Chapter 13: I/O Systems

O que "ele" faz?

Gerencia toda a comunicação entre dispositivos e sistema

- Tratamento de interrupções
- Tratamento de erros
- Interface entre dispositivos e o "sistema"

Overview

- Gerenciamento de I/O é o "componente" mais abrangente tanto no projeto quanto na operação de um S.O
 - Essencial para o funcionamento de qualquer sistema computacional
 - Grande variedade de dispositivos
 - Várias formas de realizar controle sobre eles
 - Gerenciamento de performance
 - Novos tipos de dispositivos desenvolvidos com frequência
- Portas, barramentos, controladores de dispositivos conectam a vários dispositivos;
- Drivers de dispositivos encapsulam detalhes dos dispositivos

Hardware de E/S

- Grande variedade quanto a:
 - Armazenamento
 - Tx de transmissão
 - Human-interface
- Conceitos comuns
 - Port ponto de conexão para o dispostivo
 - Bus daisy chain or acesso compartilhado
 - PCI bus common in PCs and servers, PCI Express (PCIe)
 - expansion bus interconecta dispositivos mais lentos
 - Controlador (host adapter) dispositivo eletrônico que controla porta, barramento e dispositivos
 - Pode ser integrado à placa principal ou separado (placa própria)
 - Contém processador, memória (privada), controlador de barramento...

Estrutura de barramento do PC

Dispositivos (I/O) "tratam" da mesma forma a informação?

Blocos

X

Caracteres

- Armazenamento da informação em blocos de tamanho fixo
- O endereçamento de cada bloco é único!
- Transferência, independente do sentido, acontece em blocos!
- Disco, floppy, pendrive, CD-ROM

Informação (envio e recepção) em caracteres

Não é endereçavel;

Impressora, interface de rede, mouse, teclado

Dispositivos (I/O) se comunicam em velocidades diferentes?

Dispositivo	Taxa de dados
Teclado	10 bytes/s
Mouse	100 bytes/s
Modem 56 K	7 KB/s
Scanner	400 KB/s
Filmadora camcorder digital	3,5 MB/s
Rede sem fio 802,11g	6,75 MB/s
CD-ROM 52x	7,8 MB/s
Fast Ethernet	12,5 MB/s
Cartão flash compacto	40 MB/s
FireWire (IEEE 1394)	50 MB/s
USB 2.0	60 MB/s
Padrão SONET OC-12	78 MB/s
Disco SCSI Ultra 2	80 MB/s
Gigabit Ethernet	125 MB/s
Drive de disco SATA	300 MB/s
Fita Ultrium	320 MB/s
Barramento PCI	528 MB/s

Tabela 5.1 Algumas taxas de dados típicas de dispositivos, placas de redes e barramentos.

Todos os dispositivos realizam operações de I/O da mesma forma?

E/S mapeada na memória

Figura 5.1 (a) Espaços de memória e E/S separados. (b) E/S mapeada na memória. (c) Híbrido.

A transferência por DMA (6 passos)

Acesso direto à memória (DMA)

Figura 5.3 Operação de transferência utilizando DMA.

Interrupções

Figura 5.4 Como ocorre uma interrupção. As conexões entre os dispositivos e o controlador de interrupção atualmente utilizam linhas de interrupção no barramento, em vez de cabos dedicados.

Interrupções precisas e imprecisas

- Propriedades de uma interrupção precisa:
- O contador de programa (Program Counter) é salvo em local conhecido.
- 2. Todas as instruções anteriores à aquela apontada pelo PC foram executadas.
- Nenhuma instrução posterior à apontada pelo PC foi executada.
- 4. O estado de execução da instrução apontada pelo PC é conhecido.

Figura 5.5 (a) Uma interrupção precisa. (b) Uma interrupção imprecisa.

Ciclo de I/O por interrupção

Interrupções (Cont.)

- O mecanismo de interrupções é também utilizado para exceções
 - Terminar processo, travamento de sistema devido a erro de hardware...
- Erro de página quando há erro de acesso a memória;
- CPU com vários núcleos pode processar interrupções de forma concorrente / paralela;

Tratadores de interrupção

- Salva quaisquer registradores que não foram salvos pelo software de interrupção.
- Estabelece um contexto para a rotina de tratamento da interrupção.
- Estabelece uma pilha para a rotina de tratamento da interrupção.
- Sinaliza o controlador de interrupção. Se não há um controlador de interrupção centralizado, reabilita a interrupção.
- Copia os registradores de onde foram salvos para a tabela de processos.
- Executa a rotina de tratamento da interrupção.
- Escolhe o próximo processo a ser executado.
- Estabelece o contexto da MMU para o próximo processo a ser executado.
- Carrega os registradores do novo processo
- Inicializa a execução do novo processo.

E/S programada

Figura 5.6 Estágios da impressão de uma cadeia de caracteres.

E/S é apenas Hardware?

A Kernel I/O Structure

Camadas de software de E/S

Figura 5.10 Camadas do software de E/S.

Drivers dos dispositivos

Figura 5.11 Posicionamento lógico dos drivers de dispositivos. Na verdade, toda comunicação entre os drivers e os controladores passa pelo barramento.

Funções do software de E/S independente de dispositivo

Uniformizar interfaces para os drivers de dispositivos

Armazenar no buffer

Reportar erros

Alocar e liberar dispositivos dedicados

Providenciar um tamanho de bloco independente de dispositivo

Tabela 5.2 Funções do software de E/S independente de dispositivo.

Interface uniforme para os drivers de <u>dispositivo</u>

Figura 5.12 (a) Sem uma interface-padrão para o driver. (b) Com uma interface-padrão para o driver.

Uso de buffer

Figura 5.13 (a) Entrada não enviada para buffer. (b) Utilização de buffer no espaço do usuário. (c) Utilização de buffer no núcleo, seguido da cópia para o espaço do usuário. (d) Utilização de buffer duplicado no núcleo.

Figura 5.14 O trânsito na rede pode envolver muitas cópias de um pacote.

Software E/S do espaço do usuário

Figura 5.15 Camadas do sistema de E/S e as principais funções de cada camada.

Características de dispositivos de I/O

aspect	variation	example
data-transfer mode	character block	terminal disk
access method	sequential random	modem CD-ROM
transfer schedule	synchronous asynchronous	tape keyboard
sharing	dedicated sharable	tape keyboard
device speed	latency seek time transfer rate delay between operations	
I/O direction	read only write only read–write	CD-ROM graphics controller disk

Subsistema de I/O do Kernel

- Scheduling/ Escalonamento
 - Ordenação de requisições (fila de dispositivos)
 - Implementação de QoS
- Buffering armazena dados na memória enquanto a transferência entre dispositivos é realizada
 - Auxilia na diferença de velocidades de transferência dos dispositivos;

Device-status Table

Requisições de I/O para operações de Hardware

- Considere a leitura de um arquivo em disco para um processo, é necessário:
 - Determinar o dispositivo que detém o arquivo;
 - "Traduzir" o nome para a representação utilizada pelo dispositivo;
 - Fisicamente, realizar leitura dos dados do disco para;
 - Disponibilizar os dados ao processo que requereu;
 - Retornar o controle ao processo.

Ciclo de vida de uma requisição de I/O

Relação de I/O com a Performance

- Demanda CPU para executar driver do dispositivo e código de I/O do kernel;
- Troca de contextos devido a interrupções;
- Cópia de dados;
- Tráfego de rede em alta demanda;

Melhoria na performance

- Redução do número de mudanças de contexto;
- Redução de cópia de dados;
- Redução de interrupção por meio de transferências maiores, controladoras inteligentes e polling
- Uso do DMA
- Balancear CPU, memória, barramento e perfomance de I/O para maior throughput
- "Transformar" processos de usuário para threads de kernel

Dispositivos de armazenamento em massa

Disco

Overview

- Discos magnéticos
 - Transfer rate taxa de transferência entre o dispositivos e o computador
 - Positioning time (random-access time) é o tempo gasto para mover o braço do disco até o cilindro desejado (seek time) e o tempo para o setor desejado rodar/chegar até a cabeça de leitura (rotational latency)
- Drives conectados ao computador por meio do I/O bus
 - Incluindo EIDE, ATA, SATA, USB, Fiber Channel, SCSI, Firewire

Hard Disk Performance

- Access Latency = Average access time = average seek time + average latency
- Tempo médio para realização de I/O = average access time + (dados a serem transferidos/tx. de transferência) + atraso da controladora
- Minimizar tempo de busca (Seek time \approx seek distance)

Disk Scheduling

- Controladoras de dispositivos possuem buffers pequenos e estão aptas a gerenciarem uma fila de requisição de I/O
- Há vários algoritmos para gerenciar e escalonar requisições de I/O
- As análises dos algorimos a seguir consideram requisições que podem variar de (0-199)

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

Disk schedulling

- FIFO
 - Atendimento a requisições de acordo com ordem de chegada
- SSTF (starvation)
 - Requisições mais próximas a "cabeça de leitura" são atendidas primeiro, as mais distantes podem não ser atendidas (starvation)
- Elevator (SCAN)
 - O movimento da "cabeça de leitura" não depende de requisições. Ele busca requisições nas duas direções (fora para dentro -> dentro para for a) e a medida que são encontradas, as requisições são atendidas.
- Improved Elevator 1 (Circular SCAN)
 - O movimento da "cabeça de leitura" não depende de requisições. Ele busca requisições em uma única direção, de fora para dentro do cilindro (reinicia ciclo de fora para dentro). A medida que são encontradas, as requisições são atendidas.

FCFS

Atendimento a requisições de acordo com ordem de chegada

Illustration shows total head movement of 640 cylinders

SSTF

Requisições mais próximas a "cabeça de leitura" são atendidas primeiro, as mais distantes podem não ser atendidas (*starvation*)

- Shortest Seek Time First seleciona a requisição que possui menor tempo de busca em relação a posição corrente.
- Similar ao SJF -> starvation
- Abaixo, o movimento total da cabeça de leitura por 236 cylinders

SCAN

O movimento da "cabeça de leitura" não depende de requisições. Ele busca requisições nas duas direções (fora para dentro -> dentro para fora) e a medida que são encontradas, as requisições são atendidas.

- SCAN também conhecido por algoritmo Elevador
- A ilustração mostra a movimentação por 208 cilindros

SCAN (Cont.)

queue = 98, 183, 37, 122, 14, 124, 65, 67 head starts at 53

C-SCAN

O movimento da "cabeça de leitura" não depende de requisições. Ele busca requisições em uma única direção, de fora para dentro do cilindro (reinicia ciclo de fora para dentro). A medida que são encontradas, as requisições são atendidas.

- Provê um tempo mais uniforme que SCAN
- Trata os cilindros como uma lista circular

C-SCAN (Cont.)

queue = 98, 183, 37, 122, 14, 124, 65, 67

Selecionando um algoritmo

- SSTF é mais comum e uma abordagem mais prática;
- SCAN e C-SCAN tem melhor desempenho para sistemas com alta carga no disco (menor starvation)
- A performance dependerá do número e do tipo de requisições

Gerenciamento de Disco

- Para utilizar um disco para armazenar arquivos, o S.O necessita ainda armazenar sua estrutura de dados no disco
 - Partição (disco lógico)
 - Formatação lógica

