Sprawozdanie 2

Alicja Myśliwiec, Natalia Lach

2023-01-15

Spis treści

1	\mathbf{W} stęp
2	Zagadnienia teoretyczne
	2.1 test t
	2.2 test t-welcha
	2.3 test sum rang Wilcoxona
	2.4 moc testu
	2.5 test jednoznacznie najmocniejszy
3	zadanie 1
	3.1 założenia i cel zadania
	3.2 rozwiązanie
	3.3 wnioski
4	zadanie 2
	4.1 założenia i cel zadania
	4.2 rozwiązanie
	4.3 wnioski
5	zadanie 3
	5.1 założenia i cel zadania
	5.2 rozwiązanie
	5.3 wnioski
G	Podeumowanio

1 Wstęp

2 Zagadnienia teoretyczne

przydatne definicje i twierdzenia

- 2.1 test t
- 2.2 test t-welcha
- 2.3 test sum rang Wilcoxona
- 2.4 moc testu

definicja i algorytm generowania

2.5 test jednoznacznie najmocniejszy

3 zadanie 1

3.1 założenia i cel zadania

```
d <- 1
m1 <- 0
m2 <- m1 + d
X <- rnorm(100, m1, 2)
Y <- rnorm(200, m2, 4)
d <- seq(-2,2,0.1)
N <- 500 #1000</pre>
```

3.2 rozwiązanie

```
zad1 <- function(d, s1=2, s2=2, a = 0.05) {
    X <- rnorm(100, 0, s1)
    Y <- rnorm(200, d, s2)
    welch <- t.test(X, Y, alternative = "two.sided", var.equal = FALSE)$p.value < a
    ttest <- t.test(X, Y, alternative = "two.sided", var.equal = TRUE)$p.value < a
    wilcox <- wilcox.test(X, Y, alternative = "two.sided")$p.value < a
    c(ttest, welch, wilcox)
}

v <- sapply(d, zad1)
for (i in seq(1,N-1,1)) {
    v <- v + sapply(d, zad1)
}
mat <- v/N</pre>
```


Rys. 1: Moce testów dla prób z rozkładu normalnego o równych wariancjach.

3.3 wnioski

4 zadanie 2

4.1 założenia i cel zadania

4.2 rozwiązanie

```
zad2 <- function(d, s1=2, s2=4, a = 0.05) {
    X <- rnorm(100, 0, s1)
    Y <- rnorm(200, d, s2)
    welch <- t.test(X, Y, alternative = "two.sided", var.equal = FALSE)$p.value < a
    ttest <- t.test(X, Y, alternative = "two.sided", var.equal = TRUE)$p.value < a
    wilcox <- wilcox.test(X, Y, alternative = "two.sided")$p.value < a
    c(ttest, welch, wilcox)
}

v <- sapply(d, zad2)
for (i in seq(1,N-1,1)) {
    v <- v + sapply(d, zad2)
}
mat <- v/N</pre>
```

Symulacyjne wartości mocy testów 1.00 0.75 0.50 1.00 1.

Rys. 2: Moce testów dla prób z rozkładu normalnego o różnych wariancjach.

4.3 wnioski

5 zadanie 3

5.1 założenia i cel zadania

5.2 rozwiązanie

```
N <- 700
zad3 <- function(d, a = 0.05) {
    X <- rexp(100, 1/2)
    Y <- rexp(200, 1/(2 + d))
    welch <- t.test(X, Y, alternative = "two.sided", var.equal = FALSE)$p.value < a
    ttest <- t.test(X, Y, alternative = "two.sided", var.equal = TRUE)$p.value < a
    wilcox <- wilcox.test(X, Y, alternative = "two.sided")$p.value < a
    c(ttest, welch, wilcox)
}

d <- seq(-1.9,1.9, 0.1)

v3 <- sapply(d, zad3)

for (i in seq(1,N-1,1)) {
    v3 <- v3 + sapply(d, zad3)
}

mat3 <- v3/N</pre>
```


Rys. 3: Moce testów dla prób z rozkładu wykładniczego.

5.3 wnioski

6 Podsumowanie