COMP0085 Summative Assignment

Jan 4, 2023

Question 1

(a)

The directed acyclic graph:

(b)

The moralised graph:

An effective triangulation:

where the dashed lines are edges added to triangulate the moralised graph.

The resulting junction tree:

where the circular nodes are cliques.

The junction tree redrawn as a factor graph:

where the circular nodes are cliques and the square nodes are separators/factors.

(c)

The set $\{A, D, E, F, H\}$ is a non-unique smallest set of molecules such that if the concentrations of the species within the set are known, the concentrations of the others $\{B, C, G, I\}$ would all be independent (conditioned on the measured ones).

(d)

(e)

Question 2

(a)

We want the posterior mean and covariance over a and b. Defining a weight vector \mathbf{w} :

$$\mathbf{w} = \begin{bmatrix} a \\ b \end{bmatrix}$$

Our distribution for w:

$$P(\mathbf{w}) = \mathcal{N}\left(\begin{bmatrix} \mu_a \\ \mu_b \end{bmatrix}, \begin{bmatrix} \sigma_a^2 & 0 \\ 0 & \sigma_b^2 \end{bmatrix}\right) = \mathcal{N}(\mu_\mathbf{w}, \Sigma_\mathbf{w})$$

Moreover, for our data $\mathcal{D} = \{X, Y\}$:

$$P(\mathcal{D}|\mathbf{w}) = \mathcal{N}\left(\mathbf{Y} - \mathbf{w}^T \mathbf{X}, \sigma^2 \mathbf{I}\right)$$

where
$$\mathbf{X} = \begin{bmatrix} t_1 & t_2 \cdots t_N \\ 1 & 1 \cdots 1 \end{bmatrix} \in \mathbb{R}^{2 \times N}$$
 and $\mathbf{Y} \in \mathbb{R}^{1 \times N}$.

Knowing:

$$P(\mathbf{w}|\mathcal{D}) \propto P(\mathcal{D}|\mathbf{w})P(\mathbf{w})$$

we can substitute the above distributions:

$$P(\mathbf{w}|\mathcal{D}) \propto \exp\left(\frac{-1}{2\sigma^2} \left(\mathbf{Y} - \mathbf{w}^T \mathbf{X}\right) \left(\mathbf{Y} - \mathbf{w}^T \mathbf{X}\right)^T\right) \exp\left(\frac{-1}{2} \left(\mathbf{w} - \mu_{\mathbf{w}}\right)^T \Sigma_{\mathbf{w}}^{-1} \left(\mathbf{w} - \mu_{\mathbf{w}}\right)\right)$$

expanding:

$$\log P(\mathbf{w}|\mathcal{D}) \propto \frac{-1}{2} \left(\frac{\mathbf{Y}\mathbf{Y}^T}{\sigma^2} - 2\mathbf{w}^T \frac{\mathbf{X}\mathbf{Y}^T}{\sigma^2} + \mathbf{w}^T \frac{\mathbf{X}\mathbf{X}^T}{\sigma^2} \mathbf{w} + \mathbf{w}^T \boldsymbol{\Sigma}_{\mathbf{w}}^{-1} \mathbf{w} - 2\mathbf{w}^T \boldsymbol{\Sigma}_{\mathbf{w}}^{-1} \boldsymbol{\mu}_{\mathbf{w}} + \boldsymbol{\mu}_{\mathbf{w}}^T \boldsymbol{\Sigma}_{\mathbf{w}}^{-1} \boldsymbol{\mu}_{\mathbf{w}} \right)$$

collecting w terms:

$$\log P(\mathbf{w}|\mathcal{D}) \propto \frac{-1}{2} \left(\mathbf{w}^T \left(\frac{\mathbf{X} \mathbf{X}^T}{\sigma^2} + \Sigma_{\mathbf{w}}^{-1} \right) \mathbf{w} - 2 \mathbf{w}^T \left(\frac{\mathbf{X} \mathbf{Y}^T}{\sigma^2} + \Sigma_{\mathbf{w}}^{-1} \mu_{\mathbf{w}} \right) \right)$$

Knowing that the posterior $P(\mathbf{w}|\mathcal{D})$ will be Gaussian with mean $\bar{\mu}_w$ and covariance $\bar{\Sigma}_w$, we can see that expanding the exponent component would have the form:

$$(\mathbf{w} - \bar{\mu}_w)^T \bar{\Sigma}_w^{-1} (\mathbf{w} - \bar{\mu}_w) = \mathbf{w}^T \bar{\Sigma}_w^{-1} \mathbf{w} - 2\mathbf{w}^T \bar{\Sigma}_w^{-1} \bar{\mu}_w + \bar{\mu}_w^T \bar{\Sigma}_w^{-1} \bar{\mu}_w$$

Thus we can identify the posterior covariance:

$$\bar{\Sigma}_w = \left(\frac{\mathbf{X}\mathbf{X}^T}{\sigma^2} + \Sigma_{\mathbf{w}}^{-1}\right)^{-1}$$

and the posterior mean:

$$\bar{\mu}_w = \bar{\Sigma}_w \left(\frac{\mathbf{X} \mathbf{Y}^T}{\sigma^2} + \Sigma_{\mathbf{w}}^{-1} \mu_{\mathbf{w}} \right)$$

Computing the posterior mean and covariance over a and b given by the CO_2 data:

		value
arameters	a	1.828457
ameters	a	1.020437
	b	334.203782
	_	

Figure 1: The Posterior Mean

Figure 2: The Posterior Covariance

(b)

Plotting the residuals:

Figure 3: $g_{obs}(t)$

Figure 4: Density Estimation of Residuals vs $e(t) \sim \mathcal{N}(0,1)$

We can see that the residuals do not perfectly conform to our prior over $e(t) \sim \mathcal{N}(0,1)$. The density estimation shows that a mean of zero is a reasonable prior belief however the data does not seem to exhibit unit variance. Also we know it's not iid because timeseries.

(c & d)

We are considering the kernel:

$$k(s,t) = \theta^2 \left(\exp\left(-\frac{2\sin^2(\pi(s-t)/\tau)}{\sigma^2}\right) + \phi^2 \exp\left(-\frac{(s-t)^2}{2\eta^2}\right) \right) + \zeta^2 \delta_{s=t}$$

We can make qualitative observations this kernel by visualising the covariance (gram) matrix:

Figure 5: Covariance Matrix

We can observe a striped pattern which indicate higher covariance at regular intervals. This can be attributed to the sinusoidal term in the kernel and encourages sinusoidal functions. Additionally, we can see that covariance values also decay as they are further away from the diagonal. This can be attributed to the exponential term in the kernel, encouraging points closer in time to be more correlated and vice versa. From our CO_2 data, we would want a class of functions which exhibit both of these behaviours as the data looks sinusoidal (seasonal with respect to each year) and correlations locally.

We can also visualise some samples from a Gaussian Process with the same covariance matrix and zero mean. This verifies our observations about the covariance matrix.

Figure 6: Samples from a zero mean GP with the provided covariance kernel

More specifically, we can see how changing each hyper-parameter will affect the characteristics of the function.

Figure 7: Covariances for different parameters

 η :

 τ :

 ζ :

Figure 8: Samples for different parameters

- θ : As θ increases, we see more pronounced periodic behavior in the sample function. The covariance matrix shows how increasing θ visually reveals the striped periodic component. This is expected because it is the parameter that adjusts the weight of $\exp\left(-\frac{2\sin^2(\pi(s-t)/\tau)}{\sigma^2}\right)$.
- σ : As σ increases, we see smoother periodic behaviour in the sample function. The covariance matrix shows how increasing σ will increase covariance values in the off-diagonals. This is expected because it adjusts the lengthscale of the periodic portion of the kernel.
- ϕ : As ϕ increases, we see less smooth behaviour in the sample function. The covariance matrix shows how increasing σ will increase covariance values in the off-diagonals. This is expected because it adjusts the lengthscale of the periodic portion of the kernel.

(e)

(f)

Figure 9: Without hyperparameter tuning

Figure 10: With hyperparameter tuning

(g)

The Python code for Bayesian Linear Regression:

```
from dataclasses import dataclass
 3
     import numpy as np
 5
6
7
     @dataclass
      class LinearRegressionParameters:
          mean: np.ndarray
covariance: np.ndarray
10
          @property
def precision(self):
    return np.linalg.inv(self.covariance)
11
12
13
14
          def predict(self, x: np.ndarray) -> np.ndarray:
16
17
                return self.mean.T @ x
18
19
20
     @dataclass
     class Theta:
21
          linear_regression_parameters: LinearRegressionParameters
          sigma: float
23
24
25
          def variance(self):
return self.sigma**2
26
27
28
          @property
def precision(self):
    return 1 / self.variance
29
30
31
33
34
     def compute_linear_regression_posterior (
          x: np.ndarray,
35
          y: np.ndarray,
           prior_linear_regression_parameters: LinearRegressionParameters,
residuals_precision: float,
36
38
     ) -> LinearRegressionParameters:
40
          Compute the parameters of the posterior distribution on the linear regression weights
41
42
          :param x: design matrix (number of features, number of data points)
:param y: response matrix (1, number of data points)
:param prior_linear_regression_parameters: parameters for the prior distribution on the linear regression
44
           weights
45
           :param residuals_precision: the precision of the residuals of the linear regression
          return: parameters for the posterior distribution on the linear regression weights
46
47
48
          {\tt posterior\_covariance} \ = \ {\tt np.linalg.inv} \, (
                residuals\_precision \ * \ x \ @ \ x.T + prior\_linear\_regression\_parameters.precision
49
50
51
52
53
           posterior_mean = posterior_covariance @ (
               residuals_precision * x @ y.T + prior_linear_regression_parameters.precision
54
55
56
                @\ prior\_linear\_regression\_parameters.mean\\
           return LinearRegressionParameters (
                mean = posterior\_mean \;,\;\; covariance = posterior\_covariance
```

src/models/bayesian_linear_regression.py

The Python code for kernels:

```
from abc import ABC, abstractmethod
     from dataclasses import dataclass
3
     import jax.numpy as jnp
     from jax import vmap
 6
     @dataclass
     class KernelParameters (ABC):
10
          An abstract dataclass containing the parameters for a kernel.
11
12
13
14
     class Kernel (ABC):
16
17
          An abstract kernel.
19
20
          Parameters: KernelParameters = None
21
22
          @abstractmethod
23
          def _kernel(
24
                self , parameters: KernelParameters , x: jnp.ndarray , y: jnp.ndarray
          ) -> jnp.ndarray:
25
26
                   Kernel evaluation between a single feature x and a single feature y.
27
28
29
                    parameters: parameters dataclass for the kernel
30
                    x: ndarray of shape (number_of_dimensions,)
y: ndarray of shape (number_of_dimensions,)
               The kernel evaluation. (1, 1)
34
35
36
                raise NotImplementedError
38
          self, parameters: KernelParameters, x: jnp.ndarray, y: jnp.ndarray = None
) -> jnp.ndarray:
          def kernel (
39
40
41
               """ Kernel evaluation for an arbitrary number of x features and y features. Compute k(x, x) if y is None. This method requires the parameters dataclass and is better suited for parameter optimisation.
42
44
45
                     parameters: parameters dataclass for the kernel
                    x: ndarray of shape (number_of_x_features, number_of_dimensions)
y: ndarray of shape (number_of_y_features, number_of_dimensions)
47
48
49
               A gram matrix k(x, y), if y is None then k(x,x). (number_of_x_features, number_of_y_features)
50
51
                # compute k(x, x) if y is None
               if y is None:
y = x
56
               # add dimension when x is 1D, assume the vector is a single feature
               x = jnp.atleast_2d(x)
58
               y = jnp.atleast_2d(y)
59
60
               61
62
63
                return vmap(
lambda x_i: vmap(
65
66
               )(x) (y),
                          lambda y_i: self._kernel(parameters, x_i, y_i),
67
          def __call__(
    self, x: jnp.ndarray, y: jnp.ndarray = None, **parameter_args
) -> jnp.ndarray:
70
71
72
73
74
75
76
               > jnp.ndarray:
""" Kernel evaluation for an arbitrary number of x features and y features.
This method is more user-friendly without the need for a parameter data class.
It wraps the kernel computation with the initial step of constructing the parameter data class from the provided parameter arguments.
77
78
79
                    x: ndarray of shape (number_of_x_features, number_of_dimensions)
y: ndarray of shape (number_of_y_features, number_of_dimensions)
**parameter_args: parameter arguments for the kernel
80
81
83
               A gram matrix k(x, y), if y is None then k(x,x). (number_of_x_features, number_of_y_features).
84
                parameters = self.Parameters(**parameter_args)
86
                return self.kernel(parameters, x, y)
          def diagonal (
89
90
                self,
91
                x: jnp.ndarray,
                y: jnp.ndarray = None,
92
                 **parameter_args ,
          ) -> jnp.ndarray:
```

```
""" Kernel evaluation of only the diagonal terms of the gram matrix.
 96
 97
                        x: ndarray of shape (number_of_x_features, number_of_dimensions)
y: ndarray of shape (number_of_y_features, number_of_dimensions)
**parameter_args: parameter arguments for the kernel
 98
 aa
101
                        A diagonal of gram matrix k(x, y), if y is None then trace(k(x, x)). (number_of_x_features, number_of_y_features)
103
                  \# compute k(x, x) if y is None if y is None:
106
107
108
                        y = x
109
110
                  \# add dimension when x is 1D, assume the vector is a single feature
                  x = jnp.atleast_2d(x)

y = jnp.atleast_2d(y)
113
114
                   assert (
                   x.shape[1] == y.shape[1]
), f"Dimension Mismatch: {x.shape[1]=} != {y.shape[1]=}"
116
117
                   assert (
                  x.shape[0] = y.shape[0]), f"Must have same number of features for diagonal: \{x.shape[0]=\}! = \{y.shape[0]=\}"
120
                   return vmap(
                        lambda x_i, y_i: self._kernel(
parameters=self.Parameters(**parameter_args),
123
124
                              y=y_i ,
126
127
                   )(x, y)
128
            def trace(
130
                   \verb|self|, x: jnp.ndarray|, y: jnp.ndarray| = None, **parameter\_args|
            ) \rightarrow jnp.ndarray: "" Trace of the gram matrix, calculated by summation of the diagonal matrix.
134
                   Args:
                       x: ndarray of shape (number_of_x_features, number_of_dimensions)
y: ndarray of shape (number_of_y_features, number_of_dimensions)
**parameter_args: parameter arguments for the kernel
135
136
                  The trace of the gram matrix k(x, y).
140
                  \begin{array}{ll} parameters = self. Parameters (**parameter\_args) \\ \hline return \ jnp.trace (self.kernel (parameters, \ x, \ y)) \end{array}
142
144
145
       class CombinedKernelParameters (KernelParameters):
147
148
149
             Parameters for the Combined Kernel:
151
             log_theta: float
            log_sigma: float log_phi: float
154
            log_eta: float
log_tau: float
156
             log_zeta: float
158
            @property
            def theta(self) -> float:
    return jnp.exp(self.log_theta)
160
161
162
163
             @property
            def sigma(self) -> float:
164
                  return jnp.exp(self.log_sigma)
165
166
            @property
167
            def phi(self) -> float:
    return jnp.exp(self.log_phi)
168
169
             @property
172
173
            def eta(self) -> float:
                  return jnp.exp(self.log_eta)
174
\frac{175}{176}
            @property
def tau(self) -> float:
                  return jnp.exp(self.log_tau)
178
179
             @property
            def zeta(self) -> float:
    return jnp.exp(self.log_zeta)
180
181
182
183
            def sigma(self) -> float:
    return jnp.exp(self.log_sigma)
184
186
187
             @theta.setter
            def theta(self, value: float) -> None:
189
                   self.log_theta = jnp.log(value)
190
```

```
191
                         @sigma.setter
192
                         def sigma(self, value: float) -> None:
                                   self.log_sigma = jnp.log(value)
193
194
 195
                         def phi(self, value: float) -> None:
    self.log-phi = jnp.log(value)
196
197
198
                         @eta.setter
199
                         def eta(self, value: float) -> None:
200
201
                                     self.log_eta = jnp.log(value)
202
203
                         def tau(self, value: float) -> None:
    self.log_tau = jnp.log(value)
204
205
206
207
                         @zeta.setter
def zeta(self, value: float) -> None:
208
209
                                     self.log_zeta = jnp.log(value)
210
211
212
213
              {\tt class} \;\; {\tt CombinedKernel(Kernel):} \\
                         The kernel defined as:  k(x, y) = \frac{1}{2} \left( \frac{2\sin^2(\pi - y)}{\tan^2(x - y)} + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{\tan^2(x - y)} \right) + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} \right) + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} \right) + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} \right) + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} \right) + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} \right) + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} \right) + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} \right) + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} \right) + \frac{1}{2} \left( \frac{\sin^2(\pi - y)}{2} + \frac{1}{2} \right) \right) \right) \right) 
214
215
216
218
219
                         Parameters = CombinedKernelParameters
220
221
                         def _kernel(
222
223
                                     parameters: CombinedKernelParameters,
224
                                    x: jnp.ndarray,
y: jnp.ndarray,
226
                         ) -> jnp.ndarray:
227
                                           "Kernel evaluation between a single feature x and a single feature y.
229
                                               parameters: parameters dataclass for the Gaussian kernel
230
                                               x: ndarray of shape (1,)
y: ndarray of shape (1,)
231
232
233
234
                                     \begin{array}{cccc} {\rm Returns:} & \\ & {\rm The \ kernel \ evaluation} \ . \end{array} 
236
237
                                     return jnp.dot(
238
                                               jnp.ones(1),
                                                             (parameters.theta**2)
240
                                                           ( p a * (
241
                                                                                 \begin{array}{l} \texttt{jnp.exp(} \\ (-2 * \texttt{jnp.sin(jnp.pi *} (x - y) \ / \ \texttt{parameters.tau)} ** 2) \\ \\ / \ (\texttt{parameters.sigma**2)} \end{array}
243
244
246
248
                                                            \begin{array}{l} ' + (parameters.phi**2) \\ * (jnp.exp(-((x - y) ** 2) / (2 * parameters.eta**2))) \\ + parameters.zeta**2 * (x == y) \end{array} 
249
250
251
252
```

src/models/kernels.py

The Python code for Gaussian Process Regression:

```
from dataclasses import dataclass
from typing import Any, Dict, Tuple
 3
      import jax.numpy as jnp
      import optax
      from jax import grad
from optax import GradientTransformation
10
      from src.models.kernels import Kernel
11
13
14
      @\,d\,a\,t\,a\,c\,l\,a\,s\,s
      class Gaussian Process Parameters:
           Parameters for a Gaussian Process: log_sigma: logarithm of the noise parameter
16
17
                 kernel: parameters for the chosen kernel
19
20
           log_sigma: float
kernel: Dict[str, Any]
21
22
23
24
           def variance(self) -> float:
    return self.sigma**2
25
26
27
28
           @property
29
           def sigma(self) -> float:
30
                 return jnp.exp(self.log_sigma)
           def sigma(self, value: float) -> None:
    self.log_sigma = jnp.log(value)
36
      class Gaussian Process:
38
           A Gaussian measure defined with a kernel, better known as a Gaussian Process.
39
40
41
           Parameters = GaussianProcessParameters
42
           def __init__(self, kernel: Kernel, x: jnp.ndarray, y: jnp.ndarray) -> None:
    """ Initialising requires a kernel and data to condition the distribution.
44
45
47
48
                       kernel: kernel for the Gaussian Process
49
                       x: design matrix (number_of_features, number_of_dimensions)
                 y: response vector (number_of_features, )
50
51
                 self.number_of_train_points = x.shape[0]
                 self.x = x
self.y = y
                  self.kernel = kernel
56
           \textcolor{red}{\textbf{def}} \hspace{0.2cm} \texttt{\_compute\_kxx\_shifted\_cholesky\_decomposition} \hspace{0.1cm} (
           self, parameters
) -> Tuple[jnp.ndarray, bool]:
58
59
60
                 Cholesky decomposition of (kxx + (1/ ^2)*I)
61
62
63
                       parameters: parameters dataclass for the Gaussian Process
                       cholesky_decomposition_kxx_shifted: the cholesky decomposition (number_of_features,
67
             number_of_features)
                 lower\_flag: ^{'}flag \ indicating \ whether \ the \ factor \ is \ in \ the \ lower \ or \ upper \ triangle \ """
68
                 kxx = self.kernel(self.x, **parameters.kernel)
                 kxx_shifted = kxx + parameters.variance * jnp.eye(self.number_of_train_points)
kxx_shifted_cholesky_decomposition , lower_flag = jax.scipy.linalg.cho_factor(
    a=kxx_shifted , lower=True
71
72
73
74
75
                 return kxx_shifted_cholesky_decomposition, lower_flag
76
77
78
           def posterior_distribution (
           self, x: jnp.ndarray, **parameter_args
) -> Tuple[jnp.ndarray, jnp.ndarray]:
    """Compute the posterior distribution for test points x.
    Reference: http://gaussianprocess.org/gpml/chapters/RW2.pdf
79
80
82
83
                       x: test points (number_of_features, number_of_dimensions)
85
                       **parameter\_args:\ parameter\ arguments\ for\ the\ Gaussian\ Process
86
                      mean: the distribution mean (number_of_features, )
covariance: the distribution covariance (number_of_features, number_of_features)
88
89
an.
                 parameters = self.Parameters(**parameter.args)
kxy = self.kernel(self.x, x, **parameters.kernel)
kyy = self.kernel(x, **parameters.kernel)
91
```

```
kxx_shifted_cholesky_decomposition,
              lower_flag ,
) = self._compute_kxx_shifted_cholesky_decomposition(parameters)
96
97
98
99
              mean = (
100
                  kxy.T
                  @ jax.scipy.linalg.cho_solve(
                       c_and_lower=(kxx_shifted_cholesky_decomposition, lower_flag), b=self.y
104
              ).reshape(
105
                   -1.
              107
108
109
              return mean, covariance
         112
113
114
                   **parameter_args: parameter arguments for the Gaussian Process
118
              Returns:
119
              The negative log likelihood.
122
              parameters = self.Parameters(**parameter_args)
124
                   kxx_shifted_cholesky_decomposition,
125
                   lower_flag
126
              ) = self._compute_kxx_shifted_cholesky_decomposition(parameters)
              negative_log_likelihood = -(
                  -0.5
* (
130
                        self.y.T
                       @ jax.scipy.linalg.cho_solve(
    c_and_lower=(kxx_shifted_cholesky_decomposition, lower_flag),
132
                            b=self.y,
136
                  / jnp.trace(jnp.log(kxx_shifted_cholesky_decomposition))
- (self.number_of_train_points / 2) * jnp.log(2 * jnp.pi)
138
139
140
              return negative_log_likelihood
141
         def -compute-gradient(self, **parameter-args) -> Dict[str, Any]:
    """ Calculate the gradient of the posterior negative log likelihood with respect to the parameters.
143
144
              Args:
146
                   **parameter_args: parameter arguments for the Gaussian Process
147
              A dictionary of the gradients for each parameter argument.
149
150
              gradients = grad(
              lambda params: self.posterior_negative_log_likelihood(**params))(parameter_args)
153
154
              return gradients
157
              optimizer: GradientTransformation,
              number_of_training_iterations: int,
160
              **parameter_args
         ) -> GaussianProcessParameters:
161
               ""Train the parameters for a Gaussian Process by optimising the negative log likelihood.
163
164
                  optimizer: jax optimizer object number_of_training_iterations: number_of_training_iterations: number of iterations to perform the optimizer
165
                   **parameter_args: parameter arguments for the Gaussian Process
167
168
              Returns:
              A parameters dataclass containing the optimised parameters. ""
171
172
              opt_state = optimizer.init(parameter_args)
for _ in range(number_of_training_iterations):
\frac{174}{175}
                   gradients = self._compute_gradient(**parameter_args)
updates, opt_state = optimizer.update(gradients, opt_state)
                   parameter_args = optax.apply_updates(parameter_args, updates)
              return self.Parameters(**parameter_args)
```

src/models/gaussian_process_regression.py

The rest of the Python code for question 2:

```
from dataclasses import asdict, fields
      import optax
import dataframe_image as dfi
       import jax
      import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np
      import pandas as pd
import scipy
10
      \begin{array}{ccc} from & src.models.bayesian\_linear\_regression & import & (\\ & LinearRegressionParameters & , \end{array}
11
13
14
            compute_linear_regression_posterior ,
16
17
      from src.models.gaussian_process_regression import (
             GaussianProcess
            Gaussian Process Parameters,
19
20
      from src.models.kernels import CombinedKernel, CombinedKernelParameters
21
22
      jax.config.update("jax_enable_x64", True)
23
24
25
      def construct_design_matrix(t: np.ndarray):
    return np.stack((t, np.ones(t.shape)), axis=1).T
26
27
28
29
      def a(
30
            t: np.ndarray,
            y: np.ndarray, sigma: float,
             {\tt prior\_linear\_regression\_parameters}: \ {\tt LinearRegressionParameters} \ ,
            save_path: str.
35
      ) -> LinearRegressionParameters:
            x = construct_design_matrix(t)
prior_theta = Theta(
36
37
38
                   linear_regression_parameters=prior_linear_regression_parameters ,
39
                   sigma=sigma,
40
41
             posterior_linear_regression_parameters = compute_linear_regression_posterior(
42
                  prior_linear_regression_parameters ,
residuals_precision=prior_theta.precision ,
44
45
            df_mean = pd.DataFrame(
    posterior_linear_regression_parameters.mean, columns=["value"]
47
48
49
            df_mean.index = ["a", "b"]
df_mean = pd.concat([df_mean], keys=["parameters"])
dfi.export(df_mean, save_path + "-mean.png")
50
51
             df_covariance = pd.DataFrame(
                   posterior_linear_regression_parameters.covariance, columns=["a", "b"]
56
            df_covariance.index = ["a", "b"]
df_covariance = pd.concat([df_covariance], keys=["parameters"])
df_covariance = pd.concat([df_covariance.T], keys=["parameters"])
dfi.export(df_covariance, save_path + "-covariance.png")
58
59
60
            return posterior_linear_regression_parameters
61
62
63
      def b(
65
            t_year ,
66
67
            linear_regression_parameters: LinearRegressionParameters,
            error_mean ,
70
71
72
73
74
75
76
            error_variance,
            save_path ,
            x = construct_design_matrix(t)
            x = construct_design_matrix(t)
residuals = y - linear_regression_parameters.predict(x)
plt.plot(t_year.reshape(-1), residuals.reshape(-1))
plt.xlabel("date (decimal year)")
plt.ylabel("residual")
plt.title("2b: g_obs(t)")
plt.savefig(save_path + "-residuals-timeseries")
plt.savefig(save_path + "-residuals-timeseries")
77
78
79
80
81
            count, bins = np.histogram(residuals, bins=100, density=True)
83
84
            plt.bar(bins[1:], count, label="residuals")
             plt.plot(
                  scipy.stats.norm.pdf(bins [1:], loc=error_mean, scale=error_variance), color="red", label="e(t)",
86
87
89
            plt.xlabel("residual bin")
plt.ylabel("density")
plt.title("2b: Residuals Density")
90
91
92
             plt.legend()
             plt.savefig(save_path + "-residuals-density-estimation")
```

```
plt.close()
 97
 98
       def c(
 aa
             kernel: CombinedKernel,
             kernel_parameters: CombinedKernelParameters, log_theta_range: np.ndarray,
101
                 np.ndarray,
             number_of_samples: int,
103
             save_path: str,
       ):
             \begin{array}{ll} gram \ = \ kernel\,(\,t\,\,,\  \  **asdict\,(\,kernel\,\text{-}parameters\,)\,) \\ plt\,\,.imshow\,(\,gram\,) \end{array}
106
107
             plt.xlabel("t")
plt.ylabel("t")
plt.title("Gram Matrix (Prior)")
plt.savefig(save_path + "-gram-matrix")
108
109
110
             plt.close()
113
             for _ in range(number_of_samples):
114
                   plt.plot(
116
                         np.random.multivariate_normal(
                              \mathtt{jnp.zeros}\,(\,\mathtt{gram.shape}\,[\,0\,]\,)\,\,,\,\,\,\mathtt{gram}\,,\,\,\,\mathtt{size}\,{=}1
117
                         ). reshape(-1)
            )
plt.xlabel("t")
plt.ylabel("f.GP(t)")
plt.title("Samples from Gaussian Process Prior")
plt.savefig(save_path + "-samples")
120
123
124
             plt.close()
             fig_samples , ax_samples = plt.subplots(
    len(fields(kernel_parameters.__class__)),
126
127
                   len(log_theta_range),
figsize=(
128
130
                         \begin{array}{ll} \texttt{len} \left( \, \texttt{log\_theta\_range} \, \right) \; * \; 2 \, , \\ \end{array}
                         len (fields (kernel-parameters. --class--)) * 2,
                   frameon=False
134
             for i, field in enumerate(fields(kernel_parameters.__class__)):
                   default_value = getattr(kernel-parameters, field.name)
for j, log_value in enumerate(log_theta_range):
    setattr(kernel-parameters, field.name, log_value)
    gram = kernel(t, **asdict(kernel-parameters))
    ax_samples[i][j].plot(
136
140
                               np.random.multivariate_normal(
                              jnp.zeros(gram.shape[0]), gram, size=1).reshape(-1),
142
144
                         ax_samples[i][j].set_title(
    f"{field.name.strip('log_')}={np.round(np.exp(log_value), 2)}"
145
147
                   setattr(kernel_parameters, field.name, default_value)
148
149
             plt.tight_layout()
             plt.savefig(save_path + f"-parameter-samples", bbox_inches="tight") plt.close(fig_samples)
151
             fig_gram , ax_gram = plt.subplots(
    len(fields(kernel_parameters.__class__)),
154
155
                   len (log_theta_range),
156
                   figsize = (
                         len(log_theta_range) * 2,
158
                         len (fields (kernel_parameters.__class__)) * 2,
161
             for i, field in enumerate(fields(kernel_parameters.__class__)):
                  163
164
165
166
167
168
169
                   setattr (kernel_parameters, field.name, default_value)
172
             plt.tight_layout()
             plt.savefig(save_path + f"-parameter-grams", bbox_inches="tight")
plt.close(fig_gram)
\frac{175}{176}
       def f(
             t_train: np.ndarray,
y_train: np.ndarray,
178
179
             min_year: float,
prior_linear_regression_parameters: LinearRegressionParameters,
180
181
182
             linear_regression_sigma: float, kernel: CombinedKernel,
183
184
             gaussian_process_parameters: GaussianProcessParameters,
             learning_rate: float ,
number_of_iterations: int ,
186
187
             save_path: str,
189
       ):
            # Train Bayesian Linear Regression
190
```

```
191
                            x_train = construct_design_matrix(t_train)
 192
                            prior_theta = Theta(
                                        linear_regression_parameters=prior_linear_regression_parameters,
193
194
                                        sigma=linear_regression_sigma ,
 195
196
                            posterior_linear_regression_parameters = compute_linear_regression_posterior(
197
                                      x_train ,
 198
                                        prior_linear_regression_parameters , residuals_precision=prior_theta.precision ,
199
200
201
202
203
                            residuals = y_train - posterior_linear_regression_parameters.predict(x_train)
204
                           \begin{aligned} \text{gaussian-process} &= \text{GaussianProcess} \, (\\ &\quad \text{kernel} \, , \, \, \text{t\_train.reshape} \, (-1, \, \, 1) \, , \, \, \text{residuals.reshape} \, (-1) \end{aligned}
205
206
207
                           # Prediction
208
209
                             x_test = construct_design_matrix(t_test)
                            linear\_prediction = posterior\_linear\_regression\_parameters.predict(x\_test).reshape(test) = posterior\_linear\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression\_regression
210
211
212
                           ) mean_prediction , covariance_prediction = gaussian_process.posterior_distribution ( t_test_reshape(-1, 1), **asdict(gaussian_process_parameters)
213
214
215
216
                            plt.figure(figsize=(7, 7))
218
219
                           plt.scatter(
t_train + min_year
220
                                        y_train.reshape(-1),
222
                                        s=2,
                                         color="blue"
223
                                        label="historical data",
224
226
                                        t_test + min_year,
linear_prediction + mean_prediction,
                                        color="gray",
label="prediction",
229
230
231
                            plt.fill_between (
233
                                         t_test + min_year,
                                        linear_prediction + mean_prediction - 1 * jnp.diagonal(covariance_prediction), linear_prediction + mean_prediction + 1 * jnp.diagonal(covariance_prediction), facecolor=(0.8, 0.8, 0.8),
234
236
                                        label="error bound (one stdev)",
237
238
                           plt.xlabel("date (decimal year)")
plt.ylabel("parts per million")
plt.title("Global Mean CO_2 Concentration Prediction (Untrained Hyperparameters)")
240
241
                            plt.legend()
243
                            plt.tight_layout()
                            plt.savefig(save_path + "-extrapolation-untrained", bbox_inches="tight")
244
246
247
                           # Train Gaussian Process Regression (Hyperparameter Tune)
248
                            optimizer = optax.adam(learning_rate)
249
                           250
251
252
                           # Prediction
254
                              x_test = construct_design_matrix(t_test)
                           linear\_prediction \ = \ posterior\_linear\_regression\_parameters.predict(x\_test).reshape(test) = testing the properties of the properties 
255
257
258
                           mean_prediction, covariance_prediction = gaussian_process.posterior_distribution(
259
                                        t_test.reshape(-1, 1), **asdict(gaussian_process_parameters)
260
261
262
                           # Plot
                            plt. figure (figsize = (7, 7))
263
                           plt.scatter(
t_train + min_year
264
265
266
                                        y_train.reshape(-1),
268
                                         color="blue"
                                        label="historical data",
269
270
271
                            plt.plot(
t_test + min_year,
272
273
                                        {\tt linear\_prediction} \ + \ {\tt mean\_prediction} \ ,
                                        color="gray",
label="prediction",
274
276
                            plt.fill_between(
277
                                        t_test + min_year,
                                        linear_prediction + mean_prediction - 1 * jnp.diagonal(covariance_prediction), linear_prediction + mean_prediction + 1 * jnp.diagonal(covariance_prediction),
279
280
 281
                                         facecolor = (0.8, 0.8, 0.8)
282
                                        label="error bound (one stdev)",
283
                           plt.xlabel("date (decimal year)")
plt.ylabel("parts per million")
plt.title("Global Mean CO_2 Concentration Prediction (Trained Hyperparameters)")
285
286
```

```
plt.legend()
plt.tight_layout()
plt.savefig(save_path + "-extrapolation-trained", bbox_inches="tight")
plt.close()
```

src/solutions/q2.py

Question 3

(a)

The free energy is can be calculated as:

$$\mathcal{F}(q, \theta) = \langle \log P(\mathbf{x}, \mathbf{s} | \theta) \rangle_{q(\mathbf{s})} + H[Q(\mathbf{s})]$$

Knowing,

$$\log P(\mathbf{x}, \mathbf{s}|\theta) = \log P(\mathbf{x}|\mathbf{s}, \theta) + \log P(\mathbf{s}|\theta)$$

we can write:

$$\mathcal{F}(Q, \theta) = \langle \log P(\mathbf{x}|\mathbf{s}, \theta) \rangle_{q(\mathbf{s})} + \langle \log P(\mathbf{s}|\theta) \rangle_{q(\mathbf{s})} + H[q(\mathbf{s})]$$

Moreover, our mean field approximation:

$$q(\mathbf{s}) = \prod_{i=1}^{K} q_i(s_i)$$

where $q_i(s_i) = \lambda_i^{s_i} (1 - \lambda_i)^{(1-s_i)}$.

To compute the first term:

$$P(\mathbf{x}|\mathbf{s}, \theta) = \mathcal{N}\left(\sum_{i=1}^{K} s_i \mu_i, \sigma^2 \mathbf{I}\right)$$

substituting the appropriate terms:

$$P(\mathbf{x}|\mathbf{s}, \theta) = 2\pi^{-\frac{d}{2}} |\sigma^2 \mathbf{I}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \left(\mathbf{x} - \sum_{i=1}^K s_i \mu_i\right)^T \frac{1}{\sigma^2} \mathbf{I} \left(\mathbf{x} - \sum_{i=1}^K s_i \mu_i\right)\right)$$

with d being the number of dimensions.

Taking the logarithm:

$$\log P(\mathbf{x}|\mathbf{s}, \theta) = -\frac{d}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \left(\mathbf{x}^T\mathbf{x} - 2\mathbf{x}^T\sum_{i=1}^K s_i\mu_i + \sum_{i=1}^K\sum_{j=1}^K s_is_j\mu_i^T\mu_j\right)$$

The expectation distributed to the relevant terms:

$$\langle \log P(\mathbf{x}|\mathbf{s}, \theta) \rangle_{q(\mathbf{s})} = -\frac{d}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \left(\mathbf{x}^T \mathbf{x} - 2\mathbf{x}^T \sum_{i=1}^K \langle s_i \rangle_{q_i(s_i)} \mu_i + \sum_{i=1}^K \sum_{j=1}^K \langle s_i s_j \rangle_{q_i(s_i)q_j(s_j)} \mu_i^T \mu_j \right)$$

Evaluating the expectations:

$$\langle \log P(\mathbf{x}|\mathbf{s}, \theta) \rangle_{q(\mathbf{s})} = -\frac{d}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \left(\mathbf{x}^T \mathbf{x} - 2\mathbf{x}^T \sum_{i=1}^K \lambda_i \mu_i + \sum_{i=1}^K \sum_{j=1, j \neq i}^K \lambda_i \lambda_j \mu_i^T \mu_j + \sum_{i=1}^K \lambda_i \mu_i^T \mu_i \right)$$

where $\langle s_i s_i \rangle_{q_i(s_i)} = \langle s_i \rangle_{q_i(s_i)}$ because $s_i \in \{0, 1\}$.

To compute the second term:

$$P(\mathbf{s}|\theta) = \prod_{i=1}^{K} \pi_i^{s_i} (1 - \pi_i)^{(1-s_i)}$$

Taking the logarithm:

$$\log P(\mathbf{s}|\theta) = \sum_{i=1}^{K} s_i \log \pi_i + (1 - s_i) \log(1 - \pi_i)$$

The expectation distributed to the relevant terms:

$$\langle \log P(\mathbf{s}|\theta) \rangle_{q(\mathbf{s})} = \sum_{i=1}^{K} \langle s_i \rangle_{q_i(s_i)} \log \pi_i + (1 - \langle s_i \rangle_{q_i(s_i)}) \log(1 - \pi_i)$$

Evaluating the expectations:

$$\langle \log P(\mathbf{s}|\theta) \rangle_{q(\mathbf{s})} = \sum_{i=1}^{K} \lambda_i \log \pi_i + (1 - \lambda_i) \log(1 - \pi_i)$$

To compute the third term, we use the mean field factorisation:

$$H\left[q(\mathbf{s})\right] = \sum_{i=1}^{K} H\left[q_i(s_i)\right]$$

Thus,

$$H[q(\mathbf{s})] = -\sum_{i=1}^{K} \sum_{s_i \in \{0,1\}} q_i(s_i) \log q_i(s_i)$$

Substituting the appropriate values:

$$H[q(\mathbf{s})] = -\sum_{i=1}^{K} \lambda_i \log \lambda_i + (1 - \lambda_i) \log(1 - \lambda_i)$$

Combining, we have our free energy expression:

$$\mathcal{F}(q,\theta) = \frac{\frac{-d}{2}\log(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}}\left(\mathbf{x}^{T}\mathbf{x} - 2\mathbf{x}^{T}\sum_{i=1}^{K}\lambda_{i}\mu_{i} + \sum_{i=1}^{K}\sum_{j=1,j\neq i}^{K}\lambda_{i}\lambda_{j}\mu_{i}^{T}\mu_{j} + \sum_{i=1}^{K}\lambda_{i}\mu_{i}^{T}\mu_{i}\right) + \sum_{i=1}^{K}\lambda_{i}\log\pi_{i} + (1-\lambda_{i})\log(1-\pi_{i}) - \sum_{i=1}^{K}\lambda_{i}\log\lambda_{i} + (1-\lambda_{i})\log(1-\lambda_{i})$$

To derive the partial update for $q_i(s_i)$ we take the variational derivative of the Lagrangian, enforcing the normalisation of q_i :

$$\frac{\partial}{\partial q_i} \left(\mathcal{F}(q, \theta) + \lambda^{LG} \int q_i - 1 \right) = \langle \log P(\mathbf{x}, \mathbf{s} | \theta) \rangle_{\prod_{j \neq i} q_j(s_j)} - \log q_i(s_i) - 1 + \lambda^{LG}$$

where λ^{LG} is the Lagrange multiplier.

Setting this to zero we can solve for the λ_i that maximises the free energy:

$$\log q_i(s_i) = \langle \log P(\mathbf{x}, \mathbf{s} | \theta) \rangle_{\prod_{j \neq i} q_j(s_j)} - 1 + \lambda^{LG}$$

Similar to our free energy derivation:

$$\langle \log P(\mathbf{x}|\mathbf{s}, \theta) \rangle_{\prod_{j \neq i} q_j(s_j)} \propto -\frac{1}{2\sigma^2} \left(\mathbf{x}^T \mathbf{x} - 2\mathbf{x}^T \sum_{k=1}^K \langle s_k \rangle_{\prod_{j \neq i} q_j(s_j)} \mu_i + \sum_{k=1}^K \sum_{j=1}^K \langle s_k s_j \rangle_{\prod_{j \neq i} q_j(s_j)} \right)$$

and

$$\langle \log P(\mathbf{s}|\theta) \rangle_{\prod_{j \neq i} q_j(s_j)} = \sum_{k=1}^K \langle s_k \rangle_{\prod_{j \neq i} q_j(s_j)} \log \pi_k + (1 - \langle s_k \rangle_{\prod_{j \neq i} q_j(s_j)}) \log(1 - \pi_k)$$

We can write:

$$\log q_i(s_i) \propto \log P(\mathbf{x}|\mathbf{s}, \theta)_{\prod_{j \neq i} q_j(s_j)} + \langle \log P(\mathbf{s}|\theta) \rangle_{\prod_{j \neq i} q_j(s_j)}$$

Substituting the relevant terms:

$$\log q_i(s_i) \propto -\frac{1}{2\sigma^2} \left(-2s_i \mathbf{x}^T \mu_i + s_i s_i \mu_i^T \mu_i + 2 \sum_{j=1, j \neq i}^K s_i \lambda_j \mu_i^T \mu_j \right) + s_i \log \pi_i + (1 - s_i) \log(1 - \pi_i)$$

Knowing $\log q_i(s_i) = s_i \log \lambda_i + (1 - s_i) \log(1 - \lambda_i)$:

$$\log q_i(s_i) \propto s_i \log \frac{\lambda_i}{1 - \lambda_i}$$

Thus,

$$s_i \log \frac{\lambda_i}{1 - \lambda_i} \propto -\frac{1}{2\sigma^2} \left(-2s_i \mathbf{x}^T \mu_i + s_i s_i \mu_i^T \mu_i + 2 \sum_{j=1, j \neq i}^K s_i \lambda_j \mu_i^T \mu_j \right) + s_i \log \frac{\pi_i}{1 - \pi_i}$$

Also, because $s_i \in \{0, 1\}$ we know that $s_i^2 = s_i$:

$$s_i \log \frac{\lambda_i}{1 - \lambda_i} \propto -\frac{1}{2\sigma^2} \left(-2s_i \mathbf{x}^T \mu_i + s_i \mu_i^T \mu_i + 2 \sum_{j=1, j \neq i}^K s_i \lambda_j \mu_i^T \mu_j \right) + s_i \log \frac{\pi_i}{1 - \pi_i}$$

Because we have only kept terms with s_i , this is an equality:

$$s_i \log \frac{\lambda_i}{1 - \lambda_i} = \frac{s_i \mu_i^T}{2\sigma^2} \left(2\mathbf{x} - \mu_i - 2\sum_{j=1, j \neq i}^K \lambda_j \mu_j \right) + s_i \log \frac{\pi_i}{1 - \pi_i}$$

Solving for λ_i :

$$\lambda_i = \frac{1}{1 + \exp\left[-\left(\frac{\mu_i^T}{\sigma^2} \left(\mathbf{x} - \frac{\mu_i}{2} - \sum_{j=1, j \neq i}^K \lambda_j \mu_j\right) + \log\frac{\pi_i}{1 - \pi_i}\right)\right]}$$

we have our partial update.

(b)

The provided derivations for the M step of the mean parameter μ :

$$\mu = \left(\left\langle \mathbf{s} \mathbf{s}^T \right\rangle_{q(\mathbf{s})} \right)^{-1} \left\langle \mathbf{s} \right\rangle_{q(\mathbf{s})} \mathbf{x}$$

where $\mu \in \mathbb{R}^{K \times D}$, $\mathbf{s} \in \mathbb{R}^{K \times N}$, and $\mathbf{x} \in \mathbb{R}^{N \times D}$.

This mimics the least squares solution:

$$\hat{\beta} = (\mathbf{X}\mathbf{X}^T)\mathbf{X}\mathbf{Y}$$

for the linear regression problem $\mathbf{Y} = \mathbf{X}^T \boldsymbol{\beta}$ where $\boldsymbol{\beta}$ corresponds to the mean parameters $\boldsymbol{\mu}$, the design matrix \mathbf{X} corresponds to the input \mathbf{s} and the response Y corresponds to the image pixels denoted \mathbf{x} . This makes sense because our resulting images \mathbf{x} are modeled as linear combinations of features $\boldsymbol{\mu}$, weighted by \mathbf{s} .

(c)

The computational complexity of the implemented M step function can be broken down for each parameter:

 μ : - The inversion ESS⁻¹ where ESS $\in \mathbb{R}^{K \times K}$ is $\mathcal{O}(K^3)$

- The dot product $ESS^{-1}ES^T$ where $ESS^{-1} \in \mathbb{R}^{K \times K}$ and $ES \in \mathbb{R}^{N \times K}$ is $\mathcal{O}(K^2N)$

- The dot product $(ESS^{-1}ES^T)\mathbf{x}$ where $(ESS^{-1}ES^T) \in \mathbb{R}^{K \times N}$ and $\mathbf{x} \in \mathbb{R}^{N \times D}$ is $\mathcal{O}(KND)$

 σ : - The dot product $(\mathbf{x}^T\mathbf{x})$ where $\mathbf{x} \in \mathbb{R}^{N \times D}$ is $\mathcal{O}(D^2N)$

- The dot product $\mu^T \mu$ where $\mu \in \mathbb{R}^{D \times K}$ is $\mathcal{O}(K^2 D)$

– The dot product $(\mu^T \mu)$ ESS where $\mu^T \mu \in \mathbb{R}^{K \times K}$ and ESS $\in \mathbb{R}^{K \times K}$ is $\mathcal{O}(K^3)$

 π : — The mean operation for ES $\in \mathbb{R}^{N \times K}$ along the first dimension is $\mathcal{O}(NK)$

Thus, the computational complexity of the M step is $\mathcal{O}(K^3 + K^2N + KND + D^2N + K^2D)$ where we do not assume that any of N, K, or D is large compared to the others.

(d)

Figure 11: Images generated by randomly combined features with noise

(e)

We can plot the free energy to make sure it increases each iteration:

- **(f)**
- (g)

The Python code for mean field learning:

```
from dataclasses import dataclass
 3
      import numpy as np
      from demo_code.MStep import m_step
      from typing import List, Tuple
      from src.models.binary_latent_factor_model import BinaryLatentFactorModel
10
      @dataclass
11
      {\color{red} \textbf{class}} \quad \textbf{MeanFieldApproximation}:
12
13
14
            lambda_matrix: parameters variational approximation (number_of_points, number_of_latent_variables)
15
16
17
            lambda_matrix: np.ndarray
            def lambda_matrix_exclude(self, exclude_latent_index: int) -> np.ndarray:
    # (number_of_points, number_of_latent_variables -1)
    return np.concatenate(
19
20
21
22
                               self.lambda\_matrix [:, :exclude\_latent\_index],\\ self.lambda\_matrix [:, exclude\_latent\_index + 1 :],
23
24
25
                        ),
26
                        axis=1,
27
                  )
28
29
            @property
30
            def log_lambda_matrix(self):
    return np.log(self.lambda_matrix)
34
            def log_one_minus_lambda_matrix(self):
35
                  return np.log(1 - self.lambda_matrix)
36
            @property
38
            def n(self):
                  return self.lambda_matrix.shape[0]
39
40
41
            @property
def k(self):
42
                 return self.lambda_matrix.shape[1]
44
45
       \frac{\text{def init\_mean\_field\_approximation} \left( \text{k: int} \;,\; \text{n: int} \right) \; -\!\!> \; \text{MeanFieldApproximation} \colon 
47
            return MeanFieldApproximation (
48
                 lambda_matrix=np.random.random(size=(n, k)),
49
50
51
      def init_binary_latent_factor_model (
             \begin{array}{lll} x\colon & np.\,ndarray \;, \\ mean\_field\_approximation \;: \; MeanFieldApproximation \;, \end{array} 
55
      ) -> BinaryLatentFactorModel:
56
            {\tt return \ maximisation\_step} \, ({\tt x} \, , \, \, {\tt mean\_field\_approximation} \, )
58
59
      def _compute_expectation_log_p_x_s_given_theta(
            x: np.ndarray,
binary_latent_factor_model: BinaryLatentFactorModel,
mean_field_approximation: MeanFieldApproximation,
60
61
62
63
      ) -> float:
65
            The first term of the free energy, the expectation of \log P(X,S|theta)
66
67
            : param \ x: \ data \ matrix \ ( \ number\_of\_points \ , \ number\_of\_dimensions )
            :param binary_latent_factor_model: a binary_latent_factor_model:param mean_field_approximation: a mean_field_approximation
            :return: the expectation of log P(X,S | theta)
70
71
72
73
74
75
76
              \# \ (number\_of\_points \ , \ number\_of\_dimensions) \\ mu\_lambda = \ mean\_field\_approximation . \\ lambda\_matrix @ binary\_latent\_factor\_model . \\ mu.T \\ 
            # (number_of_latent_variables, number_of_latent_variables)
expectation_s_i_s_j_mu_i_mu_j = np.multiply(
    mean_field_approximation.lambda_matrix.T
77
78
79
                  @ mean_field_approximation.lambda_matrix,
binary_latent_factor_model.mu.T @ binary_latent_factor_model.mu,
80
81
            expectation_log_p_x_given_s_theta = -(
            mean_field_approximation.n * binary_latent_factor_model.d / 2
) * np.log(2 * np.pi * binary_latent_factor_model.variance) - (
0.5 * binary_latent_factor_model.precision
83
84
86
87
                  np.sum(np.multiply(x, x))
- 2 * np.sum(np.multiply(x, mu_lambda))
+ np.sum(expectation_s_i_s_j_mu_i_mu_j)
89
90
                  - np.trace(
                         expectation_s_i_s_j_mu_i_mu_j
91
                     # remove incorrect E[s_i s_i] = lambda_i * lambda_i np.sum( # add correct E[s_i s_i] = lambda_i
92
                  + np.sum(
                        mean_field_approximation.lambda_matrix
```

```
@ np.multiply(
 96
                           binary_latent_factor_model.mu, binary_latent_factor_model.mu
 97
                )
 98
 aa
           expectation_log_p_s_given_theta = np.sum(
                np. multiply (
                      mean_field_approximation.lambda_matrix,
                      binary_latent_factor_model.log_pi ,
                + np.multiply(
                        - mean_field_approximation.lambda_matrix,
106
                      binary_latent_factor_model.log_one_minus_pi,
107
108
109
           return expectation_log_p_x_given_s_theta + expectation_log_p_s_given_theta
      def _compute_mean_field_approximation_entropy(
    mean_field_approximation: MeanFieldApproximation,
113
114
      ) -> float:
116
           return -np.sum(
                np. multiply (
117
                     mean_field_approximation.lambda_matrix,
                     {\tt mean\_field\_approximation.log\_lambda\_matrix}\ ,
120
                + np. multiply (
                     1 - mean_field_approximation.lambda_matrix,
                     mean_field_approximation.log_one_minus_lambda_matrix,
124
           )
126
127
128
      def compute_free_energy(
           x: np.ndarray,
           binary_latent_factor_model: BinaryLatentFactorModel,
130
           {\tt mean\_field\_approximation: MeanFieldApproximation},
      ) -> float:
           free energy associated with current EM parameters and data x
134
           : param \ x: \ data \ matrix \ (number\_of\_points \, , \ number\_of\_dimensions) \\ : param \ binary\_latent\_factor\_model: \ a \ binary\_latent\_factor\_model \\ : param \ mean\_field\_approximation: \ a \ mean\_field\_approximation \\
136
138
           :return: average free energy per data point
140
            \begin{array}{lll} expectation\_log\_p\_x\_s\_given\_theta = \_compute\_expectation\_log\_p\_x\_s\_given\_theta (\\ x, binary\_latent\_factor\_model, mean\_field\_approximation \end{array} 
142
143
144
           mean_field_approximation_entropy = _compute_mean_field_approximation_entropy(
145
                mean_field_approximation
147
           return (
148
                expectation_log_p_x_s_given_theta + mean_field_approximation_entropy
           ) / mean_field_approximation.n
149
150
151
      def partial_expectation_step (
           x: np.ndarray,
binary_latent_factor_model: BinaryLatentFactorModel,
154
           {\tt mean\_field\_approximation:} \ \ {\tt MeanFieldApproximation} \ ,
156
           latent_factor: int,
157
      ) -> np.ndarray:
""" Partial Variational E step for factor i for all data points
158
           :param x: data matrix (number_of_points, number_of_dimensions)
           :param binary_latent_factor_model: a binary_latent_factor_model :param mean_field_approximation: a mean_field_approximation
161
162
           .param hear_nerd_approximation: a mean_nerd_approximation
:param latent_factor: latent factor to compute partial update
:return: lambda_vector: new lambda parameters for the latent factor (number_of_points, 1)
"""
163
164
165
166
           lambda\_matrix\_excluded = mean\_field\_approximation.lambda\_matrix\_exclude(
167
                latent_factor
168
169
           mu_excluded = binary_latent_factor_model.mu_exclude(latent_factor)
           mu_latent = binary_latent_factor_model.mu[:, latent_factor]
           # (number_of_points, 1)
partial_expectation_log_p_x_given_s_theta_proportion = (
binary_latent_factor_model.precision
172
174
175
176
                     178
179
180
                @ mu_latent # (number_of_dimensions, 1)
181
182
           )
183
           # (1, 1)
184
           partial_expectation_log_p_s_given_theta_proportion = np.log(
                binary_latent_factor_model.pi[0, latent_factor]
/ (1 - binary_latent_factor_model.pi[0, latent_factor])
186
187
189
190
           # (number_of_points, 1)
```

```
191
            partial\_expectation\_log\_p\_x\_s\_given\_theta\_proportion = (
192
                 partial_expectation_log_p_x_given_s_theta_proportion
+ partial_expectation_log_p_s_given_theta_proportion
193
194
195
           # (number_of_points, 1)
196
197
           lambda_vector = 1 /
198
                 1 + np.exp(-partial_expectation_log_p_x_s_given_theta_proportion)
199
200
            lambda_vector[lambda_vector == 0] = 1e-10
201
           lambda\_vector [lambda\_vector == 1] = 1 - 1e-10
           return lambda_vector
202
203
204
205
      def variational_expectation_step(
           x: np.ndarray,
binary_latent_factor_model: BinaryLatentFactorModel,
mean_field_approximation: MeanFieldApproximation,
206
207
208
           max_steps: int, convergence_criterion: float,
209
210
      ) -> Tuple [MeanFieldApproximation, np.ndarray]: """ Variational E step
211
212
213
           .param x: data matrix (number_of_points, number_of_dimensions)
:param binary_latent_factor_model: a binary_latent_factor_model
:param mean_field_approximation: a mean_field_approximation
:param max_steps: maximum number of steps of fixed point equations
:param convergence_criterion: early stopping if change in free energy < convergence_criterion
:return: mean field approximation
214
216
218
219
220
           free_energy = [
222
                 compute_free_energy(x, binary_latent_factor_model, mean_field_approximation)
223
           for i in range(max_steps):
    for latent_factor in range(binary_latent_factor_model.k):
224
226
                      mean_field_approximation.lambda_matrix[
                      :, latent_factor
] = partial_expectation_step(
                            x, binary_latent_factor_model, mean_field_approximation, latent_factor
230
231
                 free_energy.append(
                      {\tt compute\_free\_energy} \, ({\tt x} \, , \, \, \, {\tt binary\_latent\_factor\_model} \, , \, \, {\tt mean\_field\_approximation} \, )
233
234
                 if free_energy [-1] - free_energy [-2] <= convergence_criterion:
236
            return mean_field_approximation, free_energy
237
238
      def maximisation_step (
240
           x: np.ndarray,
           {\tt mean\_field\_approximation: MeanFieldApproximation,}
241
      ) -> BinaryLatentFactorModel:
243
           {\tt expectation\_s} \ = \ mean\_field\_approximation.lambda\_matrix
244
            expectation_ss = (
245
                 mean_field_approximation.lambda_matrix.T
246
                 @ \ mean\_field\_approximation.lambda\_matrix\\
247
248
           np.\ fill\_diagonal\ (\ expectation\_ss\ ,\ mean\_field\_approximation\ . lambda\_matrix\ . \underline{sum}\ (\ axis=0))
           mu, sigma, pi = m_step(x, expectation_s, expectation_ss)
return BinaryLatentFactorModel(
249
250
251
                mu=mu,
252
                 sigma=sigma,
                 pi=pi,
254
255
      257
258
259
260
           ) == 0
261
262
263
264
      def learn_binary_factors(
            x: np.ndarray,
265
266
           k: int.
            em_iterations: int,
           e_maximum.steps: int,
e_convergence_criterion: float,
mean_field_approximation: MeanFieldApproximation = None
268
269
270
271
           binary_latent_factor_model: BinaryLatentFactorModel = None,
272
      ):
273
              = x.shape[0]
           if mean_field_approximation is None:
    mean_field_approximation = init_mean_field_approximation(k, n)
274
275
            if binary_latent_factor_model is None:
binary_latent_factor_model = init_binary_latent_factor_model(
276
277
                     x, mean_field_approximation
279
            free_energies: List[float] = [
280
                compute_free_energy(x, binary_latent_factor_model, mean_field_approximation)
281
282
            for _ in range(em_iterations):
283
                 new\_mean\_field\_approximation \,, \ \_ = \ variational\_expectation\_step \,(
285
                       binary_latent_factor_model=binary_latent_factor_model,
286
```

src/models/mean_field_learning.py

The rest of the Python code for question 3:

```
from src.models.mean_field_learning import (
 3
           learn_binary_factors
            BinaryLatentFactorModel .
           compute_free_energy
           init_mean_field_approximation, variational_expectation_step,
           is_converge .
      from src.generate_images import generate_images
11
     import matplotlib.pyplot as plt
from typing import List
13
14
      def e_and_f
16
17
           x: np.ndarray,
k: int,
            em_iterations: int,
19
           e_maximum_steps: int,
20
            e_convergence_criterion: float,
           save_path: str,
22
23
           _, binary_latent_factor_model, free_energy = learn_binary_factors(
24
                 x\,,\;k\,,\;em\_iterations\,,\;e\_maximum\_steps\,,\;e\_convergence\_criterion
25
           26
           fig, ax = pit.subplots(1, k, figsize=(k * 2, 2))
for i in range(k):
    ax[i].imshow(binary_latent_factor_model.mu[:, i].reshape(4, 4))
    ax[i].set_title(f"Latent Feature mu_{i}")
fig.suptitle("Learned Features")
27
28
29
30
           plt.tight_layout()
plt.savefig(save_path + "-latent-factors", bbox_inches="tight")
            plt.close()
34
           plt.title("Free Energy")
plt.xlabel("t (EM steps)")
plt.ylabel("Free Energy")
35
36
           plt.plot(free_energy)
plt.savefig(save_path + "-free-energy", bbox_inches="tight")
39
           plt.close()
41
            return binary_latent_factor_model
42
      def g(
44
45
           x: np.ndarray,
binary_latent_factor_model: BinaryLatentFactorModel,
47
           sigmas: List [float],
48
           k: int,
49
            em_iterations: int ,
50
           e_maximum_steps: int,
51
            e_convergence_criterion: float,
           save_path: str,
           n = x.shape[0]
55
           free_energies = []
56
           for sigma in sigmas:
    binary_latent_factor_model.sigma = sigma
                 mean_field_approximation = init_mean_field_approximation(k, n)
free_energy: List[float] = [
58
59
                      compute_free_energy(x, binary_latent_factor_model, mean_field_approximation)
61
62
                 for _ in range (em_iterations):
                             \verb"new_mean_field_approximation",
                            new_free_energy ,
                       ) = variational_expectation_step (
67
                             binary_latent_factor_model=binary_latent_factor_model,
                             {\tt mean\_field\_approximation} {=} {\tt mean\_field\_approximation} \; ,
70
71
72
73
74
75
76
                            max_steps=e_maximum_steps,
                             convergence_criterion=e_convergence_criterion,
                       free_energy.extend(new_free_energy)
                       if is_converge(
                            free\_energy\ ,\ new\_mean\_field\_approximation\ ,\ mean\_field\_approximation
                 mean\_field\_approximation = new\_mean\_field\_approximation \\ free\_energies . append (free\_energy)
80
                    free_energy in enumerate(free_energies):
81
                 plt.plot(
                       np.arange(len(free_energy) - 1),
np.log(np.diff(np.array(free_energy))),
label=f"sigma={sigmas[i]}",
83
84
86
           \begin{array}{l} \text{plt. title} \left(f"\log \left(F(t) - F(t-1)"\right) \\ \text{plt. xlabel} \left("t \; \left(\text{Variational E steps}\right)"\right) \\ \text{plt. ylabel} \left("\log \left(F(t) - F(t-1)"\right) \\ \text{plt. tight-layout} \left(\right) \end{array} \right) \end{array}
89
            plt.legend()
            plt.savefig(save_path + f"-free-energy-diff-sigma.png", bbox_inches="tight")
92
           plt.close()
```

src/solutions/q3.py

Question 4

We begin with the log joint:

$$\log P(\mathbf{x}, \mathbf{s}, \pi, \mathbf{A}, \Psi | \eta) = \log P(\mathbf{x} | \mathbf{s}, \mathbf{A}, \Psi, \eta) + \log P(\mathbf{s} | \pi, \eta) + \log P(\pi | \eta) + \log P(\mathbf{A} | \eta) + \log P(\Psi | \eta)$$

where η is a collection of all hyperparameters.

We know:

$$P(\mathbf{x}|\mathbf{s}, \mathbf{A}, \Psi, \eta) = \frac{1}{(2\pi)^{\frac{D}{2}} |\Psi|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{A}\mathbf{s})^T \Psi^{-1}(\mathbf{x} - \mathbf{A}\mathbf{s})\right)$$
$$P(\mathbf{s}|\pi, \eta) = \prod_{k=1}^K \pi_k^{s_i} (1 - \pi_k)^{1 - s_k}$$
$$P(\pi|\eta) = \prod_{k=1}^K \frac{\pi_k^{\alpha - 1} (1 - \pi_k)^{\beta - 1}}{B(\alpha, \beta)}$$

We choose the conjugate priors:

$$P(\mathbf{A}|\eta) = \mathcal{N}(\mathbf{A}|\mu_{\mathbf{A}}, \Sigma_{\mathbf{A}}) = \frac{1}{(2\pi)^{\frac{DK}{2}} |\Sigma_{\mathbf{A}}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{A} - \mu_{\mathbf{A}})^T \Sigma_{\mathbf{A}}^{-1}(\mathbf{A} - \mu_{\mathbf{A}})\right)$$
$$P(\Psi|\eta) = \prod_{d=1}^{D} InvGamma(\Psi_{dd}|a_d, b_d) = \prod_{d=1}^{D} \frac{b_d^{a_d}}{\Gamma(a_d)} \Psi_{dd}^{-a_d - 1} \exp(-\frac{b_d}{\Psi_{dd}})$$

a Gaussian prior on **A** and a product of inverse gamma distributions on Ψ where we assume Ψ is a diagonal matrix.

Combining, we have our expression:

$$\log P(\mathbf{x}, \mathbf{s}, \pi, \mathbf{A}, \Psi | \eta) = -\frac{D}{2} \log(2\pi) - \frac{1}{2} \sum_{d=1}^{D} \log \Psi_{dd} - \frac{1}{2} (\mathbf{x} - \mathbf{A}\mathbf{s})^{T} \Psi^{-1} (\mathbf{x} - \mathbf{A}\mathbf{s}) + \sum_{k=1}^{K} s_{k} \log \pi_{k} + (1 - s_{k}) \log(1 - \pi_{k}) + \sum_{i=1}^{K} (\alpha - 1) \log \pi_{k} + (\beta - 1) \log(1 - \pi_{k}) - \log B(\alpha, \beta) - \frac{DK}{2} \log(2\pi) - \frac{1}{2} \log(|\Sigma_{\mathbf{A}}|) - \frac{1}{2} (\mathbf{A} - \mu_{\mathbf{A}})^{T} \Sigma_{\mathbf{A}}^{-1} (\mathbf{A} - \mu_{\mathbf{A}}) + \sum_{d=1}^{D} a_{d} \log b_{d} + (-a_{d} - 1) \log \Psi_{dd} - \frac{b_{d}}{\Psi_{dd}} - \log \Gamma(a_{d})$$

For the Variational Bayes expectation step, we minimise $\mathbf{KL}[q_s(\mathbf{s}|\text{everything else})||P(\mathbf{s}|\text{everything else})]$ by setting:

$$q_s(\mathbf{s}) \propto \exp \langle \log P(\mathbf{x}, \mathbf{s}, \pi, \mathbf{A}, \Psi | \eta) \rangle_{q(\theta)}$$

where θ denotes the parameters π , \mathbf{A} , Ψ , η . Substituting the relevant terms:

$$q_s(\mathbf{s}) \propto \exp\left\langle -\frac{1}{2}(\mathbf{x} - \mathbf{A}\mathbf{s})^T \Psi^{-1}(\mathbf{x} - \mathbf{A}\mathbf{s}) + \sum_{k=1}^K s_k \log \pi_k + (1 - s_k) \log(1 - \pi_k) \right\rangle_{q(\theta)}$$

Simplifying:

$$q_s(\mathbf{s}) \propto \exp\left\langle -\frac{1}{2} \left(\mathbf{s}^T \mathbf{A}^T \Psi^{-1} \mathbf{A} \mathbf{s} - 2 \mathbf{s}^T \left(\mathbf{A}^T \Psi^{-1} \mathbf{x} + 2 \log \frac{\pi}{1-\pi} \right) \right) \right\rangle_{q(\theta)}$$

By inspection, we can see:

$$q_s(\mathbf{s}) \propto \mathcal{N}(s|\mu_{\mathbf{s}}^*, \Sigma_{\mathbf{s}}^*)$$

where

$$\Sigma_{\mathbf{s}}^* = \left\langle \left(\mathbf{A}^T \Psi^{-1} \mathbf{A} \right)^{-1} \right\rangle_{q(\theta)}$$

and

$$\mu_{\mathbf{s}}^* = \left\langle \left(\mathbf{A}^T \Psi^{-1} \mathbf{A} \right)^{-1} \left(\mathbf{A}^T \Psi^{-1} \mathbf{x} + 2 \log \frac{\pi}{1 - \pi} \right) \right\rangle_{q(\theta)}$$

the E step updates.

For the Variational Bayes maximisation step, we set:

$$q_{\theta}(\theta) \propto P(\theta) \exp \langle \log P(\mathbf{x}, \mathbf{s}, \pi, \mathbf{A}, \Psi | \eta) \rangle_{q(\mathbf{s})}$$

assuming the factorisation:

$$q_{\theta}(\theta) = q_{\pi}(\pi)q_{\Psi}(\Psi)q_{\mathbf{A}}(\mathbf{A})$$

we can calculate each factor independently.

For $q_{\pi}(\pi)$:

$$q_{\pi}(\pi) \propto P(\pi) \exp \langle \log P(\mathbf{x}, \mathbf{s}, \pi, \mathbf{A}, \Psi | \eta) \rangle_{q_{\pi}(\mathbf{s})q_{\neg\pi}(\theta)}$$

Substituting the appropriate terms:

$$q_{\pi}(\pi) \propto \left(\prod_{k=1}^{K} \frac{\pi_k^{\alpha-1} (1 - \pi_k)^{\beta-1}}{B(\alpha, \beta)} \right) \exp \left\langle \sum_{i=1}^{K} s_k \log \pi_k + (1 - s_k) \log (1 - \pi_k) \right\rangle_{q_{\mathbf{s}}(\mathbf{s})q_{\neg \pi}(\theta)}$$

We see:

$$q_{\pi}(\pi) \propto \prod_{k=1}^{K} \frac{\pi_{k}^{\alpha + \langle s_{k} \rangle_{q_{s_{k}}} - 1} (1 - \pi_{k})^{\beta - \langle s_{k} \rangle_{q_{s_{k}}}}}{B(\alpha, \beta)}$$

$$q_{\pi}(\pi) = \prod_{k=1}^{K} Beta(\alpha + \langle s_k \rangle_{q_{s_k}}, \beta + (1 - \langle s_k \rangle_{q_{s_k}}))$$

For $q_{\Psi}(\Psi)$:

$$q_{\Psi}(\Psi) \propto P(\Psi) \exp \langle \log P(\mathbf{x}, \mathbf{s}, \pi, \mathbf{A}, \Psi | \eta) \rangle_{q_{\mathbf{s}}(\mathbf{s})q_{\neg\Psi}(\theta)}$$

Substituting the appropriate terms:

$$q_{\Psi}(\Psi) \propto \left(\prod_{d=1}^{D} \frac{b_d^{a_d}}{\Gamma(a_d)} \Psi_{dd}^{-a_d-1} \exp(-\frac{b_d}{\Psi_{dd}}) \right) \exp\left\langle -\frac{1}{2} \sum_{d=1}^{D} \log \Psi_{dd} - \frac{1}{2} (\mathbf{x} - \mathbf{A}\mathbf{s})^T \Psi^{-1} (\mathbf{x} - \mathbf{A}\mathbf{s}) \right\rangle_{q_{\mathbf{s}}(\mathbf{s})q_{\neg \Psi(\theta)}}$$

We see:

$$q_{\Psi}(\Psi) \propto \prod_{d=1}^{D} \frac{b_d^{a_d}}{\Gamma(a_d)} \Psi_{dd}^{-(a_d + \frac{1}{2}) - 1} \exp\left(-\frac{b_d + \frac{1}{2} \left\langle (x_d - \mathbf{A}_d \mathbf{s})^2 \right\rangle_{q_{\mathbf{s}}(\mathbf{s}) q_{\mathbf{A}_d}(\mathbf{A}_d)}}{\Psi_{dd}}\right)$$

where $\mathbf{A}_d \in \mathbb{R}^{1 \times K}$ is the d^{th} row of \mathbf{A} . Thus

$$q_{\Psi}(\Psi) = \prod_{d=1}^{D} InvGamma\left(\Psi_{dd} \left| a_d + \frac{1}{2}, b_d + \frac{1}{2} \left\langle (x_d - \mathbf{A}_d \mathbf{s})^2 \right\rangle_{q_{\mathbf{s}}(\mathbf{s})q_{\mathbf{A}_d}(\mathbf{A}_d)} \right)$$

For $q_{\mathbf{A}}(\mathbf{A})$:

$$q_{\mathbf{A}}(\mathbf{A}) \propto P(\mathbf{A}) \exp \langle \log P(\mathbf{x}, \mathbf{s}, \pi, \mathbf{A}, \Psi | \eta) \rangle_{q_{\mathbf{s}}(\mathbf{s})q_{-\mathbf{A}}(\theta)}$$

$$q_{\mathbf{A}}(\mathbf{A}) \propto \exp\left(-\frac{1}{2}(\mathbf{A} - \mu_{\mathbf{A}})^T \Sigma_{\mathbf{A}}^{-1}(\mathbf{A} - \mu_{\mathbf{A}})\right) \exp\left\langle-\frac{1}{2}(\mathbf{x} - \mathbf{A}\mathbf{s})^T \Psi^{-1}(\mathbf{x} - \mathbf{A}\mathbf{s})\right\rangle_{q_{\mathbf{s}}(\mathbf{s})q_{\neg \mathbf{A}}(\theta)}$$

$$q_{\mathbf{A}}(\mathbf{A}) \propto \exp\left(-\frac{1}{2}(\mathbf{A}^T \boldsymbol{\Sigma}_{\mathbf{A}}^{-1} \mathbf{A} - 2\mathbf{A}^T \boldsymbol{\Sigma}_{\mathbf{A}}^{-1} \boldsymbol{\mu}_{\mathbf{A}})\right) \exp\left\langle-\frac{1}{2}(\mathbf{s}^T \mathbf{A}^T \boldsymbol{\Psi}^{-1} \mathbf{A} \mathbf{s} - 2\mathbf{s}^T \mathbf{A}^T \boldsymbol{\Psi}^{-1} \mathbf{x})\right\rangle_{q_{\mathbf{s}}(\mathbf{s})q_{\neg \mathbf{A}}(\boldsymbol{\theta})}$$

Question 5

(a)

The log-joint probability for a single observation-source pair:

$$\log p(\mathbf{s}, \mathbf{x}) = \log p(\mathbf{s}) + (\mathbf{x}|\mathbf{s})$$

Knowing $p(\mathbf{s}) = \prod_{i=1}^K p(s_i|\pi_i)$ and $p(\mathbf{x}|\mathbf{s}) = \mathcal{N}(\sum_{i=1}^K s_i \mu_i, \sigma^2 \mathbf{I})$:

$$\log p(\mathbf{s}, \mathbf{x}) \propto \frac{-1}{2} \left(\mathbf{x} - \sum_{i=1}^{K} s_i \mu_i \right)^T \frac{1}{\sigma^2} \mathbf{I} \left(\mathbf{x} - \sum_{i=1}^{K} s_i \mu_i \right) + \sum_{i=1}^{K} \left(s_i \log \pi_i + (1 - s_i) \log(1 - \pi_i) \right)$$

Expanding:

$$\log p(\mathbf{s}, \mathbf{x}) \propto \frac{-1}{2\sigma^2} \left(\mathbf{x}^T \mathbf{x} - 2\mathbf{x}^T \sum_{i=1}^K s_i \mu_i + \sum_{i=1}^K \sum_{j=1}^K s_i s_j \mu_i^T \mu_j \right) + \sum_{i=1}^K \left(s_i \log \pi_i + (1 - s_i) \log(1 - \pi_i) \right)$$

Collecting terms pertaining to s_i :

$$\log p(\mathbf{s}, \mathbf{x}) = \sum_{i=1}^{K} \left(\left(\frac{\mathbf{x}^T \mu_i}{\sigma^2} + \log \frac{\pi_i}{1 - \pi_i} \right) s_i \right) + \sum_{i=1}^{K} \sum_{j=1}^{K} \left(\frac{-\mu_i^T \mu_j}{2\sigma^2} s_i s_j \right) + C$$

where C are all other terms without s_i .

Knowing that $s_i^2 = s_i$:

$$\log p(\mathbf{s}, \mathbf{x}) = \sum_{i=1}^{K} \left(\left(\frac{\mathbf{x}^T \mu_i}{\sigma^2} + \log \frac{\pi_i}{1 - \pi_i} - \frac{\mu_i^T \mu_i}{2\sigma^2} \right) s_i \right) + \sum_{i=1}^{K} \sum_{j=1}^{i-1} \left(\frac{-\mu_i^T \mu_j}{\sigma^2} s_i s_j \right) + C$$

Thus:

$$\log p(\mathbf{s}, \mathbf{x}) = \sum_{i=1}^{K} \log f_i(s_i) + \sum_{i=1}^{K} \sum_{j=1}^{i-1} \log g_{ij}(s_i, s_j)$$

where the factors are defined:

$$\log f_i(s_i) = \left(\frac{\mathbf{x}^T \mu_i}{\sigma^2} + \log \frac{\pi_i}{1 - \pi_i} - \frac{\mu_i^T \mu_i}{2\sigma^2}\right) s_i$$

and

$$\log g_{ij}(s_i, s_j) = \frac{-\mu_i^T \mu_j}{\sigma^2} s_i s_j$$

as required.

The Boltzmann Machine can be defined:

$$P(\mathbf{s}|\mathbf{W}, \mathbf{b}) = \frac{1}{Z} \exp\left(\sum_{i=1}^{K} \sum_{j=1}^{i-1} W_{ij} s_i s_j - \sum_{i=1}^{K} b_i s_i\right)$$

where $s_i \in \{0, 1\}$, the same as our source variables.

From our factorisation, we can see that $p(\mathbf{s}, \mathbf{x})$ is a Boltzmann Machine with:

$$W_{ij} = \frac{-\mu_i^T \mu_j}{\sigma^2}$$

and

$$b_i = -\left(\frac{\mathbf{x}^T \mu_i}{\sigma^2} + \log \frac{\pi_i}{1 - \pi_i} - \frac{\mu_i^T \mu_i}{2\sigma^2}\right)$$

and

$$\log Z = -C$$

(b)

For $f_i(s_i)$, we will choose a Bernoulli approximation:

$$\tilde{f}_i(s_i) = \lambda_i^{s_i} + (1 - \lambda_i)^{1 - s_i}$$

Thus,

$$\log \tilde{f}_i(s_i) \propto \log \left(\frac{\lambda_i}{1-\lambda_i}\right) s_i$$

For $g_{ij}(s_i, s_j)$, we will choose a product of Bernoulli's approximation:

$$\tilde{g}_{ij}(s_i, s_j) = \tilde{g}_{ij, \neg s_j}(s_i) \tilde{g}_{ij, \neg s_i}(s_j)$$

where

$$\tilde{g}_{ij,\neg s_i}(s_i) = (\theta_{ji})^{s_i} + (1 - \theta_{ji})^{1 - s_i}$$

and

$$\tilde{g}_{ij,\neg s_i}(s_i) = (\theta_{ij})^{s_j} + (1 - \theta_{ij})^{1 - s_j}$$

Thus,

$$\log \tilde{g}_{ij}(s_i, s_j) \propto \log \left(\frac{\theta_{ji}}{1 - \theta_{ji}}\right) s_i + \log \left(\frac{\theta_{ij}}{1 - \theta_{ij}}\right) s_j$$

we can define $\xi_{ji} = \log\left(\frac{\theta_{ji}}{1-\theta_{ji}}\right)$ and $\xi_{ij} = \log\left(\frac{\theta_{ij}}{1-\theta_{ij}}\right)$:

$$\log \tilde{g}_{ij}(s_i, s_j) \propto \xi_{ji} s_i + \xi_{ij} s_j$$

To derive the a message passing scheme, we first define the incoming message to node i from the singleton factor:

$$\mathcal{M}_i(s_i) = \tilde{f}_i(s_i)$$

and the message incoming message to node i from node j:

$$\mathcal{M}_{j\to i}(s_i) = \sum_{s_1 \in \{0,1\}} \cdots \sum_{s_{i-1} \in \{0,1\}} \sum_{s_{i+1} \in \{0,1\}} \cdots \sum_{s_1 \in \{0,1\}} \tilde{f}_j(s_j) \tilde{g}_{ji}(s_j, s_i) \prod_{k \in ne(j), k \neq i}^K \mathcal{M}_{k\to j}(s_j)$$

where ne(j) are indices of neighbouring nodes of node j. Because $\tilde{g}_{ji}(s_j, s_i)$ is a product:

$$\mathcal{M}_{j\to i}(s_i) = \tilde{g}_{ji,\neg s_j}(s_i) \sum_{s_1 \in \{0,1\}} \cdots \sum_{s_{i-1} \in \{0,1\}} \sum_{s_{i+1} \in \{0,1\}} \cdots \sum_{s_1 \in \{0,1\}} \tilde{f}_j(s_j) \tilde{g}_{ji,\neg s_i}(s_j) \prod_{k \in ne(j), k \neq i}^K \mathcal{M}_{k\to j}(s_j)$$

Simplifying:

$$\mathcal{M}_{j\to i}(s_i) = \tilde{g}_{ji,\neg s_i}(s_i)$$

and,

$$\mathcal{M}_{j\to i}(s_i) \propto \exp\left(\xi_{ji}s_i\right)$$

Thus, the cavity distributions are:

$$q_{\neg \tilde{f}_i(s_i)}(s_i) = \prod_{j \in ne(i)}^K \mathcal{M}_{j \to i}(s_i)$$

and

$$q_{\neg \tilde{g}_{ij}(s_i, s_j)}(s_i, s_j) = \left(\mathcal{M}_i(s_i) \prod_{k \in ne(i), k \neq j}^K \mathcal{M}_{k \to i}(s_i)\right) \left(\mathcal{M}_j(s_j) \prod_{k \in ne(j), k \neq i}^K \mathcal{M}_{k \to j}(s_j)\right)$$

For $\tilde{f}_i(s_i)$, we do not need to make an approximation step. This is because we are minimising:

$$\tilde{f}_i(s_i) = \arg\min_{\tilde{f}_i(s_i)} \mathbf{KL} \left[f_i(s_i) q_{\neg \tilde{f}_i(s_i)}(s_i) \| \tilde{f}_i(s_i) q_{\neg \tilde{f}_i(s_i)}(s_i) \right]$$

We know that the factor $\log f_i(s_i)$ is a Bernoulli of the form $b_i s_i$. Because our approximation for this site is also Bernoulli, we can simply solve for λ_i in $\log \tilde{f}_i(s_i)$:

$$\log \tilde{f}_i(s_i) = \log f_i(s_i)$$

$$\log\left(\frac{\lambda_i}{1-\lambda_i}\right)s_i = b_i s_i$$

$$\lambda_i = \frac{1}{1 + \exp(-b_i)}$$

On the other hand, for $\tilde{g}_{ij}(s_i, s_j)$, we will approximate with:

$$\tilde{g}_{ij}(s_i, s_j) = \arg\min_{\tilde{g}_{ij}(s_i, s_j)} \mathbf{KL} \left[g_{ij}(s_i, s_j) q_{\neg \tilde{g}_{ij}(s_i, s_j)}(s_i, s_j) \left\| \tilde{g}_{ij}(s_i, s_j) q_{\neg \tilde{g}_{ij}(s_i, s_j)}(s_i, s_j) \right\| \right]$$

We can define natural parameters $\eta_{i,\neg s_j}$ and $\eta_{j,\neg s_i}$ for $q_{\neg \tilde{g}_{ij}(s_i,s_j)}(s_i,s_j)$ such that:

$$\mathcal{M}_i(s_i) \prod_{k \in ne(i), k \neq j}^K \mathcal{M}_{k \to i}(s_i) \propto \exp(\eta_{i, \neg s_j} s_i)$$

$$\mathcal{M}_{j}(s_{j})\prod_{k\in ne(j), k\neq j}^{K}\mathcal{M}_{k\rightarrow j}(s_{j})\propto \exp(\eta_{j,\neg s_{i}}s_{j})$$

where:

$$\eta_{i, \neg s_j} = \log\left(\frac{\lambda_i}{1 - \lambda_i}\right) + \sum_{k \in ne(j), k \neq j}^K \log\left(\frac{\theta_{kj}}{1 - \theta_{kj}}\right)$$

Knowing $\log \left(\frac{\lambda_i}{1-\lambda_i}\right) s_i = b_i s_i$ and $\xi_{kj} = \log \left(\frac{\theta_{kj}}{1-\theta_{kj}}\right)$:

$$\eta_{i,\neg s_j} = b_i + \sum_{k \in ne(j), k \neq j}^K \xi_{kj}$$

and

$$\eta_{j,\neg s_i} = b_j + \sum_{k \in ne(i), k \neq i}^K \xi_{ki}$$

Note that $\tilde{g}_{ij}(s_i, s_j)$ was chosen as the product of two Bernoulli distributions, updates to this site approximation involves updating the parameters ξ_{ij} and ξ_{ji} , for s_i and s_j respectively.

We can write:

$$\log \tilde{g}_{ij}(s_i, s_j) q_{\neg \tilde{g}_{ij}(s_i, s_j)}(s_i, s_j) \propto \xi_{ji} s_i + \xi_{ij} s_j + \eta_{i, \neg s_j} s_i + \eta_{j, \neg s_i} s_j$$

Simplifying:

$$\log \tilde{g}_{ij}(s_i, s_j) q_{\neg \tilde{q}_{ij}(s_i, s_j)}(s_i, s_j) \propto \left(\xi_{ji} + \eta_{i, \neg s_i}\right) s_i + \left(\xi_{ij} + \eta_{j, \neg s_i}\right) s_j$$

Thus, the first moments:

$$\mathbb{E}_{s_i} \left[\sum_{s_j \in \{0,1\}} \tilde{g}_{ij}(s_i, s_j) q_{-\tilde{g}_{ij}(s_i, s_j)}(s_i, s_j) \right] = \frac{1}{1 + \exp\left(-\left(\xi_{ji} + \eta_{i, \neg s_j}\right)\right)}$$

and

$$\mathbb{E}_{s_j} \left[\sum_{s_i \in \{0,1\}} \tilde{g}_{ij}(s_i, s_j) q_{\neg \tilde{g}_{ij}(s_i, s_j)}(s_i, s_j) \right] = \frac{1}{1 + \exp\left(-\left(\xi_{ij} + \eta_{j, \neg s_i}\right)\right)}$$

Moreover:

$$\log g_{ij}(s_i, s_j) q q_{\neg \tilde{g}_{ij}(s_i, s_j)}(s_i, s_j) \propto W_{ij} s_i s_j + \eta_{i, \neg s_j} s_i + \eta_{j, \neg s_i} s_j$$

To derive the first moment for $g_{ij}(s_i, s_j)q_{\neg \tilde{g}_{ij}(s_i, s_j)}(s_i, s_j)$ with respect to s_i , we first marginalise out s_j :

$$\sum_{s_j \in \{0,1\}} g_{ij}(s_i, s_j) q_{\neg \tilde{g}_{ij}(s_i, s_j)}(\mathbf{s}) \propto \exp\left(W_{ij} s_i + \eta_{i, \neg s_j} s_i + \eta_{j, \neg s_i}\right) + \exp\left(\eta_{i, \neg s_j} s_i\right)$$

Thus, the first moment:

$$\mathbb{E}_{s_i} \left[\sum_{s_j \in \{0,1\}} g_{ij}(s_i, s_j) q_{\neg \tilde{g}_{ij}(s_i, s_j)}(s_i, s_j) \right] = \frac{\exp\left(W_{ij} + \eta_{i, \neg s_j} + \eta_{j, \neg s_i}\right) + \exp\left(\eta_{i, \neg s_j}\right)}{\left[\exp\left(W_{ij} + \eta_{i, \neg s_j} + \eta_{j, \neg s_i}\right) + \exp\left(\eta_{i, \neg s_j}\right)\right] + \left[\exp\left(\eta_{j, \neg s_i}\right) + 1\right]}$$

Simplifying:

$$\mathbb{E}_{s_i} \left[\sum_{s_j \in \{0,1\}} g_{ij}(s_i, s_j) q_{-\tilde{g}_{ij}(s_i, s_j)}(s_i, s_j) \right] = \frac{\exp\left(\eta_{i, \neg s_j}\right) \left(\exp\left(W_{ij} + \eta_{j, \neg s_i}\right) + 1\right)}{\left[\exp\left(\eta_{i, \neg s_j}\right) \left(\exp\left(W_{ij} + \eta_{j, \neg s_i}\right) + 1\right)\right] + \left[\exp\left(\eta_{j, \neg s_i}\right) + 1\right]}$$

Similarly:

$$\mathbb{E}_{s_{j}} \left[\sum_{s_{i} \in \{0,1\}} g_{ij}(s_{i}, s_{j}) q_{\neg \tilde{g}_{ij}(s_{i}, s_{j})}(s_{i}, s_{j}) \right] = \frac{\exp\left(\eta_{j, \neg s_{i}}\right) \left(\exp\left(W_{ij} + \eta_{i, \neg s_{j}}\right) + 1\right)}{\left[\exp\left(\eta_{j, \neg s_{i}}\right) \left(\exp\left(W_{ij} + \eta_{i, \neg s_{j}}\right) + 1\right)\right] + \left[\exp\left(\eta_{i, \neg s_{j}}\right) + 1\right]}$$

By setting:

$$\mathbb{E}_{s_i} \left[\sum_{s_j \in \{0,1\}} \tilde{g}_{ij}(s_i, s_j) q_{\neg \tilde{g}_{ij}(s_i, s_j)}(s_i, s_j) \right] = \mathbb{E}_{s_i} \left[\sum_{s_j \in \{0,1\}} g_{ij}(s_i, s_j) q_{\neg \tilde{g}_{ij}(s_i, s_j)}(s_i, s_j) \right]$$

and

$$\mathbb{E}_{s_j} \left[\sum_{s_i \in \{0,1\}} \tilde{g}_{ij}(s_i, s_j) q_{\neg \tilde{g}_{ij}(s_i, s_j)}(s_i, s_j) \right] = \mathbb{E}_{s_j} \left[\sum_{s_i \in \{0,1\}} g_{ij}(s_i, s_j) q_{\neg \tilde{g}_{ij}(s_i, s_j)}(s_i, s_j) \right]$$

we can solve for the parameters of $\tilde{g}_{ij}(s_i, s_j)$ with moment matching:

$$\frac{1}{1 + \exp\left(-\left(\xi_{ji} + \eta_{i, \neg s_{j}}\right)\right)} = \frac{\exp\left(\eta_{i, \neg s_{j}}\right) \left(\exp\left(W_{ij} + \eta_{j, \neg s_{i}}\right) + 1\right)}{\left[\exp\left(\eta_{i, \neg s_{j}}\right) \left(\exp\left(W_{ij} + \eta_{j, \neg s_{i}}\right) + 1\right)\right] + \left[\exp\left(\eta_{j, \neg s_{i}}\right) + 1\right]}$$

Simplifying:

$$\exp(\eta_{j,\neg s_{i}}) + 1 = \exp\left(-\left(\xi_{ji} + \eta_{i,\neg s_{j}}\right)\right) \exp\left(\eta_{i,\neg s_{j}}\right) \left(\exp\left(W_{ij} + \eta_{j,\neg s_{i}}\right) + 1\right)$$

$$\frac{\exp(\eta_{j,\neg s_{i}}) + 1}{\exp(W_{ij} + \eta_{i,\neg s_{i}}) + 1} = \exp\left(-\xi_{ji}\right)$$

Our parameter update:

$$\xi_{ji} = \log \left(\frac{1 + \exp\left(W_{ij} + \eta_{j, \neg s_i}\right)}{1 + \exp\left(\eta_{j, \neg s_i}\right)} \right)$$

Similarly:

$$\xi_{ij} = \log \left(\frac{1 + \exp(W_{ij} + \eta_{j, \neg s_i})}{1 + \exp(\eta_{i, \neg s_j})} \right)$$

(c)

Our message passing approximations:

$$\exp(\eta_{ij}s_i) = \tilde{f}_i(s_i) \prod_{k \in ne(i), k \neq j}^K \mathcal{M}_{k \to i}$$

$$\exp(\eta_{ji}s_j) = \tilde{f}_j(s_j) \prod_{k \in ne(j), k \neq i}^K \mathcal{M}_{k \to j}$$

where each message $\mathcal{M}_{j \to i}$ has a factored approximation:

$$\mathcal{M}_{k\to i} = \exp(\eta_{ki} s_k)$$

because each site $\tilde{g}_{jk}(s_j s_k)$ is approximated as a product of two messages $\mathcal{M}_{j\to k}\mathcal{M}_{k\to j}$, each a Bernoulli.

Thus, the natural parameters of the messages are updated with:

$$\eta_{ij} = b_i + \sum_{k \in ne(i), k \neq j}^K \eta_{ki}$$

The summation of the natural parameters of the singleton factor for node i with the natural parameters of messages from all the neighbouring nodes.

This leads to a loopy BP algorithm because the nodes are fully connected (i.e. every node is the neighbour of all other nodes). Thus, we cannot simply move from one end of the graph to the other like BP for tree structured graphs.

(d)

We can use automatic relevance determination (ARD) as a hyperparameter method to select relevant features

Place prior on σ^2 and optimise with respect to the distributions would cause some to diverge and only relevant latent dimensions will remain. This gives us a value for K, the number of latent factors that haven't diverged.

Appendix 1: constants.py

```
import os

DATAFOLDER = "data"

CO2.FILE.PATH = os.path.join(DATA.FOLDER, "co2.txt")
IMAGES.FILE.PATH = os.path.join(DATA.FOLDER, "images.jpg")

OUTPUTS.FOLDER = "outputs"

DEFAULT.SEED = 0

M1 = [0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0]

M2 = [0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]

M3 = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

M4 = [1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0]

M5 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1]

M6 = [1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1]

M7 = [0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0]

M8 = [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]
```

src/constants.py

Appendix 2: main.py

```
import os
     import jax
     import jax.numpy as jnp
import numpy as np
     import pandas as pd
     from src.constants import CO2_FILE_PATH, IMAGES_FILE_PATH, OUTPUTS_FOLDER
     from src.generate_images import generate_images
     from src.models.bayesian_linear_regression import LinearRegressionParameters from src.models.kernels import CombinedKernel, CombinedKernelParameters
     13
16
     jax.config.update("jax_enable_x64", True)
17
18
     if __name__ == "__main__"
19
           if not os.path.exists(OUTPUTS_FOLDER):
20
21
                os.makedirs(OUTPUTS_FOLDER)
          os.makedirs(Q2_OUTPUT_FOLDER):

os.makedirs(Q2_OUTPUT_FOLDER):
23
24
          with open (CO2_FILE_PATH) as file
26
               lines = [line.rstrip().split() for line in file]
29
          df_co2 = pd.DataFrame(
    np.array([line for line in lines if line[0] != "#"]).astype(float)
30
31
           \begin{array}{l} \mbox{'column\_names} = \mbox{lines} \left[ \mbox{max} ([\mbox{i for i, line in enumerate} ([\mbox{lines}) \mbox{ if line} [0] =="\#"]) \, ] [1:] \\ \mbox{df\_co2.columns} = \mbox{column\_names} \end{array} 
          t = df.co2.decimal.values[:] - np.min(df.co2.decimal.values[:])
y = df.co2.average.values[:].reshape(1, -1)
34
35
37
38
          mean = np.array([0, 360]).reshape(-1, 1)
39
          covariance = np.array(
40
                      [10**2, 0]
41
                     [0, 100**2],
               1
43
44
           kernel = CombinedKernel()
          kernel.parameters = CombinedKernelParameters( log_theta=jnp.log(1),
46
47
48
                log_sigma=jnp.log(1),
49
                log_phi=jnp.log(1), log_eta=jnp.log(1),
                \log_{-t} au = jnp.log(1)
52
                \log_{z} eta = jnp.log(1e-1),
53
54
           prior_linear_regression_parameters = LinearRegressionParameters (
56
57
58
                covariance=covariance,
           posterior_linear_regression_parameters = q2.a(
60
62
                prior_linear_regression_parameters
                save_path=os.path.join(Q2_OUTPUT_FOLDER, "a"),
65
66
          q2.b(
                t_year=df_co2.decimal.values[:],
                t=t,
68
69
70
71
                linear_regression_parameters=posterior_linear_regression_parameters,
                error_mean=0,
                error_variance=1,
73
74
75
76
77
78
                save_path=os.path.join(Q2_OUTPUT_FOLDER, "b"),
                kernel=kernel,
                kernel_parameters=kernel_parameters,
                \begin{array}{l} \log\_{theta\_range=jnp.\log\left(jnp.linspace\left(1e-1,\ 2,\ 5\right)\right)}\,,\\ t=\!t\left[:50\right].\,reshape\left(-1,\ 1\right),\\ number\_{of\_samples}=\!3, \end{array}
79
80
                \verb|save_path| = \verb|os.path.join| (Q2\_OUTPUT\_FOLDER, "c") \;,
82
          gaussian_process_parameters = GaussianProcessParameters(
    kernel=asdict(kernel_parameters),
85
                \log sigma=jnp.log(1),
88
          t_{new} = t[-1] + np.linspace(0, years_to_predict, years_to_predict * 12)
90
91
           {\tt t\_test} \; = \; {\tt np.concatenate} \, (\, (\, {\tt t} \; , \; \; {\tt t\_new} \, ) \, )
```

```
t_train=t,
                   train==,
y-train==y,
t_test=t_test,
min_year=np.min(df_co2.decimal.values[:]),
 94
 95
 96
 97
                    prior_linear_regression_parameters=prior_linear_regression_parameters,
                   linear_regression_sigma=sigma, kernel=kernel,
 98
 99
100
                    {\tt gaussian\_process\_parameters} = {\tt gaussian\_process\_parameters}\;,
                   learning_rate=1e-2,
number_of_iterations=100,
102
                   \verb|save_path| = \verb|os.path.join| ( Q2\_OUTPUT\_FOLDER, "f") \;,
104
105
            # Question 3
Q3_OUTPUT_FOLDER = os.path.join(OUTPUTS_FOLDER, "q3")
if not os.path.exists(Q3_OUTPUT_FOLDER):
    os.makedirs(Q3_OUTPUT_FOLDER)
number_of_images = 1000
106
108
110
111
112
             x = generate_images (n=number_of_images)
k = 8
113
             em_iterations = 1000
             e_maximum_steps = 200
e_convergence_criterion = 0
114
115
116
\frac{117}{118}
             binary_latent_factor_model = q3.e_and_f(
119
                   em_iterations=em_iterations ,
e_maximum_steps=e_maximum_steps ,
120
121
                   e_convergence_criterion=e_convergence_criterion, save_path=os.path.join(Q3_OUTPUT_FOLDER, "f"),
122
124
125
                   x=x[:1, :],
binary_latent_factor_model=binary_latent_factor_model,
126
127
128
                   sigmas = [1, 2, 3],
                   k=k,
em_iterations=em_iterations,
130
                   e_maximum_steps=e_maximum_steps,
e_convergence_criterion=e_convergence_criterion,
131
132
133
                   save_path=os.path.join(Q3_OUTPUT_FOLDER, "g"),
134
```

main.py