深度学习 第1讲 感知机

Tian Lv

YouYing Al

2022年10月26日

感知机是什么

感知机是由美国学者 Frank Rosenblatt 在 1957 年提出来的。

感知机是作为神经网络(深度学习)的起源的算法。学习感知机的构造 是学习通向神经网络和深度学习的一种重要思想。

感知机是什么

感知机接收多个输入信号,输出一个信号。

图: 有两个输入的感知机

 x_1 、 x_2 是输入信号,y 是输出信号, w_1 、 w_2 是权重。图中的 \bigcirc 称为 "神经元"或者 "节点"。输入信号被送往神经元时,会被分别乘以固定的权重 (w_1x_1 、 w_2x_2)。神经元会计算传送过来的信号的总和,只有当这个总和超过了某个界限值时,才会输出 1。这也称为 "神经元被激活"。这里将这个界限值称为阈值,用符号 θ 表示。

感知机是什么

感知机接收多个输入信号、输出一个信号。

图: 有两个输入的感知机

$$y = \begin{cases} 0 & (w_1 x_1 + w_2 x_2 \le \theta) \\ 1 & (w_1 x_1 + w_2 x_2 > \theta) \end{cases}$$

x_1	<i>x</i> ₂	У
0	0	0
1	0	0
0	1	0
1	1	1

表: 与门的真值表

$$(w_1, w_2, \theta) = (0.5, 0.5, 0.7)$$

= $(0.5, 0.5, 0.8)$
= $(1.0, 1.0, 1.0)$

与非门 (NAND gate) 和或门

简单逻辑电路

x_1	<i>X</i> ₂	У
0	0	1
1	0	1
0	1	1
1	1	0

表: 与非门的真值表

$$(w_1, w_2, \theta) = (-0.5, -0.5, -0.7)$$
 $(w_1, w_2, \theta) = (0.5, 0.5, 0.2)$

x_1	<i>X</i> ₂	У
0	0	0
1	0	1
0	1	1
1	1	1

表: 或的真值表

$$(w_1, w_2, \theta) = (0.5, 0.5, 0.2)$$

感知机的实现

```
def AND(x1, x2):
w1, w2, theta = 0.5, 0.5, 0.7
tmp = x1*w1 + x2*w2
if tmp <= theta:
    return 0
elif tmp > theta:
    return 1
```

感知机的实现

$$y = \begin{cases} 0 & (b + w_1x_1 + w_2x_2 \le 0) \\ 1 & (b + w_1x_1 + w_2x_2 > 0) \end{cases}$$

```
def AND(x1, x2):
x = np.array([x1, x2])
w = np.array([0.5, 0.5])
b = -0.7
tmp = np.sum(w*x) + b
if tmp <= 0:
    return 0
else:
    return 1</pre>
```

感知机的实现

```
def NAND(x1, x2):
x = np.array([x1, x2])
w = np.array([-0.5, -0.5])
b = 0.7
tmp = np.sum(w*x) + b
if tmp <= 0:
    return 0
else:
    return 1</pre>
```

```
def OR(x1, x2):
x = np.array([x1, x2])
w = np.array([0.5, 0.5])
b = -0.2
tmp = np.sum(w*x) + b
if tmp <= 0:
    return 0
else:
    return 1</pre>
```

x_1	<i>x</i> ₂	У
0	0	0
1	0	1
0	1	1
1	1	0

表: 异或门的真值表

线性和非线性

感知机的局限

图: ○ 和 △ 表示异或门的输出

图: 使用曲线可以分开 ○ 和 △

已有门电路的组合

多层感知机

图: 通过组合与门、与非门、或门实现异或门

x_1	x_2	s_1	s_2	y
0	0	1	0	0
1	0	1	1	1
0	1	1	1	1
1	1	0	1	0

图: 异或门的真值表

异或门的实现

多层感知机

```
def XOR(x1, x2):
s1 = NAND(x1, x2)
s2 = OR(x1, x2)
y = AND(s1, s2)
return y
```


图: 用感知机表示异或门