in the event that consumer's willingness to pay is v.
- Consumer believes in the former event; firm believes in the latter.
- We can ignore all other actions, because firm can set $t(x) = +\infty$ for any $x \neq x^u, x^v$.

Firm's problem is

$$\max_{x^{u}, T^{u}, x^{v}, T^{v}} T^{v} - c(x^{v})$$
s.t. $v(x^{v}) - T^{v} \ge v(x^{u}) - T^{u}$ (IC₂V)
$$u(x^{u}) - T^{u} \ge u(x^{v}) - T^{v}$$
 (IC₂U)
$$u(x^{u}) - T^{u} > 0.$$
 (IR)

- (IC_2V) ensures that consumer would choose x^v when his preferences are given by v, as firm expects;
- (IC_2U) ensures that consumer would choose x^u when his preferences are given by u, as consumer expects;
- (*IR*) is consumer's participation constraint, determined by consumer's first-period preferences and what he expects will happen in period 2.

$$\max_{x^{u}, T^{u}, x^{v}, T^{v}} T^{v} - c(x^{v})$$
s.t. $v(x^{v}) - T^{v} \ge v(x^{u}) - T^{u}$ (IC₂V)
$$u(x^{u}) - T^{u} \ge u(x^{v}) - T^{v}$$
 (IC₂U)
$$u(x^{u}) - T^{u} \ge 0.$$
 (IR)

- (*IR*) must be binding.
- Otherwise, we could raise T^v and T^u by the same arbitrarly small $\varepsilon > 0$.
 - Constraints are still satisfied.
 - Profit is larger.
- (IC_2V) must be binding.
- Otherwise, we could raise T^v by an arbitrarly small $\varepsilon > 0$.

The binding constraints could be written as

$$\left\{ \begin{array}{c} v(x^v) - T^v = v(x^u) - T^u \\ u(x^u) - T^u = 0 \end{array} \right. \implies \left\{ \begin{array}{c} T^v = v(x^v) + u(x^u) - v(x^u) \\ T^u = u(x^u) \end{array} \right.$$

The problem becomes

$$\max_{x^{u}, x^{v}} [v(x^{v}) - c(x^{v})] + [u(x^{u}) - v(x^{u})]$$
s.t. $u(x^{u}) - v(x^{u}) \ge u(x^{v}) - v(x^{v})$. (IC₂U)

$$\max_{x^{u}, x^{v}} [v(x^{v}) - c(x^{v})] + [u(x^{u}) - v(x^{u})]$$
 s.t. $u(x^{u}) - v(x^{u}) \ge u(x^{v}) - v(x^{v})$. (IC₂U)

Solution to the unconstraint maximization problem is

$$x^{v} = \arg\max_{x}(v(x) - c(x))$$

$$x^{u} = \arg\max_{x}(u(x) - v(x))$$

• The constraint holds automatically since $x^u = \arg \max_x (u(x) - v(x))$

Comparison between Sophisticates and Naifs

- For sophisticates, the optimal price scheme induces the same action as optimal pricing with a dynamically consistent consumer whose willingness-to-pay function is *u*.
- For naifs, the optimal price scheme induces the same action as optimal pricing with some dynamically consistent consumer, but the willingness-to-pay function is *v*.

Comparison between Sophisticates and Naifs

- Firm's earn more profit from naifs.
 - ► Profit from sophisticates is

$$T^* - c(x^*) = u(x^*) - c(x^*) = \max_{x} (u(x) - c(x))$$

▶ Profit from naifs is $T^v - c(x^v) = [v(x^v) - c(x^v)] + [u(x^u) - v(x^u)] = \max_x (v(x) - c(x)) + \max_x (u(x) - v(x))$

◆ Return to Slide 61

Screen Consumer's Type

- Now consider the population consisting of both naifs and sophisticates.
- "Cognitive type" is consumer's private information.
- Firm can offer different price schemes to screen consumers.

Screen Consumer's Type

- Optimal menu consist of two types of price schemes:
 - ▶ Perfect commitment devices aimed at sophisticates (x^*, T^*)
 - "Betting" price scheme aimed at naifs $(x^{\hat{u}}, T^{u}, x^{v}, T^{v})$
- Both types of consumers evaluate the first scheme at 0.
- Naifs evaluates the second scheme at 0, whereas the sophisticates knows that it is a "betting" scheme that yields a negative payoff.
 - ► $T^v = v(x^v) + u(x^u) v(x^u)$ is strictly higher than consumer's u-willlingness to pay for x^v .
- Consumers will choose the contracts designed for them.

Partial Naivete

- Now we consider Partial Naifs who hold beliefs in between sophisticates and full naifs.
- We consider two types of partial naivetes:
 - Magnitude Naivete: underestimates the magnitude of change of preference.
 - ► Frequency Naivete: underestimates the likelihood of *v*.

Partial Naivete: Magnitude Naivete

- First, consider Magnitude Naivete: believe the second-period preferences will be, with probability 1, $w = \alpha u + (1 \alpha)v$, for some $\alpha \in (0,1)$.
- α is consumer's type; higher α represents greater naivete.
- A partially naive consumer is "almost fully sophisticated" if his value of α is close to zero, such that w is close to v.
- However, note that even such a consumer assigns zero probability to the true state *v*.

Magnitude Naivete

- Suppose firm knows it faces a partially naive consumer of type α .
- Let us solve for firm's optimal price scheme.
- As in the case of full naivete, without loss of generality, consider (x^w, T^w, x^v, T^v)
 - (x^w, T^w) is the action-payment pair in the event that the consumer's willingness to pay is w;
 - (x^v, T^v) is the action-payment pair in the event that the consumer's willingness to pay is v.
- Similarly, we can ignore all other actions, because the firm can set $t(x) = +\infty$ for any $x \neq x^w$, x^v .

Magnitude Naivete

Firm's problem is

$$\max_{x^{u}, T^{u}, x^{v}, T^{v}} T^{v} - c(x^{v})$$
s.t. $v(x^{v}) - T^{v} \ge v(x^{w}) - T^{w}$ (IC₂V)
$$w(x^{w}) - T^{w} \ge w(x^{v}) - T^{v}$$
 (IC₂W)
$$u(x^{w}) - T^{w} > 0.$$
 (IR)

- (IC_2V) ensures that consumer would choose x^v when his preferences are given by v, as firm expects;
- (IC_2W) ensures that consumer would choose x^w when his preferences are given by w, as consumer expects;
- (*IR*) is consumer's participation constraint, determined by consumer's first-period preferences and what he expects will happen in period 2.

Magnitude Naivete

The solution of this maximization problem turns out to be *exactly the same as for the fully naive consumer*!

- Same as in the full-naivete case, (IC_2V) and (IR) are binding.
- The problem becomes

$$\max_{x^{w}, x^{v}} [v(x^{v}) - c(x^{v})] + [u(x^{w}) - v(x^{w})]$$
s.t. $w(x^{w}) - v(x^{w}) \ge w(x^{v}) - v(x^{v}).$ (IC₂W)

• The solution is

$$x^{v} = \arg\max_{x} (v(x) - c(x))$$

$$x^{w} = \arg\max_{x} (w(x) - v(x))$$

$$T^{w} = u(x^{w})$$

$$T^{v} = v(x^{v}) + u(x^{w}) - v(x^{w})$$

Magnitude Naivete

$$x^{w} = \arg\max_{x}(w(x) - v(x))$$

$$x^{u} = \arg\max_{x}(u(x) - v(x))$$

• $x^w = x^u$ since w is a convex combination of u and v:

$$\arg \max_{x} (w(x) - v(x))$$

$$= \arg \max_{x} [(\alpha u(x) + (1 - \alpha)v(x)) - v(x)]$$

$$= \arg \max_{x} [\alpha (u(x) - v(x)) + (1 - \alpha)(v(x) - v(x))]$$

$$= \arg \max_{x} (u(x) - v(x))$$

Magnitude Naivete

- The result shows that optimal price scheme pool together all consumers with $\alpha > 0$, even if a consumer is "almost fully" sophisticated.
- Note that there is a discontinuity at $\alpha = 0$.
- $\alpha = 0$ corresponds to sophistication.

Magnitude Naivete: Perfect Screening Result

- Consider the case where "cognitive type" is consumer's private information.
- Following the same logic as we discussed before, the perfect screening result persists for an arbitrary population consisting of diversely (magnitude) naive consumers.

Partial Naivete: Frequency Naivete

- Now consider frequency naivete: assign probability $\theta \in (0,1)$ to u and $(1-\theta)$ to v.
- θ is consumer's type; higher θ represents greater naivete.

- Suppose firm knows it faces a partially naive consumer of type θ .
- Let us solve for firm's optimal price scheme.

$$\max_{x^{u}, T^{u}, x^{v}, T^{v}} T^{v} - c(x^{v})$$
s.t. $v(x^{v}) - T^{v} \ge v(x^{u}) - T^{u}$

$$u(x^{u}) - T^{u} \ge u(x^{v}) - T^{v}$$
(IC₂V)
(IC₂U)

$$\theta \left[u(x^{u}) - T^{u} \right] + (1 - \theta) \left[u(x^{v}) - T^{v} \right] > 0. \tag{IR}$$

$$\theta [u(x^u) - T^u] + (1 - \theta) [u(x^v) - T^v] \ge 0.$$
 (IR)

- (IC_2V) ensures that consumer would choose x^v when his preferences are given by v;
- (IC_2U) ensures that consumer would choose x^u when his preferences are given by u;
- (IR) is consumer's participation constraint.

Same as in the previous cases, (IC_2V) and (IR) are binding.

- (*IR*) must be binding.
- Otherwise, we could raise T^v and T^u by the same arbitrarly small $\varepsilon > 0$.
 - Constraints are still satisfied.
 - Profit is larger.
- (IC_2V) must be binding.
- Otherwise, we could raise T^v by an arbitrarily small $\varepsilon > 0$, and decrease T^u by $\frac{(1-\theta)}{\theta}\varepsilon$.
 - Constraints are still satisfied.
 - Profit is larger.

The problem becomes

$$\max_{x^{u}, x^{v}} \theta v(x^{v}) + (1 - \theta)u(x^{v}) - c(x^{v}) + \theta[u(x^{u}) - v(x^{u})]$$
s.t. $u(x^{u}) - v(x^{u}) \ge u(x^{v}) - v(x^{v}).$ (IC₂U)

• The solution is

$$\begin{split} x^v &= \arg\max_{x} (\theta v(x) + (1 - \theta) u(x) - c(x)) \\ x^u &= \arg\max_{x} (u(x) - v(x)) \\ T^v &= \theta v(x^v) + (1 - \theta) u(x^v) + \theta [u(x^u) - v(x^u)] \\ T^u &= \theta u(x^u) + (1 - \theta) v(x^u) + (1 - \theta) [u(x^v) - v(x^v)] \end{split}$$

- Consumer ends up taking an action that maximizes the *weighted* surplus: $x^v = \arg \max_x (\theta v(x) + (1 \theta)u(x) c(x))$.
- The more sophisticated the consumer, the closer the action is to maximizing u(x) c(x).
- As θ approaches zero, the action-payment pair (x^v, T^v) converges to the action-payment pair induced by sophisticated consumer's price scheme.
- Thus, the solution is continuous with respect to consumer's degree of naivete, unlike the case of magnitude naivete.

Frequency Naivete: Failure of Perfect Screening

- Now consider the case in which the degree of consumer's frequency naivete is his private information.
- Unlike the case of magnitude naivete, perfect screening breaks down when consumers display partial frequency naivete.
- That is, firm could not extract all types' surplus.

Frequency Naivete: Failure of Perfect Screening

- To see why, consider two types θ , ϕ where $\phi > \theta$.
- Suppose firm offers two schemes t_{θ} and t_{ϕ} aiming at θ and ϕ , extracting all surpluses.
- First consider scheme t_{θ} , the first best solution $(x^{u}, T^{u}, x^{v}, T^{v})$ applies.

$$\begin{aligned} &\theta[u(x^u) - T^u] + (1 - \theta)[u(x^v) - T^v] = 0 \\ &u(x^u) - T^u = (1 - \theta)[(u(x^u) - u(x^v)) - (v(x^u) - v(x^v))] > 0 \\ &u(x^v) - T^v = \theta[(v(x^u) - v(x^v)) - (u(x^u) - u(x^v))] < 0 \end{aligned}$$

- For type $\phi > \theta$, scheme t_{θ} generates positive expected payoff: $\phi[u(x^u) T^u] + (1 \phi)[u(x^v) T^v] > 0$.
- Thus, type ϕ would want to choose the contract designed for θ
- Firm cannot fully extract both types' surplus.

Competitive Pricing

Competitive Pricing

- We will only discuss the cases with sophisticates and full naifs.
- Assume that two identical firms face the same population of consumers as before:
 - all consumers have first-period preference u and second-period preference v,
 - but they may differ in their ability to predict future preferences.

Competitive Pricing

• In period 1

- ► Two firms play a simultaneous-move game in which each firm offers a menu of price schemes.
- ► Subsequently, each consumer chooses a price scheme from the union of firms' menus.
- In period 2
 - Consumer chooses an action x and makes the transfer.
- To simplify our exposition, assume that when consumer is indifferent among several actions in either period, we (as analysts) are free to break the tie at our will.

Competitive Pricing: Result

Proposition 1

There is a symmetric Nash equilibrium in which firms offer the menu of price schemes $\{t_s, t_n\}$, such that

- (i) $x_s^* = \arg\max_x (u(x) c(x)), T_s^* = c(x_s^*).$
- (ii) $x_n^v = \arg\max_x (v(x) c(x)), T_n^v = c(x_n^v),$ $x_n^u = \arg\max_x (u(x) - v(x)), T_n^u = c(x_n^v) + v(x_n^u) - v(x_n^v).$
- (iii) $t_s(x) = \infty$ for every $x \neq x_s^*$, and $t_n(x) = \infty$ for every $x \neq x_n^v, x_n^u$.
- (iv) Sophisticated consumers choose t_s , naive consumers choose t_n , and firms earn zero profits.

- Suppose that both firms offer the menu $\{t_s, t_n\}$
- If a consumer chooses t_s , he must take the action x_s^* in period 2, because t_s is a perfect commitment device.
- If a consumer chooses t_n , he would take action x_n^v in period 2.
 - If choose x_n^v , gets $v(x_n^v) c(x_n^v)$;
 - ► If choose x_n^u , gets $v(x_n^u) [c(x_n^v) + v(x_n^u) v(x_n^v)] = v(x_n^v) c(x_n^v)$.
- Both price schemes generate zero profits for firms:
 - $t_s(x_s^*) = T_s^* = c(x_s^*)$
 - $t_n^v(x_n^v) = T_n^v = c(x_n^v)$

- Next, we check that consumers would stick to the price scheme designed for them; and firms would not deviate to offer another price scheme.
 - $ightharpoonup t_s$ is designed for sophisticated consumers.
 - $ightharpoonup t_n$ is designed for naive consumers.

• For t_s , the pair (x_s^*, T_s^*) solves

$$\max_{x} u(x) - T$$

s.t. $T - c(x) \ge 0$

- All surplus goes to consumers.
- Sophisticated consumers necessarily prefer t_s to t_n in period 1.
- No firm can deviate to a price scheme t'_s that sophisticated consumers will prefer to t_s and earn strictly positive profits.

• For t_n , $(x_n^u, T_n^u, x_n^v, T_n^v)$ solves

$$\max_{x^{u},T^{u},x^{v},T^{v}}u(x^{u})-T^{u}$$
s.t. $v(x^{v})-T^{v} \geq v(x^{u})-T^{u}$ (IC₂V)
$$u(x^{u})-T^{u} \geq u(x^{v})-T^{v}$$
 (IC₂U)
$$T^{v}-c(x^{v}) \geq 0.$$

- t_n maximizes the perceived first-period payoff of naive consumers, subject to the constraint that the price scheme generates non-negative profits for firms.
- Naive consumers necessarily prefer t_n to t_s in period 1.
- No firm can deviate to a price scheme t'_n that naive consumers will prefer to t_n and earn strictly positive profits.

Competitive Pricing: Perfect Screening Result

- The perfect screening result continues to hold in the competitive case.
- That is, the fact that consumers' type is their private information does not change the price schemes they are offered in equilibrium.

Welfare Analysis

Welfare Analysis

- As we have already learned in the previous lectures, the walfare analysis for bounded rational consumers is always problematic.
- Here we perceive the consumer as a collection of selves with different preferences over the set of consequences.
 - Should we view the different selves as genuinely separate entities, and conduct welfare analysis in the same way that we do in standard, interpersonal games?
 - If so, what would constitute a proper "social" welfare function?
- Economists who apply the multi-selves model often adopt one self's preference relation as the welfare criterion.

Welfare Analysis: Monopoly

- We adopt self 1's preference relation as the welfare criterion.
- In the monopoly case,
 - ▶ Under the price scheme chosen by sophisticates, the outcome is efficient, because it induces an action that maximizes u(x) c(x).
 - \star The price scheme fully extracts consumer's surplus according to u.
 - As to the price scheme chosen by naive consumer types, the outcome induces an action that maximizes v(x) c(x)
 - ★ It is efficient in terms of self 2's preference relation.
 - ★ $T^v = v(x^v) + u(x^u) v(x^u)$ is strictly higher than consumer's u-willlingness to pay for x^v .
 - **★** T^v is also higher than his v-willingness to pay for x^v
 - ★ Thus, the price scheme aimed at naive consumers is unambiguously exploitative ex-post.

Welfare Analysis: Competition

Question: Does competition eliminate the element of exploitation inherent in the price schemes aimed at naive consumer types?

- Given that $x_n^v = \arg\max(v(x) c(x))$ and $T_n^v = c(x_n^v)$, the equilibrium price scheme for naifs is clearly not exploitative according to v.
- However, when $u(x_n^v) < c(x_n^v)$, this price scheme is exploitative according to u.
- Thus, when second-period willingness to pay is significantly higher than first-period willingness to pay, it is possible that competition will not eliminate exploitation.

Educating Naive Consumers

Educating Naive Consumers: Monopoly

- Again, we restrain our discussion on fully naive consumers.
- In the case of monopoly, the optimal price scheme aimed at naifs generates a higher profit than the optimal price scheme aimed at sophisticates. Go to Slide 29
- Therefore, it is clear that the monopolist would not want to correct consumers' naivete.

Educating Naive Consumers: Competition

- If the consumer population consists entirely of naifs, equilibrium price schemes satisfy $x_n^v = \arg\max(v-c)$ and $T_n^v = c(x_n^v)$. (zero profit)
- A firm could deviate by turning all consumers into sophisticates and simultaneously offering them a perfect commitment device that implements the action $x^* = \arg\max(u c)$ for the payment $T^* = c(x^*) + \varepsilon$. (positive profit)
 - ▶ By definition, $u(x^*) c(x^*) > u(x_n^v) c(x_n^v)$.
 - If $\varepsilon > 0$ is sufficiently small, all naifs-turned-sophisticates would strictly prefer the new price scheme.
- Thus, firms' ability to de-bias naive consumers destabilizes the competitive market outcome.

Educating Naive Consumers: Competition

- If there are already sophisticated consumers in the population, we saw that in the competitive model, the equilibrium menu contains a price scheme aimed at sophisticates, which generates, like the price scheme aimed at naifs, zero profits.
- In this case, no firm has an incentive to educate naive consumers, because it cannot attract them with a price scheme that generates strictly positive profits.

Two Applications

Credit card "teaser" rates

- Credit card companies often try to attract consumers with low "teaser rates" on small-size loans and other "welcome benefits," and then switch to post-introductory interest rates far above marginal cost.
- In period 1, when consumer contemplates acquiring a credit card, he would like to utilize it at a low level, whereas in period 2, after the credit card has been issued, consumer is tempted to use the credit card for additional borrowing.

Negative option offers

- A prevalent marketing device is to offer a product, typically accompanied by some immediate benefit such as a free trial period or a gift voucher, and require consumer to explicitly reject it later on in order to avoid additional charges.
- Consumers' attitudes to the cancellation option may change over time.
- For instance, consumer may exhibit a "reference point effect" that
 causes his evaluation of a price scheme to depend on whether he
 has already accepted it.
- Or he may find it too time-consuming to cancel.

- (β, δ) Model aims at the present bias problem.
- This is a popular model to analyze the time-inconsistency problem.
- This model modifies conventional discounting:

Period	1	2	3	4	 n	
conventional:	1	δ	δ^2	δ^3	 δ^{n-1}	
(β,δ) :	1	βδ	$\beta\delta^2$	$\beta \delta^3$	 $\beta \delta^{n-1}$	

• The conventional discounting is called *exponential discounting*; (β, δ) discounting is called *hyperbolic discounting*.

- We provide a toy model.
- Consider doing exercise example that we discussed at the beginning of the lecture.
- Doing exercise itself is painful; but you will gain the benefit of being healthy in the future.
- The present-biased individual would have the utility function as follows: at time *t*,

$$U_t(\tau) = \begin{cases} -c_{\tau} + \beta \delta v & \text{if } \tau = t \\ -\beta \delta^{\tau - t} c_{\tau} + \beta \delta^{\tau - t + 1} v & \text{if } \tau > t \end{cases}$$

- \triangleright τ is the period that the individual exercises.
- c_t is the cost incurred at time τ if exercising at t, v is the future benefit.
- We allow c_t to vary across period.

- Consider a special case with three period.
- Parameters: $c_1 = 3$, $c_2 = 5$, $c_3 = 8$, v = 10, $\beta = 0.5$, $\delta = 1$.

$$U_t(\tau) = \begin{cases} -c_\tau + 5 & \text{if } \tau = t \\ -0.5c_\tau + 5 & \text{if } \tau > t \end{cases}$$
where $c_1 = 3, c_2 = 5, c_3 = 8$

We could examine naifs, sophisticates and partial naifs.

(β, δ) Model: Naifs

$$U_t(\tau) = \begin{cases} -c_\tau + 5 & \text{if } \tau = t \\ -0.5c_\tau + 5 & \text{if } \tau > t \end{cases}$$
 where $c_1 = 3, c_2 = 5, c_3 = 8$

Naifs are not aware of the preference change.

- t = 1, since $U_1(1) = 2$, $U_1(2) = 2.5$, $U_1(3) = 1$, procrastinating to t = 2;
- t = 2, since $U_2(2) = 0$, $U_2(3) = 1$, procrastinating to t = 3.
- t = 3 is the last period, and have to do it.

(β, δ) Model: Sophisticates

$$U_t(\tau) = \begin{cases} -c_\tau + 5 & \text{if } \tau = t \\ -0.5c_\tau + 5 & \text{if } \tau > t \end{cases}$$
where $c_1 = 3, c_2 = 5, c_3 = 8$

Sophisticates are aware of the change and thus do backward induction.

- In the eye of self 1,
 - t = 3 is the last period, and have to do it.
 - ► t = 2, $U_2(2) = 0$, $U_2(3) = 1$, procrastinate to t = 3;
 - t = 1, the individual compares doing it now and in t = 3
 - * he knows that if he procrastinates to t = 2, the future self would further procrastinate to t = 3.
 - ★ $U_1(1) = 2$, $U_1(3) = 1$ so he chooses to do it in t = 1.

(β, δ) Model: Partial Naivete

- Naifs believe the future selves would have $\hat{\beta} = 1$.
- Sophisticates hold the correct belief $\hat{\beta} = \beta$.
- Partial Naivete is in-between: they believe $\hat{\beta} \in (\beta, 1)$.

(β, δ) Model: Partial Naivete

• Consider the previous example with $\hat{\beta} = 0.6$.

$$U_t(\tau) = \begin{cases} -c_{\tau} + 10\beta & \text{if } \tau = t \\ -\beta c_{\tau} + 10\beta & \text{if } \tau > t \end{cases}$$
where $c_1 = 3, c_2 = 5, c_3 = 8, \beta = 0.5, \hat{\beta} = 0.6$

For partial naifs, they conduct backward induction.

- In the eye of self 1,
 - t = 3 is the last period, and have to do it.
 - t = 2, $U_2(2|\hat{\beta}) = 1$, $U_2(3|\hat{\beta}) = 1.2$, procrastinate to t = 3;
 - t = 1, the individual compares doing it now and in t = 3
 - * he thinks that if he procrastinates to t = 2, the future self would further procrastinate to t = 3.
 - ★ $U_1(1|\beta) = 2$, $U_1(3|\beta) = 1$ so he chooses to do it in t = 1.

(β, δ) Model: Partial Naivete

• Consider the previous example with $\hat{\beta} = 0.8$.

$$U_t(\tau) = \begin{cases} -c_{\tau} + 10\beta & \text{if } \tau = t \\ -\beta c_{\tau} + 10\beta & \text{if } \tau > t \end{cases}$$
where $c_1 = 3, c_2 = 5, c_3 = 8, \beta = 0.5, \hat{\beta} = 0.8$

For partial naifs, they conduct backward induction

- In the eye of self 1
 - t = 3 is the last period, and have to do it.
 - t = 2, $U_2(2|\hat{\beta}) = 3$, $U_2(3|\hat{\beta}) = 1.6$, do it in t = 2;
 - t = 1, the individual compares doing it now and in t = 2.
 - * he thinks that if he procrastinates to t = 2, the future self would do it in t = 2.
 - ★ $U_1(1|\beta) = 2$, $U_1(2|\beta) = 2.5$ so he will procrastinates to t = 2.
 - In t = 2, when β is realized, he will procrastinate to t = 3 since $U_2(2|\beta) = 0$, $U_2(3|\beta) = 1$.

- We examined optimal pricing schemes when consumers have dynamically inconsistent preferences.
- Price schemes aimed at sophisticated consumers act as commitment devices, whereas price schemes aimed at naifs are flexible contracts that essentially act as bets over consumer's consumption decision.
- It is possible to perfectly screen sophisticates, full naifs, and the magnitude naifs. However, perfect screening fails when consumers are frequency naifs.

- The optimal flexible price scheme aimed at naive consumers is unambiguously exploitative under monopoly. Competition need not eliminate exploitation of naifs.
- When the consumer population consists entirely of naifs, competitive firms would have the incentive to educate the consumers.
- We also briefly discussed (β, δ) model which is aimed to analyze present bias.

- Complex Pricing Strategies:
 - Subtle contract renewal policies such as negative options are an optimal response to consumer naivete regarding the future costs of switching or cancelling.
- Spurious Variety:
 - Multiplicity of price plan is a way of discriminating between consumers according to their degree of naivete.
 - If all consumers had correct beliefs of their future preferences, it would disappear.