Particle spectrograph

Wave operator and propagator

	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\tau_1^{\#1}_+ _{\alpha\beta}$	$\sigma_{1}^{\#1}{}_{\alpha}$	$\sigma_{1^{-}\alpha}^{\#2}$	${\mathfrak l}_{1^{-}}^{\#1}{}_{\alpha}$	$\tau_{1}^{\#2}{}_{\alpha}$
$^{1}_{+}$ $^{+}$		$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$-\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	0	0	0	0
2 †αβ	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{12}{(3+2k^2)^2t_1}$	$\frac{12ik}{(3+2k^2)^2t_1}$	0	0	0	0
$^{1}_{+}$ $^{+}$ $^{\alpha\beta}$	$\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	$-\frac{12ik}{(3+2k^2)^2t_1}$	$\frac{12k^2}{(3+2k^2)^2t_1}$	0	0	0	0
$_{1}^{\#1}+^{lpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1+2k^2t_1}$
$_{1}^{\#2}+^{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$\frac{i\sqrt{2}}{(t_1 + 2k^2t_1)^2}$
$_{1}^{\#1}$ \dagger^{α}	0	0	0	0	0	0	0
#2 +α 1-	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$

	$\begin{split} S == \\ \{ \iint \{ \int_{3}^{1} (3t_{1} \ \omega^{\alpha'}_{\alpha} \ \omega^{\theta}_{r} + 3 \ f^{\alpha\beta} \ t_{\alpha\beta} + 3 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - 6t_{1} \ \omega^{\theta}_{\alpha} \ \partial_{r} f^{\alpha'} + 6t_{1} \ \omega^{\theta}_{r} \\ \partial_{r} f^{\alpha}_{\alpha} - 3t_{1} \partial_{r} f^{\theta}_{\theta} \partial^{r} f^{\alpha}_{\alpha} - 6r_{1} \partial_{\mu} \omega^{\theta}_{\theta} \partial^{r} \omega^{\alpha\beta}_{\alpha} + 6r_{1} \partial_{r} \omega^{\theta}_{\theta} \partial^{r} \omega^{\alpha\beta}_{\alpha} \\ \partial_{r} f^{\alpha}_{\alpha} - 3t_{1} \partial_{r} f^{\theta}_{\theta} \partial^{r} f^{\alpha}_{\alpha} - 6r_{1} \partial_{\mu} \omega^{\theta}_{\theta} \partial^{r} \omega^{\alpha\beta}_{\alpha} + 6r_{1} \partial_{r} \omega^{\theta}_{\theta} \partial^{r} \omega^{\alpha\beta}_{\alpha} \\ 3t_{1} \partial_{r} f^{\alpha'} \partial_{\theta} f^{\theta}_{\alpha} + 6t_{1} \partial^{r} f^{\alpha}_{\alpha} \partial_{\theta} f^{\theta}_{\beta} + 6r_{1} \partial_{\alpha} \omega^{\alpha\beta}_{\beta} \partial_{\theta} \omega^{\theta}_{\beta}_{\beta} - 2t_{1} \partial^{r} \omega^{\beta}_{\alpha} \partial^{\theta} \mu^{\beta}_{\alpha} + 12r_{1} \partial^{r} \omega^{\alpha\beta}_{\alpha} \partial_{\theta} \omega^{\beta}_{\beta}_{\beta} + 2t_{1} \omega_{r} \partial_{\theta} f^{\alpha'}_{\alpha} + 2t_{1} \partial_{\theta} f^{\alpha'}_{\alpha} \partial^{\theta} f^{\alpha'}_{\alpha} + t_{1} \partial_{\theta} f^{\alpha'}_{\alpha} \partial^{\theta} f^{\alpha'}_{\alpha} + 2t_{1} \partial_{\theta} f^{\alpha'}_{\alpha} \partial^{\theta} f^{\alpha'}_{\alpha} + t_{1} \partial_{\theta} f^{\alpha'}_{\alpha} \partial^{\theta} f^{\alpha'}_{\alpha} + t_{1} \partial_{\theta} f^{\alpha'}_{\alpha} \partial^{\theta} f^{\alpha'}_{\alpha} + 2r_{1} \partial_{\theta} \omega^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega_{\alpha\beta\theta} \partial^{\theta} \omega^{\alpha\beta}_{\alpha} + 2r_{1} \partial_{\theta} \omega^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega^{\alpha\beta}_{\alpha} \partial^{\theta} \omega^{\alpha\beta}_{\alpha} + 2r_{1} \partial_{\theta} \omega^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega^{\alpha\beta}_{\alpha} \partial^{\theta} \omega^{\alpha\beta}_{\alpha} + 2r_{1} \partial_{\theta} \omega^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega^{\alpha\beta}_{\alpha} \partial^{\theta} \omega^{\alpha\beta}_{\alpha} + 2r_{1} \partial_{\theta} \omega^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega^{\alpha\beta}_{\alpha} \partial^{\theta} \omega^{\alpha\beta}_{\alpha} + 2r_{1} \partial_{\theta} \omega^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega^{\alpha\beta}_{\alpha} \partial^{\theta} \omega^{\alpha\beta}_{\alpha} + 2r_{1} \partial_{\theta} \omega^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega^{\alpha\beta}_{\alpha} \partial^{\theta} \omega^{\alpha\beta}_{\alpha} + 2r_{1} \partial_{\theta} \omega^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega^{\alpha\beta}_{\alpha} \partial^{\theta} \omega^{\alpha\beta}_{\alpha} + 2r_{1} \partial_{\theta} \omega^{\alpha\beta}_{\alpha} \partial^{\theta} \omega^{\alpha\beta}_{\alpha} + 2r_{1} \partial_{\theta} \omega^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega^{\alpha\beta}_{\alpha} \partial^{\theta} \omega^{\alpha\beta}_{\alpha} + 2r_{1} \partial_{\theta} \omega^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega^{\alpha\beta}_{\alpha} \partial^{\theta} \omega^{\alpha\beta}_{\alpha} + 2r_{1} \partial_{\theta} \omega^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega^{\alpha\beta}_{\alpha} \partial^{\theta} \omega^{\alpha\beta}_{\alpha} + 2r_{1} \partial_{\theta} \omega^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega^{\alpha\beta}_{\alpha} \partial^{\theta} \omega^{\alpha\beta}_{\alpha} + 2r_{1} \partial_{\theta} \omega^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega^{\alpha\beta}_{\alpha} \partial^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega^{\alpha\beta}_{\alpha} \partial^{\alpha\beta}_{\alpha} \partial^{\alpha\beta}_{\alpha} \partial^{\alpha\beta}_{\alpha} \partial^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega^{\alpha\beta}_{\alpha} \partial^{\alpha\beta}_{\alpha} \partial^{\alpha\beta}_{\alpha} \partial^{\alpha\beta}_{\alpha} \partial^{\alpha\beta}_{\alpha} - 2r_{1} \partial_{r} \omega^{\alpha\beta}_{\alpha} \partial^{\alpha\beta}_{\alpha} \partial^{\alpha\beta}_{\alpha} \partial^{\alpha\beta}_{\alpha} \partial^{\alpha\beta}_{\alpha}$	Ū	+ - (1+ + - (1+	$\sigma_{0}^{\#1}$ $\frac{1}{(-2k^2)^2}$ $i \sqrt{2} k$ $(-2k^2)^2$ 0 0	1 (1+	$\tau_{0}^{#1}$ $i \sqrt{2} k$ $-2 k^{2})^{2}$ $2 k^{2}$ $+2 k^{2})^{2}$ 0)	$\sigma_{2^{+}}^{\#1} \dagger^{\alpha\beta}$ $\tau_{2^{+}}^{\#1} \dagger^{\alpha\beta}$ $\sigma_{2^{-}}^{\#1} \dagger^{\alpha\beta\chi}$	$\sigma_{2}^{\#1}{}_{\alpha\beta}$ $\frac{2}{(1+2k^2)^2 t_1}$ $\frac{2i\sqrt{2}k}{(1+2k^2)^2 t_1}$ 0	$\tau_{2}^{\#1} \alpha \beta$ $-\frac{2i\sqrt{2}k}{(1+2k^2)^2 t}$ $\frac{4k^2}{(1+2k^2)^2 t}$ 0
	$-6t_{1} (\alpha \beta $	$f_{1}^{\#2}$	0	0	0	ikt_1	0	0	0			
	$ \begin{array}{l} \sigma_{\alpha\beta\chi} \\ 5 r_1 \partial_{,l} \\ 3^l \partial_{\theta} \omega \\ r_1 \omega_{,\theta} \\ r_2 + \\ r_3 + \\ r_4 \\ r_3 + \\ r_4 \\ r_6 \\ r_7 \\ $	$\omega_{1^{-}}^{#2}{}_{lpha}f_{1^{-}}^{#1}{}_{lpha}$	0	0	0	0	0	0	0			
	$\omega^{\alpha\beta\chi}$ $\alpha^{\beta} + \epsilon$ $\partial_{\alpha}\omega^{\alpha\beta}$ $\beta^{\beta} + 2t$ $\beta^{\beta} $	$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0			
	S ==	$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$			
on	$a^{+}3f$ $a^{\prime}f^{\alpha}a^{\partial}$ $2r_{1}\partial^{\prime}(r_{1}a^{\partial}a^{\partial}f^{\alpha}a^{\partial}f^{\alpha}a^{\partial}f^{\alpha}a^{\partial}f^{\alpha}a^{\partial}f^{\alpha}a^{\partial}f^{\alpha}a^{\partial}f^{\alpha}a^{\partial}f^{\alpha}a^{\alpha}a^{\alpha}h^{\alpha}f^{\alpha}a^{\alpha}h^{\alpha}f^{\alpha}a^{\alpha}h^{\alpha}f^{\alpha}a^{\alpha}h^{\alpha}f^{\alpha}a^{\alpha}h^{\alpha}f^{\alpha}a^{\alpha}h^{\alpha}h^{\alpha}f^{\alpha}a^{\alpha}h^{\alpha}h^{\alpha}h^{\alpha}h^{\alpha}h^{\alpha}h^{\alpha}h^{\alpha}h$	$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{3\sqrt{2}}$	<i>ikt</i> 1 3	$\frac{k^2t_1}{3}$	0	0	0	0			
Quadratic (free) action	$ \int_{\alpha}^{\alpha'} \omega_{\beta}^{\theta} $ $ \int_{\alpha}^{\theta} \partial^{t} f^{\alpha} $ $ \int_{\alpha}^{\theta} + 6 t_{1} $ $ \int_{\alpha'}^{\theta} + 1 $ $ \int_{\alpha'}^{\theta} + 2 \partial^{\theta} f $ $ \int_{\beta}^{\theta} \omega^{\alpha\beta'} - 8 $	$\omega_1^{\#_+^2}$	$-\frac{t_1}{3\sqrt{2}}$	1 <u>7</u> 3	$-\frac{1}{3}\bar{l}kt_1$	0	0	0	0			
atic (fr	$S == \begin{cases} \int \int \int \int \left(\frac{1}{3} (3t_1 \omega^{\alpha'}) \partial_{\alpha'} \int_{\alpha'} \partial_{\alpha'} f^{\alpha'} \partial_{\alpha'} f^{\alpha'} \partial_{\beta} f^{\alpha'} $	$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{9}{\mathbb{T}_2}$	$-\frac{t_1}{3\sqrt{2}}$	$\frac{i k t_1}{3 \sqrt{2}}$	0	0	0	0			
Quadr	$S = \frac{1}{2} \int \int \int \int \frac{1}{3} dx$ $3t_1 \partial_{\alpha}$ $5t_1 \partial_{\alpha}$ $2t_1 \partial_{\alpha}$ $2t_1 \partial_{\alpha}$ $2t_1 \partial_{\alpha}$ $2t_1 \partial_{\alpha}$	•	$ u_1^{\#1} + \alpha \beta $	$\omega_{1}^{\#2} + \alpha \beta$	$f_1^{\#_1} + ^{\alpha \beta}$	$\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \uparrow^{\alpha}$	$f_{1}^{#2} + \alpha$			

	Ī,	ı			f#	, i	κ,					
$\omega_{0}^{\#1}$	$-t_1$	$\sqrt{2} k t_1$	0	0	$\omega_2^{\#1}_{+lphaeta}$ f	<u>t1</u> 2	į į	0				
		<u> </u>			$+^{\alpha\beta}$	$+^{\alpha\beta}$	-αβχ					
	$\omega_{0}^{\#1}$ \dagger	$f_{0}^{\#1}$ \dagger	$f_{0}^{#2}$ \dagger		$\omega_2^{\#1}$ -	$f_2^{#1} +$	$\omega_{2}^{\#1} + ^{\prime}$					
So	Source constraints/gauge generators											
S	O(3)	irre	ps		Multip	licitie	S					
σ_0^{\dagger}	#1)-1 ==	0			1							
$\tau_0^{\#}$	² ==	0			1							
$ au_0^{\#}$	¹ ₊ - 2	ikσ	#1 0 ⁺ ==		1							
$ au_1^{\sharp}$	<u>+</u> 2α_	+ 2 <i>i</i> .	$k \sigma_1^{\#}$	= 0	3							
$ au_1^{\sharp}$	±1α <u>-</u>	= 0		3								
$ au_1^{\sharp}$	‡1 αβ +	- 2 <i>i</i>	$k \sigma_1^{\#}$	== 0	3							
2	$\sigma_{1}^{\#1}$	α^{β} +	$\sigma_{1}^{\#2}$	0	3							
τ_2^{\sharp}	‡1 αβ .+	- 2 <i>i</i>	5									
To	otal	cons	traii	20								

0

0

 $\sigma_{2-\alpha\beta\chi}^{\#1}$

 $\frac{2}{2 k^2 r_1 + t_1}$

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$