TORIC VARIETY

BOWEN LIU

Contents

Part 1. Basic theories of toric varieties	2
1. Preliminaries	2
1.1. Torus	2
1.2. Affine semigroups	2
1.3. Strongly convex rational polyhedral cones	3
1.4. Polytope	5
2. Fans and toric variety	6
2.1. Semigroup algebras and affine toric varieties	6
2.2. The toric variety of a fan	6
2.3. Examples	7
2.4. Terminologies	8
3. The orbit-cone correspondence	9
3.1. Baby example	9
3.2. The orbit-cone correspondence	9
3.3. Orbit closure as toric varieties	9
4. Divisors on toric variety	10
4.1. Weil divisors on toric varieties	10
4.2. Cartier divisors on toric varieties	11
4.3. The sheaf of a torus-invariant divisor	11
5. Line bundles on toric variety	12
6. Canonical divisors of toric variety	13
6.1. One-forms on toric varieties	13
6.2. Differential forms on toric varieties	13
6.3. The canonical sheaf of toric varieties	13
7. Sheaf cohomology of toric varieties	14
References	15

Part 1. Basic theories of toric varieties

1. Preliminaries

1.1. Torus.

Definition 1.1.1 (torus). A torus T is an affine variety isomorphic to $(\mathbb{C}^*)^n$, where T inherits a group structure from the isomorphism.

Definition 1.1.2 (character). A character of a torus T is a morphism $\chi \colon T \to \mathbb{C}^*$ that is a group homomorphism.

Definition 1.1.3 (one-parameter subgroup). A one-parameter subgroup of a torus T is a morphism $\lambda \colon \mathbb{C}^* \to T$ that is a group homomorphism.

Example 1.1.1. All characters of $(\mathbb{C}^*)^n$ arise from

$$\chi^{(a_1,\ldots,a_n)}: (t_1,\ldots,t_n) \mapsto t_1^{a_1}\ldots t_n^{a_n},$$

and all one-parameter subgroups of $(\mathbb{C}^*)^n$ arise from

$$\lambda^{(b_1,\ldots,b_n)} \colon t \mapsto (t^{b_1},\ldots,t^{b_n}),$$

where $(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in \mathbb{Z}^n$.

Theorem 1.1.1. Let T_N be a n-torus with group M consisting of characters and group N consisting of one-parameter subgroups. Then

- (1) M, N are lattices of rank n.
- (2) M, N are dual lattices, that is $N \cong \operatorname{Hom}(M, \mathbb{Z})$ and $N \cong \operatorname{Hom}(N, \mathbb{Z})$.
- (3) $T_N \cong \operatorname{Spec} \mathbb{C}[M]$ as varieties. (4) $T_N \cong N \otimes_{\mathbb{Z}} \mathbb{C}^* \cong \operatorname{Hom}(M, \mathbb{C}^*)$ as groups.

1.2. Affine semigroups.

Definition 1.2.1 (affine semigroup). An affine semigroup S is a semigroup group such that

- (1) The binary operation on S is communicative.
- (2) The semigroup is finitely generated.
- (3) The semigroup can be embedded in a lattice M.

Example 1.2.1. $\mathbb{N}^n \subseteq \mathbb{Z}^n$ is an affine semigroup.

Example 1.2.2. Given a finite set \mathcal{A} of a lattice M, $\mathbb{N}\mathcal{A} \subseteq M$ is an affine semigroup.

Definition 1.2.2 (semigroup algebra). Let $S \subseteq M$ be an affine semigroup. The semigroup algebra $\mathbb{C}[S]$ is the vector space over \mathbb{C} with S as basis and multiplication is induced by the semigroup structure.

Remark 1.2.1. To make this precise, we write

$$\mathbb{C}[S] = \{ \sum_{m \in S} c_m \chi^m \mid c_m \in C \text{ and } c_m = 0 \text{ for all but finitely many } m \}$$

with multiplication given by

$$\chi^m \cdot \chi^{m'} = \chi^{m+m'}.$$

If $S = \mathbb{N} \mathcal{A}$ for $\mathcal{A} = \{m_1, \dots, m_s\}$, then $\mathbb{C}[S] = \mathbb{C}[\chi^{m_1}, \dots, \chi^{m_s}]$.

Example 1.2.3. The affine semigroup $\mathbb{N}^n \subseteq \mathbb{Z}^n$ gives the polynomial ring

$$\mathbb{C}[\mathbb{N}^n] = \mathbb{C}[x_1, \dots, x_n]$$

where $x_i = \chi^{e_i}$ and $\{e_1, \dots, e_n\}$ is the standard basis of \mathbb{Z}^n .

Example 1.2.4. If e_1, \ldots, e_n is a basis of a lattice M, then M is generated by $\mathcal{A} = \{\pm e_1, \ldots, \pm e_n\}$ as an affine semigroup, and the semigroup algebra gives the Laurent polynomial ring

$$\mathbb{C}[M] = \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$$

where $x_i = \chi^{e_i}$.

For torus T_N with character group M, there is a natural action of T_N on the semigroup algebra $\mathbb{C}[M]$ as follows: For $t \in T_N$ and $\chi^m \in M$, $t \cdot \chi^m$ is defined by $p \mapsto \chi^m(t^{-1}p)$ for $p \in T_N$.

Theorem 1.2.1. Let $A \subseteq \mathbb{C}[M]$ be a subspace stable under the action of T_N . Then

$$A = \bigoplus_{\chi^m \in A} \mathbb{C} \cdot \chi^m.$$

Proof. See Lemma 1.1.16 in [CLS11].

- 1.3. Strongly convex rational polyhedral cones. From now on, unless otherwise specified, we always assume M,N are dual lattices with associated \mathbb{R} -vector spaces $M_{\mathbb{R}} := M \otimes_{\mathbb{Z}} \mathbb{R}$ and $N_{\mathbb{R}} := N \otimes_{\mathbb{Z}} \mathbb{R}$, and the pairing between M and N is denoted by $\langle -, \rangle$.
- 1.3.1. Convex polyhedral cones.

Definition 1.3.1 (convex polyhedral cone). Let $S \subseteq N_{\mathbb{R}}$ be a finite subset. A convex polyhedral cone in $N_{\mathbb{R}}$ generated by S is a set of the form

$$\sigma = \operatorname{Cone} S = \{ \sum_{u \in S} \lambda_u u \mid \lambda_u \ge 0 \} \subseteq N_{\mathbb{R}}.$$

Notation 1.3.1. Cone(\emptyset) = {0}.

Remark 1.3.1. A convex polyhedral cone is convex, that is $x, y \in \sigma$ implies $\lambda x + (1 - \lambda)y \in \sigma$ for all $0 \le \sigma \le 1$, and it's a cone, that is $x \in \sigma$ implies $\lambda x \in \sigma$ for all $\lambda \ge 0$. Since we will only consider convex cones, the cones satisfying Definition 1.3.1 will be called polyhedral cone for convenience.

Definition 1.3.2 (dimension). The dimension of a polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is the dimension of the smallest subspace $W \subseteq N_{\mathbb{R}}$ containing σ , and such W is called the span of σ .

Definition 1.3.3 (dual cone). Let $\sigma \subseteq N_{\mathbb{R}}$ be a polyhedral. The dual cone is defined by

$$\sigma^{\vee} := \{ u \in M_{\mathbb{R}} \mid \langle m, u \rangle \ge 0 \text{ for all } u \in \sigma \}.$$

Definition 1.3.4 (hyperplane). Given $m \in M_{\mathbb{R}}$, the hyperplane given by m is defined by

$$H_m := \{ u \in N_{\mathbb{R}} \mid \langle m, u \rangle = 0 \} \subseteq N_{\mathbb{R}},$$

and the closed half-space given by m is defined by

$$H_m^+ := \{ u \in N_{\mathbb{R}} \mid \langle m, u \rangle \ge 0 \} \subseteq N_{\mathbb{R}}.$$

Definition 1.3.5 (supporting hyperplane). The supporting hyperplane of a polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is a hyperplane H_m such that $\sigma \subseteq H_m^+$, and H_m^+ is called a supporting half-space.

Remark 1.3.2. H_m is a supporting hyperplane of σ if and only if $m \in \sigma^{\vee}$, and if m_1, \ldots, m_s generates σ^{\vee} , then

$$\sigma = H_{m_1}^+ \cap \cdots \cap H_{m_s}^+.$$

Thus every polyhedral cone is an intersection of finitely many closed half-spaces.

Definition 1.3.6 (face). A face of a polyhedral cone σ is $\tau = H_m \cap \sigma$ for some $m \in \sigma^{\vee}$, written $\tau \leq \sigma$. Faces $\tau \neq \sigma$ are called proper faces, written $\tau \prec \sigma$.

Definition 1.3.7 (facet and edge). A facet of a polyhedral cone σ is a face of codimension one, and an edge of σ is a face of dimension one.

Theorem 1.3.1. Suppose σ is a polyhedral cone. Then

- (1) Every face of σ is a polyhedral cone.
- (2) An intersection of two faces of σ is again a face of σ .
- (3) A face of a face of σ is again a face of σ .
- (4) If $\tau \leq \sigma$, $v, w \in \sigma$ and $v + w \in \tau$, then $v, w \in \tau$.
- (5) Every face of σ^{\vee} can be uniquely written as $\sigma^{\vee} \cap \tau^{\perp}$, where $\tau \leq \sigma$ and

$$\tau^{\perp} = \{ m \in M_{\mathbb{R}} \mid \langle m, u \rangle = 0, \forall u \in \tau \}$$

1.3.2. Strongly convex.

Definition 1.3.8 (strongly convex). A polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is strongly convex if $\{0\}$ is a face of σ .

Theorem 1.3.2. Let $\sigma \subseteq N_{\mathbb{R}}$ be a polyhedral cone. Then the following statements are equivalent:

- (1) σ is strongly convex.
- (2) $\{0\}$ is a face of σ .
- (3) σ contains no positive-dimensional subspace of $N_{\mathbb{R}}$.
- $(4) \ \sigma \cap (-\sigma) = \{0\}.$
- (5) $\dim \sigma^{\vee} = n$.

1.3.3. Rational polyhedral cones.

Definition 1.3.9 (rational). A polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is rational if $\sigma = \text{Cone}(S)$ for some finite subset $S \subseteq N$.

Definition 1.3.10 (ray generator). Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone and ρ be an edge of σ . The unique generator of semigroup $\rho \cap N$ is called ray generator of ρ , written u_{ρ} .

Remark 1.3.3. The ray generator is well-defined: Since σ is strongly convex, one has edge of σ is a ray as $\{0\}$ is its face, and since σ is rational, the semigroup $\rho \cap N$ is generated by a unique element, otherwise contradicts to the fact ρ is an edge, that is it's of dimension one.

Definition 1.3.11 (smooth and simplicial). Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone.

- (1) σ is smooth if its ray generators form part of a \mathbb{Z} -basis of N.
- (2) σ is simplical if its ray generators are linearly independent over \mathbb{R} .

1.4. Polytope.

Definition 1.4.1 (polytope). A polytope in $N_{\mathbb{R}}$ is a set of the form

$$P = \operatorname{Conv}(S) = \{ \sum_{u \in S} \lambda_u u \mid \lambda_u \ge 0, \sum_{u \in S} \lambda_u = 1 \} \subseteq N_{\mathbb{R}},$$

where $S \subseteq N_{\mathbb{R}}$ is finite. We say P is the convex hull of S.

Remark 1.4.1. A polytope $P \subseteq N_{\mathbb{R}}$ gives a polyhedral cone $C(P) \subseteq N_{\mathbb{R}} \times \mathbb{R}$, called the cone of P and defined by

$$C(P) = \{ \lambda \cdot (u, 1) \in N_{\mathbb{R}} \times \mathbb{R} \mid u \in P, \lambda \ge 0 \}.$$

If P = Conv(S), then one can also describe this as $C(P) = \text{Cone}(S \times \{1\})$.

2. Fans and toric variety

2.1. Semigroup algebras and affine toric varieties.

Definition 2.1.1 (affine toric variety). An affine toric variety is an irreducible affine variety V containing a torus $T_N \cong (\mathbb{C}^*)^n$ as a Zariski open subset such that the action of T_N on itself extends to an algebraic action of T_N on V.

Proposition 2.1.1 (Gordan's lemma). Let $\sigma \subseteq N_{\mathbb{R}}$ be a rational polyhedral cone. The semigroup $S_{\sigma} := \sigma^{\vee} \cap M$ is finitely generated.

Proof. See Proposition 1.2.17 in [CLS11]. \Box

Theorem 2.1.1. Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone with semigroup $S_{\sigma} = \sigma^{\vee} \cap M$. Then

$$U_{\sigma} := \operatorname{Spec}(\mathbb{C}[S_{\sigma}])$$

is a normal affine toric variety with torus $T_N \cong \operatorname{Spec} \mathbb{C}[M]$. Conversely, for any normal affine toric variety X, there exists a strongly convex rational polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ such that $X \cong U_{\sigma}$.

Proof. If $\sigma \subseteq N_{\mathbb{R}}$ is a strongly convex rational polyhedral cone, then by Proposition 2.1.1 one has S_{σ} is finitely generated. Suppose $\mathcal{A} = \{m_1, \dots, m_s\}$ is a generator of S_{σ} .

Proposition 2.1.2. Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone and σ be a face of σ written as $\tau = H_m \cap \sigma$, where $m \in \sigma^{\vee} \cap M$. Then the semigroup algebra $\mathbb{C}[S_{\tau}]$ is the localization of $\mathbb{C}[S_{\sigma}]$ at $\chi^m \in \mathbb{C}[S_{\sigma}]$.

Proof. See Proposition 1.3.16 in [CLS11]. \Box

2.2. The toric variety of a fan.

Definition 2.2.1 (toric variety). A toric variety is an irreducible variety X containing a torus $T_N \cong (\mathbb{C}^*)^n$ as a Zariski open subset such that the action of T_N on itself extends to an algebraic action of T_N on X.

Definition 2.2.2 (fan). A fan Σ in $N_{\mathbb{R}}$ is a finite collection of cones $\sigma \subseteq N_{\mathbb{R}}$ such that

- (1) Every $\sigma \in \Sigma$ is strongly convex rational polyhedral cone.
- (2) For all $\sigma \in \Sigma$, each face of σ is also in Σ .
- (3) For all $\sigma_1, \sigma_2 \in \Sigma$, the intersection $\sigma_1 \cap \sigma_2$ is a face of each.

Notation 2.2.1. $\Sigma(r)$ is the set of r-dimensional cones of Σ .

Now let's show how the cones in any fan give the combinatorial data necessary to glue a collection of affine toric varieties to yield an abstract toric variety.

(1) Firstly, by Theorem 2.1.1 one has each cone $\sigma \in \Sigma$ gives the affine toric variety

$$U_{\sigma} = \operatorname{Spec}(\mathbb{C}[S_{\sigma}]) = \operatorname{Spec}(\mathbb{C}[\sigma^{\vee} \cap M]).$$

If τ is a face of σ , then there exists some $m \in \sigma^{\vee}$ such that $\tau = \sigma \cap H_m$, and by Proposition 2.1.2 one has $\mathbb{C}[S_{\tau}] = (\mathbb{C}[S_{\sigma}])_{\chi^m}$, which implies

$$U_{\tau} = (U_{\sigma})_{\gamma^m}$$
.

(2) Secondly, if $\tau = \sigma_1 \cap \sigma_2$, then there exists some $m \in \sigma_1^{\vee} \cap (-\sigma_2)^{\vee} \cap M$ such that

$$\sigma_1 \cap H_m = \tau = \sigma_2 \cap H_m$$
.

This shows

$$U_{\sigma_1} \supseteq (U_{\sigma_1})_{\chi^m} = U_{\tau} = (U_{\sigma_2})_{\chi^{-m}} \subseteq U_{\sigma_2}.$$

Thus we have an isomorphism

$$g_{\sigma_2\sigma_1} \colon (U_{\sigma_1})_{\chi^m} \cong (U_{\sigma_2})_{\chi^{-m}}.$$

(3) Finally, we use isomorphisms in (2) to glue the collection of affine toric varieties obtained from a fan to construct the toric variety X_{Σ} associated to the fan Σ .

Theorem 2.2.1. Let Σ be a fan in $N_{\mathbb{R}}$. The variety X_{Σ} is normal separated toric variety.

Conversely, any normal separated toric variety comes from a fan, but it's a highly non-trivial fact.

Theorem 2.2.2. Let X be a normal separated toric variety with torus T_N . Then there exists a fan Σ in $N_{\mathbb{R}}$ such that $X \cong X_{\Sigma}$.

2.3. Examples.

Example 2.3.1. Consider the fan Σ in $N_{\mathbb{R}} = \mathbb{R}^2$ in Figure 1, where $N = \mathbb{Z}^2$ has standard basis e_1, e_2 . The fan has three 2-dimensional cones $\sigma_0 = \mathbb{R}^2$

FIGURE 1. The fan Σ for \mathbb{P}^2

Cone (e_1, e_2) , $\sigma_1 = \text{Cone}(-e_1 - e_2, e_2)$ and $\sigma_2 = \text{Cone}(e_1, -e_1 - e_2)$, together

with the three rays $\tau_{ij} = \sigma_i \cap \sigma_j$ for $i \neq j$. The toric variety X_{Σ} is covered by the affine opens

$$U_{\sigma_0} = \operatorname{Spec}(\mathbb{C}[S_{\sigma_0}]) \cong \operatorname{Spec}(\mathbb{C}[x,y])$$

$$U_{\sigma_1} = \operatorname{Spec}(\mathbb{C}[S_{\sigma_1}]) \cong \operatorname{Spec}(\mathbb{C}[x^{-1},x^{-1}y])$$

$$U_{\sigma_2} = \operatorname{Spec}(\mathbb{C}[S_{\sigma_2}]) \cong \operatorname{Spec}(\mathbb{C}[xy^{-1},y^{-1}]).$$

Moreover, the gluing data on the coordinate rings is given by

$$g_{10}^* \colon \mathbb{C}[x,y]_x \cong \mathbb{C}[x^{-1},x^{-1}y]_{x^{-1}}$$

$$g_{20}^* \colon \mathbb{C}[x,y]_y \cong \mathbb{C}[xy^{-1},y^{-1}]_{y^{-1}}$$

$$g_{21}^* \colon \mathbb{C}[x^{-1},x^{-1}y]_{x^{-1}y} \cong \mathbb{C}[xy^{-1},y^{-1}]_{xy^{-1}}$$

It's easy to see if we use usual homogenous coordinates (x_0, x_1, x_2) on \mathbb{P}^2 , then $x \mapsto x_1/x_0$ and $y \mapsto x_2/x_0$ identify the standard affine open $U_i \subseteq \mathbb{P}^2$ with $U_{\sigma_i} \subseteq X_{\Sigma}$. Hence we have recovered \mathbb{P}^2 as a toric variety.

Example 2.3.2. Let $r \in \mathbb{N}$ and consider the fan Σ_r in $N_{\mathbb{R}} = \mathbb{R}^2$ consisting of the four cones σ_i shown in Figure 2, together with all of their faces.

FIGURE 2. The fan Σ for Hirzebruch surface

2.4. Terminologies.

Definition 2.4.1. Let $\Sigma \subseteq N_{\mathbb{R}}$ be a fan.

- (1) Σ is smooth if every cone in Σ is smooth.
- (2) Σ is simplical if every cone in Σ is simplical.
- (3) Σ is complete if its support $|\Sigma| := \bigcup_{\sigma \in \Sigma} \sigma$ is all of $N_{\mathbb{R}}$.

Theorem 2.4.1. Let X_{Σ} be the toric variety defined by a fan $\Sigma \subseteq N_{\mathbb{R}}$. Then

- (1) X_{Σ} is smooth if and only if Σ is smooth.
- (2) X_{Σ} is an orbifold if and only if Σ is simplical.
- (3) X_{Σ} is a complete variety if and only if Σ is complete.

 $^{{}^1}X_\Sigma$ is an orbifold if X_Σ has only finite quotient singularities.

3. The orbit-cone correspondence

- 3.1. Baby example.
- 3.2. The orbit-cone correspondence.

Theorem 3.2.1 (orbit-cone correspondence). Let X_{Σ} be the toric variety of the fan Σ in $N_{\mathbb{R}}$. Then

(1) There is a bijective correspondence

$$\{\text{cones } \sigma \text{ in } \Sigma\} \longleftrightarrow \{T_N\text{-orbits in } X_\Sigma\}$$
$$\sigma \longleftrightarrow O(\sigma) \cong \operatorname{Hom}_{\mathbb{Z}}(\sigma^\perp \cap M, \mathbb{C}^*).$$

- (2) Let $n = \dim N_{\mathbb{R}}$. For each cone $\sigma \in \Sigma$, $\dim O(\sigma) = n \dim \sigma$.
- (3) The affine open subsets U_{σ} is the union of orbits

$$U_{\sigma} = \bigcup_{\tau \leq \sigma} O(\tau).$$

(4) $\tau \preceq \sigma$ if and only if $O(\sigma) \subseteq \overline{O(\tau)}$, and

$$\overline{O(\tau)} = \bigcup_{\tau \preceq \sigma} O(\sigma),$$

where $\overline{O(\tau)}$ denotes the closure in both classical and Zariski topologies.

3.3. Orbit closure as toric varieties.

Proposition 3.3.1. Let Σ be a fan in $N_{\mathbb{R}}$ and $\tau \in \Sigma$. Then the orbit closure $\overline{O(\tau)}$ has a toric variety structure.

4. Divisors on Toric Variety

- 4.1. Weil divisors on toric varieties. Let X_{Σ} be the toric variety of fan in $N_{\mathbb{R}}$ with dim $N_{\mathbb{R}} = n$. In this section we will use torus-invariant prime divisors and characters to give a lovely description of class group of X_{Σ} .
- 4.1.1. The divisor of a character. By the orbit-cone correspondence, $\rho \in \Sigma(1)$ gives the codimension one orbit $O(\rho)$ whose closure $\overline{O(\rho)}$ admits a codimension one toric subvariety structure by Proposition 3.3.1. Thus $\overline{O(\rho)}$ gives a T_N -invariant prime divisor on X_{Σ} . To emphasize that $\overline{O(\rho)}$ is a divisor we will denote it by D_{ρ} for convenience. Then D_{ρ} gives the DVR $\mathcal{O}_{X_{\Sigma},D_{\rho}}$ with valuation

$$\nu_{\rho} \colon \mathbb{C}(X_{\Sigma})^* \to \mathbb{Z}$$
.

Recall that any ray $\rho \in \Sigma(1)$ has a minimal generator $u_{\rho} \in \rho \cap N$, and also note that when $m \in M$, the character $\chi^m \colon T_N \to \mathbb{C}^*$ is a rational function in $\mathbb{C}(X_{\Sigma})^*$ since T_N is Zariski open in X_{Σ} .

Proposition 4.1.1. Let u_{ρ} be the minimal generator of ray $\rho \in \Sigma(1)$ and χ^m be a character corresponding to $m \in M$. Then

$$\nu_{\rho}(\chi^m) = \langle m, u_{\rho} \rangle.$$

Proposition 4.1.2. For $m \in M$, the divisor of character χ^m is given by

$$\operatorname{div}(\chi^m) = \sum_{\rho \in \Sigma(1)} \langle m, u_\rho \rangle D_\rho.$$

4.1.2. Computing the class group.

Theorem 4.1.1. There is the following exact sequence

$$M \to \operatorname{Div}_{T_N}(X_{\Sigma}) \to \operatorname{Cl}(X_{\Sigma}) \to 0,$$

where the first map is $m \mapsto \operatorname{div}(\chi^m)$ and the second sends a T_N -invariant divisor to its divisor class in $\operatorname{Cl}(X_\Sigma)$. Furthermore, one has the following exact sequence

$$0 \to M \to \operatorname{Div}_{T_N}(X_{\Sigma}) \to \operatorname{Cl}(X_{\Sigma}) \to 0$$

if and only if $\{u_{\rho} \mid \rho \in \Sigma(1)\}$ spans $N_{\mathbb{R}}$.

Example 4.1.1. The fan of \mathbb{P}^n has ray generators given by $u_0 = -e_1 - \cdots - e_n$ and $u_1 = e_1, \ldots, u_n = e_n$. Thus the map $M \to \operatorname{Div}_{T_N}(\mathbb{P}^n)$ can be written as

$$\mathbb{Z}^n \to \mathbb{Z}^{n+1}$$

$$(a_1,\ldots,a_n)\mapsto (-a_1-\cdots-a_n,a_1,\ldots,a_n).$$

Using the map

$$\mathbb{Z}^{n+1} \to \mathbb{Z}$$

$$(b_0,\ldots,b_n)\mapsto b_0+\cdots+b_n,$$

one gets the exact sequence

$$0 \to \mathbb{Z}^n \to \mathbb{Z}^{n+1} \to \mathbb{Z} \to 0$$

which proves $Cl(\mathbb{P}^n) \cong \mathbb{Z}$.

Example 4.1.2.

- 4.2. Cartier divisors on toric varieties.
- 4.3. The sheaf of a torus-invariant divisor. Let D be a T_N -invariant divisor on a toric variety X_{Σ} . In this section we will give descriptions of the global sections $H^0(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D))$.

Proposition 4.3.1. If D is a T_N -invariant Weil divisor on X_{Σ} , then

$$H^0(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)) = \bigoplus_{\operatorname{div}(\chi^m) + D \ge 0} \mathbb{C} \cdot \chi^m$$

Remark 4.3.1. For $D = \sum_{\rho} a_{\rho} D_{\rho}$ and $m \in M$, $\operatorname{div}(\chi^m) + D \ge 0$ is equivalent to

$$\langle m, u_{\rho} \rangle + a_{\rho} \ge 0$$

for all $\rho \in \Sigma(1)$. If we define

$$P_D = \{ m \in M_{\mathbb{R}} \mid \langle m, u_{\rho} \rangle \ge -a_{\rho} \text{ for all } \rho \in \Sigma(1) \},$$

then above proposition can be written as

$$H^0(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(D)) = \bigoplus_{m \in P_D \cap M} \mathbb{C} \cdot \chi^m$$

Example 4.3.1. The fan Σ_2 for the Hirzebruch surface \mathcal{H}_2 has ray generators $u_1 = -e_1 + 2e_2, u_2 = e_2, u_3 = e_1$ and $u_4 = -e_2$. The corresponding divisors are D_1, D_2, D_3, D_4 , and Example 4.1.2 implies that the classes of D_1 and D_2 are a basis of $Cl(\mathcal{H}_2) \cong \mathbb{Z}^2$.

Example 4.3.2.

12 BOWEN LIU

5. Line bundles on toric variety

6. Canonical divisors of toric variety

- 6.1. One-forms on toric varieties.
- 6.2. Differential forms on toric varieties.
- 6.3. The canonical sheaf of toric varieties.

Theorem 6.3.1. For a toric variety X_{Σ} , the canonical sheaf $\omega_{X_{\Sigma}}$ is given by

$$\omega_{X_{\Sigma}} \cong \mathcal{O}_{X_{\Sigma}}(-\sum_{\rho} D_{\rho}).$$

Thus $K_{X_{\Sigma}} = -\sum_{\rho} D_{\rho}$ is a torus-invariant canonical divisor on X_{Σ} .

Example 6.3.1. The canonical bundle of \mathbb{P}^n is

$$\omega_{\mathbb{P}^n} \cong \mathcal{O}_{\mathbb{P}^n}(-n-1)$$

for all $n \geq 1$ since $Cl(\mathbb{P}^n) \cong \mathbb{Z}$ and thus $D_0 \sim D_1 \sim \cdots \sim D_n$.

Example 6.3.2. When we computed the class group of the Hirzebruch surface \mathcal{H}_r in Example 4.1.2, we wrote divisors D_{ρ} as D_1, \ldots, D_4 and showed that

$$D_3 \sim D_1$$

$$D_4 \sim rD_1 + D_2.$$

Thus the canonical bundle can be written as

$$\omega_{\mathcal{H}_r} = \mathcal{O}_{\mathcal{H}_r}(-D_1 - D_2 - D_3 - D_4) = \mathcal{O}_{\mathcal{H}_r}(-(r+2)D_1 - 2D_2).$$

14 BOWEN LIU

7. Sheaf cohomology of toric varieties

References

- [CLS11] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties, volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011.
- [Sum74] Hideyasu Sumihiro. Equivariant completion. J. Math. Kyoto Univ., 14:1–28, 1974.
- [Sum75] Hideyasu Sumihiro. Equivariant completion. II. J. Math. Kyoto Univ., 15(3):573–605, 1975.

Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100084, P.R. China,

Email address: liubw22@mails.tsinghua.edu.cn