- · Suppose we want to sell m different items among n buyers.
 - how do buyers choose items?
- 3 models of customer behavior
 - i) Perfect segmentation Each customer only wants a single item from the set of items
 - (Probabilistic) Choice model Each customer chooses an item from amongst the displayed items
 - iii) Strategic choice Customers compete with each other to try and get the best deal' for themselves.

- · Up till now, we looked at perfect segmentation and probabilistic choice, and used pricing, capacity control and assortment control as our optimization tools.
- . Ne now introduce a model for strategic customers, and a new optimization tool-auctions. Consider a setting where we want to sell liter Quasilinear utility model

- Each bidder i has an independent value or for the item. This value is private - If the bidder is offered the item at price Sale [P & Ji, then it's utility is Ui-P No sale [If the bidder is not offered the item (or offered at price P>0;), then its utility is O

· Sealed-bid auctions

These occur in three steps.

- i) (Bidding) Each bidder i communicates bid bi to seller
- ii) (Allocation Rule) Seller chooses bidder who gets the item (if anyone)
- iii) (Payment Rule) Seller décides on Prico
- Natural allocation rule sell to highest biddes
- Payment rule? This affects bidder behavior!

Eg-What if price = 0?

Then everyone tries to set bi as high as Possible!

* First-price auctions

- Set payment P = max[bi]

 Allocate item to i* = arg max [bi]
- Problem: Very difficult for bidders
 to decide their bid!
- * Second-Price auction (Vickney auction)
 - Allocate item to i* ang max [bi]
 Set payment P = pasex max [bi]
 Set payment P = pasex j‡i*
 - This is equivalent to an ascending Price auction
 - Now what should bidder i bid?

- · We now show two properties of the Vickney auction
 - i) In the Vickney auction, every bidder i sets her bid bi = private valuation 0; no matter what the other bidders do (dominant strategy)
 - Pf: Let b-i = vector of bids of all bidders other
 - than i Fix some arbitrary bidder i, valuation vi, bids bi
 - Let B = max b; and Suppose i knows B
 - There are 2 cases
 - i) If $\sigma_i < B$, then bidder i can get a utility of $\max \{0, 0; -B\} = 0$, which can be achieved by setting bi = 0;

 ii) If $v_i > B$, then bidder i can get utility of
 - max {0, 0:-B} = Ji-B, again by setting bi= J.

2) In the Vickney auction, every thuthtelling bidden	6
has non-negative utility	
Pf - If bidder i loses, then utility = 0	
- If bidder i wins (while bidding b := vi), then	1 >R
utility is $v_i - B > v_i - b_i = 0$ (as bi	
Henceforth, we want all mechanisms to have these 2 prop	peties
· (Dominant Strategy) Incentive Compatibility (DSIC)	
Bidder is utility is maximized by setting bi= Ji, no matter what other bidden bid.)
· Individual Rationality (IR)	
Every bidder has non-negative utility assuming that htel	lling.
1 11 11 modernice with How	0

As shorthand, we will call a mechanism with these two properties to be DSIC. Our aim is objective to design DSIC mechanisms to maximize some given.