

The QuantEcon MATLAB-Python-Julia Cheat Sheet

Victoria Gregory

CONTENTS

1	Creating Vectors	2
2	Creating Matrices	3
3	Manipulating Vectors and Matrices	4
4	Accessing vector/matrix elements	5
5	Mathematical Operations	6
6	Sum/Maximum/Minimum	7
7	Input and Output	8

This document summarizes commonly-used, equivalent commands across MATLAB, Python, and Julia

CONTENTS 1

ONE

CREATING VECTORS

Operation	MATLAB	Python	Julia
Create a row vector	A = [1 2 3]	A = np.array([1 2 3])A = [1 2 3]
Create a column vector	A = [1; 2; 3]		A = [1; 2; 3]
Sequence starting at j ending at n, with difference k between points	A = j:k:n		A = j:k:n
Linearly spaced vector of k points	A = linspace(1, 5, k)	:)	A = linspace(1, 5, k)

TWO

CREATING MATRICES

Operation	MATLAB	Python	Julia
Create a matrix	A = [1 2; 3 4]		A = [1 2; 3 4]
Create a 2 by 2 matrix of zeros	A = zeros(2, 2)		A = zeros(2, 2)
Create a 2 by 2 matrix of ones	A = ones(2, 2)		A = ones(2, 2)
Create a 2 by 2 identity matrix	A = eye(2, 2)		A = eye(2, 2)
Create a diagonal matrix	A = diag([1 2 3])		A = diagm([1; 2; 3])

THREE

MANIPULATING VECTORS AND MATRICES

Operation	MATLAB	Python	Julia
Transpose	A'		A'
Concatenate horizontally	A = [[1 2] [1 2]] or A = horzcat([1 2],	[1 2])	A = [[1 2] [1 2]] or A = hcat([1 2], [1 2])
Concatenate vertically	A = [[1 2]; [1 2]] or A = vertcat([1 2],	[1 2])	A = [[1 2]; [1 2]] or A = vcat([1 2], [1 2])
Reshape (to 5 rows, 2 columns)	A = reshape(1:10, 5,	, 2)	A = reshape(1:10, 5, 2)
Convert matrix to vector	A(:)		A[:]
Flip left/right	fliplr(A)		flipdim(A, 2)
Flip up/down	flipud(A)		flipdim(A, 1)
Repeat matrix (3 times in the row dimension, 4 times in the column dimension)	repmat(A, 3, 4)		repmat(A, 3, 4)

FOUR

ACCESSING VECTOR/MATRIX ELEMENTS

Operation	MATLAB	Python	Julia
Access one element	A(2, 2)		A[2, 2]
Access specific rows	A(1:4, :)		A[1:4, :]
Access specific columns	A(:, 1:4)		A[:, 1:4]
Remove a row	A([1 2 4], :)		A[[1, 2, 4], :]
Diagonals of matrix	diag(A)		diag(A)

MATHEMATICAL OPERATIONS

Operation	MATLAB	Python	Julia
Vector dot product	dot(A, B)		dot(A, B)
Matrix multiplication	A*B		A*B
Element-wise matrix multi- plication	A.*B		A.*B
Matrix to a power	A^2		A^2
Matrix to a power, element- wise	A.^2		A.^2
Inverse of a matrix	inv(A) or A^(-1)		inv(A) or A^(-1)
Determinant of a matrix	det(A)		det(A)
Eigenvalues and eigenvectors	[vec, val] = eig(A)		val, vec = eig(A)
Euclidean norm	norm(A)		norm(A)

SIX

SUM/MAXIMUM/MINIMUM

Operation	MATLAB	Python	Julia
Sum/maximum/minimum of each column	sum(A, 1) max(A, [], 1) min(A, [], 1)		<pre>sum(A, 1) maximum(A, 1) minimum(A, 1)</pre>
Sum/maximum/minimum of each row	sum(A, 2) max(A, [], 2) min(A, [], 2)		<pre>sum(A, 2) maximum(A, 2) minimum(A, 2)</pre>
Sum/maximum/minimum of entire matrix	<pre>sum(A(:)) max(A(:)) min(A(:))</pre>		sum(A) maximum(A) minimum(A)
Cumulative sum/maximum/minimum by row	cumsum(A, 1) cummax(A, 1) cummin(A, 1)		cumsum(A, 1) cummax(A, 1) cummin(A, 1)
Cumulative sum/maximum/minimum by column	cumsum(A, 2) cummax(A, 2) cummin(A, 2)		cumsum(A, 2) cummax(A, 2) cummin(A, 2)

SEVEN

INPUT AND OUTPUT

Operation	MATLAB	Python	Julia
Opening a file	fopen('file')	open('file')	open('file')