

#### Planar graphs, circle packings, and conformal maps

Brice Loustau (HITS & Heidelberg University)



HITS Lab Meeting 07.09.2020

#### Planar graphs, circle packings, and conformal maps

#### Outline.

- 1. Planar graphs
- 2. Circle packings
- 3. Conformal maps
- 4. Beyond

#### Planar graphs, circle packings, and conformal maps

#### Outline.

- 1. Planar graphs
- 2. Circle packings
- 3. Conformal maps
- 4. Beyond



The software: *Circle Packings* (with B. Beeker) brice.loustau.eu/circlepackings

A  $\boldsymbol{\textit{graph}}$  is a data structure consisting of:

- A set of vertices
- A set of *edges* = relation between vertices

A **graph** is a data structure consisting of:

- A set of vertices
- A set of *edges* = relation between vertices







A **graph** is a data structure consisting of:

- A set of vertices
- A set of *edges* = relation between vertices







**Applications of graph theory:** Computer science (networks), linguistics, physics and chemistry, biology, social sciences, etc.

A graph is called *planar* if it can be drawn on the plane with no edge crossings.

A graph is called  $\emph{planar}$  if it can be drawn on the plane with no edge crossings.



A graph is called  ${\it planar}$  if it can be drawn on the plane with no edge crossings.



A graph is called *planar* if it can be drawn on the plane with no edge crossings.



A graph is called  $\emph{planar}$  if it can be drawn on the plane with no edge crossings.



A  $\it circle\ packing$  is a collection of circles that are either disjoint or tangent.







#### Apollonian gasket:



The curvatures (inverse radii) of four mutually tangent circles satisfy:  $(a + b + c + d)^2 = a^2 + b^2 + c^2 + d^2$ 

**Key observation.** A circle packing determines a graph :

- Vertices = circles
- Edges = tangency

#### **Key observation.** A circle packing determines a graph:

- Vertices = circles
- Edges = tangency



Conversely, can one draw a circle packing realizing any planar graph?

Conversely, can one draw a circle packing realizing any planar graph?

Theorem (Circle packing theorem)

Conversely, can one draw a circle packing realizing any planar graph?

Theorem (Circle packing theorem) *Yes.* 

Conversely, can one draw a circle packing realizing any planar graph?

Theorem (Circle packing theorem)

Yes.

 $(Due\ to\ Koebe.\ Thurston:\ it\ is\ easily\ derived\ from\ Mostow\ rigidity\ for\ hyperbolic\ 3-manifolds.)$ 

Conversely, can one draw a circle packing realizing any planar graph?

#### Theorem (Circle packing theorem)

Yes.

(Due to Koebe. Thurston: it is easily derived from Mostow rigidity for hyperbolic 3-manifolds.)



### 3. Conformal maps

A **conformal map** between two regions of the plane is a transformation that preserves shapes infinitesimally. More precisely: it preserves angles.

#### . Conformal maps

A *conformal map* between two regions of the plane is a transformation that preserves shapes infinitesimally. More precisely: it preserves angles.

