实验十 8421 码检测电路以及十进制同步计数器

姓名 侯少森 学号 18340055

一、8421 码检测电路设计

1. 实验内容

设电路输入为 X,电路输出为 F,当输入为非法码时输出为 1,否则输出为 0。假设起始状态 S_0 ,从该状态开始根据输入是 0 还是 1,将分别转换到两个不同的状态 S_1 和 S_2 ,从 S_1 和 S_2 接收第二个码元,又根据是 0 还是 1 又各自转换到两个不同的新状态。然后再接收第三、第四码元。在接收第四个码元后,根据所接收的代码是否是非法码而确定其输出是否是 1,并回到初始状态 S_0 ,准备接受新的一组码组。

原始状态转换表:

//\/\/\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
S	0	1
S ₀	S ₁ /0	S ₂ /0
S_1	S ₃ /0	S ₄ /0
S ₂	S ₅ /0	S ₆ /0
S ₃	S ₇ /0	S ₈ /0
S ₄	S ₉ /0	S ₁₀ /0
S_5	S ₁₁ /0	S ₁₂ /0
S ₆	S ₁₃ /0	S ₁₄ /0
S ₇	S ₀ /0	S ₀ /0
S ₈	S ₀ /0	S ₀ /1
S ₉	S ₀ /0	S ₀ /1
S ₁₀	S ₀ /0	S ₀ /1
S ₁₁	S ₀ /0	S ₀ /0
S ₁₂	S ₀ /0	S ₀ /1
S ₁₃	S ₀ /0	S ₀ /1
S ₁₄	S ₀ /0	S ₀ /1

将其等效状态合并,得到:

S X	0	1
S ₀	S ₁ /0	S ₁ /0
S_1	S ₃ /0	S ₄ /0
S_3	S ₇ /0	S ₈ /0
S_4	S ₈ /0	S ₈ /0
S ₇	S ₀ /0	S ₀ /0
S ₈	S ₀ /0	S ₀ /1

按照老师提供的状态分配方案,可得到:

Q_2Q_1	00	01	11	10
Q_3				
0	A	В	С	D
1	E	F	X	X

Х	0	1
$Q_3Q_2Q_1$		
000	010/0	010/0
001	011/0	010/0
011	100/0	101/0
010	101/0	101/0
100	000/0	000/0
101	000/0	000/1

由此可得 Q3Q2Q1 的次态卡诺图:

 Q_1 :

XQ_3 Q_2Q_1	00	01	11	10
00	1	1	0	1
01	0	0	X	X
11	0	0	X	X
10	1	0	1	1

 Q_2 :

$\overline{XQ_3}$ $\overline{Q_2}$ $\overline{Q_1}$	00	01	11	10
00	0	1	0	0
01	0	0	X	X
11	0	0	X	X
10	0	1	0	0

 Q_3 :

XQ_3 Q_2Q_1	00	01	11	10
00	0	0	1	1
01	0	0	X	X
11	0	0	X	X
10	0	0	1	1

由此可得表达式:

$$Q_1 = \ \overline{X} \ \overline{Q}_3 \ \overline{Q}_2 + \ \overline{Q}_3 \ \overline{Q}_1 + X \ \overline{Q}_3 Q_2 = \ \overline{Q}_3 \ \overline{Q}_1 + \ \overline{Q}_3 \left(\ \overline{Q}_2 \oplus X \right) Q_1$$

 $Q_2 = \ \overline{Q}_3 \ \overline{Q}_2 Q_1$

 $Q_3=Q_2 \overline{Q}_3$

$$J_{1} = \overline{Q}_{3}$$

$$K_1 = \overline{Q3} (\overline{Q2} \oplus X)$$

$$J_2 = Q_3Q_1$$

$$K_2=1$$

$$J_3=Q_2$$

$$K_3=1$$

F:

Q_2	00	01	11	10
00	0	0	0	0
01	0	0	X	X
11	0	1	X	X
10	0	0	0	0

得到输出 F 的表达式为:

 $F=XQ_3Q_1$

2. 仿真电路与结果

(1)在 proteus 上设计出仿真电路图:

(2)点击运行,得到的仿真结果图为:

3. 实验结果与分析

- (1)按照仿真电路图连接实验电路.
- (2)实验结果图如下:

二、特殊的十进制同步计数器设计

1. 实验内容

(1)十进制转换状态图为:

(2)作出次态卡诺图:

Q1Q0	00	01	11	10
Q3Q2				
00	X	0010	0100	0011
01	0101	0110	1000	0111
11	X	X	X	X
10	1001	1010	X	0001

(3)化简次态卡诺图:

Q0:

Q1Q0	00	01	11	10
Q3Q2				
00	X	0	0	1
01	1	0	0	1
11	X	X	X	X
10	1	0	X	1

Q1:

Q1Q0	00	01	11	10
Q3Q2				
00	X	1	0	1
01	0	1	0	1
11	X	X	X	X
10	0	1	X	0

Q2:

Q1Q0	00	01	11	10
Q3Q2				
00	X	0	1	0
01	1	1	0	1
11	X	X	X	X
10	0	0	X	0

Q3:

Q1Q0	00	01	11	10
Q3Q2				
00	X	0	0	0
01	0	0	1	0
11	X	X	X	X
10	1	1	X	0

得到表达式为:

$$Q_0^{\ N+1} = \ \overline{Q}_0$$

$$Q_1^{\ N+1} = \ \overline{Q}_1 Q_0 + \ \overline{Q}_3 Q_1 \ \overline{Q}_0$$

$$Q_2^{\,N+1} {=} Q_1 Q_0 \ \overline{Q}_2 {+} \left(\ \overline{Q}_3 \ \overline{Q}_1 {+} \ \overline{Q}_3 \ \overline{Q}_0 \right) Q_2$$

$$Q_{3}^{\ N+1} \!\!=\!\! Q_{3} \ \overline{Q}_{1} \!+\! Q_{2} Q_{1} Q_{0}$$

(4)同理可得 J-K 触发器的表达式:

 $J_0=1$

 $K_0=1$

 $J_1=Q_0$

 $K_1 = \overline{\overline{Q}_3} \overline{\overline{Q}}_0$

 $J_2 = Q_1Q_0$

 $K_2 = \overline{Q}_3 \overline{Q}_1 \overline{Q}_0$

 $J_3 = Q_2 Q_1 Q_0$

 $K_3=Q_1\overline{Q_2Q_1Q_0}$

(5)检查自启动:

Q1Q0	00	01	11	10
Q3Q2				
00	0001	0010	0100	0011
01	0101	0110	1000	0111
11	1001	1010	1000	0101
10	1001	1010	0100	0001

2. 仿真电路与结果

(1)在 proteus 上设计出仿真电路图:

(2)点击运行,得到的仿真结果图如下:

3. 实验结果与分析

- (1)按照仿真电路图在实验箱上接好电路:
- (2)实验结果图如下:

三、实验总结

- (1)耐心很重要,做8421码检测电路时,遇到了实验箱部分功能损坏的险象,所以做了很多次,十分考验耐心.
- (2)熟悉了 J-K 触发器的逻辑功能, 掌握了 J-K 触发器构成计数器的方法.