Semaine n° 15 : du 6 janvier au 10 janvier

Lundi 6 janvier

- Cours à préparer : Chapitre XV Continuité
 - Partie 1 : Caractérisation séquentielle de la continuité ; opérations sur les fonctions continues.
 - Partie 2.1: Image d'un intervalle par une fonction continue, théorème des valeurs intermédiaires
 - Partie 2.2 : Image d'un segment par une fonction continue, théorème des bornes atteintes.
- Exercices à rendre en fin de TD (liste non exhaustive)
 - Feuille d'exercices nº 14 : exercices 1, 2, 3, 5, 6, 7.

Mardi 7 janvier

- Cours à préparer : Chapitre XV Continuité
 - Partie 2.3: Fonctions continues strictement monotones sur un intervalle.
 - Partie 2.4 : Théorème de la bijection strictement monotone.
 - Partie 3: Extension aux fonctions à valeurs complexes.
- Exercices à corriger en classe
 - Feuille d'exercices n° 15 : exercices 1, 2.

Jeudi 9 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 1.1 : Polynômes à une indéterminée à coefficients dans \mathbb{K} , anneau $\mathbb{K}[X]$; monômes; degré d'un polynôme.
 - Partie 1.2 : Somme et produit de deux polynômes.
 - Partie 1.3 : Composée de deux polynômes.
 - Partie 1.4 : Degré d'une somme de polynômes, d'un produit, d'une composée ; l'anneau $\mathbb{K}[X]$ est intègre ; polynômes associés.
- Exercices à corriger en classe
 - Feuille d'exercices n° 15 : exercices 4, 5, 11.

Vendredi 10 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 1.5 : Evaluation d'un polynôme P en $x \in \mathbb{K}$; fonction polynômiale associée à un polynôme.
 - Partie 1.6: Division euclidenne d'un polynôme par un polynôme non nul.

Échauffements

Mardi 7 janvier

• Résoudre sur \mathbb{R} l'équation différentielle $y' + y = \frac{1}{1+e^x}$.

• Cocher toutes les assertions vraies :

 \square Un corps est intègre.

 \square Un anneau intègre est un corps.

• Cocher toutes les assertions vraies :

 \square Toute suite monotone a une limite.

 \square Toute fonction monotone a une limite en tout point.

□ Toute fonction monotone a une limite à droite en tout point.

□ Toute fonction décroissante et minorée a une limite à droite finie en tout point.

Jeudi 9 janvier

• Calculer $\int_{0}^{x} (1+t)e^{-t} dt$.

• Cocher toutes les assertions vraies : Soit $f: \mathbb{R} \to \mathbb{R}$. On suppose que $\frac{f(x)}{x}$ tend vers 1 quand x tend vers $+\infty$. Alors sur un voisinage de $+\infty$

 $\Box f(x) = x$

 $\Box f(x) \geqslant x$

 $\Box f(x) \geqslant \frac{x}{2}$ $\Box f(x) \geqslant 2x$

Vendredi 10 janvier

• Déterminer l'ensemble des suites (u_n) vérifiant pour tout $n \in \mathbb{N}$, $u_{n+2} + 2u_{n+1} + u_n = 4$.

• Cocher toutes les assertions vraies : Soit f une fonction continue sur [0,1[.

 \square Si $\forall x \in [0,1[,f(x)>0, \text{ alors } \exists a>0 \text{ tel que } \forall x \in [0,1[,f(x)\geqslant a.$

 \square Si f admet une limite finie en 1 alors f est prolongeable par continuité en 1.

 \square Si $\lim_{x \to \infty} f(x) = +\infty$, alors f est minorée sur [0,1].

 \square Alors $\frac{f(x)-f\left(\frac{1}{2}\right)}{x-\frac{1}{2}}$ admet une limite quand x tend vers $\frac{1}{2}$.