Technical Consulting Report

"The Rebound Effect: Fuel Efficiency and Motor Vehicle Travel"

Colorado School of Mines
Division of Economics and Business
Victoria B. P.

EBGN 590A

Table of Contents

1.	Introduction	2
2.	Theoretical Analysis	2
3.	Data	4
4.	Econometric Models	5
5.	Results	7
6.	Conclusion	10
	References	
Арј	pendix A: Definitions of variables	12
App	pendix B: Summary statistics table	13
App	pendix C: Interpretation of the coefficient	13
	pendix D: Regression Model #1 analysis results	
Арј	pendix E: Models #1-3 regression results and comparison	15
Арј	pendix F-1: Summary of the rebound effect by each year	17
App	pendix F-2: Summary of the rebound effect by each state	18
App	pendix G: Program File	19
Арј	pendix H: Statistical Output File	20

1. Introduction

The importance of such environmental issue as air pollution is growing over time. Vehicle-fuel efficiency resulting in gasoline-usage decrease is considered as one of possible solutions. Not always that leads to expected pure fuel use reduction. Energy-efficiency measures are typically met with a small but persistent "rebound effect" that manifests itself across various spheres including buying a more fuel-efficient car and traveling more often.

Current studies evidence that efficiency improvements also backfire and lead to producing more vehicle-miles traveled (VMT) overall (so called "Jevons paradox"). As miles-per-gallon ratios improve, owners of more fuel-efficient cars under Corporate Average Fuel Economy (CAFE) standards are driving more as their fuel cost per mile traveled decreases. The rebound effect tends to reduce the effectiveness of energy-efficiency programs in reducing fuel use. Thus, in the increasing interest of adoption of energy saving technology, the attention of environmental policy making entities should be drawn to the existence and magnitude of the rebound effect. Fuel efficiency standards should account for the magnitude of rebound effect in order to decrease greenhouse gas emissions given the policy.

This report aims to define the rebound effect for motor vehicles, explain how to calculate it empirically and estimate it in the U.S. from 1966 to 2001. We choose a model to get unbiased estimate of the rebound effect through adjusting it and allowing the rebound effect vary with income, urbanization, and the fuel cost of driving. As a result we explain the obtained magnitude.

2. Theoretical Analysis

Before working through given data, theoretical analysis is required to explain how to estimate the rebound effect. We use the following variables to express the notation of the rebound effect:

- ✓ E fuel efficiency (miles/gallon, MPG);
- ✓ VMT or M vehicle-miles traveled (miles);
- \checkmark F fuel consumption (gallons);
- ✓ PF fuel price (\$/gallon);
- ✓ PM fuel cost per mile (\$/mile).
- 2.1. Given that fuel consumption (F) can be expressed as a function of E and M:

$$F = f(M, E) = \frac{M}{E} \tag{1}$$

Intuitively, the needed amount of gallons depends on the automobile fuel economy standards, or how many miles the car runs per 1 gallon of fuel, and the trip length expressed as vehicle-miles travel.

2.2. Fuel cost per mile (PM) – as a function of PF and E, meaning that the amount paid by consumer per mile of travel is the fuel price per gallon divided by miles he/she travels per gallon given the automobile fuel economy standards:

$$PM = f(PF, E) = \frac{PF}{E} \tag{2}$$

2.3. Further the relationship between the elasticity of F with respect to fuel efficiency ($\varepsilon_{F,E}$) and elasticity of M with respect to the per-mile fuel cost ($\varepsilon_{M,PM}$) is derived:

Given the identity in equation (1), we solve for E:

$$E = f(M, F) = \frac{M}{F} \tag{3}$$

The elasticity of fuel consumption by definition is given by:

$$\varepsilon_{F,E} = \left(\frac{dF}{dE}\right) * \left(\frac{E}{E}\right) \tag{4}$$

Taking the derivative of F with respect to E, given equation (1), we obtain:

$$\frac{dF}{dE} = -ME^{-2} + E^{-1} \left(\frac{\partial M}{\partial E} \right) \tag{5}$$

Substitute (5) back into (4):

$$\varepsilon_{F,E} = \left(-ME^{-2} + E^{-1} \left(\frac{\partial M}{\partial E} \right) \right) * \left(\frac{E}{F} \right) \tag{6}$$

$$\varepsilon_{F,E} = \left(-\frac{M}{E*F}\right) + \left(\frac{\partial M}{F*\partial E}\right) \tag{7}$$

$$\varepsilon_{F,E} = -1 + \left(\frac{\partial M}{\partial E}\right) \left(\frac{E}{M}\right) \tag{8}$$

Multiply second term of right hand side by $\left(\frac{\partial PM}{\partial PM}\right)$ and rearrange that term:

$$\varepsilon_{F,E} = -1 + \left(\left(\frac{\partial M}{\partial PM} \right) \left(\frac{\partial PM}{\partial E} \right) \right) \left(\frac{E}{M} \right) \tag{9}$$

Given PF is constant, derivate with respect to E using equation (2):

$$\varepsilon_{F,E} = -1 + \left(\left(\frac{\partial M}{\partial PM} \right) * - \left(\frac{\partial PF}{E^2} \right) \right) \left(\frac{E}{M} \right)$$
 (10)

Cross out E, substitute (3) into (10):

$$\varepsilon_{F,E} = -1 - \left(\left(\frac{\partial M}{\partial PM} \right) \left(\frac{PM}{M} \right) \right) \tag{11}$$

Rearrange and the derivation performed above explains the relationship between $\varepsilon_{F,E}$ and $\varepsilon_{M,PM}$ in equation (12):

$$\varepsilon_{F,E} = -1 - \varepsilon_{M,PM} \tag{12}$$

2.4. That relationship between $\varepsilon_{F,E}$ and $\varepsilon_{M,PM}$ says that non-zero value of $\varepsilon_{M,PM}^{-1}$ is the extent of deviation from the proportionality of decrease in fuel consumption with increase in fuel efficiency. It is expressed as a percentage of the forecast reduction in gasoline use that is "lost" due to the sum of consumer and market responses on increase in fuel efficiency. That is exactly what is described in equation (12) as the rebound effect, so we can also write $RE = -\varepsilon_{M,PM}$. Thus, $-\varepsilon_{M,PM}$ can be used as definition and measure of the rebound effect and non-zero value of RE then means decreasing VMT given increase in PM. For convenience, replace VMT with VMA (average vehicle miles). Further, we are going to aggregate these and some other factors in a model that simultaneously determines VMA, vehicles, and fuel efficiency.

3. Data

In order to start the analysis, will look through the data we are working with. In this study we use "panel data" from 1966 till 2001 (inclusive) across 50 states and D.C. of the USA². We transform original data into variables for further estimations. Transformations involve log transformation, calculations of per capita values and obtaining real values for monetary variables (1987 base) – definitions of variables are represented in Appendix A. Log transformations make positively skewed distribution more normal³. Also, when a change in the dependent variable is related to percentage change in an independent variable, or vice versa, the relationship is better modeled by taking the natural log of either or both variables; that provides elasticity values. Making variables de-meaned is also normalization⁴. As a result, normalized variables are *vma*, *veh*, *pm*, *inc*, *arm*, *popa*, *urb*, *pf*, *pv* and *la*. Thus, variables starting with lower case letters are logarithms of the initially described variables. Additionally de-meaned variables are *pm*, *inc*, *urb*.

Summary of statistics along with definitions of variables is provided in Table 1 for both logged and unlogged variables (Summary statistics from STATA in Appendix B). The meaning of all variables is explained in the table. In general, the reason why we need so many variables for analysis are the assumptions of what influences the VMT. Intuitively, the most simple and clear assumption is the commonly expected dependence on income (discussed in further sections).

¹ $\varepsilon_{M,PM}$ is defined as the elasticity of miles travelled with respect to cost of fuel per mile;

² Source: Small, K.A. and K.V. Dender. 2007. Fuel efficiency and motor vehicle travel: The declining rebound effect. The Energy Journal 28(1): 25-51;

³ 1) Paper 430-2012 Transforming Variables for Normality and Linearity – When, How, Why and Why Not's Steven M. LaLonde, Rochester Institute of Technology, Rochester, NY;

²⁾ ERIC Clearinghouse on Assessment and Evaluation College Park MD. Normalizing Data Transformations. ERIC Digest. Osborne, Jason W. http://www.ericdigests.org/2003-3/data.htm

⁴ Subtracting the sample mean for each variable;

Table 1. Summary statistics and definitions of variables

	Variable	Mean	Standard Deviation	Min	Max	Comment
1	2	3	4	5	6	7
VMT/M	Vehicle 000's Miles Traveled	35200000	39300000	830000	311000000	
VMA	Vehicle Miles Traveled / Adult	10929.332	2,537.714	4,747.613	23333.326	
vma	Normalized Vehicle Miles Traveled / Adult	9.272	0.235	8.465	10.058	
VEH	Vehicles per Adult	0.999	0.189	0.458	1.716	
veh	Normalized Vehicles / Adult	-0.020	0.197	-0.781	0.540	
F	Fuel Intensity (gal/mi)	0.061	0.012	0.034	0.092	
PF	Fuel Price Real (cents/gal)	108.922	23.524	60.320	194.907	
PM	Fuel Cost / Mile real (cents/mi)	6.814	2.275	2.782	14.205	
pm	Normalized Fuel Cost per Mile (cents/mile)	0.000			0.793	
INC	Income / Capita Real	14586.850			27266.928	Real personal income per capita at
inc	Normalized Income / Capita	0.000	0.228			1987 prices
ARM	Adults / Road Mile	57.728				A rough measure of potential
arm	Normalized Adults /Road Mile	3.614	0.935			congestion
POPA	Population / Adult	1.418			1.736	A measure of family size
popa	Normalized Population /Adult	0.347	0.062	0.208	0.552	Trineusure or furnity size
URB	Fraction of Population in Urban Areas	0.713	0.195	0.290	1.000	Fraction of state's population living in metropolitan statistical
urb	Normalized Fraction of Population in Urban Areas	0.000	0.195	-0.423	0.287	
RAILPOP	Fraction of Population in Metro Areas Served by Heavy Rail	0.088	0.207	0.000	1 000	Fraction of the state's population living in metropolitan statistical areas with a heavy-rail transit system
D7479	Dummy variable that eq.1 if year is 1974 or 1979*	0.056	0.229	0.000	1.000	* Dummy variables to represent gasoline supply disruptions in 1974 and 1979, when gasoline-
TREND	Period (years beginning 1966)**	17.500	10.391	0.000	35.000	price controls were in effect, resulting in queues and sporadic
pf	Normalized Fuel Price	4.669	0.203		5.273	rationing at service stations.
PV	Price of New Vehicles (index)	1.066	0.197	0.777	1.493	Included in order to reduce the
pv	Normalized Price of New Vehicles	0.048			0.401	extent of autocorrelation in the residuals;
LA	Licensed Drives / Adult	0.905	0.083	0.625		** A time trend measured in years
la	Normalized Licensed Drives / Adult	-0.104	0.094	-0.470	0.139	changes in technology and
cafe	Strictness of CAFÉ (fuel efficiency regulations)	0.103	0.113	0.000		consumer preferences that we are unable to specify quantitatively.

Comparing the summary with the results provided by Small and Van Dender (2007), the same data set is obtained except for minor difference in insignificant number of digits. Another difference is that pf is normalized in the paper but not for the purpose of this study. That means that its mean is non-zero value here. Other variables are described in further sections.

4. Econometric Models

As given in previous sections, the relationship between $\varepsilon_{F,E}$ and $\varepsilon_{M,PM}$ is expressed in equation (12). Empirically we see that there are more factors influencing the rebound effect. In reality there are at least such factors as the level of person's income, the technical

characteristics of his/her car, the matter whether he/she is employed and the distance from home to office that may influence his/her demand for VMT. At the same time these factors might be the case for one period of time but the lifestyle could change in 5 or so years as a result of social changes or personal decisions that are statistically neither easy to estimate nor to take into consideration in a model. Thus, a regression model⁵ accounting for number of factors (variables listed in previous sections) over time is required.

Model #1: To begin with, we use a simplified Ordinary Least Squares (OLS) regression model. Hereafter, in the models i represents state index and t represents the year index.

$$vma_{it}^{6} = \beta_0 + \beta_1 pm_{it} + \beta_2 veh_{it} + \beta_3 inc_{it} + \beta_4 arm_{it} + \beta_5 popa_{it} + \beta_6 urb_{it} + \beta_7 RAILPOP_{it} + \beta_8 D7479_{it} + \beta_9 TREND_t + \varepsilon_{it}$$

This formula provides us with elasticity values of vma_{it} for states over time with respect to pm_{it} and other log form independent variables, as well as percentage change in vma_{it} due to unit change in non log explanatory variables (see summary in Table 1) and percentage change in vma_{it} due to impact of dummy variable. Dummy variable $D7479_{it}$ is included for years 1974 and 1979, when gasoline-price controls were in effect. It aims to reduce the extent of autocorrelation in the residuals. $TREND_t$ - is the time trend measured in years since 1966, intended to capture changes in technology and consumer preferences that are difficult to specify quantitatively. As far as vma_{it} and pm_{it} are in log-log form, given their definition in Table 1 the derivative is the elasticity of vma_{it} with respect to pm_{it} corresponds to value of β_1 , thus β_1 (see interpretation of the coefficient in Appendix C) provides us with the absolute value of the rebound effect.

Model #2: At the beginning of this section we also mentioned that some factors are not easy to account for, in other words we assume there is an unobserved state-specific omitted characteristic that enters through error term. The own state characteristic may bias the outcome variable and we need to control for this. It could be a climatic-geographic feature that leads citizens from state to state to buy vehicles with strong engine power and higher clearance to drive in the mountains, thus having greater gas capacity. Others living in a more flat area don't face that problem and afford less gas consuming cars. That is why we focus on another technique of panel data analysis – fixed effect⁷ (FE). FE explores the relationship between predictor and outcome variables within state. This is the rationale behind the assumption of the correlation between states' error term and predictor

⁵ Describes the statistical relationship between one or more predictor variables and the response variable;

 $_{6}\beta_{0}$ is the constant term, other β_{s} are coefficients of explanatory variables to be estimated. They give us the effect of that variable on vma_{it} for states over time; ε_{it} is an error term, assumed to be independent and identically distributed (i.i.d.), with zero mean for all observations (no heteroskedasticity or autocorrelation);

⁷ Effect that doesn't vary over time but across states;

variables. FE remove the effect of those time-invariant characteristics so we can assess the net effect of the predictors on the outcome variable.

The FE model looks the next way:

```
vma_{it}^{8} = \beta_{0} + \beta_{1}pm_{it} + \beta_{2}veh_{it} + \beta_{3}inc_{it} + \beta_{4}arm_{it} + \beta_{5}popa_{it} + \beta_{6}urb_{it} + \beta_{7}RAILPOP_{it} + \beta_{8}D7479_{it} + \beta_{9}TREND_{t} + \alpha_{i} + \nu_{it}
```

Interpretation of coefficients is the same as in the previous model. This model says that if the unobserved variable α_i is the one that is not changing with time then any change in the independent variable must be due to influences other than this fixed characteristic.

<u>Model #3</u>: Until now we only mentioned that the rebound effect could also be influenced by other factors, which means that it could be a function of other variables. It could also be the case that there are interaction terms involved, like *inc*, *urb* and *pm* itself. Now the elasticity of *pm* also varies with these variables. Thus, we obtain a new model⁹:

$$\begin{aligned} vma_{it} &= \beta_0 + \beta_{10}pm_{it} + \beta_{11}pm^2_{\ it} + \beta_{12}inc_{it} \cdot pm_{it} + \beta_{13}urb_{it} \cdot pm_{it} + \beta_2veh_{it} + \beta_3inc_{it} \\ &+ \beta_4arm_{it} + \beta_5popa_{it} + \beta_6urb_{it} + \beta_7RAILPOP_{it} + \beta_8D7479_{it} + \beta_9TREND_t + \alpha_i \\ &+ \nu_{it} \end{aligned}$$

What makes that model differ from previous ones is that now it has higher order influence of pm_{it} , interacting variables - inc_{it} and urb_{it} on vma_{it} . Thus the rebound effect β_{10} is a function of these three variables here.

5. Results

Using *Model #1* we run OLS regression. The resulting table is represented in Appendix D along with theoretical interpretation of results. Null hypothesis (H_0^{10}) of F-stat is rejected given the value of result is less than 0.05.

The estimated magnitude of the rebound effect β_1 is 0.23% (1% increase in fuel cost per mile induces 0.23% decrease in vma_{it}); the sign is negative as expected and is statistically significant at 99%. Its 95% confidence interval is (-0.255,-0.206). An unexpected sign stands for coefficient β_3 (changes in vma_{it} with income change). It is not reasonable. Usually increase in income creates either more reasons to travel for new purposes or not to care about the price of fuel constraint thus buy a car with greater fuel consumption. In addition to that the coefficients β_5 and β_6 for population per adult and population in urban areas respectively are not statistically significant. Obtained results are doubtful and are not consistent with general assumptions on relationship between given

⁸ The FE model is one way to control for unobserved individual attributed in panel data. In this model $\varepsilon_{it} = \alpha_i + \nu_{it}$, where α_i is state climatic-geographic features for each state and ν_{it} is assumed to be i.i.d. with zero mean;

⁹ Obtained by substitution of $\beta_1 = \beta_{10} + \beta_{11}pm_{it} + \beta_{12}inc_{it} + \beta_{13}urb_{it}$ into β_1 into model #2;

¹⁰ Null hypothesis assumes that beta coefficient of predictor is equal to zero for T-stat and all beta coefficients are equal to zero for F-stat;

variables. This inconsistency could be a result of some unobserved state fixed effect that we didn't account for.

Compared to Model#1, some of these issues are resolved in fixed effect (FE) *Model#2*. The table of results comparison for *Models #1-2* is presented in Appendix E. We notice that after we eliminate these FEs into error term, magnitude of all coefficients changed (most substantially β_{1-4} , β_6 , β_8). The magnitude of the RE has decreased to 0.166%. It means the previous value was roughly overestimated (39%). The income effect coefficient now has reasonable sign and its magnitude increases significantly up to 0.4%. The coefficients β_5 , β_6 , do not have expected sign and are still statistically insignificant. The unreferenced variables are still statistically significant.

As for *Model #3*, results are different from simple OLS model for the reasons that we account for state fixed effect, β_1 is no longer held constant. The table of the three models results' comparison is represented in Appendix E. The sign of coefficients β_5 , β_6 has now become reasonable and their values are statistically significant at 99% confidence level. Instead β_7 , β_8 are no longer statistically significant. The absolute value of the rebound effect in that model is denoted by β_{10} and is equal to 0.17%. The equation for β_1 now is:

$$\beta_1 = -0.17 + 0.13 \ pm_{it} + 0.35 \ inc_{it} + 0.03 \ urb_{it}$$

Among three variables, the only coefficient that is not statistically significant is urb (β_{13}). Comparing given magnitudes, the coefficient of inc (β_{12}) has the greatest value. This means that income has a dominant influence on the rebound effect making consumers almost indifferent to fuel prices. Given the rebound effect is negative by definition, 1% increase in income leads to 0.0035% decrease in β_1 . Similarly 1% increase in pm (β_{11}) causes 0.0013% decrease in β_1 . Given relationship between the rebound effect and fuel efficiency in equation (12), it means that CAFE standards incorporated in $\varepsilon_{F,E}$ is more effective at high income and prices levels.

Summaries of the rebound effect over the whole sample as well as across states and time are

Variable	Obs	Mean	Std. Dev.	Min	Max
rebound	1836	1702133	. 0831993	3819439	. 0882224

represented below.

Variable	0bs	Mean	Std. Dev.	Min	Max
rebound_a_yr	36	1702133	.0525168	2413779	0493691

Table 2. Average value of the rebound effect across whole sample

Variable	Obs	Mean	Std. Dev.	Min	Max
rebound_a_~e	51	1702133	. 0605998	2890511	0467663

Table 3. Average value of the rebound effect across time

Table 4. Average value of the rebound effect across states

The value of the rebound effect from Model#3 (-0.17) is close to the Model#2 value (-0.166), but different from Model#1 value (-0.23), which turned out to be biased. The summary of the rebound effect by year and by state is presented in the Appendix F-1-2. We notice that the rebound effect varies from state to state. It might be the lifestyle matter or the case that the state with flat terrain has smaller rebound effect compared to mountainous terrain. It is also small for more economically developed states. The reasons for this could be that wealthier states have strict green house gas emissions policies or better public transportation, hence drive less. We also represent the rebound effect changing over time graphically.

Figure 1. The rebound effect over time

Its dynamics could be caused by some historical fuel market shocks and is consistent with price charts for the same period of time. The lowest level of the rebound effect was around 1980s, most likely as a result of fuel price increase during Iraq-Iran war¹¹. In 1998 where we see the highest level of the rebound effect that could be characterized by low fuel price.

9

¹¹ http://zfacts.com/gas-price-history-graph

6. Conclusion

Energy efficiency standards such as CAFÉ do not always lead to pure consumption economy effect, consequently pollution reduction for the reason of the rebound effect. On the average, it reduces the effectiveness of energy efficiency policies by 0.17 points.

To correctly estimate the rebound effect, the estimation should account for time-invariant characteristics and such interacting variables as income and price of fuel per mile. The higher the value of these variables the more effective are the pollution reduction policies.

The analysis suggests that the rebound effect does matter in environmental policy questions. Therefore, it should be taken into account both on the technological and policy levels of energy efficiency decision-making. Thus environmentally conscious states should not only motivate energy-efficient technological innovations and policy, but also should promote economic development. On the country level, federal policies should also account for specifics of each state due to the varying rebound effect across states. This means that policies would better achieve their goal if lowered to state level.

7. References

Azevedo, Inês M. L. "Consumer End-Use Energy Efficiency and Rebound Effects." Annual Reviews. Department of Engineering and Public Policy, Carnegie Mellon University, Oct. 2014.

LaLonde, Steven M. "Transforming Variables for Normality and Linearity When, How, Why and Why Not's." Rochester Institute of Technology, 2012. Web. 26 Apr. 2016.

Linn, Joshua. "The Rebound Effect for Passenger Vehicles." SSRN Electronic Journal SSRN Journal.

Madureira, Nuno Luis. "The Rebound Effect." Key Concepts in Energy (2014): 33-52. June 2014. Web. June 2014.

Osborne, Jason W. "Normalizing Data Transformations." ERIC - Normalizing Data Transformations. ERIC Digest., 2002-Aug. ERIC Clearinghouse on Assessment and Evaluation College Park MD, Aug. 2002. Web. 26 Apr. 2016.

Small, Kenneth A., and Kurt Van Dender. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect." EJ The Energy Journal 28.1 (2007).

Appendix A: Definitions of variables

Expressed in given table are definitions of variables that are created by means of STATA software. See Appendix G for used commands to create variables.

Variables	Definition
VMT	$vmt_state*1000000$
VMA	$VMT/adult_pop$
vma	ln(VMA)
VEH	$(no_auto + no_truck)/adult_pop$
veh	ln(VEH)
F	fuel intensity (note: this is the inverse of efficiency)
PF	$(gas_price + state_gas_tax + fed_gas_tax)/(cpi_87/100)$
PM	PF*F
pm	ln(PM) - mean(ln(PM))
INC	(state_income/(cpi_87/100))/state_population
inc	ln(INC) - mean(ln(INC))
ARM	$adult_pop/road_mileage$
arm	ln(ARM)
POPA	$state_population/adult_pop$
popa	ln(POPA)
URB	fraction of pop in urban area
urb	URB-mean(URB)
RAILPOP	Fraction of urban pop with heavy rail access
D7479	dummy variable= 1 if $year = 1974$ or $year = 1979$
TREND	year-1966
pf	ln(PF)
PV	new_car_price/100
pv	ln(PV)
LA	$lic_driver/adult_pop$
la	ln(LA)
cafe	CAFE strictness

Appendix B: Summary statistics table

Max	Min	Dev.	Std.	Mean	0bs	Variable
3.11e+1	8.30e+08	+10	3.936	3.52e+10	1836	VMT
23333.320	4,747.613	714	2,537.	10929.332	1836	VMA
10.058	8.465	235	0.	9.272	1836	vma
1.710	0.458	189	0.	0.999	1836	VEH
0.540	-0.781	197	0.	-0.020	1836	veh
0.09	0.034	012	0.	0.061	1836	F
194.90	60.320	524	23.	108.922	1836	PF
14.20	2.782	275	2.	6.814	1836	PM
0.793	-0.837	349	0.	-0.000	1836	pm
27266.92	6,453.909	928	3,315	14586.850	1836	INC
0.65	-0.790	. 228	0.	0.000	1836	inc
490.198	2.583	274	68.	57.728	1836	ARM
6.19	0.949	935	0.	3.614	1836	arm
1.73	1.231	.090	0.	1.418	1836	POPA
0.55	0.208	062	0.	0.347	1836	popa
1.000	0.290	195	0.	0.713	1836	URB
0.28	-0.423	195	0.	0.000	1836	urb
1.000	0.000	207	0.	0.088	1836	RAILPOP
1.000	0.000	229	0.	0.056	1836	D7479
35.000	0.000	391	10	17.500	1836	TREND
5.27	4.100	203	0.	4.669	1836	pf
1.49	0.777	197	0.	1.066	1836	PV
0.40	-0.252	178	0.	0.048	1836	pv
1.149	0.625	.083	0.	0.905	1836	LA
0.139	-0.470	. 094	0	-0.104	1836	la
0.349	0.000	113	0.	0.103	1836	cafe

Appendix C: Interpretation of the coefficient

 β_1 is the coefficient for pm_{it} according to the model. Because vma_{it} and pm_{it} are in log-log form, given their definition in Table 1, relationship in equation (12), β_1 is the elasticity of vma_{it} with respect to pm_{it} and denotes the absolute value of the rebound effect:

$$\beta_1 = \left(\frac{\partial vma_{it}}{\partial pm_{it}}\right) = -\varepsilon_{M,PM}$$

Appendix D: Regression Model #1 analysis results

. reg vma pm v	reh inc arm po	pa urb RAI	LPOP D7479	TREND		
Source	SS	df	MS		Number of obs	= 1836
Model Residual	83.4273507 17.7061602		9696692		F(9, 1826) Prob > F R-squared	= 955.97 = 0.0000 = 0.8249
Total	101.133511	1835 .0	5511363		Adj R-squared Root MSE	= 0.8241 = .09847
vma vma	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
pm veh	2301315 .5797463	.012462	-18.47 27.17	0.000 0.000	2545727 .5378923	2056903 .6216004
inc	1527639	.0192735	-7.93	0.000	1905643	1149636
arm	0222661	.0055999	-3.98	0.000	0332489	0112833
popa urb	.1066056 0243707	.075276	1.42 -1.22	0.157 0.223	0410305 0635926	. 2542417 . 0148511
RAILPOP	0460049	. 0141874	-3.24	0.001	0738302	0181796
D7479	.0417092	.0105033	3.97	0.000	.0211095	.0623088
TREND _cons	.0072272 9.202452	.000657 .0427698	11.00 215.16	0.000 0.000	.0059386 9.118569	.0085158 9.286335

- 1. Strongly balanced refers to the fact that all states have data for all years. We could run the analysis even if one state didn't have data for one year but that would lead us to study unbalanced data.
- 2. The p-value for each term tests the null hypothesis that the beta coefficient is equal to zero, thus the variable has no effect on predictor variable vma_{it} . A low p-value (< 0.05) indicates that we can reject the null hypothesis. In other words, a predictor that has a low p-value is likely to be a meaningful addition to the model because changes in the predictor's value are related to changes in the response variable. Conversely, a larger (insignificant) p-value suggests that changes in the predictor are not associated with changes in the response.

Appendix E: Models #1-3 regression results and comparison

Model #2 regression results:

. xtreg vma pr	n veh inc arm	popa urb Ri	AILPOP D74	79 TREND	, fe	
Fixed-effects	(within) reg	ression		Number	of obs	1836
Group variable	e: id			Number	of groups :	= 51
R-sq: within	= 0.8955			Obs per	group: min :	= 36
between	n = 0.1897				avg :	= 36.0
overal:	L = 0.5570				max :	= 36
				F(9,177	6) :	= 1691.32
corr(u_i, Xb)	= -0.0087			Prob >	F :	- 0.0000
Ama	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
pm	1662821	.0080003	-20.78	0.000	1819731	1505911
veh	. 2569884	.0209681	12.26	0.000	.2158637	. 2981132
inc	.401629	. 0244874	16.40	0.000	.3536018	.4496562
arm	0579252	.0111761	-5.18	0.000	0798449	0360056
popa	1272982	. 0757926	-1.68	0.093	2759504	.021354
urb	. 1438621	.0960269	1.50	0.134	0444755	.3321997
RAILPOP	0430473	.0145531	-2.96	0.003	0715903	0145044
D7479	.0143666	.0060378	2.38	0.017	.0025247	.0262085
TREND	.0020035	.0005747	3.49	0.001	.0008763	.0031307
_cons	9.498745	.0532432	178.40	0.000	9.394319	9.603171
sigma_u	. 14777285					
sigma_e	.0556544					
rho	. 8757767	(fraction	of variar	nce due t	o u_i)	
F test that a	F test that all u_i=0: F(50, 1776) = 86.38 Prob > F = 0.0000					

Model #3 regression results:

(within) rec	raccion		Mumber o	f ohe	=	18
Fixed-effects (within) regression Group variable: id						10
e. Iu			Mumber o	r group)5 =	
= 0.9064			Obs per	group:	min =	
n = 0.5118			_		avg =	36
1 = 0.7122					max =	
			F(12,177	3)	=	1431.
= -0.1241			Prob > F		=	0.00
Coef.	Std. Err.	t	P> t	[95%	Conf.	Interva
1709124		01 22	0 000	101	.066	15456
1						.15707
1						.40850
1						. 07453
1						. 28992
						.44445
						03978
						.47949
1						19207
1						. 02769
1						. 01675
1						.0055
9.312383	.053706	173.40	0.000			9.4177
1						
	e: id = 0.9064 m = 0.5118 l = 0.7122 = -0.1241 Coef. 170213412869453467404026189125069623965954060801631448813921175000305300544480042583	e: id = 0.9064 n = 0.5118 l = 0.7122 = -0.1241 Coef. Std. Err. 1702134 .0079807 .1286945 .0144678 .3467404 .0314941 .0261891 .024652 .2506962 .019999 .3965954 .02440040608016 .0107159 .3144881 .0841323921175 .10199390003053 .0142761 .0054448 .0057666 .0042583 .0006413 9.312383 .053706 .11681398 .05271645	e: id = 0.9064 m = 0.5118 l = 0.7122 = -0.1241 Coef. Std. Err. t 1702134 .0079807 -21.33 .1286945 .0144678 8.90 .3467404 .0314941 11.01 .0261891 .024652 1.06 .2506962 .019999 12.54 .3965954 .0244004 16.250608016 .0107159 -5.67 .3144881 .084132 3.743921175 .1019939 -3.840003053 .0142761 -0.02 .0054448 .0057666 0.94 .0042583 .0006413 6.64 9.312383 .053706 173.40 .11681398 .05271645	e: id Number o = 0.9064 Obs per = 0.5118 1 = 0.7122 F(12,177 = -0.1241 F(12,177 Prob > F Coef. Std. Err. t P> t 1702134 .0079807 -21.33 0.000 .1286945 .0144678 8.90 0.000 .3467404 .0314941 11.01 0.000 .0261891 .024652 1.06 0.288 .2506962 .019999 12.54 0.000 .3965954 .024404 16.25 0.0000608016 .0107159 -5.67 0.000 .3144881 .084132 3.74 0.0003921175 .1019939 -3.84 0.0003921175 .1019939 -3.84 0.0003921175 .0006413 6.64 0.000 9.312383 .053706 173.40 0.000 .11681398 .05271645	e: id Number of group = 0.9064 m = 0.5118 l = 0.7122 F(12,1773) prob > F Coef. Std. Err. t P> t [95% 1702134 .0079807 -21.33 0.000185 .1286945 .0144678 8.90 0.000 .1003 .3467404 .0314941 11.01 0.000 .284 .0261891 .024652 1.06 0.288022 .2506962 .019999 12.54 0.000 .2114 .3965954 .0244004 16.25 0.000 .34870608016 .0107159 -5.67 0.0000816 .3144881 .084132 3.74 0.000 .14943921175 .1019939 -3.84 0.00059230003053 .0142761 -0.02 0.983026 .0054448 .0057666 0.94 0.3450058 .0042583 .0006413 6.64 0.000 9.207 .11681398 .05271645	e: id Number of groups = = 0.9064 Obs per group: min = n = 0.5118 avg = 1 = 0.7122 max = F(12,1773) = = -0.1241 Prob > F = Coef. Std. Err. t P> t [95% Conf. 1702134 .0079807 -21.33 0.000185866 .1286945 .0144678 8.90 0.000 .1003188 .3467404 .0314941 11.01 0.000 .284971 .0261891 .024652 1.06 0.288022161 .2506962 .019999 12.54 0.000 .2114722 .3965954 .0244004 16.25 0.000 .34873880608016 .0107159 -5.67 0.000 .34873880608016 .0107159 -5.67 0.0000818187 .3144881 .084132 3.74 0.000 .14947983921175 .1019939 -3.84 0.00059215850003053 .0142761 -0.02 0.983028305 .0054448 .0057666 0.94 0.3450058652 .0042583 .0006413 6.64 0.000 .0030005 9.312383 .053706 173.40 0.000 9.207049

Models #1-3 regression results comparison:

	-		Variable~h
	b/se/t	b/se/t	b/se/t
pm	-0.230***	-0.166***	-0.170*
	(0.01)	(0.01)	(0.01)
	-18.467***	-20.784***	-21.328*
veh	0.580***	0.257***	0.251*
	(0.02)	(0.02)	(0.02)
	27.167***	12.256***	12.535*
inc	-0.153***	0.402***	0.397*
	(0.02)	(0.02)	(0.02)
	-7.926***	16.401***	16.254
arm	-0.022***	-0.058***	-0.061
	(0.01)	(0.01)	(0.01)
	-3.976***	-5.183***	-5.674*
popa	0.107	-0.127	0.314
	(0.08)	(0.08)	(0.08)
	1.416	-1.680	3.738
urb	-0.024	0.144	-0.392*
	(0.02)	(0.10)	(0.10)
	-1.219	1.498	-3.845*
RAILPOP	-0.046**	-0.043**	-0.000
	(0.01)	(0.01)	(0.01)
	-3.243**	-2.958**	-0.021
D7479	0.042***	0.014*	0.005
	(0.01)	(0.01)	(0.01)
	3.971***	2.379*	0.944
TREND	0.007***	0.002***	0.004
	(0.00)	(0.00)	(0.00)
	11.000***	3.486***	6.640
pm2			0.129
			(0.01)
			8.895
inc_pm			0.347
_ F			(0.03)
			11.010*
urb_pm			0.026
			(0.02)
			1.062
constant	9.202***	9.499***	9.312*
231120410	(0.04)	(0.05)	(0.05)
	215.162***	178.403***	173.396
R-sqr	0.825	0.896	0.906
dfres	1826	1776	1773
RIC	_3936 9	_5389_4	-5562.1

¹⁶

Appendix F-1: Summary of the rebound effect by each year

30.	1966	2196822	3411312	0790096
62.	1967	2098839	3301935	0660828
144.	1968	2009672	3309192	0591326
204.	1969	193831	3154795	0505095
253.	1970	1945162	3050928	0536206
284.	1971	1950161	2943422	0583478
336.	1972	1848795	2752314	0426342
365.	1973	1613601	2612177	0384528
437.	1974	1183525	2210447	.017102
467.	1975	1248888	2498286	.0413676
548.	1976	1181674	2319278	.0591358
603.	1977	1143598	2107643	.0458816
617.	1978	112788	2188908	.0357406
673.	1979	0709045	172795	.0839781
761.	1980	0493691	1504354	.0663166

785.	1981	0540104	1377471	.0882224
857.	1982	0920899	1889832	.0694279
909.	1983	1286296	252086	.0356986
931.	1984	1333412	2607353	.0159111
984.	1985	1356444	2683529	0123966
1065.	1986	2033057	3328701	0778344
1074.	1987	2007578	3252831	060282
1128.	1988	2056258	3384833	0326082
1202.	1989	1940463	3266346	0287505
1231.	1990	1836841	3231619	0389447
1292.	1991	2112969	3422583	0604301
1338.	1992	2135911	3513148	0528374
1391.	1993	2226495	3461612	0392703
1469.	1994	2212509	3432928	0503672
1496.	1995	2219724	3455449	0367511
1551.	1996	2096557	3365785	0526623
1588.	1997	2130233	3384078	0456809
1681.	1998	2413779	3819439	0730419
1702.	1999	219757	3592894	0368605
1735.	2000	1583314	315166	.0094642
1800.	2001	1946707	3439374	0305618

Appendix F-2: Summary of the rebound effect by each state

	state	statemean	statemax	statemin
28.	Alabama	2516756	1166797	3344621
71.	Alaska	0506986	.0882224	1448113
86.	Arizona	1862949	0298633	2614515
115.	Arkansas	25014	1230938	3396029
L60.	California	1062407	.0528987	1977348
.85.	Colorado	1339775	0291012	2005527
232.	Connecticut	0486899	.0565424	1332798
261.	Delaware	1143023	0119319	2038067
315.	Dist. of Col.	0467663	.017102	1146403
336.	Florida	1704694	0437376	2432733
392.	Georgia	2218667	0976901	307136
120.	Hawaii	1001754	0106067	1779694
167.	Idaho	223708	0991118	3008585
179.	Illinois	1047319	.0127661	1912654
36.	Indiana	1943157	0537976	2862521
60.	Iowa	1666216	0248921	2609223
598.	Kansas	1759179	0414079	2673914
42.	Kentucky	2443009	1076251	3092119
74.	Louisiana	202466	0085478	2839732
90.	Maine	2082856	1031216	2744468
749.	Maryland	095913	. 011518	1816938
789.	Massachusetts	0915734	0059111	1611243
304.	Michigan	1465926	0162524	2300432
38.	Minnesota	1411581	0325788	196253
371.	Mississippi	2890511	1335947	3819439
			0523864	2803052
914.	Missouri	176381	0323004	2003032
914. 967.	Missouri Montana	176381 2165057	0323 064 0870477	3006174
67.				
	Montana	2165057	0870477	3006174

	state	statemean	statemax	statemin
1091.	New Jersey	0806571	.0046128	1641493
1127.	New Mexico	2543772	111444	3559431
1180.	New York	0845418	.026005	1865281
1213.	North Carolina	2115523	0995651	2801664
1240.	North Dakota	2125176	0670858	3309192
1274.	Ohio	1540974	0443851	2315968
1313.	0klahoma	2375201	0647115	3617037
1364.	Oregon	1696628	0305219	2337546
1391.	Pennsylvania	1551801	0410095	2263731
1407.	Rhode Island	1440764	0453955	2205173
1474.	South Carolina	2516782	113955	3184086
1510.	South Dakota	2264402	1002283	3142428
1519.	Tennessee	2181268	0869055	2891062
1568.	Texas	1768404	0356537	255071
1601.	Utah	2281016	1112768	3143393
1630.	Vermont	2036059	1054404	276358
1661.	Virginia	1590095	0292359	2538781
1703.	Washington	1398065	0167611	2134105
1737.	West Virginia	2423126	069841	3422683
1780.	Wisconsin	1873488	0446903	2669973
1809.	Wyoming	1890598	. 0295592	3208669

Appendix G: Program File

Attached on Blackboard

Appendix H: Statistical Output File

Attached on Blackboard