성균관대학교 소프트웨어학과 이 지 형

Sequential Data Modeling

Sequential Data

- Most of data are sequential
- Speech, Text, Image, ...

Deep Learnings for Sequential Data

- Convolutional Neural Networks (CNN)
 - Try to find local features from a sequence
- Recurrent Neural Networks: LSTM, GLU
 - Try to capture the feature of the past

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

- $\rightarrow x_t$: input at time t
- h_t : hidden state at time t
- f: is an activation function
- ▶ U, V, W: network parameters
 - ▶ RNN shares the same parameters across all time steps
- g. activation function for the output layer

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

Long Term Dependency

- $\rightarrow x_1 \sim x_{t-1}$ are encoded into h_{t-1}
- h_{t-1} has the information on the past
- \rightarrow It is a context to process x_t

- Long Term Dependency of Standard RNN
 - However, it may exponentially decade or grow
 - Usually it is limited to 10 steps

- Capable of learning long-term dependencies.
 - LSTM networks introduce a new structure called a memory cell
 - ▶ An LSTM can learn to bridge time intervals in excess of 1000 steps
 - Gate units that learn to open and close access to the past
 - Input gate
 - Forget gate
 - Output gate
 - Neuron with a self-recurrent

Equations

- i: input gate to accept the new
- f: forget gate to forget the past
- o: output gate, how much of the information will be passed to expose to the next time step.
- g: self-recurrent which is equal to standard RNN
- c_t : internal memory
- \rightarrow s_t : hidden state
- y: final output

$$i = \sigma(x_t U^i + s_{t-1} W^i)$$

$$f = \sigma(x_t U^f + s_{t-1} W^f)$$

$$o = \sigma(x_t U^o + s_{t-1} W^o)$$

$$g = \tanh(x_t U^g + s_{t-1} W^g)$$

$$c_t = c_{t-1} \circ f + g \circ i$$

$$s_t = \tanh(c_t) \circ o$$

$$y = softmax(V s_t)$$

Gradient Flow

Backpropagation from c_t to c_{t-1} only elementwise multiplication by f, no matrix multiply by W

Gradient Flow

Gradient Flow

Uninterrupted Gradient Flow

Similar to ResNet!

In between:

Highway Networks

$$g = T(x, W_T)$$

$$y = g \odot H(x, W_H) + (1 - g) \odot x$$

Srivastava et al, "Highway Networks", ICML DL Workshop 2015

GRU

$$r_t = \sigma(W_{xr}x_t + W_{hr}h_{t-1} + b_r)$$

$$z_t = \sigma(W_{xz}x_t + W_{hz}h_{t-1} + b_z)$$

$$\tilde{h}_t = \tanh(W_{xh}x_t + W_{hh}(r_t \odot h_{t-1}) + b_h)$$

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \tilde{h}_t$$

 h_{t-1}

FIGRU

To the state of the stat

 h_t

 h_{t-1}

• GRU tanh

W

 h_{t-1}

h_t

GRU

 o_t **GRU** Wh_t h_{t-1} tanh r_{t} \mathbf{Z}_{t} h_t h_{t-1}

Question and Answer