

Khoa Công Nghệ Thông Tin Trường Đại Học Cần Thơ

Phương pháp k láng giềng K nearest neighbors - KNN

Nội dung

- □ Giới thiệu về KNN
- □ Kết luận và hướng phát triển

Phương pháp K láng giềng

Tell me
who your friends are
and I'll tell you
who you are

Tell me
who your friends
are and I'll tell you
who you are

- K láng giềng KNN là một thuật toán phân lớp (classification) các trường hợp mới đến dựa trên một số lượng thông tin "phổ biến" nhất của k láng giềng gần nhất với nó.
- K láng giếng (K-Nearest Neighbors) còn được gọi bằng các tên khác như Lazy Learning, Instance-Based Learning
- KNN được Fix và Hodges đề xuất năm 1952
- Học có giám sát (supervised classification)

K-Nearest Neighbor – K láng giềng

Để xác định được lớp của phần tử mới đến

- Tính toán khoảng cách từ phần tử mới đến đến các phần tử còn lại trong tập huấn luyện.
- Chọn K phần tử gần nhất với phần tử mới trong tập huấn luyện.

Gán nhãn cho phần tử mới bằng nhãn "phổ biến" nhất của k láng giềng gần nhất.

Response

No response

No response

- Giới thiệu về KNN
- kết luận và hướng phát triển

- Giới thiệu về KNN
- kết luận và hướng phát triển

K =?
Nhãn của phần tử mới đến là
hình vuông hay hình tròn?

K-Nearest-Neighbor Strategy

K-nearest neighbors of a record x are data points that have the k smallest distance to x

 Phần tử mới xuất hiện thuộc nhóm nào khi

$$0 k = 1$$
:

$$\circ k = 7$$

• Choosing the value of k:

- If k is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classes
- Choose an odd value for k, to eliminate ties ICDM: Top Ten Data Mining Algorithms k nearest neighbors

Các độ đo khoảng cách

- Khoảng cách được tính theo từng kiểu của dữ liệu
 - Kiểu số,
 - □ Kiếu rời rạc (nominal type),
 - □ Nhị phân

Các độ đo khoảng cách - Kiểu số

□ Khoảng cách *Minkowski*

$$d(i,j) = \sqrt[q]{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

$$i = (x_{i1}, x_{i2}, ..., x_{ip}) \text{ và } j = (x_{j1}, x_{j2}, ..., x_{jp}) \text{ là 2 phần tử dữ liệu trong } p\text{-dimensional, } q \text{ là số nguyên dương}$$

 $\ \ \ \ \$ nếu $q=1,\,d$ là khoảng cách Manhattan

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

 \Box nếu q=2, d là khoảng cách Euclid

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

Các độ đo khoảng cách -

Kiểu rời rạc (nominal type)

□ VD: thuộc tính color có giá trị là red, green, blue, etc.

- phương pháp matching đơn giản,
 - □ m là số lượng matches và
 - p là tổng số biến (thuộc tính),
 - □ khoảng cách được định nghĩa:

$$d(i,j) = \frac{p-m}{p}$$

Kiểu rời rạc (nominal type)

$$d(i,j) = \frac{p-m}{p}$$

- □ m là số lượng matches và
- p là tổng số biến (thuộc tính),

	Màu tóc	Màu mắt	Chiều cao	Cân nặng	Trình độ
Nam	Đen	Đen	Cao	Trung bình	Cao đẳng
Lan	Nâu	Đen	Thấp	Trung bình	Đại học
Điệp	Nâu	Đen	Cao	Trung bình	Cao đẳng

Cách tính khoảng cách giữa các phần tử

Mỗi phần tử được biểu diễn bởi tập hợp các thuộc tính

John: Tuổi = 35 Thu nhập = 95K Số thể tín dụng = 3

Mary: Tuổi = 41 Thu nhập = 215K Số thẻ tín dụng = 2

Sử dụng khoảng cách Euclide giữa 2 phần tử.

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

Khoảng cách (John, Mary) = $sqrt[(35-41)^2+(95K-215K)^2+(3-2)^2]$

■ K = 3 : 3 nearest neighbors

Customer	Age	Income	No. credit cards	Response
John	35	35K	3	No
Mary	22	50K	2	Yes
Hannah	63	200K	1	No
Tom	59	170K	1	No
Nellie	25	40K	4	Yes
David	37	50K	2	?

■ K = 3 : 3 nearest neighbors

Customer	Age	Income (K)	No. cards	Resp
John	35	35	3	No
Mary	22	50	2	Yes
Hannah	63	200	1	No
Tom	59	170	1	No
Nellie	25	40	4	Yes
David	37	50	2	? = Yes

Distance from David
sqrt $[(35-37)^2+(35-50)^2+(3-2)^2]=$ 15.16
sqrt $[(22-37)^2+(50-50)^2+(2-2)^2]=15$
sqrt $[(63-37)^2+(200-50)^2+(1-2)^2]=$ 152.23
sqrt $[(59-37)^2+(170-50)^2+(1-2)^2]=$ 122
sqrt [(25-37) ² +(40-50) ² +(4- 2) ²]= 15.74

K nearest neighbors

- Phương pháp KNN (tên khác instance-based, lazy)
 - □ rất đơn giản, không có quá trình học, Không có mô hình được xây dựng: Lưu trữ tất cả các dữ liệu huấn luyện
 - Hê thống không thực hiện công việc gì cho đến khi có một trường hợp mới đến cần được phân loại. khi phân loại **mất nhiều thời gian so với một mô hình**, do quá trình tìm kiếm k dữ liệu lân cận, sau đó phân loại dựa trên majority vote (nếu là bài toán **hồi quy, giá trị dự báo tính dựa trên giá trị trung bình k láng giềng**)
 - □ kết quả phụ thuộc vài việc chọn khoảng cách sử dụng

K nearest neighbors

- phương pháp KNN
 - có thể làm việc trên nhiều loại dữ liệu khác nhau
 - giải quyết các vấn đề về phân loại, hồi quy
 - cho kết quả tốt, tuy nhiên độ phức tạp của quá trình phân loại khá lớn
 - được ứng dụng thành công trong hầu hết các lãnh vực tìm kiếm thông tin, nhận dạng, phân tích dữ liệu, etc.

kết luận và hướng phát triển

X1	X2	Lớp
0.45	5	?

X1	X2	Lớp
0.1	10	+1
0.2	25	+1
0.3	0	+1
0.5	11	-1
0.8	100	-1
0	50	+1
1	70	-1

D(Manhattan)	
?	
?	
?	_
?	
?	
?	
?	

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

X1	X2	Lớp
0.45	5	?

X1	X2	Lớp
0.1	10	+1
0.2	25	+1
0.3	0	+1
0.5	11	-1
0.8	100	-1
0	50	+1
1	70	-1

D(Manhattan)
5.35
20.25
5.15
6.05
95.35
45.45
65.55

kết luận và hướng phát triển

Nhận xét

- Thuộc tính X2 có miền giá trị (0..100) trong khi thuộc tính X1 có miền giá trị 0..1
- Kết quả phụ thuộc nhiều vào X2 (chênh lệch X2 lớn hơn so với X1)
- nên chuẩn hóa dữ liệu

(chuẩn hóa thuộc tính X2 về giá trị 0..1

 $new_val = (val - min)/(max - min)$

- Giới thiệu về KNN
- kết luận và hướng phát triển

X1	X2	Lớp
0.45	5	?

X1	X2	Lớp
0.1	0.1	+1
0.2	0.25	+1
0.3	0	+1
0.5	0.11	-1
8.0	1	-1
0	0.5	+1
1	0.7	-1

- Giới thiệu về KNN
 - kết luận và hướng phát triển

X1	X2	Lớp
0.45	0.05	?

X1	X2	Lớp
0.1	0.1	+1
0.2	0.25	+1
0.3	0	+1
0.5	0.11	-1
0.8	1	-1
0	0.5	+1
1	0.7	-1

D(Manhattan)
0.4
0.45
0.2
0.11
1.3
0.9
1.2

KNN Classification – Distance

Tuổi	Thu nhập	Nhãn	Khoảng cách	
25	\$40,000	Ν		
35	\$60,000	Ν		
45	\$80,000	Ν		
20	\$20,000	N		
35	\$120,000	N		
52	\$18,000	N		
23	\$95,000	Υ		
40	\$62,000	Υ		
60	\$100,000	Υ		
48	\$220,000	Υ		
33	\$150,000	Y		
48	\$142,000	?		
Euclidean Distance $D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$				

Nội dung

- □ Giới thiệu về KNN
- □ Kết luận và hướng phát triển

- thường rất chính xác, nhưng chậm do phải duyệt qua dữ liệu để tìm phần tử gần
- giả sử các thuộc tính có độ quan trọng như nhau
 - gán trọng số quan trọng cho mỗi thuộc tính
- chịu đựng được nhiệu
- \Box thống kê đã sử dụng k-NN từ những năm 50s
 - □ khi dữ liệu lớn $(n \to \infty)$ và $k/n \to 0$, lỗi gần với giá trị nhỏ nhất

Hướng phát triển

- □ tăng tốc cho quá trình tìm k phần tử lân cận □ cấu trúc index
- chọn thuộc tính quan trọng
- gán trọng số cho các thuộc tính

KNN Classification – Distance

Tuổi	Thu Nhập	Nhãn	Khoảng cách
25	\$40,000	Ν	102000
35	\$60,000	Ν	82000
45	\$80,000	Ν	62000
20	\$20,000	N	122000
35	\$120,000	N	22000
52	\$18,000	Ν	124000
23	\$95,000	Υ	47000
40	\$62,000	Υ	80000
60	\$100,000	Υ	42000
48	\$220,000	Υ	78000
33	\$150,000	Y	8000

$$D = \sqrt[\$142,000]{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

KNN Classification — Standardized Distance

⊤	Tl l. ^	NIL 2	171 2 4 - 1-	
Tuổi	Thu nhập	Nhãn	Khoảng cách	
0.125	0.11	N		
0.375	0.21	Ν		
0.625	0.31	Ν		
0	0.01	Ν		
0.375	0.50	Ν		
0.8	0.00	Ν		
0.075	0.38	Υ		
0.5	0.22	Υ		
1	0.41	Υ		
0.7	1.00	Υ		
0.325	0.65	Υ		
0.7	iable 0.61	→ ?		
0.7 Standardized V	X = X -	-Min		
Standa	$M_s - Max$	-Min		

KNN Classification — Standardized Distance

Tuổi	Thu nhập	Nhãn	Khoảng cách
0.125	0.11	Ν	0.7652
0.375	0.21	Ν	0.5200
0.625	0.31	N	0.3160
0	0.01	N	0.9245
0.375	0.50	N	0.3428
0.8	0.00	N	0.6220
0.075	0.38	Y	0.6669
0.5	0.22	Y	0.4437
1	0.41	Y	0.3650
0.7	1.00	Y	0.3861
0.325	0.65	Y	0.3771
0.7	0.04		
0.7 0.61 ?			
$X_{s} = \frac{X - Min}{Max - Min}$			
Max-Min			