Coloreo de Grafos

Notació

n

- V (Vertices)
 - Es un conjunto finito
 - #(V) = n

- E (Aristas/Lados)
 - x e y son los extremos del lado xy

Subgrafo

- Dado un grafo G = (V,E) un subgrafo de G
 - Es un grafo H = (W, F)
 - talque W⊆VyF⊆E

Vecinos de un vertice

- Dado $x \in V$
 - Los vertices que forman un lado con x
 - Se llaman los vecinos de x

$$\Gamma(x) = \{ y \in V : xy \in E \}$$

Grado de un vertice

- La cardinalidad de Γ(x) (cantidad de vecinos de un vertice)
 - ° Se llama el grado de x y se denota d(x)

$$d(x) = \#(\Gamma) = (cantidad de vecinos del vertice x)$$

Menor grado del grafo

$$\delta = Min\{d(x) : x \in V\}$$

Mayor grado del grafo

$$\Delta = Max\{d(x) : x \in V\}$$

Grafos regulares

- Un grafo es regular si todos los vertices tienen el mismo grado
 - ° O sea todos los vertices tienen la misma cantidad de vecinos

 siendo llamado grafo k-regular donde k es maximo grado del grafo

Grafos cicliclos

- Un grafo ciclico es un grafo de n vertices con n > 3
 - Con vertices $V = \{x1, x2, ..., xn\}$
 - Con lados {x1x2, x2x3, ...,x(n-1)xn, xnx1}
 - Notacion:

 C_n

Grafos completos

- Un grafo ciclico es un grafo de n vertices
 - Con vertices $V = \{x_1, x_2, ..., x_n\}$
 - Con lados $E = \{x_i x_j : i, j \in \{1, 2, ..., n\} \mid < j\}$
 - Todos los vertices se conectan entre si
 - Notacion:

Kn

Componentes conexas

- Un grafo es conexo si todos sus vertices se pueden alcanzar mediante un camino
- Una componente conexa es un subgrafo de un grafo
 - o donde simplimente ese subgrafo es conexo
 - o sea cualquier par de aristas estan conectadas por un camino

Grafo conexo y Componentes conexas

- Un grafo es conexo si todos sus vertices se pueden alcanzar mediante un camino
- Una componente conexa es un subgrafo de un grafo
 - o donde simplimente ese subgrafo es conexo
 - o sea cualquier par de aristas estan conectadas por un camino

$$x_1 = x$$
, $x_r = y \mid x_i x_{(i+1)} \in E \ \forall \ i \in \{1, 2, ..., r-1\}$

o x ~ y ⇔ ∃ camino entre x e y

Grafo bipartito

- Un grafo es bipartito si al dividir los vertices del grafo en dos conjuntos distintos
 - Donde cada vertice de un conjunto se conecta con un vertice del otro
 - Y no hay lados que conecten a vertices del mismo conjunto

Algoritmos para determinar las componentes conexas

- DFS BFS
 - ° El algoritmo basico de DFS o BFS lo que hace es.
 - Dado un vertice x, encontrar todos los vertices de la componente conexa x
- DFS
 - Dado un vertice recorremos hasta el fondo hasta encontrar un vecino de mayor nivel para regresar a ese y seguir hasta el fondo con el recorrido (utiliza una pila)
- BFS
 - Dado un vertice recorremos todos los vecinos del vertice que estamos procesando (utiliza una cola)

Coloreo

• Un coloreo de un grafo G es una funcion

$$C:V \rightarrow S$$

 Donde S es algun conjunto que refleja los colores de cada vertice

Coloreo propio

Un coloreo C de un grafo G se le dice propio si

$$VW \in E \Rightarrow C(V) \neq C(W)$$

 Simplemente es un coloreo propio si ningun vecino de algun vertice tiene el mismo color

Numero Cromatico

• El numero cromatico de un grafo es el minimo numero de colores necesarios para colorear el grafo

 $\chi(G) = \min \{ k : \exists un coloreo propio con k colores de G \}$

K-color

 k-color es un problema de decision que consiste en responde a la pregunta

 $\xi\chi(G)$ ≤ k? ξG puede ser pintado con a lo sumo k colores?

Cuando coloreemos nos vamos a hacer esta pregunta

Algoritmo greedy de coloreo

```
C(v_1) = 1

for k = 1, 2, ..., n:

C(v_k) = \min(j \in \{1, 2, ..., n\} : C(v_i) \neq j \forall i \leq k-1) tal que (v_i, v_k) \in E)
```

- Al primer vertice se le asigna el primer color disponible
- Luego para el resto de vertices se le asigna el minimo color disponible (Color no ocupado por algun vecino)
- ° El orden de los vertices influye en la cantidad de colores
- Ejemplo \rightarrow V = [1, 2, 3, 4], E = [12, 13, 14]

color
$$\frac{1}{1}$$
 $\frac{2}{2}$ $\xrightarrow{4}$ Coloreo propio

Cotas inferiores para χ(G)

- Las cotas inferiores ya definidas para el numero cromatico nos dice
 - ° "Que al menos se necesitan k colores para G"
 - Estas cotas definidas nos ayudaran a ver que cantidad minima de colores se necesita de por si para el grafo
 - ° La mayoria de las cotas se logra definir buscando un subgrafo H en G talque $\chi(H) \le \chi(G)$
- Cotas

$$\circ$$
 1 $\leq \chi(G) \leq n$

$$\circ \chi(H) \leq \chi(G) \leq \Delta(G) + 1$$

$$\circ \chi(K_n) \leq n$$

$$\circ \chi(C_{2n}) \leq 2$$

$$\circ \chi(C_{2n+1}) \leq 3$$

°
$$\chi(G)$$
 ≤ 2 (G bipartito)

Encontrar $\chi(G)$

- Si decimos que $\chi(G) = k$ debemos probarlo
 - Debemos seguir dos pasos para lograr probar esto

1. <u>Dar un coloreo propio de G con k colores</u>

- ° Esta prueba parte del "∃ coloreo propio con k colores para G"
- Definimos un coloreo propio con k colores
- La mayoria de veces tendremos que definir funciones que colorean vertices dependiendo de su indice (ej C(xi) = i mod 2)

2. Probar que no existe ningun coloreo propio para k-1 colores de G

- Una vez hecho el paso 1 probaremos que es el minimo k posible preguntandonos
- ° Si " ¿ $\chi(G) \leq k-1$? "
- Entonces una manera util de empezar es chequear si ∃alguna cota inferior de las ya definidas anteriormente (chequeando subgrafos, bipartito, etc.)
- En el caso que ninguna cota aparezca deberemos demostrar por el absurdo
- Asumimos que tenemos k-1 colores disponibles y vamos coloreando hasta llegar a un absurdo donde con los k-1 colores encontremos que no es propio

Teorema de Brooks

- El teorema de Brooks nos dice que
 - ° Dado que $\chi(G) \le \Delta(G) + 1$ es una cota para $\chi(G)$
 - ¿Que tan buena es esa cota?
 - Veamos que algunos grafos dicha cota es:

$$\chi(C_{2k+1}) = 3 = 2 + 1$$
 y $\Delta(C_{2k+1}) = 2$
 $\chi(K_n) = n = (n-1) + 1$ y $\Delta(K_n) = n - 1$

 El T. de Brooks baja la cota para grafos conexos que no sean ciclos impares ni completos

Sea G conexo, $G \neq C_{2k+1}$, $G \neq K_n \Rightarrow \chi(G) \leq \Delta(G)$

 O sea existe un ordenamiento de los vertices talque greedy colorea todos los vertices

VIT (Very important Theorem)

- Sea G un grafo con un coloreo propio con r colores $\{0,1,...,r-1\}$ y sea π : $\{0,1,...,r-1\} \rightarrow \{0,1,...,r-1\}$ una biyeccion
 - Sea $V_i = \{ x \in V: C(x) = i \}, i = 0,1,...,r-1$
 - O sea tenemos una biyeccion con los vertices y sus colores
 - Ordenamos los vertices colocando primero
 - $V_{\pi(0)}, V_{\pi(1)}, \dots, V_{\pi(r-1)}$
 - Greedy en ese orden colorea G con r colores o menos jamas podria dar con mas colores que r en ese orden
 - \circ Ejemplo: V = [1,2,3,4] C=[0,1,0,2]
 - $\circ V_{\pi(0)} = [1,3], V_{\pi(1)} = [2], V_{\pi(2)} = [4]$
 - ° Reordenando $V_{\pi(0)}++V_{\pi(1)}++V_{\pi(2)}=[1,3,2,4]<$ greedy again