Prefix Rewriting and the Pushdown Hierarchy

Wolfgang Thomas

RWTHAACHEN

Francqui Lecture, Mons, April 2013

Reachability Problem

Overview

- 1. Prefix Rewriting and the reachability problem
- 2. Interpretations
- 3. Unfoldings and Muchnik's Theorem
- 4. The pushdown hierarchy

Prefix Rewriting and the Reachability Problem

Rewriting Over Words

Rewriting system: Finite set S of rules $u \rightarrow v$

Different uses of a rule $u \to v$ for the rewrite relation \vdash

- Infix rewriting: $xuy \vdash xvy$
- Post's canonical systems: $ux \vdash xv$
- Prefix rewriting (Büchi's regular canonical systems): ux ⊢ vx

Fundamental results:

Infix rewriting systems and Post's canonical systems allow to simulate Turing machines.

Büchi 1965: Prefix rewriting systems generate regular sets from regular sets of "axioms", and the derivability relation is decidable.

The Setting of Pushdown Automata

A pushdown automaton has the form $\mathcal{P}=(P,\Sigma,\Gamma,p_0,Z_0,\Delta)$

Configurations are words from $P\Gamma^*$

A transition induces a move from $p\gamma w$ to quw

Write $p\gamma w \vdash quw$

So pushdown automata are a special from of prefix rewriting systems.

Consequence of Büchi's Theorem:

The reachable configurations of a pushdown automaton form a regular set.

The Reachability Sets

Given a pushdown automaton $\mathcal{P}=(P,\Sigma,\Gamma,p_0,Z_0,\Delta)$ and $T\subseteq P\Gamma^*$

$$\operatorname{pre}^*(T) := \{ pv \in P\Gamma^* \mid \exists qw \in T : pv \vdash^* qw \}$$

Analogously $post^*(T)$.

We may suppress Σ and q_0, Z_0 and obtain a "pusdown system $\mathcal{P} = (Q, \Gamma, \Delta)$ with transitions of the form (p, γ, v, q) .

Given a pushdown system $\mathcal{P}=(P,\Gamma,\Delta)$ and a finite automaton recognizing a set $T\subseteq P\Gamma^*$, one can compute a finite automaton recognizing $\operatorname{pre}^*(T)$, similarly for $\operatorname{post}^*(T)$.

Deciding $p_1w_1 \vdash^* p_2w_2$:

Set $T = \{p_2w_2\}$ and check whether the automaton recognizing $pre^*(T)$ accepts p_1w_1 .

Example

$$\mathcal{P}=(P,\Gamma,\Delta) \text{ with } P=\{p_0,p_1,p_2\}, \Gamma=\{a,b,c\},$$

$$\Delta =$$

$$\frac{1}{\{(p_0a \to p_1ba), (p_1b \to p_2ca), (p_2c \to p_0b), (p_0b \to p_0)\}}$$

$$T = \{p_0aa\}.$$

P-automaton for T:

$$\mathcal{A}: \qquad \longrightarrow p_0 \xrightarrow{a} s_1 \xrightarrow{a} s_2$$

$$\longrightarrow p_1$$

 $\longrightarrow p_2$

Saturation Algorithm: Idea

Saturation Algorithm

```
Input: P-automaton \mathcal{A}, pushdown system \mathcal{P}=(P,\Gamma,\Delta) \mathcal{A}_0:=\mathcal{A},\,i:=0 REPEAT: If pa\to p'v\in\Delta and \mathcal{A}_i:p'\xrightarrow{v}q THEN add (p,a,q) to \mathcal{A}_i and obtain \mathcal{A}_{i+1} i:=i+1 UNTIL no transition can be added \overline{\mathcal{A}}:=\mathcal{A}_i
```

Output: A'

Example: Result

So for
$$T = \{p_0aa\}$$
:
 $pre^*(T) = p_0b^*(a+aa) + p_1b + p_1ba + p_2cb^*(a+aa)$

Alternative: Work in the Tree of Words

Consider a prefix rewriting system over $\{0,1\}$.

Convert prefix rewriting to suffix rewriting.

Then a rewrite step is definable in S2S.

Example: Rule $R: 11 \rightarrow 0$ leads from a word w11 to w0

Defining formula $\varphi_R(z,z')$: $\exists x(z=x11 \land z'=x0)$

For a system S let $\varphi_S(z,z') := \bigvee_{R \in S} \varphi_R(z,z')$

Preservation of Regularity

Let $L \subseteq \{0,1\}^*$ be regular.

There is an S2S-formula $\varphi_L(x)$ defining L in the tree T_2

We can write $L \subseteq Y$ for $\forall y (\varphi_L(y) \to Y(y))$

Then $x \in post^*(L)$ iff

$$\forall Y[(L \subset Y \text{ and } \forall z, z'(Y(z) \land \varphi_S(z, z')) \rightarrow Y(z')) \rightarrow Y(x)]$$

The formula $\psi(X): \ \forall x(X(x) \leftrightarrow "x \in \mathrm{post}^*(L)")$ is satisfied by a unique set.

By Rabin's Basis Theorem it must be regular.

Interpretations

A First Example

Show Rabin's Tree Theorem for $T_3 = (\{0,1,2\}^*, S_0^3, S_1^3, S_2^3)$.

Idea: Obtain a copy of T_3 in T_2 :

Consider T_2 -vertices in $T = (10 + 110 + 1110)^*$.

Interpretation: Details

The element $i_1 \dots i_m$ of T_3 is coded by

$$1^{i_1+1}0...1^{i_m+1}0$$
 in T_2 .

Define the set of codes by

$$\varphi(x)$$
: " x is in the closure of ε under 10-, 110-, and 1110-successors"

Define the 0-th, 1-st 2-nd successors by

$$\psi_0(x,y), \psi_1(x,y), \psi_2(x,y)$$

The structure $(\varphi^{T_2}, (\psi_i^{T_2})_{i=0,1,2})$ restricted to φ^{T_2} is isomorphic to T_3 .

Interpretations in General

An MSO-interpretation of a structure $\mathcal{A}=(A,R^{\mathcal{A}},\ldots)$ in a structure \mathcal{B} is given by

- **a** "domain formula" $\varphi(x)$
- for each relation $R^{\mathcal{A}}$ of \mathcal{A} , say of arity m, an MSO-formula $\psi(x_1,\ldots,x_m)$

such that ${\mathcal A}$ is isomorphic to $(\varphi^{\mathcal B},\psi^{\mathcal B},\ldots)$

Then there is a transformation OF MSO-sentenceS χ (in the signature of $\mathcal A$) to sentences χ' (in the signature of $\mathcal B$) such that

$$\mathcal{A} \models \chi \text{ iff } \mathcal{B} \models \chi'.$$

Consequence:

If $\mathcal A$ is MSO-interpretable in $\mathcal B$ and the MSO-theory of $\mathcal B$ is decidable, then so is the MSO-theory of $\mathcal A$.

Pushdown Graphs

Consider \mathcal{A} for language $L = \{a^n b^n \mid n \geq 0\}$:

$$\mathcal{A} = (\{q_0, q_1\}, \{a, b\}, \{Z_0, Z\}, q_0, Z_0, \Delta)$$
 with

$$\Delta = \left\{ \begin{array}{ll} (q_0, Z_0, a, q_0, ZZ_0), & (q_0, Z, a, q_0, ZZ), \\ (q_0, Z, b, q_1, \varepsilon), & (q_1, Z, b, q_1, \varepsilon) \end{array} \right\}$$

Initial and final configuration: q_0Z_0

The associated pushdown graph (of reachable configurations only) is:

$$q_0Z_0 \xrightarrow{a} q_0ZZ_0 \xrightarrow{a} q_0ZZZ_0 \xrightarrow{a} \cdots$$

$$q_1Z_0 \xrightarrow{b} q_1ZZ_0 \xrightarrow{b} q_1ZZZ_0 \xrightarrow{b} \cdots$$

Interpretation: Second Example

A pushdown graph is MSO-interpretable in T_2

Given pushdown automaton \mathcal{A} with stack alphabet $\{1,\ldots,k\}$ and states q_1,\ldots,q_m .

Let $G_A = (V_A, E_A)$ be the corresponding PD graph. $n := \max\{k, m\}$

Find an MSO-interpretation of G_A in T_n .

Represent configuration $(q_j, i_1 \dots i_r)$ by the vertex $i_r \dots i_1 j$.

 \mathcal{A} -steps lead to local moves in T_n .

E.g. a push step from vertex $i_r \dots i_1 j$ to $i_r \dots i_1 i_0 j'$.

These edges are easily definable in MSO.

Hence: The MSO-theory of a PD graph is decidable.

Prefix-Recognizable Graphs

Instead of rules $u \to v$ we have rules $U \to Y$ wuth regular sets U, V.

Instead of describing a move from one word wu_0 to one wv_0 describe all admissible moves from a word wu to a word wv for a rule $U \to V$ with $u \in U, v \in V$.

This can be done by describing successful runs of the automata A_U , A_V on the path segments from w to wu and from w to wv.

A graph is MSO-interpretable in T_2 iff its is prefix-recognizable.

Unfolding and Muchnik's Theorem

Unfoldings

Given a graph $(V, (E_a)_{a \in \Sigma}, (P_b)_{b \in \Sigma'})$

the unfolding of G from a given vertex v_0 is the following tree $T_G(v_0)=(V',(E'_a)_{a\in\Sigma},(P'_b)_{b\in\Sigma'})$:

- V' consists of the vertices $v_0 a_1 v_1 \dots a_r v_r$ with $(v_{i-1}, v_i) \in E_{a_i}$,
- E_a' contains the pairs $(v_0a_1v_1...a_rv_r,v_0a_1v_1...a_rv_rav)$ with $(v_r,v) \in E_a$,
- P'_h the vertices $v_0 a_1 v_1 \dots a_r v_r$ with $v_r \in P_h$.

Examples

Unfolding Preserves Decidability

Theorem (Muchnik, Courcelle/Walukiewicz)

If the MSO-theory of G is decidable and v_0 is an MSO-definable vertex of G, then the MSO-theory of $T_G(v_0)$ is decidable.

We sketch the proof for pushdown graphs.

Their unfoldings are the "algebraic trees".

Proof Architecture

Given an unfolding T of a pushdown graph G.

T is finitely branching, with labels say in Σ inherited from G.

For each MSO-formula $\varphi(X_1,\ldots,X_n)$ find a parity tree automaton \mathcal{A}_{φ} such that

$$\mathcal{A}_{\varphi}$$
 accepts $T(P_1,\ldots,P_n)$ iff $T[P_1,\ldots,P_n) \models \varphi(X_1,\ldots,X_n)$

The construction of the $\mathcal{A}\varphi$ follows precisely the pattern of Rabin's equivalence theorem.

Essential: In the complementation step we use the finite out-degree of G.

The general case is more involved.

Muchnik's Theorem: Continued

Result:

For a sentence φ we obtain a tree automaton \mathcal{A}_{φ} , say with state set Q and transition set Δ , with

$$\mathcal{A}_{\varphi}$$
 accepts T iff $T \models \varphi$

The left-hand side says:

Automaton has a positional winning strategy in the associated game $\Gamma_{\mathcal{A},T}$

If $G=(V,E,v_0)$ for simplicity, the game graph consists of vertices

- \blacksquare in $V \times Q$ (for Automaton)
- \blacksquare in $V \times \Delta$ (for Pathfinder)

Muchnik's Theorem Finished

The game $\Gamma_{A,T}$ is played on a graph

$$G' = (V \times \{1, ..., k\}, E', (v_0, 1))$$

We use the following fact (shown next Friday):

The set of vertices v from where Player Automaton wins in the parity game over G'=(V',E',v') is MSO-definable by a formula $\chi(x)$.

Translation Theorem:

For each sentence φ we can build a sentence φ^+ such that

$$G' \models \varphi \text{ iff } G \models \varphi^+$$

Since the MSO theory of ${\cal G}$ is decidable, we can decide the left-hand side.

Final Step

How to infer decidability of $MTh(G \times \{1,2\})$ from decidability of MTh(G)?

We do not address the definition of the edge relation but just give the idea:

Simulate a set quantifier over $G \times \{1,2\}$ by two set quantifiers over G.

Pushdown Hierarchy

Caucal's Proposal

We have now two processes which preserve decidability of MSO-theory:

- interpretation (transforming a tree into a graph)
- unfolding (transforming a graph into a tree)

Let us apply them in alternation!

We obtain the Caucal hierarchy or pushdown hierarchy.

Definition

- lacksquare \mathcal{T}_0 = the class of finite trees
- G_n = the class of graphs which are MSO-interpretable in a tree of T_n
- **T**_{n+1} = the class of unfoldings of graphs in G_n

Each structure in the pushdown hierarchy has a decidable MSO-theory.

Nontrivial fact:

The sequence $\mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, \dots$ is strictly increasing.

The First Levels

- lacksquare \mathcal{G}_0 is the class of finite graphs.
- lacksquare \mathcal{T}_1 contains the regular trees.
- **ullet** \mathcal{G}_1 contains the prefix-recognizable graphs.

A Finite Graph, a Regular Tree, a PD Graph

Unfolding Again

Interpretation of Bottom Line

The sequence of leaves defines a copy of the successor structure of the natural numbers.

```
Domain expression: b + a^*c(d+e)^*f
Successor relation:
\overline{b}acf + \\ \overline{f}\overline{e}^*\overline{c}acd^*f + \\ \overline{f}\overline{e}^*\overline{d}ed^*f
Predicate "power of 2": b + a^*cd^*f
```

Result: $(\mathbb{N}, Succ, Pow_2)$ is a structure in the Caucal hierarchy.

Factorial Predicate

 $(\mathbb{N}, Succ, Fac)$

We start as follows:

Continuation: Unfolding and Interpretation

Another Unfolding

Scope of Hierarchy?

The pushdown hierarchy is a very rich class of structures all of which have a decidable MSO-theory.

Open questions:

- Understand which structures belong to the hierarchy
- Compute the smallest level on which a strouture occurs