Intensive 16-week program curriculum

Week 01 - Introduction

- → Overview of the curriculum
- → Important roles to pursue in the future
 - ◆ Conventional Routes
 - Data Engineer
 - Machine Learning (ML) Engineer
 - Data Analyst
 - Data Scientist
 - Research Engineer
 - Research Scientist
 - Academic Researcher
 - ◆ Unconventional Routes
 - Freelance Data Science Engineer
 - Data Science Trainer or Mentor
 - Entrepreneur
- → A day in the life (From Experience)
 - ◆ ML Engineer
 - ◆ Data Scientist
- → Guide to Discipline (From Experience)
 - ◆ Limiting beliefs and how to fix them
 - ◆ Common reasons for failure
 - ♦ From Motivation to Discipline

Week 02 - Python Specialization

- → Reviewing Basic Programming Concepts
 - **♦** Time Complexity
 - **♦** Sorting
 - ◆ Greedy Algorithms
 - ◆ Dynamic Programming
- → Set Up Tools and Environments for Data Science
 - ◆ Virtual environments and why we need them
 - ◆ VS Code
 - ♦ Jupyter Notebook
 - ◆ Google Colaboratory
 - ◆ Kaggle
- → How to Python
 - **♦** Script Structures
 - ◆ Conditionals and Loopings
 - **♦** Functions
 - ◆ Objects and Classes
 - ◆ Data Structures
 - **♦** Comprehensions
 - ◆ Debugging and Error Handling
- → How to NumPy
 - ♦ Why use NumPy?
 - ♦ NumPy Basics
 - ♦ Array Manipulation

Week 03 - Data ETL (Extract, Transform, Load)

- → Understanding End-to-end Data Science Pipeline
 - ◆ Data ETL
 - ◆ Data Analytics and Visualization
 - ◆ ML Modeling
 - ◆ Deployment and Performance Tracking
- → Crawl a website
 - ♦ Why?
 - ♦ How? Full Demonstration
- → Using Pandas for ETL
 - ♦ Pandas Demo
 - Basics
 - Advanced Pandas Tricks
 - ◆ Data Manipulation
 - ♦ Quantitative Data Analysis

Week 04 - Data Visualization

- → Visualization with Python
 - ◆ Matplotlib
 - ◆ Seaborn
 - ◆ Plotly
- → Intro to Emerging Tools
 - ◆ Tableau
 - ◆ StreamLit

Week 05 - Data Analytics with Tableau

- → Tableau Competitors
 - ◆ Microsoft Excel
 - **♦** KNIME
 - ◆ Power BI
- → Why Tableau?
- → Tableau Setup and ETL
- → Filters
- → Charts and Graphs
- → Dashboards
- → Parameters, Functions
- → Blending, Joining

Week 06 - Data Analytics Capstone Project

A project with a particular problem statement will be assigned to judge the following skills

- → Basic Web Scraping
- → Data Manipulation
- → Data Analysis
- → Data Visualization
- → Ability to use Tableau and StreamLit

Week 07 - Introduction to Deep Learning

- → Origins to SOTA (State of the Art)
- → Introducing necessary software
 - ◆ PyTorch
 - ◆ fastai
 - ◆ HuggingFace
 - **♦** Gradio
 - ♦ Weights and Biases
- → Transfer Learning and Finetuning
- → Train our first Computer Vision (CV) model
- → Machine Learning (ML) and its types
- → When to use ML
- → How our CV model works
- → What our CV model learns
- → Train our first Segmentation, Tabular, and Recsys model
- → Importance of Validation and Test Sets

Week 08 - End-to-end Data Science Pipeline in Practice

- → Data Collection
- → Data to DataLoaders
- → Data Augmentation
- → Training a model and Cleaning Data
- → Deploy our first model
- → Performance Monitoring
- → Multi-label classification
- → Regression

Week 09 - Image Recognizer Project and Data Ethics

- → Individual Project: Build your own image recognizer with fastai from data gathering to model deployment
- → Convolutional Neural Networks
- → Residual Neural Networks
- → Data Ethics
 - ◆ Examples of ethical disasters
 - ♦ The necessity of Data Ethics
 - ◆ Recourse and Accountability
 - ◆ Feedback Loops
 - ◆ Bias
 - **♦** Disinformation

Week 10 - Deep Dive into Deep Learning Foundations

- → Building a baseline
- → Gradient Descent
- → Loss Functions
- → Optimizer, Momentum, RMSProp, Adam
- → Nonlinearities
- → Building a PyTorch model from scratch
- → Learning Rate Finder
- → Discriminative Learning Rates
- → Overfitting, extrapolation problems
- → Exploding and vanishing gradient problems
- → Propose team and project ideas for the final capstone project

Week 11 - Advanced Deep Learning Tricks

- → Normalization
 - ◆ Batch Normalization
 - ◆ Layer Normalization
- → Progressive Resizing
- → Test Time Augmentation
- → Mixup
- → Label Smoothing
- → Weight Decay
- → Final capstone project discussion

Week 12 - Collaborative Filtering and Tabular Modeling

- → Collaborative Filtering (Collab)
 - ◆ Where we need this
 - ◆ Processing the data
 - ◆ Collab model with PyTorch
 - ◆ Collab model with fastai
 - ◆ Interpreting the results
 - ◆ Custom Collab DL model
- → Tabular Modeling
 - ♦ Processing the data
 - ◆ Decision Trees
 - **♦** Random Forests
 - ◆ Feature Importance
 - ◆ Data Leakage
- → Final capstone project discussion

Week 13 - Natural Language Processing (NLP)

- → Preprocessing Text
- → Self-supervised learning
- → RNN, LSTM
- → Language Models with PyTorch and fastai
- → Text Classifier with PyTorch and fastai
- → Text Generation
- → Risks of Language Models
- → Transformers
- → HuggingFace
- → Final capstone project discussion

Week 14 - Experiment Management, Model Deployment, and Monitoring

- → Experiment Management
 - ◆ Why do we need it?
 - ◆ EDA with Weights and Biases (W&B)
 - ◆ Project Management, Artifact Versioning
 - ◆ Collaboration tools
 - ◆ Hyperparameter sweeps
- → Model Deployment
 - ◆ Batch Prediction
 - ◆ Rest APIs
 - ◆ Performance Optimization
 - ◆ Horizontal Scaling
 - ◆ Edge Prediction
- → Model Monitoring
 - ♦ Why do we need it?
 - ♦ Domain Shift and Data Drift
 - ♦ What and How to Monitor
 - ◆ Tools for monitoring
- → Final capstone project discussion

Week 15 and 16 - Deep Learning Capstone Project

A project of medium difficulty upon discussion with the course instructor. The project should include the following:

- → Data Gathering, Processing, Cleaning
- → Maintain the Data Ethics
- → Building Models with PyTorch and/or fastai
- → Utilizing some advanced deep learning tricks
- → Experiment management with Weights and Biases
- → Model deployment and monitoring