

Class 03 Electrical Units of Measure

MECH 10 Fundamentals of Electronics

Units of Measurement

Base Units

Quantity	SI Base Unit and Symbol	US Customary Unit and Symbol
Distance	meter (m)	feet (ft)
Mass	kilogram (kg)	pound-mass (lbm)
Time	second (s)	second (s)
Electric current	Ampere (A)	Ampere (A)
Temperature	Kelvin (K)	degree Fahrenheit (°F)
Luminous intensity	candela (cd)	candela (cd)
Amount of substance	mole (mol)	mole (mol)

Derived Units

• Combinations of base units

- Units of Measurement
 - Mass
 - A measure of an objects inertia
 - Newtons First Law
 - An object at rest will stay at rest unless acted upon by an external force
 - An object in motion will stay in motion (in a straight line) unless acted upon by an external force.
 - Base Units
 - Kilogram, slug / pound mass

MECH 10 Fundamentals of Electronics

- Units of Measurement
 - Force
 - A push or pull experienced by objects with mass
 - Newtons Second Law
 - When a net force acts on a mass the acceleration is directly proportional to the force.
 - Force = mass x acceleration
 - Derived Units
 - Newton (kg m / sec²)
 - Pound

SIERRA COLLEGE

MECH 10 Fundamentals of Electronics

Electrical Units of Measure

Gravitational Potential

 The work done by mass in the presence of an gravitational field.

 Derived Units – Joules per kilogram, J / kg

 AKA gravitational force, pressure differential

"A joule per kilogram is defined as a difference of energy causing one kilogram of mass to do one joule of work"

Hydraulic Analogy

What happened to the pressure?

SIERRA

MECH 10 Fundamentals of Electronics

Electrical Units of Measure

- Electric Potential
 - The work done by a charged particle in the presence of an electrical field.
 - Derived Units Volt (E,V) (Joules per Coulomb)
 - AKA electro-motive force, voltage, potential differential

"A volt is defined as a difference of potential causing one coulomb of current to do one joule of work"

Electric potential energy is the amount of work required to move a charged particle from position B to position A.

Electrical Units of Measure

- Hydraulic Flow
 - The mass per unit time that passes a point in a closed system
 - Requires pressure potential, free molecules & flow path
- Derived Unit kilogram per second

MECH 10 Fundamentals of Electronics

- Electrical Units of Measure
 - Electron Flow (current)
 - The charge per unit time that passes a point in a circuit
 - Requires electric potential, free electrons & current path
 - Derived Unit Ampere (I) = 1
 Coulomb per second (6.25 x
 10¹⁸ electrons per second)

- Electrical Units of Measure
 - Electric Current
 - Conventional Current Early concept, prior to electron theory, assumed current flowed from positive (surplus) to negative (deficit)
 - Electron Flow negatively charged electrons flow from negative to positive

Mechatronics. Real Skills Real Jobs **MECH 10** SIERRA C®LLEGE **Fundamentals of Electronics Electrical Units of** Hydraulic Analogy Measure Losses Opposition to hydraulic flow Derived Unit - Head Frictional Losses (Bad) Feet (ft hd) Water flow

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

Electrical Units of Measure

$$R = \frac{E}{I}$$

Volt / CurrentCauses voltage drop across

loads

"One ohm is defined as that amount of resistance that will limit the current in a conductor to one ampere when the potential difference (voltage) applied to the conductor is one volt."

MECH 10 Fundamentals of Electronics

Electrical Units of Measure

- Conductance
 - Inverse of resistance
 - Derived Unit 1/R, mho siemens (S)

$$G = \frac{1}{R}$$

$$G = \frac{I}{E}$$

"One siemens is defined as that amount of conductance that will allow the current in a conductor to reach one ampere when the potential difference (voltage) applied to the conductor is one volt."

SIERRA

MECH 10 Fundamentals of Electronics

- Electrical Units
 - Inductance
 - Magnetic flux per unit current
 - Derived Unit Henry (Φ / I)
 - Weber / Amp
 - Volt sec / Amp

SIERRA C®LLEGE

MECH 10 Fundamentals of Mechatronics

• Inductance – the opposition to *change* in current

 $E = L \left(\frac{di}{dt} \right)$

If the rate of change of current in a circuit is one ampere per second and the resulting electromotive force is one volt, then the inductance of the circuit is **one henry**.

Name	Unit symbol	Quantity	Symbol
inductance	Н	Henry's	L ²²

- Electrical Units
 - Power
 - The rate of doing work
 - Newton meters per second
 - Derived Unit Watt
 - Joules per second

MECH 10 Fundamentals of Electronics

- Powers of Ten & Engineering Notation
 - Expresses very large and very small numbers
 - 3,000,000,000 Watts = 3.00 x 10⁹ Watts (GW)
 - 0.000000003 Farads = 3.00 x 10⁻⁹ Farads (nF)

Number	Power of 10	Term	Sample Electronic Term
0.00000000001	1.E-12	pico	pA (1 x 10 ⁻¹² ampere)
0.00000001	1.E-09	nano	ήA (1 x 10 ⁻⁹ ampere)
0.000001	1.E-06	micro	μA (1 x 10 ⁻⁶ ampere)
0.001	1.E-03	milli	mA (1 x 10 ⁻³ ampere)
1,000	1.E+03	kilo	kΩ (1 x 10 ³ Ohm)
1,000,000	1.E+06	mega	MΩ (1 x 10 ⁶ Ohm)
1,000,000,000	1.E+09	giga	GW (1 x 10 ⁹ Watt)
1,000,000,000,000	1.E+12	tera	TW (1 x 10 ¹² Watt)
Powers of ten related to meteric & electronic terms			

- Engineering Notation Mode
 - Display digits 3 fixed
 - Exponential Format Engineering
 - Exact / Approximate
- Input 5kΩ
 - Enter [5000] [ENT] = 5 EE 3
- Input 5kΩ x 24mA
 - Enter [5 EE 3] x [24 EE (-)3]

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

 The number of digits whose value is known with certainty.

Significant Digits	Example
Non zero digits	119 (3 sig figs)
Zeros between non-zero digits	109 (3 sig figs)
Trailing zeros after decimal point	12.20 (4 sig figs)

 Use all precision available for calculations, round off final answers to least significant digit!

- Non-Significant Figures
 - The number of digits whose value is not known with certainty.

Non-Significant Digits	Example
Leading zeros	0.0053 (2 sig figs)
Trailing zeros without decimal	1500 (2 sig figs)

 Use all precision available for calculations, round off final answers to least significant digit!

MECH 10 Fundamentals of Electronics

- Scatter Plots
 - Data visualization

Time (sec)	Distance (feet)	Distance (feet)	Distance (feet)
1	15.63	2.72	100.00
2	31.25	7.39	50.00
3	46.88	20.09	33.33
4	62.50	54.60	25.00
5	78.13	148.41	20.00
6	93.75	403.43	16.67
7	109.38	1096.63	14.29
8	125.00	2980.96	12.50

Scatter Plots

Data visualization

Time (sec)	Distance (feet)
1	100.00
2	50.00
3	33.33
4	25.00
5	20.00
6	16.67
7	14.29
8	12.50

Inverse Relationship

MECH 10 Fundamentals of Electronics

Lab 03 – Basic Multimeter Function

- Use a digital multimeter (DMM) to take voltage, resistance, current, frequency and capacitance readings.
- Select the proper measurement ranges to provide the greatest measurement resolution.
- Build a simple circuit using the Global Specialties Proto-Board.
- Test the circuit with the multimeter and record the results.

		Points Possible
Documentation	Quality of documentation (research, neatness, clarity, spelling, complete sentences)	10
	Resistance measurements accurate and questions answered.	5
	DC voltage measurements accurate and questions answered.	5
	AC voltage measurements accurate and questions answered.	5
	AC current measurements accurate and questions answered.	5
	Diode test completed and questions answered.	5
	Audible continuity test completed with question answered	5
	Total	40