Resistive Wall

R. Fitzpatrick^a

Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin TX 78712, USA

I. VACUUM SOLUTION

A. Normalization

Let all lengths be normalized to the major radius of the axisymmetric plasma equilibrium's magnetic axis, R_0 . Let all magnetic field-strengths be normalized to the toroidal magnetic field-strength at the magnetic axis, B_0 .

B. Toroidal Coordinates

Let μ , η , ϕ be right-handed toroidal coordinates defined such that

$$R = \frac{\sinh \mu}{\cosh \mu - \cos \eta},\tag{1}$$

$$Z = \frac{\sin \eta}{\cosh \mu - \cos \eta},\tag{2}$$

where R, ϕ , Z are right-handed cylindrical coordinates whose symmetry axis corresponds to that of the plasma equilibrium. Note that $(\nabla R \times \nabla \phi \cdot \nabla Z)^{-1} = R$. The scale-factors of the toroidal coordinate system are

$$h_{\mu} = h_{\eta} = \frac{1}{\cosh \mu - \cos \eta} \equiv h,\tag{3}$$

$$h_{\phi} = \frac{\sinh \mu}{\cosh \mu - \cos \eta} = h \sinh \mu. \tag{4}$$

Moreover,

$$\mathcal{J}' \equiv (\nabla \mu \times \nabla \eta \cdot \nabla \phi) = h^3 \sinh \mu. \tag{5}$$

^a rfitzp@utexas.edu

C. Perturbed Magnetic Field

The curl-free perturbed magnetic field in the vacuum region is written

$$\mathbf{b} = i \nabla \left[V(\mu, \eta) e^{-i n \phi} \right], \tag{6}$$

where where the toroidal mode number, n, is a positive integer. Given that $\nabla \cdot \mathbf{b} = 0$, we deduce that

$$\nabla^{2}V \equiv (z - \cos \eta)^{3} \left\{ \frac{\partial}{\partial z} \left[\frac{z^{2} - 1}{z - \cos \eta} \frac{\partial V}{\partial z} \right] + \frac{\partial}{\partial \eta} \left[\frac{1}{z - \cos \eta} \frac{\partial V}{\partial \eta} \right] - \frac{n^{2} V}{(z^{2} - 1)(z - \cos \eta)} \right\} = 0.$$
 (7)

Here, $z = \cosh \mu$.

Let

$$f_z = z^2 - 1, (8)$$

$$f_{\eta} = (z - \cos \eta)^{1/2},\tag{9}$$

which implies that

$$\frac{df_z}{dz} = 2z, (10)$$

$$\frac{\partial f_{\eta}}{\partial z} = \frac{1}{2f_{\eta}},\tag{11}$$

$$\frac{\partial f_{\eta}}{\partial \eta} = \frac{\sin \eta}{2 f_{\eta}} \tag{12}$$

Suppose that

$$V(z,\eta) = \sum_{m} (z - \cos \eta)^{1/2} U_m(z) e^{-i m \eta}.$$
 (13)

Taking the sum and eikonal as read, and letting '=d/dz, we get

$$\frac{\partial V}{\partial z} = \frac{U_m}{2f_\eta} + f_\eta U_m',\tag{14}$$

$$\frac{\partial}{\partial z} \left(\frac{f_z}{f_\eta^2} \frac{\partial V}{\partial z} \right) = \frac{\partial}{\partial z} \left(\frac{f_z U_m}{2 f_\eta^3} + \frac{f_z U_m'}{f_\eta} \right) = \frac{z U_m}{f_\eta^3} - \frac{3 f_z U_m}{4 f_\eta^5} + \frac{f_z U_m'}{2 f_\eta^3} + \frac{2 z U_m'}{f_\eta} - \frac{f_z U_m'}{2 f_\eta^3} + \frac{f_z U_m''}{f_\eta} \right) \\
= \frac{z U_m}{f_\eta^3} - \frac{3 (z^2 - 1) U_m}{4 f_\eta^5} + \frac{2 z U_m'}{f_\eta} + \frac{(z^2 - 1) U_m''}{f_\eta}, \tag{15}$$

$$\frac{\partial V}{\partial \eta} = \frac{\sin \eta \, U_m}{2 \, f_n} - \mathrm{i} \, m f_\eta \, U_m,\tag{16}$$

$$\frac{\partial}{\partial \eta} \left(\frac{1}{f_{\eta}^{2}} \frac{\partial V}{\partial \eta} \right) = \frac{\partial}{\partial \eta} \left(\frac{\sin \eta U_{m}}{2 f_{\eta}^{3}} - \frac{i m U_{m}}{f_{\eta}} \right) = \frac{\cos \eta U_{m}}{2 f_{\eta}^{3}} - \frac{3 \sin^{2} \eta U_{m}}{4 f_{\eta}^{5}} - \frac{i m \sin \eta U_{m}}{2 f_{\eta}^{3}} + \frac{i m \sin \eta U_{m}}{2 f_{\eta}^{3}} - \frac{m^{2} U_{m}}{f_{\eta}} = \frac{\cos \eta U_{m}}{2 f_{\eta}^{3}} - \frac{3 \sin^{2} \eta U_{m}}{4 f_{\eta}^{5}} - \frac{m^{2} U_{m}}{f_{\eta}}, \tag{17}$$

$$-\frac{n^2 V}{f_z f_\eta^2} = -\frac{n^2 U_m}{(z^2 - 1) f_\eta}. (18)$$

Thus, Eq. (7) becomes

$$0 = \frac{\partial}{\partial z} \left(\frac{f_z}{f_\eta^2} \frac{\partial V}{\partial z} \right) + \frac{\partial}{\partial \eta} \left(\frac{1}{f_\eta^2} \frac{\partial V}{\partial \eta} \right) - \frac{n^2 V}{f_z f_\eta^2}$$

$$= \frac{z U_m}{f_\eta^3} - \frac{3 (z^2 - 1) U_m}{4 f_\eta^5} + \frac{2 z U_m'}{f_\eta} + \frac{(z^2 - 1) U_m''}{f_\eta}$$

$$+ \frac{\cos \eta U_m}{2 f_\eta^3} - \frac{3 \sin^2 \eta U_m}{4 f_\eta^5} - \frac{m^2 U_m}{f_\eta} - \frac{n^2 U_m}{(z^2 - 1) f_\eta}$$

$$= \frac{1}{f_\eta} \left[(z^2 - 1) U_m'' + 2 z U_m' + \left(\frac{1}{4} - m^2 \right) U_m - \frac{n^2 U_m}{z^2 - 1} \right]. \tag{19}$$

The most general solution of the previous equation is

$$U_m(z) = p_m \, \hat{P}_{|m|-1/2}^n(z) + q_m \, \hat{Q}_{m-1/2}^n(z), \tag{20}$$

where

$$\hat{P}_{|m|-1/2}^{n}(z) = \cos(|m|\pi) \frac{\sqrt{\pi} \Gamma(|m|+1/2-n) \epsilon^{|m|}}{2^{|m|-1/2} |m|!} P_{|m|-1/2}^{n}(z), \tag{21}$$

$$\hat{Q}_{|m|-1/2}^{n}(z) = \cos(n\pi) \cos(|m|\pi) \frac{2^{|m|-1/2} |m|! \epsilon^{-|m|}}{\sqrt{\pi} \Gamma(|m|+1/2+n)} Q_{|m|-1/2}^{n}.$$
 (22)

Here, ϵ is the inverse-aspect ratio of the plasma equilibrium, and p_m and q_m are arbitrary complex coefficients. Moreover, we have made use of the fact that

$$P_{-m-1/2}^{n}(z) = P_{m-1/2}^{n}(z), (23)$$

$$Q_{-m-1/2}^{n}(z) = Q_{m-1/2}^{n}(z). (24)$$

D. Toroidal Electromagnetic Angular Momentum Flux

The outward flux of toroidal angular momentum across a constant-z surface is

$$T_{\phi}(z) = -\oint \oint \mathcal{J}' b_{\phi} b^{\mu} d\eta d\phi.$$
 (25)

Now,

$$b^{\mu} \equiv \mathbf{b} \cdot \nabla \mu = i \frac{\partial V}{\partial \mu} |\nabla \mu|^2 = i \frac{\sinh \mu}{h^2} \frac{\partial V}{\partial z}, \tag{26}$$

$$b^{\phi} \equiv \mathcal{J}' \, \nabla \mu \times \nabla \eta \cdot \nabla V = n \, V, \tag{27}$$

SO

$$T_{\phi}(z) = -\frac{\mathrm{i} \, n \, \pi}{2} \oint \frac{z^{2} - 1}{z - \cos \eta} \left(\frac{\partial V}{\partial z} \, V^{*} - \frac{\partial V^{*}}{\partial z} \, V \right) d\eta$$

$$= -\mathrm{i} \, n \, \pi^{2} \sum_{m} (z^{2} - 1) \left(\frac{dU_{m}}{dz} \, U_{m}^{*} - \frac{dU_{m}^{*}}{dz} \, U_{m} \right)$$

$$= -\mathrm{i} \, n \, \pi^{2} \sum_{m} (p_{m} \, q_{m}^{*} - q_{m} \, p_{m}^{*}) (z^{2} - 1) \left(\frac{d\hat{P}|_{|m|-1/2}^{n}}{dz} \, \hat{Q}|_{|m|-1/2}^{n} - \frac{d\hat{Q}|_{|m|-1/2}^{n}}{dz} \, \hat{P}|_{|m|-1/2}^{n} \right)$$

$$= \mathrm{i} \, n \, \pi^{2} \sum_{m} (p_{m} \, q_{m}^{*} - q_{m} \, p_{m}^{*}) (z^{2} - 1) \, \mathcal{W}(\hat{P}|_{|m|-1/2}^{n}, \hat{Q}|_{|m|-1/2}^{n}). \tag{28}$$

But,

$$\mathcal{W}(\hat{P}_{|m|-1/2}^{n}, \hat{Q}_{|m|-1/2}^{n}) = \cos(n\pi) \frac{\Gamma(|m|+1/2-n)}{\Gamma(|m|+1/2+n)} \mathcal{W}(P_{|m|-1/2}^{n}, Q_{|m|-1/2}^{n})
= \cos(n\pi) \frac{\Gamma(|m|+1/2-n)}{\Gamma(|m|+1/2+n)} \frac{\cos(n\pi)}{1-z^{2}} \frac{\Gamma(|m|+1/2+n)}{\Gamma(|m|+1/2-n)}
= \frac{1}{1-z^{2}},$$
(29)

SO

$$T_{\phi}(z) = 2\pi^2 n \sum_{m} \text{Im}(q_m^* p_m).$$
 (30)

II. RESISTIVE WALL PHYSICS

A. Resistive Wall

Let the inner surface of the resistive wall surrounding the plasma lie at $\mu = \mu_w$, and let the outer surface lie at $\mu = \mu_w - \bar{d}_w \sinh \mu_w$, where $\bar{d}_w \ll 1$ is a positive constant. The physical wall thickness is

$$d(\eta) = \frac{\bar{d}_w \sinh \mu_w}{|\nabla \mu|} = h_w(\eta) \sinh \mu_w \,\bar{d}_w,\tag{31}$$

where

$$h_w(\eta) = \frac{1}{z_w - \cos \eta},\tag{32}$$

and $z_w = \cosh \mu_w$. Let the electrical conductivity of the wall material vary as

$$\sigma(\eta) = \frac{\bar{\sigma}_w}{h_w^2(\eta) \sinh^2 \mu_w},\tag{33}$$

where $\bar{\sigma}_w$ is a positive constant. It follows that $\sigma d^2 = \bar{\sigma}_w \bar{d}_w^2$.

B. Wall Matching Conditions

If we write

$$\mathbf{b} = \nabla \times \mathbf{A} \tag{34}$$

in the vacuum region then the boundary conditions at the wall are

$$\mathbf{n}_w \times \mathbf{A}|_{z_{w-}} = \frac{1}{\cosh \lambda} |\mathbf{n}_w \times \mathbf{A}|_{z_{w+}}$$
(35)

$$\mathbf{n}_{w} \times (\nabla \times \mathbf{A})|_{z_{w+}} = -\frac{\lambda \tanh \lambda}{\bar{d}_{w} h_{w} \sinh \mu_{w}} \mathbf{n}_{w} \times (\mathbf{n}_{w} \times \mathbf{A})|_{z_{w+}} + \frac{\mathbf{n}_{w} \times (\nabla \times \mathbf{A})|_{z_{w-}}}{\cosh \lambda}, \quad (36)$$

$$\lambda = \sqrt{\hat{\gamma}\,\bar{d}_w},\tag{37}$$

$$\hat{\gamma} = \gamma \,\bar{\tau}_w,\tag{38}$$

$$\bar{\tau}_w = \mu_0 \, R_0^2 \, \bar{\sigma}_w \, \bar{d}_w, \tag{39}$$

where γ is the growth-rate of the magnetic perturbation, and $\bar{\tau}_w$ is the effective L/R time of the wall. Here, $\mathbf{n}_w = -\mathbf{e}_{\mu}$ is an outward unit normal vector to the wall. Now,

$$\nabla \times \mathbf{A} = \frac{1}{h^2 \sinh \mu} \left(\frac{\partial \hat{A}_{\phi}}{\partial \eta} - \frac{\partial \hat{A}_{\eta}}{\partial \phi} \right) \mathbf{e}_{\mu} + \frac{1}{h^2 \sinh \mu} \left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu} \right) \mathbf{e}_{\eta} + \frac{1}{h^2} \left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta} \right) \mathbf{e}_{\phi}, \tag{40}$$

where

$$\hat{A}_{\mu} = h A_{\mu},\tag{41}$$

$$\hat{A}_n = h A_n, \tag{42}$$

$$\hat{A}_{\phi} = h \sinh \mu A_{\phi}. \tag{43}$$

Furthermore,

$$\mathbf{n}_w \times \mathbf{A} = -\mathbf{e}_\mu \times \mathbf{A} = A_\phi \, \mathbf{e}_\eta - A_\eta \, \mathbf{e}_\phi, \tag{44}$$

$$\mathbf{n}_w \times (\mathbf{n}_w \times \mathbf{A}) = -\mathbf{e}_\mu \times (\mathbf{n}_w \times \mathbf{A}) = -A_\eta \, \mathbf{e}_\eta - A_\phi \, \mathbf{e}_\phi, \tag{45}$$

$$\mathbf{n}_{w} \times (\nabla \times \mathbf{A}) = -\mathbf{e}_{\mu} \times (\nabla \times \mathbf{A}) = \frac{1}{h^{2}} \left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta} \right) \mathbf{e}_{\eta} - \frac{1}{h^{2} \sinh \mu} \left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu} \right) \mathbf{e}_{\phi}.$$

$$(46)$$

Thus, the wall matching conditions become

$$\hat{A}_{\eta}\Big|_{z_{w-}} = \frac{1}{\cosh\lambda} \left. \hat{A}_{\eta} \right|_{z_{w+}},\tag{47}$$

$$\left. \hat{A}_{\phi} \right|_{z_{w+}} = \frac{1}{\cosh \lambda} \left. \hat{A}_{\phi} \right|_{z_{w-}},\tag{48}$$

$$\left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta}\right)_{z_{w+}} = \frac{\lambda \tanh \lambda}{\bar{d}_{w} \sinh \mu_{w}} \left.\hat{A}_{\eta}\right|_{z_{w+}} + \frac{1}{\cosh \lambda} \left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta}\right)_{z_{w-}}, \tag{49}$$

$$\left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu}\right)_{z_{w+}} = -\frac{\lambda \tanh \lambda}{\bar{d}_{w} \sinh \mu_{w}} \left.\hat{A}_{\phi}\right|_{\mu_{z+}} + \frac{1}{\cosh \lambda} \left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu}\right)_{z_{w-}}.$$
(50)

Let

$$C(z,\eta,\phi) = \frac{\partial \hat{A}_{\eta}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \eta}.$$
 (51)

The wall matching conditions reduce to

$$C(z_{w-}, \eta, \phi) = \frac{1}{\cosh \lambda} C(z_{w+}, \eta, \phi), \tag{52}$$

$$\frac{\partial C(z_{w+}, \eta, \phi)}{\partial z} = \frac{\lambda \tanh \lambda}{\bar{d}_w \sinh^2 \mu_w} C(z_{w+}, \eta, \phi) + \frac{1}{\cosh \lambda} \frac{\partial C(z_{w-}, \eta, \phi)}{\partial z}.$$
 (53)

However, if

$$\mathbf{b} = i \,\nabla V = \nabla \times \mathbf{A} \tag{54}$$

then

$$C = -i h \sinh \mu \frac{\partial V}{\partial \mu} = -i h (z^2 - 1) \frac{\partial V}{\partial z}.$$
 (55)

Thus,

$$C = -i \frac{z^2 - 1}{z - \cos \eta} \sum_{m} \left[\frac{U_m}{2 (z - \cos \eta)^{1/2}} + (z - \cos \eta)^{1/2} \frac{dU_m}{dz} \right] e^{-i (m \eta + n \phi)}, \tag{56}$$

$$\frac{\partial C}{\partial z} = -i \sum_{m} \left[\frac{(3/4) \sin^2 \eta}{(z - \cos \eta)^{5/2}} - \frac{(1/2) \cos \eta}{(z - \cos \eta)^{3/2}} + \frac{m^2 + n^2/(z^2 - 1)}{(z - \cos \eta)^{1/2}} \right] U_m e^{-i(m\eta + n\phi)}.$$
 (57)

(59)

It follows that

$$\sum_{m} \left[\frac{U_{m}}{2} + (z - \cos \eta) \frac{dU_{m}}{dz} \right]_{z_{w-}} e^{-i m \eta} = \frac{1}{\cosh \lambda} \sum_{m} \left[\frac{U_{m}}{2} + (z - \cos \eta) \frac{dU_{m}}{dz} \right]_{z_{w+}} e^{-i m \eta},$$

$$(58)$$

$$\sum_{m} \left[\frac{3}{4} \sin^{2} \eta - \frac{1}{2} (z - \cos \eta) \cos \eta + (z - \cos \eta)^{2} \left(m^{2} + \frac{n^{2}}{z^{2} - 1} \right) \right] U_{m} e^{-i m \eta} \bigg|_{z_{w+}} = \int_{z_{w+}} \left[\frac{1}{2} \sin^{2} \eta - \frac{1}{2} (z - \cos \eta) \cos \eta + (z - \cos \eta)^{2} \left(m^{2} + \frac{n^{2}}{z^{2} - 1} \right) \right] U_{m} e^{-i m \eta} + \frac{1}{\cosh \lambda} \sum_{m} \left[\frac{3}{4} \sin^{2} \eta - \frac{1}{2} (z - \cos \eta) \cos \eta + (z - \cos \eta)^{2} \left(m^{2} + \frac{n^{2}}{z^{2} - 1} \right) \right] U_{m} e^{-i m \eta} \bigg|_{z_{w-}},$$

where

$$f_w = \frac{\lambda \tanh \lambda}{\bar{d}_w}. (60)$$

Thus, we can write

$$\sum_{m'} I_{mm'} U_{m'}(z_{w-}) = \frac{1}{\cosh \lambda} \sum_{m'} I_{mm'} U_{m'}(z_{w+}), \tag{61}$$

$$\sum_{m'} J_{mm'} U_{m'}(z_{w+}) = f_w \sum_{m',m''} k_{mm''} I_{m''m'} U_{m'}(z_{w+}) + \frac{1}{\cosh \lambda} \sum_{m'} J_{mm'} U_{m'}(z_{w-}), \qquad (62)$$

where

$$I_{mm'} = \left(\frac{1}{2} + z \frac{d}{dz}\right) \delta_{mm'} - \frac{1}{2} \frac{d}{dz} \left(\delta_{m\,m'+1} + \delta_{m\,m'-1}\right),\tag{63}$$

$$J_{mm'} = \left[\frac{5}{8} + \left(\frac{1}{2} + z^2\right) \left(m^2 + \frac{n^2}{z^2 - 1}\right)\right] \delta_{mm'} - z \left[\frac{1}{4} + \left(m^2 + \frac{n^2}{z^2 - 1}\right)\right] \left(\delta_{mm'+1} + \delta_{mm'-1}\right) + \left[-\frac{1}{16} + \frac{1}{4} \left(m^2 + \frac{n^2}{z^2 - 1}\right)\right] \left(\delta_{mm'+2} + \delta_{mm'-2}\right), \tag{64}$$

$$k_{mm'} = z \,\delta_{mm'} - \frac{1}{2} \,(\delta_{m\,m'+1} + \delta_{m\,m'-1}). \tag{65}$$

C. Vacuum Solution

Now,

$$U_m(z) = p_{m-1} \hat{P}_{|m|-1/2}^n(z)$$
(66)

in the region $z < z_w$, whereas

$$U_m(z) = p_{m+} \hat{P}_{|m|-1/2}^n(z) + q_{m+} \hat{Q}_{|m|-1/2}^n(z)$$
(67)

in the region $z > z_w$. Let $\underline{\underline{I}}_p$ be the matrix of the

$$\left\{ \left[\left(\frac{1}{2} + z \, \frac{d}{dz} \right) \delta_{mm'} - \frac{1}{2} \, \frac{d}{dz} \left(\delta_{m\,m'+1} + \delta_{m\,m'-1} \right) \right] \hat{P}^{n}_{|m'|-1/2}(z) \right\}_{z_{m}}$$
(68)

values. Let $\underline{\underline{I}}_q$ be the matrix of the

$$\left\{ \left[\left(\frac{1}{2} + z \frac{d}{dz} \right) \delta_{mm'} - \frac{1}{2} \frac{d}{dz} \left(\delta_{m\,m'+1} + \delta_{m\,m'-1} \right) \right] \hat{Q}^{n}_{|m'|-1/2}(z) \right\}_{z_{m}}$$
(69)

values. Let $\underline{\underline{J}}_p$ be the matrix of the

$$\left\{ \left[\frac{5}{8} + \left(\frac{1}{2} + z^2 \right) \left(m^2 + \frac{n^2}{z^2 - 1} \right) \right] \delta_{mm'} - z \left[\frac{1}{4} + \left(m^2 + \frac{n^2}{z^2 - 1} \right) \right] \left(\delta_{mm'+1} + \delta_{mm'-1} \right) + \left[-\frac{1}{16} + \frac{1}{4} \left(m^2 + \frac{n^2}{z^2 - 1} \right) \right] \left(\delta_{mm'+2} + \delta_{mm'-2} \right) \right\} \hat{P}^n_{|m'|-1/2}(z_w) \tag{70}$$

values. Let $\underline{\underline{J}}_q$ be the matrix of the

$$\left\{ \left[\frac{5}{8} + \left(\frac{1}{2} + z^2 \right) \left(m^2 + \frac{n^2}{z^2 - 1} \right) \right] \delta_{mm'} - z \left[\frac{1}{4} + \left(m^2 + \frac{n^2}{z^2 - 1} \right) \right] \left(\delta_{m\,m'+1} + \delta_{m\,m'-1} \right) + \left[-\frac{1}{16} + \frac{1}{4} \left(m^2 + \frac{n^2}{z^2 - 1} \right) \right] \left(\delta_{m\,m'+2} + \delta_{m\,m'-2} \right) \right\} \hat{Q}^n_{|m'|-1/2}(z_w) \tag{71}$$

values. Let $\underline{\underline{k}}$ be the matrix of the $k_{mm'}$ values. Finally, let \underline{p}_+ be the vector of the p_{m+} values, et cetera. Thus, we obtain

$$\underline{\underline{I}}_{p}\,\underline{p}_{-} = \frac{1}{\cosh\lambda} \left(\underline{\underline{I}}_{p}\,\underline{p}_{+} + \underline{\underline{I}}_{q}\,\underline{q}_{+}\right),\tag{72}$$

$$\underline{\underline{J}}_{p}\underline{p}_{+} + \underline{\underline{J}}_{q}\underline{q}_{+} = f_{w}\underline{\underline{k}}\left(\underline{\underline{I}}_{p}\underline{p}_{+} + \underline{\underline{I}}_{q}\underline{q}_{+}\right) + \frac{1}{\cosh\lambda}\underline{\underline{J}}_{p}\underline{p}_{-},\tag{73}$$

which can be rearranged to give

$$\left(\tanh^{2}\lambda \underline{\underline{J}}_{p} - f_{w}\underline{\hat{\underline{I}}}_{p}\right)\underline{p}_{+} + \left(\underline{\underline{J}}_{pq} + \tanh^{2}\lambda \underline{\underline{J}}_{qp} - f_{w}\underline{\hat{\underline{I}}}_{q}\right)\underline{q}_{+},\tag{74}$$

where

$$\underline{\underline{\hat{I}}}_{n} = \underline{\underline{k}}\,\underline{\underline{I}}_{n},\tag{75}$$

$$\underline{\hat{\underline{L}}}_q = \underline{\underline{k}} \, \underline{\underline{\underline{L}}}_q,\tag{76}$$

$$\underline{\underline{J}}_{pq} = \underline{\underline{J}}_{q} - \underline{\underline{J}}_{p} \hat{\underline{\underline{f}}}_{p}^{-1} \hat{\underline{\underline{f}}}_{q}, \tag{77}$$

$$\underline{\underline{J}}_{qp} = \underline{\underline{J}}_p \, \underline{\hat{\underline{I}}}_p^{-1} \, \underline{\hat{\underline{I}}}_q. \tag{78}$$

Now, $z_w \sim 1/\bar{b}_w$, where \bar{b}_w is the mean wall minor radius. In the large aspect-ratio limit, $b_w \ll 1$, we have $\underline{\underline{I}}_p \sim \mathcal{O}(1)$, $\underline{\underline{I}}_q \sim \mathcal{O}(1)$, $\underline{\underline{J}}_p \sim \mathcal{O}(1/\bar{b}_w^2)$, $\underline{\underline{J}}_q \sim \mathcal{O}(1/\bar{b}_w^2)$, $\underline{\underline{K}}_p \sim \mathcal{O}(1/\bar{b}_w)$, and $\underline{\underline{k}} \sim \mathcal{O}(1/\bar{b}_w)$ It follows that $\underline{\hat{I}}_p \sim \mathcal{O}(1/\bar{b}_w)$, $\underline{\hat{I}}_q \sim \mathcal{O}(1/\bar{b}_w)$, $\underline{\underline{J}}_{pq} \sim \mathcal{O}(1/\bar{b}_w^2)$ and $\underline{\underline{J}}_{qp} \sim \mathcal{O}(1/\bar{b}_w^2)$. Thus, the ratio of the first to the second term multiplying \underline{p}_+ in Eq. (74) is

$$\tanh \lambda \, \frac{\bar{d}_w}{\lambda \, \bar{b}_w}.\tag{79}$$

However, the wall analysis is premised on the assumption that

$$\frac{\bar{d}_w}{\lambda \, \bar{b}_w} \ll 1. \tag{80}$$

Hence, the first term is negligible with respect to the second, irrespective of the value of λ . The ratios of the three terms multiplying \underline{q}_{+} in Eq. (74) are

$$\frac{\bar{d}_w}{\lambda \bar{b}_w}$$
, $\tanh^2 \lambda \frac{\bar{d}_w}{\lambda \bar{b}_w}$, $\tanh \lambda$. (81)

Thus, in the thin-shell limit, $\lambda \ll 1$, the second term is negligible with respect to the first. In the thick-shell limit, $\lambda \gg 1$, the third term is dominant. Thus, we can neglect the second term. Hence, we deduce that

$$\underline{q}_{+} = \underline{\underline{\mathcal{F}}} \ \underline{p}_{+}, \tag{82}$$

where

$$\underline{\mathcal{F}} = f_w \, \underline{I} \, (\underline{J} + f_w \, \underline{1})^{-1}, \tag{83}$$

$$\underline{\underline{I}} = -\underline{\hat{I}}_q^{-1} \underline{\hat{I}}_p, \tag{84}$$

$$\underline{\underline{J}} = \underline{\hat{I}}_{p}^{-1} \left(\underline{\underline{J}}_{q} \underline{\underline{I}} + \underline{\underline{J}}_{p} \right). \tag{85}$$

Note that $\underline{\underline{I}} \sim \mathcal{O}(1)$ and $\underline{\underline{J}} \sim \mathcal{O}(1/\bar{b}_w)$.

D. Toroidal Electromagnetic Torque

The net toroidal electromagnetic torque acting on the plasma is

$$T_{\phi} = -2\pi^2 n \operatorname{Im}(\underline{p}_{+}^{\dagger} \underline{q}_{+}) = -2\pi^2 n \operatorname{Im}(\underline{p}_{+}^{\dagger} \underline{\mathcal{F}} \underline{p}_{+}) = -\pi^2 n \operatorname{Im}[\underline{p}_{+}^{\dagger} (\underline{\mathcal{F}} - \underline{\mathcal{F}}^{\dagger}) \underline{p}_{+}]. \tag{86}$$

However, we expect this torque to be zero if f_w is real, which implies that $\underline{\underline{\mathcal{F}}} = \underline{\underline{\mathcal{F}}}^{\dagger}$ when f_w is real. In other words,

$$f_w \underline{\underline{I}} (\underline{\underline{J}} + f_w \underline{\underline{1}})^{-1} = f_w (\underline{\underline{J}}^{\dagger} + f_w \underline{\underline{1}})^{-1} \underline{\underline{I}}^{\dagger}, \tag{87}$$

which implies that

$$f_w \left(\underline{J}^{\dagger} + f_w \, \underline{1} \right) \underline{I} = f_w \, \underline{I}^{\dagger} \left(\underline{J} + f_w \, \underline{1} \right). \tag{88}$$

However, the previous equation holds for arbitrary real f_w , so we can separately equate the coefficients of f_w and f_w^2 to give

$$\underline{J}^{\dagger} \underline{I} = \underline{I}^{\dagger} \underline{J} \tag{89}$$

$$\underline{\underline{I}} = \underline{\underline{I}}^{\dagger}. \tag{90}$$

It follows that $\underline{\underline{I}}$ and

$$\underline{K} = \underline{I}\underline{J} \tag{91}$$

are both real symmetric matrices. In general,

$$\underline{\mathcal{F}} - \underline{\mathcal{F}}^{\dagger} = (f_w - f_w^*) \left[(\underline{J} + f_w \underline{1})^{-1} \right]^{\dagger} \underline{K} (\underline{J} + f_w \underline{1})^{-1}, \tag{92}$$

$$T_{\phi} = -2\pi^{2} n \operatorname{Im}(f_{w}) \left[\left(\underline{\underline{J}} + f_{w} \underline{\underline{1}} \right)^{-1} \underline{p}_{\perp} \right]^{\dagger} \underline{\underline{K}} \left[\left(\underline{\underline{J}} + f_{w} \underline{\underline{1}} \right)^{-1} \underline{p}_{\perp} \right]. \tag{93}$$

Thus, $\underline{\underline{\mathcal{F}}}$ is clearly Hermitian if f_w is real.

III. MATCHING AT PLASMA/VACUUM INTERFACE

A. Matching Condition

Let r, θ , ϕ be right-handed flux coordinates, where r is a flux-surface label, θ is a poloidal angle that is zero on the inboard mid-plane, and

$$\mathcal{J} \equiv (\nabla r \times \nabla \theta \cdot \nabla \phi)^{-1} = r R^2. \tag{94}$$

The plasma/vacuum interface lies at $r = \epsilon$. In the vacuum region between the interface and the wall,

$$V(z,\eta) = \sum_{m} (z - \cos \eta)^{1/2} \left[p_{m+} \hat{P}_{|m|-1/2}^{n}(z) + q_{m+} \hat{Q}_{|m|-1/2}^{n}(z) \right] e^{-i m \eta}.$$
 (95)

Thus, if we write

$$V(r,\theta) = \sum_{m} V_m(r) e^{i m \theta}, \qquad (96)$$

$$\psi(r,\theta) = \sum_{m} \psi_{m}(r) e^{i m \theta}$$
(97)

in the same region, where

$$\psi(r,\theta) = \mathcal{J}\,\nabla V \cdot \nabla r,\tag{98}$$

then

$$\underline{V} = \underline{\underline{\mathcal{P}}} \ \underline{p}_{+} + \underline{\mathcal{Q}} \ \underline{q}_{+}, \tag{99}$$

$$\underline{\psi} = \underline{\mathcal{R}} \ \underline{p}_{+} + \underline{\mathcal{S}} \ \underline{q}_{+}, \tag{100}$$

where \underline{V} is the vector of the $V_m(\epsilon)$ values, $\underline{\psi}$ is the vector of the $\psi_m(\epsilon)$ values, $\underline{\underline{P}}$ is the matrix of the

$$\mathcal{P}_{mm'} = \oint_{r=\epsilon} (z - \cos \eta)^{1/2} \, \hat{P}^{n}_{|m'|-1/2}(z) \, \exp[-\mathrm{i} (m \, \theta + m' \, \eta)] \, \frac{d\theta}{2\pi}$$
 (101)

values, $\underline{\underline{Q}}$ is the matrix of the

$$Q_{mm'} = \oint_{r-\epsilon} (z - \cos \eta)^{1/2} \, \hat{Q}_{|m'|-1/2}^{n}(z) \, \exp[-\mathrm{i} (m \, \theta + m' \, \eta)] \, \frac{d\theta}{2\pi}$$
 (102)

values, $\underline{\underline{\mathcal{R}}}$ is the matrix of the

$$\mathcal{R}_{mm'} = \oint_{r=\epsilon} \left\{ \left[\frac{1}{2} (z - \cos \eta)^{-1/2} \hat{P}^{n}_{|m'|-1/2}(z) + (z - \cos \eta)^{1/2} \frac{d\hat{P}^{n}_{|m'|-1/2}}{dz} \right] \mathcal{J} \nabla r \cdot \nabla z \right. \\
+ \left[\frac{1}{2} (z - \cos \eta)^{-1/2} \sin \eta - i m' (z - \cos \eta)^{1/2} \right] \hat{P}^{n}_{|m'|-1/2}(z) \mathcal{J} \nabla r \cdot \nabla \eta \right\} \\
\times \exp[-i (m \theta + m' \eta)] \frac{d\theta}{2\pi} \tag{103}$$

values, and $\underline{\underline{\mathcal{S}}}$ is the matrix of the

$$S_{mm'} = \oint_{r=\epsilon} \left\{ \left[\frac{1}{2} (z - \cos \eta)^{-1/2} \hat{Q}^{n}_{|m'|-1/2}(z) + (z - \cos \eta)^{1/2} \frac{d\hat{Q}^{n}_{|m'|-1/2}}{dz} \right] \mathcal{J} \nabla r \cdot \nabla z + \left[\frac{1}{2} (z - \cos \eta)^{-1/2} \sin \eta - i m' (z - \cos \eta)^{1/2} \right] \hat{Q}^{n}_{|m'|-1/2}(z) \mathcal{J} \nabla r \cdot \nabla \eta \right\} \times \exp[-i (m \theta + m' \eta)] \frac{d\theta}{2\pi}$$
(104)

Equations (82), (96), and (97) imply that

$$\underline{V} = (\underline{\underline{\mathcal{P}}} + \underline{\underline{\mathcal{Q}}}\underline{\underline{\mathcal{F}}})\underline{p}_{+},\tag{105}$$

$$\psi = (\underline{\mathcal{R}} + \underline{\mathcal{S}}\,\underline{\mathcal{F}})\,p_{\perp},\tag{106}$$

which yields

$$\underline{V} = \underline{H} \ \psi, \tag{107}$$

where

$$\underline{\underline{H}} = (\underline{\underline{\mathcal{P}}} + \underline{\underline{\mathcal{Q}}}\underline{\underline{\mathcal{F}}})(\underline{\underline{\mathcal{R}}} + \underline{\underline{\mathcal{S}}}\underline{\underline{\mathcal{F}}})^{-1}.$$
(108)

B. Toroidal Electromagnetic Torque

The net toroidal electromagnetic torque acting on the plasma is

$$T_{\phi} = -2\pi^{2} n \operatorname{Im}(\underline{V}^{\dagger} \underline{\psi})$$

$$= -2\pi^{2} n \operatorname{Im}[\underline{p}_{+}^{\dagger} (\underline{\underline{P}}^{\dagger} + \underline{\underline{F}}^{\dagger} \underline{\underline{Q}}^{\dagger}) (\underline{\underline{R}} + \underline{\underline{S}} \underline{\underline{F}}) \underline{p}_{+}]$$

$$= -2\pi^{2} n \operatorname{Im}[\underline{p}_{+}^{\dagger} (\underline{\underline{P}}^{\dagger} \underline{\underline{R}} + \underline{\underline{F}}^{\dagger} \underline{\underline{Q}}^{\dagger} \underline{\underline{R}} + \underline{\underline{P}}^{\dagger} \underline{\underline{S}} \underline{\underline{F}} + \underline{\underline{F}}^{\dagger} \underline{\underline{Q}}^{\dagger} \underline{\underline{S}} \underline{\underline{F}}) \underline{p}_{+}]$$

$$= -\pi^{2} n \operatorname{Im}[\underline{p}_{+}^{\dagger} (\underline{\underline{P}}^{\dagger} \underline{\underline{R}} - \underline{\underline{R}}^{\dagger} \underline{\underline{P}}) \underline{p}_{+}] - \pi^{2} n \operatorname{Im}[\underline{p}_{+}^{\dagger} (\underline{\underline{P}}^{\dagger} \underline{\underline{S}} - \underline{\underline{R}}^{\dagger} \underline{\underline{Q}}) \underline{\underline{F}} \underline{p}_{+}]$$

$$+ \pi^{2} n \operatorname{Im}[\underline{p}_{+}^{\dagger} \underline{\underline{F}}^{\dagger} (\underline{\underline{S}}^{\dagger} \underline{\underline{P}} - \underline{\underline{Q}}^{\dagger} \underline{\underline{R}}) \underline{p}_{+}] - \pi^{2} n \operatorname{Im}[\underline{p}_{+}^{\dagger} \underline{\underline{F}}^{\dagger} (\underline{\underline{Q}}^{\dagger} \underline{\underline{S}} - \underline{\underline{S}}^{\dagger} \underline{\underline{Q}}) \underline{\underline{F}} \underline{p}_{+}]. \tag{109}$$

The previous equation is consistent with Eq. (86) provided that

$$\underline{\mathcal{P}}^{\dagger} \, \underline{\mathcal{R}} = \underline{\mathcal{R}}^{\dagger} \, \underline{\mathcal{P}}, \tag{110}$$

$$\underline{\underline{\mathcal{Q}}}^{\dagger} \underline{\underline{\mathcal{S}}} = \underline{\underline{\mathcal{S}}}^{\dagger} \underline{\underline{\mathcal{Q}}}, \tag{111}$$

$$\underline{\underline{\mathcal{P}}}^{\dagger} \underline{\underline{\mathcal{S}}} - \underline{\underline{\mathcal{R}}}^{\dagger} \underline{\underline{\mathcal{Q}}} = \underline{\underline{1}}. \tag{112}$$

Making use of the previous three equations, we can show that

$$\underline{H} - \underline{H}^{\dagger} = -[(\underline{\mathcal{R}} + \underline{\mathcal{S}}\underline{\mathcal{F}})^{-1}]^{\dagger} (\underline{\mathcal{F}} - \underline{\mathcal{F}}^{\dagger}) (\underline{\mathcal{R}} + \underline{\mathcal{S}}\underline{\mathcal{F}})^{-1}. \tag{113}$$

Thus, $\underline{\underline{H}}$ is Hermitian if $\underline{\underline{\mathcal{F}}}$ is Hermitian, which implies that $\underline{\underline{H}}$ is Hermitian if f_w is real.

IV. VACUUM MATRIX

A. No-Wall and Perfect-Wall Boundary Conditions

In the no-wall limit, $f_w = 0$, and $\underline{\underline{\mathcal{F}}} = \underline{\underline{0}}$. Hence, the boundary condition at the plasma/vacuum interface becomes

$$\underline{V} = \underline{\underline{H}}_{nw} \, \underline{\psi}, \tag{114}$$

where

$$\underline{\underline{H}}_{nw} = \underline{\underline{\mathcal{P}}} \, \underline{\underline{\mathcal{R}}}^{-1}. \tag{115}$$

Equation (110) implies that $\underline{\underline{\underline{H}}}_{nw}$ is Hermitian.

In the perfect-wall limit, $f(\lambda) \to \infty$, and $\underline{\underline{\mathcal{F}}} = \underline{\underline{I}}$. Hence, the boundary condition at the interface becomes

$$\underline{V} = \underline{\underline{H}}_{mv} \underline{\psi}, \tag{116}$$

where

$$\underline{\underline{H}}_{pw} = (\underline{\underline{\mathcal{P}}} + \underline{\underline{\mathcal{Q}}}\underline{\underline{I}})(\underline{\underline{\mathcal{R}}} + \underline{\underline{\mathcal{S}}}\underline{\underline{I}})^{-1}.$$
(117)

Comparison to Eqs. (108) and (113) reveals that $\underline{\underline{H}}_{pw}$ is Hermitian, given that that $\underline{\underline{I}}$ is Hermitian.

B. Symmetric form of Vacuum Matrix

It is possible to demonstrate that

$$\underline{\underline{\underline{H}}} = \underline{\underline{\underline{H}}}_{nw} + f_w \left(\underline{\underline{\underline{H}}}_{nw} - \underline{\underline{\underline{H}}}_{nw}\right) \left(\underline{\underline{\underline{B}}} + f_w \underline{\underline{1}}\right)^{-1},\tag{118}$$

where

$$\underline{\underline{B}} = \underline{\mathcal{R}} \underline{J} (\underline{\mathcal{R}} + \underline{\mathcal{S}} \underline{I})^{-1}. \tag{119}$$

Note that $\underline{\underline{B}} \sim \mathcal{O}(1/\bar{b}_w)$. Suppose that f_w is real. It follows that

$$\underline{\underline{H}} - \underline{\underline{H}}^{\dagger} = f_w \left[(\underline{\underline{H}}_{pw} - \underline{\underline{H}}_{nw}) (\underline{\underline{B}} + f_w \underline{\underline{1}})^{-1} - (\underline{\underline{B}}^{\dagger} + f_w \underline{\underline{1}})^{-1} (\underline{\underline{H}}_{pw} - \underline{\underline{H}}_{nw}) \right]. \tag{120}$$

However, we know that $\underline{\underline{H}}$ is Hermitian when f_w is real. Hence, we deduce that

$$(\underline{\underline{H}}_{pw} - \underline{\underline{H}}_{nw}) (\underline{\underline{B}} + f_w \underline{\underline{1}})^{-1} = (\underline{\underline{B}}^{\dagger} + f_w \underline{\underline{1}})^{-1} (\underline{\underline{H}}_{pw} - \underline{\underline{H}}_{nw}), \tag{121}$$

which implies that

$$\underline{\underline{B}}^{\dagger} (\underline{\underline{H}}_{pw} - \underline{\underline{H}}_{nw}) = (\underline{\underline{H}}_{pw} - \underline{\underline{H}}_{nw}) \underline{\underline{B}}. \tag{122}$$

The previous equation yields

$$(\underline{\underline{\mathcal{R}}}^{\dagger} + \underline{\underline{I}}\underline{\underline{\mathcal{S}}}^{\dagger})\underline{\underline{J}}^{\dagger}\underline{\underline{\mathcal{R}}}^{\dagger} \left[(\underline{\underline{\mathcal{P}}} + \underline{\underline{\mathcal{Q}}}\underline{\underline{I}}) (\underline{\underline{\mathcal{R}}} + \underline{\underline{\mathcal{S}}}\underline{\underline{I}})^{-1} - \underline{\underline{\mathcal{R}}}^{-1\dagger}\underline{\underline{P}}^{\dagger} \right] \\
= \left[(\underline{\underline{\mathcal{R}}}^{\dagger} + \underline{\underline{I}}\underline{\underline{\mathcal{S}}}^{\dagger})^{-1} (\underline{\underline{\mathcal{P}}}^{\dagger} + \underline{\underline{I}}\underline{\underline{\mathcal{Q}}}^{\dagger}) - \underline{\underline{\mathcal{P}}}\underline{\underline{\mathcal{R}}}^{-1} \right] \underline{\underline{\mathcal{R}}}\underline{\underline{J}} (\underline{\underline{\mathcal{R}}} + \underline{\underline{\mathcal{S}}}\underline{\underline{I}})^{-1}. \tag{123}$$

where use has been made of the fact that $\underline{\underline{H}}_{pw}$ and $\underline{\underline{H}}_{nw}$ are Hermitian. Making use of Eqs. (110)–(112), the previous equation reduces to

$$-\underline{\underline{J}}^{\dagger}\,\underline{\underline{I}} = -\underline{\underline{I}}\,\underline{\underline{J}},\tag{124}$$

which Eqs. (89) and (90) ensure is satisfied. Equations (118) and (121) can be combined to give

$$\underline{\underline{H}} = \underline{\underline{H}}_{nw} + \frac{f_w}{2} \left[(\underline{\underline{B}}^{\dagger} + f_w \underline{\underline{1}})^{-1} (\underline{\underline{H}}_{pw} - \underline{\underline{H}}_{nw}) + (\underline{\underline{H}}_{pw} - \underline{\underline{H}}_{nw}) (\underline{\underline{B}} + f_w \underline{\underline{1}})^{-1} \right]
= \underline{\underline{H}}_{nw} + f_w (\underline{\underline{B}}^{\dagger} + f_w \underline{\underline{1}})^{-1} (\underline{\underline{H}}_{pw} - \underline{\underline{H}}_{nw}),
= \underline{\underline{H}}_{nw} + f_w (\underline{\underline{H}}_{mv} - \underline{\underline{H}}_{nw}) (\underline{\underline{B}} + f_w \underline{\underline{1}})^{-1}.$$
(125)

Note that \underline{H} is clearly Hermitian if f_w is real.

V. WALL TORQUE

Consider an unreconnected tearing mode, resonant at the kth rational surface, and rotating at the angular phase velocity ω_k . It follows that $\gamma = -i \omega_k$. Thus,

$$f_w = \frac{\zeta}{2\,\bar{d}_w} \left[\left(\frac{\sinh \zeta - \sin \zeta}{\cosh \zeta + \cos \zeta} \right) - i \left(\frac{\sinh \zeta + \sin \zeta}{\cosh \zeta + \cos \zeta} \right) \right],\tag{126}$$

where

$$\zeta = (2\,\hat{\omega}_k\,\bar{d}_w)^{1/2},\tag{127}$$

and $\hat{\omega}_k = \omega_k \, \bar{\tau}_w$. The matching condition at the plasma vacuum interface becomes

$$\underline{V} = \underline{\underline{H}}(\zeta) \ \underline{\psi}. \tag{128}$$

Note that $\underline{\underline{H}}(\zeta)$ is not generally Hermitian, because f_w is complex, which implies that the E-matrix is not Hermitian. The toroidal electromagnetic torque acting at the kth rational surface is

$$\delta T_k = 2\pi^2 \, n \, \text{Im}(E_{kk}) \, |\Psi_k|^2. \tag{129}$$

VI. RESISTIVE WALL MODE

We can write

$$\underline{V} = \underline{\underline{V}}_{i} \underline{\alpha}, \tag{130}$$

$$\underline{\psi} = \underline{\psi}_{i} \underline{\alpha},\tag{131}$$

where the $\underline{\underline{V}}_i$ and $\underline{\underline{\psi}}_i$ are ideal solutions. The net toroidal electromagnetic torque acting on the plasma is

$$T_{\phi} = -2\pi^2 \, n \, \text{Im}(\underline{V}^{\dagger} \, \underline{\psi}) = -2\pi^2 \, n \, \text{Im}(\underline{\alpha}^{\dagger} \, \underline{\underline{V}}_{i}^{\dagger} \, \underline{\underline{\psi}}_{i} \, \underline{\alpha}). \tag{132}$$

However, the net torque acting on an ideal plasma is zero, so

$$\underline{\underline{V}}_{i}^{\dagger}\underline{\underline{\psi}}_{i} = \underline{\underline{\psi}}_{i}^{\dagger}\underline{\underline{V}}_{i}. \tag{133}$$

Equation (107) implies that

$$\underline{\underline{V}}_{i} \underline{\alpha} = \underline{\underline{H}} \underline{\psi}_{i} \underline{\alpha}. \tag{134}$$

Writing

$$\psi_{\underline{\underline{\alpha}}} \underline{\alpha} = \underline{x}, \tag{135}$$

we obtain

$$\underline{\underline{W}}_{p}\underline{x} = \underline{\underline{H}}\underline{x},\tag{136}$$

where

$$\underline{\underline{W}}_{p} = \underline{\underline{V}}_{i} \, \underline{\psi}_{i}^{-1}. \tag{137}$$

Equation (133) ensures that $\underline{\underline{W}}_p$ is Hermitian.

Equation (125) can be combined with the previous equation to give

$$\underline{\underline{W}}_{nw}\underline{\beta} = -\frac{f_w}{2} \left[(\underline{\underline{W}}_{pw} - \underline{\underline{W}}_{nw}) (\underline{\underline{B}} + f_w \underline{\underline{1}})^{-1} + (\underline{\underline{B}}^{\dagger} + f_w \underline{\underline{1}})^{-1} (\underline{\underline{W}}_{pw} - \underline{\underline{W}}_{nw}) \right] \underline{\beta}, \quad (138)$$

where

$$\underline{\underline{W}}_{nw} = \underline{\underline{W}}_{p} - \underline{\underline{H}}_{nw},\tag{139}$$

$$\underline{\underline{W}}_{nw} = \underline{\underline{W}}_{n} - \underline{\underline{H}}_{nw}. \tag{140}$$

Note that $\underline{\underline{W}}_{nw}$ and $\underline{\underline{W}}_{pw}$ are Hermitian. Writing

$$(\underline{B} + f_w \, \underline{1})^{-1} \, \underline{x} = y, \tag{141}$$

we obtain

$$\left(f_w \underline{\underline{W}}_{pw} + \underline{\underline{B}}^{\dagger} \underline{\underline{W}}_{nw}\right) \underline{x} = \underline{0},$$
(142)

$$\left(f_w \underline{\underline{W}}_{pw} + \underline{\underline{W}}_{nw} \underline{\underline{B}}\right) \underline{y} = \underline{0}.$$
(143)

Note that the \underline{x} are the left-eigenvectors of Eq. (156), whereas the \underline{y} are the left-eigenvectors of Eq. (142). The previous two equations can be combined to give

$$(f_w - f_w^*) \underline{y}^{\dagger} \underline{\underline{W}}_{pw} \underline{x} = 0. \tag{144}$$

Hence, we deduce that the eigenvalues, f_w , are real, and that the eigenvectors, \underline{x} and \underline{y} , are orthonormal, in the sense that

$$\underline{y}_{i}^{\dagger} \underline{W}_{pw} \underline{x}_{j} = \delta_{ij}. \tag{145}$$

Once we have determined the eigenvectors then

$$\psi = \underline{x},\tag{146}$$

$$\underline{V} = \underline{\underline{W}}_{p} \underline{x}. \tag{147}$$

We can write

$$\underline{\psi} = \underline{Q}\,\underline{\Xi},\tag{148}$$

$$\underline{Z} = \underline{Q}\,\underline{V},\tag{149}$$

where $\underline{\underline{Q}}$ is the diagonal matrix of the $m-n\,q(\epsilon)$ values. Let

$$\underline{\widetilde{W}}_{nw} = \underline{Q} \, \underline{W}_{nw} \, \underline{Q}, \tag{150}$$

$$\underline{\widetilde{W}}_{pw} = \underline{\underline{Q}} \underline{\underline{W}}_{pw} \underline{\underline{Q}},$$
(151)

$$\underline{\underline{\widetilde{B}}} = \underline{\underline{Q}}^{-1} \underline{\underline{B}} \underline{\underline{Q}},\tag{152}$$

$$\underline{\widetilde{x}} = \underline{\underline{Q}}^{-1} \underline{x}, \tag{153}$$

$$\widetilde{\underline{y}} = \underline{Q}^{-1} \, \underline{x}. \tag{154}$$

It follows that

$$\left(f_w \, \underline{\widetilde{W}}_{pw} + \underline{\widetilde{B}}^{\dagger} \, \underline{\widetilde{W}}_{nw}\right) \underline{\widetilde{x}} = \underline{0}, \tag{155}$$

$$\left(f_w \, \underline{\widetilde{W}}_{pw} + \underline{\widetilde{W}}_{nw} \, \underline{\widetilde{B}}\right) \underline{\widetilde{y}} = \underline{0}.$$
(156)

Hence, we again deduce that

$$(f_w - f_w^*) \underline{\widetilde{y}}^{\dagger} \underline{\widetilde{W}}_{pw} \underline{\widetilde{x}} = 0.$$
 (157)

Furthermore,

$$\underline{\underline{\mathcal{Z}}} = \underline{\widetilde{x}},\tag{158}$$

$$\underline{Z} = \underline{\widetilde{W}}_{p} \, \underline{\widetilde{x}}. \tag{159}$$