E1- HT superconductivity

Modern Physics Lab.

H. Gao, Z. Mo, H. Xu, Z. Chen and Z. Fang

March 30, 2020

1/23

Table of Contents

The question

The Theory and the Basic Principles

Our Plan

A study on the Basic Property of Superconductivity

Main goals:

- $R(T, H = 0), \chi(T, H = 0)$
- The differences between 1st-order PT and 2nd-order PT by comparing $\chi(T, H \neq 0)$ for a large H.

Additional staffs to be explored if time allows:

- History dependence of sc.
- Other R(T; H) and $\chi(T; H)$ relations near the critical point.

Why?

Let's have a brief review on the theory of superconductivity and phase transition.

Electron-phonon Interaction

QED vertex

$$=-ie\gamma^{\mu}$$

Electron-phonon interactive vertex

$$\rightarrow$$
 = $-ig$

Similar picture, except...

Inner Lines in Feynman Diagrams

In QED, photon is a spin-1 particle (gauge field)

photon inner line =
$$iD^{\mu\nu}(k) = \frac{-ig^{\mu\nu}}{k^2 + i\epsilon}$$

Repulsive force $D^{00} < 0$.

Phonon: a spin-0 particle (abelian real scalar field)

phonon inner line =
$$iD(k) = \frac{i}{k^2 - m^*(k)^2 + i\epsilon}$$

D>0, attractive force, results in **electron bound state**, i.e. Cooper pair.

• See, for example, Zee, QFT nut, Altland, cond-mat field theory.

Broken Symmetry and Phase Transition

- Electron field = Spinor, with U(1) symmetry in its Lagrangian without an external field..
- Superconductivity: U(1) symmetry breaking, selecting a particular ground state.
- Symmetry breaking is often related to phase transition \Rightarrow Sc is a new TD phase.

^{*}figure taken from Lancaster/Blundell

Criterions for S.C. State

Zero resistance:

$$R\sim 0$$

In lab: a sudden decreasing in R, measured by 4-line method, given by $R = \frac{V_+ - V_-}{2I}$.

Meissner effect: susceptibility

$$1 + \chi \sim 0$$

In lab: a sudden increasing in emf output from lock-in amplifier, given by $\varepsilon \sim \chi$.

The Behavior near T_c

- We'd ask the exact form of R(T, H) and $\chi(T, H)$. 1st-order PT: the transition is not **continue**.
- 2nd-order PT: the transition is not **smooth**, we'd like to say, e.g.

$$R(T, H=0) \sim (T-T_c)^{\beta}$$

$$1+\chi(T_c,H)\sim H^{\frac{1}{\delta}},\quad 1+\chi(T,H=0)\sim (T-T_c)^{-\gamma}$$

• Critical exponents β, γ and δ are NOT integer, i.e. non-analytical behavior.

Why Study Critical Exponents

A very fundamental property of PT, but we're largely innocent of.

- Everyday phenomenons: vapor.
- In AMO and CMP: BEC.
- In hep-th: Higgs mechanism.
- In hep-ph/nucl-th: studying the critical exponents reflects our knowledge of symmetry and vacuum (e.g. QCD topological nontrivial vacuum leads to a lot of interesting phenomenons such as CME/CSE, and QCD phase diagram is still largely unknown).

QCD Phase Diagram and QCD Vacuum

 QCD Phase Diagram: unknown boundary, even don't know whether PT or not.

Non-trivial QCD vacuum, topological transition.

Theoretic Calculation

Mean Field method, of equivalently, Landau 2nd-order PT theory

$$F(m, T) = F_0 + a(T)m^2 + b(T)m^4$$

giving $\beta=\frac{1}{2}$, dimensional independence. However, we know that PT doesn't occur in d=1 and in d=2, one can give exactly $\beta=\frac{1}{8}$ from the first principle.

- Why MF fails? Fluctuations.
- In d = 3, unable to solve critical exponents exactly. Must find other solution.

Renormalization Group (RG)

• Taking fluctuations into our concern by generalizing Landau theory by considering a field $\phi(\vec{x})$ in d dimension space

$$F[\phi] = \int d^d \vec{x} \, \frac{1}{2} (\vec{\nabla} \phi)^2 + \frac{1}{2} m^2 \phi^2 + \frac{1}{4!} \lambda \phi^4.$$

No term higher than $O(\vec{\nabla}^2)$ ensures locality.

• Partition function as a path integral

$$Z = \int \mathcal{D}\phi e^{-\beta F[\phi]}.$$

• In d=4, equivalent to ϕ^4 theory in quantum field theory after Wick rotation, which is renormalizable. β functions for m^2 and λ .

RG flows

The behavior of RG flows near W_2 gives critical exponents as a function of ϵ .

Results from RG as a ϵ expansion

- However, we live in d = 3 space.
- Consider $d=4-\epsilon$ Euclidean space, RG flows (β functions) give, e.g.

$$\beta = \frac{1}{2} - \frac{\epsilon}{6} + O(\epsilon^2)$$

• Then take $\epsilon=1$ for d=3, we have $\beta=\frac{1}{3}$. Experimentally/Numerically on a lattice, $\beta\approx 0.3264$.

We Can Never Know the Exact Answer

- The result is only from ϵ expansion and in order to get high order corrections, we have to calculate a HUGE number of Feynman diagrams, which is too arduous (and probably not converge).
- RG is also known for its mathematically bad reputation.
- So measuring the critical exponents from experiment is of great importance from both practical and theoretic aspects. That's why...

Our Plan

- **1** A phenomenological study: measuring critical temp. T_c by two methods (resistance and susceptibility) discussed in sect.1.
- ② A study on the dependence of transition temp. T(H) between external magnetic field H.
- A detailed study on S.C. from the prospect of critical exponents (Our question above).

Let's Keep Focus and Don't Be too Ambitious

- We don't plot R(T, H) our for every (T, H) because it's meaningless from theoretic aspect.
- What we are interested in are 2nd-order PTs, i.e., $R(T, H = 0), \chi(T, H = 0)$ and $\chi(T_c, H)$.
- Heavily relies on the precision of measuring T_c . Therefore we focus on a particular sample and repeat as many time as possible.
- Since the critical exponents of PT are known for universality, focusing on a particular sample would't make us lose any generality.

Procedures

Measuring R and χ both from HT \to LT and from LT \to HT

Fit the value of T_c .

Precisely control the temp. at T_c and measure $\chi(T_c, H)$.

Measuring $\chi(T, H \neq 0)$ to study the difference btw 1st & 2nd-order PT.

Fit our datas for $(T_c, \alpha, \beta, \delta)$

A Simulative Data Processing

- Set $\beta = 0.5$, $T_c = 1$, adding a gaussian noise to every point.
- ② Naively fitting data points by LS gives $T_c = 0.82 \pm 0.08$, $\beta = 0.4 \pm 0.3$

1 Too large uncertainty in β , a lot of data points needed.

Tables for Data Recording

表 14: 电阻变化的临界指数测量,第一次升温测量

	U,		· 0011 mm 0.4 mm
温度 T/K		正向电压 $V_+/\mu V$	反向电压 $V/\mu { m V}$

Figure: Table for measuring R(T, H = 0).

表 18: 磁化率变化的临界指数测量,第一次升温测量

温度 T/K	输出差分电压 R/V	输出差分电压信号
		幅角 θ

Figure: Table for measuring $\chi(T, H = 0)$.

More Tables

表 24: 临界温度下磁化率磁场变化

磁场 B ₀ /T	输出差分电压 R/V	输出差分电压信号
		幅角 θ
0.0		

Figure: Table for measuring $\chi(T_c, H)$.

表 25: 一级相变时磁化率测量,第一次升温测量

		<u> </u>
温度 T/K	输出差分电压 R/V	输出差分电压信号
		幅角 θ

Figure: Table for measuring $\chi(T, H \neq 0)$ for 1st-order PT.

22 / 23

Thank You for Your Attentions

We hope you are safe and healthy at home.

