LIBPOLY: A LIBRARY FOR REASONING ABOUT POLYNOMIALS

Dejan Jovanović Bruno Dutertre

SRI International

SMT Workshop 2017

OUTLINE

INTRODUCTION

LIBPOLY

- Working with Polynomials
- Constructing a Sign Table
- Cylindrical Algebraic Decomposition

CONCLUSION

OUTLINE

INTRODUCTION

LIBPOLY

- Working with Polynomials
- Constructing a Sign Table
- Cylindrical Algebraic Decomposition

CONCLUSION

NON-LINEAR REASONING

MANY APPLICATIONS

$$\begin{split} T_1^x(t) &= 3.2484 + 270.7t + 433.12t^2 - 324.8399t^3 \\ T_1^y(t) &= 15.1592 + 108.28t + 121.2736t^2 - 649.67999t^3 \\ T_1^z(t) &= 38980.8 + 5414t - 21656t^2 + 32484t^3 \\ \end{split}$$

$$T_2^x(t) &= 1.0828 - 135.35t + 234.9676t^2 + 3248.4t^3 \\ T_2^y(t) &= 18.40759 - 230.6364t - 121.2736t^2 - 649.67999t^3 \\ T_3^x(t) &= 40280.15999 - 10828t + 24061.9816t^2 - 32484t^3 \end{split}$$

$$\begin{split} D = 5 & H = 1000 & 0 \leq t \leq \frac{1}{20} \\ |T_1^z(t) - T_2^z(t)| \leq H & (T_1^x(t) - T_2^x(t))^2 + (T_1^y(t) - T_2^y(t))^2 \leq D^2 \end{split}$$

Example from Narkawicz, Muõz, Formal Verification of Conflict Detection Algorithms for Arbitrary Trajectories, 2012

NON-LINEAR REASONING

MANY APPLICATIONS

$$\begin{split} T_1^x(t) &= 3.2484 + 270.7t + 433.12t^2 - 324.83999t^3 \\ T_1^y(t) &= 15.1592 + 108.28t + 121.2736t^2 - 649.67999t^3 \\ T_1^x(t) &= 38980.8 + 5414t - 21656t^2 + 32484t^3 \end{split}$$

$$\begin{split} D=5 & H=1000 & 0 \leq t \leq \frac{1}{20} \\ |T_1^z(t)-T_2^z(t)| \leq H & (T_1^x(t)-T_2^x(t))^2 + (T_1^y(t)-T_2^y(t))^2 \leq D^2 \end{split}$$

Example from Narkawicz, Muõz, Formal Verification of Conflict Detection Algorithms for Arbitrary Trajectories, 2012

SMT TECHNIQUES

Popular techniques in SMT (QF_NRA):

- ► Interval reasoning: RASAT
- ► Linear reasoning + model-based refinement: cvc4
- ► DPLL(T) + VTS: VERIT
- ► DPLL(T) + CAD: SMTRAT, VERIT
- ► MCSAT + CAD: Z3, YICES2

SMT TECHNIQUES

Popular techniques in SMT (QF_NRA):

- ► Interval reasoning: RASAT
- Linear reasoning + model-based refinement: cvc4
- ► DPLL(T) + VTS: VERIT
- ► DPLL(T) + CAD: SMTRAT, VERIT
- ► MCSAT + CAD: Z3, YICES2

Cylindrical Algebraic Decomposition (CAD):

- complete method, currently state-of-the-art;
- requires advanced polynomial operations.

SMT SOLVERS (2016)

SMT SOLVERS (2017)

CAD-BASED REASONING

- 1. Representation of polynomials.
- 2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
- 3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numbers.
- 4. Projection and symbolic explanations:
 - principal subresultant coefficients.

CAD-BASED REASONING

- 1. Representation of polynomials.
- 2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - ▶ some factorization.
- 3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numb
- 4. Projection and symbolic explanation.
 - principal subresultant coefficients.

CAD-BASED REASONING

- 1. Representation of polynomials.
- 2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
- 3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numb
- 4. Projection and symbolic explanation.
 - principal subresultant coefficients.

How to get these?

Use an existing library

CAD-BASED REASONING

- 1. Representation of polynomials.
- 2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - ► GCD computation;
 - some factorization.
- 3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numb
- 4. Projection and symbolic explanation.
 - principal subresultant coefficients.

How to get these?

▶ Use an existing library 😊

CAD-BASED REASONING

- 1. Representation of polynomials.
- 2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
- 3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numb
- 4. Projection and symbolic explanation.
 - principal subresultant coefficients.

- ▶ Use an existing library ☺
- Use a computer algebra system

CAD-BASED REASONING

- 1. Representation of polynomials.
- 2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
- 3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numb
- 4. Projection and symbolic explanation.
 - principal subresultant coefficients.

- ▶ Use an existing library ☺
- ▶ Use a computer algebra system ②

CAD-BASED REASONING

- 1. Representation of polynomials.
- 2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - ► GCD computation;
 - some factorization.
- 3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numb
- 4. Projection and symbolic explanation.
 - principal subresultant coefficients.

- ▶ Use an existing library ☺
- ▶ Use a computer algebra system ☺
- Borrow and adapt code

CAD-BASED REASONING

- 1. Representation of polynomials.
- 2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
- 3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numb
- 4. Projection and symbolic explanation.
 - principal subresultant coefficients.

- ▶ Use an existing library ☺
- ▶ Use a computer algebra system ☺
- ▶ Borrow and adapt code ☺

CAD-BASED REASONING

- 1. Representation of polynomials.
- 2. Basic operations:
 - variables, variable ordering;
 - arithmetic (addition, multiplication, ...);
 - ► GCD computation;
 - some factorization.
- 3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numb
- 4. Projection and symbolic explanatior.
 - principal subresultant coefficients.

- ▶ Use an existing library ⊙
- ▶ Use a computer algebra system ☺
- ► Borrow and adapt code ②
- ▶ Implement yourself ☺

CAD-BASED REASONING

- 1. Representation of polynomials.
- 2. Basic operations:
 - variables, variable ordering;
 - ▶ arithmetic (addition, multiplication, ...);
 - GCD computation;
 - some factorization.
- 3. Solving and model representation:
 - Sturm sequences;
 - interval reasoning;
 - root isolation (multivariate);
 - resultants;
 - computation with algebraic numb
- 4. Projection and symbolic explanation.
 - principal subresultant coefficients.

- ► Use an existing library ③
- ▶ Use a computer algebra system ☺
- Borrow and adapt code ②
- ► Implement yourself 😉
- ► Use LibPoly ②.

OUTLINE

INTRODUCTION

LIBPOLY

- Working with Polynomials
- Constructing a Sign Table
- Cylindrical Algebraic Decomposition

CONCLUSION

LIBPOLY

- ▶ Open source: https://github.com/SRI-CSL/libpoly.
- ► Permissive License: LGLP
- ▶ Lightweight: Implemented in C, 15KLOC.
- Only depends on GMP.
- ▶ Basis for non-linear reasoning in YICES2.

POLYNOMIAL BASICS

- ightharpoonup Polynomials with coefficients over \mathbb{Z} .
- $ightharpoonup \mathbb{Z}[x_1,\ldots,x_n]$ are polynomials over variables $\vec{x}=\langle x_1,\ldots,x_n \rangle$.
- $\blacktriangleright \ \text{For} \ f \in \mathbb{Z}[\vec{y},x] :$

$$f(\vec{y},x) = a_m \cdot x^{d_m} + a_{m-1} \cdot x^{d_{m-1}} + \dots + a_1 \cdot x^{d_1} + a_0 \ .$$

- \bullet $a_m \neq 0, a_i \in \mathbb{Z}[\vec{y}], d_m > \cdots > d_1 > 0$
- ► x is the top variable
- $ightharpoonup d_m$ is the degree of f
- ▶ a_m is the leading coefficient

ASSIGNMENT AND EVALUATION

An assignment assigns variables to values

$$m = \{ x \mapsto 1, y \mapsto 2, z \mapsto 3 \} .$$

We can evaluate the sign of a polynomial $f \in \mathbb{Z}[x, y, z]$

$$\text{sgn}(f,m) \in \{+1,0,-1\}$$
 .

ZEROS OF A POLYNOMIAL (ROOT ISOLATION)

ROOT ISOLATION

For $f \in \mathbb{Z}[\vec{y},x]$ and an assignment $\vec{y} \mapsto \vec{v}$, find solutions to $f(\vec{v},x) = 0$.

EXAMPLE

$$m_1 = \{\}$$

$$f_1(x) = x - 1$$

$$m_2 = \{x \mapsto 1\}$$

$$f_2(x, y) = y^2 - 2x$$

$$m_3 = \{x \mapsto 1, y \mapsto \sqrt{2}\}$$

$$f_3(x, y, z) = z^3 - y^2 - x$$

SIGN TABLE

EXAMPLE (SIGN TABLE)

	$(-\infty, -1)$	[-1]	(-1,0)	[0]	(0,1)	[1]	(1,2)	[2]	$(2,+\infty)$
$x^2 - 1$	+	0	-	-	-	0	+	+	+
x(x-2)	+	+	+	0	-	-	-	0	+

SIGN TABLE: WHAT IS IT?

EXAMPLE (SIGN TABLE)

	$(-\infty, -1)$	[-1]	(-1,0)	[0]	(0,1)	[1]	(1,2)	[2]	$(2,+\infty)$
$x^2 - 1$	+	0	-	-	-	0	+	+	+
x(x-2)	+	+	+	0	-	-	-	0	+

SIGN TABLE

- ▶ Partition of \mathbb{R} into intervals $I_1, ... I_n$.
- ightharpoonup Picking an **arbitrary** sample value $v \in I_k$ is enough to evaluate signs.
- ▶ It completely characterizes the behavior of the polynomials.

EXAMPLE (MULTIVARIATE)

$$x^2 + y^2 - 1 \le 0$$
, $(x - 1)^2 + y^2 - 1 \le 0$.

RECURSIVE SIGN TABLE

- 1. Pick order, say x < y.
- 2. P_x : polynomials in x.
- 3. P_y : polynomials in x, y.
- 4. Construct sign table T_x for P_x .
- 5. For each sample $v \in T_x$:
 - $\qquad \hbox{$\blacktriangleright$ Construct sign table $T_{v,y}$ for P_y.}$

EXAMPLE (MULTIVARIATE)

$$x^2 + y^2 - 1 \le 0$$
,

$$(x-1)^2 + y^2 - 1 < 0$$
.

RECURSIVE SIGN TABLE

- 1. Pick order, say x < y.
- 2. P_x : polynomials in x.
- 3. P_y : polynomials in x, y.
- 4. Construct sign table T_x for P_x .
- 5. For each sample $v \in T_x$:
 - $\qquad \hbox{$\blacktriangleright$ Construct sign table $T_{v,y}$ for P_y.}$

EXAMPLE (MULTIVARIATE)

$$x^2 + y^2 - 1 \le 0 ,$$

$$(x-1)^2 + y^2 - 1 \le 0$$
.

EXAMPLE (How to GET THE EXTRA POLYNOMIALS?)

We added extra polynomials

$$x + 1$$

x + 1, x + 2.

Can we find these polynomials automatically?

FILLING THE BLANKS

DEFINITION (PROJECTION)

Given a set of polynomials $A=\{f_1,\ldots,f_m\}\subset \mathbb{Z}[\vec{y},x]$, the x-projection of A is

$$P(A,x) = \bigcup_{f \in A} \mathsf{coeff}(f,x) \cup \bigcup_{\substack{f \in A \\ g \in \, \mathsf{R}^*(f,x)}} \mathsf{psc}(g,g_x',x) \cup \bigcup_{\substack{i < j \\ g_i \in \, \mathsf{R}^*(f_i,x) \\ g_j \in \, \mathsf{R}^*(f_i,x)}} \mathsf{psc}(g_i,g_j,x) \enspace .$$

FILLING THE BLANKS

DEFINITION (PROJECTION)

Given a set of polynomials $A=\{f_1,\ldots,f_m\}\subset \mathbb{Z}[\vec{y},x]$, the x-projection of A is

$$P(A,x) = \bigcup_{f \in A} \frac{\mathsf{coeff}(f,x)}{\mathsf{coeff}(f,x)} \cup \bigcup_{\substack{f \in A \\ g \in \, \mathsf{R}^*(f,x)}} \mathsf{psc}(g,g_x',x) \cup \bigcup_{\substack{i < j \\ g_i \in \, \mathsf{R}^*(f_i,x) \\ g_i \in \, \mathsf{R}^*(f_i,x)}} \mathsf{psc}(g_i,g_j,x) \enspace .$$

coeff(f, x): Coefficients

Signs of coefficients invariant on S \Rightarrow degrees of $f \in A$ invariant on S.

FILLING THE BLANKS

DEFINITION (PROJECTION)

Given a set of polynomials $A=\{f_1,\ldots,f_m\}\subset \mathbb{Z}[\vec{y},x],$ the x-projection of A is

$$P(A,x) = \bigcup_{f \in A} \mathsf{coeff}(f,x) \cup \bigcup_{\substack{f \in A \\ g \in \, \mathsf{R}^*(f,x)}} \mathsf{psc}(g,g_x',x) \cup \bigcup_{\substack{i < j \\ g_i \in \, \mathsf{R}^*(f_i,x) \\ g_i \in \, \mathsf{R}^*(f_i,x)}} \mathsf{psc}(g_i,g_j,x) \enspace .$$

$R^*(f,x)$: Reductums include the "right degree" polynomials

$$f = \sum_{k=0}^{n} a_k x^k , \qquad \mathsf{R}(f,x) = \sum_{k=0}^{n-1} a_k x^k , \qquad \mathsf{R}^*(f,x) = \{f,\mathsf{R}(f),\mathsf{R}(\mathsf{R}(f)),\ldots\} .$$

FILLING THE BLANKS

DEFINITION (PROJECTION)

Given a set of polynomials $A=\{f_1,\ldots,f_m\}\subset \mathbb{Z}[\vec{y},x]$, the x-projection of A is

$$P(A,x) = \bigcup_{f \in A} \mathsf{coeff}(f,x) \cup \bigcup_{\substack{f \in A \\ g \in \, \mathsf{R}^*(f,x)}} \mathsf{psc}(g,g_x',x) \cup \bigcup_{\substack{i < j \\ g_i \in \, \mathsf{R}^*(f_i,x) \\ g_j \in \, \mathsf{R}^*(f_i,x)}} \mathsf{psc}(g_i,g_j,x) \ .$$

PRINCIPAL SUBRESULTANT COEFFICIENTS (PSC)

Signs of PSC invariant on $S \Rightarrow$ degree of gcd invariant on S.

PROJECTION: EXTRA POLYNOMIALS

Given a set of polynomials $A\subseteq \mathbb{Z}[x_1,\ldots,x_n]$:

- ightharpoonup Project variable x_n .
- ightharpoonup Project variable x_{n-1} .
- **.** . . .

LIFTING: CONSTRUCT THE SIGN TABLE

Construct the table variable by variable:

- ▶ Isolate roots of x_1 , pick a value in an interval.
- ▶ Isolate roots of x_2 , pick a value in an interval.
- **.** . . .

LIFTING: CONSTRUCT THE SIGN TABLE

Construct the table variable by variable:

- ▶ Isolate roots of x_1 , pick a value in an interval.
- ▶ Isolate roots of x_2 , pick a value in an interval.
- **.** . . .

- Polynomial: $x^2 + y^2 1$.
- ▶ Projection: $x^2 1$.

OUTLINE

INTRODUCTION

LIBPOLY

- Working with Polynomials
- Constructing a Sign Table
- Cylindrical Algebraic Decomposition

CONCLUSION

CONCLUSION

A library for non-linear reasoning:

- ▶ Open source https://github.com/SRI-CSL/libpoly.
- ▶ Permissive License: LGLP
- Ubuntu and Brew packages incoming.
- ▶ Lightweight: Implemented in C, around 15KLOC.
- Only depends on GMP.
- ▶ Basis for non-linear reasoning in YICES2.
- ▶ Both for traditional CAD and MCSAT-style CAD.

CONCLUSION

A library for non-linear reasoning:

- ▶ Open source https://github.com/SRI-CSL/libpoly.
- ▶ Permissive License: LGLP
- Ubuntu and Brew packages incoming.
- ▶ Lightweight: Implemented in C, around 15KLOC.
- Only depends on GMP.
- ▶ Basis for non-linear reasoning in YICES2.
- ▶ Both for traditional CAD and MCSAT-style CAD.

Thank you!