

AULA 13

Design de Experimentos & Teste A/B

Instrutor: Raphael Ballet

Background:

- > Engenheiro de Controle e Automação (IMT)
- Mestre em Sistemas Aeroespaciais e Mecatrônica (ITA)
- Data Scientist Elo7

Interesses:

Drones

Aprendizado de Máquina

Processamento de Linguagem Natural

Robótica

Visão Computacional

Sistemas de recomendação

Planejamento:

- 1. Apresentação Case
- 2. Introdução à estatística
- 3. Teste A/B
- 4. Testes de hipóteses
- 5. Case final e discussões

CASE:

Empresa: TeraBuy

Objetivo: Venda online de equipamentos educacionais

Objetivo:

Vender mais!

Sim, claro, mas como?

- Quem são nossos clientes?
- Como utilizam nosso site?
- Quantas pessoas acessam meu site?
- E quantas clicam no botão "compre já"?
- O layout do meu site é bom?

Objetivo:

Vender mais!

Sim, claro, mas como?

- Quem são nossos clientes?
- Como utilizam nosso site?
- Quantas pessoas acessam meu site?
- E quantas clicam no botão "compre já"?
- O layout do meu site é bom?

Modelo funil:

Modelo funil:

Taxa de conversão? User Homepage **Product Page** X% Cart Compra (conversão)

Modelo funil:

Taxa de conversão? User Homepage Y% **Product Page Z**% Cart W% Compra (conversão)

População x Amostra

Descrição da população:

parâmetros: média, desvio padrão etc.

 Amostra: estatísticas de sumário estatísticas: média, desvio padrão (amostral) etc.

Estatística inferencial:

prever comportamento da população a partir da

Amostra representa bem a população?

Teoria da amostragem: amostras aleatórias

Múltiplas amostragens: Lei dos Grandes Números

• Teste entre versões diferentes de uma mesma funcionalidade

• Teste de hipóteses: diferença entre populações

- Quando usar?
- Análises relativas
- Testes de funcionalidade

- Quando não usar?
- Análise exploratória
- Encontrar melhor funcionalidade
- Testes de grande impacto: efeito de aprendizado (learning effect) e preconceito

4. TESTES DE HIPÓTESES

• Diferença entre populações/amostras

Exemplo: moedas honestas/viciadas

P1(cara) = 50%

Conhecido

P2(cara) = P1(cara) ??

4. TESTES DE HIPÓTESES

Hipótese: As moedas são idênticas (honestas)
 Hipótese nula (H0)

Hipótese 2: A moeda "2" é viciada
 Hipótese alternativa (H1)

 Teste de hipóteses: verificar se há <u>evidências</u> para <u>rejeitar</u> H0.

• Experimento: Jogar a moeda "2" 10 vezes e contar quantas vezes saiu "cara".

Caras	Coroas	A moeda é honesta ?	Probabilidade
0	10		
1	9		
2	8		
3	7		
4	6		
5	5		
6	4		
7	3		
8	2		
9	1		
10	0		

• Experimento: Jogar a moeda "2" 10 vezes e contar quantas vezes saiu "cara".

Caras	Coroas	A moeda é honesta ?	Probabilidade
0	10	Não	
1	9	?	
2	8	?	
3	7	?	
4	6	?	
5	5	Sim	
6	4	?	
7	3	?	
8	2	?	
9	1	?	
10	0	Não	

• Probabilidade de tirar k caras: Distribuição binomial

Caras	Coroas	A moeda é honesta?	Probabilidade
0	10	Não	
1	9	?	
2	8	?	
3	7	?	
4	6	?	
5	5	Sim	
6	4	?	
7	3	?	
8	2	?	
9	1	?	
10	0	Não	

• Probabilidade de tirar k caras: Distribuição binomial

Caras	Coroas	A moeda é honesta ?	Probabilidade
0	10	Não	0.0976%
1	9	Não	0.977%
2	8	?	4.4 %
3	7	Sim	11.7 %
4	6	Sim	20.5 %
5	5	Sim	24.6%
6	4	Sim	20.5 %
7	3	Sim	11.7 %
8	2	?	4.4 %
9	1	Não	0.977%
10	0	Não	0.0976%

Intervalo

de

confiança

• Intervalo de confiança:

Caras	Coroas	A moeda é honesta ?	Probabilidade
0	10	Não	0.0976%
1	9	Não	0.977%
2	8	?	4.4 %
3	7	Sim	11.7 %
4	6	Sim	20.5 %
5	5	Sim	24.6%
6	4	Sim	20.5 %
7	3	Sim	11.7 %
8	2	?	4.4 %
9	1	Não	0.977%
10	0	Não	0.0976%

Realizamos o experimento e tiramos 10 caras. Podemos dizer que é apenas acaso?

Em 10.000 repetições do experimento, podemos obter esse resultado entre 9 e 10 vezes!

Caras	Coroas	A moeda é honesta ?	Probabilidade
0	10	Não	0.0976%
1	9	Não	0.977%
2	8	?	4.4 %
3	7	Sim	11.7 %
4	6	Sim	20.5 %
5	5	Sim	24.6%
6	4	Sim	20.5 %
7	3	Sim	11.7 %
8	2	?	4.4 %
9	1	Não	0.977%
10	0	Não	0.0976%

• Possíveis resultados:

Inferência

Realidade

	Aceitamos H0	Rejeitamos H0
H0 é verdadeira	OK	Erro Tipo 1 (Falso positivo)
H0 é falsa	Erro Tipo 2 (Falso negativo)	OK

Evento positivo: rejeitar H0

• Parâmetros do teste:

	Aceitamos H0	Rejeitamos H0
H0 é verdadeira	OK	Erro Tipo 1 (Falso positivo)
H0 é falsa	Erro Tipo 2 (Falso negativo)	OK

- Erro tipo 1 = Taxa de falsos positivos = α
- Erro tipo $2 = Taxa de falsos negativos = \beta$
- Nível de significância = 1 α
- Poder do teste = 1β

Parâmetros do teste:

	Aceitamos H0	Rejeitamos H0
H0 é verdadeira	OK	Erro Tipo 1 (Falso positivo)
H0 é falsa	Erro Tipo 2 (Falso negativo)	OK

- α: Porcentagem das vezes que <u>detectamos uma variação</u>, mas, na realidade, <u>não há</u>. (Podemos encontrar a variação por acaso)
- 1-β: Porcentagem das vezes que <u>detectamos uma variação</u>, caso ela <u>exista</u> (Se houver mudança, vamos encontrar)

Se a for alto: temos maior probabilidade de detectarmos falsas mudanças.

Se 1-\beta for alto: temos maior probabilidade de encontrarmos mudanças, se elas, de fato, houverem.

- 5 parâmetros definem o teste de hipóteses:
- Tamanho da amostra
- Nível de significância (1-α)
- Poder do teste (1-β)
- Efeito mínimo (significância prática)
- Número de direções do teste
- É necessário definir 4 deles e o outro é automático

http://www.evanmiller.org/ab-testing/sample-size.html

Exercício Case:

Teste A/B para cor do botão

Exercício Case:

Teste A/B para cor do botão

Exercício Case:

Foco: H – P

User

Y%: Click Through Rate (CTR)

Teste A/B: Desafios na prática

- Escolha de métricas:
 - Sensibilidade vs Robustez
 - Viés
- P-Hacking
- Datas festivas (inconsistência)
- Variáveis espúrias (Paradoxo de Simpson)

Teste A/B: Paradoxo de Simpson

Tratamentos para pedras no rim

	Tratamento A	Tratamento B
Pedras pequenas	93% (81/87)	87% (234/270)
Pedras grandes	73% (192/263)	69% (55/80)
Total		

T

Teste A/B: Paradoxo de Simpson

Tratamentos para pedras no rim

	Tratamento A	Tratamento B
Pedras pequenas	93% (81/87)	87% (234/270)
Pedras grandes	73% (192/263)	69% (55/80)
Total	78% (273/350)	83% (289/350)

Teste A/B: Paradoxo de Simpson

Desbalanceamento dos dados nos tratamentos Variáveis espúrias!

	Tratamento A	Tratamento B
Pedras pequenas	93% (81/87)	87% (234/270)
Pedras grandes	73% (192/263)	69% (55/80)
Total	78% (273/350)	83% (289/350)

Case final: Desconto frete

Hipótese: Dar desconto no frete aumentará receita

Perigo: Podemos ter prejuízo

Como modelar o teste A/B?

OBRIGADO!