Assignment 2: Main chain modelling

Yuchao He

November 24, 2024

1 Exercise 1

1.1 Analysis of CA-CA Distance Variations

In this work, I wrote a Python program named 'cal_dist.py' to analyze the distances between consecutive alpha-carbon (CA) atoms. The program's results are shown in Figure 1. Based on the these results, a tolerance range of (3.7 Å, 3.9 Å) was set for subsequent analysis.

```
Mean distance: 3.816 Å
Standard deviation: 0.024 Å
Min deviation from 3.8 Å: -0.038 Å
Max deviation from 3.8 Å: 0.063 Å
```

Figure 1: Calculate Distances

1.2 Analysis of file "test_q1.txt"

In this work, I ran the program named "task_1.py". Outputs are shown in Figure 2. Outputs here represent the sequence of the main chain.

```
• (particle hana) (base) user@dell-XPS:~/Project_thesis/Bio-Info/Assign__2$ python task_1.py test_q1.txt found Path in test_q1.txt:

8
10
9
7
6
5
3
1
4
2
```

Figure 2: Path in "test_q1.py"

1.3 Analysis of file "data_q1.txt"

In this work, I ran the program named "task_1.py". Outputs are shown in Figure 3. Outputs here represent the sequence of the main chain.

```
• (particle_hana) (base) user@dell-XPS:~/Project_thesis/Bio-Info/Assign__2$ python task_1.py data_q1.txt
found Path in data_q1.txt:

9
3
4
6
7
5
10
1
```

Figure 3: Path in "data_q1.py"

2 Exercise 2

2.1 Methods

- For each alpha-carbon atom, find its neighboring atoms within a specified distance tolerance range..
- \bullet Given that multiple neighboring atoms may exist, select the most relevant ones. In this context, we prioritize atoms whose distance deviation from the reference atom is less than 1.2 Å.
- Subsequently, algorithms such as Depth-First Search (DFS) can be employed to find paths connecting the selected atoms.

2.2 Analysis of file "data_q2.txt"

In this work, I ran the program named "task_2.py". Outputs are shown in Figure 4. The selection of 50 alpha-carbon atoms as the main chain meets the requirement for "correct" outputs.

```
The total number of alpha-carbon atoms in the main chain: 50 o (particle_hana) (base) user@dell-XPS:~/Project_thesis/Bio-Info/Assign__2$
```

Figure 4: Path in "data_q2.py"