$12n_{0751} \ (K12n_{0751})$

 $I_7^u = \langle b - 1, a^2 - a - 1, u - 1 \rangle$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -898244027u^{14} - 391531130u^{13} + \dots + 534701171b + 1119066057, \\ &- 898027536u^{14} - 389544550u^{13} + \dots + 534701171a + 1652680736, \\ &u^{15} - u^{13} - u^{12} + 8u^{11} - u^{10} - 18u^9 - 2u^7 + 12u^6 - 21u^5 + 26u^4 - 14u^3 + 3u^2 - 2u + 1 \rangle \\ I_2^u &= \langle 3.30670 \times 10^{41}u^{29} + 5.71881 \times 10^{41}u^{28} + \dots + 1.78529 \times 10^{43}b + 3.34070 \times 10^{43}, \\ &1.36375 \times 10^{44}u^{29} - 4.57521 \times 10^{43}u^{28} + \dots + 3.92765 \times 10^{44}a + 3.57143 \times 10^{45}, \ u^{30} + 2u^{28} + \dots + 81u + I_3^u &= \langle u^3 + b + 3, \ u^3 + a - u + 2, \ u^4 + u^3 + 2u + 1 \rangle \\ I_4^u &= \langle b, \ a + u - 2, \ u^2 - u - 1 \rangle \\ I_5^u &= \langle u^2 + b - u - 1, \ -u^3 + 2u^2 + a + u - 1, \ u^4 - 2u^3 - u^2 + 2u - 1 \rangle \\ I_6^u &= \langle b, \ a - 1, \ u - 1 \rangle \end{split}$$

* 7 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 58 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -8.98 \times 10^8 u^{14} - 3.92 \times 10^8 u^{13} + \dots + 5.35 \times 10^8 b + 1.12 \times 10^9, \ -8.98 \times 10^8 u^{14} - 3.90 \times 10^8 u^{13} + \dots + 5.35 \times 10^8 a + 1.65 \times 10^9, \ u^{15} - u^{13} + \dots - 2u + 1 \rangle$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1.67949u^{14} + 0.728528u^{13} + \dots + 3.65635u - 3.09085 \\ 1.67990u^{14} + 0.732243u^{13} + \dots + 0.801226u - 2.09288 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1.07086u^{14} - 0.594830u^{13} + \dots - 2.20938u + 2.32522 \\ -1.79456u^{14} - 0.830294u^{13} + \dots - 0.599907u + 2.64579 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.235869u^{14} - 0.0456390u^{13} + \dots - 1.72828u + 0.274259 \\ -1.49103u^{14} - 0.606558u^{13} + \dots - 0.808252u + 2.09660 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.000404882u^{14} - 0.00371531u^{13} + \dots + 2.85513u - 0.997968 \\ 1.67990u^{14} + 0.732243u^{13} + \dots + 0.801226u - 2.09288 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.000404882u^{14} - 0.00371531u^{13} + \dots + 2.85513u - 0.997968 \\ -2.64538u^{14} - 1.79085u^{13} + \dots + 0.108289u + 5.68964 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 4.04447u^{14} + 2.08478u^{13} + \dots + 5.22270u - 7.34077 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -5.94603u^{14} - 3.12181u^{13} + \dots + 5.52030u + 10.4626 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -3.12181u^{14} - 1.90156u^{13} + \dots - 0.429474u + 5.94603 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.209193u^{14} - 0.0694314u^{13} + \dots + 1.83397u - 0.107940 \\ -0.645989u^{14} - 0.381117u^{13} + \dots - 0.616195u + 1.74893 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{9257204513}{534701171}u^{14} - \frac{6026834044}{534701171}u^{13} + \cdots - \frac{11292543056}{534701171}u + \frac{18370247823}{534701171}u^{13} + \cdots$$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_7	$u^{15} - u^{13} + \dots - 2u - 1$
c_2,c_5	$u^{15} + 9u^{14} + \dots - 69u - 9$
c_4, c_{10}	$u^{15} - u^{14} + \dots + 5u + 1$
c_6, c_{11}	$u^{15} - u^{14} + \dots - 4u - 1$
c_8, c_9, c_{12}	$u^{15} - 6u^{14} + \dots + 6u + 9$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$y^{15} - 2y^{14} + \dots - 2y - 1$
c_2, c_5	$y^{15} - 9y^{14} + \dots + 1071y - 81$
c_4, c_{10}	$y^{15} - 13y^{14} + \dots + 39y - 1$
c_6, c_{11}	$y^{15} + 13y^{14} + \dots + 16y - 1$
c_8, c_9, c_{12}	$y^{15} - 26y^{14} + \dots - 1494y - 81$

Solutions to I_1^u		Cusp shape
u = 0.219964 + 0.819481I		
a = -1.44756 - 0.16891I	3.27965 - 1.21970I	1.31129 + 5.66741I
b = 1.355710 - 0.019020I		
u = 0.219964 - 0.819481I		
a = -1.44756 + 0.16891I	3.27965 + 1.21970I	1.31129 - 5.66741I
b = 1.355710 + 0.019020I		
u = -0.788509 + 0.905745I		
a = -0.457133 - 1.143780I	5.92156 + 9.44163I	0.20634 - 8.15923I
b = -0.883513 - 0.932651I		
u = -0.788509 - 0.905745I		
a = -0.457133 + 1.143780I	5.92156 - 9.44163I	0.20634 + 8.15923I
b = -0.883513 + 0.932651I		
u = 0.623880 + 0.248532I		
a = 0.809525 + 0.462868I	-1.140580 - 0.339277I	-8.98924 + 1.73624I
b = -0.072998 + 0.253976I		
u = 0.623880 - 0.248532I		
a = 0.809525 - 0.462868I	-1.140580 + 0.339277I	-8.98924 - 1.73624I
b = -0.072998 - 0.253976I		
u = 0.565700		
a = -2.01244	3.82898	27.9490
b = -2.31417		
u = 1.44661		
a = -0.971679	3.06003	2.95830
b = -1.39008		
u = -1.52296		
a = -0.111508	-7.76254	-32.3850
b = -0.699810		
u = -0.192664 + 0.382554I		
a = 0.23984 + 1.65841I	2.17147 + 0.68609I	8.04360 - 5.02078I
b = 1.40585 + 0.42820I		

Solutions to I_1^u	$\int \sqrt{-1}(\operatorname{vol} + \sqrt{-1}CS) \mid$	Cusp shape
u = -0.192664 - 0.382554I		
a = 0.23984 - 1.65841I	2.17147 - 0.68609I	8.04360 + 5.02078I
b = 1.40585 - 0.42820I		
u = 1.10259 + 1.29441I		
a = 0.497805 - 0.641547I	14.6227 - 4.7692I	3.20527 + 2.44636I
b = 1.73219 - 0.23886I		
u = 1.10259 - 1.29441I		
a = 0.497805 + 0.641547I	14.6227 + 4.7692I	3.20527 - 2.44636I
b = 1.73219 + 0.23886I		
u = -1.20993 + 1.32914I		
a = 0.405328 + 0.848334I	14.2379 + 14.0822I	1.96139 - 6.46819I
b = 1.66478 + 0.29308I		
u = -1.20993 - 1.32914I		
a = 0.405328 - 0.848334I	14.2379 - 14.0822I	1.96139 + 6.46819I
b = 1.66478 - 0.29308I		

$$\begin{array}{c} \text{II. } I_2^u = \\ \langle 3.31 \times 10^{41} u^{29} + 5.72 \times 10^{41} u^{28} + \cdots + 1.79 \times 10^{43} b + 3.34 \times 10^{43}, \ 1.36 \times 10^{44} u^{29} - 4.58 \times 10^{43} u^{28} + \cdots + 3.93 \times 10^{44} a + 3.57 \times 10^{45}, \ u^{30} + 2 u^{28} + \cdots + 81 u + 11 \rangle \end{array}$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.347218u^{29} + 0.116487u^{28} + \dots - 51.0446u - 9.09305 \\ -0.0185219u^{29} - 0.0320329u^{28} + \dots - 11.9126u - 1.87123 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.394706u^{29} + 0.210595u^{28} + \dots - 41.4801u - 8.32205 \\ -0.0263285u^{29} + 0.0298042u^{28} + \dots + 6.05343u + 1.54652 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.467058u^{29} + 0.222944u^{28} + \dots - 60.2499u - 12.1851 \\ -0.0503337u^{29} + 0.0560610u^{28} + \dots + 5.84906u + 1.41068 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.328697u^{29} + 0.148520u^{28} + \dots - 39.1319u - 7.22182 \\ -0.0185219u^{29} - 0.0320329u^{28} + \dots - 11.9126u - 1.87123 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.196754u^{29} + 0.0387220u^{28} + \dots - 27.9600u - 3.50095 \\ 0.0561620u^{29} - 0.0650505u^{28} + \dots - 7.03644u - 1.83361 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.409410u^{29} + 0.0902696u^{28} + \dots - 81.9335u - 16.7607 \\ 0.0570621u^{29} + 0.0581006u^{28} + \dots + 19.7385u + 2.64502 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.217120u^{29} + 0.141042u^{28} + \dots - 12.8730u - 3.08396 \\ -0.0595359u^{29} + 0.0111266u^{28} + \dots - 9.03611u - 0.551467 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.562677u^{29} + 0.183364u^{28} + \dots - 77.5261u - 13.9939 \\ 0.105143u^{29} - 0.0492747u^{28} + \dots + 6.83973u + 0.371317 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.209727u^{29} - 0.119739u^{28} + \dots + 27.3054u + 6.97658 \\ -0.0548665u^{29} - 0.0623507u^{28} + \dots - 18.5446u - 2.63799 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.347221u^{29} 0.0667960u^{28} + \cdots + 55.5079u + 14.9386$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_7	$u^{30} + 2u^{28} + \dots - 81u + 11$
c_2, c_5	$(u^{15} - 4u^{14} + \dots - 5u + 2)^2$
c_4, c_{10}	$u^{30} - u^{29} + \dots - 24u + 1$
c_6, c_{11}	$u^{30} + 2u^{29} + \dots + 31u + 1$
c_8, c_9, c_{12}	$(u^{15} + 2u^{14} + \dots - 2u + 2)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$y^{30} + 4y^{29} + \dots + 105y + 121$
c_2, c_5	$(y^{15} + 8y^{13} + \dots - 3y - 4)^2$
c_4, c_{10}	$y^{30} - 33y^{29} + \dots - 56y + 1$
c_6, c_{11}	$y^{30} + 26y^{29} + \dots - 177y + 1$
c_8, c_9, c_{12}	$(y^{15} - 18y^{14} + \dots + 68y - 4)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.975339		
a = 2.03736	-0.455497	-13.6410
b = 1.13495		
u = 0.962045 + 0.405621I		
a = -0.920194 + 0.526296I	3.54960	2.31783 + 0.I
b = -1.53636		
u = 0.962045 - 0.405621I		
a = -0.920194 - 0.526296I	3.54960	2.31783 + 0.I
b = -1.53636		
u = -0.605280 + 0.637023I		
a = 0.47688 - 1.78582I	6.96654 + 7.44645I	-1.97655 - 7.47153I
b = -1.47359 - 0.25718I		
u = -0.605280 - 0.637023I		
a = 0.47688 + 1.78582I	6.96654 - 7.44645I	-1.97655 + 7.47153I
b = -1.47359 + 0.25718I		
u = 0.518757 + 0.995170I		
a = 0.188630 - 0.965072I	0.92420 - 3.75884I	-2.83571 + 8.62550I
b = 0.398627 - 0.770277I		
u = 0.518757 - 0.995170I		
a = 0.188630 + 0.965072I	0.92420 + 3.75884I	-2.83571 - 8.62550I
b = 0.398627 + 0.770277I		
u = 0.508270 + 1.021130I		
a = -0.311123 + 1.376970I	6.65494 - 3.78113I	2.84579 + 3.30508I
b = -0.566489 + 0.063512I		
u = 0.508270 - 1.021130I		
a = -0.311123 - 1.376970I	6.65494 + 3.78113I	2.84579 - 3.30508I
b = -0.566489 - 0.063512I		
u = -0.069702 + 1.177270I		
a = 0.0457627 + 0.0466319I	9.74746 - 4.20828I	3.86853 + 1.95225I
b = -1.61515 + 0.17952I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.069702 - 1.177270I		
a = 0.0457627 - 0.0466319I	9.74746 + 4.20828I	3.86853 - 1.95225I
b = -1.61515 - 0.17952I		
u = -0.541567 + 1.093190I		
a = -0.672453 - 0.922756I	6.65494 - 3.78113I	2.84579 + 3.30508I
b = -0.566489 + 0.063512I		
u = -0.541567 - 1.093190I		
a = -0.672453 + 0.922756I	6.65494 + 3.78113I	2.84579 - 3.30508I
b = -0.566489 - 0.063512I		
u = -0.661146 + 0.389686I		
a = -0.48702 + 1.46762I	0.92420 + 3.75884I	-2.83571 - 8.62550I
b = 0.398627 + 0.770277I		
u = -0.661146 - 0.389686I		
a = -0.48702 - 1.46762I	0.92420 - 3.75884I	-2.83571 + 8.62550I
b = 0.398627 - 0.770277I		
u = -0.307321 + 0.642721I		
a = 0.30958 + 1.50914I	1.88098 + 1.11902I	2.92830 + 0.60819I
b = 0.709925 + 0.664105I		
u = -0.307321 - 0.642721I		
a = 0.30958 - 1.50914I	1.88098 - 1.11902I	2.92830 - 0.60819I
b = 0.709925 - 0.664105I		
u = 1.36054		
a = -0.316147	-0.455497	-13.6410
b = 1.13495		
u = -0.429729		
a = -3.56723	-3.04205	11.2360
b = 0.336879		
u = -0.236133 + 0.340530I		
a = 1.077030 - 0.148667I	1.88098 - 1.11902I	2.92830 - 0.60819I
b = 0.709925 - 0.664105I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.236133 - 0.340530I		
a = 1.077030 + 0.148667I	1.88098 + 1.11902I	2.92830 + 0.60819I
b = 0.709925 + 0.664105I		
u = -1.10466 + 1.15958I		
a = -0.505916 - 0.815295I	9.74746 + 4.20828I	3.86853 - 1.95225I
b = -1.61515 - 0.17952I		
u = -1.10466 - 1.15958I		
a = -0.505916 + 0.815295I	9.74746 - 4.20828I	3.86853 + 1.95225I
b = -1.61515 + 0.17952I		
u = 1.63208		
a = 0.419875	-3.04205	11.2360
b = 0.336879		
u = 0.81585 + 1.45626I		
a = -0.089554 + 0.856120I	6.96654 - 7.44645I	-2.00000 + 7.47153I
b = -1.47359 + 0.25718I		
u = 0.81585 - 1.45626I		
a = -0.089554 - 0.856120I	6.96654 + 7.44645I	-2.00000 - 7.47153I
b = -1.47359 - 0.25718I		
u = 1.25585 + 1.17832I		
a = 0.577677 - 0.845480I	14.1007 - 4.2306I	2.71313 + 2.44322I
b = 1.57894 - 0.03518I		
u = 1.25585 - 1.17832I		
a = 0.577677 + 0.845480I	14.1007 + 4.2306I	2.71313 - 2.44322I
b = 1.57894 + 0.03518I		
u = -1.32874 + 1.42818I		
a = 0.478313 + 0.498197I	14.1007 - 4.2306I	0
b = 1.57894 - 0.03518I		
u = -1.32874 - 1.42818I		
a = 0.478313 - 0.498197I	14.1007 + 4.2306I	0
b = 1.57894 + 0.03518I		

III.
$$I_3^u = \langle u^3 + b + 3, u^3 + a - u + 2, u^4 + u^3 + 2u + 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} + u - 2 \\ -u^{3} - 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} - u^{2} - u - 3 \\ -2u^{3} - 2u^{2} + u - 3 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -2u^{3} - u^{2} - 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u + 1 \\ -u^{3} - 3 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u + 1 \\ 3u^{3} + u^{2} - u + 8 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} - 1 \\ 7u^{3} + 3u^{2} - 4u + 15 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ 9u^{3} + 4u^{2} - 3u + 20 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ 5u^{3} + 3u^{2} - u + 9 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + u^{2} - u \\ -u^{2} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-50u^3 21u^2 + 13u 97$

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^4 + u^3 + 2u + 1$
c_2	$u^4 + 6u^3 + 12u^2 + 11u + 5$
c_4	$u^4 - 2u^3 + 3u - 1$
c_5	$u^4 - 6u^3 + 12u^2 - 11u + 5$
<i>c</i> ₆	$u^4 - 2u^3 + u^2 - 4u - 1$
	$u^4 - u^3 - 2u + 1$
c_{8}, c_{9}	$u^4 - 5u^3 + 6u^2 + 2u - 5$
c_{10}	$u^4 + 2u^3 - 3u - 1$
c_{11}	$u^4 + 2u^3 + u^2 + 4u - 1$
c_{12}	$u^4 + 5u^3 + 6u^2 - 2u - 5$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$y^4 - y^3 - 2y^2 - 4y + 1$
c_2, c_5	$y^4 - 12y^3 + 22y^2 - y + 25$
c_4, c_{10}	$y^4 - 4y^3 + 10y^2 - 9y + 1$
c_6, c_{11}	$y^4 - 2y^3 - 17y^2 - 18y + 1$
c_8, c_9, c_{12}	$y^4 - 13y^3 + 46y^2 - 64y + 25$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.515596 + 1.045250I		
a = 0.068462 + 1.353620I	8.50524 - 7.16341I	4.70675 + 6.37190I
b = -1.44713 + 0.30837I		
u = 0.515596 - 1.045250I		
a = 0.068462 - 1.353620I	8.50524 + 7.16341I	4.70675 - 6.37190I
b = -1.44713 - 0.30837I		
u = -0.472213		
a = -2.36692	3.76121	-102.560
b = -2.89470		
u = -1.55898		
a = 0.229993	-7.61222	21.1430
b = 0.788973		

IV.
$$I_4^u = \langle b, \ a + u - 2, \ u^2 - u - 1 \rangle$$

a) Are colorings
$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u+2 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u-3 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2u-4 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u+2 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2u-3 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u+2 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u-3 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2u-3 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -22

Crossings	u-Polynomials at each crossing		
c_1, c_3, c_4	u^2-u-1		
c_2, c_6	$(u-1)^2$		
c_5,c_{11}	$(u+1)^2$		
c_7, c_{10}	$u^2 + u - 1$		
c_8, c_9, c_{12}	u^2		

Crossings	Riley Polynomials at each crossing		
c_1, c_3, c_4 c_7, c_{10}	$y^2 - 3y + 1$		
c_2, c_5, c_6 c_{11}	$(y-1)^2$		
c_8, c_9, c_{12}	y^2		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = 2.61803	-3.28987	-22.0000
b = 0		
u = 1.61803		
a = 0.381966	-3.28987	-22.0000
b = 0		

V.
$$I_5^u = \langle u^2 + b - u - 1, -u^3 + 2u^2 + a + u - 1, u^4 - 2u^3 - u^2 + 2u - 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} - 2u^{2} - u + 1\\-u^{2} + u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} - 2u^{2}\\u^{3} - 2u^{2} + u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} - 2u^{2} - 1\\u^{3} - 3u^{2} + u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} - u^{2} - 2u\\-u^{2} + u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} - u^{2} - 3u + 1\\2\\u^{3} - 3u^{2} + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 3u - 2\\u^{3} - 3u^{2} + u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} + 2u^{2} + u - 1\\u^{2} - u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} - 2u^{2}\\u^{3} - 2u^{2} + u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} - 3u + 2\\-u^{3} + 3u^{2} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4

Crossings	u-Polynomials at each crossing
c_1, c_3, c_{10}	$u^4 - 2u^3 - u^2 + 2u - 1$
c_2,c_{11}	$(u-1)^4$
c_4, c_7	$u^4 + 2u^3 - u^2 - 2u - 1$
c_{5}, c_{6}	$(u+1)^4$
c_8, c_9, c_{12}	$(u^2-2)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_7, c_{10}	$y^4 - 6y^3 + 7y^2 - 2y + 1$
c_2, c_5, c_6 c_{11}	$(y-1)^4$
c_8, c_9, c_{12}	$(y-2)^4$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.13224 $a = -1.88320$ $b = -1.41421$	1.64493	-4.00000
u = 0.500000 + 0.405233I $a = 0.207107 - 0.978318I$ $b = 1.41421$	1.64493	-4.00000
u = 0.500000 - 0.405233I $a = 0.207107 + 0.978318I$ $b = 1.41421$	1.64493	-4.00000
u = 2.13224 $a = -0.531010$ $b = -1.41421$	1.64493	-4.00000

VI.
$$I_6^u = \langle b, a-1, u-1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing		
$c_1, c_3, c_4 \\ c_6, c_7, c_{10} \\ c_{11}$	u+1		
$c_2, c_5, c_8 \ c_9, c_{12}$	u		

Crossings	Riley Polynomials at each crossing		
$c_1, c_3, c_4 \\ c_6, c_7, c_{10} \\ c_{11}$	y-1		
c_2, c_5, c_8 c_9, c_{12}	y		

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.00000	-1.64493	-6.00000
b = 0		

VII.
$$I_7^u = \langle b-1, \ a^2-a-1, \ u-1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} a+1\\a+1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} a+1\\a+1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a-1\\1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -a - 1 \\ -2a \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 5

Crossings	u-Polynomials at each crossing
c_1, c_3, c_{12}	$(u-1)^2$
c_2, c_5	u^2
c_4, c_6	$u^2 + u - 1$
c_7, c_8, c_9	$(u+1)^2$
c_{10}, c_{11}	u^2-u-1

Crossings	Riley Polynomials at each crossing		
$c_1, c_3, c_7 \\ c_8, c_9, c_{12}$	$(y-1)^2$		
c_2, c_5	y^2		
c_4, c_6, c_{10} c_{11}	$y^2 - 3y + 1$		

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -0.618034	0	5.00000
b = 1.00000		
u = 1.00000		
a = 1.61803	0	5.00000
b = 1.00000		

VIII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_3	$((u-1)^{2})(u+1)(u^{2}-u-1)(u^{4}-2u^{3}+\cdots+2u-1)(u^{4}+u^{3}+2u+1)$ $\cdot (u^{15}-u^{13}+\cdots-2u-1)(u^{30}+2u^{28}+\cdots-81u+11)$
c_2	$u^{3}(u-1)^{6}(u^{4}+6u^{3}+\cdots+11u+5)(u^{15}-4u^{14}+\cdots-5u+2)^{2}$ $\cdot(u^{15}+9u^{14}+\cdots-69u-9)$
c_4	$(u+1)(u^{2}-u-1)(u^{2}+u-1)(u^{4}-2u^{3}+3u-1)(u^{4}+2u^{3}+\cdots-2u-1)$ $\cdot (u^{15}-u^{14}+\cdots+5u+1)(u^{30}-u^{29}+\cdots-24u+1)$
c_5	$u^{3}(u+1)^{6}(u^{4}-6u^{3}+\cdots-11u+5)(u^{15}-4u^{14}+\cdots-5u+2)^{2}$ $\cdot(u^{15}+9u^{14}+\cdots-69u-9)$
c_6	$(u-1)^{2}(u+1)^{5}(u^{2}+u-1)(u^{4}-2u^{3}+u^{2}-4u-1)$ $\cdot (u^{15}-u^{14}+\cdots-4u-1)(u^{30}+2u^{29}+\cdots+31u+1)$
<i>c</i> ₇	$(u+1)^{3}(u^{2}+u-1)(u^{4}-u^{3}-2u+1)(u^{4}+2u^{3}-u^{2}-2u-1)$ $\cdot (u^{15}-u^{13}+\cdots-2u-1)(u^{30}+2u^{28}+\cdots-81u+11)$
c_8, c_9	$u^{3}(u+1)^{2}(u^{2}-2)^{2}(u^{4}-5u^{3}+\cdots+2u-5)(u^{15}-6u^{14}+\cdots+6u+9)$ $\cdot (u^{15}+2u^{14}+\cdots-2u+2)^{2}$
c_{10}	$(u+1)(u^{2}-u-1)(u^{2}+u-1)(u^{4}-2u^{3}+\cdots+2u-1)(u^{4}+2u^{3}-3u-1)$ $\cdot (u^{15}-u^{14}+\cdots+5u+1)(u^{30}-u^{29}+\cdots-24u+1)$
c_{11}	$(u-1)^{4}(u+1)^{3}(u^{2}-u-1)(u^{4}+2u^{3}+u^{2}+4u-1)$ $\cdot (u^{15}-u^{14}+\cdots-4u-1)(u^{30}+2u^{29}+\cdots+31u+1)$
c_{12}	$u^{3}(u-1)^{2}(u^{2}-2)^{2}(u^{4}+5u^{3}+\cdots-2u-5)(u^{15}-6u^{14}+\cdots+6u+9)$ $\cdot (u^{15}+2u^{14}+\cdots-2u+2)^{2}$

IX. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$((y-1)^3)(y^2 - 3y + 1)(y^4 - 6y^3 + \dots - 2y + 1)(y^4 - y^3 + \dots - 4y + 1)$ $\cdot (y^{15} - 2y^{14} + \dots - 2y - 1)(y^{30} + 4y^{29} + \dots + 105y + 121)$
c_2, c_5	$y^{3}(y-1)^{6}(y^{4}-12y^{3}+\cdots-y+25)(y^{15}+8y^{13}+\cdots-3y-4)^{2}$ $\cdot (y^{15}-9y^{14}+\cdots+1071y-81)$
c_4, c_{10}	$(y-1)(y^2 - 3y + 1)^2(y^4 - 6y^3 + \dots - 2y + 1)(y^4 - 4y^3 + \dots - 9y + 1)$ $\cdot (y^{15} - 13y^{14} + \dots + 39y - 1)(y^{30} - 33y^{29} + \dots - 56y + 1)$
c_6, c_{11}	$(y-1)^{7}(y^{2}-3y+1)(y^{4}-2y^{3}-17y^{2}-18y+1)$ $\cdot (y^{15}+13y^{14}+\cdots+16y-1)(y^{30}+26y^{29}+\cdots-177y+1)$
c_8, c_9, c_{12}	$y^{3}(y-2)^{4}(y-1)^{2}(y^{4}-13y^{3}+46y^{2}-64y+25)$ $\cdot (y^{15}-26y^{14}+\cdots-1494y-81)(y^{15}-18y^{14}+\cdots+68y-4)^{2}$