2 - Disques et Fichiers

M1 RÉSEAUX & TÉLÉCOMS

RT0701: ADMINISTRATION SYSTÈME 1

OLIVIER FLAUZAC

Système de fichier

Architecture d'un disque

Partitionnement

définition de plusieurs espaces séparés

Démarrage

- 1. BIOS
- 2. MBR
- 3. boot de la partition active
- 4. système d'exploitation

Structure d'un disque

Master Boot Record (MBR)

Table des partitions

Partition 1

Partition 2

Partition 3

Structure d'une partition

Bloc de boot

Superbloc

Gestion de l'espace libre

I-nodes

Répertoire racine

Répertoires et fichiers

Superbloc

Superbloc

- type de la partition
- définition des méthodes d'accès
- définition des méthodes de gestion

I-nodes

Index node, Information node

Structure contenant les informations sur un fichier

Association à chaque fichier d'un numéro unique (i-number)

Contenu:

- propriétaire
- groupe propriétaire
- type de fichier (ordinaire, répertoire, mode bloc, mode caractère, mode réseau, lien symbolique, pipe nommé)
- droits
- nombre de références (liens)
- taille
- adresse des blocs du fichier
- dernier accès
- dernière modification

Accès aux informations

Commande Is

• Is -I : ensemble des informations

-rw-r--r-- 1 olivier olivier 0 14 déc. 14:14 toto.txt

• Is -i : affichage des numéros i-nodes

655367 toto.txt

Caractéristiques des systèmes de fichiers

Classification

- taille maximale d'un fichier
- taille maximale d'une partition
- gestion des droits et des accès
- journalisation

Systèmes classiques

Système	Taille max fichier	Taille max partition	Journalisatio n	Droits	Commentaires	
ext2fs	2 To	4 To	non	oui	système d'origine de Linux	
ext3fs	2 To	4 To	oui	oui	Système actuel de Linux	
ext4fs	16 To	1 Eo	non	oui	Système de transition vers Btrfs	
ReiserFS	8 To	16 To	oui	oui	Concurrent de ext3	
FAT	2 Go	2 Go	non	non	Microsoft, présent sur les clés USB	
FAT32	4 Go	8 Go	non	non	Evolution de FAT	
NTFS	-	2 T	oui	oui	Gestion de listes de droits	

Partionnement

Partitionnement

Assignation de partitions

- à des répertoires
- à des éléments systèmes (SWAP)

Objectifs

- éviter la saturation de la totalité du système
 - Augmentation démesurée de fichiers d'applications
- confiner les données de certaines applications
 - mail, spooler d'impression ...
- faciliter la sauvegarde
- faciliter la réinstallation

Exemple de partitionnement

Ordinateur personnel

- Swap
- · /
- /home

Serveur

- Swap
- /
- /tmp
- /var
- /home

Quel partitionnement?

Partitionnement dans le MBR

- définition du type des partitions : primaires /étendues / secondaires
- partitions primaires
 - Seules reconnues par le BIOS
 - 4 partitions primaires au maximum
 - 3+1,2+2,1+3: primaire(s) + étendue(s)
- partitions étendues
 - contenant de partitions secondaires
 - nombre dépendant du gestionnaire de partitions
- partitions secondaires
 - aussi appelées partitions logiques
 - repérées par l'Extended Boot Record (EBR)

Partitionnement logique

Partitionnement logique

Logical Virtual Manager (LVM)

Création et gestion d'un volume logique

« Alternative » au partitionnement classique

Avantages

- pas de limite des partitions de MBR
- pas de gestion de localisation
- gestion dynamique : ajout / redimensionnement / suppression

Inconvénient

• erreur de volume physique = erreur sur toutes les partitions !

Architecture d'un système de fichier

/	racine	/proc	infos systèmes (virtuel)
/bin	exécutables essentiels	/root	répertoire super-utilisateur
/boot	fichiers de démarrage	/sbin	exécutables système essentiels
/dev	fichiers de périphériques	/srv	donnés de service du système
/etc	fichiers de config	/tmp	fichiers temporaires
/home	répertoires des utilisateurs	/usr	hiérarchie secondaire
/lib	bibliothèques partagées	/var	données et variables diverses
/media	montage des media amovibles	/opt	applications supplémentaires
/mnt	montage des systèmes temporaires	/usr/local	applications supplémentaires

Réplication

La réplication

RAID:

- virtualisation du stockage
- répartition des fichiers sur plusieurs disques
- transparent pour l'utilisateur
- outil d'amélioration de performance
- outil de sécurisation des données

Le RAID

A l'origine

- A Case for Redundant Arrays of Inexpensive Disks (RAID)
- regroupement redondant de disques peu onéreux

Aujourd'hui

- Redundant Array of Independent Disks
- regroupement redondant de disques indépendants

RAID Logiciel

Entièrement géré par le système d'exploitation

Avantages

- peu onéreux
- souplesse d'administration
- o compatibilité au dessus du matériel

Inconvénients

- lié au logiciels pas d'exploitation des performances matérielles
- coût en ressources systèmes

RAID matériel

Géré par une carte dédiée (contrôleur)

Avantages:

- indépendance du système d'exploitation
- pas de charge du système
- performances accrues

Inconvénients

- incompatibilité matérielle entre les contrôleurs
- coût
- durée du support par le fabriquant
- fiabilité du matériel ?

RAID 0

Stripping

Entrelacement de disques

Données réparties sur n disques

Travail des disques en parallèle

Pas de sécurité des données

Augmentation de la performance de lecture

Limitation au plus petit disque

La perte d'un disque entraine la perte des données

Vision transparente pour l'utilisateur :

• un seul disque : taille = somme des tailles

RAID 1

Mirroring / shadowing

Disques en miroir

Duplication de l'information

Sécurisation de l'information

Capacité totale : capacité du plus petit volume

Accès sur le disque le plus accessible

Arrêt de la synchronisation sur détection de défaillance

RAID 5

Volume agrégé par bande de parité répartie

- stripping sur n-1 disque
- o contrôle de parité tournante sur 1 disque

Support 1 perte de disque

Performance des lectures

Perte des performances des écritures

