Chapter 4: Electromagnetic Induction

We distinguish between two kinds of induction:

time-varying magnetic field

current loop

Electric voltage is induced in resting

4.1 Motional induction

(4.1.1) Electromotive force on a moving conducting material

* Conductor Contains movele charges

* it moves at velocity ∇ in a \overline{B} -field

=> $\overline{F_L}$ acting on charges: $\overline{F_L}$ = $q(\nabla \times \overline{B})$ * q>0 => $\overline{F_L}$ \uparrow * Charge moves along Conductor

by electromotive force $\overline{F_{ind}}$ = $\overline{\overline{F_L}}$ = $(\nabla \times \overline{B})$ * electrostatic field is generated by

accomplaining charges $\overline{F_L}$

(4.1.2.) Induced electrical voltage in a time-varying conductor loop

(i) Experiment

- Two parallel conductors L1, L2 and a movable wire L3 define a nearly closed conductor loops, open at terminals
- ➤ Movable wire 3 connects L1 and L2 electrically
- > B-field points into drawing plane : 3 3 29
- L1, L2, L3 build area A and, at the same time Curve C encloses area A:

- > Orientation of curve C is counterclockwise: > defines orientation of Tille)
- ► L1 moves at velocity v: $\sqrt{v} = v \cdot ex = \frac{dx}{dt} \cdot ex$
- Area A changes with time: $A = A(t) = h \cdot x(t)$
- > Lorentz force on wire induces electromotive force: $\vec{E} = \vec{q} \cdot \vec{\nabla} \times \vec{B}$ along $\vec{z} a_{KiS}$

Calculate induced voltage from induced electric field:

$$U_{\text{ind}} = \int_{0}^{h} \overline{E}_{\text{ind}} d\vec{r} = \int_{0}^{h} \overline{E}_{\underline{L}} \cdot d\vec{r} = \int_{0}^{h} (\vec{v} \times \vec{E}) \cdot d\vec{r} = \int_{0}^{h} (\vec{v} \cdot \vec{E}_{\underline{L}} \times \vec{E}_{\underline{L}} \times \vec{E}_{\underline{L}} \times \vec{E}_{\underline{L}} \times \vec{E}_{\underline{L}} \times \vec{E}_{\underline{L}} = \int_{0}^{h} (\vec{v} \times \vec{E}) \cdot d\vec{r} = \int_{0}^{h} (\vec{v} \cdot \vec{E}_{\underline{L}} \times \vec{E}_{\underline{L}} \times \vec{E}_{\underline{L}} \times \vec{E}_{\underline{L}} \times \vec{E}_{\underline{L}} \times \vec{E}_{\underline{L}} = \int_{0}^{h} (\vec{v} \times \vec{E}) \cdot d\vec{r} = \int_{0}^{h} (\vec{v} \cdot \vec{E}_{\underline{L}} \times \vec{E}_$$

Define magnetic flux as flux of B-field, which penetrates the area A:

Magnetic flux
$$\phi(A) = \int B \cdot d\vec{a}$$

for rectangular Conductor loop: $\phi(A) = \int B \cdot \vec{e}\vec{v} \cdot -\vec{e}\vec{v} \, dx \cdot d\vec{z} = -B \cdot h \cdot X(t)$

Comparison of both calculations results in:

$$U_{ind} = -\frac{d\phi(A)}{dt} = -\frac{d}{dt}\int_{A(t)} Bda$$

(ii) Generalization to arbitrary conductor geometries:

- ➤ (4.3) can be generalized for arbitrary conductor loop geometries
- Or can be also applied for a change in the area, which is penetrated perpendicular by the B-Field (e.g. by deformation or rotation of a conductor loop)

either curve C can change with time: C(t)

or a part of the loop is moving with velocity v (deformation of the loop)

