- * Exercice 1. Dire dans chaque cas si les vecteurs sont coplanaires :
 - 1. u = (1, 2, -1), v = (1, 0, 1) et w = (0, 0, 1)
 - 2. u = (1, 2, -1), v = (1, 0, 1) et w = (-1, 2, -3)
- **Exercice 2.** Parmi les équations suivantes, quelles sont celles qui correspondent à l'unique plan P passant par les 3 points A(1,1,0), B(-1,0,4) et C(2,2,-1).

$$3x - 2y + z - 1 = 0$$
 ; $2x + z - 2 = 0$
$$\begin{cases} x = 1 - s + 3t \\ y = 1 + 2y \\ z = 3s - 5t \end{cases}$$
 et
$$\begin{cases} x = 1 - s \\ y = -1 + 2t \\ z = 2s \end{cases}$$

- *** Exercice 3.** Soient $a, b \in \mathbb{R}$, $a \neq 1$ et $(u_n)_n$ la suite définie par $u_{n+1} = au_n + b$.
 - 1. Quelle est la seule limite possible l de la suite (u_n) ?
 - 2. Soit $v_n = u_n l$. Montrer que $(v_n)_n$ est une suite géométrique et en déduire la nature de $(u_n)_n$.
 - 3. On considère un carré de côté 1 que l'on partage en 9 carrés égaux, puis on colorie le carré central. Pour chaque carré non-colorié, on réitère le procédé. On note u_n l'aire coloriée après l'étape n. Quelle est la limite de la suite $(u_n)_n$?

Sujet 2.

- **Exercice 1.** On considère les deux vecteurs suivants dans \mathbb{R}^3 : u = (1, -1, -1) et v = (2, -1, 2). Trouver un vecteur w tel que u, v et w soient coplanaires.
- **Exercice 2.** On considère les trois points A(-1,1,2), B(0,0,1) et C(0,-1,-2).
 - 1. Vérifier que A, B et C ne sont pas alignés, puis déterminer une équation cartésienne du plan (ABC).
 - 2. Soit M le point de coordonnées (8, 10, 5). Déterminer une représentation paramétrique de la droite d passant par M et orthogonale au plan (ABC).
 - 3. Déterminer les coordonnées du point H d'intersection de d et de (ABC).
- * Exercice 3. Soient $(u_n)_n$ et $(v_n)_n$ deux suites réelles définies par $u_0 = 4$, $u_{n+1} = 2u_n 3$ et $v_n = u_n 3$.
 - 1. Déterminer la nature des suites $(u_n)_n$ et $(v_n)_n$.
 - 2. Déterminer l'expression générale de (v_n) en fonction de n, puis de même pour u_n .
 - 3. Calculer la somme des 11 premiers termes de u_n .

Sujet 3.

- **Exercice 1.** On considère les deux vecteurs suivants dans \mathbb{R}^2 : u = (1,2) et v = (3,5). Montrer que $\{u,v\}$ est une base de \mathbb{R}^2 , puis calculer les coordonnées de w = (2,3) dans cette base.
- \star Exercice 2. On considère les deux droites d et d' de représentation paramétrique respective

$$\begin{cases} x = -2+t \\ y = 2-t \\ z = 1+4t \end{cases} \text{ et } \begin{cases} x = 3+t \\ y = -2+3t \\ z = 1+t \end{cases}$$

Démontrer que les droites d et d' ne sont pas coplanaires.

- * Exercice 3. Soient $(u_n)_n$ et $(v_n)_n$ deux suites réelles définies par $u_0 = 3$, $u_{n+1} = \frac{4u_n 2}{u_n + 1}$ et $v_n = \frac{u_n 2}{u_n 1}$
 - 1. Démontrer que pour tout $n \ge 0$, $u_n > 1$.
 - 2. Démontrer que $(v_n)_n$ est une suite géométrique et donner l'expression de son terme général.
 - 3. Etudier la convergence de $(u_n)_n$.

* Exercice 1. Étudier la nature des suites suivantes :

$$u_n = \frac{\sin(n) + 3\cos(n^2)}{\sqrt{n}}$$
; $u_n = \sqrt{2n+1} - \sqrt{2n-1}$.

 \star Exercice 2. On considère la suite $(u_n)_n$ définie par récurrence :

$$u_{n+1} = f(u_n)$$
 avec $f(x) = x^2 + \frac{3}{16}$ et $u_0 \ge 0$.

- 1. Etudier f et le signe de f(x) x. En déduire les limites possibles pour $(u_n)_n$.
- 2. On suppose que $u_0 \in [0, \frac{1}{4}]$. Montrer que $u_n \in [0, \frac{1}{4}]$ pour tout n puis que $(u_n)_n$ est croissante. En déduire sa nature et sa limite.
- 3. On suppose que $u_0 \in \left[\frac{1}{4}, \frac{3}{4}\right]$. Montrer que $(u_n)_n$ est décroissante et minorée. En déduire sa nature et sa limite.
- 4. On suppose que $u_0 > \frac{3}{4}$. Montrer que $(u_n)_n$ est croissante. En déduire sa nature et sa limite.

Sujet 2.

- * Exercice 1. On note f la fonction définie sur $]0, +\infty[$ par $f(x) = 1 + \ln(x)$, et $(u_n)_n$ la suite définie par $u_0 \ge 1$ et $u_{n+1} = f(u_n)$.
 - 1. Démontrer que $u_n \ge 1$ pour tout n.
 - 2. Étudier le signe de f(x) x sur $[1, +\infty]$.
 - 3. Démontrer que $(u_n)_n$ est convergente et préciser sa limite.
- **Exercice 2.** Pour tout $n \in \mathbb{N}^*$, pose $H_n = \sum_{k=1}^n \frac{1}{k}$.
 - 1. Montrer que pour tout $n \ge 1$, $H_{2n} H_n \ge \frac{1}{2}$.
 - 2. Montrer que H_n est croissante puis en déduire que $\lim_{n\to+\infty} H_n = +\infty$.

Sujet 3.

* Exercice 1. Étudier la nature des suites suivantes

$$u_n = \frac{n^3 + 5n}{4n^2 + \sin(n) + \ln(n)}$$
; $u_n = \frac{\ln(n!)}{n^2}$

* Exercice 2. Soient $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ les suites définies par

$$u_n = \left(1 + \frac{1}{n^2}\right) \left(1 + \frac{2}{n^2}\right) \dots \left(1 + \frac{n-1}{n^2}\right) \left(1 + \frac{n}{n^2}\right) \text{ et } v_n = \ln u_n.$$

- 1. Montrer que pour tout $x \in \mathbb{R}_+$, on a $x \frac{x^2}{2} \le \ln(1+x) \le x$.
- 2. En déduire $\frac{n+1}{2n} \frac{(n+1)(2n-1)}{12n^3} \le v_n \le \frac{n+1}{2n}$.
- 3. Montrer que $(v_n)_n$ converge et préciser sa limite.
- 4. Montrer que $(u_n)_n$ converge et préciser sa limite.

* Exercice 1. Étudier la limite des suites suivantes :

$$u_n = \frac{\sin(n) + 3\cos(n^2)}{\sqrt{n}}$$
; $u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$.

 \star Exercice 2. On considère la suite $(u_n)_n$ définie par récurrence :

$$u_{n+1} = f(u_n)$$
 avec $f(x) = x^2 + \frac{3}{16}$ et $u_0 \ge 0$.

- 1. Étudier f et le signe de f(x) x. En déduire les limites possibles pour $(u_n)_n$.
- 2. On suppose que $u_0 \in [0, \frac{1}{4}]$. Montrer que $u_n \in [0, \frac{1}{4}]$ pour tout n puis que $(u_n)_n$ est croissante. En déduire sa nature et sa limite.
- 3. On suppose que $u_0 \in [\frac{1}{4}, \frac{3}{4}]$. Déterminer la nature de $(u_n)_n$ et sa limite.
- 4. On suppose que $u_0 > \frac{3}{4}$. Déterminer la nature de $(u_n)_n$ et sa limite.

Sujet 2.

* Exercice 1. On note f la fonction définie sur $]0, +\infty[$ par $f(x) = 1 + \ln(x)$, et $(u_n)_n$ la suite définie par $u_0 \ge 1$ et $u_{n+1} = f(u_n)$.

- 1. Démontrer que $u_n \ge 1$ pour tout n.
- 2. Étudier le signe de f(x) x sur $[1, +\infty]$.
- 3. Démontrer que $(u_n)_n$ est convergente et préciser sa limite.

Exercice 2. Pour tout $n \in \mathbb{N}^*$, pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1. Montrer que pour tout $n \ge 1$, $H_{2n} H_n \ge \frac{1}{2}$.
- 2. Montrer que H_n est croissante puis en déduire que $\lim_{n\to+\infty} H_n = +\infty$.
- * Exercice 3. Étudier la limite de la suite suivante : $u_n = \frac{\ln(n+e^n)}{n}$.

Sujet 3.

* Exercice 1. Soient $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ les suites définies par

$$u_n = \left(1 + \frac{1}{n^2}\right) \left(1 + \frac{2}{n^2}\right) \dots \left(1 + \frac{n-1}{n^2}\right) \left(1 + \frac{n}{n^2}\right) \text{ et } v_n = \ln u_n.$$

- 1. Montrer que pour tout $x \in \mathbb{R}_+$, on a $x \frac{x^2}{2} \le \ln(1+x) \le x$.
- 2. En déduire $\frac{n+1}{2n} \frac{(n+1)(2n-1)}{12n^3} \le v_n \le \frac{n+1}{2n}$.
- 3. Montrer que $(v_n)_n$ converge et préciser sa limite. Faire de même pour $(u_n)_n$.

* Exercice 2. Étudier la limite des suites suivantes

$$u_n = \frac{n^3 + 5n}{4n^2 + \sin(n) + \ln(n)}$$
; $u_n = \frac{\ln(n!)}{n^2}$

 \star Exercice 1. On considère la suite $(u_n)_n$ définie par récurrence :

$$u_{n+1} = f(u_n)$$
 avec $f(x) = x^2 + \frac{3}{16}$ et $u_0 \ge 0$.

- 1. Étudier f et le signe de f(x) x. En déduire les limites possibles pour $(u_n)_n$.
- 2. On suppose que $u_0 \in [0, \frac{1}{4}]$. Montrer que $u_n \in [0, \frac{1}{4}]$ pour tout n puis que $(u_n)_n$ est croissante. En déduire sa nature et sa limite.
- 3. On suppose que $u_0 \in \left[\frac{1}{4}, \frac{3}{4}\right]$. Déterminer la nature de $(u_n)_n$ et sa limite.
- 4. On suppose que $u_0 > \frac{3}{4}$. Déterminer la nature de $(u_n)_n$ et sa limite.
- **Exercice 2.** On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \begin{cases} 0 & \text{si } x \geq 0 \\ e^{-\frac{1}{x}} & \text{si } x > 0 \end{cases}$
 - 1. Montrer que f est \mathcal{C}^{∞} sur $]0, +\infty[$ et que, pour tout x > 0, on a $f^{(n)}(x) = e^{-\frac{1}{x}} P_n\left(\frac{1}{x}\right)$, où $P_n \in \mathbb{R}[X]$.
 - 2. Montrer que f est \mathcal{C}^{∞} sur \mathbb{R} .

Sujet 2.

 \star Exercice 1. Étudier si les fonctions suivantes sont dérivables et de classe \mathcal{C}^1 sur \mathbb{R} :

$$f(x) = \begin{cases} x^3 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases} \quad g(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

 \star Exercice 2. On considère la suite $(u_n)_n$ définie par récurrence :

$$u_{n+1} = f(u_n)$$
 avec $f(x) = 1 + \frac{1}{4}\sin\left(\frac{1}{x}\right)$ et $u_0 \in \mathbb{R}^*$.

- 1. Déterminer $I = f(\mathbb{R}^*)$. Montrer que I est stable par f et qu'il existe $\gamma \in I$ tel que $f(\gamma) = \gamma$.
- 2. Démontrer que pour tout $x \in I$, $|f'(x)| \leq \frac{4}{9}$ et en déduire que $(u_n)_n$ est convergente.

Sujet 3.

- **Exercice 1.** On considère la fonction f définie sur \mathbb{R}^* par $f(x) = x \sinh\left(\frac{1}{x}\right)$, où $\sinh(x) = \frac{e^x e^{-x}}{2}$.
 - 1. Étudier la parité de f et en déduire le comportement de f en $\pm \infty$ et en 0.
 - 2. Montrer que f est dérivable sur \mathbb{R}^* et calculer sa dérivée.
 - 3. Montrer que pour tout $x \geq 0$, $\tanh(x) \leq x$. En déduire le tableau de variations de f puis tracer la courbe représentative de f.
- * Exercice 2. Étudier les limites suivantes :

$$\lim_{x \to +\infty} \ln(x) - e^x \; ; \quad \lim_{x \to +\infty} \frac{\ln(1 + e^x)}{\sqrt{x}} \; ; \quad \lim_{x \to 0} \frac{\cos(x) - 1}{x} \; ; \quad \lim_{x \to \frac{\pi}{2}} \frac{\exp(\cos(x) - 1)}{x - \frac{\pi}{2}}$$