Universidade Veiga de Almeida

Curso: Básico das engenharias

Disciplina: Cálculo Diferencial e Integral I

Professora: Adriana Nogueira

1^a Lista de Exercícios

Exercício 1: Calcule, caso existam, os limites dados abaixos

(a)
$$\lim_{x \to 1} \frac{x^2 - x}{2x^2 + 5x - 7}$$

(a)
$$\lim_{x \to 1} \frac{x^2 - x}{2x^2 + 5x - 7}$$
 (b) $\lim_{x \to 5} \frac{3x^2 - 13x - 10}{2x^2 - 7x - 15}$ (c) $\lim_{k \to 4} \frac{k^2 - 16}{\sqrt{k} - 2}$

(c)
$$\lim_{k \to 4} \frac{k^2 - 16}{\sqrt{k} - 2}$$

(d)
$$\lim_{h \to -2} \frac{h^3 + 8}{h + 2}$$

(e)
$$\lim_{x\to 2} \frac{x-2}{x^3-8}$$

(d)
$$\lim_{h \to -2} \frac{h^3 + 8}{h + 2}$$
 (e) $\lim_{x \to 2} \frac{x - 2}{x^3 - 8}$ (f) $\lim_{x \to 1} (\frac{x^4}{x^2 - 1} - \frac{1}{x^2 - 1})$

(g)
$$\lim_{h \to 0} \frac{4 - \sqrt{16 + h}}{h}$$
 (h) $\lim_{x \to 9} \frac{x^2 - 81}{3 - \sqrt{x}}$ (i) $\lim_{x \to 0} \frac{3 - \sqrt{9 - x}}{2x}$

(h)
$$\lim_{x \to 9} \frac{x^2 - 81}{3 - \sqrt{x}}$$

$$\text{(i)} \lim_{x \to 0} \frac{3 - \sqrt{9 - x}}{2x}$$

(j)
$$\lim_{x \to 1} \frac{1-x}{2-\sqrt{x^2+3}}$$

(j)
$$\lim_{x \to 1} \frac{1-x}{2-\sqrt{x^2+3}}$$
 (k) $\lim_{x \to 0} \frac{\sqrt{x+3}+\sqrt{x+5}-\sqrt{5}-\sqrt{3}}{x}$

(1)
$$\lim_{x \to 0} \frac{\sqrt[5]{x+5} - \sqrt[5]{5}}{x}$$

$$(m)$$
 $\lim_{x\to -2} \frac{\sqrt[3]{x-6}+2}{x^3+8}$

(l)
$$\lim_{x \to 0} \frac{\sqrt[5]{x+5} - \sqrt[5]{5}}{x}$$
 (m) $\lim_{x \to -2} \frac{\sqrt[3]{x-6} + 2}{x^3 + 8}$ (n) $\lim_{x \to 0} \frac{(1+x)^5 - (1+5x)}{x^5 + x^2}$

Exercício 2: Determine k para que se tenha a identidade abaixo:

$$\lim_{x \to 1} \frac{x^2 + 2kx - 1 - 2k}{x - 1} = 4$$

Exercício 3: Suponha que $\lim_{x\to 0} \frac{f(x)}{x} = 5$. Calcule:

(a)
$$\lim_{x\to 0} \frac{f(4x)}{x}$$

(b)
$$\lim_{x \to 0} \frac{f(x^2)}{x}$$

(a)
$$\lim_{x \to 0} \frac{f(4x)}{x}$$
 (b) $\lim_{x \to 0} \frac{f(x^2)}{x}$ (c) $\lim_{x \to 1} \frac{f(x^2 - 1)}{x - 1}$ (d) $\lim_{x \to 0} \frac{f(2x)}{9x}$.

(d)
$$\lim_{x\to 0} \frac{f(2x)}{9x}$$

Exercício 4: Seja $f(x)=\begin{cases} x^3-4, & \text{se} \quad x\leq 1\\ 2x-5 & \text{se} \quad x>1 \end{cases}$. Calcule, caso exista, $\lim_{x\to 1}f(x)$. A função f(x) é contínua em x=1?

Exercício 5: Considere $f(x)=\left\{\begin{array}{ccc}2x^2+5x+3,&\text{se}&x\leq-1\\x^2+3x+a&\text{se}&x>-1\end{array}\right.$ Determine o valor de a para que $\lim_{x\to-1}f(x)$ exista.

Exercício 6: Considere a função $f(x)=\left\{\begin{array}{ccc} 2x^2+5, & \text{se} & x<0\\ 7, & \text{se} & x=0\\ 3x^2+5x+5, & \text{se} & x>0 \end{array}\right.$

Calcule, se possível:

- (a) f(0)
- (b) $\lim_{x \to 0} f(x)$

Compare os resultados obtidos acima. A função f(x) é contínua em x=0?

Exercício 7: Considere a função $f(x) = \begin{cases} 2x^2 + x - 8, & \text{se} \quad x < 2 \\ 4, & \text{se} \quad x = 2 \\ x^2 + 3x + 1, & \text{se} \quad x > 2 \end{cases}$

Calcule os limites laterais $\lim_{x\to 2^-} f(x)$, $\lim_{x\to 2^+} f(x)$ e verifique se o limite $\lim_{x\to 2} f(x)$ existe. A função f(x) é contínua em x=2?

RESPOSTAS:

- 1) (a) 1/9 (b) 17/13 (c) 32 (d) 12 (e) 1/12

- (g) -1/8 (h) -108 (i) 1/12 (j) 2 (k) $\frac{\sqrt{5}}{10} + \frac{\sqrt{3}}{6}$ (l) $\sqrt[5]{5}/25$

- (m) 1/144 (n) 10
 - 2) k = 1.
 - 3) (a) 20

- (b) 0 (c) 10 (d) 10/9.
- 4) $\lim_{x \to 1} f(x) = -3$, e a função f(x) é contínua em x = 1 pois $\lim_{x \to 1} f(x) = -3 = f(1)$.
- 5) a = 2
- 6) (a) f(0)=7, (b) $\lim_{x\to 0}f(x)=5$. O limite de f(x) quando x se aproxima de 0 não coincide com o valor da função no ponto x=0 e portanto a função f(x) não é contínua em x=0.
- 7) $\lim_{x\to 2^-} f(x) = 2$, $\lim_{x\to 2^+} f(x) = 11$. Como os limites laterais são distintos o $\lim_{x\to 2} f(x)$ não existe e portanto a função f(x) não é contínua em x=2.