

PHYS 2211 K

Week 3, Lecture 1
2022/01/25
Dr Alicea (ealicea@gatech.edu)

On today's class...

- 1. Wrapping up projectile motion
- 2. Spring force
- 3. Iteration with constant and non-constant forces

Reminders!

Solution videos to selected edX problems

a separate playlist

Media Gallery

Playlists 20 Media

SECTION K (ALICEA)

01:12:29 (Alicea) - PHYS 2211 Spring 22 Week2_Lecture2_Projec

SECTION M (FENTON)

Week 02 class 1 Secti on M (Fenton) - PHYS 2211...

EDX HELP

ALICEA'S REVIEWS FROM SUMMER 2021

GPS video solutions will be here too, in

> Well-Being Connect

Wiki Textbook

Mental Health

Resources

Mv Media

Spring 2022

Home

Syllabus Modules

(Fenton)

Section K stream (Alicea)

Section M stream

Media Gallery

Ed Discussion

Assignments

Gradescope

People **TurningPoint**

Files Grades

edX (HWs, extra problems)

Reminders!

Lab meetings begin THIS week!

GPS problem sets are in Files → GPS

GTA/UTA Contact Info: 2211 TA Schedule.xlsx \

- First tab: Lab schedule
- Second tab: GTA and UTA contact info (emails)
- Last updated: 2022/01/18

(this 🗈 is on the canvas class front page, scroll down)

CLICKER 1: Avatar State!

A. HONOR!!!

B. Yip yip!

C. *TEARBENDING*

D. I see by releasing a sonic wave from my mouth

The story so far...

- Newton's 2nd Law (in velocity update form) $ec{v}_f = ec{v}_i + (ec{F}_{
 m net}/m)\Delta t$
- ullet Position update formula $ec{r}_f = ec{r}_i + ec{v}_{
 m avg} \Delta t$
- \bullet Gravity near Earth $\vec{F}_g=<0,-mg,0>$
- Kinematic equations in x and y (only valid for constant force)

$$x_f = x_i + v_{ix}\Delta t$$

$$y_f = y_i + v_{iy}\Delta t - (1/2)g(\Delta t)^2$$

Projectile Motion

- Constant velocity motion in the x direction
- Constant force motion in the y direction
- At maximum height, $v_y = 0$
- Always start from Newton's 2nd
 Law, use the kinematic equation as needed
- Solve for intermediate unknowns to build towards your final answer

Projectile Motion (constant force)

Cyan arrow = velocity vector

Purple arrow = v_x

Magenta arrow = v_y

Example: Is it an airball?

A basketball player shoots a freethrow from a height h = 2 m above the ground. The free-throw line is d = 4.6 m away from the basket, and the basket is b = 3 m above the ground.

If the player releases the ball with an initial speed v = 6 m/s at an angle $\theta = 55$ degrees from the horizontal, will he make the basket?

Spoiler alert: https://www.glowscript.org/#/user/ealicea/folder/Public/program/basketball

Knowns and unknowns

- Initial position of ball: $\vec{r}_i = <0, h, 0>$
- Initial velocity of ball: $\vec{v}_i = < v \cos \theta, v \sin \theta, 0 >$
- ullet Position of basket: $ec{r}_b = < d, b, \overline{0} > \overline{0}$
- Numbers:
 - h = 2 m
 - v = 6 m/s
 - $\theta = 55 \deg$
 - d = 4.6 m
 - b = 3 m

Unknowns:

- Times! There's no time info at all!
- What does the trajectory look like? (is it steep? is it shallow?) = we don't know how high the ball gets

- We want to divide the trajectory into two sections:
 (note that this is usually the best approach for projectile motion)
 - 1. From the moment we shoot to the maximum height
 - 2. From the maximum height to when the ball should go into the basket
- We don't know if the ball goes into the basket, so what we'll
 determine in the end is the y position of the ball at the x position of
 the basket
 - If $y_{ball} = y_{basket}$, then you made the shot
 - If $y_{ball} \neq y_{basket}$, then you missed

- From shooting to maximum height
 - 2 ymax, Vf @ ymax
 - 1 Stmax
 - 3 horizontal distance to ymax => × max
- From maximum height to basket
- distance between xmax & basket " known"
 - time from (xmax, ymax) to basket.
 - 2 find height of ball @ distance to basket

 $\vec{v}_f = \vec{v}_i + (\vec{F}_{\rm net}/m)\Delta t$

 $y_f = y_i + v_{iy}\Delta t - (1/2)g(\Delta t)^2$

 $x_f = x_i + v_{ix}\Delta t$

- From shooting to maximum height
 - 1. time to max height, Δt_{max}
 - 2. max height, y_{max}
 - 3. horizontal distance at max height, x_{max}

- From maximum height to basket
 - 1. time from max height to horizontal distance of basket, Δt_d
 - 2. height of ball at horizontal distance of basket, y_d

CLICKER 2: What is the maximum height of the ball, y_{max} ?

A.
$$y_{max} = 0.5 \text{ m}$$

(B.
$$y_{max} = 3.23 \text{ m}$$
)

C.
$$y_{max} = 1.23 \text{ m}$$

D.
$$y_{max} = 2.6 \text{ m}$$

Solution: What is the maximum height of the ball, ymax?

$$\Delta t_{max} = \frac{v \sin \theta}{9}$$

$$= \frac{(6 \frac{1}{4}) \sin 55}{9.8 \frac{1}{5} \frac{1}{5}}$$

$$= \left[2 + 6(\sin 55)(0.5) - \frac{1}{2}(9.8)(0.5)^{2}\right] n =$$

$$= \left[3.23 \text{ m}\right] \text{ ymax}$$

 $\vec{v}_f = \vec{v}_i + (\vec{F}_{\rm net}/m)\Delta t$

 $y_f = y_i + v_{iy}\Delta t - (1/2)g(\Delta t)^2$

 $x_f = x_i + v_{ix}\Delta t$

- From shooting to maximum height
 - 1. time to max height, Δt_{max}
 - 2. max height, y_{max}
 - 3. horizontal distance at max height, x_{max}

- From maximum height to basket
 - 1. time from max height to horizontal distance of basket, Δt_d
 - 2. height of ball at horizontal distance of basket, y_d

What is the horizontal distance of the ball when it reaches the max height?

$$x_f = x_i + v_{ix} \Delta t$$

$$x_{max} = x_i + v_{ix} \Delta t$$

$$= (6)(6555)(0.5)$$

$$= 1.72 m$$

$$4.6 m$$

CLICKER 3: How much time does it take for the ball to go from its maximum height to the basket?

A.
$$\Delta t_d = 0.75 \text{ s}$$

B.
$$\Delta t_d = 1.3 \text{ s}$$

C.
$$\Delta t_d = 0.50 \text{ s}$$

Solution: How much time does it take for the ball to go from its maximum height to the basket?

$$\Delta t_d = \frac{d - x_{mex}}{V \cos \theta} = \frac{4.6 M - 1.72 W}{(6 \%)(\cos 55)} = 0.84 \text{ sec}$$

 $\vec{v}_f = \vec{v}_i + (\vec{F}_{\rm net}/m)\Delta t$

 $y_f = y_i + v_{iy}\Delta t - (1/2)g(\Delta t)^2$

 $x_f = x_i + v_{ix}\Delta t$

- From shooting to maximum height
 - 1. time to max height, Δt_{max}
 - 2. max height, y_{max}
 - 3. horizontal distance at max height, x_{max}

- From maximum height to basket
 - 1. time from max height to horizontal distance of basket, Δt_d
 - 2. height of ball at horizontal distance of basket, y_d

CLICKER 4: Did the ball go into the basket?

A. Yes

Solution: Did the ball go into the basket?

$$y_{+} = y_{+} + v_{+}y_{+} +$$

Simulation: https://www.glowscript.org/#/user/ealicea/folder/Public/program/basketball

The Spring Force

$$\vec{F}_s = -k(|\vec{L}| - L_0)\hat{L}$$

- k is the spring stiffness (property of material; units: N/m)
- L₀ is the relaxed length of the spring (units: m)
- \vec{L} is a vector that points from the fixed end of the spring to the moving end of the spring (\hat{L} is its unit vector, Lhat)
- $|\vec{L}|$ (also written as L) is the stretched (L>L₀) or compressed (L<L₀) length of the spring
- The spring force is a non-constant force: it depends on the position of the object that is attached to the spring

The Spring Force

$$\vec{F}_s = -k(|\vec{L}| - L_0)\hat{L}$$

The thing in parenthesis can be represented as "s"

$$s = |\vec{L}| - L_0$$

(s stands for "stretch" but it can also mean compression)

The spring force therefore can also be written as:

$$\vec{F}_s = -ks\hat{L}$$

(Hooke's Law)

The Spring Force is restorative

$$\vec{F}_s = -k(|\vec{L}| - L_0)\hat{L}$$

- If the spring is stretched $(L>L_0)$, then the thing in parentheses is positive and the force points in the direction of negative Lhat = towards the fixed end
 - A stretched spring wants to compress (pulls)

The Spring Force is restorative

$$\vec{F}_s = -k(|\vec{L}| - L_0)\hat{L}$$

- If the spring is compressed ($L < L_0$), then the thing in parentheses is negative and the force points in the direction of positive Lhat = towards the moving end
 - A compressed spring wants to stretch (pushes)

CLICKER 5: A spring stands vertically with its fixed end attached to a table as shown. What is Lhat for this spring?

A.
$$<1, 0, 0>$$

B. <-1, 0, 0>

C. <0, 1, 0>

D. <0, -1, 0>

E. <0, 0, 1>

F. < 0, 0, -1 >

Iteration

- This means to predict the motion of an object in several very small consecutive time steps
- When coding, this is done in the while loop
- When doing it by hand, you need to be aware of accumulating rounding errors

Procedure:

- Find Fnet
- Update velocity (v final) with Newton's 2nd Law
- Update position with position (r_final) update formula
 - For constant force: v_avg = arithmetic average of v_initial & v_final
 - For non-constant force: v_avg = v_final
- Go to the next time step (increase t by an amount deltat)
- Repeat: find new Fnet, find new v_final, find new r_final, etc.

What \vec{v}_{avg} to use for position update?

$$\vec{r}_f = \vec{r}_i + \vec{v}_{\rm avg} \Delta t$$

ullet When $ec{F}_{
m net}$ is constant, we can approximate $ec{v}_{
m avg}$ as:

$$ec{v}_{
m avg} = rac{ec{v}_i + ec{v}_f}{2}$$
 This is exact for constant forces

ullet When $ec{F}_{
m net}$ is not constant, we approximate $ec{v}_{
m avg}$ as:

$$\vec{v}_{\mathrm{avg}} pprox \vec{v}_f$$
 This gives more accurate results when iterating nonconstant forces

What $ec{v}_{ ext{avg}}$ to use for position update?

Example: horizontal springs (spring force = not constant)
 https://www.glowscript.org/#/user/ealicea/folder/Public/program/comparison1

Example: an orbit (gravitational force = not constant)
 https://www.glowscript.org/#/user/ealicea/folder/Public/program/comparison2

Example: projectile motion (gravity near Earth = constant)
 https://www.glowscript.org/#/user/ealicea/folder/Public/program/comparison3