MATEMATIKA I INTEGRAL

-7. Aplikasi Integral Tentu untuk menghitung Volume Benda Putar-

7.1 Volume Benda Pejal

Perhatikan gambar,

Volume sebuah lempengan:

$$V_i = A(x_i^*) \Delta x$$

Volume Benda:

$$V \approx \sum_{i=1}^{n} A(x_i^*) \Delta x$$

Jika diambil $n \to \infty$ atau

 $\Delta x \rightarrow 0$ maka volume benda

adalah:

$$V = \lim_{n \to \infty} \sum_{i=1}^{n} A(x_i^*) \Delta x = \lim_{\Delta x \to 0} \sum_{i=1}^{n} A(x_i^*) \Delta x = \int_{a}^{b} A(x_i^*) dx$$

7.2 Volume Benda Putar

Benda putar merupakan hasil perputaran suatu bidang mengelilingi suatu sumbu putar. Contoh :

Bagaimana menghitung volume benda putar?

- 1) Metode cakram (batas sebuah kurva)
- 2) Metode cincin (batas dua buah kurva)

- ✓ Ingat rumus luas lingkaran : $L = \pi r^2$
- ✓ Volume benda putar dihitung dengan mempartisi benda putar menjadi cakram-cakram (berbentuk lingkaran)

Contoh: Daerah dibawah kurva $y = \sqrt{x}$, diatas sumbu-x, dibatasi garis x=0 dan x=1, diputar mengelilingi sumbu-x. Hitung volume benda putar yang terbentuk!.

Contoh: Hitung volume benda putar pada gambar!

✓ Jika bendanya dipartisi, maka setiap partisi membentuk cakram dengan jari-jari $\sqrt[3]{y}$

dengan luas $A(y) = \pi(\sqrt[3]{y})^2$

Volume sebuah cakram dengan ketebalan Δy adalah $V_{cakram} = A(y)\Delta y = \pi \left(\sqrt[3]{y}\right)^2 \Delta y$.

$$\checkmark \quad \text{Jadi} : V = \int_{y=0}^{8} \pi \left(\sqrt[3]{y}\right)^2 dy = \frac{96\pi}{5} \text{ satuan volume}$$

Jika daerah dibatasi:

✓ Kurva y = f(x) dan sumbu-x dari x=a sampai x=b diputar mengelilingi sumbu-x, maka:

$$V = \pi \int_{x=a}^{b} \left[f(x) \right]^{2} dx$$

✓ Kurva x = g(y) dan sumbu-y dari y=a sampai y=b diputar mengelilingi sumbu-y, maka:

$$V = \pi \int_{y=a}^{b} \left[g(y) \right]^{2} dy$$

Metode cincin: Perhatikan gambar.

Luas cincin adalah $A = \pi r_1^2 - \pi r_1^2$

Contoh: Tentukan volume benda putar pada gambar

(0, 0)

✓ Jika bendanya dipartisi, maka setiap partisi membentuk cincin dengan luas

$$A(x) = \pi \left[(x)^2 - (x^2)^2 \right]$$

$$V = \pi \int_{0}^{1} \left[(x)^{2} - (x^{2})^{2} \right] dx = \frac{2\pi}{15}$$
 satuan volume

Jika daerah dibatasi:

✓ Kurva $y = f_1(x)$ dan $y = f_2(x)$ dari x=a sampai x=b diputar mengelilingi sumbu-x, maka:

$$V = \pi \int_{x=a}^{b} \left[f_1^2(x) - f_2^2(x) \right] dx$$

✓ Kurva $x = g_1(y)$ dan $x = g_2(y)$ dari y=a sampai y=b diputar mengelilingi sumbu-y, maka:

$$V = \pi \int_{y=a}^{b} \left[g_1^{2}(y) - g_2^{2}(y) \right] dy$$

7.5 Latihan Soal

Tentukan volume benda putar yang terbentuk jika daerah arsiran berikut diputar mengelilingi (masing-masing) sumbu-*x* dan sumbu-*y*.

Tentukan volume benda putar yang terbentuk jika daerah yang dibatasi grafik-grafik berikut diputar mengelilingi (masing-masing) sumbu-x dan sumbu-y.

a)
$$y = x^2$$
, $x = 4$, $y = 0$

a)
$$y = x^2$$
, $x = 4$, $y = 0$ (b) $y = x^3$, $x = 3$, $y = 0$

