COMP 170 Discrete Mathematical Tools for CS 2006 Fall Semester – Written Assignment # 5 Distributed: Oct 17, 2006 – Due: Oct 24, 2006 at end of class

The top of your submission should contain (i) your name, (ii) your student ID #, (ii) your email address and (iv) your tutorial section.

Please write clearly and briefly. For all questions you should also provide a short explanation as to *how* you derived the solution. A solution that consists of just a number will be counted as wrong.

2nd Note: Please follow the guidelines on doing your own work and avoiding plagiarism given on the class home page. Don't forget to *acknowledge* individuals who assisted you, or sources where you found solutions.

3rd Note: Most of these problems are taken (some modified) from sections 2.3 and 2.4 of the textbook.

4th Note: Your assignment can either be submitted at the end of your Tuesday lecture session or before 5PM in the collection bin in front of room 4213A.

- **Problem 1:** The numbers 29 and 43 are primes. What is (29-1)(43-1)? What is $199 \cdot 1111$ in Z_{1176} ? What is $(23^{1111})^{199}$ in Z_{29} ? In Z_{43} ? In Z_{1247} ?
- **Problem 2:** How many solutions with x between 0 and 76 are there to the system of equations

$$x \bmod 7 = 3,$$
$$x \bmod 11 = 4?$$

What are these solutions?

- **Problem 3:** Compute each of the following. Show or explain your work. Do *not* use a calculator or computer.
 - 1. 15^{96} in Z_{97} .
 - 2. 67^{72} in Z_{73} .
 - 3. 67^{73} in Z_{73} .
- **Problem 4:** (a) Show that exactly (p-1)(q-1) elements in \mathbb{Z}_{pq} have multiplicative inverses when p and q are primes.
 - (b) $10 = 2 \cdot 5$ and 7 are *relatively* prime. How many elements in Z_{70} have multiplicative inverses?

The number of elements which have multiplicative inverses is not (10 – 1)(7 – 1). Explain why your reasoning for part (a) doesn't work for 10, 7. (Do not just say that 10 is not prime. Explain why the reasoning for part (a) works when p and q are both prime but is not valid when p and q are relatively prime but not prime.)

Problem 5: Suppose for applying RSA, p = 29, q = 37, and e = 19.

- (a) What are the values of n and d?
- (b) Show how to encrypt the message M=100, and then show how to decrypt the resulting message.

Challenge Problem: In Problem 4, you show that if p and q are prime, then there are exactly (p-1)(q-1) elements in Z_{pq} that are relatively prime to n=pq. You also show that if p and q are not prime then the number of elements in Z_{pq} relatively prime to n = pq is not necessarily (p-1)(q-1). In this problem, you try to come up with a general formula for the number of elements in n that are relatively prime to n. In both part (a) and part (b) you need to explain *how* you derived your solution.

- (a) First assume that $n = p^i$ where p is some prime number. How many elements of Z_n are relatively prime to $n = p^i$? If possible, express your answer in terms of n and p.
- (b) Now let n be an arbitrary number. How many elements of Z_n are relatively prime to n. If possible, express your answer in terms of n and p_1, p_2, \ldots, p_t , where the p_i are the primes that divide n.