Teachers Do More Than Teach: Compressing Image-to-Image Models (CVPR 2021)

Qing Jin¹, Jian Ren², Oliver J. Woodford*, Jiazhuo Wang², Geng Yuan¹, Yanzhi Wang¹, Sergey Tulyakov²

¹Northeastern University, ²Snap Inc.

Input

발표: 정채연

Existing Approaches

1. Network Architecture Search (NAS)

2. Pruning (e.g., weight, channel, layer, etc.)

3. Knowledge Distillation

Existing Approaches

- 1. Co-evolutionary compression for unpaired image translation (ICCV 2019)

 Han Shu, Yunhe Wang, Xu Jia, Kai Han, Hanting Chen, Chunjing Xu, Qi Tian, and Chang Xu
- 2. AutoGAN-distiller: Searching to compress generative adversarial networks (ICML 2020) Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, and Zhangyang Wang
- **3. Gan slimming: All-in-one GAN compression by a unified optimization framework** (ECCV 2020) *Haotao Wang, Shupeng Gui, Haichuan Yang, Ji Liu, and Zhangyang Wang*
- **4. Single path one-shot neural architecture search with uniform sampling** (ECCV 2020) *Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun*
- **5. Gan compression: Efficient architectures for interactive conditional GANs** (CVPR 2020) *Muyang Li, Ji Lin, Yaoyao Ding, Zhijian Liu, Jun-Yan Zhu, and Song Han*
- **6. GANs can play lottery tickets too** (ICLR 2021) *Xuxi Chen, Zhenyu Zhang, Yongduo Sui, Tianlong Chen*

→ 문제점: 높은 search cost, (original model에 비해) 낮은 경량화 model의 성능

Contributions

TL;**DR**: Ours is <u>simpler</u> but <u>better</u> than original.

- 1. We introduce a new network design, **Compression And Teaching (CAT)**, which serves as both <u>teacher network</u> and the <u>architecture search space of (compressed) student</u>.
- 2. We propose an <u>efficient one-step technique to directly prune the trained teacher</u> <u>network</u> to achieve a target computation budget.
- 3. We introduce a <u>knowledge distillation</u> technique based on similarity between teacher and student models' feature spaces, <u>global kernel alignment (GKA)</u>, without extra learnable layers.

Backgrounds

GAN Compression (CVPR2020)

DAVIAN 220321 Vision Study

Muyang Li, Ji Lin, Yaoyao Ding, Zhijian Liu, Jun-Yan Zhu, Song Han

Overview

Overview

Overview

- 1. Training Teacher Generator as Search Space of Students
- Residual block with 6 different operations
 - Conv with kernel size 1, 3, 5
 - Depth-wise conv with kernel size 1, 3, 5
- After 6 operations, sum all the features
- Each operations are followed by batch norm or instance norm layer

Original Inception Module

2. Compressing Trained Teacher Generator via Pruning

- Channel pruning based on <u>scale factor of normalization</u> <u>layers</u>
- The larger the scale is, the more important the channel is
- Pruning until we satisfy our computation budget

Learning Efficient Convolutional Networks through Network Slimming (ICCV2017) Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, Changshui Zhang

Algorithm 1 Searching via One-Step Pruning.

Require: Computational budget $T_{\rm b}$, teacher model $G_{\rm T}$, scaling factors $\gamma_i^{(l)}$ (used for pruning) of the i-th channel in normalization layers $N^{(l)}{\in}G_{\rm T}$, minimum # output channels c_{lb} for convolution layers (outside the IncResBlock).

Ensure: pruned student architecture G_S.

- 1: Initialize scale lower bound γ_{lo} : $\gamma_{lo} \leftarrow \min_{i,l} |\gamma_i^{(l)}|$.
- 2: Initialize scale upper bound γ_{hi} : $\gamma_{hi} \leftarrow \max_{i,l} |\gamma_i^{(l)}|$.
- 3: while $\gamma_{lo} < \gamma_{hi}$ do
- 4: $\gamma_{th} \leftarrow (\gamma_{lo} + \gamma_{hi})/2$
- 5: Prune channels satisfying $|\gamma_i^{(l)}| < \gamma_{th}$ on G_T while keep c_{lb} to get G_S
- 6: $T \leftarrow \text{computational cost of } G_S$
- 7: **if** $T > T_{\rm b}$ **then**
- 8: $\gamma_{lo} \leftarrow \gamma_{th}$
- o else
- 10: $\gamma_{hi} \leftarrow \gamma_{th}$
- 11: **end if**
- 12: end while

 $y = \frac{x - \mathbf{E}[x]}{\sqrt{\mathbf{Var}[x] + \epsilon}} * \gamma + \beta$

3. Training (Compressed) Student Network

Centered Kernel alignment (CKA)= Centering + KA

$$KA(X,Y) = \frac{\|Y^{T}X\|_{F}^{2}}{\|X^{T}X\|_{F}\|Y^{T}Y\|_{F}}$$
$$\|Y^{T}X\|_{F}^{2} = \langle vec(XX^{T}), vec(YY^{T}) \rangle$$

Global KA (GKA)

$$GKA(X,Y) = KA(\rho(X), \rho(Y))$$
$$\rho : \mathbb{R}^{n \times hwc} \to \mathbb{R}^{nhw \times c}$$

원래 GAN Compression의 Knowledge distillation loss

Newly-proposed Knowledge distillation loss

3. Training (Compressed) Student Network

Centered Kernel alignment (CKA)= Centering + KA

$$KA(X,Y) = \frac{\|Y^{T}X\|_{F}^{2}}{\|X^{T}X\|_{F}\|Y^{T}Y\|_{F}}$$
$$\|Y^{T}X\|_{F}^{2} = \langle vec(XX^{T}), vec(YY^{T}) \rangle$$

Global KA (GKA)

$$GKA(X,Y) = KA(\rho(X), \rho(Y))$$
$$\rho : \mathbb{R}^{n \times hwc} \to \mathbb{R}^{nhw \times c}$$

Total loss

$$\mathcal{L}_{\mathrm{T}} = \lambda_{\mathrm{adv}} \mathcal{L}_{\mathrm{adv}} + \lambda_{\mathrm{recon}} \mathcal{L}_{\mathrm{recon}} + \lambda_{\mathrm{dist}} \mathcal{L}_{\mathrm{dist}}$$

$$\mathcal{L}_{adv} = \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\log D(\mathbf{x}, \mathbf{y}) \right] + \mathbb{E}_{\mathbf{x}} \left[\log (1 - D(\mathbf{x}, G(\mathbf{x}))) \right]$$

$$\mathcal{L}_{\text{dist}} = -\sum_{l \in \mathcal{S}_{\text{KD}}} \text{GKA}(X_t^{(l)}, X_s^{(l)})$$

Quantitative Comparison with Baselines

Table 1: Quantitative comparison between different compression techniques for Image-to-Image models. We use mIoU to evaluate the generation quality of Cityspaces and FID for other datasets. Higher mIoU or lower FID indicates better performance.

Model	Dataset	Method	MACs	FID↓	mIoU↑
CycleGAN	Horse→Zebra	Original [83, 36]	56.8B	61.53	-
		Shu et al. [63]	13.4B	96.15	_
		AutoGAN Distiller [20]	6.39B	83.60	-
		GAN Slimming [68]	11.25B	86.09	-
		GAN Lottery [11]	~11.35B [†]	\sim 83.00 †	-
		Li et al. [36]	2.67B	71.81	-
		CAT (Ours)	2.55B	60.18	-
	Zebra→Horse	Original [83, 68]	56.8B	148.81	-
		GAN Slimming [68]	11.81B	120.01	-
		CAT (Ours)	2.59B	142.68	-
Pix2pix	Cityscapes	Original [29, 36]	56.8B	-	42.06
		Li et al. [36]	5.66B	-	40.77
		CAT (Ours)	5.57B	-	42.53
	Map→Aerial photo	Original [29, 36]	56.8B	47.76	-
		Li et al. [36]	4.68B	48.02	-
		CAT (Ours)	4.59B	44.96	-
GauGAN	Cityscapes	Original [57, 36]	281B	-	62.18
		Li et al. [36]	31.7B	-	61.22
		CAT-A (Ours)	29.9B	-	62.35
		CAT-B (Ours)	5.52B	-	54.71

Table 2: Further quantitative comparison on KID between different compression techniques for Image-to-Image models, where lower KID indicates better performance.

Model	Dataset	Method	MACs	KID↓
C LCAN	Horse→Zebra	Original [83] CAT (Ours)	56.8B 2.55B	0.020±0.002 0.017 ± 0.002
CycleGAN	Zebra→Horse	Original [83] CAT (Ours)	56.8B 2.59B	0.030±0.002 0.036±0.002
Pix2pix	Map→Aerial	Original [29] CAT (Ours)	56.8B 4.6B	0.154±0.010 0.009 ± 0.002
GauGAN	Cityscapes	Original [57] CAT-A (Ours) CAT-B (Ours)	281B 29.9B 5.5B	0.026±0.003 0.014±0.002 0.013±0.002

Qualitative Comparison with Baselines

Input

CAT (Ours) MACs: 2.56B FID: 53.48 KID: 0.015±0.001

GT

Experiments

Qualitative Comparison with Baselines

Qualitative Comparison with Baselines

DAVIA

Ablation Analysis of Knowledge Distillation

Table S2: Analysis of knowledge distillation methods on Cityscapes dataset with the Pix2pix setting. Our methods (GKA) achieves the best result.

Method	mIoU↑	
w/o Distillation	39.39	
w/ MSE; Loss Weight 0.5	39.83	
w/ MSE; Loss Weight 1.0	39.76	
Ours	42.53	

원래 GAN Compression의 Knowledge distillation loss

Newly-proposed Knowledge distillation loss

Analysis of Searching Cost

Table 3: Architecture search cost, measured in seconds of GPU computation, for our method vs. Li *et al.* [36], across different models.

Model	Dataset	Method	Search Cost (GPU Seconds)
C. LCAN	Horse→Zebra	Li et al. [36] CAT (Ours)	$\stackrel{\textstyle >}{\scriptstyle \sim} 7.2\times 10^4$ 3.81
CycleGAN	Zebra→Horse	Li et al. [36] CAT (Ours)	$\stackrel{\textstyle >}{\scriptstyle \sim} 7.2\times 10^4$ 3.62
Pix2pix	Cityscapes	Li et al. [36] CAT (Ours)	$\stackrel{\textstyle >}{\scriptstyle \sim} 7.2\times 10^4$ $\begin{array}{c} \textbf{4.28} \end{array}$
Тигри	Map→Aerial photo	Li et al. [36] CAT (Ours)	$\stackrel{\textstyle >}{\scriptstyle \sim} 7.2\times 10^4$
GauGAN	Cityscapes	Li et al. [36] CAT-A (Ours) CAT-B (Ours)	$\gtrsim 1.2 \times 10^6$ 8.22 6.20

Thank you