Задача 1. Монета, за която вероятността за падане на ези е 3/4 се хвърля 2000 пъти. Каква е вероятността броят на падналите се езита да е между 1475 и 1535?

Задача 2. Точка (X,Y) попада по случаен начин в триъгълник с върхове в точките с координати (0,0), (0,2) и (3,0). Да се намери съвместната плътност, функцията на разпределение и корелацията на X и Y.

Задача 3. Електронно устройство за предпазване от крадци автоматично променя осветлението в дома. То е настроено така, че през фиксиран час, в случаен момент X ще запали лампите, а в момент Y ще ги угаси. Нека съвместната плътност на случайните величини X и Y е $f_{X,Y}(x,y)=cxy,0< x< y<1$.. Да се намери

- 1. константата с;
- 2. маргиналните плътности и математическите очаквания;
- 3. вероятността лампите да бъдат запалени преди 45-тата минута и да светят по-малко от 10 минути;
- 4. колко е средното време на светене, ако лампите са запалени на 15-тата минута;
- 5. каква е вероятността лампите да светят по-малко от 20 минути?

Задача 4. Нека X е температурата (в градуси), а Y е времето (в минути), необходимо за запалване на дизелов двигател. Нека $f_{X,Y}(x,y)=1/2000(x+5y+10), -10 \le x \le 30, 0 \le y \le 2$. Да се определи

- 1. вероятността да е нужна поне 1 минута за запалване;
- 2. средното време за запалване при 15 градуса;
- 3. ако двигателят е запалил за 1.5 минути, каква е вероятността температурата да е отрицателна?

Задача 5. Върху страните на квадрат, независимо една от друга, по случаен начин попадат две точки. Да се намери математическото очакване на квадрата на разстоянието между точките, ако страната на квадрата е a.

Задача 6. Нека случайните величини $X_1, X_2 \sim Exp(\lambda)$ са независими. Да се намери разпределението на случайната величина $Y = X_1/(X_1 + X_2)$.

Задача 7. Нека случайните величини $X_1, X_2 \sim U(0,1)$ са независими. Да се намери разпределението на случайната величина $Y = X_1 + X_2$.

Задача 8. Нека случайните величини $X_1, X_2 \sim Exp(\lambda)$ са независими. Да се намери плътността на случайната величина

- 1. $Y = \max(X_1, X_2);$
- 2. $Y = \min(X_1, X_2)$.