P1 de Álgebra Linear I -2012.2

1 de setembro de 2012.

Nome:	Matrícula:
Assinatura:	Turma:
Preencha CORRETA e COMPLETAMENTE cula, assinatura e turma).	todos os campos (nome, matrí-
Provas sem nome não serão corrigidas e terã campos matrícula, assinatura e turma não proma errada serão penalizadas com a perda e	preenchidos ou preenchidos de

Duração: 1 hora 50 minutos

1.a	1.b	2.a	2.b	2.c	2.d	3.a	3.b	3.c	3.d	4.a	4.b	4.c	soma
1.0	1.0	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	0.5	0.5	0.5	10.0

<u>Instruções</u> – leia atentamente

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- O desenvolvimento de cada questão deve estar a seguir **Resposta**. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) não serão corrigidos!!.
- Escreva de forma clara e legível. Justifique de forma <u>ordenada</u> e <u>cuidadosa</u> suas respostas. Respostas sem justificativa não serão consideradas.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento. cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado. fonte: mini-Aurélio

1) Determine:

(a) Os valores reais de a e b para que a interseção dos planos $\alpha,\ \beta$ e γ de equações cartesianas

 $\alpha\colon x+4y+3z=2,\quad \beta\colon 3x+6y+5z=2\quad \text{e}\quad \gamma\colon :2x+5y+az=b$ seja uma reta r.

(b) O valor do determinante da matriz

$$A = \begin{pmatrix} a & b & c \\ 2a & 2b+1 & 2c+2 \\ 3a & 3b+2 & 3c+3 \end{pmatrix}$$

sabendo que

$$a = 123, \quad b = 345 \quad e \quad c = 567.$$

- **2)** Considere os vetores $\overrightarrow{u} = (0, 1, -1)$ e $\overrightarrow{w} = (2, k, 0)$ de \mathbb{R}^3 , onde $k \in \mathbb{R}$.
- (a) Determine **todos** os possíveis valores de k de modo que os vetores \overrightarrow{u} e $\overrightarrow{u} + \overrightarrow{w}$ sejam perpendiculares.
- (b) Determine todos os possíveis valores de k de modo que a projeção ortogonal do vetor \overrightarrow{u} sobre o vetor \overrightarrow{u} seja igual ao vetor -5 \overrightarrow{u} .
- (c) Determine **todos** os possíveis valores de k de modo que o ângulo entre os vetores \overrightarrow{u} e \overrightarrow{w} seja de 60° .
- (d) Considere o ponto P=(1,2,3) e a reta r de equação paramétrica

$$r: (1, -1, 1) + t \overrightarrow{u}, \quad t \in \mathbb{R}.$$

Determine o ponto Q da reta r mais próximo do ponto P.

3) Observe o paralelepípedo a seguir sobre o qual sabe-se que:

 \bullet O plano que contém os pontos $A,\,B$ e C tem equação cartesiana

$$x + y - z = -6$$

e é perpendicular ao plano que contém os pontos A, B e F.

- A reta que passa pelos pontos D e G tem equação paramétrica $(t, 2\,t, -3\,t),$ $t\in\mathbb{R}.$
- \bullet O ponto F tem coordenadas (0,2,0).

Nestas condições, determine:

- (a) Uma equação cartesiana do plano que contém os pontos $A, B \in \mathcal{F}$.
- (b) As coordenadas do ponto D.
- (c) A distância entre o plano que contém os pontos $A, B \in C$ e o plano que contém os pontos $E, F \in G$.
- (d) A área do triângulo cujos vértices são os pontos $A, D \in F$.

- 4) Decida se cada uma das afirmações a seguir é falsa ou verdadeira. Justifique cuidadosamente.
 - (a) Existem vetores não nulos \overrightarrow{u} e \overrightarrow{w} de \mathbb{R}^3 que verificam simultaneamente as condições $\overrightarrow{u} \cdot \overrightarrow{w} = 0$ e $\overrightarrow{u} \times \overrightarrow{w} = \overrightarrow{0}$.
 - (b) Se \overrightarrow{u} e \overrightarrow{w} são vetores não nulos de \mathbb{R}^3 tais que $\overrightarrow{u} \times \overrightarrow{w} = \overrightarrow{0}$, então se verifica

$$\overrightarrow{u}\cdot\overrightarrow{w}=\parallel\overrightarrow{u}\parallel\parallel\overrightarrow{w}\parallel,$$

onde $\parallel \overrightarrow{v} \parallel$ denota o módulo do vetor \overrightarrow{v} .

(c) Se \overrightarrow{u} e \overrightarrow{w} são vetores de \mathbb{R}^3 então se verifica

$$\overrightarrow{w} \times (\overrightarrow{w} \times \overrightarrow{u}) = (\overrightarrow{w} \times \overrightarrow{w}) \times \overrightarrow{u} = \overrightarrow{0} \times \overrightarrow{u} = \overrightarrow{0}.$$