Merging Data

Lecture 6

Objective

• To merge data frames

Motivation

Motivation

- it is rare that data analysis involves only a single table of data
- usually many tables of data are involved, which must combine to answer the questions of interest
- most data stored in relational database (e.g. SQL database)

Keys

- variables used to connect each pair of tables
- variables that uniquely identifies an observation

3 Functions for Merging Data Frames

- 1. **Mutating joins** add new variables to one data frame that match observations in another
- 2. **Filtering joins** filter observations from one data frame that match an observation in the other table
- 3. **Set operations** treat observations as elements of a set

Mutating joins

- mutating join allows you to combine variables from two tables
- first matches observations by their keys, then copies across variables from one table to the other
- inner join and outer join

inner_join()

- inner join matches pairs of observations whenever their keys are equal
- keeps observations that appear in both tables

> inner_join(x, y, by = c("A", "B")

	^	
Α	В	С
а	t	1
b	u	2
С	V	3

	y	
Α	В	D
а	t	3
b	u	2
d	W	1

V

>
$\neg \nu$

Α	В	С	D
а	t	1	3
b	u	2	2

inner_join()

```
> data 1
# A tibble: 5 x 3
patient ID
            sex
                         age year
 <chr>
                         <dbl>
             <chr>
1 P001
            female
2 P002
            female
3 P003
            female
                         3
4 P004
            male
5 P005
            male
```

> data_2

```
# A tibble: 5 x 3
 patient id weight kg height cm
            <dbl>
                         <dbl>
 <chr>
1 P001
            9.1
                         73
2 P002
            16.4
                         NA
3 P003
            10.5
                         85
4 P004
            13.2
                         95
            15.9
5 P006
                        104
```

> inner_join(data_1, data_2, by = c("patient_ID" = "patient_id"))

```
# A tibble: 4 x 5
 patient ID sex
                  age_year weight_kg
                                       height_cm
                      <dbl>
                              <dbl>
 <chr>
            <chr>
                                          <dbl>
1 P001
            female
                                9.1
                                            73
2 P002
            female
                               16.4
                                            NA
                         2
3 P003
            female
                               10.5
                                            85
4 P004
                               13.2
                                            95
            male
```

left_join()

- outer join keeps observations that appear in at least one of the tables
- left join keeps all observations in x

$$>$$
 left_join(x, y, by = c("A", "B")

^		
Α	В	С
а	t	1
b	u	2
С	V	3

y			
Α	В	D	
а	t	3	
b	u	2	
d	W	1	

V

Α	В	С	D
а	t	1	3
b	u	2	2
С	٧	3	NA

left_join()

```
> data 1
# A tibble: 5 x 3
patient ID
             sex
                         age year
 <chr>
                         <dbl>
             <chr>
1 P001
            female
2 P002
            female
3 P003
            female
                         3
4 P004
             male
5 P005
             male
```

> data_2

```
# A tibble: 5 x 3
 patient id weight kg height cm
 <chr>
            <dbl>
                         <dbl>
1 P001
            9.1
                         73
2 P002
            16.4
                         NA
3 P003
            10.5
                         85
4 P004
            13.2
                         95
5 P006
            15.9
                        104
```

> left_join(data_1, data_2, by = c("patient_ID" = "patient_id"))

```
# A tibble: 5 x 5
 patient ID sex
                  age_year weight_kg
                                       height cm
                     <dbl> <dbl>
 <chr>
            <chr>
                                        <dbl>
1 P001
            female
                                9.1
                                           73
2 P002
                               16.4
                                           NA
            female
3 P003
            female
                               10.5
                                           85
4 P004
                               13.2
                                           95
            male
5 P005
            male
                               NA
                                           NA
```

right_join()

- outer join keeps observations that appear in at least one of the tables
- right join keeps all observations in y

 $> right_join(x, y, by = c("A", "B")$

	^	
Α	В	С
а	t	1
b	u	2
С	V	3

	y	
Α	В	D
а	t	3
b	u	2
d	W	1

>
\neg

Α	В	С	D
а	t	1	3
b	u	2	2
d	W	NA	1

right_join()

```
> data 1
# A tibble: 5 x 3
patient ID
             sex
                         age year
 <chr>
                         <dbl>
             <chr>
1 P001
            female
2 P002
            female
3 P003
            female
                         3
4 P004
             male
5 P005
             male
```

> data_2

```
# A tibble: 5 x 3
 patient id weight kg height cm
 <chr>
             <dbl>
                          <dbl>
1 P001
             9.1
                          73
2 P002
             16.4
                          NA
3 P003
             10.5
                          85
4 P004
             13.2
                          95
             15.9
5 P006
                         104
```

> right_join(data_1, data_2, by = c("patient_ID" = "patient_id"))

```
# A tibble: 5 x 5
 patient ID sex
                   age_year weight_kg height_cm
 <chr>
            <chr>
                      <dbl>
                               <dbl>
                                          <dbl>
1 P001
            female
                                 9.1
                                            73
2 P002
                               16.4
                                            NA
            female
3 P003
            female
                               10.5
                                            85
4 P004
                               13.2
                                            95
            male
5 P006
            NA
                         NA
                               15.9
                                           104
```

full_join()

• full join keeps all observations in x and y

$$> full_join(x, y, by = c("A", "B")$$

У		
Α	В	D
а	t	3
b	u	2
d	W	1

Α	В	С	D
а	t	1	3
b	u	2	2
С	٧	3	NA
d	W	NA	1

full_join()

```
> data 1
# A tibble: 5 x 3
patient ID
            sex
                         age year
 <chr>
            <chr>
                         <dbl>
1 P001
            female
2 P002
            female
3 P003
            female
                         3
4 P004
            male
5 P005
            male
```

> data_2

```
# A tibble: 5 x 3
 patient id weight kg height cm
 <chr>
            <dbl>
                         <dbl>
1 P001
            9.1
                         73
2 P002
            16.4
                         NA
3 P003
            10.5
                         85
4 P004
            13.2
                         95
            15.9
5 P006
                        104
```

> full_join(data_1, data_2, by = c("patient_ID" = "patient_id"))

patient_I	D sex a	ge_year w	eight_kg h	neight_cm
<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 P001	female	1	9.1	73
2 P002	female	4	16.4	NA
3 P003	female	2	10.5	85
4 P004	male	3	13.2	95
5 P005	male	4	NA	NA
6 P006	NA	NA	15.9	104

Filtering joins

- filtering joins match observations in the same way as mutating joins, but affect the observations, instead of the variables
- semi_join() keeps all observations in x that have a match in y

> semi_join(x, y)

	X	
Α	В	С
а	t	1
b	u	2
С	V	3

	J	
Α	В	D
а	t	3
b	u	2
d	W	1

Α	В	С
а	t	1
b	u	2

semi_join()

> data_1

```
# A tibble: 5 x 3
patient ID
            sex
                         age year
 <chr>
                         <dbl>
            <chr>
1 P001
            female
2 P002
            female
3 P003
            female
                         3
4 P004
            male
5 P005
            male
```

> data_2

```
# A tibble: 5 x 3
 patient id weight kg height cm
 <chr>
            <dbl>
                         <dbl>
1 P001
            9.1
                         73
2 P002
            16.4
                         NA
3 P003
            10.5
                         85
4 P004
            13.2
                         95
            15.9
5 P006
                        104
```

> semi_join(data_1, data_2, by = c("patient_ID" = "patient_id"))

```
# A tibble: 4 x 3
patient_ID sex age_year
<chr> <chr> <chr> 1 P001 female 1
2 P002 female 4
3 P003 female 2
4 P004 male 3
```

anti_join()

- anti_join() drops all observations in x that have a match in y
- useful to see observations that are not joined

> anti_join(x, y)

anti_join()

> data_1

```
# A tibble: 5 x 3
patient ID
            sex
                         age year
 <chr>
            <chr>
                         <dbl>
1 P001
            female
2 P002
            female
3 P003
            female
                         3
4 P004
            male
5 P005
            male
```

> data_2

```
# A tibble: 5 x 3
 patient id weight kg height cm
 <chr>
            <dbl>
                         <dbl>
1 P001
            9.1
                         73
2 P002
            16.4
                         NA
3 P003
            10.5
                         85
4 P004
            13.2
                         95
            15.9
5 P006
                        104
```

> anti_join(data_1, data_2, by = c("patient_ID" = "patient_id"))

```
# A tibble: 1 x 3

patient_ID sex age_year
<chr> <chr> <chr> 1 P005 male 4
```

Set operations

- use for combining rows
- these operations work with a complete row, comparing the values of every variable
- expect the x and y inputs to have the same variables, and treat the observations like sets
- intersect() return only observations in both x and y
- union() return unique observations in x and y
- setdiff() return observations in x, but not in y

intersect()

returns rows that appear only in both x and y

> intersect(x, y)

intersect()

> data_x

```
# A tibble: 3 x 5
 patient ID sex
                   age year weight kg height cm
 <chr>
                     <dbl>
                               <dbl>
                                            <dbl>
            <chr>
1 P001
            female
                                 9.1
                                            73
                                            96
2 P002
            female
                               16.4
3 P003
            female
                               10.5
                                            85
```

> data_y

```
# A tibble: 3 x 5
 patient ID sex
                  age_year weight_kg height_cm
 <chr>
            <chr>
                         <dbl> <dbl>
                                           <dbl>
1 P003
                               10.5
                                           85
            female
                               13.2
2 P004
            male
                                           95
3 P005
                               15.9
                                           104
            male
```

> intersect(data_x, data_y)

```
# A tibble: 1 x 5
patient_ID sex age_year weight_kg height_cm
<chr> <chr> <chr> <chr> <chr> 1 P003 female 2 10.5 85
```

union()

- returns rows that appear in x or y
- duplicates will be removed

> union(x, y)

У		
Α	В	С
С	V	3
d	W	4

a t 1
b u 2
c v 3
d w 4

union()

> data_x

A tibble: 3 x 5 patient ID sex age year weight kg height cm <chr> <dbl> <dbl> <dbl> <chr> 1 P001 female 9.1 73 96 2 P002 female 16.4 3 P003 female 10.5 85

> data_y

A tibble: 3 x 5 patient ID sex age year weight kg height cm <chr> <chr> <dbl> <dbl> <dbl> 1 P003 10.5 85 female 13.2 2 P004 male 95 3 P005 15.9 104 male

> union(data_x, data_y)

A tibble: 5 x 5 patient ID sex age_year weight_kg height_cm <chr> <chr> <dbl> <dbl> <dbl> 1 P001 female 9.1 73 2 P002 female 16.4 96 3 P003 female 10.5 85 4 P004 13.2 95 male 5 P005 male 15.9 104

setdiff()

returns rows that appear in x but not in y

> setdiff(x, y)

у		
Α	В	С
С	V	3
d	W	4

Α	В	С
а	t	1
b	u	2

setdiff()

> data_x

A tibble: 3 x 5 patient ID sex age year weight kg height cm <chr> <dbl> <dbl> <dbl> <chr> 1 P001 female 9.1 73 96 2 P002 female 16.4 3 P003 female 10.5 85

> data_y

A tibble: 3 x 5 patient ID sex age year weight kg height cm <chr> <chr> <dbl> <dbl> <dbl> 1 P003 10.5 85 female 13.2 2 P004 male 95 3 P005 15.9 104 male

> setdiff(data_x, data_y)

A tibble: 2 x 5 patient ID sex age_year weight_kg height_cm <chr> <chr> <dbl> <dbl> <dbl> 1 P001 female 9.1 73 2 P002 16.4 96 female

bind_rows()

to stack tables on top of the other as they are

> bind_rows(x, y)

у			
Α	В	С	
С	V	3	
d	W	4	

Α	В	С
а	t	1
b	u	2
С	V	3
С	V	3
d	W	4

bind_rows()

> data_x

```
# A tibble: 3 x 5
 patient ID sex
                   age year weight kg height cm
 <chr>
                     <dbl>
                                <dbl>
             <chr>
                                             <dbl>
1 P001
            female
                                 9.1
                                             73
                                             96
2 P002
            female
                                16.4
3 P003
            female
                                10.5
                                             85
```

> data_y

```
# A tibble: 3 x 5
 patient ID sex
                   age year weight kg height cm
 <chr>
                         <dbl> <dbl>
            <chr>
                                            <dbl>
1 P003
                               10.5
                                            85
            female
2 P004
                               13.2
                                            95
            male
3 P005
                               15.9
                                           104
            male
```

> bind_rows(data_x, data_y)

```
#A tibble: 6 x 5
                   age year weight_kg height_cm
 patient ID sex
                     <dbl>
 <chr>
            <chr>
                                <dbl>
                                           <dbl>
1 P001
            female
                                 9.1
                                            73
2 P002
            female
                                16.4
                                            96
3 P003
            female
                                10.5
                                            85
4 P003
                               10.5
                                            85
            female
5 P004
                                13.2
                                            95
            male
6 P005
            male
                                15.9
                                            104
```

bind_cols()

• to paste tables beside each other as they are

> bind_cols(x, y)

	•	
Α	В	D
а	t	3
b	u	2
d	W	1

Α	В	С	Α	В	D
а	t	1	а	t	3
b	u	2	b	u	2
С	٧	3	d	W	1

bind_cols()

```
> data 1
                                                       > data 2
# A tibble: 5 x 3
                                                        # A tibble: 5 x 3
patient ID
                                                         patient id weight kg height cm
             sex
                         age year
 <chr>
                         <dbl>
                                                         <chr>
                                                                    <dbl>
             <chr>
                                                                                 <dbl>
1 P001
             female
                                                        1 P001
                                                                    9.1
                                                                                 73
2 P002
             female
                                                        2 P002
                                                                    16.4
                                                                                 NA
3 P003
            female
                                                        3 P003
                                                                    10.5
                                                                                 85
                         3
4 P004
             male
                                                        4 P004
                                                                    13.2
                                                                                 95
                                                                    15.9
5 P005
             male
                                                        5 P006
                                                                                104
```

> bind_cols(data_1, data_2)

```
# A tibble: 5 x 6
 patient ID sex
                  age_year patient_id weight_kg
                                                 height cm
 <chr>
            <chr> <dbl>
                               <chr>
                                            <dbl>
                                                      <dbl>
1 P001
            female
                               P001
                                            9.1
                                                        73
2 P002
                               P002
                                            16.4
                                                        NA
            female
3 P003
            female
                               P003
                                            10.5
                                                        85
4 P004
                               P004
                                            13.2
                                                        95
            male
5 P005
            male
                               P006
                                            15.9
                                                        104
```

Take-away message

 Knowing how to merge tables is useful since data are not always available in a single table