

Modellierung des Messprozesses

Frédéric Pythoud

Messmodell

$$Y = f(X_1, X_2, \dots, X_i, \dots, X_N)$$

- Aus Eingangsgrössen wird das Messergebnis bestimmt.
- Jeder Messprozess lässt sich mit diesem Schema darstellen.
- Auch wenn die Funktion nicht unbedingt geschrieben werden kann.

Messgrösse

Messgrösse

Spezielle Grösse, die Gegenstand einer Messung ist.

Die Spezifikation einer Messgrösse kann Angaben über Grössen wie Zeitpunkt, Temperatur oder Druck erfordern.

Beispiele:

- Grösse einer Person
- Länge eines Tisches
- Länge eines Endmasses
- Länge eines Endmasses bei 20.0 ℃

Eingangsgrössen

1. Direkt gemessene Grössen

Die Werte dieser Eingangsgrössen werden direkt mit den aktuellen Messungen erfasst.

2. Aus externen Quellen bekannte Grössen:

Die Werte dieser Eingangsgrössen stammen aus Quellen wie

- Lehrbücher
- Kalibrierzertifikate
- in der Vergangenheit durchgeführten und dokumentierten Messungen
- Natur-Konstanten

Wie man zum Messmodell kommt

Im Prinzip muss man folgende Fragen beantworten

- 1. Was wird gemessen?
- 2. Wie wird es gemessen?

Beispiel – Durchmesser

Frage 1: Was wird gemessen?

der Durchmesser D von Schrauben

Frage 2: Wie wird es gemessen?

anhand eines Videokamera-Systems mit
 Bildverarbeitung und Software Analyse, das den Durchmesser D_{System} direkt liefert

Beispiel – Endmass

Frage 1: Was wird gemessen?

• die Länge l_X eines Endmasses

Frage 2: Wie wird es gemessen?

• über einen Vergleich mit einem bekannten Endmass der Länge l_N , indem der Längenunterschied Δl gemessen wird

Beispiel – Elektrischer Strom

Frage 1: Was wird gemessen?

der elektrische Strom I

Frage 2: Wie wird es gemessen?

durch Messung des Spannungsabfalls U über einen Widerstand R

Grundgleichungen

Die folgenden Gleichungen

$$D = D_{\text{System}}$$

$$l_X = l_N + \Delta l$$

$$I = \frac{U}{R}$$

sind Grundgleichungen, aber noch keine Modellfunktion im Sinne des GUM. Sie beschreiben den Zusammenhang zwischen der Ausgangsgrösse und gemessenen bzw. aus externen Quellen erhaltenen Grössen.

Von den Grundgleichungen zu Modellfunktion

Die Modellfunktion nach GUM

- muss alle Effekte / Unsicherheitsquellen / Streuungsquellen berücksichtigen.
- folgt der Regel: eine Variable pro Effekt.

→ Die Grundfunktion wird vervollständigt, um die Einflussgrössen zu berücksichtigen.

Einflussgrössen

In Messprozessen gibt es nur primäre Eingangsgrössen, sondern stets auch zahlreiche äussere Einflüsse, die durch sekundäre Abhängigkeiten das Messresultat in meist ungewollter Art "stören".

Die sekundären Einflüsse stellen ihrerseits **Eingangsgrössen** zu den primären dar.

Einflussgrösse

Grösse, die nicht Messgrösse ist, jedoch das Messergebnis beeinflusst.

Beispiel:

Temperatur eines Endmasses bei der Bestimmung dessen Länge.

Die Grundfunktion muss ergänzt werden

 Die Grundfunktion muss mit weiteren Eingangsgrössen erzänzt werden.

Ergänzung der Modellfunktion

Weitere Einflussgrössen werden eingeführt

Einflussgrössen

- Einflussgrössen beschreiben Effekte, die in der Regel nicht gemessen werden (z.B. Temperatur).
- 2. Sie sind im Sinne des GUMs **Eingangsgrössen** im vollen Sinne. Nach dem GUM gibt es keinen formellen Unterschied zwischen
 - einer Eingangsgrösse, die gemessen wird,
 - einer Einflussgrösse, die nicht gemessen wird.
- 3. Einflussgrössen die nicht gemessen werden haben in der Regel einen (Erwartungs)-Wert von 0. Sie liefern aber einen signifikanten Beitrag zur Messunsicherheit.
- 4. Einflussgrössen werden zum Teil mit dem Symbol δ ... dargestellt. Diese intuitive Notation ist nicht Teil des GUM.

Beispiel – Durchmesser

Bestimmen des Durchmessers *D* von Schrauben anhand eines Videokamera-Systems das den Durchmesser *D*_{System} direkt liefert

 $\frac{\text{Kalibrierung }\delta D_{cal}}{\text{Verification }\delta D_{ver}}$ $\frac{\text{Stabilität }\delta D_{stab}}{\text{Durchmesser }D_{stab}}$

$$D = D_{\text{System}} + \delta D_{cal} + \delta D_{ver} + \delta D_{stab}$$

 δD_{cal} Kalibrierfehler resultierend aus der Kalibrierung mittels eines Kalibriernormals δD_{ver} Verifikationsfehler aus der Verifikation mittels Verifikationsnormale δD_{stab} Stabilität des Systems über die Messzeit

Beispiel – Endmass

Kalibrieren der Länge eines Endmasses l_X durch Vergleich mit einem Endmassnormal der Länge l_N

$$l_X + \delta l_X(T) = (l_N + \delta l_N(T)) + (\Delta l + \delta \Delta l_A + \delta \Delta l_{rep})$$

$\delta l_X(T)$	Effekt der thermischen Ausdehnung des Prüflings
$\delta l_N(T)$	Effekt der thermischen Ausdehnung des Normals
$\delta \Delta l_A$	Auflösung Anzeige Endmasskomparator
$\delta \Delta l_{rep}$	Wiederholbarkeit Endmasskomparator

Beispiel – Elektrischer Strom

Bestimmen des Stroms I durch Messung des Spannungsabfalls U über einem Widerstand R

$$I = \frac{U + \delta U_{lin} + \delta U_{rep} + \delta U_{nul} + \delta U_{A}}{R + \delta R_{D} + \delta R(T)}$$

δU_{lin}	Linearitätsabweichung Voltmeter
δU_{rep}	Wiederholbarkeit Ablesung Voltmeter
δU_{nul}	Korrektur für Nullpunktgenauigkeit Voltmeter
δU_A	Korrektur für Auflösung Anzeige Voltmeter
δR_D	Korrektur für Drift Normalwiderstand
$\delta R(T)$	Korrektur für Temperaturabhängigkeit Normalwiderstand

Verfeinerung der Modellfunktion

Die Einflussgrössen können nach Bedarf verfeinert werden.

Der Effekt $\delta l_N(T)$ der thermischen Ausdehnung des Normals am Beispiel Endmass kann folgendermassen verfeinert werden:

$$\delta l_N(T) = l_N \cdot \alpha_N \cdot (T - T_0)$$

Damit werden neue Eingangsgrössen definiert, die dann auch ausgewertet oder gemessen werden müssen:

• l_N die Länge des Endmassnormals

• α_N der Ausdehnungskoeffizient des Normals

T die Temperatur des Normals

• T_0 die Referenztemperatur (in der Regel 20°)

Verfeinerte Modellfunktion

Die ursprüngliche Modellfunktion der Längenmessunge eines Endmasses:

$$l_X = (l_N + \delta l_N(T)) + (\Delta l + \delta \Delta l_A + \delta \Delta l_{rep}) - \delta l_X(T)$$

$$l_X = (l_N + \delta l_N(T)) + (\Delta l + \delta \Delta l_A + \delta \Delta l_{rep}) - \delta l_X(T)$$

$$\delta l_X(T) = l_X \alpha_X(T - 20^{\circ}C)$$

$$\delta l_N(T) = l_N \alpha_N(T - 20^{\circ}C)$$

Wird in einem System von Gleichungen verfeinert (die Substitution wird aus ästhetischen Gründen nicht gemacht).

Schlussbemerkung

Modellfunktion für die Strommessung

$$I = \frac{U + \delta U_{lin} + \delta U_{rep} + \delta U_{nul} + \delta U_{A}}{R + \delta R_{D} + \delta R(T)}$$

Kommentar

- Dies ist nach GUM formell die richtige Darstellung der Modellfunktion.
- Die Gleichung ist nicht unbedingt sehr lesbar, und die Einflussgrössen beziehen sich entweder auf die Spannungsmessung oder auf den Widerstand.

Schlussbemerkung

Optionale vereinfachte Darstellung: $I = \frac{U}{R}$

Mit folgenden Einflussgrössen:

- für die Spannungsmessung
 - Linearitätsabweichung Voltmeter
 - Wiederholbarkeit Ablesung Voltmeter
 - Korrektur f
 ür Nullpunktgenauigkeit Voltmeter
 - Korrektur f
 ür Auflösung Anzeige Voltmeter
- für die Widerstandsmessung
 - Korrektur f
 ür Drift Normalwiderstand
 - Korrektur f
 ür Temperaturabh
 ängigkeit Normalwiderstand

In dieser «vereinfachten Darstellung»

- Die Variablen für die Einflussgrössen werden nicht definiert.
- Im Sinne der Messunsicherheitsberechnung nach GUM muss diese Darstellung nach der formellen Darstellung interpretiert werden.

Zusammenfassung

Grobes Modell (Black-Box-Ansatz)

- Wenige zu messenden Eingangsgrössen
- Mehrere Einflussgrössen die nicht gemessen werden (= 0)
- → Grössere Unsicherheiten

Feines Modell

- Mehr zu messende Eingangsgrössen
- Viele Einflussgrössen werden anhand von Messungen korrigiert
- → Kleinere Unsicherheiten