Ind	teraetive Proofs
NP-	I round d) virteeaction betwee
	A poly-time verifier V
	&
a	n all powerful prover that want
	V to accept.
NP	= languages that can be decided
	correctly with such a protocol.
Wha	t if we allow interaction? Poly(n) many rounds
	Perifier -> Pron
Al	the end, V says 0 or I.

Observation. the class of publicus. is still NPI

Rossos; Given an interactive protocol, we can simulate it with a 1-vound protocol where the prover just anticipates the messayes surt by the Verifice & sends all the replies at once!

So- Interactive" NP = NP.

What of we now allow V to be a vandomized poly-time algorithm?

Expe	mentially many choices for
	's negsages! Pant sud
	es to all (in proy(s) sized
	niersages).
Ade	ditionally, the "correct" anyon
may	I be hidden by the random
Choi	ces. (See enample below.)

Graph I somorphism (GI) 1 5 2 1 H 3 4 2 G & H are essentially the same graph i.e there is a way to rename veetices of) a so that it becomest. Formally, we say two geaphs 924 are isomorphic if there is a bijection TI: V(9) -> V(4) s.t. 2u, u3 ∈ E(G) <=> {πω, π(v) ∈ G(H) GI= { (G,H) | G&H isomorphic}

Clean: GI ENP Certificate: an isomorphism TT What about GNI = { (G,H) | G&H not ?? No clear way to certify two graphs are not isomorphic! But we will see a simple intreactive postocol (with randomized verifier). Nitation: G=H (isomorphic) 67 th (not isomorphic)

and protool Input: Graphs (G, H) on the Verten sit {1,---,n}. Venjee: (1) Choon ber {0,5} (2) If b=0, randomly purett the vertices 8) Glie choose a random hijection II: {1...n} > {V-..n} & vename i by T(i). & call this graph R (3) If b=1, get R similarly from H (4) Send R to Boon & ash Jos b. (5) Accept if & only if Prover geresses 6.

Analysis: Cet Go = possible geaphs R if b=0 $G_{i}=$ 31 4b=1Ohs: If 9 \$ F1, then Gold, are disjount! Reason: If Ge can be premuted to R & It can be remuted to R then a con se punuled to fl.? So in this case, the prover can always compute b based on geaps R. Oby: If G=H, then Go=G,=G & Risceniform over G.

Reason: Think of the following alter. - nate enperiment to produce & from -> "Exasi" the names of all the -> Fill is random names from 21,---, n.J. for the vertices. From this view, it should be clear that no matter which of 984 ue started with, R has the same distribution! Thus, in this case, the but the provincen do is guess b. This is correct with prob. 1/2.

80: =) The provu can answer in a way that the veitser accepts with probability 1. GZH =) No malter what the provu says the verifier accepts with probability at most 1/2. Can repeat the protocol k times to reduce 1/2 to 2k.

Intelactive Brooks with Krounds Class of Canquages Lofor which there is a protocol with at most K vounds of) preynomially Conj mersager between a publishilistic pay time Tr V & an unbounded prover Ps.t. =)3P: Pr[Vaccepts] > 2/3 REL 2 \$ () DP: Pr [Vaculto] 5 1/3. Called Completeners & Soundness conditions respectively poly(s) many vounds o) messays.

Note: (1) Probability is somethe Choice of V's random buts 2) we can replace 2/3 by 1/2+ (prys) 2 1/3 kg 1/2 /poly(s) in Complet every L'oundrers conditions without changing the class. Clearly, IP = NP. Is it more poweful? For a while, researchers thought not, until. ...

This: IP = PSPACE (!). Candnack result in Complexity
theory
with revuberations in many other fields. We will see: It SPSPACE Colatively straightforward) & WPSIP Chighly non-trivial & Strony evidence that IP + NP).

	H	C PSPACE
L	EIP	[5] & V the probabilistic TM
		[5] & V the probabilistic TM vanning terms & rsc.
	Crive	n n d) Cength n, want to decid
		if at Lornot using poly(s) space
		Space
(we	compute something more general
		resume that KEn rounds
		ve already passed with
	pro	vee sending niersages
	4,	92,45, Dlength En
	\wedge	enifier sending = 72,7241 of
	(Trandom Messages Length 4nd
_	i.e.	Pour sending
ر		ressages in the old yourds.

9x y x is odd & zx y x is even Px. (x, y, 72, y3, 24, -, ux) = probability that Vaccepts from now on y provue behaves Optimaley" (ie is the best possible way to nake Vaccept) Obs 1) 241 (=>) Po(x) 22/3. (2) If keven PK(X, Y, 72, --, 3K) = max PKH (X, Y, 72, --, YKHE {0,1} nc YKH) Can compute]

in space s' (3) If k odd 2 Pr Cnext - ZKHJ. PKH (x, y, 72, ...

This	gives a pory (s) - space algorithm
to 0	compute Px using a recursive
Call	to Pun. [Ex.]
CO-NP	SIP or equivalently UNSAT GIF
Inp	et: 4 a 3-CNF
War	t to know: 4 consatisfiable?
Equi	valently
5	$\phi(b_1,b_2,-,b_n)=0$
Ezoni	
	& O otherwise -

	We	will develop a protocol to
	Ve	will develop a protocol to rify statements of this form.
2	Step:	1: Arithmetization.
_	Tur	op into a prynomial
4	2 =	(21, V7X2 VX3)~ (X2 V2X7)
PES	y.	Po that behaves Who gon
')	Py that behaves like your Boolean inputs
(Pp =	P, P2
		Jeon claux 1 from claux 2
(D is the same as product for
		Boolean inputs)

Po is a small circuit made up of O(10) additions Limit plications combeting or plynomial 8) desire \(\leq \geq \mathred{m}\). Thus, we can evaluate Py at any point efficiently. But we want to know? Is $\sum_{b_{\nu-1/bn}} P(b_{\nu-1/bn}) = 0$? Seems to need 2 evaluations! Or dow it? New idea: Can evaluale Pat non Boolean Points! Can that help? YES!

Toy enample: Polynomial P(X, Y) in two variables D'algree de Verifier V wants to check that 2 P(a,b) =0 a = {1, --, d} b = {1, --, d} Want to Sum Pat all points in this gerid & check y Sum = 0.

Analysis: Note that Verifier makes developtions of Q in Step @ L devaluations of) Palong with I evaluation of Q' in Step®. So this requires O(d) Polynomial evaluations orwall.

Completeres: Requires analyzing completeres: & soundress.
Completeres: Here we assume that

what the prover is toging to 8how is true 1.e

> S P(a,b) =0 a \(\xi_{11.,d}\) b \(\xi_{11...,d}\)

-> Now if the prove indeed sent us the "coveret" porynomial. I.e. · J Q(x) = Q(x) = S P(x,b)
b & ELL, d3 Then Q(1) + a(2) + - . - + Q(d) = $\sum_{a \in \{1,-,d\}} P(a,b) = 0$. So the check in 8tep @ succeeds. -Moceova, in Step 3 Q'(a') = \(\sigma' \) = \(\sigma' \) \(\s So this cheek succeeds as well. Overall, the verifier accepts with publ

Soundness: Now we assume that 2 P(a,b) \$0. acs,-,d) bes,-,d) -> If the prove sends the coneed Q(x) 1-e if Q(x) = Q(x), then the check in 8tcb @ innediately fails 2 the Verifier réjects. -) If the check in Step @ succeeds, then the prove must have sent $Q'(x) \neq Q(x)$. In this case, by the Schwartz-Zippel Cermen with probability %, $Q(a') \neq Q(a') = Z P(a',b)$ PE [1...) 99 & the Verifier rejects in Step 3