10. Übung - Programmierung

Hoare-Kalkül

SS 18

Ziel:

Eigenschaften imperativer Programme beweisen

Behauptung:

Verifikationsformel: $\{P\}$ A $\{Q\}$ \Rightarrow Wenn Vorbedingung P gilt und Programmstück A terminiert, gilt anschließend Nachbedingung Q \Rightarrow Je nach Kontext axiomatische Semantik von C_0 , Schnittstellenbeschreibung eines existierenden oder Spezifikation eines noch zu schreibenden Programms A

Axiome

- \Rightarrow Gültige Implikationen $R \Rightarrow P$
- \Rightarrow Zuweisungsaxiome $\{P_{\tau}^{x}\}$ $x = \tau$ $\{P\}$

Beweis von Programmeigenschaften

- ⇒ leite mittels Regeln aus der Verifikationsformel des Programmes einen Beweisbaum ab
- \Rightarrow sind die Blätter nur gültige Implikationen und Zuweisungen ist die Ausgangsformel gültig

Regeln

► Sequenzregel SR

Regeln

Sequenzregel SR

► Compregel CR

Regeln

Sequenzregel SR Compregel CR

► Alternativregel A1, A2

Regeln

Sequenzregel SR Compregel CR Alternativregel A1, A2

▶ Iterationsregel IR

Regeln

Sequenzregel SR Compregel CR Alternativregel A1, A2 Iterationsregel IR

Konsequenz (stärkere VB, schwächere NB)

SI...Schleifeninvariante

- SI alle Bedingung die vor und nach der Schleife gelten müssen
- $ightharpoonup SI = X \wedge Y$

X ...Zusammenhang der Variablen in A

Y ...Randbedingungen für die Variablen in A, gelten vor und nach der Schleife

► *II* gilt nach der Schleife nicht mehr

