Modeliranje strojev

električnih

2. LABORATORIJSKA VAJA

Ime in priimek: Jaka Ambruš

Datum in ura: petek ob 14.00 Ocena poročila:

1 Merjenec, vezalni načrt in nazivni podatki

Merjenec:

Vezalni načrt:

Podatki o merjencu:

Avtotransformator (Variac)	Iskra HSN 03003	
Osciloskop	Agilent Technologies DSO5014A	
Diferencialna napetostna sonda	Chauvin Arnaoux DP25	
Nastavljiv enosmerni napetostni vir	GW INSTEK GPS-4303	
Mirokrmilniška vklopna naprava	Izdelana v laboratoriju	
Enofazni transformator	Elma PV/0-5753 Nazivna m	oč: 1,2 kVA
(merjenec)	Napetost primarnega navitja (prim	ar) 200 V – 240 V
	Napetost sekundarnega na	vitja 110 V
	(sekundar)	
	Nazivni tok primarnega navitja	5,3 A
	Nazivni tok sekundarnega navitja	10,3 A
	Nazivna frekvenca	50 Hz

- Nazivna moč: 1,2 kVA

- Nazivna napetost primarja: 200-240 V

- Nazivna napetost sekundarja: 110 V

- Nazivni tok primarja: 5,3 A

- Nazivni tok sekundarja: 10,3 A

- Nazivna frekvenca: 50 Hz

Uporabljen je bil enak transformator kot pri 1. vaji.

2 VKLOP TRANSFORMATORJA V PROSTEM TEKU NA OMREŽNO NAPETOST

Slika 3: Vklop transformatorja v prostem teku na omrežno napetost.

Slika 4: Vezje za analizo vklopnega toka transformatorja.

$$u = U \sin(\omega t + \alpha)$$

$$U\sin(\omega t + \alpha) = iR + L\frac{di}{dt}$$

$$i = \frac{U}{\omega L} \left[e^{-\frac{tR}{L}} \cos(\alpha) - \cos(\omega t + \alpha) \right].$$

Pri vklopnem kotu α = 0° je najbolj neugoden trenutek vklopa, ker je trenutna vrednost napetosti 0, enosmerna komponenta toka pa je največja. Graf prikazuje časovni potek pri vklopnem kotu α = 0°. Preko vklopne naprave lahko lahko nastavimo α .

3 MATLAB KODA

```
% 2. LABORATORIJSKA VAJA MES %
clear all
In=7.49533; %nazivni tok pomnožen s koren 2
data1 = 'signal1.csv';
cas = dlmread(data1,',',[2 0 1001 0]);
napetost = dlmread(data1,',',[2 1 1001 1]);
tok = dlmread(data1,',',[2 2 1001 2]);
figure(1)
plot(cas,napetost,cas,tok)
xlabel('cas [s]')
ylabel('napetost [V] in tok [A]')
grid on
figure(2)
plot(cas, tok)
xlabel('cas [s]')
ylabel('tok [A]')
grid minor
Ix=max(tok);
Ix/In %razmerje
```

Rad bi pripomnil, da mi pri risanju grafov ni dobro izrisalo toka prvega grafa.

4 ANALIZA GRAFOV

4.1 Vklopni kot $\alpha = 90^{\circ}$ brez remanenčnega polja v jedru

Ustrezata meritvi 5 in 8.

Pri α = 90° sta tok in napetost zamaknjena za standardni kot. Razmerje je 25,185.

4.2 Vklopni kot $\alpha = 0^{\circ}$ brez remanenčnega polja v jedru

Ustrezata meritvi 2 in 11.

Tok se čez čas ustali.

Razmerje je 6,078.

4.3 Vklopni kot $\alpha = 0^{\circ}$ s pozitivnim remanenčnim poljem v jedru

Ustrezata meritvi 1 in 12.

Tok se čez čas ustali. Razmerje je 0,5368.

4.4 Vklopni kot α = 0° s negativnim remanenčnim poljem v jedru

Razmerje je 0,1407.

Najbolj optimalno pti vklopnem kotu 0.

4.5 Vklopni kot $\alpha = 90^{\circ}$ s pozitivnim remanenčnim poljem v jedru

Ustrezata meritvi 6 in 9. Ne razumem zakaj mi je izrisalo tak graf, za učenje sem si pomagal s grafom, ki mi ga je poslikal prijatelj.

Razmerje je 1,934.

4.6 Vklopni kot α = 90° s negativnim remanenčnim poljem v jedru Ustrezata meritvi 4 in 10.

Razmerje je 0,0599, saj je negativen tok. Ob predpostavki, da je maksimalen tok pozitiven dobimo razmerje 2,379.

5 DOMAČA NALOGA

