Билет № 10. Критерий Коши сходимости числовой последовательности.

Определение. Последовательность $\{x_n\}$ фундаментальная, если она удовлетворяет условию Коши:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N}: \forall n, m \ge N(\varepsilon) \Rightarrow |x_m - x_n| < \varepsilon.$$

Теорема. Критерий Коши.

Последовательность сходится \iff она фундаментальна.

Лемма 1. Если последовательность удовлетворяет критерию Коши, то она ограничена.

Доказательство леммы: По условию Коши: $\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n, m \geq N(\varepsilon) \Rightarrow |x_n - x_m| < \varepsilon$.

Пусть $\varepsilon=1$. В частности, если m=N(1): $\exists N(1)$: $\forall n\geq N(1)\Rightarrow |x_n-x_{N(1)}|<1$; Тогда $|x_n|-|x_{N(1)}|\leq |x_n-x_{N(1)}|<1$. Следовательно $|x_n|<|x_{N(1)}|+1$.

Возьмем $M = \max\{|x_1|, |x_2|, \dots, |x_{N(1)}|+1\}$. Тогда $\forall n \in \mathbb{N} \Rightarrow |x_n| \leq M$. Последовательность ограничена.

Доказательство критерия Коши

 (\Rightarrow) Пусть $\{x_n\}$ сходится. \exists конечный предел $\lim_{n\to\infty}x_n=x\in\mathbb{R}$.

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N}: \forall n \ge N(\varepsilon) \Rightarrow |x_n - x| < \frac{\varepsilon}{2}.$$

Тогда $\forall n, m \geq N(\varepsilon) \Rightarrow$

$$|x_n - x_m| \le |x - x_n| + |x_m - x| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Следовательно, $\{x_n\}$ удовлетворяет условию Коши.

 (\Leftarrow) Пусть выполнено условие Коши. По лемме 1 $\{x_n\}$ ограничена. По теореме Больцано-Вейерштрасса у неё есть хотя бы один конечный частичный предел. $\exists \{x_{n_k}\}: \lim_{k\to\infty} x_{n_k} = x \in \mathbb{R}$.

Имеем:

- $\forall \varepsilon > 0 \ \exists K(\varepsilon) \in \mathbb{N} : \forall k \geq K(\varepsilon) \Rightarrow |x_{n_k} x| < \varepsilon$
- $\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N}: \forall n, m \ge N(\varepsilon) \Rightarrow |x_m x_n| < \varepsilon$

Положим $L(\varepsilon) = \max\{N(\varepsilon), K(\varepsilon)\}.$

$$\forall k \geq L(\varepsilon) \Rightarrow |x_{n_k} - x| < \varepsilon$$
 и $|x_{n_k} - x_n| < \varepsilon$ (при $n \geq N(\varepsilon)$).

Тогда $\forall n \geq N(\varepsilon)$ и $\forall k \geq L(\varepsilon) \Rightarrow$

$$|x - x_n| = |x - x_{n_k} + x_{n_k} - x_n| \le |x - x_{n_k}| + |x_{n_k} - x_n| < \varepsilon + \varepsilon = 2\varepsilon$$

Итого: $\forall \varepsilon > 0 \ \exists N(\varepsilon)$: $\forall n \geq N(\varepsilon) \Rightarrow |x_n - x| < 2\varepsilon$. Значит, $\exists \lim_{n \to \infty} x_n = x \in \mathbb{R}$.