

IIC2223 — Teoría de Autómatas y Lenguajes Formales — 2' 2021

INTERROGACION 2

Preguntas en blanco: Preguntas entregadas en blanco se evaluarán con un 1.5.

Pregunta 1

Considere el siguiente lenguaje L sobre el alfabeto $\Sigma = \{a, b\}$:

$$L = \{a^i b^j a^k \mid j = i + k\}$$

1. Presente una gramática libre de contexto \mathcal{G} tal que $\mathcal{L}(\mathcal{G}) = L$.

2. Demuestre que su gramática \mathcal{G} del punto anterior es correcta, esto es, demuestre que $\mathcal{L}(\mathcal{G}) = L$.

Pregunta 2

Para esta pregunta considere transductores de la forma $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ con $\Delta \subseteq Q \times \Sigma \times (\Omega \cup \{\epsilon\}) \times Q$, esto es, los transductores NO tienen transiciones de lectura con ϵ . Considere el el siguiente problema:

PROBLEMA: Evaluación de transductor

INPUT: Un transductor \mathcal{T} y una palabra u

OUTPUT: Una palabra $v \in \Omega^*$ cualquiera tal que $v \in [T](u)$

Escriba un algoritmo para el problema anterior. Su algoritmo debe tomar tiempo $\mathcal{O}(|\mathcal{T}|\cdot|u|)$.

Pregunta 3

Para una gramática libre de contexto $\mathcal{G} = (V, \Sigma, P, S)$ decimos que \mathcal{G} tiene un loop si existe una variable $X \in V$ tal que $X \stackrel{*}{\Rightarrow} \alpha X \beta$ para algún $\alpha, \beta \in (V \cup \Sigma)^*$. Demuestre que si \mathcal{G} no tiene un loop, entonces $\mathcal{L}(\mathcal{G})$ es un lenguaje regular.