EXERCÍCIOS DE MÉTODO SIMPLEX - Solução

1) Maximizar L = $12x_1 + 8x_2 + 6x_3$

Sujeito a: $2x_1 + 1x_2 + 1x_3 \le 16$

 $3x_1 + 4x_2 \leq 48$

 $4x_1 + 1x_2 + 2x_3 \le 24$

 $x_1, x_2, x_3 \ge 0$

Variáveis de folga:

Maximizar L = $12x_1 + 8x_2 + 6x_3 + 0x_4 + 0x_5 + 0x_6$

Sujeito a: $2x_1 + 1x_2 + 1x_3 + 1x_4 = 16$

 $3x_1 + 4x_2 + 1x_5 = 48$

 $4x_1 + 1x_2 + 2x_3 + 1x_6 = 24$

 x_1 , x_2 , x_3 , x_4 , x_5 , $x_6 \ge 0$

Solução inicial: variáveis não básicas: x_1 =, x_2 = x_3 = 0

Variáveis básicas: $x_4 = 16$, $x_5 = 48$, $x_6 = 24 \rightarrow L = 0$

Quadro inicial:

Base	X ₁	X_2	X_3	X_4	X_5	X_6	b
X ₄	2	1	1	1	0	0	16
X_5	3	4	0	0	1	0	48
X_6	4	1	2	0	0	1	24
L	-12	-8	-6	0	0	0	0

 $1^{\underline{a}}$ iteração: x_1 vai para a base; x_6 sai da base

Base	X_1	X_2	X_3	X_4	X_5	X_6	b	_
X ₁	1	1/4	1/2	0	0	1/4	6	$\rightarrow L_1^T = L_3/4$
X_4	0	1/2	0	1	0	-1/2	4	
X_5	0	13/4	-3/2	0	1	-3/4	30	$\rightarrow L_3^T = L_2 - 3L_1^T$
 L	0	-5	0	0	0	3	72	$\rightarrow L_4^T = L_4 + 12L_1^T$

 $2^{\underline{a}}$ iteração: x_2 vai para a base; x_4 sai da base

Base	X_1	X_2	X_3	X_4	X_5	X_6	В	_
X_2	0	1	0	2	0	-1	8	$\rightarrow L_1^T = 2 L_2$
X_1	1	0	1/2	-1/2	0	1/2	4	$\rightarrow L_2^T = L_1 - 1/2L_1^T$
X_5	0	0	-3/2	-13/2	1	5/2	4	$\rightarrow L_3^T = L_3 - 13/4L_1^T$
L	0	0	0	10	0	-2	112	$\rightarrow L_4^T = L_4 + 5L_1^T$

3ª iteração: x₆ vai para a base; x₅ sai da base

Base	X ₁	X_2	X_3	X_4	X_5	X_6	b	_
X ₆	0	0	-3/5	-13/5	2/5	1	8/5	$\rightarrow L_1^T = 2/5 L_3$
X_2	0	1	-3/5	-3/5	2/5	0	48/5	$\rightarrow L_2^T = L_1 + L_1^T$
X ₁	1	0	4/5	4/5	-1/5	0	16/5	$\rightarrow L_3^T = L_2 - 1/2L_1^T$
L	0	0	-6/5	24/5	4/5	0	576/5	$\rightarrow L_4^{T} = L_4 + 12L_1^{T}$

 $4^{\underline{a}}$ iteração: x_3 vai para a base; x_1 sai da base

Base	X ₁	X_2	X_3	X_4	X_5	X_6	b	
X ₃	5/4	0	1	1	-1/4	0	4	$\rightarrow L_1^T = 5/4L_3$
X_6	3/4	0	0	-2	1/4	1	4	$\rightarrow L_2^T = L_1 + 3/5L_1^T$
X_2	3/4	1	0	0	1/4	0	12	$\rightarrow L_3^T = L_2 + 3/5L_1^T$
L	3/2	0	0	6	1/2	0	120	$\rightarrow L_4^T = L_4 + 6/5L_1^T$

Solução ótima :

VARIAVEIS NÃO BASICAS: $x_1 = x_4 = x_5 = 0$

VARIAVEIS BASICAS: $X_2 = 12$; $X_3 = 4$; $X_6 = 12$ L = 120

2) Maximizar L =
$$5x_1 + 5x_2$$

Sujeito a:
$$8x_1 + 4x_2 \le 32$$

$$1x_1 + 2x_2 \le 8$$

$$x_1, x_2 \ge 0$$

Variáveis de folga:

Maximizar L = $5x_1 + 5x_2 + 0x_4 + 0x_5$

Sujeito a:
$$8x_1 + 4x_2 + 1x_3 = 32$$

$$1x_1 + 2x_2 + 1x_4 = 8$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Solução inicial: variáveis não básicas: $x_1 = x_2 = 0$

Variáveis básicas: $x_3 = 32$, $x_4 = 8 \rightarrow L = 0$

Quadro inicial:

Base	X_1	X_2	X_3	X_4	b
X ₃	8	4	1	0	32
X_4	1	2	0	1	8
L	-5	-5	0	0	0

1ª Iteração) X₁ entra na base e X₃ sai da base

Base	X_1	X_2	X_3	X_4	b	
X ₁	8	4	1	0	32	$ \begin{array}{l} $
X_4	1	2	0	1	8	
L	-5	-5	0	0	0	$\longrightarrow L_3^{T} = L_3 + 5L_1^{T}$

Base	X_1	X_2	X_3	X_4	b
X ₁	1	1/2	1/8	0	4
X_4	0	3/2	-1/8	1	4
L	0	-5/2	5/8	0	20

2ª Iteração) X2 entra na base e X4 sai da base

Base	X ₁	X_2	X_3	X_4	b	
X ₁	1	1/2	1/8	0	4	$\rightarrow L_1^T = L_1 - 1/2 L_2^T$
X_2	0	3/2	-1/8	1	4	$\rightarrow L_2^T = 2/3L_2$
L	0	-5/2	5/8	0	20	$\rightarrow L_3^T = L_3 + 5/2 L_1^T$

Base	X_1	X_2	X_3	X_4	b
X ₁	1	0	1/6	-1/3	8/3
X_2	0	1	-1/12	2/3	8/3
L	0	0	5/12	5/3	80/3

Solução ótima :

VARIAVEIS NÃO BASICAS: $x_3 = x_4 = 0$

VARIAVEIS BASICAS: $X_1 = X_2 = 8/3$ L = 80/3

3) Maximizar L =
$$2x_1 + 3x_2 + 4x_3$$

Sujeito a:
$$1x_{1} + 1x_{2} + 1x_{3} \le 100$$

$$2x_{1} + 1x_{2} \le 210$$

$$1x_{1} \le 24$$

$$x_{1}, x_{2}, x_{3} \ge 0$$

Variáveis de folga:

Maximizar L =
$$2x_1 + 3x_2 + 4x_3 + 0x_4 + 0x_5 + 0x_6$$

Sujeito a:
$$1x_1 + 1x_2 + 1x_3 + 1x_4 = 100$$

$$2x_1 + 1x_2 + 1x_5 = 210$$

$$1x_1 + 1x_6 = 24$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Solução inicial: variáveis não básicas: x_1 =, x_2 = x_3 = 0

variáveis básicas:
$$x_4 = 100$$
, $x_5 = 210$, $x_6 = 24 \rightarrow L = 0$

Quadro inicial:

Base	X ₁	X_2	X_3	X_4	X_5	X_6	b
X ₄	1	1	1	1	0	0	100
X_5	2	1	0	0	1	0	210
X_6	1	0	0	0	0	1	24
L	-2	-3	-4	0	0	0	0

 1^a Iteração) X_3 entra na base e X_4 sai da base

Base	X_1	X_2	X_3	X_4	X_5	X_6	b	
X ₃	1	1	1	1	0	0	100	$\rightarrow L_1^T = L_1$
X_5	2	1	0	0	1	0	210	$\rightarrow L_2^T = L_2$
X_6	1	0	0	0	0	1	24	$\rightarrow L_3^T = L_3$
L	-2	-3	-4	0	0	0	0	$\to L_4^T = L_4 + 4L_1$

Base	X ₁	X_2	X_3	X_4	X_5	X_6	b
X ₃	1	1	1	1	0	0	100
X_5	2	1	0	0	1	0	210
X_6	1	0	0	0	0	1	24
L	2	1	0	4	0	0	400

Solução ótima :

VARIAVEIS NÃO BASICAS: $x_1 = x_2 = X_4 = 0$

VARIAVEIS BASICAS:
$$X_3 = 100$$
, $X_5 = 210$, $X_6 = 24$ $L = 400$

4) Maximizar L =
$$2x_1 + 4x_3$$

Sujeito a:
$$1x_1 + 2x_2 + 1x_3 \le 8000$$

 $2x_1 \le 6000$

 $x_2 +1 x_3 \le 620$

$$x_1, x_2, x_3 \ge 0$$

Variáveis de folga:

Maximizar L =
$$2x_1 + 4x_3 + 0x_4 + 0x_5 + 0x_6$$

Sujeito a:
$$1x_1 + 2x_2 + 1x_3 + 1x_4 = 8000$$

 $2x_1 + 1x_5 = 6000$
 $1x_2 + 1x_3 + 1x_6 = 620$

$$x_1$$
, x_2 , x_3 , x_4 , x_5 , $x_6 \ge 0$

Solução inicial: variáveis não básicas: x_1 =, x_2 = x_3 = 0

Variáveis básicas: x_4 = 8000, x_5 = 6000, x_6 = 620 → L = 0

Quadro inicial:

Base	X_1	X_2	X_3	X_4	X_5	X_6	b
X ₄	1	2	1	1	0	0	8000
X_5	2	0	0	0	1	0	6000
X_6	0	1	1	0	0	1	620
L	-2	0	-4	0	0	0	0

1ª Iteração) X₃ entra na base e X₆ sai da base

	Base	X_1	X_2	X_3	X_4	X_5	X_6	b	
	X ₄	1	1	0	1	0	-1	7380	$\rightarrow L_1^T = L_1 - L_3^T$
	X_5	2	0	0	0	1	0	6000	$\rightarrow L_2^T = L_2$
	X_3	0	1	1	0	0	1	620	$\rightarrow L_3^T = L_3$
_	L	-2	4	0	0	0	4	2480	$\rightarrow L_4^T = L_4 + 4I_3$

2ª Iteração) X1 entra na base e X5 sai da base

Base	X_1	X_2	X_3	X_4	X_5	X_6	b	
X ₄	0	1	0	1	-1/2	-1	4380	$ \rightarrow L_1^T = L_1 - L_2^T $
X_1	1	0	0	0	1/2	0	3000	$\rightarrow L_2^T = 1/2L_2$
X_3	0	1	1	0	0	1	620	$\rightarrow L_3^T = L_3$
L	0	4	0	0	1	4	8480	$\longrightarrow L_4^T = L_4 + 2I_3$

Solução ótima:

VARIAVEIS NÃO BASICAS: $x_2 = x_5 = X_6 = 0$

VARIAVEIS BASICAS: $X_1 = 3000$, $X_3 = 620$, $X_4 = 4380$ L = 8480

5) Maximizar L = $2x_1 + 4x_2 + 6x_3$

Sujeito a: $1x_1 + 1x_2 + 1x_3 \le 100$

$$2x_1 - 1x_2 + 5x_3 \le 50$$

$$3x_1 + x_3 \le 200$$

$$x_1, x_2, x_3 \ge 0$$

Variáveis de folga:

Maximizar L =
$$2x_1 + 4x_2 + 6x_3 + 0x_4 + 0x_5 + 0x_6$$

Sujeito a:
$$1x_1 + 1x_2 + 1x_3 + 1x_4 = 100$$

$$2x_1 - 1x_2 + 5x_3 + 1x_5 = 50$$

$$3x_1 + 1x_3 + 1x_6 = 200$$

$$x_1$$
, x_2 , x_3 , x_4 , x_5 , $x_6 \ge 0$

Solução inicial: variáveis não básicas: x_1 =, x_2 = x_3 = 0

Variáveis básicas: $x_4 = 100$, $x_5 = 50$, $x_6 = 200 \rightarrow L = 0$

Quadro inicial:

Base	X_1	X_2	X_3	X_4	X_5	X_6	b
X ₄	1	1	1	1	0	0	100
X_5	2	-1	5	0	1	0	50
X_6	3	0	1	0	0	1	200
L	-2	-4	-6	0	0	0	0

1ª Iteração) X₃ entra na base e X₅ sai da base

Base	X ₁	X_2	X_3	X_4	X_5	X_6	b	
X ₄	3/5	6/5	0	1	-1/5	0	90	$\longrightarrow L_1^T = L_1 - L_3^T$
X_3	2/5	-1/5	1	0	1/5	0	10	$\rightarrow L_2^T = L_2/5$
X_6	13/5	1/5	0	0	-1/5	1	190	$\rightarrow L_3^T = L_3 - L_2^T$
L	2/5	-26/5	0	0	6/5	0	60	$\rightarrow L_4^T = L_4 + 6L_2^T$

2ª Iteração) X2 entra na base e X4 sai da base

_	Base	X_1	X_2	X_3	X_4	X_5	X_6	b	_
	X_2	1/2	1	0	5/6	-1/6	0	75	→ $L_1^T = 5/6$. L_1
	X ₃	1/2	0	1	1/6	1/6	0	25	$\rightarrow L_2^T = L_2 + 1/5L_1^T$
	X_6	5/2	0	0	-1/6	-1/6	1	175	$\rightarrow L_3^T = L_3 - 1/5.L_1^T$
_	L	3	0	0	13/3	1/3	0	450	$\rightarrow L_4^T = L_4 + 26/5.L_1^T$

Solução ótima:

VARIAVEIS NÃO BASICAS: $x_1 = x_4 = X_5 = 0$

VARIAVEIS BASICAS: $X_2 = 75$, $X_3 = 25$, $X_6 = 175$ L = 450