电子科技大学

UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA

项目1汇报书

尟	目	Packet Tracer 网络仿真	
_			
小	组	第三组	

成 员 黄思宇、汪锦琛、谢秋雨、朱若愚

项目 1. Packet Tracer 网络仿真

目录

1	主题	3	3
2	目标		3
3	方法		3
4	设计需	求3	3
5	IP 地址	分配方案 4	4
5. 1	拓扌	卜部署 4	4
	5.1.1	拓扑结构	4
	5.1.2	设备选择和线路使用5	5
5. 2	地均	止规划 5	5
	5.2.1	计算步长5	5
	5.2.2	分配地址	5
	5.2.3	子网聚合	5
	5.2.4	路由聚合	5
6	仿真		7
6. 1	静る	S路由配置 7	7
	6.1.1	A 楼	7
	6.1.2	B 楼	9
	6.1.3	C 楼10	C
	6.1.4	D 楼10	C
6. 2	测证	<u> </u>	1
	6.2.1	子网内部测通11	1
	6.2.2	子网间测通12	2
7	扩展内容	容	3
7. 1	VLAN		3
7. 2	B2 移	动上网15	5
7. 3	防り	と墙17	7
8	任务完成		7
9	总结		3

1 主题

使用 Packet Tracer 软件,实现一个简单的校园互联网。

2 目标

- IP 网络规划,根据需求为每个子网分配合适的 IP 子网,为主要的计算机和路由器分配 IP 地址。
- IP 网络仿真配置,在 Packet tracer 软件中放置合适的路由器和连接线路,实现基本的地址配置、接口配置和路由配置。
- 测通,在不同子网计算机之间通过 ping 命令测通。使用 tracert 命令,测试路径是否正确。

3 方法

在 Packet Tracer 软件中实现基本配置。

4 设计需求

A 楼

- 一台边缘路由器连接外网
- A1-10 台计算机
- · A2一两台中心路由器, 50 台计算机

B 楼

- B1-100
- B2-可移动上网,50个节点

C楼

• C-150 台计算机

D楼

- D1-5 台计算机
- D2-30 台计算机, 后勤部在各楼设置的点也连入 D2

加分内容

- 考虑 A 中心的容灾, 启用动态路由, 并进行通断测试。
- 考虑路由表中的子网聚合,至少能实现一条路由聚合,总结路由聚合的配置规则。
 - 使用 VLAN 技术,实现后勤部门在各楼的一个点连入 D2 局域网。
 - 使用 NAT 技术实现 B2 能接入额外的节点。
- 使用防火墙技术提高 A1 的安全性,使得外网能够访问 A1,但是不能进入 同区。

5 IP 地址分配方案

5.1 拓扑部署

根据设计需求,设计校园网络的拓扑结构。

5.1.1 拓扑结构

A 楼

"CORE1"、"CORE2"是 A 楼的两台中心双备路由器,且 CORE1 是 A2 子 网的路由器。"S"是 A1 子网的路由器。将这三台路由器连成一个环路。"出口"是 A 楼的边缘路由器,与 S 和外网路由器相连。

B、C、D楼

为保证 B、C、D 三楼都能够与 A 楼的中心双备路由器联通,且在中心双备路由器均宕机时三楼仍能联通,我们将 B、C、D 楼的路由器连成一个环路,若中心双备路由器均宕机,也可以保证 B、C、D 楼之间的正常通信。

同时 B 与 CORE1 相连, C、D 与 CORE2 相连,这样即便中心双备路由器的其中一台宕机,整个校园网络的通信也不会受到影响。

5.1.2 设备选择和线路使用

在路由器的选择中,我们使用了扩展性最强的设备,以满足后续配置对路由器接口的需求。根据项目的设计要求,除边缘路由器与外网路由器之间用电缆连接, 其他路由器之间均使用光纤连接。

图 5.1-1 拓扑部署图

5.2 地址规划

5.2.1 计算步长

根据设计需求, 计算每个子网的步长, 便于优化节省, 合理分配 IP 地址:

子网	A1	A2	В1	В2	C1	D1	D2
----	----	----	----	----	----	----	----

主机数	10	50	100	50	150	5	30
步长	64	128	128	64	256	64	64

5.2.2 分配地址

根据步长,分配 IP 地址。

为了减少 IP 地址的消耗,我们按 A1、B2、D2、D1、A2、B1、C1 的顺序进行 IP 地址分配,网关设置为未使用的有效 IP 地址,子网掩码取反后与网络号作或运算,得到广播地址:

٠.	7 1421	1田 > 口・工・		
	子网	IP 地址	子网网关	广播地址
	A1	10. 10. 0. 0/26	10. 10. 0. 1	10. 10. 0. 63
	B2	10. 10. 0. 64/26	10. 10. 0. 65	10. 10. 0. 127
	D2	10. 10. 0. 128/26	10. 10. 0. 129	10. 10. 0. 191
	D1	10. 10. 0. 192/26	10. 10. 0. 193	10. 10. 0. 255
	A2	10. 10. 1. 0/25	10. 10. 1. 1	10. 10. 1. 127
	B1	10. 10. 1. 128/25	10. 10. 1. 129	10. 10. 1. 255
	C1	10. 10. 2. 0/24	10. 10. 2. 1	10. 10. 2. 255

5.2.3 子网聚合

在配置路由表的过程中,对 B、C、D 楼的子网进行子网聚合,得到相应的超网地址和对应的子网掩码:

楼栋	超网地址	子网掩码
B楼	10. 10. 0. 0	255. 255. 254. 0
C 楼	10. 10. 2. 0	255. 255. 255. 0
D楼	10. 10. 0. 128	255. 255. 255. 128

5.2.4 路由聚合

路由聚合的配置规则有:

相邻前缀聚合

子网掩码聚合

最长前缀聚合: 如果路由表查表转发分组时发现有多条路由可选择时,则选择

网络前缀最长的那条进行转发,这样的路由更加具体。

6 仿真

6.1 静态路由配置

在前期的配置中,每个子网内部的主机通信已经实现,如 A2i 与 A2e, B1i 与 B1e。但是若想实现不同楼栋之间主机的通信,需要路由器进行转发,所以要对每 台路由器进行静态路由配置。

6.1.1 A 楼

两台双备路由器 CORE1、CORE2, 其中 A2 子网的路由器是 CORE1。

Port Status Summary Table for CORE1

Port	Link	IP Address	IPv6 Address	MAC Address
FastEthernet2/0	Down	<not set=""></not>	<not set=""></not>	0002.16E8.923B
GigabitEthernet3/0	Down	<not set=""></not>	<not set=""></not>	0050.0F7A.0265
FastEthernet4/0	Up	10.10.9.1/24	<not set=""></not>	0007.EC09.3D73
GigabitEthernet5/0	υp	<not set=""></not>	<not set=""></not>	0090.2BDE.E06E
GigabitEthernet5/0.20	Up	10.10.1.1/25	<not set=""></not>	0090.2BDE.E06E
GigabitEthernet5/0.30	Up	10.10.32.1/26	<not set=""></not>	0090.2BDE.E06E
GigabitEthernet6/0	υp	10.10.16.1/24	<not set=""></not>	0050.0F9B.676C
GigabitEthernet7/0	Down	<not set=""></not>	<not set=""></not>	0060.3EB8.6987
GigabitEthernet8/0	Down	<not set=""></not>	<not set=""></not>	0030.A316.D5CC
GigabitEthernet9/0	Up	10.10.6.1/25	<not set=""></not>	0001.C7C4.016E
	-			

图 6.1.1-1 CORE1 端口状态汇总表

Routing Table for CORE1

Туре	Network	Port	Next Hop IP	Metric
SSSSC	10.10.0.0/ 10.10.0.0/ 10.10.0.6 10.10.0.1	 GigabitEt	10.10.6.2 10.10.16.2 10.10.6.2 10.10.6.2	1/0 1/0 1/0 1/0
JSSSSC	10.10.2.0/ 10.10.2.0/ 10.10.3.0/	GidabitEt	10.10.6.2 10.10.9.2 10.10.6.2 10.10.6.2	1/0 1/0 1/0 1/0 1/0
CSSCC	10.10.9.0/ 10.10.11 10.10.12	FastEther GigabitEt GigabitEt	10.10.9.2 10.10.9.2	0/0 1/0 1/0 0/0
Č S S	10.10.32 10.10.50 192.168.0		10.10.16.2 10.10.6.2	1/0 1/0

图 6.1.1-2 COREIL 路由表

Port Status Summary Table for CORE2

Port	Link	IP Address	IPv6 Address	MAC Address
FastEthernet2/0	Down	<not set=""></not>	<not set=""></not>	0005.5E43.5E62
GigabitEthernet3/0	Down	<not set=""></not>	<not set=""></not>	00D0.D333.1940
FastEthernet4/0	Up	10.10.9.2/24	<not set=""></not>	0009.7C71.4239
GigabitEthernet5/0	Down	<not set=""></not>	<not set=""></not>	0003.E42D.0963
GigabitEthernet6/0	qU	10.10.17.1/24	<not set=""></not>	0003.E481.8A10
GigabitEthernet7/0	Down	<not set=""></not>	<not set=""></not>	0090.0CCA.241D
GigabitEthernet8/0	Up	10.10.11.1/24	<not set=""></not>	00E0.F95E.7395
GigabitEthernet9/0	qU	10.10.12.2/24	<not set=""></not>	0001.C7D2.D2C0

图 6.1.1-3 CORE2 端口状态汇总表

Routing Table for CORE2

Туре	Network	Port	Next Hop IP	Metric
SSSSSCCCS	10.10.0.0/ 10.10.0.6 10.10.0.1 10.10.2.0/ 10.10.9.0/ 10.10.11 10.10.12 10.10.13 10.10.32	FastEther GiaabitEt GiaabitEt	10.10.17.2 10.10.11.2 10.10.12.1 10.10.9.1 10.10.11.2 10.10.9.1	1/0 1/0 1/0 1/0 1/0 0/0 0/0 0/0 0/0 1/0

图 6.1.1-4 CORE2 路由表

A1 子网的路由器 S。

Port Status Summary Table for S

Port	Link	IP Address	IPv6 Address	MAC Address
GigabitEthernet0/0	Up	10.10.18.1/24	<not set=""></not>	00D0.9753.0337
GigabitEthernet1/0	υp	10.10.16.2/24	<not set=""></not>	000C.8568.900B
GigabitEthernet2/0	υp	10.10.17.2/24	<not set=""></not>	00D0.D3E4.B1E5
FastEthernet3/0	υp	10.10.0.1/26	<not set=""></not>	0003.E4D0.0E70
Ethernet4/0	Down	<not set=""></not>	<not set=""></not>	000A.F3C3.EA76
Modem5/0	Down	<not set=""></not>	<not set=""></not>	<not set=""></not>
GigabitEthernet6/0	Down	<not set=""></not>	<not set=""></not>	0001.4356.8592
GigabitEthernet7/0	Down	<not set=""></not>	<not set=""></not>	0005.5E80.B659
GigabitEthernet8/0	Down	<not set=""></not>	<not set=""></not>	0001.4316.1252
GigabitEthernet9/0	Down	<not set=""></not>	<not set=""></not>	000D.BDBD.C92E

图 6.1.1-5 S 端口状态汇总表

Routing Table for S

Туре	Network	Port	Next Hop IP	Metric
いしろろうろうししくろう	10.10.0.0/ 10.10.0.0/ 10.10.0.6 10.10.1.0/ 10.10.1.0/ 10.10.12 10.10.15 10.10.15 10.10.18 10.10.50 172.168.0	FastEther GioabitEt GioabitEt GioabitEt	10.10.16.1 10.10.16.1 10.10.17.1 10.10.16.1 10.10.17.1 10.10.17.1 10.10.17.1 10.10.17.1 10.10.18.2 10.10.18.2	1/0 0/0 1/0 1/0 1/0 1/0 1/0 0/0 0/0 0/0

图 6.1.1-6 S 路由表

6.1.2 B 楼

B1 子网的路由器。

Port Status Summary Table for B

Port	Link	IP Address	IPv6 Address	MAC Address
Ethernet0/0	Up	192.168.1.1/26	<not set=""></not>	0001.636E.274E
Ethernet1/0	Down	<not set=""></not>	<not set=""></not>	00E0.F793.1532
FastEthernet2/0	Up	<not set=""></not>	<not set=""></not>	0010.119C.7A42
FastEthernet2/0.10	Up	10.10.1.129/25	<not set=""></not>	0010.119C.7A42
FastEthernet2/0.30	Up	10.10.30.1/26	<not set=""></not>	0010.119C.7A42
GigabitEthernet3/0	Down	<not set=""></not>	<not set=""></not>	00D0.BABA.28D8
FastEthernet4/0	Down	<not set=""></not>	<not set=""></not>	0002.4AA0.BDA5
GigabitEthernet5/0	Up	10.10.14.1/25	<not set=""></not>	00D0.9701.7549
GigabitEthernet6/0	Up	10.10.6.2/24	<not set=""></not>	00D0.D369.E4C1
GigabitEthernet7/0	Up	10.10.4.1/24	<not set=""></not>	00D0.97E4.7062
GigabitEthernet8/0	Up	10.10.3.1/25	<not set=""></not>	000A.F3CB.4E57
GigabitEthernet9/0	Down	<not set=""></not>	<not set=""></not>	00E0.8F17.2B9D

图 6.1.2-1 B 端口状态汇总表

Routing	Routing Table for B						
Туре	Network	Port	Next Hop IP	Metric			
らいらいというというと	10.10.16 10.10.30	FastEther GigabitEt GigabitEt GigabitEt FastEther FastEther Ethernet0	10.10.6.1 10.10.4.2 10.10.4.2 10.10.6.1 10.10.3.2 10.10.6.1 10.10.3.2	1/0 1/0 1/0 0/0 1/0 0/0 0/0 0/0 0/0 1/0 1			

图 6.1.2-2 B 路由表

B2 子网的无线路由器 Wireless Router0。

Port Status Summary Table for Wireless Router0

Port		Link	IP Address	MAC Address
Internet		Up	192.168.1.2/26	0001.6302.0001
LAN		Up	192.168.0.2/25	0000.0C0B.473D
Ethernet 1	L	Down		0001.6302.0002
Ethernet 2	2	Down		0001.6302.0003
Ethernet 3	3	Down		0001.6302.0004
Ethernet 4	1	Down		0001.6302.0005
Wireless		Up		0001.6302.0006

图 6.1.2-3 无线路由器端口状态汇总表

Routing Table for Wireless Router0

Туре	Network	Port	Next Hop IP	Metric
S C S	0.0.0.0/0 192.168.0 192.168.1 192.168.1	Vlan1 Internet Internet	192.168.1.1 	1/0 0/0 0/0 1/0

图 6.1.2-4 无线路由器路由表

6.1.3 C 楼

Port	Link	IP Address	IPv6 Address	MAC Address
FastEthernet2/0	Up	10.10.2.1/24	<not set=""></not>	00E0.F9B5.6766
FastEthernet2/0.30	Up	10.10.31.1/24	<not set=""></not>	00E0.F9B5.6766
GigabitEthernet3/0	Down	10.10.15.1/24	<not set=""></not>	0030.A3D6.511E
FastEthernet4/0	Down	<not set=""></not>	<not set=""></not>	0090.21BC.98BE
GigabitEthernet5/0	Down	<not set=""></not>	<not set=""></not>	0060.706C.CD71
GigabitEthernet6/0	Up	10.10.5.2/24	<not set=""></not>	0007.EC52.0068
GigabitEthernet7/0	Up	10.10.3.2/24	<not set=""></not>	000C.85D3.BDBA
GigabitEthernet8/0	Up	10.10.11.2/24	<not set=""></not>	00E0.A39E.3880
GigabitEthernet9/0	Down	<not set=""></not>	<not set=""></not>	0005.5ECE.A533

图 6.1.3-1 C 端口状态汇总表

Routing	Routing Table for C						
Туре	Network	Port	Next Hop IP	Metric			
NANACCONCAC	10.10.6.0/ 10.10.11 10.10.17	FastEther GigabitEt GigabitEt GigabitEt FastEther	10.10.11.1 10.10.3.1 10.10.5.1 10.10.3.1 10.10.3.1 10.10.3.1	1/0 1/0 1/0 1/0 0/0 0/0 0/0 1/0 0/0 1/0 0/0			

图 6.1.3-2 C 路由表

6.1.4 D 楼

Port Status Summary Table	e for D			
Port	Link	IP Address	IPv6 Address	MAC Address
FastEthernet2/0	Up	10.10.0.193/26	<not set=""></not>	000C.CFA3.785D
GigabitEthernet3/0	Up	<not set=""></not>	<not set=""></not>	00D0.BCBD.2650
GigabitEthernet3/0.30	υp	10.10.0.129/26	<not set=""></not>	00D0.BCBD.2650
FastEthernet4/0	Down	<not set=""></not>	<not set=""></not>	0090.219E.4A55
GigabitEthernet5/0	Down	<not set=""></not>	<not set=""></not>	000C.CFC6.DD12
GigabitEthernet6/0	Uр	10.10.5.1/24	<not set=""></not>	0010.1169.6454
GigabitEthernet7/0	Up	10.10.4.2/24	<not set=""></not>	00E0.F7EA.0038
GigabitEthernet8/0	Up	10.10.12.1/24	<not set=""></not>	0050.0FB7.E226
GigabitEthernet9/0	Down	<not set=""></not>	<not set=""></not>	0030.F2E6.7A62

图 6.1.4-1 D 端口状态汇总表

Routing Table for D

Туре	Network	Port	Next Hop IP	Metric
SSSC	10.10.0.0/ 10.10.0.0/ 10.10.0.6 10.10.0.1	 GiaabitEt	10.10.4.1 10.10.12.2 10.10.4.1	1/0 1/0 1/0 0/0
	10.10.1.0/ 10.10.2.0/ 10.10.4.0/	FastEther GigabitEt GigabitEt	10.10.4.1 10.10.5.2	0/0 1/0 1/0 0/0
S	10.10.6.0/ 10.10.6.0/	GigabitEt	10.10.4.1 10.10.4.1	1/0 1/0 0/0
SSSS	10.10.17 10.10.30 10.10.31		10.10.12.2 10.10.4.1 10.10.5.2	1/0 1/0 1/0
S	10.10.32		10.10.12.2	1/0

图 6.1.4-2 D 路由表

6.2 测通

6.2.1子网内部测通

以子网 D1、D2 为例:

```
PC>ping 10.10.0.222

Pinging 10.10.0.222 with 32 bytes of data:

Reply from 10.10.0.222: bytes=32 time=0ms TTL=128
Reply from 10.10.0.222: bytes=32 time=1ms TTL=128
Reply from 10.10.0.130: bytes=32 time=0ms TTL=128
Reply from 10.10.0.130: bytes=3
```

图 6.2.1-1 D1i ping 通 D1e

图 6.2.1-2 D2e ping 通 D2i

TTL=128, Lost=0, 说明两次传输都未经过路由器转发。

```
PC>ping 10.10.0.130

Pinging 10.10.0.130 with 32 bytes of data:

Reply from 10.10.0.130: bytes=32 time=1ms TTL=127

Reply from 10.10.0.130: bytes=32 time=0ms TTL=127

Ping statistics for 10.10.0.130:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

图 6.2.1-3 D1i ping 通 D2i

TTL=127,Lost=0,说明此次传输经过了一次 D 路由器转发。

6.2.2子网间测通

以子网 C、D2 为例:

```
Pinging 10.10.0.130 with 32 bytes of data:

Reply from 10.10.0.130: bytes=32 time=0ms TTL=126
Ping statistics for 10.10.0.130:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

图 6.2.2-1 Cli ping 通 D2i

TTL=126, Lost=0, 说明此次传输经过了两次路由器转发, 分别为 C 路由器和 D 路由器。

以子网 A2、C 为例:

使用路由跟踪指令 traceroute, 展示出主机 A2e 与 Ci 的通讯详细情况。

```
Command Prompt

Packet Tracer PC Command Line 1.0
PC>tracert 10.10.1.52

Tracing route to 10.10.1.52 over a maximum of 30 hops:

1 0 ms 0 ms 0 ms 10.10.0.193
2 * 0 ms 0 ms 10.10.4.1
3 * 1 ms 0 ms 10.10.6.1
4 * 0 ms 1 ms 10.10.1.52

Trace complete.
```

图 6.2.2-2 A2e 测通 Ci

图 6.2.2-3 A2e ping 通 Ci

经测试,各楼之间的 PC/Server 均可联通。

7 扩展内容

7. 1 VLAN

以D楼驻A楼的主机为例,将其接入VLAN30。

10. Router(config-subif)#do show ip int b //查看端口 IP 配置信息

在 A2 交换机 switch1 中创建 VLAN30 后,将路由器 CORE1 主接口上的原有 IP 地址删除,并配置两个子接口,最后进行协议封装。具体命令行如下:

- 1. Router(config)#int g5/0 //进入物理接口,同时注意将主接口上原有 IP 删除
 2. Router(config-if)#no shu //开启端口
 3. Router(config-if)#exit
 4. Router(config)#int g5/0.20 //配置子接口
 5. Router(config-subif)#encapsulation8 dot1Q 20 //A2 子网的协议封装
 6. Router(config-subif)#ip address 10.10.1.1 255.255.255.192 //A2 的网关
 7. Router(config-subif)#int g5/0.30
 8. Router(config-subif)#encapsulation dot1Q //D 楼驻机的协议封装
 9. Router(config-subif)#ip address 10.10.32.1 255.255.255.0 //D2 的网关
- GigabitEthernet5/0.20 10.10.1.1 YES manual up up

 GigabitEthernet5/0.30 10.10.32.1 YES manual up up

图7.1-1 端口IP 配置信息

配置成功。

图 7.1-2 D2_switch5 配置

图 7.1-3 A2_switch1、B1_switch2、C_switch3 配置

图7.1-3 D 楼驻 A 楼 ping 通 A2i

根据示意图可得,在测通 D 楼驻 A 楼的主机与子网 A2 中的主机时,虽然两台主机在物理上都与同一台交换机相连,但在测通时却经由中心路由器 CORE1 转发,说明 VLAN 配置成功。

7. 2 B2 移动上网

将整个 B2 子网视为 outside, 其他子网视为 inside.将 192.168.1.0 分配给 SMARTPHONE, 然后利用 NAPT 技术将无线网络中设备的地址转换成 10.10.0.66/255.255.255.0, 最后配置地址池。具体命令行如下:

- 1. //设置端口的逻辑方向
- 2. Router(config)#int e0/0
- 3. Router(config-if)#ip nat inside
- 4. Router(config-if)#int f2/0
- 5. Router(config-if)#ip nat outside

```
6. Router(config-if)int g6/0

 Router(config-if)#ip nat outside

8. Router(config-if)#int g8/0
9. Router(config-if)#ip nat outside
10. Router(config-if)#int g7/0
11. Router(config-if)#ip nat outside
12. Router(config-if)#exit
13. Router(config)#access-list 1 permit 192.168.1.0 0.0.0.255 //配置 ACL
14. Router(config)#ip nat pool chd 10.10.0.66 10.10.0.66 netmask 255.255.255.0 //配置地址池
15. Router(config)#ip nat inside source list 1 pool chd overload //overload 代表多对一
16. Router(config)#end
17. Router#show ip nat translations
        Router#show ip nat translations
                                Inside local
                                                     Outside local
                                                                            Outside
        Pro Inside global
        global
        icmp 10.10.0.66:8
                                 192.168.1.2:8
                                                      10.10.0.222:8
        10.10.0.222:8
        icmp 10.10.0.66:9
                                 192.168.1.2:9
                                                    10.10.0.194:9
        10.10.0.194:9
```

图 7.2-1 显示 IP 转换

配置成功。

```
Packet Tracer PC Command Line 1.0
PC>ping 10.10.0.194

Pinging 10.10.0.194 with 32 bytes of data:

Request timed out.
Reply from 10.10.0.194: bytes=32 time=8ms TTL=125
Reply from 10.10.0.194: bytes=32 time=12ms TTL=125
Reply from 10.10.0.194: bytes=32 time=15ms TTL=125
Ping statistics for 10.10.0.194:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:

Minimum = 8ms, Maximum = 15ms, Average = 11ms

PC>
```

图 7.2-2 B2 SMARTPHONE ping 通 D2i

在传输的同时, B2 设备 SMARTPHONE 的 IP 地址也发生了变化。

图 7.2-3 传输前 IP 地址

图 7.2-4 传输后 IP 地址

7.3 防火墙

通过路由器 S 实现防火墙功能。首先利用 NAPT 技术,将外网尝试访问的主机地址都转换成 10.10.50.0/0.0.0.255。然后配置路由器 S,使用 ACL,仅允许外网访问 A1 服务器网络,其他访问请求全部拒绝。具体命令行如下:

```
1. Router(config)#access-list 10 deny 10.10.50.0 0.0.0.255
2. Router(config)#access-list 10 permit any//ACL 中需要加入允许,否则会导致全部的包都被拒绝
3. /*
4. *将配置好的 ACL 分配到外网进入到内网的唯二两条通道中
5. */
6. Router(config)#int g1/0
7. Router(config-if)#ip access-group 10 out
8. Router(config)#int g2/0
9. Router(config-if)#ip access-group 10 out
```

防火墙禁止

图 7.3-1 PC-PT ping 通 A2i

根据示意图可得,外网中的主机在尝试向 A2 网络中心发送消息时,被路由器 S 拒绝,实现了防火墙禁止的功能

防火墙准入

图 7.3-2PC-PT ping 通 A1 服务器

根据示意图可知,外网中的主机成功访问 A1 服务器网络,实现了防火墙准入

的功能。

8 任务完成情况汇总

任务	完成情况
拓扑部署	我们考虑了任务书中的基本要求,完成了如下拓扑配置:
	1. 各楼至少放置一台路由器
	2. 在 A 楼设置网络中心, 其中包含双备路由器和用以承担防火墙功能的 S 路由器
	3. 三楼的路由器均可与直接中心的双备路由器,且为了使之间相连的线路最少,将 B 楼路由器连接 CORE1 路由器,将 A, C 楼路由器连接 CORE2 路由器,使得中间产生的线路仅为全连接的一半
	4. 当核心双备路由器宕机时, A, B, C 楼路 由器构成环形回路,可以联通
设备选择	在设备选择上,我们尽量选择了最多接口的路由器和交换器,因为在我们设计的拓扑中,单个路由器所能承担的最大端口数是4,故需要统一设备为RT-empty来最大限度地提升网络拓扑的扩展性;另外在防火墙设备的选择上,在考虑了具体的要求和复杂度之后,我们没有采用专用的防火墙设备,而

		是选择了具有 ACL 功能的路由器来执行防火墙功能;在一定程度上简化了整体的设计;在最初的方案之中,我们设想可以使用三层交换机来代替路由器实现整体的网络层功能,但局限于任务书中的要求,我们使用了路由器加基础交换机的搭配
线路使用		按照任务书中的要求,在路由器之间的线路一律使用光纤,除了连接外网的一根串口线之外。而在设备和交换机之间的线路使用直通双绞线,而比较特殊的是使用在无线路由和路由器之间的交叉双绞线。
测通		我们选择了几组典型的主机进行通信,并多次 ping 通,确保整体网络构建不出现问题;另外我们还选择了几组主机进行 tracert,以保证主机之间的通信是通过我们规定欲想的路线来进行的。
地址规划	基本规划	我们首先考虑不同子网的 IP 分配,因其可能有不同的容量,我们按照其预计的容量为其分配网络分段和对应容量的子网掩码;除了,子网中的 IP 分配,我们还对路由器之间的小网络进行了 IP 分配,为了不发生混淆,我们尽量使没一个小的路由器之间的子网的子网号都是独特的,如在 CORE1 和 B 楼路由器之间的 10.10.7.0
	优化节省	为了能够最大化地节省地址,我们考虑子网的容量,按照搭积木一样的方式,使得两个

		或多个子网的对应网络最大容量在一个小的 号段上正好是 255。这样可以使得整体网络 的号段使用下降。我们在为所有子网分配地 址之后,只使用到 10.10.3.0 号段,充分节省 了地址。
路由	静态路由	在完成了基础的拓扑之后,我们考虑整体网络的需求,为每个子网之间的通信都设计了线路,即在每一个路由器上写入路由表,值得注意的是,可以在路由表中写入路由器中的小的子网,使得路由器寻路的综合能力提升。
	动态路由	
	子网聚合	在考虑了子网的具体地理位置之后,我们选择将 B1,B2 聚合在一起,C1,C2 聚合在一起,D1,D2 聚合在一起,形如如 B 聚合网络10.10.0.0/255.255.254.0 的逻辑子网,并将这一子网按照一般子网的方法输入不同路由器地路由表中,则来自不同子网的包可以寻路,而且减小了维护路由表的工作量,减小了其体积。
观测	运行过程	因为关于各个扩展项目的测试在各个部分中独立完成,所以在此部分中只对应静态理由的测通进行;这里选取 A2e 和 Ci 的通信进行测试。
	运行内容	测试的通信包从 A2e 出发,通过指定的路由路径到达 Ci。在 A2e 和 Ci 之间的通信可以稳

		定进行之前,整个网络,以及 A2e 和 Ci 会通过广播的方式先行确定彼此位置之后才能进行稳定通信。
扩展内容	NAT	在 B2 子网实现 NAPT 的实践。按照要求,我们认为应该使用 NAPT 技术,使来自逻辑上"外网"的 B2 随机连入设备的 IP 被转换成指定的"内网"的 IP,这样内网的设备均可以通过与内网设备通信的方式与 B2 中连入的设备通信。同时,也确保了无论 B2 连入了多少,或怎样陌生的设备,内网中的设备都可以与其通信,从而实现了 B2 能够接入额外的节点。
	VLAN	VLAN 是一种划分逻辑广播域的技术。在题目的要求中,我们需要将 D2 中的设备以及其延展到各个楼的设备都接入同一个广播域,即一个逻辑的局域网上。我们首先考虑将 D2 驻各个楼的设备连接在该楼本地一个子网的交换机上,但主要给该设备分配与该子网不同的 IP。随后,在交换机接口上封装 doq1 协议,将这些封装好的协议与事先设计的 VLAN配置到相应的接口上,则可以使连接在同一个交换机上的设备处于不同的逻辑子网上,进一步使 D2 的离散设备连入 D2 的局域网。最后一步是完成对逻辑子网的路由;首先应该将路由器原子网接口上的网关删除,在命令行中为该接口配置子接口,分别配置不同逻辑子网的网关,这样不同逻辑子网之间就

	可以通过路由器进行通信了。
防火墙	在防火墙实现方式上,我们没有选择使用防火墙设备,而是利用连接着服务器子网的 S 路由器,利用该路由器的命令行,配置禁行的 ACL 分配到 S 路由器除通向路由器子网的线路外的其余两条线路上,这样就可以使得外网可以访问服务器子网,却不可以访问其他内网设备。

9 总结

在本次项目当中,我们使用软件 Packet Tracer 搭建了一个简单校园网。在该项目中,我们运用了许多在课堂上习得的知识,例如路由寻址的方法、VLAN······并且在项目实践中学习了 Packet Tracer 的基本使用方法、IP 地址规划、NAPT 等知识。

通过本次项目,我们对网络的搭建有了更加实质的理解与认识,对于本课学习的知识也有了更深层次的理解与记忆。与此同时,小组合作的方式也让我们的研讨能力有了一定提升,对我们日后的学习研究有着不菲的帮助。