# Unit 1 Introduction 1.1 Network Models

## Circuit and Packet Switching







## Circuit and Packet Switching

- Circuit switching
  - Legacy phone network
  - Single route through
     sequence of hardware
     devices established when
     two nodes start
     communication
  - Data sent along route
  - Route maintained until communication ends

- Packet switching
  - Internet
  - Data split into packets
  - Packets transported independently through network
  - Each packet handled on a best efforts basis
  - Packets may follow different routes







3



#### Comparison table

| Circuit Switching                           | Packet Switching(Virtual Circuit type)                   | Packet<br>Switching(Datagram type)   |
|---------------------------------------------|----------------------------------------------------------|--------------------------------------|
| Dedicated path                              | No Dedicated path                                        | No Dedicated path                    |
| Path is established for entire conversation | Route is established for entire conversation             | Route is established for each packet |
| Call setup delay                            | call setup delay as well as packet transmission delay    | packet transmission delay            |
| Overload may block call setup               | Overload may block call setup and increases packet delay | Overload increases packet delay      |
| Fixed bandwidth                             | Dynamic bandwidth                                        | Dynamic bandwidth                    |
| No overhead bits after call setup           | overhead bits in each packet                             | overhead bits in each packet         |

#### **Protocols**

- A protocol defines the rules for communication between computers
- Protocols are broadly classified as connectionless and connection oriented
- Connectionless protocol
  - Sends data out as soon as there is enough data to be transmitted
  - E.g., user datagram protocol (UDP)
- Connection-oriented protocol
  - Provides a reliable connection stream between two nodes
  - Consists of set up, transmission, and tear down phases
  - Creates virtual circuit-switched network
  - E.g., transmission control protocol (TCP)reliable



## Encapsulation

- A packet typically consists of
  - Control information for addressing the packet: header and footer
  - Data: payload
- A network protocol N1 can use the services of another network protocol N2
  - A packet p1 of N1 is encapsulated into a packet p2 of N2
  - The payload of p2 is p1
  - The control information of p2 is derived from that of p1



## Network Layers

- Network models typically use a stack of layers
  - Higher layers use the services of lower layers via encapsulation
  - A layer can be implemented in hardware or software
  - The bottommost layer must be in hardware
- A network device may implement several layers
- A communication channel between two nodes is established for each layer
  - Actual channel at the bottom layer
  - Virtual channel at higher layers

## Intermediate Layers

- Link layer
  - Local area network: Ethernet, WiFi, optical fiber
  - 48-bit media access control (MAC) addresses
  - Packets called frames
- Network layer
  - Internet-wide communication
  - Best efforts
  - 32-bit internet protocol (IP) addresses in IPv4
  - 128-bit IP addresses in IPv6
- Transport layer
  - 16-bit addresses (ports) for classes of applications
  - Connection-oriented transmission layer protocol (TCP)
  - Connectionless user datagram protocol (UDP)

## **Internet Packet Encapsulation**

**Application Application Layer Packet** TCP TCP Data Transport Layer Header IP IP Data **Network Layer** Header Frame Frame Frame Data Link Layer Header Footer

## Internet Packet Encapsulation

Data link frame

IP packet

TCP or UDP packet

Application packet

Data link header
TCP or UDP
Application
packet



### The OSI Model

- The OSI (Open System) Interconnect) Reference Model is a network model consisting of seven layers
- Created in 1983, OSI is promoted by the International Standard Organization (ISO)



#### Network Interfaces

- Network interface: device connecting a computer to a network
  - Ethernet card
  - WiFi adapter
- A computer may have multiple network interfaces
- Packets transmitted between network interfaces
- Most local area networks, (including Ethernet and WiFi) broadcast frames
- In regular mode, each network interface gets the frames intended for it
- Traffic sniffing can be accomplished by configuring the network interface to read all frames (promiscuous mode)

## 1.2 The Link Layer: Ethernet

#### Dealing with Collisions



## The Format of an Ethernet Frame

| Bits         | Field                             |         |
|--------------|-----------------------------------|---------|
| 0 to 55      | Preamble (7 bytes)                |         |
| 56 to 63     | Start-of-Frame delimiter (1 byte) |         |
| 64 to 111    | MAC destination (6 bytes)         | Header  |
| 112 to 159   | MAC source (6 bytes)              |         |
| 160 to 175   | Ethertype/Length (2 bytes)        |         |
| 176 to 543+  | Payload (46-1500 bytes)           | Payload |
| 543+ to 575+ | CRC-32 checksum (4 bytes)         | Factor  |
| 575+ to 671+ | Interframe gap (12 bytes)         | Footer  |

#### **Hubs and Switches**



## Switch

- A switch is a common network device
  - Operates at the link layer
  - Has multiple ports, each connected to a computer
- Operation of a switch
  - Learn the MAC address of each computer connected to it
  - Forward frames only to the destination computer



## **Combining Switches**

- Switches can be arranged into a tree
- Each port learns the MAC addresses of the machines in the segment (subtree) connected to it
- Fragments to unknown MAC addresses are broadcast
- Frames to MAC addresses in the same segment as the sender are ignored



## 4.2 The Link Layer: MAC Addresses

- Most network interfaces come with a predefined MAC address
- A MAC address is a 48-bit number usually represented in hex
  - E.g., 00-1A-92-D4-BF-86
- The first three octets of any MAC address are IEEE-assigned Organizationally Unique Identifiers
  - E.g., Cisco 00-1A-A1, D-Link 00-1B-11, ASUSTek 00-1A-92
- The next three can be assigned by organizations as they please, with uniqueness being the only constraint
- Organizations can utilize MAC addresses to identify computers on their network
- MAC address can be reconfigured by network interface driver software

## MAC Address Filtering

- A switch can be configured to provide service only to machines with specific MAC addresses
- Allowed MAC addresses need to be registered with a network administrator
- A MAC spoofing attack impersonates another machine
  - Find out MAC address of target machine
  - Reconfigure MAC address of rogue machine
  - Turn off or unplug target machine
- Countermeasures
  - Block port of switch when machine is turned off or unplugged
  - Disable duplicate MAC addresses

## Viewing and Changing MAC Addresses



## 1.2 The Link Layer: ARP

- The address resolution protocol (ARP) connects the network layer to the data layer by converting IP addresses to MAC addresses
- ARP works by broadcasting requests and caching responses for future use
- The protocol begins with a computer broadcasting a message of the form

who has <IP address1> tell <IP address2>

 When the machine with <IP address1> or an ARP server receives this message, its broadcasts the response

<IP address1> is <MAC address>

- The requestor's IP address <IP address2> is contained in the link header
- The Linux and Windows command arp a displays the ARP table

| Internet Address | Physical Address  | Туре    |
|------------------|-------------------|---------|
| 128.148.31.1     | 00-00-0c-07-ac-00 | dynamic |
| 128.148.31.15    | 00-0c-76-b2-d7-1d | dynamic |
| 128.148.31.71    | 00-0c-76-b2-d0-d2 | dynamic |
| 128.148.31.75    | 00-0c-76-b2-d7-1d | dynamic |
| 128.148.31.102   | 00-22-0c-a3-e4-00 | dynamic |
| 128.148.31.137   | 00-1d-92-b6-f1-a9 | dynamic |



## **ARP Spoofing**

- The ARP table is updated whenever an ARP response is received
- Requests are not tracked
- ARP announcements are not authenticated
- Machines trust each other
- A rogue machine can spoof other machines

## ARP Poisoning (ARP Spoofing)

- According to the standard, almost all ARP implementations are stateless
- An arp cache updates every time that it receives an arp reply... even if it did not send any arp request!
- It is possible to "poison" an arp cache by sending gratuitous arp replies
- Using static entries solves the problem but it is almost impossible to manage!

