Eigenschaften Algorithmen

- Algorithmen, welche sich selbst mit veränderten Parametern aufrufen
- benötigt Abbruchbedingung
- oft höhere Komplexität (Time/Space) als [[Iterative Algorithmen]]
 - Optimierung durch Zwischenspeichern von Ergebnissen möglich
- Koch-Flocke
 - Eigenschaften
 - * unendlicher Umfang
 - * begrenzte Fläche

Vergleich zwischen rekursiver und iterativer Implementation

- Koch Flocke
 - rekursive Implementation

* iterative Implementation

- Fibonacci-Zahlen
 - unterschiedliche Komplexität
 - Beispiel: Fibonacci-Zahlen

FIBONACCI(n)

1: fib
$$\leftarrow$$
 1

2: fib_prev \leftarrow 1

3: FOR i \leftarrow 3 TO n

4: fib_pprev \leftarrow fib_prev

5: fib_prev \leftarrow fib

6: fib \leftarrow fib_prev + fib_pprev

7: RETURN fib

$$T(n) = O(n)$$
$$S(n) = O(1)$$

 $f_n = f_{n-1} + f_{n-2}, \quad n \ge 3; \quad f_1 = f_2 = 1$ $\Rightarrow 1, 1, 2, 3, 5, 8, 13, 21, \dots$

$$T(n) = \Omega\left(\left(\sqrt{2}\right)^n\right)$$
 $T(n) = O\left(\left(\sqrt{3}\right)^n\right)$
S(n) = O(n) (entspricht Rekursionstiefe)

– Optimierung durch Speichern von Zwischenergebnissen

Memorization

$$A \subseteq J = \emptyset \quad \forall i \geq 2$$
 $J_n \quad A \subseteq J \quad spacken wir$
 $A \subseteq J = \emptyset \quad f_{in}$
 $F : B = M(n)$
 $F : A \subseteq J = \emptyset$
 $A \subseteq J$
 $A \subseteq J$

3