# Computer Architecture: Basic Arithmetic

Hossein Asadi (asadi@sharif.edu)

Department of Computer Engineering

Sharif University of Technology

Spring 2024



#### Copyright Notice

- Some Parts (text & figures) of this Lecture adopted from following:
  - Computer Organization & Design, The Hardware/Software Interface, 3<sup>rd</sup> Edition, by D.
     Patterson and J. Hennessey, MK publishing, 2005.
  - "Intro to Computer Architecture" handouts, by Prof. Hoe, CMU, Spring 2009.
  - "Computer Architecture & Engineering" handouts, by Prof. Kubiatowicz, UC Berkeley, Spring 2004.
  - "Intro to Computer Architecture" handouts, by Prof. Hoe, UWisc, Spring 2021.
  - "Computer Arch I" handouts, by Prof. Garzarán, UIUC, Spring 2009.
  - "Intro to Computer Organization" handouts, by Prof.
     Mahlke & Prof. Narayanasamy, Winter 2008.



# **Our Lectur Today**

#### **Topics Covered Today**

- Adders
  - Ripple carry
  - Carry select adder
  - Carry-look-ahead adder
- Multipliers
  - Combinational multiplier
  - Sequential multiplier
  - Booth multiplier

#### **Unsigned Binary Addition**



Overflow = c4



#### 2's Complement Addition



• Overflow = (a3 xor b3) ? 0 : (a3 xor s3)



## 2's Complement Subtraction

- Subtraction
  - Similar to adding negative number



#### Analysis of an "n-bit" Ripple-Carry (RC) Adder

- Size/Complexity
  - n \* SizeOf(Full Adder)
  - -O(n)
- Critical Path Delay
  - n \* DelayOf(Full Adder)
  - n \* 2 \* gate delay
  - -O(n)



#### High-Performance Adders

- Question:
  - Any adder running faster than RC adder?
    - How to reduce carry propagation delay?
- Answer:
  - Compute intermediate carry signal
    - E.g., compute C1, C2, and C3 in parallel

#### Carry-Select Adder (CSA)

- Delay
  - $-8*D_{FA}+D_{mux}$
- Cost
  - -24\*FA + Mux



#### Multi-Stage CSA

Delay

$$-4*D_{FA} + 3*D_{mux}$$

- Cost
  - -28\*FA + 3\*Mux



#### Multi-Stage CSA (cont.)

- K-Stage n-bit CSA
- Delay
  - $(n/k)^*D_{FA} + (k-1)^*D_{mux}$
- Cost
  - $-N^{*}(2k-1)/k^{*}FA + (k-1)^{*}Mux$

#### Carry Generate & Propagate

- If a.b = 1 → Cout = 1 regardless of C<sub>in</sub>
  - Carry generate
- If a xor b = 1  $\rightarrow$  C<sub>out</sub> = C<sub>in</sub>
  - Carry propagate
- We define
  - $Gi = a_i.b_i$  (Generate)
  - $Pi = a_i xor b_i$  (Propagate)
  - $\rightarrow C_{i+1} = G_i + P_i \cdot C_i$

#### Carry Look-Ahead Adder

- C1 = G0 + P0.C0
- C2 = G1 + P1.C1 = G1 + P1.(G0+P0.C0) = G1 + P1.G0 + P1.P0.C0
- C3 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.C0
- C4 = G3 + P3.G2 + P3.P2.G1 + P3.P2.P1.G0 + P3.P2.P1.P0.C0



#### Carry Look-Ahead Adder (cont.)

- Delay Complexity
  - $O(\log n)$
- Size Complexity
  - $O(n^2)$
- Manageable for Small n's
- Can be used in Two-Level CLA Adders
  - 16-bit adder using 4-bit CLA modules

#### Carry Look-Ahead Adder (cont.)

- Dg: Delay of a Single Gate
- At each Stage
  - Dg for generating all Pi and Gi
  - 2\*Dg for generating all Ci (2-level gate)
  - 2\*Dg for generating all Si (2-level gate)
- Total Delay: 5\*Dg (independent of n)
  - Issue?
    - D(gate with fainin=32) >> D(gate w fainin=2)
  - [Copyright I. Kormen, umass, spring'08]

#### Carry Look-Ahead Adder (cont.)

- n Stages Divided into Groups
  - Separate CLA in each group
  - Group interconnected by RC
- Example: Group Size =4
  - Dg for generating all Pi and Gi
  - 2\*Dg to propagate carry through a group
  - (n/4)\*2\*Dg to propagate carry using RC
  - 2\*Dg to generate Si
  - Total: [2(n/4)+3]Dg = [n/2+3]\*Dg
  - 75% reduction compared to full RC

### Multiplier

- Combinational Multiplier
  - Also called array multiplier
- Shift-Add Multiplier
- Booth Mulitplier

#### Combinational Multiplier



#### Shift-Add Multiplier



#### Booth's Algorithm

Example 2 x 6 = 0010 x 0110:

```
0010
        0110
Х
        0000
                  shift (0 in multiplier)
+
       0010
                  add (1 in multiplier)
+
      0010
                  add (1 in multiplier)
+
     0000
                  shift (0 in multiplier)
+
    00001100
```

ALU with add or subtract gets same result in more than one way:

$$6 = -2 + 8$$

$$0110 = -00010 + 01000 = 11110 + 01000$$

For example

|   |   | 0010                          |          |
|---|---|-------------------------------|----------|
|   | X | 0110                          |          |
|   |   | 0000 shift (0 in multiplier)  |          |
|   | _ | 0010 sub (first 1 in multply) |          |
|   |   | 0000 shift (mid string of 1s) |          |
|   | + | 0010 add (prior step had last | 1)       |
| _ |   | 00001100                      | Slide 22 |

#### Booth's Algorithm (cont.)

| Current | Bit to |                     |                     |      |
|---------|--------|---------------------|---------------------|------|
| Bit     | Right  | Explanation         | Example             | Ор   |
|         |        |                     |                     |      |
| 1       | 0      | Begins run of 1s    | 000111 <u>10</u> 00 | sub  |
| 1       | 1      | Middle of run of 1s | 00011 <u>11</u> 000 | none |
| 0       | 1      | End of run of 1s    | 00 <u>01</u> 111000 | add  |
| 0       | 0      | Middle of run of 0s | 0 <u>00</u> 1111000 | none |

- Originally developed for Speed
  - When shift was faster than add

# Booth Encoding: Example

| 1  | 0 | 0 | 1 | 1 | 1 | 1  | 0 | 1  | 0 |
|----|---|---|---|---|---|----|---|----|---|
| -1 | 0 | 1 | 0 | 0 | 0 | -1 | 1 | -1 | 0 |

#### Booth's Algorithm: Example

- Example
  - multiply (-5) x 2
- Let's use 5-bit 2's complement:

A: -5 is 11011 (multiplier)

B: 2 is 00010 (multiplicand)

### **Beginning Product**

Multiplier is:

11011

 Add 5 leading zeros to multiplier to get beginning product:

00000 11011

#### Step 1 for each pass

- Use LSB (least significant bit) and previous LSB to determine arithmetic action
  - If it is FIRST pass, use 0 as previous LSB
- Possible arithmetic actions:
  - 00 → no arithmetic operation
  - 01 → add multiplicand to left half of product
  - -10 → subtract multiplicand from left half of product
  - -11 → no arithmetic operation

#### Step 2 for Each Pass

Perform an arithmetic right shift (ASR) on entire product

- Note:
  - For X-bit operands, Booth's algorithm requires X passes

#### Example

- Let's continue with our example of multiplying (-5)
   x 2
- Remember:
  - -5 is 11011 (multiplier)
  - 2 is 00010 (multiplicand)
- And we added 5 leading zeros to multiplier to get beginning product:

00000 11011

#### Example

Initial Product and previous LSB

00000 11011 0

(Note: Since this is first pass, we use 0 for previous LSB)

• Pass 1, Step 1: Examine last 2 bits

00000 11011 0

Last two bits are 10, so we need to:

subtract multiplicand from left half of product

#### Example: Pass 1 (cont.)

Pass 1, Step 1: Arithmetic action

```
(1) 00000 (left half of product)

-00010 (mulitplicand)

11110 (uses a phantom borrow)
```

Place result into left half of product

```
11110 11011 0
```

#### Example: Pass 1 (cont.)

- Pass 1, Step 2: ASR (arithmetic shift right)
  - -Before ASR

```
11110 11011 0
```

-After ASR

```
11111 01101 1
```

(left-most bit was 1, so a 1 was shifted in on the left)

Pass 1 is complete

#### Example: Pass 2

Current Product and previous LSB

• Pass 2, Step 1: Examine last 2 bits

```
11111 01101 1
```

Last two bits are 11, so we do NOT need to perform an arithmetic action -- just proceed to step 2.

#### Example: Pass 2 (cont.)

- Pass 2, Step 2: ASR (arithmetic shift right)
  - Before ASR

```
11111 01101 1
```

-After ASR

11111 10110 1

(left-most bit was 1, so a 1 was shifted in on left)

Pass 2 is complete

#### Example: Pass 3

Current Product and previous LSB

• Pass 3, Step 1: Examine last 2 bits

Last two bits are 01, so we need to: add multiplicand to left half of product

#### Example: Pass 3 (cont.)

Pass 3, Step 1: Arithmetic action

```
(1) 11111 (left half of product)
+00010 (mulitplicand)
00001 (drop the leftmost carry)
```

Place result into left half of product
 00001 10110 1

#### Example: Pass 3 (cont.)

- Pass 3, Step 2: ASR (arithmetic shift right)
  - -Before ASR

00001 10110 1

-After ASR

00000 11011 0

(left-most bit was 0, so a 0 was shifted in on left)

Pass 3 is complete

#### Example: Pass 4

Current Product and previous LSB

00000 11011 0

Pass 4, Step 1: Examine last 2 bits

00000 11011 0

Last two bits are 10, so we need to: subtract **multiplicand** from left half of product

#### Example: Pass 4 (cont.)

Pass 4, Step 1: Arithmetic action

```
(1) 00000 (left half of product)

-00010 (mulitplicand)

11110 (uses a phantom borrow)
```

Place result into left half of product

```
11110 11011 0
```

#### Example: Pass 4 (cont.)

- Pass 4, Step 2: ASR (arithmetic shift right)
  - Before ASR

```
11110 11011 0
```

-After ASR

```
11111 01101 1
```

(left-most bit was 1, so a 1 was shifted in on left)

Pass 4 is complete

#### Example: Pass 5

Current Product and previous LSB

• Pass 5, Step 1: Examine last 2 bits

```
11111 01101 1
```

The last two bits are 11, so we do NOT need to perform an arithmetic action -- just proceed to step 2.

#### Example: Pass 5 (cont.)

- Pass 5, Step 2: ASR (arithmetic shift right)
  - -Before ASR

```
11111 01101 1
```

-After ASR

11111 10110 1

(left-most bit was 1, so a 1 was shifted in on left)

Pass 5 is complete

#### **Final Product**

 We have completed 5 passes on 5-bit operands, so we are done.

Dropping the previous LSB, resulting final product is:

11111 10110

#### Verification

- To confirm we have correct answer, convert the
   2's complement final product back to decimal
- Final product: 11111 10110
- Decimal value: -10
   which is CORRECT product of:

$$(-5) \times 2$$

