EE5027 Adaptive Signal Processing Homework Assignment #2

Notice

- Due at 9:00pm, November 17, 2020 (Tuesday) = T_d for the electronic copy of your solution.
- Please submit your solution to NTU COOL (https://cool.ntu.edu.tw/courses/3062)
- All answers have to be fully justified.
- All the figures should include labels for the horizontal and vertical axes, a title for a short description, and grid lines. Add legends and different line styles if there are multiple curves in one plot.
- No extensions, unless granted by the instructor one day before T_d .

Problems

1. (Linear prediction, 35 points) Consider a wide-sense stationary random process x(n) whose autocorrelation function satisfies

$$r(0) = 0.1482,$$
 $r(1) = 0.0500,$ $r(2) = 0.0170,$ $r(3) = -0.0323.$ (1)

Find the following quantities by hand

- (a) (6 points) The reflection coefficients κ_1 κ_2 , and κ_3 .
- (b) (6 points) The quantities Δ_0 , Δ_1 , and Δ_2 .
- (c) (8 points) The tap-weight vector of the forward prediction-error filter \mathbf{a}_0 , \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 .
- (d) (8 points) The minimum mean-square prediction error P_0 , P_1 , P_2 , and P_3 .
- (e) (7 points) Draw a signal-flow graph for the lattice model of the prediction error filters of order M = 3. The input is x(n) and the outputs are $f_M(n)$ and $b_M(n)$.
- 2. (Prediction error bound and spectral flatness, 15 points) In the lecture, we studied a lower bound for the the minimum forward prediction error power for a one-step forward linear prediction with order m, denoted by P_m , as follows:

$$P_m \ge \exp\left(\int_{-1/2}^{1/2} \log S_x(e^{j2\pi f}) \,\mathrm{d}f\right).$$
 (2)

The right-hand side of (2) is the prediction error bound. We also define the spectral flatness measure γ_x^2 as

$$\gamma_x^2 \triangleq \frac{\exp\left(\int_{-1/2}^{1/2} \log S_x(e^{j2\pi f}) \,\mathrm{d}f\right)}{\int_{-1/2}^{1/2} S_x(e^{j2\pi f}) \,\mathrm{d}f}.$$
 (3)

(a) (10 points) Consider an AR process with the following relation:

$$x(n) = \alpha x(n-1) + v(n), \tag{4}$$

where $\alpha \in \mathbb{C}$, and $|\alpha| < 1$. The wide-sense stationary complex random process v(n) has zero mean and the power spectral density $S_v(e^{j2\pi f}) = 1$. Find the prediction lower bound for x(n).

- (b) (5 points) Find the spectral flatness measure γ_x^2 for x(n) in (4).
- 3. (LMS Algorithms, 18 points) Consider the input signal x(n) and the desired signal d(n) to be

$$x(n) = e^{j2\pi f_1 n},$$
 $d(n) = e^{j2\pi f_2 n}.$ (5)

We assume that the number of taps M is 1. The initial weight vector of the LMS adaptive filter is $\widehat{\mathbf{w}}(0) = 0$. The step-size parameter satisfies $0 < \mu < 1$. Calculate the following quantities by hand

- (a) (2 points) The error signal e(0).
- (b) (4 points) The weight vector $\widehat{\mathbf{w}}(1)$.
- (c) (4 points) The weight vector $\hat{\mathbf{w}}(2)$.
- (d) (8 points) The weight vector $\widehat{\mathbf{w}}(n)$ for $n \geq 3$.
- 4. (The least-perturbation property, 12 points) The update equation for the ϵ -NLMS algorithm is given by

$$\widehat{\mathbf{w}}_{\epsilon\text{-NLMS}}(n+1) = \widehat{\mathbf{w}}_{\epsilon\text{-NLMS}}(n) + \frac{\widetilde{\mu}}{\epsilon + \|\mathbf{x}(n)\|_2^2} \mathbf{x}(n) e^*(n),$$
(6)

where $0 < \widetilde{\mu} < 1$ and $\epsilon > 0$.

- (a) (5 points) Write down the least-perturbation property for the ϵ -NLMS algorithm.
- (b) (7 points) Show that the solution to the optimization problem in Problem 4a is (6). *Hint:* Use the method of Lagrange multipliers and matrix derivatives.
- 5. (Prediction error filters, 20 points) We consider a system diagram in Figure 1. The random process v(n) is a zero-mean, circularly-symmetric complex Gaussian, white, wide-sense stationary random process with unit variance ($\sigma_v^2 = 1$). The transfer function H(z) is given by

$$H(z) = \frac{1 + z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{3}z^{-1}\right)},\tag{7}$$

with the region of convergence $|z| > \frac{1}{2}$.

Figure 1: A system diagram for Problem 5.

(a) (4 points) First we implement the Levinson-Durbin algorithm using MATLAB. The autocorrelation function is specified by a column vector $\mathbf{r} = [r_x(0), r_x(1), \dots, r_x(M)]^T$. Write the following MATLAB function for the Levinson-Durbin algorithm:

$$[a, P, kappa] = ASP_Levinson_Durbin(r);$$
 (8)

The output arguments are specified as follows.

- a is a MATLAB cell array of size M. The entries in a contain the coefficients of the forward prediction error filter. More specifically, we have $a\{1\} = \mathbf{a}_1$, $a\{2\} = \mathbf{a}_2$, and $a\{M\} = \mathbf{a}_M$.
- P is an (M+1)-by-1 vector for the prediction errors. We have $P = [P_0, P_1, P_2, \dots, P_M]^T$.
- kappa is an M-by-1 vector for the reflection coefficients. We have kappa = $[\kappa_1, \kappa_2, \dots, \kappa_M]^T$.

Note and hints:

- This function returns error messages if r does not correspond to a valid autocorrelation.
- First derive an expression for the autocorrelation function of x(n) from (7).
- Test your program using the autocorrelation function of x(n).
- (b) Next we move on to the the simulation of these random processes. You can read the file ASP_Problem_5 mat for the sequence v(n) for $n=0,1,\ldots,L-1$. The vector \mathbf{v} is defined as $\mathbf{v} \triangleq \begin{bmatrix} v(0) & v(1) & \ldots & v(L-1) \end{bmatrix}$, where L=1000. Then we compute the associated x(n) and $f_1(n)$. Plot the real parts and the imaginary parts of $f_1(n)$ against the time index n. Note that the MATLAB function filter helps to find the output signal of a linear-time invariant system. Estimate the average power of $f_1(n)$ from these measurements by

$$\widehat{P}_{f,1} \triangleq \frac{1}{L} \sum_{n=0}^{L-1} |f_1(n)|^2, \tag{9}$$

where the subscript f, 1 denotes the association with $f_1(n)$.

(c) We consider the same realization of v(n) in Problem 5b. Repeat Problem 5b for $b_1(n)$. The average power of $b_1(n)$ is estimated by

$$\widehat{P}_{b,1} = \frac{1}{L} \sum_{n=0}^{L-1} |b_1(n)|^2.$$
(10)

- (d) Plot the prediction error power over the index $m=1,2,\ldots,10$. This plot contains four curves:
 - i. One curve for the forward prediction error power $\widehat{P}_{f,m}$ (from the realizations of $f_m(n)$).
 - ii. Another curve for the backward prediction error power $\widehat{P}_{b,m}$ (from the realizations of $b_m(n)$).
 - iii. Another curve for the prediction error power P_m from the Levinson-Durbin algorithm.
 - iv. The other curve for the prediction error bound of x(n). You may use numerical integration in MATLAB for the value of this bound.

Comment on your results with possible explanations.

Note: Please submit a compressed file including two MATLAB scripts with the following file names:

- (a) ASP_Levinson_Durbin.m
- (b) ASP_HW2_Problem_5.m

These MATLAB codes should generate your final results and plots directly, which have to be identical to those in your solution.

Last updated October 28, 2020.