PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 9/02	A1	11) International Publication Number: WO 98/3828' 43) International Publication Date: 3 September 1998 (03.09.98)
(21) International Application Number: PCT/DK (22) International Filing Date: 23 February 1998 ((30) Priority Data: 0222/97 28 February 1997 (28.02.97) (71) Applicant: NOVO NORDISK A/S [DK/DK]; No DK-2880 Bagsværd (DK). (72) Inventors: SVENDSEN, Allan; Bakkeledet 28, Birkerød (DK). XU, Feng; Carmel Valley Drive, W CA 95776 (US). (74) Common Representative: NOVO NORDISK A/S; O Patents, Novo Allé, DK-2880 Bagsværd (DK).	23.02.9) D	(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BF, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, T. TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO pater (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian pater (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European pater (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report. Before the expiration of the time limit for amending the

(54) Title: LACCASE MUTANTS

(57) Abstract

The present invention relates to a method of designing laccase mutants with increased oxidation potential and/or changed pH optimum and/or altered mediator pathway and/or altered O2/OH-pathway, which method is based on the hitherto unknown three-dimensional structure of laccases.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/38287 PCT/DK98/00070

1

LACCASE MUTANTS

FIELD OF THE INVENTION

5

BACKGROUND OF THE INVENTION

Laccase is a polyphenol oxidase (EC 1.10.3.2) which catalyses the oxidation of a variety of inorganic and aromatic compounds, particularly phenols, with the concomitant reduction of molecular oxygen to water.

Laccase belongs to a family of blue copper-containing oxidases which includes ascorbate oxidase and the mammalian plasma protein ceruloplasmin. All these enzymes are multi-copper-containing proteins.

Because laccases are able to catalyze the oxidation of a variety of inorganic and aromatic compounds, laccases have been suggested in many potential industrial applications such as lignin modification, paper strengthening, dye transfer inhibition in detergents, phenol polymerization, hair colouring, and waste water treatment.

No three-dimensional structural information has been available for a laccase before.

We have now elucidated the three-dimensional structure of a Coprinus cinereus laccase. By having this three-dimensional structure we are able to create laccase variants with altered properties: increased oxidation potential and/or changed pH optimum and/or altered mediator pathway and/or altered O2/OH-pathway.

30

25

BRIEF DISCLOSURE OF THE INVENTION

35 The three-dimensional structure of a laccase has now been elucidated. On the basis of an analysis of said structure it is possible to identify structural parts or specific amino acid residues which from structural or functional considerations

appear to be important for increased oxidation potential and/or changed pH optimum and/or altered mediator pathway and/or altered O_2/OH -pathway of a laccase.

Furthermore, when comparing the three-dimensional structure of the *Coprinus* laccase structure with known amino acid sequences of various laccases, it has been found that some similarities exist between the sequences. The present invention is based on these findings.

Accordingly, in a first aspect the invention relates to a method of constructing a variant of a parent *Coprinus* laccase, which variant has laccase activity and increased oxidation potential and/or changed pH optimum and/or altered mediator pathway and/or altered O_2/OH -pathway as compared to said parent laccase, which method comprises

15

10

the three-dimensional structure of analysing the parent i) Coprinus laccase to identify at least one amino acid residue or at least one structural part of the Coprinus laccase structure, which amino acid residue or structural part is believed to be of relevance for altering the oxidation potential and/or altering the pH optimum and/or altering the mediator pathway and/or altering the O₂/OH⁻-pathway of the parent Coprinus laccase (as functional evaluated on the basis of structural or considerations).

25

30

35

20

- ii) constructing a *Coprinus* laccase variant, which as compared to the parent *Coprinus* laccase, has been modified in the amino acid residue or structural part identified in i) so as to alter the oxidation potential and/or alter the pH optimum and/or alter the mediator pathway and/or alter the O_2/OH -pathway, and, optionally,
- iii) testing the resulting *Coprinus* laccase variant with respect to oxidation potential and/or pH optimum and/or mediator pathway and/or O₂/OH⁻-pathway.
- In a second aspect the present invention relates to a method of constructing a variant of a parent *Coprinus*-like laccase, which variant has laccase activity and increased oxidation

potential and/or changed pH optimum and/or altered mediator pathway and/or altered O_2/OH -pathway as compared to said parent laccase, which method comprises

- i) comparing the three-dimensional amino acid structure of the
 5 Coprinus laccase with an amino acid sequence of a Coprinus-like laccase,
- ii) identifying a part of the *Coprinus*-like laccase amino acid sequence which is different from the *Coprinus* laccase amino acid sequence and which from structural or functional considerations is contemplated to be responsible for differences in the stability of the *Coprinus* and *Coprinus*-like laccase,
- iii) modifying the part of the *Coprinus*-like laccase identified in ii) whereby a *Coprinus*-like laccase variant is obtained, which has an increased oxidation potential and/or changed pH optimum and/or altered mediator pathway and/or altered O₂/OH-pathway as compared to the parent *Coprinus*-like laccase, and optionally,
- 20 iv) testing the resulting *Coprinus*-like laccase variant with respect to oxidation potential and/or pH optimum and/or mediator pathway and/or O₂/OH-pathway.

In still further aspects the invention relates to variants of a Coprinus laccase and of Coprinus-like laccases, DNA encoding such variants and methods of preparing the variants. Finally, the invention relates to the use of the variants for various industrial purposes.

30 DETAILED DISCLOSURE OF THE INVENTION

The Coprinus-like laccases

A number of laccases produced by different fungi are homologous on the amino acid level. For instance, when using the homology percent obtained from UWGCG program using the GAP program with the default parameters (penalties: gap weight=3.0, length weight=0.1; WISCONSIN PACKAGE Version 8.1-UNIX, August

1995, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) the following homology was found:

Coprinus cinereus laccase comprising the amino acid sequence shown in SEQ ID_No. 1: 100%;

5 Polyporus pinsitus (I) laccase comprising the amino acid sequence shown in SEQ ID No. 2: 74.4%;

Polyporus pinsitus (II) laccase comprising the amino acid sequence shown in SEQ ID No. 3: 73.8%;

Phlebia radiata laccase comprising the amino acid sequence shown

10 in SEQ ID No. 4: 69.9%;

20

Rhizoctonia solani (I) laccase comprising the amino acid sequence shown in SEQ ID No. 5: 64.8%;

Rhizoctonia solani (II) laccase comprising the amino acid sequence shown in SEQ ID No. 6: 63.0%;

15 Rhizoctonia solani (III) laccase comprising the amino acid sequence shown in SEQ ID No. 7: 61.0%;

Rhizoctonia solani (IV) laccase comprising the amino acid sequence shown in SEQ ID No. 8: 59.7%;

Scytalidium thermophilum laccase comprising the amino acid sequence shown in SEQ ID No. 9: 57.4%;

Myceliophthora thermophila laccase comprising the amino acid sequence shown in SEQ ID No. 10: 56.5%.

Because of the homology found between the above mentioned laccases, they are considered to belong to the same class of laccases, namely the class of "Coprinus-like laccases".

Accordingly, in the present context, the term "Coprinus-like laccase" is intended to indicate a laccase which, on the amino acid level, displays a homology of at least 50% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 55% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 60% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 65% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 70% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 75% and less th

ID NO 1, or at least 80% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 85% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 90% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1, or at least 95% and less than 100% to the Coprinus cinereus laccase SEQ ID NO 1.

In the present context, "derived from" is intended not only to indicate a laccase produced or producible by a strain of the organism in question, but also a laccase encoded by a DNA sequence isolated from such strain and produced in a host organism containing said DNA sequence. Finally, the term is intended to indicate a laccase which is encoded by a DNA sequence of synthetic and/or cDNA origin and which has the identifying characteristics of the laccase in question.

15

20

35

The three-dimensional Coprinus laccase structure

The *Coprinus* laccase which was used to elucidate the three-dimensional structure forming the basis for the present invention consists of the 539 amino acids derived from *Coprinus cinereus* laccase IFO 8371 as disclosed in sequence ID No. 1.

The obtained three-dimensional structure is believed to be representative for the structure of any *Coprinus*-like laccase.

The structure of the laccase was solved in accordance with the principle for X-ray crystallographic methods given in "X-Ray Structure Determination", Stout, G.K. and Jensen, L.H., John Wiley & Sons, inc. NY, 1989. The structural coordinates for the solved crystal structure of the laccase at 2.2 Å resolution using the isomorphous replacement method are given in a standard PDB format (Brookhaven Protein Data Base) in Appendix 1. It is to be understood that Appendix 1 forms part of the present application.

In Appendix 1 the amino acid residues of the enzyme are identified by three-letter amino acid code (capitalized letters).

The laccase structure is made up of three plastocyanin-like domains. These three domains all have a similar beta-barrel fold.

3 copper atoms were observed in the three-dimensional structure:

The so-called type 1 copper ion is coordinated by two

histidines and one cysteine.

The so-called type 2 copper of the trinuclear centre is missing in the structure disclosed in the present application.

The so-called type 3 copper consists of two type 3 copper atoms (pair of copper atoms) bound to a total of 6 histidine ligands.

When comparing the amino acid sequence of the crystallized three-dimensional structure with *Coprinus cinereus* amino acid sequence ID No. 1 the following four differences are observed:

- 10 18 amino acids are missing from the N-terminal of the crystallized protein;
 - 17 amino acids are missing from the C-terminal of the crystallized protein;
- Q19 in sequence ID No. 1 is an A1 in the crystallized protein;
 - Q243 in sequence ID No. 1 is an E225 in the crystallized protein.

Generality of structure

20

25

35

Because of the homology between the *Coprinus* laccase and the various *Coprinus*-like laccases, the solved structure defined by the coordinates of Appendix 1 is believed to be representative for the structure of all *Coprinus*-like laccases. A model structure of *Coprinus*-like laccases may be built on the basis of the coordinates given in Appendix 1 adapted to the laccase in question by use of an alignment between the respective amino acid sequences.

The above identified structurally characteristic parts of the Coprinus laccase structure may be identified in other Coprinus-like laccases on the basis of a model (or solved) structure of the relevant Coprinus-like laccase or simply on the basis of an alignment between the amino acid sequence of the Coprinus-like laccase in question with that of the Coprinus laccase used herein for identifying the amino acid residues of the respective structural elements.

Furthermore, in connection with *Coprinus* laccase variants of the invention, which are defined by modification of specific amino acid residues of the parent *Coprinus* laccase, it will be

understood that variants of *Coprinus*-like laccases modified in an equivalent position (as determined from the best possible amino acid sequence alignment between the respective sequences) are intended to be covered as well.

5

30

Methods of the invention for design of novel laccase variants

The analysis or comparison performed in step i) of the methods of the invention may be performed by use of any suitable computer programme capable of analysing and/or comparing amino acid sequences.

The structural part which is identified in step i) of the methods of the invention may be composed of one amino acid residue. However, normally the structural part comprises more than one amino acid residue, typically constituting one of the above mentioned parts of the *Coprinus* structure such as one of the copper centres.

Modifications

The modification of an amino acid residue or structural part is typically accomplished by suitable modifications of a DNA sequence encoding the parent enzyme in question. The term "modified" as used in the methods according to the invention is intended to have the following meaning: When used in relation to an amino acid residue the term is intended to mean replacement of the amino acid residue in question with another amino acid residue. When used in relation to a structural part, the term is intended to mean: replacement of one or more amino acid residues of said structural part with other amino acid residues, or addition of one or more amino acid residues to said part, or deletion of one or more amino acid residues of said structural part.

The construction of the variant of interest is accomplished by cultivating a microorganism comprising a DNA sequence encoding the variant under conditions which are conducive for producing the variant, and optionally subsequently recovering the variant from the resulting culture broth. This is described in detail further below.

Variants with altered oxidation potential

The redox potentials of various wild type laccases have been found to be the following (measured at pH 5.3):

E°, V vs NHE

5 Coprinus cinereus (SEQ ID No. 1):

Polyporus pinsitus (SEQ ID No. 2):

Myceliophthora thermophila (SEQ ID No. 10):

Rhizoctonia solani (SEQ ID No. 7):

Scytalidium thermophilum (SEQ ID No. 9):

0.53

10

15

It is contemplated that it is possible to increase the oxidation potential of a parent *Coprinus* laccase or a parent *Coprinus*-like laccase, wherein said variant is the result of a mutation, i.e. one or more amino acid residues have been deleted from, replaced or added to the parent laccase. Preferred positions for mutations are the following:

```
Coprinus cinereus laccase (SEQ ID No. 1):
    G411A, V, P, L, I, F, Y, W;
20 G412A, V, P, L, I, F, Y, W;
    V409P, L, I, F, Y, W;
    T257A, V, P, L, I, F, Y, W;
    F358Y, W, I;
    T359A, V, P, L, I, F, Y, W;
25 L480I, F, Y, W;
    L351I, F, Y, W;
    E473A, V, P, L, I, F, Y, W;
    D98A, V, P, L, I, F, Y, W;
    G131A, V, P, L, I, F, Y, W;
30 D443A, V, P, L, I, F, Y, W;
    R260 A, V, P, L, I, F, Y, W; in particular
    G411A, V;
    G412A, V, L, I;
    V409L, I;
35 T257V;
    F358W;
```

```
T359V,F;
   L480I,F;
   L351I,F;
   E473L, I, F;
5 D98L, I, F;
   G131V, L, I;
   D443I,F;
   R260I;
   D443I+R260I;
10 D443F+R260I.
   Polyporus pinsitus (SEQ ID No. 2):
   A390V, P, L, I, F, Y, W;
   G392A, V, P, L, I, F, Y, W;
15 E460D; in particular
   A390V,L,I;
   G392A, V.
   Myceliophthora thermophila laccase (SEQ ID No. 10):
20 G511A, V, P, L, I, F, Y, W;
   T428A, V, P, L, I, F, Y, W;
    S510A, V, P, L, I, F, Y, W;
   D106A, V, P, L, I, F, Y, W;
   N109A, V, P, L, I, F, Y, W, Q;
25 L500I, F, Y, W;
   A108V, P, L, I, F, Y, W;
   G514A, V, P, L, I, F, Y, W; in particular
   G511A, V, L, I, F;
   T428V;
30 S510V;
   D106L;
   N109I,F,Q;
   L500F;
   A108V, I;
35 G514A, V, L, I, F.
```

Preferred variants include any combination of the above mentioned mutations.

WO 98/38287

10

Variants with altered pH optimum

The desired pH optimum of a laccase depends on which application is of interest, e.g., if the laccase is to be used for denim bleaching the preferred pH optimum will be around pH 5-8, whereas if the laccase is to be used for washing purposes the preferred pH optimum will be around pH 8-10.

It is contemplated that it is possible to alter the pH optimum of a parent *Coprinus* laccase or a parent *Coprinus*-like laccase by creating a mutation in an amino acid within 10 Å from the active His in the Cul site.

Preferred positions for mutations are the following:

```
Coprinus cinereus laccase (SEQ ID No. 1):
15
  180-181;
   222-224;
   257;
   281-284;
   352-353;
  357-358;
20
   409-416;
   470-490.
   Polyporus pinsitus (SEQ ID No. 2):
25 E460L, I, F, M, S;
   F463L,M.
   Myceliophthora thermophila (SEQ ID No. 10):
   192-193;
30 234-236;
   269;
   293-294;
   364-365;
   372-373;
35 426-433;
   503-513.
```

Preferred substitutions are the following: E, D, L, I, F, Y, W.

Variants with altered mediator efficiency

Laccases are often used in combination with so called mediators or enhancers, e.g., in combination with phenothiazine or phenothiazine related compounds (see WO 95/01426) or in combination with acetosyringone or acetosyringone related compounds (see WO 96/10079).

It is contemplated that it is possible to alter the mediator of efficiency (in order to make the mediator more efficient), of a parent *Coprinus* laccase or a parent *Coprinus*-like laccase by creating a mutation in an amino acid in one or more of the following positions:

```
15 Coprinus cinereus laccase (SEQ ID No. 1):
179-182;
223;
281-282;
353-358;
20 410-412;
472;
474-475;
477-478.
```

25 Preferred substitutions are the following: W, F, M, Y, R, K, S,
 T, N, Q; in particular the following substitutions:
 F358W;
 N478Q.

30 Myceliophthora thermophila laccase (SEQ ID No. 10):

```
185-194;
235;
293-294;
365-373;
35 427-429;
505;
```

507-508;

```
510-511.

Preferred substitutions are in particular one or more of the following mutations:
5 N189G,A,S,T;
S190G,A;
F371* (deletion);
F371G,A.

10 Polyporus pinsitus (SEQ ID No. 2):
G392A;
A461T,S;
N260Q,Y;
G165K,R.
```

Altered O₂ /OH-pathway

It is contemplated that it is possible to lower the possibility of OH entering the trinuclear Cu site by producing one or more of the following mutations:

```
Myceliophthora thermophila (SEQ ID No. 10):
    A506E;
    N109D;
25 H93E;
    H95E;
    M433E;
    M480E.

30 Polyporus pinsitus (SEQ ID No. 2):
    F81D,E;
    L112D,E;
    A80D,E.
```

Methods of preparing laccase variants

35

Several methods for introducing mutations into genes are known in the art. After a brief discussion of the cloning of

laccase-encoding DNA sequences, methods for generating mutations at specific sites within the laccase-encoding sequence will be discussed.

Cloning a DNA sequence encoding a laccase

20

30

The DNA sequence encoding a parent laccase may be isolated from any cell or microorganism producing the laccase in question, using various methods well known in the art. First, a genomic DNA and/or cDNA library should be constructed using chromosomal DNA or messenger RNA from the organism that produces the laccase to be studied. Then, if the amino acid sequence of the laccase is known, homologous, labelled oligonucleotide probes may be synthesized and used to identify laccase-encoding clones from a genomic library prepared from the organism in question. Alternatively, a labelled oligonucleotide probe containing sequences homologous to a known laccase gene could be used as a probe to identify laccase-encoding clones, using hybridization and washing conditions of lower stringency.

A method for identifying laccase-encoding clones involves inserting cDNA into an expression vector, such as a plasmid, transforming laccase-negative fungi with the resulting cDNA library, and then plating the transformed fungi onto agar containing a substrate for laccase, thereby allowing clones expressing the laccase to be identified.

Alternatively, the DNA sequence encoding the enzyme may be prepared synthetically by established standard methods, e.g. the phosphoroamidite method. In the phosphoroamidite method, oligonucleotides are synthesized, e.g. in an automatic DNA synthesizer, purified, annealed, ligated and cloned in appropriate vectors.

Finally, the DNA sequence may be of mixed genomic and synthetic origin, mixed synthetic and cDNA origin or mixed genomic and cDNA origin, prepared by ligating fragments of synthetic, genomic or cDNA origin (as appropriate, the fragments corresponding to various parts of the entire DNA sequence), in accordance with standard techniques. The DNA sequence may also be prepared by polymerase chain reaction (PCR) using specific primers.

Site-directed mutagenesis

10

35

Once a laccase-encoding DNA sequence has been isolated, and desirable sites for mutation identified, mutations may be introduced using synthetic oligonucleotides. These oligonucleotides 5 contain nucleotide sequences flanking the desired mutation sites; mutant nucleotides are inserted during oligonucleotide synthesis. In a specific method, a single-stranded gap of DNA, bridging the laccase-encoding sequence, is created in a vector carrying the laccase gene. Then the synthetic nucleotide, bearing the desired mutation, is annealed to a homologous portion of the singlestranded DNA. The remaining gap is then filled in with T7 DNA polymerase and the construct is ligated using T4 specific example of this method is described in Morinaga et al. (1984). US 4,760,025 discloses the introduction of oligonucleotides encoding multiple mutations by performing minor alterations of the cassette. However, an even greater variety of mutations can be introduced at any one time by the Morinaga method, because a multitude of oligonucleotides, of various lengths, introduced.

20 Another method of introducing mutations into laccase-encoding DNA sequences is described in Nelson and Long (1989). It involves the 3-step generation of a PCR fragment containing the desired mutation introduced by using a chemically synthesized DNA strand as one of the primers in the PCR reactions. From the PCR-generated fragment, a DNA fragment carrying the mutation may be isolated by cleavage with restriction endonucleases and reinserted into an expression plasmid.

Random mutagenesis

30 The random mutagenesis of a DNA sequence encoding a parent laccase may conveniently be performed by use of any method known in the art.

For instance, the random mutagenesis may be performed by use of a suitable physical or chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA sequence to PCR generated mutagenesis. Furthermore, the random mutagenesis may be performed by use of any combination of these mutagenizing agents.

The mutagenizing agent may, e.g., be one which induces transitions, transversions, inversions, scrambling, deletions, and/or insertions.

Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues.

When such agents are used, the mutagenesis is typically performed by incubating the DNA sequence encoding the parent enzyme to be mutagenized in the presence of the mutagenizing agent of choice under suitable conditions for the mutagenesis to take place, and selecting for mutated DNA having the desired properties.

When the mutagenesis is performed by the use of an oligonucleotide, the oligonucleotide may be doped or spiked with the three non-parent nucleotides during the synthesis of the oligonucleotide at the positions which are to be changed. The doping or spiking may be done so that codons for unwanted amino acids are avoided. The doped or spiked oligonucleotide can be incorporated into the DNA encoding the laccase enzyme by any published technique, using e.g. PCR, LCR or any DNA polymerase and ligase.

When PCR-generated mutagenesis is used, either a chemically 25 treated or non-treated gene encoding a parent laccase enzyme is PCR under conditions that increase subjected to the misincorporation of nucleotides (Deshler 1992; Leung al., Technique, Vol.1, 1989, pp. 11-15).

30 A mutator strain of *E. coli* (Fowler et al., Molec. Gen. Genet., 133, 1974, pp. 179-191), *S. cereviseae* or any other microbial organism may be used for the random mutagenesis of the DNA encoding the laccase enzyme by e.g. transforming a plasmid containing the parent enzyme into the mutator strain, growing the mutator strain with the plasmid and isolating the mutated plasmid from the mutator strain. The mutated plasmid may subsequently be transformed into the expression organism.

10

20

25

35

The DNA sequence to be mutagenized may conveniently be present in a genomic or cDNA library prepared from an organism expressing the parent laccase enzyme. Alternatively, the DNA sequence may be present on a suitable vector such as a plasmid or a bacteriophage, which as such may be incubated with or otherwise exposed to the mutagenizing agent. The DNA to be mutagenized may also be present in a host cell either by being integrated in the genome of said cell or by being present on a vector harboured in the cell. Finally, the DNA to be mutagenized may be in isolated form. It will be understood that the DNA sequence to be subjected to random mutagenesis is preferably a cDNA or a genomic DNA sequence.

In some cases it may be convenient to amplify the mutated DNA sequence prior to the expression step or the screening step being performed. Such amplification may be performed in accordance with methods known in the art, the presently preferred method being PCR-generated amplification using oligonucleotide primers prepared on the basis of the DNA or amino acid sequence of the parent enzyme.

Subsequent to the incubation with or exposure to the mutagenizing agent, the mutated DNA is expressed by culturing a suitable host cell carrying the DNA sequence under conditions allowing expression to take place. The host cell used for this purpose may be one which has been transformed with the mutated DNA sequence, optionally present on a vector, or one which was carried the DNA sequence encoding the parent enzyme during the mutagenesis treatment. Examples of suitable host cells are fungal hosts such as Aspergillus niger or Aspergillus oryzae.

30 The mutated DNA sequence may further comprise a DNA sequence encoding functions permitting expression of the mutated DNA sequence.

Localized random mutagenesis

The random mutagenesis may advantageously be localized to a part of the parent laccase in question. This may, e.g., be advantageous when certain regions of the enzyme have been identified to be of particular importance for a given property of

15

25

30

35

the enzyme, and when modified are expected to result in a variant having improved properties. Such regions may normally be identified when the tertiary structure of the parent enzyme has been elucidated and related to the function of the enzyme.

The localized random mutagenesis is conveniently performed by use of PCR-generated mutagenesis techniques as described above or any other suitable technique known in the art.

Alternatively, the DNA sequence encoding the part of the DNA sequence to be modified may be isolated, e.g. by being inserted into a suitable vector, and said part may subsequently be subjected to mutagenesis by use of any of the mutagenesis methods discussed above.

With respect to the screening step in the above-mentioned method of the invention, this may conveniently be performed by use of an filter assay based on the following principle:

A microorganism capable of expressing the mutated laccase enzyme of interest is incubated on a suitable medium and under suitable conditions for the enzyme to be secreted, the medium being provided with a double filter comprising a first protein-binding filter and on top of that a second filter exhibiting a low protein binding capability. The microorganism is located on the second filter. Subsequent to the incubation, the first filter comprising enzymes secreted from the microorganisms is separated from the second filter comprising the microorganisms. The first filter is subjected to screening for the desired enzymatic activity and the corresponding microbial colonies present on the second filter are identified.

The filter used for binding the enzymatic activity may be any protein binding filter e.g. nylon or nitrocellulose. The top filter carrying the colonies of the expression organism may be any filter that has no or low affinity for binding proteins e.g. cellulose acetate or Durapore $^{\text{TM}}$. The filter may be pretreated with any of the conditions to be used for screening or may be treated during the detection of enzymatic activity.

The enzymatic activity may be detected by a dye, fluorescence, precipitation, pH indicator, IR-absorbance or any other known technique for detection of enzymatic activity.

The detecting compound may be immobilized by any immobilizing

PCT/DK98/00070 WO 98/38287 18

agent, e.g., agarose, agar, gelatine, polyacrylamide, starch, filter paper, cloth; or any combination of immobilizing agents.

Laccase activity

In the context of this invention, the laccase activity was 5 10-(2-hydroxyethyl)-phenoxazine using substrate for the various laccases. HEPO was synthesized using described for 10-(2-hydroxyethyl)procedure as phenothiazine, (G. Cauquil in Bulletin de la Society Chemique de 10 France, 1960, p. 1049). In the presence of oxygen laccases (E.C. 1.10.3.2) oxidize HEPO to a HEPO radical that can be monitored photometrically at 528 nm.

The Coprinus cinereus laccase and the Polyporus pinsitus laccase were measured using 0.4 mM HEPO in 50 mM MES-NaOH, pH 15 5.5. The absorbance at 528 nm was followed for 200 s and the rate calculated from the linear part of the progress curve.

The Myceliophthora thermophila laccase was measured using 0.4 mM HEPO in 25 mM Tris-HCl, pH 7.5, 0.05% Tween-20 at 30 °C. The absorbance at 528 nm was followed for 200 s and the rate calculated from the linear part of the progress curve.

Expression of laccase variants

30

According to the invention, a DNA sequence encoding the variant produced by methods described above, or by any alterna-25 tive methods known in the art, can be expressed, in enzyme form, using an expression vector which typically includes control sequences encoding a promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene or various activator genes.

The recombinant expression vector carrying the DNA sequence encoding a laccase variant of the invention may be any vector may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced. Thus, the vector may 35 be an autonomously replicating vector, i.e. a vector which exists as an extrachromosomal entity, the replication of which is e.g. a plasmid, replication, independent of chromosomal bacteriophage or an extrachromosomal element, minichromosome or WO 98/38287 PCT/DK98/00070

an artificial chromosome. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated.

In the vector, the DNA sequence should be operably connected to a suitable promoter sequence. The promoter may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell. Examples of suitable promoters for directing the transcription of the DNA sequence encoding a laccase variant of the invention, especially in a fungal host, are those derived from the gene encoding A. oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, A. niger neutral α-amylase, A. niger acid stable α-amylase, A. niger glucoamylase, Rhizomucor miehei lipase, A. oryzae alkaline protease, A. oryzae triose phosphate isomerase or A. nidulans acetamidase.

The expression vector of the invention may also comprise a suitable transcription terminator and, in eukaryotes, polyadenylation sequences operably connected to the DNA sequence encoding the laccase variant of the invention. Termination and polyadenylation sequences may suitably be derived from the same sources as the promoter.

20

30

35

The vector may further comprise a DNA sequence enabling the vector to replicate in the host cell in question. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUB110, pE194, pAMB1 and pIJ702.

The vector may also comprise a selectable marker, e.g. a gene, the product of which complements a defect in the host cell, such as one which confers antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracyclin resistance. Furthermore, the vector may comprise Aspergillus selection markers such as amdS, argB, niaD and sC, a marker giving rise to hygromycin resistance, or the selection may be accomplished by co-transformation, e.g. as described in WO 91/17243.

The procedures used to ligate the DNA construct of the invention encoding a laccase variant, the promoter, terminator and other elements, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (cf., for instance, Sambrook et al. (1989)).

The cell of the invention, either comprising a DNA construct or an expression vector of the invention as defined above, advantageously used as a host cell in the recombinant production laccase variant of the invention. The cell transformed with the DNA construct of the invention encoding the variant, conveniently by integrating the DNA construct (in one or copies) in the host chromosome. This integration generally considered to be an advantage as the DNA sequence is more likely to be stably maintained in the cell. Integration of the DNA constructs into the host chromosome may be performed according to conventional methods, e.g. by homologous heterologous recombination. Alternatively, the cell be transformed with an expression vector as described above connection with the different types of host cells.

The cell of the invention may be a cell of a higher organism such as a mammal or an insect, but is preferably a microbial cell, e.g. a fungal cell.

20

30

The filamentous fungus may advantageously belong to a species of Aspergillus, e.g. Aspergillus oryzae or Aspergillus niger. Fungal cells may be transformed by a process involving protoplast formation and transformation of the protoplasts followed by regeneration of the cell wall in a manner known per se. A suitable procedure for transformation of Aspergillus host cells is described in EP 238 023.

In a yet further aspect, the present invention relates to a method of producing a laccase variant of the invention, which method comprises cultivating a host cell as described above under conditions conducive to the production of the variant and recovering the variant from the cells and/or culture medium.

The medium used to cultivate the cells may be any conventional medium suitable for growing the host cell in question and obtaining expression of the laccase variant of the invention. Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g. as described in catalogues of the American Type Culture Collection).

21

The laccase variant secreted from the host cells may conveniently be recovered from the culture medium by well-known procedures, including separating the cells from the medium by centrifugation or filtration, and precipitating proteinaceous components of the medium by means of a salt such as ammonium sulphate, followed by the use of chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.

10 Industrial Applications

The laccase variants of this invention possesses valuable properties allowing for various industrial applications, in particular lignin modification, paper strengthening, dye transfer inhibition in detergents, phenol polymerization, hair dyeing, textile dyeing, bleaching of textiles (in particular bleaching of denim as described in WO 96/12845 and WO 96/12846) and waste water treatment.

	Appendix	c 1:															
	SEORES		Α	504	GLN	ILE	VAL	ASN	SER	VAL	ASP	THR	MET	THR	LEU	THR	ASN
	224.25	_														-	
	SEORES	2	Α	504	ALA	ASN	VAL	SER	PRO	ASP	GLY	PHE	THR	ARG	ALA	GLY	ILE
5	DIGRED							~		- 10 -							
,	SEORES	2	A	504	र.च्या	377 T.	A CN	CT.V	377 T.	ште	GT.V	חממ	T.ETT	TI.E	ARG	GT.V	GT.V
	SEQRES	3	_	304		VAL	AUI	GLI	·	1110	GDI	210	11110		THIC	021	021
	GRODES	4	7	E 0.4	TVC	א כיאד	ACD	7. C'NT	סנות	CT II	י יים ד	7) C'NT	377 T	177\ T	ASN	λCD	TIGIT
	SEQRES	4	A	504	пıэ	ASN	ASP	MOIN	Pnc	GTO	цео	ADIA	VAL	VAL	ASN	ASE	про
10	anonna a	-	7	504	a CD	A CAT	DDO	mirro	METAL	T 1717	700	DDO	WIII)	משם	ILE	ите	ממיזי
10	SEQRES	5	Α	504	ASP	ASN	PRO	IHK	MET	TEO	ARG	PRO	Ink	SER	TUE	HIS	IRP
	anonna	_	7.	F 0 4	*****	OT 37	T 1711	DITE	CT N	7 D.C	OT W	mrrn.	A CAT	mn n	7. T. 7	A C'NT	CT V
	SEQRES	6		504											ALA .		
	SEQRES	7	Α	504	ALA	ASP	GLY	VAL	ASN	GLN	CYS	PRO	TTE	SER	PRO	GLY	HIS
		_	_											~***			GT 37
15	SEQRES	8	A	504	ALA	PHE	LEU	TYR	LYS	PHE	THR	PRO	ALA	GLY	HIS	АЦА	GLIY
		_	_				mp 5	mite	***				~~ ~~	m	GT 17	m	ava
	SEQRES	9	A	504	THR	PHE	TRP	TYR	HIS	SER	HIS	PHE	GLY	THR	GLN	TYR	CYS
	anonna			E 0.4	7 C D	GT W		200	GT 11	DDO	Marie	3.7.3.T		mara	7 CD	N C D	A CM
20	SEQRES	10	A	504	ASP	GLY	LEU	ARG	GLY	PRO	ME.I.	VAL	TTE	TYR	ASP	ASP	ASN
20			_										~			GT 17	7 (2)7
	SEQRES	11	A	504	ASP	PRO	HIS	ALA	ALA	LEU	TYR	ASP	GLU	ASP	ASP	نانن	ASN
			_											****		220	777
	SEQRES	12	A	504	THR	TIE	TTE	THR	LEU	АЬА	ASP	TRP	TYR	HIS	ILE	PRO	ALA
25	CHORRE		70	E04	DDO	CED	TT 17	CT N	OT W	71 T T	27.2	CT N	חחח	7 CD	71 7	TUD	T 1771
25	SEQRES	13	A	504	PRO	SER	TLE	GLIN	GLY	ALA,	АЬА	GLIN	PRO	ASP	ALA	Ink	LEO
	CEODEC	7.4	70	504	TITO	A CINT	CT V	TVC	CT V	אחמ	TTVID.	777 T	CTV	CTV	DBO	אדא	ALA
	SEQRES	14	A	504	1116	ASN	GLI	LIS	GLI	ARG	IIK	VAL	GLI	GLI	PRO	AUA	ALIA
	CEODEC	15	75	504	CTT	T 1271	C E D	77 57	377 T	A CM	17 N T	CT II	CT N	CT V	LYS	TVC	TVD
30	SEQRES	13	A	304	GLU	пео	SER	7775	VAL	ASN	VAL	GLO	GLIN	GLI	піз	піз	IIK
30	CRODEC	16	70.	504	ND.C	MINT	אחמ	TEIT	TTP	CED	7 1711	CED	CVC	מטע	PRO	7 CN	ממיזי
	SEQRES	Τ0	A	504	ARG	MET	ARG	LEU	TTE	SER	TEU	SER	CIS	ASP	PRO	HSM	IRP
	CRODEC	7.7	7.	504	OT N	DIID	CED	TT 12	N C D	CIT 32		CT 11	T TOTT	TTTD	ILE	TTE	CTII
	SEQRES	17	A	504	GLIN	PnE	SER	1115	ASP	GLI	uro	GDO	цьо	Ink	7115	1112	GLO
35	SEQRES	18	7\	504	₹77 \ T .	as v	GT.V	ZCN	דושון	פעיף	GT.TT	חממ	птс	тит	VAL	ASP	ARG
))	SEQRES			504											PHE		
	-	19								_		-			ILE		
	SEQRES	20		504													
	SEQRES	21		504											GLY		
40	SEQRES	22		504											TYR		
40	SEQRES	23		504											ASN		
	SEQRES	24		504		_									ALA		
	SEQRES	25		504											GLY		
	SEQRES	26		504											SER		
	SEQRES	27		504											SER		
45	SEQRES	28	A	504	VAL	PRO	THR	TEA	ΓEΩ	GLN	τħΕ	MET	SER	GLY	ALA	GLIN	SEK

WO 98/38287 PCT/DK98/00070

	SEQRES	29 A	504	1 ALA	ASN	ASP	LEU 1	LEU	PRO	ALA	GLY	SER	VAL	TYR	GLU	LEU
	SEQRES	30 A	504	PRO	ARG	ASN	GLN '	VAL	VAL	GLU	LEU	VAL	VAL	PRO	ALA	GLY
	SEQRES	31 A	504	4 VAL	LEU	GLY	GLY I	PRO	HIS	PRO	PHE	HIS	LEU	HIS	GLY	HIS
	SEQRES	32 A	504	1 ALA	PHE	SER	VAL '	VAL	ARG	SER	ALA	GLY	SER	SER	THR	TYR
5	SEQRES	33 A	504	a_asn	PHE	VAL	ASN I	PRO	VAL	LYS	ARG	ASP	VAL	VAL	SER	LEU
	SEQRES	34 A	504	4 GLY	VAL	THR	GLY 2	ASP	GLU	VAL	THR	ILE	ARG	PHE	VAL	THR
	SEQRES	35 A	504	ASP	ASN	PRO	GLY :	PRO	TRP	PHE	PHE	HIS	CYS	HIS	ILE	GLU
	SEQRES	36 A	504	4 PHE	HIS	LEU	MET :	ASN	GLY	LEU	ALA	ILE	VAL	PHE	ALA	GLU
	SEQRES	37 A	504	ASF	MET	ALA	ASN '	THR	VAL	ASP	ALA	ASN	ASN	PRO	PRO	VAL
10	SEQRES	38 A	504	4 GLU	TRP	ALA	GLN :	LEU	CYS	GLU	ILE	TYR	ASP	ASP	LEU	PRO
	SEQRES	39 A	504	4 PRC	GLU	ALA	THR	SER	ILE	GLN	THR	VAL	VAL			
	SSBOND	1 C	YS	85	CY	S	487									
	SSBOND	2 C	YS	117	CY	S	204									
	CRYST	45.	390	85.7	720	143.	070	90.	00	90.0	0 9	0.00	P21	2121	L	
15																
	SCALE1		0.0	2203	0.0	0000	Ο.	000	00		0.	0000	0			
	CONTRO		0 0	0000	0 0	1167	0	000	00		0	0000	0			
	SCALE2		0.0	0000	0.0	1167	0.	000	00		0.	0000	U			
20	SCALE3		0.0	0000	0.0	0000	ο.	006	99		ο.	0000	0			
	MOTA	1	N	ALA A	. 1	0	18.	748	34	. 495	5	.326	1.0	00 3	6.36	
	MOTA	2	CA	ALA A	. 1	0	19.	554	35	.757	5	.185	1.0	00 3	5.87	
	ATOM	3	C	ALA A	1	0	19.	785	36	.380	6	. 558	1.0	00 3	4.53	
25	ATOM	4	0	ALA A	1	0	19.	248	35	.884	7	. 577	1.0	00 3	5.40	
	ATOM	5	CB	ALA A	. 1	0	19.	050	36	.675	4	.107	1.0	00 3	6.65	
	MOTA	6	N	ILE A	. 2	0	20.	844	37	.201	6	.659	1.0	00 3	1.00	
	MOTA	7	CA	ILE A	. 2	0	21.	310	37	.654	7	. 963	1.0	00 2	7.71	
	ATOM	8	C	ILE A	. 2	0	21.	368	39	.165	8	. 117	1.0	00 2	5.19	
30	MOTA	9	0	ILE A	. 2	0	21.	789	39	.861	7	. 192	1.0	00 2	3.77	
	MOTA	10	CB	ILE A	2	0	22.	744	37	.107	8	.206	1.0	00 2	8.28	
	MOTA	11	CG1	ILE A	. 2	0	22.	790	35	.590	8	.022	1.0	00 2	8.54	
	ATOM	12	CG2	ILE A	. 2	0	23.	285	37	. 557	9	. 554	1.0	00 2	7.91	
	ATOM	13	CD1	ILE A	. 2	0	23.	334	34	. 738	9	.130	1.0	00 2	9.32	
35	MOTA	14	N	VAL A	. 3	0	20.	986	39	.659	9	. 283	1.0	00 2	2.31	
	MOTA	15	CA	VAL A	. 3	0	21.	093	41	.092	9	. 540	1.0	00 2	2.78	
	ATOM	16	C	VAL A	. 3	0	22.	246	41	.297	10	. 524	1.0	00 2	2.62	
	ATOM	17	0	VAL A	. 3	0	22.	460	40	.556	11	.467	1.0	00 2	1.74	
	ATOM	18	CB	VAL A	. 3	0	19.	801	41	.849	9	. 799	1.0	00 2	3.54	
40	ATOM	19	CG1	VAL A	. 3	0	18.	537	40	. 985	9	. 684	1.0	00 2	1.30	
	ATOM	20	CG2	VAL A	. 3	0	19.	760	42	.709	11	.055	1.0	00 2	1.32	
	ATOM	21	N	ASN A	4	0	23.	122	42	.261	10	.209	1.0	00 2	3.39	
	ATOM	22	CA	ASN A	4	0	24.	303	42	.520	11	.021	1.0	00 2	3.45	
	ATOM	23	C	ASN A	4	0	24.	002	43	.517	12	.126	1.0	00 2	4.44	
45	MOTA	24	0	ASN A	4	0	22.	928	44	.122	12	.160	1.0	00 2	3.05	

	ATOM	25	CB	ASN	A	4	0	25.477	42.965	10.149	1.00	24.77
	MOTA	26	CG	ASN	A	4	0	25.726	41.991	9.021	1.00	26.62
	MOTA	27	OD1	ASN	A	4	0	25.668	42.388	7.849	1.00	30.29
	MOTA	28	ND2	ASN	A	4	0	25.923	40.719	9.324	1.00	27.59
5	ATOM	29	N	SER	A	5	0	24.960	43.707	13.040	1.00	24.28
	ATOM	30	CA	SER	A	5	0	24.702	44.636	14.143	1.00	25.77
	ATOM	31	С	SER	A	5	0	24.595	46.090	13.701	1.00	24.41
	ATOM	32	0	SER	A	5	0	23.973	46.862	14.452	1.00	23.55
	ATOM	33	CB	SER	A	5	0	25.741	44.405	15.240	1.00	26.18
10	MOTA	34	OG	SER	A	5	0	26.976	44.750	14.641	1.00	27.89
	MOTA	35	N	VAL	A	6	0	25.104	46.517	12.539	1.00	24.01
	ATOM	36	CA	VAL	A	6	0	24.770	47.863	12.096	1.00	25.06
	ATOM	37	C	VAL	A	6	0	24.131	47.617	10.731	1.00	25.57
	ATOM	38	0	VAL	A	6	0	24.778	47.030	9.874	1.00	28.07
15	ATOM	39	CB	VAL	A	6	0	25.722	49.032	12.155	1.00	26.65
	ATOM	40	CG1	VAL	A	6	0	26.937	48.759	13.025	1.00	26.73
	ATOM	41	CG2	VAL	A	6	0	26.098	49.614	10.801	1.00	25.50
	ATOM	42	N	ASP	A	7	0	22.848	47.952	10.605	1.00	23.82
	ATOM	43	CA	ASP	A	7	0	22.173	47.543	9.369	1.00	24.07
20	ATOM	44	С	ASP	A	7	0	20.794	48.170	9.276	1.00	23.66
	ATOM	45	0	ASP	A	7	0	20.342	48.845	10.204	1.00	23.47
	ATOM	46	СВ	ASP	A	7	0	21.996	46.012	9.444	1.00	23.43
	MOTA	47	CG	ASP	A	7	0	22.017	45.317	8.111	1.00	23.78
	ATOM	48	OD1	ASP	A	7	0	21.805	45.937	7.055	1.00	23.74
25	ATOM	49	OD2	ASP	A	7	0	22.255	44.089	8.099	1.00	24.62
	ATOM	50	N	THR	A	8	0	20.155	47.881	8.158	1.00	23.88
	ATOM	51	CA	THR	A	8	0	18.799	48.359	7.928	1.00	24.45
	MOTA	52	C	THR	A	8	0	17.813	47.189	7.950	1.00	22.49
	MOTA	53	0	THR	A	8	0	18.143	46.142	7.377	1.00	22.56
30	ATOM	54	CB	THR	A	8	0	18.694	49.108	6.579	1.00	25.75
	ATOM	55	OG1	THR	A	8	0	19.573	50.242	6.719	1.00	28.53
	ATOM	56	CG2	THR	A	8	0	17.295	49.656	6.339	1.00	25.55
	ATOM	57	N	MET	A	9	0	16.677	47.364	8.602	1.00	19.10
	ATOM	58	CA	MET	A	9	0	15.650	46.311	8.616	1.00	20.47
35	ATOM	59	C	MET	A	9	0	14.392	46.863	7.925	1.00	21.97
	ATOM	60	0	MET	A	9	0	13.638	47.638	8.544	1.00	19.49
	ATOM	61	СВ	MET	A	9	0	15.308	45.871	10.022	1.00	20.49
	ATOM	62	CG	MET	A	9	0	16.351	44.982	10.682	1.00	22.11
	MOTA	63	SD	MET	A	9	0	16.192	44.917	12.482	1.00	24.71
40	MOTA	64	CE	MET	A	9	0	14.640	44.024	12.635	1.00	22.61
	ATOM	65	N	THR	A :	10	0	14.246	46.516	6.641	1.00	21.81
	ATOM	66	CA	THR	A :	10	0	13.073	47.064	5.926	1.00	23.43
	ATOM	67	С	THR	A :	10	0	11.912	46.081	6.046	1.00	22.90
	MOTA	68	0	THR	A :	10	0	12.056	44.890	5.719	1.00	23.55
45	MOTA	69	CB	THR	A :	10	0	13.390	47.384	4.459	1.00	24.69

PCT/DK98/00070 25

	ATOM	70	OG1	THR	A	10	0	14.533	48.261	4.456	1.00	26.08
	ATOM	71	CG2	THR	A	10	0	12.216	48.028	3.742	1.00	23.95
	MOTA	72	N	LEU	A	11	0	10.820	46.600	6.583	1.00	21.13
	MOTA	73	CA	LEU	A	11	0	9.615	45.836	6.846	1.00	21.10
5	MOTA	74	С	LEU	A	11	0	8.607	45.957	5.709	1.00	24.58
	ATOM	75	0	LEU	A	11	0	8.124	47.056	5.358	1.00	23.89
	MOTA	76	CB	LEU	A	11	0	9.045	46.411	8.129	1.00	21.29
	MOTA	77	CG	LEU	A	11	0	9.474	45.955	9.508	1.00	22.26
	MOTA	78	CD1	LEU	A	11	0	10.952	45.742	9.692	1.00	22.42
10	ATOM	79	CD2	LEU	A	11	0	8.978	46.931	10.583	1.00	22.75
	MOTA	80	N	THR	A	12	0	8.272	44.836	5.057	1.00	24.01
	MOTA	81	CA	THR	A	12	0	7.302	44.851	3.980	1.00	24.33
	MOTA	82	С	THR	A	12	0	6.322	43.677	4.123	1.00	25.34
	MOTA	83	0	THR	A	12	0	6.480	42.740	4.913	1.00	25.62
15	MOTA	84	СВ	THR	A	12	0	7.882	44.776	2.560	1.00	25.12
	ATOM	85	OG1	THR	A	12	0	8.575	43.548	2.377	1.00	24.05
	MOTA	86	CG2	THR	A	12	0	8.847	45.905	2.217	1.00	25.26
	MOTA	87	N	ASN	A	13	0	5.261	43.760	3.335	1.00	24.09
	ATOM	88	CA	ASN	A	13	0	4.232	42.722	3.299	1.00	22.87
20	ATOM	89	C	ASN	A	13	0	4.422	41.954	1.989	1.00	22.13
	ATOM	90	0	ASN	A	13	0	4.809	42.600	1.023	1.00	22.32
	MOTA	91	CB	ASN	A	13	0	2.852	43.355	3.311	1.00	21.58
	MOTA	92	CG	ASN	A	13	0	2.526	44.060	4.607	1.00	22.50
	ATOM	93	OD1	ASN	A	13	0	2.187	45.245	4.648	1.00	22.20
25	ATOM	94	ND2	ASN	A	13	0	2.615	43.306	5.705	1.00	21.81
	MOTA	95	N	ALA	A	14	0	4.218	40.655	1.985	1.00	21.00
	ATOM	96	CA	ALA	A	14	0	4.270	39.869	0.762	1.00	21.93
	ATOM	97	С	ALA	A	14	0	3.571	38.533	1.078	1.00	20.77
	MOTA	98	0	ALA	A	14	0	3.292	38.309	2.259	1.00	20.45
30	MOTA	99	CB	ALA	A	14	0	5.676	39.618	0.248	1.00	23.72
	ATOM	100	N	ASN	A	15	0	3.366	37.695	0.072	1.00	18.88
	MOTA	101	CA	ASN	A	15	0	2.748	36.412	0.337	1.00	19.67
	MOTA	102	C	ASN	A	15	0	3.798	35.457	0.873	1.00	19.19
	MOTA	103	0	ASN	A	15	0	4.891	35.474	0.338	1.00	19.57
35	ATOM	104	СВ	ASN	A	15	0	2.114	35.721	-0.875	1.00	21.13
	ATOM	105	CG	ASN	A	15	0	0.839	36.457	-1.284	1.00	21.15
	ATOM	106	OD1	ASN	Α	15	0	0.343	37.207	-0.472	1.00	20.87
	ATOM	107	ND2	ASN	A	15	0	0.379	36.284	-2.501	1.00	20.00
	ATOM	108	N	VAL	A	16	0	3.358	34.614	1.772	1.00	19.11
40	ATOM	109	CA	VAL	A	16	0	4.322	33.628	2.342	1.00	18.90
	ATOM	110	С	VAL	A	16	0	3.626	32.293	2.345	1.00	19.25
	ATOM	111	0	VAL	A	16	0	2.386	32.281	2.406	1.00	16.71
	ATOM	112	СВ	VAL	A	16	0	4.612	34.317	3.691	1.00	19.95
	ATOM	113	CG1	VAL	A	16	0	3.990	33.749	4.937	1.00	18.58
45	ATOM	114	CG2	VAL	A	16	0	6.091	34.603	3.814	1.00	21.38

	MOTA	115	N	SER	A	17	0	4.312	31.157	2.303	1.00 18.57
	ATOM	116	CA	SER	A	17	0	3.678	29.869	2.410	1.00 20.90
	MOTA	117	C	SER	A	17	0	4.608	28.866	3.065	1.00 21.12
	ATOM	118	0	SER	A	17	0	5.106	27.939	2.448	1.00 21.24
5	MOTA	119	CB	SĘR	A	17	0	3.186	29.285	1.080	1.00 23.95
	ATOM	120	OG	SER	A	17	0	4.204	29.399	0.125	1.00 26.79
	MOTA	121	N	PRO	A	18	0	4.834	29.051	4.358	1.00 20.78
	MOTA	122	CA	PRO	A	18	0	5.703	28.216	5.141	1.00 20.02
	ATOM	123	C	PRO	A	18	0	5.197	26.793	5.376	1.00 19.74
10	MOTA	124	0	PRO	Α	18	0	5.978	25.920	5.753	1.00 17.97
	ATOM	125	CB	PRO	A	18	0	5.889	28.954	6.481	1.00 19.27
	MOTA	126	CG	PRO	A	18	0	4.701	29.832	6.536	1.00 21.41
	MOTA	127	CD	PRO	A	18	0	4.249	30.153	5.128	1.00 20.70
	MOTA	128	N	ASP	A	19	0	3.899	26.534	5.241	1.00 18.82
15	MOTA	129	CA	ASP	Α	19	0	3.323	25.227	5.475	1.00 16.87
	ATOM	130	C	ASP	A	19	0	2.548	24.823	4.237	1.00 17.28
	ATOM	131	0	ASP	Α	19	0	1.713	23.929	4.337	1.00 17.84
	ATOM	132	CB	ASP	A	19	0	2.419	25.207	6.701	1.00 16.54
	MOTA	133	CG	ASP	A	19	0	1.192	26.120	6.596	1.00 16.67
20	MOTA	134	OD1	ASP	Α	19	0	1.032	26.935	5.654	1.00 14.17
	ATOM	135	OD2	ASP	A	19	0	0.360	26.045	7.529	1.00 14.56
	MOTA	136	N	GLY	A	20	0	2.782	25.469	3.100	1.00 17.87
	ATOM	137	CA	GLY	A	20	0	2.079	25.091	1.890	1.00 19.40
	ATOM	138	C	GLY	A	20	0	0.732	25.789	1.699	1.00 22.52
25	ATOM	139	0	GLY	A	20	0	0.158	25.619	0.628	1.00 22.87
	ATOM	140	N	PHE	A	21	0	0.240	26.587	2.631	1.00 21.35
	ATOM	141	CA	PHE	A	21	0	-0.913	27.443	2.534	1.00 20.39
	ATOM	142	C	PHE	A	21	0	-0.348	28.855	2.322	1.00 21.23
	ATOM	143	0	PHE	A	21	0	0.475	29.316	3.122	1.00 21.26
30	ATOM	144	CB	PHE	A	21	0	-1.742	27.472	3.814	1.00 20.80
	ATOM	145	CG	PHE	A	21	0	-3.059	28.180	3.695	1.00 21.91
	MOTA	146	CD1	PHE	A	21	0	-3.171	29.527	3.963	1.00 22.49
	ATOM	147	CD2	PHE	A	21	0	-4.207	27.470	3.327	1.00 22.51
	ATOM	148	CE1	PHE	Α	21	0	-4.370	30.207	3.845	1.00 22.27
35	ATOM	149	CE2	PHE	A	21	0	-5.419	28.128	3.203	1.00 22.79
	MOTA	150	CZ	PHE	A	21	0	-5.498	29.497	3.474	1.00 23.34
	MOTA	151	N	THR	A	22	0	-0.638	29.514	1.225	1.00 20.20
	ATOM	152	CA	THR	A	22	0	-0.143	30.850	0.977	1.00 21.36
	MOTA	153	C	THR	A	22	0	-1.083	31.939	1.488	1.00 21.79
40	MOTA	154	0	THR	A	22	0	-2.271	31.952	1.162	1.00 21.19
	ATOM	155	CB	THR	A	22	0	0.045	31.012	-0.553	1.00 21.46
	ATOM	156	OG1	THR	A	22	0	0.838	29.881	-0.934	1.00 20.09
	MOTA	157	CG2	THR	A	22	0	0.693	32.353	-0.891	1.00 20.94
	MOTA	158	N	ARG	A	23	0	-0.562	32.871	2.257	1.00 20.80
45	ATOM	159	CA	ARG	A	23	0	-1.230	34.008	2.844	1.00 20.78

	MOTA	160	С	ARG	A	23	0	-0.257	35.189	2.960	1.00	21.15
	ATOM	161	0	ARG	A	23	0	0.954	35.018	2.740	1.00	20.42
	ATOM	162	CB	ARG	A	23	0	-1.874	33.685	4.172	1.00	20.47
	ATOM	163	CG	ARG	A	23	0	-0.964	33.152	5.295	1.00	21.52
5	ATOM	164	CD	ARG	A	23	0	-0.552	34.357	6.113	1.00	22.75
	ATOM	165	NE	ARG	A	23	0	-0.905	34.419	7.477	1.00	21.60
	ATOM	166	CZ	ARG	A	23	0	-0.870	35.283	8.464	1.00	19.89
	MOTA	167	NH1	ARG	A	23	0	-0.526	36.565	8.453	1.00	20.19
	MOTA	168	NH2	ARG	A	23	0	-1.249	34.744	9.610	1.00	18.64
10	ATOM	169	N	ALA	A	24	0	-0.784	36.389	3.199	1.00	20.05
	ATOM	170	CA	ALA	A	24	0	0.140	37.541	3.243	1.00	22.03
	ATOM	171	С	ALA	A	24	0	0.786	37.561	4.635	1.00	21.09
	ATOM	172	0	ALA	A	24	0	0.200	37.124	5.637	1.00	21.16
	ATOM	173	СВ	ALA	Α	24	0	-0.578	38.836	2.902	1.00	22.98
15	ATOM	174	N	GLY	A	25	0	2.042	37.984	4.683	1.00	20.28
	ATOM	175	CA	GLY	Α	25	0	2.786	37.993	5.950	1.00	20.29
	ATOM	176	C	GLY	A	25	0	3.649	39.254	5.979	1.00	21.38
	ATOM	177	0	GLY	A	25	0	3.465	40.229	5.238	1.00	21.06
	MOTA	178	N	ILE	A	26	0	4.604	39.221	6.897	1.00	20.33
20	MOTA	179	CA	ILE	A	26	0	5.475	40.365	7.145	1.00	20.64
	MOTA	180	С	ILE	A	26	0	6.903	39.886	6.932	1.00	20.00
	MOTA	181	0	ILE	A	26	0	7.247	38.851	7.485	1.00	21.34
	ATOM	182	CB	ILE	A	26	0	5.278	40.933	8.564	1.00	20.38
	ATOM	183	CG1	ILE	A	26	0	3.883	41.536	8.667	1.00	20.72
25	MOTA	184	CG2	ILE	Α	26	0	6.333	42.007	8.821	1.00	22.34
	ATOM	185	CD1	ILE	A	26	0	3.310	41.822	10.024	1.00	20.76
	ATOM	186	N	LEU	A	27	0	7.644	40.551	6.079	1.00	19.10
	ATOM	187	CA	LEU	A	27	0	9.005	40.168	5.739	1.00	19.67
	MOTA	188	C	LEU	A	27	0	9.964	41.226	6.280	1.00	19.85
30	ATOM	189	0	LEU	A	27	0	9.591	42.407	6.356	1.00	19.19
	ATOM	190	CB	LEU	A	27	0	9.138	40.172	4.219	1.00	20.26
	MOTA	191	CG	LEU	A	27	0	9.046	38.883	3.415	1.00	22.65
	MOTA	192	CD1	LEU	A	27	0	8.127	37.835	3.989	1.00	21.10
	ATOM	193	CD2	LEU	A	27	0	8.738	39.198	1.963	1.00	22.01
35	MOTA	194	N	VAL	Α	28	0	11.162	40.804	6.630	1.00	18.03
	ATOM	195	CA	VAL	A	28	0	12.199	41.723	7.088	1.00	17.24
	MOTA	196	C	VAL	A	28	0	13.289	41.573	6.040	1.00	18.99
	MOTA	197	0	VAL	A	28	0	13.791	40.453	5.863	1.00	20.36
	ATOM	198	CB	VAL	A	28	0	12.762	41.415	8.491	1.00	16.50
40	ATOM	199	CG1	VAL	A	28	0	13.899	42.361	8.845	1.00	15.41
	ATOM	200	CG2	VAL	A	28	0	11.681	41.517	9.558	1.00	15.42
	ATOM	201	N	ASN	A	29	0	13.575	42.601	5.256	1.00	20.78
	ATOM	202	CA	ASN	A	29	0	14.567	42.579	4.198	1.00	20.46
	ATOM	203	C	ASN	A	29	0	14.316	41.435	3.226	1.00	23.05
45	ATOM	204	0	ASN	A	29	0	15.247	40.675	2.880	1.00	23.62

-WO 98/38287 PCT/DK98/00070

	ATOM	205	CB	ASN	A	29	0	15.982	42.446	4.764	1.00	21.06
	MOTA	206	CG	ASN	A	29	0	16.475	43.654	5.522	1.00	22.44
	MOTA	207	OD1	ASN	A	29	0	15.870	44.722	5.434	1.00	23.47
	ATOM	208	ND2	ASN	A	29	0	17.560	43.507	6.288	1.00	22.23
5	ATOM	209	N	GLY	A	30	0	13.053	41.215	2.878	1.00	23.18
	ATOM	210	CA	GLY	A	30	0	12.662	40.181	1.922	1.00	23.36
	ATOM	211	C	GLY	A	30	0	12.723	38.757	2.436	1.00	23.85
	ATOM	212	0	GLY	A	30	0	12.707	37.814	1.633	1.00	25.17
	ATOM	213	N	VAL	A	31	0	12.832	38.585	3.755	1.00	21.85
10	ATOM	214	CA	VAL	A	31	0	12.999	37.276	4.352	1.00	20.55
	MOTA	215	C	VAL	A	31	0	12.031	37.190	5.548	1.00	19.91
	ATOM	216	0	VAL	A	31	0	11.796	38.172	6.269	1.00	17.50
	ATOM	217	CB	VAL	A	31	0	14.436	37.020	4.856	1.00	21.36
	ATOM	218	CG1	LAV	A	31	0	14.556	35.709	5.626	1.00	20.79
15	ATOM	219	CG2	VAL	A	31	0	15.495	37.005	3.757	1.00	21.84
	MOTA	220	N	HIS	A	32	0	11.489	35.984	5.698	1.00	17.05
	MOTA	221	CA	HIS	A	32	0	10.592	35. 7 29	6.797	1.00	18.61
	MOTA	222	C	HIS	A	32	0	11.417	35.499	8.050	1.00	17.67
	ATOM	223	0	HIS	A	32	0	11.873	34.385	8.216	1.00	18.72
20	ATOM	224	CB	HIS	A	32	0	9.676	34.543	6.493	1.00	21.00
	MOTA	225	CG	HIS	A	32	0	8.639	34.208	7.517	1.00	23.80
	ATOM	226	ND1	HIS	A	32	0	7.744	33.174	7.332	1.00	25.14
	MOTA	227	CD2	HIS	A	32	0	8.331	34.720	8.735	1.00	25.32
	ATOM	228	CE1	HIS	Α	32	0	6.942	33.061	8.385	1.00	25.36
25	MOTA	229	NE2	HIS	A	32	0	7.271	33.986	9.260	1.00	26.23
	ATOM	230	N	GLY	A	33	0	11.522	36.446	8.960	1.00	16.23
	ATOM	231	CA	GLY	A	33	0	12.276	36.252	10.198	1.00	16.97
	MOTA	232	C	GLY	A	33	0	13.740	35.869	10.083	1.00	15.54
	MOTA	233	0	GLY	A	33	0	14.228	34.885	10.609	1.00	15.13
30	MOTA	234	N	PRO	A	34	0	14.555	36.734	9.475	1.00	15.75
	MOTA	235	CA	PRO	A	34	0	16.012	36.561	9.359	1.00	14.70
	ATOM	236	С	PRO	A	34	0	16.734	36.660	10.701	1.00	14.02
	ATOM	237	0	PRO	A	34	0	16.241	37.252	11.673	1.00	10.44
	MOTA	238	CB	PRO	A	34	0	16.491	37.699	8.435	1.00	14.40
35	MOTA	239	CG	PRO	A	34	0	15.441	38.742	8.783	1.00	15.11
	ATOM	240	CD	PRO	A	34	0	14.113	38.005	8.905	1.00	13.69
	ATOM	241	N	LEU	A	35	0	17.925	36.049	10.767	1.00	13.60
	MOTA	242	CA	LEU	A	35	0	18.748	36.022	11.963	1.00	14.35
	ATOM	243	C	LEU	A	35	0	19.462	37.359	12.161	1.00	16.25
40	MOTA	244	0	LEU	A	35	0	20.015	37.902	11.210	1.00	14.10
	ATOM	245	CB	LEU	A	35	0	19.834	34.916	11.862	1.00	15.33
	ATOM	246	CG	LEU	A	35	0	20.958	34.943	12.911	1.00	17.74
	ATOM	247	CD1	LEU	A	35	0	20.486	34.698	14.348	1.00	16.30
	ATOM	248	CD2	LEU	A	35	0	22.052	33.934	12.575	1.00	16.60
45	ATOM	249	N	ILE	A	36	0	19.471	37.855	13.384	1.00	16.71

MOTA CA 20.265 13.738 1.00 16.66 250 ILE A 36 0 39.027 **ATOM** 251 C ILE A 36 0 21.403 38.487 14.620 1.00 17.92 **ATOM** 1.00 17.20 252 0 ILE A 36 0 21.183 37.732 15.573 MOTA 253 CB ILE A 36 0 19.560 40.129 14.533 1.00 16.60 5 MOTA 254 CG1 ILE A 36 0 18.389 40.771 13.771 1.00 16.09 CG2 ILE A 1.00 17.67 MOTA 255 36 0 20.565 41.226 14.917 ATOM 1.00 15.88 256 CD1 ILE A 36 0 17.590 41.754 14.629 ATOM 257 N ARG A 37 0 1.00 18.72 22.647 38.829 14.288 ATOM 258 CA ARG A 37 0 23.754 38.315 15.091 1.00 19.94 10 ATOM C ARG A 0 1.00 20.08 259 37 24.839 39.369 15.280 ATOM 260 0 ARG A 37 0 24.979 1.00 20.52 40.249 14.450 ATOM ARG A 1.00 21.72 261 CB 37 0 24.395 37.077 14.465 MOTA CG ARG A 0 1.00 24.46 262 37 25.102 37.393 13.171 ATOM CD ARG A 37 0 26.113 1.00 26.90 263 36.339 12.762 15 ATOM NE ARG A 1.00 29.30 264 37 0 26.584 36.571 11.381 ATOM 265 CZARG A 37 0 26.838 35.571 10.528 1.00 31.29 ATOM 266 NH1 ARG A 37 0 26.711 34.283 10.851 1.00 31.37 ATOM NH2 ARG A 1.00 31.66 267 37 0 27.252 35.827 9.291 ATOM 268 N GLY A 38 0 25.587 39.223 16.361 1.00 20.22 20 ATOM 269 CA GLY A 38 0 26.716 40.121 16.611 1.00 18.98 ATOM 270 C GLY A 0 39.545 17.765 1.00 18.08 38 27.533 0 1.00 15.92 ATOM 271 GLY A 38 0 27.259 38.421 18.225 ATOM 272 N GLY A 39 0 1.00 17.65 28.436 40.412 18.238 ATOM 273 CA GLY A 39 0 29.322 1.00 16.23 40.026 19.351 25 MOTA C 274 GLY A 0 1.00 17.21 39 28.861 40.774 20.592 ATOM 0 1.00 17.27 275 GLY A 39 0 28.157 41.784 20.489 MOTA 276 N LYS A 40 0 29.276 40.328 21.764 1.00 16.58 MOTA 277 CA LYS A 1.00 18.03 40 0 28.839 40.805 23.057 MOTA 278 C LYS A 0 1.00 20.44 40 29.185 42.267 23.348 30 MOTA 279 0 LYS A 40 0 42.878 1.00 19.42 28.562 24.221 ATOM 280 CB LYS A 40 0 29.394 39.933 24.185 1.00 16.74 ATOM 1.00 17.98 281 CG LYS A 40 0 30.892 24.370 39.997 ATOM 282 CD LYS A 40 0 31.333 39.170 25.569 1.00 20.66 ATOM 283 CE LYS A 40 0 32.809 38.768 25.493 1.00 21.70 35 ATOM 0 1.00 23.11 284 NZ LYS A 40 33.227 38.111 26.757 ATOM 285 ASN A 0 30.181 42.780 22.645 1.00 21.43 N 41 ATOM 1.00 25.14 CA 0 286 ASN A 41 30.536 44.171 22.840 1.00 24.05 ATOM 287 C ASN A 41 0 30.092 44.976 21.644 MOTA 0 30.409 21.655 1.00 25.66 288 O ASN A 41 46.161 40 ATOM 1.00 27.02 289 CB ASN A 41 0 32.052 44.326 23.111 1.00 29.76 ATOM 290 CG ASN A 41 0 32.434 43.606 24.404 ATOM 1.00 31.54 291 OD1 ASN A 41 0 33.398 42.832 24.431 ATOM 0 1.00 30.13 292 ND2 ASN A 41 31.663 25.473 43.825 ATOM 293 N ASP A 42 0 29.424 44.447 20.631 1.00 23.80 45 ATOM 294 CA ASP A 42 0 29.073 45.325 19.506 1.00 24.12

295 C ASP A 42 0 28.169 46.484 19.891 1.00 24.24 ATOM 1.00 22.42 0 0 20.872 **ATOM** 296 ASP A 42 46.428 27.420 ATOM 297 CB ASP A 42 0 28.388 44.528 18.392 1.00 26.65 1.00 28.94 **ATOM** 298 CG ASP A 42 0 29.404 43.599 17.773 1.00 31.45 5 MOTA OD1 ASP A 0 30.603 43.754 18.056 299 42 MOTA 300 OD2 ASP A 42 0 29.026 42.708 17.009 1.00 31.69 ATOM 301 N ASN A 43 0 28.258 47.547 19.090 1.00 24.72 ATOM 302 CA ASN A 43 0 27.316 48.660 19.255 1.00 26.50 C 1.00 26.23 ATOM 303 ASN A 43 0 26.293 48.430 18.128 10 ATOM 304 0 ASN A 43 0 26.723 48.420 16.979 1.00 25.02 ASN A 0 1.00 28.45 ATOM 305 CB 43 27.934 50.047 19.128 1.00 31.09 ATOM 306 CG ASN A 43 0 28.858 50.244 20.323 ATOM 307 OD1 ASN A 43 0 30.041 50.502 20.106 1.00 33.11 ND2 ASN A 0 1.00 31.18 **ATOM** 308 43 28.364 50.055 21.531 15 0 1.00 24.63 MOTA 309 Ν PHE A 44 25.039 48.155 18.468 CA PHE A 0 1.00 23.28 **ATOM** 310 44 24.083 47.897 17.393 **ATOM** C PHE A 0 1.00 22.36 311 44 23.450 49.191 16.916 0 1.00 21.07 MOTA 312 PHE A 0 23.024 50.008 17.735 44 ATOM 313 CB PHE A 44 0 22.959 46.965 17.853 1.00 22.04 20 1.00 22.96 MOTA 314 CG PHE A 44 0 23.376 45.525 17.955 ATOM 315 CD1 PHE A 0 17.153 1.00 23.91 44 22.779 44.562 CD2 PHE A 1.00 22.03 MOTA 316 44 0 24.330 45.120 18.869 MOTA CE1 PHE A 0 17.253 1.00 24.42 317 44 23.131 43.230 MOTA 318 CE2 PHE A 44 0 24.689 43.797 18.974 1.00 23.25 25 MOTA CZPHE A 0 1.00 24.02 319 44 24.095 42.837 18.168 MOTA 320 N GLU A 45 0 23.350 49.343 15.604 1.00 22.78 MOTA 321 CA GLU A 45 0 50.482 15.054 1.00 24.47 22.611 MOTA 322 C GLU A 45 0 14.055 1.00 23.79 21.619 49.884 MOTA 0 GLU A 45 0 22.017 12.924 1.00 24.40 323 49.587 30 1.00 27.07 ATOM 324 CB GLU A 45 0 23.543 51.473 14.368 1.00 31.60 MOTA 325 CG GLU A 45 0 24.474 52.130 15.374 45 1.00 33.90 ATOM CD GLU A 0 326 25.380 53.179 14.772 MOTA 327 OE1 GLU A 45 0 25.354 53.438 13.559 1.00 35.62 ATOM 328 OE2 GLU A 45 0 26.155 53.748 15.565 1.00 36.42 35 ATOM 329 N 0 1.00 22.18 LEU A 46 20.369 49.684 14.465 ATOM 13.556 1.00 21.22 330 CA LEU A 46 0 19.419 49.044 MOTA 331 C LEU A 46 0 18.348 50.001 13.077 1.00 21.27 1.00 21.60 0 46 0 MOTA 332 LEU A 17.464 50.429 13.812 1.00 20.72 ATOM 333 CB LEU A 46 0 18.837 47.811 14.262 40 1.00 21.28 MOTA 334 CG LEU A 46 0 19.827 46.658 14.403 ATOM CD1 LEU A 46 0 15.397 1.00 20.83 335 19.334 45.621 MOTA 336 CD2 LEU A 46 0 20.148 46.034 13.052 1.00 18.33 ATOM 337 N ASN A 47 0 18.438 50.403 11.823 1.00 21.09 1.00 22.37 47 0 MOTA CA ASN A 17.498 11.252 338 51.344 45 ATOM 339 C ASN A 47 0 16.273 50.558 10.803 1.00 22.18

	ATOM	340	0	ASN	A	47	0	16.390	49.810	9.847	1.00	23.41
	ATOM	341	CB	ASN	A	47	0	18.131	52.104	10.066	1.00	24.01
	MOTA	342	CG	ASN	A	47	0	17.226	53.243	9.615	1.00	25.54
	ATOM	343	OD1	ASN	A	47	0	16.443	53.772	10.413	1.00	26.53
5	MOTA	344	ND2	ASN	A	47	0	17.332	53.612	8.346	1.00	26.01
	ATOM	345	N	VAL	A	48	0	15.147	50.692	11.475	1.00	22.04
	ATOM	346	CA	VAL	A	48	0	13.918	49.995	11.140	1.00	21.99
	ATOM	347	C	VAL	A	48	0	13.026	50.879	10.269	1.00	21.82
	ATOM	348	0	VAL	A	48	0	12.532	51.910	10.699	1.00	20.61
10	ATOM	349	CB	VAL	A	48	0	13.176	49.579	12.430	1.00	22.64
	ATOM	350	CG1	VAL	A	48	0	11.819	48.931	12.148	1.00	21.99
	ATOM	351	CG2	VAL	A	48	0	14.098	48.631	13.216	1.00	21.68
	ATOM	352	N	VAL	A	49	0	12.931	50.512	9.009	1.00	21.79
	ATOM	353	CA	VAL	A	49	0	12.164	51.167	7.966	1.00	21.34
15	ATOM	354	C	VAL	A	49	0	10.816	50.460	7.795	1.00	21.12
	ATOM	355	0	VAL	A	49	0	10.703	49.308	7.365	1.00	19.76
	ATOM	356	CB	VAL	A	49	0	12.983	51.189	6.665	1.00	22.02
	MOTA	357	CG1	VAL	A	49	0	12.267	51.913	5.519	1.00	21.70
	ATOM	358	CG2	VAL	A	49	0	14.312	51.933	6.906	1.00	21.47
20	ATOM	359	N	ASN	A	50	0	9.767	51.112	8.257	1.00	20.26
	ATOM	360	CA	ASN	A	50	0	8.424	50.611	8.215	1.00	22.70
	MOTA	361	C	ASN	A	50	0	7.751	50.899	6.869	1.00	25.99
	ATOM	362	0	ASN	A	50	0	7.043	51.925	6.735	1.00	27.06
	ATOM	363	CB	ASN	A	50	0	7.549	51.230	9.318	1.00	21.92
25	ATOM	364	CG	ASN	A	50	0	6.198	50.569	9.471	1.00	22.44
	ATOM	365	OD1	ASN	A	50	0	5.818	49.801	8.572	1.00	24.19
	ATOM	366	ND2	ASN	A	50	0	5.435	50.833	10.526	1.00	20.19
	MOTA	367	N	ASP	A	51	0	7.915	49.959	5.926	1.00	26.42
	MOTA	368	CA	ASP	A	51	0	7.208	50.071	4.641	1.00	26.35
30	MOTA	369	С	ASP	A	51	0	5.951	49.200	4.600	1.00	24.86
	MOTA	370	0	ASP	A	51	0	5.542	48.810	3.511	1.00	25.19
	MOTA	371	CB	ASP	A	51	0	8.126	49.698	3.481		26.75
	MOTA	372	CG	ASP		51	0	9.152	50.761	3.158		29.77
	MOTA	373	OD1	ASP	A	51	0	8.944	51.904	3.617		31.03
35	MOTA	374	OD2	ASP	A	51	0	10.166	50.509	2.465		30.42
	MOTA	375	N	LEU	A	52	0	5.332	48.801	5.700	1.00	25.05
	MOTA	376	CA	LEU	A	52	0	4.172	47.911	5.640	1.00	25.44
	MOTA	377	С	LEU	A	52	0	2.934	48.624	5.094	1.00	26.65
	MOTA	378	0	LEU	Α	52	0	2.553	49.696	5.586	1.00	24.56
40	ATOM	379	CB	LEU	A	52	0	3.837	47.374	7.029	1.00	24.19
	ATOM	380	CG	LEU	A	52	0	4.896	46.503	7.699	1.00	24.60
	ATOM	381	CD1	LEU	A	52	0	4.611	46.424	9.196	1.00	24.05
	ATOM	382	CD2	LEU	A	52	0	4.891	45.119	7.061	1.00	23.49
	ATOM	383	N	ASP	A	53	0	2.242	47.980	4.169		28.79
45	ATOM	384	CA	ASP	A	53	0	1.049	48.602	3.581	1.00	29.91

ATOM 386 O ASP A ATOM 387 CB ASP A ATOM 388 CG ASP A ATOM 389 OD1 ASP A ATOM 390 OD2 ASP A ATOM 391 N ASN A ATOM 392 CA ASN A ATOM 395 CB ASN A ATOM 395 CB ASN A ATOM 396 CG ASN A ATOM 397 OD1 ASN A ATOM 398 ND2 ASN A ATOM 399 N PRO A ATOM 400 CA PRO A ATOM 401 C PRO A ATOM 402 O PRO A ATOM 403 CB PRO A ATOM 404 CG PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 408 C THR A ATOM 409 O THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 415 C MET A ATOM 416 O MET A	53 0 53 0 53 0 53 0 53 0 54 0 54 0 54 0 54 0 54 0 55 0 55 0 55	-0.135 -1.152 1.367 1.838 1.865 2.233 -0.060 -1.237 -2.089 -1.772 -0.831 -1.978 -1.874 -3.030 -3.337 -4.286 -4.909 -5.671 -5.368 -5.249	47.658 48.082 49.190 48.140 46.926 48.474 46.437 45.554 45.832 45.528 44.095 43.141 42.344 43.182 46.256 46.589 45.414 45.624 47.465	3.492 2.951 2.197 1.218 1.540 0.074 4.014 3.983 5.192 6.350 3.913 3.690 2.746 4.481 4.961 6.014 6.723 7.687 5.334	1.00 29.90 1.00 30.40 1.00 29.26 1.00 31.28 1.00 31.64 1.00 32.42 1.00 29.44 1.00 26.89 1.00 27.37 1.00 27.99 1.00 25.11 1.00 24.20 1.00 25.13 1.00 23.26 1.00 28.44 1.00 26.57 1.00 27.10 1.00 26.05
ATOM 387 CB ASP A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	53 0 53 0 53 0 54 0 54 0 54 0 54 0 54 0 54 0 55 0 55	1.367 1.838 1.865 2.233 -0.060 -1.237 -2.089 -1.772 -0.831 -1.978 -1.874 -3.030 -3.337 -4.286 -4.909 -5.671 -5.368 -5.249	49.190 48.140 46.926 48.474 46.437 45.554 45.832 45.528 44.095 43.141 42.344 43.182 46.256 46.589 45.414 45.624 47.465	2.197 1.218 1.540 0.074 4.014 3.983 5.192 6.350 3.913 3.690 2.746 4.481 4.961 6.014 6.723 7.687	1.00 29.26 1.00 31.28 1.00 31.64 1.00 32.42 1.00 29.44 1.00 26.89 1.00 27.37 1.00 27.99 1.00 25.11 1.00 24.20 1.00 25.13 1.00 23.26 1.00 28.44 1.00 26.57 1.00 27.10
ATOM 388 CG ASP A ATOM 389 OD1 ASP A ATOM 390 OD2 ASP A ATOM 391 N ASN A ATOM 392 CA ASN A ATOM 393 C ASN A ATOM 395 CB ASN A ATOM 396 CG ASN A ATOM 397 OD1 ASN A ATOM 398 ND2 ASN A ATOM 399 N PRO A ATOM 400 CA PRO A ATOM 401 C PRO A ATOM 403 CB PRO A ATOM 404 CG PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 409 O THR A ATOM 410 CB THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 415 C MET A ATOM 415 C MET A	53 0 53 0 54 0 54 0 54 0 54 0 54 0 54 0 55 0 55	1.838 1.865 2.233 -0.060 -1.237 -2.089 -1.772 -0.831 -1.978 -1.874 -3.030 -3.337 -4.286 -4.909 -5.671 -5.368 -5.249	48.140 46.926 48.474 46.437 45.554 45.832 45.528 44.095 43.141 42.344 43.182 46.256 46.589 45.414 45.624 47.465	1.218 1.540 0.074 4.014 3.983 5.192 6.350 3.913 3.690 2.746 4.481 4.961 6.014 6.723 7.687	1.00 31.28 1.00 31.64 1.00 32.42 1.00 29.44 1.00 26.89 1.00 27.37 1.00 27.99 1.00 25.11 1.00 24.20 1.00 25.13 1.00 23.26 1.00 28.44 1.00 26.57 1.00 27.10
5 ATOM 389 OD1 ASP A ATOM 390 OD2 ASP A ATOM 391 N ASN A ATOM 392 CA ASN A ATOM 393 C ASN A ATOM 394 O ASN A ATOM 395 CB ASN A ATOM 396 CG ASN A ATOM 397 OD1 ASN A ATOM 398 ND2 ASN A ATOM 399 N PRO A ATOM 400 CA PRO A ATOM 401 C PRO A ATOM 402 O PRO A ATOM 403 CB PRO A ATOM 404 CG PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 410 CB THR A	53 0 53 0 54 0 54 0 54 0 54 0 54 0 55 0 55 0 55	1.865 2.233 -0.060 -1.237 -2.089 -1.772 -0.831 -1.978 -1.874 -3.030 -3.337 -4.286 -4.909 -5.671 -5.368 -5.249	46.926 48.474 46.437 45.554 45.832 45.528 44.095 43.141 42.344 43.182 46.256 46.589 45.414 45.624 47.465	1.540 0.074 4.014 3.983 5.192 6.350 3.913 3.690 2.746 4.481 4.961 6.014 6.723 7.687	1.00 31.64 1.00 32.42 1.00 29.44 1.00 26.89 1.00 27.37 1.00 27.99 1.00 25.11 1.00 24.20 1.00 25.13 1.00 23.26 1.00 28.44 1.00 26.57 1.00 27.10
ATOM 391 N ASN A ATOM 391 N ASN A ATOM 393 C ASN A ATOM 394 O ASN A ATOM 395 CB ASN A ATOM 396 CG ASN A ATOM 397 OD1 ASN A ATOM 398 ND2 ASN A ATOM 399 N PRO A ATOM 400 CA PRO A ATOM 401 C PRO A ATOM 402 O PRO A ATOM 403 CB PRO A ATOM 404 CG PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 408 C THR A ATOM 410 CB THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 415 C MET A	53 0 54 0 54 0 54 0 54 0 54 0 54 0 55 0 55	2.233 -0.060 -1.237 -2.089 -1.772 -0.831 -1.978 -1.874 -3.030 -3.337 -4.286 -4.909 -5.671 -5.368 -5.249	48.474 46.437 45.554 45.832 45.528 44.095 43.141 42.344 43.182 46.256 46.589 45.414 45.624 47.465	0.074 4.014 3.983 5.192 6.350 3.913 3.690 2.746 4.481 4.961 6.014 6.723 7.687	1.00 32.42 1.00 29.44 1.00 26.89 1.00 27.37 1.00 27.99 1.00 25.11 1.00 24.20 1.00 25.13 1.00 23.26 1.00 28.44 1.00 26.57 1.00 27.10
ATOM 391 N ASN A ATOM 392 CA ASN A ATOM 393 C ASN A ATOM 394 O ASN A ATOM 395 CB ASN A ATOM 396 CG ASN A ATOM 397 OD1 ASN A ATOM 398 ND2 ASN A ATOM 399 N PRO A ATOM 400 CA PRO A ATOM 401 C PRO A ATOM 403 CB PRO A ATOM 404 CG PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 409 O THR A ATOM 410 CB THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 415 C MET A	54 0 54 0 54 0 54 0 54 0 54 0 55 0 55 0	-0.060 -1.237 -2.089 -1.772 -0.831 -1.978 -1.874 -3.030 -3.337 -4.286 -4.909 -5.671 -5.368 -5.249	46.437 45.554 45.832 45.528 44.095 43.141 42.344 43.182 46.256 46.589 45.414 45.624 47.465	4.014 3.983 5.192 6.350 3.913 3.690 2.746 4.481 4.961 6.014 6.723 7.687	1.00 29.44 1.00 26.89 1.00 27.37 1.00 27.99 1.00 25.11 1.00 24.20 1.00 25.13 1.00 23.26 1.00 28.44 1.00 26.57 1.00 27.10
ATOM 392 CA ASN A ATOM 393 C ASN A 10 ATOM 394 O ASN A ATOM 395 CB ASN A ATOM 396 CG ASN A ATOM 397 OD1 ASN A ATOM 398 ND2 ASN A ATOM 399 N PRO A ATOM 400 CA PRO A ATOM 401 C PRO A ATOM 402 O PRO A ATOM 403 CB PRO A ATOM 405 CD PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 409 O THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 415 C MET A	54 0 54 0 54 0 54 0 54 0 55 0 55 0 55 0	-1.237 -2.089 -1.772 -0.831 -1.978 -1.874 -3.030 -3.337 -4.286 -4.909 -5.671 -5.368 -5.249	45.554 45.832 45.528 44.095 43.141 42.344 43.182 46.256 46.589 45.414 45.624 47.465	3.983 5.192 6.350 3.913 3.690 2.746 4.481 4.961 6.014 6.723 7.687	1.00 26.89 1.00 27.37 1.00 27.99 1.00 25.11 1.00 24.20 1.00 25.13 1.00 23.26 1.00 28.44 1.00 26.57 1.00 27.10
ATOM 393 C ASN A 10 ATOM 394 O ASN A ATOM 395 CB ASN A ATOM 396 CG ASN A ATOM 397 OD1 ASN A ATOM 398 ND2 ASN A ATOM 399 N PRO A ATOM 400 CA PRO A ATOM 401 C PRO A ATOM 402 O PRO A ATOM 403 CB PRO A ATOM 404 CG PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 409 O THR A ATOM 410 CB THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 415 C MET A	54 0 54 0 54 0 54 0 54 0 55 0 55 0 55 0	-2.089 -1.772 -0.831 -1.978 -1.874 -3.030 -3.337 -4.286 -4.909 -5.671 -5.368 -5.249	45.832 45.528 44.095 43.141 42.344 43.182 46.256 46.589 45.414 45.624 47.465	5.192 6.350 3.913 3.690 2.746 4.481 4.961 6.014 6.723 7.687	1.00 27.37 1.00 27.99 1.00 25.11 1.00 24.20 1.00 25.13 1.00 23.26 1.00 28.44 1.00 26.57 1.00 27.10
10 ATOM 394 O ASN A ATOM 395 CB ASN A ATOM 396 CG ASN A ATOM 397 OD1 ASN A ATOM 398 ND2 ASN A ATOM 399 N PRO A ATOM 400 CA PRO A ATOM 401 C PRO A ATOM 403 CB PRO A ATOM 404 CG PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 410 CB THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 415 C MET A	54 0 54 0 54 0 54 0 55 0 55 0 55 0 55 0	-1.772 -0.831 -1.978 -1.874 -3.030 -3.337 -4.286 -4.909 -5.671 -5.368 -5.249	45.528 44.095 43.141 42.344 43.182 46.256 46.589 45.414 45.624 47.465	6.350 3.913 3.690 2.746 4.481 4.961 6.014 6.723 7.687	1.00 27.99 1.00 25.11 1.00 24.20 1.00 25.13 1.00 23.26 1.00 28.44 1.00 26.57 1.00 27.10
ATOM 395 CB ASN A ATOM 396 CG ASN A ATOM 397 OD1 ASN A ATOM 398 ND2 ASN A ATOM 399 N PRO A ATOM 400 CA PRO A ATOM 401 C PRO A ATOM 402 O PRO A ATOM 403 CB PRO A ATOM 405 CD PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 408 C THR A ATOM 408 C THR A ATOM 410 CB THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 415 C MET A	54 0 54 0 54 0 55 0 55 0 55 0 55 0	-0.831 -1.978 -1.874 -3.030 -3.337 -4.286 -4.909 -5.671 -5.368 -5.249	44.095 43.141 42.344 43.182 46.256 46.589 45.414 45.624 47.465	3.913 3.690 2.746 4.481 4.961 6.014 6.723 7.687	1.00 25.11 1.00 24.20 1.00 25.13 1.00 23.26 1.00 28.44 1.00 26.57
ATOM 396 CG ASN A ATOM 397 OD1 ASN A ATOM 398 ND2 ASN A ATOM 399 N PRO A ATOM 400 CA PRO A ATOM 401 C PRO A ATOM 402 O PRO A ATOM 403 CB PRO A ATOM 405 CD PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 410 CB THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 415 C MET A	54 0 54 0 55 0 55 0 55 0 55 0 55 0	-1.978 -1.874 -3.030 -3.337 -4.286 -4.909 -5.671 -5.368 -5.249	43.141 42.344 43.182 46.256 46.589 45.414 45.624 47.465	3.690 2.746 4.481 4.961 6.014 6.723 7.687	1.00 24.20 1.00 25.13 1.00 23.26 1.00 28.44 1.00 26.57 1.00 27.10
ATOM 397 OD1 ASN A ATOM 398 ND2 ASN A 15 ATOM 399 N PRO A ATOM 400 CA PRO A ATOM 401 C PRO A ATOM 402 O PRO A ATOM 403 CB PRO A ATOM 404 CG PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 410 CB THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 415 C MET A	54 0 54 0 55 0 55 0 55 0 55 0 55 0	-1.874 -3.030 -3.337 -4.286 -4.909 -5.671 -5.368 -5.249	42.344 43.182 46.256 46.589 45.414 45.624 47.465	2.746 4.481 4.961 6.014 6.723 7.687	1.00 25.13 1.00 23.26 1.00 28.44 1.00 26.57 1.00 27.10
ATOM 398 ND2 ASN A 15 ATOM 399 N PRO A ATOM 400 CA PRO A ATOM 401 C PRO A ATOM 402 O PRO A ATOM 403 CB PRO A ATOM 405 CD PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 408 C THR A ATOM 408 C THR A ATOM 410 CB THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A	54 0 55 0 55 0 55 0 55 0 55 0	-3.030 -3.337 -4.286 -4.909 -5.671 -5.368 -5.249	43.182 46.256 46.589 45.414 45.624 47.465	4.481 4.961 6.014 6.723 7.687	1.00 23.26 1.00 28.44 1.00 26.57 1.00 27.10
15 ATOM 399 N PRO A ATOM 400 CA PRO A ATOM 401 C PRO A ATOM 402 O PRO A ATOM 403 CB PRO A ATOM 404 CG PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 410 CB THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A	55 0 55 0 55 0 55 0 55 0	-3.337 -4.286 -4.909 -5.671 -5.368 -5.249	46.256 46.589 45.414 45.624 47.465	4.961 6.014 6.723 7.687	1.00 28.44 1.00 26.57 1.00 27.10
ATOM 400 CA PRO A ATOM 401 C PRO A ATOM 402 O PRO A ATOM 403 CB PRO A ATOM 404 CG PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 410 CB THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A	55 0 55 0 55 0 55 0	-4.286 -4.909 -5.671 -5.368 -5.249	46.589 45.414 45.624 47.465	6.014 6.723 7.687	1.00 26.57 1.00 27.10
ATOM 401 C PRO A ATOM 402 O PRO A ATOM 403 CB PRO A ATOM 404 CG PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A	55 0 55 0 55 0 55 0	-4.909 -5.671 -5.368 -5.249	45.414 45.624 47.465	6.723 7.687	1.00 27.10
ATOM 402 O PRO A ATOM 403 CB PRO A 20 ATOM 404 CG PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A	55 0 55 0 55 0	-5.671 -5.368 -5.249	45.624 47.465	7.687	
ATOM 403 CB PRO A 20 ATOM 404 CG PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A	55 0 55 0	-5.368 -5.249	47.465		1.00 26.05
20 ATOM 404 CG PRO A ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A	55 0	-5.249		5 334	
ATOM 405 CD PRO A ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A				J.JJ4	1.00 28.18
ATOM 406 N THR A ATOM 407 CA THR A ATOM 408 C THR A ATOM 409 O THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A	55 0		47.049	3.899	1.00 27.50
ATOM 407 CA THR A ATOM 408 C THR A 25 ATOM 409 O THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A		-3.844	46.564	3.625	1.00 27.56
ATOM 408 C THR A 25 ATOM 409 O THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A 30 ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A	56 0	-4.603	44.160	6.345	1.00 25.55
25 ATOM 409 O THR A ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A 30 ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A	56 0	-5.214	43.024	7.065	1.00 25.52
ATOM 410 CB THR A ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A 30 ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A	56 0	-4.446	42.647	8.326	1.00 24.87
ATOM 411 OG1 THR A ATOM 412 CG2 THR A ATOM 413 N MET A 30 ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A	56 0	-4.766	41.764	9.115	1.00 23.97
ATOM 412 CG2 THR A ATOM 413 N MET A 30 ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A	56 0	-5.393	41.807	6.154	1.00 25.10
ATOM 413 N MET A 30 ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A	56 0	-4.100	41.345	5.763	1.00 24.26
30 ATOM 414 CA MET A ATOM 415 C MET A ATOM 416 O MET A	56 0	-6.178	42.123	4.861	1.00 25.63
ATOM 415 C MET A ATOM 416 O MET A	57 0	-3.317	43.311	8.558	1.00 26.01
ATOM 416 O MET A	57 0	-2.553	43.099	9.801	1.00 26.57
	57 0	-2.026	44.475	10.201	1.00 25.88
ATOM 417 CR MET A	57 0	-2.026	45.416	9.397	1.00 25.18
ALON TEL A	57 0	-1.561	41.939	9.698	1.00 25.42
ATOM 418 CG MET A	57 0	-0.639	41.868	8.554	1.00 24.37
35 ATOM 419 SD MET A	57 0	-0.034	40.288	7.916	1.00 22.34
ATOM 420 CE MET A	57 0	-0.275	40.640	6.167	1.00 19.23
ATOM 421 N LEU A	58 0	-1.694	44.601	11.476	1.00 25.98
ATOM 422 CA LEU A	58 0	-1.180	45.850	12.036	1.00 25.57
ATOM 423 C LEU A	58 0	-0.053	46.425	11.195	1.00 24.52
40 ATOM 424 O LEU A	58 0	0.824	45.739	10.638	1.00 23.63
	58 0	-0.757	45.535	13.463	1.00 26.67
	58 0	-1.628	45.817	14.657	1.00 28.97
	58 0	-3.107	45.995	14.312	1.00 30.99
	58 0	-1.488	44.756	15.736	1.00 28.36
45 ATOM 429 N ARG A		-0.078		11.030	1.00 24.96

	MOTA	430	CA	ARG	A	59	0	0.918	48.434	10.231	1.00	26.92
	MOTA	431	C	ARG	A	59	0	1.932	49.229	11.014	1.00	26.31
	MOTA	432	0	ARG	A	59	0	3.120	49.198	10.699	1.00	28.82
	ATOM	433	CB	ARG	A	59	0	0.260	49.277	9.132	1.00	28.35
5	ATOM	434	CG	AŖG	A	59	0	-0.252	48.385	7.986	1.00	29.50
	ATOM	435	CD	ARG	A	59	0	-0.986	49.274	6.996	1.00	30.33
	MOTA	436	NE	ARG	A	59	0	-2.333	49.604	7.459	1.00	32.26
	ATOM	437	CZ	ARG	A	59	0	-3.121	50.525	6.883	1.00	33.24
	MOTA	438	NH1	ARG	A	59	0	-2.679	51.233	5.845	1.00	32.27
10	ATOM	439	NH2	ARG	A	59	0	-4.340	50.712	7.389	1.00	32.65
	ATOM	440	N	PRO	A	60	0	1.542	49.961	12.020	1.00	26.30
	MOTA	441	CA	PRO	Α	60	0	2.460	50.669	12.916	1.00	26.19
	ATOM	442	C	PRO	A	60	0	3.312	49.591	13.595	1.00	25.29
	ATOM	443	0	PRO	A	60	0	2.879	48.432	13.668	1.00	24.63
15	MOTA	444	CB	PRO	Α	60	0	1.623	51.464	13.925	1.00	25.93
	ATOM	445	CG	PRO	A	60	0	0.235	51.357	13.325	1.00	26.19
	MOTA	446	CD	PRO	Α	60	0	0.165	50.073	12.508	1.00	26.23
	ATOM	447	N	THR	Α	61	0	4.544	49.932	13.976	1.00	24.60
	MOTA	448	CA	THR	Α	61	0	5.365	48.871	14.587	1.00	23.49
20	MOTA	449	C	THR	A	61	0	6.204	49.400	15.743	1.00	22.83
	ATOM	450	0	THR	A	61	0	6.390	50.601	15.921	1.00	20.77
	ATOM	451	CB	THR	A	61	0	6.245	48.170	13.535	1.00	22.69
	ATOM	452	OG1	THR	A	61	0	6.668	46.918	14.096	1.00	23.55
	MOTA	453	CG2	THR	A	61	0	7.444	48.976	13.119	1.00	20.92
25	MOTA	454	N	SER	A	62	0	6.702	48.449	16.507	1.00	22.38
	MOTA	455	CA	SER	A	62	0	7.599	48.672	17.633	1.00	22.47
	MOTA	456	C	SER	A	62	0	8.381	47.380	17.893	1.00	22.12
	MOTA	457	0	SER	A	62	0	7.763	46.331	18.124	1.00	20.53
	ATOM	458	CB	SER	A	62	0	6.784	49.033	18.882	1.00	22.02
30	MOTA	459	OG	SER	A	62	0	7.666	49.570	19.832	1.00	21.19
	MOTA	460	N	ILE	A	63	0	9.716	47.451	17.806	1.00	21.17
	MOTA	461	CA	ILE	A	63	0	10.513	46.240	17.960	1.00	18.32
	MOTA	462	С	ILE	A	63	0	11.095	46.034	19.354	1.00	18.28
	MOTA	463	0	ILE	A	63	0	11.832	46.909	19.826	1.00	19.63
35	MOTA	464	CB	ILE	A	63	0	11.642	46.234	16.924	1.00	16.68
	ATOM	465	CG1	ILE	A	63	0	11.166	46.509	15.508	1.00	18.51
	MOTA	466	CG2	ILE	A	63	0	12.319	44.848	16.906	1.00	16.78
	ATOM	467	CD1	ILE	A	63	0	10.055	45.625	14.994	1.00	18.25
	ATOM	468	N	HIS	A	64	0	10.880	44.890	19.985	1.00	15.18
40	ATOM	469	CA	HIS	A	64	0	11.478	44.539	21.261	1.00	15.51
	ATOM	470	С	HIS	A	64	0	12.648	43.559	21.029	1.00	16.73
	ATOM	471	0	HIS	A	64	0	12.491	42.591	20.279	1.00	16.85
	ATOM	472	СВ	HIS	A	64	0	10.512	43.912	22.239	1.00	14.37
	ATOM	473	CG	HIS	A	64	0	11.033	43.420	23.546	1.00	14.47
45	ATOM	474	NDl	HIS	A	64	0	11.763	44.191	24.410	1.00	12.89

	MOTA	475	CD2	HIS	A	64	0	10.883	42.223	24.193	1.00	14.85
	MOTA	476	CE1	HIS	A	64	0	12.067	43.518	25.498	1.00	11.53
	ATOM	477	NE2	HIS	Α	64	0	11.547	42.325	25.423	1.00	13.63
	ATOM	478	N	TRP	A	65	0	13.761	43.781	21.723	1.00	14.37
5	MOTA	479	CA	TRP	A	65	0	14.966	42.926	21.577	1.00	13.92
	ATOM	480	С	TRP	A	65	0	14.987	42.084	22.840	1.00	13.50
	ATOM	481	0	TRP	A	65	0	15.482	42.538	23.901	1.00	12.84
	ATOM	482	CB	TRP	A	65	0	16.189	43.825	21.371	1.00	13.50
	ATOM	483	CG	TRP	A	65	0	15.890	45.020	20.492	1.00	13.19
10	ATOM	484	CD1	TRP	A	65	0	15.453	46.247	20.913	1.00	12.42
	ATOM	485	CD2	TRP	A	65	0	15.908	45.087	19.068	1.00	13.61
	ATOM	486	NEl	TRP	A	65	0	15.234	47.067	19.862	1.00	11.49
	ATOM	487	CE2	TRP	A	65	0	15.511	46.390	18.710	1.00	13.77
	MOTA	488	CE3	TRP	Α	65	0	16.251	44.174	18.061	1.00	14.35
15	ATOM	489	CZ2	TRP	A	65	0	15.439	46.815	17.378	1.00	14.99
	MOTA	490	CZ3	TRP	A	65	0	16.169	44.572	16.735	1.00	13.99
	ATOM	491	CH2	TRP	Α	65	0	15.756	45.869	16.411	1.00	15.82
	ATOM	492	N	HIS	A	66	0	14.295	40.941	22.747	1.00	10.39
	ATOM	493	CA	HIS	A	66	0	13.939	40.200	23.966	1.00	12.00
20	ATOM	494	C	HIS	Α	66	0	15.158	39.653	24.698	1.00	11.34
	ATOM	495	0	HIS	Α	66	0	15.889	38.859	24.130	1.00	11.51
	ATOM	496	CB	HIS	A	66	0	12.923	39.069	23.629	1.00	10.76
	ATOM	497	CG	HIS	A	66	0	12.418	38.308	24.808	1.00	11.26
	ATOM	498	ND1	HIS	A	66	0	11.106	38.085	25.092	1.00	13.10
25	ATOM	499	CD2	HIS	A	66	0	13.050	37.676	25.824	1.00	13.49
	ATOM	500	CE1	HIS	A	66	0	10.919	37.407	26.191	1.00	12.50
	ATOM	501	NE2	HIS	A	66	0	12.116	37.146	26.683	1.00	13.71
	ATOM	502	N	GLY	A	67	0	15.345	39.971	25.948	1.00	12.84
	ATOM	503	CA	GLY	A	67	0	16.492	39.469	26.719	1.00	13.36
30	ATOM	504	С	GLY	A	67	0	17.596	40.500	26.914	1.00	13.11
	ATOM	505	0	GLY	A	67	0	18.435	40.289	27.788	1.00	13.36
	ATOM	506	N	LEU	A	68	0	17.641	41.558	26.131	1.00	12.89
	ATOM	507	CA	LEU	A	68	0	18.659	42.598	26.300	1.00	15.22
	ATOM	508	С	LEU	A	68	0	18.235	43.501	27.448	1.00	16.14
35	ATOM	509	0	LEU	Α	68	0	17.029	43.842	27.505	1.00	16.50
	ATOM	510	CB	LEU	A	68	0	18.929	43.320	24.988	1.00	15.98
	ATOM	511	CG	LEU	A	68	0	20.002	42.638	24.114	1.00	19.57
	ATOM	512	CD1	LEU	Α	68	0	19.719	41.185	23.809	1.00	20.39
	ATOM	513	CD2	LEU	A	68	0	20.188	43.316	22.758	1.00	19.59
40	ATOM	514	N	PHE	Α	69	0	19.125	43.848	28.386	1.00	13.24
	ATOM	515	CA	PHE	Α	69	0	18.700	44.657	29.526	1.00	13.85
	ATOM	516	C	PHE	A	69	0	18.499	46.128	29.205	1.00	14.34
	ATOM	517	0	PHE	A	69	0	17.806	46.879	29.895	1.00	15.02
	ATOM	518	CB	PHE	A	69	0	19.770	44.579	30.637	1.00	16.02
45	ATOM	519	CG	PHE	A	69	0	20.112	43.187	31.072	1.00	16.45

	MOTA	520	CD1	PHE .	A	69	0	19.172	42.162	31.026	1.00	16.68
•	MOTA	521	CD2	PHE .	A	69	0	21.381	42.927	31.578	1.00	16.78
	MOTA	522	CE1	PHE .	A	69	0	19.504	40.883	31.448		18.86
	MOTA	523	CE2	PHE	A	69	0	21.717	41.652	32.001	1.00	17.34
5	ATOM	524	CZ	PHE	A	69	0	20.782	40.628	31.932	1.00	18.09
	MOTA	525	N	GLN	A	70	0	19.081	46.611	28.130	1.00	12.22
	ATOM	526	CA	GLN	A	70	0	18.919	47.990	27.708	1.00	15.20
	ATOM	527	С	GLN	A	70	0	19.242	49.004	28.799	1.00	16.76
	ATOM	528	0	GLN	A	70	0	18.555	50.016	28.919	1.00	16.08
10	ATOM	529	CB	GLN	Α	70	0	17.488	48.115	27.232	1.00	15.52
	ATOM	530	CG	GLN	A	70	0	17.168	47.303	26.003	1.00	17.37
	ATOM	531	CD	GLN	A	70	0	17.781	47.744	24.709	1.00	17.70
	ATOM	532	OE1	GLN	A	70	0	17.557	47.090	23.676	1.00	21.63
	MOTA	533	NE2	GLN	A	70	0	18.549	48.805	24.620	1.00	16.79
15	MOTA	534	N	ARG	A	71	0	20.338	48.804	29.518	1.00	16.49
	ATOM	535	CA	ARG	A	71	0	20.765	49.712	30.588	1.00	18.41
	ATOM	536	С	ARG	A	71	0	21.239	51.011	29.970	1.00	16.23
	ATOM	537	0	ARG	Α	71	0	22.059	50.998	29.027	1.00	14.48
	MOTA	538	СВ	ARG	A	71	0	21.827	48.942	31.382	1.00	22.65
20	ATOM	539	CG	ARG	A	71	0	22.273	49.589	32.671	1.00	29.50
	MOTA	540	CD	ARG	A	71	0	23.286	48.756	33.457	1.00	32.92
	MOTA	541	NE	ARG	A	71	0	22.712	47.550	34.035	1.00	38.11
	MOTA	542	CZ	ARG	A	71	0	22.551	46.358	33.452	1.00	40.14
	MOTA	543	NH1	ARG	A	71	0	22.939	46.138	32.190	1.00	41.23
25	MOTA	544	NH2	ARG	A	71	0	22.022	45.333	34.130	1.00	40.89
	ATOM	545	N	GLY	A	72	0	20.613	52.145	30.311	1.00	14.82
	ATOM	546	CA	GLY	A	72	0	20.981	53.414	29.676	1.00	14.51
	MOTA	547	C	GLY	A	72	0	20.268	53.606	28.338	1.00	15.55
	MOTA	548	0	GLY	A	72	0	20.401	54.706	27.777	1.00	16.32
30	MOTA	549	N	THR	A	73	0	19.503	52.651	27.804	1.00	12.12
	MOTA	550	CA	THR	A	73	0	18.857	52.781	26.516	1.00	12.50
	MOTA	551	C	THR	A	73	0	17.418	52.252	26.621		13.98
	MOTA	552	0	THR	A	73	0	16.890	51.534	25.776	1.00	13.81
	MOTA	553	CB	THR	A	73	0	19.577	52.086	25.346	1.00	12.21
35	ATOM	554	OG1	THR	A	73	0	19.854	50.711	25.666	1.00	12.83
	MOTA	555	CG2	THR	A	73	0	20.944	52.711	25.000	1.00	9.81
	ATOM	556	N	ASN	A	74	0	16.744	52.617	27.708		12.97
	ATOM	557	CA	ASN	A	74	0	15.354	52.273	27.951	1.00	14.93
	MOTA	558	C	ASN	A	74	0	14.469	52.718	26.784	1.00	15.92
40	ATOM	559	0	ASN	A	74	0	13.501	52.030	26.455	1.00	16.56
	ATOM	560	СВ	ASN	A	74	0	14.851	52.821	29.271	1.00	13.06
	ATOM	561	CG	ASN	A	74	0	13.385	52.519	29.556	1.00	15.47
	ATOM	562	OD1	ASN	A	74	0	12.557	53.250	29.021	1.00	13.99
	ATOM	563	ND2	ASN	A	74	0	13.063	51.500	30.367	1.00	13.91
45	ATOM	564	N	TRP	A	75	0	14.806	53.765	26.041	1.00	16.16

TRP A ATOM 565 CA 75 0 14.036 54.262 24.917 1.00 16.49 ATOM 566 C TRP A 75 1.00 17.29 0 14.050 53.345 23.701 ATOM 567 0 TRP A 75 0 13.235 53.529 22.776 1.00 16.34 ATOM 568 CB TRP A 75 0 14.516 55.657 24.509 1.00 15.90 5 ATOM 569 CG TRP A 75 15.990 1.00 16.04 0 55.705 24.207 ATOM 570 CD1 TRP A 75 0 1.00 14.90 17.011 55.972 25.072 ATOM 571 CD2 TRP A 75 0 16.584 55.475 22.916 1.00 15.94 ATOM 572 NE1 TRP A 75 24.384 0 18.210 55.917 1.00 15.89 ATOM CE2 TRP A 75 573 0 17.977 55.624 23.076 1.00 15.80 10 ATOM 574 CE3 TRP A 75 0 16.060 55.171 21.656 1.00 14.88 ATOM 575 CZ2 TRP A 75 0 18.867 55.459 22.016 1.00 17.60 MOTA 576 CZ3 TRP A 75 0 20.603 1.00 16.64 16.928 55.025 ATOM 577 CH2 TRP A 75 0 18.321 55.153 20.785 1.00 18.16 ATOM 578 N ALA A 76 0 14.962 1.00 15.12 52.372 23.675 15 76 MOTA 579 CA ALA A 0 15.075 51.430 22.578 1.00 14.61 ATOM 580 C ALA A 76 0 14.569 50.047 22.971 1.00 13.98 ATOM 0 581 ALA A 76 0 14.617 49.132 1.00 14.20 22.159 ATOM 582 CB ALA A 76 0 16.554 51.354 22.157 1.00 13.68 ATOM 583 N ASP A 77 0 13.941 49.885 24.121 1.00 14.47 20 ATOM 584 CA ASP A 77 0 13.409 1.00 14.23 48.605 24.586 ATOM C ASP A 77 585 0 12.198 48.167 23.762 1.00 15.04 ATOM 586 0 ASP A 77 0 11.982 46.946 23.638 1.00 13.78 ATOM 77 587 CB ASP A 0 13.112 48.567 26.072 1.00 13.41 ATOM 588 CG ASP A 77 0 12.945 47.155 26.612 1.00 14.93 25 ATOM 589 OD1 ASP A 77 0 11.943 46.986 27.345 1.00 15.07 ATOM 77 590 OD2 ASP A 0 13.744 46.217 26.334 1.00 13.73 ATOM 591 N GLY A 78 0 11.458 49.095 23.160 1.00 13.63 ATOM CA GLY A 592 78 0 10.442 48.686 22.210 1.00 14.96 ATOM 593 C GLY A 78 0 9.040 48.309 22.631 1.00 16.75 30 ATOM 594 0 GLY A 78 0 8.276 47.865 21.755 1.00 16.49 ATOM 595 N ALA A 79 0 8.631 48.436 1.00 15.34 23.886 ATOM 596 CA ALA A 79 0 7.252 48.176 24.270 1.00 14.70 ATOM 597 C ALA A 79 0 6.490 49.495 24.084 1.00 17.51 ATOM 0 598 ALA A 79 0 6.690 50.486 24.807 1.00 17.05 35 ATOM 599 CB ALA A 79 0 7.145 47.701 25.708 1.00 14.78 ATOM 600 N ASP A 80 0 5.641 49.536 23.053 1.00 18.56 ATOM CA 601 ASP A 80 0 4.859 50.741 22.798 1.00 19.52 ATOM 602 C ASP A 80 0 3.959 50.963 24.010 1.00 17.61 ATOM 603 0 0 1.00 16.72 ASP A 80 3.530 49.999 24.664 40 ATOM 604 CB 0 ASP A 80 4.044 50.714 21.510 1.00 24.02 ATOM 605 CG ASP A 80 0 3.003 49.607 21.549 1.00 28.13 ATOM 606 OD1 ASP A 80 0 3.410 48.417 21.541 1.00 30.66 ATOM 607 OD2 ASP A 80 0 1.803 49.959 21.603 1.00 30.61 ATOM 608 N 81 0 3.776 GLY A 52.242 24.337 1.00 15.85 45 **ATOM** 609 CA GLY A 81 0 2.991 52.566 25.532 1.00 16.27

					•							
	ATOM	610	С	GLY	A	81	0	3.846	52.615	26.784	1.00	18.72
	MOTA	611	0	GLY	A	81	0	3.405	52.983	27.890	1.00	20.61
	ATOM	612	N	VAL	A	82	0	5.108	52.173	26.725	1.00	19.11
	ATOM	613	CA	VAL	A	82	0	5.978	52.119	27.890	1.00	19.14
5	MOTA	614	C	VĄL	A	82	0	7.288	52.851	27.590	1.00	18.41
	MOTA	615	0	VAL	A	82	0	7.594	53.839	28.242	1.00	16.79
	MOTA	616	CB	VAL	A	82	0	6.266	50.697	28.390	1.00	19.82
	MOTA	617	CG1	VAL	A	82	0	7.059	50.741	29.710	1.00	21.37
	MOTA	618	CG2	VAL	A	82	0	4.995	49.894	28.640	1.00	19.27
10	MOTA	619	N	ASN	A	83	0	7.982	52.408	26.551	1.00	17.90
	MOTA	620	CA	ASN	A	83	0	9.271	52.926	26.147	1.00	16.94
	ATOM	621	C	ASN	A	83	0	9.226	53.778	24.886	1.00	18.32
	MOTA	622	0	ASN	A	83	0	10.175	54.551	24.634	1.00	20.58
	MOTA	623	CB	ASN	A	83	0	10.249	51.747	25.937	1.00	15.23
15	ATOM	624	CG	ASN	Α	83	0	10.112	50.745	27.063	1.00	16.00
	MOTA	625	OD1	ASN	A	83	0	9.493	49.676	26.879	1.00	14.98
	MOTA	626	ND2	ASN	A	83	0	10.583	51.131	28.249	1.00	13.17
	MOTA	627	N	GLN	A	84	0	8.183	53.668	24.066	1.00	16.40
	ATOM	628	CA	GLN	A	84	0	8.080	54.464	22.867	1.00	16.34
20	ATOM	629	C	GLN	A	84	0	6.658	54.465	22.309	1.00	17.95
	ATOM	630	0	GLN	A	84	0	5.816	53.679	22.728	1.00	17.69
	MOTA	631	CB	GLN	A	84	0	8.995	53.953	21.754	1.00	17.98
	ATOM	632	CG	GLN	A	84	0	8.456	52.654	21.127	1.00	16.63
	ATOM	633	CD	GLN	A	84	0	9.272	52.225	19.938	1.00	18.17
25	ATOM	634	OE1	GLN	A	84	0	8.994	52.601	18.792	1.00	20.91
	ATOM	635	NE2	GLN	A	84	0	10.279	51.385	20.096	1.00	18.70
	ATOM	636	N	CYS	A	85	0	6.419	55.350	21.365	1.00	18.60
	ATOM	637	CA	CYS	A	85	0	5.140	55.344	20.622	1.00	20.25
	ATOM	638	С	CYS	A	85	0	5.512	54.555	19.375	1.00	19.55
30	ATOM	639	0	CYS	A	85	0	6.690	54.546	18.995	1.00	18.92
	ATOM	640	СВ	CYS	A	85	0	4.772	56.786	20.228	1.00	22.20
	ATOM	641	SG	CYS	A	85	0	3.899	57.783	21.481	1.00	24.65
	ATOM	642	N	PRO	A	86	0	4.589	53.951	18.674	1.00	21.19
	ATOM	643	CA	PRO	A	86	0	4.869	53.152	17.498	1.00	20.78
35	ATOM	644	C	PRO	A	86	0	5.560	53.930	16.394	1.00	21.46
	ATOM	645	0	PRO	A	86	0	5.453	55.137	16.298	1.00	23.08
	ATOM	646	CB	PRO	A	86	0	3.530	52.555	17.028	1.00	19.94
	ATOM	647	CG	PRO	A	86	0	2.667	52.720	18.252	1.00	19.59
	ATOM	648	CD	PRO	A	86	0	3.174	53.872	19.062	1.00	20.46
40	ATOM	649	N	ILE	A	87	0	6.318	53.259	15.550	1.00	20.95
	ATOM	650	CA	ILE	A	87	0	6.907	53.773	14.337	1.00	22.43
	ATOM	651	С	ILE	A	87	0	5.768	53.641	13.292	1.00	22.80
	ATOM	652	0	ILE	A	87	0	5.148	52.562	13.228	1.00	21.61
	ATOM	653	СВ	ILE	A	87	0	8.105	52.954	13.844	1.00	21.99
45	ATOM	654	CG1	ILE	A	87	0	9.130	52.696	14.944	1.00	24.18

	MOTA	655	CG2	ILE	A	87	0	8.773	53.656	12.674	1.00	22.91
	MOTA	656	CD1	ILE	A	87	0	10.256	51.776	14.514	1.00	23.87
	ATOM	657	N	SER	A	88	0	5.464	54.702	12.570	1.00	22.64
	ATOM	658	CA	SER	A	88	0	4.338	54.709	11.647	1.00	22.85
5	MOTA	659	C	SER	A	88	0	4.751	54.268	10.249	1.00	23.35
	MOTA	660	0	SER	A	88	0	5.870	54.489	9.764	1.00	23.30
	ATOM	661	CB	SER	A	88	0	3.767	56.137	11.518	1.00	24.00
	ATOM	662	OG	SER	A	88	0	3.379	56.770	12.720	1.00	23.93
	MOTA	663	N	PRO	A	89	0	3.778	53.752	9.514	1.00	23.60
10	MOTA	664	CA	PRO	A	89	0	3.955	53.382	8.116	1.00	25.19
	ATOM	665	C	PRO	A	89	0	4.579	54.556	7.361	1.00	26.58
	ATOM	666	0	PRO	A	89	0	4.177	55.699	7.585	1.00	26.66
	ATOM	667	CB	PRO	A	89	0	2.566	53.065	7.555	1.00	23.59
	ATOM	668	CG	PRO	A	89	0	1.740	52.856	8.798	1.00	22.37
15	ATOM	669	CD	PRO	A	89	0	2.415	53.513	9.970	1.00	23.25
	MOTA	670	N	GLY	A	90	0	5.588	54.311	6.550	1.00	27.73
	MOTA	671	CA	GLY	Α	90	0	6.223	55.338	5.748	1.00	30.55
	MOTA	672	C	GLY	A	90	0	7.384	56.032	6.438	1.00	32.38
	ATOM	673	0	GLY	A	90	0	8.050	56.894	5.879	1.00	32.53
20	MOTA	674	N	HIS	A	91	0	7.639	55.693	7.702	1.00	32.77
	MOTA	675	CA	HIS	A	91	0	8.691	56.283	8.494	1.00	32.55
	MOTA	676	С	HIS	A	91	0	9.649	55.179	8.982	1.00	32.36
	ATOM	677	0	HIS	A	91	0	9.381	53.972	8.961	1.00	31.30
	ATOM	678	CB	HIS	A	91	0	8.118	57.016	9.722	1.00	33.75
25	MOTA	679	CG	HIS	A	91	0	7.147	58.073	9.295	1.00	34.64
	ATOM	680	ND1	HIS	A	91	0	7.519	59.381	9.072		34.41
	MOTA	681	CD2	HIS	A	91	0	5.822	57.977	9.002	1.00	34.89
	MOTA	682	CE1	HIS	A	91	0	6.450	60.050	8.679		34.87
	MOTA	683	NE2	HIS	A	91	0	5.410	59.233	8.628		35.14
30	MOTA	684	N	ALA	Α	92	0	10.786	55.668	9.437	1.00	29.57
	MOTA	685	CA	ALA	Α	92	0	11.895	54.898	9.937		27.71
	MOTA	686	С	ALA	A	92	0	12.316	55.347	11.337		27.41
	MOTA	687	0	ALA	A	92	0	12.076	56.484	11.741		26.12
	MOTA	688	CB	ALA	A	92	0	13.051	55.057	8.967		25.23
35	MOTA	689	N	PHE	A	93	0	12.931	54.418	12.081		26.87
	MOTA	690	CA	PHE	A	93	0	13.441	54.760	13.405		25.87
	MOTA	691	С	PHE	A	93	0	14.746	54.008	13.632		25.21
	MOTA	692	0	PHE	A	93	0	14.797	52.810	13.347		25.80
	MOTA	693	CB	PHE	A	93	0	12.457	54.456	14.526	1.00	25.30
40	MOTA	694	CG	PHE	A	93	0	12.964	54.955	15.847	1.00	25.41
	MOTA	695	CD1	PHE	A	93	0	13.154	56.309	16.061	1.00	25.36
	MOTA	696	CD2	PHE	A	93	0	13.276	54.057	16.853	1.00	25.31
	MOTA	697	CE1	PHE	A	93	0	13.637	56.753	17.285	1.00	26.54
	MOTA	698	CE2	PHE	A	93	0	13.754	54.503	18.078		25.39
45	MOTA	699	CZ	PHE	A	93	0	13.935	55.857	18.302	1.00	25.01

	ATOM	700	N	LEU	A	94	0	15.756	54.699	14.136	1.00	23.39
	ATOM	701	CA	LEU	A	94	0	17.046	54.058	14.361	1.00	23.35
	ATOM	702	C	LEU	A	94	0	17.191	53.611	15.804	1.00	23.22
	MOTA	703	0	LEU	A	94	0	17.261	54.431	16.714	1.00	23.47
5	ATOM	704	CB	LEU	A	94	0	18.186	54.994	13.943	1.00	24.96
	ATOM	705	CG	LEU	A	94	0	19.630	54.555	14.170	1.00	26.28
	ATOM	706	CD1	LEU	A	94	0	19.979	53.313	13.352	1.00	25.99
	ATOM	707	CD2	LEU	Α	94	0	20.627	55.678	13.887	1.00	26.06
	MOTA	708	N	TYR	A	95	0	17.261	52.293	16.023	1.00	21.81
10	ATOM	709	CA	TYR	A	95	0	17.481	51.780	17.379	1.00	19.72
	ATOM	710	С	TYR	Α	95	0	18.991	51.663	17.585	1.00	20.90
	ATOM	711	0	TYR	A	95	0	19.690	51.248	16.656	1.00	20.74
	ATOM	712	CB	TYR	A	95	0	16.831	50.448	17.609	1.00	17.86
	ATOM	713	CG	TYR	A	95	0	15.329	50.411	17.691	1.00	16.35
15	ATOM	714	CD1	TYR	A	95	0	14.541	50.288	16.535	1.00	16.89
	ATOM	715	CD2	TYR	A	95	0	14.701	50.442	18.911	1.00	15.71
	MOTA	716	CE1	TYR	Α	95	0	13.157	50.205	16.621	1.00	17.21
	ATOM	717	CE2	TYR	Α	95	0	13.325	50.362	19.033	1.00	16.25
	ATOM	718	CZ	TYR	A	95	0	12.568	50.266	17.874	1.00	17.97
20	ATOM	719	ОН	TYR	A	95	0	11.205	50.189	18.001	1.00	18.61
	ATOM	720	N	LYS	A	96	0	19.475	52.105	18.752	1.00	20.56
	ATOM	721	CA	LYS	A	96	0	20.917	52.058	18.975	1.00	21.77
	ATOM	722	С	LYS	A	96	0	21.139	51.519	20.386	1.00	20.91
	ATOM	723	0	LYS	Α	96	0	20.558	52.122	21.286	1.00	21.98
25	ATOM	724	CB	LYS	Α	96	0	21.565	53.427	18.960	1.00	22.89
	ATOM	725	CG	LYS	Α	96	0	21.857	54.046	17.609	1.00	26.39
	MOTA	726	CD	LYS	A	96	0	22.749	55.251	17.923	1.00	30.80
	ATOM	727	CE	LYS	Α	96	0	22.732	56.348	16.884	1.00	32.90
	ATOM	728	NZ	LYS	Α	96	0	23.767	57.378	17.277	1.00	36.06
30	MOTA	729	N	PHE	A	97	0	21.871	50.437	20.520	1.00	18.14
	ATOM	730	CA	PHE	Α	97	0	22.062	49.863	21.854	1.00	18.19
	MOTA	731	C	PHE	A	97	0	23.276	48.928	21.805	1.00	16.76
	ATOM	732	0	PHE	A	97	0	23.870	48.700	20.747	1.00	14.19
	MOTA	733	СВ	PHE	A	97	0	20.816	49.067	22.307	1.00	17.34
35	MOTA	734	CG	PHE	A	97	0	20.379	48.026	21.304	1.00	17.56
	ATOM	735	CD1	PHE	A	97	0	20.873	46.732	21.348	1.00	16.27
	MOTA	736	CD2	PHE	A	97	0	19.451	48.343	20.326	1.00	18.65
	ATOM	737	CE1	PHE	A	97	0	20.476	45.801	20.398	1.00	17.76
	ATOM	738	CE2	PHE	Α	97	0	19.026	47.408	19.386	1.00	18.64
40	ATOM	739	cz	PHE		97	0	19.546	46.120	19.416	1.00	17.55
	ATOM	740	N	THR		98	0	23.552	48.348	22.971	1.00	17.45
	ATOM	741	CA	THR		98	0	24.644	47.359	22.992	1.00	17.00
	ATOM	742	С	THR		98	0	24.304	46.333	24.042		16.63
	ATOM	743	0	THR		98	0	23.725	46.631	25.090	1.00	15.86
45	ATOM	744	СВ	THR		98	0	26.028	47.990	23.256		17.53
-							-				_	

	MOTA	745	OG1	THR	A	98	0	27.017	46.924	23.372	1.00	19.01
	MOTA	746	CG2	THR	A	98	0	26.088	48.807	24.525	1.00	14.85
	ATOM	747	N	PRO	A	99	0	24.740	45.097	23.831	1.00	15.98
	MOTA	748	CA	PRO	A	99	0	24.601	44.019	24.787	1.00	15.11
5	ATOM	749	C	PRO	A	99	0	25.445	44.270	26.020	1.00	15.99
	ATOM	750	0	PRO	A	99	0	25.260	43.633	27.064	1.00	15.94
	MOTA	751	СВ	PRO	A	99	0	25.025	42.717	24.098	1.00	15.83
	ATOM	752	CG	PRO	A	99	0	25.042	43.140	22.644	1.00	17.12
	ATOM	753	CD	PRO	A	99	0	25.362	44.627	22.601	1.00	15.68
10	ATOM	754	N	ALA	A	100	0	26.452	45.149	25.932	1.00	17.29
	ATOM	755	CA	ALA	A	100	0	27.316	45.501	27.050	1.00	16.88
	ATOM	756	C	ALA	A	100	0	27.919	44.293	27.754	1.00	16.16
	ATOM	757	0	ALA	A	100	0	27.779	44.187	28.977	1.00	18.13
	ATOM	758	СВ	ALA	A	100	0	26.498	46.292	28.084	1.00	14.96
15	ATOM	759	N	GLY	Α	101	0	28.474	43.360	27.033	1.00	16.41
	ATOM	760	CA	GLY	A	101	0	29.063	42.172	27.599	1.00	17.49
	ATOM	761	С	GLY	A	101	0	28.130	40.994	27.769	1.00	16.15
	MOTA	762	0	GLY	A	101	0	28.593	39.930	28.137	1.00	16.57
	MOTA	763	N	HIS	A	102	0	26.838	41.120	27.521	1.00	17.58
20	MOTA	764	CA	HIS	A	102	0	25.858	40.058	27.804	1.00	15.77
	MOTA	765	C	HIS	A	102	0	25.707	39.165	26.600	1.00	15.28
	MOTA	766	0	HIS	A	102	0	25.087	39.641	25.662	1.00	17.64
	MOTA	767	CB	HIS	A	102	0	24.498	40.666	28.186	1.00	17.95
	MOTA	768	CG	HIS	A	102	0	23.432	39.661	28.493	1.00	20.00
25	MOTA	769	ND1	HIS	A	102	0	22.099	40.005	28.547	1.00	20.59
	MOTA	770	CD2	HIS	A	102	0	23.475	38.323	28.772	1.00	20.09
	MOTA	771	CE1	HIS	A	102	0	21.398	38.937	28.866	1.00	20.77
	MOTA	772	NE2	HIS	A	102	0	22.201	37.896	29.016	1.00	20.56
	MOTA	773	N	ALA	A	103	0	26.277	37.958	26.584	1.00	13.32
30	MOTA	774	CA	ALA	A	103	0	26.141	37.127	25.415	1.00	13.99
	MOTA	775	C	ALA	A	103	0	24.974	36.156	25.649	1.00	13.43
	MOTA	776	0	ALA	A	103	0	24.571	35.905	26.784	1.00	11.81
	MOTA	777	CB	ALA	A	103	0	27.418	36.329	25.151	1.00	16.36
	ATOM	778	N	GLY	A	104	0	24.459	35.610	24.554	1.00	12.38
35	MOTA	779	CA	GLY	A	104	0	23.381	34.632	24.778	1.00	12.85
	ATOM	780	С	GLY	A	104	0	22.480	34.451	23.581	1.00	11.06
	ATOM	781	0	GLY	A	104	0	22.674	35.057	22.515		10.91
	MOTA	782	N	THR	A	105	0	21.442	33.650	23.794		10.14
	MOTA	783	CA	THR	A	105	0	20.490	33.394	22.704	1.00	10.04
40	ATOM	784	С	THR	A	105	0	19.238	34.236	22.989	1.00	9.52
	ATOM	785	0	THR	Α	105	0	18.738	34.194	24.125	1.00	7.52
	MOTA	786	CB	THR	Α	105	0	20.114	31.913	22.665	1.00	12.67
	MOTA	787	OG1	THR	A	105	0	21.273	31.075	22.593	1.00	13.47
	ATOM	788	CG2	THR	A	105	0	19.187	31.684	21.468	1.00	12.75
45	MOTA	789	И	PHE	A	106	0	18.842	35.065	22.044	1.00	7.76

PHE A 106 790 CA 0 17.731 35.992 22.243 1.00 10.15 ATOM C 8.42 791 PHE A 106 0 16.756 35.910 21.068 1.00 ATOM 8.33 MOTA 792 0 PHE A 106 0 16.941 35.083 20.166 1.00 MOTA 793 CB PHE A 106 0 18.283 37.460 22.369 1.00 10.19 CG 37.577 23.506 ATOM 794 PHE A 106 0 19.291 1.00 12.95 PHE A 106 ATOM 795 CD1 0 18.905 37.443 24.815 1.00 11.44 ATOM CD2 PHE A 106 0 20.654 37.775 23.230 1.00 12.37 796 MOTA 797 CE1 PHE A 106 0 19.855 37.531 25.822 1.00 14.20 CE2 PHE A 106 MOTA 798 0 21.574 37.857 24.273 1.00 11.56 10 **ATOM** 799 CZPHE A 106 0 21.202 37.733 25.599 1.00 9.45 6.61 ATOM 800 N TRP A 107 0 15.869 36.887 20.917 1.00 ATOM 801 CA TRP A 107 0 15.062 36.977 19.713 1.00 10.20 C TRP A 107 0 ATOM 802 14.511 38.398 19.625 1.00 10.63 ATOM 803 0 TRP A 107 0 14.463 1.00 13.71 39.036 20.657 15 MOTA 804 CB TRP A 107 0 13.928 35.966 19.636 1.00 7.49 ATOM 805 CG TRP A 107 0 1.00 9.41 12.945 35.916 20.755 MOTA 806 CD1 TRP A 107 0 1.00 10.53 13.136 35.804 22.106 MOTA 807 CD2 TRP A 107 0 11.509 36.004 20.581 1.00 9.17 **ATOM** 808 NE1 TRP A 107 0 11.929 22.768 1.00 10.63 35.784 20 ATOM CE2 TRP A 107 809 0 10.924 1.00 9.90 35.926 21.842 MOTA CE3 TRP A 107 0 810 10.698 36.144 19.444 1.00 8.77 MOTA 811 CZ2 TRP A 107 0 9.538 35.947 22.025 1.00 10.01 ATOM 812 CZ3 TRP A 107 0 9.336 36.167 19.613 1.00 8.60 ATOM CH2 TRP A 107 1.00 10.09 813 0 8.774 36.061 20.890 25 ATOM TYR A 108 814 N 0 14.117 38.847 18.464 1.00 10.72 MOTA 815 CA **TYR A 108** 0 13.498 40.148 18.302 1.00 12.19 ATOM C TYR A 108 0 816 12.030 39.869 17.875 1.00 13.62 **ATOM** 817 O **TYR A 108** 0 11.752 38.837 17.245 1.00 13.85 ATOM CB 818 TYR A 108 0 17.259 1.00 11.05 14.182 40.994 30 ATOM 819 CG TYR A 108 0 14.176 40.413 15.857 1.00 13.89 ATOM 820 CD1 **TYR A 108** 0 15.087 39.464 15.423 1.00 12.99 ATOM 821 CD2 TYR A 108 0 1.00 14.94 13.257 40.897 14.920 ATOM 822 CE1 TYR A 108 0 38.979 1.00 13.64 15.064 14.130 MOTA 823 CE2 TYR A 108 0 13.216 40.409 13.624 1.00 15.34 35 **ATOM** 824 CZTYR A 108 0 14.123 39.443 13.236 1.00 14.99 **ATOM** TYR A 108 0 1.00 16.68 825 OH 14.063 38.960 11.946 ATOM HIS A 109 1.00 12.81 826 N 0 11.123 40.752 18.254 ATOM HIS A 109 827 CA 0 9.735 40.630 17.826 1.00 14.92 ATOM C HIS A 109 0 1.00 15.96 828 9.057 41.988 17.991 40 ATOM 829 0 HIS A 109 0 9.392 42.800 18.875 1.00 15.67 ATOM 830 CB HIS A 109 0 8.903 39.566 18.550 1.00 12.30 **ATOM** 831 CG HIS A 109 0 8.804 39.727 20.036 1.00 12.30 **ATOM** 832 ND1 HIS A 109 0 7.788 40.429 20.666 1.00 9.89 MOTA 833 CD2 HIS A 109 0 1.00 10.76 9.614 39.264 21.034 45 ATOM CE1 HIS A 109 0 21.971 1.00 8.49 834 7.982 40.379

	MOTA	835	NE2	HIS	A	109	0	9.086	39.679	22.224	1.00	7.92
	ATOM	836	И	SER	A	110	0	8.070	42.203	17.122	1.00	16.26
	MOTA	837	CA	SER	A	110	0	7.244	43.404	17.300	1.00	14.55
	ATOM	838	C	SER	A	110	0	6.548	43.283	18.646	1.00	13.56
5	MOTA	839	0	SER	A	110	0	6.219	42.191	19.140	1.00	13.54
	MOTA	840	CB	SER	A	110	0	6.219	43.543	16.159	1.00	16.69
	MOTA	841	OG	SER	A	110	0	5.212	44.481	16.508	1.00	15.32
	MOTA	842	N	HIS	Α	111	0	6.396	44.395	19.359	1.00	14.60
	MOTA	843	CA	HIS	A	111	0	5.724	44.397	20.645	1.00	16.23
10	ATOM	844	С	HIS	A	111	0	4.349	45.070	20.478	1.00	18.61
	ATOM	845	0	HIS	A	111	0	3.713	45.391	21.473	1.00	21.72
	ATOM	846	СВ	HIS	A	111	0	6.478	45.166	21.721	1.00	14.37
	ATOM	847	CG	HIS	A	111	0	6.392	44.519	23.077	1.00	15.33
	MOTA	848	ND1	HIS	Α	111	0	5.341	44.660	23.947	1.00	14.55
15	ATOM	849	CD2	HIS	A	111	0 .	7.265	43.676	23.680	1.00	14.72
	ATOM	850	CEl	HIS	Α	111	0	5.589	43.936	25.040	1.00	16.29
	MOTA	851	NE2	HIS	A	111	0	6.773	43.326	24.920	1.00	15.35
	ATOM	852	N	PHE	A	112	0	3.950	45.382	19.258	1.00	18.67
	ATOM	853	CA	PHE	A	112	0	2.725	46.139	19.037	1.00	19.61
20	ATOM	854	С	PHE	A	112	0	1.540	45.219	18.777	1.00	19.06
	ATOM	855	0	PHE	A	112	0	1.521	44.630	17.707	1.00	17.50
	ATOM	856	CB	PHE	A	112	0	2.971	47.113	17.875	1.00	21.16
	ATOM	857	CG	PHE	A	112	0	1.798	48.019	17.611	1.00	23.12
	ATOM	858	CD1	PHE	A	112	0	1.456	49.007	18.509	1.00	24.59
25	MOTA	859	CD2	PHE	A	112	0	1.034	47.886	16.466	1.00	24.82
	MOTA	860	CE1	PHE	A	112	0	0.387	49.852	18.312	1.00	24.29
	ATOM	861	CE2	PHE	A	112	0	-0.063	48.714	16.243	1.00	25.87
	ATOM	862	CZ	PHE	A	112	0	-0.378	49.698	17.161	1.00	25.17
	ATOM	863	N	GLY	A	113	0	0.599	45.092	19.707	1.00	18.05
30	MOTA	864	CA	GLY	Α	113	0	-0.554	44.236	19.433	1.00	19.69
	ATOM	865	C	GLY	A	113	0	-0.085	42.819	19.096	1.00	22.25
	ATOM	866	0	GLY	A	113	0	0.937	42.333	19.593	1.00	20.55
	ATOM	867	N	THR	A	114	0	-0.817	42.173	18.186	1.00	20.91
	ATOM	868	CA	THR	A	114	0	-0.493	40.816	17.749	1.00	20.85
35	MOTA	869	С	THR	A	114	0	0.296	40.774	16.471	1.00	18.04
	ATOM	870	0	THR	A	114	0	0.243	39.783	15.743	1.00	18.26
	ATOM	871	CB	THR	A	114	0	-1.847	40.095	17.487	1.00	23.93
	MOTA	872	OG1	THR	A	114	0	-2.609	40.910	16.554	1.00	25.68
	MOTA	873	CG2	THR	A	114	0	-2.571	39.928	18.792	1.00	23.72
40	ATOM	874	N	GLN	Α	115	0	1.023	41.819	16.095	1.00	17.04
	ATOM	875	CA	GLN	Α	115	0	1.792	41.842	14.853	1.00	16.88
	ATOM	876	С	GLN	Α	115	0	2.881	40.775	14.744	1.00	17.94
	ATOM	877	0	GLN	A	115	0	3.203	40.263	13.649	1.00	17.18
	ATOM	878	СВ			115	0	2.391	43.244	14.757	1.00	17.55
45	MOTA	879	CG			115	0	3.026	43.601	13.418	1.00	17.65

1.00 17.73 13.418 MOTA 880 CD **GLN A 115** 0 3.558 45.024 OE1 GLN A 115 0 45.782 12.482 1.00 19.19 ATOM 881 3.257 ATOM 882 NE2 GLN A 115 45.421 14.422 1.00 14.70 0 4.334 1.00 16.32 ATOM 883 N TYR A 116 0 3.515 40.416 15.881 1.00 15.92 ATOM ÇA TYR A 116 4.561 39.386 15.859 5 884 0 TYR A 116 15.479 1.00 17.17 ATOM 885 C 0 3.935 38.042 1.00 16.70 0 TYR A 116 0 4.584 37.258 14.786 **ATOM** 886 1.00 13.45 MOTA 887 CB TYR A 116 5.411 39.312 17.096 0 ATOM TYR A 116 1.00 10.97 888 CG 5.209 38.487 18.314 0 ATOM 1.00 11.02 CD1 TYR A 116 10 889 0 5.581 37.146 18.394 MOTA CD2 TYR A 116 1.00 12.18 890 0 4.665 39.052 19.460 CE1 TYR A 116 1.00 10.02 ATOM 891 0 5.364 36.399 19.532 1.00 12.25 CE2 TYR A 116 4.491 20.642 **ATOM** 892 0 38.345 MOTA CZTYR A 116 4.838 36.996 20.649 1.00 11.73 893 0 15 ATOM 894 OH TYR A 116 0 4.642 36.295 21.821 1.00 12.72 CYS A 117 1.00 17.70 ATOM 895 N 0 2.654 37.829 15.842 1.00 18.01 ATOM 896 CA CYS A 117 0 1.965 36.617 15.424 1.00 17.55 ATOM 897 C CYS A 117 0 1.883 36.496 13.911 1.00 17.50 ATOM 898 0 CYS A 117 0 1.796 35.352 13.450 20 **ATOM** CYS A 117 16.042 1.00 17.90 899 CB 0 0.565 36.528 ATOM 900 SG CYS A 117 0.463 17.810 1.00 19.72 0 36.895 ATOM 901 N **ASP A 118** 2.001 1.00 15.51 0 37.568 13.136 ATOM **ASP A 118** 11.696 1.00 17.74 902 CA 0 1.953 37.509 ATOM 37,445 1.00 18.72 903 C **ASP A 118** 0 3.341 11.061 25 MOTA 1.00 17.47 904 0 **ASP A 118** 0 3.494 37.770 9.865 ATOM 905 CB **ASP A 118** 0 1.142 38.696 11.131 1.00 18.61 **ATOM** CG **ASP A 118** 1.00 21.44 906 0 -0.356 38.448 11.378 MOTA 907 OD1 **ASP A 118** -0.826 37.331 11.082 1.00 21.55 0 ATOM 908 OD2 ASP A 118 0 -1.064 11.885 1.00 21.54 39.333 30 ATOM **GLY A 119** 1.00 18.19 909 N 0 4.355 37.095 11.882 ATOM 910 CA **GLY A 119** 0 5.671 36.889 11.313 1.00 19.00 ATOM 911 C **GLY A 119** 0 6.751 37.898 11.590 1.00 19.79 ATOM 912 0 **GLY A 119** 0 7.909 37.640 11.213 1.00 19.97 ATOM 913 N **LEU A 120** 0 6.445 39.011 12.280 1.00 18.24 35 ATOM 914 CA **LEU A 120** 7.484 39.991 12.569 1.00 16.08 0 1.00 16.53 ATOM 915 C **LEU A 120** 0 8.210 39.565 13.848 1.00 15.31 ATOM 916 0 **LEU A 120** 0 7.933 40.051 14.939 ATOM CB **LEU A 120** 6.918 12.654 1.00 16.22 917 0 41.389 1.00 17.73 ATOM 918 CG **LEU A 120** 0 7.916 42.540 12.830 40 1.00 17.73 ATOM 919 CD1 LEU A 120 0 9.188 42.293 12.043 CD2 LEU A 120 1.00 16.66 ATOM 920 7.302 43.880 12.448 0 ATOM ARG A 121 13.682 1.00 14.23 921 N 0 9.144 38.622 **ATOM** CA ARG A 121 14.773 1.00 14.19 922 0 9.859 37.985 1.00 14.09 MOTA C 923 ARG A 121 0 11.007 37.152 14.159 45 ATOM 0 ARG A 121 1.00 13.72 924 0 10.936 36.787 12.978

	MOTA	925	CB	ARG	A	121	0	8.934	37.061	15.581	1.00 12.30	
	ATOM	926	CG	ARG	A	121	0	8.253	35.999	14.728	1.00 12.44	
	ATOM	927	CD	ARG	A	121	0	7.303	35.098	15.518	1.00 11.94	
	MOTA	928	NE	ARG	A	121	0	6.507	34.269	14.604	1.00 12.92	
5	MOTA	929	CZ	ARG	A	121	0	5.413	33.570	14.933	1.00 10.55	
	MOTA	930	NH1	ARG	A	121	0	4.897	33.483	16.137	1.00 8.12	
	ATOM	931	NH2	ARG	A	121	0	4.803	32.946	13.930	1.00 10.40	
	ATOM	932	N	GLY	A	122	0	12.045	36.848	14.937	1.00 12.29	
	ATOM	933	CA	GLY	A	122	0	13.162	36.078	14.364	1.00 11.42	
10	ATOM	934	C	GLY	A	122	0	14.185	35.918	15.486	1.00 12.42	
	ATOM	935	0	GLY	A	122	0	14.095	36.604	16.509	1.00 11.47	
	ATOM	936	N	PRO	A	123	0	15.164	35.075	15.246	1.00 11.82	
•	ATOM	937	CA	PRO	A	123	0	16.226	34.778	16.190	1.00 12.81	
	ATOM	938	C	PRO	A	123	0	17.288	35.857	16.258	1.00 12.41	
15	ATOM	939	0	PRO	Α	123	0	17.565	36.580	15.302	1.00 12.03	
	ATOM	940	CB	PRO	A	123	0	16.833	33.416	15.713	1.00 12.34	
	MOTA	941	CG	PRO	A	123	0	16.567	33.494	14.223	1.00 12.19	
	MOTA	942	CD	PRO	A	123	0	15.283	34.289	14.021	1.00 11.35	
	ATOM	943	N	MET	A	124	0	17.903	36.027	17.431	1.00 14.30	
20	MOTA	944	CA	MET	A	124	0	18.959	37.024	17.628	1.00 14.19	
	ATOM	945	C	MET	A	124	0	20.040	36.414	18.528	1.00 15.37	
	MOTA	946	0	MET	A	124	0	19.788	36.067	19.690	1.00 15.41	
	MOTA	947	СВ	MET	A	124	0	18.411	38.290	18.242	1.00 15.94	
	MOTA	948	CG	MET	A	124	0	19.464	39.345	18.604	1.00 19.30	
25	MOTA	949	SD	MET	A	124	0	18.646	40.875	19.164	1.00 21.94	
	MOTA	950	CE	MET	A	124	0	19.918	42.061	18.729	1.00 23.64	
	MOTA	951	N	VAL	A	125	0	21.212	36.178	17.939	1.00 13.74	
	MOTA	952	CA	VAL	A	125	0	22.282	35.479	18.658	1.00 13.87	
	MOTA	953	C	VAL	Α	125	0	23.478	36.390	18.872	1.00 13.68	
30	MOTA	954	0	VAL	A	125	0	24.004	36.976	17.945	1.00 14.01	
	ATOM	955	CB	VAL	A	125	0	22.672	34.139	18.005	1.00 12.58	
	MOTA	956		VAL			0	23.787	33.383	18.749	1.00 11.23	
	ATOM	957	CG2	VAL	Α	125	0	21.448	33.212	18.033	1.00 12.14	
	MOTA	958	N	ILE	A	126	0	23.860	36.535	20.135	1.00 14.48	
35	ATOM	959	CA	ILE	A	126	0	25.016	37.295	20.557	1.00 14.53	
	ATOM	960	С	ILE	Α	126	0	26.131	36.348	21.054	1.00 13.58	
	ATOM	961	0	ILE	A	126	0	26.061	35.791	22.154	1.00 12.93	
	ATOM	962	CB	ILE	A	126	0	24.649	38.295	21.662	1.00 14.95	
	ATOM	963	CG1	ILE	A	126	0	23.563	39.302	21.254	1.00 15.29	
40	ATOM	964	CG2	ILE	A	126	0	25.901	39.014	22.174	1.00 14.24	
	MOTA	965	CD1	ILE	A	126	0	23.703	39.905	19.896	1.00 15.84	
	ATOM	966	N	TYR	A	127	0	27.142	36.146	20.236	1.00 13.66	
	ATOM	967	CA	TYR	A	127	0	28.278	35.258	20.529	1.00 14.62	
	ATOM	968	С	TYR	A	127	0	29.328	35.778	21.507	1.00 15.97	
45	MOTA	969	0	TYR	A	127	0	29.626	36.977	21.669	1.00 15.27	

7	

	ATOM	970	CB	TYR			0	28.965	34.939	19.176	1.00 14.97
	ATOM	971	CG	TYR			0	28.057	34.136	18.272	1.00 16.10
	ATOM	972	CD1	TYR			0	27.823	32.782	18.496	1.00 14.96
_	ATOM	973	CD2	TYR			0	27.428	34.753	17.177	1.00 16.64
5	ATOM	974	CE1	TYR			0	26.995	32.057	17.650	1.00 16.16
	ATOM	975	CE2	TYR			0	26.576	34.039	16.356	1.00 17.32
	ATOM	976	CZ	TYR			0	26.374	32.692	16.592	1.00 18.16
	MOTA	977	ОН	TYR			0	25.540	31.971	15.756	1.00 20.32
	MOTA	978	N	ASP			0	29.892	34.895	22.312	1.00 14.36
10	ATOM	979	CA	ASP			0	30.825	35.269	23.365	1.00 16.80
	MOTA	980	C	ASP	Α	128	0	32.222	34.863	22.939	1.00 20.11
	ATOM	981	0	ASP			0	32.508	33.656	22.777	1.00 21.41
-	ATOM	982	CB	ASP			0	30.398	34.568	24.649	1.00 16.65
	ATOM	983	CG	ASP	Α	128	0	31.136	35.055	25.874	1.00 18.36
15	ATOM	984		ASP			0	32.194	35.708	25.750	1.00 18.72
	ATOM	985	OD2	ASP			0	30.710	34.819	27.024	1.00 20.03
	ATOM	986	N	ASP			0	33.148	35.798	22.771	1.00 22.30
	ATOM	987	CA	ASP	A	129	0	34.511	35.389	22.377	1.00 24.39
	ATOM	988	С	ASP	A	129	0	35.282	34.740	23.509	1.00 22.47
20	ATOM	989	0	ASP	Α	129	0	36.275	34.096	23.209	1.00 23.18
	ATOM	990	CB	ASP	Α	129	0	35.298	36.490	21.707	1.00 28.46
	ATOM	991	CG	ASP	A	129	0	35.372	37.764	22.516	1.00 31.10
	ATOM	992		ASP			0	35.254	37.652	23.747	1.00 32.87
	ATOM	993		ASP			0	35.553	38.824	21.891	1.00 34.70
25	ATOM	994	N	ASN			0	34.829	34.684	24.736	1.00 21.92
	ATOM	995	CA	ASN			0	35.368	34.015	25.874	1.00 23.74
	ATOM	996	С	ASN			0	34.382	32.976	26.417	1.00 23.02
	ATOM	997	0	ASN			0	34.352	32.684	27.616	1.00 20.14
	ATOM	998	CB	ASN			0	35.686	35.002	27.028	1.00 26.41
30	ATOM	999	CG	ASN			0	36.583	36.127	26.550	1.00 30.99
	ATOM	1000		ASN			0	36.187	37.309	26.486	1.00 33.20
	ATOM	1001		ASN			0	37.818	35.769	26.175	1.00 30.96
	ATOM	1002	N	ASP			0	33.533	32.401	25.561	1.00 23.32
	ATOM	1003	CA	ASP			0	32.476	31.543	26.127	1.00 21.63
35	MOTA	1004	С	ASP			0	33.010	30.514	27.103	1.00 19.56
	MOTA	1005	0	ASP			0	33.704	29.569	26.766	1.00 19.71
	ATOM	1006	СВ	ASP			0	31.594	30.877	25.063	1.00 22.97
	MOTA	1007	CG	ASP			0	30.220	30.487	25.591	1.00 24.48
	ATOM	1008		ASP			0	30.181	29.525	26.397	1.00 26.42
40	MOTA	1009	OD2	ASP	A	131	0	29.166	31.051	25.212	1.00 22.66
	ATOM	1010	N	PRO	A	132	0	32.491	30.548	28.315	1.00 18.77
	ATOM	1011	CA	PRO	A	132	0	32.759	29.611	29.381	1.00 19.41
	MOTA	1012	С	PRO	A	132	0	32.523	28.141	29.031	1.00 20.89
	ATOM	1013	0	PRO	A	132	0	33.112	27.250	29.672	1.00 19.99
45	ATOM	1014	CB	PRO	A	132	0	31.799	29.990	30.531	1.00 18.42

	MOTA	1015	CG	PRO A	132	0	31.589	31.470	30.263	1.00	16.87
	ATOM	1016	CD	PRO A	132	0	31.645	31.673	28.778	1.00	16.73
	ATOM	1017	N	HIS A	133	0	31.668	27.836	28.063	1.00	19.47
	ATOM	1018	CA	HIS A	133	0	31.331	26.465	27.700	1.00	18.79
5	MOTA	1019	C	HIS A	133	0	31.887	26.014	26.372	1.00	19.35
	ATOM	1020	0	HIS A	133	0	31.503	24.954	25.826	1.00	18.60
	MOTA	1021	CB	HIS A	133	0	29.789	26.428	27.536	1.00	18.91
	MOTA	1022	CG	HIS A	133	0	29.065	26.242	28.815	1.00	18.13
	ATOM	1023	ND1	HIS A	133	0	29.566	25.551	29.877	1.00	19.52
10	ATOM	1024	CD2	HIS A	133	0	27.817	26.625	29.183	1.00	19.38
	MOTA	1025	CE1	HIS A	133	0	28.679	25.530	30.855	1.00	20.08
	MOTA	1026	NE2	HIS A	133	0	27.587	26.180	30.457	1.00	19.60
	ATOM	1027	N	ALA A	134	0	32.840	26.801	25.852	1.00	19.40
	MOTA	1028	CA	ALA A	134	0	33.413	26.465	24.552	1.00	21.88
15	MOTA	1029	С	ALA A	134	0	34.080	25.107	24.525	1.00	21.69
	MOTA	1030	0	ALA A	134	0	34.120	24.514	23.439	1.00	21.61
	ATOM	1031	СВ	ALA A	134	0	34.418	27.548	24.128	1.00	22.55
	ATOM	1032	N	ALA A	135	0	34.582	24.527	25.622	1.00	21.96
	MOTA	1033	CA	ALA A	135	0	35.178	23.192	25.483	1.00	23.53
20	MOTA	1034	С	ALA A	135	0	34.144	22.096	25.232	1.00	24.47
	MOTA	1035	0	ALA A	135	0	34.488	20.936	24.989	1.00	24.77
	ATOM	1036	CB	ALA A	135	0	35.910	22.820	26.776	1.00	21.92
	ATOM	1037	N	LEU A	136	0	32.862	22.375	25.457	1.00	24.95
	ATOM	1038	CA	LEU A	136	0	31.800	21.376	25.404	1.00	23.15
25	MOTA	1039	C	LEU A	136	0	31.284	21.076	24.016	1.00	20.31
	ATOM	1040	0	LEU A	136	0	30.609	20.054	23.924	1.00	19.62
	ATOM	1041	CB	LEU A	136	0	30.665	21.845	26.318	1.00	24.43
	MOTA	1042	CG	LEU A	136	0	30.501	21.211	27.686	1.00	27.55
	MOTA	1043	CD1	LEU A	136	0	31.803	20.721	28.285	1.00	25.75
30	ATOM	1044	CD2	LEU A	136	0	29.747	22.129	28.644	1.00	26.92
	ATOM	1045	И	TYR A	137	0	31.565	21.888	22.998	1.00	17.05
	ATOM	1046	CA	TYR A	137	0	31.085	21.612	21.662	1.00	16.65
	MOTA	1047	C	TYR A	137	0	32.076	22.054	20.599	1.00	17.99
	ATOM	1048	0	TYR A	137	0	32.965	22.891	20.794	1.00	18.69
35	ATOM	1049	CB	TYR A	137	0	29.724	22.319	21.402	1.00	16.73
	ATOM	1050	CG	TYR A	. 137	0	29.711	23.760	21.857	1.00	16.24
	MOTA	1051	CD1	TYR A	137	0	29.302	24.108	23.150	1.00	16.00
	ATOM	1052	CD2	TYR A	137	0	30.159	24.754	21.001	1.00	14.76
	ATOM	1053	CE1	TYR A	. 137	0	29.355	25.448	23.551	1.00	15.32
40	ATOM	1054	CE2	TYR A	. 137	0	30.165	26.081	21.396	1.00	15.52
	ATOM	1055	CZ	TYR A	. 137	0	29.759	26.410	22.675	1.00	15.61
	ATOM	1056	OH	TYR A	137	0	29.782	27.731	23.055	1.00	17.56
	ATOM	1057	N	ASP A	138	0	31.903	21.549	19.393	1.00	19.04
	ATOM	1058	CA	ASP A	138	0	32.733	21.859	18.253	1.00	20.02
45	ATOM	1059	С	ASP A	138	0	32.139	22.933	17.364	1.00	21.05

1060 0 **ASP A 138** 0 32.911 23.553 16.631 1.00 21.98 MOTA 17.315 1.00 20.66 **ASP A 138** 0 32.836 20.628 MOTA 1061 CB 1.00 22.79 ATOM 1062 CG **ASP A 138** 0 33.355 19.455 18.089 1.00 24.88 MOTA OD1 ASP A 138 0 32.744 18.404 18.318 1063 5 MOTA 1064 OD2 ASP A 138 0 34.481 19.675 18.581 1.00 25.34 **GLU A 139** 0 30.825 22.957 17.184 1.00 19.73 MOTA 1065 Ν 1.00 21.27 **GLU A 139** 0 30.223 23.865 16.213 MOTA 1066 CA 1.00 18.97 MOTA C **GLU A 139** 0 29.086 24.668 16.825 1067 ATOM 0 **GLU A 139** 0 28.306 24.143 17.608 1.00 16.95 1068 1.00 24.71 10 MOTA CB **GLU A 139** 0 29.617 23.164 15.000 1069 1.00 30.89 ATOM 1070 CG **GLU A 139** 0 30.509 22.149 14.311 0 13.587 1.00 34.42 ATOM 1071 CD **GLU A 139** 31.633 22.868 ATOM 1072 OE1 GLU A 139 0 31.340 23.869 12.898 1.00 36.87 0 1.00 37.60 **ATOM** 1073 OE2 GLU A 139 32.794 22.457 13.705 1.00 19.38 15 **ATOM** 1074 N **ASP A 140** 0 29.057 25.933 16.408 **ASP A 140** 0 16.912 1.00 17.89 ATOM 1075 CA 28.026 26.847 C **ASP A 140** 0 1.00 18.87 ATOM 1076 27.858 27.901 15.837 **ASP A 140** 1.00 21.31 MOTA 1077 0 0 28.705 28.780 15.768 1.00 16.26 ATOM 1078 CB **ASP A 140** 0 28.438 27.399 18.268 20 ATOM 1079 CG **ASP A 140** 0 27.445 28.399 18.858 1.00 16.73 OD1 ASP A 140 0 19.781 1.00 14.86 ATOM 1080 27.854 29.143 ATOM OD2 ASP A 140 0 26.287 28.446 18.401 1.00 13.82 1081 ATOM 1082 N **ASP A 141** 0 26.862 27.844 14.972 1.00 17.34 **ASP A 141** MOTA 1083 CA 0 26.750 28.859 13.937 1.00 19.52 25.301 25 MOTA C **ASP A 141** 0 29.031 13.520 1.00 19.33 1084 ATOM 1085 0 ASP A 141 0 24.342 28.513 14.115 1.00 17.91 12.772 1.00 21.66 ATOM 1086 CB **ASP A 141** 0 27.681 28.509 ATOM 1087 **ASP A 141** 0 27.384 27.151 12.193 1.00 24.87 CG ATOM 1088 OD1 ASP A 141 0 28.280 26.521 11.567 1.00 28.90 30 ATOM OD2 ASP A 141 0 26.271 26.604 12.302 1.00 25.89 1089 1.00 19.21 ATOM **GLU A 142** 0 29.688 12.387 1090 N 25.102 ATOM **GLU A 142** 0 23.775 29.945 11.880 1.00 20.84 1091 CA **ATOM** 1092 C GLU A 142 0 23.052 28.636 11.592 1.00 19.95 1.00 18.73 **ATOM GLU A 142** 0 28.656 11.665 1093 0 21.844 35 ATOM 1094 CB **GLU A 142** 0 23.771 30.894 10.699 1.00 23.40 ATOM CG **GLU A 142** 0 24.295 30.301 9.407 1.00 27.22 1095 ATOM 1096 CD **GLU A 142** 0 25.718 30.826 9.221 1.00 32.36 OE1 GLU A 142 0 30.920 10.206 1.00 31.87 **ATOM** 1097 26.513 0 8.023 1.00 35.76 ATOM OE2 GLU A 142 25.968 31.136 1098 40 1.00 20.40 ATOM **ASN A 143** 0 27.508 11.378 1099 N 23.723 ATOM 1100 CA **ASN A 143** 0 23.105 26.227 11.151 1.00 19.61 C 0 22.785 25.468 12.421 1.00 18.35 ATOM 1101 **ASN A 143** 1.00 15.65 ATOM **ASN A 143** 0 1102 0 22.317 24.337 12.325 **ATOM** 1103 CB **ASN A 143** 0 24.024 25.401 10.229 1.00 23.57 1.00 26.63 45 ATOM 1104 CG **ASN A 143** 0 24.133 26.067 8.857

1.00 29.89 OD1 ASN A 143 26.376 8.356 1105 0 25.220 ATOM 0 8.175 1.00 25.46 ATOM 1106 ND2 ASN A 143 23.049 26.342 1.00 16.76 MOTA 1107 N THR A 144 0 23.067 25.974 13.632 1.00 15.40 MOTA 1108 CA THR A 144 0 14.825 22.678 25.257 1.00 15.58 5 C ATOM 1109 THR A 144 0 21.556 25.976 15.577 1.00 17.88 ATOM 1110 0 THR A 144 0 21.361 25.776 16.789 THR A 144 15.785 1.00 16.43 MOTA 1111 CB 0 23.848 25.018 OG1 THR A 144 0 1.00 14.82 ATOM 1112 24.296 26.270 16.297 1.00 15.98 **ATOM** 1113 CG2 THR A 144 0 24.935 24.215 15.104 10 ATOM 1114 N ILE A 145 0 20.821 26.834 14.898 1.00 13.92 MOTA 1.00 14.31 1115 CA ILE A 145 0 19.697 27.550 15.500 1.00 13.84 ATOM C ILE A 145 1116 0 18.392 26.835 15.139 ATOM 1117 0 ILE A 145 0 18.127 26.478 13.996 1.00 12.32 ATOM 1118 CB ILE A 145 0 19.641 29.016 15.011 1.00 15.15 15 ATOM 1119 CG1 ILE A 145 0 20.881 29.726 15.608 1.00 16.27 ATOM 1120 CG2 ILE A 145 0 29.736 15.375 1.00 13.14 18.346 **ATOM** 1121 CD1 ILE A 145 0 1.00 16.72 21.256 31.006 14.892 **ATOM** 1122 N ILE A 146 0 17.550 26.644 16.141 1.00 13.54 ATOM 1123 CA ILE A 146 0 16.263 25.983 15.926 1.00 13.70 20 ATOM 1124 C 1.00 12.67 ILE A 146 0 15.167 26.899 16.494 ATOM 0 1.00 10.09 1125 ILE A 146 0 15.155 27.082 17.714 ATOM CB 1.00 15.97 1126 ILE A 146 0 16.183 24.580 16.553 ATOM 1127 CG1 ILE A 146 0 16.012 1.00 17.29 17.280 23.621 **ATOM** 1128 CG2 ILE A 146 0 23.937 16.207 1.00 14.52 14.831 25 ATOM CD1 ILE A 146 0 16.832 1.00 18.45 1129 17.359 22.340 ATOM 1130 N THR A 147 0 14.360 27.507 15.610 1.00 10.81 ATOM 1131 CA THR A 147 0 16.102 1.00 12.54 13.240 28.310 MOTA 1.00 13.55 1132 C THR A 147 0 11.912 27.526 15.988 ATOM O THR A 147 1.00 12.65 1133 0 11.655 26.724 15.076 30 ATOM 1.00 12.37 1134 CB THR A 147 0 15.351 13.078 29.642 1.00 10.17 ATOM 1135 OG1 THR A 147 0 12.728 29.311 14.005 ATOM 1136 CG2 THR A 147 0 14.381 30.479 15.402 1.00 11.93 **ATOM** 1137 Ν **LEU A 148** 0 27.715 16.972 1.00 12.48 11.062 ATOM 1.00 13.90 CA LEU A 148 0 27.171 17.039 1138 9.719 35 MOTA 1139 C **LEU A 148** 0 8.719 28.350 16.916 1.00 15.44 MOTA 1.00 15.28 1140 0 **LEU A 148** 0 8.860 29.383 17.579 1.00 12.83 ATOM LEU A 148 CB 0 9.501 26.419 18.340 1141 1.00 12.45 ATOM 1142 CG **LEU A 148** 0 10.502 25.293 18.669 MOTA 1143 CD1 LEU A 148 0 10.154 24.669 19.997 1.00 11.49 40 MOTA CD2 LEU A 148 0 17.597 1.00 11.82 1144 10.552 24.203 1.00 14.08 ATOM 1145 N ALA A 149 0 7.726 28.241 16.053 1.00 15.37 ATOM 1146 CA **ALA A 149** 0 6.725 29.256 15.825 ATOM C 0 15.521 1.00 16.78 ALA A 149 5.336 28.658 1147 1148 1.00 15.78 ATOM 0 ALA A 149 0 5.198 27.637 14.841 45 MOTA 0 14.628 1.00 13.22 1149 CB ALA A 149 7.068 30.127

	ATOM	1150	N	ASP	A	150	0	4.337	29.344	16.065	1.00	16.39
	ATOM	1151	CA	ASP	A	150	0	2.941	28.995	15.864	1.00	15.96
	MOTA	1152	C	ASP	A	150	0	2.515	29.758	14.624	1.00	16.53
	MOTA	1153	0	ASP	A	150	0	2.960	30.905	14.483	1.00	18.17
5	ATOM	1154	СВ	AŞP	A	150	0	2.066	29.440	17.027	1.00	16.78
	MOTA	1155	CG	ASP	A	150	0	2.345	30.836	17.561	1.00	18.15
	ATOM	1156	OD1	ASP	A	150	0	3.410	31.472	17.347	1.00	16.29
	ATOM	1157	OD2	ASP	A	150	0	1.414	31.311	18.264	1.00	17.83
	MOTA	1158	N	TRP	A	151	0	1.776	29.157	13.726	1.00	15.62
10	ATOM	1159	CA	TRP	A	151	0	1.366	29.828	12.499	1.00	14.37
	MOTA	1160	C	TRP	A	151	0	-0.140	29.688	12.226	1.00	14.78
	MOTA	1161	0	TRP	A	151	0	-0.679	28.607	12.425	1.00	13.41
	MOTA	1162	CB	TRP	A	151	0	2.229	29.239	11.373	1.00	13.56
	MOTA	1163	CG	TRP	A	151	0	2.046	30.004	10.097	1.00	13.31
15	MOTA	1164	CD1	TRP	Α	151	0	1.385	29.545	8.991	1.00	13.60
	MOTA	1165	CD2	TRP	A	151	0	2.484	31.316	9.806	1.00	15.46
	MOTA	1166	NE1	TRP	A	151	0	1.412	30.497	8.017	1.00	14.49
	ATOM	1167	CE2	TRP	A	151	0	2.061	31.605	8.473	1.00	15.53
	ATOM	1168	CE3	TRP	A	151	0	3.189	32.294	10.522	1.00	16.28
20	MOTA	1169	CZ2	TRP	A	151	0	2.306	32.822	7.846	1.00	16.57
	MOTA	1170	CZ3	TRP	A	151	0	3.436	33.505	9.881	1.00	18.22
	MOTA	1171	CH2	TRP	A	151	0	3.003	33.766	8.560	1.00	18.00
	MOTA	1172	N	TYR	A	152	0	-0.818	30.745	11.812	1.00	15.59
	MOTA	1173	CA	TYR	A	152	0	-2.266	30.813	11.614	1.00	17.47
25	ATOM	1174	С	TYR	A	152	0	-2.556	31.086	10.149	1.00	18.79
	ATOM	1175	0	TYR	A	152	0	-1.830	31.856	9.521	1.00	19.15
	ATOM	1176	CB	TYR	A	152	0	-2.981	31.930	12.434	1.00	16.37
	ATOM	1177	CG	TYR	A	152	0	-2.539	31.776	13.887	1.00	16.24
	ATOM	1178	CD1	TYR	A	152	0	-1.313	32.303	14.318	1.00	15.22
30	MOTA	1179	CD2	TYR	A	152	0	-3.267	30.998	14.767	1.00	15.29
	ATOM	1180	CE1	TYR	A	152	0	-0.889	32.135	15.626	1.00	14.67
	MOTA	1181	CE2	TYR	A	152	0	-2.831	30.799	16.054	1.00	16.52
	ATOM	1182	CZ	TYR	A	152	0	-1.632	31.369	16.474	1.00	16.12
	MOTA	1183	OH	TYR	A	152	0	-1.219	31.139	17.771	1.00	16.36
35	MOTA	1184	N	HIS	A	153	0	-3.590	30.445	9.599	1.00	20.39
	MOTA	1185	CA	HIS	A	153	0	-3.899	30.683	8.181	1.00	21.90
	MOTA	1186	C	HIS	A	153	0	-4.642	31.988	7.952	1.00	21.94
	MOTA	1187	0	HIS	A	153	0	-4.750	32.386	6.784	1.00	22.32
	MOTA	1188	CB	HIS	A	153	0	-4.592	29.483	7.549	1.00	22.29
40	ATOM	1189	CG	HIS	A	153	0	-3.651	28.319	7.385	1.00	24.52
	MOTA	1190	ND1	HIS	A	153	0	-4.071	27.022	7.258	1.00	24.25
	ATOM	1191	CD2	HIS	A	153	0	-2.286	28.274	7.338	1.00	23.32
	ATOM	1192	CE1	HIS	A	153	0	-3.034	26.220	7.124	1.00	24.15
	ATOM	1193	NE2	HIS	A	153	0	-1.956	26.965	7.178	1.00	24.30
45	ATOM	1194	N			154	0	-5.084	32.718	8.972	1.00	21.86

	MOTA	1195	CA	ILE A	154	0	-5.611	34.046	8.686	1.00	24.39
	ATOM	1196	С	ILE A	154	0	-4.904	35.051	9.597	1.00	22.15
	ATOM	1197	0	ILE A	154	0	-4.517	34.732	10.698	1.00	20.15
	ATOM	1198	CB	ILE A	154	0	-7.120	34.281	8.693	1.00	26.43
5	ATOM	1199	CG1	TLE A	154	0	-7.682	34.498	10.099	1.00	27.66
	ATOM	1200	CG2	ILE A	154	0	-7.947	33.251	7.928	1.00	26.60
	ATOM	1201	CD1	ILE A	154	0	-7.312	33.468	11.125	1.00	28.86
	ATOM	1202	N	PRO A	155	0	-4.723	36.255	9.105	1.00	23.79
	ATOM	1203	CA	PRO P	155	0	-4.108	37.361	9.816	1.00	23.66
10	MOTA	1204	С	PRO A	155	0	-4.604	37.435	11.252	1.00	24.59
	MOTA	1205	0	PRO P	155	0	-5.814	37.317	11.539	1.00	24.53
	ATOM	1206	CB	PRO F	155	0	-4.546	38.634	9.077	1.00	24.20
	ATOM	1207	CG	PRO A	155	0	-4.990	38.162	7.733	1.00	23.40
	ATOM	1208	CD	PRO F	155	0	-5.207	36.672	7.776	1.00	23.41
15	MOTA	1209	N	ALA A	156	0	-3.704	37. 7 76	12.178	1.00	24.03
	MOTA	1210	CA	ALA A	156	0	-4.066	37.806	13.588	1.00	25.45
	MOTA	1211	C	ALA A	156	0	-5.262	38.667	13.992	1.00	24.85
	MOTA	1212	0	ALA A	156	0	-6.083	38.217	14.798	1.00	22.79
	MOTA	1213	CB	ALA A	156	0	-2.866	38.045	14.492	1.00	24.30
20	MOTA	1214	N	PRO A	157	0	-5.393	39.873	13.518	1.00	25.98
	MOTA	1215	CA	PRO A	157	0	-6.521	40.741	13.807	1.00	28.77
	ATOM	1216	C	PRO A	157	0	-7.840	40.092	13.406	1.00	30.78
	ATOM	1217	0	PRO A	157	0	-8.798	40.416	14.105	1.00	34.62
	MOTA	1218	CB	PRO A	157	0	-6.324	42.071	13.068	1.00	26.56
25	MOTA	1219	CG	PRO A	157	0	-4.859	42.013	12.762	1.00	25.98
	ATOM	1220	CD	PRO I	157	0	-4.480	40.547	12.585	1.00	25.96
	ATOM	1221	N	SER A	158	0	-7.950	39.207	12.430	1.00	30.95
	MOTA	1222	CA	SER A	158	0	-9.174	38.549	12.047	1.00	31.32
	ATOM	1223	C	SER A	158	0	-9.450	37.288	12.851	1.00	33.61
30	ATOM	1224	0	SER A	158	0	-10.472	36.633	12.575	1.00	34.71
	ATOM	1225	CB	SER A	158	0	-9.176	38.118	10.577	1.00	30.14
	ATOM	1226	OG	SER A	158	0	-8.942	39.187	9.665	1.00	31.20
	ATOM	1227	N	ILE A	159	0	-8.588	36.875	13.773	1.00	34.23
	MOTA	1228	CA	ILE A	159	0	-8.918	35.642	14.491	1.00	36.40
35	MOTA	1229	C	ILE A	159	0	-10.189	35.896	15.309	1.00	39.20
	ATOM	1230	0	ILE A	159	0	-10.294	36.875	16.046	1.00	39.00
	ATOM	1231	CB	ILE A	159	0	-7.769	35.121	15.360	1.00	35.56
	ATOM	1232	CG1	ILE A	159	0	-6.713	34.408	14.485	1.00	35.58
	ATOM	1233	CG2	ILE A	159	0	-8.262	34.184	16.452	1.00	34.97
40	ATOM	1234	CD1	ILE A	159	0	-5.388	34.268	15.212	1.00	34.91
	ATOM	1235	N	GLN A	160	0	-11.137	34.969	15.196	1.00	41.53
	ATOM	1236	CA	GLN A	1 160	0	-12.398	35.056	15.946	1.00	42.57
	ATOM	1237	С	GLN A	A 160	0	-12.466	33.914	16.949	1.00	40.51
	ATOM	1238	0	GLN A	160	0	-12.308	32.741	16.585	1.00	41.96
45	ATOM	1239	CB	GLN A	160	0	-13.542	35.062	14.937	1.00	45.52

WO 98/38287 PCT/DK98/00070

	MOTA	1240	CG	GLN	A	160	0	-14.814	34.319	15.267	1.00	48.48
	MOTA	1241	CD	GLN	A	160	0	-15.570	33.799	14.055	1.00	50.12
	ATOM	1242	OE1	GLN	A	160	0	-16.204	32.737	14.118	1.00	50.77
	ATOM	1243	NE2	GLN	A	160	0	-15.504	34.520	12.940	1.00	51.22
5	ATOM	1244	N	GLY	Α	161	0	-12.667	34.191	18.225	1.00	37.10
	MOTA	1245	CA	GLY	A	161	0	-12.722	33.112	19.208	1.00	34.91
	ATOM	1246	C	GLY	A	161	0	-11.305	32.826	19.696	1.00	34.13
	MOTA	1247	0	GLY	A	161	0	-10.412	33.648	19.451	1.00	32.40
	ATOM	1248	N	ALA	A	162	0	-11.158	31.738	20.433	1.00	33.01
10	MOTA	1249	CA	ALA	A	162	0	-9.864	31.355	20.988	1.00	32.39
	MOTA	1250	С	ALA	A	162	0	-8.927	30.902	19.880	1.00	31.53
	MOTA	1251	0	ALA	A	162	0	-9.285	30.132	19.013	1.00	30.73
	ATOM	1252	CB	ALA	A	162	0	-10.058	30.263	22.010	1.00	34.12
	MOTA	1253	N	ALA	A	163	0	-7.731	31.475	19.851	1.00	32.06
15	MOTA	1254	CA	ALA	A	163	0	-6.740	31.202	18.814	1.00	30.85
	MOTA	1255	C	ALA	A	163	0	-6.219	29.774	18.897	1.00	29.40
	MOTA	1256	0	ALA	A	163	0	-5.967	29.223	19.965	1.00	30.49
	MOTA	1257	CB	ALA	A	163	0	-5.607	32.217	18.911	1.00	30.29
	MOTA	1258	N	GLN	A	164	0	-6.101	29.130	17.754	1.00	28.69
20	ATOM	1259	CA	GLN	A	164	0	-5.616	27.769	17.612	1.00	28.24
	MOTA	1260	С	GLN	A	164	0	-4.720	27.744	16.370	1.00	25.02
	ATOM	1261	0	GLN	Α	164	0	-5.157	28.046	15.260	1.00	23.64
	ATOM	1262	CB	GLN	A	164	0	-6.732	26.756	17.361	1.00	31.99
	MOTA	1263	CG	GLN	A	164	0	-7.885	26.640	18.319	1.00	36.24
25	MOTA	1264	CD	GLN	A	164	0	-7.535	25.809	19.540	1.00	40.95
	ATOM	1265	OE1	GLN	A	164	0	-7.863	26.166	20.684	1.00	43.34
	MOTA	1266	NE2	GLN	A	164	0	-6.864	24.672	19.328	1.00	41.86
	ATOM	1267	N	PRO	A	165	0	-3.446	27.406	16.549	1.00	22.68
	ATOM	1268	CA	PRO	A	165	0	-2.501	27.360	15.463	1.00	20.43
30	ATOM	1269	С	PRO	A	165	0	-2.856	26.294	14.429	1.00	18.89
	ATOM	1270	0	PRO	A	165	0	-3.286	25.176	14.715	1.00	18.00
	ATOM	1271	CB	PRO	A	165	0	-1.126	27.075	16.088	1.00	20.83
	MOTA	1272	CG	PRO	A	165	0	-1.476	26.651	17.479	1.00	22.05
	MOTA	1273	CD	PRO	A	165	0	-2.873	27.081	17.851	1.00	21.57
35	MOTA	1274	N	ASP	A	166	0	-2.667	26.608	13.169	1.00	17.50
	MOTA	1275	CA	ASP	A	166	0	-2.829	25.677	12.059	1.00	19.82
	MOTA	1276	С	ASP	A	166	0	-1.591	24.788	11.930	1.00	19.47
	MOTA	1277	0	ASP	A	166	0	-1.692	23.649	11.506	1.00	19.38
	ATOM	1278	CB	ASP	A	166	0	-3.005	26.413	10.727	1.00	19.75
40	ATOM	1279	CG	ASP	A	166	0	-4.347	27.162	10.728	1.00	21.69
	ATOM	1280	OD1	ASP	A	166	0	-5.376	26.480	10.593	1.00	22.24
	ATOM	1281	OD2	ASP	A	166	0	-4.384	28.392	10.885	1.00	22.13
	ATOM	1282	N	ALA	A	167	0	-0.435	25.386	12.231	1.00	18.54
	ATOM	1283	CA	ALA	A	167	0	0.806	24.614	12.142	1.00	18.74
45	ATOM	1284	С	ALA	A	167	0	1.867	25.056	13.148	1.00	17.69

: `

0 ALA A 167 0 1.874 26.147 13.715 1.00 15.83 MOTA 1285 ATOM 1286 CB ALA A 167 0 1.387 24.767 10.735 1.00 17.32 1.00 18.40 THR A 168 ATOM 1287 N 0 2.826 24.166 13.335 ATOM 1288 CA THR A 168 0 4.087 24.402 14.027 1.00 14.85 THR A 168 ATOM 1289 C 0 5.180 24.553 12.955 1.00 15.24 ATOM 1290 0 THR A 168 0 5.402 23.737 12.071 1.00 12.99 CB THR A 168 0 4.530 1.00 14.31 MOTA 1291 23.235 14.900 MOTA 1292 OG1 THR A 168 0 3.558 23.068 15.920 1.00 12.30 ATOM 1293 CG2 THR A 168 0 5.921 23.516 15.524 1.00 13.60 10 1.00 16.69 ATOM N LEU A 169 0 5.867 25.686 12.973 1294 MOTA 1295 CA **LEU A 169** 0 6.976 26.002 12.071 1.00 14.74 MOTA 1296 C **LEU A 169** 0 8.285 25.747 12.833 1.00 14.34 1.00 12.34 ATOM 1297 0 LEU A 169 0 8.497 26.259 13.942 1.00 14.90 ATOM 1298 CB LEU A 169 0 6.890 11.652 27.471 1.00 17.83 15 ATOM 1299 CG LEU A 169 0 6.071 27.845 10.428 ATOM 1300 CD1 LEU A 169 0 4.978 1.00 15.89 26.825 10.133 ATOM 1301 CD2 LEU A 169 0 5.500 1.00 16.43 29.254 10.443 ATOM N ILE A 170 0 1.00 14.06 1302 9.141 24.923 12.255 MOTA 1303 CA ILE A 170 0 10.472 24.659 12.819 1.00 14.01 20 ATOM 1304 C ILE A 170 0 11.397 11.784 1.00 15.19 25.312 ATOM 1305 0 ILE A 170 0 11.307 25.009 10.585 1.00 14.73 MOTA 1306 CB ILE A 170 0 10.807 1.00 14.75 23.179 13.025 MOTA 1307 CG1 ILE A 170 0 9.849 22.605 14.069 1.00 13.74 MOTA CG2 ILE A 170 1308 0 12.268 22.983 13.468 1.00 13.47 25 ATOM 1309 CD1 ILE A 170 0 9.915 21.134 14.385 1.00 15.26 ATOM 1310 N **ASN A 171** 0 1.00 13.13 12.166 26.317 12.208 MOTA 1311 CA **ASN A 171** 0 12.992 27.042 11.250 1.00 13.74 ATOM 1312 C **ASN A 171** 0 12.163 27.517 10.083 1.00 13.71 MOTA 1313 0 **ASN A 171** 0 12.562 27.381 8.921 1.00 13.20 30 ATOM 1314 CB **ASN A 171** 0 14.220 26.209 10.793 1.00 14.42 MOTA 1315 CG **ASN A 171** 0 15.236 26.157 11.940 1.00 16.29 MOTA OD1 ASN A 171 0 1.00 16.78 1316 15.123 26.983 12.875 ATOM ND2 ASN A 171 0 1.00 14.32 1317 16.203 25.259 11.964 ATOM N **GLY A 172** 0 1.00 14.17 1318 10.967 28.074 10.337 35 ATOM **GLY A 172** 0 1319 CA 10.157 28.619 9.270 1.00 11.74 MOTA 1320 C **GLY A 172** 0 9.387 27.636 8.433 1.00 14.40 MOTA 1321 0 **GLY A 172** 0 8.783 28.064 1.00 15.60 7.441 MOTA 1.00 13.84 LYS A 173 0 9.430 26.319 8.669 1322 N **ATOM** 1323 CA LYS A 173 0 8.777 25.363 7.794 1.00 13.67 40 ATOM 1324 C LYS A 173 0 8.038 24.303 8.589 1.00 13.59 MOTA 1.00 11.70 1325 0 LYS A 173 0 8.445 24.027 9.723 ATOM CB LYS A 173 0 9.775 6.875 1.00 17.03 1326 24.645 ATOM 1327 CG LYS A 173 0 10.704 25.577 6.118 1.00 17.63 ATOM 0 1.00 20.84 LYS A 173 11.508 24.796 5.094 1328 CD 45 ATOM 1329 CE LYS A 173 0 12.213 25.821 4.198 1.00 22.63

	ATOM	1330	NZ	LYS	A	173	0	13.304	25.087	3.499	1.00	28.08
	MOTA	1331	N	GLY	A	174	0	6.922	23.821	8.014	1.00	12.28
	MOTA	1332	CA	GLY	A	174	0	6.178	22.768	8.753	1.00	11.45
	MOTA	1333	С	GLY	A	174	0	4.958	22.409	7.896	1.00	13.55
5	MOTA	1334	0	GĪX	A	174	0	4.823	22.877	6.760	1.00	13.37
	MOTA	1335	N	ARG	A	175	0	4.042	21.619	8.432	1.00	14.54
	ATOM	1336	CA	ARG	A	175	0	2.859	21.201	7.687	1.00	16.62
	MOTA	1337	C	ARG	A	175	0	1.598	21.336	8.541	1.00	17.67
	MOTA	1338	0	ARG	A	175	0	1.727	21.264	9.769	1.00	18.41
10	ATOM	1339	CB	ARG	A	175	0	2.985	19.718	7.292	1.00	16.05
	MOTA	1340	CG	ARG	Α	175	0	3.894	19.472	6.116	1.00	16.55
	ATOM	1341	CD	ARG	A	175	0	4.358	18.009	6.108	1.00	17.70
	MOTA	1342	NE	ARG	A	175	0	5.421	17.861	5.097	1.00	17.74
	MOTA	1343	cz	ARG	A	175	0	5.971	16.667	4.792	1.00	17.63
15	MOTA	1344	NH1	ARG	A	175	0	6.918	16.665	3.866	1.00	17.25
	ATOM	1345	NH2	ARG	Α	175	0	5.594	15.538	5.375	1.00	14.80
	MOTA	1346	N	TYR	Α	176	0	0.429	21.438	7.908	1.00	18.08
	ATOM	1347	CA	TYR	Α	176	0	-0.800	21.481	8.746	1.00	18.67
	MOTA	1348	С	TYR	A	176	0	-1.613	20.200	8.509	1.00	18.24
20	ATOM	1349	0	TYR	Α	176	0	-1.417	19.534	7.483	1.00	17.67
	ATOM	1350	СВ	TYR	A	176	0	-1.635	22.709	8.462	1.00	17.21
	ATOM	1351	CG	TYR	A	176	0	-2.102	22.931	7.053	1.00	16.36
	MOTA	1352	CD1	TYR	A	176	0	-1.246	23.433	6.089	1.00	14.84
	ATOM	1353	CD2	TYR	A	176	0	-3.441	22.676	6.677	1.00	17.26
25	ATOM	1354	CE1	TYR	A	176	0	-1.640	23.686	4.796	1.00	16.01
	ATOM	1355	CE2	TYR	A	176	0	-3.862	22.908	5.361	1.00	16.65
	ATOM	1356	CZ	TYR	A	176	0	-2.967	23.407	4.432	1.00	17.65
	ATOM	1357	ОН	TYR	A	176	0	-3.347	23.678	3.131	1.00	17.81
	MOTA	1358	N	VAL	A	177	0	-2.427	19.815	9.464	1.00	18.46
30	ATOM	1359	CA	VAL	A	177	0	-3.200	18.571	9.303	1.00	21.18
	MOTA	1360	C	VAL	A	177	0	-4.090	18.639	8.073	1.00	21.50
	ATOM	1361	0	VAL	A	177	0	-4.788	19.620	7.858	1.00	21.85
	ATOM	1362	СВ	VAL	A	177	0	-4.072	18.306	10.532	1.00	22.29
	ATOM	1363	CG1	VAL	A	177	0	-4.802	16.974	10.370	1.00	21.70
35	ATOM	1364	CG2	VAL	A	177	0	-3.205	18.289	11.784	1.00	22.43
	MOTA	1365	N	GLY	A	178	0	-3.989	17.707	7.142	1.00	21.84
	ATOM	1366	CA	GLY	A	178	0	-4.761	17.742	5.918	1.00	20.35
	ATOM	1367	C	GLY	Α	178	0	-4.047	18.602	4.900	1.00	22.84
	ATOM	1368	0	GLY	Α	178	0	-4.576	18.673	3.774	1.00	23.86
40	ATOM	1369	N	GLY	Α	179	0	-2.887	19.220	5.210	1.00	21.49
	ATOM	1370	CA	GLY	A	179	0	-2.291	20.060	4.149	1.00	19.94
	ATOM	1371	C			179	0	-1.389	19.250	3.242	1.00	18.86
	ATOM	1372	0			179		-1.192	18.052	3.399	1.00	19.35
	ATOM	1373	N			180	0	-0.800	19.905	2.268		19.42
45	ATOM	1374	CA			180		0.150	19.328	1.335	1.00	19.92
		· -					-					

	ATOM	1375	C	PRO	A	180	0	1.430	18.922	2.041	1.00	20.56
	MOTA	1376	0	PRO	A	180	0	1.731	19.399	3.145	1.00	20.66
	MOTA	1377	CB	PRO	A	180	0	0.503	20.399	0.298	1.00	19.52
	MOTA	1378	CG	PRO	Α	180	0	-0.144	21.639	0.829	1.00	19.70
5	ATOM	1379	CD	PRO	A	180	0	-0.930	21.356	2.081	1.00	19.79
	MOTA	1380	N	ALA	A	181	0	2.213	18.059	1.403	1.00	21.19
	ATOM	1381	CA	ALA	A	181	0	3.489	17.644	2.007	1.00	23.04
	MOTA	1382	С	ALA	A	181	0	4.548	18.723	1.772	1.00	21.24
	MOTA	1383	0	ALA	A	181	0	5.465	18.522	0.986	1.00	23.93
10	ATOM	1384	CB	ALA	A	181	0	3.928	16.305	1.435	1.00	21.73
	MOTA	1385	N	ALA	A	182	0	4.398	19.905	2.315	1.00	19.30
	MOTA	1386	CA	ALA	A	182	0	5.357	20.987	2.183	1.00	18.39
	MOTA	1387	C	ALA	A	182	0	6.706	20.549	2.791	1.00	17.36
	ATOM	1388	0	ALA	A	182	0	6.858	19.712	3.701	1.00	16.16
15	ATOM	1389	CB	ALA	A	182	0	4.826	22.209	2.932	1.00	17.68
	ATOM	1390	N	GLU	A	183	0	7.739	21.103	2.210	1.00	18.23
	MOTA	1391	CA	GLU	A	183	0	9.134	20.882	2.599	1.00	20.90
	ATOM	1392	C	GLU	A	183	0	9.381	21.078	4.093	1.00	18.87
	ATOM	1393	0	GLU	A	183	0	8.976	22.073	4.699	1.00	17.80
20	MOTA	1394	CB	GLU	A	183	0	9.990	21.875	1.820	1.00	25.16
	ATOM	1395	CG	GLU	A	183	0	11.508	21.760	1.962	1.00	31.31
	MOTA	1396	CD	GLU	A	183	0	12.075	22.803	0.998	1.00	34.38
	MOTA	1397	OE1	GLU	A	183	0	11.901	22.609	-0.229	1.00	36.88
	MOTA	1398	OE2	GLU	A	183	0	12.619	23.809	1.484	1.00	36.18
25	MOTA	1399	N	LEU	Α	184	0	10.010	20.093	4.691	1.00	17.33
	MOTA	1400	CA	LEU	A	184	0	10.388	20.155	6.098	1.00	18.77
	ATOM	1401	C	LEU	A	184	0	11.780	20.743	6.255	1.00	19.44
	MOTA	1402	0	LEU	A	184	0	12.582	20.687	5.314	1.00	20.95
	ATOM	1403	CB	LEU	A	184	0	10.331	18.735	6.673	1.00	18.11
30	MOTA	1404	CG	LEU	A	184	0	8.915	18.125	6.577	1.00	19.10
	ATOM	1405	CD1	LEU	A	184	0	8.887	16.734	7.178	1.00	18.87
	MOTA	1406	CD2	LEU	A	184	0	7.868	19.026	7.229	1.00	18.69
	MOTA	1407	N	SER	A	185	0	12.054	21.342	7.398	1.00	18.46
	MOTA	1408	CA	SER	A	185	0	13.366	21.883	7.699	1.00	17.73
35	MOTA	1409	C	SER	A	185	0	14.298	20.699	8.018	1.00	16.95
	ATOM	1410	0	SER	A	185	0	13.883	19.710	8.629	1.00	15.84
	MOTA	1411	CB	SER	A	185	0	13.303	22.786	8.934	1.00	17.34
	ATOM	1412	OG	SER	A	185	0	12.846	24.073	8.560	1.00	18.09
	MOTA	1413	N	ILE	A	186	0	15.533	20.845	7.587	1.00	16.43
40	ATOM	1414	CA	ILE	Α	186	0	16.595	19.858	7.821	1.00	16.85
	ATOM	1415	C	ILE	A	186	0	17.725	20.491	8.626	1.00	15.86
	ATOM	1416	0	ILE	A	186	0	18.178	21.605	8.387	1.00	11.67
	ATOM	1417	CB	ILE	A	186	0	17.193		6.471	1.00	18.77
	ATOM	1418	CG1	ILE	A	186	0	16.048	18.895		1.00	19.78
45	ATOM	1419	CG2				0				1.00	18.53

	MOTA	1420	CD1	ILE A	Α :	186	0	16.464	18.731	4.110		22.35
	MOTA	1421	N	VAL A	Α :	187	0	18.114	19.840	9.703		16.18
	ATOM	1422	CA	VAL A	A.	187	0	19.243	20.287	10.505	1.00	16.63
	ATOM	1423	С	VAL 2	A	187	0	20.362	19.239	10.231	1.00	17.36
5	ATOM	1424	0	VAL 2	A	187	0	20.158	18.046	10.505	1.00	15.19
	MOTA	1425	CB	VAL 2	A	187	0	18.928	20.323	11.984	1.00	16.68
	ATOM	1426	CG1	VAL 2	A	187	0	20.198	20.622	12.796	1.00	16.82
	MOTA	1427	CG2	VAL 2	A	187	0	17.874	21.375	12.275	1.00	17.07
	MOTA	1428	N	ASN 2	A	188	0	21.449	19.695	9.634	1.00	16.45
10	ATOM	1429	CA	ASN 2	A	188	0	22.528	18.766	9.272	1.00	19.84
	MOTA	1430	C	ASN .	Α	188	0	23.598	18.597	10.349	1.00	19.41
	ATOM	1431	0	ASN .	A	188	0	24.051	19.618	10.862	1.00	21.31
	ATOM	1432	CB	ASN .	A	188	0	23.209	19.246	7.976	1.00	18.78
	ATOM	1433	CG	ASN .	A	188	0	22.249	19.186	6.797	1.00	20.77
15	MOTA	1434	OD1	ASN .	A	188	0	21.734	20.201	6.305	1.00	21.70
	ATOM	1435	ND2	ASN .	A	188	0	21.995	17.985	6.286	1.00	20.52
	ATOM	1436	N	VAL .	A	189	0	24.024	17.389	10.681	1.00	17.35
	ATOM	1437	CA	VAL	A	189	0	25.098	17.164	11.617	1.00	17.93
	ATOM	1438	C	VAL	A	189	0	26.091	16.135	11.046	1.00	19.82
20	ATOM	1439	0	VAL	A	189	0	25.773	15.392	10.109	1.00	18.90
	ATOM	1440	СВ	VAL	A	189	0	24.660	16.684	13.009	1.00	18.43
	ATOM	1441	CG1	VAL	A	189	0	23.931	17.796	13.766	1.00	18.89
	MOTA	1442	CG2	VAL	A	189	0	23.760	15.449	12.965	1.00	15.94
	MOTA	1443	N	GLU	A	190	0	27.242	15.993	11.688	1.00	21.48
25	MOTA	1444	CA	GLU	Α	190	0	28.220	14.972	11.274	1.00	24.63
	MOTA	1445	С	GLU	A	190	0	28.514	14.065	12.469	1.00	23.06
	MOTA	1446	0	GLU	A	190	0	28.797	14.650	13.522	1.00	21.04
	ATOM	1447	CB	GLU	A	190	0	29.569	15.551	10.860	1.00	26.79
	ATOM	1448	CG	GLU	A	190	0	29.571	16.355	9.567	1.00	32.24
30	MOTA	1449	CD	GLU	A	190	0	30.951	16.990	9.351	1.00	34.67
	MOTA	1450	OE1	GLU	A	190	0	31.927	16.199	9.305	1.00	35.41
	MOTA	1451	OE2	GLU	A	190	0	30.999	18,236	9.264	1.00	35.78
	MOTA	1452	N	GLN	A	191	0	28.490	12.752	12.256	1.00	21.94
	MOTA	1453	CA	GLN	A	191	0	28.768	11.824	13.357	1.00	21.92
35	MOTA	1454	С	GLN	A	191	0	30.121	12.151	13.984	1.00	22.68
	ATOM	1455	0	GLN	A	191	0	31.052	12.516	13.251	1.00	23.08
	MOTA	1456	CB	GLN	A	191	0	28.797	10.400	12.820	1.00	22.01
	ATOM	1457	CG	GLN	A	191	0	28.795	9.347	13.917	1.00	23.87
	ATOM	1458	CD	GLN	A	191	0	28.846	7.966	13.259	1.00	26.64
40	ATOM	1459	OE1	GLN	A	191	0	29.745	7.761	12.427	1.00	28.86
	ATOM	1460	NE2	GLN	A	191	0	27.909	7.080	13.563	1.00	26.40
	ATOM	1461	N	GLY	A	192	0	30.224	12.119	15.290	1.00	21.84
	ATOM	1462	CA	GLY	Α	192	0	31.418	12.469	15.996	1.00	22.91
	MOTA	1463	C	GLY	A	192	0	31.564	13.910	16.446	1.00	23.87
45	ATOM	1464	0	GLY	A	192	0	32.394	14.174	17.322	1.00	25.80

	ATOM	1465	N	LYS	A	193	0	30.839	14.867	15.922	1.00	23.54
	MOTA	1466	CA	LYS	A	193	0	30.899	16.259	16.362	1.00	22.84
	ATOM	1467	С	LYS	A	193	0	29.840	16.584	17.404	1.00	21.67
	ATOM	1468	0	LYS	A	193	0	28.826	15.882	17.538	1.00	20.99
5	ATOM	1469	CB	LYS	A	193	0	30.682	17.155	15.143	1.00	24.53
	ATOM	1470	CG	LYS	A	193	0	31.900	17.149	14.217	1.00	27.82
	ATOM	1471	CD	LYS	A	193	0	31.739	18.261	13.199	1.00	30.02
	ATOM	1472	CE	LYS	A	193	0	33.060	19.001	12.990	1.00	31.93
	ATOM	1473	NZ	LYS	A	193	0	33.392	18.906	11.540	1.00	33.14
10	ATOM	1474	N	LYS	A	194	0	30.067	17.626	18.169	1.00	19.25
	ATOM	1475	CA	LYS	A	194	0	29.168	18.115	19.187	1.00	19.49
	ATOM	1476	C	LYS	A	194	0	28.722	19.523	18.780	1.00	19.40
	ATOM	1477	0	LYS	A	194	0	29.512	20.285	18.235	1.00	19.29
•	ATOM	1478	CB	LYS	A	194	0	29.771	18.115	20.576	1.00	21.88
15	ATOM	1479	CG	LYS	A	194	0	30.338	16.748	20.999	1.00	25.59
	MOTA	1480	CD	LYS	A	194	0	31.054	16.902	22.331	1.00	29.48
	MOTA	1481	CE	LYS	A	194	0	31.455	15.582	22.970	1.00	33.58
	ATOM	1482	NZ	LYS	A	194	0	30.363	15.049	23.868	1.00	35.93
	MOTA	1483	N	TYR	A	195	0	27.418	19.818	18.910	1.00	16.92
20	ATOM	1484	CA	TYR	A	195	0	26.858	21.068	18.431	1.00	15.60
	ATOM	1485	С	TYR	Α	195	0	26.143	21.838	19.530	1.00	14.20
	ATOM	1486	0	TYR	A	195	0	25.394	21.232	20.295	1.00	13.75
	MOTA	1487	CB	TYR	A	195	0	25.814	20.880	17.300	1.00	16.13
	ATOM	1488	CG	TYR	A	195	0	26.424	20.225	16.066	1.00	15.41
25	ATOM	1489	CD1	TYR	A	195	0	26.663	18.851	16.091	1.00	15.91
	ATOM	1490	CD2	TYR	A	195	0	26.786	20.942	14.945	1.00	14.73
	ATOM	1491	CE1	TYR	A	195	0	27.244	18.204	15.010	1.00	16.55
	ATOM	1492	CE2	TYR	A	195	0	27.331	20.312	13.839	1.00	15.60
	MOTA	1493	CZ	TYR	A	195	0	27.570	18.947	13.888	1.00	16.18
30	ATOM	1494	OH	TYR	A	195	0	28.144	18.287	12.831	1.00	15.64
	ATOM	1495	N	ARG	A	196	0	26.366	23.136	19.561	1.00	12.74
	MOTA	1496	CA	ARG	A	196	0	25.619	23.980	20.482	1.00	13.63
	MOTA	1497	C	ARG	A	196	0	24.343	24.369	19.711	1.00	13.86
	MOTA	1498	0	ARG	A	196	0	24.343	25.218	18.802	1.00	13.81
35	MOTA	1499	СВ	ARG	A	196	0	26.379	25.187	20.991	1.00	13.96
	ATOM	1500	CG	ARG	A	196	0	25.520	26.162	21.796	1.00	14.22
	ATOM	1501	CD	ARG	A	196	0	26.337	27.238	22.438	1.00	15.27
	MOTA	1502	NE	ARG	A	196	0	25.649	28.138	23.319	1.00	17.38
	ATOM	1503	CZ	ARG	A	196	0	26.203	29.034	24.140	1.00	18.86
40	MOTA	1504	NH1	ARG	A	196	0	27.540	29.141	24.217	1.00	16.30
	MOTA	1505	NH2	ARG	A	196	0	25.377	29.788	24.869	1.00	16.73
	ATOM	1506	N	MET	A	197	0	23.266	23.624	20.002	1.00	13.86
	ATOM	1507	CA	MET	A	197	0	21.980	23.932	19.340	1.00	12.98
	ATOM	1508	C	MET	A	197	0	21.293	25.055	20.127	1.00	12.50
45	ATOM	1509	0	MET	A	197	0	21.285	24.997	21.359	1.00	13.93

	ATOM	1510	СВ	MET	A	197	0	21.118	22.693	19.266	1.00	12.50
	ATOM	1511	CG	MET	A	197	0	21.762	21.567	18.447	1.00	13.94
	MOTA	1512	SD	MET	A	197	0	21.860	22.033	16.735	1.00	16.62
	MOTA	1513	CE	MET	A	197	0	22.157	20.467	15.927	1.00	16.37
5	MOTA	1514	N	ARG	A	198	0	20.768	26.064	19.450	1.00	11.00
	ATOM	1515	CA	ARG	A	198	0	20.131	27.191	20.137	1.00	11.83
	ATOM	1516	С	ARG	A	198	0	18.624	27.130	19.868	1.00	12.36
	ATOM	1517	0	ARG	A	198	0	18.145	27.304	18.731	1.00	10.03
	ATOM	1518	CB	ARG	A	198	0	20.804	28.460	19.629	1.00	13.98
10	ATOM	1519	CG	ARG	A	198	0	22.282	28.567	20.065	1.00	16.25
	ATOM	1520	CD	ARG	A	198	0	22.932	29.863	19.626	1.00	16.68
	ATOM	1521	NE	ARG	A	198	0	24.350	29.957	20.042	1.00	16.91
	ATOM	1522	CZ	ARG	A	198	0	24.812	30.691	21.055	1.00	15.76
	ATOM	1523	NH1	ARG	A	198	0	24.031	31.456	21.820	1.00	13.44
15	ATOM	1524	NH2	ARG	A	198	0	26.123	30.721	21.316	1.00	15.41
	ATOM	1525	N	LEU	A	199	0	17.871	26.807	20.908	1.00	10.44
	MOTA	1526	CA	LEU	A	199	0	16.426	26.568	20.708	1.00	10.69
	ATOM	1527	С	LEU	Α	199	0	15.598	27.772.	21.169	1.00	10.07
	ATOM	1528	0	LEU	A	199	0	15.682	28.216	22.317	1.00	10.07
20	ATOM	1529	CB	LEU	A	199	0	16.003	25.317	21.491	1.00	8.67
	MOTA	1530	CG	LEU	A	199	0	14.499	24.942	21.391	1.00	10.33
	ATOM	1531	CD1	LEU	A	199	0	14.193	24.333	20.023	1.00	8.13
	MOTA	1532	CD2	LEU	A	199	0	14.170	23.907	22.485	1.00	9.10
	MOTA	1533	N	ILE	A	200	0	14.857	28.370	20.242	1.00	10.46
25	MOTA	1534	CA	ILE	Α	200	0	14.104	29.572	20.585	1.00	11.72
	MOTA	1535	C	ILE	A	200	0	12.627	29.428	20.310	1.00	13.84
	ATOM	1536	0	ILE	A	200	0	12.254	29.059	19.192	1.00	13.22
	ATOM	1537	CB	ILE	A	200	0	14.628	30.755	19.735	1.00	12.89
	MOTA	1538	CG1	ILE	A	200	0	16.165	30.899	19.824	1.00	12.38
30	MOTA	1539	CG2	ILE	A	200	0	13.998	32.091	20.065	1.00	13.13
	ATOM	1540	CD1	ILE	A	200	0	16.811	31.634	18.671	1.00	12.54
	ATOM	1541	N	SER	A	201	0	11.829	29.825	21.312	1.00	14.64
	ATOM	1542	CA	SER	A	201	0	10.379	29.849	21.023	1.00	13.89
	ATOM	1543	C	SER	A	201	0	10.018	31.280	20.608	1.00	11.10
35	ATOM	1544	0	SER	A	201	0	10.250	32.261	21.320	1.00	8.85
	MOTA	1545	СВ	SER	A	201	0	9.539	29.367	22.202	1.00	13.01
	ATOM	1546	OG	SER	A	201	0	8.313	30.047	22.207	1.00	12.19
	ATOM	1547	N	LEU	A	202	0	9.428	31.376	19.438	1.00	9.64
	ATOM	1548	CA	LEU	A	202	0	8.959	32.637	18.881	1.00	9.06
40	ATOM	1549	С	LEU	A	202	0	7.415	32.740	19.046	1.00	10.40
	ATOM	1550	0	LEU	Α	202	0	6.802	33.528	18.351	1.00	9.36
	ATOM	1551	СВ	LEU	A	202	0	9.239	32.618	17.379	1.00	9.09
	ATOM	1552	CG	LEU	A	202	0	10.691	32.451	16.888	1.00	10.90
	ATOM	1553	CD1	LEU	A	202	0	10.637	32.470	15.367	1.00	10.05
45	ATOM	1554	CD2	LEU	A	202	0	11.617	33.559	17.414	1.00	8.56

	MOTA	1555	N	SER	A	203	0	6.821	31.942	19.892	1.00	9.59
	ATOM	1556	CA	SER	Α	203	0	5.414	31.756	20.017	1.00	15.31
	MOTA	1557	C	SER	A	203	0	4.624	32.960	20.544	1.00	16.67
	ATOM	1558	0	SER	A	203	0	4.964	33.676	21.483	1.00	16.42
5	ATOM	1559	CB	SER	A	203	0	5.130	30.505	20.867	1.00	15.21
	ATOM	1560	OG	SER	A	203	0	3.742	30.240	21.004	1.00	17.14
	ATOM	1561	N	CYS	Α	204	0	3.428	33.051	19.984	1.00	17.18
	ATOM	1562	CA	CYS	A	204	0	2.442	34.018	20.470	1.00	18.43
	ATOM	1563	С	CYS	Α	204	0	1.599	33.316	21.522	1.00	17.02
10	ATOM	1564	0	CYS	Α	204	0	0.867	34.039	22.200	1.00	17.27
	ATOM	1565	CB	CYS	A	204	0	1.524	34.508	19.334	1.00	18.60
	MOTA	1566	SG	CYS	A	204	0	2.135	36.038	18.612	1.00	20.23
	ATOM	1567	N	ASP	A	205	0	1.687	31.989	21.665	1.00	16.38
	ATOM	1568	CA	ASP	A	205	0	0.776	31.392	22.683	1.00	12.26
15	ATOM	1569	С	ASP	A	205	0	1.123	30.002	23.087	1.00	11.34
	ATOM	1570	0	ASP	A	205	0	1.432	29.687	24.255	1.00	11.40
	ATOM	1571	CB	ASP	A	205	0	-0.622	31.516	22.076	1.00	14.87
	ATOM	1572	CG	ASP	A	205	0	-1.729	30.881	22.892	1.00	16.61
	ATOM	1573	OD1	ASP	A	205	0	-2.884	30.999	22.433	1.00	18.48
20	ATOM	1574	OD2	ASP	Α	205	0	-1.534	30.263	23.966	1.00	17.48
	ATOM	1575	N	PRO	Α	206	0	1.036	29.030	22.205	1.00	11.79
	ATOM	1576	CA	PRO	A	206	0	1.313	27.639	22.542	1.00	11.91
	MOTA	1577	С	PRO	A	206	0	2.739	27.411	23.045	1.00	14.01
	ATOM	1578	0	PRO	A	206	0	3.676	28.135	22.661	1.00	14.38
25	ATOM	1579	CB	PRO	A	206	0	1.124	26.816	21.262	1.00	11.87
	ATOM	1580	CG	PRO	A	206	0	1.112	27.893	20.191	1.00	12.83
	ATOM	1581	CD	PRO	A	206	0	0.749	29.241	20.766	1.00	11.09
	ATOM	1582	N	ASN	A	207	0	2.888	26.439	23.911	1.00	13.06
	ATOM	1583	CA	ASN	A	207	0	4.128	25.919	24.429	1.00	15.01
30	ATOM	1584	C	ASN	A	207	0	4.332	24.591	23.677	1.00	15.84
	ATOM	1585	0	ASN	A	207	0	3.376	24.095	23.038	1.00	16.22
	ATOM	1586	CB	ASN	A	207	0	4.144	25.682	25.933	1.00	15.12
	MOTA	1587	CG	ASN	A	207	0	3.054	24.708	26.395	1.00	19.36
	MOTA	1588	OD1	ASN	A	207	0	2.062	25.161	27.014	1.00	19.36
35	MOTA	1589	ND2	ASN	Α	207	0	3.174	23.408	26.203	1.00	16.49
	MOTA	1590	N	TRP	A	208	0	5.557	24.077	23.634	1.00	14.46
	MOTA	1591	CA	TRP	A	208	0	5.827	22.865	22.892	1.00	12.04
	ATOM	1592	С	TRP	A	208	0	6.638	21.921	23.783	1.00	13.85
	MOTA	1593	0	TRP	A	208	0	7.482	22.385	24.558	1.00	13.02
40	ATOM	1594	СВ	TRP	A	208	0	6.654	23.136	21.628	1.00	11.91
	ATOM	1595	CG	TRP	A	208	0	5.951	23.769	20.465	1.00	11.27
	ATOM	1596	CD1	TRP	A	208	0	5.149	23.164	19.561	1.00	10.33
	ATOM	1597	CD2	TRP	A	208	0	5.988	25.158	20.092	1.00	10.29
	ATOM	1598	NE1	TRP	A	208	0	4.698	24.078	18.625	1.00	10.91
45	ATOM	1599	CE2	TRP	A	208	0	5.201	25.313	18.954	1.00	9.64

	ATOM	1600	CE3	TRP	A	208	0	6.634	26.294	20.625	1.00	10.25
	ATOM	1601	CZ2	TRP	A	208	0	5.011	26.553	18.344	1.00	8.53
	ATOM	1602	CZ3	TRP	A	208	0	6.494	27.514	20.019	1.00	10.02
	ATOM	1603	CH2	TRP	A	208	0	5.668	27.633	18.881	1.00	11.79
5	MOTA	1604	N	GLN	A	209	0	6.420	20.620	23.580	1.00	13.82
	ATOM	1605	CA	GLN	A	209	0	7.240	19.588	24.192	1.00	13.83
	ATOM	1606	С	GLN	A	209	0	8.251	19.281	23.075	1.00	13.07
	MOTA	1607	0	GLN	Α	209	0	7.848	18.968	21.948	1.00	14.18
	MOTA	1608	CB	GLN	A	209	0	6.441	18.319	24.487	1.00	15.65
10	ATOM	1609	CG	GLN	A	209	0	5.449	18.481	25.649	1.00	17.26
	MOTA	1610	CD	GLN	A	209	0	6.177	18.514	26.975	1.00	18.17
	ATOM	1611	OE1	GLN	A	209	0	7.414	18.471	27.002	1.00	20.00
	ATOM	1612	NE2	GLN	A	209	0	5.462	18.570	28.085	1.00	16.89
	ATOM	1613	N	PHE	A	210	0	9.538	19.461	23.351	1.00	11.26
15	ATOM	1614	CA	PHE	A	210	0	10.526	19.329	22.287	1.00	10.01
	MOTA	1615	С	PHE	A	210	0	11.457	18.153	22,585	1.00	9.18
	ATOM	1616	0	PHE	A	210	0	11.894	17.999	23.732	1.00	10.07
	MOTA	1617	CB	PHE	A	210	0	11.370	20.629	22.292	1.00	10.86
	MOTA	1618	CG	PHE	A	210	0	12.489	20.581	21.292	1.00	9.63
20	MOTA	1619	CD1	PHE	A	210	0	13.760	20.179	21.674	1.00	9.95
	ATOM	1620	CD2	PHE	Α	210	0	12.251	20.922	19.984	1.00	8.54
	ATOM	1621	CE1	PHE	A	210	0	14.778	20.150	20.738	1.00	9.23
	ATOM	1622	CE2	PHE	A	210	0	13.243	20.862	19.023	1.00	7.93
	ATOM	1623	CZ	PHE	A	210	0	14.520	20.491	19.426	1.00	8.71
25	MOTA	1624	N	SER	A	211	0	11.741	17.384	21.545	1.00	8.62
	ATOM	1625	CA	SER	A	211	0	12.645	16.255	21.716	1.00	10.71
	ATOM	1626	С	SER	A	211	0	13.142	15.844	20.347	1.00	11.36
	ATOM	1627	0	SER	A	211	0	12.661	16.323	19.315	1.00	9.99
	ATOM	1628	CB	SER	A	211	0	11.970	15.070	22.427	1.00	10.56
30	ATOM	1629	OG	SER	A	211	0	10.899	14.731	21.513	1.00	12.92
	ATOM	1630	N	ILE	A	212	0	14.268	15.122	20.390	1.00	13.67
	MOTA	1631	CA	ILE	A	212	0	14.883	14.680	19.131		14.79
	ATOM	1632	C	ILE	A	212	0	15.013	13.166	19.220		15.44
	MOTA	1633	0	ILE	A	212	0	15.624	12.689	20.177	1.00	15.98
35	ATOM	1634	CB	ILE	A	212	0	16.255	15.341	18.887	1.00	17.04
	MOTA	1635	CG1	ILE	Α	212	0	16.082	16.859	18.756	1.00	15.64
	MOTA	1636	CG2	ILE	A	212	0	16.935	14.722	17.648	1.00	15.24
	MOTA	1637	CD1	ILE	A	212	0	17.352	17.648	18.553	1.00	16.57
	ATOM	1638	N	ASP	A	213	0	14.453	12.418	18.281	1.00	15.53
40	ATOM	1639	CA	ASP	A	213	0	14.549	10.952	18.401	1.00	16.50
	ATOM	1640	C	ASP	A	213	0	16.004	10.469	18.541	1.00	16.69
	ATOM	1641	0	ASP	A	213	0	16.948	10.902	17.851	1.00	14.36
	ATOM	1642	СВ	ASP	A	213	0	13.884	10.359	17.173	1.00	17.15
	ATOM	1643	CG	ASP	A	213	0	12.369	10.467	17.144	1.00	18.12
45	MOTA	1644	OD1	ASP	A	213	0	11.751	10.995	18.092	1.00	16.90

ATOM 1645 OD2 ASP A 213 0 11.801 9.990 16.129 1.00 17.35 **ATOM** 1646 N **GLY A 214** 0 16.198 9.559 19.477 1.00 15.76 1.00 17.22 ATOM 1647 CA **GLY A 214** 0 17.457 8.900 19.747 ATOM C **GLY A 214** 1.00 18.54 1648 0 18.548 9.757 20.368 5 MOTA 1649 0 **GLY A 214** 0 19.680 9.277 20.404 1.00 18.20 ATOM 1650 N HIS A 215 0 11.024 20.738 1.00 18.17 18.341 CA HIS A 215 0 1.00 17.59 ATOM 1651 19.422 11.880 21.229 MOTA 0 1.00 17.92 1652 C HIS A 215 19.096 12.505 22.577 MOTA 0 HIS A 215 0 1.00 20.45 1653 17.917 12.696 22.898 10 ATOM 1654 CB HIS A 215 0 19.705 13.008 20.221 1.00 15.73 ATOM 1655 CG HIS A 215 0 20.309 12.543 18.936 1.00 16.90 MOTA 1656 ND1 HIS A 215 0 19.589 11.864 17.963 1.00 17.35 MOTA CD2 HIS A 215 0 1657 21.574 12.658 18.444 1.00 16.15 MOTA 1658 CE1 HIS A 215 0 20.376 11.576 16.933 1.00 17.63 15 MOTA 1659 NE2 HIS A 215 0 1.00 17.73 21.599 12.046 17.216 ATOM **GLU A 216** 0 1660 N 23.382 1.00 17.22 20.104 12.815 ATOM 1661 CA **GLU A 216** 0 19.876 13.479 24.665 1.00 15.86 ATOM C 1662 GLU A 216 0 20.070 14.976 24.456 1.00 15.61 ATOM 0 1.00 14.96 1663 0 **GLU A 216** 20.684 15.386 23.453 20 **ATOM** CB **GLU A 216** 0 1664 20.817 12.901 25.694 1.00 15.38 ATOM 1665 CG **GLU A 216** 0 1.00 16.53 20.440 11.520 26.166 ATOM 1666 CD**GLU A 216** 0 21.242 11.058 27.357 1.00 17.23 MOTA OE1 GLU A 216 0 1667 1.00 20.31 22.378 10.619 27.129 MOTA OE2 GLU A 216 0 1668 20.813 11.119 28.519 1.00 16.06 25 ATOM 1669 N LEU A 217 0 19.623 15.792 25.394 1.00 14.64 ATOM 1670 CA **LEU A 217** 0 1.00 14.91 19.738 17.243 25.251 LEU A 217 MOTA 1671 C 0 20.512 1.00 14.71 17,792 26.446 ATOM 1672 0 **LEU A 217** 0 19.950 17.734 27.539 1.00 15.67 MOTA 1673 CB **LEU A 217** 0 18.362 17.931 25.229 1.00 14.75 30 MOTA 1674 **LEU A 217** 0 CG 1.00 15.40 17.276 17.349 24.306 ATOM CD1 LEU A 217 0 1.00 15.08 1675 15.939 18.075 24.505 MOTA 1676 CD2 LEU A 217 0 17.723 17.453 22.849 1.00 15.22 MOTA 1677 THR A 218 0 21.732 N 18.278 1.00 13.65 26.229 ATOM CA THR A 218 0 1678 22.507 18.714 27.402 1.00 13.26 35 MOTA 1679 C THR A 218 0 1.00 13.27 22.427 20.232 27.505 MOTA 1680 0 THR A 218 0 23.142 20.955 26.805 1.00 12.91 ATOM 1681 CB THR A 218 0 23.955 18.216 27.304 1.00 12.08 MOTA 1682 OG1 THR A 218 0 23.935 16.782 27.331 1.00 15.48 MOTA CG2 THR A 218 0 24.767 1.00 11.46 1683 18.721 28.470 40 MOTA 1684 N ILE A 219 0 21.522 20.649 28.385 1.00 13.30 ATOM 1685 CA ILE A 219 0 21.259 22.068 28.547 1.00 14.53 MOTA 1686 C ILE A 219 0 1.00 12.72 22.420 22.818 29.180 MOTA 1687 0 ILE A 219 0 22.795 22.492 30.292 1.00 13.08 MOTA 0 1688 CB ILE A 219 22.268 29.323 1.00 14.74 19.930 45 MOTA 1689 CG1 ILE A 219 0 18.761 21.699 28.441 1.00 17.33

1.00 13.40 CG2 ILE A 219 19.666 23.717 29.656 MOTA 1690 0 29.412 1.00 19.42 MOTA 1691 CD1 ILE A 219 0 17.597 21.481 23.869 28.510 1.00 12.55 ATOM 1692 ILE A 220 0 22.898 N 1.00 13.25 ATOM 1693 CA ILE A 220 0 23.994 24.696 29.019 1.00 15.11 ILE A 220 0 23.686 26.193 29.085 5 ATOM 1694 C ILE A 220 24.477 27.001 29.618 1.00 14.73 ATOM 1695 O 0 1.00 11.80 ATOM CB ILE A 220 0 25.239 24.507 28.125 1696 1.00 10.93 MOTA CG1 ILE A 220 0 24.954 24.871 26.671 1697 1.00 9.59 ATOM 1698 CG2 ILE A 220 0 25.770 23.072 28.291 CD1 ILE A 220 25.231 25.928 1.00 12.07 10 ATOM 0 26.249 1699 1.00 13.30 **ATOM** 1700 N **GLU A 221** 0 22.490 26.573 28.597 27.951 28.624 1.00 12.96 ATOM 1701 CA **GLU A 221** 0 22.048 1.00 13.77 C **GLU A 221** 0 20.522 28.066 28.727 ATOM 1702 1.00 14.06 MOTA 1703 0 **GLU A 221** 0 19.799 27.301 28.068 1.00 12.73 15 ATOM 1704 CB **GLU A 221** 0 22.436 28.666 27.318 ATOM **GLU A 221** 22.280 30.178 27.325 1.00 12.94 1705 CG 0 ATOM 1706 **GLU A 221** 0 22.018 30.783 25.969 1.00 13.84 CD 1.00 12.66 0 ATOM 1707 OE1 GLU A 221 22.345 30.269 24.887 **ATOM** 1708 OE2 GLU A 221 0 21.386 31.862 25.936 1.00 14.80 20 ATOM 1709 **VAL A 222** 0 20.062 29.091 29.434 1.00 13.89 N 1.00 14.13 MOTA 1710 CA **VAL A 222** 0 18.632 29.350 29.534 1.00 13.87 ATOM **VAL A 222** 0 18.409 30.853 29.493 1711 C **VAL A 222** 1.00 11.55 MOTA 1712 0 0 18.900 31.657 30.300 1.00 16.86 MOTA 1713 CB **VAL A 222** 0 18.003 28.649 30.737 25 MOTA 1714 CG1 VAL A 222 0 18.730 28.941 32.017 1.00 19.16 CG2 VAL A 222 31.033 1.00 18.45 MOTA 1715 0 16.575 29.120 MOTA 1716 N **ASP A 223** 0 17.631 31.267 28.481 1.00 11.69 1.00 13.60 MOTA 1717 CA **ASP A 223** 0 17.245 32.673 28.386 MOTA 1718 С **ASP A 223** 0 18.472 33.598 28.548 1.00 14.44 1719 1.00 12.75 30 **ATOM** 0 **ASP A 223** 0 18.423 34.552 29.336 1.00 12.59 MOTA 1720 CB **ASP A 223** 0 16.161 33.033 29.417 1.00 14.64 MOTA 1721 CG **ASP A 223** 0 14.845 32.279 29.364 **ATOM** 1722 OD1 ASP A 223 0 14.697 31.397 28.493 1.00 13.34 1.00 13.85 ATOM 1723 OD2 ASP A 223 0 13.858 32.463 30.156 35 27.767 1.00 13.49 MOTA 1724 N **GLY A 224** 0 19.544 33.372 34.213 27.770 1.00 12.85 ATOM 1725 CA **GLY A 224** 0 20.728 ATOM C **GLY A 224** 0 34.112 29.049 1.00 13.00 1726 21.562 1.00 13.97 MOTA 1727 0 **GLY A 224** 0 22.326 35.040 29.317 ATOM 33.105 29.875 1.00 11.78 1728 N **GLU A 225** 0 21.370 40 **ATOM GLU A 225** 0 22.068 32.888 31.114 1.00 14.97 1729 CA 1.00 16.73 ATOM 1730 C **GLU A 225** 0 22.609 31.447 31.106 30.498 30.849 1.00 15.88 ATOM 1731 0 **GLU A 225** 0 21.858 1.00 16.54 MOTA CB **GLU A 225** 0 33.062 32.358 1732 21.174 1.00 16.30 32.534 MOTA 1733 CG **GLU A 225** 0 20.509 34.424 45 MOTA **GLU A 225** 0 21.492 35.546 32.823 1.00 17.57 1734 CD

PCT/DK98/00070 WO 98/38287 62

1.00 18.76 ATOM 1735 OE1 GLU A 225 0 22.450 35.254 33.561 1.00 17.77 OE2 GLU A 225 0 21.360 36.711 32.360 ATOM 1736 1.00 16.90 MOTA 1737 N **LEU A 226** 0 23.922 31.285 31.324 CA **LEU A 226** 0 24.526 29.955 1.00 15.50 MOTA 1738 31.318 **LEU A 226** 0 1.00 15.04 MOTA 1739 C 24.183 29.127 32.540 ATOM 0 **LEU A 226** 0 24.002 33.652 1.00 15.17 1740 29.648 CB **LEU A 226** 0 26.062 1.00 15.36 **ATOM** 1741 30.008 31.216 ATOM 1742 CG **LEU A 226** 0 26.567 30.741 29.958 1.00 17.95 ATOM 1743 CD1 LEU A 226 0 28.076 30.876 29.979 1.00 18.77 10 **ATOM** 1744 CD2 LEU A 226 0 26.111 30.029 28.687 1.00 17.36 ATOM THR A 227 0 27.799 1.00 13.62 1745 N 24.119 32.332 CA THR A 227 0 1.00 13.72 MOTA 1746 23.848 26.930 33.479 ATOM C THR A 227 0 24.936 33.528 1.00 14.30 1747 25.851 MOTA 1748 0 THR A 227 0 25.732 25.629 32.592 1.00 14.28 1.00 14.35 15 MOTA 1749 CB THR A 227 0 22.478 26.217 33.352 ATOM OG1 THR A 227 0 1.00 13.68 1750 22.506 25.385 32.178 MOTA 1751 CG2 THR A 227 0 21.284 33.180 1.00 12.29 27.161 MOTA **GLU A 228** 1.00 14.73 1752 N 0 24.960 25.136 34.625 MOTA 1753 CA **GLU A 228** 0 1.00 17.32 25.765 23.907 34.714 20 ATOM C **GLU A 228** 0 1.00 17.30 1754 33.680 25.110 22.971 ATOM 1755 0 **GLU A 228** 0 23.917 23.035 33.472 1.00 16.97 ATOM 1756 CB **GLU A 228** 0 25.617 36.114 1.00 16.58 23.315 26.493 ATOM 1757 CG **GLU A 228** 0 23.979 37.186 1.00 18.10 1.00 20.92 ATOM 1758 CD **GLU A 228** 0 26.236 23.458 38.575 25 MOTA OE1 GLU A 228 0 1.00 23.38 1759 25.469 22.470 38.755 MOTA 1760 OE2 GLU A 228 0 26.769 23.997 39.564 1.00 21.26 ATOM 1761 N PRO A 229 0 25.867 22.158 32.984 1.00 16.91 ATOM 1762 CA PRO A 229 0 1.00 16.37 25.369 21.207 31.992 ATOM 1763 C PRO A 229 0 1.00 16.24 24.351 20.275 32.599 30 ATOM 1764 O PRO A 229 0 24.624 19.652 33.619 1.00 15.76 MOTA 1765 CB PRO A 229 0 1.00 15.97 26.612 20.469 31.419 **ATOM** 1766 CG PRO A 229 0 27.701 21.509 31.741 1.00 15.92 ATOM PRO A 229 0 1.00 14.86 1767 CD 27.337 22.141 33.083 ATOM 1.00 15.58 1768 N HIS A 230 0 23.140 20.164 32.038 35 ATOM HIS A 230 1.00 15.01 1769 CA 0 22.090 19.325 32.618 ATOM C HIS A 230 0 1.00 13.55 1770 21.354 31.488 18.610 ATOM 1771 0 HIS A 230 0 20.756 19.192 30.590 1.00 13.47 MOTA 1772 HIS A 230 0 33.510 1.00 15.89 CB 21.172 20.164 1.00 18.32 MOTA CG HIS A 230 0 20.045 34.064 1773 19.341 40 ND1 HIS A 230 1.00 18.14 ATOM 1774 0 20.252 18.347 35.004 ATOM 1775 CD2 HIS A 230 0 18.713 19.328 33.791 1.00 17.75 1.00 16.33 ATOM 1776 **CE1 HIS A 230** 0 19.121 17.768 35.310 ATOM NE2 HIS A 230 0 1.00 17.85 1777 18.173 18.344 34.609 ATOM THR A 231 0 21.496 17.304 1.00 12.94 1778 N 31.458 1.00 14.15 45 ATOM 1779 CA THR A 231 0 20.995 16.474 30.346

شن	

1.00 13.41 1780 C THR A 231 0 19.620 15.890 30.547 ATOM 1.00 14.89 0 THR A 231 0 19.293 15.401 31.616 MOTA 1781 1.00 13.73 ATOM 1782 THR A 231 0 22.040 15.364 30.060 MOTA 1783 OG1 THR A 231 0 23.314 16.023 29.852 1.00 14.77 CG2 THR A 231 0 21.655 1.00 13.06 5 ATOM 1784 14.600 28.818 1.00 12.86 **VAL A 232** 0 29.549 ATOM 1785 N 18.776 15.954 VAL A 232 0 17.374 15.505 29.665 1.00 13.44 MOTA 1786 CA ATOM 1787 C **VAL A 232** 0 16.999 14.966 28.319 1.00 14.96 VAL A 232 1.00 14.12 MOTA 1788 0 0 17.790 15.258 27.390 VAL A 232 1.00 17.41 10 ATOM 1789 CB 0 16.771 16.910 30.000 CG1 VAL A 232 1.00 14.66 ATOM 1790 0 16.075 17.587 28.856 CG2 VAL A 232 1.00 15.66 **ATOM** 1791 0 16.158 16.935 31.371 **ASP A 233** 0 15.874 28.153 1.00 14.01 ATOM 1792 N 14.277 MOTA CA **ASP A 233** 0 15.405 13.803 26.874 1.00 14.73 1793 15 ATOM 1794 C **ASP A 233** 0 14.353 14.718 26.245 1.00 14.74 О **ASP A 233** 0 25.027 1.00 13.41 ATOM 1795 14.187 14.731 **ASP A 233** 0 1.00 16.54 MOTA 1796 CB 14.640 12.465 27.046 ATOM **ASP A 233** 0 15.637 27.536 1.00 19.27 1797 CG 11.417 1.00 20.98 ATOM 1798 OD1 ASP A 233 0 16.543 11.145 26.732 20 ATOM OD2 ASP A 233 0 15.536 28.667 1.00 19.27 1799 10.945 ATOM 1800 ARG A 234 0 13.595 27.122 1.00 13.79 N 15.386 1.00 16.36 ATOM 1801 CA ARG A 234 0 12.514 16.199 26.598 ATOM 1802 ARG A 234 27.472 1.00 15.17 C 0 12.258 17.426 MOTA ARG A 234 0 28.686 1.00 13.96 1803 0 12.418 17.390 25 ATOM ARG A 234 1.00 19.23 1804 CB 0 11.265 15.330 26.482 ARG A 234 1.00 22.25 ATOM 1805 CG 0 10.104 16.036 25.788 ATOM CD ARG A 234 0 8.981 25.506 1.00 24.68 1806 15.023 1.00 28.27 MOTA 1807 NE ARG A 234 0 8.157 14.983 26.705 ARG A 234 1.00 28.66 ATOM CZ6.845 14.828 26.719 1808 0 1.00 30.08 30 ATOM NH1 ARG A 234 6.291 27.909 1809 0 14.833 ATOM 1810 NH2 ARG A 234 0 6.191 14.662 25.587 1.00 30.24 1.00 13.90 ATOM **LEU A 235** 0 11.874 18.524 26.816 1811 N **LEU A 235** 19.742 27.607 1.00 13.15 ATOM 1812 CA 0 11.619 1.00 11.49 ATOM 1813 C **LEU A 235** 0 10.390 20.430 27.041 35 25.873 1.00 11.08 **ATOM** 1814 0 **LEU A 235** 0 10.025 20.304 27.695 1.00 14.39 ATOM 1815 CB **LEU A 235** 0 12.825 20.630 1.00 17.19 ATOM 1816 CG **LEU A 235** 0 13.459 21.645 26.801 ATOM 1817 CD1 LEU A 235 0 14.795 21.218 26.197 1.00 16.98 25.685 1.00 18.24 ATOM 1818 CD2 LEU A 235 0 12.586 22.219 1.00 12.74 40 **ATOM** 1819 N **GLN A 236** 0 9.769 21.152 27.949 1.00 13.45 ATOM 1820 CA **GLN A 236** 0 8.576 21.944 27.616 ATOM C **GLN A 236** 9.005 23.390 27.459 1.00 12.21 1821 0 1.00 13.90 ATOM 1822 О **GLN A 236** 0 9.606 23.939 28.406 1.00 12.06 ATOM **GLN A 236** 0 7.525 21.770 28.741 1823 CB ATOM 28.238 1.00 14.12 45 1824 CG **GLN A 236** 0 6.197 22.276

	ATOM	1825	CD	GLN	A	236	0	5.025	22.108	29.205	1.00	13.35
	ATOM	1826	OE1	GLN	A	236	0	3.893	22.215	28.721	1.00	15.61
	ATOM	1827	NE2	GLN	A	236	0	5.226	21.912	30.463	1.00	12.00
	MOTA	1828	N	ILE	A	237	0	8.748	24.011	26.311	1.00	12.17
5	MOTA	1829	CA	ILE	A	237	0	9.213	25.390	26.156	1.00	12.41
	MOTA	1830	C	ILE	A	237	0	8.061	26.376	25.953	1.00	13.14
	ATOM	1831	0	ILE	A	237	0	7.283	26.310	24.990	1.00	13.64
	MOTA	1832	CB	ILE	A	237	0	10.255	25.437	25.022	1.00	11.03
	ATOM	1833	CG1	ILE	A	237	0	10.947	26.793	24.960	1.00	11.84
10	MOTA	1834	CG2	ILE	A	237	0	9.615	25.086	23.662	1.00	10.02
	ATOM	1835	CD1	ILE	A	237	0	12.041	26.953	23.902	1.00	11.23
	MOTA	1836	N	PHE	A	238	0	8.037	27.414	26.765	1.00	12.83
	ATOM	1837	CA	PHE	A	238	0	6.979	28.431	26.714	1.00	13.23
	ATOM	1838	C	PHE	A	238	0	7.382	29.683	25.957	1.00	13.99
15	MOTA	1839	0	PHE	A	238	0	8.530	29.848	25.545	1.00	13.87
	ATOM	1840	CB	PHE	A	238	0	6.592	28.848	28.145	1.00	12.72
	ATOM	1841	CG	PHE	A	238	0	6.176	27.691	28.993	1.00	14.51
	ATOM	1842	CD1	PHE	A	238	0	7.098	26.957	29.710	1.00	14.84
	MOTA	1843	CD2	PHE	A	238	0	4.836	27.314	29.078	1.00	15.50
20	ATOM	1844	CE1	PHE	A	238	0	6.748	25.882	30.497	1.00	13.87
	MOTA	1845	CE2	PHE	A	238	0	4.468	26.236	29.862	1.00	14.62
	MOTA	1846	cz	PHE	A	238	0	5.423	25.528	30.568	1.00	15.15
	ATOM	1847	N	THR	Α	239	0	6.388	30.494	25.604	1.00	14.16
	MOTA	1848	CA	THR	A	239	0	6.543	31.678	24.806	1.00	13.44
25	MOTA	1849	C	THR	A	239	0	7.832	32.453	25.106	1.00	11.74
	MOTA	1850	0	THR	A	239	0	8.012	32.950	26.218	1.00	10.47
	MOTA	1851	CB	THR	A	239	0	5.381	32.695	24.978	1.00	15.55
	ATOM	1852	OG1	THR	A	239	0	5.258	33.008	26.359	1.00	17.88
	ATOM	1853	CG2	THR	A	239	0	4.055	32.131	24.478	1.00	16.75
30	ATOM	1854	N	GLY	A	240	0	8.672	32.593	24.078	1.00	7.94
	MOTA	1855	CA	GLY	A	240	0	9.877	33.348	24.193	1.00	10.08
	MOTA	1856	С	GLY	A	240	0	11.039	32.865	25.041		11.34
	ATOM	1857	0	GLY	A	240	0	11.977	33.650	25.216	1.00	11.02
	ATOM	1858	N	GLN	A	241	0	10.990	31.646	25.592	1.00	9.73
35	ATOM	1859	CA	GLN	A	241	0	12.067	31.090	26.364	1.00	9.59
	MOTA	1860	C	GLN	A	241	0	13.114	30.587	25.342	1.00	10.56
	MOTA	1861	0	GLN	A	241	0	12.823	30.467	24.126	1.00	8.44
	ATOM	1862	CB	GLN	A	241	0	11.604	29.965	27.285	1.00	10.57
	ATOM	1863	CG	GLN	A	241	0	10.820	30.363	28.523	1.00	10.54
40	ATOM	1864	CD	GLN	A	241	0	10.341	29.190	29.341	1.00	12.22
	ATOM	1865	OE1	GLN	A	241	0	10.118	28.077	28.815	1.00	13.21
	MOTA	1866	NE2	GLN	A	241	0	10.220	29.466	30.639	1.00	11.74
	ATOM	1867	N	ARG	A	242	0	14.372	30.492	25.774	1.00	9.00
	ATOM	1868	CA	ARG	A	242	0	15.388	29.992	24.834	1.00	11.01
45	MOTA	1869	C	ARG	A	242	0	16.210	28.966	25.609	1.00	11.30

ATOM 1870 0 ARG A 242 0 16.292 29.133 26.816 1.00 9.51 1871 CB ARG A 242 0 16.324 31.043 24.265 1.00 12.77 MOTA 1.00 12.52 ATOM 1872 CG ARG A 242 0 15.694 32.128 23.364 1.00 10.81 ARG A 242 24.138 ATOM 1873 CD 0 15.066 33.249 5 **ATOM** 1874 NE ARG A 242 0 15.957 34.126 24.892 1.00 10.80 ATOM 1875 CZARG A 242 0 15.630 34.761 26.002 1.00 11.36 1.00 7.98 **ATOM** 1876 NH1 ARG A 242 0 16.486 35.548 26.648 1.00 12.78 MOTA 1877 NH2 ARG A 242 0 14.365 34.589 26.489 ATOM 1878 N TYR A 243 0 16.717 27.934 24.942 1.00 11.61 10 ATOM 1879 CA **TYR A 243** 0 17.631 27.009 25.610 1.00 12.54 C 1.00 14.46 ATOM 1880 TYR A 243 0 18.819 26.762 24.650 TYR A 243 0 23.435 1.00 16.11 **ATOM** 1881 0 18.568 26.656 MOTA 1882 CB **TYR A 243** 0 17.015 25.638 25.934 1.00 11.09 1.00 12.11 CG **TYR A 243** 0 27.054 MOTA 1883 16.007 25.667 15 ATOM CD1 TYR A 243 1.00 12.88 1884 0 14.641 25.825 26.843 MOTA 1885 CD2 TYR A 243 0 16.440 28.371 1.00 12.11 25.575 **ATOM** 1886 CE1 TYR A 243 0 13.748 25.869 27.915 1.00 12.71 MOTA CE2 TYR A 243 0 1.00 12.50 1887 15.560 25.582 29.436 ATOM **TYR A 243** 0 1.00 12.29 1888 CZ14.205 25.738 29.188 20 ATOM 1889 OH **TYR A 243** 0 13.379 25.789 30.286 1.00 13.65 ATOM 1890 N **SER A 244** 0 20.059 26.734 25.144 1.00 12.78 ATOM 1891 CA **SER A 244** 0 21.117 26.212 24.268 1.00 13.22 MOTA 1892 С **SER A 244** 0 21.333 24.779 24.814 1.00 11.06 1893 **SER A 244** 1.00 11.27 ATOM 0 0 21.377 24.604 26.018 25 22.485 ATOM 1894 CB **SER A 244** 0 26,907 24.308 1.00 14.46 ATOM 1895 OG **SER A 244** 0 22.551 28.029 23.463 1.00 13.59 ATOM PHE A 245 0 1.00 11.89 1896 N 21.484 23.780 23.983 ATOM 1897 CA PHE A 245 0 21.772 22.437 24.452 1.00 13.14 ATOM 1898 C PHE A 245 0 22.867 21.857 23.546 1.00 12.32 30 MOTA 1899 0 PHE A 245 0 22.890 22.128 22.354 1.00 11.11 ATOM 1.00 11.40 1900 CB PHE A 245 0 20.554 21.495 24.526 ATOM 1901 CG PHE A 245 0 19.915 21.236 23.195 1.00 11.98 ATOM 1902 CD1 PHE A 245 0 18.815 21.993 22.813 1.00 13.38 ATOM 1903 CD2 PHE A 245 0 1.00 11.45 20.349 20.236 22.351 35 ATOM 1.00 12.84 1904 CE1 PHE A 245 0 18.216 21.773 21.588 ATOM 1905 CE2 PHE A 245 0 19.759 20.000 21.129 1.00 11.48 CZ1.00 12.65 MOTA 1906 PHE A 245 0 18.705 20.796 20.743 1.00 13.51 MOTA 1907 N VAL A 246 0 23.742 21.073 24.169 MOTA 1908 CA **VAL A 246** 0 24.775 20.427 23.341 1.00 13.37 40 ATOM 1.00 12.47 1909 C VAL A 246 0 24.096 19.177 22.783 1.00 11.41 ATOM 1910 0 VAL A 246 0 23.505 18.425 23.540 1.00 14.96 **ATOM** 1911 CB **VAL A 246** 0 25.990 19.984 24.190 1.00 13.75 ATOM CG1 VAL A 246 1912 0 26.995 19.186 23.364 1.00 15.92 MOTA 1913 CG2 VAL A 246 0 26.681 21.165 24.841 ATOM N 0 1.00 12.97 45 1914 **LEU A 247** 24.160 18.996 21.490

LEU A 247 23.766 17.833 20.785 1.00 14.32 ATOM 1915 CA 0 **LEU A 247** 1.00 14.22 ATOM 1916 C O 25.071 17.077 20.395 1.00 12.45 19.664 **LEU A 247** 25.954 17.529 ATOM 1917 0 0 ATOM 1918 CB **LEU A 247** 0 22.980 18.109 19.505 1.00 16.00 5 ATOM 1919 CG LEU A 247 0 22.514 16.786 18.835 1.00 16.80 1.00 18.30 ATOM 1920 CD1 LEU A 247 0 21.266 16.306 19.513 1.00 18.70 CD2 LEU A 247 0 22.207 16.988 17.373 ATOM 1921 MOTA N **ASP A 248** 0 25.144 15.886 20.926 1.00 13.56 1922 1.00 16.65 MOTA 1923 CA **ASP A 248** 0 26.278 14.980 20.727 14.072 1.00 16.18 10 C 0 25.916 19.581 ATOM 1924 **ASP A 248** 1.00 17.60 ATOM 1925 0 **ASP A 248** 0 25.095 13.166 19.813 ATOM 1926 CB **ASP A 248** 0 26.536 14.229 22.036 1.00 17.83 1.00 21.77 CG **ASP A 248** 0 27.798 13.359 22.024 MOTA 1927 1.00 24.11 OD1 ASP A 248 MOTA 1928 0 28.231 12.967 23.140 15 OD2 ASP A 248 20.950 1.00 21.25 **ATOM** 1929 0 28.345 13.060 MOTA ALA A 249 0 26.414 14.277 18.369 1.00 15.85 1930 N 1.00 17.99 ATOM 1931 ALA A 249 0 25.982 13.416 17.255 CA ATOM C ALA A 249 0 26.698 17.306 1.00 20.21 1932 12.049 MOTA 1933 0 ALA A 249 0 27.569 11.766 16.485 1.00 19.11 20 MOTA 1934 CB ALA A 249 0 26.165 14.126 15.930 1.00 14.57 ATOM 18.253 1.00 21.66 1935 N **ASN A 250** 0 26.273 11.223 MOTA 1936 CA **ASN A 250** 0 26.861 9.961 18.581 1.00 25.53 1.00 27.30 C **ASN A 250** 0 8.721 18.202 ATOM 1937 26.061 ATOM 7.645 18.756 1.00 29.42 1938 0 **ASN A 250** 0 26.344 25 ATOM 1939 CB **ASN A 250** 0 27.108 9.912 20.104 1.00 25.83 1.00 28.76 ATOM 1940 CG **ASN A 250** 0 25.888 9.968 20.978 1.00 29.90 MOTA 1941 OD1 ASN A 250 0 24.757 10.156 20.527 MOTA 1.00 29.52 1942 ND2 ASN A 250 0 26.042 9.826 22.306 1.00 26.74 ATOM 1943 N **GLN A 251** 0 25.089 8.841 17.302 30 1.00 23.48 ATOM 1944 CA **GLN A 251** 0 24.239 7.712 16.934 ATOM 1945 C **GLN A 251** 0 24.583 7.311 15.510 1.00 21.73 1.00 19.39 ATOM 0 **GLN A 251** 0 25.333 8.009 14.843 1946 ATOM 1947 **GLN A 251** 0 22.757 8.104 17.022 1.00 24.79 CB ATOM 1948 CG **GLN A 251** 0 22.333 8.701 18.360 1.00 25.14 35 ATOM **GLN A 251** 19.480 1.00 26.76 1949 CD 0 22.430 7.693 1.00 28.78 ATOM 1950 OE1 GLN A 251 0 21.762 6.654 19.405 1.00 26.02 ATOM 1951 NE2 **GLN A 251** 0 23.202 7.986 20.514 ATOM PRO A 252 0 24.058 6.177 15.076 1.00 20.53 1952 N 13.755 1.00 20.06 ATOM 1953 CA PRO A 252 0 24.293 5.637 40 ATOM 6.671 12.702 1.00 21.83 1954 C PRO A 252 0 23.940 ATOM 22.973 12.940 1.00 22.51 PRO A 252 0 7.424 1955 0 **ATOM** 1956 CB PRO A 252 0 23.417 4.367 13.647 1.00 19.98 1.00 19.94 ATOM 1957 CG PRO A 252 0 23.288 3.997 15.096 MOTA 0 23.223 15.902 1.00 19.68 1958 CD PRO A 252 5.289 45 11.584 1.00 20.85 MOTA 1959 N VAL A 253 0 24.663 6.728

PCT/DK98/00070 WO 98/38287 67

1.00 22.29 VAL A 253 0 7.741 10.604 ATOM 1960 CA 24.302 1.00 23.02 ATOM 1961 C VAL A 253 0 22.897 7.414 10.108 1.00 21.37 VAL A 253 6.289 9.753 ATOM 1962 0 0 22.593 1.00 23.22 VAL A 253 MOTA 1963 CB 0 25.298 8.065 9.494 1.00 22.25 5 **ATOM** 1964 CG1 VAL A 253 0 26.696 7.582 9.827 CG2 VAL A 253 1.00 22.26 **ATOM** 1965 0 24.859 7.680 8.101 ATOM 1966 N **ASP A 254** 0 22.012 8.422 10.159 1.00 24.32 1.00 22.09 ATOM CA **ASP A 254** 0 20.613 8.176 9.786 1967 ATOM 1968 C ASP A 254 0 19.782 9.448 9.821 1.00 20.71 1.00 18.92 10 MOTA 1969 0 ASP A 254 0 20.365 10.481 10.099 1.00 23.39 CB **ASP A 254** 0 **ATOM** 1970 20.048 7.211 10.830 **ASP A 254** 10.251 1.00 24.43 ATOM 1971 CG 0 18.964 6.331 ATOM 1972 OD1 ASP A 254 0 18.355 6.663 9.239 1.00 23.21 1973 1.00 28.26 ATOM OD2 ASP A 254 0 18.736 10.816 5.244 15 ATOM 1974 **ASN A 255** 0 1.00 18.97 N 18.485 9.338 9.496 MOTA 1975 CA **ASN A 255** 0 17.583 10.479 9.599 1.00 17.69 ATOM 1976 C **ASN A 255** 0 16.785 10.889 1.00 17.64 10.335 MOTA 1977 0 **ASN A 255** 0 11.249 1.00 17.75 16.390 9.204 1.00 17.19 ATOM 1978 CB **ASN A 255** 0 16.663 10.554 8.386 1.00 17.33 20 ATOM **ASN A 255** 0 1979 CG 17.467 10.882 7.143 ATOM 1980 OD1 ASN A 255 0 6.932 1.00 18.05 17.891 12.023 ATOM 1981 ND2 ASN A 255 0 17.649 9.913 6.263 1.00 15.98 ATOM **TYR A 256** 0 11.684 1.00 14.89 1982 N 16.657 11.403 1.00 12.56 ATOM TYR A 256 0 15.983 12.961 1983 CA 11.364 25 MOTA 1984 C **TYR A 256** 0 14.966 12.520 12.991 1.00 15.02 ATOM **TYR A 256** 1.00 14.49 1985 0 0 15.208 13.637 12.509 1.00 14.85 **ATOM** 1986 CB TYR A 256 0 16.867 14.216 11.479 1.00 13.96 ATOM 1987 CG TYR A 256 0 17.883 10.349 14.316 1.00 13.97 MOTA 1988 CD1 TYR A 256 0 19.030 10.427 13.529 CD2 TYR A 256 1.00 14.62 30 ATOM 1989 0 17.712 9.245 15.129 ATOM CE1 TYR A 256 1.00 13.83 1990 0 19.986 9.422 13.534 ATOM 1991 CE2 TYR A 256 0 18.667 8.224 15.170 1.00 15.31 1.00 15.90 MOTA 1992 CZTYR A 256 0 19.795 8.336 14.346 7.341 **ATOM** 1993 OH TYR A 256 0 20.763 14.337 1.00 17.15 35 TRP A 257 1.00 13.58 ATOM N 0 13.801 12.198 13.564 1994 MOTA 1995 CA TRP A 257 0 12.742 13.196 13.657 1.00 14.21 14.769 1.00 12.04 ATOM TRP A 257 1996 C 0 13.041 14.198 1.00 10.46 ATOM 0 TRP A 257 0 15.878 1997 13.382 13.811 1.00 12.49 **ATOM** 1998 CB TRP A 257 0 11.363 12.592 13.988 40 1.00 13.06 ATOM 1999 CG TRP A 257 0 10.648 11.906 12.865 1.00 12.86 MOTA 2000 CD1 TRP A 257 0 10.315 10.568 12.879 1.00 12.33 ATOM 2001 CD2 TRP A 257 0 10.161 12.437 11.633 ATOM 2002 **NE1 TRP A 257** 0 10.267 11.720 1.00 13.75 9.640 1.00 13.78 **ATOM** CE2 TRP A 257 0 11.388 10.940 2003 9.530 1.00 14.13 45 ATOM ٥ 2004 **CE3 TRP A 257** 10.173 13.691 11.035

	ATOM	2005	CZ2	TRP	A	257	0	8.940	11.538	9.681	1.00	13.24
	ATOM	2006	CZ3	TRP	A	257	0	9.590	13.868	9.786	1.00	14.34
	ATOM	2007	CH2	TRP	A	257	0	8.963	12.789	9.127	1.00	13.64
	ATOM	2008	N	ILE	A	258	0	12.790	15.463	14.454	1.00	12.29
5	ATOM	2009	CA	IĻE	A	258	0	12.886	16.498	15.508	1.00	12.44
	ATOM	2010	C	ILE	A	258	0	11.391	16.840	15.769	1.00	12.40
	ATOM	2011	0	ILE	A	258	0	10.629	17.039	14.812	1.00	12.43
	ATOM	2012	CB	ILE	A	258	0	13.617	17.777	15.048	1.00	13.32
	ATOM	2013	CG1	ILE	A	258	0	15.107	17.477	14.854	1.00	14.52
10	ATOM	2014	CG2	ILE	A	258	0	13.365	18.888	16.052	1.00	12.32
	ATOM	2015	CD1	ILE	A	258	0	15.839	18.474	13.994	1.00	14.35
	MOTA	2016	N	ARG	A	259	0	11.017	16.764	17.013	1.00	11.51
	ATOM	2017	CA	ARG	A	259	0	9.610	16.832	17.407	1.00	13.43
	MOTA	2018	C	ARG	A	259	0	9.254	18.019	18.274	1.00	12.74
15	MOTA	2019	0	ARG	A	259	0	9.931	18.246	19.280	1.00	12.62
	ATOM	2020	СВ	ARG	A	259	0	9.326	15.567	18.253	1.00	12.43
	ATOM	2021	CG	ARG	A	259	0	9.308	14.290	17.414	1.00	15.81
	ATOM	2022	CD	ARG	A	259	0	8.910	13.054	18.244	1.00	16.58
	MOTA	2023	NE	ARG	A	259	0	9.204	11.818	17.528	1.00	16.91
20	ATOM	2024	cz	ARG	A	259	0	8.475	11.187	16.616	1.00	18.43
	ATOM	2025	NH1	ARG	A	259	0	7.285	11.657	16.239	1.00	19.39
	ATOM	2026	NH2	ARG	A	259	0	8.907	10.070	16.045	1.00	17.95
	ATOM	2027	N	ALA	A	260	0	8.226	18.764	17.884	1.00	13.12
	ATOM	2028	CA	ALA	A	260	0	7.768	19.882	18.727	1.00	12.65
25	ATOM	2029	C	ALA	A	260	0	6.237	19.763	18.802	1.00	14.47
	ATOM	2030	0	ALA	A	260	0	5.545	20.140	17.868	1.00	14.73
	ATOM	2031	CB	ALA	A	260	0	8.281	21.188	18.165	1.00	9.58
	ATOM	2032	N	GLN	A	261	0	5.690	19.225	19.870	1.00	14.78
	ATOM	2033	CA	GLN	A	261	0	4.272	19.004	20.060	1.00	16.99
30	ATOM	2034	C	GLN	A	261	0	3.606	20.154	20.803	1.00	15.01
	ATOM	2035	0	GLN	A	261	0	3.914	20.389	21.961	1.00	13.86
	MOTA	2036	CB	GLN	A	261	0	4.118	17.747	20.924	1.00	20.94
	ATOM	2037	CG	GLN	A	261	0	2.717	17.131	20.940	1.00	27.53
	ATOM	2038	CD	GLN	A	261	0	2.721	15.991	21.947	1.00	29.63
35	ATOM	2039	OE1	GLN	A	261	0	3.152	14.887	21.682	1.00	31.60
	ATOM	2040	NE2	GLN	A	261	0	2.331	16.255	23.188	1.00	34.91
	ATOM	2041	N	PRO	A	262	0	2.663	20.820	20.167	1.00	14.60
	ATOM	2042	CA	PRO	A	262	0	1.974	21.969	20.739	1.00	15.72
	ATOM	2043	С	PRO	A	262	0	0.921	21.568	21.757	1.00	16.25
40	ATOM	2044	0	PRO	A	262	0	0.498	20.409	21.814	1.00	15.61
	ATOM	2045	СВ	PRO	A	262	0	1.401	22.752	19.539	1.00	13.88
	ATOM	2046	CG	PRO	A	262	0	1.168	21.608	18.563	1.00	13.62
	ATOM	2047	CD	PRO	A	262	0	2.257	20.570	18.772	1.00	13.23
	ATOM	2048	N	ASN	A	263	0	0.570	22.481	22.665	1.00	17.25
45	ATOM	2049	CA	ASN	A	263	0	-0.471	22.203	23.648	1.00	17.50

69

22.981 1.00 18.43 ATOM 2050 C **ASN A 263** 0 -1.834 22.460 0 **ASN A 263** 0 -2.810 22.121 23.608 1.00 19.35 ATOM 2051 1.00 16.12 **ASN A 263** 22.990 24.954 ATOM 2052 CB 0 -0.422 1.00 16.97 ATOM 2053 CG **ASN A 263** 0 -0.333 24.493 24.728 1.00 15.54 OD1 ASN A 263 0.236 25.002 23.751 5 ATOM 2054 0 1.00 16.31 ND2 ASN A 263 MOTA 2055 -0.905 25.269 25.653 0 1.00 20.51 MOTA 2056 LYS A 264 0 -1.947 23.055 21.818 N LYS A 264 1.00 24.76 ATOM 2057 CA 0 -3.256 23.208 21.180 LYS A 264 1.00 23.64 ATOM 2058 -3.055 23.395 19.683 C 0 1.00 24.23 LYS A 264 19.267 10 ATOM 2059 0 0 -1.909 23.572 2060 LYS A 264 24.393 21.775 1.00 25.87 ATOM CB 0 -4.038 LYS A 264 21.602 1.00 28.62 ATOM 2061 CG 0 -3.266 25.702 LYS A 264 -3.579 26.624 22.772 1.00 30.65 MOTA 2062 CD 0 CE 1.00 32.62 ATOM 2063 LYS A 264 0 -4.114 27.960 22.283 15 ATOM 2064 NZ LYS A 264 0 -4.593 28.753 23.459 1.00 34.39 N **GLY A 265** 1.00 22.60 ATOM 0 -4.112 23.386 18.892 2065 17.452 ATOM 2066 CA **GLY A 265** 0 -3.959 23.591 1.00 22.98 **ATOM** 2067 C **GLY A 265** 0 -5.190 23.002 16.758 1.00 23.95 ATOM **GLY A 265** 17.362 1.00 22.64 2068 0 0 -5.904 22.202 23.434 20 ATOM 2069 ARG A 266 0 -5.398 15.537 1.00 24.60 N ATOM 2070 CA ARG A 266 0 -6.527 23.051 14.734 1.00 26.24 14.272 1.00 27.29 ATOM 2071 C ARG A 266 0 -6.412 21.605 MOTA 2072 0 ARG A 266 -5.329 21.074 14.015 1.00 25.41 0 MOTA 2073 CB ARG A 266 0 -6.628 23.903 13.469 1.00 30.71 25 1.00 35.66 ATOM 2074 ARG A 266 -7.065 25.334 13.563 CG 0 1.00 40.48 ATOM 2075 ARG A 266 -8.161 25.673 12.539 CD 0 ATOM 2076 NE ARG A 266 0 -9.379 25.957 13.286 1.00 45.08 1.00 47.09 ATOM 2077 CZARG A 266 0 -10.551 25.334 13.319 NH1 ARG A 266 1.00 48.10 MOTA 2078 0 -10.921 24.294 12.577 30 1.00 47.80 ATOM 2079 NH2 ARG A 266 -11.452 14.165 0 25.828 MOTA 2080 **ASN A 267** 0 -7.586 20.983 14.141 1.00 25.17 1.00 23.96 ATOM 2081 CA **ASN A 267** 0 -7.727 19.669 13.602 18.625 1.00 22.35 ATOM 2082 C **ASN A 267** -6.859 14.244 0 1.00 23.57 MOTA 2083 0 **ASN A 267** 0 -6.306 17.864 13.448 12.098 35 ATOM 2084 **ASN A 267** -7.390 1.00 26.46 CB 0 19.695 2085 1.00 29.21 MOTA CG **ASN A 267** 0 -8.461 20.426 11.309 1.00 30.18 MOTA 2086 OD1 ASN A 267 0 -8.190 21.226 10.405 MOTA 2087 ND2 ASN A 267 0 -9.681 20.075 11.701 1.00 28.77 **GLY A 268** 15.550 1.00 21.85 MOTA 2088 0 -6.706 18.594 N 1.00 22.47 40 ATOM 2089 CA **GLY A 268** 0 -5.890 17.533 16.121 ATOM 2090 **GLY A 268** -4.383 17.760 16.118 1.00 23.29 C 0 **GLY A 268** 1.00 23.28 ATOM 2091 0 0 -3.652 16.898 16.632 1.00 22.69 ATOM 2092 N **LEU A 269** 0 -3.880 18.901 15.676 MOTA **LEU A 269** 15.684 1.00 22.62 2093 CA 0 -2.454 19.222 1.00 23.26 45 **ATOM** 2094 C **LEU A 269** O -1.753 18.890 16.990

	ATOM	2095	0	LEU	A	269	0	-0.650	18.335	17.035	1.00	23.42
	ATOM	2096	CB	LEU	A	269	0	-2.311	20.713	15.472	1.00	22.28
	MOTA	2097	CG	LEU	A	269	0	-1.183	21.414	14.745	1.00	23.42
	MOTA	2098	CD1	LEU	A	269	0	-0.508	22.380	15.682	1.00	19.64
5	ATOM	2099	CD2	LEU	A	269	0	-0.213	20.492	14.009	1.00	21.26
	MOTA	2100	N	ALA	A	270	0	-2.371	19.199	18.135	1.00	21.51
	MOTA	2101	CA	ALA	A	270	0	-1.784	18.899	19.419	1.00	22.26
	ATOM	2102	C	ALA	A	270	0	-1.612	17.415	19.680	1.00	23.22
	ATOM	2103	0	ALA	A	270	0	-0.898	17.077	20.637	1.00	21.81
10	ATOM	2104	СВ	ALA	A	270	0	-2.632	19.518	20.542	1.00	21.06
	ATOM	2105	N	GLY	A	271	0	-2.337	16.521	18.996	1.00	23.75
	ATOM	2106	CA	GLY	A	271	0	-2.190	15.125	19.372	1.00	24.98
	ATOM	2107	C	GLY	A	271	0	-1.507	14.267	18.328	1.00	26.07
	ATOM	2108	0	GLY	A	271	0	-1.501	13.045	18.523	1.00	26.26
15	ATOM	2109	N	THR	A	272	0	-0.906	14.825	17.278	1.00	26.48
	MOTA	2110	CA	THR	A	272	0	-0.327	13.901	16.294	1.00	25.27
	ATOM	2111	С	THR	A	272	0	0.986	14.362	15.701	1.00	25.58
	ATOM	2112	0	THR	A	272	0	1.216	15.567	15.701	1.00	24.46
	ATOM	2113	CB	THR	Α	272	0	-1.380	13.759	15.164	1.00	24.40
20	ATOM	2114	OG1	THR	A	272	0	-0.931	12.737	14.275	1.00	26.32
	ATOM	2115	CG2	THR	A	272	0	-1.575	15.022	14.347	1.00	22.50
	ATOM	2116	N	PHE	A	273	0	1.714	13.443	15.062	1.00	24.01
	ATOM	2117	CA	PHE	A	273	0	2.897	13.755	14.271	1.00	23.99
	ATOM	2118	С	PHE	A	273	0	2.663	13.201	12.858	1.00	24.84
25	ATOM	2119	0	PHE	A	273	0	3.534	13.207	11.987	1.00	24.73
	ATOM	2120	CB	PHE	A	273	0	4.175	13.094	14.812	1.00	22.16
	MOTA	2121	CG	PHE	A	273	0	4.550	13.676	16.153	1.00	21.84
	ATOM	2122	CD1	PHE	A	273	0	4.190	13.037	17.327	1.00	20.67
	ATOM	2123	CD2	PHE	A	273	0	5.221	14.881	16.216	1.00	20.98
30	ATOM	2124	CE1	PHE	A	273	0	4.538	13.574	18.554	1.00	21.75
	ATOM	2125	CE2	PHE	Α	273	0	5.559	15.428	17.440	1.00	21.65
	ATOM	2126	CZ	PHE	A	273	0	5.216	14.787	18.616	1.00	22.38
	MOTA	2127	N	ALA	A	274	0	1.440	12.718	12.647	1.00	24.38
	MOTA	2128	CA	ALA	A	274	0	1.094	12.053	11.397	1.00	24.29
35	ATOM	2129	C	ALA	A	274	0	1.399	12.920	10.194	1.00	24.15
	ATOM	2130	0	ALA	A	274	0	0.990	14.078	10.161	1.00	23.07
	ATOM	2131	CB	ALA	A	274	0	-0.385	11.681	11.387	1.00	23.53
	ATOM	2132	N	ASN	A	275	0	2.075	12.355	9.204	1.00	23.41
	MOTA	2133	CA	ASN	A	275	0	2.389	13.068	7.987	1.00	24.88
40	ATOM	2134	C	ASN	A	275	0	3.498	14.093	8.191	1.00	22.73
	ATOM	2135	0	ASN	A	275	0	3.708	14.947	7.337	1.00	21.57
	ATOM	2136	CB	ASN	A	275	0	1.138	13.806	7.516	1.00	30.04
	ATOM	2137	CG			275	0	0.194	13.070	6.633	1.00	35.28
	ATOM	2138	OD1	ASN			0	-0.458	12.071	6.985	1.00	36.92
45	ATOM	2139		ASN			0	0.156	13.655	5.427		37.87

	ATOM	2140	N	GLY A	A :	276	0	4.185	14.083	9.322	1.00	22.10
	ATOM	2141	CA	GLY A	A :	276	0	5.278	15.025	9.503	1.00	20.95
	ATOM	2142	С	GLY A	A :	276	0	4.801	16.392	9.962	1.00	19.61
	ATOM	2143	0	GLY A	A :	276	0	5.587	17.325	9.816	1.00	19.96
5	ATOM	2144	N	VAL A	A :	277	0	3.600	16.504	10.540	1.00	16.82
	ATOM	2145	CA	VAL A	A :	277	0	3.207	17.796	11.107	1.00	15.06
	ATOM	2146	С	VAL A	A :	277	0	4.033	17.942	12.379	1.00	13.80
	ATOM	2147	0	VAL A	A :	277	0	4.454	16.912	12.926	1.00	13.80
	MOTA	2148	CB	VAL A	A :	277	0	1.676	17.849	11.397	1.00	14.37
10	MOTA	2149	CG1	VAL A	A :	277	0	0.882	17.824	10.099	1.00	13.37
	MOTA	2150	CG2	VAL A	A :	277	0	1.213	16.763	12.330	1.00	11.77
	ATOM	2151	N	ASN A	A :	278	0	4.307	19.100	12.936	1.00	14.25
	MOTA	2152	CA	ASN A	A :	278	0	5.026	19.262	14.209	1.00	13.80
	MOTA	2153	C	ASN A	A :	278	0	6.443	18.640	14.208	1.00	13.80
15	ATOM	2154	0	ASN A	A :	278	0	7.020	18.228	15.229	1.00	11.81
	ATOM	2155	CB	ASN A	A :	278	0	4.216	18.607	15.312	1.00	14.24
	ATOM	2156	CG	ASN A	A :	278	0	2.890	19.288	15.659	1.00	15.35
	ATOM	2157	OD1	ASN A	A :	278	0	1.952	18.531	16.009	1.00	14.81
	ATOM	2158	ND2	ASN A	A :	278	0	2.821	20.591	15.593	1.00	10.69
20	ATOM	2159	N	SER A	A :	279	0	7.044	18.595	13.025	1.00	12.68
	MOTA	2160	CA	SER A	A :	279	0	8.296	17.892	12.860	1.00	15.48
	ATOM	2161	C	SER A	A :	279	0	9.323	18.571	11.964	1.00	15.07
	MOTA	2162	0	SER A	A :	279	0	8.995	19.309	11.044	1.00	12.20
	MOTA	2163	CB	SER A	A :	279	0	7.976	16.549	12.122	1.00	14.76
25	MOTA	2164	OG	SER A	A :	279	0	7.268	15.722	13.054	1.00	19.57
	MOTA	2165	N	ALA Z	A :	280	0	10.570	18.152	12.229	1.00	15.67
	MOTA	2166	CA	ALA A	A :	280	0	11.664	18.548	11.327	1.00	16.75
	ATOM	2167	C	ALA Z	A . :	280	0	12.620	17.341	11.287	1.00	15.83
	MOTA	2168	0	ALA Z	Α :	280	0	12.438	16.346	11.997	1.00	15.55
30	MOTA	2169	CB	ALA Z	Α :	280	0	12.363	19.828	11.745	1.00	16.40
	ATOM	2170	N	ILE 2	Α.:	281	0	13.669	17.478	10.485	1.00	14.79
	ATOM	2171	CA	ILE 2	A :	281	0	14.569	16.346	10.257	1.00	15.55
	ATOM	2172	C	ILE 2	A :	281	0	16.002	16.610	10.699	1.00	15.92
	MOTA	2173	0	ILE 2	A . :	281	0	16.649	17.577	10.284	1.00	14.96
35	ATOM	2174	CB	ILE A	Α :	281	0	14.557	16.013	8.735	1.00	16.44
	ATOM	2175	CG1	ILE 2	Α :	281	0	13.147	15.573	8.275	1.00	16.42
	MOTA	2176	CG2	ILE 2	Α :	281	0	15.615	14.959	8.421	1.00	15.71
	ATOM	2177	CD1	ILE 2	Α :	281	0	12.981	15.376	6.771	1.00	14.22
	ATOM	2178	N	LEU 2	Α :	282	0	16.505	15.698	11.515	1.00	16.76
40	ATOM	2179	CA	LEU 2	Α :	282	0	17.920	15.736	11.912	1.00	15.82
	ATOM	2180	C	LEU 2	Α.	282	0	18.655	14.747	10.990	1.00	16.16
	ATOM	2181	0	LEU 2	A . :	282	0	18.409	13.530	11.034	1.00	16.41
	ATOM	2182	СВ	LEU 2	A . :	282	0	18.129	15.400	13.379	1.00	14.54
	ATOM	2183	CG	LEU 2	A	282	0	19.632	15.346	13.773	1.00	16.00
45	ATOM	2184	CD1	LEU 2	A :	282	0	20.100	16.767	14.052	1.00	16.10

	ATOM	2185	CD2	LEU	A	282	0	19.865	14.469	14.970	1.00	13.21
	ATOM	2186	N	ARG	A	283	0	19.490	15.254	10.100	1.00	15.20
	ATOM	2187	CA	ARG	A	283	0	20.160	14.377	9.141	1.00	16.98
	ATOM	2188	С	ARG	A	283	0	21.683	14.326	9.279	1.00	17.31
5	ATOM	2189	0	ARG	A	283	0	22.398	15.330	9.203	1.00	17.82
	ATOM	2190	CB	ARG	A	283	0	19.844	14.861	7.736	1.00	17.30
	ATOM	2191	CG	ARG	A	283	0	20.417	13.978	6.641	1.00	19.94
	ATOM	2192	CD	ARG	A	283	0	19.860	14.446	5.301	1.00	20.04
	MOTA	2193	NE	ARG	A	283	0	18.474	14.010	5.208	1.00	21.56
10	ATOM	2194	CZ	ARG	A	283	0	17.479	14.530	4.505	1.00	21.81
	ATOM	2195	NH1	ARG	Α	283	0	16.287	13.922	4.564	1.00	21.52
	ATOM	2196	NH2	ARG	A	283	0	17.653	15.634	3.797	1.00	21.84
	MOTA	2197	N	TYR	A	284	0	22.163	13.136	9.567	1.00	16.79
	MOTA	2198	CA	TYR	A	284	0	23.581	12.821	9.620	1.00	16.35
15	MOTA	2199	C	TYR	A	284	0	24.155	12.787	8.198	1.00	16.52
	MOTA	2200	0	TYR	A	284	0	23.556	12.226	7.271	1.00	16.33
	ATOM	2201	СВ	TYR	A	284	0	23.730	11.444	10.252	1.00	16.51
	ATOM	2202	CG	TYR	A	284	0	23.727	11.460	11.755	1.00	17.09
	ATOM	2203	CD1	TYR	A	284	0	24.910	11.178	12.437	1.00	17.37
20	ATOM	2204	CD2	TYR	Α	284	0	22.601	11.753	12.504	1.00	17.15
	ATOM	2205	CE1	TYR	A	284	0	24.937	11.163	13.817	1.00	17.64
	MOTA	2206	CE2	TYR	A	284	0	22.623	11.770	13.892	1.00	15.66
	MOTA	2207	CZ	TYR	A	284	0	23.796	11.476	14.542	1.00	15.99
	MOTA	2208	OH	TYR	A	284	0	23.873	11.448	15.919	1.00	14.03
25 ·	ATOM	2209	N	ALA	A	285	0	25.276	13.463	7.992	1.00	17.42
	MOTA	2210	CA	ALA	A	285	0	25.950	13.461	6.692	1.00	19.35
	MOTA	2211	C	ALA	A	285	0	26.186	11.994	6.328	1.00	19.20
	MOTA	2212	0	ALA	A	285	0	26.692	11.237	7.146	1.00	17.18
	MOTA	2213	CB	ALA	A	285	0	27.293	14.194	6.770	1.00	19.86
30	MOTA	2214	N	GLY	A	286	0	25.724	11.614	5.153	1.00	20.01
	MOTA	2215	CA	GLY	A	286	0	25.851	10.224	4.747	1.00	21.88
	MOTA	2216	C	GLY	A	286	0	24.507	9.510	4.754	1.00	22.87
	MOTA	2217	0	GLY	A	286	0	24.406	8.418	4.197	1.00	23.06
	ATOM	2218	N	ALA			0	23.504	10.076	5.423	1.00	22.81
35	MOTA	2219	CA	ALA	A	287	0	22.176	9.449	5.364	1.00	21.50
	MOTA	2220	C	ALA	A	287	0	21.482	9.880	4.079	1.00	20.58
	ATOM	2221	0	ALA	A	287	0	21.647	11.032	3.629	1.00	19.44
	ATOM	2222	CB	ALA	A	287	0	21.340	9.890	6.562	1.00	21.34
	ATOM	2223	N	ALA	A	288	0	20.632	9.041	3.523	1.00	21.20
40	ATOM	2224	CA	ALA	A	288	0	19.899	9.450	2.310	1.00	23.46
	ATOM	2225	С	ALA	A	288	0	18.965	10.629	2.513	1.00	24.70
	ATOM	2226	0	ALA	A	288	0	18.494	10.929	3.621	1.00	25.30
	ATOM	2227	CB	ALA	A	288	0	19.012	8.298	1.827	1.00	24.84
	ATOM	2228	N	ASN	A	289	0	18.638	11.300	1.411	1.00	25.98
45	MOTA	2229	CA	ASN	A	289	0	17.674	12.398	1.439	1.00	27.16

	MOTA	2230	C	ASN	A	289	0	16.303	11.707	1.505	1.00	27.36
	ATOM	2231	0	ASN	A	289	0	15.761	11.330	0.477	1.00	27.56
	ATOM	2232	CB	ASN	A	289	0	17.784	13.250	0.189	1.00	29.01
	ATOM	2233	CG	ASN	A	289	0	18.808	14.364	0.299	1.00	30.44
5	MOTA	2234	OD1	ASN	A	289	0	20.005	14.168	0.545	1.00	30.40
	MOTA	2235	ND2	ASN	A	289	0	18.340	15.591	0.121	1.00	31.98
	MOTA	2236	N	ALA	A	290	0	15.837	11.426	2.703	1.00	25.22
	ATOM	2237	CA	ALA	A	290	0	14.600	10.727	2.955	1.00	25.09
	MOTA	2238	C	ALA	A	290	0	14.087	11.057	4.363	1.00	22.98
10	ATOM	2239	0	ALA	A	290	0	14.830	11.555	5.205	1.00	22.02
	ATOM	2240	CB	ALA	A	290	0	14.764	9.210	2.823	1.00	24.89
	ATOM	2241	N	ASP	A	291	0	12.822	10.718	4.597	1.00	21.88
	ATOM	2242	CA	ASP	A	291	0	12.223	10.985	5.907	1.00	21.71
	ATOM	2243	C	ASP	A	291	0	12.724	9.965	6.916	1.00	18.93
15	MOTA	2244	0	ASP	A	291	0	12.911	8.814	6.596	1.00	19.66
	ATOM	2245	CB	ASP	A	291	0	10.695	10.862	5.834	1.00	22.63
	ATOM	2246	CG	ASP	A	291	0	10.088	12.005	5.076	1.00	25.41
	MOTA	2247	OD1	ASP	A	291	0	10.781	12.988	4.735	1.00	27.11
	ATOM	2248	OD2	ASP	A	291	0	8.885	11.932	4.812	1.00	27.47
20	MOTA	2249	N	PRO	A	292	0	12.863	10.362	8.164	1.00	16.14
	MOTA	2250	CA	PRO	A	292	0	13.229	9.473	9.230	1.00	15.27
	ATOM	2251	С	PRO	A	292	0	12.087	8.484	9.389	1.00	19.40
	MOTA	2252	0	PRO	A	292	0	10.925	8.785	9.063	1.00	20.36
	MOTA	2253	CB	PRO	A	292	0	13.257	10.335	10.511	1.00	14.68
25	MOTA	2254	CG	PRO	A	292	0	13.291	11.739	9.941	1.00	14.39
	ATOM	2255	CD	PRO	A	292	0	12.606	11.735	8.593	1.00	14.02
	MOTA	2256	N	THR	A	293	0	12.357	7.361	10.024	1.00	19.91
	MOTA	2257	CA	THR	A	293	0	11.360	6.379	10.373	1.00	20.62
	MOTA	2258	С	THR	A	293	0	11.589	6.055	11.847	1.00	20.83
30	ATOM	2259	0	THR	A	293	0	11.323	4.943	12.287	1.00	23.91
	ATOM	2260	CB	THR	A	293	0	11.556	5.088	9.557	1.00	23.41
	MOTA	2261	OG1	THR	A	293	0	12.874	4.577	9.836	1.00	24.50
	MOTA	2262	CG2	THR	A	293	0	11.438	5.341	8.058	1.00	23.72
	MOTA	2263	N	THR	A	294	0	12.172	6.958	12.624	1.00	19.30
35	ATOM	2264	CA	THR	A	294	0	12.440	6.634	14.017	1.00	19.42
	MOTA	2265	C	THR	A	294	0	11.214	6.896	14.878	1.00	20.66
	MOTA	2266	0	THR	A	294	0	10.240	7.485	14.411	1.00	19.89
	MOTA	2267	CB	THR	A	294	0	13.565	7.548	14.553	1.00	19.28
	MOTA	2268	OG1	THR	A	294	0	13.174	8.889	14.251	1.00	17.55
40	MOTA	2269	CG2	THR	A	294	0	14.860	7.214	13.822	1.00	19.27
	MOTA	2270	N	SER	A	295	0	11.359	6.576	16.159	1.00	23.85
	ATOM	2271	CA	SER	A	295	0	10.274	6.851	17.095	1.00	27.18
	ATOM	2272	C	SER	A	295	0	10.781	7.484	18.375	1.00	27.92
	ATOM	2273	0	SER	A	295	0	11.900	7.292	18.844	1.00	27.09
45	ATOM	2274	CB	SER	A	295	0	9.513	5.546	17.367	1.00	28.92

	ATOM	2275	OG	SER	A	295	0	10.389	4.761	18.160	1.00	33.04
	ATOM	2276	N	ALA	A	296	0	9.930	8.331	18.965		30.04
	MOTA	2277	CA	ALA			0	10.295		20.207		29.82
	ATOM	2278	С	ALA			0	10.552	8.011	21.327		30.83
5	MOTA	2279	0	ALA	A	296	0	10.114	6.861	21.328	1.00	30.67
	MOTA	2280	CB	ALA	A	296	0	9.187	9.968	20.599	1.00	30.16
	ATOM	2281	N	ASN	A	297	0	11.286	8.489	22.328	1.00	31.65
	MOTA	2282	CA	ASN	A	297	0	11.543	7.750	23.549	1.00	32.16
	MOTA	2283	С	ASN	A	297	0	10.200	7.650	24.285	1.00	32.80
10	ATOM	2284	0	ASN	A	297	0	9.492	8.616	24.565	1.00	31.30
	MOTA	2285	CB	ASN	A	297	0	12.522	8.497	24.443	1.00	33.07
	ATOM	2286	CG	ASN	Α	297	0	12.869	7.742	25.706	1.00	35.21
	ATOM	2287	OD1	ASN	Α	297	0	12.116	6.965	26.284	1.00	35.45
	ATOM	2288	ND2	ASN	A	297	0	14.106	7.982	26.162	1.00	37.10
15	MOTA	2289	N	PRO	A	298	0	9.865	6.430	24.647	1.00	33.40
	MOTA	2290	CA	PRO	A	298	0	8.626	6.116	25.331	1.00	33.89
	ATOM	2291	С	PRO	A	298	0	8.580	6.690	26.732	1.00	32.60
	MOTA	2292	0	PRO	A	298	0	7.522	7.155	27.173	1.00	32.72
	ATOM	2293	CB	PRO	A	298	0	8.505	4.576	25.358	1.00	35.13
20	ATOM	2294	CG	PRO	A	298	0	9.932	4.147	25.128	1.00	34.52
	ATOM	2295	CD	PRO	A	298	0	10.630	5.222	24.323	1.00	34.10
	ATOM	2296	N	ASN	A	299	0	9.689	6.721	27.461	1.00	29.60
	ATOM	2297	CA	ASN	A	299	0	9.701	7.229	28.834	1.00	28.47
	ATOM	2298	C	ASN	A	299	0	10.818	8.251	29.006	1.00	27.18
25	ATOM	2299	0	ASN	A	299	0	11.906	7.967	29.528	1.00	25.69
	ATOM	2300	CB	ASN	A	299	0	9.964	6.017	29.747	1.00	29.50
	ATOM	2301	CG	ASN	A	299	0	8.907	4.935	29.673	1.00	32.34
	ATOM	2302	OD1	ASN	A	299	0	9.090	3.873	29.075	1.00	33.50
	ATOM	2303	ND2	ASN	A	299	0	7.735	5.182	30.251	1.00	33.04
30	ATOM	2304	N	PRO	Α	300	0	10.629	9.450	28.498	1.00	26.02
	ATOM	2305	CA	PRO	A	300	0	11.668	10.486	28.498	1.00	23.99
	ATOM	2306	C			300	0	11.987	11.054	29.860		21.16
	ATOM	2307	0	PRO	A	300	0	11.051	11.174	30.649	1.00	20.81
	ATOM	2308	CB	PRO	A	300	0	11.137	11.623	27.594	1.00	23.33
35	ATOM	2309	CG	PRO	A	300	0	9.645	11.422	27.729	1.00	24.68
	MOTA	2310	CD	PRO	A	300	0	9.387	9.918	27.882	1.00	25.22
	ATOM	2311	N	ALA	A	301	0	13.242	11.361	30.179	1.00	19.17
	ATOM	2312	CA	ALA	A	301	0	13.538	12.139	31.410	1.00	17.57
	MOTA	2313	С	ALA	A	301	0	13.159	13.588	31.084	1.00	16.53
40	MOTA	2314	0	ALA	A	301	0	13.613	14.235	30.131	1.00	16.24
	MOTA	2315	CB	ALA	A	301	0	15.006	11.982	31.774	1.00	17.17
	MOTA	2316	N	GLN	A	302	0	12.139	14.131	31.723	1.00	18.15
	MOTA	2317	CA	GLN	A	302	0	11.580	15.446	31.441	1.00	19.34
	MOTA	2318	C	GLN	A	302	0	12.335	16.580	32.124	1.00	19.16
45	MOTA	2319	0	GLN	A	302	0	12.577	16.444	33.324	1.00	19.07

	ATOM	2320	СВ	GLN A	302	0	10.122	15.483	31.937	1.00	19.10
	ATOM	2321	CG	GLN A	302	0	9.304	16.666	31.478	1.00	20.55
	MOTA	2322	CD	GLN A	302	0	8.960	16.738	30.009	1.00	20.18
	MOTA	2323	OE1	GLN A	302	0	8.843	15.721	29.331	1.00	22.29
5	ATOM	2324	NE2	GLN A	302	0	8.813	17.936	29.436	1.00	18.46
	ATOM	2325	N	LEU A	303	0	12.629	17.681	31.444	1.00	17.92
	ATOM	2326	CA	LEU A	303	0	13.241	18.824	32.139	1.00	17.32
	MOTA	2327	C	LEU A	303	0	12.316	19.357	33.232	1.00	17.65
	MOTA	2328	0	LEU A	303	0	11.140	19.664	33.021	1.00	17.55
10	ATOM	2329	CB	LEU A	303	0	13.489	19.988	31.168	1.00	15.14
	ATOM	2330	CG	LEU A	303	0	13.919	21.317	31.797	1.00	16.94
	ATOM	2331	CD1	LEU A	303	0	15.262	21.146	32.504	1.00	17.30
	ATOM	2332	CD2	LEU A	303	0	13.988	22.432	30.764	1.00	12.82
	ATOM	2333	N	ASN A	304	0	12.868	19.580	34.399	1.00	17.34
15	MOTA	2334	CA	ASN A	304	0	12.199	20.212	35.531	1.00	19.12
	ATOM	2335	С	ASN A	304	0	13.071	21.435	35.833	1.00	19.06
	ATOM	2336	0	ASN A	304	0	14.265	21.349	36.122	1.00	20.37
	ATOM	2337	CB	ASN A	304	0	12.073	19.244	36.704	1.00	22.16
	ATOM	2338	CG	ASN A	304	0	11.748	19.900	38.024	1.00	25.02
20	ATOM	2339	OD1	ASN A	304	0	11.506	21.111	38.146	1.00	26.72
	ATOM	2340	ND2	ASN A	304	0	11.766	19.133	39.114	1.00	25.99
	ATOM	2341	N	GLU A	305	0	12.541	22.629	35.662	1.00	17.64
	ATOM	2342	CA	GLU A	305	0	13.204	23.890	35.840	1.00	16.64
	MOTA	2343	С	GLU A	305	0	13.884	23.977	37.194	1.00	16.06
25	MOTA	2344	0	GLU A	305	0	14.965	24.564	37.208	1.00	14.78
	MOTA	2345	CB	GLU A	305	0	12.286	25.085	35.567	1.00	15.91
	MOTA	2346	CG	GLU A	305	0	12.898	26.484	35.831	1.00	14.81
	MOTA	2347	CD	GLU A	305	0	11.794	27.546	35.666	1.00	15.72
	ATOM	2348	OE1	GLU A	305	0	11.584	28.026	34.527	1.00	14.63
30	MOTA	2349	OE2	GLU A	305	0	11.154	27.861	36.685	1.00	13.05
	ATOM	2350	N	ALA A	306	0	13.416	23.432	38.298	1.00	15.83
	ATOM	2351	CA	ALA A	306	0	14.131	23.509	39.565	1.00	17.92
	ATOM	2352	C	ALA A	306	0	15.437	22.682	39.532	1.00	18.62
	ATOM	2353	0	ALA A	306	0	16.213	22.867	40.464	1.00	18.37
35	ATOM	2354	CB	ALA A	306	0	13.283	22.993	40.711	1.00	16.23
	ATOM	2355	N	ASP A	307	0	15.721	21.860	38.523	1.00	18.04
	ATOM	2356	CA	ASP A	. 307	0	16.988	21.164	38.409	1.00	18.68
	ATOM	2357	С	ASP A	. 307	0	18.035	22.039	37.707	1.00	19.89
	ATOM	2358	0	ASP A	. 307	0	19.239	21.695	37.739	1.00	20.36
40	ATOM	2359	CB	ASP A	307	0	16.904	19.863	37.592	1.00	17.64
	ATOM	2360	CG	ASP A	307	0	15.980	18.873	38.290	1.00	18.17
	ATOM	2361	OD1	ASP A	307	0	15.918	18.919	39.535	1.00	18.27
	MOTA	2362	OD2	ASP A	307	0	15.311	18.094	37.592	1.00	17.32
	MOTA	2363	N	LEU A	308	0	17.583	23.110	37.052	1.00	16.43
45	ATOM	2364	CA	LEU A	308	0	18.581	23.962	36.377	1.00	16.80

	ATOM	2365	C	LEU	A	308	0	19.327	24.827	37.384	1.00	16.94
	ATOM	2366	0	LEU	A	308	0	18.784	25.320	38.380	1.00	17.28
	ATOM	2367	CB	LEU	A	308	0	17.925	24.775	35.257	1.00	12.52
	MOTA	2368	CG	LEU	A	308	0	17.436	23.936	34.073	1.00	12.15
5	MOTA	2369	CD1	LEU	A	308	0	16.692	24.834	33.101	1.00	11.67
	MOTA	2370	CD2	LEU	A	308	0	18.547	23.186	33.341	1.00	12.23
	MOTA	2371	N	HIS	A	309	0	20.640	24.968	37.243	1.00	18.01
	MOTA	2372	CA	HIS	A	309	0	21.430	25.802	38.158	1.00	18.47
	ATOM	2373	C	HIS	A	309	0	22.328	26.770	37.394	1.00	17.36
10	MOTA	2374	0	HIS	A	309	0	23.015	26.378	36.459	1.00	17.82
	ATOM	2375	CB	HIS	A	309	0	22.267	24.997	39.140	1.00	18.51
	ATOM	2376	CG	HIS	A	309	0	21.470	24.052	39.965	1.00	20.71
	MOTA	2377	ND1	HIS	A	309	0	21.526	22.684	39.790	1.00	21.77
	ATOM	2378	CD2	HIS	A	309	0	20.578	24.285	40.956	1.00	22.07
15	ATOM	2379	CE1	HIS	A	309	0	20.701	22.115	40.657	1.00	22.85
	ATOM	2380	NE2	HIS	A	309	0	20.120	23.059	41.377	1.00	22.67
	ATOM	2381	N	ALA	A	310	0	22.352	28.005	37.837	1.00	17.27
	ATOM	2382	CA	ALA	A	310	0	23.173	29.068	37.228	1.00	17.74
	MOTA	2383	С	ALA	A	310	0	24.663	28.775	37.342	1.00	18.13
20	ATOM	2384	0	ALA	A	310	0	25.103	28.233	38.369	1.00	19.61
	ATOM	2385	CB	ALA	A	310	0	22.869	30.356	37.985	1.00	16.92
	ATOM	2386	N	LEU	A	311	0	25.427	29.021	36.304	1.00	19.30
	MOTA	2387	CA	LEU	A	311	0	26.856	28.762	36.277	1.00	20.71
	MOTA	2388	С	LEU	A	311	0	27.655	29.922	36.881	1.00	22.67
25	MOTA	2389	0	LEU	A	311	0	28.581	29.788	37.682	1.00	23.06
	MOTA	2390	CB	LEU	A	311	0	27.305	28.591	34.817	1.00	20.57
	MOTA	2391	CG	LEU	A	311	0	28.796	28.196	34.684	1.00	21.52
	ATOM	2392	CD1	LEU	A	311	0	28.993	26.783	35.229	1.00	20.80
	MOTA	2393	CD2	LEU	A	311	0	29.319	28.282	33.254	1.00	20.17
30	MOTA	2394	N	ILE	A	312	0	27.333	31.142	36.449	1.00	23.42
	ATOM	2395	CA	ILE	A	312	0	28.092	32.311	36.899	1.00	24.86
	ATOM	2396	C	ILE	A	312	0	27.337	33.157	37.914	1.00	26.54
	MOTA	2397	0	ILE	A	312	0	26.154	33.467	37.739	1.00	25.31
	ATOM	2398	CB	ILE	A	312	0	28.397	33.179	35.670	1.00	24.45
35	ATOM	2399	CG1	ILE	A	312	0	28.998	32.330	34.576	1.00	25.60
	MOTA	2400	CG2	ILE	A	312	0	29.261	34.373	36.075	1.00	26.44
	MOTA	2401	CD1	ILE	A	312	0	30.462	32.026	34.512	1.00	24.51
	ATOM	2402	N	ASP	A	313	0	28.008	33.523	39.003	1.00	28.70
	ATOM	2403	CA	ASP	A	313	0	27.432	34.339	40.071	1.00	30.99
40	ATOM	2404	C	ASP	A	313	0	26.065	33.763	40.417	1.00	29.83
	ATOM	2405	0	ASP	Α	313	0	25.024	34.385	40.235	1.00	28.51
	ATOM	2406	CB	ASP	Α	313	0	27.266	35.777	39.576	1.00	35.88
	ATOM	2407	CG	ASP	A	313	0	28.532	36.505	39.187	1.00	40.21
	ATOM	2408	OD1	ASP	A	313	0	29.577	36.243	39.847	1.00	42.99
45	ATOM	2409	OD2	ASP	A	313	0	28.525	37.346	38.252	1.00	40.95

	ATOM	2410	N	PRO	A	314	0	26.041	32.517	40.863	1.00 28.77
	MOTA	2411	CA	PRO	Α	314	0	24.841	31.743	41.074	1.00 27.80
	MOTA	2412	С	PRO	Α	314	0	23.865		42.137.	1.00 26.49
	MOTA	2413	0	PRO	A	314	0	22.671	31.857	42.032	1.00 27.17
5	ATOM	2414	CB	PRO	Α	314	0	25.297	30.311	41.479	1.00 27.61
	ATOM	2415	CG	PRO	A	314	0	26.711	30.573	41.929	1.00 29.37
	MOTA	2416	CD	PRO	A	314	0	27.248	31.726	41.111	1.00 28.10
	MOTA	2417	N	ALA	A	315	0	24.364	32.818	43.206	1.00 23.45
	MOTA	2418	CA	ALA	A	315	0	23.505	33.092	44.336	1.00 22.34
10	ATOM	2419	С	ALA	A	315	0	22.414	34.111	44.008	1.00 22.46
	ATOM	2420	0	ALA	A	315	0	22.678	35.127	43.370	1.00 22.52
	ATOM	2421	CB	ALA	A	315	0	24.294	33.617	45.532	1.00 21.68
	MOTA	2422	N	ALA	Α	316	0	21.226	33.838	44.534	1.00 20.85
	ATOM	2423	CA	ALA	A	316	0	20.133	34.805	44.422	1.00 20.78
15	ATOM	2424	С	ALA	A	316	0	20.547	36.010	45.271	1.00 20.55
	MOTA	2425	0	ALA	A	316	0	21.143	35.846	46.333	1.00 21.47
	ATOM	2426	СВ	ALA	A	316	0	18.897	34.166	45.043	1.00 18.32
	MOTA	2427	N	PRO	A	317	0	20.237	37.212	44.864	1.00 20.84
	MOTA	2428	CA	PRO	A	317	0	20.539	38.410	45.634	1.00 20.82
20	MOTA	2429	C	PRO	A	317	0	19.766	38.449	46.945	1.00 20.96
	MOTA	2430	0	PRO	A	317	0	18.668	37.885	47.030	1.00 21.42
	MOTA	2431	CB	PRO	A	317	0	20.064	39.590	44.758	1.00 21.64
	MOTA	2432	CG	PRO	A	317	0	19.178	38.938	43.746	1.00 21.69
	MOTA	2433	CD	PRO	Α	317	0	19.517	37.466	43.619	1.00 20.10
25	MOTA	2434	N	GLY	A	318	0	20.269	39.080	47.988	1.00 20.69
	ATOM	2435	CA	GLY	A	318	0	19.533	39.282	49.225	1.00 21.68
	MOTA	2436	C	GLY	A	318	0	19.631	38.218	50.283	1.00 22.93
	ATOM	2437	0	GLY	A	318	0	20.344	37.221	50.101	1.00 23.87
	MOTA	2438	N	ILE	A	319	0	18.895	38.398	51.368	1.00 22.20
30	ATOM	2439	CA	ILE	A	319	0	18.879	37.432	52.454	1.00 24.16
	ATOM	2440	C	ILE	A	319	0	18.169	36.189	51.956	1.00 25.28
	ATOM	2441	0	ILE	A	319	0	17.071	36.271	51.405	1.00 26.26
	ATOM	2442	CB	ILE	A	319	0	18.208	38.030	53.704	1.00 24.54
	ATOM	2443	CG1	ILE	A	319	0	19.075	39.176	54.213	1.00 25.08
35	MOTA	2444	CG2	ILE	A	319	0	17.944	37.012	54.793	1.00 24.03
	ATOM	2445	CD1	ILE	A	319	0	18.262	40.183	55.006	1.00 27.56
	ATOM	2446	N	PRO	A	320	0	18.762	35.030	52.159	1.00 26.23
	ATOM	2447	CA	PRO	A	320	0	18.273	33.748	51.684	1.00 26.64
	ATOM	2448	C	PRO	A	320	0	17.105	33.172	52.453	1.00 26.74
40	ATOM	2449	0	PRO	A	320	0	17.140	32.025	52.896	1.00 27.54
	ATOM	2450	СВ	PRO	A	320	0	19.501	32.801	51.772	1.00 27.16
	MOTA	2451	CG	PRO	A	320	0	20.216	33.388	52.985	1.00 25.20
	ATOM	2452	CD	PRO	A	320	0	20.061	34.891	52.837	1.00 25.62
	ATOM	2453	N	THR	A	321	0	16.022	33.909	52.611	1.00 27.35
45	MOTA	2454	CA	THR	A	321	0	14.820	33.550	53.329	1.00 28.07

WO 98/38287 PCT/DK98/00070 78

	ATOM	2455	С	THR	A	321	0	13.632	34.190	52.603	1.00	27.48
	MOTA	2456	0	THR	A	321	0	13.597	35.383	52.302	1.00	27.13
	MOTA	2457	CB	THR	A	321	0	14.824	34.085	5 4.78 Q	1.00	29.87
	MOTA	2458	OG1	THR	A	321	0	15.957	33.582	55.511	1.00	31.85
5	MOTA	2459	CG2	THR	A	321	0	13.548	33.687	55.507	1.00	31.06
	MOTA	2460	N	PRO	A	322	0	12.630	33.378	52.326	1.00	26.63
	MOTA	2461	CA	PRO	A	322	0	11.428	33.824	51.637	1.00	25.91
	MOTA	2462	C	PRO	A	322	0	10.892	35.072	52.313	1.00	25.37
	MOTA	2463	0	PRO	A	322	0	10.945	35.194	53.542	1.00	25.02
10	MOTA	2464	СВ	PRO	A	322	0	10.456	32.638	51.661	1.00	26.11
	MOTA	2465	CG	PRO	A	322	0	11.370	31.477	51.931	1.00	26.67
	MOTA	2466	CD	PRO	A	322	0	12.592	31.961	52.691	1.00	26.21
	MOTA	2467	N	GLY	A	323	0	10.432	36.075	51.573	1.00	24.30
	ATOM	2468	CA	GLY	Α	323	0	9.943	37.288	52.197	1.00	24.13
15	ATOM	2469	C	GLY	A	323	0	11.013	38.161	52.842	1.00	25.48
	ATOM	2470	0	GLY	Α	323	0	10.603	39.128	53.512	1.00	25.28
	MOTA	2471	N	ALA	A	324	0	12.320	37.959	52.688	1.00	24.80
	MOTA	2472	CA	ALA	A	324	0	13.278	38.831	53.377	1.00	24.61
	ATOM	2473	С	ALA	A	324	0	14.034	39.773	52.451	1.00	23.92
20	ATOM	2474	0	ALA	A	324	0	15.148	40.225	52.748	1.00	24.53
	ATOM	2475	СВ	ALA	A	324	0	14.255	38.012	54.204	1.00	23.79
	ATOM	2476	N	ALA	Α	325	0	13.423	40.081	51.315	1.00	22.22
	ATOM	2477	CA	ALA	A	325	0	14.033	40.985	50.341	1.00	20.42
	ATOM	2478	С	ALA	A	325	0	13.825	42.423	50.803	1.00	19.97
25	ATOM	2479	0	ALA	A	325	0	12.987	42.648	51.677	1.00	18.14
	ATOM	2480	СВ	ALA	A	325	0	13.272	40.763	49.018	1.00	19.40
	ATOM	2481	N	ASP	A	326	0	14.422	43.421	50.161	1.00	20.69
	ATOM	2482	CA	ASP	Α	326	0	14.141	44.804	50.529	1.00	22.54
	ATOM	2483	С	ASP	A	326	0	12.702	45.158	50.220	1.00	22.83
30	ATOM	2484	0	ASP	A	326	0	12.015	45.754	51.030	1.00	23.68
	ATOM	2485	CB	ASP	A	326	0	15.089	45.767	49.789	1.00	22.32
	MOTA	2486	CG	ASP	A	326	0	16.494	45.378	50.238	1.00	23.83
	ATOM	2487	OD1	ASP	A	326	0	16.650	45.284	51.475	1.00	24.78
	ATOM	2488	OD2	ASP	A	326	0	17.393	45.171	49.409	1.00	24.90
35	ATOM	2489	N	VAL	A	327	0	12.254	44.821	49.026	1.00	24.29
	ATOM	2490	CA	VAL	Α	327	0	10.914	45.064	48.503	1.00	23.57
	ATOM	2491	C	VAL	A	327	0	10.246	43.721	48.170	1.00	23.46
	ATOM	2492	0	VAL	A	327	0	10.785	42.933	47.386	1.00	22.62
	ATOM	2493	СВ	VAL	Α	327	0	10.946	45.898	47.220	1.00	24.70
40	ATOM	2494		VAL	Α	327	0	9.554	46.274	46.751		24.11
	ATOM	2495		VAL			0	11.773	47.173	47.420	1.00	26.30
	ATOM	2496	N			328	0	9.113	43.463	48.811		21.44
	ATOM	2497	CA			328	0	8.390	42.212	48.717		23.21
	MOTA	2498	C			328	0	6.986	42.410	48.158		23.12
45	ATOM	2499	0			328	0	6.140	43.030	48.799		22.76
7.5	ALON	2277	J	POIN			J	0.140	23.030			,

	ATOM	2500	CB	ASN			0	8.223	41.603	50.121		23.09
	ATOM	2501	CG	ASN			0	9.569	41.204	50.693		24.61
	ATOM	2502		ASN			0	10.181	40.188			25.87
_	ATOM	2503		ASN			0	10.017	42.029	51.617		21.47
5	ATOM	2504	N	<u> L</u> EU			0	6.776	42.000	46.923		23.14
	ATOM	2505	CA	LEU	A	329	0	5.497	42.179	46.268		24.23
	ATOM	2506	С	LEU	A	329	0	4.859	40.822	45.953	1.00	25.21
	ATOM	2507	0	LEU	Α	329	0	5.489	39.876	45.469	1.00	24.20
	MOTA	2508	CB	LEU	A	329	0	5.622	42.963	44.948	1.00	24.33
10	MOTA	2509	CG	LEU	A	329	0	6.369	44.279	45.082	1.00	26.30
	MOTA	2510		LEU			0	6.778	44.884	43.757	1.00	26.24
	ATOM	2511	CD2	LEU	A	329	0	5.550	45.249	45.913	1.00	27.07
	ATOM	2512	N	ARG	A	330	0	3.562	40.806	46.204	1.00	25.13
	MOTA	2513	CA	ARG	A	330	0	2.740	39.641	45.899	1.00	27.48
15	ATOM	2514	C	ARG	A	330	0	1.628	40.116	44.965	1.00	27.52
	ATOM	2515	0	ARG	A	330	0	0.988	41.132	45.257	1.00	27.17
	ATOM	2516	CB	ARG	A	330	0	2.200	39.017	47.166	1.00	29.82
	ATOM	2517	CG	ARG	A	330	0	1.351	37.794	46.932	1.00	33.18
	ATOM	2518	CD	ARG	A	330	0	0.880	37.251	48.284	1.00	37.06
20	ATOM	2519	NE	ARG	A	330	0	0.305	35.914	48.038	1.00	40.34
	MOTA	2520	CZ	ARG	A	330	0	1.009	34.803	48.298	1.00	40.82
	MOTA	2521	NH1	ARG	A	330	0	2.229	34.903	48.812	1.00	40.36
	MOTA	2522	NH2	ARG	A	330	0	0.415	33.642	48.040	1.00	41.33
	ATOM	2523	N	PHE	A	331	0	1.507	39.481	43.795	1.00	25.88
25	MOTA	2524	CA	PHE	A	331	0	0.475	39.937	42.855	1.00	25.87
	MOTA	2525	C	PHE	A	331	0	-0.657	38.919	42.779	1.00	25.94
	MOTA	2526	0	PHE	A	331	0	-0.441	37.697	42.824	1.00	24.61
	MOTA	2527	CB	PHE	A	331	0	1.102	40.269	41.511	1.00	25.94
	MOTA	2528	CG	PHE	A	331	0	1.884	41.565	41.496	1.00	28.66
30	ATOM	2529	CD1	PHE	A	331	0	1.282	42.782	41.759	1.00	28.04
	ATOM	2530	CD2	PHE	A	331	0	3.246	41.569	41.214	1.00	29.71
	ATOM	2531	CE1	PHE	A	331	0	1.988	43.963	41.744	1.00	29.21
	ATOM	2532	CE2	PHE	A	331	0	3.975	42.753	41.181	1.00	30.61
	ATOM	2533	\mathbf{cz}	PHE	A	331	0	3.348	43.965	41.453	1.00	30.66
35	ATOM	2534	N	GLN	A	332	0	-1.873	39.446	42.676	1.00	25.58
	ATOM	2535	CA	GLN	A	332	0	-3.085	38.628	42.608	1.00	26.60
	ATOM	2536	С	GLN	A	332	0	-3.672	38.698	41.203	1.00	23.61
	ATOM	2537	0	GLN	A	332	0	-4.136	39.739	40.755	1.00	21.73
	ATOM	2538	СВ	GLN	Α	332	0	-4.110	39.094	43.630	1.00	30.32
40	ATOM	2539	CG			332	0	-5.412	38.299	43.642	1.00	35.72
	ATOM	2540	CD			332	0	-5.199	36.961	44.325		39.98
	ATOM	2541		GLN			0	-5.859	35.961	44.007		42.32
	ATOM	2542		GLN			0	-4.257	36.915	45.270		42.27
	ATOM	2543	N N			333	0	-3.612	37.576	40.504		23.60
45	ATOM	2544	CA			333	0	-4.105	37.565	39.118		26.25
75	ALON	2744	CA.	TE (~		J	4.103	57.505	JJ. 110	2.00	

	ATOM	2545	С	LEU	A	333	0	-5.627	37.373	39.123	1.00	26.55
	MOTA	2546	0	LEU	Α	333	0	-6.107	36.655	39.998	1.00	25.70
	ATOM	2547	CB	LEU	A	333	0	-3.424	36.465	38.304	1.00	25.25
	ATOM	2548	CG	LEU	A	333	0	-1. 9 19	36.608	38.052	1.00	25.72
5	MOTA	2549	CD1	LEU	A	333	0	-1.431	35.565	37.067	1.00	23.66
	MOTA	2550	CD2	LEU	A	333	0	-1.551	38.000	37.558	1.00	25.25
	ATOM	2551	N	GLY	A	334	0	-6.327	37.976	38.188	1.00	27.85
	MOTA	2552	CA	GLY	A	334	0	-7.770	37.782	38.118	1.00	29.96
	MOTA	2553	С	GLY	A	334	0	-8.253	37.802	36.672	1.00	32.36
10	ATOM	2554	0	GLY	A	334	0	-7.559	38.175	35.719	1.00	30.74
	ATOM	2555	N	PHE	A	335	0	-9.502	37.377	36.544	1.00	34.76
	MOTA	2556	CA	PHE	A	335	0	-10.181	37.360	35.260	1.00	38.54
	MOTA	2557	C	PHE	A	335	0	-11.625	37.806	35.514	1.00	41.05
	MOTA	2558	0	PHE	A	335	0	-12.443	37.028	36.021	1.00	41.53
15	MOTA	2559	CB	PHE	A	335	0	-10.183	36.003	34.586	1.00	39.00
	ATOM	2560	CG	PHE	A	335	0	-10.772	36.105	33.197	1.00	40.61
	ATOM	2561	CD1	PHE	A	335	0	-10.052	36.686	32.175	1.00	40.45
	ATOM	2562	CD2	PHE	A	335	0	-12.045	35.614	32.942	1.00	41.39
	ATOM	2563	CE1	PHE	A	335	0	-10.580	36.778	30.901	1.00	40.81
20	ATOM	2564	CE2	PHE	A	335	0	-12.588	35.697	31.671	1.00	41.51
	MOTA	2565	CZ	PHE	A	335	0	-11.849	36.281	30.652	1.00	41.87
	ATOM	2566	N	SER	A	336	0	-11.861	39.075	35.193	1.00	42.39
	MOTA	2567	CA	SER	A	336	0	-13.203	39.582	35.445	1.00	44.12
	ATOM	2568	С	SER	Α	336	0	-13.704	40.525	34.370	1.00	44.31
25	ATOM	2569	0	SER	A	336	0	-13.028	41.440	33.903	1.00	44.49
	MOTA	2570	CB	SER	A	336	0	-13.214	40.206	36.842	1.00	45.46
	ATOM	2571	OG	SER	A	336	0	-13.727	39.233	37.758	1.00	47.11
	ATOM	2572	N	GLY	A	337	0	-14.963	40.267	33.983	1.00	44.12
	ATOM	2573	CA	GLY	A	337	0	-15.630	41.067	32.959	1.00	41.89
30	ATOM	2574	C	GLY	A	337	0	-14.963	40.920	31.608	1.00	40.08
	MOTA	2575	0	GLY	A	337	0	-14.712	41.891	30.888	1.00	41.35
	MOTA	2576	N	GLY	A	338	0	-14.583	39.699	31.263	1.00	39.12
	MOTA	2577	CA	GLY	A	338	0	-13.899	39.364	30.034	1.00	36.11
	ATOM	2578	С	GLY	A	338	0	-12.503	39.970	29.929	1.00	34.97
35	ATOM	2579	0	GLY	A	338	0	-12.005	40.116	28.806	1.00	33.64
	ATOM	2580	N	ARG	A	339	0	-11.885	40.355	31.048	1.00	33.21
	ATOM	2581	CA	ARG	A	339	0	-10.538	40.916	30.982	1.00	32.04
	ATOM	2582	C	ARG	A	339	0	-9.724	40.397	32.164	1.00	29.23
	ATOM	2583	0	ARG	A	339	0	-10.260	40.053	33.210	1.00	26.38
40	ATOM	2584	CB	ARG	A	339	0	-10.495	42.419	30.845	1.00	36.52
	ATOM	2585	CG	ARG	A	339	0	-11.291	43.281	31.790	1.00	42.08
	ATOM	2586	CD	ARG	A	339	0	-11.895	44.502	31.127	1.00	45.03
	ATOM	2587	NE	ARG	A	339	0	-11.046	45.380	30.351	1.00	47.77
	ATOM	2588	CZ	ARG	A	339	0	-10.635	46.616	30.664	1.00	49.55
45	ATOM	2589		ARG	A	339	0	-10.935	47.242	31.799	1.00	49.60

1.00 49.96 ATOM 2590 NH2 ARG A 339 0 -9.862 47.295 29.805 2591 N PHE A 340 0 -8.425 40.181 31.900 1.00 25.50 ATOM PHE A 340 -7.526 1.00 22.68 ATOM 2592 CA 0 39.713 32.938 1.00 22.15 PHE A 340 0 -7.171 40.945 33.774 ATOM 2593 C 1.00 21.26 5 ATOM 2594 0 PHE A 340 0 -7.069 42.069 33.266 1.00 22.39 MOTA 2595 CB PHE A 340 0 -6.210 39.135 32.397 ATOM PHE A 340 0 -6.333 37.792 31.736 1.00 20.74 2596 CG CD1 PHE A 340 0 1.00 20.97 ATOM 2597 -6.338 37.710 30.357 ATOM 2598 CD2 PHE A 340 0 -6.448 36.644 32.468 1.00 21.19 CE1 PHE A 340 0 29.721 1.00 21.61 10 ATOM 2599 -6.449 36.488 CE2 PHE A 340 0 1.00 22.99 MOTA 2600 -6.585 35.408 31.826 2601 CZPHE A 340 0 -6.578 35.334 30.444 1.00 19.90 MOTA 1.00 20.76 ATOM 2602 N THR A 341 0 -7.000 40.736 35.069 0 1.00 21.55 MOTA CA THR A 341 -6.605 35.889 2603 41.879 15 MOTA C THR A 341 0 36.759 1.00 21.00 2604 -5.400 41.509 ATOM 2605 0 THR A 341 0 -5.236 40.329 37.089 1.00 20.70 **ATOM** 2606 CB THR A 341 0 -7.757 42.255 36.853 1.00 21.12 ATOM 2607 OG1 THR A 341 0 -8.014 37.668 1.00 21.26 41.102 ATOM CG2 THR A 341 0 1.00 21.74 2608 -9.050 42.630 36.150 20 ATOM 2609 N ILE A 342 0 -4.750 42.529 37.308 1.00 20.28 1.00 20.34 ATOM 2610 CA ILE A 342 0 -3.739 42.273 38.333 C ILE A 342 0 43.212 1.00 18.92 ATOM 2611 -4.026 39.496 ILE A 342 0 1.00 16.42 ATOM 2612 0 -4.004 44.437 39.327 ILE A 342 ATOM 2613 CB 0 -2.306 42.439 37.820 1.00 21.04 25 ILE A 342 1.00 21.39 ATOM 2614 CG1 0 -1.337 42.721 38.988 ATOM 2615 CG2 ILE A 342 0 -2.250 43.540 36.800 1.00 24.57 1.00 24.53 MOTA CD1 ILE A 342 0 -0.260 38.949 2616 41.661 **ATOM** 2617 N **ASN A 343** 0 -4.282 42.601 40.650 1.00 17.77 ATOM 2618 CA **ASN A 343** 0 -4.702 43.413 41.782 1.00 21.51 30 ATOM 2619 C **ASN A 343** 0 -5.881 44.287 41.394 1.00 21.43 **ASN A 343** MOTA 1.00 20.26 2620 0 0 -5.903 45.495 41.598 **ATOM** 2621 CB **ASN A 343** 0 -3.513 44.231 42.356 1.00 22.34 ATOM 2622 CG **ASN A 343** 0 -2.685 43.190 43.073 1.00 25.38 ATOM OD1 ASN A 343 42.598 1.00 26.90 2623 0 -2.075 42.218 35 1.00 25.34 ATOM 2624 ND2 ASN A 343 0 -2.652 43.238 44.425 ATOM 2625 N **GLY A 344** 0 -6.875 43.703 40.730 1.00 23.77 1.00 25.28 MOTA 2626 CA **GLY A 344** 0 -8.07844.406 40.324 1.00 26.82 ATOM 2627 C **GLY A 344** 0 -7.954 45.280 39.111 ATOM 2628 0 **GLY A 344** 0 -9.029 45.728 38.672 1.00 29.56 40 **ATOM** THR A 345 0 -6.798 45.561 38.527 1.00 26.28 2629 N 1.00 25.48 **ATOM** 2630 CA THR A 345 0 -6.766 46.440 37.366 1.00 26.49 ATOM 2631 C THR A 345 0 -6.343 45.703 36.109 1.00 28.22 **ATOM** THR A 345 2632 0 0 -5.385 44.925 36.122 1.00 26.17 ATOM 2633 CB THR A 345 0 -5.829 47.648 37.589 ATOM 0 38.788 1.00 25.32 45 2634 OG1 THR A 345 -6.191 48.334

: •

ATOM 2635 CG2 THR A 345 0 -5.867 48.677 36.462 1.00 24.83 ATOM N ALA A 346 0 -7.017 46.012 35.008 1.00 24.80 2636 1.00 23.82 ATOM 2637 CA **ALA A 346** 0 -6.768 45.491 33.688 ATOM 1.00 23.77 2638 C **ALA A 346** 0 -5.862 46.511 32.997 5 ALA A 346 1.00 22.93 ATOM 0 0 -6.098 47.711 33.088 2639 ATOM 2640 CB **ALA A 346** 0 -8.031 45.353 32.841 1.00 24.13 ATOM 2641 N TYR A 347 0 -4.793 46.023 32.392 1.00 22.69 ATOM 2642 CA **TYR A 347** 0 -3.862 46.949 31.792 1.00 22.75 ATOM 2643 C TYR A 347 0 30.527 1.00 23.42 -4.483 47.532 10 MOTA 1.00 22.19 2644 0 TYR A 347 0 -4.954 46.753 29.709 MOTA 2645 CB **TYR A 347** 1.00 21.25 0 -2.521 46.274 31.455 ATOM 2646 CG TYR A 347 0 30.732 1.00 18.93 -1.584 47.221 ATOM 2647 CD1 TYR A 347 0 -0.819 48.137 31.442 1.00 18.17 ATOM CD2 TYR A 347 2648 0 -1.473 47.176 29.353 1.00 19.30 15 MOTA 2649 **CE1 TYR A 347** 0 0.034 49.003 30.763 1.00 18.37 48.063 MOTA 2650 CE2 TYR A 347 0 -0.650 28.664 1.00 18.40 TYR A 347 MOTA 2651 CZ0 0.102 48.962 29.394 1.00 18.99 ATOM 1.00 19.65 2652 OH TYR A 347 0 0.947 49.802 28.706 ATOM 2653 N **GLU A 348** 0 -4.378 48.833 30.359 1.00 25.22 20 ATOM 2654 CA **GLU A 348** 0 -4.769 29.098 1.00 28.77 49.453 ATOM 2655 C **GLU A 348** 0 -3.659 28.805 1.00 27.38 50.470 **ATOM** 2656 0 **GLU A 348** 0 29.704 1.00 28.49 -3.297 51.229 MOTA 2657 CB **GLU A 348** 0 -6.114 50.134 29.110 1.00 32.95 ATOM 2658 **GLU A 348** 29.072 1.00 39.29 CG 0 -7.391 49.302 25 ATOM 2659 CD **GLU A 348** 0 -8.562 50.170 29.559 1.00 43.20 OE1 GLU A 348 MOTA 1.00 45.31 2660 0 -8.825 51.211 28.900 MOTA 2661 OE2 GLU A 348 0 -9.175 49.855 30.601 1.00 44.11 ATOM 2662 N SER A 349 0 27.621 1.00 25.73 -3.168 50.541 ATOM 2663 CA **SER A 349** 0 -2.080 27.201 1.00 28.25 51.410 30 1.00 28.71 MOTA 2664 C **SER A 349** 0 27.194 -2.40152.887 MOTA 0 SER A 349 0 26.526 1.00 29.13 2665 -3.279 53.399 MOTA 2666 CB **SER A 349** 0 -1.743 50.818 25.838 1.00 28.54 ATOM 2667 OG **SER A 349** 0 -0.850 51.499 25.026 1.00 33.31 ATOM PRO A 350 1.00 29.56 2668 N 0 -1.623 53.700 27.898 35 ATOM 2669 CA PRO A 350 0 -1.770 55.145 27.997 1.00 28.53 MOTA C 1.00 28.01 2670 PRO A 350 0 -1.480 55.825 26.679 **ATOM** 1.00 26.93 2671 0 PRO A 350 -0.787 25.856 0 55.217 ATOM 1.00 27.91 2672 CB PRO A 350 0 -0.75255.632 29.063 ATOM 2673 CG PRO A 350 0 0.309 54.560 28.863 1.00 28.03 40 MOTA 2674 CD PRO A 350 0 -0.461 53.245 28.688 1.00 28.76 ATOM 2675 **SER A 351** 0 -1.951 26.485 1.00 28.89 N 57.066 ATOM **SER A 351** 0 -1.630 25.206 1.00 29.67 2676 CA 57.718 MOTA 2677 C **SER A 351** 0 -0.213 58.287 25.257 1.00 27.67 MOTA 0 0 1.00 28.18 2678 **SER A 351** 0.320 58.524 24.177 45 ATOM 2679 CB SER A 351 0 -2.566 58.860 24.790 1.00 31.71

SER A 351 -2.793 25.938 1.00 34.19 **ATOM** 2680 OG 0 59.679 ATOM 2681 N VAL A 352 0 0.316 58.529 26.449 1.00 25.32 1.00 25.27 ATOM 2682 VAL A 352 1.703 26.534 CA 0 58.997 MOTA 2683 C VAL A 352 0 2.503 57.872 27.211 1.00 23.63 **ATOM** 0 VAL A 352 0 57.493 28.323 1.00 23.26 5 2684 2.181 VAL A 352 1.00 24.91 **ATOM** 2685 CB 0 1.934 60.300 27.303 CG1 VAL A 352 1.00 24.41 ATOM 2686 0 1.129 61.436 26.658 VAL A 352 1.00 23.35 MOTA 2687 CG2 0 3.424 60.635 27.281 PRO A 353 ATOM 1.00 22.39 2688 N 0 3.498 57.375 26.510 1.00 21.86 10 ATOM CA PRO A 353 26.983 2689 0 4.342 56.300 **ATOM** 2690 C PRO A 353 0 4.978 56.699 28.300 1.00 20.91 **ATOM** 2691 0 PRO A 353 0 5.393 57.852 28.483 1.00 21.91 ATOM 2692 CB PRO A 353 0 5.417 56.054 25.916 1.00 23.95 ATOM PRO A 353 1.00 23.79 2693 CG 0 5.181 57.123 24.878 15 **ATOM** 2694 CD PRO A 353 0 3.882 57.848 25.180 1.00 23.03 THR A 354 MOTA 2695 N 0 5.043 55.778 29.234 1.00 18.66 1.00 18.05 ATOM 2696 CA THR A 354 0 5.646 56.015 30.530 **ATOM** 2697 C THR A 354 0 6.981 56.739 30.478 1.00 18.33 ATOM 2698 0 THR A 354 0 7.168 57.630 31.319 1.00 19.46 20 ATOM 2699 CB THR A 354 0 5.871 54.661 31.242 1.00 17.10 OG1 THR A 354 ATOM 2700 0 4.903 53.710 30.797 1.00 17.24 MOTA 2701 CG2 THR A 354 1.00 16.43 0 5.772 54.852 32.741 ATOM 2702 N LEU A 355 0 7.940 56.380 29.618 1.00 17.49 ATOM 2703 CA **LEU A 355** 0 9.215 57.076 29.604 1.00 18.84 25 ATOM 2704 C **LEU A 355** 1.00 19.80 0 9.013 58.579 29.284 1.00 17.13 0 MOTA 2705 **LEU A 355** 0 9.722 59.417 29.849 ATOM 2706 CB **LEU A 355** 0 10.200 56.498 28.622 1.00 17.89 ATOM **LEU A 355** 1.00 18.66 2707 CG 0 11.703 56.488 28.819 ATOM 2708 CD1 LEU A 355 1.00 18.37 0 12.436 56.851 27.547 30 ATOM 1.00 16.79 2709 CD2 LEU A 355 0 57.204 30.056 12.199 ATOM 2710 N **LEU A 356** 0 8.134 58.883 28.328 1.00 20.48 **ATOM** 1.00 21.62 2711 CA LEU A 356 0 7.812 60.274 27.993 ATOM C 60.932 1.00 21.28 2712 **LEU A 356** 0 7.085 29.163 MOTA 0 **LEU A 356** 7.497 1.00 22.01 2713 0 62.042 29.506 35 MOTA 2714 **LEU A 356** 7.028 60.474 26.700 1.00 22.08 CB 0 **ATOM** 61.939 1.00 23.98 2715 CG **LEU A 356** 0 6.850 26.239 **ATOM** CD1 LEU A 356 1.00 23.11 2716 0 8.157 62.709 26.207 ATOM 2717 CD2 LEU A 356 0 6.191 61.985 24.864 1.00 24.74 ATOM 1.00 21.37 2718 N **GLN A 357** 0 6.219 60.267 29.922 40 1.00 21.87 ATOM **GLN A 357** 2719 CA 0 5.669 60.893 31.120 **ATOM** 2720 C **GLN A 357** 6.759 61.254 32.128 1.00 24.12 0 ATOM 2721 0 **GLN A 357** 0 6.674 62.277 32.811 1.00 24.92 **ATOM** 2722 CB **GLN A 357** 0 4.636 60.015 31.822 1.00 20.63 **ATOM** CG **GLN A 357** 1.00 19.17 2723 0 3.447 59.674 30.906 45 ATOM 2724 CD **GLN A 357** 0 2.547 58.643 31.540 1.00 18.85

	MOTA	2725	OE1	GLN	A	357	0	2.162	58.748	32.713	1.00	19.06
	ATOM	2726	NE2	GLN	A	357	0	2.262	57.600	30.742	1.00	18.49
	ATOM	2727	N	ILE	A	358	0	7.735	60.371	32.346	1.00	25.66
	ATOM	2728	CA	ILE	A	358	0	8.822	60.651	33.263	1.00	26.19
5	MOTA	2729	C	IŢE	A	358	0	9.699	61.800	32.762	1.00	27.66
	MOTA	2730	0	ILE	A	358	0	9.940	62.725	33.551	1.00	26.65
	ATOM	2731	CB	ILE	A	358	0	9.692	59.420	33.578	1.00	24.79
	MOTA	2732	CG1	ILE	A	358	0	8.807	58.395	34.304	1.00	24.09
	MOTA	2733	CG2	ILE	A	358	0	10.865	59.841	34.451	1.00	23.78
10	ATOM	2734	CD1	ILE	A	358	0	9.251	56.954	34.234	1.00	23.34
	MOTA	2735	N	MET	A	359	0	10.054	61.844	31.486	1.00	29.63
	MOTA	2736	CA	MET	A	359	0	10.893	62.910	30.965	1.00	33.02
	MOTA	2737	С	MET	A	359	0	10.174	64.260	31.027	1.00	34.46
	MOTA	2738	0	MET	A	359	0	10.801	65.324	31.026	1.00	33.77
15	MOTA	2739	СВ	MET	A	359	0	11.346	62.664	29.537	1.00	35.67
	MOTA	2740	CG	MET	A	359	0	12.065	61.403	29.138	1.00	40.75
	ATOM	2741	SD	MET	A	359	0	13.764	61.153	29.671	1.00	44.90
	ATOM	2742	CE	MET	A	359	0	14.594	62.592	29.007	1.00	44.24
	ATOM	2743	N	SER	A	360	0	8.835	64.238	31.070	1.00	33.43
20	MOTA	2744	CA	SER	A	360	0	8.024	65.430	31.088	1.00	32.92
	ATOM	2745	С	SER	A	360	0	7.761	65.995	32.474	1.00	33.24
	MOTA	2746	0	SER	A	360	0	6.989	66.966	32.556	1.00	34.08
	MOTA	2747	CB	SER	A	360	0	6.678	65.134	30.393	1.00	31.34
	ATOM	2748	OG	SER	A	360	0	6.928	65.109	28.996	1.00	31.06
25	MOTA	2749	N	GLY	A	361	0	8.288	65.360	33.517	1.00	32.06
	ATOM	2750	CA	GLY	A	361	0	8.072	65.868	34.847	1.00	31.80
	ATOM	2751	C	GLY	A	361	0	7.487	64.955	35.880	1.00	32.48
	MOTA	2752	0	GLY	A	361	0	7.420	65.377	37.043	1.00	33.20
	MOTA	2753	N	ALA	A	362	0	6.991	63.769	35.535	1.00	33.69
30	MOTA	2754	CA	ALA	A	362	0	6.406	62.926	36.601	1.00	35.10
	MOTA	2755	С	ALA	A	362	0	7.475	62.615	37.650	1.00	34.45
	MOTA	2756	0	ALA	A	362	0	8.598	62.306	37.286		33.60
	MOTA	2757	CB	ALA	A	362	0	5.789	61.658	36.043	1.00	34.88
	MOTA	2758	N	GLN	A	363	0	7.146	62.676	38.920	1.00	36.22
35	MOTA	2759	CA	GLN	A	363	0	8.083	62.458	40.007	1.00	37.87
	ATOM	2760	C	GLN	A	363	0	7.776	61.189	40.787	1.00	37.20
	ATOM	2761	0	GLN	A	363	0	8.620	60.777	41.587	1.00	36.79
	ATOM	2762	CB	GLN	A	363	0	8.012	63.619	41.022	1.00	40.41
	ATOM	2763	CG	GLN	A	363	0	8.986	64.740	40.721	1.00	44.07
40	MOTA	2764	CD	GLN	A	363	0	8.586	66.154	41.092	1.00	45.77
	ATOM	2765	OE1	GLN	A	363	0	7.697	66.473	41.901	1.00	46.53
	ATOM	2766	NE2	GLN	A	363	0	9.294	67.089	40.435	1.00	46.12
	MOTA	2767	N	SER	A	364	0	6.579	60.632	40.610	1.00	35.74
	MOTA	2768	CA	SER	A	364	0	6.249	59.434	41.381	1.00	34.54
45	ATOM	2769	С	SER	A	364	0	5.225	58.588	40.653	1.00	34.32

WO 98/38287 PCT/DK98/00070

	ATOM	2770	0	SER	A	364	0	4.605	59.037	39.692	1.00	33.71
	MOTA	2771	CB	SER	A	364	0	5.774	59.835	42.769	1.00	35.68
	MOTA	2772	OG	SER	A	364	0	4.396	60.095	42.928	1.00	35.86
	MOTA	2773	N	ALA	A	365	0	5.015	57.372	41.146	1.00	33.95
5	ATOM	2774	CA	ĀΓA	A	365	0	4.017	56.486	40.564	1.00	34.62
	MOTA	2775	C	ALA	A	365	0	2.637	57.148	40.560	1.00	34.46
	ATOM	2776	0	ALA	A	365	0	1.906	56.995	39.582	1.00	34.37
	ATOM	2777	CB	ALA	A	365	0	3.963	55.155	41.301	1.00	33.51
	ATOM	2778	N	ASN	A	366	0	2.261	57.916	41.571	1.00	34.45
10	MOTA	2779	CA	ASN	A	366	0	1.003	58.619	41.632	1.00	36.37
	ATOM	2780	С	ASN	A	366	0	0.708	59.524	40.447	1.00	35.60
	ATOM	2781	0	ASN	A	366	0	-0.462	59.719	40.131	1.00	36.50
	ATOM	2782	CB	ASN	A	366	0	0.904	59.464	42.918	1.00	38.72
	MOTA	2783	CG	ASN	A	366	0	0.794	58.558	44.126	1.00	41.08
15	ATOM	2784	OD1	ASN	A	366	0	0.863	58.966	45.284	1.00	43.39
	MOTA	2785	ND2	ASN	A	366	0	0.646	57.256	43.914	1.00	42.72
	ATOM	2786	И	ASP	A	367	0	1.694	60.046	39.752	1.00	34.06
	MOTA	2787	CA	ASP	A	367	0	1.571	60.899	38.610	1.00	33.37
	ATOM	2788	C	ASP	A	367	0	1.566	60.122	37.293	1.00	32.09
20	ATOM	2789	0	ASP	A	367	0	1.430	60.762	36.247	1.00	31.74
	MOTA	2790	CB	ASP	A	367	0	2.768	61.841	38.483	1.00	35.96
	MOTA	2791	CG	ASP	A	367	0	3.048	62.818	39.602	1.00	37.69
	ATOM	2792	OD1	ASP	A	367	0	2.123	63.209	40.336	1.00	37.23
	ATOM	2793	OD2	ASP	A	367	0	4.258	63.194	39.705	1.00	39.62
25	ATOM	2794	N	LEU	A	368	0	1.791	58.814	37.371	1.00	30.39
	ATOM	2795	CA	LEU	A	368	0	1.897	58.055	36.123	1.00	28.74
	ATOM	2796	С	LEU	A	368	0	0.586	57.386	35.745	1.00	28.85
	ATOM	2797	0	LEU	A	368	0	-0.214	56.947	36.555		28.17
	ATOM	2798	CB	LEU	A	368	0	3.043	57.046	36.194	1.00	26.94
30	MOTA	2799	CG	LEU	A	368	0	4.436	57.668	36.422		27.05
	ATOM	2800	CD1	LEU	Α	368	0	5.455	56.581	36.765		25.41
	MOTA	2801	CD2	LEU			0	4.882	58.499	35.236		24.44
	MOTA	2802	N			369	0	0.392	57.332	34.446		28.81
	ATOM	2803	CA	LEU			0	-0.753	56.671	33.834		29.65
35	ATOM	2804	С	LEU			0	-0.238	55.398	33.162		28.29
	ATOM	2805	0	LEU	A	369	0	0.875	55.356	32.660		25.59
	ATOM	2806	CB	LEU	A	369	0	-1.333	57.668	32.821	1.00	30.27
	ATOM	2807	CG	LEU	A	369	0	-1.800	58.998	33.456	1.00	32.06
	ATOM	2808	CD1	LEU	A	369	0	-2.220	59.979	32.370	1.00	31.87
40	ATOM	2809	CD2	LEU	A	369	0	-2.932	58.787	34.455	1.00	30.89
	ATOM	2810	N	PRO	A	370	0	-1.054	54.361	33.157	1.00	27.87
	ATOM	2811	CA	PRO	A	370	0	-2.396	54.379	33.688	1.00	26.71
	ATOM	2812	С	PRO	A	370	0	-2.513	54.112	35.169	1.00	26.73
	ATOM	2813	0	PRO	A	370	0	-1.872	53.184	35.668		26.55
45	ATOM	2814	CB	PRO	A	370	0	-3.126	53.222	32.958	1.00	27.28

	MOTA	2815	CG	PRO	A	370	0	-2.003	52.317	32.557	1.00	27.38
	ATOM	2816	CD	PRO	Α	370	0	-0.720	53.102	32.482	1.00	27.24
	ATOM	2817	N	ALA	A	371	0	-3.414	54.810	35.870	1.00	26.16
	ATOM	2818	CA	ALA	Α	371	0	-3.581	54.556	37.302	1.00	25.73
5	ATOM	2819	С	AĻA	A	371	0	-3.892	53.103	37.616	1.00	24.59
	ATOM	2820	0	ALA	A	371	0	-4.758	52.533	36.946	1.00	25.05
	ATOM	2821	CB	ALA	A	371	0	-4.718	55.394	37.903	1.00	26.42
	ATOM	2822	N	GLY	A	372	0	-3.261	52.524	38.625	1.00	22.47
	ATOM	2823	CA	GLY	A	372	0	-3.519	51.187	39.087	1.00	21.06
10	ATOM	2824	C	GLY	A	372	0	-2.691	50.096	38.427	1.00	23.01
	MOTA	2825	0	GLY	Α	372	0	-2.758	48.928	38.831	1.00	23.85
	ATOM	2826	N	SER	A	373	0	-1.910	50.428	37.421	1.00	23.30
	ATOM	2827	CA	SER	Α	373	0	-1.054	49.459	36.736	1.00	24.36
	ATOM	2828	С	SER	Α	373	0	0.429	49.746	36.919	1.00	24.76
15	ATOM	2829	0	SER	A	373	0	1.257	49.103	36.270	1.00	25.75
	ATOM	2830	CB	SER	A	373	0	-1.371	49.584	35.233	1.00	23.25
	ATOM	2831	OG	SER	A	373	0	-2.638	49.014	34.952	1.00	23.80
	MOTA	2832	N	VAL	A	374	0	0.779	50.799	37.657	1.00	23.87
	ATOM	2833	CA	VAL	Α	374	0	2.176	51.255	37.706	1.00	22.95
20	MOTA	2834	C	VAL	A	374	0	2.739	51.109	39.105	1.00	21.72
	MOTA	2835	0	VAL	A	374	0	2.093	51.518	40.059	1.00	21.03
	MOTA	2836	CB	VAL	A	374	0	2.317	52.687	37.169	1.00	23.05
	ATOM	2837	CG1	VAL	A	374	0	3.720	53.273	37.323	1.00	24.13
	ATOM	2838	CG2	VAL	A	374	0	1.945	52.771	35.698	1.00	21.58
25	ATOM	2839	N	TYR	A	375	0	3.862	50.402	39.246	1.00	20.52
	MOTA	2840	CA	TYR	A	375	0	4.445	50.184	40.573	1.00	22.02
	MOTA	2841	C	TYR	A	375	0	5.873	50.743	40.549	1.00	22.56
	MOTA	2842	0	TYR	A	375	0	6.665	50.524	39.639	1.00	21.82
	ATOM	2843	CB	TYR	A	375	0	4.467	48.729	41.067	1.00	21.98
30	MOTA	2844	CG	TYR	A	375	0	3.042	48.217	41.226	1.00	24.04
	ATOM	2845	CD1	TYR	A	375	0	2.398	48.261	42.445	1.00	23.57
	ATOM	2846	CD2	TYR	A	375	0	2.339	47.760	40.115	1.00	24.92
	MOTA	2847	CE1	TYR	A	375	0	1.100	47.831	42.575	1.00	25.65
	ATOM	2848	CE2	TYR	A	375	0	1.034	47.327	40.220	1.00	25.89
35	ATOM	2849	CZ	TYR	A	375	0	0.429	47.352	41.464	1.00	26.65
	MOTA	2850	OH	TYR	A	375	0	-0.869	46.916	41.593	1.00	27.26
	ATOM	2851	N	GLU	A	376	0	6.130	51.563	41.546	1.00	22.36
	MOTA	2852	CA	GLU	A	376	0	7.403	52.214	41.718	1.00	23.62
	MOTA	2853	С	GLU	A	376	0	8.411	51.289	42.387	1.00	22.40
40	ATOM	2854	0	GLU	A	376	0	8.062	50.578	43.324	1.00	21.88
	ATOM	2855	CB	GLU	A	376	0	7.211	53.465	42.614	1.00	25.13
	ATOM	2856	CG	GLU	A	376	0	8.500	54.255	42.720	1.00	27.91
	ATOM	2857	CD	GLU	A	376	0	8.376	55.725	43.046	1.00	29.20
	ATOM	2858	OE1	GLU	A	376	0	7.247	56.268	43.109	1.00	30.01
45	ATOM	2859	OE2	GLU	A	376	0	9.458	56.336	43.219	1.00	28.05

	ATOM	2860	N	LEU	A	377	0	9.669	51.353	41.954	1.00 21.23
	MOTA	2861	CA	LEU	A	377	0	10.705	50.535	42.626	1.00 19.95
	MOTA	2862	C	LEU	A	377	0	11.838	51.478	42.982	1.00 20.30
	MOTA	2863	0	LEU	A	377	0	12.220	52.350	42.197	1.00 20.12
5	MOTA	2864	CB	FĒA	Α	377	0	11.129	49.419	41.692	1.00 20.77
	MOTA	2865	CG	LEU	A	377	0	10.668	47.964	41.818	1.00 20.49
	MOTA	2866	CD1	LEU	A	377	0	9.439	47.739	42.629	1.00 17.77
	MOTA	2867	CD2	LEU	A	377	0	10.617	47.242	40.483	1.00 19.28
	MOTA	2868	N	PRO	A	378	0	12.407	51.334	44.162	1.00 19.69
10	MOTA	2869	CA	PRO	A	378	0	13.523	52.117	44.631	1.00 19.91
	ATOM	2870	С	PRO	A	378	0	14.797	51.650	43.937	1.00 19.81
	ATOM	2871	0	PRO	A	378	0	14.795	50.645	43.241	1.00 17.74
	MOTA	2872	CB	PRO	A	378	0	13.611	51.893	46.157	1.00 20.21
	ATOM	2873	CG	PRO	A	378	0	12.957	50.546	46.291	1.00 20.73
15	ATOM	2874	CD	PRO	A	378	0	12.050	50.292	45.114	1.00 19.74
	ATOM	2875	N	ARG	A	379	0	15.877	52.410	44.059	1.00 19.68
	ATOM	2876	CA	ARG	A	379	0	17.172	52.135	43.449	1.00 18.58
	ATOM	2877	C	ARG	A	379	0	18.027	51.129	44.193	1.00 18.68
	ATOM	2878	0	ARG	A	379	0	18.151	51.126	45.432	1.00 17.60
20	MOTA	2879	CB	ARG	A	379	0	17.946	53.487	43.431	1.00 18.33
	MOTA	2880	CG	ARG	A	379	0	19.406	53.348	43.030	1.00 19.33
	ATOM	2881	CD	ARG	A	379	0	20.026	54.710	42.729	1.00 19.06
	ATOM	2882	NE	ARG	A	379	0	21.413	54.561	42.295	1.00 16.65
	MOTA	2883	CZ	ARG	A	379	0	21.794	54.681	41.031	1.00 15.60
25	MOTA	2884	NH1	ARG	A	379	0	20.964	54.904	40.038	1.00 14.29
	MOTA	2885	NH2	ARG	A	379	0	23.096	54.505	40.783	1.00 17.29
	ATOM	2886	N	ASN	A	380	0	18.701	50.263	43.441	1.00 20.11
	MOTA	2887	CA	ASN	A	380	0	19.658	49.328	44.011	1.00 21.97
	MOTA	2888	C	ASN	A	380	0	19.129	48.604	45.227	1.00 22.44
30	ATOM	2889	0	ASN	A	380	0	19.712	48.630	46.317	1.00 22.53
	ATOM	2890	CB	ASN	A	380	0	20.995	50.045	44.345	1.00 23.30
	MOTA	2891	CG	ASN	A	380	0	21.860	50.231	43.107	1.00 25.83
	ATOM	2892	OD1	ASN	Α	380	0	22.636	51.186	42.877	1.00 27.14
	ATOM	2893	ND2	ASN	A	380	0	21.767	49.271	42.185	1.00 24.91
35	MOTA	2894	N	GLN	A	381	0	17.974	47.936	45.097	1.00 21.39
	ATOM	2895	CA	GLN	A	381	0	17.468	47.162	46.220	1.00 20.88
	ATOM	2896	С	GLN	A	381	0	17.169	45.760	45.679	1.00 19.96
	ATOM	2897	0	GLN	A	381	0	17.000	45.635	44.471	1.00 19.90
	ATOM	2898	СВ	GLN	A	381	0	16.219	47.722	46.871	1.00 22.84
40	ATOM	2899	CG	GLN	A	381	0	16.326	49.172	47.318	1.00 27.28
	ATOM	2900	CD	GLN	A	381	0	16.065	49.297	48.792	1.00 30.24
	ATOM	2901	OE1	GLN	Α	381	0	15.067	49.917	49.171	1.00 34.48
	ATOM	2902		GLN			0	16.929	48.742	49.611	1.00 30.80
	ATOM	2903	N			382	0	17.046	44.825		1.00 18.67
45	ATOM	2904	CA			382	0	16.665	43.472		
							-		_		

: '

ATOM 2905 C VAL A 382 0 15.139 43.327 46.212 1.00 19.75 ATOM 2906 0 VAL A 382 0 14.443 47.225 1.00 18.76 43.550 **ATOM** 2907 VAL A 382 CB 0 17.252 42.491 47.278 1.00 19.03 ATOM 2908 CG1 VAL A 382 0 16.811 46.960 1.00 18.87 41.065 5 ATOM 2909 CG2 VAL A 382 0 18.779 1.00 17.54 42.637 47.344 MOTA VAL A 383 2910 N 0 14.601 1.00 17.58 42.954 45.046 ATOM VAL A 383 2911 CA 0 13.151 42.715 45.037 1.00 17.76 **ATOM** 2912 C **VAL A 383** 0 12.777 1.00 17.50 41.254 44.883 ATOM 2913 O **VAL A 383** 0 13.348 40.472 44.153 1.00 16.42 10 ATOM 2914 CB **VAL A 383** 0 12.306 43.626 44.145 1.00 17.69 CG1 VAL A 383 MOTA 2915 0 13.111 44.759 43.585 1.00 15.33 ATOM 2916 CG2 VAL A 383 0 11.400 43.009 43.126 1.00 17.79 MOTA 2917 N **GLU A 384** 0 11.743 40.861 45.638 1.00 18.47 **GLU A 384** ATOM 2918 CA 0 11.173 39.529 45.542 1.00 18.27 15 ATOM 2919 C **GLU A 384** 0 9.711 39.683 45.096 1.00 18.94 **ATOM** 2920 0 **GLU A 384** 0 8.956 40.311 45.816 1.00 19.06 ATOM 2921 CB **GLU A 384** 0 11.253 38.764 46.852 1.00 17.12 ATOM CG 2922 **GLU A 384** 0 10.717 37.345 46.738 1.00 17.52 ATOM 2923 CD **GLU A 384** 0 10.979 36.551 47.998 1.00 19.10 20 MOTA 2924 OE1 GLU A 384 0 12.101 36.050 48.218 1.00 20.69 MOTA 2925 OE2 GLU A 384 0 10.018 36.405 48.773 1.00 21.22 ATOM 2926 N **LEU A 385** 0 9.326 39.182 43.948 1.00 19.78 ATOM 2927 CA **LEU A 385** 0 7.966 39.153 43.463 1.00 21.07 ATOM 2928 C **LEU A 385** 0 7.391 1.00 20.91 37.738 43.591 25 ATOM 2929 0 **LEU A 385** 0 8.043 36.790 43.113 1.00 21.40 ATOM 2930 CB **LEU A 385** 0 7.881 39.466 41.959 1.00 20.92 ATOM 2931 CG **LEU A 385** 0 8.393 40.795 41.457 1.00 23.75 ATOM 2932 CD1 LEU A 385 0 8.118 1.00 23.01 40.984 39.962 ATOM 2933 CD2 LEU A 385 0 7.827 42.244 1.00 22.40 41.977 30 ATOM 2934 N VAL A 386 0 6.182 37.574 44.099 1.00 20.91 ATOM 2935 CA VAL A 386 0 5.510 36.274 44.189 1.00 19.03 ATOM 2936 C VAL A 386 0 4.228 36.334 43.356 1.00 21.11 ATOM 2937 0 VAL A 386 0 3.465 37.326 43.516 1.00 20.56 ATOM 2938 **VAL A 386** 0 5.159 35.967 45.654 1.00 20.91 35 ATOM 2939 CG1 VAL A 386 0 4.518 45.739 1.00 20.40 34.575 ATOM CG2 VAL A 386 2940 0 6.321 36.044 46.625 1.00 19.89 MOTA 2941 VAL A 387 N 0 4.011 42.358 1.00 20.02 35.469 MOTA 2942 CA VAL A 387 0 2.817 35.515 1.00 20.83 41.491 MOTA 2943 C VAL A 387 0 2.119 34.152 41.385 1.00 21.15 40 ATOM 2944 0 VAL A 387 0 2.369 33.285 40.528 1.00 19.97 ATOM 2945 CB VAL A 387 0 1.00 20.91 3.163 36.076 40.104 MOTA 2946 CG1 VAL A 387 0 1.917 1.00 22.49 36.472 39.297 MOTA 1.00 22.24 2947 CG2 VAL A 387 0 3.959 37.393 40.171 ATOM 0 2948 N PRO A 388 1.00 20.55 1.262 33.832 42.358 ATOM 45 2949 CA PRO A 388 0 0.570 42.483 1.00 20.93 32.548

WO 98/38287

C PRO A 388 0 -0.271 32.226 41.264 1.00 20.76 2950 ATOM 1.00 19.53 40.715 2951 PRO A 388 0 -0.928 33.118 ATOM 0 2952 CB PRO A 388 0 -0.310 32.559 43.757 1.00 20.54 **ATOM** 44.482 1.00 21.86 MOTA 2953 CG PRO A 388 0 0.280 33.766 43.438 1.00 20.83 PRO A 388 0 0.841 34.707 5 MOTA 2954 CD 1.00 21.68 40.807 ATOM 2955 N ALA A 389 0 -0.160 30.986 1.00 24.20 ATOM 2956 CA ALA A 389 0 -0.983 30.617 39.640 30.320 1.00 25.02 **ALA A 389** 0 40.148 MOTA 2957 C -2.394 1.00 24.19 0 ALA A 389 41.350 ATOM 0 -2.619 30.162 2958 1.00 23.67 10 ATOM 2959 CB ALA A 389 0 -0.383 29.403 38.968 **GLY A 390** 0 -3.309 39.222 1.00 28.43 ATOM 2960 N 30.143 **GLY A 390** 0 29.811 39.539 1.00 28.47 ATOM 2961 CA -4.7131.00 28.63 С **GLY A 390** 0 -5.624 30.325 38.431 ATOM 2962 ATOM 2963 0 **GLY A 390** 0 -6.512 29.630 37.937 1.00 31.26 1.00 27.11 15 ATOM 2964 N VAL A 391 0 -5.402 31.531 37.961 ATOM VAL A 391 0 -6.234 32.164 36.962 1.00 26.51 2965 CA C VAL A 391 0 31.377 35.666 1.00 29.59 MOTA 2966 -6.246 ATOM 2967 0 VAL A 391 0 -5.274 30.775 35.181 1.00 30.61 VAL A 391 0 36.788 1.00 25.83 ATOM 2968 CB -5.835 33.634 -4.584 20 **ATOM** 2969 CG1 VAL A 391 0 33.787 35.937 1.00 24.18 1.00 24.11 CG2 VAL A 391 0 ATOM 2970 -7.017 34.419 36.219 1.00 30.83 ATOM 2971 N **LEU A 392** 0 -7.439 31.392 35.058 0 -7.705 1.00 30.29 ATOM 2972 CA **LEU A 392** 30.604 33.867 **LEU A 392** 0 -6.809 31.004 32.710 1.00 27.38 ATOM 2973 C 1.00 24.62 25 **LEU A 392** ATOM 0 0 -6.316 32.113 32.665 2974 0 1.00 32.58 ATOM 2975 CB **LEU A 392** -9.173 30.726 33.436 ATOM 2976 CG **LEU A 392** 0 -9.711 32.126 33.189 1.00 33.97 1.00 34.78 MOTA 2977 CD1 LEU A 392 0 -9.411 32.626 31.786 0 1.00 36.03 ATOM CD2 LEU A 392 -11.225 32.122 33.463 2978 1.00 26.24 30 ATOM 2979 N **GLY A 393** 0 -6.725 30.074 31.754 1.00 25.54 2980 CA **GLY A 393** 0 -5.936 30.302 30.554 MOTA 1.00 25.81 MOTA 2981 C **GLY A 393** 0 -4.458 29.994 30.710 **GLY A 393** 0 29.820 1.00 26.67 MOTA 2982 0 -3.686 30.361 1.00 25.84 31.803 MOTA 2983 N **GLY A 394** 0 -4.033 29.379 ATOM **GLY A 394** 0 32.035 1.00 25.94 35 2984 CA -2.615 29.112 0 31.348 1.00 26.00 ATOM C **GLY A 394** -2.140 27.844 2985 MOTA 2986 0 **GLY A 394** 0 -2.884 27.193 30.625 1.00 25.18 0 31.517 1.00 24.26 **ATOM** 2987 N PRO A 395 -0.860 27.527 1.00 21.79 PRO A 395 0 32.364 ATOM CA 0.051 28.258 2988 1.00 19.29 40 31.660 ATOM 2989 C PRO A 395 0 0.517 29.518 ATOM 2990 0 PRO A 395 0 0.704 29.597 30.445 1.00 17.41 1.159 32.794 1.00 22.52 ATOM 2991 CB PRO A 395 0 27.279 1.00 24.35 PRO A 395 0 31.758 ATOM 2992 CG 1.062 26.223 1.00 24.87 ATOM CD PRO A 395 0 30.973 2993 -0.24126.312 1.00 16.97 45 ATOM 2994 N HIS A 396 0 0.586 30.591 32.451

45 ATOM

•		4.						90			
	ATOM	2995	CA	HIS	A	396	0	0.970	31.917	31.980	1.00 15.05
	ATOM	2996	C	HIS			0	2.477	32.137	32.186	1.00 15.41
	ATOM	2997	0	HIS			0	3.039	32.025	33.275	1.00 14.21
	ATOM	2998	СВ	HIS			0	0.288	32.989	32.842	1.00 15.40
5	ATOM	2999	CG	HIS			0	-1.224	32.924	32.737	1.00 18.23
_	ATOM	3000		HIS			0	-1.942	33.504	31.702	1.00 16.23
	ATOM	3001		HIS			0	-2.109	32.319	33.557	1.00 17.00
	ATOM	3002		HIS			0	-3.218	33.262	31,906	1.00 18.22
	ATOM	3003	NE2	HIS			0	-3.343	32.526	33.014	1.00 19.08
10	ATOM	3004	N	PRO			0	3.143	32.403	31.090	1.00 14.69
	ATOM	3005	CA	PRO			0	4.593	32.617	31.080	1.00 16.91
	ATOM	3006	С	PRO			0	4.818	34.129	31.202	1.00 17.59
	ATOM	3007	0	PRO	Α	397	0	4.524	34.843	30.235	1.00 17.59
	ATOM	3008	СВ	PRO	Α	397	0	5.076	32.040	29.757	1.00 16.63
15	ATOM	3009	CG	PRO	Α	397	0	3.785	31.844	28.978	1.00 17.83
	ATOM	3010	CD	PRO	Α	397	0	2.620	32.464	29.736	1.00 14.36
	ATOM	3011	N	PHE	Α	398	0	5.242	34.590	32.377	1.00 16.39
	ATOM	3012	CA	PHE	Α	398	0	5.462	36.019	32.529	1.00 15.95
	MOTA	3013	С	PHE	A	398	0	6.906	36.365	32.168	1.00 15.74
20	ATOM	3014	0	PHE	A	398	0	7.846	35.619	32.444	1.00 15.78
	ATOM	3015	CB	PHE	A	398	0	5.173	36.455	33.963	1.00 17.20
	ATOM	3016	CG	PHE	A	398	0	3.817	37.073	34.169	1.00 19.23
	ATOM	3017	CD1	PHE	A	398	0	2.673	36.299	34.005	1.00 19.58
	ATOM	3018	CD2	PHE	A	398	0	3.688	38.403	34.537	1.00 19.42
25	ATOM	3019	CE1	PHE	A	398	0	1.409	36.832	34.198	1.00 19.83
	ATOM	3020	CE2	PHE	A	398	0	2.405	38.933	34.709	1.00 21.46
	ATOM	3021	CZ	PHE	A	398	0	1.260	38.162	34.539	1.00 19.65
	ATOM	3022	N	HIS	A	399	0	7.080	37.562	31.640	1.00 14.77
	ATOM	3023	CA	HIS	A	399	0	8.374	38.089	31.333	1.00 14.75
30	MOTA	3024	С	HIS	A	399	0	8.580	39.496	31.872	1.00 17.67
	ATOM	3025	0	HIS	A	399	0	7.635	40.308	31.925	1.00 18.29
	ATOM	3026	CB	HIS			0	8.582	37.968	29.861	1.00 14.01
	ATOM	3027	CG	HIS			0	8.747	39.105	28.962	1.00 16.26
	ATOM	3028		HIS			0	9.957	39.511	28.446	1.00 15.35
35	MOTA	3029		HIS			0	7.788	39.903	28.386	1.00 17.58
	MOTA	3030		HIS			0	9.764	40.507	27.593	1.00 15.61
	ATOM	3031	NE2	HIS	A	399	0	8.457	40.770	27.548	1.00 17.52
	MOTA	3032	N	LEU	A	400	0	9.837	39.771	32.201	1.00 15.57
	MOTA	3033	CA	LEU	A	400	0	10.220	41.061	32.745	1.00 16.93
40	ATOM	3034	С	LEU	A	400	0	11.207	41.732	31.788	1.00 16.51
	ATOM	3035	0	LEU			0	12.268	41.175	31.510	1.00 15.77
	ATOM	3036	CB	LEU			0	10.913	40.825	34.084	1.00 18.17
	ATOM	3037	CG	LEU			0	10.877	41.741	35.288	1.00 21.27
	ATOM	3038	CD1	LEU	A	400	0	12.130	41.638	36.151	1.00 19.27

3039 CD2 LEU A 400 0 10.536 43.166 34.926 1.00 19.86

	ATOM	3040	N	HIS	A	401	0	10.945	42.916	31.321	1.00	14.34
	ATOM	3041	CA	HIS	A	401	0	11.830	43.707	30.508	1.00	16.06
	ATOM	3042	C	HIS	A	401	0	12.924	44.300	31.428	1.00	16.15
	ATOM	3043	0	HIS	A	401	0	12.644	44.543	32.600	1.00	13.61
5	ATOM	3044	CB	HIS	A	401	0	11.105	44.884	29.843	1.00	13.27
	ATOM	3045	CG	HIS	A	401	0	10.184	44.441	28.751	1.00	14.50
	ATOM	3046	ND1	HIS	A	401	0	10.201	44.973	27.479	1.00	14.96
	ATOM	3047	CD2	HIS	A	401	0	9.202	43.492	28.750	1.00	12.35
	ATOM	3048	CE1	HIS	A	401	0	9.263	44.387	26.725	1.00	12.61
10	ATOM	3049	NE2	HIS	A	401	0	8.677	43.507	27.492	1.00	12.41
	MOTA	3050	N	GLY	A	402	0	14.103	44.549	30.855	1.00	15.59
	MOTA	3051	CA	GLY	A	402	0	15.152	45.209	31.598	1.00	15.18
	ATOM	3052	C	GLY	A	402	0	16.009	44.351	32.510	1.00	15.96
	ATOM	3053	0	GLY	A	402	0	16.927	44.898	33.170	1.00	16.30
15	ATOM	3054	N	HIS	A	403	0	15.618	43.147	32.893	1.00	12.96
	ATOM	3055	CA	HIS	A	403	0	16.282	42.337	33.873	1.00	15.00
	ATOM	3056	C	HIS	A	403	0	16.226	40.839	33.586	1.00	15.22
	ATOM	3057	0	HIS	A	403	0	15.253	40.381	32.971	1.00	16.16
	ATOM	3058	СВ	HIS	A	403	0	15.525	42.478	35.227	1.00	14.13
20	ATOM	3059	CG	HIS	A	403	0	15.571	43.829	35.827	1.00	16.69
	ATOM	3060	ND1	HIS	A	403	0	16.604	44.253	36.649	1.00	16.13
	ATOM	3061	CD2	HIS	A	403	0	14.744	44.911	35.659	1.00	15.50
	ATOM	3062	CE1	HIS	A	403	0	16.425	45.520	37.002	1.00	15.02
	ATOM	3063	NE2	HIS	A	403	0	15.285	45.905	36.430	1.00	16.15
25	ATOM	3064	N	ALA	A	404	0	17.138	40.054	34.113	1.00	13.71
	MOTA	3065	CA	ALA	A	404	0	17.039	38.607	34.158	1.00	12.60
	MOTA	3066	C	ALA	A	404	0	16.771	38.370	35.649	1.00	12.31
	ATOM	3067	0	ALA	A	404	0	17.156	39.291	36.373	1.00	13.94
	MOTA	3068	CB	ALA	A	404	0	18.249	37.819	33.721	1.00	13.84
30	MOTA	3069	N	PHE	A	405	0	16.085	37.356	36.126	1.00	12.21
	MOTA	3070	CA	PHE	A	405	0	15.813	37.235	37.559	1.00	11.64
	MOTA	3071	C	PHE	A	405	0	16.177	35.821	38.008	1.00	12.55
	MOTA	3072	0	PHE	A	405	0	16.196	34.883	37.201	1.00	12.23
	MOTA	3073	CB	PHE	A	405	0	14.325	37.487	37.907	1.00	11.82
35	MOTA	3074	CG	PHE	A	405	0	13.382	36.893	36.879	1.00	11.75
	MOTA	3075	CD1	PHE	A	405	0	13.030	35.557	36.933	1.00	10.76
	MOTA	3076	CD2	PHE	A	405	0	12.917	37.663	35.824	1.00	11.55
	ATOM	3077	CEl	PHE	A	405	0	12.189	35.002	35.978	1.00	11.52
	MOTA	3078	CE2	PHE	A	405	0	12.087	37.112	34.862	1.00	13.32
40	MOTA	3079	CZ	PHE	A	405	0	11.692	35.767	34.946	1.00	11.45
	ATOM	3080	N	SER	A	406	0	16.414	35.625	39.288	1.00	12.86
	MOTA	3081	CA	SER	A	406	0	16.660	34.286	39.796	1.00	13.43
	MOTA	3082	C	SER	A	406	0	15.276	33.712	40.130	1.00	13.49
	ATOM	3083	0	SER	A	406	0	14.518	34.375	40.847	1.00	10.13
45	MOTA	3084	CB	SER	A	406	0	17.433	34.290	41.123	1.00	13.78

	MOTA	3085	OG	SER	A	406	0	18.708	34.834	40.938	1.00 16.72
	MOTA	3086	N	VAL	A	407	0	15.100	32.453	39.741	1.00 14.53
	MOTA	3087	CA	VAL	A	407	0	13.853	31.777	40.093	1.00 13.90
	ATOM	3088	С	VAL	A	407	0	14.160	30.943	41.325	1.00 14.53
5	ATOM	3089	0	AŸT	A	407	0	14.513	29.753	41.262	1.00 14.62
	ATOM	3090	СВ	VAL	A	407	0	13.333	30.903	38.941	1.00 16.43
	MOTA	3091	CG1	VAL	A	407	0 -	11.969	30.317	39.341	1.00 16.69
	MOTA	3092	CG2	VAL	A	407	0	13.272	31.682	37.626	1.00 14.90
	MOTA	3093	N	VAL	A	408	0	13.971	31.544	42.485	1.00 14.32
10	MOTA	3094	CA	VAL	A	408	0	14.173	30.947	43.780	1.00 15.47
	MOTA	3095	C	VAL	A	408	0	13.115	29.870	44.049	1.00 16.51
	MOTA	3096	0	VAL	A	408	0	13.387	28.927	44.812	1.00 17.39
	MOTA	3097	CB	JAV	A	408	0	14.280	31.967	44.932	1.00 15.75
	MOTA	3098	CG1	VAL	A	408	0	15.345	33.015	44.600	1.00 14.81
15	MOTA	3099	CG2	VAL	A	408	0	12.952	32.693	45.189	1.00 15.99
	MOTA	3100	N	ARG	A	409	0	11.972	29.940	43.387	1.00 16.28
	ATOM	3101	CA	ARG	A	409	0	10.960	28.900	43.570	1.00 17.67
	MOTA	3102	С	ARG	A	409	0	10.217	28.757	42.236	1.00 17.09
	MOTA	3103	0	ARG	A	409	0	9.585	29.698	41.763	1.00 15.25
20	MOTA	3104	CB	ARG	A	409	0	9.993	29.143	44.718	1.00 17.87
	MOTA	3105	CG	ARG	A	409	0	8.796	28.188	44.663	1.00 21.12
	ATOM	3106	CD	ARG	A	409	0	8.008	28.181	45.945	1.00 22.10
	ATOM	3107	NE	ARG	A	409	0	6.801	27.370	45.955	1.00 24.80
	ATOM	3108	CZ	ARG	A	409	0	5.918	27.361	46.961	1.00 25.93
25	ATOM	3109	NH1	ARG	A	409	0	4.859	26.569	46.877	1.00 27.14
	ATOM	3110	NH2	ARG	A	409	0	6.068	28.117	48.046	1.00 25.44
	MOTA	3111	N	SER	A	410	0	10.366	27.576	41.668	1.00 16.33
	ATOM	3112	CA			410	0	9.802	27.245	40.373	1.00 18.33
	ATOM	3113	C			410	0	8.406	26.612	40.492	1.00 18.60
30	ATOM	3114	0			410	0	7.941	26.223	41.566	1.00 16.94
	ATOM	3115	CB			410	0	10.724	26.199	39.705	1.00 19.51
	ATOM	3116	OG			410	0	11.718	26.865	38.933	1.00 20.28
	ATOM	3117	N			411	0	7.754	26.551	39.343	1.00 18.19
0.5	ATOM	3118	CA			411	0	6.458	25.899	39.231	1.00 19.76
35	ATOM	3119	C			411	0	6.667	24.406	39.474	1.00 22.62
	ATOM	3120	0			411	0	7.636	23.759	39.067	1.00 20.97
	ATOM	3121	CB			411	0	5.873	26.075	37.841	1.00 17.13
	ATOM	3122	N			412	0	5.710	23.856	40.229	1.00 26.30
	ATOM	3123	CA			412	0	5.714	22.442	40.558	1.00 27.05
40	MOTA	3124	C			412	0	6.692	22.150	41.677	1.00 29.22
	ATOM	3125	0			412	0	6.917	20.959	41.944	1.00 32.10
	MOTA	3126	N			413	0	7.293	23.139	42.322	1.00 28.66
	ATOM	3127	CA			413	0	8.223	22.871	43.400	1.00 28.58
4.5	MOTA	3128	C			413	0	7.757	23.600	44.642	1.00 29.64
45	MOTA	3129	0	SER	A	413	0	7.279	24.735	44.524	1.00 30.66

	MOTA	3130	CB	SER	A	413	0	9.610	23.407	43.015	1.00	30.12
	ATOM	3131	OG	SER	A	413	0	10.484	23.233	44.127	1.00	31.74
	ATOM	3132	N	SER	A	414	0	7.902	23.031	45.819	1.00	29.19
	ATOM	3133	CA	SER	A	414	0	7.523	23.753	47.033	1.00	30.71
5	ATOM	3134	C	SĒR	A	414	0	8.762	24.124	47.834	1.00	30.51
	ATOM	3135	0	SER	A	414	0	8.746	24.453	49.017	1.00	31.90
	ATOM	3136	CB	SER	A	414	0	6.612	22.832	47.853	1.00	31.10
	MOTA	3137	OG	SER	A	414	0	7.438	21.764	48.299	1.00	34.24
	ATOM	3138	N	THR	A	415	0	9.919	24.063	47.194	1.00	30.60
10	MOTA	3139	CA	THR	A	415	0	11.194	24.336	47.860	1.00	30.60
	MOTA	3140	C	THR	A	415	0	11.819	25.614	47.291	1.00	27.71
	ATOM	3141	0	THR	A	415	0	11.582	25.998	46.137	1.00	27.49
	ATOM	3142	CB	THR	A	415	0	12.089	23.095	47.747	1.00	32.16
	ATOM	3143	OG1	THR	Α	415	0	13.411	23.441	47.285	1.00	35.60
15	MOTA	3144	CG2	THR	A	415	0	11.599	22.103	46.710	1.00	34.11
	MOTA	3145	N	TYR	A	416	0	12.662	26.268	48.053	1.00	24.34
	ATOM	3146	CA	TYR	A	416	0	13.288	27.513	47.621	1.00	25.69
	MOTA	3147	C	TYR	Α	416	0	14.782	27.297	47.392	1.00	24.69
	MOTA	3148	0	TYR	A	416	0	15.364	26.603	48.211	1.00	25.96
20	ATOM	3149	CB	TYR	A	416	0	13.129	28.633	48.659	1.00	23.79
	ATOM	3150	CG	TYR	A	416	0	11.690	29.091	48.794	1.00	24.53
	MOTA	3151	CD1	TYR	A	416	0	10.789	28.387	49.596	1.00	24.14
	ATOM	3152	CD2	TYR	A	416	0	11.230	30.219	48.131	1.00	23.99
	MOTA	3153	CEl	TYR	A	416	0	9.474	28.799	49.713	1.00	23.70
25	MOTA	3154	CE2	TYR	A	416	0	9.922	30.641	48.248	1.00	23.96
	ATOM	3155	CZ	TYR	A	416	0	9.050	29.929	49.054	1.00	23.73
	ATOM	3156	OH	TYR	A	416	0	7.744	30.337	49.152	1.00	23.53
	MOTA	3157	N	ASN	A	417	0	15.360	27.867	46.353	1.00	22.34
	MOTA	3158	CA	ASN	A	417	0	16.810	27.702	46.223	1.00	20.83
30	MOTA	3159	С	ASN	A	417	0	17.425	29.089	46.092	1.00	20.43
	MOTA	3160	0	ASN	A	417	0	17.247	29.761	45.082	1.00	20.00
	MOTA	3161	CB	ASN	A	417	0	17.179	26.763	45.086	1.00	19.72
	MOTA	3162	CG	ASN	A	417	0	18.660	26.716	44.758	1.00	19.50
	MOTA	3163	OD1	ASN	A	417	0	19.485	27.313	45.465	1.00	20.18
35	ATOM	3164	ND2	ASN	A	417	0	18.981	26.043	43.660	1.00	17.21
	ATOM	3165	N	PHE	A	418	0	18.153	29.508	47.119	1.00	20.79
	ATOM	3166	CA	PHE	Α	418	0	18.831	30.797	47.049	1.00	20.77
	ATOM	3167	С	PHE	A	418	0	20.314	30.613	46.725	1.00	20.47
	ATOM	3168	0	PHE	A	418	0	20.973	31.618	46.517	1.00	19.47
40	ATOM	3169		PHE			0	18.764	31.542	48.384	1.00	20.52
	ATOM	3170	CG	PHE	A	418	0	17.332	31.821	48.753	1.00	22.19
	ATOM	3171	CD1	PHE	A	418	0	16.644	30.947	49.578	1.00	21.36
	ATOM	3172		PHE			0	16.697			1.00	21.95
	ATOM	3173	CE1				0		31.208			21.64
45	ATOM	3174		PHE			0	15.386	33.198		1.00	22.81

	ATOM	3175	CZ	PHE	A	418	0	14.694	32.325	49.419	1.00	22.57
	ATOM	3176	N	VAL	A	419	0	20.816	29.380	46.732	1.00	19.72
	ATOM	3177	CA	VAL	A	419	0	22.272	29.235	46.564	1.00	19.96
	ATOM	3178	C	VAL	A	419	0	22.682	29.261	45.114	1.00	20.65
5	MOTA	3179	0	VAL	A	419	0	23.634	29.875	44.671	1.00	21.02
	MOTA	3180	CB	VAL	A	419	0	22.708	27.888	47.200	1.00	21.81
	ATOM	3181	CG1	VAL	A	419	0	23.954	27.291	46.588	1.00	21.97
	MOTA	3182	CG2	VAL	A	419	0	22.885	28.098	48.713	1.00	21.55
	ATOM	3183	N	ASN	A	420	0	21.867	28.585	44.327	1.00	19.77
10	ATOM	3184	CA	ASN	Α	420	0	22.076	28.232	42.967	1.00	21.81
	MOTA	3185	C	ASN	A	420	0	21.028	28.263	41.891	1.00	20.21
	MOTA	3186	0	ASN	A	420	0	21.046	27.407	41.004	1.00	20.13
	MOTA	3187	CB	ASN	A	420	0	22.166	26.587	43.207	1.00	21.91
	ATOM	3188	CG	ASN	A	420	0	23.441	26.231	42.529	1.00	24.12
15	ATOM	3189	OD1	ASN	Α	420	0	23.933	25.113	42.403	1.00	26.75
	ATOM	3190	ND2	ASN	Α	420	0	24.051	27.318	42.027	1.00	25.42
	MOTA	3191	N	PRO	Α	421	0	19.987	29.034	42.038	1.00	20.27
	MOTA	3192	CA	PRO	A	421	0	18.808	28.951	41.183	1.00	17.57
	ATOM	3193	C	PRO	A	421	0	19.100	29.369	39.778	1.00	15.76
20	MOTA	3194	0	PRO	A	421	0	19.907	30.281	39.586	1.00	15.13
	MOTA	3195	CB	PRO	A	421	0	17.769	29.850	41.894	1.00	19.52
	ATOM	3196	CG	PRO	A	421	0	18.674	30.863	42.589	1.00	19.88
	ATOM	3197	CD	PRO	A	421	0	19.847	30.057	43.095	1.00	20.45
	ATOM	3198	N	VAL	A	422	0	18.385	28.803	38.820	1.00	15.28
25	ATOM	3199	CA	VAL	A	422	0	18.502	29.239	37.420	1.00	13.48
	ATOM	3200	C	VAL	A	422	0	18.157	30.721	37.397	1.00	14.53
	ATOM	3201	0	VAL	A	422	0	17.340	31.208	38.183	1.00	14.44
	ATOM	3202	CB	VAL	A	422	0	17.498	28.435	36.585	1.00	15.23
	ATOM	3203	CG1	VAL	Α	422	0	16.032	28.747	36.937	1.00	13.85
30	ATOM	3204	CG2	VAL	A	422	0	17.681	28.514	35.089	1.00	13.26
	ATOM	3205	N	LYS	Α	423	0	18.691	31.447	36.451	1.00	15.35
	ATOM	3206	CA	LYS	A	423	0	18.366	32.831	36.189	1.00	17.23
	ATOM	3207	C	LYS	A	423	0	17.759	32.891	34.784	1.00	16.55
	ATOM	3208	0	LYS	A	423	0	18.284	32.189	33.909	1.00	16.92
35	ATOM	3209	CB	LYS	A	423	0	19.627	33.681	36.174	1.00	19.33
	ATOM	3210	CG	LYS	A	423	0	20.118	33.985	37.565	1.00	24.09
	ATOM	3211	CD	LYS	Α	423	0	21.065	35.206	37.466	1.00	27.32
	ATOM	3212	CE	LYS	A	423	0	22.470	34.596	37.263	1.00	28.78
	ATOM	3213	NZ	LYS	Α	423	0	23.128	34.482	38.595	1.00	29.50
40	ATOM	3214	N	ARG	A	424	0	16.630	33.570	34.617	1.00	15.85
	ATOM	3215	CA			424	0	16.016	33.592	33.294	1.00	16.20
	ATOM	3216	C			424	0	15.235	34.890	33.105		14.86
	ATOM	3217	0			424		15.354		33.959	1.00	14.64
	ATOM	3218	СВ			424	0	15.158				16.11
45	ATOM	3219	CG			424		14.036				14.06

PCT/DK98/00070

	ATOM	3220	CD	ARG	A	424	0	13.447	30.506	33.427	1.00	11.65
	ATOM	3221	NE	ARG	A	424	0	13.422	30.395	31.961	1.00	9.03
	ATOM	3222	CZ	ARG	A	424	0	13.312	29.234	31.319	1.00	10.63
	ATOM	3223	NH1	ARG	A	424	0	13.185	28.133	32.082	1.00	11.02
5	ATOM	3224	NH2	ARG	A	424	0	13.403	29.213	29.988	1.00	8.52
	ATOM	3225	N	ASP	A	425	0	14.519	34.975	31.995	1.00	13.83
	ATOM	3226	CA	ASP	A	425	0	13.751	36.209	31.752	1.00	15.00
	ATOM	3227	C	ASP	A	425	0	12.298	35.929	31.359	1.00	15.65
	ATOM	3228	Ó	ASP	A	425	0	11.474	36.850	31.271	1.00	15.11
10	MOTA	3229	CB	ASP	Α	425	0	14.499	37.130	30.797	1.00	12.96
	ATOM	3230	CG	ASP	A	425	0	14.609	36.652	29.371	1.00	14.32
	ATOM	3231	OD1	ASP	A	425	0	13.697	35.957	28.818	1.00	13.30
	MOTA	3232	OD2	ASP	A	425	0	15.632	37.003	28.729	1.00	13.76
	MOTA	3233	N	VAL	A	426	0	11.883	34.675	31.206	1.00	15.21
15	MOTA	3234	CA	VAL	A	426	0	10.530	34.229	30.984	1.00	13.92
	MOTA	3235	С	VAL	A	426	0	10.247	33.000	31.865	1.00	13.98
	ATOM	3236	0	VAL	A	426	0	10.891	31.965	31.696	1.00	15.56
	ATOM	3237	СВ	VAL	A	426	0	10.128	33.807	29.567	1.00	12.49
	ATOM	3238	CG1	VAL	A	426	0	8.629	33.473	29.531	1.00	13.99
20	ATOM	3239	CG2	VAL	A	426	0	10.390	34.874	28.536	1.00	12.37
	ATOM	3240	N	VAL	A	427	0	9.274	33.090	32.766	1.00	12.82
	ATOM	3241	CA	VAL	A	427	0	8.979	31.969	33.639	1.00	12.27
	ATOM	3242	C	VAL	A	427	0	7.495	31.589	33.651	1.00	14.14
	ATOM	3243	0	VAL	A	427	0	6.594	32.426	33.682	1.00	14.10
25	ATOM	3244	СВ	VAL	A	427	0	9.458	32.315	35.056	1.00	11.46
	MOTA	3245	CG1	VAL	A	427	0	8.732	33.549	35.594	1.00	9.39
	ATOM	3246	CG2	VAL	A	427	0	9.353	31.116	35.982	1.00	10.53
	ATOM	3247	N	SER	A	428	0	7.229	30.282	33.622	1.00	13.74
	ATOM	3248	CA	SER	A	428	0	5.889	29.766	33.721	1.00	15.16
30	ATOM	3249	С	SER	A	428	0	5.445	29.878	35.171	1.00	15.48
	ATOM	3250	0	SER	A	428	0	6.186	29.505	36.087	1.00	15.38
	ATOM	3251	CB	SER	A	428	0	5.776	28.323	33.206	1.00	16.37
	ATOM	3252	OG	SER	A	428	0	4.464	27.821	33.484	1.00	17.00
	MOTA	3253	N	LEU	A	429	0	4.246	30.376	35.399	1.00	15.74
35	ATOM	3254	CA	LEU	A	429	0	3.686	30.489	36.744	1.00	15.73
	ATOM	3255	C	LEU	A	429	0	3.035	29.184	37.198	1.00	16.41
	ATOM	3256	0	LEU	A	429	0	2.741	29.041	38.390	1.00	15.74
	ATOM	3257	СВ	LEU	A	429	01	2.669	31.627	36.886	1.00	14.99
	ATOM	3258	CG	LEU	A	429	0	3.155	33.027	36.540	1.00	16.60
40	ATOM	3259	CD1	LEU	Α	429	0	2.043	34.042	36.862	1.00	17.78
	ATOM	3260	CD2	LEU	Α	429	0	4.438	33.386	37.281	1.00	16.26
	ATOM	3261	N			430	0	2.913	28.218	36.295	1.00	17.70
	ATOM	3262	CA			430	0	2.419	26.904	36.701	1.00	19.84
	ATOM	3263	C			430	0	0.894	26.836	36.778	1.00	20.72
45	ATOM	3264	0			430	0	0.178	27.498	36.029		20.89
	· 		-									

	ATOM	3265	N	VAL 2	A	431	0	0.428	26.056	37.729	1.00	22.04
	ATOM	3266	CA	VAL :	A	431	0	-0.956	25.713	37.966		22.61
	ATOM	3267	C	VAL :	A	431	0	-1.337	26.028	39.409	1.00	23.06
	ATOM	3268	0	VAL .	A	431	0	-0.476	26.392	40.218	1.00	22.42
5	ATOM	3269	СВ	VĀL .	Α	431	0	-1.245	24.193	37.768	1.00	23.03
	ATOM	3270	CG1	VAL .	A	431	0	-0.795	23.672	36.416	1.00	22.74
	MOTA	3271	CG2	VAL .	A	431	0	-0.574	23.315	38.820	1.00	22.77
	ATOM	3272	N	THR .	A	432	0	-2.615	25.835	39.704	1.00	23.88
	ATOM	3273	CA	THR	A	432	0	-3.168	26.067	41.041	1.00	24.18
10	ATOM	3274	С	THR .	Α	432	0	-2.324	25.401	42.092	1.00	23.94
	ATOM	3275	0	THR	A	432	0	-1.915	24.249	41.909	1.00	24.69
	ATOM	3276	CB	THR	Α	432	0	-4.625	25.565	41.069	1.00	25.75
	MOTA	3277	OG1	THR	Α	432	0	-5.336	26.344	40.087	1.00	25.87
	ATOM	3278	CG2	THR	A	432	0	-5.319	25.800	42.398	1.00	26.65
15	ATOM	3279	N	GLY	Α	433	0	-1.924	26.136	43.124	1.00	24.45
	ATOM	3280	CA	GLY	Α	433	0	-1.035	25.589	44.159	1.00	22.27
	MOTA	3281	С	GLY	Α	433	0	0.394	26.120	43.983	1.00	23.26
	ATOM	3282	0	GLY	Α	433	0	1.103	26.212	45.000	1.00	23.30
	MOTA	3283	N	ASP	Α	434	0	0.833	26.481	42.776	1.00	21.12
20	ATOM	3284	CA	ASP	A	434	0	2.192	26.986	42.586	1.00	20.62
	ATOM	3285	C	ASP	Α	434	0	2.360	28.408	43.126	1.00	22.36
	ATOM	3286	0	ASP	Α	434	0	1.425	29.225	43.076	1.00	21.24
	ATOM	3287	CB	ASP	A	434	0	2.548	27.024	41.087	1.00	18.78
	MOTA	3288	CG	ASP	A	434	0	2.827	25.616	40.597	1.00	19.71
25	MOTA	3289	OD1	ASP	Α	434	0	3.304	24.828	41.409	1.00	20.43
	MOTA	3290	OD2	ASP	Α	434	0	2.596	25.242	39.432	1.00	21.58
	MOTA	3291	N	GLU	A	435	0	3.585	28.721	43.562	1.00	22.08
	ATOM	3292	CA	GLU	A	435	0	3.853	30.077	44.068	1.00	23.24
	ATOM	3293	С	GLU	Α	435	0	5.244	30.512	43.612	1.00	20.24
30	ATOM	3294	0	GLU	Α	435	0	6.201	30.611	44.372	1.00	19.50
	ATOM	3295	СВ	GLU	A	435	0	3.659	30.068	45.572	1.00	25.56
	ATOM	3296	CG	GLU	A	435	0	3.739	31.409	46.258	1.00	30.52
	ATOM	3297	CD	GLU	A	435	0	3.107	31.350	47.657	1.00	35.00
	MOTA	3298	OE1	GLU	Α	435	0	2.093	30.603	47.760	1.00	35.71
35	ATOM	3299	OE2	GLU	Α	435	0	3.658	32.020	48.579	1.00	35.91
	ATOM	3300	N	VAL	Α	436	0	5.344	30.690	42.297	1.00	17.80
	ATOM	3301	CA	VAL	Α	436	0	6.564	31.083	41.640	1.00	15.30
	ATOM	3302	C	VAL	A	436	0	7.049	32.416	42.221	1.00	17.15
	MOTA	3303	0	VAL	A	436	0	6.326	33.402	42.275	1.00	17.48
40	ATOM	3304	СВ	VAL	A	436	0	6.360	31.219	40.129	1.00	14.63
	ATOM	3305	CG1	. VAL	A	436	0	7.463	32.009	39.454	1.00	10.79
	ATOM	3306	CG2	. VAL	A	436	0	6.238	29.806	39.536	1.00	14.13
	ATOM	3307	N			437		8.290	32.391	42.691	1.00	16.51
	ATOM	3308	CA			437		8.940	33.505	43.364	1.00	16.19
45	ATOM	3309	С			437		10.254	33.817	42.668	1.00	15.24

WO 98/38287 PCT/DK98/00070

	ATOM	3310	0	THR	A	437	0	11.100	32.940	42.419	1.00	15.47
	ATOM	3311	СВ	THR	A	437	0	9.190	33.067	44.827	1.00	14.95
	MOTA	3312	OG1	THR	A	437	0	7.969	32.499	45.308	1.00	13.50
	MOTA	3313	CG2	THR	A	437	0	9.599	34.232	45.697	1.00	13.41
5	MOTA	3314	N	-ILE	A	438	0	10.413	35.059	42.251	1.00	13.38
	ATOM	3315	CA	ILE	A	438	0	11.597	35.471	41.510	1.00	15.78
	MOTA	3316	С	ILE	A	438	0	12.292	36.590	42.264	1.00	15.86
	ATOM	3317	0	ILE	A	438	0	11.617	37.270	43.048	1.00	17.32
	MOTA	3318	CB	ILE	Α	438	0	11.249	35.848	40.053	1.00	15.40
10	ATOM	3319	CG1	ILE	A	438	0	10.340	37.055	39.985	1.00	15.85
	ATOM	3320	CG2	ILE	A	438	0	10.602	34.653	39.346	1.00	17.11
	MOTA	3321	CD1	ILE	A	438	0	9.971	37.607	38.632	1.00	17.49
	MOTA	3322	N	ARG	A	439	0	13.599	36.789	42.055	1.00	16.02
	ATOM	3323	CA	ARG	A	439	0	14.315	37.896	42.671	1.00	13.90
15	ATOM	3324	C	ARG	A	439	0	15.181	38.645	41.676	1.00	13.52
	ATOM	3325	0	ARG	A	439	0	15.748	38.056	40.762	1.00	14.74
	ATOM	3326	CB	ARG	A	439	0	15.193	37.501	43.850	1.00	15.15
	ATOM	3327	CG	ARG	Α	439	0	14.457	37.235	45.147	1.00	14.83
	ATOM	3328	CD	ARG	Α	439	0	15.367	37.337	46.355	1.00	14.08
20	ATOM	3329	NE	ARG	A	439	0	14.613	37.000	47.566	1.00	17.06
	ATOM	3330	CZ	ARG	A	439	0	15.192	36.922	48.767	1.00	18.01
	ATOM	3331	NH1	ARG	A	439	0	16.487	37.176	48.908	1.00	17.76
	ATOM	3332	NH2	ARG	A	439	0	14.459	36.604	49.818	1.00	18.55
	MOTA	3333	N	PHE	A	440	0	15.314	39.957	41.853	1.00	14.44
25	ATOM	3334	CA	PHE	A	440	0	16.204	40.737	40.993	1.00	15.97
	ATOM	3335	C	PHE	A	440	0	16.645	41.986	41.761	1.00	15.86
	ATOM	3336	0	PHE	A	440	0	16.113	42.313	42.801	1.00	15.79
	MOTA	3337	CB	PHE	A	440	0	15.638	41.081	39.620	1.00	15.17
	MOTA	3338	CG	PHE	A	440	0	14.416	41.948	39.647	1.00	16.95
30	ATOM	3339	CD1	PHE	A	440	0	14.525	43.333	39.528	1.00	17.23
	MOTA	3340	CD2	PHE	A	440	0	13.158	41.377	39.798	1.00	16.35
	MOTA	3341	CEl	PHE	A	440	0	13.397	44.152	39.566	1.00	17.07
	ATOM	3342	CE2	PHE	A	440	0	12.026	42.180	39.841	1.00	17.12
	ATOM	3343	CZ	PHE	A	440	0	12.144	43.575	39.719	1.00	18.30
35	ATOM	3344	N	VAL	A	441	0	17.676	42.648	41.268	1.00	16.10
	ATOM	3345	CA	VAL	A	441	0	18.172	43.874	41.879	1.00	16.29
	ATOM	3346	С	VAL	A	441	0	17.776	45.035	40.972	1.00	14.00
	MOTA	3347	0	VAL	A	441	0	17.866	44.924	39.736	1.00	12.72
	ATOM	3348	СВ	VAL	Α	441	0	19.675	43.769	42.144	1.00	18.13
40	ATOM	3349	CG1	VAL	A	441	0	20.195	45.040	42.794	1.00	18.53
	ATOM	3350	CG2	VAL	Α	441	0	19.969	42.583	43.065	1.00	18.55
	ATOM	3351	N	THR	A	442	0	17.328	46.125	41.579	1.00	11.73
	ATOM	3352	CA			442	0	16.905	47.291	40.800	1.00	13.02
	ATOM	3353	C	THR	A	442	0	18.055	48.208	40.432	1.00	14.83
45	ATOM	3354	0	THR	A	442	0	18.218	49.323	40.947	1.00	15.17

	MOTA	3355	СВ	THR	A	442	0	15.840	48.127	41.558	1.00	14.62
	MOTA	3356	OG1	THR	A	442	0	16.314	48.463	42.864	1.00	14.34
	MOTA	3357	CG2	THR	A	442	0	14.552	47.299	41.727	1.00	13.82
	MOTA	3358	N	ASP	A	443	0	18.818	47.764	39.437	1.00	15.48
5	ATOM	3359	CA	AŞP	A	443	0	20.004	48.449	38.964	1.00	16.57
	MOTA	3360	С	ASP	A	443	0	19.807	49.010	37.569	1.00	15.38
	MOTA	3361	0	ASP	A	443	0	20.788	49.208	36.858	1.00	15.57
	MOTA	3362	CB	ASP	A	443	0	21.133	47.391	38.962	1.00	19.75
	ATOM	3363	CG	ASP	A	443	0	20.877	46.264	37.990	1.00	22.78
10	MOTA	3364	OD1	ASP	A	443	0	21.711	45.353	37.789	1.00	25.70
	MOTA	3365	OD2	ASP	A	443	0	19.836	46.161	37.313	1.00	23.88
	ATOM	3366	N	ASN	A	444	0	18.593	49.278	37.144	1.00	13.71
	ATOM	3367	CA	ASN	A	444	0	18.388	49.721	35.752	1.00	15.87
	ATOM	3368	С	ASN	A	444	0	17.245	50.728	35.702	1.00	17.00
15	ATOM	3369	0	ASN	A	444	0	16.052	50.419	35.614	1.00	16.83
	MOTA	3370	CB	ASN	A	444	0	18.198	48.453	34.930	1.00	15.78
	ATOM	3371	CG	ASN	A	444	0	18.225	48.675	33.442	1.00	18.49
	ATOM	3372	OD1	ASN	A	444	0	18.505	49.809	33.047	1.00	19.42
	MOTA	3373	ND2	ASN	A	444	0	17.925	47.689	32.588	1.00	15.91
20	ATOM	3374	N	PRO	A	445	0	17.598	52.003	35.890	1.00	17.59
	MOTA	3375	CA	PRO	A	445	0	16.683	53.137	35.938	1.00	16.56
	ATOM	3376	С	PRO	A	445	0	15.788	53.217	34.721	1.00	16.99
	ATOM	3377	0	PRO	A	445	0	16.293	53.246	33.594	1.00	17.02
	ATOM	3378	CB	PRO	A	445	0	17.552	54.418	35.951	1.00	18.28
25	ATOM	3379	CG	PRO	A	445	0	18.870	53.871	36.474	1.00	18.09
	ATOM	3380	CD	PRO	A	445	0	19.002	52.409	36.084	1.00	16.05
	ATOM	3381	N	GLY	A	446	0	14.462	53.194	34.918	1.00	17.16
	ATOM	3382	CA	GLY	A	446	0	13.560	53.281	33.743	1.00	15.84
	ATOM	3383	C	GLY	A	446	0	12.297	52.453	33.984	1.00	14.24
30	MOTA	3384	0	GLY	A	446	0	12.192	51.797	35.005	1.00	12.22
	MOTA	3385	N	PRO	A	447	0	11.285	52.697	33.181	1.00	15.53
	MOTA	3386	CA	PRO	A	447	0	9.999	52.048	33.195	1.00	15.24
	MOTA	3387	C	PRO	A	447	0	10.101	50.737	32.401	1.00	13.82
	MOTA	3388	0	PRO	A	447	0	10.514	50.733	31.240	1.00	13.85
35	ATOM	3389	CB	PRO	A	447	0	9.013	52.976	32.473	1.00	16.21
	ATOM	3390	CG	PRO	A	447	0	9.933	53.729	31.554	1.00	16.19
	MOTA	3391	CD	PRO	A	447	0	11.347	53.707	32.096	1.00	17.15
	ATOM	3392	N	TRP	A	448	0	9.787	49.623	33.021	1.00	11.83
	MOTA	3393	CA	TRP	A	448	0	9.898	48.317	32.371	1.00	14.30
40	ATOM	3394	С	TRP	A	448	0	8.610	47.493	32.427	1.00	13.12
	ATOM	3395	0	TRP	A	448	0	8.013	47.355	33.502	1.00	11.63
	ATOM	3396	СВ	TRP	A	448	0	10.985	47.483	33.095	1.00	13.17
	ATOM	3397	CG	TRP	A	448	0	12.321	48.160	33.124	1.00	14.54
	ATOM	3398	CD1	TRP	A	448	0	12.897	48.728	34.239	1.00	14.19
45	ATOM	3399	CD2	TRP	A	448	0	13.211	48.382	32.029	1.00	14.38

1.00 15.02 ATOM 3400 NE1 TRP A 448 0 14.083 49.290 33.873 MOTA 3401 **CE2 TRP A 448** 0 14.308 49.095 32.527 1.00 14.41 30.672 1.00 15.39 MOTA 3402 **CE3 TRP A 448** 0 13.193 48.053 1.00 14.57 ATOM CZ2 TRP A 448 0 31.729 3403 15.388 49.467 ATOM 3404 CZ3 TRP A 448 0 14.250 48.446 29.867 1.00 14.92 ATOM 3405 CH2 TRP A 448 0 15.355 49.135 30.399 1.00 14.93 1.00 14.03 ATOM 3406 N PHE A 449 0 8.231 46.884 31.315 **ATOM** 3407 CA PHE A 449 0 7.023 46.039 31.297 1.00 13.60 ATOM 3408 C PHE A 449 0 7.231 44.712 32.016 1.00 15.32 ATOM 3409 PHE A 449 1.00 13.66 10 0 0 8.312 44.093 31.993 ATOM CB PHE A 449 1.00 16.19 3410 0 6.627 45.773 29.845 **ATOM** 3411 CG PHE A 449 29.380 1.00 18.26 0 5.221 46.033 MOTA 3412 CD1 PHE A 449 0 4.165 46.288 30.226 1.00 17.95 CD2 PHE A 449 1.00 20.73 MOTA 3413 0 4.962 46.027 28.011 15 CE1 PHE A 449 ATOM 3414 0 2.899 46.565 29.745 1.00 18.55 ATOM 3415 CE2 PHE A 449 1.00 20.13 0 3.701 46.293 27.503 ATOM 3416 CZPHE A 449 1.00 18.59 0 2.664 46.543 28.387 ATOM 3417 PHE A 450 6.195 1.00 12.79 N 0 44.245 32.715 MOTA PHE A 450 1.00 14.38 3418 CA 0 6.119 42.963 33.359 20 ATOM 3419 C PHE A 450 0 4.775 42.323 32.952 1.00 15.45 ATOM 3420 О PHE A 450 3.743 42.812 33.423 1.00 15.30 0 ATOM 3421 CB PHE A 450 0 6.186 43.041 34.879 1.00 15.06 ATOM 3422 CG PHE A 450 0 6.210 41.693 35.555 1.00 15.95 MOTA CD1 PHE A 450 7.157 1.00 16.36 3423 0 40.734 35.204 25 ATOM CD2 PHE A 450 1.00 15.45 3424 0 5.325 41.398 36.570 ATOM 3425 CE1 PHE A 450 0 7.222 39.518 35.855 1.00 13.87 ATOM CE2 PHE A 450 3426 37.224 1.00 16.10 0 5.386 40.187 MOTA 3427 CZPHE A 450 0 6.317 39.236 36.854 1.00 15.90 ATOM 3428 N HIS A 451 0 4.737 41.301 32.122 1.00 15.54 30 MOTA 3429 CA HIS A 451 0 3.443 40.841 31.610 1.00 16.24 ATOM HIS A 451 3430 C 3.461 39.426 31.073 1.00 16.95 0 ATOM 3431 0 HIS A 451 0 4.526 38.860 30.812 1.00 17.42 ATOM 3432 CB HIS A 451 0 2.996 41.743 30.435 1.00 14.01 ATOM 1.00 16.98 3433 HIS A 451 41.696 CG 0 3.921 29.281 35 1.00 18.14 **ATOM** ND1 HIS A 451 3434 0 3.791 40.844 28,201 ATOM 3435 CD2 HIS A 451 0 5.058 42.435 29.046 1.00 17.88 MOTA CE1 HIS A 451 1.00 17.83 3436 0 4.759 41.060 27.337 **ATOM** 1.00 18.98 3437 **NE2 HIS A 451** 0 5.554 42.011 27.842 ATOM 3438 N CYS A 452 0 2.261 38.863 30.951 1.00 16.78 40 **ATOM** CYS A 452 1.00 16.34 3439 CA 2.167 37.537 30.388 0 1.00 14.77 **ATOM** 3440 C CYS A 452 0 2.604 37.623 28.924 ATOM 1.00 13.61 3441 0 CYS A 452 0 2.167 38.514 28.188 1.00 18.22 ATOM 3442 CYS A 452 CB 0 0.727 36.983 30.451 **ATOM** 1.00 19.80 3443 SG CYS A 452 0 0.701 35.325 29.692 45 **ATOM** HIS A 453 28.474 1.00 13.29 3444 N 0 3.388 36.640

	ATOM	3445	CA	HIS	A	453	0	3.867	36.716	27.100	1.00	13.19
	ATOM	3446	С	HIS	A	453	0	2.983	35.987	26.099	1.00	13.47
	ATOM	3447	0	HIS	A	453	0	3.296	35.974	24.906	1.00	11.93
	ATOM	3448	CB	HIS	A	453	0	5.314	36.251	27.033	1.00	13.98
5	ATOM	3449	CG	HIS	A	453	0	6.124	36.860	25.945	1.00	11.89
	ATOM	3450	ND1	HIS	A	453	0	5.835	36.763	24.612	1.00	10.68
	MOTA	3451	CD2	HIS	A	453	0	7.270	37.594	26.072	1.00	12.71
	ATOM	3452	CE1	HIS	A	453	0	6.776	37.418	23.923	1.00	12.37
	ATOM	3453	NE2	HIS	A	453	0	7.663	37.930	24.793	1.00	13.20
10	ATOM	3454	N	ILE	A	454	0	1.860	35.429	26.549	1.00	15.35
	ATOM	3455	CA	ILE	A	454	0	0.849	34.937	25.600	1.00	15.85
	MOTA	3456	C	ILE	A	454	0	0.214	36.238	25.089	1.00	18.65
	MOTA	3457	0	ILE	A	454	0	-0.452	36.997	25.824	1.00	17.92
	ATOM	3458	CB	ILE	A	454	0	-0.156	34.001	26.280	1.00	16.46
15	ATOM	3459	CG1	ILE	A	454	0	0.456	32.598	26.512	1.00	15.26
	ATOM	3460	CG2	ILE	A	454	0	-1.402	33.898	25.419	1.00	14.21
	ATOM	3461	CD1	ILE	A	454	0	-0.249	31.804	27.592	1.00	16.26
	ATOM	3462	N	GLU	A	455	0	0.448	36.607	23.832	1.00	21.02
	ATOM	3463	CA	GLU	A	455	0	-0.024	37.856	23.289	1.00	23.78
20	ATOM	3464	C	GLU	A	455	0	-1.526	38.042	23.422	1.00	24.40
	ATOM	3465	0	GLU	A	455	0	-1.953	39.161	23.700	1.00	24.30
	ATOM	3466	CB	GLU	A	455	0	0.399	38.090	21.830	1.00	27.20
	MOTA	3467	CG	GLU	Α	455	0	0.602	39.599	21.595	1.00	33.86
	MOTA	3468	CD	GLU	A	455	0	1.783	40.205	22.309	1.00	37.49
25	MOTA	3469	OE1	GLU	A	455	0	2.311	39.657	23.320	1.00	41.51
	MOTA	3470	OE2	GLU	A	455	0	2.303	41.284	21.907	1.00	41.22
	MOTA	3471	N	PHE	A	456	0	-2.347	37.005	23.334	1.00	23.97
	MOTA	3472	CA	PHE	A	456	0	-3.775	37.163	23.516	1.00	24.68
	ATOM	3473	С	PHE	A	456	0	-4.084	37.533	24.959	1.00	25.11
30	ATOM	3474	0	PHE	A	456	0	-5.181	38.092	25.170	1.00	27.37
	MOTA	3475	CB	PHE	A	456	0	-4.552	35.919	23.023	1.00	24.76
	ATOM	3476	CG	PHE	A	456	0	-4.098	35.614	21.606	1.00	24.98
	ATOM	3477	CD1	PHE	A	456	0	-4.392	36.500	20.590	1.00	24.98
	MOTA	3478	CD2	PHE	A	456	0	-3.331	34.506	21.320	1.00	24.42
35	ATOM	3479	CE1	PHE	A	456	0	-3.988	36.292	19.291	1.00	25.44
	ATOM	3480	CE2	PHE	A	456	0	-2.913	34.293	20.015	1.00	26.40
	MOTA	3481	CZ	PHE	A	456	0	-3.226	35.171	18.997	1.00	25.10
	MOTA	3482	N	HIS	A	457	0	-3.205	37.294	25.922	1.00	22.35
	ATOM	3483	CA	HIS	A	457	0	-3.508	37.682	27.291	1.00	22.55
40	ATOM	3484	C	HIS	A	457	0	-3.053	39.121	27.561	1.00	23.81
	ATOM	3485	0	HIS	A	457	0	-3.756	39.832	28.262	1.00	21.33
	ATOM	3486	CB	HIS	A	457	0	-2.912	36.766	28.336	1.00	20.96
	ATOM	3487	CG	HIS	A	457	0	-3.345	35.346	28.201	1.00	22.51
	ATOM	3488	ND1	HIS	A	457	0	-2.745	34.329	28.905	1.00	21.40
45	ATOM	3489	CD2	HIS	A	457	0	-4.291	34.771	27.404	1.00	22.50

WO 98/38287 PCT/DK98/00070

	MOTA	3490	CE1	HIS	A	457	0	-3.320	33.184	28.575	1.00	22.51
	ATOM	3491	NE2	HIS	A	457	0	-4.237	33.428	27.666	1.00	23.19
	MOTA	3492	N	LEU	A	458	0	-1.876	39.481	27.028	1.00	23.74
	MOTA	3493	CA	LEU	A	458	0	-1.357	40.817	27.125	1.00	24.76
5	MOTA	3494	C	LEU	A	458	0	-2.411	41.828	26.616	1.00	26.52
	MOTA	3495	0	LEU	A	458	0	-2.757	42.751	27.351	1.00	25.18
	MOTA	3496	CB	LEU	A	458	0	-0.108	40.986	26.252	1.00	23.81
	MOTA	3497	CG	LEU	A	458	0	0.898	42.062	26.624	1.00	24.09
	ATOM	3498	CD1	LEU	A	458	0	1.619	42.606	25.390	1.00	24.28
10	ATOM	3499	CD2	LEU	A	458	0	0.351	43.195	27.462	1.00	23.72
	ATOM	3500	N	MET	A	459	0	-2.896	41.611	25.388	1.00	28.19
	MOTA	3501	CA	MET	A	459	0	-3.914	42.458	24.785	1.00	31.98
	MOTA	3502	С	MET	A	459	0	-5.207	42.436	25.603	1.00	29.95
	MOTA	3503	0	MET	A	459	0	-5.886	43.439	25.520	1.00	29.10
15	MOTA	3504	CB	MET	A	459	0	-4.148	42.226	23.284	1.00	35.99
	MOTA	3505	CG	MET	A	459	0	-5.056	41.103	22.852	1.00	42.66
	MOTA	3506	SD	MET	A	459	0	-5.296	40.817	21.069	1.00	49.28
	ATOM	3507	CE	MET	A	459	0	-6.238	39.291	21.119	1.00	47.39
	MOTA	3508	N	ASN	A	460	0	-5.523	41.486	26.464	1.00	29.07
20	ATOM	3509	CA	ASN	A	460	0	-6.706	41.539	27.296	1.00	29.41
	ATOM	3510	С	ASN	A	460	0	-6.407	41.908	28.746	1.00	28.46
	ATOM	3511	0	ASN	A	460	0	-7.183	41.577	29.645	1.00	26.89
	MOTA	3512	CB	ASN	A	460	0	-7.537	40.253	27.210	1.00	31.34
	MOTA	3513	CG	ASN	A	460	0	-8.325	40.243	25.900	1.00	33.82
25	ATOM	3514	OD1	ASN	A	460	0	-7.909	39.609	24.926	1.00	34.29
	ATOM	3515	ND2	ASN	A	460	0	-9.437	40.971	25.861	1.00	34.55
	ATOM	3516	N	GLY			0	-5.320	42.655	28.981		26.30
	ATOM	3517	CA	GLY			0	-5.020	43.198	30.268		24.99
	MOTA	3518	С	GLY			0	-4.043	42.601	31.235	1.00	24.75
30	ATOM	3519	0	GLY			0	-3.879	43.228	32.304	1.00	22.69
	ATOM	3520	N	LEU			0	-3.375	41.478	30.914		22.85
	ATOM	3521	CA	LEU			0	-2.478	40.872	31.913		22.10
	ATOM	3522	С	LEU			0		41.485	31.890		21.56
	ATOM	3523	0	LEU			0	-0.116	40.876	31.415		20.28
35	MOTA	3524	CB	LEU			0	-2.477	39.376	31.669		20.03
	ATOM	3525	CG	LEU			0	-2.010	38.393	32.720		20.40
	ATOM	3526		LEU			0	-2.603	38.608	34.093		20.35
	ATOM	3527	CD2	LEU	A	462	0	-2.385	36.983	32.229		21.01
	ATOM	3528	N	ALA			0	-0.908	42.695	32.408	1.00	20.00
40	ATOM	3529	CA	ALA			0	0.350	43.432	32.381		20.74
	ATOM	3530	С	ALA			0	0.398	44.511	33.481		21.85
	ATOM	3531	0	ALA			0	-0.667	44.965	33.934		22.85
	ATOM	3532	СВ	ALA			0	0.559	44.179	31.060		15.13
	ATOM	3533	N	ILE			0	1.605	44.810	33.950		19.91
45	ATOM	3534	CA	ILE	Α	464	0	1.852	45.905	34.850	1.00	19.81

ATOM 3535 C ILE A 464 0 3.180 46.579 34.434 1.00 19.41 1.00 18.24 MOTA 3536 O ILE A 464 0 3.938 46.003 33.660 45.678 1.00 19.13 MOTA 3537 CB ILE A 464 0 1.910 36.347 **ATOM** 3538 CG1 ILE A 464 0 2.867 44.546 36.697 1.00 19.39 **ATOM** 3539 CG2 ILE A 464 0 0.520 45.455 36.924 1.00 18.48 ATOM CD1 ILE A 464 1.00 21.00 3540 0 3.205 38.179 44.549 **ATOM** 3541 **VAL A 465** 1.00 18.95 N 0 3.380 47.791 34.924 ATOM 3542 CA VAL A 465 0 4.579 48.570 34.637 1.00 18.36 MOTA 3543 C VAL A 465 0 5.327 48.928 35.931 1.00 18.07 10 MOTA 3544 0 VAL A 465 36.931 1.00 15.19 0 4.787 49.424 ATOM 3545 CB VAL A 465 0 4.329 49.913 33.918 1.00 19.73 ATOM 3546 CG1 VAL A 465 0 5.659 50.605 33.602 1.00 18.34 ATOM 3547 CG2 VAL A 465 3.522 49.766 32.629 1.00 18.74 0 MOTA N PHE A 466 1.00 17.55 3548 0 6.649 48.655 35.879 ATOM 15 3549 CA PHE A 466 0 7.499 49.051 37.013 1.00 14.72 ATOM 3550 C PHE A 466 1.00 12.68 0 8.251 50.344 36.653 MOTA 3551 0 PHE A 466 0 9.007 50.420 35.679 1.00 12.23 MOTA 3552 37.381 CB PHE A 466 0 8.484 47.978 1.00 15.19 ATOM 3553 CG PHE A 466 1.00 15.90 0 7.962 46.770 38.080 20 MOTA 3554 CD1 PHE A 466 0 7.328 46.856 39.299 1.00 16.23 MOTA 3555 CD2 PHE A 466 1.00 16.23 0 8.153 45.533 37.492 ATOM 3556 CE1 PHE A 466 0 39.936 1.00 15.97 6.861 45.720 ATOM 3557 CE2 PHE A 466 0 7.665 44.389 38.133 1.00 18.27 MOTA 3558 CZPHE A 466 0 7.018 44.480 39.352 1.00 16.74 25 ATOM 3559 ALA A 467 1.00 10.60 N 0 8.045 51.361 37.443 MOTA 3560 ALA A 467 8.788 37.194 1.00 12.27 CA 0 52.648 ATOM 3561 C **ALA A 467** 0 10.007 52.526 38.111 1.00 12.02 ATOM 3562 0 **ALA A 467** 0 9.905 52.728 39.325 1.00 12.43 MOTA 3563 CB ALA A 467 0 7.845 53.790 37.501 1.00 10.50 30 **ATOM** 3564 N **GLU A 468** 0 11.126 51.989 37.625 1.00 12.62 ATOM 3565 **GLU A 468** CA 0 12.263 51.683 38.515 1.00 14.63 ATOM 3566 C **GLU A 468** 0 13.195 52.883 38.685 1.00 13.91 ATOM 3567 0 **GLU A 468** 0 13.631 53.369 37.651 1.00 13.05 MOTA 3568 CB **GLU A 468** 0 13.049 50.546 37.843 1.00 14.51 35 MOTA 3569 CG **GLU A 468** 0 1.00 16.84 14.256 50.035 38.629 ATOM 3570 **GLU A 468** 1.00 17.96 CD 0 14.805 48.779 37.975 ATOM 3571 OE1 GLU A 468 0 15.985 48.479 38.124 1.00 16.98 MOTA 1.00 18.42 3572 **OE2 GLU A 468** 0 14.086 48.043 37.260 ATOM 3573 N **ASP A 469** 0 13.546 53.286 39.886 1.00 15.17 40 MOTA 1.00 16.85 3574 CA **ASP A 469** 0 14.491 54.371 40.116 ATOM 3575 C **ASP A 469** 0 14.134 55.630 39.333 1.00 16.33 ATOM 3576 0 **ASP A 469** 0 14.851 56.046 38.437 1.00 16.59 **ATOM** 3577 CB **ASP A 469** 0 15.899 53.920 39.748 1.00 19.86 ATOM CG **ASP A 469** 0 17.040 40.289 1.00 21.40 3578 54.766 45 **ATOM** 3579 OD1 ASP A 469 0 16.811 55.793 40.943 1.00 22.21

ATOM 3580 OD2 ASP A 469 0 18.216 54.403 40.069 1.00 22.21 ATOM 3581 N MET A 470 0 13.007 56.246 39.635 1.00 16.12 1.00 18.77 ATOM 3582 CA MET A 470 0 12.522 57.373 38.853 0 1.00 16.31 ATOM 3583 C MET A 470 13.451 58.576 38.950 ATOM 3584 0 **MET A 470** 0 13.591 59.208 37.925 1.00 13.55 39.302 ATOM 3585 CB MET A 470 0 11.116 57.847 1.00 20.06 ATOM MET A 470 0 10.041 56.941 1.00 23.99 3586 CG 38.684 **ATOM** MET A 470 0 8.375 57.337 39.283 1.00 26.08 3587 SD ATOM 3588 CE MET A 470 0 8.030 58.581 38.020 1.00 24.40 10 ATOM 3589 N ALA A 471 0 14.046 58.793 40.117 1.00 14.69 0 **ATOM** 3590 CA ALA A 471 14.953 59.906 40.287 1.00 16.97 ATOM C ALA A 471 0 1.00 18.79 3591 16.141 59.864 39.335 ATOM 3592 0 ALA A 471 0 16.602 60.956 38.945 1.00 21.08 0 ATOM 3593 CB ALA A 471 15.471 59.927 41.728 1.00 17.62 15 ATOM 3594 N ASN A 472 0 16.623 58.695 38.912 1.00 17.28 ATOM **ASN A 472** 0 3595 CA 17.788 58.675 38.015 1.00 16.56 ATOM C **ASN A 472** 0 3596 17.457 58.355 36.572 1.00 16.99 ATOM 1.00 18.74 3597 0 **ASN A 472** 0 18.407 58.143 35.795 MOTA 3598 CB **ASN A 472** 0 18.811 57.645 38.548 1.00 14.60 20 ATOM 3599 CG **ASN A 472** 0 19.417 58.132 39.887 1.00 14.00 ATOM 3600 OD1 ASN A 472 0 18.895 57.830 40.967 1.00 12.71 39.775 MOTA 3601 ND2 ASN A 472 0 20.468 58.916 1.00 10.80 MOTA 3602 N THR A 473 0 16.174 58.284 36.239 1.00 14.26 3603 57.885 ATOM CA THR A 473 0 15.789 34.882 1.00 15.82 25 ATOM 3604 C THR A 473 0 16.150 58.891 1.00 16.81 33.812 ATOM 3605 0 THR A 473 0 16.599 58.455 32.746 1.00 15.89 MOTA CB THR A 473 0 3606 14.267 57.576 34.826 1.00 16.10 ATOM 3607 OG1 THR A 473 0 14.001 35.609 1.00 15.41 56.416 MOTA 3608 CG2 THR A 473 0 13.750 57.337 33.427 1.00 15.24 30 ATOM 3609 N VAL A 474 0 16.000 1.00 18.57 60.195 34.081 ATOM **VAL A 474** 0 3610 CA 16.355 61.192 33.050 1.00 21.06 ATOM 3611 C VAL A 474 0 17.859 1.00 19.12 61.209 32.817 61.234 MOTA 3612 0 VAL A 474 0 18.339 31.688 1.00 19.95 ATOM **VAL A 474** 3613 CB 0 15.860 62.616 33.424 1.00 22.91 35 ATOM 3614 CG1 VAL A 474 0 16.467 63.702 32.538 1.00 23.06 ATOM 3615 CG2 VAL A 474 0 14.346 62.721 33.334 1.00 23.04 **ATOM** 1.00 19.20 3616 N **ASP A 475** 0 18.647 61.175 33.886 MOTA 3617 CA **ASP A 475** 0 20.109 61.168 33.741 1.00 18.98 MOTA 3618 C **ASP A 475** 0 20.578 59.899 33.047 1.00 17.52 40 ATOM 1.00 18.31 3619 0 **ASP A 475** 0 21.386 60.028 32.130 ATOM 3620 CB **ASP A 475** 0 20.780 61.273 35.119 1.00 20.27 ATOM 3621 CG **ASP A 475** 0 22.283 61.075 35.107 1.00 20.18 ATOM OD1 ASP A 475 0 1.00 21.73 3622 22.950 61.889 34.431 MOTA 0 3623 OD2 ASP A 475 22.798 60.139 35.750 1.00 18.03 45 ATOM 3624 N ALA A 476 0 20.062 58.725 33.392 1.00 18.26

	MOTA	3625	CA	ALA	A	476	0	20.539	57.486	32.793	1.00	18.93
	ATOM	3626	C	ALA	Α	476	0	20.165	57.269	31.343	1.00	20.62
	MOTA	3627	0	ALA	A	476	0	20.845	56.502	30.661	1.00	22.64
	ATOM	3628	СВ	ALA	A	476	0	19.966	56.298	33.551	1.00	18.48
5	ATOM	3629	N	ASN	A	477	0	19.047	57.787	30.858	1.00	22.66
	ATOM	3630	CA	ASN	A	477	0	18.605	57.512	29.491	1.00	25.22
	MOTA	3631	С	ASN	A	477	0	18.578	58.782	28.683	1.00	28.55
	MOTA	3632	0	ASN	Α	477	0	17.969	59.755	29.143	1.00	30.20
	MOTA	3633	CB	ASN	A	477	0	17.172	56.948	29.560	1.00	24.22
10	MOTA	3634	CG	ASN	A	477	0	17.114	55.666	30.380	1.00	23.73
	MOTA	3635	OD1	ASN	A	477	0	16.747	55.672	31.570	1.00	21.33
	MOTA	3636	ND2	ASN	A	477	0	17.512	54.575	29.736	1.00	20.87
	MOTA	3637	N	ASN	A	478	0	19.208	58.878	27.514	1.00	31.69
	MOTA	3638	CA	ASN	A	478	0	19.036	60.131	26.776	1.00	33.61
15	MOTA	3639	С	ASN	A	478	0	18.758	59.770	25.331	1.00	32.22
	MOTA	3640	0	ASN	A	478	0	19.602	59.478	24.508	1.00	32.16
	ATOM	3641	CB	ASN	A	478	0	20.086	61.194	27.017	1.00	38.57
	MOTA	3642	CG	ASN	A	478	0	21.426	60.602	27.370	1.00	40.94
	MOTA	3643	OD1	ASN	A	478	0	21.928	59.903	26.484	1.00	44.60
20	MOTA	3644	ND2	ASN	A	478	0	21.866	60.861	28.578	1.00	41.32
	ATOM	3645	N	PRO	A	479	0	17.461	59.733	25.075	1.00	32.37
	MOTA	3646	CA	PRO	A	479	0	16.890	59.381	23.790	1.00	31.84
	ATOM	3647	C	PRO	A	479	0	17.268	60.448	22.776	1.00	32.35
	MOTA	3648	0	PRO	A	479	0	17.422	61.609	23.136	1.00	32.66
25	ATOM	3649	CB	PRO	A	479	0	15.364	59.385	23.931	1.00	31.68
	ATOM	3650	CG	PRO	A	479	0	15.126	59.724	25.373	1.00	31.69
	ATOM	3651	CD	PRO	A	479	0	16.416	60.071	26.064	1.00	32.23
	ATOM	3652	N	PRO	A	480	0	17.399	60.036	21.537	1.00	31.62
	ATOM	3653	CA	PRO	A	480	0	17.670	60.939	20.422	1.00	30.72
30	MOTA	3654	C	PRO	A	480	0	16.452	61.827	20.225	1.00	30.37
	MOTA	3655	0	PRO	A	480	0	15.362	61.525	20.733	1.00	29.47
	ATOM	3656	CB	PRO	A	480	0	17.935	60.035	19.203	1.00	29.87
	ATOM	3657	CG	PRO	A	480	0	17.111	58.811	19.590	1.00	30.44
	MOTA	3658	CD	PRO	A	480	0	17.161	58.657	21.093	1.00	30.35
35	MOTA	3659	N	VAL	A	481	0	16.559	62.906	19.458	1.00	31.72
	ATOM	3660	CA	VAL	A	481	0	15.398	63.788	19.268	1.00	30.68
	MOTA	3661	C	VAL	A	481	0	14.335	63.090	18.446	1.00	29.51
	MOTA	3662	0	VAL	A	481	0	13.134	63.284	18.648	1.00	27.97
	ATOM	3663	CB	VAL	A	481	0	15.818	65.132	18.648	1.00	33.04
40	MOTA	3664	CG1	VAL	A	481	0	16.126	65.010	17.161	1.00	31.91
	ATOM	3665	CG2	VAL	A	481	0	14.717	66.171	18.907	1.00	33.32
	ATOM	3666	N	GLU	A	482	0	14.746	62.167	17.562	1.00	28.90
	ATOM	3667	CA	GLU	A	482	0	13.755	61.402	16.803	1.00	29.62
	MOTA	3668	C	GLU	A	482	0	12.839	60.565	17.691	1.00	28.33
45	ATOM	3669	0	GLU	A	482	0	11.704	60.287	17.280	1.00	28.36

	ATOM	3670	СВ	GLU	A	482	0	14.449	60.498	15.788	1.00	30.63
	ATOM	3671	CG	GLU	A	482	0	15.143	61.256	14.666	1.00	32.78
	ATOM	3672	CD	GLU	A	482	0	16.522	61.784	14.990	1.00	34.96
	ATOM	3673	OE1	GLU	A	482	0	17.021	61.746	16.141	1.00	34.62
5	ATOM	3674	OE2	GLU	A	482	0	17.170	62.297	14.033	1.00	37.13
	ATOM	3675	N	TRP	A	483	0	13.311	60.124	18.857	1.00	25.91
	MOTA	3676	CA	TRP	A	483	0	12.496	59.280	19.711	1.00	25.49
	ATOM	3677	C	TRP	A	483	0	11.224	60.011	20.125	1.00	26.47
	ATOM	3678	0	TRP	A	483	0	10.155	59.405	20.116	1.00	26.95
10	ATOM	3679	СВ	TRP	A	483	0	13.216	58.807	20.974	1.00	21.98
	ATOM	3680	CG	TRP	A	483	0	12.376	58.144	22.013	1.00	21.49
	MOTA	3681	CD1	TRP	A	483	0	11.960	56.827	22.003	1.00	20.81
	ATOM	3682	CD2	TRP	A	483	0	11.818	58.730	23.194	1.00	20.14
	ATOM	3683	NE1	TRP	A	483	0	11.187	56.575	23.143	1.00	20.29
15	MOTA	3684	CE2	TRP	A	483	0	11.097	57.736	23.868	1.00	20.29
	MOTA	3685	CE3	TRP	A	483	0	11.875	60.006	23.754	1.00	21.32
	ATOM	3686	CZ2	TRP	A	483	0	10.422	57.973	25.062	1.00	20.89
	ATOM	3687	CZ3	TRP	A	483	0	11.217	60.248	24.946	1.00	20.78
	MOTA	3688	CH2	TRP	A	483	0	10.495	59.227	25.596	1.00	21.44
20	MOTA	3689	N	ALA	A	484	0	11.342	61.261	20.560	1.00	28.59
	MOTA	3690	CA	ALA	A	484	0	10.165	62.003	21.029	1.00	30.73
	MOTA	3691	C	ALA	A	484	0	9.226	62.350	19.869	1.00	30.42
	ATOM	3692	0	ALA	A	484	0	8.024	62.337	20.071	1.00	31.34
	MOTA	3693	CB	ALA	A	484	0	10.583	63.244	21.806	1.00	31.05
25	MOTA	3694	N	GLN	A	485	0	9.702	62.488	18.653	1.00	30.79
	ATOM	3695	CA	GLN	A	485	0	8.927	62.742	17.466	1.00	33.16
	ATOM	3696	С	GLN	A	485	0	8.026	61.608	17.017	1.00	32.81
	ATOM	3697	0	GLN	A	485	0	7.044	61.847	16.302	1.00	32.74
	MOTA	3698	CB	GLN	A	485	0	9.859	63.113	16.290	1.00	34.56
30	ATOM	3699	CG	GLN	A	485	0	10.631	64.361	16.686	1.00	39.67
	ATOM	3700	CD	GLN	A	485	0	11.559	64.919	15.640	1.00	42.86
	MOTA	3701	OE1	GLN	A	485	0	11.528	66.145	15.434	1.00	45.48
	ATOM	3702	NE2	GLN	A	485	0	12.375	64.103	14.982	1.00	44.07
	MOTA	3703	N	LEU	A	486	0	8.328	60.380	17.443	1.00	30.46
35	ATOM	3704	CA	LEU	A	486	0	7.500	59.231	17.095	1.00	27.76
	MOTA	3705	С	LEU	A	486	0	6.051	59.510	17.509	1.00	28.23
	MOTA	3706	0	LEU	A	486	0	5.100	59.331	16.752	1.00	26.71
	MOTA	3707	CB	LEU	A	486	0	8.043	58.034	17.838	1.00	25.03
	ATOM	3708	CG	LEU	A	486	0	8.988	57.012	17.226	1.00	24.18
40	ATOM	3709	CD1	LEU	A	486	0	9.780	57.416	16.011	1.00	21.41
	ATOM	3710	CD2	LEU	A	486	0	9.864	56.464	18.342	1.00	23.28
	ATOM	3711	N	CYS	A	487	0	5.870	59.974	18.739	1.00	28.05
	ATOM	3712	CA	CYS	A	487	0	4.560	60.263	19.279	1.00	30.77
	ATOM	3713	С	CYS	A	487	0	3.823	61.350	18.499	1.00	33.19
45	ATOM	3714	0	CYS	A	487	0	2.627	61.170	18.263	1.00	33.69

	ATOM	3715	CB	CYS	A	487	0	4.643	60.637	20.752	1.00	27.94
	ATOM	3716	SG	CYS	A	487	0	5.214	59.280	21.781	1.00	27.23
	ATOM	3717	N	GLU	A	488	0	4.543	62.373	18.064	1.00	35.80
	ATOM	3718	CA	GLU	A	488	0	3.871	63.458	17.334	1.00	39.12
5	ATOM	3719	С	GĻU	A	488	0	3.384	62.928	15.995	1.00	37.78
	ATOM	3720	0	GLU	A	488	0	2.186	63.025	15.711	1.00	37.61
	ATOM	3721	CB	GLU	A	488	0	4.737	64.697	17.257	1.00	42.04
	ATOM	3722	CG	GLU	A	488	0	5.667	64.822	16.064	1.00	47.75
	ATOM	3723	CD	GLU	A	488	0	5.634	66.239	15.500	1.00	51.36
10	ATOM	3724	OE1	GLU	A	488	0	5.501	66.422	14.266	1.00	52.66
	ATOM	3725	OE2	GLU	A	488	0	5.743	67.154	16.358	1.00	53.40
	MOTA	3726	N	ILE	A	489	0	4.263	62.253	15.267	1.00	36.63
	ATOM	3727	CA	ILE	A	489	0	3.906	61.647	14.004	1.00	36.74
	ATOM	3728	С	ILE	A	489	0	2.754	60.662	14.113	1.00	36.98
15	MOTA	3729	0	ILE	A	489	0	1.847	60.664	13.276	1.00	38.60
	ATOM	3730	СВ	ILE	A	489	0	5.089	60.903	13.361	1.00	36.57
	MOTA	3731	CG1	ILE	A	489	0	6.267	61.853	13.148	1.00	36.46
	MOTA	3732	CG2	ILE	A	489	0	4.651	60.305	12.030	1.00	36.90
	ATOM	3733	CD1	ILE	A	489	0	7.535	61.194	12.654	1.00	35.62
20	MOTA	3734	N	TYR	A	490	0	2.758	59.808	15.105	1.00	36.22
	MOTA	3735	CA	TYR	A	490	0	1.771	58.765	15.298	1.00	35.95
	MOTA	3736	С	TYR	A	490	0	0.413	59.314	15.692	1.00	37.83
	ATOM	3737	0	TYR	A	490	0	-0.581	58.816	15.165	1.00	39.24
	MOTA	3738	CB	TYR	A	490	0	2.206	57.817	16.409	1.00	32.47
25	MOTA	3739	CG	TYR	A	490	0	1.314	56.641	16.663	1.00	30.55
	MOTA	3740	CD1	TYR	A	490	0	1.176	55.623	15.726	1.00	29.96
	MOTA	3741	CD2	TYR	A	490	0	0.610	56.536	17.849	1.00	29.79
	MOTA	3742	CE1	TYR	A	490	0	0.378	54.528	15.975	1.00	29.51
	ATOM	3743	CE2	TYR	A	490	0	-0.192	55.441	18.114	1.00	29.64
30	MOTA	3744	CZ	TYR	A	490	0	-0.288	54.445	17.171	1.00	29.51
	MOTA	3745	OH	TYR	A	490	0	-1.101	53.363	17.437	1.00	32.06
	ATOM	3746	N	ASP	A	491	0	0.369	60.302	16.564	1.00	40.86
	MOTA	3747	CA	ASP	A	491	0	-0.909	60.887	16.963	1.00	43.97
	ATOM	3748	C	ASP	A	491	0	-1.586	61.633	15.811	1.00	45.30
35	MOTA	3749	0	ASP	A	491	0	-2.809	61.752	15.820	1.00	45.60
	MOTA	3750	CB	ASP	A	491	0	-0.764	61.800	18.170	1.00	44.67
	MOTA	3751	CG	ASP	A	491	0	-0.441	61.101	19.475	1.00	45.90
	ATOM	3752	OD1	ASP	A	491	0	0.149	61.761	20.364	1.00	46.32
	MOTA	3753	OD2	ASP	A	491	0	-0.763	59.911	19.669	1.00	46.04
40	ATOM	3754	N	ASP	A	492	0	-0.871	62.107	14.817	1.00	46.75
	ATOM	3755	CA	ASP	Α	492	0	-1.323	62.804	13.653	1.00	48.98
	ATOM	3756	C	ASP	A	492	0	-1.702	61.936	12.460	1.00	49.48
	ATOM	3757	0	ASP	A	492	0	-2.002	62.458	11.378	1.00	50.24
	ATOM	3758	СВ	ASP	A	492	0	-0.155	63.649	13.107	1.00	51.54
45	ATOM	3759	CG	ASP	A	492	0	-0.168	65.081	13.587	1.00	53.57

	ATOM	3760	OD1	ASP	A	492	0	-0.886	65.375	14.570	1.00	54.07
	MOTA	3761	OD2	ASP	A	492	0	0.576	65.857	12.939	1.00	55.04
	MOTA	3762	И	LEU	A	493	0	-1.554	60.630	12.584	1.00	49.01
	MOTA	3763	CA	LEU	A	493	0	-1.896	59.732	11.483	1.00	47.63
5	ATOM	3764	С	TE U	A	493	0	-3.377	59.872	11.137	1.00	47.61
	ATOM	3765	0	LEU	A	493	0	-4.209	60.018	12.027	1.00	47.02
	MOTA	3766	CB	LEU	A	493	0	-1.661	58.296	11.940	1.00	46.08
	MOTA	3767	CG	LEU	A	493	0	-0.485	57.463	11.464	1.00	45.24
	MOTA	3768	CD1	LEU	A	493	0	0.616	58.224	10.756	1.00	43.57
10	MOTA	3769	CD2	LEU	A	493	0	0.075	56.710	12.669	1.00	44.62
	MOTA	3770	N	PRO	A	494	0	-3.694	59.763	9.866	1.00	48.01
	ATOM	3771	CA	PRO	A	494	0	-5.049	59.734	9.353	1.00	49.11
	MOTA	3772	C	PRO	A	494	0	-5.617	58.339	9.570	1.00	51.21
	MOTA	3773	0	PRO	A	494	0	-4.919	57.325	9.495	1.00	50.61
15	MOTA	3774	CB	PRO	A	494	0	-4.938	59.995	7.843	1.00	48.94
	ATOM	3775	CG	PRO	A	494	0	-3.559	59.463	7.544	1.00	48.47
	ATOM	3776	CD	PRO	A	494	0	-2.714	59.538	8.797	1.00	48.22
	ATOM	3777	N	PRO	A	495	0	-6.915	58.238	9.796	1.00	53.24
	MOTA	3778	CA	PRO	A	495	0	-7.630	57.006	10.055	1.00	53.93
20	ATOM	3779	C	PRO	A	495	0	-7.404	55.890	9.058	1.00	54.84
	ATOM	3780	0	PRO	A	495	0	-7.348	54.705	9.423	1.00	55.08
	ATOM	3781	CB	PRO	A	495	0	-9.126	57.362	10.146	1.00	54.40
	ATOM	3782	CG	PRO	A	495	0	-9.090	58.848	10.391	1.00	54.17
	ATOM	3783	CD	PRO	A	495	0	-7.787	59.420	9.895	1.00	53.58
25	ATOM	3784	N	GLU	A	496	0	-7.190	56.198	7.784	1.00	55.36
	ATOM	3785	CA	GLU	A	496	0	-6.936	55.187	6.763	1.00	55.83
	MOTA	3786	C	GLU	A	496	0	-5.582	54.521	6.971	1.00	54.09
	MOTA	3787	0	GLU	A	496	0	-5.345	53.406	6.505	1.00	53.29
	ATOM	3788	CB	GLU	A	496	0	-7.091	55.805	5.378	1.00	57.96
30	ATOM	3789	CG	GLU	A	496	0	-6.030	55.604	4.339	1.00	61.30
	MOTA	3790	CD	GLU	A	496	0	-6.448	54.984	3.025	1.00	63.68
	MOTA	3791	OE1	GLU	A	496	0	-7.449	55.411	2.388	1.00	65.15
	MOTA	3792	OE2	GLU	A	496	0	-5.747	54.034	2.586	1.00	64.91
	ATOM	3793	N	ALA	A	497	0	-4.665	55.217	7.630	1.00	52.35
35	ATOM	3794	CA	ALA	A	497	0	-3.326	54.738	7.886	1.00	50.83
	ATOM	3795	С	ALA	A	497	0	-3.245	53.626	8.924	1.00	49.08
	ATOM	3796	0	ALA	A	497	0	-2.361	52.773	8.794	1.00	47.61
	ATOM	3797	СВ	ALA	A	497	0	-2.443	55.910	8.317	1.00	51.23
	ATOM	3798	N	THR	A	498	0	-4.113	53.630	9.926	1.00	48.01
40	ATOM	3799	CA	THR	A	498	0	-4.086	52.617	10.964	1.00	48.73
	ATOM	3800	С	THR	A	498	0	-5.271	51.656	10.938	1.00	48.99
	ATOM	3801	0	THR	Α	498	0	-5.425	50.852	11.862		47.81
	ATOM	3802	СВ			498	0	-4.055	53.223	12.388	1.00	49.04
	ATOM	3803	OG1			498	0	-5.315	53.816	12.752	1.00	47.95
45	ATOM	3804		THR			0	-2.919	54.223	12.514		48.94
		_										

9.911 1.00 49.78 ATOM 3805 N SER A 499 0 -6.101 51.756 **ATOM** 3806 CA **SER A 499** 0 -7.307 50.933 9.814 1.00 51.20 1.00 49.98 SER A 499 0 ATOM 3807 C -7.048 49.470 9.494 MOTA 3808 **SER A 499** 0 -6.257 49.143 8.617 1.00 48.80 0 MOTA CB SER A 499 0 -8.223 51.606 8.800 1.00 52.62 3809 SER A 499 0 -8.428 50.827 7.596 1.00 55.22 MOTA 3810 OG -7.706 1.00 50.08 **ATOM** 3811 N ILE A 500 0 48.585 10.230 ILE A 500 -7.563 1.00 51.25 ATOM 3812 CA 0 47.151 10.077 ATOM C ILE A 500 0 -8.642 46.518 9.207 1.00 53.08 3813 1.00 54.00 10 ILE A 500 -9.785 9.639 MOTA 3814 0 0 46.351 CB ILE A 500 -7.631 46.428 11.436 1.00 50.61 ATOM 3815 0 ATOM 3816 CG1 ILE A 500 0 -6.475 46.866 12.336 1.00 50.22 11.302 1.00 50.34 MOTA 3817 CG2 ILE A 500 0 -7.619 44.907 1.00 50.52 ATOM CD1 ILE A 500 -6.806 46.617 13.800 3818 0 15 ATOM 3819 N GLN A 501 0 -8.263 46.074 8.024 1.00 54.35 ATOM 3820 CA **GLN A 501** 0 -9.177 45.360 7.129 1.00 55.14 **GLN A 501** ATOM 3821 C 0 -9.298 43.904 7.564 1.00 55.85 **GLN A 501** 1.00 55.59 ATOM 3822 0 0 -8.335 43.130 7.556 ATOM 3823 CB **GLN A 501** 0 -8.594 45.485 5.732 1.00 55.56 20 1.00 56.32 ATOM 3824 CG **GLN A 501** 0 -9.262 44.736 4.604 GLN A 501 ATOM CD 0 -8.874 45.369 3.271 1.00 57.46 3825 ATOM OE1 GLN A 501 0 -8.480 44.667 2.336 1.00 57.35 3826 MOTA 3827 NE2 GLN A 501 0 -8.998 46.697 3.219 1.00 57.61 ATOM THR A 502 -10.493 7.968 1.00 57.08 3828 N 0 43.506 25 ATOM 3829 CA THR A 502 0 -10.788 42.146 8.401 1.00 58.28 1.00 58.80 **ATOM** C THR A 502 -10.966 7.216 3830 0 41.205 MOTA THR A 502 6.074 1.00 58.71 3831 0 0 -11.199 41.604 MOTA 3832 CB THR A 502 0 -12.046 42.108 9.293 1.00 58.99 MOTA 3833 OG1 THR A 502 0 -11.794 42.909 10.464 1.00 59.62 9.749 30 ATOM CG2 THR A 502 1.00 58.74 3834 0 -12.421 40.707 ATOM VAL A 503 0 -10.746 39.922 7.471 1.00 59.20 3835 N 1.00 60.27 MOTA 3836 CA VAL A 503 0 -10.904 38.877 6.468 1.00 61.11 MOTA 3837 C VAL A 503 0 -11.687 37.736 7.119 1.00 61.03 MOTA VAL A 503 -11.606 37.563 8.341 3838 0 0 35 ATOM 3839 CB **VAL A 503** 0 -9.589 38.430 5.823 1.00 59.97 CG1 VAL A 503 1.00 59.65 MOTA 3840 0 -8.337 38.964 6.507 CG2 VAL A 503 1.00 59.97 ATOM -9.467 36.914 5.722 3841 0 1.00 61.77 VAL A 504 -12.478 37.002 6.341 MOTA 3842 N 0 MOTA 3843 CA **VAL A 504** 0 -13.203 35.863 6.911 1.00 62.40 40 ATOM C VAL A 504 -12.673 34.579 6.259 1.00 62.99 3844 0 1.00 63.13 VAL A 504 6.803 ATOM 3845 0 0 -11.811 33.894 6.756 1.00 62.39 **ATOM** 3846 CB VAL A 504 0 -14.730 35.882 CG1 VAL A 504 -15.392 36.931 7.635 1.00 61.89 ATOM 0 3847 1.00 62.17 **ATOM** 3848 CG2 VAL A 504 0 -15.127 36.068 5.297 45 NAG A 800 -2.401 42.835 45.802 1.00 30.44 MOTA 3849 C1

	ATOM	3850	C2	NAG	A	800	0	-1.327	43.232	46.780	1.00	31.80
	ATOM	3851	N2	NAG	A	800	0	-0.119	43.561	45.983	1.00	31.37
	ATOM	3852	C7	NAG	A	800	0	0.179	44.844	45.683	1.00	32.37
	ATOM	3853	07	NAG	A	800	0	-0.549	45.688	45.982	1.00	34.61
5	MOTA	3854	C8	ŊĄG	A	800	0	1.457	45.094	44.983	1.00	31.67
	ATOM	3855	C3	NAG	A	800	0	-1.015	42.187	47.801	1.00	32.94
	MOTA	3856	03	NAG	A	800	0	-0.264	42.838	48.796	1.00	34.46
	ATOM	3857	C4	NAG	A	800	0	-2.351	41.662	48.377	1.00	34.05
	MOTA	3858	04	NAG	A	800	0	-2.097	40.644	49.344	1.00	35.62
10	MOTA	3859	C5	NAG	A	800	0	-3.128	41.025	47.202	1.00	35.11
	MOTA	3860	05	NAG	A	800	0	-3.466	42.046	46.295	1.00	33.06
	ATOM	3861	C6	NAG	A	800	0	-4.444	40.420	47.673	1.00	36.66
	ATOM	3862	06	NAG	A	800	0	-5.199	41.411	48.288	1.00	39.73
	ATOM	3863	Cl	GLC	A	900	0	-8.957	50.280	6.333	1.00	58.53
15	MOTA	3864	C2	GLC	A	900	0	-8.500	49.605	5.037	1.00	59.25
	ATOM	3865	C3	GLC	A	900	0	-7.806	50.686	4.219	1.00	59.71
	ATOM	3866	C4	GLC	A	900	0	-8.691	51.905	3.987	1.00	60.13
	MOTA	3867	C5	GLC	A	900	0	-9.595	52.289	5.142	1.00	59.22
	MOTA	3868	05	GLC	A	900	0	-10.004	51.177	5.937	1.00	59.71
20	MOTA	3869	CŪ	IUM	В	1	0	-1.332	34.401	30.132	1.00	29.47
	ATOM	3870	CU	IUM	В	2	0	7.297	42.245	26.618	1.00	27.01
	MOTA	3871	CU	IUM	В	3	0	9.569	38.786	23.923	1.00	21.38
	MOTA	3872	0	IUM	В	5	0	7.445	40.703	25.162	1.00	26.99
	MOTA	3873	омо	WAT	W	1	0	19.509	36.893	30.054	1.00	13.07
25	MOTA	3874	OWO	WAT	W	2	0	24.726	29.672	16.651	1.00	7.67
	MOTA	3875	OWO	WAT	W	3	0	15.295	17.988	35.061	1.00	8.65
	MOTA	3876	ОМО	WAT	W	4	0	6.481	28.311	23.427	1.00	8.00
	MOTA	3877	омо	WAT	W	5	0	14.921	45.178	24.306	1.00	17.04
	ATOM	3878	OWO	WAT	W	6	0	14.413	44.401	28.162	1.00	10.12
30	MOTA	3879	OWO	WAT	W	7	0	9.967	21.576	9.620	1.00	11.43
	MOTA	3880	OWO	WAT	W	8	0	10.088	28.675	13.038	1.00	9.27
	ATOM	3881	OWO	WAT	W	9	0	9.808	47.902	28.959	1.00	12.71
	MOTA	3882	OWO	WAT	W	10	0	21.976	23.052	35.604	1.00	11.72
	ATOM	3883	OWO	WAT	W	11	0	10.862	25.744	29.928	1.00	10.21
35	ATOM	3884	OWO	WAT	W	12	0	26.087	32.996	23.097	1.00	14.21
	MOTA	3885	OWO	WAT	W	13	0	22.256	58.745	37.931	1.00	17.85
	MOTA	3886	OWO	WAT	W	14	0	-0.104	29.831	35.249	1.00	16.36
	MOTA	3887	OWO	WAT	W	15	0	18.153	61.857	36.641	1.00	14.38
	ATOM	3888	OWO	WAT	W	16	0	9.426	38.431	9.161	1.00	15.35
40	MOTA	3889	OWO	WAT	W	17	0	7.639	24.371	3.713	1.00	22.18
	ATOM	3890	OWO	WAT	W	18	0	27.977	11.643	9.481	1.00	19.22
	ATOM	3891	OWO	WAT	W	19	0	3.140	21.028	24.695	1.00	11.12
	ATOM	3892	OWO	WAT	W	20	0	9.847	20.701	30.902	1.00	16.16
	ATOM	3893	OWO	WAT	W	21	0	-1.517	29.009	43.180	1.00	27.18
45	MOTA	3894	OWO	WAT	W	22	0	3.497	29.138	26.088	1.00	17.22

	MOTA	3895	OWO	WAT	W	23	0	20.614	32.765	40.433	1.00	17.63
	MOTA	3896	OWO	WAT	W	24	0	19.098	51.778	39.452	1.00	22.33
	MOTA	3897	OWO	WAT	W	25	0	0.977	21.396	5.064	1.00	18.54
	MOTA	3898	OWO	WAT	W	26	0	8.546	16.150	21.761	1.00	16.40
5	ATOM	3899	OWO	TAW	W	27	0	6.102	19.858	10.350	1.00	17.79
	MOTA	3900	OWO	WAT	W	28	0	11.702	55.189	41.955	1.00	18.92
	MOTA	3901	OWO	WAT	W	29	0	3.360	42.251	18.209	1.00	16.26
	MOTA	3902	OWO	WAT	W	30	0	6.232	14.672	22.473	1.00	24.49
	ATOM	3903	OWO	WAT	W	31	0	16.729	26.542	39.731	1.00	15.28
10	MOTA	3904	OWO	WAT	W	32	0	2.834	30.640	40.601	1.00	18.11
	ATOM	3905	OWO	WAT	W	33	0	21.893	42.837	27.884	1.00	15.08
	ATOM	3906	OWO	WAT	W	34	0	1.581	28.193	27.914	1.00	17.77
	ATOM	3907	OWO	WAT	W	35	0	-3.503	21.749	11.578	1.00	15.32
	MOTA	3908	OWO	WAT	W	36	0	7.131	33.344	11.786	1.00	18.18
15	ATOM	3909	OWO	WAT	W	37	0	17.312	38.603	29.961	1.00	14.75
	ATOM	3910	OWO	WAT	W	38	0	-6.705	40.723	39.909	1.00	23.49
	MOTA	3911	OWO	TAW	W	39	0	9.010	31.121	11.736	1.00	19.99
	ATOM	3912	OWO	TAW	W	40	0	9.376	28.353	33.076	1.00	16.22
	MOTA	3913	OWO	WAT	W	41	0	30.104	29.895	20.857	1.00	25.77
20	ATOM	3914	OWO	WAT	W	42	0	-6.950	33.663	21.335	1.00	26.62
	ATOM	3915	OWO	TAW	W	43	0	8.541	27.867	36.827	1.00	12.80
	MOTA	3916	OWO	TAW	W	44	0	3.590	21.651	11.893	1.00	14.46
	MOTA	3917	OWO	WAT	W	45	0	23.290	21.665	37.787	1.00	28.75
	ATOM	3918	OWO	TAW	W	46	0	22.724	11.873	22.270	1.00	23.07
25	ATOM	3919	OWO	TAW	W	47	0	-1.090	42.001	12.877	1.00	19.33
	ATOM	3920	OWO	TAW	W	48	0	14.091	27.298	40.583	1.00	18.51
	MOTA	3921	OWO	WAT	W	49	0	2.336	52.026	29.983	1.00	25.66
	ATOM	3922	OWO	TAW	W	50	0	15.475	14.450	22.853	1.00	20.37
	ATOM	3923	OWO	WAT	W	51	0	25.945	26.568	40.287	1.00	24.49
30	MOTA	3924	OWO	WAT	W	52	0	19.545	41.598	35.087	1.00	20.70
	ATOM	3925	OWO	WAT	M	53	0	-3.802	47.942	9.638	1.00	29.98
	MOTA	3926	OWO	WAT	W	54	0	-7.478	41.160	9.585	1.00	24.26
	MOTA	3927	OWO	TAW	W	55	0	-2.938	29.733	36.048	1.00	22.93
	ATOM	3928	OWO	WAT	W	56	0	29.051	32.114	22.680	1.00	22.50
35	ATOM	3929	OWO	WAT	W	57	0	0.360	29.505	5.595	1.00	17.78
	MOTA	3930	OWO	WAT	W	58	0	8.583	57.422	21.440	1.00	21.90
	ATOM	3931	OWO	WAT	W	59	0	25.151	31.947	34.812	1.00	22.13
	ATOM	3932	OWO	WAT	W	60	0	25.133	62.204	32.968	1.00	25.75
	MOTA	3933	OWO	WAT	W	61	0	14.909	40.770	30.294	1.00	17.25
40	MOTA	3934	OWO	WAT	W	62	0	20.825	30.520	34.676	1.00	16.18
	MOTA	3935	OWO	WAT	W	63	0	5.509	26.744	43.167	1.00	30.12
	ATOM	3936	OWO	WAT	W	64	0	5.280	57.279	14.627	1.00	22.66
	ATOM	3937	OWO	WAT	W	65	0	2.944	53.436	32.359	1.00	22.97
	ATOM	3938	OWO	WAT	W	66	0	11.266	43.508	3.407	1.00	20.01
45	ATOM	3939	OWO	WAT	W	67	0	21.535	45.549	26.563	1.00	24.47

	ATOM	3940	OWO	WAT	W	68	0	0.412	33.358	11.837	1.00	19.89
	MOTA	3941	OWO	TAW	W	69	0	26.466	32.305	25.785	1.00	20.19
	ATOM	3942	OWO	WAT	W	70	0	0.910	45.068	7.829	1.00	22.05
	ATOM	3943	OWO	WAT	W	71	0	-2.060	46.506	39.381	1.00	23.49
5	ATOM	3944	OWO	WAT	W	72	0	20.236	56.718	25.851	1.00	23.74
	ATOM	3945	OWO	WAT	W	73	0	3.253	23.017	38.254	1.00	24.83
	ATOM	3946	OWO	TAW	W	74	0	9.653	22.835	35.143	1.00	25.79
	ATOM	3947	OWO	WAT	W	75	0	16.877	52.904	47.331	1.00	24.42
	ATOM	3948	OWO	WAT	W	76	0	14.293	22.021	3.993	1.00	32.28
10	MOTA	3949	OWO	WAT	W	77	0	-5.287	19.835	18.528	1.00	24.65
	ATOM	3950	OWO	TAW	W	78	0	8.414	38.317	49.069	1.00	28.77
	ATOM	3951	OWO	WAT	W	79	0	7.070	32.466	47.926	1.00	21.83
	MOTA	3952	OWO	WAT	W	80	0	-0.452	28.307	25.779	1.00	16.58
	ATOM	3953	OWO	WAT	W	81	0	14.774	15.006	34.455	1.00	25.63
15	MOTA	3954	OWO	WAT	W	82	0	11.515	54.942	35.962	1.00	14.20
	ATOM	3955	OWO	WAT	W	83	0	25.643	33.451	32.105	1.00	30.31
	ATOM	3956	OWO	TAW	W	84	0	11.869	12.221	20.394	1.00	31.37
	ATOM	3957	OWO	WAT	W	85	0	11.653	51.587	22.411	1.00	16.48
	MOTA	3958	OWO	WAT	W	86	0	17.334	40.837	51.079	1.00	30.26
20	MOTA	3959	OWO	WAT	W	87	0	4.355	25.208	34.030	1.00	32.26
	MOTA	3960	OWO	WAT	W	88	0	18.816	52.360	32.512	1.00	21.19
	ATOM	3961	OWO	WAT	W	89	0	-2.704	46.518	35.364	1.00	21.99
	MOTA	3962	OWO	TAW	W	90	0	18.793	27.893	49.481	1.00	24.52
	MOTA	3963	OWO	WAT	W	91	0	22.459	46.584	28.898	1.00	18.99
25	MOTA	3964	OWO	WAT	W	92	0	7.958	34.422	49.370	1.00	26.14
	ATOM	3965	OWO	TAW	W	93	0	23.972	16.246	6.806	1.00	24.35
	MOTA	3966	OWO	TAW	W	94	0	1.340	49.185	26.307	1.00	31.64
	MOTA	3967	OWO	TAW	W	95	0	-1.830	35.291	12.266	1.00	27.28
	MOTA	3968	OWO	TAW	W	96	0	20.460	17.486	3.589	1.00	33.51
30	MOTA	3969	OWO	TAW	W	97	0	15.177	6.964	9.868	1.00	24.40
	MOTA	3970	OWO	WAT	W	98	0	18.616	57.927	43.922	1.00	30.76
	MOTA	3971	OWO	WAT	W	99	0	10.562	32.112	9.972	1.00	28.90
	MOTA	3972	OMO	TAW	W	100	0	1.630	61.363	10.878	1.00	33.92
	MOTA	3973	OWO	WAT	W	101	0	-4.939	49.989	33.211	1.00	29.73
35	MOTA	3974	OWO	WAT	W	102	0	19.385	44.813	34.546	1.00	23.52
	MOTA	3975	OWO	WAT	W	103	0	19.055	43.063	37.581	1.00	30.59
	ATOM	3976	OWO	WAT	W	105	0	28.703	33.555	27.406	1.00	32.92
	MOTA	3977	OWO	WAT	W	106	0	28.835	19.646	10.759	1.00	40.44
	MOTA	3978	OWO	WAT	W	107	0	22.047	22.465	9.758	1.00	29.98
40	ATOM	3979	OWO	WAT	W	108	0	14.689	61.032	36.346	1.00	30.63
	ATOM	3980	OWO	WAT	W	109	0	16.998	24.042	9.318	1.00	23.90
	ATOM	3981	OWO	WAT	W	110	0	13.472	30.533	11.848	1.00	34.83
	ATOM	3982	OWO	WAT	W	111	0	-2.175	35.601	41.496	1.00	28.55
	ATOM	3983	OWO	WAT	W	112	0	1.528	17.373	-1.396	1.00	38.21
45	ATOM	3984	OWO	WAT	W	113	0	-2.856	29.748	19.681	1.00	30.55

	MOTA	3985	OWO	WAT	W	114	0	2.377	42.810	47.971	1.00	26.87
	MOTA	3986	OWO	WAT	W	115	0	10.947	12.820	33.745	1.00	31.60
	MOTA	3987	OWO	WAT	W	116	0	9.807	58.194	12.442	1.00	29.63
	ATOM	3988	OWO	WAT	W	117	0	18.488	62.559	29.470	1.00	45.83
5	MOTA	3989	ОМО	WAT	W	118	0	11.708	61.566	40.940	1.00	37.19
	ATOM	3990	OWO	WAT	W	119	0	-10.101	22.257	15.091	1.00	30.48
	ATOM	3991	OWO	WAT	W	120	0	-1.930	15.913	7.386	1.00	36.63
	MOTA	3992	OWO	WAT	W	121	0	23.988	43.686	29.319	1.00	32.15
	MOTA	3993	OWO	WAT	W	122	0	7.354	57.153	12.809	1.00	28.10
10	ATOM	3994	OWO	WAT	W	123	0	24.207	22.101	11.958	1.00	32.83
	MOTA	3995	OWO	WAT	W	124	0	-1.268	15.083	9.738	1.00	32.53
	ATOM	3996	OWO	WAT	W	125	0	19.363	5.047	13.812	1.00	34.57
	ATOM	3997	OWO	WAT	W	126	0	4.799	41.145	23.688	1.00	28.33
	ATOM	3998	OWO	WAT	W	127	0	15.975	23.287	5.889	1.00	30.95
15	ATOM	3999	OWO	WAT	W	128	0	3.698	38.582	-2.369	1.00	36.84
	ATOM	4000	OWO	WAT	W	129	0	-2.601	49.124	11.710	1.00	28.91
	ATOM	4001	OWO	WAT	W	130	0	15.779	56.598	43.285	1.00	27.76
	MOTA	4002	OWO	WAT	W	131	0	26.306	32.724	13.233	1.00	37.94
	ATOM	4003	OWO	WAT	W	132	0	3.610	46.947	23.991	1.00	35.49
20	MOTA	4004	OWO	WAT	W	133	0	18.354	11.929	29.348	1.00	33.88
	ATOM	4005	OWO	WAT	W	134	0	13.966	41.517	27.765	1.00	18.02
	MOTA	4006	OWO	WAT	W	135	0	23.545	49.080	27.785	1.00	25.21
	ATOM	4007	OWO	WAT	W	136	0	16.876	25.082	41.791	1.00	28.71
	ATOM	4008	OWO	WAT	W	137	0	15.439	54.809	45.527	1.00	35.30
25	ATOM	4009	OWO	WAT	W	138	0.	11.733	25.676	43.264	1.00	38.24
	MOTA	4010	OWO	WAT	W	139	0	9.795	34.460	11.898	1.00	31.61
	MOTA	4011	OWO	WAT	W	140	0	13.328	57.569	42.356	1.00	30.66
	MOTA	4012	OWO	WAT	W	141	0	14.146	7.869	20.604	1.00	35.72
	MOTA	4013	OWO	TAW	W	142	0	23.330	12.948	3.922	1.00	29.83
30	MOTA	4014	OWO	WAT	W	143	0	16.607	10.575	24.347	1.00	36.47
	MOTA	4015	OWO	TAW	W	144	0	8.509	25.546	35.012	1.00	35.43
	MOTA	4016	OWO	WAT	W	145	0	12.597	44.457	1.450	1.00	39.54
	ATOM	4017	OWO	WAT	W	146	0	21.680	51.509	39.154	1.00	40.08
	MOTA	4018	OWO	TAW	W	147	0	-0.702	52.593	39.700	1.00	29.62
35	MOTA	4019	OWO	WAT	W	148	0	23.269	14.719	22.589	1.00	30.24
	ATOM	4020	OWO	WAT	W	149	0	27.149	22.972	41.846	1.00	35.00
	MOTA	4021	OWO	WAT	W	150	0	2.854	9.792	8.923	1.00	46.35
	MOTA	4022	OWO	WAT	W	151	0	24.831	15.672	24.889	1.00	29.22
	MOTA	4023	OWO	WAT	W	152	0	24.965	51.606	19.113	1.00	32.19
40	MOTA	4024	OWO	WAT	W	153	0	-4.611	25.034	37.817	1.00	46.51
	MOTA	4025	OWO	WAT	W	154	0	12.225	39.382	28.864	1.00	25.42
	MOTA	4026	OWO	WAT	W	155	0	18.332	22.341	43.180	1.00	36.18
	ATOM	4027	OWO	WAT	W	156	0	36.467	20.701	17.144	1.00	44.13
	ATOM	4028	OWO	WAT	W	157	0	-4.903	47.901	40.886	1.00	33.97
45	ATOM	4029	OWO	WAT	W	158	0	12.979	13.955	3.208	1.00	33.60

1.00 30.25 ATOM 4030 OWO WAT W 159 0 32.383 12.693 24.743 4031 OWO WAT W 160 0 30.796 26.296 14.368 1.00 44.37 MOTA 1.00 31.54 MOTA 4032 OWO WAT W 161 0 19.332 37.280 40.057 1.00 45.88 ATOM 4033 OW0 WAT W 162 0 17.625 20.028 41.642 5 ATOM 4034 OWO WAT W 163 0 19.917 56.115 46.103 1.00 40.37 -4.743 ATOM 4035 OWO WAT W 164 0 14.204 16.748 1.00 40.86 OWO WAT W 165 0 1.00 38.56 **ATOM** 4036 0.738 46.912 21.790 1.00 24.37 **ATOM** 4037 OW0 WAT W 166 0 22.648 62.277 30.976 ATOM 4038 OW0 WAT W 167 0 -4.322 45.754 26.894 1.00 48.97 0 1.00 32.57 10 ATOM 4039 OWO WAT W 168 -2.386 24.601 0.665 1.00 35.25 ATOM 4040 OW0 WAT W 169 0 -0.459 41.618 35.838 OWO WAT W 170 0 1.00 41.25 MOTA 4041 26.659 4.722 11.434 OWO WAT W 171 ATOM 4042 0 13.720 11.379 22.121 1.00 39.59 1.00 41.71 ATOM 4043 OWO WAT W 172 0 15.266 7.451 6.576 1.00 42.12 15 ATOM 4044 OW0 WAT W 173 0 0.134 17.450 6.165 OWO WAT W 174 0 1.00 41.80 MOTA 4045 38.646 32.884 25.247 OWO WAT W 175 0 10.591 3.251 1.00 29.37 MOTA 4046 17.398 4047 OWO WAT W 176 0 49.424 1.00 19.51 MOTA 22.444 25.264 MOTA 4048 OWO WAT W 177 0 0.429 23.224 28.598 1.00 33.54 20 MOTA 4049 OWO WAT W 178 0 -2.302 27.278 34.780 1.00 44.76 16.462 ATOM 4050 OWO WAT W 179 0 2.054 1.00 34.29 25.866 **ATOM** 4051 OWO WAT W 180 0 30.277 18.006 25.789 1.00 42.28 MOTA 4052 OWO WAT W 181 0 2.316 18.424 27.884 1.00 47.39 19.401 1.00 39.68 **ATOM** 4053 OWO WAT W 182 0 41.164 39.560 25 MOTA OWO WAT W 183 0 1.00 43.32 4054 23.742 10.982 24.879 ATOM 4055 OWO WAT W 184 0 3.926 24.450 44.251 1.00 48.95 MOTA 4056 OW0 WAT W 185 0 40.951 1.00 39.05 25.186 21.211 ATOM 4057 OWO WAT W 186 0 20.353 34.816 48.799 1.00 34.08 MOTA 4058 OWO WAT W 187 0 35.782 22.476 21.693 1.00 40.04 30 ATOM 4059 OWO WAT W 188 0 27.256 12.235 1.00 40.85 23.617 **ATOM** 4060 OWO WAT W 189 0 6.777 1.00 53.37 12.502 12.641 ATOM 4061 OWO WAT W 190 0 -4.663 38.998 4.159 1.00 39.85 MOTA 4062 OWO WAT W 191 0 24.398 52.064 24.607 1.00 45.51 ATOM 4063 OWO WAT W 192 0 4.832 1.00 41.06 1.808 15.541 35 1.00 39.36 ATOM 4064 OWO WAT W 193 0 5.341 36.359 7.569 **ATOM** 4065 OWO WAT W 194 0 32.192 38.650 21.799 1.00 37.18 ATOM 4066 OWO WAT W 195 0 -10.782 36.616 38.705 1.00 50.35 ATOM 4067 OWO WAT W 196 0 4.119 64.116 32.946 1.00 34.51 MOTA 4068 OWO WAT W 197 0 19.427 22.772 5.898 1.00 37.94 40 ATOM OWO WAT W 198 0 1.652 1.00 43.38 4069 -4.671 33.476 0 1.00 57.10 MOTA 4070 OWO WAT W 199 -8.983 23.757 17.693 ATOM 0 1.00 38.49 4071 OWO WAT W 200 -6.735 22.473 20.432 OWO WAT W 201 1.00 55.48 **ATOM** 4072 0 -6.954 37.309 26.746 0 1.00 42.20 MOTA 4073 OWO WAT W 202 23.418 38.662 33.700 45 ATOM 4074 OWO WAT W 203 0 9.004 24.070 36.971 1.00 40.06

	ATOM	4075		WAT			0	18.890	42.920	51.502	1.00 46.29
	ATOM	4076		WAT			0	13.301	18.514	3.624	1.00 42.17
	ATOM	4077	OWO	WAT			0	31.189	12.995	19.645	1.00 51.92
_	ATOM	4078	OWO			207	0	15.589	57.456	13.738	1.00 38.96
5	ATOM	4079	OWO	TĄW			0	-3.389	12.961	12.738	1.00 46.99
	MOTA	4080	OWO	WAT			0	9.321	30.475	6.320	1.00 49.75
	MOTA	4081	OWO			210	0	1.680	61.379	33.738	1.00 37.48
	ATOM	4082		TAW			0	-3.811	36.417	3.807	1.00 46.01
	MOTA	4083	OWO	WAT			0	17.087	46.902	3.830	1.00 45.12
10	MOTA	4084	OWO	WAT		213	0	23.702	22.325	43.022	1.00 36.14
	MOTA	4085		TAW			0	10.849	60.003	14.389	1.00 32.05
	MOTA	4086	OWO	WAT			0	34.001	25.493	20.855	1.00 40.75
	MOTA	4087	OWO			216	0	27.422	37.093	28.951	1.00 42.33
	ATOM	4088	OWO	TAW			0	2.471	63.256	35.173	1.00 48.36
15	MOTA	4089	OWO		W	218	0 .	-0.973	59.086	28.720	1.00 53.14
	ATOM	4090	OWO	TAW		219	0	28.841	9.287	6.463	1.00 39.02
	ATOM	4091	OWO	TAW	W	220	0	-5.593	21.802	9.619	1.00 44.21
	ATOM	4092	OWO	WAT	W	221	0	22.109	15.521	1.696	1.00 38.33
	ATOM	4093	OWO	TAW	W	222	0	13.029	32.860	12.233	1.00 37.63
20	MOTA	4094	OWO	WAT	W	223	0	11.840	33.823	3.800	1.00 42.20
	MOTA	4095	OWO	WAT	W	224	0	8.476	42.976	-0.104	1.00 40.23
	ATOM	4096	OWO	WAT	W	225	0	6.607	9.754	13.906	1.00 41.30
	MOTA	4097	OWO	TAW	W	226	0	22.513	32.613	49.067	1.00 47.26
	MOTA	4098	OWO	WAT	W	227	0	13.790	4.924	16.718	1.00 38.05
25	MOTA	4099	OWO	WAT	W	228	0	4.578	46.381	2.146	1.00 38.90
	MOTA	4100	OWO	WAT	W	229	0	-0.178	18.054	23.533	1.00 43.42
	MOTA	4101	OWO	WAT	W	230	0	-5.146	34.010	4.766	1.00 38.90
	MOTA	4102	OWO	WAT	W	231	0	20.232	28.890	51.507	1.00 44.95
	MOTA	4103	OWO	WAT	W	232	0	16.083	32.879	10.309	1.00 45.29
30	ATOM	4104	OWO	WAT	W	233	0	22.111	51.333	10.599	1.00 34.03
	MOTA	4105	OWO	WAT	W	234	0	3.247	15.790	28.046	1.00 50.25
	ATOM	4106	OWO	WAT	W	235	0	5.547	11.598	9.674	1.00 56.39
	MOTA	4107	OWO	TAW	W	236	0	-1.085	18.297	-2.265	1.00 45.26
	ATOM	4108	OWO	WAT	W	237	0	30.994	12.013	22.690	1.00 50.37
35	MOTA	4109	OWO	WAT	W	238	0	24.691	33.260	27.819	1.00 37.65
	MOTA	4110	OWO	WAT	W	239	0	18.911	40.770	5.815	1.00 44.15
	ATOM	4111	OWO	WAT	W	240	0	21.532	53.033	33.280	1.00 31.23
	ATOM	4112	OWO	WAT	W	241	0	19.745	46.029	4.364	1.00 46.38
	ATOM	4113	OWO	WAT	W	242	0	27.516	16.526	25.474	1.00 51.75
40	ATOM	4114	OWO	WAT	W	243	0	34.171	19.604	8.423	1.00 55.79
	ATOM	4115	OWO	WAT	W	244	0	23.870	53.512	11.474	1.00 42.01
	ATOM	4116	OWO	WAT	W	245	0	14.492	23.842	44.882	1.00 52.25
	ATOM	4117	OWO	WAT	W	246	0	-3.070	63.260	33.189	1.00 40.77
	ATOM	4118		WAT			0	22.185	55.701	37.353	1.00 39.52
45	ATOM	4119		WAT			0	14.144	26.239	42.825	1.00 42.50
			, •				-				· • •

	MOTA	4120	OWO	TAW	W	249	0	25.026	36.545	35.213	1.00	58.19
	ATOM	4121	OWO	WAT	W	250	0	27.072	34.293	43.895	1.00	46.58
	MOTA	4122	OWO	WAT	W	251	0	11.742	7.192	4.856	1.00	42.78
	ATOM	4123	OWO	WAT	W	252	0	0.730	46.405	24.947	1.00	39.31
5	ATOM	4124	OWO	WAT	W	253	0	28.346	34.036	30.808	1.00	43.10
	ATOM	4125	OWO	WAT	W	254	0	-3.838	40.281	1.903	1.00	38.67
	ATOM	4126	OWO	WAT	W	255	0	6.837	35.163	51.935	1.00	58.57
	MOTA	4127	OWO	WAT	W	256	0	19.740	62.853	17.880	1.00	52.39
	MOTA	4128	OWO	WAT	W	258	0	-0.994	41.755	22.088	0.00	69.57
10	ATOM	4129	OWO	WAT	W	259	0	1.221	10.473	15.458	1.00	54.80
	ATOM	4130	OWO	WAT	W	260	0	23.445	55.367	31.430	1.00	48.90
	ATOM	4131	OWO	WAT	W	261	0	23.757	57.854	34.657	1.00	37.69
	ATOM	4132	OWO	WAT	W	262	0	8.508	19.111	34.572	1.00	55.52
	ATOM	4133	OWO	WAT	W	263	0	22.806	22.381	3.611	1.00	64.20
15	MOTA	4134	OWO	WAT	W	264	0	0.398	22.602	42.625	1.00	58.86
	ATOM	4135	OWO	WAT	W	265	0	4.195	52.287	43.465	1.00	36.84
	ATOM	4136	OWO	WAT	W	266	0	20.211	6.536	4.911	1.00	39.34
	MOTA	4137	OWO	WAT	W	267	0	14.680	16.117	2.803	1.00	45.76
	MOTA	4138	OWO	TAW	W	268	0	14.938	25.582	6.850	1.00	41.01
20	ATOM	4139	OWO	WAT	W	269	0	7.763	7.940	31.891	0.00	71.30
	ATOM	4140	OWO	TAW	W	270	0	-3.459	33.491	39.400	1.00	40.80
	MOTA	4141	OWO	WAT	W	271	0	23.154	22.897	6.985	1.00	48.25
	ATOM	4142	OWO	WAT	W	272	0	34.916	25.555	28.092	1.00	52.63
	ATOM	4143	OWO	WAT	W	273	0	8.332	45.481	50.776	1.00	47.23
25	ATOM	4144	OWO	WAT	W	274	0	-3.441	57.643	28.775	1.00	49.70
	MOTA	4145	OWO	WAT	W	275	0	23.213	40.573	47.561	1.00	56.02
	ATOM	4146	OWO	WAT	W	276	0	5.421	55.179	45.172	1.00	52.70
	ATOM	4147	OWO	TAW	W	277	0	-3.012	21.908	40.933	1.00	41.69
	MOTA	4148	OWO	WAT	W	278	0	26.328	53.637	17.905	1.00	37.80
30	MOTA	4149	OWO	WAT	W	279	0	9.740	58.922	43.485	1.00	52.06
	ATOM	4150	OWO	WAT	W	280	0	23.545	15.660	4.258	1.00	41.55
	ATOM	4151	OWO	WAT	W	281	0	22.652	31.154	51.246	1.00	58.65
	ATOM	4152	OWO	WAT	W	282	0	22.192	51.135	8.251	1.00	44.76
	ATOM	4153	OWO	WAT	W	283	0	-6.046	22.886	24.288	1.00	52.40
35	ATOM	4154	OWO	WAT	W	284	0	19.949	45.276	49.516	1.00	54.58
	MOTA	4155	OWO	WAT	W	285	0	7.388	22.308	32.108	1.00	43.62
	ATOM	4156	OWO	TAW	W	286	0	15.080	50.452	2.795	1.00	52.20
	ATOM	4157	OWO	WAT	W	287	0	1.016	62.235	30.878	1.00	56.81
	ATOM	4158	OWO	TAW	W	288	0	23.803	52.570	27.699	1.00	56.22
40	ATOM	4159	OWO	WAT	W	289	0	-10.525	31.623	13.870	1.00	47.21
	ATOM	4160	OWO	WAT	W	290	0	1.599	55.502	24.567	1.00	44.50
	ATOM	4161		TAW			0	-15.671	37.251	14.660		83.62
	ATOM	4162		WAT			0	7.231	7.950	17.754		50.61
	ATOM	4163		WAT			0	-4.009	34.057	42.492		78.48
45	ATOM	4164		WAT				21.004	58.371	18.690		61.15

	MOTA	4165	OW0	TAW	W	295	0	16.405	48.869	52.211	1.00	53.17
	ATOM	4166	OWO	TAW	W	296	0	7.329	31.202	1.964	1.00	38.86
	MOTA	4167	OWO	WAT	W	297	0	9.518	53.886	5.467	1.00	41.62
	ATOM	4168	OWO	WAT	W	298	0	10.398	48.995	0.335	1.00	49.64
5	ATOM	4169	OWO	WAT	W	299	0	9.889	15.077	3.774	1.00	42.28
	ATOM	4170	OWO	TAW	W	300	0	15.854	56.731	10.934	1.00	44.02

PCT/DK98/00070

117

SEQUENCE LISTING

_	(1) GENE	ERAL I	INFOR	(TAM	ON:						٠.				•	
5	(i)	(B)	NAN STF	IE-: N REET:	roN:	70 A]	lle									
10		(E) (F)	CIT COU POS TEI	INTRY STAL	CODE	enmar E (Z)	ck [P):									
		(H)	TEI	EFA	(; +4	15 44	49	05 5	55							
15		TITI						CASE	MUTA	ANTS						
	(iii)	NUMI	BER C	F SE	EQUE	ICES :	: 10									
20	(iv)	(B)	PUTER MEI CON OPR	OIUM MPUTE ERATI	TYPE ER: I ING S	E: F] [BM I SYSTI	Loppy PC co EM: I	mpat PC-DO	ible S/MS	5-D05		ersio	on #1	L.30	(EPC))
25	(2) INFO	ORMAT:	ION I	FOR S	SEQ I	ED NO): 1:	1								
30	(i)	(B)	JENCI) LEI) TYI) STI) TOI	IGTH: PE: & RANDI	: 539 amino EDNES	e ami o aci SS: s	ino a id sing]	cids	3		٠					
35	(ii)	MOL1	ECULI	TYI	?E: p	prote	ein									
	(xi	SEQ	JENCI	E DES	SCRII	OITS	1: SI	EQ II	ON C	: 1:						
40	Met 1	: Phe	Lys	Asn	Leu 5	Leu	Ser	Phe	Ala	Leu 10	Leu	Ala	Ile	Ser	Val 15	Ala
	Ası	n Ala	Gln	Ile 20	Val	Asn	Ser	Val	Asp 25	Thr	Met	Thr	Leu	Thr 30	Asn	Ala
45	Ası	n Val	Ser 35	Pro	Asp	Gly	Phe	Thr 40	Arg	Ala	Gly	Ile	Leu 45	Val	Asn	Gly
50	Va	l His 50	Gly	Pro	Leu	Ile	Arg 55	Gly	Gly	Lys	Asn	Asp 60	Asn	Phe	Glu	Leu
	As: 65	n Val	Val	Asn	Asp	Leu 70	Asp	Asn	Pro	Thr	Met 75	Leu	Arg	Pro	Thr	Ser 80
55	Il	e His	Trp	His	Gly 85	Leu	Phe	Gln	Arg	Gly 90	Thr	Asn	Trp	Ala	Asp 95	Gly
	Ala	a Asp	Gly	Val 100	Asn	Gln	Cys	Pro	Ile 105	Ser	Pro	Gly	His	Ala 110	Phe	Leu
60	Ty	r Lys	Phe 115	Thr	Pro	Ala	Gly	His 120	Ala	Gly	Thr	Phe	Trp 125	Tyr	His	Ser
65	Hi	s Phe 130	Gly	Thr	Gln	Tyr	Cys 135	Asp	Gly	Leu	Arg	Gly 140	Pro	Met	Val	Ile
	14	r Asp 5 n Thr				150					155					160

					165					170					175	
E	Ile	Gln	Gly	Ala 180	Ala	Gln	Pro	Asp	Ala 185	Thr	Leu	Ile	Asn ·	Gly 190	Lys	Gly
5	Arg	Tyr	Val 195		Gly	Pro	Ala	Ala 200	Glu	Leu	Ser	Ile	Val 205	Asn	Val	Glu
10	Gln	Gly 210	Lys	Lys	Tyr	Arg	Met 215	Arg	Leu	Ile	Ser	Leu 220	Ser	Cys	Asp	Pro
	Asn 225	Trp	Gln	Phe	Ser	Ile 230	Asp	Gly	His	Glu	Leu 235	Thr	Ile	Ile	Glu	Val 240
15	Asp	Gly	Gln	Leu	Thr 245	Glu	Pro	His	Thr	Val 250	Asp	Arg	Leu	Gln	Ile 255	Phe
20	Thr	Gly	Gln	Arg 260	Tyr	Ser	Phe	Val	Leu 265	Asp	Ala	Asn	Gln	Pro 270	Val	Asp
20	Asn	Tyr	Trp 275	Ile	Arg	Ala	Gln	Pro 280	Asn	Lys	Gly	Arg	Asn 285	Gly	Leu	Ala
25	Gly	Thr 290	Phe	Ala	Asn	Gly	Val 295	Asn	Ser	Ala	Ile	Leu 300	Arg	Tyr	Ala	Gly
	Ala 305	Ala	Asn	Ala	Asp	Pro 310	Thr	Thr	Ser	Ala	Asn 315	Pro	Asn	Pro	Ala	Gln 320
30	Leu	Asn	Glu	Ala	Asp 325	Leu	His	Ala	Leu	Ile 330	Asp	Pro	Ala	Ala	Pro 335	Gly
35	Ile	Pro	Thr	Pro 340	Gly	Ala	Ala	Asp	Val 345	Asn	Leu	Arg	Phe	Gln 350	Leu	Gly
33	Phe	Ser	Gly 355	Gly	Arg	Phe	Thr	Ile 360	Asn	Gly	Thr	Ala	Tyr 365	Glu	Ser	Pro
40	Ser	Val 370	Pro	Thr	Leu	Leu	Gln 375	Ile	Met	Ser	Gly	Ala 380	Gln	Ser	Ala	Asn
	Asp 385	Leu	Leu	Pro	Ala	Gly 390	Ser	Val	Tyr	Glu	Leu 395	Pro	Arg	Asn	Gln	Val 400
45	Val	Glu	Leu	Val	Val 405	Pro	Ala	Gly	Val	Leu 410	Gly	Gly	Pro	His	Pro 415	Phe
50	His	Leu	His	Gly 420	His	Ala	Phe	Ser	Val 425	Val	Arg	Ser	Ala	Gly 430	Ser	Ser
30	Thr	Tyr	Asn 435	Phe	Val	Asn	Pro	Val 440	Lys	Arg	Asp	Val	Val 445	Ser	Leu	Gly
55	Val	Thr 450	Gly	Asp	Glu	Val	Thr 455	Ile	Arg	Phe	Val	Thr 460	Asp	Asn	Pro	Gly
	Pro 465	Trp	Phe	Phe	His	Cys 470	His	Ile	Glu	Phe	His 475	Leu	Met	Asn	Gly	Leu 480
60	Ala	Ile	Val	Phe	Ala 485	Glu	Asp	Met	Ala	Asn 490	Thr	Val	Asp	Ala	Asn 495	Asn
	Pro	Pro	Val	Glu 500	Trp	Ala	Gln	Leu	Cys 505	Glu	Ile	Tyr	Asp	Asp 510	Leu	Pro
65	Pro	Glu	Ala 515	Thr	Ser	Ile	Gln	Thr 520	Val	Val	Arg	Arg	Ala 525	Glu	Pro	Thr

Gly	Phe	Ser	Ala	Lys	Phe	Arg	Arg	Glu	Gly	Leu
_	530			_		535				

Ala Phe Pro Leu Gly Ala Asp Ala Thr Leu Ile Asn Gly Lys Gly Arg 50 Ser Pro Ser Thr Thr Thr Ala Asp Leu Ser Val Ile Ser Val Thr Pro 185 Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Leu Ser Cys Asp Pro Asr 200 Tyr Thr Phe Ser Ile Asp Gly His Asn Met Thr Ile Ile Glu Thr Asp 215 Ser Ile Asn Thr Ala Pro Leu Val Val Asp Ser Ile Gln Ile Phe Ala			-	530			-		535	_		_	٠.				-	
(Ā) LENGTH: 499 amino acids (B) TYPE: amino acids (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: Gly Ile Gly Pro Val Ala Asp Leu Thr Ile Thr Asn Ala Ala Val Ser 1: 1	5	(2) II	NFOF	ITAMS	ON F	FOR S	SEQ I	D NO): 2:	:					•			
15	10		(i)	(A) (B) (C)	LEN TYI STI	IGTH: PE: a RANDE	499 mino EDNES	ami aci SS: S	ino a id sing]	cids	3							
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: Column		(:	ii)	MOLE	CULE	TYF	PE: p	rote	ein									
1	15	(:	xi)	SEQU	JENCE	E DES	CRIE	PTION	1: SI	II Q	ONO:	2:						
Pro Asp Gly Phe Ser Arg Gln Ala Val Val Val Asn Gly Gly Thr Pro 20 25 25 25 25 30 30 Thr Pro 20 25 25 25 30 30 Thr Pro 30 30 30 30 30 30 30 30	20		_	Ile	Gly	Pro	Val 5	Ala	Asp	Leu	Thr		Thr	Asn	Ala	Ala		Ser
11e Asp Asn Leu Thr Asn His Thr Met Leu Lys Ser Thr Ser Ile His Sor Phe Ile Asn Gln Cys Pro Ile Ser Ser Gly His Ser Phe Leu Tyr Asp 90 Phe Gln Val Pro Asp 65 Pro Ile Ser Ser Gly His Ser Phe Leu Tyr Asp 90 Phe Gln Val Pro Asp Gln Ala Gly Thr Phe Trp Tyr His Ser His Leu 110 Pro Asn Asp Pro Ala Asp Gly Pro Asp 125 Pro Asn Asp Pro Ala Asp Leu Tyr Asp Val Asp Asn Asp Asp Thr 130 Pro Asn Asp Pro Ala Asp Trp Tyr His Val Ala Ala Ala Lys Leu Gly Pro Ala Ala Phe Pro Leu Gly Ala Asp Ala Thr Leu Ile Asn Gly Lys Gly Arg 175 Pro Ser Pro Ser Thr Thr Ala Asp Leu Val Ser Val Ile Ser Val Ile Ser Val Thr Pro Asp 135 Pro Asp 215 Pro Asp 225 Pro Asp 225 Pro Asp 235 Pro Ala Gln Arg Tyr Ser Phe Val Leu Glu Ala Asp Val Gly Phe Thr Gly Asp 235 Pro Try Trp Ile Arg Ala Asp Pro Asp Pro Asp 245 Pro Asp 235 Pro Try Trp Ile Arg Ala Asp Pro Asp Pro Asp 245 Pro Asp 245 Pro Try Trp Ile Arg Ala Asp Pro Asp Pro Asp 255 Pro Try Trp Ile Arg Ala Asp Pro Asp Pro Asp 255 Pro Try Trp Ile Arg Ala Asp Pro Asp Pro Asp 255 Pro Try Trp Ile Arg Ala Asp Pro Asp Pro Asp 255 Pro Try Trp Ile Arg Ala Asp Pro Asp Pro Asp 255 Pro Try Trp Ile Arg Ala Asp Pro Asp 255 Pro Asp 255 Pro Try Trp Ile Arg Ala Asp Pro Asp Pro Asp 255 Pro Try Trp Ile Arg Ala Asp Pro Asp Pro Asp 255 Pro Try Trp Ile Arg Ala Asp Pro Asp Pro Asp 255 Pro Try Trp Ile Arg Ala Asp Pro Asp Pro Asp 255 Pro Try Trp Ile Arg Ala Asp Pro Asp Pro Asp 255 Pro Try Trp Ile Arg Ala Asp Pro Asp Pro Asp 255 Pro Try Trp Ile Arg Ala Asp Pro Asp Pro Asp 255 Pro Try Trp Ile Arg Ala Asp Pro Asp Pro Asp 255 Pro	20	1	Pro	qaA	Gly		Ser	Arg	Gln	Ala		Val	Val	Asn	Gly	-	Thr	Pro
50	25	(Gly	Pro		Ile	Thr	Gly	Asn		Gly	Asp	Arg	Phe		Leu	Asn	Val
65 70 70 75 75 80 Phe Ile Asn Gln Cys Pro Ile Ser Ser Gly His Ser Phe Leu Tyr Asp 95 Phe Gln Val Pro Asp Gln Ala Gly Thr Phe Trp Tyr His Ser His Leu 110 110 110 110 110 110 110 110 110 11			Ile		Asn	Leu	Thr	Asn		Thr	Met	Leu	Lys		Thr	Ser	Ile	His
85 90 95 44 Phe Gln Val Pro Asp Gln Ala Gly Thr Phe Trp Tyr His Ser His Leu 110 Ser Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro Phe Val Val Tyr Asp 125 Pro Asn Asp Pro Ala Ala Asp Leu Tyr Asp Val Asp Asn Asp Asp Thr 130 Ser Pro Leu Gly Ala Asp Trp Tyr His Val Ala Ala Lys Leu Gly Pro 145 Pro Ser Thr Thr Thr Ala Asp Leu Thr Leu Ile Asn Gly Lys Gly Arg 175 Pro Ser Pro Ser Thr Thr Thr Ala Asp Leu Ser Val Ile Ser Val Thr Pro 190 Tyr Thr Phe Ser Ile Asp Gly His Asn Met Thr Ile Ser Val Thr Asp 200 Pro Ser Ile Asn Thr Ala Pro Leu Val Val Asp Ser Ile Gln Ile Phe Ala 230 Ala Gln Arg Tyr Ser Phe Val Leu Glu Ala Asp Ser Ile Gln Ile Phe Ala 250 Tyr Trp Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly Tyr Tyr Tyr Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly Tyr Tyr Tyr Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly	30		_	His	Gly	Phe	Phe		Lys	Gly	Thr	Asn	_	Ala	Asp	Gly	Pro	
8 Fhe Gln Val Pro Asp Gln Ala Gly Thr Phe Trp Tyr His Ser His Level 8 Ser Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro Phe Val Val Tyr Asp 115 Pro Asn Asp Pro Ala Ala Asp Leu Tyr Asp Val Asp Asn Asp Asp Thr 130 Asp Pro Ala Ala Asp Trp Tyr His Val Ala Ala Lys Leu Gly Pro 145 Val Ile Thr Leu Val Asp Trp Tyr His Val Ala Ala Lys Leu Gly Pro 145 Ala Phe Pro Leu Gly Ala Asp Ala Thr Leu Ile Asn Gly Lys Gly Arg 165 Ser Pro Ser Thr Thr Thr Ala Asp Leu Ser Val Ile Ser Val Thr Pro 180 Tyr Thr Phe Ser Ile Asp Gly His Asn Met Thr Ile Ile Glu Thr Asp 210 Ala Gln Arg Tyr Ser Phe Val Leu Glu Ala Asn Gln Ala Val Asp Asp Asp Asp 180 Asp Asp 180 Asp Pro Asn Phe Gly Asn Val Gly Phe Thr Gly 180 Tyr Trp Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly	25	;	Phe	Ile	Asn	Gln	_	Pro	Ile	Ser	Ser	_	His	Ser	Phe	Leu	_	Asp
40 Pro Asn Asp Pro Ala Ala Asp Leu Tyr Asp Val Asp Asn Asp Asp Thr 130 Val Ile Thr Leu Val Asp Trp Tyr His Val Ala Ala Lys Leu Gly Pro 145 Ala Phe Pro Leu Gly Ala Asp Ala Thr Leu Ile Asn Gly Lys Gly Arg 175 Ser Pro Ser Thr Thr Thr Ala Asp Leu Ser Val Ile Ser Val Thr 190 Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Leu Ser Cys Asp Pro Asr 205 Tyr Thr Phe Ser Ile Asp Gly His Asn Met Thr Ile Ile Glu Thr Asp 215 Ala Gln Arg Tyr Ser Phe Val Leu Glu Ala Asp Gln Ala Val Asp Asr 255 Tyr Trp Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly Trp Trp Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly	33	;	Phe	Gln	Val		Asp	Gln	Ala	Gly		Phe	Trp	Tyr	His		His	Leu
130 135 140 45 Val Ile Thr Leu Val Asp Trp Tyr His Val Ala Ala Lys Leu Gly Pro 145 Ala Phe Pro Leu Gly Ala Asp Ala Thr Leu Ile Asn Gly Lys Gly Arg 175 Ser Pro Ser Thr Thr Thr Ala Asp Leu Ser Val Ile Ser Val Thr Pro 190 Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Leu Ser Cys Asp Pro Asr 200 Tyr Thr Phe Ser Ile Asp Gly His Asn Met Thr Ile Ile Glu Thr Asp 210 Ala Gln Arg Tyr Ser Phe Val Leu Glu Ala Asn Gln Ala Val Asp Asr 245 Tyr Trp Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly	40	i	Ser	Thr		Tyr	Cys	Asp	Gly		Arg	Gly	Pro	Phe		Val	Tyr	Asp
Ala Phe Pro Leu Gly Ala Asp Ala Thr Leu Ile Asn Gly Lys Gly Arg 175 Ser Pro Ser Thr Thr Thr Ala Asp Leu Ser Val Ile Ser Val Thr Pro 180 Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Leu Ser Cys Asp Pro Asr 200 Tyr Thr Phe Ser Ile Asp Gly His Asn Met Thr Ile Ile Glu Thr Asp 215 Ser Ile Asn Thr Ala Pro Leu Val Val Asp Ser Ile Gln Ile Phe Ala 230 Ala Gln Arg Tyr Ser Phe Val Leu Glu Ala Asn Gln Ala Val Asp Asr 255 Tyr Trp Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly			Pro		Asp	Pro	Ala	Ala		Leu	Tyr	Asp	Val		Asn	Asp	Asp	Thr
Ser Pro Ser Thr Thr Thr Ala Asp Leu Ser Val Ile Ser Val Thr Pro 190 Thr Pro 19	45			Ile	Thr	Leu	Val		Trp	Tyr	His	Val		Ala	Lys	Leu	Gly	Pro 160
Ser Pro Ser Thr Thr Ala Asp Leu Ser Val Ile Ser Val Thr Pro 180 Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Leu Ser Cys Asp Pro Asr 200 Tyr Thr Phe Ser Ile Asp Gly His Asn Met Thr Ile Ile Glu Thr Asp 215 Ser Ile Asn Thr Ala Pro Leu Val Val Asp Ser Ile Gln Ile Phe Ala 225 Ala Gln Arg Tyr Ser Phe Val Leu Glu Ala Asn Gln Ala Val Asp Asr 255 Tyr Trp Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly		,	Ala	Phe	Pro	Leu	-	Ala	Asp	Ala	Thr		Ile	Asn	Gly	Lys	-	Arg
Tyr Thr Phe Ser Ile Asp Gly His Asn Met Thr Ile Ile Glu Thr Asp 215 Ser Ile Asn Thr Ala Pro Leu Val Val Asp Ser Ile Gln Ile Phe Ala 225 Ala Gln Arg Tyr Ser Phe Val Leu Glu Ala Asn Gln Ala Val Asp Asp 255 Tyr Trp Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly	50		Ser	Pro	Ser		Thr	Thr	Ala	Asp		Ser	Val	Ile	Ser		Thr	Pro
210 215 220 Ser Ile Asn Thr Ala Pro Leu Val Val Asp Ser Ile Gln Ile Phe Ala 225 Ala Gln Arg Tyr Ser Phe Val Leu Glu Ala Asn Gln Ala Val Asp Asr 245 Tyr Trp Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly	55	(Gly	Lys		Tyr	Arg	Phe	Arg		Val	Ser	Leu	Ser		Asp	Pro	Asn
Ala Gln Arg Tyr Ser Phe Val Leu Glu Ala Asn Gln Ala Val Asp Asr 245 250 255 Tyr Trp Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly		•	Tyr		Phe	Ser	Ile	Asp		His	Asn	Met	Thr		Ile	Glu	Thr	Asp
245 250 255 65 Tyr Trp Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly	60			Ile	Asn	Thr	Ala		Leu	Val	Val	Asp		Ile	Gln	Ile	Phe	Ala 240
Tyr Trp Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly		:	Ala	Gln	Arg	Tyr		Phe	Val	Leu	Glu		Asn	Gln	Ala	Val		Asn
	65		Tyr	Trp	Ile		Ala	Asn	Pro	Asn		Gly	Asn	Val	Gly		Thr	Gly

	(Gly	Ile	Asn 275	Ser	Ala	Ile	Leu	Arg 280	Tyr	Asp	Gly	Ala	Ala 285	Ala	Val	Glu
5	1	Pro	Thr 290	Thr	Thr	Gln	Thr	Thr 295	Ser	Thr	Ala	Pro	Leu 300	Asn	Glu	Val	Asn
		Leu 305	His	Pro	Leu	Val	Thr 310	Thr	Ala	Val	Pro	Gly 315	Ser	Pro	Val	Ala	Gly 320
10	(Gly	Val	Asp	Leu	Ala 325	Ile	Asn	Met	Ala	Phe 330	Asn	Phe	Asn	Gly	Thr 335	Asn
1.5	1	Phe	Phe	Ile	Asn 340	Gly	Ala	Ser	Phe	Thr 345	Pro	Pro	Thr	Val	Pro 350	Val	Leu
15]	Leu	Gln	Ile 355	Ile	Ser	Gly	Ala	Gln 360	Asn	Ala	Gln	Asp	Leu 365	Leu	Pro	Ser
20	(Gly	Ser 370	Val	Tyr	Ser	Leu	Pro 375	Ser	Asn	Ala	Asp	Ile 380	Glu	Ile	Ser	Phe
		Pro 385	Ala	Thr	Ala	Ala	Ala 390	Pro	Gly	Ala	Pro	His 395	Pro	Phe	His	Leu	His 400
25	(Gly	His	Ala	Phe	Ala 405	Val	Val	Arg	Ser	Ala 410	Gly	Ser	Thr	Val	Tyr 415	Asn
20	•	Tyr	Asp	Asn	Pro 420	Ile	Phe	Arg	Asp	Val 425	Val	Ser	Thr	Gly	Thr 430	Pro	Ala
30	į	Ala	Gly	Asp 435	Asn	Val	Thr	Ile	Arg 440	Phe	Arg	Thr	Asp	Asn 445	Pro	Gly	Pro
35		Trp	Phe 450	Leu	His	Cys	His	Ile 455	Asp	Phe	His	Leu	Glu 460	Ala	Gly	Phe	Ala
		Val 465	Val	Phe	Ala	Glu	Asp 470	Ile	Pro	Asp	Val	Ala 475	Ser	Ala	Asn	Pro	Val 480
40		Pro	Gln	Ala	Trp	Ser 485	Asp	Leu	Cys	Pro	Thr 490	Tyr	Asp	Ala	Leu	Asp 495	Pro
15		Ser	Asp	Gln													
45	(2) I	NFOF	RMAT	ON I	OR S	SEQ :	ID NO	D: 3	:								
50		(i)	(A) (B)	ST	NGTH PE: 8 RANDI	: 499 amino	e am: SS: 8	ino a id sing:	acids	5							
55	(ii)	MOLE	ECULI	E TYI	PE: 1	prote	ein									
	(:	xi)	SEQ	JENCI	E DES	SCRI	PTIO	1: S	EQ II	ои с	: 3:						
60		Ala 1	Ile	Gly	Pro	Val 5	Ala	Ser	Leu	Val	Val 10	Ala	Asn	Ala	Pro	Val 15	Ser
		Pro	Asp	Gly	Phe 20	Leu	Arg	Asp	Ala	Ile 25	Val	Val	Asn	Gly	Val 30	Val	Pro
65		Ser	Pro	Leu 35	Ile	Thr	Gly	Lys	Lys 40	Gly	Asp	Arg	Phe	Gln 45	Leu	Asn	Val
		_				_							_		_		•

Val Asp Thr Leu Thr Asn His Ser Met Leu Lys Ser Thr Ser Ile His

50 55 60 Trp His Gly Phe Phe Gln Ala Gly Thr Asn Trp Ala Glu Gly Pro Ala 5 Phe Val Asn Gln Cys Pro Ile Ala Ser Gly His Ser Phe Leu Tyr Asp · 85 Phe His Val Pro Asp Gln Ala Gly Thr Phe Trp Tyr His Ser His Leu 10 Ser Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro Phe Val Val Tyr Asp 15 Pro Lys Asp Pro His Ala Ser Arg Tyr Asp Val Asp Asn Glu Ser Thr Val Ile Thr Leu Thr Asp Trp Tyr His Thr Ala Ala Arg Leu Gly Pro 20 Lys Phe Pro Leu Gly Ala Asp Ala Thr Leu Ile Asn Gly Leu Gly Arg 170 Ser Ala Ser Thr Pro Thr Ala Ala Leu Ala Val Ile Asn Val Gln His 25 180 185 Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Ile Ser Cys Asp Pro Asn 30 Tyr Thr Phe Ser Ile Asp Gly His Asn Leu Thr Val Ile Glu Val Asp Gly Ile Asn Ser Gln Pro Leu Leu Val Asp Ser Ile Gln Ile Phe Ala 235 35 Ala Gln Arg Tyr Ser Phe Val Leu Asn Ala Asn Gln Thr Val Gly Asn 245 250 Tyr Trp Val Arg Ala Asn Pro Asn Phe Gly Thr Val Gly Phe Ala Gly 40 Gly Ile Asn Ser Ala Ile Leu Arg Tyr Gln Gly Ala Pro Val Ala Glu 45 Pro Thr Thr Gln Thr Pro Ser Val Ile Pro Leu Ile Glu Thr Asn 295 Leu His Pro Leu Ala Arg Met Pro Val Pro Gly Ser Pro Thr Pro Gly 315 50 Gly Val Asp Lys Ala Leu Asn Leu Ala Phe Asn Phe Asn Gly Thr Asn 325 Phe Phe Ile Asn Asn Ala Thr Phe Thr Pro Pro Thr Val Pro Val Leu 55 Leu Gln Ile Leu Ser Gly Ala Gln Thr Ala Gln Asp Leu Leu Pro Ala 60 Gly Ser Val Tyr Pro Leu Pro Ala His Ser Thr Ile Glu Ile Thr Leu 370 375 Pro Ala Thr Ala Leu Ala Pro Gly Ala Pro His Pro Phe His Leu His 65 395 Gly His Ala Phe Ala Val Val Arg Ser Ala Gly Ser Thr Thr Tyr Asn

Tyr Asn Asp Pro Ile Phe Arg Asp Val Val Ser Thr Gly Thr Pro Ala 5 Ala Gly Asp Asn Val Thr Ile Arg Phe Gln Thr Asp Asn Pro Gly Pro Trp Phe Leu His Cys His Ile Asp Phe His Leu Asp Ala Gly Phe Ala 10 Ile Val Phe Ala Glu Asp Val Ala Asp Val Lys Ala Ala Asn Pro Val Pro Lys Ala Trp Ser Asp Leu Cys Pro Ile Tyr Asp Gly Leu Ser Glu 15 490 Ala Asn Gln 20 (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 548 amino acids (B) TYPE: amino acid 25 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: Met His Thr Phe Leu Arg Ser Thr Ala Leu Val Val Ala Gly Leu Ser 35 Ala Arg Ala Leu Ala Ser Ile Gly Pro Val Thr Asp Phe His Ile Val Asn Ala Ala Val Ser Pro Asp Gly Phe Ser Arg Gln Ala Val Leu Ala 40 Glu Gly Val Phe Pro Gly Pro Leu Ile Ala Gly Asn Lys Gly Asp Asn 45 Phe Gln Ile Asn Val Ile Asp Glu Leu Thr Asn Ala Thr Met Leu Lys Thr Thr Thr Ile His Trp His Gly Phe Phe Gln His Gly Thr Asn Trp 50 Ala Asp Gly Pro Ala Phe Ile Asn Gln Cys Pro Ile Ala Ser Gly Asp Ser Phe Leu Tyr Asn Phe Gln Val Pro Asp Gln Ala Gly Thr Phe Trp 55 Tyr His Ser His Leu Ser Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro 60 Phe Val Val Tyr Asp Pro Ala Asp Pro Tyr Leu Asp Gln Tyr Asp Val Asp Asp Asp Ser Thr Val Ile Thr Leu Ala Asp Trp Tyr His Thr Ala 65 Ala Arg Leu Gly Ser Pro Phe Pro Ala Ala Asp Thr Thr Leu Ile Asn 180 185 190

	Gly	Leu	Gly 195	Arg	Cys	Gly	Glu	Ala 200	Gly	Cys	Pro	Val	Ser 205	Asp	Leu	Ala
5	Val	Ile 210	Ser	Val	Thr	Lys	Gly 215	Lys	Arg	Tyr	Arg	Phe 220	Arg	Leu	Val	Ser
	Ile 225	Ser	Cys	Asp	Ser	Phe 230	Phe	Thr	Phe	Ser	Ile 235	Asp	Gly	His	Ser	Leu 240
10	Asn	Val	Ile	Glu	Val 245	Asp	Ala	Thr	Asn	His 250	Gln	Pro	Leu	Thr	Val 255	Asp
15	Glu	Leu	Thr	Ile 260	Tyr	Ala	Gly	Gln	Arg 265	Tyr	Ser	Phe	Ile	Leu 270	Thr	Ala
	Asp	Gln	Asp 275	Val	Asp	Asn	Tyr	Trp 280	Ile	Arg	Ala	Asn	Pro 285	Gly	Ile	Gly
20	Ile	Thr 290	Thr	Gly	Phe	Ala	Gly 295	Gly	Ile	Asn	Ser	Ala 300	Ile	Leu	Arg	Tyr
	Asp 305	Gly	Ala	Asp	Val	Val 310	Glu	Pro	Thr	Thr	Thr 315	Gln	Ala	Thr	Ser	Pro 320
25	Val	Val	Leu	Ser	Glu 325	Ser	Asn	Leu	Ala	Pro 330	Leu	Thr	Asn	Ala	Ala 335	Ala
30	Pro	Gly	Leu	Pro 340	Glu	Val	Gly	Gly	Val 345	Asp	Leu	Ala	Leu	Asn 350	Phe	Asn
	Leu	Thr	Phe 355	Asp	Gly	Pro	Ser	Leu 360	Lys	Phe	Gln	Ile	Asn 365	Gly	Val	Thr
35	Phe	Val 370	Pro	Pro	Thr	Val	Pro 375	Val	Leu	Leu	Gln	Ile 380	Leu	Ser	Gly	Ala
	Gln 385	Ser	Ala	Ala	Asp	Leu 390	Leu	Pro	Ser	Gly	Ser 395	Val	Tyr	Ala	Leu	Pro 400
40	Ser	Asn	Ala	Thr	Ile 405	Glu	Leu	Ser	Leu	Pro 410	Ala	Gly	Ala	Leu	Gly 415	Gly
45	Pro	His	Pro	Phe 420	His	Leu	His	Gly	His 425	Thr	Phe	Ser	Val	Val 430	Arg	Pro
	Ala	Gly	Ser 435	Thr	Thr	Tyr	Asn	Tyr 440	Val	Asn	Pro	Val	Gln 445	Arg	Asp	Val
50	Val	Ser 450	Ile	Gly	Asn	Thr	Gly 455	Asp	Asn	Val	Thr	Ile 460	Arg	Phe	Asp	Thr
	Asn 465	Asn	Pro	Gly	Pro	Trp 470	Phe	Leu	His	Cys	His 475	Ile	Asp	Trp	His	Leu 480
55	Glu	Ala	Ala	Leu	Pro 485	Leu	Ser	Ser	Leu	Arg 490	Thr	Ser	Leu	Thr	Leu 495	Arg
60	Pro	Leu	Thr	Leu 500	Ser	Pro	Arg	Thr	Gly 505	Pro	Thr	Cys	Ala	Leu 510	Ser	Thr
	Thr	Leu	Trp 515	Thr	His	Leu	Ile	Thr 520	Ser	Gly	Phe	Ala	Ser 525	Ile	Ile	Gln
65	Trp	Met 530	Met	Gly	Gly	Asn	Gly 535	Leu	Phe	Ala	Pro	His 540	Ala	Leu	Ser	Phe
	Leu	Gly	Ser	Gln												

	(2)	INFOR	TAMS	ON I	or s	SEQ]	D NO): 5:	:			٠.				-	
5		(i)	(A) (B)	JENCE LEN TYP STE	IGTH:	529 mino EDNES	ami aci SS: s	ino a id singl	cids	5				•			
10		(ii)															
15		(xi)															
		Met 1	Leu	Ser	Ser	Ile 5	Thr	Leu	Leu	Pro	Leu 10	Leu	Ala	Ala	Val	Ser 15	Thr
20		Pro	Ala	Phe	Ala 20	Ala	Val	Arg	Asn	Tyr 25	Lys	Phe	Asp	Ile	Lys 30	Asn	Val
		Asn	Val	Ala 35	Pro	Asp	Gly	Phe	Gln 40	Arg	Ser	Ile	Val	Ser 45	Val	Asn	Gly
25		Leu	Val 50	Pro	Gly	Thr	Leu	Ile 55	Thr	Ala	Asn	Lys	Gly 60	Asp	Thr	Leu	Arg
30		Ile 65	Asn	Val	Thr	Asn	Gln 70	Leu	Thr	Asp	Pro	Ser 75	Met	Arg	Arg	Ala	Thr 80
30		Thr	Ile	His	Trp	His 85	Gly	Leu	Phe	Gln	Ala 90	Thr	Thr	Ala	Asp	Glu 95	Asp
35		Gly	Pro	Ala	Phe 100	Val	Thr	Gln	Cys	Pro 105	Ile	Ala	Gln	Asn	Leu 110	Ser	Tyr
		Thr	Tyr	Glu 115	Ile	Pro	Leu	Arg	Gly 120	Gln	Thr	Gly	Thr	Met 125	Trp	Tyr	His
40		Ala	His 130	Leu	Ala	Ser	Gln	Tyr 135	Val	Asp	Gly	Leu	Arg 140	Gly	Pro	Leu	Val
45		Ile 145	Tyr	Asp	Pro	Asn	Asp 150	Pro	His	Lys	Ser	Arg 155	Tyr	Asp	Val	Asp	Asp 160
43		Ala	Ser	Thr	Val	Val 165	Met	Leu	Glu	Asp	Trp 170	Tyr	His	Thr	Pro	Ala 175	Pro
50		Val	Leu	Glu	Lys 180	Gln	Met	Phe	Ser	Thr 185	Asn	Asn	Thr	Ala	Leu 190	Leu	Ser
		Pro	Val	Pro 195	Asp	Ser	Gly	Leu	Ile 200	Asn	Gly	Lys	Gly	Arg 205	Tyr	Val	Gly
55		Gly	Pro 210	Ala	Val	Pro	Arg	Ser 215	Val	Ile	Asn	Val	Lys 220	Arg	Gly	Lys	Arg
		Tyr 225	Arg	Leu	Arg	Val	Ile 230	Asn	Ala	Ser	Ala	Ile 235	Gly	Ser	Phe	Thr	Phe 240
60		Ser	Ile	Glu	Gly	His 245	Ser	Leu	Thr	Val	Ile 250	Glu	Ala	Asp	Gly	Ile 255	Leu
65		His	Gln	Pro	Leu 260	Ala	Val	Asp	Ser	Phe 265	Gln	Ile	Tyr	Ala	Gly 270	Gln	Arg
		Tyr	Ser	Val 275	Ile	Val	Glu	Ala	Asn 280	Gln	Thr	Ala	Ala	Asn 285	Tyr	Trp	Ile

PCT/DK98/00070 WO 98/38287

		Arg	Ala 290	Pro	Met	Thr	Val	Ala 295	Gly	Ala	Gly	Thr	Asn 300	Ala	Asn	Leu	Asp
5		Pro 305	Thr	Asn	Val	Phe	Ala 310	Val	Leu	His	Tyr	Glu 315	Gly	Ala	Pro	Asn	Ala 320
10		Glu	Pro	Thr	Thr	Glu 325	Gln	Gly	Ser	Ala	Ile 330	Gly	Thr	Ala	Leu	Val 335	Glu
10		Glu	Asn	Leu	His 340	Ala	Leu	Ile	Asn	Pro 345	Gly	Ala	Pro	Gly	Gly 350	Ser	Ala
15		Pro	Ala	Asp 355	Val	Ser	Leu	Asn	Leu 360	Ala	Ile	Gly	Arg	Ser 365	Thr	Val	Asp
		Gly	Ile 370	Leu	Arg	Phe	Thr	Phe 375	Asn	Asn	Ile	Lys	Tyr 380	Glu	Ala	Pro	Ser
20		Leu 385	Pro	Thr	Leu	Leu	Lys 390	Ile	Leu	Ala	Asn	Asn 395	Ala	Ser	Asn	Asp	Ala 400
25		Asp	Phe	Thr	Pro	Asn 405	Glu	His	Thr	Ile	Val 410	Leu	Pro	His	Asn	Lys 415	Val
25		Ile	Glu	Leu	Asn 420	Ile	Thr	Gly	Gly	Ala 425	Asp	His	Pro	Ile	His 430	Leu	His
30		Gly	His	Val 435	Phe	Asp	Ile	Val	Lys 440	Ser	Leu	Gly	Gly	Thr 445	Pro	Asn	Tyr
		Val	Asn 450	Pro	Pro	Arg	Arg	Asp 455	Val	Val	Arg	Val	Gly 460	Gly	Thr	Gly	Val
35		Val 465	Leu	Arg	Phe	Lys	Thr 470	Asp	Asn	Pro	Gly	Pro 475	Trp	Phe	Val	His	Cys 480
40		His	Ile	Asp	Trp	His 485	Leu	Glu	Ala	Gly	Leu 490	Ala	Leu	Val	Phe	Ala 495	Glu
40		Ala	Pro	Ser	Gln 500	Ile	Arg	Gln	Gly	Val 505	Gln	Ser	Val	Gln	Pro 510	Asn	Asn
45		Ala	Trp	Asn 515	Gln	Leu	Cys	Pro	Lys 520	Tyr	Ala	Ala	Leu	Pro 525	Pro	Asp	Leu
		Gln															
50	(2)	INFO	RMAT:	ION I	FOR 8	SEQ :	ID NO	D: 6	:								

55

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 599 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- - (ii) MOLECULE TYPE: protein
- 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Met Ala Arg Ser Thr Thr Ser Leu Phe Ala Leu Ser Leu Val Ala Ser

65 Ala Phe Ala Arg Val Val Asp Tyr Gly Phe Asp Val Ala Asn Gly Ala

Val Ala Pro Asp Gly Val Thr Arg Asn Ala Val Leu Val Asn Gly Arg

35 40 45 Phe Pro Gly Pro Leu Ile Thr Ala Asn Lys Gly Asp Thr Leu Lys Ile 55 5 Thr Val Arg Asn Lys Leu Ser Asp Pro Thr Met Arg Arg Ser Thr Thr Ile His Trp His Gly Leu Leu Gln His Arg Thr Ala Glu Glu Asp Gly 10 Pro Ala Phe Val Thr Gln Cys Pro Ile Pro Pro Gln Glu Ser Tyr Thr 15 Tyr Thr Met Pro Leu Gly Glu Gln Thr Gly Thr Tyr Trp Tyr His Ser His Leu Ser Ser Gln Tyr Val Asp Gly Leu Arg Gly Pro Ile Val Ile 20 Tyr Asp Pro His Asp Pro Tyr Arg Asn Tyr Tyr Asp Val Asp Asp Glu Arg Thr Val Phe Thr Leu Ala Asp Trp Tyr His Thr Pro Ser Glu Ala 25 170 Ile Ile Ala Thr His Asp Val Leu Lys Thr Ile Pro Asp Ser Gly Thr 30 Ile Asn Gly Lys Gly Lys Tyr Asp Pro Ala Ser Ala Asn Thr Asn Asn Thr Thr Leu Glu Asn Leu Tyr Thr Leu Lys Val Lys Arg Gly Lys Arg 35 Tyr Arg Leu Arg Ile Ile Asn Ala Ser Ala Ile Ala Ser Phe Arg Phe Gly Val Gln Gly His Lys Cys Thr Ile Ile Glu Ala Asp Gly Val Leu 40 Thr Lys Pro Ile Glu Val Asp Ala Phe Asp Ile Leu Ala Gly Gln Arg 45 Tyr Ser Cys Ile Leu Lys Ala Asp Gln Asp Pro Asp Ser Tyr Trp Ile 280 Asn Ala Pro Ile Thr Asn Val Leu Asn Thr Asn Val Gln Ala Leu Leu 50 Val Tyr Glu Asp Asp Lys Arg Pro Thr His Tyr Pro Trp Lys Pro Phe Leu Thr Trp Lys Ile Ser Asn Glu Ile Ile Gln Tyr Trp Gln His Lys 55 325 His Gly Ser His Gly His Lys Gly Lys Gly His His Lys Val Arg 345 Ala Ile Gly Gly Val Ser Gly Leu Ser Ser Arg Val Lys Ser Arg Ala 60 Ser Asp Leu Ser Lys Lys Ala Val Glu Leu Ala Ala Ala Leu Val Ala 375 65 Gly Glu Ala Glu Leu Asp Lys Arg Gln Asn Glu Asp Asn Ser Thr Ile Val Leu Asp Glu Thr Lys Leu Ile Pro Leu Val Gln Pro Gly Ala Pro

						405					410					415	
5		Gly	Gly	Ser	Arg 420	Pro	Ala	Asp	Val	Val 425	Val	Pro	Leu	Asp	Phe 430	Gly.	Leu
J		Asn	Phe	Ala 435		Gly	Leu	Trp	Thr 440	Ile	Asn	Asn	Val	Ser 445	Tyr	Ser	Pro
10		Pro	Asp 450	Val	Pro	Thr	Leu	Leu 455	Lys	Ile	Leu	Thr	Asp 460	Lys	Asp	Lys	Val
		Asp 465	Ala	Ser	Asp	Phe	Thr 470	Ala	Asp	Glu	His	Thr 475	Tyr	Ile	Leu	Pro	Lys 480
15		Asn	Gln	Val	Val	Glu 485	Leu	His	Ile	Lys	Gly 490	Gln	Ala	Leu	Gly	Ile 495	Val
20		His	Pro	Leu	His 500	Leu	His	Gly	His	Ala 505	Phe	Asp	Val	Val	Gln 510	Phe	Gly
		Asp	Asn	Ala 515	Pro	Asn	Tyr	Val	Asn 520	Pro	Pro	Arg	Arg	Asp 525	Val	Val	Gly
25		Val	Thr 530	Asp	Ala	Gly	Val	Arg 535	Ile	Gln	Phe	Arg	Thr 540	Asp	Asn	Pro	Gly
		Pro 545	Trp	Phe	Leu	His	Cys 550	His	Ile	Asp	Trp	His 555	Leu	Glu	Glu	Gly	Phe 560
30		Ala	Met	Val	Phe	Ala 565	Glu	Ala	Pro	Glu	Asp 570	Ile	Lys	Lys	Gly	Ser 575	Gln
35		Ser	Val	Lys	Pro 580	Asp	Gly	Gln	Trp	Lys 585	Lys	Leu	Cys	Glu	Lys 590	Tyr	Glu
		Lys	Leu	Pro 595	Glu	Ala	Leu	Gln									
40	(2)	INFO						D: 7:									
			(B)	TYI STI	PE: a	amino EDNES	ss: s	singl		5							
45		(ii)			POLOC												
50		(xi)	SEO	JENCI	E DES	SCRII	PTIO	1: SI	EO II	ои с	· : 7:						
												Ser	Leu	Phe	Val	Ser 15	Ala
55		Val	Leu	Ala	Arg 20	Thr	Val	Glu	Tyr	Asn 25	Leu	Lys	Ile	Ser	Asn 30	Gly	Lys
60		Ile	Ala	Pro 35	Asp	Gly	Val	Glu	Arg 40	Asp	Ala	Thr	Leu	Val 45	Asn	Gly	Gly
60		Tyr	Pro 50	Gly	Pro	Leu	Ile	Phe 55	Ala	Asn	Lys	Gly	Asp 60	Thr	Leu	Lys	Val
65		Lys 65	Val	Gln	Asn	Lys	Leu 70	Thr	Asn	Pro	Asp	Met 75	Tyr	Arg	Thr	Thr	Ser 80
		Ile	His	Trp	His	Gly 85	Leu	Leu	Gln	His	Arg 90	Asn	Ala	Asp	Asp	Asp 95	Gly

PCT/DK98/00070 WO 98/38287 128

	Pro	Ala	Phe	Val 100	Thr	Gln	Cys	Pro	Ile 105	Val	Pro	Gln	Ala	Ser 110	Tyr	Thr
5	Tyr	Thr	Met 115	Pro	Leu	Gly	Asp	Gln 120	Thr	Gly	Thr	Tyr	Trp 125	Tyr	His	Ser
10	His	Leu 130	Ser	Ser	Gln	Tyr	Val 135	Asp	Gly	Leu	Arg	Gly 140	Pro	Leu	Val	Ile
10	Tyr 145	Asp	Pro	Lys	Asp	Pro 150	His	Arg	Arg	Leu	Tyr 155	Asp	Ile	Asp	Asp	Glu 160
15	Lys	Thr	Val	Leu	Ile 165	Ile	Gly	Asp	Trp	Tyr 170	His	Thr	Ser	Ser	Lys 175	Ala
	Ile	Leu	Ala	Thr 180	Gly	Asn	Ile	Thr	Leu 185	Gln	Gln	Pro	Asp	Ser 190	Ala	Thr
20	Ile	Asn	Gly 195	Lys	Gly	Arg	Phe	Asp 200	Pro	Asp	Asn	Thr	Pro 205	Ala	Asn	Pro
25	Asn	Thr 210	Leu	Tyr	Thr	Leu	Lys 215	Val	Lys	Arg	Gly	Lys 220	Arg	Tyr	Arg	Leu
23	Arg 225	Val	Ile	Asn	Ser	Ser 230	Ala	Ile	Ala	Ser	Phe 235	Arg	Met	Ser	Ile	Gln 240
30	Gly	His	Lys	Met	Thr 245	Val	Ile	Ala	Ala	Asp 250	Gly	Val	Ser	Thr	Lys 255	Pro
	Tyr	Gln	Val	Asp 260	Ser	Phe	Asp	Ile	Leu 265	Ala	Gly	Gln	Arg	Ile 270	Asp	Ala
35	Val	Val	Glu 275	Ala	Asn	Gln	Glu	Pro 280	Asp	Thr	Tyr	Trp	Ile 285	Asn	Ala	Pro
40	Leu	Thr 290	Asn	Val	Ala	Asn	Lys 295	Thr	Ala	Gln	Ala	Leu 300	Leu	Ile	Tyr	Glu
40	Asp 305	Asp	Arg	Arg	Pro	Tyr 310	His	Pro	Pro	Lys	Gly 315	Pro	Tyr	Arg	Lys	Trp 320
45	Ser	Val	Ser	Glu	Ala 325	Ile	Ile	Lys	Tyr	Trp 330	Lys	His	Lys	His	Gly 335	Arg
	Gly	Leu	Leu	Ser 340	Gly	His	Gly	Gly	Leu 345	Lys	Ala	Arg	Met	Met 350	Glu	Gly
50	Ser	Leu	His 355	Leu	His	Gly	Arg	Arg 360	Asp	Ile	Val	Lys	Arg 365	Gln	Asn	Glu
55	Thr	Thr 370	Thr	Val	Val	Met	Asp 375	Glu	Thr	Lys	Leu	Val 380	Pro	Leu	Glu	His
	Pro 385	Gly	Ala	Ala	Cys	Gly 390	Ser	Lys	Pro	Ala	Asp 395	Leu	Val	Ile	Asp	Leu 400
60	Thr	Phe	Gly	Val	Asn 405	Phe	Thr	Thr	Gly	His 410	Trp	Met	Ile	Asn	Gly 415	Ile
	Pro	His	Lys	Ser 420	Pro	Asp	Met	Pro	Thr 425	Leu	Leu	Lys	Ile	Leu 430	Thr	Asp
65	Thr	Asp	Gly 435	Val	Thr	Glu	Ser	Asp 440	Phe	Thr	Gln	Pro	Glu 445	His	Thr	Ile

		11e	450	PIO	гÀг	Asn	гÀг	455	vai	GIU	Pne	Asn	460	гуѕ	GIÀ	Asn	ser
5		Gly 465	Leu	Gly	Ile	Val	His 470	Pro	Ile	His	Leu	His 475	Gly	His	Thr	Phe	Asp 480
		Val	Val	Gln	Phe	Gly 485	Asn	Asn	Pro	Pro	Asn 490	Tyr	Val	Asn	Pro	Pro 495	Arg
10		Arg	Asp	Val	Val 500	Gly	Ala	Thr	Asp	Glu 505	Gly	Val	Arg	Phe	Gln 510	Phe	Lys
15		Thr	qaA	Asn 515	Pro	Gly	Pro	Trp	Phe 520	Leu	His	Cys	His	Ile 525	Asp	Trp	His
		Leu	Glu 530	Glu	Gly	Phe	Ala	Met 535	Val	Phe	Ala	Glu	Ala 540	Pro	Glu	Ala	Ile
20		Lys 545	Gly	Gly	Pro	Lys	Ser 550	Val	Pro	Val	Asp	Arg 555	Gln	Trp	Lys	Asp	Leu 560
		Cys	Arg	Lys	Tyr	Gly 565	Ser	Leu	Pro	Ala	Gly 570	Phe	Leu				
25	(2)	INFO	TAMS	гои і	FOR S	SEQ :	D NO	D: 8:	:								
30		(i)	(A) (B)	LEI TYI STI	NGTH:	: 579 amino EDNES	ami aci	singl	acids	3							
		(ii)	MOLI	ECULI	E TYI	PE: 1	prote	ein									
35		(xi)	SEQ	JENCI	E DES	SCRI	PTIO	N: SI	EQ II	ои с	: 8:						
40		1				5		Leu			10					15	
					20			Glu	_	25		-			30	_	
45				35				Lys	40					45			_
		_	50	_				Phe 55			-	_	60				
50		65				_	70	Thr				75	_				80
55						85		Leu			90					95	
					100			Cys		105					110		
60				115				Asp	120					125		_	
		His	Leu 130	Ser	Ser	Gln	Tyr	Val 135	Asp	Gly	Leu	Arg	Gly 140	Pro	Leu	Val	Ile
65		Tyr 145	Pro	Lys	Asp	Pro	His 150	Arg	Arg	Leu	Tyr	Asp 155	Val	Asp	Asp	Glu	Lys 160
			_		_									Ser	_		

					165					170					175	
5	Leu	Ala	Ser	Gly 180	Asn	Ile	Thr	Arg	Gln 185	Arg	Pro	Val	Ser	Ala 190	Thr.	Ile
3	Asn	Gly	Lys 195		Arg	Phe	Asp	Pro 200	Asp	Asn	Thr	Pro	Ala 205	Asn	Pro	Asp
10	Thr	Leu 210	Tyr	Thr	Leu	Lys	Val 215	Lys	Arg	Gly	Lys	Arg 220	Tyr	Arg	Leu	Arg
	Val 225	Ile	Asn	Ser	Ser	Glu 230	Ile	Ala	Ser	Phe	Arg 235	Phe	Ser	Val	Glu	Gly 240
15	His	Lys	Val	Thr	Val 245	Ile	Ala	Ala	Asp	Gly 250	Val	Ser	Thr	Lys	Pro 255	Tyr
20	Gln	Val	Asp	Ala 260	Phe	Asp	Ile	Leu	Ala 265	Gly	Gln	Arg	Ile	Asp 270	Cys	Val
20	Val	Glu	Ala 275	Asn	Gln	Glu	Pro	Asp 280	Thr	Tyr	Trp	Ile	Asn 285	Ala	Pro	Leu
25	Thr	Asn 290	Val	Pro	Asn	Lys	Thr 295	Ala	Gln	Ala	Leu	Leu 300	Val	Tyr	Glu	Glu
	Asp 305	Arg	Arg	Pro	Tyr	His 310	Pro	Pro	Lys	Gly	Pro 315	Tyr	Arg	Lys	Trp	Ser 320
30	Val	Ser	Glu	Ala	Ile 325	Ile	Lys	Tyr	Trp	Asn 330	His	Lys	His	Lys	His 335	Gly
35	Arg	Gly	Leu	Leu 340	Ser	Gly	His	Gly	Gly 345	Leu	Lys	Ala	Arg	Met 350	Ile	Glu
	Gly	Ser	His 355	His	Leu	His	Ser	Arg 360	Ser	Val	Val	Lys	Arg 365	Gln	Asn	Glu
40	Thr	Thr 370	Thr	Val	Val	Met	Asp 375	Glu	Ser	Lys	Leu	Val 380	Pro	Leu	Glu	Tyr
	Pro 385	Gly	Ala	Ala	Cys	Gly 390	Ser	Lys	Pro	Ala	Asp 395	Leu	Val	Leu	Asp	Leu 400
45	Thr	Phe	Gly	Leu	Asn 405	Phe	Ala	Thr	Gly	His 410	Trp	Met	Ile	Asn	Gly 415	Ile
50	Pro	Tyr	Glu	Ser 420	Pro	Lys	Ile	Pro	Thr 425	Lęu	Leu	Lys	Ile	Leu 430	Thr	Asp
	Glu	Asp	Gly 435	Val	Thr	Glu	Ser	Asp 440	Phe	Thr	Lys	Glu	Glu 445	His	Thr	Val
55	Ile	Leu 450	Pro	Lys	Asn	Lys	Cys 455	Ile	Glu	Phe	Asn	Ile 460	Lys	Gly	Asn	Ser
60	Gly 465	Ile	Pro	Ile	Thr	His 470	Pro	Val	His	Leu	His 475	Gly	His	Thr	Trp	Asp 480
60	Val	Val	Gln	Phe	Gly 485	Asn	Asn	Pro	Pro	Asn 490	Tyr	Val	Asn	Pro	Pro 495	Arg
65	Arg	Asp	Val	Val 500	Gly	Ser	Thr	Ąsp	Ala 505	Gly	Val	Arg	Ile	Gln 510	Phe	Lys
	Thr	Asp	Asn 515	Pro	Gly	Pro	Trp	Phe 520	Leu	His	Cys	His	Ile 525	Asp	Trp	His

	Leu	Glu 530	Glu	Gly	Phe	Ala	Met 535	Val	Phe	Ala	Glu	Ala 540	Pro	Glu	Ala	Val
5	Lys 545	Gly	Gly	Pro	Lys	Ser 550	Val	Ala	Val	Asp	Ser 555	Gln	Trp	Glu	Gly	Leu 560
	Суз	Gly	Lys	Tyr	Asp 565	Asn	Trp	Leu	Lys	Ser 570	Asn	Pro	Gly	Gln	Leu 575	
10	(2) INFO	RMAT:	ION E	FOR S	SEQ I	ID NO): 9:	:								
15	(i)	(A) (B) (C)		IGTH PE: 8 RANDI	: 616 amino EDNES	am: ac: ss: s	ino a id singl	acids	5							
20	(ii)	MOLI	ECULE	TYI	?E: p	prote	ein									
	(xi)	SEQ	JENCE	E DES	SCRII	PTIO	1: SI	EQ II	ои с	: 9:						
25	Met 1	Lys	Arg	Phe	Phe 5	Ile	Asn	Ser	Leu	Leu 10	Leu	Leu	Ala	Gly	Leu 15	Leu
	Asn	Ser	Gly	Ala 20	Leu	Ala	Ala	Pro	Ser 25	Thr	His	Pro	Arg	Ser 30	Asn	Pro
30	Asp	Ile	Leu 35	Leu	Glu	Arg	Asp	Asp 40	His	Ser	Leu	Thr	Ser 45	Arg	Gln	Gly
	Ser	Суs 50	His	Ser	Pro	Ser	Asn 55	Arg	Ala	Cys	Trp	Cys 60	Ser	Gly	Phe	Asp
35	Ile 65	Asn	Thr	Asp	Tyr	Glu 70	Thr	Lys	Thr	Pro	Asn 75	Thr	Gly	Val	Val	Arg 80
40	Arg	Tyr	Thr	Phe	Asp 85	Ile	Thr	Glu	Val	Asp 90	Asn	Arg	Pro	Gly	Pro 95	Asp
	Gly	Val	Ile	Lys 100	Glu	Lys	Leu	Met	Leu 105	Ile	Asn	Asp	Lys	Leu 110	Leu	Gly
45	Pro	Thr	Val 115	Phe	Ala	Asn	Trp	Gly 120	Asp	Thr	Ile	Glu	Val 125	Thr	Val	Asn
5 0	Asn	His 130	Leu		Thr									Gly	Leu	His
50	Gln 145	Lys	Gly	Thr	Asn	Tyr 150	His	Asp	Gly	Ala	Asn 155	Gly	Val	Thr	Glu	Cys 160
55	Pro	Ile	Pro	Pro	Gly 165	Gly	Ser	Arg	Val	Tyr 170	Ser	Phe	Arg	Ala	Arg 175	Gln
	Tyr	Gly	Thr	Ser 180	Trp	Tyr	His	Ser	His 185	Phe	Ser	Ala	Gln	Tyr 190	Gly	Asn
60	Gly	Val	Ser 195	Gly	Ala	Ile	Gln	Ile 200	Asn	Gly	Pro	Ala	Ser 205	Leu	Pro	Tyr
	Asp	Ile 210	Asp	Leu	Gly	Val	Leu 215	Pro	Leu	Xaa	Asp	Trp 220	Tyr	Tyr	Lys	Ser
65	Ala 225	Asp	Gln	Leu	Val	Ile 230	Glu	Thr	Leu	Xaa	Lys 235	Gly	Asn	Ala	Pro	Phe 240

	Ser	Asp	Asn	Val	Leu 245	Ile	Asn	Gly	Thr	Ala 250	Lys	His	Pro	Thr	Thr 255	Gly
5	Glu	Gly	Glu	Tyr 260	Ala	Ile	Val	Lys	Leu 265	Thr	Pro	Asp	Lys	Arg 270	His	Arg
	Leu	Arg	Leu 275	Ile	Asn	Met	Ser	Val 280	Glu	Asn	His	Phe	Gln 285	Val	Ser	Leu
10	Ala	Lys 290	His	Thr	Met	Thr	Val 295	Ile	Ala	Ala	Asp	Met 300	Val	Pro	Val	Asn
15	Ala 305	Met	Thr	Val	Asp	Ser 310	Leu	Phe	Met	Ala	Val 315	Gly	Gln	Arg	Tyr	Asp 320
15	Val	Thr	Ile	Asp	Ala 325	Ser	Gln	Ala	Val	Gly 330	Asn	Tyr	Trp	Phe	Asn 335	Ile
20	Thr	Phe	Gly	Gly 340	Gln	Gln	Lys	Суз	Gly 345	Phe	Ser	His	Asn	Pro 350	Ala	Pro
	Ala	Ala	Ile 355	Phe	Arg	Tyr	Glu	Gly 360	Ala	Pro	Asp	Ala	Leu 365	Pro	Thr	Asp
25	Pro	Gly 370	Ala	Ala	Pro	Lys	Asp 375	His	Gln	Cys	Leu	Asp 380	Thr	Leu	Asp	Leu
30	Ser 385	Pro	Val	Val	Gln	Lys 390	Asn	Val	Pro	Val	Asp 395	Gly	Phe	Val	Lys	Glu 400
30	Pro	Gly	Asn	Thr	Leu 405	Pro	Val	Thr	Leu	His 410	Val	Asp	Gln	Ala	Ala 415	Ala
35	Pro	His	Val	Phe 420	Thr	Trp	Lys	Ile	Asn 425	Gly	Ser	Ala	Ala	Asp 430	Val	Asp
	Trp	Asp	Arg 435	Pro	Val	Leu	Glu	Tyr 440	Val	Met	Asn	Asn	Asp 445	Leu	Ser	Ser
40	Ile	Pro 450	Val	Lys	Asn	Asn	Ile 455	Val	Arg	Val	Asp	Gly 460	Val	Asn	Glu	Trp
45	Thr 465	Tyr	Trp	Leu	Val	Glu 470	Asn	Asp	Pro	Glu	Gly 475	Arg	Leu	Ser	Leu	Pro 480
43	His	Pro	Met	His	Leu 485	His	Gly	His	Asp	Phe 490	Phe	Val	Leu	Gly	Arg 495	Ser
50	Pro	Asp	Val	Ser 500	Pro	Asp	Ser	Glu	Thr 505	Arg	Phe	Val	Phe	Asp 510	Pro	Ala
<i>EE</i>	Val	Asp	Leu 515	Pro	Arg	Leu	Arg	Gly 520	His	Asn	Pro	Val	Arg 525	Arg	Asp	Val
55	Thr	Met 530	Leu	Pro	Ala	Arg	Gly 535	Trp	Leu	Leu	Leu	Ala 540	Phe	Arg	Thr	Asp
60	Asn 545	Pro	Gly	Ala	Trp	Leu 550	Phe	His	Cys	His	Ile 555	Ala	Xaa	His	Val	Ser 560
	Gly	Gly	Leu	Ser	Val 565	Asp	Phe	Leu	Glu	Ar g 570	Pro	Asp	Glu	Leu	Arg 575	Gly
65	Gln	Leu	Thr	Gly 580	Glu	Ser	Lys	Ala	Glu 585	Leu	Glu	Arg	Val	Cys 590	Arg	Glu
	Trp	Lys	Asp	Trp	Glu	Ala	Lys	Ser	Pro	His	Gly	Lys	Ile	Asp	Ser	Gly

133

595 600 605 Leu Lys Gln Arg Arg Trp Asp Ala (2) INFORMATION FOR SEQ ID NO: 10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 573 amino acids 10 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: Gln Gln Ser Cys Asn Thr Pro Ser Asn Arg Ala Cys Trp Thr Asp Gly 20 Tyr Asp Ile Asn Thr Asp Tyr Glu Val Asp Ser Pro Asp Thr Gly Val Val Arg Pro Tyr Thr Leu Thr Leu Thr Glu Val Asp Asn Trp Thr Gly 25 Pro Asp Gly Val Val Lys Glu Lys Val Met Leu Val Asn Asn Ser Ile 30 Ile Gly Pro Thr Ile Phe Ala Asp Trp Gly Asp Thr Ile Gln Val Thr Val Ile Asn Asn Leu Glu Thr Asn Gly Thr Ser Ile His Trp His Gly 35 Leu His Gln Lys Gly Thr Asn Leu His Asp Gly Ala Asn Gly Ile Thr 40 Glu Cys Pro Ile Pro Pro Lys Gly Gly Arg Lys Val Tyr Arg Phe Lys Ala Gln Gln Tyr Gly Thr Ser Trp Tyr His Ser His Phe Ser Ala Gln 135 45 Tyr Gly Asn Gly Val Val Gly Ala Ile Gln Ile Asn Gly Pro Ala Ser Leu Pro Tyr Asp Thr Asp Leu Gly Val Phe Pro Ile Ser Asp Tyr Tyr 50 Tyr Ser Ser Ala Asp Glu Leu Val Glu Leu Thr Lys Asn Ser Gly Ala 55 Pro Phe Ser Asp Asn Val Leu Phe Asn Gly Thr Ala Lys His Pro Glu Thr Gly Glu Gly Glu Tyr Ala Asn Val Thr Leu Thr Pro Gly Arg Arg 60 His Arg Leu Arg Leu Ile Asn Thr Ser Val Glu Asn His Phe Gln Val Ser Leu Val Asn His Thr Met Cys Ile Ile Ala Ala Asp Met Val Pro 65 250 Val Asn Ala Met Thr Val Asp Ser Leu Phe Leu Gly Val Gly Gln Arg 260 265

	Tyr A	Asp	Val 275	Val	Ile	Glu	Ala	Asn 280	Arg	Thr	Pro	Gly	Asn 285	Tyr	Trp	Phe
5	Asn V	Val 290	Thr	Phe	Gly	Gly	Gly 295	Leu	Leu	Cys	Gly	Gly 300	Ser	Arg	Asn	Pro
10	Tyr 1	Pro	Ala	Ala	Ile	Phe 310	His	Tyr	Ala	Gly	Ala 315	Pro	Gly	Gly	Pro	Pro 320
10	Thr A	Asp	Glu	Gly	Lys 325	Ala	Pro	Val	Asp	His 330	Asn	Cys	Leu	Asp	Leu 335	Pro
15	Asn l	Leu	Lys	Pro 340	Val	Val	Ala	Arg	Asp 345	Val	Pro	Leu	Ser	Gly 350	Phe	Ala
	Lys A	Arg	Ala 355	Asp	Asn	Thr	Leu	Asp 360	Val	Thr	Leu	Asp	Thr 365	Thr	Gly	Thr
20	Pro 1	Leu 370	Phe	Val	Trp	Lys	Val 375	Asn	Gly	Ser	Ala	Ile 380	Asn	Ile	Asp	Trp
25	Gly 7 385	Arg	Ala	Val	Val	Asp 390	Tyr	Val	Leu	Thr	Gln 395	Asn	Thr	Ser	Phe	Pro 400
	Pro (Gly	Tyr	Asn	Ile 405	Val	Glu	Val	Asn	Gly 410	Ala	Asp	Gln	Trp	Ser 415	Tyr
30	Trp 1	Leu	Ile	Glu 420	Asn	Asp	Pro	Gly	Ala 425	Pro	Phe	Thr	Leu	Pro 430	His	Pro
	Met 1	His	Leu 435	His	Gly	His	Asp	Phe 440	Tyr	Val	Leu	Gly	Arg 445	Ser	Pro	Asp
35	Glu :	Ser 450	Pro	Ala	Ser	Asn	Glu 455	Arg	His	Val	Phe	Asp 460	Pro	Ala	Arg	Asp
40	Ala (Gly	Leu	Leu	Ser	Gly 470	Ala	Asn	Pro	Val	Arg 475	Arg	Asp	Val	Ser	Met 480
	Leu :				485	_				490					495	
45	Gly	Ala	Trp	Leu 500	Phe	His	Cys	His	Ile 505	Ala	Trp	His	Val	Ser 510	Gly	Gly
	Leu (Gly	Val 515	Val	Tyr	Leu	Glu	Arg 520	Ala	Asp	Asp	Leu	Arg 525	Gly	Ala	Val
50	Ser .	Asp 530	Ala	Asp	Ala	Asp	Asp 535	Leu	Asp	Arg	Leu	Cys 540	Ala	Asp	Trp	Arg
55	Arg 545	Tyr	Trp	Pro	Thr	Asn 550	Pro	Tyr	Pro	Lys	Ser 555	Asp	Ser	Gly	Leu	Lys 560
	His .	Arg	Trp	Val	Glu 565	Glu	Gly	Glu	Trp	Leu 570	Val	Lys	Ala			

CLAIMS

WO 98/38287

- 1. A method of constructing a variant of a parent *Coprinus* laccase, which variant has laccase activity and increased 5 oxidation potential and/or altered pH optimum and/or altered mediator pathway and/or altered O₂/OH-pathway as compared to said parent laccase, which method comprises
- i) analysing the three-dimensional structure of the parent 10 Coprinus laccase to identify at least one amino acid residue or at least one structural part of the Coprinus laccase structure, which amino acid residue or structural part is believed to be of relevance for altering the oxidation potential and/or altering the pH optimum and/or altering the mediator pathway 15 and/or altering the O₂/OH-pathway of the parent Coprinus laccase (as evaluated on the basis of structural or functional considerations),
- ii) constructing a *Coprinus* laccase variant, which as compared 20 to the parent *Coprinus* laccase, has been modified in the amino acid residue or structural part identified in i) so as to alter the oxidation potential and/or alter the pH optimum and/or alter the mediator pathway and/or alter the O₂/OH-pathway, and, optionally,

25

- iii) testing the resulting *Coprinus* laccase variant with respect to oxidation potential and/or pH optimum and/or mediator pathway and/or O₂/OH-pathway.
- 30 2. A variant of a parent *Coprinus* laccase, which variant has increased oxidation potential and comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 1:

G411A, V, P, L, I, F, Y, W;

35 G412A, V, P, L, I, F, Y, W; V409P, L, I, F, Y, W; T257A, V, P, L, I, F, Y, W;

```
F358Y, W, I;
  T359A, V, P, L, I, F, Y, W;
  L480I, F, Y, W;
  L351 I,F,Y,W;
5 E473A, V, P, L, I, F, Y, W;
  D98A, V, P, L, I, F, Y, W;
  G131A, V, P, L, I, F, Y, W;
  D443A, V, P, L, I, F, Y, W;
  R260 A, V, P, L, I, F, Y, W.
10
  3. A variant of a parent Coprinus laccase, which variant has an
  altered pH optimum and comprises a mutation in a position
  corresponding to at least one of the following positions in SEQ
  ID No. 1:
15 180-181:
  222-224:
  257;
  281-284;
  352-353;
20 357-358;
  409-416;
  470-490.
```

4. A variant of a parent *Coprinus* laccase, which variant has an 25 altered mediator efficiency and comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 1:

```
179-182;
223;
30 281-282;
353-358;
410-412;
472;
474-475;
35 477-478.
```

5. A method of constructing a variant of a parent *Coprinus*-like laccase, which variant has laccase activity and increased

oxidation potential and/or changed pH optimum and/or altered mediator pathway and/or altered O_2/OH -pathway as compared to said parent laccase, which method comprises

- i) comparing the three-dimensional amino acid structure of the 5 Coprinus laccase with an amino acid sequence of a Coprinus-like laccase,
- ii) identifying a part of the Coprinus-like laccase amino acid sequence which is different from the Coprinus laccase amino 10 acid sequence and which from structural orfunctional considerations is contemplated to be responsible differences in the stability of the Coprinus and Coprinus-like laccase,
- 15 iii) modifying the part of the *Coprinus*-like laccase identified in ii) whereby a *Coprinus*-like laccase variant is obtained, which has an increased oxidation potential and/or changed pH optimum and/or altered mediator pathway and/or altered O₂/OH-pathway as compared to the parent *Coprinus*-like laccase, and 20 optionally,
 - iv) testing the resulting Coprinus-like laccase variant with respect to oxidation potential and/or pH optimum and/or mediator pathway and/or O_2/OH -pathway.

25

- 6. The method according to claim 5, wherein, in step iii), the part of the *Coprinus*-like laccase is modified so as to resemble the corresponding part of the *Coprinus* laccase.
- 30 7. The method according to claim 5 or 6, wherein, in step iii), the modification is accomplished by deleting one or more amino acid residues of the part of the *Coprinus*-like laccase to be modified; or the modification is accomplished by replacing one or more amino acid residues of the part of the *Coprinus*-like 35 laccase to be modified with the amino acid residues occupying

laccase;

corresponding positions in the Coprinus

modification is accomplished by insertion of one or more amino acid residues present in the *Coprinus* laccase into a corresponding position in the *Coprinus*-like laccase.

58. The method according to any of claims 5-7, wherein the Coprinus-like laccase is selected from the group consisting of Polyporus pinsitus laccase, Phlebia radiata laccase, Rhizoctonia solani laccase, Scytalidium thermophilum laccase and Myceliophthora thermophila laccase.

10

- 9. The method according to claim 1 or 5, wherein the parent Coprinus laccase is derived from a strain of Coprinus cinereus.
- 10. The method according to claim 9, wherein the parent 15 Coprinus laccase is derived from Coprinus cinereus IFO 8371.
- 11. A variant of a parent *Polyporus pinsitus (I)* laccase, which variant has an increased oxidation potential and comprises a mutation in a position corresponding to at least one of the 20 following positions in SEQ ID No. 2:

A390V,P,L,I,F,Y,W; G392A,V,P,L,I,F,Y,W; E460D.

25 12. A variant of a parent *Polyporus pinsitus (I)* laccase, which variant has an altered pH optimum and comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 2: E460L, I, F, M, S;

.. ...

- 30 F463L,M.
- 13. A variant of a parent *Polyporus pinsitus (I)* laccase, which variant has an altered mediator efficiency and comprises a mutation in a position corresponding to at least one of the 35 following positions in SEQ ID No. 2:

 G392A;

A461T,S; N260Q,Y; G165K,R.

5 14. A variant of a parent *Polyporus pinsitus (I)* laccase, which variant has an altered O₂/OH⁻pathway and comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 2:

F81D,E; 10 L112D,E; A80D,E.

15. A variant of a parent *Myceliophthora thermophila* laccase, which variant has an increased oxidation potential and 15 comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 10:

G511A, V, P, L, I, F, Y, W;
T428A, V, P, L, I, F, Y, W;
S510A, V, P, L, I, F, Y, W;
20 D106A, V, P, L, I, F, Y, W;
N109A, V, P, L, I, F, Y, W, Q;
L500I, F, Y, W;
A108V, P, L, I, F, Y, W;
G514A, V, P, L, I, F, Y, W.

16. A variant of a parent *Myceliophthora thermophila* laccase, which variant has an altered pH optimum and comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 10:

30 192-193; 234-236; 269; 293-294; 364-365; 35 372-373; 426-433; 503-513.

17. A variant of a parent *Myceliophthora thermophila* laccase, which variant has an altered mediator efficiency and comprises a mutation in a position corresponding to at least one of the 5 following positions in SEQ ID No. 10:

```
185-194;
235;
293-294;
365-373;
10 427-429;
505;
507-508;
510-511.
```

15 18. A variant of a parent Myceliophthora thermophila laccase, which variant has an altered O_2/OH -pathway and comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 10:

A506E;

20 N109D;

H93E;

H95E;

M433E;

M480E.

- 19. A DNA construct comprising a DNA sequence encoding a laccase variant according to claim 2 or claims 11-18.
- 20. A recombinant expression vector which carries a DNA con-30 struct according to claim 19.
 - 21. A cell which is transformed with a DNA construct according to claim 19 or a vector according to claim 20.
- 35 22. A cell according to claim 21, which is a microorganism.
 - 23. A cell according to claim 22, which is a bacterium or a fungus.

or an Aspergillus oryzae cell.

24. A cell according to claim 23, which is an Aspergillus niger

- 5 25. Use of a laccase variant according to claim 2 or claims 11-18 for oxidizing a substrate.
 - 26. Use of a laccase variant according to claim 2 or claims 11-18 for dye transfer inhibition.

- 27. Use of a laccase variant according to claim 2 or claims 11-18 for bleaching textiles, in particular for bleaching denim.
- 28. A detergent additive comprising a laccase variant according 15 to claim 2 or claims 11-18 in the form of a non-dusting granulate, a stabilised liquid or a protected enzyme.
- 29. A detergent additive according to claim 28, which additionally comprises one or more other enzyme such as a 20 protease, a lipase, an amylase, and/or a cellulase.
 - 30. A detergent composition comprising a laccase variant according to claim 2 or claims 11-18 and a surfactant.
- 25 31. A detergent composition according to claim 30 which additionally comprises one or more other enzymes such as a protease, a lipase, an amylase and/or a cellulase.

International application No.

PCT/DK 98/00070

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: C12N 9/02
According to International Patent-Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, CA, BIOSIS

Swedish Pat nt Office

Box 5055, S-102 42 STOCKHOLM

Facsimile No. +46 8 666 02 86

C. DOCU	MENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	WO 9709431 A1 (NOVO NORDISK BIOTECH, INC.), 13 March 1997 (13.03.97), claims 20,26-30	3,12,16, 19-31
X	WO 9623874 A1 (NOVO NORDISK A/S), 8 August 1996 (08.08.96), abstract, claims	1,5-10
Y		2-4,11-31
		
Y	WO 9606930 A1 (NOVO NORDISK A/S), 7 March 1996 (07.03.96)	2-4,19-31
		
Y	WO 9600290 A1 (NOVO NORDISK BIOTECH, INC.), 4 January 1996 (04.01.96)	11-14,19-31
		

X Further documents are listed in the continuation of Box	X C. X See patent family annex.
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" erlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family
Date of the actual completion of the international search 27 May 1998	Date of mailing of the international search report 2 4 -06- 1998
Name and mailing address of the ISA/	Authorized officer

Yvonne Siösteen

Telephone No. + 46 8 782 25 00

International application No.
PCT/DK 98/00070

	PCT/DK 98/00070						
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No					
Υ	WO 9533836 A1 (NOVO NORDISK BIOTECH, INC.), 14 December 1995 (14.12.95)	15-31					
							
A	Biochimica et Biophysica Acta, Volume 1292, 1996, Feng Xu et al, "A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability" page 303 - page 311	11-14,19-31					
	. 						
A	Chemical Abstracts, Volume 111, No 3, 17 July 1989 (17.07.89), (Columbus, Ohio, USA), Messerschmidt, Albrecht et al, "X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini. Analysis of the polypeptide fold and a model of the copper sites and ligands", page 297, THE ABSTRACT No 20059q, J. Mol. Biol. 1989, 206 (3), 513-529	1-31					
							
A	Biochem. J.,, Volume 253, 1988, P.M. Hanna et al, "Type 2-depleted fungal laccase" page 561 - page 568	1-31					
							
		· ·					

International application No.

PCT/DK 98/00070

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	rnational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
	see next page
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. X	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.

PCT/DK 98/00070

According to rule 13.2, an international application shall relate to one invention only or a group of inventions linked by one or more of the same or corresponding "special technical features" i.e. features that define a contribution which each of the inventions makes over prior art.

A search for this "special technical feature" mentioned in PCT Rule 13.2 among the independent claims did not reveal such a unifying technical feature.

Accordingly the following inventions were found:

- 1) Claim 1, 5-10 and part of claims 19-31 directed to a method of constructing laccase variants by analysing the three-dimensional structure of the parent Coprinus laccase.
- 2) Claim 2, 11, 15 and part of claims 19-31 directed to a laccase variant having increased oxidation patential.
- 3) Claim 3, 12, 16 and part of claims 19-31 directed to a laccase variant having altered pH optimum.
- 4) Claim 4, 13, 17 and part of claims 19-31 directed to a laccase variant having altered mediator efficiency.
- 5) Claim 14, 18 and part of claims 19-31 directed to a laccase variant having altered O_2/OH -pathway.

INTERNATIONAL SEARCH REPORT Information on patent family members

29/04/98

International application No. PCT/DK 98/00070

	itent document in search repor	-ւ	Publication date		Patent family member(s)		Pūblication date
10	9709431	A1	13/03/97	AU	7154096	A	27/03/97
10	9623874	A1	08/08/96	. AU	4483496	Α .	21/08/96
				CA	2211316	Α	08/08/96
				EP	0808363	A	26/11/97
10	9606930	A1	07/03/96	AU	3253695	A	22/03/96
WO 9600290	9600290	A1	04/01/96	AU	2827895	A	19/01/96
				CA	2193070	A	04/01/96
				EP	0767836	Α	16/04/97
			FI	965201	Α	21/02/97	
				JP	10502806	T	17/03/98
				US	5667531	A	16/09/97
WO 953383	9533836	A1	14/12/95	AU	2656595	A	04/01/96
		_	• •	CA	2191718	A	14/12/95
				EP	0765394	Ä	02/04/97
				FI		A	02/12/96
				JP	10501137	T	03/02/98