定积分及其应用

5.1 定积分

♡ 定积分的概念

定义: 设函数f(x)在[a,b]上有界,

在 [a, b] 中任意插入若干个分点 $a = x_0 < x_1 < x_2 < ... < x_n = b$.即把区间 [a, b] 分成 n个小区间 $[x_0, x_1]$, $[x_1, x_2]$, ..., $[x_{n-1}, x_n]$ 各区间的长度依次是 $\Delta x_1 = x_1 - x_0$, ..., $\Delta x_n = x_n - x_{n-1}$. 在每个小区间 $[x_{i-1}, x_i]$ 上任取一点 $\xi_i(x_{i-1} < \xi_i < x_i)$,

作函数值 $f(\xi_i)$ 与小区间长度 Δx_i 的乘积 $f(\xi_i)$ $\Delta x_i (i=1,2,...n)$, 并作出和

$$S = \sum_{i=1}^{n} f(\xi_i) \, \Delta \mathbf{x}_i$$

记 $\lambda=\max\{\Delta x_1,\Delta x_2,...,\Delta x_n\}$,如果当 $\lambda\to 0$ 时,这和的极限总存在,且与闭区间[a,b]的分法及点 ξ_i 的取法无关,那么称这个极限I为函数 f(x)在区间[a,b]上的定积分

记作
$$\int_a^b f(x) dx = I = \lim_{\lambda \to 0} = \sum_{i=1}^n f(\xi_i) \Delta x_i$$

其中 f(x)叫做被积函数, f(x)dx 叫做被积表达式, x叫做积分变量, b、a叫做积分上下限, [a,b]叫做积分区间。

♡ 定积分的性质

- 性质 1 设 α 与 β 均 为 常 数 , 则 $\int_a^b [\alpha f(x) + \beta g(x)] dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$.
- 性质2设a<c
b, $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$.
- 性质3如果在区间[a,b]上f(x)=1,那么 $\int_a^b f(x)dx = \int_a^b dx = b a$.
- 性质4如果在区间[a,b]上f(x)≥0,那么 $\int_a^b f(x) dx \ge 0$ (a<b).
- 性质 5 设 M 及 m 分 别 是 函 数 $\mathbf{f}(\mathbf{x})$ 在 区 间 $[\mathbf{a},\mathbf{b}]$ 上 的 最 大 值 及 最 小 值 , 则 $m(b-a) \leq \int_a^b f(\mathbf{x}) \, \mathrm{d}\mathbf{x} \leq M(b-a), \ (a < b)$
- 性质6(定积分中值定理) 如果函数f(x)在积分区间[a,b]上连续,那么在[a,b]上至少存在一个点 ξ 使得 $\int_a^b f(x) \, \mathrm{d}x = f(\xi) \, (b-a), \ (a \le \xi \le b)$