Homework 1: VSM and KNN 实验报告

姓名: 孙畅畅 学号: 201814832

(一) 实验任务

- (1) 预处理文本数据集,并且得到每个文本的 VSM 表示。
- (2) 实现 KNN 分类器,测试其在 20Newsgroups 上的效果。

(二) 实验数据集

(1) 数据集种类: 20 个种类 数据集数目: 18828

种类: alt.atheism(799)comp.graphics(973)comp.os.ms-windows.misc(985)comp.sys.ibm.pc.hardware(982)comp.sys.mac.hardware(961)comp.windows.x(980)misc.forsale(972)rec.autos(990)rec.motorcycles(994)rec.sport.baseball(994)rec.sport.hockey(999)sci.crypt(991)sci.electronics(981)sci.med(990)sci.space(987)soc.religion.christian(997)talk.politics.guns(910)talk.politics.mideast(940)talk.politics.misc(775)talk.religion.misc(628)(括号内表示各个类别的样本数)

(2) 在利用 KNN 对文本进行分类时,考虑到在训练集和测试集中各个类别的数目比例,随机从上诉各个类别中供选择一定数目的样本作为训练集与测试集,各个类别数目依次为:

训练集:

[99,173,185,182,161,180,172,190,194,194,199,191,181,190,187,197,110,140,175,78] 训练集与测试集比例约为: 4:1

(三) 实验过程

- (1) 向量空间模型
- (1-1) 读入训练集文本,切词,词汇预处理。

切词: 在此阶段中,使用基于 python 的自然语言处理工具集 NLTK 对训练集文本进行切分,得到文本中出现的词汇。

词汇预处理:使用文本处理工具,对上一步得到的词 term 进行复数变单数、动词过去式变原型、term 变成小写形式。

(1-2) 建立词典,获得每个词在训练集文本中的词频 tf。

使用 python 中的容器"词典"与"列表"建立词频矩阵,词典的键值作为 term,词典的 value 值用列表表示,列表中对应索引位置表示该词在对应文档中的词频 tf。得到每个 term 在每个文档中出现的频率。

(1-3) 计算文档频率 df

对上一步得到的词频矩阵进行遍历计算,得到每一个词在全局中的文档频率 df。

(1-4) 词典处理

在得到的词典中,并不是每一个词 term 都对向量空间模型的建立有帮助,所以根

据文档频率 df 对上面所得的词典中的词汇进行部分的删除。

删除条件: (a) term 中含有数字(b) term 的长度为 1 或 term 的长度大于 25

- (c) term 在 NLTK 工具包中的英文停用词中(d) 文档频率小于 5
- (e) 文档频率大于 400

(1-5) 词典大小

最终词典中有 20937 个词,在 VSM 中用一个长度为 20937 的向量表示每一个文档。

(1-6) VSM 中向量权重

在实验过程中使用 TF-IDF 方法来计算每个文档向量中各个维度的权重。

Weight(t) =
$$IDF(t) * TF(t, d)$$

$$IDF(t) = \log(\frac{N}{df(t)})$$

$$TF(t,d) \begin{cases} 1 + \log c(t,d), if c(t,d) > 0 \\ 0, otherwise \end{cases}$$

(1-7) 测试集处理

在利用训练集建立好词典之后,分析测试集文本,得到各个测试集文本中词典中对 应词汇的词频,利用在训练阶段得到的词典中词汇的全局文档频率,得到测试集中每个 文档的向量空间表示。

(1-8) 数据保存

由于训练数据和测试数据较多,为了更好的数据保存,我将每个类别的文本对应的向量表示结果分别存放在 MAT 文件中,用于后续的分类过程。

训练集:

1.mat	MAT 文件	114,500 KB
2.mat	MAT 文件	130,857 KB
3.mat	MAT文件	130,857 KB
4.mat	MAT 文件	130,857 KB
5.mat	MAT 文件	130,857 KB
6.mat	MAT 文件	130,857 KB
7.mat	MAT 文件	130,857 KB
8.mat	MAT 文件	130,857 KB
9.mat	MAT 文件	130,857 KB
10.mat	MAT 文件	130,857 KB
11.mat	MAT 文件	130,857 KB
12.mat	MAT 文件	130,857 KB
13.mat	MAT 文件	130,857 KB
14.mat	MAT 文件	130,857 KB
15.mat	MAT 文件	130,857 KB
16.mat	MAT 文件	130,857 KB
17.mat	MAT 文件	130,857 KB
18.mat	MAT 文件	130,857 KB
19.mat	MAT 文件	114,500 KB
20.mat	MAT 文件	73,607 KB

测试集:

(2) KNN 分类

(2-1) 文本相似度计算

利用两个向量的余弦值代表两个向量的相似度,余弦值越大,两个文本越相似,越有可能属于统一个类别。

$$cos(v_1, v_2) = \frac{v_1 * v_2}{|v_1| |v_2|}$$
 (v_1 , v_2 表示文本的向量表示)

(2-2) K 值设置

在经过多次测试后,发现当 K=10 时,在测试阶段可以取得较高的准确率。准确率达到 70.72%。

(2-3) 分类过程

在上述阶段完成后,每一个测试集与训练集求余弦,求出前 50 个最相似的测试集, 选择其中个数最多的文本所对应的类别作为测试集的种类,最后求得所有测试集的平均

准确率。
$$ACC = \frac{$$
 分类正确的测试样本数 测试样本数

(四) 实验结果

在经过一定时间的训练之后,选取不同的 K 值会有不同的准确率,如下表所示。 经过对比发现,当 K 为 10 时,能够去的较大的准确率。

K为10时分类准确率为: 0.7075

(五) 实验总结

在本次实验中,通过完成文本的分类工作,对向量空间模型 VSM 和 KNN 的分类方法有了更加清晰的认识,通过实际的动手操作,完成了对文本的分类,并取得了不错的准确率。

在代码的实现过程中,也遇到了许多实际的问题,如开始编写代码进行切词时,直接选择 TextBlob 工具包对文本中的句子进行切词,但实验过程中,出现了许多奇怪的切法,并且有些应该切开的 term 并没有切开。因此构建的词典中的词汇并不完美,最后得到的结果并不好。所以最后经过改进,选用 NLTK 工具包进行切词,发现得到的词项还是挺满足要求的,并且最后在对词汇进行变单数和过去式变原型时,也使用到了 TextBlob 中的方法,最终得到了比较理想的结果。

在本次实验中,选择余弦值来判定文本之间的相似度,而不是两个向量之间的欧几 里得距离,考虑到了向量的长度,分类的效果更好。

无论是在词典过滤中文档频率 DF 值的选择,还是最终分类时 K 值的选择,都要经过多次的摸索,试验,选择最佳值。在本次试验中,词典的建立是个关键阶段,词典建立的好坏直接决定最终结果的好坏。

通过本次作业的完成,对于文本分类的过程与方法有了更加深刻的认识,遇到了很 多问题,也积极的思考解决了相应的问题,收获很大。