

LP8 CO₂ engine for battery-powered applications

User's Guide Rev 1.12

Standard Specifications

STANDARD SPECIFICATIONS

Charge per measurement:

Total 3,6 mC
IR source (lamp) 2,4 mC
Electronics 1,2 mC

Achieving RMS noise in CO2 measurements:

@400ppm 14 ppm @1000ppm 25 ppm

Measured gas	Carbon dioxide (CO ₂)
Operating principle	Non-dispersive infrared (NDIR)
Measurement range	0 - 10000ppm
Accuracy CO ₂	±50ppm ±3% of reading 1,4
RMS noise CO ₂	14 ppm @ 400 ppm
	25 ppm @ 1000 ppm
Accuracy Temperature	±0.7°C
Power supply	2.9 - 5.5V
Peak current	140 mA max. (125 mA typ. @ 25°C)
Shutdown current	1 µA ^{2,3}
Charge per measurement	3.6 mC
Energy per measurement	11.9 mJ @ 3.3V
Average current having	
16 s meas. period	225 μA ^{2,3}
60 s meas. period	61 µA ^{2,3}
120 s mes. period	31 µA ^{2,3}
Measurement period	≥16 s
Dimensions	8 mm x 33mm x 20mm
Life expectancy	>15 years
Operation range	0 - 50°C, 0 - 95% RH (non-condensing)
Communication	UART (host-slave protocol)

Note 1: 10 – 40°C, 20 – 60 % RH, after at least three 8 days periods, each followed by ABC command set in the Calculation Control byte

Note 2: Option of measuring battery voltage adds 12 uA

Note 3: External super-capacitor leakage is not considered

Note 4: Spec is ref. to uncertainty of calibration gas mixtures ±1%

32.75 ±0.6 32.21 ±0.2 (0.54)26.41 ±0.10 0 $\blacksquare \blacksquare$ 3.35 ±0.25 1.65 ±0.25 1.25 ±0.2

29.71 ±0.2

Dimensions

Pins description

Note: When PCB part with "Factory Connector" is not broken VCAP and VBB_EN are connected to VBB.

Pin #	Name	Туре	Maximum voltage, V	Description		
				JP1 (4-pin header)		
1	1 VCAP Power 6.5 Lamp driver supply voltage					
2	GND	Power	-	Ground		
3	PWM	Output	3.6	I/O pin. Reserved for PWM function in other models.		
4	4 RESET# Input 2.5 Reset. Has to be driven by an open collector.		Reset. Has to be driven by an open collector.			
				JP2 (5-pin header)		
1	VBB	Power	5.5	Supply voltage of electronics.		
2	EN_VBB	Input	VBB	Enable pin of the voltage regulator. When in the logic low state VBB draws maximum 2µA of current.		
3	RxD	Input	3.6	UART receive of sensor MCU		
4	TxD	Output	3.6	UART transmit of sensor MCU		
5	RDY	Output	3.6	Signal is used to synchronize sensor with a host system.		

Electrical specifications

Parameter	Min	Тур	Max	Unit	Test conditions
Power supply voltage:					
VBB (sensor electronics)	2.9		5.5	V	
VCAP (lamp)	2.9		6.5	V	
Peak current					VBB = VCAP = 2.9 - 5.5V
VBB (sensor electronics) ¹		5.4	6	mA	T _{amb} = 0 - 50°C
VCAP (lamp) ²		119	129	mA	T _{amb} = 25 °C
VCAP (lamp) ²			134	mA	T _{amb} = 0°C (peak current decreases with increasing temperature)
Total (VBB + VCAP) 1,2		125	140	mA	T _{amb} = 0 - 50°C
Shutdown current					
VBB (sensor electronics) ³		1	2	μA	T _{amb} = 25°C
VCAP (lamp) 400k Ω resistor network		14	15	μA	T _{amb} = 25°C, VCAP = 5.5V
VCAP (lamp) w/o voltage monitoring		0.1	0.2	μA	T _{amb} = 25°C, VCAP = 5.5V
Charge per measurement cycle					T _{amb} = 0 - 50°C, VBB = VCAP = 2.9 - 5.5V
VBB (sensor electronics)		1.1	1.2	mA·s	9600 baudrate
		1.0	1.1	mA⋅s	19200 baudrate
VCAP (lamp)		2.2	2.4	mA⋅s	

¹ Charging of 20 μF decoupling capacitance is not considered

² Charging of 220 nF decoupling capacitance is not considered

³ Without pull-down resistor 100k on VBB_EN (mounted on request)

Typical current profile

Typical communication cycle with LP8 sensor requires < 450 ms using 9600 UART communication baudrate. If not considering spike current required to charge decoupling capacitors when the sensor is powered on, then VBB (electronics) typical peak current is 5,4 mA and VCAP (lamp) typical peak current is 119 mA. It gives typical total peak current of 125 mA during measurement cycle.

Measured charge for the waveforms

Power pin	Charge, mQ
VBB (Electronics)	1,03
VCAP (IR source)	2,19
Total	3,23

Typical consumption

The parameters below are tested in the whole supply voltage range of 2.9-5.5V. There is no significant dependence of the charge and peak current parameters on the supply voltage.

Recommended host connection

- In some battery-powered systems current limiter can be simply a 5R resistor.
- Suggested super-cap type is Eaton Bussman PM-5R0H474-R (0.47F 5V). It is specified for 8μA leakage current @5V, 20°C and 500mΩ ESR.
- Customer can use its own low-leakage switch (for example TPS22907) to switch off both VCAP and VBB between measurements. VBB can be supplied from super-cap.

Calculating average current consumption

$$I_{avg} = \frac{Q_{MCU} + Q_{lamp}}{T_{MEAS}} + I_{SHDN} + I_{C_leak}$$

where:

 I_{avg} – average current consumption

 $T_{\it MEAS}$ – measurement period set by customer

 Q_{MCII} – electronics charge per measurement

 Q_{lamp} – lamp charge per measurement

 I_{SHDN} – sum of shutdown currents of electronics and lamp driver (if customer uses its own switch the parameter is obtained from the switch specs)

 $I_{C leak}$ – leakage current of super-capacitor

An example:

Measurement period is 30 seconds, sensor is configured with VCAP voltage monitor, super capacitor leakage current is 8 μ A.

$$I_{avg} = \frac{1000 \left[\mu A \cdot s \right] + 2200 \left[\mu A \cdot s \right]}{30 \left[s \right]} + 15 \left[\mu A \right] + 8 \left[\mu A \right] = 130 \left[\mu A \right]$$

Average current consumption can be reduced by:

- Increasing measurement period.
- Using an external low-leakage switch (for example TPS22907) for both VBB and VCAP.
- Using super capacitor with lower leakage current.

Sensor control by a host MCU system

Measurement period of the sensor is determined by customer host system and may vary without degrading measurement accuracy.

Minimum allowed measurement period is 16 seconds (below 16 seconds accuracy is not guaranteed).

Time diagram

¹ typical values for 9600 baudrate

UART communication

MODBUS UART settings for SenseAir sensors:

Device address -0x68 or 0xFE

Baudrate -9600**Parity** -No

Stop bits -2

	MODBUS ADU (Application Data Unit)									
Address field	Function Code	Data	CRC (Low byte							
(1 byte)	MOD	first then High byte)								

Function Code 65 (0x41) Write to RAM MCU

Request PDU

Function code	1 byte	0x41
Starting Address Hi	1 byte	Address Hi
Starting Address Lo	1 byte	Address Lo
Number of bytes to write	1 byte	N
Data to write	N bytes	

Response PDU

Function code	1 byte	0x41
---------------	--------	------

Error Response PDU

Function code	1 byte	0xC1
Error code	1 byte	Error code

Function Code 68 (0x44) Read from RAM MCU

Request PDU

Function code	1 byte	0x44
Starting Address Hi	1 byte	Address Hi
Starting Address Lo	1 byte	Address Lo
Number of bytes to read	1 byte	N

Response PDU

Function code	1 byte	0x44
Number of bytes to read	1 byte	N
Data	N bytes	

Error Response PDU

Function code	1 byte	0xC4		
Error code	1 byte	Error code		

Page: 12

Read / write sensor state and measurement result

Sensor RAM address space dedicated to the communication with host

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0x80	Calculation control															
0x90		Sensor State								Pressure 0.1 hPa)		(S16) Itered	ConcPC	. ,	Space_ (S16, 0	
0xA0	VCAP1 VCAP2 Error Error Error Error Status2 Status1 Status0						_filtered 16)		C_filtered 16)		Rese	erved				

Communication sequence

Write prior measurement			Read back after measurement			
Write 26 bytes to the RAM area 0x80-0x99				Read 44 bytes from the RAM area 0x80-0xAB		
Calculation control	Sensor State	Host_Pressure (S16, 0.1 hPa)		Sensor State		Measured Date and Error Status

Parameters

Parameter	Length, bytes	RAM Starting Address	Format	Units	Description
Calculation Control	1	0x80	Bit structure	N/A	Determines calculation flow in the sensor
Sensor State	23	0x81	Structure	N/A	23 bytes structure which has to be saved in the host retention memory for the next measurement.
Host_Pressure	2	0x98	S16	10 Pa (0.1 hPa)	Pressure measured by host. If pressure is not measured, then host has to write the default value of 10124 (1012.4 hPa) which assumes no pressure correction calculated.
Conc	2	0x9A	S16	ppm	Non pressure-compensate unfiltered concentration value
ConcPC	2	0x9C	S16	ppm	Pressure-compensate unfiltered concentration value
Conc_filtered	2	0xA8	S16	ppm	Non pressure-compensate filtered concentration value
ConcPC_filtered	2	0xAA	S16	ppm	Pressure-compensate filtered concentration value
Space_Temp	2	0x9E	S16	0.01 °C	Temperature measured by sensor NTC
VCAP1	2	0xA0	U16	mV	VCAP voltage measured by sensor prior lamp pulse
VCAP2	2	0xA2	U16	mV	VCAP voltage measured by sensor at the end of lamp pulse
Error Status	4	0xA4	Bit Structure	N/A	Error bit structure

S16 – signed integer 16 bits

U16 – unsigned integer 16 bits

Calculation Control byte

0x10 - Initial measurement (filters reset, ABC sample reset and other initial actions)
0x20 - Sequential measurement
0x40 - Zero calibration using unfiltered data
0x41 - Zero calibration using filtered data
0x42 - Zero calibration using unfiltered data, reset filters
0x43 - Zero calibration using filtered data, reset filters
0x50 - Background calibration using unfiltered data
0x51 - Background calibration using filtered data
0x52 - Background calibration using unfiltered data, reset filters
0x53 - Background calibration using filtered data, reset filters
0x70 - ABC (based on filtered data)
0x72 - ABC (based on filtered data) + reset filters

A host system counts ABC period itself (suggested period is 8 days) and has to write ABC command to the "Calculation Control byte" when ABC period expires.

Sensor recalibration

The LP8 sensor works as a slave and totally rely on host actions applied through the "Calculation Control" byte. The difference between three types of calibration used in LP8 are:

- 1) ABC (Automatic Background Calibration) sensor uses for recalibration the lowest concentration value treated as 400 ppm (together with remembered accompanying parameters) found during the period from the last "Initial state" / "ABC" / "Background / Zero calibration" commands written into the "Calculation Control" byte.
- 2) Background calibration (fresh air is treated as 400 ppm)
 - a) Using unfiltered channel sensor considers current unfiltered measurement values to provide recalibration
 - b) Using filtered channel sensor consider filtered values to provide recalibration (sensor has to be exposed for fresh air >40 blinks)
- 3) Zero calibration
 - a) Using unfiltered channel sensor considers current unfiltered measurement values to provide recalibration
 - b) Using filtered channel sensor consider filtered values to provide recalibration (sensor has to be exposed for zero gas >40 blinks)

Sensor response

Concentration in a plastic bag with LP8 sensor is changed from 0 ppm (Nitrogen) to 650 ppm.

* gas flow rate is 1L/min and the plastic bag has a moderate volume, so the concentration changing rate is limited by this factors.

Measurement period is set to 16 seconds. Filtered signal settles to 95% in 7 minutes. Settling time of the unfiltered signal is 4 minutes.

Sensor response

Measurement period is set to 60 seconds (1 minute). Filtered signal settles to 95% in 16 minutes. Settling time of the unfiltered signal is approximately 5 minutes.

Error Handling

ErrorStatus structure

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ErrorStatus0	WarmUp	Memory	OutOfRange	SelfDiag	Calibration	AlgError	Reserved	FatalError
ErrorStatus1		Parameters override bits			Reserved	ADC Error	VCAP2 low	VCAP1 low
ErrorStatus2	Reserved				Unfilt	ered concentrat	ion channel OOF	R bits
ErrorStatus3	Reserved			Filtered concentration channel OOR bits			bits	

Error Handling

ErrorStatus0 byte description

Bit	Bit Name	Error Description	Suggested Action
0 -	FatalError	Fatal Error The bit is a joint bit for different error sources when sensor can not provide correct operation, among them: • Configuration EEPROM parameters are out of range or corrupted • Virtual EEPROM memory read/write error • Error in VCAP measurements	Switch off/on sensor power and start with "Initial Measurement" in the Calculation Control byte. Contact local distributor.
2	AlgError	Algorithm Error Configuration EEPROM parameters are out of range or corrupted	
3	Calibration	Calibration Calculation Error Out of range error at Zero-/Background calibration and ABC	Repeat recalibration or wait until next ABC event.
4	SelfDiag	Self Diagnostics Error Hardware error is detected or important EEPROM parameters are corrupted	Contact local distributor.
5	OutOfRange	Out Of Range Error (OOR) Indicates an error which occurs at different stages of concentration calculation algorithm. Resets automatically after source of error disappears.	Try sensor in fresh air. Perform sensor zero or background calibration. Check sensor temperature readings.
6	Memory	Memory Error Virtual EEPROM read/write error: page checksum error during read or write verification, FLASH operation error.	Contact local distributor.
7	WarmUp	WarmUp bit Bit is not set in customer mode	-

Page: 20

Error Handling

ErrorStatus1 byte description

Bit	Bit Name	Error Description	Suggested Action
0	VCAP1 low	VCAP1 voltage low Voltage measured prior lamp pulse is below preset threshold. The threshold is 2,8V±3%.	Check battery. Sensor supply voltage is below specified operational limit of 2,9V.
2	VCAP2 low	VCAP2 voltage low Average voltage measured at the beginning of lamp pulse (during inrush steps) is below preset threshold. The threshold is 2,7V±3%.	Equivalent series resistance of the sensor power supply source (a battery or super-capacitor) is not enough to provide low- voltage drop during 125mA lamp inrush step.
3	ADC Error	ADC Error MCU ADC out-of-range error has occurred.	Switch off/on sensor power and apply "initial measurement" to the Calculation Control byte. Contact local distributor.
4-7	Parameters override bits	This bits indicate which parameter is forced to a predefined value in the debug mode. Should not appear during normal operation.	-

Bits 3-0 of the **ErrorStatus2** and **ErrorStatus3** bytes decode on what algorithm stage an "Out Of Range Error" (OOR) has occurred in unfiltered and filtered calculation channel respectively.

EFM32 Display Host Demo

Battery on the Demoboard is used to power EFM32 Starter Kit.

In turn Demoboard is supplied from the VMCU pin of the Starter Kit expansion connector.

Display part:

EFM Zero Gecko MCU starter kit with static Toshiba graphical display.

Display is updated with measurement period.

Charge per measurement:

Display Host part LP8 sensor 2,4 mC 3,6 mC

Host firmware source code for EFM32 Starter Kit is available in the demo Dropbox folder.

Page: 22

Measuring sensor and host average current

The easiest way to measure sensor average current is to measure voltage across the resistor prior super-capacitor (R4 39R on Demoboard). Total current can be measured across R1 replacing it by 2.2-4.7R resistor.

A LabVIEW program which facilitates measurements can be found in the Demo Dropbox folder.

BLE Host Demo

CC2541 Host reset button

jumper

Dropbox folder with software and documentation

- Electronic schematic and different BOM options of Demo-board
 - ...\Dropbox\Low Power Demo\LP8_K75 BLE_LoRa Demoboard\Electronic design
- CC2541EM BLE Host firmware, HEX-file
 - ...\Dropbox\Low Power Demo\LP8_K75 BLE_LoRa Demoboard\FW CC2541EM BLE Host\Delivery Archive\
- EFM32 Display Host firmware and source code
 - ...\Low Power Demo\LP8_K75 BLE_LoRa Demoboard\FW EFM32 Display Host\Delivery Archive\
- Simple LabVIEW program for current measurements
 - ...\Dropbox\Low Power Demo\LabVIEW\Current Monitor\
- Android demo application
 - ...\Dropbox\Low Power Demo\AndroidDemo\
- This file
 - ...\Dropbox\Low Power Demo\Documentation\

Revision History

Document Revision	Page	Changes
1.06	4	PWM pin# changed to 3, RESET# pin# changed to 4. RDY, PWM changed from I/O to Output.
	6	RxD/TxD on the host picture are swapped.
	8	«Write sensor state stored in the previous measurement» is changed to «Write sensor state stored in the previous measurement or set Initial if it is the first measurement».
	9	«LP8 is powered» is changed to «LP8 can be powered off after measurement cycle». A note 1 is added which specifies that typical timing values are taken for 9600 baudrate.
	10	The order of CRC bytes is pointed explicitly: «Low byte first, then High byte».
	12	S16 – signed integer 16 bits U16 – unsigned integer 16 bits
1.07	2	Accuracy specifications are changed to: ±50ppm ±3% of reading RMS CO2 noise specifications are changed to: 14 ppm @ 400 ppm, 25 ppm @ 1000 ppm Operation range is changed to: 0 - 50°C, 0 - 95% RH (non-condensing)
1.08	14-16	Error handling description is added to the pages 14-16
1.09	2,6, 7, 16	Peak current specifications are updated. Max. peak current is140 mA for the full voltage and temperature operating range (125 mA typical @ 25°C). Typical LP8 current profile is added. Typical consumption parameters vs. temperature and baudrate are added. Sensor recalibration concept (ABC, Zero/Background calibration) are explained on the page 16
1.10	3	Sensor dimensions are updated
1.11	5	Total peak current is added to the electrical specifications
1.12	13,14,17,18	Default pressure which gives no pressure correction (PC) = 10124 (1012,4 hPa). Filtered concentration is added to the master-slave protocol (pages 13, 14). Sensor response when gas is flashed in a plastic bag with moderate volume is shown as an example (pages 17,18)

Page: 26