Sequential Decision-Making Under Uncertainty: Reinforcement Learning

Siddharth Srivastava, Ph.D. Assistant Professor Arizona State University

What if the Agent Encounters a New Environment?

S set of states

- E.g., At(1,1)

A set of actions

T transition model

$$-P(s'|s,a) = T(s,a,s')$$

$$R: S \to \mathbb{R}$$
Unknown

Map not known to the agent (or partially known)

Adapting to new situations is an essential component of intelligence

How would we want an Al agent deal with it?

Progression Towards RL

We considered two ideas

- Model learning,
- Monte Carlo policy evaluation (passive RL)
 - Recall: learns value function, but doesn't utilize reachability information

Next few slides:

- Further improvements, RL

Idea 3: Bootstrapped Monte Carlo

Collect episode samples for the fixed policy as before (Monte Carlo evaluation)

Now, bootstrap using the policy evaluation formula

$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s)) [R(s) + \gamma V_k^{\pi}(s')]$$

Since we don't know T, but we get R, we can bootstrap using current estimate of V:

Samples from
$$s$$
 - $V_{k+1}(s)[1] = R(s) + \gamma \tilde{V}_k^{\pi}(s_1)$
 $V_{k+1}(s)[2] = R(s) + \gamma \tilde{V}_k^{\pi}(s_2)$
 $V_{k+1}(s)[3] = R(s) + \gamma \tilde{V}_k^{\pi}(s_3)$
 $V_{k+1}(s)[4] = R(s) + \gamma \tilde{V}_k^{\pi}(s_4)$

$$|\tilde{V}^{\pi}_{k+1}(s)| = \frac{1}{n} \sum_{i} V_{k+1}(s)[i]$$
.

Analysis of Bootstrapped Monte Carlo

Collect episode samples as before

Since we don't know T, but we get R, we can bootstrap using current estimate of V

$$-\tilde{V}^{\pi}_{k+1}(s) = \frac{1}{n} \sum_{i} V_{k+1}(s)[i]$$

Advantage: This utilizes connections between states (bootstraps)

Limitation: The agent can't utilize available data until the estimate \tilde{V}_{k+1} is computed (at end of episode)

Idea 4: Temporal-Difference (TD) Learning

- This is the central idea of Reinforcement Learning!
- Combines MC evaluations, bootstrapping, and online action
 - Online Monte Carlo policy evaluation and learning
- What does "online" stand for?
 - Update your value function at each step rather than at end of episode
 - Policy is still fixed

Not immediately clear how...

Idea 4: Temporal-Difference (TD) Learning

This is the central idea of Reinforcement Learning!

Combines bootstrapping, MC evaluations, and online action

Online Monte Carlo policy evaluation and learning

What does "online" stand for?

- Update your value function at each step rather than at end of episode
- Policy is still fixed

Not immediately clear how...

- Need to update value function: $V^{\pi}(s) \leftarrow V^{\pi}(s) + ?$

TD Learning

Current Estimate: $\tilde{V}^{\pi}(s)$

Update this with a new sample as follows:

$$\tilde{V}^{\pi}(s) \leftarrow \tilde{V}^{\pi}(s) + \alpha \left(V(s)[i] - \tilde{V}^{\pi}(s) \right)$$
$$= (1 - \alpha)\tilde{V}^{\pi}(s) + \alpha \cdot V(s)[i]$$

 α is called the learning rate or step size

TD Learning converges to the true policy values if α decays to zero, all states visited infinitely often

Analysis of TD Value and Q Learning

A similar rule can be derived for updating the Q function rather than the V function

Advantages of TD learning

- Online update improves estimates as you go
- Especially good for tasks with long episodes, or continuing tasks that don't have natural ends
- Bootstraps using information about state connectivity

Limitations: doesn't improve the policy

Online Monte Carlo Policy Evaluation (not learning policies yet)

Extracting Actions using TD Evaluation

- Suppose we learned V using TD learning
- How can we determine which action to use?
- We know about extracting the policy from the value function:

$$\pi(s) = \operatorname{argmax}_{a} Q(s, a)$$

$$Q(s, a) = \sum_{s'} P(s'|s, a) [R(s) + \gamma V(s')]$$

- This gives us an opportunity to do a policy update much like policy iteration
- But this doesn't quite help here (why?)

Learning the Q-Function using TD

Q-value iteration:

$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s) + \gamma V_k(s')]$$

$$= \sum_{s'} P(s'|s,a)[R(s) + \gamma \max_{a'} Q_k(s',a')]$$
Next state and action

We can adapt this to use samples like we did for evaluating the V function for a given policy

- ith sample:

$$Q(s,a)[i] = R(s)[i] + \gamma \tilde{Q}(s',a')$$
seen in the sample seen in the sample

TD updates for *Q*:

$$\tilde{Q}(s,a) \leftarrow (1-\alpha)\tilde{Q}(s,a) + \alpha Q(s,a)[i]$$

seen in the sample

Learning Q-Function Using TD: SARSA

$$\tilde{Q}(s,a) \leftarrow (1-\alpha)\tilde{Q}(s,a) + \alpha Q(s,a)[i]$$

This approach uses s, a, R, s', a' tuples from samples

It's aptly named "SARSA"

TD learning for V and for Q does on-policy estimation

 Estimate V and Q of the policy while executing it

Q-learning: a powerful variation that learns a better policy

```
Initialize Q(s,a) arbitrarily Repeat (for each episode):

Initialize s
Choose a from s using policy derived from Q (e.g., \varepsilon-greedy) Repeat (for each step of episode):

Take action a, observe r, s'
Choose a' from s' using policy derived from Q (e.g., \varepsilon-greedy) Q(s,a) \leftarrow Q(s,a) + \alpha \big[ r + \gamma Q(s',a') - Q(s,a) \big]
s \leftarrow s'; \ a \leftarrow a';
until s is terminal
```

[Sutton & Barto, RL, 1st ed.]

Q-Learning

SARSA learned the Q value of the policy being followed:

$$\tilde{Q}(s,a) \leftarrow (1-\alpha)\tilde{Q}(s,a) + \alpha \cdot [R(s) + \gamma \tilde{Q}(s',a')]$$

Q-learning changes things to go 1-step greedy over the current Q estimate

$$\tilde{Q}(s,a) \leftarrow (1-\alpha)\tilde{Q}(s,a) + \alpha \cdot [R(s) + \gamma \max_{a'} \tilde{Q}(s',a')]$$

This is also called off-policy control

Why is this useful?

SARSA:
$$\tilde{Q}(s,a) \leftarrow (1-\alpha)\tilde{Q}(s,a) + \alpha \cdot [R(s) + \gamma \tilde{Q}(s',a')]$$

Q-learning: $\tilde{Q}(s,a) \leftarrow (1-\alpha)\tilde{Q}(s,a) + \alpha \cdot [R(s) + \gamma \max_{a'} \tilde{Q}(s',a')]$

Q-learning picks the better one among a_1 , a_2 This makes Q-learning "learn" off policy As a result, Q-learning can be used to learn optimal policies while following an arbitrary policy!*

Analysis of Q-Learning

Q-learning converges to the optimal Q function

- Even if the policy being followed is not optimal
- This is great: your self driving car could learn from you and do better!*

*Assumptions:

- Must keep visiting all pairs (s,a) infinitely often
- Decay α appropriately over time

Q-learning is one of the most popular RL approaches

- Online Monte Carlo policy evaluation and learning

Summary

SDM/Planning: mathematical unifying framework in Al!

- Get the agent to do what you want
- Without having to program it

In the process, need to utilize everything you learned in the course:

- Learning (models + policies)
- Perception (special case of reasoning)
- Search, dynamic programming, Monte Carlo methods

Directions for Branching Off

Sequential decision making is a rich, active area of research. Here are a few pointers in case you wish to delve deeper!

- Relational representations for MDPs and RL
- Hierarchical planning and learning
- Deep neural networks as function approximators for V and Q, as heuristic learners
- Planning in situations with partial observability
 - Partially observable MDPs

Becoming an Al Expert

A few general principles for designing Al applications

- Use efficient representations
- Exploit structure of the problem (facilitated by good representation)
- If prior knowledge is available, use it!

General principles for evaluating methods

- Keep an open mind
- But, be critical! Distinguish fact from opinion (even yours)
- Look for assumptions made and guarantees provided
 - When is the approach going to work? When will it fail?

Design responsibly!