МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

Вычислительный центр Трофимов Е. П., Стелина Н. Ю.

Стандартная программа вычсиления функций Бесселя (в системе ИП-3)

Серия:

Математическое обслуживание машины «Сетунь»

Под общей редакцией В.А.Морозова Выпуск 29

> Москва 1970

Стандартная подпрограмма вычисления функций Бесселя разработана и составлена сотрудниками Все-СОЮЗНОГО научно-исследовательского И проектноконструкторского института комплексной автоматизации нефтяной и газовой промышленности («ВНИИКА-НЕФ-TEFA3») лаборатории начальником теплофизики Е.П.Трофимовым и инженером Н.Ю.Стелиной. В отделе математического обеспечения малых ЭВМ ВЦ МГУ с помощью этой подпрограммы рассчитан ряд тестовых приполученные численные результаты меров; вполне удовлетворительны. Тестовую проверку подпрограммы проводила м.н.с. отдела Н.Н.Кирсанова.

Содержание

§1. Назначение и краткая характеристика подпро-
граммы4
§2. Описание метода4
§3. Методика пользования подпрограммой
1. Использование памяти7
2. Обращение к подпрограмме8
3. Ввод подпрограммы9
§4. Таблица временных характеристик10
Литература11
Приложение І. Подпрограмма вычисления функций
Бесселя12
Приложение II. Программа ввода ИП-3 вместе с под-
программой вычисления функций Бесселя18

§1. Назначение и краткая характеристика подпрограммы.

Подпрограмма «Вычисление функций Бесселя» предназначена для библиотеки стандартных подпрограмм ИП-3.

Подпрограмма позволяет вычислять функции Бесселя первого и второго рода, нулевого и первого порядка, действительного аргумента: J_0 , Y_0 , J_1 , Y_1 .

Так же, как стандартные подпрограммы ИП-3, подпрограмма вычисления функций Бесселя реализует режим плавающей запятой. Характеристика подпрограммы аналогична общей характеристике стандартных подпрограмм ИП-3 [2]. Точность вычисления функций не превосходит $2 \cdot 10^{-6}$ для области изменения аргумента от 10^{-19} до 10^{+19} . При нулевом и отрицательном аргументе происходит аварийный останов по команде 01У2X.

§2. Описание метода.

Алгоритм подпрограммы использует два вида аппроксимирующих выражений функций для двух областей существования аргумента [1]:

$$J_0(z) = \sum_{k=0}^{6} a_k t^{2k}$$
, $t = \frac{z}{3}$, $0 \le z \le 3$.

$$a_0 = 1,000\,000$$
 $a_4 = 0,044\,448$ $a_1 = -2,250\,000$ $a_5 = -0,003\,944$ $a_2 = 1,265\,621$ $a_6 = 0,000\,210$

$$a_3 = -0.316387$$

$$Y_0(z) = \frac{2}{\pi} \ln \frac{z}{2} J_0(z) + \sum_{k=0}^{6} C_k t^{2K}, \quad t = \frac{z}{3}, \quad 0 < z \le 3.$$

$$c_0 = 0,367467$$
 $c_4 = -0,042612$ $c_1 = 0,605594$ $c_5 = 0,004279$ $c_2 = -0,743504$ $c_6 = -0,000248$

$$c_3 = 0.253001$$

$$J_{0}(z) = z^{-\frac{1}{2}} f_{0}(t) \cos[z - \varphi_{0}(t)],$$

$$Y_{0}(z) = z^{-\frac{1}{2}} f_{0}(t) \sin[z - \varphi_{0}(t)],$$

$$t = \frac{3}{z}, \quad z \ge 3;$$

$$f_0(t) = \sum_{k=0}^{6} \alpha_k t^k$$
, $\varphi_0(t) = \sum_{k=0}^{6} \beta_k t^k$.

$$\alpha_0 = 0,797885$$
 $\beta_0 = 0,785398$
 $\alpha_1 = -0,000001$
 $\beta_1 = 0,041664$
 $\alpha_2 = -0,005527$
 $\beta_2 = 0,000039$
 $\alpha_3 = -0,000095$
 $\beta_3 = -0,002626$
 $\alpha_4 = 0,001372$
 $\beta_4 = 0,000541$

$$\alpha_5 = -0,000728$$
 $\beta_5 = 0,000293$ $\alpha_6 = 0,000145$ $\beta_6 = -0,000136$

$$J_1(z) = z \sum_{k=0}^{6} b_k t^{2k}$$
, $t = \frac{z}{3}$, $0 \le z \le 3$.

$$b_0 = 0,500\,000$$
 $b_4 = 0,004\,433$ $b_1 = -0,562\,500$ $b_5 = -0,000\,318$ $b_2 = 0,210\,936$ $b_6 = 0,000\,011$ $b_7 = -0.039\,543$

$$Y_1(z) = \frac{2}{\pi} \ln \frac{z}{2} J_1(z) + \frac{1}{z} \sum_{K=0}^{6} d_k t^{2K},$$

$$t = \frac{z}{3}, \quad 0 < z \le 3.$$

$$d_0 = -0.636620$$
 $d_4 = 0.312395$
 $d_1 = 0.221209$ $d_5 = 0.040098$
 $d_2 = 2.168271$ $d_6 = 0.002787$
 $d_3 = -1.316483$

$$\begin{split} &J_{1}(z) = z^{-\frac{1}{2}} f_{1}(t) \sin \left[z - \varphi_{1}(t) \right], \\ &Y_{1}(z) = -z^{-\frac{1}{2}} f_{1}(t) \cos \left[z - \varphi_{1}(t) \right], \\ &t = \frac{3}{z}, \quad z \ge 3; \end{split}$$

$$f_1(t) = \sum_{K=0}^{6} \gamma_K t^K$$
, $\varphi_1(t) = \sum_{K=0}^{6} \delta_K t^K$

$y_0 = 0.797885$	$\delta_0 = 0,785398$
$\gamma_1 = 0,000002$	$\delta_1 = -0.124996$
$\gamma_2 = 0.016597$	$\delta_2 = -0.000056$
$\gamma_3 = 0,000171$	$\delta_3 = 0,006379$
$y_4 = -0,002495$	$\delta_4 = -0,000743$
$\gamma_5 = 0.001137$	$\delta_5 = -0,000798$
$\gamma_6 = -0,000200$	$\delta_6 = 0,000292$

- §3. Методика пользования подпрограммой.
- 1. Использование памяти.

Подпрограмма счета функций Бесселя располагается в зонах 14÷20 магнитного барабана. При своей работе подпрограмма использует все три зоны оперативной памяти.

Кроме того, при вычислении происходит обращении к стандартным подпрограммам ИП-3: сложению, вычитанию, обратному вычитанию, умножению и делению, извлечению квадратного корня, вычислению синуса и косинуса, а также вычислению натурального логарифма.

2. Обращение к подпрограмме.

В связи с тем, что подпрограмма использует зону Φ_{l} , обращение к подпрограмме осуществляется обобщенным переходом по обобщенному адресу начала счета функции:

 (x_0) : Z03Z3; $(c)+3ea \Rightarrow (F)$

 (x_1) : ZWY00; $B\Pi
ightharpoonup Bx. VI <math>U\Pi - 3$

 (x_2) : 014 %DELTA_j; A_F

где $A_{\it F}$ — обобщенный адрес начала счета функции, определяемый следующей таблицей.

Nº Nº	Наименование	Обобщенны	й Содержа-
п/п	псевдооперации	адрес нача	па ние
1.	Функция Бесселя первого	01413	$I(u) \rightarrow u$
1.	рода нулевого порядка.	01413	$J_0(u) \Rightarrow u$
2.	Функция Бесселя второго	01411	$Y_0(u) \Rightarrow u$
	рода нулевого порядка	01411	$I_0(u) \rightarrow u$
3.	Функция Бесселя первого	01410	$J_1(u) \Rightarrow u$
5.	рода первого порядка	01410	$J_1(u) \rightarrow u$
4.	Функция Бесселя второго	0141Y	$Y_1(u) \Rightarrow u$
_ T.	рода первого порядка	01411	$I_1(u) \rightarrow u$

При этом необходимо, чтобы аргумент находился в ячейке u в нормальном представлении (мантисса — в

ячейке Z32, порядок — в ячейке Z4X). Это требование автоматически выполняется, если аргумент был получен с помощью стандартной подпрограммы или был выбран с помощью ИП-3.

Результат вычисления подпрограмма размещает на месте u, сохраняя порядок в P_u .

3. Ввод подпрограммы.

Подпрограмма вводится вместе со всей библиотекой стандартных подпрограмм в системе ИП-3. Программа ввода основана на несколько переработанной программе ввода системы ИП-4 [3].

Ввод производится с фототрансмиттера №І в автоматическом режиме нажатием кнопки «Начальный пуск». При правильном вводе всех зон происходит останов Ω_1 по команде 1442X. При неправильном вводе какой-либо зоны происходит останов Ω_2 по команде 0002X. В этом случае зону несовпадения можно оттянуть назад и продолжить ввод кнопкой «Пуск». Повторные остановы означают несовпадение с контрольной суммой зоны.

§4. Таблица временных характеристик.

F(z)	T_{I} , мксек	T_2 , мксек
J_0	51 480	121 525
Y_0	98 105	121 985
J_I	53 070	122 325
Y_I	129 945	121 885

Здесь:

- $T_{\it l}$ максимальное возможное время счета функции при аргументе $\it Z \! \leq \! 3$.
- T_2 максимальное возможное время счета функции при аргументе $Z \! > \! 3$.

Литература.

- 1. Н.Н.Лозинский, А.Т.Макушкин, В.Я.Розенберг, В.Р.Эрглис, «Справочник программиста», Л., 1964.
- 2. Жоголев Е.А., Есакова Л.В., Интерпретирующая система ИП-3, вып. 4 данной серии, изд-во МГУ, М., 1964.
- 3. Г.А.Фурман, Интерпретирующая система дли действий с комплексными числами (ИП-4), М., 1964. вып.2 данной серии, изд-во МГУ, М., 1964.

Приложение I. Подпрограмма вычисления функций Бесселя.

Зона МБ 14 Адрес Команда Адрес Команда $\Pi_{\phi}=1$ $\Pi_{\phi}=1$ Z 1X XX [|X] ⇒ [Φ₂] 02 03 0 2X 1X 9NZ 7 ₩Y Z 4Z Y3 $(s) \Rightarrow V$ 04 2 22 XX [2Z] ⇒ [Φ_x] WZ WO Z 4Y 03 1W 1X 0 2Y 00 51 7 8 Z 0Y 00 1 W1 ZX (F)+209 ⇒ (F) 7 9, ₩1 1 Y W2 W3 1 00 1Z 12 10 1 Y1 ZX (F)+γ2 ⇒ (F) ¬ J, 1 YO ZX (F) - Y, ⇒ (F) 7 9. 0 1Y ZX 11 12 13 1 Y3 ZX (F)+73 ⇒ (F) 7 J_o XW XX Z 00 42 XY 7 X2 00 14 0 2W XX XZ XO O 11 W4 2W 2X 0 10 Y3 (5) = 0 X1 Z 00 32 2**Y** 0 2W X3 fo ⇒ (S) 2Z 20 0 2X XX [2X] → [Φ.] X2 X3 1 2Z 30 XЧ Z 4Z Y3 $(S) \Rightarrow V$ 0 04 0X (f) ⇒ △ 21 22 23 1 34 1X YNZ TI YW YX 1 1Z 30 $\mathbb{Z}_2 \Rightarrow (S)$ ΥY 1 20 XX [20] ⇒ [Φ₁] 24 0 0Y ZX (f)+0W4 ⇒ (f) 00 ZZ 0 CY ZY 3W 3X 0 WX 10 Ynor*2 χı 3Y 1 ZX 30 Asin ⇒(S) Y1 Z 3X 00 χ_2 3Z 30 1 X0 Y3 (5) ⇒ A cos Y2 Y3 Z 22 00 Y4 0 1Y XY 31 0 WX 00 А обр. выч. PU 1 5 ZW ZX 0 11 XY Asin 32 31 0 30 00 len ZY 0 WW 30 $Z_1 \Rightarrow (S) \stackrel{\bullet}{\rightarrow} 5$ 34 1 Ү4 30 Аобр. выч. ⇒ (5) 47 (ZZ ZO 1 1Z Y3 4W 4X 1 W4 Y3 (5) \$ A 8614. (S) ⇒ Z, 0 12 XX [IZ] → [Φ.] 21 ЧY 1 04 30 Z2ZXX ⇒ (02Y) 22 Z3 Z 4Z Y3 (5)⇒∨ 42 40 0 2Y Y3 24 41 0 43 ZX (F)+12W ⇒(F) 1 20 30 02XXX > (021) OW OX 0 Z1 Y3 42 43 0 WX 1X 9NZ 7 2 OY 00 XX 00 БПГДел. 44 1 37 00 50 73 0Z 00 1 Y4 30 714) AOSp. BB14.-КC 0 00 53 Z 34 ZX 01 1 W4 3X J-(1W4) → (S)

Зона МБ 2W

```
Адрес Команда
                                  Адрес Команда
 \Pi_{\phi}=1
                                    \Pi_{\phi}=1
 WW WX
                                     02 03
         0 00 22
                                            Z 1X X3 [Φ2] ⇒ [IX] 710
         1 W1 ZY
                                            Z 1W XX [{W] ⇒[Φ2]
    HY
                                        04
 #Z WO
         0 00 2
                                     1W 1X Z WO Z3
                                        17
                                            Z 27 00
    W 1
         Z WW WW
                                     12 10 0 00 00
 W2 W3
         Z 1X XX
                  [|X] ⇒ [Φ<sub>2</sub>]
                                        11 0 00 00
                  (S) ⇒ ∑
    ¥4
         1 22 Y3
                                     12 13
                                           1 2Z Y3 (S) ⇒ J,
 XW XX 0 WW 30
                  Z_1 \Rightarrow (5)
         Z 4Z Y3
                  (S) → V
                                        14
                                            Z 32 30
                                                      U → (5)
    XΥ
 XZ XO Z 4Y 03
                   4713
                                     2W 2X 1 22 Y3
                                                      (S) \Rightarrow \Sigma
                                        2Y
                                            1 X0 00
                                                      BN [*13
    X1 Z OY 00
                                     22 20
                                            0 00 00
 X2 X3
         1 00 WZ
                                            0 00 00
                                        21
    Х4
         0 1Z 0X
                                     22 23
                                            0 00 00
 YY YX
         Z 00 32
                                        24
                                            0 OY 33
    ΥY
         Z X2 00
                          enu ⇒ u
                                     3W 3X
                                            0 00 00
 YZ YO 0 13 WX
                                        ЭТ
                                            0 31 1X
    ¥1
         Z 00 4Z
                                     3Z 30
                                            0 00 02
 Y2 Y3
         Z OY 00
                                        31
                                            0 WZ 4Y
    YЧ
         1 00 WW
                                     32 33
                                            0 00 1Y
 ZW ZX
         0 1Z 0X
                                        34
                                            Z 44 Z4
    ZY
         Z 00 4Z
                                            0 00 YY
                                     HW HX
 ZZ ZO
         Z 0Y 00
                                        4 Y
                                            O YO ZZ
         1 00 22
    21
                                     4Z 40
                                            0 00 2Y
 22 23
         0 1Z 0X
                                        41
                                            1 04 3Y
         Z 00 4Z
    Z4
                                     42 43
                                            0 00 11
 XO WO
         Z OY 00
         1 00 22
                                        41
                                            O YZ OW
     OY
                                     КC
                                            0 00 OX
 0Z 00
         0 1Y Z3
                                            Z 2Z WZ
     01
         2 00 32
```

Зона МБ 2Х

	33.16. 1.2 2.1		
Адрес	Команда	Адрес	Команда
$\Pi_{\varphi} = 0$		$\Pi_{\varphi} = 0$	
KA AX	$Z \times X \times Z = P_u \Rightarrow (F) \uparrow 2$	02 03	1 00 00 80 7 14
₩Y	2 2 30 (1 7 (3))	04	0 00 00 Δ
WZ WO	0 ₩W Y3 (S) ⇒ Z,	1W 1X	1 2Z Y3 (5)= fo
W 1	Z 4X 3X (S) - Pu ⇒ (S)	1 Y	Z YO ZO WY ⇒ (F)
W2 W3	0 XX 13 YNI 4	1Z 10	0 04 0X (F)=△
₩4	0 1Y 2X Q	11	Z Y1 Z0 OYX ⇒(F)
XX XX	0 33 ZX (F)-lea >(F) 4	12 13	0 2Y 00 5N F8
XY	1 2Y 13 901 7 5	14	Z XX ZO O⇒(F) 76
XZ XO	Z 03 YO CAB.(S)HA3 >(S)	2¥ 2X	Z 2Y XX (24] → [Ф2] 77
X1	0 ₩Z Y3 (S) ⇒ β,	2 Y	
X2 X3	Z 4X YO СДВ. (S) HA P4 > (S)	27 20	0 XZ 30 t ⇒ (s) 78 Z 22 41 (s) · α ₆ ⇒ (s) 79
XЧ	1 33 3X (5)-1⇒(5)	21	
YW YX	1 ZY 13 981 5	22 23	
TY	1 33 33 (S)+(⇒(S)	24	
YZ YO	0 XW Y3 (5) ⇒ β2	SW SX	<u> </u>
¥1	0 XW 40 (5)·β2 → (5)	37	Z 4Z 4Y G +(s)t =(s)
12 T3	0 XZ Y3 (5) ⇒ t²	3Z 30	Z 42 47 0 +(S)t >(S)
Y 4	0 14 00 511 76	31	0 04 ZO Δ⇒(F)
ZW ZX	0 WZ 40 (S)·β, ⇒(S)	32 33	0 0Z 01 5H
ZY	Z WY YO CAB.(S)HA1 \$ (S)	34	Z 23 Z0 O⇒(F)
22 20	0 WX ZO P2 > (F)	чт чх	Z 1X XX [X] + [+z] +
21	0 4X 00 60 PH	47	7 4X 0X (F) ⇒ Pu
22 23	Z 43 TO CAB. (S) HA P. ⇒ (S)	42 40	Z 4X 33 Pu +(s) +(s)
24	Z W1 YO CAB.(S) HA (> (S)	41	Z 32 T3 (S) ⇒ U
OW OX	0 XZ Y3 (5) ⇒ t	42 43	1 2₩ XX [2W]⇒[Φ,]
07	0 ¥4 Z0 014 ⇒ (F)	44	1 03 00 61 10
0Z 00	0 04 0x (F) ⇒ Δ	кc	0 00 OW
02 00	0 34 20 Z23 ⇒(F)		Z Y2 X2
01	0 31 40 2237(1)		ar a no strine

Зона МБ 2Z Адрес Команда Адрес Команда $\Pi_{\phi} = Z$ $\Pi_{\phi} = Z$ WW WX 0 00 00 02 03 0 00 00 0 01 OW 0 02 23 ₩Y 04 WZ WO 0 00 00 1W 1X 0 00 00 0 24 20 0 04 70 W 1 1Y W2. W3 0 00 00 0 00 00 12 10 ¥Ч 0 10 00 0 Y1 Y0 11 0 00 00 XW XX 0 00 00 12 13 0 00 23 XΥ 0 OZ 33 14 XZ XO 0 00 00 2¥ 2X 0 00 01 X 1 O WO YX 2Y 0 33 32 22 20 0 00 23 X2 X3 0 00 00 1 XT 00 ХЧ 0 00 00 21 YW YX 0 00 24 22 23 0 00 00 ΥY Z XX Z3 24 0 01 34 YZ YO 1 WY 00 37 3X 0 00 00 a_5 ¥1 0 YX 00 31 0 X1 11 Y2 Y3 0 00 00 32 30 0 00 01 α4 0 00 00 1 WY XW YЧ 31 [2W] → [Φ,] ~ 15 32 33 0 00 Z0 ZW ZX 1 2₩ XX ũ, (5) ⇒ J_o 34 1 33 2X ZY1 2Z Y3 Z 31 Z0 48 4X 0 00 44 ZZ Z0 IW4 ⇒ (F) **Z** 1 0 04 0X (F) ⇒ ∆ 47 1 WX YX 0 XZ 30 t² ⇒(5) 4Z 40 0 0Z 22 22 23 1 YX ZO Z00 ⇒(F) 1 YY YY 41 24 0 00 30 OW OX 0 20 00 61 F9 42 43 a. 0 00 00 Z ZX 00 44 OY КC 0 00 01 0Z 00 0 00 00 01 0 0Z 10 1 WY OX

Зона МБ 2Z

		00.100 1.12 1.1	
Адрес	Команда	Адрес	Команда
$\Pi_{\phi}=Z$		$\Pi_{\varphi} = Z$	
** **X	0 00 00 }	02 03 04	0 00 00 0 24 YZ δ_5
₩2 ₩0 ₩1	0 00 00 0 22 #0 } ¥5	17 1X 1Y	0 00 00 C Z4 11 }04
8# S# 4#	0 00 00 00 00 24 33 04	1Z 10 11	0 00 00 1 3 3
XW XX XY	0 00 00 0 0z zo })3	12 13 14	0 00 00 0 00 XX
XZ XO X1	0 00 00 Z XZ 10	2¶ 2X 2Y	$\begin{bmatrix} 0 & 00 & 0X \\ Z & ZZ & Z1 \end{bmatrix} \delta_i$
X2 X8 X4	0 00 00	22 20 21	0 00 23 }8.
YW YX YY	0 00 YW }	22 23 24	0 00 00 0 00 1# }8 ₆
YZ Y0 Y1 Y2 Y3	1 WY 00 0 YX 00 Aδ₀-Aσ₀ 1 20 XX [20]⇒[Φ,]	3¥ 3X	$\begin{cases} 0 & 00 & 00 \\ 0 & 01 & 23 \\ 0 & 00 & 00 \end{cases} $
12 13 Y4 Zw ZX	0 ₩2 40 (S)·β₁⇒(S) 1 2Y YO CAB.(S) HA!⇒(S)	3Z 30 31 32 33	0 32 1X \\ 0 00 07
ZY ZZ ZO	1 2Z Y3 (S)⇒J, Z Y0 Z0 (WY⇒(F)	34 4 W 4 X	0 Y2 W0 }03
Z1 Z2 Z3	0 04 0X $(f) \Rightarrow \Delta$ 0 XZ 30 $t^2 \Rightarrow (s)$	47 42 40	Z 1Y OW }O2
Z4 O W OX	1 00 Z0 Z00⇒(F) 0 20 00 50 ₹9	42 43	Z 4Z 40 }0,
0Y 0Z 00	0 00 00	44 KC	Z WW WW 300
01	0 02 72		0 31 YX

Адрес Команда Адрес Команда $\Pi_{\phi}=1$ $\Pi_{\phi}=1$ 7 1X XX [XX] → [中山 02 03 0 00 00 *: 2 32 Y3 (5) ⇒U 04 1 12 Z0 Z2 → (F) 12 #2 *C Z 32 Z0 U ⇒ (F) 1 1 1 1 23 0x (F) ⇒ Px Z 4X OX (F)⇒Pu 1 2Z 30 J, ⇒ (S) ¥ 1 1Y W2 W3 0 WW 30 Z, ⇒(5) 12 10 1 23 33 $(5) + P_2 \Rightarrow (5)$ **4**4 1 12 T3 (S)⇒Z2 11 1 2W XX [2W] ⇒ [Φ,] XW (X Z 4Z Y3 (s)⇒∨ 12 13 0 00 00 7 Z 47 03 0 00 00 14 X2 X0 Z X2 00 2W 2X 0 00 00 V:Z ⇒U X1 0 1Z WX 21 0 01 00 1 CA X2 X3 Z 00 32 27 20 0 00 00 X4 1 12 30 Z2 ⇒ (S) 0 00 00 21 YW YX Z 4Z Y3 (s) → V 22 23 0 00 00 TY 1 04 00 50 1712 24 0 20 3W YZ YO 1 12 Y3 (S) > Z. 3W 3X 0 00 0Z Y1 Z 4Y 03 0 YY Z3 3Y 3Z 30 Y2 Y3 Z X2 00 0 00 1Z d4 Y4 0 1Z 0X 31 1 SY XW ZW ZX 1 00 WW 32 33 0 00 WO ZY Z OY OO 1 33 W1 34 ZZ ZO 1 00 12 YF YF 0 01 TW Z XX 02 Z1 0 10 WX 41 Z2 Z3 Z 00 32 4Z 40 0 00 1X dı 0 22 31 Z4 Z OY 00 41 OW OX 1 00 WW 42 43 0 00 T1 OY 0 1Z 0X 44 Z 4Z 13 0Z 00 Z 00 32 RC 0 00 01

01

1 2W XX [2W] > [Φ]

Зона МБ 20

Z 4Z 40

Приложение II. Программа ввода ИП-3 вместе с подпрограммой вычисления функций Бесселя. Зона ввода.

Адрес	Команда	Адрес	Команда
$\Pi_{\varphi} = 0$		$\Pi_{\phi}=0$	
₩Y	0 24 2X $\{F\}$ +3 $\epsilon_A \Rightarrow (F)^*$ 2 0 21 0X $\{F\}$ $\Rightarrow \delta_1$ 0 23 20 $\delta_2 \Rightarrow \{F\}$	02 03 04 1W 1X	0 Z1 OX (f)⇒δ,
#1. #2 #5 #4	0 33 ZX (F)+1eA⇒(F) 0 1Y 1X 9772 ↑ 3 Z 1X XX [IX]⇒[Φz]	1Y 1Z 10 11	0 Z3 Z0 δ̃2⇒(F)+11
XX WX YX	1 44 2X _R 0 00 00	12 13 14	1 21 X4 [Φ]⇒[M″) 1 21 XY [M″]⇒[Φ,]
XZ XO X1	0 00 00	XS #S	
X2 X3 Y4	0 00 00		0 0X Z0 -8 eA => (=) Z WX 31 0; => (5) 7 4
XY WY YY	0 00 00		0 ZO YO СДВ. (S) HA -9 ⇒ (S)
YZ Y0 Y1	0 00 00	58 3X 3Y	0 ZW Y3 (S) ⇒d
27 S7 14 7	0 00 00	3Z 30 31	0 21 11 907 74
Z W ZX ZY	0 00 00	32 33 34	0 01 20 -80eA = (F)
ZZ ZO Z1	0 20 00 -9eA 0 00 00 8i	4 ₩ 4 X 4 Y	
22 23 24	0 00 00 δ_2		0 WX 10 900 2
VO WO	Z 00 00 -8lea 0 Y4 00 -14ca	42 43 44	
02 00 01	Z 40 00 -45** Z 01 X0 [880Д]⇒[Ф₃]	K.G.	0 00 00 Z XW 0Y

Зона контрольных сумм.

Адрес	Команда	Адрес	Команда
$\Pi_{\phi}=Z$		$\Pi_{\phi}=Z$	
XW WX YW	0 00 Z2 KC[IW]	80 S0 P0	
₩Z ₩0 ₩1	0 00 ZZ KC[IX]	1₩ 1X 1Y	
₩2 ₩3 ₩4	1 #0 31 KC[1A]	1Z 10 11	0 00 00
XW XX	0 00 Z3 KC[IZ]	12 13 14	0 00 00
XZ XO	0 00 Z4 Z ¥3 04 }KC[10]	2 W 2 X 2 Y	0 00 00
X2 X3 X4	0 00 Z4 1 X2 ZZ KC[II]	27 20 21	0 00 00
	0 42 47 }KC[12]	22 23 24	0 00 00
YZ YO	1 3Z 01 }KC[13]	Xe we	0 00 00
87 SY 44	Z 34 ZX }KC[14]	3Z 30 31	0 00 00
ZY	Z 2Z WZ KC[2W]	32 33 34	0 00 00
ZZ ZO Z1	Z Y2 X2 KCL2Y1	4¥ 4X	0 00 00
22 23 24	1 WY OX ACLEGY	4Z 40 41	
OW OX	0 00 00 0 31 YX }KC[2Z]	42 43 44	0 00 00
0Z 00 01	0 00 01 Z 4Z 40 }KC[20]	KC.	0 00 0Z 1 Z4 XZ

Серия: «Математическое обслуживание машины «Сетунь».

Выпуск 1.

ЖОГОЛЕВ Е.А. ОСОБЕННОСТИ ПРОГРАММИРОВАНИЯ И МАТЕМАТИЧЕСКОЕ ОБСЛУЖИВАНИЕ МАШИНЫ «СЕТУНЬ».

Выпуск 2.

Фурман Г.А. ИНТЕРПРЕТИРУЩАЯ СИСТЕМА ДЛЯ ДЕЙСТВИЙ С КОМПЛЕКСНЫМИ ЧИСЛАМИ (ИП-4).

Выпуск 3.

Франк Л.С., Рамиль Альварес Х. ПРОГРАММА ВЫЧИСЛЕНИЯ ЗНАЧЕНИЙ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ ДЛЯ ИП-2. Уточнение к выпуску 3 опубликовано в выпуске 19.

Выпуск 4.

Жоголев Е.А., Есакова Л.В. ИНТЕРПРЕТИРУЮЩАЯ СИСТЕМА ИП-3. Поправка к выпуску 4 опубликована в выпуске 9.

Выпуск 5.

Фурман Г.А. ПОДПРОГРАММА ВЫЧИСЛЕНИЯ ВСЕХ КОРНЕЙ МНОГОЧЛЕНА ДЛЯ ИП-4.

Выпуск 6.

Прохорова Г.В. ИНТЕРПРЕТИРУЮЩАЯ СИСТЕМА ДЛЯ ДЕЙ-СТВИЙ С ПОВЫШЕННОЙ ТОЧНОСТЬЮ (ИП-5). Изменение к выпуску 6 опубликовано в выпуске 11. Выпуск 7.

Гордонова В.И. ТИПОВАЯ ПРОГРАММА РАСЧЕТА КОРРЕЛЯЦИ-ОННЫХ И СПЕКТРАЛЬНЫХ ФУНКЦИЙ.

Выпуск 8.

Бондаренко Н.В. СИСТЕМА ПОДПРОГРАММ ВВОДА И ВЫВОДА АЛФАВИТНО - ЦИФРОВОЙ ИНФОРМАЦИИ ДЛЯ ИП-3.

Выпуск 9.

Черепенникова Ю.Н. НАБОР ПОДПРОГРАММ ДЛЯ ВВОДА И ВЫВОДА ЧИСЛОВОЙ ИНФОРМАЦИИ В СИСТЕМЕ ИП-2.

Выпуск 10.

Жоголев Е.А., Лебедева Н.Б. СИШОЛИЗ 64 — ЯЗЫК ДЛЯ ПРОГРАММИРОВАНИЯ В СИМВОЛИЧЕСКИХ ОБОЗНАЧЕНИЯХ.

Выпуск 11.

Прохорова Л.В. ПОДПРОГРАММЫ ВВОДА И ВЫВОДА ЧИСЛОВОЙ ИНФОРМАЦИИ ДЛЯ ИП-5. изменение к выпуску 11 опубликовано в выпуске 17.

Выпуск 12.

Черепенникова Ю.Н. СТАНДАРТНАЯ ПОДПРОГРАММА ДЛЯ РЕ-ШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ (В системе ИП-2). Выпуск 13.

Лебедева Н.Б., Рамиль Альварес X. ИНСТРУКЦИЯ ИСПОЛЬ-ЗОВАНИЯ СИСТЕМЫ АВТОМАТИЧЕСКОГО КОДИРОВАНИЯ ПОЛИЗ.

Выпуск 14.

Черепенникова Ю.Н. ПОДПРОГРАММЫ ВВОДА И ВЫВОДА ЧИ-СЕЛ В СИСТЕМЕ ИП-4.

Выпуск 15.

Федорченко В.Е. МОДЕЛИРОВАНИЕ РАВНОМЕРНЫХ ПСЕВДО-СЛУЧАЙНЫХ ЧИСЕЛ НА МАШИНЕ «СЕТУНЬ».

Выпуск 16.

Черепенникова Ю.Н. ТИПОВАЯ ПРОГРАММА ДЛЯ РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ.

Выпуск 17.

Гордонова В.И. СТАНДАРТНАЯ ПОДПРОГРАММА ДЛЯ ВЫЧИС-ЛЕНИЯ СОБСТБЕННЫХ ЗНАЧЕНИЙ И СОБСТВЕННЫХ ВЕКТОРОВ ВЕЩЕСТВЕННОЙ МАТРИЦЫ, ИМЕЮЩЕЙ ТОЛЬКО ВЕЩЕСТВЕННЫЕ СОБСТВЕННЫЕ ЗНАЧЕНИЯ (В системе ИП-3).

Выпуск 18.

Титакаева П.Т. СТАНДАРТНАЯ ПОДПРОГРАММА RKG РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В СИСТЕМЕ ИП-3.

Выпуск 19.

Жоголев Е.А. ИНТЕРПРЕТИРУЮЩАЯ СИСТЕМА ИП-2.

Выпуск 20.

Черепенникова Ю.Н. СТАНДАРТНАЯ ПОДПРОГРАММА ВЫЧИС-ЛЕНИЯ ОПРЕДЕЛИТЕЛЯ (в системе ИП-2).

Выпуск 21.

Гордонова В.И. ТИПОВАЯ ПРОГРАММА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ С СИММЕТРИЧНОЙ ПОЛОЖИТЕЛЬНО ОПРЕДЕЛЕННОЙ МАТРИЦЕЙ МЕТОДОМ КВАДРАТ НОГО КОРНЯ (ЛАУСК).

Выпуск 22.

Титакаева П.Л. СТАНДАРТНАЯ ПОДПРОГРАММА GI ВЫЧИСЛЕ-НИЯ ЗНАЧЕНИЙ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ В СИСТЕМЕ ИП-3.

Выпуск 23.

Гойхман Г.Я. СТАНДАРТНАЯ ПРОГРАММА ОБРАЩЕНИЯ МАТРИ-ЦЫ МЕТОДОМ ОКАЙМЛЕНИЯ (в системе ИП-3).

Выпуск 24.

Дрейер А.А., Черепенникова Ю.Н. АВТОМАТИЗИРОВАННАЯ СИСТЕМА СТАТИСТИЧЕСКОЙ ОБРАБОТКИ МАТЕРИАЛОВ ИЗМЕРЕНИЙ НА ЭЦВМ "СЕТУНЬ".

Выпуск 25.

Жоголев Е.А., Есакова Л.В. ИНТЕРПРЕТИРУЩАЯ СИСТЕМА ИП-3 (издание второе, исправленное).

Выпуск 26.

Жоголев Е.А., Титакаева П.Т. СТАНДАРТНАЯ ПОДПРО-ГРАММА РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ МЕТОДОМ ПЛАВАЮЩИХ МАСШТАБОВ (в системе ИП-2).

Выпуск 27.

ГОЙХМАН Г.Я., ГОРДОНОВА В.Н., ПРОГРАММЫ ВЫЧИСЛЕНИЯ СОБСТВЕННЫХ ЗНАЧЕНИЙ И СОБСТВЕННЫХ ВЕКТОРОВ СИММЕТ-РИЧНОЙ МАТРИЦЫ В РЕЖИМЕ ФИКСИРОВАННОЙ ЗАПЯТОЙ.

Выпуск 28.

ЛИСИЦЫНА М.Н., ПОДПРОГРАММА ДЛЯ ИНТЕРПОЛЯЦИИ И ВЫ-ЧИСЛЕНИЯ ПЕРВЫХ И ВТОРЫХ ПРОИЗВОДНЫХ ФУНКЦИЙ ОДНОГО ПЕРЕМЕННОГО, ЗАДАННЫХ ТАБЛИЧНО (в системе ИП-3).