Микромощно mokoзaxpaнвaне на IoT сензори om okoлнama среда

Димитър Николов

Факултет Електронна техника и технологии Технически университет София

Съдържание

Takcoномия на IoT сензори

Структура на микромощно токозахранване

Фотоволтаичен преобразувател Пиезоелектрични преобразуватели Пелтие елемент

За мен

Kamegpa "Електронна техника" Факултет Електронна техника и технологии Технически университет София Лабратория "МиНоЛаб" Сдружение за научно-излследователска и развойна дейност, София Тех Парк

Таксономия на IoT устройства (1)

Източник: Vijay Raghunathan, Purdue University

Таксономия на IoT устройства (2)

Източник: Vijay Raghunathan, Purdue University

Защо имаме нужда от микромощно токозахранване?

Безжична комуникация Батерийно захранване

Комуникация чрез проводници Захранване чрез проводници

Примерна консумация на автономен сензор

Коефициент на запълване: 1.25 % или активен период 15 s за 1200 s

Cpegна мощност: ~ 11 mWh

Taridan TL-5930/F, 3.6 V, 19 Ah, ~ € 16

Време до подмяна: ~ 285 дни (идеални у-вия), ~ 130 дни (реални у-вия)

Закона на Мур и развитието на батериите

Изискванията към консумацията ще се увеличават

Архитектура на микромощно mokoзахранване

Източници на енергия и физични феномени за преобразуването й

	Фото- волта- ичен	Пиезо- елект- ричен	Елект- ромаг- нитен	Елект- роста- тичен	Термо- електри- чески	Елект- рохи- мичен
Светлина	√					
Вибрации	_	\checkmark	\checkmark	\checkmark	_	_
Движение	_	\checkmark	\checkmark	_	_	_
Топлина	_	_	_	_	\checkmark	_
Звук	_	\checkmark	\checkmark	\checkmark	_	_
Биохимични	_	_	_	_	_	\checkmark
Биомеханични	_	\checkmark	\checkmark	_	_	_

Характеристики на видовете енергия

Източник	Плътност на мощността	Променлива природа
Движение и вибрац	uu	
Човешко тяло	$4\mu\mathrm{W/cm^2}$	Да
Промишленост	$100\mu\mathrm{W/cm^2}$	Да
Температурна разли	ика	
Човешко тяло	$30\mu\mathrm{W/cm^2}$	Не
Промишленост	$1\text{-}10\mathrm{mW/cm^2}$	Не
Светлина		
В помещение	$10\mu\mathrm{W/cm^2}$	Да
На открито	$10\text{-}100\mathrm{mW/cm^2}$	Да
Електромагнитни	излъчвания	
GSM	$0.1\mu\mathrm{W/cm^2}$	Да
WiFi	$0.01\mu\mathrm{W/cm^2}$	Да

Фотоволтаични преобразуватели (1)

Фотоволтаични преобразуватели (2)

$$I = I_{ph} - I_o(e^{\frac{qV}{\gamma kT}} - 1)$$

/- изходен mok, I_{ph} - фотомок, I_o - обратен mok

$$I = I_{ph} - I_o(e^{\frac{qV}{\gamma nkT}} - 1) - \frac{V + IR_s}{R_p}$$

/- изходен mok, I_{ph} - фотомок, I_{o} - обратен mok

Еквивалентна схема предаване на мощност

Предаване на максимална мощност

Източник: Solmetric

Фотоволтаични преобразуватели (2)

Фотоволтаични преобразуватели (3)

Източник: Sphelar Power LLC

Ha omkpumo ~ 15 mW/cm² Ha 3akpumo Разстояние Мощност, mW/cm² 30 236 45 111 Светлина в офис 7.2

energy generating thread with Sphelar* cells (drawing)

Sphelar® cells

Spheral Dom -

Sphelar® Textile

Енергия om електромагнитни излъчвания

Енергия от електромагнитни излъчвания близка зона Google Contact I

Прехвърляне на 60W мощност на дистанция 2м, 40% ефективност на прехвърлената енергия

Fig. 1. Schematic of the experimental setup. A is a single copper loop of radius 25 cm that is part of the driving circuit, which outputs a sine wave with frequency 9.9 MHz. S and D are respectively the source and de-

vice coils referred to in the text. B is a loop of wire attached to the load (light bulb). The various κs represent direct couplings between the objects indicated by the arrows. The angle between coil D and the loop A is adjusted to ensure that their direct coupling is zero. Coils S and D are aligned coaxially. The direct couplings between B and A and between B and S are negligible.

http://witricity.com/company/

http://www.mit.edu/~soljacic/marin.html

Източник: Kurs, et. al., Science, 2007

Google Contact Lens Леща с вграден сензор за глюкоза, ~92% ефективност на дистанция 2cm

Fig. 1. Conceptual diagram of an active contact-lens system for wireless health monitoring.

https://en.wikipedia.org/wiki/Google_Contact_Lens

Източник: Liao, et. al. IEEE Journal of Solid State Circuits, 2012

Енергия om електромагнитни излъчвания далечна зона

http://www.powercastco.com/power-calculator/

PowerCast - компания за микормощни mokoзахранвания om okoлнama среда

om µW go mW - 3a RFID, emukemu u gp.

$$P_r = G_t G_r P_0 \bigg(\frac{\lambda}{4\pi R} \bigg)^2$$
 f = 915 MHz
$$P_0^* G_t = 1 \text{ watt}$$

$$G_r = 6.0 \text{ dBi (default value)}$$

$$R = 5 \text{ meters}$$

$$-P_r = 108 \text{ uW}$$
 28 uw after conversion to DC

Термоелектричен генератор

Ефекта на Зеебек, Ефекта на Пелтие, Ефекта на Томпсон, Закона на Джаул-Ленц и Томплинна конвекция

~8% ефективност

~8% ефективност

$$\pi = \alpha_n T$$

$$\alpha = \alpha_n N$$

π - електрически потенциал на изводите на два материала

α - коефициент на Зеебек

$$Q_A = \alpha_A I T_A$$

$$U = \alpha (T_A - T_E)$$

 $U=lpha(T_A-T_E)$ U – напрежение на изводите на термогенератора

$$I = rac{lpha(T_A - T_E)}{R_{TEC} + R_I}$$
 I - изходен ток

$$Q_E = \alpha_E I T_E$$

Източник: Mehmet Oztuk

Citizen Eco-Drive Thermo 13.8 μW npu ΔT om 1° C Pa₃мep 0.7 cm x 0.7 cm Micropelt Inteligent Power Valve EnOcean Henpekъсната работа през цялата година Събира енергия над 20° С

Енергия om вибрации чрез nueзoeлekpuчен eфekm

Модели с разпределени параметри

Таблица с тичпични стойности

Параметър	Стойност
Честота на възприеманите вибрации	0.5-400 Hz
Изходно напрежение на празен ход	3-250 V
Изходна мощност	$0\text{-}35\mathrm{mW}$
Капацитет на диелектрика при $100\mathrm{Hz}$	$9\text{-}150\mathrm{nF}$
Оптимална стойност на товара	$10\text{-}900\mathrm{k}\Omega$
Амплитуда преместване на върха	$0.05\text{-}4.6\mathrm{mm}$

тежест

преместване

на тежестта

Енергия om вибрации чрез nueзoeлekpuчен eфekm: резонанс

Енергията е честотата на резонанса е пряко зависима от качествения фактор Q.

При висок качествен фактор, работната честотната лента се намалява

Това е основен проблем при пиезоелектричните преобразуватели

A = 1 m/s²
M = 1 kg

$$\omega_n$$
 = 2 π 100 rad/s

Енергия om вибрации чрез nueзoeлekpuчен eфekm

https://www.microgensystems.com/

Енергия om вибрации електромагнитен ефект

Perpetuum Лондон, South West Trains

Източник: Beeby et. al., JMM, 2008

Енергия om вибрации чрез електростатичен ефект

Енергия om вибрации чрез електростатичен ефект

OMRON и HOLST/imec Електростатичен преобразувател

Размери: 2 cm x 2 cm

Изходно напрежение: om 1.5 V go 5 V

Консумация в микромощно токозахранване

Описание	Име	Покой (mA)	Активен режим
RF модул	Xbee	29	120
MCU	ATMega328	4.35	4.35
Влажност	HIH5030	0.2	0.2
CO ₂	GC-0012	1.5	1.5
CO	MiCS-5121WP	30.7	30.7

Анализ на консумация в ІоТ сензор

Профил на консумацията

Taridan **TL-5930/F 3.6 V, 19 Ah**

Анализ на консумация на комуникацията на LTC5800

Таблица 2.4: Подробно описание на профила на консумация на LTC5800

Nº	Описание	Време	Заряд	Ток
1	Стартиране на контролера	$1.6\mathrm{ms}$	2.58 μC	$1.61\mathrm{mA}$
2	CCA clear channel assessment	$238.5\mu\mathrm{s}$	$0.65\mu\mathrm{C}$	$2.72\mathrm{mA}$
3	Подготовка за изпращане на данните	$690\mu\mathrm{s}$	$4.08\mu\mathrm{C}$	$5.91\mathrm{mA}$
4	Изпращане на пакета данни	$1.69\mathrm{ms}$	$12.76\mu\mathrm{C}$	$6.38\mathrm{mA}$
5	Изчакване на потвърждение	$2.2\mathrm{ms}$	$9.06\mu\mathrm{C}$	$4.12\mathrm{mA}$
6	Обработка на потвърждението	$1.2\mathrm{ms}$	$2.43\mu\mathrm{C}$	$1.94\mathrm{mA}$
7	Режим на понижена консумация	$1.30\mathrm{ms}$	$0.22\mu\mathrm{C}$	$0.30\mathrm{mA}$
8	Общо измерено	$7.2\mathrm{ms}$	$29.82\mu\mathrm{C}$	$5.9\mathrm{mA}$

Живот на батерии

Плътност на физическите носители на енергията в зависимост от плътсността на мощността

Зависимост на плътността на мощността спрямо плътността а енергия във физически елементи за съхранение на енергията

В настоящия момент няма универсално рещение за дълговременно съхранение на енергията за автономно захранващи се ІоТ сензори

Комбинация между презареждаема батерия и суперкондензатор е решение

Източник: US Defence Logistic Agency