基于 TM S320C240 芯片的 永磁无刷直流电机控制器

广东工业大学(广州,510090) 陈璟华 汪锐 李日隆

摘要 本文介绍了以DSP 芯片 TMS320C240 为核心的永磁无刷直流电机控制器的设计。其主要内容涉及其核心电路的构成,功率开关元件的驱动等硬件电路和软件编程。

叙词 无刷直流电动机 控制器

The Controller for PM DC Brushless Motor with TM S320C240 Chip

Chen Jinghua, Wang Rui, Li Rilong

Key words: DC brushless motor Controller

1 引言

TM S320C240 是 T I(德州仪器)公司专为数字电机控制 (DM C)应用而推出的一种低价格。高性能 16 位定点运算DSP 控制器。这一高度集成化的器件代表了传统微处理器及通用 DSP 处理方案的重大突破,使易制造的无刷电机的直接驱动及调速成为可能。利用 TM S320C240,设计者可以构成数字的控制环,这样可以有效地减小电机转矩波动和谐波,从而改进电机的电气特性,有效地实现电能

与机械能的转换,减少电机的损耗。

永磁无刷直流电机控制器的结构已有多种形式,传统的无刷直流电机是直接采用模拟元件进行驱动。由于模拟元件控制系统不仅对温度变化敏感、易老化,而且系统升级困难,因此已被逐渐淘汰。新型的 TM S320C240 芯片不仅具有实时运算能力,并且集成了电机控制的外围部件,使设计者只需外加少量的硬件设备,从而可以降低系统费用。

本文介绍的永磁无刷直流电机控制系统采用

电流的总和(1)。

 $I_0 = K_k 3U \mathcal{L}C_0$

式中 C_0 ——被保护电动机的对地电容 K_k ——可靠系数取 1.2~ 1.5

6 结论

本电动机保护装置完善了常规保护所存在的问题, 能覆盖所有的电动机故障类型, 以单片机为手段使保护具有快速性, 整定、调试, 维护方便等特点。 该研究成果 1988 年获电力工业部科技进步三等奖, 并已在佳木斯第二发电厂、吉化自备电厂、长

山发电厂等投入运行, 取得了良好的效果。

参考文献

- 王禹民.异步电动机故障诊断及综合保护的研究.武 汉水利电力大学硕士论文.
- 2 杨奇逊.微机型继电保护基础.北京水利电力出版社, 1991.
- 3 蔡泽祥.异步电动机故障电流分析及保护.继电器, 1994(3).

生, 1997 年毕业于南昌 大学电气工程及自动化 系, 获工学学士学位。

1998 年 9 月至今在广东 工业大学电气工程及自

动化系攻读控制理论与 控制工程专业的硕士学

1974 年 7 月

陈璟华

位。

收稿日期: 2000-01-04

主从式结构。用一台 PC 机作上位机, 进行命令的 发送和实时监控, 以DSP 芯片 TM S320C240 为核 心构成的无刷直流电机控制系统为下位机, 根据主 机发送的命令对无刷直流电机进行控制。

无刷直流电机控制系统硬件组 成.

2.1 功率输入整流回路

整个功率板电路如图1所示。考虑到整个系统 输入的功率较大,如采用普通的变压器滤波可能所 占体积较大, 故电源采用可提供 12V 电压的开关 电源。12V 电源同时给无刷电机和前置驱动器供 电。功率回路直接接到 12V 电源上, 另外为保证前 置驱动器电压的稳定,可对电压进行稳压后再供给 IR 2131S_o

前置驱动电路 图 2

2.2 功率驱动电路

其驱动电路如图 1 所示, 本驱动电路采用的是 三相全控桥的控制方式。功率MOSFET 管是采用 International Rectifier 公司的 IRFP054N, 并采用 IR 2131S 作为全控桥的前置驱动电路。前置驱动电 路如图 2 所示。

2.3 规律输出电路

从 TM S320C240 来的 PWM 控制信号直接连 至前置驱动器,其电路如图 1 所示。前置驱动器的 输出再通过一个电阻直接连至功率MOSFET 管 的控制极。系统采用硬斩波方式进行. CPU CLO CK= 20M Hz, PWM 周期= 20kHz

2.4 电压泵生电路

如图 1 所示, 采用 IRLD 024 与 IR FP 054N 构 成电压泵生电路。系统刹车时, 只要关闭 PWM 输 出, 这时 Brake 将置为低, 这样就能实现能耗制动 进行刹车。

2.5 电流检测

本设计采用分流电阻来检测电流。分流电阻安 装在功率驱动桥的下端与功放板地线之间, 选定的 阻值具有在功放板达到允许的最大电流时激活 IR 213S 内置的过流保护功能。分流电阻上的电压 降先通过运放放大一定的倍数, 再经双ADC 模块 进行模数转换,以覆盖整个模数转换范围。

2.6 磁极位置检测

对电机转子相对定子绕组的位置检测采用 3 个霍尔效应传感器。该传感器由我们设计的电路板 供电。将霍尔效应传感器的输出接到 TM S320C240 芯片的捕获引脚上, 采用定时器 2 作为捕获单元的时基,并将它设为单增计数模式。 霍尔传感器输出三个脉宽为 180 电角度的互相重 叠的信号, 这样就可得到了六个强制换相点: 检测 到传感器输出信号的上升沿和下降沿后,产生相应 的中断标志并执行中断服务程序(事件管理器中断 组C)。ISR 首先判断检测到哪一个信号边缘, 然后 再读入3个传感器的电平,这样就能得出磁极的位 置。

2.7 速度检测

速度反馈从位置传感器的输出信号中获得。正 如上面所说, 电机转子每转一周从传感器中就可以 得到六个换相信号。 也就是说, 两个换相信号相差 60 电角度。速度可以写为:

$\Delta \theta / \Delta T$

霍尔效应传感器的位置相对电动机是固定不变的, 故两个换相信号之间的机械角度 $\Delta\theta$ 是常数. 因此 通过计算两个检测信号之间的时差就可以计算出速度。

3 控制系统软件设计

3.1 串行通信协议

上位机负责各种命令的发出,如设置数据,发送当前运行状态等,下位机则对上位机的命令进行响应,进行数据的传输。为了简单起见,采用定长帧的通信协议。具体通行协议如下:

采用 19200 波特率, 8 位数据, 1 位停止位, 无奇偶校验

起始字符为 68H (8 位)

地址(8位)

命令字(8位)

操作码(16位)

检验和(8位), 为前面 5个字节之和

命令字	含义
01H	设置转速
02H	设置方向
03H	设置最大允许电流
04H	读取当前转速
05H	读取当前电流
06Н	电机启动
07H	电机停止
80H	发送数据给主机
FFH	功率器件保护错误

其中地址为目的机的地址, 这里定义主机地址 固定为 00H, 从机地址在 1~255 范围内可变。地址 可通过调整板上的 DIP 开关完成。

3.2 系统控制框图

系统控制框图如图 3 所示, 分为速度环(外换)

图 3 系统控制框图

和电流环(内环) 两部分。其内环采用纯 P 算法, 内环进行调节时, 根据电流当前测量值与计算值的差值调节 PWM 斩波参数, 然后根据电机的启动电流和最大电流对其进行限幅, 并根据当前转子的位置

选择应该导通的MOSFET 管,以输出正确的触发脉冲对。外环采用PI算法,用以保证系统为无静差系统

3.3 软件结构

整个控制系统软件由主程序和中断服务子程序所组成。主程序主要完成事件管理系统的初始化、变量的初始化以及 IR 2131S 器件的初始化。

中断程序主要包括串行口中断,捕获中断, ADC 转换结束中断,PDPNT中断等几个部分。

在串行口中断中,主要完成与主机信息的传输,反馈当前的工作状态并根据主机的命令启动电机或制动等。

捕获中断主要用于得到当前的转子的位置,并调整输出的相序。

ADC 中断在每次 PWM 周期发生后一段时间 内发生,可以通过 ADC 转换的数值经过计算得到 当前的相电流值,进行电流环的调节。每经过一定 次数的电流环调节,就进行一次速度环调节,以保证系统按照要求运行。

在功率器件发生过载保护时,会有 PDPNT 中断发生。其中断服务程序不仅停止 PWM 的产生和输出,并设置致命错误标志。

4 结论

根据文中讨论的原则, 我们设计并研制了一套基于 TM S320C240 控制芯片的永磁无刷直流电机控制器, 用以驱动一台 100W、12V 永磁无刷电机, 并获得满意的试验运行效果。

本设计采用了高性能 高精度的 DSP 芯片, 不仅结构简单、控制可靠, 而且能达到较高的控制精度。 另外因采用了多机系统的结构, 能具有友好的人机界面。同时, 串行通讯使用 19200 波特率, 数据传输较快, 所以系统能具有较好的实时性。而且, 系统还具有扩展能力, 可以用一台上位机同时管理多台下位机, 如果需要进行更为复杂的控制, 只需要对通行协议进行修改, 升级软件即可。

参考文献

- 1 刘朝辉,徐子文 · TM S320C24X DSP 控制器参考手册 · 武汉力源电子股份有限公司, 1998.
- 2 张琛.直流无刷电机原理及应用[M].机械工业出版 社.1996.
- 3 陈雯.最新电机控制专用DSP 控制器.电气传动, 1999(2). 收稿日期: 1999-12-21