Binary Dependent Variable

Week 16

Winnie Xia

Get Started

Binary Data

- A variable is binary if it only has two values, 0 or 1("No" or "Yes", etc.)
 - Did you vote or not?
 - Did a country adopt this policy or not?
 - Did the war or protest end or not?

Why not linear model

• A typical OLS equation looks like:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

and assumes that the error term,

 ε

is normal.

- Running OLS with a binary dependent variable is called linear probability model.
- The interpretation is the exact same as regular OLS. The only difference is that our interpretation of the dependent variable is now in probability terms.
- So we say, a one-unit increase in X is associated with a three percentage point increase in the probability.

Why not linear model

- We will get prediction outside the interval between 0 and 1.
- Violate the homoscedasticity assumption of OLS.
- By using OLS estimator, we assume linear trend in probabilities.

Generalised Linear Model

• A GLM equation looks like:

$$E(Y|X) = F(\beta_0 + \beta_1 X)$$

- Key differences:
 - estimated by maximum likelihood, rather than OLS.
 - o binomial distribution for binary data, rather than normal distribution.
 - In R, we use

Probit vs. Logit

- Logit model is a form of a statistical model that is used to predict the probability of an event occurring
- Probit model is similar to logit model, but it determines the likelihood that an item or event will fall into one of a range of categories by estimating the probability that observation with specific features will belong to a particular category.
- So dependent variable for probit model can only take on one of the two values, such as yes or no, true or false.

Probit vs. Logit

Logit models are used to model logistic distribution while probit models are used to model the cumulative standard normal distribution.

Interpretation

- Coefficients are log odd-ratios.
- From the coefficients themselves we can get direction (positive/negative) and significance, but not the size of effect.
- So we convert them into odds-ratio by exponentiating:

How to interpret odds ratio

Predicted Probability/Marginal effect

- To interpret the effects more clearly, we need to calculate the predicted probability.
 - 0
 - And we write, the predicted probability for the occurrence of an event is XXX.