Prof. Dr. T. Böhme

BT, EIT, II, MIW, WSW, BTC, FZT, LA, MB, MTR, WIW

Mathematik 1 Übungsserie 3 (23.10.2023 - 27.10.2023)

Aufgabe 1:

Sei E die Ursprungsebene im \mathbb{R}^3 , die durch die Richtungsvektoren $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix}$ aufgespannt wird. Berechnen Sie die orthogonale Projektion des Punktes $P = \begin{pmatrix} 8 \\ 1 \\ 2 \end{pmatrix}$ auf E und ermitteln Sie ebenfalls den Abstand von P zu E.

Aufgabe 2:

Füllen Sie die Tabelle (ohne Taschenrechner) aus. Nutzen Sie dazu geometrische Überlegungen, Definitionen am Einheitskreis und Additionstheoreme.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	$\frac{5}{6}\pi$	π	$\frac{3}{2}\pi$
$\sin(x)$										
$\cos(x)$										
$\tan(x)$										
$\cot(x)$										

Bemerkung: Diese wichtigen Werte der Winkelfunktionen werden in Mathe 1/2/3 regelmäßig auftauchen. Ein sicherer Umgang mit ihnen ist daher empfehlenswert.

Aufgabe 3:

(*) Berechnen Sie (ohne Taschenrechner) exakte Ausdrücke für $\sin(\frac{\pi}{12})$ und $\cos(\frac{\pi}{12})$.

Aufgabe 4:

Skizzieren Sie die folgenden Mengen:

$$A = \left\{ \begin{pmatrix} \sin t \\ \cos t \end{pmatrix} \middle| \ t \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \right\}, \quad B = \left\{ \begin{pmatrix} \cos t \\ t \\ \sin t \end{pmatrix} \middle| \ t \in [0, 4\pi] \right\}, \quad C = \left\{ \begin{pmatrix} t \\ t^2 \end{pmatrix} \middle| \ t \in [-2, 0] \right\},$$

$$(*) \ D = \left\{ \begin{pmatrix} t^2 \\ t \end{pmatrix} \middle| \ t \in [-1, 1] \right\}, \quad (*) \ E = \left\{ \begin{pmatrix} 2\cos t \\ 3\sin t \end{pmatrix} \middle| \ t \in [0, 2\pi] \right\},$$

$$F = \left\{ \begin{pmatrix} 0 \\ t \end{pmatrix} \middle| \ t \in [0, 1] \right\} \cup \left\{ \begin{pmatrix} t \\ 1 - t \end{pmatrix} \middle| \ t \in [0, 1] \right\} \cup \left\{ \begin{pmatrix} 1 - t \\ 0 \end{pmatrix} \middle| \ t \in [0, 1] \right\}$$

Aufgabe 5:

Skizzieren Sie die folgenden Mengen und geben Sie jeweils eine Parameterdarstellung (so wie in der vorherigen Aufgabe) an:

(a) die Strecke vom Punkt
$$P = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$
 zum Punkt $Q = \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}$

- (b) (*) der Kreis parallel zur yz-Ebene mit Mittelpunkt $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ und Radius 2
- (c) die Ellipse mit den Scheitelpunkten $\begin{pmatrix} \pm 4 \\ 0 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ \pm 2 \end{pmatrix}$
- (d) das Quadrat mit den Eckpunkten $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ und $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- (e) (*) das Dreieck mit den Eckpunkten $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$

Aufgabe 6:

In der Vorlesung wurden ebene Polarkoordinaten eingeführt: Jeder Punkt bzw. Vektor $\begin{pmatrix} x \\ y \end{pmatrix}$ aus dem \mathbb{R}^2 kann über seine Länge r und den eingeschlossenen Winkel φ mit der positiven x-Achse dargestellt werden.

(a) Wie sieht das in der r- φ -Ebene gegebene Rechteck

in der x-y-Ebene aus?

(b) Gegeben sei die Gerade $g = \{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} \middle| t \in \mathbb{R} \}$ in Parameterform.

Die Strecke zwischen einem Geradenpunkt und dem Ursprung schließt mit der positiven x-Achse einen Winkel φ ein. Parametrisieren Sie g über den Winkel φ . Gesucht ist also eine Darstellung der Form

$$g = \{ \text{von } \varphi \text{ abhängiger Ausdruck} \middle| \varphi \in \dots \}.$$

Aufgabe 7:

Beschreiben Sie die folgenden Mengen durch räumliche Polarkoordinaten (Kugelkoordinaten):

(a)
$$\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \middle| x^2 + y^2 + z^2 \le 4 \text{ und } y \le 0 \right\}$$
, (b) $\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \middle| x^2 + y^2 + z^2 \le 2 \text{ und } z \le 0 \right\}$, (c) $\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \middle| x^2 + y^2 + z^2 = 4 \right\}$, $\left(d \right)^{(*)} \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \middle| 9 \le x^2 + y^2 + z^2 \le 16 \right\}$ (e)^(*) $\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \middle| (x-1)^2 + (y+2)^2 + (z-3)^2 \le 1 \right\}$

Hinweis: Verwenden Sie bei (e) zunächst eine Verschiebung, bevor Sie Kugelkoordinaten benutzen.