

8. ábra. Aszimptotikusan pozitív (AP) függvény

8. Függvények aszimptotikus viselkedése

(a $\Theta, O, \Omega, \prec, \succ, o, \omega$ matematikája)

E fejezet célja, hogy tisztázza a programok hatékonyságának nagyságrendjeivel kapcsolatos alapvető fogalmakat, és az ezekhez kapcsolódó függvényosztályok legfontosabb tulajdonságait.

- **8.1. Definíció.** Valamely P(n) tulajdonság elég nagy n -ekre pontosan akkor teljesül, ha $\exists N \in \mathbb{N}$, hogy $\forall n \in \mathbb{N}$ -re $n \geq N$ esetén igaz P(n).
- **8.2. Definíció.** Az f AP (aszimptotikusan pozitív) függvény, ha elég nagy n-ekre f(n) > 0. (8. ábra)

Egy tetszőleges helyes program futási ideje és tárigénye is nyilvánvalóan, tetszőleges megfelelő mértékegységben (másodperc, perc, Mbyte stb.) mérve pozitív számérték. Amikor (alsó és/vagy felső) becsléseket végzünk a futási időre vagy a tárigényre, legtöbbször az input adatszerkezetek méretének függvényében végezzük a becsléseket. Így a becsléseket leíró függvények természetesen $\mathbb{N} \to \mathbb{R}$ típusúak. Megkövetelhetnénk, hogy $\mathbb{N} \to \mathbb{P}$ típusúak legyenek, de annak érdekében, hogy képleteink minél egyszerűbbek legyenek, általában megelégszünk azzal, hogy a becsléseket leíró függvények aszimptotikusan pozitívak (AP) legyenek.

8.3. Jelölések. Az f, g, h (esetleg indexelt) latin betűkről ebben a fejezetben feltesszük, hogy $\mathbb{N} \to \mathbb{R}$ típusú, aszimptotikusan pozitív függvényeket jelölnek,

¹⁶tömb mérete, láncolt lista hossza, fa csúcsainak száma stb.

9. ábra. f a nagy Ordó(g) függvényosztályhoz tartozik $(f \in O(g))$

míg a φ, ψ görög betűkről csak azt tesszük fel, hogy $\mathbb{N} \to \mathbb{R}$ típusú függvényeket jelölnek.

8.4. Definíció. Az O(g) függvényhalmaz olyan f függvényekből áll, amiket elég nagy n helyettesítési értékekre, megfelelelő pozitív konstans szorzóval felülről becsül a g függvény:

 $O(g) = \{f : \exists d \in \mathbb{P}, hogy \ elég \ nagy \ n \ -ekre \ d * g(n) \ge f(n).\}$ $f \in O(g) \ esetén \ azt \ mondjuk, hogy \ g \ aszimptotikus felső korlátja \ f-nek \ (9. \ ábra); szemléletesen: f legfeljebb q-vel arányos.$

8.5. Definíció. $Az \Omega(g)$ függvényhalmaz olyan f függvényekből áll, amiket elég nagy n helyettesítési értékekre, megfelelelő pozitív konstans szorzóval alulról becsül a g függvény:

 $\Omega(g) = \{ f : \exists c \in \mathbb{P}, \ hogy \ el\'eg \ nagy \ n \ \text{-ekre} \ c * g(n) \leq f(n). \}$

 $f \in \Omega(g)$ esetén azt mondjuk, hogy g aszimptotikus alsó korlátja f-nek (10. ábra); szemléletesen: f legalább g-vel arányos.

- 8.6. Definíció. $\Theta(g) = O(g) \cap \Omega(g)$
- **8.7.** Következmény. $A \Theta(g)$ függvényhalmaz olyan f függvényekből áll, amiket elég nagy n helyettesítési értékekre, megfelelelő pozitív konstans szorzókkal alulról és felülről is becsül a g függvény (11. ábra):

$$\Theta(g) = \{ f : \exists c, d \in \mathbb{P}, \ hogy \ el\'eg \ nagy \ n \ \text{-ekre} \\ c * g(n) \le f(n) \le d * g(n). \}$$

10. ábra. fa nagy Omega(g) függvényosztályhoz tartozik $(f\in\Omega(g))$

11. ábra. fa Theta(g) függvényosztályhoz tartozik $(f\in\Theta(g))$

 $f \in \Theta(g)$ esetén tehát azt mondhatjuk, hogy g aszimptotikus alsó és felső korlátja f-nek (11. ábra); szemléletesen: f durván g-vel arányos.

Arra, hogy egy függvény egy másikhoz képest nagy n értékekre elhanyagolható, bevezetjük az $aszimptotikusan\ kisebb$ fogalmát.

8.8. Definíció.

$$\varphi \prec g \iff \lim_{n \to \infty} \frac{\varphi(n)}{g(n)} = 0$$

Ilyenkor azt mondjuk, hogy φ aszimptotikusan kisebb, mint g. (Vegyük észre, hogy φ nem okvetlenül AP!) AP függvényekre $f \prec g \iff f \in o(g)$, azaz definíció szerint:

$$o(g) = \{f : f \prec g\}$$

8.9. Definíció.

$$f \succ \psi \iff \psi \prec f$$

Ilyenkor azt mondjuk, hogy f aszimptotikusan nagyobb, mint ψ . (Vegyük észre, hogy ψ nem okvetlenül AP!) AP függvényekre $f \succ g \iff f \in \omega(g)$, azaz definíció szerint:

$$\omega(q) = \{ f : f \succ q \}$$

8.10. Tulajdonság. (A függvényosztályok kapcsolata)

$$\Theta(g) = O(g) \cap \Omega(g)$$

$$o(g) \subsetneq O(g) \setminus \Omega(g)$$

$$\omega(g) \subsetneqq \Omega(g) \setminus O(g)$$

Példa nevezetes AP függvények nagyságrendjére:

$$1 \prec \log n \prec \sqrt{n} \prec n \prec n \log n \prec n^2 \prec 2^n \prec n! \quad (12. \text{ ábra})$$

8.11. Tulajdonság. (Tranzitivitás)

$$f \in O(g) \land g \in O(h) \Longrightarrow f \in O(h)$$

$$f \in \Omega(g) \land g \in \Omega(h) \Longrightarrow f \in \Omega(h)$$

$$f \in \Theta(g) \land g \in \Theta(h) \Longrightarrow f \in \Theta(h)$$

$$\varphi \prec g \land g \prec h \Longrightarrow \varphi \prec h$$

$$f \succ g \land g \succ \psi \Longrightarrow f \succ \psi$$

12. ábra. Nevezetes függvények növekedése

8.12. Tulajdonság. (Szimmetria)

$$f \in \Theta(q) \iff q \in \Theta(f)$$

8.13. Tulajdonság. (Felcserélt szimmetria)

$$f \in O(g) \iff g \in \Omega(f)$$

$$f \prec g \iff g \succ f$$

8.14. Tulajdonság. (Aszimmetria)

$$f \prec g \Longrightarrow \neg (g \prec f)$$

$$f \succ g \Longrightarrow \neg (g \succ f)$$

8.15. Tulajdonság. (Reflexivitás)

$$f \in O(f) \land f \in \Omega(f) \land f \in \Theta(f)$$

8.16. Következmény. (=>: 8.12, 8.11.3; <=: 8.15.3 alapján.)

$$f \in \Theta(q) \iff \Theta(f) = \Theta(q)$$

8.17. Tulajdonság. ($A \prec \textit{\'es a} \succ \textit{rel\'aci\'ok irreflex\'ivek.}$)

$$\neg (f \prec f)$$

$$\neg (f \succ f)$$

8.18. Következmény. Mivel $az \cdot \in \Theta(\cdot)$ bináris reláció reflexív, szimmetrikus és tranzitív, azért az aszimptotikusan pozitív függvények halmazának egy osztályozását adja, ahol f és g akkor és csak akkor tartozik egy ekvivalenciaosztályba, ha $f \in \Theta(g)$. Ilyenkor azt mondhatjuk, hogy az f függvény aszimptotikusan ekvivalens a g függvénnyel.

Mint a továbbiakban látni fogjuk, megállapíthatók ilyen ekvivalenciaosztályok, és ezek a programok hatékonyságának mérése szempontjából alapvetőek lesznek. Belátható például, hogy tetszőleges k-adfokú, pozitív főegyütthatós polinom aszimptotikusan ekvivalens az n^k függvénnyel. Ilyen ekvivalenciaosztályok sorba is állíthatók az alábbi tulajdonság alapján.

8.19. Tulajdonság.

$$f_1, g_1 \in \Theta(h_1) \land f_2, g_2 \in \Theta(h_2), \land f_1 \prec f_2 \Longrightarrow g_1 \prec g_2$$

A most következő definíció tehát értelmes az előbbi tulajdonság miatt.

8.20. Definíció.

$$\Theta(f) \prec \Theta(g) \iff f \prec g$$

A függvények aszimptotikus viszonyának megállapításához hasznos az alábbi tétel.

8.21. Tétel.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \Longrightarrow f \prec g$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \in \mathbb{P} \Longrightarrow f \in \Theta(g)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \Longrightarrow f \succ g$$

Bizonyítás. Az első és az utolsó állítás a \prec és a \succ relációk definíciójából közvetlenül adódik. A középsőhöz vegyük figyelembe, hogy $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$, így elég nagy n értékekre $\left|\frac{f(n)}{g(n)}-c\right|<\frac{c}{2}$, azaz

$$\frac{c}{2} < \frac{f(n)}{g(n)} < \frac{3c}{2}$$

Mivel g AP, elég nagy n-ekre g(n) > 0, ezért átszorozhatunk vele. Innét

$$\frac{c}{2} * g(n) < f(n) < \frac{3c}{2} * g(n)$$

és végül $f \in \Theta(g)$ adódik. \square

8.22. Következmény.

$$k \in \mathbb{N} \land a_0, a_1, \dots, a_k \in \mathbb{R} \land a_k > 0 \Longrightarrow a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 \in \Theta(n^k)$$

Bizonyítás.

$$\lim_{n \to \infty} \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0}{n^k} =$$

$$\lim_{n \to \infty} \left(\frac{a_k n^k}{n^k} + \frac{a_{k-1} n^{k-1}}{n^k} + \dots + \frac{a_1 n}{n^k} + \frac{a_0}{n^k} \right) =$$

$$\lim_{n \to \infty} \left(a_k + \frac{a_{k-1}}{n} + \dots + \frac{a_1}{n^{k-1}} + \frac{a_0}{n^k} \right) =$$

$$\lim_{n \to \infty} a_k + \lim_{n \to \infty} \frac{a_{k-1}}{n} + \dots + \lim_{n \to \infty} \frac{a_1}{n^{k-1}} + \lim_{n \to \infty} \frac{a_0}{n^k} =$$

$$a_k + 0 + \dots + 0 + 0 = a_k \in \mathbb{P} \Longrightarrow$$

$$a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 \in \Theta(n^k)$$

8.23. Lemma. Az alábbi, ún. **L'Hospital szabály**t gyakran alkalmazhatjuk, amikor a 8.21. tétel szerinti $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ határértéket szeretnénk kiszámítani.

Ha elég nagy helyettesítési értékekre az f és g függvények valós kiterjesztése differenciálható, valamint

$$\lim_{n \to \infty} f(n) = \infty \land \lim_{n \to \infty} g(n) = \infty \land \exists \lim_{n \to \infty} \frac{f'(n)}{g'(n)} \Longrightarrow$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

8.24. Következmény. (8.21. és 8.23. alapján)

$$c, d \in \mathbb{R} \land c < d \Longrightarrow n^c \prec n^d$$

$$c, d \in \mathbb{P}_0 \land c < d \Longrightarrow c^n \prec d^n$$

$$c, d \in \mathbb{R} \land d > 1 \Longrightarrow n^c \prec d^n$$

$$d \in \mathbb{P}_0 \Longrightarrow d^n \prec n! \prec n^n$$

$$c, d \in \mathbb{P} \land c, d > 1 \Longrightarrow \log_c n \in \Theta(\log_d n)$$

$$\varepsilon \in \mathbb{P} \Longrightarrow \log n \prec n^\varepsilon$$

$$c \in \mathbb{R} \land \varepsilon \in \mathbb{P} \Longrightarrow n^c \log n \prec n^{c+\varepsilon}$$

Bizonyítás. Az $\varepsilon \in \mathbb{P} \Longrightarrow \log n \prec n^{\varepsilon}$ állítás bizonyításához szükségünk lesz a L'Hospital szabályra (8.23. Lemma).

$$\lim_{n \to \infty} \frac{\log n}{n^{\varepsilon}} = \log e \lim_{n \to \infty} \frac{\ln n}{n^{\varepsilon}} = \log e \lim_{n \to \infty} \frac{\ln' n}{(n^{\varepsilon})'} = \frac{\log e}{\varepsilon} \lim_{n \to \infty} \frac{\frac{1}{n}}{n^{\varepsilon - 1}} = \frac{\log e}{\varepsilon} \lim_{n \to \infty} \frac{1}{n^{\varepsilon}} = \frac{\log e}{\varepsilon} = 0$$

8.25. Következmény. (Nevezetes műveletigény nagyságrendek viszonya)

$$\Theta(1) \prec \Theta(\log n) \prec \Theta(\sqrt{n}) \prec \Theta(n) \prec \Theta(n * \log n) \prec \Theta(n^2) \prec \Theta(2^n) \prec \Theta(n!)$$

8.26. Tulajdonságok.

 $(A\ O(\cdot),\Omega(\cdot),\Theta(\cdot),o(\cdot),\omega(\cdot)\ f\ddot{u}ggv\acute{e}nyosztályok\ zártsági\ tulajdonságai)$

$$f \in O(g) \land c \in \mathbb{P} \Longrightarrow c * f \in O(g)$$

$$f \in O(h_1) \land g \in O(h_2) \Longrightarrow f + g \in O(h_1 + h_2)$$

$$f \in O(h_1) \land g \in O(h_2) \Longrightarrow f * g \in O(h_1 * h_2)$$

$$f \in O(g) \land \varphi \prec f \Longrightarrow f + \varphi \in O(g)$$

(Hasonlóan az $\Omega(\cdot), \Theta(\cdot), o(\cdot), \omega(\cdot)$ függvényosztályokra.)

Most arra térünk ki, hogy az $O(g), \Omega(g), \Theta(g)$ függvényosztályok definíciója hogyan viszonyul a $\Theta(g)$ függvényosztályról a korábbi fejezetekben kialakított képhez. Kiderül, hogy a korábbi jellemzés pontosan megfelel a fenti definícióknak.

8.27. Tétel.
$$f \in O(g) \iff \exists d \in \mathbb{P} \text{ \'es } \exists \psi \prec g, \text{ hogy el\'eg nagy } n\text{-ekre}$$

$$d * g(n) + \psi(n) > f(n)$$

8.28. Tétel.
$$f \in \Omega(g) \iff \exists c \in \mathbb{P} \text{ \'es } \exists \varphi \prec g, \text{ hogy el\'eg nagy } n\text{-ekre}$$

$$c*g(n)+\varphi(n) \leq f(n)$$

8.29. Tétel.
$$f \in \Theta(g) \iff \exists c, d \in \mathbb{P} \text{ \'es } \exists \varphi, \psi \prec g, \text{ hogy el\'eg nagy } n\text{-ekre}$$

$$c * g(n) + \varphi(n) \leq f(n) \leq d * g(n) + \psi(n)$$

Ld. még ezzel kapcsolatban az alábbi címen az 1.3. alfejezetet! [2] http://people.inf.elte.hu/fekete/algoritmusok_jegyzet. /01_fejezet_Muveletigeny.pdf>

8.1. $\mathbb{N} \times \mathbb{N}$ értelmezési tartományú függvények

Vegyük észre, hogy a fenti függvényosztályokat eddig csak olyan függvényekre értelmeztük, amelyek értelmezési tartománya a természetes számok halmaza. Ha értelmezési tartománynak az $\mathbb{N} \times \mathbb{N}$ -et tekintjük, az alapvető fogalmak a következők.

- **8.30. Definíció.** $g: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ függvény AP, ha elég nagy n és elég nagy m értékekre g(n,m) > 0.
- **8.31.** Megjegyzés. Az alfejezet hátralevő részében az egyszerűség kedvéért feltesszük, hogy $f, g, h : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ AP függvényeket jelölnek.
- **8.32. Definíció.** $O(g) = \{f \mid \exists d \in \mathbb{P}, hogy f(n, m) \leq d * g(n, m), tetszőleges elég nagy n és elég nagy m értékekre<math>\}.$
- **8.33. Definíció.** $\Omega(g) = \{f \mid \exists c \in \mathbb{P}, hogy \ f(n,m) \geq c * g(n,m), tetszőleges elég nagy n és elég nagy m értékekre<math>\}.$
- **8.34.** Definíció. $\Theta(g) = \{f \mid \exists c, d \in \mathbb{P}, hogy \ c * g(n, m) \leq f(n, m) \leq d * g(n, m), tetszőleges elég nagy n és elég nagy m értékekre<math>\}$.
- **8.35.** Megjegyzés. A korábban a természetes számokon értelmezett függvényekre vonatkozó tételek az itt tárgyaltakra természetes módon általánosíthatók.