San Francisco | March 4–8 | Moscone Center

SESSION ID:

Zero-knowledge proofs (ZKP): Privacy Preserving Authentication

Karla Clarke

Manager KPMG **Rajan Behal**

Managing Director KPMG

Risks

- Loss of privacy
- Data breaches
- Identity theft
- Surveillance

Digital Identity Model

Issuance

Privacy Preserving Digital Identity Model

What is Zero-Knowledge Proof?

- Zero-knowledge proofs are an elegant technique to limit the amount of information transferred from a prover A to a verifier B in a cryptographic protocol.
 - The idea is to replace "knowledge" by "knowledge about knowledge"

- The name "zero-knowledge proofs" is slightly misleading, since the prover A reveals one bit of knowledge to the verifier B (is input I a member of language L?).
 - L = interactive proof for the language L

Zero-Knowledge Proof Properties

ZKP enables:

Completeness

If statement is true, verifier will be convinced by prover.

Soundness

- If statement is false, a cheating prover cannot convince verifier it is true.
- –Zero-Knowledge
 - Verifier learns nothing beyond the statement's validity.

ZKP Usage with Authentication

- Performing authentication without exchanging passwords
- Enterprises can protect proprietary information by sharing proofs about the data without sharing the actual data

Zero-Knowledge Proof Illustration

A crazy technical solution (with hats!)

The Challenge:

Mathew Green

The Solution:

 The hats perfectly covered 'protects' the solution

Proof of Solution:

- Remove any two hats
- See vertices are different colors

Repeat this process:

- Clear previous solution
- Add randomness
- Solve again

Accept or reject:

- Complete for preset number of rounds
- Telecom accepts or rejects

Zero-Knowledge Proof Variants

ZKP Interactive, multiple messages, need stable communication channel

NIZKP Not interactive, one message

Graph Isomorphism Interactive, compare graphs, efficient computation

zk-SNARK Need one-time, trusted setup to generate key at launch

zk-STIK Scalable Transparent Interactive Oracle of Proof (IOP) of Knowledge

zk-STARK No setup, working on memory issues, I or NI, post-quantum secure

Designated Verifier DVNIZK, not just any entity can be verifier, verifier must know secret

Bulletproof No setup, 188 bytes, 10 ms in some cases, not post-quantum secure

Lattice-Based Lattice-based cryptography, post-quantum secure, research

Zero-Knowledge Proof Practical Application

Where to apply ZPK:

- Authentication
- Messaging
- Secure Sensitive Information (PCI Data)
- Data Sharing
- File System Control
- Storage Protection

Zero-Knowledge Proof: Use Cases

- ING is a Netherlands based bank
- Experian
- UK citizens using the GOV.UK

Zero-Knowledge Proof: Technology Landscape

MIRACL KRIPTAN Microsoft UProve Velix.ID **NUGGETS SEDICCII SOVRIN STRATUMN IBM** Val:ID **NuID QEDit PEER MOUNTAIN CIVIC**

Zero-Knowledge Proof Considerations

- Transparent
- Universal
- Compliant with upcoming ZKP Standards
- Interactive, non-interactive
- Secure (threat model)
- Post-quantum secure

Zero-Knowledge Proof Challenges

- Low usability
- Expensive
- Requires high compute power

Zero-Knowledge Proof Application

- Assess use cases for privacy preserving authentication and authorization
- Evaluate and perform a POC with a ZKP Identity landscape solution
- Protect identities using ZKP

Questions

The KPMG name and logo are registered trademarks or trademarks of KPMG International.

The information contained herein is of a general nature and is not intended to address the circumstances of any particular individual or entity. Although we endeavor to provide accurate and timely information, there can be no guarantee that such information is accurate as of the date it is received or that it will continue to be accurate in the future. No one should act upon such information without appropriate professional advice after a thorough examination of the particular situation.

RS∧°Conference2019

References

- Anwar, H. (2018, November 30). What is ZKP? A Complete Guide to Zero Knowledge Proof. Retrieved from https://101blockchains.com/zero-knowledge-proof/#7
- Attribute-based Credentials for Trust (ABC4Trust) Project
- AU2EU Project, Authentication and Authorization for Entrusted Unions
- Bitansky, Nir; Weizman, Zvika Brakerski; Kalai, Yael. 3-Message Zero Knowledge Against Human Ignorance
- Camenisch, Jan and E. Van Herreweghen, Design and implementation of the IBM Idemix anonymous credential system, in Proceedings of the 9th ACM conference on Computer and communications security
- Camenisch, Jan; Dubovitskaya, Maria; Enderlein, Robert; et al. Concepts and languages for privacy-preserving attribute-based authentication
- Cutler, Becky. The Feasibility and Application of Using Zero-Knowledge Protocol for Authentication Systems
- Durcheva, Mariana. Zero Knowledge Proof Protocol Based on Graph Isomorphism Problem
- Feige, U., Fiat, A., & Shamir, A. (1988). Zero-knowledge proofs of identity. Journal of cryptology, 1(2), 77-94.
- Fleischhacker, Nils; Goyal, Vuypil; Jain, Abhishek. On the Existence of Three Round Zero-Knowledge Proofs
- Geraud, Rémi. Zero-Knowledge: More Secure than Passwords
- Grassi, P. A., Richer, J. P., Squire, S. K., Fenton, J. L., Nadeau, E. M., Lefkovitz, N. B., . . . Theofanos, M. F. (2017). Digital identity guidelines: Federation and assertions. doi:10.6028/nist.sp.800-63c
- Green, Matthew. Zero Knowledge Proofs: An Illustrated Primer https://cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/ (November 2014).
- Limited, M. U. (n.d.). Miracl. Retrieved from https://www.miracl.com/experian-case-study

