Tarea 5 (Solución)

Álgebra Superior 1, 2025-4

Profesor: Luis Jesús Trucio Cuevas. Ayudante: Hugo Víctor García Martínez.

Instrucciones. Resuelve los siguientes ejercicios. Esta tarea es individual y deberá ser entregada presencialmente, durante la clase del **viernes 8 de agosto**.

Ej. 1 (2 pts) Utilizando inducción, demuestra que para todo natural $n \in \mathbb{N}$, se cumple que:

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \quad \text{y} \quad \sum_{k=0}^{n} \frac{1}{(k+1)(k+2)} = \frac{n+1}{n+2}$$

Demostración. Sea $\varphi(n)$ la propiedad:

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \quad \wedge \quad \sum_{k=0}^{n} \frac{1}{(k+1)(k+2)} = \frac{n+1}{n+2}$$

Veamos por inducción que $\forall n \in \mathbb{N}(\varphi(n))$.

Base. Se cumple $\varphi(0)$; efectivamente:

$$\sum_{k=0}^{0} k^2 = 0^2$$

$$= 0$$

$$= \frac{0 \cdot (0+1) \cdot (2 \cdot 0 + 1)}{6}$$

$$= \frac{0 \cdot 1}{(k+1)(k+2)} = \frac{1}{(0+1)(0+2)}$$

$$= \frac{1}{2}$$

$$= \frac{0 \cdot 1}{0+2}$$

Paso inductivo. Sea $n \in \mathbb{N}$ y supongamos que $\varphi(n)$ (H.I.), esto es:

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \quad \wedge \quad \sum_{k=0}^{n} \frac{1}{(k+1)(k+2)} = \frac{n+1}{n+2}$$

Veamos que $\varphi(n+1)$, es decir:

Por un lado, tenemos que:

$$\sum_{k=0}^{n+1} k^2 = \sum_{k=0}^{n} k^2 + (n+1)^2$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6}$$

$$= \frac{(n+1)(n(2n+1) + 6(n+1))}{6}$$

$$= \frac{(n+1)(2n^2 + n + 6n + 6)}{6}$$

$$= \frac{(n+1)(2n^2 + 7n + 6)}{6}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6}$$

$$= \frac{(n+1)(n+2)(2(n+1) + 1)}{6}$$

Por otro lado, tenemos que:

$$\sum_{k=0}^{n+1} \frac{1}{(k+1)(k+2)} = \sum_{k=0}^{n} \frac{1}{(k+1)(k+2)} + \frac{1}{((n+1)+1)((n+1)+2)}$$

$$= \frac{n+1}{n+2} + \frac{1}{(n+2)(n+3)}$$

$$= \frac{(n+1)(n+3)+1}{(n+2)(n+3)}$$

$$= \frac{n^2 + 4n + 4}{(n+2)(n+3)}$$

$$= \frac{(n+2)^2}{(n+2)(n+3)}$$

$$= \frac{n+2}{n+3}$$

$$= \frac{(n+1)+1}{(n+1)+2}$$
(por H.I.)

Por lo tanto, se cumple $\varphi(n+1)$; finalizando el paso inductivo.

Debido al primer principio de inducción, se concluye que $\forall n \in \mathbb{N}(\varphi(n))$.

Ej. 2 (2 pts) Sea $f: \mathbb{R} \to \mathbb{R}$ una función que cumple que para todo real y, f(y) = f(y+2). Demuestra que para todo natural $n \in \mathbb{N}$, se tiene que para todo real x, f(x) = f(x-2n).

Demostración. Verificaremos por (primera) inducción que $\forall n \in \mathbb{N}(\varphi(n))$ es cierta; donde $\varphi(n)$ es la propiedad: $\forall x \in \mathbb{R}(f(x) = f(x - 2n))$.

<u>Base.</u> Se cumple $\varphi(0)$; pues, si $x \in \mathbb{R}$ es cualquiera, se tiene seguido de la hipótesis que que: $\overline{f(x)} = f(x-0) = f(x-2\cdot 0)$.

<u>Paso inductivo.</u> Sea $n \in \mathbb{N}$ y supongamos $\varphi(n)$ (H.I.), es decir: $\forall y \in \mathbb{R}(f(y) = f(y - 2n))$. Veamos que $\varphi(n + 1)$, esto es: $\forall x \in \mathbb{R}(f(x) = f(x - 2(n + 1)))$. En efecto, sea $x \in \mathbb{R}$, así:

$$f(x-2(n+1)) = f(x-2n-2)$$
 cuentas
= $f((x-2n-2)+2)$ Hipótesis (general)
= $f(x-2n)$ cuentas
= $f(x)$ H.I.

Por lo tanto, se cumple $\varphi(n+1)$; finalizando el paso inductivo.

Debido al primer principio de inducción, se concluye que $\forall n \in \mathbb{N}(\varphi(n))$.

Ej. 3 (1 pt) Da dos ejemplos de funciones de \mathbb{N} en \mathbb{N} ; una que sea sobreyectiva, pero no inyectiva; y otra, que sea inyectiva, pero no sobreyectiva. Demuestra todas tus afirmaciones.

Solución. Sea $f: \mathbb{N} \to \mathbb{N}$ dada por f(n) = n+1; veamos que f es inyectiva, pero no sobreyectiva.

- f es inyectiva. Sean $m, m \in \mathbb{N}$ tales que f(m) = f(n); veamos que m = n. En efecto, $\overline{f(m) = f(n)}$ implica que m + 1 = n + 1, de donde, m = n.
- f no es sobreyectiva. El cero no es sucesor de ningún número natural (visto en clase) 1 .

Ahora, sea $g : \mathbb{N} \to \mathbb{N}$ dada por:

$$g(n) = \begin{cases} n-1 & n \ge 1\\ 0 & n = 0 \end{cases}$$

Veamos que g es sobreyectiva, pero no inyectiva.

- g es sobreyectiva. Si $n \in \mathbb{N}$ es cualquiera, entonces $n+1 \ge 1$ y en consecuencia, g(n+1) = (n+1) 1 = n. lo cual demuestra la sobreyectividad de g.
- f no es inyectiva. Nótese que $0 \ne 1$; sin embargo, g(0) = 0 y g(1) = 1 0, por lo que g(0) = g(1).

 \Diamond

Por lo que f y g son un ejemplo de las funciones solicitadas.

¹Para convencerse de esto, si x es cualquier conjunto (no únicamente un número natural), se define s(x) (esto es x+1, cuando x es natural) como $x \cup \{x\}$. Luego, $x \in s(x)$ y así $s(x) \neq \emptyset = 0$.

Ej. 4 (2 pts) Un natural $m \ge 2$ se dice *compuesto* si existen naturales a y b tales que 1 < a < m, 1 < b < m y m = ab; de lo contraro, decimos que m es primo. Demuestra que todo natural $n \ge 2$ es producto de números primos.

Hint. Utilice inducción "fuerte".

Demostración. Sea $\varphi(n)$ la propiedad: "n es primo o producto de números primos". Veremos por inducción fuerte (en $\mathbb{N} \setminus \{0,1\}$) que $\forall n \geq 2(\varphi(n))$. Sea $n \geq 2$ y supongamos que:

$$\forall k \ge 2(k < n \to (\varphi(k)))$$
 H.I.

Veamos que $\varphi(n)$. Efectivamente, tenemos dos casos:

- i) Si n es primo, entonces $\varphi(n)$ se cumple. Esto es porque, al ser n primo, es particularmente un producto de números primos (de uno, él mismo).
- ii) Si n es compuesto, entonces existen $a, b \in \mathbb{N}$ tales que 1 < a < n, 1 < b < n y n = ab. Por lo tanto, $a \ge 2$ y $b \ge 2$ son números menores que n y por H.I., $\varphi(a)$ y $\varphi(b)$ son verdaderas. En consecuencia, a y b son producto de números primos; y esto implica, que n también es producto de números primos.

En cualquier caso, $\varphi(n)$ es cierta, finalizando el paso inductivo. Con ello, y gracias al segundo principio de inducción, se concluye que $\forall n \geq 2(\varphi(n))$.

Ej. 5 (1 pt) ¿Cuantos rectángulos (incluyendo cuadrados) distintos, que téngan sus véretices en una cuadrícula de n por m, existen?.

²Recordemos que en la inducción fuerte NO se debe realizar la base, no es necesario. A continuación en la prueba parece que se hace una base; pero esto no es así, es una división de casos.

Solución. Cada rectángulo con vértices en la cuadrícula (y lados sobre las líneas de la cuadrícula) está completamente determinado por dos parámetris disntntos, su base , su altura (y las respectivas posiciones de éstas). De esta manera, para describir un rectángulo deeste tipo, es necesario y suficiente elegir dos líneas horizontales y dos líneas verticales de la cuadrícula; equivalentemente, elegir dos números distintos entre $0, 1, \dots, n$ y $0, 1, \dots, m$ (ver figura en la página anterior). Por lo tanto, el número de rectángulos distintos que se pueden formar es:

$${\binom{n+1}{2}} \cdot {\binom{m+1}{2}} = \frac{(n+1)!}{2!((n+1)-2)!} \cdot \frac{(m+1)!}{2!((n+1)-2)!}$$
$$= \frac{n \cdot (n+1)}{2} \cdot \frac{m \cdot (m+1)}{2}$$
$$= \frac{n \cdot (n+1) \cdot m \cdot (m+1)}{4}$$

¿Por qué aparece un producto de sumas gaussianas aquí?.

Ej. 6 (2 pts) Pruebe que para todo $n \in \mathbb{N}$ se cumple $\sum_{k=0}^{n} {n \choose k} = 2^n$.

Demostración. Esto es un corolario directo del teorema del binomio de Newton, nótese que si $n \in \mathbb{N}$, entonces:

$$2^{n} = (1+1)^{n}$$
 cuentas
$$= \sum_{k=0}^{n} \binom{n}{k} 1^{n-k} 1^{k}$$
 (Teorema del binomio de Newton)
$$= \sum_{k=0}^{n} \binom{n}{k}$$
 "cuentas"

 \Diamond

finalizando la demostración.