3° appello — 20 settembre 2023

Esercizio 1. In \mathbb{R}^4 sia U il sottospazio le cui equazioni sono $\begin{cases} 3x_1 - 2x_3 - x_4 = 0 \\ 2x_1 - x_3 = 0. \end{cases}$

- (a) Trovare una base di U e poi, dalla base trovata, ricavare una base **ortonormale** di U.
- (b) Sia $W = \{w \in \mathbb{R}^4 \mid w \cdot v = 0\}$, ove v = (1, 0, 0, 1). Verificare che $U \subset W$ e trovare una base di un sottospazio L tale che $U \oplus L = W$. Se possibile, trovare una base di un altro sottospazio L' tale che $U \oplus L' = W$, ma $L' \neq L$.
- (c) Scrivere le equazioni cartesiane di U^{\perp} e trovare una sua base.
- (d) Trovare una base di $U^{\perp} \cap W$.

Esercizio 2. Consideriamo la matrice $A_t = \begin{pmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & -2 & 1 \\ 2 & -3 & 2 & 3 \\ -1 & 4 & -6 & t \end{pmatrix}$.

- (a) Determinare il rango di A_t al variare di $t \in \mathbb{R}$.
- (b) Per tutto il resto dell'esercizio si ponga t=0. Sia $v=(2,\alpha,2,3)$. Trovare il valore di α per cui il sistema $A_0X=v$ ha soluzioni, e trovare tutte le soluzioni di tale sistema.
- (c) Sia U il sottospazio generato dalle righe di A_0 e W il sottospazio generato dalle colonne di A_0 . Trovare una base di U e una base di W.
- (d) Trovare una base di $\operatorname{Ker}(A_0^T)$ (ove A_0^T è la trasposta della matrice A_0) e verificare che $\operatorname{Ker}(A_0^T) = W^{\perp}$.

Esercizio 3. Sia $\{e_1, e_2, e_3\}$ la base canonica di \mathbb{R}^3 e sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare tale che $f(e_2) = (2, -2, -3), f(e_3) = (0, 4, 4)$ e il nucleo di f è generato dal vettore (-1, 1, 1).

- (a) Scrivere la matrice di f rispetto alla base canonica (nel dominio e nel codominio).
- (b) Calcolare il polinomio caratteristico e gli autovalori di f.
- (c) Trovare delle basi degli autospazi di f. È possibile trovare una base di \mathbb{R}^3 tale che la matrice di f rispetto a questa base sia diagonale?
- (d) Si dica se è possibile trovare una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^3$ la cui matrice abbia l'autovalore $\lambda = 0$ con molteplicità algebrica 2 e tale che dim $(\operatorname{Im} g) = 2$. La matrice di una tale funzione g (se esiste) è diagonalizzabile?

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono assegnati il punto P=(1,2,-1) e la retta r di equazioni

$$r: \begin{cases} x + 2y - 1 = 0 \\ 2y + z - 2 = 0 \end{cases}$$

- (a) Scrivere l'equazione cartesiana del piano π passante per P e perpendicolare alla retta r.
- (b) Scrivere le equazioni parametriche della retta s passante per P, incidente la retta r e perpendicolare al vettore u = (1, -1, -1).
- (c) Tra tutte le rette passanti per P e contenute nel piano π trovare quella di minima distanza dal punto A = (1, 3, 4) e scriverne le equazioni parametriche.

3° appello — 20 settembre 2023

Esercizio 1. In \mathbb{R}^4 sia U il sottospazio le cui equazioni sono $\begin{cases} x_1 + 2x_2 - 3x_4 = 0 \\ x_2 - 2x_4 = 0. \end{cases}$

- (a) Trovare una base di U e poi, dalla base trovata, ricavare una base **ortonormale** di U.
- (b) Sia $W = \{w \in \mathbb{R}^4 \mid w \cdot v = 0\}$, ove v = (2, 1, 0, 0). Verificare che $U \subset W$ e trovare una base di un sottospazio L tale che $U \oplus L = W$. Se possibile, trovare una base di un altro sottospazio L' tale che $U \oplus L' = W$, ma $L' \neq L$.
- (c) Scrivere le equazioni cartesiane di U^{\perp} e trovare una sua base.
- (d) Trovare una base di $U^{\perp} \cap W$.

Esercizio 2. Consideriamo la matrice $A_t = \begin{pmatrix} 1 & -2 & -1 & 0 \\ 0 & 1 & 2 & 1 \\ 3 & -5 & -1 & 1 \\ 1 & 0 & 3 & t \end{pmatrix}$.

- (a) Determinare il rango di A_t al variare di $t \in \mathbb{R}$.
- (b) Per tutto il resto dell'esercizio si ponga t=0. Sia $v=(1,\alpha,3,-1)$. Trovare il valore di α per cui il sistema $A_0X=v$ ha soluzioni, e trovare tutte le soluzioni di tale sistema.
- (c) Sia U il sottospazio generato dalle righe di A_0 e W il sottospazio generato dalle colonne di A_0 . Trovare una base di U e una base di W.
- (d) Trovare una base di $\operatorname{Ker}(A_0^T)$ (ove A_0^T è la trasposta della matrice A_0) e verificare che $\operatorname{Ker}(A_0^T) = W^{\perp}$.

Esercizio 3. Sia $\{e_1, e_2, e_3\}$ la base canonica di \mathbb{R}^3 e sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare tale che $f(e_2) = (-1, 2, 3), f(e_3) = (1, -3, -4)$ e il nucleo di f è generato dal vettore (-1, 2, 2).

- (a) Scrivere la matrice di f rispetto alla base canonica (nel dominio e nel codominio).
- (b) Calcolare il polinomio caratteristico e gli autovalori di f.
- (c) Trovare delle basi degli autospazi di f. È possibile trovare una base di \mathbb{R}^3 tale che la matrice di f rispetto a questa base sia diagonale?
- (d) Si dica se è possibile trovare una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^3$ la cui matrice abbia l'autovalore $\lambda = 0$ con molteplicità algebrica 2 e tale che dim $(\operatorname{Im} g) = 2$. La matrice di una tale funzione g (se esiste) è diagonalizzabile?

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono assegnati il punto P=(2,1,1) e la retta r di equazioni

$$r: \begin{cases} x - 2z + 1 = 0 \\ y + 3z - 2 = 0 \end{cases}$$

- (a) Scrivere l'equazione cartesiana del piano π passante per P e perpendicolare alla retta r.
- (b) Scrivere le equazioni parametriche della retta s passante per P, incidente la retta r e perpendicolare al vettore u=(2,2,-1).
- (c) Tra tutte le rette passanti per P e contenute nel piano π trovare quella di minima distanza dal punto A = (1, -4, 2) e scriverne le equazioni parametriche.

3° appello — 20 settembre 2023

Esercizio 1. In \mathbb{R}^4 sia U il sottospazio le cui equazioni sono $\begin{cases} x_2 - 3x_3 + 2x_4 = 0 \\ 2x_3 - x_4 = 0. \end{cases}$

- (a) Trovare una base di U e poi, dalla base trovata, ricavare una base **ortonormale** di U.
- (b) Sia $W = \{w \in \mathbb{R}^4 \mid w \cdot v = 0\}$, ove v = (0, 1, 1, 0). Verificare che $U \subset W$ e trovare una base di un sottospazio L tale che $U \oplus L = W$. Se possibile, trovare una base di un altro sottospazio L' tale che $U \oplus L' = W$, ma $L' \neq L$.
- (c) Scrivere le equazioni cartesiane di U^{\perp} e trovare una sua base.
- (d) Trovare una base di $U^{\perp} \cap W$.

Esercizio 2. Consideriamo la matrice $A_t = \begin{pmatrix} 1 & 3 & 0 & -2 \\ 0 & 1 & -1 & -3 \\ 1 & 1 & 2 & 4 \\ 2 & 3 & 3 & t \end{pmatrix}$.

- (a) Determinare il rango di A_t al variare di $t \in \mathbb{R}$.
- (b) Per tutto il resto dell'esercizio si ponga t=0. Sia $v=(0,\alpha,-4,-1)$. Trovare il valore di α per cui il sistema $A_0X=v$ ha soluzioni, e trovare tutte le soluzioni di tale sistema.
- (c) Sia U il sottospazio generato dalle righe di A_0 e W il sottospazio generato dalle colonne di A_0 . Trovare una base di U e una base di W.
- (d) Trovare una base di $\operatorname{Ker}(A_0^T)$ (ove A_0^T è la trasposta della matrice A_0) e verificare che $\operatorname{Ker}(A_0^T) = W^{\perp}$.

Esercizio 3. Sia $\{e_1, e_2, e_3\}$ la base canonica di \mathbb{R}^3 e sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare tale che $f(e_2) = (-2, -1, 0), f(e_3) = (6, 2, -1)$ e il nucleo di f è generato dal vettore (-1, 1, 1).

- (a) Scrivere la matrice di f rispetto alla base canonica (nel dominio e nel codominio).
- (b) Calcolare il polinomio caratteristico e gli autovalori di f.
- (c) Trovare delle basi degli autospazi di f. È possibile trovare una base di \mathbb{R}^3 tale che la matrice di f rispetto a questa base sia diagonale?
- (d) Si dica se è possibile trovare una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^3$ la cui matrice abbia l'autovalore $\lambda = 0$ con molteplicità algebrica 2 e tale che dim $(\operatorname{Im} g) = 2$. La matrice di una tale funzione g (se esiste) è diagonalizzabile?

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono assegnati il punto P=(-1,2,1) e la retta r di equazioni

$$r: \begin{cases} 2x - y - 2 = 0 \\ 2x + z - 1 = 0 \end{cases}$$

- (a) Scrivere l'equazione cartesiana del piano π passante per P e perpendicolare alla retta r.
- (b) Scrivere le equazioni parametriche della retta s passante per P, incidente la retta r e perpendicolare al vettore u = (4, -1, 3).
- (c) Tra tutte le rette passanti per P e contenute nel piano π trovare quella di minima distanza dal punto A = (0, 1, 5) e scriverne le equazioni parametriche.

3° appello — 20 settembre 2023

Esercizio 1. In \mathbb{R}^4 sia U il sottospazio le cui equazioni sono $\begin{cases} 2x_1 - 3x_2 + x_3 = 0 \\ x_1 - 2x_2 = 0. \end{cases}$

- (a) Trovare una base di U e poi, dalla base trovata, ricavare una base **ortonormale** di U.
- (b) Sia $W = \{w \in \mathbb{R}^4 \mid w \cdot v = 0\}$, ove v = (1, 0, 2, 0). Verificare che $U \subset W$ e trovare una base di un sottospazio L tale che $U \oplus L = W$. Se possibile, trovare una base di un altro sottospazio L' tale che $U \oplus L' = W$, ma $L' \neq L$.
- (c) Scrivere le equazioni cartesiane di U^{\perp} e trovare una sua base.
- (d) Trovare una base di $U^{\perp} \cap W$.

Esercizio 2. Consideriamo la matrice $A_t = \begin{pmatrix} 1 & 2 & -2 & 0 \\ 0 & 1 & -2 & 1 \\ 2 & 1 & 2 & -3 \\ -1 & 0 & -2 & t \end{pmatrix}$.

- (a) Determinare il rango di A_t al variare di $t \in \mathbb{R}$.
- (b) Per tutto il resto dell'esercizio si ponga t=0. Sia $v=(3,\alpha,6,-1)$. Trovare il valore di α per cui il sistema $A_0X=v$ ha soluzioni, e trovare tutte le soluzioni di tale sistema.
- (c) Sia U il sottospazio generato dalle righe di A_0 e W il sottospazio generato dalle colonne di A_0 . Trovare una base di U e una base di W.
- (d) Trovare una base di $\operatorname{Ker}(A_0^T)$ (ove A_0^T è la trasposta della matrice A_0) e verificare che $\operatorname{Ker}(A_0^T) = W^{\perp}$.

Esercizio 3. Sia $\{e_1, e_2, e_3\}$ la base canonica di \mathbb{R}^3 e sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare tale che $f(e_2) = (-2, 1, 3), f(e_3) = (2, -3, -5)$ e il nucleo di f è generato dal vettore (-1, 2, 2).

- (a) Scrivere la matrice di f rispetto alla base canonica (nel dominio e nel codominio).
- (b) Calcolare il polinomio caratteristico e gli autovalori di f.
- (c) Trovare delle basi degli autospazi di f. È possibile trovare una base di \mathbb{R}^3 tale che la matrice di f rispetto a questa base sia diagonale?
- (d) Si dica se è possibile trovare una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^3$ la cui matrice abbia l'autovalore $\lambda = 0$ con molteplicità algebrica 2 e tale che dim $(\operatorname{Im} g) = 2$. La matrice di una tale funzione g (se esiste) è diagonalizzabile?

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono assegnati il punto P=(1,1,1) e la retta r di equazioni

$$r: \begin{cases} 3x - y - 1 = 0 \\ 2x + z - 3 = 0 \end{cases}$$

- (a) Scrivere l'equazione cartesiana del piano π passante per P e perpendicolare alla retta r.
- (b) Scrivere le equazioni parametriche della retta s passante per P, incidente la retta r e perpendicolare al vettore u=(2,-1,-1).
- (c) Tra tutte le rette passanti per P e contenute nel piano π trovare quella di minima distanza dal punto A = (1, -1, 5) e scriverne le equazioni parametriche.