INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4351 8-channel analog multiplexer/demultiplexer with latch

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT4351

FEATURES

- Wide analog input voltage range: ± 5 V
- Low "ON" resistance:

80 Ω (typ.) at $V_{CC} - V_{EE} = 4.5 \text{ V}$

70 Ω (typ.) at V_{CC} – V_{EE} = 6.0 V

60 Ω (typ.) at $V_{CC} - V_{EE} = 9.0 \text{ V}$

- Logic level translation: to enable 5 V logic to communicate with ± 5 V analog signals
- Typical "break before make" built in
- · Address latches provided
- · Output capability: non-standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4351 are high-speed Si-gate CMOS devices. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4351 are 8-channel analog multiplexers/demultiplexers with three select inputs (S_0 to S_2), two enable inputs (\overline{E}_1 and E_2), a latch enable input (\overline{LE}), eight independent inputs/outputs (Y_0 to Y_7) and a common input/output (Z).

With \overline{E}_1 LOW and E_2 is HIGH, one of the eight switches is selected (low impedance ON-state) by S_0 to S_2 . The data at the select inputs may be latched by using the active LOW latch enable input (\overline{LE}). When \overline{LE} is HIGH the latch is transparent. When either of the two enable inputs, \overline{E}_1 (active LOW) and E_2 (active HIGH), is inactive, all 8 analog switches are turned off.

 V_{CC} and GND are the supply voltage pins for the digital control inputs (S $_0$ to S $_2$, \overline{LE} , \overline{E}_1 and E $_2$). The V $_{CC}$ to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (Y $_0$ to Y $_7$, and Z) can swing between V $_{CC}$ as a positive limit and V $_{EE}$ as a negative limit

V_{CC} - V_{EE} may not exceed 10.0 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

QUICK REFERENCE DATA

 $V_{EE} = GND = 0 \text{ V}; T_{amb} = 25 \, ^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STIVIBUL	PARAMETER	CONDITIONS	нс	нст	UNII
t _{PZH} / t _{PZL}	turn "ON" time \overline{E}_1 , E_2 or S_n to V_{os}	$C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega; V_{CC} = 5 \text{ V}$	27	35	ns
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E}_1 , E_2 or S_n to V_{os}		21	23	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	25	25	pF
Cs	max. switch capacitance				
	independent (Y)		5	5	pF
	common (Z)		25	25	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\}$$
 where:

f_i = input frequency in MHz

 f_0 = output frequency in MHz

C_L = output load capacitance in pF

C_S = max. switch capacitance in pF

 $\sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\} = \text{sum of outputs}$

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT4351

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
4	Z	common
3, 14	n.c.	not connected
7	Ē₁	enable input (active LOW)
8	E ₂	enable input (active HIGH)
9	V _{EE}	negative supply voltage
10	GND	ground (0 V)
11	<u>LE</u>	latch enable input (active LOW)
15, 13, 12	S ₀ to S ₂	select inputs
17, 18, 19, 16, 1, 6, 2, 5	Y ₀ to Y ₇	independent inputs/outputs
20	V _{CC}	positive supply voltage

74HC/HCT4351

FUNCTION TABLE

			CHANNEL			
Ē ₁	E ₂	LE	S ₂	S ₁	S ₀	ON
Н	Х	Χ	Χ	Χ	Χ	none
Х	L	Х	Х	X	Х	none
L	Н	Н	L	L	L	Y_0
L	Н	Н	L	L	Н	Y ₁
L	Н	Н	L	Н	L	Y ₂
L	Н	Н	L	Н	Н	Y ₃
L	Н	Н	Н	L	L	Y_4
L	Н	Н	Н	L	Н	Y ₅
L	Н	Н	Н	Н	L	Y ₆
L	Н	Н	Н	Н	Н	Y ₇
L	Н	L	Х	Х	Х	(1)
Χ	Х	\downarrow	Х	Х	Х	(2)

Notes

- 1. Last selected channel "ON".
- 2. Selected channels latched.
- 3. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - \downarrow = HIGH-to-LOW \overline{LE} transition

APPLICATIONS

- · Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- · Signal gating

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to V_{EE} = GND (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+11.0	٧	
±I _{IK}	DC digital input diode current		20	mA	for $V_I < -0.5 \text{ V}$ or $V_I > V_{CC} + 0.5 \text{ V}$
±I _{SK}	DC switch diode current		20	mA	for $V_S < -0.5 \text{ V}$ or $V_S > V_{CC} + 0.5 \text{ V}$
±I _S	DC switch current		25	mA	for $-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$
±I _{EE}	DC V _{EE} current		20	mA	
±I _{CC;} ±I _{GND}	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: -40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K
Ps	power dissipation per switch		100	mW	

Note to ratings

1. To avoid drawing V_{CC} current out of terminal Z, when switch current flows in terminals Y_n , the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no V_{CC} current will flow out of terminals Y_n . In this case there is no limit for the voltage drop across the switch, but the voltages at Y_n and Z may not exceed V_{CC} or V_{EE} .

RECOMMENDED OPERATING CONDITIONS

CYMPOL	PARAMETER		74HC			74HC	Г	ш	CONDITIONS
SYMBOL	PARAINETER	min.	typ.	max.	min.	typ.	max.	UNIT	CONDITIONS
V _{CC}	DC supply voltage V _{CC} -GND	2.0	5.0	10.0	4.5	5.0	5.5	V	see Figs 6 and 7
V_{CC}	DC supply voltage V _{CC} -V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	V	see Figs 6 and 7
VI	DC input voltage range	GND		V _{CC}	GND		V_{CC}	V	
Vs	DC switch voltage range	V _{EE}		V_{CC}	V _{EE}		V_{CC}	V	
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC
T _{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTERISTICS
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 10.0 \text{ V}$

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

Fig.6 Guaranteed operating area as a function of the supply voltages for 74HC4351.

Fig.7 Guaranteed operating area as a function of the supply voltages for 74HCT4351.

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: V_{CC} – GND or V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

For 74HCT: V_{CC} – GND = 4.5 and 5.5 V; V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

				7	Γ _{amb} (°	C)					TEST CONDITIONS				
				7	4HC/H	СТ									
SYMBOL	PARAMETER	+25			−40 to +85		−40 to +125		UNIT	V _{CC} (V)	V _{EE} (V)	I _S (μ A)	V _{is}	Vı	
		min.	typ.	max.	min.	max.	min.	max.							
R _{ON}	ON resistance		_	_		_			Ω	2.0	0	100	V _{CC}	V _{IN}	
	(rail)		100	180		225		270	Ω	4.5	0	1000	to	or	
			90 70	160 130		200 165		240 195	Ω	6.0 4.5	0 -4.5	1000	V _{EE}	V_{IL}	
R _{ON}	ON resistance		150	_		_		_	Ω	2.0	0	100	V _{EE}	V _{IH}	
	(rail)		80	140		175		210	Ω	4.5	0	1000		or	
			70	120		150		180	Ω	6.0	0	1000		V_{IL}	
			60	105		130		160	Ω	4.5	-4.5	1000			
R _{ON}	ON resistance		150	_		_		_	Ω	2.0	0	100	V_{CC}	V_{IH}	
	(rail)		90	160		200		240	Ω	4.5	0	1000		or	
			80	140		175		210	Ω	6.0	0	1000		V_{IL}	
			65	120		150		180	Ω	4.5	-4.5	1000			
ΔR_{ON}	maximum ∆ ON		_						Ω	2.0	0		V _{CC}	V_{IH}	
	resistance		9						Ω	4.5	0		to	or	
	between any two		8						Ω	6.0	0		V _{EE}	V_{IL}	
	channels		6						Ω	4.5	-4.5				

Notes to DC characteristics

- At supply voltages (V_{CC} V_{EE}) approaching 2.0 V, the analog switch ON-resistance becomes extremely non-linear.
 There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
- 2. For test circuit measuring R_{ON} see Fig.8.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

	PARAMETER				T _{amb} (°C)		TEST CONDITIONS					
OVMDOL					74H0								
SYMBOL			+25		-40 t	o +85	−40 t	o +125	UNIT	V _{CC}	V _{EE} (V)	Vı	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(',	(*)		
V _{IH}	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		V	2.0 4.5 6.0 9.0			
V _{IL}	LOW level input voltage		0.8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	V	2.0 4.5 6.0 9.0			
±I _I	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μΑ	6.0 10.0	0	V _{CC} or GND	
±I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$V_S \mid$ = $V_{CC} - V_{EE}$ (see Fig.10)
±I _S	analog switch OFF-state current all channels			0.4		4.0		4.0	μΑ	10.0	0	V _{IH} or V _{IL}	$V_S \mid$ = $V_{CC} - V_{EE}$ (see Fig.10)
±I _S	analog switch ON-state current			0.4		4.0		4.0	μΑ	10.0	0	V _{IH} or V _{IL}	$V_S \mid$ = $V_{CC} - V_{EE}$ (see Fig.11)
Icc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μА	6.0 10.0	0	V _{CC} or GND	$V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				7	T _{amb} (°		TE	ST CC	NDITIONS			
OVMDOL	DADAMETED				74HC							
SYMBOL	PARAMETER		+25		−40 t	o +85	-40 to	0 +125	UNIT	V _{CC}	V _{EE} (V)	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(-,	(-,	
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		14 5 4 4	60 12 10 8		75 15 13 10		90 18 15 12	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = \infty$; $C_L = 50 \text{ pF}$ (see Fig.17)
t _{PZH} / t _{PZL}	turn "ON" time \overline{E}_1 to V_{os}		85 31 25 28	300 60 51 55		375 75 64 69		450 90 77 83	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time E ₂ to V _{os}		85 31 25 25	300 60 51 55		375 75 64 69		450 90 77 83	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time LE to V _{os}		91 33 26 27	300 60 51 55		375 75 64 69		450 90 77 83	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time S _n to V _{os}		88 32 26 25	300 60 51 50		375 75 64 63		450 90 77 75	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E}_1 to V_{os}		69 25 20 20	250 50 43 40		315 63 54 50		375 75 64 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time E ₂ to V _{os}		72 26 21 19	250 50 43 40		315 63 54 50		375 75 64 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time LE to V _{os}		83 30 24 26	275 55 47 45		345 69 59 56		415 83 71 68	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time S_n to V_{os}		80 29 23 24	275 55 47 48		345 69 59 60		415 83 71 72	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

				7	amb (°	C)				TEST CONDITIONS			
SYMBOL	PARAMETER				74HC				UNIT				
STWIBOL	PARAWETER	+25			−40 t	-40 to +85 -40 to			UNII	V _{CC}	V _{EE} (V)	OTHER	
		min.	typ.	max.	min.	max.	min.	max.		('')	(,		
t _{su}	set-up time S _n to LE	60 12 10 18	17 6 5 9			75 15 13 23		90 18 15 27	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)	
t _h	hold time S _n to LE	5 5 5 5	-8 -3 -2 -4			5 5 5 5		5 5 5 5	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)	
t _W	LE minimum pulse width HIGH	100 20 17 25	11 1 3 7			125 25 21 31		150 30 26 38	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)	

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0)

					T _{amb} (°C)					TEST	CONDIT	TIONS
CVMDOL	DADAMETED				74HC	Т							
SYMBOL	PARAMETER		+25		-40	to +85	-40 t	o +125	UNIT	V _{CC}	V _{EE} (V)	Vı	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(-,	(-,		
V _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5			
V _{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	4.5 to 5.5			
±l _l	input leakage current			0.1		1.0		1.0	μА	5.5	0	V _{CC} or GND	
±Ι _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μА	10.0	0	V _{IH} or V _{IL}	$V_S \mid$ = $V_{CC} - V_{EE}$ (see Fig.10)
±Ι _S	analog switch OFF-state current all channels			0.4		4.0		4.0	μА	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
±Ι _S	analog switch ON-state current			0.4		4.0		4.0	μА	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.11)
I _{CC}	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μА	5.5 5.0	0 -5.0	V _{CC} or GND	$\begin{aligned} &V_{is} = V_{EE} \\ &\text{or } V_{CC}; \\ &V_{os} = V_{CC} \\ &\text{or } V_{EE} \end{aligned}$
Δl _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μА	4.5 to 5.5	0	V _{CC} -2.1 V	other inputs at V _{CC} or GND

Note to HCT types

1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
\overline{E}_1,E_2	0.50
C	0.50
LE	1.5

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (°C)				TE	ST CC	NDITIONS
CVMDOL	DADAMETED				74HC	T						
SYMBOL	PARAMETER		+25		- 40 t	to +85	-40 t	o +125	UNIT	V _{CC}	V _{EE}	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(-,	(
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		6 4	12 8		15 10		18 12	ns	4.5 4.5	0 -4.5	$R_L = \infty;$ $C_L = 50 \text{ pF}$ (see Fig.17)
t _{PZH} / t _{PZL}	turn "ON" time \overline{E}_1 to V_{os}		40 31	75 60		94 75		113 90	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time E ₂ to V _{os}		35 26	70 50		88 63		105 75	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time LE to V _{os}		42 37	75 60		94 75		113 90	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time S _n to V _{os}		39 30	75 60		94 75		113 90	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E}_1 to V_{os}		27 20	55 40		69 50		83 60	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time E ₂ to V _{os}		32 26	60 50		75 63		90 75	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time LE to V _{os}		33 30	60 55		75 69		90 83	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time S _n to V _{os}		33 29	65 55		81 69		98 83	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{su}	set-up time S _n to LE	12 14	6 7			15 18		18 21	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _h	hold time S _n to LE	5 5	-1 -2			5 5		5 5	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _W	LE minimum pulse width HIGH	25 25	13 13			31 31		38 38	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

Fig.9 Typical R_{ON} as a function of input voltage V_{is} for $V_{is} = 0$ to $V_{CC} - V_{EE}$.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values

GND = 0 V; T_{amb} = 25 °C

SYMBOL	PARAMETER	typ.	UNIT	V _{CC} (V)	V _{EE} (V)	V _{is(p-p)} (V)	CONDITIONS
	sine-wave distortion f = 1 kHz	0.04 0.02	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	sine-wave distortion f = 10 kHz	0.12 0.06	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	switch "OFF" signal feed-through	-50 -50	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600 \Omega$; $C_L = 50 pF$ (see Figs 12 and 15)
V _(p-p)	crosstalk voltage between control and any switch (peak-to-peak value)	120 220	mV mV	4.5 4.5	0 -4.5		$R_L = 600 \ \Omega; \ C_L = 50 \ pF;$ $f = 1 \ MHz \ (\overline{E}_1, \ E_2 \ or \ S_n,$ square-wave between V_{CC} and GND, $t_r = t_f = 6 \ ns)$ (see Fig.16)
f _{max}	minimum frequency response (–3dB)	160 170	MHz MHz	2.25 4.5	-2.25 -4.5	note 2	$R_L = 50 \Omega$; $C_L = 10 pF$ (see Figs 13 and 14)
Cs	maximum switch capacitance independent (Y) common (Z)	5 25	pF pF				

Notes to AC characteristics

- 1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- 2. Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

 V_{is} is the input voltage at a Y_n or Z terminal, whichever is assigned as an input. V_{os} is the output voltage at a Y_n or Z terminal, whichever is assigned as an output.

74HC/HCT4351

distortion and minimum frequency response.

Fig.15 Test circuit for measuring switch "OFF" signal feed-through.

74HC/HCT4351

AC WAVEFORMS

Fig.17 Waveforms showing the input (V_{is}) to output (V_{os}) propagation delays.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	V_{is}
t _{PZH}	V _{EE}	V _{CC}
t _{PZL}	V _{CC}	V_{EE}
t _{PHZ}	V _{EE}	V_{CC}
t _{PLZ}	V _{CC}	V_{EE}
others	open	pulse

			t _r ; t _f		
FAMILY	AMPLITUDE	V _M	f _{max} ; PULSE WIDTH	OTHER	
74HC	V _{CC}	50%	< 2 ns	6 ns	
74HCT	3.0 V	1.3 V	< 2 ns	6 ns	

C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator.

 $t_r = t_f = 6$ ns; when measuring t_{max} , there is no constraint on t_r , t_f with 50% duty factor.

Fig.20 Test circuit for measuring AC performance.

Conditions

TEST	SWITCH	V _{is}
t _{PZH}	V_{EE}	V _{CC}
t _{PZL}	V_{CC}	V _{EE}
t _{PHZ}	V _{EE}	V _{CC}
t _{PLZ}	V _{CC}	V _{EE}
others	open	pulse

C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator.

 $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint on t_r , t_f with 50% duty factor.

Fig.21 Input pulse definitions.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".