Lecture 5 Mobile Ad-Hoc Networks: Routing

Reading:

- "Routing Protocols for Ad Hoc Wireless Networks," in *Ad Hoc Wireless Networks: Architectures and Protocols*, Chapter 7.
- D. Johnson, "Routing in Ad Hoc Networks of Mobile Hosts," Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications, Dec. 1994.
- E. Royer and C.-K. Toh, <u>"A Review of Current Routing Protocols for Ad-Hoc Mobile Wireless Networks,"</u> *IEEE Personal Communications Magazine*, April 1999, pp. 46-55.
- J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva, "A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols," *Proc. Mobicom '98*, Oct. 1998.
- S. Singh, M. Woo, and C. Raghavendra, "Power-Aware Routing in Mobile Ad Hoc Networks," Proc. Mobicom '98, Oct. 1998.

Mobile Ad-Hoc Networks (MANETs)

- Definition
 - "A collection of wireless mobile hosts forming a temporary network without the aid of any centralized administration or standard support services."
- Ad-hoc network topology is dynamic—nodes enter and leave the network continuously
- No centralized control or fixed infrastructure to support network configuration or reconfiguration
- Example scenarios for MANETs
 - Meetings
 - Emergency or disaster relief situations
 - Military communications
 - Wearable computers
 - Sensor networks

MANETs (cont.)

- Mobile nodes have limited communication range
 - Reduces battery drain
 - Enables spatial reuse of limited bandwidth → increased network capacity
- To connect all nodes in the network, each node is a
 - Packet source
 - Packet sink
 - Router
- Nodes must route packets for other nodes to keep the network fully connected
- In MANETs, routing must be addressed

MANETs (cont.)

- Route-finding:
 - Want to determine an "optimal" way to find "optimal" routes
- Dynamic links
 - Broken links must be updated when a node moves out of communication range with another node
 - New links must be formed when a node moves into communication range with another node
 - Based on this new information, routes must be modified
- Frequency of route changes a function of node mobility

Conventional Routing Protocols for Wired Networks

- Distance vector routing
 - Each router has a table giving the distance from itself to all possible destinations
 - Each router periodically broadcasts its table to its neighbors
 - Neighbors will update their tables based on this information to ensure they are using the shortest route to reach each destination
 - To route a packet, router checks table to find next hop to destination
 - Tradeoff in how often routing tables are exchanged
 - Too often → large amount of overhead, excess BW and computational resources used
 - Too infrequent → sub-optimal or invalid routes (stale routes)
 - Can send routing table updates whenever information in the table changes due to a new link or a broken link

Conventional Routing Protocols (cont.)

- Link state routing
 - Each router has a complete view of the topology of the entire network
 - "Cost" associated with each link
 - Router monitors cost of link to each neighboring router
 - When cost changes, this information is sent to all routers in the network
 - Each router has a consistent view of the network
 - Each router can compute the shortest path from itself to the destination
 - Incoming packet forwarded along this path
 - Link state protocols
 - Converge more quickly than distance vector protocols
 - Require more BW and compute power than distance vector protocols

Problems with using Conventional Routing in MANETs

- Unidirectional links
 - A can communicate with B does not always imply B can communicate with A
- Redundant links
 - In wired networks, only one or a small number of routers connecting two networks
 - In wireless networks, may be several "gateway" nodes between a source and a sink due to wireless channel properties
 - Several redundant paths may be generated
 - Waste of BW, computation, and storage

Problems with using Conventional Routing in MANETs

- Periodic routing updates
 - Cost of sending routing updates (BW, energy) is much greater in a wireless network than in a wired network
 - Routing updates required even if nothing has changed
 - In highly-connected network, routing updates may collide
 - Mobiles cannot enter "sleep" state b/c need to hear all routing updates → wastes energy

Problems with using Conventional Routing in MANETs

- Dynamic nature of ad-hoc networks
 - Wired networks relatively stable
 - Occasionally links go down or come up or congestion changes the cost of a link
 - Wireless network links continuously changing due to node mobility and environmental conditions
 - Convergence to stable routes may be too slow to produce useful information if routing updates not sent often enough
 - If routing updates sent too often, wastes battery of mobiles and channel bandwidth

Routing Protocols for MANETs

- Route discovery and route maintenance
- Route discovery
 - Initial discovery of valid route from source to destination
 - Source node can send a query for a destination node
 - Only destination node responds to query
 - If destination located in source's transmission range, destination responds and link established
 - No periodic routing updates needed
 - Approach must be extended to case where destination node not in source node's transmission range
 - Want an approach that is simple and efficient

Route Discovery (cont.)

- One approach is to perform controlled flooding of the query
 - Nodes receiving query will append their address to the route being recorded in the packet header and broadcast updated packet to all neighbors
 - When a node receives a query, it checks to see if its address is already in the header (indicating this packet was already flooded by this node)
 - If address present, node drops packet
 - Each query labeled with unique "request ID"
 - Each node keeps a cache with request ID's of packets it has already forwarded
 - Discards packets with request ID listed in node's cache
 - Avoids duplicate queries sent throughout the network
 - Node only propagates first copy of each route request packet it sees

Route Discovery (cont.)

- Typically source and destination will not be far away in an ad-hoc network
 - Can add a TTL (time to live) to route request
 - Each node reduces the TTL by one when it propagates the request
 - If the TTL hits zero, the route request packet is dropped
- When query reaches destination
 - Destination sends response back using route in packet header if available
 - Destination sends response back to node from which it received route request
- Route discovery information can be piggybacked onto data such as TCP connection packets
 - Reduces latency (e.g., start-up time for TCP connection)
 - Increases overhead, since packets flooded throughout network

Route Discovery (cont.)

- Intermediate nodes can cache routes discovered
 - Can use these routes if want to send a packet to a node listed in route
 - Reduces overhead in terms of number of route request packets required
- Nodes can operate in "promiscuous" mode
 - Listen to all packets exchanged on network
 - Cache routes listed in packets

Route Maintenance

- Nodes can determine broken links through ACK/NACK included with most protocols
- If link broken
 - Node that detects broken link reports this information back to sending node
 - Or node can try to fix the broken link by sending out its own route request to the destination
- If no ACK/NACK present in the link-layer protocol, nodes can listen to channel to determine if next hop transmits packet or not
 - If do not hear forwarding of packet, assume link lost
- Explicit routing acknowledgements can also be used to determine the state of links

Proactive vs. Reactive Routing

- Proactive routing: nodes continuously evaluate and update routes
 - Periodic updates
 - Triggered updates—when a link changes
 - Efficient if routes used often
 - Large amount of overhead
 - Similar to conventional routing protocols
- Reactive routing: nodes evaluate and update routes only when they are needed
 - When a node has a packet to send, it checks to see if it has a valid route
 - If no valid route known, node must send out a route-request message to obtain a valid route (controlled flooding of the network)
 - Data sent using valid route
 - Efficient if routes not used often

Proactive Routing Protocols

- Each node maintains consistent, up-to-date routing information in the form of a table with the next-hop to reach every node in the network
- Changes in link state transmitted throughout the network to update each node's routing table
- Proactive routing protocols
 - DSDV
 - CGSR

DSDV

- Destination-sequenced distance-vector (DSDV)
 - Each node maintains a table with
 - All possible destination nodes
 - Number of hops required to reach that node
 - Next hop along route to that node
 - Sequence number
 - Sequence number used to distinguish new routes from old routes
 - Routing table updates transmitted throughout network
- "Full dump" routing updates
 - Large packet that carries all routing information
 - Transmitted infrequently when little change in existing links
- "Incremental" routing updates
 - Contains only information that has changed since last routing update

DSDV (cont.)

- Route broadcast packet transmitted with
 - Address of destination
 - Number of hops to reach destination
 - Sequence number of information
 - Sequence number of broadcast packet
- Used to update tables at intermediate nodes
 - If sequence number of update same as sequence number of information in a node's table, uses the route with the shortest path
 - If update newer, node replaces its information with the updated route

- Clustering multihop approach
- Cluster head controls nodes in cluster
 - Nodes within cluster use CDMA-type SS code to avoid inter-cluster interference
 - Cluster head can control channel access
- Cluster head selection algorithm within cluster
 - Can perform minimum cluster changes to reduce overhead
 - E.g., only change cluster head if cluster head moves out of cluster or another cluster head moves into cluster
- DSDV used as underlying routing mechanism

CGSR (cont.)

- Nodes send data to cluster head
- Cluster head sends data to "gateway" nodes
- Gateway nodes route packet to new cluster head
- Packet goes from cluster head → gateway → cluster head until it reaches destination's CH
- Each node keeps "cluster member table" that contains CH node for each mobile in network
 - Updates sent as in DSDV

Reactive Routing Protocols

- Routes created only when needed
- Requires "route discovery" and "route maintenance"
- Also called "source-initiated on-demand routing"
- Goal is to minimize the amount of overhead compared with proactive routing at the expense of latency in finding a route when it is needed
- Reactive routing protocols
 - AODV
 - DSR

AODV

- Ad-hoc on-demand distance vector (AODV)
 - Node needing to find a route to a destination broadcasts a route request (RREQ) to its neighbors
 - Neighbors broadcast RREQ to their neighbors until destination found or intermediate node has recent information about a route to the destination
 - Each RREQ uniquely identified by source's ID and a sequence number
 - Intermediate nodes keep track of neighbor from which RREQ came to establish valid reverse path
- Destination or intermediate node sends (unicast) route reply "RREP" back to neighbor from which RREQ came
- Intermediate nodes set up routing information based on nodes from which they receive RREP packet
 - These routes contain timers and will expire if not used

AODV (cont.)

- Route maintenance
 - Source node moves
 - Send new RREQ to destination
 - Intermediate node moves
 - Upstream neighbor propagates link failure notification message to source
 - Source can send new RREQ to find valid route
- "Hello" messages used to inform nodes of neighbors
 - Can be used to ensure link kept alive
 - Can contain information about a node's neighbors to give information about topology

- Dynamic Source Routing (DSR)
- Similar to AODV but entire route maintained within packet header
 - Intermediate nodes do not need to keep routing information to route packets
 - No periodic route advertisements needed
- Intermediate nodes propagating a "route request" append their ID to the "route record" in the packet header
- When packet reaches destination or node with valid cached route to destination, "route reply" returned
 - If destination node, send "route record" in "route reply"
 - If intermediate node, append cached route to destination to "route record" in "route reply"

DSR (cont.)

- "Route reply" returned along
 - Cached path to source if available
 - Reverse route of "route record" if symmetric links assumed
 - Piggybacked with a "route request" to the source node
- Route maintenance
 - "Route error" messages used to propagate information about broken links
 - All cached routes with broken links removed
 - Nodes can use promiscuous mode to listen to all traffic on channel
 - Can update their route caches based on information from packets
 - Can send gratuitous "route reply" to source if node knows a better route to destination
 - If intermediate node determines that next hop in "route record" unreachable, can replace this route with a cached route

Comparison of Protocols

- Proactive approaches
 - More efficient when routes used often
 - Assures routes ready when needed
 - Requires periodic route updates (overhead)
 - Node mobility affects entire network as routing update
- Reactive approaches
 - More efficient when routes used occasionally
 - Require node to first find route before data can be transmitted
 - Periodic route updates not required
 - Can have localized route discovery to deal with node mobility

Comparison (cont.)

- Simulations by CMU (Broch et al.)
 - Reactive protocols can deliver many more packets than proactive protocols when node mobility high
 - Proactive protocols have too many routing updates triggered and routes cannot converge
 - Overhead of reactive protocols depends on node mobility
 - DSR has less overhead than AODV
 - Due to intermediate node caching routes and requiring fewer "route requests" to be sent throughout the network
 - Overhead of DSDV constant (periodic updates)
 - When node mobility low, DSDV performs much better than when high
 - Reactive protocols still have lower overhead and better packet delivery ratios

Comparison (cont.)

- Overall conclusions:
 - DSDV performs well only in low-mobility situations
 - Even then, overhead still high
 - DSR and AODV perform well under all mobility situations
 - DSR has lowest packets overhead
 - If overhead includes packet header (overhead in bytes),
 AODV performs better than DSR due to smaller headers
 - However, header overhead might be less costly than packet overhead due to cost to obtain channel access, MAC/PHY headers, etc.

4

Current Research in Routing for MANETs

- Hybrid proactive-reactive approaches
- Multicast
- QoS support
 - How can guarantees be provided in such a dynamic environment?
- Resource-aware routing
 - Use metrics besides shortest-path for routing decisions
 - Low power routing
 - Try to avoid network partitioning
- Location-based routing

Power Aware Routing

- Where is energy needlessly expended in routing protocols?
 - Overhearing transmission of packets not intended for the node
 - Contention
 - Overhead in route finding and route maintenance
- Promiscuous mode
 - Some protocols take advantage of nodes overhearing transmissions to other node to gather more information
 - Improves routing (more up-to-date routing information)
 - Large amount of energy required to receive and decode entire packet
- Contention requires power
 - Channel sensing
 - ACK schemes
 - Retransmissions

Power Aware Routing (cont.)

- Route finding and maintenance
 - Overhead packets transmitted throughout network to find optimal routes
 - Many "useless" packets transmitted
- Routing metrics
 - Most MANET routing protocols use "shortest-hop" as optimizing metric for determining "good" routes
 - Other metrics
 - Minimum latency
 - Link quality
 - Location stability
 - Power of intermediate nodes

Power Aware Routing (cont.)

- Why use power as a metric?
 - Can over-use intermediate nodes
 - Causes nodes to run out of energy early
 - Increases contention around overused node
 - Increases system lifetime
 - Reduces chance of partitioning network
- Goal in power-aware routing: to increase network lifetime / time until network partition by evenly distributing energy load
 - Problem similar to load balancing
 - How should routes be chosen to ensure nodes overall energy dissipation kept low while not overly-utilizing any individual node?

Routing Metrics That Incorporate Power

- Shortest-hop
 - Fewer hops → less energy dissipation
 - Downside: does not evenly distribute energy load
- Energy consumed/packet
 - If little traffic, this is the same as shortest hop
 - If large amount of traffic, energy for contention will ensure packet routed around high-load areas
 - If E(i,j) = energy to transmit packet from node i to node j (including reception energy), this metric tries to minimize: $\underline{j-1}$

$$e_k = \sum_{j=1}^{j-1} E(i,j)$$

- Energy per packet model
 - $E(i,j) = \alpha + \beta f(d_{ij}) + \gamma f(congestion)$
 - If large amount of traffic, f(congestion) will cause packet to be routed around traffic, possibly causing a longer route to be taken
 - Drawback: does not take into account relative node energies

4

Routing Metrics That Incorporate Power (cont.)

- Cost/packet
 - Route packets around nodes with low energy
 - $f_i(x_i)$ = node cost of node i given that it has already expended x_i energy
 - Describes penalty to node (and hence to entire network) if packet routed through node
 - Minimize total cost to send packet: $c_k = \sum f_i(x)$
 - Choose f_i to reflect battery lifetime remaining i=1
 - If node has little energy left, f_i large
 - E.g., $f_i(x_i) = \alpha x_i$
 - Advantages of this approach
 - Can incorporate battery model in metric
 - Increase time to network partition
 - Congestion reduced due to distributed routes
 - Disadvantages of this approach
 - Does not automatically avoid nodes with highest cost

Routing Metrics That Incorporate Power (cont.)

- Maximum node cost
 - Can develop a metric f_i(x_i) that determines cost of routing a packet through node i
 - Choose path whereby maximum node cost is minimized
- Time to network partition
 - Can minimize time to network partition by finding "cut-set" nodes
 - Removing all of these nodes results in network partitioning
 - Want to evenly distribute energy load among all these nodes
 - Hard to optimize for this metric and maintain low delay and high throughput
 - Can perform a round-robin distribution of packets to nodes in cut-set if all packets the same length
 - Ensures equal power drain among all the critical nodes
 - Can approximate this solution with a minimum cost/packet algorithm

Simulation Results for Power Aware Routing (Singh et al.)

- No extra packet delay recorded using power-aware routing
- Even though routes longer, avoid congestion → fewer retransmissions needed, shorter waiting time to transmit packet, etc.
- Power-aware routing beneficial for
 - Large networks
 - If the network is too small, there are not many alternative routes to choose from
 - Moderate network loads
 - If network lightly loaded, shortest path algorithm is fine
 - If network heavily loaded, cost of contention outweighs any power savings
 - Dense networks
 - These networks have more alternative routes than sparse networks
- Node cost function $f_i(x_i)$ has significant affect on energy savings

- What other methods could we use to reduce power for ad-hoc networks?
- What other metrics might be important in determining routes?
- How could routing protocols be adapted to account for multiple metrics and/or metrics that change importance over the lifetime of the ad-hoc network?
- What network properties will affect "quality" of routing protocol?