2019-09-10

Следствие

G - кон. группа, $a\in G,$ ord a=m, $H=\{a^n:n\in\mathbb{Z}\},$ тогда |H|=m

Док-во

$$\{a^0=e,a_1,...,a^{m-1}\}$$
 - подмножество Н Докажем, что все остальные элементы тоже здесь есть $n\in\mathbb{Z}\Rightarrow n=mq+r,\ 0\leqslant m-1$ $a^n=a^{mq+r}=(a^m)^qa^r=a^r$ $a^k=a^l,\ 0\leqslant k\leqslant l\leqslant m-1,\$ умножим на a^{-k} $e=a^{l-k}\ o\leqslant l-k\leqslant m-1$ m - наименьшее $\mathbb N$ такое что $a^m=e$ $l-k=0\Rightarrow l=k$ Докажем, что $|H|=m$ $\Rightarrow |G|: m={\rm ord}\ a,\$ т.о. в группе порядок эл-та - делитель порядка группы

Напоминание

Следствие (теорема Эйлера)

$$n,a\in\mathbb{N},\,(a,n)=1,\,$$
тогда $a^{\varphi(n)}\equiv 1(modn)$

Док-во

Рассмотрим
$$G=(\mathbb{Z}/n\mathbb{Z})*\ |G|=\varphi(n)$$
 $\overline{a}\in G, \ \mathrm{ord}\ \overline{a}=k$ $\varphi(n):k\Rightarrow \varphi(n)=kl$ $\overline{a}=\overline{1}$ $\overline{a}^{\varphi(n)}=\overline{1}$

Опр

G - циклическая группа, если $\exists g \in G: \forall g' \in G: \exists k \in \mathbb{Z}: g' = g^k$ Такой g называется образующим

Опр

 \mathbb{Z} (образующий - единица и минус единица)

Замечание

Любая циклическая группа - коммунитативна

Док-во

$$g'g'' = g''g' = g^kg^l = g^lg^k$$

Пусть G,H - группы, рассмотрим $G \times H = \{(g,h) : g \in G, h \in H\}$

Введем операцию $(g,h)*(g',h') \stackrel{def}{=} (g*_{G}g',h*_{H}h')$

Докажем, что это группа.

Доказательство ассоциативности: $((g,h)(g',h'))(g'',h'') \stackrel{?}{=} (g,h)((g',h')(g'',h'')$ $(gg',hh')(g'',h'') \stackrel{?}{=} (g,h)(g'g'',h'h'')$

$$((gg')g'',(hh')h'')\stackrel{?}{=}(g(g',g''),h(h'h'')$$
 - очевидно

Нейтральный элемент:

Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \{(\overline{0}, \overline{0}), (\overline{0}, \overline{1}), (\overline{1}, \overline{0}), (\overline{1}, \overline{1})\}$

Опр

Конечная группа порядка n является циклической тогда и только тогда, когда она содержит элемент порядка n (|G|=n, G - циклическая $\exists g \in G : ordg = n)$

Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ - циклическая $((\overline{1},\overline{1}),(\overline{0},\overline{2}),(\overline{1},\overline{0}),(\overline{0},\overline{1}),(\overline{1},\overline{2}))$ Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ - не циклическая

Опр

 $\varphi:G\to H$ - биекция и $\varphi(g_1,g_2)=\varphi(g_1)\varphi(g_2)$ $\ \, \forall g_1,g_2\in G,$ тогда φ - изоморфизм

Примеры

- 1. $D_3 \rightarrow S_3$
- 2. $U_n = \{z \in \mathbb{C} : z^n = 1\} \leftarrow \mathbb{Z}/n\mathbb{Z}$ $(\frac{2\pi a}{n} + i\sin\frac{2\pi a}{n} = \varphi \overline{a}\overline{a})$ $\overline{a} = \overline{b} \to \varphi(\overline{a}) = \varphi(\overline{b})$ $\varphi(\overline{a} + \overline{b}) \stackrel{?}{=} \varphi(\overline{a})\varphi(\overline{b})$ $\cos\frac{2\pi(a+b)}{n} + i\sin\frac{2\pi(a+b)}{n} = (\cos\frac{2\pi a}{n} + i\sin\frac{2\pi a}{n})$

Опр

Две группы называются изоморфными, если между ними существует изоморфизм

y_{TB}

Изоморфизм - отношение эквивалентности

Док-во

т.к. композиция изоморфизмов - изоморфизм $G \stackrel{e}{\to} H \stackrel{\psi}{\to} H$ $(\psi \circ \varphi)(g_1g_2) = \psi(\varphi(g_1g_2) = \psi(\varphi(g_1)\varphi(g_2)) = \psi(\varphi(g_1))\psi(\varphi(g_2)) = (\psi \circ \varphi(g_1g_2)) = (\psi \circ \varphi(g_1g_2))$

$$\varphi$$
) $(g_1) \circ (\psi \circ \varphi)(g_2)$

Рефлексивность - тождественное отображение - изоморфизм

Транзитивность: $G \underset{\varphi}{\rightarrow} H, H \underset{\varphi^{-1}}{\rightarrow} G$

Теорема

G - циклическая группа

- 1) $|G| = n \Rightarrow G \cong \mathbb{Z}/n\mathbb{Z}$
- 2) $|G| = \infty \Rightarrow G \cong \mathbb{Z}$

Док-во

1) g - обр. G, значит $G = \{e, g, g^2, ..., g^{n-1}\}$ (среди них нет одинаковых),

построим изоморфизм в $\mathbb{Z}/n\mathbb{Z}$: $\varphi(g^k)=\overline{k}$

Проверим, что $\varphi(g^kg^l) = \varphi(g^k) + \varphi(g^l) = \overline{k} + \overline{l}$ Левая часть: $\varphi(g^{k+l} = \overline{(k+l)} \mod n = \overline{k} + \overline{l}$

2) $G = \{..., g^{-1}, e, g, g^2, ...\}$ (тоже нет совпадающих элементов, иначе $g^k = g^l$, при k > l, тогда $g^{k-l} = e$, но тогда конечное число элементов, потому что оно зацикливается через каждые k-l элементов), построим отображение в \mathbb{Z} .

 $\varphi(g^n) = n$ -, очевидно, биекция. И нужно доказать, что $\varphi(g^n g^k) = \varphi(g^n) - \varphi(g^k) = n + k$