Homework 5 for "Convex Optimization" Part. 2

1500010611 汪袆非

We consider the l1-regularized problem

$$\min_{x} \frac{1}{2} ||Ax - b||_{2}^{2} + \mu ||x||_{1} \tag{1}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $\mu > 0$ are given. We denote $f(x) = \frac{1}{2} ||Ax - b||_2^2 + \mu ||x||_1$, $g(x) = \frac{1}{2} ||Ax - b||_2^2$, $h(x) = ||x||_1$.

1 Problem 3(c)

We consider to apply the continuation strategy and Barzila-Borwein step size. We have three parameters α , M_1 , M_2 for continuation. We set $\mu_{max} = \max\{\alpha || A^T b||_{\infty}, \mu\}$. Then, we take $\mu_0 = \mu_{max}$.

We consider h_{λ} , the Huber penalty approximation of h:

$$h_{\lambda}(x) = \sum_{l=1}^{n} h_{\lambda}^{(l)}(x) \tag{2}$$

where

$$h_{\lambda}^{(l)}(x) = \begin{cases} x_l^2/(2\lambda), & |x_l| \le \lambda \\ |x_l| - \lambda/2, & |x_l| > \lambda \end{cases}$$
 (3)

We set $\lambda_0 = 10^{-1}$ and $\lambda = 10^{-6}$. We also have an extra parameter β for the decay of λ_0 . Then, we denote $f_{i,j}(x) = g(x) + \mu_i h_{\lambda_j}(x)$. The gradient of $f_{i,j}(x)$ is

$$\nabla f_{i,j}(x)_l = \begin{cases} (A^T A x - A^T b)_l + \mu_i x_l / (\lambda_j), & |x_l| \le \lambda_j \\ (A^T A x - A^T b)_l + \mu_i \operatorname{sign}(x_l), & |x_l| > \lambda_j \end{cases}$$

In (k + 1)-th iteration, if k = 0, we use the initial step size s. Otherwise, we calculate the BB step size s_k :

$$s_k = \frac{(x_k - x_{k-1})^T (x_k - x_{k-1})}{(x_k - x_{k-1})^T (\nabla f_{i,j}(x_k) - \nabla f_{i,j}(x_{k-1}))}$$

Then, we update x_{k+1} by

$$x_{k+1} = x_k - s_k \nabla f_{i,j}(x_k)$$
 (sgrad-upd)

and set k = k + 1.

In the case that $\mu_i > \mu$ or $\lambda_i > \lambda$, after M_1 iterations, we update both μ_{i+1} and λ_{i+1} by

$$\mu_{i+1} = \max\{\mu, \alpha \min\{\|\nabla g(x_k)\|_{\infty}, \mu_i\}\}$$

$$\tag{4}$$

$$\lambda_{i+1} = \max\{\beta \lambda_i, \lambda\} \tag{5}$$

and set i = i + 1, j = j + 1. Then, we calculate $f_{i,j}(x_k)$ and $\nabla f_{i,j}(x_k)$, reset the step size $s_k = \min\{s, \lambda_j\}$, update x_{k+1} by (sgrad-upd) and set k = k + 1. Because the Huber penalty approximation is λ_j -continuous.

If $\lambda_j = \lambda$, $\mu_i = \mu$, we stop the algorithm after M_2 iterations. The gradient method for smoothed primal problem with continuation strategy is given below:

Algorithm 1 Gradient method for smoothed primal problem with continuation strategy

Input: initial guess x_0 , step size s, continuation parameter α , M_1 , M_2 , lambda decay parameter β .

- 1: Calculate $\mu_{max} = \max\{\alpha || A^T b||_{\infty}, \mu\}$. Let $i = 0, \mu_0 = \mu_{max}, s_0 = s, k = 0$.
- 2: Update x_{k+1} by (sgrad-upd), k = k + 1
- 3: **while** $\lambda_i > \lambda$ or $\mu_i > \mu$ **do**
- 4: **for** $l = 1 : M_1$ **do**
- 5: Calculate BB step size s_k , update x_{k+1} by (sgrad-upd), k = k + 1
- 6: end for
- 7: $\mu_{i+1} = \max\{\mu, \alpha \min\{\|\nabla g(x_k)\|_{\infty}, \mu_i\}\}, \lambda_{j+1} = \max\{\beta \lambda_j, \lambda\}, i = i+1, j = j+1$
- 8: Calculate $f_{i,j}(x_k)$ and $\nabla f_{i,j}(x_k)$
- 9: Reset $s_k = \min\{s, \lambda_i\}$, update x_{k+1} by (sgrad-upd), k = k + 1
- 10: end while
- 11: **for** $l = 1 : M_2$ **do**
- 12: Calculate BB step size s_k , update x_{k+1} by (sgrad-upd), k = k + 1
- **13: end for**

In practice, we take $s = 4 \times 10^{-4}$, $\alpha = 0.1$, $M_1 = 200$, $M_2 = 300$, $\beta = 0.1$.

2 Problem 3(d)

We consider to apply the continuation strategy. Similarly, we have three parameters α , M_1 , M_2 for continuation. We set $\mu_{max} = \max\{\alpha || A^T b||_{\infty}, \mu\}$. Then, we take $\mu_0 = \mu_{max}$.

We set $\lambda_0 = 10^{-3}$ and $\lambda = 10^{-6}$. We also have an extra parameter β for the decay of λ_0 . Then, we denote $f_{i,j}(x) = g(x) + \mu_i h_{\lambda_i}(x)$.

We set $x_{-1} = x_0$. In (k + 1)-th iteration, we update x_{k+1} by

$$\begin{cases} y = x_k + \frac{k-1}{k+2}(x_k - x_{k-1}) \\ x_{k+1} = y - s_k \nabla g(x_k) \end{cases}$$
 (fsgrad-upd)

and set $s_{k+1} = s_k$, k = k + 1. Here we fix the step size.

In the case that $\mu_i > \mu$ or $\lambda_j > \lambda$, after M_1 iterations, we update both μ_{i+1} and λ_{j+1} by

$$\mu_{i+1} = \max\{\mu, \alpha \min\{\|\nabla g(x_k)\|_{\infty}, \mu_i\}\}\$$
 (6)

$$\lambda_{i+1} = \max\{\beta \lambda_i, \lambda\} \tag{7}$$

and set i = i + 1, j = j + 1. Then, we reset $s_k = \min\{s, \lambda_j\}$, $x_{-1} = x_0 := x_k$ and k = 0.

If $\lambda_j = \lambda$, $\mu_i = \mu$, we stop the algorithm after M_2 iterations. The fast gradient method for smoothed primal problem with continuation strategy is given below:

Algorithm 2 Fast gradient method for smoothed primal problem with continuation strategy

Input: initial guess x_0 , step size s, continuation parameter α , M_1 , M_2 , lambda decay parameter β .

- 1: Calculate $\mu_{max} = \max\{\alpha || A^T b||_{\infty}, \mu\}$. Let $i = 0, \mu_0 = \mu_{max}, s_0 = s, k = 0$.
- 2: Update x_{k+1} by (fsgrad-upd), k = k + 1
- 3: **while** $\lambda_i > \lambda$ or $\mu_i > \mu$ **do**
- 4: **for** $l = 1 : M_1$ **do**
- 5: Update x_{k+1} by (fsgrad-upd), $s_{k+1} = s_k$, k = k + 1
- 6: end for
- 7: $\mu_{i+1} = \max\{\mu, \alpha \min\{\|\nabla g(x_k)\|_{\infty}, \mu_i\}\}, \lambda_{j+1} = \max\{\beta \lambda_j, \lambda\}, i = i+1, j = j+1$
- 8: Reset $s_k = \min\{s, \lambda_i\}, x_{-1} = x_0 := x_k \text{ and } k = 0.$
- 9: end while
- 10: **for** $l = 1 : M_2$ **do**
- 11: Update x_{k+1} by (fsgrad-upd), $s_{k+1} = s_k$, k = k + 1
- **12: end for**

In practice, we take $s = 4 \times 10^{-4}$, $\alpha = 0.2$, $M_1 = 200$, $M_2 = 700$, $\beta = 0.5$.

3 Problem 3(e)

Suppose the step size in (k+1)-th iteration is s_k . We denote $\operatorname{prox}_{s_k\mu h}(x) = \arg\min_z \frac{1}{2} ||z-x||_2^2 + sh(z)$ the proximal gradient of f(x) at x. Because $h(x) = ||x||_1$, we have explicit expression for $\operatorname{prox}_{s_k\mu h}(x)$, namely $\operatorname{prox}_{s_k\mu h}(x) = S_{s_k\mu}(x)$, where S_λ is the soft thresholding operator.

We consider to apply the continuation strategy and Barzila-Borwein step size. We have three parameters α , ϵ_1 , ϵ_2 for continuation. We set $\mu_{max} = \max\{\alpha ||A^Tb||_{\infty}, \mu\}$. Then, we take $\mu_0 = \mu_{max}$ and define $f_i = g(x) + \mu_i h(x)$. We set $x_{-1} = x_0$. In (k+1)-th iteration, if k=0, we use the initial step size s. Otherwise, we calculate the BB step size s_k :

$$s_k = \frac{(x_k - x_{k-1})^T (x_k - x_{k-1})}{(x_k - x_{k-1})^T (\nabla g(x_k) - \nabla g(x_{k-1}))}$$

Then, we update x_{k+1} by

$$x_{k+1} = \operatorname{prox}_{s_k \mu_i} (x_k - s_k \nabla g(x_k)) = S_{s_k \mu_i} \left(x_k - s_k A^T (A x_k - b) \right)$$
 (prox-upd)

and set k = k + 1.

If $\mu_i > \mu$ and we find that $|\frac{f_i(x_k) - f_i(x_{k-1})}{f_i(x_{k-1})}| < \epsilon_1$, then we update μ_{i+1} by

$$\mu_{i+1} = \max\{\mu, \alpha \min\{\|\nabla g(x_k)\|_{\infty}, \mu_i\}\}$$
 (mu-upd)

and set i = i + 1. Then, we update x_{k+1} using the initial step size s by (prox-upd) and set k = k + 1.

If $\mu_i = \mu$, we stop the algorithm when we find that $\left| \frac{f_i(x_k) - f_i(x_{k-1})}{f_i(x_{k-1})} \right| < \epsilon_2$. The proximal gradient method with continuation strategy is given below:

In practice, we take $s = 5 \times 10^{-4}$, $\alpha = 0.5$, $\epsilon_1 = 10^{-6}$, $\epsilon_2 = 10^{-8}$.

4 Problem 3(f)

Suppose the step size is fixed to be s. We apply the same continuation strategy. We have three parameters α , ϵ_1 , ϵ_2 for continuation. We set $\mu_{max} = \max\{\alpha || A^T b||_{\infty}, \mu\}$. In (k+1)-th iteration. Then, we update x_{k+1} in the following way:

$$\begin{cases} y = x_k + \frac{k-1}{k+2}(x_k - x_{k-1}) \\ x_{k+1} = \text{prox}_{sh}(y - s_k \nabla g(x_k)) = S_{sh}(y - sA^T(Ax_k - b)) \end{cases}$$
 (FISTA-upd)

Algorithm 3 Proximal gradient method with continuation strategy

```
Input: initial guess x_0, step size s, continuation parameter \alpha, \epsilon_1, \epsilon_2.

1: Calculate \mu_{max} = \max\{\alpha || A^T b||_{\infty}, \mu\}. Let i = 0, \mu_0 = \mu_{max}, s_0 = s, k = 0.

2: Update x_{k+1} by (prox-upd), k = k + 1

3: while \mu_i > \mu do

4: while |\frac{f_i(x_k) - f_i(x_{k-1})}{f_i(x_{k-1})}| \ge \epsilon_1 do

5: Calculate BB step size s_k, update x_{k+1} by (prox-upd), k = k + 1

6: end while

7: \mu_{i+1} = \max\{\mu, \alpha \min\{\|\nabla g(x_k)\|_{\infty}, \mu_i\}\}, i = i + 1

8: Reset s_k = s, update x_{k+1} by (prox-upd), k = k + 1

9: end while

10: while |\frac{f_i(x_k) - f_i(x_{k-1})}{f_i(x_{k-1})}| \ge \epsilon_2 do

11: Calculate BB step size s_k, update x_{k+1} by (prox-upd), k = k + 1

12: end while
```

If $\mu_i > \mu$ and we find that $|\frac{f(x_k) - f(x_{k-1})}{f(x_{k-1})}| < \epsilon_1$, then we update μ_{i+1} by

$$\mu_{i+1} = \max\{\mu, \alpha \min\{\|\nabla g(x_k)\|_{\infty}, \mu_i\}\}$$
 (mu-upd)

and set i = i + 1. Then, we reset our algorithm, starting from x_k . We set $x_{-1} = x_0 := x_k$, k = 0. We update x_{k+1} by (FISTA-upd) and set k = k + 1.

If $\mu_i = \mu$, we stop the algorithm when we find that $\left| \frac{f(x_k) - f(x_{k-1})}{f(x_{k-1})} \right| < \epsilon_2$. The proximal gradient method with continuation strategy is given below:

Algorithm 4 Fast proximal gradient method with continuation strategy

```
Input: initial guess x_0, step size s, continuation parameter \alpha, \epsilon_1, \epsilon_2.
 1: Calculate \mu_{max} = \max\{\alpha || A^T b||_{\infty}, \mu\}. Let i = 0, \mu_0 = \mu_{max}, x_{-1} = x_0, k = 0.
 2: Update x_{k+1} by (FISTA-upd), k = k + 1
 3: while \mu_i > \mu do
         while \left|\frac{f(x_k)-f(x_{k-1})}{f(x_{k-1})}\right| \geq \epsilon_1 \operatorname{do}
 4:
                       f(x_{k-1})
            Update x_{k+1} by (FISTA-upd), k = k + 1
 5:
         end while
 6:
         \mu_{i+1} = \max\{\mu, \alpha \min\{\|\nabla g(x_k)\|_{\infty}, \mu_i\}\}, i = i + 1
 7:
         Reset x_0 = x_{-1} =: x_k, k = 0, update x_{k+1} by (FISTA-upd), k = k + 1
 9: end while
10: while \left| \frac{f(x_k) - f(x_{k-1})}{f(x_{k-1})} \right| \ge \epsilon_2 \, \mathbf{do}
         Update x_{k+1} by (FISTA-upd), k = k + 1
12: end while
```

In practice, we take $s = 5 \times 10^{-4}$, $\alpha = 0.5$, $\epsilon_1 = 10^{-6}$, $\epsilon_2 = 10^{-8}$.

5 Numerical result

The whole test program is named $Test_hw05_02.m$. This time we run all algorithms mentioned before with same A and b. Suppose the value of objective function from cvx mosek is f_c , the value from proposed method is f_p , then the value of objval to cvx mosek is $\frac{f_p-f_c}{f_c}$. The numerical result is given in the following tables:

Table 1 Random seed is 2. The cpu time of cvx mosek is 1.13

Method	cpu time	objval to cvx mosek	error to cvx mosek
grad smoothed	0.81	-6.55×10^{-8}	1.17×10^{-6}
fast grad smoothed	1.37	-5.84×10^{-8}	1.11×10^{-6}
prox grad	0.23	-1.87×10^{-6}	3.27×10^{-6}
fast prox grad	1.00	-1.71×10^{-6}	2.01×10^{-6}

Table 2 Random seed is 7. The cpu time of cvx mosek is 1.15

Method	cpu time	objval to cvx mosek	error to cvx mosek
grad smoothed	0.88	-1.54×10^{-6}	1.63×10^{-6}
fast grad smoothed	1.39	-1.57×10^{-6}	1.74×10^{-6}
prox grad	0.21		3.19×10^{-6}
fast prox grad	0.97	-3.00×10^{-6}	2.53×10^{-6}

Table 3 Random seed is 9. The cpu time of cvx mosek is 1.09

Method	cpu time	objval to cvx mosek	error to cvx mosek
grad smoothed			9.98×10^{-7}
fast grad smoothed	1.48	-3.26×10^{-7}	1.01×10^{-6}
prox grad	0.19	-2.06×10^{-6}	2.65×10^{-6}
fast prox grad	0.70	-1.97×10^{-6}	1.98×10^{-6}