### TREATMENT DEVICE USING OZONE GAS

Publication number: JP3139364 **Publication date:** 

1991-06-13

Inventor:

HAMA MAMORU; MIYOSHI MATAO; HASHIMOTO

TAKAHIRO

Applicant:

MIHAMA MFG; PURUUTASU KK; AOI SHOJI YK

Classification:

- international:

A61M37/00; A61K33/00; A61M35/00; A61P25/04;

A61M37/00; A61K33/00; A61M35/00; A61P25/00;

(IPC1-7): A61K33/00; A61M37/00

- European:

Application number: JP19890277943 19891025 Priority number(s): JP19890277943 19891025

Report a data error here

#### Abstract of JP3139364

PURPOSE: To simplify handling at the time of treatment and to lightly apply treatment with ozone gas by blowing ozone gas against the lesion to bring the same into contact with the affected part. CONSTITUTION: The ozone gas formed in an ozone apparatus 16 is fed in a blowoff body 22 through a feed-out flow passage 12 to be emitted to the outside from a blowoff port 24. Next, the ozone gas emitted to the outside comes into contact with the lesion to be returned while sucked toward the ozone apparatus 16 from a suction flow passage 14. The ozone gas blown off from the blowoff body 22 is intercepted by a hood 20 so as no to leak to the outside and effectively recovered while sucked on the side of the suction flow passage 14. When the hood 20 is used so that the lesion is allowed to approach the end edge part of the hood 20 in an almost contact state, an almost hermetically closed space is formed and effect preventing the outflow of the ozone gas to the outside is enhanced.



Data supplied from the esp@cenet database - Worldwide

### 9日本国特許庁(JP)

(1) 特許出頭公開

#### 四公開特許公報(A) 平3-139364

®Int. Cl. ⁵

識別記号

庁内整理番号

④公開 平成3年(1991)6月13日

A 61 M 37/00 A 61 K 33/00

AAH

6971-4C 7431-4C

審査請求 有 請求項の数 1 (全4頁)

会発明の名称

個発 明 者 オゾンガスを用いた治療器

平1-277943 创特 餌

田の 願 平1(1989)10月25日

浜 個発 明 者

亦、男

敬博

長野県茅野市宮川11417番地 株式会社ミハマ製作所内

明 = 好 @発

東京都千代田区岩本町3丁目11番11号 株式会社プルータ

橋 本

長崎県島原市加美町1017番地 有限会社アオイ商事内

長野県茅野市宮川11417番地

株式会社ミハマ製作所 മ്പ 颐 人 መ出 頭

人 株式会社プルータス 東京都千代田区岩本町3丁目11番11号

有限会社アオイ商事 の出 頭 人

長崎県島原市加美町1017番地

弁理士 綿貫 隆夫 四代 理 人

外1名

- 1. 范明の名称 オゾンガスを用いた治療器
- 2. 特許請求の報題
  - 1. オゾンガスを生成し送出する送出機構及び オゾンガスを回収するための回収機器を鍛え たオゾン数型と、

一類が前記送出機構、回収機構のそれぞれ に連絡する送出用流路および吸引用流路を鍛 えた淀路管と.

放流路管の他端に前記送出川流路および吸 引川滋路を内部に開口させて接収されるフー K 2 .

- 絃フード内において前記送出川波路あるい は吸引川遊路に逃遁され、オゾンガスを遁洗 させる道流孔が穿設された中空体と

を鍛えることを特徴とするオゾンガスを用い た治療器。

3. 発明の詳細な説明

本発明はオゾンガスを用いた治療器に関する。

#### (保骨材料)

オゾンガスは酸化力がきわめて強い気体であり、 その硷化作用によって殺菌、脱色、脱臭効果を存 することが知られている。従来のオゾンガスの利 川としては、この殺菌、脱色、脱臭化川を利川し たものがほとんどで、たとえば以下のような利川 例がある.

投留作用を利用するものとして、室内の原収浄 化、食品の段階阶級、上水道、ブールの殺菌、傷 口の消費、器具類の消費。成色・脱臭作用を利用 するものとして、水道水の脱臭、下水処理場の脱 臭、ホテル・病院などの空気浄化、この他、酸化、 分解、表面活性化、二重結合の切断反応等を利用 する例がある。

このようにオゾンガスの利用としては一般には 投菌、脱臭作用を利用した工業的利用がほとんど であるが、オゾンガスの殺菌性に非目して貸口の 消傷や水虫を治療する例、肌に刺散を与えて血行 をよぐするなどの姿顔階としての利用なども考え られている.

このオゾンガスの鉱揺効果は、 殺菌性、 脱臭性 等のオゾンガスの効果とは異なる作用であり、こ の鉱績効果を利用することによって医療分野に効 果的に利用することが可能となる。

本発明は上記のオゾンガスの銀系効果に着目してなされたものであり、その目的とするところは、 譲、足などの心部の治療に何単に利用できる効果 的なオゾンガスを用いた治療器を提供しようとす るものである。

(課題を解決するための手段)

てオゾンガスが吐心されるとともに中空体から吸引されて回収される。

#### (実施例)

以下本発明の好適な突筋例を混付圏面に基づいて詳細に説明する。

第1回は水発明に係るオソンガスを用いた治療 器の一実施例を示す提明図である。

図で10はオゾンガスを送抑気するための流路でで、内部にオゾンガスを送出するための送出川 流路12およびオゾンガスを吸引して抑気するための吸引川流路14が形成されている。流路で1 のの抵部は第2図に示すようにオゾン装配16に 連結され、前記オゾンガスの送出川流路12はオ ゾン装配のオゾンガス。近路様に、前記オゾンガス吸引川流路14はオゾンガスの吸引機構にそれ ぞれ接続されている。

遊路管10は、第2回に示すように、オゾン装置16上に立設され上部においてし字形に折曲するが、折曲位置においてスタンド18により固定支持される。

本発明は上記目的を選成するため次の構成をそなえる。

すなわち、オソンガスを生成し送出する送出機 構及びオソンガスを回収するための回収機構を留 えたオソン数型と、一端が前記送出機構、回収機 構のそれぞれに逃移する送出用漁路および吸引用 漁路を個えた漁路でと、該漁路での他婦に前記送 出用漁路および吸引用漁路を内部に明ロさせて投 設されるフードと、該フード内において前記送出 別連路あるいは吸引用漁路に逃述され、オソンガ スを通流させる通流孔が撃殺された中空体とを留 えることを特徴とする。

#### (作用) ·

オゾンガス装図において生成されたオゾンガス は送出川淡路をとおってフード内の中空体に送出 され返波孔から吐出される。フードは恐部に向け て吐出されたオゾンガスが外部に遅れないように 遅載し、フード内に関ロする吸引川流路によって オゾンガスを吸引して回収する。中空体を吸引用 波路に接続した場合は送出川波路から恐部に向け

決路官10の先韓には先韓側が太後となる両形のフード20が、下向きに関ロするよう取り付けられている。

フード20は第1回に示すように、送路を10の洗出用送路12および吸引用波路14の類部をフード20内で開口させて取り付けられ、前配送出用送路12に中空のシェル状に形成された中空体としての吹出し体2<sup>1</sup>2が返近して固定される。吹出し体22は送出用送路12との連結部から先聞が徐々に拡伍し、吹出し体22の外周回とフード20円回との間に若干の両隔をあけてフード2

フード20の明ロ面に回する吹出し体22の吹出し間22。は中央部が若干凹状に跨曲するほぼ 平面状に形成され、オゾンガスを通過させるため の吹出し孔24が所定数数けられる。

なお、吹出し邸22。はフード20の延出位以 よりもやや後退した位配に設ける。

続いて、上記契施例の使用方法について説明する。

上記オゾンガスを用いた治療器は腕、足等の心 部をフード20の関ロ部に近づけ、吹出し部22 a から吐出されるオゾンガスに必部を接触させる ようにして用いるものである。

オソン装図16で生成されたオソンガスは送出 们波路12をとおって吹出し体22内に送出され、 吹出し孔24から外部に吐出される。外部に吐出 したオソンガスは息部に接触した後、吸引用波路 14からオゾン装置16個に吸引されて戻る。

第1回に示すように吹出し体22から吹き出されたオソンガスはフード20によって外部に加れ出ないように遮蔽されるとともに、吸引用波路14個で吸引することにより効果的に回収することができる。フード20の錦紋部に必節がほとんど接触するぐらいに近づけて使用した場合は、ほぼ宏閉空間となりオゾンガスが外部に流出することも防止する効果が高まる。

なお、郑1回に示すようにフード20の関ロ邸 の周級に柔欲なシート材を用いて保護用のスカー ト26を乗らすように設けてもよい。この場合は 必部をフード20に近づけた際、スカート26によってフード20の四頭が取われてさらに遮蔽効果を高めることができる。

本実施例のオゾンガスを川いた治療器は必節をフード20に近づけておくだけでオゾンガスに接触させることができるから、操作上の気わしさがなくきわめて扱いが簡単であるという特徴がある。そして、成、足等に限らず限、程中等適宜は別いので、放、足等に限らず限、程中等適宜は別いので、なができ、また、たとえばフード20の向きを可変に形成したり、決路等10を可挠性に形成したり、仲閣可能に形成したりすることによってセットを容易にすることができ、必省も変な姿勢で治療を受けることができる。

また、上述したように必都近份を密封するよう に遮蔽してオゾンガスを接触させ、外部に凝れる オゾンガスの量を少なくして治療できるから、あ る程度適度の高いオゾンガスも使用でき治療効果 を高めることができるという利点がある。

なお、上記治療器ではオゾンガスを回収しつつ

使用するが、回収したオゾンガスはオゾン設証 1 6内で加熱等によって無害化して外部に放出した り、物気再利用したりする。また、一定程度の鍵 度以下の場合はそのまま外部に放出してもよい。

また、フード20等は耐オゾン性を有する系材を用いて適宜形状、サイズに設計することができる。また、上記契施例においてはフード20の内部に配設した中空体に送出用液路12を連通させたが、中空体を迎に吸引用流路14に接続してオゾンガスの流れ方向を逆転させ、フード20の周級団からオゾンガスを吹き出させ、中空体からオゾンガスを吸引するようにしてもよい。設計によっては、この構成のほうが上記例よりもオゾンガスの外部への流出を抑える効果が高い場合がある。

以上、本発明について好適な実施例を作けて租 々説明したが、本発明はこの実施例に限定される ものではなく、発明の精神を逸脱しない範囲内で 多くの改変を施し得るのはもちろんのことである。 (空間の効果)

本発明に係るオゾンガスを用いた治辺路は、必

部に向けてオゾンガスを吹き付けて心部にオゾンガスを接触させるようにしているから、装置としての構成が何易であり、治療等に関しての取り扱いもさわめて簡単で、手軽にオゾンガスにある。また、吐出したオゾンガスが外部に調れないようにしているので、オゾンガスによる可以及などの高いオゾンガスが使用できて、ある私政政できる等の必必を奏する。

### 4. 図面の簡単な説明

第1回は本発明に係るオゾンガスを用いた治療 器の要節を示す越明図、第2回は全体の疑略構成 を示す説明図である。

10 - · · 淮路管、 12 · · · 送出用洪路、

.14・・・吸引用液路、 16・・・オソン設置、

18・・・スタンド、 20・・・フード、

22・・・吹出し体、 22a・・・吹出し郎、

24・・・吹出し孔、 26・・・スカート・

## 特開平3-139364 (4)





### STERILIZATION USING OZONE

Publication number: JP3207365

Publication date: 1991-09-10

Inventor:

KAMASE YUKIHIRO; YAMAMOTO KATSUHARU;

NAGAHAMA SUNAO, HARA OKITADA

Applicant:

ISHIKAWAJIMA HARIMA HEAVY IND

Classification:

- international:

A61L2/20; C01B13/00; A61L2/20; C01B13/00; (IPC1-

7): A61L2/20; C01B13/00

- European:

Application number: JP19900003949 19900111 Priority number(s): JP19900003949 19900111

Report a data error here

### Abstract of JP3207365

PURPOSE: To perform sterilization within a short time by obtaining large sterilizing power by generating ozone using oxygen gas as raw material gas and subsequently mixing inert gas such as nitrogen gas with the ozonecontaining oxygen gas before use. CONSTITUTION: As raw material gas, a gaseous mixture 13 prepared by mixing oxygen gas 11 and inert gas 12, for example, nitrogen gas is used. The raw material gas wherein the oxygen gas 11 and the nitrogen gas are mixed is sent to an ozonizer 14 and ozone gas is generated by silent discharge. The sterilizing gas containing the ozone gas thus generated is sent to a sterilizing chamber 16 in which an object to be sterilized is received. Therefore, the concn. of oxygen in atmosphere to be sterilized is lowered by the inert gas 12 and the oxidation reaction by the ozone gas is kept. By this method, large sterilizing power can be obtained.



Data supplied from the esp@cenet database - Worldwide

### ⑩ 日本国特許庁(JP)

00特許出顧公開

## 母 公 開 特 許 公 報 (A) 平3−207365

Solnt.Cl.

識別記号 庁内整理番号

J

❸公開 平成3年(1991)9月10日

A 61 L 2/20 C 01 B 13/00 7038-4C 6939-4G

審査請求・未請求 請求項の数 2 (全5頁)

**9発明の名称** オゾンによる殺菌方法

②符 顧 平2-3949

20出 願 平2(1990)1月11日

四発 明 者 釜 瀬 幸 広 東京都江東区豊洲 3 丁目 1 番 15号 石川島播磨重工業株式 会社東京第二工場内

⑦発明者山本 克治 東京都江東区豊洲3丁目1番15号 石川島播磨重工業株式会社東京第二工場内

60発 明 者 長 濱 直 東京都江東区豊洲 3 丁目 1 番 15号 石川島播磨重工業株式会社東京第二工場内

母 明 者 原 與 忠 東京都江東区豊洲 3 丁目 1 番 15号 石川島播磨重工業株式 会社東京第二工場内

⑦出 願 人 石川島播磨重工業株式 東京都千代田区大手町2丁目2番1号 会社

四代 理 人 弁理士 坂 本 徹 外1名

明和

1. 発明の名称

オゾンによる殺歯方法

### 2. 特許請求の範囲

- (1) ガス状オソンを用いて殺菌するに原し、酸素ガスと窒素ガスなどの不活性ガスとの混合ガスを原料ガスとしてオソンを発生させた後、オソンを含むこれらガスで殺菌するようにしたことを特徴とするオソンによる殺菌方法。
- (2) ガス状オソンを用いて殺菌するに限し、映 素ガスを原料ガスとしてオソンを発生させた後、 オソンを含む酸素ガスに窒素ガスなどの不居性ガ スを混合して殺菌するようにしたことを特徴とす るオソンによる殺菌方法。
- 3. 発明の詳細な説明

[産業上の利用分野]

この発明は、オソンを用いて行う収益方法に関

し、数菌力の増大により食品容易など自動設備に 狂滅なものである。

[従来の技術]

従来からオソン(オソンガス)を用いて設備を 行うことが行われており、万一銭留しても気体と なって拡散されるなど人体に安全なことから、例 えば飲料水の穀盥などに利用されている。

このようなオソンによる教園を行う場合には、原料ガスとして純粋酸素(濃度99.7%程度の酸素ガス)を原料ガスとして用い、これをオゾン発生器に送ってオゾンを発生させ、発生したオゾンを教園用の容器などに送り、容器内の試料を殺菌するようにしている。

このようなオソン役面を行う場合、設歯用の容器内のオソン濃度を高めることが設慮能力に最も大きな影響があると考えられていただめ、できるだけ就度の高い酸素ガスを原料ガスとして高濃度のオソンを作り出し、高濃度のオソンを用いて設置することが考えられていた。

### [発明が解決しようとする課題]

ところが、最近の研究によれば、容器内のオソン機度がある機度以上の状態では、オゾン機度よりも容器内でのオソンの酸化反応が支降なく行われるかが、オソンによる数面の良否に大きな影響があることが知得された。

そこで、このようなオゾンの酸化反応が支除な く進行するようにしたオゾンによる収慮方法の関 発が望まれている。

この発明は、かかる従来技術の無層に鑑みてなされたもので、大きな設置力を得て短時間に設備することができるオゾンによる設置方法を提供しようとするものである。

#### 【課題を解決するための手段】

上記従来技術が有する課題を解決するため、この発明のオソンによる設備方法は、ガス状オソンを用いて設備するに悲し、設業ガスと窒素ガスなどの不活性ガスとの混合ガスを照料ガスとしてオソンを発生させた後、オソンを含むこれらガスで設備するようにしたことを特徴とするものである。

また、この発明のオゾンによる殺菌方法は、ガス状オゾンを用いて殺菌するに取し、酸素ガスを原料ガスとしてオゾンを発生させた後、オゾンを含む酸素ガスに窒素ガスなどの不活性ガスを混合して殺菌するようにしたことを特徴とするものである。

#### [作用]

このオゾンによる設置方法によれば、原料ガスと登集ガスなどの不活性ガスとの程合がスを用い、発生させたオゾンガスととも、不活性ガスを用いて設置するようにしており、不活性ガスによって設置すべき雰囲気中の酸素濃度を低下し、オゾンガスによる酸化反応を持続するようにし、大きな設慮力を得るようにしている。

したがって、酸素ガスと窒素ガスの混合ガスである空気を原料ガスとして用い、発生したオゾンガスを含む空気によって殺菌するようにして大きな殺菌力を得ることができる。

また、このオソンによる設度方法によれば、設 業ガスを原料としてオゾンガスを発生させ、この

オソンガスに窒素などの不活性ガスを加えた混合ガスで殺菌するようにしており、オソンガスに加えた不活性ガスによって殺菌すべき雰囲気中の酸素濃度を低下し、オソンガスによる酸化反応を持続するようにし、大きな殺菌力を得るようにしている。

### [実施例]

以下、この発明の実施例を図面を参照しながら 詳細に説明する。

第1回はこの発明のオゾンによる殺菌方法の一実施例にかかる原理説明図である。

このオソンによる教館方法では、原料ガスとして設まガス11と不活性ガス12、例えば窒素ガスとを混合した混合ガス13を用いる。

この 設 素 ガス 1 1 と 窒素 ガス 1 2 と の 混合された 原料 ガス は、 オ ゾナイ ザ 1 4 に 送 られ、 無 声 放電 などによって オ ゾンガス が 発生 される。 ここで 発生 される オ ゾンガス は、 例えば 6 0 0 0 ~ 1 5 0 0 0 ppm 程度の 違度とされる。

このオソナイザ14を通過した原料ガスは、発

生されたオゾンガス( $O_8$ )のほか、原料ガスのままの酸素ガス( $O_2$ ) 11と窒素ガス( $N_2$ ) 12、さらに窒素酸化物のガス( $NO_1$ )が含まれた状態となっている。

こうして発生されたオソンガスが含まれた殺歯用のガス15は、殺歯対象物が入れられる殺歯室16などにオソン養皮が6000ppm 程度となるように送られる。

なお、図示省略したが、教費用のガスを教養室 16に送る前に、必要に応じ、散素ガスを取除い た状態の教護用のガス15とするようにしても良い。

このため、例えば高純度シリカゲルなどの吸着剤が入れられた吸着塔に送り、冷却した状態でオソルガスを吸着剤に吸着させ、次いで、冷却した状態で吸着場内に不活性ガスを供給して酸素を培外に排出し、しかる後、吸着場を宜遠にして吸着されたオゾンを不活性ガスによって敬敬室などに供給するようにすれば良い。

このように所定義度(例えば6000ppm 程度)

のオソンガスに窒素がス及び窒素酸化物のガスが含まれた状態の設備用のガス15を用いて設備するようにすると、設備室16内の酸素濃度が低下し、オソンの酸化作用に伴なって発生する酸素が窒素ガスと化合することとなり、酸化反応が持続し、設備作用が増大する。

数国後のオソンガスはオソンキラー17に送られて処理された後、排気される。

#### [実験例]

原料ガスの違いによる殺菌効果の比較を次のよ

うな条件下で行った。

条件: オゾンガス装度 6000ppm

供は菌

枯草菌孢子

原料ガスとして純粋酸素ガスと乾燥空気(DP=-60℃)を用い、処理時間を1分、2分及び5分に変えて数値状態を調べた。

その結果、次の表に示すような結果が得られ、 原料ガスの違いにより、設盟効果が大きくことな ることがわかった。

|                 | 処理時間(分) |      |                |
|-----------------|---------|------|----------------|
|                 | 1 分     | 2 分  | 5 <del>分</del> |
| 政策ガス            | 効果なし    | 効果なし |                |
| 乾燥空気<br>(DP80で) | 10 章 较幽 |      | 104 数值         |

したがって、従来のように高純度の酸素ガスを

原料ガスとして用いることなく、空気を原料ガスとして用いて所定権度(例えば、6 0 0 0 pp ■ 程度)のオゾンガスを発生させ、これによって効率良く、しかも安価に数曲することが可能となる。

次に、この発明の他の一実施例について、第2 図を参照しながら詳細に説明する。

第2図はこの発明のオゾンによる数据方法の一実施例にかかる類理説明図である。

このオソンによる敬舊方法では、原料ガスとして改業ガス21のみを用いる。

この原料ガスとしての政業ガス21は、オゾナイザ22に送られ、無声放電などによってオゾンガスが、例えば6000~15000ppm 程度の適度で発生される。

このオソナイザ22を超過した酸素ガスには、 発生されたオソンガス( $O_2$ )のほか、原料ガス のままの酸素ガス( $O_2$ )が含まれた状態となっ ている。

この発生されたオゾンガスと酸素ガスが含まれたガスには、不活性ガス23として、例えば窒素

ガスが混合されて数値用のガス24とされ、こののち、オゾンガス濃度が、例えば600ppm 程度として数個対象物が入れられる数値室25などに送られる。

なお、図示省略したが、発生されたオソンガスと改業ガスが含まれたのガスを資業ガスなどの不活性ガスと混合して設備用のガスとする前に、必要に応じ、改業ガスを政論いた状態の設備ガスとするようにしても良い。

このため、例えば高純度シリカゲルなどの吸着 割が入れられた吸着塔に送り、冷却した状態です ソンガスを吸着 対に吸着させ、次いで、冷却でした 状態で吸着 場内に不話性ガスを供給して酸素を 外に排出し、しかる後、吸着場を室温にして不 されたオゾンを混合すべき窒素ガスなどの不活性 ガスによって 致歯室などに供給するようにすれば 良い。

このように所定議度(例えば6000ppm 役度)のオソンガスを発生させた後、窒素ガス23を配合した状態の数調用のガス24をつくり、これを

用いて殺菌するようにすると、 殺菌室 2 5 内の設 素濃度が低下し、オゾンの酸化作用に伴なって免 生する酸素が窒素ガスと化合することとなり、酸 化反応が持続し、殺菌作用が増大する。

数菌後のオゾンガスはオゾンキラー26に送られて処理された後、排気される。

れば、設重作用の増大を図ることができる。

このように、酸素がス21からオソンを発生させた後、 窒素がスなどの不活性がス23を混合する場合なようにしているので、原料状態で混合する場がスに比べ、 数 国 室 全 り や い の x り が 存在 せ が な で な で に い な な で い が な と し て の オ ソナイ ザ 2 2 な ど に 硝 散 塩 ち の 付着が起こらず、メンテナンスが 容 島 と なる。

したがって、従来のように酸素ガスを取料ガス として所定識度のオソンガスを発生させ、これに 不活性ガスを混合するようにするだけで、特に高 濃度のオソンを発生させること無く能申良く、し かも安価に収慮することが可能となる。

なお、上記実施例では、不活性ガスとして窒素 ガスを例にあげて説明したが、他の不活性ガスは 勿論のこと、空気中の窒素ガスも含め、不純物を 含む広い意味の不活性ガスであっても良い。

また、この発明の要旨を造脱しない範囲で各様 成要素を変更しても良いことは言うまでもない。

### [発明の効果]

したがって、酸素ガスと宴業ガスの混合ガスである空気を原料ガスとして用い、発生したオゾンガスを含む空気によって殺菌することが可能となり、大きな設歯力を得ることができる。

また、この場合には、オゾンを発生させる際に 不活性ガスの酸化物などが生成されることがなく、 反応器などのメンチナンスが容易となる。

### 4. 図面の簡単な説明

第1回はこの発明のオゾンによる収留方法の一 実施的にかかる原理説明図である。

第2回はこの動明のオゾンによる設閣方法の他 の一実施例にかかる原理説明図である。

11: 映索ガス、12: 不活性ガス (窒素ガス) 13: 混合ガス、14: オゾナイザ、15: 殺菌 用のガス、16: 殺菌室、17: オゾンキラー、

21: 政業ガス、22: オソナイザ、23: 不活性ガス(窒素ガス)、24: 数歯用のガス、25: 数歯室、26: オソンキラー。

出顧人 石川島播遊堂工業株式会社 代理人 坂 本 微

(ほか 1 名)



## WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

C07C 381/00

(11) International Publication Number: WO 92/17445

(43) International Publication Date: 15 October 1992 (15.10.92)

(21) International Application Number: PCT/US92/02560
(22) International Filing Date: 30 March 1992 (30.03.92)

(30) Priority data: 676,691 29 March 1991 (29.03.91) US 804,665 11 December 1991 (11.12.91) US

(71) Applicant: BRIGHAM AND WOMEN'S HOSPITAL [US/US]; 75 Francis Street, Boston, MA 02115 (US).

(72) Inventors: STAMLER, Jonathan, S.; 220 Marlborough Street, #1, Boston, MA 02116 (US). LOSCALZO, Joseph; 50 Pacella Drive, Dedham, MA 02026 (US). SLIVKA, Adam; 33 Stoughton Street, Randolph, MA 02368 (US). SIMON, Daniel; 211 Dorset Road, Waban, MA 02168 (US). BROWN, Robert; 12 Farmhill Road, Natick, MA 01760 (US). DRAZEN, Jeffrey; 99 Lawson Road, Winchester, MA 01890 (US).

(74) Agents: GOLDSTEIN, Jorge, A. et al.; Sterne, Kessler, Goldstein & Fox, 1225 Connecticut Avenue, N.W., Suite 300, Washington, DC 20036 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), MC (European patent), NL (European patent), SE (European patent).

### Published

Without international search report and to be republished upon receipt of that report.

(54) Title: S-NITROSOTHIOLS AS SMOOTH MUSCLE RELAXANTS AND THERAPEUTIC USES THEREOF



### (57) Abstract

S-nitrosothiols exert a potent relaxant effect, mediated by guanylate cyclase, upon non-vascular smooth muscle. Such types of smooth muscle include airway, gastrointestinal, bladder, uterine and corpus cavernosal. Thus, S-nitrosothiols may be used for the treatment or prevention of disorders associated with relaxation of smooth muscle, such as airway obstruction, and other respiratory disorders, bladder dysfunction, premature labor and impotence. Additionally, S-nitrosothiols may be used to alleviate smooth muscle contraction and spasm, and thus facilitate procedures involving diagnostic instrumentation, such as endoscopy, bronchoscopy, laparoscopy and cystoscopy.

# FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AU Australia BB Barbaulos BE Belgium BF Burkina Faso BC Bulgaria BJ Benin BR Brazil CA Canada CF Central African Republic CG Congo CH Switzerland CI Côte d'Ivoire CM Cameroon CS Czechoslovakia DE GA Gabon GB United Kingdom GB Greece HU Hungary IT Italy Japan Democratic People's Republic of Korea KR Republic of Korea LI Tiechtenstein CS Czechoslovakia LK Sri Lanka LL Luxembourg MC Monaco | MN MR MW NL NO PL RO RU SD SE SN SU TD TG US | Mongolia Mauritania Malawi Netherlands Norway Poland Romania Russian Federation Sudan Sweden Senegal Soviet Union Chad Togo United States of America |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|

10

## S-NITROSOTHIOLS AS SMOOTH MUSCLE RELAXANTS AND THERAPEUTIC USES THEREOF

## Cross-Reference to Related Application

This application is a continuation-in-part of U.S. Application Serial No. 676,691, filed March 29, 1991.

### Background of the Invention

This invention was made with government support under R01-HL40411, HL43344, and R04870, awarded by The National Institutes of Health. The government has certain rights in the invention.

## Field of the Invention

This invention relates to the use of low molecular weight S-nitrosothiols, such as S-nitroso-N-acetylcysteine, S-nitroso-glutathione, S-nitroso-homocysteine, S-nitroso-cysteine, S-nitroso-penicillamine and S-nitroso-penicillam

10

15

20

25

nitroso-captopril, to relax non-vascular smooth muscle. Types of smooth muscle include airway, gastrointestinal, bladder uterine, and corpus cavernosum. The invention also relates to the use of S-nitrosothiols for the treatment or prevention of disorders which involve non-vascular smooth muscle, such as respiratory disorders, gastrointestinal disorders, urological dysfunction, impotence, uterine dysfunction or premature labor. The invention also relates to the use of S-nitrosothiols to ameliorate smooth muscle contraction or spasm and thus, facilitate diagnostic or therapeutic procedures, such as bronchoscopy, endoscopy, laparoscopy, and cystoscopy.

## Brief Description of the Background Art

The endothelium secretes a vascular relaxing factor, known as endothelium-derived relaxing factor (EDRF), which has been identified as nitric oxide (NO), or a closely related derivative thereof. (Palmer et al., Nature 327:524-526 (1987); Ignarro et al., Proc. Natl. Acad. Sci. USA 84:9265-9269 (1987)). Under physiologic conditions, however, NO is exceedingly unstable, reacting essentially instantaneously with oxygen, superoxide anion, and redox metals (Lancaster et al., Proc. Natl. Acad. Sci. USA 87:1223-1227 (1990); Ignarro et al., Circ. Res. 65:1-21 (1989); and Gryglewski et al., Nature 320:454-456 (1986)). This fact has lead to the supposition that, in order to exert its effect on vascular smooth muscle, NO must be stabilized in vivo in a form that preserves its biological activity.

S-nitrosothiols (RS-NO) are adducts that form readily under physiologic conditions from the reaction of NO with reduced low molecular weight thiols (Oae et al., Org. Prep. Proc. Int. 15(3):165-198 (1983)). These compounds have half-lives that are significantly greater than that of NO and, like EDRF, possess vasorelaxant activity that is

10

15

20

25

30

mediated through activation of guanylate cyclase (Kowaluk et al., J. Pharmacol. Exp. Ther. 256:1256-1264 (1990); Loscalzo et al., J. Pharmacol. Exp. Ther. 249(3):726-729 (1989); and Ignarro et al., J. Pharmacol. Exp. Ther. 218(3):739-749 (1981)).

The relaxant effect of S-nitrosothiols on blood vessels, and the mechanism by which this effect is exerted, is reasonably well understood in the art. However, the role of NO, or involvement of the guanylate cyclase pathway in non-vascular smooth muscle is not as clearly understood.

In the lung, pulmonary endothelial cells, macrophages and polymorphonuclear leukocytes are potential sources of NO or RS-NO. However, the role of NO and its metabolites in regulation of airway tone is not known, and the few available reports on the efficacy of NO and EDRF in relaxation of airway smooth muscle are conflicting (Shikano et al, J. Pharmacol. Exp. Ther. 243:55-59 (1987); Shikano et al, Br. Journal Pharmacol. 92:483-485 (1987)). Furthermore, in the lung, the high ambient concentrations of oxygen and other oxygen-free radicals predispose to rapid inactivation of NO (Furchgott R.F. et al., I. Endothelium-Derived Relaxing Factors and Nitric Oxide; eds. Rubanyi G.M., pp. 8-21 (1990); Gryglewski, R.J. et al., Nature 320:454-456 (1986)).

Non-vascular smooth muscle is present in numerous organ systems throughout the body, and has a vital role in the physiological function of these systems. For example, airway smooth muscle plays a critical role in constriction and dilation of bronchi. In the gastrointestinal tract, the sphincter of Oddi, a smooth muscle connection between the bile duct and duodenum, provides tonic contraction which serves to prevent reflux of duodenal contents into the pancreatic and bile ducts, and promotes filling of the gall bladder. In addition, esophageal (sphincters and body), intestinal and colonic motility is regulated by smooth muscle. Smooth muscle of the bladder body, bladder base, and proximal urethra plays an

10

15

20

important role in urological function, and erectile function is mediated by relaxation of corpus cavernosal smooth muscle.

In summary, the relaxation kinetics of non-vascular smooth muscle are very important in numerous physiological systems. Moreover, a variety of significant clinical disorders occur, which involve contraction, spasm, or failure to achieve the necessary relaxation of smooth muscle. Examples of such disorders include airway obstruction (i.e., asthma, bronchitis and emphysema), bladder dysfunction, gastrointestinal muscle spasm (i.e., irritable bowel syndrome, achylasia, dumping disorders), and impotence. Thus, a clinical need exists for pharmacological agents which can treat or prevent such disorders by inducing relaxation of the affected smooth muscle.

## SUMMARY OF THE INVENTION

This invention is based on the discovery by the inventors that S-nitrosothiols exert a potent relaxant effect on non-vascular smooth muscle. This concept lead the inventors to the discovery that S-nitrosothiol compounds may be used as a therapeutic modality in disorders which involve smooth muscle relaxation.

The invention is directed to an S-nitrosothiol compound which has the formula:

wherein:

X equals 2 to 20.

The invention is also directed to an S-nitrosothiol compound which has the formula:

HS(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

The invention is also directed to an S-nitrosothiol compound which has the formula:

## ONS(CH<sub>2</sub>)<sub>x</sub>Y

### 5 wherein:

10

15

20

25

X equals 2 to 20 and Y is selected from the group consisting of fluoro,  $C_1$ - $C_6$  alkoxy, cyano, carboxamido,  $C_3$ - $C_6$  cycloalkyl, aralkoxy,  $C_2$ - $C_6$  alkylsulfinyl, arylthio,  $C_1$ - $C_6$  alkylamino,  $C_2$ - $C_{15}$  dialkylamino, hydroxy, carbomoyl,  $C_1$ C $_6$  N-alkylcarbamoyl,  $C_2$ - $C_{15}$  N,N-dialkylcarbamoyl, amino, hydroxyl, carboxyl, hydrogen, nitro and aryl; wherein aryl includes benzyl, naphthyl, and anthracenyl groups.

The invention is also directed to the use of S-nitrosothiols for the treatment or prevention of disorders associated with relaxation of smooth muscle, such as airway obstruction, gastrointestinal spasm, bladder dysfunction and impotence. The invention is also directed to the use of S-nitrosothiols to alleviate smooth muscle contraction and spasm, and thus facilitate procedures involving diagnostic instrumentation such as endoscopy and bronchoscopy.

In particular, this invention is directed to a method for relaxing airway smooth muscle by administering a therapeutically effective amount of an S-nitrosothiol compound to an animal. The S-nitrosothiol compound may be selected from the group consisting of S-nitroso-N-acetylcysteine, S-nitroso-glutathione, S-nitroso-cysteine, S-nitroso-homocysteine, S-nitroso-penicillamine and S-nitroso-captopril. The S-nitrosothiol compound may be selected from the group consisting of a compound having the formula:

CH<sub>3</sub>(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

10

15

20

25

The invention is also directed to an S-nitrosothiol compound which has the formula:

## HS(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

The invention is also directed to an S-nitrosothiol compound which has the formula:

## $ONS(CH_2)_xY$

wherein:

X equals 2 to 20 and Y is selected from the group consisting of fluoro,  $C_1$ - $C_6$  alkoxy, cyano, carboxamido,  $C_3$ - $C_6$  cycloalkyl, aralkoxy,  $C_2$ - $C_6$  alkylsulfinyl, arylthio,  $C_1$ - $C_6$  alkylamino,  $C_2$ - $C_{15}$  dialkylamino, hydroxy, carbomoyl,  $C_1$ C $_6$  N-alkylcarbamoyl,  $C_2$ - $C_{15}$  N,N-dialkylcarbamoyl, amino, hydroxyl, carboxyl, hydrogen, nitro and aryl; wherein aryl includes benzyl, naphthyl, and anthracenyl groups.

The invention is also directed to a method for treatment or prevention of respiratory disorders by administering a therapeutically effective amount of S-nitrosothiol compound to an animal. Respiratory disorders include obstructive lung disease, emphysema, asthma, bronchitis, fibrosis, excessive mucus secretion, obstruction of air flow, and lung disorders resulting from post-surgical complications.

The invention is also directed to a method for relaxing gastrointestinal smooth muscle by administering a therapeutically effective amount of an S-nitrosothiol compound to an animal.

The invention is also directed to a method for ameliorating contraction or spasm of gastrointestinal smooth muscle associated with endoscopic procedures, by administering a therapeutically effective amount of an S-nitrosothiol compound to an animal.

10

15

20

25

The invention is also directed to a method for relaxing corpus cavernosum smooth muscle by administering a therapeutically effective amount of an S-nitrosothiol compound to an animal.

The invention is directed to a method for the treatment or prevention of impotence by administering a therapeutically effective amount of an S-nitrosothiol compound to an animal.

The invention is also directed to the administration of said Snitrosothiol compounds for the methods of the invention, as part of the pharmaceutical composition comprising a pharmaceutically acceptable carrier.

The invention is also directed to the methods of the invention wherein the pharmaceutical composition containing the S-nitrosothiol compound is administered to an animal by a route comprising oral, sublingual, intravenous, topical, intramuscular or intranasal delivery.

The invention is also directed to a method for relaxing bladder smooth muscle by administering a therapeutically effective amount of an S-nitrosothiol compound to an animal.

The invention is also directed to a method for relaxing uterine smooth muscle by administering a therapeutically effective amount of an S-nitrosothiol compound to an animal.

## Brief Description of the Figures

FIGURE 1: Inhibition of the Sphincter of Oddi by administration of S-nitroso-N-acetylcysteine.

FIGURE 2: Inhibition of duodenal motility by administration of S-nitroso-N-acetylcysteine.

15

FIGURE 3:

Side-by-side comparison of the relaxant effect of specific S-nitrosothiols on guinea pig tracheal muscle.

FIGURE 4:

Dose-dependent relaxant effect of specific S-nitrosothiols on guinea pig tracheal muscle contracted with 3  $\mu$ M, as compared to the reactant and NO.

- a: S-nitroso-glutathione
- b: S-nitroso-cysteine
- 10 c: S-nitroso-homocysteine
  - d: S-nitroso-N-acetylcysteine
  - e: S-nitroso-penicillamine
  - f: S-nitroso-captopril

FIGURE 5:

Relaxant activities of S-nitroso-N-acetylcysteine (A) and S-nitroso-captopril (B) determined against contractions induced by leukotriene  $D_4$ , histamine and methacholine.

FIGURE 6:

The course of relaxation induced by S-nitroso-N-acetylcysteine (5 x  $10^{-6}$ M) over 60 minutes.

20 FIGURE 7:

The relaxation response to S-nitroso-glutathione in guinea pig airway (A) and rabbit aorta (B).

FIGURE 8:

Tracheal relaxant effects of S-nitroso-N-acetylcysteine, isoproterenol, and theophylline.

FIGURE 9: Inhibition of tracheal relaxation to S-nitroso-N-acetylcysteine by hemoglobin and methylene blue.

FIGURE 10: Cyclic GMP determinations in tracheal rings incubated with 100 μM S-nitroso-N-acetylcysteine.

5 FIGURE 11: Comparison between the relaxant effect of S-nitrosoglutathione and nitrite upon human tracheal smooth muscle.

FIGURE 12: Comparison between the relaxant effect of S-nitroso-glutathione and glutathione upon human tracheal smooth muscle.

FIGURE 13: Comparison between the relaxant effect of S-nitroso-N-acetylcysteine and N-acetylcysteine upon human tracheal smooth muscle.

FIGURE 14: Tracheal relaxant effects of theophylline, isoproterenol, S-nitroso-N-acetylcysteine, and S-nitroso-glutathione.

FIGURE 15: Cyclic GMP response to S-nitroso-N-acetylcysteine in human airways.

15

20

25

# Description Of The Preferred Embodiments

### Background

The invention is based on the discovery by the inventors that S-nitrosothiols relax non-vascular smooth muscle, and possess unique and different relaxant activities, kinetic properties and membrane permeability, and thus, may be used to treat or prevent disorders which involve non-vascular smooth muscle.

In one embodiment, the term "S-nitrosothiol" refers to a compound which is selected from the group consisting of S-nitroso-N-acetylcysteine, S-nitroso-glutathione, S-nitroso-cysteine, S-nitroso-homocysteine, S-nitroso-pantathoeine derivatives, S-nitroso-penicillamine and S-nitroso-captopril.

In another embodiment the term "S-nitrosothiol" refers to particular novel S-nitrosothiol compounds synthesized by the inventors, for use as smooth muscle relaxants. The compounds represented by the general formula of  $CH_3(CH_2)_xSNO$  are long carbon-chain lipophilic nitrosothiols. The compounds represented by the general formula of  $HS(CH_2)_xSNO$  are S-nitrosodithiols, possessing an additional thiol group. The compounds represented by the general formula of  $ONS(CH_2)_xY$  are S-nitrosothiols which possess other functional groups, in addition to the thiol.

The invention is related to the discovery that S-nitrosothiol compounds relax non-vascular smooth muscle. As a result, these compounds may be used to treat or prevent those pathophysiologic conditions which result from, or involve, constriction of smooth muscle, or those which necessitate therapeutic intervention to achieve smooth muscle relaxation.

10

15

20

25

30

One embodiment of the invention relates to the administration of a therapeutically effective amount of an S-nitrosothiol to an animal to relax airway smooth muscle. The term "airway smooth muscle" refers to the smooth muscle lining the bronchi or tracheal region. The inventors have demonstrated that S-nitrosothiols exert a potent relaxant effect upon airway smooth muscle.

As a result of this potent relaxant effect exerted by S-nitrosothiols, these compounds may be administered as therapeutic agents for the treatment or prevention of respiratory disorders.

The term "respiratory disorder" refers to any impairment of lung function which involves constriction of airways and changes in blood gas levels or lung function.

For example, airway obstruction constitutes a respiratory disorder which occurs as a result of acute pulmonary impairment or obstructive lung disease. Severe airway obstruction may ultimately result in life-threatening respiratory failure. Airway obstruction occurs in patients with chronic obstructive lung diseases, such as emphysema and bronchitis. These patients often experience recurrent episodes of respiratory failure as a result of severe airway obstruction. Emphysema can result in significant disability due to dyspnea, extreme restriction of physical activity, and mortality.

Airway obstruction also results from asthma, a disorder characterized by increased responsiveness of the tracheobronchial tree to various stimuli, and which leads to generalized airway constriction manifested by dyspnea, cough and wheezing. Asthma sufferers often experience acute exacerbations of bronchoconstriction, which may be lifethreatening.

Another obstructive lung disease, cystic fibrosis, results from abnormal exocrine gland function. Clinical manifestations include excessive mucous secretion, hypertrophy of bronchial glands, infection,

10

15

20

25

30

and inflammatory and structural changes in the airways which lead to obstruction and ventilation-perfusion imbalance.

Acute respiratory failure may result not only from obstructive disease, but also as a consequence of airway constriction secondary to pneumonia, thromboembolism, left ventricular failure and pneumothorax. Acute respiratory failure may also result from ventilation-perfusion imbalance.

A critical component in the treatment of airway obstruction involves the use of pharmacologic agents to remove secretions and reverse airway constriction. The most commonly used bronchodilatory agents are beta-agonists, such as isoproterenol, given by inhalation or subcutaneous injection, and methylxanthines, such as theophylline, given orally or by infusion.

The margin of safety for the ophylline administration is relatively narrow. The minimum therapeutic concentration in plasma is 6 to 10  $\mu$ g/ml, and unacceptable symptoms of toxicity usually appear at or above 20  $\mu$ g/ml. Still higher concentrations can lead to serious central nervous system toxicity, with long-term ingestion of the ophylline being a predisposing factor in such toxicity. Moreover, because the clearance of the ophylline is influenced by genetic, developmental and environmental factors to a significant degree, it is necessary to titrate the dosage cautiously against clinical observations of beneficial or toxic effects, with periodic determination of the concentration of the drug in plasma (Gilman A.G., The Pharmacological Basis of Therapeutics, Pergamon Press, New York, (1990)).

Isoproterenol, a non-selective  $\beta$ -agonist, produces cardiovascular side effects such as palpitations, sinus tachycardia and more serious arrhythmias. In addition, tolerance to this drug may result from overuse (Gilman A.G., *The Pharmacological Basis of Therapeutics*, Pergamon Press, New York, (1990)). This characteristic reduces its usefulness in patients

10

15

20

25

30

with chronic obstructive disease who rely heavily on frequent use of bronchodilators. It has now been demonstrated that  $\beta$  agonists may have long term deleterious effects which result in aggravation of asthma, and ultimately change the natural history of the disease. Consequently, the American Thoracic Society no longer recommends treatment with  $\beta$  agonists as first line therapy in mild asthma (Expert Panel Recommendation, New England Journal of Medicine, 325:425-426 (1991)).

The use of S-nitrosothiols for the treatment of airway obstruction provides significant advantages over current methods of treatment. The use of S-nitrosothiols eliminates the untoward side effects associated with  $\beta$ -agonists and methylxanthines.

Furthermore, because all current treatment methods act by way of cAMP, S-nitrosothiols satisfy the need for bronchodilators which act by way of cGMP. This is important because current evidence provided by the inventors demonstrates a role for cyclic GMP in regulation of airway tone in humans (See Example 1). In addition, cyclic GMP agonists act synergistically with cyclic AMP agonists to provide bronchodilation, not obtainable by individual agents.

S-nitrosothiols also potently inhibit platelets and neutrophils, which have been implicated in the pathogenesis of asthma. S-nitrosothiols provide nitric oxide in its biologically relevant form, which is critical because the bioactivity (relaxant activity) of nitric oxide in airways depends upon the form in which it is delivered.

Finally, the inventors have demonstrated that S-nitrosothiols mediate the activity of vasoactive intestinal peptide (VIP), an important airway relaxant. This reinforces the importance of S-nitrosothiols in regulation of airway tone. Deficiency in the effect of VIP is a causal factor in the pathogenesis of asthma. Administration of S-nitrosothiols replenishes the mediator itself rather than a less biologically active derivative.

10

15

20

25

S-nitrosothiols are also suitable for direct instillation into the lungs by bronchoscopic means. This topical administration permits titration of dose, eliminates the untoward side effects of systemic therapy, and enables the use of combination therapy, involving a topical S-nitrosothiol in conjunction with a systemic agent, in problematic cases. This topical therapy would also facilitate endoscopy by suppressing the cough reflex and associated bronchospasm.

An important component in the treatment of airway obstruction is the removal of airway mucous. Thus, airway obstruction often necessitates the administration of a mucolytic agent in conjunction with the bronchodilator. N-acetylcysteine, more commonly known as "Mucomist", is one such agent. S-nitroso-N-acetylcysteine possesses both mucolytic and bronchodilator capabilities.

With respect to combined bronchodilator-mucolytic agents, the mucolytic activity of the compound depends upon the amount of thiol which is preserved after NO delivery. Thus, S-nitrosothiol compounds which contain more than one thiol (dithiol compounds) are particularly suitable for achieving mucolysis. In addition, the long-chain lipophilic S-nitrosothiols which contain more than one thiol are advantageous as mucolytic agents because they have a free thiol, and their lipophilic property facilitates penetration of the compound into the lipid portion responsible for the tenacious viscosity of mucous.

In addition to the treatment or prevention of respiratory disorders, S-nitrosothiols may also be used to facilitate diagnostic and therapeutic bronchoscopy. The term "bronchoscopy" refers to the procedure in which a flexible fiberoptic, or rigid bronchoscope is introduced into the tracheobronchial tree for the purpose of bronchial visualization, lung biopsy or brushings, aspiration of secretions, and delivery of pharmacological agents.

15

20

25

30

A complication of bronchoscopy, and thus an impediment to the successful completion of the procedure, is bronchospasm. Patients with a prior history of bronchospasm are particularly at risk for acute enhancement of spasm. Thus, S-nitrosothiols may also be used to relax airway smooth muscle and eliminate bronchoscopy-induced bronchospasm.

Another embodiment of the invention relates to the administration of a therapeutically effective amount of an S-nitrosothiol compound to an animal to relax gastrointestinal smooth muscle. The term "gastrointestinal smooth muscle" refers to smooth muscle which is contained in all areas of the gastrointestinal tract. Such areas include, but are not limited to, the esophagus, duodenum, sphincter of Oddi, biliary tract, ileum, sigmoid colon, pancreatic duct and common bile duct. S-nitrosothiols may be used for the treatment or prevention of gastrointestinal disorders. Disorders of the gastrointestinal tract include achylasia (spasm of the lower esophageal sphincter), diarrhea, dumping syndrome, and irritable bowel.

An additional embodiment of the invention relates to the administration of S-nitrosothiols to alleviate contraction or spasm of gastrointestinal smooth muscle, and thus facilitate successful completion of endoscopic procedures. Contraction or spasm of gastrointestinal smooth muscle imposes a technical obstacle which must frequently be overcome in order to enable the clinition to successfully perform endoscopic procedures.

The term "endoscopic procedures" refers to those diagnostic procedures which utilize an instrument which is introduced into the gastrointestinal tract to provide direct visualization of the gastrointestinal tract, for examination and therapeutic purposes. Such purposes include direct visualization, biopsy, access to the common bile duct, fluid aspiration and removal of foreign bodies, polyps, and other lesions. An example of a particular endoscopic procedure is esophagogastroduodenoscopy, which is utilized for examination of the esophageal lumen,

10

15

20

25

30

stomach and duodenum. Another example, endoscopic retrograde cholangiopancreatography (ERCP), enables visualization of the pancreatic duct, common bile duct and the entire biliary tract, including the gall bladder. Further examples of endoscopic procedures are colonoscopy and sigmoidoscopy.

Current methods for alleviating gastrointestinal muscle spasm include the administration of intravenous diazepam, anticholinergics and glucagon, as well as sublingual administration of nitroglycerin. However, these methods produce generalized, systemic effects which persist for a much longer duration than the procedure itself. In addition, nitroglycerin is significantly less effective as a smooth muscle relaxant than S-nitrosothiols, and produces systemic side effects, the most significant of which is hypotension. It is therefore, not used clinically. Clearly, a need exists for a topical smooth muscle relaxant which could be directly instilled into the various regions of the gastrointestinal tract to facilitate both diagnostic and therapeutic endoscopic procedures.

Patient studies, conducted by the inventors, have measured the efficacy of S-nitrosothiols both in facilitating cannulation of the sphincter of Oddi, and in decreasing colon motility to allow for removal of colon polyps. As shown in Figure 1, topical administration of S-nitroso-N-acetylcysteine eliminated duodenal motility. As shown in Figure 2, topical administration of S-nitroso-N-acetylcysteine inhibited the contractile activity of the Sphincter of Oddi, and thus, permitting successful endoscopic cannulation of the sphincter. In addition, administration of S-nitroso-N-acetylcysteine eliminated colon motility to facilitate successful removal of colon polyps. Notably, the relaxant effects were temporary (lasting only for the duration of the procedure), completely reversible and produced no change in systemic blood pressure, heart rate or oxygen saturation. The same type of effects would occur with the use of other cell impermeable S-nitrosothiols, such as S-nitroso-glutathione.

10

15

20

25

30

Prior to the present invention, there were no available pharmacological agents which could be applied directly by endoscopic means to exert a direct, immediate, localized, and completely reversible relaxant effect on gastrointestinal smooth muscle. Topical administration of S-nitrosothiols, during endoscopy, eliminates systemic side effects and allows for the use of the lowest effective concentration of the drug.

Administration of S-nitrosothiols obviates the need for sphincterotomy, a procedure which substantially increases the morbidity and mortality of ERCP. In addition, administration of S-nitrosothiols aids in the cannulation and manipulation of the pancreatic duct and biliary tract during therapeutic procedures such as gall bladder cannulation, bile duct stone removal and stent placement, and decreases the incidence of post-ERCP complications, such as pancreatis and cholangitis. Another use of S-nitrosothiols involves the intraoperative injection of these compounds into the gall bladder prior to cholecystectomy to alleviate cystic duct spasm. This would allow for a laparoscopic cholangiogram by providing access to the cystic duct. In addition to the uses discussed above, S-nitrosothiols may also be administered to treat or prevent any other technical problems associated with endoscopy which are known to those in the medical art.

Another embodiment of the invention relates to administration of a therapeutically effective amount of an S-nitrosothiol compound to relax corpus cavernosum smooth muscle. The term "corpus cavernosum" refers to two areas of smooth muscle which lie side by side on the dorsal aspect of the penis, and together with the corpus spongeosum that surrounds the urethra, constitute erectile tissue. This erectile tissue consists of an irregular sponge-like system of vascular spaces interspersed between arteries and veins. Erection occurs when cavernosa smooth muscle relaxation causes a decease in arterial resistance and resulting increase in arterial blood flow to the penis.

10

15

20

25

30

Smooth muscle has a critical role in erectile function. Thus, another embodiment of the invention relates to the administration of a therapeutically effective amount of an S-nitrosothiol compound for the treatment of impotence. "Impotence" refers to a condition of male sexual dysfunction which is characterized by the inability to obtain or maintain an erection.

Organic causes of erectile impotence, may include endocrine, druginduced, local injury, neurologic, and vascular. In particular, impotence may result from neurologic blockade caused by such drugs as antihistamines, antihypertensives, psychogenic agents, and anticholinergics. Impotence may also result from neurologic disorders such as interior temporal lobe lesions, spinal cord disorders, and insufficiency of sensory input resulting from diabetic neuropathy. An additional cause of impotence is insufficient blood flow into the vascular network resulting from an intrinsic defect, or from penile trauma.

Currently available methods for treating impotence consist largely of surgical techniques and intracavernosal injections of pharmacological agents. One surgical technique involves the implantation of a penile prosthesis by inserting within the corpora, a small silastic rod. However, this method does not produce full erection and the complication rate is high. Alternatively, an inflatable prosthetic device may be implanted on either side of the corpora, with a connecting reservoir of material placed in the perivascular space. Erection is achieved through the use of pumps which are located in the scrotum.

Intracavernous injection of the smooth muscle relaxant, papaverine has been used to induce erections. However, a significant disadvantage of this treatment method is the need for a painful injection each time an erection is desired. In addition, numerous side effects and complications result from the chronic use of drugs such as papaverine. Clinical reports indicate that a significant proportion of potential candidates refuse these

10

15

20.

25

injections from the onset of treatment. A larger number of patients, even after favorable initial response to the treatment, become increasingly unresponsive or unwilling to continue injections as a means of treatment (Morales et al., World J. Urol. 8:80-83 (1990)).

In general, a significant number of patients who are potential candidates for current methods of impotence treatment refuse initially because of the invasive nature of the treatment, or reject further treatment because of pain, fibrosis, or dissatisfaction with results.

As demonstrated by the discussion above, prior to the present invention, there was a significant need for a less invasive approach to the treatment of impotence. Because they exert a relaxant effect on corpus cavernosal smooth muscle, S-nitrosothiols are particularly well suited for the treatment of impotence.

Administration of S-nitrosothiols results in relaxation of corpus cavernosum smooth muscle, which leads to dilation of the cavernosal arteries and a concommittent increase in blood flow. S-nitrosothiols provide significant advantages in the treatment of impotence over current treatment methods, because they can be administered topically, thereby eliminating the systemic side effects, significant discomfort, fibrosis, and ineffectiveness associated with the currently available, invasive methods of treatment.

Another embodiment of the claimed invention relates to the administration of a therapeutically effective amount of an S-nitrosothiol compound to relax bladder smooth muscle. Bladder smooth muscle includes that of the bladder base, bladder body and proximal urethra. In addition, S-nitrosothiols may be used for the treatment of bladder dysfunction disorders which involve relaxation of bladder smooth muscle. Such disorders include, but are not limited to, problems with bladder filling, volume and continence.

10

15

20

25

30

In addition, S-nitrosothiols may be administered to cause relaxation of urethral and bladder base smooth muscle, and thus, facilitate cystoscopic examination of the urinary tract. The term "cystoscopic examination" refers to the introduction of a fiberoptic instrument through the urethra and into the bladder, to achieve visualization of the interior of the urethra and bladder for diagnostic and therapeutic purposes.

Another embodiment of the invention relates to the administration of a therapeutically effective amount of an S-nitrosothiol compound to relax uterine smooth muscle. Increased contractility of uterine smooth muscle precipitates premature labor. Thus, an additional embodiment of the invention relates to the administration of S-nitrosothiol compounds for the treatment or prevention of premature labor.

S-nitrosothiols may also be used to relax fallopian tube smooth muscle. Fallopian tube smooth muscle plays a role in the transport of the egg to the uterus. Thus, S-nitrosothiols may be used to regulate ovum transport, or to facilitate laparoscopic examination of the fallopian tubes, or to facilitate fertilization procedures.

The long-chain lipophilic compounds have unique potential for NO delivery by incorporation into cell membranes, and for accessing the central nervous system (CNS). In the CNS, nitric oxide has been shown to inhibit cell death resulting from ischemic injury, as well as to possess neurotransmitter functions. Membrane permeability achieved by these compounds also provides the unique potential for NO delivery in every organ system. In addition, NO delivery can be regulated by the incorporation of additional functional groups into the molecule. Each functional group, including but not limited to nitrite, nitrate, redox metal, amine, aromatic, and basic amino acids, has its own unique functional aspects which will affect (a) a targeted site of delivery (b) rate of NO release (c) lipophilicity (d) cell permeability (e) duration of action (f) bioactivity and (g) nitrosation potential.

10

15

20

25

An additional embodiment of the invention relates to the administration of an S-nitrosothiol compound as part of a pharmaceutical composition, comprising a pharmaceutically acceptable carrier, to achieve the physiological effects discussed above.

The pharmaceutical compositions utilized in this invention can be administered by intranasal, oral, enteral, topical, sublingual, rectal, intramuscular, intravenous, or subcutaneous means. The compositions may be administered by medical instrumentation including, but not limited to, bronchoscopic, endoscopic, laporascopic, and cystoscopic means. With respect to the administration of these composition for the treatment of impotence, the term "topical" includes administration in the form of a condom which contains the pharmaceutical composition. Certain S-nitrosothiols, such as lipophilic S-nitrosothiols, are especially suitable for (i.e. lipophilic) incorporation into the condom itself, to provide sustained release of the compound.

The compounds of this invention can be employed in combination with conventional excipients; i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for parenteral, enteral or intranasal application which do not deleteriously react with the active compounds. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohol, vegetable oils, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, petroethral fatty acid esters, hydroxymethylcellulose, polyvinylpyrrolidone, etc. The pharmaceutical preparations can be sterilized and if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavoring and/or aromatic substances and the like which do not deleteriously react with the active compounds.

10

15

20

25

For parenteral application, particularly suitable vehicles consist of solutions, preferably oily or aqueous solutions, as well as suspensions, emulsions, or implants, including suppositories. Ampules are convenient unit dosages.

For enteral application, particularly suitable are tablets, dragees or capsules having talc and/or a carbohydrate carrier binder or the like, the carrier preferably being lactose and/or corn starch and/or potato starch. A syrup, elixir or the like can be used wherein a sweetened vehicle is employed. Sustained release compositions can be formulated including those wherein the active component is protected with differentially degradable coatings, e.g., by microencapsulation, multiple coatings, etc.

It will be appreciated that the actually preferred amounts of active compounds used will vary according to the specific compound being utilized, the particular compositions formulated, the mode of application and the particular site of administration. Optimal administration rates for a given protocol of administration can be readily ascertained by those skilled in the art, using conventional dosage determination tests conducted with regard to the foregoing guidelines.

According to the present invention, a "therapeutically effective amount" of a pharmaceutical composition is an amount which is sufficient to achieve the desired pharmacological effect. Generally, the dosage required to provide an effective amount of the composition, and which can be adjusted by one of ordinary skill in the art, will vary, depending upon the age, health, physical condition, sex, weight and extent of disease, of the recipient. Additionally, the dosage may be determined by the frequency of treatment and the nature and scope of the desired effect.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following examples are, therefore, to be construed

10

15

20

as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The entire text of all publications cited above and below are hereby incorporated by reference.

### **EXAMPLES**

Example 1. Airway Smooth Muscle Relaxation by S-nitrosothiols

### A. Methods

### 1. Materials

Glutathione, L-cysteine, DL-homocysteine, D-penicillin, hemoglobin (bovine), methylene blue and Medium 199 sets were purchased from Sigma Chemical Co., St. Louis, MO. N-acetylcysteine was obtained from Aldrich Chemical Co., Milwaukee, WI. Captopril was kindly provided by Dr Victor Dzau. Sodium nitrite, histamine and methacholine were purchased from Fisher Scientific, Fairlawn, NJ. Leukotriene D<sub>4</sub> was purchased from Anaquest, BOC Inc., Madison, WI. Antibiotic/antimycotic mixture (10,000 U/ml penicillin G sodium, 10,000 mcg/ml, streptomycin sulfate, 25 mcg/ml amphotericin B) was purchased from Gibco Laboratories, Grand Island, NY. Radioimmunoassay kits for the determination of cyclic GMP were purchased from New England Nuclear, Boston, MA.

10

15

20

## 2. Preparation of Airways

Male Hartley guinea pigs (500-600g) were anesthetized by inhalation of enflurane to achieve a surgical plane of anesthesia. The trachea were excised and placed in Kreb's-Henseleit buffer (mM): NaCl 118, CKl 5.4, NaH<sub>2</sub>PO<sub>4</sub> 1.01, glucose 11.1, NaHCO<sub>3</sub> 25.0, MgSO<sub>4</sub> 0.69, CaCl 2.32, pH 7.4. The airways were then dissected free from surrounding fat and connective tissue and cut into rings 2-4 mm in diameter. The trachea rings were placed in sterile Medium 199 containing 1% antibiotic/antimycotic mixture in an atmosphere of 5% CO<sub>2</sub>, 45% O<sub>2</sub>, 55% N<sub>2</sub>, and kept for up to 48 hours in tissue culture. The experiments were also performed on human airway smooth muscle, isolated by the same method.

# 3. Preparation of Blood Vessels

New Zealand White female rabbits weighing 3-4 kg were anesthetized with 30 mg/kg IV sodium pentobarbital. Descending thoracic aortic were isolated and placed immediately in a cold physiologic salt solution (Kreb's) (mM): NaCl 118, CCl 4.7, CaCl<sub>2</sub> 2.5, MgSO<sub>4</sub> 1.2, KH<sub>2</sub>PO<sub>4</sub> 1.2, NaHCO<sub>3</sub> 12.5, and D-glucose 11.0, pH 7.4. The vessels were cleaned of adherent connective tissue, and the endothelium removed by gentle rubbing with a cotton tipped applicator inserted into the lumen, and cut into 5 mm rings.

# 4. Preparation of S-nitrosothiols

S-nitrosothiols were prepared at 25°C by reacting equimolar (100 μM) concentrations of reduced thiols with NaNO<sub>2</sub> in 0.5 N HCl (acidified NaNO<sub>2</sub>) as described previously (Kowaluk et al., J. Pharmacol. Exp. Ther.

10

15

20

25

30

256:1256-1264 (1990); Loscalzo et al., J. Pharmacol. Exp. Ther. 249(3):726-729 (1989); and Ignarro et al., J. Pharmacol. Exp. Ther. 218(3):739-749 (1981)). Solutions turned from clear to various shades of red instantaneously upon product formation, with the notable exception of S-nitroso-penicillamine, which is green.

In this method of synthesis, the reaction of thiols with NO (generated from sodium nitrite) is complete and stoichiometric (Aldred et al., J. Chem. Soc. Perkin Trans. II:777-782 (1987); Byler et al., J. Agric. Food Chem. 31:523-527 (1983)).

The long-carbon chain lipophilic nitrosothiols, long and short chain S-nitrosodithiols, and S-nitrosothiols with additional functional groups were synthesized by one or more of the following methods: (a) exposure to equimolar  $N_2O_3$  or  $N_2O_4$  in CCl4; (b) exposure to equimolar acidified nitrite; (c) exposure to equimolar bubbled NO gas; (d) exposure to excess cold bubbled  $NO_2$  gas; and (e) exposure to metherolic acid or equimolar NaNO<sub>2</sub> diluted in methersol.

The synthesis of S-nitroso-homocysteine has not been previously characterized. This compound displayed the distinct absorption maxima of other S-nitrosothiols at approximately 340 nm and 550 nm (Kowaluk et al., J. Pharmacol. Exp. Ther. 256:1256-1264 (1990); Loscalzo et al., J. Pharmacol. Exp. Ther. 249(3):726-729 (1989); and Ignarro et al., J. Pharmacol. Exp. Ther. 218(3):739-749 (1981)). The molar absorptivity of S-nitroso-homocysteine at 547 nm is 16.7 cm<sup>-1</sup>M<sup>-1</sup> and correlates well with published values of 16.6 and 16.1, for S-nitro-cysteine and S-nitroso-glutathione, respectively (Kowaluk et al., J. Pharmacol. Exp. Ther. 256:1256-1264 (1990)).

Owing to the modest decay of S-nitrosothiols over time, fresh examples were made at hourly intervals and kept at 4°C until use. Solutions were diluted as necessary into physiologic buffer immediately prior to each experiment.

10

15

### 5. Bioassay

Trachea and aortic rings were mounted on stirrups and connected to transducers (model FOT3C Grass) with which changes in isometric tension were measured. Rings were then suspended in 10 cc of oxygenated (95% O<sub>2</sub>, 5% CO<sub>2</sub>) buffer. Conditions for both the vessel and airway bioassays were established according to standard methodologies as described in Cooke et al., Am. J. Physiol. 28:H804-H812 (1989).

In airway experiments, the rings were equilibrated for 60 minutes under a load of 1 gm and then primed twice by exposure to 100  $\mu$ M methacholine. Tissues were contracted with various agonists at concentrations determined to generate 50% ( $\pm$  16% S.D.) of maximum tone, after which the effects of different thiols and their S-nitrosylated derivatives were assessed. In selected experiments, relaxation responses were determined in the presence of hemoglobin, or after rings had been preexposed to methylene blue for 30 minutes.

In vessel experiments, a ortic rings were contracted with 1  $\mu$ M epinephrine and relaxations were induced with S-nitrosothiols.

# 6. Cyclic Nucleotide Assays

The mechanism by which S-nitrosothiols relax vascular smooth muscle is felt to be through activation of guanylate cyclase with consequent increase in intracellular cyclic GMP (Ignarro et al., Circ. Res. 65:1-21 (1989); Loscalzo et al., J. Pharmacol Exp. Ther. 249(3):726-729 (1989)). In order to assess this mechanism in airways, tracheal rings in Kreb's-Henseleit solution were exposed to 100  $\mu$ M S-nitroso-N-acetylcysteine (SNOAC) for 90 seconds. Reactions were terminated by

10

15

20

the addition of ice cold 10% trichloracetic acid and rapid freezing in ethanol-saturated dry ice.

In selected experiments, rings were preexposed to the guanylate cyclase inhibitor, methylene blue (10<sup>-4</sup> M) for 30 minutes. Tissues were then individually pulverized with a glass (s) homogenizer and centrifuged at 8000 g for 5 minutes. The clear supernatant was extracted with water-saturated ether and assayed for cyclic GMP by radioimmunoassay. Acetylation of samples with acetic anhydride was used to increase the sensitivity of the assay and the determination of recoveries was aided by the use of [<sup>3</sup>H] cyclic GMP.

Dose-response relationships to SNOAC were obtained in airways contracted with 3 uM histamine, and repeated in the presence of 10<sup>-4</sup> M hemoglobin, 10<sup>-5</sup> M methylene blue, and 10<sup>-4</sup> M methylene blue. Relaxation responses to SNOAC are inhibited by hemoglobin and methylene blue, with the latter in a dose-dependent manner. Cyclic GMP determinations were performed in duplicate for each experiment.

#### 7. Statistics

All results are presented as means  $\pm$  SEM. Paired samples were compared by the Student's t-test. Dose-response curves were compared by two-way analysis of variance (ANOVA). Values of p < 0.05 were considered significant.

10

15

| Table 1 Inhibitory Concentrations Inducing 50% Relaxation (IC50) |                                         |
|------------------------------------------------------------------|-----------------------------------------|
| RS-NO                                                            | IC50 mean ± S.D.; x 10 <sup>-6</sup> M) |
| S-nitroso-glutathione                                            | 0.99 ± 2.0                              |
| S-nitroso-cysteine                                               | 3.2 ± 0.2                               |
| S-nitroso-homocysteine                                           | 2.1 ± 0.3                               |
| S-nitroso-N-acetylcysteine                                       | 2.1 ± 0.8                               |
| S-nitroso-penicillamine                                          | 1.8 ± 0.8                               |
| S-nitroso-captopril                                              | 20.0 ± 0.7                              |

## B. Results and Discussion

The mammalian fraction of sulfur that exists as free sulfhydryl is contained largely in the form of glutathione, cysteine, and homocysteine (Jocelyn, P.C., In *Biochemistry of the SH Group*, Academic Press, London/New York pp. 1-46 (1972)). N-acetylcysteine is a minor metabolite of cysteine that is used for its mucolytic properties in the treatment of airway obstruction. N-acetylcysteine has also received attention within the context of nitrate metabolism and undergoes S-nitrosylation in plasma upon treatment with nitroglycerin (Fung et al., J. Pharmacol. Exp. Ther. 245(2):524-531 (1988)). The S-nitrosylated derivatives of these four sulfhydryls comprise the group of biological S-nitrosothiols under investigation.

Captopril and penicillamine are examples of nonbiological low molecular weight thiols, and their S-nitrosylated derivatives have been well characterized (Kowaluk et al., J. Pharmacol. Exp. Ther. 256:1256-1264

10

15

20

25

30

(1990); Loscalzo et al., J. Pharmacol. Exp. Ther. 249(3):726-729 (1989); and Ignarro et al., J. Pharmacol. Exp. Ther. 218(3):739-749 (1981).

An initial examination of the relaxant activity of each of the biological and nonbiological S-nitrosothiols in guinea pig tracheal rings was conducted. The results are shown in Figures 1 and 2(a)-(f). As demonstrated by dose-response relationships, these compounds are potent airway smooth muscle relaxants, with relaxant effects that are unmatched by equimolar amounts of reactant thiol or NO (generated from NaNO<sub>2</sub> alone).

In every case, the dose-response curves for the S-nitrosothiols were significantly different from the dose-response curves for NO and for the individual thiols by two-way ANOVA to p < 0.001. Results are presented as mean  $\pm$  SEM, (n = 5).

With the exception of S-nitroso-captopril (SNOCAP), the S-nitrosothiols revealed comparable bioactivity with IC50s in the range of  $1 \times 10^{-6}$  M (Table 1). SNOAC and SNOCAP were then selected as representative biological and nonbiological S-nitrosothiols for further detailed investigation.

Dose-effect relationships were obtained for SNOAC and SNOCAP using tracheal rings induced to constrict with leukotriene  $D_4$ , histamine, and methacholine. As shown in Figure 3, airways exhibited agonist specificity toward S-nitrosothiol-mediated relaxations: S-nitrosothiols were most active for relaxation of leukotriene  $D_4$ -induced contractions and progressively less effective with contractions induced by histamine and methacholine. In every case, SNOAC was approximately 10-fold more active in relaxation of airways than SNOCAP. Results are presented as mean  $\pm$  SEM (n=3-5).

The time course of relaxation to SNOAC is shown in Figure 4. Using a concentration (5 x  $10^{-6}$  M) selected to induce approximately 50% of the maximal response, maximal relaxation occurred by five minutes and

15

20

25

30

a significant residual loss of tone was still evident at one hour. In control experiments, airway contractions remained stable over the study period.

These relaxation responses contrast markedly with those generally ascribed to low-molecular-weight S-nitrosothiols. Figure 5 illustrates the notable difference in relaxation kinetics between these tissues. In vascular smooth muscle, the relaxations are rapid and transient, whereas in tracheal smooth muscle, relaxations occur more slowly and persist for a much longer duration.

Figure 6 shows a comparison between the efficacy of SNOAC and isoproterenol or theophylline under identical study conditions. Of the drugs evaluated, isoproterenol was the most active relaxant, however, SNOAC was approximately 50 times more active in relaxation than The dose response curves for these agents are each theophylline. significantly different from each other by two-way ANOVA to p < 0.01. Results are expressed as mean  $\pm$  SEM (n=3-5).

Hemoglobin and methylene blue are established inhibitors of NO-induced relaxations in vascular smooth muscle (Ignarro et al., Circ. Res. 65:1-21 (1989)). When their effects were examined in airways, hemoglobin and methylene blue each significantly attenuated the actions of SNOAC, as evidenced by rightward shifts in the dose-effect relationships to SNOAC in their presence (Figure 7). The dose-response curves for SNOAC were significantly different from each of the curves derived in the presence of hemoglobin and methylene blue by two-way ANOVA to p=0.05. Results are presented as mean  $\pm$  SEM (n=3-5).

The biochemical mechanism of action of S-nitrosothiols was further investigated in isolated tracheal rings. As shown in Figure 8, tracheal rings incubated with SNOAC exhibited 4-fold increases in cyclic GMP over basal levels (control). Increases in cyclic GMP were attenuated by pretreatment of tissues with the guanylate cyclase inhibitor, methylene blue (10-4M). Cyclic GMP levels in the presence of SNOAC were

10

15

20

25

30

significantly greater than control values (p < 0.0005) and levels determined in the presence of methylene blue (p = 0.05). Results are presented as mean  $\pm$  SEM (n = 4-8).

An examination of the relaxant activity of S-nitrosothiols in human tracheal rings was also conducted. The results are shown in Figures 11-15. In particular, Figure 11 shows that S-nitroso-glutathione has a relaxant effect upon human trachea which is significantly greater than nitrite (NO<sub>2</sub>). Figure 12 demonstrates that the relaxant effect of S-nitrosoglutathione upon human trachea is significantly greater than glutathione alone. This data underscores the fact that the bioactivity of nitric oxide in airways depends upon the form in which it is delivered. S-nitrosothiols provide efficient delivery of NO in its most bioactive form.

Figure 13 demonstrates that the relaxant effect of SNOAC upon human trachea is significantly greater than that of N-acetylcysteine. As shown in Figure 13, NAC caused significant constriction of the tracheal smooth muscle, which is consistent with the fact that NAC, when given as a mucolytic agent, causes the untoward side effect of bronchospasm. SNOAC not only causes relaxation of airway tissue, but also eliminates bronchospasm.

Figure 14 demonstrates that SNOAC and SNOGSH exert a relaxant effect on airway smooth muscle which is significantly more potent than that of theophylline, and compares favorably with that exerted by isoproterenol.

Experiments were also conducted to assess the cGMP response to SNOAC in human airways. As shown in Figure 15, tracheal rings incubated with SNOAC exhibited 4-fold increases in cyclic GMP over basal levels (control).

Unexpectedly, the relaxation response to low molecular weight Snitrosothiols in airways differs markedly from that observed in blood vessels. In the latter case, relaxations occur slowly and persist for a much

10

15

20

25

30

longer duration. This is most likely attributed to the inherent differences between vascular and nonvascular smooth muscle. There may be additional contributing factors responsible for this heterogeneity. Finally, any disparity among smooth muscle cells in redox state, availability of reducing equivalents, pH, oxygen tension, or any other factor that might influence the stability of the S-NO bond would be predicted to influence relaxation kinetics.

The results also suggests that, in addition to the primary site of obstruction in the lung, the efficacy of nitro(so)-bronchodilators may be determined by the nature of the chemical mediators contributing to bronchoconstriction. In particular, S-nitrosothiols were most effective in this study against leukotriene D<sub>4</sub>-mediated bronchoconstriction and progressively less effective against histamine and methacholine-mediated constriction. Thus, regional variation in guanylate cyclase content or activity, the site of obstruction, the form in which the active species of NO is administered, and the nature of the bronchoconstrictor stimuli are all variables which may influence the determination of nitro(so)-bronchodilator efficacy and the importance of guanylate cyclase in regulating airway tone.

In summary, S-nitrosothiols are believed to be important intermediates in the metabolism of organic nitrates and endogenously-derived NO. These compounds are more stable than NO and retain its cyclic GMP-dependent bioactivity in blood vessels.

In the present invention, the inventors have demonstrated that S-nitrosothiols are also potent airway smooth muscle relaxants and mediate their effects through activation of guanylate cyclase. The results indicate that cyclic GMP is an important inhibitory mediator of airway tone, and suggest a mechanism by which the bioactivity of NO is preserved in the presence of high, ambient concentrations of oxygen and oxygen-derived free radicals. The inventors have also demonstrated that S-nitrosothiols

are present in human airway secretions and mediate the airway relaxation caused by VIP. As a result of their potent relaxation effect upon airway smooth muscle S-nitrosothiols have significant pharmacological utility for the treatment of airway obstruction.

### WHAT IS CLAIMED IS:

1. A compound having the formula: CH<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>SNO

wherein:

X equals 2 to 20.

2. A compound having the formula: HS(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

3. A compound having the formula:  $ONS(CH_2)_xY$ 

wherein:

X equals 2 to 20;

Y is selected from the group consisting of fluoro,  $C_1$ - $C_6$  alkoxy, cyano, carboxamido,  $C_3$ - $C_6$  cycloalkyl, aralkoxy,  $C_2$ - $C_6$  alkylsulfinyl, arylthio,  $C_1$ - $C_6$  alkylamino,  $C_2$ - $C_{15}$  dialkylamino, hydroxy, carbomoyl,  $C_1$ C $_6$  N-alkylcarbamoyl,  $C_2$ - $C_{15}$  N,N-dialkylcarbamoyl, amino, hydroxyl, carboxyl, hydrogen, nitro and aryl;

- 4. A method for relaxing airway smooth muscle, comprising administering a therapeutically effective amount of an S-nitrosothiol compound to an animal in need thereof.
- 5. The method of claim 4 wherein said S-nitrosothiol compound has the formula:

## CH<sub>3</sub>(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

6. The method of claim 4 wherein said S-nitrosothiol compound has the formula:

HS(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

7. The method of claim 4 wherein said S-nitrosothiol compound has the formula:

 $ONS(CH_2)_xY$ 

wherein:

X equals 2 to 20;

Y is selected from the group consisting of fluoro,  $C_1$ - $C_6$  alkoxy, cyano, carboxamido,  $C_3$ - $C_6$  cycloalkyl, aralkoxy,  $C_2$ - $C_6$  alkylsulfinyl, arylthio,  $C_1$ - $C_6$  alkylamino,  $C_2$ - $C_{15}$  dialkylamino, hydroxy, carbomoyl,  $C_1$ C $_6$  N-alkylcarbamoyl,  $C_2$ - $C_{15}$  N,N-dialkylcarbamoyl, amino, hydroxyl, carboxyl, hydrogen, nitro and aryl;

wherein aryl includes benzyl, naphthyl and anthracenyl groups.

8. The method of claim 4 wherein said S-nitrosothiol compound is selected from the group consisting of S-nitroso-N-acetylcysteine, S-nitroso-glutathione, S-nitroso-cysteine, S-nitroso-homocysteine, S-nitroso-penicillamine and S-nitroso-captopril.

- 9. The method of claim 4 wherein said compound is administered as part of a pharmaceutical composition comprising a pharmaceutically acceptable carrier.
- 10. The method of claim 9 wherein said pharmaceutical composition is administered to an animal by a route comprising oral, sublingual, intravenous, intramuscular, aerosol, topical or bronchoscopic delivery.
- 11. A method for treatment or prevention of respiratory disorders, comprising administering a therapeutically effective amount of an S-nitrosothiol compound to an animal in need thereof.
- 12. The method of claim 11 wherein said S-nitrosothiol compound has the formula:

 $CH_3(CH_2)_xSNO$ 

wherein:

X equals 2 to 20.

13. The method of claim 11 wherein said S-nitrosothiol compound has the formula:

HS(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

14. The method of claim 11 wherein said S-nitrosothiol compound has the formula:

 $ONS(CH_2)_xY$ 

wherein:

X equals 2 to 20;

Y is selected from the group consisting of fluoro,  $C_1$ - $C_6$  alkoxy, cyano, carboxamido,  $C_3$ - $C_6$  cycloalkyl, aralkoxy,  $C_2$ - $C_6$  alkylsulfinyl, arylthio,  $C_1$ - $C_6$  alkylamino,  $C_2$ - $C_{15}$  dialkylamino, hydroxy, carbomoyl,  $C_1$ C $_6$  N-alkylcarbamoyl,  $C_2$ - $C_{15}$  N,N-dialkylcarbamoyl, amino, hydroxyl, carboxyl, hydrogen, nitro and aryl;

- 15. The method of claim 11 wherein said S-nitrosothiol compound is selected from the group consisting of S-nitroso-N-acetylcysteine, S-nitroso-glutathione, S-nitroso-cysteine, S-nitroso-homocysteine, S-nitroso-penicillamine and S-nitroso-captopril.
- 16. The method of claim 11 wherein said compound is administered as part of a pharmaceutical composition comprising a pharmaceutically acceptable carrier.
- 17. The method of claim 16 wherein said pharmaceutical composition is administered to an animal by a route comprising oral, sublingual, intravenous, intramuscular, aerosol topical or bronchoscopic delivery.
- 18. The method of claim 11 wherein said respiratory disorder is in the group comprised of all subsets of obstructive lung disease, including emphysema, asthma, bronchitis, fibrosis, excessive mucous secretion, obstruction of air flow, and lung disorders resulting from post-surgical complications.

- 19. A method for relaxing gastrointestinal smooth muscle, comprising administering a therapeutically effective amount of an S-nitrosothiol compound to an animal in need thereof.
- 20. The method of claim 19 wherein said S-nitrosothiol compound has the formula:

 $CH_3(CH_2)_xSNO$ 

wherein:

X equals 2 to 20.

21. The method of claim 19 wherein said S-nitrosothiol compound has the formula:

HS(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

22. The method of claim 19 wherein said S-nitrosothiol compound has the formula:

ONS(CH<sub>2</sub>)<sub>x</sub>Y

wherein:

X equals 2 to 20;

Y is selected from the group consisting of fluoro,  $C_1$ - $C_6$  alkoxy, cyano, carboxamido,  $C_3$ - $C_6$  cycloalkyl, aralkoxy,  $C_2$ - $C_6$  alkylsulfinyl, arylthio,  $C_1$ - $C_6$  alkylamino,  $C_2$ - $C_{15}$  dialkylamino, hydroxy, carbomoyl,  $C_1$ C $_6$  N-alkylcarbamoyl,  $C_2$ - $C_{15}$  N,N-dialkylcarbamoyl, amino, hydroxyl, carboxyl, hydrogen, nitro and aryl;

- 23. The method of claim 19 wherein said S-nitrosothiol compound is selected from the group consisting of S-nitroso-N-acetylcysteine, S-nitroso-glutathione, S-nitroso-cysteine, S-nitroso-homocysteine, S-nitroso-penicillamine and S-nitroso-captopril.
- 24. The method of claim 19 wherein said compound is administered as part of a pharmaceutical composition comprising a pharmaceutically acceptable carrier.
- 25. The method of claim 24 wherein said pharmaceutical composition is administered to a patient by a route comprising oral, sublingual, intravenous, topical, intramuscular, aerosol or endoscopic delivery.
- 26. A method for alleviating contraction or spasm of gastrointestinal smooth muscle associated with endoscopic procedures comprising, administering a therapeutically effective amount of an S-nitrosothiol compound to an animal in need thereof.
- 27. The method of claim 26 wherein said S-nitrosothiol compound has the formula:

CH<sub>3</sub>(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

28. The method of claim 26 wherein said S-nitrosothiol compound has the formula:

HS(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

29. The method of claim 26 wherein said S-nitrosothiol compound has the formula:

## $ONS(CH_2)_xY$

wherein:

X equals 2 to 20;

Y is selected from the group consisting of fluoro,  $C_1$ - $C_6$  alkoxy, cyano, carboxamido,  $C_3$ - $C_6$  cycloalkyl, aralkoxy,  $C_2$ - $C_6$  alkylsulfinyl, arylthio,  $C_1$ - $C_6$  alkylamino,  $C_2$ - $C_{15}$  dialkylamino, hydroxy, carbomoyl,  $C_1$ C $_6$  N-alkylcarbamoyl,  $C_2$ - $C_{15}$  N,N-dialkylcarbamoyl, amino, hydroxyl, carboxyl, hydrogen, nitro and aryl;

- 30. The method of claim 26 wherein said S-nitrosothiol compound is selected from the group consisting of S-nitroso-N-acetylcysteine, S-nitroso-glutathione, S-nitroso-cysteine, S-nitroso-homocysteine, S-nitroso-penicillamine and S-nitroso-captopril.
- 31. The method of claim 26 wherein said compound is administered as part of a pharmaceutical composition comprising a pharmaceutically acceptable carrier.
- 32. The method of claim 31 wherein said pharmaceutical composition is administered to an animal by a route comprising oral, sublingual, intravenous, topical, intramuscular, aerosol or endoscopic delivery.
- 33. A method for relaxing corpus cavernosum smooth muscle, comprising administering a therapeutically effective amount of an S-nitrosothiol compound to an animal in need thereof.

34. The method of claim 33 wherein said S-nitrosothiol compound has the formula:

CH<sub>3</sub>(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

35. The method of claim 33 wherein said S-nitrosothiol compound has the formula:

HS(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

36. The method of claim 33 wherein said S-nitrosothiol compound has the formula:

ONS(CH<sub>2</sub>)<sub>x</sub>Y

wherein:

X equals 2 to 20;

Y is selected from the group consisting of fluoro,  $C_1$ - $C_6$  alkoxy, cyano, carboxamido,  $C_3$ - $C_6$  cycloalkyl, aralkoxy,  $C_2$ - $C_6$  alkylsulfinyl, arylthio,  $C_1$ - $C_6$  alkylamino,  $C_2$ - $C_{15}$  dialkylamino, hydroxy, carbomoyl,  $C_1$ C $_6$  N-alkylcarbamoyl,  $C_2$ - $C_{15}$  N,N-dialkylcarbamoyl, amino, hydroxyl, carboxyl, hydrogen, nitro and aryl;

wherein aryl includes benzyl, naphthyl and anthracenyl groups.

37. The method of claim 33 wherein said S-nitrosothiol compound is selected from the group consisting of S-nitroso-N-acetylcysteine, S-nitroso-glutathione, S-nitroso-cysteine, S-nitroso-homocysteine, S-nitroso-penicillamine and S-nitroso-captopril.

- 38. The method of claim 33 wherein said compound is administered as part of a pharmaceutical composition comprising a pharmaceutically acceptable carrier.
- 39. The method of claim 38 wherein said pharmaceutical composition is administered to an animal by a route comprising oral, sublingual, intravenous, topical, intramuscular or aerosol delivery.
- 40. A method for the treatment or prevention of impotence, comprising administering a therapeutically effective amount of an S-nitrosothiol compound to an animal in need thereof.
- 41. The method of claim 40 wherein said S-nitrosothiol compound has the formula:

 $CH_3(CH_2)_xSNO$ 

wherein:

X equals 2 to 20.

42. The method of claim 40 wherein said S-nitrosothiol compound has the formula:

HS(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

43. The method of claim 40 wherein said S-nitrosothiol compound has the formula:

ONS(CH<sub>2</sub>)<sub>x</sub>Y

wherein:

X equals 2 to 20;

Y is selected from the group consisting of fluoro,  $C_1$ - $C_6$  alkoxy, cyano, carboxamido,  $C_3$ - $C_6$  cycloalkyl, aralkoxy,  $C_2$ - $C_6$  alkylsulfinyl, arylthio,  $C_1$ - $C_6$  alkylamino,  $C_2$ - $C_{15}$  dialkylamino, hydroxy, carbomoyl,  $C_1$ C $_6$  N-alkylcarbamoyl,  $C_2$ - $C_{15}$  N,N-dialkylcarbamoyl, amino, hydroxyl, carboxyl, hydrogen, nitro and aryl;

wherein aryl includes benzyl, naphthyl and anthracenyl groups.

- 44. The method of claim 40 wherein said S-nitrosothiol compound is selected from the group consisting of S-nitroso-N-acetylcysteine, S-nitroso-glutathione, S-nitroso-cysteine, S-nitroso-homocysteine, S-nitroso-penicillamine and S-nitroso-captopril.
- 45. The method of claim 40 wherein said compound is administered as part of a pharmaceutical composition comprising a pharmaceutically acceptable carrier.
- 46. The method of claim 45 wherein said pharmaceutical composition is administered to an animal by a route comprising oral, sublingual, intravenous, topical, intramuscular or aerosol delivery.
- 47. A method for relaxing bladder smooth muscle, comprising administering a therapeutically effective amount of an S-nitrosothiol compound to an animal in need thereof.
- 48. The method of claim 47 wherein said S-nitrosothiol compound has the formula:

CH<sub>3</sub>(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

49. The method of claim 47 wherein said S-nitrosothiol compound has the formula:

 $HS(CH_2)_xSNO$ 

wherein:

X equals 2 to 20.

50. The method of claim 47 wherein said S-nitrosothiol compound has the formula:

 $ONS(CH_2)_xY$ 

wherein:

X equals 2 to 20;

Y is selected from the group consisting of fluoro,  $C_1$ - $C_6$  alkoxy, cyano, carboxamido,  $C_3$ - $C_6$  cycloalkyl, aralkoxy,  $C_2$ - $C_6$  alkylsulfinyl, arylthio,  $C_1$ - $C_6$  alkylamino,  $C_2$ - $C_{15}$  dialkylamino, hydroxy, carbomoyl,  $C_1$ C $_6$  N-alkylcarbamoyl,  $C_2$ - $C_{15}$  N,N-dialkylcarbamoyl, amino, hydroxyl, carboxyl, hydrogen, nitro and aryl;

- 51. The method of claim 47 wherein said S-nitrosothiol compound is selected from the group consisting of S-nitroso-N-acetylcysteine, S-nitroso-glutathione, S-nitroso-cysteine, S-nitroso-homocysteine, S-nitroso-penicillamine and S-nitroso-captopril.
- 52. The method of claim 47 wherein said compound is administered as part of a pharmaceutical composition comprising a pharmaceutically acceptable carrier.

- 53. The method of claim 52 wherein said pharmaceutical composition is administered to an animal by a route comprising oral, sublingual, intravenous, topical, intramuscular or aerosol delivery.
- 54. A method for relaxing uterine smooth muscle, comprising administering a therapeutically effective amount of an S-nitrosothiol compound to an animal in need thereof.
- 55. The method of claim 54 wherein said S-nitrosothiol compound has the formula:

CH<sub>3</sub>(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

56. The method of claim 54 wherein said S-nitrosothiol compound has the formula:

HS(CH<sub>2</sub>)<sub>x</sub>SNO

wherein:

X equals 2 to 20.

57. The method of claim 54 wherein said S-nitrosothiol compound has the formula:

 $ONS(CH_2)_xY$ 

wherein:

X equals 2 to 20;

Y is selected from the group consisting of fluoro,  $C_1$ - $C_6$  alkoxy, cyano, carboxamido,  $C_3$ - $C_6$  cycloalkyl, aralkoxy,  $C_2$ - $C_6$  alkylsulfinyl, arylthio,  $C_1$ - $C_6$  alkylamino,  $C_2$ - $C_{15}$  dialkylamino, hydroxy, carbomoyl,  $C_1$ C $_6$  N-alkylcarbamoyl,  $C_2$ - $C_{15}$  N,N-dialkylcarbamoyl, amino, hydroxyl, carboxyl, hydrogen, nitro and aryl;

- 58. The method of claim 54 wherein said S-nitrosothiol compound is selected from the group consisting of S-nitroso-N-acetylcysteine, S-nitroso-glutathione, S-nitroso-cysteine, S-nitroso-homocysteine, S-nitroso-penicillamine and S-nitroso-captopril.
- 59. The method of claim 54 wherein said compound is administered as part of a pharmaceutical composition comprising a pharmaceutically acceptable carrier.
- 60. The method of claim 59 wherein said pharmaceutical composition is administered to an animal by a route comprising oral, sublingual, intravenous, topical, intramuscular or aerosol delivery.



SUBSTITUTE SHEFT



SUBSTITUTE SHEET



SUBSTITUTE SHEET





FIG.4B SUBSTITUTE SHEET









FIG.4F SUBSTITUTE SHEET





SUBSTITUTE SHEET

8 / 17



SUBSTITUTE SHEET





SUBSTITUTE SHEET



% initial contraction

SUBSTITUTE SHEET



% initial contraction

12/17







SUBSTITUTE SHEET



SUBSTITUTE SHEET



SUBSTITUTE SHEET



17 / 17



SUBSTITUTE SHEET