Logical Representation

The Standard in Knowledge Representation

Predicate Logic & First Order Predicate Calculus

- A language for expressing facts and rules,
 - and
- A mathematics for manipulating truth values and well-formed expressions

Uses of Logic in Al

- Representation
 - -of problem states
 - -of rules
- Reasoning
 - -Sound Problem Solving
 - -Theorem proving systems
 - -Refutation
- Deductive Data Retrieval
- Expert Systems
- Inference

Three Brands of Inference

Abduction

Induction

Deduction

Abduction

- Approximate Reasoning
- Plausible Inference
- Reverse Causal Reasoning
 - -if P -> Q, and Q, Abduce P
- Not logically sound, but economical

Induction

(Mathematician's Favorite)

- ■To Reason from specific cases to general rules
- Very Difficult to Mechanize
- Major problem for Machine Learning

Robins fly
sparrows fly birds fly
hawks fly

Deduction (as per Sherlock)

- •Given a set of
 - -Assumptions (Facts)
 - -Logical Rules
 - -Universal Laws of Logic
- •We can find all new facts which logically follow from our assumptions

BACKGROUND

- Logical Expressions are built out of primitives:
 - -constants
 - -variables
 - -predicates
 - -connectives
 - -quantifiers
- According to well-formedness rules

Propositional vs Predicate Logic

- Propositional Logic works with constants
- P is True
- Q is True
- P^Q is true
- Predicates are a little more complicated...

Constants

- Symbols which denote objects and individuals in the world:
 - JOHN
 - MARY
 - TABLE
 - BLOCK

Variables

- Indefinite References to objects and individuals in the world:
 - X
 - z
 - у

Predicates (or functions)

- Functions denoting aspects of objects or relationships between individuals:
 - LOVES(John, Mary)
 - RED(Ball1)
 - INSIDE(x,Box23)

Connectives

- Logical operators which compute (or constrain) truth values:
 - & AND
 - | OR
 - ~ NOT
 - => IMPLIES

Quantifiers

Logical Meta-operators which assert across the entire population of objects:

∀ For All

∃ There Exists

Literals

- Well-formed expressions which state facts about individuals in the world:
 - Loves(Mary John) & Married(John)
 - Male(Terry) & ~Married(Terry)
- No Variables
- No Quantifiers

Formulae

- Well-formed expressions which assert rules (generalized) about relations between objects:
- Sometimes the quantifiers are implicit
 - ∃x Person(x)
 - ∀ y boy(y) => male (y)
 - ∀x ∃y Man(x) & Woman(y) & Loves(x,y)

How to Use Logic?

- Decide on Objects, Predicates
- Translate Facts & Rules about the domain to Expressions
- ■The Rest is Mechanical...
 - -Can represent logical formula in list
 - -Can manipulate lists mechanically in LISP to follow logical rules...

- all human thought can be reduced to logic
- •All logic can be mechanized
- ■THEREFORE: all human thought can be mechanized through logic

Problems remain

- Choices of predicates
 - -depends on human idiosyncracies
- Translation:
 - -Ambiguity, Quantifier Scoping
- Mechanics:
 - -Combinatorial Explosion

Mechanics of Logic:

Manipulating Expressions without Lying

- Double Negation
 - ~~Man(x) = Man(x)
- DeMorgan's Laws
 - ~(P & Q) = (~P | ~Q)
 - ~(P | Q) = (~P & ~Q)

Mechanics of Logic:

- Commutativity
 - P & Q = Q & P
 - P | Q = Q | P
- Distributivity
 - X & (Y | Z) = (X & Y) | (X & Z)
 - X | (Y & Z) = (X | Y) & (X | Z)
- Associativity
 - (A & B) & C = A & (B & C)

Mechanics of Logic:

Formulae can also be mucked with

- Demorgans Laws for Quantification
- $\neg \exists x P(x) = \forall x \neg P(x)$
- $\sim \forall x Q(x) = \exists x \sim Q(x)$

Laws of Inference

Domain-Independent Universally Sound Rules

- Modus Ponens (Forward)
 - IF P => Q and P is true,
 - then infer Q
- Modus Tollens
 - If P => Q and Q is False,
 - then Infer ~P
- Syllogism
 - If P => Q and Q => R
 - then Infer P => R

Logical Problem Solving

Initial State	Operators	Goal
Statements of fact, Object Database	Formulae for domain Rules of Inference	Proof of some truth, refutation

Combinatorial Explosion!

- ■There Are Too Many True Facts
- ■There Are Too Many Equiv. Representations
- There are Too Many Operators
- Its easy to make infinite loops creating more and more "knowledge spam".

 \forall x \exists y person(x)=> person(y) & parent(x,y)

Resolution

one law of inference to mechanize logic

The Resolution Principle

- One way of representing things
 - Conjunctive Normal Form
- One Inference Rule
 - Disjunctive Syllogism

Disjunctive Syllogism

Subsumes other Laws of inference

Two Disjuncts yield something new
 (A | B | C) and (D | ~B | E) yields (A | C | D | E)

if a term is in one disjunct and its negative in another combine them together without that term

in this case B and ~B cancel out

Disjunctive Syllogism

Subsumes other Laws of inference

- Modus Ponens
 - (P) and (~P | Q) yields (Q)
- Modus Tollens
 - (~Q) and (~P | Q) Yields (~P)
- Chaining
 - (~P | Q) and (~Q | R) yields (~P | R)