ENGR 504 (Fall 2024) S. Alghunaim

12. Nonlinear equations and optimization

- nonlinear equation in one variable
- Newton method for nonlinear equations
- unconstrained optimization
- gradient and Newton methods for optimization

Nonlinear equation in one variable

$$f(x) = 0$$

- the root or zero is any solution of the above equation
- ullet we assume f is a continuous function

Example: nonlinear resistive circuit

$$g(x) - \frac{E - x}{R} = 0$$

a nonlinear equation in the variable x, with three solutions

Iterative methods

- nonlinear equations are much difficult to solve compared to linear equations
- · obtaining a solution by finite-step algorithm is not feasible
- ullet iterative algorithms start with *initial* or *starting point*, $x^{(1)}$ and compute estimates

$$x^{(1)}, x^{(2)}, \dots, x^{(k)}, \dots$$

- moving from $x^{(k)}$ to $x^{(k+1)}$ is called an *iteration* of the algorithm
- ideally converge to a root of the target function

$$x^{(k)} \to x^*$$
 as $k \to \infty$

where $f(x^*) = 0$

Convergence rates

assume the sequence $x^{(k)}$ converges to a limit x^*

Linear convergence: if there exists a constant $c \in (0,1)$ such that

$$|x^{(k)} - x^{\star}| \le c|x^{(k-1)} - x^{\star}|$$
 for sufficiently large k

example: $x^{(k)} = 1 + (1/2)^k$ linearly converges to $x^* = 1$,

$$|x^{(k+1)} - x^*| = (1/2)^{k+1} = \frac{1}{2}|x^{(k)} - x^*|$$

satisfies the definition with c = 1/2

R-linear convergence: if a positive constant M and a value $c \in (0,1)$ exist such that

$$|x^{(k)} - x^{\star}| \le Mc^k$$
 for sufficiently large k

linear convergence implies *R*-linear convergence (reverse is not necessarily true)

Superlinear convergence: if a sequence $c_k > 0$ with $c_k \to 0$ exists such that

$$|x^{(k)} - x^{\star}| \le c_k |x^{(k-1)} - x^{\star}|$$
 for large k

example: $x^{(k)} = 1 + (1/(k+1))^k$ has superlinear convergence to $x^* = 1$, as

$$|x^{(k)} - x^{\star}| = \frac{1}{(k+1)^k} = \frac{k^{k-1}}{(k+1)^k} \frac{1}{k^{k-1}} = \frac{k^{k-1}}{(k+1)^k} |x^{(k-1)} - x^{\star}|$$

satisfies the definition with $c_k = k^{k-1}/(k+1)^k$, which approaches zero

Quadratic convergence: if a constant c > 0 exists such that

$$|x^{(k)} - x^{\star}| \le c|x^{(k-1)} - x^{\star}|^2$$
 for large k

example: $x^{(k)} = 1 + (1/2)^{2^k}$ has quadratic convergence to $x^* = 1$, as

$$|x^{(k+1)} - x^{\star}| = (1/2)^{2^{k+1}} = ((1/2)^{2^k})^2 = |x^{(k)} - x^{\star}|^2$$

satisfies the definition with c=1

The bisection method

given: a, b with a < b, f(a)f(b) < 0, and tolerance ϵ

repeat

- 1. x = (a + b)/2
- 2. compute f(x); if f(x) = 0, return x
- 3. **if** f(x) f(a) < 0, b = x,**else**, <math>a = x
- 4. **stop** if $b a \le \epsilon$

- condition f(a)f(b) < 0 ensures a root exists between a, b
- a, b can be chosen from graphing the function

Convergence

let $[a^{(k)}, b^{(k)}]$ be the interval after iteration k, then

$$b^{(k)} - a^{(k)} = (b - a)/2^k$$

• after k iterations, the midpoint $x^{(k)} = (b^{(k)} + a^{(k)})/2$ satisfies

$$|x^{(k)} - x^*| \le b^{(k)} - a^{(k)} \le (1/2)^k (b - a)$$

thus, it is R-linearly convergent with c = 1/2 and M = b - a

• the exit condition $b^{(k)} - a^{(k)} \le \epsilon$ will be satisfied if

$$\log_2\left(\frac{b-a}{2^k}\right) = \log_2(b-a) - k \le \log_2\epsilon$$

the algorithm therefore terminates after

$$k \approx \left\lceil \log_2 \left(\frac{b-a}{\epsilon} \right) \right\rceil$$

iterations where $\lceil \alpha \rceil$ is the smallest integer greater than or equal to α

MATLAB implementation

```
function [x.k] = bisect(f.a.b.tol)
% assuming func is a defined input function
% this function returns in p a value such that | x - root | < atol
% and in k the number of iterations required.
fa=f(a);fb=f(b);
if (a >= b) | (fa*fb >= 0) | (tol <= 0)
disp('something wrong with the input: quitting');
x = NaN: k=NaN:
return
end
k = ceil(log2(b-a) - log2(tol));
for i=1:k
x = (a+b)/2:
fx = f(x):
if abs(fx) < eps, k = i; return, end
if fa * fx < 0
b = x: fb = fx:
else
a = x: end
end
end
```

• for $f(x) = x^3 - 30x^2 + 2552$, starting from interval [0, 20] with a tolerance of 1×10^{-8} , the method converges to $x^* \approx 11.86150151$ after 31 iterations

the associated MATLAB script is:

$$f = @(x) x^3 - 30*x^2 + 2552;$$

[x,k] = bisect(f,0,20,1.e-8)

• for $f(x) = 2.5 \sinh(x/4) - 1$, beginning with interval [-10, 10] and using a tolerance of 1×10^{-10} , the method converges to $x^* \approx 1.5601412791$ after 38 iterations

the associated MATLAB script is:

$$f = 0(x) 2.5 * sinh (x/4) - 1;$$

[x,k] = bisect(f,-10,10,1.e-10)

Outline

- nonlinear equation in one variable
- Newton method for nonlinear equations
- unconstrained optimization
- gradient and Newton methods for optimization

Set of nonlinear equations

consider n nonlinear equations in n variables x_1, x_2, \ldots, x_n :

$$f_i(x_1,...,x_n) = 0, \quad i = 1,...,n$$

in vector notation: f(x) = 0 with

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad f(x) = \begin{bmatrix} f_1(x_1, \dots, x_n) \\ f_2(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{bmatrix}$$

- $f_i: \mathbb{R}^n \to \mathbb{R}$
- $f_i(x)$ is ith residual
- f(x) is residual vector

Deriving Newton method

• linearize f (i.e., make affine approximation) around current iterate $x^{(k)}$

$$\hat{f}(x;x^{(k)}) = f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)})$$

• take solution x of linearized equation $\hat{f}(x; x^{(k)}) = 0$ as the next iterate $x^{(k+1)}$:

12.12

Newton method for nonlinear equations

assume $f: \mathbb{R}^n \to \mathbb{R}^n$ is differentiable

given a starting point $\boldsymbol{x}^{(1)}$ and solution tolerance ϵ

repeat for $k \ge 0$

- 1. evaluate $Df(x^{(k)})$
- 2. set

$$x^{(k+1)} = x^{(k)} - Df(x^{(k)})^{-1}f(x^{(k)})$$

if
$$\|f(x^{(k+1)})\| < \epsilon$$
 (or $\|x^{(k+1)} - x^{(k)}\| < \epsilon$), stop and output $x^{(k+1)}$

- $Df(x^{(k)})$ is derivative (Jacobian) matrix of f at $x^{(k)}$ assumed to be nonsingular
- each iteration requires one evaluation of f(x) and Df(x)
- each iteration requires factorization of the $n \times n$ matrix Df(x)
- also called Newton-Raphson algorithm

applying Newton's method on $f(x) = 2\cosh(\frac{x}{4}) - x$ gives

$$x^{(k+1)} = x^{(k)} - \frac{2\cosh(x^{(k)}/4) - x^{(k)}}{0.5\sinh(x^{(k)}/4) - 1}$$

where $\cosh(u) = (e^{u} + e^{-u})/2$ and $\sinh(u) = (e^{u} - e^{-u})/2$

with tolerance of 1×10^{-8} , we have

- starting from $x_0=2$, 4 iterations are needed to get $x_1^{\star}=2.35755106$
- from $x_0 = 8$, 5 iterations are enough to reach $x_2^* = 8.50719958$

for $x_0 = 8$, the values of $f(x^{(k)})$ evolve as:

k	0	1	2	3	4	5
$f(x^{(k)})$	-4.76e-1	8.43e-2	1.56e-3	5.65e-7	7.28e-14	1.78e-15

Newton method applied to $f(x) = e^x - e^{-x}$

$$x^{(k+1)} = x^{(k)} - \frac{e^{x^{(k)}} - e^{-x^{(k)}}}{e^{x^{(k)}} + e^{-x^{(k)}}}$$

results with $x^{(1)} = 10$

$$f(x) = e^x - e^{-x} - 3x$$

- starting point $x^{(1)} = -1$: converges to $x^* = -1.62$
- starting point $x^{(1)} = -0.8$: converges to $x^* = 1.62$
- starting point $x^{(1)} = -0.7$: converges to $x^* = 0$

$$f_1(x_1, x_2) = \log(x_1^2 + 2x_2^2 + 1) - 0.5 = 0$$

$$f_2(x_1, x_2) = x_2 - x_1^2 + 0.2 = 0$$

two equations in two variables; two solutions (0.70, 0.29), (-0.70, 0.29)

Newton iteration

• evaluate g = f(x) and

$$H = Df(x) = \begin{bmatrix} 2x_1/(x_1^2 + 2x_2^2 + 1) & 4x_2/(x_1^2 + 2x_2^2 + 1) \\ -2x_1 & 1 \end{bmatrix}$$

- solve Hv = -g (two linear equations in two variables)
- update x := x + v

Results

- $x^{(1)} = (1, 1)$: converges to $x^* = (0.70, 0.29)$ in about 4 iterations
- $x^{(1)} = (-1, 1)$: converges to $x^* = (-0.70, 0.29)$ in about 4 iterations
- $x^{(1)} = (1, -1)$ or $x^{(1)} = (-1, -1)$: does not converge

Observations

- Newton's method works well if started near a solution; may not work otherwise
- can converge to different solutions depending on the starting point
- does not necessarily find the solution closest to the starting point

Convergence of Newton's method

if $f(x^\star)=0$ and $Df(x^\star)$ is nonsingular, and $x^{(1)}$ is sufficiently close to x^\star , then

$$x^{(k)} \to x^*, \quad ||x^{(k+1)} - x^*|| \le c||x^{(k)} - x^*||^2$$

for some c > 0

- has quadratic convergence when started near a solution
- explains fast convergence when started near solution

Outline

- nonlinear equation in one variable
- Newton method for nonlinear equations
- unconstrained optimization
- gradient and Newton methods for optimization

Hessian

Hessian of g at z: a symmetric $n \times n$ matrix

$$\nabla^2 g(x) = \begin{bmatrix} \frac{\partial^2 g}{\partial x_1^2} & \frac{\partial^2 g}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 g}{\partial x_1 \partial x_n} \\ \frac{\partial^2 g}{\partial x_2 \partial x_1} & \frac{\partial^2 g}{\partial x_2^2} & \cdots & \frac{\partial^2 g}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial^2 g}{\partial x_n \partial x_1} & \frac{\partial^2 g}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 g}{\partial x_n^2} \end{bmatrix}$$

- $\nabla^2 g(z)_{ij} = \frac{\partial^2 g}{\partial x_i \partial x_j}(z)$
- this is also the derivative matrix of gradient $\nabla g(x)$ at z

Quadratic (second order) approximation of g around z

$$g_{\mathbf{q}}(x) = g(z) + \nabla g(z)^{T}(x-z) + \frac{1}{2}(x-z)^{T}\nabla^{2}g(z)(x-z)$$

when n = 1 this reduces to

$$g_{\rm q}(x) = g(z) + g'(z)(x-z) + \tfrac{1}{2}g''(z)(x-z)^2$$

Affine function: $g(x) = a^T x + b$

$$\nabla g(x) = a, \quad \nabla^2 g(x) = 0$$

Quadratic function: $g(x) = x^T P x + q^T x + r$ with P symmetric

$$\nabla g(x) = 2Px + q, \quad \nabla^2 g(x) = 2P$$

Least squares cost: $g(x) = ||Ax - b||^2 = x^T A^T A x - 2b^T A x + b^T b$

$$\nabla g(x) = 2A^T A x - 2A^T b, \quad \nabla^2 g(x) = 2A^T A$$

Composition with affine mapping: if g(x) = h(Cx + d), then

$$\nabla g(x) = C^T \nabla h(Cx + d)$$
$$\nabla^2 g(x) = C^T \nabla^2 h(Cx + d)C$$

$$g(x_1, x_2) = e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} + e^{-x_1 - 1}$$

gradient is

$$\nabla g(x) = \begin{bmatrix} e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} - e^{-x_1 - 1} \\ e^{x_1 + x_2 - 1} - e^{x_1 - x_2 - 1} \end{bmatrix}$$

Hessian is

$$\nabla^2 g(x) = \left[\begin{array}{cc} e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} + e^{-x_1 - 1} & e^{x_1 + x_2 - 1} - e^{x_1 - x_2 - 1} \\ e^{x_1 + x_2 - 1} - e^{x_1 - x_2 - 1} & e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} \end{array} \right]$$

using composition property we can express g as g(x) = h(Cx + d) with

$$h(y_1, y_2, y_3) = e^{y_1} + e^{y_2} + e^{y_3}, \quad C = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 0 \end{bmatrix}, \quad d = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$

Gradient: $\nabla g(x) = C^T \nabla h(Cx + d)$

$$\nabla g(x) = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} e^{x_1 + x_2 - 1} \\ e^{x_1 - x_2 - 1} \\ e^{-x_1 - 1} \end{bmatrix}$$

Hessian: $\nabla^2 g(x) = C^T \nabla h^2 (Cx + d) C$

$$\nabla^2 g(x) = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} e^{x_1 + x_2 - 1} & 0 & 0 \\ 0 & e^{x_1 - x_2 - 1} & 0 \\ 0 & 0 & e^{-x_1 - 1} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 0 \end{bmatrix}$$

unconstrained optimization SA — ENGR504 12.23

Unconstrained minimization problem

minimize
$$g(x_1, x_2, \dots, x_n)$$

- $g: \mathbb{R}^n \to \mathbb{R}$ is the *cost* or *objective* function
- $x = (x_1, x_2, \dots, x_n)$ is *n*-vector of optimization *variables*
- to solve a maximization problem (i.e., maximize g(x)), we can minimize -g(x)
- we will assume that g is twice differentiable

Local and global optimum

• x^* is an **optimal point** (or a **minimum**) if

$$g(x^*) \leq g(x)$$
 for all x

also called globally optimal

• x^* is a **locally optimal point (local minimum)** if for some R > 0

$$g(x^*) \le g(x)$$
 for all x with $||x - x^*|| \le R$

Example

z is (globally) optimal

y is locally optimal

Conditions for a minimum

a necessary condition for a minimum is

$$\nabla g(x^{\star}) = 0$$

a point where the gradient vanishes $\nabla g(x) = 0$ is called a *critical* or *stationary* point

• if x^* is a local minimum, then for any direction v we have

$$g(x^{\star} + v) = g(x^{\star}) + \nabla g(x^{\star})^T v + (1/2) v^T \nabla^2 g(x^{\star}) v \ge g(x^{\star})$$

- for a very small ||v||, if $\nabla g(x^*) \neq 0$, then we can find v such that $\nabla g(x^*)^T v < 0$
- so we must have $\nabla g(x^*) = 0$ at a minimum (or maximum)
- gradient also vanish at saddle points, which is neither a minimum or maximum
- at a strict minimum we must also have for all v satisfying $0<\|v\|\ll 1$

$$g(x^{\star} + v) = g(x^{\star}) + (1/2)v^{T}\nabla^{2}g(x^{\star})v > g(x^{\star})$$

this will happen if the Hessian matrix $\nabla^2 g(x^*)$ is positive definite

Optimality conditions

Necessary condition: if x^* is locally optimal, then

$$\nabla g(x^*) = 0$$
 and $\nabla^2 g(x^*)$ is positive semidefinite

Sufficient condition: if x^* satisfies

$$\nabla g(x^*) = 0$$
 and $\nabla^2 g(x^*)$ is positive definite

then x^* is locally optimal

Necessary and sufficient condition for convex functions

- g is called *convex* if $\nabla^2 g(x)$ is positive semidefinite everywhere
- if g is convex then x^* is optimal if and only if $\nabla g(x^*) = 0$

- power of the received signal measured by the user from each antenna is the reciprocal of the squared distance from the corresponding antenna
- find position x of user (relative to main station) that maximizes signal-to-noise ratio

unconstrained optimization SA — ENGR504 12.28

to solve this problem, we need to maximize the signal-to-noise ratio:

$$g(x) = \frac{1 + (2 - x)^2}{1 + x^2}$$

setting the derivative to zero:

$$g'(x) = \frac{-2(2-x)(1+x^2) - 2x(1+(2-x)^2)}{(1+x^2)^2} = \frac{4(x^2-2x-1)}{(1+x^2)^2} = 0$$

- g'(x) = 0 at $x = 1 \pm \sqrt{2}$
- checking the objective values, we see that $x=1-\sqrt{2}$ gives larger objective
- derivative changes sign + to when passing through $x = 1 \sqrt{2}$, so f''(x) < 0
- hence, $x^{\circ} = 1 \sqrt{2}$ is a local maximizer
- it is a global maximizer since $g(x) \to 1 < g(x^{\circ})$ as $|x| \to \infty$

Examples (n = 1)

 $\bullet \ g(x) = \log \left(e^x + e^{-x} \right)$

$$g'(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \quad g''(x) = \frac{4}{(e^x + e^{-x})^2}$$

 $g''(x) \ge 0$ everywhere; $x^* = 0$ is the unique optimal point

• $g(x) = x^4$ $g'(x) = 4x^3$, $g''(x) = 12x^2$

 $g''(x) \ge 0$ everywhere; $x^* = 0$ is the unique optimal point

• $g(x) = x^3$ $g'(x) = 3x^2$, g''(x) = 6xg'(0) = 0, g''(0) = 0 but x = 0 is not locally optimal

• $g(x) = x^T P x + q^T x + r$ (*P* is symmetric positive definite)

$$\nabla g(x) = 2Px + q, \quad \nabla^2 g(x) = 2P$$

 $abla^2 g(x)$ is positive definite everywhere, hence the unique optimal point is

$$x^* = -(1/2)P^{-1}q$$

• $g(x) = ||Ax - b||^2$ (A is a matrix with linearly independent columns)

$$\nabla g(x) = 2A^T A x - 2A^T b, \quad \nabla^2 g(x) = 2A^T A$$

 $abla^2 g(x)$ is positive definite everywhere, hence the unique optimal point is

$$x^* = (A^T A)^{-1} A^T b$$

$$g(x_1, x_2) = e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} + e^{-x_1 - 1}$$

• we can express $\nabla^2 g(x)$ as

$$\nabla^2 g(x) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} e^{x_1 + x_2 - 1} & 0 & 0 \\ 0 & e^{x_1 - x_2 - 1} & 0 \\ 0 & 0 & e^{-x_1 - 1} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix}$$

this shows that $\nabla^2 g(x)$ is positive definite for all x

• therefore x^* is optimal if and only if

$$\nabla g\left(x^{\star}\right) = \left[\begin{array}{c} e^{x_{1}^{\star} + x_{2}^{\star} - 1} + e^{x_{1}^{\star} - x_{2}^{\star} - 1} - e^{-x_{1}^{\star} - 1} \\ e^{x_{1}^{\star} + x_{2}^{\star} - 1} - e^{x_{1}^{\star} - x_{2}^{\star} - 1} \end{array}\right] = 0$$

two nonlinear equations in two variables

Outline

- nonlinear equation in one variable
- Newton method for nonlinear equations
- unconstrained optimization
- gradient and Newton methods for optimization

Descent direction

Descent direction: a vector $v \in \mathbb{R}^n$ is called a *descent direction* for g if

$$g(x + tv) < g(x)$$

for sufficiently small t > 0

Directional derivative

- for given z and nonzero v, define h(t) = g(z + tv)
- derivative of h at t=0

$$h'(0) = \frac{\partial g}{\partial x_1}(z)v_1 + \frac{\partial g}{\partial x_2}(z)v_2 + \dots + \frac{\partial g}{\partial x_n}(z)v_n$$
$$= \nabla g(z)^T v$$

is called the *directional derivative* of g (at z, in the direction v)

- $\nabla g(x)^T v$ gives an approximate rate of increase of f in the direction v at x
- a vector $v \in \mathbb{R}^n$ is a descent direction if $\nabla g(x)^T v < 0$

Gradient descent method

the directional derivative of f at x in the direction $v = -\nabla g(x)$ is

$$v^T \nabla g(x) = -\|\nabla g(x)\|^2 < 0$$

for any x with $\nabla g(x) \neq 0$; thus, $-\nabla g(x)$ is a descent direction

Gradient descent algorithm

given a starting point $x^{(0)}$ and a solution tolerance $\epsilon > 0$

repeat for $k \ge 1$

- 1. choose a stepsize t_k
- 2. update

$$x^{(k+1)} = x^{(k)} - t_k \nabla g(x^{(k)})$$

if
$$\|\nabla f(x^{(k+1)})\| \le \epsilon$$
 stop and output $x^{(k+1)}$

- t_k is called the stepsize or learning rate
- for t_k small enough, the algorithm is a descent method
- for large t_k is large enough, algorithm may not be a descent method and may fail

Determining the stepsize

suppose $v^{(k)}$ is any descent direction

Constant stepsize: set $t_k = t$ for all k

Backtracking line search

- choose $\beta \in (0,1)$, and $\gamma \in (0,1)$ and start with an initial guess t_1 (e.g., $t_1 = 1$)
- set $t_k := \beta t_k$ until

$$g(x^{(k)} + t_k v^{(k)}) - g(x^{(k)}) < \gamma t_k \nabla g(x^{(k)})^T v^{(k)}$$

· simple backtracking algorithm is to set

$$t = 1, 0.5, 0.5^2, 0.5^3, \dots$$

until the above is satisfied or until $g(x^{(k)} + t_k v^{(k)}) < g(x^{(k)})$

$$g(x_1, x_2, x_3) = (x_1 - 4)^4 + (x_2 - 3)^2 + 4(x_3 + 5)^4$$

the gradient of this function is

$$\nabla g(x) = \begin{bmatrix} 4(x_1 - 4)^3 \\ 2(x_2 - 3) \\ 16(x_3 + 5)^3 \end{bmatrix}$$

applying one iteration of gradient descent with $x^{(1)} = (4, 2, -1)$ and t = 0.002 gives

$$x^{(2)} = \begin{bmatrix} 4\\2\\-1 \end{bmatrix} - 0.002 \begin{bmatrix} 4(4-4)^3\\2(2-3)\\16(-1+5)^3 \end{bmatrix} = \begin{bmatrix} 4.000\\2.004\\-3.048 \end{bmatrix}$$

notice that

$$59.06 = g(4, 2.004, -3.048) < g(4, 2, -1) = 1025$$

this shows that t = 0.002 is a good choice

Newton's method for minimizing a convex function

if $abla^2 g(x)$ is positive definite everywhere, we can minimize g(x) by solving

$$\nabla g(x) = 0$$

Algorithm: choose $x^{(1)}$ and repeat for k = 1, 2, ...

$$x^{(k+1)} = x^{(k)} - \nabla^2 g(x^{(k)})^{-1} \nabla g(x^{(k)})$$

- $v = -\nabla^2 g(x)^{-1} \nabla g(x)$ is called the *Newton step* at x, which is a descent direction
- · converges if started sufficiently close to the solution
- Newton step is computed by a Cholesky factorization of the Hessian
- for n = 1, the iteration can be written as

$$x^{(k+1)} = x^{(k)} - \frac{g'(x^{(k)})}{g''(x^{(k)})}$$

Interpretations of Newton step

Affine approximation of gradient

• affine approximation of $f(x) = \nabla g(x)$ around $x^{(k)}$ is

$$\hat{f}(x;x^{(k)}) = \nabla g(x^{(k)}) + \nabla^2 g(x^{(k)})(x - x^{(k)})$$

• Newton update $x^{(k+1)}$ is solution of linear equation $\hat{f}(x;x^{(k)})=0$

Quadratic approximation of function

• quadratic approximation of g(x) around $x^{(k)}$ is

$$g_{\mathbf{q}}(x;x^{(k)}) = g(x^{(k)}) + \nabla g(x^{(k)})^T (x-x^{(k)}) + \frac{1}{2} (x-x^{(k)})^T \nabla^2 g(x^{(k)}) (x-x^{(k)})$$

• Newton update $x^{(k+1)}$ satisfies $\nabla g_{\mathbf{q}}(x; x^{(k)}) = 0$

Example (n = 1)

$$g_{\mathbf{q}}(x;x^{(k)}) = g(x^{(k)}) + g'(x^{(k)})(x - x^{(k)}) + \frac{g''(x^{(k)})}{2}(x - x^{(k)})^{T}(x - x^{(k)})$$

minimize
$$g(x) = \frac{1}{2}x^2 - \sin x$$

• applying Newton's method with $x^{(1)} = 0.5$, we have

$$x^{(2)} = x^{(1)} - \frac{g'(x^{(1)})}{g''(x^{(1)})} = 0.5 - \frac{0.5 - \cos(0.5)}{1 + \sin(0.5)}$$
$$= 0.5 - \frac{-0.3775}{1.479} = 0.7552$$

repeating, we get $x^{(3)} = 0.7391, x^{(4)} = 0.7390,$ and $x^{(5)} \approx 0.7390$

- note that $g'(x^{(5)}) \approx 0$, and $g''(x^{(5)}) = 1.672 > 0$
- so, $x^{(5)}$ is an approximate local minimizer (it is an approximate global minimizer)

$$g(x) = \log(e^x + e^{-x}), \quad g'(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \quad g''(x) = \frac{4}{(e^x + e^{-x})^2}$$

does not converge when started at $x^{(1)} = 1.15$

Damped Newton method

given a starting point $x^{(1)}$

repeat for $k = 1, 2, \ldots$

- 1. compute Newton step $v = -\nabla^2 g(x^{(k)})^{-1} \nabla g(x^{(k)})$
- 2. select a stepsize *t* (*e.g.*, using backtracking line search)
- 3. update $x^{(k+1)} = x^{(k)} + tv$

$$g(x) = \log(e^x + e^{-x}), \quad x^{(1)} = 4$$

close to the solution: very fast convergence, no backtracking steps

$$g(x_1, x_2) = e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} + e^{-x_1 - 1}$$

damped Newton method started at x = (-2, 2)

Newton method for nonconvex functions

if $abla^2 g(x^{(k)})$ is not positive definite, it is possible that Newton step v satisfies

$$\nabla g(x^{(k)})^{T} v = -\nabla g(x^{(k)})^{T} \nabla^{2} g(x^{(k)})^{-1} \nabla g(x^{(k)}) > 0$$

$$g(x)$$

$$g(x)$$

$$x^{(k)}$$

$$x^{(k)}$$

- if Newton step is not descent direction, replace it with descent direction
- simplest choice is $v = -\nabla g(x^{(k)})$ or $v = (\nabla^2 g(x_k) + \mu_k I)^{-1} \nabla g(x^{(k)})$

References and further readings

- S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018.
- L. Vandenberghe. *EE133A lecture notes*, Univ. of California, Los Angeles. (http://www.seas.ucla.edu/~vandenbe/ee133a.html)

references SA_ENGR504 12.46