Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen

Bayesian Learning

Tobias Scheffer, Niels Landwehr

Remember: Normal Distribution

- Distribution over $x \in \mathbb{R}$.
- Density function with parameters $\mu \in \mathbb{R}$ (mean) and $\sigma^2 \in \mathbb{R}$ (variance).

Remember: Multivariate Normal Distribution

- Distribution over vectors $\mathbf{x} \in \mathbb{R}^D$.
- Density function with parameters $\mu \in \mathbb{R}^D$, $\Sigma \in \mathbb{R}^{D \times D}$.

Example D=2: density, sample from distribution

Overview

- Basic concepts of Bayesian learning
- Linear regression:
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Posterior distribution over models,
 - Bayesian prediction, predictive distribution,
- Linear classification: logistic regression.
 - Predictive distribution,
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Bayesian Prediction.
- Naive Bayesian classifier.
- Nonlinear models: Gaussian processes.

Statistics & Machine Learning

- Machine learning: tightly related to inductive statistics.
- Two areas in Statistics:
 - Descriptive Statistics: description and examination of the properties of data.

Variances Difference between Mean values Populations

Inductive Statistics: What conclusions can be drawn from data about the underlying reality?

Model building

Explanations for observations

Relationships and patterns in the data

Frequentist vs. Bayesian Probabilities

- Frequentist probabilities
 - Describe the possibility of an occurrence of an intrinsically stochastic event (e.g., a coin toss).
 - Defined as limits of relative frequencies of possible outcomes in a repeatable experiment

"If one throws a fair coin 1000 times, it will land on heads about 500 times"

"In 1 gram of Potassium-40, around 260,000 nuclei decay per second"

Frequentist vs. Bayesian Probabilities

- Bayesian "subjective" probabilities
 - Here, the reason for uncertainty is attributed to a lack of information.
 - How likely is it that suspect X killed the victim?
 - New Information (e.g., finger prints) can change these subjective probabilities.
- Bayesian view is more important in machine learning
- Frequentist and Bayesian perspectives are mathematically equivalent; in Bayesian statistics, probabilities are just used to model different things (lack of information).

Bayesian Statistics

- 1702-1761
- "An essay towards solving a problem in the doctrine of chances", published in 1764.
- The work of Bayes laid the foundations for inductive Statistics.

 "Bayesian Probabilities" offer an important perspective on uncertainty and probability.

Bayesian Probability in Machine Learning

- Model building: find an explanation for observations.
- What is the "most likely" model? Trade-off between
 - Prior knowledge (a priori distribution over models),
 - Evidence (data, observations).
- Bayesian Perspective:
 - Evidence (data) changes the "subjective" probability for models (explanation),
 - A posteriori model probability, MAP hypothesis.

- "Nature" conducts random experiment, determines θ^* .
- System with parameter θ^* generates observations $\mathbf{y} = f_{\theta^*}(\mathbf{X})$.
- Bayesian inference inverts this process:
 - ullet Given these assumptions about how ${f y}$ is generated,
 - Given the observed values of y for input matrix X,
 - What is the most likely true value of θ ?
 - What is the most likely value y* for a new input x*?

Nature randomly determines θ^* according to $P(\theta)$

Observations y for input X

Likelihood of observing y|X when model parameter is θ .

A priori ("prior") probability of nature choosing θ

Bayes' equation:

$$P(\theta|\mathbf{X},\mathbf{y}) = \frac{P(\mathbf{y}|\mathbf{X},\theta)P(\theta)}{P(\mathbf{y}|\mathbf{X})}$$

Probability of observing y|X; independent of θ .

A posteriori ("posterior") probability that θ is the correct parameter given observations y|X.

- Maximum-likelihood (ML) model:
 - $\bullet \ \theta_{ML} = \arg \max_{\theta} P(\mathbf{y}|\mathbf{X}, \theta).$

Likelihood

Maximum-a-positeriori (MAP) model:

 $\bullet \ \theta_{MAP} = \arg \max_{\theta} P(\theta | \mathbf{y}, \mathbf{X})$

A posteriori ("posterior") distribution

- Maximum-likelihood (ML) model:
 - $\bullet \ \theta_{ML} = \arg \max_{\theta} P(\mathbf{y}|\mathbf{X}, \theta).$
- Maximum-a-positeriori (MAP) model:

- Maximum-likelihood (ML) model:
 - $\bullet \ \theta_{ML} = \arg \max_{\theta} P(\mathbf{y}|\mathbf{X}, \theta).$
- Maximum-a-positeriori (MAP) model:

•
$$\theta_{MAP} = \arg \max_{\theta} P(\theta | \mathbf{y}, \mathbf{X}) = \arg \max_{\theta} \frac{P(\mathbf{y} | \mathbf{X}, \theta) P(\theta)}{P(\mathbf{y} | \mathbf{X})}$$

= $\arg \max_{\theta} P(\mathbf{y} | \mathbf{X}, \theta) P(\theta)$

- Most likely value **y*** for new input **x*** (Bayes-optimal decision):
 - $\mathbf{y}^* = \arg\max_{y} P(y|\mathbf{x}^*, \mathbf{y}, \mathbf{X})$

- Maximum-likelihood (ML) model:
 - $\bullet \ \theta_{ML} = \arg \max_{\theta} P(\mathbf{y}|\mathbf{X}, \theta).$
- Maximum-a-positeriori (MAP) model:

•
$$\theta_{MAP} = \arg \max_{\theta} P(\theta | \mathbf{y}, \mathbf{X}) = \arg \max_{\theta} \frac{P(\mathbf{y} | \mathbf{X}, \theta) P(\theta)}{P(\mathbf{y} | \mathbf{X})}$$

= $\arg \max_{\theta} P(\mathbf{y} | \mathbf{X}, \theta) P(\theta)$

Most likely value y* for new input x* (Bayes-optimal decision):

•
$$\mathbf{y}^* = \arg\max_{y} P(y|\mathbf{x}^*, \mathbf{y}, \mathbf{X})$$

$$P(y^*|\mathbf{x}^*, \mathbf{y}, \mathbf{X}) = \int P(y^*, \theta | \mathbf{x}^*, \mathbf{y}, \mathbf{X}) d\theta$$
$$= \int R(y^*|\mathbf{x}^*, \theta) P(\theta | \mathbf{y}, \mathbf{X}) d\theta$$

Predictive distribution

"Bayesian model averaging". Often computationally infeasible, but has a closed-form solution in some cases.

Linear Regression Models

Training data:

$$\mathbf{x} = \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nm} \end{pmatrix} \qquad \mathbf{f}_{\theta} : X \to Y$$

$$\mathbf{x} \mapsto \mathbf{g}$$

$$\mathbf{f}_{\theta} : X \to Y$$

Model

$$f_{\theta}: X \to Y$$

$$\Leftrightarrow f_{\theta}(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{\theta}$$

Overview

- Basic concepts of Bayesian learning
- Linear regression:
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Posterior distribution over models,
 - Bayesian prediction, predictive distribution,
- Linear classification: logistic regression.
 - Predictive distribution,
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Bayesian Prediction.
- Naive Bayesian classifier.
- Nonlinear models: Gaussian processes.

Probabilistic Linear Regression

Assumption 1: Nature generates parameter θ^* of a linear function $f_{\theta^*}(\mathbf{x}) = \mathbf{x}^T \theta^*$ according to $p(\theta)$.

Probabilistic Linear Regression

- Assumption 1: Nature generates parameter θ^* of a linear function $f_{\theta^*}(\mathbf{x}) = \mathbf{x}^T \theta^*$ according to $p(\theta)$.
- Assumption 2: Given inputs X, nature generates outputs y:
 - $y_i = f_{\theta^*}(\mathbf{x}_i) + \epsilon_i$ with $\epsilon_i \sim N(\epsilon | 0, \sigma^2)$.
 - $p(y_i|\mathbf{x}_i, \mathbf{\theta}^*) = N(y_i|\mathbf{x}_i^{\mathrm{T}}\mathbf{\theta}^*, \sigma^2)$

• In reality, we have y, X and want to make inferences about θ .

$$\mathbf{\theta}_{ML} = \arg \max_{\mathbf{\theta}} P(\mathbf{y}|\mathbf{X}, \mathbf{\theta}) = \arg \max_{\mathbf{\theta}} \prod_{i=1}^{n} N(y_i|\mathbf{x}_i^{\mathrm{T}}\mathbf{\theta}, \sigma^2)$$

$$= \arg \max_{\mathbf{\theta}} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} \left(y_i - \mathbf{x}_i^{\mathrm{T}}\mathbf{\theta}\right)^2\right\}$$

$$\mathbf{\theta}_{ML} = \arg \max_{\mathbf{\theta}} P(\mathbf{y}|\mathbf{X}, \mathbf{\theta}) = \arg \max_{\mathbf{\theta}} \prod_{i=1}^{n} N(y_i|\mathbf{x}_i^{\mathrm{T}}\mathbf{\theta}, \sigma^2)$$

$$= \arg \max_{\mathbf{\theta}} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} \left(y_i - \mathbf{x}_i^{\mathrm{T}}\mathbf{\theta}\right)^2\right\}$$

- Log is a monononic transformation:
 - $\arg \max_{\theta} P(\mathbf{y}|\mathbf{X}, \mathbf{\theta}) = \arg \max_{\theta} \log P(\mathbf{y}|\mathbf{X}, \mathbf{\theta})$
- Also constant terms (constant in θ) can be dropped.

$$\mathbf{\theta}_{ML} = \arg\max_{\mathbf{\theta}} P(\mathbf{y}|\mathbf{X}, \mathbf{\theta}) = \arg\max_{\mathbf{\theta}} \prod_{i=1}^{n} N(y_i|\mathbf{x}_i^{\mathrm{T}}\mathbf{\theta}, \sigma^2)$$

$$= \arg\max_{\mathbf{\theta}} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} \left(y_i - \mathbf{x}_i^{\mathrm{T}}\mathbf{\theta}\right)^2\right\}$$

$$= \arg\min_{\mathbf{\theta}} \sum_{i=1}^{n} \left(y_i - \mathbf{x}_i^{\mathrm{T}}\mathbf{\theta}\right)^2$$
Unregularized linear regression with squared loss

- Log is a monotonic transformation:
 - $\arg \max_{\theta} P(\mathbf{y}|\mathbf{X}, \mathbf{\theta}) = \arg \max_{\theta} \log P(\mathbf{y}|\mathbf{X}, \mathbf{\theta})$
- Also constant terms (constant in θ) can be dropped

Maximum-likelihood (ML) model:

$$\mathbf{\theta}_{ML} = \arg\min_{\mathbf{\theta}} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\mathrm{T}} \mathbf{\theta})^2$$

- Known as least-squares method in statistics.
- Setting the derivative to zero gives closed-form solution:

$$\mathbf{\theta}_{ML} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

Inversion of X^TX is numerically unstable.

- The maximum-likelihood model is only based on the data, it is independent of any prior knowledge or domain assumptions.
- Calculating the maximum-likelihood model is numerically unstable.
- Regularized least squares works much better in practice.

Overview

- Basic concepts of Bayesian learning
- Linear regression:
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Posterior distribution over models,
 - Bayesian prediction, predictive distribution,
- Linear classification: logistic regression.
 - Predictive distribution,
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Bayesian Prediction.
- Naive Bayesian classifier.
- Nonlinear models: Gaussian processes.

Overview

- Basic concepts of Bayesian learning
- Linear regression:
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Posterior distribution over models,
 - Bayesian prediction, predictive distribution,
- Linear classification (logistic regression):
 - Predictive distribution,
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Bayesian Prediction.
- Nonlinear models: Gaussian processes.

Maximum-a-positeriori (MAP) model:

•
$$\theta_{MAP} = \arg \max_{\theta} P(\theta | \mathbf{y}, \mathbf{X}) = \arg \max_{\theta} \frac{P(\mathbf{y} | \mathbf{X}, \theta) P(\theta)}{P(\mathbf{y} | \mathbf{X})}$$

Maximum-a-positeriori (MAP) model:

•
$$\theta_{MAP} = \arg \max_{\boldsymbol{\theta}} P(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}) = \arg \max_{\boldsymbol{\theta}} \frac{P(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})P(\boldsymbol{\theta})}{P(\mathbf{y}|\mathbf{X})}$$

$$= \arg \max_{\boldsymbol{\theta}} P(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})P(\boldsymbol{\theta}) \qquad \text{Training instances are independent}$$

$$= \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log P(y_i|\mathbf{x}_i, \boldsymbol{\theta}) + \log P(\boldsymbol{\theta})$$

$$= \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log N(y_i|\mathbf{x}_i^T\boldsymbol{\theta}, \sigma^2) + \log P(\boldsymbol{\theta})$$

$$= \cdots$$

MAP for Linear Regression: Prior

- Nature generates parameter θ^* of linear model $f_{\theta^*}(\mathbf{x}) = \mathbf{x}^T \theta^*$ according to $p(\theta)$.
- For convenience, assume $p(\mathbf{\theta}) = N(\mathbf{\theta}|\mathbf{0}, \sigma_p^2 \mathbf{I})$.

$$p(\mathbf{\theta}) = \mathbf{N} \ (\mathbf{\theta} \mid \mathbf{0}, \sigma_p^2 \mathbf{I})$$

$$= \frac{1}{2\pi^{m/2}\sigma_p} \exp\left(-\frac{1}{2\sigma_p^2} |\boldsymbol{\theta}|^2\right)$$

 $\sigma_p^2 \in \square$ controls strength of prior

Maximum-a-positeriori (MAP) model:

$$\bullet \quad \boldsymbol{\theta}_{MAP} = \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log N(y_i | \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\theta}, \sigma^2) + \log P(\boldsymbol{\theta})$$

$$= \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} (y_i - \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\theta})^2$$

$$+ \log \frac{1}{2\pi^{\frac{m}{2}} \sigma_p} - \frac{1}{2\sigma_p^2} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}$$

All terms that are constant in θ can be dropped.

Maximum-a-positeriori (MAP) model:

$$\bullet \quad \boldsymbol{\theta}_{MAP} = \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log N(y_{i} | \mathbf{x}_{i}^{T} \boldsymbol{\theta}, \sigma^{2}) + \log P(\boldsymbol{\theta})$$

$$= \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma^{2}}} - \frac{1}{2\sigma^{2}} (y_{i} - \mathbf{x}_{i}^{T} \boldsymbol{\theta})^{2}$$

$$+ \log \frac{1}{2\pi^{\frac{n}{2}} \sigma_{p}} - \frac{1}{2\sigma_{p}^{2}} \boldsymbol{\theta}^{T} \boldsymbol{\theta}$$

$$= \arg \min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \frac{1}{2\sigma^{2}} (y_{i} - \mathbf{x}_{i}^{T} \boldsymbol{\theta})^{2} + \frac{1}{2\sigma_{p}^{2}} \boldsymbol{\theta}^{T} \boldsymbol{\theta}$$

 ℓ_2 -regularized linear regression with squared loss (ridge regression).

Maximum-a-positeriori (MAP) model:

•
$$\mathbf{\theta}_{MAP} = \arg\min_{\mathbf{\theta}} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\mathrm{T}} \mathbf{\theta})^2 - \frac{\sigma^2}{\sigma_p^2} \mathbf{\theta}^{\mathrm{T}} \mathbf{\theta}$$

- Same optimization criterion as ridge regression.
- Analytic solution (see lecture on ridge regression):

$$\bullet \ \mathbf{\theta}_{MAP} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X} + \frac{\sigma^2}{\sigma_p^2}\mathbf{I}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

Overview

- Basic concepts of Bayesian learning
- Linear regression:
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Posterior distribution over models,
 - Bayesian prediction, predictive distribution,
- Linear classification: logistic regression).
 - Predictive distribution,
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Bayesian Prediction.
- Naive Bayesian classifier.
- Nonlinear models: Gaussian processes.

Posterior for Linear Regression

Posterior distribution of θ given y, X:

•
$$P(\mathbf{\theta}|\mathbf{y},\mathbf{X}) = \frac{P(\mathbf{y}|\mathbf{X},\mathbf{\theta})P(\mathbf{\theta})}{P(\mathbf{y}|\mathbf{X})} = \frac{1}{Z}P(\mathbf{y}|\mathbf{X},\mathbf{\theta})P(\mathbf{\theta})$$

Posterior for Linear Regression

• Posterior distribution of θ given y, X:

•
$$P(\mathbf{\theta}|\mathbf{y}, \mathbf{X}) = \frac{P(\mathbf{y}|\mathbf{X}, \mathbf{\theta})P(\mathbf{\theta})}{P(\mathbf{y}|\mathbf{X})} = \frac{1}{Z}P(\mathbf{y}|\mathbf{X}, \mathbf{\theta})P(\mathbf{\theta})$$

 $= \frac{1}{Z}N(\mathbf{y}|\mathbf{X}^{\mathrm{T}}\mathbf{\theta}, \sigma^{2}\mathbf{I})N(\mathbf{\theta}|\mathbf{0}, \sigma_{p}^{2}\mathbf{I})$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (y_i - \mathbf{x}_i^{\mathrm{T}} \mathbf{\theta})^2\right\}$$

The normal distribution is the conjugate of itself. Therefore $N(\cdot | \cdot, \cdot)N(\cdot | \cdot, \cdot) = N(\cdot | \cdot, \cdot)$

Posterior for Linear Regression

• Posterior distribution of θ given y, X:

$$P(\mathbf{\theta}|\mathbf{y}, \mathbf{X}) = \frac{P(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})P(\boldsymbol{\theta})}{P(\mathbf{y}|\mathbf{X})} = \frac{1}{Z}P(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})P(\boldsymbol{\theta})$$
$$= \frac{1}{Z}N(\mathbf{y}|\mathbf{X}^{\mathrm{T}}\boldsymbol{\theta}, \sigma^{2}\mathbf{I})N(\boldsymbol{\theta}|\mathbf{0}, \sigma_{p}^{2}\mathbf{I})$$
$$= N(\boldsymbol{\theta}|\overline{\boldsymbol{\theta}}, \mathbf{A}^{-1})$$

- With $\overline{\boldsymbol{\theta}} = \left(\mathbf{X}^{\mathrm{T}} \mathbf{X} + \frac{\sigma^2}{\sigma_p^2} \mathbf{I} \right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}$
- And $\mathbf{A} = \sigma^{-2} \mathbf{X}^{\mathrm{T}} \mathbf{X} + \sigma_{p}^{-2} \mathbf{I}$.

Mean value of posterior: θ_{MAP}

Example MAP solution regression

Training data:

$$\mathbf{x}_{1} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}, \qquad \mathbf{x}_{2} = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}, \qquad \mathbf{x}_{3} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix},$$

$$y_{1} = 2 \qquad \qquad y_{2} = 3 \qquad \qquad y_{3} = 4$$

Matrix notation (adding constant attribute):

$$\mathbf{X} = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 1 & 4 & 3 & 2 \\ 1 & 0 & 1 & 2 \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$$

Example MAP solution regression

- Choose

• Choose
• Variance of prior:
$$\sigma_p = 1$$

• Noise parameter: $\sigma = 0.5$
• Compute: $\overline{\boldsymbol{\theta}} = (\mathbf{X}^T\mathbf{X} + \frac{\sigma^2}{\sigma_p^2}\mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$
$$\overline{\boldsymbol{\theta}} = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 1 & 4 & 3 & 2 \\ 1 & 0 & 1 & 2 \end{pmatrix}^T \begin{pmatrix} 1 & 2 & 3 & 0 \\ 1 & 4 & 3 & 2 \\ 1 & 0 & 1 & 2 \end{pmatrix} + 0.25 \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 1 & 4 & 3 & 2 \\ 1 & 0 & 1 & 2 \end{pmatrix}^T \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$$

$$\approx \begin{pmatrix} 0.7975 \\ -0.5598 \\ 0.7543 \\ 1.1217 \end{pmatrix}$$

Example MAP solution regression

• Predictions of model $\overline{\theta}$ on the training data:

$$\hat{\mathbf{y}} = \mathbf{X}\overline{\mathbf{\theta}} = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 1 & 4 & 3 & 2 \\ 1 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 0.7975 \\ -0.5598 \\ 0.7543 \\ 1.1217 \end{pmatrix} = \begin{pmatrix} 1.9408 \\ 3.0646 \\ 3.7952 \end{pmatrix}$$

Posterior and Regularized Loss Function

MAP model:

Sequential Learning

- Training examples arrive sequentially.
- Each training example (\mathbf{x}_i, y_i) changes prior $p_{i-1}(\mathbf{\theta})$ into posterior $p_{i-1}(\mathbf{\theta}|y_i, \mathbf{x}_i)$ which becomes the new prior $p_i(\mathbf{\theta})$

$$P(\mathbf{\theta}|\mathbf{y}, \mathbf{X}) = \frac{1}{Z} P_0(\mathbf{\theta}) P(\mathbf{y}|\mathbf{X}, \mathbf{\theta})$$

$$= \frac{1}{Z} P_0(\mathbf{\theta}) \prod_{i=1}^{n} P(y_i|\mathbf{x}_i, \mathbf{\theta})$$

$$= \frac{1}{Z} \underbrace{P_0(\mathbf{\theta}) P(y_1|\mathbf{x}_1, \mathbf{\theta})}_{P_1(\mathbf{\theta})} P(y_2|\mathbf{x}_2, \mathbf{\theta}) P(y_3|\mathbf{x}_3, \mathbf{\theta}) \dots P(y_n|\mathbf{x}_n, \mathbf{\theta})}_{P_2(\mathbf{\theta})}$$

Example: Sequential Learning[from Chris Bishop, Pattern Recognition and Machine Learning]

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$
 (one-dimensional regression)

Sequential update: $P_0(\mathbf{\theta})$

 $f_{\theta}(x) = \theta_0 + \theta_1 x$ (one-dimensional regression)

Sequential update: $P_0(\mathbf{\theta})$

 $f_{\theta}(x) = \theta_0 + \theta_1 x$ (one-dimensional regression)

Sequential update: $P_1(\mathbf{\theta}) \propto P_0(\mathbf{\theta}) P(y_1 | x_1, \mathbf{\theta})$

 $f_{\theta}(x) = \theta_0 + \theta_1 x$ (one-dimensional regression)

Sequential update: $P_2(\mathbf{\theta}) \propto P_1(\mathbf{\theta}) P(y_2 | x_2, \mathbf{\theta})$

 $f_{\theta}(x) = \theta_0 + \theta_1 x$ (one-dimensional regression)

Sequential update: $P_n(\mathbf{\theta}) \propto P_{n-1}(\mathbf{\theta}) P(y_n | x_n, \mathbf{\theta})$

Learning and Prediction

- So far, we have always separated learning from prediction.
- Learning:

•
$$\theta^* = \arg \max_{\theta} \widehat{R}(\mathbf{y}, \mathbf{X}, \theta) + \Omega(\theta)$$

Prediction:

- For instance, in MAP linear regression, learning is
 - $\bullet \ \mathbf{\theta}_{MAP} = \arg \max_{\theta} P(\mathbf{\theta} | \mathbf{y}, \mathbf{X}).$
- And prediction is

Learning and Prediction

- So far, we have always separated learning from prediction.
- And there are good reasons to do this:
 - Learning can require processing massive amounts of training data which can take a long time.
 - Predictions may have to be made in real time.
- However, sometimes, when relatively few data are available and an accurate prediction is worth waiting for, one can directly search for the best possible prediction:
 - $\mathbf{y}^* = \arg\max_{y} P(y|\mathbf{x}^*, \mathbf{y}, \mathbf{X})$
 - Most likely y* for new input x* given training data y, X.

Overview

- Basic concepts of Bayesian learning
- Linear regression:
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Posterior distribution over models,
 - Bayesian prediction, predictive distribution,
- Linear classification: logistic regression).
 - Predictive distribution,
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Bayesian Prediction.
- Naive Bayesian classifier.
- Nonlinear models: Gaussian processes.

Bayes-Optimal Prediction

- Bayes-optimal decision: most likely value y* for new input x*
 - $y^* = \arg\max_{y} P(y|\mathbf{x}^*, \mathbf{y}, \mathbf{X})$
- Predictive distribution for new input x* given training data:

- Bayes-optimal decision is made by a weighted sum over all values of the model parameters.
- In general, there is no single model θ^* in the model space that always makes the Bayes-optimal decision.

Bayes-Optimal Prediction

- Bayes-optimal decision is made by a weighted sum over all model parameters:
 - $P(y|\mathbf{x}^*, \mathbf{y}, \mathbf{X}) = \int P(y|\mathbf{x}^*, \mathbf{\theta}) P(\mathbf{\theta}|\mathbf{y}, \mathbf{X}) d\mathbf{\theta}$
- The prediction of the MAP model is only the prediction made by the single most likely model θ_{MAP} .
 - Predictive distribution $P(y|\mathbf{x}^*, \mathbf{\theta}_{MAP})$.
 - Most likely prediction $f_{\theta_{MAP}}(\mathbf{x}^*) = \arg \max_{y} P(y|\mathbf{x}^*, \mathbf{\theta}_{MAP}).$
- The MAP model θ_{MAP} is an approximation of this weighted sum by its element with the highest weight.

Bayes-Optimal Prediction

- Bayes-optimal decision is made by a weighted sum over all model parameters:
 - $P(y|\mathbf{x}^*, \mathbf{y}, \mathbf{X}) = \int P(y|\mathbf{x}^*, \mathbf{\theta}) P(\mathbf{\theta}|\mathbf{y}, \mathbf{X}) d\mathbf{\theta}$
- Integration over the space of all model parameters is not generally possible.
- In some cases, there is a closed-form solution.
- In other cases, approximate numerical integration may be possible.

Predictive Distribution for Linear Regression

- Predictive distribution for linear regression
 - $P(y|\mathbf{x}^*, \mathbf{y}, \mathbf{X}) = \int P(y|\mathbf{x}^*, \mathbf{\theta}) P(\mathbf{\theta}|\mathbf{y}, \mathbf{X}) d\mathbf{\theta}$ $= \int N(y|\mathbf{x}^*, \mathbf{\theta}) N(\mathbf{\theta}|\overline{\mathbf{\theta}}, \mathbf{A}^{-1}) d\mathbf{\theta}$ $= N(y|\overline{\mathbf{\theta}}^{\mathrm{T}}\mathbf{x}^*, \sigma^2 + {\mathbf{x}^*}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{x}^*)$
 - With $\overline{\boldsymbol{\theta}} = \left(\mathbf{X}^{\mathrm{T}} \mathbf{X} + \frac{\sigma^2}{\sigma_p^2} \mathbf{I} \right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}$
 - And $\mathbf{A}^{-1} = \sigma^{-2} \mathbf{X}^{\mathrm{T}} \mathbf{X} + \sigma_p^{-2} \mathbf{I}$.
- Bayes-optimal prediction:
 - $y^* = \arg\max_{y} P(y|\mathbf{x}^*, \mathbf{y}, \mathbf{X}) = \overline{\mathbf{\theta}}^{\mathrm{T}} \mathbf{x}^*$

Predictive Distribution: Confidence Band

■ Bayesian regression not only yields prediction $y^* = \mathbf{x}^T \overline{\mathbf{\theta}}$, but a distribution over y und therefore a confidence band.

Overview

- Basic concepts of Bayesian learning
- Linear regression:
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Posterior distribution over models,
 - Bayesian prediction, predictive distribution,
- Linear classification: logistic regression.
 - Predictive distribution,
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Bayesian Prediction.
- Naive Bayesian classifier.
- Nonlinear models: Gaussian processes.

Linear Classification

Training data:

•
$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Decision function:

•
$$f_{\theta}(\mathbf{x}) = \mathbf{x}^{\mathrm{T}}\mathbf{\theta}$$

Predictive distribution

$$P(y|\mathbf{x}, \mathbf{\theta}) = \sigma(\mathbf{x}^{\mathrm{T}}\mathbf{\theta})$$

•
$$y_{\theta}(\mathbf{x}) = \arg \max_{y} P(y|\mathbf{x}, \theta)$$

• y_{θ} : \Longrightarrow \Longrightarrow

$$y_{\theta}: \stackrel{\bullet}{\cong} \mapsto \stackrel{\bullet}{\otimes}$$

Linear Classification: Predictive Distribution

- For binary classification, $y \in \{-1, +1\}$
- Predictive distribution given parameters θ of linear model:

•
$$P(y = +1|\mathbf{x}, \mathbf{\theta}) = \sigma(\mathbf{x}^{\mathrm{T}}\mathbf{\theta}) = \frac{1}{1 + e^{-\mathbf{x}^{\mathrm{T}}\mathbf{\theta}}}$$

•
$$P(y = -1|\mathbf{x}, \mathbf{\theta}) = 1 - P(y = +1|\mathbf{x}, \mathbf{\theta})$$

■ Sigmoid function maps $[-\infty, +\infty] \rightarrow [0,1]$.

Logistic Regression

- For binary classification, $y \in \{-1, +1\}$
- Predictive distribution given parameters θ of linear model:

•
$$P(y = +1|\mathbf{x}, \mathbf{\theta}) = \sigma(\mathbf{x}^{\mathrm{T}}\mathbf{\theta}) = \frac{1}{1 + e^{-\mathbf{x}^{\mathrm{T}}\mathbf{\theta}}}$$

•
$$P(y = -1|\mathbf{x}, \mathbf{\theta}) = 1 - \frac{1}{1 + e^{-\mathbf{x}^T \mathbf{\theta}}} = \frac{1}{1 + e^{\mathbf{x}^T \mathbf{\theta}}}$$

Written jointly for both classes:

•
$$P(y|\mathbf{x}, \mathbf{\theta}) = \sigma(y\mathbf{x}^{\mathrm{T}}\mathbf{\theta}) = \frac{1}{1 + e^{-y\mathbf{x}^{\mathrm{T}}\mathbf{\theta}}}$$

Classification function:

•
$$y_{\theta}(\mathbf{x}) = \arg\max_{y} P(y|\mathbf{x}, \theta)$$

 Called "logistic regression" even though it is a classification model.

Logistic Regression

■ Decision boundary: $P(y = +1|\mathbf{x}, \mathbf{\theta}) = P(y = -1|\mathbf{x}, \mathbf{\theta}) = 0.5$.

$$0.5 = \sigma(\mathbf{x}^{\mathrm{T}}\mathbf{\theta}) = \frac{1}{1 + e^{-\mathbf{x}^{\mathrm{T}}\mathbf{\theta}}}$$

$$\Leftrightarrow 1 = e^{-\mathbf{x}^{\mathrm{T}}\mathbf{\theta}}$$

$$\Leftrightarrow 0 = \mathbf{x}^{\mathrm{T}}\mathbf{\theta}$$

Decision boundary is a hyperplane in input space.

Logistic Regression

- For multi-class classification: $\mathbf{\theta} = \begin{pmatrix} \mathbf{\theta}_1 \\ \vdots \\ \mathbf{\theta}_k \end{pmatrix}$
- Generalize sigmoid function to softmax function:

•
$$P(y|\mathbf{x}, \mathbf{\theta}) = \frac{e^{\mathbf{x}^T \mathbf{\theta} y}}{\sum_{y'} e^{\mathbf{x}^T \mathbf{\theta} y'}}$$
 Normalizer ensures that
$$\sum_{y} P(y|\mathbf{x}, \mathbf{\theta}) = 1$$
 Classification function:

- $y_{\theta}(\mathbf{x}) = \arg\max_{y} P(y|\mathbf{x}, \theta)$
- Called multi-class "logistic regression" even though it is a classification model.

Overview

- Basic concepts of Bayesian learning
- Linear regression:
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Posterior distribution over models,
 - Bayesian prediction, predictive distribution,
- Linear classification: logistic regression.
 - Predictive distribution,
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Bayesian Prediction.
- Naive Bayesian classifier.
- Nonlinear models: Gaussian processes.

Logistic Regression: ML Model

Maximum-likelihood model:

- Equivalent to minimization of cross-entropy loss $\ell(\sigma(\mathbf{x}_i^T\mathbf{\theta}), y_i) = -\log(\sigma(y_i\mathbf{x}_i^T\mathbf{\theta}))$
- No analytic solution; numeric optimization, for instance, using (stochastic) gradient descent.

Logistic Regression: ML Model

- Maximum-likelihood model:
 - $\boldsymbol{\theta}_{ML} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{n} \log \left(1 + e^{-y_i \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\theta}} \right)$
- Gradient:

Overview

- Basic concepts of Bayesian learning
- Linear regression:
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Posterior distribution over models,
 - Bayesian prediction, predictive distribution,
- Linear classification: logistic regression.
 - Predictive distribution,
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Bayesian Prediction.
- Naive Bayesian classifier.
- Nonlinear models: Gaussian processes.

Logistic Regression: MAP Model

■ Maximum-a-posteriori model with prior $P(\theta) = N(\theta | \theta, \sigma^2 \mathbf{I})$:

•
$$\theta_{MAP} = \arg\max_{\boldsymbol{\theta}} P(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) P(\boldsymbol{\theta})$$

$$= \arg\max_{\boldsymbol{\theta}} \prod_{i=1}^{n} \frac{1}{1 + e^{-y_i \mathbf{x}_i^T \boldsymbol{\theta}}} N(\boldsymbol{\theta}|\mathbf{0}, \sigma^2 \mathbf{I})$$

$$= \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} -\log\frac{1}{1 + e^{-y_i \mathbf{x}_i^T \boldsymbol{\theta}}} -\log N(\boldsymbol{\theta}|\mathbf{0}, \sigma^2 \mathbf{I})$$

$$= \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log\left(1 + e^{-y_i \mathbf{x}_i^T \boldsymbol{\theta}}\right) + \frac{1}{2\sigma^2} \boldsymbol{\theta}^T \boldsymbol{\theta}$$
Likelihood \approx loss function

Prior \approx regularizer

 No analytic solution; numeric optimization, for instance, using (stochastic) gradient descent.

Logistic Regression: MAP Model

■ Maximum-a-posteriori model with prior $P(\theta) = N(\theta|0, \sigma^2\mathbf{I})$:

•
$$\mathbf{\theta}_{MAP} = \operatorname{argmin}_{\mathbf{\theta}} \sum_{i=1}^{n} \log \left(1 + e^{-y_i \mathbf{x}_i^{\mathrm{T}} \mathbf{\theta}} \right) + \frac{1}{2\sigma_n^2} \mathbf{\theta}^{\mathrm{T}} \mathbf{\theta}$$

Gradient:

$$\bullet \frac{\partial}{\partial \mathbf{\theta}} \left(\sum_{i=1}^{n} \log \left(1 + e^{-y_i \mathbf{x}_i^{\mathrm{T}} \mathbf{\theta}} \right) + \frac{1}{2\sigma_p^2} \mathbf{\theta}^{\mathrm{T}} \mathbf{\theta} \right)$$

$$= \sum_{i=1..n} -y_i \mathbf{x}_i \left(1 - \sigma(y_i \mathbf{x}_i^{\mathrm{T}} \mathbf{\theta}) \right) + \frac{1}{\sigma_p^2} \mathbf{\theta}$$

Overview

- Basic concepts of Bayesian learning
- Linear regression:
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Posterior distribution over models,
 - Bayesian prediction, predictive distribution,
- Linear classification: logistic regression.
 - Predictive distribution,
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Bayesian Prediction.
- Naive Bayesian classifier.
- Nonlinear models: Gaussian processes.

Bayes-Optimal Prediction for Classification

Predictive distribution given the data

$$P(y|\mathbf{x}^*, \mathbf{y}, \mathbf{X}) = \int P(y|\mathbf{\theta}, \mathbf{x}^*) P(\mathbf{\theta}|\mathbf{y}, \mathbf{X}) d\mathbf{\theta}$$

$$= \int \frac{1}{1 + e^{-y\mathbf{x}^*T}\mathbf{\theta}} \prod_{i=1}^{n} \frac{1}{1 + e^{-y_i\mathbf{x}_i^T\mathbf{\theta}}} N(\mathbf{\theta}|\mathbf{0}, \sigma^2\mathbf{I}) d\mathbf{\theta}$$

- No closed-form solution for logistic regression.
- Possible to approximate by sampling from the posterior.
- Standard approximation: use only MAP model instead of integrating over model space.

Overview

- Basic concepts of Bayesian learning
- Linear regression:
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Posterior distribution over models,
 - Bayesian prediction, predictive distribution,
- Linear classification: logistic regression.
 - Predictive distribution,
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Bayesian Prediction.
- Naive Bayesian classifier.
- Nonlinear models: Gaussian processes.

Naive Bayesian Classifier

Decision function of Naive Bayesian classifier:

$$\max_{y} P(y|\mathbf{x}) = \max_{y} P(\mathbf{x}|y)P(y)$$

$$= \max_{y} P(x_1|y)P(x_2|x_1,y), \dots, P(x_m|x_1,\dots,x_{m-1},y)$$

$$= \max_{y} \prod_{j=1}^{m} P(x_j|,x_1,\dots,x_{j-1},y)P(y)$$

$$\approx \max_{y} \prod_{j=1}^{m} P(x_j|y)P(y)$$
Assumption: attributes are conditionally independent given the class.
$$= \max_{y} \prod_{j=1}^{m} \prod_{v} P(x_j = v|y)^{[[x_j = v]]} P(y)$$

Naive Bayesian Classifier

Decision function of Naive Bayesian classifier:

$$\max_{y} P(y|\mathbf{x}) = \max_{y} P(\mathbf{x}|y)P(y)$$

$$= \max_{y} P(x_1|y)P(x_2|x_1, y), \dots, P(x_m|x_1, \dots, x_{m-1}, y)$$

$$= \max_{y} \prod_{j=1}^{m} P(x_j|, x_1, \dots, x_{j-1}, y)P(y)$$

$$\approx \max_{y} \prod_{j=1}^{m} \prod_{v} P(x_j = v|y)^{[[x_j=v]]} P(y)$$

$$= \max_{y} \prod_{j=1}^{m} \prod_{v} \theta_{x_j=v,y}^{[[x_j=v]]} \theta_y$$
Those probability

These probabilities are the model parameters that have to be learned from the training data.

Naive Bayesian Classifier

Decision function of Naive Bayesian classifier:

$$\max_{y} P(y|\mathbf{x}) = \max_{y} P(\mathbf{x}|y)P(y)$$

$$= \max_{y} P(x_1|y)P(x_2|x_1,y), \dots, P(x_m|x_1,\dots,x_{m-1},y)$$

$$= \max_{y} \prod_{j=1}^{m} P(x_j|,x_1,\dots,x_{j-1},y)P(y)$$

$$\approx \max_{y} \prod_{j=1}^{m} \prod_{v} P(x_j=v|y)^{\left[\left[x_j=v\right]\right]} P(y)$$
This is the decision function of a linear classifier.
$$= \max_{y} \sum_{j=1}^{m} \sum_{v} \log \theta_{x_j=v,y} \left[\left[x_j=v\right]\right] + \log \theta_{y}$$

Learning in Naive Bayes

- Maximum likelihood estimate of θ_{ν} :
 - $\widehat{\theta_y} = \frac{n_y}{n}$, where n_y is the number of instances of class y.
- Maximum likelihood estimate of $\theta_{x_i=v,y}$:
 - $\theta_{x_j=v,y} = \frac{n_{x_j=v,y}}{n_y}$, where $n_{x_j=v,y}$ is the number of instances with $x_i = v$ and the class is y.
- Learning amounts to counting the frequency of all attribute values per class.

Naive Bayesian Classifier

- Naive Bayes is a linear classifier and has the same restrictions as the perceptron and other linear models.
- Naive Bayes assumes that all attributes are independent of each other given the class, which is highly unrealistic.
- There is absolutely no need to make this assumption: the perceptron and other linear classifiers do not need it.
- Naive Bayes offers no advantage over the perceptron, SVM, or logistic regression, but the independence assumption is a huge disadvatage.
- There is no reason to ever use Naive Bayes.

Overview

- Basic concepts of Bayesian learning
- Linear regression:
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Posterior distribution over models,
 - Bayesian prediction, predictive distribution,
- Linear classification: logistic regression.
 - Predictive distribution,
 - Maximum-likelihood model,
 - Maximum-a-posteriori model,
 - Bayesian Prediction.
- Naive Bayesian classifier.
- Nonlinear models: Gaussian processes.

Nonlinear Regression

Limitation of model discussed so far: only linear dependency between x and $f_{\theta}(x)$.

Now: nonlinear models.

Feature Mappings and Kernels

- Use mapping ϕ to embed instances $\mathbf{x} \in X$ in higher-dimensional feature space.
- Find linear model in higher-dimensional space, corresponds to non-linear model in input space *X*.
- Representer theorem:
 - Model $f_{\theta^*}(\mathbf{x}) = {\theta^*}^T \phi(\mathbf{x})$
 - Has a representation $f_{\alpha^*}(\mathbf{x}) = \sum_{i=1}^n \alpha_i^* \underbrace{\phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x})}_{=k(\mathbf{x}_i,\mathbf{x})}$
- Feature mapping $\phi(\mathbf{x})$ does not have to be computed; only kernel function $k(\mathbf{x}_i, \mathbf{x})$ is evaluated.
- Feature mapping $\phi(\mathbf{x})$ can therefore be high- or even infinite-dimensional.

Generalized Linear Regression (Finite-Dimensional Case)

- Assumption 1: Nature generates parameter $\mathbf{\theta}^*$ of a linear function $f_{\mathbf{\theta}^*}(\mathbf{x}) = \phi(\mathbf{x})^T \mathbf{\theta}^*$ according to $p(\mathbf{\theta}) = N(\mathbf{\theta}|\mathbf{0}, \sigma_p^2 \mathbf{I})$.
- Assumption 2: Inputs are **X** with feature representation Φ ; line i of Φ contains row vector $\phi(\mathbf{x}_i)^T$. Nature generates outputs \mathbf{y} :
 - $y_i = f_{\theta^*}(\mathbf{x}_i) + \epsilon_i$ with $\epsilon_i \sim N(\epsilon | 0, \sigma^2)$.
 - $p(y_i|\mathbf{x}_i,\mathbf{\theta}^*) = N(y_i|\phi(\mathbf{x}_i)^{\mathrm{T}}\mathbf{\theta}^*,\sigma^2)$

Generalized Linear Regression

- Generalized linear model:
 - $f_{\theta}(\mathbf{x}) = \phi(\mathbf{x})^{\mathrm{T}} \mathbf{\theta}$
 - $y = \Phi \theta$
- Parameter θ governed by normal distribution $N(\theta|\mathbf{0}, \sigma_{\mathbf{p}}^2\mathbf{I})$.
- Therefore output vector y is also normally distributed.
 - Mean value $E[y] = E[\Phi \theta] = \Phi E[\theta] = 0$.
 - Covariance $E[yy^T] = \Phi E[\theta \theta^T] \Phi^T = \sigma_p^2 \Phi \Phi^T = \sigma_p^2 K$.
 - With $K_{ij} = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j) = k(\mathbf{x}_i, \mathbf{x}_j)$.

Generalized Linear Regression (General Case)

- Data generation assumptions:
 - Given inputs **X**, nature generates target values $\bar{\mathbf{y}} \sim N(\bar{\mathbf{y}}|0, \sigma_p^2 \mathbf{K})$.
 - Then, nature generates observations $y_i = \bar{\mathbf{y}}_i + \epsilon_i$ with noise $\epsilon_i \sim N(\epsilon | 0, \sigma^2)$.
- Bayesdian inference: determine predictive distribution $P(\mathbf{y}^*|\mathbf{x}^*,\mathbf{y},\mathbf{X})$ for new test instance.

Reminder: Linear Regression

Bayes-optimal prediction:

•
$$y^* = \arg \max_{y} P(y|\mathbf{x}^*, \mathbf{y}, \mathbf{X}) = \overline{\mathbf{\theta}}^{\mathrm{T}} \mathbf{x}^*$$

• With
$$\overline{\mathbf{\theta}} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X} + \frac{\sigma^2}{\sigma_p^2}\mathbf{I}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$
.

• Number of parameters θ_i = number of attributes in \mathbf{x} .

Generalized Linear Regression

• Mean value of predictive distribution $P(y^*|x^*, y, X)$ has the form

•
$$y^* = \sum_{i=1}^n \bar{\alpha}_i k(\mathbf{x}_i, \mathbf{x}^*)$$

• With
$$\overline{\alpha} = \left(\Phi\Phi^{T} + \frac{\sigma^{2}}{\sigma_{p}^{2}}\mathbf{I}\right)^{-1}\mathbf{y} = \left(\mathbf{K} + \frac{\sigma^{2}}{\sigma_{p}^{2}}\mathbf{I}\right)^{-1}\mathbf{y}$$
.

• Number of parameters α_i = number of training instances.

Example nonlinear regression

- Example for nonlinear regression
 - Generating nonlinear data by

$$y = \sin(2\pi x) + \varepsilon$$
 $\varepsilon \sim N(\varepsilon | 0, \sigma^2), x \in [0, 1]$

Nonlinear kernel

$$k(x, x') = \exp(-\theta |x - x'|)$$

How does the predictive distribution and the posterior over models look like?

Predictive distribution

Models sampled from posterior

Summary

- Linear regression:
 - Maximum-likelihood model $\arg \max_{\theta} P(y | X, \theta)$,
 - Maximum-a-posteriori model $\arg \max_{\theta} P(\theta | \mathbf{y}, \mathbf{X}),$
 - Posterior distribution over models $P(\theta|\mathbf{y}, \mathbf{X})$,
 - Bayesian prediction, predictive distribution $\arg \max_{v} P(\mathbf{y}^* | \mathbf{x}^*, \mathbf{y}, \mathbf{X}).$
- Linear classification (logistic regression):
 - Predictive distribution $P(y^*|x^*, \theta)$,
 - Maximum-likelihood model $\arg \max_{\theta} P(\mathbf{y}|\mathbf{X}, \mathbf{\theta})$,
 - Maximum-a-posteriori model $\arg \max_{\theta} P(\theta | \mathbf{y}, \mathbf{X}),$
 - Bayesian Prediction $\underset{y}{\operatorname{arg max}} P(\mathbf{y}|\mathbf{x}^*, \mathbf{y}, \mathbf{X}).$
- Nonlinear models: Gaussian processes.