

Accuracy and assurance in cosimulations

A global assurance and risk management company

~15,000 ~100,000

years

employees

customers

countries

of revenue in R&D

Ship and offshore classification and advisory

Energy advisory, certification, verification, inspection and monitoring

Software, cyber security, platforms and digital solutions

Management system certification, supply chain and product assurance

Simulation Technologies

Group Research & Development

César Carvalho

Claas Rostock

Hee Jong Park

Henrik Kjerringvåg

Jorge Mendez

Stephanie Kemna

Matthew Gilmore

Melih Akdağ

Roger Eivind Stenbro

Alexandros Patsanis

Kristoffer Skare

Juan Guevara

Magnus Kristiansen

Industry needs

Build scalable and trustworthy system simulations of complex, integrated designs:

- Re-use simulation models collaboratively.
- Protect individual IP.
- Ease common hurdles, such as coupling.
- Establish trust in models.
- Shift assurance left.

Open standards - Integrated technology

Simulation Trust Center
https://store.veracity.com/simulation-trust-center

Modularity – Interoperability

Model Assurance

Model Assurance

- Trust in decision support ← trust in models
- Model confidence level dependent on risk that the model is fooling the user
- Assurance activities adjusted to the model confidence level
- DNV-RP-0513 Assurance of simulation models
- DNV-RP-0671 Assurance of Al-enabled systems

"Assurance [...] involves constructing an assurance argument consisting of **claims** [...] substantiated by **evidence**"

Model Assurance: Integrates in Model Lifecycle

RP-0513 Assurance of Simulation Models

3.3.4 Model validation

- A. Validation activities
- B. Validation test methods validation
- 2.3.4 Design Contract

3.3.3 Model Verification

- A. Verification activities
- B. Test Methods
- C. Static Model analysis
- 2.6 Detailed risk analysis

3.3.2 Conceptual Model qualification

- 3.3.2 Conceptual Model checklist
 - 2.6 Risk Analysis
 - 2.6.4 Confidence Level
 - 2.6.5 Maturity Level
 - 2.5 Modelling Types
- 3.2 Supplier Assurance
- 2.3.4 Design Contract

Conceptual model specification (DNV-RP-0513)

Objective

- · Identify the goal for the model
- · Describe intended use cases

System boundary

- · Define what external phenomena's the model will deal with
- Define internal physics / functionality
- Define input and output data

Requirements

- Define requirements to the model (accuracy, max computational time, valid input ranges, etc.)
- Data quality requirements
- How to report model quality indicator (operating outside its qualified range or other issues that may impact the output quality)

Modelling concept

- Identify suitable modelling concept / techniques to achieve objective
- Define model modularisation and hierarchy
- Identify available components models

Assumptions

- · Identify high-level assumption and limitations
- Required input data for validation and related data quality

Risk analysis

- Identify risks that may result in the model providing incorrect or inaccurate results
- Identify the confidence level

Validation

- Requirements to verification & validation plan
- Identify suitable data for model development and testing
- Gather validated results that the simulation model can be validated against

Risk Assessment

	coronity or consequence in function about not make as internate			
	Minor	Significant	Severe	Catastrophic
High uncertainty that model does not represent relevant aspects of the reality	2	3	4	Not Trusted
Medium uncertainty that model does not represent relevant aspects of the reality	1	2	3	4
Low uncertainty that model does not represent relevant aspects of the reality	0	1	2	3

Severity of consequence if function does not work as intended

Severity of Consequence

Uncertainty-shaping factors

- Strength of knowledge
- Model size
- Model complexity
- Modelling variability
- Design novelty
- Application novelty
- Input data accuracy
- Numerical accuracy

Uncertainty

SeaCo Safer, more reliable, and accurate co-simulations

SeaCo – managing modularization challenges

WP1 Standardized environmental modelling

WP2 Coordinate system transformations

WP3 Modular tightly coupled systems

WP5 Testing and verification

WP4 More accurate and reliable co-simulations

SeaCo – managing modularization challenges

WP1 Standardized environmental modelling

WP2 Coordinate system transformations

WP3 Modular tightly coupled systems

WP5 Testing and verification

WP4 More accurate and reliable co-simulations

Simplify couplings: Marine vehicle simulations

(Power) bond graphs

- Bidirectional connection for power exchange.
- Compact and tidy.
- Can model any physical system with the four quantities *e*, *f*, *p*, and *q*.
- Attractive for cross domain modelling.
- Maritime system models are challenging, but still benefit from this approach.

$$p(t) = \int_{-t}^{t} e(t)dt = p_o + \int_{t_0}^{t} e(t)dt$$

$$q(t) = \int_{-t}^{t} f(t)dt = q_o + \int_{t_0}^{t} f(t)dt$$

Coupling-focused modelling approach

Coupled rigid body dynamics (vessel + crane)

- From Lagrange formulation, describe *n*-DOF rigid body mechanics as an IC field with 2*n* ports using generalized coordinates.
- Connect C and R ports to 1-junctions for external forces and moments.
- Describe inertial frame transformations with MTFs.
- Connect external systems through TFs / MTFs.
- Vessel + crane + load = 6+3+3 DOF.
- Not suitable with "brute force" IC field connecting all 12 DOF.
- Connecting IC fields directly leads to derivative causalities, which is unwanted.

Numerical errors & power bonds

In a co-simulation, $P_{k_1} \neq P_{k_2}$!

Figure from [4]

Benefits of power bonds

- A better visual representation than free body or block diagrams.
- Enhances explainability of the modelling assumptions.
- Suitable for modular approaches.
- Domain agnostic.
- Less error prone modelling in many cases.
- Equally applicable for nonlinear systems.
- Attractive error estimation and step size control, such as exemplified by the *Energy-Conservation-based Co-Simulation method* (ECCO) [4] [5].
- Quantification of input uncertainty.
- Bond graph structure can be beneficial for certain fault detection methods such as analytical redundancy relations.

SeaCo Crane Use Case

Environmental influence: Fixation movement (through vessel). Load movement (wind).

Coordinate systems: Geographic – crane fixation – crane tip.

Tight couplings: Vessel – crane, slewing brake – power generation.

Verification and testing: Need to trust the simulation results if the crane model shall be used for optimizing crane choice, operations planning, training.

Scaling of cranes on a capacity range of factor >100.

Rather inexperienced FMU provider.

Q & A

www.dnv.com

References

- [1] Dean C. Karnopp, Donald L. Margolis, Ronald C. Rosenberg. System Dynamics: Modeling and Simulation of Mechatronic Systems, 5th edition.
- [2] Eilif Pedersen. Bond Graph Modeling of Marine Vehicle Dynamics.
- [3] Børge Rokseth, Stian Skjong, and Eilif Pedersen. Modeling of Generic Offshore Vessel in Crane Operations with Focus on Strong Rigid Body Connections.
- [4] Severin Sadjina, Stian Skjong, Eilif Pedersen, Lars T. Kyllingstad. Energy Conservation and Power Bonds in Co-Simulation: Non-Iterative Adaptive Step Size Control and Error Estimation.
- [5] Severin Sadjina, Eilif Pedersen. Energy Conservation and Coupling Error Reduction in Non-Iterative Co-simulations.
- [6] Dirk Zimmer. A Modelica Library for MultiBond Graphs and its Application in 3D-Mechanics.

