2.6. Исследование работы мультивибратора

2.6.1. Собрать схему симметричного мультивибратора, представленную на рисунке 2.6.1, или использовать готовую (OU-5).

Рисунок 2.6.1 Схема симметричного мультивибратора

Напряжения источников питания V2 и V3 рассчитываются в соответствии с номером бригады

$$V_2 = V_3 = 5 \text{ B} + (n-1) \cdot 2$$

где n — номер бригады.

$$V_2 = V_3 = 5 \text{ B} + (6 - 1) \cdot 2 = 15 \text{ B}.$$

Номиналы резисторов R1, R2, R3 и емкость конденсатора C1 схемы выбираются в соответствии с номером варианта из таблицы:

<u>No</u>	1	2	3	4	5	6
R1, кОм	1	1	1	1	2	2
R2, кОм	1	2	3	4	2	3
R3, кОм	2	1	1	2	4	4
С1, мкФ	1	2	1	2	0.5	1

2.6.2. Запустить схему моделирования и зафиксировать полученные осциллограммы на интервале, равном двум-трем периодам. Определить амплитуду U_m , период T_3 , и частоту f_3 следования импульсов.

Рисунок 2.6.2 Измерение выходного напряжения

Максимальное выходное напряжение определяем по экрану осциллографа с помощью визирной линии:

$$U_m = 5,66 \text{ B}.$$

Рисунок 2.6.2 Измерение периода колебаний

Период колебаний определяем по экрану осциллографа по временному интервалу между двумя визирными линиями, которые ставим на начала двух смежных периодов колебаний.

$$T = \frac{13,76 \text{ мс}}{2} = 6,88 \text{ мс} = 0,00688 \text{ с.}$$
 $f = \frac{1}{T} = \frac{1}{0,00688} = 145 \text{ Гц.}$

2.6.3. Рассчитать период Т и частоту f следования импульсов схемы с установленными параметрами, принимая ОУ идеальным. Сравнить экспериментальные и расчетные данные.

$$T_9 = 2C_1R_3 \ln\left(1 + \frac{2R_1}{R_2}\right) = 2 \cdot 1$$
мк $\Phi \cdot 4$ кОм $\cdot \ln\left(1 + \frac{2 \cdot 2$ кОм}{3кОм}\right) =
= 8мс $\cdot \ln 2,333 = 8$ мс $\cdot 0,847 =$
= 6,78 мс = 0,00678 с;

$$f = \frac{1}{T} = \frac{1}{0,00677} = 148$$
 Гц.

Вывод: -----