EQUATIONS USED

Three Sums Are Needed: S_1 , S_2 , S_3 :

$$\delta p_{i} = -\frac{g p_{i}}{R_{a} T_{a,i}} \delta z_{i} \quad \text{(too noisy, second - by - second)}$$

$$S_{1} = \sum_{i} \frac{R_{a,i}}{g_{i}} \ln \left(\frac{p_{i}}{p_{i-1}} \right)$$

$$S_{2} = \sum_{i} (z_{i} - z_{i-1})$$

$$S_{3} = \sum_{i} \frac{z_{i} - z_{i-1}}{T_{m,i}}$$

Then compare prediction (T_p) to observed (T_m)

 $T_p = -S_2/S_1$ and $\overline{T}_m = S_2/S_3$, weighted appropriately

