Insertion Sort: left shift until correct -> O(n^2)

Mergesort: two sub-array to sort(divide&conquer) -> O(n)

BinarySearch: start search from the middle, then middle again -> $T(n) \le T(n/2) + O(1) = O(\log n)$

Quicksort: use pivot to sort, move pivot in the middle at end. -> Best: $T(n) = 2T(n/2) + \Theta(n) -> O(n\log n)$, Worst: $O(n^2)$

BFS: G=(V,E): G for graph, V for nodes, E for edges. Search all nodes in a layer before going to the next. -> O(n + E), n for V

DFS: Search according to depth first, touch the button then traceback. -> O(n + E)

Dijkstra: greedy alg for calculate the shortest path using graph. $\rightarrow T(n) = O(n\log n + m\log n) = O(m\log n), m = V + E, n = V$

Huffman: compress document using Binary Tree, most frequent word put in forward to get less bit. $-> O(n \log n)$

SegmentedLeastSquares: fit a curve containing several pieces of line (dynamic programming). -> $O(n^2)$

Sequence Alignment: find the most similarity of two sentence with least error(dynamic programming). -> Two for loops: O(nm)

Insertion Sort: left shift until correct -> $O(n^2)$

Mergesort: two sub-array to sort(divide&conquer) -> O(n)

BinarySearch: start search from the middle, then middle again -> $T(n) \le T(n/2) + O(1) = O(\log n)$

Quicksort: use pivot to sort, move pivot in the middle at end. -> Best: $T(n) = 2T(n/2) + \Theta(n) -> O(n\log n)$, Worst: $O(n^2)$

BFS: G=(V,E): G for graph, V for nodes, E for edges. Search all nodes in a layer before going to the next. -> O(n + E), n for V

DFS: Search according to depth first, touch the button then traceback. -> O(n + E)

Dijkstra: greedy alg for calculate the shortest path using graph. $\rightarrow T(n) = O(n\log n + m\log n) = O(m\log n), m = V + E, n = V$

Huffman: compress document using Binary Tree, most frequent word put in forward to get less bit. $\rightarrow O(n\log n)$

SegmentedLeastSquares: fit a curve containing several pieces of line (dynamic programming). -> $O(n^2)$

Sequence Alignment: find the most similarity of two sentence with least error(dynamic programming). -> Two for loops: O(nm)

Insertion Sort: left shift until correct -> O(n^2)

Mergesort: two sub-array to sort(divide&conquer) -> 0(n)

BinarySearch: start search from the middle, then middle again -> $T(n) \le T(n/2) + O(1) = O(\log n)$

Quicksort: use pivot to sort, move pivot in the middle at end. -> Best: $T(n) = 2T(n/2) + \Theta(n) -> O(n\log n)$, Worst: $O(n^2)$

BFS: G=(V,E): G for graph, V for nodes, E for edges. Search all nodes in a layer before going to the next. $\to O(n+E)$, n for V

DFS: Search according to depth first, touch the button then traceback. -> O(n + E)

Dijkstra: greedy alg for calculate the shortest path using graph. $\rightarrow T(n) = O(n\log n + m\log n) = O(m\log n), m = V + E, n = V$

Huffman: compress document using Binary Tree, most frequent word put in forward to get less bit. -> $O(n\log n)$

SegmentedLeastSquares: fit a curve containing several pieces of line (dynamic programming). -> $O(n^2)$

Sequence Alignment: find the most similarity of two sentence with least error (dynamic programming). -> Two for loops: O(nm)

Insertion Sort: left shift until correct -> O(n^2)

Mergesort: two sub-array to sort(divide&conquer) -> O(n)

BinarySearch: start search from the middle, then middle again -> $T(n) \le T(n/2) + O(1) = O(\log n)$

Quicksort: use pivot to sort, move pivot in the middle at end. -> Best: $T(n) = 2T(n/2) + \Theta(n) -> O(n\log n)$, Worst: $O(n^2)$

BFS: G=(V,E): G for graph, V for nodes, E for edges. Search all nodes in a layer before going to the next. $\to O(n+E)$, n for V

DFS: Search according to depth first, touch the button then traceback. -> O(n + E)

Dijkstra: greedy alg for calculate the shortest path using graph. -> $T(n) = O(n\log n + m\log n) = O(m\log n)$, m = V + E, n = V

Huffman: compress document using Binary Tree, most frequent word put in forward to get less bit. $\rightarrow O(n\log n)$

SegmentedLeastSquares: fit a curve containing several pieces of line (dynamic programming). -> $O(n^2)$

Sequence Alignment: find the most similarity of two sentence with least error(dynamic programming). -> Two for loops: O(nm)

Upper: Big $0 \le$, **Lower**: Big $\Omega \ge$, **Tight**: Big $\theta =$, little o <, little w > $\log n < n < n \log n < n^2 < 2^n < 3^n < n^n$

Simple path for distinct nodes; Simple cycle for distinct paths; Strongly Connect Components(SCC) for bidirectional node.

Recursive Fibonacci: $T(n) = O(1) + T(n-1) + T(n-2) = \Omega(2^n/2)$

Non-recursive Fib: T(n) = O(n)

Fib mul add: $T(n) = O(\log n)$

BFS_CutNode: find node v between s and t which will destroy all s-t path if v is deleted. ->

Graph_isOdd: find if a directed graph G has an odd-length cycle. -> $O(V^2)$

WaterPouringBFS: two bottles with capacity X and Y with initial water x and y. Find possible or not that A liters water should in any bottle. -> $O(n^2)$

Path Num: Find the number of path of two nodes in a graph; use topo order() find topology order of the node, then use two for loops to sum each topo order elements' neighbor to output the path number. -> T(n) = O(V+E)

Upper: Big $0 \le$, **Lower**: Big $\Omega \ge$, **Tight**: Big $\theta =$, little o <, little w > $\log n < n < n \log n < n^2 < 2^n < 3^n < n^n$

Simple path for distinct nodes; Simple cycle for distinct paths; Strongly Connect

Components(SCC) for bidirectional node.

Recursive Fibonacci: $T(n) = O(1) + T(n-1) + T(n-2) = \Omega(2^n/2)$

Non-recursive Fib: T(n) = O(n)

Fib mul add: $T(n) = O(\log n)$

BFS_CutNode: find node v between s and t which will destroy all s-t path if v is deleted. ->

Graph_isOdd: find if a directed graph G has an odd-length cycle. -> $O(V^2)$

WaterPouringBFS: two bottles with capacity X and Y with initial water x and y. Find possible or not that A liters water should in any bottle. -> $O(n^2)$

Path Num: Find the number of path of two nodes in a graph: use topo order ∩ find topology order of the node, then use two for loops to sum each topo order elements' neighbor to output the path number. \rightarrow T(n) = O(V+E)

Upper: Big $0 \le$, **Lower**: Big $\Omega \ge$, **Tight**: Big $\theta =$, little o <, little w > $\log n < n \log \overline{n} < n^2 < 2^n < 3^n < n^n$

Simple path for distinct nodes; Simple cycle for distinct paths; Strongly Connect **Components(SCC)** for bidirectional node.

Recursive Fibonacci: $T(n) = O(1) + T(n-1) + T(n-2) = \Omega(2^{n}/2)$

Non-recursive Fib: T(n) = O(n)

Fib mul add: $T(n) = O(\log n)$

BFS_CutNode: find node v between s and t which will destroy all s-t path if v is deleted. ->

Graph_isOdd: find if a directed graph G has an odd-length cycle. -> $O(V^2)$

WaterPouringBFS: two bottles with capacity X and Y with initial water x and y. Find possible or not that A liters water should in any bottle. -> $O(n^2)$

Path_Num: Find the number of path of two nodes in a graph: use topo_order() find topology order of the node, then use two for loops to sum each topo order elements' neighbor to output the path number. \rightarrow T(n) = O(V+E)

Upper: Big $0 \le$, **Lower**: Big $\Omega \ge$, **Tight**: Big $\theta =$, little o <, little w > $\log n < n < n \log \overline{n} < n^2 < 2^n < 3^n < n^n$

Simple path for distinct nodes; Simple cycle for distinct paths; Strongly Connect

Components(SCC) for bidirectional node.

Recursive Fibonacci: $T(n) = O(1) + T(n-1) + T(n-2) = \Omega(2^{n}/2)$

Non-recursive Fib: T(n) = O(n)**Fib mul add**: $T(n) = O(\log n)$

BFS_CutNode: find node v between s and t which will destroy all s-t path if v is deleted. -> O(n+E)

Graph_isOdd: find if a directed graph G has an odd-length cycle. -> $O(V^2)$

WaterPouringBFS: two bottles with capacity X and Y with initial water x and y. Find possible or not that A liters water should in any bottle. -> $O(n^2)$

Path_Num: Find the number of path of two nodes in a graph: use topo_order() find topology order of the node, then use two for loops to sum each topo order elements' neighbor to output the path number. \rightarrow T(n) = O(V+E)