Esercizi Corso Geometria

Foglio 6

Problemi

PROMEMORIA FORMULE (saranno riportate anche nel testo delle prove di esame):

$$b(t) = \frac{\sigma' \times \sigma''}{\|\sigma' \times \sigma''\|} \qquad \qquad \kappa(t) = \frac{\|\sigma'(t) \times \sigma''(t)\|}{\|\sigma'(t)\|^3} \qquad \qquad \tau(t) = \frac{\langle \sigma'(t) \times \sigma''(t), \sigma'''(t) \rangle}{\|\sigma'(t) \times \sigma''(t)\|^2}$$

Esercizio 1.

Sia $\sigma: \mathbb{R} \to \mathbb{R}^3$ con $\sigma(t) = (e^t, e^{2t}, e^{3t})$. Determinare i valori di t per cui il vettore tangente è ortogonale al vettore (1, 2, 3).

Esercizio 2.

Calcolare la lunghezza della curva $\sigma:[0,1]\to\mathbb{R}^2$ con $\sigma(t)=(t^2,\frac{t^3}{3}-t)$.

Esercizio 3. Cicloide

Sia $\sigma:[0,2\pi]\to\mathbb{R}^2$ con $\sigma(t)=(t-\sin(t),1-\cos(t))$. Determina la lunghezza di σ .

Esercizio 4. Cubica gobba

Sia $\sigma: \mathbb{R} \to \mathbb{R}^3$ con $\sigma(t) = (t, t^2, t^3)$. Determinare curvatura, torsione e riferimento di Frenet.

Esercizio 5.

Data la curva $\sigma: [-5,5] \to \mathbb{R}^3$ con $\sigma(t) = (\cos(t), \sin(t), \cos(at))$, stabilire per quali valore del parametro reale a si ha che la curva è piana.

Esercizio 6.

Sia $\sigma: \mathbb{R} \to \mathbb{R}^3$ con $\sigma(t) = (1 + \cos(t), 1 - \sin(t), \cos(2t))$. Dimostrare che σ è una curva regolare e calcolarne curvatura e torsione.

Esercizio 7.

Sia $\sigma: \mathbb{R} \to \mathbb{R}^3$ con $\sigma(t) = (\frac{4}{5}\cos(t), 1 - \sin(t), -\frac{3}{5}\cos t)$. Determinare il riferimento di Frenet di σ .

Esercizio 8.

Determinare il piano osculatore di $\sigma: \mathbb{R} \to \mathbb{R}^3$ con $\sigma(t) = (t, t^2, \sin t)$.

Esercizio 9.

Sia $\sigma: \mathbb{R} \to \mathbb{R}^3$ con $\sigma(t) = (e^t \cos(t), e^t \sin(t), 3e^t)$. Determinare le equazioni della retta tangente e della retta binormale nel punto P = (1, 0, 3).

Esercizio 10. Trattrice

Sia
$$\sigma: (0,\pi) \to \mathbb{R}^2$$
 con $\sigma(t) = (\sin(t), \cos(t) + \log(\tan(\frac{t}{2})))$.

- 1. Determinare i punti regolari di σ .
- 2. Verificare che la lunghezza del segmento sulla retta tangente alla trattrice compreso tra il punto di tangenza e l'asse y è sempre pari ad 1.

- 3. Trovare la parametrizzazione rispetto alla lunghezza d'arco con punto iniziale $t_0=\frac{\pi}{2}.$
- 4. Calcolare la curvatura di σ (dove è definita).

Esercizio 11.

Dimostrare che la curva $\sigma:(0,+\infty)\to\mathbb{R}^3$ con $\sigma(t)=(t,\frac{1+t}{t},\frac{1-t^2}{t})$ è contenuta in un piano.

Esercizio 12.

Sia $\sigma:[0,1]\to\mathbb{R}^2$ con

$$\sigma(t) = \begin{cases} (-1 + \cos(4\pi t), \sin(4\pi t) & t \in [0, \frac{1}{2}] \\ (1 + \cos(-4\pi t - \pi), \sin(-4\pi t - \pi)) & t \in [\frac{1}{2}, 1] \end{cases}$$

Dimostrare che σ è una parametrizzazione C^1 ma non $C^2.$