Numerical Methods in Physics with Python

Bringing together idiomatic Python programming, foundational numerical methods, and physics applications, this is an ideal standalone textbook for courses on computational physics. All the frequently used numerical methods in physics are explained, including foundational techniques and hidden gems on topics such as linear algebra, differential equations, root-finding, interpolation, and integration. Accompanying the mathematical derivations are full implementations of dozens of numerical methods in Python, as well as more than 250 end-of-chapter problems. Numerical methods and physics examples are clearly separated, allowing this introductory book to be later used as a reference; the penultimate section in each chapter is an in-depth project, tackling physics problems that cannot be solved without the use of a computer. Written primarily for students studying computational physics, this textbook brings the non-specialist quickly up to speed with Python before looking in detail at the numerical methods often used in the subject.

Alex Gezerlis is Associate Professor of Physics at the University of Guelph. Before moving to Canada, he worked in Germany, the United States, and Greece. He has received several research awards, grants, and allocations on supercomputing facilities and is active in teaching at both undergraduate and graduate levels.

"I enthusiastically recommend *Numerical Methods in Physics with Python* by Professor Gezerlis to any advanced undergraduate or graduate student who would like to acquire a solid understanding of the basic numerical methods used in physics. The methods are demonstrated with Python, a relatively compact, accessible computer language, allowing the reader to focus on understanding how the methods work rather than on how to program them. Each chapter offers a self-contained, clear, and engaging presentation of the relevant numerical methods, and captivates the reader with well-motivated physics examples and interesting physics projects. Written by a leading expert in computational physics, this outstanding textbook is unique in that it focuses on teaching basic numerical methods while also including a number of modern numerical techniques that are usually not covered in computational physics textbooks."

Yoram Alhassid, Yale University

"In *Numerical Methods in Physics with Python* by Gezerlis, one finds a resource that has been sorely missing! As the usage of Python has become widespread, it is too often the case that students take libraries, functions, and codes and apply them without a solid understanding of what is truly being done 'under the hood' and why. Gezerlis' book fills this gap with clarity and rigor by covering a broad number of topics relevant for physics, describing the underlying techniques and implementing them in detail. It should be an important resource for anyone applying numerical techniques to study physics."

Luis Lehner. Perimeter Institute

"Gezerlis' text takes a venerable subject – numerical techniques in physics – and brings it up to date and makes it accessible to modern undergraduate curricula through a popular, open-source programming language. Although the focus remains squarely on numerical techniques, each new lesson is motivated by topics commonly encountered in physics and concludes with a practical hands-on project to help cement the students' understanding. The net result is a textbook which fills an important and unique niche in pedagogy and scope, as well as a valuable reference for advanced students and practicing scientists."

Brian Metzger, Columbia University

Numerical Methods in Physics with Python

ALEX GEZERLIS

University of Guelph

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108488846
DOI: 10.1017/9781108772310

© Alexandros Gezerlis 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ International Ltd, Padstow Cornwall A catalogue record for this publication is available from the British Library.

> ISBN 978-1-108-48884-6 Hardback ISBN 978-1-108-73893-4 Paperback

Additional resources for this publication at www.cambridge.org/gezerlis

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.