Welcome!

'One of the marvelous things about community is that it enables us to welcome and help people in a way we couldn't as individuals. When we pool our strength and share the work and responsibility, we can welcome many people, even those in deep distress.' Jean Vanier

Restricted Numerical Ranges of Digraph Laplacians: Defense

Michael Robertson

Davidson College

April 30, 2020

Mathematical Background

Definitions

■ For a graph G on n vertices, the adjacency matrix A(G) is the $n \times n$ matrix with entry $a_{ii} = 1$ if $ij \in E(G)$ and $a_{ii} = 0$ otherwise. The degree matrix D(G) is the $n \times n$ diagonal matrix with entry $a_{ii} = d^+(v_i)$ and 0 elsewhere. The Laplacian Matrix L(G) is then the $n \times n$ matrix given by

$$L(G) = D(G) - A(G) \tag{1}$$

Characterizations

or, shortening our notation, L = D - A.

Definitions

■ For a graph G on n vertices, the adjacency matrix A(G) is the $n \times n$ matrix with entry $a_{ii} = 1$ if $ij \in E(G)$ and $a_{ii} = 0$ otherwise. The degree matrix D(G) is the $n \times n$ diagonal matrix with entry $a_{ii} = d^+(v_i)$ and 0 elsewhere. The Laplacian Matrix L(G) is then the $n \times n$ matrix given by

$$L(G) = D(G) - A(G) \tag{1}$$

or, shortening our notation, L = D - A.

■ Let A be an $n \times n$ matrix acting on vectors $x \in \mathbb{C}^n$. The numerical range of A is a set of scalar values in \mathbb{C} defined as in

$$W(A) = \{x^* A x : x \in \mathbb{C}^n, ||x|| = 1\},\tag{2}$$

Adjacency

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Adjacency

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \qquad L = D - A =$$

$$L = D - A =$$

Mathematical Background

Adjacency

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Laplacian

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \qquad L = D - A = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix}$$

Historical Background

Algebraic Connectivity α for undirected graphs 1

Miroslav Fiedler (1926-2015)

¹M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2):298-305, 1973.

Algebraic Connectivity

Fiedler defined α as the second smallest eigenvalue of the Laplacian matrix for a graph.

Algebraic Connectivity

Fiedler defined α as the second smallest eigenvalue of the Laplacian matrix for a graph.

"Smallest" well defined

Algebraic Connectivity

Fiedler defined α as the second smallest eigenvalue of the Laplacian matrix for a graph.

"Smallest" well defined

Second smallest

$$e = (1, 1, \ldots, 1), e \in \mathsf{Null}(L)$$

Adjacency

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Adjacency

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Laplacian

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \qquad L = D - A = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix}$$

Mathematical Background

Adjacency

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Laplacian

Characterizations

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \qquad L = D - A = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix}$$

$$\sigma(L) = \{0, 2, 2, 4\}$$

Mathematical Background

Adjacency

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Laplacian

Characterizations

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \qquad L = D - A = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix}$$

$$\sigma(L) = \{0, 2, 2, 4\}$$

$$\alpha(L)=2$$

Undirected Graph

Directed Graph (Digraph)

Undirected Graph

Directed Graph (Digraph)

Undirected Graph

$$L = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix} \quad L = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

Directed Graph (Digraph)

$$L = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

[2004].²

Algebraic connectivity α for digraphs

Chai Wah Wu (1968-)

¹C. W. Wu. Algebraic connectivity of directed graphs. <u>Linear and Multilinear Algebra</u>, 53:3:203–223, 2005

For directed graphs on
$$n$$
 vertices, let $S = \{x \in \mathbb{R}^n : x \perp e, ||x|| = 1\}$. Then
$$\alpha = \min_{x \in S} x^T L x$$

$$L = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

$$\sigma(L) = \{0, 1+i, 1-i, 2\}$$

$$L = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

$$\sigma(L) = \{0, 1+i, 1-i, 2\}$$

$$\alpha(G) = \min_{x \in S} x^T L x = 1$$

Mathematical Background

Fielders's Definition:

The algebraic connectivity α is the second smallest eigenvalue of $\emph{L}.$

Current Work

Fielders's Definition:

The algebraic connectivity α is the second smallest eigenvalue of L.

Wu's Definition:

For directed graphs on
$$n$$
 vertices, let $S = \{x \in \mathbb{R}^n : x \perp e \, ||x|| = 1\}$. Then $\alpha = \min_{x \in S} x^T L x$

Fielders's Definition:

The algebraic connectivity α is the second smallest eigenvalue of L.

Characterizations

Wu's Definition:

For directed graphs on
$$n$$
 vertices, let $S = \{x \in \mathbb{R}^n : x \perp e \, ||x|| = 1\}$. Then $\alpha = \min_{x \in S} x^T L x$

Our Idea:

Let
$$S = \{x \in \mathbb{C}^n : x \perp e, ||x|| = 1\}.$$

Characterizations

Our work

Mathematical Background

Fielders's Definition:

The algebraic connectivity α is the second smallest eigenvalue of L.

Wu's Definition:

For directed graphs on
$$n$$
 vertices, let $S = \{x \in \mathbb{R}^n : x \perp e \mid |x|| = 1\}$. Then $\alpha = \min_{x \in S} x^T L x$

Our Idea:

Let $S = \{x \in \mathbb{C}^n : x \perp e, ||x|| = 1\}$. Then, we define the *restricted* numerical range as

$$\{x^*Lx:x\in S\}$$

Fielders's Definition:

The algebraic connectivity α is the second smallest eigenvalue of L.

Characterizations

Wu's Definition:

For directed graphs on
$$n$$
 vertices, let $S = \{x \in \mathbb{R}^n : x \perp e \mid |x|| = 1\}$. Then $\alpha = \min_{x \in S} x^T L x$

Our Idea:

Let $S = \{x \in \mathbb{C}^n : x \perp e, ||x|| = 1\}$. Then, we define the *restricted* numerical range as

$$\{x^*Lx:x\in S\}$$

$$\alpha = \min(\text{Re}(\{x^*Lx : x \in S\}))$$

Graph Characterizations — Empty Graph

One vertex

Two vertices

Three

Characterizations

Four

Graph Characterizations — Empty Graph

One vertex

Two vertices

Three

Four

Theorems

In the following theorems let G be a graph on n vertices.

Characterizations

Theorem — Empty Graph

The graph G is the empty graph if and only if the restricted numerical range of L(G) is $\{0\}$. That is, $G = E_n$ if and only if $W_r(L(G)) = \{0\}$.

Graph Characterizations — Empty Graph

Characterizations

One vertex Two vertices Three Four (3){0} {0} {0} {0}

Graph Characterizations — Complete Graph

Two vertices

Three

Four

Graph Characterizations — Complete Graph

Theorems

In the following theorems let G be a graph on n vertices.

Characterizations

Theorem — Empty Graph

... That is, $G = E_n$ if and only if $W_r(L(G)) = \{0\}$.

Theorem — Complete Graph

For n > 1, G is the complete graph if and only if the restricted numerical range of L(G) is $\{n\}$. That is, $G = K_n$ if and only if $W_r(L(G)) = \{n\}$.

Graph Characterizations — Complete Graph

Graph Characterizations — Cycle

Graph Characterizations — Cycle

The cycle...

The cycle...

The cycle...

is a Cycle!

The cycle...

is a Cycle!

Convex hull of
$$\{1 - e^{(2\pi j/n)i} : j = 1, ..., n-1\}$$

Theorems

In the following theorems let G be a graph on n vertices.

Characterizations

Theorem — Empty Graph

... That is, $G = E_n$ if and only if $W_r(L(G)) = \{0\}$.

Theorem — Complete Graph

... That is, $G = K_n$ if and only if $W_r(L(G)) = \{n\}$.

Theorems

In the following theorems let G be a graph on n vertices.

Characterizations

Theorem — Empty Graph

... That is, $G = E_n$ if and only if $W_r(L(G)) = \{0\}$.

Theorem — Complete Graph

... That is, $G = K_n$ if and only if $W_r(L(G)) = \{n\}$.

Theorem — Cycle

The graph G is the cycle on n vertices if and only if the restricted numerical range of L(G) is the convex hull of $\{1 - e^{(2\pi j/n)i} : j = 1, \dots, n-1\}$. That is, $G = C_n$ if and only if $W_r(L(G)) = \{n\}$.

Woah...

The cycle...

is a Cycle!

Wonder

'The union of the mathematician with the poet, fervor with measure, passion with correctness, this surely is the ideal.' William James

Graph Characterizations — Singleton Restricted Numerical Range

Definition — Directed Join

We define the directed join of G onto H, $G \overrightarrow{\vee} H = (V, E)$ where $V = V(G) \cup V(H)$ and

$$E = E(G) \cup E(H) \cup \{vu : v \in V(G), u \in V(H)\}.$$

Definition — Directed Join

We define the directed join of G onto H, $G\overrightarrow{\nabla} H=(V,E)$ where $V=V(G)\cup V(H)$ and

Historical Background

$$E = E(G) \cup E(H) \cup \{vu : v \in V(G), u \in V(H)\}.$$

Definition — k-Imploding Star vertices

The k-imploding star on n vertices is the directed join of the empty graph on n-k onto the complete graph on k vertices. We write $S_{n,k} = E_{n-k} \vec{\vee} K_k$.

Graph Characterizations — Singleton Restricted Numerical Range

Graph Characterizations — Singleton Restricted Numerical Range

Theorems

In the following theorems let G be a graph on n vertices.

Characterizations

Theorem — Empty Graph

... That is, $G = E_n$ if and only if $W_r(L(G)) = \{0\}$.

Theorem — Complete Graph

... That is, $G = K_n$ if and only if $W_r(L(G)) = \{n\}$.

Theorem — Cycle

The graph G is the cycle on n vertices if and only if the restricted numerical range of L(G) is the convex hull of $\{1 - e^{(2\pi j/n)i} : j = 1, \dots, n-1\}$. That is, $G = C_n$ if and only if $W_r(L(G)) = \{n\}$.

Theorems

In the following theorems let G be a graph on n vertices.

Characterizations

Theorem — Imploding Stars

For $k \ge 0$, G is a k-imploding star on $n \ge k$ vertices if and only if the restricted numerical range of L(G) is the singleton $\{k\}$. That is, $G = S_{n,k}$ if and only if $W_r(L(G)) = \{k\}.$

Theorems

In the following theorems let G be a graph on n vertices.

Theorem — Imploding Stars

For k > 0, G is a k-imploding star on $n \ge k$ vertices if and only if the restricted numerical range of L(G) is the singleton $\{k\}$. That is, $G = S_{n,k}$ if and only if $W_r(L(G)) = \{k\}.$

Theorem — Singleton Numerical Ranges

All singleton numerical ranges are integers

Theorems

In the following theorems let G be a graph on n vertices.

Theorem — Imploding Stars

For k > 0, G is a k-imploding star on $n \ge k$ vertices if and only if the restricted numerical range of L(G) is the singleton $\{k\}$. That is, $G = S_{n,k}$ if and only if $W_r(L(G)) = \{k\}.$

Theorem — Singleton Numerical Ranges

All singleton numerical ranges are integers (and so they correspond to k-imploding stars).

Graph Characterizations — Singleton Restricted Numerical Range

1-Imploding Star: $S_{6,1}$ Spectrum: $\sigma(L(S_{6,1}))$

$$\sigma = \{0, 1, 1, 1, 1, 1\}$$

Graph Characterizations — Singleton Restricted Numerical Range

Graph Characterizations — Singleton Restricted Numerical Range

Great Success!

Great Success!

Great Success!

-0.6

Graph Characterizations — Vertical Line Restricted Numerical Range

Characterizations

Definition — Tournament Graph

A graph G is a tournament graph if for any two vertices $v, u \in G$, exactly one of (u, v) and (v, u) are in E.

Characterizations

Definition — Tournament Graph

A graph G is a tournament graph if for any two vertices $v, u \in G$, exactly one of (u, v) and (v, u) are in E.

Definition — Regular Tournament Graph

A tournament graph G on an odd number of vertices is regular if every vertex has equal in-degree and out-degree.

Graph Characterizations — Vertical Line Restricted Numerical Range

Graph Characterizations — Vertical Line Restricted Numerical Range

Historical Background

In the following theorems let G be a graph on n vertices.

Characterizations

Theorem — Imploding Stars

... That is, $G = S_{n,k}$ if and only if $W_r(L(G)) = \{k\}$.

Mathematical Background

In the following theorems let G be a graph on n vertices.

Theorem — Imploding Stars

... That is, $G = S_{n,k}$ if and only if $W_r(L(G)) = \{k\}$.

Theorem — Regular Tournaments

A graph G on n vertices is a regular tournament if and only if $W_r(G)$ is a vertical line with real part $\frac{n}{2}$.

In the following theorems let G be a graph on n vertices.

Characterizations

Theorem — Imploding Stars

... That is, $G = S_{n,k}$ if and only if $W_r(L(G)) = \{k\}$.

Theorem — Regular Tournaments

A graph G on n vertices is a regular tournament if and only if $W_r(G)$ is a vertical line with real part $\frac{n}{2}$. Further, all vertical lines are of this form (and thus correspond to regular tournament graphs). So all vertical lines correspond to regular tournament graphs, and vice-versa.

Definition — 3-Balanced

A graph G is 3-balanced if for any three distinct vertices $i, j, k \in V(G)$, we have

$$a_{ij} + a_{jk} + a_{ki} = a_{ji} + a_{ik} + a_{kj},$$
 (4)

Mathematical Background

In the following theorems let G be a graph on n vertices.

Theorem — Imploding Stars

... That is, $G = S_{n,k}$ if and only if $W_r(L(G)) = \{k\}$.

Theorem — Regular Tournaments

... So all vertical lines correspond to regular tournament graphs, and vice-versa.

In the following theorems let G be a graph on n vertices.

Characterizations

Theorem — Imploding Stars

... That is, $G = S_{n,k}$ if and only if $W_r(L(G)) = \{k\}$.

Theorem — Regular Tournaments

... So all vertical lines correspond to regular tournament graphs, and vice-versa.

Theorem — 3-Balanced Graphs

A graph G is 3-balanced if and only if its restricted numerical range lies entirely on the real line. That is, G is 3-balanced if and only if $W_r(L(G)) \subset \mathbb{R}$

Characterizations

Current Work

■ Case 1: Normal Laplacian *L*

- Case 1: Normal Laplacian L
- Case 2: Non-normal Laplacian L, Normal Restricted Laplacian $Q^T L Q$

- Case 1: Normal Laplacian L
- Case 2: Non-normal Laplacian L, Normal Restricted Laplacian $Q^T L Q$
- Case 3: Non-normal Laplacian L, Non-normal Restricted Laplacian $Q^T L Q$

1: Normal L

- 2: Normal $Q^T L Q$ 3: Neither Normal

1: Normal L

Mathematical Background

2: Normal $Q^T L Q$ 3: Neither Normal

1: Normal L

Mathematical Background

2: Normal $Q^T L Q$

3: Neither Normal

1: Normal *L*

2: Normal $Q^T L Q$

3: Neither Normal

Historical Background

1: Normal L

2: Normal $Q^T L Q$

3: Neither Normal

■ Thomas Cameron, Advisor, Co-author

- Thomas Cameron, Advisor, Co-author
- Alex Wiedemann, Co-advisor, Co-author

- Thomas Cameron, Advisor, Co-author
- Alex Wiedemann, Co-advisor, Co-author
- Heather Smith, Second Reader

- Thomas Cameron, Advisor, Co-author
- Alex Wiedemann, Co-advisor, Co-author
- Heather Smith, Second Reader
- Yan Zhaung and Rich Neidinger, Committee Members

- Thomas Cameron, Advisor, Co-author
- Alex Wiedemann, Co-advisor, Co-author
- Heather Smith, Second Reader
- Yan Zhaung and Rich Neidinger, Committee Members
- Laurie Heyer, Major Advisor

- Thomas Cameron, Advisor, Co-author
- Alex Wiedemann, Co-advisor, Co-author
- Heather Smith, Second Reader
- Yan Zhaung and Rich Neidinger, Committee Members
- Laurie Heyer, Major Advisor
- Carl Yerger, Chair

Thanks for coming! ⊜