Порядок байт в слове

В каком порядке располагаются в памяти байты многобайтового слова?

Соглашения

- «Тупоконечники»: Sun, PPC Mac, Internet
 - Наименее значимый байт имеет <u>наибольший</u> адрес
- «Остроконечники»: x86
 - Наименее значимый байт имеет <u>наименьший</u> адрес

Примеры упорядочения байт

«Тупоконечное»

• Наименее значимый байт имеет наибольший адрес

«Остроконечное»

■ Наименее значимый байт имеет наименьший адрес

Пример

- Переменная х
 - имеет 4-байтовое представление 0x01234567
 - Расположена по адресу &x 0x100

«Тупоконечное»			0x100	0x101	0x102	0x103	
			01	23	45	67	
«Остроконечное»			0x100	0x101	0x102	0x103	
			67	45	23	01	

Представление двоичное: Целочисленное Шестнадцатиричное:

Десятичное: 15213

Двоичное: 0011 1011 0110 1101

Шестнадцатиричное: 3 в 6 D

int A = 15213;

int B = -15213;

long int C = 15213;

Два представления в дополнительном коде (пояснения последуют)

Изучение представления данных

- Вывод байтового представления данных
 - Представление указателя как массива unsigned char *

```
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
  int i;
  for (i = 0; i < len; i++)
     printf("%p\t0x%.2x\n",start+i, start[i]);
  printf("\n");
}</pre>
```

Спецификации преобразования:

%р: Вывод указателя

%х: Вывод шестнадцатиричного

Пример исполнения show_bytes

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Результат (x86, Linux):

```
int a = 15213;
0x11ffffcb8 0x6d
0x11ffffcb9 0x3b
0x11fffcba 0x00
0x11ffffcbb 0x00
```

Плавающая точка

- Основы: Двоичные дроби
- Стандарт «плавающей точки» IEEE : Определение
- Примеры и свойства
- Округление, сложение, умножение
- Плавающая точка в Си
- Сводка

Плавающая точка IEEE

Стандарт IEEE 754

- Принят в 1985 как единый стандарт арифметики с плавающей точкой
 - До этого множество уникальных стандартов
- Поддерживается всеми основными CPU/FPU

В основе - вопросы вычислений

- Удачно стандартизованы
 - округления,
 - переполнения,
 - потеря значимости
- Сложно сделать быстрым в аппаратуре
 - При создании стандарта численные аналитики доминировали над разработчиками аппаратуры
- Есть реализации «с отклонениями»

Есть версии и альтернативы

Представление с плавающей точкой

Численная форма:

$$(-1)^{s} M 2^{E}$$

- Знаковый бит s определяет положительность/отрицательность
- Мантисса M обычно дробь в интервале [1.0,2.0).
- Порядок Е изменяет значение на степень двойки

Кодирование

- Наиболее значимый бит S знаковый
- Поле ехр кодирует Е, но не совпадает с двоичным значением Е
- Поле **frac** кодирует M, но не совпадает с двоичным значением M

S	ехр	frac

Применяемые точности

■ Одинарная: 32 бита

S	ехр	frac
1	8-бит	23-бита

■ Двойная: 64 бита

S	ехр	frac
1	11-бит	52-бита

■ Расширенная: 80 бит (только для Intel)

S	ехр	frac
1	15-бита	63 или 64-бита

Нормализованные значения

- Признак: exp ≠ 000...0 и exp ≠ 111...1
- Порядок кодируется со смещением : E = Exp Bias
 - *Exp*: беззнаковое значение поля **еxp**
 - $Bias = 2^{k-1} 1$, где k количество бит порядка смещение
 - Одинарная точность: 127 (Exp: 1...254, E: -126...127)
 - Двойная точность: 1023 (Exp: 1...2046, E: -1022...1023)
- Код мантиссы подразумевает старшую 1: M = 1.xxx...x2
 - xxx...x: биты поля frac
 - Минимальное значение M = 1.0, когда **frac** = 000...0
 - Минимальное значение $M = 2.0 \varepsilon$, когда **frac** = 111...1
 - Старший бит мантиссы не расходует ресурсы оборудования
 - Не подразумевается для расширенной точности 80-бит Intel!

Пример нормализованного кода

```
■ Значение: Float F = 15213.0;
■ 15213<sub>10</sub> = 11101101101<sub>2</sub>
```

= $1.1101101101101_2 \times 2^{13}$

Мантисса

```
M = 1.101101101_2
frac= 1101101101101_0000000000_2
```

Порядок

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

■ Результат:

Денормализованные значения

- Признак: exp = 000...0
- \blacksquare Значение порядка: E = 1—Bias (вместо E = 0 Bias)
- Код мантиссы подразумевает старший 0: M = 0.ххх...х₂
 - xxx...x: биты frac

Варианты

- exp = 000...0, frac = 000...0
 - Обозначает нулевое значение
 - Представление неоднозначно: +0 and -0 (почему?)
- exp = 000...0, $frac \neq 000...0$
 - числа очень близкие к 0.0
 - чем меньше, тем хуже относительная погрешность
 - равноотстоящие

Специальные коды

Признак: exp = 111...1

- Вариант 1: exp = 111...1, frac = 000...0
 - Обозначает значение ∞ (бесконечность)
 - Результат операции при переполнении
 - Есть оба варианта: отрицательная и положительная
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Вариант 2: exp = 111...1, frac ≠ 000...0
 - Не число, Not-a-Number (NaN)
 - Обозначает случаи когда невозможно определить численное значение
 - Примеры: sqrt(-1), $\infty \infty$, $\infty \times 0$

Коды с плавающей точкой визуально

(не)Представимые числа (2)

