REPRESENTATIONS OF ABELIAN GROUPS

ARPON RAKSIT

original: December 30, 2015 updated: December 30, 2015

Let k be an algebraically closed field. Let \mathcal{A} be an abelian k-linear category. Let G be an abelian group and let \mathcal{A}^G denote the category of G-representations in \mathcal{A} , i.e. the functor category $[BG, \mathcal{A}]$ (which is also obviously abelian and k-linear in a natural way).

1. Proposition. Let M be a simple object in \mathcal{A}^G . Then there's a character $\lambda \colon G \to k^{\times}$ such that the action of G on M is given by multiplication by λ .

Proof. The claim is simply that the action $\gamma(g) \in \operatorname{End}_{\mathcal{A}}(M)$ of each $g \in G$ is a multiple $\lambda(g) \in k$ of the identity. Since G is abelian we have

$$\gamma(g)\gamma(h) = \gamma(gh) = \gamma(hg) = \gamma(h)\gamma(g)$$

for all $h \in H$. I.e. $\gamma(g)$ is also a morphism of representations. The claim then follows from the formulation of Schur's lemma [abelian-category-linear-algebra, 1.4.2] stating that M being simple implies its only endomorphisms are multiplication by scalars.

- **2. Remark.** It follows immediately from (1) that if M is simple in \mathcal{A}^G then M is also simple when viewed as an object in \mathcal{A} .
- **3. Corollary.** Assume \mathcal{A} is semisimple. Then any representation $M \in \mathcal{A}^G$ has an isotypic decomposition

$$M \simeq \bigoplus_{\lambda \in G^{\vee}} M_{\lambda},$$

where for $\lambda \in G^{\vee}$ the representation $M_{\lambda} \in \mathcal{A}^{G}$ is acted on by G via λ , i.e. for $g \in G$ the action $g \colon M_{\lambda} \to M_{\lambda}$ is given by multiplication by $\lambda(g)$.

Proof. Since \mathcal{A} is semisimple, by [representations-semisimplicity, 2] we know that \mathcal{A}^G is semisimple. Thus any $M \in \mathcal{A}^G$ is a direct sum of simple objects. The claim now follows from (1).

4. Remark. Note that the isotypic decomposition provided by (3) is automatically unique: for $\lambda \in G^{\vee}$ we can recover M_{λ} as the kernel of the map $M \to \bigoplus_{g \in G} M$ which on the factor indexed by $g \in G$ is given by multiplication by $1 - \lambda(g)$.