Stack Overflow: Tag Prediction

Business Problem

Description

Description

Stack Overflow is the largest, most trusted online community for developers to learn, share their programming knowledge, and build their careers.

Stack Overflow is something which every programmer use one way or another. Each month, over 50 million developers come to Stack Overflow to learn, share their knowledge, and build their careers. It features questions and answers on a wide range of topics in computer programming. The website serves as a platform for users to ask and answer questions, and, through membership and active participation, to vote questions and answers up or down and edit questions and answers in a fashion similar to a wiki or Digg. As of April 2014 Stack Overflow has over 4,000,000 registered users, and it exceeded 10,000,000 questions in late August 2015. Based on the type of tags assigned to questions, the top eight most discussed topics on the site are: Java, JavaScript, C#, PHP, Android, jQuery, Python and HTML.

Problem Statemtent

Suggest the tags based on the content that was there in the question posted on Stackoverflow.

Source: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/

Source / useful links

Data Source: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/data

Youtube: https://youtu.be/nNDqbUhtIRg

Research paper: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tagging-1.pdf

Research paper: https://dl.acm.org/citation.cfm?id=2660970&dl=ACM&coll=DL

Real World / Business Objectives and Constraints

- 1. Predict as many tags as possible with high precision and recall.
- 2. Incorrect tags could impact customer experience on StackOverflow.
- 3. No strict latency constraints.

Data

Overview

Refer: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/data

All of the data is in 2 files: Train and Test.

```
Train.csv contains 4 columns: Id, Title, Body, Tags.
```

Test.csv contains the same columns but without the Tags, which you are to predict.

Size of Train.csv - 6.75GB

Size of Test.csv - 2GB

The questions are randomized and contains a mix of verbose text sites as well as sites related to math and programming. The number of questions from each site may vary, and no filtering has been performed on the questions (such as closed questions).

Data Field Explaination

Dataset contains 6,034,195 rows. The columns in the table are:

```
Id - Unique identifier for each question
Title - The question's title
Body - The body of the question
Tags - The tags associated with the question in a space-seperated format (all lowercase, sh
ould not contain tabs '\t' or ampersands '&')
```

Example Data point

{\n

```
Title: Implementing Boundary Value Analysis of Software Testing in a C++ program?
Body :
```

```
#include<
iostream>\n
#include<
stdlib.h>\n\n
using namespace std; \n\n
int main()\n
         int n,a[n],x,c,u[n],m[n],e[n][4];\n
         cout<<"Enter the number of variables";\n</pre>
                                                            cin>>n;\n\n
         cout<<"Enter the Lower, and Upper Limits of the variables";\n</pre>
         for (int y=1; y< n+1; y++) \n
         {\n
            cin>>m[y];\n
            cin>>u[y];\n
         } \ n
         for (x=1; x< n+1; x++) n
            a[x] = (m[x] + u[x])/2; \n
         } \n
         c = (n*4) - 4; \n
         for (int a1=1; a1<n+1; a1++) \n
             e[a1][0] = m[a1]; \n
             e[a1][1] = m[a1]+1; \n
            e[a1][2] = u[a1]-1; \n
             e[a1][3] = u[a1]; \n
         } \n
         for (int i=1; i< n+1; i++) \n
             for(int l=1; l<=i; l++)n
             {\n
                 if(1!=1) n
                 {\n
                     cout<<a[l]<<"\\t";\n
```

```
} \n
                        } \n
                        for (int j=0; j<4; j++) \n
                            cout<<e[i][j];\n
                            for (int k=0; k< n-(i+1); k++) \n
                                cout<<a[k]<<"\\t";\n
                            } \ n
                            cout<<"\\n";\n
                        } \n
                     }
                          \n\n
                     system("PAUSE");\n
                     return 0;
                                 \n
           } \ n
\n\n
The answer should come in the form of a table like
\n\n
                                          50\n
           1
                         50
           2
                         50
                                          50\n
                         50
                                          50\n
           100
                                          50\n
                         50
           50
                                          50\n
                         1
           50
                         2
                                          50\n
           50
                         99
                                          50\n
           50
                         100
                                          50\n
           50
                         50
                                          1\n
           50
                         50
                                          2\n
           50
                         50
                                          99\n
           50
                         50
                                          100\n
\n\n
if the no of inputs is 3 and their ranges are \n
        1,100\n
        1,100\n
        1,100\n
        (could be varied too)
\n\n
The output is not coming, can anyone correct the code or tell me what\'s wrong?
Tags : 'c++ c'
```

Mapping the real-world problem to a Machine Learning Problem

Type of Machine Learning Problem

It is a multi-label classification problem

Multi-label Classification: Multilabel classification assigns to each sample a set of target labels. This can be thought as predicting properties of a data-point that are not mutually exclusive, such as topics that are relevant for a document. A question on Stackoverflow might be about any of C, Pointers, FileIO and/or memory-management at the same time or none of these.

__Credit__ : http://scikit-learn.org/stable/modules/multiclass.html

Performance metric

Micro-Averaged F1-Score (Mean F Score): The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:

```
F1 = 2 * (precision * recall) / (precision + recall)
```

In the multi-class and multi-label case, this is the weighted average of the F1 score of each class.

'Micro f1 score':

Calculate metrics globally by counting the total true positives, false negatives and false positives. This is a better metric when we have class imbalance.

'Macro f1 score':

Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

https://www.kaggle.com/wiki/MeanFScore

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

Hamming loss: The Hamming loss is the fraction of labels that are incorrectly predicted.

https://www.kaggle.com/wiki/HammingLoss

Required Libraries

```
In [1]:
```

```
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import sqlite3
import csv
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from wordcloud import WordCloud
import re
import os
from sqlalchemy import create engine # database connection
import datetime as dt
from nltk.corpus import stopwords
from nltk.tokenize import word tokenize
from nltk.stem.snowball import SnowballStemmer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.multiclass import OneVsRestClassifier
from sklearn.linear model import SGDClassifier
from sklearn import metrics
from sklearn.metrics import f1 score, precision score, recall score
from sklearn import svm
from sklearn.linear_model import LogisticRegression
from skmultilearn.adapt import mlknn #installing- https://pypi.org/project/scikit-multilearn/
#!pip install scikit-multilearn
from skmultilearn.problem transform import ClassifierChain
from skmultilearn.problem_transform import BinaryRelevance
from skmultilearn.problem_transform import LabelPowerset
from sklearn.naive bayes import GaussianNB
from datetime import datetime
import joblib
```

Data Reading and Exploration

using SQLite database

```
In [2]:
```

```
os.chdir("D:\\Projects\\Machine-Learning\\TagPredictor\\Train")
```

```
In [4]:
```

```
#Creating db file from csv
#Learn SQL: https://www.w3schools.com/sql/default.asp
if not os.path.isfile('D:\\Projects\\Machine-Learning\\TagPredictor\\Train\\train.db'): #checking
if the path contains the datafile or not
   start = datetime.now() #using datatime function to calculate the time at which this code
starts
   disk engine = create engine('sqlite:///train.db') #creating database engine to create database
   start = dt.datetime.now()
   chunksize = 180000
    j = 0
   index start = 1
   for df in pd.read csv('Train.csv', names=['Id', 'Title', 'Body', 'Tags'], chunksize=chunksize,
iterator=True, encoding='utf-8', ):
       df.index += index_start
       print('{} rows'.format(j*chunksize))
       df.to_sql('data', disk_engine, if_exists='append') #appending file to a database
       index start = df.index[-1] + 1
    print("Time taken to run this cell:", datetime.now() - start) #printing the time elapsed
```

Counting no of rows

```
In [5]:
```

```
conn = sqlite3.connect("train.db") #connecting to the database
#counting the no of rows
rows = pd.read_sql_query("SELECT count(*) FROM data",conn)
print(f"No of rows in the database is:\n {rows['count(*)'].values[0]}") #returns a dataframe with
coloumn name as "count(*)"
conn.close()
```

No of rows in the database is: 6034196

Checking for duplicates

```
In [6]:
```

```
#creating a connection
conn = sqlite3.connect("train.db")
df_no_dup = pd.read_sql_query('SELECT Title, Body, Tags, COUNT(*) as cnt_dup FROM data GROUP BY Ti
tle, Body, Tags', conn)
#in the above query we are selecting the features title,body etc counting each row and then creati
ng another column as cnt_dup which signifies the repeated/duplicate rows
conn.close()
```

In [7]:

```
df_no_dup.head()
```

Out[7]:

	Title	Body	Tags	cnt_dup
0	Implementing Boundary Value Analysis of S	<pre><code>#include<iostream>\n#include&</code></pre>	C++ C	1
1	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data-binding	1
2	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data-binding columns	1
3	java.lang.NoClassDefFoundError: javax/serv	I followed the guide in		

In [8]:

```
df_no_dup.shape
```

```
Out[8]:
(4206315, 4)
In [9]:
print("number of duplicate questions :", rows['count(*)'].values[0]- df no dup.shape[0], "(",(1-((d
f_no_dup.shape[0])/(rows['count(*)'].values[0])))*100,"%)")
number of duplicate questions : 1827881 ( 30.292038906260256 % )
In [10]:
# number of times each question appeared in our database
df_no_dup.cnt_dup.value_counts()
Out[10]:
    2656284
1
    1272336
3
     277575
4
          90
5
          25
           5
Name: cnt_dup, dtype: int64
In [11]:
sns.countplot(x="cnt_dup", data=df_no_dup)
Out[11]:
<matplotlib.axes. subplots.AxesSubplot at 0x14491dd3ac8>
  2500000
  2000000
 별 1500000
  1000000
   500000
                           cnt dup
```

We can see that there are some questions that are repeated 4/5 and even 6times

In [12]:

```
print(f"Out of {rows['count(*)'].values[0]} rows:\n
{(df_no_dup.cnt_dup.value_counts().values[1]/rows['count(*)'].values[0])*100}% are repeated twice)
")
```

Out of 6034196 rows: 21.085427122353998% are repeated twice)

In [13]:

```
print(f"Out of {rows['count(*)'].values[0]} rows:\n
{(df_no_dup.cnt_dup.value_counts().values[0]/rows['count(*)'].values[0])*100}% are present only on
ce)")
```

```
Out of 6034196 rows: 44.02051242617907% are present only once)
```

Checking for the tags

```
In [14]:
```

```
df_no_dup.head()
```

Out[14]:

	Title	Body	Tags	cnt_dup
0	Implementing Boundary Value Analysis of S	<pre><code>#include<iostream>\n#include&</code></pre>	C++ C	1
1	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data-binding	1
2	Dynamic Datagrid Binding in Silverlight?	< should do binding for datagrid dynamicall	c# silverlight data-binding columns	1
3	java.lang. No Class Def Found Error: javax/serv	I followed the guide in		

Checking for none values

How to check for null values in a dataframe: https://www.geeksforgeeks.org/working-with-missing-data-in-pandas/

In [15]:

```
bool series = pd.isnull(df no dup["Tags"])
print(df_no_dup["Tags"][bool_series])
777547
          None
962680
1126558
          None
1256102
         None
2430668
        None
3329908
         None
3551595
          None
Name: Tags, dtype: object
```

In [16]:

```
df_no_dup["Tags"].fillna("None",inplace = True)
bool_series = pd.isnull(df_no_dup["Tags"])
print(df_no_dup["Tags"][bool_series])
```

Series([], Name: Tags, dtype: object)

In [17]:

```
start = datetime.now()
df_no_dup["tag_count"] = df_no_dup["Tags"].apply(lambda text: len(text.split(" ")))
# adding a new feature number of tags per question
print("Time taken to run this cell :", datetime.now() - start)
df_no_dup.head()
```

Time taken to run this cell : 0:00:11.140462

Out[17]:

	Title	Body	Tags	cnt_dup	tag_count
0	Implementing Boundary Value Analysis of S	<pre><code>#include<iostream>\n#include&</code></pre>	c++ c	1	2
1	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data-binding	1	3

2	Dynamic Datagrid Binding in Silverligible	l should do binding for datagrid dynamical	c# silverlight data-binding columns	cnt_dup	tag_count
3	java.lang.NoClassDefFoundError: javax/serv	I followed the guide in			

In [18]:

```
sns.countplot(x="tag_count", data=df_no_dup)
```

Out[18]:

<matplotlib.axes._subplots.AxesSubplot at 0x14491ea6308>

In [19]:

```
df_no_dup["tag_count"].describe()
```

Out[19]:

```
count 4.206315e+06
mean 2.899439e+00
std 1.211917e+00
min 1.000000e+00
25% 2.000000e+00
50% 3.000000e+00
75% 4.000000e+00
max 5.000000e+00
```

Name: tag count, dtype: float64

In [20]:

```
# distribution of number of tags per question
df_no_dup.tag_count.value_counts()
```

Out[20]:

```
3 1206157
2 1111706
4 814996
1 568298
5 505158
Name: tag_count, dtype: int64
```

Most of the questions have 2tags or 3 tags

In [21]:

```
#Creating a new database with no duplicates
if not os.path.isfile('D:\\Projects\\Machine-Learning\\TagPredictor\\Train\\train_no_dup.db'):
    disk_dup = create_engine("sqlite:///train_no_dup.db")
    no_dup = pd.DataFrame(df_no_dup, columns=['Title', 'Body', 'Tags'])
    no_dup.to_sql('no_dup_train',disk_dup)
```

```
In [22]:
```

```
#creating the connection with database file.
if os.path.isfile('D:\\Projects\\Machine-Learning\\TagPredictor\\Train\\train_no_dup.db'):
    start = datetime.now()
    con = sqlite3.connect('train_no_dup.db')
    tag_data = pd.read_sql_query("""SELECT Tags FROM no_dup_train""", con)
    #Always remember to close the database
    con.close()

# Let's now drop unwanted column.
    tag_data.drop(tag_data.index[0], inplace=True)
    #Printing first 5 columns from our data frame
    tag_data.head()
    print("Time taken to run this cell :", datetime.now() - start)
else:
    print("Please download the train.db file from drive or run the above cells to genarate train.d
b file")
```

Time taken to run this cell: 0:01:45.457361

Analysis of Tags

Total number of unique tags

```
In [23]:
```

```
tag_data.head()
```

Out[23]:

	Tags
1	c# silverlight data-binding
2	c# silverlight data-binding columns
3	jsp jstl
4	java jdbc
5	facebook api facebook-php-sdk

In [24]:

```
#by default 'split()' will tokenize each tag using space.
#we are first splitting each tag using space and then tokenizing each tag

#intializating our count vectorizer
vectorizer = CountVectorizer(tokenizer = lambda x: x.split())

#fit_transform is the training on the tags data
tag_dtm = vectorizer.fit_transform(tag_data['Tags'])
```

In [25]:

```
print(f"No of datapoints: {tag_dtm.shape[0]}\nNo of unique datapoints: {tag_dtm.shape[1]}")
No of datapoints: 4206314
No of unique datapoints: 42049
```

In [26]:

```
#'get_feature_name()' gives us the vocabulary.
tags = vectorizer.get_feature_names()
#Lets look at the tags we have.
```

```
print("Some of the tags we have :", tags[:10])
Some of the tags we have : ['.a', '.app', '.asp.net-mvc', '.aspxauth', '.bash-profile', '.class-fi
le', '.cs-file', '.doc', '.drv', '.ds-store']
Number of times a tag appeared
In [27]:
{\tt\#\ https://stackoverflow.com/questions/15115765/how-to-access-sparse-matrix-elements}
#Lets now store the document term matrix in a dictionary.
freqs = tag_dtm.sum(axis=0).A1 #axis=0 means column wise sum
result = dict(zip(tags, freqs))
In [28]:
#type(freqs)
freqs[0:10] #printing sample of frequencies
Out[28]:
array([ 18, 37, 1, 21, 138, 53, 14, 47, 1, 8], dtype=int64)
In [29]:
tags[0:10] #some of the tags
Out[29]:
['.a',
 '.app',
 '.asp.net-mvc',
 '.aspxauth',
 '.bash-profile',
 '.class-file',
 '.cs-file',
 '.doc',
 '.drv',
 '.ds-store']
In [30]:
#result is a dictionary which contains tags as the key and its frequency as a value
In [31]:
#Saving this dictionary to csv files.
if not os.path.isfile('D:\\Projects\\Machine-
Learning\\TagPredictor\\Train\\tag counts dict dtm.csv'):
    with open ('tag counts dict dtm.csv', 'w') as csv file:
        writer = csv.writer(csv file)
        for key, value in result.items():
            writer.writerow([key, value])
tag_df = pd.read_csv("tag_counts_dict_dtm.csv", names=['Tags', 'Counts'])
tag_df.head()
Out[31]:
        Tags Counts
0
                18
1
                37
        .app
2 .asp.net-mvc
```

21

138

3

.aspxauth 4 .bash-profile

In [32]:

```
tag_df_sorted = tag_df.sort_values(['Counts'], ascending=False)
print(tag_df_sorted.head())
tag_counts = tag_df_sorted['Counts'].values
```

```
Tags Counts
4337 c# 331505
18069 java 299414
27250 php 284103
18157 javascript 265423
1234 android 235436
```

In [33]:

```
plt.plot(tag_counts)
plt.title("Distribution of number of times tag appeared questions")
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
```


We cannot observe much from this graph except for the fact that after some tags the count is falling sharply so no lets take a closer look

In [34]:

```
plt.plot(tag_counts[0:10000]) #taking only the first 10K tags and plotting
plt.title('first 10k tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
print(len(tag_counts[0:10000:25]), tag_counts[0:10000:25])
```

first 10k tags: Distribution of number of times tag appeared questions


```
400 \quad [331505 \quad 44829 \quad 22429 \quad 17728 \quad 13364 \quad 11162 \quad 10029 \quad 9148 \quad 8054 \quad 7151 \\ 6466 \quad 6066 \quad 6270 \quad 4002 \quad 4626 \quad 4201 \quad 4144 \quad 2020 \quad 2760 \quad 2602 \\ [30]
```

0400	3003	3370	4903	4326	4201	4144	3929	3/30	3393
3453	3299	3123	2986	2891	2738	2647	2527		
2259	2186	2097	2020	1959	1900	1828	1770	1723	1673
1631	1574	1532	1479		1406	1365	1328	1300	1266
1245	1222	1197	1181	1158	1139	1121	1101	1076	1056
1038	1023	1006	983	966	952	938	926	911	891
		856	841	830	816	804	789	779	770
752	743	733	725	712	702	688	678	671	658
650	643	634	627	616	607	598	589	583	577
568	559	552	545	540	533	526	518	512	506
500	495	490	485	480	477	469	465	457	450
447	442	437	432	426	422	418		408	403
398	393	388	385	381	378	374	370	367	365
361	357	354	350	347	344	342	339	336	332
330	326	323	319	315	312	309	307	304	301
299	296	293	291	289	286	284	281	278	276
275	272	270	268	265	262	260	258	256	254
252	250	249	247	245	243	241	239	238	
234	233	232	230	228	226	224	222	220	219
217	215	214	212	210	209	207	205	204	203
201	200	199	198	196	194	193	192	191	189
188	186	185	183	182	181	180	179	178	177
175	174	172	171	170	169	168		166	165
164	162	161	160	159	158	157	156	156	155
154	153	152	151	150	149	149	148	147	146
145	144	143	142	142	141	140	139	138	137
137	136	135	134	134	133	132	131	130	130
129	128		127		126			124	
123	122	122	121		120	119	118	118	117
117	116	116	115	115	114	113	113	112	111
111	110	109	109		108			106	106
105	105	104	104	103	103	102	102	101	101
100	100	99	99	98	98	97		96	96
95	95	94	94	93	93	93	92	92	91
91	90	90	89	89	88	88	87	87	86
86	86	85	85	84	84	83	83	83	82
82	82	81	81	80	80	80	79	79	78
78	78	78	77	77	76	76	76	75	75
75	74	74	74	73	73	73	73	72	72]

In [35]:

COOC

33/U

4∠0⊥

3/30

```
plt.plot(tag_counts[0:1000]) #taking only 1K tags
plt.title('first 1k tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
print(len(tag_counts[0:1000:5]), tag_counts[0:1000:5])
```

first 1k tags: Distribution of number of times tag appeared questions 300000 250000 150000 50000 0 200 400 600 800 1000 Tag number

```
200 [331505 221533 122769 95160 62023 44829 37170 31897 26925 24537
 22429 21820 20957 19758 18905 17728 15533 15097 14884 13703
               12407
 13364 13157
                      11658
                            11228
                                   11162
                                          10863 10600
                                                        10350
                                                               10224
  10029
         9884
                9719
                       9411
                              9252
                                     9148
                                            9040
                                                  8617
                                                          8361
                                                                8163
                       7564
                                            7052
         7867
                7702
                              7274
                                     7151
                                                          6656
  8054
                                                   6847
                                                                6553
                              5971
                                            5760
                                                  5577
   6466
         6291
                6183
                       6093
                                     5865
                                                          5490
                                                                5411
  5370
         5283
                5207
                       5107
                              5066
                                     4983
                                           4891
                                                   4785
                                                          4658
                                                                4549
   4526
         4487
                4429
                      4335
                              4310
                                     4281
                                           4239
                                                 4228
                                                          4195
                                                                4159
```

```
4088
             4050
                    4002
                           3957
                                  3929
                                                3849
4144
                                         3874
                                                       3818
                                                              3797
3750
       3703
             3685
                    3658
                           3615
                                  3593
                                         3564
                                                3521
                                                       3505
                                                              3483
3453
       3427
             3396
                    3363
                           3326
                                  3299
                                         3272
                                                3232
                                                       3196
                                                              3168
3123
             3073
                    3050
                           3012
                                  2986
                                                2953
                                                       2934
      3094
                                         2983
                                                              2903
                    2784
                           2754
                                 2738
                                               2708
2891
      2844
             2819
                                         2726
                                                       2681
                                                              2669
2647
      2621
             2604
                    2594
                           2556
                                 2527
                                         2510
                                               2482
                                                       2460
                                                              2444
2431
      2409
             2395
                    2380
                           2363
                                  2331
                                                2297
                                                       2290
                                         2312
                                                              2281
2259
       2246
             2222
                    2211
                           2198
                                  2186
                                                2142
                                                       2132
                                         2162
                                                              2107
2097
      2078
             2057
                    2045
                           2036
                                  2020
                                         2011
                                                1994
                                                       1971
                                                              1965
1959
      1952
             1940
                   1932
                          1912
                                  1900
                                         1879
                                               1865
                                                       1855
                                                              1841
1828
      1821
             1813
                   1801
                          1782
                                 1770
                                        1760 1747
                                                       1741
                                                              1734
                                                      1646
1723
      1707
             1697
                    1688
                          1683
                                 1673
                                         1665
                                               1656
                                                             16391
```

We can see that after around 200tags the count decreasing sharply

In [36]:

```
plt.plot(tag_counts[0:500])
plt.title('first 500 tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
print(len(tag_counts[0:500:5]), tag_counts[0:500:5])
```



```
100 [331505 221533 122769 95160 62023 44829 37170 31897 26925 24537
 22429 21820 20957 19758 18905 17728 15533 15097 14884 13703
  13364 13157
               12407
                      11658 11228
                                   11162
                                          10863 10600 10350
                                                               10224
  10029
         9884
                9719
                       9411
                              9252
                                     9148
                                            9040
                                                   8617
                                                          8361
                                                                 8163
         7867
                7702
                       7564
                              7274
                                     7151
                                            7052
  8054
                                                  6847
                                                          6656
                                                                 6553
                              5971
   6466
         6291
                6183
                       6093
                                     5865
                                           5760
                                                  5577
                                                          5490
                                                                 5411
   5370
         5283
                5207
                       5107
                              5066
                                    4983
                                           4891
                                                  4785
                                                          4658
                                                                 4549
         4487
                4429
                       4335
                              4310
                                     4281
                                            4239
                                                  4228
                                                          4195
                                                                 4159
   4526
         4088
                4050
                       4002
                              3957
                                     3929
                                            3874
                                                   3849
                                                          3818
   4144
                                                                 3797
   3750
         3703
                3685
                       3658
                              3615
                                    3593
                                            3564
                                                   3521
                                                          3505
                                                                 34831
```

In [37]:

```
plt.plot(tag_counts[0:100], c='b')
plt.scatter(x=list(range(0,100,5)), y=tag_counts[0:100:5], c='orange', label="quantiles with 0.05 i
ntervals")
# quantiles with 0.25 difference
plt.scatter(x=list(range(0,100,25)), y=tag_counts[0:100:25], c='m', label = "quantiles with 0.25 in
tervals")

for x,y in zip(list(range(0,100,25)), tag_counts[0:100:25]):
    plt.annotate(s="({} , {})".format(x,y), xy=(x,y), xytext=(x-0.05, y+500))

plt.title('first 100 tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.legend()
plt.show()
print(len(tag_counts[0:100:5]), tag_counts[0:100:5])
```



```
20 [331505 221533 122769 95160 62023 44829 37170 31897 26925 24537 22429 21820 20957 19758 18905 17728 15533 15097 14884 13703]
```

So on observing all the graph we can conclude that there are some tags that occur huge number of times whereas there also some tags which occur very small no. of times

In [38]:

```
# Store tags greater than 10K in one list
lst_tags_gt_10k = tag_df[tag_df.Counts>10000].Tags
#Print the length of the list
print ('{} Tags are used more than 10000 times'.format(len(lst_tags_gt_10k)))
# Store tags greater than 100K in one list
lst_tags_gt_100k = tag_df[tag_df.Counts>100000].Tags
#Print the length of the list.
print ('{} Tags are used more than 100000 times'.format(len(lst_tags_gt_100k)))
```

153 Tags are used more than 10000 times 14 Tags are used more than 100000 times

There are 153 tags which occured 1000 times

There are 14 tags which occured 10000 times

In [39]:

```
tag_df_sorted.head(3)
```

Out[39]:

	Tags	Counts
4337	c#	331505
18069	java	299414
27250	php	284103

Top 3 frequently occuring tags are C#, java, php

Since some tags occur much more frequenctly than others, **Micro-averaged F1-score** is the appropriate metric for this probelm, because it takes care of the frequency of the value

Tags Per Question

In [40]:

```
#Storing the count of tag in each question in list 'tag_count'
tag_quest_count = tag_dtm.sum(axis=1).tolist()
#Converting list of lists into single list, we will get [[3], [4], [2], [3]] and we are conve
```

```
rting this to [3, 4, 2, 2, 3]
tag_quest_count=[int(j) for i in tag_quest_count for j in i]
print ('We have total {} datapoints.'.format(len(tag_quest_count)))
print(tag_quest_count[:5])
```

We have total 4206314 datapoints. [3, 4, 2, 2, 3]

In [41]:

```
print( "Maximum number of tags per question: %d"%max(tag_quest_count))
print( "Minimum number of tags per question: %d"%min(tag_quest_count))
print( "Avg. number of tags per question: %f"% ((sum(tag_quest_count)*1.0)/len(tag_quest_count)))
```

Maximum number of tags per question: 5 Minimum number of tags per question: 1 Avg. number of tags per question: 2.899440

In [42]:

```
sns.countplot(tag_quest_count, palette='gist_rainbow')
plt.title("Number of tags in the questions ")
plt.xlabel("Number of Tags")
plt.ylabel("Number of questions")
plt.show()
```


Observations:

- 1. Maximum number of tags per question: 5
- 2. Minimum number of tags per question: 1
- 3. Avg. number of tags per question: 2.899
- 4. Most of the questions are having 2 or 3 tags

In [43]:

```
# Ploting word cloud
start = datetime.now()
# Lets first convert the 'result' dictionary to 'list of tuples'
tup = dict(result.items())
#Initializing WordCloud using frequencies of tags.
wordcloud = WordCloud(
                          background color='black',
                          width=1600,
                          height=800,
                    ).generate_from_frequencies(tup)
fig = plt.figure(figsize=(30,20))
plt.imshow(wordcloud)
plt.axis('off')
plt.tight_layout(pad=0)
fig.savefig("tag.png")
plt.show()
```

print("Time taken to run this cell :", datetime.now() - start)

Time taken to run this cell: 0:00:17.094141

As we have seen earlier that the top 3 tags i.e. **c#**, **java and php** are the frequently occuring tags here also with the larger font representing the frequency we can observed the same thing, apart from that **android,javascript**, **iphone and jquery** are also observed

The top 20 tags

In [44]:

```
i=np.arange(20)
tag_df_sorted.head(20).plot(kind='bar')
plt.title('Frequency of top 20 tags')
plt.xticks(i, tag_df_sorted['Tags'])
plt.xlabel('Tags')
plt.ylabel('Counts')
plt.show()
```


Observations:

1. Majority of the most frequent tags are programming language. As it is obvious because stackoverflow is a platform mainly for coders

- 2. C# is the top most frequent programming language.
- 3. Android, IOS, Linux and windows are among the top most frequent operating systems.

Cleaning and preprocessing of Questions

Preprocessing

- 1. Sample 1M data points
- 2. Separate out code-snippets from Body
- 3. Remove Spcial characters from Question title and description (not in code)
- 4. Remove stop words (Except 'C')
- 5. Remove HTML Tags
- 6. Convert all the characters into small letters
- 7. Use SnowballStemmer to stem the words

In [45]:

```
def striphtml (data):
    cleanr = re.compile('<.*?>')
    cleantext = re.sub(cleanr, ' ', str(data))
    return cleantext
stop_words = set(stopwords.words('english'))
stemmer = SnowballStemmer("english")
```

In [46]:

```
#http://www.sqlitetutorial.net/sqlite-python/create-tables/
def create connection(db file):
    """ create a database connection to the SQLite database
       specified by db file
    :param db file: database file
    :return: Connection object or None
    try:
       conn = sqlite3.connect(db file)
       return conn
    except Error as e:
       print(e)
    return None
def create_table(conn, create_table_sql):
    """ create a table from the create_table_sql statement
    :param conn: Connection object
    :param create_table_sql: a CREATE TABLE statement
    :return:
       c = conn.cursor()
       c.execute (create table sql)
    except Error as e:
       print(e)
def checkTableExists(dbcon):
    cursr = dbcon.cursor()
    str = "select name from sqlite_master where type='table'"
   table names = cursr.execute(str)
   print("Tables in the databse:")
   tables =table names.fetchall()
    print(tables[0][0])
    return (len (tables))
def create database table (database, query):
   conn = create connection(database)
    if conn is not None:
       create table (conn, query)
       checkTableExists(conn)
       print("Error! cannot create the database connection.")
    conn.close()
```

```
In [47]:
```

```
sql_create_table = """CREATE TABLE IF NOT EXISTS QuestionsProcessed (question text NOT NULL, code
text, tags text, words_pre integer, words_post integer, is_code integer);"""
create_database_table("Titlemoreweight.db", sql_create_table)
```

Tables in the databse:
OuestionsProcessed

In [48]:

```
# http://www.sqlitetutorial.net/sqlite-delete/
# https://stackoverflow.com/questions/2279706/select-random-row-from-a-sqlite-table
read_db = 'D:\\Projects\\Machine-Learning\\TagPredictor\\Train\\train_no_dup.db'
write db = 'D:\\Projects\\Machine-Learning\\TagPredictor\\Train\\Titlemoreweight.db'
train datasize = 400000
if os.path.isfile(read db):
   conn r = create connection(read db)
   if conn r is not None:
       reader =conn r.cursor()
        # for selecting first 0.5M rows
       reader.execute("SELECT Title, Body, Tags From no dup train LIMIT 500001;")
       # for selecting random points
       #reader.execute("SELECT Title, Body, Tags From no_dup_train ORDER BY RANDOM() LIMIT
500001;")
if os.path.isfile(write_db):
   conn w = create connection(write db)
   if conn w is not None:
       tables = checkTableExists(conn w)
       writer =conn w.cursor()
       if tables != 0:
           writer.execute("DELETE FROM QuestionsProcessed WHERE 1")
           print("Cleared All the rows")
```

Tables in the databse: QuestionsProcessed Cleared All the rows

In [49]:

```
#http://www.bernzilla.com/2008/05/13/selecting-a-random-row-from-an-sqlite-table/
start = datetime.now()
preprocessed data list=[]
reader.fetchone()
questions_with_code=0
len_pre=0
len post=0
questions_proccesed = 0
for row in reader:
    is code = 0
    title, question, tags = row[0], row[1], str(row[2])
    if '<code>' in question:
       questions with code+=1
       is code = 1
    x = len(question) + len(title)
    len pre+=x
    code = str(re.findall(r'<code>(.*?)</code>', question, flags=re.DOTALL))
    question=re.sub('<code>(.*?)</code>', '', question, flags=re.MULTILINE|re.DOTALL)
    question=striphtml(question.encode('utf-8'))
    title=title.encode('utf-8')
    # adding title three time to the data to increase its weight
    # add tags string to the training data
```

```
question=str(title)+" "+str(title)+" "+str(title)+" "+question
      if questions proccesed<=train datasize:</pre>
          question=str(title)+" "+str(title)+" "+str(title)+" "+question+" "+str(tags)
      else:
          question=str(title)+" "+str(title)+" "+str(title)+" "+question
    question=re.sub(r'[^A-Za-z0-9#+.\-]+',' ',question)
    words=word tokenize(str(question.lower()))
    #Removing all single letter and and stopwords from question exceptt for the letter 'c'
    question=' '.join(str(stemmer.stem(j)) for j in words if j not in stop words and (len(j)!=1 or
j=='c'))
    len post+=len(question)
    tup = (question, code, tags, x, len(question), is code)
    questions proccesed += 1
    writer.execute("insert into
QuestionsProcessed(question,code,tags,words pre,words post,is code) values (?,?,?,?,?,?,",tup)
    if (questions proccesed%100000==0):
       print("number of questions completed=",questions proccesed)
no_dup_avg_len_pre=(len_pre*1.0)/questions_proccesed
no_dup_avg_len_post=(len_post*1.0)/questions_proccesed
print( "Avg. length of questions(Title+Body) before processing: %d"%no_dup_avg_len_pre)
print( "Avg. length of questions(Title+Body) after processing: %d"%no_dup_avg_len_post)
print ("Percent of questions containing code: %d"%((questions_with_code*100.0)/questions_proccesed)
print("Time taken to run this cell :", datetime.now() - start)
number of questions completed= 100000
number of questions completed= 200000
number of questions completed= 300000
number of questions completed= 400000
number of questions completed= 500000
Avg. length of questions(Title+Body) before processing: 1239
Avg. length of questions (Title+Body) after processing: 424
Percent of questions containing code: 57
Time taken to run this cell: 0:31:06.709464
In [50]:
# never forget to close the conections or else we will end up with database locks
conn r.commit()
conn w.commit()
conn_r.close()
conn w.close()
In [51]:
if os.path.isfile(write db):
    conn r = create connection("D:\\Projects\\Machine-
Learning\\TagPredictor\\Train\\Titlemoreweight.db")
    if conn r is not None:
       reader =conn r.cursor()
        reader.execute("SELECT question From QuestionsProcessed LIMIT 10")
        print("Questions after preprocessed")
        print('='*100)
        reader.fetchone()
        for row in reader:
            print(row)
            print('-'*100)
conn r.commit()
conn r.close()
```

Questions after preprocessed

('dynam datagrid bind silverlight dynam datagrid bind silverlight dynam datagrid bind silverlight bind datagrid dynam code wrote code debug code block seem bind correct grid come column form come grid column although necessari bind nthank repli advance..',)

('java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid follow guid link instal js tl got follow error tri launch jsp page java.lang.noclassdeffounderror javax servlet jsp tagext ta glibraryvalid taglib declar instal jstl 1.1 tomcat webapp tri project work also tri version 1.2 js tl still messag caus solv',)

('java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index use follow code display caus solv',)

(that the view under fixed the who add better view under fixed the who add better view under fixed the who a

('better way updat feed fb php sdk better way updat feed fb php sdk better way updat feed fb php s dk novic facebook api read mani tutori still confused.i find post feed api method like correct sec ond way use curl someth like way better',)

('btnadd click event open two window record ad btnadd click event open two window record ad btnadd click event open two window record ad open window search.aspx use code hav add button search.aspx

nwhen insert record btnadd click event open anoth window nafter insert record close window',)

('sql inject issu prevent correct form submiss php sql inject issu prevent correct form submiss php sql inject issu prevent correct form submiss php check everyth think make sure input field safe type sql inject good news safe bad news one tag mess form submiss place even touch life figur exact html use templat file forgiv okay entir php script get execut see data post none forum field post problem use someth titl field none data get post current use print post see submit noth work flawless statement though also mention script work flawless local machin use host come across problem state list input test mess',)

('countabl subaddit lebesgu measur countabl subaddit lebesgu measur countabl subaddit lebesgu meas ur let lbrace rbrace sequenc set sigma -algebra mathcal want show left bigcup right leq sum left r ight countabl addit measur defin set sigma algebra mathcal think use monoton properti somewher pro of start appreci littl help nthank ad han answer make follow addit construct given han answer clea r bigcup bigcup cap emptyset neq left bigcup right left bigcup right sum left right also construct subset monoton left right leq left right final would sum leq sum result follow',)

('hgl eguival sgl gueri hgl eguival sgl gueri hgl eguival sgl gueri hgl gueri replac name class pr

('hql equival sql queri hql equival sql queri hql equival sql queri hql queri replac name class pr operti name error occur hql error',)

('undefin symbol architectur i386 objc class skpsmtpmessag referenc error undefin symbol architectur i386 objc class skpsmtpmessag referenc error undefin symbol architectur i386 objc class skpsmtpmessag referenc error import framework send email applic background import framework i.e skpsmtpmessag somebodi suggest get error collect2 ld return exit status import framework corre ct sorc taken framework follow mfmailcomposeviewcontrol question lock field updat answer drag drop folder project click copi nthat',)

In [52]:

```
#Taking 0.5 Million entries to a dataframe.
write_db = 'D:\\Projects\\Machine-Learning\\TagPredictor\\Train\\Titlemoreweight.db'
if os.path.isfile(write_db):
    conn_r = create_connection(write_db)
    if conn_r is not None:
        preprocessed_data = pd.read_sql_query("""SELECT question, Tags FROM QuestionsProcessed""",
conn_r)
conn_r.commit()
conn_r.close()
```

In [53]:

preprocessed_data.head()

Out[53]:

	question	tags
0	dynam datagrid bind silverlight dynam datagrid	c# silverlight data-binding
1	dynam datagrid bind silverlight dynam datagrid	c# silverlight data-binding columns
2	java.lang.noclassdeffounderror javax servlet j	jsp jstl
3	java.sql.sqlexcept microsoft odbc driver manag	java jdbc
4	better way updat feed fb php sdk better way up	facebook api facebook-php-sdk

In [54]:

```
print("number of data points in sample :", preprocessed_data.shape[0])
print("number of dimensions :", preprocessed_data.shape[1])

number of data points in sample : 500000
number of dimensions : 2
```

Converting string Tags to multilable output variables

In [55]:

```
vectorizer = CountVectorizer(tokenizer = lambda x: x.split(), binary='true')
multilabel_y = vectorizer.fit_transform(preprocessed_data['tags'])
```

Selecting 500 Tags

In [56]:

```
def tags_to_choose(n):
    t = multilabel_y.sum(axis=0).tolist()[0]
    sorted_tags_i = sorted(range(len(t)), key=lambda i: t[i], reverse=True)
    multilabel_yn=multilabel_y[:,sorted_tags_i[:n]]
    return multilabel_yn

def questions_explained_fn(n):
    multilabel_yn = tags_to_choose(n)
    x= multilabel_yn.sum(axis=1)
    return (np.count_nonzero(x==0))
```

In [57]:

```
questions_explained = []
total_tags=multilabel_y.shape[1]
total_qs=preprocessed_data.shape[0]
for i in range(500, total_tags, 100):
    questions_explained.append(np.round(((total_qs-questions_explained_fn(i))/total_qs)*100,3))
```

In [58]:

```
fig, ax = plt.subplots()
ax.plot(questions_explained)
xlabel = list(500+np.array(range(-50,450,50))*50)
ax.set_xticklabels(xlabel)
plt.xlabel("Number of tags")
plt.ylabel("Number Questions coverd partially")
plt.grid()
plt.show()
# you can choose any number of tags based on your computing power, minimum is 500(it covers 90% of the tags)
print("with ",5500,"tags we are covering ",questions_explained[50],"% of questions")
print("with ",500,"tags we are covering ",questions_explained[0],"% of questions")
```



```
with 5500 tags we are covering 99.157 % of questions
with 500 tags we are covering 90.956 % of questions

In [59]:

# we will be taking 500 tags
multilabel_yx = tags_to_choose(500)
print("number of questions that are not covered :", questions_explained_fn(500),"out of ", total_q s)

number of questions that are not covered : 45221 out of 500000
```

In [60]:

```
x_train=preprocessed_data.head(train_datasize)
x_test=preprocessed_data.tail(preprocessed_data.shape[0] - 400000)

y_train = multilabel_yx[0:train_datasize,:]
y_test = multilabel_yx[train_datasize:preprocessed_data.shape[0],:]
```

In [61]:

```
print("Number of data points in train data :", y_train.shape)
print("Number of data points in test data :", y_test.shape)
```

```
Number of data points in train data : (400000, 500)
Number of data points in test data : (100000, 500)
```

We could have used sklearn's library that will required to convert our sparse matrix into dense form so we tried this approach

Featurizing data

In [62]:

Time taken to run this cell : 0:02:49.671822

Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions.

takes care of if unseen values are present in test time

sublinear_tf Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).

Dimensions of test data X: (100000, 95585) Y: (100000, 500)

```
In [63]:
```

```
print("Dimensions of train data X:",x_train_multilabel.shape, "Y :",y_train.shape)
print("Dimensions of test data X:",x_test_multilabel.shape,"Y:",y_test.shape)

Dimensions of train data X: (400000, 95585) Y : (400000, 500)
```

Applying Logistic Regression(SGD Classifier) with OneVsRest Classifier

Hyperparameter tuning

```
In [40]:
```

```
from sklearn.model selection import GridSearchCV
#start = datetime.now()
classifier = OneVsRestClassifier(SGDClassifier())
params = {
    "estimator__alpha" : [0.00001,0.0001,0.001,0.01],
    'estimator__loss':['log'],
    'estimator__penalty':['12']
}
best = GridSearchCV(classifier , params, scoring = "f1 weighted")
best.fit(x_train_multilabel, y_train)
Out[40]:
GridSearchCV(estimator=OneVsRestClassifier(estimator=SGDClassifier()),
             param_grid={'estimator__alpha': [1e-05, 0.0001, 0.001, 0.01],
                         'estimator__loss': ['log'],
                         'estimator penalty': ['12']},
             scoring='f1 weighted')
In [41]:
best.best params
Out[41]:
{'estimator alpha': 1e-05,
 'estimator__loss': 'log',
 'estimator penalty': '12'}
In [42]:
start = datetime.now()
classifier = OneVsRestClassifier(SGDClassifier(loss='log', alpha=0.00001, penalty='12'), n jobs=-1)
classifier.fit(x_train_multilabel, y_train)
predictions = classifier.predict (x test multilabel)
print("Accuracy :", metrics.accuracy score(y test, predictions))
print("Hamming loss ", metrics.hamming loss(y test, predictions))
precision = precision_score(y_test, predictions, average='micro')
recall = recall_score(y_test, predictions, average='micro')
f1 = f1_score(y_test, predictions, average='micro')
print("Micro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
precision = precision_score(y_test, predictions, average='macro')
recall = recall_score(y_test, predictions, average='macro')
f1 = f1_score(y_test, predictions, average='macro')
print("Macro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
print (metrics.classification_report(y_test, predictions))
print("Time taken to run this cell :", datetime.now() - start)
Accuracy : 0.20904
Hamming loss 0.00290642
Micro-average quality numbers
Precision: 0.7777, Recall: 0.2295, F1-measure: 0.3544
Macro-average quality numbers
Precision: 0.5481, Recall: 0.1266, F1-measure: 0.1903
             precision recall f1-score support
           0
                   0.96
                           0.60
                                     0.74
                                                5519
                                     0.35
                           0.24
                   0.70
                                                8190
```

_	0.70	V • Z 1	· • · ·	U ± J U
2	0.83	0.32	0.46	6529
3	0.83	0.37	0.52	3231
4	0.83	0.37	0.51	6430
5	0.83	0.30	0.44	2879
6	0.90	0.44	0.59	5086
7			0.64	
	0.89	0.50		4533
8	0.61	0.12	0.20	3000
9	0.84	0.50	0.62	2765
10	0.63	0.13	0.22	3051
11	0.75	0.27	0.39	3009
12	0.68	0.19	0.29	2630
13	0.77	0.17	0.28	1426
14	0.93	0.45	0.60	2548
15	0.74	0.10	0.18	2371
16	0.67	0.19	0.30	873
17				2151
18	0.92	0.55	0.69	
	0.68	0.17	0.27	2204
19	0.73	0.36	0.49	831
20	0.79	0.33	0.47	1860
21	0.28	0.06	0.10	2023
22	0.54	0.17	0.25	1513
23	0.93	0.38	0.54	1207
24	0.58	0.25	0.34	506
25	0.75	0.25	0.37	425
26	0.67	0.34	0.45	793
27	0.61	0.26	0.36	1291
28	0.74	0.26	0.39	1208
29	0.45	0.05	0.10	406
30	0.84	0.10	0.18	504
31	0.31	0.06	0.10	732
32		0.00	0.10	
	0.60			441
33	0.63	0.11	0.18	1645
34	0.76	0.18	0.29	1058
35	0.83	0.43	0.57	946
36	0.70	0.11	0.19	644
37	0.97	0.56	0.71	136
38	0.63	0.29	0.40	570
39	0.90	0.13	0.23	766
40	0.68	0.19	0.29	1132
41	0.48	0.16	0.24	174
42	0.74	0.29	0.42	210
43	0.86	0.36	0.51	433
44	0.67	0.41	0.51	626
45	0.79	0.21	0.33	852
46	0.79	0.28	0.42	534
47	0.36	0.10	0.16	350
48		0.10		496
	0.76		0.53	
49	0.81	0.49	0.61	785
50	0.16	0.03	0.04	475
51	0.44	0.04	0.07	305
52	0.44	0.02	0.03	251
53	0.70	0.26	0.38	914
54	0.49	0.12	0.19	728
55	0.00	0.00	0.00	258
56	0.48	0.12	0.19	821
57	0.56	0.04	0.08	541
58	0.84	0.15	0.25	748
59	0.96	0.51	0.66	724
60	0.28	0.03	0.05	660
61	0.89	0.14	0.24	235
62	0.94	0.61	0.74	718
63	0.88	0.48	0.62	468
64	0.53	0.25	0.34	191
		0.23		
65 66	0.36		0.12	429
66	0.40	0.03	0.06	415
67	0.75	0.34	0.46	274
68	0.85	0.32	0.47	510
69	0.71	0.30	0.42	466
70	0.26	0.03	0.05	305
71	0.53	0.11	0.18	247
72	0.81	0.36	0.50	401
73	0.98	0.60	0.75	86
74	0.76	0.26	0.39	120
75	0.91	0.57	0.70	129
76	0.00	0.00	0.00	473
77	0.48	0.22	0.30	143
78	U 83	0 26	U 30	347

79 80 81 82	0.03 0.73 0.59 0.96 0.00	0.10 0.23 0.05 0.00	0.17 0.33 0.09 0.00	479 279 461 298
83	0.82	0.30	0.44	396
84	0.57	0.20	0.29	184
85	0.69	0.13	0.22	573
86	0.00	0.00	0.00	325
87	0.57	0.13	0.21	273
88 89 90 91 92	0.47 0.30 0.64 0.59	0.16 0.06 0.24 0.10 0.37	0.24 0.09 0.35 0.17	135 232 409 420 408
93 94 95 96 97 98	0.72 0.29 0.43 0.43 0.95	0.34 0.02 0.05 0.01 0.11	0.46 0.04 0.08 0.03 0.19	241 211 277 410 501
99 100 101 102 103	0.82 0.58 0.62 0.97 0.95 0.59	0.43 0.18 0.03 0.41 0.52 0.08	0.57 0.27 0.06 0.58 0.67 0.15	136 239 324 277 613 157
104	0.23	0.03	0.05	295
105	0.94	0.23	0.37	334
106	1.00	0.01	0.01	335
107	0.77	0.24	0.37	389
108	0.59	0.09	0.16	251
109	0.63	0.27	0.38	317
110	1.00	0.01	0.02	187
111	0.00	0.00	0.00	140
112	0.55	0.11	0.18	154
113	0.57	0.06	0.11	332
114 115 116 117 118	0.46 0.48 0.76 0.62 0.78	0.15 0.06 0.28 0.13	0.22 0.11 0.41 0.21 0.23	323 344 370 313 874
119	0.51	0.10	0.16	293
120	0.00	0.00	0.00	200
121	0.83	0.27	0.41	463
122	0.50	0.07	0.12	119
123	0.00	0.00	0.00	256
124	0.91	0.54	0.68	195
125	0.48	0.07	0.13	138
126	0.86	0.31	0.46	376
127	0.43	0.02	0.05	122
128	0.27	0.02	0.03	252
129	0.47	0.02	0.10	144
130	0.25	0.01	0.03	150
131	0.33	0.00	0.01	210
132	0.59	0.09	0.15	361
133	0.96	0.29	0.45	453
134	0.89	0.60	0.72	124
135	0.00	0.00	0.00	91
136	0.75	0.16	0.27	128
137	0.66	0.27	0.38	218
138	1.00	0.02	0.05	243
139	0.44	0.10	0.16	149
140	0.71	0.16	0.26	318
141	0.33	0.06	0.11	159
142	0.66	0.27	0.39	274
143	0.90	0.45	0.60	362
144	0.70	0.06	0.11	118
145	0.69	0.25	0.37	164
146	0.61	0.14	0.23	461
147	0.67	0.22	0.33	159
148	0.39	0.08	0.13	166
149	0.99	0.19	0.32	346
150	1.00	0.02	0.03	350
151 152 153 154	1.00 0.87 0.40 0.71	0.38 0.26 0.03 0.02	0.55 0.40 0.05 0.03	55 387 150 281 202

T J J	U.JJ	U • U I	U • U ∠	∠ ∪ ∠
156	0.80	0.50	0.62	130
157	0.45	0.02	0.04	245
158	0.91	0.42	0.58	177
159	0.53	0.13	0.21	130
160	0.50	0.05	0.10	336
161	0.95	0.40	0.56	220
162	0.40	0.02	0.03	229
163	0.90	0.23	0.37	316
164	0.79	0.17	0.28	283
165	0.65	0.13	0.22	197
166	0.54	0.15	0.23	101
167	0.40	0.06	0.11	231
168	0.59	0.12	0.19	370
169	0.42	0.12	0.18	258
170	0.38	0.05	0.09	101
171	0.41	0.17	0.24	89
172	0.57	0.20	0.30	193
173	0.44	0.10	0.17	309
174	0.60	0.03	0.07	172
175	0.96	0.54	0.69	95
176	0.97	0.32	0.48	346
177	0.94	0.16	0.27	322
178	0.63	0.26	0.37	232
179	0.50	0.02	0.05	125
180	0.67	0.11	0.19	145
181	0.40	0.03	0.05	77
182	0.00	0.00	0.00	182
183	0.61	0.16	0.25	257
184	0.00	0.00	0.00	216
185	0.38	0.03	0.06	242
186	0.36	0.05	0.09	165
187	0.81	0.32	0.46	263
188	0.44	0.02	0.04	174
189	0.88	0.10	0.18	136
190	0.95	0.20	0.33	202
191	0.44	0.03	0.06	134
192	0.77	0.17	0.28	230
193	0.47	0.10	0.17	90
194	0.68	0.30	0.42	185
195	0.00	0.00	0.00	156
196	0.00	0.00	0.00	160
197	0.00	0.00	0.00	266
198	0.50	0.01	0.01	284
199	1.00	0.01	0.01	145
200	0.95	0.41	0.57	212
201	0.71	0.09	0.15	317
202	0.87	0.27	0.41	427
203	0.38	0.02	0.04	232
204	0.53	0.09	0.16	217
205	0.51	0.12	0.19	527
206	0.00	0.00	0.00	124
207	0.50	0.03	0.06	103
208	0.94	0.25	0.40	287
209	0.37	0.04	0.07	193
210	0.86	0.08	0.15	220
211	1.00	0.01	0.03	140
212	0.17	0.01	0.01	161
213	0.55	0.08	0.14	72
214	0.63	0.20	0.31	396
215	0.91	0.07	0.14	134
216	0.67	0.01	0.01	400
217	0.50	0.13	0.21	75
218	0.97	0.39	0.56	219
219	0.91	0.15	0.25	210
220	1.00	0.18	0.30	298
221	0.96	0.26	0.41	266
222	0.74	0.14	0.23	290
223	0.00	0.00	0.00	128
224	0.82	0.26	0.40	159
225	0.59	0.06	0.11	164
226	0.64	0.21	0.31	144
227	0.57	0.17	0.27	
				276
228	0.00	0.00	0.00	235
229	1.00	0.00	0.01	216
230	0.44	0.04	0.07	228
231	0.67	0.28	0.40	64
222	0 25	Λ Λ1	0 00	1 / 2

Z 3 Z	U.43	U • U I	∪.∪∠	TUO
233	0.68	0.08	0.14	216
234	1.00	0.02	0.03	116
235	0.50	0.16	0.24	77
236	1.00	0.46	0.63	67
237	1.00	0.02	0.04	218
238	0.33	0.01	0.03	139
239	0.00	0.00	0.00	94
240	0.58	0.14	0.23	77
241	0.50	0.01	0.02	167
242	0.88	0.16	0.02	86
243	0.67	0.10	0.07	58
244	0.62	0.05	0.10	269
244		0.00		112
	0.09		0.02	
246	0.98	0.36	0.53	255
247	0.44	0.14	0.21	58
248	0.00	0.00	0.00	81
249	0.00	0.00	0.00	131
250	0.23	0.03	0.06	93
251	0.72	0.14	0.23	154
252	1.00	0.01	0.02	129
253	0.70	0.17	0.27	83
254	0.00	0.00	0.00	191
255	0.00	0.00	0.00	219
256	0.67	0.02	0.03	130
257	0.58	0.16	0.25	93
258	0.68	0.18	0.29	217
259	0.50	0.04	0.08	141
260	1.00	0.06	0.11	143
261	0.56	0.02	0.04	219
262	0.58	0.10	0.17	107
263	0.31	0.06	0.10	236
264	0.34	0.09	0.15	119
265	0.57	0.06	0.10	72
266	0.00	0.00	0.00	70
267	0.29	0.02	0.04	107
268	0.75	0.20	0.31	169
269	0.33	0.04	0.07	129
270	0.75	0.31	0.44	159
271	0.79	0.08	0.14	190
272	0.68	0.08	0.14	248
273	0.92	0.28	0.43	264
274	0.88	0.36	0.51	105
275	1.00	0.01	0.02	104
276	0.00	0.00	0.00	115
277	0.85	0.34	0.48	170
278	0.79	0.08	0.14	145
279	0.75	0.19	0.31	230
280	0.63	0.13	0.32	80
281	0.67	0.21	0.43	217
282	0.70	0.19	0.43	175
283	0.40	0.13	0.01	269
	0.40			74
284		0.11	0.19	
285 286	0.89	0.23	0.36	206 227
287	0.95 1.00	0.24	0.39 0.14	130
288	0.50	0.02	0.03	129
289	0.00	0.00	0.00	80
290	0.33	0.01	0.02	99
291	0.79	0.05	0.10	208
292	0.00	0.00	0.00	67
293	0.87	0.24	0.37	109
294	0.57	0.11	0.19	140
295	0.17	0.02	0.03	241
296	0.33	0.07	0.11	72
297	0.25	0.02	0.03	107
298	0.91	0.16	0.28	61
299	1.00	0.21	0.34	77
300	1.00	0.01	0.02	111
301	0.00	0.00	0.00	126
302	0.00	0.00	0.00	73
303	0.73	0.18	0.29	176
304	1.00	0.22	0.36	230
305	0.98	0.31	0.47	156
306	0.63	0.21	0.32	146
307	0.00	0.00	0.00	98
308	0.00	0.00	0.00	78
200	1 00	Λ Λ1	0 00	0.4

309	1.00	U.UI	U.U∠	94
310	0.78	0.09	0.16	162
311	0.78	0.16	0.26	116
312	0.47	0.12	0.19	57
313	1.00	0.02	0.03	65
314	0.49	0.15	0.23	138
315	0.59	0.09	0.15	195
316	0.57	0.19	0.28	69
317	0.33	0.01	0.01	134
318	0.51	0.14	0.21	148
319	0.81	0.19	0.30	161
320	0.25	0.03	0.05	104
321	0.89	0.27	0.41	156
322 323	0.59 0.57	0.14	0.23	134 232
324	0.45	0.05	0.10	92
325	0.55	0.03	0.06	197
326	0.00	0.00	0.00	126
327	0.00	0.00	0.00	115
328		0.20	0.34	198
329	0.71	0.10	0.17	125
330	1.00	0.02	0.05	81
331	0.40	0.02	0.04	94
332	0.00	0.00	0.00	56
333	0.29	0.01	0.01	260
334	0.00	0.00	0.00	60
335	0.57		0.07	110
336	0.78	0.25	0.38	71
337	0.17	0.02		66
338	0.59	0.19	0.29	150
339	0.00	0.00	0.00	54
340	0.90	0.18	0.31	195
341	0.00	0.00	0.00	79
342	0.75		0.14	38
343	0.56	0.12	0.19	43
344	0.57	0.06	0.11	68
345	0.59	0.18	0.27	73
346	0.00	0.00	0.00	116
347	0.90	0.08	0.15	111
348	0.38	0.05	0.08	63
349	0.90	0.27	0.41	104
350	0.62	0.18	0.28	4 4
351	0.50	0.03	0.05	4 0
352	1.00	0.10	0.19	136
353	0.45	0.09	0.15	54
354	0.00	0.00	0.00	134
355	0.56	0.08	0.14	120
356	0.42		0.06	228
357	0.83	0.06	0.10	269
358	0.85	0.14	0.24	80
359	0.77	0.16	0.27	140
360	0.33	0.02	0.03	125
361	0.95	0.21	0.34	169
362	0.00	0.00	0.00	56
363	0.96	0.32	0.48	154
364 365	0.00	0.00	0.00	58 71
366	1.00	0.24	0.39	54
367 368	1.00	0.01	0.02 0.00	116 54
369 370	0.00	0.00	0.00	71 61
371	0.00	0.00	0.00	71
372	0.69	0.17	0.28	52
373	0.38	0.02	0.04	150
374	0.50	0.02	0.04	93
375	0.00	0.00		67
376	0.00	0.00	0.00	76
377	1.00	0.02		106
378 379	0.00	0.00	0.00	86 14
380	1.00	0.03	0.06	122
381 382	0.00	0.00	0.00	104 66
383	0.85	0.10	0.18	110
384	0.00		0.00	155
385	0.50	0.02	0.04	50

386	0.20	0.03	0.05	64
387	0.00	0.00	0.00	93
388	0.50	0.01	0.02	102
389	0.00	0.00	0.00	108
390	0.98	0.26	0.41	178
391	0.70	0.06	0.11	115
392	1.00	0.14	0.25	42
393	0.00	0.00	0.00	134
394	0.00	0.00	0.00	112
395	0.69	0.05	0.10	176
396	0.00	0.00	0.00	125
397	0.84	0.07	0.13	224
398	1.00	0.19	0.32	63
399	0.00	0.00	0.00	59
400	0.50	0.13	0.20	63
401	1.00	0.01	0.02	98
402	1.00	0.01	0.01	162
403	0.80	0.05	0.09	83
404	0.91	0.53	0.67	19
405	0.75	0.03	0.06	92
406	1.00	0.05	0.09	41
407	0.71	0.12	0.20	43
408	0.83	0.03	0.06	160
409	0.00	0.00	0.00	50
410	0.00	0.00	0.00	19
411	0.00	0.00	0.00	175
412	0.00	0.00	0.00	72
413	0.00	0.00	0.00	95
414	0.33	0.00	0.02	97
414	0.00	0.01	0.02	48
416	0.56	0.12	0.20	83
417	0.00	0.00	0.00	40
418	0.00	0.00	0.00	91
419	0.62	0.09	0.16	90
420	0.43	0.08	0.14	37
421	0.00	0.00	0.00	66
422	0.56	0.19	0.29	73
423	0.43	0.05	0.10	56
424	0.94	0.45	0.61	33
425	0.00	0.00	0.00	76
426	0.50	0.02	0.05	81
427	1.00	0.19	0.31	150
428	0.93	0.48	0.64	29
429	0.00	0.00	0.00	389
430	1.00	0.04	0.07	167
431	0.00	0.00	0.00	123
432	0.45	0.13	0.20	39
433	0.38	0.06	0.11	82
434	1.00	0.30	0.47	66
435	0.63	0.13	0.21	93
436	0.68	0.15	0.25	87
437	0.50	0.01	0.02	86
438	0.86	0.18	0.30	104
439	0.00	0.00	0.00	100
440	0.00	0.00	0.00	141
441	0.53	0.09	0.16	110
442	0.18	0.02	0.03	123
443	0.00	0.00	0.00	71
444	0.00	0.00	0.00	109
445	1.00	0.08	0.15	48
446	0.35	0.08	0.13	76
447	0.00	0.00	0.00	38
448	0.69	0.22	0.34	81
449	0.43	0.02	0.04	132
450	0.41	0.09	0.14	81
451	1.00	0.04	0.08	76
452	0.00	0.00	0.00	44
453	0.00	0.00	0.00	44
454	0.89	0.00	0.36	70
454 455				155
	0.00	0.00	0.00	
456	0.75	0.07	0.13	43
457	0.50	0.03	0.05	72
458	0.00	0.00	0.00	62
459	1.00	0.04	0.08	69
460	0.00	0.00	0.00	119
461	1.00	0.03	0.05	79
462	0.57	0.09	0.15	47
•	* **	* **		•

```
463
              0.00 0.00 0.00
                                          104
                0.75
                       0.14
                                0.24
       464
                                           106
                                0.00
0.13
        465
                0.00
                        0.00
                                           64
        466
                0.71
                        0.07
                                           173
                        0.07
                                0.12
       467
                0.88
                                           107
       468
               0.00
                       0.00
                                0.00
                                          126
       469
               0.00
                       0.00
                                0.00
                                           114
                       0.34
                                0.50
       470
                0.98
                                           140
        471
                0.00
                        0.00
                                 0.00
                                            79
        472
                0.32
                        0.04
                                 0.07
                                           143
        473
                0.67
                        0.01
                                0.02
                                           158
        474
                0.00
                        0.00
                                0.00
                                          138
       475
                0.00
                       0.00
                                0.00
                                           59
                        0.01
                                0.02
0.29
       476
                0.25
                                           88
        477
                0.91
                        0.17
                                           176
                                0.67
                        0.50
       478
                1.00
                                           24
        479
               0.00
                       0.00
                                0.00
       480
               0.94
                       0.16
                                0.27
                                           100
                       0.03
                                0.06
                0.75
                                           103
       481
        482
                0.20
                        0.01
                                 0.03
        483
                0.94
                        0.16
                                 0.28
                                           105
                0.00
                        0.00
                                0.00
       484
                                           83
       485
               0.00
                        0.00
                                0.00
       486
               1.00
                       0.04
                                0.08
                                           71
                       0.02
                                0.03
       487
                0.20
                                           120
        488
                0.00
                        0.00
                                           105
                       0.08
                                0.15
                0.78
       489
                                           87
       490
               1.00
                       0.28
                                0.44
       491
               0.00
                       0.00
                                0.00
                                           69
                       0.00
                                0.00
       492
                0.00
                                           49
        493
                0.00
                        0.00
                                 0.00
                                           117
       494
                0.00
                        0.00
                                 0.00
                                           61
               0.00
                        0.00
                                0.00
       495
                                           344
       496
               0.50
                       0.06
                                0.10
                                           52
                                0.00
                       0.00
       497
                0.00
                                           137
                                0.02
        498
                1.00
                        0.01
       499
                1.00
                        0.01
                                 0.02
                     0.23 0.35 173812
0.13 0.19 173812
              0.78
  micro avg
  macro avg
              0.55
                        0.23
                                 0.33
                0.68
                                        173812
weighted avg
samples avg
                0.32
                        0.22
                                 0.24
                                        173812
Time taken to run this cell: 0:03:10.354285
In [45]:
joblib.dump(classifier, 'lr with more title weight.pkl')
Out[45]:
['lr_with_more_title_weight.pkl']
```

Logistic Regression

Hyperparameter Tuning

```
In [82]:
```

```
from sklearn.model_selection import GridSearchCV
#start = datetime.now()
classifier2 = OneVsRestClassifier(LogisticRegression(penalty='ll'))

params = {
    "estimator__C" : [0.0001,0.001,0.01,1],
    'estimator__penalty':['l2']
}

best2 = GridSearchCV(classifier2 , params, scoring = "f1_weighted")
best2.fit(x_train_multilabel, y_train)
```

```
Out[02]:
GridSearchCV(estimator=OneVsRestClassifier(estimator=LogisticRegression(penalty='11')),
            param_grid={'estimator__C': [0.0001, 0.001, 0.01, 1],
                        'estimator penalty': ['12']},
            scoring='f1 weighted')
In [83]:
best2.best params
Out[83]:
{'estimator C': 1, 'estimator penalty': '12'}
In [84]:
start = datetime.now()
classifier_2 = OneVsRestClassifier(LogisticRegression(C=1,penalty='12'), n_jobs=-1)
classifier 2.fit(x train_multilabel, y_train)
predictions_2 = classifier_2.predict(x_test_multilabel)
print("Accuracy :", metrics.accuracy score(y test, predictions 2))
print("Hamming loss ", metrics.hamming loss(y test, predictions 2))
precision = precision_score(y_test, predictions_2, average='micro')
recall = recall score(y test, predictions 2, average='micro')
f1 = f1_score(y_test, predictions_2, average='micro')
print("Micro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
precision = precision_score(y_test, predictions_2, average='macro')
recall = recall score(y test, predictions 2, average='macro')
f1 = f1 score(y test, predictions 2, average='macro')
print("Macro-average quality numbers")
 \texttt{print}(\texttt{"Precision: \{:.4f\}, Recall: \{:.4f\}, F1-measure: \{:.4f\}".format(\texttt{precision, recall, f1})) } 
print (metrics.classification_report(y_test, predictions_2))
print("Time taken to run this cell :", datetime.now() - start)
Accuracy : 0.23742
Hamming loss 0.00275658
{\tt Micro-average\ quality\ numbers}
Precision: 0.7422, Recall: 0.3172, F1-measure: 0.4444
Macro-average quality numbers
Precision: 0.5772, Recall: 0.2319, F1-measure: 0.3143
             precision recall f1-score support
          0
                 0.95
                          0.68
                                   0.79
                                              5519
                 0.70
                          0.31
                                   0.43
                                             8190
                                    0.52
                                             6529
                 0.81
                          0.38
          2
          3
                  0.83
                           0.45
                                     0.59
                                              3231
                  0.81
                           0.41
                                     0.55
          4
                                               6430
                                    0.49
                           0.35
                                              2879
                 0.82
          5
          6
                 0.88
                          0.50
                                    0.64
                                             5086
          7
                 0.88
                          0.55
                                   0.68
                                             4533
                          0.13
                                   0.21
          8
                 0.60
                                              3000
                                   0.66
0.29
          9
                 0.83
                           0.55
                                               2765
         10
                 0.61
                           0.19
                                              3051
                                              3009
                 0.71
                          0.35
                                    0.47
         11
         12
                0.64
                          0.25
                                    0.36
                                              2630
                          0.26
                                    0.39
                                              1426
         1.3
                 0.77
                                    0.66
                          0.51
         14
                 0.91
                                               2548
         15
                 0.66
                           0.18
                                     0.28
                                              2371
                                    0.34
                          0.23
         16
                 0.66
                                               873
         17
                 0.90
                          0.60
                                    0.72
                                             2151
         18
                 0.63
                          0.22
                                    0.33
                                             2204
                          0.39
                                   0.51
         19
                 0.72
                                               8.31
         20
                 0.78
                           0.41
                                    0.54
                                               1860
                                   0.13
                          0.09
                                              2023
         21
                 0.30
                          0.23
                                   0.32
                                              1513
         22
                0.54
                0.92
                          0.49
                                   0.64
         23
                                              1207
                 0.57
                          0.28
                                    0.38
         2.4
                                               506
```

25	0.69	0.30	0.42	425
26	0.66	0.39	0.49	793
27	0.61	0.34	0.43	1291
28	0.76	0.34	0.47	1208
29	0.47	0.09	0.15	406
30	0.79	0.15	0.26	504
31	0.31	0.08	0.13	732
32	0.61	0.26	0.36	441
33	0.61	0.20	0.30	1645
34	0.73	0.22	0.34	1058
35 36	0.83 0.69	0.53 0.19	0.65 0.30	946 644
37	0.89	0.19	0.30	136
38	0.64	0.34	0.45	570
39	0.88	0.25	0.39	766
40	0.62	0.29	0.39	1132
41	0.46	0.17	0.25	174
42	0.78	0.44	0.56	210
43	0.81	0.40	0.54	433
44	0.67	0.48	0.56	626
45	0.74	0.30	0.42	852
46	0.78	0.39	0.52	534
47	0.38	0.13	0.19	350
48 49	0.74 0.79	0.49	0.59 0.68	496 785
50	0.22	0.05	0.09	475
51	0.39	0.10	0.16	305
52	0.42	0.02	0.04	251
53	0.68	0.37	0.48	914
54	0.49	0.15	0.23	728
55	0.33	0.01	0.02	258
56	0.46	0.20	0.28	821
57	0.51	0.08	0.14	541
58	0.81	0.25	0.38	748
59 60	0.95 0.34	0.59 0.06	0.73 0.11	724 660
61	0.86	0.18	0.30	235
62	0.92	0.69	0.79	718
63	0.85	0.62	0.71	468
64	0.54	0.31	0.39	191
65	0.35	0.12	0.17	429
66	0.28	0.05	0.09	415
67	0.76	0.44	0.56	274
68	0.83	0.46	0.59	510
69 70	0.71 0.27	0.41	0.52 0.10	466 305
71	0.53	0.15	0.24	247
72	0.81	0.47	0.59	401
73	0.98	0.71	0.82	86
74	0.72	0.34	0.46	120
75	0.90	0.64	0.75	129
76	0.50	0.01	0.01	473
77	0.44	0.25	0.32	143
78	0.81	0.41	0.55	347
79 80	0.73 0.60	0.21	0.32	479 279
81	0.85	0.15	0.25	461
82	0.50	0.04	0.07	298
83	0.80	0.42	0.55	396
84	0.53	0.26	0.35	184
85	0.63	0.20	0.31	573
86	0.52	0.04	0.07	325
87	0.50	0.21	0.30	273
88	0.45	0.22	0.30	135
89	0.36	0.09	0.15	232
90	0.58	0.33	0.42	409
91 92	0.64 0.79	0.22 0.50	0.33 0.62	420 408
93	0.69	0.43	0.53	241
94	0.36	0.05	0.08	211
95	0.35	0.08	0.13	277
96	0.31	0.04	0.07	410
97	0.90	0.26	0.40	501
98	0.79	0.55	0.65	136
99	0.55	0.29	0.38	239
100	0.65 0.94	0.10 0.54	0.18	324 277
101	∪. 54	0.54	0.69	211

102	0.93	0.66	0.77	613
103	0.44	0.13	0.20	157
104	0.25	0.06	0.09	295
105	0.82	0.34	0.48	334
106	0.92	0.10	0.19	335
107	0.75	0.44	0.56	389
108	0.60	0.20	0.30	251
109	0.57	0.37	0.45	317
	0.73	0.06	0.11	187
110				
111	0.54	0.05	0.09	140
112	0.65	0.29	0.40	154
113	0.64	0.15	0.25	332
114	0.48	0.26	0.34	323
115	0.50	0.19	0.28	344
116	0.75	0.46	0.57	370
117	0.62	0.20	0.30	313
118	0.80	0.57	0.66	874
119	0.47	0.17	0.25	293
120	0.00	0.00	0.00	200
121	0.77	0.42	0.55	463
122	0.48	0.10	0.17	119
123	1.00	0.01	0.02	256
124	0.91	0.66	0.76	195
125	0.38	0.09	0.15	138
126	0.83	0.48	0.61	376
127	0.33	0.03	0.06	122
128	0.20	0.02	0.04	252
129	0.49	0.15	0.23	144
130	0.36	0.05	0.09	150
131	0.30	0.01	0.03	210
132	0.67	0.22	0.33	361
133	0.95	0.48	0.64	453
134	0.88	0.71	0.79	124
135	0.14	0.01	0.02	91
136	0.73	0.26	0.38	128
137	0.59	0.33	0.42	218
138	0.74	0.11	0.19	243
139	0.46	0.17	0.25	149
140	0.75	0.36	0.48	318
141	0.33	0.09	0.14	159
142	0.64	0.33	0.44	274
143	0.88	0.65	0.75	362
144	0.62	0.17	0.27	118
145	0.70	0.35	0.46	164
146	0.56	0.25	0.34	461
		0.36		
147	0.68		0.48	159
148	0.34	0.11	0.17	166
149	0.99	0.41	0.58	346
150	0.72	0.06	0.11	350
151	0.97	0.55	0.70	55
152				
	0.82	0.46	0.59	387
153	0.50	0.09	0.15	150
154	0.63	0.09	0.15	281
155	0.32	0.04	0.08	202
156	0.82	0.62	0.70	130
157	0.35	0.04	0.08	245
158	0.94	0.58	0.72	177
159	0.52	0.25	0.34	130
160	0.51	0.12	0.20	336
161	0.90	0.54	0.68	220
			0.08	
162	0.28	0.04		229
163	0.92	0.37	0.53	316
164	0.76	0.33	0.46	283
165	0.64	0.26	0.37	197
166	0.62	0.32	0.42	101
167	0.46	0.14	0.22	231
168	0.56	0.20	0.29	370
169	0.43	0.17	0.25	258
170	0.37	0.07	0.12	101
171	0.41	0.24	0.30	89
172	0.58	0.33	0.42	
				193
173	0.44	0.19	0.26	309
174	0.55	0.09	0.16	172
175	0.95	0.66	0.78	95
176	0.96	0.51	0.67	346
	0.95	0.40	0.56	322
177				
178	0.66	0.44	0.52	232

179	0.31	0.04	0.07	125
180	0.63	0.23	0.34	145
181	0.36	0.05	0.09	77
182	0.21	0.03	0.06	182
183	0.61	0.28	0.38	257
184	0.27	0.03	0.05	216
185	0.34	0.05	0.09	242
186	0.40	0.10	0.16	165
187	0.77	0.52	0.62	263
188	0.44	0.10	0.16	174
189	0.78	0.32	0.45	136
190	0.94	0.43	0.59	202
191	0.41	0.10	0.17	134
192	0.72	0.33	0.46	230
193	0.43	0.17	0.24	90
194	0.59	0.40	0.48	185
195	0.39	0.04	0.08	156
196	0.50	0.04	0.07	160
197	0.48	0.05	0.08	266
198	0.35	0.04	0.07	284
199	0.44	0.03	0.05	145
200	0.94	0.62	0.75	212
201	0.71	0.19	0.30	317
202	0.81	0.49	0.61	427
203	0.36	0.07	0.12	232
204	0.60	0.24	0.34	217
205	0.51	0.34	0.41	527
206	0.11	0.01	0.02	124
207	0.42	0.08	0.13	103
208	0.92	0.44	0.59	287
		0.08		
209	0.37		0.13	193
210	0.79	0.28	0.41	220
211	0.83	0.11	0.19	140
212	0.12	0.01	0.02	161
213	0.58	0.25	0.35	72
214	0.65	0.37	0.47	396
215	0.94	0.22	0.35	134
216	0.55	0.07	0.12	400
217	0.47	0.19	0.27	75
218	0.97	0.65	0.78	219
219	0.83	0.31	0.45	210
220	0.96	0.52	0.67	298
221	0.97	0.53	0.68	266
222	0.77	0.34	0.47	290
223	0.17	0.01	0.01	128
224	0.79	0.40	0.53	159
225	0.59	0.20	0.30	164
226	0.60	0.31	0.41	144
227	0.58	0.29	0.39	276
228	0.16	0.01	0.02	235
229	0.33	0.00	0.01	216
230	0.42	0.12	0.19	228
231	0.69	0.42	0.52 0.12	64
232	0.64	0.07		103
233	0.74	0.24	0.36	216
234	0.86	0.05	0.10	116
235	0.52	0.29	0.37	77
236	0.97	0.58	0.73	67
237	0.50	0.05	0.08	218
238	0.38	0.08	0.13	139
239	0.00	0.00	0.00	94
240	0.56	0.23	0.33	77
241	0.57	0.08	0.14	167
242	0.86	0.28	0.42	86
243	0.25	0.03	0.06	58
244	0.59	0.19	0.29	269
245	0.24	0.04	0.08	112
246	0.96	0.67	0.79	255
247	0.44	0.21	0.28	58
248	0.00	0.00	0.00	81
249	0.11	0.01	0.00	131
250	0.42	0.14	0.01	93
251	0.67	0.23	0.34	154
252	0.75	0.02	0.05	129
253	0.69	0.33	0.44	83
254	0.34	0.05	0.09	191
2.5.5	0.18	0.03	0.05	219

	· • • ·		· • · ·	
256	0.43	0.05	0.08	130
257	0.53	0.23	0.32	93
258	0.68	0.40	0.50	217
259	0.38	0.09	0.15	141
260	0.95	0.14	0.24	143
261				
	0.62	0.11	0.18	219
262	0.60	0.23	0.34	107
263	0.44	0.20	0.27	236
264	0.33	0.16	0.21	119
265	0.58	0.15	0.24	72
266	0.00	0.00	0.00	70
267	0.32	0.08	0.13	107
268	0.72	0.37	0.49	169
269	0.31	0.09	0.13	129
270	0.77	0.48	0.59	159
271	0.87	0.25	0.39	190
272	0.64	0.19	0.29	248
273	0.91	0.59	0.71	264
274	0.90	0.58	0.71	105
275	0.60	0.06	0.11	104
276	0.08	0.01	0.02	115
277	0.88	0.55	0.67	170
278	0.70	0.21	0.32	145
279	0.92	0.48	0.63	230
280	0.60	0.38	0.46	80
281	0.66	0.48	0.55	217
282	0.71	0.37	0.48	175
283	0.32	0.06	0.09	269
284	0.67	0.22	0.33	74
285	0.87	0.42	0.56	206
286	0.91	0.54	0.68	227
287	0.88	0.28	0.42	130
288	0.41	0.05	0.10	129
289	0.33	0.01	0.02	80
290	0.24	0.07	0.11	99
291	0.82	0.25	0.39	208
292			0.08	
	0.43	0.04		67
293	0.86	0.44	0.58	109
294	0.45	0.20	0.28	140
295	0.24	0.10	0.14	241
296	0.33			72
		0.10	0.15	
297	0.38	0.06	0.10	107
298	0.89	0.41	0.56	61
299	0.97	0.40	0.57	77
300	0.24			
		0.05	0.09	111
301	0.00	0.00	0.00	126
302	0.00	0.00	0.00	7.2
				73
303	0.62	0.32	0.42	
303	0.62	0.32	0.42	176
304	0.97	0.62	0.75	176 230
	0.97 0.98	0.62 0.51		176
304	0.97	0.62	0.75	176 230
304 305 306	0.97 0.98 0.56	0.62 0.51 0.34	0.75 0.67 0.42	176 230 156 146
304 305 306 307	0.97 0.98 0.56 0.30	0.62 0.51 0.34 0.06	0.75 0.67 0.42 0.10	176 230 156 146 98
304 305 306 307 308	0.97 0.98 0.56 0.30 0.00	0.62 0.51 0.34 0.06 0.00	0.75 0.67 0.42 0.10 0.00	176 230 156 146 98 78
304 305 306 307 308 309	0.97 0.98 0.56 0.30 0.00	0.62 0.51 0.34 0.06 0.00	0.75 0.67 0.42 0.10 0.00 0.14	176 230 156 146 98 78 94
304 305 306 307 308	0.97 0.98 0.56 0.30 0.00	0.62 0.51 0.34 0.06 0.00	0.75 0.67 0.42 0.10 0.00	176 230 156 146 98 78
304 305 306 307 308 309 310	0.97 0.98 0.56 0.30 0.00 0.88 0.79	0.62 0.51 0.34 0.06 0.00 0.07	0.75 0.67 0.42 0.10 0.00 0.14	176 230 156 146 98 78 94
304 305 306 307 308 309 310 311	0.97 0.98 0.56 0.30 0.00 0.88 0.79	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53	176 230 156 146 98 78 94 162
304 305 306 307 308 309 310 311 312	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32	176 230 156 146 98 78 94 162 116 57
304 305 306 307 308 309 310 311 312 313	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09	176 230 156 146 98 78 94 162 116 57 65
304 305 306 307 308 309 310 311 312	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32	176 230 156 146 98 78 94 162 116 57
304 305 306 307 308 309 310 311 312 313	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38	176 230 156 146 98 78 94 162 116 57 65
304 305 306 307 308 309 310 311 312 313 314 315	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27	176 230 156 146 98 78 94 162 116 57 65 138
304 305 306 307 308 309 310 311 312 313 314 315 316	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31	176 230 156 146 98 78 94 162 116 57 65 138 195
304 305 306 307 308 309 310 311 312 313 314 315 316 317	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16	176 230 156 146 98 78 94 162 116 57 65 138 195 69
304 305 306 307 308 309 310 311 312 313 314 315 316	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31	176 230 156 146 98 78 94 162 116 57 65 138 195
304 305 306 307 308 309 310 311 312 313 314 315 316 317	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16	176 230 156 146 98 78 94 162 116 57 65 138 195 69
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52 0.85	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52 0.17	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161 104
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52 0.85	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37 0.12 0.51	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52 0.17 0.64	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161 104 156
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52 0.85	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52 0.17	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161 104
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52 0.85	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37 0.12 0.51	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52 0.17 0.64	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161 104 156
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52 0.85 0.26 0.85 0.60	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37 0.12 0.51 0.32 0.37	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52 0.17 0.64 0.42 0.45	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161 104 156 134 232
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52 0.85 0.26 0.85 0.60 0.60 0.43	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37 0.12 0.51 0.32 0.37	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52 0.17 0.64 0.42 0.45 0.20	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161 104 156 134 232 92
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52 0.85 0.26 0.85 0.60 0.60 0.43 0.46	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37 0.12 0.51 0.32 0.37	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52 0.17 0.64 0.42 0.45 0.20 0.27	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161 104 156 134 232 92 197
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52 0.85 0.26 0.85 0.60 0.60 0.43 0.46 0.14	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37 0.12 0.51 0.32 0.37 0.12	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52 0.17 0.64 0.42 0.45 0.20 0.27 0.03	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161 104 156 134 232 92 197 126
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52 0.85 0.26 0.85 0.60 0.60 0.43 0.46	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37 0.12 0.51 0.32 0.37	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52 0.17 0.64 0.42 0.45 0.20 0.27	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161 104 156 134 232 92 197
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52 0.85 0.26 0.85 0.60 0.60 0.43 0.44 0.14	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37 0.12 0.51 0.32 0.37 0.12 0.51 0.32 0.37	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52 0.17 0.64 0.42 0.45 0.20 0.27 0.33 0.09	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161 104 156 134 232 92 197 126 115
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52 0.85 0.26 0.85 0.60 0.60 0.43 0.46 0.14 0.10 0.99	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37 0.12 0.51 0.32 0.37 0.12 0.51 0.32 0.37 0.12 0.51 0.32 0.37	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52 0.17 0.64 0.42 0.45 0.20 0.27 0.03 0.02 0.66	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161 104 156 134 232 92 197 126 115 198
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52 0.85 0.26 0.85 0.26 0.85 0.60 0.60 0.43 0.46 0.14 0.10 0.99 0.68	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37 0.12 0.51 0.32 0.37 0.12 0.51 0.32 0.37 0.12	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52 0.17 0.64 0.42 0.45 0.20 0.27 0.03 0.02 0.66 0.37	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161 104 156 134 232 92 197 126 115 198 125
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52 0.85 0.26 0.85 0.26 0.85 0.60 0.60 0.43 0.46 0.14 0.10 0.99 0.68 0.82	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37 0.12 0.51 0.32 0.37 0.12 0.51 0.32 0.37 0.12 0.51 0.32 0.37	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52 0.17 0.64 0.42 0.45 0.20 0.27 0.03 0.02 0.66 0.37 0.20	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161 104 156 134 232 92 197 126 115 198 125 81
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52 0.85 0.26 0.85 0.26 0.85 0.60 0.60 0.43 0.46 0.14 0.10 0.99 0.68	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37 0.12 0.51 0.32 0.37 0.12 0.51 0.32 0.37 0.12	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52 0.17 0.64 0.42 0.45 0.20 0.27 0.03 0.02 0.66 0.37	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161 104 156 134 232 92 197 126 115 198 125
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330	0.97 0.98 0.56 0.30 0.00 0.88 0.79 0.82 0.54 0.75 0.51 0.56 0.47 0.45 0.52 0.85 0.26 0.85 0.26 0.85 0.60 0.60 0.43 0.46 0.14 0.10 0.99 0.68 0.82	0.62 0.51 0.34 0.06 0.00 0.07 0.28 0.39 0.23 0.05 0.30 0.17 0.23 0.10 0.32 0.37 0.12 0.51 0.32 0.37 0.12 0.51 0.32 0.37 0.12 0.51 0.32 0.37	0.75 0.67 0.42 0.10 0.00 0.14 0.41 0.53 0.32 0.09 0.38 0.27 0.31 0.16 0.39 0.52 0.17 0.64 0.42 0.45 0.20 0.27 0.03 0.02 0.66 0.37 0.20	176 230 156 146 98 78 94 162 116 57 65 138 195 69 134 148 161 104 156 134 232 92 197 126 115 198 125 81

J J L	0.00	U • U U	U • ± U	J J
333	0.19	0.02	0.04	260
334	0.38	0.05	0.09	60
335	0.53	0.07	0.13	110
336	0.67	0.41	0.51	71
337	0.17	0.03	0.05	66
338	0.52	0.33	0.40	150
339	0.00	0.00	0.00	54
340	0.85	0.46	0.59	195
341	0.83	0.25	0.39	79
342	0.50	0.18	0.27	38
343	0.65	0.35	0.45	43
344	0.57	0.19	0.29	68
345	0.70	0.32	0.43	73
346	0.08	0.01	0.02	116
347	0.89	0.30	0.45	111
348	0.38	0.10	0.15	63
349				104
	0.86	0.53	0.65	
350	0.61	0.39	0.47	44
351	0.69	0.23	0.34	40
352	0.98	0.32	0.49	136
353	0.38	0.15	0.21	54
354	0.56	0.04	0.07	134
355	0.68	0.30	0.42	120
				228
356	0.51	0.18	0.27	
357	0.72	0.27	0.39	269
358	0.75	0.30	0.43	80
359	0.83	0.36	0.50	140
360	0.38	0.12	0.18	125
361	0.93	0.51	0.66	169
362	0.11	0.04	0.05	56
363	0.94	0.54	0.69	154
364	0.71	0.09	0.15	58
365	0.20	0.07	0.10	71
366	1.00	0.50	0.67	54
367	0.37	0.06	0.10	116
368	0.00			54
		0.00	0.00	
369	0.00	0.00	0.00	71
370	0.00	0.00	0.00	61
371	0.50	0.04	0.08	71
372	0.68	0.33	0.44	52
373	0.77	0.29	0.43	150
374	0.43	0.10	0.16	93
375	0.25	0.03	0.05	67
376	0.00	0.00	0.00	76
377	0.74	0.19	0.30	106
378	0.17	0.01	0.02	86
379	0.50	0.07	0.12	14
380	1.00	0.30	0.47	122
381	0.36	0.04	0.07	104
382	0.35	0.09	0.14	66
383	0.56	0.25	0.35	110
384	0.33	0.01	0.01	155
385	0.71	0.10	0.18	50
386	0.17	0.05	0.07	64
387	0.62	0.05	0.10	93
388	0.64	0.16	0.25	102
389	0.14	0.01	0.02	108
390	0.96	0.54	0.69	178
391	0.58	0.12	0.20	115
392	0.88	0.33	0.48	42
393	0.00	0.00	0.00	134
394	0.43	0.03	0.05	112
395	0.58	0.19	0.29	176
396	0.67	0.06	0.12	125
397	0.82	0.24	0.37	224
398	0.93	0.44	0.60	63
399	1.00	0.02	0.03	59
400	0.52	0.25	0.34	63
401	0.57	0.16	0.25	98
402	0.61	0.14	0.23	162
403	0.46	0.13	0.21	83
404	0.83	0.79	0.81	19
405	0.44	0.08	0.13	92
406	0.88	0.17	0.29	41
407	0.65	0.30	0.41	43
408	0.82	0.29	0.43	160
409	Λ 21	Λ 1Λ	∩ 1⊿	50

ュレン	∨•∠⊥	U • ± U	U • 17	J U
410	0.00	0.00	0.00	19
411	0.32	0.07	0.11	175
412	0.25	0.03	0.05	72
413	0.75	0.06	0.12	95
414	0.14	0.02	0.04	97
415	0.36	0.08	0.14	48
416	0.48	0.27	0.34	83
417	0.25	0.03	0.05	40
418	0.55	0.13	0.21	91
419	0.50	0.19	0.27	90
420	0.39	0.24	0.30	37
421	0.09	0.02	0.03	66
422	0.65	0.38	0.48	73
423	0.52	0.20	0.29	56
424	0.93	0.76	0.83	33
				76
425	0.00	0.00	0.00	
426	0.30	0.04	0.07	81
427	0.99	0.47	0.64	150
428	0.95	0.66	0.78	29
429	0.99	0.34	0.51	389
430	0.66	0.26	0.38	167
431	0.61	0.09	0.16	123
432	0.55	0.31	0.39	39
433	0.32	0.15	0.20	82
434	1.00	0.52	0.68	66
435	0.62	0.34	0.44	93
436	0.64	0.29	0.40	87
437	0.12	0.01	0.02	86
438	0.72	0.40	0.52	104
439	0.71	0.10	0.18	100
440	0.00	0.00	0.00	141
441	0.43	0.25	0.31	110
442	0.43	0.12	0.19	123
443	0.45	0.07	0.12	71
444	0.60	0.06	0.10	109
445	0.42	0.17	0.24	48
446	0.36	0.16	0.22	76
447	0.46	0.16	0.24	38
448	0.69	0.47	0.56	81
449	0.66	0.22	0.33	132
450	0.46	0.22	0.30	81
451	0.94	0.21	0.34	76
452	0.00	0.00	0.00	44
453	0.00	0.00	0.00	44
454	0.88	0.43	0.58	70
455	0.59	0.08	0.15	155
456	0.58	0.16	0.25	43
457	0.55	0.15	0.24	72
458	0.50	0.08	0.14	62
459	0.75	0.17	0.28	69
460	0.00	0.00	0.00	119
461	0.79	0.14	0.24	79
462	0.54	0.15	0.23	47
463	0.33	0.04	0.07	104
464	0.72	0.29	0.42	106
465	0.92	0.17	0.29	64
466	0.58	0.24	0.34	173
467	0.86	0.28	0.42	107
468	0.75	0.12	0.21	126
469	0.00	0.00	0.00	114
470	0.95	0.72	0.82	140
471	0.88	0.19	0.31	79
472	0.39	0.24	0.30	143
473	0.75	0.25	0.37	158
474	0.50	0.04	0.07	138
475	0.00	0.00	0.00	59
476	0.53	0.18	0.27	88
477	0.88	0.48	0.62	176
478	1.00	0.71	0.83	24
479	0.14	0.01	0.02	92
480	0.83	0.38	0.52	100
481	0.54	0.20	0.30	103
482	0.50	0.19	0.27	74
483	0.80	0.43	0.56	105
484	0.00	0.00	0.00	83
485	0.00	0.00	0.00	82
400 126	0.00	0.00 0.13	0.00	0∠ 71
// 60	311	11 1 3	11 211	7-1

```
0.20
       400
               0.00
                        U. 1J
       487
               0.41
                        0.12
                                          120
               0.33
                       0.01
                               0.02
                                         105
       488
              0.79
                       0.25
                               0.38
                               0.84
       490
               1.00
                       0.72
                                          32
                               0.00
                       0.00
               0.00
                                          69
       491
       492
               0.00
                        0.00
                                 0.00
                                           49
                                0.00
       493
               0.00
                        0.00
                                          117
       494
              0.43
                       0.10
                               0.16
                                          61
       495
              0.99
                       0.39
                               0.56
                                          344
                             0.14
0.23
0.06
0.24
       496
               0.29
                       0.10
                                          52
                       0.15
0.03
       497
               0.59
       498
               0.27
                                          98
                       0.14
       499
              0.92
                      0.32
                               0.44 173812
              0.74
  micro avg
                       0.23
                                0.31
                                        173812
  macro avq
               0.58
weighted avg
               0.68
                        0.32
                                0.42
                                        173812
                                0.33
               0.41
                       0.30
                                       173812
samples avq
```

Time taken to run this cell: 0:25:58.353092

Linear SVM(SGD Classifier) with OneVsResClassifier

```
In [85]:
start = datetime.now()
classifier = OneVsRestClassifier(SGDClassifier(loss='hinge', alpha=0.0001, penalty='12'))
classifier.fit(x train multilabel, y train)
predictions = classifier.predict (x test multilabel)
print("Accuracy :", metrics.accuracy_score(y_test, predictions))
print("Hamming loss ", metrics.hamming_loss(y_test, predictions))
precision = precision_score(y_test, predictions, average='micro')
recall = recall score(y test, predictions, average='micro')
f1 = f1_score(y_test, predictions, average='micro')
print("Micro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
precision = precision_score(y_test, predictions, average='macro')
recall = recall_score(y_test, predictions, average='macro')
f1 = f1_score(y_test, predictions, average='macro')
print("Macro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
print (metrics.classification_report(y_test, predictions))
print("Time taken to run this cell :", datetime.now() - start)
Accuracy : 0.19264
Hamming loss 0.00300582
Micro-average quality numbers
Precision: 0.8629, Recall: 0.1609, F1-measure: 0.2712
Macro-average quality numbers
Precision: 0.2257, Recall: 0.0717, F1-measure: 0.0956
```

precision recall f1-score support 0.51 0.67 0 0.96 5519 1 0.65 0.17 0.26 8190 2 0.86 0.27 0.41 6529 0.81 0.31 0.45 3231 3 0.88 0.30 0.45 2879 5 0.84 0.26 0.39 0.58 6 0.92 0.43 5086 7 0.91 0.47 0.62 0.20 0.12 3000 8 0.62 0.55 9 0.83 0.41 2765 0.00 3051 10 0.00 0.00 0.38 0.24 0.85 3009 11 0.75 0.12 0.20 2630

13	1.00	0.00	0.00	1426
14	0.95	0.45	0.61	2548
15	0.94	0.04	0.08	2371
16	0.66	0.25	0.36	873
17	0.91	0.54	0.68	2151
18	1.00	0.00	0.01	2204
19	0.70	0.43	0.54	831
20	0.82	0.34	0.48	1860
21	0.00	0.00	0.00	2023
22	0.00	0.00	0.00	1513
23	0.95	0.37	0.54	1207
24	0.00	0.00	0.00	506
25	0.82	0.24	0.38	425
26	0.79	0.04	0.08	793
27	0.00	0.00	0.00	1291
28	0.87	0.25	0.39	1208
29	0.00	0.00	0.00	406
30	0.83	0.10	0.18	504
31	0.00	0.00	0.00	732
32	0.79	0.03	0.07	441
	0.00	0.00	0.00	
33				1645
34	0.76	0.02	0.04	1058
35	0.90	0.25	0.39	946
36	0.78	0.03	0.06	644
37	0.98	0.67	0.79	136
38	0.53	0.03	0.06	570
39	0.93	0.09	0.16	766
40	0.00	0.00	0.00	1132
41	0.00	0.00	0.00	174
42	0.76	0.36	0.49	210
43	0.84	0.38	0.52	433
44	1.00	0.00	0.00	626
45	0.00	0.00	0.00	852
46	0.00	0.00	0.00	534
47	0.00	0.00	0.00	350
48	0.80	0.39	0.52	496
49	0.81	0.56	0.66	785
50	0.00	0.00	0.00	475
51	0.00	0.00	0.00	305
52	0.00	0.00	0.00	251
53	0.00	0.00	0.00	914
54	0.00	0.00	0.00	728
55	0.00	0.00	0.00	258
56	0.00	0.00	0.00	821
57	0.00	0.00	0.00	541
58	1.00	0.02	0.04	748
59	0.94	0.59	0.72	724
60	0.00	0.00	0.00	660
61	0.91	0.17	0.29	235
62	0.93	0.64	0.76	718
63	0.88	0.52	0.65	468
64	0.00	0.00	0.00	191
65	0.00	0.00	0.00	429
66	0.00	0.00	0.00	415
67	0.78	0.41	0.53	274
68	0.84	0.43	0.57	510
69	0.00	0.00	0.00	466
70	0.00	0.00	0.00	305
71	0.00	0.00	0.00	247
72				
	0.84	0.33	0.47	401
73	0.98	0.72	0.83	86
74	0.87	0.23	0.36	120
75	0.89	0.72	0.79	129
76	0.00	0.00	0.00	473
77	0.00	0.00	0.00	143
78	0.80	0.31	0.44	347
79	0.00	0.00	0.00	479
80	0.75	0.01	0.02	279
81	0.00	0.00	0.00	461
82	0.00	0.00	0.00	298
83	0.00	0.00	0.00	396
84	0.00	0.00	0.00	184
85	0.00	0.00	0.00	573
86	0.00	0.00	0.00	325
87	0.00	0.00	0.00	273
88	0.00	0.00	0.00	135
89	0.00	0.00	0.00	232

90	0.00	0.00	0.00	409
91 92	0.00	0.00	0.00 0.36	420 408
93	0.76	0.14	0.24	241
94	0.00	0.00	0.00	211
95	0.00	0.00	0.00	277
96 97	0.00 0.91	0.00 0.02	0.00	410 501
98	0.74	0.63	0.68	136
99	0.00	0.00	0.00	239
100	0.00	0.00	0.00	324
101 102	0.96 0.95	0.44 0.59	0.60 0.73	277 613
103	0.00	0.00	0.00	157
104	0.00	0.00	0.00	295
105	0.87	0.16	0.28	334
106 107	0.00	0.00	0.00	335 389
108	0.00	0.00	0.00	251
109	0.00	0.00	0.00	317
110 111	0.00	0.00	0.00	187
112	0.00	0.00	0.00	140 154
113	0.00	0.00	0.00	332
114	0.00	0.00	0.00	323
115 116	0.00	0.00	0.00	344 370
117	0.00	0.00	0.00	313
118	0.00	0.00	0.00	874
119	0.00	0.00	0.00	293
120 121	0.00 0.94	0.00	0.00 0.06	200 463
122	0.00	0.00	0.00	119
123	0.00	0.00	0.00	256
124	0.89	0.72	0.80	195
125 126	0.00 1.00	0.00 0.01	0.00 0.02	138 376
127	0.00	0.00	0.00	122
128	0.00	0.00	0.00	252
129 130	0.00	0.00	0.00	144 150
131	0.00	0.00	0.00	210
132	0.00	0.00	0.00	361
133 134	0.97 0.88	0.32 0.73	0.48	453
134	0.00	0.73	0.00	124 91
136	0.00	0.00	0.00	128
137	0.74	0.06	0.12	218
138 139	0.00	0.00	0.00	243 149
140	0.00	0.00	0.00	318
141	0.00	0.00	0.00	159
142 143	0.00 0.91	0.00 0.34	0.00 0.49	274 362
144	0.00	0.00	0.49	118
145	0.00	0.00	0.00	164
146	0.00	0.00	0.00	461
147 148	0.57 0.00	0.05 0.00	0.09	159 166
149	0.99	0.31	0.47	346
150	0.00	0.00	0.00	350
151 152	0.93 0.85	0.51 0.03	0.66 0.06	55 387
153	0.00	0.00	0.00	150
154	0.00	0.00	0.00	281
155	0.00	0.00	0.00	202
156 157	0.82	0.62 0.00	0.70 0.00	130 245
158	0.89	0.56	0.69	177
159	1.00	0.01	0.02	130
160 161	0.00 0.95	0.00 0.45	0.00 0.61	336 220
162	0.95	0.45	0.00	229
163	0.91	0.29	0.44	316
164	0.00	0.00	0.00	283
165 166	0.00	0.00	0.00	197 101

1.67	0 00	0 00	0.00	0.01
167	0.00	0.00	0.00	231
168	0.00	0.00	0.00	370
169	0.00	0.00	0.00	258
170	0.00	0.00	0.00	101
171	0.00	0.00	0.00	89
172	0.00	0.00	0.00	193
173	0.00	0.00	0.00	309
174	0.00	0.00	0.00	172
175	0.94	0.77	0.84	95
176	0.96	0.27	0.43	346
177	0.98	0.15	0.25	322
178	1.00	0.00	0.01	232
179	0.00	0.00	0.00	125
180	0.42	0.03	0.06	145
				77
181	0.00	0.00	0.00	
182	0.00	0.00	0.00	182
183	0.00	0.00	0.00	257
184	0.00	0.00	0.00	216
185	0.00	0.00	0.00	242
186	0.00	0.00	0.00	165
187	0.83	0.19	0.31	263
188	0.00	0.00	0.00	174
189	0.00	0.00	0.00	136
190	0.96	0.22	0.35	202
191	0.00	0.00	0.00	134
192				230
	1.00	0.01	0.03	
193	0.00	0.00	0.00	90
194	0.00	0.00	0.00	185
195	0.00	0.00	0.00	156
196	0.00	0.00	0.00	160
197	0.00	0.00	0.00	
				266
198	0.00	0.00	0.00	284
199	0.00	0.00	0.00	145
200	0.94	0.56	0.70	212
201	0.00	0.00	0.00	317
202	0.00	0.00	0.00	427
203	0.00	0.00	0.00	232
204	0.00	0.00	0.00	217
205	0.00	0.00	0.00	527
206	0.00	0.00	0.00	124
207	0.00	0.00	0.00	103
208	1.00	0.01	0.03	287
209	0.00	0.00	0.00	193
			0.00	
210	0.00	0.00		220
211	0.00	0.00	0.00	140
212	0.00	0.00	0.00	161
213	0.00	0.00	0.00	72
214	0.00	0.00	0.00	396
215	0.00	0.00	0.00	134
216	0.00	0.00	0.00	400
217	0.00	0.00	0.00	75
218	0.98	0.63	0.77	219
219	0.00	0.00	0.00	210
220	1.00	0.04	0.07	298
221	0.97	0.41	0.58	266
222	0.00	0.00	0.00	290
223	0.00	0.00	0.00	128
224	1.00	0.01	0.02	159
225	0.00	0.00	0.00	164
226	0.00	0.00	0.00	144
227	0.00	0.00	0.00	276
				235
228	0.00	0.00	0.00	
229	0.00	0.00	0.00	216
230	0.00	0.00	0.00	228
231	0.68	0.33	0.44	64
232	0.00	0.00	0.00	103
233	1.00	0.00	0.01	216
234	0.00	0.00	0.00	116
235	1.00	0.01	0.03	77
236	0.98	0.60	0.74	67
237	0.00	0.00	0.00	218
238	0.00	0.00	0.00	139
239	0.00	0.00	0.00	94
240	0.00	0.00	0.00	77
241	0.00	0.00	0.00	167
242	0.82	0.16	0.27	86
243	0.00	0.00	0.00	58

244	0.00	0.00	0.00	269
245	0.00	0.00	0.00	112
246	0.96	0.53	0.68	255
247	0.00	0.00	0.00	58
248	0.00	0.00	0.00	81
249	0.00	0.00	0.00	131
250	0.00	0.00	0.00	93
251	0.00	0.00	0.00	154
252	0.00	0.00	0.00	129
253				
	0.50	0.01	0.02	83
254	0.00	0.00	0.00	191
255	0.00	0.00	0.00	219
256	0.00	0.00	0.00	130
257	0.00	0.00	0.00	93
258	1.00	0.02	0.04	217
259	0.00	0.00	0.00	141
260	1.00	0.03	0.05	143
261	0.00	0.00	0.00	219
262	0.00	0.00	0.00	107
263	0.00	0.00	0.00	236
264	0.00	0.00	0.00	119
265	0.00	0.00	0.00	72
266	0.00	0.00	0.00	70
267	0.00	0.00	0.00	107
268	0.00	0.00	0.00	169
269	0.00	0.00	0.00	129
270	0.00	0.00	0.00	159
271	0.00	0.00	0.00	190
272	0.00	0.00	0.00	248
273	0.91	0.24	0.38	264
274	0.90	0.51	0.65	105
275	0.00	0.00	0.00	104
276	0.00	0.00	0.00	115
277	0.87	0.32	0.47	170
278	0.00	0.00	0.00	145
279	0.91	0.18	0.30	230
280	0.00	0.00	0.00	80
281	1.00	0.06	0.11	217
282	1.00	0.03	0.06	175
283	0.00	0.00	0.00	269
284	0.00	0.00	0.00	74
285	0.00	0.00	0.00	206
286	0.93	0.18	0.30	227
287	0.00	0.00	0.00	130
288	0.00	0.00	0.00	129
289	0.00	0.00	0.00	80
290	0.00	0.00	0.00	99
291	0.00	0.00	0.00	208
292	0.00	0.00	0.00	67
293	0.00	0.00	0.00	109
294	0.00	0.00	0.00	140
295	0.00	0.00	0.00	241
296	0.00	0.00	0.00	72
297	0.00	0.00	0.00	107
298	0.00	0.00	0.00	61
299	0.00	0.00	0.00	77
300	0.00	0.00	0.00	111
301	0.00	0.00	0.00	126
302	0.00	0.00	0.00	73
303	0.00	0.00	0.00	176
304	0.98	0.45	0.62	230
305	0.97	0.40	0.56	156
306	0.00	0.00	0.00	146
307	0.00	0.00	0.00	98
308	0.00	0.00	0.00	78
309	0.00	0.00	0.00	94
310	0.00	0.00	0.00	162
311	0.73	0.07	0.13	116
312	0.00	0.00	0.00	57
313	0.00	0.00	0.00	65
314	0.00	0.00	0.00	138
315	0.00	0.00	0.00	195
316	0.00	0.00	0.00	69
317	0.00	0.00	0.00	134
318	0.00	0.00	0.00	148
319	1.00	0.00	0.01	161
320	0.00	0.00	0.00	104

201	1 00	0.01	0.01	156
321	1.00	0.01	0.01	156
322	0.00	0.00	0.00	134
323	0.00	0.00	0.00	232
324	0.00	0.00	0.00	92
325	0.00	0.00	0.00	197
326	0.00	0.00	0.00	126
327	0.00	0.00	0.00	115
328	1.00	0.31	0.48	198
329	0.00	0.00	0.00	125
330	0.00	0.00	0.00	81
331	0.00	0.00	0.00	94
332	0.00	0.00	0.00	56
333	0.00	0.00	0.00	260
334	0.00	0.00	0.00	60
335	0.00	0.00	0.00	110
336	0.00	0.00	0.00	71
337	0.00	0.00	0.00	66
338	0.00	0.00	0.00	150
339	0.00	0.00	0.00	54
340	0.00	0.00	0.00	195
341	0.00	0.00	0.00	79
342	0.00	0.00	0.00	38
343	0.00	0.00	0.00	43
344	0.00	0.00	0.00	68
345	0.00	0.00	0.00	73
346	0.00	0.00	0.00	116
347	0.00	0.00	0.00	111
				63
348	0.00 0.92	0.00	0.00	
349		0.12	0.21	104
350	0.00	0.00	0.00	44
351	0.00	0.00	0.00	40
352	1.00	0.04	0.08	136
353	0.00	0.00	0.00	54
354	0.00	0.00	0.00	134
355	0.00	0.00	0.00	120
356	0.00	0.00	0.00	228
357	0.00	0.00	0.00	269
358	0.00	0.00	0.00	80
359	0.00	0.00	0.00	140
360	0.00	0.00	0.00	125
361	1.00	0.04	0.07	169
362	0.00	0.00	0.00	56
363	0.96	0.31	0.46	154
364	0.00	0.00	0.00	58
365	0.00	0.00	0.00	71
366	1.00	0.57	0.73	54
367	0.00	0.00	0.00	116
368	0.00	0.00	0.00	54
369	0.00	0.00	0.00	71
370	0.00	0.00	0.00	61
371	0.00	0.00	0.00	71
372	0.00	0.00	0.00	52
373	0.00	0.00	0.00	150
374	0.00	0.00	0.00	93
375	0.00	0.00	0.00	67
376	0.00	0.00	0.00	76
377	0.00	0.00	0.00	106
378	0.00	0.00	0.00	86
379	0.00	0.00	0.00	14
380	1.00	0.01	0.02	122
381	0.00	0.00	0.00	104
382	0.00	0.00	0.00	66
383	0.00	0.00	0.00	110
384	0.00	0.00	0.00	155
385	0.00	0.00	0.00	50
386	0.00	0.00	0.00	64
387	0.00	0.00	0.00	93
388				
	0.00	0.00	0.00	102
389	0.00	0.00	0.00	108
390	0.96	0.31	0.47	178
391	0.00	0.00	0.00	115
392	1.00	0.02	0.05	42
393	0.00	0.00	0.00	134
394	0.00	0.00	0.00	112
395	0.00	0.00	0.00	176
396	0.00	0.00	0.00	125
397	0.00	0.00	0.00	2.2.4

J	· • · ·	· • · ·	· • · ·	
398	1.00	0.05	0.09	63
399	0.00	0.00	0.00	59
400	0.00	0.00	0.00	63
401	0.00	0.00	0.00	98
402	0.00	0.00	0.00	162
403	0.00	0.00	0.00	83
404	0.73	0.84	0.78	19
405	0.00	0.00	0.00	92
406	0.00	0.00	0.00	41
407	0.00	0.00	0.00	43
408	0.00	0.00	0.00	160
409	0.00	0.00	0.00	50
410	0.00	0.00	0.00	19
411	0.00	0.00	0.00	175
412	0.00	0.00	0.00	72
413	0.00	0.00	0.00	95
414	0.00	0.00	0.00	97
415	0.00	0.00	0.00	48
416	0.00	0.00	0.00	83
417	0.00	0.00	0.00	40
418	0.00	0.00	0.00	91
419	0.00	0.00	0.00	90
420	0.00	0.00	0.00	37
421	0.00	0.00	0.00	66
422	0.00	0.00	0.00	73
423	0.00	0.00	0.00	56
424	0.93	0.82	0.87	33
425	0.00	0.00	0.00	76
426	0.00	0.00	0.00	81
427	1.00	0.18	0.31	150
428	0.95	0.66	0.78	29
429	0.00	0.00	0.00	389
430	0.00	0.00	0.00	167
431	0.00	0.00	0.00	123
432	0.00	0.00	0.00	39
433	0.00	0.00	0.00	82
434	1.00	0.50	0.67	66
435	0.00	0.00	0.00	93
436	0.00	0.00	0.00	87
437	0.00	0.00	0.00	86
438	0.00	0.00	0.00	104
439	0.00	0.00	0.00	100
440	0.00	0.00	0.00	141
441	0.00	0.00	0.00	110
442	0.00	0.00	0.00	123
443	0.00	0.00	0.00	71
444	0.00	0.00	0.00	109
445	0.00	0.00	0.00	48
446	0.00	0.00	0.00	76
447	0.00	0.00	0.00	38
448		0.00	0.00	
	0.00			81
449	0.00	0.00	0.00	132
450	0.00	0.00	0.00	81
451	0.00	0.00	0.00	76
452	0.00	0.00	0.00	44
453	0.00	0.00	0.00	44
454	0.75	0.09	0.15	70
455	0.00	0.00	0.00	155
456		0.00	0.00	43
	0.00			
457	0.00	0.00	0.00	72
458	0.00	0.00	0.00	62
459	0.00	0.00	0.00	69
460	0.00	0.00	0.00	119
461	0.00	0.00	0.00	79
462	0.00	0.00	0.00	47
463	0.00	0.00	0.00	104
464	0.00	0.00	0.00	106
465	0.00	0.00	0.00	64
466	0.00	0.00	0.00	173
467	0.00	0.00	0.00	107
468	0.00	0.00	0.00	126
469	0.00	0.00	0.00	114
470	1.00	0.28	0.44	140
471	0.00	0.00	0.00	79
472	0.00	0.00	0.00	143
473	0.00	0.00	0.00	158
474	0.00	0.00	0.00	138

```
0.00
                                0.00
        475
                0.00
                                            59
                        0.00
                                0.00
        476
                0.00
                                            88
        477
                0.00
                        0.00
                                 0.00
                                            176
        478
                0.94
                         0.71
                                  0.81
                                            24
        479
                0.00
                         0.00
                                  0.00
                                             92
        480
                0.00
                         0.00
                                  0.00
                                            100
        481
                0.00
                        0.00
                                 0.00
                                            103
        482
                0.00
                        0.00
                                 0.00
                                            74
                         0.00
                                 0.00
                                            105
       483
                0.00
        484
                0.00
                         0.00
                                  0.00
                                            8.3
                                 0.00
        485
                0.00
                         0.00
                                            82
        486
                0.00
                        0.00
                                 0.00
                                            71
        487
                0.00
                        0.00
                                 0.00
                                            120
                0.00
       488
                        0.00
                                 0.00
                                            105
        489
                0.00
                         0.00
                                  0.00
                                            87
        490
                1.00
                         0.72
                                  0.84
                                             32
                0.00
                         0.00
                                 0.00
        491
                                            69
        492
                0.00
                        0.00
                                 0.00
                                             49
       493
                0.00
                        0.00
                                 0.00
                                            117
                        0.00
                                 0.00
       494
                0.00
                                            61
        495
                0.00
                         0.00
                                  0.00
                                            344
                                 0.00
        496
                0.00
                         0.00
                                            52
        497
                0.00
                        0.00
                                 0.00
                                            137
        498
                0.00
                        0.00
                                0.00
                                             98
                                             79
       499
                0.00
                        0.00
                                 0.00
  micro avq
                0.86
                         0.16
                                  0.27
                                         173812
                                         173812
                0.23
                         0.07
                                  0.10
  macro avg
weighted avg
                0.49
                         0.16
                                  0.23
                                         173812
samples avg
                0.25
                        0.16
                                  0.18
                                         173812
```

Time taken to run this cell : 0:07:31.119153

In [2]:

```
from prettytable import PrettyTable

x = PrettyTable()

x.field_names = ["S.No.", "Model", "Hyperparameter", "Regularization", "F1 micro", "F1 macro"]

x.add_row(["1.", "Logistic Regression", 1, "L2", 0.444, 0.314])

x.add_row(["2.", "SGD Classifier with log loss", 0.00001, "L2", 0.354, 0.1903])

x.add_row(["3.", "SGD Classifier with hinge loss", 0.0001, "L2", 0.271, 0.095])

print(x)
```

S.No.	+ Model +	Hyperparameter	-+ Regularization -+	+ F1 micro +	++ F1 macro ++
1.	Logistic Regression SGD Classifier with log loss SGD Classifier with hinge loss	1	L2	0.444	0.314
2.		1e-05	L2	0.354	0.1903
3.		0.0001	L2	0.271	0.095

Conclusion

- 1. Reading the data from the csv file and then using the SQLite we are storing into a database.
- 2. Checking for the dupliacate rows and found the around 30% of the data is being repeated and so we removed them.
- 3. Analyze the tags and found that most of the questions have 3Tags or 2Tags.
- 4. Plotted the distribution/frequency of the tags and found the around 153tags occured 1000times and 14Tags occured 10,000times.
- 5. Top 3 tags are C#, Java and php.
- 6. Preprocessing of the text data(Questions).
- 7. Converting tags into desired target i.e Multilabel using countvectorizer.
- 8. Selecting the top 500tags as it contains 90% of the data and also to reduce the computation.
- 9. Featuring the text data using **Tfidf** vectorizer with ngram range (1,4)
- 10. Used Logistic Regression and SGD classifier with loss equal to log and hinge separately for building the model

In []:			