第一章 多元函数微分

1. 求证: 任意多个开集之并为开集; 有限个开集之交为开集.

(A 习题 1.1-3(3), P7)

证明: 本题出现的所有 A_i 都是开集. 任取 $x \in \bigcup_i A_i$,则存在某个 i 使得 $x \in A_i$,而 A_i 是开集,故 $\exists \delta$ 使得 $B(x,\delta) \subset A_i \subset \bigcup_i A_i$,因此 $\bigcup_i A_i$ 是开集.

任取 $x \in \bigcap_{i=1}^n A_i$,则对每个 $1 \le i \le n$,都有 $x \in A_i$,由开集的定义,又 $\exists \delta_i$ 使得 $B(x, \delta_i) \subset A_i$.

取
$$\delta = \min_{1 \le i \le n} \delta_i$$
,则有 $B(x, \delta) \subset \bigcap_{i=1}^n A_i$,因此 $\bigcap_{i=1}^n A_i$ 是开集.

注: 无穷多个开集之交未必是开集, 如 $\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}$ 就不是开集.

2. 求证: 若 $A, B \subset R^n$, 记 $S = A \cap B, T = A \cup B$,则 $S^{\circ} = A^{\circ} \cap B^{\circ}, T^{\circ} \supset A^{\circ} \cup B^{\circ}$.

(A 习题 1.1-3(4), P7)

证明: 任取 $x \in S^{\circ}$,则 $\exists \delta$ 使得 $B(x,\delta) \subset S = A \cap B$,因此 $B(x,\delta) \subset A \Rightarrow x \in A^{\circ}$ 同理 $x \in B^{\circ}$,所以 $x \in A^{\circ} \cap B^{\circ}$;

又任取 $y \in A^{\circ} \cap B^{\circ}$, 则 $\exists \delta_{1}, \delta_{2}$ 使得 $B(y, \delta_{1}) \subset A, B(y, \delta_{2}) \subset B$. 取 $\delta = \min(\delta_{1}, \delta_{2})$, 则 $B(y, \delta) \subset A \cap B = S$,有 $y \in S^{\circ}$,因此 $S^{\circ} = A^{\circ} \cap B^{\circ}$.

任取 $z \in A^{\circ} \cup B^{\circ}$,则 $z \in A^{\circ}$ 或 $z \in B^{\circ}$,不妨设为前者,则 $\exists \delta$ 使得 $B(z,\delta) \subset A \subset T$,有 $z \in T^{\circ}$,因此 $T^{\circ} \supset A^{\circ} \cup B^{\circ}$.

3. 若 $A \subset R^n$,则集合 A° 的内部等于 A° .

(A 习题 1.1-3(5), P7)

证明: 只需证明 $A^{\circ} \subset (A^{\circ})^{\circ}$. 任取 $x \in A^{\circ}$, 则 $\exists \delta$ 使得 $B(x,\delta) \subset A$. 在 $B(x,\delta/2)$ 中任取一点 y, 都有 $B(y,\delta/2) \subset B(x,\delta) \subset A$,因此 $y \in A^{\circ}$. 这说明 $B(x,\delta/2) \subset A^{\circ}$,故有 $x \in (A^{\circ})^{\circ}$.

4. 极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{x^3 - y^3}{x + y}$ 是否存在? (A 习题 1.3-1(7), P23)

解: 不存在. 令 $y=0,x\to 0,\frac{x^3-y^3}{x+y}\to 0$; 考虑方程 $x^3-y^3=x+y$, 它可以写作

 $y^3 + y = x^3 - x$. 注意到 $y^3 + y$ 是从 R 到 R 的严格增函数,因此对于每一个 x,都存在唯一

的 y 使得 $y^3 + y = x^3 - x$, 也即上述方程确定隐函数 y = y(x). 沿这个函数图像趋于原点,

$$\frac{x^3 - y^3}{x + y} \rightarrow 1$$
. 因此,原极限不存在.

评注: 判定多元函数极限不存在, 常见的情形是取一条路径(或点列)使得沿这条路径的极限不存在, 或者沿某两条路径的极限不等.

5. 设 f(x,y) = $|x-y| \varphi(x,y)$, 其中 $\varphi(x,y)$ 在原点取 0 值且连续. f 在原点是否可微? (A 习题 1.4-2(4), P42)

解: 当
$$(x,y) \to (0,0)$$
 时, $\left| \frac{f(x,y)}{\sqrt{x^2 + y^2}} \right| \le |\varphi(x,y)| \frac{|x| + |y|}{\sqrt{x^2 + y^2}} \to 0$, 即 $f(x,y) = o(\sqrt{x^2 + y^2})$.

因此 f在原点可微, 且 df(0,0) = 0.

评注: 判定函数是否可微通常有以下准则:

第一, 检查连续性以及可导性. 若在某个点处函数不连续, 或者某个偏导数不存在, 则函数在这点一定不可微. 对于上题的函数, 可以验证它在原点连续, 且两个偏导数都是 0.

第二,在连续性和可导性都满足的条件下,再看函数与它的线性主部之差是否为自变量改变量的高阶无穷小.这时通常转化为另一个极限的存在性问题.

6. 设 $f_x(x_0,y_0)$ 存在, f_y 在 (x_0,y_0) 连续,则 f 在 (x_0,y_0) 可微. (A 习题 1.4-7, P43)

证明: $\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = \Delta_1 + \Delta_2$, 这里

$$\Delta_1 = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0), \Delta_2 = f(x_0 + \Delta x, y_0) - f(x_0, y_0).$$

由于 $f_x(x_0,y_0)$ 存在,接导数定义有 $\Delta_2 = f_x(x_0,y_0)\Delta x + o(\Delta x)$;由一元微分中值定理,有

$$\Delta_1 = f(x_0 + \Delta x, y_0 + \theta \Delta y) \Delta y$$
,其中 $0 \le \theta \le 1$. 当 $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2} \rightarrow 0$ 时,由 f_y 在

 (x_0,y_0) 的连续性有 $f_y(x_0+\Delta x,y_0+\theta \Delta y)=f_y(x_0,y_0)+o(1)$. 综合以上分析,有

$$\Delta f = (f_y(x_0, y_0) + o(1))\Delta y + f_x(x_0, y_0)\Delta x + o(\Delta x) = f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y + o(\rho)$$

因此f在 (x_0, y_0) 可微.

7. 对
$$n > 2$$
,设 $u = (x_1^2 + ... + x_n^2)^{\frac{2-n}{2}}$.求证: $\frac{\partial^2 u}{\partial x_1^2} + ... + \frac{\partial^2 u}{\partial x_n^2} = 0$.(A 习题 1.4-15(4), P44)

证明: 记
$$r = \sqrt{x_1^2 + \ldots + x_n^2}$$
,有 $\frac{\partial r}{\partial x_i} = \frac{x_i}{r}$, $\frac{\partial u}{\partial x_i} = \frac{\partial}{\partial x_i} (r^{2-n}) = (2-n)r^{1-n} \cdot \frac{x_i}{r} = (2-n)r^{-n}x_i$,

$$\frac{\partial^2 u}{\partial x_1^2} + \dots + \frac{\partial^2 u}{\partial x_n^2} = (2 - n)r^{-n} \left(n - \frac{n}{r^2} \sum_{i=1}^n x_i^2 \right) = 0.$$

8. 已知变换
$$\begin{cases} w = x + y + z \\ u = x \end{cases}$$
 ,化简方程 $z_{xx} - 2z_{xy} + z_{yy} + z_x - z_y = 0$,以 w 为因变量,u, v 为 $v = x + y$

自变量. (A 习题 1.5-8, P54)

解: 先将自变量化成 u 和 v. 由题设 x = u, y = v - u,有 $\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}, \frac{\partial z}{\partial v} = \frac{\partial z}{\partial y}$. 原方程可

化为
$$\left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y}\right)^2 z + \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y}\right) z = 0$$
,即 $\frac{\partial^2 z}{\partial u^2} + \frac{\partial z}{\partial u} = 0$.

注意到
$$w = z + v$$
,因此 $\frac{\partial w}{\partial u} = \frac{\partial z}{\partial u}$,原方程最终变成 $\frac{\partial^2 w}{\partial u^2} + \frac{\partial w}{\partial u} = 0$.

9. 设f可微. 求证: 曲面 f(y-az,x-bz)=0 的任一点的切平面都与一定直线平行. (A 习题 1.7-4(4), P79)

证明: f(y-az,x-bz)=0 在(x,y,z) 的法向量为 $\vec{n}=(f_2,f_1,-af_1-bf_2)$,这里 f_1,f_2 分别表示f对两个自变量的偏导数.令 $\vec{u}=(b,a,1)$ 为固定方向,则恒有 $\vec{n}\cdot\vec{u}=0$.因此,f 的切平面都与以 \vec{u} 为方向向量的定直线平行.

10. 设f可微. 求证: 曲面 $z = yf\left(\frac{x}{y}\right)$ 的所有切平面相交于一个公共点. (A 习题 1.7-4(5), P79;

B 习题 11.2-5, P115)

证明: 曲面 $z = yf\left(\frac{x}{y}\right)$ 在 (x_0, y_0, z_0) 处的切平面方程为

$$z = z_0 + f'\left(\frac{x_0}{y_0}\right)(x - x_0) + \left(f\left(\frac{x_0}{y_0}\right) - \frac{x_0}{y_0}f'\left(\frac{x_0}{y_0}\right)\right)(y - y_0), \text{ } \\ \text{代} \\ \lambda z_0 = y_0 f\left(\frac{x_0}{y_0}\right) \\ \text{整理得}$$

$$z = xf'\left(\frac{x_0}{y_0}\right) + y\left(f\left(\frac{x_0}{y_0}\right) - \frac{x_0}{y_0}f'\left(\frac{x_0}{y_0}\right)\right)$$
,恒过原点.

11. 已知函数f可微,若 T 为曲面S: f(x,y,z) = 0在点 $P(x_0,y_0,z_0)$ 处的切平面,l为 T 上任意一条过 P 的直线. 求证:在 S 上存在一条曲线,该曲线在 P 处的切线恰好为 l. (A 习题 1.7-7, P79)

证明: 过 l 作 T 的垂面 K,与曲面 S 的交线记做 C. 注意到 S 在 P 点的法向 \vec{n}_1 // K,而 K 的 法向 \vec{n}_2 // T,而且有 \vec{n}_1 , \vec{n}_2 , l 两两垂直,因此 l 是 C 在 P 处的切线.

12. 求函数 $f(x, y) = x^3 - 4x^2 + 2xy - y^2$ 的极值.

解: 令 $0 = f_x(x, y) = 3x^2 - 8x + 2y, 0 = f_y(x, y) = 2x - 2y$,可解得两个驻点(0,0), (2,2);而

$$H(0,0) = \begin{pmatrix} -8 & 2 \\ 2 & -2 \end{pmatrix}$$
负定,因此有极大值 $f(0,0) = 0$; $H(2,2) = \begin{pmatrix} 4 & 2 \\ 2 & -2 \end{pmatrix}$ 不定,(2,2)不是

极值点.

评注: 对本题的函数而言,虽然(0,0)是f的唯一的极大值点,但由于 $f(+\infty,0) = +\infty$,因此这个唯一的极大值并不是最大值,这与一元函数的唯一极值必为最值不同.

13. 求 z(x, y) = xy 在条件 $(x-1)^2 + y^2 = 1$ 下的最大值和最小值.

$$L_x = y + 2\lambda(x-1) = 0,$$

解: (法一) 记 $L(x,y,\lambda) = xy + \lambda((x-1)^2 + y^2 - 1)$, 令 $L_y = x + 2\lambda y = 0$, 可以得到
$$L_\lambda = x^2 + y^2 - 2x = 0$$

$$2x = x^2 + y^2 = 4\lambda^2((x-1)^2 + y^2) = 4\lambda^2$$
, $\exists \exists x = 2\lambda^2, \lambda y = -\lambda^2$.

若
$$\lambda \neq 0$$
, 有 $y = -\lambda$, $x = 2y^2$, 可解得 $(x, y) = \left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$ 或 $(x, y) = \left(\frac{3}{2}, -\frac{\sqrt{3}}{2}\right)$.

若 $\lambda=0$,则x=y=0.但z在第一象限取正值,第四象限取负值,因此0不是极值.

由于连续函数 z 在有界闭集 $(x-1)^2 + y^2 = 1$ 上必有最大值和最小值,因此,当

$$(x,y) = \left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$$
时, z 取到最大值 $\frac{3\sqrt{3}}{4}$; 当 $(x,y) = \left(\frac{3}{2}, -\frac{\sqrt{3}}{2}\right)$ 时, z 取到最小值 $-\frac{3\sqrt{3}}{4}$.

(法二) 令 $x = 1 + \cos \theta$, $y = \sin \theta$, $-\pi \le \theta \le \pi$, 有 $z = (1 + \cos \theta) \sin \theta = \sin \theta + \frac{1}{2} \sin 2\theta$, 记 右端为 $f(\theta)$. 令 $0 = f'(\theta) = \cos \theta + \cos 2\theta = 2\cos^2 \theta + \cos \theta - 1$, 解得 $\theta = \pm \frac{\pi}{2}$.

而
$$f\left(\frac{\pi}{3}\right) = \frac{3\sqrt{3}}{4}$$
, $f\left(-\frac{\pi}{3}\right) = -\frac{3\sqrt{3}}{4}$, $f(-\pi) = f(\pi) = 0$, 因此 z 的最大值和最小值分别为

$$\frac{3\sqrt{3}}{4}$$
 $\pi l - \frac{3\sqrt{3}}{4}$.

(法三) 题设条件即 $y^2 = 2x - x^2$,有 $0 \le x \le 2$.而 $z^2 = x^2y^2 = x^2(2x - x^2) = \frac{1}{3}x^3(6 - 3x)$.

曲 均 值 不 等 式 有
$$x^3(6-3x) = x \cdot x \cdot x(6-3x) \le \left(\frac{x+x+x+6-3x}{4}\right)^4 = \frac{81}{16}$$
 , 因 此

$$-\frac{3\sqrt{3}}{4} \le z \le \frac{3\sqrt{3}}{4}$$
. 当 $(x, y) = \left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$ 时, z 取到最大值 $\frac{3\sqrt{3}}{4}$;当 $(x, y) = \left(\frac{3}{2}, -\frac{\sqrt{3}}{2}\right)$ 时, z

取到最小值 $-\frac{3\sqrt{3}}{4}$.

评注: 此题为典型的条件最值的问题. 法一采用最常规也最通用的拉格朗日乘子法, 但同时也最繁琐; 法二借助三角代换, 化为一元最值问题处理, 相对容易些; 法三应用均值不等式来的最快, 但变形技巧巧妙. 实际操作时, 针对不同的题目要善于灵活运用各种手段. 必须注意的是, 不等式放缩方法对于极值问题不适用, 因为极值是局部概念, 而不等式放缩是整体进行的, 只能用来求最值.

14. 设u(x,y) 在有界闭区域 D 上连续,在 D 内部满足 $u_x+u_y=ku$,这里k>0为常数. 若 u 在 ∂D 上恒为 0,求证: u 在 D 上恒为 0. (A 习题 1.9-5(1), P94)

证明: 若不然, 则 u 在 D 上有正的最大值或者负的最小值(不妨设为前者). 这个最大值必在某个内点 (x_0, y_0) 取到, 也是极大值, 有 $0 = u_x(x_0, y_0) + u_y(x_0, y_0) = ku(x_0, y_0) > 0$, 矛盾.

15. 设u(x, y) 在有界闭区域 D 上连续, 在 D 内部满足 $u_{xx} + u_{yy} = u$. 求证: (1)若 u 在 ∂D 上 非负,则 u 在 D 上非负. (2)若 u 在 ∂D 上恒正,则 u 在 D 上恒正. (A 习题 1.9-5(2), P94)

证明: (1) 若不然,则 u 的最小值在某个内点 (x_0,y_0) 处取到. 这个最小值也是极小值,因此 u

在 (x_0, y_0) 处的 Hesse 矩阵半正定,在这一点有 $0 \le u_{xx} + u_{yy} = u < 0$,矛盾.

(2) 取 $u_{\varepsilon}(x,y) = u(x,y) - \varepsilon e^x$,题设方程对 u_{ε} 仍然成立. 记 $m = \min_{\partial D} u, M = \max_{\partial D} e^x$,可取 $\varepsilon < \frac{m}{M} \ \ \text{使} \ \ u_{\varepsilon} \ \ \text{在} \ \ \text{边} \ \ \text{为 上} \ \ \text{仍然恒正.} \ \ \text{由} \ \ \text{(1)} \ \ \text{所证,在 D} \ \ \text{上} \ \ ft \ \ u_{\varepsilon}(x,y) \geq 0 \ , \ \text{因此}$ $u(x,y) = u_{\varepsilon}(x,y) + \varepsilon e^x > 0 \ .$

16. 设 $\Omega \subset R^n$, 求证: (1) $\partial \Omega$ 是闭集; (2) $\partial \overline{\Omega} \subseteq \partial \Omega$. (A 第一章总复习题 3, P96)

证明: (1) $\partial\Omega = \partial(\Omega^c) = \overline{\Omega} \cap \overline{\Omega^c}$ 为两个闭集之交.

(2) 任意取定 $X_0 \in \partial \overline{\Omega}$, 要证 $X_0 \in \partial \Omega$, 即在 X_0 的任意邻域内都能同时找到在 Ω 中的点和

不在 Ω 中的点.由于 $X_0 \in \partial \overline{\Omega}$,因此对于任给的 ε ,存在 $X_1, X_2 \in B(X_0, \varepsilon)$ 使得 $X_1 \in \overline{\Omega}, X_2 \notin \overline{\Omega}$.由于 $\Omega \subseteq \overline{\Omega}$,当然有 $X_2 \notin \Omega$.若 $X_1 \in \Omega$,则结论已经得证;否则必有 $X_1 \in \partial \Omega$,因此存在 $X_3 \in B(X_1, \varepsilon) \subset B(X_0, 2\varepsilon)$,使得 $X_3 \in \Omega$,结论也成立.

17. 设函数 $f: R^n \to R^m$,求证: f 在 R^n 上连续的充要条件是对任意 R^m 中的开集 A, $f^{-1}(A)$ 都是 R^n 中的开集,这里 $f^{-1}(A) = \{x: f(x) \in A\}$. (A 第一章总复习题 4, P96) 证明: 必要性,设 A 是开集,不妨设 $f^{-1}(A)$ 非空. 任取 $x_0 \in f^{-1}(A)$,记 $y_0 = f(x_0) \in A$. 由开集的定义知存在 $\varepsilon_0 > 0$, 使得 $B(y_0, \varepsilon_0) \subset A$. 由 f 的连续性,对上述 $\varepsilon_0 > 0$,存在 $\delta_0 > 0$,使得当 $\|x - x_0\| < \delta_0$ 时 $\|f(x) - y_0\| < \varepsilon_0$,因此 $B(x_0, \delta_0) \subset f^{-1}(A)$,有 $f^{-1}(A)$ 是

充分性,任取 $x_0 \in R^n$. $\forall \varepsilon > 0$,有 $A = B(f(x_0), \varepsilon)$ 是开集,由条件 $f^{-1}(A)$ 是开集.而 $x_0 \in f^{-1}(A)$,因 此 存 在 $\delta > 0$ 使 得 $B(x_0, \delta) \subset f^{-1}(A)$,也 即 当 $\|x - x_0\| < \delta$ 时 有 $\|f(x) - y_0\| < \varepsilon$,因此 f 在 x_0 连续,由 x_0 的任意性得 f 在 x_0 上连续.

18. 设 $\Omega \subset R^n, X \in R^n$,定义 $\rho(X,\Omega) = \inf_{Y \in \Omega} \| X - Y \|$.求证:(1) $\rho(X,\Omega)$ 关于 X 一致连续;(2) 若 Ω 为有界闭集,则存在 $X_0 \in \Omega$ 使得 $\rho(X,\Omega) = \| X - X_0 \|$.(3) 对 $\Omega_1, \Omega_2 \in R^n$ 定义 $\rho(\Omega_1,\Omega_2) = \inf_{X \in \Omega_1,Y \in \Omega_2} \| X - Y \|$. 若 Ω_1,Ω_2 都是有界闭集,则存在 $X_i \in \Omega_i$ 使得 $\rho(\Omega_1,\Omega_2) = \| X_1 - X_2 \|$. (A 第一章总复习题 6, P96)

证明: (1) 任取 $X_1, X_2 \in R^n$ 及 $Y \in \Omega$, 有 $\rho(X_1, \Omega) \le ||X_1 - Y|| \le ||X_1 - X_2|| + ||X_2 - Y||$. 对 $Y \in \Omega$ 取下确界,得到 $\rho(X_1, \Omega) \le ||X_1 - X_2|| + \rho(X_2, \Omega)$. 同理,

 $\rho(X_2,\Omega) \le ||X_1 - X_2|| + \rho(X_1,\Omega).$ 由此 $|\rho(X_1,\Omega) - \rho(X_2,\Omega)| \le ||X_1 - X_2||$,立即得到一致连续性.

(2) 对于固定的 X, f(Y) = ||X-Y|| 关于 Y 是连续函数, 在有界闭集 Ω 上必有最小值, 取其最小值点为 X_0 即得.

评注:此小题 Ω 的有界性事实上可以去掉.(如何证明?)

开集.

 $(3) 注意到 \, \rho(\Omega_1,\Omega_2) = \inf_{X \in \Omega_1} \inf_{Y \in \Omega_2} \parallel X - Y \parallel = \inf_{X \in \Omega_1} \rho(X,\Omega_2), \quad \text{由} (1), \, \rho(X,\Omega_2) \, \text{是 X 的连续}$

函数,在有界闭集 Ω_1 上必取到最小值 $\rho(X_1,\Omega_2)$,再由(2)得 X_2 的存在性.

19. 设f(x,y,z)可微, I_1,I_2,I_3 为 R^3 中相互垂直的三个单位向量. 求证:

$$\left(\frac{\partial f}{\partial I_1}\right)^2 + \left(\frac{\partial f}{\partial I_2}\right)^2 + \left(\frac{\partial f}{\partial I_3}\right)^2 = \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + \left(\frac{\partial f}{\partial z}\right)^2.$$
(A 第 1 章总复习题 9, P96)

证明: 记 $P = (I_1, I_2, I_3)$,则P为标准正交基 I_1, I_2, I_3 到标准基的过渡矩阵,是正交阵.由链

锁法则有
$$\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = \left(\frac{\partial f}{\partial I_1}, \frac{\partial f}{\partial I_2}, \frac{\partial f}{\partial I_3}\right) \frac{\partial (I_1, I_2, I_3)}{\partial (x, y, z)} = \left(\frac{\partial f}{\partial I_1}, \frac{\partial f}{\partial I_2}, \frac{\partial f}{\partial I_3}\right) P$$
. 由正交变换保

长度即得结论.

评注: 这是应用复合函数求导链锁法则的矩阵形式的经典例子, 无需繁琐的偏导数计算.

20. 设
$$f(x,y)$$
 可微, 且满足 $\lim_{x^2+y^2\to\infty} \frac{|f(x,y)|}{\sqrt{x^2+y^2}} = +\infty$, 求证: 对于任意的 $v = (v_1,v_2)$, 都存

在 (x_0, y_0) 使得 $\operatorname{grad} f(x_0, y_0) = v$.(A 第 1 章总复习题 15, P97; B 第 11 章补充题 2, P141)

证明: 首先断言: 当
$$x^2 + y^2 \to \infty$$
时(下同), $\frac{f(x,y)}{\sqrt{x^2 + y^2}} \to +\infty$ 或 $-\infty$.

由条件, 对任意 M, 存在
$$R > 0$$
, 使得当 $(x, y) \in D = \{x^2 + y^2 > R\}$ 时有, $\frac{|f(x, y)|}{\sqrt{x^2 + y^2}} > M$.

若存在
$$(x_1,y_1),(x_2,y_2)\in D$$
,使得 $\frac{f(x_1,y_1)}{\sqrt{x_1^2+y_1^2}}>M$, $\frac{f(x_2,y_2)}{\sqrt{x_2^2+y_2^2}}<-M$,则由介值定理,存在

$$(x_3, y_3) \in D$$
 使得 $\frac{f(x_3, y_3)}{\sqrt{x_3^2 + y_3^2}} = 0$,矛盾. 因此只能 $\frac{f(x, y)}{\sqrt{x^2 + y^2}}$ 在 D 中恒大于 M 或恒小于—M,

对应
$$\frac{f(x,y)}{\sqrt{x^2+y^2}} \to +\infty$$
 或 $-\infty$. 下面的讨论不妨假设前者成立.

而
$$\left| \frac{v_1 x + v_2 y}{\sqrt{x^2 + y^2}} \right| \le |v_1| + |v_2|$$
有界,因此也有 $\frac{g(x, y)}{\sqrt{x^2 + y^2}} \to +\infty$,所以 $g(x, y) \to +\infty$.

g 的最小值一定在内点 (x_0,y_0) 取到,这个最小值点也是极小值点,有 $\operatorname{grad} g(x_0,y_0)=0$,因此 $\operatorname{grad} f(x_0,y_0)=v$.

21. 设 $f \in C^1(\mathbb{R}^3)$, 且在 \mathbb{R}^3 上处处有 $f_x = f_y = f_z$. 若 f(x,0,0) > 0 对所有的 x 成立. 求证: f 在 \mathbb{R}^3 上处处为正.

证明: 取 R^3 一组正交向量 (u,v,w) , u=(1,1,1) , v=(1,1,-2) , w=(1,-1,0) . 转换坐标系,视 f 为 u,v,w 的 函 数 , 有 $\frac{\partial f}{\partial v} = \frac{\partial f}{\partial w} = 0$, 因 此 f 只 是 u=x+y+z 的 函 数 , 有 $f(x,y,z) = \varphi(x+y+z) = f(x+y+z,0,0) > 0$.

解:考虑f在原点处泰勒展开的 x^8y^{10} 项系数,

它应该是
$$\frac{1}{8!!\,0!} \frac{\partial^{18} f}{\partial x^8 \partial y^{10}} (0,0)$$
; 另一方面,

其中
$$x^8y^{10} = (x^2)^4(y^5)^2$$
项系数为 $-\frac{C_6^4}{6!} = -\frac{1}{4!2!}$.

因此,
$$\frac{\partial^{18} f}{\partial x^8 \partial y^{10}}(0,0) = -\frac{8!10!}{4!2!}$$
.

第二章 含参积分

1. 判断下列积分在所给区间上的一致收敛性.

$$(1)\int_{1}^{+\infty} e^{-tx} \frac{\cos x}{\sqrt{x}} dx, t \ge 0; (2)\int_{0}^{+\infty} \sqrt{t} e^{-tx^{2}} dx, t \ge 0; (3)\int_{1}^{+\infty} \frac{\sin x^{2}}{x^{p}}, p \ge 0$$

(习题 2.1-4(7)(8)(10), P103)

解: (1)
$$\left| \int_{1}^{+\infty} \cos x dx \right| \le 2$$
, 对 t 一致有界; $\frac{e^{-tx}}{\sqrt{x}} \le \frac{1}{\sqrt{x}}$ 对 x 单调, 且关于 t 一致趋于 0 , 由狄利

克雷判别法得到一致收敛.

$$(3) \int_{1}^{+\infty} \frac{\sin x^{2}}{x^{p}} dx = \frac{1}{2} \int_{1}^{+\infty} \frac{\sin u}{u^{(p+1)/2}} du, \quad \int_{1}^{+\infty} \sin u du$$
 关于 p 一致有界, $\frac{1}{u^{(p+1)/2}} \le \frac{1}{\sqrt{u}}$ 对 x 单调,

且关于 p 一致趋于 0, 由狄利克雷判别法得到一致收敛.

评注: 一致收敛性有一种很常用的等价刻画:

$$\int_{a}^{+\infty} f(x,t)dx 关于 t \in I - 致收敛 \Leftrightarrow \lim_{A \to +\infty} \sup_{t \in I} \int_{A}^{+\infty} f(x,t)dx = 0.$$

只需注意到为使 $\left|\int_{A}^{+\infty} f(x,t)dx\right| < \varepsilon$ 对所有 $t \in I$ 成立,当且仅当左边的上确界也要 $\leq \varepsilon$.

必须强调是先对 $t \in I$ 取上确界,后对A取极限,这里的次序不可交换. 这里"取上确界"的操作正是对"一致"的刻画.

一般来说,判断不一致收敛的工具很少. 上面的方法与定义等价, 但用起来很方便, 无需像原始定义那样对任给的 ε 去煞费苦心寻找符合要求的 A.

2. 设
$$f(x,t)$$
 在 $[a,+\infty)$ × $[\alpha,\beta]$ 中连续,如果 $\int_a^{+\infty} f(x,t)dx$ 对于每个 $t \in [\alpha,\beta)$ 都收敛而当

$$t = \beta$$
 时发散. 求证: $\int_a^{+\infty} f(x,t)dx$ 关于 $t \in [\alpha,\beta)$ 不一致收敛. (习题 2.1-6, P103)

证明: 若不然,则 $\forall \varepsilon > 0$, $\exists A > a$,使得当 $A_2 > A_1 > A$ 时总有 $\left| \int_{A_1}^{A_2} f(x,t) dx \right| < \varepsilon$.注意到

f(x,t) 在有界闭集 $[A_1,A_2] \times [\alpha,\beta]$ 上一致连续,因此对上述 ε ,存在 δ ,当 $|t-\beta| < \delta$ 时,

有
$$|f(x,t)-f(x,\beta)|$$
< $\frac{\varepsilon}{A_2-A_1}$ 对所有的 $x \in [A_1,A_2]$ 成立. 取 $t_0 \in (\beta-\delta,\beta)$,有

$$\left| \int_{A_{1}}^{A_{2}} f(x,\beta) dx \right| \leq \left| \int_{A_{1}}^{A_{2}} f(x,t_{0}) dx \right| + \int_{A_{1}}^{A_{2}} |f(x,\beta) - f(x,t_{0})| dx \leq 2\varepsilon, \quad \text{因此 } \int_{a}^{+\infty} f(x,\beta) dx \text{ 收 } dx$$
 敛、矛盾.

3. 求证积分
$$\int_0^{+\infty} \frac{\sin tx}{x} dx$$
 在包含 $t = 0$ 的区间上不一致收敛. (习题 2.1-8, P104)

证明: 由
$$\sup_{t} \left| \int_{A}^{+\infty} \frac{\sin tx}{x} dx \right| = \sup_{t} \left| \int_{At}^{+\infty} \frac{\sin u}{u} du \right| \ge \int_{0}^{+\infty} \frac{\sin u}{u} du > 0$$
即得.

评注: 也可由
$$I(t) = \int_0^{+\infty} \frac{\sin tx}{x} dx = \frac{\pi}{2} \operatorname{sgn}(t)$$
 在 $t = 0$ 处不连续得到不一致收敛.

4. 计算
$$\int_0^1 \frac{\arctan x}{x\sqrt{1-x^2}} dx$$
. (习题 2.2-5(1), P110, 利用 $\frac{\arctan x}{x} = \int_0^1 \frac{dy}{1+x^2y^2}$)

解: 原式=
$$\int_0^1 \frac{dx}{\sqrt{1-x^2}} \int_0^1 \frac{dy}{1+x^2y^2} = \int_0^1 dy \int_0^1 \frac{dx}{(1+x^2y^2)\sqrt{1-x^2}}$$
. 而

$$\int_0^1 \frac{dx}{(1+x^2y^2)\sqrt{1-x^2}} = \int_0^{\pi/2} \frac{d\theta}{1+y^2\sin^2\theta} = \int_0^{+\infty} \frac{du}{1+\frac{y^2u^2}{1+u^2}} \frac{1}{1+u^2} = \int_0^{+\infty} \frac{du}{1+(y^2+1)u^2}$$

$$= \frac{\pi}{2\sqrt{y^2 + 1}} (以上两处代换分别令 x = \sin \theta, u = \tan \theta)$$

因此原式=
$$\frac{\pi}{2}\int_0^1 \frac{dy}{\sqrt{y^2+1}} = \frac{\pi}{2}\ln(1+\sqrt{2})$$
.

5. 计算
$$\int_0^1 \frac{x^b - x^a}{\ln x} \sin\left(\ln\frac{1}{x}\right) dx$$
,其中 $a, b > 0$. (习题 2.2-5(2), P110)

解: 原式 =
$$\int_0^1 \sin\left(\ln\frac{1}{x}\right) dx \int_a^b x^y dy = \int_a^b dy \int_0^1 x^y \sin\left(\ln\frac{1}{x}\right) dx$$
. 令 $x = e^{-t}$ 有

$$\int_0^1 x^y \sin\left(\ln\frac{1}{x}\right) dx = \int_0^{+\infty} e^{-yt} (\sin t) (e^{-t}) dt = \operatorname{Im}\left(\int_0^{+\infty} e^{(-(y+1)+i)t} dt\right)$$
$$= \operatorname{Im}\left(\frac{-1}{-(y+1)+i}\right) = \frac{1}{(y+1)^2 + 1}$$

因此原式=
$$\int_a^b \frac{dy}{(y+1)^2+1}$$
= arctan($b+1$) - arctan($a+1$).

6. 计算
$$\int_0^{+\infty} \frac{e^{-ax^2} - e^{-bx^2}}{x} dx$$
,其中 $a, b > 0$. (习题 2.3-1(1), P115)

解: 原式=
$$\int_0^{+\infty} dx \int_a^b x e^{-yx^2} dy = \int_a^b dy \int_0^{+\infty} x e^{-yx^2} dx = \int_a^b \frac{dy}{2y} = \frac{1}{2} (\ln b - \ln a)$$
.

其中积分换序的合理性由 $0 \le xe^{-yx^2} \le xe^{-ax^2}$ 得到.

7. 计算
$$\int_0^{+\infty} \frac{\cos ax - \cos bx}{x^2} dx$$
,其中 $a,b > 0$. (习题 2.3-1(3), P115)

解: 原式=
$$\int_0^{+\infty} dx \int_a^b \frac{\sin yx}{x} dy = \int_a^b dy \int_0^{+\infty} \frac{\sin yx}{x} dx = \frac{\pi}{2} (b-a)$$
.

这里令
$$u = yx$$
有 $\int_0^{+\infty} \frac{\sin yx}{x} dx = \int_0^{+\infty} \frac{\sin u}{u} du = \frac{\pi}{2}$ 与 y 无关,当然可以换序积分.

8. 计算
$$I_n = \int_0^{+\infty} e^{-tx^2} x^{2n} dx$$
,其中 $t > 0, n \in \mathbb{N}^*$. (习题 2.3-2(1), P115)

解: 分部积分有
$$I_n = \frac{x^{2n+1}e^{-tx^2}}{2n+1}\bigg|_0^{+\infty} + \frac{2t}{2n+1}\int_0^{+\infty}x^{2n+2}e^{-tx^2}dx = \frac{2t}{2n+1}I_{n+1}$$
,即 $I_{n+1} = \frac{2n+1}{2t}I_n$.

9. 计算
$$I_n = \int_0^{+\infty} \frac{dx}{(y+x^2)^{n+1}}$$
. (习题 2.3-2(2), P115)

解:对任意正整数
$$n$$
,注意到 $\frac{d}{dx}\left(\frac{1}{(y+x^2)^n}\right) = -\frac{n}{(y+x^2)^{n+1}}$, $\forall \delta > 0$ 可证 I_n 关于

$$y \in [\delta, +\infty)$$
 一致收敛,因此可从 $I_0 = \int_0^{+\infty} \frac{dx}{y+x^2} = \frac{\pi}{2\sqrt{y}}$ 出发对 y 在积分号下求 n 阶导数,

曲 此得到
$$(-1)^n n! I_n = \int_0^{+\infty} \left(\frac{\partial^n}{\partial y^n} \left(\frac{1}{y+x^2} \right) \right) dx = \frac{\pi}{2} \frac{d^n}{dy^n} (y^{-1/2}) = (-1)^n \frac{\pi (2n-1)!!}{2^{n+1}} y^{-\binom{n+\frac{1}{2}}{2}},$$

因此
$$I_n = \frac{\pi}{2} \frac{(2n-1)!!}{(2n)!!} y^{-\left(n+\frac{1}{2}\right)}.$$
 (规定 (-1)!!= 0!!=1)

10. 计算 $I(a,b) = \int_0^{\frac{\pi}{2}} \ln(a^2 \sin^2 x + b^2 \cos^2 x) dx$,其中 a,b > 0.(第二章总复习题 4(1), P115)

解:
$$\frac{\partial I}{\partial b}(a,b) = \int_0^{\frac{\pi}{2}} \frac{2b}{a^2 \tan^2 x + b^2} dx = \frac{2b}{a^2} \int_0^{+\infty} \frac{1}{(t^2 + 1)\left(t^2 + \frac{b^2}{a^2}\right)} dt$$
 (这里令 $t = \tan x$)

$$= \frac{2b}{a^2} \frac{1}{\frac{b^2}{a^2} - 1} \int_0^{+\infty} \left(\frac{1}{t^2 + 1} - \frac{1}{t^2 + \frac{b^2}{a^2}} \right) dt = \frac{2b}{b^2 - a^2} \left(\frac{\pi}{2} - \frac{\pi a}{2b} \right) = \frac{\pi}{a + b} . \quad \boxed{\exists \exists \frac{\partial I}{\partial a} (a, b) = \frac{\pi}{a + b}},$$

有
$$I(a,b) = \pi \ln(a+b) + C$$
. 而 $I(t,t) = \pi \ln t$, 因此 $I(a,b) = \pi \ln \frac{a+b}{2}$.

11. 计算
$$I(a) = \int_0^{\frac{\pi}{2}} \frac{\arctan(a \tan x)}{\tan x} dx$$
,其中 $a > 0$. (第二章总复习题 4(2), P115)

解:
$$I'(a) = \int_0^{\frac{\pi}{2}} \frac{dx}{1+a^2 \tan^2 x} = \int_0^{+\infty} \frac{dx}{(1+x^2)(1+x^2a^2)} = \frac{1}{a^2} \int_0^{+\infty} \frac{1}{1-a^{-2}} \left(\frac{1}{x^2+a^{-2}} - \frac{1}{x^2+1}\right) dx$$

$$= \frac{1}{a^2-1} \left(\frac{\pi a}{2} - \frac{\pi}{2}\right) = \frac{\pi}{2(a+1)} \text{ (这里要求 } a \neq 1\text{,} 但由连续性 } a = 1 \text{ 也成立). } \pi I(0) = 0\text{ , 因此}$$

$$I(a) = \frac{\pi}{2} \ln(1+a) \text{ .}$$

12. 判断以下积分关于参数所给区间是否一致收敛?

$$(1)\int_{1}^{+\infty} \frac{y^{2} - x^{2}}{(x^{2} + y^{2})^{2}}, y \in R; (2)\int_{0}^{1} \ln(xy) dx, \frac{1}{2} < y < 2; (3)\int_{1}^{+\infty} \frac{t}{x^{3}} e^{-\frac{t}{x^{2}}} dx, t > 0;$$

$$(4) \int_{1}^{+\infty} e^{-\frac{1}{y^{2}} \left(x - \frac{1}{y}\right)^{2}} \sin y dx, 0 < y < 1; (5) \int_{1}^{+\infty} e^{-yx^{2}} \sin y dx, y > 0; (6) \int_{1}^{+\infty} e^{-yx^{2}} \sin y dy, x > 0;$$

(第二章总复习题 5, P116)

解:
$$(1) \left| \frac{y^2 - x^2}{(x^2 + y^2)^2} \right| \le \frac{1}{x^2 + y^2} \le \frac{1}{x^2}$$
, $\int_1^{+\infty} \frac{dx}{x^2}$ 收敛, 因此一致收敛.

(2)原式= $\ln y + \int_0^1 \ln x dx$,而 $\int_0^1 \ln x dx$ 收敛且与 y 无关,当然一致收敛.

(3)令
$$u = \frac{t}{2x^2}$$
,有 $\sup_{t>0} \int_A^{+\infty} \frac{t}{x^3} e^{-\frac{t}{2x^2}} dx = \sup_{t>0} \int_0^{\frac{t}{2A^2}} e^{-u} du = \int_0^{+\infty} e^{-u} du > 0$,因此不一致收敛.

$$(4) I(A, y) = \left| \int_{A}^{+\infty} e^{-\frac{1}{y^2} \left(x - \frac{1}{y} \right)^2} \sin y dx \right| \le \int_{A}^{+\infty} e^{-\frac{1}{y^2} \left(x - \frac{1}{y} \right)^2} dx = y \int_{\frac{A}{y} - \frac{1}{y^2}}^{+\infty} e^{-u^2} du . \quad \stackrel{\text{def}}{=} 0 \le y \le \frac{1}{2A} \text{ By},$$

有
$$I(A, y) \le \frac{1}{2A} \int_{-\infty}^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2A}$$
; $\stackrel{\text{def}}{=} \frac{1}{2A} \le y \le 1$ 时, $\frac{A}{v} - \frac{1}{v^2} \ge A - 1$, $I(A, y) \le \int_{A-1}^{+\infty} e^{-u^2} du$.

因此,
$$\sup_{0 < y < 1} I(A, y) \le \max \left(\frac{\sqrt{\pi}}{2A}, \int_{A-1}^{+\infty} e^{-u^2} du \right) \to 0 (A \to +\infty)$$
,一致收敛.

评注: 令 $f(x,y) = e^{-\frac{1}{y^2}\left(x-\frac{1}{y}\right)^2}$, 则 $\int_1^{+\infty} f(x,y) dx$ 关于 0 < y < 1 一致收敛. 值得注意的是,对这里的 f(x,y) 找不到控制函数 F(x) 使得 $|f(x,y)| \le F(x)$ 且 $\int_1^{+\infty} F(x) dx$ 收敛. 事实上,若存在这样的 F(x),则必有 $x_0 > 1$,使得 $F(x_0) < 1$,但 $f\left(x_0, \frac{1}{x_0}\right) = 1$,矛盾!

$$(5) I(A, y) = \left| \int_{A}^{+\infty} e^{-yx^2} \sin y dx \right| = \frac{|\sin y|}{\sqrt{y}} \int_{A\sqrt{y}}^{+\infty} e^{-u^2} du = \frac{|\sin y|}{y} \sqrt{y} \int_{A\sqrt{y}}^{+\infty} e^{-u^2} du.$$

当
$$0 \le y \le \frac{1}{A}$$
 时, $I(A, y) \le \frac{1}{2} \sqrt{\frac{\pi}{A}}$; 当 $y \ge \frac{1}{A}$ 时,由 $\frac{|\sin y|}{\sqrt{y}} \le 1$,有 $I(A, y) \le \int_{\sqrt{A}}^{+\infty} e^{-u^2} du$.

因此,
$$\sup_{0 < y < 1} I(A, y) \le \max \left(\frac{1}{2} \sqrt{\frac{\pi}{A}}, \int_{\sqrt{A}}^{+\infty} e^{-u^2} du \right) \to 0 (A \to +\infty)$$
, 一致收敛.

(6)当
$$x = 0$$
时, $\int_{1}^{+\infty} \sin y dy$ 发散, 不可能一致收敛.

13. 计算
$$I(y) = \int_0^{+\infty} \frac{\arctan xy}{x(1+x^2)} dx$$
,其中 $y \ge 0$. (第二章总复习题 6(1), P116)

解:
$$I'(y) = \int_0^{+\infty} \frac{dx}{(1+x^2)(1+x^2y^2)} = \frac{1}{y^2} \int_0^{+\infty} \frac{1}{1-y^{-2}} \left(\frac{1}{x^2+y^{-2}} - \frac{1}{x^2+1} \right) dx$$

$$= \frac{1}{y^2 - 1} \left(\frac{\pi y}{2} - \frac{\pi}{2} \right) = \frac{\pi}{2(y+1)}$$
 (这里要求 $y \neq 1$,但由连续性 $y = 1$ 也成立).而 $I(0) = 0$,因此

$$I(y) = \frac{\pi}{2} \ln(1+y).$$

14. 计算
$$I = \int_0^{+\infty} \frac{\cos ax}{b^2 + x^2} dx$$
. 其中 $a, b \ge 0$.(第二章总复习题 6(2), P116)

解: $I = \int_0^{+\infty} dx \int_0^{+\infty} e^{-y(b^2+x^2)} \cos ax dy = \int_0^{+\infty} dy \int_0^{+\infty} e^{-y(b^2+x^2)} \cos ax dx$. 下面先算积分,后证此处换序的合理性.

这里
$$c = \frac{a}{2}$$
. 令 $v = \frac{c}{bu}$,有 $I = \sqrt{\pi} \int_0^{+\infty} \frac{c}{bv^2} e^{-\left(b^2v^2 + \frac{c^2}{v^2}\right)} dv = \frac{\sqrt{\pi}}{2} \int_0^{+\infty} \left(1 + \frac{c}{bv^2}\right) e^{-\left(b^2v^2 + \frac{c^2}{v^2}\right)} dv$

$$= \frac{\sqrt{\pi}}{2b} \int_0^{+\infty} \left(b + \frac{c}{v^2} \right) e^{-\left(bv - \frac{c}{v} \right)^2 - 2bc} dv = \frac{\sqrt{\pi}}{2b} e^{-2bc} \int_{-\infty}^{+\infty} e^{-s^2} ds = \frac{\pi}{2b} e^{-ab}.$$

为证明积分换序合理,记 $f(x,y) = e^{-y(b^2+a^2)}\cos ax$,可证 $\int_0^{+\infty} f(x,y)dy$ 关于 $x \in [0,+\infty)$ 一

致收敛, 且 $\int_0^{+\infty} f(x,y)dx$ 关于 $y \in [\delta,+\infty)$ 一致收敛, 这里 δ 为任意给定的正数. 而题设积

分
$$I$$
 绝对收敛, 因此 $\int_0^{+\infty} dx \int_{\delta}^{+\infty} f(x,y) dy = \int_{\delta}^{+\infty} dy \int_0^{+\infty} f(x,y) dx$. (*)

另一方面, $\int_0^\delta |f(x,y)| dy \le \int_0^\delta dy = \delta$,因此,当 $\delta \to 0$ 时 $\int_0^\delta f(x,y) dy$ 关于 x 一致趋于 0,有 $\int_0^{+\infty} dx \int_0^\delta f(x,y) dy \to 0$.在(*)两边令 $\delta \to 0$ 即得.

15. 求证:
$$\int_0^{+\infty} \frac{\sin x^2 y}{x} dx$$
 关于 $y > 0$ 不一致收敛, 但连续. (第二章总复习题 7, P116)

证明: 令
$$u = x^2 y$$
 有 $I(y) = \int_0^{+\infty} \frac{\sin x^2 y}{x} dx = \int_0^{+\infty} \frac{\sin u}{2u} du$ 是常值函数,当然连续.

而
$$\sup_{y>0} \left| \int_{A}^{+\infty} \frac{\sin x^2 y}{x} dx \right| = \sup_{y>0} \left| \int_{A^2 y}^{+\infty} \frac{\sin u}{2u} du \right| \ge \int_{0}^{+\infty} \frac{\sin u}{2u} du > 0$$
,关于 y 不一致收敛.

16. 一些重要积分的计算. (本部分的结论需要记住, 计算细节了解即可)

$$(1)I = \int_0^{+\infty} e^{-x^2} dx; (2)J = \int_0^{+\infty} \frac{\sin x}{x} dx; (3)K = \int_0^{+\infty} \sin x^2 dx.$$

解: (1)令
$$x = ut$$
 有 $I = \int_0^{+\infty} ue^{-u^2t^2} dt$,因此

$$I^{2} = \int_{0}^{+\infty} e^{-u^{2}} du \int_{0}^{+\infty} u e^{-u^{2}t^{2}} dt = \int_{0}^{+\infty} dt \int_{0}^{+\infty} u e^{-u^{2}(1+t^{2})} du = \frac{1}{2} \int_{0}^{+\infty} \frac{dt}{1+t^{2}} = \frac{\pi}{4}, \quad \text{fi } I = \frac{\sqrt{\pi}}{2}.$$

(积分换序合理性的细节: 记 $\tilde{I}^2 = \int_0^{+\infty} dt \int_0^{+\infty} u e^{-u^2(1+t^2)} du$. 可证明 $\varphi(t) = \int_0^{+\infty} u e^{-u^2(1+t^2)} du$ 关于 $t \in [0,A]$ 一致收敛,有

$$\int_{0}^{A} dt \int_{0}^{+\infty} u e^{-u^{2}(1+t^{2})} du = \int_{0}^{+\infty} du \int_{0}^{A} u e^{-u^{2}(1+t^{2})} dt \leq \int_{0}^{+\infty} du \int_{0}^{+\infty} u e^{-u^{2}(1+t^{2})} dt = I^{2} , \ \, \Leftrightarrow \ \, A \to +\infty \ \,$$
 得
$$\widetilde{I}^{2} \leq I^{2} ; \ \, \mathcal{B} - \dot{\tau} \text{ in} , \ \, \text{可证明} \psi(u) = \int_{0}^{+\infty} u e^{-u^{2}(1+t^{2})} dt \, \, \dot{\mathcal{E}} \mathcal{F} \, u \in [\mathcal{S}, +\infty) - \mathfrak{D} \, \psi \, \dot{\mathfrak{D}}, \ \, \mathcal{B} \text{ in} \, \mathcal{B} \text{ in} \, \mathcal{B}$$

$$\int_{\delta}^{+\infty} du \int_{0}^{+\infty} u e^{-u^{2}(1+t^{2})} dt = \int_{0}^{+\infty} dt \int_{\delta}^{+\infty} u e^{-u^{2}(1+t^{2})} du \leq \int_{0}^{+\infty} dt \int_{0}^{+\infty} u e^{-u^{2}(1+t^{2})} du = \widetilde{I}^{2} . \ \, \dot{\mathfrak{D}} \, \dot{\mathfrak{D}} \, \dot{\mathfrak{D}} \, \mathcal{B}$$

$$I^{2} \leq \widetilde{I}^{2} .)$$

评注: 事实上,只要 f(x,y) 非负,而且 $g(y) = \int_a^{+\infty} f(x,y) dx$, $h(x) = \int_b^{+\infty} f(x,y) dy$ 都逐 点收敛且在任意有界区间上可积,就有 $\int_b^{+\infty} dy \int_a^{+\infty} f(x,y) dx = \int_a^{+\infty} dy \int_b^{+\infty} f(x,y) dy$,这里等式的意义是左右两边同敛散且收敛时相等,而无需考察一致收敛性. 对于变号函数,在以上所有广义积分都绝对收敛的条件下,积分换序等式也成立. 当然这些结论的证明已经超出微积分课程的范围.

(2)
$$\Leftrightarrow f(a) = \int_0^{+\infty} e^{-ax} \frac{\sin x}{x} dx$$
, $f'(a) = -\int_0^{+\infty} e^{-ax} \sin x dx = -\frac{1}{1+a^2}$.

(可以证明, 任给 $\delta > 0$, $\int_0^{+\infty} e^{-ax} \sin x dx$ 关于 $a \in [\delta, +\infty)$ 一致收敛, 因此可以积分号下求导)

而
$$\left| e^{-ax} \frac{\sin x}{x} \right| \le e^{-ax} \to 0$$
 $(a \to +\infty)$,有 $f(+\infty) = 0$, $f(a) = \frac{\pi}{2} - \arctan a$. 特别的, $J = \frac{\pi}{2}$.

(3)首先有 $K = \frac{1}{2} \int_0^{+\infty} \frac{\sin t}{\sqrt{t}} dt$. 记 $g(a) = \int_0^{+\infty} e^{-at} \frac{\sin t}{\sqrt{t}} dt$, t > 0. 由 $\frac{\sqrt{\pi}}{2} = \sqrt{t} \int_0^{+\infty} e^{-tu^2} du$,因此 $g(a) = \frac{2}{\sqrt{\pi}} \int_0^{+\infty} dt \int_0^{+\infty} e^{-t(a+u^2)} \sin t du = \frac{2}{\sqrt{\pi}} \int_0^{+\infty} du \int_0^{+\infty} e^{-t(a+u^2)} \sin t dt = \frac{2}{\sqrt{\pi}} \int_0^{+\infty} \frac{du}{1 + (a+u^2)^2}$. [易证 $\int_0^{+\infty} e^{-t(a+u^2)} \sin t dt$ 关于 $u \in [0,+\infty)$ 一致收敛, $\int_0^{+\infty} e^{-t(a+u^2)} \sin t du$ 关于 $t \in [0,+\infty)$ 一致收敛(这个证明类似前面的 12(5)题),且 $\int_0^{+\infty} du \int_0^{+\infty} |e^{-t(a+u^2)}| \sin t dt \leq \int_0^{+\infty} \frac{du}{a+u^2} < +\infty$ (值得注意的是,如不引入收敛因子 e^{-at} ,这个积分不再绝对收敛!),因此积分换序合理。] 令 $a \to 0$ (可以证明两边关于 $a \in [0,1]$ 都是一致收敛),有 $K = \frac{g(0)}{2} = \frac{1}{\sqrt{\pi}} \int_0^{+\infty} \frac{du}{1+u^4} = \sqrt{\frac{\pi}{8}}$.同样的方法可以算得

第三章 重积分

1. 计算
$$I = \iint_D \cos \frac{x-y}{x+y} dxdy, D = \{(x,y): x \ge 0, y \ge 0, x+y \le 1\}$$

解: 令u=x-y,v=x+y, 积分区域变为 $\Omega=\{(u,v):v\leq 1,-v\leq u\leq v\}$. 因此,

$$I = \frac{1}{2} \int_0^1 dv \int_{-v}^v \cos \frac{u}{v} du = \int_0^1 v \sin 1 dv = \frac{1}{2} \sin 1.$$
2. \(\difta \mid I = \iint_D \sqrt{(x^2 + y^2)^3} dx dy, D = \{(x, y) : x^2 + y^2 \leq \min(1, 2x)\}\)

解: 由对称性, 积分值等于对第一象限部分 D_1 积分的 2 倍. 令 $x = r \cos \theta$, $y = r \sin \theta$, 这时

 D_1 变为 $\Omega = \{(r,\theta): r \leq \min(1,2\cos\theta), 0 \leq \theta \leq \pi/2\}$. 分成两块, 并化为累次积分得到

$$I = 2\left(\int_0^{\frac{\pi}{3}} d\theta \int_0^1 r^4 dr + \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} r^4 dr\right) = \frac{2\pi}{15} + \frac{64}{5} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos^5\theta d\theta$$

这里
$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^5 \theta d\theta = \int_{\frac{\sqrt{3}}{2}}^{1} (1-t^2)^2 dt = \dots$$

3. 计算
$$I = \iint_D y^2 dx dy$$
, D 由曲线
$$\begin{cases} x = a(t - \sin t), 0 \le t \le 2\pi \text{ 和 } x \text{ 轴围成.} \end{cases}$$

解:将积分域边界的曲线记做y = f(x),有

$$I = \int_0^{2\pi a} dx \int_0^{f(x)} y^2 dy = \frac{1}{3} \int_0^{2\pi a} (f(x))^3 dx = \frac{a^4}{3} \int_0^{2\pi} (1 - \cos t)^4 dt = \frac{35}{12} \pi a^4.$$

这里
$$\int_0^{2\pi} (1-\cos t)^4 dt = 16 \int_0^{2\pi} \sin^8 \frac{t}{2} dt = 64 \int_0^{\frac{\pi}{2}} \sin^8 u du = 64 \frac{7!!}{8!!} \frac{\pi}{2} = \frac{35\pi}{4}$$
.

4. 计算
$$I = \iint_{\sqrt{x}+\sqrt{y} \le 1} (\sqrt{x} + \sqrt{y}) dx dy$$
.

$$I = 4 \int_0^1 r^{3/2} dr \int_0^{\frac{\pi}{2}} \sin^3 \theta \cos^3 \theta d\theta = \frac{8}{15}.$$

5. 设
$$f(x, y)$$
 非负连续, a, b, R 为常数. 计算 $I = \iint_{x^2+y^2 < R^2} \frac{af(x)+bf(y)}{f(x)+f(y)} dxdy$.

解: 注意到积分区域关于 x 和 y 的对称性, 有

$$\iint_{x^2+y^2 \le R^2} \frac{f(x)}{f(x)+f(y)} dxdy = \iint_{x^2+y^2 \le R^2} \frac{f(y)}{f(x)+f(y)} dxdy = \frac{1}{2} \iint_{x^2+y^2 \le R^2} dxdy = \frac{\pi R^2}{2}.$$

因此
$$I = \frac{a+b}{2}\pi R^2$$
.

6. 计算
$$I = \iiint_{\Omega} \frac{\sin z}{z} dx dy dz$$
, $\Omega = \{(x, y, z) : \sqrt{x^2 + y^2} \le z \le 4\}$.

解:
$$I = \int_0^4 \frac{\sin z}{z} dz \iint_{x^2 + y^2 \le z^2} dx dy = \pi \int_0^4 z \sin z dz = \pi (\sin 4 - 4\cos 4)$$
.

评注: 三重积分化成累次积分比二重积分要灵活, 此题先积 z 不可能积出, 但对 x 和 y 化成一个二重积分和一个一重积分处理. 7