

Diagrama de Classes

Disciplina: Tópicos em Sistemas de Informação

Prof. Me. Fernando Roberto Proença

Diagrama de Classes

- Diagrama mais utilizado da UML
- Composto por
 - Classes Cada classe com seus atributos e métodos
 - Associações Relacionamento entre as classes
- Serve de apoio para a maioria dos outros diagramas
- "Ideia" do diagrama Entidade-Relacionamento(DER)
- Reflete a estrutura do código
 - O diagrama de classes é o diagrama mais próximo da implementação.

Diagrama de Classes – Finalidade

- Modelar os elementos de um programa orientado a objetos em tempo de desenvolvimento
 - Classes com seus atributos e métodos
- Modelar os relacionamentos entre classes, de forma mais explícita que aquela do código
 - Associação
 - Agregação (e composição)
 - Herança
 - Dependência

Notação de uma Classe

- Representada através de uma "caixa" com no máximo três divisões.
- Notação utilizada depende do nível de abstração desejado.

Nome da Classe
lista de atributos
Nome da Classe
lista de operações
Nome da Classe
lista de atributos
lista de operações

Notação de uma Classe

Exemplo (classe ContaBancária)

Bons e maus exemplos de Classe

Classes – Atributos

- - □ São as características / propriedades da classe.
 - Na UML, atributos são mostrados com pelo menos seu nome
 - Podem também mostrar seu tipo, valor inicial e outras propriedades.

Classes - Métodos

- 8
- □ São comportamentos (operações) de uma classe.
- Métodos são exibidos com pelo menos seu nome
- □ Podem também mostrar seus parâmetros e valores de retorno.

Classes – Visibilidade

- □ Public (+) Público
- □ Protected (#) Protegido
- □ Private (-) Privado
- □ Package (~) Pacote

Classes - Visibilidade

10

- □ Public (+)
 - Visível para qualquer elemento que possa ver a classe.

Atributos e Métodos Públicos:

 Podem ser acessados por qualquer outra classe do sistema.

Classes – Visibilidade

11

- Protected (#)
 - □ Visível a outros elementos dentro da classe e de subclasses (herança).

Atributos e Métodos Protegidos:

 Só podem ser acessados por uma classe que tenha uma relação de generalização / especialização, independente do pacote.

Classes - Visibilidade

12

- □ Private (-)
 - Visível a outros elementos que estão dentro da classe.

Atributos e Métodos Privados:

- Só são acessíveis dentro do mesmo objeto.
- Normalmente este é o estado inicial dos atributos, depois se necessário, pode ser modificado.

Classes – Visibilidade

13

- □ Package (~)
 - Visível a elementos do mesmo pacote.

Atributos e Métodos Privados:

- Só são acessíveis dentro do mesmo objeto.
- Normalmente este é o estado inicial dos atributos, depois se necessário, pode ser modificado.

Recomendação para estabelecimento de visibilidade

- □ Atributos → privados ou protegidos
 - Princípio da ocultação de informação do paradigma de orientação a objetos
 - Possibilita que atributos herdados ou definidos na classe sejam tratados de maneira uniforme.
- □ Atributos públicos → JAMAIS

Recomendação para estabelecimento de visibilidade

- Métodos → públicos
 - O meio (objeto) externo acessa uma classe através de seus métodos.
 - Necessidades específicas podem justificar o aumento de restrição de visibilidade.

Diagrama de Classes - Relacionamentos

- Relacionamento entre classes
 - É a maneira na qual as classes conectam entre si com o intuito de compartilhar informações e colaborarem umas com as outras para permitir a execução de processos.
- □ Em OO há três tipos de relacionamentos:
 - Especializações/Generalizações (Heranças)
 - Associações
 - Dependências

- □ Generalização / Especialização
 - Relacionamento entre classes mais gerais a outras classes mais específicas onde o elemento mais específico herda as propriedades e métodos do elemento mais geral.
 - Conhecido como relacionamento de **superclasse/subclasse**
 - **Subclasse** (classe derivada ou filha): consiste na classe que herda todos os métodos e atributos de uma classe existente;
 - Superclasse (classe base ou classe mãe): é a classe existente que é herdada por uma outra classe.
 - É implementada como herança em Programação OO.

Diagrama de Classes - Relacionamentos

□ Generalização / Especialização – Exemplo

19

□ Generalização / Especialização – Exemplo

Diagrama de Classes - Relacionamentos

- Associação
 - É uma conexão entre classes.
 - Relacionamentos estruturais entre instâncias e especificam que objetos de uma classe estão ligados a objetos de outras classes, podendo haver troca de informações e compartilhamento de métodos.
 - Ocorre normalmente entre duas classes (binária), entre uma classe com ela mesma (unária) e entre várias classes (ternária/N-ária).
 - "Equivale" aos relacionamentos E-R.

Diagrama de Classes - Relacionamentos

- Associação
 - **Participação**: consiste no **papel** (pode ser uma função ou cargo) de uma determinada classe em um relacionamento com outra classe.
 - Exemplo:

- 23
- Associação
 - **Multiplicidade**: é a quantidade mínima e máxima de objetos que podem ser conectados pela instancia de uma associação.
 - Exemplo:

Diagrama de Classes – Multiplicidade

24

□ Simbologia e Significado

Nome	Simbologia
Apenas um	1
Zero ou muitos	0*
Um ou muitos	1*
Zero, um ou muitos	*
Zero ou um	01
Intervalo específico	ex.: 28

Diagrama de Classes – Multiplicidade

Exemplos de Multiplicidades

Diagrama de Classes – Multiplicidade

Exemplos de Multiplicidades

- □ Uma corrida está associada a, no mínimo, dois velocistas
- □ Uma corrida está associada a, no máximo, seis velocistas.
- □ Um velocista pode estar associado a nenhuma corrida.
- □ Um velocista pode estar associado a várias corridas.

Diagrama de Classes – Multiplicidade

Exemplos de Multiplicidades

Diagrama de Classes – Multiplicidade

Exemplos de Multiplicidades

- □ Um cliente pode estar associado a nenhum pedido.
- □ Um cliente pode estar associado a vários pedidos.
- □ Um pedido está associado a um, e somente um, cliente.

Diagrama de Classes – Conectividade

- □ Corresponde ao tipo de associação entre classes:
 - "muitos para muitos", "um para muitos" e "um para um".

Conectividade	Em um Extremo	No outro Extremo
Um para um	01 1	01 1
Um para muitos	01 1	* 1* 0*
Muitos para muitos	* 1* 0*	* 1* 0*

Diagrama de Classes – Conectividade

Exemplos de Conectividades

Empregado

1 0..1

Empregado

Departamento

Um para um

Um para um

Um para muitos

O..* 1

Empregado

Departamento

Muitos para muitos

O..* 1..*

Prof. Me. Fernando Roberto Proença

31

- Associação Binária
 - Associações entre duas classes
 - Mais comum
 - **□** Exemplo:

Diagrama de Classes - Relacionamentos

- Associação Unária (ou Reflexiva)
 - Ocorre quando uma classe relaciona com si mesmo.
 - **■** Exemplo:

- Associação Ternária ou N-ária
 - Associações que conectam mais de duas classes
 - Úteis para demonstrar associações complexas
 - Devem ser evitadas difíceis de interpretar
 - São representadas por um **losango** para onde convergem todas as ligações de associação

Diagrama de Classes - Relacionamentos

Associação Ternária ou N-ária

Diagrama de Classes - Relacionamentos

- Agregação
 - Qual o significado da palavra Agregação?
 - Reunião de partes homogêneas formando um todo;
 - Sinônimos: junção, acumulação, coesão, aglomeração, anexo, conjunto...
 - Ex.: Em física: Porção de moléculas agrupadas.

37

- Agregação
 - É um tipo especial de associação onde tenta-se demonstrar que as informações de um objeto (objeto-todo) precisam ser complementadas pelas informações contidas em um ou mais objetos de outra classe (objeto-parte)
 - Em uma agregação, um objeto está contido no outro
 - □ Temos a Relação Todo-Parte

Diagrama de Classes - Relacionamentos

- Quando utilizar a Agregação?
 - Deseja-se modelar um relacionamento "todo/parte", em que uma classe representa uma entidade completa (todo), composta de outras entidades (partes).
- Notação da Agregação:
 - Representada como uma linha conectando as classes relacionadas, com um diamante (losango) branco perto da classe que representa o todo.

Agregação – Exemplo

Diagrama de Classes - Relacionamentos

Agregação – Exemplo

41

- Composição
 - Qual o significado da palavra Composição?
 - O que constitui ou forma algo. Ação de compor um todo juntando as partes.
 - Sinônimos: Arranjo, disposição, associação, combinação, constituição, organização, estrutura...
 - Ex.: Composição do sangue, da orquestra, de uma palavra; Exercício de redação escolar.

Diagrama de Classes - Relacionamentos

- Composição
 - É uma forma de agregação onde há
 - Vínculo mais forte entre Objetos-Todo e Objetos-Parte
 - Objetos-Parte têm de pertencer exclusivamente a um Objeto-Todo
 - As partes não podem existir sem o todo
 - Ou seja, o relacionamento entre um elemento (o todo) e outros elementos (as partes), onde as parte só podem pertencer ao todo e são criadas e destruídas com ele.
 - Representada como uma linha conectando as classes relacionadas, com um diamante (losango) pintado de preto perto da classe que representa o todo.

Diagrama de Classes - Relacionamentos

- Associação com propriedades
 - Em uma associação entre classes, a própria associação pode ter propriedades.
 - O conjunto destas propriedades formam uma Classe Associativa.

- Associação com propriedades
 - Em uma associação entre classes, a própria associação pode ter propriedades.
 - O conjunto destas propriedades formam uma Classe Associativa.
- Classe Associativa
 - Produzida quando da ocorrência de associações que possuem multiplicidade muitos (*) em todas as suas extremidades.
 - □ Classe para armazenar os atributos transmitidos pela associação.

Diagrama de Classes - Relacionamentos

Classe Associativa – Exemplo

- Interfaces
 - □ Interfaces são classes abstratas que contêm apenas métodos públicos abstratos.
 - Uma **Interface** é formada por declarações de métodos desprovidos de implementação.
 - Ou seja, apenas assinatura e sem o corpo dos métodos.

Diagrama de Classes - Relacionamentos

□ Interfaces – notação

Diagrama de Classes - Relacionamentos

- Dependência
 - Demonstra certo grau de dependência de uma classe a outra
 - A dependência entre classes indica que os objetos de uma classe usam operações, atributos, variáveis ou argumentos dos objetos de outra classe.
 - Mudança numa classe deverá refletir na outra.

Dúvidas?

51

Prof. Me. Fernando Roberto Proença

fernando.proenca@uemg.br

