Super Learning for Combining Dynamic Predictions for Decision-Making

Dimitris Rizopoulos¹ and Jeremy M.G. Taylor²

¹Department of Biostatistics, Erasmus Medical Center Rotterdam ²Department of Biostatistics, University of Michigan

d.rizopoulos@erasmusmc.nl
jmgt@umich.edu

@drizopoulos

Super Learning for Dynamic Predictions

1 Background & Motivation

Setting: Follow-up studies

- > multiple longitudinal outcomes
 - * biomarkers
 - * patient parameters
 - * patient reported outcome scores
- > one or multiple endpoints
 - * relapse of disease
 - * requirement for intervention
 - * death

Obtain accurate predictions for the (cumulative) risk of an event to guide decision making

Using the available longitudinal information

University of Michigan Prostatectomy Data

- ⇒ 3634 PCa patients followed-up in 1996–2013
 - * aged 40 to 84 years with clinically localized cT1 to cT3 disease
 - * received radical prostatectomy
- > We excluded patients who
 - * had Gleason score ≤ 4
 - * initiated any ADT more than 1 year before treatment
- baseline variables: PSA, Gleason, T-stage, age, race, gland volume, perineural invasion, planned adjuvant therapy

1 Background & Aim (cont'd)

University of Michigan Prostatectomy Data

Patients remain at risk of metastasis

- ⊳ Follow-up
 - * PSA levels at frequent intervals
 - * when PSA increases, physicians consider Salvage Therapy (ST)
 - * ST androgen deprivation therapy, radiation therapy, chemotherapy, and combinations

University of Michigan Prostatectomy Data

Use the longitudinal PSA & baseline covariates to predict the risk of metastasis

• Two main frameworks to obtain such predictions

▶ Landmarking

- * a series of Cox models at different follow-up times
- * last value of the biomarker as a baseline covariate
- * Breslow estimator of survival probabilities

▶ Joint Models

- * complete specification of the joint distribution of the outcomes
- * direct derivation of conditional risk probabilities

Landmarking

▶ Advantages

- * easier to use, available in standard software
- * can generalize to multiple biomarkers without (much) extra computational cost

▶ Disadvantages

- * predictions not consistent
- * not plausible LOCF for biomarkers
- * does not account for measurement error and endogeneity
- * not valid causal interpretation

Joint Models

⊳ Advantages

- * consistent predictions
- * accounts for measurement error and endogeneity
- * biomarkers follow a trajectory
- * valid causal interpretation

▷ Disadvantages

- * computationally intensive
- * sensitive to modeling assumptions

- Sensitive to modeling assumptions
 - ▶ Longitudinal profiles shape
 - * non-linear subject-specific trajectories
 - ▶ Functional form
 - * how to link the hazard of the event with the longitudinal outcome

2 Joint Models

Joint Models Framework - Basic Idea

- ▶ Use a model to describe the subject-specific longitudinal trajectories
- ▶ Use these trajectories in a hazard model for the event
- ▶ Random effects explain the association

More formally

$$\begin{cases} h_{i}(t \mid \mathcal{H}_{i}(t, \boldsymbol{b}_{i})) &= h_{0}(t) \exp\{\boldsymbol{\gamma}^{\top} \boldsymbol{w}_{i} + f(\alpha, \mathcal{H}_{i}(t, \boldsymbol{b}_{i}))\}, \\ \mathcal{H}_{i}(t, \boldsymbol{b}_{i}) &= \{\eta_{i}(s, \boldsymbol{b}_{i}); 0 \leq s \leq t\} \end{cases}$$

$$y_{i}(t) &= \eta_{i}(t, \boldsymbol{b}_{i}) + \varepsilon_{i}(t) \\ &= \boldsymbol{x}_{i}^{\top}(t)\boldsymbol{\beta} + \boldsymbol{z}_{i}^{\top}(t)\boldsymbol{b}_{i} + \varepsilon_{i}(t), \quad \varepsilon_{i}(t) \sim \mathcal{N}(0, \sigma^{2}), \end{cases}$$

$$\boldsymbol{b}_{i} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{D})$$

- In the context of dynamic predictions,
 - > previous research has shown that predictive accuracy is compromised

Advice

- □ use flexible models, e.g., splines in both fixed- and random-effects parts
- > increased computational burden

3 Super Learning

- The selected functional form and time effect for the longitudinal outcome can influence the derived predictions
 - ▷ especially for the survival outcome

How to select between the different functional forms and trajectory shapes?

- The standard answer is to employ information criteria, e.g., DIC, WAIC, ...
- However, the longitudinal information dominates the joint likelihood
 will not be sensitive enough wrt predicting survival probabilities
- In addition, will a single model be the most appropriate

 - b for all follow-up times?

Solution: Super Learning

- > Consider multiple plausible models with different
 - * longitudinal outcomes
 - * assumptions for the longitudinal profiles
 - * functional forms
 - * baseline covariates, interaction terms
 - *
- *▶* Obtain the desired predictions from these models
- ▷ Combine predictions using weights
 - * choice of the weights is important

Solution: Super Learning

> select weights to optimize prediction metric of your choice

▷ account for over-fitting using cross-validation

How it works:

- \triangleright Assume we have a library of L base-learners (models) $\mathcal{L} = \{M_1, \dots, M_L\}$
- hd Specify time t to optimize the dynamic predictions, and a medically-relevant time window Δt
- \triangleright Split \mathcal{D}_n in V-folds
- \triangleright For $v \in \{1, \dots, V\}$, fit the learners in library $\mathcal L$ in $\mathcal D_n^{(-v)}$

How it works:

 \triangleright For the subjects in $\mathcal{D}_n^{(v)}$, not used when fitting the learner, calculate the predictions

$$\hat{\pi}_i^{(v)}(t + \Delta t \mid t, M_l) = \Pr\{T_i^* < t + \Delta t \mid T_i^* > t, \mathcal{H}_i(t), M_l, \mathcal{D}_n^{(-v)}\}\$$

do this for all $v=1,\ldots,V$ to get the *cross-validated predictions*

How it works:

▶ We define the ensemble of cross-validated predictions

$$\hat{\tilde{\pi}}_{i}^{v}(t + \Delta t \mid t) = \sum_{l=1}^{L} \boldsymbol{\varpi}_{l}(t) \hat{\pi}_{i}^{(v)}(t + \Delta t \mid t, M_{l}), \quad v = 1, \dots, V$$

* the weights depend on $t \Rightarrow$ different weights at different follow-up times

How it works:

- \triangleright Select $\varpi_l(t)$ to optimize your *meta-learner* (predictive accuracy metric), e.g.,
 - * Brier Score (*Proper scoring rule*)
 - * Expected Predictive Cross-Entropy (*Proper scoring rule*)
 - * AUC (Not a proper scoring rule)

*

- - * $\widehat{\varpi}_l(t) > 0$ for all $l = 1, \ldots, L$
 - * $\sum_{l=1}^{L} \widehat{\varpi}_l(t) = 1$

How it works:

- \triangleright We obtain $\widehat{\varpi}_l(t)$ using a general-purpose optimization algorithm (e.g., optim() in R)
 - * we can transform to an unconstraint problem using the logistic transformation

4 Choice of the Meta-Learner

We focus on two meta-learners

▶ Brier Score

$$\mathsf{BS}(t+\Delta t,t) = E\left[\left\{\mathbb{I}(T_i^* \leq t + \Delta t) - \pi_i(t+\Delta t \mid t)\right\}^2 \mid T_i^* > t\right]$$

▷ Expected Predictive Cross-Entropy

$$\mathsf{EPCE}(t + \Delta t, t) = E\bigg\{ -\log \Big[p\big\{ T_i^* \mid t < T_i^* \le t + \Delta t, \mathcal{Y}_i(t) \big\} \Big] \bigg\}$$

5 UM Data Analysis

A library \mathcal{L} with twelve joint models

PSA models

 $\triangleright M_{l1}$: linear subject-specific time trends that change after salvage

 $hd M_{l2}$: the same as M_{l1} + covariates

 $\triangleright M_{l3}$: nonlinear subject-specific time trends that change after salvage

 $\triangleright M_{l4}$: the same as M_{l3} + covariates

• Baseline covariates: age at surgery, Charlson's index, Gleason score, and baseline PSA

5 UM Data Analysis (cont'd)

A library \mathcal{L} with twelve joint models

Metastasis models

 $\triangleright M_{s1}$: value of $\log(\mathsf{PSA}+1)$

 $\triangleright M_{s2}$: velocity of $\log(\mathsf{PSA} + 1)$

 $\triangleright M_{s3}$: average $\log(\mathsf{PSA} + 1)$

• Time varying salvage therapy

• Baseline covariates: the same as in the PSA models

5 UM Data Analysis (cont'd)

• We evaluated predictive accuracy in two time intervals

 $\triangleright (4,7]$: 2514 patients at risk; 28 metastasis

 \triangleright (6, 9]: 1914 patients at risk; 16 metastasis

Metrics

- ▷ Integrated Brier Score

5 UM Data Analysis (cont'd)

Results Summary

- - * no substantive differences between the models
 - * for both time intervals
- ▷ Expected Predictive Cross-Entropy
 - * more sensitive in quantifying differences between models
 - * stacking resulted in smaller cross-entropy values
 - * the models with nonlinear time trends and the velocity and average PSA functional form dominated the weights

6 Software & Extensions

- Available in JMbayes2
 - > cross-validated fitting of models
- Causal inference
 - ▷ established theory for combining super learners with Targeted Maximum Likelihood

Thank for your attention!

https://www.drizopoulos.com/

Brier Score with IPCW

$$\widehat{\mathsf{BS}}_{IPCW}(t+\Delta t,t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{W}_{i}(t+\Delta t,t) \Big\{ \mathbb{I}(T_{i} \leq t+\Delta t) - \hat{\tilde{\pi}}_{i}^{v}(t+\Delta t \mid t) \Big\}^{2}$$

where

$$\widehat{W}_i(t + \Delta t, t) = \frac{\mathbb{I}(t < T_i \le t + \Delta t)\delta_i}{\widehat{G}(T_i \mid t)} + \frac{\mathbb{I}(T_i > t + \Delta t)}{\widehat{G}(t + \Delta t \mid t)},$$

with $\hat{G}(\cdot)$ denoting Kaplan-Meier estimate of the censoring distribution $\Pr(C_i > t)$

Brier Score with model-weights

$$\begin{split} \widehat{\mathsf{BS}}_{model}(t + \Delta t, t) &= \frac{1}{n_t} \sum_{i:T_i > t} \delta_i \mathbb{I}(T_i \le t + \Delta t) \Big\{ 1 - \hat{\bar{\pi}}_i^v(t + \Delta t \mid t) \Big\}^2 \\ &+ \mathbb{I}(T_i > t + \Delta t) \Big\{ \hat{\bar{\pi}}_i^v(t + \Delta t \mid t) \Big\}^2 \\ &+ (1 - \delta_i) \mathbb{I}(T_i \le t + \Delta t) \Big[\hat{\bar{\pi}}_i^v(t + \Delta t \mid T_i) \Big\{ 1 - \hat{\bar{\pi}}_i^v(t + \Delta t \mid t) \Big\}^2 \\ &+ \Big\{ 1 - \hat{\bar{\pi}}_i^v(t + \Delta t \mid T_i) \Big\} \Big\{ \hat{\bar{\pi}}_i^v(t + \Delta t \mid t) \Big\}^2 \Big] \end{split}$$

IPCW

- ▷ Advantage: it provides unbiased estimates even when the model is misspecified
- Disadvantage: it requires that the model for the weights is correct
 - * in settings where joint models are used, challenging because censoring may depend on the longitudinal outcomes in a complex manner

- Model-based Weights

 - ▷ *Disadvantage:* it requires that the model is well calibrated