Abramsky- Categorical Logic

ashiato45 take notes

2015年11月2日

1 Introduction

- 1.1 From Elements To Arrows
- 1.2 Categories Defined
- 1.3 Diagrams in Categories
- 1.4 First Notions
 - (Definition 15: subcategory): ℂを圏とし、

$$\mathbf{Ob}(\mathbb{D}) \subset \mathbf{Ob}(\mathbb{C}), \quad \forall A, B \in \mathbf{Ob}(\mathcal{D}) \colon \mathcal{D}(A, B) \subset \mathcal{C}(A, B)$$
 (1)

がるとする。 $\mathbb D$ が $\mathbb C$ の subcategory であるとは、

- $-A \in \mathbf{Ob}(\mathbb{D}) \implies \mathrm{id}_A \in \mathcal{D}(A,A)$ となる
- $-f \in \mathcal{D}(A,B), g \in \mathcal{D}(B,C) \implies g \circ f \in \mathcal{D}(A,C)$

となること。

• (full,lluf): subcategory が full であるとは、A から B への射がもとの category のものと一致すること。 lluf であるとは、オブジェクトをすべて引き継いでいること。

2 Some Basic Constructions

- 2.1 Initial and Terminal Objects
- 2.2 Products and Coproducts
- 2.2.1 Products
- 2.3 Coproducts
- 2.4 Pullbacks and Equalisers
- 2.4.1 Pullbacks
 - $A \xrightarrow{f} C \xleftarrow{g} B$ について、f, g に沿った pullback とは、 $A \xleftarrow{p} D \xrightarrow{q} B$ で、

という普遍性を持つもの。

- ((f,g)-cone): $A \xrightarrow{f} C \xleftarrow{g} B$ について、(f,g)-one とは (D,p,q) で $\bigvee_{A}^{p} \bigvee_{f}^{g}$ となるもの。
- ((f,g)-cone の morphism): $A \xrightarrow{f} C \xleftarrow{g} B$ についてこの cone たちを考える。(f,g)-cone である、

 $(D_1,p_1,q_1),(D_2,p_2,q_2)$ について、この間の morphism とは、 A p_1 p_2 p_3 p_4 p_2 p_4 p_5 p_6 となるもの。

2.4.2 Equalisers

- (Definition 28: equaliser): $A \underbrace{ \ \ \ }^f B$ を考える。(f,g) の equaliser とは、

 - $-f \circ e = g \circ e$ をみたし、

- たとえば、 $f\colon (x,y)\mapsto x^2+y^2$ 、 $g\colon (x,y)\mapsto 1$ について、単位円からの \mathbb{R}^2 への埋め込みは equaliser になって
- 2.5 Limits and Colimits
- **Functors**
- 3.1 Basics
- 3.2 Further Examples
 - poset の例: $poset^{*1}P$ が時間をあらわすとき、 $F: P \to \mathbf{Set}$ は集合の時間変化をあらわす。
 - List は functor になる。つまり、 $f\colon X\to Y$ を $\mathbf{List}(X)\to\mathbf{List}(Y)$ にうつす: -
 - ullet さらに構造を持たせることもできる。 ${
 m List}$ を ${
 m monoid}$ とみなせば、 ${
 m MList}\colon {
 m Set} o {
 m Mon}$ を上と同様に定義す ればよい。List は単位元を空リストとし、積を連結とすれば monoid になっている。
 - (free monoid): $\mathbf{MList}(X)$ を X 上の free monoid という。
- 3.3 Contravariance
- 3.4 Properties of Functors
 - (Definition 48: faithful): functor の、arrow をうつす部分が単射。
 - (full): functor の、arrow をうつす部分が全射。
 - (embedding): functor が full で faithful で「object に関して単射」である。

^{*1} 反射対称推移

• (essentially surjective):

$$\forall B \in \mathbf{Ob}(\mathcal{D}) \colon \exists A \in \mathbf{Ob}(\mathcal{C}) \colon F(A) \simeq B \tag{2}$$

つまり、「『object についての全射』を同型で弱めた」もの。

- (equivalence): functor が full で faithful で essentially surjective っであること。
- (isomorphism): 合成して 1。
- (preservation) P を arrow の性質とする *2 。 $F: \mathcal{C} \to \mathcal{D}$ が P を preserve するとは、f が P をみたすとき F(f) も P をみたすこと。
- (reflect): F(f) が P をみたすとき f も P をみたすこと。

4 Natural Tansformations

4.1 Basics

• (natural isomorphism): 自然変換 $t: F \to G$ について、

$$\forall A \in \mathbf{Ob}(\mathcal{C}): t_A | \mathtt{disomorphism}$$
 (3)

となるとき、t を natural isomorphism という。

• Functorid と、Functor× \circ $\langle \mathrm{id}, \mathrm{id} \rangle$ (これは $f \mapsto \langle f, f \rangle$ と定義される) の間の $\Delta \colon \mathrm{id} \to \times \circ \langle \mathrm{id}, \mathrm{id} \rangle$ を $X \in \mathbf{Set}$ について、

$$\Delta_X \colon x \to X \times X, \quad x \mapsto (x, x)$$

$$X \xrightarrow{f} Y$$
(4)

と定義し、これを考える。これは、 X \xrightarrow{f} Y を commute させるので、自然変換になっている。 \downarrow^{Δ_X} \downarrow^{Δ_Y} $X \times X$ $\xrightarrow{f \times f}$ $Y \times Y$

- ullet binary products がある圏 $\Bbb C$ について、上と同様に functorid から functorid imes id への自然変換 Δ_A が定義できる。
- binary products がある圏 $\mathbb C$ について、functor $\times : \mathbb C \times \mathbb C \to \mathbb C$ を product category からとってその 2 つの binary products をとるものとし、functor $\pi_1 : \mathbb C \times \mathbb C \to \mathbb C$ を product category をとってその片方をとるもの とする。このとき、この 2 つの functor の間の transformation π_1 を、各 $(A,B) \in \mathbf{Ob}(\mathcal C \times \mathcal C)$ について、

$$(\pi_1)_{(A,B)} \colon (A,B) \mapsto A \tag{5}$$

と定義すると、これは natural transformation になる。

• $\mathbb C$ を terminal T をもつ圏とし、functor $K_T\colon \mathcal C\to \mathcal C$ を、すべての object を T にうつし、すべての射を id_T にうつすものとする。すると、 id から K_T への transformation を

$$\tau_A \colon c \mapsto (\mathrm{id}c \to K_T c) = (c \to T)$$
 (6)

を、T が terminal であることから $c \to T$ が 1 つに定まることを使って定義する。すると、あきらかに c $\mathrm{id} c = c \xrightarrow{\tau c} K_T c = T$ $\downarrow f$ $\downarrow \mathrm{id} f = f$ $\downarrow K_T c' = T$ $\downarrow K_T c' = T$ natural transformation になっている。

^{*2} monic とか epi とか

X ListX ListX

をあきらかに満たし、natural。

- id から List への transformation id X wintx List X を 1 要素リストの生成と定義すると、これはあきらかに natural。
- List(List(X)) から List(X) への transformation をリストをつぶすことと定義すると、List のネストで矢が どこへ飛ぶかを考えると natural。
- ullet functor $P \colon \mathbf{Mon} o \mathbf{Set}$ を、monoid を忘れつつ対角線に埋め込む $(M,\cdot,1) \mapsto M \times M, \ f \mapsto f \times f$ と定義する。 さらに、U を単に forget する functor とする。このとき、P から U への $\mathrm{transformation}t_{(M,ullet,1)}$ をもとの

モノイドでの積を取るとすると、
$$\begin{pmatrix} (M, \bullet, 1) & M \times M \stackrel{t_{(M, \bullet, 1)}}{\longrightarrow} M \\ \downarrow_{f} & \downarrow_{f} \text{ if commute U. natural.} \\ (N, \bullet, 1) & N \times N \stackrel{t_{(N, \bullet, 1)}}{\longrightarrow} N$$

4.2 Further Examples

ullet の射 $f\colon A o B$ を考える。このとき、 $\hom_{\mathbb{C}}(B,?)$ から $\hom_{\mathbb{C}}(A,?)$ への $\operatorname{transformation} \hom_{\mathbb{C}}(f,?)\colon \hom_{\mathbb{C}}(B,C) o$

$$C$$
 $\operatorname{hom}_{\mathbb{C}}(A,C)$ を、「コドメイン側に f を合成する」とすると、 \bigoplus_{h} $\operatorname{hom}_{\mathbb{C}}(B,C)$ $\xrightarrow{?\circ f}$ $\operatorname{hom}_{\mathbb{C}}(A,C)$ は $\operatorname{hom}_{\mathbb{C}}(B,D)$ $\xrightarrow{?\circ f}$ $\operatorname{hom}_{\mathbb{C}}(A,D)$

あきらかに commute で natural になる。

• (Lemma 1; Yoneda Lemma): (どの Hom-functor 間の natural transformation は矢の合成としてあらわせる) $A, B \in \mathbf{Ob}(\mathbb{C})$ とする。t を $\mathrm{hom}(A,?)$ から $\mathrm{hom}(B,?)$ への natural transformation とする。 $t = (\circ f)$ となる $f \colon B \to A$ がただ 1 つ存在する。

 $\bigcap f = t_A(\mathrm{id}_A)$ とすればよいことを示す。

 $C \in \mathbf{Ob}(\mathbb{C})$ を fix する。 $t(C) = (\circ f)(C)$ を示せばよい (この型は $\mathrm{hom}(A,C) \to \mathrm{hom}(B,C)$ になっている)。関手 $\mathrm{hom}(A,?),\mathrm{hom}(B,?)$ は圏 \mathbb{C} から Set への関手なので、射は関数になっている。したがって、外延的に等価性を示せる。 $g\colon A \to C$ を $\mathbf{Ar}(\mathbb{C})$ から fix する。 $t(C)(g) = (\circ f)(C)(g)$ を示せばよい。g に t の naturality を

使うと、
$$\int_g^A \quad \quad \hom(A,A) \xrightarrow{t_A} \hom(B,A)$$
 使うと、 $\int_g^g \quad \quad \downarrow_{g\circ} \quad \quad$ を得る。 $C \quad \quad \hom(A,C) \xrightarrow{t_C} \hom(B,C)$

$$t_C(g) = t_C((g \circ ?)(\mathrm{id}_A)) \stackrel{\text{comm}}{=} (g \circ ?) t_A(\mathrm{id}_A) \stackrel{\text{f original}}{=} (g \circ ?) f = g \circ f = (\circ f) g. \tag{7}$$

g の fix を外し、 $t_C = (\circ f) = (\circ f)(C)$ となる。よって、 $t = (\circ f)$ となる。示された。

• (Definition 57; equivalent) 圏 \mathbb{C} , \mathbb{D} が equivalent っであるとは、関手 $F:\mathbb{C}\to\mathbb{D}$, $G:\mathbb{D}\to\mathbb{C}$ があり、 $G\circ F\simeq \mathrm{id}_{\mathbb{C}}$, $F\circ G\simeq \mathrm{id}_{\mathbb{D}}$ となる。

4.3 Functor Categories

5 Universality and Adjoints

5.1 Adjunctions for Posets

• (g-approximation of x): $x \in P$ とする。P,Q を Poset の圏の object(つまり poset) とする。 $g:Q \to P$ を poset 準同型とする。 $x \leq g(y)$ となる $y \in Q$ を x の g-approximation という。

• (best q-approximation of x): $y \in Q$

$$x \le g(y) \land (x \le g(z) \implies y \le z) \tag{8}$$

- *g* が全射であり、したがって常に *g*-approximation があるとしても best なものがあるとは限らない。これが canonical choice の問題になる。
- (poset の left adjoint): もしも全ての $x \in P$ についてその best g-approximation があるなら、それでもって $f \colon P \to Q$ を定義できる。この f を g の left adjoint という。このとき、

$$x \le g(z) \iff f(x) \le z \tag{9}$$

となっている。

• (binary relation σ left adjoint): 二項関係の圏をかんがえる。 $R \subset X \times Y$ とする。

$$f_R \colon \mathcal{P}(X) \to \mathcal{P}(Y), \quad S \mapsto \bigcup_{x \in S, xRy} y$$
 (10)

 f_R は right adjoint $[R]: \mathcal{P}(Y) \to \mathcal{P}(X)$ は $S, T \subset \mathcal{P}(Y)$ としておいて、

$$S \subset [R]T \iff f_R(S) \subset T \tag{11}$$

をみたしてほしいが、これは

$$[R]T := \{x \in X; xRy \implies y \in T\}$$
(12)

である。

• (powerset σ left adjoint): $f^{-1}: \mathcal{P}(Y) \to (X)$ を考えることができるが、left adjoint $\exists (f): \mathcal{P}(X) \to \mathcal{P}(Y)$ と right adjoint $\forall (f): \mathcal{P}(X) \to \mathcal{P}(Y)$ 、すなわち $S \subset X, T \subset Y$ について、

$$\exists (f)(S) \subset T \iff S \subset f^{-1}(T), \quad f^{-1}(T) \subset S \iff T \subset \forall (f)(S). \tag{13}$$

これは、 $\exists (f)$ を S の像とし、 $\forall (f)(S)$ を「y に行く x は全部 S 上」となるような y たちとする。つまり、 $x \in S$ から f で飛ばした先の点 f(x) が、S の外から来てはいけない。

5.2 Universal Arrows and Adjoints

• (Definition 64:universal arrow) $G \colon \mathbb{D} \to \mathbb{C}$ を functor とする。 $C \in \mathbf{Ob}(\mathbb{C})$ から $G \land \mathcal{D}$ universal arrow とは、 $(D \in \mathbf{Ob}(\mathbb{D}), \eta \in \hom_{\mathbb{C}}(C, G(D))$ の組で、

$$\forall D' \in \mathbf{Ob}(\mathbb{D}) \colon \forall f \colon C \to G(D') \colon \begin{array}{c} C \xrightarrow{\eta} G(D) & D \\ \downarrow G(\widehat{f}) & \downarrow \widehat{f} \\ G(D') & D' \end{array}$$

をみたすもの。

一意性の条件は式で

$$\forall h \colon D \to D' \colon \widehat{G(D \circ \eta)} = h \tag{14}$$

ともあらわせる。 $\bigcirc h\colon D\to D'$ で、 $f=G(D)\circ\eta$ なら $\widehat f=h$ であることを示せばよいが、ハットのなかを置き換えて、これは $\widehat{G(D)}\circ\eta=h$ である。

• U を monoid から集合への forget する関手とする。このとき、X から U への universal arrow として、 $(\mathbf{MList}(X),\eta_X)$ がとれる。ただし、 $\eta_X\colon X\to U(\mathbf{MList}(X))$ は 1 要素リストの生成。〇任意の集合圏での関数 $f\colon X\to M$ について

$$\widehat{f} : \mathbf{MList}(X) \to (M, \bullet, 1), \quad [x_1, \dots, x_n] \mapsto f(x_1) \dots f(x_n)$$
 (15)

Setの話 Monの話

が存在して、これが $X \xrightarrow{\eta_X} U(\mathbf{MList}(X))$ $\mathbf{MList}(X)$ の条件をみたす。実際、 $\bigcup_{f \in \mathcal{U}(\widehat{f})} U(\widehat{f})$ \widehat{f} (M, ullet, 1)

$$(U(\widehat{f}) \circ \eta_X)(x) = U(\widehat{f})([x]) = f(x) \tag{16}$$

である。一意性は、上の条件より $\widehat{U(h)\circ\eta_X}=h$ を示せばよい。

$$\widehat{U(h) \circ \eta_X}([x_1, \dots, x_n]) = (U(h) \circ \eta_X)(x_1) \cdot \dots \cdot (U(h) \circ \eta_X)(x_n)$$
(17)

$$= U(h)([x_1]) \cdot \cdots \cdot U(h)([x_n])$$
(18)

$$= h([x_1]) \dots h([x_n]) \tag{19}$$

$$= h([x_1, \dots, x_n]). \tag{20}$$

- (Definition 68:adjunction,adjoint) C, D を圏とする。 C から D への adjunction は
 - F:ℂ から D への functor
 - $-G:\mathbb{D}$ から \mathbb{C} への functor
 - $-\theta$: \mathbb{C} の object A, B で添字付けられた bijection の family

$$\theta_{A,B} \colon \mathbb{C}(A, G(B)) \xrightarrow{\simeq} \mathbb{D}(F(A), B)$$
 (21)

で、A を run したとき自然になり、B を run したとき自然になるもの。

- -F を G の left adjoint といい、G を F の right adjoint という。
- ullet上の 2 つの自然性について考えてみる。まず、A を固定し B を走らせたときの naturality は

$$A'$$
 $\mathbb{C}(A',GB)$ $\xrightarrow{\theta_{A'B}} \mathbb{D}(FA',B)$ $\downarrow g$ $\circ g \uparrow \circ (Fg) \uparrow$ $\circ (Fg) \uparrow \circ (Fg) \uparrow$ $\circ (Fg) \uparrow \circ (Fg) \uparrow \circ$

意味になる。さらに、B を固定し A を走らせたときの図式で B^\prime を固定した図式を考えくっつけると、

$$B$$
 $\mathbb{C}(A,GB) \xrightarrow{\theta_{AB}} \mathbb{D}(FA,B)$ $\downarrow h$ $\downarrow (Gh)\circ \qquad \downarrow h\circ$ B' A $\mathbb{C}(A,GB') \xrightarrow{\theta_{AB'}} \mathbb{D}(FA,B')$ を得る。 $g\uparrow$ $\downarrow \circ g$ $\downarrow \circ (Fg)$ A' $\mathbb{C}(A',GB') \xrightarrow{\theta_{A'B'}} \mathbb{D}(FA',B')$

中間を引っこ抜くと、
$$igg|_h$$
 A $\mathbb{C}(A,GB) \xrightarrow{\theta_{AB}} \mathbb{D}(FA,B)$ 中間を引っこ抜くと、 $igg|_h$ $g \cap \bigoplus_{(Gh)\circ ?\circ g} \bigoplus_{h\circ ?\circ (Fg)}$ を得る。これは f,g を id にした $\mathbb{C}(A',GB') \xrightarrow{\theta_{A'B'}} \mathbb{D}(FA',B')$

りすることで上の式をすべて包含する。