

Automotive Powertrain Technologies through 2016 and 2025

University of Michigan Transportation Research Institute Conference. Marketing New Powertrain Technologies: Strategies in Transition February 15, 2012

Mark Kuhn Ricardo Strategic Consulting

Agenda

- Introduction to Ricardo
- Technology Roadmaps
- Passenger Car Fuel Economy Improvement and Greenhouse Gas Reduction Potential

Ricardo is one of the world's leading automotive consulting companies

Established Success Factors

- Focused on value-adding services
- Solving key industry issues
- Program delivery as a core competence
- Investment in people and technology
- Critical mass with revenues exceeding \$330M and over 1500 people
- Independent and long established (1908)

Value-Adding Capabilities

International Presence

Global Client Base (selection)

Agenda

- Introduction to Ricardo
- Technology Roadmaps
- Passenger Car Fuel Economy Improvement and Greenhouse Gas Reduction Potential

Future Trends in Vehicle Technology

- Regulation is driving new technology & innovation to higher efficiency
 - Accelerating the rate of technology introduction to passenger cars
 - Trend is now continuing into the commercial vehicle space in US, Japan and Europe
- Passenger car efficiency dominated by ICE technologies in the short/med term
 - There is no "silver bullet" we will need a range of technologies to meet targets
 - A better understanding of life cycle emissions will enable more informed choices
 - Electrification is a longer term trend but we need a breakthrough in batteries
- Both evolutionary and disruptive technologies are likely to be successful
 - Intelligent Electrification is a key approach to enable more radical ICE technology
 - Mechanical Hybrids could offer substantial cost reductions over electric systems

Future Trends in Vehicle Technology

- Regulation is driving new technology & innovation to higher efficiency
 - Accelerating the rate of technology introduction to passenger cars
 - Trend is now continuing into the commercial vehicle space in US, Japan and Europe
- Passenger car efficiency dominated by ICE technologies in the short/med term
 - There is no "silver bullet" we will need a range of technologies to meet targets
 - A better understanding of life cycle emissions will enable more informed choices
 - Electrification is a longer term trend but we need a breakthrough in batteries
- Both evolutionary and disruptive technologies are likely to be successful
 - Intelligent Electrification is a key approach to enable more radical ICE technology
 - Mechanical Hybrids could offer substantial cost reductions over electric systems

Transportation sector is 33% of total CO₂ contribution. Nearly 65% comes from gasoline engines for personal vehicles

Source: EPA US GHG Inventory 2011 Complete Report http://www.epa.gov/climatechange/emissions/downloads11/US-GHG-Inventory-2011-Complete Report.pdf

The growth of both regulation and targets for Low Carbon Vehicles sets a major challenge for the road transport sector

USA, EU, Canada, Australia, China & Japan – Legislation / agreements for fuel economy or CO₂

USA has proposed target of

- 35.5 mpg by 2016
- 54.5 mpg by 2025
- Implemented over entire country by EPA

EU Proposal for Vans

- 175 g/km from 2014-16
- 135 g/km by 2020

Challenging Targets:

- US 4.7% pa to 2025
- EU 3.9% pa to 2020

[1] China's target reflects gasoline fleet scenario. If including other fuel types, the target will be lower.
[2] US and Canada light-duty vehicles include light-commercial vehicles.

25 MPG US CAFE 35.5 MPG US CAFÉ 30% impr. 54.5 MPG US CAFÉ 54% impr. fuel cons.

cource: http://www.nhtsa.gov/staticfiles/rulemaking/pdf/cafe/Oct2010_Summary_Report.pdf www.theicct.org/info/documents/PVstds_update_apr2010.pdf;

Regulation will continue to drive lower toxic emissions with additional fuel economy and CO₂ legislation likely

Future Trends in Vehicle Technology

- Regulation is driving new technology & innovation to higher efficiency
 - Accelerating the rate of technology introduction to passenger cars
 - Trend is now continuing into the commercial vehicle space in US, Japan and Europe
- Passenger car efficiency dominated by ICE technologies in the short/med term
 - There is no "silver bullet" we will need a range of technologies to meet targets
 - A better understanding of life cycle emissions will enable more informed choices
 - Electrification is a longer term trend but we need a breakthrough in batteries
- Both evolutionary and disruptive technologies are likely to be successful
 - Intelligent Electrification is a key approach to enable more radical ICE technology
 - Mechanical Hybrids could offer substantial cost reductions over electric systems

There are three interlinked phases of change required to current light duty powertrain technology and strategy

SHORT TERM: ~2015

- Boosting & downsizing
 - Turbocharging
 - Supercharging
- Low speed torque enhancements
- Stop/Start & low cost
 Micro Hybrid technology
- Friction reduction
- Advanced thermal systems
- Niche Hybrid, PHEV's and Electric Vehicles

MEDIUM TERM: ~2025

- High Efficiency Advanced Combustion:
 - Lean Stratified SI
 - Low temperature combustion
- Combined turbo/ supercharging systems
- Advanced low carbon fuel formulations
- PHEV's in premium & performance products
- EV's for city vehicles

LONG TERM: ~2050

- Plug-in/Hybrid electric systems dominate
 - Very high specific power ICE's
- Range of application specific low carbon fuels
- Exhaust & Coolant energy recovery
- Advanced thermodynamic Cycles
 - Split Cycle?
 - Heat Pumps?

Mass market roadmap developed by Ricardo shows that range of technologies will be required to meet regulatory targets

Regulation Basis:

Tailpipe CO₂ or Vehicle fuel efficiency

Well to
Wheels CO₂
& efficiency

Life Cycle Analysis

Future Trends in Vehicle Technology

- Regulation is driving new technology & innovation to higher efficiency
 - Accelerating the rate of technology introduction to passenger cars
 - Trend is now continuing into the commercial vehicle space in US, Japan and Europe
- Passenger car efficiency dominated by ICE technologies in the short/med term
 - There is no "silver bullet" we will need a range of technologies to meet targets
 - A better understanding of life cycle emissions will enable more informed choices
 - Electrification is a longer term trend but we need a breakthrough in batteries
- Both evolutionary and disruptive technologies are likely to be successful
 - Intelligent Electrification is a key approach to enable more radical ICE technology
 - Mechanical Hybrids could offer substantial cost reductions over electric systems

Ricardo HyBoost concept features "Intelligent Electrification" downsizing, e-Boost & brake energy recovery/stop/start

Fuel Economy Improvement/CO₂ Emissions Reduction:

Base vehicle (Ford Focus 2.0 litre Gasoline) 107 kW: 50% downsized 1 litre, Boosted DI, low friction 105 kW Add stop-start and 6kW re-generation during deceleration Add cooled EGR and revised turbo match via e-supercharger High torque enables taller gear ratios + gearshift advisor HyBoost vehicle CO₂ emissions

Disruptive lower cost hybrid technologies possible via high speed flywheel technology – Ricardo "kinergy"

- Primary USP of Flywheel technology is very high "round trip" energy efficiency
- Project to apply Torotrak & Kinergy® technology on a PSV (Optare bus)
- Reduces CO₂ emission by around 20 percent during urban stop-start operation.
- Partners:, Torotrak, Ricardo, Optare, Allison

To eliminate the need for vacuum seals a non-penetrative magnetic coupling system is used to transfer kinetic energy through the housing

Agenda

- Introduction to Ricardo
- Technology Roadmaps
- Passenger Car Fuel Economy Improvement and Greenhouse Gas Reduction Potential

Technical Input to EPA for 2017–2025 Light Duty Vehicle Greenhouse Gas Proposed Rule

Approach

- Ricardo team identified future technology packages and estimated their effects on fuel consumption
- Created new vehicle classes, implemented hybrid powertrains and controls (P2 and Powersplit), and incorporated new technology packages to define a broad design space
- Ricardo's complex systems modeling approach used to examine the extensive design space

Situation and objective

- EPA wanted objective technical input to support Notice of Proposed Rule Making (NPRM)
- Analysis estimates greenhouse gas emissions of future vehicles based on future technology packages and combinations thereof
- Use a defensible rationale for technology section revisions to rule including new/ revised technology definitions, technology selection logic, vehicle classes, and applicability

Results and benefits

- Broad design space examined hundreds of combinations of technologies, and their synergistic effects
- Predicted MPG reductions of 35% to 62% relative to baseline SI engine
- Technologies included combinations of advanced gasoline, diesel, hybrid, 8 speed transmissions
- Also included weight reduction, aerodynamics and reduced rolling resistance

Ricardo, EPA, ICCT, and Calif ARB identified several LDV technologies for further evaluation by Ricardo SMEs

Technology Identification Ricardo
Subject
Matter
Expert
Assessment

EPA Review &
Technology
Discussion

Technology Package Selection

- Engine technologies and configurations
 - Fuel injection, boost system, valvetrain, combustion, and controls
- Hybrid powertrain technologies and configurations
- Transmission technologies and configurations
 - Advanced automatics, CVT, DCT, launch devices
 - Transmission technologies
- Vehicle technologies
 - Mass reduction, aerodynamic improvements, rolling resistance, accessories

Gasoline engines focus will be on CO₂ reduction as emission legislation remains less challenging, even under LEV III

Source: Ricardo Analysis. Notes: CPS = camp profile switching, VVL = variable valve lift. GDI = gasoline direct injection. CAI = controlled auto ignition. TWC = 3-way catalyst, GPF = gasoline part. filter Non-Confidential - UMTRI 15 February 2012

Incremental improvements are the most cost effective route and make sense in context of CO₂ / fuel consumption penalties

Benchmark Passenger Car: - CO₂ Cost Benefit for Powertrain Technologies

Consumers buy vehicles – not powertrains – technologies must also compete on image, utility and lifestyle requirements and deliver fundamentally Good Cars

Technology packages in the 2020–2025 Design Space

• Engines:

- Stoichiometric direct-injection turbocharged (SDIT) SI engine
- Lean-stoichiometric direct-injection turbocharged (LDIT) SI engine
- EGR direct-injection turbocharged (EDIT) SI engine
- Atkinson cycle SI engine with cam-profile switching (CPS)
- Atkinson cycle SI engine with digital valve actuation (DVA)
- Advanced European Diesel
- Advanced U.S. Diesel
- 2010 Baseline SI engines
- 2010 Baseline Diesel engines

Transmissions:

- 2010 baseline six-speed automatic
- Advanced automatic transmission, eight-speed
- Dual clutch transmission, eight-speed, dry or wet clutch
- Powersplit planetary gearbox

© Ricardo plc 2012

Fuel economy improvements of 22-47% were predicted for various sized vehicles from standard car to pick-up truck

Fuel Economy Improvement*

Current technology (2010)

Estimated 2017-2025

Technologies included

- Cam phasing
- Variable valve lift
- Gasoline direct injection
- Diesel (for truck)
- Turbocharging
- Dual clutch transmission
- Electric accessories and fast engine warm-up
- Aero drag reduction & low rolling resistance tires
- Final drive ratio
- Oil and friction modifier

*Note 1: 22-47% fuel economy (MPG) improvement = 18-32% fuel consumption (gal/mile) reduction

Note 2: Change from old truck to new std. car reduces fuel consumption by 59%

Hybrid and conventional powertrains can lead to similar GHG emissions; improvements from 25% to 62% reduced CO₂

Various C Class vehicle configurations can achieve similar GHG levels

C Class Vehicle Configuration	Vehicle Mass	Rolling Resist.	Aero. Drag	g CO ₂ /km on NEDC	% Reduction from baseline
Baseline with SI engine	100%	100%	100%	165	
Baseline with Diesel engine	100%	100%	100%	124	25%
	100%	100%	100%	107	
Stoich DI Turbo + 8-spd DCT	85%	90%	90%	93	
	70%	80%	80%	80	52%
	100%	100%	100%	104	
Adv EU Diesel + 8-spd DCT	85%	90%	90%	93	
	70%	80%	80%	83	50%
	100%	100%	100%	96	
Atkinson (CPS) Powersplit Hybrid	85%	90%	90%	86	
	70%	80%	80%	77	53%
	100%	100%	100%	81	
Atkinson (CPS) P2 Hybrid	85%	90%	90%	71	
	70%	80%	80%	62	62%

All other parameters are at 100% of nominal C Class value

Conclusions – Aggressive fuel consumption and lower GHG standards will drive innovation in passenger car segments

- Several technology combinations will be pursued in parallel to help meet new fuel economy and GHG emissions standards
 - Mix will include more than just hybrids
 - Downsized engines and advanced transmissions have a role to play
 - Continued development in aerodynamics, lightweighting and reduced rolling resistance
- Trends and product announcements from the industry are consistent with those predicted by Ricardo for this study
 - E.g., 2012 Ford Escape with downsized engine replacing hybrid option
- With eye on 2016 requirements and knowing that tougher rules are coming in the US, EU, and Japan, manufacturers and suppliers have not been sitting idle
 - Several manufacturers implementing advanced valvetrain designs
 - Several manufacturers implementing turbocharging and direct injection to support downsizing engines
 - Hybridization and electrification of vehicles continues

Thank you for your attention...

