Note de l'auteur, c'est un résumé des notes de cours de théorie des anneaux, pas tous les théorèmes, définitions, et autres y sont écrites, seules celles que je veux retenir et qui ne sont pas évidentes.

Chapitre 1

Définition 1. Un anneau est dit commutatif si la loi de multiplication est commutative.

Proposition 1. Soit A un anneau. Alors l'ensemble $A^{n \times n}$ des matrices de tailles $n \times n$ sur A est un anneau.

Proposition 2. $\mathbb{Z}/n\mathbb{Z}$ est un anneau.

Définition 2. Un sous-anneau B de l'anneau A est un sous-groupe additif de A tel que :

- 1. $\forall a, b \in B, ab \in B$
- 2. $1 \in B$

Corollaire 1. L'intersection de tous les sous-anneaux de l'anneau A est l'ensemble $\{n \cdot 1 | n \in \mathbb{Z}\}$, avec la notation usuelles des groupes additifs.

Définition 3. Si A est un anneau, on dit qu'un élément a de A est inversible s'il existe b de A tel que ab = ba = 1. Un tel élément b est alors unique et est appelé inverse de a.

Définition 4. L'ensembles des éléments inversibles d'un anneau A est noté U(A).

Proposition 3. U(A) est un groupe sous la multiplication.

Définition 5. Dans un anneau A un diviseur de 0 est un élément de a de A, tel que $a \neq 0$ et :

- 1. ab = 0 (a est un diviseur de 0 à gauche).
- 2. ba = 0 (a est un diviseur de 0 à droite).

Définition 6. Un anneau est dit intègre s'il n'a aucun diviseur de 0.

Proposition 4. Si $a, b, c \in A$, un anneau intègre. Alors $ab = 0 \Rightarrow a = 0$ ou b = 0. De plus, si $a \neq 0$ et $ab = ac \Rightarrow b = c$ et $ba = ca \Rightarrow b = c$.

Proposition 5. Soient A,B deux anneaux. L'ensemble $A \times B$ muni de l'addition

$$(a,b) + (a',b') = (a+a',b+b')$$

et de la multiplication

$$(a,b) \cdot (a',b') = (aa',bb')$$

est un anneau, avec $0_{A\times B}=(0,0)$ et l'élément neutre $1_{A\times B}=(1,1)$. Il est commutatif si et seulement si A et B le sont aussi. L'anneau $A\times B$ n'est pas intègre.

Définition 7. On appelle $A \times B$ l'aneau produit de A et B.

Proposition 6. $U(A \times B) = U(A) \times U(B)$

Définition 8. Un homomorphisme d'anneau $f: A \longrightarrow B$ est une fonction tel que :

- 1. f est un homomorphisme de groupes additifs.
- 2. $\forall a, b \in A, f(aa') = f(a)f(a').$
- 3. $f(1_A) = 1_B$.

Définition 9. Un idéal dans un anneau A est un sous-ensemble I tel que :

- 1. I est un sous-groupe additif.
- 2. $\forall a \in A, \forall x \in I, ax, xa \in I$.

Proposition 7. Le noyau d'un homomorphisme est un idéal.

Proposition 8. Soit I un idéal d'un anneau A, tel que $I \neq A$. On construit le groupe additif A/I, quotient des groupes additifs A et I. Alors A/I est un anneau, tel que l'homomorphisme canonique de groupe $A \longrightarrow A/I$ est aussi un homomorphisme d'anneaux.

Définition 10. On appelle A/I l'anneau quotient de A par l'idéal I.

Théorème 1. Il est à la fin de la page 7(chapitre 1), il n'est pas copiable à cause d'une figure. À lire.

Corollaire 2. Si $f: A \longrightarrow B$ est un isomorphisme d'anneau, on a toujours l'isomorphisme d'anneau $A/\ker(f) \simeq f(a)$

Proposition 9. L'image et l'image réciproque d'un sous-anneau est un sous-anneau. L'image réciproque d'un idéal est un idéal. Si l'homomorphisme est surjectif, alors l'image d'un idéal est un idéal.

Proposition 10. $\mathbb{Z}/m\mathbb{Z}$ est intègre si et seulement si m est premier.

Proposition 11. Les éléments inversibles de $\mathbb{Z}/m\mathbb{Z}$ sont les n avec $n \perp m$.

Corollaire 3. $U(\mathbb{Z}/m\mathbb{Z})$ est en bijection avec $\{n|0 \le n \le m-1, n \perp m\}$. En particulier $|U(\mathbb{Z}/m\mathbb{Z})| = \varphi(m)$.

Rappel 1. $\varphi(m) = |\{n|0 \le n \le m-1\}|$. φ est appelé l'indicateur d'Euler, ou fonction d'Euler.

Proposition 12. Si m, p sont premier entre eux, alors $\varphi(mp) = \varphi(m)\varphi(p)$.

Corollaire 4. Si $m = p_1^{m_1} \dots p_k^{m_k}$, p_i premiers distincts, alors

$$\varphi(m) = \prod_{i=1}^{k} (p_i^{m_i} - p_i^{m_{i-1}})$$

$$= m \prod_{i=1}^{k} (1 - \frac{1}{p_i})$$

Définition 11. La caractéristique d'un anneau A est l'ordre pour la loi additive de l'élément neutre de la loi multiplicative. Par exemple, la caractéristique de $\mathbb{Z}/n\mathbb{Z}$ est n, car $n \cdot 1 = 0$ mod n

Proposition 13. Si la caractéristique d'un anneau intègre n'est pas nulle, c'est un nombre premier.

Proposition 14. Si A est un anneau commutatif de caractéristique p, un nombre premier, alors l'application $F: A \to A$, $x \mapsto x^p$, est un homomorphisme d'anneaux. On l'appelle l'homomorphisme de Frobenius.

Définition 12. Un corps est un anneau où tout élément non nul est inversible.

Proposition 15. Un corps est intègre.

Définition 13. Un sous-corps d'un corps est un sous-anneau qui contient l'inverse de chaque éléments non nuls qu'il contient.

Remarque 1. Un sous-corps est un corps.

Proposition 16. L'anneau commutatif A est un corps si et seulement si ses seuls idéaux sont $\{0\}$ et A.

Proposition 17. p est premiers si et seulement si $\mathbb{Z}/p\mathbb{Z}$ est un corps.

Définition 14. Un idéal $I \neq A$ d'un anneau commutatif A est dit maximal si : $\forall J$ idéal de A, $I \subseteq J \subseteq A$, on a J = I ou J = A.

Proposition 18. Soit A un anneau commutatif et I un idéal. Alors I est maximal si et seulement si A/I est un corps.

Corollaire 5. Les idéaux (ou sous-groupes) maximaux de \mathbb{Z} sont les $p\mathbb{Z}$, p premier.

Proposition 19. Si un corps K est de caractéristique non nulle, celle-ci étant un nombre premier, et K contient un sous-corps isomorphe à $\mathbb{Z}/p\mathbb{Z}$, à savoir son sous-corps premier.

Proposition 20. Soit K un corps et A un anneau). Si $f: K \to A$ est un homomorphisme d'anneaux, alors f est injectif.

Proposition 21. L'ensemble $\{a+b\cdot i|a,b\in\mathbb{Z}\}$ est un sous-anneau de \mathbb{C} dont les élément inversible sont $\{-1,1,-i,i\}$

Proposition 22. Soit E et A un anneau. L'ensemble A^E des fonctions de E dans A est un anneau. La somme et le produit sont défini par :

1.
$$(f+g)(e) = f(e) + g(e)$$
.

2.
$$(f \cdot g)(e) = f(e) \cdot g(e)$$
.

Les éléments neutres pour l'addition et la multiplication sont les fonctions constantes égale, l'une à 0, l'autre à 1.

Chapitre 2

Définition 15. Dans un anneau, on dit que a divise b, noté a|b, s'il existe c tel que ac = b. Alors b s'appelle multiple de a et a un diviseur de b. Note, aucun rapport avec diviseur de 0.

Remarque 2. 1. si a est inversible, a divise n'importe quel b, car $b = a(a^{-1}b)$

2. si a divise b et si u est inversible, alors au divise aussi b, car $b = ac \Rightarrow b = (au)(u^{-1}c)$.

Définition 16. Deux éléments a et b de A, anneau commutatif, sont dits associés, s'il existe $u \in A$, u inversible, tel que b = au.

Proposition 23. Si A est intègre, alors a et b associés est une relation d'équivalence. On a

$$Aa = Ab \Leftrightarrow a \ et \ b \ associés.$$

Définition 17. Un élément non nul et non inversible d'un anneau commutatif intègre A est dit irréductible si et seulement si $\forall b, c \in A$, $a = bc \Rightarrow b$ ou c inversible.

Définition 18. Deux éléments a et b d'un anneau commutatif intègre A sont dits premiers entre eux $si : \forall x \in A$, x divise a et x divise $b \Rightarrow x$ inversible.

Définition 19. Soient A un anneau intègre et $\sigma: A^* \longrightarrow \mathbb{N}$ une application. L'anneau A est euclidien pour σ si :

- 1. pour tous $a, b \in A^*$ tel que a divise b, on a $\sigma(a) \leq \sigma(b)$.
- 2. pour tous $a \in A$ et $b \in A^*$, il existe q et $r \in A$ tel que a = bq + r avec r = 0 ou $\sigma(r) < \sigma(b)$. L'application σ s'appelle parfois un stahme (ou une valuation).

Définition 20. Un anneau commutatif est dit principal si tout idéal est principal.

1. Un idéal d'un anneau commutatif A est dit principal s'il est de la forme Aa, $a \in A$.

Remarque 3. Aa = ensemble des multiples de A.

Théorème 2. Tout anneau euclidien est principal.

Définition 21. Soit A un anneau commutatif intègre. Il est dit factoriel si :

1. Tout élément a de A, qui n'est ni nul ni inversible, est un produit d'éléments irréductibles.

$$a = p_1 \dots p_i$$

2. Si pour un élément de a $p_1 ldots p_n = q_1 ldots q_m$, alors m = n et il existe une permutation σ de l'ensemble $\{1, \ldots, n\}$ ainsi que des éléments inversibles u_1, \ldots, u_n tel que $p_i = u_i q_{\sigma(i)}$ pour tout i.

Définition 22. Un anneau commutatif A satisfait la condition de chaîne ascendante si pour toute suite croissante d'idéaux

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots \subseteq I_n \subseteq \ldots$$

Il existe r tel que $I_s = I_r$, $\forall s \geq r$.

Lemme 1. Un anneau principal satisfait à la condition de chaine ascendante.

Lemme 2. Soit A un anneau principal intègre. Alors a, b sont premiers entre eux $\Leftrightarrow \exists x, y \in A$ tel que ax + by = 1.

Lemme 3. Soit A un anneau commutatif intègre principal. Si $a \perp b$ et si a divise bc, alors a divise c.

Théorème 3. Soit A un anneau commutatif intègre. Si A est principal, A est factoriel.

Corollaire 6. \mathbb{Z} et K[x] sont factoriels (K corps commutatif).

Théorème 4. Si A est un anneau factoriel, alors A[x] est un anneau factoriel.

Corollaire 7. Si A est un anneau factoriel, alors $A[x_1, \ldots, x_n]$ est un anneau factoriel.

Lemme 4.
$$A[x_1, ..., x_n] \simeq B[x_n]$$
 où $B = A[x_1, ..., x_{n-1}]$

Remarque 4. Le corollaire implique que $\mathbb{Z}[x]$ est factoriel. Les éléments irréductibles de $\mathbb{Z}[x]$ sont les +p ou -p, p premier dans \mathbb{N} , et les polynômes $P(x) \in \mathbb{Z}[x]$, de degré ≥ 1 , qui sont irréductibles dans $\mathbb{Q}[x]$, et qui sont primitifs.

Remarque 5. On dit que $0 \neq P(x) = a_n x^n + \ldots + a_0 \in \mathbb{Z}[x]$ est primitif si $pgcd(a_n, \ldots, a_0) = 1$

Définition 23.
$$A = \mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\}$$

$$N(a+bi) = a^2 + b^2.$$

On sait que $z \in A$ est inversible si et seulement si $N(z) = 1 \Leftrightarrow z = 1, -1, i, -i$.

Théorème 5. A est euclidien.

Corollaire 8. $\mathbb{Z}[i]$ est principal et factoriel.

Théorème 6. Soit p un nombre premier, $p \neq 2$. Alors les conditions suivantes sont équivalentes :

- 1. $p \equiv 1 \mod 4$
- 2. -1 est un carré dans $\mathbb{Z}/p\mathbb{Z}$.
- 3. il existe $a, b \in \mathbb{Z}$ tel que $p = a^2 + b^2$.
- 4. p n'est pas irréductible dans $\mathbb{Z}[i]$.

Corollaire 9. Les éléments irréductibles de $\mathbb{Z}[i]$ sont :

- 1. 1 + i
- 2. les p premiers dans \mathbb{N} avec $p \equiv 3 \mod 4$.
- 3. les a + bi, a bi tel que $a^2 + b^2$ est premier dans \mathbb{N} et leurs associés.

De plus la décomposition $p = a^2 + b^2$ d'un nombre premier est unique.

Corollaire 10. Soit $n = \prod p^{n_p}$, pour p premiers distincts (voir chap 2 bis page 5). Alors n est somme de deux carré si et seulement si $\forall p \equiv 3 \mod 4$, on a n_p pair.

Note: À partir de maintenant on prend $A = \mathbb{Z}$ pour A[x]. C'est juste pour se simplifier la vie. Donc on parle ici de $\mathbb{Z}[x]$.

Définition 24. Un polynôme $p \in \mathbb{Z}[x]$ est dit primitif si le pgcd de ses coefficient est 1. Il est en particulier non nul.

Lemme de Gauss

Lemme 5. Si P et Q sont primitif, alors PQ aussi.

Définition 25. Le dénominateur commun d'une famille de nombre rationnel r_1, \ldots, r_n est un $d \in \mathbb{N}^*$ tel que $dr_1, \ldots, dr_n \in \mathbb{Z}$

Définition 26. Le plus petit commun diviseur, appelé ppcd, est le plus petit d'entre eux.

Remarque 6. Vu que l'ensemble des dénominateurs communs des r_i forme un idéal de \mathbb{Z} , alors le ppdc des r_i les divise tous.

Lemme 6. Soient r_1, \ldots, r_n des rationnels non nuls. Il existe un unique rationnel c > 0 tel que $r_1/c, \ldots, r_n/c$ soient des entiers premiers entre eux. On a

$$c = \frac{1}{d} pgcd(dr_1, \dots, dr_n)$$

où d est le $ppdc(r_1, \ldots, r_n)$.

Remarque 7. $r_1, \ldots, r_n \in \mathbb{Z} \Leftrightarrow d = 1 \Leftrightarrow c \in \mathbb{N}^*$. Dans ce cas, $pgdc(r_i) = 1 \Leftrightarrow c = 1$.

Définition 27. Étant donné $P \in \mathbb{Q}[x]$, non nul, on note c(p) l'unique nombre rationnel > 0 tel que P/c(P) soit dans $\mathbb{Z}[x]$ et soit primitif.

Lemme 7. c(PQ) = c(P)c(Q)

Remarque 8. Notons \overline{P} l'unique polynôme primitif tel que $P = c(P)\overline{P}$, où $P \in \mathbb{Q}[x]$ et $P \neq 0$. Nous avons donc $\forall P, Q \in \mathbb{Q}^*[x]$, $\overline{P \cdot Q} = \overline{P} \cdot \overline{Q}$

Théorème 7. $\mathbb{Z}[x]$ est factoriel. Ses éléments irréductibles sont les polynômes de la forme

- 1. $P \in \mathbb{Z}[x]$ primitif irréductible dans $\mathbb{Q}[x]$.
- 2. $\pm \in \mathbb{Z}$, p nombre premier.

Théorème de Wedderburn

Théorème 8. Tout corps fini est commutatif.

Chapitre 3

Proposition 24. La caractéristique d'un corps fini est un nombre premier.

Proposition 25. Le centre d'un corps est un sous-corps.

Corollaire 11. Un corps fini contient $\mathbb{Z}/p\mathbb{Z}$ son centre, où p est sa caractéristique.

Proposition 26. Soit K un corps et F un sous-corps commutatif. Alors K est un espace vectoriel sur F, de manière naturelle.

Corollaire 12. Soit K un corps fini de caractéristique p. Il existe alors n tel que $|K| = p^n$.

Théorème 9. Soit K un corps commutatif et $P(x) \in K[x]$. Il existe un sous-corps L de K tel que 1. $\exists \alpha_1, \ldots, \alpha_n \in L$, $P(x) = \lambda \prod_{i=1}^n (x - \alpha_i)$, $\lambda \in K$.

2. L'est engendré par K et $\alpha_1, \ldots, \alpha_n$. De plus L est unique à isomorphisme près. On appelle L le corps de rupture de P(x).

Proposition 27. Si A est un anneau commutatif de caractéristique p première, et si $n \in \mathbb{N}$, alors $a \mapsto a^{p^n}$, $A \to A$, est un endomorphisme d'anneaux.

Corollaire 13. Si K est un corps commutatif fini à p^n éléments, alors $F: K \to K$, $a \mapsto a^p$ est un automorphisme de Frobenius. On a $F^n = id$, ou de manière équivalente, $a^{p^n} = a$, $\forall a \in K$.

Remarque 9. Si on prend $K = \mathbb{Z}/p\mathbb{Z}$, on trouve que $a^p = a$: c'est le petit théorème de Fermat.

Corollaire 14. Soit K un corps commutatif à p^n éléments. Alors on a l'égalité des polynômes (à coefficients dans K)

$$x^{p^n} - x = \prod_{a \in K} (x - a)$$

(note voir exemple page 5 du chapitre 3).

Proposition 28. Soit K un corps commutatif et G un endomorphisme de K. Alors $L = \{a \in K | G(a) = a\}$ est un sous-corps de K.

Théorème 10. Pour tout nombre premier p, et tout entier $n \ge 1$, il existe un corps à p^n éléments, unique à isomorphisme près.

Théorème 11. Soit K un corps commutatif et U un sous-groupe fini de K^* . Alors U est cyclique.

Corollaire 15. Si K est un corps fini, K^* est cyclique. Un générateur de K^* s'appelle une racine primitive de K.

Corollaire 16. Un corps K est fini de cardinalité p^n si et seulement s'il existe un polynôme $P(x) \in \mathbb{F}_p[x]$ de degré n, irréductible tel que $K \simeq \mathbb{F}_p[x]/(P(x))$, où (P(x)) désigne l'idéal de $\mathbb{F}_p[x]$ engendré par P(x).

Proposition 29. A = K[x]/(P(x)) est un espace vectoriel sur K de dimension n = deg(P), avec base $1, x, \ldots, x^{n-1} \mod P$ (on suppose que K est un corps commutatif). L'anneau A est un corps $\Leftrightarrow P$ est irréductible.

Chapitre 4

Remarque 10. Soit $q = p^n$. On sait que \mathbb{F}_p est un sous-corps de \mathbb{F}_q . L'automorphisme de Frobenius $F : \mathbb{F}_q \longrightarrow \mathbb{F}_q$ est défini par $F(a) = a^p$. On sait que $F^n = id$ dans \mathbb{F}_q ; c'est-à-dire

$$\forall a \in \mathbb{F}_q, a^{p^n} = a$$

On sait aussi que la dimension de \mathbb{F}_q sur \mathbb{F}_p est n.

Théorème 12. Il y a exactement n automorphisme de \mathbb{F}_q . Ce sont les fonctions : $F^0 = id, F, F^2, \ldots, F^{n-1}$.

Théorème 13. Soit $P(x) \in \mathbb{F}_p[x]$, polynôme irréductible de degré n. Soit K un surcorps de \mathbb{F}_p , et $\alpha \in K$ tel que $P(\alpha) = 0$. Alors P a les n racines distinctes $\alpha^{(P^i)}, i = 0, \ldots, n-1$.

Corollaire 17. Le groupe des automorphismes de \mathbb{F}_p , $q = p^n$, est cyclique, engendré par l'automorphisme de Frobenius F.

Théorème 14. 1. Soient K, L deux corps fini tel que K soit un sous-corps de L. Alors il existe un nombre premier p et des entiers naturels d, $e \ge 1$ tels que $K = \mathbb{F}_{p^d}$, $L = \mathbb{F}_{p^e}$ et d|e.

2. Réciproquement, si d|e, alors \mathbb{F}_{p^d} est un sous-corps de \mathbb{F}_{p^e} . On a alors : $\mathbb{F}_{p^d} = \{a \in \mathbb{F}_{p^e} | F^d(x) = x\}$

Définition 28. Une base normale de \mathbb{F}_{p^n} est une base de \mathbb{F}_{p^n} , vu comme espace vectoriel sur \mathbb{F}_p , de la forme $(a, F(a), \ldots, F^{n-1}(a))$.

Théorème 15. \mathbb{F}_q est une base normale.

Lemme d'Artin

Théorème 16. Soit K un corps commutatif et ψ_1, \ldots, ψ_m des automorphismes distincts de K. Soient $a_1, \ldots, a_m \in K$, non tous nuls. Il existe alors $a \in K$ tel que $a_1\psi_1 + \ldots + a_m\psi_m \neq 0$.