

20180402 최주형

INDEX

1. 과제 개요

🥦 2. 시스템 요청 사항

🌎 3. 구현할 시스템 Image

배경설명

LiDAR(Light Detection And Ranging, LiDAR)

자율주행에서의 LiDAR 활용 🦚

- mapping, localizing, detecting
- 실시간으로 물체, 장애물, 사람, 자동차 등의 객체 인식 및 추적, 이동체의 속도와 방향 측정 등을 높은 정밀도로 수행
- 자율주행 자동차에서 공간 좌표와 거리를 기반으로 도로 구조 mapping과 전방 물체에 대한 3차원 정보를 실시간으로 획득하는 센서로 활용

문제 정의

LiDAR의 정보를 통해 얻은 point cloud

하나의 point cloud 입장에서 수집된 LiDAR 빔의 형상

이상적인 결과 : 시작 포인트와 끝 포인트가 만나는 하나의 원의 형상

실제 point cloud : 시작 포인트와 끝 포인트가 만나지 않음

문제 원인

이동하는 vehicle → LiDAR 빔을 쏘는 지점이 한 지점이 아니라 한 구간이 됨

시간 T(s) ~ T+0.1(s) 동안 vehicle이 전방으로 이동한 거리

- 실제 LiDAR가 수집한 point cloud는 서로 다른 시간에 발사한 빔이 검출한 points
- LiDAR scan을 보정하여 시간 T+0.1(s)에 vehicle이 정지해 있다고 가정할 때, 검출될 수 있는 point cloud의 모습으로 변형
- Ground truth(실제 물리 환경, 차량이 정지해 있을 때 얻을 수 있는 point cloud)와 보다 유사한 point cloud를 얻을 수 있음

목적

LiDAR를 활용하는 분야가 많은 만큼 다양한 분야에서의 개선이 기대됨

예) 우주 탐사 로봇에서의 활용, 3차원 영상 복원을 위한 스캐너, 미래 자율주행자동차 등

자율주행에서의 성능 개선을 목표로 하고 있음

mapping

matching

Object detecting

clustering

시스템 요청 사항

시스템 요청 사항

→ 구현할 LiDAR 특정 → velodyne, ouster 등

odometer

차에 장착하여 바퀴가 돌아가는 대로 주행 거리를 측정

Linear.x 와 angular.z

delta_x, delta_y, delta_th, time stamp 추출

단위 시간 마다 각각의 point를 보정하여 point cloud를 생성한다.

차량의 odometer정보를 통해 lidar 빔의 기준이 되는 **구간**의 정보를 얻을 수 있음

시스템 요청 사항

통합 LiDAR driver

필요성

LiDAR 구입시, 해당 LiDAR를 구동하는 드라이버를 제공함

LiDAR 의 종류는 매우 다양 → packet 구조가 모두 다름 → 구동하는 드라이버가 다름

3 구현할 시스템 Image

구현할 시스템 Image

구현할시스템 Image

