Омский государственный технический университет Кафедра физики

ОТЧЁТ по лабораторной работе №1-5

СОУДАРЕНИЕ ШАРОВ

Зыполн студ	нил(а): ент(ка) группы <u>ИВV - 244</u>
	Иширт битон Вистреинавовач
Пров	ерил(а):
– Да	ата сдачи отчета: <u>04.12. 24</u>
	la rreno
	Olllyx

Лабораторная работа № 1-5 СОУДАРЕНИЕ ШАРОВ

Цель работы: определение коэффициента восстановления скорости при ударе. **Приборы и принадлежности:** лабораторная установка «Соударение шаров», электронный блок.

Краткая теория

Рис.5.1

Коэффициент восстановления скорости принимает значения . См
в зависимости то степени упругости удара.
В лабораторной работе k определяется на установке «Соударение шаров» (Рис.
5.1). Измеряются углы отклонения шаров от вертикали до и после удара. С помощью закона . <i>СОХГОШИЯ. МЕХОМИНЕСКОМ. ЭМЕРИИМ</i>
эти углы можно связать со скоростями движения шаров. Тогда
расчетная формула для коэффициента восстановления скорости принимает вид:
$k = \frac{\ell \ell_1 - \ell_2}{2} \tag{5.7}$
В этой формуле ϕ_0 ОМЛКИДИНИИ илири ОМ МИХИКИИЙ. ПОИ ОМКИЙИЙ
Δ
φ ₁ - youownessouessus?.nepbosouaysauocsecygcysa
φ2yron. onnenoueuus. Emoposo. mapa. mocese. yozayna
Экспериментальная часть
Таблица 5.1

	No	φ_0 ,	φ_{I} ,	φ_2 ,	$<\varphi_1>$,	<φ ₂ >,	$\Delta \varphi_{I}$,	$\Delta \varphi_2$,	k	$\Delta \mathbf{k}$	ε,
Г	1/п	град	град	град	град	град	град	град			%
	1 2 3 4 5	12,00	1,25 1,50 1,50 1,45 1,25	9,45 9,50 9,45 10,00 9,50	1,45	9,40	0,24	0,24	0,688	0,029	4,2

Цена наименьшего деления измерительной шкалы.....*Q*, 25......град.

Студент(ка) гр. <u>ИВТ-244 Шишум фимон Виадиславани</u>(указать ФИО) Дата выполнения <u>20 11 24</u> Подпись преподавателя <u>ОМ Сух</u>

В процессе работы, отклоняя шар №1 на заданный угол φ_0 , измеряют углы φ_1 и φ_2 отклонений шаров №1 и №2 непосредственно после удара. Измерения углов проводятся пять раз.

Обработка результатов измерений

1. Найти среднее значение угла ϕ_{1}

$$<\varphi_1> = \frac{1,25+1,50+1,50+1,45+1,25}{5} = 1,45$$
 engg

2. Найти отклонения результатов каждого измерения от среднего

$$\Delta \varphi_{11} = |1,45-1,25| = 0,2$$
 yrag
$$\Delta \varphi_{12} = |1,45-1,50| = 0,05 \text{ rpag}$$

$$\Delta \varphi_{13} = |1,45-1,50| = 0,05 \text{ rpag}$$

$$\Delta \varphi_{14} = |1,45-1,45| = 0,3 \text{ rpag}$$

$$\Delta \varphi_{15} = |1,45-1,25| = 0,2 \text{ rpag}$$

3. Найти среднюю квадратичную погрешность

$$S_{\varphi 1} = \sqrt{\frac{\sum_{i=1}^{n} (\Delta \varphi_{1i})^{2}}{n(n-1)}} = \sqrt{\frac{0.2^{2} + 0.05^{2} + 0.05^{2} + 0.3^{2} + 0.2^{2}}{5 \cdot (5-1)}} = 0.0935414 = 0.$$

- 4. Задать надежность α (0,9 или 0,95) и в таблице найти коэффициент Стьюдента $t_{\alpha} = \emptyset$ при $\alpha = \emptyset$, \emptyset
- 5. Найти случайную погрешность измерения угла φ_1

$$\Delta \varphi_{1c\pi} = t_{\alpha} \cdot S_{\varphi 1} = 2,13 \cdot 0,0935414 = 0,199243182$$
 yang.

- 6. Найти приборную погрешность $\Delta \varphi_{\rm пp} = 0,125$ угод.
- 7. Найти абсолютную погрешность $\Delta \varphi_1 = \sqrt{\left(\Delta \varphi_{1_{CR}}\right)^2 + \left(\Delta \varphi_{np}\right)^2} =$

=
$$\sqrt{0,199243182^2 + 0,125^2} = 0,235208 \approx 0,24 \text{ yrag}$$
.

8. Найти среднее значение угла φ_2

$$<\varphi_2> = \frac{9,45+9,50+9,45+10,00+9,50}{5} = 9,40$$
 rag

9. Найти отклонения результатов каждого измерения от среднего

$$\Delta \varphi_{21} = |9, 40-9, 45| = 0,05$$
 rpag
 $\Delta \varphi_{22} = |9, 40-9,50| = 0,2$ rpag
 $\Delta \varphi_{23} = |9, 40-9, 45| = 0,05$ rpag
 $\Delta \varphi_{24} = |9, 40-10,00| = 0,3$ rpag
 $\Delta \varphi_{25} = |9, 40-9,50| = 0,2$ rpag

10. Найти среднюю квадратичную погрешность

$$S_{\varphi 2} = \sqrt{\frac{\sum_{i=1}^{n} (\Delta \varphi_{2i})^{2}}{n(n-1)}} = \sqrt{\frac{0.05^{2} + 0.2^{2} + 0.05^{2} + 0.3^{2} + 0.2^{2}}{5 \cdot (5-1)}} = 0.0935419$$

$$yog.$$

- 11. Задать надежность α (0,9 или 0,95) и в таблице найти коэффициент Стьюдента $t_{\alpha} = \frac{2}{3}$ При $\alpha = \frac{6}{3}$ \mathcal{G}
- 12. Найти случайную погрешность измерения угла φ_2

$$\Delta \varphi_{2c\pi} = t_{\alpha} \cdot S_{\varphi 2} = 2,18.0,9935414 - 0,199243182$$
 grag.

- 13. Найти приборную погрешность $\Delta \phi_{\rm np} = 0,125$ улад.
- 14. Найти абсолютную погрешность $\Delta \varphi_2 = \sqrt{\left(\Delta \varphi_{2_{\mathit{CR}}}\right)^2 + \left(\Delta \varphi_{np}\right)^2} =$

15. Рассчитать коэффициент восстановления скорости k по формуле (5.7), используя средние значения углов отклонения шаров.

$$k = \frac{|\langle Q_1 \rangle - \langle Q_2 \rangle|}{|\langle Q_0 \rangle|} = \frac{|1,45 - 9,40|}{|12,00|} = 0,6845 \approx 0,688$$

16. Рассчитать абсолютную погрешность определения коэффициента восстановления скорости Δk по методике косвенных воспроизводимых измерений ($\Delta \varphi_0 = \Delta \varphi_{np}$).

$$\Delta k = \sqrt{\left(\frac{\Delta \varphi_1}{\varphi_0}\right)^2 + \left(\frac{\Delta \varphi_2}{\varphi_0}\right)^2 + \left(\frac{\varphi_1 - \varphi_2}{\varphi_0^2} \Delta \varphi_0\right)^2} = \sqrt{\left(\frac{0.235208}{12,00}\right)^2 + \left(\frac{0.235208}{12,00}\right)^2 + \left(\frac{0.235208}{12,00}\right)^2}$$

$$+\left(\frac{1,45-9,40}{12,00^2}\cdot 0,125\right)^2=0,0286294\approx 0,029$$

17. Рассчитать относительную погрешность

$$\varepsilon = \frac{\Delta k}{k} 100 = \frac{0.0286294}{0.6845} \cdot 100 = 4,16432\% \approx 4,2\%$$

Выводы

4.	По	величине	коэффициента	восстановления	онжом	сделать	вывод,	чтс
ис	следу	емый удар	является .Скорле	l. G YNGRYRUU.	OME			
			•	, , ,				