Modellierung turbulenter technischer Strömungen

9. Gefilterte Navier-Stokes-Gleichungen, LES

Prof. Dr.-Ing. C. Hasse

Inhalt der Vorlesungsreihe

- Einführung/ Phänomenologie turbulenter Strömungen
- Statistische Betrachtungsweise (Reynolds-gemittelte Navier-Stokes Gleichungen)
 - → Behandlung von Schließungsansätzen
- Spektrale Sichtweise der Turbulenz
- Grobstruktursimulation (Large Eddy Simulation, LES)

Quellen

Weiterführendes Material zu "Large Eddy Simulationen":

Large Eddy Simulation turbulenter Strömungen, J. Fröhlich (2006)

Fluid mechanics, turbulent flow and turbulence modeling, Lars Davidson (2020)

http://www.tfd.chalmers.se/~lada/postscript files/solids-and-fluids turbulent-flow turbulence-modelling.pdf

Fluid mechanics, turbulent flow and turbulence modeling

Lars Davidson
Division of Fluid Dynamics
Department of Mechanics and Maritime Sciences
Chalmers University of Technology
SE-41296 Göteborg, Sweden
http://www.tfd.chalmers.se/lads
lada@chalmers.se/lads
lada@chalmers.se/lada@chalmers.se/lads
lada@chalmers.se/lada@chalmers.se/lads
lada@chalmers.se/lada@cha

Inhalt dieses Vorlesungsabschnitts

- 9.1 Grundidee LES
- 9.2 Homogene Filterung
- 9.3 Homogene Filterung der Navier-Stokes-Gleichungen
- 9.4 Inhomogene Filterung
- 9.5 Implizite Filterung
- 9.6 Zusammenfassung

9.1 Grundidee LES

Grundidee LES

- Turbulenz ist ein Mehrskalenproblem
 - ► Kinetische Energie der Turbulenz in kontinuierlichem Spektrum über weiten Bereich räumlicher und zeitlicher Skalen verteilt
 - ► Unterschiedliche Eigenschaften großer und kleiner Skalen

große Skalen	kleine Skalen
geometrieabhängig	universell
werden von mittlerer Strömung generiert	Zerfallsprodukte der großen Skalen
oft stark geordnet	ungeordnet
inhomogen, anisotrop	homogen, isotrop
energiereich	energiearm
langlebig	kurzlebig
diffusiv	dissipativ

Grundidee LES

Turbulenz ist Mehrskalenproblem

- ▶ große Turbulenzelemente erfordern komplexe Modellierung (Anisotropie, Geometrieabhängigkeit)
- geringe Anforderungen an Modellierung kleiner Skalen (Universalität)
- ➤ Zerfall großer Turbulenzelemente bestimmt die Rate, mit der Energie im Turbulenzspektrum transportiert wird

Idee

- ➤ Simulation der großen Turbulenzelemente (Grobstruktur, "grid scale", GS im Gegensatz zu "subgrid scale", SGS)
- ► Modellierung des Einflusses der kleinen Turbulenzelemente Feinstruktur: "subgrid scale", SGS → korrekt eigentlich "subfilter scale", SFS

9.2 Homogene Filterung

- ► Trennung zwischen modellierten und simulierten Skalen nach Leonard (1972) [1] durch räumliche Filterung umsetzbar
- ▶ Beispiel für gefiltertes Geschwindigkeitsfeld (pilotierte, partiell vorgemischte DME-Flamme):

► Allgemeine Definition der Filterung über Faltungsintegral: (allgemeiner, dreidimensionaler Fall ohne Gebietsränder)

$$\overline{u}(\mathbf{x}) = \int_{\mathbb{R}^3} G(\mathbf{x}, \mathbf{r}, \Delta(\mathbf{x})) u(\mathbf{x} - \mathbf{r}) d\mathbf{r}, x_i \in \mathbb{R}$$

Alternative Notation:

$$\overline{u} = G * u$$

lacktriangleq u: Skalar, Erweiterung auf Vektoren komponentenweise

▶ ∆ : Filterweite, i.A. ortsabhängig *

r : Abstand zu dem betrachtetem Punkt (x)

lacksquare : Filterkern

¹⁰ **(STFS**

Filterkern G im Bereich $|r| = \mathcal{O}(\Delta)$ lokalisiert

$$\int_{\mathbb{R}^3} G(\mathbf{x}, \mathbf{r}, \Delta(\mathbf{x})) d\mathbf{r} = 1$$

- ▶ Boxfilter (1D):
- ► Gaußfilter (1D):

$$G(r) = \begin{cases} 1/\Delta; & |r| \le \Delta/2; \\ 0 & \text{sonst} \end{cases}$$

$$G(r) = \frac{1}{\Delta} \sqrt{\frac{\gamma}{\Delta}} e^{-\frac{\gamma r^2}{\Delta^2}}$$

- ▶ Filterkern G im Bereich $|r| = \mathcal{O}(\Delta)$ lokalisiert
 - damit Sicherstellung
 - ▶der Existenz des Integrals für beschränkte *u*
 - ► der Erhaltung des Mittelwertes
 - ► der Unveränderlichkeit einer konstanten Funktion
- Darstellung von G als Tensorprodukt eindimensionaler Funktionen:

$$G(\mathbf{x}, \mathbf{r}, \Delta(\mathbf{x})) = \prod_{i=1}^{3} G_i(x_i, r_i, \Delta_i(x_i))$$

= $G_1(x_1, r_1, \Delta_1(x_1)) G_2(x_2, r_2, \Delta_2(x_2)) G_3(x_3, r_3, \Delta_3(x_3))$

- Homogen
 - ▶ Bezieht sich sowohl auf das betrachtete Gebiet als auch auf die Operationen:
 - ► <u>Homogenes Gebiet</u>:
 - ▶ räumliche Koordinate unbeschränkt oder periodisch
 - ► Jeder Punkt hat dieselbe Eigenschaft
 - ► <u>Homogene Operation</u>:
 - ➤ Operation hängt nur von Abstand | r | der Punkte ab, nicht von den Koordinaten selber
- Ausdruck für homogene Filterung (1D):

$$\overline{u}(x) = \int_{\mathbb{R}} G_{\Delta}(r)u(x-r)dr$$

Eigenschaften homogener Filterung (Auswahl):

▶ Linearität:

$$\overline{u + cv} = \overline{u} + c\overline{v} \qquad (c \neq c(x))$$

Galilei-Invarianz:

$$\overline{u(x+X)} = \overline{u}(x+X)$$

▶ Kommutativität:

$$G_1 * (G_2 * u) = (G_1 * G_2) * u = G_2 * (G_1 * u)$$

Eigenschaften homogener Filterung (Auswahl):

Vertauschbarkeit von Filterung und Ableitung:

$$\overline{\frac{\partial \phi}{\partial x_i}} = \int_{\mathbb{R}^3} G \frac{\partial \phi}{\partial x_i} d\mathbf{r} \stackrel{G \neq G(x_i)}{=} \int_{\mathbb{R}^3} \frac{\partial (G\phi)}{\partial x_i} d\mathbf{r}$$

Box-Filter, 1D
$$\int_{-\Delta/2}^{\Delta/2} \frac{\partial}{\partial x_i} \left(\frac{\phi}{\Delta}\right) dr \stackrel{\Delta \neq \Delta(x_i)}{=} \frac{\partial}{\partial x_i} \int_{-\Delta/2}^{\Delta/2} \left(\frac{\phi}{\Delta}\right) dr$$

- → Zulässigkeit Filterung und Ableitung zu vertauschen:
 - ► Filterkern $G \neq G(x_i)$
 - ightharpoonup Integrationsgrenzen unabhängig von x_i

Eigenschaften homogener Filterung (Auswahl):

Projektionseigenschaft

$$\overline{\overline{u}} = G * (G * u) = (G * G) * u$$

▶i.A. gilt
$$\overline{\overline{u}} \neq \overline{u}$$

Eigenschaften homogener Filterung (Auswahl):

Projektionseigenschaft

Quelle: https://de.wikipedia.org/wiki/Faltung_(Mathematik)

- ▶i.A. Änderung der Form des Filters bei Faltung mit sich selbst
- ► Ausnahme z.B. idealer Tiefpassfilter

Eigenschaften homogener Filterung (Auswahl):

Glattheit

▶ Signal umso glatter, je größer die Filterweite ∆

Eigenschaften homogener Filterung (Auswahl):

▶ Grenzwert $\Delta \rightarrow 0$

$$\lim_{\Delta \to 0} G_{\Delta}(x) = \delta(x)$$

$$\int \delta(x) = 1$$

$$\lim_{\Delta \to 0} \overline{u} = u$$

- Filterung vs. Mittelung (Reynolds-Mittel):
 - Mittelung vollständig
 - → Unabhängigkeit der Größe von der Zeit, dem Ort oder der Phase nach Anwendung eines Zeit-, Orts- oder Phasenmittels
 - ► Abhängigkeit nach Anwendung eines Filters erhalten (außer im Grenzfall unendlich großer Filterbreite)
 - ► Ausmaß der "Mittelung" hängt bei einer Filterung von der Wahl der Filterbreite ab

- ► Filterung vs. Mittelung (Reynolds-Mittel):
 - ► Unterschied in den Rechenregeln:

► Mittelung:
$$\langle u \langle v \rangle \rangle = \langle u \rangle \langle v \rangle$$

► Filterung (i.A.):
$$\overline{u}\overline{v} \neq \overline{u}\,\overline{v}$$

Vertauschbarkeit von räumlicher Filterung und Mittelung* zulässig:

$$\langle \overline{u} \rangle = \overline{\langle u \rangle}$$

^{*} Mittelung i. A. zeitlich, aber auch räumlich möglich bei homogenen Richtungen (z.B. Couette Strömung)

▶ Notation:

ightharpoonup Mittelung: $\langle \phi \rangle_{\psi}$

lacktriangledown : zu mittelnde Größe

► ⟨....⟩ : Mittelungsoperation

lackbox : Größe, nach der gemittelt wird

▶ Bsp. Langzeitmittel der Geschwindigkeit in Richtung 1:

$$\langle u_1 \rangle_t (x_i) = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} u_1(x_i, t) dt$$

▶ Weglassen des Index ψ deutet (im Rahmen der Vorlesung) Langzeitmittel an: $\langle \phi \rangle_t = \langle \phi \rangle$

- ▶ Notation:
 - ► Mittelung:
 - lacktriangle Weiterhin in (RANS-)Literatur zu finden: $\langle \phi \rangle = \overline{\phi}$
 - ► Beispiel für Reynolds-gemittelte Kontinuitätsgleichung in beiden Notationen:

$$\frac{\partial \langle u_1 \rangle}{\partial x_1} + \frac{\partial \langle u_2 \rangle}{\partial x_2} + \frac{\partial \langle u_3 \rangle}{\partial x_3} = 0$$
$$\frac{\partial \overline{u}_1}{\partial x_1} + \frac{\partial \overline{u}_2}{\partial x_2} + \frac{\partial \overline{u}_3}{\partial x_3} = 0$$

- ► Filterung:
 - ► Im Rahmen der Vorlesung (und in LES-Literatur üblich):

Resultat der Anwendung des Box-Filters auf das Feld eines passiven Skalars ϕ in einer sich zeitlich entwickelnden Scherschicht [1]:

[1]: Hunger, F., Gauding, M., Hasse, C.: On the impact of the turbulent/non-turbulent interface on differential diffusion in a turbulent jet flow, Journal of Fluid Mechanics 802 R5, 2016

^[2] Hunger, F., Dietzsch, F. Gauding, M., Hasse, C.: A priori analysis of differential diffusion for model development for scale-resolving simulations Phys. Rev. Fluids, 3:1, 14601, 2018.

- ▶ Homogene Filterung der Navier-Stokes-Gleichungen:
 - ► Massenerhaltung (ungefiltert):

$$\frac{\partial u_i}{\partial x_i} = 0$$

► Anwendung der Filterung:

$$\frac{\overline{\partial u_i}}{\partial x_i} = 0$$

► Vertauschen von Filterung und Ableitung:

$$\frac{\partial \overline{u}_i}{\partial x_i} = 0$$

- ► Homogene Filterung der Navier-Stokes-Gleichungen:
 - ► Impulserhaltung (ungefiltert):

$$\frac{\partial u_i}{\partial t} + \frac{\partial (u_i u_j)}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j^2}$$

► Anwendung der Filterung auf beide Seiten der Gleichungen

$$\frac{\partial u_i}{\partial t} + \frac{\partial (u_i u_j)}{\partial x_j} = \frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j^2}$$

► Anwendung der Filterung auf die einzelnen Summanden und Extraktion der (konstanten) Stoffwerte (Ausnutzung der Linearität):

$$\frac{\overline{\partial u_i}}{\partial t} + \frac{\overline{\partial (u_i u_j)}}{\partial x_j} = -\frac{1}{\rho} \frac{\overline{\partial p}}{\partial x_i} + \nu \frac{\overline{\partial^2 u_i}}{\partial x_j^2}$$

- ► Homogene Filterung der Navier-Stokes-Gleichungen:
 - ► Vertauschen von Filterung und Ableitung:

$$\frac{\partial \overline{u}_i}{\partial t} + \frac{\partial \overline{u}_i \overline{u}_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \nu \frac{\partial^2 \overline{u}_i}{\partial x_j^2}$$

Erweiterung des Konvektionsterms:

$$\frac{\partial \overline{u_i u_j}}{\partial x_i} = \frac{\partial (\overline{u_i u_j} - \overline{u}_i \overline{u}_j + \overline{u}_i \overline{u}_j)}{\partial x_i}$$

► Subtraktion der ersten beiden Terme in der Ableitung:

$$\frac{\partial \overline{u}_{i}}{\partial t} + \frac{\partial \overline{u}_{i}\overline{u}_{j}}{\partial x_{j}} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_{i}} + \nu \frac{\partial^{2} \overline{u}_{i}}{\partial x_{j}^{2}} - \frac{\partial \tau_{ij}^{FS}}{\partial x_{i}}$$
$$\tau_{ij}^{FS} = \overline{u_{i}}\overline{u_{j}} - \overline{u}_{i}\overline{u_{j}}$$

- $ightharpoonup au^{FS}_{ij}$ stellt Einfluss nicht-aufgelöster Skalen auf aufgelösten Skalen dar
- ► Bezeichnung: Feinstrukturspannungen
- \blacktriangleright keine direkte Bestimmung dieses Tensors aus gefilterten Geschwindigkeitskomponenten \overline{u}_i möglich
 - → Schließungsproblem der LES

$$\tau_{ij}^{FS} \approx \tau_i^{mod}(\overline{u}_i)$$

Zerlegung der Feinstrukturspannungen:

► Einsetzen der Zerlegung der Geschwindigkeit in gefilterte und Feinstrukturanteile:

$$u_i = \overline{u}_i + u_i'$$

in Feinstrukturspannungen τ_{ij}^{FS} führt auf Zerlegung:

$$\tau_{ij}^{FS} = \underbrace{\overline{u}_{i}\overline{u}_{j}}_{=:L_{ij}} + \underbrace{\overline{u}'_{i}\overline{u}_{j}}_{=:C_{ij}} + \underbrace{\overline{u}'_{i}u'_{j}}_{=:R_{ij}} + \underbrace{\overline{u}'_{i}u'_{j}}_{=:R_{ij}}$$

- Bedeutung der Terme:
 - ightharpoonup Leonard–Term L_{ij} : Anteil aus Produkt der groben Skalen
 - ightharpoonup Kreuzterm C_{ij} : Anteil aus Wechselwirkung von aufgelösten und nicht aufgelösten Skalen
 - $ightharpoonup R_{ij}$: Einfluss der nicht-aufgelösten auf die aufgelösten Skalen allein

- ▶ Grenzübergänge:
 - ▶ Re = konst., Verringerung Δ :
 - ▶ Keine Filterung für $\Delta << \eta$, Übergang LES in DNS

$$\rightarrow \lim_{\Delta \to 0} \overline{u} = u$$

- $ightharpoonup \Delta$ = konst., Erhöhung Re:
 - $ightharpoonup \eta$ wird kleiner ightharpoonup Energiespektrum erstreckt sich weiter in Richtung kleiner Skalen
 - ➤ Einfluss laminarer Viskosität nimmt gegenüber turbulenter ab

 → Grenzfall vernachlässigbarer laminarer Viskosität:
 Feinstrukturspannungen repräsentieren gesamte Energiekaskade (und damit die Dissipation)
 - ► Prinzipiell Berechnung von Strömungen mit beliebig großer Reynolds-Zahl möglich (entscheidender Vorteil gegenüber DNS!)

- ► Rückblick:
 - ▶ bisher Betrachtung homogener Filter:
 - Gestalt des Filters:

$$G(\mathbf{x}, \mathbf{r}, \Delta(\mathbf{x})) = G_{\Delta}(\mathbf{r}), \ \Delta = konst.$$

- ▶ homogenes Gebiet
- → Vertauschbarkeit von Filter und Ableitung

- Motivation inhomogener Filterung :
 - 1. Variable Filterweite im Gebietsinneren (Filter inhomogen)
 - z.B. bei Simulation von Strömung mit lokal unterschiedlichem Charakter turbulenter Strukturen

- Motivation inhomogener Filterung :
 - 2. Variable Filterform an Gebietsrändern
 - lacktriangle Definition der ungefilterten Funktion im Intervall $x \in [a;b]$
 - ▶ Einbettung in $x \in \mathbb{R}$ durch Fortsetzung mit Randwert außerhalb des Intervalls (um Definitionsbereich zu erweitern)

▶ durch konstante Filterweite wird Randbedingung nicht mehr erfüllt!

- Motivation inhomogener Filterung :
 - 2. Variable Filterform an Gebietsrändern
 - ► Frage:
 Wahl Randbedingung für u bei Lösung Differentialgleichung
 → Zusätzliche Modellierung der Randbedingung
 - Abhilfe: unsymmetrischer Filter
 - → nur Werte innerhalb des Gebietes in die Filterung einbeziehen
 - → beschränktes Integrationsgebiet

Inhomogene Filterung

Definition Filterung für eine variable Filterbreite und beschränktes Gebiet:

$$\overline{u}(x) = \int_{a}^{b} G(r, \Delta(x)) u(x, r) dr$$

Test auf Vertauschbarkeit von Filter und Ableitung:

$$\frac{\mathrm{d}\overline{u}}{\mathrm{d}x} = \overline{\frac{\mathrm{d}u}{\mathrm{d}x}} + \underline{\frac{\mathrm{d}\Delta}{\mathrm{d}x}} \int_{a}^{b} \frac{\mathrm{d}G(r, \Delta(x))}{\mathrm{d}\Delta} u(r) \mathrm{d}r + \left[G(r, \Delta(x))u(r) \right]_{r=a}^{r=b}$$

Änderung Schrittweite und der Form des Filters

Beschränktes Integrationsgebiet

→ Ableitung und Filter im allgemeinen Fall nicht vertauschbar!

Inhomogene Filterung

Letzten beiden Terme stellen den sogenannten Kommutator dar:

$$\left[G^*, \frac{\partial}{\partial x_i}\right] u = \frac{\overline{\partial u}}{\partial x_i} - \frac{\partial \overline{u}}{\partial x_i}$$

homogene Filterung:

$$\overline{\frac{\partial u}{\partial x_i}} - \frac{\partial \overline{u}}{\partial x_i} = 0$$

inhomogener Box-Filter und Gauß-Filter:

$$\frac{\overline{\partial u}}{\partial x_i} - \frac{\partial \overline{u}}{\partial x_i} = \mathcal{O}(\Delta^2)$$

- → Auftreten von Fehlertermen 2. Ordnung bereits in linearen Termen
- → entspricht i.A. Fehlerordnung des FVM-Verfahrens

- Bisher
 - ▶ Definition grobskaliges Geschwindigkeitsfeld unabhängig von nachfolgender Diskretisierung
 - → Filterweite unabhängig von Gitterweite
- Ansatz von Schumann (1975) [1] (Vorschlag etwa zeitgleich zu Filteransatz):
 - ► Einführung endlich vieler Freiheitsgrade zur Diskretisierung der Gleichungen
 - ► Anteile, die höherfrequent als Gitterweite sind, können auf diesem Gitter nicht aufgelöst werden
 - → Gitter legt Unterscheidung zwischen aufgelösten und nicht aufgelösten Anteilen (FS, GS) fest

- Illustration anhand Finite-Volumen-Verfahren:
 - ► Einteilung Rechengebiet in finite Teilvolumen

Quelle: [1]

► Integrale Bilanz Impulsstrom (über Kontrollvolumen KV, nur transienter Term und Konvektion berücksichtigt):

$$\int_{KV} \frac{\partial}{\partial t} (\rho u_i) \, dV + \int_{KV} \frac{\partial \rho (u_i u_j)}{\partial x_j} dV = 0$$

► Für konstante Dichte:

$$\int_{KV} \frac{\partial}{\partial t} (u_i) dV + \int_{KV} \frac{\partial (u_i u_j)}{\partial x_j} dV = 0$$

- Illustration anhand Finite-Volumen-Verfahren:
 - ► Einteilung Rechengebiet in finite Teilvolumen

Quelle: [1]

➤ Vertauschen von Integration und Ableitung im transienten Term, Anwendung Gaußscher Integralsatz auf konvektiven Term:

$$\frac{\partial}{\partial t} \int_{KV} u_i dV + \int_{A} (u_i u_j) dA = 0$$

► Approximation transienter Term mit Mittelpunktsregel (über KV):

$$\int_{\mathrm{KV}} u_i \mathrm{d}V \approx^V \overline{u}_i \Delta V$$
 Lösungsgröße in FVM, mittlerer bzw. gefilterter Wert über KV

- Illustration anhand Finite-Volumen-Verfahren:
 - ► Einteilung Rechengebiet in finite Teilvolumen

Quelle: [1]

Approximation konvektiver Term mit Mittelpunktsregel (über A):

$$\int_{A} (u_i u_j) \, dA \approx {}^{j} \overline{u_i u_j} \Delta A$$

► Sich ergebende Bilanz:

Gefiltertes Produkt an Grenzfläche, keine Lösungsgröße!

$$(V\overline{u}_i^{t_0} - V\overline{u}_i^{t_1}) \Delta V + \int_{t_0}^{t_1} \overline{u_i u_j} \Delta A dt = 0$$

- Illustration anhand Finite-Volumen-Verfahren:
 - ▶ Bestimmung des gefilterten Impulsflusses $j\overline{u_iu_j}$:
 - ► Sehr feines Gitter, laminare Strömung:

$$^{j}\overline{u_{i}u_{j}} \approx {}^{j}\overline{u_{i}}{}^{j}\overline{u_{j}}$$

- ► Approximationsfehler klein, Vorgehen bei DNS
- ► Grobes Gitter:
 - ▶ Berücksichtigung Differenz ${}^{j}\overline{u_{i}u_{j}} {}^{j}\overline{u_{i}}{}^{j}\overline{u_{j}}$ notwendig
 - → nicht-aufgelöster Impulsfluss
 - → Repräsentation durch **Subgrid-Scale**-Modell notwendig

zu berücksichtigen

- ► Zusammenhang ${}^{j}\overline{u}_{i}=f\left({}^{V}\overline{u}_{i}\right)$:
 - ► Geschwindigkeitsinformationen auf Zellflächen gespeichert:
 - ► Direkte Verwendung dieser
 - ► Andernfalls:
 - ► Verwendung von Interpolationsformeln

Vergleich zwischen impliziter Filterung und Filteransatz:

implizite Filterung	Filteransatz
diskrete	Konstruktion kontinuierlicher
Grobstrukturlösung	Grobstrukturlösung
Skalentrennung durch Diskretisierung	Skalentrennung durch Filterung
realisiert	realisiert
Filterweite mit Diskretisierung	Filter kann gröber sein,
assoziiert	als Diskretisierungsgitter

Bildquelle: Eugene de Villiers. The Potential of Large Eddy Simulation for the Modeling of Wall Bounded Flows, 2006

Vor- und Nachteile impliziter Filterung

- Vorteile:
 - ► Konzeptionelle Berücksichtigung von Gitteranisotropie und Inhomogenitäten durch Randbedingungen
- ▶ Nachteile:
 - Schwierige Analyse der einzelnen Beiträge durch enge Kopplung (Skalentrennung, Diskretisierung, numerischer Fehler, FS-Modellierung)

9.6 Zusammenfassung

Zusammenfassung

- Unterschiedliche Anforderungen an Modellierung kleiner und großer Skalen
 - → Idee: Simulation großer, Modellierung kleiner Skalen
- Separation der Skalen über räumliche Filterung
 - → Idealisierung: homogene Filterung
 - → Herleitung gefilterte Navier-Stokes-Gleichungen
 - → Kommutatorfehler bei Verwendung inhomogener Filterung
- 3. Implizite Filterung
 - → Diskretisierung realisiert Filterung
 - → keine kontinuierliche Gleichung für Grobstruktur
 - → diskrete Lösung der gefilterten Feldgrößen

9.7 Lernziele

Lernziele: Sie sollen ...

- die Idee der LES erklären können und von anderen Ansätzen abgrenzen können
- das Vorgehen der homogenen Filterung beschreiben können
- die (homogen) gefilterten Navier-Stokes-Gleichungen herleiten können
- die Definition des Feinstrukturspannungstensors kennen
- ▶ die Grenzübergänge der LES für Veränderung der Filterweite und Reynolds-Zahl erklären können
- die Schwierigkeiten der Filterung der Navier-Stokes-Gleichungen mit einem inhomogenen Filter kennen
- das Prinzip der impliziten Filterung erklären können

