CSE/ECE 848 Introduction to Evolutionary Computation

Module 3 - Lecture 14 - Part 3

Comparison of EC Methods:
Statistical Tests & Methods

Wolfgang Banzhaf, CSE
John R. Koza Chair in Genetic Programming

Outcomes reported - Now what?

- Suppose we have now reported medians or other performance measures for number of algorithms - Now what can we conclude?
- Statistical analysis and tests are the tools for deciding whether there are clear (statistically significant) differences between the different algorithms
- Parametric vs non-parametric statistics tests have different underlying assumptions
 - Parametric: Independence, normality, homoscedasticity ("homogeneity of variance")
 - Non-parametric: These assumptions are not required
- Descriptive vs inferential statistics
 - Descriptive St.: Describes data
 - Inferential St.: Allows to make predictions
 - Hypothesis testing
 - Confidence Intervals

- Without hypothesis no test!
- Null hypothesis H₀ There are no effects/differences
- Alternative hypothesis H₁ There are significant differences between the different algorithms under comparison
- Significance level α can be defined, or one calculated the pvalue, the probability of obtaining results at least as extreme as the observed results, assuming H₀ is correct
- Whereas α allows a Boolean decision, the p-value gives a measure of significance of the results - the smaller the p-value, the stronger the evidence against H₀

n=25; k=9

Table 1Average error obtained in the 25 benchmark functions.

Function	PSO	IPOP-CMA-ES	СНС	SSGA	SS-BLX	SS-Arit	DE-Bin	DE-Exp	SaDE
F1	$1.234 \cdot 10^{-4}$	0.000	2.464	$8.420 \cdot 10^{-9}$	3.402 · 10	1.064	$7.716 \cdot 10^{-9}$	$8.260 \cdot 10^{-9}$	$8.416 \cdot 10^{-9}$
F2	$2.595 \cdot 10^{-2}$	0.000	$1.180 \cdot 10^{2}$	$8.719 \cdot 10^{-5}$	1.730	5.282	$8.342 \cdot 10^{-9}$	$8.181 \cdot 10^{-9}$	$8.208 \cdot 10^{-9}$
F3	$5.174 \cdot 10^4$	0.000	$2.699 \cdot 10^{5}$	$7.948 \cdot 10^4$	$1.844 \cdot 10^{5}$	$2.535 \cdot 10^{5}$	$4.233 \cdot 10$	$9.935 \cdot 10$	$6.560 \cdot 10^3$
F4	2.488	$2.932 \cdot 10^{3}$	$9.190 \cdot 10$	$2.585 \cdot 10^{-3}$	6.228	5.755	$7.686 \cdot 10^{-9}$	$8.350 \cdot 10^{-9}$	$8.087 \cdot 10^{-9}$
F5	$4.095 \cdot 10^{2}$	$8.104 \cdot 10^{-10}$	$2.641 \cdot 10^{2}$	$1.343 \cdot 10^{2}$	2.185	$1.443 \cdot 10$	$8.608 \cdot 10^{-9}$	$8.514 \cdot 10^{-9}$	$8.640 \cdot 10^{-9}$
F6	$7.310 \cdot 10^{2}$	0.000	$1.416 \cdot 10^{6}$	6.171	$1.145 \cdot 10^{2}$	$4.945 \cdot 10^{2}$	$7.956 \cdot 10^{-9}$	$8.391 \cdot 10^{-9}$	$1.612 \cdot 10^{-2}$
F7	$2.678 \cdot 10$	$1.267 \cdot 10^{3}$	$1.269 \cdot 10^{3}$	$1.271 \cdot 10^{3}$	$1.966 \cdot 10^{3}$	$1.908 \cdot 10^{3}$	$1.266 \cdot 10^{3}$	$1.265 \cdot 10^3$	$1.263 \cdot 10^3$
F8	2.043 · 10	2.001 · 10	$2.034 \cdot 10$	$2.037 \cdot 10$	$2.035 \cdot 10$	$2.036 \cdot 10$	$2.033 \cdot 10$	2.038 · 10	2.032 · 10
F9	1.438 · 10	2.841 · 10	5.886	$7.286 \cdot 10^{-9}$	4.195	5.960	4.546	$8.151 \cdot 10^{-9}$	$8.330 \cdot 10^{-9}$
F10	$1.404 \cdot 10$	2.327 · 10	7.123	$1.712 \cdot 10$	1.239 · 10	$2.179 \cdot 10$	$1.228 \cdot 10$	$1.118 \cdot 10$	1.548 · 10
F11	5.590	1.343	1.599	3.255	2.929	2.858	2.434	2.067	6.796
F12	$6.362 \cdot 10^2$	$2.127 \cdot 10^2$	$7.062 \cdot 10^2$	$2.794 \cdot 10^{2}$	$1.506 \cdot 10^{2}$	$2.411 \cdot 10^{2}$	$1.061 \cdot 10^{2}$	$6.309 \cdot 10$	5.634 · 10
F13	1.503	1.134	$8.297 \cdot 10$	$6.713 \cdot 10$	$3.245 \cdot 10$	$5.479 \cdot 10$	1.573	$6.403 \cdot 10$	$7.070 \cdot 10$
F14	3.304	3.775	2.073	2.264	2.796	2.970	3.073	3.158	3.415
F15	$3.398 \cdot 10^{2}$	$1.934 \cdot 10^2$	$2.751 \cdot 10^{2}$	$2.920 \cdot 10^2$	$1.136 \cdot 10^2$	$1.288 \cdot 10^{2}$	$3.722 \cdot 10^2$	$2.940 \cdot 10^{2}$	8.423 · 10
F16	$1.333 \cdot 10^2$	$1.170 \cdot 10^2$	$9.729 \cdot 10$	$1.053 \cdot 10^2$	$1.041 \cdot 10^{2}$	$1.134 \cdot 10^{2}$	$1.117 \cdot 10^2$	$1.125 \cdot 10^2$	$1.227 \cdot 10^2$
F17	$1.497 \cdot 10^2$	$3.389 \cdot 10^2$	$1.045 \cdot 10^{2}$	$1.185 \cdot 10^2$	$1.183 \cdot 10^{2}$	$1.279 \cdot 10^2$	$1.421 \cdot 10^{2}$	$1.312 \cdot 10^2$	$1.387 \cdot 10^2$
F18	$8.512 \cdot 10^2$	$5.570 \cdot 10^2$	$8.799 \cdot 10^2$	$8.063 \cdot 10^2$	$7.668 \cdot 10^{2}$	$6.578 \cdot 10^{2}$	$5.097 \cdot 10^2$	$4.482 \cdot 10^2$	$5.320 \cdot 10^2$
F19	$8.497 \cdot 10^2$	$5.292 \cdot 10^2$	$8.798 \cdot 10^{2}$	$8.899 \cdot 10^2$	$7.555 \cdot 10^2$	$7.010 \cdot 10^2$	$5.012 \cdot 10^2$	$4.341 \cdot 10^{2}$	$5.195 \cdot 10^2$
F20	$8.509 \cdot 10^{2}$	$5.264 \cdot 10^2$	$8.960 \cdot 10^{2}$	$8.893 \cdot 10^{2}$	$7.463 \cdot 10^{2}$	$6.411 \cdot 10^{2}$	$4.928 \cdot 10^{2}$	$4.188 \cdot 10^{2}$	$4.767 \cdot 10^2$
F21	$9.138 \cdot 10^{2}$	$4.420 \cdot 10^2$	$8.158 \cdot 10^{2}$	$8.522 \cdot 10^2$	$4.851 \cdot 10^{2}$	$5.005 \cdot 10^2$	$5.240 \cdot 10^2$	$5.420 \cdot 10^2$	$5.140 \cdot 10^2$
F22	$8.071 \cdot 10^{2}$	$7.647 \cdot 10^2$	$7.742 \cdot 10^2$	$7.519 \cdot 10^2$	$6.828 \cdot 10^{2}$	$6.941 \cdot 10^{2}$	$7.715 \cdot 10^2$	$7.720 \cdot 10^2$	$7.655 \cdot 10^2$
F23	$1.028 \cdot 10^{3}$	$8.539 \cdot 10^2$	$1.075 \cdot 10^{3}$	$1.004 \cdot 10^{3}$	$5.740 \cdot 10^{2}$	$5.828 \cdot 10^{2}$	$6.337 \cdot 10^2$	$5.824 \cdot 10^{2}$	$6.509 \cdot 10^2$
F24	$4.120 \cdot 10^{2}$	$6.101 \cdot 10^2$	$2.959 \cdot 10^{2}$	$2.360 \cdot 10^{2}$	$2.513 \cdot 10^{2}$	$2.011 \cdot 10^{2}$	$2.060 \cdot 10^{2}$	$2.020 \cdot 10^{2}$	$2.000 \cdot 10^2$
F25	$5.099 \cdot 10^2$	$1.818 \cdot 10^{3}$	$1.764 \cdot 10^{3}$	$1.747 \cdot 10^3$	$1.794 \cdot 10^{3}$	$1.804 \cdot 10^{3}$	$1.744 \cdot 10^{3}$	$1.742 \cdot 10^3$	$1.738 \cdot 10^3$

¹ Adopted from Derrac et al, "A practical tutorial on the use of non-parametric statistical tests for comparing evolutionary and swarm intelligence algorithms", Swarm and Evolutionary Computation, 1 (2011) 3-18

- Pairwise comparisons
 - Sign test
 - Wilcoxon test
- Multiple comparison (1 vs N)
 - Multiple sign test
 - Friedman test
 - ...
- Multiple comparison (N vs N)
 - Friedman test

- Simple and popular: Count the number of times an algorithm is the winner.
- Under the Null hypothesis, both algorithms should win n/2 times
- Number is distributed in a binomial distribution which allows to apply the z-test: If number of wins is larger than $n/2 + 1.96 \cdot \sqrt{n}/2$ the algorithm is significantly better with p-value p< 0.05

Table 4 Critical values for the two-tailed sign test at $\alpha=0.05$ and $\alpha=0.1$. An algorithm is significantly better than another if it performs better on at least the cases presented in each row.

edell rott.																					
#Cases	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$\alpha = 0.05$ $\alpha = 0.1$						9 8				11 10								16 15	17 16	18 16	18 17

Table 5 Example of Sign test for pairwise comparisons. SaDE shows a significant improvement over PSO, CHC, and SSGA, with a level of significance $\alpha=0.05$, and over SS-Arit, with a level of significance $\alpha=0.1$.

SaDE	PSO	IPOP-CMA-ES	СНС	SSGA	SS-BLX	SS-Arit	DE-Bin	DE-Exp
Wins (+) Loses (–)	20 5	15 10	20 5	18 7	16 9	17 8	13 12	9 16
Detected differences	$\alpha = 0.05$	_	$\alpha = 0.05$	$\alpha = 0.05$	-	$\alpha = 0.1$	-	-

- Signed rank test for answering, whether two samples represent two different populations
- Let d_i be the difference in performance score between two algorithms on problem i out of n
- Differences are ranked according to their absolute values. In case of ties, use the average rank
- We calculate positive and negative ranking scores ...

and associated p-values

$$R^{+} = \sum_{d_i > 0} \operatorname{rank}(d_i) + \frac{1}{2} \sum_{d_i = 0} \operatorname{rank}(d_i)$$
$$R^{-} = \sum_{d_i < 0} \operatorname{rank}(d_i) + \frac{1}{2} \sum_{d_i = 0} \operatorname{rank}(d_i)$$

Wilcoxon Test II

with the following result:

Table 6

Wilcoxon signed ranks test results. SaDE shows an improvement over PSO, CHC, and SSGA, with a level of significance $\alpha=0.01$, over IPOP-CMA-ES and SS-Arit, with $\alpha=0.05$, and over SS-BLX, with $\alpha=0.1$.

Comparison	R^+	R^-	<i>p</i> -value	Comparison	R^+	R^-	<i>p</i> -value
SaDE versus PSO	261	64	0.00673	SaDE versus SS-BLX	232	93	0.06262
SaDE versus IPOP-CMA-ES	239	86	0.03934	SaDE versus SS-Arit	243	82	0.02958
SaDE versus CHC	287	38	0.00038	SaDE versus DE-Bin	176	149	>0.2
SaDE versus SSGA	260	65	0.00737	SaDE versus DE-Exp	119	206	>0.2

- which means: SaDE is significantly better than
 - PSO, CHC, SSGA with level of significance α = 0.01
 - IPOP-CMA-ES, SS-Arit with $\alpha = 0.05$
 - SS-BLX with $\alpha = 0.1$

- Multiple comparison test, asking the following question: In a set of k>=2 samples, do at least 2 of the samples represent populations with different median values?
- Null hypothesis: Equality of medians
- Calculation:
 - For each problem i rank values from 1 (best) to k (worst) rij
 - For each algorithm j, average the ranks obtained for all problems $R^{j} = 1/n \sum_{i} r_{i}^{j}$
 - Friedman statistic

$$F_f = \frac{12n}{k(k+1)} \left[\Sigma_j R_j^2 - \frac{k(k+1)^2}{4} \right]$$

Friedman Test II

On a toy example:

Table 7 Error rates achieved (Example 4).

Error	Α	В	С	D
P1	2.711	3.147	2.515	2.612
P2	7.832	9.828	7.832	7.921
Р3	0.012	0.532	0.122	0.005
P4	3.431	4.111	3.401	3.401

Table 8 Friedman ranks (Example 4).

Friedman	Α	В	С	D
P1	3	4	1	2
P2	1.5	4	1.5	3
P3	2	4	3	1
P4	3	4	1.5	1.5
Average	2.375	4	1.250	1.875

- and for our algorithms:
- DE-Exp comes out best
- p-values can be calculated from the statistics
- and suggest strongly, that there are significant differences among the algorithms considered

Algorithms	Friedman
PSO	7
IPOP-CMA-ES	4.84
CHC	6.28
SSGA	5.5
SS-BLX	4.64
SS-Arit	5.4
DE-Bin	4
DE-Exp	3.5
SaDE	3.84
Statistic	35.99733
<i>p</i> -value	0.000018

 There are other tests, like the Quade test, but we are not going to discuss them here.

Post-hoc Procedures

- Disadvantage of Friedman (et al.) tests: They only detect that there IS a difference, but they cannot pinpoint which of the many algorithms compared differ significantly.
- To that end, a family of comparisons can be defined
 - Using k-1 hypotheses for comparison with a control method (k=1)
 - Using k*(k-1)/2 hypotheses for comparison all against all
- Then we order according to p-value (surest), from lowest to highest to get a picture

p-value calculation

The p-value for a member of the family can be obtained by converting the rankings R_i and R_j of algorithms i and j into a z- score:

$$z = (R_i - R_j) / \sqrt{\frac{k(k+1)}{6n}}$$

- The z-score can be translated into an (un-adjusted) p-value
- This p-value results from a one-to-one comparison, and needs to be corrected to say something for multiple tests
 - Bonferroni adjustment: Multiply each p-value by k-1

Bonferroni
$$APV_i$$
: min $\{v, 1\}$, where $v = (k-1)p_i$.

Other procedures: Holm & Hochberg

Example with DE-Exp as Control

 Result: No statistical difference between the last three algorithms and the control

0.000006	
0.000006	0.000050
0.000332	0.002656
0.009823	0.078586
0.014171	0.113371
0.083642	0.669139
0.141093	1.0
0.518605	1.0
0.660706	1.0
	0.009823 0.014171 0.083642 0.141093 0.518605