Q1 (10点)

ID: d-signal/text01/page03/001

時間領域ディジタル信号 $f[i]=3+2\cdot i\ (i=0,1,\cdots,5)$ のグラフを選択 $\mathbf{b}\,\mathbf{a}\sim\mathbf{d}\,\mathbf{o}$ 中から 1 つ選びなさい。

Q2 (10 点)

ID: d-signal/text01/page03/002

直線 i=3 のグラフを選択肢 $a \sim d$ の中から 1 つ選びなさい。

\sim	1-	⊢ \
(13	/ T (1	ر دے ۱
$\mathbf{Q3}$	(10	π
•	•	••••

ID: d-signal/text02/page01/001

サンプリングにおいてサンプリング周波数 f_s [Hz] を高くすることで得られるメリットを選択肢 $\mathbf{a} \sim \mathbf{d}$ の中から 1 つ選びなさい。

(a)

量子化雑音が減る

(b)

メリットは特に無い

(c)

折り返しひずみが出にくくなる

(d)

処理量が減る

Q4 (10点)

ID: d-signal/text02/page01/002

サンプリング周波数が $f_s=4~[{\rm Hz}]$ の時のサンプリング間隔 $au~[{
m th}]$ を選択 肢 ${
m a}\sim{
m d}$ の中から 1 つ選びなさい。

(a)

 $\tau = 0.25$ [秒]

(b)

 $\tau = 1.00 \ [\%]$

(c)

 $\tau = 0.50 \ [\%]$

(d)

 $\tau = 4.00 \ [\%]$

Q5 (10点)

ID: d-signal/text02/page01/003

サンプリング周波数が $f_s=4~[{
m Hz}]$ の時のサンプリング角周波数 $w_s~[{
m rad}/$ 秒] を選択肢 a ~ d の中から 1 つ選びなさい。

(a)

 $w_s = 4\pi \, [\mathrm{rad}/\mathfrak{P}]$

(b)

 $w_s = \pi \left[\text{rad} / \mathfrak{P} \right]$

(c)

 $w_s = 8\pi \left[\text{rad} / \mathfrak{P} \right]$

(d)

 $w_s = \pi/2 \; [\mathrm{rad}/\mathbb{P}]$

Q6 (10点)

ID: d-signal/text02/page01/004

時間領域アナログ信号 $f(t)=t^2$ を 0 秒地点から $f_s=2$ [Hz] で 2 秒間サンプリングして得られた時間領域ディジタル信号 f[i] を選択肢 $a\sim d$ の中から 1 つ選びなさい。

(a)

$$f[i] = \{0, 1, 4, 9, 16\}$$

(b)

$$f[i] = \{0, 4, 16, 36, 64\}$$

(c)

$$f[i] = \{0, 1/4, 1/16, 1/36, 1/64\}$$

(d)

$$f[i] = \{0, 1/4, 1, 9/4, 4\}$$

Q7 (10点)

ID: d-signal/text02/page02/001

サンプリング周波数が $f_s=10~\mathrm{[Hz]}$ であるときのナイキスト周波数を選択肢 $\mathbf{a} \sim \mathbf{d}$ の中から 1 つ選びなさい。

(a)

5 [Hz]

(b)

 5π [Hz]

(c)

10 [Hz]

(d)

 10π [Hz]

08	(10	占)
Q8	Ţυ	ᄴ

ID: d-signal/text03/page01/001

線形量子化において量子化幅 Δ を小さくすることで得られるメリットを選択肢 $a \sim d$ の中から 1 つ選びなさい。

(a)

処理量が減る

(b)

量子化雑音が減る

(c)

折り返しひずみが出にくくなる

(d)

特にメリットは無い

Q9 (10点)

ID: d-signal/text03/page01/002

時間領域ディジタル信号 $f[i]=\{0.00,\ 1.41,\ 2.39,\ 0.45\}$ を量子化幅 $\Delta=0.5$ で線形量子化して得られた時間領域ディジタル信号 f'[i] を選択肢 $a\sim d$ の中から 1 つ選びなさい。ただし補助線の開始位置は 0 とし、一番近い補助線に「四捨五入」することにする。

(a)

$$f'[i] = \{0.0, 1.0, 2.0, 0.0\}$$

(b)

$$f'[i] = \{0.0, 0.0, 3.0, 0.0\}$$

(c)

$$f'[i] = \{0.0, 2.0, 3.0, 1.0\}$$

(d)

$$f'[i] = \{0.0, 1.5, 2.5, 0.5\}$$

Q10 (10点)

ID: d-signal/text03/page02/001

線形量子化において量子化ビット数が q=3 [bit] である時の f[i] の値域の分割数を選択肢 $a \sim d$ の中から 1 つ選びなさい。

(a)

f[i] の値域は3等分される

(b)

f[i]の値域は7等分される

(c)

f[i] の値域は8 等分される

(d)

f[i] の値域は 2 等分される