Institut des sciences et technologie

Option: Electromécanique

Nom et Prénoms		Groupe	Note	
Nom et Prénoms				
Date:	Horaire:	Lab, N°	Lab. Nº	

TP:3 Redressement double alternance et filtrage

I. Objectifs:

- 1. Etude du redressement double-alternance.
- 2. Etude du filtrage capacitif.

II. Matériel utilisé: Pour la manipulation de ce TP, le matériel est le suivant :

- Une Alimentation stabilisée.
- Deux multimètres numériques.
- Câbles de connexion et sondes.
- \square Résistances de 1k Ω .
- □ Un oscilloscope.
- Quatre diodes de redressement.
- \Box Deux condensateurs de 100μF et 1000μF.

III. Complément théorique :

III.1) Définition:

La diode est **un dipôle non-linéaire et polarisé** (ou non-symétrique). Une diode consiste en une jonction PN, dans laquelle le courant circule du matériel de type p (anode) vers celui de type n (cathode). La diode est le **composant semi-conducteur** de base. Son fonctionnement est assimilable à celui d'un interrupteur (qui ne laisse passer le courant que dans un seul sens) commandé par une tension.

La caractéristique typique d'une diode a l'allure représentée sur le schéma suivant :

$$r_d = \frac{\Delta V}{\Delta I}$$

(r_d: la resistance dynamique)

III.2) Applications:

Une des applications principales des diodes consiste `a transformer un signal alternatif, dans lequel le sens de circulation des électrons s'inverse à chaque demi-période, en un signal dans lequel les électrons circulent en sens unique.

On donne:

-
$$V_0(V_{\text{moy}}) = \frac{1}{T} \int_0^T V(t) dt$$
, $V_{\text{eff}}^2 = \frac{1}{T} \int_0^T V^2(t) dt$, $f = \frac{1}{T}$, $\omega = 2\pi f$, $\theta = \omega t$

III.2.1) Redressement simple alternance:

- $V_0 = \frac{1}{2\pi} \int_0^{2\pi} \sin(\theta) d\theta$

III.2.2) Redressement double alternance et filtrage:

-Le taux d'ondulation: $\frac{\Delta V}{V_m} \approx \frac{1}{2RCf}$, $V_0 = V_m - \frac{\Delta v}{2}$. $(V_m = V_{max})$

 D_I

IV) Etude expérimentale

1. Redressement double-alternance

- réaliser le montage de la figure suivante :
- \triangleright Observer à l'oscilloscope la tension $V_R(t)$. Relever les valeurs suivantes :
- La valeur maximale de $V_R(t)$: $V_m =$
- La période de $V_R(t)$:

- > A l'aide du multimètre numérique mesurer :
- La valeur moyenne $V_R(t)$

(mode DC)

 $V_0 =$

2. Filtrage capacitif

- > réaliser le montage de la figure suivante :
- 4.1. Pour $C = 100 \mu F$
- \triangleright Observer à l'oscilloscope la tension $V_R(t)$. Relever les valeurs suivantes :
- La valeur maximale de $V_R(t)$: $V_m =$
- La période de $V_R(t)$:
- L'ondulation: $\Delta V =$

- ightharpoonup Reproduire de manière qualitative la courbe observée $V_R(t)$ sur papier millimétrique.
- > A l'aide du multimètre numérique mesurer :
- La valeur moyenne $V_R(t)$ (mode DC) $V_0 =$
- Pour $C = 1000 \mu F$ 4.2.
- \triangleright Observer à l'oscilloscope la tension $V_R(t)$. Relever les valeurs suivantes :
- La valeur maximale de $V_R(t)$: $V_m =$
- La période de $V_R(t)$:

Institut des sciences et technologie

Option: Electromécanique

- L'ondulation:

 $\Delta V =$

- \triangleright Reproduire de manière qualitative la courbe observée $V_R(t)$ sur papier millimétrique.
- > A l'aide du multimètre numérique mesurer :

La valeur moyenne $V_R(t)$

(mode DC)

 $V_0 =$

V. Calcul des différents paramètres du montage des étapes précédentes.

- A l'aide des mesures effectuées et des valeurs relever :
- 1. Redressement double-alternance
 - Calculer:
 - La valeur efficace, moyenne et la fréquence de $V_R(t)$.

 $V_{\it eff} =$

 $V_0 = .$

f =

- Comparer ces valeurs calculées avec celles mesurées avec le multimètre et avec la fréquence donnée (de $V_e(t)$).
- 2. Filtrage capacitif
- Calculer:
- Le taux de l'ondulation et la valeur moyenne de $V_R(t)$ pour $C = 100 \mu F$.

 $\frac{\Delta V}{V_{m}} =$

 $V_0 =$

- Le taux de l'ondulation et la valeur moyenne de $V_R(t)$ pour C = 1000 μ F.

 $\frac{\Delta V}{V_{-}} =$

 $V_0 =$

Comparer les valeurs de V_0 calculées avec celles mesurées avec le multimètre.

VI. Conclusion

- Faire une conclusion adéquate concernant ce TP.

VI) Comparaison entre les resultats théoriques et pratiques

~

Centre Universitaire de Mila

Institut des sciences et technologie

Option: Electromécanique

VII) Conclusion: Taire une conclusion adequate concernant ce 1P.					
	4				
	5				
		8			