BASIC ELECTRONIC CIRCUITS

Amplifiers, and Op-Amps

The Ideal Op-Amp: terminals

- 3 terminals: Two input and one output.
- No terminal of the op-amp package is physically connected to ground.

Pin configuration

Function and characteristics

- Basic function is to sense the difference between the voltage signals applied at its input terminals.
 - Infinite input impedance
 - Zero output impedance
 - Zero common mode gain
 - Infinite open-loop gain A
 - Infinite bandwidth

Equivalent Circuit (VCVS) model of the ideal OP-AMP

Differential input, single-ended output amplifier

Inverting Configuration

"Virtual short Circuit"

Closed loop gain is independent of open-loop gain, entirely depends on the passive elements.

Application: The weighted Summer

$$i = i_1 + i_2 + \dots + i_n$$

$$v_O = 0 - iR_f = -iR_f$$

Summing signals with opposite sign

$$v_O = v_1 \left(\frac{R_a}{R_1}\right) \left(\frac{R_c}{R_b}\right) + v_2 \left(\frac{R_a}{R_2}\right) \left(\frac{R_c}{R_b}\right) - v_3 \left(\frac{R_c}{R_3}\right) - v_4 \left(\frac{R_c}{R_4}\right)$$

Determine the values of v_1 , i_1 , i_2 , v_o , i_L , and i_o . Also determine the values of V_o/V_I , I_L/i_1 and power gain Po/Pi

Noninverting Configuration

Application: Voltage follower

- High input impedance is a desirable feature of non inverting configuration.
- Unity-gain amplifier or Voltage follower.
- Used as an impedance transformer.

Determine the values of i_I , v_1 , i_1 , i_2 , v_o , i_L , and i_o . Also determine the values of V_o/V_I , I_L/i_I and power gain P_L/P_I

Difference Amplifier

- Combination of inverting and noninverting configurations.
- Common mode signals need to be rejected, hence the magnitude of the inverting and noninverting must be same.
- Hence attenuate the gain of the +ve path from $(1+R_2/R_1)$ to R_2/R_1 .

$$\frac{R_4}{R_4 + R_3} \left(1 + \frac{R_2}{R_1} \right) = \frac{R_2}{R_1}$$

$$\frac{R_4}{R_3} = \frac{R_2}{R_1}$$

• By Superposition:

$$v_O = \frac{R_2}{R_1}(v_{I2} - v_{I1}) = \frac{R_2}{R_1}v_{Id}$$

$$A_d = \frac{R_2}{R_1}$$

$$R_3 = R_1$$
 and $R_4 = R_2$

Use superposition to determine Vo

$$v_0 = 6v_1 + 4v_2$$

• If the 1K resistor is disconnected from the ground and

connected to V3, determine Vo.

$$v_0 = 6v_1 + 4v_2 - 9v_3$$

• Design a non inverting amplifier with a gain of 2. At the maximum output voltage of 10 V the current in the voltage divider is to be 10 μ A.

$$v_0 = 10 \ V$$
 $\dfrac{v_0 - v_1}{R_2} = 10 \ \mu \text{A}$ $G = 2 = 1 + R_2/R_1$ $\dfrac{v_1}{R_1} = 10 \ \mu \text{A}$ $R_1 = 0.5 \ M\Omega$ $R_1 = R_2$ $v_0 = 2 v_1$ $v_1 = 5 \ V$

Instrumentation Amplifier

 To address the low input resistance of the difference amplifier.

$$v_{O} = \frac{R_{4}}{R_{3}} \left(1 + \frac{R_{2}}{R_{1}} \right) v_{Id}$$

Instrumentation Amplifier

Instrumentation Amplifier

