Feuille d'exercices 16 : Géométrie plane

1 Triangle, droites, cerlces

Exercice 1. Déterminer l'ensemble des points M d'affixe z tel que le nombre complexe $\frac{2iz-1}{z+1}$ ait un module égal à 1.

Exercice 2. Soient a, b et c trois nombres complexes deux à deux distincts.

- 1. (a) Donner une condition nécessaire et suffisante les points d'affixes a, b et c forment-ils un triangle équilatéra.
 - (b) Donner une condition nécessaire et suffisante les points d'affixes a, b et c forment-ils un triangle rectangle
- 2. Déterminer les nombres $z \in \mathbb{C}$ tels que :
 - (a) 1, z et z^2 forment un triangle rectangle.
 - (b) $z, \frac{1}{z}$ et -i sont alignés.
 - (c) z, z^2 et z^4 sont alignés.

Exercice 3. Déterminer l'ensemble des points M du plan d'affixe z tels que :

- 1. |z+i| = |z-1|
- 2. z, $\frac{1}{z}$ et 1+z aient le même module.
- $3. \ \frac{z+1}{z-1} \in \mathbb{R}$

Exercice 4. Montrer que par trois points non alignés du plan il passe un unique cercle. Construire ce cercle à la règle et au compas.

Exercice 5. Soient A(1,1), B(4,3) et C(2,5). Déterminer l'aire du triangle ABC.

Exercice 6. Soit ABC un triangle équilatéral. On considère l'application f qui à un point M à l'intérieur du triangle associe le nombre réel $MH_A + MH_B + MH_C$ où H_A , H_B et H_C sont les projections de M sur (BC), (AC), et (AB). Montrer que f est constante.

2 Produit scalaire et produit mixte

- **Exercice 7.** Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} des vecteurs. 1. Montrer que $(\overrightarrow{u} \cdot \overrightarrow{v})^2 + [\overrightarrow{u}, \overrightarrow{v}]^2 = ||\overrightarrow{u}||^2 ||\overrightarrow{v}||^2$.
 - 2. Montrer que dans un parallélogramme, la somme des carrés des longueurs des diagonales est égales à la somme des carrés des longueurs des quatre côtés.
 - 3. Montrer (et interpréter géométriquement) l'égalité d'Appollonius (dite aussi de la médiane) :

$$\|\overrightarrow{w} - \overrightarrow{u}\|^2 + \|\overrightarrow{w} - \overrightarrow{v}\|^2 = \frac{1}{2} \|\overrightarrow{u} - \overrightarrow{v}\|^2 + 2 \left\|\overrightarrow{w} - \frac{\overrightarrow{u} + \overrightarrow{v}}{2}\right\|^2.$$

Exercice 8. Trouver une condition nécessaire et suffisante sur $x \in \mathbb{R}$ pour que les points

$$M_1(1,x), \qquad M_2(2,x^2), \qquad M_3(4,x^3)$$

soient alignés.

Exercice 9. Soit $\mathcal C$ un cercle et soit M un point n'appartenant pas à $\mathcal C$. Une droite d passant par M coupe le cercle $\mathcal C$ en 0 ou 2 points (possiblement confondus). On note P et P' ces points d'intersection quand ils existent. Montrer que $(\overrightarrow{MP} \cdot \overrightarrow{MP'})$ ne dépend pas du choix de la droite d.

Exercice 10. Démontrer à l'aide d'un calcul de produit scalaire que les hauteurs d'un triangle non apliati sont concourantes.

Exercice 11. On considère trois points A, B et C non alignés dans le plan, et une droite (d) coupant respectivant les droites (BC), (AC) et (AB) en A', B' et C'. Par le point A', on mène les parallèles à (AB) et (AC) qui coupent respectivement en D et E la parallèle à (BC) passant par A. On souhaite montrer que les droites (B'D) et (C'E) sont parallèles. On se place dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AC})$.

- 1. Faire une figure contenant toutes les informations de l'énoncé.
- 2. Déterminer les coordonnées cartésiennes de B' et de C' en fonction de deux paramètres réels.
- 3. Déterminer en fonction de ces coordonnées une équation des droites (d) et (BC)
- 4. Déterminer les coordonnées cartésiennes des points A', D et E.
- 5. Conclure à l'aide d'un calcul de produit mixte.

Exercice 12. Soit ABC un triangle tel que AB = a, BC = 2a et $AC = a\sqrt{3}$ où $a \in \mathbb{R}$.

- 1. Que peut-on dire du triangle ABC?
- 2. Déterminer $\{M \ / \ -4MA^2 + 3MB^2 + MC^2 = 6a^2\}$. 3. Déterminer $\{M \ / \ -4MA^2 + 3MB^2 + MC^2 = 0\}$.

3 Transformations

Exercice 13. Le plan est rapporté à un repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$. On pose $a = \sqrt{3} - i$. On note A sont image.

- 1. Calculer le module et un argument du nombre complexe a.
- 2. On considère la rotation r de centre O et d'angle $\frac{\pi}{4}$. Soit f l'application qui, à l'affixe z de M, associe l'affixe z'de M'=r(M). Exprimer f(z) en fonction de $z\in\mathbb{C}$.

 3. On note B=r(A). Déterminer l'affixe b de B sous forme algébrique puis sous forme trigonométrique.

 4. En déduire les valeurs exactes de $\cos\frac{\pi}{12}$ et $\sin\frac{\pi}{12}$

 $\textbf{Exercice 14.} \ \ \textbf{D\'eterminer l'\'ecriture complexe de chacune des transformations suivantes}:$

- 1. L'homothétie f de centre A d'affixe 4i et de rapport $-\frac{1}{3}$
- 2. La rotation g de centre A d'affixe -2 et d'angle $\frac{3\pi}{4}$.
- 3. La translation h de vecteur d'affixe 4-2i.

Exercice 15.

- 1. Déterminer la représentation complexe d'une symétrie par rapport à une droite passant par l'origine et formant un angle de mesure $\theta \in \mathbb{R}$ avec l'axe des abscisses.
- 2. Montrer à l'aide des complexes que la composée de deux symétries par rapport à des droites passant par l'origine est une rotation de centre O et d'angle égal au double de l'angle formé entre les deux axes.
- 3. Que peut-on dire dans le cas de la composée de deux symétries d'axe sécants?

Exercice 16. Le plan est rapporté à un repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$. Soient A(3,-1) et B(0,2). On définit

- h l'homothétie de centre A et de rapport $-\sqrt{2}$.
- r, la rotation de centre B et d'angle $\frac{3\pi}{4}$.
- t, la translation de vecteur \overrightarrow{BO} .
- s, la transformation du plan définie par $s = t \circ r \circ h$.

Déterminer les points M tels que s(M) = O puis les points M tels que s(M) = M.

Exercice 17. Montrer que les translations et les homothéties préservent les angles orientés. On dit que ces transformations sont directes.

Exercice 18 (Inversion du plan). Soient \mathcal{P} le plan muni du repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j})$ et $\mathcal{P}^* = \mathcal{P} \setminus \{O\}$. Soit $k \in \mathbb{R}_+^*$. Soit $f: \mathcal{P}^* \to \mathcal{P}^*$ l'application qui a un point M du plan \mathcal{P} dont un système de coordonnées polaire est (r,θ) associe le point f(M) dont un système de coordonnées polaires est $(\frac{k}{r},\theta)$. On dit que f est l'inversion de pôle O et de puissance k.

- 1. Montrer que f est bien définie.
- 2. Montrer que f est une bijection de \mathcal{P}^* dans \mathcal{P}^* et préciser sa bijection réciproque.
- 3. Quel est l'ensemble des points invariants par f. On décrira cet ensemble à l'aide d'objets géométriques (droites, cercle, ...) dont on précisera les caractéristiques.
- 4. Soit A et B dans \mathcal{P}^* , notons A' et B' leurs images par f. À l'aide des complexes, montrer que

$$A'B' = k \frac{AB}{OA \times OB}.$$

- 5. Soit $M \in \mathcal{P}^*$. Si M' = f(M), montrer que \overrightarrow{OM} et $\overrightarrow{OM'}$ sont colinéaires et que $\overrightarrow{OM} \cdot \overrightarrow{OM'} = k$.
- 6. (a) Soit Δ une droite passant par O. Montrer que $\Delta \setminus \{O\}$ est invariant par f.
 - (b) Soit Δ une droite ne passant pas par O. Montrer que $f(\Delta)$ est un cercle passant par O.
 - (c) En déduire que l'image d'un cercle passant par O (privé de O) est une droite ne passant pas par O.
 - (d) L'image d'un cercle ne passant pas par O est un cercle ne passant pas par O.
- 7. Démontrer le théorème de Ptolémée : Quatre points distincts O, A, B et C sont co-cycliques ou alignés si et seulement si parmi les trois quantités OA BC, OB AC et OC AB l'une est la somme des deux autres.

4 Distances

Exercice 19. On considère le cercle \mathcal{C} de centre (2,4) et de rayon R > 0 ainsi que la droite d d'équation x + y = 4. Déterminer, suivant la valeur de R, le nombre de points d'intersection du cercle \mathcal{C} et de la droite d.

Exercice 20. Déterminer la distance du point M(1,1) à la droite d passant par les points A(1,0) et B(3,1).

Exercice 21. Soit \mathcal{D} et \mathcal{D}' les droites du plan \mathcal{P} d'équations cartésiennes 3x - 4y + 4 = 0 et 12x + 5y - 5 = 0. On pose

$$\mathcal{E} = \{ M \in \mathcal{P} / d(M, \mathcal{D}) = d(M, \mathcal{D}') \}.$$

Déterminer une équation cartésienne de \mathcal{E} et montrer que c'est la réunion de deux droites perpandiculaires.

Exercice 22. Soit λ est un paramètre réel. On considère la famille de droites \mathcal{D}_{λ} d'équation cartésienne :

$$\mathcal{D}_{\lambda} \mid (1 - \lambda^2)x + 2\lambda y = 4\lambda + 2.$$

Montrer qu'il existe un point équidistant de toutes les droites $(\mathcal{D}_{\lambda})_{\lambda \in \mathbb{R}}$.

Exercice 23. Pour $m \in \mathbb{R} \setminus \{-1\}$ on considère \mathcal{C}_m défini par

$$C_m \mid x^2 + y^2 - 4mx - 2my + \frac{9m^2}{2} - m - \frac{1}{2} = 0.$$

- 1. Pour tout $m \in \mathbb{R} \setminus \{-1\}$, montrer que C_m est un cercle dont on déterminera le rayon R_m et les coordonnées du centre Ω_m .
- 2. Pourquoi a-t'on exclus le cas m = -1?
- 3. Montrer que la droite $\mathcal{D} \mid y = x + 1$ est tangente à tous les cercles \mathcal{C}_m pour $m \in \mathbb{R} \setminus \{-1\}$.
- 4. Déterminer les équations des autres tangentes communes à ces cercles s'il en existe.