

План

Случайный лес (RF)
Параметры метода
ExtraTrees
AdaBoost

Случайный лес (Random Forest)

- специальный метод ансамблирования

= бэггинг + специальное построение деревьев (подмножество признаков при расщеплении)

Качество одного дерева очень низкое!

$$\frac{1}{N_{\text{tree}}} \left(\frac{1}{N_{\text{tree}}} + \frac{1}{N_{\text{tree}}} + \dots + \frac{1}{N_{\text{tree}}} \right)$$

Лео Брейман, 1928 – 2005

Случайный лес (Random Forest)

дерево № 1

RF, число деревьев=10

дерево № 2

RF, число деревьев=100

RF, число деревьев=1000

Построение случайного леса

- 1. Выбирается подвыборка samplesize (м.б. с повторением) на ней строится дерево
- 2. Строим дерево
 - 2.1. Для построения каждого расщепления просматриваем mtry / max_features случайных признаков
 - 2.2. Как правило, дерево строится до исчерпания выборки (без прунинга)

Ответ лесав задачах классификации:

по большинству, вероятность = процент деревьев (R) сравниваем вероятность с порогом, вероятность = среднее арифметическое вероятностей в листьях деревьев ансамбля (sklearn)

Ответ лесав задачах регрессии:

среднее арифметическое (в задачах регрессии)

Автоматически при построении RF получаем

- рейтинг признаков importance (model) / .feature importances
- уверенность в ответе дисперсия ответов деревьев

Бэггинг и ООВ (out of bag)

Выбор объектов для обучения (с помощью бутстрепа), остальные – локальный контроль...

Ответы разных деревьев – можно усреднить и вычислить качество

Реализация решающего дерева: sklearn.tree import DecisionTreeClassifier

criterion	критерий расщепления «gini» / «entropy»
splitter	разбиение «best» / «random»
max_depth	допустимая глубина
min_samples_split	минимальная выборка для разбиения
min_samples_leaf	минимальная мощность листа
min_weight_fraction_leaf	аналогично с весом
max_features	число признаков, которые смотрим для нахождения
	разбиения
random_state	инициализация генератора случайных чисел
max_leaf_nodes	допустимое число листьев
min_impurity_decrease	порог «зашумлённости» для разбиения
min_impurity_split	порог «зашумлённости» для останова
class_weight	веса классов («balanced» или словарь, список словарей)
ccp alpha	для автоматической подрезки (0.0)

Реализация случайного леса: sklearn.ensemble import RandomForestClassifier

n_estimators=100	число деревьев
criterion = 'gini'	критерий расщепления «gini» / «entropy»
splitter	разбиение «best» / «random»
max_depth =None	допустимая глубина
min_samples_split=2	минимальная выборка для разбиения
min_samples_leaf=1	минимальная мощность листа
min_weight_fraction_leaf=0.0	аналогично с весом
max_features='auto'	число признаков для нахождения разбиения
max_leaf_nodes=None	допустимое число листьев
min_impurity_decrease=0.0	порог изменения «зашумлённости» для разбиения
min_impurity_split=None	порог «зашумлённости» для останова
class_weight	веса классов («balanced» или словарь, список словарей)
ccp_alpha	для автоматической подрезки (0.0)
bootstrap=True	делать ли бутстреп
max_samples	объём выборки для сэмплирования
oob_score	вычислять ли ООВ-ошибку
warm_start	дополнять ли существующий лес

n_jobs, random_state, verbose

Особенности

Изменение impurity – порог на

$$\frac{|R|}{m}\left(H(R) - \frac{|R_{\text{left}}|}{|R|}H(R_{\text{left}}) - \frac{|R_{\text{right}}|}{|R|}H(R_{\text{right}})\right)$$

«Случайный лес»

from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_estimators=1)
rf.fit(X_train, y_train)

Различные критерии расщепления

criterion='entropy'

в модельных задачах «на глаз» разницы не видно

в авторском коде был реализован Джини...

Настройка параметров: размер подвыборки sampsize / max samples

- 1. Определиться с типом выбора
 - с возвратом / без возврата
 - 2. Настройка по объёму
 - не в первую очередь

Часто «нужны все объекты»

Чем больше – тем однотипнее деревья

Что из этого следует?

Александр Дьяконов (dyakonov.org)

Hастройка параметров: размер подвыборки sampsize (СберБанк)

Всю выборку надо использовать по максимуму!

Hастройка параметров: число признаков mtry / max_features

Самый серьёзный параметр

По умолчанию часто: \sqrt{n} – классификация n/3 – регрессия

Зависимость унимодальная Настраивается в первую очередь

Зависит от числа шумовых признаков Надо перенастраивать при добавлении новых признаков

Чем больше – тем однотипнее деревья. Чем больше – тем медленнее настройка!

Kaggle: часто суммируют алгоритмы с разными mtry.

Hастройка mtry / max_features (СберБанк)

Качество от числа признаков, как правило, унимодально

Коэффициент корреляции между ответами деревьев леса

Геометрия mtry / max_features что можно сказать?

max features=1

max_depth=1, max_features=1

max features=2

max_depth=1, max_features=2

Hастройка mtry / max_features

(ed Бозон) в задаче ~ 33 признака

Hастройка параметров ntree / n_estimators (СберБанк)

(ed Бозон)

Hастройка параметров ntree / n_estimators

RF, число деревьев=1

RF, число деревьев=10

RF, число деревьев=3

RF, число деревьев=100

RF, число деревьев=5

RF, число деревьев=1000

Hастройка параметров ntree / n_estimators (СберБанк)

Чем больше – тем лучше!

Проблемы:

- как использовать при настройке параметров очень большое число деревьев
- что делать, если не помещаются в память... (например, в R) можно строить по одному, получать ответ на тесте, не хранить в памяти

Настройка параметров: ограничения в листьях

число объектов в листе, число объектов для расщепления, максимальная глубина дерева

От параметров существенно зависит скорость построения леса

Оптимальные значения, как правило, – несколько объектов в листе.

Настраиваются не в первую очередь

В классическом случайном лесе деревья строятся до исчерпания выборки...

Глубина дерева: max_depth (СберБанк)

Как правило, чем больше, тем лучше!

Глубина дерева: max_depth

max_depth=1

max_depth=2

max_depth=4

Глубина дерева: max_depth

Неглубокие деревья:

- в задачах с выбросами
- когда много объектов (деревья большие и долго строятся)
- настройка некоторых других (каких?) параметров не имеет смысла

RandomForestClassifier: min_samples_leaf

умолчание: 1 - классификация, 5 - регрессия

RandomForestClassifier: min_samples_leaf

RandomForestClassifier: min_samples_split

RandomForestClassifier: min_samples_split

Проблемы RF

Может долго считаться...

Вместо CV – разбиение на обучение и контроль (hold out)

sklearn: не забывать n_jobs

Proximity

при построении деревьев можно много чего считать...

Чем чаще 2 объекта попадают в один лист, тем они ближе...

Какую метрику можно придумать?

Extreme Random Trees (ExtraTrees)

- нет бутстрепа (используем всю выборку)
- генерируем несколько пар (признак, порог)
- выбираем оптимальную для разбиения пару
- также есть параметр «число признаков для просмотра»

- ET быстрее RF
- ET чуть хуже RF, когда много шумных признаков

Ансамбли на базе RF

Синтетический случайный лес (Synthetic RF) – стекинг лесов с разным nodesize / min_samples_leaf

Algorithm 1 Synthetic Random Forests (SRF)

- 1: Choose a set of candidate nodesize values $\mathcal{N} = \{n_1, n_2, \dots, n_D\}$.
- 2: Fit a RF with $nodesize = n_j$ for j = 1, ..., D. Use the same ntree and mtry value for each forest. Denote the resulting forests by RF₁,..., RF_D.
- 3: Calculate the predicted value for each random forest RF_j , j = 1, ..., D. We call the predicted value the synthetic feature.
- 4: Fit a RF using for features both the newly created synthetic features and the original *p* features (using the same *ntree* and *mtry* value as before). We call this the synthetic RF.

чтобы не переобучаться используется ООВ-прогноз

Ishwaran H, Malley JD. «Synthetic learning machines». BioData Min. 2014;7(1):28 // https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279689/pdf/13040_2014_Article_28.pdf

Когда плохи методы, основанные на деревьях...

Итог

Число признаков (max_features) – самый важный параметр (унимодальность)

Число базовых алгоритмов (n_estimators) – чем больше, тем лучше

Глубина (max_depth) – скорее всего, максимальная

Параметры сложности (min_samples_leaf, min_samples_split) – чуть подкорректировать (не очень важно)

Подвыборка (samsize) – брать всё (часто и выбора нет)

Бустинг: Forward stagewise additive modeling (FSAM)

Центральная идея бустинга

Задача регрессии –
$$(x_i, y_i)_{i=1}^m$$

функция ошибки – L(y,a)

уже есть алгоритм a(x), строим b(x):

$$a(x_i) + b(x_i) = y_i, i \in \{1, 2, ..., m\}.$$

Надо:

$$\sum_{i=1}^{m} L(y_i, a(x_i) + b(x_i)) \to \min$$

Бустинг: Forward stagewise additive modeling (FSAM)

- **0.** Начать с $a_0(x) \equiv 0$
- 1. Цикл

$$(b,\eta) = \underset{b,\eta}{\arg\min} \sum_{i=1}^{m} L(y_i, a_{k-1}(x_i) + \eta b(x_i))$$

$$a_k = a_{k-1} + \eta b$$

Пример: L₂-бустинг

$$\eta = 1, L(y,a) = (y-a)^{2}$$

$$\sum_{i=1}^{m} (y_{i} - a_{k-1}(x_{i}) - b(x_{i}))^{2} \to \min$$

тут м.б. обычная регрессия

градиентный бустинг – отдельная лекция...

AdaBoost: постановка задачи

– FSAM для бинарной задачи классификации $Y = \{+1, -1\}$ базовые классификаторы генерируют классы $b(x) \in \{+1, -1\}$

Ансамбль

$$a(x) = \operatorname{sgn}\left(\sum_{j=1}^{s} \alpha_j b_j(x)\right)$$

exponential loss

$$L(y,a) = \exp(sy,a) \equiv \exp\left(-y\sum_{j=1}^{s} \alpha_{j}b_{j}(x)\right)$$

заметим, что

 $I[y \neq a] \leq \exp(s(y, a))$

AdaBoost: весовая схема

У каждого объекта – вес (распределение!)

$$W = (w_1, \dots, w_m) \ge 0$$

$$\sum_{t=1}^m w_t = 1$$

Взвешенное число ошибок:

$$e_{W}(a) = \sum_{t: a(x_{t}) \neq y(x_{t})} w_{t} = \sum_{t=1}^{m} w_{t} I[a(x_{t}) \neq y(x_{t})]$$

«ошибка, порождённая распределением»

(формально не имеет общего с экспоненциальной ошибкой, но мы используем в оценке)

AdaBoost: алгоритм

Цикл

- перевзвешиваем выборку
 (чем больше ошибок раньше на объекте, тем больше вес)
- о обучаем новый слабый (week) классификатор на взвешенной выборке
- о добавляем классификатор в ансамблы

уменьшается смещение, т.к. фокусируемся на «плохо классифицируемых» объектах

AdaBoost: алгоритм

- 0. Зададим начальное вероятностное распределение (веса)
- 1. Цикл по j от 1 до s 1.1. Построить классификатор b_j , который допускает ошибку $e_{\scriptscriptstyle W}(b_{\scriptscriptstyle i})$

1.2. Пусть
$$\alpha_j = \frac{1}{2} \ln \left(\frac{1 - e_W(b_j)}{e_W(b_j)} \right)$$

«перестроить» распределение

$$W = (w_1, \ldots, w_m)$$
:

$$W = \left(\frac{1}{m}, \dots, \frac{1}{m}\right)$$

(вычисляется по распределению W) предполагаем, что $0 < e_W(b_i) < 0.5$

$$w_{t} \leftarrow \frac{w_{t} \exp(-\alpha_{j} y(x_{t}) b_{j}(x_{t}))}{\sum_{i=1}^{m} w_{i} \exp(-\alpha_{j} y(x_{i}) b_{j}(x_{i}))}$$
+ нормировка

вариант: перенастраивать веса только объектов, на которых ошибки...

Напомним, что экспоненциальная ошибка:

$$L(y, a(x)) = \exp\left(-y\sum_{j=1}^{s} \alpha_j b_j(x)\right)$$

Число ошибок оценивается так:

$$\sum_{t=1}^{m} I[y_t \neq a(x_t)] \leq \sum_{t=1}^{m} L(y_t, a(x_t)) = \sum_{t=1}^{m} \exp\left(-y_t \sum_{j=1}^{s-1} \alpha_j b_j(x_t) - y_t \alpha_s b_s(x_t)\right) =$$

$$= \sum_{t=1}^{m} \exp\left(-y_t \sum_{j=1}^{s-1} \alpha_j b_j(x_t)\right) \exp\left(-y_t \alpha_s b_s(x_t)\right) \sim \sum_{t=1}^{m} w_t \exp\left(-y_t \alpha_s b_s(x_t)\right)$$

первый множитель пропорционален весу объекта (с точностью до знаменателя)

$$\sum_{t=1}^{m} w_t \exp\left(-y_t \alpha_s b_s(x_t)\right) =$$

$$= \sum_{t:y_t = a_s(x_t)} w_t \exp\left(-\alpha_s\right) + \sum_{t:y_t \neq a_s(x_t)} w_t \exp\left(\alpha_s\right) =$$

$$= (1 - e) \exp\left(-\alpha_s\right) + e \exp\left(\alpha_s\right)$$

если хотим найти оптимальный множитель, продифференцируем и приравняем к нулю

$$\alpha_s = \frac{1}{2} \log \frac{1 - e}{e}$$

вот откуда та формула!

зависимость коэффициента от ошибки

если подставить в формулу...

$$\propto (1-e)\exp\left(-\log\sqrt{\frac{1-e}{e}}\right) + e\exp\left(\log\sqrt{\frac{1-e}{e}}\right) =$$

$$= \frac{(1-e)\sqrt{e}}{\sqrt{1-e}} + \frac{e\sqrt{1-e}}{\sqrt{e}} = 2\sqrt{e(1-e)} \le \exp(-2(0.5-e)^2)$$

т.е. верхняя оценка ошибки экспоненциально уменьшается

Теперь смотрим на формулу пересчёта весов...

$$w_{t} \leftarrow \frac{w_{t} \exp(-\alpha_{j} y(x_{t}) b_{j}(x_{t}))}{\sum_{i=1}^{m} w_{i} \exp(-\alpha_{j} y(x_{i}) b_{j}(x_{i}))}$$

если рекурсивно пересчитать...

$$\sum_{t=1}^{m} w_{t} |_{s=0} \exp(-y_{t} \alpha_{1} b_{1}(x_{t})) ... \exp(-y_{t} \alpha_{s-1} b_{s-1}(x_{t})) \exp(-y_{t} \alpha_{s} b_{s}(x_{t})) =$$

$$\sum_{t=1}^{m} w_{t} |_{s=0} \exp(-y_{t} (\alpha_{1} b_{1}(x_{t}) + ... + \alpha_{s-1} b_{s-1}(x_{t}) + \alpha_{s} b_{s}(x_{t}))) =$$

$$= \sum_{t=1}^{m} \exp(-y_{t} (\alpha_{1} b_{1}(x_{t}) + ... + \alpha_{s-1} b_{s-1}(x_{t}) + \alpha_{s} b_{s}(x_{t})))$$

Получили – после j-й итерации

$$w_t \sim \text{exploss}(y(x_t), a_j(x_t))$$

вес объекта пропорционален ошибке на этом объекте

теперь смотрим на формулу ошибки

$$\sim \sum_{t=1}^{m} w_{t} \exp(-y_{t}\alpha_{s}b_{s}(x_{t}))$$
exploss Ha s-1

exploss Ha s

это просто учёт в весах новых ответов

это обосновывает предложенный способ пересчёта

AdaBoost: пример

в итоге - комбинация классификаторов

Как реализуется минимизация $e_{\scriptscriptstyle W}(b)$

- встроенная весовая минимизация
 - пересэмплирование

AdaBoost: теория

Если на каждом шаге мы можем построить слабый (weak) классификатор:

$$e_{\scriptscriptstyle W}(b_{\scriptscriptstyle j}) \leq 0.5 - arepsilon, \, arepsilon > 0$$
, то ошибка ансамбля

$$a(x) = \operatorname{sgn}\left(\sum_{j=1}^{s} \alpha_j b_j(x)\right)$$

на обучении оценивается как

$$e_W(a) = \frac{1}{m} \sum_{t=1}^m I[a(x_t) \neq y(x_t)] \leq \exp(-2\varepsilon^2 s)$$

т.е. всего лишь из предположения, что слабый классификатор на ${\mathcal E}$ лучше случайного

В чём небольшая некорректность в этой фразе?

AdaBoost: минутка кода

model.fit(X, y)

AdaBoost: недостатки

Бустинг плох, когда есть выбросы.

В приведённом примере бустинг плох над логистической регрессией (над стабильными алгоритмами)!

AdaBoost: переобучение / уменьшение ошибки

иногда ошибка на тесте уменьшается даже после обнуления на обучении

Теория без доказательства

Теорема. Чем больше зазор (margin), тем лучше обобщение.

идея: если большой, то алгоритм можно аппроксимировать простым

Теорема. При бустинге зазор увеличивается.

идея: аналогично, как смотрели на ошибку

Ручные методы ансамблирования

Метод Ефимова

$$f(a_1,a_2)$$

	$a_1 \le 0.1$	$0.1 < a_1 < 0.9$	$a_1 \ge 0.9$
$a_2 \le 0.1$	$\min(a_1, a_2)$	$\min(a_1, a_2)$	$0.55a_1 + 0.45a_2$
$0.1 < a_2 < 0.9$	$0.1a_1 + 0.9a_2$	$mean(a_1, a_2)$	$0.9a_1 + 0.1a_2$
$a_2 \ge 0.9$	$0.75a_1 + 0.25a_2$	$\max(a_1, a_2)$	$\max(a_1, a_2)$

Amazon Employee Access Challenge

Литература

A. Liaw, M. Wiener Classification and Regression by randomForest // R News (2002) Vol. 2/3 p. 18.

http://www.bios.unc.edu/~dzeng/BIOS740/randomforest.pdf

И. Генрихов О критериях ветвления, используемых при синтезе решающих деревьев // Машинное обучение и анализ данных, 2014, Т.1, №8, С.988-1017

http://jmlda.org/papers/doc/2014/no8/Genrikhov2014Criteria.pdf