Introduction

Madiba Hudson-Quansah

CONTENTS

CHAPTER 1	Introduction	PAGE 2
1.1	Machine Learning	2
1.2	Artificial Intelligence (AI)	2
1.3	Deep Learning vs Machine Learning Machine Learning — 2 • Deep Learning — 2	2
1.4	Supervised Learning Terminology $-3 \cdot$ Supervised Learning Pipeline $-3 \cdot$ Math -3	3

Chapter 1

Introduction

1.1 Machine Learning

- · Performing a Task
- With Experience
- Improving Performance

1.2 Artificial Intelligence (AI)

Definition 1.2.1: Artificial Intelligence

The science and engineering of making intelligent machines, especially intelligent computer programs.

1.3 Deep Learning vs Machine Learning

1.3.1 Machine Learning

- Subfield of AI focused on algorithms that learn from data.
- · Works well with structured data.
- · Simpler models.
- Requires manual feature extraction and selection.
- Involves predictive modelling, clustering, and classification.
- Feature extraction and application are done separately.

1.3.2 Deep Learning

- Subfield of ML using neural networks with many layers.
- · Works well with large amounts of unstructured data.
- Complex models with multiple layers.
- Automatically extracts features from raw data.
- · Involves image and speech recognition, natural language processing, and recommendation systems.
- Feature extraction and application are done together by the neural network.

1.4 Supervised Learning

Definition 1.4.1: Supervised Learning

A subfield of Machine Learning where labelled datasets are used to train algorithms that classify data or predict outcomes.

1.4.1 Terminology

Definition 1.4.2: Feature / Input Feature / Independent Variable / X

A feature is an individual measurable property or characteristic of a phenomenon being observed.

Definition 1.4.3: Label / Dependent Variable / Y

The output / target variable that we are trying to predict.

Definition 1.4.4: Classification

Involves predicting a categorical label.

Definition 1.4.5: Regression

Involves predicting a quantitative continuous label.

1.4.2 Supervised Learning Pipeline

- 1. Determine the type of training dataset.
- 2. Gather the labelled training data.
- 3. Split the training dataset into training dataset, test dataset.
- 4. Determine the most suitable algorithm for the model.
- 5. Execute the algorithm on the training dataset.
- 6. Evaluate the accuracy of the model by providing the test set.

Definition 1.4.6: Independent Identical Distribution (IID)

1.4.3 Math

For a model:

$$h(x) = \theta_0 + \theta_1 x$$

Where h(x) is he hypothesis, The θ are our parameters, and x is an input feature.

$$h(x) = \theta \cdot \mathbf{x}$$

Where $x_0 = 1$, where the number of elements in θ and \mathbf{x} is n + 1 or

$$h\left(x\right) = \sum_{i=0}^{n} \theta_{i} x_{i}$$

Where $x_0 = 1$, For multiple input features.

For the training set (X^i, Y^i) , represents the *i*-th input and the *i*-th label