Komputasi Numerik: Tugas 3

Kelompok 15

1. Dapatkan akar-akar persamaan berikut:

(a)
$$x^3 + 6.6x^2 - 29.05x + 22.64 = 0$$

(b)
$$x^4 - 0.41x^3 + 1.632x^2 - 9.146x + 7.260 = 0$$

Dengan metode Iterasi.

Penyelesaian: Penyelesaian soal 1

2. Dapatkan akar-akar persamaan berikut:

(a)
$$x^3 + 6.6x^2 - 29.05x + 22.64 = 0$$

(b)
$$x^4 - 0.41x^3 + 1.632x^2 - 9.146x + 7.260 = 0$$

Dengan metode Faktorisasi.

Penyelesaian: Penyelesaian soal 2

3. Gunakan metode Newton-Raphson untuk mendapatkan akar persamaan:

$$f(x) = -0.875x^2 + 1.75x + 2.625$$

dengan $x_i = 3.1$

Penyelesaian:

4. Gunakan metode Newton-Raphson untuk mendapatkan akar persamaan:

$$f(x) = -2.1 + 6.21x - 3.9x^2 + 0.667x^3$$

Penyelesaian:

5. Gunakan metode Newton-Raphson untuk mendapatkan akar persamaan:

$$f(x) = -23.33 + 79.35x - 88.09x^{2} + 41.6x^{3} - 8.68x^{4} + 0.658x^{5}$$

dengan $x_i = 3.5$

Penyelesaian:

6. Gunakan metode Secant untuk mendapatkan akar dari persamaan:

$$f(x) = 9.36 - 21.963x + 16.2965x^2 - 3.70377x^3$$

Penyelesaian: Dengan $x_{i-1} = 0$ dan $x_i = 1$, maka:

$$f(x_{i-1}) = f(0) = 9.36 - 21.963(0) + 16.2965(0)^2 - 3.70377(0)^3 = 9.36$$
 dan $f(x_i) = f(1) = 9.36 - 21.963(1) + 16.2965(1)^2 - 3.70377(1)^3 = -0.01027$.

Menggunakan metode Secant, dapat diperoleh hasil iterasi pertama:

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$
$$= 1 - \frac{(-0.01027)(-1)}{9.36 - 0.01027}$$
$$= 0.99890$$

Dengan iterasi berikutnya hingga nilai $|f(x_i)|$ mendekati nol, diperoleh hasil sebagai berikut.

iterasi	x_{i-1}	x_i	$f(x_{i-1})$	$f(x_i)$	x_{i+1}
1	0,00000	1,00000	9,36000	-0,01027	0,99890
2	1,00000	0,99890	-0,01027	-0,00974	0,97891
3	0,99890	0,97891	-0,00974	0,00222	0,98262
4	0,97891	0,98262	0,00222	-0,00032	0,98215
5	0,98262	0,98215	-0,00032	-0,00001	0,98214
6	0,98215	0,98214	-0,00001	0,00000	0,98214

Dengan demikian, akar dari f(x) adalah $x \approx 0.98214$.

7. Gunakan metode Secant untuk mendapatkan akar dari persamaan:

$$f(x) = x^4 - 8.6x^3 - 35.51x^2 + 464x - 998.46$$

 $dengan x_{i-1} = 7 dan x_i = 9$

Penyelesaian: Dengan

$$f(x_{i-1}) = f(7) = 7^4 - 8.6(7)^3 - 35.51(7)^2 + 464(7) - 998.46 = -39.25 \text{ dan}$$

 $f(x_i) = f(9) = 9^4 - 8.6(9)^3 - 35.51(9)^2 + 464(9) - 998.46 = 592.83,$

Menggunakan metode Secant, dapat diperoleh hasil iterasi pertama:

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$
$$= 9 - \frac{(529,83)(7-9)}{-39,25 - 592,83}$$
$$= 7,12419$$

Dengan iterasi berikutnya hingga nilai $|f(x_i)|$ mendekati nol, diperoleh hasil sebagai berikut.

iterasi	x_{i-1}	x_i	$f(x_{i-1})$	$f(x_i)$	x_{i+1}
1	7,00000	9,00000	-39,25000	592,83000	7,12419
2	9,00000	7,12419	592,83000	-28,73897	7,21092
3	7,12419	7,21092	-28,73897	-19,85323	7,40470
4	7,21092	7,40470	-19,85323	5,03497	7,36550
5	7,40470	7,36550	5,03497	-0,59129	7,36962
6	7,36550	7,36962	-0,59129	-0,01458	7,36972
7	7,36962	7,36972	-0,01458	0,00004	7,36972
8	7,36972	7,36972	0,00004	-0,00000	7,36972

Dengan demikian, akar dari f(x) adalah $x \approx 7,36972$.

8. Gunakan metode Secant untuk mendapatkan akar dari persamaan:

$$f(x) = x^3 - 6x^2 + 11x - 6$$

dengan $x_{i-1} = 2.5$ dan $x_i = 3.6$

Penyelesaian: Dengan

$$f(x_{i-1}) = f(2,5) = (2,5)^3 - 6(2,5)^2 + 11(2,5) - 6 = -0.375 \text{ dan}$$

 $f(x_i) = f(3,6) = (3,6)^3 - 6(3,6)^2 + 11(3,6) - 6 = 2.496.$

Menggunakan metode Secant, dapat diperoleh hasil iterasi pertama:

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$
$$= 3.6 - \frac{(2.496)(2.5 - 3.6)}{-0.375 - 2.496}$$
$$= 2.64368.$$

Dengan iterasi berikutnya hingga nilai $|f(x_i)|$ mendekati nol, diperoleh hasil sebagai berikut.

iterasi	x_{i-1}	x_i	$f(x_{i-1})$	$f(x_i)$	x_{i+1}
1	2,50000	3,60000	-0.37500	2,49600	2,64368
2	3,60000	2,64368	2,49600	-0,37699	2,76917
3	2,64368	2,76917	-0,37699	-0,31412	3,39610
4	2,76917	3,39610	-0,31412	1,32505	2,88931
5	3,39610	2,88931	1,32505	-0,18598	2,95169
6	2,88931	2,95169	-0,18598	-0,08974	3,00985
7	2,95169	3,00985	-0,08974	0,01999	2,99925
8	3,00985	2,99925	0,01999	-0,00149	2,99999
9	2,99925	2,99999	-0,00149	-0,00002	3,00000
10	2,99999	3,00000	-0,00002	0,00000	3,00000

Dengan demikian, akar dari f(x) adalah $x \approx 3$.

9. Buatlah sebuah paparan untuk menjelaskan tentang metode Bairstow dan metode Quotient-Difference (Q-D). Dan buatlah sebuah kesimpulan mengenai kemudahan/kesulitan kedua metode tersebut didalam menyelesaikan masalah dibanding dengan metode2 yang telah anda pelajari dalam materi ini.

Penyelesaian: