

## **Motivation and Goal**

Cutting-edge technologies in an under-represented field

# Motivation: A Different Kind of Learning

- High demand for reading comprehension development
  - Corr. with strong decoding & listening comprehension (Hagtvet 2003)
  - Especially true in learning a new language
    - Knowledge of target language key to reading comprehension ability (Verhoeven 2011)







- High demand for motivation-driven learning
  - McNamara (2012): "motivation should be included explicitly in instruction...[in] reading comprehension"
    - Corroborated by Logan (2011)
- Can come in many forms:
  - Gamification
  - Customization
  - Monetary rewards
  - o Etc.

## Goal: To develop a language-learning system that...

## Motivates & excites students

Employs techniques like gamification and customization to ensure students keep pursuing their learning

# Focuses on reading comprehension

Makes the development of this skill the primary objective, as opposed to a pedagogical afterthought

## Leverages cutting-edge tech

Utilizes state-of-the-art libraries for machine learning, NLP, and other critical functions

# Background & Related Work

Existing literature at three levels of granularity

## Language-Learning Applications



#### Memrise

A flashcard-driven course repository that is extensive yet limited by its user-created content and form factor



### Duolingo

A popular service with well-crafted courses and strong gamification hooks, which lacks only in its reading comprehension strategies

## **Reading Comprehension Systems**



#### Lingua.com

A dedicated reading comprehension library with many texts but suboptimal customization and feedback options



#### Readlang

A browser extension allowing users to translate foreign texts on-the-fly, filling a unique, yet insufficient in the language market

## Machine Learning and NLP in Readability

This project leveraged a number of papers in the surprisingly dense field of NLP for Portuguese text readability.

## Automatic Text Difficulty Classifier Assisting the Selection Of Adequate Reading Materials For European Portuguese Teaching

Pedro Curto<sup>1,2</sup>, Nuno Mamede<sup>1,2</sup> and Jorge Baptista<sup>1,3</sup>

<sup>1</sup> Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

<sup>2</sup> INESC-ID Lisboa/L2F – Spoken Language Lab, R. Alves Redol, 9, 1000-029 Lisboa, Portugal

<sup>3</sup> Universidade do Algarve/FCHS and CECL, Campus de Gambelas, 8005-139 Faro, Portugal

{pedro.curto, nuno.mamede}@12f.inesc-id.pt, jbaptis@ualg.pt

#### **Automatic Construction of Large Readability Corpora**

Jorge Alberto Wagner Filho, Rodrigo Wilkens and Aline Villavicencio
Institute of Informatics, Federal University of Rio Grande do Sul
Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil
{jawfilho,rodrigo.wilkens,avillavicencio}@inf.ufrgs.br

## **Approach**

Bringing reading comprehension, gamification, and machine learning together

## Idioma: A Web App for Reading Comprehension

**Central Conceit:** A web application that leverages NLP classifiers and a proprietary algorithm to offer a student documents tailored to their experience and interests

#### Advantages:

- 1. Centralizes reading comprehension
- 2. Enables use of leading tech, especially in ML and NLP
- Foregrounds user agency & retention through gamification and customization
- 4. Presented in an intuitive and accessible web interface

## **Implementation**

The inner workings of the Idioma application

## **Construction Overview**



#### Article Selection Algorithm

#### Pipeline:

- "Relevance" of each grammatical feature at right is calculated
- 100 articles sampled from set
- "Prevalence" of each feature at right in each article is calculated
- "Relevance" and "Prevalence" aggregated into a normalized "Appropriateness" score
- Highest-scoring article returned to user





## Demo!

Let us step through a student's potential first session on the Idioma application

## Data, Models & Results

The data, the models, and the results that they enabled

## Data & Modeling Suite

#### Training Data:

- Supplied by Jorge Filho
- ~5,300 instances (documents)
- Labeled 'difficult' or 'simple'

Instances (like example pictured below) fed to the modeling suite classifiers during training

#### Implemented Classifiers:

- Decision Tree
- Random Forest
- Bagging
- Gaussian Naive-Bayes
- K-Nearest Neighbor
- Multi-layer Perceptron
- Support Vector Classifier
- SGD Classifier



## **Model Performance**

#### Chosen Implementation:

Best-of-3 approach using Bagging, Random Forest, and MLP

#### **Notable Observations:**

- High, yet inverse, precision-recall disparities in SGD and Gaussian NB
- Bagging performs very well using very few features

| Metrics and<br>Statistics        | % Features Used | Accuracy | Precision | Recall | F-measure |
|----------------------------------|-----------------|----------|-----------|--------|-----------|
| Decision Tree                    | 0.6             | 0.73     | 0.68      | 0.69   | 0.68      |
| Stochastic Gradient<br>Descent   | 0.65            | 0.55     | 0.49      | 0.98   | 0.65      |
| Multi-Layer Perceptron 🖈         | 0.5             | 0.81     | 0.72      | 0.88   | 0.79      |
| Gaussian (Naive Bayes)           | 0.5             | 0.7      | 0.8       | 0.35   | 0.48      |
| Bagging 🛨                        | 0.35            | 0.79     | 0.74      | 0.74   | 0.74      |
| Random Forest 🛨                  | 0.55            | 0.85     | 0.79      | 0.84   | 0.81      |
| Support Vector Classifier        | 0.45            | 0.79     | 0.71      | 0.86   | 0.78      |
| k-Nearest Neighbor<br>Classifier | 0.65            | 0.8      | 0.74      | 0.81   | 0.77      |

# Conclusion & Future Work

Looking backward at our development and forward towards future extensions

#### Self-Assessment

Idioma's current iteration meets & exceeds all of the project objectives:

- Motivates learners through achievements & greater agency over their learning path
- Lays foundation for consistent, challenging reading comprehension practice
- Leverages cutting-edge tech, and can easily be extended to keep doing so in the future

#### Future Work

#### Opportunities for future contribution:

- Extension of web scraper to other hosts
- Expansion of modeling suite to keep pace with ML innovation
- Refinement of authentication system
- Construction of more practical and useful data set
- Algorithmic and parametric tweaks

Code and data set available at:

https://github.com/paulo892/IdiomaFinal



### Credits - SlidesGo.com

#### See below for credits for the template used for this presentation:

Presentation template by <u>Slidesgo</u>

Icons by <u>Flaticon</u>

Images & infographics by Freepik

Big image slide photo created by **jcomp** - Freepik.com

Text & Image slide photo created by **rawpixel.com** - Freepik.com

Text & Image slide photo created by **Freepik**