16 Semiconductor Devices

16.1 Introduction

16.2 p-n Junction Diode as a Rectifier

16.3 Special Purpose Junction Diodes

16.4 Bipolar Junction Transistor (BJT)

16.5 Logic gates

Quick Review

p-n Junction Diode

Diode as a rectifier

- Converts AC signal into DC signal
- Has to be used with filter circuit and voltage regulators

Special purpose Junction Diodes

There are mainly four commonly used special purpose junction diodes:

Half-wave Rectifier

Consists of one p-n junction diode

The diode functions as switch

Alternate pulses of AC input are rectified Maximum efficiency:

Output frequency is same as that of input.

40.6%

Full-wave Rectifier

- Consists of two p-n junction diodes
- Both the pulses of AC input are rectified
- Maximum efficiency: 81.2%
- Produces less ripple
- Output frequency is twice that of input.

Zener Diode

- Heavily doped p-n junction diode
- Works in reverse biased mode
- Used as a voltage regulator

Photodiode

- Works on principle of photoelectric effect
- Works in reverse biased mode
- Used in electronic counters and switches

Filter Circuit

Ripple factor = $\frac{\text{r.m.s. value of AC component}}{\text{value of DC component}}$

Filter circuit is used to remove the ripple component in rectifier output.

Most commonly used filter is capacitor filter.
Output of which is:

Zener Regulator

- When operated in breakdown region, voltage across Zener remains almost constant regardless of variations in the applied input voltage and variations in the load current.
- The supply voltage V_s must be greater than V_z.

Solar Cell

- Works on principle of Photovoltaic effect. Hence, also known as Photovoltaic cell
- Used for charging batteries in electronic equipments

LED

- Light emitting diode works in forward biased mode
- Wavelength of light emitted depends on the semiconductor materials used

mvr_n

n, we

in the

 $\frac{1}{n^3}$

Input characteristics

- Till the V_{BE} is less than the barrier potential, the current is very small (nearly zero).
- When V_{BE} is more than the barrier potential, the characteristic is similar to that of a forward biased diode.

Bipolar Junction Transistor

- A junction transistor is a semiconductor device having two junctions and three terminals.
- The current in a transistor is carried by both the electrons and the holes. Hence, the name Bipolar.

Output characteristics $I_{C_{\bullet}}(mA)$ Output dynamic resistance $r_{o} = \frac{\Delta V_{CE}}{r_{o}}$

- I_C is independent of V_{CE} as long as the collector-emitter junction is reverse biased.
- I_C is large for large values of I_B when V_{CE} is constant.

n-p-n Transistor

A p-type semiconductor (base) layer separates two layers of the n-type semiconductor (emitter and collector)

 In circuit symbol of n-p-n transistor, arrow is drawn from base pointing towards emitter.

p-n-p Transistor

A n-type semiconductor (base) layer separates two layers of the p-type semiconductor (emitter and collector)

- Emitter Collector
 - In circuit symbol of p-n-p transistor, arrow is drawn from emitter pointing towards base.

CE configuration

 The emitter of the transistor is common to both the input and the output.

CB configuration

 The base of the transistor is common to both the input and the output.

CC configuration

The collector of the transistor is common to both the input and the output.

Chapter 16: Semiconductor Devices

CE transistor as an amplifier

For transistor operating as an amplifier, the E-B junction is forward biased while C-B junction is reverse biased.

Current amplification factor (a)

AC gain

Ratio of a small change in collector current (ΔI_c) to the small change in emitter current (ΔI_E) at constant emitter-base voltage (V_{EB}) is known as ac current gain (α_{ac}) .

Ratio of collector current (I_c) to emitter current (I_e) is known as dc current gain (α_{dc} or α). Practical value of α_{dc} lies between 0.95 to 0.99 i.e., less than 1.

Base current amplification factor (β)

AC gain

Ratio of a small change in collector current (ΔI_C) to small change in base current (ΔI_B) at constant collector emitter voltage (V_{CE}) is known as ac current gain (β_{ac}).

Ratio of collector current (I_C) to base current (I_B) is known as dc current gain (β_{dc}). β_{dc} always has value > 1.

Voltage Gain (A_v)

Ratio of change in output voltage (ΔV_o) to change in input voltage (ΔV_i) is known as voltage gain (Av).

Power Gain

Ratio of change in output power (AP_o) to the change in input power (AP_d) is known as power gain.

				Log	ic Gates					
	nalog s		NOT	(OR gate			NOR gate		
• Di	gnal ontinuo dues. igital S gnal ha o states	ignal:	X 0 1	Y 1 0	A 0 1 0 1 1 1 1	B 0 0 1 1 1	Y 0 1 1 1 1	A 0 1 0 1	0 0 1 1	1 0 0
AND gate			X-OR gate: C = A⊕B					NAND gate		
A 0 1 0 1 -	B 0 0 1 1 1	0 0 0 1	A 0 1 0 1	B 0 0 1		D-	-0	A 0 1 0 1 1 0 1	B 0 0 1 1 1	Y 1 1 1 0

60 µA 40 µA 20 µA →V_{CE} (V

dynamic

 $\Delta V_{\rm CE}$ ΔI_c

CE as mitter s of IB

Collector

bol of emitter base.

put and

Formulae

Zener diode: 1.

i. Zener current:

$$a. \quad \left(I_{Z_{min}}\right) = \left(I_{Z_{max}}\right) - I_L \quad \ b. \qquad I_L = \frac{V_Z}{R_L}$$

c.
$$(I_{Z_{\text{max}}}) = \frac{V_s - V_Z}{R_s}$$

Series resistance: $R_s = \frac{(V_s - V_Z)}{I_z}$ ii.

Zener voltage: $V_Z = I_L R_L$ iii.

Current in the transistor: $I_E = I_B + I_C$ 2.

Current Gain of transistor: 3.

DC current gain (α_{DC}): $\alpha_{DC} = \frac{I_C}{I_R}$ i.

Current amplification factor (β): $\beta_{DC} = \frac{I_c}{I_a}$ ii.

iii. Relation between aand B:

a.
$$\alpha_{DC} = \frac{\beta_{DC}}{1 + \beta_{DC}}$$

$$\beta_{DC} = \frac{\alpha_{DC}}{1 - \alpha_{DC}}$$

a. $\alpha_{DC} = \frac{\beta_{DC}}{1 + \beta_{DC}}$ b. $\beta_{DC} = \frac{\alpha_{DC}}{1 - \alpha_{DC}}$ AC current gain: $\beta_{AC} = \frac{\Delta I_C}{\Delta I_B} = \frac{i_C}{i_B}$

Resistance of transistor:

Input dynamic resistance: $r_i = \frac{\Delta V_{BE}}{\Delta I_B}$ i.

Output dynamic resistance: $r_0 = \frac{\Delta V_{CE}}{\Delta I_C}$ ii.

5. Voltage gain:

i.
$$A_V = \frac{V_o}{V_{in}}$$

ii.
$$A_V = -\frac{\Delta V_{CE}}{r_i \Delta I_B}$$

5.

iii.
$$A_V = -\frac{\beta_{AC}R_L}{r_i}$$

Shortcuts

- The output frequency for an AC signal of input frequency "f" is, f = For half wave rectifier 2f = For full wave rectifier.
- 2. If both inputs of NAND gates are shorted, then it becomes NOT gate (similar is applicable for NOR gate).

