## Chapter 1

# Algorithms to Solve Integer Programs

## 1.1 LP to solve IP

Recall that he linear relaxation of an integer program is the linear programming problem after removing the integrality constraints

Integer Program:

Linear Relaxation:

$$\begin{array}{lll} \max & z_{IP} = c^{\top}x & \max & z_{LP} = c^{\top}x \\ & Ax \leq b & & Ax \leq b \\ & x \in \mathbb{Z}^n & & x \in \mathbb{R}^n \end{array}$$

Theorem 1. It always holds that

$$z_{IP}^* \le z_{LP}^*. \tag{1.1.1}$$

Furthermore, if  $x_{LP}^*$  is integral (feasible for the integer program), then

$$x_{LP}^* = x_{IP}^*$$
 and  $z_{LP}^* = z_{IP}^*$ . (1.1.2)

#### Example 1:

Consider the problem

$$\max z = 3x_1 + 2x_1$$
  
 $2x_1 + x_2 \le 6$   
 $x_1, x_2 \ge 0; x_1, x_2 \text{ integer}$ 

## 1.1.1 Rounding LP Solution can be bad!

Consider the two variable knapsack problem

$$\max 3x_1 + 100x_2 \tag{1.1.3}$$

$$x_1 + 10x_2 \le 10 \tag{1.1.4}$$

$$x_i \in \{0,1\} \text{ for } i = 1,2.$$
 (1.1.5)

```
Then x_{LP}^* = [1, 0.99] and z_{LP}^* = 1 \cdot 3 + 0.99 \cdot 100 = 3 + 99 = 102.
```

But  $x_{IP}^* = [0, 1]$  with  $z_{IP}^* = 0 \cdot 3 + 1 \cdot 100 = 100$ .

Suppose that we rounded the LP solution.

 $x_{LP-Rounded-Down}^* = [1,0]$ . Then  $z_{LP-Rounded-Down}^* = 1 \cdot 3 = 3$ . Which is a terrible solution! How can we avoid this issue?

Cool trick! Using two different strategies gives you at least a 1/2 approximation to the optimal solution.

## 1.1.2 Rounding LP solution can be infeasible!

Now only could it produce a poor solution, it is not always clear how to round to a feasible solution.

## 1.1.3 Fractional Knapsack

The fractional knapsack problem has an exact greedy algorothm.

```
\label{lem:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match:match
```

## 1.2 Branch and Bound

See http://web.tecnico.ulisboa.pt/mcasquilho/compute/\_linpro/TaylorB\_module\_c.pdf
for some nice notes on branch and bound.

## 1.2.1 Algorithm

#### **Algorithm 1** Branch and Bound - Maximization

**Input:** Integer Linear Problem with max objective

**Output:** Exact Optimal Solution  $x^*$ 

- 1: Set  $LB = -\infty$ .
- 2: Solve LP relaxation.
  - a: If  $x^*$  is integer, stop!
  - b: Otherwise, choose fractional entry  $x_i^*$  and branch onto subproblems:
  - (i)  $x_i \leq |x_i^*|$  and (ii)  $x_i \geq \lceil x_i^* \rceil$ .
- 3: Solve LP relaxation of any subproblem.
  - a: If LP relaxation is infeasible, prune this node as "Infeasible"
  - b: If  $z^* < LB$ , prune this node as "Suboptimal"
  - c:  $x^*$  is integer, prune this nodes as "Integer" and update  $LB = \max(LB, z^*)$ .
  - d: Otherwise, choose fractional entry  $x_i^*$  and branch onto subproblems:
  - (i)  $x_i \leq \lfloor x_i^* \rfloor$  and (ii)  $x_i \geq \lceil x_i^* \rceil$ . Return to step 2 until all subproblems are pruned.
- 4: Return best integer solution found.

3

## 1.2.2 General Branching

**Example 2:** See Example 9 in Chapter 9 of the textbook (Winston - Operations Research Applications and Algorithms).



$$x = [3,3] \ obj = 39.0$$
 $x = [4,1.8], \ obj = 41.0$ 

x = [3,3], obj = 39.0x = [4.44,1] obj = 40.55. Infeasible Region



5

**Example 3:** Consider the two variable example with

$$\max - 3x_1 + 4x_2$$

$$2x_1 + 2x_2 \le 13$$

$$-8x_1 + 10x_2 \le 41$$

$$9x_1 + 5x_2 \le 45$$

$$0 \le x_1 \le 10, \text{ integer}$$

$$0 \le x_2 \le 10, \text{ integer}$$







## 1.2.3 Knapsack Problem and 0/1 branching

Consider the problem

max 
$$16x_1 + 22x_2 + 12x_3 + 8x_4$$
  
s.t.  $5x_1 + 7x_2 + 4x_3 + 3x_4 \le 14$   
 $0 \le x_i \le 1$   $i = 1, 2, 3, 4$   
 $x_i \in \{0, 1\}$   $i = 1, 2, 3, 4$ 

What is the optimal solution if we remove the binary constraints?

max 
$$c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4$$
  
s.t.  $a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 \le b$   
 $0 \le x_i \le 1$   $i = 1, 2, 3, 4$ 

How do I find the solution to this problem?

max 
$$c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4$$
  
s.t.  $(a_1 - A)x_1 + (a_2 - A)x_2 + (a_3 - A)x_3 + (a_4 - A)x_4 \le 0$   
 $0 \le x_i \le m_i \ i = 1, 2, 3, 4$ 

How do I find the solution to this problem?

9

Consider the problem

max 
$$16x_1 + 22x_2 + 12x_3 + 8x_4$$
  
s.t.  $5x_1 + 7x_2 + 4x_3 + 3x_4 \le 14$   
 $0 \le x_i \le 1$   $i = 1, 2, 3, 4$   
 $x_i \in \{0, 1\}$   $i = 1, 2, 3, 4$ 

We can solve this problem with branch and bound.

The optimal solution was found at t = 5 at subproblem 6 to be  $x^* = (0, 1, 1, 1)$ ,  $z^* = 42$ .

**Example: Binary Knapsack** Solve the following problem with branch and bound.

max 
$$z = 11x_1 + 15x_2 + 6x_3 + 2x_4 + x_5$$
  
Subject to:  $5x_1 + 7x_2 + 4x_3 + 3x_4 + 15x_5 \le 15$   
 $x_i$  binary,  $i = 1, ..., 4$ 



## 1.2.4 Traveling Salesman Problem solution via Branching

## 1.3 Cutting Planes

Cutting planes are inequalities  $\pi^{\top}x \leq \pi_0$  that are valid for the feasible integer solutions that the cut off part of the LP relaxation. Cutting planes can create a tighter description

of the feasible region that allows for the optimal solution to be obtained by simply solving a strengthened linear relaxation.

The cutting plane procedure, as demonstrated in Figure ??. The procedure is as follows:

- 1. Solve the current LP relaxation.
- 2. If solution is integral, then return that solution. STOP
- 3. Add a cutting plane (or many cutting planes) that cut off the LP-optimal solution.
- 4. Return to Step 1.



**Figure 1.1:** The cutting plane procedure.

In practice, this procedure is integrated in some with with branch and bound and also other primal heuristics.

#### 1.3.1 Chvátal Cuts

Chvátal Cuts are a general technique to produce new inequalities that are valid for feasible integer points.

#### **Chvátal Cuts:**

Suppose

$$a_1x_1 + \dots + a_nx_n \le d \tag{1.3.1}$$

is a valid inequality for the polyhedron  $P = \{x \in \mathbb{R}^n : Ax \leq b, x \geq 0\}$ , then

$$|a_1|x_1 + \dots + |a_n|x_n \le |d|$$
 (1.3.2)

is valid for the integer points in P, that is, it is valid for the set  $P \cap \mathbb{Z}^n$ . Equation (??) is called a Chvátal Cut.

We will illustrate this idea with an example.

## **Example 4:** Recall example **??**. The model was **Model**

min 
$$p+n+d+q$$
 total number of coins used s.t.  $p+5n+10d+25q=83$  sums to 83¢  $p,d,n,q\in\mathbb{Z}_+$  each is a non-negative integer

From the equality constraint we can derive several inequalities.

1. Divide by 25 and round down both sides:

$$\frac{p + 5n + 10d + 25q}{25} = 83/25 \quad \Rightarrow \quad q \le 3$$

2. Divide by 10 and round down both sides:

$$\frac{p + 5n + 10d + 25q}{10} = 83/10 \quad \Rightarrow \quad d + 2q \le 8$$

3. Divide by 5 and round down both sides:

$$\frac{p + 5n + 10d + 25q}{10} = 83/5 \quad \Rightarrow \quad n + 2d + 5q \le 16$$

4. Multiply by 0.12 and round down both sides:

$$0.12(p+5n+10d+25q=0.12(83)) \Rightarrow d+3q \le 9$$

These new inequalities are all valid for the integer solutions. Consider the new model:

#### **New Model**

min 
$$p+n+d+q$$
 total number of coins used s.t.  $p+5n+10d+25q=83$  sums to  $83$ ¢  $q \le 3$   $d+2q \le 8$   $n+2d+5q \le 16$   $d+3q \le 9$   $p,d,n,q \in \mathbb{Z}_+$  each is a non-negative integer

The solution to the LP relaxation is exactly q = 3, d = 0, n = 1, p = 3, which is an integral feasible solution, and hence it is an optimal solution.

## 1.3.2 Gomory Cuts

Gomory cuts are a type of Chvátal cut that is derived from the simplex tableau. Specifically, suppose that

$$x_i + \sum_{i \in N} \tilde{a}_i x_i = \tilde{b}_i \tag{1.3.3}$$

is an equation in the optimal simplex tableau.

## **Gomory Cut:**

The Gomory cut corresponding to the tableau row (??) is

$$\sum_{i\in N} (\tilde{a}_i - \lfloor \tilde{a}_i \rfloor) x_i \ge \tilde{b}_i - \lfloor \tilde{b}_i \rfloor \tag{1.3.4}$$

We will solve the following problem using only Gomory Cuts.

min 
$$x_1 - 2x_2$$
  
s.t.  $-4x_1 + 6x_2 \le 9$   
 $x_1 + x_2 \le 4$   
 $x \ge 0$  ,  $x_1, x_2 \in \mathbb{Z}$ 

**Step 1:** The first thing to do is to put this into standard from by appending slack variables.

min 
$$x_1 - 2x_2$$
  
s.t.  $-4x_1 + 6x_2 + s_1 = 9$   
 $x_1 + x_2 + s_2 = 4$   
 $x \ge 0$  ,  $x_1, x_2 \in \mathbb{Z}$  (1.3.5)

We can apply the simplex method to solve the LP relaxation.

Initial Basis

| Basis | RHS | $x_1$ | $x_2$ | $s_1$ | $s_2$ |
|-------|-----|-------|-------|-------|-------|
| Z     | 0.0 | 1.0   | -2.0  | 0.0   | 0.0   |
| $s_1$ | 9.0 | -4.0  | 6.0   | 1.0   | 0.0   |
| $s_2$ | 4.0 | 1.0   | 1.0   | 0.0   | 1.0   |

:

Optimal Basis

| Basis | RHS  | $x_1$ | $x_2$ | $s_1$ | <i>s</i> <sub>2</sub> |
|-------|------|-------|-------|-------|-----------------------|
| Z     | -3.5 | 0.0   | 0.0   | 0.3   | 0.2                   |
| $x_1$ | 1.5  | 1.0   | 0.0   | -0.1  | 0.6                   |
| $x_2$ | 2.5  | 0.0   | 1.0   | 0.1   | 0.4                   |

This LP relaxation produces the fractional basic solution  $x_{LP} = (1.5, 2.5)$ .

## **Example 5: (Gomory cut removes LP solution)**

We now identify an integer variable  $x_i$  that has a fractional basic solution. Since both variables have fractional values, we can choose either row to make a cut. Let's focus on the row corresponding to  $x_1$ .

The row from the tableau expresses the equation

$$x_1 - 0.1s_1 + -0.6s_2 = 1.5.$$
 (1.3.6)

Applying the Gomory Cut (??), we have the inequality

$$0.9s_1 + 0.4s_2 > 0.5.$$
 (1.3.7)

The current LP solution is  $(x_{LP}, s_{LP}) = (1.5, 2.5, 0, 0)$ . Trivially, since  $s_1, s_2 = 0$ , the inequality is violated.

## **Example 6: (Gomory Cut in Original Space)**

The Gomory Cut (??) can be rewritten in the original variables using the equations from (??). That is, we can use the equations

$$\begin{array}{rcl}
s_1 & = & 9 + 4x_1 - 6x_2 \\
s_2 & = & 4 - x_1 - x_2,
\end{array} \tag{1.3.8}$$

which transforms the Gomory cut into the original variables to create the inequality

$$0.9(9+4x_1-6x_2)+0.4(4-x_1-x_2) \ge 0.5.$$

or equivalently

$$-3.2x_1 + 5.8x_2 \le 9.2. \tag{1.3.9}$$

As you can see, this inequality does cut off the current LP relaxation.

**Example 7: (Gomory cuts plus new tableau)** Now we add the slack variable  $s_3 \ge 0$  to make the equation

$$0.9s_1 + 0.4s_2 - s_3 = 0.5. ag{1.3.10}$$

Next, we need to solve the linear programming relaxation (where we assume the variables are continuous).

## 1.4 Branching Rules

There is a few clever ideas out there on how to choose which variables to branch on. We will not go into this here. But for the interested reader, look into

- Strong Branching
- Pseudo-cost Branching

## 1.5 Lagrangian Relaxation for Branch and Bound

At each note in the branch and bound tree, we want to bound the objective value. One way to get a a good bound can be using the Lagrangian.

See [?] for a description of this.

For a great tutorial, see this: https://my.eng.utah.edu/~kalla/phy\_des/lagrange-relax-tutorial-fisher.pdf

## 1.6 Literature

