'MATH+ECON+CODE' MASTERCLASS ON MATCHING MODELS, OPTIMAL TRANSPORT AND APPLICATIONS

Alfred Galichon (New York University)

Spring 2019
Thursday: "Multinomial choice"
Block 11. Demand models, old and new

LEARNING OBJECTIVES: BLOCK 11

- ▶ Beyond GEV: the pure characteristics models, the random coefficient logit model, the probit model
- ► Simulation methods: Accept-Reject and SARS
- ▶ Demand inversion (ctd): The inversion theorem

REFERENCES FOR BLOCK 11

- ► [OTME], Ch. 9.2
- ► McFadden (1981). "Econometric Models of Probabilistic Choice," in C.F. Manski and D. McFadden (eds.), Structural analysis of discrete data with econometric applications, MIT Press.
- ▶ Berry, Levinsohn, and Pakes (1995). "Automobile Prices in Market Equilibrium," *Econometrica*.
- ► Berry and Pakes (2007). The pure characteristics demand model". International Economic Review
- ► Train (2009). *Discrete Choice Methods with Simulation*. 2nd Edition. Cambridge University Press.
- ► G, Salanié (2017). "Cupids invisible hand". Working paper.
- ▶ Bonnet, G and Shum (2017). "Yogurts choose consumers? Identification of Random Utility Models via Two-Sided Matching". Working paper.

Section 1

CHOICE MODELS BEYOND GEV

THE NEED FOR FURTHER MODELS

- ► The GEV models are convenient analytically, but not very flexible.
 - ► The logit model imposes zero correlation across alternatives
 - The nested logit allows for nonzero correlation, but in a very rigid way (needs to define nests).
- ▶ A good example is the probit model, where ε is a Gaussian vector. For this model, there is no close-form solution neither for G nor for G^* .
- ► More recently, a number of modern models don't have closed-form either. These models require simulation methods in order to approximate them by discrete models.

THE PURE CHARACTERISTICS MODEL: MOTIVATION

- ► The pure characteristics model (Berry and Pakes, 2007) can be motivated as follows. Assume *y* stands for the number of bedrooms. The logit model would assume that the random utility associated with a 2-BR is uncorrelated with a 3-BR, which is not realistic.
- ▶ Let ξ_y is the typical size of a bedroom of size y, one may introduce ϵ as the valuation of size; in which case the utility shock associated with y should be $\epsilon_y = \epsilon \xi_y$. More generally, the characteristics ξ_y is a d-dimensional (deterministic) vector, and $\epsilon \sim \mathbf{P}_\epsilon$ is a (random) vector of the same size standing for the valuations of the respective dimensions, so that

$$\varepsilon_y = \varepsilon^{\intercal} \xi_y$$
.

For example, if each alternative y stands for a model of car, the first component of ξ_y may be the price of car y; the other components may be other characteristics such as number of seats, fuel efficiency, size, etc. In that case, for a given dimension $y \in \mathcal{Y}_0$, ε_y is the (random) valuation of this dimension by the consumer with taste vector ε .

THE PURE CHARACTERISTICS MODEL: DEFINITION

- Assume without loss of generality that $\varepsilon_y = 0$, that is $\xi_0 = 0$ as we can always reduce the setting to this case by replacing ξ_V by $\xi_V \xi_0$.
- ▶ Letting Z be the $|\mathcal{Y}| \times d$ matrix of (y, k)-term ξ_y^k , this rewrites as

$$\varepsilon = Z\epsilon$$
.

► Hence, we have

$$G(U) = \mathbb{E}\left[\max\left\{U + Z\epsilon, 0\right\}\right].$$

and

$$\sigma_{y}\left(U\right) = \Pr\left(U_{y} - U_{z} \geq \left(Z\epsilon\right)_{y} - \left(Z\epsilon\right)_{z} \ \forall z \in \mathcal{Y}_{0} \backslash \left\{y\right\}\right).$$

THE PURE CHARACTERISTICS MODEL IN DIMENSION 1

When d=1 (scalar characteristics), one has $\sigma_{V}(U) = \Pr(U_{V} - U_{z} \geq (\xi_{V} - \xi_{z}) \epsilon \ \forall z \in \mathcal{Y}_{0} \setminus \{y\})$, and thus

$$\sigma_{y}\left(U\right) = \Pr\left(\max_{z: \xi_{y} > \xi_{z}} \left\{ \frac{U_{y} - U_{z}}{\xi_{y} - \xi_{z}} \right\} \leq \epsilon \leq \min_{z: \xi_{y} < \xi_{z}} \left\{ \frac{U_{y} - U_{z}}{\xi_{y} - \xi_{z}} \right\} \right)$$

with the understanding that $\max_{z \in \emptyset} f_z = -\infty$ and $\min_{z \in \emptyset} f_z = +\infty$.

▶ Therefore, letting \mathbf{F}_{ϵ} be the c.d.f. associated with the distribution of ϵ , one has a closed-form expression for σ_{v} :

$$\sigma_{y}\left(U\right) = \mathbf{F}_{\epsilon}\left(\left[\max_{z:\xi_{y}>\xi_{z}}\left\{\frac{U_{y}-U_{z}}{\xi_{y}-\xi_{z}}\right\}, \min_{z:\xi_{y}<\xi_{z}}\left\{\frac{U_{y}-U_{z}}{\xi_{y}-\xi_{z}}\right\}\right]\right)$$

THE PROBIT MODEL

▶ When P_{ϵ} is the $\mathcal{N}(0, S)$ distribution, then the pure characteristics model is called a Probit model; in this case,

$$\varepsilon \sim \mathcal{N}\left(0,\Sigma\right) \text{ where } \Sigma = \textit{ZSZ}^\intercal.$$

- ▶ Note the distribution ε will not have full support unless $d \ge |\mathcal{Y}|$ and Z is of full rank.
- ightharpoonup Computing σ in the Probit model thus implies computing the mass assigned by the Gaussian distribution to rectangles of the type

$$[I_y, u_y]$$
.

When Σ is diagonal (random utility terms are i.i.d. across alternatives), this is numerically easy. However, this is computationally difficult in general (more on this later).

THE RANDOM COEFFICIENT LOGIT MODEL (1)

► The random coefficient logit model (Berry, Levinsohn and Pakes, 1995) may be viewed as an interpolant between the random characteristics model and the logit model. In this case,

$$\varepsilon = (1 - \lambda) Z \epsilon + \lambda \eta$$

where $\epsilon \sim \mathbf{P}_{\epsilon}$, η is an EV1 distribution independent from the previous term, and λ is a interpolation parameter ($\lambda = 1$ is the logit model, and $\lambda = 0$ is the pure characteristics model).

▶ In this case, one may compute the Emax operator as

$$\begin{split} G\left(U\right) &= \mathbb{E}\left[\max_{y \in \mathcal{Y}_0} \left\{U_y + \left(1 - \lambda\right) \left(Z\epsilon\right)_y + \lambda \eta_y\right\}\right] \\ &= \mathbb{E}\left[\mathbb{E}\left[\max_{y \in \mathcal{Y}_0} \left\{U_y + \left(1 - \lambda\right) \left(Z\epsilon\right)_y + \lambda \eta_y\right\} | \epsilon\right]\right] \\ &= \mathbb{E}\left[\lambda \log \sum_{y \in \mathcal{Y}_0} \exp\left(\frac{U_y + \left(1 - \lambda\right) \left(Z\epsilon\right)_y}{\lambda}\right)\right] \end{split}$$

THE RANDOM COEFFICIENT LOGIT MODEL (2)

▶ Recall

$$G\left(U\right) = \mathbb{E}\left[\lambda\log\sum_{y\in\mathcal{Y}_{0}}\exp\left(\frac{U_{y}+\left(1-\lambda\right)\left(Z\epsilon\right)_{y}}{\lambda}\right)\right].$$

► The demand map in the random coefficients logit model is obtained by derivation of the expression of the Emax, i.e.

$$\sigma_{y}\left(U\right) = \mathbb{E}\left[\frac{\exp\left(\frac{U_{y} + (1 - \lambda)(Z\epsilon)_{y}}{\lambda}\right)}{\sum_{y' \in \mathcal{Y}_{0}} \exp\left(\frac{U_{y'} + (1 - \lambda)(Z\epsilon)_{y'}}{\lambda}\right)}\right].$$

Section 2

SIMULATION METHODS

SIMULATION METHODS

- ▶ In a number of cases, one cannot compute the choice probabilities $\sigma\left(U\right)$ using a closed-form expression. In this case, we need to resort to simulation to compute G, G^* , σ and σ^{-1} .
- ► The idea is that:
 - ightharpoonup one is able to compute G and G^* for discrete distributions (more on this later)
 - ▶ the sampled versions of G, G^* , σ and σ^{-1} converge to the populations objects when the sample size is large.

ACCEPT-REJECT SIMULATOR

lacktriangle One simulates N points $\varepsilon^i \sim P$. The Emax operator associated with the empirical sample distribution P_N is

$$G_N = N^{-1} \sum_{i=1}^{N} \max_{y \in \mathcal{Y}} \left\{ U_y + \varepsilon_y^i \right\}$$

and the demand map is given by

$$\sigma_{N,y}\left(U\right) = N^{-1} \sum_{i=1}^{N} 1\left\{U_{y} + \varepsilon_{y}^{i} \geq U_{z} + \varepsilon_{z}^{i} \ \forall z \in \mathcal{Y}_{0}\right\}$$

▶ In the literature, σ_N is called the *accept-reject simulator*.

McFadden's SARS

▶ McFadden's smoothed accept-reject simulator (SARS) consists in sampling $\varepsilon \sim P$: $\varepsilon^1, ..., \varepsilon^N$, and replacing the max by the smooth-max

$$\sigma_{N,T,y}\left(U\right) = \sum_{i=1}^{N} \frac{1}{N} \frac{\exp\left(\left(U_{y} + \varepsilon_{y}^{i}\right)/T\right)}{\sum_{z} \exp\left(\left(U_{z} + \varepsilon_{z}^{i}\right)/T\right)}$$

lacktriangle One seeks U so that the induced choice probabilities are s, that is

$$s_y = \sum_{i=1}^{N} \frac{1}{N} \frac{\exp\left(\left(U_y + \varepsilon_y^i\right)/T\right)}{\sum_z \exp\left(\left(U_z + \varepsilon_z^i\right)/T\right)}.$$

► The associated Emax operator is

$$G_{N,T}(U) = \mathbb{E}_{\mathbf{P}_{N}}\left[G_{\text{logit}}\left(U + \varepsilon^{i}\right)\right]$$

so the underlying random utility structure is a random coefficient logit.

Section 3

THE INVERSION THEOREM

THE INVERSION THEOREM

THEOREM (G AND SALANIÉ)

Consider a solution $(u(\varepsilon), v_y)$ to the dual Monge-Kantorovich problem with cost $\Phi(\varepsilon, y) = \varepsilon_y$, that is:

$$\min_{u,v} \int u(\varepsilon) d\mathbf{P}(\varepsilon) + \sum_{y \in \mathcal{Y}_0} v_y s_y
s.t. \ u(\varepsilon) + v_v \ge \Phi(\varepsilon, y)$$
(1)

Then:

(i)
$$U = \sigma^{-1}(s)$$
 is given by $U_y = v_0 - v_y$.

(ii) The value of Problem (1) is $-G^*(s)$.

THE INVERSION THEOREM: PROOF

PROOF.

 $\sigma^{-1}(s) = \arg\max_{U:U_0=0} \left\{ \sum_{y \in \mathcal{Y}} s_y U_y - G(U) \right\}$, thus, letting v = -U, v is the solution of

$$\min_{v:v_0=0} \left\{ \sum_{y\in\mathcal{Y}_0} s_y v_y + G(-v) \right\}$$

which is exactly problem (1).

INVERSION OF THE PURE CHARACTERISTICS MODEL

- ▶ It follows from the inversion theorem that the problem of demand inversion in the pure characteristics model is a semi-discrete transport problem, a point made in Bonnet, G and Shum (2017).
- ► Indeed, the correspondence is:
 - ▶ an alternative y is a fountain
 - ▶ the characteristics of an alternative is a fountain location
 - the systematic utility associated with alternative y is minus the price of fountain y
 - ▶ the market share of altenative *y* coindides with the capacity of fountain *y*
 - ightharpoonup the random vector ϵ is the location of an inhabitant

McFadden's SARS and regularized OT

► Cf. Bonnet, G. and Shum (2017). Let $u_i = T \log \sum_z \exp \left((U_z + \varepsilon_z^i) / T \right)$. One has

$$\left\{ \begin{array}{l} s_y = \sum_{i=1}^N \frac{1}{N} \exp\left((U_y - u_i + \varepsilon_y^i)/T\right) \\ \frac{1}{N} = \sum_y \frac{1}{N} \exp\left((U_y - u_i + \varepsilon_y^i)/T\right) \end{array} \right. .$$

▶ As a result, (u_i, U_y) are the solution of the regularized OT problem

$$\min_{u,U} \sum_{i=1}^{N} \frac{1}{N} u_i - \sum s_y U_y + \sum_{i,y} \frac{1}{N} \exp\left(\left(U_y - u_i + \varepsilon_y^i\right)/T\right).$$

BLP'S CONTRACTION MAPPING

► Consider the IPFP algorithm for solving the latter problem:

$$\left\{ \begin{array}{l} \exp\left(u_i^{k+1}/T\right) = \sum_z \exp\left((U_z^k + \varepsilon_z^i)/T\right) \\ \exp U_y^{k+1}/T = \frac{N s_y}{\sum_{i=1}^N \exp\left((-u_i^{k+1} + \varepsilon_y^i)/T\right)} \end{array} \right.$$

► This rewrites as

$$\exp U_y^{k+1}/T = \frac{Ns_y}{\sum_{i=1}^N \frac{\exp(\varepsilon_y^i/T)}{\sum_z \exp((U_z^k + \varepsilon_z^i)/T)}}, \text{ i.e.}$$

$$U_y^{k+1} = T \log s_y - T \log \sum_{i=1}^N \frac{1}{N} \frac{\exp(\varepsilon_y^i/T)}{\sum_z \exp((U_z^k + \varepsilon_z^i)/T)}$$

which is exactly the contraction mapping algorithm of Berry, Levinsohn and Pakes (1995, appendix 1).