Automi e Linguaggi Formali Seconda prova intermedia

1. Una macchina di Turing con reset a sinistra è una variante delle comuni macchine di Turing, dove la funzione di transizione ha la forma:

$$\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{R, RESET\}.$$

Se $\delta(q,a)=(r,b,RESET)$, quando la macchina si trova nello stato q e legge a, la testina scrive b sul nastro, salta all'estremità sinistra del nastro ed entra nello stato r. Per sapere su quale cella saltare la macchina usa il simbolo speciale \triangleright per identificare l'estremità di sinistra del nastro. Questo simbolo si può trovare solo in una cella del nastro, e non può essere sovrascritto o cancellato. La computazione di una macchina di Turing con reset a sinistra sulla parola w inizia con $\triangleright w$ sul nastro. Si noti che queste macchine non hanno la solità capacità di muovere la testina di una cella a sinistra.

Mostrare che le macchine di Turing con reset a sinistra riconoscono la classe dei linguaggi Turing-riconoscibili.

- **2.** (a) Mostrare che A è Turing-riconoscibile se e solo se $A \leq_m A_{TM}$.
 - (b) Mostrare che A è decidibile se e solo se $A \leq_m 0^*1^*$.
- **3.** Sia G un grafo non orientato, e si consideri il seguente problema¹:

$$\label{eq:LPATH} LPATH = \{ \langle G, s, t, k \rangle \mid G \text{ contiene un cammino semplice di } \\ \text{lunghezza almeno } k \text{ da } s \text{ a } t \}$$

Un cammino semplice è un cammino nel grafo senza ripetizioni di vertici, con la possibile eccezione dei vertici iniziale e finale che possono coincidere. La sua lunghezza è data dal numero di archi che lo compongono.

Mostrare che LPATH è NP-completo, usando il problema del circuito Hamiltoniano come problema NP-hard di riferimento.

 $^{^1}LPATH$ è la versione decisionale del problema del cammino massimo tra i nodi s e t, in cui la lunghezza del cammino k diventa uno degli input del problema. In questo modo si trasforma un problema di ottimizzazione dove l'output è la lunghezza del cammino in un problema di decisione con risposta binaria vero/falso.