CS6713: Scalable Algorithms for Data Analysis

Fahad Panolan and Rameshwar Pratap

Department of Computer Science and Engineering Indian Institute of Technology Hyderabad, India

20-Aug-2022

The course

- Contents:
 - Streaming algorithms (Frequency moments)
 - Sketching
 - Dimension reduction
 - Graph streaming/sketching
- Prerequisite: Undergraduate algorithms, Basics of probability and linear algebra

]

The course

- Contents:
 - Streaming algorithms (Frequency moments)
 - Sketching
 - Dimension reduction
 - Graph streaming/sketching
- Prerequisite: Undergraduate algorithms, Basics of probability and linear algebra
- Evaluation
 - 35% : Theory assignments
 - 30% : Coding assignments
 - 35% : Mini project

Reference

- Data Stream algorithms, Lecture Notes, Amit Chakrabarti, 2020
- For basics of probability and randomized algorithms:
 Probability and Computing (2nd Edition) by Mitzenmacher and Upfal

Streaming Algorithms

Classical Algorithms: Random Access Model (RAM)

.

Classical Algorithms: Random Access Model (RAM)

Streaming Model

- The input consists of m objects/items/tokens e_1, e_2, \ldots, e_m that are seen one by one by the algorithm.
- The algorithm has "limited" memory say for B tokens where B < m (often B << m) and hence cannot store all the input
- Want to compute interesting functions over input

Classical Algorithms: Random Access Model (RAM)

Streaming Model

- The input consists of m objects/items/tokens e_1, e_2, \ldots, e_m that are seen one by one by the algorithm.
- The algorithm has "limited" memory say for B tokens where B < m (often B << m) and hence cannot store all the input
- Want to compute interesting functions over input

Some examples:

- Each token is a number from [n]
- High-speed network switch: tokens are packets with source, destination IP addresses and message contents.
- Each token is an edge in graph (graph streams)
- Each token is a point in some feature space
- Each token is a row/column of a matrix

A data stream management system

["Mining of Massive Data Sets" by Leskovec, Rajaraman, Ullman]

Streaming model: motivation/connections

- Very large but slow storage (tape, slow disk) that is suited for sequential access and fast main memory. Read data in one (or more) passes from slow medium.
- Scenarios such as network switches, sensors etc where huge amount of data is flying by and cannot be stored (due to cost or privacy/legal reasons) but one wants only high-level statistics.
- Distributed computing. Data stored in multiple machines.
 Cannot send all data to central location. Streaming algorithms can simulate a class of algorithms that exchange small amount of data.

Finding Majority Element

Given an array A of m integers, output an element that occurs more than m/2 times in A?

5 263 5 1 5 4 5

 ϵ

Finding Majority Element

Given an array A of m integers, output an element that occurs more than m/2 times in A?

Algorithm:

• Initialize $c \leftarrow 0$ and s = Null

• For
$$i = 1$$
 to m

• If
$$A[i] = s$$
, then $c \leftarrow c + 1$.

• If
$$A[i] \neq s$$
 and $c > 0$, then $c \leftarrow c - 1$.

• If
$$A[i] \neq s$$
 and $c = 0$, then $c \leftarrow 1$ and $s \leftarrow A[i]$.

• Check whether s is indeed the majority element and output accordingly. 2. 3.3.1.2.1.1.1.5.6 i=11,s=1,c=1

(

Definition: For each element q in the array A, let f_q be the frequency of q.

Claim: If there is a majority element q, then algorithm outputs s=q and $c\geq f_q-m/2$.

Definition: For each element q in the array A, let f_q be the frequency of q.

Claim: If there is a majority element q, then algorithm outputs s=q and $c\geq f_q-m/2$.

Proof:

- I_q : No. of times we increment c when we see q.
- D_q : No. of times we decrement c when we see q.
- I_0 : No. of times we increment c when we see an element $\neq q$
- D_0 : No. of times we decrement c when we see an element $\neq q$

Definition: For each element q in the array A, let f_q be the frequency of q.

Claim: If there is a majority element q, then algorithm outputs s=q and $c\geq f_q-m/2$.

Proof:

- I_q : No. of times we increment c when we see q.
- D_q : No. of times we decrement c when we see q.
- I_0 : No. of times we increment c when we see an element $\neq q$
- D_0 : No. of times we decrement c when we see an element $\neq q$

$$c = I_q + I_0 - (D_q + D_0)$$

Definition: For each element q in the array A, let f_q be the frequency of q.

Claim: If there is a majority element q, then algorithm outputs s=q and $c\geq f_q-m/2$.

Proof:

- I_q : No. of times we increment c when we see q.
- D_q : No. of times we decrement c when we see q.
- ullet I_0 : No. of times we increment c when we see an element eq q
- D_0 : No. of times we decrement c when we see an element $\neq q$

$$c = I_q + I_0 - (D_q + D_0)$$

 $\geq I_q + I_0 - \frac{m}{2}$

Definition: For each element q in the array A, let f_q be the frequency of q.

Claim: If there is a majority element q, then algorithm outputs s=q and $c\geq f_q-m/2$.

Proof:

- I_q : No. of times we increment c when we see q.
- D_q : No. of times we decrement c when we see q.
- ullet I₀: No. of times we increment c when we see an element $\neq q$
- D_0 : No. of times we decrement c when we see an element $\neq q$

$$c = I_q + I_0 - (D_q + D_0)$$

$$\geq I_q + I_0 - \frac{m}{2}$$

$$\geq I_q + D_q - \frac{m}{2}$$

Definition: For each element q in the array A, let f_q be the frequency of q.

Claim: If there is a majority element q, then algorithm outputs s=q and $c\geq f_q-m/2$.

Proof:

- I_q : No. of times we increment c when we see q.
- D_q : No. of times we decrement c when we see q.
- I_0 : No. of times we increment c when we see an element $\neq q$
- D_0 : No. of times we decrement c when we see an element $\neq q$

$$c = I_{q} + I_{0} - (D_{q} + D_{0})$$

$$\geq I_{q} + I_{0} - \frac{m}{2} =$$

$$\geq I_{q} + D_{q} - \frac{m}{2} \geq f_{q} - \frac{m}{2}$$

Heavy Hitters Problem and Misra-Gries Algorithm

Heavy Hitters Problem: Find all elements i such that $f_i > m/k$.

Thank You.