Illumina Sequencing Overview: **Library Prep to Data Analysis** Meredith Millis Field Applications Scientist

QB7845

For Research Use Only. Not for use in diagnostic procedures.

Comparing Technologies

q/RT-PCR

q/RT-PCR allows for the analysis of particular variants at specific locations

Benefits

- · High sensitivity
- Capital equipment already found in most labs

Limitations

- Low discovery power
- · Low variant resolution
- Low scalability

Sanger/CE

Sanger/CE is able to interrogate a gene of interest

Benefits

- Cost effective for small stretches of DNA
- Well known technique

Limitations

- Low sensitivity (down to 20%)
 - · Low discovery power
 - Low scalability

Targeted NGS

Targeted NGS allows for simultaneous screening of several hundreds to thousands of genes

Benefits

- Expanded discovery power
- Maintain resolution and high sensitivity
- More data from smaller amounts of DNA and RNA
- Higher throughput with sample multiplexing

Limitations

 May be less cost effective when interrogating a low number of samples

Illumina Sequencing Workflow

Library Prep is Critical for Successful Sequencing

For clustering:

Libraries must have P5 and P7 binding regions on either end of a library

For sequencing:

Libraries must have sequencing primer binding regions

For mixing samples:

Libraries must have a unique index or barcodes sequence

Tools for DNA Library Preparation

Fast or high performance

Mechanical fragmentation workflow

- A. Genomic DNA is fragmented
- B. DNA is end-repaired and phosphorylated
- C. Fragments narrowly size selected

D. A-base added

E. Adapters ligated

F. (only for TruSeq Nano kit) PCR enriches complete libraries

Enzymatic fragmentation workflow

Introducing Illumina DNA Prep, (M) Tagmentation

One DNA prep, multiple solutions

^{*}Demonstrated protocol

New Illumina Tagmentation RNA Enrichment

Bead-linked transposome extended to RNA Enrichment

Illumina RNA Library Prep WITH ENRICHMENT (L) TAGMENTATION

Significant reduction in library prep steps allows users to focus their efforts elsewhere

Single hybridization workflow allows for faster sample processing

Unique Dual Indices eliminates sample "cross-talk" and supports higher output Illumina sequencing systems with 384 indices

Panel modularity allows users to build upon their standardized workflows with additional panels

Introduction to the new Ilumina RNA library prep suite

	1 Illumina Stranded Total RNA Prep Ligation with Ribo-Zero Plus	2 Illumina Stranded mRNA Prep Ligation	3 Illumina RNA Prep Enrichment (L) Tagmentation			
Detection	Whole transcriptome (coding & non-coding)	Coding transcriptome with Poly A tail	Targeted coding region			
FFPE compatible	✓		\checkmark			
Turn-around time*	<8 hours	<8 hours	~9.5 hours			
Minimum Input*	← 10ng>					
Multiplexing*	← Up to 384 UDIs →					
Automation		Automation Ready>				
Additional Features	Includes Ribo-Zero Plus for rRNA depletion of Human, Mouse, Rat, Bacteria and Globin		Compatible with Illumina Exome			
*Preliminary Specs						

The new Illumina stranded mRNA and Total RNA ligation prep

Expanding on TruSeq™'s expectational data quality

TruSeq stranded Total RNA data quality

High data quality across replicates and runs on even the most challenging samples (FFPE)

Excellent coverage across the top 1000 expressed transcripts in both tumor and normal tissue

Illumina stranded mRNA and Total RNA advancements

<8-hour workflow

With less than four hours of hands-on time, users can achieve greater lab efficiency

Multi-species depletion

Single-tube rRNA depletion provides an additional level of flexibility in going from human, mouse, rat, bacteria, and epidemiology samples

Higher throughput

Decrease sequencing costs by loading up to 384 samples on a single NovaSeq[™] 6000 S4 Flow Cell using the newly available 384 unique dual indexes

Illumina Sequencing Workflow

Illumina Sequencing Portfolio

MiSeq System

PE300 | **75% > Q30**

0.3–15 | gigabases

1–25 million | clusters

MiSeq Offers Scalable Sequencing

1 Million Reads 4 Million Reads 15 Million Reads 25 Million Reads **MiSeq Core Consumables Core Consumables Core Consumables Core Consumables Version 2 Nano Version 2 Micro** Version 2 **Version 3** • 500 cycles (Nano) • 300 cycles (Micro) • 500 cycles • 600 cycles • 300 cycles (Nano) • 300 cycles • 150 cycles • 150 cycles

NextSeq 550 has Tunable Output, High Data Quality, and Array Capabilities

High-Output

Up to 120 Gb 400M clusters PF 1x75 bp to 2x150 bp

Mid-Output

Up to 40 Gb 130M clusters PF 2x75 bp to 2x150 bp

MethylationEPIC and CytoSNP 850K

Clinically relevant content on arrays

SBS chemistry

90% of all NGS data are generated on an Illumina platform

High accuracy

High quality

DRAGEN™ pipelines on BaseSpace™

Industry-leading accuracy and speed

Variants include indels, small variants, and CNVs

In the cloud with BaseSpace and on premises with a server

NextSeq 1000/2000 Configurations

NextSeq 1000

\$210K | Now Available

NextSeq 1000

120_{GB}

Max output (100/200/300 cycles)

Field

Upgradeable

To NextSeq 2000 \$150K

NextSeq 2000

\$335K | Now Available

P2 Flow Cell 120gB

Max output (100/200/300 cycles)

P3 Flow Cell

330_{GB}

Max output (50/100/200/300 cycles)

Further workflow improvements

Custom primers and custom recipe

DRAGEN Single Cell RNA, DRAGEN Enrichment Somatic FastQ compression and FastQC metrics

Additional workflow features / capabilities and BSSH / control software improvements

NovaSeq 6000

Proven Architecture

Widely published, industry leading platform built for scalability with better data economics, removing barriers to answering your biggest biological questions

Flexible Performance

Highly configurable to support the broadest range of methods at any scale – push your research further through cutting edge applications

Immense Discovery Power

Sequence deeper into the genome, expand into new applications, and run more samples to empower your studies

Streamlined Operation

Designed to increase lab efficiency with a simplified workflow and seamless user experience

NovaSeq System Configurations

	S Prime Flow cell	S1 Flow cell	S2 Flow cell	S4 Flow cell
Lanes	2	2	2	4
Output (based on read length)	80–400 Gb	167–500 Gb	417–1250 Gb	2000–3000 Gb
Single Reads (clusters passing filter)	0.8 B	1.6 B	4.1 B	10 B
Run Time	13–38 hours	13–25 hours	16-36 hours	36-44 hours
Max Read Length	2x250	2x150	2x150	2x150
	Smaller batch size Cost effective sequencing for small projects		Run experiments to scale Enable larger batch sizes and larger cohorts	
Value [†]	Pilot new projects QC and optimize library concentrations		Attractive per sample economics Competitive pricing per Gb and per M reads	
	Rapid turnaround Faster turnaround time for high-throughput projects [‡]		Accessibility to data-rich applications and methods Multi-modal studies, deeper sequencing	

[‡] Turnaround time includes cluster generation and sequencing run time

[†] Compared to Illumina high-throughput portfolio.

What is a Cluster?

Clusters are a group of DNA strands positioned closely together

Each cluster represents thousands of copies of the same DNA strand in a 1–2 micron spot

An image of fluorescently labelled clusters on a flow cell

Single DNA Library

Amplified Clonal Cluster

What is a flow cell?

Cluster generation occurs on a flow cell

A flow cell is a thick glass slide with channels or lanes

Each lane is coated with a lawn of oligos complementary to library adapters

Flow cell Architecture

Random vs Patterned

Random Flow Cell

- HiSeq[™] 2500, MiSeq[™], NextSeq[™], MiniSeq[™]
- Randomly spaced clusters
- Variable Insert Sizes
- Lower Duplication Rates

Patterned Flow Cell

- HiSeq 3K/4K/X, NovaSeq™ 6000, iSeq™ 100
- Defined size and spacing
- Increased Cluster density
- Simplified imaging

Patterned flow cells

Complete control of pitch & feature size

Feature Size

Decrease Feature Size

Random

Patterned

Rigid registration reduces time by skipping template generation

Traditional Cluster Generation

Hybridize Fragment & Extend

Single-stranded DNA libraries are hybridized to primer lawn

Bound libraries are then extended by polymerases

Denature Double-Stranded DNA

Double-stranded molecule is denatured

Original template washed away

Newly synthesized strand is covalently attached to flow cell surface

Single-Stranded DNA

Bridge Amplification

Single-stranded molecule flips over and forms a bridge by hybridizing to adjacent, complementary primer

Hybridized primer extends by polymerases

Bridge Amplification

Double-stranded bridge is formed

Denature Double-Stranded Bridge

Bridge Amplification

Single-stranded molecules flip over to hybridize to adjacent primers

Bridge Amplification

Linearization

dsDNA bridges are denatured

Reverse Strand Cleavage

Reverse strands are cleaved and washed away, leaving a cluster with forward strands only

Read 1 Primer Hybridization

Sequencing primer is hybridized to Read 1 sequencing primer binding site

Illumina Sequencing Workflow

4-Channel SBS Chemistry:

HiSeq, MiSeq

Each of the four DNA bases emits an intensity of a unique wavelength

Collects four images:

 During each cycle, each cluster appears in only one of four images

2-Channel SBS Chemistry:

NextSeq 550, MiniSeq, NovaSeq 6000

- 2-channel SBS uses two images:
- Clusters appearing in green only are T
- Clusters appearing in red only are C
- Clusters appearing in both images are A
- Clusters not present/dark are G

 After imaging, cluster intensities are plotted and bases called accordingly

Illumina Two-Channel SBS Sequencing Technology Technote

A Closer Look At 2-Dye Chemistry

2-channel chemistry

Illumina Chemistry Comparison

- - - - Intermediate chemistry step

4-channel SBS

 Bases are identified using four different fluorescent dyes, one for each base and four images per sequencing cycle

2-channel SBS

 Simplified nucleotide detection by using two fluorescent dyes and two images to determine all four base calls

1-channel SBS

 Base calling uses one fluorescent dye and two images, with chemistry step in between, to determine all four base calls

Sequencing with Paired-Ends

Reference

This is really the best way to do sequencing

Single-reads

This is

... is really

really the

the best

... sequencing

Paired-reads This is (----100 characters-----) sequencing

Assembly becomes easier

Single-stranded template loops over to form a bridge by hybridizing with a lawn primer

Bridges are linearized and the original forward template is cleaved

Sequencing with Index Reads

Single Index Reads

All Platforms

Dual Index Reads

MiSeq, HiSeq 2500, NovaSeq 6000

Dual indexed sequencing utilizes four sequencing reads

Dual Index Reads

iSeq 100, MiniSeq, NextSeq, HiSeq 3000/4000

Illumina Sequencing Workflow

Analysis Overview

Analysis Type Software Outputs Control Software Images, Intensities and Base Calls BaseSpace **Analysis Software Alignments, Variant Detection Visualization** BaseSpace Software Annotation, Filtering, Reports

Questions?

Meredith Millis mmillis@illumina.com

