1.(a) after each branch is replaced by α leaf, take the left branch as example:

if $P_1 > n_1$, then there are nu data points misclassified; similarly, if $P_1 < n_1$, there will be p_1 mistakes. For left branch:

training mistakes =
$$\begin{cases} n_1 & (P_1 > n_1) \\ p_1 & (P_1 < n_1) \end{cases}$$
 = $(P_1 + n_1) \cdot I(\frac{P_1}{p_1 + n_1})$ = $(P_1 + n_1) \cdot min(\frac{P_1}{p_1 + n_1}) \cdot min(\frac{P_1}{p_1 + n_1})$

Thus, the whole training mistakes: (Pi+m). I(Pi+m) + (P2+n2). I(P2+n2)

(b). Gini index on a1.

Gini for submode
$$(a_{1}=0) = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$$

for $(a_{1}=1) = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{26}{2}$

.. Gimi for split on
$$\alpha_1 = \frac{4}{10} \cdot \frac{1}{2} + \frac{6}{16} \cdot \frac{26}{36} = 0.63$$

Giri index on as

1001

4
(1,3)

$$P = \frac{1}{4}$$
 $P = \frac{1}{3}$

for sub-node ($a_2 = 0$) = $\frac{1}{4} \cdot \frac{1}{4} + \frac{2}{4} \cdot \frac{3}{4} = \frac{10}{16} = \frac{5}{8}$

for ($a_2 = 1$) = $\frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{3}{3} = \frac{5}{9}$

... Gini for split on $a_2 = \frac{4}{10} \cdot \frac{5}{8} + \frac{6}{10} \cdot \frac{5}{9} = 0.38$

Gini index on az.

$$7$$
 3
 (3.4) (0.3)
 $for(0.3=0) = \frac{3}{7} \cdot \frac{3}{7} + \frac{4}{7} \cdot \frac{4}{7} = \frac{25}{49}$
 $for(0.3=1) = 1$
 $for(0.3=1) = 1$
 $for(0.3=1) = 1$

thus split on az yields a higher Gini score, (a more pure split). Thus using Gini index will choose to split on az.

Cc) the problem is equivalent to asking to in what condition, s.t:

mincp1, n1) + mincp2, n2) < mincP1+P2, n1+n2),

when P1>n1 and P2>n2 or, P1<n1 and p2<n2, left term = right term.

while when \$\frac{4}{2}\$ split has opposite value comparison, such as:

P1>n1 and P2<n2 or P1<n1 and P2>n2, such \$\frac{1}{2}\$ left term

will be strictly smaller than right term.

Id) min-error impurity function employs a more stricter condition on making the split, that the min-error only decreases when the resulting branches have opposite majority label, it makes harder for a growing decision tree to make decision, as we can observe from (b), it's easy to appear draw conditions, when their min-error value are all the same. It will hinder the elecision to be made.

2. Bootstrap aggregation ("bagging")

For i=1...N, Let X_i be the a random variable, that $X_i=1$ when the ith example does not appear in the replicate, and $X_i=0$ otherwise. Because we draw N samples with replacement, then the probability of $X_i=1$ is:

 $\Pr(X_{i}=1) = \left(\frac{N-1}{N}\right)^{N}$ (for each sample, there is $\frac{N-1}{N}$ Probability to choose other examples tast instead of ith)

Let S be the number of distinct samples that does not appear in

$$S = \sum_{i=1}^{N} X_i$$
 (Xi are inclependent, for $i=1...N$)

$$\Rightarrow E(s) = \sum_{i=1}^{N} P_r(x_i = i) = N(\frac{N-i}{N})^N$$

$$\Rightarrow \text{ the expected fraction is } \frac{E(\hat{s})}{N} = \left(\frac{N-1}{N}\right)^N = \left(1 - \frac{1}{N}\right)^N$$
 and
$$\lim_{N \to \infty} \left(1 - \frac{1}{N}\right)^N = \frac{1}{e}$$