Examen de contrôle continu

Dur'ee: 2h

Documents et calculatrices interdits

Exercice 1 (Questions de cours). Soit E un \mathbb{R} -espace vectoriel.

- 1. Rappeler la définition d'une forme bilinéaire symétrique b sur E (il est demandé de définir précisément la notion, on ne se contentera pas, par exemple, de dire sous quelle condition une forme bilinéaire est symétrique).
- 2. Soit b une forme bilinéaire. Montrer que b est antisymétrique si et seulement si $\forall x \in E, \ b(x,x) = 0.$
- 3. Soit $\langle \cdot, \cdot \rangle$ un produit scalaire sur E. Montrer l'identité du losange :

$$\forall x, y \in E, \ x \perp y \iff ||x + y||^2 = ||x - y||^2.$$

Exercice 2. Sur l'espace $E = \mathbb{R}_3[X]$, on considère les quatre formes linéaires ϕ_1, ϕ_2, ϕ_3 et ϕ_4 définies par

$$\phi_1(P) = P(0), \quad \phi_2(P) = P'(0), \quad \phi_3(P) = P(1), \quad \phi_4(P) = P'(-1).$$

- 1. Montrer que la famille $\mathcal{B} = (\phi_1, \phi_2, \phi_3, \phi_4)$ forme une base de E^* .
- 2. Calculer la base préduale (P_1, P_2, P_3, P_4) de \mathcal{B} .
- 3. Exprimer la forme linéaire ψ définie par $\psi(P) = P(-1)$ comme combinaison linéaire de $(\phi_1, \phi_2, \phi_3, \phi_4)$.

Exercice 3. Sur l'espace $E = \mathbb{R}^3$, on se donne la forme quadratique

$$\Phi((x_1, x_2, x_3)) = x_1^2 + 8x_2^2 + 3x_3^2 + 4x_1x_2 - 2x_1x_3 + 4x_2x_3.$$

- 1. Donner la forme bilinéaire symétrique ϕ associée à Φ .
- 2. Donner la matrice $\operatorname{Mat}_{\mathcal{B}}(\Phi)$ de Φ dans la base canonique \mathcal{B} de \mathbb{R}^3 .
- 3. Faire une réduction de Gauss de Φ .

Exercice 4. Sur l'espace $E = \mathbb{R}_2[X]$, on considère la forme bilinéaire symétrique

$$\langle P, Q \rangle = P(0)Q(0) + P'(0)Q'(0) + P(1)Q(1).$$

- 1. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E.
- 2. Quelle est la norme $\|\cdot\|$ associée à ce produit scalaire?
- 3. Enoncer l'inégalité de Cauchy-Schwarz pour $\langle \cdot, \cdot \rangle$ et donner le cas d'égalité.
- 4. Enoncer l'inégalité de Minkoswki pour || ⋅ || et donner le cas d'égalité.