

Evaluation: the key to success

- How predictive is the model we learned?
- Error on the training data is not a good indicator of performance on future data
 - ☐ Otherwise 1-NN would be the optimum classifier!
- Simple solution that can be used if lots of (labeled) data is available:
 - ☐ Split data into training and test set
- However: (labeled) data is usually limited
 - ☐ More sophisticated techniques need to be used

Issues in evaluation

- ❖ Statistical reliability of estimated differences in performance (→ significance tests)
- Choice of performance measure:
 - Number of correct classifications
 - ☐ Accuracy of probability estimates
 - ☐ Error in numeric predictions
- Costs assigned to different types of errors
 - ☐ Many practical applications involve costs

5

Training and testing I

- Natural performance measure for classification problems: error rate
 - ☐ Success: instance's class is predicted correctly
 - ☐ Error: instance's class is predicted incorrectly
 - ☐ Error rate: proportion of errors made over the whole set of instances
- Rewriting error: error rate obtained from training data
- Rewriting error is optimistic!

6

Training and testing II

- Test set: independent instances that have played no part in formation of classifier
 - ☐ Assumption: both training data and test data are representative samples of the underlying problem
- Test and training data may differ in nature
 - ☐ Example: classifiers built using customer data from two different towns A and B
 - To estimate performance of classifier from town A in completely new town, test it on data from B

Note on parameter tuning

- It is important that the test data is not used in any way to create the classifier
- Some learning schemes operate in two stages:
 - ☐ Stage 1: build the basic structure
 - ☐ Stage 2: optimize parameter settings
- The test data can't be used for parameter tuning!
- Proper procedure uses three sets: training data, validation data, and test data
 - □ Validation data is used to optimize parameters

Making the most of the data

- Once evaluation is complete, all the data can be used to build the final classifier
- Generally, the larger the training data the better the classifier
- The larger the test data the more accurate the error estimate
- Holdout procedure: method of splitting original data into training and test set
 - Dilemma: ideally both training set and test set should be large!

9

STRATIFIED HOLDOUT cl Train c2 3

Holdout estimation

- * What to do if the amount of data is limited?
- The holdout method reserves a certain amount for testing and uses the remainder for training
 - ☐ Usually: one third for testing, the rest for training
- Problem: the samples might not be representative
 - ☐ Example: class might be missing in the test data
- * Advanced version uses stratification
 - ☐ Ensures that each class is represented with approximately equal proportions in both subsets

10

A.

Repeated holdout method

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - ☐ In each iteration, a certain proportion is randomly selected for training (possibly with stratification)
 - ☐ The error rates on the different iterations are averaged to yield an overall error rate
- This is called the repeated holdout method
- Still not optimum: the different test sets overlap
 - ☐ Can we prevent overlapping?

Cross Validation

- Can we improve upon repeated holdout? (i.e. reduce variance)
- Cross-validation
- Stratified cross-validation

13

After cross-validation, Weka outputs an extra model built on the entire dataset 10 times ML algorithm ML algorithm ML algorithm Deploy!

Cross Validation

10-fold cross-validation

- Divide dataset into 10 parts (folds)
- Hold out each part in turn
- Average the results
- ❖ Each data point used once for testing, 9 times for training

Stratified cross-validation

Ensure that each fold has the right proportion of each class value

14

Cross Validation

- Cross-validation better than repeated holdout
- Stratified is even better
- With 10-fold cross-validation, Weka invokes the learning algorithm 11 times
- Practical rule of thumb:
- Lots of data? use percentage split
- Else stratified 10-fold cross-validation

Cross Validation

Is cross-validation really better than repeated holdout?

- Diabetes dataset
- ❖ Baseline accuracy (rules > ZeroR): 65.1%
- trees > J48
- ❖ 10-fold cross-validation 73.8%
- ... with different random number seed

1	2	3	4	5	6	7	8	9	10
73.8	75.0	75.5	75.5	74.4	75.6	73.6	74.0	74.5	73.0

17

Cross Validation

- ❖ Why 10-fold? E.g. 20-fold: 75.1%
- Cross-validation really is better than repeated holdout
- It reduces the variance of the estimate

Cross Validation

	holdout	cross-validation
	(10%)	(10-fold)
	75.3	73.8
Σ ν	77.9	75.0
Sample mean $\overline{x} = \frac{\sum x_i}{}$	80.5	75.5
n	74.0	75.5
Variance $\sigma^2 = \frac{\sum (x_i - \overline{x})}{\sum (x_i - \overline{x})}$	<u>)</u> 2 71.4	74.4
n-1	70.1	75.6
	79.2	73.6
Standard deviation σ	71.4	74.0
	80.5	74.5
	67.5	73.0
	$\bar{x} = 74.8$	$\bar{x} = 74.5$
	$\sigma = 4.6$	$\sigma = 0.9$

- 1

Leave-One-Out cross-validation

- Leave-One-Out: a particular form of cross-validation:
 - ☐ Set number of folds to number of training instances
 - ☐ I.e., for n training instances, build classifier n times
- * Makes best use of the data
- Involves no random subsampling
- Very computationally expensive
 - ☐ (exception: NN)

LEAVE-ONE-OUT (LOO) Its most important disadvantage: It is not possible to make a stratified version Let us suppose that a dataset has exactly 50 examples of one class, and 50 of other class. Then Zero R has an expected error rate of 50%. However, the loo estimation returns 100%

