Finite Difference Methods

IPCST Seoul National University

Modeling by FDM

- FDM for elliptic PDEs
 - Static models: Heat distribution, astronomy, electromagnetism, steady-state flow
- FDM for parabolic PDEs
 - Heat conduction, diffusion, option pricing
- FDM for hyperbolic PDEs
 - Advection, wave
- FDM for mixed PDEs
 - Transonic flows

Steady-state Solution of Parabolic PDE

- Ex.) $\partial_t u = D \triangle u + f(x)$
 - The steady-state solution of this equation is obtained by setting $\partial_t u = 0$.

$$\triangleright \triangle u = -f(x)/D$$

This is an elliptic equation.

FDM for Elliptic PDEs

- Stencil + linear algebra
 - Stencil: 3-point (1-D), 5-point (2-D), 7-point (3-D),
 - Linear algebra: direct or iterative
- Iterative FDM
 - Unified formulation of 'stencil + linear algebra'
 - Better for huge sparse matrices
 - Fixed point: Jacobi, Gauss-Seidel, SOR,
 - Krylov solvers: steepest descent, conjugate gradient, Newton-Krylov,

FDM for 1-D Elliptic Model

$$\triangle u = f \rightarrow Au = f (A = \triangle_h u)$$

- Truncation error at point x_i : $\tau_i \approx (1/12)h^2u_{xxxx}$
- Matrix analysis can prove convergence with order 2.

Convergence

- Truncation error: $\tau = Au_{\text{exact}} Au_{\text{approx}}$
- Actual error: $e = u_{\text{exact}} u_{\text{approx}}$
- A numerical method is
 - Consistent if $||\tau|| \rightarrow 0$ as $h \rightarrow 0$
 - Stable if $||\mathbf{A}^{-1}|| \leq \text{constant} (:: \mathbf{A}^{-1}\tau = \mathbf{e})$
 - Convergent if ||e|| → 0 as h → 0
 - Global error \rightarrow 0 as $h \rightarrow$ 0
- √ Convergence = stability + consistency

$$\triangle_h u = (u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j})/h^2$$

Local truncation error

$$\tau_{i,j} = (u_{xxxx} + u_{yyyy})h^2/12 + O(h^4)$$

- Convergent with order 2 for $\triangle u = f(x)$ $(u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j})/h^2 = f_{i,j}$

- Matrix representation
 - Usual ordering →
 - $A (= \triangle_h u)$: $m^2 \times m^2$ matrix

$$\frac{1}{h^2} \begin{bmatrix}
T & I & 0 & 0 \\
I & T & \ddots & 0 \\
0 & \ddots & \ddots & I \\
\hline
0 & 0 & I & T
\end{bmatrix}$$

$$m = 6$$
 case

$$I = \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{bmatrix} \quad T = \begin{bmatrix} -4 & 1 & & 0 \\ 1 & -4 & \ddots & \\ & \ddots & \ddots & 1 \\ 0 & & 1 & -4 \end{bmatrix}$$

- *T,I* : *m*×*m* matrices
- Ill-conditioned for Krylov linear algebra solvers

- Matrix representation
 - Alternative ordering →
 - $A (= \triangle_h u)$: $m^2 \times m^2$ matrix

- D = -4I
- **D**,**H**: $(m^2/2) \times (m^2/2)$ matrices

$$I = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j} = h^2 f_{i,j}$$

- Applying boundary conditions
 - Dirichlet B.C.: replacement by values
 - Ex.) $u(x,0) = g(x) \rightarrow u_{i,0} = g_i$ $\rightarrow u_{i-1,1} + u_{i+1,1} + u_{i,2} - 4u_{i,1} = h^2 f_{i,1} - g_i$
 - Neumann B.C.: replacement by terms
 - Forward FD ex.) $u_x(0,y) = g(y) \rightarrow -3u_{0,j} + 4u_{1,j} u_{2,j} = 2hg_j$
 - \rightarrow (2/3) $u_{2,j} + u_{1,j-1} + u_{1,j+1} (8/3)u_{1,j} = h^2 f_{i,j} + (2/3)hg_j$
 - Ghost boundary ex.) $u_x(0,y) = g(y) \rightarrow u_{-1,j} u_{1,j} = 2hg_j$
 - $\rightarrow 2u_{1,j} + u_{0,j-1} + u_{0,j+1} 4u_{0,j} = h^2 f_{i,j} + 2hg_1$
 - ✓ Matrix elements for $u_{0,i}$ are needed.

參考: Nine-point Stencil (2D)

9-point discrete Laplacian (2D)

$$\triangle_h u = (4u_{i-1,j} + 4u_{i+1,j} + 4u_{i,j-1} + 4u_{i,j+1}$$

$$+ u_{i-1,j-1} + u_{i+1,j-1} + u_{i-1,j+1} + u_{i+1,j+1}$$

- $-20u_{i,j}$)/(6 h^2)
 - Local truncation error

$$\tau_{i,j} = (h^2/12) \triangle (\triangle u) + O(h^4)$$

- $\triangle(\triangle u) = \triangle f$ if $\triangle u = f$
- 5-point stencil can be used to calculate $\triangle f$
- You can obtain a method of order 4 accuracy by setting $f_{i,j} \rightarrow f_{i,j} + (h^2/12) \triangle f$

參考: Notes on Linear algebra

- Krylov iterative solvers are most frequently used with matrices from stencils for FDM of $\triangle u = f(x)$
 - Steepest Descent
 - Conjugate Gradient
 - Preconditioned Conjugate Gradient
 - $A = \triangle_h u$ must be symmetric positive definite or negative definite for these methods.
 - For nonlinear PDEs, Newton-Krylov methods are used.

Iterative Methods for Elliptic PDEs//

- For the 2-D equation $\triangle u = f(x)$
 - Jacobi

$$u_{i,j}^{k+1} = (u_{i-1,j}^{k} + u_{i+1,j}^{k} + u_{i,j-1}^{k} + u_{i,j+1}^{k} - h^{2}f_{i,j})/4$$

- This can be derived from the 5-point stencil.
- Gauss-Seidel

$$u_{i,j}^{k+1} = (u_{i-1,j}^{k+1} + u_{i+1,j}^{k} + u_{i,j-1}^{k+1} + u_{i,j+1}^{k} - h^2 f_{i,j}^{k})/4$$

- Twice faster than Jacobi
- \bullet Computational time $\sim O(m^4 \log m)$
 - Grid size = m^2
 - $> O(m^2)$ per each iteration $> O(m^2 \log m)$ iterations

Iterative Methods for Elliptic PDEs//

- For the 2-D equation $\triangle u = f(x)$
 - SOR method

$$u_{i,j}^{k+1} = u_{i,j}^{k} + \omega \left(u_{i,j \text{ [Gauss-Seidel]}} - u_{i,j}^{k} \right)$$

$$= \omega \left(u_{i-1,j}^{k+1} + u_{i+1,j}^{k} + u_{i,j-1}^{k+1} + u_{i,j+1}^{k} - h^{2} f_{i,j} \right) / 4$$

$$+ (1 - \omega) u_{i,j}^{k}$$

- $\omega = 1 \rightarrow \text{Gauss-Seidel}$
- $\omega > 1 \rightarrow \text{Successive over-relaxation (SOR)}$
 - It converges more rapidly than Jacobi or Gauss-Seidel
 - Rapidest when $\omega \approx 2$ $2\pi h$
 - It won't converge when $\omega \geq 2$

Iterative Methods for Elliptic PDEs//

$$u_{i,j}^{k+1} = (u_{i-1,j}^{k} + u_{i+1,j}^{k} + u_{i,j-1}^{k} + u_{i,j+1}^{k} - h^{2}f_{i,j})/4$$

- Applying boundary conditions (in Jacobi)
 - Dirichlet B.C.: replacement by values

• Ex.)
$$u(x,0) = g(x) \rightarrow u_{i,0} = g_i$$

 $\rightarrow u_{i,i}^{k+1} = (u_{i-1,1}^k + u_{i+1,1}^k + u_{i,2}^k - h^2 f_{i,1} + g_i)/4$

- Neumann B.C.: replacement by terms
 - Forward FD ex.) $u_x(0,y) = g(y) \rightarrow -3u_{0,j} + 4u_{1,j} u_{2,j} = 2hg_j$

$$\rightarrow u_{1,j}^{k+1} = (2u_{2,j}^{k} + 3u_{1,j-1}^{k} + 3u_{1,j+1}^{k} - 3h^{2}f_{i,j} - 2hg_{j})/8$$

• Ghost boundary ex.) $u_{x}(0,y) = g(y) \to u_{-1,j} - u_{1,j} = 2hg_{j}$

$$\rightarrow u_{0,j}^{k+1} = (2u_{1,j}^{k} + u_{0,j-1}^{k} + u_{0,j+1}^{k} - h^{2}f_{i,j} - 2hg_{j})/4$$

Do It Yourself

 Edit your Jacobi, Gauss-Seidel, or SOR code to solve this PDE problem.

$$u_{xx} + u_{yy} = 1$$
, $0 < x < 1$, $0 < y < 1$

Boundary conditions

$$u(x,0) = 0, u(x,1) = x,$$
 $0 \le x \le 1$
 $u(0,y) = 0, u(1,y) = y,$ $0 \le y \le 1$
– Wen Shen 11.5-1

Try a small number of grid intervals and check out your result.

[After this class]: Try finer grids.

參考: Multi-Grid Technique

- Drawbacks of iterative methods
 - Smooth discrete error modes decay hard while highly oscillating error modes decay fast.
- Damped Jacobi method
 - Jacobi: $u^{k+1} = G u^k$
 - Damped Jacobi: $\boldsymbol{u}^{k+1} = (1 \omega) \boldsymbol{u}^k + \omega \boldsymbol{G} \boldsymbol{u}^k$
 - Usually, $\omega = 2/3 \ (\mu = 1/3)$
 - The damped one is better for multi-grid approach than the original Jacobi.

参考: Multi-Grid Technique

- 2-grid V-cycle for Gauss-Seidel (or Jacobi)
 - Case of h and 2h grids ($\mu = 0.5$)
 - 1. Iterate 3 steps for $\mathbf{A}\mathbf{u} = \mathbf{f}$
 - 2. Restrict the residual $\mathbf{r}^k = \mathbf{A}\mathbf{u}^k \mathbf{f}$ by $\mathbf{r}_{2h} = \mathbf{R}_h^{2h}\mathbf{r}_h$
 - ho \mathbf{R}_h^{2h} : restriction matrix $(h \to 2h)$ $\mathbf{R}_h^{2h} = \mu (\mathbf{I}_{2h}^h)^T$
 - 3. Solve $\mathbf{A}_{2h}\mathbf{e}_{2h} = \mathbf{r}_{2h}$ or iterate for it on the coarse grid
 - 4. Interpolate \mathbf{e}_{2h} by $\mathbf{e}_h = \mathbf{I}_{2h}{}^h \mathbf{e}_{2h}$
 - $ightharpoonup I_{2h}^h$: (linear) interpolation matrix $(2h \rightarrow h)$
 - 5. Iterate 3 more steps on the fine grid for $\mathbf{A}\mathbf{u} = \mathbf{f}$

參考: Multi-Grid Technique

Restriction example

$$\frac{1}{4} \begin{bmatrix} 1 & 2 & 1 & & & \\ & & 1 & 2 & 1 & \\ & & & 1 & 2 & 1 \end{bmatrix}$$

Other types of multigrid cycles ($\mu = 0.5$)

4-grid V-cycle

W-cycle

Full multigrid cycle

- Computational time $\sim O(m^{o})$
 - O(1) iterations. d: space dimension

FDM for Parabolic PDE

- Method of lines
- Forward Euler
- Backward Euler
- Crank-Nicolson method
- Alternate direction implicit method

Backward Euler Method

1-D diffusion equation

$$u_t = Du_{xx}$$

• Let
$$U_i^k = u(x_i, t_k)$$
 where $x_i = ih + x_0, t_k = k\delta + t_0$ (uniform grids)
$$u_t \to \frac{U_i^k - U_i^{k-1}}{\delta}$$

$$u_{xx} \to \frac{U_{i+1}^k - 2U_i^k + U_{i-1}^k}{h^2}$$

$$u_t = Du_{xx} \to \frac{U_i^k - U_i^{k-1}}{\delta} = D \frac{U_{i+1}^k - 2U_i^k + U_{i-1}^k}{h^2}$$

• Let $\gamma = D\delta/h^2$, then $-\gamma U_{i+1}^k + (1+2\gamma)U_i^k - \gamma U_{i-1}^k = U_i^{k-1}$

Backward Euler Method

$$-\gamma U_{i+1}^k + (1+2\gamma)U_i^k - \gamma U_{i-1}^k = U_i^{k-1}$$

- Matrix-vector form: $\mathbf{M}\mathbf{u}^k = \mathbf{u}^{k-1}$

$$\mathbf{M}\mathbf{u}^k = \mathbf{u}^{k-1}$$

In case of Dirichlet B. C., 0 at the ends,

$$\mathbf{M} = \begin{pmatrix} 1 + 2\gamma & -\gamma & 0 & 0 & \cdots & 0 \\ -\gamma & 1 + 2\gamma & -\gamma & 0 & \cdots & 0 \\ 0 & -\gamma & 1 + 2\gamma & -\gamma & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & -\gamma & 1 + 2\gamma & -\gamma & 0 \\ 0 & \cdots & 0 & -\gamma & 1 + 2\gamma & -\gamma \\ 0 & \cdots & 0 & 0 & -\gamma & 1 + 2\gamma \end{pmatrix}$$

Backward Euler Method

1-D diffusion equation

$$-\gamma U_{i+1}^k + (1+2\gamma)U_i^k - \gamma U_{i-1}^k = U_i^{k-1}$$

- The discrete maximum principle always holds.

$$(1 + 2\gamma) |U_{i}^{k}| \leq |U_{i}^{k-1}| + \gamma |U_{i+1}^{k}| + \gamma |U_{i-1}^{k}|$$

$$\to (1 + 2\gamma) \max_{i} |U_{i}^{k}| \leq \max_{i} |U_{i}^{k-1}| + 2\gamma \max_{i} |U_{i}^{k}|$$

$$\therefore \max_{i} |U_{i}^{k}| \leq \max_{i} |U_{i}^{k-1}|$$

Accuracy

• Time: 1st order

Space: 2nd order

Crank-Nicolson Method

- Based on the trapezoidal rule (implicit method)
- If a PDE has the form of

$$\partial_t u = f(u, x, y, t, \partial_x u, \partial_y u, \partial_x^2 u, \partial_y^2 u)$$

By discretization, Crank-Nicolson method gives

$$(U_i^{n+1} - U_i^n)/\delta = (F_i^n + F_i^{n+1})/2$$

where $U_i^n = u(x_i, t_n)$ and F_i^n : value of f at t_n and x_i

- Time: 2-point. Space: any finite difference
- Unconditional stability and 2nd order accuracy
- Used for
 - Parabolic PDEs and advection equations

Crank-Nicolson Method

$$\rightarrow \frac{u(\vec{x},t+\delta) - u(\vec{x},t)}{\delta} = \frac{\triangle_h u(\vec{x},t+\delta) + \triangle_h u(\vec{x},t)}{2}$$

For the 2-D case,

$$\begin{split} u_{i,j}^{n+1} &= u_{i,j}^n + \frac{1}{2} \frac{\mathcal{S}}{h^2} \left[(u_{i+1,j}^{n+1} + u_{i-1,j}^{n+1} + u_{i,j+1}^{n+1} + u_{i,j-1}^{n+1} - 4u_{i,j}^{n+1}) \right. \\ &\quad + (u_{i+1,j}^n + u_{i-1,j}^n + u_{i,j+1}^n + u_{i,j-1}^n - 4u_{i,j}^n) \right] \\ & \boldsymbol{\rightarrow} \quad (1 + 2\mu) u_{i,j}^{n+1} - \frac{\mu}{2} \left(u_{i+1,j}^{n+1} + u_{i-1,j}^{n+1} + u_{i,j+1}^{n+1} + u_{i,j-1}^{n+1} \right) \\ &= (1 - 2\mu) u_{i,j}^n + \frac{\mu}{2} \left(u_{i+1,j}^n + u_{i-1,j}^n + u_{i,j+1}^n + u_{i,j-1}^n \right). \\ &\quad \text{where } \mu = \delta/h^2 \end{split}$$

 \rightarrow matrix form: $(\mathbf{I} + \mathbf{C}) \mathbf{u}^{n+1} = (\mathbf{I} - \mathbf{C}) \mathbf{u}^n$

參考: ADI Method

- Alternate Direction Implicit Method
- Solving a 2-D or 3-D diffusion equation with Crank-Nicolson needs large cost due to the matrix with a large band width.
- Splitting the matrix into tridiagonal matrices is possible by implicit differentiation in one direction and another.
 - Two stages for 2-D
 - Three stages for 3-D

參考: ADI Method

$$u_{i,j}^{n+1/2} = u_{i,j}^{n} + \frac{1}{2} \frac{\delta}{h^{2}} \left[\left(u_{i+1,j}^{n+1/2} - 2u_{i,j}^{n+1/2} + u_{i-1,j}^{n+1/2} \right) + \left(u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n} \right) \right]$$

$$u_{i,j}^{n+1} = u_{i,j}^{n+1/2} + \frac{1}{2} \frac{\delta}{h^2} \left[\left(u_{i+1,j}^{n+1/2} - 2u_{i,j}^{n+1/2} + u_{i-1,j}^{n+1/2} \right) + \left(u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1} \right) \right]$$

- Two tridiagonal matrix equation steps
- Cf.) Crank-Nicolson

$$u_{i,j}^{n+1} = u_{i,j}^{n} + \frac{1}{2} \frac{\delta}{h^{2}} \left[\left(u_{i+1,j}^{n+1} + u_{i-1,j}^{n+1} + u_{i,j+1}^{n+1} + u_{i,j-1}^{n+1} - 4u_{i,j}^{n+1} \right) + \left(u_{i+1,j}^{n} + u_{i-1,j}^{n} + u_{i,j+1}^{n} + u_{i,j-1}^{n} - 4u_{i,j}^{n} \right) \right]$$

參考: ADI Method

- 2nd order accuracy
 - First order accuracy for each step
 - But the 1st order errors cancel each other.
- Unconditionally stable
- For Dirichlet boundary conditions
 - $> u^{n+1/2}$ values at boundaries can be calculated by combining two equations.
- There are advanced versions of ADI methods.

Advection Equations

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$

• For incompressible flows $(\nabla \cdot \mathbf{u} = 0)$,

$$\frac{\partial \psi}{\partial t} + \mathbf{u} \cdot \nabla \psi = 0.$$

The simplest 1-D case

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$$

a: constant

$$\checkmark$$
 Cf.) $\left(\frac{\partial}{\partial t} - a\frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} + a\frac{\partial}{\partial x}\right) u = \left(\frac{\partial^2}{\partial t^2} - a^2\frac{\partial^2}{\partial x^2}\right) u = 0$

- Implicit methods
 - Backward central
 - Crank-Nicolson
- Explicit methods
 - Upwind methods
 - Lax-Friedrichs
 - Leapfrog
 - Lax-Wendroff

• FDM for $u_t + au_x = 0$

Crank-Nicolson

$$u_i^{k+1} - u_i^k + a\sigma(u_{i+1}^{k+1} - u_{i-1}^{k+1} + u_{i+1}^k - u_{i-1}^k)/4 = 0$$

$$\checkmark \sigma = \delta/h$$

· Cf.) Backward central

(BTCS: backward time central space)

$$u_i^{k+1} - u_i^k + a\sigma(u_{i+1}^{k+1} - u_{i-1}^{k+1})/2 = 0$$

Cf.) Forward central (FTCS)

$$u_i^{k+1} - u_i^k + a\sigma(u_{i+1}^k - u_{i-1}^k)/2 = 0$$

- FDM for $u_t + au_x = 0$
 - Forward upwind (if a > 0) $u_i^{k+1} u_i^k + a\sigma(u_i^k u_{i-1}^k) = 0$

 - Backward upwind (if a < 0) $u_i^{k+1} = u_i^k a\sigma(u_{i+1}^k u_i^k)$
 - $\checkmark \sigma = \delta/h$
 - Cf.) Forward central $u_i^{k+1} u_i^k + a\sigma(u_{i+1}^k u_{i-1}^k)/2 = 0$

- Stable condition for explicit methods
 - CFL condition

A numerical domain of dependence must contain the true domain of dependence.

$$\delta \le h/|a| \tag{1-D}$$

$$|a_x|/h_x + |a_y|/h_y \le 1/\delta \tag{2-D}$$

This means that information outside the region limited by the speed is meaningless.

- FDM for $u_t + au_x = 0$
 - Lax-Friedrichs

$$u_i^{k+1} = (u_{i-1}^k + u_{i+1}^k)/2 - a\sigma(u_{i+1}^k - u_{i-1}^k)/2$$

$$\checkmark \sigma = \delta/h$$

· Cf.) Leapfrog

$$u_i^{k+1} = u_i^{k-1} - a\sigma(u_{i+1}^k - u_{i-1}^k)$$

Cf.) Forward central

$$u_i^{k+1} = u_i^k - a\sigma(u_{i+1}^k - u_{i-1}^k)/2$$

- FDM for $u_t + au_x = 0$
 - Lax-Wendroff

$$u_i^{k+1} = u_i^k - a\sigma(u_{i+1}^k - u_{i-1}^k)/2 + a^2 \cdot \sigma^2 \cdot (u_{i+1}^k - 2u_i^k + u_{i-1}^k)/2$$

$$\checkmark \sigma = \delta/h$$

- ❖ Combinations of the Lax-Wendroff and the upwind methods are possible and called the 'Beam-Warming' methods.
- Cf.) Forward central $u_i^{k+1} = u_i^k a\sigma(u_{i+1}^k u_{i-1}^k)/2$

Stability

- Forward central: unstable
- Backward central: unconditionally stable
- Crank-Nicolson: unconditionally stable
- Upwind: conditionally stable
- Lax-Friedrichs: conditionally stable
- Leapfrog: conditionally stable
- Lax-Wendroff: conditionally stable

参考: FDM for Advection Equations

Accuracy

Method	Time	Space
Backward central	1 st order	2 nd order
Crank-Nicolson	2 nd order	2 nd order
Upwind	1 st order	2 nd order
Lax-Friedrichs	1 st order	2 nd order
Leapfrog	2 nd order	2 nd order
Lax-Wendroff	2 nd order	2 nd order

参考: FDM for Advection Equations//

- Dissipation-dispersion
 - Try wavelike solutions $Ae^{i(kx-\omega t)}$ to

$$u_t + au_x = Du_{xx} \quad (1)$$

$$u_t + au_x = \mu u_{xxx} \quad (2)$$

$$\Rightarrow (1) \ \omega = ak - iDk^2 \quad (2) \ \omega = ak - \mu k^3$$

$$\Rightarrow (1) \ u \sim \exp(-Dk^2t)\exp[ik(x - at)] \quad \text{(dissipative)}$$

$$(2) \ u \sim \exp[ik(x - at + \mu k^2t)] \quad \text{(dispersive)}$$

- Solution of (1) decays as time.
- Only waves of single k hold their form in (2).

参考: FDM for Advection Equations//

- Dissipation-dispersion
 - Taylor expansion of a FDM formula can give the 2nd or 3rd derivative terms which have the same form with its truncation error.
 - Ex.) Upwind

• +
$$(a/2)(h - a\delta)u_{xx} + O(h^2) + O(\delta^2) + O(h\delta) +$$

- Ex.) Lax-Wendroff

• +
$$(a/6)(a^2\delta^2 - h^2)u_{xxx} + O(h^3) + O(\delta^3) + \dots$$

参考: FDM for Advection Equations

Dissipation-dispersion

Method	Dissipation	Dispersion
Backward central	Large	Large
Crank-Nicolson	None	Large
Upwind	Large	Small
Lax-Friedrichs	Large	Small
Leapfrog	None	Small
Lax-Wendroff	Small	Small

參考: Fourier Stability Analysis

- Von Neumann stability analysis
- If we apply the discrete Fourier transform to a kind of FDM and get

$$U_j^n = u(x_j, t_n) = \Xi_n(k) \exp(ikj\Delta x)$$

Then the method is unstable if

$$|\Xi_{n+1}(k)/\Xi_n(k)| > 1$$

The CFL condition can be derived from this.

參考: Fourier Stability Analysis

- Ex.) Forward central (FTCS) for $u_t + au_x = 0$ $u_j^{n+1} - u_j^n + a\sigma(u_{j+1}^n - u_{j-1}^n)/2 = 0$
- $\Rightarrow \Xi_{n+1}(k)/\Xi_n(k) = 1 a\sigma\{\exp(ik\Delta x) \exp(-ik\Delta x)\}/2 = 1 ia\sigma\cdot\sin(k\Delta x)$
- $\rightarrow |\Xi_{n+1}(k)/\Xi_n(k)| = [1 + a^2\sigma^2\sin^2(k\Delta x)]^{1/2} > 1$
- \triangleright FTCS is unstable for $u_t + au_x = 0$

參考: FDM for Wave Equations

- A PDE like $\partial_t^2 u = a^2 \triangle u$ can become a system of 1st order PDEs with auxiliary variables.
 - → Apply FDM for advection equations
- System of equations

- For example,
$$q = au_x$$
, $r = au_y \& s = u_t$
 $\partial^2_t u = a^2 \triangle u \rightarrow q_t = as_x$
 $r_t = as_y$
 $s_t = a(q_x + r_y)$

參考: FDM for Wave Equations

Alternative way

Centered second order time difference

$$\frac{\partial^2 u}{\partial t^2} \to \frac{u(\vec{x}, t + \delta) - 2u(\vec{x}, t) + u(\vec{x}, t - \delta)}{\delta^2}$$

Ex.)
$$\partial^2_t u = a^2 \triangle u$$

$$\Rightarrow u(\vec{x}, t + \delta) = 2u(\vec{x}, t) - u(\vec{x}, t - \delta) + a^2 \delta^2 \triangle_h u(\vec{x}, t)$$

参考: Convection-Diffusion Equation

- Also known as advection-diffusion equation
- $u_t + au_x = Du_{xx}$
 - Even forward time central space (FTCS) FDM is possible. (Same stable condition with forward Euler for diffusion equation)
 - $-a\delta$ ≤ h^2 is safe if you apply Crank-Nicolson.
 - You can also apply the method of lines.

参考: FDM for the Black-Scholes Eq.//

$$V_t + \frac{1}{2}\sigma^2 s^2 V_{ss} + rsV_s - rV = 0$$

- ✓ A backward equation: A final condition is necessary instead of an initial condition.
- ✓ Boundary conditions
 - Depending on the final condition, but
 - s = 0: V(0, t) = constant
 - $s \rightarrow \infty$: calculation from the final option price

Discretization

- Time: $t_k = t_f k\delta \ (\delta = \Delta t)$
- Stock price (s): $s_i = ih$ ($h = \Delta s$)
- Option price (V): $V(s_i, t_k) \rightarrow V_{i,k}$

参考: FDM for the Black-Scholes Eq.//

$$V_t + \frac{1}{2}\sigma^2 s^2 V_{ss} + rsV_s - rV = 0$$

- Method 1 Euler method
 - Time derivative
 - Forward finite difference: explicit method
 - Stable condition: $\delta \le \sigma^{-2} N^{-2}$ where *N* is the grid number for *S*
 - · Backward finite difference: implicit method
 - Stock price derivative
 - Central finite difference (1st & 2nd order derivs.)
 - Stable condition: $\delta \leq \sigma^2 r^{-2}$
 - Forward or backward finite difference (1st order deriv.)
 - Forward for $rS \ge 0$ and backward for $rS \le 0$

参考: FDM for the Black-Scholes Eq.//

$$V_t + \frac{1}{2}\sigma^2 s^2 V_{ss} + rsV_s - rV = 0$$

- Method 2 Crank-Nicholson
 - Matrix-vector equation

$$\begin{split} A_{i,k+1}V_{i-1,k+1} + & \left(1 + B_{i,k+1}\right)V_{i,k+1} + C_{i,k+1}V_{i+1,k+1} \\ & = -A_{i,k}V_{i-1,k} + \left(1 - B_{i,k}\right)V_{i,k} - C_{i,k}V_{i+1,k} \end{split}$$

where

$$A_{i,k} = \frac{1}{4}\delta(\sigma_k^2 i^2 + r_k i)$$

$$B_{i,k} = -\frac{1}{2}\delta(\sigma_k^2 i^2 + r_k)$$

$$C_{i,k} = \frac{1}{4}\delta(\sigma_k^2 i^2 - r_k i)$$

参考: FDM for the Navier-Stokes Eq.

2-D incompressible Navier-Stokes equation

$$\rho_0 u_t + \rho_0 (\mathbf{u} \cdot \nabla) u = -p_x + \mu (u_{xx} + u_{yy})$$

$$\rho_0 v_t + \rho_0 (\mathbf{u} \cdot \nabla) v = -p_y + \mu (v_{xx} + v_{yy})$$

$$\mathbf{u} = (u, v)$$

- With the continuity equation: $\rho_0(u_x + v_y) = 0$
- In some cases, $p = \rho_0 U^2 = \text{const.}$

U: characteristic velocity*L*: characteristic length

- Reynolds number $Re = \rho_0 U L/\mu$
 - Used in equations of dimensionless variables
- Discretization
 - Space derivatives: usually central FD
 - Time derivatives: usually forward FD

参考: FDM for the Navier-Stokes Eq./

• Time-step δ limit

$$\mu \delta / h^2 \le 1/4 \& (|u| + |v|) \delta / \mu \le 2$$
 $(h = \Delta x = \Delta y)$

- Grid choice
 - Staggerd grid →
 - Or non-uniform
 - See A. B. Usov,
 Comput. Math. Math.
 Phys. 48, 464 (2008)

N. Rusli et al., Matematika 27, 1 (2011)

参考: FDM for the Navier-Stokes Eq.

- Algorithm
 - N. Rusli et al., Matematika 27, 1 (2011)
 - 1. Initialization: intermediate pressure field (close to average pressure)
 - 2. Find the intermediate velocity fields (close to average velocities) by solving the main PDEs
 - 3. Pressure correction
 - From a deformed continuity equation
 - 4. Editing velocity fields
 - 5. Repeat until convergence

參考: FDM for Euler-Tricomi Eq.

Euler-Tricomi equation

$$yu_{xx} + u_{yy} = 0$$

- Analytically solvable, usually
 - Exact polynomial solutions
 - Mostly used to test a numerical method.
- FDM formulation
 - u_{yy} : the central 2nd order finite difference
 - u_{xx} : the central 2nd order finite difference for y>0 and the backward finite difference for y<0

$$(U_{i,j} - 2U_{i-1,j} + U_{i-2,j})/h^2$$
 (1st order)
or $(2U_{i,j} - 5U_{i-1,j} + 4U_{i-2,j} - U_{i-3,j})/h^2$ (2nd order)

Mostly, the multi-grid technique is necessary.

References

- Wen Shen,
 An Introduction to Numerical Computation
- G. D. Smith,
 Numerical Solution of Partial Differential
 Equations: Finite Difference Methods
- J. C. Strikwerda,
 Finite Difference Schemes and Partial
 Differential Equations

References

- C. Moler,
 Numerical Computing with MATLAB
- D. M. Causon & C. G. Mingham,
 Introductory Finite Difference Methods for PDEs
- R. J. LeVeque,
 Finite Difference Methods for Differential Equations

References

- H. De Sterck & P. Ullrich,
 Introduction to Computational PDEs
- R. J. LeVeque,
 Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-state and Time-dependent Problems
- G. Strang, "Multigrid Methods"