1. Metric spaces

1.1. Metrics

- Metric space: (X,d), X is set, $d: X \times X \to [0,\infty)$ is metric satisfying:
 - $d(x,y) = 0 \iff x = y$
 - Symmetry: d(x, y) = d(y, x)
 - Triangle inequality: $d(x,y) \le d(x,z) + d(z,y)$
- Examples of metrics:
 - *p*-adic metric:

$$d_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}$$

• Extension of the p-adic metric:

$$d_{\infty}(x,y) = \max\{|x_i - y_i| : i \in [n]\}$$

• Metric of C([a,b]):

$$d(f,g)=\sup\{|f(x)-g(x)|:x\in[a,b]\}$$

• Discrete metric:

$$d(x,y) = \begin{cases} 0 \text{ if } x = y\\ 1 \text{ if } x \neq y \end{cases}$$

• Open ball of radius r around x:

$$B(x;r) = \{ y \in X : d(x,y) < r \}$$

• Closed ball of radius r around x:

$$D(x; r) = \{ y \in X : d(x, y) < r \}$$

1.2. Open and closed sets

• $U \subseteq X$ is open if

$$\forall x \in U, \exists \varepsilon > 0 : B(x; \varepsilon) \subset U$$

- $A \subseteq X$ is **closed** if X A is open.
- Sets can be neither closed nor open, or both.
- Any singleton $\{x\} \in \mathbb{R}$ is closed and not open.
- Let X be metric space, $x \in N \subseteq X$. N is **neighbourhood** of x if

$$\exists$$
 open $V \subseteq X : x \in V \subseteq N$

- Corollary: let $x \in X$, then $N \subseteq X$ neighbourhood of x iff $\exists \varepsilon > 0 : x \in B(x; \varepsilon) \subseteq N$.
- Proposition: open balls are open, closed balls are closed.
- Lemma: let (X, d) metric space.
 - X and \emptyset are both open and closed.
 - Arbitrary unions of open sets are open.
 - Finite intersections of open sets are open.

- Finite unions of closed sets are closed.
- Arbitrary intersections of closed sets are closed.

1.3. Continuity

- Sequence in $X: a: \mathbb{N} \to X$, written $(a_n)_{n \in \mathbb{N}}$.
- (a_n) converges to a if

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} : \forall n \geq n_0, d(a, a_n) < \varepsilon$$

- **Proposition**: let X, Y metric spaces, $a \in X$, $f: X \to Y$. The following are equivalent
 - $\bullet \quad \forall \varepsilon > 0, \exists \delta > 0: d_X(a,x) < \delta \Longrightarrow d_Y(f(a),f(x)) < \varepsilon.$
 - For every sequence (a_n) in X with $a_n \to a, f(a_n) \to f(a)$.
 - For every open $U \subseteq Y$ with $f(a) \in U$, $f^{-1}(U)$ is a neighbourhood of a.

If f satisfies these, it is **continuous** at a.

- f continuous if continuous at every $a \in X$.
- **Proposition**: $f: X \to Y$ continuous iff $f^{-1}(U)$ open for every open $U \subseteq Y$.

2. Topological spaces

2.1. Topologies

- Power set of $X: \mathcal{P}(X) := \{A : A \subseteq X\}.$
- Topology on set X is $\tau \subseteq \mathcal{P}(X)$ with:
 - $\emptyset \in \tau, X \in \tau$.
 - If $\forall i \in I, U_i \in \tau$, then

$$\bigcup_{i\in I}U_i\in\tau$$

- $\bullet \ \ U_1, U_2 \in \tau \Longrightarrow U_1 \cap U_2 \in \tau \ \text{(this is equivalent to} \ U_1, ..., U_n \in \tau \Longrightarrow \cap_{i \in [n]} U_i \in \tau).$
- (X, τ) is topological space. Elements of τ are open subsets of X.
- $A \subseteq X$ closed if X A is open.
- Let X be a set. Then $\tau = \mathcal{P}(X)$ is the **discrete topology** on X.
- $\tau = {\emptyset, X}$ is the **indiscrete topology** on X.
- Examples:
 - For metric space (M, d), find the open sets. Let $\tau_d \subseteq \mathcal{P}(M)$ exactly contain these open sets. Then (M, τ_d) is a topological space. The metric d induces the topology τ_d .
 - Let $X = \mathbb{N}_0$ and $\tau = \{\emptyset\} \cup \{U \subseteq X : X U \text{ is finite}\}.$
- **Proposition**: for topological space *X*:
 - X and \emptyset are closed
 - Arbitrary intersections of closed sets are closed
 - Finite unions of closed sets are closed
- Proposition: for topological space (X, τ) and $A \subseteq X$, the induced (subspace) topology on A

$$\tau_A = \{A \cap U : U \in \tau\}$$

is a topology on A.

- **Example**: let $X = \mathbb{R}$ with standard topology induced by metrix d(x, y) = |x y|. Let A = [1, 5]. Then $[1, 3) = A \cap (0, 3)$ and $[1, 5] = A \cap (0, 6)$ are open in A.
- **Example**: consider \mathbb{R} with standard topology τ . Then
 - $\tau_{\mathbb{Z}}$ is the discrete topology on \mathbb{Z} .
 - $\tau_{\mathbb{Q}}$ is not the discrete topology on \mathbb{Q} .
- **Proposition**: the metrics d_p for $p \in [1, \infty)$ and d_∞ all induce the same topology on \mathbb{R}^n .
- **Definition**: (X, τ) is **Hausdorff** if

$$\forall x \neq y \in X, \exists U, V \in \tau : U \cap V = \emptyset \land x \in U, y \in V$$

- **Lemma**: any metric space (M, d) is Hausdorff.
- **Example**: let $|X| \ge 2$ with the indiscrete topology. Then X is not Hausdorff, since $\tau = \{X, \emptyset\}$ and if $x \ne y \in X$, the only open set containing x is X (same for y). But $X \cap X = X \ne \emptyset$.
- Furstenberg's topology on \mathbb{Z} : define $U \subseteq \mathbb{Z}$ to be open if

$$\forall a \in U, \exists 0 \neq d \in \mathbb{Z} : a + d\mathbb{Z} =: \{a + dn : n \in \mathbb{Z}\} \subseteq U$$

• Furstenberg's topology is Hausdorff.

2.2. Continuity

- **Definition**: let X, Y topological spaces.
 - $f: X \to Y$ is **continuous** if

$$\forall V \text{ open in } Y, f^{-1}(V) \text{ open in } X$$

• f is continuous at $a \in X$ if

$$\forall V \text{ open in } Y, f(a) \in V, \exists U \text{ open in } X : a \in U \subseteq f^{-1}(V)$$

- Lemma: $f: X \to Y$ continuous iff f continuous at every $a \in X$. (Key idea for proof: $\bigcup_{a \in f^{-1}(V)} U_a \subseteq f^{-1}(V) = \bigcup_{a \in f^{-1}(V)} \{a\} \subseteq \bigcup_{a \in f^{-1}(V)} U_a$)
- Example: inclusion $i:(A,\tau_A)\to (X,\tau_X),\ A\subseteq X$, is always continuous.