T320 - Introdução ao Aprendizado de Máquina II:

Redes Neurais Artificiais (Parte I)

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Introdução

- A partir desta aula, entenderemos como as ideias que discutimos até agora serão úteis na construção de *modelos matemáticos que* aproximam a atividade de aprendizagem do cérebro.
- Essas ideias que já discutimos, nos ajudarão a entender o funcionamento das *redes neurais artificiais* (RNAs).
- Redes neurais artificiais são uma das formas mais populares e efetivas para implementação de sistemas de aprendizado de máquina e mereceriam por sí só uma disciplina em separado.
- Portanto, neste tópico, veremos uma breve visão geral sobre as RNAs.

Redes Neurais Artificiais

- Redes neurais artificiais são modelos computacionais inspirados pelo funcionamento do cérebro dos animais.
- Elas são capazes de realizar tarefas de aprendizado de máquina (e.g., regressão e classificação) com grande eficácia.

Redes Neurais Artificiais

- RNAs são geralmente apresentadas como sistemas de nós (unidades ou neurônios) interconectados, que geram valores de saída, simulando o comportamento de redes neurais biológicas.
- Esta primeira parte deste tópico, foca nos elementos básicos de construção de uma rede neural, os nós ou neurônios.

Algumas aplicações famosas

- RNAs são versáteis, poderosas e escalonáveis, tornando-as ideais para realizar tarefas grandes e altamente complexas de aprendizado de máquina, como por exemplo:
 - Classificar bilhões de imagens (e.g., como o Google Images, Facebook, etc. fazem),
 - Serviços de reconhecimento de fala (e.g., a Siri da Apple, Alexa da Amazon e Google Assistant),
 - Recomendar vídeos que melhor se adequam ao comportamento de centenas de milhões de usuários todos os dias (e.g., YouTube, Netflix),
 - Pilotar um veículo com pouca ou nenhuma intervenção humana.
 - Responder praticamente qualquer pergunta (e.g., ChatGPT)

- A descoberta da célula em 1665 por Robert Hooke foi importantíssima para que houvesse uma melhor compreensão da estrutura dos seres vivos.
- Podemos considerar a célula como sendo o átomo da vida.
- Células podem ser classificadas em *procariontes* e *eucariontes*.
- Células *procariontes* têm uma estrutura simples e não possuem núcleo (e.g., bactérias).

- As células *eucariontes* (e.g., plantas, animais, fungos, protozoários, algas, e amebas) possuem três partes principais: *membrana*, *citoplasma* e *núcleo*.
 - A *membrana* "delimita a célula", i.e., ela isola seu interior do meio externo.
 - O citoplasma é o espaço intracelular entre a membrana e o núcleo.
 - Ele é preenchido pelo *citosol* onde estão suspensas as *organelas* (e.g., mitocôndrias, lisossomos, etc.).
 - Já o núcleo controla as atividades celulares e armazena a maior parte da informação genética (DNA) da célula.

- Os neurônios são células eucariontes também, mas são células que possuem mecanismos eletroquímicos característicos.
- Os neurônios apresentam três partes básicas: os *dendritos*, o *axônio* e o *corpo celular (soma)*.

- Os dendritos são prolongamentos do neurônio que garantem a recepção de estímulos de outros neurônios, levando impulsos nervosos em direção ao corpo celular.
- O axônio é um prolongamento que garante o envio de informação (estímulos) a outros neurônios através de seus terminais.
- Cada neurônio possui apenas um axônio, o qual é, geralmente, mais longo que os dendritos.

- O corpo celular (também conhecido como soma) contém o núcleo do neurônio e é responsável por realizar a integração dos estímulos recebidos pelo neurônio através de seus dendritos.
- Os pontos de contato entre os dentritos de um neurônio e os terminais do axônio de outro neurônio são chamados de *sinapses*.

- Ou seja, os neurônios se comunicam uns com os outros através das sinapses.
- Sinapses podem ser *químicas*, as mais comuns, ou *elétricas*, muito pouco comuns.
- As figuras ao lado mostram o esquema de um *neurônio* e uma sinapse química.

- Em termos bem simples, mas lembrando de que existem exceções, nós podemos simplificar o funcionamento do *neurônio* como:
 - O neurônio recebe estímulos elétricos, através dos dendritos.
 - Esses estímulos são somados no corpo celular (i.e., soma).
 - Se a soma dos estímulos exceder um certo limiar de ativação, o neurônio gera um pulso (ou potencial de ação) que é enviado pelos terminais do axônio a outros neurônios.

- Um *neurônio* pode se conectar a até 20.000 outros *neurônios* através das *sinapses*.
- Os sinais são passados de neurônio para neurônio através de reações eletroquímicas.
- Do ponto de vista do nosso curso, o neurônio será considerado como um sistema com várias entradas e uma ou mais saídas onde a comunicação entre neurônios é feita através de sinais elétricos.

Walter Pitts e Warren McCulloch

- O final do século XIX e o início do século XX foram períodos fundamentais para o estabelecimento do conhecimento atual do sistema nervoso.
- De posse desse entendimento, em 1943, dois neurocientistas, Warren McCulloch e Walter Pitts apresentam em um artigo científico o primeiro *modelo computacional* de um neurônio.
- A partir desse modelo, foi possível estabelecer uma conexão entre o funcionamento de um neurônio e a *lógica proposicional*.

- Lógica proposicional se baseia em proposições.
 - Uma proposição é uma sentença declarativa ou afirmação, ou seja, é uma sentença que faz uma afirmação sobre um fato, podendo este ser verdadeiro ou falso.
- O artigo de McCulloch e Pitts fornece insights fundamentais sobre como a lógica proposicional pode ser processada por um neurônio.
- Existe uma correspondência direta entre a lógica proposicional e a lógica Booleana.
 - Podemos pensar em uma sentença declarativa como sendo uma expressão Booleana

```
0 1 \text{ ou } 1 = 1
0 1 \text{ e } 0 = 0
```

 A partir desta correspondência, a relação com a computação foi direta e natural.

$$y = f(g(x)) = \begin{cases} 1, \text{se } g(x) \ge \theta \\ 0, \text{se } g(x) < \theta \end{cases}$$

onde θ é o *limiar de ativação*.

- A figura ao lado apresenta o modelo matemático do *neurônio* proposto por McCulloch e Pitts.
- Esse modelo é chamado de modelo de McCulloch e Pitts (M-P).
- Grosso modo, o *neurônio* é ativado (ou disparado) quando a *soma* de suas entradas, g(x), excede o *limiar de* ativação, θ , da função de ativação f(.).
- O modelo estabelece algumas premissas.

- As premissas desse modelo são:
 - Os valores das entradas, x_i , $\forall i$, ou também chamados de **sinapses**, são sempre valores **booleanos**, i.e., '0', ou '1'.
 - As entradas são multiplicadas por pesos com magnitudes unitárias (+/- 1) e somadas.
 - A atividade do *neurônio* é um processo do tipo "tudo ou nada", ou seja, um processo binário (0 ou 1).
 - Portanto, a função de ativação do neurônio é uma função degrau com ponto de disparo variável, dependente do limiar de ativação, θ.
 - Um certo número de sinapses deve ser excitado para que o neurônio "dispare".

 Portanto, o modelo do neurônio de McCulloch e Pitts nada mais é do que um classificador linear com limiar de decisão rígido, ponto de disparo variável, pesos unitários e atributos booleanos.

Exemplos de portas lógicas com o modelo M-P

OR			
x_1	x_2	g(x)	y
0	0	0	0
0	1	1	1
1	0	1	1
1	1	2	1

- Qual é o valor do *limiar de* ativação, θ?
- Analisando-se g(x), vemos que o disparo deve ocorrer quando $g(x) \ge 1$, portanto, $\theta = 1$.

AND			
x_1	x_2	g(x)	y
0	0	0	0
0	1	1	0
1	0	1	0
1	1	2	1

- Qual é o valor do *limiar de* ativação, θ?
- Analisando-se g(x), vemos que o disparo deve ocorrer quando $g(x) \ge 2$, portanto, $\theta = 2$.

NOT					
$x_1 - x_1 g(x) y$					
0	0	0	1		
1	-1	-1	0		

- Qual é o valor do *limiar de* ativação, θ ?
- Analisando-se x_1 , vemos que para o disparo ocorrer, seu valor deve ser **negado** (i.e., multiplicado por -1), e assim, o disparo ocorre quando $g(x) \ge 0$, portanto, $\theta = 0$.

Todos esses exemplos podem ser interpretados como problemas de classificação.

Exemplos de portas lógicas com o modelo M-P

Qual deve ser o valor do *limiar de ativação*, θ, para a porta lógica XOR?

Sem entradas inibitórias.

XOR			
x_1	x_2	g(x)	y
0	0	0	0
0	1	1	1
1	0	1	1
1	1	2	0
0 < g(x) < 2			

 x_1 como entrada inihitória

x ₁ como entrada imbitoria.			
XOR			
$-x_1$	x_2	g(x)	y
0	0	0	0
0	1	1	1
-1	0	-1	1
-1	1	0	0

$$g(x) \le -1 \text{ ou } g(x) \ge 1$$

 x_2 como entrada inibitória.

XOR			
x_1	$-x_2$	g(x)	у
0	0	0	0
0	-1	-1	1
1	0	1	1
1	-1	0	0

$$g(x) \le -1$$
 ou $g(x) \ge 1$ $g(x) \le -1$ ou $g(x) \ge 1$

 x_1 e x_2 como entradas inibitórias.

XOR			
$-x_1$	$-x_2$	g(x)	у
0	0	0	0
0	-1	-1	1
-1	0	-1	1
-1	-1	-2	0
2 . () . 0			

$$-2 < g(x) < 0$$

- Resposta: com um único modelo de M-P, não é possível encontrar um limiar de ativação que resolva este problema, pois como veremos adiante, este problema não é linearmente separável.
- O modelo de M-P só resolve problemas *linearmente separáveis*.

Tarefa

• Quiz: "T320 - Quiz — Redes Neurais Artificiais (Parte I)" que se encontra no MS Teams.

- Em 1958, Frank Rosenblatt, propôs um novo modelo computacional mais geral que o modelo do neurônio de McCulloch e Pitts.
- O modelo criado por ele foi chamado de *perceptron* e é mostrado na figura ao lado.
- O perceptron é um modelo para aprendizado supervisionado de classificadores binários, ou seja problemas com duas classes.
- Assim como o modelo de M-P, o perceptron só é capaz de classificar padrões linearmente separáveis.
- Ou seja, o *perceptron* também não resolve o problema da classificação XOR.

Frank Rosenblatt

$$y = f(g(\mathbf{x})) = \begin{cases} 1, \text{ se } g(\mathbf{x}) \ge 0 \\ 0, \text{ se } g(\mathbf{x}) < 0 \end{cases}$$

Percebam que o *limiar de ativação*, θ , agora faz parte das entradas e é chamado de *peso de bias*.

- Esse novo modelo supera algumas das limitações do modelo de M-P:
 - Introdução do conceito de pesos sinápticos com valores reais para as entradas (ou sinapses).
 - Pesos d\u00e3o uma medida de import\u00e1ncia dos sinapses (i.e., atributos).
 - E um método para que o modelo aprenda os pesos e o ponto de ativação, que passa a ser um peso também.

- Além disso, as entradas não são mais limitadas a valores booleanos, como no caso do modelo de M-P, suportando entradas com valores reais, o que torna este modelo mais útil e generalizado.
- Assim como no modelo de M-P, a função de ativação utilizada pelo perceptron também é a função degrau com a diferença que aqui ela não mais depende do limiar de ativação, θ.
- Ou seja, a transição ou ativação sempre ocorre em 0.

$$y = f(g(x)) = \begin{cases} 1, \text{ se } g(x) \ge 0 \\ 0, \text{ se } g(x) < 0 \end{cases}$$

Percebam que o *limiar de ativação*, θ , agora faz parte das entradas e é chamado de *bias*.

- A ativação do perceptron é causada pela combinação linear dos estímulos de entrada em relação aos pesos sinápticos.
 - Se a combinação linear exceder o limiar de ativação, θ, o disparo ocorre.
 - Isso é expresso por uma *função de ativação* do tipo *degrau*.

- Notem que a *função de ativação*, f(.), abaixo tem a transição para o valor 1 quando g(x) = 0 e o *limiar de ativação* é controlado, indiretamente, pelo valor do *peso de bias*, w_0 .
 - O *limiar de ativação* foi absorvido pela combinação linear, g(x), e, portanto, podemos usar a *função de ativação com transição fixa em zero*, pois agora, ajusta-se o limiar de ativação indiretamente, através da atualização do peso w_0 .

Para que tenhamos a saída do perceptron, y, igual a 1, então

$$w_0 + \sum_{i=1}^{N} w_i x_i \ge 0 : \sum_{i=1}^{N} w_i x_i \ge -w_0$$

Por exemplo

- Se $w_0 = 1$, $\sum_{i=1}^{N} w_i x_i \ge -1$.
- Se $w_0 = -1$, $\sum_{i=1}^{N} w_i x_i \ge 1$.

• Como podemos ver, a função discriminante, $g(\boldsymbol{x})$, do perceptron tem a forma de um hiperplano

$$g(\pmb{x}) = \sum_{i=0}^N w_i \pmb{x}_i$$
, combinação linear das entradas

onde x_0 é o atributo de bias com valor constante igual a 1.

 Portanto, como já sabemos, este tipo de função dá origem a um classificador binário onde as classes são separadas por uma superfície de separação linear.

Regra de aprendizado do perceptron

- Devido ao fato da *função degrau*, f(g(x)), ter derivada igual a zero em todos os pontos, exceto em g(x) = 0, onde ela é indefinida, nós não podemos utilizar o *gradiente descendente*.
- Entretanto, como aprendemos anteriormente, usamos a *regra de aprendizado do perceptron* para treinar o modelo.
- É uma regra *simples e intuitiva* para atualização dos pesos do modelo.

Regra de aprendizado do perceptron

- No caso do perceptron, onde g(x), por definição, é um *hiperplano*, a regra converge para uma solução perfeita se as classes forem *linearmente* separáveis:
 - Classes suficientemente espaçadas e que podem ser separadas por um hiperplano.
- A equação de atualização dos pesos é definida como $w \leftarrow w + \alpha(y \hat{y})x$, Equação idêntica a da atualização do gradiente descendente estocástico.

onde w é o vetor de pesos, α é o passo de aprendizagem, y é o valor de saída esperado, \hat{y} é a saída do modelo, i.e., f(g(x)), e x é o vetor de atributos.

A separação das duas classes ocorre onde g(x) = 0.

- Como percebemos, o perceptron é idêntico ao classificador binário com limiar de decisão rígido.
- Por definição, o *perceptron* sempre utiliza *superfícies de separação lineares*, ou seja, sempre teremos g(x) como sendo a equação de um *hiperplano*.
- Portanto, teoricamente, sem transformação dos atributos, um único perceptron só é capaz de classificar dados que sejam linearmente separáveis (ou seja, separáveis por um hiperplano).

A separação das duas classes ocorre onde g(x) = 0.

- A figura ao lado ilustra isso para um caso bidimensional.
- Entretanto, como veremos na sequência, podemos combinar os resultados de vários perceptrons para criar superfícies de separação que separem dados que não sejam linearmente separáveis sem a necessidade de transformar os atributos.
- Ou seja, não precisamos usar funções discriminantes, g(x), com outros formatos (e.g., polinômios) que não sejam o de um hiperplano.

- Por serem *linearmente separáveis*, as lógicas AND e OR podem ser separadas por um único perceptron.
- As figuras abaixo demonstram que uma simples reta consegue separar os dados das duas lógicas.

- Porém, a lógica XOR *não é linearmente* separável e necessita de uma superfície de separação não-linear.
- Vejam na figura abaixo que são necessárias no mínimo duas retas paralelas.
- Como veremos, a separação da lógica XOR pode ser obtida combinando-se o resultado de dois perceptrons (i.e., dois classificadores lineares), que resultará em uma superfície de separação não linear.

Tarefas

- Quiz: "T320 Quiz Redes Neurais Artificiais (Parte II)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #6.
 - Pode ser baixado do MS Teams ou do GitHub.
 - Pode ser respondido através do link acima (na nuvem) ou localmente.
 - Instruções para resolução e entrega dos laboratórios.

Obrigado!

ENGINEERING TIP: WHEN YOU DO A TASK BY HAND, YOU CAN TECHNICALLY SAY YOU TRAINED A NEURAL NET TO DO IT.

Figuras

$$y = f(g(x)) = \begin{cases} 1 \text{ se } g(x) \ge \theta \\ 0 \text{ se } g(x) < \theta \end{cases}$$

onde θ é o limiar de decisão.

- Classe 0 (nível lógico 0)
- Classe 1 (nível lógico 1)

- Classe 0 (nível lógico 0)
- Classe 1 (nível lógico 1)

- Classe 1 (nível lógico 1)
- Classe 0 (nível lógico 0)

