Group 3 TrashNet

Jupiter Kang Long Peter Huynh Stephen Davanzo

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Introduction

Overall Goal: Improve image classification on the TrashNet dataset to facilitate automated recycling sorting.

- Data Background
 - Original whitepaper
 - o Baseline code
- Algorithms
- Experimental Setup
- Results
- Conclusion
- Demo

The Data

- TrashNet dataset created at Stanford Univ. in 2016
 - 2,527 RGB images
 - 512x384 pixels
- No Transfer learning, scratch CNN
- Network Issues
 - Shallow (loosely based on AlexNet)
 - Minimal augmentation
 - No class balancing
 - Minimal hyperparameter tuning

Class Name	Observations	Class Label
Cardboard	403	0
Glass	501	1
Metal	410	2
Paper	594	3
Plastic	482	4
Trash	137	5

The Data

- Baseline Code
 - Kaggle comp
 - Six different models
- Minimal Tuning

Model Name	Year Released	Key Info
MobileNetV2	2018	Fast, lightweight, inverted residuals
ResNet101V2	2016	Deep (101 layers), pre-activation, good feature extraction
ResNet152V2	2016	Very deep (152 layers), great extractions, slow
MobileNet (V1)	2017	Lightweight, fast, depthwise convolutions
MobileNetV3Small	2019	Ultra-efficient, built for small compute power
MobileNetV3Large	2019	Balanced options for speed and accuracy

Algorithms and Networks

- EfficientNetV2S
 - Higher accuracy with fewer parameters
 - Advanced regularization
 - More responsive to training signal
- Other models
 - Shallower, more compressed
 - More parameters
 - Overfit minority classes when weights altered

Stage	Operator	Stride	#Channels	#Layers
0	Conv3x3	2	24	1
1	Fused-MBConv1, k3x3	1	24	2
2	Fused-MBConv4, k3x3	2	48	4
3	Fused-MBConv4, k3x3	2	64	4
4	MBConv4, k3x3, SE0.25	2	128	6
5	MBConv6, k3x3, SE0.25	1	160	9
6	MBConv6, k3x3, SE0.25	2	256	15
7	Conv1x1 & Pooling & FC	12	1280	1

- Initial baseline setup
 - Host data in GCP bucket
 - Use wget to fetch .zip
 - Store in .gitignore-ed folder
- Create dynamic dataloader

- Training strategy
 - Phase 1: Initial training
 - Phase 2: Fine-tuning
- Hyperparameters control
 - o Initial_epoch, fine_tune_epoch, initial_lr, fine_tune_lr, fine_tune_layers
- Regularization
 - Dropout
 - Earlystopping

- Data splitting
 - Test split 20%
- Data augmentation
 - sheer_range, brightness_range
- Optimizer
 - Adam separates initial_lr & fine_tune_lr
 - o AdamW (3) decouples weight decay from gradient update process

- Class weighting
 - Accuracy suffering due to "Trash" class
 - Automatic class weighting too extreme, scale down impact
- Confusion matrix and learning curves per class

Class Weight:
 weight _i = total / (samples number of classes × samples in class_i)
 adjusted weight_i=1.0+α×(weight_i-1.0)

- Dropout Rate 50% (avoid specializing neurons)
- Early Stopping (preserve performance on unseen data)

Results

Model Comparison Results (with Fine-tuning):								
	Model	Initial Epochs	Final Train Accuracy	Final Val Accuracy	FineTune Epochs	Test Accuracy	Test Loss	
0	EfficientNetV2S	10	0.9062	0.8571	-5	0.8625	0.4549	
3	ResNet152V2	10	0.8438	0.7619	-5	0.8062	0.5344	
2	ResNet101V2	10	0.8125	0.6667	-1	0.8021	0.5303	
1	MobileNetV2	10	0.8438	0.7143	-5	0.7729	0.5804	
4	MobileNet	10	0.7812	0.8095	-5	0.7521	0.6457	
6	MobileNetV3Large	10	0.2500	0.2381	-1	0.4479	1.4104	
5	MobileNetV3Small	10	0.2500	0.2381	1	0.2604	1.6104	

EfficientNetV2S > +9.27% (from previous high)
ResNet101V2 > +3.98%

MobileNetV2 > +2.57%

Decklet450/2 > +2.51 /0

ResNet152V2 > +2.14%

MobileNetV3Large > +0.58%

Model Comparison Results:

Contract of the								
1	Model		Test	Accuracy	1	Test L	oss	1
:-		-			:		:	
F	ResNet152V2	ľ		0.7893	I	0.6	648	Ī
F	ResNet101V2			0.7714	1	0.7	31	1
1	MobileNetV2	ĺ		0.7535		0.7	557	Ī
1	MobileNet			0.7515		0.6	729	1
1	MobileNetV3Large			0.4453		1.4	076	1
1	MobileNetV3Small	Į,		0.3559	1	1.5	8	I

Results

Model	Our Result	Baseline Result	Difference
EfficientNetV2	86.25%	1	1
ResNet152V2	80.62%	78.93%	1.69%
ResNet101V2	80.21%	77.14%	3.07%
MobileNetV2	77.29%	75.35%	1.94%
MobileNet	75.21%	75.15%	0.06%
MobileNetV3Large	44.79%	44.53%	0.26%
MobileNetV3Small	26.04%	35.59%	-9.55%

0.90

86% Accuracy

Demo

References

- Thung, G., & Yang, M. (2016). Classification of trash for recyclability status. Stanford University. Retrieved from https://cs229.stanford.edu/proj2016/report/ThungYang-ClassificationOfTrashForRecyclabilityStatus-report.pdf
- He, J., Zhao, Y., Zaslavskiy, M., Wang, X., Lin, Z., Jin, Q., & Wang, W. Y. (2021). TransFG: A transformer architecture for fine-grained recognition. arXiv preprint arXiv:2104.00298. https://arxiv.org/abs/2104.00298
- Yassin, A. (2024, November 13). Adam vs. AdamW: Understanding Weight Decay and Its Impact on Model Performance.
 Medium.
 https://yassin01.medium.com/adam-vs-adamw-understanding-weight-decay-and-its-impact-on-model-performance-b7414f0af 8a1

Thank you.

