

Detecting hallucinations in large language

models using semantic entropy

by Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn & Yarin Gal (June 2024)

Francesco Vaccaro

Garching near Munich, 2 July 2025

Outline

- Motivation: Hallucinations & Confabulations
- Theoretical foundation: Naive entropy vs. semantic entropy (SE)
- SE with different output lengths
- Performance comparison
- Discussion: Strengths & Limitations

Motivation: Hallucinations

Altman on the OpenAl Podcast (June 18, 2025):

"People have a **very high degree of trust** in ChatGPT, which is interesting because [...] **Al hallucinates**"

"[Al] should be the tech that you don't trust that much"

[Pubity]

Hallucinations & Confabulations

Clinical		LLMs	
Hallucinations	sensory experiences without respective external stimuli	umbrella term for wrong outputs	
Confabulations	 generation of narrative details details are incorrect & not recognized as such	subtype of Hallucinations: wrong and arbitrary	

Confabulations vs. other Hallucinations

Causes of other hallucination types	Example			
erroneous training data	common misconceptions like "Napoleon was small"			
LLM lies in pursuit of a reward	"generate titles for YT videos" & "optimize for clicks via RL"			
systematic failure of reasoning or generalization	Training: Q: 3 Apples + 5 Apples A: 8 Apples ✓ Inference: Q: four Apples plus two Apples A: four Apples X			

Naive vs. semantic entropy // short LLM outputs

a) many different outputs
b) similar probabilities

higher entropy

	naive entropy	semantic entropy
Basis for entropy calculation output token sequence		output meaning
How to determine	directly based on sequence probabilities	More complex: LLM-2 based clustering by meaning

Naive vs. semantic entropy // short LLM outputs

	naive entropy	semantic entropy
Basis for entropy calculation	output token sequence	output meaning
How to determine	directly based on sequence probabilities	More complex: LLM-2 based clustering by meaning

NE vs SE // short outputs // Select Examples

Question	Model answer	Reference	Generations for entropy	Prediction	
	a	answer		Semantic entropy	Naive entropy
Refineries, process	Refineries, process		• All the above are under the industrial sector of construction.		
chemical, power generation, mills and manufacturing plants are under what sector of construction?	generation, mills and	Industrial or heavy civil or heavy engineering.	• The refineries, process chemical, power generation, mills and manufacturing plants are under the industrial sector of construction.	Not confabulation	Confabulation
			• These are all under the heavy industrial sector of construction.	—	X ence [_]
)	\
"best answer" (sampled at low Temperature T = 0.1) → assess model accuracy		 Same meaning (1 cluster) different token-seque with similar probabilit 	nces		

Semantic Entropy for longer LLM outputs

SE vs. other uncertainty metrics (short outputs)

- LLM answer correct?
 - → treated as binary classification problem

AUROC

- measures quality of mistake prediction
- ROC: FPR vs TPR

AURAC

- measures performance improvement with increasing rejection rate
- basis: RAC = rejection accuracy curve
- more sensitive to overall sensitivity of the model than AUROC

Discussion: Strengths of SE

good performance

"unsupervised" → no labels required

no training → unsensitive to distribution shifts

domain-independent (premise: working entailment estimator)

discrete variant that works without model internals

Discussion: Limitations of SE

SE misses confidently wrong answers (esp. non-confabulations)

strong dependence on entailment model (NLI) accuracy

Extra compute & time (sampling + NLI)

not applicable for single generations during real usage (instead: RL?)

Takeaways

- SE is useful for flagging confabulations
- simple, probabilistic, training-free method → powerful uncertainty metric

"LLMs are [quite good] at **knowing what they don't know** [, but they] **don't know they know what they don't know**."

[Kyle 2025]

Questions?

References

Reference (1) is the presented papers and is always the source of figures, when no other source is given.

- (1) S. Farquhar, J. Kossen, L. Kuhn, and Y. Gal, "Detecting hallucinations in large language models using semantic entropy," *Nature*, vol. 630, no. 8017, pp. 625–630, Jun. 2024, doi: 10.1038/s41586-024-07421-0. pubity [@pubity]. "On the first episode of OpenAI's new podcast, CEO Sam Altman addressed something most people overlook, our growing trust in AI tools like ChatGPT. ..." *Instagram*, 26 June 2025, www.instagram.com/p/DLVoy-rNiA3/. Accessed 29 June 2025.
- (2) A. L. Smith, F. Greaves, and T. Panch, "Hallucination or Confabulation? Neuroanatomy as metaphor in Large Language Models," PLOS Digit Health, vol. 2, no. 11, p. e0000388, Nov. 2023, doi: 10.1371/journal.pdig.0000388.
- (3) O. Evans et al., "Truthful Al: Developing and governing Al that does not lie," Oct. 13, 2021, arXiv: arXiv:2110.06674. doi: 10.48550/arXiv.2110.06674.
- (4) Barr, Kyle. "Sam Altman's Lies About ChatGPT Are Growing Bolder." *Gizmodo*, 11 June 2025, www.gizmodo.com/sam-altmans-lies-about-chatgpt-are-growing-bolder-2000614431. Accessed 29 June 2025.

Additional Material

SE vs. other uncertainty metrics (short outputs)

Method	Labels required?	Training necessary?	# required generations	Details
Embedding regression [- OOD]	Yes	Yes	1	Logistic regression, trained with labels [trained on different distribution]
p(True) (few-shot)	Yes ("in-context")	No	1	Uses labeled examples in prompt
[discrete -] Semantic entropy	No	No	Multiple	No labels required (only for evaluation)

Performance metrics

- LLM answer correct?
 - → treated as binary classification problem
- AUROC
 - measures quality of mistake prediction
 - ROC: FPR vs TPR

- AURAC
 - measures performance improvement with increasing rejection rate
 - basis: RAC = rejection accuracy curve
 - more sensitive to overall sensitivity of the model than AUROC

Exemplary RAC

Model: LLaMa 2 Chat 70 B

Uncertainty metric: Semantic Entropy

Dataset: TriviaQA

SE vs. other uncertainty metrics (long outputs)

Maximum Predictive Entropy: Uniform Distribution

