numerical_methods_midterm_paper

May 12, 2022

1 Numerical Methods Mid term Paper

1.1 Total Marks: 25

2 Question #1

Convert the following algorithms into python by using functions and then solve the following problem

Find the roots of the following equation

 $2x^2 - 5x + 3 = 0$ analytical roots are x = 1.5, 1

2.1 Algorithm 1 (Secant Method)

- 1. Input two values for x_1 and x_2
- 2. Calculate $x_{new} = x_2 \frac{x_2 x_1}{f(x_2) f(x_1)} f(x_2)$
- 3. If $|x_{new} x_2| < tolerance$, output x_{new} the root and stop
- 4. If number of iterations reaches the maximum, stop.
- 5. Else let $x_1 = x_2$ and $x_2 = x_{new}$
- 6. Repeat the steps from 2

2.2 Algorithm 2 (Newton's Methd)

- 1. Find f'(x) and define newton's raphson equation
- 2. Guess an initial value of x for the first iteration
- 3. substitute x in the NR equation and calculate x^*
- 4. if $|x^* x| < tolerance$, stop iterations and output the root: x^*
- 5. if the number of interations reaches an assumed maximum, stop.
- 6. else let $x = x^*$ and repeat the steps from 3 until a condition in 4 or 5 is satisfied.

3 Question # 2

Plot the first derivative of the following function over [-1,1] by using the forward, backward and central differences.

Compare the plots with the theoretical one at h = 0.1, 0.01 and 0.001

$$f(x) = 0.1x^5 - 0.2x^3 + 0.1x - 0.2$$

Theoretical:

$$f'(x) = 0.5x^4 - 0.6x^2 + 0.1$$

Formulas are given for reference

FORWARD FINITE DIFFERENCES

$$f'(x) = \frac{f(x_{i+1}) - f(x_i)}{h}$$

$$f''(x) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2}$$

BACKWARD FINITE DIFFERENCES

$$f'(x) = \frac{f(x_i - f(x_i))}{h}$$

$$f''(x) = \frac{f(x_i) - 2f(x_{i-1}) + f(x_{i-2})}{h^2}$$

CENTRAL FINITE DIFFERENCES

$$f'(x) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$$

$$f''(x) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2}$$

[]: