Optimal monetary policy under menu costs

Daniele Caratelli US Treasury, OFR Basil Halperin Stanford, DEL

October 2024

Suppose prices are sticky. What should central banks do?

Suppose prices are sticky. What should central banks do?

Textbook benchmark: Tractable-but-unrealistic Calvo friction

• Random and exogenous price stickiness

⇒ Optimal policy: Inflation targeting

Woodford 2003; Rubbo 2023

Suppose prices are sticky. What should central banks do?

Textbook benchmark: Tractable-but-unrealistic Calvo friction

• Random and exogenous price stickiness

⇒ Optimal policy: Inflation targeting

Woodford 2003; Rubbo 2023

Criticism:

- Theoretical critique: Not microfounded
- Empirical critique: State-dependent pricing is a better fit

examples

Nakamura et al 2018; Cavallo and Rigobon 2016; Alvarez et al 2018; Cavallo et al 2023

Our contribution: More realistic (less tractable) menu costs

Fixed cost of price adjustment

- Fixed cost of price adjustment
- Multi-sector model with sector-level productivity shocks
 - ⇒ Motive for relative prices to change

Our contribution: More realistic (less tractable) menu costs

- Fixed cost of price adjustment
- Multi-sector model with sector-level productivity shocks
 - ⇒ Motive for relative prices to change

⇒ Optimal policy: countercyclical inflation after sectoral shocks

- Fixed cost of price adjustment
- Multi-sector model with sector-level productivity shocks
 - ⇒ Motive for relative prices to change
- → Optimal policy: countercyclical inflation after sectoral shocks
 - Trade off relative price distortions and direct costs

- Fixed cost of price adjustment
- Multi-sector model with sector-level productivity shocks
 - ⇒ Motive for relative prices to change
- → Optimal policy: countercyclical inflation after sectoral shocks
 - Trade off relative price distortions and direct costs
 - Stylized analytical model

- Fixed cost of price adjustment
- Multi-sector model with sector-level productivity shocks
 - ⇒ Motive for relative prices to change
- → Optimal policy: countercyclical inflation after sectoral shocks
 - Trade off relative price distortions and direct costs
 - Stylized analytical model
 - Quantitative model

Related literature

- Optimal monetary policy with sectors / relative prices
 - * Calvo Aoki 2001, Woodford 2003, Benigno 2004, Wolman 2011, Rubbo 2023
 - * Downward nominal wage rigidity

Guerrieri-Lorenzoni-Straub-Werning 2021

Menu costs assuming inflation targeting, solve for optimal inflation target

Wolman 2011, Nakov-Thomas 2014, Blanco 2021

Menu costs + trending productivities (no direct costs)

Adam and Weber 2023

- Non-normative menu cost literature
 - * Theoretical Golosov-Lucas 2007; Caballero-Engel 2007; Nakamura-Steinsson 2009; Alvarez-Lippi-Paciello 2011; Midrigan 2011; Gertler-Leahy 2008; Auclert et al 2023
 - * Empirical Nakamura et al 2018; Cavallo-Rigobon 2016; Alvarez et al 2018; Gautier-Le Bihan 2022

Roadmap

- 1. Baseline model & optimal policy
- 2. Extensions
- 3. Comparison to Calvo model
- 4. Quantitative model
- 5. Conclusion and bigger picture

Model setup + household's problem

General setup:

- Off-the shelf sectoral model with S sectors
- Each sector is a continuum of firms, bundled with CES technology
- Static model (& no linear approximation)

Model setup + household's problem

General setup:

- Off-the shelf sectoral model with S sectors
- Each sector is a continuum of firms, bundled with CES technology
- Static model (& no linear approximation)

Household's problem:

$$\max_{C,N,M} \ln(C) - N + \ln\left(\frac{M}{P}\right)$$
s.t. $PC + M = WN + D + M_{-1} - T$

$$C = \prod_{i=1}^{S} c_i^{1/S}$$

Model setup + household's problem

General setup:

- Off-the shelf sectoral model with S sectors
- Each sector is a continuum of firms, bundled with CES technology
- Static model (& no linear approximation)

Household's problem:

$$\max_{C,N,M} \ln(C) - N + \ln\left(\frac{M}{P}\right)$$
s.t. $PC + M = WN + D + M_{-1} - T$

$$C = \prod_{i=1}^{S} c_i^{1/S}$$

Optimality conditions:

$$c_{i} = \frac{1}{S} \frac{PC}{p_{i}}$$

$$PC = M$$

$$W = M$$

Technology: firm $j \in [0, 1]$ in sector i

$$y_i(j) = A_i \cdot n_i(j)$$

Demand:
$$y_i(j) = y_i \left(\frac{p_i(j)}{p_i}\right)^{-\eta}$$

Technology: firm $j \in [0, 1]$ in sector i

$$y_i(j) = A_i \cdot n_i(j)$$

Sectoral productivity shocks: A_i

Demand:
$$y_i(j) = y_i \left(\frac{p_i(j)}{p_i}\right)^{-\eta}$$

Technology: firm $j \in [0, 1]$ in sector i

$$y_i(j) = A_i \cdot n_i(j)$$

- Sectoral productivity shocks: A_i
- Firms are identical within a sector

Demand:
$$y_i(j) = y_i \left(\frac{p_i(j)}{p_i}\right)^{-\eta}$$

Technology: firm $j \in [0, 1]$ in sector i

$$y_i = A_i \cdot n_i$$

- Sectoral productivity shocks: A_i
- Firms are identical within a sector

Technology: firm $j \in [0, 1]$ in sector i

$$y_i = A_i \cdot n_i$$

- Sectoral productivity shocks: A_i
- Firms are identical within a sector

Marginal costs: $MC_i = \frac{W}{A_i}$

Technology: firm $j \in [0, 1]$ in sector i

$$y_i = A_i \cdot n_i$$

- Sectoral productivity shocks: A_i
- Firms are identical within a sector

Marginal costs: $MC_i = \frac{W}{A_i}$

Profit function:

$$\left(p_i y_i - \frac{W}{A_i} y_i (1-\tau)\right) - W \psi \chi_i$$

Technology: firm $j \in [0, 1]$ in sector i

$$y_i = A_i \cdot n_i$$

- Sectoral productivity shocks: A_i
- Firms are identical within a sector

Marginal costs: $MC_i = \frac{W}{A_i}$

Profit function:

$$\left(\rho_i y_i - \frac{W}{A_i} y_i (1 - \tau) \right) - \frac{W \psi \chi_i}{V}$$

Menu cost: ψ extra units of labor

• χ_i : indicator for price change

Technology: firm $j \in [0, 1]$ in sector i

$$y_i = A_i \cdot n_i$$

- Sectoral productivity shocks: A_i
- Firms are identical within a sector

Marginal costs: $MC_i = \frac{W}{A_i}$

Profit function:

$$\left(p_i y_i - \frac{W}{A_i} y_i (1-\tau)\right) - \frac{W \psi \chi_i}{V_i}$$

Menu cost: ψ extra units of labor

• χ_i : indicator for price change

⇒ Direct cost of menu costs: excess disutility of labor

$$N = \sum_{i} n_{i} + \psi \sum_{i} \chi_{i}$$

Other specifications do not affect result

▶ more

Menu costs induce an inaction region

Objective function of sector
$$i$$
 firm: $\left(p_i y_i - \frac{W}{A_i} y_i (1-\tau)\right) - W \psi \chi_i$

Menu costs induce an inaction region

Objective function of sector *i* firm:
$$\left(p_i y_i - \frac{W}{A_i} y_i (1 - \tau)\right) - W \psi \chi_i$$
Optimal reset price:

• if adjusting: price = nominal marginal cost

$$p_i^* = \frac{W}{A_i}$$

• if not adjusting: inherited price p_i^{old}

Menu costs induce an inaction region

Objective function of sector *i* firm:
$$\left(p_i y_i - \frac{W}{A_i} y_i (1-\tau)\right) - W \psi \chi_i$$
Optimal reset price:

• if adjusting: price = nominal marginal cost

$$p_i^* = \frac{W}{A_i}$$

• if not adjusting: inherited price p_i^{old}

Inaction region: don't adjust iff $p_i^* = \frac{W}{A_i}$ close to p_i^{old}

ullet Start at steady state: all sectors have $A_i^{ss}=1 \ \ orall i$, so $p_i^{ss}=W^{ss}\equiv 1$

- Start at steady state: all sectors have $A_i^{ss}=1 \ \ \forall i, \ \ \ \text{so} \ p_i^{ss}=W^{ss}\equiv 1$
- Hit sector 1 with, say, a positive productivity shock: $A_1 > 1$

- Start at steady state: all sectors have $A_i^{ss}=1 \ \ \forall i, \ \ \ \text{so} \ p_i^{ss}=W^{ss}\equiv 1$
- Hit sector 1 with, say, a positive productivity shock: $A_1 > 1$

Proposition 1: there exists a threshold level of productivity \overline{A} s.t.:

• If shock is not too small, $A_1 \geq \overline{A}$, optimal policy is nominal wage targeting:

$$W = W^{ss}$$

- Start at steady state: all sectors have $A_i^{ss}=1 \ \ \forall i, \ \ \ \text{so} \ p_i^{ss}=W^{ss}\equiv 1$
- ullet Hit sector 1 with, say, a positive productivity shock: $A_1>1$

Proposition 1: there exists a threshold level of productivity \overline{A} s.t.:

• If shock is not too small, $A_1 \geq \overline{A}$, optimal policy is nominal wage targeting:

$$W = W^{ss}$$

• If shock is small, $A_1 < \overline{A}$, then optimal policy ensures no sector adjusts:

$$p_i = p_i^{ss} \ \forall i$$

Prices initially

• Sector 1 productivity $A_1 \uparrow$ \implies relative price p_1/p_k should fall

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$

- Sector 1 productivity $A_1 \uparrow$ \implies relative price p_1/p_k should fall
- 1. Under inflation targeting:

$$* \Longrightarrow p_1 \downarrow \text{ and } p_k \uparrow$$

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$

Inflation targeting

- Sector 1 productivity $A_1 \uparrow$ \implies relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - $* \Longrightarrow p_1 \downarrow \text{ and } p_k \uparrow$
 - * \implies every sector pays menu cost

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$

Inflation targeting $\mathbb{W}^f - S\psi$

- Sector 1 productivity $A_1 \uparrow$ \implies relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - $* \Longrightarrow p_1 \downarrow \text{ and } p_k \uparrow$
 - ∗ ⇒ *every* sector pays menu cost
- 2. Under optimal policy:
 - * $p_1 \downarrow$, but p_k constant

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$

Only sector 1 adjusts

Large-enough shocks

- Sector 1 productivity $A_1 \uparrow$ \implies relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - $* \Longrightarrow p_1 \downarrow \text{ and } p_k \uparrow$
 - ∗ ⇒ every sector pays menu cost
- 2. Under optimal policy:
 - * $p_1 \downarrow$, but p_k constant
 - $* \implies only \ sector \ 1 \ pays \ menu \ cost$

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$

Only sector 1 adjusts $\mathbb{W}^f - \psi$

- Sector 1 productivity $A_1 \uparrow$ \implies relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - $* \Longrightarrow p_1 \downarrow \text{ and } p_k \uparrow$
 - ∗ ⇒ *every* sector pays menu cost
- 2. Under optimal policy:
 - * $p_1 \downarrow$, but p_k constant
 - $* \implies \mathit{only} \ \mathsf{sector} \ 1 \ \mathsf{pays} \ \mathsf{menu} \ \mathsf{cost}$
 - * How to ensure p_k constant?

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$

Only sector 1 adjusts $\mathbb{W}^f - \psi$

- Sector 1 productivity $A_1 \uparrow$ \implies relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - $* \Longrightarrow p_1 \downarrow \text{ and } p_k \uparrow$
 - ∗ ⇒ *every* sector pays menu cost
- 2. Under optimal policy:
 - * $p_1 \downarrow$, but p_k constant
 - $* \implies \mathit{only} \ \mathsf{sector} \ 1 \ \mathsf{pays} \ \mathsf{menu} \ \mathsf{cost}$
 - * How to ensure p_k constant? Stabilize nominal MC of unshocked firms

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$

Only sector 1 adjusts $\mathbb{W}^f - \psi$

- Sector 1 productivity $A_1 \uparrow$ \implies relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - $* \Longrightarrow p_1 \downarrow \text{ and } p_k \uparrow$
 - ∗ ⇒ *every* sector pays menu cost
- 2. Under optimal policy:
 - * $p_1 \downarrow$, but p_k constant
 - $* \implies \textit{only} \; \mathsf{sector} \; 1 \; \mathsf{pays} \; \mathsf{menu} \; \mathsf{cost}$
 - * How to ensure p_k constant? Stable W

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$

Only sector 1 adjusts $\mathbb{W}^f - \psi$

- Sector 1 productivity $A_1 \uparrow$ \implies relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - $* \Longrightarrow p_1 \downarrow \text{ and } p_k \uparrow$
 - ∗ ⇒ every sector pays menu cost
- 2. Under optimal policy:
 - * $p_1 \downarrow$, but p_k constant
 - $* \implies \mathit{only} \ \mathsf{sector} \ 1 \ \mathsf{pays} \ \mathsf{menu} \ \mathsf{cost}$
 - * How to ensure p_k constant?
 Stable W
 - * Observe: in aggregate, $Y \uparrow$, $P \downarrow$

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$

Only sector 1 adjusts $\mathbb{W}^f - \psi$

- Sector 1 productivity $A_1 \uparrow$ \implies relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - $* \Longrightarrow p_1 \downarrow \text{ and } p_k \uparrow$
 - ∗ ⇒ *every* sector pays menu cost
- 2. Under optimal policy:
 - * $p_1 \downarrow$, but p_k constant
 - $* \implies \mathit{only} \ \mathsf{sector} \ 1 \ \mathsf{pays} \ \mathsf{menu} \ \mathsf{cost}$
 - * How to ensure p_k constant? **Stable** W
 - * Observe: in aggregate, $Y \uparrow$, $P \downarrow$

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$

Only sectors k adjusts $\mathbb{W}^f - (S-1)\psi$

▶ math

	Sectors k adjust	Sectors k not adjust
Sector 1 adjusts		
Sector 1 not adjust		

▶ math

	Sectors k adjust	Sectors k not adjust
Sector 1 adjusts	$\mathrm{W}_{flex} - \mathit{S}\psi$	$\mathbb{W}_{flex} - \psi$
Sector 1 not adjust	$W_{flex} - (S-1)\psi$	

▶ math

	Sectors k adjust	Sectors <i>k</i> not adjust
Sector 1 adjusts	$\mathbb{W}_{flex} - S\psi$	$ m W_{flex} - \psi$
Sector 1 not adjust	$\mathbb{W}_{flex} - (S-1)\psi$	

Lemma 1: If adjusting, only shocked sectors should adjust

$$W_{
m only\ 1\ adjusts} > W_{
m all\ adjust}, W_{
m only\ \it k\ adjust}$$

▶ math

	Sectors k adjust	Sectors k not adjust	
Sector 1 adjusts	$\mathbb{W}_{flex} - S\psi$	$\mathbb{W}_{flex} - \psi$	
Sector 1 not adjust	$W_{flex} - (S-1)\psi$	$-\ln(S-1+1/A_1)-1$	

Lemma 1: If adjusting, only shocked sectors should adjust

$$W_{
m only\ 1\ adjusts} > W_{
m all\ adjust}, W_{
m only\ \it k\ adjust}$$

▶ math

	Sectors k adjust	Sectors k not adjust	
Sector 1 adjusts	$\mathrm{W}_{flex} - \mathit{S}\psi$	$\mathbb{W}_{flex} - \psi$	
Sector 1 not adjust	$\mathbb{W}_{flex} - (S-1)\psi$	$-\ln(S-1+1/A_1)-1$	

Lemma 1: If adjusting, only shocked sectors should adjust

$$\mathbb{W}_{\mathsf{only}\;1\;\mathsf{adjusts}}>\mathbb{W}_{\mathsf{all}\;\mathsf{adjust}},\mathbb{W}_{\mathsf{only}\;k\;\mathsf{adjust}}$$

Lemma 2: $\exists \overline{A}$ such that

$$W_{\text{only 1 adjusts}} > W_{\text{none adjust}}$$

iff $A_1 > \overline{A}$. Furthermore, \overline{A} is increasing in ψ .

How large are menu costs?

Summary: at least 0.5% of firm revenues, plausibly much more

How large are menu costs?

Summary: at least 0.5% of firm revenues, plausibly much more

1. Calibrated models.

- (1) Measure frequency of price adjustment
- (2) Build structural model
- $(3) \implies calibrate menu costs to fit$

Nakamura and Steinsson (2010):

• 0.5% of firm revenues

Blanco et al (2022):

• 2.4% of revenues

How large are menu costs?

Summary: at least 0.5% of firm revenues, plausibly much more

1. Calibrated models.

- (1) Measure frequency of price adjustment
- (2) Build structural model
- $(3) \implies calibrate menu costs to fit$

Nakamura and Steinsson (2010):

• 0.5% of firm revenues

Blanco et al (2022):

• 2.4% of revenues

2. Direct measurement. For *physical* adjustment costs,

Levy et al (1997, QJE): 5 grocery chains

• 0.7% revenue

Dutta et al (1999, JMCB): drugstores

• 0.6% revenue

Zbaracki et al (2003, Restat): mfg

• 1.2% revenue

Extensions

- Generalized functional forms
- Multiple shocks / production networks
- Heterogenous costs

Sticky wages

▶ more

Generalization: stabilize nominal MC of unshocked firms

Generalized model:

• Any (HOD1) aggregator:

$$C = F(c_1, ..., c_S)$$

DRS production technology:

$$y_i(j) = A_i n_i(j)^{\alpha}, \ \alpha \in (0, 1]$$

Any preferences quasilinear in labor:

$$U(C, \frac{M}{P}) - N$$

Generalization: stabilize nominal MC of unshocked firms

Generalized model:

- Any (HOD1) aggregator: $C = F(c_1, ..., c_S)$
- DRS production technology: $y_i(j) = A_i n_i(j)^{\alpha}$, $\alpha \in (0, 1]$
- Any preferences quasilinear in labor: $U\left(C, \frac{M}{P}\right) N$

Nominal MC:

$$MC_i(j) = \left[lpha rac{W}{A_i^{lpha}} \left(y_i p_i^{\eta}
ight)^{lpha - 1}
ight]^{ heta}$$
 $heta \equiv \left[1 - \eta (1 - lpha) \right]^{-1}$

Generalization: stabilize nominal MC of unshocked firms

Generalized model:

- Any (HOD1) aggregator: $C = F(c_1, ..., c_S)$
- DRS production technology: $y_i(j) = A_i n_i(j)^{\alpha}$, $\alpha \in (0, 1]$
- Any preferences quasilinear in labor: $U(C, \frac{M}{D}) N$

Nominal MC:

$$MC_i(j) = \left[lpha rac{W}{A_i^{lpha}} \left(y_i p_i^{\eta}
ight)^{lpha - 1}
ight]^{ heta}$$
 $heta \equiv \left[1 - \eta \left(1 - lpha
ight) \right]^{-1}$

Extended Proposition 1:

Stabilize nominal marginal costs of unshocked firms $\implies Y \uparrow, P \downarrow$

Production networks

Baseline model:

Production technology:

$$y_i = A_i n_i$$

Roundabout production network:

Production technology:

$$y_i = A_i n_i^{\beta} \frac{I_i^{1-\beta}}{I_i}$$
$$I_i = \prod_{k=1}^{S} I_i(k)^{1/S}$$

Production networks

Baseline model:

Production technology:

$$y_i = A_i n_i$$

Marginal cost:

$$MC_i = \frac{W}{A_i}$$

Roundabout production network:

Production technology:

$$y_i = A_i n_i^{\beta} I_i^{1-\beta}$$

$$I_i = \prod_{k=1}^{S} I_i(k)^{1/S}$$

• Marginal cost:

$$MC_i = \kappa \frac{W^{\beta} P^{1-\beta}}{A_i}$$

Production networks

Baseline model:

Production technology:

$$y_i = A_i n_i$$

Marginal cost:

$$MC_i = \frac{W}{A_i}$$

Nominal MC of unshocked sectors
 W

Roundabout production network:

Production technology:

$$y_i = A_i n_i^{\beta} I_i^{1-\beta}$$

$$I_i = \prod_{k=1}^{S} I_i(k)^{1/S}$$

• Marginal cost:

$$MC_i = \kappa \frac{W^{\beta} P^{1-\beta}}{A_i}$$

• Nominal MC of unshocked sectors $\equiv W^{\beta} P^{1-\beta}$

• Why then is optimal policy in multisector Calvo inflation targeting? Aoki, Rubbo

- Why then is optimal policy in multisector Calvo inflation targeting?

 Aoki, Rubbo
- Menu costs are nonconvex:

$$\psi \cdot \mathbb{I}\{p_i
eq p_i^{ss}\}$$

- Why then is optimal policy in multisector Calvo inflation targeting?
 - Aoki, Rubbo

Menu costs are *nonconvex*:

$$\psi \cdot \mathbb{I}\{p_i \neq p_i^{ss}\}$$

With *convex* menu costs:

e.g. Rotemberg,
$$\psi \cdot (p_i - p_i^{ss})^2$$

- Why then is optimal policy in multisector Calvo inflation targeting? Aoki
 - Aoki, Rubbo

Menu costs are nonconvex:

$$\psi \cdot \mathbb{I}\{p_i \neq p_i^{ss}\}$$

• With convex menu costs:

e.g. Rotemberg,
$$\psi \cdot (p_i - p_i^{ss})^2$$

Labor market clearing:

$$N = \sum n_i + \psi \sum \mathbb{I}\{p_i \neq p_i^{ss}\}\$$

Labor market clearing:

$$N = \sum n_i + \psi \sum (p_i - p_i^{ss})^2$$

- Why then is optimal policy in multisector Calvo inflation targeting? Aoki
 - Aoki, Rubbo

Menu costs are nonconvex:

$$\psi \cdot \mathbb{I}\{p_i \neq p_i^{SS}\}$$

• With convex menu costs:

e.g. Rotemberg,
$$\psi \cdot (p_i - p_i^{ss})^2$$

• Calvo: convex cost of price dispersion

Labor market clearing:

$$N = \sum n_i + \psi \sum \mathbb{I} \{ p_i \neq p_i^{ss} \}$$

Labor market clearing:

$$N = \sum n_i + \psi \sum (p_i - p_i^{ss})^2$$

Calvo welfare cost

$$\Delta \equiv \sum_{i=1}^{S} \int_{0}^{1} \left[\frac{p_{i}(j)}{p_{i}} \right]^{-\eta} dj$$

- Why then is optimal policy in multisector Calvo inflation targeting?
- Aoki, Rubbo

• Menu costs are nonconvex:

$$\psi \cdot \mathbb{I}\{p_i \neq p_i^{ss}\}$$

• With convex menu costs:

e.g. Rotemberg,
$$\psi \cdot (p_i - p_i^{ss})^2$$

• Calvo: convex cost of price dispersion

Labor market clearing:

$$N = \sum n_i + \psi \sum \mathbb{I}\{p_i \neq p_i^{ss}\}$$

Labor market clearing:

$$N = \sum n_i + \psi \sum \left(p_i - p_i^{ss} \right)^2$$

Calvo welfare cost

$$\Delta \equiv \sum_{i=1}^{S} \int_{0}^{1} \left[\frac{p_{i}(j)}{p_{i}} \right]^{-\eta} dj$$

Calvo diagram: shocking sector-1 productivity

Lots of price dispersion: only one sector

Calvo diagram: shocking sector-1 productivity

Lots of price dispersion: only one sector

Little price dispersion: all sectors

Calvo diagram: shocking sector-1 productivity

Lots of price dispersion: only one sector

Little price dispersion: all sectors

Convex costs \implies *smooth* price changes across sectors

Quantitative model: setup

Dynamic model, idiosyncratic + sectoral shocks, and Calvo plus price setting

Household

$$\max_{\{C_t, N_t, B_t, M_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \left[\frac{C_t^{1-\gamma}}{1-\gamma} - \omega \frac{N_t^{1+\varphi}}{1+\varphi} + \ln\left(\frac{M_t}{P_t}\right) \right]$$
s.t.
$$P_t C_t + B_t + M_t \le R_t B_{t-1} + W_t N_t + M_{t-1} + D_t - T_t$$

Firms

* final and sectoral good producers: same as in static model

Quantitative model: intermediate firms

Intermediate firms: idiosyncratic shocks, Calvo+ price setting

$$\max_{p_{it}(j),\chi_{it}(j)} \qquad \sum_{t=0}^{\infty} \mathbb{E}\left[\frac{1}{R^t P_t} \left\{ p_{it}(j) y_{it}(j) - W_t n_{it}(j) (1-\tau) - \chi_{it}(j) \psi W_t \right\} \right]$$
s.t.
$$y_{it}(j) = A_{it} a_{it}(j) n_{it}(j)^{\alpha}$$

$$\psi_{it}(j) = \begin{cases} \psi & \text{w/ prob. } 1-\nu \\ 0 & \text{otherwise} \end{cases}$$

productivity distribution is mixture between AR(1) and uniform (fat tail)

$$\log\left(a_{it}(j)\right) = \begin{cases} \rho_{\mathsf{idio}}\log\left(a_{it-1}(j)\right) + \varepsilon_{it}^{\mathsf{idio}}(j) & \mathsf{with\ prob.\ } 1 - \varsigma \\ \mathcal{U}\left[-\log\left(\underline{a}\right),\log\left(\overline{a}\right)\right] & \mathsf{with\ prob.\ } \varsigma \end{cases}$$

Calibration

Two sets of parameters to calibrate:

(1) standard or drawn from literature and

	Parameter (monthly frequency)	Value	Target
β	Discount factor	0.99835	2% annual interest rate
ω	Disutility of labor	1	standard
φ	Inverse Frisch elasticity	0	Golosov and Lucas (2007)
$\dot{\gamma}$	Inverse EIS	2	standard
S	Number of sectors	6	Nakamura and Steinsson (2010)
η	Elasticity of subst. between sectors	5	standard value
ά	Returns to scale	0.6	standard value
τ	Labor subsidy	0.2	$1/\eta$

Calibration

Two sets of parameters to calibrate:

(1) standard or drawn from literature and (2) calibrated by SMM targeting

	Parameter (monthly frequency)	Value	Target
β	Discount factor	0.99835	2% annual interest rate
ω	Disutility of labor	1	standard
φ	Inverse Frisch elasticity	0	Golosov and Lucas (2007)
γ	Inverse EIS	2	standard
S	Number of sectors	6	Nakamura and Steinsson (2010)
η	Elasticity of subst. between sectors	5	standard value
α	Returns to scale	0.6	standard value
τ	Labor subsidy	0.2	$1/\eta$
$\sigma_{\rm idio}$	Standard deviation of idio. shocks	0.044	menu cost expenditure $/$ revenue $1\%(1.1\%)$
$ ho_{idio}$	Persistence of idio. shocks	0.995	share of price changers 8.7% (8.3%)
ψ	Menu cost	0.1	median absolute price change 8.5% (8.7%)
$\dot{\nu}$	Calvo parameter	0.075	Q1 absolute price change 4.5% (4.2%)
ς	Fat tail parameter	0.0016	Q3 absolute price change 20.4% (14.8%)
	-		kurtosis of price changes 3.609 (2.755)

Exercise: perfect foresight sectoral shock

Policy comparison: menu cost expenditure

Real menu cost expenditure

Labor

Welfare response to A_1 shock

Welfare response to A_1 shock

Consider welfare under W targeting

Welfare response to A_1 shock

- Consider welfare under W targeting
- How much extra C is needed to match welfare under flexible prices?

$$\sum_{t} \beta^{t} U((1 + \lambda)C_{t}, N_{t})$$

$$= \sum_{t} \beta^{t} U(C_{t}^{flex}, N_{t}^{flex})$$

Welfare response to A_1 shock

- Consider welfare under W targeting
- How much extra C is needed to match welfare under flexible prices?

$$\sum_{t} \beta^{t} U((1 + \lambda)C_{t}, N_{t})$$

$$= \sum_{t} \beta^{t} U(C_{t}^{flex}, N_{t}^{flex})$$

Do same for inflation target

Welfare response to A_1 shock

- Consider welfare under W targeting
- How much extra C is needed to match welfare under flexible prices?

$$\sum_{t} \beta^{t} U((1 + \lambda) C_{t}, N_{t})$$

$$= \sum_{t} \beta^{t} U(C_{t}^{flex}, N_{t}^{flex})$$

Do same for inflation target

$$\lambda^W = 0.004\%$$
$$\lambda^P = 0.02\%$$

Welfare response to A_1 shock

- Consider welfare under W targeting
- How much extra C is needed to match welfare under flexible prices?

$$\sum_{t} \beta^{t} U((1 + \lambda) C_{t}, N_{t})$$

$$= \sum_{t} \beta^{t} U(C_{t}^{flex}, N_{t}^{flex})$$

Do same for inflation target

$$\lambda^W = 0.004\%$$
$$\lambda^P = 0.02\%$$

Decomposing welfare

- 1. **Direct costs:** $\psi \chi_t$, disutility of labor from menu costs
- 2. **Efficiency costs:** welfare loss from incorrect relative prices

Decomposing welfare

- 1. **Direct costs:** $\psi \chi_t$, disutility of labor from menu costs
- 2. **Efficiency costs:** welfare loss from incorrect relative prices
 - Direct costs: $\tilde{\lambda}^W = 0.0007\%$ and $\tilde{\lambda}^P = 0.0060\%$
 - Recall total welfare losses: $\lambda^W = 0.0040\%$ and $\lambda^P = 0.0200\%$
 - Interpretation: welfare improvement comes from both channels

Numerically-optimal policy in simple class of rules

Consider monetary policy rules stabilizing:

$$W^{\xi}P^{1-\xi}$$
$$\xi \in [0,1]$$

Recall λ : "how much extra C needed to match welfare response of flex-price economy?"

Numerically-optimal policy in simple class of rules

Consider monetary policy rules stabilizing:

$$W^{\xi} P^{1-\xi}$$
$$\xi \in [0,1]$$

Recall λ : "how much extra C needed to match welfare response of flex-price economy?"

Numerically-optimal policy: Stabilize W alone

Conclusion

Inflation should be countercyclical after sectoral shocks

Rationale:

- Inflation targeting forces firms to adjust unnecessarily, which is costly
- Nominal wage targeting does not and still achieves "correct" relative prices

Conclusion

Inflation should be countercyclical after sectoral shocks

Rationale:

- Inflation targeting forces firms to adjust unnecessarily, which is costly
- Nominal wage targeting does not and still achieves "correct" relative prices

This aligns with the implications of other recent work:

- Calvo sticky wages
- Incomplete markets/financial frictions: Sheedy (2014), Werning (2014)
- Information frictions: Angeletos and La'O (2020)
- Sticky prices [new]: Caratelli and Halperin (2024)

Thank you!

$$\begin{split} \max_{X \in \{A,B,C,D\}} \mathbb{U}^X \\ \mathbb{U}^A &= \left\{ \begin{array}{ll} \max_{S.t.} & \ln[M] - M[S-1+1/\gamma] \\ \text{s.t.} & \min(\gamma \lambda_1, \lambda_2) \leq M \leq \max(\gamma \lambda_1, \lambda_2) \end{array} \right\} \\ \mathbb{U}^B &= \left\{ \ln\left[\frac{1}{S}\gamma^{1/S}\right] - 1 - \psi \right\} \\ \mathbb{U}^C &= \left\{ \begin{array}{ll} \max_{M} & \ln\left[\left(\frac{\gamma}{S}\right)^{\frac{1}{S}} \cdot M^{\frac{S-1}{S}}\right] - \left[(S-1)M + \frac{1}{S}\right] - \frac{1}{S}\psi \\ \text{s.t.} & \lambda_1 < M < \min(\gamma \lambda_1, \lambda_2) \end{array} \right\} \\ \mathbb{U}^D &= \left\{ \begin{array}{ll} \max_{M} & \ln\left[S^{\frac{1-S}{S}}M^{\frac{1}{S}}\right] - \left[\frac{S-1}{S} + \frac{M}{\gamma}\right] - \frac{S-1}{S}\psi \\ \text{s.t.} & \max(\gamma \lambda_1, \lambda_2) < M < \gamma \lambda_2 \end{array} \right\} \\ \text{where } \lambda_1 &= \frac{1}{S}\left(1 - \sqrt{\psi}\right), \quad \lambda_2 = \frac{1}{S}\left(1 + \sqrt{\psi}\right) \end{split}$$

Example: Social planner's constrained problem for "neither adjust"

$$\max_{M} U(C(M), N(M)) \tag{1}$$

s.t.
$$D_1^{\mathrm{adjust}} < D_1^{\mathrm{no adjust}}$$
 (2)

$$D_k^{\text{adjust}} < D_k^{\text{no adjust}} \tag{3}$$

$$\Longrightarrow M_{\rm unconstrained}^*$$

Social planner's *unconstrained* problem: maximize (1), without constraints $\Longrightarrow M_{constrained}^*$

Adjustment externality: $M_{\text{unconstrained}}^* \neq M_{\text{constrained}}^*$

Alternative menu cost formulations

Labor costs: Welfare mechanism is higher labor

$$profits_i - W\psi \cdot \chi_i$$

$$\implies N = \sum n_i + \psi \sum \chi_i$$

Real resource cost: Welfare mechanism is lower consumption

$$\operatorname{profits}_{i} \cdot (1 - \psi \cdot \chi_{i})$$

$$\Longrightarrow C = Y \left(1 - \psi \sum_{i} \chi_{i} \right)$$

Direct utility cost: Welfare mechanism is *direct*

utility
$$-\psi \cdot \sum \chi_i$$

Heterogeneity: a monetary "least-cost avoider principle"

▶ back

Proposition 5: Suppose sector *i* has mass S_i and menu cost ψ_i . Suppose further

$$S_1\psi_1<\sum_{k>1}S_k\psi_k.$$

Then optimal policy is exactly as in proposition 1, modulo changes in \overline{A} .

• *Proof:* Follows exactly as in proof of proposition 1.

Heterogeneity: a monetary "least-cost avoider principle"

▶ back

Proposition 5: Suppose sector *i* has mass S_i and menu cost ψ_i . Suppose further

$$S_1\psi_1<\sum_{k>1}S_k\psi_k.$$

Then optimal policy is exactly as in proposition 1, modulo changes in \overline{A} .

• *Proof:* Follows exactly as in proof of proposition 1.

Interpretation 1: monetary "least-cost avoider principle"

Interpretation 2: "stabilizing the stickiest price"

Multiple shocks: general case

Proposition 7: Consider an arbitrary set of productivity shocks to the baseline model, $\{A_1, ..., A_S\}$.

- Conditional on sectors $\Omega \subseteq \{1,...,S\}$ adjusting, optimal policy is given by setting $M = M_{\Omega}^* \equiv \frac{S \omega}{\sum_{i \notin \Omega} \frac{1}{A_i}}$, where $\omega \equiv |\Omega|$.
- The optimal set of sectors that should adjust, Ω^* , is given by comparing welfare under the various possibilities for Ω , using W_0^* defined in the paper.
- Nominal wage targeting is exactly optimal if the set of sectors which should not adjust are unshocked: $A_i = 1 \ \forall i \notin \Omega^*$.

Price adjustment frequency tracks inflation

▶ back

Calvo/TDP models: frequency of price adjustment is exogenous to inflation **Menu cost models:** frequency of price adjustment ↑ if inflation ↑

Frequency of Price Change in U.S. Data

Figure: Nakamura et al (2018)

Price adjustment frequency tracks inflation

▶ back

Calvo/TDP models: frequency of price adjustment is exogenous to inflation **Menu cost models:** frequency of price adjustment ↑ if inflation ↑

Figure VI

The Frequency of Price Changes (λ) and Expected Inflation: International Evidence

Figure: Alvarez et al (2018)

Calvo/TDP models: frequency of price adjustment is exogenous to inflation **Menu cost models:** frequency of price adjustment ↑ if inflation ↑

(a) Frequency of Adjustment

Figure: Blanco et al (2022)

Calvo/TDP models: frequency of price adjustment is exogenous to inflation **Menu cost models:** frequency of price adjustment ↑ if inflation ↑

Figure 1: Frequency of price changes

Evidence of inaction regions

 $\label{eq:Figure 8} \textit{The Distribution of the Size of Price Changes in the United States}$

The welfare loss of inflation targeting

"Inflation targeting": $P = P^{ss}$ (while having correct relative prices)

Proposition 2: Suppose $A_1 > \overline{A}$.

Then:

- Inflation targeting requires all sectors adjust their prices
- Welfare loss from inflation targeting
 x size of menu costs

$$\mathbb{W}^* - \mathbb{W}^{\mathsf{IT}} = (S-1)\psi$$

"Inflation targeting": $P = P^{ss}$ (while having correct relative prices)

Proposition 2: Suppose $A_1 > \overline{A}$.

Then:

- Inflation targeting requires all sectors adjust their prices
- Welfare loss from inflation targeting

 ∝ size of menu costs

$$\mathbb{W}^* - \mathbb{W}^{\mathsf{IT}} = (S-1)\psi$$

What are menu costs?

Physical adjustment costs.
 Baseline interpretation.

"Inflation targeting": $P = P^{ss}$ (while having correct relative prices)

Proposition 2: Suppose $A_1 > \overline{A}$. Then:

- Inflation targeting requires all sectors adjust their prices
- Welfare loss from inflation targeting

 ∝ size of menu costs

$$\mathbb{W}^* - \mathbb{W}^{\mathsf{IT}} = (S-1)\psi$$

What are menu costs?

- Physical adjustment costs. Baseline interpretation.
- Information costs. Fixed costs of information acquisition / processing.
 - * Results unchanged
- Behavioral costs. Consumer distaste for price changes.
 - * Results unchanged