MATH5210 ANALYSIS

Assignment 5 Limits of Functions Philip Nelson

1

Lemma 1.1: If α is a number s.t. $0 \le \alpha < \epsilon$, then $\alpha = 0$

Proof: Assume that $\alpha > 0$, let $\epsilon = \frac{\alpha}{2}$.

Then

$$\alpha < \frac{\alpha}{2}$$

This conclusion is not possible, then the assumption must be incorrect. Therefore $\alpha=0.$

Claim: Let $f:(a,b)\to \mathbf{R}$ and let $x_0\in(a,b)$. If $\lim_{x\to x_0}f(x)$ exists, then the limit is unique.

Proof: Let $\epsilon > 0$ be given.

Then $\exists \delta_1$ s.t.

$$|f(x) - L| < \frac{\epsilon}{2}$$

for all x s.t.

$$0 < |x - x_0| < \delta_1$$

Likewise $\exists \delta_2$ s.t.

$$|f(x) - M| < \frac{\epsilon}{2}$$

for all x s.t.

$$0 < |x - x_0| < \delta_2$$

Then for $\delta = \min\{\delta_1, \delta_2\},\$

$$|L - M| = |L - f(x) + f(x) - B|$$

and then by the triangle inequality

$$|L - f(x) + f(x) - B| < |L - f(x)| + |f(x) - B|$$

which is equal to

$$= |\frac{\epsilon}{2}| + |\frac{\epsilon}{2}|$$

Since $\epsilon > 0$ was given

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

So $0 \le A - B < \epsilon$ and by lemma 1.1,

$$A - B = 0$$

$$\Rightarrow A = B$$

Therefore if $\lim_{x\to x_0} f(x)$ exists, then the limit is unique.

2

Claim: Let $f:(a,b) \to \mathbf{R}$ and let $x_0 \in (a,b)$. If $\lim_{x \to x_0} f(x) = L$ and L > 0, then $\exists \alpha, \delta > 0$ s.t. $f(x) > \alpha \ \forall \ x \in (x_0 - \delta, x_0 + \delta)$.

Proof: Since the limit exists, this is true for $\epsilon = \frac{L}{3}$, $\exists \delta_1$ s.t. $0 < |x - x_0| < \delta_1$. Using the definition of convergence,

$$|f(x) - L| < \frac{L}{3}$$

$$\Rightarrow -\frac{L}{3} < f(x) - L < \frac{L}{3}$$

$$\Rightarrow L - \frac{L}{3} < f(x) < L + \frac{L}{3}$$

$$\Rightarrow \frac{2}{3}L < f(x) < \frac{4}{3}L$$

So let $\alpha = \frac{2}{3}L$, then for all x s.t. $0 < |x - x_0| < \delta_1$

$$0 < \alpha = \frac{2}{3}L < f(x)$$

Therefore, if $\lim_{x\to x_0} f(x) = L$ and L>0, then $\exists \ \alpha, \delta>0$ s.t. $f(x)>\alpha \ \forall \ x\in (x_0-\delta,x_0+\delta)$.

Claim: Let $f,g,h:(a,b)\to \mathbf{R}$ s.t. $f(x)\leq g(x)\leq h(x)$ for all $x_0\in(a,b)$. If $\lim_{x\to x_0}f(x)=L$ and $\lim_{x\to x_0}h(x)=M$ and L=M, then $\lim_{x\to x_0}h(x)$ exists and equals L.

Proof: Let $\epsilon>0$ be given. I will show that $\exists \ \delta>0$ s.t. $|g(x)-L|<\epsilon$ for $0<|x-x_0|<\delta$. We know $\exists \ \delta_1$ s.t.

$$|f(x) - L| < \epsilon$$

$$\Rightarrow -\epsilon < f(x) - L < \epsilon$$

$$\Rightarrow L - \epsilon < f(x) < L + \epsilon$$
, for $0 < |x - x_0| < \delta_1$

We also know $\exists \delta_2$ s.t.

$$|h(x) - M| < \epsilon$$

$$\Rightarrow -\epsilon < h(x) - M < \epsilon$$

$$\Rightarrow M - \epsilon < h(x) < M + \epsilon$$
, for $0 < |x - x_0| < \delta_2$

Let $\delta = \min\{\delta_1, \delta_2\}$, then for any x s.t. $0 < |x - x_0| < \delta$

$$L - \epsilon < f(x) \le g(x) \le h(x) < M + \epsilon$$

and since L = M

$$\Rightarrow L - \epsilon < g(x) < L + \epsilon$$

$$\Rightarrow |g(x) - L| < \epsilon$$
, for $0 < |x - x_0| < \delta$

Therefore, if $\lim_{x\to x_0} f(x) = L$ and $\lim_{x\to x_0} h(x) = M$ and L=M, then $\lim_{x\to x_0} h(x)$ exists and equals L.

4

Claim: Let $f:(a,b) \to \mathbf{R}$ and let $x_0 \in (a,b)$. If $f(x) \ge 0$ for all $x \in (a,b)$ and $\lim_{x \to x_0} f(x) = L$ exists, then $\lim_{x \to x_0} \sqrt{f(x)} = \sqrt{L}$.

Proof: I will use sequential characterization of limits to prove the claim. For all sequences a_n s.t.

$$\lim_{n \to \infty} a_n = x_0$$

then

$$\lim_{n \to \infty} f(a_n) = L$$

Let $b_n = f(a_n)$ then

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} f(a_n) = L$$

Observe $\lim_{n\to\infty} \sqrt{b_n}$. We know $\lim_{n\to\infty} b_n$ exists, so by the square root property of sequences

$$\lim_{n \to \infty} \sqrt{b_n} = \sqrt{\lim_{n \to \infty} b_n} = \sqrt{L}$$

Therefore, if $f(x) \geq 0$ for all $x \in (a,b)$ and $\lim_{x \to x_0} f(x) = L$ exists, then $\lim_{x \to x_0} \sqrt{f(x)} = \sqrt{L}$.

5

Claim: Let $f,g:(a,b)\to \mathbf{R}$ and let $x_0\in(a,b)$. If $\lim_{x\to x_0}f(x)=L$ and $\lim_{x\to x_0}g(x)=M$, then $\lim_{x\to x_0}f(x)g(x)=LM$.

Proof: I will use sequential characterization of limits to prove the claim. For all sequences a_n s.t.

$$\lim_{n \to \infty} a_n = x_0$$

then

$$\lim_{n \to \infty} f(a_n) = L$$

and

$$\lim_{n \to \infty} g(a_n) = M$$

Let $b_n = f(a_b)$ and $c_n = g(a_n)$ then

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} f(a_n) = L$$

and

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} f(a_n) = L$$

Observe $\lim_{n\to\infty}b_nc_n$. We know $\lim_{n\to\infty}b_n$ exists and $\lim_{n\to\infty}c_n$ exists, so by the product property of sequences

$$\lim_{n \to \infty} b_n c_n = \lim_{n \to \infty} b_n \cdot \lim_{n \to \infty} c_n = LM$$

Therefore if $\lim_{x\to x_0} f(x) = L$ and $\lim_{x\to x_0} g(x) = M$, then $\lim_{x\to x_0} f(x)g(x) = LM$.