Dalitz plot analysis of $B \to DDK$ decays

MILIND V. PUROHIT¹

Department of Physics and Astronomy University of South Carolina, Columbia, SC 29201, USA

We present Dalitz plot analyses for the decays of B mesons to $D^-D^0K^+$ and $\overline{D}{}^0D^0K^+$. [Charge conjugate reactions are implicitly assumed throughout.] We report the observation of the $D_{s1}^*(2700)^+$ resonance in these two channels and obtain measurements of the mass $M(D_{s1}^*(2700)^+) = 2699^{+14}_{-7}$ MeV/ c^2 and of the width $\Gamma(D_{s1}^*(2700)^+) = 127^{+24}_{-19}$ MeV, including statistical and systematic uncertainties. In addition, we observe an enhancement in the D^0K^+ invariant mass around 2350–2500 MeV/ c^2 in both decays $B^0 \to D^-D^0K^+$ and $B^+ \to \overline{D}{}^0D^0K^+$, which we are not able to interpret. The results are based on 429 fb^{-1} of data containing 471 × 10⁶ $B\overline{B}$ pairs collected at the $\Upsilon(4S)$ resonance with the BABAR detector at the SLAC National Accelerator Laboratory.

PRESENTED AT

The 7th International Workshop on Charm Physics (CHARM 2015)
Detroit, MI, 18-22 May, 2015

¹Work supported by the U.S. Department of Energy.

1 Introduction

We analyze B decays to DDK final states via Dalitz plots in order to measure the mass and width of the $D_{sJ}^*(2700)^+$. This is the first time that Dalitz plot analyses have been performed for $B \to DDK$ decays.

The data analyzed here were recorded by the BABAR detector at the PEP-II asymmetric-energy e^+e^- storage ring operating at the SLAC National Accelerator Laboratory. This analysis uses the complete BABAR data sample collected at the $\Upsilon(4S)$ resonance corresponding to an integrated luminosity of 429 fb⁻¹ [1]. The BABAR detector is described in detail elsewhere [2]. Our Monte Carlo simulation uses EVTGEN [3] to model the kinematics of B mesons and JETSET [4] to model continuum processes, $e^+e^- \to q\bar{q}$ (q=u,d,s,c). The BABAR detector and its response to particle interactions are modeled using the GEANT4 [5] simulation package.

2 Data set and selection

The selection and reconstruction of $B^0 \to D^- D^0 K^+$ and $B^+ \to \overline{D}^0 D^0 K^+$, along with 20 other $B \to \overline{D}^{(*)} D^{(*)} K$ modes, is described in Ref. [6]. We reconstruct D mesons in the modes $D^0 \to K^- \pi^+$, $K^- \pi^+ \pi^0$, $K^- \pi^+ \pi^- \pi^+$, and $D^+ \to K^- \pi^+ \pi^+$. For the mode $B^+ \to \overline{D}^0 D^0 K^+$, at least one of the D^0 mesons is required to decay to $K^- \pi^+$. We use the beam-energy-substituted mass (m_{ES}) and ΔE , the difference between the reconstructed energy of the B candidate and the beam energy in the e^+e^- center-of-mass frame to assist in identifying signal and in case of multiple candidates per event we use the latter to make a selection. Finally, we keep only events with $|\Delta E| < 10-14$ MeV depending on the D final state [6].

We fit the $m_{\rm ES}$ distributions, as described in detail in Ref. [6] to obtain signal yields; however, since there are $22~B \to \overline{D}^{(*)}D^{(*)}K$ modes that can cross-feed each other an iterative procedure is employed to obtain 635 ± 47 and 901 ± 54 signal events for $B^0 \to D^-D^0K^+$ and $B^+ \to \overline{D}^0D^0K^+$, respectively [6]. For the Dalitz analyses we use the $5.275 < m_{\rm ES} < 5.284~{\rm GeV}/c^2$ region to obtain a total of 1470 events with a signal purity of $(38.6 \pm 2.8 \pm 2.1)\%$ for $B^0 \to D^-D^0K^+$ and 1894 events with a signal purity of $(41.6 \pm 2.5 \pm 3.1)\%$ for $B^+ \to \overline{D}^0D^0K^+$, where the first uncertainties are statistical and the second systematic.

3 Dalitz plot analyses

We use an isobar model formalism to perform the Dalitz plot analysis [7]. The formalism is well-known and we merely note here that the dynamical amplitude, a Breit-Wigner form, contains a multiplicative factor F_r which is the Blatt-Weisskopf damping factor for the resonance. [8]

Figure 1: Fits of the $m_{\rm ES}$ data distributions [6] for the modes $B^0 \to D^- D^0 K^+$ (left) and $B^+ \to \overline{D}^0 D^0 K^+$ (right).

Figure 2: Dalitz plots for the modes $B^0 \to D^-D^0K^+(\text{left})$ and $B^+ \to \overline{D}^0D^0K^+(\text{right})$.

We extract the complex amplitudes present in the data (from their moduli ρ_i and phases ϕ_i), and the mass and width of the $D_{s1}^*(2700)^+$ resonance using an unbinned maximum likelihood fit where the minimized negative twice-log-likelihood is called \mathcal{F} and the $D_{s1}^*(2700)^+$ resonance is the reference amplitude. We compare fits using $\Delta \mathcal{F} \equiv \mathcal{F} - \mathcal{F}_{\text{nominal}}$.

The initial values of the parameters are randomized and we perform 250 such fits to ensure stable convergence to a global minimum. Both the efficiency and the background are parameterized by binned values and we perform a 2-dimensional interpolation to obtain values at desired locations on the plot.

The Dalitz plots for $B^0 \to D^- D^0 K^+$ and $B^+ \to \overline{D}^0 D^0 K^+$ are shown in Fig. 2. The known amplitudes that could give a contribution in the Dalitz plot for both modes are nonresonant events, the $D_{s1}^*(2700)^+$ meson, and the $D_{s2}^*(2573)^+$ meson, which can decay to $D^0 K^+$, but has not been observed in $B \to \overline{D}^{(*)}DK$ decays. The $D_{sJ}^*(2860)^+$ state is not included in the nominal fit. For the mode $B^+ \to \overline{D}^0 D^0 K^+$, the additional

contributions from charmonium states included in the fit are the $\psi(3770)$ meson, and the $\psi(4160)$ meson.

In the following fits, the masses and widths of these resonances are fixed to their world averages [9], except for the $D_{s1}^*(2700)^+$ where the parameters are free to vary. The spin of this resonance is assumed to be 1.

Preliminary fits with the components mentioned above fail to give satisfactory $\chi^2/n_{\rm dof}$. Also, the low mass region between 2350 and 2500 MeV/ c^2 is not well described, especially for $B^+ \to \overline{D}^0 D^0 K^+$.

Figure 3: Projections of the Dalitz plot on the D^0K^+ axis for the data (dots) and for the result of the preliminary fit (total histogram) for the modes $B^0 \to D^-D^0K^+$ (left) and $B^+ \to \overline{D}^0D^0K^+$ (right).

After verifying that this enhancement is due to signal and not background or a cross-feed reflection, using two methods to subtract background, we proceed to fit it using an ad-hoc function that exponentially falls with $m^2(D^0K^+)$. We call these our nominal fits. Since this region does not overlap significantly with the $D_{s1}^*(2700)^+$ region of interest, we are content to ascribe a systematic error to this effect. [We tried a low mass resonance but it only marginally improves the nominal fit.] The nominal fit for $B^0 \to D^-D^0K^+$ returns $\chi^2/n_{\rm dof} = 56/45$ and the nominal fit for $B^+ \to \overline{D}^0D^0K^+$ gives $\chi^2/n_{\rm dof} = 86/48$. These fits are presented in Figures 4, 5, and 6. The high value of the $\chi^2/n_{\rm dof}$ can be partly explained by differences in the data and fit densities in the $\psi(3770)$ region.

We consider several sources of systematic uncertainties in the fit parameters such as the moduli, the phases, the fit fractions, and the mass and width of the $D_{s1}^*(2700)^+$; the combined result of this investigation is reported as the second error below.

4 Results

The results for the Dalitz plot analysis of the modes $B^0 \to D^- D^0 K^+$ and $B^+ \to \overline{D}^0 D^0 K^+$ are presented in Tables 1 and 2. This is the first time the $D_{s1}^*(2700)^+$ is

Figure 4: Projections of the Dalitz plot on $M(D\overline{D})$ axis for the data (dots) and for the result of the nominal fit (total histogram) for the modes $B^0 \to D^- D^0 K^+$ (left) and $B^+ \to \overline{D}^0 D^0 K^+$ (right).

Figure 5: Projections of the Dalitz plot on $M(\overline{D}K)$ axis for the data (dots) and for the result of the nominal fit (total histogram) for the modes $B^0 \to D^-D^0K^+(\text{left})$ and $B^+ \to \overline{D}^0D^0K^+(\text{right})$.

observed in the decay $B^0 \to D^- D^0 K^+$. An excess at low $D^0 K^+$ invariant mass is evident but we have been unable to determine its origin.

Using the Dalitz fit fractions and the total branching fractions measured in a previous publication [6] with the exact same data sample we obtain the results presented in Table 3.

We list results for the mass and width of the $D_{s1}^*(2700)^+$ meson in Table 4. Combining modes we obtain

$$M(D_{s1}^*(2700)^+) = 2699_{-7}^{+14} \text{ MeV}/c^2,$$
 (1)
 $\Gamma(D_{s1}^*(2700)^+) = 127_{-19}^{+24} MeV,$

compatible with the world averages. Repeating our fits with the J=0 and J=2 hypotheses (see results in Table 5) we conclude that J=1 is strongly favored; further

Figure 6: Projections of the Dalitz plot on M(DK) axis for the data (dots) and for the result of the nominal fit (total histogram) for the modes $B^0 \to D^- D^0 K^+$ (left) and $B^+ \to \overline{D}^0 D^0 K^+$ (right).

Table 1: Results from the Dalitz plot fit (moduli, phases, and fractions) for $B^0 \to D^-D^0K^+$. The different contributions are listed: the $D_{s1}^*(2700)^+$ and $D_{s2}^*(2573)^+$ resonances, the nonresonant amplitude and the low-mass excess described by an exponential. The first uncertainties are statistical and the second systematic.

Contribution	Modulus	Phase (°)	Fraction (%)
$D_{s1}^*(2700)^+$	1.00	0	$66.7 \pm 7.8^{+3.5}_{-3.8}$
$D_{s2}^*(2573)^+$	$0.031 \pm 0.008 \pm 0.002$	$277 \pm 17^{+6}_{-9}$	$3.2 \pm 1.6^{+0.3}_{-0.4}$
Nonresonant	$1.33 \pm 0.63^{+0.46}_{-0.35}$	$287 \pm 21^{+10}_{-15}$	$10.9 \pm 6.6^{+7.0}_{-4.3}$
Exponential	$6.94 \pm 1.83^{+0.82}_{-0.43}$	$269 \pm 33^{+17}_{-15}$	$9.9 \pm 2.9^{+3.0}_{-3.3}$
Sum			$90.6 \pm 10.7^{+8.4}_{-6.7}$

assuming parity conservation in the resonant decays we deduce that the $D_{s1}^*(2700)^+$ has $J^P = 1^-$.

Finally, our fits do not favor inclusion of the $D_{sJ}^*(2860)^+$ and $D_{sJ}^*(3040)^+$ resonances in the final states $B^0 \to D^- D^0 K^+$ and $B^+ \to \overline{D}^0 D^0 K^+$.

ACKNOWLEDGEMENTS

We would like to acknowledge the efforts of the BABAR collaboration.

Table 2: Results from the Dalitz plot fit (moduli, phases, and fractions) for $B^+ \to \overline{D}^0 D^0 K^+$. The different contributions are listed: the $D_{s1}^*(2700)^+$, $D_{s2}^*(2573)^+$, $\psi(3770)$, and $\psi(4160)$ resonances, and the low-mass excess described by an exponential. The first uncertainties are statistical and the second systematic.

Contribution	Modulus	Phase (°)	Fraction (%)
$D_{s1}^*(2700)^+$	1.00	0	$38.3 \pm 5.0^{+0.8}_{-6.2}$
$D_{s2}^*(2573)^+$	$0.021 \pm 0.010^{+0.009}_{-0.003}$	$267 \pm 30^{+17}_{-13}$	$0.6 \pm 1.1^{+0.4}_{-0.2}$
$\psi(3770)$	$1.40 \pm 0.21^{+0.20}_{-0.24}$	$284 \pm 22^{+26}_{-30}$	$9.0 \pm 3.1^{+0.4}_{-0.8}$
$\psi(4160)$	$0.78 \pm 0.20^{+0.18}_{-0.14}$	$188 \pm 13^{+14}_{-17}$	$6.4 \pm 3.1^{+1.9}_{-2.4}$
Exponential	$16.15 \pm 2.26^{+1.09}_{-1.74}$	$308 \pm 8^{+6}_{-5}$	$44.5 \pm 6.2^{+1.3}_{-2.1}$
Sum			$98.9 \pm 9.2^{+2.5}_{-7.0}$

References

- [1] J.P. Lees *et al.* (*BABAR* collaboration), Nucl. Instrum. Methods Phys. Res., Sec A**726**, 203 (2013).
- [2] B. Aubert *et al.* (*BABAR* collaboration), Nucl. Instrum. Methods Phys. Res., Sec A479, 1 (2002); B. Aubert *et al.* (*BABAR* collaboration), Nucl. Instrum. Methods Phys. Res., Sec A729, 615 (2013).
- [3] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A462, 152 (2001).
- [4] T. Sjostrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05, 026 (2006).
- [5] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A506, 250 (2003).
- [6] P. del Amo Sanchez et al. (BABAR collaboration), Phys. Rev. D 83, 032004 (2011).
- [7] S. Kopp et al. (CLEO collaboration), Phys. Rev. D 63, 092001 (2001).
- [8] J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics, John Wiley & Sons, New York, 1952.
- [9] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).

Table 3: Summary of partial branching fractions. The first uncertainties are statistical and the second systematic. The notation $B^0 \to D^- D_{s1}^*(2700)^+$ [$D^0 K^+$] refers to $B^0 \to D^- D_{s1}^*(2700)^+$ followed by $D_{s1}^*(2700)^+ \to D^0 K^+$.

Mode	B (10^{-4})
$B^0 \to D^- D_{s1}^* (2700)^+ [D^0 K^+]$	$7.14 \pm 0.96 \pm 0.69$
$B^+ \to \overline{D}{}^0 D_{s1}^* (2700)^+ [D^0 K^+]$	$5.02 \pm 0.71 \pm 0.93$
$B^0 \to D^- D_{s2}^* (2573)^+ [D^0 K^+]$	$0.34 \pm 0.17 \pm 0.05$
$B^+ \to \overline{D}{}^0 D_{s2}^* (2573)^+ [D^0 K^+]$	$0.08 \pm 0.14 \pm 0.05$
$B^+ \to \psi(3770) K^+ \; [\overline{D}{}^0 D^0]$	$1.18 \pm 0.41 \pm 0.15$
$B^+ \to \psi(4160)K^+ [\overline{D}{}^0D^0]$	$0.84 \pm 0.41 \pm 0.33$

Table 4: Mass and width of the $D_{s1}^*(2700)^+$ meson obtained from the Dalitz plot analyses of the modes $B^0 \to D^- D^0 K^+$ and $B^+ \to \overline{D}^0 D^0 K^+$. The first uncertainties are statistical and the second systematic.

Mode	Mass (MeV/c^2)	Width (MeV)
$B^0 \to D^- D^0 K^+$	$2694 \pm 8^{+13}_{-3}$	$145 \pm 24^{+22}_{-14}$
$B^+ o \overline{D}^0 D^0 K^+$	$2707 \pm 8 \pm 8$	$113 \pm 21^{+20}_{-16}$

Table 5: Value of $\Delta \mathcal{F}$ and $\chi^2/n_{\rm dof}$ for the hypotheses J=0,1,2 for the two modes. The nominal fit is presented in bold characters.

Mode	J=0		J=1	J=2	
	$\Delta \mathcal{F}$	$\chi^2/n_{ m dof}$	$\chi^2/n_{ m dof}$	$\Delta \mathcal{F}$	$\chi^2/n_{ m dof}$
$B^0 \to D^- D^0 K^+$	131	131/45	56/45	108	125/45
$B^+ o \overline{D}^0 D^0 K^+$	63	137/48	86/48	99	145/48