Algèbre Linéaire II —

Exercices complémentaires – Feuille 4

1 Rang d'une matrice

Exercice 1. Calculer par la méthode de Gauss le rang des matrices suivantes :

(a)
$$A = \begin{pmatrix} 4 & 6 & 8 & 0 \\ 1 & 2 & 3 & 0 \\ 3 & 4 & 5 & 0 \end{pmatrix}$$
 (c) $C = \begin{pmatrix} 1 & 0 & -1 & 2 & 3 \\ 2 & -1 & 0 & 1 & 3 \\ 3 & -1 & -1 & 3 & 6 \\ 5 & -2 & -1 & 4 & 9 \end{pmatrix}$

(b)
$$B = \begin{pmatrix} 3 & 4 & 4 & 0 \\ 1 & 3 & 2 & -2 \\ 2 & 1 & 2 & 2 \end{pmatrix}$$
 (d) $D = \begin{pmatrix} 1 & -2 & 1 & 0 & 7 \\ 2 & 3 & 0 & -1 & 0 \\ 0 & 1 & 2 & -3 & 2 \\ -1 & -1 & 3 & -1 & 7 \end{pmatrix}$

Exercice 2. Calculer par la méthode de Gauss le rang des matrices suivantes en fonction des différentes valeurs de $t \in \mathbb{R}$:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & t \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & -1 & t \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \end{pmatrix}$$

Exercice 3. Discuter le rang de la matrice suivante en fonction des différentes valeurs de $a, b \in \mathbb{R}$ par la méthode de Gauss

$$A = \begin{pmatrix} a & 3 & 12 & 6 \\ b & 1 & 4 & 2 \\ a+b & 4 & 16 & 8 \end{pmatrix}$$

Exercice 4. Calculer par déterminants le rang des matrices suivantes :

(a)
$$A = \begin{pmatrix} -1 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$
 (c) $C = \begin{pmatrix} 1 & -2 & -3 & -4 & -5 \\ -1 & 3 & 2 & 6 & 3 \\ 0 & 5 & 5 & 2 & 1 \end{pmatrix}$

(b)
$$B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 5 \\ 0 & 1 & 4 \end{pmatrix}$$
 (d) $D = \begin{pmatrix} 2 & -1 & 1 & 2 & 2 & 3 \\ 0 & 1 & 1 & 1 & 8 & 9 \\ 0 & 0 & 1 & 1 & 4 & 6 \\ 0 & 0 & 0 & 1 & 8 & 9 \end{pmatrix}$

Exercice 5. Soient les matrices

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -1 \\ 2 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & 2 & 0 \\ 3 & -1 & 1 \end{pmatrix}$$

Est-ce qu'est-il vrai que rang(AB) = rang(A) rang(B)?

Exercice 6. Soit $A = \begin{pmatrix} 1 & a \\ 2 & b \\ -1 & 1 \\ -3 & c \end{pmatrix}$. Calculer les valeurs de $a, b, c \in \mathbb{R}$ tels que rang(A) = 1.

Exercice 7. Calculer le rang des matrices suivantes en fonction des différentes valeurs de $a \in \mathbb{R}$:

$$A = \begin{pmatrix} a & a & 1 & 1 \\ 1 & a & a & 1 \\ 1 & 1 & a & a \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 0 & a & 2 \\ -1 & 0 & -1 & 3 \\ 5 & a+4 & -4 & -3 \end{pmatrix}$$

Exercice 8 (Extra ball). Les matrices A et B ont 3 lignes et 12 colonnes, mais pendant l'impression de cette feuille quelques colonnes se sont effacées :

$$A = \begin{pmatrix} 1 & 1 & -1 & \dots & \dots \\ 3 & -1 & 0 & \dots & \dots \\ -7 & 5 & -2 & \dots & \dots \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -1 & 3 & \dots & \dots \\ 3 & 0 & 1 & \dots & \dots \\ 5 & 4 & 0 & \dots & \dots \end{pmatrix}$$

- 1. Qu'est-ce qu'on peut dire des possibles valeurs de rang(A) et rang(B)?
- 2. Si on construit une matrice C dont ses colonnes sont les 24 colonnes de A et B, quel est le rang de C?

2 Applications linéaires

Exercice 9. Vérifier si les applications entre R-espaces vectoriels suivantes sont-elles linéaires :

- 1. $f: \mathbb{R}^2 \to \mathbb{R}$ et $g: \mathbb{R}^3 \to \mathbb{R}$ définies par
 - (a) f(x,y) = x + y + 1

(c) g(x, y, z) = x + y + 2z

(b) f(x,y) = xy

(d) g(x,y,z) = x - z

- 2. $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par
 - (a) f(x,y) = (x,0)

(d) f(x,y) = (x+1,y+1)

(b) f(x,y) = (x,1)

(e) $f(x,y) = (e^x, e^y)$

(c) $f(x,y) = (x^2, y^2)$

(f) f(x,y) = (2x - y, x + y)

- 3. $q: \mathbb{R}^3 \to \mathbb{R}^3$ définie par
 - (a) g(x, y, z) = (x, 2y, 3z)

(c) g(x, y, z) = (x + 1, y + 2, z + 3)

(b) $q(x, y, z) = (x, y^2, z^3)$

(d) g(x, y, z) = (x + z, 0, x + y)

Exercice 10. Calculer les sous-espaces *noyau* et *image* des applications de l'exercice précèdent et en déduire si sont injectives, surjectives, bijectives.

Exercice 11. Soit $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels et d'inconnue X. Pour $n \in \mathbb{N}$, on considère le sous-espace vectoriel $\mathbb{R}_n[X] = \{P \in \mathbb{R}[X] \mid \deg p \leq n\}$.

- 1. Est-ce que les applications suivantes sont-elles linéaires?
 - (a) $f_1: \mathbb{R}[X] \to \mathbb{R}[X]$ avec $f_1(P) = P'$.
 - (b) $f_2: \mathbb{R}_3[X] \to \mathbb{R}_3[X] \text{ avec } f_2(P) = P'.$
 - (c) $f_3: \mathbb{R}_3[X] \to \mathbb{R}^3$ avec $f_3(P) = (P(-1), P(0), P(1))$.
 - (d) $f_4: \mathbb{R}[X] \to \mathbb{R}[X] \text{ avec } f_4(P) = P (X 2)P'.$
- 2. Pour les applications linéaires trouvées ci-dessus, déterminer $\ker(f_i)$, $\operatorname{im}(f_i)$. Est-ce que f_i est-elle injective, surjective, bijective?

3 Changement de base

Exercice 12. Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ une application linéaire décrite par la matrice $A = \begin{pmatrix} -2 & 1 & 1 \\ -5 & 3 & 2 \end{pmatrix}$ dans les bases canoniques de \mathbb{R}^3 et \mathbb{R}^2 . Soient $\mathcal{B}_1 = \{(1,1,1), (0,1,-1), (0,0,1)\}$ et $\mathcal{B}_2 = \{(1,2), (0,1)\}$.

- 1. Montrer que \mathcal{B}_1 et \mathcal{B}_2 sont des bases de \mathbb{R}^3 et \mathbb{R}^2 respectivement.
- 2. Donner les matrices de passage de bases.
- 3. Calculer B la matrice de l'application linéaire f relativement aux bases \mathcal{B}_1 et \mathcal{B}_2 .
- 4. Trouver des bases de ker f et im f.

Exercice 13. Trouver les matrices des applications linéaires suivantes dans la base canonique et dans les bases spécifiées dans chaque section et donner la matrice de passage entre bases :

- 1. $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f(x, y, z) = (x + 2y, 3y + z) avec $\mathcal{B}_1 = \{(1, 0, -2), (0, 1, 1), (1, 0, 1)\}$ de \mathbb{R}^3 et $\mathcal{B}_2 = \{(1, 1), (0, 1)\}$ de \mathbb{R}^2 .
- 2. $f: \mathbb{R}^4 \to \mathbb{R}^3$ définie par f(x, y, z, t) = (48y 57z, x, x + t) avec $\mathcal{B}_1 = \{(0, 114, 96, 0), (1, 3, 20, 0), (0, 0, 1, 1), (2, 6, 40, 1)\}$ de \mathbb{R}^4 et $\mathcal{B}_2 = \{(-996, 1, 1), (-57, 0, 1), (-1992, 2, 3)\}$ de \mathbb{R}^3 .
- 3. $f: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ définie par $f(P) = P(1)(1+X^2) + P(0)X^3$ dans la base $\mathcal{B} = \{1, X, X^2 4, X^3 X\}$.

Exercice 14. Soit E un \mathbb{R} -espace vectoriel de dimension 3 et $\mathcal{B} = \{v_1, v_2, v_3\}$ une base de E. Soit f l'endomorphisme de E dont la matrice relativement à la base \mathcal{B} est

$$A = \begin{pmatrix} 3 & 1 & -3 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

On définit $\tilde{\mathcal{B}} = \{w_1, w_2, w_3\}$ où $w_1 = v_1 + v_2 + v_3, w_2 = v_1 - v_2, w_3 = v_1 + v_3.$

- 1. Montrer que $\tilde{\mathcal{B}}$ constitue une base de E.
- 2. Donner la matrice de passage de \mathcal{B} à $\tilde{\mathcal{B}}$ et écrire la matrice de f dans cette base.
- 3. Déterminer une base de ker f et de im f.

Exercice 15. Soit $f: \mathbb{R}_3[X] \to \mathbb{R}_2[X]$ l'application définie par f(P) = -P(0) + P'.

- 1. Montrer que f est une application linéaire.
- 2. Trouver A la matrice de f relativement aux bases $\{1, X, X^2, X^3\}$ de $\mathbb{R}_3[X]$ et $\{1, X, X^2\}$ de $\mathbb{R}_2[X]$.
- 3. On fixe la base $\{1, X, X^2\}$ dans $\mathbb{R}_2[X]$. Trouver une base \mathcal{B} de $\mathbb{R}_3[X]$ telle que la matrice de f relativement à \mathcal{B} dans $\mathbb{R}_3[X]$ soit $B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$. Donner la matrice de passage.
- 4. Utiliser B pour trouver tous les $Q \in \mathbb{R}_3[X]$ tels que f(Q) = -2 + 2X.

Exercice 16 (Extra ball). Soit le \mathbb{R} -espace vectoriel $\mathcal{A}(\mathbb{R}, \mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \text{ application}\}$ et on considère le sous-espace $V = \text{Vect}_{\mathbb{R}}\{f_1, f_2, f_3\}$ où $f_1(x) = 3$, $f_2(x) = x^2 + 2$ et $f_3(x) = \sin(x)$, pour tout $x \in \mathbb{R}$.

- 1. Vérifier que V est de dimension 3.
- 2. Soit $F_{\alpha}: V \to \mathcal{M}_{2\times 2}(\mathbb{R})$ définie par $F_{\alpha}(f) = \begin{pmatrix} f(0) & f'(0) \\ \alpha & f'(0) f(0) \end{pmatrix}$. Trouver les valeurs de $\alpha \in \mathbb{R}$ telles que F_{α} soit une application linéaire.
- 3. Trouver la matrice de F relativement à $\{f_1, f_2, f_3\}$ dans V et la base canonique dans $\mathcal{M}_{2\times 2}(\mathbb{R})$.
- 4. Déterminer une base de $\ker F$ et de im F.