TECHNICAL REPORT

SESAM INPUT INTER-FACE FILE

FILE DESCRIPTION

DET NORSKE VERITAS

DET NORSKE VERITAS SESAM AS

Document Title:

Document id:

Sesam Input Interface File

89-7012

 $Responsible\ section/project\ -\ project\ reg.number:$

DNVS / 4 - 11910

Revision number / Date of revision: 9 / 01 November 1996

Summary:				
An interface between Finite Element (F.E.) preprocessing and F.E. analysis program is defined. The interface is defined as a file where all data are stored according to a unified file format. This standardisation is performed in order to enable different F.E. preprocessors to be coupled to the same application program, or vice versa.				
To obtain computer portability of generated F.E. model data, the interface file is defined as a sequential character file with a fixed record length. An application program may read the interface file by applying a standard formatted FORTRAN read statement. The contents may be displayed and edited by applying an operating system text editor.				
The data are divided into groups that naturally belong together.				
The interface file is prepared for the superelement technique.				
Work carried out by::				
F. Klem, S. Windingstad et al.				
Type of verification * Configuration control Distribution controls Distr. of uncontrolled copies inspection				
ystem X Manual Controlled copies No distribution outside DNVS				
DECwrite CMS X Distribution list No distribution outside DNV**				
Eile/archive ref. List of valid documents X Free distribution				
sesam_doc:interface_link.doc List of valid documents:				
Configuration reference: idun\$dka300:[sesam.inp_interface.doc]				

Rev.no./date	Main author (sign)	Verification***	Approved by (sign)	Date of approval	Configuration ref.
9 / 01-NOV-1996	Ferd. Klem	see next page	Ola Sannes	01-Nov-1996	

^{*)} Verification level: 0: no verification 1: review 2: verification with background material 3: joint verification 4: inspection

^{**)} For further distribution written permission must be given by the responsible section

^{***)} If more than one reviewer, use back page.

Document Verification log:

Revision no.	Doc. status/ date of revision	Reviewer/	deadline for verification	Reference*
9	01-Sep-1996	Hans Rosbach	20-Aug-1996	
9	01-Sep-1996	Brita Carlin	20-Aug-1996	
Enclosure	es/references (computer fil	es, background material,	input data):	

TECHNICAL REPORT

SESAM INPUT INTER-FACE FILE

FILE DESCRIPTION

DET NORSKE VERITAS

SESAM INPUT INTERFACE FILE

FILE DESCRIPTION

01 November 1996

Developed by DET NORSKE VERITAS

DNV Sesam Report No.: 89-7012 / Rev. 9, 01 November 1996

Copyright © 1996 Det Norske Veritas Sesam AS

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

Published by Det Norske Veritas Sesam AS Veritasveien 1 P.O. Box 300 N-1322 HØVIK, NORWAY

Telephone: (+47) 67 57 99 00. Facsimile: (+47) 67 57 72 72.

It is agreed that save as provided below Det Norske Veritas, its subsidiaries, bodies, officers, directors, employees and agents shall have no liability for any loss, damage or expense allegedly caused directly or indirectly by their mistake or negligence, breach of warranty, or any other act, omission or error by them, including gross negligence or wilful misconduct by any such person with the exception of gross negligence or wilful misconduct by the governing bodies or senior executive of Det Norske Veritas. This applies regardless of whether the loss, damage or expense has affected anyone with whom Det Norske Veritas has a contract or a third party who has acted or relied on decisions made or information given by or on behalf of Det Norske Veritas. However, if any person uses the services of Det Norske Veritas or its subsidiaries or relies on any decision made or information given by or on behalf of them and in consequence suffers a loss, damage or expense proved to be due to their negligence, omission or default, then Det Norske Veritas will pay by way of compensation to such person a sum representing his proved loss. In the event Det Norske Veritas or its subsidiaries may be held liable in accordance with the sections above, the amount of compensation shall under no circumstances exceed the amount of the fee, if any, charged for that particular decision, advice or information. Under no circumstances whatsoever shall the individual or individuals who have personally caused the loss, damage or expense be held liable. In the event that any provision in this section shall be invalid under the law of any jurisdiction, the validity of the remaining provisions shall not in any way be affected.

Table of Contents

INTRODUCTION	1-1
INTERFACE FILE FORMAT	2-1
Record Format	2-1
File Naming Conventions	2-2
INTERFACE FILE CONTENTS	3-1
Input Interface File Relations	3-2
3.1.1 Legend	3-2
3.1.2 Master data	3-2
ELEMENT TYPES	5-1
Element Types in SESAM	5-1
Element Type (Number)	5-4
	INTERFACE FILE FORMAT Record Format File Naming Conventions INTERFACE FILE CONTENTS Input Interface File Relations 3.1.1 Legend 3.1.2 Master data 3.1.3 Nodes 3.1.4 Elements 3.1.5 Materials 3.1.6 Sections 3.1.7 Loads Results Interface File Relations 3.2.1 Legend 3.2.2 Result case IDENTIFICATION DATA FOR SUPERELEMENTS AND TEXT DATA ELEMENT TYPES Element Types in SESAM Element Type (Number)

6	FIRST LEVEL DATA	1-1
6.1	Additional Element Data	2-1
6.2	Boundary Conditions, Loads and Point Masses	2-2
6.3	Nodal Data and Element Geometry Definition	5-26
6.4	Material Data	5-113
7	HIGHER LEVEL DATA	1-1
7.1	Additional Subelement Data	2-1
7.2	Boundary Conditions, Loads and Point Masses	6-5
7.3	Nodal Data and Element Geometry Definition	7-28
7.4	Super-Element Hierarchy Information in Highest Level T-File	7-37
7.5	Material Data	7-42
8	RULES FOR EXTENSION OF THE INTERFACE	5-21
A	EXAMPLES	A-1

Data Types

First Level Data

Record Type	Page
Element Type (Number)	
DATE	4-2
IDENT	4-3
IEND	4-4
TDMATER	4-5
TDSECT	4-6
TDSETNAM	4-7
TDSUPNAM	4-8
TEXT	4-10
TSLAYER	4-11
ACFD	6-2
ADDATA	6-5
BEISTE	6-7
BELFIX	6-8
BELLAX	6-9
BELLO2	6-14
BELOAD1	6-16
BEDRAG1	6-19
BEMASS1	6-20
BEUSLO	6-21
BEUVLO	6-23
BEWAKIN	6-24
BEWALO1	6-25
BGRAV	6-26
BLDEP	6-27
BLDEP	6-28
BNACCLO	6-29
BNBCD	6-30
BNDISPL	6-31
BNDOF	6-33
BNINCO	6-34
BNLOAD	6-35
BNLOAX	6-36
BNMASS	6-38
BNTEMP	6-39
BNTRCOS	6-41
BNWALO	6-42
BRIGAC	6-43
BRIGUE	6-44
BRIGVE	6-45

DODD	C 1C
BQDP	6-46
GBARM	6-48
GBEAMG	6-49
GBOX	6-50
GCHAN	6-52
GCHANR	6-54
GCOORD	6-56
GCROINT	6-57
GDOBO	6-58
GECC	6-60
GECCEN	6-61
GELINT	6-62
GELMNT1	6-65
GELREF1	6-66
GELSTRP	6-69
GELTH	6-70
GIORH	6-71
GIORHR	6-73
GLMASS	
	6-75
GLSEC	6-76
GLSECR	6-78
GNODE	6-80
GPIPE	6-81
GSEPXXXX	6-82
GSEPSPEC	6-83
GSETMEMB	6-84
GSLAYER	6-86
GSLxxxxx	6-87
GSLPLATE	6-88
GSLSTIFF	6-89
GTONP	6-90
GUNIVEC	6-92
GUSYI	6-93
MAXDMP	6-96
MAXSPR	6-97
MCNT	6-98
MGDAMP	6-99
MGLDAMP	6-100
MGLMASS	6-101
MGMASS	6-102
MGSPRNG	6-103
MISOAL	6-104
MISOEML	6-105
MISOHL	6-106
MISOHNL	6-107
MISOPL	6-108
MISOPL	6-111
MISOPL	6-113
MISOSEL	6-115
MISOSEL	0-113

MISTEL MORSMEL	6-116 6-117
MORSSEL	6-118
MORSSOL	6-120
MSHGLSP	6-121
MTEMP	6-122
MTENONL	6-123
MTRMEL	6-125
MTRSEL	6-126
MTRSOL	6-127

Higher Level Data

Record Type	Page
ADDATA AMATRIX AMDACCL AMDDAMP AMDDISP AMDFREQ AMDLOAD AMDMASS AMDSTIFF AMDVELO	7-3 7-4 7-6 7-7 7-8 7-9 7-10 7-11 7-12 7-13
BLDEP BNBCD BNDISPL BNDOF BNINCO BNLOAD BNMASS BNTRCOS BQDP BSELL	7-15 7-17 7-18 7-20 7-21 7-22 7-23 7-24 7-25 7-27
GCOORD GELMNT1 GELMNT2 GELREF1 GNODE HIERARCH HSUPSTAT HSUPTRAN	7-29 7-30 7-31 7-33 7-36 7-38 7-40 7-41
MAXDMP MAXSPR MGDAMP MGSPRNG	7-43 7-44 7-45 7-46

Program Version	Date	Page
6	01-NOV-1996	1-1

1 INTRODUCTION

This manual contains a description of the input part of the SESAM Interface File, the Input Interface File. The results part of the SESAM Interface File, is described in a separate manual, "SESAM Results Interface File Description" /1/.

The large amount of input data common to many different finite element (F.E.) program systems has been one of the main reasons for developing general F.E. preprocessors. These general preprocessors, separated from the F.E. application programs, give the user a unified way of defining input data applicable to different program systems.

A separated general F.E. preprocessor offers some important advantages. The data preparation phase can now be performed interactively on a local mini computer, while the real analysis can be executed in batch. Further, the user will be able to apply different F.E. systems without having to spend costly time learning the input of the various systems.

One problem, however, is how to interface the preprocessor to the F.E. programs.

General requirements to this interface are:

- 1 Analysis portability
 - The data produced by the preprocessor must be easily applicable to different analysis programs
- 2 Computer portability

The F.E. analysis programs, applying input from the preprocessor, may run on different types of computers.

- 3 Extensibility
 - The interface must be able to handle new data types as the preprocessor is interfaced to new application areas, (e.g. different types of non-linear analysis).
- 4 Flexibility

The interface should have the ability to transfer all types of non-standard input data, (e.g. input data typical for only one particular application program.

Program Version	Date	Page
6	01-NOV-1996	2-1

2 INTERFACE FILE FORMAT

2.1 Record Format

To meet the requirements of portability, extensibility and flexibility, an interface has been chosen where the data are stored on a simple sequential, record file, similar to the input of the early F.E. programs.

Each record¹ of this file has a fixed length of 72 characters. Furthermore, each record is subdivided into five fields, one 8 character identifier field and four 16 character data fields. The identifier gives information concerning the type of data stored, like nodal geometry, constraints, etc. Data types consisting of more than four items, will have the remaining items described in the succeeding records (four in each), all with a blank record identifier.

The notation data record is used for the data string starting with a non-blank identifier to the next non-blank identifier. A 72 character record as described above is denoted file record. A data record may consist of several file records.

This record file will be made readable by standard FORTRAN I/O. The data generated will then be simple to use by the application programs.

When data are transferred between computers of different makes, all system-generated information (if any) must be removed. The format of the interface file will have the following characteristics:

- 1 A sequential character file
- 2 A fixed record length of 72 characters
- 3 A standard ASCII character code (when formatted FORTRAN format of the file is chosen).
- 4 Records with all the same format, i.e. one 8-character identifier field (2A4) and four 16-character data fields (4E16.8). Except text fields which have (18A4).

On each installation the interface file is supported by simple read-and-write routines which will convert the

1 A record may also be called a file record or a line.

Page Date Program Version 2-2 01-NOV-1996 Program Version

data to a format readable by the system editor employing a formatted file, which is the default. However, to save computing and I/O-time there is an option to write the file unformatted. Then the file is not transferable between different computers.

The sequence of data records is arbitrary within each data type, with some exceptions registered below in the description of the data types. The sequence of data types is arbitrary.

2.2 File Naming Conventions

The records are assembled in one file per superelement. The file name will be determined by following naming convention (where nnnn is the superelement no. and xxx identifies the model):

- 1 VAX (VMS) computers [directory]xxxTnnnn.FEM
- 2 IBM370 series (MVS). prefix.FEM(Tnnn) See also separate User's Guide for IBM - OS / MVS
- 3 IBM370 series (VM). FEMTnn prefix filemode See also separate User's Guide for IBM - VM.
- 4 UNIX Tnnnn.FEM
- 5 ND (SINTRAN) computers (user)xxxTnnnn:FEM See also ND User's Guide

A special feature is possible if the interface files are formatted. They may then be appended to one file. Refer to IEND record on page 4-3.

Program Version	Date	Page
6	01-NOV-1996	3-1

3 INTERFACE FILE CONTENTS

The data transferred to and from the F.E. analysis program are divided into separate groups. The Results part of the interface file is described in a separate manual: "SESAM Results Interface File Description" /1/.

1	Identification data for superelements / File data	I
2	Nodal data and element geometry definition	G
3	Material data	M
4	Additional element data	A
5	Boundary conditions, loads and point masses	В
6	Results	R
7	Hierarchy data	Н
8	Text data	T

To distinguish between the various groups, one or more characters of the record identifier is used as a group identifier. The codes are:

A	Additional element data
B BE BN	Boundary conditions, loads and point masses • Elements • Nodes
G GE GN	Geometry: Nodal data and element geometry definition • Elements • Nodes
Н	Hierarchy data
I	Identification data for superelements / File data

SESAM

Page	Date	Program Version
3-2	01-NOV-1996	6

M Material data

 $\begin{array}{ll} \textbf{R} & \text{Results} \\ \textbf{RV} & \cdot \text{Values} \\ \textbf{RD} & \cdot \text{Definitions} \end{array}$

T Text data

To reduce the size of the input interface files, a reference system is built into the file so that repeated element data do not have to be duplicated.

3.1 Input Interface File Relations

3.1.1 Legend

 \rightarrow = refers to

number *n = several key values out from one entry of DATATYPE DATATYPE *n = multiple occurrences of DATATYPE for one key value

(M) = mandatory (O) = optional optional

3.1.2 Master data

superelement type number

→ IDENT (M) (superelement identification number)

DATE (O) (date, time and program information)
TEXT (O) (descriptive text for superelement)

IEND (O) (end of superelement)

Program Version	Date	Page
6	01-NOV-1996	3-3

3.1.3 Nodes

```
int node number
      ext node number
    → GNODE
                          (external and internal node number)
                    (M)
   → GCOORD
                    (M)
                          (node coordinates)
   \rightarrow BNBCD
                    (O)
                          (boundary conditions)
   \rightarrow BLDEP
                    (O)
                          (linear dependency)
                                                 ® int node number *2 ® GNODE
   \rightarrow BQDP
                    (O)
                          (quadratic dependency) ® int node number *n ® GNODE
   \rightarrow BNDOF
                    (O)
                          (transformation ref.)
                                                 ® trans number *2 ® BNTRCOS
   \rightarrow BNMASS *n (O)
                          (nodal mass)
```

3.1.4 Elements¹

```
int element number
       ext element number
    \rightarrow GELMNT1(M)
                              \rightarrow int node number*n \rightarrow GNODE
    \rightarrow GELREF1(M)
                              → material number
                                                        \rightarrow class MATERIAL (M)
                              \rightarrow section number*n \rightarrow class SECTION (M)
                              \rightarrow fixation number*n \rightarrow BELFIX (O) \rightarrow trans \rightarrow BNTRCOS
                              \rightarrow transformation *n \rightarrow GUNIVEC (M) (if el.typ.beam)
                                                        → BNTRCOS (O) (if anisotropic shell/solid)
                              → eccentricity *n
                                                        \rightarrow GECCEN (O)
                              \rightarrow additional data
                                                        \rightarrow ADDATA (O)
                                                                               (not used by SESAM)
                              → integration data
                                                        \rightarrow GELINT (O) \rightarrow ref
                                                                                         \rightarrow GCROINT
                                                                               (not used by SESAM)
                                                        \rightarrow GELSTRP (O) (not used by SESAM)
    \rightarrow MTRSOL
                      (O)
                              (- if material of type MORSMEL)
   \rightarrow MTRMEL
                      (O)
                              (- if material of type MORSSEL)
                             (- if material of type MORSSOL)
   \rightarrow MTRSEL
                      (O)
    \Rightarrow BEMASS1 (O)
                              (element added mass)
```

¹ For the general eccentric sandwich element type, see the element description for LCTS(34) or LCQS(35).

SESAM

Page Date Program Version 3-4 O1-NOV-1996 Program Version 6

3.1.5 Materials

material number

→ AMATRIX (matrix control data) → MISOSEL (linear elastic, isotropic) → MISOPL (non-linear elastic, isotropic) → MISOHL (linear heat conduction, isotropic) \rightarrow MISOHNL (non-linear heat conduction, isotropic) \rightarrow MISOEML (linear electromagnetic field problem, isotropic) \rightarrow MISOAL (linear acoustic field problem, isotropic) → MORSMEL (linear elastic, anisotropic, 2-d thin shell) (linear elastic, anisotropic, 2-d thick shell) → MORSSEL → MORSSOL (linear elastic, anisotropic, solid elements) \rightarrow MAXSPR (spring constant - if element type axial spring) \rightarrow MAXDMP (damping constant - if element type axial damper) (spring matrix - if element type spring to ground) → MGSPRNG \rightarrow MGDAMP (damping matrix - if element type damper to ground) → MSHGLSP (general spring between nodes) → MGLMASS (general mass between nodes) (general damper between nodes) \rightarrow MGLDAMP → MGMASS (general mass in node) (scaling curve for temperature variation) \rightarrow MTEMP \rightarrow MISTEL (temperature dependent linear elastic, isotropic) → MTENOL (general material with temperature dependency)

one of the datatypes above per element is mandatory (M)

Program Version	Date	Page
6	01-NOV-1996	3-5

3.1.6 Sections

section number → GELTH (thickness - if element type shell) (M) \rightarrow GBEAMG (M) (general beam data - if element type beam) (O) \rightarrow GIORH (I-section description - if element type beam) \rightarrow GUSYI (O) (unsymm.I-section) (Channel section) \rightarrow GCHAN (O) \rightarrow GBOX (O) (Box section) \rightarrow GPIPE (O) (Pipe section) \rightarrow GBARM (O) (Massive bar) \rightarrow GTONP \rightarrow GDOBO (T on plate) (O) (Double box) (O) \rightarrow GLSEC (O) (L section) \rightarrow GIORHR (O) \rightarrow GCHANR (O) \rightarrow GLSECR (O)

either GELTH if shell or GBEAMG if beam, if GBEAMG then one of the other types is optional (O)

Page Date Program Version 3-6 01-NOV-1996 6

3.1.7 Loads

Program Version Date Page 6 01-NOV-1996 3-7

3.2 Results Interface File Relations

3.2.1 Legend

 \rightarrow = refers to

number *n = several key values out from one entry of DATATYPE DATATYPE *n = multiple occurrences of DATATYPE for one key value

 $\begin{array}{ll} (M) & = mandatory \\ (O) & = optional \end{array}$

Page Date Program Version 3-8 01-NOV-1996 6

3.2.2 Result case

result case number → RDRESREF (M) (result case description) → load case number \rightarrow TDRESREF (O) (text description) \rightarrow RMLFACT (O) (modal load factors) int node number → RVNODDIS (O) (nodal displacements) \rightarrow RDNODRES (M) \rightarrow BNDOF (O) \rightarrow BNTRCOS (M) \rightarrow RVNODVEL (O) (nodal velocities) \rightarrow RDNODRES (M) \rightarrow BNDOF (O) \rightarrow BNTRCOS (M) → RVNODACC (O) (nodal accelerations) \rightarrow RDNODRES (M) \rightarrow BNDOF (O) \rightarrow BNTRCOS (M) int element number > RVSTRESS (O) (element stresses) \rightarrow RDPOINTS (M) \rightarrow RDIELCOR(M) \rightarrow RDSTRESS (M) → RVSTRAIN (O) (element strains)) \rightarrow RDPOINTS (M) \rightarrow RDIELCOR(M) \rightarrow RDSTRAIN (M) → RVFORCES (O) (element forces) \rightarrow RDFORCES (M) time series number → RDSERIES (M) → internal node or element number \rightarrow degree of freedom / force component \rightarrow RVORDINA (M) \rightarrow RVABSCIS (M) → TDSERIES (O)

Program Version	Date	Page
6	01-NOV-1996	4-1

4 IDENTIFICATION DATA FOR SUPERELEMENTS AND TEXT DATA

The term identification data is used on the type of data that identify each superelement, and the build-up of the superelement hierarchy.

Contents Page

Element Type (Number)

DATE	4-2
IDENT	4-3
IEND	4-4
TDMATER	4-5
TDSECT	4-6
TDSETNAM	4-7
TDSUPNAM	4-8
TEXT	4-10
TSLAYER	4-11

Page Program Version 4-2 01-NOV-1996

Date and Program Information

DATE

DATE	TYPE	SUBTYPE	NRECS	NBYTE
	<text lines=""></text>			
	<text lines=""></text>			

The identifier is used to transfer date and program information on the Interface File.

The following NRECS records must be read in A format, 72 characters per record.

TYPE Value giving information on how to use this text.

= 1 Text concerning current superelement.

= 2 Text concerning children of current superelement (not implemented).

SUBTYPE = 0 If current superelement (TYPE = 1).

> 0 Subelement no. referring to the current superelement (only if TYPE = 2).

NRECS Number of records to be read in A-format, NRECS ≥ 1 .

Number of significant bytes on the text records, $1 \le NBYTE \le 72$. **NBYTE** The eight first bytes on the text records shall be filled with blanks.

Example of format of "DATE" record as used in SESAM:

0.10000000E+01 0.0000000E+00 0.40000000E+01 0.72000000E+02 DATE

DATE: 23-MAY-86 TIME: 13:53:03
PROGRAM: SESAM WALOCO VERSION: 5.1-0 19 5.1-0 15-MAY-86

COMPUTER: VAX VMS V4.3 INSTALLATION: VERITEC USERID: 999XXXX ACCOUNT: ZZZZZZZ

123456789.123456789.123456789.123456789.123456789.123456789.123456789.12

4

SESAM

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	4-3

Identification of Superelements

IDENT

	IDENT	SLEVEL	SELTYP	SELMOD	
--	-------	--------	--------	--------	--

SLEVEL Superelement level.

The level of a superelement is defined as the highest level number among its subelements

plus 1. (Basic elements, i.e. beams, shells, springs, etc. have level zero.)

SELTYP Superelement type number.

SELMOD Superelement model dimension

= 2, 2-dimensional model = 0 or 3, 3-dimensional model.

SESAM

Page	Date	Program Version
4-4	01-NOV-1996	6

End of a Superelement

IEND

_				
- 1				
- 1	TEMD	$C \cap MT$		
- 1	THIND	CONT		
- 1				

Defines end of a superelement.

CONT

- = 0 (Default). This is also end of the file.
- = 1 The superelements are concatenated on one file. More superelements follows.
- = 2 Last superelement in a structure for a concatenated file.

Program Version Date Page 6 01-NOV-1996 4-5

Name of a Material Type

TDMATER

TDMATER	NFIELD	GEONO	CODNAM	CODTXT	
	<gs-name></gs-name>				
<gs-comment></gs-comment>					
	<text line=""></text>				

This record will associate a name to a general eccentric sandwich description.

NFIELD Number of numeric data fields on this record before text data (MAX = 1024).

GEONO Identification of the general eccentric sandwich type.

CODNAM Coded dimension of the GS-name:

CODNAM = NLNAM*100 + NCNAM. The inverse relation will then be:

NLNAM = integer part of (CODNAM/100) NCNAM = remaindering of (CODNAM/100)

NLNAM - number of physical records used for storing of name of the general eccentric

sandwich construction. Legal range = [0,1]

= 0, no name defined

= 1, name is defined

NCNAM - number of characters in set name. Legal range = [0,64]

CODTXT Coded dimension of the comment text ('GS-comment'):

CODTXT = NLTXT*100 + NCTXT. The inverse relation will then be:

NLTXT = integer part of (CODTXT/100) NCTXT = remaindering of (CODTXT/100)

NLTXT - number of physical records used for storing of text associated with the general

eccentric sandwich construction. Legal range = [0,5]

= 0, no description text defined

 \geq 1, number of physical records with description text

NCTXT - number of characters per physical set description text record. Legal range = [0,64]

GS-name Name of the general eccentric sandwich construction.

GS-comment Text associated with the general eccentric sandwich construction.

Page Program Version Date 4-6 01-NOV-1996

Name of a General Eccentric Sandwich Section

TDSECT

TDSECT	NFIELD	GEONO	CODNAM	CODTXT
	<gs-name></gs-name>			
	<gs-comment></gs-comment>			
	<text line=""></text>			

This record will associate a name to a general eccentric sandwich description.

NFIELD Number of numeric data fields on this record before text data (MAX = 1024).

GEONO Identification of the general eccentric sandwich type.

CODNAM Coded dimension of the GS-name:

CODNAM = NLNAM*100 + NCNAM. The inverse relation will then be:

NLNAM = integer part of (CODNAM/100) NCNAM = remaindering of (CODNAM/100)

NLNAM - number of physical records used for storing of name of the general eccentric

sandwich construction. Legal range = [0,1]

= 0, no name defined

= 1, name is defined

NCNAM - number of characters in set name. Legal range = [0,64]

CODTXT Coded dimension of the comment text ('GS-comment'):

CODTXT = NLTXT*100 + NCTXT. The inverse relation will then be:

NLTXT = integer part of (CODTXT/100)

NCTXT = remaindering of (CODTXT/100)

NLTXT - number of physical records used for storing of text associated with the general

eccentric sandwich construction. Legal range = [0,5]

= 0, no description text defined

≥ 1, number of physical records with description text

NCTXT - number of characters per physical set description text record. Legal range = [0,64]

GS-name Name of the general eccentric sandwich construction.

GS-comment Text associated with the general eccentric sandwich construction.

Program Version	Date	Page
6	01-NOV-1996	4-7

Name and Description of a Set (group)

TDSETNAM

TDSETNAM	NFIELD	ISREF	CODNAM	CODTXT
	<set name=""></set>			
	<text line=""></text>			
	<text line=""></text>			

This record together with the set of nodes or elements record(s) (GSETMEMB) constitutes the set (group) datatype.

NFIELD Number of numeric data fields on this record before text data (MAX = 1024).

ISREF Internal set identification number. Legal range [1,NSET], where NSET is number of sets which is equeal to number of "Name and Description of a Set" records (TDSETNAM). Two

TDSETNAM records may *not* have identical set identification numbers (ISREF).

CODNAM Coded dimension of set name:

CODNAM = NLNAM*100 + NCNAM. The inverse relation will then be:

NLNAM = integer part of (CODNAM/100) NCNAM = remaindering of (CODNAM/100)

NLNAM - number of physical records used for storing of set name. Legal range = [0,1]

= 0, no name defined = 1, name is defined

NCNAM - number of characters in set name. Legal range = [0,64]

CODTXT Coded dimension of set description text:

CODTXT = NLTXT*100 + NCTXT. The inverse relation will then be:

NLTXT = integer part of (CODTXT/100) NCTXT = remaindering of (CODTXT/100)

NLTXT - number of physical records used for storing of set description text. Legal range = [0,5]

= 0, no description text defined

 ≥ 1 , number of physical records with description text

NCTXT - number of characters per physical set description text record. Legal range = [0,64]

SESAM

Page Date Program Version
4-8 01-NOV-1996 6

Name and Description of a Super-Element

TDSUPNAM

TDSUPNAM	NFIELD	IHREF	CODNAM	CODTXT	
<super-element name=""></super-element>					
<text line=""></text>					
	<text line=""></text>				

This record will associate a name with a super-element in the super-element hierarchy.

NFIELD Number of numeric data fields on this record before text data (MAX = 1024).

IHREF Hierarchy reference number. Number 1 is reserved for the top level superelement. In SESAM, PRESEL (super-element pre-processor) is writing the HIERARCH records and defining a unique number (IHREF) for each appearance of the different superelements. See

also Fig. 4-1 below.

CODNAM Coded dimension of set name:

CODNAM = NLNAM*100 + NCNAM. The inverse relation will then be:

NLNAM = integer part of (CODNAM/100) NCNAM = remaindering of (CODNAM/100)

NLNAM - number of physical records used for storing of set name. Legal range = [0,1]

= 0, no name defined = 1, name is defined

NCNAM - number of characters in set name. Legal range = [0,64]

CODTXT Coded dimension of set description text:

CODTXT = NLTXT*100 + NCTXT. The inverse relation will then be:

NLTXT = integer part of (CODTXT/100) NCTXT = remaindering of (CODTXT/100)

NLTXT - number of physical records used for storing of set description text. Legal range = [0,5]

= 0, no description text defined

≥ 1, number of physical records with description text

NCTXT - number of characters per physical set description text record. Legal range = [0,64]

Program Version	Date	Page
6	01-NOV-1996	4-9

Note that N2, N3, N4 and N5 may take any values as long as they are unique in the hierarchy

Figure 4-1 Superelement hierarchy with 3 levels.

SESAM

Page Date Program Version 4-10 01-NOV-1996 6

User supplied Text

TEXT

User supplied Text

TEXT	TYPE	SUBTYPE	NRECS	NBYTE

The identifier is used to transfer text-strings on the interface file. The following NRECS records must be read in A-format, 72 characters per ecord.

TYPE Value giving information of how to use this text

= 1 Texts describing this analysis/global text
 = 2 Texts concerning current superelement
 = 3 Text concerning specific load cases

≥ 4 The meaning of text to be mutually agreed on by preprosessor and analysis program

SUBTYPE Value giving additional information to TYPE

Example: For TYPE = 3, SUBTYPE gives load case number

NRECS Number of records following to be read in A-format. NRECS ≥ 1

NBYTE Number of significant bytes (characters) on the following NRECS records.

 $1 \le NBYTE \le 72$

The eight first bytes on the text records shall be filled with blanks.

Program Version Date Page 6 01-NOV-1996 4-11

Name of a General Eccentric Sandwich Type

TSLAYER

TSLAYER	NFIELD	GEONO	CODNAM	CODTXT
	<gs-name></gs-name>			
	<gs-comment></gs-comment>			
	<text line=""></text>			

This record will associate a name to a general eccentric sandwich description.

NFIELD Number of numeric data fields on this record before text data (MAX = 1024).

GEONO Identification of the general eccentric sandwich type.

CODNAM Coded dimension of the GS-name:

CODNAM = NLNAM*100 + NCNAM. The inverse relation will then be:

NLNAM = integer part of (CODNAM/100) NCNAM = remaindering of (CODNAM/100)

NLNAM - number of physical records used for storing of name of the general eccentric

sandwich construction. Legal range = [0,1]

= 0, no name defined

= 1, name is defined

NCNAM - number of characters in set name. Legal range = [0,64]

CODTXT Coded dimension of the comment text ('GS-comment'):

CODTXT = NLTXT*100 + NCTXT. The inverse relation will then be:

NLTXT = integer part of (CODTXT/100) NCTXT = remaindering of (CODTXT/100)

NLTXT - number of physical records used for storing of text associated with the general

eccentric sandwich construction. Legal range = [0,5]

= 0, no description text defined

 ≥ 1 , number of physical records with description text

NCTXT - number of characters per physical set description text record. Legal range = [0,64]

GS-name Name of the general eccentric sandwich construction.

GS-comment Text associated with the general eccentric sandwich construction.

C	ES.	A	N	/
17	כאט	$\overline{}$	17	

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	5-1

5 ELEMENT TYPES

5.1 Element Types in SESAM

Conventions for use of the interface file for the elements in SESAM are defined here. Other element types may be introduced for use in other programs.

The table below contains element type numbers already reserved. (Not all of them are included in SESAM).

For ADVANCE, the element types listed are those available from the SESAM preprocessors. In addition to that ADVANCE has a lot of other element types.

Page Date Program Version 5-2 01-NOV-1996 6

Table 5.1 List of existing Element Types

ELTY	P Name l	Nodes	Description of Element	Ref.	I	ncluded in	Program:		
					PREFRAME	PREFEM	SESTRA	ADV	AN. Other
1			Not yet defined						
2	BEPS	2	2-D, 2 Node Beam	3,5	X			X	
3	CSTA	3	Plane Constant Strain Triangle	2,4		X	X	X	
4			Not yet defined	3					
5	RPBQ	4	Rect. Plate. Bending Modes	3					
6	ILST	6	Plane Lin. Strain Triangle	2		X	X		
7			Not yet defined						
8	IQQE	8	Plane Quadrilateral Membrane Element	2		X	X		
9	LQUA	4	Plane Quadrilateral Membrane Element	2,4		X	X	X	
10	TESS	2	Truss Element	2,4	X	X	X	X	
11	GMAS	1	1-Noded Mass-Matrix			X	X		
12	GLMA	2	2-Noded Mass-Matrix				X		
13	GLDA	2	2-Noded Damping-Matrix						
14			Not yet defined						
15	BEAS	2	3-D, 2 Node Beam	2,4	X	X	X	X	FR,LA,PL,
									PR,WA
16	AXIS	2	Axial Spring		X	X	X	X^{**}	FR
17	AXDA	2	Axial Damper		X	X	X		
18	GSPR	1	Spring to Ground	4	X	X	X	X	FR
19	GDAM	1	Damper to Ground		X	X	X		
20	IHEX	20	Isoparametric Hexahedron	2		X	X	X	PR
21	LHEX	8	Linear Hexahedron	2,4		X	X	X	PR
22	SECB	3	Subparametric Curved Beam	2					
23	BTSS	3	General Curved Beam	2		X	X		PL,PR.
24	FQUS	4	Flat Quadrilateral Thin Shell	4		X	X		PL,PR
24	FFQ	4	Free Formulation Quadrilateral Shell	5				X	
25	FTRS	3	Flat Triangular Thin Shell	4		X	X		PL
25	FFTR	3	Free Formulation Triangular Shell	5				X	
26	SCTS	6	Subparametric Curved Triangular Thick Shell	2		X	X		PL
27	MCTS	6	Subparam. Curved Triang. Thick Sandwich Elem.	2*		X	X		
28	SCQS	8	Subparametric Curved Quadrilateral Thick Shell	2		X	X		PL,PR
29	MCQS	8	Subparam. Curved Quadr. Thick Sandwich Elem.	2*		X	X		
30	IPRI	15	Isoparametric Triangular Prism	2		X	X	X	
31	ITET	10	Isoparametric Tetrahedron	2			X		
32	TPRI	6	Triangular Prism	2,4		X	X	X	
33	TETR	4	Tetrahedron	2			X		
34	LCTS	6	Subparam. Layered Curved Triangular Thick Shell			X	X		
35	LCQS	8	Subparam. Layered Curved Quadrilat. Thick Shell	2*		X	X		

FR= FRAMEWORK, LA= LAUNCH, PL= PLATEWORK, PR= PRETUBE, SP= SPLICE, WD= WADAM, WJ= WAJAC

 $[\]ensuremath{^{*}}$ The element subroutines are the same as for the subparametric curved thick shells (SCQS and SCTS).

^{**} Temporarily ADVANCE interprets Axisl Spring as link element, ignoring the material reference. The 6 matrix numbers are given in direct input to ADVANCE.

Program Version	Date	Page
6	01-NOV-1996	5-3

Table 5.2 List of existing Element Types, continued

ELTYP Name Nodes		Nodes	Description of Element		I	ncluded in	Program:		
					PREFRAME	PREFEM	SESTRA	ADVAN.	Other
36	TRS1	18	2nd Order Hexahed. Transition Elem., Solid / Shell	6			X		PR
37	TRS2	15	2nd Order Hexahed. Transition Elem., Solid / Shell	6			X		PR
38	TRS3	12	2nd Order Hexahed. Transition Elem., Solid / Shell	6			X		PR
39			Not yet defined						
40	GLSH	2	General Spring / Shim Element	*	X		X		
41	AXCS	3	Axisymmetric Constant Strain Triangle	7,5		X	X	X	
42	AXLQ	4	Axisymmetric Quadrilateral	7,5		X	X	X	
43	AXLS	6	Axisymmetric Linear Strain Triangle	7		X	X		
44	AXQQ	8	Axisymmetric Linear Strain Quadrilateral	7		X	X		
45	PILS	1	Pile / Soil	4	X			X	
46	PCAB	2	Plane Cable-Bar Element	4	X			X	
47	PSPR	1	Plane Spring Element	4	X			X	
48		4	4-node Contact Element with triangular Shape	4				X	
49		2	2-Noded Link Element	4				X	
50			Not yet defined						
51	CTCP	2	2-Noded Contact Element						
52	CTCL	4	4-Noded Contact Element						
53	CTAL	4	4-Noded Axisymmetric Contact Element						
54	CTCC	6	6-Noded Contact Element						
55	CTAQ	6	6-Noded (3+3) Axisymmetric Contact Element			X			
56	CTLQ	8	8-Noded (4+4) Contact Element	8,9					PR
57	CTCQ	16	16-Noded (8+8) Contact Element	8,9		X			PR
58	CTMQ	18	18-Noded (9+9) Contact Element	8,9					PR
59			Not yet defined						
60			Not yet defined						
61	HCQS	9	9-Noded Shell Element			X			PR
62			Not yet defined						
63			Not yet defined						
64			Not yet defined						
65			Not yet defined						
66	SLQS	8	Semiloof Quadrilateral Curved Thin Shell (32 d.o.f	s)					
67	SLTS	6	Semiloof Triangular Curved Thin Shell (24 d.o.fs)						
68	SLCB	3	Semiloof Curved Beam (11 d.o.fs)						
69			Not yet defined						
70	MATR	n	General Matrix Element with arbitrary no. of nodes	s (n)			X		SP
100	GHEX	21	General Hexahedron					X	I
163	GHEX	27	General Hexahedron					X	

 $FR=FRAMEWORK,\,LA=LAUNCH,\,PL=PLATEWORK,\,PR=PRETUBE,\,SP=SPLICE,\,WD=WADAM,\,WJ=WAJAC,\,PL=PLATEWORK,\,PR=PRETUBE,\,SP=SPLICE,\,WD=WADAM,\,WJ=WAJAC,\,PL=PLATEWORK,\,PR=PRETUBE,\,SP=SPLICE,\,WD=WADAM,\,WJ=WAJAC,\,PL=PLATEWORK,\,PR=PRETUBE,\,SP=SPLICE,\,WD=WADAM,\,WJ=WAJAC,\,PL=PLATEWORK,\,PR=PRETUBE,\,SP=SPLICE,\,WD=WADAM,\,WJ=WAJAC,\,PL=PLATEWORK,\,PR=PRETUBE,\,SP=SPLICE,\,WD=WADAM,\,WJ=WAJAC,\,PL=PLATEWORK,\,PR=PRETUBE,\,SP=SPLICE,\,WD=WADAM,\,WJ=WAJAC,\,PL=PLATEWORK,\,PR=PRETUBE,\,SP=SPLICE,\,WD=WADAM,\,WJ=WAJAC,\,PL=SPLICE,\,P$

^{*} As General Spring it is just a 2-noded spring (12x12 matrix) which may be in a local coordinate system. As a shim element the preprocessor(s) will only insert stiffness in the local x- and y-direction. In the analysis program(s), shim members and general springs are treated exactly in the same manner.

 Page
 Date
 Program Version

 5-4
 01-NOV-1996
 6

5.2 Element Type (Number)

Element Type (Number)

	/
BEPS(2)	5-6
CSTA(3)	5-8
ILST(6)	5-10
IQQE(8)	5-12
LQUA(9)	5-15
TESS(10)	5-17
GMAS(11)	5-18
GLMA(12)	5-19
GLDA(13)	5-20
BEAS(15)	5-21
AXIS(16)	5-23
AXDA(17)	5-24
GSPR(18)	5-25
GDAM(19)	5-26
IHEX(20)	5-27
LHEX(21)	5-32
SECB(22)	5-36
BTSS(23)	5-39
FQUS(24)	5-41 5-44
FTRS(25) SCTS(26)	5-44 5-47
MCTS(27)	5-47 5-50
SCQS(28)	5-53
MCQS(29)	5-56
IPRI(30)	5-59
ITET(31)	5-63
TPRI(32)	5-67
TETR(33)	5-70
LCTS(34)	5-73
LCQS(35)	5-78
TRSI(36, 37, 38)	5-83
GLSH(40)	5-92
AXCS(41)	5-93
AXLQ(42)	5-95
AXLS(43)	5-97
AXQQ(44)	5-99
CTCP(51)	5-101
CTCL(52) CTAL(53)	5-103 5-105
CTCC(54)	5-105 5-107
CTAQ(55)	5-107
CTLQ(56)	5-111
CTCQ(57)	5-113
CTMQ(58)	5-115
HCQS(61)	5-117
MATR(70)	5-120

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 5-5

GHEX 5-123

Page Date Program Version 5-6 01-NOV-1996 6

ELTYP=2: Beam Element for Plane Systems (BEPS)

BEPS(2)

- 2 nodes
- 6 degrees of freedom, 3 (u,v and q) at each of the two nodes
- Bending, shear and axial deformations are considered
- The element is straight and has a constant cross section
- offset nodes (i.e. the nodes may be located eccentric in space)
- element loads:
 - load linearly distributed over all, or a part, of the element (Figure 5-1 b)
 - gravitational load
 - general inertia load
 - initial strain (temperature load)

Figure 5-1 a)2D Beam Element b)Linearly Distributed Load

Element coordinate system (reference axes):

The local x-axis is directed along the beam, coinciding with the center of gravity and pointing from the beam node "1" to node "2". The local z-axis is defined on GUNIVEC-record.

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 5-7

BEPS(2)

Data types used for this element:

GELMNT1 *

GELREF1 *

GBEAMG *

GIORH, GUSYI, GCHAN, GBOX, GPIPE, GBARM, GTONP or GDOBO;

for SESTRA these reecords are transferred to postprocessor, and only referred when storing on result file.

MISOSEL *

GUNIVEC *

GECCEN

BELOAD1

BGRAV

BNACCLO

BEISTE

BELFIX

^{*)} Mandatory

Page Date Program Version 5-8 01-NOV-1996 6

ELTYP=3: Plane Constant Strain Triangle (CSTA), /2/

CSTA(3)

- 3 nodes
- 3 x 2 degrees of freedom
- straight (two dimensional)
- linearly varying thickness
- · deformation considered: translational strain
- element loads:
 - line loads
 - initial strain (temperature load)
 - gravitational load (only in the mebrane plane)
 - general inertia load (only in the membrane plane)
- isotropic or anisotropic material data

Local node numbering:

Figure 5-2 Plane constant strain triangle.

When line load is specified, the relation between local node numbers and loaded line will be:

Line 1 means load along the line defined by the nodes 2 and 3.

Line 2 means load along the line defined by the nodes 1 and 3.

Line 3 means load along the line defined by the nodes 1 and 2.

The direction of node numbering can be as well clockwise as counterclockwise.

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 5-9

CSTA(3)

Data types used for this element:

GELMNT1 *
GELREF1 *
GNODE *
GCOORD *
GELTH *

MISOSEL * or MORSMEL * MTRMEL

BELLO2 BEISTE BGRAV BNACCLO

Page Date Program Version 5-10 01-NOV-1996 6

ELTYP=6: Plane Linear Strain Triangle (ILST), /2/

ILST(6)

- 6 nodes
- 6 x 2 degrees of freedom
- curved (two-dimensional)
- linearly varying thickness
- deformations considered: translational strain
- element loads:
 - line loads
 - initial strain (temperature loads)
 - gravitational load
 - general inertia load
- isotropic or anisotropic material data

Local node numbering:

Figure 5-3 Plane linear strain triangle.

When line load is specified, the relation between local node numbers and loaded line will be:

Line 1 means load along the line defined by the nodes 2, 5 and 3.

Line 2 means load along the line defined by the nodes 1, 6 and 3.

Line 3 means load along the line defined by the nodes 1, 4 and 2.

The direction of node numbering can be as well clockwise as counterclockwise.

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 5-11

ILST(6)

The following restrictions are put on the data types

GELINT

The integration stations must be distributed according to the Gaussian integration scheme, i.e.

INTYPE =1. For this element type the GELINT specifications consist of the first filerecord (line) only.

Stiffness matrix: For stiffness matrix calculations the number of integration stations will be the same in both coordinate directions and equal to the value specified for N1.

Legal values are 3 and 4.

Default value is 3.

Mass matrix: For mass matrix calculations the number of integration stations will be the same in both coordinate directions and equal to the value specified for N1.

Legal values are 1,3,4 and 7.

Default value is 7.

Load vector: For load vector calculations due to initial strains the number of integration stations will be the same in both coordinate directions and equal to the value specified for N1

Legal values are 1,3 and 4.

Default value is 3.

Data types used for this element:

GELMNT1 *

GELREF1 ;

GNODE *

GCOORD *

GELTH ,

GELINT

MISOSEL or MORSMEL *

MTRMEL

BELLO2

BEISTE

BGRAV

BNACCLO

 Page
 Date
 Program Version

 5-12
 01-NOV-1996
 6

ELTYP=8: Plane Quadril. Membrane Element (IQQE), /2/

IQQE(8)

- 8 nodes
- 8 x 2 degrees of freedom
- curved (two-dimensional)
- linearly varying thickness
- deformations considered: translational strain
- element loads:
 - line loads
 - initial strain (temperature loads)
 - gravitational load
 - general inertia load
- isotropic or anisotropic material data

Local node numbering:

Figure 5-4 Plane quadrilateral membrane element.

When line load is specified, the relation between local node numbers and loaded line will go:

LINE 1 means load along the line defined by the nodes 2, 6 and 3

LINE 2 means load along the line defined by the nodes 5 and 7

LINE 3 means load along the line defined by the nodes 1, 8 and 4

LINE 4 means load along the line defined by the nodes 1, 5 and 2

LINE 5 means load along the line defined by the nodes 8 and 6

LINE 6 means load along the line defined by the nodes 4, 7 and 3

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	5-13

The direction of node numbering can be as well clockwise as counterclockwise.

Page Date Program Version
5-14 01-NOV-1996 6

IQQE(8)

The following restrictions are put on the data types

GELINT

The integration stations must be distributed according to the Gaussian integration scheme, i.e.

INTYPE =1. For this element type the GELINT specifications consist of the first filerecord only.

Stiffness matrix: For stiffness matrix calculations the number of integration stations will be the same in both coordinate directions and equal to the value specified for N1.

Legal values are 2, 3 and 4. Default value is 2.

Mass matrix: For mass matrix calculations the number of integration stations will be the same in both coordinate directions and equal to the value specified for N1.

Legal values are 2, 3 and 4. Default value is 4.

Load vector: For load vector calculations due to initial strains the number of integration stations will be the same in both coordinate directions and equal to the value specified for N1.

Legal values are 2, 3 and 4.

Default value is 2.

BELLO2 LINE = 2, and LINE = 5 are not operative.

Data types used for this element:

GELMNT1 *
GELREF1 *
GNODE *
GCOORD *
GELTH *

GELINT

MISOSEL or MORSMEL *

MTRMEL BELLO2 BEISTE

BGRAV

BNACCLO

Program Version Date Page 6 01-NOV-1996 5-15

ELTYP=9: Plane Quadrilateral Membrane Element (LQUA), /2/

LQUA(9)

- 4 nodes
- 4 x 2 degrees of freedom
- straight (two-dimensional)
- linearly varying thickness
- isotropic or anisotropic material data
- deformations considered: translational strain
- element loads
 - line loads
 - initial strain (temperature load)
 - gavitational load
 - general inertia load

Local node numbering:

Figure 5-5 Plane Quadrilateral Membrane Element.

When line load is specified, the relation between local node numbers and loaded line will go:

LINE 1 means load along the line defined by the nodes 1 and 2

LINE 2 means load along the line defined by the nodes 2 and 3

LINE 3 means load along the line defined by the nodes 3 and 4

LINE 4 means load along the line defined by the nodes 4 and 1

The direction of node numbering can be as well clockwise as counterclockwise.

INPUT INTERFACE FILE

SESAM

 Page
 Date
 Program Version

 5-16
 01-NOV-1996
 6

LQUA(9)

Data types used for this element:

GELMNT1 *
GELREF1 *
GNODE *
GCOORD *
GELTH *
GELINT
MISOSEL or *
MORSMEL
BELLO2
MTRMEL
BEISTE
BGRAV

*) Mandatory

BNACCLO

The following restrictions are put on data types:

GELINT

The integration stations must be distributed according to the Gaussian integration scheme, i.e.

INTYPE =1. For this element type the GELINT specifications consist of the first line.

Stiffness matrix:

Legal values for N1 and N2 are 1, 2, 3 and 4.

Default value is N1=N2=2.

Mass matrix: For mass matrix calculations the number of integration stations will be the same

in both coordinate directions and equal to the value specified for N1.

Legal values are 2 and 3.

Default value is N1=N2=3.

 Program Version
 Date
 Page

 6
 01-NOV-1996
 5-17

ELTYP=10: Truss Element (TESS) /2/

TESS(10)

- 2 nodes
- $2 \times 3 = 6$ degrees of freedom
- straight
- constant cross section
- axial stiffness only
- element loads:
 - initial strain (temperature)

Figure 5-6 Truss element

Data types used for this element:

BEISTE

GELMNT1 *
GBEAMG (only AREA) *
GELREF1 *

MISOSEL

Program Version 5-18 01-NOV-1996

ELTYP=11: 1-Noded Mass Element (GMAS)

GMAS(11)

- 1 node
- degrees of freedom, arbitrary
- mass matrix

Figure 5-7 1-noded mass element

The mass point may be specified with eccentricities $(e_x, e_v \text{ and } e_z)$ in all three global directions and the mass matrix may be specified in a transformed local coordinate system.

The mass matrix is a full symmetric matrix where all values on and below the diagonal are stored.

Data types used for this element:

GELMNT1 *

MGMASS * (NDOF must be equal to NDOF on data type GNODE)

GELREF1 *

GECCEN

BNTRCOS (NDOF = 3 or 6 is required for transformations)

Program Version	Date	Page
6	01-NOV-1996	5-19

ELTYP=12: General 2-Noded Mass Element (GLMA)

GLMA(12)

- 2 nodes
- degrees of freedom, arbitrary
- general mass matrix

Figure 5-8 General 2-noded mass element.

The resulting mass matrix is a full symmetric matrix where all values on and below the main diagonal are stored

Data types used for this element:

GELMNT1 *

MGLMASS * (NDOF1 and NDOF2 must be equal to NDOF on data type GNODE for "node 1" and "node 2")

GELREF1 *

BNTRCOS (Transformation in the two nodes may be different. But NDOF1 = NDOF2 = 3 or 6 is required for transformation).

Page Date Program Version 5-20 01-NOV-1996 6

ELTYP=13: General 2-Noded Damping Element (GLDA)

GLDA(13)

- 2 nodes
- · degrees of freedom, arbitrary
- general damping matrix

Figure 5-9 General 2-noded damping element

The resulting damping matrix is a full symmetric matrix where all values on and below the main diagonal are stored.

Data types used for this element:

GELMNT1 *

MGLDAMP * (NDOF1 and NDOF2 must be equal to NDOF on data type GNODE for node "1" and node "2")

GELREF1 3

BNTRCOS (Transformation in the two nodes may be different. But NDOF1 = NDOF2 = 3 or 6 is required for transformation).

Program Version Date Page 6 01-NOV-1996 5-21

ELTYP=15: Beam Element (BEAS) /2/

BEAS(15)

- 2 nodes
- $2 \times 6 = 12$ degrees of freedom
- straight
- constant cross section
- offset nodes (i.e. the nodes may be located eccentrically in space)
- deformations considered: bending and shear about the two principal axes, axial deformations and St. Venant torsion
- the transverse load must be located in the shear centre of the beam
- eccentric shear center
- element loads:
 - load linearly distributed over all, or a part, of the element (Figure 5-10 b)
 - gravitational load
 - general inertia load
 - initial strain (temperature load)

Figure 5-10 a)Beam element b)Linearly distributed load

Element coordinate system (reference axes). The local x-axis is directed along the beam, coinciding with the center of gravity and pointing from node "1" to node "2". The local z-axis is defined on GUNIVEC-record.

INPUT INTERFACE FILE

SESAM

Page Date Program Version 5-22 01-NOV-1996 6

BEAS(15)

Data types used for this element:

GELMNT1 *

GBEAMG *

GELREF1 ;

GIORH, GUSYI, GCHAN, GBOX, GPIPE, GBARM, GTONP or, GDOBO;

for SESTRA these reecords are transferred to postprocessor, and only referred when storing on result file.

MISOSEL *

GUNIVEC *

GECCEN

BEDRAG1

BEMASS1

BELOAD1

BGRAV

BNACCLO

BEISTE

BELFIX

 Program Version
 Date
 Page

 6
 01-NOV-1996
 5-23

ELTYP=16: Axial Spring (AXIS)

AXIS(16)

- 2 nodes
- degrees of freedom at each node: 2, 3 or 6
- axial stiffness

Figure 5-11 Axial spring

Data types used for this element:

GELMNT1 *

GELREF1 *

MAXSPR *

^{*)} Mandatory

 Page
 Date
 Program Version

 5-24
 01-NOV-1996
 6

ELTYP=17: Axial Damper (AXDA)

AXDA(17)

- 2 nodes
- degrees of freedom at each node: 2, 3 or 6.
- axial damping

Figure 5-12 Axial damper.

Data types used for this element:

GELMNT1 *

GELREF1 *

MAXDMP *

 Program Version
 Date
 Page

 6
 01-NOV-1996
 5-25

ELTYP=18: Ground Spring (GSPR)

GSPR(18)

- 1 node
- degrees of freedom, arbitrary
- stiffness matrix

Figure 5-13 Ground spring

Data types used for this element:

GELMNT1 *

GELREF1 *

MGSPRNG * (NDOF must be equal to NDOF on data type GNODE)

BNTRCOS (NDOF = 3 or 6 is required for transformations)

^{*)} Mandatory

 Page
 Date
 Program Version

 5-26
 01-NOV-1996
 6

ELTYP=19: Damper to Ground (GDAM)

GDAM(19)

- 1 node
- degrees of freedom arbitrary
- damping matrix

Figure 5-14 Damper to ground

Data types used for this element:

GELMNT1 * GELREF1 *

MGDAMP * (NDOF must be equal to NDOF on data type GNODE)

BNTRCOS (NDOF = 3 or 6 is required for transformations)

 Program Version
 Date
 Page

 6
 01-NOV-1996
 5-27

ELTYP=20: Isoparametric Hexahedron (IHEX), /2/

IHEX(20)

- 20 nodes
- 20 x 3 degrees of freedom
- · curved element sides
- isotropic or anisotropic material data
- deformations considered: translational strain
- element loads:
 - initial strain (temperature load)
 - surface forces
 - line loads
 - gravitational load
 - general inertia load

Figure 5-15 Isoparametric hexahedron with local nodenumbering and corresponding surface numbering

Page Date Program Version 5-28 01-NOV-1996 6

IHEX(20)

Figure 5-16 Typical isoparametric hexahedron

When surface loads are specified for the element side, the surface numbers shown are used for identification of the side in question.

The local node numbering for each side is defined as follows:

	Node number							
	1	2	3	4	5	6	7	8
Side no.								
1	7	8	1	9	13	20	19	12
2	5	11	17	16	15	10	3	4
3	1	2	3	10	15	14	13	9
4	7	12	19	18	17	11	5	6
5	7	6	5	4	3	2	1	8
6	19	20	13	14	15	16	17	18

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	5-29

IHEX(20)

When line load is specified, the relation between the local node numbers and the loaded line will be as follows:

	Node number		
	1	2	3
Line no.			
1	1	2	3
2	3	4	3 5 7
3	3 5 7	6	7
4	7	8	1
5	1	9	13
6	3	10	15
7	5	11	17
8	7	12	19
9	13	14	15
10	15	16	17
11	17	18	19
12	19	20	13
13	8	4	
14	6	2	
15	9	10	
16	2	14	
17	10	11	
18	4	16	
19	11	12	
20	6	18	
21	12	9	
22	8	20	
23	20	16	
24	14	18	

INPUT INTERFACE FILE

SESAM

Page Date Program Version 5-30 01-NOV-1996 6

IHEX(20)

Data types used for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELSTRP
MISOSEL * or
MISOPL * or
MORSSOL *
MTRSOL
BEUSLO

BELLO2 BEISTE

BGRAV BNACCLO

211110020

^{*)} Mandatory

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 5-31

IHEX(20)

The following restrictions are put on the data types

GELINT

The integration stations must be distributed according to the Gaussian integration scheme, i.e. INTYPE=1. For this element type the GELINT specifications consist of the first two lines.

Stiffness matrix: For stiffness matrix calculations the number of integration stations will be the same in all coordinate directions and equal to the value specified for N1.

Legal values are 2, 3 and 4.

For a regular element N1 = 2 may cause a singular stiffness matrix.

Default value is 3.

Load calculations: Here, the number of integration stations in each coordinate direction must be specified individually. If volume forces are calculated, legal values for N1, N2 and N3 are 2, 3 and 4.

For surface forces, the legal value for N1, N2 and N3 is 2.

Default value is 2.

Initial strain: The number of integration stations in each coordinate direction must be specified individually.

Legal values for N1, N2 and N3 are 2, 3 and 4.

Default value is 2.

Mass matrix: Again the number of integration stations in each direction must be specified individually.

Legal values for N1, N2 and N3 are 3 and 4.

Default value is 3.

GELSTRP

The stress points must be distributed according to the Gaussian integration scheme, i.e. STRPTYP=1. Only the first two records of the GELSTRP specification are therefore used in this element type.

Legal values for N1, N2 and N3 are 1, 2, 3 and 4.

Default value is 2.

BELLO2

The SIDE definition is not used. The load components are given nodewise in global coordinates.

BEUSLO

Only one side can be loaded for each BEUSLO record. For the same reason only one side identification may be given in SIDE on the BEUSLO record.

 Page
 Date
 Program Version

 5-32
 01-NOV-1996
 6

ELTYP=21: Linear Hexahedron (LHEX), /2/

LHEX(21)

- 8 nodes
- $8 \times 3 = 24$ degrees of freedom
- linear element sides
- isotropic or anisotropic material data
- deformation considered: translational displacement
- element load
 - gravitational load
 - general inertia load
 - initial strain (temperature load)
 - surface forces
 - line loads

Figure 5-17 Linear hexahedron solid element with local nodenumbering and corresponding surface numbering.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	5-33

LHEX(21)

When surface loads are specified for an element side, the surface numbers shown are used for identification of the surface in question.

The local nodenumbering for each side is defined as follows:

		Node number		
	1	2	3	4
Side no.				
1	5	6	7	8
2	1	2	6	5
3	2	3	7	6
4	3	4	8	7
5	4	1	5	8
6	1	4	3	2

When line load is specified, the relation between the local node numbers and the loaded line will be as follows:

	Node number	
	1	2
Line no.		
1	1	2
2	2	3
2 3 4 5	2 3	4
4	4	1
5	1	5
6	2	6
7	3	7
8	4	8
9	5	6
10	6	7
11	7	8
12	8	5

INPUT INTERFACE FILE

SESAM

Page Date Program Version 5-34 O1-NOV-1996 6

LHEX(21)

Data types used for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
MISOSEL * or
MORSSOL *
BELLO2
BEUSLO
BEISTE
BGRAV
BNACCLO

^{*)} Mandatory

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 5-35

LHEX(21)

The following restrictions are put on data type:

GELINT

The integration stations must be distributed according to the Gaussian integration scheme, i.e. INTYPE = 1. For this element type the GELINT specifications consist of only the first line.

Stiffness matrix calculation: Number of integration stations will be the same in all coordinate directions and equal to the value specified for N1.

Legal values are 2 and 3.

Default value is 2.

Load calculations: Number of integration stations is the same in all coordinate directions. The only legal value is N1=2.

Initial strain: Number of integration stations is the same in all coordinate directions and is given by N1.

Legal values are 2 and 3. Default value for N1 is 2.

Mass matrix calculation: The same number of integration points in each coordinate direction as in stiffness matrix calculation is also used in mass matrix calculation.

GELSTRP

The stress points must be distributed according to the Gaussian integration scheme, i.e. STRPTYP=1. Number of stress points in each of the coordinate directions are the same and equal to the number specified by N1. Only the first record of the GELSTRP specification is therefore used for this element type.

Legal values of N1 are 2 and 3.

The default value is 2.

BELLO2

The SIDE definition is not used. The load components are given nodewise in global coordinates.

BEUSLO

An element side may only be loaded once for each BEUSLO-record.

Page Date Program Version 5-36 01-NOV-1996 6

ELTYP=22: Subparametric Curved Beam (SECB) /2/

SECB(22)

- 3 nodes
- 3 x 6 degrees of freedom
- curved element
- isotropic material data
- deformations considered: bending, shear and axial strain
- element loads:
 - line loads
 - gravitational load
 - general inertia load

Figure 5-18 Typical beam element Global cartesian - local curvilinear coordinate system

Program Version	Date	Page
6	01-NOV-1996	5-37

SECB(22)

Figure 5-19 Cross-section data, for the beam element.

Data types used for this element:

GELMNT1*

GELREF1 *

MISOSEL *

GUNIVEC *

GECCEN

GELINT

GBARM

BELLO2

BGRAV

BNACCLO

SESAM

Page Date Program Version 5-38 01-NOV-1996 6

SECB(22)

The following restrictions are put on the data-types.

GECCEN For this element only eccentricities in the local (h, z)-plane is allowed.

GELINT The integration stations must be distributed according to the Gaussian integration scheme, i.e. INTYPE=1. For this element type the GELINT specifications consist of the first two lines.

Stiffness matrix: Here, the number of integration stations in each coordinate direction must be specified individually. N1 must always be equal to 2. Legal values for N2 and N3 are 1 and 2. In the directions where one integration station is specified, analytical integration is used, else numerical integration is used. Default value for N1, N2 and N3 is 2.

Load calculations: Only the number of integration stations in the first coordinate direction is used (line load along beam axis). Legal values are 2, 3 or 4. Default value for N1 is 2.

Mass matrix: As for stiffness matrix calculations.

GBARM Since the element cross-section must be rectangular, only H2I and BT are needed to specify

the cross-section geometry at a node.

BELLO2 LINE and SIDE will not be employed for this element.

 Program Version
 Date
 Page

 6
 01-NOV-1996
 5-39

ELTYP=23: Subparam. General Curved Beam /2/ & /12/

BTSS(23)

- 3 nodes
- 3 x 6 degrees of freedom
- curved element
- isotropic material data
- constant cross section along the beam
- general cross section
- offset nodes (i.e. the nodes may be located eccentrically in space)
- deformations considered: bending and shear, axial deformations and St. Venant torsion
- the transverse load must be located in the shear centre of the beam
- eccentric shear center
- element loads:
 - line load
 - line moment load
 - gravitational load
 - general inertia load
 - temperature load

Figure 5-20 Typical general beam element Global cartesian - local curvilinear coordinate system

SESAM

Page Date Program Version 5-40 01-NOV-1996 6

BTSS(23)

Data types used for this element:

GELMNT1*

GELREF1 *

MISOSEL *

GUNIVEC *

GECCEN

GBEAMG *

GELREF1 *

GIORH, GUSYI, GCHAN, GBOX, GPIPE, GBARM, GTONP or, GDOBO;

for SESTRA these records are transferred to postprocessor, and only referred when storing on result file.

BELLO2 BGRAV BNACCLO

BNACCLO BEISTE

*) Mandatory

The following restrictions are put on the data-types.

GECCEN General eccentricities in the local (ξ, η, ζ) -directions are allowed.

GBEAMG Cross section properties are fetched from this record in SESTRA. Geometry of cross sec-

tions specified on other records (GBARM, GIORH etc.) are only transferred to the result file.

BELLO2 LINE and SIDE will not be employed for this element.

 Program Version
 Date
 Page

 6
 01-NOV-1996
 5-41

ELTYP=24: Flat Quadrilateral Thin Shell (FQUS), /2/

FQUS(24)

- 4 nodes
- 4 x 5 degrees of freedom
- linear element sides
- isotropic or anisotropic material data
- deformations considered: bending, shear and translational strain
- constant element thickness
- element loads:
 - initial strain (temperature loads)
 - surface forces
 - line loads
 - line moment load
 - gravitational load
 - general inertia loade

Figure 5-21 Element node numbering on flat quadrilateral shell element.

SESAM

Page Date Program Version 5-42 01-NOV-1996 6

FQUS(24)

When line load is specified, the relation between local node numbers and loaded line will be:

LINE =1 means line load between node 1 and 2
LINE =2 means line load between node 2 and 3
LINE =3 means line load between node 3 and 4
LINE =4 means line load between node 4 and 1

Data types for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELTH *
MISOSEL * or
MORSMEL *
MTRMEL
BEUSLO
BELLO2
BEISTE
BGRAV

BNACCLO

^{*)} Mandatory

Program Version	Date	Page
6	01-NOV-1996	5-43

FQUS(24)

The following restrictions are put on the data types:

GELREF

- INTNO and ISPONO are not read because number of integration and stress points are constant in the program and can not be set by user.
- No thickness variation is allowed for this element. If thickness variation is specifed by the GEONO / OPT option, the finite element program executing this element must use a mean thickness calculated from the nodal thicknesses.

BEUSLO

This element type is only able to calculate surface loads which are acting perpendicular to the element surface. Hence LOTYP=1 (normal pressure) should be used. If LOTYP=2 (loads given in component form) are specified, the in-plane components are ignored by the program. Surface loads are always referred to the middle plane of these elements, i.e. SIDE=2 (nead not be specified).

Figure 5-22 Linear variation of line load component normal to the element plane and in the plane.

 Page
 Date
 Program Version

 5-44
 01-NOV-1996
 6

ELTYP=25: Flat Triangular Thin Shell (FTRS), /2/

FTRS(25)

- 3 nodes
- 3 x 5 degrees of freedom
- linear element sides
- isotropic or anisotropic material data
- deformations considered: bending, shear and translational strain
- constant element thickness
- element loads:
 - initial strain (temperature loads)
 - surface forces
 - line loads
 - line moment load
 - gravitational load
 - general inertia load

Figure 5-23 Element node numbering and local area coordinates $(A_1, A_2 \text{ and } A_3)$ on flat triangular shell element.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	5-45

FTRS(25)

When line load is specified for one of the element sides, the relation between local node numbers and loaded line will be:

LINE=1 means line load between node 2 and 3 LINE=2 means line load between node 1 and 3 LINE=3 means line load between node 1 and 2

Data types used for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELTH *
MISOSEL *
MORSMEL *
MTRMEL BEUSLO
BELLO2
BEISTE
BGRAV
BNACCLO

Page	Date	Program Version
5-46	01-NOV-1996	6

FTRS(25)

The following restrictions are put on the data types:

GELREF INTNO and ISPONO are not read because number of integration and stress points are con-

stant in the program and cannot be set by user.

GEONO / OPT should be set>0 because no thickness variation is allowed for this element

type.

BEUSLO This element type is only able to calculate surface loads which are acting perpendicular to the

element surface. Hence LOTYP=1 (normal pressure) should be used. If LOTYP=2 (loads given in component form) are specified, the in-plane components are ignored by the program. Surface loads are always referred to the middle plane of these elements, i.e. SIDE=2 (need

not be specified).

Figure 5-24 Constant line load in element plane and linear variation of component normal to the plane

 Program Version
 Date
 Page

 6
 01-NOV-1996
 5-47

ELTYP=26: Subparametric Curved Triangular Shell (SCTS), /2/

SCTS(26)

- 6 nodes
- 6 x 6 degrees of freedom
- curved element shape
- isotropic or anisotropic material data
- deformations considered: bending, shear and translational strain
- parabolically varying element thickness
- element loads:
 - initial strain
 - surface forces
 - line loads
 - line moment load
 - gravitational load
 - general inertia load

Figure 5-25 Element node numbering. Global Cartesian and local area coordinate system.

When line load is specified for one of the element sides, the relation between local node numbers and loaded line will be:

SESAM

Page Date Program Version 5-48 01-NOV-1996 6

SCTS(26)

LINE=1	means line load on the element side defined by nodes 2, 5 and 3
LINE=2	means line load on the element side defined by nodes 1, 6 and 3
LINE=3	means line load on the element side defined by nodes 1, 4 and 2

The orientation of the local nodal coordinate system is related to the nodenumbering sequence (see Figure 5-25). The positive z-direction, normal to the element middle surface, is chosen according to the normal convention of the right hand rule, i.e. the positive ζ -direction is found when the node numbers are followed in ascending order, counterclockwise.

The SIDE definition on the BEUSLO records is as follows:

SIDE=1 means that load is given on the element surface where ζ =-1,

SIDE=2 that ζ =0 is loaded, and SIDE=3 that ζ =1 is loaded.

Data types for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELINT
GELTH *
GELSTRP
MISOSEL * or
MORSSEL *
MTRSEL
BEUSLO
BELLO2
BEISTE
BGRAV
BNACCLO

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 5-49

SCTS(26)

The following restrictions are put on the data types.

GELINT

The integration stations must be distributed according to a scheme similar to the Gaussian integration scheme, i.e. INTYPE=1. For this element type the GELINT specifications consist of the first line only. The integration stations will be specified in the triangle plane, and not along local coordinate axes. The value specified for N1 is **not** the number of integration stations but a reference number to specified distributions of integration stations, which may have the same number of integration stations, but different positions in the triangle plane. Therefore, N3 has no meaning for this element type. Legal values for N1 are 1, 2, 3, 4, 5, 6, 7, 8, 9, see description of subroutine HAMC30 in the finite element library, /2/. N2 (" ζ -direction") is not possible to specify and the value 2 is used for each layer. The integration in ζ -direction will be performed analytically if max deviation from mean thickness is 5% and the element is nearly flat.

Stiffness matrix: Default value for N1 is 7.

Load calculations: Default value for N1 is 6 for surface loads.

Initial strain: Default value for N1 is 6.

Mass matrix: N1 should be specified ³ 7 to ensure positive definite mass matrix. Default value is N1=7.

GELSTRP

The stress points must be distributed according to the same scheme as the integration points in the GELINT specification, for stress point coordinates in the triangular plane. The stress point coordinates in the ζ -direction are distributed according to the usual Gaussian integration scheme STRPTYP=1. Legal values for N1 are 1, 3, 4, 7, 9, and for N2 2, 3, 4.

Default values for N1 is 3 and for N2 the default value is 2.

Only the first record of the GELSTRP specification is used for this element type.

BELLO2 The SIDE-definition is not used.

Page Date Program Version 5-50 01-NOV-1996 6

ELTYP=27: Subparametric Multilayered Curved Triangular Shell (MCTS), /2/

MCTS(27)

- 6 nodes
- 6 x 6 degrees of freedom
- · curved element shape
- isotropic or anisotropic material data
- two or more material layers (sandwich)
- deformations considered: bending, shear and translational strain
- parabolically varying element thickness
- element loads:
 - initial strain
 - surface forces
 - line loads
 - line moment load
 - gravitational load
 - general inertia load

Figure 5-26 Element node numbering. Global Cartesian and local area coordinate system. Three layers.

When line load is specified for one of the element sides, the relation between local node numbers and loaded line will be:

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 5-51

MCTS(27)

LINE=1	means line load on the element side defined by nodes 2, 5 and 3
LINE=2	means line load on the element side defined by nodes 1, 6 and 3
LINE=3	means line load on the element side defined by nodes 1, 4 and 2

The orientation of the local nodal coordinate system is related to the nodenumbering sequence (see Figure 5-26). The positive ζ -direction, normal to the element middle surface, is chosen according to the normal convention of the right hand rule, i.e. the positive ζ -direction is found when the node numbers are followed in ascending order.

The SIDE definition on the BEUSLO records is as follows:

SIDE=1 means that load is given on the element surface where ζ =-1,

SIDE=2 that ζ =0 is loaded, and SIDE=3 that ζ =1 is loaded.

Data types for this element:

GELMNT1 *
GNODE *

GCOORD *

GELREF1 *

GELINT

GELTH

GELSTRP

MORSSEL *

MTRSEL

BEUSLO

BELLO2

BEISTE

BGRAV

BNACCLO

Page Date Program Version 5-52 01-NOV-1996 6

MCTS(27)

The following restrictions are put on the data types.

GELINT

The integration stations must be distributed according to a scheme similar to the Gaussian integration scheme, i.e. INTYPE=1. For this element type the GELINT specifications consist of the first line only. The integration stations will be specified in the triangle planes, and not along local coordinate axes. The value specified for N1 is **not** the number of integration stations but a reference number to specified distributions of integration stations, which may have the same number of integration stations, but different positions in the triangle planes. Therefore, N3 has no meaning for this element type. Legal values for N1 are 1, 2, 3, 4, 5, 6, 7, 8, 9, see description of subroutine HAMC30 in the finite element library, /2/. N2 (" ζ -direction") is not possible to specify and the value 2 is used for each layer. The integration in ζ -direction will be performed analytically if max deviation from mean thickness is 5% and the element is nearly flat.

Stiffness matrix: Default value for N1 is 7.

Load calculations: Default value for N1 is 6 for surface loads.

Initial strain: Default value for N1 is 6.

Mass matrix: N1 should be specified ³ 7 to ensure positive definite mass matrix. Default value is N1=7.

GELSTRP

The stress points must be distributed according to the same scheme as the integration points in the GELINT specification, for stress point coordinates in the triangular plane. The stress point coordinates in the ζ -direction are distributed according to the usual Gaussian integration scheme STRPTYP=1. Legal values for N1 are 1, 3, 4, 7, 9, and for N2 2, 3, 4. Default values for N1 is 3 and for N2 ("z-direction") the default value is 2. Only the first record of the GELSTRP specification is used for this element type.

BELLO2 The SIDE-definition is not used.

 Program Version
 Date
 Page

 6
 01-NOV-1996
 5-53

ELTYP=28: Subparametric Curved Quadrilateral Shell (SCQS), /2/

SCQS(28)

- 8 nodes
- 8 x 6 degrees of freedom
- curved element shape
- isotropic or anisotropic material data
- deformations considered: bending, shear and translational strain
- parabolically varying element thickness
- element loads:
 - initial strain
 - surface forces
 - line loads
 - line moment load
 - gravitational load
 - general inertia load

Figure 5-27 Element node numbering. Global Cartesian and local normalized coordinate system.

When line load is specified, the relation between local node numbers and loaded line will go:

SESAM

Page Date Program Version 5-54 01-NOV-1996 6

SCQS(28)

LINE=1	means line load along the line defined by the nodes 3, 4 and 5
LINE=2	means line load along the line defined by the nodes 2 and 6
LINE=3	means line load along the line defined by the nodes 1, 8 and 7
LINE=4	means line load along the line defined by the nodes 7, 6 and 5
LINE=5	means line load along the line defined by the nodes 8 and 4
LINE=6	means line load along the line defined by the nodes 1, 2 and 3

The orientation of the local nodal coordinate system is related to the nodenumbering sequence (see Figure 5-27). The positive ζ -direction, normal to the element middlesurface, is chosen according to the normal convention of the right hand rule, i.e. the positive ζ -direction is found when the node numbers are followed in ascending order.

The SIDE definition on the BEUSLO records is as follows:

SIDE=1 means that load is given on the element surface where $\zeta = -1$,

SIDE=2 that ζ = 0 is loaded, and SIDE=3 that ζ = 1 is loaded.

Data types for this element:

GELMNT1 *
GNODE *

GCOORD *

GELREF1 *

GELINT

GELTH *

GELSTRP MISOSEL

MISOSEL * or MISOPL * or

MORSSEL *

MTRSEL

BEUSLO

BELLO2

BEISTE

BGRAV BNACCLO

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 5-55

SCQS(28)

The following restrictions are put on the data types.

GELINT

The integration stations must be distributed according to the Gaussian integration scheme, i.e. INTYPE=1. For this element type only the first line of the GELINT specifications is used. N3 (" ζ -direction") is not possible to specify and the value 2 is used. The integration in ζ -direction will be performed analytically if max deviation from mean thickness is 5% and the element is nearly flat.

Stiffness matrix: Legal values for N1 and N2 are 2 and 3.

Default value is 2 for both.

Load calculations: Legal values for N1 and N2 are 2, 3 and 4.

Default value is 2 for both.

Initial strain: Legal values for N1 and N2 are 2 and 3.

Default value is 2 for both.

Mass matrix: Legal values for N1 and N2 are 1, 2, 3 and 4. To ensure positive definite mass

matrix N1=N2=4 is recommended.

Default value is N1=N2=4.

GELSTRP

The stress points must be distributed according to the Gaussian integration scheme, i.e. STRPTYP=1. The only legal value for N1 and N2 is 2. N3 may be 2, 3 or 4. This gives 4*N3 stress points within each element.

BELLO2 The SIDE-definition is not used.

Page Date Program Version 5-56 01-NOV-1996 6

ELTYP=29: Subparametric Multilayered Curved Quadrilateral Shell (MCQS), for Ref. See SCQS /2/

MCQS(29)

- 8 nodes
- 8 x 6 degrees of freedom
- curved element shape
- isotropic or anisotropic material data
- two or more material layers (sandwich)
- deformations considered:
- bending, shear and translational strain
- parabolically varying element thickness
- · element loads:
 - initial strain
 - surface forces
 - line loads
 - line moment load
 - gravitational load
 - general inertia load

Figure 5-28 Element node numbering. Global Cartesian and local normalized coordinate system. Three layers.

When line load is specified, the relation between local node numbers and loaded line will go:

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	5-57

MCQS(29)

LINE=1	means line load along the line defined by the nodes 3, 4 and 5
LINE=2	means line load along the line defined by the nodes 2 and 6
LINE=3	means line load along the line defined by the nodes 1, 8 and 7
LINE=4	means line load along the line defined by the nodes 7, 6 and 5
LINE=5	means line load along the line defined by the nodes 8 and 4
LINE=6	means line load along the line defined by the nodes 1, 2 and 3

The orientation of the local nodal coordinate system is related to the nodenumbering sequence (see Figure 5-28). The positive ζ -direction, normal to the element middlesurface, is chosen according to the normal convention of the right hand rule, i.e. the positive ζ -direction is found when the node numbers are followed in ascending order, counterclockwise.

The SIDE definition on the BEUSLO records is as follows:

SIDE=1 means that load is given on the element surface where ζ = -1, SIDE=2 that ζ = 0 is loaded, and SIDE=3 that ζ = 1 is loaded.

Data types for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELINT GELTH *
GELSTRP MORSSEL *
MTRSEL BEUSLO BELLO2
BEISTE BGRAV
BNACCLO

SESAM

Page Date Program Version 5-58 01-NOV-1996 6

MCQS(29)

The following restrictions are put on the data types.

GELINT

The integration stations must be distributed according to the Gaussian integration scheme, i.e. INTYPE=1. For this element type only the first line of the GELINT specifications is used. N3 (" ζ -direction") is not possible to specify and the value 2 is used for each layer. The integration in ζ -direction will be performed analytically if max deviation from mean thickness is 5% and the element is nearly flat.

Stiffness matrix: Legal values for N1 and N2 are 2 and 3.

Default value is 2 for both.

Load calculations: Legal values for N1 and N2 are 2, 3 and 4.

Default value is 2 for both.

Initial strain: Legal values for N1 and N2 are 2 and 3.

Default value is 2 for both.

Mass matrix: Legal values for N1 and N2 are 1, 2, 3 and 4. To ensure positive definite mass

matrix N1=N2=4 is recommended.

Default value is N1=N2=4.

GELSTRP

The stress points must be distributed according to the Gaussian integration scheme, i.e. STRPTYP=1. The only legal value for N1 and N2 is 2. N3 may be 2, 3 or 4. This gives 4*N3 stress points within each layer of the element.

BELLO2 The SIDE-definition is not used.

Program Version Date Page 6 01-NOV-1996 5-59

ELTYP=30: Isoparametric Prism (IPRI) /2/

IPRI(30)

- 15 nodes
- 15 x 3 degrees of freedom
- curved element sides
- · isotropic or anisotropic material data
- deformations considered: translational strain
- element loads:
 - initial strain (temperature load)
 - surface forces
 - line forces
 - gravitational load
 - general inertia load

Figure 5-29 Isoparametric triangular prism with local nodenumbering and corresponding surface numbering.

Page	Date	Program Version
5-60	01-NOV-1996	6

IPRI(30)

Figure 5-30 Typical isoparametric triangular prism with local node numbering

When surface loads are specified for an element side, the surface numbers shown are used for identification of the surface in question.

The local nodenumbering for each side is defined as follows:

Node number								
	1	2	3	4	5	6	7	8
Side no	о.							
1	3	4	5	9	14	13	12	8
2	5	6	1	7	10	15	14	9
3	1	2	3	8	12	11	10	7
4	1	2	3	4	5	6		
5	14	13	12	11	10	15		

Program Version	Date	Page
6	01-NOV-1996	5-61

IPRI(30)

When line load is specified, the relation between the local node numbers and the loaded line will be as follows:

	N	Node number			
	1	2	3		
Line no.					
1	1	2	3		
2	3	4	5		
3	5	6	1		
4	1	7	10		
5	3	8	12		
6	5	9	14		
7	10	11	12		
8	12	13	14		
9	14	15	10		
10	7	8			
11	2	11			
12	8	9			
13	4	13			
14	9	7			
15	6	15			

Data types used for this element:

```
GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELINT
GELSTRP
MISOSEL * or
MORSSOL *
MTRSOL
BEUSLO
BELLO2
BEISTE
BGRAV
BNACCLO
```

Page Date Program Version 5-62 01-NOV-1996 6

IPRI(30)

The following restrictions are put on the data type.

GELINT

The integration stations must be distributed according to the Gaussian integration scheme, i.e. INTYPE=1. For this element type the GELINT specifications consist of the two first lines. For the triangle plane the integration stations will be distributed according to the usual Gaussian integration scheme. N1 will be employed for the specification of number of integration stations in the triangular plane; N2 for the number of integration stations in the ζ -direction. N3 will be employed for the specification of number of integration stations in the direction perpendicular to the ζ -direction in the four edged surfaces, used in the calculation of surfaces, used in the calculation of surfaces, used in the calculation of surface loads.

Stiffness matrix: Legal values for N1 are 3, 4 and 7, and for N2 legal values are 2, 3 and 4. Default values are N1=7 and N2=3. N3 is not used in this case.

Load calculations: For surface loads N3 will be employed as described above. Legal values for N3 are 1, 2, 3 and 4. Default value is N3=3. For surface loads legal values for N1 are 3, 4 and 7, and for N2 2, 3 and 4. Default values are N1=7 and N2=3.

Initial strain: Only N2 is used in this case. Legal values for N2 are 1, 2, 3 and 4. Default value is N2=3.

Mass matrix: Only N2 is used in this case. Legal values for N2 are 3 and 4. Default value is N2=3.

GELSTRP

The stress points must be distributed according to the same scheme as the integration points in the GELINT specification, i.e. STRPTYP=1. Legal values for N1 are 1, 4 and 7 and for N2 1, 2 and 3. Default values are N1=4 and N2=2. Only the first record of the GELSTRP specification is used for this element type.

BEUSLO A element side may only be loaded once for each BEUSLO-record.

BELLO2 The SIDE definition is not used. The load components are given nodewise in global coordinates.

 Program Version
 Date
 Page

 6
 01-NOV-1996
 5-63

ELTYP=31: Isoparametric Tetrahedron (ITET) /2/

ITET(31)

- 10 nodes
- 10 x 3 degrees of freedom
- curved element sides
- isotropic or anisotropic material data
- deformations considered: translational strain
- element loads:
 - initial strain (temperature load)
 - surface forces
 - line forces
 - gravitational load
 - general inertia load

In surface No. 1 we have L_1 =0 and so on for surface No. 2, 3 and 4. See "volume coordinates" in /3/

Figure 5-31 Isoparametric tetrahedron with local nodenumbering and corresponding surface numbering.

Page Date Program Version 5-64 01-NOV-1996 6

ITET(31)

Figure 5-32 Typical isoparametric tetrahedron with node numbering and numbers defining the volume coordinates L_1, L_2, L_3, L_4 .

When surface loads are specified for an element side, the surface numbers shown are used for identification of the side in question.

The local nodenumbering for each side is defined as follows:

Node number						
	1	2	3	4	5	6
Side no).					
1	3	4	5	9	10	8
2	5	6	1	7	10	9
3	1	2	3	8	10	7
4	1	6	5	4	3	2

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	5-65

ITET(31)

When line load is specified, the relation between local node numbers and loaded line will be as follows:

	Node number		
	1	2	3
Line no.			
1	1	2	3
2	3	4	5
3	5	6	1
4	1	7	10
5	3	8	10
6	5	9	10

Data types for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELINT
GELSTRP
MISOSEL * or
MORSSOL *
MTRSOL
BEUSLO
BEISTE
BGRAV
BNACCLO

SESAM

Page Date Program Version 5-66 01-NOV-1996 6

ITET(31)

The following restrictions are put on the data types:

GELINT

The integration stations must be distributed according to a scheme similar to the Gaussian integration scheme, i.e. INTYPE=1. Only the first record of the GELINT specification is used for these element types. The number of integration stations specified for N1 covers the whole volume of the tetrahedron. N2 will be used to specify the number of integration points in the triangular surfaces. The specification of integration points in the triangular surfaces is used in surface load calculations.

N1 must always be specified equal to 5.

Load calculations: Legal values for N2 are 1, 2, 3, 4 and 7. Default value is 4.

GELSTRP

The stress points must be distributed according to the same scheme as the integration points in the GELINT specification, i.e. STRPTYP=1. Legal values for N1 are 1, 4 and 5. Default value is 4.

BELLO2

The SIDE-definition is not used. The load components are given nodewise in global coordinates.

Program Version Date Page 6 01-NOV-1996 5-67

ELTYP=32: Triangular Prism (TPRI), /2/

TPRI(32)

- 6 nodes
- 6 x 3 degrees of freedom
- linear element sides
- isotropic or anisotropic material data
- deformation considered: translational displacement
- element loads
 - initial strain (temperature loads)
 - volume forces
 - surface forces
 - line forces
 - gravitational load
 - general acceleration load

Figure 5-33 Triangular prism solid element with local nodenumbering and corresponding surface numbering.

SESAM

Page	Date	Program Version
5-68	01-NOV-1996	6

TPRI(32)

When surface loads are specified for an element side, the surface numbers shown are used for identification of the surface in question.

The local nodenumbering for each side is defined as follows:

	Node number			
	1	2	3	4
Side no.				
1	2	3	6	5
2	3	1	4	6
3	1	2	5	4
4	1	2	3	0
5	6	5	4	0

When line load is specified, the relation between the local node numbers and the loaded line will be as follows:

	Node number		
	1	2	
Line no).		
1	1	2	
2	2	3	
3	3	1	
4	1	4	
5	2	5	
6	3	6	
7	4	5	
8	5	6	
9	6	4	

Data types used for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
MISOSEL * or
MORSSOL *
MTRSOL
BELLO2
BEUSLO
BEISTE
BGRAV
BNACCLO

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 5-69

TPRI(32)

The following restrictions are put on data type:

GELINT

The integration stations must be distributed according to the Gaussian integration sceme, i.e. INTYPE=1. For this element type the GELINT specifications consist of only the first line. For the triangular plane the integration stations will be specified in the plane and not along local coordinate axis. In the z-direction, integration stations will be distributed according to the usual Gaussian integration sheeme. N1 will be used for specification of number of integration points in the triangular plane, N2 for the number of integration stations in the z-direction.

Stiffness matrix calculation: Legal values for N1 are 3, 4 and 7, for N2, 2, 3 and 4. Default values are N1=4 and N2=3.

Load calculation: For surface loads N1 will not be used. Number of integration stations in z-direction is given by N2 as before. Legal values of N2 are 2, 3 and 4, with 3 as default. Number of integration stations normal to the z-direction is set equal to one less than N2. This gives a default value equal to 2, and with legal values 1, 2 and 3.

Initial strain: Legal values for N1 are 3, 4 and 7, and for N2, 2, 3 and 4. Default values are N1=4 and N2=3.

Mass matrix calculations: The only legal values for N1 and N2 are N1=4 and N2=3.

GELSTRP

The stress points must be distributed according to the Gaussian integration scheme, i.e. STRPTYP=1. Number of stress points in the triangular planes is given by N1. Legal values are 1, 3 and 4. The default value of N1 is 1. Number of stress points in the z-direction is specified by N2. The only legal value of N2 is 2.

BEUSLO An element side may only be loaded once for each BEUSLO-record.

BELLO2 The SIDE definition is not used. The load components are given nodewise in global coordinates.

 Page
 Date
 Program Version

 5-70
 01-NOV-1996
 6

ELTYP=33: Tetrahedron (TETR), /2/

TETR(33)

- 4 nodes
- 4 x 3 degrees of freedom
- linear element sides
- isotropic or anisotropic material data
- deformation considered: translational displacement
- element loads
 - initial strain (temperature loads)
 - volume forces
 - surface forces
 - line forces
 - gravitational load
 - general inertia load

Figure 5-34 Tetrahedron solid element with local node numberieng and corresponding surface numbering.

SESAM

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	5-71

TETR(33)

When surface loads are specified for an element side, the surface numbers shown are used for identification of the surface in question. The local nodenumbering for each side is defined as follows:

	Node number			
	1 2 3			
Side no				
1	3	2	4	
2	1	3	4	
3	2	1	4	
4	1	2	3	

When line load is specified, the relation between the local node numbers and the loaded line will be as follows:

	Node number			
	1	2		
Line no.				
1	1	2		
2	2	3		
3	3	1		
4	1	4		
5	2	4		
6	3	4		

Data types used for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
MISOSEL * or
MORSSOL *
BEUSLO
BEEUSLO
BEEO2
BEISTE
BGRAV
BNACCLO

*) Mandatory

 Page
 Date
 Program Version

 5-72
 01-NOV-1996
 6

TETR(33)

The following restrictions are put on data type:

GELINT

Only the default values for number of integration points are used. This means that if GE-LINT is given, N1 must be specified equal to the default value for the calculation type in question:

Stiffness matrix: The centroid of the element is used as the only calculation point.

Load calculation: Constant volume force is only calculated in the centroid of the element. Surface forces in arbitrary direction are calculated in three points on the loaded side, and constant normal pressure is calculated in the midpoint on the loaded side.

Initial strain: The centroid of the element is used as the only calculation point.

Mass matrix: Four integration points are used. These are distributed according to the Gaussian integration scheme.

GELSTRIP

Stresses are only calculated in the centroid of the element. If the GELSTRP specification is given, only the first record is used. This must be given with STRPTYP=1 and N1=1. N2 should not be specified.

BEUSLO

Only one side can be loaded in each load case. This means that only one side identification can be given in SIDE. The element can only reproduce a constant strain situation. Variation in loads will cause a stress situation which the element is not able to reproduce. Therefore this element should only be used for constant loads, i.e. the load intensity should be the same for all the nodes on the loaded side.

BELLO2

The SIDE definition is not used. The load components are given nodewise in global coordinates.

 Program Version
 Date
 Page

 6
 01-NOV-1996
 5-73

ELTYP=34: Subparametric Layered Curved Triangular Shell (LCTS), for Ref. See SCTS /2/

LCTS(34)

- 6 nodes
- 6 x 6 degrees of freedom
- curved element shape
- isotropic or anisotropic material data (anisotropic only, in 'plate layers')
- one or more material layers
- the layers may be eccentric plate layers and / or eccentric stiffener layers with bar stiffeners in one arbitrary direction. Each layer may have different stiffener direction
- deformations considered:
 bending, shear and translational strain
- constant element thickness
- element loads:
 - initial strain
 - surface forces
 - line loads
 - line moment load
 - gravitational load
 - general inertia load

Figure 5-35 Element local node numbering. Three layers - one plate layer and two stiffener layers.

The stiffeners are transformed to layers with no stiffness in the direction lateral to the stiffener direction, and smeared stiffness in the stiffener direction. The direction defining the local element coordinate axes (local x-,

 Page
 Date
 Program Version

 5-74
 01-NOV-1996
 6

LCTS(34)

y- and z-axes) are specified on a BNTRCOS record for this element. Only the x-direction (first line) in the direction cosine matrix defined on the BNTRCOS record is used.

The projection of this vector onto the middle of the element surface defines the local x-axis in different points on the element. The positive local z-direction, normal to the element middlesurface, is chosen according to the normal convention of the right hand rule, i.e. the positive z-direction is found when the local element node numbers are followed in ascending order. The BNTRCOS record is referred on the GELREF1 record.

The material may be general anisotropic in the plate layer(s) of the element, but if stiffener layers are specified, they must have isotropic material. For anisotropic materials, each layer must have a separate anisotropic material specification (MORSSEL record).

Figure 5-36 Element local node numbering and local normalised coordinate system.

When line load is specified, the relation between local node numbers and loaded line will go:

LINE=1	means line load on the element side defined by nodes 2, 5 and 3
LINE=2	means line load on the element side defined by nodes 1, 6 and 3
LINE=3	means line load on the element side defined by nodes 1, 4 and 2

SESAM

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	5-75

LCTS(34)

The orientation of the local normalised coordinate system is related to the local node numbering sequence (see Figure 5-36). The positive ζ -direction, normal to the element middlesurface, is chosen according to the normal convention of the right hand rule, i.e. the positive ζ -direction is found when the node numbers are followed in ascending order.

The SIDE definition on the BEUSLO records is as follows:

SIDE=1 means that load is given on the element surface where ζ = -1,

SIDE=2 that ζ = 0 is loaded, and SIDE=3 that ζ = 1 is loaded.

Page Date Program Version 5-76 01-NOV-1996 6

LCTS(34)

Data types for this element:

GELINT

Figure 5-37 Normal data reference for a Subparametric Layered Curved Triangular Thin / Thick Shell . The layered element in the figure is having three layers, one plate layer and two eccentric stiffener layers.

GELMNT1	GELSTRP	BEUSLO
GNODE	GELTH	BELLO2
GCOORD	GSLAYER	BEISTE
GBARM	GSLPLATE	BGRAV
GBEAMG	GSLSTIFF	BNACCLO
GECC	GSEPSPEC	TSLAYER
GELREF1	MISOSEL	

MORSSEL

SESAM

INPUT INTERFACE FILE

Program Version Date Page 01-NOV-1996 5-77

LCTS(34)

The following restrictions are put on the data types.

GELINT

The integration stations must be distributed according to a scheme similar to the Gaussian integration scheme, i.e. INTYPE=1. For this element type the GELINT specifications consist of the first line only. The integration stations will be specified in the triangle planes, and not along local coordinate axes. The value specified for N1 is **not** the number of integration stations but a reference number to specified distributions of integration stations, which may have the same number of integration stations, but different positions in the triangle planes. Therefore, N3 has no meaning for this element type. Legal values for N1 are 1, 2, 3, 4, 5, 6, 7, 8, 9, see description of subroutine HAMC30 in the finite element library, /2/. N2 ("ζdirection") is not possible to specify and the value 2 is used for each layer. The integration in ζ-direction will be performed analytically if max deviation from mean thickness is 5% and the element is nearly flat.

Stiffness matrix: Default value for N1 is 7.

Load calculations: Default value for N1 is 6 for surface loads.

Initial strain: Default value for N1 is 6.

Mass matrix: N1 should be specified ³ 7 to ensure positive definite mass matrix. Default value is N1=7.

GELSTRP

The stress points must be distributed according to the same scheme as the integration points in the GELINT specification, for stress point coordinates in the triangular plane. The stress point coordinates in the ζ -direction are distributed according to the usual Gaussian integration scheme STRPTYP=1. Legal values for N1 are 1, 3, 4, 7, 9, and for N2 2, 3, 4.

Default values for N1 is 3 and for N2 ("z-direction") the default value is 2. Only the first record of the GELSTRP specification is used for this element type.

BELLO2 The SIDE-definition is not used. Page Date Program Version 5-78 01-NOV-1996 6

ELTYP=35: Subparametric Layered Curved Quadrilateral Shell (LCQS), for Ref. See SCQS /2/

LCQS(35)

- 8 nodes
- 8 x 6 degrees of freedom
- curved element shape
- isotropic or anisotropic material data (anisotropic only, in 'plate layers')
- one or more material layers
- the layers may be eccentric plate layers and / or eccentric stiffener layers with bar stiffeners in one arbitrary direction. Each layer may have different stiffener direction
- deformations considered: bending, shear and translational strain
- constant element thickness
- element loads:
 - initial strain
 - surface forces
 - line loads
 - line moment load
 - gravitational load
 - general inertia load

Figure 5-38 Element local node numbering. Three layers - one plate layer and two stiffener layers.

The stiffeners are transformed to layers with no stiffness in the direction lateral to the stiffener direction, and smeared stiffness in the stiffener direction. The direction defining the local element coordinate axes (local x-, y- and z-axes) are specified on a BNTRCOS record for this element. Only the x-direction (first line) in the direction cosine matrix defined on the BNTRCOS record is used.

Program Version	Date	Page
6	01-NOV-1996	5-79

LCQS(35)

The projection of this vector onto the middle of the element surface defines the local x-axis in different points on the element. The positive local z-direction, normal to the element middlesurface, is chosen according to the normal convention of the right hand rule, i.e. the positive z-direction is found when the local element node numbers are followed in ascending order. The BNTRCOS record is referred on the GELREF1 record.

The material may be general anisotropic in the plate layer(s) of the element, but if stiffener layers are specified, they must have isotropic material. For anisotropic materials, each layer must have a separate anisotropic material specification (MORSSEL record).

Figure 5-39 Element local node numbering and local normalised coordinate system.

When line load is specified, the relation between local node numbers and loaded line will go:

LINE=1	means line load along the line defined by the nodes 3, 4 and 5
LINE=2	means line load along the line defined by the nodes 2 and 6
LINE=3	means line load along the line defined by the nodes 1, 8 and 7
LINE=4	means line load along the line defined by the nodes 7, 6 and 5
LINE=5	means line load along the line defined by the nodes 8 and 4
LINE=6	means line load along the line defined by the nodes 1, 2 and 3

SESAM

Page Date Program Version 5-80 01-NOV-1996 6

LCQS(35)

The orientation of the local normalised coordinate system is related to the local node numbering sequence (see Figure 5-39). The positive ζ -direction, normal to the element middlesurface, is chosen according to the normal convention of the right hand rule, i.e. the positive ζ -direction is found when the node numbers are followed in ascending order.

The SIDE definition on the BEUSLO records is as follows:

SIDE=1 means that load is given on the element surface where ζ = -1,

SIDE=2 that $\zeta = 0$ is loaded, and SIDE=3 that $\zeta = 1$ is loaded.

Program Version	Date	Page
6	01-NOV-1996	5-81

LCQS(35)

Data types for this element:

Figure 5-40 Normal data reference for a Subparametric Layered Curved Quadrilateral Thin / Thick Shell . The layered element in the figure is having three layers, one plate layer and two eccentric stiffener layers.

GELMNT1	GELSTRP	BEUSLO
GNODE	GELTH	BELLO2
GCOORD	GSLAYER	BEISTE
GBARM	GSLPLATE	BGRAV
GBEAMG	GSLSTIFF	BNACCLO
GECC	GSEPSPEC	TSLAYER
GELREF1	MISOSEL	
GELINT	MORSSEL	

SESAM

Page Date Program Version 5-82 01-NOV-1996 6

LCQS(35)

The following restrictions are put on the data types.

GELINT

The integration stations must be distributed according to the Gaussian integration scheme, i.e. INTYPE=1. For this element type only the first line of the GELINT specifications is used. N3 (" ζ -direction") is not possible to specify and the value 2 is used for each layer. The integration in ζ -direction will be performed analytically if max deviation from mean thickness is 5% and the element is nearly flat.

Stiffness matrix: Legal values for N1 and N2 are 2 and 3.

Default value is 2 for both.

Load calculations: Legal values for N1 and N2 are 2, 3 and 4.

Default value is 2 for both.

Initial strain: Legal values for N1 and N2 are 2 and 3.

Default value is 2 for both.

Mass matrix: Legal values for N1 and N2 are 1, 2, 3 and 4. To ensure positive definite mass

matrix N1=N2=4 is recommended.

Default value is N1=N2=4.

GELSTRP

The stress points must be distributed according to the Gaussian integration scheme, i.e. STRPTYP=1. The only legal value for N1 and N2 is 2. N3 may be 2, 3 or 4. This gives 4*N3 stress points within each layer of the element.

BELLO2 The SIDE-definition is not used.

Program Version Date Page 6 01-NOV-1996 5-83

ELTYP=36, 37 or 38: Transition Elements between Solids and Shells (TRSI), /6/

TRSI(36, 37, 38)

- 18, 15 or 12 nodes
- 57, 54 or 51 degrees of freedom
- curved or linear element sides
- parabolically varying element thickness (in relevant nodes of ELTYP=37 and 38 only)
- isotropic or anisotropic material data
- deformations considered: translational strain
- element loads:
 - initial strain (temperature loads)
 - surface forces
 - line forces
 - gravitational load
 - general inertia load

The TRSI elements are described in detail in /6/

Figure 5-41 Local node numbering and corresponding surface numbering for transition element with one "shell type node", the "shell type node" is node number 9.

Page Date Program Version 5-84 01-NOV-1996 6

TRSI(36, 37, 38)

Figure 5-42 Local node numbering and corresponding surface numbering for transition element with three "shell type nodes", the "shell type nodes" is node number 7, 8 and 9.

Figure 5-43 Local node numbering and corresponding surface numbering for transition element with five "shell type nodes", the "shell type nodes" are nodes number 5 through 9.

SESAM

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 5-85

TRSI(36, 37, 38)

Loads on the element are specified as if given for an IHEX element (ELTYP=20) (the so-called originating IHEX element) with that element's number of nodes, type of nodes (3 translational degrees of freedom) and sequence of nodes specifying the originating element. (see the tables and figures below for TRSI(36), TRSI(37) and TRSI(38)).

When surface load is specified for one element side, the load intensities are always given in eight points on each side, regardless of this beeing a "solid side" or a "shell side". These points are the nodes on the "solid sides", and the points on the upper and lower element side corresponding to the nodes on the "shell sides". The points on the upper and lower shell element side is marked with the same number as the node in the 'shell middle plane' with a ' (prime) and " (double prime) to separate them from the 'real nodes'.

With correspondence to Figure 5-41, 5-42 and 5-43 the local node ("point") numbering of each side is defined as follows:

Page	Date	Program Version
5-86	01-NOV-1996	6

It should be noted that the points in the three tables and Figs. 5-41, 5-42 and 5-43 below are in the same topological positions on the sides, but the node (point) numbers are different, since number of 'real nodes' are different. The point numbers are sort of dummy numbers and only used to indicate the sequence of the load intensities to be specified.

TRSI(36)

	Local node ("point") number on side							
	1	2	3	4	5	6	7	8
Side no.								
1	6	7	1	8	12	18	17	11
2	4	10	15	14	9"	9	9'	3
3	1	2	9'	9	9"	13	12	8
4	6	11	17	16	15	10	4	5
5	6	5	4	3	9'	2	1	7
6	17	18	12	13	9"	14	15	16

Figure 5-44 Numbering of nodes (points) where surface and line load values are specified for TRSI(36)-elements

Program Version	Date	Page
6	01-NOV-1996	5-87

TRSI(37)

	Local node ("point") number on side							
	1	2	3	4	5	6	7	8
Side no.								
1	4	5	1	6	11	15	14	10
2	9'	9	9"	8"	7"	7	7'	8'
3	1	2	7'	7	7"	12	11	6
4	4	10	14	13	9"	9	9'	3
5	4	3	9'	8'	7'	2	1	5
6	14	15	11	12	7"	8"	9"	13

Figure 5-45 Numbering of nodes (points) where surface and line load values are specified for TRSI(37)-elements

Page	Date	Program Version
5-88	01-NOV-1996	6

TRSI(38)

	Local node ("point") number on side							
	1	2	3	4	5	6	7	8
Side no.								
1	9'	3	1	4	10	12	9"	9
2	7'	7	7''	6"	5"	5	5'	6'
3	1	2	5'	5	5"	11	10	4
4	9'	9	9"	8"	7"	7	7'	8'
5	9'	8'	7'	6'	5'	2	1	3
6	9"	12	10	11	5"	6"	7"	8"

Figure 5-46 Numbering of nodes (points) where surface and line load values are specified for TRSI(37)-elements

Program Version	Date	Page
6	01-NOV-1996	5-89

Line loads are specified in the same manner as surface loads. The load intenisties are always given in points along lines as defined for the IHEX-element (the so-called originating IHEX element). In the table below the numbers without prime and double prime refer to the node numbers of the actual TRSI element. The the numbers with prime or double prime refers to the geometrical point below or above the TRSI node. With reference to Figs. 5-41, 5-42 and 5-43 the local node (point) numbering for each line is defined as follows:

	7	TRSI(36)	,	TRSI(37)		TRSI((38)
			L	ocal node ("p	oint'') numbe	er on line:		
	1	2	3	1	2	3	1	2	3
Line no.:									
1	1	2	9'	1	2	7'	1	2	5'
2	9'	3	4	7'	8'	9'	5'	6'	7'
3	4	5	6	9'	3	4	7'	8'	9'
4	6	7	1	4	5	1	9'	3	1
5	1	8	12	1	6	11	1	4	10
6	9'	9	9"	7'	7	7"	5'	5	5"
7	4	10	15	9'	9	9"	7'	7	7"
8	6	11	17	4	10	14	9'	9	9"
9	12	13	9"	11	12	7"	10	11	5"
10	9"	14	15	7"	8"	9"	5"	6"	7"
11	15	16	17	9"	13	14	7"	8"	9"
12	17	18	12	14	15	11	9"	12	10
13	7	3		5	8'		3	6'	
14	5	2		3	2		8'	2	
15	8	9		6	7		4	5	
16	2	13		2	12		2	11	
17	9	7		7	9		5	7	
18	3	14		8'	8"		6'	6"	
19	10	11		9	10		7	9	
20	5	16		3	13		8'	8"	
21	11	8		10	6		9	4	
22	7	18		5	15		3	12	
23	18	14		15	8"		12	6"	
24	13	16		12	13		11	8"	

SESAM

Page Date Program Version 5-90 01-NOV-1996 6

TRSI(36, 37, 38)

Data types used for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELTH *
GELINT
GELSTRP
MISOSEL *

GELSTRP
MISOSEL * or
MISOPL * or
MORSSOL *
MTRSOL
BEUSLO
BELLO2
BEISTE
BGRAV
BNACCLO

^{*)} Mandatory

SESAM

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 5-91

TRSI(36, 37, 38)

Restrictions on modelling with transition elements:

The "shell type nodes" have no stiffness connected to the rotational degree of freedom perpendicular to the middle plane. In shell elements this is taken care of by inserting a small stiffness value to avoid a rectangular system. Hence the "shell type nodes" of the transition elements must always be coupled to a shell element in order to avoid a singular stiffness matrix.

Restrictions on data types:

GELREF1 Paramete

Parameters INTNO, MINTNO, STRANO, STRENO and STREPONO all refer to data groups were the data are specified as if given for an IHEX element (ELTYP=20). The element thickness of the shell type node(s) must be referred to, either directly by GEONO/OPT or indirectly by GEONO(i) (with GEONO/OPT=-1). In the latter case the GEONO(i) for solid type numbers are of no consequence (set equal to zero)

solid type numbers are of no consequence (set equal to zero).

GELINT GELSTRP BEUSLO The data is as if given for an IHEX element (ELTYP=20). When giving nodal values (intensities) they shall refer to a so-called originating IHEX element. See Figure 5-41

above.

BEISTE

GNODE

The values of NDOF and ODOF must be consistent with the type of node:

solid type: NDOF=3, ODOF=123 shell type: NDOF=6, ODOF=123456

- 2 nodes
- degrees of freedom, arbitrary (max 12)
- stiffness matrix

Data types used for this element:

GELMNT1 *

GELREF1 *

MSHGLSP

BNTRCOS

*) Mandatory

Page Date Program Version 5-92 01-NOV-1996 6

LTYP=40: General 2-Noded Spring / Shim Element (GLSH)

GLSH(40)

- 2 nodes
- degrees of freedom, arbitrary
- · general spring matrix

Figure 5-47 General 2-noded spring element

As General Spring it is just a 2-noded spring (12x12 matrix) which may be in a local coordinate system. As a shim element the preprocessor(s) will only insert stiffness in the local x- and y-direction. In the analysis program(s), shim members and general springs are treated exactly in the same manner.

The resulting spring matrix is a full symmetric matrix where all values on and below the main diagonal are stored.

Data types used for this element:

GELMNT1 *

MSHGLSP $\,\,^*$ (NDOF1 and NDOF2 must be equal to NDOF on data type GNODE for node "1" and node

"2")

GELREF1

BNTRCOS (Transformation in the two nodes may be different. But NDOF1 = NDOF2 = 3 or 6 is required for transformation).

*) Mandatory

Program Version Date Page 6 01-NOV-1996 5-93

ELTYP=41: Axisymmetric Constant Strain Triangle (AXCS), for Ref. See CSTA in /2/

AXCS(41)

- 3 nodes
- 3 x 3 degrees of freedom
- straight
 - line loads
 - initial strain (temperature load)
 - gravitational load (only in the membrane plane)
 - general inertia load (only in the membrane plane)
- · isotropic or anisotropic material data

Local node numbering:

Global cylindrical coordinates

Figure 5-48 Element node numbering. Global cylindrical coordinate system.

When line load is specified, the relation between local node numbers and loaded line will be:

Line 1 means load along the line defined by the nodes 2 and 3.

Line 2 means load along the line defined by the nodes 1 and 3

Line 3 means load along the line defined by the nodes 1 and 2.

The direction of node numbering must be counterclockwise.

SESAM

Page Date Program Version 5-94 01-NOV-1996 6

AXCS(41)

Data types used for this element:

GELMNT1 *
GELREF1 *

GNODE *
GCOORD *

MISOSEL * or MORSMEL * MTRMEL

BELLAX BEISTE BGRAV BNACCLO

*) Mandatory

 Program Version
 Date
 Page

 6
 01-NOV-1996
 5-95

ELTYP=42: (AXLQ), for ref. see LQUA in /2/

AXLQ(42)

- 4 nodes
- 4 x 3 degrees of freedom
- straight
- element loads
 - line loads
 - initial strain (temperature load)
 - gavitational load (only in the membrane plane)
 - general inertia load (only in the membrane plane)
- isotropic or anisotropic material data
- deformations considered: translational strain

Local node numbering:

Global cylindrical coordinates

Figure 5-49 Element node numbering. Global cylindrical coordinate system.

When line load is specified, the relation between local node numbers and loaded line will be:

LINE 1 means load along the line defined by the nodes 1 and 2

LINE 2 means load along the line defined by the nodes 2 and 3

LINE 3 means load along the line defined by the nodes 3 and 4

LINE 4 means load along the line defined by the nodes 4 and 1

The direction of node numbering must be counterclockwise.

SESAM

Page Date Program Version 5-96 01-NOV-1996 6

AXLQ(42)

Data types used for this element:

GELMNT1 *
GELREF1 *
GNODE *
GCOORD *
GELINT

MISOSEL or *
MORSMEL
MTRMEL

BELLAX BEISTE BGRAV BNACCLO

*) Mandatory

The following restrictions are put on data types:

GELINT

The integration stations must be distributed according to the Gaussian integration scheme, i.e.

INTYPE =1. For this element type the GELINT specifications consist of the first line.

Stiffness matrix:

Legal values for N1 and N2 are 2 and 3. N1 and N2 must have the same value.

Default value is N1=N2=2.

Mass matrix: For mass matrix calculations the number of integration stations will be the same

in both coordinate directions and equal to the value specified for N1 for the stiffness matrix.

Program Version Date Page 6 01-NOV-1996 5-97

ELTYP=43: Axisymmetric Linear Strain Triangle

AXLS(43)

(AXLS), for Ref. see ILST in /2/

- 6 nodes
- 6 x 3 degrees of freedom
- curved
- deformations considered: translational strain
- element loads:
 - line loads
 - initial strain (temperature loads)
 - gravitational load (only in the membrane plane)
 - general inertia load (only in the membrane plane)
- isotropic or anisotropic material data

Local node numbering:

Gloal cylindrical coordinates

Figure 5-50 Element node numbering. Global cylindrical coordinate system.

When line load is specified, the relation between local node numbers and loaded line will be:

Line 1 means load along the line defined by the nodes 2, 5 and 3.

Line 2 means load along the line defined by the nodes 1, 6 and 3

Line 3 means load along the line defined by the nodes 1, 4 and 2.

The direction of node numbering must be counterclockwise.

SESAM

Page Date Program Version 5-98 01-NOV-1996 6

AXLS(43)

The following restrictions are put on the data types

GELINT

The integration stations must be distributed according to the Gaussian integration scheme, i.e.

INTYPE =1. For this element type the GELINT specifications consist of the first filerecord (line) only.

Stiffness matrix: For stiffness matrix calculations the number of integration stations will be equal to the value specified for N1.

Legal values are 1, 3, 4 and 7.

Default value is 4.

Mass matrix: Only possible value and default value is 7.

Load vector: Only possible value and default value is 3.

Data types used for this element:

GELMNT1 *

GELREF1 *

GNODE ;

GCOORD *

GELINT

MISOSEL or *

MORSMEL

MTRMEL

BELLAX

BEISTE

BGRAV

BNACCLO

*) Mandatory

 Program Version
 Date
 Page

 6
 01-NOV-1996
 5-99

ELTYP=44: Axisymmetric Linear Strain Quadrilateral (AXQQ), for Ref. see IQQE in /2/

AXQQ(44)

- 8 nodes
- 8 x 3 degrees of freedom
- curved
- deformations considered: translational strain
- element loads:
 - line loads
 - initial strain (temperature loads)
 - gravitational load (only in the membrane plane)
 - general inertia load (only in the membrane plane)
- isotropic or anisotropic material data

Local node numbering:

Gloal cylindrical coordinates

Figure 5-51 Element node numbering. Global cylindrical coordinate system.

When line load is specified, the relation between local node numbers and loaded line will be:

LINE 1 means load along the line defined by the nodes 2, 6 and 3

LINE 2 means load along the line defined by the nodes 5 and 7

LINE 3 means load along the line defined by the nodes 1, 8 and 4

LINE 4 means load along the line defined by the nodes 1, 5 and 2

LINE 5 means load along the line defined by the nodes 8 and 6

LINE 6 means load along the line defined by the nodes 4, 7 and 3

SESAM

Page Date Program Version 5-100 01-NOV-1996 6

AXQQ(44)

The direction of node numbering must be counterclockwise.

The following restrictions are put on the data types

GELINT

The integration stations must be distributed according to the Gaussian integration scheme, i.e.

INTYPE =1. For this element type the GELINT specifications consist of the first filerecord only.

Stiffness matrix: For stiffness matrix calculations the number of integration stations will be the same in both coordinate directions and equal to the value specified for N1. Legal values are 2 and 3. Default value is 3.

Mass matrix: For mass matrix calculations the number of integration stations will be the same in both coordinate directions and equal to the value specified for N1 for the stiffness martix..

Load vector: 3 is used, the variable is not possible to specify for the user.

BELLO2 LINE = 2 and LINE = 5 is not operative in SESTRA.

Data types used for this element:

GELMNT1 *

GELREF1 *

GNODE *

GCOORD *

GELINT

MISOSEL or *

MORSMEL

MTRMEL

BELLAX

BELLO2

BEISTE

BGRAV

BNACCLO

*) Mandatory

Program Version	Date	Page
6	01-NOV-1996	5-101

ELTYP=51: 2 noded (1+1) Contact Element

CTCP(51)

- 2 nodes
- 2 x 6 degrees of freedom
- contact material (see the MCNT record)
- deformations considered: separation and relative tangential desplacement between surfaces.
- · zero thickness.
- element loads:
 - none

Figure 5-52 Element node numbering.

SESAM

Page Date Program Version 5-102 01-NOV-1996 6

CTCP(51)

Data types for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELTH **
GELINT
MCNT *

*) Mandatory

**) If the nodes in the two layers (sides) of the element in the model do not coincide, thickness of the element may be specified by GELTH records.

Any distance between the two layers (sides) which is different from specified thickness is interpreted as initial gap or initial penetration of the contact surface.

Program Version	Date	Page
6	01-NOV-1996	5-103

ELTYP=52: 4 noded (2+2) Contact Element

CTCL(52)

- 4 nodes
- 4 x 6 degrees of freedom
- linear element shape
- contact material (see the MCNT record)
- deformations considered: separation and relative tangential desplacement between surfaces.
- zero thickness.
- element loads:
 - none

Figure 5-53 Element node numbering.

SESAM

Page Date Program Version 5-104 01-NOV-1996 6

CTCL(52)

Data types for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELTH **
GELINT
MCNT *

*) Mandatory

**) If the nodes in the two layers (sides) of the element in the model do not coincide, thickness of the element may be specified by GELTH records.

Any distance between the two layers (sides) which is different from specified thickness is interpreted as initial gap or initial penetration of the contact surface.

Program Version	Date	Page
6	01-NOV-1996	5-105

ELTYP=53: 4 noded (2+2) Axisymmetric Contact Element CTAL(53)

- 4 nodes
- 4 x 3 degrees of freedom
- linear element shape
- contact material (see the MCNT record)
- deformations considered: separation and relative tangential desplacement between surfaces.
- zero thickness.
- element loads:
 - none

Figure 5-54 Element node numbering.

SESAM

 Page
 Date
 Program Version

 5-106
 01-NOV-1996
 6

CTAL(53)

Data types for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELTH **
GELINT
MCNT *

*) Mandatory

**) If the nodes in the two layers (sides) of the element in the model do not coincide, thickness of the element may be specified by GELTH records.

Any distance between the two layers (sides) which is different from specified thickness is interpreted as initial gap or initial penetration of the contact surface.

Program Version	Date	Page
6	01-NOV-1996	5-107

ELTYP=54: 6 noded (3+3) Contact Element

CTCC(54)

- 6 nodes
- 6 x 6 degrees of freedom
- curved element shape
- contact material (see the MCNT record)
- deformations considered: separation and relative tangential desplacement between surfaces.
- zero thickness.
- element loads:
 - none

Figure 5-55 Element node numbering.

SESAM

Page Date Program Version 5-108 01-NOV-1996 6

CTCC(54)

Data types for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELTH **
GELINT
MCNT *

*) Mandatory

**) If the nodes in the two layers (sides) of the element in the model do not coincide, thickness of the element may be specified by GELTH records.

Any distance between the two layers (sides) which is different from specified thickness is interpreted as initial gap or initial penetration of the contact surface.

Program Version Date Page 6 01-NOV-1996 5-109

ELTYP=55: 6 noded (3+3) Axisymmetric Contact Element, CTAQ(55) /8/ and /9/

- 6 nodes
- 6 x 3 degrees of freedom
- curved element shape
- contact material (see the MCNT record)
- deformations considered: separation and relative tangential desplacement between surfaces.
- zero thickness.
- element loads:
 - none

Figure 5-56 Element node numbering.

SESAM

Page Date Program Version 5-110 01-NOV-1996 6

CTAQ(55)

Data types for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELTH **
GELINT
MCNT *

*) Mandatory

**) If the nodes in the two layers (sides) of the element in the model do not coincide, thickness of the element may be specified by GELTH records.

Any distance between the two layers (sides) which is different from specified thickness is interpreted as initial gap or initial penetration of the contact surface.

Program Version Date Page 6 01-NOV-1996 5-111

ELTYP=56: 8 noded (4+4) Contact Element, /8/ and /9/

CTLQ(56)

- 8 nodes
- 8 x 3 degrees of freedom
- flat elemtent shape
- contact material (see the MCNT record)
- deformations considered: penetration prevented
- zero thickness when beeing between two solid elements and linearly varying element thickness according to the adjacent shell elements when connecting two shell elements.
- element loads:
 - none

Figure 5-57 Element node numbering. Global Cartesian and local coordinate system.

SESAM

Page Date Program Version 5-112 01-NOV-1996 6

CTLQ(56)

Line no. definition:

The orientation of the local nodal coordinate system is related to the nodenumbering sequence (see Figure 5-57). The positive r-direction, normal to the element contact surface, is chosen according to the normal convention of the right hand rule, i.e. the positive r-direction is found when the node numbers are followed in ascending order, counterclockwise.

The SIDE definition is as follows:

SIDE=1 means the element surface where r is negative SIDE=2 means the element surface where r is positive

Data types for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELTH **
GELINT
MCNT *

*) Mandatory

**) If the nodes in the two layers (sides) of the element in the model do not coincide, thickness of the element may be specified by GELTH records.

Any distance between the two layers (sides) which is different from specified thickness is interpreted as initial gap or initial penetration of the contact surface.

Program Version Date Page 6 01-NOV-1996 5-113

ELTYP=57: 16 noded (8+8) Contact Element, /8/ and /9/

CTCQ(57)

- 16 nodes
- 16 x 3 degrees of freedom
- curved element shape
- contact material (see the MCNT record)
- deformations considered: penetration prevented
- zero thickness when beeing between two solid elements and parabolically varying element thickness according to the adjacent shell elements when connecting two shell elements.
- element loads:
 - none

Figure 5-58 Element node numbering. Global Cartesian and local coordinate system.

Line no. definition:

LINE=1	means line defined by the nodes 3, 4 and 5
LINE=2	means line defined by the nodes 2 and 6
LINE=3	means line defined by the nodes 1, 8 and 7
LINE=4	means line defined by the nodes 7, 6 and 5
LINE=5	means line defined by the nodes 8 and 4
LINE=6	means line defined by the nodes 1, 2 and 3
LINE=7	means line defined by the nodes 11, 12 and 13
LINE=8	means line defined by the nodes 10 and 14

SESAM

Page Date Program Version 5-114 O1-NOV-1996 6

CTCQ(57)

LINE=9	means line defined by the nodes 9, 16 and 15
LINE=10	means line defined by the nodes 15, 14 and 13
LINE=11	means line defined by the nodes 16 and 12
LINE=12	means line defined by the nodes 9, 10 and 11

The orientation of the local nodal coordinate system is related to the nodenumbering sequence (see Figure 5-58). The positive r-direction, normal to the element contact surface, is chosen according to the normal convention of the right hand rule, i.e. the positive r-direction is found when the node numbers are followed in ascending order, counterclockwise.

The SIDE definition is as follows:

SIDE=1 means the element surface where r is negative SIDE=2 means the element surface where r is positive

Data types for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELTH
GELINT
MCNT *

*) Mandatory

**) If the nodes in the two layers (sides) of the element in the model do not coincide, thickness of the element may be specified by GELTH records.

Any distance between the two layers (sides) which is different from specified thickness is interpreted as initial gap or initial penetration of the contact surface.

Program Version Date Page 6 01-NOV-1996 5-115

ELTYP=58: 18 noded (9+9) Contact Element, /8/ and /9/

CTMQ(58)

- 18 nodes
- 18 x 3 degrees of freedom
- curved element shape
- contact material (see the MCNT record)
- deformations considered: penetration prevented
- zero thickness when beeing between two solid elements and parabolically varying element thickness according to the adjacent shell elements when connecting two shell elements.
- element loads:
 - none

Figure 5-59 Element node numbering. Global Cartesian and local coordinate system.

SESAM

Page Date Program Version 5-116 01-NOV-1996 6

CTMQ(58)

The orientation of the local nodal coordinate system is related to the nodenumbering sequence (see Figure 5-59). The positive r-direction, normal to the element contact surface, is chosen according to the normal convention of the right hand rule, i.e. the positive r-direction is found when the node numbers are followed in ascending order, counterclockwise.

The SIDE definition is as follows:

SIDE=1 means the element surface where r is negative SIDE=2 means the element surface where r is positive

Data types for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELTH
GELINT
MCNT *

*) Mandatory

**) If the nodes in the two layers (sides) of the element in the model do not coincide, thickness of the element may be specified by GELTH records.

Any distance between the two layers (sides) which is different from specified thickness is interpreted as initial gap or initial penetration of the contact surface.

 Program Version
 Date
 Page

 6
 01-NOV-1996
 5-117

ELTYP=61: Heterosis Curved Quadrilateral Shell (HCQS),

HCQS(61)

- 9 nodes
- 9 x 6 degrees of freedom
- curved element shape
- isotropic or anisotropic material data
- deformations considered: bending, shear and translational strain
- parabolically varying element thickness
- element loads:
 - initial strain
 - surface forces
 - line loads
 - gravitational load
 - general inertia load

Figure 5-60 Element node numbering. Global Cartesian and local normalized coordinate system.

When line load is specified, the relation between local node numbers and loaded line will go:

SESAM

Page Date Program Version 5-118 01-NOV-1996 6

HCQS(61)

LINE=1	means line load along the line defined by the nodes 3, 4 and 5
LINE=2	means line load along the line defined by the nodes 2, 9 and 6
LINE=3	means line load along the line defined by the nodes 1, 8 and 7
LINE=4	means line load along the line defined by the nodes 7, 6 and 5
LINE=5	means line load along the line defined by the nodes 8, 9 and 4
LINE=6	means line load along the line defined by the nodes 1, 2 and 3

The orientation of the local nodal coordinate system is related to the nodenumbering sequence (see Figure 5-60). The positive ζ -direction, normal to the element middlesurface, is chosen according to the normal convention of the right hand rule, i.e. the positive ζ -direction is found when the node numbers are followed in ascending order, counterclockwise.

The SIDE definition on the BEUSLO records is as follows:

SIDE=1 means that load is given on the element surface where ζ = -1,

SIDE=2 that ζ = 0 is loaded, and SIDE=3 that ζ = 1 is loaded.

Data types for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELINT
GELTH *
GELSTRP

MISOSEL * or MISOPL * or MORSSEL *

BEUSLO BELLO2 BEISTE

MTRSEL

BGRAV BNACCLO

*) Mandatory

SESAM

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 5-119

HCQS(61)

The following restrictions are put on the data types.

BELLO2 The SIDE-definition is not used.

 Page
 Date
 Program Version

 5-120
 01-NOV-1996
 6

ELTYP=70: General Matrix Element (MATR)

MATR(70)

This element is a way of transferring stiffness / damping / mass matrices and / or load / displacement / velocity / acceleration vectors between different models or analysis programs.

- variable number of nodes maximum 999 nodes
- · possible with different number of degrees of freedom in each node
- real or complex matrices and vectors
- possible with e.g. frequency dependent matrices
- stiffness matrix
- · damping matrix
- mass matrix
- nodal load vectors
- no element loads
- nodal displ. / velocity / acceleration vectors

Figure 5-61 Example of 4 noded stiffness and load matrix / vector, with 6, 6, 3 and 6 degrees of freedom in the nodes respectively and 2 loadcases.

Program Version	Date	Page
6	01-NOV-1996	5-121

MATR(70)

Data types for this element:

Figure 5-62 Normal data reference for a matrix element with 4 nodes and 2 loadcases. The element is having stiffness, mass, damping, load and resulting displacement matrices / vectors. At least some of the vectors / matrices are also frequency dependent.

AMATRIX	1	AMDSTIFF	2
AMDDAMP	2	AMDMASS	2
AMDLOAD	2	AMDDISP	3
AMDFREQ		AMDVELO	3
AMDACCL	3	GCOORD	1
GELMNT1	1	GELMNT2	
GELREF1	1	GNODE	1

Mandatory

² At least one of these records must be present.

³ Nodal results may alternatively be defined through records described in 'SIF, Results Interf. File, File Descr.'. See also figure 5-63.

Page	Date	Program Version
5-122	01-NOV-1996	6

MATR(70)

Below is a figure showing the datatypes for nodal displacement, velocity or acceleration results associated with a matrix element, when using the records described in the 'SIF, Results Interf. File, File Descr.' In the example the results are displacements.

Figure 5-63 Normal data reference for results defined on records described in the 'SIF, Results Interf. File, File Descr.' for a matrix element with 4 nodes and 2 loadcases.

AMATRIX 1	RDRESREF 1
GCOORD 1	$RVNODACC^2$
GNODE 1	RVNODDIS ²
RDNODRES 1	RVNODVEL ²

Mandatory

² At least one of these records must be present.

 Program Version
 Date
 Page

 6
 01-NOV-1996
 5-123

ELTYP=100,...163: General Hexahedron (GHEX), /2/

GHEX

- 21 to 27 nodes
- (21 to 27) x 3 degrees of freedom
- curved element sides
- isotropic or anisotropic material data
- deformations considered: translational strain
- element loads:
 - initial strain (temperature load)
 - surface forces
 - line loads
 - gravitational load
 - general inertia load

Figure 5-64 General hexahedron with local nodenumbering and corresponding surface numbering

The element may be without some of the nodes. Which nodes are not present is reflected in the element number:

The basic element with node 1 to 20 and node 27 present.

Nodes 1 to 20, node 21 and node 27 are present. Nodes 1 to 20, node 22 and node 27 are present.

Nodes 1 to 20, node 21, node 22 and node 27 are present.

ETC.

 Page
 Date
 Program Version

 5-124
 01-NOV-1996
 6

GHEX

If node 21 is present, 1 is added to the basic element type number.

If node 22 is present, 2 is added to the basic element type number.

If node 23 is present, 4 is added to the basic element type number.

If node 24 is present, 8 is added to the basic element type number.

If node 25 is present, 16 is added to the basic element type number.

If node 26 is present, 32 is added to the basic element type number.

If more than one of these nodes are present, the sum of the additions above is added.

element type number	Node position contains node number						
Node positions:	21	22	23	24	25	26	27
100	_	_	_	-	_	-	21
101	21	_	_	-	_	_	22
102		21	_	-	_	_	22
103	21	22	_	-	_	-	23
104	-	-	21	-	-	-	22
105	21	-	22	-	-	-	23
106	-	21	22	-	-	-	23
107	21	22	23	-	-	-	24
108	-	-	-	21	-	-	22
109	21	-	-	22	-	-	23
110	-	21	-	22	-	-	23
111	21	22	-	23	-	-	24
112	-	-	21	22	-	-	23
113	21	-	22	23	-	-	24
114	-	21	22	23	-	-	24
115	21	22	23	24	-	-	25
116	-	-	-	-	21	-	22
117	21	-	-	-	22	-	23
118	-	21	-	-	22	-	23
119	21	22	-	-	23	-	24
120	-	-	21	-	22	-	23
121	21	-	22	-	23	-	24
122	-	21	22	-	23	-	24
123	21	22	23	-	24	-	25
124	-	-	-	21	22	-	23
125	21	-	-	22	23	-	24
126	-	21	-	22	23	-	24
127	21	22	-	23	24	-	25
128	-	-	21	22	23	-	24
129	21	-	22	23	24	-	25
130	-	21	22	23	24	-	25
131	21	22	23	24	25	-	26
132	-	-	-	-	-	21	22
133	21	-	-	-	-	22	23
134	-	21	-	-	-	22	23

C.	FS	Δ	M	
17	ロンハフ	$\overline{}$		

Program Version	Date	Page
6	01-NOV-1996	5-125

GHEX

135	21	22	_	_	_	23	24
136	-	_	21	_	-	22	23
137	21	-	22	-	-	23	24
138	-	21	22	-	-	23	24
139	21	22	23	-	-	24	25
140	-	-	-	21	-	22	23
141	21	-	-	22	-	23	24
142	-	21	-	22	-	23	24
143	21	22	-	23	-	24	25
144	-	-	21	22	-	23	24
145	21	-	22	23	-	24	25
146	-	21	22	23	-	24	25
147	21	22	23	24	-	25	26
148	-	-	-	-	21	22	23
149	21	-	-	-	22	23	24
150	-	21	-	-	22	23	24
151	21	22	-	-	23	24	25
152	-	-	21	-	22	23	24
153	21	-	22	-	23	24	25
154	-	21	22	-	23	24	25
155	21	22	23	-	24	25	26
156	-	-	-	21	22	23	24
157	21	-	-	22	23	24	25
158	-	21	-	22	23	24	25
159	21	22	-	23	24	25	26
160	-	-	21	22	23	24	25
161	21	-	22	23	24	25	26
162	-	21	22	23	24	25	26
163	21	22	23	24	25	26	27

Page Date Program Version 5-126 01-NOV-1996 6

GHEX

Figure 5-65 Typical general hexahedron

When surface loads are specified for the element side, the surface numbers shown are used for identification of the side in question. The node numbers 21 to 27 signifies the node position number. The actual node number within the actual element is 20 + number of nodes up to node position which are present in the actual element. Which node number shall actually be used in the tables below may be determined by the table of nodes in node position above. If the node position in question is empty the number of nodes on the line or side is one less, and compacted when the line is missing one node.

The local node numbering for each side is defined as follows:

			No	ode nu	mber				
	1	2	3	4	5	6	7	8	(9)
Side no.									
1	7	8	1	9	13	20	19	12	(21)
2	5	11	17	16	15	10	3	4	(22)
3	1	2	3	10	15	14	13	9	(23)
4	7	12	19	18	17	11	5	6	(24)
5	7	6	5	4	3	2	1	8	(25)
6	19	20	13	14	15	16	17	18	(26)

SESAM

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	5-127

GHEX

When line load is specified, the relation between the local node numbers and the loaded line will be as follows:

	N	lode nu	mber
	1	2	3
Line no.			
1	1	2	3
2	3	4	5
3	5 7	6	7
4	7	8	1
5	1	9	13
6	3	10	15
7	5	11	17
8	7	12	19
9	13	14	15
10	15	16	17
11	17	18	19
12	19	20	13
13	8	(25)	4
14	6	(25)	2
15	9	(23)	10
16	2	(23)	14
17	10	(22)	11
18	4	(22)	16
19	11	(24)	12
20	6	(24)	18
21	12	(21)	9
22	8	(21)	20
23	20	(26)	16
24	14	(26)	18

SESAM

Page Date Program Version 5-128 01-NOV-1996 6

GHEX

Data types used for this element:

GELMNT1 *
GNODE *
GCOORD *
GELREF1 *
GELSTRP
MISOSEL * or
MISOPL * or
MORSSOL *
MTRSOL
BEUSLO
BELLO2
BEISTE

*) Mandatory

BGRAV BNACCLO

The following restrictions are put on the data types

BELLO2 The SIDE definition is not used. The load components are given nodewise in global coordinates.

BEUSLO Only one side identification can be given in SIDE.

C.	FS	Δ	M
. 7	'/L 7	$\overline{}$	

Program Version	Date	Page
6	01-NOV-1996	6-1

6 FIRST LEVEL DATA

6.1 Additional Element Data

First Level

Record Type Page

Element Type (Number)

ACFD 6-2 ADDATA 6-5

SESAM

Page Date Program Version 6-2 01-NOV-1996 6

General Crack Data

ACFD

ACFD	IGLB	ILOK	NEP	IMOD
	MKP	DX	DY	DZ
	I(1)	I(2)		I(NEP)
	NSIF	ISIF(1)	ISIF(2)	
	ISIF(NSIF)			

A crack is defined by a set of AFCD records on the Interface file. There is one AFCD-record for each crack front node.

IGLB Sequence numbering of crack front nodes.

ILOK External node number of the crack front node.

NEP Perturbation option for nodes to be perturbed.

< 0 Nodes not supplied; use all side nodes closest to the crack tip and nodes coinciding with ILOK.

- = 0 Crack tip node only is perturbed.
- >0 Number of nodes supplied. The nodes are perturbed in addition to the crack tip node.

IMOD Conversion option.

IMOD governs the conversion from crack driving force to stress intensity factor according to:

- = 1 $K = \sqrt{(E/(1-v^2))} * \sqrt{G}$
- = 2 K= $\sqrt{(E*G)}$
- $= 3 \qquad \mathbf{K} = \sqrt{(\mathbf{E}/(1+v^2))} * \sqrt{\mathbf{G}}$

where K is stress intensity factor, G is crack driving force, E is Young's modulus and υ is Poisson's ratio.

MKP Perturbation direction option:

- = 0 Perturbation direction given in (DX,DY,DZ)
- > 0 MKP=external node number of node which defines direction together with ILOK
- = -1 Automatic computation by analysis program (only relevant for double crack surface)
- = -2 Point (DX,DY,DZ) in crack surface is given.

The perturbation direction must be normal to the crack front and tangential to the crack surface.

DX, DY, DZ Coordinates (in superelement global coordinate system) as MKP specifies.

I(1:NEP) If NEP > 0: External node numbers of nodes to be perturbed together with crack front node ILOK. Nodes with the same position as ILOK may be left out of specification.

SESAM

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-3

AFCD

NSIF Number of associated nodes used in calculation of Stress Intensity Factors (SIF) in node

ILOK. NSIF = 0 is treated as NSIF = 4 (four associated nodes).

NSIF = 2, Node ILOK is a midside node NSIF = 4, Node ILOK is a corner node

NSIF = 0, Node ILOK is a corner node and the last node along crack front.

Note that two crack fronts may be present in a superelement. Separation between the two crack fronts is identified with NSIF = 0. IGLB goes from 1 to the total number of crack front nodes along the two crack fronts.

ISIF(1:NSIF) External node numbers for nodes in crack surface.

Page	Date	Program Version
6-4	01-NOV-1996	6

AFCD

Definition of local axis-system:

Figure 6-1 Definition of local axis-system.

SESAM

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-5

Additional User defined Basic Element Data

ADDATA

ADDATA	ADDNO	NPAR	PAR1	PAR2
			PAR(NPAR)	

ADDNO Additional data type number, i.e. number referring to additional data specifications.

NPAR Number of parameters specified by user.

PAR1 PAR2 Values of the different terms of the additional data. The sequence is according to the conven-

: tion of the analysis program.

PAR(NPAR)

Whenever the analysis program requires data that are particular to a basic element of the superelement type in question (and which are not defined elsewhere) this record type may be employed to assign the data.

The data assigned above are data intended for one or several basic elements of a referenced superelement type. In the record labeled GELREF1 of that particular superelement type an ADDNO must be included which corresponds with the ADDNO of the above record.

The definition of the various parameters are depending on the analysis program to be used and must be revised when switching to another analysis program.

Page Date Program Version 6-6 01-NOV-1996 6

6.2 Boundary Conditions, Loads and Point Masses

First Level

BQDP

Record Type	Page
Element Type (Number)	
BEISTE	6-7
BELFIX	6-8
BELLAX	6-9
BELLO2	6-14
BELOAD1	6-16
BEDRAG1	6-19
BEMASS1	6-20
BEUSLO	6-21
BEUVLO	6-23
BEWAKIN	6-24
BEWALO1	6-25
BGRAV	6-26
BLDEP	6-27
BLDEP	6-28
BNACCLO	6-29
BNBCD	6-30
BNDISPL	6-31
BNDOF	6-33
BNINCO	6-34
BNLOAD	6-35
BNLOAX	6-36
BNMASS	6-38
BNTEMP	6-39
BNTRCOS	6-41
BNWALO	6-42
BRIGAC	6-43
BRIGDI	6-44
BRIGVE	6-45

6-46

Program Version	Date	Page
6	01-NOV-1996	6-7

Elements with Initial Strain Due to Thermal Expansion

BEISTE

BEISTE	LLC	LOTYP		TOP
	ELNO	NNOD	INTNO	$\mathtt{T1}_1$
	$\mathtt{T2}_1$		T(NNOD) $_1$	$\mathtt{T1}_2$
	T2 ₂		T(NNOD) $_2$	

LLC Local load case number (positive integer number).

LOTYP Load type.

= 1 For all element types including shell elements with constant temperature across element thickness

= 2 For shell elements with temperature difference across element thickness

TOP Option to temperature difference specification.

= 1 Only one temperature difference is specified. It will be the same for all nodes.

= 2 Temperature differences will be specified in all nodes.

ELNO Internal element number (generated by the program).

NNOD Number of nodes in element.

INTNO Integration station reference number. Referring to record GELINT. This reference is usually

not used (=0). It means that the program performing the load calculation chooses integration

points.

T1₁ Temperature difference at node 1, referred to element surface where z=-1.

T2₁ Temperature difference at node 2, referred to element surface where z=-1 etc.

T1₂ Temperature difference at node 1, referred to element surface where z=1 etc.

Reference to element side is used for shell elements with temperature difference across thickness. For all other situations only one temperature difference has to be specified in each node. By "temperature difference at node 1" is meant the difference between the present temperature and a reference temperature where no initial strain is acting at the node.

 Page
 Date
 Program Version

 6-8
 01-NOV-1996
 6

Flexible Joint/Hinge

BELFIX

BELFIX	FIXNO	OPT	TRANO	void
	_	-		
	A(1)	A(2)	A(3)	A(4)
	A(5)	A(6)		

FIXNO Fixation number to a node.

FIXNO is referenced to from GELREF.

OPT

- = 1 $A(i) = a_i$ is a value between 0 and 1, and gives the degree of fixation (connectivity) to degree of freedom number i in the node. The extreme values of a is described by:
 - a = 0, fully released
 - a = 1, fully connected
- = 2 $A(i) = C_i$ is the interelement elastic spring stiffness to degree of freedom number i in the node. The degrees of freedom which are neither flexible nor free will be given $C_i = -1$ (instead of $C_i = \infty$). The relation between C_i and a_i is

$$a_i = C_i / (k_{ii} + C_i) \ge 0.0$$

where \mathbf{k}_{ii} is the diagonal term of the element stiffness matrix corresponding to degree of freedom number i of the current node.

TRANO

- = -1 The fixation/flexibility (=A(i)) is given in the superelement coordinate system.
- = 0 A(i) is given in the local element coordinate system
- > 0 A(i) is given in a local coordinate system defined by TRANO, which refers to a transformation matrix given on record BNTRCOS. The transformation matrix is defined

by

transformation from global to local system.

A(i) See above (under the explanation of OPT).

Program Version Date Page 6 01-NOV-1996 6-9

Surface Load on Axisymmetric Solids

BELLAX

BELLAX	LLC	LOTYP	COMPLX			
	ELNO	NDOF	INTNO	LINE		
	LD	IZERO	NFF	NFL		
	NFS	NF	FC(1,1)	FC(1,2)		
		FC(1,NDOF)	FC(2,1)	FC(2,2)		
		FC(2,NDOF)		FC(NF,1)		
		FC(NF, NDOF)				

LLC Local load case number (positive integer number).

LOTYP Load type. Usually not of interest to linear programs.

= 0 not decided whether conservative or non-conservative load

= 1 conservative load=-1 non-conservative load

COMPLX Phase shift definition.

= 0 no phase shift= 1 phase shiftCurrently not used.

ELNO Internal element number (generated by the program).

NDOF Total number of degrees of freedom along the given load line = 3 * the number of nodes.

INTNO Integration stations reference number. Referring to datatype GELINT.

Currently not used.

LINE Line specification.

See element description in Chapter 6.

LD = 1 if loading is symmetric with respect to the q=0 axis.

= 2 if loading is antisymmetric with respect to the q=0 axis.

= 3 if loading is not symmetric with respect to the q=0 axis.

q is the angle coordinate of the cylindrical coordinate system (r, z, q).

SESAM

Page Date Program Version 6-10 01-NOV-1996 6

BELLAX

IZERO =0if the zero harmonic is NOT included in the Fourier expansion. if the zero harmonic is included in the Fourier expansion. = 1**NFF** The first nonzero harmonic in the Fourier expansion of the load. **NFL** The last nonzero harmonic in the Fourier expansion of the load. **NFS** The harmonic increment in the Fourier expansion of the load. NF The total number of coefficients of the Fourier expansion. Axisymmetric load: NF=1 Non-axisymmetric load: If LD = 1 or 2: NF = (NFL - NFF) / NFS + 1 + IZEROIf LD = 3: NF = 2 * ((NFL - NFF) / NFS + 1) + IZEROFC(1, 1)The Fourier coefficient for the radial (R) degree of freedom of the first node for the first harmonic. FC(1, 2)The Fourier coefficient for the tangential (q) degree of freedom of the first node for the first harmonic. The Fourier coefficient for the axial (Z) degree of freedom of the first node for the first har-FC(1, 3)monic. FC(1, 4)The Fourier coefficient for the radial (R) degree of freedom of the second node for the first harmonic. FC(1, NDOF) The Fourier coefficient for the axial (Z) degree of freedom of the last node for the first harmonic. FC(2,1)FC(2,2)The Fourier coefficients for the degrees of freedom of the load line for the second harmonic. FC(2,NDOF) : FC(NF,1) FC(NF,2) The Fourier coefficients for the degrees of freedom of the load line for the last harmonic. FC(NF,NDOF)

Program Version	Date	Page
6	01-NOV-1996	6-11

BELLAX

E.g. SYMMETRIC LOAD

Consider a load line with 3 nodes each with RADIAL (R), TANGENTIAL (q) and AXIAL (Z) degrees of freedom. The loads are described using the zero, first, second and third harmonics.

```
      NDOF
      = 9

      LD
      = 1

      IZERO
      = 1

      NFF
      = 1

      NFL
      = 3

      NFS
      = 1

      NF
      = 4
```

FC(1,1).. FC(1,9): Fourier coefficients for the zero harmonic FC(2,1).. FC(2,9): Fourier coefficients for the first harmonic FC(3,1).. FC(3,9): Fourier coefficients for the second harmonic FC(4,1).. FC(4,9): Fourier coefficients for the third harmonic

The loads for the three d.o.f.s of the first node on the load line are thus given by

```
\begin{array}{ll} P_{RADIAL} & = FC(1,1) + FC(2,1) cosq + FC(3,1) cos2q + FC(4,1) cos3q \\ P_{TANGENTIAL} & = FC(1,2) + FC(2,2) sinq + FC(3,2) sin2q + FC(4,2) sin3q \\ P_{AXIAL} & = FC(1,3) + FC(2,3) cosq + FC(3,3) cos2q + FC(4,3) cos3q \end{array}
```

Similarly the loads for the second and third node on the load line are described using the values 4, 5, 6 and 7, 8, 9 respectively for the last index of FC.

SYMMETRIC loads (LD=1) of the RADIAL and AXIAL d.o.f.s are described using coefficients of COSINE, while the TANGENTIAL d.o.f.s are described using coefficients of SINE.

E.g. ANTISYMMETRIC LOAD

Consider a load line with 2 nodes, each with 3 degrees of freedom.

The first node has load in RADIAL(R)- and AXIAL(Z)-direction. The second node has load in RADIAL(R)- and TANGENTIAL(q)-direction. The loads are described using the second, fifth and eighth harmonics.

NDOF	= 6
LD	= 2
IZERO	=0
NFF	= 2
NFL	= 8
NFS	= 3
NF	= 3

Page Date Program Version 6-12 01-NOV-1996 6

BELLAX

```
FC(1,1) ... FC(1,6): second harmonics FC(2,1) ... FC(2,6): fifth harmonics FC(3,1) ... FC(3,6): eighth harmonics
```

The loads for the first node on the load line are thus given by:

```
\begin{array}{ll} P_{RADIAL} & = FC(1, 1) \sin 2q + FC(2, 1) \sin 5q + FC(3, 1) \sin 8q \\ P_{AXIAL} & = FC(1, 3) \sin 2q + FC(2, 3) \sin 5q + FC(3, 3) \sin 8q \end{array}
```

```
FC(1, 2) = FC(2, 2) = FC(3, 2) = 0.0 (no tangential load)
```

The loads for the second node on the load line is thus given by:

```
\begin{array}{ll} P_{RADIAL} & = FC(1,4) \sin 2q + FC(2,4) \sin 5q + FC(3,4) \sin 8q \\ P_{TANGENTIAL} & = FC(1,5) \cos 2q + FC(2,5) \cos 5q + FC(3,5) \cos 8q \end{array}
```

$$FC(1, 6) = FC(2, 6) = FC(3, 6) = 0.0$$
 (no axial load)

Totally NDOF x NF = $6 \times 3 = 18$ coefficients will be written.

ANTISYMMETRIC loads of the RADIAL and AXIAL d.o.f.s are described using coefficients of SINE, while the TANGENTIAL d.o.f.s are described using coefficients of COSINE.

E.g. NONSYMMETRIC LOAD

Not implemented in SESTRA.

Consider 3 nodes on a load line each with RADIAL(R), AXIAL(Z) and TANGENTIAL(q) degrees of freedom. The loads are described using the zero, first and second harmonics

 NDOF
 = 9

 LD
 = 3

 IZERO
 = 1

 NFF
 = 1

 NFL
 = 2

 NFS
 = 1

 NF
 = 3

FC(1,1).. FC(1,9): Fourier coefficients for the zero harmonic

FC(2,1) . . FC(2,9) : Fourier coefficients for the first COSINE harmonic

 $FC(3,\!1)$. . $FC(3,\!9)$: Fourier coefficients for the first SINE harmonic

FC(4,1) . . FC(4,9) : Fourier coefficients for the second COSINE harmonic

FC(5,1).. FC(5,9): Fourier coefficients for the second SINE harmonic

SESAM

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-13

BELLAX

The loads for the 3 d.o.f. of the first node on the load line is thus given by.

```
\begin{array}{ll} P_{RADIAL} & = FC(1,1) + FC(2,1) cosq + FC(3,1) sinq + FC(4,1) cos2q + FC(5,1) sin2q \\ P_{TANGENTIAL} & = FC(1,2) + FC(2,2) cosq + FC(3,2) sinq + FC(4,2) cos2q + FC(5,2) sin2q \\ P_{AXIAL} & = FC(1,3) + FC(2,3) cosq + FC(3,3) sinq + FC(4,3) cos2q + FC(5,3) sin2q \end{array}
```

Similarly the load for the second and third node on the load line is described using the values 4, 5, 6 and 7, 8, 9 respectively for the last index of FC.

SESAM

Page Date Program Version 6-14 01-NOV-1996 6

Elements with Line Loads, Solid, 3-D Shell, 2-D Shell-, Membrane and Curved Beam Elements

BELLO2

BELLO2	LLC	LOTYP	COMPLX	LAYER
	ELNO	NDOF	INTNO	LINE
	SIDE	RLOAD1	RLOAD2	
		RLOAD(NDOF)	ILOAD1	ILOAD2
			ILOAD(NDOF)	

LLC Local load case number (positive integer number).

LOTYP

Load type - decision of load being force or moment and if it is conservative or non-conservative. Conservative or non-conservative is usually not of interest to linear programs.

- = 0 not decided whether conservative or non-conservative force per length
- = 1 conservative force per length
- =-1 non-conservative force per length
- = 3 conservative moment per length
- =-3 non-conservative moment per length

COMPLX Phase shift definition.

- = 0 no phase shift
- = 1 phase shift

LAYER

Layer number for elements with more than one layer. If LAYER equals 0, the line load will be positioned in the shell layer (in opposition to a stiffener layer). If more than one shell layer and LAYER equals 0, the programs shall stop and give an error message. For elements which are treated as one layer in the load calculations (e.g. the sandwich element in SESTRA), LAYER does not have any meaning.

ELNO Internal element number (generated by the program).

NDOF Number of translational degrees of freedom along the given load line for line force. For line

moment the variable is specifying number of rotational degrees of freedom along the given

load line.

INTNO Integration stations reference number. Referring to datatype GELINT.

LINE Line specification.

See element description in Chapter 5.

SESAM

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 6-15

BELLO2

SIDE Element side definition

See element description in Chapter 5.

RLOAD1 Real part of the load with respect to the first degree of freedom.

.

RLOAD(NDOF) Real part of the load with respect to the last degree of freedom.

ILOAD1 Imaginary part of the load with respect to the first degree of freedom.

:

ILOAD(NDOF) Imaginary part of the load with respect to the last degree of freedom.

If phase shift is not specified, i.e. COMPLX = 0, the fields or positions ILOAD1, ILOAD2, etc. are left out.

For quadrilateral membrane elements line loads can only be specified along element sides.

It will make no sense to specify line moment for membrane and solid type of elements.

SESAM

Page Date Program Version 6-16 01-NOV-1996 6

Beams with Line Loads

BELOAD1

BELOAD1	LLC	LOTYP	COMPLX	OPT
	ELNO	L1	L2	EDOF
	INTNO	RINT1	RINT2	
		RINT(EDOF)	IINT1	IINT2
				IINT(EDOF)

LLC Local load case number (positive integer number).

LOTYP

Load type - decision of load being force or moment and if it is conservative or non-conservative. Conservative or non-conservative is usually not of interest to linear programs.

- = 0 not decided whether conservative or non-conservative load
- = 1 True distributed force, conservative load
- = 2 Simulated concentrated force, conservative load
- = 3 True distributed moment, conservative load
- = 4 Simulated concentrated moment, conservative load
- =-1 True distributed force, non-conservative load
- =-2 Simulated concentrated force, non-conservative load
- =-3 True distributed moment, non-conservative load
- =-4 Simulated concentrated moment, non-conservative load

COMPLX Phase shift definition.

- = 0 no phase shift
- = 1 phase shift

OPT Option for reference of L1 and L2 (see below).

- = 0 L1 and L2 are distances measured from the ends of the flexible part of the beam
- = 1 L1 and L2 are distances measured along the beam axis from the projection of the end nodes on the beam axis

ELNO Internal element number (generated by the program).

L1 Distance along the beam from end node 1 to position on beam where the line load starts acting. The distance is in the interval [0, length-of-beam].

L2 Distance along the beam from end node 2 to position on beam where the line load ends acting.

EDOF Product of last degree of freedom with specified load and the number of nodes of the beam in question (= 3*NNOD for 3-dimensional beams)

Program Version Date Page 6 01-NOV-1996 6-17

BELOAD1

INTNO Integration station reference number. Referring to record GELINT.

RINT1 The real part of the intensity with respect to the first degree of freedom of the first load point.

RINT2 The real part of the global intensity with respect to the second degree of freedom of the first

load point.

RINT(EDOF) The real part of the global intensity with respect to the last degree of freedom with load of the

last load point.

IINT1 The imaginary part of the global intensity with respect to the first degree of freedom of the

first load point.

IINT2 The imaginary part of the global intensity with respect to the second degree of freedom of the

: first load point

IINT(EDOF) The imaginary part of the global intensity with respect to the last degree of freedom with load

of the last load point.

The legal degrees of freedom are the translational components, given in the global coordinate system.

The imaginary numbers follow immediately after the real numbers, i.e. there are no blank fields between the last real part and the first imaginary part.

For the two noded beam element BEAS, the line of action of the load will be the axes through the shear center.

In order to clearify the meaning of EDOF, imagine a beam element with three nodal points. If translatory loads are applied in the global y- and z-direction, the last degree of freedom to have load specified is the third degree of freedom. EDOF will therefore in this case be $3 \times 3 = 9$. The load intensity for the x-direction will be included, but with the value zero of course.

If the line of application of the line load does not match the node positioning along the beam, the following example will hopefully explain how this problem is solved on the interface file. Node1 (see Figure 6-2) will have the intensity zero, whereas node2 will have the intensity corresponding to the correct intensity at the starting point of the line load. The real point of application (used in the integration process) of course is governed by L1.

Page	Date	Program Version
6-18	01-NOV-1996	6

BELOAD1

Figure 6-2 The sequence of the record is arbitrary. Much time will be saved in SESTRA if all loads belonging to the same element are in sequence and in ascending order.

SESAM

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-19

Hydrodynamic Drag and Damping from Wave Load Program

BEDRAG1

BEDRAG1		ELNO		NP
	XI(1)	XI(2)		XI(NP)
	DRG(1,1)	DRG(2,1)	DRG(3,1)	DRG(1,2)
		DRG(3,NP)		

ELNO Program defined (internal) element number.

NP Number of points.

XI(i) (Distance from end 1 to load point "i") / LTOT

DRG(j, i) Drag or Damping intensity for the j'th d.o.f. in member local coordinate system as defined by relevant GUNIVEC record at point "i".

The data type BEDRAG1 is generated by WAJAC. This data type may only be used for element type BEAS(15), with no user defined local coordinate system. The data type should not be used for new applications.

SESAM

Page	Date	Program Version
6-20	01-NOV-1996	6

Hydrodynamic added Mass from Wave Load Program BEMASS1 BEMASS1 ELNO NP XI(1) XI(2) . . . XI(NP) AM(1,1) AM(2,1) AM(3,1) AM(1,2)

AM(3,NP)

ELNO Program defined (internal) element number.

NP Number of points.

XI(i) (Distance from end 1 to load point "i") / LTOT

AM(j, i) Added mass intensity for the j'th d.o.f. in member local coordinate system as defined by relevant GUNIVEC record at point "i".

The data type BEMASS1 is generated by WAJAC and WADAM and may only be read by SESTRA. This data type may only be used for element type BEAS(15), with no user defined local coordinate system. The data type should not be used for new applications.

Program Version Date Page 01-NOV-1996 6-21

Elements with Surface Loads

BEUSLO

BEUSLO	LLC	LOTYP	COMPLX	LAYER
	ELNO	NDOF	INTNO	SIDE
	RLOAD ₁	\mathtt{RLOAD}_2		
	RLOAD(NDOF)	ILOAD ₁		ILOAD(NDOF)

LLC Local load case number (positive integer number).

LOTYP Load type.

- = 1normal pressure, conservative load
- =2load given in component form, conservative load
- dummy hydro pressure, used to indicate the direction of hydrostatic / hydrodynamic pressure to be computed by a hydrodynamic load program.
- =-1normal pressure, non-conservative load
- =-2load given in component form, non-conservative load

COMPLX Phase shift definition.

- = 0no phase shift
- = 1phase shift

LAYER Layer number for elements with more than one layer. If LAYER equals 0, the surface load

will be positioned in the shell layer (in opposition to a stiffener layer). If more than one shell layer and LAYER equals 0, the programs shall stop and give an error message. For elements which are treated as one layer in the load calculations (e.g. the sandwich element in

SESTRA), LAYER does not have any meaning.

ELNO Internal element number (generated by the program).

NDOF If LOTYP = 1number of nodes of the specified element side

> If LOTYP = 2number of translational degrees of freedom of the specified element side

If LOTYP = 3NDOF= 1

INTNO Integration station reference number. Referring to record GELINT. This reference is usually

not used (=0). It means that the program performing the load calculation chooses integration

points.

SIDE Side definition

For shell elements:

- = 1loads referred to element side where z=-1
- =2loads referred to element side where z=0
- =3loads referred to element side where z=1

For solid elements:

 Page
 Date
 Program Version

 6-22
 01-NOV-1996
 6

BEUSLO

SIDE will be a six figures number for a hexahedron, a five figures number for a prism and a four figures number for a tetrahedron, consisting of zeroes with 1 for the side with load. For instance 000100 for a hexahedron means load on side no. 4.

For further description, see Chapter 5.2.

RLOAD1 The real part of the load with respect to the first degree of freedom or first node of the element side if normal pressure.

RLOAD2 The real part of the load with respect to the second degree of freedom or second node of the element side.

RLOAD(NDOF) The real part of the load with respect to the last degree of freedom or last node of the element side.

ILOAD1 The imaginary part of the load with respect to the first degree of freedom or first node of the element side.

ILOAD2 The imaginary part of the load with respect to the second degree of freedom or second node of the element side.

ILOAD(NDOF) The imaginary part of the load with respect to the last degree of freedom or last node of the element side.

If LOTYP= 3, RLOAD= ± 1.0 indicating which side the element pressure comes from. (+1 indicates shell element SIDE= 1(z=-1), -1 indicates shell element SIDE= 3 (z=1)). For solids when LOTYP = 3, RLOAD must be +1.0.

If phase shift is not specified, i.e. COMPLX = 0, the fields or positions ILOAD1, ILOAD2, etc. are left out.

Normal pressure means that only one pressure component is specified for each node, and this pressure component is acting normal to the surface.

For volume elements a positive value means normal pressure directed into the element. For shell elements, a positive value means normal pressure in the local z-direction.

Program Version Date Page 6 01-NOV-1996 6-23

Elements with Volume Forces, 3-D Solid, 2-D Shell and Membrane Elements

BEUVLO

BEUVLO	LLC	LOTYP	COMPLX	
	ELNO	NDOF	INTNO	RLOAD1
		RLOAD(NDOF)	ILOAD1	
	ILOAD(NDOF)			

LLC Local load case number (positive integer number).

LOTYP Load type. Usually not of interest to linear programs.

= 0 not decided whether conservative or non-conservative load

= 1 loads given as nodal accelerations, conservative load

= 2 loads given as nodal force intensities, conservative load
 =-1 loads given as nodal accelerations, non-conservative load

=-2 loads given as nodal force intensities, non-conservative load

COMPLX Phase shift definition.

= 0 no phase shift

= 1 phase shift

ELNO Internal element number (generated by the program).

NDOF Number of translational degrees of freedom.

INTNO Integration station reference number. Referring to record GELINT.

RLOAD1 The real part of the load with respect to the first degree of freedom.

RLOAD(NDOF)

The imaginary part of the load with respect to the last degree of freedom.

If phase shift is not specified, i.e. COMPLX = 0, the fields or positions ILOAD1, ILOAD2, etc. are left out.

Note: This data type is *not* available in SESAM.

SESAM

Page	Date	Program Version
6-24	01-NOV-1996	6

Wave Kinematics

BEWAKIN

BEWAKIN	LLC	ELNO	COMPLX	NP
	LTOT	L(1)	L(2)	
	L(NP)	η(1)	VX(1)	VY(1)
	VZ(1)	AX(1)	AY(1)	AZ(1)
	η(2)	VX(2)	VY(2)	
	AY(NP)	AZ(NP)		

LLC Local load case number (positive integer number).

ELNO Internal element number (generated by the program).

COMPLX Complex data flag (= 1 if complex data, = 0 if real data).

NP Number of points.

LTOT Total element length.

L(i) Distance from end 1 to point "i".

 $\eta(i)$ Sea surface position above point "i".

VX(i) Wave particle velocity in X-direction VY(i) Wave particle velocity in Y-direction VZ(i) Wave particle velocity in Z-direction

AX(i) Wave particle acceleration in X-direction AY(i) Wave particle acceleration in Y-direction AZ(i) Wave particle acceleration in Z-direction

Elevation, particle velocity and particle acceleration are given in the coordinate system of the superelement in question.

The datatype BEWAKIN may optionally be generated by WAJAC, and should not be used for new applications.

Program Version	Date	Page
6	01-NOV-1996	6-25

Element Loads from Wave Load Program

BEWALO1

BEWAL01	LLC	ELNO	COMPLX	NP
	LTOT	L(1)	L(2)	
	L(NP)	FR(1, 1)	FR(2, 1)	FR(3, 1)
	FR(1, 2)		FR(3, NP)	FI(1, 1)
	FI(2, 1)		FI(3, NP)	

LLC Local load case number (positive integer number).

ELNO Internal element number (generated by the program).

COMPLX Complex loads flag (=1 if complex loads, =0 if real loads).

NP Number of load points.

LTOT Total element length.

L(i) Distance from end 1 to load point "i".

FR(j, i) Real component of force for the j'th d.o.f. at load point "i". Here j \hat{I} [1,3] for the and Y or Z

direction respectively.

FI(j, i) Imaginary component of force for the j'th d.o.f. at load point "i". Here j Î [1,3] for the and Y

or Z direction respect

Forces are given in the coordinate system of the superelement in question.

When unformatted the records are packed in the following manner:

The first record contains 6 words (as for all other record types).

The next record contains the rest of the information, and the variable record length must be computed as:

NW = 1 + (4 + COMPLX*3)*NP or $NW = 1 + 4*NP \qquad \text{if real loads}$ and $NW = 1 + 7*NP \qquad \text{if complex loads}$

The data type BEWALO1 is only generated by WAJAC and may only be read by SESTRA. The data type should not be used for new applications.

SESAM

Page	Date	Program Version
6-26	01-NOV-1996	6

Gravitational Load (Constant of Gravity)

BGRAV

BGRAV	LLC			OPT
	GX	GY	GZ	

LLC Local load case number (positive integer number).

OPT Option for weight contribution of stiff ends for beam element.

= 0 only flexible part of the beam contributes to the gravitational load

= 1 stiff ends also contribute to the gravitational load.

GX Component of constant of gravity in the global x-direction.

GY Component of constant of gravity in the global y-direction.

GZ Component of constant of gravity in the global z-direction.

Only the constant of gravity is stored on the Interface File. The actual gravitational load is computed in the analysis program where the element routines are available.

Program Version	Date	Page
6	01-NOV-1996	6-27

Nodes with Linear Dependence

BLDEP

BLDEP	NODENO	CNOD	NDDOF	NDEP
	DEPDOF ₁	$\mathtt{INDEPDOF}_1$	b _{DEP1,INDEP1}	
	DEPDOF ₂	INDEPDOF ₂	b _{DEP2,INDEP2}	
	DEPDOF _{NDEP}	$\mathtt{INDEPDOF}_{\mathtt{NDEP}}$	$b_{DEPn,INDEPn}$	

NODENO Internal node number of the dependent node.

CNOD Internal node number of an independent node.

NDDOF Number of dependent degrees of freedom of node NODENO. When not specified, NDDOF

is equal to NDEP.

NDEP Number of triplets with DEPDOF, INDEPDOF and b_i;

DEPDOF¹ Dependent node's degree of freedom.

INDEPDOF¹ Independent node's degree of freedom.

b_{i,j} The contribution of the j'th degree of freedom of the independent node to the i'th degree of

freedom of the dependent node.

Each line specifies one dependent degree of freedom which is dependent on the independent node's specified degree of freedom with the factor $b_{i,j}$. The degrees of freedom must also be specified on BNBCD-records as linear dependent (3) for the dependent node, and as retained (4) for the independent node.

A node may be dependent on many nodes. For each combination of NODENO and CNOD a new record, starting with the identifier BLDEP, is given.

The same combination of NODENO and CNOD may occur only once.

When node transformations have been specified for any of the nodes implied in the linear dependence, the degrees of freedom refers to the transformed local coordinate system.

1DEPDOF and one degree of f dom is the z-tra

SESAM

Page Date Program Version 6-28 01-NOV-1996 6

BLDEP

Multipoint constraints (2nd and higher order dependence) may be specified through more BLDEP records with the same linear dependent node and different independent nodes. The factors $b_{i,j}$ may be found as Lagrange multiplicators or coefficients (Lagrange interpolation polynomial). For 2nd order dependence this may as well be specified on one BQDP record.

Program Version	Date	Page
6	01-NOV-1996	6-29

Nodes with Acceleration Load

BNACCLO

BNACCLO	LLC	LOTYP	COMPLX	
	NODENO	NDOF	RLOAD1	RLOAD2
			RLOAD(NDOF)	ILOAD1
	ILOAD2			
		ILOAD(NDOF)		

LLC Local load case number (positive integer number).

LOTYP Load type. Not used.

COMPLX Phase shift definition.

= 0 no phase shift= 1 phase shift

NODENO Program defined node number.

NDOF Number of degrees of freedom at the node NODENO.

RLOAD1 The real part of the acceleration with respect to the first degree of freedom.

RLOAD2 The real part of the acceleration with respect to the second degree of freedom.

RLOAD(NDOF) The real part of the acceleration with respect to the last degree of freedom.

ILOAD1 The imaginary part of the acceleration with respect to the first degree of freedom (Only if

COMPLX = 1).

ILOAD2 The imaginary part of the acceleration with respect to the second degree of freedom.

ILOAD(NDOF) The imaginary part of the acceleration with respect to the last degree of freedom.

The imaginary numbers follow immediately after the real numbers, i.e. there are no blank fields between the last real part and the first imaginary part.

If phase shift is not specified, i.e. COMPLEX = 0, the fields or positions ILOAD1, ILOAD2, etc. are left out.

Note that acceleration value (not inertia load) is given.

Page Date Program Version 6-30 01-NOV-1996 6

Nodes with Boundary Conditions

BNBCD

BNBCD	NODENO	NDOF	FIX1	FIX2
			FIX(NDOF)	

NODENO Internal node number of nodes with specified boundary condition.

NDOF Number of degrees of freedom.

FIX1 FIX2

: Specification of boundary condition codes of relevant degrees of freedom.

:

FIX(NDOF)

The codes of FIX1, FIX2, FIX(NDOF) are explained below:

FIX1 = 0 free to stay

FIX2 = 1 fixed at zero displacement, temperature, etc.

: = 2 prescribed displacement, temperature, different from zero

= 3 linearly dependent

FIX(NDOF) = 4 retained degree of freedom.

The code FIX = 2 just indicates specified condition for the relevant degree of freedom. Whether it is displacement, first time derivative of the displacement etc. is definde on the BNDISPL record. Degrees of freedom with FIX = 2 which are not defined on the BNDISPL record will be fixed (have zero displacement, velocity and acceleration).

The nodes (degrees of freedom) with FIX = 4 are called supernodes (super degrees of freedom). The supernode sequence numbering is according to the increasing order of their internal node number.

Program Version	Date	Page
6	01-NOV-1996	6-31

Nodes with Prescribed Displacements and Accelerations

BNDISPL

BNDISPL	LLC	DTYPE	COMPLX	
	NODENO	NDOF	RDISP1	RDISP2
				RDISP(NDOF)
	IDISP1	IDISP2		
		IDISP(NDOF)		

LLC Local load case number (positive integer number).

DTYPE Type of boundary condition.

= 1 specified displacement= 3 specified acceleration

COMPLX Phase shift definition.

= 0 no phase shift= 1 phase shift

NODENO Program defined node number.

NDOF Number of degrees of freedom at the node NODENO.

RDISP1 The real part of the specified boundary condition with respect to the first degree of freedom.

RDISP2 The real part of the specified boundary condition with respect to the second degree of free-

doı

RDISP(NDOF) The real part of the specified boundary condition with respect to the last degree of freedom.

IDISP1 The imagenary part of the specified boundary condition with respect to the first degree of

freedom.

IDISP2 The imaginary part of the specified boundary condition with respect to the second degree of

freedom.

IDISP(NDOF) The imaginary part of the specified boundary condition with respect to the last degree

of freedom.

RDISP and IDISP refer to the transformed coordinate system if the node NODENO is transformed, else to the global coordinate system of the superelement.

The imaginary numbers follow immediately after the real numbers, i.e. there are no blank fields between the last real part and the first imaginary part.

SESAM

Page Date Program Version 6-32 01-NOV-1996 6

BNDISPL

If phase shift is not specified, the fields or positions IDISP1, IDISP2, etc. are left out.

SESAM

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-33

Nodes with Transformation

BNTRCOS.

BNDOF

BNDOF		NODENO	TRANSNOD	TRANSNOR	
	-				
NODENO	Program	m defined node num	nber.		
		nce number to the pe BNTRCOS.	transformed coordina	te system of the disp	lacements, defined on
TRANSNOR	Referen	nce number to the tr	ransformed coordinate	system of the rotation	s, defined on data type

If no reference number is given, no transformation is relevant to the relevant type of degree of freedom, i.e. translations or rotations.

Page Date Program Version 6-34 01-NOV-1996 6

Nodes with Initial Conditions If Arbitrary Time Dependent Loading

BNINCO

BNINCO	INCONO	DTYPE		
	NODENO	NDOF	RDISP1	RDISP2
	RDISP3	RDISP4	RDISP5	RDISP6

INCONO Initial condition number.

DTYPE Type of condition.

=1 Displacement =2 Velocities

Both initial displacements and velocities may be specified, but on separate BNINCO records.

NODENO Internal node number.

NDOF Number of degrees of freedom for node.

RDISP1 RDISP2

: Values in the degrees of freedom.

RDISP(NDOF)

Program Version	Date	Page
6	01-NOV-1996	6-35

Nodes with Loads

BNLOAD

BNLOAD	LLC	LOTYP	COMPLX	
	NODENO	NDOF	RLOAD(1)	RLOAD(2)
			RLOAD(NDOF)	ILOAD(1)
	ILOAD(2)			
		ILOAD(NDOF)		

LLC Local load case number (positive integer number).

LOTYP Load type at node NODENO. Usually not of interest to linear programs.

= 0 not decided whether conservative or non-conservative load

= 1 conservative load=-1 non-conservative load

COMPLX Phase shift definition.

= 0 no phase shift= 1 phase shift

NODENO Program defined node number.

NDOF Number of degrees of freedom at the node NODENO.

RLOAD(1) The real part of the load with respect to the first degree of freedom.

RLOAD(2) The real part of the load with respect to the second degree of freedom.

:

RLOAD(NDOF) The real part of the load with respect to the last degree of freedom.

ILOAD(1) The imaginary part of the load with respect to the first degree of freedom. (Only if COM-

PLX=1).

ILOAD(2) The imaginary part of the load with respect to the second degree of freedom.

.

ILOAD(NDOF) The imaginary part of the load with respect to the last degree of freedom.

The imaginary numbers follow immediately after the real numbers, i.e. there are no blank fields between the last real part and the first imaginary part.

If phase shift is not specified, i.e. COMPLX = 0, the fields or positions ILOAD1, ILOAD2, etc. are left out.

Page Date Program Version 6-36 01-NOV-1996 6

Nodes with Loads (Line Load) for Axisymmetric Solids

BNLOAX

(Proposal)

BNLOAX	LLC	LOTYP	COMPLX	
	NODENO	NDOF		
	LD	IZERO	NFF	NFL
	NFS	NF	FC(1,1)	FC(1,2)
		FC(1,NDOF)	FC(2,1)	FC(2,2)
		FC(2,NDOF)		FC(NF,1)
		FC(NF, NDOF)		

LLC Local load case number (positive integer number).

LOTYP Load type at node NODENO. Usually not of interest to linear programs.

= 0 not decided whether conservative or non-conservative load

= 1 conservative load=-1 non-conservative load

COMPLX Phase shift definition.

= 0 no phase shift= 1 phase shiftCurrently not used.

NODENO Program defined node number.

NDOF Number of degrees of freedom at the node NODENO.

LD = 1 if loading is symmetric with respect to the q=0 axis.

= 2 if loading is antisymmetric with respect to the q=0 axis.
 = 3 if loading is not symmetric with respect to the q=0 axis.

q is the angle coordinate of the cylindrical coordinate system (r, z, q).

IZERO = 0 if the zero harmonic is NOT included in the Fourier expansion of the load.

= 1 if the zero harmonic is included in the Fourier expansion of the load.

NFF The first nonzero harmonic in the Fourier expansion.

SESAM

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 6-37

BNLOAX

NFL The last nonzero harmonic in the Fourier expansion.

NFS The harmonic increment in the Fourier expansion.

NF The total number of harmonics of the Fourier expansion.

Given by

NF = (NFL - NFF) / NFS + 1 + IZERO

FC(1,1)

FC(1,2)

: The Fourier coefficients for the degrees of freedom of the node, for the first harmonic.

FC(1,NDOF)

FC(2,1)

FC(2,2)

: The Fourier coefficients for the degrees of freedom of the node, for the second harmonic.

FC(2,NDOF)

:

FC(NF,1)

FC(NF,2)

: The Fourier coefficients for the degrees of freedom of the node, for the last harmonic.

FC(NF,NDOF)

Please see the BELLAX record for examples.

SESAM

Page Date Program Version 6-38 01-NOV-1996 6

Nodes with Point Masses

BNMASS

BNMASS	NODENO	NDOF	MASS1	MASS2
			MASS(NDOF)	

NODENO Program defined node number.

NDOF Number of degrees of freedom.

MASS1 Mass with respect to the first degree of freedom.

MASS2 Mass with respect to the second degree of freedom.

.

MASS(NDOF) Mass with respect to the last degree of freedom (NDOF).

MASS refer to the transformed coordinate system if the node NODENO is transformed, else to the global coordinate system of the superelement.

A more general method for specifying mass is the mass element GMAS(11), specified with the GELMNT1 and the MGMASS record.

Program Version Date Page 6 01-NOV-1996 6-39

Nodes with Temperatures and Derivatives for Temperatures

BNTEMP

BNTEMP	LLC	DTYPE	COMPLX	
	NODENO	NDOF	RTEMP(1)	RTEMP(2)
				RTEMP(NDOF)
	ITEMP(1)	ITEMP(2)		
		ITEMP(NDOF)		

LLC Local load case number (positive integer number).

DTYPE Type of boundary condition.

= 1 specified temperature

= 2 specified first time derivative of the temperature

= 3 specified second time derivative of the temperature

COMPLX Phase shift definition.

= 0 no phase shift

= 1 phase shift

NODENO Program defined node number.

NDOF Number of degrees of freedom at the node NODENO.

RTEMP(1) The real part of the specified boundary condition with respect to the first degree of freedom.

RTEMP(2) The real part of the specified boundary condition with respect to the second degree of free-

: dom.

RTEMP(NDOF) The real part of the specified boundary condition with respect to the last degree of

freedom.

ITEMP(1) The imaginary part of the specified boundary condition with respect to the first degree of

freedom.

ITEMP(2) The imaginary part of the specified boundary condition with respect to the second degree of

: freedom.

ITEMP(NDOF) The imaginary part of the specified boundary condition with respect to the last de-

gree of free- dom.

SESAM

Page Date Program Version 6-40 01-NOV-1996 6

BNTEMP

The imaginary numbers follow immediately after the real numbers, i.e. there are no blank fields between the last real part and the first imaginary part.

If phase shift is not specified, the fields or positions ITEMP(1), ITEMP(2), etc. are left out.

Note: This data type is *not* available in SESAM.

Program Version	Date	Page
6	01-NOV-1996	6-41

Transformation from Global to Local Coordinate System, Direction Cosines

BNTRCOS

BNTRCOS	TRANSNO	C11	C21	C31
	G1.0	~ 0.0	62.0	a1.2
	C12	C22	C32	C13
			_	
	C23	C33	0	0

TRANSNO Reference number to the transformed coordinate system.

C11

C21

C31

Terms (9 direction cosines) of the transformation matrix (rotation).

C23 For 2-D models all 9 values should be given and the program reading the record must extract

C33 the values C11, C21, C12 and C22 from this matrix.

The transformation matrix **c** describes the tranformation defined by

$\mathbf{r'} = \mathbf{c} \ \mathbf{r}$

where \mathbf{r} refers to the local coordinate system and \mathbf{r} to the global (superelement) coordinate system.

The GUNIVEC records are used for beam elements only, i.e. basic element types 2, 15 and 23. Other basic element types may refer to BNTRCOS records. No ambiguity thus exists if both a GUNIVEC and BNTRCOS record have same TRANSNO, but they should preferrably have separate numbering (TRANSNO) to avoid possible program problems.

Page Date Program Version 6-42 01-NOV-1996 6

Node Loads from Wave Load Program

BNWALO

BNWALO	LLC	NODENO	COMPLX	NDOF
	FR(1)		FR(NDOF)	FI(1)
		FI(NDOF)		

LLC Local load case number (positive integer number).

NODENO Program defined node number.

COMPLX Complex loads flag (=1 if complex loads).

NDOF Number of d.o.f.s for which loads are given.

FR(j) Real component of force for the j'th d.o.f.

FI(j) Imaginary component of force for the j'th d.o.f.

When unformatted the records are packed in the following manner:

The first record contains 6 words.

The next record contains the rest of the information:

 $\begin{aligned} NW &= (1 + COMPLX)*NDOF \\ or &NW &= NDOF & if real loads \\ and &NW &= 2*NDOF & if complex loads \end{aligned}$

All other record types on the interface file are written with 6 words on each record, where the first two words are reserved for the character string identifier. These positions are blank on the second and following images, until the beginning of a new record is reached.

The data type BNWALO is only generated by WAJAC and may only be read by SESTRA. The data type should not be used for new applications.

Program Version	Date	Page
6	01-NOV-1996	6-43

Rigid Body Acceleration

BRIGAC

	i			
BRIGAC	LLC		COMPLX	
	XCOORD	YCOORD	ZCOORD	
	\mathtt{RACCL}_1	\mathtt{RACCL}_2	RACCL ₃	\mathtt{RACCL}_4
	RACCL ₅	RACCL ₆	\mathtt{IACCL}_1	\mathtt{IACCL}_2
	IACCL ₃	\mathtt{IACCL}_4	IACCL ₅	\mathtt{IACCL}_6

This record describes an acceleration of a point in a rigid body. It is to be used for calculation of forces of inertia. The position of the point is specified by its coordinates on the record. All rotations are in radians.

LLC Local load case number (positive integer number).

COMPLX

Phase shift definition. If COMPLX is 0, only the real parts of the acceleration values will be stored. This means that number of data fields on this record (including embedded blank fields) then will be 14 instead of 20.

= 0 no phase shift

= 1 phase shift

XCOORD YCOORD Cartesian X-, Y- and Z-coordinates of the point of acceleration. The coordinates are defined relative to the superelement global coordinate system.

ZCOORD RACCL_n

The real part of the rigid body acceleration with respect to degree of freedom no. 'n'. The three first degrees of freedom are translational accelerations and the next three are angular accelerations (in radians per second squared).

 $IACCL_n$

The imaginary part of the rigid body acceleration with respect to degree of freedom no. 'n'. The imaginary parts are given only if COMPLX= 1. The three first degrees of freedom are translational accelerations and the next three are angular accelerations (in radians per second squared).

SESAM

Page	Date	Program Version
6-44	01-NOV-1996	6

Rigid Body Displacement

BRIGDI

		-		
BRIGDI	LLC		COMPLX	
	XCOORD	YCOORD	ZCOORD	
	RDISP ₁	RDISP ₂	RDISP ₃	RDISP ₄
	RDISP ₅	RDISP ₆	\mathtt{IDISP}_1	IDISP ₂
	IDISP ₃	IDISP ₄	IDISP ₅	IDISP ₆

This record describes a displacement of a point in a rigid body. The position of the point is specified by its coordinates on the record. All rotations are in radians.

LLC Local load case number (positive integer number).

COMPLX

Phase shift definition. If COMPLX is 0, only the real parts of the displacement values will be stored. This means that number of data fields on this record (including embedded blank fields) then will be 14 instead of 20.

no phase shift = 1phase shift

XCOORD

Cartesian X-, Y- and Z-coordinates of the point of displacement. The coordinates are de-

fined **YCOORD**

relative to the superelement global coordinate system.

ZCOORD

RDISP_n

The real part of the rigid body displacement with respect to degree of freedom no. 'n'. The three first degrees of freedom are translations and the next three are rotations (in radians).

 $IDISP_n$

The imaginary part of the rigid body displacement with respect to degree of freedom no. 'n'. The imaginary parts are given only if COMPLX= 1. The three first degrees of freedom are translations and the next three are rotations (in radians).

Program Version	Date	Page
6	01-NOV-1996	6-45

Rigid Body Velocity

BRIGVE

BRIGVE	LLC		COMPLX	
	XCOORD	YCOORD	ZCOORD	
	$RVELO_1$	RVELO ₂	RVELO ₃	$RVELO_4$
	RVELO ₅	RVELO ₆	\mathtt{IVELO}_1	\mathtt{IVELO}_2
	IVELO ₃	$IVELO_4$	IVELO ₅	IVELO ₆

This record describes a displacement, velocity and an acceleration of a point in a rigid body. The rotational part of the velocity yields centrifugal forces of inertia. The position of the point is specified by its coordinates on the record. All rotations are in radians.

LLC Local load case number (positive integer number).

COMPLX

Phase shift definition. If COMPLX is 0, only the real parts of the velocity values will be stored. This means that number of data fields on this record (including embedded blank fields) then will be 14 instead of 20.

= 0 no phase shift

= 1 phase shift

XCOORD YCOORD ZCOORD Cartesian X-, Y- and Z-coordinates of the point of velocity. The coordinates are defined relative to the superelement global coordinate system.

RVELO_n

The real part of the rigid body velocity with respect to degree of freedom no. 'n'. The three first degrees of freedom are translational velocities and the next three are rotational (in radians per second).

IVELO_n

The imaginary part of the rigid body velocity with respect to degree of freedom no. 'n'. The imaginary parts are given only if COMPLX= 1. The three first degrees of freedom are translational velocities and the next three are angular (in radians per second).

Page	Date	Program Version
6-46	01-NOV-1996	6

Nodes with	h Simple Quadratic	Dependence		BQDP	
BQDP	NODENO	DDOF			
	CNOD1	CDOF ₁	\mathtt{BETA}_1	CDOF ₂	
	BETA ₂			$\mathtt{CDOF}_\mathtt{DDOF}$	
	$BETA_{DDOF}$				
	CNOD2				
	CNOD3				
NODENO DDOF	Program defined node number of the dependent node. Dependent degrees of freedom of NODENO. (Must correspond with the number of degrees of freedom with the code FIX = 3 referenced in BNBCD for the very same node.)				
CNOD1	Node number of the first independent node.				
CDOF ₁	The first relevant degree of freedom of CNOD1 which is coupled to the corresponding dependent degree of freedom of NODENO.				
$BETA_1$	The corresponding contribution of the first relevant degree of freedom of CNOD1 to the quadratic dependence of the corresponding dependent degree of freedom of NODENO.				
CDOF ₂	The second relevant degree of freedom of CNOD1 which is coupled to the corresponding dependent degree of freedom of NODENO.				
BETA ₂	The corresponding contribution of the second relevant degree of freedom of CNOD1 to the				
CDOF _{DDOF}	quadratic dependence of the corresponding dependent degree of freedom of NODENO. The last relevant degree of freedom of CNOD1 which is coupled to the corresponding dependent degree of freedom of NODENO.				
$\mathrm{BETA}_{\mathrm{DDOF}}$	The corresponding contribution of the last relevant degree of freedom of CNOD1 to the quadratic dependence of the corresponding dependent degree of freedom of NODENO.				
CNOD2	As above for the second independent node.				
: CNOD3	As above for the third and last independent node.				

Note: This data type is *not* available in SESAM.

Program Version	Date	Page
6	01-NOV-1996	6-47

6.3 Nodal Data and Element Geometry Definition

First Level

GSETMEMB

GSLAYER

GSLxxxxx

GSLSTIFF

GUNIVEC

GTONP

GUSYI

GSLPLATE

First Level	
Record Type	Page
Element Type (Numl	ber)
GBARM	6-48
GBEAMG	6-49
GBOX	6-50
GCHAN	6-52
GCHANR	6-54
GCOORD	6-56
GCROINT	6-57
GDOBO	6-58
GECC	6-60
GECCEN	6-61
GELINT	6-62
GELMNT1	6-65
GELREF1	6-66
GELSTRP	6-69
GELTH	6-70
GIORH	6-71
GIORHR	6-73
GLMASS	6-75
GLSEC	6-76
GLSECR	6-78
GNODE	6-80
GPIPE	6-81
GSEPxxxx	6-82
GSEPSPEC	6-83

6-84

6-86

6-87

6-88

6-89

6-90

6-92

6-93

Page Date Program Version 6-48 01-NOV-1996 6

Cross Section Type Massive Bar

GBARM

GBARM	GEONO	HZ	BT	ВВ
	SFY	SFZ	NLOBY	NLOBZ

Figure 6-3 Massive bar

GEONO Geometry type number, i.e. reference number used for element data definition of geometry

properties (Cross sectional properties) of beams.

HZ Height of beam.

BT Width of bar at top. For massive bars which are not able to have different widths at top and

bottom this variable is used as the width of the beam.

BB Width of bar at bottom.

SFY, SFZ Factors modifying the shear areas calculated by the preprocessor program such that the modi-

fied shear areas are respectively

 $SHARY(MOD) = SHARY(PROG) \cdot SFY$ $SHARZ(MOD) = SHARZ(PROG) \cdot SFZ$

(The shear areas on GBEAMG are SHARY(MOD) and SHARZ(MOD)).

NLOBY Number of integration points in Y' direction (optional)

NLOBZ Number of integration points in Z' direction (optional)

SESAM

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-49

General Beam Element Data

GBEAMG

GBEAMG	GEONO	void	AREA	IX
	IY	IZ	IYZ	WXMIN
	WYMIN	WZMIN	SHARY	SHARZ
	SHCENY	SHCENZ	SY	SZ

The succeding data concern the cross section at a specific local node.

GEONO Geometry number, referenced to on GELREF1

AREA Cross section area

IX Torsional moment of inertia about the shear center

IY Moment of inertia about the y axis = $\int z^2 dA$

IZ Moment of inertia about the z axis= $\int y^2 dA$

IYZ Product of inertia about y and z axis= $\int yz dA$

WXMIN Minimum torsional section modulus about shear center (=IX/rmax for a PIPE element)

WYMIN Minimum sectionmodulus about y axis = IY/zmax

WZMIN Minimum sectionmodulus about z axis = IZ/ymax

SHARY Shear area in the direction of y axis. If zero, shear is not included.

SHARZ Shear area in the direction of z axis. If zero, shear is not included.

SHCENY Shear center location y component

SHCENZ Shear center location z component

SY Static area moment about y-axis = $\int z \, dA$

SZ Static area moment about z-axis = $\int y dA$

If GBEAMG is used for ELTYP 10 (Truss element) only the first record may be on the interface.

Page	Date	Program Version
6-50	01-NOV-1996	6

Cross Section Type Box Beam

GBOX

GBOX	GEONO	HZ	TY	TB
	TT	ВҮ	SFY	SFZ
	NLOBY	NLOBZ		

Figure 6-4 Box beam

GEONO Geometry type number, i.e. reference number used for element data definition of geometry

properties (Cross sectional properties) of beams.

HZ Height of beam at current location

TY Thickness of vertical walls (webs) of box section

TB Thickness of bottom flange

TT Thickness of top flange

BY Width of box beam

SFY, SFZ Factors modifying the shear areas calculated by the preprocessor program such that the modi-

fied shear areas are respectively,

$$\begin{split} SHARY(MOD) &= SHARY(PROG) \cdot SFY \\ SHARZ(MOD) &= SHARZ(PROG) \cdot SFZ \end{split}$$

(The shear areas on GBEAMG are SHARY(MOD) and SHARZ(MOD)).

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-51

GBOX

NLOBY Number of integration points in each horizontal wall (flange) of beam (optional)

NLOBZ Number of integration points in each vertical wall (web) of beam (optional)

Page Date Program Version 6-52 01-NOV-1996 6

Cross Section Type Channel Beam

GCHAN

GCHAN	GEONO	HZ	TY	BY
	TZ	SFY	SFZ	
	K	NLOBY	NLOBZ	

Figure 6-5 Channel beam

GEONO Geometry type number, i.e. reference number used for element data definition of geometry properties (cross sectional properties) of beams.

proportion (cross sectional proportion) or co

HZ Height of beam at current location.

TY Thickness of beam web.

BY Width of top and bottom flange.

TZ Thickness of top and bottom flange.

SFY,SFZ Factors modifying the shear areas calculated by the preprocessor program such that the modi-

fied shear areas are respectively,

 $SHARY(MOD) = SHARY(PROG) \cdot SFY$ $SHARY(MOD) = SHARZ(PROG) \cdot SFZ$

(The shear areas on GBEAMG are SHARY(MOD) and SHARZ(MOD)).

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 6-53

GCHAN

K Web orientation:

=0 web located in the negative local y-direction (and consequently flange in the postitive y'-direction)

=1 web located in the positive local y-direction (and consequently flange in the negative y'-direction)

NLOBY Number of integration points in each flange (optional)

NLOBZ Number of integration points in beam web (optional)

Page Date Program Version 6-54 01-NOV-1996 6

Cross Section Type Channel Beam with Inside Curvature

GCHANR

GCHANR	GEONO	HZ	TY	ВҮ
	TZ	SFY	SFZ	
	K	R	NLOBY	NLOBZ

Figure 6-6 Channel beam with inside curvature

GEONO Geometry type number, i.e. reference number used for element data definition of geometry

properties (cross sectional properties) of beams.

HZ Height of beam at current location.

TY Thickness of beam web.

BY Width of top and bottom flange.

TZ Thickness of top and bottom flange.

SFY,SFZ Factors modifying the shear areas calculated by the preprocessor program such that the modi-

fied shear areas are respectively,

 $SHARY(MOD) = SHARY(PROG) \cdot SFY$ $SHARY(MOD) = SHARZ(PROG) \cdot SFZ$

(The shear areas on GBEAMG are SHARY(MOD) and SHARZ(MOD)).

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 6-55

GCHANR

K Web orientation:

=0 web located in the negative local y-direction (and consequently flange in the postitive y'-direction)

=1 web located in the positive local y-direction (and consequently flange in the negative y'-direction)

R Radius of inside curvature.

NLOBY Number of integration points in each flange (optional)

NLOBZ Number of integration points in beam web (optional)

SESAM

Page Date Program Version 6-56 01-NOV-1996 6

Nodal Coordinates

GCOORD

GCOORD	NODENO	XCOORD	YCOORD	ZCOORD
--------	--------	--------	--------	--------

NODENO Program defined (internal) node number

XCOORD

YCOORD Cartesian X-, Y- and Z-coordinates of node NODENO.

ZCOORD

There will be one record with the identifier GCOORD for each node. The sequence of the records must correspond to the internal node numbering.

Program Version	Date	Page
6	01-NOV-1996	6-57

Specification of Integration Points

GCROINT

GCROINT	CROINO	INTYPE	N1	N2
	N3	Y(1)	Z(1)	W(1)
			Y(N3)	Z(N3)
	W(N3)			

For definition of an integration point, see record GELINT (specification of integration stations). This record should only be given for 1- and 2-dimensional elements.

CROINO Integration point number, referenced to on record GELINT

INTYPE

Integration type number, i.e. information on how to distribute the integration points.

- = 0: The coordinates and weights of the points are given, see below. The parameters N1, N2 and N3 have the following interpretation:
 - N1 =0: The succeeding coordinates are specified in curvelinear form (natural coordinates)
 - =1: The succeeding coordinates are specified in absolute form.
 - N2 Not employed, i.e. vacant position
 - N3 Number of integration points
- > 0: The number of integration points is given and they should be distributed according to the Gaussian integration scheme if INTYPE=1, and the Lobatto integration scheme if INTYPE =2. The parameters N1, N2 and N3 have the following interpretation for a 2-dimensional element:
 - N1 Number of points to be distributed across the thickness.
 - N2 and N3 Not employed, i.e. vacant positions.
- N1, N2 and N3 will have the following interpretation for a 1-dimensional (beam or bar)
- N1 Specification of number of points in two directions of the cross section. For a tube:

 N2 circumferential and radial direction respectively. For other cross sections along lo-

cal element y-axis and z-axis respectively.

- N3 Number of integration points. Note that N3 not necessarily will be the product of N1 and N2 (e.g. for an I-section).
- N1 N2 See explanation of INTYPE above. N3
- Y(i) Coordinates of integration point No. i. Note that Y(i) will not be used, i.e. a vacant position, Z(i) for 2-dimensional elements. Both Y(i) and Z(i) are omitted if INTYPE > 0.
- W(i) Weight of integration point No. i. Omitted if INTYPE > 0.

Page	Date	Program Version
6-58	01-NOV-1996	6

Section Type Double Bottom

GDOBO

GDOBO	GEONO	HZ	TY	ВҮ
	TT	TB	SFY	SFZ
	NLOBY	NLOBZ		

Figure 6-7 Double bottom

GEONO Geometry type number, i.e. reference number used for element data definition of geometry

properties (Cross sectional properties) of beams.

HZ Height of beam.

TY Thickness of beam web.

BY Effective width of plates.

TT Thickness of top plate.

TB Thickness of bottom plate.

SFY Factors modifying the shear areas calculated by the preprocessor program such that the modi-

fied shear areas is

 $SHARY(MOD) = SHARY(PROG) \cdot SFY$

(The shear area on GBEAMG is the modified value SHARZ(MOD)).

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-59

GDOBO

SFZ Factors modifying the shear areas calculated by the preprocessor program such that the modi-

fied shear areas is

 $SHARZ(MOD) = SHARZ(PROG) \cdot SFZ$

(The shear area on GBEAMG is the modified value SHARZ(MOD)).

NLOBY Number of integration points in each flange (optional)

NLOBZ Number of integration points in beam web (optional)

SESAM

Page	Date	Program Version
6-60	01-NOV-1996	6

Local Eccentricities

GECC

GECC		ECCNO	IOPT	EX / EZ	(EY)
		(EZ)			
ECCNO		entricity number. Th		nber may not be on	both a GECC- and a
IOPT	Opt = 1: = 2:	•	entricity components sp onent of eccentricity sp component of eccentric	pecified. X and Y com	nponents are 0.0
EX EY EZ		entricity in element loo the 'element node' (for			from the system node

INPUT INTERFACE FILE

 $\mathbf{E}\mathbf{Y}$

Program Version	Date	Page
6	01-NOV-1996	6-61

Eccentricities

GECCEN

EZ

GECCEN

EZ

ECCNO	Eccentricity number, referenced to on record GELREF1.
EX EY	Eccentricity vector given in superelement coordinate system, the vector points from the global node towards the local element node.

EX

ECCNO

Page Date Program Version 6-62 01-NOV-1996 6

Specification of Integration Stations

GELINT

GELINT	INTNO	INTYPE	N1	N2
	N3	CROINO(1)		CROINO(N2)
	77/1 1)		37/1 372)	
	X(1, 1)		X(1,N3)	
		X(N2, 1)		X(N2, N3)

An integration station is defined as:

- an assembly of integration points over a cross section of a 1-dimensional (beam or a bar) element,
- an assembly of integration points on a line through the thickness of a two-dimensional element,
- one single integration point for a three-dimensional element.

An integration station comprises the properties of the integration points connected to it, and is used to calculate the element matrices (See Figure 6-8).

INTNO

Integration station reference number, referenced to on record GELREF1, and records for load description

INTYPE

Integration type number, i.e. information on how to distribute the integration stations.

- = 0: The coordinates of the stations are given, see parameter x below. The parameters N1, N2 and N3 have the following interpretation:
 - N1 = 0: the coordinates are specified in curvelinear form.
 - = 1: the coordinates are specified in absolute form.
 - N2 Number of integration stations
 - N3 Number of coordinate components needed for the definition of an integration station.
- >0: The number of integration stations is given and they should be distributed according to the Gaussian integration scheme if INTYPE=1, and the Lobatto integration scheme if INTYPE=2. The parameters N1, N2 and N3 have the following interpretation:
 - N1 number of stations to be distributed along the 1st local element axis
 - N2 number of stations to be distributed along the 2nd local element axis (only 2- and 3-dimensional elements).
 - N3 number of stations to be distributed along the 3rd local element axis (only 3-dimensional elements).

N1, N2, N3

Number of integration points in each direction. See also explanation of INTYPE above. For the 3-dimensional 20 noded hexahedron elements the values may be 2, 3, 4, 32 or 42. A two digit number means that different number of integration points are used for normal strain stiffness terms, and shear stiffness terms to avoid 'shear locking'.

Program Version	Date	Page
6	01-NOV-1996	6-63

GELINT

1-dimensional element

assembly of integration points over a cross section perpendicular to the reference axis = integration station

2-dimensional element

3-dimensional element

Figure 6-8 Illustration of an integration point and an integration station.

CROINO(1) If INTYPE=0: Integration point number, i.e. number referring to specification of integration points in integration station No. 1.

If INTYPE>0: As above, only for all integration stations.

CROINO(2),...,CROINO(N2) are omitted.

CROINO(N2) Integration point number, i.e. number referring to specification of integration points in integration station No. N2 (the last).

Omitted if INTYPE > 0.

SESAM

Page Date Program Version 6-64 01-NOV-1996 6

GELINT

 $\label{eq:condinate} X(i,j) \qquad \qquad \text{Coordinate component No. J for integration station No. i.} \\ \text{Omitted if INTYPE} > 0.$

Note that for 3-dimensional elements CROINO will have no meaning and should be left vacant.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-65

Element Data Definition

GELMNT1

GELMNT1	ELNOX	ELNO	ELTYP	ELTYAD
	NODIN1	NODIN2		
		NODIN(N)		

ELNOX External element number (specified or controlled by user).

ELNO Internal element number (generated by program)

ELTYP Element type number. Refer to chapter 5 for description of legal type no. For element type

no. 70 ('matrix element') all relevant element data are stored as stiffness, mass, damping ma-

trices a.s.o. See the AMATRIX record for more information.

ELTYAD Additional information related to element type:

For membrane elements used to specify plane stress / plane strain conditions

= 0 Plane stress

= 1 Plane strain

For two noded beam elements used to specify structural / non-structural elements:

= 0 Structural beam

= 1 Non structural beam

For general matrix element (elem. type 70) used to specify number of nodes

= NNOD Number of nodes on the matrix element

NODIN1 NODIN2

: Internal node numbers in the assembly, to which this element is connected. The sequence of the node numbers is in accordance with the local node numbering of the basic element.

. NODIN(N)

By 'internal node numbers' is meant the node numbering of the entire superelement of which the element EL-NOX is a part. The internal node number refers to the node number generated by the program.

The program-defined element number ranges from 1 up to number of elements.

The sequence of the records will correspond to the program-defined element numbering, ELNO.

Page Date Program Version 6-66 01-NOV-1996 6

Reference to Element Data

GELREF1

GELREF1	ELNO	MATNO	ADDNO	INTNO
	MINTNO	STRANO	STRENO	STREPONO
	GEONO/OPT	FIXNO/OPT	ECCNO/OPT	TRANSNO/OPT
	GEONO(1)		GEONO(N)	FIXNO(1)
		FIXNO(1)	ECCNO(1)	
	ECCNO(N)	TRANSNO(1)		TRANSNO(N)

Shortest version:

GELREF1	ELNO	MATNO	ADDNO	INTNO
	MINTNO	STRANO	STRENO	STREPONO
	GEONO/OPT	FIXNO/OPT	ECCNO/OPT	TRANSNO/OPT

ELNO Internal element number (generated by the program).

MATNO Material number

= 0 no material data attached to the element

ADDNO Additional data type number, i.e. number referring to additional data specification

= 0 no additional data attached to the element

INTNO Integration station reference number for stiffness matrix, i.e. number referring to the specification of integration stations. An integration station is defined as:

- an assembly of integration points over a cross section of a 1-dimensional (beam or bar)

element,

- an assembly of integration points on a line through the thickness of a 2-dimensional element,
- one single integration point for a 3-dimensional element. For further explanation see record GELINT.

INTNO = 0: Default values of the analysis program are employed.

Program Version Date Page 6 01-NOV-1996 6-67

GELREF1

MINTNO Integration station reference number for mass and damping matrices. Integration station, see

INTNO.

MINTNO = 0: Default values of the analysis program are employed.

STRANO Initial strain number, i.e. number referring to the specification of initial strains. The data

type containing these data is not yet defined.

STRENO Initial stress number, i.e. number referring to the specification of initial stresses. The data

type containing these data is not yet defined.

STREPONO Stresspoint specification reference number. See record GELSTRP for further information.

GEONO/OPT Geometry reference number or option for geometry reference number specified later in this

record sequence.

>0: The geometry reference number (the same for all nodes in the element).

GEONO(1),...,

GEONO(N) will not be specified.

=0: No geometry data is given, i.e. neither here nor on GEONO(1), ..., GEONO(N).

=-1: Reference numbers to geometry data are specified later in this record sequence for all

nodes, i.e. all GEONO(1), ..., GEONO(N) will be given.

FIXNO/OPT Fixation reference number or option for fixation reference numbers specified later in this re-

cord sequence. The meaning assigned to the values of FIXNO/OPT corresponds to those for

GEONO/OPT.

this record sequence. The meaning assigned to the values of ECCNO/OPT corresponds to

those for GEONO/OPT.

TRANSNO/OPT Reference number for local coordinate system specification or option for specification of lo-

cal nodal coordinate systems later in this record sequence. Refers to GUNIVEC or BNTR-COS record. The meaning assigned to the values of TRANSNO/OPT corresponds to those

for GEONO/OPT.

GEONO(1) Geometry reference number, i.e. number referring to thickness or cross sectional specifica-

tion. Not employed for 3-dimensional elements. GEONO(1) is the reference number for the

1st local node of the element, GEONO(i) will be the reference number for the i'th local node.

GEONO(N) Geometry reference number for the last local node of the element.

FIXNO(1) Number referring to the specification of degree of fixation (Data type BELFIX).

FIXNO(1) is the reference number for the 1st local node of the element, FIXNO(i) will be the

reference number for the i'th local node.

FIXNO(N) Degree of fixation reference number for the last local node of the element.

SESAM

Page Date Program Version 6-68 01-NOV-1996 6

GELREF1

ECCNO(1) Eccentricity number for the first local node of the element, i.e. number referring to the speci-

fication of eccentricities.

ECCNO(N) As ECCNO(1) only for the last local node.

TRANSNO(1) Number referring to the specification of the local element coordinate system for the 1st local

node of the element. Refers to BNTRCOS or GUNIVEC record depending on element type.

TRANSNO(N) As TRANSNO(1) only for the last local node.

N is the number of local nodes of the element.

NOTE: Parameters appear in succeeding order from third line.

The sequence of the records will be in the program-defined element numbering, ELNO.

Program Version	Date	Page
6	01-NOV-1996	6-69

Specification of Stress Points

GELSTRP

GELSTRP	STREPONO	STRPTYP	N1	N2
	N3	X(1, 1)		X(1, N3)
			X(N2, 1)	
	X(N2, N3)			

STREPONO Stress point specification reference number, referenced to on GELREF1

STRPTYP

Type of stress point specification

=0: The coordinates of the stress points are given, see below

N1 =0: the coordinates are specified in curvelinear form

=1: the coordinates are specified in absolute form

N2: number of stress points in the element

N3: number of coordinate components needed for the definition of a stress point

>0: The number of stress points is given, and they should be distributed according to the Gaussian integration scheme if STRPTYP=1 and the Leobatto integration scheme if STRPTYP=2, i.e. the stress points coincide with the integration points. If STRP-

TYP=3 the stress points are distributed according to the default method for the element type considered.

N1: number of stress points along 1st local element axis

N2: number of stress points along 2nd local element axis (only 2- and 3-dimensional elements).

N3: number of stress points along the 3rd local element axis. (only for 3-dimensional elements).

X(i,j) Coordinate component no. j for station no. i. Omitted if STRPTYP > 0.

SESAM

Page Date Program Version 6-70 01-NOV-1996 6

Thickness of Two-dimensional Elements

GELTH

GELTH GEONO TH NINT

GEONO Geometry type number, i.e. referenced to by GELREF1

TH Thickness of the element, measured in a specific node

NINT Number of integration points through thickness

Program Version	Date	Page
6	01-NOV-1996	6-71

Cross Section Type I or H Beam

GIORH

GIORH	GEONO	HZ	TY	BT
	TT	BB	TB	SFY
	SFZ	NLOBYT	NLOBYB	NLOBZ

Figure 6-9 I or H beam

GEONO Beam stress type number, i.e. reference number used for element data definition of cross sectional properties of beams.

HZ Height of beam at current location

TY Thickness of beam web

BT Width of top flange

TT Thickness of top flange

BB Width of bottom flange

TB Thickness of bottom flange

SFY, SFZ Factors modifying the shear areas calculated by the preprocessor program such that the modified shear areas are respectively

 $SHARY(MOD) = SHARY(PROG) \cdot SFY$

 $SHARZ(MOD) = SHARZ(PROG) \cdot SFZ$

(The shear areas on GBEAMG are SHARY(MOD) and SHARZ(MD)).

SESAM

Page Date Program Version 6-72 01-NOV-1996 6

GIORH

NLOBYT Number of integration points in top flange (optional)

NLOBYB Number of integration points in bottom flange (optional)

NLOBZ Number of integration points in beam web (optional)

Program Version	Date	Page
6	01-NOV-1996	6-73

Cross Section Type I or H Beam with Inside Curvature

GIORHR

GIORHR	GEONO	HZ	TY	BT
	TT	ВВ	TB	SFY
	SFZ	RT	RB	NLOBYT
	NLOBYB	NLOBZ		

Figure 6-10 I or H beam with inside curvature.

GEONO	Beam stress type number, i.e. reference number used for element data definition of cross sec-
	tional properties of beams.

HZ Height of beam at current location

TY Thickness of beam web

BT Width of top flange

TT Thickness of top flange

BB Width of bottom flange

TB Thickness of bottom flange

SESAM

Page Date Program Version 6-74 01-NOV-1996 6

GIORHR

SFY, SFZ Factors modifying the shear areas calculated by the preprocessor program such that the modi-

fied shear areas are respectively

 $SHARY(MOD) = SHARY(PROG) \cdot SFY$ $SHARZ(MOD) = SHARZ(PROG) \cdot SFZ$

(The shear areas on GBEAMG are SHARY(MOD) and SHARZ(MOD)).

RT Radius of inside curvature at top

RB Radius of inside curvature at bottom

NLOBYT Number of integration points in top flange (optional)

NLOBYB Number of integration points in bottom flange (optional)

NLOBZ Number of integration points in beam web (optional)

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-75

Modification of Diagonal Mass Matrices

GLMASS

RFAC

Factor by which the rotational masses of the lumped diagonal mass matrix are multiplied.

Default value = 0.01

Page	Date	Program Version
6-76	01-NOV-1996	6

Cross Section Type L-Section

GLSEC

GLSEC	GEONO	HZ	TY	ВҮ
	TZ	SFY	SFZ	K
	NLOBY	NLOBZ		

Figure 6-11 L-section

GEONO Geometry type number, i.e. reference number used for element data definition of geometry

properties (Cross sectional properties) of beams.

HZ Height of beam at current location.

TY Thickness of beam web.

BY Width of flange.

TZ Thickness of flange.

SFY, SFZ Factors modifying the shear areas calculated by the preprocessor program such that the modi-

fied shear areas are respectively

$$\begin{split} SHARY(MOD) &= SHARY(PROG) \cdot SFY \\ SHARZ(MOD) &= SHARZ(PROG) \cdot SFZ \end{split}$$

(The shear areas on GBEAMG are SHARY(MOD) and SHARZ(MOD)).

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 6-77

GLSEC

K Web orientation:

=0 web located in the negative local y-direction (and consequently flange in the postitive y'-direction)

=1 web located in the positive local y-direction (and consequently flange in the negative y'-direction)

NLOBY Number of integration points in beam flange (optional)

NLOBZ Number of integration points in beam web (optional)

Page Date Program Version 6-78 01-NOV-1996 6

Cross Section Type L-Section with Inside Curvature

GLSECR

GLSECR	GEONO	HZ	TY	ВУ
	TZ	SFY	SFZ	K
	R	NLOBY	NLOBZ	

Figure 6-12 L-section with inside curvature

GEONO Geometry type number, i.e. reference number used for element data definition of geometry properties (Cross sectional properties) of beams.

HZ Height of beam at current location.

TY Thickness of beam web.

BY Width of flange.

TZ Thickness of flange.

SFY, SFZ Factors modifying the shear areas calculated by the preprocessor program such that the modified shear areas are respectively

 $SHARY(MOD) = SHARY(PROG) \cdot SFY$

 $SHARZ(MOD) = SHARZ(PROG) \cdot SFZ$

(The shear areas on GBEAMG are SHARY(MOD) and SHARZ(MOD)).

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 6-79

GLSECR

K Web orientation:

= 0 web located in the negative local y-direction (and consequently flange in the postitive y'-direction)

= 1 web located in the positive local y-direction (and consequently flange in the negative y'-direction)

R Radius of inside curvature

NLOBY Number of integration points in beam flange (optional)

NLOBZ Number of integration points in beam web (optional)

Page Date Program Version 6-80 01-NOV-1996 6

Correspondence between External and Internal Node Numbering and Number of Degrees of Freedom of Each Node

GNODE		NODEX	NODENO	NDOF	ODOF
NODEX	External node number (specified or controlled by user).				
NODENO			• •	nay be generated by introm 1 up to number of	ternal node numbering nodes.
NDOF	Nur	mber of degrees of free	dom of nodal point NO	ODENO.	
ODOF	Exa tive	•	F=135 means 3 degree t's coordinate system	, unless a local nodal	d Ry direction respec-

There will be one record with the identifier GNODE for each node. The sequence of the records will correspond to the internal node number, NODENO.

Program Version	Date	Page
6	01-NOV-1996	6-81

Cross Section Type Tube

GPIPE

GPIPE	GEONO	DI	DY	T
	SFY	SFZ	NCIR	NRAD

Figure 6-13 Tube

GEONO Geometry type number, i.e. reference number used for element data definition of geometry

properties (Cross sectional properties) of beams.

DI Inner diameter of tube.

DY Outer diameter of tube (mandatory).

T Thickness of tube (not necessary if DI is given).

SFY, SFZ Factors modifying the shear areas calculated by the preprocessor program such that the modi-

fied shear areas are respectively,

 $SHARY(MOD) = SHARY(PROG) \cdot SFY$ $SHARZ(MOD) = SHARZ(PROG) \cdot SFZ$

(The shear areas on GBEAMG are SHARY(MOD) and SHARZ(MOD)).

NCIR, NRAD Number of integration points in circumferential and radial direction respectively (optional)

SESAM

Page	Date	Program Version
6-82	01-NOV-1996	6

Separation Description

GSEPxxxx

GSEPxxxx	SEPARID		

The separation description data type is only a super-type. Currently only one sub-type is defined - 'Specified Separation', which also may specify uniform separation. Some data shall be present in all separation descriptions, these are shown here.

GSEPxxxx All sub-types of the separation description data type are named GSEPxxxx, where 'xxxx'

may be different for the sub-types.

SEPARID Identification of the separation description. A unique integer value among all the separation

description data types (including all sub-types) in the super-element. This number is refer-

enced from the SEPARID number on the GSLSTIFF record.

Program Version	Date	Page
6	01-NOV-1996	6-83

Specified Separation Description

GSEPSPEC

GSEPSPEC	SEPARID	OPTION	NDIST	DISTANCE ₀
	DISTANCE ₁		$\mathtt{DISTANCE}_{\mathtt{n}}$	

The 'specified separation' data type is a sub-type of the 'separation' data type. Specified separation type may also specify uniform separation type.

SEPARID Identification of the separation description. A unique integer value among all the separation

description data types (including all sub-types) in the super-element. This number is refer-

enced from the SEPARID number on the GSLSTIFF record.

OPTION Usage of DISTANCE $_0$.

= 0, DISTANCE₀ is not specified. Any value of DISTANCE₀ is equally good (not used).

= 1, DISTANCE₀ is specified.

NDIST Number of different distances between stiffeners.

= 1, indicates that all separations are equal (uniform separation).

DISTANCE₀ The distance to the first stiffener from the start of the plate. The start of the plate is the point

on the plate which has the smallest y-values (usually negative), where y is in the local beam

coordinate systems.

DISTANCE_i The distance between stiffener number 'i' and stiffener number 'i+1'. $i \in [1,NDIST]$

For a uniform separation with DISTANCE $_0$ not specified, it will for a stiffener layer result in a smearing (multiplication) factor (F_s) in the stiffener direction for Young's modulus (E_1). This factor is relative to a plate layer with the same height as the stiffener layer.

$$F_s = b / d_1$$

where:

b = width of each stiffener

 $d_1 = DISTANCE_1$

In the other direction, Young's modulus (E_2) will be taken equal to zero.

Page Date Program Version 6-84 01-NOV-1996 6

Set (group) of Nodes or Elements (Members)

GSETMEMB

GSETMEMB	NFIELD	ISREF	INDEX	ISTYPE
	_		-	
	ISORIG	\mathtt{IRMEMB}_1	${\tt IRMEMB}_2$	${\tt IRMEMB}_3$
	$IRMEMB_4$		${\tt IRMEMB}_{\tt NMEMB}$	

This record together with the name and description of a set record (TDSETNAM) constitutes the set (group) datatype.

NFIELD Number of data fields on this record (maximum is 1024)

ISREF Internal set identification number as defined on the name and description of a set record

(TDSETNAM).

INDEX Sequential record number for current set (ISREF). Each set may consist of one or more

GSETMEMB records with same set identification number (ISREF). INDEX must be strictly increasing from 1 and upwards till number of GSETMEMB records for this set of members

(nodes or elements).

ISTYPE Set type

= 1, set of nodes

= 2, set of elements

See also table 6.1 below.

ISORIG Set origin type

= 0, undefined origin

= 1, point

= 2, line (or curve)

= 3, surface

=4, body

IRMEMB₁ First set member on this record

IRMEMB₂ Second set member on this record

.

 $IRMEMB_{NMEMB}Set\ member\ number\ NMEMB\ on\ this\ record.$

NMEMB is number of set members on the current record. NMEMB = NFIELD - 5

Program Version	Date	Page
6	01-NOV-1996	6-85

GSETMEMB

Table 6.1 Set Type (ISTYPE) and interpretation of Set Member Number (IRMEMB)

ISTYPE:	Description:	Interpretation of IRMEMB:
1	Set of Nodes	Internal Node Number (IINOD)
2	Set of Elements	Internal Element Number (IIELNO)

Comments:

The set datatype consists of one name and description of set record (TDSETNAM) and one or more set member records (GSETMEMB).

It should be noted that a set may have its set members distributed over several set member records (GSETMEMB) all having the same set identification number (ISREF) and consequently also the same TDSETNAM record. The total number of set members will then be the sum of the number of set members (NMEMB) for each of the set records.

Restrictions:

- Only one set type (ISTYPE) for same set identification number (ISREF) is allowed.
- If several records for the same set identification number (ISREF), record numbering must be strictly sequential;
 - 1 < INDEX < NINDEX, where NINDEX is number of records per set.
- A set member (number) should only be included once in the list.

SESAM

Page	Date	Program Version
6-86	01-NOV-1996	6

General Eccentric Sandwich Element

GSLAYER

GSLAYER	GEONO	NLAYER	LAYERID ₁	LAYERID ₂
	LAYERID ₃		LAYERID _n	

There are never more than one GSLAYER record for an element. The GSLAYER record is referenced from the GELREF1 record for each element. When this layer 'stack' record is referenced from the GELREF1 record, there is no need to refer to any material in the GELREF1 record.

GEONO Geometry reference number for this general sandwich (layered) element. This number is ref-

erenced from the geometry reference number on the GELREF1 record.

NLAYER Number of layers in the general eccentric sandwich (layered) element.

LAYERID; Identification of layer no. 'i'. LAYERID; refers to a GSLPLATE or GSLSTIFF record with

identification LAYERID_i. It is a unique integer value among all layers in the super-element.

 $i \in [1,NLAYER]$

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-87

Layer Description

GSLxxxxx

GSLxxxxx	LAYERID	MATNO	SHFACT	NECCNO
	ECCNO ₁		ECCNO _n	

Layer description data type is only a super-type. Current sub-types are plate layer and stiffener layer. Some data shall be present in all layer descriptions, these are shown here.

GSLxxxxx All sub-types of the layer description data type are named GSLxxxxx, where 'xxxxx' may be

different for the sub-types.

LAYERID Identification of the layer. A unique integer value among all the layers in the super-element.

This number is referenced from the LAYERID numbers on the GSLAYER records.

MATNO Reference to the material.

SHFACT A factor for calculation of the shear deflection. A commonly used value for square cross sec-

tions and plates is 1.2.

NECCNO Number of eccentricity data for this layer (=1 or number of element nodes).

ECCNO_i Reference to eccentricity description for the layer (=0 if there is no eccentricity for this

layer). ECCNO $_i$ refers to a GECC or GECCEN record. $i \in [1,NECCNO]$

SESAM

Page	Date	Program Version
6-88	01-NOV-1996	6

Plate Layer Description

GSLPLATE

GSLPLATE	LAYERID	MATNO	SHFACT	NECCNO
	_	-		
	ECCNO ₁		$ECCNO_n$	NTHICKID
	$\mathtt{THICKID}_1$		$\mathtt{THICKID}_{\mathtt{n}}$	

Plate Layer is a sub-type of layer. It identifies that the layer is a plate, i.e. shell element, and references possible eccentricities and mandatory element or element node thickness(es) of the plate.

ble eccentricities	s and mandatory element or element node thickness(es) of the plate.
LAYERID	Identification of the layer. A unique integer value among all the layers in the super-element. This number is referenced from the LAYERID numbers on the GSLAYER records.
MATNO	Reference to the material. For plate layers, the material may be isotropic or anisotropic. The material record referenced can only specify one material.
SHFACT	A factor for calculation of the shear deflection. A commonly used value for square cross sections and plates is 1.2.
NECCNO	Number of eccentricity data for this layer (=1 or number of element nodes).
ECCNO _i	Reference to eccentricity description for the layer (=0 if there is no eccentricity for this layer). $ECCNO_i$ refers to a GECC or GECCEN record. $i \in [1,NECCNO]$
NTHICKID	Number of thickness data for this layer (=1 or number of element nodes).

THICKID_i Reference to the thickness for the plate or the plate nodes. THICKID_i refers to a GELTH record (in this case GEONO on the GELTH record should read THICKID_i, since the GELREF1 record does not reference the GELTH record directly for the general eccentric sandwich element). $i \in [1,NTHICKID]$

ANGLE

Program Version	Date	Page	
6	01-NOV-1996	6-89	

Stiffener Layer Description

GSLSTIFF

GSLSTIFF	LAYERID	MATNO	SHFACT	NECCNO
	ECCNO ₁		ECCNO _n	NSECTID
	SECTID ₁		$\mathtt{SECTID}_{\mathtt{n}}$	SEPARID
	ANGLE			

Stiffener Layer is a sub-type of layer. It identifies that this layer is a stiffener layer, i.e. beam elements, and specifies the additional information for the beams.

LAYERID	Identification of the layer. A unique integer value among all the layers in the super-element.
	This number is referenced from the LAYERID numbers on the GSLAYER records.

MATNO Reference to the material. For stiffener layers, the material may only be **isotropic**. The material record referenced can only specify **one** material.

SHFACT A factor for calculation of the shear deflection. A commonly used value for square cross sections and plates is 1.2.

NECCNO Number of eccentricity data for this layer (=1 or number of beam element nodes).

ECCNO_i Reference to eccentricity description for the layer (=0 if there is no eccentricity for this layer). ECCNO_i refers to a GECC or GECCEN record. $i \in [1,NECCNO]$

NSECTID Number of section references for this layer (=1 or number of beam element nodes).

SECTID $_i$ Reference to the section for the beam or the beam nodes. SECTID $_i$ refers to a GBARM and a GBEAMG record (in this case GEONO on the GBARM and GBEAMG record should read SECTID $_i$, since the GELREF1 record does not reference the GBARM and GBEAMG record directly for the general eccentric sandwich element). $i \in [1,NSECTID]$

SEPARID Reference to the separation data description (GSEPxxxx). The separation is the distance between stiffeners in the plane of the element, but orthogonal to the stiffener direction.

Angle with respect to the element's reference direction (local x-axis). The angle is specified in **degrees**. This angle and the local x-axis of the eccentric sandwich element determines the direction of the local x-axis of the stiffeners. The reference direction (local x-axis) of the eccentric sandwich element are determined by the direction cosine matrix from the BNTR-COS record, referenced on the GELREF1 record for this element. The direction determined from the first line of this direction cosine matrix is projected down on the element plane and this gives the element's reference direction (local x-axis).

Page	Date	Program Version
6-90	01-NOV-1996	6

Cross Section T on Plate

GTONP

GTONP	GEONO	HZ	TY	BT
	TT	BP	TP	SFY
	SFZ	NLOBYT	NLOBYB	NLOBZ

Figure 6-14 T on plate

GEONO Geometry type number, i.e. reference number used for element data definition of geometry properties (Cross sectional properties) of beams.

HZ Height of beam

TY Thickness of beam web.

BT Width of top flange.

TT Thickness of top flange.

BP Effective width of plate.

TP Thickness of plate.

INPUT INTERFACE FILE

Program Version	Date	Page	
6	01-NOV-1996	6-91	

GTONP

SFY Factors modifying the shear areas calculated by the preprocessor program such that the modi-

fied shear areas is

 $SHARY(MOD) = SHARY(PROG) \cdot SFY$

(The shear area on GBEAMG is the modified value SHARZ(MOD)).

SFZ Factors modifying the shear areas calculated by the preprocessor program such that the modi-

fied shear areas is

 $SHARZ(MOD) = SHARZ(PROG) \cdot SFZ$

(The shear area on GBEAMG is the modified value SHARZ(MOD)).

NLOBYT Number of integration points in top flange (optional)

NLOBYB Number of integration points in bottom flange (optional)

NLOBZ Number of integration points in beam web (optional)

SESAM

Page Date Program Version 6-92 01-NOV-1996 6

Specification of Local Element Coordinate System

GUNIVEC

GUNIVEC TRANSNO	UNIX	UNIY	UNIZ
-----------------	------	------	------

TRANSNO Unit vector number, referenced to on record GELREF1.

UNIX Unit vector given in superelement coordinate system along the local z-axis (reference

UNIY axis in z-direction) of the element in the particular node.

UNIZ

The GUNIVEC records are used for beam elements only, i.e. basic element types 2, 15 and 23. Other basic element types may refer to BNTRCOS records. No ambiguity thus exists if both a GUNIVEC and BNTRCOS record have same TRANSNO, but they should preferably have separate numbering (TRANSNO) to avoid possible program problems.

Program Version	Date	Page
6	01-NOV-1996	6-93

Cross Section Type Unsymmetrical I-Beam

GUSYI

GUSYI	GEONO	HZ	TY	ВТ
	В1	TT	BB	В2
	TB	SFY	SFZ	NLOBYT
	NLOBYB	NLOBZ		

Figure 6-15 Unsymmetrical I beam

GEONO Geometry type number, i.e. reference number used for element data definition of geometry properties (Cross sectional properties) of beams.

HZ Height of beam

TY Thickness of beam web

BT Width of top flange

B1 Width of half top-flange in positive local y-direction

TT Thickness of top flange

BB Width of bottom flange

SESAM

Page Date Program Version 6-94 01-NOV-1996 6

GUSYI

B2 Width of half bottom-flange in positive local y-direction

TB Thickness of bottom flange

SFY,SFZ Factors modifying the shear areas calculated by the preprocessor program such that the modi-

fied shear areas are respectively

 $SHARY(MOD) = SHRY(PROG) \cdot SFY$ $SHARZ(MOD) = SHARZ(PROG) \cdot SFZ$

(The shear areas on GBEAMG are SHARY(MOD) and SHARZ(MOD)).

NLOBYT Number of integration points in top flange (optional)

NLOBYB Number of integration points in bottom flange (optional)

NLOBZ Number of integration points in beam web (optional)

Program Version	Date	Page
6	01-NOV-1996	6-95

6.4 Material Data

MTEMP

MTENONL

MTRMEL

MTRSEL

MTRSOL

MISOPL

MISOPL MISOSEL

MISTEL

MORSMEL

MORSSEL

MORSSOL

MSHGLSP

MTENONL

MTRMEL

MTRSEL

MTRSOL

MTEMP

First Level	
Record Type	Page
Element Type (Number)	
MAXDMP	6-96
MAXSPR	6-97
MCNT	6-98
MGDAMP	6-99
MGLDAMP	6-100
MGLMASS	6-101
MGMASS	6-102
MGSPRNG	6-103
MISOAL	6-104
MISOEML	6-105
MISOHL	6-106
MISOHNL	6-107
MISOPL	6-108
MISOPL	6-111
MISOPL	6-113
MISOSEL	6-115
MISTEL	6-116
MORSMEL	6-117
MORSSEL	6-118
MORSSOL	6-120
MSHGLSP	6-121

6-122

6-123

6-125

6-126

6-127 6-111

6-113

6-115

6-116

6-117

6-118

6-120

6-121

6-122

6-123

6-125

6-126

6-127

SESAM

Page Date Program Version 6-96 01-NOV-1996 6

Axial Damper Between Two Nodal Points

MAXDMP

MATNO Material number, i.e. reference number referenced to by the element specification.

DAMP Axial damping constant.

The axial damping constant corresponds to the force to be applied in order to get a unit velocity in the direction of the basic element.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-97

Axial Spring Between Two Nodal Points

MAXSPR

MATNO Material number, i.e. reference number referenced to by the element specification.

SCON Axial spring constant.

The axial spring constant corresponds to the force to be applied in order to get a unit displacement in the direction of the basic element.

SESAM

Page	Date	Program Version
6-98	01-NOV-1996	6

Material for Non-linear Contact Element

MCNT

MCNT	MATNO	MATYP	EMOD	STIFAC
	FRICOF			

MATNO Material number. Reference number referenced to by the element specification.

MATYP = 1 Perfect sliding

= 2 Perfect sticking= 3 Linear friction

EMOD Typical Young's modulus of surrounding elements

STIFAC Factor that EMOD should be multiplied with to obtain contact stiffness.

Default: $STIFAC = 10^5$

FRICOF Linear friction coefficient when MATYP= 3.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-99

Damping Element to Ground

MGDAMP

MGDAMP	MATNO	NDOF	C(1, 1)	C(2, 1)
			G(NDOE 1)	G(0, 0)
			C(NDOF, 1)	C(2, 2)
	C(3, 2)			C(NDOF, 2)
	C(3, 3)			C(NDOF, NDOF)

MATNO Material number, i.e. reference number referenced to by the element specification.

NDOF Number of degrees of freedom of the node.

C(i,j) Elements of the damping matrix (only elements on and below the main diagonal are stored, i.e. symmetric damping matrix assumed). The elements are referred to a local coordinate system if defined (by TRANSNO on GELREF1), otherwise to the global coordinate system of the superelement.

The damper to ground matrix is the viscous damping matrix.

Page Date Program Version 6-100 01-NOV-1996 6

General 2-noded Damping Element

MGLDAMP

MGLDAMP	MATNO		NDOF1	NDOF2
	-			
	D(1, 1)	D(2, 1)		D(NDOF1, 1)
)(NDOF1+1, 1)		D(TDOF, 1)	D(2, 2)
	D(3, 2)		D(TDOF, 2)	D(3, 3)
		D(TDOF, TDOF)		

MATNO Material number, i.e. reference number referenced to by the element specification.

NDOF1 Number of degrees of freedom in local node 1.

NDOF2 Number of degrees of freedom in local node 2.

D(i,j) Elements of the damping matrix (only elements on and below the main diagonal are stored, i.e. symmetric damping matrix assumed). The elements are referred to a local coordinate system if defined (by TRANSNO on GELREF1), otherwise to the global coordinate system of the superelement.

(TDOF = NDOF1 + NDOF2)

The (i,j)'th element of the damping matrix corresponds to the force to be given in the i'th d.o.f. to get a unit velocity in the j'th d.o.f.

A GELMNT1 record with element type = 13 and a GELREF1 record with reference to this (MGLDAMP) record is necessary in order to fulfill the definition of the 2-noded damping element.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-101

General 2-noded Mass Element

MGLMASS

MGLMASS	MATNO		NDOF1	NDOF2
	-		-	
	M(1, 1)	M(2, 1)		M(NDOF1, 1)
	M(NDOF1+1, 1)		M(TDOF, 1)	M(2, 2)
	M(3, 2)		M(TDOF, 2)	M(3, 3)
		M(TDOF, TDOF)		

MATNO Material number, i.e. reference number referenced to by the element specification.

NDOF1 Number of degrees of freedom in local node 1.

NDOF2 Number of degrees of freedom in local node 2.

M(i,j) Elements of the mass matrix (only elements on and below the main diagonal are stored, i.e. symmetric mass matrix assumed). The elements are referred to a local coordinate system if defined (by TRANSNO on GELREF1), otherwise to the global coordinate system of the superelement.

(TDOF = NDOF1 + NDOF2)

The (i,j)'th element of the mass matrix corresponds to the force to be given in the i'th d.o.f. to get a unit acceleration in the j'th d.o.f.

A GELMNT1 record with element type = 12 and a GELREF1 record with reference to this (MGLMASS) record is necessary in order to fulfill the definition of the 2-noded mass element.

SESAM

Page	Date	Program Version
6-102	01-NOV-1996	6

1-Noded Mass element

MGMASS

MGMASS	MATNO	NDOF	M(1, 1)	M(2, 1)
			M(NDOF, 1)	M(2, 2)
	M(3, 2)			M(NDOF, 2)
	M(3, 3)			M(NDOF, NDOF

MATNO Material number, i.e. reference number referenced to by the element specification.

NDOF Number of degrees of freedom in the node.

M(i,j) Elements of the mass matrix (only elements on and below the main diagonal are stored, i.e. symmetric mass matrix assumed). The elements are referred to a local coordinate system if

defined (by TRANSNO on GELREF1), otherwise to the global coordinate system of the su-

perelement.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-103

Element to Ground

MGSPRNG

MGSPRNG	MATNO	NDOF	K(1, 1)	K(2, 1)
	I	I	Tr/NDOD 1)	Tr / O O)
			K(NDOF, 1)	K(2, 2)
	K(3, 2)			K(NDOF, 2)
	K(3, 3)			k(NDOF, NDOF)

MATNO Material number, i.e. reference number referenced to by the element specification.

NDOF Number of degrees of freedom of the node.

K(i,j) Elements of the stiffness matrix (only elements on and below the main diagonal are stored, i.e. symmetric stiffness matrix assumed). The elements are referred to a local coordinate system if defined (by TRANSNO on GELREF1), otherwise to the global coordinate system of the superelement.

The (i,j)'th element of the stiffness matrix corresponds to the force to be given in the i'th d.o.f. to get a unit displacement in the j'th d.o.f.

SESAM

Page	Date	Program Version
6-104	01-NOV-1996	6

Isotropy, Linear Acoustic Field Problem

MISOAL

MISOAL	MATNO	С	CP	CV
	RHO	PRESS	TEMP	R

MATNO Material number, i.e. reference number referenced to by the element specification.

C Speed of sound in gas.

CP Specific heat of gas at constant pressure.

CV Specific heat of gas at constant volume.

RHO Specific density of gas.

PRESS Gas pressure.

TEMP Gas temperature.

R Universal gas constant.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-105

Isotropy, Linear Electro-magnetic Field Problem

MISOEML

MISOEML	MATNO	PERM		
---------	-------	------	--	--

MATNO Material number, i.e. reference number referenced to by the element specification.

PERM Permittivity

SESAM

Page Date Program Version 6-106 01-NOV-1996 6

Isotropy, Linear Heat Conduction Analysis

MISOHL

	MISOHL	MATNO	RHO	CHEAT	COND	
--	--------	-------	-----	-------	------	--

MATNO Material number, i.e. reference number referenced to by the element specification.

RHO Density.

CHEAT Specific heat.

COND Coefficient of heat conductivity.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-107

Isotropy, Non-linear Heat Conduction Analysis

MISOHNL

MISOHNL	MATNO	RHO	RTEMPNO	CHEAT
	CHTEMPNO	COND	COTEMPNO	

MATNO Material number, i.e. reference number referenced to by the element specification.

RHO1 Density

RTEMPNO Reference number to a temperature dependent scaling factor for RHO

CHEAT Specific heat

CHTEMPNO Reference number to a temperature dependent scaling factor for CHEAT

COND Coefficient of heat conductivity

COTEMPNO Reference number to a temperature dependent scaling factor for COND. If there is no tem-

perature dependence, the corresponding reference number will be zero.

Page Date Program Version 6-108 01-NOV-1996 6

Non-linear Isotropic Material, Material Types 1-4

MISOPL

MISOPL	MATNO	MATYP	POISS	RHO
	DAMP	ALPH	В1	
	NP	SIG1	EPS1	SIG2
	EPS2		SIG(NP)	EPS(NP)

MATNO Material number

MATYP Material type

=1 Elasto-plastic material

=2 Non-linear hyperelastic material

=3 Overly technique

=4 Isotropic and kinematic hardening

B1 Parameter for combining of isotropic and kinematic hardening

= 0.0 Isotropic

= 1.0 Kinematic

Any value between 0.0 and 1.0 is legal

POISS Poisson's ratio

RHO Density

DAMP Specific damping

ALPH Thermal expansion coefficient

B1 Only used for MATYP=4, see above and next page.

NP Number of points to represent the uniaxial stress-strain curve for increased loading.

Note NP<30

SIG1 Stress at the first point representing the stress-strain curve.

EPS1 Corresponding strain at the first point representing the stress-strain curve

(YOUNG=SIG1/EPS1).

SIG2 Stress at the second point representing the stress-strain curve.

EPS2 Corresponding strain at the second point representing the stress-strain curve.

SIG(NP) Stress at the last point representing the stress-

Program Version	Date	Page
6	01-NOV-1996	6-109

MISOPL

strain curve.

EPS(NP) Corresponding strain at the last point representing the stress-strain curve (See Figure 6-16).

Figure 6-16 Uniaxial stress-strain curve for increased loading

The material parameter B1 may be found from a one-dimensional loading-unloading curve with yielding:

SESAM

Page	Date	Program Version
6-110	01-NOV-1996	6

Figure 6-17 Stress-strain curve for a one-dimensional loading-unloading with yielding

Program Version	Date	Page
6	01-NOV-1996	6-111

Non-linear Isotropic Material for Grout, Material Type 5

MISOPL

MISOPL	MATNO	MATYP	POISS	RHO
	DAMP	ALPH		
	NP	SIG1	EPS1	FCM
				EU
	ET			

MATNO Material number

MATYP Material type

= 5 Special theory for grout

POISS Poisson's ratio (recommended value 0.15 - 0.2)

NP Number of points to represent the uniaxial stress-strain curve for increased loading (=1)

SIG1 Stress at the first point representing the stress-strain curve.

EPS1 Corresponding strain at the first point representing the stress-strain curve. The relation

YOUNG=SIG1/EPS1 is only used to compute Young's modulus

FCM Compression stress (concrete) at which the grout becomes perfectly plastic

EU Compressive strain at crushing (uniaxial strain)

ET Tensile strain at cracking (uniaxial strain)

Page	Date	Program Version
6-112	01-NOV-1996	6

MISOPL

Figure 6-18 Uniaxial stress-strain curve for grout.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-113

Non-linear Isotropic Material for Debonding Material, Material Type 6

MISOPL

MISOPL	MATNO	MATYP	POISS	RHO
	DAMP	ALPH		
	NP	SIG1	EPS1	SZMAX
	TAUMAX	EZREF	GREF	

MATNO Material number

MATYP Material type

= 6 Special theory for debonding material

POISS Poisson's ratio (recommended value 0.15 - 0.20)

NP Number of points to represent the uniaxial stress-strain curve for increased loading (=1)

SIG1 Stress at the first point representing the stress-strain curve.

EPS1 Corresponding strain at the first point representing the stress-strain curve

(YOUNG=SIG1/EPS1. Recommended values: same as grout)

SZMAX Maximum tensile separation stress capacity

TAUMAX Maximum shear capacity

EZREF Reference strain, i.e. strain where total debonding takes place

GREF Friction stiffness for closed gaps, (typical 0.5 times the shear modulus)

Page Date Program Version 6-114 01-NOV-1996 6

MISOPL

Figure 6-19 a) Uniaxial stress-strain normal to steel surface.
b) Maximum shear stress as function of normal strain.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-115

Isotropy, Linear Elastic Structural Analysis

MISOSEL

MISOSEL	MATNO	YOUNG	POISS	RHO
	DAMP	ALPHA		

MATNO Material number, i.e. reference number referenced to by the element specification.

YOUNG Young's modulus.

POISS Poisson's ratio.

RHO Density.

DAMP Specific damping.

ALPHA Thermal expansion coefficient.

SESAM

Page	Date	Program Version
6-116	01-NOV-1996	6

Temperature Dependent Isotropic, Linear Elastic Material

MISTEL

MISTEL	MATNO	YOUNG	YTEMPNO	POISS
	RHO	RTEMPNO	DAMP	DTEMPNO
	ALPHA	ATEMPNO		

MATNO Material number, i.e. reference number referenced to by the element specification.

YOUNG Young's modulus

POISS Poisson's ratio

RHO Density

DAMP Specific damping

ALPHA Thermal expansion coefficient

YTEMPNO Reference number to a temperature dependent scaling factor of YOUNG. See record type

MTEMP.

RTEMPNO Reference number to a temperature dependent scaling factor for RHO.

DTEMPNO Reference number to a temperature dependent scaling factor for DAMP

ATEMPNO Reference number to a temperature dependent scaling factor for ALPHA.

Temperature reference number is zero if no temperature dependence.

MORSMEL

ALPHA2

Q2

Program Version	Date	Page
6	01-NOV-1996	6-117

Anisotropy, Linear Elastic Structural Analysis, 2-D Membrane Elements and 2-D Thin Shell Elements

MATNO

MORSMEL

Q3

		RHO	D11	D21	D22	
D31 D32 D33 PS1						
PS2 DAMP1 DAMP2 ALPHA1					ALPHA1	
ALPHA2						
MATNO Material number. Reference number referenced to by the element specification.						
Q1 Global components of a vector Q indicating axes of anisotropy. The first principal axis of anisotropy is referred to the projection of Q on the membrane plane.						

Q1

Q1 Q2 Q3	Global components of a vector Q indicating axes of anisotropy. The first principal axis of anisotropy is referred to the projection of Q on the membrane plane.
RHO	Density
D11-D33	Elements of the lower triangular part of the general anisotropic elasticity matrix. In case of orthotropy, only D11, D21, D22 and D33 are nonzero.
PS1,PS2	Only given for plane strain situation. The stress normal to the membrane plane (s_n) is calculated as follows: $s_n = PS1 \cdot s_1 + PS2 \cdot s_2$ (For an isotropic material PS1 and PS2 equal Poisson's ratio)
DAMP1 DAMP2	Specific damping along respectively 1. and 2. principal axes of anisotropy.
ALPHA1	Thermal expansion coefficients along respectively 1. and 2. principal axes of anisotropy.

Note: The vector Q must not be perpendicular to any of the elements

Page Program Version 6-118 01-NOV-1996

Anisotropy, Linear Elastic Structural Analysis, 3-D One- and Multilayered Thick Shell Elements

MORSSEL

MORSSEL	MATNO	Q1	Q2	Q3
	RHO	NLAY	\mathtt{THL}_1	$OANG_1$
	$\mathtt{D11}_1$	$\mathtt{D21}_1$	D22 ₁	D31 ₁
		_		
	D32 ₁	D33 ₁	D41 ₁	D42 ₁
	D43 ₁	D44 ₁	D51 ₁	D52 ₁
		_		
	D53 ₁	D54 ₁	D55 ₁	$\mathtt{DAMP1}_1$
	DAMP2 ₁	$\mathtt{ALPHA1}_1$	$\mathtt{ALPHA2}_1$	\mathtt{THL}_2
		_		
	$OANG_2$	D11 ₂		
	$\mathrm{THL}_{\mathrm{NLAY}}$			$\mathtt{ALPHA2}_{\mathtt{NLAY}}$

MATNO Material number. Reference number referenced to by the element specification.

Q1 Global components of a vector Q indicating axes of anisotropy. The first principal axis of Q2 anisotropy is referred to the projection of Q on the shell plane.

Q3

RHO Density

NLAY =1: One material type through the thickness

Number of layers of a multilayered (sandwich) material

 THL_1 Thickness of first layer in percent of element thickness. If NLAY=1, THL1 is assumed equal

to 100 (%)

OANG₁ Angle in degrees giving rotation of the axes of anisotropy in the shell plane for material layer

no. 1.

D11₁-D55₁ Elements of the lower triangular part of the general anisotropic elasticity matrix for material

layer no. 1.

In case of orthoptropy, only the diagonal terms and D21 are nonzero.

 $\textbf{D} \text{ is defined by the relation in local layer axes: } \boldsymbol{\sigma} = \textbf{D} \cdot \boldsymbol{\epsilon}, \text{ where } \boldsymbol{\epsilon} = \left[\boldsymbol{\epsilon}_{xx}, \boldsymbol{\epsilon}_{yy}, \gamma_{xy}, \gamma_{yz}, \gamma_{zx}\right]^T$

Program Version	Date	Page
6	01-NOV-1996	6-119

MORSSEL

 ${\rm DAMP1}_1$ Specific damping along respectively 1. and 2. principal axes of anisotropy for material no. 1. ${\rm DAMP2}_1$

 $\begin{array}{ll} ALPHA1_1 & Thermal\ expansion\ coefficients\ along\ respectively\ 1.\ and\ 2.\ principal\ axes\ of\ anisotropy. \\ ALPHA2_1 & \end{array}$

THL-ALPHA2 are repeated for all NLAY layers of the sandwich material.

THL must add up to 100(%).

Figure 6-20 1. principal axis of anisotropy given by the global vector \mathbf{Q} and a rotation angle \mathbf{a}_1 (OANG₁) and \mathbf{a}_2 (OANG₂) for a two-layered material.

For each integration point Q is projected on the shell surface and the same angle a is added. This implies that Q must not be perpendicular to the element surface in any of the integration points.

Page Date Program Version 6-120 01-NOV-1996 6

Anisotropy, Linear Elastic Structural Analysis, Solid Elements

MORSSOL

MORSSOL MATNO RHO D11 D21 D22 D31 D32 D33 D41 D42 D43 D44 D51 D52 D53 D54 D55 D61 D62 D63 D64 D65 D66 DAMP1
D41 D42 D43 D44 D51 D52 D53 D54 D55 D61 D62 D63
D41 D42 D43 D44 D51 D52 D53 D54 D55 D61 D62 D63
D51 D52 D53 D54 D55 D61 D62 D63
D51 D52 D53 D54 D55 D61 D62 D63
D55 D61 D62 D63
D55 D61 D62 D63
D64 D65 D66 DAMP1
D64 D65 D66 DAMP1
DAMP2 DAMP3 ALPHA1 ALPHA2
ALPHA3 TRANSNO

MATNO Material number. Reference number referenced to by the element specification.

RHO Density

D11-D66 Elements of the lower triangular part of the general, anisotropic elasticity matrix.

In case of orthotropy, only D21, D31, D32 and the diagonal terms are nonzero. **D** is defined by the relation $\sigma = \mathbf{D} \bullet \epsilon$, where $\epsilon = \left[\epsilon_{xx}, \epsilon_{yy}, \epsilon_{zz}, \gamma_{xy}, \gamma_{yz}, \gamma_{zx}\right]^T$

DAMP1

DAMP2 Specific damping along respectively 1., 2. and 3. principal axes of anisotropy.

DAMP3

ALPHA1

ALPHA2 Thermal expansion coefficients along respectively 1., 2. and 3. principal axes of anisotropy.

ALPHA3

TRANSNO Reference number to the transformation to the anisotropy axes, defined on data type BNTR-

COS. The transformation matrix is referred to the global coordinate system $(X_{anis} = T \cdot X_{glob})$ and is common to all elements of this material type. Additional local rotation is defined on

record type MTRSOL for each element.

Program Version	Date	Page
6	01-NOV-1996	6-121

General 2-noded Spring/Shim Element

MSHGLSP

MSHGLSP	MATNO	MATKND	NDOF1	NDOF2
	K(1, 1)	K(2, 1)		K(NDOF1, 1)
	K(NDOF1+1, 1)		K(TDOF, 1)	K(2, 2)
	K(3, 2)		K(TDOF, 2)	K(3, 3)
		K(TDOF, TDOF)		

MATNO Material number, i.e. reference number referenced to by the element specification.

MATKND Material kind:

= 1 Shim-element

= 2 General spring

NDOF1 Number of degrees of freedom in local node 1.

NDOF2 Number of degrees of freedom in local node 2.

K(i,j) Elements of the stiffness matrix (only elements on and below the main diagonal are stored, i.e. symmetric stiffness matrix assumed). The elements are referred to a local coordinate sys-

i.e. symmetric stiffness matrix assumed). The elements are referred to a local coordinate system if defined (by TRANSNO on GELREF1), otherwise to the global coordinate system of

the superelement.

(TDOF = NDOF1 + NDOF2)

The (i,j)'th element of the stiffness matrix corresponds to the force to be given in the i'th d.o.f. to get a unit displacement in the j'th d.o.f.

A GELMNT1 record with element type = 40 and a GELREF1 record with reference to this (MSHGLSP) record is necessary in order to fulfill the definition of the 2-noded spring or shim element.

Page	Date	Program Version
6-122	01-NOV-1996	6

Scaling Curve for Temperature Variation

MTEMP

MTEMP	TEMPNO	NPOINT	SCAL(1)	TEMP(1)
			SCAL(NPOINT)	TEMP(NPOINT)

TEMPNO Temperature reference number of this curve.

NPOINT Number of points in this curve.

SCAL(i)

TEMP(i) Scaling factor and corresponding temperature for point "i" on the curve.

Program Version Date Page 6 01-NOV-1996 6-123

Non-linear Material with Temperature Dependency

MTENONI

MTENONL	MATNO	MATYP	POISS	PTEMPNO	
	RHO	RTEMPNO	DAMP	DTEMPNO	
	ALPHA	ATEMPNO	B1	void	
	NPOINT	MTEMPNO	SIG1	EPS1	
	MATNO	YOUNG	YTEMPNO	POISS	
		·	·		
			SIG(NPOINT)	EPS(NPOINT)	

MATNO Material number

MATYP Material type

= 1 Elasto-plastic material

= 2 Nonlinar hyperelastic material

= 3 Overly technique

= 4 Isotropic and kinematic hardening

B1 Parameter for combining of isotropic and kinematic hardening

= 0.0 Isotropic

= 1.0 Kinematic

Any value between 0.0 and 1.0 is legal

= 5 Special theory for concrete

POISS Reference Poisson's ratio

PTEMPNO Reference number for a temperature dependent scaling factor of POISS

RHO Reference density

RTEMPNO Reference number to a temperature dependent scaling factor of RHO

DAMP Reference specific damping

DTEMPNO Reference number to a temperature dependent scaling factor of DAMP

ALPHA Reference thermal expansion coefficient

ATEMPNO Reference number to a temperature dependent scaling factor of ALPHA

B1 Only employed for MATYP=4 (see above)

Page **Program Version** 6-124 01-NOV-1996

MTENONL

NPOINT Number of points to represent the uniaxial stress-strain curve for increased loading

MTEMPNO Reference number to a temperature dependent scaling factor to the uniaxial stress-strain

curve

SIG1 Stress at the first point representing the stressstrain curve.

Corresponding strain at the first point representing the stress-strain curve (=SIG1/YOUNG).

SIG2 Stress at the second point representing the stressstrain curve.

Corresponding strain at the second point representing EPS2 the stress-strain curve.

SIG(NPOINT) Stress at the last point representing the stress-strain curve.

EPS(NPOINT) Corresponding strain at the last point representing the stress-strain curve.

Comment: XTEMPNO (X= P, R, D, A or M) is given on record MTEMP. XTEMPNO = 0 means no temperature dependency of the actual parameter.

Program Version	Date	Page
6	01-NOV-1996	6-125

Local Transformation of the Axes of Anisotropy, 2-D Membrane Elements and 2-D Thin Shell Elements

MTRMEL

MTRMEL	ELNO	OANG	

ELNO Internal element number (generated by the program).

OANG Angle in degrees giving local rotation of the axes of anisotropy in the element plane (see Figure 6-21). OANG is referred to the projection of Q defined on the material record MORS-

MEL.

Figure 6-21 Axes of anisotropy (1, 2) given by Q (see material record MORSMEL) and a (OANG for a six-noded membrane in local coordinate system (x,y,z).

This record is only read if MORSMEL records are given. If MTRMEL is not found for the actual element, OANG is assumed equal to zero for this element.

Page Date Program Version 6-126 01-NOV-1996 6

Local Transformation of the Axes of Anisotropy, 3-D Multilayered Thick Shell Element

MTRSEL

MTRSEL	ELNO	QROT	NLAY	OANG2 ₁
		$OANG2_{NLAY}$		

ELNO Internal element number (generated by the program).

QROT Additional rotation in degrees of all material layers of this element.

NLAY Number of layers of sandwich material. If NLAY = 0, $OANG2_{1-NLAY}$ are assumed equal to

zero.

OANG2₁ Additional rotation in degrees of material layer no. 1. Only read if NLAY ³ 1.

 $OANG2_{1\text{-}NLAY} \quad \text{Are given for all NLAY layers of the sandwich material if NLAY is specified.}$

This record is only read if MORSSEL records are given. If MTRSEL is not found for the actual element, no local rotation is assumed for this element.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	6-127

Local Transformation of the Axes of Anisotropy, Solid Elements

MTRSOL

ELNO Internal element number (generated by the program)

TRANS2 Reference number to the transformation of the axes of anisotropy defined on data type BN-

TRCOS. This transformation is added to the transformation defined on material record

 $MORSSOL (X_{TRANS2} = T \cdot X_{TRANSNO})$

This record is only read if MORSSOL records are given. If MTRSOL is not found for the actual element, no local transformation is assumed for this element.

S.	FS	Δ	M	
	. '/'	_		

Program Version	Date	Page
6	01-NOV-1996	7-1

7 HIGHER LEVEL DATA

7.1Additional Subelement Data

Higher Level

Record Type	Page
-------------	------

Element Type (Number)

ADDATA	7-3
AMATRIX	7-4
AMDACCL	7-6
AMDDAMP	7-7
AMDDISP	7-8
AMDFREQ	7-9
AMDLOAD	7-10
AMDMASS	7-11
AMDSTIFF	7-12
AMDVELO	7-13

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	7-3

Additional User defined Subelement Data

ADDATA

ADDATA	ADDNO	NPAR	PAR1	PAR2
	1			
			PAR(NPAR)	

ADDNO Additional data type number, i.e. reference number referring to additional data specifications.

NPAR Number of parameters specified by user.

PAR1

PAR2 Values for the different terms of the matrix input. The sequence is according to the conven-

: tion of the analysis program. Relevant only if UNIT=0.

PAR(NPAR)

Whenever the analysis program requires data that are particular to a subelement of the superelement type in question (and which are not defined elsewhere) this record type may be employed to assign the data.

The data assigned above are data intended for a lower level subelement. In the record labeled GELMNT2 of the particular subelement an ADDNO must be included which corresponds with the ADDNO of the above record.

The definition of the various parameters is depending on the analysis program to be used and must be revised when switching to another analysis program.

Page Date Program Version 7-4 01-NOV-1996 6

Matrix control Data for Stiffness, Mass, Damping, Load and Resulting Displacement Matrix / Vector

AMATRIX

AMATRIX	NFIELD	MATNO		NNOD
	NSUB	NODGEN		
	_			
	MATRTYP	MATRREF	MATRFORM	IFREQ
	MCOMPL			
	1	1	1	1
	MATRTYP	MATRREF	MATRFORM	IFREQ
	MCOMPL			

NFIELD Number of data fields on this record (including this field and embedded blank fields).

MATNO Reference number ('material number') for this AMATRIX record.

NNOD Number of 'normal' nodes on this element, not including possible generalised d.o.f.s (see description of NODGEN below) from e.g. component mode synthesis dynamic analysis.

NNOD must correspond to specification on GELMNT1 record.

NSUB No. of data fields in each subrecord (= 8 in present version of AMATRIX record).

NODGEN Number of 'nodes' with generalised dof.s. These extra 'nodes' are counted after the 'normal'

nodes.

MATRTYP Matrix / vector type indicator:

- = 1 Stiffness matrix
- = 2 Damping matrix
- = 3 Massmatrix
- = 4 Load vector
- = 5 Resulting Displacement vector
- = 6 Resulting Velocity vector
- = 7 Resulting Acceleration vector

MATRREF

Matrix reference no. for the physical matrix. This no. is pointing to the reference MATRREF on the corresponding AMDSTIFF, AMDDAMP, AMDMASS, AMDLOAD, AMDDISP,

 Program Version
 Date
 Page

 6
 01-NOV-1996
 7-5

AMATRIX

AMDVELO, AMDACCL and / or AMDFREQ records. MATRREF is zero (0) if MATRFORM below is equal to -1.

MATRFORM

- = -1 Element result vectors (displacement, velocity or acceleration) are stored in Result File Format as described in 'SIF, Results Interface File, File Description'.
- = 0 Element vectors (load, displacement, velocity or acceleration) are stored.
- = 1 Element matrix is symmetric and only upper triangle is stored. For submatrices on the diagonal, all terms are stored and the diagonal submatrices must be symmetric.
- = 2 Element matrix is diagonal and only the diagonal nodal matrices are stored. All terms within the nodal submatrices are stored, also terms beeing zero.
- = 3 Element matrix is non-symmetric and the full matrix is stored.
- = 4 Element matrix is a null matrix, is uniquely defined and no elements need be stored. Hence: No storing of nodal matrices!
- = 5 Element matrix is a unit matrix, is uniquely defined and no elements need be stored. Hence: No storing of nodal matrices!

IFREQ

Additional attribute reference number for the matrix of type MATRTYP (e.g. frequency no. for which a stiffness, mass or damping matrix is valid). This means that more than one matrix of same type may be stored for the same element. It is also possible that only one of the matrix types is e.g frequency dependent, while the other types are e.g. frequency independent (only one stiffness, mass and / or damping matrix stored). The correspondence between the frequency noumber and the frequency is stored on an AMDFREQ record.

MCOMPL

Indicator of matrix beeing real or complex.

- = 0 Real values in matrix
- = 1 Complex values in matrix

The matrices are stored as sparse block data, which means that nodal matrices and / or vectors with all terms beeing zero are not stored.

The flag for load / displacement / velocity / acceleration vectors beeing real or complex are on each nodal vector record AMDLOAD, AMDDISP and so on, since there may be a mixture of real and complex vectors.

A matrix element may only have one AMATRIX record.

Page Date Program Version 7-6 01-NOV-1996 6

Vector Data for Matrix Element Acceleration Vector

AMDACCL

AMDACCL	NFIELD	MATRREF	MNODI	LLC
	COMPLX	IDOF	\mathtt{RACCL}_1	\mathtt{RACCL}_2
			$\mathtt{RACCL}_{\mathtt{IDOF}}$	\mathtt{IACCL}_1
	\mathtt{IACCL}_2			$\mathtt{IACCL}_{\mathtt{IDOF}}$

This record contains acceleration terms for a nodal subvector of an element (resulting) acceleration vector. It may be a "reduced" acceleration vector of a superelement or an element acceleration vector of a basic element. Each record contains the acceleration terms of one node for one loadcase.

NFIELD Number of data fields on this record (including this field).

MATRREF Reference number for this acceleration vector record.

MNODI Local matrix element node number.

LLC Local acceleration vector number (positive integer number).

COMPLX Phase shift definition:

= 0 no phase shift = 1 phase shift

IDOF Number of degrees of freedom of MNODI.

 $\label{eq:RACCL} {\sf RACCL}_1 \qquad \qquad {\sf Real \ component \ of \ the \ load \ vector.}$

RACCL₂:

 $RACCL_{IDOF}$

IACCL₁ Imaginary component of the load vector. Only present if COMPLX = 1.

IACCL₂

 $\mathsf{IACCL}_{\mathsf{IDOF}}$

The matrices / vectors are stored as sparse block data, which means that nodal matrices and / or vectors with all terms beeing zero are not stored.

Program Version	Date	Page
6	01-NOV-1996	7-7

Matrix Data for Matrix Element Damping Matrix

AMDDAMP

AMDDAMP	NFIELD	MATRREF	MNODI	MNODJ
	CODDOF	K ₁₁	K ₂₁	K ₃₁
	K ₄₁		K _{IDOF,1}	K ₁₂
	_			
	K ₂₂		$K_{ ext{IDOF,2}}$	
	$K_{1, \text{JDOF}}$		$K_{IDOF,JDOF}$	

This record contains damping terms for a nodal submatrix of an element damping matrix. It may be a reduced damping matrix of a superelement or an element damping matrix of a basic element. Each record contains the damping terms connecting one node with another, or with itself. For submatrices on the diagonal, all terms are always stored.

Each record of this type is indexed by the nodes which is connected by the damping terms of the submatrix.

NFIELD Number of data fields on this record (including this field).

MATRREF Reference number for this damping matrix record.

MNODI Local matrix element node number.

MNODJ Local matrix element node number.

CODDOF Coded form of submatrix dimension.

CODDOF= IDOF*1000 + JDOF

IDOF= Number of degrees of freedom of MNODI. JDOF= Number of degrees of freedom of MNODJ.

If this is a complex damping matrix, the imaginary terms are stored after all the real terms.

The matrices are stored as sparse block data, which means that nodal matrices and / or vectors with all terms beeing zero are not stored.

Page	Date	Program Version
7-8	01-NOV-1996	6

Vector Data for Matrix Element Displacement Vector			AMDDISP	
AMDDISP	NFIELD	MATRREF	MNODI	LLC
AMUDISP	NE TETD	MAIKKEF	I MODI	ППС
	COMPLX	IDOF	RDISP ₁	RDISP ₂
			RDISP _{IDOF}	IDISP ₁
	·	_	_	_
	IDISP			IDISP _{IDOE}

This record contains displacement terms for a nodal subvector of an element (resulting) displacement vector. It may be a reduced displacement vector of a superelement or an element displacement vector of a basic element. Each record contains the displacement terms of one node for one loadcase.

NFIELD Number of data fields on this record (including this field).

MATRREF Reference number for this displacement vector record.

MNODI Local matrix element node number.

LLC Local displacement vector number (positive integer number).

COMPLX Phase shift definition:

= 0 no phase shift = 1 phase shift

IDOF Number of degrees of freedom of MNODI.

 $\begin{array}{ll} {\rm RDISP}_1 & {\rm Real\ component\ of\ the\ displacement\ vector.} \\ {\rm RDISP}_2 & {\rm } \end{array}$

 $\overset{\cdot}{\mathrm{RDISP}_{\mathrm{IDOF}}}$

 $IDISP_1$ Imaginary component of the displacement vector. Only present if COMPLX = 1. $IDISP_2$

: IDISP_{IDOF}

The matrices / vectors are stored as sparse block data, which means that nodal matrices and / or vectors with all terms beeing zero are not stored.

Program Version	Date	Page
6	01-NOV-1996	7-9

Frequency Definition for AMATRIX Records

AMDFREQ

AMDFREQ	NFIELD	MATRREF	NFREQ	
	-			
	\mathtt{IFREQ}_1	\mathtt{FREQ}_1		
			$\mathtt{IFREQ}_{\mathtt{NFREQ}}$	$FREQ_{NFREQ}$

This record contains the frequencies referred to by the IFREQ field on the AMATRIX record with the same MATRREF as this record.

NFIELD Number of data fields on this record (including this field).

MATRREF Reference number for this frequency definition record.

NFREQ Number of frequencies defined on this AMDFREQ record

IFREQ₁ The first frequency reference number.

FREQ₁ The frequency referred to by IFREQ1 on the AMATRIX record. The dimension of the fre-

quency is Herz (1/second), or in other words oscillations per second.

•

.

 $\label{eq:ifrequency} IFREQ_{NFREQ} \qquad \mbox{The last frequency reference number.}$

 $\label{eq:frequency} \text{FREQ}_{\text{NFREQ}} \qquad \text{The frequency referred to by IFREQ}_{\text{NFREQ}} \text{ on the AMATRIX record.}$

All the IFREQ numbers referred to on AMATRIX records must be defined on the AMDFREQ record.

Page Date Program Version 7-10 01-NOV-1996 6

Vector Data for Matrix Element Load Vector

AMDLOAD

AMDLOAD	NFIELD	MATRREF	MNODI	LLC
	COMPLX	IDOF	\mathtt{RLOAD}_1	\mathtt{RLOAD}_2
			$\mathtt{RLOAD}_{\mathtt{IDOF}}$	\mathtt{ILOAD}_1
	\mathtt{ILOAD}_2			$\mathtt{ILOAD}_{\mathtt{IDOF}}$

This record contains load terms for a nodal subvector of an element load vector. It may be a reduced load vector of a superelement or an element load vector of a basic element.

Each record contains the load terms of one node for one loadcase.

NFIELD Number of data fields on this record (including this field).

MATRREF Reference number for this load vector record.

MNODI Local matrix element node number.

LLC Local load vector number (positive integer number).

COMPLX Phase shift definition:

= 0 no phase shift = 1 phase shift

IDOF Number of degrees of freedom of MNODI.

RLOAD₁ Real component of the load vector.

RLOAD₂

 $RLOAD_{IDOF}$

ILOAD₁ Imaginary component of the load vector. Only present if COMPLX = 1.

ILOAD₂

 $ILOAD_{IDOF}$

The matrices / vectors are stored as sparse block data, which means that nodal matrices and / or vectors with all terms beeing zero are not stored.

Program Version	Date	Page
6	01-NOV-1996	7-11

Matrix Data for Matrix Element Mass Matrix

AMDMASS

AMDMASS	NFIELD	MATRREF	MNODI	MNODJ
	CODDOF	K ₁₁	K ₂₁	K ₃₁
	K ₄₁		$K_{\text{IDOF,1}}$	K ₁₂
	K ₂₂		K _{IDOF,2}	
	$K_{1, \text{JDOF}}$		$K_{IDOF,JDOF}$	

This record contains mass terms for a nodal submatrix of an element mass matrix. It may be a reduced mass matrix of a superelement or an element mass matrix of a basic element. Each record contains the mass terms connecting one node with another, or with itself. For submatrices on the diagonal, all terms are always stored. Each record of this type is indexed by the nodes which is connected by the mass terms of the submatrix.

NFIELD Number of data fields on this record (including this field).

MATRREF Reference number for this mass matrix record.

MNODI Local matrix element node number.

MNODJ Local matrix element node number.

CODDOF Coded form of submatrix dimension.

CODDOF= IDOF*1000 + JDOF

IDOF= Number of degrees of freedom of MNODI. JDOF= Number of degrees of freedom of MNODJ.

If this is a complex mass matrix, the imaginary terms are stored after all the real terms.

The matrices are stored as sparse block data, which means that nodal matrices and / or vectors with all terms beeing zero are not stored.

Page Date Program Version 7-12 01-NOV-1996 6

Matrix Data for Matrix Element Stiffness Matrix

AMDSTIFF

AMDSTIFF	NFIELD	MATRREF	MNODI	MNODJ
	CODDOF	K ₁₁	K ₂₁	K ₃₁
	K ₄₁		K _{IDOF,1}	K ₁₂
	_	-		-
	K ₂₂		K _{IDOF,2}	
	$K_{1, \text{JDOF}}$		K _{IDOF,JDOF}	

This record contains stiffness terms for a nodal submatrix of an element stiffness matrix. It may be a reduced stiffness matrix of a superelement or an element stiffness matrix of a basic element. Each record contains the stiffness terms connecting one node with another, or with itself. For submatrices on the diagonal, all terms are always stored.

Each record of this type is indexed by the nodes which is connected by the stiffness terms of the submatrix.

NFIELD Number of data fields on this record (including this field).

MATRREF Reference number for this stiffness matrix record.

MNODI Local matrix element node number.

MNODJ Local matrix element node number.

CODDOF Coded form of submatrix dimension.

CODDOF= IDOF*1000 + JDOF

IDOF= Number of degrees of freedom of MNODI. JDOF= Number of degrees of freedom of MNODJ.

If this is a complex stiffness matrix, the imaginary terms are stored after all the real terms.

The matrices are stored as sparse block data, which means that nodal matrices and / or vectors with all terms beeing zero are not stored.

Program Version	Date	Page
6	01-NOV-1996	7-13

Vector Data for Matrix Element Velocity Vector

AMDVELO

AMDVELO	NFIELD	MATRREF	MNODI	LLC
	COMPLX	IDOF	$RVELO_1$	$RVELO_2$
			$\mathtt{RVELO}_{\mathtt{IDOF}}$	\mathtt{IVELO}_1
	${\tt IVELO}_2$			$\mathtt{IVELO}_{\mathtt{IDOF}}$

This record contains velocity terms for a nodal subvector of an element (resulting) velocity vector. It may be a "reduced" velocity vector of a superelement or an element velocity vector of a basic element. Each record contains the velocity terms of one node for one loadcase.

NFIELD Number of data fields on this record (including this field).

MATRREF Reference number for this velocity vector record.

MNODI Local matrix element node number.

LLC Local velocity vector number (positive integer number).

COMPLX Phase shift definition:

= 0 no phase shift = 1 phase shift

IDOF Number of degrees of freedom of MNODI.

RVELO₁ Real component of the load vector.

 $RVELO_2$

.

 $\mathsf{RVELO}_{\mathsf{IDOF}}$

IVELO₁ Imaginary component of the load vector. Only present if COMPLX = 1.

 $IVELO_2$

:

 $IVELO_{IDOF}$

The matrices / vectors are stored as sparse block data, which means that nodal matrices and / or vectors with all terms beeing zero are not stored.

 Page
 Date
 Program Version

 7-14
 01-NOV-1996
 6

7.2 Boundary Conditions, Loads and Point Masses

Higher Level

BSELL

Record Type	Page
Element Type (Number)	
BLDEP	7-15
BNBCD	7-17
BNDISPL	7-18
BNDOF	7-20
BNINCO	7-21
BNLOAD	7-22
BNMASS	7-23
BNTRCOS	7-24
BQDP	7-25

7-27

Program Version	Date	Page
6	01-NOV-1996	7-15

Nodes with Linear Dependence

BLDEP

BLDEP	NODENO	CNOD	NDDOF	NDEP
	DEPDOF ₁	$\mathtt{INDEPDOF}_1$	b _{DEP1,INDEP1}	
	DEPDOF ₂	INDEPDOF ₂	b _{DEP2,INDEP2}	
	DEPDOF _{NDEP}	$\mathtt{INDEPDOF}_{\mathtt{NDEP}}$	$b_{DEPn,INDEPn}$	

NODENO Internal node number of the dependent node.

CNOD Internal node number of an independent node.

NDDOF Number of dependent degrees of freedom of node NODENO. When not specified, NDDOF

is equal to NDEP.

NDEP Number of triplets with DEPDOF, INDEPDOF and b_i;

DEPDOF¹ Dependent node's degree of freedom.

INDEPDOF¹ Independent node's degree of freedom.

 $b_{i,j}$ The contribution of the j'th degree of freedom of the dependent node to the i'th dependent

degrees of freedom of the dependent node.

Each line specifies one dependent degree of freedom which is dependent on the independent node's specified degree of freedom with the factor $b_{i,j}$. The degrees of freedom must also be specified on BNBCD-records as linear dependent (3) for the dependent node, and as retained (4) for the independent node.

A node may be dependent on many nodes. For each combination of NODENO and CNOD a new record, starting with the identifier BLDEP, is given.

The same combination of NODENO and CNOD may occur only once.

When node transformations have been specified for any of the nodes implied in the linear dependence, the degrees of freedom refers to the transformed local coordinate system.

1DEPDOF and one degree of f dom is the z-tra

SESAM

Page Date Program Version 7-16 01-NOV-1996 6

BLDEP

Multipoint constraints (2nd and higher order dependence) may be specifed through more BLDEP records with the same linear dependent node and different independent nodes. The factors $b_{i,j}$ may be found as Lagrange multiplicators or coefficients (Lagrange interpolation polynomial). For 2nd order dependence this may as well be specified on one BQDP record.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	7-17

Nodes with Boundary Conditions

BNBCD

BNBCD	NODENO	NDOF	FIX1	FIX2
			FIX(NDOF)	

NODENO Nodes with specified boundary condition.

NDOF Number of degrees of freedom.

FIX1 FIX2

: Specification of boundary condition codes of relevant degrees of freedom.

:

FIX(NDOF)

The codes of FIX1, FIX2,, FIX(NDDF) are explained below:

FIX1 = 0 free to stay

FIX2 = 1 fixed at zero displacement, temperature, etc.

: = 2 prescribed displacement, temperature, velocity, acceleration, etc. different from zero

= 3 linearly dependent

FIX(NDOF) = 4 retained degree of freedom, i.e. supernode.

The code FIX = 2 just indicates specified condition for the relevant degree of freedom. Whether it is displacement, first time derivative of the displacement etc. is definde on the BNDISPL record. Degrees of freedom with FIX = 2 which are not defined on the BNDISPL record will be fixed (have zero displacement, velocity and acceleration).

The node numbers (degrees of freedom) with FIX = 4 are called supernodes. The supernode numbering is according to the increasing order of their internal node number.

Page Date Program Version 7-18 01-NOV-1996 6

Nodes with Displacements, Velocities and Accelerations

BNDISPL

BNDISPL	LLC	DTYPE	COMPLX	
	NODENO	NDOF	RDISP1	RDISP2
				RDISP(NDOF)
	IDISP1	IDISP2		
		IDISP(NDOF)		

LLC Local load case number (positive integer number).

DTYPE Type of boundary condition

= 1 specified displacement, temperature, etc.

= 2 specified velocity, first time derivative of the temperature, etc.

= 3 specified acceleration, etc.

COMPLX Phase shift definition.

= 0 no phase shift = 1 phase shift

NODENO Node number.

NDOF Number of degrees of freedom at the node NODENO.

RDISP1 The real part of the specified boundary condition with respect to the first degree of freedom.

RDISP2 The real part of the specified boundary condition with respect to the second degree of free-

: dom.

RDISP(NDOF) The real part of the specified boundary condition with respect to the last degree of freedom.

IDISP1 The imaginary part of the specified boundary condition with respect to the first degree of

freedom.

IDISP2 The imaginary part of the specified boundary condition with respect to the second degree of

: freedom

IDISP(NDOF) The imaginary part of the specified boundary condition with respect to the last degree of

freedom.

DISP and IDISP refer to the transformed coordinate system if the node NODENO is transformed, else to the global coordinate system of the superelement.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	7-19

BNDISPL

The imaginary numbers follow immediately after the real numbers, i.e. there are no blank fields between the last real part and the first imaginary part.

If phase shift is not specified, the fields or positions IDISP1, IDISP2, etc. are left out.

SESAM

Page Date Program Version 7-20 01-NOV-1996 6

Nodes with Transformation

BNDOF

BNDOF		NODENO	TRANSD	TRANSR	
NODENO	Pro	gram defined node nur	nber.		
TRANSD		erence number to the t	transformed coordinate	e system of the displac	ements, given on BN-
TRANSR	Ref CO:		transformed coordinat	te system of the rotati	ons, given on BNTR-

If no reference number is given, no transformation is relevant to the relevant type of degree of freedom, i.e. translations or rotations.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	7-21

Nodes with Initial Conditions If Arbitrary Time Dependent Loading

BNINCO

BNINCO	INCONO	DTYPE		
	NODENO	NDOF	RDISP1	RDISP2
	RDISP3	RDISP4	RDISP5	RDISP6

INCONO Initial condition number.

DTYPE Type of condition.

= 1 Displacement= 2 Velocities

NODENO Internal node number.

NDOF Number of degrees of freedom for node.

RDISP1 RDISP2

Value in the first degree of freedom.

RDISP(NDOF)

SESAM

Page Date Program Version 7-22 01-NOV-1996 6

Nodes with Loads

BNLOAD

	i	i i		i
BNLOAD	LLC	LOTYP	COMPLX	
	NODENO	NDOF	RLOAD1	RLOAD2
				RLOAD(NDOF)
	ILOAD1	ILOAD2		
		ILOAD(NDOF)		

LLC Local load case number (positive integer number).

LOTYP Load type at node NODENO.

COMPLX Phase shift definition.

= 0 no phase shift= 1 phase shift

NODENO Node number.

NDOF Number of degrees of freedom at the node NODENO.

RLOAD1 The real part of the load with respect to the first degree of freedom.

RLOAD2 The real part of the load with respect to the second degree of freedom.

:

RLOAD(NDOF) The real part of the load with respect to the last degree of freedom.

ILOAD1 The imaginary part of the load with respect to the first degree of freedom.

ILOAD2 The imaginary part of the load with respect to the second degree of freedom.

:

ILOAD(NDOF) The imaginary part of the load with respect to the last degree of freedom.

The imaginary numbers follow immediately after the real numbers, i.e. there are no blank fields between the last real part and the first imaginary part.

If phase shift is not specified, i.e. COMPLX = 0, the fields or positions ILOAD1, ILOAD2, etc. are left out.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	7-23

Nodes with Point Masses

BNMASS

BNMASS	NODENO	NDOF	MASS1	MASS2
			MASS(NDOF)	

NODENO Node number.

NDOF Number of degrees of freedom.

MASS1 Point mass with respect to the first degree of freedom.

MASS2 Point mass with respect to the second degree of freedom.

:

 $MASS(NDOF) \quad \mbox{Point mass with respect to the last degree of freedom (NDOF)}.$

SESAM

Page	Date	Program Version
7-24	01-NOV-1996	6

Transformation to Local Coordinate System, Direction Cosines

BNTRCOS

BNTRCOS	TRANS	C11	C21	C31
	C12	C22	C32	C13
	C23	C33		

TRANS Reference number to the transformed coordinate system.

C11
C21
C31
: Terms (9 direction cosines) of the transformation matrix (rotation).
C23
C33

The transformation matrix c describes the tranformation defined by

 $\mathbf{r'} = \mathbf{c} \ \mathbf{r}$

where \mathbf{r} ' refers to the local coordinate system and \mathbf{r} to the global (superelement) coordinate system.

The GUNIVEC records are used for beam elements only, i.e. basic element types 2, 15 and 23. Other basic element types may refer to BNTRCOS records. No ambiguity thus exists if both a GUNIVEC and BNTRCOS record have same TRANSNO.

Program Version	Date	Page
6	01-NOV-1996	7-25

Nodes with	Simple Quadratic	Dependence		BQDP
BQDP	NODENO	DDOF		
	CNOD1	CDOF ₁	BETA_1	CDOF ₂
	BETA ₂			CDOF(DDOF)
	BETA(DDOF)			
	CNOD2			
	CNOD3			
NODENO DDOF	Program defined node num Dependent degrees of free of freedom with the code F	dom of NODENO. (N	Must correspond with	9
CNOD1	Node number of the first in	ndependent node.		
CDOF ₁	The first relevant degree of pendent degree of freedom		1 which is coupled to	the corresponding de-
BETA ₁	The corresponding contribution of the first relevant degree of freedom of CNOD1 to the quadratic dependence of the corresponding dependent degree of freedom of NODENO.			
CDOF ₂	The second relevant degree pendent degree of freedom		O1 which is coupled t	o the corresponding de-
BETA ₂ : CDOF(DDOF) depend-	The corresponding contribution of the second relevant degree of freedom of CNOD1 to the quadratic dependence of the corresponding dependent degree of freedom of NODENO. The last relevant degree of freedom of CNOD1 which is coupled to the corresponding			
C	edom of NODENO.			
BETA(DDOF)	The corresponding contribution of the last relevant degree of freedom of CNOD1 to the quadratic dependence of the corresponding dependent degree of freedom of NODENO.			
CNOD2	As above for the second independent node.			
: CNOD3	As above for the third and last independent node.			

SESAM

Page Date Program Version 7-26 01-NOV-1996 6

BQDP

By simple is meant that f.ex. the first dependent degree of freedom is always coupled to the first independent degree of freedom, the second dependent degree of freedom is always coupled to the second independent degree of freedom, etc.

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	7-27

Subelement Load Description

BSELL

BSELL	LC	SUBNO		
	LLC1	FACT1	LLC2	FACT2
			LLCN	FACTN

LC Global load case number (positive integer number).

SUBNO Subelement number of the superelement in question.

LLC1 First local load case included in the global load case LC.

FACT1 Scaling factor for the first local load case.

LLC2 Second local load case included in the global load case LC.

FACT2 Scaling factor for the second local load case.

:

LLCN Last local load case included in the global load case LC.

FACTN Scaling factor for the last local load case.

 Page
 Date
 Program Version

 7-28
 01-NOV-1996
 6

7.3 Nodal Data and Element Geometry Definition

Higher Level

Record Type Page

Element Type (Number)

7-29
7-30
7-31
7-33
7-36

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	7-29

Nodal Coordinates

GCOORD

GCOORD NODENO XCOORD YCOORD ZCOORD

NODENO Node number (internal).

XCOORD

YCOORD Cartesian X-, Y- and Z-coordinates of node NODENO.

ZCOORD

There will be one record with the identifier GCOORD for each node. The sequence of the records must correspond to the internal node numbering.

Page Program Version Date 7-30 01-NOV-1996

Element Data Definition

GELMNT1

GELMNT1	ELNOX	ELNO	ELTYP	ELTYAD
	NODIN1	NODIN2		
		NODIN(N)		

ELNOX External element number (specified or controlled by user).

ELNO Internal element number (generated by program).

ELTYP Element type number. Refer to chapter 6 for description of legal type no. For element type

no. 70 ("matrix element") all relevant element data are stored as stiffness, mass, damping ma-

trices a.s.o. See the AMATRIX record for more information.

Additional information related to element type: **ELTYAD**

= IPLANE for membranes

= ISTRUCT for two noded beam elements

= IMATRX for "matrix elements"

IPLANE Used to specify plane stress / plane strain conditions

Plane stress 0 1 Plane strain

ISTRUCT Used to specify structural / nonstructural elements

0 Structural beam 1 Non structural beam

IMATRX Reference no. to the corresponding AMATRIX record.

Referring to the the AMATRIX record with IMATRX = n n

NODIN1 NODIN2

Global internal node numbers of the elements in question. The sequence of the node NODIN(N) numbers is in accordance with the local node numbering of the basic elements.

By global node number is meant the node numbering of the entire superelement of which the element ELNOX is a part. The internal node number refers to the node number generated by the program.

The program-defined element number ranges from 1 up to number of elements.

The sequence of the records will correspond to the program-defined element numbering, ELNO.

Program Version Date Page 6 01-NOV-1996 7-31

Subelement Description with Simple Correspondence GELMNT2 between Degrees of Freedom of Subelement and Relevant Assembly

GELMNT2	SUBNO	SLEVEL STYPE		ADDNO
	T ₁₁	T ₂₁	T ₃₁	T ₁₂
	T ₂₂	T ₃₂	T ₁₃	T ₂₃
	T ₃₃	\mathtt{T}_{14}	\mathtt{T}_{24}	T ₃₄
	NNOD	NOD1	NOD2	
		NOD (NNOD)		

SUBNO Subelement number within the relevant assembly which this superelement is part of.

SLEVEL Superelement level. Should be identical to SLEVEL on the IDENT record for this subelement.

STYPE Superelement type of the subelement in question.

ADDNO Additional data type number, i.e. reference number referring to additional data specifications.

T11

T21

T31 Elements of the general transformation matrix (see next page).

T21
T31 Elements of the general transformation matrix (see next page).
:
T34

NNOD Number of nodes of the subelement in question.

NOD1
NOD2
Node numbers of the subelement in question.

: Note: The sequence of the nodes defined on this record must be in ascending order of the internal node numbers of the supernodes on the level below. If this is not the case the NOD(NNOD) coupling of the superelements will be wrong.

 Page
 Date
 Program Version

 7-32
 01-NOV-1996
 6

GELMNT2

The general transformation matrix:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} & T_{13} & T_{14} \\ T_{21} & T_{22} & T_{23} & T_{24} \\ T_{31} & T_{32} & T_{33} & T_{34} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

where

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \text{ subelement coordinate system, } \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \text{ assembly coordinate system}$$

Figure 7-1 Subelement and assembly coordinate system

The 9 terms (cosines) of the first submatrix are due to a possible rotation and/or mirroring of the subelement in question

The three terms of the second submatrix are the coordinates of the origin of the global (assembly) coordinate system in the local coordinate system.

SESAM

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	7-33

Reference to Element Data

GELREF1

GELREF1	ELNO	MATNO	ADDNO	INTNO
	MINTNO	STRANO	STRENO	_
	GEONO/OPT		ECCNO/OPT	TRANSNO/OPT
	GEONO(1)		GEONO(N)	FIXNO(1)
		FIXNO(1)	ECCNO(1)	
	ECCNO(N)	TRANSNO(1)		TRANSNO(N)

Shortest version:

GELREF1	ELNO	ELNO MATNO		INTNO
MINTNO		STRANO STRENO		1
	GEONO/OPT	FIXNO/OPT	ECCNO/OPT	TRANSNO/OPT

Shortest version:

ELNO Internal element number (generated by the program).

MATNO Material number.

= 0 no material data attached to the element.

ADDNO Additional data type number, i.e. number referring to additional data specification.

= 0 no additional data attached to the element.

INTNO Integration station reference number for stiffness matrix, i.e. number referring to the specification of integration stations. An integration station is defined as:

- an assembly of integration points over a cross section of a 1-dimensional (beam or bar)

element,

- an assembly of integration points on a line through the thickness of a 2-dimensional element,

Page Date Program Version 7-34 01-NOV-1996 6

GELREF1

- one single integration point for a 3-dimensional element. For further explanation see record GELINT.

INTNO = 0: Default values of the analysis program are employed.

MINTNO Integration station reference number for mass and damping matrices. Integration station, see INTNO.

MINTNO = 0: Default values of the analysis program are employed.

STRANO Initial strain number, i.e. number referring to the specification of initial strains given on data

type ASTR.

STRENO Initial stress number, i.e. number referring to the specification of initial stresses given on data

type ASTR.

GEONO/OPT Geometry reference number or option for geometry reference number specified later in this record sequence.

> 0 The geometry reference number (the same for all nodes in the element). GEONO(1), ..., GEONO(N) will not be specified.

= 0 No geometry data is given, i.e. neither here nor on GEONO(1), ..., GEONO(N).

=-1 Reference numbers to geometry data are specified later in this record sequence for all nodes, i.e. all GEONO(1), ..., GEONO(N) will be given.

FIXNO/OPT Fixation reference number or option for fixation reference numbers specified later in this record sequence. The meaning assigned to the values of FIXNO/OPT will be the same as for GEONO/OPT.

ECCNO/OPT Eccentricity reference number or option for eccentricity reference numbers specified later in this record sequence. The meaning assigned to the values of ECCNO/OPT will be the same as for GEONO/OPT.

TRANSNO/OPT Reference number for local coordinate system specification or option for specification of local nodal coordinate systems later in this record sequence. The meaning assigned to the values of TRANSNO/OPT will be the same as for GEONO/OPT.

GEONO(1) Geometry reference number, i.e. number referring to thickness or cross sectional specification. Not employed for 3-dimensional elements. GEONO(1) is the reference number for the 1st local node of the element, GEONO(i) will be the reference number for the i'th local node.

GEONO(N) Geometry reference number for the last local node of the element.

FIXNO(1) Number referring to the specification of degree of fixation (Data type BELFIX). FIXNO(1) is the reference number for the 1st local node of the element, FIXNO(i) will be the reference number for the i'th local node.

FIXNO(N) Degree of fixation reference number for the last local node of the element.

SESAM

INPUT INTERFACE FILE

Program Version Date Page 6 01-NOV-1996 7-35

GELREF1

ECCNO(1) Eccentricity number for the first local node of the element, i.e. number referring to the speci-

fication of eccentricities.

ECCNO(N) As ECCNO(1) only for the last local node.

TRNSNO(1) Number referring to the specification of the local element coordinate system for the 1st local

node of the element. Refers to BNTRCOS or GUNIVEC record depending on element type.

TRANSNO(N) As TRANSNO(1) only for the last local node.

N is the number of local nodes of the element.

Note: Parameters appear in succeeding order from third line.

Page Date Program Version 7-36 01-NOV-1996 6

Correspondence between External and Internal Node Numbering, and Number of Degrees of Freedom of Each Node

GNODE

GNODE	NODEX	NODENO	NDOF	ODOF
011022	1,02211	1,0221,0	1,201	1 0201

NODEX External node number (specified or controlled by user).

NODENO Internal node number defined by the program (may be generated by internal node numbering

optimalizer). The internal node numbers range from 1 up to number of nodes.

NDOF Number of degrees of freedom of nodal point NODENO.

ODOF Order of degrees of freedom. NDOF digits.

Example NDOF = 3, ODOF = 135 means 3 degrees of freedom in x, z and Ry direction respectively in the superelement's coordinate system, unless a local nodal coordinate system is

specified (see the BNDOF and BNTRCOS record).

There will be one record with the identifier GNODE for each node. The sequence of the records will correspond to the internal node number, NODENO.

SESAM

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	7-37

7.4Super-Element Hierarchy Information in Highest Level T-File

Higher Level

Record Type	Page
HIERARCH	7-38
HSUPSTAT	7-40
HSUPTRAN	7-41

Page	Date	Program Version
7-38	01-NOV-1996	6

Superelement Hierarchy Description

HIERARCH

HIERARCH	NFIELD	IHREF	ISELTY	INDSEL
	ISLEVL	ITREF	IHPREF	NSUB
	IHSREF ₁		$\mathtt{IHSREF}_{\mathtt{NSUB}}$	

This record identifies a superelement in the hierarchy. All the HIERARCH records are written in the highest level (top-level) T-file.

The set of HIERARCH - records stored will define the superelement hierarchy, see figure 1-1. Note that the reference IHREF is unique for all "nodes" in the superelement tree, i.e. unique for every HIERARCH - record. If superelements are repeated, each repetition will have a unique hierarchy reference IHREF, although the superelement type number is identical.

NFIELD No. of data fields on this record (including this field).

IHREF Hierarchy reference number. Number 1 is reserved for the top level superelement. In

SESAM, PRESEL (super-element pre-processor) is writing the HIERARCH records and de-

fining a unique number (IHREF) for each appearance of the differenet superelements

ISELTY Superelement type number.

INDSEL Superelement index number. Superelement index in case of repeated superelements. If su-

perelement is not repeated, INDSEL=1 must be used.

ISLEVL Super-element level.

ITREF Reference to record HSUPTRAN, defining super-element transformation between actual

super-element and parent super-element.

IHPREF Reference to HIERARCH record of parent super-element.

NSUB No. of sub-elements in this super-element.

IHSREF_i Reference to HIERARCH record for sub-element number 'i'.

Program Version	Date	Page
6	01-NOV-1996	7-39

HIERARCH

N2, N3, N4 and N5 are some uniqe numbers in the hierarchy

Figure 7-2 Superelement hierarchy with 3 levels.

Example 7.1 Superelement hierarchy with 3 levels. Contents of the HIERARCH records.

IHREF	ISLEVL	IHPREF	NSUB	IHSREF ₁	IHSREF ₂
1	3	0	2	N2	N5
N2	2	1	2	N3	N4
N3	1	N2	0		
N4	1	N2	0		
N5	1	1	0		

Number of HIERARCH-records needed to represent this example = 5. The above values would be used in the 5 HIERARCH records. Note that N2, N3, N4 & N5 may take any values as long as they are unique.

SESAM

Page	Date	Program Version
7-40	01-NOV-1996	6

Superelement Statistical Information

HSUPSTAT

HSUPSTAT	NFIELD	ISELTY	NIDOF	NRDOF
	NBAND	NELT	LINDEP	RELOADC
	COMPLC			

This record lists statistical information about superelements. All the HSUPSTAT records are written in the highest level (top-level) T-file. The HSUPSTAT record is referenced from the HIERARCH record through the superelement type number (ISELTY).

NFIELD No. of data fields on this record (including this field).

ISELTY Superelement type number.

NIDOF Estimated number of internal degrees of freedoms.

NRDOF Estimated number of retained degrees of freedoms.

NBAND Estimated bandwidth of the internal degrees freedoms. The estimated bandwidth shall be

equal to -1 if no bandwidth information exists.

NELT Estimated number of elements. The estimated number of elements is only required for first

level superelements.

LINDEP If LINDEP > 0, this superelement has linear dependent nodes.

RELOADC Number of real loadcases.

COMPLC Number of complex loadcases.

Program Version	Date	Page
6	01-NOV-1996	7-41

Superelement Transformations

HSUPTRAN

HSUPTRAN	NFIELD	ITREF	T ₁₁	T ₂₁
		I		
	T ₃₁	T ₄₁	T ₁₂	
	T ₄₂		T ₁₄	T ₂₄
	T ₃₄	T ₄₄		

This record is defining the super-element transformation between actual super-element and parent super-element. All the HSUPTRAN records are written in the highest level (top-level) T-file. The HSUPTRAN record is referenced from the HIERARCH record through the superelement transformation reference number, ITREF.

NFIELD No. of data fields on this record (including this field).

ITREF Reference to the HSUPTRAN record (from the HIERARCH record).

 T_{ij} Term with index 'i','j' of the transformation matrix between actual super-element and parent superelement, defined by: $\mathbf{X'}_{actual} = \mathbf{T \cdot X}_{parent}$

Superelement transformation:

$$\left[\begin{array}{c} X'\\Y'\\Z'\\1\end{array}\right] = \left[\begin{array}{cccc} T_{11} & T_{12} & T_{13} & T_{14}\\ T_{21} & T_{22} & T_{23} & T_{24}\\ T_{31} & T_{32} & T_{33} & T_{34}\\ 0 & 0 & 0 & 1\end{array}\right] \cdot \left[\begin{array}{c} X\\Y\\Z\\1\end{array}\right]$$

$$\begin{bmatrix} X' \\ Y' \\ Z' \end{bmatrix} = Coordinate system of actual superelement.$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = Coordinate system of parent superelement.$$

$$\begin{bmatrix} T_{14} \\ T_{24} \\ T \end{bmatrix} = \begin{bmatrix} DX \\ DY \\ DZ \end{bmatrix} = Displacement terms of superelement transformation$$

SESAM

 Page
 Date
 Program Version

 7-42
 01-NOV-1996
 6

7.5 Material Data

Higher Level

Record Type Page

Element Type (Number)

MAXDMP	7-43
MAXSPR	7-44
MGDAMP	7-45
MGSPRNG	7-46

SESAM

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	7-43

Axial Damper between Two Nodal Points

MAXDMP

MAXDMP

MATNO Material number, i.e. reference number referred to by the element specification.

DAMP Axial damping constant.

The axial damping constant corresponds to the force to be applied in order to get a unit velocity in the direction of the basic element.

SESAM

Page Date Program Version 7-44 O1-NOV-1996 6

Axial Spring between Two Nodal Points

MAXSPR

MAXSPR	MATNO	SCON		
--------	-------	------	--	--

MATNO Material number, i.e. reference number referred to by the element specification.

SCON Axial spring constant.

The axial spring constant corresponds to the force to be applied in order to get a unit displacement in the direction of the basic element.

SESAM

INPUT INTERFACE FILE

Program Version	Date	Page
6	01-NOV-1996	7-45

Damping Element to Ground

MGDAMP

MGDAMP	MATNO	NDOF	C(1, 1)	C(2, 1)
	Γ	Γ	Γ	
			C(NDOF, 1)	C(2, 2)
				,
	C(3, 2)			C(NDOF, 2)
	C(3, 3)			C(NDOF, NDOF)

MATNO Material number, i.e. reference number referred to by the element specification.

NDOF Number of degrees of freedom of the node.

C(i,j) Elements of the damping matrix (only elements on and below the main diagonal are stored, i.e. symmetric damping matrix assumed). The elements are referred to a local system if defined (by TRANSNO on GELREF1), otherwise to the global coordinate system of the superelement.

The damper to ground matrix is the viscous damping matrix.

SESAM

Page	Date	Program Version
7-46	01-NOV-1996	6

Spring Element to Ground

MGSPRNG

MGSPRNG	MATNO	NDOF	K(1, 1)	K(2, 1)
		<u> </u>	K(NDOF, 1)	K(2, 2)
	• • •		K(NDOF, I)	K(Z, Z)
	K(3, 2)			K(NDOF, 2)
	K(3, 3)			K(NDOF, NDOF)

MATNO Material number, i.e. reference number referred to by the element specification.

NDOF Number of degrees of freedom of the node.

K(i,j) Elements of the stiffness matrix (only elements on and below the main diagonal are stored, i.e. symmetric stiffness matrix assumed). The elements are referred to a local system if de-

fined (by TRANSNO on GELREF1), otherwise to the global coordinate system of the su-

perelement.

The (i,j)'th element of the stiffness matrix corresponds to the force to be given in the i'th d.o.f. to get a unit displacement in the j'th d.o.f.

Program Version	Date	Page
6	01-NOV-1996	8-1

8 RULES FOR EXTENSION OF THE INTERFACE

The interface may easily be extended to include new application areas, or simply to include data which have been left out. Some rules must, however, be followed in order to avoid confusion and misunderstandings. The rules can be summarized as:

a)	Data on one record must belong to only one group, i.e. one of the eight groups defined in Section 3.
b)	No identifier already employed must be used to identify data of different meaning.
c)	The first character of each identifier must have the appropriate letter already defined in Section 3.
d)	The maximum number of characters of each identifier is eight.
e)	Alphanumeric characters (ASKII) may be employed to describe an identifier.
f)	Otherwise identical identifiers for first and higher levels may be separated with a numeric character at the end of the identifier, i.e. 1 for first level and 2 for higher levels.
g)	Identifiers should preferably be chosen which can easily be related to the type of data which are stored.
h)	Each file record is fixed consisting of 72 characters, i.e. an eight character identifier field and four data fields compatible with the FORTRAN 4E16.8 format.
i)	Text strings may follow TEXT identifiers. Text data have a separate format (A72). See description of the TEXT record.

Program Version	Date	Page
6	01-NOV-1996	A-1

A EXAMPLES

Two test examples have been included to demonstrate the application of the interface file. The first example is a one-level static analysis of a cantilever beam, and the second is a static analysis of a steel jacket by use of the super-element technique. The examples are collected from Ref. /10/, testexample 11DA and 3A and are briefly described below. The appropriate interface files follow Figure A-7.

EXAMPLE 1. ONE-LEVEL STATIC ANALYSIS OF CANTILEVER BEAM MODELLED WITH TWO 20-NODED SOLID ELEMENTS.

The geometry of the beam is given in Figure A-1

Figure A-1 Cantilever beam - Geometry and material properties

The finite element model consists of 32 nodes and two 20-noded solid elements as illustrated in Figure A-2.

This beam is used in static analyses including with four different loadcases at the end of the cantilever beam (example 11DA in Ref. /10/).

The interface file used in this analyses, X11DAT1.FEM, is given below. It contains necessary information about geometry, material and boundary conditions. Given in addition is the load in the 4 loadcases. The load is

Page	Date	Program Version
A-2	01-NOV-1996	6

surface loads (BEUSLO records) at the end in loadcase 1,2 and 3 and gravitational load in the global X-direction in loadcase 4 (BGRAV record).

After modelling the beam in PREFEM, the internal node numbering has been redone to optimize the bandwidth with the program BPOPT. The internal node numbers in the interface file X11DAT1.FEM is after bandwidth optimization.

The rest of the information needed to carry out these analyses is given as direct command input to SESTRA (see ref. /11/).

Figure A-2 Node numbering of cantilever beam

Program Version Date Page 6 01-NOV-1996 A-3

EXAMPLE 2 STATICAL ANALYSIS OF A JACKET MODELLED BY REPEATED SUPERELEMENTS.

The geometry and loads on the jacket is shown in Figure A-3.

The jacket is assemled of two-noded beams only. The model is based on two first level superelements (types 11 and 12) illustrated in Figure A-4. The corresponding interface files created by use of PREFRAME are named X3AT11.FEM and X3AT12.FEM.

The first level superelement type 11 is repeated four times by use of PRESEL, giving the second level superelement type 21 as shown in Figure A-5. Similarily, two first level elements type 12 (one mirrored) are assembled in superelement type 22 on second level.

Further, the two second level superelements are assembled in the third level superelement type 31, shown in Figure A-6.

In this example also a fourth level superelement type 41 is used, see superelement hierarchy in Figure A-7. This is because this example is based on test example 3 in Ref. /10/, where also piles are included in the model, and this requires the coordinate system to be turned, see comment in Figure A-7.

Note that load case number 5 (LC5 in Figure A-3) in the test example is generated by the wave loading program WAJAC, and is therefore not included in the first level interface files given below. Two load interface files X3AL11.FEM and X3AL12.FEM are made by WAJAC, but they are not included here.

Page	Date	Program Version
A-4	01-NOV-1996	6

P₁: 4 x 10⁶
P₂: 7 x 10⁶
P₃: 5 x 10⁶
P₄: 3 x 10⁶
P₅: 7 x 10⁶
P₆: 5 x 10⁶

LC1: gravity LC1: gravity
LC1: P_1 LC1: $P_2+P_3+P_4$ LC1: P_5+P_6 LC1: wave loading from WAJACE

Young's Modulus $E = 2.1 \times 10^{11}$ Poisson's Ratio v = 0.0 $\rho = 7850$ Density

Figure A-3 **Jacket - Geometry and loads**

Program Version	Date	Page
6	01-NOV-1996	A-5

Figure A-4 First level Superelements

Page	Date	Program Version
A-6	01-NOV-1996	6

Type 22

Second level superelements Figure A-5

Program Version	Date	Page
6	01-NOV-1996	A-7

Type 31

Figure A-6 Third level superelements

Page	Date	Program Version
A-8	01-NOV-1996	6

Figure A-7 Superelement hierarchy

Program Version	Date	Page
6	01-NOV-1996	A-9

File: X11DAT1.FEM

IDENT DATE	0.10000000E+01 0.10000000E+01 DATE: 22-NOV-	0.10000000E+00 0.00000000E+00 1996 T	0 0.4000000E+01	
	PROGRAM: SESAM PROGRAM: VAXSTAT USER: HFK	ION 4000-VMS II A	CCOUNT: VSS1	BALDER 2051
DATE	1.00000000E+00 DATE: 22-NOV- PROGRAM: SESAM B		IME: 10:1	7.20000000E+01 6:25 01 11-NOV-1996
	COMPUTER: VAXSTAT USER: HFK			BALDER 2051
GNODE	0.1000000E+01	0.1000000E+0		
GNODE	0.14000000E+02	0.2000000E+0		
GNODE	0.15000000E+02	0.3000000E+0		
GNODE GNODE	0.22000000E+02 0.21000000E+02	0.40000000E+0		
GNODE	0.25000000E+02	0.6000000E+0		
GNODE	0.2900000E+02	0.7000000E+0		
GNODE	0.31000000E+02	0.8000000E+0		
GNODE	0.8000000E+01	0.9000000E+0	1 0.3000000E+01	0.12300000E+03
GNODE	0.9000000E+01	0.1000000E+0		
GNODE	0.20000000E+01	0.11000000E+0		
GNODE	0.12000000E+02	0.12000000E+0		
GNODE	0.16000000E+02 0.26000000E+02	0.13000000E+03 0.14000000E+03		
GNODE GNODE	0.23000000E+02	0.15000000E+0		
GNODE	0.3000000E+02	0.16000000E+0		
GNODE	0.3200000E+02	0.1700000E+0		
GNODE	0.10000000E+02	0.1800000E+0	2 0.3000000E+01	0.12300000E+03
GNODE	0.13000000E+02	0.19000000E+0		
GNODE	0.3000000E+01	0.2000000E+0		
GNODE	0.1700000E+02	0.21000000E+0		
GNODE GNODE	0.18000000E+02 0.1900000E+02	0.22000000E+0		
GNODE	0.2000000E+02	0.2400000E+0		
GNODE	0.2400000E+02	0.2500000E+0		
GNODE	0.27000000E+02	0.2600000E+0	2 0.3000000E+01	0.12300000E+03
GNODE	0.28000000E+02	0.2700000E+0		
GNODE	0.11000000E+02	0.28000000E+0		
GNODE GNODE	0.70000000E+01 0.60000000E+01	0.29000000E+00 0.30000000E+00		
GNODE	0.50000000E+01	0.31000000E+0		
GNODE	0.4000000E+01	0.32000000E+0		
GCOORD	0.10000000E+01	0.0000000E+0		
GCOORD	0.2000000E+01	0.0000000E+0	0 0.2000000E+01	-0.2000000E+01
GCOORD	0.3000000E+01	0.2000000E+0		
GCOORD	0.4000000E+01	0.2000000E+0		
GCOORD GCOORD	0.50000000E+01 0.60000000E+01	0.00000000E+0		0.00000000E+00 -0.10000000E+01
GCOORD	0.7000000E+01	0.00000000E+0		
GCOORD	0.80000000E+01	0.0000000E+0		
GCOORD	0.9000000E+01	0.0000000E+0		
GCOORD	0.1000000E+02	0.2000000E+0		-0.20000000E+01
GCOORD	0.11000000E+02	0.2000000E+0		
GCOORD	0.12000000E+02 0.13000000E+02	0.00000000E+00 0.40000000E+00		-0.10000000E+01 -0.20000000E+01
GCOORD GCOORD	0.14000000E+02	0.40000000E+0		
GCOORD	0.15000000E+02	0.4000000E+0		
GCOORD	0.16000000E+02	0.4000000E+0		
GCOORD	0.17000000E+02	0.4000000E+0		
GCOORD	0.18000000E+02	0.4000000E+0		
GCOORD	0.19000000E+02	0.4000000E+0		
GCOORD GCOORD	0.20000000E+02 0.21000000E+02	0.4000000E+00 0.6000000E+00		0.00000000E+00 -0.20000000E+01
GCOORD	0.21000000E+02	0.80000000E+0		
GCOORD	0.2300000E+02	0.8000000E+0		
GCOORD	0.24000000E+02	0.8000000E+0	1 0.2000000E+01	0.0000000E+00
GCOORD	0.25000000E+02	0.6000000E+0		
GCOORD	0.26000000E+02	0.8000000E+0		
GCOORD	0.2700000E+02	0.8000000E+0	1 0.10000000E+01	0.0000000E+00

Page Date Program Version
A-10 01-NOV-1996 6

```
GCOORD
          0.28000000E+02
                          0.6000000E+01
                                          0.0000000E+00 -0.2000000E+01
GCOORD
          0.2900000E+02
                          0.8000000E+01
                                          0.0000000E+00 -0.2000000E+01
GCOORD
          0.3000000E+02
                          0.80000000E+01
                                          0.0000000E+00 -0.1000000E+01
GCOORE
          0.31000000E+02
                          0.80000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.32000000E+02
                          0.6000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
GCOORD
BNBCD
          0.1000000E+01
                          0.3000000E+01
                                          0.1000000E+01
                                                          0.1000000E+01
                                                          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
          0.1000000E+01
BNBCD
          0.9000000E+01
                          0.3000000E+01
                                          0.10000000E+01
                                                          0.1000000E+01
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.12000000E+02
                          0.3000000E+01
BNBCD
                                          0.10000000E+01
                                                          0.1000000E+01
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
BNBCD
          0.2000000E+01
                          0.3000000E+01
                                          0.1000000E+01
                                                          0.1000000E+01
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.50000000E+01
                          0.3000000E+01
                                          0.10000000E+01
                                                          0.1000000E+01
BNBCD
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
BNBCD
          0.6000000E+01
                          0.3000000E+01
                                          0.1000000E+01
                                                          0.1000000E+01
          0.10000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
BNBCD
          0.7000000E+01
                          0.30000000E+01
                                          0.10000000E+01
                                                          0.10000000E+01
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
                          0.3000000E+01
                                          0.10000000E+01
BNBCD
          0.8000000E+01
                                                          0.1000000E+01
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
GELMNT1
          0.1000000E+01
                          0.1000000E+01
                                          0.2000000E+02
                                                          0.0000000E+00
          0.2000000E+01
                          0.3000000E+01
                                          0.13000000E+02
                                                          0.1400000E+02
          0.15000000E+02
                          0.40000000E+01
                                          0.50000000E+01
                                                          0.60000000E+01
                                          0.17000000E+02
                                                          0.8000000E+01
          0.7000000E+01
                          0.16000000E+02
          0.9000000E+01
                          0.10000000E+02
                                          0.18000000E+02
                                                          0.19000000E+02
          0.2000000E+02
                          0.11000000E+02
                                          0.1000000E+01
                                                          0.12000000E+02
GELMNT1
          0.2000000E+01
                          0.2000000E+01
                                          0.2000000E+02
                                                          0.0000000E+00
          0.1300000E+02
                          0.21000000E+02
                                          0.2200000E+02
                                                          0.2300000E+02
          0.2400000E+02
                          0.25000000E+02
                                          0.15000000E+02
                                                          0.1400000E+02
          0.16000000E+02
                          0.2600000E+02
                                          0.2700000E+02
                                                          0.1700000E+02
          0.18000000E+02
                          0.28000000E+02
                                          0.29000000E+02
                                                          0.3000000E+02
          0.31000000E+02
                          0.32000000E+02
                                          0.2000000E+02
                                                          0.19000000E+02
TDMATER
          0.4000000E+01
                          0.1000000E+01
                                          0.10200000E+03
                                                          0.0000000E+00
       М1
MORSSOL
          0.1000000E+01
                          0.78500000E+04
                                          0.21000000E+12
                                                          0.0000000E+00
          0.21000000E+12
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.21000000E+12
                                                          0.10500000E+12
          0.0000000E+00
                                          0.0000000E+00
                          0.0000000E+00
                                                          0.0000000E+00
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
          0.10500000E+12
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.0000000E+00
                          0.0000000E+00
                                          0.10500000E+12
                                                          0.0000000E+00
          0.0000000E+00
                          0.0000000E+00
                                          0.9999997E-04
                                                          0.0000000E+00
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
GELREF1
                          0.1000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.10000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.0000000E+00
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
GELREF1
          0.2000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
BGRAV
          0.4000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.98100004E+01
          0.10000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
BEUSLO
          0.2000000E+01
                          0.8000000E+01
                                          0.0000000E+00
                                                          0.1000000E+05
         -0.25000000E+05
                         -0.25000000E+05
                                         -0.25000000E+05
                                                         -0.2500000E+05
         -0.25000000E+05
                         -0.25000000E+05
                                         -0.25000000E+05
                                                         -0.25000000E+05
BEUSLO
          0.2000000E+01
                          0.2000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.24000000E+02
                                          0.0000000E+00
                                                          0.1000000E+05
          0.0000000E+00
                         -0.25000000E+05
                                          0.0000000E+00
                                                          0.0000000E+00
         -0.25000000E+05
                          0.0000000E+00
                                          0.0000000E+00
                                                          -0.25000000E+05
          0.0000000E+00
                          0.0000000E+00
                                          -0.25000000E+05
                                                          0.0000000E+00
                          -0.25000000E+05
                                          0.0000000E+00
                                                          0.0000000E+00
          0.0000000E+00
         -0.25000000E+05
                          0.0000000E+00
                                          0.0000000E+00
                                                         -0.25000000E+05
          0.0000000E+00
                          0.0000000E+00
                                         -0.25000000E+05
                                                          0.0000000E+00
BEUSLO
          0.3000000E+01
                          0.2000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.24000000E+02
                                          0.0000000E+00
                                                          0.1000000E+05
          0.0000000E+00
                          0.0000000E+00
                                         -0.25000000E+05
                                                          0.0000000E+00
          0.0000000E+00
                          -0.25000000E+05
                                          0.0000000E+00
                                                          0.0000000E+00
         -0.25000000E+05
                          0.0000000E+00
                                          0.0000000E+00
                                                         -0.25000000E+05
          0.0000000E+00
                          0.0000000E+00
                                          -0.25000000E+05
                                                          0.0000000E+00
          0.0000000E+00
                         -0.25000000E+05
                                          0.0000000E+00
                                                          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                         -0.25000000E+05
         -0.25000000E+05
          0.5000000E+01
                          0.1000000E+01
                                          0.0000000E+00
                                                          0.1000000E+01
BEISTE
          0.2000000E+01
                          0.2000000E+02
                                          0.0000000E+00
                                                          0.5000000E+01
          0.50000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.1000000E+01
BEISTE
          0.1000000E+01
                          0.2000000E+02
                                          0.0000000E+00
                                                          0.50000000E+01
IEND
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
```

Program Version	Date	Page
6	01-NOV-1996	A-11

File: X3AT11.FEM

IDENT DATE	0.10000000E+01 0.10000000E+01 DATE: 06-NOV-			
	PROGRAM: SESAM F COMPUTER: VAX FAM USER: HFK	ILY VMS V5.1-INS		ORD
GNODE	0.10300000E+03 0.10100000E+03	0.10000000E+01	0.60000000E+01 0.60000000E+01	0.12345600E+06 0.12345600E+06
GNODE GNODE	0.10100000E+03	0.20000000E+01 0.30000000E+01	0.60000000E+01	0.12345600E+06
GNODE	0.30100000E+03	0.40000000E+01	0.60000000E+01	0.12345600E+06
GNODE	0.30300000E+03	0.50000000E+01	0.6000000E+01	0.12345600E+06
GNODE	0.50100000E+03	0.60000000E+01	0.60000000E+01	0.12345600E+06
GNODE GNODE	0.40100000E+03 0.50300000E+03	0.70000000E+01 0.80000000E+01	0.60000000E+01 0.60000000E+01	0.12345600E+06 0.12345600E+06
GCOORD	0.1000000E+01	0.20000000E+01	0.00000000E+01	0.00000000E+00
GCOORD	0.20000000E+01	0.0000000E+00	0.0000000E+00	0.0000000E+00
GCOORD	0.3000000E+01	0.10000001E+02	0.11111112E+01	0.11111112E+02
GCOORD	0.40000000E+01	0.20000000E+01	0.20000000E+01	0.20000000E+02
GCOORD GCOORD	0.50000000E+01 0.60000000E+01	0.18000000E+02 0.40000000E+01	0.20000000E+01 0.40000000E+01	0.20000000E+02 0.40000000E+02
GCOORD	0.70000000E+01	0.10000000E+01	0.31428573E+01	0.31428572E+02
GCOORD	0.80000000E+01	0.16000000E+02	0.40000000E+01	0.4000000E+02
BNBCD	0.10000000E+01	0.60000000E+01	0.40000000E+01	0.4000000E+01
BNBCD	0.40000000E+01 0.20000000E+01	0.40000000E+01 0.60000000E+01	0.40000000E+01 0.40000000E+01	0.40000000E+01 0.40000000E+01
BNBCD	0.4000000E+01	0.40000000E+01	0.40000000E+01	0.40000000E+01
BNBCD	0.40000000E+01	0.60000000E+01	0.40000000E+01	0.4000000E+01
	0.4000000E+01	0.4000000E+01	0.4000000E+01	0.4000000E+01
BNBCD	0.50000000E+01 0.40000000E+01	0.60000000E+01 0.40000000E+01	0.40000000E+01 0.40000000E+01	0.40000000E+01 0.40000000E+01
BNBCD	0.6000000E+01	0.60000000E+01	0.40000000E+01	0.4000000E+01
	0.4000000E+01	0.4000000E+01	0.40000000E+01	0.4000000E+01
BNBCD	0.80000000E+01	0.60000000E+01	0.40000000E+01	0.40000000E+01
GELMNT1	0.40000000E+01 0.10100000E+03	0.40000000E+01 0.10000000E+01	0.40000000E+01 0.15000000E+02	0.40000000E+01 0.00000000E+00
	0.2000000E+01	0.4000000E+01	0.0000000E+00	0.0000000E+00
GELMNT1	0.10200000E+03	0.20000000E+01	0.15000000E+02	0.0000000E+00
GELMNT1	0.40000000E+01 0.10400000E+03	0.60000000E+01 0.30000000E+01	0.00000000E+00 0.15000000E+02	0.00000000E+00 0.00000000E+00
OBBRINIT	0.2000000E+01	0.10000000E+01	0.0000000E+00	0.0000000E+00
GELMNT1	0.10500000E+03	0.40000000E+01	0.15000000E+02	0.0000000E+00
GELMNT1	0.20000000E+01 0.10600000E+03	0.30000000E+01 0.50000000E+01	0.00000000E+00 0.15000000E+02	0.00000000E+00 0.00000000E+00
GEDMIT	0.30000000E+01	0.50000000E+01	0.0000000E+02	0.0000000E+00
GELMNT1	0.10700000E+03	0.60000000E+01	0.15000000E+02	0.0000000E+00
0m. 1m. 1	0.10000000E+01	0.30000000E+01	0.0000000E+00	0.0000000E+00
GELMNT1	0.10800000E+03 0.30000000E+01	0.70000000E+01 0.40000000E+01	0.15000000E+02 0.00000000E+00	0.00000000E+00 0.00000000E+00
GELMNT1	0.10900000E+03	0.80000000E+01	0.15000000E+02	0.0000000E+00
	0.4000000E+01	0.50000000E+01	0.0000000E+00	0.0000000E+00
GELMNT1	0.11000000E+03	0.90000000E+01 0.7000000E+01	0.15000000E+02	0.00000000E+00 0.00000000E+00
GELMNT1	0.40000000E+01 0.11100000E+03	0.10000000E+01	0.00000000E+00 0.15000000E+02	0.00000000E+00
	0.7000000E+01	0.80000000E+01	0.0000000E+00	0.0000000E+00
GELMNT1	0.11200000E+03	0.11000000E+02	0.15000000E+02	0.0000000E+00
GELMNT1	0.50000000E+01 0.11300000E+03	0.70000000E+01 0.12000000E+02	0.00000000E+00 0.15000000E+02	0.00000000E+00 0.00000000E+00
GEDMIT	0.7000000E+01	0.6000000E+01	0.0000000E+00	0.0000000E+00
GELMNT1	0.11400000E+03	0.13000000E+02	0.15000000E+02	0.0000000E+00
CDIDE	0.60000000E+01	0.80000000E+01	0.0000000E+00	0.00000000E+00
GPIPE	0.10000000E+01 0.10000000E+01	0.11000000E+01 0.10000000E+01	0.12000000E+01 0.00000000E+00	0.50000001E-01 0.00000000E+00
GBEAMG	0.10000000E+01	0.0000000E+00	0.18064159E+00	0.59837516E-01
	0.29918758E-01	0.29918758E-01	0.0000000E+00	0.99729188E-01
	0.49864594E-01	0.49864594E-01	0.90434521E-01	0.90434521E-01
GPIPE	0.00000000E+00 0.2000000E+01	0.00000000E+00 0.57000005E+00	0.33083338E-01 0.60000002E+00	0.33083338E-01 0.15000000E-01
	0.10000000E+01	0.10000000E+01	0.0000000E+00	0.0000000E+00
GBEAMG	0.2000000E+01	0.00000000E+00	0.27567478E-01	0.23601169E-02
	0.11800585E-02 0.39335280E-02	0.11800585E-02 0.39335280E-02	0.00000000E+00 0.13789769E-01	0.78670559E-02 0.13789769E-01
	0.0000000E+00	0.0000000E+00	0.25672477E-02	0.25672477E-02
MISOSEL	0.10000000E+01	0.21000000E+12	0.3000001E+00	0.78500000E+04

SESAM

 Page
 Date
 Program Version

 A-12
 01-NOV-1996
 6

	0.0000000E+00	0.12000000E-04	0.0000000E+00	0.0000000E+00
GUNIVEC			-0.70014006E+00	0.14002801E+00
	0.2000000E+01		-0.70014006E+00	0.14002801E+00
GUNIVEC				
GUNIVEC	0.3000000E+01	0.0000000E+00	0.00000000E+00	0.10000000E+01
GUNIVEC		-0.73671561E+00	-0.81857279E-01	0.67122984E+00
GUNIVEC	0.50000000E+01	-0.73671561E+00	-0.81857294E-01	0.67122972E+00
GUNIVEC	0.60000000E+01	0.73671567E+00	-0.81857316E-01	0.67122972E+00
GUNIVEC	0.7000000E+01	0.73671556E+00	-0.81857264E-01	0.67122984E+00
GUNIVEC	0.8000000E+01	0.0000000E+00	0.0000000E+00	0.10000000E+01
GUNIVEC	0.9000000E+01	-0.80829036E+00	-0.11547007E+00	0.57735026E+00
GUNIVEC	0.10000000E+02	-0.80829030E+00	-0.11547001E+00	0.57735026E+00
GUNIVEC	0.11000000E+02	0.80829036E+00	-0.11547007E+00	0.57735026E+00
GUNIVEC	0.12000000E+02	0.80829030E+00	-0.11547001E+00	0.57735026E+00
GUNIVEC	0.13000000E+02	0.000029030E+00	0.00000000E+00	0.10000000E+01
GELREF1	0.1000000E+01	0.10000000E+01	0.0000000E+00	0.0000000E+00
GELKELI				
	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.10000000E+01	0.0000000E+00	0.0000000E+00	0.10000000E+01
GELREF1	0.2000000E+01	0.10000000E+01	0.0000000E+00	0.0000000E+00
	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.10000000E+01	0.0000000E+00	0.0000000E+00	0.2000000E+01
GELREF1	0.3000000E+01	0.10000000E+01	0.0000000E+00	0.0000000E+00
	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.20000000E+01	0.0000000E+00	0.0000000E+00	0.3000000E+01
GELREF1	0.40000000E+01	0.10000000E+01	0.0000000E+00	0.0000000E+00
0221121	0.00000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.20000000E+01	0.00000000E+00	0.0000000E+00	0.40000000E+01
CEL DEE1		0.10000000E+00		
GELREF1	0.50000000E+01		0.0000000E+00	0.0000000E+00
	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.2000000E+01	0.0000000E+00	0.0000000E+00	0.50000000E+01
GELREF1	0.60000000E+01	0.10000000E+01	0.0000000E+00	0.0000000E+00
	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.2000000E+01	0.0000000E+00	0.0000000E+00	0.60000000E+01
GELREF1	0.7000000E+01	0.10000000E+01	0.0000000E+00	0.0000000E+00
	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.20000000E+01	0.0000000E+00	0.0000000E+00	0.7000000E+01
GELREF1	0.80000000E+01	0.10000000E+01	0.0000000E+00	0.0000000E+00
0221121	0.00000000E+00	0.0000000E+00	0.0000000E+00	0.00000000E+00
	0.20000000E+01	0.00000000E+00	0.0000000E+00	0.80000000E+01
GELREF1	0.90000000E+01	0.10000000E+01	0.0000000E+00	0.00000000E+00
GELKEFI				
	0.0000000E+00	0.0000000E+00	0.00000000E+00	0.00000000E+00
	0.20000000E+01	0.0000000E+00	0.0000000E+00	0.9000000E+01
GELREF1	0.10000000E+02	0.10000000E+01	0.0000000E+00	0.0000000E+00
	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.20000000E+01	0.0000000E+00	0.0000000E+00	0.1000000E+02
GELREF1	0.11000000E+02	0.1000000E+01	0.0000000E+00	0.0000000E+00
	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.20000000E+01	0.0000000E+00	0.0000000E+00	0.11000000E+02
GELREF1	0.12000000E+02	0.10000000E+01	0.0000000E+00	0.0000000E+00
	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.20000000E+01	0.0000000E+00	0.0000000E+00	0.12000000E+02
GELREF1	0.13000000E+02	0.10000000E+01	0.0000000E+00	0.0000000E+00
GELICELI	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.00000000E+00
	0.20000000E+01	0.00000000E+00	0.0000000E+00	0.13000000E+02
DCD ATZ	0.10000000E+01	0.00000000E+00	0.0000000E+00	0.0000000E+00
BGRAV				0.0000000E+00
D	0.0000000E+00	0.0000000E+00	-0.98100004E+01	
BNLOAD	0.3000000E+01	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.10000000E+01	0.60000000E+01	0.0000000E+00	0.3000000E+07
	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
BNLOAD	0.3000000E+01	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.2000000E+01	0.60000000E+01	0.0000000E+00	0.3000000E+07
	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
BNLOAD	0.3000000E+01	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.40000000E+01	0.60000000E+01	0.0000000E+00	0.50000000E+07
	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
BNLOAD	0.30000000E+01	0.00000000E+00	0.0000000E+00	0.0000000E+00
DIVIOAD				0.50000000E+07
	0.50000000E+01	0.60000000E+01	0.0000000E+00	
DMI OZ D	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
BNLOAD	0.3000000E+01	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.80000000E+01	0.60000000E+01	0.0000000E+00	0.7000000E+07
	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
BNLOAD	0.3000000E+01	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.60000000E+01	0.60000000E+01	0.0000000E+00	0.7000000E+07
	0.00000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00
BNLOAD	0.40000000E+01	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.40000000E+01	0.60000000E+01	0.0000000E+00	0.50000000E+07
	0.0000000E+01	0.0000000E+01	0.0000000E+00	0.0000000E+07
	0.0000000E+00	J.0000000E+00	J. JJJJJJJJJJE+UU	J. JJJJJJJJJJJE+UU

Program Version	Date	Page
6	01-NOV-1996	A-13

```
BNLOAD
         0.4000000E+01
                         0.0000000E+00
                                         0.0000000E+00
                                                         0.0000000E+00
         0.5000000E+01
                         0.6000000E+01
                                         0.0000000E+00
                                                         0.5000000E+07
         0.0000000E+00
                         0.0000000E+00
                                         0.0000000E+00
                                                         0.0000000E+00
BNLOAD
         0.4000000E+01
                         0.0000000E+00
                                         0.0000000E+00
                                                         0.0000000E+00
         0.8000000E+01
                                                         0.7000000E+07
                         0.6000000E+01
                                         0.0000000E+00
         0.0000000E+00
                         0.0000000E+00
                                         0.0000000E+00
                                                         0.0000000E+00
                                         0.0000000E+00
BNLOAD
         0.4000000E+01
                         0.0000000E+00
                                                         0.0000000E+00
         0.6000000E+01
                         0.6000000E+01
                                         0.0000000E+00
                                                         0.7000000E+07
         0.0000000E+00
                         0.0000000E+00
                                         0.0000000E+00
                                                         0.0000000E+00
IEND
         0.0000000E+00
                         0.0000000E+00
                                         0.0000000E+00
                                                         0.0000000E+00
```

File: X3AT12.FEM

```
0.10000000E+01 0.12000000E+02
                                          0.0000000E+00
                                                          0.0000000E+00
IDENT
                                          0.4000000E+01
          0.10000000E+01
                         0.0000000E+00
                                                           0.72000000E+02
                  06-NOV-89
                                      TIME:
                                                     15:16:01
        DATE:
        PROGRAM:
                  SESAM PREFRAME
                                      VERSION:
                                                     5.3-02
                                                            6-OCT-89
        COMPUTER: VAX FAMILY VMS V5.1-INSTALLATION: VSS JORD
        USER:
                  HFK
                                      ACCOUNT:
                                                     VSS12051
                                          0.60000000E+01
GNODE
          0.50100000E+03
                          0.10000000E+01
                                                           0.12345600E+06
                                                           0.12345600E+06
GNODE
          0.70100000E+03
                          0.2000000E+01
                                           0.6000000E+01
                          0.3000000E+01
                                           0.6000000E+01
GNODE
          0.70800000E+03
                                                           0.12345600E+06
GNODE
          0.70200000E+03
                          0.4000000E+01
                                          0.6000000E+01
                                                           0.12345600E+06
GNODE
          0.50300000E+03
                          0.50000000E+01
                                          0.6000000E+01
                                                           0.12345600E+06
          0.7040000E+03
GNODE
                          0.6000000E+01
                                          0.60000000E+01
                                                           0.12345600E+06
                          0.7000000E+01
                                          0.60000000E+01
          0.70300000E+03
                                                           0.12345600E+06
GNODE
GNODE
          0.70600000E+03
                          0.8000000E+01
                                          0.60000000E+01
                                                           0.12345600E+06
GNODE
          0.71000000E+03
                          0.9000000E+01
                                          0.6000000E+01
                                                           0.12345600E+06
GCOORD
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                           0.0000000E+00
GCOORD
          0.2000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                           0.15000000E+02
GCOORD
          0.3000000E+01
                          0.0000000E+00
                                          0.6000000E+01
                                                           0.15000000E+02
                                                           0.15000000E+02
GCOORD
          0.4000000E+01
                          0.6000000E+01
                                          0.0000000E+00
                          0.12000000E+02
                                          0.0000000E+00
                                                           0.0000000E+00
          0.5000000E+01
GCOORD
GCOORD
          0.6000000E+01
                          0.12000000E+02
                                          0.6000000E+01
                                                           0.15000000E+02
GCOORD
          0.7000000E+01
                          0.12000000E+02
                                          0.0000000E+00
                                                           0.15000000E+02
          0.80000000E+01
                          0.15000000E+02
                                          0.3000000E+01
                                                           0.15000000E+02
GCOORD
GCOORD
          0.9000000E+01
                          0.18000000E+02
                                          0.6000000E+01
                                                           0.15000000E+02
BNBCD
          0.10000000E+01
                          0.60000000E+01
                                          0.4000000E+01
                                                           0.40000000E+01
          0.4000000E+01
                          0.4000000E+01
                                          0.40000000E+01
                                                           0.4000000E+01
BNBCD
          0.3000000E+01
                          0.6000000E+01
                                          0.4000000E+01
                                                           0.4000000E+01
          0.4000000E+01
                          0.4000000E+01
                                          0.4000000E+01
                                                           0.4000000E+01
BNBCD
          0.50000000E+01
                          0.6000000E+01
                                          0.4000000E+01
                                                           0.4000000E+01
          0.4000000E+01
                          0.4000000E+01
                                          0.4000000E+01
                                                           0.4000000E+01
BNBCD
          0.6000000E+01
                          0.6000000E+01
                                          0.4000000E+01
                                                           0.4000000E+01
          0.4000000E+01
                          0.4000000E+01
                                          0.4000000E+01
                                                           0.4000000E+01
                                          0.40000000E+01
                                                           0.4000000E+01
BNBCD
          0.9000000E+01
                          0.6000000E+01
          0.4000000E+01
                          0.4000000E+01
                                          0.4000000E+01
                                                           0.4000000E+01
GELMNT1
          0.50100000E+03
                          0.1000000E+01
                                          0.15000000E+02
                                                           0.0000000E+00
          0.1000000E+01
                          0.2000000E+01
                                          0.0000000E+00
                                                           0.0000000E+00
GELMNT1
          0.50200000E+03
                          0.2000000E+01
                                          0.15000000E+02
                                                           0.0000000E+00
          0.5000000E+01
                          0.7000000E+01
                                          0.0000000E+00
                                                           0.0000000E+00
GELMNT1
                          0.3000000E+01
                                          0.15000000E+02
                                                           0.0000000E+00
          0.50500000E+03
          0.2000000E+01
                          0.4000000E+01
                                          0.0000000E+00
                                                           0.0000000E+00
GELMNT1
          0.50600000E+03
                          0.4000000E+01
                                          0.15000000E+02
                                                           0.0000000E+00
          0.4000000E+01
                          0.7000000E+01
                                          0.0000000E+00
                                                           0.0000000E+00
GELMNT1
          0.50700000E+03
                          0.5000000E+01
                                          0.15000000E+02
                                                           0.0000000E+00
          0.7000000E+01
                          0.6000000E+01
                                          0.0000000E+00
                                                           0.0000000E+00
GELMNT1
          0.51200000E+03
                          0.60000000E + 01
                                          0.15000000E+02
                                                           0.0000000E + 00
          0.3000000E+01
                          0.2000000E+01
                                          0.0000000E+00
                                                           0.0000000E+00
                          0.7000000E+01
                                          0.15000000E+02
                                                           0.0000000E+00
GELMNT1
          0.51300000E+03
                                          0.0000000E+00
                                                           0.0000000E+00
          0.4000000E+01
                          0.6000000E+01
          0.51600000E+03
                          0.8000000E+01
                                          0.15000000E+02
                                                           0.0000000E+00
GELMNT1
          0.3000000E+01
                          0.4000000E+01
                                          0.0000000E+00
                                                           0.0000000E+00
          0.51700000E+03
GELMNT1
                          0.9000000E+01
                                          0.15000000E+02
                                                           0.0000000E+00
          0.7000000E+01
                          0.8000000E+01
                                          0.0000000E+00
                                                           0.0000000E+00
                          0.1000000E+02
                                          0.15000000E+02
                                                           0.0000000E+00
GELMNT1
          0.51800000E+03
          0.6000000E+01
                          0.8000000E+01
                                          0.0000000E+00
                                                           0.0000000E+00
          0.51900000E+03
                          0.11000000E+02
                                          0.15000000E+02
                                                           0.0000000E+00
GELMNT1
          0.80000000E+01
                          0.9000000E+01
                                          0.0000000E+00
                                                           0.0000000E+00
GPIPE
          0.1000000E+01
                          0.9499999E+00
                                          0.1000000E+01
                                                           0.25000000E-01
          0.1000000E+01
                          0.1000000E+01
                                          0.0000000E+00
                                                           0.0000000E+00
                                          0.76576322E-01
                                                           0.18210815E-01
GREAMG
          0.10000000E+01
                          0.0000000E+00
          0.91054076E-02
                          0.91054076E-02
                                          0.0000000E+00
                                                           0.36421631E-01
          0.18210815E-01
                          0.18210815E-01
                                          0.38304947E-01
                                                           0.38304947E-01
          0.0000000E+00
                          0.0000000E+00
                                          0.11885419E-01
                                                           0.11885419E-01
```

Page Date Program Version
A-14 01-NOV-1996 6

```
GPIPE
          0.2000000E+01
                         0.57000005E+00
                                          0.60000002E+00
                                                          0.15000000E-01
          0.1000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
GBEAMG
          0.2000000E+01
                          0.0000000E+00
                                          0.27567478E-01
                                                          0.23601169E-02
                                                          0.78670559E-02
                                          0.0000000E+00
          0.11800585E-02
                          0.11800585E-02
          0.39335280E-02
                          0.39335280E-02
                                          0.13789769E-01
                                                          0.13789769E-01
          0.0000000E+00
                          0.0000000E+00
                                          0.25672477E-02
                                                          0.25672477E-02
                          0.21000000E+12
          0.1000000E+01
                                          0.3000001E+00
                                                          0.78500000E+04
MISOSEL
          0.0000000E+00
                          0.12000000E-04
                                          0.0000000E+00
                                                          0.0000000E+00
          0.1000000E+01
GUNIVEC
                          0.0000000E+00
                                          0.1000000E+01
                                                          0.0000000E+00
GUNIVEC
          0.2000000E+01
                          0.0000000E+00
                                          0.1000000E+01
                                                          0.0000000E+00
GUNTVEC
          0.3000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.10000000E+01
GUNIVEC
          0.4000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.1000000E+01
GUNIVEC
          0.5000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.1000000E+01
          0.6000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.1000000E+01
GUNIVEC
GUNIVEC
          0.7000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.1000000E+01
GUNIVEC
          0.8000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.1000000E+01
GUNTVEC
          0.9000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.10000000E+01
GUNIVEC
          0.1000000E+02
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.10000000E+01
          0.11000000E+02
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.1000000E+01
GUNIVEC
          0.10000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
GELREF1
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.1000000E+01
GELREF1
          0.2000000E+01
                          0.1000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.2000000E+01
GELREF1
          0.3000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.3000000E+01
GELREF1
          0.4000000E+01
                          0.1000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.4000000E+01
                                                          0.0000000E+00
GELREF1
          0.50000000E+01
                          0.10000000E+01
                                          0.0000000E+00
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.50000000E+01
GELREF1
          0.6000000E+01
                          0.1000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.00000000E + 00
                                          0 0000000E+00
                                                          0.60000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
GELREF1
          0.7000000E+01
                          0.1000000E+01
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.7000000E+01
GELREF1
          0.8000000E+01
                          0.1000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.8000000E+01
                                                          0.0000000E+00
GELREF1
          0.9000000E+01
                          0.1000000E+01
                                          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.0000000E+00
          0.2000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.9000000E+01
GELREF1
          0.1000000E+02
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.1000000E+02
GELREF1
          0.11000000E+02
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.0000000E+00
                                                          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
          0.2000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.11000000E+02
                                                          0.0000000E+00
BGRAV
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
          0.0000000E+00
                          0.0000000E+00
                                         -0.98100004E+01
                                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.0000000E+00
                                          0.0000000E+00
BNLOAD
          0.7000000E+01
                          0.6000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
         -0.4000000E+07
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
                                                          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
BNLOAD
          0.2000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.60000000E+01
         -0.4000000E+07
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.3000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
BNLOAD
          0.2000000E+01
                          0.6000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.9999997E-20
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
BNLOAD
          0.4000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.6000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.99999997E-20
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
                                                          0.0000000E+00
IEND
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
```

File: X3AT21.FEM

PROGRAM: SESAM PRESEL VERSION: 5.3-01 14-APR-89

COMPUTER: VAX FAMILY VMS V5.1-INSTALLATION: VSS JORD

Program Version	Date	Page
6	01-NOV-1996	A-15

		3.00		0.51
CNODE	USER: HFK 0.10000000E+01	ACC 0.10000000E+01	OUNT: VSS12 0.60000000E+01	
GNODE GNODE	0.2000000E+01	0.20000000E+01	0.6000000E+01	0.12345600E+06 0.12345600E+06
GNODE	0.3000000E+01	0.30000000E+01	0.60000000E+01	0.12345600E+06
GNODE	0.40000000E+01	0.40000000E+01	0.60000000E+01	0.12345600E+06
GNODE	0.50000000E+01	0.50000000E+01	0.60000000E+01	0.12345600E+06
GNODE	0.60000000E+01	0.60000000E+01	0.60000000E+01	0.12345600E+06
GNODE	0.7000000E+01	0.7000000E+01	0.60000000E+01	0.12345600E+06
GNODE	0.8000000E+01	0.80000000E+01	0.60000000E+01	0.12345600E+06
GNODE	0.9000000E+01	0.9000000E+01	0.60000000E+01	0.12345600E+06
GNODE	0.10000000E+02	0.10000000E+02	0.60000000E+01	0.12345600E+06
GNODE	0.11000000E+02 0.12000000E+02	0.11000000E+02 0.12000000E+02	0.60000000E+01	0.12345600E+06
GNODE GCOORD	0.12000000E+02 0.10000000E+01	0.12000000E+02 0.20000000E+02	0.60000000E+01 0.00000000E+00	0.12345600E+06 0.00000000E+00
GCOORD	0.2000000E+01	0.0000000E+02	0.00000000E+00	0.0000000E+00
GCOORD	0.3000000E+01	0.20000000E+01	0.20000000E+01	0.20000000E+02
GCOORD	0.4000000E+01	0.18000000E+02	0.20000000E+01	0.2000000E+02
GCOORD	0.50000000E+01	0.4000000E+01	0.40000000E+01	0.40000000E+02
GCOORD	0.6000000E+01	0.16000000E+02	0.40000000E+01	0.4000000E+02
GCOORD	0.7000000E+01	0.2000000E+02	0.2000000E+02	0.0000000E+00
GCOORD	0.80000000E+01	0.18000000E+02	0.18000000E+02	0.2000000E+02
GCOORD	0.9000000E+01	0.16000000E+02	0.16000000E+02	0.4000000E+02
GCOORD GCOORD	0.10000000E+02 0.11000000E+02	0.00000000E+00 0.20000000E+01	0.19999998E+02 0.17999998E+02	0.00000000E+00 0.2000000E+02
GCOORD	0.12000000E+02	0.40000000E+01	0.15999999E+02	0.4000000E+02
BNBCD	0.12000000E+01	0.60000000E+01	0.40000000E+01	0.40000000E+02
21.202	0.40000000E+01	0.40000000E+01	0.40000000E+01	0.40000000E+01
BNBCD	0.2000000E+01	0.60000000E+01	0.4000000E+01	0.4000000E+01
	0.4000000E+01	0.40000000E+01	0.40000000E+01	0.40000000E+01
BNBCD	0.5000000E+01	0.60000000E+01	0.40000000E+01	0.40000000E+01
	0.4000000E+01	0.40000000E+01	0.4000000E+01	0.40000000E+01
BNBCD	0.6000000E+01	0.60000000E+01	0.40000000E+01	0.40000000E+01
BNBCD	0.40000000E+01 0.70000000E+01	0.40000000E+01 0.60000000E+01	0.40000000E+01 0.40000000E+01	0.40000000E+01 0.40000000E+01
БИБСД	0.4000000E+01	0.40000000E+01	0.40000000E+01	0.4000000E+01
BNBCD	0.9000000E+01	0.6000000E+01	0.40000000E+01	0.40000000E+01
	0.4000000E+01	0.4000000E+01	0.4000000E+01	0.40000000E+01
BNBCD	0.10000000E+02	0.60000000E+01	0.40000000E+01	0.40000000E+01
	0.4000000E+01	0.40000000E+01	0.40000000E+01	0.40000000E+01
BNBCD	0.12000000E+02	0.60000000E+01	0.40000000E+01	0.4000000E+01
CDT MATEO	0.4000000E+01	0.40000000E+01	0.40000000E+01	0.40000000E+01
GELMNT2	0.10000000E+01 0.10000000E+01	0.10000000E+01 0.00000000E+00	0.11000000E+02 0.00000000E+00	0.00000000E+00 0.0000000E+00
	0.10000000E+01	0.00000000E+00	0.00000000E+00	0.0000000E+00
	0.10000000E+01	0.00000000E+00	0.00000000E+00	0.00000000E+00
	0.60000000E+01	0.10000000E+01	0.20000000E+01	0.30000000E+01
	0.4000000E+01	0.50000000E+01	0.60000000E+01	0.0000000E+00
GELMNT2	0.2000000E+01	0.10000000E+01	0.11000000E+02	0.0000000E+00
	-0.43711388E-07	-0.1000000E+01	0.0000000E+00	0.10000000E+01
	-0.43711388E-07	0.00000000E+00	0.0000000E+00	0.00000000E+00
	0.10000000E+01 0.60000000E+01	0.87422779E-06 0.7000000E+01	0.20000000E+02 0.10000000E+01	0.00000000E+00 0.4000000E+01
	0.80000000E+01	0.60000000E+01	0.9000000E+01	0.0000000E+01
GELMNT2	0.3000000E+01	0.10000000E+01	0.11000000E+02	0.00000000E+00
	-0.10000000E+01	0.87422777E-07	0.0000000E+00	-0.87422777E-07
	-0.1000000E+01	0.0000000E+00	0.0000000E+00	0.0000000E+00
	0.1000000E+01	0.20000002E+02	0.19999998E+02	0.0000000E+00
	0.6000000E+01	0.10000000E+02	0.70000000E+01	0.80000000E+01
CELL MATELS	0.11000000E+02 0.40000000E+01	0.90000000E+01 0.10000000E+01	0.12000000E+02	0.0000000E+00
GELMNT2	-0.43711388E-07	0.10000000E+01	0.11000000E+02 0.00000000E+00	0.00000000E+00 -0.10000000E+01
	-0.43711388E-07	0.0000000E+01	0.0000000E+00	0.0000000E+01
	0.10000000E+01	0.2000000E+02	0.87422779E-06	0.0000000E+00
	0.60000000E+01	0.2000000E+01	0.10000000E+02	0.11000000E+02
	0.3000000E+01	0.12000000E+02	0.50000000E+01	0.0000000E+00
BSELL	0.1000000E+01	0.40000000E+01	0.0000000E+00	0.0000000E+00
DODLI	0.10000000E+01	0.10000000E+01	0.00000000E+00	0.00000000E+00
BSELL	0.10000000E+01	0.30000000E+01	0.0000000E+00	0.0000000E+00
BSELL	0.10000000E+01 0.10000000E+01	0.10000000E+01 0.20000000E+01	0.00000000E+00 0.00000000E+00	0.00000000E+00 0.00000000E+00
חחהטי	0.1000000E+01 0.1000000E+01	0.10000000E+01	0.00000000E+00	0.00000000E+00
BSELL	0.10000000E+01	0.10000000E+01	0.00000000E+00	0.00000000E+00
	0.10000000E+01	0.10000000E+01	0.0000000E+00	0.0000000E+00
BSELL	0.3000000E+01	0.10000000E+01	0.0000000E+00	0.0000000E+00
DODIT	0.3000000E+01	0.10000000E+01	0.00000000E+00	0.00000000E+00
BSELL	0.40000000E+01	0.20000000E+01	0.0000000E+00	0.0000000E+00

Page Date Program Version A-16 01-NOV-1996 6

```
0.4000000E+01
                         0.1000000E+01
                                         0.0000000E+00
                                                         0.0000000E+00
BSELL
          0.50000000E+01
                         0.4000000E+01
                                         0.0000000E+00
                                                         0.0000000E+00
          0.8000000E+01
                         0.1000000E+01
                                         0.0000000E+00
                                                         0.0000000E+00
BSELL
          0.50000000E+01
                         0.3000000E+01
                                         0.0000000E+00
                                                         0.0000000E+00
          0.7000000E+01
                         0.1000000E+01
                                         0.0000000E+00
                                                         0.0000000E+00
BSELL
          0.50000000E+01
                         0.2000000E+01
                                         0.0000000E+00
                                                         0.0000000E+00
                         0.1000000E+01
          0.6000000E+01
                                         0.0000000E+00
                                                         0.0000000E+00
BSELL
          0.50000000E+01
                         0.10000000E+01
                                         0.0000000E+00
                                                         0.0000000E+00
          0.5000000E+01
                         0.1000000E+01
                                         0.0000000E+00
                                                         0.0000000E+00
IEND
          0.0000000E+00
                         0.0000000E+00
                                         0.0000000E+00
                                                         0.0000000E+00
```

File: X3AT22.FEM

```
0.20000000E+01 0.22000000E+02 0.00000000E+00 0.00000000E+00
          0.10000000E+01
                         0.0000000E+00
                                          0.4000000E+01 0.7200000E+02
                  06-NOV-89
                                      TIME:
                                                    15:18:12
        DATE:
        PROGRAM:
                  SESAM PRESEL
                                      VERSION:
                                                    5.3-01 14-APR-89
        COMPUTER: VAX FAMILY VMS V5.1-INSTALLATION: VSS JORD
                  HFK
                                      ACCOUNT:
                                                    VSS12051
          0.10000000E+01
                                          0.60000000E+01
GNODE
                          0.10000000E+01
                                                          0.12345600E+06
GNODE
          0.2000000E+01
                          0.20000000E+01
                                          0.60000000E+01
                                                          0.12345600E+06
          0.3000000E+01
                          0.3000000E+01
                                          0.6000000E+01
GNODE
                                                          0.12345600E+06
GNODE
          0.4000000E+01
                          0.4000000E+01
                                          0.6000000E+01
                                                          0.12345600E+06
GNODE
          0.5000000E+01
                          0.50000000E+01
                                          0.6000000E+01
                                                          0.12345600E+06
          0.6000000E+01
                          0.60000000E+01
                                          0.6000000E+01
GNODE
                                                          0.12345600E+06
          0.7000000E+01
                          0.7000000E+01
                                          0.6000000E+01
                                                          0.12345600E+06
GNODE
GCOORD
          0.10000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
GCOORD
          0.2000000E+01
                          0.0000000E+00
                                          0.6000000E+01
                                                          0.15000000E+02
GCOORD
          0.3000000E+01
                          0.12000000E+02
                                          0.0000000E+00
                                                          0.0000000E+00
GCOORD
          0.4000000E+01
                          0.12000000E+02
                                          0.6000000E+01
                                                          0.15000000E+02
GCOORD
          0.5000000E+01
                          0.18000000E+02
                                          0.6000000E+01
                                                          0.15000000E+02
          0.6000000E+01
                                          0.12000000E+02
                          0.0000000E+00
                                                          0.00000000E+00
GCOORD
          0.7000000E+01
                          0.12000000E+02
                                          0.12000000E+02
                                                          0.0000000E+00
GCOORD
BNBCD
          0.1000000E+01
                          0.6000000E+01
                                          0.4000000E+01
                                                          0.4000000E+01
          0.4000000E+01
                          0.4000000E+01
                                          0.4000000E+01
                                                          0.4000000E+01
BNBCD
          0.3000000E+01
                          0.60000000E+01
                                          0.4000000E+01
                                                          0.4000000E+01
          0.4000000E+01
                          0.4000000E+01
                                          0.4000000E+01
                                                          0.4000000E+01
                                          0.4000000E+01
                                                          0.4000000E+01
                          0.6000000E+01
BNBCD
          0.6000000E+01
                                          0.40000000E+01
          0.4000000E+01
                          0.4000000E+01
                                                          0.4000000E+01
          0.7000000E+01
                          0.60000000E+01
                                          0.4000000E+01
                                                          0.4000000E+01
BNBCD
          0.4000000E+01
                          0.4000000E+01
                                          0.4000000E+01
                                                          0.4000000E+01
GELMNT2
          0.10000000E+01
                          0.10000000E+01
                                          0.12000000E+02
                                                          0.0000000E+00
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.10000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
                          0.0000000E+00
          0.1000000E+01
                          0.10000000E+01
                                          0.2000000E+01
                                                          0.3000000E+01
          0.50000000E+01
                          0.50000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.4000000E+01
GELMNT2
          0.2000000E+01
                          0.1000000E+01
                                          0.12000000E+02
                                                          0.0000000E+00
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
         -0.10000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.10000000E+01
                          0.0000000E+00
                                          0.12000000E+02
                                                          0.0000000E+00
                                          0.2000000E+01
                                                          0.70000000E+01
0.0000000E+00
          0.50000000E+01
                          0.60000000E+01
          0.4000000E+01
                          0.50000000E+01
                                          0.0000000E+00
                                          0.0000000E+00
BSELL
          0.10000000E+01
                          0.2000000E+01
                                                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.10000000E+01
                          0.10000000E+01
BSELL
          0.1000000E+01
                          0.1000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.1000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
BSELL
          0.2000000E+01
                          0.200000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
BSELL
          0.2000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
BSELL
          0.50000000E+01
                          0.2000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.6000000E+01
                          0.1000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
BSELL
          0.50000000E+01
                          0.1000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.50000000E+01
                          0.1000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
IEND
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
```

File: X3AT31.FEM

PROGRAM: SESAM PRESEL VERSION: 5.3-01 14-APR-89

COMPUTER: VAX FAMILY VMS V5.1-INSTALLATION: VSS JORD

Program Version	Date	Page
6	01-NOV-1996	A-17

```
ACCOUNT:
GNODE
          0.1000000E+01
                          0.10000000E+01
                                          0.6000000E+01
                                                          0.12345600E+06
GNODE
          0.2000000E+01
                          0.2000000E+01
                                          0.6000000E+01
                                                          0.12345600E+06
GNODE
          0.3000000E+01
                          0.3000000E+01
                                          0.60000000E+01
                                                          0.12345600E+06
          0.4000000E+01
                          0.4000000E+01
                                          0.6000000E+01
                                                          0.12345600E+06
GNODE
GNODE
          0.50000000E+01
                          0.50000000E+01
                                          0.6000000E+01
                                                          0.12345600E+06
                          0.6000000E+01
GNODE
          0.6000000E+01
                                          0.6000000E+01
                                                          0.12345600E+06
          0.7000000E+01
                          0.7000000E+01
                                          0.6000000E+01
                                                          0.12345600E+06
GNODE
GNODE
          0.8000000E+01
                          0.8000000E+01
                                          0.6000000E+01
                                                          0.12345600E+06
GCOORD
          0.1000000E+01
                          0.2000000E+02
                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.0000000E+00
GCOORD
                                          0.0000000E+00
                                                          0.0000000E+00
GCOORD
          0.3000000E+01
                          0.4000000E+01
                                          0.4000000E+01
                                                          0.4000000E+02
GCOORD
          0.4000000E+01
                          0.16000000E+02
                                          0.4000000E+01
                                                          0.4000000E+02
          0.5000000E+01
                          0.2000000E+02
                                          0.2000000E+02
                                                          0.0000000E+00
GCOORD
GCOORD
          0.6000000E+01
                          0.16000000E+02
                                          0.16000000E+02
                                                          0.4000000E+02
GCOORD
          0.7000000E+01
                          0.0000000E+00
                                          0.19999998E+02
                                                          0.0000000E+00
GCOORD
          0.8000000E+01
                          0.4000000E+01
                                          0.1599999E+02
                                                          0.4000000E+02
          0.10000000E+01
                                          0.4000000E+01
                          0.6000000E+01
                                                          0.4000000E+01
BNBCD
          0.4000000E+01
                          0.4000000E+01
                                          0.4000000E+01
                                                          0.4000000E+01
BNBCD
          0.2000000E+01
                          0.6000000E+01
                                          0.4000000E+01
                                                          0.4000000E+01
          0.4000000E+01
                          0.4000000E+01
                                          0.4000000E+01
                                                          0.4000000E+01
BNBCD
          0.5000000E+01
                          0.6000000E+01
                                          0.4000000E+01
                                                          0.4000000E+01
          0.4000000E+01
                          0.4000000E+01
                                          0.4000000E+01
                                                          0.4000000E+01
BNBCD
          0.7000000E+01
                          0.60000000E+01
                                          0.4000000E+01
                                                          0.4000000E+01
          0.40000000E+01
                          0.4000000E+01
                                          0.4000000E+01
                                                          0.4000000E+01
GELMNT2
          0.10000000E+01
                          0.2000000E+01
                                          0.21000000E+02
                                                          0.0000000E+00
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.10000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.8000000E+01
                          0.1000000E+01
                                          0.2000000E+01
                                                          0.3000000E+01
          0.40000000E+01
                          0.50000000E+01
                                          0.60000000E+01
                                                          0.7000000E+01
          0.80000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.2000000E+01
                          0.2000000E+01
                                          0.22000000E+02
                                                          0.0000000E+00
GELMNT2
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.1000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.1000000E+01
                         -0.4000000E+01
                                         -0.4000000E+01
                                                         -0.4000000E+02
          0.400000000E+01
                          0.30000000E + 01
                                          0.40000000E + 01
                                                          0.80000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.6000000E+01
BSELL
          0.1000000E+01
                          0.2000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.1000000E+01
                          0.1000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.10000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
BSELL
          0.1000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
BSELL
          0.2000000E+01
                          0.2000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.20000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.3000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
BSELL
          0.3000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
BSELL
          0.4000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.4000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
BSELL
          0.50000000E+01
                          0.2000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
          0.5000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
BSELL
          0.5000000E+01
                          0.10000000E+01
                                          0.0000000E+00
                                                          0.0000000E+00
                                          0.0000000E+00
          0.50000000E+01
                          0.10000000E+01
                                                          0.0000000E+00
IEND
          0.0000000E+00
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
```

File: X3AT41.FEM

```
TDENT
          0.4000000E+01 0.41000000E+02
                                          0.0000000E+00
                                                          0.0000000E+00
DATE
          0.10000000E+01
                          0.0000000E+00
                                          0.4000000E+01
                                                          0.72000000E+02
                  06-NOV-89
                                      TIME:
                                                    15:17:59
        DATE:
                  SESAM PRESEL
        PROGRAM:
                                      VERSION:
                                                     5.3-01 14-APR-89
        COMPUTER: VAX FAMILY VMS V5.1-INSTALLATION: VSS JORD
                  HFK
                                                    VSS12051
                                      ACCOUNT:
GNODE
          0.1000000E+01
                          0.10000000E+01
                                          0.60000000E+01
                                                          0.12345600E+06
GNODE
          0.2000000E+01
                          0.2000000E+01
                                          0.6000000E+01
                                                          0.12345600E+06
                          0.3000000E+01
                                          0.6000000E+01
                                                           0.12345600E+06
GNODE
          0.30000000E+01
                          0.4000000E+01
                                                           0.12345600E+06
GNODE
          0.4000000E+01
                                          0.6000000E+01
          0.1000000E+01
                          0.87422779E-06
                                          0.2000000E+02
                                                           0.17484556E-05
GCOORD
                          0.0000000E+00
GCOORD
          0.2000000E+01
                                          0.0000000E+00
                                                           0.0000000E+00
          0.3000000E+01
                          0.20000000E+02
                                          0.2000000E+02
                                                           0.17484556E-05
GCOORD
GCOORD
          0.4000000E+01
                          0.19999998E+02
                                         -0.87422768E-06
                                                           0.0000000E+00
GELMNT2
          0.10000000E+01
                          0.3000000E+01
                                          0.31000000E+02
                                                           0.0000000E+00
          0.43711388E-07
                          0.10000000E+01
                                          0.38213709E-14
                                                           0.10000000E+01
         -0.43711388E-07
                          0.87422777E-07
                                          0.87422777E-07
                                                           0.0000000E+00
         -0.10000000E+01
                          0.0000000E+00
                                          0.0000000E+00
                                                          0.0000000E+00
          0.4000000E+01
                          0.10000000E+01
                                          0.2000000E+01
                                                          0.3000000E+01
```

SESAM

Page	Date	Program Version
A-18	01-NOV-1996	6

BSELL	0.40000000E+01	0.00000000E+00	0.00000000E+00	0.00000000E+00
	0.10000000E+01	0.10000000E+01	0.00000000E+00	0.00000000E+00
	0.10000000E+01	0.10000000E+01	0.00000000E+00	0.00000000E+00
BSELL	0.20000000E+01	0.10000000E+01	0.0000000E+00	0.00000000E+00
	0.20000000E+01	0.10000000E+01	0.00000000E+00	0.00000000E+00
BSELL	0.30000000E+01	0.10000000E+01	0.0000000E+00	0.0000000E+00
BSELL	0.30000000E+01	0.10000000E+01	0.00000000E+00	0.00000000E+00
	0.40000000E+01	0.10000000E+01	0.00000000E+00	0.00000000E+00
BSELL	0.40000000E+01	0.10000000E+01	0.00000000E+00	0.00000000E+00
	0.50000000E+01	0.10000000E+01	0.00000000E+00	0.00000000E+00
IEND	0.50000000E+01	0.10000000E+01	0.00000000E+00	0.00000000E+00
	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00

References

- 1 Arnholm, C.: " SESAM Results Interface File. File Description" VSS Report No. VSS-88-7001
- 2 Klem, H.F. et al.: "Finite Element Library (ELLIB). User's Manual." Veritec Report No. VT-87-3501
- 3 Bell, K. et al.: "NORSAM, User's Manual, Part II 2, Element Library"
- 4 Arnesen, A. et al.: "FENRIS, Satellite 1 Manual"
- 5 Arnesen, A. et al.: "FENRIS, Satellite 2 Manual"
- 6 Berdal, Aa.: "TRSI Transition Element between the Twenty Node Isoparametric Solid Element and the Eight Node Subparametric Curved Thick Shell Element." Veritec Technical Report No. 84 - 3260.
- 7 Zienkiewicz, O.C.: "The Finite Element Method", Third edition McGraw-Hill, London, 1977
- 8 Karlsson, R.: "Contact Element. User's Manual" VSS Note No. TN-08-1989
- 9 Karlsson, R.: "Contact Element. Theoretical Manual" VSS Note No. TN-09-1989
- 10 Bø, K. and Berdal, Aa.: "SESAM Examples Manual" 1990
- 11 Carlin, B., Klem, H.F.: "SESTRA User's Manual" Veritec Report No. VT-88-3128
- Hughes, T.J.R: "The Finite Element Method. Linear Static and Dynamic Finite Element Analysis." Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.