Sistema Octal

Decimal	Binário	Octal
0	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7

Conversão Octal-Decimal

- Para converter um número octal em um número decimal, basta aplicar a fórmula genérica já conhecida :
 - $N_{10}=S_y*8n-1+S_{y-1}*8n-2...S_1*81+S_0*80$

Exemplo 1: $X_{10} = 346_8$

Solução: 3 * 8² + 4*8¹ + 6*8⁰

Solução: 3 * 64 + 4*8 +6*1 =

192+32+6=230₁₀

Portanto: $(346)_8 = 230_{10}$

Exemplo 2: $X_{10} = 477_8$

Solução: 4 * 8² + 7*8¹ + 7*8⁰

Solução: 4 * 64 + 7*8 +7*1 =

256+56+7=319₁₀

Portanto: $(477)_8 = 319_{10}$

Conversão Decimal-octal

O processo é idêntico à conversão Decimal -Binário, dividindo-se o número decimal pela base 8 até que o resultado seja zero.

Conversão Binário-Octal

A conversão Binário - Octal é feita transformando-se grupos de três dígitos binários, no sentido da direita para a esquerda, diretamente em números octais.

Conversão Octal-binário

A conversão de números Octais em Binários é feita transformando os símbolos Octais diretamente em números binários de 3 dígitos.

Conversão Octal-Hexadecimal

Como fazer?

Conversão Hexadecimal-Octal

Como fazer?

N.º Decimal 10	N.º Binário 2	N.º Hexadecimal 16	N.º Octal 8
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	В	13
12	1100	С	14
13	1101	D	15
14	1110	E	16
15	1111	F	17

Converter Decimais Fracionários em Binário

- Multiplica por 2 a parte fracionária e retira o número depois da vírgula.
- Para a operação apenas quando encontrar o valor 1,00. Nesse caso, retira-se o 1 e finaliza-se a operação.
- Como representar 8,7?

Converter Decimais Fracionários em Binário

Converter Decimais Fracionários em Binário

Converter Binário Fracionários em Decimal

Converter Binário Fracionários em Decimal

Disciplina: Programação Computacional

Prof. Fernando Rodrigues e-m@il: fernandorodrigues@sobral.ufc.br

Aula 04_B: Sistemas de numeração:

- Operações aritméticas básicas no sistema binário:
- Adição
- Subtração
- Multiplicação
- Divisão

Operações Aritméticas Básicas no Sistema Binário

Soma (Adição) de Números Binários

Regras

- ► 0+0=0.
- ► 0+1=1.
- ► 1+0=1.
- ► 1+1=10, ou seja, 0 e "vai 1" para somar com dígito à esquerda (de ordem superior).
- ightharpoonup 1 + 1 + 1 = 1 (e "vai 1" para o dígito de ordem superior)

11010 + 10011

Soma (Adição) de Números Binários

Regras

- ► 0+0=0.
- ► 0+1=1.
- ► 1+0=1.
- ► 1+1=10, ou seja, 0 e "vai 1" para somar com dígito à esquerda (de ordem superior).
- ightharpoonup 1 + 1 + 1 = 1 (e "vai 1" para o dígito de ordem superior)

Subtração de Números Binários

Regras

- -0-0=0.
- 0 1 = 1 e "vai 1" ("pede emprestado 1") para ser subtraído do dígito à esquerda (de ordem superior).
- 1 0 = 1
- 1 1 = 0.

11010 - 10011

Subtração de Números Binários

Regras

- -0-0=0.
- ▶ 0 1 = 1 e "vai 1" ("pede emprestado 1") para ser subtraído do dígito à esquerda (de ordem superior).
- 1 0 = 1
- 1 1 = 0.

11010 - 10011 -----00111

Multiplicação de Números Binários

- ▶ 0 * 0 = 0.
- ▶ 0 * 1 = 0.
- ► 1 * 0= 0.
- ► 1 * 1= 1.
- A multiplicação em binário é similar à multiplicação em decimal.
 1101

x 101

x 111

Multiplicação de Números Binários

- ▶ 0 * 0 = 0.
- ▶ 0 * 1 = 0.
- ► 1 * 0= 0.
- ► 1 * 1= 1.

A multiplicação em binário é similar à multiplicação

em decimal.

' 11	1101
x 101	x 111
11	1101
00+	1101+
11+	1101+
1111	1011011

Divisão Binária

Mesmo método que o decimal: deslocamentos e subtrações.

Multiplicação e Divisão Binárias – Obs.

- Na maioria dos circuitos lógicos, não existem as operações de multiplicação e divisão binárias: o processador trabalha com somas (para a multiplicação) e subtrações (para a divisão) sucessivas.
- Por exemplo: para fazer a operação 2 x 5, o processador vai somar cinco vezes o número dois.
- Da mesma forma, para realizar a operação 10 / 2, o processador subtrai o valor dois (do número dez) até que o resultado seja zero.

Disciplina: Programação Computacional

Prof. Fernando Rodrigues e-m@il: fernandorodrigues@sobral.ufc.br

Aula 04_C: Sistemas de numeração:

- Representação de Números Binários com Sinal:
- Sistema Sinal-Magnitude (ou Representação Direta);
- Sistema de Representação Binário em Complemento de 2 (dois).

Representação de Números Binários com Sinal

Sistema sinal-magnitude

Sistema sinal-magnitude

- Algoritmo de soma (números com sinal):
 - Sinais diferentes
 - Encontra número com maior magnitude
 - Subtrai menor do maior
 - Atribui ao resultado o sinal do número de maior magnitude
 - Sinais iguais
 - Soma e atribui sinal dos operandos
 - Atenção deve ser dada ao estouro de magnitude
 - Algoritmo de soma (números com sinal)

Questões de projeto de circuitos lógicos

- Algoritmo do sistema sinal-magnitude: lógica complexa por conta das diversas condições (requer vários testes) e leva a aritmética complicada em termos de hardware.
- Também a multiplicação em computadores é feita por um artifício: para multiplicar um número A por n, basta somar A com A, n vezes. Por exemplo, 4 x 3 = 4 + 4 + 4.
- E a divisão também pode ser feita por subtrações sucessivas.

Complemento a Base

- Nos computadores, a subtração em binário é feita por um artifício: o "Método do Complemento a Base".
- Consiste em encontrar o complemento do número em relação a base e depois somar os números.
- Os computadores funcionam sempre na base 2, portanto o complemento a base será complemento a dois.

Representação de números em complemento

- Complemento é a diferença entre o maior algarismo possível na base e cada algarismo do número.
- Através da representação em complemento, a subtração entre dois números pode ser substituída pela sua soma em complemento.
- A representação de números positivos em complemento é idêntica à representação em sinal e magnitude.

Sistema de Representação Binário em Complemento de 2

Complemento de 2: Conceito

- A representação de Complemento de 2 é usada para representar números negativos (bit de sinal (ou MSB) = 1).
- O complemento de dois de um número de N bits é definido como o complemento em relação a 2^N.
- Para calcular o complemento de dois de um número, basta subtrair este número de 2^N, que em binário é representado por 1 (um) seguido de N zeros.
- Por exemplo: 0110 (6 em binário com N=4 bits)

Complemento de 2: sinal e magnitude

- Definimos números positivos como aqueles que possuem o MSB igual a 0.
- Números negativos são definidos da seguinte forma: inverte todos os bits do número positivo e soma 1 ao resultado (Conversão mais usada).

```
    Ex: 6_{10} na base 2 = 00110_2 => - 6 ??
    Complemento de 1 = 11001 (Inverte todos os bits)
    Complemento de 2 = 1001 (Soma 1 ao resultado)
    11010
```

- Existe outra maneira de calcular o complemento de dois:
 - Dado o número binário 00110.
 - Começando da direita para esquerda você vai repetindo o número (para a esquerda) até encontrar o número 1, depois que encontrá-lo repita-o e passe a inverter o restante. Então temos: 11010, ou seja, bits repetidos e bits invertidos.

Complemento de 2: Observações

- Por que usar complemento de 2?
 - Operações de subtração implementadas como soma binária com números negativos:
 - Sistemas computacionais mais simples, que apresentam somente circuito somador binário, sem a necessidade de um circuito subtrator.
 - Muita atenção para o tamanho da representação!!!
 - O complemento do complemento é sempre igual ao número original. P. ex.: O complemento de 0110 é igual a 1010. Por sua vez, o complemento de 1010 é 0110. Ou seja, volta ao valor original.

Complemento de 2 – Exemplo prático

- Ex:
 - 0.10_{10} na base $2 = 1010_2$
 - $_{0}$ 6₁₀ na base 2 = 0110₂
- Em Complemento de 2:
 - $-10 = 01010_2$
 - $-6 = 11010_{2}$
- ► Faça (+10) + (-6)
- Se resultado vai 1, resultado positivo;
- Se resultado não vai 1, resultado negativo: para converter para número decimal, precisa tirar complemento antes.

Complemento de 2 – Notação

Decimal	Sem sinal	Sinal-e- magnitude	Complemento para um	Complemento de dois
+16	_	_	-	-
+15	1111	-	-	-
+14	1110	_	-	-
+13	1101	_	-	-
+12	1100	-	-	-
+11	1011	-	-	-
+10	1010	-	-	-
+9	1001	-	-	-
+8	1000	-	-	-
+7	0111	0111	0111	0111
+6	0110	0110	0110	0110
+5	0101	0101	0101	0101
+4	0100	0100	0100	0100
+3	0011	0011	0011	0011
+2	0010	0010	0010	0010
+1	0001	0001	0001	0001
+0	-	0000	0000	-
0	0000	-	-	0000
-0	-	1000	1111	-
-1	-	1001	1110	1111
-2	-	1010	1101	1110
-3	-	1011	1100	1101
-4	-	1100	1011	1100

Complemento de 2

- 5 3 = 2
- $^{\triangleright}$ 3 5 = -2

Decimal	Sem sinal	Sinal-e- magnitude	Complemento para um	Complemento de dois
+16	-	-	-	-
+15	1111	-	-	-
+14	1110	-	-	-
+13	1101	-	-	-
+12	1100	-	-	-
+11	1011	-	-	-
+10	1010	-	-	-
+9	1001	-	-	-
+8	1000	-	-	-
+7	0111	0111	0111	0111
+6	0110	0110	0110	0110
+5	0101	0101	0101	0101
+4	0100	0100	0100	0100
+3	0011	0011	0011	0011
+2	0010	0010	0010	0010
+1	0001	0001	0001	0001
+0	_	0000	0000	-
0	0000	_	-	0000
-0	_	1000	1111	-
-1	_	1001	1110	1111
-2	_	1010	1101	1110
-3	_	1011	1100	1101
-4	_	1100	1011	1100

Decimal	Binário s/ sinal	Binário (Compl. 2)
-8	-	1000
-7	-	1001
-6	-	1010
-5	-	1011
-4	-	1100
-3	-	1101
-2	-	1110
-1	-	1111
0	000	0000
1	001	0001
2	010	0010
3	011	0011
4	100	0100
5	101	0101
6	110	0110
7	111	0111

Conclusões

- Qualquer operação aritmética pode ser realizada em computadores apenas através de somas (diretas ou em complemento)!
- Em circuitos lógicos, será visto como essas propriedades serão úteis para os engenheiros que projetam os computadores.

Referências

https://www.inf.ufes.br/~zegonc/material/Introducao_a_C omputacao/Aritmetica_binaria_Complemento.pdf

Fim