August 7, 2019 統合データベース講習会: AJACS番町3

【How to use1】 MicrobeDB.jpの使い方

森宙史
Hiroshi Mori
国立遺伝学研究所
情報研究系

http://microbedb.jp/

Text	Analysis	s Statistics	
			Q Search
		hot spring	
	•	Enterococcus faecalis Streptomyces avermitilis	
	Gene:		
	ID:	29	

2011年から公開している 原核生物を主とした微生物の統合データベース(DB)

MicrobeDB.jp v.3 project members

- National Institute of Genetics: (Genome, Metagenome, Ontology)
 Ken Kurokawa, Yasukazu Nakamura, Hiroshi Mori,
 Takatomo Fujisawa, Eli Kaminuma (TMDU), Koichi Higashi
- National Institute of Basic Biology: (Ortholog)
 Ikuo Uchiyama, Hirokazu Chiba (DBCLS), Hiroyo Nishide
- Tokyo Institute of Technology: (Metagenome) Takuji Yamada, Zenichi Nakagawa
- Chiba University: (Fungal & Bacterial culture collection info.)
 Hiroki Takahashi, Takashi Yaguchi

Technical adviser:

DBCLS (especially Shuichi Kawashima, Toshiaki Katayama)

特化型のDBでは、異なる種類のデータ(ゲノムとメタゲノム等)を 関連付けて検索することは困難 → 統合DBの出番 4 微生物統合DB MicrobeDB.jpの基本的な開発方針

微生物統合DB≠微生物の百科事典

統合DBは、何らかの軸で多様なデータを繋いで整理したDB

異なる種類のデータ間を関連付けることを重視している

MicrobeDB.jpは、主に原核生物の遺伝子・系統・環境に関する様々なデータを、ゲノム配列を軸に統合化したDB

微生物統合DB MicrobeDB.jpの基本的な開発方針

- 遺伝子と系統のリンク
 - 系統が持つ遺伝子機能的な特徴を推定
- ・ 遺伝子と表現型のリンク
 - 表現型を担う遺伝子を推定
- 遺伝子と環境のリンク
 - その環境で生息するために必要な遺伝子機能を推定
- 系統と環境のリンク
 - その環境に適応した系統を推定

既存のデータにこれらのリンクを付与し、リンクから微生物に関する新たな知見を得られるDBを目指す

配列類似性 (進化的類縁性) を基にしたデータの統合化

概念 (Ontology) を基にしたデータの統合化

Ontology is a structured controlled vocabulary to describe properties and types of resources.

例: 森とは何か? 林と何が違うのか?

データの由来が異なれば、同じ語彙でも意味が異なる場合がある それをOntologyを用いて統一する

MEO (Microbes/Metagenomes Environmental Ontology)

MSV (Metagenome Sample Vocabulary)

MCCV (Microbial Culture Collection Vocabulary)

MPO (Microbial Phenotype Ontology)

MBGD Ontology

PDO (Pathogenic Disease Ontology)

O BioPortal

Most of them can be obtained from

Microbes/Metagenomes Environmental Ontology (MEO) ver. 0.9

Gather microbial habitat related terms from INSDC DRA/BioSample, Japanese Culture Collections (JCM & NBRC).

Class:

2,381

MicrobeDB.jp version 2 data

Data category	Data sources	Ontologies
Genome	RefSeq Prokaryotes	SO, FALDO, NCBITAX, INSDCO
Genome Metadata	INSDC BioSample	MPO, MEO, MSV, PDO, CSSO
Ortholog	MBGD	ORTHO
Culture collection	JCM, NBRC	MCCV, MPO
Metagenome	INSDC DRA	MEO, MSV

MicrobeDB.jp version 2 data

Data category	Number of entry
Genome data	16,983 taxa
Culture collection strain data	16,671 strains
Microbiome metadata	173,359 samples
Microbiome taxonomic composition data	60,551 samples
Microbiome functional composition data	4,048 samples

16S rRNA gene amplicon sequencing analysis (メタ16S解析)

DNA extraction

PCR amplification

DNA Sequencing

Togo picture gallery by DBCLS is licensed under a Creative Commons Attribution 2.1 Japan license (c)

Pre-analysis (Remove Primer, Chimera etc.)

Taxonomic assignment and Comparison between samples

Who's there?

Metagenomic sequencing analysis (メタゲノム解析)

メタ16S解析

利点

- ■安価かつ少量のDNAから系統組成が得られる
- •reference配列に依存しない解析も可能
- ・マシンパワーは少なくて済み、解析ツールも普及(QIIME・mothur等)

欠点

- PCRバイアスの存在
- 種以下は分解能に問題あり
- ■個々の系統の機能が不明

メタゲノム解析

利点

- ■系統組成と遺伝子機能組成が得られる
- 実験によるバイアスが比較的少ない
- ・優占系統のドラフトゲノムの構築(条件が良ければ可能)

欠点

- reference配列に依存した解析
- •目的依存で解析手法が変化し、マシンパワーも必要

Microbiome data in DRA/ERA/SRA

2014 (MicrobeDB.jp ver.2)

• Microbiomes:

173,359 (samples)

amplicon:metagenome = 7:1

2018

Microbiomes:

1,117,378

ecological microbiomes:

433,491

air:

4,109

• marine:

67,393

• soil:

146,784

host-associated microbiomes: 618,575

• human:

318,000

· mouse:

55,600

MicrobeDB.jp's 16S rRNA gene amplicon/Metagenome analysis workflow ver. 2

ID Mapping

Ontology Manual/Semiautomatic Annotation

Sequence-based analyses

Semantic Web技術を用いた、データの持つ意味の共通性を基にした統合

RDF (Resource Description Framework)
Data model which uses Triples

(Subject - Predicate - Object)

URI node can be linked to other nodes

- どの分野のデータもファイル形式が同じ
- IDがURIなので、Web上で一意
- ・後から追加も容易
- データが持つ意味やデータ間の関係性を記述可能

https://github.com/AJACS-training/AJACS77/tree/master/02_mori

MicrobeDB.jp

Home

Document

Analysis

e.g. hot spring, Enterococcus faecalis, psbA

Search

Integrating and representing genome, metagenome, taxonomy resources and the analysis datasets with Semantic Web Technologies.

Database statistics

Total number of Metagenomic samples (SRA/SRS):

- with taxonomic analysis results:

- with functional analysis results:

Total number of Assembled Genomes (RefSeq/Genbank):

Total number of Strains (JCM/NBRC):

Total number of Environmental terms in ontology (MEO):

173,359 samples

60,551 samples

4,048 samples

16,983 taxa

16,671 strains

2,381 terms

Show graph

MicrobeDB.jp ポータル

例) メタゲノムサンプルのファセット検索から比較解析

環境情報、pH、温 度、Host情報によ るファセット検索

VITCOMIC2

http://vitcomic.org

VITCOMIC2 is a visualization tool for the phylogenetic composition of microbial communities based on 16S rRNA gene amplicons and metagenomic shotgun sequencing.

Try VITCOMIC2

Metagenome/16S rRNA gene Amplicon Sequencing FASTA/FASTQ file: 選択	ファイルが選択されていません。
File format: ○ FASTA flat ○ FASTQ flat ○ FASTA gzipped ○ FASTQ gzipped	
Conduct 16S rRNA gene Copy number normalization?: ONO Yes	
Conduct 16S rRNA gene Assembly? (Shotgun metagenome only): No Yes	
ID: (use [A-Za-z0-9])	
Email:	
upload&calculate clear	

How to use

1. Input data

Both of a FASTA/FASTQ file and gzipped FASTA/FASTQ file are acceptable for the input data in the VITCOMIC2. Sample 16S rRNA gene Amplicon sequencing fastq data.

2. File format

File format is a file format identifier of your FASTA/FASTQ file. To reduce the size of your file, we strongly recommend that you compress your file with gzip. If you don't compress your file, please choose "flat file".

(Mori H et al. 2018, BMC Syst Biol)

LEA http://leamicrobe.jp/ Visualize microbiome composition data

数万の微生物群集構造データを 使用した機械学習によって、 「環境」の概念(トピック)を抽出

0 0

「環境」トピックと数万サンプルを同時に可視化

MicrobeDB.jpのメタ16S数万サンプルとの比較により、新規サンプルの「座標」を取得できる