SEMINAR 4 Repere. Coordonate. Lubspatii vectoriale. Preliminarie (V,+1.) /IK sp. vect. n-dim. · R={e1, ; en } ruper €) R baya ordonata $\forall x \in V, \exists ! (x_1, x_n) \in \mathbb{K}^n \text{ ai } x = x_1 + x_n e_n$ (coordonatele lui x în raport cu reperul R) $\mathcal{R} = \{e_{1,...}, e_{n}\} \xrightarrow{A} \mathcal{R}' = \{e_{1,...}, e_{n}\}$ ei = \sum ajiej \ \forall i=\lin X = AX' $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, X' = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$ (z₁₁..., zn), (z₁..., z'n) roord in rap cu R, resp R · Cuteriu de L1 5={v1,.., vmy, m & n. S este SLI €) rg C = m = maxim C = matricea Ocompon. vect din S in raport cu un · V1, V2 C V subsp. vect ⇒ V1 ∩ V2 subsp vect. In generat, V1 UV2 nu e sspreet; LV1 UV2 7 = V1 + V2 V1+V2 este suma directà i e V1 € V2 € V1 ∩ V2={0v} ∀v∈ V1+V2, ∃! v; ∈ V1 ai v=v1+v2. Daca $V = V_1 \oplus V_2$, $V_2 = \text{subspatin complementar lui } V_1$ Represent in V_2 (nu è unic) Ryreper in Va $R=R_1$ UR2 reper în $V \Longrightarrow V_2=LR_2$ Th. Grassmann dim (V1+V2) = dim V1+dim V2-dim (V1) V2) dim (V1 + V2) = dim V1 + dim V2.

Scanned with CamScanner

Seminar 4 - GAL

Lista exercitii

1. Fix $(R^3,+,\cdot)/R$ si $R_0 = \{q_1e_2,e_3\}$ reperul canonic. Consideram $R' = \{q' = q + 2e_2 + e_3, e_3' \neq q + 7e_3 + e_5, e_3' = -q + e_2 + e_3\}$ a) La se arate ca R' este reper in R^3 . $R_0 \longrightarrow R'$ A = ? (matricea de trecere)

6) La se afle coordonatele vectorului x = (3,2,1) in raport ru reperul R'.

Five $(R_2[X]_1+i)/R$, $R_0 = \{q=1, q_2 = X, q_3 = X^2\}$ reperul canonic. Fix $R' = \{-1+2X+3X^2, |X-X^2|, X-2X^2\}$ a) La se arate ca R' este reper in $R_2[X]$. $R_0 \xrightarrow{A} R'$, A = ?b) La re afte coordonatele lui $P = 3-X+X^2$ in raport ou R'.

3) Fix $(V_1+_1')/R$ sp. vect. 3-dim. Fix $R = \{v_1, v_2, v_3\}$ repex in V si $R' = \{v_1' = v_1, v_2' = v_1 + v_2, v_3' = v_1 + v_2 + v_3\} \subset V$. a) La se arate va R' e reper in V; $R \xrightarrow{A} R'$, A = ?b) Daca $v \in V$ are reordonatele (x_1, x_2, x_3) in raport ou reperul R, atunci care sunt coordonatele (x_1', x_2', x_3') in raport ou reperul R'

S(A) = { $x \in \mathbb{R}^n \mid Ax = 0$ } $C\mathbb{R}^n$ substation vert si $dim_{\mathbb{R}} S(A) = n - rg(A)$ 6 (\mathbb{R}^3 , +1') $|\mathbb{R}|$, $V = \{ x \in \mathbb{R}^3 | \{ 2x_1 + x_2 = 0 \} = S(A) \}$ a) Precipati o basă în V'. b) Precipati un substatu romplementar lui V' i.e. $\mathbb{R}^3 = V \oplus V''$ re) La se descompună x = (1,1,2) în raport cu $\mathbb{R}^3 = V \oplus V''$.

 $(x', t, \cdot)_{IR} \quad | v = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z - 2t = 0\}$

 $V''=\{(x_1y_1z_1t)\in\mathbb{R}^4\mid x+y-2z+t=0\}$.

PR Sa se arate ca $\mathbb{R}^4=V'+V''$.

Yustificati na suma <u>nu</u> este directa

PROP

Fre (V1+1')/IK spatiu vert m-dim si V C V subspreet. Daca dim V'= m, atunci V'= V.

(8) Fie (R4+1)/R si V=4{(1,2,-1,0), (1,0,0,3)}? a) La ce diserie V' printr-un sistem de le l'iniare b) R⁴ = V' \(\overline{\psi}\) V'' = ?. Sa \(\infty\) descrie V'' grintr-un sidem de ec. l'iniare.

(3) (R4,+,·)/R, V'= < {u,v,w}7, V= < {u',v',w'}>, unde M = (2,3,11,5), v = (1,1,5,2), w = (0,1,1,1), M' = (2,1,3,2), v' = (1,1,3,4), w' = (5,2,6,2)

ay Ja-æ arate ca V + V = R4. b) Descripti V, V printr-un sist de ec. limiare.

- a) dim_RV'=? Precipati o baya in V'. b) δα σε serie R'= V'+V''
- c) Descompuneti x = (1/2, 1/2) ser sum à dintre un vert din V'', unul dim V''.