

Equivalent resistance between a and b

 $6~\Omega$ and $2~\Omega$ are in series

3 Ω and 5 Ω are in series,

Equivalent resistance between a and d

Let us rotate the circuit 90 ° Clockwise

5 Ω and 3 Ω are in series 6 Ω and 2 Ω are in series

Equivalent resistance between b and d

Let us bring the red portion in right side of b and d node. It does not change anything about the circuit

Let us just make the circuit visually better.

12 Ω and 20 Ω are in series 6 Ω and 2 Ω are in series 3 Ω and 5 Ω are in series

 $8~\Omega,\,8~\Omega$ and $32~\Omega$ are in parallel

Equivalent resistance between b and c

Let us exchange the position of the green portion and red portion. As the common nodes (b and d) are same. So exchanging their position will not effect the circuit

6 Ω and 2 Ω are in series 12 Ω and 20 Ω are in series

