

SYLLABUS

DR VISHWANATH KARAD MIT - WORLD PEACE UNIVERSITY

FACULTY OF ENGINEERING & TECHNOLOGY

SCHOOL OF COMPUTER SCIENCE

B.SC. (Computer Science)

BATCH 2021-24

w.e.f. - 2021-22

Prof. Dr. Shubhalaxmi Joshi BoS Chairperson & Associate Dean Department of Computer Science & Application

Dr Dinesh Seth, Dean - Engineering & Technology, Div - I MIT-WPU

PROGRAMME STRUCTURE

Preamble:

B. Sc. Computer Science is a three-year fulltime programme. It is based on semester pattern and choice based credit based system, it prepares the student for a future prospectus in IT Industry. The syllabus of computer Science subjects along with that of the three allied subjects (Mathematics, Electronics and Statistics) forms the required basics for pursuing higher studies in Computer Science

At first year a course in basic programming and a course in database fundamentals forms the preliminary skill set, helps to solve computational problems. One practical course in computer science subject per semester is designed including the programming and database fundamentals to supplement the theoretical training. Along with Computer Science courses basic science courses are also included i.e Electronics, Mathematics & Statistics theory and practical to help in building a strong foundation.

At second year programming skills are further strengthened by Object oriented programming and java programming. Website development skills are improved by courses like web development and Internet programming. Practical courses in computer science in each semester is designed including the Internet programming, Object oriented programming and Java programming. Operating system, Network security and Python course improve students in area other than programming. Along with Computer Science courses basic science courses are too included i.e Electronics and Mathematics theory and practical.

At third year latest technologies in computer science along with their practical's are offered. Students can chose the courses in computer science from the pool of Discipline Specific Elective courses which helps them to learn different skills. Practical in Mobile application development also enables students for developing mobile applications. Practical course also includes Mini project which gives students to explore need of different applications and solutions. Full time Industrial training (Internship) gives hands on experience in working on real application development.

Prof. Dr. Shubhalaxmi Joshi Associate Dean, & BoS Chairperson

SSIEST

Vision and Mission of the Programme

Vision:

To contribute to the society through excellence in scientific and knowledge-based education utilizing the potential of computer science with a deep passion for wisdom, culture and values.

Mission:

- To create knowledge, to disseminate knowledge, and to provide service to our society
- Provide quality undergraduate and graduate education in both the theoretical and applied foundations of computer science
- Train students to effectively apply this education to solve real-world problems thus amplifying their potential for lifelong high-quality careers
- To give them a competitive advantage in the ever-changing and challenging global work environment.
- To achieve a distinguished position in Computer Science through innovative teaching learning methods and research.
- To develop strong fundamentals and habit of life-long learning in students to fulfill the needs of Industry

Programme Outcomes

PO1	Students will be able to Identify, formulate, and solve complex real time problems using of concepts of electronics, mathematics, Computer Sciences.
PO2	Students will be able to design software in order to plan and implement software systems using software engineering process.
PO3	Students will be able to develop, test and deploy Web based or Mobile based, Application using technology such as Java, PHP, Android or SQL.
PO4	Students are able to apply theoretical knowledge into practice. Lab courses and Internship helps them how apply theory to practice.
PO5	Students will be able to practice traditional Indian yoga which help them to improve creativity, concentration and also help to manage stress and imbibe human values.
PO6	Students will be prepared for a career in Computer Science as software developer or for higher studies in computer science or other fields.

Programme Educational Objectives

- To develop problem solving abilities using a computer
- To build the necessary skill set and analytical abilities for developing computer-based solutions for real life problems.
- To imbibe quality software development practices. To create awareness about process and product standards
- To train students in latest professional skills.
- To prepare necessary knowledge base for research and development in Computer Science
- To help student's build-up a successful career in Computer Science.

Programme Specific Outcomes

- Full Time Industry Project Internship gives hands on experience in solving a real-world problem.
- Students able to design dynamic website in the form of web programming.
- The Syllabus also develops requisite professional skills and problem-solving abilities for pursuing a career in Software Industry, Government, Banking and many other fields.
- B.Sc. (Computer Science) graduates can go for higher study in programmes like Master of Computer Application, M.Sc. in Computer Science, M.Sc. in Statistics, M.Sc. in Operation Research and M.Sc. in IT, M.Sc. in Data Science and Big Data and Analytics etc.

Prof. Dr. Shubhalaxmi Joshi Associate Dean, & BoS Chairperson

SSJOSLi

Programme Structure:

(a) <u>Programme duration</u>: 3 Years Full Time

(b) System followed: Semester

(c) Credits System:

(i) Per Year

First Year – 39

Second Year – 41

Third Year – 40

(ii) Total in the programme – 120

(d) Assessment Criteria:

- i. If student fail to score 4 CGPA but earned more than 50% of credits out of total number of credits for one course year, then he/she will be declared as a FAIL. But these FAIL students are Allow to Keep next Semester (ATKT) i.e. allowed to take admission in next academic year.
- ii. The students with ATKT should improve the grade within subjects he/she failed or replace the subject (in case of elective only) with another subject to score required grades.
- iii. If the student score less than 4 CGPA AND less than 50% of credits out of total number of credits are declared as a FAIL. These students are NOT allowed to take admission in next year unless they fulfil the condition A or B stated above.
- iv. The student should pass all subjects in Semester 1 with at least 4 GPA for getting admission in Semester 7 (if applicable). Similarly, the student should clear all subjects in Semester 2 with at least 4 CGPA for getting admission in Semester 8 and so on.
- (e) Medium of Instruction and Examination: English
- (f) Eligibility criteria for admission to the programme:

1. Maharashtra State (MS) Candidature

- i. Candidate should be an Indian Nationality.
- ii. Passed 10+2 / 12th / HSC Examination in science stream with subject (OR) Three Years Engineering Diploma Recognized by Government Competent Authority (OR) Passed its equivalent examination with 50% Marks in

Disability belonging to Maharashtra State only).

Prof. Dr. Shubhalaxmi Joshi Associate Dean, & BoS Chairperson

2. Other Than Maharashtra (OMS) Candidature

- i. Candidate should be an Indian Nationality.
- ii. Passed 10+2 / 12th / HSC Examination in science stream with Mathematics subject (OR) Three Years Engineering Diploma Recognized by Government Competent Authority (OR) passed its equivalent examination with 50% Marks in aggregate.
- 3. Foreign Nation / NRI / OCI / PIO, Children of Indian workers in the Gulf countries:
 - i. Passed 10+2/12th HSC Examination in science stream with Mathematics subject (OR) its equivalent examination in any stream with 50% marks in aggregate.

(h) Selection Process:

- 1. MIT-WPU UGPET Computer Science 2022- Online proctored Entrance exam 100 marks
- 2. Personal Interview 50 marks

Prof. Dr. Shubhalaxmi Joshi Associate Dean, & BoS Chairperson

SSJOSLi

B.Sc. Computer Science w.e.f. 2022-23

A. Definition of Credit: -

3 Hr. Lecture / Tutorial per week	3 credits
2Hours Practical (Lab) per week	1 credit

B. Credits:-

Total number of credits for three-year undergraduate B.Sc. (CS) Programme would be 120.

C. Structure of Credits for Undergraduate B.Sc. Program: -

Sr. No.	Category	Suggested Breakup of Credits (Total 120)
	Humanities and Social Sciences and Peace Programmes including Management courses	12
2	Basic Science courses including laboratory	24
3	Professional core courses including Laboratory/Mini Project Work	61
4	Professional Elective courses	08
5	AECC Courses	02
6	Full time Industrial Internship	12
7	MOOC	01
	Total	120

D. <u>Course code and definition</u>:-

Course code	Definitions
L	Lecture
Т	Tutorial
WP	Humanities and Social Sciences and Peace
SEC	Skill Enhancement Courses
AECC	Ability Enhancement Compulsory Courses
MOOC	Massive Open Online Courses
OEC	Open Elective Courses
DEC	Discipline Specific Elective
BCS	B.Sc.(Computer Science)
MS	M.Sc.(Computer Science)

E. Grading Scheme:

Grades & Grade Points Marks Out of 100	Grade	Grade Point
80-100	O: Outstanding	10
70-79	A+: Excellent	9
60-69	A: Very Good	8
55-59	B+: Good	7
50-54	B: Above Average	6
45-49	C: Average	5
40-44	Pass	4
0-39	Fail	0
Ab	Absent	NA

B. Sc. (Computer Science) (First Year) Batch(2021-24) Trimester – I

Sr.		Course Code Name of Course		Weekly Workload, Hrs			Credi	its	Assessment, Marks				
No.	Course Code		Type	Theory	Tutorial	Lab	Theory	Lab	CCA*	LCA*	End Term Test	Total	
1		Basic Programming using C	Core	3	-	-	2	-	50	-	50	100	
2		Database Management System	Core	3	-	-	2	-	50	-	50	100	
3		Fundamentals of Mathematics	Core	2	1	-	2	-	50	-	50	100	
4		Introduction to Analog & Digital Electronics	Core	3	-	ı	2	-	50	-	50	100	
5		Lab on C & DBMS	Core	-	-	6	-	2	-	50	50	100	
6		Lab on Analog & Digital Electronics	Core	-	-	3	-	1	-	25	25	50	
7		World famous Philosophers, Saints/Sages and great Kings	SEC	3	-	-	2	-	70	-	30	100	
		Total:	ı	14	01	9	10	03	270	75	305	650	

**Assessment Marks are valid only if Attendance criteria are met

Weekly Teaching Hours: 24

Total Credits: First Year B.Sc. Computer Science Semester I: 13

*CCA: Class Continuous Assessment

*LCA: Laboratory Continuous Assessment

Ms Sheetal Rajapurkar Program Head, B.Sc Computer Science

B. Sc. Computer Science (First Year) (w.e.f. 2022-23) Trimester – II

Sr.	Course Code	Name of Course		Weekly Workload, Hrs			Credits		Assessment Marks **				
No.	Course Code		Type	Theory	Tutorial	Lab	Theory	Lab	CCA*	LCA*	End Term Test	Total	
1		Advanced C Programming	Core	3	-	-	2	-	50	-	50	100	
2		Relational Database Management System	Core	3	i	ı	2	-	50	-	50	100	
3		Fundamentals of Statistics	Core	2	1	-	2	-	50	-	50	100	
4		Advanced Digital Electronics	Core	3	-	-	2	-	50	-	50	100	
5		Lab on Advanced C & RDBMS	Core	-	-	6	-	2	-	50	50	50	
6		Lab on Advanced Digital Electronics	Core	-	-	3	-	1	-	25	25	100	
7		Communication Skill	AECC	3	-	1	2	-	50	-	50	100	
		Total:	-	14	01	09	10	03	250	75	325	650	

**Assessment Marks are valid only if Attendance criteria are met

Weekly Teaching Hours: 24

Total Credits: First Year B.Sc. Computer Science Semester II: 13

*CCA: Class Continuous Assessment

*LCA: Laboratory Continuous Assessment

Ms Sheetal Rajapurkar Program Head, B.Sc Computer Science

B. Sc. Computer Science (First Year) (w.e.f. 2022-23) Trimester – III

Sr.	Course Code	Name of Course	Truno	Weekly Workload, Hrs			Credits		Assessment Marks**				
No.	Course Code		Type	Theory	Tutorial	Lab	Theory	Lab	CCA*	LCA*	End Term Test	Total	
1		Object Oriented Programming using CPP	Core	3	-	-	2	-	50	-	50	100	
2		Fundamental of Software Engineering	Core	3	-	-	2	-	50	-	50	100	
3		Linear Algebra	Core	2	1	-	2	-	50	-	50	100	
4		Microprocessor Family	Core	3	-	-	2	-	50	-	50	100	
5		Lab on Data Structure using C	Core	-	=	6	-	2	=	50	50	100	
6		Lab on Microprocessor	Core	-	-	3	-	1	-	25	25	50	
7		Philosophy of Science and Religion / Spirituality	SEC	3	-	-	2	-	70	-	30	100	
		Total:	-	14	01	9	10	03	270	75	305	650	

**Assessment Marks are valid only if Attendance criteria are met

Weekly Teaching Hours: 24

Total Credits: First Year B.Sc. Computer Science Semester III: 13

Total First Year B.Sc. Computer Science Credits: 39

*CCA: Class Continuous Assessment

*LCA: Laboratory Continuous Assessment

Ms Sheetal Rajapurkar Program Head, B.Sc Computer Science

B. Sc. Computer Science (Second Year) (Batch 2021-24) Semester -III

**Assessment Marks are valid only if Attendance criteria are met

Sr.	Course Code	Name of Course		Weekly Workload, Hrs			Credits		Assessment Marks**				
No.	Course Code	Name of Course	Type	Theory	Tutorial	Lab	Theory	Lab	CCA*	LCA*	End Term Test	Total	
1		Object Oriented Programming using CPP	Core	3	-	-	3	-	60	-	40	100	
2		Web Development	Core	3	-	-	3	-	60	-	40	100	
3		Object Oriented Software Engineering	Core	3	-	-	3	-	60	-	40	100	
4		Graph Theory	Core	2	1	-	3	-	60	-	40	100	
5		Microcontroller	Core	3	-	-	3	-	60	-	40	100	
6		Lab on CPP & Web Development	Core	-	-	4	-	2	-	60	40	100	
7		Lab on Microcontroller	Core	-	-	2	-	1	-	60	40	100	
8		Environmental Science	SEC	2	1	-	3	-	60	-	40	100	
		Total :	-	17	1	6	18	3	360	120	320	800	

Weekly Teaching Hours: 24

*CCA: Class Continuous Assessment

<u>Total Credits: Second Year B.Sc. Computer Science Semester IV: 21</u>

*LCA: Laboratory Continuous Assessment

Ms Sheetal Rajapurkar Program Head, B.Sc Computer Science

B. Sc. Computer Science (Second Year) (Batch 2021-24) Semester – IV

G.				Weekl	y Workload	l, Hrs	Credits		Assessment Marks**				
Sr. No.	Course Code	Name of Course	Type	Theory	Tutorial	Lab	Theory	Lab	CCA*	LCA*	End Term Test	Total	
1		Operating System	Core	3	-	-	3	-	60	-	40	100	
2		Core Java	Core	3	-	-	3	-	60	-	40	100	
3		Internet Programming using PHP	Core	3	-	-	3	-	60	-	40	100	
4		Discipline Specific Elective (DSE) – I	Elective	3	-	-	3	-	60	-	40	100	
5		Data Communication & Networking	Core	3	-	-	3	-	60	-	40	100	
6		Lab on Core JAVA & PHP	Core	-	-	4	-	2	-	60	40	100	
7		Lab on Data Communication & Networking	Core	-	-	2	-	1	-	60	40	100	
8		Philosophy of Science and Religion/Spirituality	SEC	3	-	-	2	-	90	-	60	100	
		Total:	-	18	0	6	17	3	390	120	340	800	

**Assessment Marks are valid only if Attendance criteria are met

Weekly Teaching Hours: 24

<u>Total Credits: Second Year B.Sc. Computer Science Semester V: 20</u>

Total Credit of Second Year B.Sc. Computer Science =41

Ms Sheetal Rajapurkar Program Head, B.Sc Computer Science *CCA: Class Continuous Assessment

*LCA: Laboratory Continuous Assessment

B. Sc. Computer Science (Third Year) (Batch 2020-23) <u>Semester - V</u>

G.				Weekl	y Workloa	nd, Hrs	Credits		Assessment Marks**				
Sr. No.	Course Code	Name of Course	Type	Theory	Tutorial	Lab	Theo ry	Lab	CCA*	LCA*	End Term Test	Total	
1		Advanced Java	Core	3	-	-	3	-	60	-	40	100	
2		Network Security	Core	3		-	3	-	60	-	40	100	
3		Software Testing and Quality Assurance	Core	3			3	-	60	-	40	100	
4		Open Elective	Elective	2			2		60		40	100	
5		Discipline Specific Elective (DSE) – II	Elective	3	-	-	3	-	60	-	40	100	
6		Lab on Advanced Java	Core	-	-	2	-	1	-	60	40	100	
7		Lab on Python	Core	-	-	2	-	1	-	60	40	100	
8		Indian Tradition, Culture and Heritage	SEC	3	-	-	2	-	90	-	60	100	
		Total:	-	15	0	4	16	2	390	120	340	800	

**Assessment Marks are valid only if Attendance criteria are met

Weekly Teaching Hours: 19 * CCA: Class Continuous Assessment

Total Credits: Second Year B.Sc. Computer Science Semester VI: 18 * LCA: Laboratory Continuous Assessment

Ms Sheetal Rajapurkar Program Head, B.Sc Computer Science Dr. Shubhalaxmi Joshi Associate Dean Faculty of Science

B. Sc. Computer Science (Third Year) (Batch 2020-23) Semester – VI

**Assessment Marks are valid only if Attendance criteria are met

Sr.		Name of Course		Weekly Workload, Hrs			Credits		Assessment Marks**				
No.	Course Code	Name of Course	Type	Theory	Tutorial	Lab	Theo ry	Lab	CCA*	LCA*	End Term Test	Total	
1		Theoretical Computer Science	Core	3	-	-	2	-	60	-	40	100	
2		Introduction to Machine Learning	Core	3	-	-	2	-	60	-	40	100	
3		Internet of Things	Core	3	-	-	2	-	60	-	40	100	
4		Lab on ML	Core	-	-	3	-	1	-	60	40	100	
5		Mini Project	SEC	3			2		90	-	60	100	
6		Full time Industrial Internship	Core	-	-	40	-	12	-	60	40	100	
7		MOOC	Core	-	-		1	-	100	-	-	100	
		Total :	-	12	0	43	9	13	440	120	250	700	

Weekly Teaching Hours: 55

*CCA: Class Continuous Assessment

Total Credits: Third Year B.Sc. Computer Science Semester VII: 22

*LCA: Laboratory Continuous Assessment

Total Credit Third Year BSc Computer Science: 40

Ms Sheetal Rajapurkar Program Head, B.Sc Computer Science Dr. Shubhalaxmi Joshi Associate Dean Faculty of Science

B. Sc. Computer Science

Discipline Specific Elective:

Elective No.	Code	Title	Code	Title	Code	Title
DSE – I		Introduction to UNIX & Shell Scripting	BSC221B	PL/SQL		Computer Graphics
DSE – II		Information and Cyber Security	BSC305B	R Programming		Introduction to Digital Image Processing
DSE - III		Introduction to Cloud Computing	BSC312B	Introduction to Next Generation Databases		Introduction to Artificial Intelligence

Ms Sheetal Rajapurkar Program Head, B.Sc Computer Science

Dr. Shubhalaxmi Joshi Associate Dean Faculty of Science

Prepared By

Checked and Verified By

Approved By

Ms. Sheetal Rajapurkar

Assistant Professor

Dept of Computer Science & Application

Ms Sheetal Rajapurkar

Dept of Computer Science & Application

Prof. Dr. Shubhalaxmi Joshi

BoS Chairperson & Associate

Dean

Dept of Computer Science & Application

COURSE STRUCTURE

Course Code				
Course Category	Core Computer Science			
Course Title	Advanced Java			
Teaching Scheme and Credits	L	T	Laboratory	Credits
Weekly load hrs.	3			3

Pre-requisites:

- 1. Knowledge of C or C++ Programming Language
- 2. Knowledge of classes, objects, streams, Exception handling and file handling in Java.

Course Objectives:

Students will learn

- 1. Collection, different types of inheritance, interface
- 2. Graphics programming, Event Handling in Java
- 3. Multithreading Concept
- 4. To design User Interface using Swing and AWT
- 5. Introduction to MVC architecture
- 6. Web programming

Course Outcomes:

On completion of the course, student will be able to-

- 1. Students will learn Collection and multithreading concept.
- 2 Students will learn database programming using Java.
- 3.Create a full set of UI widgets and other components, including windows, menus, buttons, checkboxes, text fields, scrollbars and scrolling lists, using Abstract Windowing Toolkit (AWT)
- & Swings
- 4. Apply event handling on AWT and Swing components.
- 5. Students will get knowledge of MVC architecture.
- 6. Students will learn web programming using JSP and Servlet.

Course Contents:

- 1. Collection
- 2. JDBC
- 3. Multithreading

Prepared By Checked and Verified By Approved By

Prof. Dr. Shubhalaxmi Joshi
Dr Rajeshree Khande Ms Sheetal Rajapurkar BoS Chairperson & Associate
Assistant Professor Dept of Computer Science & Dean

Dept of Computer Science & Application Dept of Computer Science &

Application Application

- 4. AWT and SWING
- 5. JSP
- 6. Servlet

Learning Resources:

Reference Books:

- 1. Complete reference Java by Herbert Schildt(5th edition)
- 2. Java 2 programming black books, Steven Horlzner
- 3. Programming with Java, A primer, Fourth edition, By E. Balagurusamy
- 4. Core Java Volume-I-Fundamentals, Eighth Edition, Cay S. Horstmann, Gary Cornell, Prentice Hall, Sun Microsystems Press

Pedagogy:

Participative learning, discussions, algorithm, flowchart & Program writing, experiential learning through practical problem solving, assignment, PowerPoint presentation.

Assessment Scheme:

Class Continuous Assessment (CCA): 60 Marks

Mid Term Examination	FAT 1	FAT 2 (Formative	
(MCQ Online Test	(Formative	Assessment Test 1)	Total
/Direct Internal	Assessment Test		
Examination	1)		
30 Marks	15 Marks	15 Marks	60 Marks

Term End Examination: 40 Marks

Syllabus

Module	Contents	Workload in Hrs		
No.	Contents	Theory	Lab	Assess

Prepared By Checked and Verified By Approved By

Prof. Dr. Shubhalaxmi Joshi
Dr Rajeshree Khande Ms Sheetal Rajapurkar BoS Chairperson & Associate
Assistant Professor Dept of Computer Science & Dean
Dept of Computer Science & Application Dept of Computer Science & Application

1	Collection: Introduction to the Collection framework, List – ArrayList, LinkedList and Vector, Stack, Queue, Set - HashSet, TreeSet, and LinkedHashSet, Map – HashMap, LinkedHashMap, Hashtable and TreeMap, Interfaces such as Comparator, Iterator, ListIterator, Enumeration	7	-	-
2	JDBC: The design of JDBC, Basic JDBC program Concept, Drivers Architecture of JDBC, Making the Connection, Statement, ResultSet, PreparedStatement, CollableStatement, Executing SQL commands, Executing queries	7	-	-
3	Multithreading: What are threads? Life cycle of thread, Running and starting thread using Thread class, Thread priorities, Running multiple threads, The Runnable interface, Synchronization and interthread communication	6	-	-
4	AWT & SWING: AWT: What is AWT? Components and container used in AWT Layout managers, Event Handling: Event sources, Listeners, Mouse and Keyboard Event Handling, Adapters, Anonymous inner class. SWING: The MVC Architecture and Swing, Introduction to layout management, Text Fields, Labels, Check boxes, Radio buttons, List, Combo boxes, Border, Scrollbars, Scrolling window, Menus, Reacting to menu events, Icons in item menus, checkbox and radio button, menu items, Popup menu, Dialog boxes.	10	-	-
5	JSP: Simple first JSP program, Life cycle of JSP, Implicit Objects, Scripting elements – Declarations, Expressions, Scripless, Comments, JSP Directives – Page Directive, include directive, Mixing Scriplets and HTML, Example of forwarding contents from database to servlet, servlet to JSP and displaying it using JSP scrupled tag	6	-	-
6	Servlet: Introduction to Servlet and Hierarchy of Servlet, Life cycle of servlet, Tomcat configuration (Note: Only for Lab	9	-	-

Prepared By Checked and Verified By Approved By

Dr Rajeshree Khande Ms Sheetal Rajapurkar
Assistant Professor Dept of Computer Science &
Application Application

Demonstration), Handing get and post request (HTTP)		

Prepared By

Checked and Verified By

Approved By

Dr Rajeshree Khande Assistant Professor Dept of Computer Science & Application Ms Sheetal Rajapurkar Dept of Computer Science & Application

COURSE STRUCTURE

Course Code	COS	3104E	3	
Course Category	Core Computer Science			
Course Title	Net	Network Security		
Teaching Scheme and Credits	L	T	Laboratory	Credits
Weekly load hrs.	3	-		3

<u>Pre-requisites</u>: A basic understanding of computer networks

Course Objectives:

- To develop a fundamental understanding of computer and network security proper practices, policies, technologies and standards
- To covers basic security topics, including symmetric and public key cryptography, digital signatures.
- To explain about User Authentication Mechanisms
- To explain IP and Web Security

Course Outcomes:

- Students will be able to explain concepts related to applied cryptography, including Plaintext, cipher text, symmetric cryptography, and asymmetric cryptography.
 - Students should understand different User Authentication Mechanisms.
 - Know underlying principles and techniques for IP and Web security

Course Contents:

Information Security Concepts

Cryptography and Secret Key Cryptography

Public key Cryptography

User Authentication Mechanisms

Prepared By Checked and Verified By

Ms. Sheetal Rajapurkar Assistant Professor Dept of Computer Science & Application Ms Sheetal Rajapurkar
Dept of Computer Science &

Application

Approved By

Security Policies

Security At Different Levels

IP Security

Web Security

Learning Resources:

Reference Books:

- 1. 1. Cryptography and Network Security by Atul Kahate, 2nd Edition, Tata McGrawHill
- 2. Cryptography and Network Security by William Stallings, Fifth Edition, Pearson Education.
- 3. Cryptography: Theory and Practice by Douglas Stinson, CRC Press, CRC Press LLC
- 4. Hack Proofing your network by Ryan Russell, Dan Kaminsky, Rain Forest Puppy, Joe Grand, David Ahmad, Hal Flynn Ido Dubrawsky, Steve W.Manzuik and Ryan Permeh, Wiley Dreamtech
- 5. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning

Supplementary Reading: Web Resources:

https://www.tutorialspoint.com/cryptography

Pedagogy:

Participative learning, problem solving, assignments, Tutorial

Assessment Scheme:

Class Continuous Assessment (CCA) 60 marks

Mid Term Examination	FAT 1 (Formative	FAT 2 (Formative	
(MCQ Online Test /Direct Internal	Assessment Test 1)	Assessment Test 1)	Total
Examination			

Prepared By Checked and Verified By

Ms. Sheetal Rajapurkar Assistant Professor Dept of Computer Science & Application Ms Sheetal Rajapurkar Dept of Computer Science & Application Prof. Dr. Shubhalaxmi Joshi BoS Chairperson & Associate Dean Dept of Computer Science & Application

Approved By

	30 Marks	15 Marks	15 Marks	60 Marks	
,					
Terr	n End Examination : 40 marks				

Syllabus:

Modul		Wor	k load in	hrs.
e	Contents	Theor	Lab	Acces
	Information Security Concepts Information Security Overview Background and Current, Scenario, Types of Attacks, Goals for Security, E-commerce Security, Computer Forensics Steganography, Digital Signatures Cryptography and Secret Key Cryptography Introduction to Cryptography / Encryption, Applications of Cryptography, Tools and techniques of Cryptography Block Encryption, DES rounds, S-Boxe IDEA: Overview, comparison with DES, Key expansion, IDEA rounds, Uses of Secret key Cryptography; ECB, CBC, OFB, CFB Multiple encryptions DES. Public key Cryptography Algorithms, examples, Modular arithmetic (addition, multiplication, inverse, and exponentiation)	у	Luc	S
	Information Security Concepts Information Security Overview:			
1	Background and Current, Scenario, Types of Attacks, Goals for	5	_	_
	Security, E-commerce Security, Computer Forensics,			
	Steganography, Digital Signatures			
	Cryptography and Secret Key Cryptography Introduction to			
	Cryptography / Encryption, Applications of Cryptography, Tools and		-	
2	techniques of Cryptography Block Encryption, DES rounds, S-Boxes	8		
2	IDEA: Overview, comparison with DES, Key expansion, IDEA	0		-
	rounds, Uses of Secret key Cryptography; ECB, CBC, OFB, CFB,			
	Multiple encryptions DES.			
	Public key Cryptography			
	Algorithms, examples, Modular arithmetic (addition,			
2	multiplication, inverse, and exponentiation)	0		
3	RSA: generating keys, encryption and decryption.	8	-	-
	Other Algorithms: PKCS, Diffie-Hellman, El-Gamal signatures,			
	DSS, Zero-knowledge signatures			

Prepared By Checked and Verified By

Ms. Sheetal Rajapurkar Assistant Professor Dept of Computer Science & Application Ms Sheetal Rajapurkar Dept of Computer Science & Application Prof. Dr. Shubhalaxmi Joshi BoS Chairperson & Associate Dean Dept of Computer Science & Application

Approved By

4	User Authentication Mechanisms Introduction, Authentication Basics, Passwords, Authentication Tokens, Certificate-based Authentication, Biometric Authentication, Authentication with OAuth	8	-	-
5	Security Policies Concept of security policy, Policy design and standards i.e BS7799, ISO17799 & ISO27001, Why there is a need of these standards? Contents of ISO27001, Incident handling and escalation procedures, FW Implementation Practices, IP chain concepts.	8	-	•
6	Security At Different Levels Network Security: Electronic mail security, IP security, Network management, Security. Security for electronic commerce: TLS SET, System Security: Intruders and Viruses, Firewalls, Intrusion Detection	8	-	-

Prepared By Checked and Verified By

Ms. Sheetal Rajapurkar Assistant Professor Dept of Computer Science & Application Ms Sheetal Rajapurkar Dept of Computer Science & Application Approved By

COURSE STRUCTURE

Course Code		
Course Category	Core Computer Science	
Course Title	Software Testing and Quality Assurance	
Teaching Scheme and Credits	L T Laboratory Credits	
Weekly load hrs.	3 3	
December 1981	· · · · · · · · · · · · · · · · · · ·	

<u>Pre-requisites</u>: Basics of Software Engineering concepts.

Course Objectives:

- 1. To introduce the basic concepts Quality Assurance and software Testing.
- 2. To understand the verification and validation.
- 3. To be familiar with a different types of testing techniques.
- 4. To understand how to write the test cases.

Course Outcomes:

After completion of the course, students will be able to:

- 1. Understand the quality assurance and quality control
- 2. Write the test cases.
- 3. Understand the different types of testing.

Course Contents:

- 1. Software Quality Assurance, Verification & Validation
- 2. Software Testing, Test Plan and Test Cases
- 3. Black Box and White Box Testing
- 4. Testing Types
- 5. Static & Dynamic Testing

Learning Resources:

Reference Books:

- 1. Software Testing by Ron Patton, TechMedia Pub.
- 2. Software Testing Techniques Boris Bezier, dreamTech pub,2nd Ed.
- 3. Effective Methods for software Testing William Perry, Wiley Pub,3rd Ed.

Web Resources:

Drangrad By

1. www.effectivesoft.com

Ргерагеи ву	Checked and Vermed By	Арргочей ву
		Prof. Dr. Shubhalaxmi Joshi
Mr Navanath Shete	Ms Sheetal Rajapurkar	BoS Chairperson & Associate
Assistant Professor	Dept of Computer Science &	Dean
Dept of Computer Science &	Application	Dept of Computer Science &
Application		Application

Chacked and Varified By

Annroyed By

2. www.sei.cmu.edu

Pedagogy:

Participative learning, discussions, assignments, Tutorials, experiential learning through practical problem solving, assignment, PowerPoint presentation, Case Studies

Assessment Scheme:

Class Continuous Assessment (CCA) 60 marks

Mid Term Examination (MCQ Online Test /Direct Internal Examination	FAT 1 (Formative Assessment Test 1)	FAT 2 (Formative Assessment Test 1)	Total
30 Marks	15 Marks	15 Marks	60 Marks

Term End Examination: 40 marks

Syllabus

Module	Contents		Work load in hrs.		
Module			Lab	Access	
	Software Quality Assurance and Quality Control:				
1	Introduction to Quality, Quality Characteristics, QA, QC, SQA, Building	9	-	-	
	Blocks of SQA, Verification & Validation Model, CMM, ISO				

Prepared By Checked and Verified By Approved By

Prof. Dr. Shubhalaxmi Joshi
Mr Navanath Shete Ms Sheetal Rajapurkar BoS Chairperson & Associate
Assistant Professor Dept of Computer Science & Dean
Dept of Computer Science & Application Dept of Computer Science & Application

2	Introduction to Software Testing and Test plan: Definition & Objectives, Types of software bugs, Bug life cycle, Testing lifecycle, Test Plan, Test Cases – Definition, Test Case Designing, Case Studies on Test Plan & Test Cases	12		
3	Black Box and White Box Testing: Functional Testing (Black Box) - Equivalence partitioning, BVA, Structural Testing (White Box) - Statement coverage, Branch & decision coverage, Path coverage, Domain Testing, Black box vs. White Box	8	-	-
4	Testing Types: Unit Testing, Integration Testing, System Testing – Performance, Load, Stress, Security, Recoverability, compatibility testing, Regression Testing, Installation Testing, Usability Testing, Acceptance Testing- Alpha testing & Beta testing, Static vs. Dynamic testing, Manual vs. Automatic testing.	10	-	1
5	Static & Dynamic Testing: Static Testing Techniques, Review types: Informal Review, Technical or peer review, Walkthrough and Review Meeting, Cyclometric Analysis, Case Study: Cyclometric Complexity	6	-	-

Prepared By Checked and Verified By Approved By

Mr Navanath Shete
Assistant Professor
Dept of Computer Science &
Application

Ms Sheetal Rajapurkar Dept of Computer Science & Application

COURSE STRUCTURE

Course Code	COS 3114B
Course Category	Core Computer Science
Course Title	Lab on Advanced Java
Teaching Scheme and Credits	L T Laboratory Credits
Weekly load hrs.	2 1

Pre-requisites:

- 1. Knowledge of C or C++ Programming Language
- 2. Knowledge of classes, objects, streams, Exception handling and file handling in Java.

Course Objectives:

Students will learn

- 1. Collection, different types of inheritance, interface
- 2. Graphics programming, Event Handling in Java
- 3. Multithreading Concept
- 4. To design User Interface using Swing and AWT
- 5. Introduction to MVC architecture
- 6. Web programming

Course Outcomes:

On completion of the course, student will be able to-

- 1. Students will learn Collection and multithreading concept.
- 2 Students will learn database programming using Java.
- 3.Create a full set of UI widgets and other components, including windows, menus, buttons, checkboxes, text fields, scrollbars and scrolling lists, using Abstract Windowing Toolkit (AWT)
- & Swings
- 4. Apply event handling on AWT and Swing components.
- 5. Students will get knowledge of MVC architecture.
- 6. Students will learn web programming using JSP and Servlet.

Course Contents:

- 1. Collection
- 2. JDBC
- 3. Multithreading

Prepared By Checked and Verified By Approved By

Prof. Dr. Shubhalaxmi Joshi Dr Rajeshree Khande Ms Sheetal Rajapurkar BoS Chairperson & Associate

Assistant Professor Dept of Computer Science & Dean

Dept of Computer Science & Dept of Computer Science &

Application Application Dept of Computer Science & Application Application

- 4. AWT and SWING
- 5. JSP
- 6. Servlet

Learning Resources:

Reference Books:

- 1. Complete reference Java by Herbert Schildt(5th edition)
- 2. Java 2 programming black books, Steven Horlzner
- 3. Programming with Java, A primer, Fourth edition, By E. Balagurusamy
- 4. Core Java Volume-I-Fundamentals, Eighth Edition, Cay S. Horstmann, Gary Cornell, Prentice Hall, Sun Microsystems Press

Pedagogy:

Participative learning, discussions, algorithm, flowchart & Program writing, experiential learning through practical problem solving, assignment, PowerPoint presentation.

Assessment Scheme:

Laboratory Continuous Assessment (CCA): 50 Marks

Mid Term Lab Test (MCQ Online Test /Direct Internal	Lab Performance	Lab Assignment / Lab Book	Total
Examination			
30 Marks	20 Marks	10 Marks	60 Marks

Term End Examination: 40 Marks

Syllabus

Module	Contants	Workload in Hrs		
No.	Contents	Theory	Lab	Assess
1	To study Collection	-	05	-

Prepared By Checked and Verified By Approved By

Prof. Dr. Shubhalaxmi Joshi
Dr Rajeshree Khande Ms Sheetal Rajapurkar BoS Chairperson & Associate
Assistant Professor Dept of Computer Science & Dean
Dept of Computer Science & Application Dept of Computer Science & Application

2	To study JDBC	-	05	-
3	To study Multithreading	-	05	-
4	To study AWT	-	05	-
5	To study SWING	-	05	-
6	To study JSP & JSP	-	05	-

Prepared By Checked and Verified By

Approved By

Dr Rajeshree Khande Assistant Professor Dept of Computer Science & Application Ms Sheetal Rajapurkar Dept of Computer Science & Application

COURSE STRUCTURE

Course Code	COS3115B
Course Category	Core
Course Title	Lab on Python
Teaching Scheme and Credits	L T Laboratory Credits
Weekly load hrs.	- 2 1

Pre-requisites:

- 1. Experience with a high level language (C/C++, Java, MATLAB) is suggested.
- 2. Prior knowledge of a scripting language (Perl, UNIX/Linux shells) and Object-Oriented concepts is helpful but not mandatory.

Course Objective: -

Knowledge: To understand concepts with respect to

i) Design and Program Python applications

ii) Define the structure and components of a Python program

Skills: Design skills of

i) Object-oriented programs with Python classes

ii) Programming of Python applications

Attitude: To develop following

Confidence for logic building in Python

Course Outcomes:

- 1. Problem solving and programming capability.
- 2. Building and Packaging Python modules for reusability.
- 3. Designing object-oriented programs with Python classes.

4.

Course Contents:

- 1. Introduction To Python And Its Data Types
- 2. Python Programming Flow Control
- 3. Python Functions, Modules And Packages
- 4. String, List And Dictionary Manipulation And File Handling
- 5. Concept Of Oops
- 6. Exception Handling
- 7. Text Processing And Database Connectivity.

Prepared By Checked and Verified By Approved By

Ms. Sheetal Rajapurkar Ms Sheetal Rajapurkar BoS Chairperson & Associate
Assistant Professor Dept of Computer Science & Dean

Dept of Computer Science & Application Dept of Computer Science & Application Application

Learning Resources:

Reference Book:

- 1. David M. Beazley, Python Essential Reference, Fourth Ed., Developers Library.
- 2. Python in a Nutshell by Alex Martelli (O'Reilly)
- 3. Learning Python by Mark Lutz and David Ascher (O'Reilly)

Websites:

- 1. https://www.codecademy.com/learn/learn-python
- 2. https://www.tutorialspoint.com/python
- 3. https://docs.python.org/3/tutorial/index.html

MOOCS:

1. https://www.mooc-list.com/tags/python

Pedagogy:

1. Participative learning, discussions, programming concepts, experiential learning through practical problem solving, assignments, Tutorial, conceptual and contextual learning

Assessment Scheme:

Laboratory Continuous Assessment (LCA) 60 Marks

Mid Term Lab Test (MCQ Online Test /Direct Internal Examination	Lab Performance	Lab Assignment / Lab Book	Total
30 Marks	20 Marks	10 Marks	60 Marks

Term End Examination: 40 Marks

Syllabus:

Module	Contents	Workload in Hrs
Module	Contents	WOIKIOAU III IIIS

Prepared By Checked and Verified By Approved By

Ms. Sheetal Rajapurkar Assistant Professor Dept of Computer Science & Application Ms Sheetal Rajapurkar Dept of Computer Science & Application BoS Chairperson & Associate

Dean

Dept of Computer Science &

Application

Prof. Dr. Shubhalaxmi Joshi

No.		Theory	Lab	Assess
	Introduction to Python			
	What is Python and history of Python?			
	Unique features of Python			
	Python-2 and Python-3 differences			
	Install Python and Environment Setup			
	First Python Program			
1	Python Identifiers, Keywords and Indentation			
1	Comments and document interlude in Python	-	02	-
	Command line arguments			
	Getting User Input			
	Python Data Types			
	What are variables?			
	Python Core objects and Functions			
	Number and Maths			
	Week 1 Assignments			
	Control Statements		02	
2	if-else, if-elif-else	_		
_	while loop, for loop			-
	break, continue, assert, pass, return			
	List, Ranges & Tuples in Python		08	
	Introduction			
	Lists in Python			
	Understanding Iterators			
	Generators, Comprehensions and Lambda Expressions			
3	1. Next and Ranges	-		-
	2. Understanding and using Ranges			
	Ordered Sets with tuples			
	Python Dictionaries, Sets			
	Python Sets Examples			
	Python built in function		04	
	Python user defined functions			
	Python packages functions			
4	Defining and calling Function	-		-
	The anonymous Functions			
	Loops and statement in Python			
	Python Modules & Packages			

Prepared By Checked and Verified By Approved By

Ms. Sheetal Rajapurkar
Assistant Professor
Dept of Computer Science &
Application

Ms Sheetal Rajapurkar Dept of Computer Science & Application

5	Python Object Oriented		06	
	Overview of OOP			
	The self-variable			
	Constructor			
	Types Of Variables			
	Namespaces			
	Creating Classes and Objects	-		-
	Inheritance			
	Types of Methods			
	Instance Methods			
	Static Methods			
	Class Methods.			
	Decorator			
6	Files and Directories		04	
	a. Program to Writing Text Files, Appending Text to a File,			
	Reading Text Files.	_		
	b. Program to demonstrate Paths and Directories, File Information,			-
	Renaming, Moving, Copying, and Removing Files.			
10	Accessing Databases		04	
	a. Practical based on using DBM - Creating Persistent Dictionaries			
	and Accessing Persistent Dictionaries.			
	b. Practical based on using Relational Database - Writing SQL			
	Statements, Defining Tables, Setting Up a Database.	-		-
	c. Practical based on using Using the Python Database APIs,			
	Creating Connections, working with Transactions and Committing			
	the Results.			
		_		

Prepared By Checked and Verified By Approved By

Ms. Sheetal Rajapurkar Assistant Professor Dept of Computer Science & Application Ms Sheetal Rajapurkar Dept of Computer Science & Application

Prepared By

Checked and Verified By

Approved By

Ms. Sheetal Rajapurkar Assistant Professor Dept of Computer Science & Application Ms Sheetal Rajapurkar Dept of Computer Science & Application

Course Code	COS3106B			
Course Category	Core Computer Science			e
Course Title	Data Analytics (Excel/Tableau)			Tableau)
Teaching Scheme and Credits	L T Laboratory Credits			Credits
Weekly load hrs.	2			2

Pre-requisites:

- 1. No Earlier Analysis Knowledge required
- 2. Basics of Excel & spread sheets.
- 3. Desire to Learn and work with Data

Course Objectives:

On completion of the course, student will be able to :-

- 1. How to use Excel & Tableau for Data Analysis.
- 2. How to do Data analysis and Data Visualization.
- 3. How to use Excel for Data Cleaning, Preparation and finally Data Visualization
- 4. How to create a real interaction dashboard for projects in Tableau.
- 5. How to use Excel and Tableau to do your Data Analysis.

Course Outcomes:

On completion of the course, student will be able to :-

- 6. How to get started and get going with data analysis with learning how to use Excel & then use Tableau for Data analysis.
- 7. How to do Data analysis and data visualization.
- 8. How to use Excel and learn the various steps for doing data analysis viz data cleaning, preparation and finally data visualization
- 9. To create a real interaction dashboard for projects in Tableau.
- 10. Utilize Excel and Tableau to do your data analysis.

Course Contents:

- 1. Spread Sheet and Excel Part 1
- 2. Spread Sheet and Excel Part 2
- 3. Visualizing Our Data & Additional Features
- 4. Tableau Part 1: Data Analysis and Data Cleaning and Preparation Steps
- 5. Data Visualisation
- 6. Dashboard
- 7. Sample Project

Learning Resources:

Reference Books:

- 1. Data Analytics Made Accessible, A. Maheshwari
- 2. Too Big to Ignore: The Business Case for Big Data, P. Simon
- 3. Business UnIntelligence: Insight and Innovation Beyond Analytics and Big Data, B. Devlin

Pedagogy:

Participative learning, discussions, algorithm, flowchart & Program writing, experiential learning through practical problem solving, assignment, PowerPoint presentation.

Assessment Scheme:

Class Continuous Assessment (CCA): 60 Marks

Mid Term Examination	FAT 1	FAT 2 (Formative	
(MCQ Online Test	(Formative	Assessment Test 1)	Total
/Direct Internal	Assessment Test		
Examination	1)		
30 Marks	15 Marks	15 Marks	60 Marks

Term End Examination: 40 Marks

Syllabus

		Worklo	oad in H	rs .
Module	Contents	Theory	Lab	Assess
No.				
	Spread Sheet and Excel Part 1:			
1	 Basic and Excel spreadsheet & its Interface 	3	_	_
	2. Basics, Referencing and Autocompleting your Data			
	3. Formatting Your Data			
	4. Formatting the tables to make them more appealing			
	5. Using Conditional Formatting			
	Spread Sheet and Excel Part 2:			
2	1. Filter/Sorting Our Data	4		
	2. Data Validation (Creating Drop down List), Formulas and	4		
	Functions			
	3. Combining Data and Extracting Data from cells			
	4. Using IF Function			
	5. Vlookup Function and Data Cleaning			
	6. Excel: Using Checkbox, Slicer, and All other features			
	Visualizing Our Data & Additional Features:			
3	1. Pivot Tables			
	2. Creating Different Chart and Map Visualizations	5		
	3. Creating Pivot table and Charts in Excel			
	4. Creating Dashboard in Excel			
	5. Using Macros			
	Tableau Part 1 : Data Analysis and Data Cleaning and	_		
4	Preparation Steps	5		
	1. What is Data Analysis & how to gather information?			
	2. What are the Dashboards & its types?			
	1. What is Blueprinting your Dashboards and how its done			
	2. Demonstration: Download the Tableau			
	3. How to Combine the Data in Tableau			
	6. Cleaning the Data			
	7. Preparation of the data			
	Data Visualisation			
5	1. How to create the first visualization			
	2. How to create the first visualization	5		
	3. Advanced Tableau features for creating Territories in Tableau			
	4. Using The Marks Card			
	5. How to create some filters			
	5. How to create some meets			
		1]	

	Dr. Vishwanath Karad
TM	MIT WORLD PEACE
MIT-WPU	UNIVERSITY PUNE

	Dashboard	।। विश्वशान्तिर्पुर्व घ्रुवा ।। TECHNOLOGY, RESEARCH, SOCIAL INNOVATION & PARTNERSHIPS		
6	1. TheDas	hboard Interface	5	
	2. How to	Create Dashboard		
	3. How to	use various Filters to make our dashboards more		
	Interac	tive and Dynamic		
	4. How to	download and Share your Dashboards		
	Sample Final	Project		
			_	
	1. Compl	eting the first few tasks	3	
7	_	eting the first few tasks leaning, Preparation, and some charts)	3	
7	(Data c	6	3	
7	(Data c 2. Creatir	leaning, Preparation, and some charts)	3	
7	(Data c 2. Creatir 3. Creatir	leaning, Preparation, and some charts) ng the Hollow pie Chart	3	

Prepared By	Checked By	Verified By	Approved By
Ms. Akashata Badade Assistant Professor	Dr. Rajeshree Khande AHoS & Program Head	Dr. C. H. Patil Head of School	Dr. Shubhalaxmi Joshi Associate Dean
School of Computer	School of Computer	School of Computer	& BoS Chairperson
Science	Science	Science	Faculty of Science

Course Code	COS3107B			
Course Category	Core Computer Science			
Course Title	Data Mining			
Teaching Scheme and Credits	L T Laboratory Credits			Credits
Weekly load hrs.	2			2

Pre-requisites:

- 1. Understanding of Database concepts.
- 2. Understanding of different algorithms
- 3. Understanding of Data structures

Course Objectives:

On completion of the course, student will be able to: -

- 1. Identify the scope and necessity of Data Mining for the society
- 2. Describe the designing of Data Warehousing so that it can be able to solve the root problems.
- 3. To understand various tools of Data Mining and their techniques to solve the real time problems.
- 4. To develop ability to design various algorithms based on data mining tools.
- 5. To develop further interest in research and design of new Data Mining techniques

Course Outcomes:

On completion of the course, student will be able to: -

- 1. Apply data mining techniques and methods to large data sets
- 2. Use data mining tools
- 3. Compare and contrast the various classifiers

Course Contents:

- 1. Introduction
- 2. Data Warehousing
- 3. DW Implementation
- 4. Data Mining Algorithms
- 5. Web, Temporal and Spatial Data Mining:

Learning Resources:

- 1. Jiawei I-lan & Micheline Kambler, "Data Mining: Concepts and Techniques", **Harcourt India Pvt. Ltd.**,
- 2. Margaret H. Dunham, "Data Mining: Introduction and Advance Topics", **Pearson Education**, First Indian Reprint, 2003
- 3. Arun K. Pujari, "Data Mining Techniques", University Press (India) Limited, First edition,

Pedagogy:

Participative learning, discussions, algorithm, flowchart & Program writing, experiential learning through practical problem solving, assignment, PowerPoint presentation.

Assessment Scheme:

Class Continuous Assessment (CCA): 60 Marks

Mid Term Examination	FAT 1	FAT 2 (Formative	
(MCQ Online Test	(Formative	Assessment Test 1)	Total
/Direct Internal	Assessment Test		
Examination	1)		
30 Marks	15 Marks	15 Marks	60 Marks

Term End Examination: 40 Marks

Module	Contents	Worl	k load ir	n Hours
No.		Theory	Lab	Assess
1	Introduction: 1. Data Mining – Motivation, 2. Importance of DM Functionalities, 3. Basic Data Mining Tasks, 4. DM Applications, and Social Implications	4	-	-
2	Data Warehousing 1. Differences between Operational Database and Data Warehouse 2. Multidimensional Data Model - From Tables to Data Cubes. 3. Schemas, Measures,	5		
3	 DW Implementation – Efficient Computation of Data Cubes. Data Reprocessing, Data Mining Primitives, Languages Data Cleaning, Data Integration and Transformation, Data Reduction, Discretization and concept of Hierarchy Generation, Task relevant Data, Background Knowledge,	7		
4	Data Mining Algorithms 1. Association Rule Mining, Classification and Prediction – 2. Decision Tree, 3. Bayesian Classification Back Propagation, 4. Cluster Analysis, Outlier Analysis.	8		
5	Web, Temporal and Spatial Data Mining: 1. Web Content Mining, 2. Web Structure Mining, 3. Web Usages Mining, 4. Spatial Mining, 5. Generalization and specialization,	6		

Prepared By	Checked By	Verified By	Approved By
Dr. Shantanu Kanade	Dr. Rajeshree Khande	Dr. C. H. Patil	Dr. Shubhalaxmi Joshi
Assistant Professor	AHoS & Program Head	Head of School	Associate Dean
School of Computer	School of Computer	School of Computer	& BoS Chairperson

Science

Science

Science

Faculty of Science

Course Code	COS3108B			
Course Category	Core Computer Science			
Course Title	Digital Marketing			
Teaching Scheme and Credits	L T Laboratory Credits			Credits
Weekly load hrs.	2			2

Pre-requisites:

- 1. Should have good analytical ability and creativity
- 2. Good communication
- 3. Tech savviness

Course Objectives:

On completion of the course, student will be able to: -

- 1. To make student aware of digital marketing space
- 2. To make student understand digital marketing scope and limitations
- 3. To make student aware of digital marketing tools and techniques
- 4. To carry out digital marketing analytics

Course Outcomes:

On completion of the course, student will be able to: -

- 1. Will be able to use different strategies for marketing
- 2. Will be able to create brand marketing
- 3. A thought process to harness the power of Digital Marketing to improve the website or business
- 4. Will be able to analyse Digital Marketing tools

Course Contents:

- 1. Introduction
- 2. Digital marketing vs. Traditional marketing
- 3. Website planning, search marketing, SEO
- 4. E-mail marketing, mobile marketing and affiliate marketing
- 5. Video marketing and blogging

Learning Resources:

- 1. Reference Books:
 - Digital Marketing by **Seema Gupta** (IIM-B)
- 2. Digital Marketing: Strategy, Implementation & Practice by **Dave Chaffey & Fiona EllisChadwick**
- 3. Understanding Digital Marketing: Marketing Strategies for Engaging the Digital Generation
 - Damian Ryan and Calvin Jones

Pedagogy:

Participative learning, discussions, algorithm, flowchart & Program writing, experiential learning through practical problem solving, assignment, PowerPoint presentation.

Assessment Scheme:

Class Continuous Assessment (CCA): 60 Marks

Mid Term Examination	FAT 1	FAT 2 (Formative	
(MCQ Online Test	(Formative	Assessment Test 1)	Total
/Direct Internal	Assessment Test		
Examination	1)		
30 Marks	15 Marks	15 Marks	60 Marks

Term End Examination: 40 Marks

Module No.	Contents	Work load in Hours		1 Hours
NO.		Theory	Lab	Assess
	INTRODUCTION	6		
1	Meaning & Process of Marketing-Digital Marketing.		_	_
	2. Visibility Meaning, Types. Visitors' Engagement- Meaning,			
	importance & Examples.3. Bringing Targeted Traffic- Inbound and outbound marketing.			
	4. Converting Traffic into Leads, Types of Conversion & Conversion			
	Process tools.			
	5. Role of Digital Marketing in increase in sales, competitive analysis			
	DIGITAL MARKETING VS. TRADITIONAL MARKETING	4		
2	1. Difference- Traditional marketing and Digital marketing.			
	2. Benefits and challenges.			
	3. Tools for effective Digital Marketing.			
	WEBSITE PLANNING, SEARCH ENGINE MARKETING, SEO	6		
3	1. Brand awareness, credibility and delivery among consumers through			
	internet.			
	2. Understanding domain names & extensions. Different types of websites based on functionality, purpose planning &conceptualizing.			
	3. SEM in digital marketing - Need & Types.			
	4. Introduction to SEO-Benefits and Challenges.			
	5. Difference between SEO and SEM.			
	6. Paid search engine marketing, pay per click advertising (PPC);			
	landing pages;			
	7. longtail concept;			
	8. geo-targeting e.g. Google Ad Words			
	E-MAIL MARKETING, MOBILE MARKETING and AFFILIATE	4		
4	MARKETING			
	1. Email marketing Meaning, Basics, Types and benefits.			
	2. Mobile Marketing-Definition & Types.			
	3. Introduction to Affiliate Marketing- Need & Skills required.			
	VIDEO MARKETING and BLOGGING	10		
5	1. Introduction to Video Marketing, Types, Strategy, Need, Benefits and			
	Challenges.			
	2. Blogs- Meaning, Importance, Issues and Challenges.			
	3. Digital Advertising Market in India			
	4. Case studies on digital marketing. (5 cases)			

Prepared By	Checked By	Verified By	Approved By
Dr. Shantanu Kanade	Dr. Rajeshree Khande	Dr. C. H. Patil	Dr. Shubhalaxmi Joshi
Assistant Professor	AHoS & Program Head	Head of School	Associate Dean
School of Computer	School of Computer	School of Computer	& BoS Chairperson
Science	Science	Science	Faculty of Science

Course Code	COS3109B			
Course Category	Core Computer Science			
Course Title	Django Framework			
Teaching Scheme and Credits	L T Laboratory Credits			Credits
Weekly load hrs.	2 - 2			2

Pre-requisites:

- 1. Using Python for web development
- 2. Desire to Learn and work with Data
- 3. Must know basic components of Python like Basic syntax, decision making, loops, lists, tuples, and dictionaries.
- 4. The basics of procedural and object-oriented programming: control structures, data structures and variables, classes, objects, etc.

Course Objectives:

On completion of the course, student will be able to :-

- 1. How to use Django
- 2. How to design and implement python-based web app
- 3. How to use Django for rapid web development

Course Outcomes:

On completion of the course, student will be able to :-

- 1. Get started and get going with Django installation and setting work environment for web development
- 2. How to eliminate repetitive tasks making the development process an easy and time saving experience.
- 3. Students will be able to deploy web development framework that assists in building and maintaining quality web applications.

Course Contents:

- 1. Introduction to Django
- 2. Django Views & Models
- 3. Creating Administration Panel
- 4. Django Forms & Email
- 5.

Learning Resources:

Reference Books:

- 1. Building Websites with Django, Awanish Ranjan, BPB Publication
- 2. Learning Django Web Development, Sanjeev Jaiswal, Ratan Kumar
- **3.** Django: Web Development with Python: Web Development with Python: Web Development with Python, **Arun Ravindran, Samuel Dauzon, Aidas Bendoraitis**

Pedagogy:

Participative learning, discussions, algorithm, flowchart & Program writing, experiential learning through practical problem solving, assignment, PowerPoint presentation.

Assessment Scheme:

Class Continuous Assessment (CCA): 60 Marks

Mid Term Examination	FAT 1	FAT 2 (Formative	
(MCQ Online Test	(Formative	Assessment Test 1)	Total
/Direct Internal	Assessment Test		
Examination	1)		
30 Marks	15 Marks	15 Marks	60 Marks

Term End Examination: 40 Marks

Syllabus

Module No.	Contents	Wor	Work load in Hour	
NO.		Theory	Lab	Assess
1	Introduction to Django: 1. Django Overview 2. Django Installation 3. Creating a Project 4. Usage of Project in depth Discussion 5. Creating an application 6. Understanding Folder Structure	3	-	-
_	Creating a Hello World Page			
2	Django Views & Models 1. Django Views 2. Function Based Views 3. Class Based Views 4. URLconfs 5. URL namespaces 6. Other URLconfs	6		
	 7. Django Templates 8. Template Tags and Filters 9. Template loading 10. Template Inheritance Creating Administration Panel 			
3	 Using the admin interface Customizing the admin interface Adding users Data access and modification using admin panel Giving permissions to users 	4		
4	Django Forms and Email 1. Django Forms 2. Getting Data from request object 3. Making a contact form 4. Customizing form design 5. Configuring email settings 6. Sending emails with Django	4		
5	Sessions & cookies 1. Difference between session and cookie 2. Creating sessions and cookies in Django 3. Configuring the session engine 4. Using session in views 5. Session Serialization 6. Setting Up the cache 7. The low-level cache API	4		

	Using Databases in Django विश्वशान्तिपूर्व धूवा ।। теснноlоду, research, social innovation à partnerships		
6	1. Using SQLite		
	2. Configuring MySQL database	3	
	3. Working with MySQL in Django		
	Errors and Exception Handling		
	1. Syntax errors		
7	2. Exceptions	3	
	3. Using try/catch/else/finally		
	4. Handling multiple exceptions		
	5. Ignoring exceptions		
8	Security	3	
	1. Clickjacking protection		
	2. Cross Site Request Forgery protection		
	3. Cryptographic signing		

Prepared By	Checked By	Verified By	Approved By
Dr. Shantanu Kanade Assistant Professor School of Computer	Dr. Rajeshree Khande AHoS & Program Head School of Computer	Dr. C. H. Patil Head of School School of Computer	Dr. Shubhalaxmi Joshi Associate Dean & BoS Chairperson
Science	Science	Science	Faculty of Science

Course Code	COS3111B				
Course Category	DSE-II				
Course Title	Informa	Information and Cyber Security			
Teaching Scheme and Credits	L	T	Laboratory	Credits	
Weekly load hrs	3	-	-	3	

Pre-requisites:

Basic understanding of computer networks.

Course Objectives:

1. Knowledge

• To develop a fundamental understanding of information security at various levels.

2. Skills

- To understand basic concepts of information security.
- Ability to use existing security protocols and tools to build programs for secure communications.

3. Attitude

- To explore the working principles and utilities of algorithms including SET,SSL ,PGP,SMIME
- To elaborate the requirements of real-time communication security and issues related to the security of web services

Course Outcomes:

Students will learn to

- 1. Identify information security goals and current scenarios of information security
- 2. Understand basics of cryptography and various techniques of encryption
- 3. Understand various intrusion detection mechanisms to secure information
- 4. Understand implementation of web security protocols
- 5. Understand implementation of various email security protocols.

Course Contents:

- 1. Information Security Concepts
- 2. Introduction to cryptography
- 3. Access Control and Intrusion Detection
- 4. System Security
- 5. Server Management and Firewalls

Learning Resources:

Reference Books:

- 1. Cryptography and Network Security by Atul Kahate, 2nd Edition, Tata McGrawHill
- 2. Cryptography and Network Security by William Stallings, Fifth Edition, Pearson Education.
- 3. Principles of information security, Thomson, 2nd Edition, 2005

Prepared By	Checked By	Verified By	Approved By
Ms Varsha Sontakke Assistant Professor School of Computer Science	Dr. Rajeshree Khande AHoS & Program Head School of Computer Science	Dr. C. H. Patil HoS School of Computer Science	Dr. Shubhalaxmi Joshi Associate Dean & BoS Chairperson Faculty of Science

Ped	agogy:
ı cu	agugy.

Participative learning, discussions, experiential learning through practical problem solving, assignments, Tutorial'

Assessment Scheme:								
Class Continuous Assess	Class Continuous Assessment 60 Marks							
Mid Term Examination	FAT 1	FAT 2 (Formative Assessment						
(MCQ Online Test	(Formative	Test 1)	Total					
/Direct Internal	Assessment Test							
Examination	1)							
20 Marks	15 Marks	15 Marks	60 Marks					

Syllabus:

Class Continuous Assessment (CCA) 40 marks

Module	Contents	Workload in Hrs		
No.	No. Contents		Lab	Assess
1	Information Security Concepts Information Security Overview: Background and Current Scenario Types of Attacks Goals for Security E-commerce Security Computer Forensics Steganography	10	-	-
2	Introduction to cryptography Introduction to Cryptography / Encryption Digital Signatures Public Key infrastructure Applications of Cryptography Tools and techniques of Cryptography	10	-	-

Prepared By	Checked By	Verified By	Approved By
Ms Varsha Sontakke	Dr. Rajeshree Khande	Dr. C. H. Patil	Dr. Shubhalaxmi Joshi
Assistant Professor	AHoS & Program Head	HoS	Associate Dean & BoS
School of Computer Science	School of Computer Science	School of Computer Science	Chairperson Faculty of Science

3	Access Control and Intrusion Detection Overview of Identification and Authorization Overview of IDS Intrusion Detection Systems and Intrusion Prevention Systems	8	-	-
4	System Security Desktop Security email security: PGP and SMIME Web Security: web authentication, SSL and SET	7		
5	Firewalls Overview of Firewalls Packet Filtering Firewall Stateful Inspection Firewall Application Layer Firewall Host- based Firewalls Network-based Firewalls firewall features Limitations of firewall	10	-	-

Prepared By Checked By Verified By Approved By

Ms Varsha Sontakke

Dr. Rajeshree Khande Assistant Professor AHoS & Program Head School of Computer Science School of Computer Science Dr. C. H. Patil HoS School of Computer Science Dr. Shubhalaxmi Joshi Associate Dean & BoS Chairperson Faculty of Science

Prepared By Checked By Verified By Approved By

Dr. Shubhalax

Associate Dea

Chairperson Faculty of Sci

Ms Varsha SontakkeDr. Rajeshree KhandeDr. C. H. PatilAssistant ProfessorAHoS & Program HeadHoSSchool of Computer ScienceSchool of Computer ScienceSchool of Computer Science

Course Code	COS3	110B		
Course Category	Open Elective			
Course Title	Introduction to Blockchain			
Teaching Scheme and Credits	L T Laboratory Credits			
Weekly load hrs.	3			3

Pre-requisites:

1. Basic knowledge of mathematical and algorithmic logics

Course Objectives:

On completion of the course, student will be able to :-

- 1. To understand the concepts of Blockchain.
- 2. To understand how to use blockchain technology in day-to-day for problem solving.
- 3. To develop the knowledge of Blockchain fundamental.

Course Outcomes:

On completion of the course, student will be able to :-

- 1. Understanding a fundamental of Blockchain Technology.
- 2. Understanding a concept of Blockchain Technology.
- 3. Understanding the types of Blockchain Technology.
- 4. Understanding application of Blockchain Technology
- 5. Understanding advantages & disadvantages of Blockchain Technology
- 6. Understanding Cryptocurrency

Course Contents:

- 1. Introduction to Blockchain
- 2. Blockchain Fundamentals
- 3. Types of Blockchain
- 4. Cryptocurrency
- 5. Bitcoin
- 6. Industry Application of Blockchain

Learning Resources:

Reference Books:

- 1. Blockchain Basics: A Non-Technical Introduction in 25 Steps by Daniel Drescher.
- 2. Blockchain fundamentals textbook Fundamentals of Blockchain by Ravindhar Vadapalli.
- 3. Blockchain Enabled Applications: Understand the Blockchain Ecosystem and How to Make it Work for You by Vikram Dhillon.

Pedagogy:

Participative learning, discussions, algorithm, flowchart & Program writing, experiential learning through practical problem solving, assignment, PowerPoint presentation.

Assessment Scheme:

Class Continuous Assessment (CCA): 60 Marks

Mid Term Examination	FAT 1	FAT 2 (Formative	
(MCQ Online Test	(Formative	Assessment Test 1)	Total
/Direct Internal	Assessment Test		
Examination	1)		
30 Marks	15 Marks	15 Marks	60 Marks

Term End Examination: 40 Marks

Syllabus

Module	Contents		kload in	Workload in Hrs		
No.	Contents	Theory	Lab	Assess		
1.	Introduction to Blockchain: 1. What is Blockchain? 2. How Blockchain Works 3. Advantages of Blockchain 4. Disadvantages of Blockchain 5. Blockchain Vocabulary	6	-	-		
2	Blockchain Fundamentals: 1. Blockchain Security 2. Cryptographic Hash 3. SHA256 Demonstration 4. Distributed P2P Network 5. Promises of Blockchain	7				
3	Types of Blockchain: 1. Types of Blockchain – Private, Public and Consortium 2. Blockchain Security Management 3. P2P Systems	4				
4	Cryptocurrency: 1. Digital Signatures 2. Hashes 3. Cryptocurrency	4				
5	Bitcoin: 4. What is Bitcoin? 5. Bitcoin's monetary policy 6. How does Bitcoin Mining work? 7. Mining Demo	5				
6	Industry Application of Blockchain: 1. The Blockchain Industry Matrix 2. Healthcare 3. Finance 4. Internet 5. Real Estate	4				

6. Retail ।। विश्वशान्तिर्पूर्व पुवा ।। тесниособу, research, social innovation a partnerships
7. Data Storage
8. Government

Prepared By	Checked By	Verified By	Approved By
Ms. Akashata Badade	Dr. Rajeshree Khande	Dr. C. H. Patil	Dr. Shubhalaxmi Joshi
Assistant Professor	AHoS & Program Head	Head of School	Associate Dean
School of Computer	School of Computer	School of Computer	& BoS Chairperson
Science	Science	Science	Faculty of Science

Course Code	COS3113B	
Course Category	DSE-II	
Course Title	Introduction to Digital Image Processing	
Teaching Scheme and Credits	L T Laboratory Credits	
Weekly load hrs.	3 3	

Pre-requisites:

Most of the knowledge required should be part of the basics of Computer Science including Mathematics, Algorithms, and Programming.

Course Objectives:

- 1. To become familiar with digital image fundamentals
- 2. To get exposed to simple image enhancement techniques in Spatial and Frequency domain.
- 3. To learn concepts of degradation function and restoration techniques.
- 4. To study the image segmentation and representation techniques.
- 5. To become familiar with image compression and recognition methods

Course Outcomes:

Upon successful completion of this course, students will be able to

- 1. Discuss digital image fundamentals.
- 2. Apply image enhancement and restoration techniques.
- 3. Use image compression and segmentation Techniques.
- 4. Represent features of images.

Learning Resources:

Reference Books:

- 1. Rafael C. Gonzales, Richard E. Woods, "Digital Image Processing", Third Edition, Pearson Education, 2010.
- 2. Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, "Digital Image Processing Using MATLAB", Third Edition Tata Mc Graw Hill Pvt. Ltd., 2011.

Pedagogy:

1. Participative learning, discussions, algorithm, programming concepts, experiential learning through practical problem solving, assignments, Tutorial

Assessment Scheme:

Class Continuous Assessment (CCA):60 Marks

	Mid Term Examination	FAT 1	FAT 2		
	(MCQ Online Test	(Formative	(Formative	Total	
	/Direct Internal	Assessment	Assessment Test		
	Examination	Test 1)	1)		
	20.15.1	4535 1	4535 1	60.15.1	
	30 Marks	15 Marks	15 Marks	60 Marks	
Prepare	ed By Chec	cked By	Verified By	P	Approved By

Dr. Darshan Ruikar Assistant Professor School of Computer Science Dr. Rajeshree Khande AHoS & Program Head School of Computer Science

Dr. C. H. Patil HoS School of Computer Science Dr. Shubhalaxmi Joshi Associate Dean & BoS Chairperson Faculty of Science

Term End Examination: 40 Marks

Syllabus

Module	Contents	Workload in Hrs		
No.	Contents		Lab	Assess
1	Introduction: Digital image processing, Applications of digital image processing, Fundamental steps in digital image processing, and Components of an image processing system. Digital image fundamentals: Image sampling and quantization, some basic relationships between pixels, Linear and nonlinear operation	10	-	-
2	Image enhancement in spatial domain: Some basic gray level transformations, Histogram processing, Enhancement using arithmetic/logic operations, Basics of spatial filtering, smoothing spatial filters, Sharpening spatial filters. Image enhancement in the frequency domain: Introduction to the Fourier transform and the frequency domain, Smoothing frequency domain filters, Sharpening frequency domain filters, homomorphic filtering. Image restoration: A model of the image degradation/restoration process, Noise models, Restoration in the presence of noise only-spatial filtering, Periodic noise reduction by frequency domain filtering.	15	-	-
3	Morphological image processing and image segmentation: Preliminaries, Dilation and erosion, Opening and closing, the hit-ormiss transformation, Some basic morphological algorithms. Image segmentation: Detection of discontinuities, Edge linking and boundary detection, Thresholding, Region-based segmentation, Segmentation by morphological watersheds	10		
	Representation, description and object detection: Representation, Boundary descriptors, Regional descriptors, Use of principal components for description, Relational descriptors. Object recognition: Patterns and pattern classes, Recognition based on decision- theoretic methods, Structural methods.	10		

Prepared By	Checked By	Verified By	Approved By

Dr. Darshan Ruikar
Assistant Professor
School of Computer Science
Dr. Rajeshree Khande
AHoS & Program Head
School of Computer Science
Dr. C. H. Patil
HoS
Associate Dean & BoS
School of Computer Science
School of Computer Science
Chairperson
Faculty of Science

Prepared By

Checked By

Approved By

Dr. Darshan Ruikar Assistant Professor School of Computer Science Dr. Rajeshree Khande AHoS & Program Head School of Computer Science Dr. C. H. Patil HoS School of Computer Science

Verified By

Dr. Shubhalaxmi Joshi Associate Dean & BoS Chairperson Faculty of Science

Course Code	CO	COS3112B			
Course Category	DSI	DSE-II			
Course Title	RP	R Programming			
Teaching Scheme and Credits	L	T	Laboratory	Credits	
Weekly load hrs.	3			3	

Pre-requisites:

Basic knowledge of any programming language

Course Objectives:

After completion of this course students will be able to:

- 1. Understand the basics of R programming.
- 2. Write functions, Install various packages and work effectively in the R environment
- 3. Become proficient in writing a fundamental programs

Course Outcomes:

After completion of this course students will be to -

- 1. Recognize and make appropriate use of different types of data structures
- 2. Identify and implement appropriate control structures to solve a particular programming problem
- 3. Understand and functions, packages, working with files, Data visualization and write programs in R

Course Contents:

- 1. Introduction to R
- 2. Basic Concepts of R
- 3. Data structures in R
- 4. Control flow
- 5. Functions
- 6. R packages
- 7. Working with files
- 8. R Data Reshaping & Data visualization

Checked By

Pedagogy:

Prepared By

Participative learning, discussions, algorithm, programming concepts, experiential learning through practical problem solving, assignments, Tutorial, Mini Project

Ms. Devyani Kamble Assistant Professor School of Computer Science	Dr. Rajeshree Khande AHoS & Program Head School of Computer Science	Dr. C. H. Patil HoS School of Computer Science	Dr. Shubhalaxmi Joshi Associate Dean& BoS Chairperson Faculty of Science

Verified By

Approved By

Assessment Scheme:

Class Continuous Assessment (CCA): 60 Marks

Mid Term Examination	FAT 1	FAT 2	
(MCQ Online Test	(Formative	(Formative	Total
/Direct Internal	/Direct Internal Assessment		
Examination	Test 1)	1)	
30 Marks	15 Marks	15 Marks	60 Marks

Term End Examination: 40 Marks

Syllabus

Module	Contents	Work	doad in	Hrs
No.	Contents	Theory	Lab	Assess
1	Introduction to R: Overview of R programming, Evolution of R, Applications of R programming, Basic syntax	3	-	-
2	Basic Concepts of R: Reserved Words, Variables & Constants, Operators, Operator Precedence, Data Types, Input and Output	5	-	-
3	Data structures in R: Vectors, Matrix, List in R programming, Data Frame, Factor	6	-	-
4	Control flow: Ifelse, If else() Function, Programming for loop While Loop, Break & next, Repeat Loop	5	-	-
5	Functions: R Functions, Function Return Value, Environment & Scope, R Recursive Function, R Infix Operator, R Switch	6	-	-
6	R packages: Study of different packages in R(with respect to string, date-time, etc)	6	-	-
7	Working with files: Read and writing into different types of files	5	-	-
8	R Data Reshaping & Data visualization: Joining Columns and Rows in a Data Frame, Merging Data Frames, Melting and	9		

Prepared By	Checked By	Verified By	Approved By
		D G W D W	5 9 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ms. Devyani Kamble	Dr. Rajeshree Khande	Dr. C. H. Patil	Dr. Shubhalaxmi Joshi
Assistant Professor	AHoS & Program Head	HoS	Associate Dean& BoS
School of Computer Science	School of Computer Science	School of Computer Science	Chairperson
			Faculty of Science

Dot Plot, Scatter Plot (3D), Spinning Scatter Plots, Pie Chart,		
Histogram (3D) [including colorful ones], Boxplot		

Prepared By

Checked By

Verified By

Approved By

Ms. Devyani Kamble

Dr. Rajeshree Khande

Assistant Professor

AHoS & Program Head

Dr. C. H. Patil

HoS

Associate Dean& BoS

Ms. Devyani Kamble Dr. Rajeshree Khande Dr. C. H. Patil Dr. Shubhalaxmi Journ School of Computer Science School of Science Scie

Course Code	COS3117B			
Course Category	Core			
Course Title	Introduction to Machine Learning			
Teaching Scheme and Credits	L T Laboratory Credits			
Weekly load hrs.	3 2			

Pre-requisites:

Basic knowledge of Linear algebra, probability and Statistics

Course Objectives:

- 1. Understanding various learning strategies
- 2. Mathematical representation of Machine learning problems and solutions

Course Outcomes:

Students will learn to

- 1. Use Machine learning using linear methods and non linear methods
- 2. Develop an appreciation for what is involved in learning models from data.
- 3. Understand a wide variety of learning algorithms.
- 4. Understand how to evaluate models generated from data.
- 5. Apply the algorithms to a real-world problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the models.

Course Contents:

- 1. Introduction to Learning
- 2. Linear Regression
- 3. Classification
- 4. Neural Networks and Decision Tree
- 5. Unsupervised Learning
- 6. Support Vector Machines

Prepared By Checked and Verified By Approved By

Mr Navanth Shete Ms Sheetal Rajapurkar BoS Chairperson & Associate
Assistant Professor Dept of Computer Science & Dean

Dept of Computer Science & Application Dept of Computer Science & Application

Application Application

Prof. Dr. Shubhalaxmi Joshi

Learning Resources:

Reference Books:

- 1. Introduction to Machine Learning (Second Edition): Ethem Alpaydın, The MIT Press (2010).
- 2. Pattern Recognition and Machine Learning: Christopher M. Bishop, Springer (2006)
- 3. Bayesian Reasoning and Machine Learning: David Barber, Cambridge University Press (2012)
- 4. Machine Learning, Tom Mitchell

Web Resources:

- 1. https://towardsdatascience.com/
- 2. https://github.com/josephmisiti/awesome-machine-learning.

Pedagogy:

Participative learning, discussions, experiential learning through practical problem solving, assignments, numerical solving, Tutorial.

Assessment Scheme:

Class Continuous Assessment (CCA): 60 marks

	,		
Mid Term Examination	FAT 1	FAT 2 (Formative	
(MCQ Online Test	(Formative	Assessment Test 1)	Total
/Direct Internal	Assessment Test		
Examination	1)		
30 Marks	15 Marks	15 Marks	60 Marks

Term End Examination: 40 marks

Syllabus

Module	Contents		Workload in Hrs		
No.			Lab	Assess	
1	Introduction to Learning: Why Machine learning, Examples of Machine Learning, Problems, Structure of Learning. Supervised, Unsupervised and Reinforcement Learning.	3	-	-	

Prepared By

Checked and Verified By

Approved By

Prof. Dr. Shubhalaxmi Joshi

Mr Navanth Shete

Assistant Professor

Dept of Computer Science & Dean

Dept of Computer Science & Application

Dept of Computer Science & Application

Dept of Computer Science & Application

2	Linear regression: SSE; gradient descent; Simple Linear Regression, multiple linear regression Overfitting and underfitting; bias and variance, training, validation, test data	5	-	-
3	Classification: decision boundaries; nearest neighbor methods Probability and classification Linear classifiers: Bayes' Rule and Naive Bayes Model Logistic regression decision boundary (linear and non-linear), metrics for logistic regression (accuracy, sensitivity, specificity etcetera concepts), Receiver- operating characteristic (RoC) curve, use of RoC curve to find out optimum decision boundary	10	-	-
4	Neural Networks & Decision tree: Concept of neural networks, perceptron, decision tree, random forest	7	-	-
5	Unsupervised learning: clustering, k-means, hierarchical agglomeration, Dunn's index	2	-	-
6	Support vector machines: Concept of margin, support vectors and large-margin classifiers, kernel tricks	3		

Prepared By Checked and Verified By Approved By

Mr Navanth Shete
Assistant Professor
Dept of Computer Science &
Application

Ms Sheetal Rajapurkar Dept of Computer Science & Application

Course Code				
Course Category	CORE	2		
Course Title	Interne	t of Things		
Teaching Scheme and Credits	L	T	Laboratory	Credits
Weekly load hrs	3			2

Pre-requisites:

- 1. Knowledge of networking, sensing, databases, programming, and related technology.
- 2. Familiarity with business concepts and marketing.

Course Objectives:

- 1. Vision and Introduction to IoT.
- 2. Understand IoT Market perspective.
- 3. Data and Knowledge Management and use of Devices in IoT Technology.
- 4. Understand State of the Art IoT Architecture.
- 5. Real World IoT Design Constraints, Industrial Automation and Commercial Building Automation in IoT.

Course Outcomes:

On completion of the course, student will be able to-

- 1. Students will understand IoT Market perspective.
- 2. Students will get Data and Knowledge Management and use of Devices in IoT Technology.
- 3. Students will understand State of the Art IoT Architecture.
- 4. Students will get Real World IoT Design Constraints, Industrial Automation and Commercial Building Automation in IoT.

Course Contents:

M2M to IoT

M2M to IoT – A Market Perspective

M2M and IoT Technology Fundamentals

IoT Architecture-State of the Art

IoT Reference Architecture

Prepared By Checked and Verified By Approved By

Prof. Dr. Shubhalaxmi Joshi

Assistant Professor Dept of Computer Science & Dean

Dept of Computer Science & Application Dept of Computer Science & Application Application

Learning Resources: Reference Books: 1. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014.Data Warehousing in the Real World, Anahory, Murray, Pearson Education 2. Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)", 1st Edition, VPT, 2014. 3. Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 2013 **Supplementary Reading:** 1. Collaborative Internet of Things (C-IoT): For Future Smart Connected Life and Business 2. By Fawzi Behmann, Kwok Wu Weblinks: www.tutorialspoint.com **Pedagogy:** Participative learning, discussions, Problem Solving, experiential learning through practical problem solving, assignment, PowerPoint presentation **Assessment Scheme:**

Prepared By	Checked and Verified By	Approved By
		Prof. Dr. Shubhalaxmi Joshi
Ms Sheetal Rajapurkar	Ms Sheetal Rajapurkar	BoS Chairperson & Associate
Assistant Professor	Dept of Computer Science &	Dean
Dept of Computer Science &	Application	Dept of Computer Science &
Application		Application

Class Continuous Assessment (CCA) 60 Marks

Mid Term Ex	amination	FAT 1	FAT 2 (Formative	
(MCQ Online '	Γest /Direct	(Formative	Assessment Test 1)	Total
Internal Example 1	mination A	Assessment Test		
		1)		
30 Mar	rks	15 Marks	15 Marks	60 Marks

Term End Examination: 40 Marks

Syllabus:

Module	Contents		Workload in Hrs	
No.	Contents	Theory	Lab	Assess
	M2M to IoT			
1	The Vision-Introduction, From M2M to IoT, M2M towards IoT-	4		
	the global context, A use case example, Differing Characteristics			
	M2M to IoT – A Market Perspective			
	Introduction, M2M Value Chains, IoT Value Chains, An			
	emerging industrial structure for IoT, The international driven			
2	global value chain and global information monopolies. M2M to	4		
	IoT-An Architectural Overview—Building an architecture, Main			
	design principles and needed capabilities, An IoT architecture			
	outline, standards considerations			
	M2M and IoT Technology Fundamentals			
	Devices and gateways, Local and wide area networking, Data			
3	management, Business processes in IoT, Everything as a	7		
	Service(XaaS), M2M and IoT Analytics, Knowledge			
	Management			
4	IoT Architecture-State of the Art	7		

Prof. Dr. Shubhalaxmi Josh	epared By	Checked and Verified By	Approved By
Ms Sheetal Rajapurkar Ms Sheetal Rajapurkar BoS Chairperson & Association Assistant Professor Dept of Computer Science & Dean	ssistant Professor ept of Computer Science &	Dept of Computer Science &	Dept of Computer Science &

	Introduction, State of the art, Architecture Reference Model-		
	Introduction, Reference Model and architecture, IoT reference		
	Model, CICSO Reference Model		
	IoT Reference Architecture		
	Introduction, Functional View, Information View, Deployment		
	and Operational View, Other Relevant architectural views. Real-		
5	World Design Constraints- Introduction, Technical Design	8	
3	constraints-hardware is popular again, Data representation and	0	
	visualization, Interaction and remote control. Industrial		
	Automation- Service-oriented architecture-based device		
	integration,		

Prepared By

Checked and Verified By

Approved By

Prof. Dr. Shubhalaxmi Joshi

Ms Sheetal Rajapurkar

Assistant Professor

Dept of Computer Science & Dean

Dept of Computer Science & Application

Dept of Computer Science & Application

Dept of Computer Science & Application

Prepared By

Checked and Verified By

Approved By

Ms Sheetal Rajapurkar Assistant Professor Dept of Computer Science & Application Ms Sheetal Rajapurkar Dept of Computer Science & Application Prof. Dr. Shubhalaxmi Joshi BoS Chairperson & Associate Dean Dept of Computer Science & Application

Sign
(< Name >
<(Dean / Director / Principal)>

Course Code					
Course Category	B.Sc. C	B.Sc. Computer Science			
Course Title	Theore	Theoretical Computer Science			
Teaching Scheme and Credits	L	T	Laboratory	Credits	
Weekly load hrs	3			2	

Pre-requisites:

1. Basic understanding of mathematical concepts

Course Objectives:

- 1. To understand concept of Regular languages and Finite Automata
- 2. To understand concepts of Context free languages and Pushdown Automata
- 3. To understand concepts of Turing Machine

Course Outcomes:

On completion of the course, student will be able to—functioning, capabilities, computability, complexity as well as the limitations of different mathematical models

Course Contents:

Introduction

Symbol, Alphabet, String, Prefix & Suffix of Strings

Regular Expression, Regular Language and Finite Automata

Regular expression: Definition & Example, Regular Expressions Identities.

Context Free Grammar and Languages

Grammar-Definition and Examples, Derivation, Reduction, Definition and Examples.

Push Down Automaton

Definition of PDA and examples, Construction of PDA using empty stack and final State method **Turing Machine**

Model and Definition of TM, Design of Turing Machines

Learning Resources:

Prepared By Checked and Verified By Approved By

Ms Gauri Dhongade Ms Sheetal Rajapurkar BoS Chairperson & Associate
Teaching Associate Dept of Computer Science & Dean
Dept of Computer Science & Application Dept of Computer Science & Application

Prof. Dr. Shubhalaxmi Joshi

Reference Books:

- 1. Introduction to Automata theory, Languages and computation By John E. Hopcroft and Jeffrey Ullman –Narosa Publishing House.
- 2. Theory of Computer Science (Automata, Language & Computation) K. L. P. Mishra & N. Chandrasekaran, PHI Second Edition
- 3. Introduction to Automata theory, Languages and computation By John Hopcroft, Rajeev Motwani and Jeffrey Ullman –Third edition Pearson Education

Pedagogy:

Participative learning, discussions, algorithm, Flowchart & Program writing, experiential learning through practical problem solving, assignment, PowerPoint presentation.

Assessment Scheme:

Class Continuous Assessment (CCA) 60 Marks

Mid Term Examination (MCQ Online Test /Direct Internal Examination	FAT 1 (Formative Assessment Test 1)	FAT 2 (Formative Assessment Test 1)	Total
30 Marks	15 Marks	15 Marks	60 Marks

Term End Examination: 40 Marks

Syllabus:

Module	Contents	Work	load in	Hrs
No.	Contents	Theory	Lab	Assess
Prepa	ed By Checked and Verified By Approved By			

Ms Gauri Dhongade Teaching Associate Dept of Computer Science & Application Ms Sheetal Rajapurkar Dept of Computer Science & Application

	Unit 1: Introduction			
1	Symbol, Alphabet, String, Prefix & Suffix of Strings, Formal Language, Operations on Languages.	1	-	-
2	Unit 2: Regular Expression, Regular Language and Finite Automata Regular expression: Definition & Example Regular Expressions Identities. Finite Automata Deterministic finite Automaton -Definition, DFA as language recognizer, DFA as a pattern recognizer. Nondeterministic finite automaton- Definition and Examples. NFA TO DFA NFA with \(\varepsilon\)-transitions- Definition and Examples. NFA with \(\varepsilon\)-transitions to DFA & Examples Finite automaton with output-Mealy and Moore machine, Definition and Examples Minimization of DFA-Algorithm & Problem using Table Method. Regular Languages-Definition and Examples. Conversion of RE To FA-Examples. Pumping lemma for regular languages and applications. Closure properties of regular Languages (Union, Concatenation, Complement, Intersection and Kleene closure)	9	-	-
3	Unit 3: Context Free Grammar and Languages Grammar-Definition and Examples Derivation, Reduction, Definition and Examples. Chomsky Hierarchy. CFG- Definition & Examples. LMD, RMD, ,Parse Tree Ambiguous Grammar- Concept & Examples. Simplification of CFG: Removing Useless Symbols, Removing unit productions	8	-	-

Prepared By Checked and Verified By Approved By

Ms Gauri Dhongade Teaching Associate Dept of Computer Science & Application Ms Sheetal Rajapurkar Dept of Computer Science & Application

	Removing ϵ productions & Nullable symbols			
	Normal Forms:			
	Chomsky Normal Form (CNF) Method & Problem			
	Greibach Normal form (GNF) Method & Problem			
	Regular Grammar: Definition			
	Left linear and Right Linear Grammar-Definition and Example.			
	Equivalence of FA & Regular Grammar			
	Construction of regular grammar equivalent to a given DFA			
	Construction of a FA from the given right linear grammar			
	Closure Properties of CFL's			
	(Union, concatenation and Kleen closure) Method and examples			
	Unit 4: Push Down Automaton			
	Definition of PDA and examples			
	Construction of PDA using empty stack and final State method:			
	Examples using stack method			
4	Definition DPDA & NPDA Examples of DPDA & NPDA	6	-	-
	CFG (in GNF) to PDA: Method and examples			
	Unit 5: Turing Machine			
	Model and Definition of TM			
	Design of Turing Machines			
_	Problems on language recognizers.			
5	Language accepted by TM	6	_	-
	Types of Turing Machines			
	Introduction to LBA (Basic Model) & CSG(Without Problems)			
	Recursive Languages and Recursively enumerable Languages.			
	Turing Machine Limitations			

Prepared By Checked and Verified By Approved By

Ms Gauri Dhongade
Teaching Associate
Dept of Computer Science &
Application

Ms Sheetal Rajapurkar Dept of Computer Science & Application

Course Code					
Course Category	Core Computer Science			ee	
Course Title	Lab	Lab on ML			
Teaching Scheme and Credits	L	L T Laboratory Credits			
Weekly load hrs.	-	-	3	1	

Pre-requisites:

- 1. Knowledge of Python
- 2. Desirable: Knowledge of Jupyter Notebook, Scikit-Learn

CourseObjectives:

- 1. To implement Machine Learning algorithms in Python.
- 2. To use the algorithm to solve real life problems

Course Outcomes:

Student will be able to

- 1. Construct and implement Python codes for Machine learning algorithms.
- 2. Implement the Python codes on real life data.
- 3. Analyze and improve the performance of the Python codes for better solutions.

Course Contents:

- 1. Linear Regression
- 2. Classification
- 3. Neural Networks and Decision Tree
- 4. Unsupervised Learning
- 5. Support Vector Machines

Learning Resources:

Reference Books:

- 1. Introduction to Machine Learning with Python, Andreas C. Müller & Sarah Guido, O'reilly.
- 2. Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurélien Géron, O'reilly.

3.

Prepared By Checked and Verified By Approved By

Prof. Dr. Shubhalaxmi Joshi

Mr Navanath Shete Ms Sheetal Rajapurkar BoS Chairperson & Associate
Assistant Professor Dept of Computer Science & Dean

Dept of Computer Science & Application Dept of Computer Science &

Application Application

Data Resources:

- 1. https://www.kaggle.com/
- 2. https://github.com/

Weblinks:

- 1. https://www.tutorialspoint.com/android/index.htm
- 2. https://www.javatpoint.com/android-tutorial
- 3. https://www.tutorialspoint.com/ios/index.htm
- 4. https://www.raywenderlich.com/ios

Pedagogy:

- 1. Practical development of Python codes for Machine Learning algorithms
- 2. Analyzing and improving the performance of the Python codes using Scikit-Learn.
- 3. Implementing on real life data.
- 4. Participative learning, discussions, algorithm, programming concepts, experiential learning through practical problem solving, assignments, Tutorial

Assessment Scheme: (LCA & END TERM):

Laboratory Continuous Assessment (LCA): 60 marks

Mid Term Lab Test (MCQ Online Test /Direct Internal Examination	Lab Performance	Lab Assignment / Lab Book	Total
30 Marks	20 Marks	10 Marks	60 Marks

Term End Examination: 40 marks

Syllabus:

Prepared By Checked and Verified By Approved By

Mr Navanath Shete Ms Sheetal Rajapurkar BoS Chairperson & Associate
Assistant Professor Dept of Computer Science & Dean
Dept of Computer Science & Application Dept of Computer Science & Application

Application Application

Prof. Dr. Shubhalaxmi Joshi

Module	Lab Work	No. of Labs
	Practice visualization using matplotlib, seaborn.	
1	Implement simple linear regression model on a standard data set and plot the	02
	least square regression fit. Comment on the result. [One may use inbuilt data	
	sets like Boston, Auto etc]	
	Implement multiple regression model on a standard data set and plot the	
2	least square regression fit. Comment on the result. [One may use inbuilt	02
	data sets like Carseats, Boston etc].	
	Fit a classification model using following:	10
3	(i) logistic regression	
	(ii) k-nearest neighbour	
	(iii) Naïve Bayes	
	(iv) Decision tree	
	(v) Perceptron	
	on a standard data set and compares the results based on standard metrics.	
	[Inbuilt datasets like Smarket, Weekly, Auto, Boston etc may be used for	
	the purpose].	
	Implement clustering with the following:	10
4	(i) K-means	
	(ii) Hierarchical clustering	
	On a standard data set like Iris, etc.	
	Implement SVM on a standard data set by selecting different kernels like RBF,	06
5	Linear, Polynomial. Comment on result based on standard metrics.	

Prepared By Checked and Verified By Approved By

Mr Navanath Shete
Assistant Professor
Dept of Computer Science &
Application

Ms Sheetal Rajapurkar Dept of Computer Science & Application