Problem Set 2 - Machine Learning Theories

April 16, 2025

Problem 1

Consider two multi-dimensional random vectors $\mathbf{x} \in \mathbb{R}^M$ and $\mathbf{y} \in \mathbb{R}^D$ following marginal and conditional distributions which are Gaussian:

$$p(\mathbf{x}) = N(\mathbf{x}; \mu, \Sigma)$$
$$p(\mathbf{y}|\mathbf{x}) = N(\mathbf{y}; A\mathbf{x} + \mathbf{b}, S),$$

where $\mu \in \mathbb{R}^M$, $\Sigma \in \mathbb{R}^{M \times M}$, $A \in \mathbb{R}^{D \times M}$, $\mathbf{b} \in \mathbb{R}^D$, and $S \in \mathbb{R}^{D \times D}$.

- (1) Determine the joint distribution $p(\mathbf{x}, \mathbf{y})$.
- (2) Determine the marginal distribution $p(\mathbf{y})$.
- (3) Consider two random vectors $\mathbf{x}, \mathbf{z} \in \mathbb{R}^D$ following Gaussian distributions $p(\mathbf{x}) = N(\mathbf{x}; \mu_x, \Sigma_x)$ and $p(\mathbf{z}) = N(\mathbf{z}; \mu_z, \Sigma_z)$, respectively. Use the above results to find the marginal distribution of $\mathbf{y} = \mathbf{x} + \mathbf{z}$, by considering the marginal distribution $p(\mathbf{x})$ and the conditional distribution $p(\mathbf{y}|\mathbf{x})$.

Use the following equations if necessary:

(a)

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} M & -MBD^{-1} \\ -D^{-1}CM & D^{-1} + D^{-1}CMBD^{-1} \end{pmatrix},$$

where $M = (A - BD^{-1}C)^{-1}$.

(b) When the random vector $\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}$ follows a Gaussian with mean $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ and covariance $\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$,

$$\mathbb{E}[\mathbf{x}_1|\mathbf{x}_2] = \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x}_2 - \mu_2), \quad \text{Cov}[\mathbf{x}_1|\mathbf{x}_2] = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$$
$$\mathbb{E}[\mathbf{x}_1] = \mu_1, \quad \text{Cov}[\mathbf{x}_1] = \Sigma_{11}.$$

(1)

Consider a Gaussian likelihood function for one-dimensional data $X = \{x_i\}_{i=1}^N$, where each $x_i \in \mathbb{R}$, and the parameters are the mean μ and precision τ . The likelihood is given by:

$$p(X|\mu,\tau) = \prod_{i=1}^{N} \left(\frac{\tau}{2\pi}\right)^{1/2} \exp\left(-\frac{\tau}{2}(x_i - \mu)^2\right).$$

(1) When μ is fixed, the conjugate prior for τ is the Gamma distribution, which has the form

$$Gam(\tau|a,b) = \frac{1}{\Gamma(a)}b^a\tau^{a-1}\exp(-b\tau),$$

where $\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx$ is the Gamma function. Using this conjugate prior, derive the posterior distribution

$$p(\tau|X) = Gam(\tau|a_N, b_N),$$

by computing the updated parameters a_N and b_N .

(2) The conjugate prior for joint parameters (μ, τ) is the normal-Gamma distribution, which has the form

$$p(\mu, \tau) = p(\mu|\tau) \cdot p(\tau)$$

$$= N(\mu|\mu_0, (\beta\tau)^{-1}) \cdot Gam(\tau|a, b)$$

$$= \sqrt{\frac{\beta\tau}{2\pi}} \exp\left(-\frac{\beta\tau}{2}(\mu - \mu_0)^2\right) \cdot \frac{1}{\Gamma(a)} b^a \tau^{a-1} \exp(-b\tau).$$

Using this conjugate prior, derive the posterior distribution

$$p(\mu, \tau | X) = N(\mu | \mu_N, (\beta_N \tau)^{-1}) \cdot Gam(\tau | a_N, b_N),$$

by computing the updated parameters μ_N, β_N, a_N, b_N .

(Hint: Begin by writing down the joint posterior up to a normalization constant:

$$p(\mu, \tau | X) \propto p(X | \mu, \tau) p(\mu, \tau).$$

First, make a perfect square form (i.e., complete the square) in μ within the exponential to identify μ_N and β_N . Then, using the remaining terms, extract the exponential and power terms of τ to identify a_N and b_N .)

Consider modeling a sequence of coin flips. Let $\theta \in [0,1]$ be the probability of the coin landing heads. The Bernoulli distribution can serve as the likelihood for a single flip: $p(x|\theta) = \theta^x (1-\theta)^{1-x}$, where x = 1 for heads and x = 0 for tails.

Assume we use a Beta distribution as the prior distribution for θ :

$$p(\theta) = \text{Beta}(\theta | \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

where $\alpha, \beta > 0$ are hyperparameters.

Suppose we observe a dataset $\mathcal{D} = \{x_1, x_2, \dots, x_N\}$ from N independent coin flips, where $m = \sum_{i=1}^{N} x_i$ is the number of heads, and N - m is the number of tails. The likelihood function for the dataset is $p(\mathcal{D}|\theta) = \theta^m (1-\theta)^{N-m}$.

- (1) Using Bayes' theorem, derive the posterior distribution $p(\theta|\mathcal{D})$. Show that the posterior distribution has the same functional form (a Beta distribution) as the prior distribution. Explain why this demonstrates that the Beta distribution is a conjugate prior for the Bernoulli likelihood.
- (2) Express the parameters (the new α' and β') of the derived posterior distribution in terms of the prior parameters (α, β) and the data (N, m).
- (3) If the prior distribution is Beta($\theta|2,2$) and we observe 7 heads in 10 coin flips (N=10, m=7), what is the posterior distribution $p(\theta|\mathcal{D})$?

Consider a Gaussian likelihood $p(\mathbf{x}|\mu) = N(\mathbf{x}; \mu, \Sigma)$ for $\mathbf{x} \in \mathbb{R}^D$, where $\mu \in \mathbb{R}^D$ is the mean parameter and $\Sigma \in \mathbb{R}^{D \times D}$ is a fixed covariance matrix. Assume further that the posterior distribution over the mean parameter μ is Gaussian: $p(\mu|X) = N(\mu; \mu_N, \Sigma_N)$, where $\mu_N \in \mathbb{R}^D$ and $\Sigma_N \in \mathbb{R}^{D \times D}$. Derive the predictive distribution $p(\mathbf{x}|X)$ by marginalizing over μ :

$$p(\mathbf{x}|X) = \int p(\mathbf{x}|\mu)p(\mu|X)d\mu.$$

Use the Woodbury matrix identity if needed:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}.$$

Consider a simple 1D linear regression model $y = wx + \epsilon$, where w is the unknown weight (slope), and ϵ is Gaussian noise with zero mean and known variance σ^2 , i.e., $\epsilon \sim \mathcal{N}(0, \sigma^2)$. The likelihood for a data point (x, y) is therefore:

$$p(y|x, w, \sigma^2) = \mathcal{N}(y|wx, \sigma^2)$$

We place a Gaussian prior distribution on the weight w, with zero mean and variance α^{-1} (where $\alpha > 0$ is the precision):

$$p(w|\alpha) = \mathcal{N}(w|0, \alpha^{-1}).$$

Assume we are given a dataset $\mathcal{D} = \{(\mathbf{x}, \mathbf{y})\} = \{(x_1, y_1), \dots, (x_N, y_N)\}$ consisting of N data points.

- (1) Using Bayes' rule, derive the expression for the log posterior of w, $\log p(w|\mathcal{D}, \sigma^2, \alpha)$, up to an additive constant (i.e., you may ignore terms that do not depend on w).
- (2) By rearranging the terms in the log posterior into a quadratic form in w, show that the posterior distribution $p(w|\mathcal{D}, \sigma^2, \alpha)$ is a Gaussian distribution.
- (3) Identify the mean m_N and precision α_N (or equivalently, the variance $\sigma_N^2 = \alpha_N^{-1}$) of the posterior distribution. Express your result in terms of the data (\mathbf{x}, \mathbf{y}) , the noise variance (σ^2) , and the prior precision (α) . (Hint: Identify the coefficients of the quadratic form in w to identify the posterior parameters.)
- (4) Given the dataset $(\mathbf{x}, \mathbf{y}) = \{(1, 2), (3, 4)\}$, noise variance $\sigma^2 = 1$, and prior precision $\alpha = 1$, calculate the mean m_N of the posterior distribution.

Consider some positive semi-definite kernel functions $k(\mathbf{x}, \mathbf{y})$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^D$, and find the feature mapping $\phi : \mathbb{R}^D \to \mathbb{R}^F$ corresponding to the kernel function that satisfies

$$k(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^{\mathsf{T}} \phi(\mathbf{y}). \tag{1}$$

Represent $\phi(\mathbf{x}) \in \mathbb{R}^F$ in a vector form and find the dimensionality F of the feature space.

(1)
$$k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{\top} \mathbf{y})^3$$
, where $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \mathbb{R}^2$.

- (2) $k(\mathbf{x}, \mathbf{y}) = 1 + \mathbf{x}^{\top} \mathbf{A} \mathbf{y}$, where $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \mathbb{R}^2$, and $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ is a symmetric positive-definite matrix. (Hint: find $\mathbf{L} = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ that satisfies $\mathbf{A} = \mathbf{L} \mathbf{L}^{\top}$.)
- (3) $k(\mathbf{x}, \mathbf{y}) = k_1(\mathbf{x}, \mathbf{y}) + k_2(\mathbf{x}, \mathbf{y})$, where $k_1(\mathbf{x}, \mathbf{y}) = \psi(\mathbf{x})^\top \psi(\mathbf{y})$ with $\psi(\mathbf{x}) = [\psi_1(\mathbf{x}) \dots \psi_{F_1}(\mathbf{x})]^\top \in \mathbb{R}^{F_1}$, and $k_2(\mathbf{x}, \mathbf{y}) = \xi(\mathbf{x})^\top \xi(\mathbf{y})$ with $\xi(\mathbf{x}) = [\xi_1(\mathbf{x}) \dots \xi_{F_2}(\mathbf{x})]^\top \in \mathbb{R}^{F_2}$.

Consider the following linear dynamical system with Gaussian noise:

$$x_{t+1} = ax_t + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma^2), \quad t = 0, 1, 2, 3, \dots$$

where 0 < a < 1, the initial state is distributed as $x_0 \sim N(1, \sigma_0^2)$, and the noise terms ϵ_t and $\epsilon_{t'}$ are independent for all $t \neq t'$. The collection of $(x_{t_1}, x_{t_2}, \dots, x_{t_N})$ for distinct time indices $t_1, \dots, t_N \in \mathbb{N} \cup \{0\}$ is jointly Gaussian hence this system defines a Gaussian process.

Find the mean function $m(t) = \mathbb{E}[x_t]$ and the covariance function $k(t_1, t_2) = \text{Cov}(x_{t_1}, x_{t_2})$ of the Gaussian process $\{x_t\}_{t\geq 0}$.