Physics 5a: Homework 1

Abhijay Bhatnagar

August 30, 2018

Assignment																														1
Problem 1.																														2
Problem 3.																														3
Problem 5.																														3
Problem 7.																														3
Problem 11.																														4
Problem 15.																														4
Problem 20.																														5
Problem 23.																														5
Problem 24.																														6
Problem 28.	_		_					_	_	_	_	_	_	_	_		_	_	_		_	_	_	_	_		_	_	_	6

Assignment

 $1.1 \colon 1, \, 3, \, 5, \, 7, \, 11, \, 15, \, 20, \, 23, \, 24, \, 28.$

Problem 1.

Solve system:

$$x_1 + 5x_2 = 7 (1)$$

$$-2x_1 - 7x_2 = -5 (2)$$

Solution: Beginning the process to convert to

Converted to an augmented matrix:

$$\begin{pmatrix} 1 & 5 & 7 \\ -2 & -7 & -5 \end{pmatrix}$$

Proceeding to convert to RREF

 $R_2 = R_2 + 2R_1$:

$$\begin{pmatrix} 1 & 5 & 7 \\ 0 & 3 & 9 \end{pmatrix}$$

 $R_2 = R_2/3 \text{ (REF)}$:

$$\begin{pmatrix} 1 & 5 & 7 \\ 0 & 1 & 3 \end{pmatrix}$$

 $R_1 = R_1 - 5R_2$:

$$\begin{pmatrix} 1 & 0 & -8 \\ 0 & 1 & 3 \end{pmatrix}$$

 $(x_1, x_2) = (-8, 3)$

Problem 3.

Find point of intersection of the lines $x_1 - 5x_2 = 1$ and $3x_1 - 7x_2 = 5$.

Solution: Converted to an augmented matrix:

$$\begin{pmatrix} 1 & 5 & 7 \\ 1 & -2 & -2 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 1 & 5 & 7 \\ 0 & -7 & -9 \end{pmatrix} \xrightarrow{R_2 = -1/7R_2} \begin{pmatrix} 1 & 5 & 7 \\ 0 & 1 & 9/7 \end{pmatrix} \xrightarrow{R_1 = R_1 - 5R_2} \begin{pmatrix} 1 & 0 & 4/7 \\ 0 & 1 & 9/7 \end{pmatrix}$$

$$(x_1, x_2) = (4/7, 9/7)$$

Problem 5.

State in words the next two elementary row operations involved in solving a particular matrix.

- 1. Do a row addition operation of Row 3 onto Row 2, specifically adding Row 2 three times.
- 2. Do a row subtraction operation of Row 3 onto Row 1, specifically subtract it five times.

Problem 7.

Row operations on:
$$\begin{pmatrix} 1 & 7 & 3 & -4 \\ & 1 & -1 & 3 \\ & & & 1 \\ & & 1 & -2 \end{pmatrix}$$

1.
$$R_2 = R_2 + R_4$$

$$\begin{pmatrix} 1 & 7 & 3 & -4 \\ & 1 & 0 & 1 \\ & & & 1 \\ & & 1 & -2 \end{pmatrix}$$

2.
$$R_1 = R_1 - 3R_4$$

$$\begin{pmatrix} 1 & 7 & 0 & 2 \\ & 1 & 0 & 1 \\ & & & 1 \\ & & 1 & -2 \end{pmatrix}$$

3.
$$R_1 = R_1 - 7R_2$$

$$\begin{pmatrix} 1 & 0 & 0 & 16 \\ & 1 & 0 & 1 \\ & & & 1 \\ & & 1 & -2 \end{pmatrix}$$

 $R_3 \implies 0 = 1$: there are no solutions.

Problem 11.

Solve a linear system with the following augmented matrix:

$$\begin{pmatrix}
0 & 1 & 4 & -5 \\
1 & 3 & 5 & -2 \\
3 & 7 & 7 & 6
\end{pmatrix}$$

Solution:

$$\begin{pmatrix} 0 & 1 & 4 & -5 \\ 1 & 3 & 5 & -2 \\ 3 & 7 & 7 & 6 \end{pmatrix} \xrightarrow[R_3 = R_3 - 3R^2]{R_1, R_2 = R_2, R_1 \atop R_3 = R_3 - 3R^2} \begin{pmatrix} 1 & 3 & 5 & -2 \\ 0 & 1 & 4 & -5 \\ 0 & -2 & -8 & 12 \end{pmatrix} \xrightarrow[R_3 = R_3 + 2R_2]{R_3 = R_3 + 2R_2 \atop R_3 = R_3 + 2R_2} \begin{pmatrix} 1 & 3 & 5 & -2 \\ 0 & 1 & 4 & -5 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

 $R_3 \implies 0 = 2$: there are no solutions.

Problem 15.

Determine if the following linear system is consistent.

$$\begin{pmatrix} 1 & 3 & 2 \\ 1 & -3 & 3 \\ -2 & 3 & 2 & 1 \\ 3 & & 7 & -5 \end{pmatrix}$$

Solution: $R_3 = R_3 + 2R_2, R_4 = R_4 - 3R_3$:

$$\begin{pmatrix} 1 & 3 & 2 \\ 1 & -3 & 3 \\ & 3 & -4 & 7 \\ & & 7 & -11 \end{pmatrix}$$

Each of these rows have a pivot left of the solution column, therefore the system is consistent.

Problem 20.

Determine value of h s.t. the following matrix is the augmented matrix of a consistent linear system:

$$\begin{pmatrix} 1 & h & -3 \\ -2 & 4 & 6 \end{pmatrix}$$

Solution: Reducing to REF:

$$\begin{pmatrix} 1 & h & -3 \\ 0 & 4+2h & 0 \end{pmatrix}$$

The system is consistent \iff $4+2h\neq 0 \iff h\neq -2$

Problem 23.

Identify statements as true or false and justify answer. If true, refer to definition/theorem. If false, give location of misquoted statement or counter example.

- a.) Every elementary row operation is reversible. True. Explained on bottom of page 6.
- b.) A 5 x 6 matrix has six rows.

 False. Matrices are row x col, definition given on page 4.
- c.) The solution set of a linear system involving variables $x_1, ..., x_n$ is a list of numbers $s_1, ..., s_n$ that makes each equation in the system a true statement when the values $s_1, ..., s_n$ are substituted for $x_1, ..., x_n$, respectively.
 - False. The solution set is the set of all possible solutions to a linear system. When there is only one solution, it can be considered a list of numbers in which that previous statement can be applied; however, when there are no solutions or infinitely many solutions, it is more accurately described as either no numbers, or a set of infinitely many numbers under specific conditions. Refer to 3.
- d.) Two fundamental questions about a linear system involve existence and uniqueness. True. Refer to Page 7.

Problem 24.

(a) Elementary row operations on an augmented matrix never change the solution set of the associated linear system.

True. Refer to page 5.

- (b) Two matrices are row equivalent if they have the same number of rows. False. Row equivalence refers to interchangeability through elementary row operation, see page 6.
- (c) An inconsistent system has more than one solution. False. An inconsistent system has no solutions, see page 4.
- (d) Two linear systems are equivalent if they have the same solution set. True. Refer to page 4.

Problem 28.

Suppose a, b, c, and d are constants such that a is not zero and the system below is consistent for all possible values of f and g. What can you say about the numbers a, b, c, and d? Justify your answer.

$$ax_1 + bx_2 = f$$

$$cx_1 + dx_2 = g$$

Solution:

Augmented matrix:

$$\begin{pmatrix} a & b & f \\ c & d & g \end{pmatrix}$$

Since $a \neq 0$, we can divide R_1 by a:

$$\begin{pmatrix} 1 & b/a & f/a \\ c & d & g \end{pmatrix}$$

Covert to REF $R_2 = R_2 - cR_1$

$$\begin{pmatrix} 1 & b/a & f/a \\ c & d - bc/a & g - cf/a \end{pmatrix}$$

6

Since the system is consistent: $d - \frac{bc}{a} \neq 0$