Hierarchical Evaluation of Segment Boundary Detection

Brian McFee^{1,2}, Oriol Nieto^{2,3}, Juan P. Bello²

Center for Data Science, New York University

²Music and Audio Research Laboratory, New York University

³Pandora, Inc.

{brian.mcfee, oriol, jpbello}@nyu.edu

Abstract

T-measures: new metric to evaluate hierarchical music segment boundaries:

- First measures published to assess multiple levels of music segmentation.
- Allowing flat and hierarchical references and estimations.

Representing Hierarchical Boundaries

Time

n: number of frames in a track.

H: hierarchical segmentation composed of multiple flat segmentations.

H(i, j): most refined segment containing frames i and j.

 $H(j,j) \prec H(j,k)$: segment j is deeper in hierarchy than segment k.

In the example:

 $H(j,j) \prec H(j,k) \prec H(i,j) = H(i,k)$

T-measures

For a given frame q, count all i, j frames in the track such that the pair (q, i) is always more refined (i.e., deeper in the hierarchy) than (q, j):

$$g(q; H_E, H_R) := \sum_{\substack{(i,j), \\ i \neq q, \\ H_R(q,i) \prec H_R(q,j)}} \frac{\llbracket H_E(q,i) \prec H_E(q,j) \rrbracket}{Z_q}$$

 $\mathbf{H_E}$: Estimated hierarchy; $\mathbf{H_R}$: Reference hierarchy; $\mathbf{Z_q}$: Normalization.

Tree-recall T-measure:
$$\mathcal{T}_R(H_E,H_R):=\frac{1}{n}\sum_q g(q;H_E,H_R)$$
 Tree-precision T-measure:

$$\mathcal{T}_P(H_E, H_R) := \mathcal{T}_R(H_R, H_E)$$

Can be seen as a partial ranking problem: i is considered more relevant than j based on the hierarchy.

Harmonic mean of T_R and T_P produces an F-measure T_F .

Extending the T-measures

Windowing in Time

$$g(q; H_E, H_R, w) := \sum_{\substack{i,j \in \{x: |q-x| \le w/2\} \\ i \ne q, \\ H_R(q,i) \prec H_R(q,j)}} \frac{\llbracket H_E(q,i) \prec H_E(q,j) \rrbracket}{Z_q(w)}$$

w: time window; $\mathbf{Z}_{\mathbf{q}}(\mathbf{w})$: Normalization.

Goals:

- Avoid domination of trivial comparisons in long tracks.
- Reduce computation complexity from $O(n^3)$ to $O(n w^2)$.

Transitive Reduction

Restrict summation to include only adjacent layers in the hierarchy.

Goal: Avoid over-counting of high levels of segmentation.

Examples

	Reduced		Full	
w	T_R	\mathcal{T}_P	\mathcal{T}_R	T_P
0.5	0.00	1.00	0.40	1.00
3	0.00	1.00	0.40	1.00
15	0.37	1.00	0.51	1.00
30	0.70	1.00	0.82	1.00
∞	0.80	1.00	0.89	1.00

	Reduced		Full	
w	\mathcal{T}_R	\mathcal{T}_P	\mathcal{T}_R	T_P
0.5	1.00	1.00	1.00	1.00
3	1.00	1.00	1.00	1.00
15	0.63	1.00	0.76	1.00
30	0.30	1.00	0.59	1.00
∞	0.20	1.00	0.55	1.00

Exploring w

Compute T-measures between the 410 tracks with two hierarchical annotations in SALAMI dataset for different w:

w=15 estimated as a good value for SALAMI.