

Ayudantía 14 Álgebra Lineal

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

4 de julio de 2022

**Problema 1.** Sea V espacio vectorial de dimensión finita y  $T: V \to V$  un automorfismo.

- 1. Muestre que si  $\lambda$  es valor propio de T, entonces  $1/\lambda$  es valor propio de  $T^{-1}$ . Pruebe también que  $\mathbf{V}_{\lambda}(T) =$  $\mathbf{V}_{1/\lambda}(T^{-1}).$
- 2. Demuestre que si T es diagonalizable entonces  $T^{-1}$  es diagonalizable.
- 3. Pruebe que si T es diagonalizable entonces  $T^n$  es diagonalizable para todo  $n \in \mathbb{N}$ .

**Problema 2.** Sea V espacio vectorial sobre  $K, T: V \to V$  aplicación lineal y  $v \in V$  vector propio asociado al valor propio  $\lambda$ . Demuestre que  $P(T)(\mathbf{v}) = P(\lambda)\mathbf{v}$  para todo polinomio  $P \in K[X]$ .

- 1. Si  $\mathbf{v} \in \mathbf{V}$  vector propio asociado al valor propio  $\lambda$  probar que  $P(T)(\mathbf{v}) = P(\lambda)\mathbf{v}$  para todo polinomio  $P \in K[X]$ , ie,  $P(\lambda)$  es vector propio de P(T) y  $\mathbf{V}_{\lambda}(T) = \mathbf{V}_{P(\lambda)}(P(T))$ .
- 2. Si  $S \in \mathcal{L}(V)$  es invertible pruebe que  $P(STS^{-1}) = SP(T)S^{-1}$ .

**Problema 3.** Sea V espacio vectorial y  $T: V \to V$  aplicación lineal. Decimos que T es nilpotente si existe  $n \in \mathbb{N}$ tal que  $T^n = \mathbf{0}$ . En base a esta definición

- 1. Si T es nilpotente, pruebe que 0 es su único valor propio.
- 2. Si T es nilpotente y diagonalizable entonces T=0.
- 3. Demuestre que  $id_{\mathbf{V}} T$  es invertible y que

$$(id_{\mathbf{V}} - T)^{-1} = id_{\mathbf{V}} + T + T^2 + \dots + T^{n-1}$$

Problema 4. Considere la sucesión de Fibonacci definida por

$$F_1 = 1, F_2 = 1$$
  $F_n = F_{n-2} + F_{n-1}$ 

Considere la aplicación lineal  $T \in \mathcal{L}(\mathbb{R}^2)$  definida por T(x,y) = (y,x+y).

- 1. Muestre que  $T^n(0,1) = (F_n, F_{n+1})$  para cada  $n \in \mathbb{N}$ .
- 2. Encuentre una base de  $\mathbb{R}^2$  de vectores propios de T.
- 3. Deduzca la fórmula

$$F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1 + \sqrt{5}}{2} \right)^n + \left( \frac{1 - \sqrt{5}}{2} \right)^n \right] \qquad \forall n \in \mathbb{N}$$