

IDSC 4444 (004) Predictive Analytics: Classification

Zihong Huang Information & Decision Sciences Carlson School of Management

huanO7O7@umn.edu

Agenda

- ☐ Classification Definitions and Steps
- Classifiers
 - \circ k-NN
 - Decision Tree
- ☐ Evaluating Performance
 - Confusion Matrix

An Overview

Predictive Data Mining

- Unlike exploratory data analytics (Association Rules, Cluster Analysis), in predictive analytics we know exactly what you are looking for
 - O We are trying to predict certain well-defined outcome using existing data
 - Among the attributes we have in the data, we have to specify dependent (outcome) variables and independent variables (attributes/features)
- Classification: predict categorical values of the outcome variable using other available attributes, e.g.
 - O Techniques: k-NN (Nearest-Neighbors), Decision Trees, etc.
- Numeric Prediction: predicts continuous/numeric values of an outcome variable, e.g.
 - O Techniques: K-Nearest-Neighbors, Regression Trees, etc.

Classification: Some Definitions

- Observation/Record: our unit of observation (example, a customer), defined by the collection of available attributes (variables)
- The attributes that refer to a given observation, are now divided into:
 - One dependent variable (Y) / Outcome Variable, Class variable:
 - ✓ This variable represents the outcome we want to predict
 - Independent Variables (X) / Predictors, Covariates:
 - ✓ The attributes of an observation used to predict the outcome variable Y
 - ✓ Collectively known as **Features vector** or **Covariates vector**

Training - Validation - Test

- Randomly split your labeled data into three parts:
 - Training data: to build your model
 - Validation data: to tune the performance of your model
 - O Test data: to test the performance of your model
- It works because your model, built on training data, has not "seen" the validation data
 - Old If your models perform well on validation data, it is likely to also perform well for new, unseen data when you actually deploy it.
 - Sometimes, Validation might be skipped

The Prediction Process

k-NN (k- Nearest Neighbors)

- Do not confuse with k-Means in Clustering!
- Main idea: For a given observation, identify "nearby" (similar) observations
 - Use distance metrics seen in Clustering (Euclidian is the favorite)
- Lassify the observation according to the predominant class among the identified nearest neighbors observations
 - O We need to decide k, how many neighbors we want to consider.

	(Age)	(Income)	(Gender)	Purchase/Not Purchase Product
А	25	55000	М	No Purchase
В	32	120000	М	Purchase
С	43	150000	F	Purchase

Labeled Data: We know the Y ("class")

Euclidian Distance

d(D,A)	2.8489
d(D, B)	1.9545
d(D, C)	O.5285

$$K = 1,?$$

$$K = 3, ?$$

New observation to classify

D	40	130000	F	???

k-NN Procedure

- ☐ Choose a specific k and a distance measure (usually, Euclidian)
 - O Remember, in this case, k is the number of neighbors you want to look at
- Normalize data if needed
- For every unlabeled observation, identify the k-nearest existing labeled observations
- Classify the unlabeled observation as the majority class among the k-nearest
- ☐ In case of a tie, randomly choose a class
 - O E.g., if k is an even number

Choosing k value

- k is the number of neighbors considered when classifying a new observation
- Usually, choose k that has lowest error rate in validation data (or, equivalently, the greatest accuracy)
 - O Error: classifying an observation as belonging to one class when it belongs to another
 - Error rate: % of misclassified observations out of the total number of observations in the validation data
 - **Accuracy**: 1 error rate

k-NN Summary

- ☐ k-NN is known as a type of "Lazy" classifier
 - O No "real" model building your labeled data is your model
- ☐ Enhancement:
 - O Weighted distance, e.g., give more importance (weight) to closer neighbors

Strengths:

- Easy to implement and use
- O Do not make assumptions about statistical/distributional characteristics of the data (other methods do)
- ☐ Weakness: bad for big dataset
 - O Slower learner, cannot be used for real-time prediction.

Decision Trees

- ☐ Also known as *Classification* Trees
- Goal: To classify data into predefined classes based on attributes
 - O The output is a Decision Tree which is a set of decision rules organized as a tree.

☐ Nodes indicate decisions, leaves indicate outcomes

Ind.	Age	Employed	Credit-rating	Loan
А	23	Yes	Fair	Yes
В	28	No	Excellent	Yes
С	22	No	Fair	No
D	35	No	Fair	No
E	21	Yes	Fair	No
F	22	Yes	Fair	Yes
G	33	No	Excellent	Yes

Decision Trees

To classify a new record, the attributes are tested against the decision tree

☐ Example:

Ind.	Age	Employed	Credit-rating	Loan
ZZ	23	No	Fair	55

- O Test on Age: Age < 25: Yes
- Test on Employed: No
- O Reach Leaf node (class): No Loan
- Customer ZZ is unlikely to get a Loan

How is Decision Tree Built?

- The decision tree is built (trained) from the training data
- Data are split (partitioned) based on the attributes/predictor variables
- Recursive Partitioning
 - O Pick one of the **attributes**, Xi, e.g., Age
 - O Pick a **value** of Xi (let us call it S_i) that divides the training data into portions (not necessarily equal), one with Xi >= S_i and the other with Xi < S_i
 - Measure how "pure" each of the resulting proportion is
 ✓ "Pure" means the partition contains records of mostly one class
 - O Repeat the process until find Xi and S_i to maximize purity of the partitions

When do We Stop?

- ☐ Stopping criteria (when to stop splitting nodes?)
 - All data points associated with a node are from the same class
 - ✓ The node becomes a leaf node of that class

- There are no remaining attributes to further split the data
 - ✓ E.g., no attribute further increases "purity" much
 - ✓ Use "majority vote" to label that node

Choose Attributes to Split on (Entropy)

- Intuition: pick the attribute that **maximizes**the purity of the resulting split
- ☐ We measure "purity" through Entropy:

$$Entropy = -\sum_{k=1}^{m} p_k log_2(p_k)$$

- ullet where m = number of classes, p_k is the prob. of the class in a given partition
- Between $[0, log_2(m)]$
- O, most pure, all records belong to the same class

Source: "Data Science for Business" by Provost & Fawcett, 2013

- E.g., if the data contains 70% of Class A and 30% of Class B then:
 - \circ Entropy = [O.7*log2(O.7) + O.3*log2(O.3)] ~ O.88
- ☐ Higher the entropy, more impure the data.
 - O Highest (2 classes) = -[O.5*log2(O.5) + O.5*log2(O.5)] = 1

Choose Attributes to Split on

- ☐ Information Gain : Compare shift from original entropy. (Higher the better)
 - Information Gain = Entropy(Parent) Weighted Avg (Entropy(Children))

Choose Attributes to Split on

- ☐ Calculate the entropies of the two partitions
 - \circ Petal.Length <2.5: -1* $\log_2(1) = \circ$
 - O Petal.Length >=2.5: $-[O.5*log_2(O.5)+O.5*log_2(O.5)] = 1$
 - Weighted Entropy: 0 *(50/150) +1 *(100/150) = 0.67
- ☐ Calculate the entropy of the parent (in this case, all the data points together, before initial split)
 - \circ -[O.33*log₂(O.33) +O.33*log₂(O.33) +O.33*log₂(O.33)] = **1.58**
- ☐ Information Gain: 1.58 0.67 = 0.91

The data: 150 points in total, 50 red, 50 green, 50 blue

Choose Attributes to Split on

Above the line, you have 43 points (41 blue and 2 green)

Below the line, you have 107 points (50 red, 9 blue and 48 green)

- ☐ Calculate the entropies of the two partitions
 - O Petal.Length <5:

$$-[O.47*log_2(O.47) + O.45*log_2(O.45) + O.08*log_2(O.08) = 1.31$$

O Petal.Length >=5:

$$-[O.95*log_2(O.95)+O.O5*log_2(O.O5)] = O.28$$

Weighted Entropy:

☐ The entropy of the parent

$$-[O.33*log_2(O.33) + O.33*log_2(O.33) + O.33*log_2(O.33)] = 1.58$$

☐ Information Gain: 1.58 – 1.01 = **0.57**

Splitting on Petal.Length at 2.5 is better as the Information Gain is higher

Decision Trees: Procedure Recap

- Final tree is constructed as follows:
 - O Start with the attribute-split for **the root node**: this is going to be the attribute-split that leads to the **largest information gain**, compared to all the others
 - From there, the algorithm proceeds looking at the information gain of subsequent splits on different attributes-values, conditional on the previous one
 - O Note:
 - ✓ The same attribute can be used again, as long as the partitions/splits are not overlapping
 - ✓ Not all the attributes available in the dataset need to be used in the tree

Classification Probabilities and Cutoffs

- Many classifiers (including k-NN, Decision Trees) not only produce a class prediction, but they also produce a **probability** that the data point belongs to that class
 - k-NN: % of a class among k-neighbors
 - Decision tree: % of a class in a leaf node
- Predictions can then generated based on a cutoff value:
 - O Default cutoff is O.5 (50%) (majority rule):
 - ✓ If probability of belonging to class "A" is >50%, then classify as belonging to class "A"
 - ✓ Otherwise, classify as class "B"
 - O Different cutoffs can be set and can lead to different classification results

Evaluating Model Performance

☐ In classification, performance is evaluated using a confusion matrix

		Actual Class		
		Yes (Pos.)	No (Neg.)	
Predicted	Yes (Pos.)	True Positive	False positive (Type I error)	
Class	No (Neg.)	False Negative (Type II error)	True Negative	

■ For each cell, e.g., True Positive (TP), the number of cases for which we predict Yes, and the actual class is Yes

- ☐ In classification, a **Confusion matrix** is created to calculate:
 - Accuracy (error rate): overall performance
 - ✓ Not good in unbalanced dataset
 - ✓ E.g., 95 "Yes, Loan", 5 "No Loan"
 - O Precision: class specific
 - O Recall: class specific
 - F-measure: class specific

Intuition Behind Each Measure

- Accuracy: Among all predictions, how many did the model got right?

 Accuracy = (TP + TN) / (TP + TN + FP + FN)
- Precision: For each class, how many did the model get right?
 - Precision_pos. = positive predictive value (PPV) = TP / (TP + FP)
 - Precision_neg. = negative predictive value (NPV) = TN / (TN + FN)
- ☐ Recall: How many per each class were recovered?
 - \circ Recall_pos. = **Sensitivity** = TP / (TP + FN)
 - O Recall_neg. = **Specificity** = TN / (TN + FP)
- ☐ F-measure: the harmonic mean of precision and recall
 - F1_score = 2* ((recall * precision) / (recall + precision))
 - O It is a more reliable measure than accuracy when your data is unbalanced
 - O The higher the F1 score, the better the classification model

		Actual Class		
		Yes (Pos.)	No (Neg.)	
Predicted	Yes (Pos.)	True Positive	False positive (Type I error)	
Class	No (Neg.)	False Negative (Type II error)	True Negative	

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

Example

- **□** Accuracy: 0.7 =70%
- Recall (Sensitivity) for class **Non-Fraud**: =0.75 =75%
- Recall (Specificity) for class **Fraud**: =0.5 =50%
- ☐ Precision (PPV) for class **Non-Fraud**: =0.86 =86%
- ☐ Precision (NPV) for class **Fraud**: =0.33 =33%

		Actual Class	
		Non-Fraud	Fraud
	Non-Fraud	60	10
Predicted Class	Fraud	20	10

- F1_Score for Non-Fraud: 2*((0.75*0.86)/(0.75+0.86))=0.80
- F1_Score for **Fraud**: 2 * ((0.5*0.33)/(0.5+0.33)) = 0.40
- In this example, the overall accuracy of the model is about 70%. Nevertheless, if we look at the F1 scores, we see that for the class **Fraud**, F1 score is about 40%.
- Since this dataset is unbalanced (there are way more cases of **Non-Fraud** than **Fraud**), F1 scores is a more appropriate measure.

Differing Misclassification Costs

- ☐ In many real-world applications, different types of mistakes in classification are not equally important
 - E.g., missing a fraud transaction is very costly, classify a non-fraud as fraud is not as detrimental
- Instead of maximizing accuracy, sometimes we want to **minimize** misclassification cost
- One way to minimize misclassification cost is to adjust the cutoff value
- O E.g., if misclassifying "Fraud" as "Non-Fraud" is far more costly than the other way around, we want to **reduce cutoff** for classifying a transaction as Fraud.

Cost M	1atrix	Actual		
		+	-	
	+	TP (P1)	FN (C1)	
Predicted	-	FP (C2)	TN (P2)	

Avg Misclassification cost =(C2*FP + C1*FN)/AII

Questions?

