Class 17 Obtaining and processing SRA datasets on AWS

Irene Hsieh (A16197563)

```
library(tximport)
  # setup the folder and filenames to read
  folders <- dir(pattern="SRR21568*")</pre>
  samples <- sub("_quant", "", folders)</pre>
  files <- file.path( folders, "abundance.h5" )</pre>
  names(files) <- samples</pre>
  txi.kallisto <- tximport(files, type = "kallisto", txOut = TRUE)</pre>
1 2 3 4
  head(txi.kallisto$counts)
                SRR2156848 SRR2156849 SRR2156850 SRR2156851
ENST00000539570
                                    0.00000
ENST00000576455
                                         2.62037
ENST00000510508
                                    0.00000
                                    1 1.00000
ENST00000474471
                         0
ENST00000381700
                                    0.00000
ENST00000445946
                                         0.00000
  colSums(txi.kallisto$counts)
SRR2156848 SRR2156849 SRR2156850 SRR2156851
   2563611
              2600800
                         2372309
                                     2111474
```

```
sum(rowSums(txi.kallisto$counts)>0)
[1] 94561
  to.keep <- rowSums(txi.kallisto$counts) > 0
  kset.nonzero <- txi.kallisto$counts[to.keep,]</pre>
  keep2 <- apply(kset.nonzero,1,sd)>0
  x <- kset.nonzero[keep2,]</pre>
#PCR analysis
  pca <- prcomp(t(x), scale=TRUE)</pre>
  summary(pca)
Importance of components:
                            PC1
                                      PC2
                                               PC3
                                                     PC4
Standard deviation
                       183.6379 177.3605 171.3020 1e+00
Proportion of Variance
                         0.3568 0.3328
                                            0.3104 1e-05
Cumulative Proportion
                                            1.0000 1e+00
                         0.3568
                                   0.6895
  plot(pca$x[,1], pca$x[,2],
       col=c("blue","blue","red","red"),
       xlab="PC1", ylab="PC2", pch=16)
```


Q. Use ggplot to make a similar figure of PC1 vs PC2 and a seperate figure PC1 vs PC3 and PC2 vs PC3

```
library(ggrepel)

# Make metadata object for the samples
colData <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))
rownames(colData) <- colnames(txi.kallisto$counts)

# Make the data.frame for ggplot
y <- as.data.frame(pca$x)
y$Condition <- as.factor(colData$condition)

ggplot(y) +
   aes(PC1, PC2, col=Condition) +
   geom_point() +
   geom_text_repel(label=rownames(y)) +
   theme_bw()</pre>
```


#Optional: Differential analysis

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind,

colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,

```
colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars
```

Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. Attaching package: 'Biobase' The following object is masked from 'package:MatrixGenerics': rowMedians The following objects are masked from 'package:matrixStats': anyMissing, rowMedians sampleTable <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))</pre> rownames(sampleTable) <- colnames(txi.kallisto\$counts)</pre> dds <- DESeqDataSetFromTximport(txi.kallisto,</pre> sampleTable, ~condition)

using counts and average transcript lengths from tximport

```
dds <- DESeq(dds)</pre>
```

estimating size factors

using 'avgTxLength' from assays(dds), correcting for library size

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

-- note: fitType='parametric', but the dispersion trend was not well captured by the function: y = a/x + b, and a local regression fit was automatically substituted. specify fitType='local' or 'mean' to avoid this message next time.

final dispersion estimates

fitting model and testing

res <- results(dds)
head(res)</pre>

log2 fold change (MLE): condition treatment vs control
Wald test p-value: condition treatment vs control
DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENST00000539570	0.000000	NA	NA	NA	NA
ENST00000576455	0.761453	3.155061	4.86052	0.6491203	0.516261
ENST00000510508	0.000000	NA	NA	NA	NA
ENST00000474471	0.484938	0.181923	4.24871	0.0428185	0.965846
ENST00000381700	0.000000	NA	NA	NA	NA
ENST00000445946	0.000000	NA	NA	NA	NA
	padj				
	<numeric></numeric>				
ENST00000539570	NA				
ENST00000576455	NA				

ENST00000510508	NA
ENST00000474471	NA
ENST00000381700	NA
ENST00000445946	NA