94-05-03 09:31 RCVI DRINKING WATER SURVEILLANCE PROGRAM SOUTHAMPTON WATER TREATMENT PLANT REPORT FOR 1991 AND 1992

SOUTHAMPTON WATER TREATMENT PLANT DRINKING WATER SURVEILLANCE PROGRAM REPORT FOR 1991 AND 1992

APRIL 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994

This publication may be reproduced for non-commercial purposes with appropriate attribution.

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

SOUTHAMPTON WATER TREATMENT PLANT 1992 REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

The Southampton water treatment plant is a conventional treatment plant which treats water from Lake Huron. The process consists of coagulation, flocculation, clarification (upflow clarifier), filtration and disinfection. This plant has a design capacity of $6.3 \times 1000 \, \text{m}^3/\text{day}$. The Southampton water treatment plant serves a population of approximately 4,800.

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The Southampton water treatment plant, for the sample year 1992, produced good quality water and this was maintained in the distribution system.

TABLE A DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

SUMMARY TABLE BY SCAN

	8	SITE									
	SCAN	RAW TESTS	RAW TESTS POSITIVE %POSITIVE		TREA TESTS	TREATED TS POSITIVE	TREATED TESTS POSITIVE %POSITIVE	HIG	HIGH ST TESTS POSITIVE %POSITIVE	%POSITIVE	
	BACTERIOLOGICAL	27	9	23	٥	0	0	٠. ٥	-	11	
	CHEMISTRY (FIELD)	. 71	17	100	53	53	100	8	66	100	
	CHEMISTRY (LABORATORY)	207	174	8%	216	159	23	357	310	88	
	METALS	215	57	56	215	51	23	391	136	34	
	CHLOROAROMATICS	122	0		122	0	0	125	0	0	
	CHLOROPHENOLS	9	0	0	9	0	0	٠		•	
	PESTICIDES AND PCB	311	0	0	311	0	0	197	0	0	
	PHENOL 1CS	٥	0	0.	٥	0	0	•	•	٠	
	POLYAROMATIC HYDROCARBONS	17	0	0	17	0	0	17	0	0	
	SPECIFIC PESTICIDES	56	0	. 0	56	0	0	٠	•	٠	
	VOLATILES	279	30	10	279	38	13	248	33	13	
	RADIONUCLIDES	14	. 4	28	14	4	28	٠		٠	
TOTAL		1.274	312		1.277	305		1.443	579		

DRINKING WATER SURVEILLANCE PROGRAM

SOUTHAMPTON WATER TREATMENT PLANT 1992 REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Southampton water treatment plant in April 1992. This is the first published DWSP report.

PLANT DESCRIPTION

The Southampton water treatment plant is a conventional treatment plant which treats water from Lake Huron. The process consists of coagulation, flocculation, clarification (upflow clarifier), filtration and disinfection. This plant has a design capacity of $6.3 \times 1000 \, \text{m}^3/\text{day}$. The Southampton water treatment plant serves a population of approximately 4,800.

The sample day flows ranged from 1.3 x 1000 $\mathrm{m}^3/\mathrm{day}$ to 2.3 x 1000 $\mathrm{m}^3/\mathrm{day}$.

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Stringent DWSP sampling protocols were followed to ensure that all samples were collected in a uniform manner (see Appendix B).

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. Retention time was calculated by dividing the volume of water

between two sampling points by sample day flow. For example, if it was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

To obtain a representative raw water sample, free from any added chemicals, at plants which used chlorine for zebra mussel control, the operator was required to turn off the chlorine feed to the mouth of the intake and allow enough time for the chlorinated water to clear from the intake works.

Plant operating personnel routinely analyzed parameters for process control (Table 2).

At all distribution system locations, two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples, therefore, were laboratory chemistry and metals. The free flow sample represented fresh water from the distribution system main, since the sample tap was flushed for five minutes prior to sampling.

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between the raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary of all results by parameter and by water type. If a parameter was not detected, the total number of negative sample results is given. In contrast, if a parameter was detected at any location, the detailed results for all samples are provided.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment and Energy laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest walue detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 4 and 5. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

The guidelines are evaluated on the results from the free flowing samples. Standing samples in the distribution system can show elevated concentrations in certain metals if the water is corrosive or if the standing time is excessive. Flushing the tap until the water achieves the coolest temperature will ensure that the water used for consumption will contain minimum concentrations of metals.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

-THE TREATED AND DISTRIBUTED WATER:

-ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES: AND

-POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Standard plate count was the only bacteriological analysis conducted on the treated and distributed water. No results were above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than 15°C . The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of delivered water may increase in the distribution system due to the warming effect of soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Aesthetic Objective of 15°C in 4 of 18 treated and distributed water samples with a maximum reported value of 18.8°C .

CHEMISTRY (LABORATORY)

The ODWos indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Recommended Operational Guideline of 80-100 mg/L in 17 of 18 treated and distributed water samples with a maximum reported value of 156 mg/L.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to measure the efficiency of the treatment process. The ODWOs indicate that a useful guideline is to maintain a residual below 100 ug/L as aluminum in the water leaving the plant to avoid problems in the distribution system.

Aluminum exceeded the ODWO Recommended Operational Guideline of 100 ug/L in 8 of 18 treated and distributed water samples with a maximum reported value of 170 ug/L.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected above trace levels.

CHLOROPHENOLS

The results of the chlorophenol scan showed that one parameter was detected at a trace level.

PESTICIDES AND PCB

The results of the pesticide and PCB scan showed that none were detected.

PHENOLICS

The results of the phenolic test showed that none were detected above trace levels.

POLYAROMATIC HYDROCARBONS

The results of the polyaromatic hydrocarbon scan showed that none were detected.

SPECIFIC PESTICIDES

The results of the specific pesticide scan showed that none were detected.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology. Trace levels of styrene are considered to be laboratory artifacts resulting from the sample shipping containers.

M-xylene was found at positive levels in 2 of the 17 treated and distributed water samples analyzed. The maximum observed level was 1.0 ug/L. This was below the ODWO Aesthetic Objective of 300 ug/L.

Methylene chloride was found at a positive level in 1 of the 17 treated and distributed water samples analyzed. The maximum observed level was 5.0 ug/L. This was below the ODWO Maximum Acceptable Concentration of 50 ug/L.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THM results are discussed. Starting in 1991, samples from the distribution system were quenched with sodium thiosulphate to stop the further production of THMs in the sample bottle. This provided a more representative estimation of the THMs consumed in tap water.

Total trihalomethanes were found at positive levels in all 17 treated and distributed water samples analyzed with a maximum level of 74.9 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

Trihalomethanes were detected at positive levels in all raw water samples. Where prechlorination is practiced, the operator must ensure that no chlorine is present in the lowlift chamber or discharge line and that the lowlift pumps are in operation for some time before the raw water sample is taken.

RADIOLOGICAL

RADIONUCLIDES

There are more than 200 radionuclides, some of which occur naturally and others which originate from the activities of society. The radionuclides currently of greater interest from a health view-point are tritium, strontium-90, iodine-131, cesium-137 and radium-226. The gross beta and gross alpha determinations are suitable for preliminary screening except for tritium which must be measured separately. Radionuclides are measured in becquerels per litre (Bq/L). No results were above the available guidelines.

CONCLUSIONS

No known health related guidelines were exceeded.

The Southampton water treatment plant, for the sample year 1992, produced good quality water and this was maintained in the distribution system.

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

PLANT NAME: WORKS #: UTM #: SOUTHAMPTON WTP 210000078 169467304940707

DISTRICT:
REGION:
DISTRICT OFFICER:

OWEN SOUND SOUTHWEST H.W. PAGE

PUC MANAGER:

MR ROBERT MASTERSON

ADDRESS:

SOUTHAMPTON PUBLIC UTILITIES 235 HIGH STREET, P.O. BOX 1030

SOUTHAMPTON, ONTARIO

NOH 2LO

MUNICIPALITY: AUTHORITY: SOUTHAMPTON MUNICIPAL

PLANT INFORMATION

PLANT VOLUME: DESIGN CAPACITY: (X 1000 M3)

RATED CAPACITY:

6.300 (X 1000 M3/DAY) - (X 1000 M3/DAY)

MUNICIPALITY
-----SOUTHAMPTON

POPULATION 4,800

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

PARAMETER	LOCATION	FREQUENCY
FREE CHLORINE RESIDUAL	LAB RAW RAW	3 TIMES/DAY CONTINUOUS
TOTAL CHLORINE RESIDUAL	LAB TREATED	3 TIMES/DAY
PH	RAW TREATED	VARIABLE VARIABLE
TEMPERATURE .	LAB TREATED RAW TREATED	DAILY CONTINUOUS CONTINUOUS
TURBIDITY	LAB TREATED RAW SETTLED TREATED	3 TIMES/DAY CONTINUOUS CONTINUOUS CONTINUOUS

Page 10

TABLE 3
DRINKING WATER SURVEILLANCE PROGRAM SOUTHAMPTON WTP SAMPLE DAY CONDITIONS
AND TREATMENT. CHEMICAL DOSAGES FOR 1992

							•			
POST CHLORINATION CHLORINE		1.41	1.00	•	1.10	1.07	.87	1.38	1.41	1.06
COAGULATION POLYALUMINUM CHLORIDE		6.00	9.00	9.00	00.9	00.9	9.00	9.00	9.00	12.00
PRE CHLORINATION CHLORINE		.42	.20		.72	. 98.	1.85	.91	1.12	57:
	FLOW (1000M3)	000.	1.800	2.350	2.200	2.300	2.000	1.700	1,350	1.371
	DELAY * FI TIME(HRS)·('	00. 70	05 24.00	05 .00	08 24.00	05 24.00	09 24.00	06 24.00	03 24.00	08 24.00
	DATE	APR	MAY	S	92 JUL	AUG	SEP	200	Š	DEC

^{*} THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME.

KEY TO TABLE 4 and 5

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
 - 5. Health Related Guidance Value
- B HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
 - 4. Aesthetic Objective (AO)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - 2. Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

	No Sample Taken
BDL	Below Minimum Measurement Amount
<t< td=""><td>Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)</td></t<>	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>.	Results Are Greater Than The Upper Limit
<=> ·	Approximate Result
! 48	No Data: Sample Age Exceeded 48 Hours
!AR	No Data: No Numeric Results
! AW	No Data: Analysis Withdrawn
! BT	No Data: Sample Broken In Transit
!cs	No Data: Contamination Suspected
! EF	No Data: Laboratory Equipment Failure
!IR	No Data: Insufficient Sample
!IS	No Data: Insufficient Sample
! LA	No Data: Laboratory Accident
!NP	No Data: No Procedure
!NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!PE	No Data: Procedure Error: Sample Discarded
!PR	No Data: Preservative Required
! QU	No Data: Quality Control Unacceptable
!RE	No Data: Received Empty
!RO	No Data: No Numeric Results
!SM	No Data: Sample Missing
!ss	No Data: Sample Improperly Preserved
!U	No Data: Sample Unsuitable For Analysis
! UB	No Data: Bottle Broken
¹ !UN	No Data: Result Unreliable

!UR No Data: Unpreserved Sample Required

A Approximate Value

A3C Approximate, Total Count Exceeded 300 Colonies

A> Approximate Value, Exceeded Normal Range

APS Additional Peak, Less Than, Not Priority Pollutant

ARO Additional Information In Laboratory Report

CRO Calculated Result Only

NAF Not All Required Tests Found

RID Ioncal Calculated on Incomplete Data Set

RMP P and M-Xylene Not Separated

RRR Result Obtained by Repeat Analysis

RRV Rerun Verification

SFA Sample Filtered: Filtrate Analyzed

SIL Sample Incorrectly Labelled

SPS Several Peaks, Small, Not Priority Pollutant

U48 Unreliable: Sample Age Exceeded 48 Hours

UAL Unreliable: Sample Age Exceeded Limit

UAU Unreliable: Sample Age Unknown

UCS Unreliable: Contamination Suspected

USD Unreliable: Sample Decomposition Noted

WSD Wrong Sample Description On Bottle

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

E.	GUIDELINE = 0 (A1)	-						GUIDELINE = 500 (A3)									GUIDELINE = 5/100ML (A1)							1	. GUIDELINE = N/A								
DIST. SYSTEM HIGH ST STANDING																																	
DIST. SYSTEM HIGH ST FREE FLOW	DET'N LIMIT = 0		•			٠	e .	DET'N LIMIT = 0	0 <=>	<=> 0	<=> 9	\$ (340	<=> 0	<=> 7	DET'N LIMIT = 0	•		•					DET'N LIMIT = 0		. •						
TREATMENT PLANT TREATED									3 (=>	** 0 ·	÷ .	\$ (0 (2 <=>	(=> 0		•							_			•	•		•		
TREATMENT PLANT TRE	BACTERIOLOGICAL FECAL COLIFORM MF (CT/100ML)	00	0	0 0	0	0		NT MF (CT/ML)		•		•	•				MF (CT/100ML)	10 AZC	BDL	B0L	BOL		80F	90	COLIFORM BCKGRD MF (CT/100ML)	BDL	900 A3C	4400 ASC	2720 A3C	B0L	7	~ 2	
	FECAL COLIFORM	1992 APR 1992 MAY		1992 JUL 1992 ALIC			1992 NOV 1992 DEC	STANDRD PLATE CNT MF (CT/ML	1992 APR	1992 MAY		1992 JUL				1992 DEC	TOTAL COLIFORM MF (CT/100ML	. 1992 APR			1992 AUG	1992 OCT			T COLIFORM BCKG	1992 APR	1992 MAY	1992 JUN 1992 IIII	1992 AUG		1992 OCT	1992 NOV	

Σ	GUIDELINE = N/A	.0000000	GUIDELINE = N/A	.0000000	GUIDELINE = 6.5-8.5 (A4)
DIST. SYSTEM HIGH ST STANDING	0	. 140	0	. 240 . 200 . 050 . 100 . 100 . 100	380 .300 .300 .150 .150 .150 .150 .200 .7300 .74
DIST. SYSTEM HIGH ST FREE FLOW	DET'N'LIMIT =	.200 .140 .100 .100 .100 .050 .200	DET'N LIMIT =	.400 .240 .200 .300 .300 .150 .150	.600 .380 .300 .300 .200 .200 .200 .200 .200 .20
TREATMENT PLANT	ELD)	.160 .130 .130 .130 .170 .170 .160	• • • • • • • • • • • • • • • • • • •	. 940 1.010 . 900 . 860 . 750 . 740 . 940	7.330 7.330 7.330 7.330 7.330 7.330 7.360 7.190 7.110 7.110 7.110 7.110 7.110 7.110
TREATMENT PLANT RAW	CHEMISTRY (FIELD) (COMB) (MG/L)	. 160	FREE (MG/L)	. 050 . 060 . 086 . 086 . 086 . 086	FLD CHLORINE (TOTAL) (MG/L 1992 ART140 1992 JUN220 1992 AUG370 1992 SEP370 1992 OCT220 1992 OCT350 1992 DEC350 1992 DEC350 1992 LOH (DHNSLESS)350 1992 AUG350 1992 BEC350 1992 ART450 1992 AUG350 1992 AUG350
	CHEMIST FLD CHLORINE (COMB) (MG/L	1992 APR 1992 JUN 1992 JUN 1992 AUG 1992 SEP 1992 OCT 1992 DCC	FLD CHLORINE FREE (MG/L	1992 APR 1992 MAY 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 OCT 1992 DCC	FLD CHLORINE (TO) 1992 APR 1992 ANY 1992 JUL 1992 JUL 1992 AUG 1992 OCT 1992 AUG

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

•			
	GUIOELINE = 15 (A3)	GUIDELINE = 1.0 (A1)	
DIST. SYSTEM HIGH ST STANDING		12. 900 19. 200 18. 500 18. 500 11. 500 7. 500 11. 600 11. 600	.240
DIST. SYSTEM HIGH ST FREE FLOW	DET'N LIMIT = N/A	1,000 14,000 14,000 16,000 16,500 13,000 8,000 3,000 3,000 1,000 1,100 1	.200
TREATMENT PLANT TREATED	(FIELD)	7.500 13.900 14.500 16.500 16.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500	. 220
. TREATMENT PLANT RAW	CHEMISTRY E (DEG.C)	1.300 11.600 13.500 14.700 17.500 18.500 14.700 9.900 8.900 1.700 7.700 1.800 2.300 2.300 2.300 2.300 1.000	1.600
	FLD TEMPERATUR	1992 APR 1992 MAY 1992 JUL 1992 AUG 1992 SEP 1992 CCT 1992 DEC 1992 APR 1992 APR 1992 AUG 1992 AUG 199	

ORINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP	DIST. SYSTEM HIGH ST STANDING
SURVEILLANCE PRO	DIST. SYSTEM HIGH ST FREE FLOW
DRINKING WATER	TREATHENT PLANT DIST. SYSTEM TREATED HIGH ST FREE FLOW
	TREATMENT PLANT

_			•	
GUIDELINE = 30-500 (A4)		(F2)	(A1)	
= 30-5		GUIDELINE = 100 (F2)	= 0.2 (A1) = 250 (A3)	
L I NE		LINE	GUIDELINE =	
GUIDE		A	4 -	
))))	98.500 81.600 80.500 77.300 99.600 99.600	37.500 34.500 29.400 28.000 27.900 35.650 35.400	13.000	12.100 12.300 12.000 13.100
		1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
DET'N LIMIT = 0.2	00000000	= 0.20	DET'N LIMIT = 0.001 DET'N LIMIT = 0.20 12.700 12.900 11.200 10.000	
LIMIT	87.600 106.900 96.600 80.200 81.300 88.600 97.200	31.600 37.800 37.800 37.800 28.700 29.400 29.400 36.700 36.700	DET'N LIMIT = 12.700 11.200 11.200 10.000 12.900 11.200 12.900 10.000	11.60
DET 'N		0ET'N	DET'N	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000000	0000000	00000	
JRY.)	86.500 122.300 96.600 78.700 87.100 74.100 114.600 90.300	31.200 42.400 34.000 27.800 31.500 26.800 37.350 31.650	80L 12.700 13.400 10.800 9.800	11.90
CHEMISTRY (LABORATORY)				
RY (L/	000000000	99999999		20000
HEMIST)	93.000 222.300 99.400 83.100 144.400 84.100 99.600 84.800	30.600 67.400 33.100 27.400 27.450 27.450 35.300 27.900	7.000	7.800 7.800 7.500 7.000
1				
ITY CM	APR JUN JUL AUG SEP OCT NOV	(MG/L APR JUN JUL AUG SEP OCT	MIDE (MG/L ORIDE (MG/ 1992 APR 1992 MAY 1992 JUN 1992 JUN	
ALKALINITY (MG/L	1992 1992 1992 1992 1992 1992 1992	1992 APR 1992 APR 1992 JUN 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 OCT	CYANIDE (MG/L 9 SAMPLES CHLORIDE (MG/L 1992 APR 1992 HAY 1992 JUL 1993 JUL	1992
¥ F		3	5	

								·
	GUIDELINE = 5 (A3)		GUIDELINE = 400 (F2)		GUIDELINE = 5.0 (A3)		GUIDELINE = 1.5 (A1)	· · · · · · · · · · · · · · · · · · ·
DIST. SYSTEM HIGH: ST STANDING	,	2.000 1.000 1.000 1.000 1.000		282 267 227 227 228 226 271		1.600 1.400 1.400 1.100 1.500 1.500		. 080 . 060 . 040 . 060 . 060 . 080 . 080
DIST. SYSTEM DI HIGH ST HI FREE FLOW ST	DET'N LIMIT = 0.50	1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1	DET'N LIMIT = 1.0	248 261 261 232 234 234 247 267	DET'N LIMIT = 0.10	1,100 1,700 1,700 1,000 1,000 1,000 1,500 1,300	DET'N LIMIT = 0.01	.060 .060 .080 .060 .060 .060 .080 .080
TREATMENT PLANT TREATED	BORATORY)	500 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.000 <1.00		. 245 316 263 251 251 220 220 230 230 230 254		1.900 1.900 1.200 1.200 1.000 1.000 1.800		080 080 080 080 060 060 060 060 060 060
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	2,000 18,000 1,500 1,000 <1 6,000 2,000 2,000 7,000 1,	UMHO/CM)	235 486 486 252 213 390 . 264 250 220	N (MG/L)	1.700 1.600 1.500 1.500 2.500 2.500 2.200 2.200 1.800	^	080 0.00 0.00 0.00 0.00 0.00 0.00 0.00
	COLOUR (HZU	1992 APR 1992 MAY 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 DEC	CONDUCTIVITY (UMHO/CM	1992 APR 1992 MAY 1992 JUN 1992 AUG 1992 SEP 1992 OCT 1992 DEC	DISS ORG CARBON (MG/L	1992 APR 1992 MAY 1992 JUN 1992 JUL 1992 SEP 1992 OCT 1992 DEC	FLUORIDE (MG/L	1992 APR 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 DEC

	GUIDELINE = 80-100 (A4)		E = N/A		GUIDELINE = 10 (F2)		. = N/A = :	
DIST. SYSTEM HIGH ST STANDING	GUIDELINE	138.000 128.000 106.000 105.000 113.000 134.000	GUIDELINE = N/A	1.189 NAF 3.45 NAF 3.57 NAF 3.577 NAF 1.151	GUIDELINE	1.110 1.000 1.070 980 981 1.094 1.132	GUIDELINE	.409 .395 .179 .062 NAF .213 .209 .209
SYSTEM ST LOW	DET'N LIMIT = 0.5	115,000 124,000 104,000 107,000 116,940 116,940 116,940 116,940 116,940 116,940 116,940 116,940 116,940 116,940 116,940 116,940 116,940	DET'N LIMIT = N/A	.001 1.191 NAF .721 NAF .562 .018 NAF .307 .307 .306	LIMIT = 0.01	1.080 1.130 .990 .960 .940 .949 1.018	DET'N LIMIT = N/A	.303 .405 .405 .143 .108 NAF .108 .401
TREATMENT PLANT DIST. SYS TREATED HIGH ST FREE FLOW		114,000 126,000 117,000 117,000 117,000 117,000 118,000 116,000	DET 'N	.072 .714 MAF .479 MAF .23 MAF 3.316 3.400 3.400	DET'N LIMIT	1.060 1.110 1.000 1.000 9.005 1.082 1.065	DET 'N I	. 244 . 552 . 153 . 153 . 168 NAF . 163 . 325 . 463
TREATMENT PLANT TREATMEN RAW TREATED	CHEMISTRY (LABORATORY)	112.000 172.000 173.000 178.000 198.000 198.000 118.000 101.000	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.752 NAF 524 NAF 524 NAF 2.401 NAF 3.081 1.964 2.062	•	1.050 1.400 .950 .940 1.250 .965 .995	NSLESS)	. 381 1.266 . 497 . 222 . 751 NAF . 458 . 349 . 996
TREAT . RAW	CH HARDNESS (MG/L)	1992 APR 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 DEC	IONCAL (DMNSLESS)	1992 APR 1992 MAY 1992 UM 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	POTASSIUM (MG/L	1992 APR 1992 MAY 1992 JUN 1992 JUL 1992 SEP 1992 OCT 1992 OCT 1992 OCT	LANGELIERS INDEX (DMNSLESS	1992 APR 1992 MAY 1992 JUH 1992 JUL 1992 SAD 1992 CCT 1992 OCT 1992 CCC

TABLE 4 ORINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

	GUIDELINE = 30.0 (F2)		GUIDELINE = 200 (A4)	GUIDELINE = 0.05 (F2) CUIDELINE = 1.0 (A1) GUIDELINE = 1.0 (A1) CUIDELINE = 1.0 (A1)
DIST. SYSTEM HIGH ST STANDING		10.900 10.100 7.880 7.880 7.560 10.200 10.540	4.180 4.050 3.770 3.770 3.770 4.210 4.200	.0020.0020.0020.0000.0000.0000.0000.0000.0000.0000.0000
DIST. SYSTEM DIST. STANDING STANDING	DET'N LIMIT = 0.1	8.790 10.800 7.770 7.740 8.300 8.810 10.480	0ET'N LIMIT = 0.20 4.300 4.270 4.020 3.630 3.760 3.910 4.160	DET 'N LIMIT = 0.002 088 < 0.008 < 1 004 < 1 004 < 1 007 < 1 007 < 1 007 < 1 008 < 1 007 < 1 008 < 1 007 < 1 008 < 1 008 < 1 009 < 1 009 < 1 000 < 1 000 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1 001 < 1
TREATMENT PLANT TREATED	30RATORY)	8.800 12.300 10.100 7.610 7.440 11.200 8.920	0.58.2 0.52.2 0.52.2 0.52.2 0.50.3 0.	108 108 108 108 108 108 108 108 108 108
TREATMENT 'PLANT RAW	CHEMISTRY (LABORATORY)	8.670 22.800 9.690 7.480 17.630 10.290 9.130	, 4, 010 5,740 3,590 3,590 3,500 4,180 3,910 3,910	
1,	MAGNESIUM (MG/L	1992 APR 1992 MAY 1992 JUL 1992 AUG 1992 SEP 1992 NOV 1992 OCT	SOO 1UM (MG/L 1992 APR 1992 AUN 1992 AUG 1992 AUG 1992 SEP 1992 NOV 1992 DEC	AMMONIUM TOTAL (MG/L) 1992 APR 1992 AUN 1992 JUN 1992 SEP 1992 SEP 1992 BOC 1992 BOC 1992 BOC 1992 BAR 1992 UL 1992 AUN 1992 AUN 1992 CCT 1992 CCT 1992 OCT 1992 OCT 1992 OCT

			•		
	GUIDELINE = 10.0 (A1)		GUIDELINE = N/A	GUIDELINE = 6.5-8.5 (A4)	GUIDELINE = N/A
DIST. SYSTEM HIGH ST STANDING	90109	. 650 . 650 . 370 . 370 . 305 . 395 . 480	60106 . 120 . 150 . 180 . 200 . 190 . 190 . 230	6U1DE 8.240 8.290 8.120 8.120 8.090 8.090 8.250	90100
DIST. SYSTEM DIS HIGH ST HIG FREE FLOW STAI	DET'N LIMIT = 0.005	.500 .665 .405 .310 .310 .310 .320 .310 .310	.090 <1 120 140 140 140 100 <1 100 100 <1 100 100 100 130 120	DET'N LIMIT = N/A 8.280 8.280 8.290 8.190 8.190 8.190 8.190 8.240 8.240	DET'N LIMIT = 0.0005
TREATMENT PLANT TREATED	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	04.5 505. 505. 505. 506. 506. 506. 506. 50		8 230 8 280 8 280 8 1280 8 150 8 160 8 160 8 260	801 - 001 4 - 001 4 - 001 4 - 001 4
TREATMENT PLANT	CHEMISTRY (LABORATORY) (MG/L)	255. 385. 316. 316. 315. 315. 315. 315. 316. 316. 316.	071. 071. 072. 0730	8 3.40 8 2.50 8 2.20 8 3.30 8 3.30 8 3.10 8 3.10	REACT (MG/L) .001 <t .001="" .002="" .003="" <t="" <t<="" th=""></t>
	CHEI NITRATE (TOTAL) (MG/L	1992 APR 1992 MAY 1992 JUL 1992 AUC 1992 ACF 1992 OCT 1992 NOV 1992 DEC	1992 APR 1992 APR 1992 APR 1992 APR 1992 APR 1992 UUN 1992 UUN 1992 AUG 1993 AUG 199	PH (OMNSLESS) 1992 APR 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 OCT 1992 NOV 1992 DEC	PHOSPHORUS FIL REACT (MG/L 1992 AAY

	•					•		
	GUIDELINE = 0.40 (F2)		GUIDELINE = 500 (A3)		GUIDELINE = 500 (A3)	. 1	LINE = 1:0 (A1)	
DIST. SYSTEM HIGH ST STANDING	GUIDE		GUIDE	183.000 CRO 174.000 CRO 148.000 CRO 147.000 CRO 176.000 CRO 176.000 CRO 176.000 CRO	GUIDE	19.350 21.040 17.510 18.040 17.850 22.090 21.380	GUIDELINE 360 360 280 280 280 290 590 590 510	
DIST. SYSTEM DISTRICH ST. HIGH ST. FREE FLOW ST.	DET'N LIMIT = 0.002		DET'N LIMIT = N/A	161.000 CR0 173.000 CR0 170.000 CR0 144.000 CR0 153.000 CR0 161.000 CR0 302.000 CR0	DET'N LIMIT = 0.20	17.700 19.490 20.560 17.090 18.220 19.530 22.190	DET'N LIMIT = 0.05 ·	
TREATMENT PLANT C	(LABORATORY) DE	801 .002 <1 .002 <1 .003 <1 .003 <1 .005 <1 .005 <1	30	159.000 CRO 205.000 CRO 171.000 CRO 142.000 CRO 163.000 CRO 183.000 CRO 183.000 CRO 183.000 CRO 183.000 CRO	80	17.860 23.510 23.510 17.190 22.610 23.670 18.650	590 .290 .290 .290 .370 .370 .400 .250	
TREATMENT PLANT RAW	CHEMISTRY (MG/L	0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 0005 < 1 000	TE (MG/L)	153,000 CRO 316,000 CRO 164,000 CRO 138,000 CRO 142,000 CRO 172,000 CRO 173,000 CRO 173,000 CRO 173,000 CRO	^	16.900 38.970 20.170 16.270 45.270 21.430 18.460	1.450 23.000 3.100 1.620 USD 1.140 1.140 1.540 1.540	
	PHOSPHORUS TOTAL	1992 APR 1992 MAY 1992 JUL 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 NOV	RESIDUE FILTRATE	1992 APR 1992 JUN 1992 JUL 1992 JUL 1992 AUG 1992 OCT 1992 NOV 1992 DEC	SULPHATE (MG/L	1992 APR 1992 MAY 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 DEC	TURBIDITY (FTU 1992 MAY 1992 JUN 1992 JUN 1992 AUG 1992 SEP 1992 SEP 1992 OCT 1992 DEC	

			A4)									Ð.									(A2)									
	N/A		100									25 (A									1000									
	Ä		# #									NE =									¥ ===									
	GUIDELINE = N/A		GUIDELINE = 100 (A4)									GUIDELINE = 25 (A1)				,					GUIDELINE = 1000 (A2)									;
DIST. SYSTEM HIGH ST STANDING:	n9	BOL	3		62.000	120.000	100.000	110.000	86.000	80,000	61.000	ng		.200 <t< th=""><th>BDL</th><th></th><th>.340 <t< th=""><th>BDL</th><th>T> 007.</th><th>.200 <t BDL</t </th><th></th><th></th><th>13.000</th><th>15.000</th><th>15.000</th><th>14.000</th><th>14.000</th><th>15.000</th><th>14.000</th><th>14.000</th></t<></th></t<>	BDL		.340 <t< th=""><th>BDL</th><th>T> 007.</th><th>.200 <t BDL</t </th><th></th><th></th><th>13.000</th><th>15.000</th><th>15.000</th><th>14.000</th><th>14.000</th><th>15.000</th><th>14.000</th><th>14.000</th></t<>	BDL	T> 007.	.200 <t BDL</t 			13.000	15.000	15.000	14.000	14.000	15.000	14.000	14.000
	DET'N LIMIT = 0.05	BOL	DET'N LIMIT = 0.10	39.000	000	000	000	000	000	20.000	45.000	DET'N LIMIT = 0.10	250 <t< th=""><th>. 130 <t< th=""><th>BOL</th><th>420 <t< th=""><th>.180 <t< th=""><th></th><th></th><th>.210 <t .<br="">Bol</t></th><th>IT = 0.05</th><th>000</th><th>12.000</th><th>14.000</th><th>13.000</th><th>000</th><th>14.000</th><th>. 000 -</th><th>14.000</th><th>14.000</th></t<></th></t<></th></t<></th></t<>	. 130 <t< th=""><th>BOL</th><th>420 <t< th=""><th>.180 <t< th=""><th></th><th></th><th>.210 <t .<br="">Bol</t></th><th>IT = 0.05</th><th>000</th><th>12.000</th><th>14.000</th><th>13.000</th><th>000</th><th>14.000</th><th>. 000 -</th><th>14.000</th><th>14.000</th></t<></th></t<></th></t<>	BOL	420 <t< th=""><th>.180 <t< th=""><th></th><th></th><th>.210 <t .<br="">Bol</t></th><th>IT = 0.05</th><th>000</th><th>12.000</th><th>14.000</th><th>13.000</th><th>000</th><th>14.000</th><th>. 000 -</th><th>14.000</th><th>14.000</th></t<></th></t<>	.180 <t< th=""><th></th><th></th><th>.210 <t .<br="">Bol</t></th><th>IT = 0.05</th><th>000</th><th>12.000</th><th>14.000</th><th>13.000</th><th>000</th><th>14.000</th><th>. 000 -</th><th>14.000</th><th>14.000</th></t<>			.210 <t .<br="">Bol</t>	IT = 0.05	000	12.000	14.000	13.000	000	14.000	. 000 -	14.000	14.000
DIST. SYSTEM HIGH ST FREE FLOW	DET'N LIM		DET'N LIM	39.	57.	110.000	98.000	120.000	100.000	120.000	45.	DET'N LIM	٠	•		•	•		•	•-	DET'N LIMIT	13.	12.	14.	13.	14.	14.	14.	14.	. 4.
TREATMENT PLANT TREATED	1	BOL	6 0 6 0 6 0 6 6 6 6 6 6 6 6 6 6 7 7 8 8 8 8 8 8 8 8	33.000	89.000	120.000	140.000	160.000	100.000	120,000	46.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.360 <⊤	BOL	BOL	.170 <t< th=""><th>.340 <t< th=""><th>BOL</th><th>.300 <t< th=""><th>.190 <t BDL</t </th><th></th><th>13.000</th><th>13.000</th><th>15.000</th><th>14.000</th><th>15,000</th><th>14.000</th><th>14.000</th><th>14.000</th><th>14.000</th></t<></th></t<></th></t<>	.340 <t< th=""><th>BOL</th><th>.300 <t< th=""><th>.190 <t BDL</t </th><th></th><th>13.000</th><th>13.000</th><th>15.000</th><th>14.000</th><th>15,000</th><th>14.000</th><th>14.000</th><th>14.000</th><th>14.000</th></t<></th></t<>	BOL	.300 <t< th=""><th>.190 <t BDL</t </th><th></th><th>13.000</th><th>13.000</th><th>15.000</th><th>14.000</th><th>15,000</th><th>14.000</th><th>14.000</th><th>14.000</th><th>14.000</th></t<>	.190 <t BDL</t 		13.000	13.000	15.000	14.000	15,000	14.000	14.000	14.000	14.000
TREATMENT PLANT RAW	METALS)	BDL		16.000	140,000	21.000	16.000	53.000	12.000	15,000	36.000	(T> 010.	.520 <t< th=""><th>BDL</th><th></th><th>T> 000°</th><th></th><th>.620 <t< th=""><th>.560 <1</th><th>^</th><th>14.000</th><th>17.000</th><th>15.000</th><th>16.000</th><th>17.000</th><th>15.000</th><th>14.000</th><th>14.000</th><th>15.000</th></t<></th></t<>	BDL		T> 000°		.620 <t< th=""><th>.560 <1</th><th>^</th><th>14.000</th><th>17.000</th><th>15.000</th><th>16.000</th><th>17.000</th><th>15.000</th><th>14.000</th><th>14.000</th><th>15.000</th></t<>	.560 <1	^	14.000	17.000	15.000	16.000	17.000	15.000	14.000	14.000	15.000
	SILVER (UG/L	35 SAMPLES	ALUMINUM (UG/L				1992 JUL			1002 1007		ARSENIC (UG/L	1992 APR	1992 MAY	1992 JUN		1992 AUG			1992 NOV 1992 DEC	BARIUM (UG/L	1992 APR			1992 JUL					1992 DEC

	(A.1)		(04)		(A1)	. , =	
	GUIDELINE = 5000 (A1)		<t (04)<="" guideline="6800" th=""><th></th><th>GUIDELINE = 5.0 (A1)</th><th></th><th>N A A</th></t>		GUIDELINE = 5.0 (A1)		N A A
	DELINE		DELINE		DELINE	-	GUIDELINE = N/A
STEM	. LD	17.000 <1 15.000 <1 15.000 <1 21.000 <3 32.000 <1 18.000 <1	7000 <∓ 1U0	801 .060 <1 801 801 801 801			.220. < 1
DIST. SYSTEM HIGH ST STANDING		17. 15. 15. 18.	17.		,		
	2.00	~~~~~~~~	<t< td=""><td>-</td><td>0.05</td><td>₽ ₩</td><td>0.00 44444 444444</td></t<>	-	0.05	₽ ₩	0.00 44444 444444
SYSTEM ST FLOW	DET'N LIMIT = 2.00	13.000 15.000 13.000 25.000 28.000 18.000	14.000 <t< td=""><td>801 801 801 801 801 801 801 801 801 801</td><td>DET'N LIMIT = 0.05</td><td></td><td>DET!N LIMIT = 0.02 2.40 < 1 1.70 < 1 1.70 < 1 2.80 < 1 2.80 < 1 2.80 < 1 2.80 < 1 2.90 < 1</td></t<>	801 801 801 801 801 801 801 801 801 801	DET'N LIMIT = 0.05		DET!N LIMIT = 0.02 2.40 < 1 1.70 < 1 1.70 < 1 2.80 < 1 2.80 < 1 2.80 < 1 2.80 < 1 2.90 < 1 2.90 < 1 2.90 < 1 2.90 < 1 2.90 < 1 2.90 < 1
DIST. SYS HIGH ST FREE FLOW	DET 'N		DET 'N		DET		DET!N
PLANT		\$. 00 ►	801 -070 <1 801 801 801 801 801	4	801 801 801 801 801 801	220 <1 220 <1 100 <1 220 <1 120 <1 150 <1 180 <1
TREATMENT PLANT TREATED		14, 000 15, 000 15, 000 12, 000 28, 000 35, 000 16, 000	14.000	##C		, m m c , m m m m	44-44-40-
1			. ∀	₽ ₽		- -	5555555
TREATMENT PLANT	METALS	14.000 24.000 16.000 15.000 67.000 18.000	15.000	801 801 .070 .090 801 801 801 801	108		.180 .510 .080 .270 .380 .170 .310 .050
TREAT	, A		٦		^	,	^
	UG/L	APR JUL JUL SEP OCT		APR JUN JUL AUG SEP OCT NOV	CUG/L APR	JUL JUL AUG SEP OCT DEC	CUG/L APR AAY JUN JUL AUG SEP OCT NOV DEC
	BORON (UG/L	1992 1992 1992 1992 1992	1992 BERYLL I	1992 1992 1992 1992 1992 1992 1992	CADMIUM (UG/L	1992 1992 1992 1992 1993	COBALT (UG/L 1992 APR 1992 JUN 1992 JUL 1992 AU 1992 SEP 1992 OCT 1992 DCC

	GUIDELINE = 50.0 (A1)		;	GUIDELINE = 1000 (A3)		GUIDELINE = 300 (A3) <	GUIDELINE = 1.0 (A1)
DIST. SYSTEM HIGH ST STANDING	מח	1.700 <t 80L 8DL</t 	1.500 <1 2.700 <1 2.800 <1 2.600 <1 1.600 <1		160.000 63.000 110.000 99.000 94.000 110.000	19.000 41 33.000 41 30.000 43 30.000 43 19.000 41 19.000 41 14.000 41	GUI
DIST. SYSTEM D HIGH ST H FREE FLOW S	DET'N LIMIT = 0.50	8DL 2.100 <t 8DL 8DL</t 	2.000 <1 2.900 <1 1.900 <7 2.500 <1 .650 <1	DET'N LIMIT = 0.50 4.800 <t< th=""><th>15.000 15.000 13.000 12.000 13.000 13.000 7.500</th><th>13.000 <7 6.600 <7 23.000 <7 14.000 <7 7.900 <7 11.000 <7 6.600 <7 8.600 <7 8.600 <7 8.600 <7</th><th>DET'N LIMIT = 0.02</th></t<>	15.000 15.000 13.000 12.000 13.000 13.000 7.500	13.000 <7 6.600 <7 23.000 <7 14.000 <7 7.900 <7 11.000 <7 6.600 <7 8.600 <7 8.600 <7 8.600 <7	DET'N LIMIT = 0.02
TREATED TREATED	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80L 80L 80L	2.300 <t 2.700 <t 2.300 <t 2.500 <t 1.100 <t< th=""><th></th><th>. 990 <1 1.300 <1 . 640 <1 . 100 <1 1.100 <1 1.200 <1</th><th>108 108 108 108 108 108 108</th><th>108</th></t<></t </t </t </t 		. 990 <1 1.300 <1 . 640 <1 . 100 <1 1.100 <1 1.200 <1	108 108 108 108 108 108 108	108
TREATMENT PLANT	METALS	3,900 <f< th=""><th>3.600 <t 3.000 <t 2.300 <t 1.100 <t .870 <t< th=""><th>7, 010.</th><th>1,300 <7 1,300 <7 2,200 <7 1,700 <7 1,300 <7 1,400 <7 3,400 <7</th><th>21.000 <7 250.000 <7 22.000 <7 22.000 <7 19.000 <7 13.000 <7 25.000 <7 39.000 <7</th><th>, BDL</th></t<></t </t </t </t </th></f<>	3.600 <t 3.000 <t 2.300 <t 1.100 <t .870 <t< th=""><th>7, 010.</th><th>1,300 <7 1,300 <7 2,200 <7 1,700 <7 1,300 <7 1,400 <7 3,400 <7</th><th>21.000 <7 250.000 <7 22.000 <7 22.000 <7 19.000 <7 13.000 <7 25.000 <7 39.000 <7</th><th>, BDL</th></t<></t </t </t </t 	7, 010.	1,300 <7 1,300 <7 2,200 <7 1,700 <7 1,300 <7 1,400 <7 3,400 <7	21.000 <7 250.000 <7 22.000 <7 22.000 <7 19.000 <7 13.000 <7 25.000 <7 39.000 <7	, BDL
	CHROMIUM (UG/L		1992 AUG 1992 SEP 1992 OCT 1992 NDV 1992 DEC		1992 MAY 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 DEC	180A (UG/L 1992 APR 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 CCT 1992 OCT	MERCURY (UG/L 16 SAMPLES

:	GUIDELINE = 50.0 (A3)	•	GUIDELINE = N/A <t <t="" <t<="" th=""><th>GUIDEL INE = 350 (03) <t <t="" <t<="" th=""><th>GUIDELINE = 10 (A1)</th></t></th></t>	GUIDEL INE = 350 (03) <t <t="" <t<="" th=""><th>GUIDELINE = 10 (A1)</th></t>	GUIDELINE = 10 (A1)
DIST. SYSTEM HIGH ST STANDING	פחו	2.300 1.100 2.300 2.300 2.200 2.200 2.500 2.500	386. 380. 380. 380. 380. 380. 380. 380. 380	6UI 1.400 <t 1.200="" 1.400="" 2.200="" <t="" <t<="" th=""><th>. 601 3.600 4.400 5.100 7.300 19.000 8.900 4.900</th></t>	. 601 3.600 4.400 5.100 7.300 19.000 8.900 4.900
DIST. SYSTEM DI HIGH ST HI FREE FLOW ST	DET'N LIMIT = 0.05	2.20 1.800 4.300 2.700 1.400 1.300 2.000	DET'N LIMIT = 0.05 3.360 <7 3.380 <7 2.230 <7 2.480 <7 3.530 3.530 3.540 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.40 <7 4.	1.800 <7 2.000 <7 2.000 <7 1.900 <7 7.900 <7 7.900 <7 1.900 <7 80L 80L 80L 80L 80L	DET'N LIMIT = 0.05 .180 <t .400="" .590="" .720="" .830="" .890="" <t<="" th=""></t>
TREATMENT PLANT TREATED		. 570 1.800 1.500 . 930 . 930 1.100 1.000	. 410 <1 .320 <1 .270 <1 .510 .500 .300 <1 .450 <1	2.000 <1 .960 <1 .960 <1 1.500 <1 .640 <1 .901 .901 .901 .901 .901 .901 .901 .90	80L 4
TREATMENT PLANT RAW	METALS)	26.000 26.000 4.100 2.900 5.900 1.500 1.400 2.200		1,400 <1 1,300 <1 1,600 <1 1,600 <1 1,400 <1 1,600 <1 1,6	801 1410 <1 1410 <1 230 <1 220 <1 260 <1 160 <1 260 <1
7.2	MANGANESE (UG/L	1992 APR - 1992 MAY 1992 JUN 1992 JUN 1992 AUG 1992 SEP 1992 OCT 1992 DEC	MOLYBDENUM (UG/L 1992 APR 1992 MAY 1992 JUL 1992 AUG 1992 OCT 1992 OCT 1992 OCT	1992 APR 1992 APR 1992 JUN 1992 JUL 1992 JUL 1992 SEP 1992 OCT 1992 OCT	LEAD (UG/L) 1992 APR 1992 APX 1992 JUL 1992 JUL 1992 AUG 1992 OCT 1992 OCT 1992 OCT

DIST. SYSTEM HIGH ST STANDING	GUIDELINE = 146 (04)	. 470 <1 .510 .570 .670 .530 .570 .570 .510	GUIDELINE = 10 (A1) BDL BDL 1.500 < T BDL 1.800 < T BDL 1.800 < T BDL	GUIDELINE = N/A 160.000 180.000 130.000 130.000 180.000 180.000	GUIDELINE = N/A 6.300 1.200 < 7 4.200 < 7 1.300 < 7 2.100 < 7 2.100 < 7 2.600 < 7 2.800 < 7 2.800 < 7
DIST. SYSTEM DI HIGH ST HI FREE FLOW ST	DET'N LIMIT = 0.05	. 430 <1 .250 <1 .250 <1 .350 <1 .390 <1 .410 <1 .410 <1 .530 <1	DET'N LIMIT = 1.00 BDL BDL BDL BDL BDL BDL BDL BDL BDL BD	DET'N LIMIT = 0.10 120.000 160.000 170.000 170.000 130.000 180.000 180.000	3.700 <7 6.500 <7 6.500 <7 3.700 <7 3.700 <7 1.100 <7 2.000 <7 2.900 <7
TREATMENT PLANT TREATED	3	.630 .160 <1 .300 <1 .370 <1 .230 <1 .410 <1 .390 <1 .50 <1	1,700 <t 80L 80L 1,200 <t 80L 1,500 <t 80L 80L 80L</t </t </t 	120,000 190,000 170,000 110,000 180,000 210,000 210,000 140,000	3.400 <1 6.900 <1 3.700 <1 1.000 <1 1.000 <1 1.700 <1 2.400 <1
TREATMENT PLANT	METALS	15 083. 15 084. 15 084. 15 084. 15 084. 17 084. 18 084. 19 084.	80.1 80.1 80.1 80.1 80.1 1.500 <1	120,000 460,000 116,000 116,000 1170,000 150,000 150,000	4,200 <1 16,000 <1 1,600 <1 4,200 <1 6,200 <1 6,700 <1 2,800 <1 2,800 <1 1,800 <1 1,800 <1 1,800 <1 1,800 <1 1,800 <1
	ANTIMONY CUG/L	1992 APR 1992 JUN 1992 JUL 1992 JUL 1992 SEP 1992 OCT 1992 NOV 1992 DEC	SELENTUM (UG/L 1992 APR 1992 HAY 1992 JUN 1992 AUG 1992 OCT 1992 NOV 1992 NOV	STRONTIUM (UG/L 1992 AAP 1992 HAV 1992 JUL 1992 AUG 1992 SEP 1992 SEP 1992 NOV 1992 DEC	117AN1UM (UG/L 1992 APR 1992 HAY 1992 UUN 1992 JUL 1992 CCT 1992 CCT 1992 CCT

DIST. SYSTEM HIGH ST STANDING	. GUIDELINE = 13 (04)	BDL	GUIDELINE = 100 (A1)		108 ·	.080 <t< th=""><th>BDL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>.100 <t< th=""><th>. 108</th><th>GUIDELINE = N/A</th><th></th><th>100 cT</th><th>- Jua</th><th>1,080</th><th></th><th>905</th><th>BUL</th><th>. Z10 <1</th><th></th><th>.160 <t< th=""><th>GUIDELINE = 5000 (A3)</th><th></th><th>26.000</th><th>14,000</th><th>19.000</th><th>38.000</th><th>39.000</th><th>110.000</th><th>45.000</th><th>45.000</th><th></th></t<></th></t<></th></t<>	BDL	BOL	BOL	BOL	.100 <t< th=""><th>. 108</th><th>GUIDELINE = N/A</th><th></th><th>100 cT</th><th>- Jua</th><th>1,080</th><th></th><th>905</th><th>BUL</th><th>. Z10 <1</th><th></th><th>.160 <t< th=""><th>GUIDELINE = 5000 (A3)</th><th></th><th>26.000</th><th>14,000</th><th>19.000</th><th>38.000</th><th>39.000</th><th>110.000</th><th>45.000</th><th>45.000</th><th></th></t<></th></t<>	. 108	GUIDELINE = N/A		100 cT	- Jua	1,080		905	BUL	. Z10 <1		.160 <t< th=""><th>GUIDELINE = 5000 (A3)</th><th></th><th>26.000</th><th>14,000</th><th>19.000</th><th>38.000</th><th>39.000</th><th>110.000</th><th>45.000</th><th>45.000</th><th></th></t<>	GUIDELINE = 5000 (A3)		26.000	14,000	19.000	38.000	39.000	110.000	45.000	45.000	
DIST. SYSTEM D HIGH ST FREE FLOW	DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.05				.060 <⊺	BOL	BOL	, T> 060.	.120 <⊺	.070 <t< td=""><td>DET*N LIMIT = 0.05</td><td>T> 041.</td><td>ioa</td><td>3 2</td><td>3 8</td><td>200</td><td>BUL</td><td>BOL</td><td>1> 021.</td><td>. 150 <t< td=""><td>.120 <t< td=""><td>DET'N LIMIT = 0.20</td><td>2.100</td><td>5.800</td><td>5.200</td><td>5.900</td><td>. 4.400</td><td>5.400</td><td>5,200</td><td>1.800 <t< td=""><td></td><td></td></t<></td></t<></td></t<></td></t<>	DET*N LIMIT = 0.05	T> 041.	ioa	3 2	3 8	200	BUL	BOL	1> 021.	. 150 <t< td=""><td>.120 <t< td=""><td>DET'N LIMIT = 0.20</td><td>2.100</td><td>5.800</td><td>5.200</td><td>5.900</td><td>. 4.400</td><td>5.400</td><td>5,200</td><td>1.800 <t< td=""><td></td><td></td></t<></td></t<></td></t<>	.120 <t< td=""><td>DET'N LIMIT = 0.20</td><td>2.100</td><td>5.800</td><td>5.200</td><td>5.900</td><td>. 4.400</td><td>5.400</td><td>5,200</td><td>1.800 <t< td=""><td></td><td></td></t<></td></t<>	DET'N LIMIT = 0.20	2.100	5.800	5.200	5.900	. 4.400	5.400	5,200	1.800 <t< td=""><td></td><td></td></t<>		
TREATED PLANT TREATED		BDL			T> 090.	. 080 ×T	T> 090.	BOL	BOL	.120 ≺⊺	. 170 <t< td=""><td>T> 090.</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>. 120 <t< td=""><td></td><td>9 9</td><td>2 2</td><td>100</td><td>901</td><td>80F</td><td>1> 021.</td><td>.100 ·</td><td>.110 <t< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>2.500</td><td>3.600</td><td>1.900 <t< td=""><td>1,600 <1</td><td>2.300</td><td>4.100</td><td>3,000</td><td>1.300 <t< td=""><td>4.100</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 090.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 120 <t< td=""><td></td><td>9 9</td><td>2 2</td><td>100</td><td>901</td><td>80F</td><td>1> 021.</td><td>.100 ·</td><td>.110 <t< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>2.500</td><td>3.600</td><td>1.900 <t< td=""><td>1,600 <1</td><td>2.300</td><td>4.100</td><td>3,000</td><td>1.300 <t< td=""><td>4.100</td><td></td></t<></td></t<></td></t<></td></t<>		9 9	2 2	100	901	80F	1> 021.	.100 ·	.110 <t< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>2.500</td><td>3.600</td><td>1.900 <t< td=""><td>1,600 <1</td><td>2.300</td><td>4.100</td><td>3,000</td><td>1.300 <t< td=""><td>4.100</td><td></td></t<></td></t<></td></t<>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.500	3.600	1.900 <t< td=""><td>1,600 <1</td><td>2.300</td><td>4.100</td><td>3,000</td><td>1.300 <t< td=""><td>4.100</td><td></td></t<></td></t<>	1,600 <1	2.300	4.100	3,000	1.300 <t< td=""><td>4.100</td><td></td></t<>	4.100	
TREATMENT PLANT RAW	METALS)	B0L	•	.210 <t< td=""><td>.540</td><td>.240 <⊺</td><td>. 230 <t< td=""><td>.330 <⊤</td><td>.250 <1</td><td></td><td>T> 042.</td><td>.220 <t< td=""><td>(</td><td>750 <t< td=""><td>1, 02,</td><td>1001</td><td></td><td>200</td><td>, 000.</td><td>BOL :</td><td>1> 0.1.</td><td>: 150 <1</td><td>.260 <t< td=""><td>(</td><td>1.900 <t< td=""><td>5.800</td><td>2.400</td><td>6.200</td><td>5.100</td><td>6.500</td><td>3.200</td><td>3.400</td><td>6.200</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.540	.240 <⊺	. 230 <t< td=""><td>.330 <⊤</td><td>.250 <1</td><td></td><td>T> 042.</td><td>.220 <t< td=""><td>(</td><td>750 <t< td=""><td>1, 02,</td><td>1001</td><td></td><td>200</td><td>, 000.</td><td>BOL :</td><td>1> 0.1.</td><td>: 150 <1</td><td>.260 <t< td=""><td>(</td><td>1.900 <t< td=""><td>5.800</td><td>2.400</td><td>6.200</td><td>5.100</td><td>6.500</td><td>3.200</td><td>3.400</td><td>6.200</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	.330 <⊤	.250 <1		T> 042.	.220 <t< td=""><td>(</td><td>750 <t< td=""><td>1, 02,</td><td>1001</td><td></td><td>200</td><td>, 000.</td><td>BOL :</td><td>1> 0.1.</td><td>: 150 <1</td><td>.260 <t< td=""><td>(</td><td>1.900 <t< td=""><td>5.800</td><td>2.400</td><td>6.200</td><td>5.100</td><td>6.500</td><td>3.200</td><td>3.400</td><td>6.200</td><td></td></t<></td></t<></td></t<></td></t<>	(750 <t< td=""><td>1, 02,</td><td>1001</td><td></td><td>200</td><td>, 000.</td><td>BOL :</td><td>1> 0.1.</td><td>: 150 <1</td><td>.260 <t< td=""><td>(</td><td>1.900 <t< td=""><td>5.800</td><td>2.400</td><td>6.200</td><td>5.100</td><td>6.500</td><td>3.200</td><td>3.400</td><td>6.200</td><td></td></t<></td></t<></td></t<>	1, 02,	1001		200	, 000.	BOL :	1> 0.1.	: 150 <1	.260 <t< td=""><td>(</td><td>1.900 <t< td=""><td>5.800</td><td>2.400</td><td>6.200</td><td>5.100</td><td>6.500</td><td>3.200</td><td>3.400</td><td>6.200</td><td></td></t<></td></t<>	(1.900 <t< td=""><td>5.800</td><td>2.400</td><td>6.200</td><td>5.100</td><td>6.500</td><td>3.200</td><td>3.400</td><td>6.200</td><td></td></t<>	5.800	2.400	6.200	5.100	6.500	3.200	3.400	6.200	
	THALLIUM (UG/L	35 SAMPLES	URANIUM (UG/L									1992 DEC	VANADIUM (UG/L	1007 APR	1002 MAY							1992 NOV	1992 DEC	ZINC (UG/L	1992 APR				1992 AUG				1992 DEC	

SYSTEM IT NG	GUIDELINE = 450 (D4)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 10000 (I)		GUIDELINE = 38000 (D4)		GUIDELINE = N/A		GUIDELINE = 10 (C1)		GUIDELINE = 1900 (D4)							GUIDELINE = N/A	
DIST. SYSTEM DIST. HIGH ST HIGH ST FREE FLOW	DET'N LIMIT = 1,000	BDL	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 1,000	BDL	DET'N LIMIT = 1.000	708	DET'N LIMIT = 5.000	108	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 5.000	TOR	0ET'N LIMIT = 1.000	BOL	DET'N LIMIT = 1.000	108	2.000 <t 2.000 <t< td=""><td>1 000 <t< td=""><td></td><td></td><td>1.000 <1</td><td>DET'N LIMIT = 1.000</td><td>BDL</td></t<></td></t<></t 	1 000 <t< td=""><td></td><td></td><td>1.000 <1</td><td>DET'N LIMIT = 1.000</td><td>BDL</td></t<>			1.000 <1	DET'N LIMIT = 1.000	BDL
TREATMENT PLANT	S	108	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	801		108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· BDL	, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	v 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.000 <t< td=""><td>. BDL 3.000 <t< td=""><td>80L 801</td><td>. BDL</td><td>80F</td><td></td><td></td><td>BDL</td></t<></td></t<>	. BDL 3.000 <t< td=""><td>80L 801</td><td>. BDL</td><td>80F</td><td></td><td></td><td>BDL</td></t<>	80L 801	. BDL	80F			BDL
Ė	ATIC		^		^		^				^		^												
TREATMENT PLANT	CHLOROAROMATICS ENE (NG/L)	BDL	ZENE (NG/L	BDL	IZENE (NG/L	BDL	ZENE (NG/L	BDL	ZENE (NG/L	BDL .	ZENE (NG/L	BDL	ZENE (NG/L	BDL	E (NG/L)	BDL	(NG/L)	BDL	80L 80L		108	108	108 80L	E (NG/L)	BDL
⊢ α	CHLOROBUTADIENE (NG/L	27 SAMPLES	123-TRICHLOROBENZENE (NG/L	25 SAMPLES	1234-TETCLOROBENZENE	25 SAMPLES	1235-TETCLOROBENZENE (NG/L	24 SAMPLES	124-TRICHLOROBENZENE	25 SAMPLES	1245-TETCLOROBENZENE (NG/L	27 SAMPLES	135-TRICHLOROBENZENE (NG/L	27 SAMPLES	HEXACHLOROBENZENE	27 SAMPLES	HEXACHLOROETHANE (NG/L			1992 JUL 1992 AUG		1992 OCT		OCTACHLOROSTYRENE (NG/L	27 SAMPLES

	WTP
	1992 SOUTHAMPTON
	1992
TABLE 4	PROGRAM
	DRINKING WATER SURVEILLANCE PROGRAM 1
	WATER
	DRINKING

				٠				
	GUIDELINE = 74000 (D4)		= N/A		= N/A		= N/A	
	SUIDELINE		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A	
DIST. SYSTEM HIGH ST STANDING				٠		٠		
DIST. SYSTEM HIGH ST FREE FLOW	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 5.000	BDL
REATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW FREE FLOW	SS	BDL		BDL		BDL	_	BDL
FINT PLANT	CHLOROAROMATICS (NG/L)	BDL	(NG/L	BDL	(NG/L	BDL	(NG/L	BDL
TREATM RAW	CHLOROAROMATIO	27 SAMPLES .	236-TRICHLOROTOLUENE (NG/L	27 SAMPLES	245-TRICHLOROTOLUENE (NG/L	27 SAMPLES	26A-TRICHLOROTOLUENE (NG/L	27 SAMPLES BDL BDL

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WIP

GUIDELINE = N/A	GUIDELINE = N/A		GUIDELINE = N/A		GUIOELINE = 2600000 (D4)		GUIDELINE = 5000 (A1)		GUIDELINE = 60000 (A1)	
3	3		3		3		3		3	
			b 0 0				 			
0.00	0.0		0.0		0.00		0.0		0.00	
0ET'N LIMIT = 100.0	DET'N LIMIT = 20.0		DET'N LIMIT = 10.0		DET'N LIMIT = 100.0		DET'N LIMIT = 20.0		DET'N LIMIT = 10.00	
N CIM	E LIM		EIJ		E		¥		E LIA	
0ET '	DET		DET		DET		DET 1		DET !	
_		_	,	_		_	8 8 8	T> 0		_
OB I		108	1 1 1 0 0 0	BDL		BDL	0 0 1 1 0 1	30.000 <t< td=""><td>6 1 0 1 1 1 1 1</td><td>BDL</td></t<>	6 1 0 1 1 1 1 1	BDL
ors `	^		^		^		^		_	
CHLOROPHENOLS IL (NG/L) BD!	(NG/L	BDL	CNG/L	BDL	4G/L	BDL	NG/L	BDL	٦/	BDL
CHIC IO	NOL		NOI		5 70		5 10		(NG,	
OPHEN	корие		ROPHE		OPHEN		OPHEN		HENOL	
CHLOR	TCHLC	MPLES	TCHLC	MPLES	CHLOR	MPLES	CHLOR	NOV	LOROF	2 SAMPLES
54-TRI	45-TE	2 SA	56-TE	2 SA	5-TRI	2 SA	6-TRI	1992	NTACH	2 SA
CHLOROPI 234-TRICHLOROPHENOL (NG/L	2 SAMPLE	2 SAMPLES BDL 2345-TETCHLOROPHENOL (NG/L	2345-TETCHLOS	2 SAMPLES BDL 2345-TETCHLOROPHENOL (NG/L 2 SAMPLES BDL 2356-TETCHLOROPHENOL (NG/L	2 SAMPLES 2345-TETCHLOI 2 SAMPLES 2356-TETCHLOI 2 SAMPLES	2 SAMPLES BD 2345-TETCHLOROPHENOL (NG/ 2556-TETCHLOROPHENOL (NG/ 2556-TETCHLOROPHENOL (NG/ 255-TRICHLOROPHENOL (NG/L	2 SAMPLES 2345-TETCHLOS 2 SAMPLES 2356-TETCHLOS 2 SAMPLES 2 SAMPLES 2 SAMPLES 2 SAMPLES 2 SAMPLES	2 SAMPLES BD 2345-TETCHLOROPHENOL (NG/ 2 SAMPLES BD 245-TRICHLOROPHENOL (NG/L 2 SAMPLES BD 245-TRICHLOROPHENOL (NG/L 2 SAMPLES BD 246-TRICHLOROPHENOL (NG/L	2 SAMPLE: 2345-TETCHLG 2 SAMPLE: 2556-TETCHLG: 245-TRICHLG: 246-TRICHLG: 246-TRICHLG: 1992 NOV	2 SAMPLES 2345-TETCHLOROPHENOL (N 2 SAMPLES 2356-TETCHLOROPHENOL (N 2 SAMPLES 245-TRICHLOROPHENOL (NG 2 SAMPLES 246-TRICHLOROPHENOL (NG 1992 NOV 1992 NOV PENTACHLOROPHENOL (NG/L

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

												•												
Ε	GUIDELINE = 700 (A1)		GUIDELINE = 700 (G)				e.	GUIDELINE = 300 (G)		GUIDELINE = 4000 (A1)		GUIDELINE = 7000 (A1)		GUIDELINE = 7000 (A1)		GUIDELINE = 700 (A1)		GUIDELINE = 900000 (A1)		GUIDELINE = 74000 (D4)		GUIDELINE = 74000 (04)		1 1 1 1 1 1
TREATMENT PLANT DIST. SYSTEM DIST. SYSTEM TREATED HIGH ST HIGH ST FREE FLOW STANDING	B DET'N LIMIT = 1.000	BDL BDL	DET'N LIMIT = 1.000	۲۰ ۱.	8DL 8DL 1.000 <t 8dl<="" th=""><th> ; ·</th><th>1,000 <t bol<br="">BDL BDL BDL 1,000 <t bdl<="" th=""><th>DET*N LIMIT = 1.00</th><th>. 108 , 108</th><th>DET'N LIMIT = 1.000</th><th>. BDL BDL .</th><th>DET'N LIMIT = 2.000</th><th>• 108 · . 108</th><th>DET'N LIMIT = 2.00</th><th>. 108 108 .</th><th>DET*N LIMIT = 2.00</th><th>. 108 108</th><th>OET'N LIMIT = 5.0</th><th>. 108 108</th><th>DET'N LIMIT = 2.00</th><th>. 108 TO</th><th>· DET'N LIMIT = 5.000</th><th>. BDL - BDL</th><th>***************************************</th></t></t></th></t>	 ; ·	1,000 <t bol<br="">BDL BDL BDL 1,000 <t bdl<="" th=""><th>DET*N LIMIT = 1.00</th><th>. 108 , 108</th><th>DET'N LIMIT = 1.000</th><th>. BDL BDL .</th><th>DET'N LIMIT = 2.000</th><th>• 108 · . 108</th><th>DET'N LIMIT = 2.00</th><th>. 108 108 .</th><th>DET*N LIMIT = 2.00</th><th>. 108 108</th><th>OET'N LIMIT = 5.0</th><th>. 108 108</th><th>DET'N LIMIT = 2.00</th><th>. 108 TO</th><th>· DET'N LIMIT = 5.000</th><th>. BDL - BDL</th><th>***************************************</th></t></t>	DET*N LIMIT = 1.00	. 108 , 108	DET'N LIMIT = 1.000	. BDL BDL .	DET'N LIMIT = 2.000	• 108 · . 108	DET'N LIMIT = 2.00	. 108 108 .	DET*N LIMIT = 2.00	. 108 108	OET'N LIMIT = 5.0	. 108 108	DET'N LIMIT = 2.00	. 108 TO	· DET'N LIMIT = 5.000	. BDL - BDL	***************************************
TREATMENT PLANT TRE. RAW TRE	PESTICIDES AND PCB ALDRIN (NG/L)	27 SAMPLES BDL	ALPHA BHC (NG/L ·)	APR 1.	1992 MAY 'BDL 1992 JUN BDL	SEP	1992 OCT BDL 1992 NOV BDL 1992 DEC 1.000 <t< td=""><td>BETA BHC (NG/L)</td><td>27 SAMPLES BDL</td><td>LINDANE (GAMMA BHC) (NG/L)</td><td>27 SAMPLES BDL</td><td>ALPHA CHLORDANE (NG/L)</td><td>27 SAMPLES BDL</td><td>GAMMA CHLORDANE (NG/L)</td><td>27 SAMPLES BDL -</td><td>DIELDRIN (NG/L)</td><td>27 SAMPLES BDL</td><td>METHOXYCHLOR (NG/L)</td><td>27 SAMPLES BDL</td><td>ENDOSULFAN 1 (NG/L)</td><td>27 SAMPLES BOL</td><td>ENDOSULFAN II (NG/L)</td><td>27 SAMPLES BDL</td><td></td></t<>	BETA BHC (NG/L)	27 SAMPLES BDL	LINDANE (GAMMA BHC) (NG/L)	27 SAMPLES BDL	ALPHA CHLORDANE (NG/L)	27 SAMPLES BDL	GAMMA CHLORDANE (NG/L)	27 SAMPLES BDL -	DIELDRIN (NG/L)	27 SAMPLES BDL	METHOXYCHLOR (NG/L)	27 SAMPLES BDL	ENDOSULFAN 1 (NG/L)	27 SAMPLES BOL	ENDOSULFAN II (NG/L)	27 SAMPLES BDL	

																	, -			٠				
	GUIDELINE = 1600 (D3)		# N/A		= 3000 (A1)		= 3000 (A1)		= N/A		= N/A		= 30000 (A1)		= 3000 (A2)		= 30000 (A1)		GUIDELINE = 30000 (A1)		= 30000 (A1)		GUIDELINE = 5000 (A1)	
	UIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		UTDELINE		GUIDELINE	٠.	UIDELINE	
SYSTEM DIST. SYSTEM ST. HIGH ST FLOW STANDING	DET'N LIMIT = 5.000 GI	. 801	= 5.00	. 801	DET'N LIMIT = 1.000 , G		DET'N LIMIT = 1.000 G		DET'N LIMIT = 5.000 G	BOL	LIMIT = 2.000	. 801	= 5.000	BOL	= 20.00	. BDL	DET'N LIMIT = 5.000 G	B0L .	DET'N LIMIT = 1.000 G		= 5.000		DET*N LIMIT = 500.0	801
DIST HIGH FREE	DET 'N		DET'N LIMIT		DET'N		DET'N		DET 'N		DET'N		DET'N LIMIT		DET'N		DET'N		DET'N	•	DET'N LIMIT		DET*N	
TREATMENT PLANT TREATED	D PCB	B0L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108	0 0 0 0 0 0 0 0 0 0 0 0 0	108		108	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	108	* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108		108	0 0 0 0 0 0 0 0 0 0 0 0 0	108		BOL		108		108		800
TREATMENT PLANT	PESTICIDES AND PCB	801	HATE (NG/L)	. BOL .	(10E (NG/L)	108	/L)	108		108	16/L)	BDL	^	108		BOL	^	B01.	^	108	^	BOL	^	801
	ENDRIN (NG/L	27 SAMPLES	ENDOSULFAN SULPHATE	27 SAMPLES	HEPTACHLOR EPOXIDE (NG/L	22 SAMPLES	HEPTACHLOR (NG/L	27 SAMPLES	MIREX (NG/L	27 SAMPLES	OXYCHLORDANE (NG/L	27 SAMPLES	0,P-00T (NG/L	27 SAMPLES	PCB (NG/L)	25 SAMPLES	P,P-000 (NG/L	27 SAMPLES	. P,P-00E (NG/L	27 SAMPLES	P,P-DOT (NG/L	27 SAMPLES	TOXAPHENE (NG/L	27 SAMPLES

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

SYSTEM ST ST ST ST ST ST ST ST ST ST ST ST ST	GUIDELINE = 300000 (D3)		GUIDELINE = 60000 (A2)									GUIDELINE = N/A		GUIDELINE = 10000 (A2)		GUIDELINE = 60000 (A2)		GUIDELINE = 10000 (A2)		GUIDELINE = 52500 (D3)		GUIDELINE = 700000 (D3)		GUIDELINE = 1000 (A2)		GUIDELINE = 80000 (A1)	
DIST. SYSTEM DIST. HIGH ST HIGH S FREE FLOW STANDI	DET'N LIMIT = 50.0		DET'N LIMIT = 50.0									DET'N LIMIT = 50.0		DET'N LIMIT = 100.0		DET'N LIMIT = 200.0		DET'N LIMIT = 200.0		DET'N LIMIT = 50.000		DET'N LIMIT = 50,000		DET'N LIMIT = 50.000	•	DET'N LIMIT = 100.0	
T TREATMENT PLANT TREATED	AND PCB	BDL		BDI	BOL	BDL	BDL		BDL	BDL	BDL BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BOL		BDL	9 9 9 9 9 9 9 6 0 0 0 0 0	BOL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL		BOL		. BDL	^	BDL
TREATMENT PLANT RAW	PESTICIDES AND PCB	BDL	^	BDL	3DL	BOL	BDL	80.000 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>`</td><td>BDL</td><td>JEX) (NG/L</td><td>BDL</td><td>INE (NG/L)</td><td>B0L</td><td>INE (NG/L)</td><td>BDL</td><td>^ -</td><td>B0L</td><td>^</td><td>. BOL</td><td>٠ ^</td><td>BOL</td><td>ICOR) (NG/L</td><td>BOL</td></t<>	BDL	BDL	BDL	`	BDL	JEX) (NG/L	BDL	INE (NG/L)	B0L	INE (NG/L)	BDL	^ -	B0L	^	. BOL	٠ ^	BOL	ICOR) (NG/L	BOL
	AMETRINE (NG/L	18 SAMPLES	ATRAZINE (NG/L	1992 APR		1992 JUN			1992 SEP		1992 NOV 1992 DEC	ATRATONE (NG/L	18 SAMPLES	CYANAZINE (BLADEX) (NG/L	18 SAMPLES	DESETHYL ATRAZINE (NG/L	18 SAMPLES	DESETHYL SIMAZINE (NG/L	18 SAMPLES	PROMETONE (NG/L	18 SAMPLES	PROPAZINE (NG/L	18 SAMPLES	PROMETRYNE (NG/L	18 SAMPLES	METRIBUZIN (SENGOR) (NG/L	16 SAMPLES

	WIP	
	SOUTHAMPTON	
	1992	
HABLE 4	PROGRAM	
	SURVEILLANCE	,
	SURVE	
	WATER	
	DRINKING WATER	

STEM	GUIDELINE = 10000 (A2)		. GUIDELINE = 5000 (A2)		GUIDELINE = 50000 (A2)		
EM DIST. SYSTEM HIGH ST STANDING	= 50.00		= 500.0		. 0.003 =		
IT DIST. SYSTE HIGH ST FREE FLOW	DET'N LIMIT = 50.00	٠	DET'N LIMIT = 500.0		DET'N LIMIT = 500.0		
TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW FREE FLOW FREE FLOW	D PC8	BOL		BDL		BDL	
EATMENT PLANT	PESTICIDES AND PCB	BDL	(NG/L)	BDL	^	BDL	
% → X	SIMAZINE (NG/L	18 SAMPLES	ALACHLOR (LASSO) (NG/L)	18 SAMPLES	METOLACHLOR (NG/L	18 SAMPLES	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

TE W	GUIDELINE = N/A									
DIST. SYSTEM HIGH ST STANDING	0.2									,
DIST. SYSTEM HIGH ST FREE FLOW	DET'N LIMIT =									
IKEAIMENI PLANI IKEAIMENI PLANI RAW TREATED		. BDL	BDL	BDL	T> 004.	T>. 004.	BDL	BDL	BDL	1> 009.
REALMENT PLAN	PHENOLICS)	BDL	T> 009.	BDL						
- œ	PHENOLICS (UG/L	1992 APR	1992 MAY	1992 JUN	1992 JUL	1992 AUG	1992 SEP	1992 OCT	1992 NOV	1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

.	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		
DIST. SYSTEM DIST. SYSTEM HIGH ST HIGH ST FREE FLOW STANDING	DET'N LIMIT = 20.0	BDL	DET'N LIMIT = 10.0	BDL	DET'N LIMIT = 20.0	80L	DET'N LIMIT = 2.0	BDL	DET'N LIMIT = 10.0	BDL	
TREATMENT PLANT TREATED		BOL	0 0	BOL	٥	BDL	0	BOL	۵	BDL	0 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TREATMENT PLANT RAW	POLYAROMATIC HYDROCARBONS BENZO(G,H,I) PERYLEN (NG/L)	HOP	DIBENZO(A,H) ANTHRAC (NG/L	BDL	INDENO(1,2,3-C,D) PY (NG/L	BDL	SENE (NG/L)	BDL -	۲)	801	; ; ; ; ; ; ; ; ; ;
٠,	BENZO(G, H, I)	3 SAMPLES	DIBENZO(A,H)	3 SAMPLES	INDENO(1,2,3-	3 SAMPLES	BENZO(B) CHRYSENE (NG/L	3 SAMPLES	CORONENE (NG/L	3 SAMPLES	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

x	GUIDELINE = 280000 (A1)		GUIDELINE = 100000 (A1)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 120000 (A1)		GUIDELINE = 10000 (A1)		GUIDELINE = 20000 (A1)		GUIDELINE = N/A		GUIDELINE = N/A		.GUIDELINE = 35000 (G)		GUIDELINE = 190000 (A1)		GUIDELINE = N/A	
LANT DIST. SYSTEM DIST. SYSTEM HIGH ST HIGH ST FREE FLOW STANDING	DET'N LIMIT = 50.0		DET'N LIMIT = 100.0		DET'N LIMIT = 200.0	٠	DET'N LIMIT = 100.0	٠	DET*N LIMIT = 50.0	•	DET'N LIMIT = 20.00		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0	•	DET'N LIMIT = 20.0	•	DET*N LIMIT = 20.0	٠	. DET'N LIMIT = 20.0		DET'N LIMIT ≈ 20.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TREATMENT PLANT TREATED	1C10ES	BDL	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108		BOL		108	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	BOL	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDL	9 8 8 8 9 9 9	BOL		108	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B0L	0 0 0 0 0 0 0 0 0 0 0 0	BOL		BOL	1 1 1 2 2 3 4 5 5 5 5 5 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8	108
TREATMENT PLANT RAW	SPECIFIC PESTICIDES	108		BOL	^	B0L	ACID (NG/L	BOL		. 108	() (NG/L)	BDL	^	108	יע)	BDL	1C/L)	108	^	800	^	80r	^	BDL
	2,4,5-T (NG/L	2 SAMPLES	2,4-0 (NG/L	2 SAMPLES	2,4-DB (NG/L	2 SAMPLES	2,4 D PROPIONIC ACID (NG/L	2 SAMPLES	DICAMBA (NG/L	2 SAMPLES	2,4,5-TP (SILVEX) (NG/L	2 SAMPLES	DIAZINON (NG/L	2 SAMPLES	DICHLOROVOS (NG/L	2 SAMPLES	CHLORPYRIFOS (NG/L	2 SAMPLES	ETHION (NG/L	2 SAMPLES	MALATHION (NG/L	2 SAMPLES	MEVINPHOS (NG/L	2 SAMPLES

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

_	GUIDELINE = 9000 (D3)		GUIDELINE = N/A		GUIDELINE = 50000 (A1)		GUIDELINE = 2000 (A2)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 90000 (A1)		GUIDELINE = 350000 (G)		GUIDELINE = N/A	- ,	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 140000 (03)	
DIST. SYSTEM DIST. SYSTEM HIGH ST HIGH ST STANDING STANDING	DET'N LIMIT = 50.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0	•	DET'N LIMIT = 20.0		DET'N LIMIT = 20.0	•	DET'N LIMIT = 20.0	•	DET'N LIMIT = 2000.0	•	DET'N LIMIT = 2000.0	•	DET'N LIMIT = 2000.0	•	DET'N LIMIT = 2000.0	•	DET'N LIMIT = 2000.0	•	DET'N LIMIT = 2000.0	
TREATMENT PLANT TREATED	ICIDES	BDL	7 0 0 1 1 1 1 2 2 2 3 4 3 5 4 5 6 6 7 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	BDL		BDL		BDL		80F		80F	5 5 5 5 5 5 5 5 6 5 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	BDL .	• • • • • • • • • • • • • • • • • • •	B01.		108		108	1	BDL		BOL
TREATMENT PLANT RAW	SPECIFIC PESTICIDES METHYL PARATHION (NG/L)	2 SAMPLES BDL	METHYLTRITHION (NG/L)	2 SAMPLES BOL	PARATHION (NG/L)	2 SAMPLES BDL	PHORATE (NG/L)	2 SAMPLES BDL	RELDAN (NG/L)	2 SAMPLES BDL	RONNEL (NG/L)	2 SAMPLES BDL	CARBOFURAN (NG/L)	2 SAMPLES BDL	CHLORPROPHAM (CIPC) (NG/L)	2 SAMPLES BDL	DIALLATE (NG/L ·)	2 SAMPLES BDL	'EPTAM (NG/L)	2 SAMPLES BDL	IPC (NG/L)	2 SAMPLES BDL	PROPOXUR (NG/L)	2 SAMPLES BDL

		(A1)		GUIDELINE = 245000 (D3)	
		GUIDELINE = 90000 (A1)		5000	
٩		- 8		= 24	
N NO		LINE		LINE	
IAMP I		UIDE		UIDE	-
SOUTH	STEM				
266	DIST. SYSTEM HIGH ST STANDING			1 1	
4 AM 1	DIST HIGH STAN	0		.0.	
TABLE 4		200.		2000	
NCE	STEM	=	٠	=======================================	
ILLA	DIST. SYST HIGH ST FREE FLOW	E		E	
SURVE	DIST HIGH FREE	DET'N LIMIT = 200.0		DET'N LIMIT = 2000.0	
TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPION WIP	TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW TREATED HIGH ST FREE FLOW			: -	,
d W	7		BDL		108
INKI	ATED ATED	S.			
DR	TRE	1010		1	
	LANT	SPECIFIC PESTICIDES		1	
	d.	IFIC	BDL	1 1 1	801
	ATME	SPEC)		^	
	RAI			_	
		(NG/	LES	(NG/	LES
		ARYL	2 SAMPLES	ATE	2 SAMPLES
		CARBARYL (NG/L	2	BUTYLATE (NG/L	2

	GUIDELINE = 5 (A1)										GUIDELINE = 24 (A3)									-	GUIDELINE = 2.4 (A3)										GUIDELINE = 300 (A3*)		
	GUIDE										GUID										GUID										GUID		
DIST. SYSTEM HIGH ST STANDING	.05		•	•				•		٠	.05	•								-	-05	٠		٠	٠	•	٠	•	•	•	.10		
DIST, SYSTEM HIGH ST FREE FLOW	DET'N LIMIT = 0.05	BDL	•	108	BDL	BDL	108	BDL	BDL	801	DET'N LIMIT = 0.05	108		108	T> 001.	T> 001.	T> 051.	.100 <t< td=""><td></td><td>T> 050.</td><td>DET'N LIMIT = 0.05</td><td>.300 <</td><td></td><td>. 200 <t< td=""><td>T> 021.</td><td>. 200 <t< td=""><td>. 150 <t< td=""><td>.200 <1</td><td>BOL</td><td>.150 <t< td=""><td>DET'N LIMIT = 0.10</td><td>BOL</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>		T> 050.	DET'N LIMIT = 0.05	.300 <		. 200 <t< td=""><td>T> 021.</td><td>. 200 <t< td=""><td>. 150 <t< td=""><td>.200 <1</td><td>BOL</td><td>.150 <t< td=""><td>DET'N LIMIT = 0.10</td><td>BOL</td><td></td></t<></td></t<></td></t<></td></t<>	T> 021.	. 200 <t< td=""><td>. 150 <t< td=""><td>.200 <1</td><td>BOL</td><td>.150 <t< td=""><td>DET'N LIMIT = 0.10</td><td>BOL</td><td></td></t<></td></t<></td></t<>	. 150 <t< td=""><td>.200 <1</td><td>BOL</td><td>.150 <t< td=""><td>DET'N LIMIT = 0.10</td><td>BOL</td><td></td></t<></td></t<>	.200 <1	BOL	.150 <t< td=""><td>DET'N LIMIT = 0.10</td><td>BOL</td><td></td></t<>	DET'N LIMIT = 0.10	BOL	
TREATMENT PLANT		BDL	BDI	BDL	80L	BDL	80L	108	80r	108		1> 050.	T> 050.	BDL	.100 <t< td=""><td>.150 <t< td=""><td>.150 <</td><td>.050 <t< td=""><td>.100 <t< td=""><td>108</td><td></td><td>.300 <t< td=""><td>.300 <t< td=""><td>. 150 <</td><td>.100 <t< td=""><td>. 150 <</td><td>.150 <t< td=""><td>.100 <1</td><td>. T> 050</td><td>.150 <t< td=""><td></td><td>BDL</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.150 <t< td=""><td>.150 <</td><td>.050 <t< td=""><td>.100 <t< td=""><td>108</td><td></td><td>.300 <t< td=""><td>.300 <t< td=""><td>. 150 <</td><td>.100 <t< td=""><td>. 150 <</td><td>.150 <t< td=""><td>.100 <1</td><td>. T> 050</td><td>.150 <t< td=""><td></td><td>BDL</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.150 <	.050 <t< td=""><td>.100 <t< td=""><td>108</td><td></td><td>.300 <t< td=""><td>.300 <t< td=""><td>. 150 <</td><td>.100 <t< td=""><td>. 150 <</td><td>.150 <t< td=""><td>.100 <1</td><td>. T> 050</td><td>.150 <t< td=""><td></td><td>BDL</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.100 <t< td=""><td>108</td><td></td><td>.300 <t< td=""><td>.300 <t< td=""><td>. 150 <</td><td>.100 <t< td=""><td>. 150 <</td><td>.150 <t< td=""><td>.100 <1</td><td>. T> 050</td><td>.150 <t< td=""><td></td><td>BDL</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	108		.300 <t< td=""><td>.300 <t< td=""><td>. 150 <</td><td>.100 <t< td=""><td>. 150 <</td><td>.150 <t< td=""><td>.100 <1</td><td>. T> 050</td><td>.150 <t< td=""><td></td><td>BDL</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	.300 <t< td=""><td>. 150 <</td><td>.100 <t< td=""><td>. 150 <</td><td>.150 <t< td=""><td>.100 <1</td><td>. T> 050</td><td>.150 <t< td=""><td></td><td>BDL</td><td></td></t<></td></t<></td></t<></td></t<>	. 150 <	.100 <t< td=""><td>. 150 <</td><td>.150 <t< td=""><td>.100 <1</td><td>. T> 050</td><td>.150 <t< td=""><td></td><td>BDL</td><td></td></t<></td></t<></td></t<>	. 150 <	.150 <t< td=""><td>.100 <1</td><td>. T> 050</td><td>.150 <t< td=""><td></td><td>BDL</td><td></td></t<></td></t<>	.100 <1	. T> 050	.150 <t< td=""><td></td><td>BDL</td><td></td></t<>		BDL	
TREATMENT PLANT TERAW TE	VOLATILES)	108	BDL	BDL	BDL	.050 <t< th=""><th>BDL</th><th>BDL</th><th>BDL</th><th>BDL.</th><th></th><th>BDL</th><th>BDL</th><th>BDL</th><th>.100 <t< th=""><th>.250 <t< th=""><th>.050 <t< th=""><th>.050 <t< th=""><th>BDL</th><th>BOL</th><th>^</th><th>BDL</th><th>.100 <t< th=""><th>.050 <t< th=""><th>.100 <t< th=""><th>.150 <1</th><th>. 100 <t< th=""><th>.100 <t< th=""><th></th><th>.100 <t< th=""><th></th><th>BDL</th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	BDL	BDL	BDL	BDL.		BDL	BDL	BDL	.100 <t< th=""><th>.250 <t< th=""><th>.050 <t< th=""><th>.050 <t< th=""><th>BDL</th><th>BOL</th><th>^</th><th>BDL</th><th>.100 <t< th=""><th>.050 <t< th=""><th>.100 <t< th=""><th>.150 <1</th><th>. 100 <t< th=""><th>.100 <t< th=""><th></th><th>.100 <t< th=""><th></th><th>BDL</th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.250 <t< th=""><th>.050 <t< th=""><th>.050 <t< th=""><th>BDL</th><th>BOL</th><th>^</th><th>BDL</th><th>.100 <t< th=""><th>.050 <t< th=""><th>.100 <t< th=""><th>.150 <1</th><th>. 100 <t< th=""><th>.100 <t< th=""><th></th><th>.100 <t< th=""><th></th><th>BDL</th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.050 <t< th=""><th>.050 <t< th=""><th>BDL</th><th>BOL</th><th>^</th><th>BDL</th><th>.100 <t< th=""><th>.050 <t< th=""><th>.100 <t< th=""><th>.150 <1</th><th>. 100 <t< th=""><th>.100 <t< th=""><th></th><th>.100 <t< th=""><th></th><th>BDL</th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.050 <t< th=""><th>BDL</th><th>BOL</th><th>^</th><th>BDL</th><th>.100 <t< th=""><th>.050 <t< th=""><th>.100 <t< th=""><th>.150 <1</th><th>. 100 <t< th=""><th>.100 <t< th=""><th></th><th>.100 <t< th=""><th></th><th>BDL</th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	BDL	BOL	^	BDL	.100 <t< th=""><th>.050 <t< th=""><th>.100 <t< th=""><th>.150 <1</th><th>. 100 <t< th=""><th>.100 <t< th=""><th></th><th>.100 <t< th=""><th></th><th>BDL</th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.050 <t< th=""><th>.100 <t< th=""><th>.150 <1</th><th>. 100 <t< th=""><th>.100 <t< th=""><th></th><th>.100 <t< th=""><th></th><th>BDL</th><th></th></t<></th></t<></th></t<></th></t<></th></t<>	.100 <t< th=""><th>.150 <1</th><th>. 100 <t< th=""><th>.100 <t< th=""><th></th><th>.100 <t< th=""><th></th><th>BDL</th><th></th></t<></th></t<></th></t<></th></t<>	.150 <1	. 100 <t< th=""><th>.100 <t< th=""><th></th><th>.100 <t< th=""><th></th><th>BDL</th><th></th></t<></th></t<></th></t<>	.100 <t< th=""><th></th><th>.100 <t< th=""><th></th><th>BDL</th><th></th></t<></th></t<>		.100 <t< th=""><th></th><th>BDL</th><th></th></t<>		BDL	
TREAT											\ \ \										(ÚG/L										3/1	S	
	BENZENE (UG/L			1992 JUN					1992 NOV		TOLUENE (UG/L	1992 APR	1992 MAY	· 1992 JUN	1992 JUL	1992 AUG		1992 OCT	1992 NOV	1992 DEC	ETHYLBENZENE (ÚG/L	1992 APR	1992 MAY	1992 JUN	1992 JUL	1992 AUG			1992 NOV		P-XYLENE (UG/L	26 SAMPLES	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

	GUIDELINE = 300 (A3*)										GUIDELINE = 300 (A3*)										GUIDELINE = 100 (D1)				•						GUIDELINE = 7 (D1)		
DIST. SYSTEM HIGH ST STANDING	0.10	٠			•				•		.05								•	•	.05		•						٠	٠	0.100	٠	
DIST. SYSTEM HIGH ST FREE FLOW	DET'N LIMIT = 0.10	1.000		T> 001.	BOL	.200 <t< td=""><td>.200 <t< td=""><td>T> 007.</td><td>BDL</td><td>BDL</td><td>DET'N LIMIT = 0.05</td><td>T> 059.</td><td></td><td>7> 052.</td><td>T> 050.</td><td>150 <1</td><td>.200 <t< td=""><td>.300 <t< td=""><td>BDL</td><td>BOL</td><td>DET*N LIMIT = 0.05</td><td>BOL</td><td></td><td>.150 <t< td=""><td>.150 <t< td=""><td>.150 <t< td=""><td>. 250 <t< td=""><td>.250 <t< td=""><td>108</td><td>.200 <</td><td>DET'N LIMIT = 0.100</td><td>B0L</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.200 <t< td=""><td>T> 007.</td><td>BDL</td><td>BDL</td><td>DET'N LIMIT = 0.05</td><td>T> 059.</td><td></td><td>7> 052.</td><td>T> 050.</td><td>150 <1</td><td>.200 <t< td=""><td>.300 <t< td=""><td>BDL</td><td>BOL</td><td>DET*N LIMIT = 0.05</td><td>BOL</td><td></td><td>.150 <t< td=""><td>.150 <t< td=""><td>.150 <t< td=""><td>. 250 <t< td=""><td>.250 <t< td=""><td>108</td><td>.200 <</td><td>DET'N LIMIT = 0.100</td><td>B0L</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 007.	BDL	BDL	DET'N LIMIT = 0.05	T> 059.		7> 052.	T> 050.	150 <1	.200 <t< td=""><td>.300 <t< td=""><td>BDL</td><td>BOL</td><td>DET*N LIMIT = 0.05</td><td>BOL</td><td></td><td>.150 <t< td=""><td>.150 <t< td=""><td>.150 <t< td=""><td>. 250 <t< td=""><td>.250 <t< td=""><td>108</td><td>.200 <</td><td>DET'N LIMIT = 0.100</td><td>B0L</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.300 <t< td=""><td>BDL</td><td>BOL</td><td>DET*N LIMIT = 0.05</td><td>BOL</td><td></td><td>.150 <t< td=""><td>.150 <t< td=""><td>.150 <t< td=""><td>. 250 <t< td=""><td>.250 <t< td=""><td>108</td><td>.200 <</td><td>DET'N LIMIT = 0.100</td><td>B0L</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	BOL	DET*N LIMIT = 0.05	BOL		.150 <t< td=""><td>.150 <t< td=""><td>.150 <t< td=""><td>. 250 <t< td=""><td>.250 <t< td=""><td>108</td><td>.200 <</td><td>DET'N LIMIT = 0.100</td><td>B0L</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	.150 <t< td=""><td>.150 <t< td=""><td>. 250 <t< td=""><td>.250 <t< td=""><td>108</td><td>.200 <</td><td>DET'N LIMIT = 0.100</td><td>B0L</td><td></td></t<></td></t<></td></t<></td></t<>	.150 <t< td=""><td>. 250 <t< td=""><td>.250 <t< td=""><td>108</td><td>.200 <</td><td>DET'N LIMIT = 0.100</td><td>B0L</td><td></td></t<></td></t<></td></t<>	. 250 <t< td=""><td>.250 <t< td=""><td>108</td><td>.200 <</td><td>DET'N LIMIT = 0.100</td><td>B0L</td><td></td></t<></td></t<>	.250 <t< td=""><td>108</td><td>.200 <</td><td>DET'N LIMIT = 0.100</td><td>B0L</td><td></td></t<>	108	.200 <	DET'N LIMIT = 0.100	B0L	
TREATED TREATED		1.000 RMP	.500 <t< td=""><td>BDL</td><td>. 100 <t< td=""><td>. 100 <t< td=""><td>.200 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td><td>1> 059.</td><td>.350 <1</td><td>1> 001.</td><td>T> 050.</td><td>T> 050.</td><td>1> 001.</td><td>108</td><td>BDL</td><td>BDL</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>BOL</td><td>BDL</td><td>. BDL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>0</td><td>BDL</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<></td></t<></td></t<></td></t<>	BDL	. 100 <t< td=""><td>. 100 <t< td=""><td>.200 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td><td>1> 059.</td><td>.350 <1</td><td>1> 001.</td><td>T> 050.</td><td>T> 050.</td><td>1> 001.</td><td>108</td><td>BDL</td><td>BDL</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>BOL</td><td>BDL</td><td>. BDL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>0</td><td>BDL</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<></td></t<></td></t<>	. 100 <t< td=""><td>.200 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td><td>1> 059.</td><td>.350 <1</td><td>1> 001.</td><td>T> 050.</td><td>T> 050.</td><td>1> 001.</td><td>108</td><td>BDL</td><td>BDL</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>BOL</td><td>BDL</td><td>. BDL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>0</td><td>BDL</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<></td></t<>	.200 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td><td>1> 059.</td><td>.350 <1</td><td>1> 001.</td><td>T> 050.</td><td>T> 050.</td><td>1> 001.</td><td>108</td><td>BDL</td><td>BDL</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>BOL</td><td>BDL</td><td>. BDL</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>0</td><td>BDL</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<>	BOL	BOL	BOL	2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1> 059.	.350 <1	1> 001.	T> 050.	T> 050.	1> 001.	108	BDL	BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL	BDL	. BDL	BDL	BOL	BDL	BDL	BDL	BDL	0	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TREATMENT PLANT RAW	VOLATILES)	BDL	BDL	BDL	BDL	.200 <t< th=""><th>BOL</th><th>BOL</th><th>BDL</th><th>108</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>801</th><th>BDL</th><th>BDL</th><th>BDL</th><th>1> 001.</th><th>BDL</th><th>BOL</th><th>BDL</th><th>. 108</th><th>(</th><th>, BDL</th><th>. 150 <t< th=""><th>. 150 <t< th=""><th>. 100 <t< th=""><th>. 250 <t< th=""><th></th><th>.200 <7</th><th>BDL</th><th>. 100 <t< th=""><th>YLENE (UG/L</th><th>BOL</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	BOL	BOL	BDL	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	801	BDL	BDL	BDL	1> 001.	BDL	BOL	BDL	. 108	(, BDL	. 150 <t< th=""><th>. 150 <t< th=""><th>. 100 <t< th=""><th>. 250 <t< th=""><th></th><th>.200 <7</th><th>BDL</th><th>. 100 <t< th=""><th>YLENE (UG/L</th><th>BOL</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<></th></t<></th></t<></th></t<></th></t<>	. 150 <t< th=""><th>. 100 <t< th=""><th>. 250 <t< th=""><th></th><th>.200 <7</th><th>BDL</th><th>. 100 <t< th=""><th>YLENE (UG/L</th><th>BOL</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<></th></t<></th></t<></th></t<>	. 100 <t< th=""><th>. 250 <t< th=""><th></th><th>.200 <7</th><th>BDL</th><th>. 100 <t< th=""><th>YLENE (UG/L</th><th>BOL</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<></th></t<></th></t<>	. 250 <t< th=""><th></th><th>.200 <7</th><th>BDL</th><th>. 100 <t< th=""><th>YLENE (UG/L</th><th>BOL</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<></th></t<>		.200 <7	BDL	. 100 <t< th=""><th>YLENE (UG/L</th><th>BOL</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<>	YLENE (UG/L	BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	M-XYLENE (UG/L	1992 APR			1992 JUL		1992 SEP	1992 OCT		1992 DEC	O-XYLENE (UG/L	1992 APR	1992 MAY			1992 AUG			1992 NOV		STYRENE (UG/L	1992 APR	1992 MAY	1992 JUN						1992 DEC	1,1-DICHLOROETHYLENE (UG/L	26 SAMPLES	

	GUIDELINE = 50 (A1)		GUIDELINE = 70 (01)	GUIDELINE = N/A	GUIDELINE = 350 (A1+)		GUIDELINE = 200 (D1)	GUIDELINE = 5 (A1)	GUIDELINE = 5 (A1)	GUIDELINE = 5 (D1)
DIST. SYSTEM DIST. SYSTEM HIGH ST HIGH ST FREE FLOW STANDING	DET'N LIMIT = 0.50 G	108 108 108 108 108 108 108	DET'N LIMIT = 0.10 · G BDL · .	DET'N LIMIT = 0.100 G	DET'N LIMIT = 0.10	12.500 33.000 11.800 19.100 26.600 26.800 33.700	DET'N LIMIT = 0.02 G BOL	DET'N LIMIT = 0.05 G	0ET'N LIMIT = 0.20 BOL	DET'N LIMIT = 0.05 C
TREATMENT PLANT TREATED	·	108 108 108 108 108 108 108 108	BDL	BDL	8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	23.100 64.300 25.800 11.900 11.900 35.200 49.200 24.100	801	BOL) BDL	BD1
TREATMENT PLANT	VOLATILES METHYLENE CHLORIDE (UG/L)	801 801 801 801 801 801 801 801 801 801	712-DICHLOROETHYLENE (UG/L 26 SAMPLES BDL	1,1-DICHLOROETHANE (UG/L) 26 SAMPLES BDL	(ng/L)	7 7 8 2 300 N N N C 2 300 N N C 2 300 N N C 2 300 N N C 3 300 N N C 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	111,TRICHLOROETHANE (UG/L) 26 SAMPLES BDL	1,2 DICHLOROETHANE (UG/L) 26 SAMPLES BDL	CARBON TETRACHLORIDE (UG/L 26 SAMPLES BDL	1,2-DICHLOROPROPANE (UG/L) 26 SAMPLES BDL
	METHYLENE	1992 APR 1992 MAY 1992 JUN 1992 JUL 1992 AUG 1992 CCT 1992 NOV	T12-DICHLOROE 26 SAMPLES	1,1-DICHLORGE 26 SAMPLES	CHLOROFORM (UG/L	1992 APR 1992 JUL 1992 JUL 1992 AUG 1992 SEP 1992 OCT 1992 DEC	111, TRICHLORO	1,2 DICHLOROE 26 SAMPLES	CARBON TETRAC 26 SAMPLES	1,2-DICHLOROP

x	GUIDELINE = 50 (A1)		GUIDELINE = 350 (A1+)								GUIOELINE = 0.6 (D4)		GUIDELINE = 350 (A1+)									GUIDELINE = 65 (A5)		GUIDELINE = 350 (A1+)		GUIDELINE = 0.17 (D4)		GUIDELINE = 2 (D1)	
DIST. SYSTEM DIST. SYSTEM HIGH ST HIGH ST FREE FLOW STANDING	DET'N LIMIT = 0.10	. BOL	DET'N LIMIT = 0.05	5.250		050.7	9.450	9.750	. 8 950	6.200	DET'N LIMIT = 0.05		DET.'N LIMIT = 0.10	1.500		2,100	3.600	3.800	4.400 APS	4.800	1.900	DET'N LIMIT = 0.05	. 801	DET'N LIMIT = 0.20	108	DET'N LIMIT = 0.05	. 108	DET'N LIMIT = 0.100	. 80L
TREATMENT PLANT TREATED	9 P P P P P P P P P P P P P P P P P P P	BOL	^	8.850	9.500	000.6	9.550	7.900	10.300	9.550		B01.		2.300	1,100	2,600	4.100	3.500	4.300	2.500	1.500	1 1 1 1 1 0 1 0 0 0 0 0 0 0	BDL		BOL		108		108
TREATMENT PLANT RAW	VOLATILES VOLATILES ENE (UG/L	. BDL		1.300	.700	5,300	1.750	6.050	2.950	8:050	THANE (UG/L)	B01.	ETHANE (UG/L)	BDL	80L	T> 004.	2.700	BDL		T> 000.	3.500	YLENE (UG/L)	108	` `	BDL	ETHANE (UG/L)	BDL	(UG/L)	801
	VOLAT TRICHLOROETHYLENE (UG/L	26 SAMPLES	DICHLOROBROMOMETHANE (UG/L		1992 MAY				1992 OCT		112-TRICHLOROETHANE (UG/L	. 26 SAMPLES	CHLORODIBROMOMETHANE (UG/L	1992 APR		1992 JUN					1992 NOV 1992 DEC	TETRACHLOROETHYLENE (UG/L	26 SAMPLES	BROMOFORM (UG/L	26 SAMPLES	1122-TETCHLOROETHANE	26 SAMPLES	VINYL CHLORIDE (UG/L	26 SAMPLES

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 SOUTHAMPTON WTP

	GUIDELINE = 70 (D1)		GUIDELINE = 1510 (03)		GUIDELINE = 5 (A1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GUIDELINE = 3750 (03)		GUIDELINE = 200 (A1)		GUIDELINE = 50 (D1)		GUIDELINE = 350 (A1)								1	
DIST. SYSTEM DIST. SYSTEM HIGH ST HIGH ST STANDING STANDING	DET'N LIMIT. = 0.100	. BOL	DET'N LIMIT = 0.10	. 801.	DET'N LIMIT = 0.10	. 708	DET'N LIMIT = 0.10	. 108	DET'N LIMIT = 0.05	. BOL .	DET'N LIMIT = 0.05	BOL	DET'N LIMIT = 0.50	19,250		23.350	23.350	34.750	42.650	43.350		
TREATMENT PLANT TREATED		. BOL		. 108		BDL		108		BDL		BOL	•	34.250	74.900	26.000	34.250	24.100	48.000	007.09	067.06	
TREATMENT PLANT RAW	VOLATILES COLONIOROETHYLENE (UG/L	26 SAMPLES BOL	CHLOROBENZENE (UG/L)	26 SAMPLES BOL	1,4-DICHLOROBENZENE (UG/L)	26 SAMPLES BDL	1,3-DICHLOROBENZENE (UG/L)	26 SAMPLES BDL	1,2-DICHLOROBENZENE (UG/L)	26 SAMPLES BDL	ETHYLENE DIBROMIDE (UG/L)	26 SAMPLES BOL	TOTL TRIHALOMETHANES (UG/L	APR	1992 MAY 12.400	, אמר אמר	AUG	SEP		1992 NOV 27.650	1992 DEC 21.730	

	WIP
	SOUTHAMPTON
	1992
TABLE 4	PROGRAM
	SURVEILLANCE
	WATER
	DRINKING WATER

	N/A		N/A		50 (A1)		0.55 (01)		N/A		GUIDELINE = 40000 (A1)		10 (A1)	
	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 50 (A1)		GUIDELINE = 0.55 (01)		GUIDELINE = N/A		GUIDELINE =		GUIDELINE = 10 (A1)	:
DIST. SYSTEM DIST. SYSTEM HIGH ST HIGH ST FREE FLOW STANDING	DET'N LIMIT = 0,70		DET'N LIMIT = 0.70.	•	DET'N LIMIT = 0.70		0ET'N LIMIT = 0.04		DET'N LIMIT = 0.04		0ET'N LIMIT = 7.00		DET'N LIMIT = 0.70	
TREATMENT PLANT TREATED		BDL		108	0 0 0 0 0 0 0 0 0 0 0 0 0	BOL		BDL		070.		12.000	9 9 9 9 9 9 9 9 9 8 8 8	BDL
TREATMENT PLANT	RADIONUCLIDES)	BOL	١)	108	ر ۲	108	INT (BQ/L)	BDL	IT (80/L)	.080	^	9.000	١,)	80L
	COBALT 60 (BQ/L	4 SAMPLES	CESIUM 134 (BQ/L	4 SAMPLES	CESIUM 137 (BQ/L	4 SAMPLES	GROSS ALPHA COUNT (BG/L	4 SAMPLES	GROSS BETA COUNT (BQ/L	1992 MAY 1992 AUG	TRITIUM (89/L	1992 MAY 1992 AUG	1001NE 131 (89/L	4 SAMPLES

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1992

PCAN/DADAMETED	UNIT	DETECTION LIMIT	GUIDELINE
SCAN/PARAMETER			
BACTERIOLOGICAL		•	
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	D	0 (A1)
STANDARD PLATE COUNT MEMBRANE FILT.	CT/ML	0	500/ML (A3)
TOTAL COLIFORM BACKGROUND MF	CT/100ML	0 ,	N/A
TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	5/100ML (A1)
CHEMISTRY (FLD)	·		
CHEMISIKI (FLD)			
FIELD COMBINED CHLORINE RESIDUAL	MG/L	0	N/A
FIELD TOTAL CHLORINE RESIDUAL	MG/L:	0	N/A
FIELD FREE CHLORINE RESIDUAL	MG/L	0	N/A
FIELD PH	DMNSLESS	N/A	6.5-8.5 (A4)
FIELD TEMPERATURE	DEG.C	N/A	15.0 (A3)
FIELD TURBIDITY	FTU	N/A °	1.0 (A1)
CHEMISTRY (LAB)			
ALKALINITY .	MG/L	0.20	30-500 (A4)
AMMONIUM ,TOTAL	MG/L	0.002	0.05 (F2)
CALCIUM	MG/L	0.20	100.0 (F2)
CHLORIDE	MG/L	0.20	250.0 (A3)
COLOUR	TCU	0.50	5.0 (A3)
CONDUCTIVITY	UMHO/CM	1.00	400.0 (F2)
CYANIDE .	MG/L	0.001	0.2 (A1)
DISSOLVED ORGANIC CARBON	MG/L	0.10	5.0 (A3)
FLUORIDE	MG/L	0.01	1.5* (A1)
HARDNESS	MG/L	0.50	80-100 (A4)
IONCAL	DMNSLESS	N/A	N/A
LANGELIERS INDEX	DMNSLESS	N/A	N/A
MAGNESIUM	MG/L	. 0.10	30.0 (F2)
NITRATES (TOTAL)	MG/L	0.005	10.0 (A1)
NITRITE	MG/L	0.001	1.0 (A1)
NITROGEN TOTAL KJELDAHL	MG/L	0.02	N/A
PH PHOPPHOPHO ELL PEACE	DMNSLESS	N/A 0.0005	6.5-8.5 (A4)
PHOSPHORUS FIL REACT	MG/L		· N/A
PHOSPHORUS TOTAL POTASSIUM	MG/L MG/L	0.002 0.010	0.4 (F2) - 10.0 (F2)
RESIDUE FILTRATE (CALCULATED TDS)	MG/L MG/L	N/A	500.0 (A3)
SODIUM	MG/L	0.20	200.0 (A4)
SULPHATE .	MG/L	0.20	500.0 (A4)
TURBIDITY	FTU	0.05	1.0 (A1)
100010111		3.03	1.0 (A1)

^{*} The Maximum Acceptable Concentration (MAC) for <u>naturally occurring fluoride</u> in drinking water is 2.4 mg/L.

CHLOROAROMATICS

CHECKONKO MT 120				
1,2,3-TRICHLOROBENZENE	NG/L	5.0	N/A	
1,2,3,4-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,3,5-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,4-TRICHLOROBENZENE	NG/L	5.0	10000	(1)
1,2,4,5-TETRACHLOROBENZENE	NG/L	1.0	38000	(D4)
1,3,5-TRICHLOROBENZENE	NG/L	5.0	N/A	
2,3,6-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2,4,5-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2,6A-TRICHLOROTOLUENE	NG/L	√ 5.0	N/A	
HEXACHLOROBENZENE (HCB)	NG/L	1.0	10	(C1)
HEXACHLOROBUTAD I ENE	NG/L	1.0	450	(D4)
HEXACHLOROETHANE	NG/L	1.0	1900	(D4)
OCTACHLOROSTYRENE	NG/L	1.0	N/A	
PENTACHLOROBENZENE	NG/L	. 1.0	74000	(D4)
CHLOROPHENOLS				
2,3,4-TRICHLOROPHENOL	NG/L	100.0	. N/A	
2,3,4,5-TETRACHLOROPHENOL	NG/L	20.0	N/A	
2,3,5,6-TETRACHLOROPHENOL	NG/L	10.0	N/A	

SCAN/PARAMETER	UNIT	DETECTION	GUIDELINE	
2,4,5-TRICHLOROPHENOL	NG/L	100.0	2600000	(D4)
2,4,6-TRICHLOROPHENOL	NG/L	20.0	5000	(A1)
PENTACHLOROPHENOL	NG/L	10.0	60000	(A1)
METALS				
ALUMINUM	UG/L	0.10	100	(A4)
ANTIMONY ARSENIC	UG/L UG/L	0.05 0.10	146 25	(D4) (A1)
BARIUM	UG/L	0.05	1000	(A2)
BERYLLIUM	UG/L	0.05	6800	(04)
BORON	UG/L	2.00	5000	(A1)
CADMIUM	UG/L	0.05	5 50	(A1)
CHROMIUM	UG/L UG/L	0.50 0.02	N/A	(A1)
COPPER	UG/L	0.50	1000	(A3)
1 RON	UG/L	6.00	300	(A3)
LEAD	UG/L	0.05	10	(A1)
MANGANESE MERCURY	UG/L	0.05 0.02	50 1	(A3)
MOLYBDENUM	UG/L UG/L	0.05	N/A	(41)
NICKEL	UG/L	0.20	350	(D3)
SELENIUM	UG/L	1.00	10	(A1)
SILVER	UG/L	0.05	N/A	
STRONTIUM THALLIUM	UG/L UG/L	0.10 0.05	N/A 13	(D4)
TITANIUM	UG/L	0.50	N/A	(04)
URANIUM	UG/L	0.05	100	(A1)
VANADIUM	ÚG/L	0.05	N/A	
ZINC	UG/L	0.20	5000	(A3)
POLYNUCLEAR AROMATIC HYDROCARBONS				
ANTHRACENE	NG/L	1.0	N/A	
BENZO(A) ANTHRACENE BENZO(A) -PYRENE	NG/L NG/L	20.0 5.0	N/A 10	(A1)
BENZO(B) CHRYSENE	NG/L	2.0	N/A	(A1)
BENZO(B) FLUORANTHENE	NG/L	10.0	N/A	
BENZO(E) PYRENE	NG/L	50.0	N/A	
BENZO(G, H, I) PERYLENE	NG/L	20.0	N/A	
BENZO(K) FLUORANTHENE CHRYSENE	NG/L NG/L	1.0 50.0	N/A N/A	
CORONENE	NG/L	10.0	N/A	
DIBENZO(A, H) ANTHRACENE	NG/L	10.0	N/A	
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A	
FLUORANTHENE	NG/L	20.0	42000	(D4)
INDENO(1,2,3-C,D) PYRENE PERYLENE	NG/L NG/L	10.0	N/A N/A	
PHENANTHRENE	NG/L	10.0	N/A	
PYRENE	NG/L	20.0	N/A	
PESTICIDES & PCB				
ALACHLOR (LASSO)	NG/L	500.0	5000	(A2)
ALDRIN	NG/L	1.0	700	(A1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC) ALPHA CHLORDANE	NG/L NG/L	1.0 2.0	700 7000	(G) (A1)
AMETRINE	NG/L	50.0	300000	(D3)
ATRATONE	NG/L	50.0	N/A	,
ATRAZINE	NG/L	50.0	60000	(A2)
DESETHYL ATRAZINE	NG/L	200.0	60000	(A2)
BETA HEXACHLOROCYCLOHEXANE (BHC) CYANAZINE (BLADEX)	NG/L NG/L	1.0 100.0	300 10000	(G) (A2)
DIELDRIN	NG/L	2.0	700	(A1)
ENDOSULFAN 1 (THIODAN I)	NG/L	2.0	74000	(04)
ENDOSULFAN 2 (THIODAN II)	NG/L	5.0	74000	(04)
ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NG/L	5.0	N/A	

00411/040416750	UNIT	DETECTION LIMIT	GUIDELINE
SCAN/PARAMETER			
ENDRIN	NG/L	· 5.0	1600 (D3)
GAMMA CHLORDANE	NG/L	2.0	7000 (A1)
HEPTACHLOR	NG/L	1.0	3000 (A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000 (A1)
HEXACHLOROCYCLOPENTAD I ENE	NG/L	5.0	206000 (D4)
LINDANE (GAMMA BHC)	NG/L	1.0 5.0	4000 (A1) 900000 (A1)
METHOXYCHLOR	NG/L	500.0	50000 (A1)
METOLACHLOR	NG/L	100.0	80000 (AL)
METRIBUZIN (SENCOR) MIREX	NG/L NG/L	5.0	N/A
P,P-DDD	NG/L	5.0	30000 (A1)
	NG/L	5.0	30000 (A1)
P,P-DDT ·	NG/L	. 5.0	30000 (A1)
P,P-DDE	NG/L	1.0	30000 (A1)
OXYCHLORDANE	NG/L	2.0	N/A
PCB '	NG/L	20.0	3000 (A2)
PROMETONE	NG/L	50.0	52500 (03)
PROMETRYNE ·	NG/L	. 50.0	1000 (A2)
PROPAZINE	NG/L	50.0	7,00000 (D3)
SIMAZINE	NG/L	50.0	10000 (A2)
DESETHYL SIMAZINE	NG/L	200.0	10000 (A2)
TOXAPHENE	NG/L	500.0	5000 (A1)
PHENOLICS			
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	N/A
SPECIFIC PESTICIDES			
3 (p. poopyoure, 4010	NC (I	100.0	N/A
2,4 D PROPIONIC ACID	NG/L NG/L	50.0	280000 (A1)
2,4,5-TRICHLOROPHENOXY ACETIC ACID 2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.0	100000 (A1)
2,4-DICHLORORPHENOXYBUTYRIC ACID (2,4-DB)		200.0	N/A
2.4.5-TP (SILVEX)	NG/L	20.0	10000 (A1)
BUTYLATE (SUTAN)	NG/L	2000.0	245000 (D3)
CARBARYL (SEVIN)	NG/L	200.0	90000 (A1)
CARBOFURAN	NG/L	2000.0	90000 (A1)
CHLORPROPHAM (CIPC)	NG/L	2000.0	350000 (G)
CHLORPYRIFOS (DURSBAN)	NG/L	20.0	N/A
DIALLATE	NG/L	2000.0	N/A
DIAZINON	NG/L	20.0	20000 (A1)
DICAMBA	NG/L	50.0	120000 (A1)
DICHLOROVOS	NG/L	20.0	N/A
EPTAM	NG/L NG/L	20.0	N/A 35000 (G)
ETHION IPC	NG/L	2000.0	N/A
MALATHION	NG/L	20.0	190000 (A1)
METHYL PARATHION	NG/L	50.0	9000 (D3)
METHYLTRITHION	NG/L	20.0	- N/A
MEVINPHOS	NG/L	20.0	N/A
PARATHION	NG/L	20.0	50000 (A1)
PHORATE (THIMET)	NG/L	20.0	2000 (A2)
PICHLORAM	NG/L	100.0	190000 (A2)
PROPOXUR (BAYGON)	NG/L	2000.0	140000 (D3)
RELDAN	NG/L	20.0	N/A
RONNEL	NG/L	20.0	. N/A
VOLATILES			
1,1-DICHLOROETHANE	UG/L	0.10	N/A
1,1-DICHLOROETHYLENE	UG/L	0.10	7 (01)
1,2-DICHLOROBENZENE	UG/L	0.05	200· (A1)
1,2-DICHLOROETHANE	UG/L	0.05	5 (A1) 5 (D1)
1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE	UG/L UG/L	0.05 0.10	
1,4-DICHLOROBENZENE 1,1,1-TRICHLOROETHANE	UG/L UG/L	0.10	. 5 (A1) 200 (D1)
1,1,2-TRICHLOROETHANE	UG/L	0.05	0.6 (D4)
1,1,2,2-TETRACHLOROETHANE	UG/L	0.05	0.17 (D4)
.,.,-,-	54,2	0.05	0.11 (04)

TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM 1992

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
BENZENE	UG/L	0.05	5	(A1)
BROMOFORM	UG/L	0.20	350	(A1+)
CARBON TETRACHLORIDE	UG/L	0.20	5	(A1)
CHLOROBENZENE	UG/L	0.10	1510	(D3)
CHLORODIBROMOMETHANE	UG/L	0.10	350	(A1+)
CHLOROFORM	UG/L	0.10	350	(A1+)
CIS 1,2-DICHLOROETHYLENE	UG/L	0.10	70	(D1)
DICHLOROBROMOMETHANE	UG/L	0.05	350	(A1+)
ETHYLENE OIBROMIDE	UG/L	0.05	50	(01)
ETHYLBENZENE	UG/L	0.05		4 (A3)
M-XYLENE .	UG/L	0:10	300	(A3*)
METHYLENE CHLORIDE	UG/L	0.50	50	(A1)
O-XYLENE	UG/L	0.05	300	(A3*)
P-XYLENE	UG/L	0.10	300	(A3*)
STYRENE	UG/L	0.05	100	(01)
TETRACHLOROETHYLENE	UG/L	0.05	65	(A5)
TRANS 1,2-DICHLOROETHYLENE	UG/L	0.10	70	(01)
TOLUENE :	UG/L	0.05	24	(A3)
TOTAL TRIHALOMETHANES	UG/L	0.50	350	(A1)
TRICHLOROETHYLENE	UG/L	0.10	50	(A1)
VINYL CHLORIDE	UG/L	0.10	2	(D1)
RADIONUCLIDES				
TRITIUM	BQ/L	7.0	40000	(A1)
GROSS ALPHA COUNT	BQ/L	0.04	0.	55# (D1)
GROSS BETA COUNT	BQ/L	0.04	N/A	
COBALT 60	BQ/L	0.70	N/A	
CESIUM 134	BQ/L	0.70	N/A	
CESIUM 137	BQ/L	0.70	50	(A1)
100 INE 131	BQ/L	0.70	. 10	(A1)

Equal to 15.0 Picocuries/litre

PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1992, 109 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment and Energy (MODE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOEE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOEE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

i/ the sample is an accurate representation of the actual water condition, eg.

raw water has had no chemical treatment;

ii/ the water being sampled is not being modified by the sampling system;

iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and

iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOEE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOEE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOEE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOEE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

PARAMETER REFERENCE INFORMATION

NAME:

BENZENE

CAS#:

71-43-2

MOLECULAR FORMULAE:

C6H6

DETECTION LIMIT:

(FOR METHOD POCODO) 0.05 µg/L

SYNONYMS:

BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27)

CYCLOHEXATRIENE (41)

CHARACTERISTICS:

COLOURLESS TO LIGHT-YELLOW, MOBILE, NONPOLAR LIQUID, OF HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN

WITH SMOKING FLAME (30)

PROPERTIES:

SOLUBILITY IN WATER: 1780-1800 mg/L'AT 25C (41)

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATER THRESHOLD TASTE: 0.5 mg/L IN WATER (39)

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM

SOILS OR ARE DEGRADED RATHER QUICKLY (80)

SOURCES:

COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES;

COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES:

DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING

AGENT; GASOLINE.

REMOVAL:

THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION, OXIDATION

ADDITIONAL PROPERTIES:

MOLECULAR WEIGHT: 78.12 MELTING POINT: 5.5°C (27) BOILING POINT: 80.1°C (27)

SPECIFIC GRAVITY: 0.8790 AT 20°C (27) VAPOUR PRESSURE: 100 MM AT 26.1°C (27)

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41)

LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39) CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41)

SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white seal on cap

-do <u>not</u> rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃)
 (Caution: HNO₃ is corrosive)

Volatiles (duplicates)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with sample)

-do not rinse bottle

-fill bottle completely without bubbles

Organics

(OWOC), (OWTRI)

-1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

Specific Pesticides

(OWCP), (PEOP), (PECAR)

-as per Organics

-three extra bottles must be filled

Polyaromatic hydrocarbons

(OAPAHX)

.- 1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Cyanide (Treated only)

-500 mL plastic bottle (PET 500) -rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury

-250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO₃)
and potassium dichromate (K₂Cr₂O₇)
(Caution: HNO₃&K₂Cr₂O₇ are corrosive)

Phenols

-250 mL glass bottle

-do not rinse bottle, preservative has been added

-fill to top of label

Radionuclides
(as scheduled)

-4 L plastic jug -do not rinse, carrier added

-fill to 5 cm from top

Organic Characterization (GC/MS - once per year) (PBVOL),(PBEXT) -1 L amber glass bottle; instructions

as per organic

-250 mL glass bottle -do not rinse bottle

-fill completely without bubbles

Steps:

- 1. Let sampling water tap run for an adequate time to clear the sample line.
- 2. Record time of day on submission sheet.
- 3. Record temperature on submission sheet.
- 4. Fill up all bottles as per instructions.
- Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.
- 6. No smoking in area of sample location.

ii) Distribution Samples (standing water)

General Chemistry

-500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Metals

-500 mL plastic bottle (PET 500) -rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Steps:

- 1. Record time of day on submission sheet.
- 2. Place bucket under tap and open cold water.
- 3. Fill to predetermined volume.
- 4. After mixing the water, record the temperature on the submission sheet.

- 5. Fill general chemistry and metals bottles.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO₃ (Caution: HNO₃ is corrosive)

Volatiles (duplicate) -45 mL glass vial with septum

(OPOPUP) (teflon side must be in contact with sample)

-do not rinse bottle, preservative has been added

-fill bottle completely without bubbles

Organics -1 L amber glass bottle per scan

(OWOC) -do not rinse bottle

-fill to 2 cm from top

Polyaromatic Hydrocarbons -1 L amber glass bottle per scan

(OAPAHX) -do not rinse bottle -fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Steps:

1. Record time of day on submission sheet.

2. Let cold water flow for five minutes.

3. Record temperature on submission sheet.

4. Fill all bottles as per instructions.

Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

