AMIDEPFL

Deep Reinforcement Leaning for Satellite Constellation Planning and Routing 24 March 9:00 to 17:30

SwissTech Convention Center EPFL, Lausanne, Switzerland

Who are we?

Alexandre Carlhammar

Research in Distributed Space Systems
Founder & President EPFL AI Team
BSc Mechanical Engineering
https://www.linkedin.com/in/alexandre-carlhammar-852844240

Theo Le Fur

Research in AI
Technical Lead EPFL AI Team
BSc Computer Science
https://www.linkedin.com/in/theo-le-fur-469639265/

Workshop Outline

- I. Intro to RL
 - A. What is RL? Why is it useful?
 - B. Terminology & Notation
 - C. Markov Decision Process
 - D. Q and V functions
 - E. EXERCICES + Coffee Break
- II. Advanced RL
 - A. Policy Gradient
 - B. Variance and Bias: Baselines
 - C. Off policy + Importance Sampling
 - D. EXERCICES + Lunch

Workshop Outline

- III. Main RL algorithm
 - A. Discount Factor
 - B. Online & Offline Actor Critic
 - C. Generalized Advantage Estimator
 - D. Q-Learning
 - E. EXERCICES + Coffee Break
- IV. Space applications of RL
 - A. Intro to space related applications
 - B. Past research
 - C. Concrete Example
 - D. EXERCICES

Iteration 2000

What is RL?

Option 1:

Understand the problem, design a solution

Option 2:

Set it up as a machine learning problem

What is RL?

What is RL?

Reinforcement learning is fundamentally 2 things:

- Mathematical formalism for learning based decision making
 - → allows to design algorithms
- Approach for learning decision making and control from experience

How does it compare to other methods?

supervised learning

input: x

output: y

data: $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{\mathbf{x}}$ goal: $f_{\theta}(\mathbf{x}_i) \approx \mathbf{y}_i$

someone gives this to you

reinforcement learning

Examples....

consequences observations (states) rewards

Actions: muscle contractions Observations: sight, smell

Rewards: food

Actions: motor current or torque Observations: camera images Rewards: task success measure (e.g., running speed)

Actions: what to purchase Observations: inventory levels

Rewards: profit

Examples....

Examples....

Terminology & Notation: States & Actions

 $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ – policy (fully observed)

 \mathbf{a}_t – action

Terminology & Notation: Reward Function

which action is better or worse?

 $r(\mathbf{s}, \mathbf{a})$: reward function

tells us which states and actions are better

 \mathbf{s} , \mathbf{a} , $r(\mathbf{s}, \mathbf{a})$, and $p(\mathbf{s}'|\mathbf{s}, \mathbf{a})$ define Markov decision process

high reward

low reward

Terminology & Notation: Markov Chain

Definitions

Markov chain

$$\mathcal{M} = \{\mathcal{S}, \mathcal{T}\}$$

S – state space

 \mathcal{T} – transition operator

why "operator"?

states $s \in \mathcal{S}$ (discrete or continuous)

Andrey Markov

let $\mu_{t,i} = p(s_t = i)$

 $p(s_{t+1}|s_t)$

let $\mathcal{T}_{i,j} = p(s_{t+1} = i | s_t = j)$

 $\vec{\mu}_t$ is a vector of probabilit

then $\vec{\mu}_{t+1} = \mathcal{T} \vec{\mu}_t$

Terminology & Notation: Markov Property

WHAT'S MISSING?

Terminology & Notation: Markov Decision Process

Definitions

Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, r\}$$

S – state space

states $s \in \mathcal{S}$ (discrete or continuous)

 \mathcal{A} – action space

actions $a \in \mathcal{A}$ (discrete or continuous)

$$r$$
 – reward function

$$r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$$

$$r(s_t, a_t)$$
 – reward

Richard Bellman

Terminology & Notation: Partially Observable MDP

Definitions

```
\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{E}, r\}
 partially observed Markov decision process
                                           states s \in \mathcal{S} (discrete or continuous)
S – state space
                                           actions a \in \mathcal{A} (discrete or continuous)
 \mathcal{A} – action space
\mathcal{O} – observation space
                                           observations o \in \mathcal{O} (discrete or continuous)
T – transition operator (like before)
\mathcal{E} – emission probability p(o_t|s_t)
 r - reward function r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}
```

Terminology & Notation

Exercice Session

- 3 exercise sessions in total
- work in group as much as you can!!!
- corrections published when ¾ of the allocated time for exercises has passed
- we will provide detailed correction presentation at the end of each session for critical algorithm implementation and/or if we notice you have many similar questions

Exercice Session 1 - 1H

- Assignment 1.1
 - basic Numpy and Torch review
 - advanced Torch review
 - implement a policy parametrized by a gaussian distribution as a neural network

- Assignment 1.2
 - implement a basic "Grid World" environment that mimics the functionality of OpenAl Gym environments