Examen de Computer Vision

Máster MIARFID, Universitat Politècnica de València, Mayo 2019

Apellidos:	Nombre:	
30 minutos, sin apuntes		
1 B Cuando se convierte de RGB a YCbCr se necesita calcular una de las siguientes es una conversión correcta para la componente sistema perceptivo humano?		
A) Y = 0.299 R + 0.114 G + 0.587 B		
B) Y = $0.299 R + 0.587 G + 0.114 B$		
$\mathrm{C)}\ \mathrm{Y} = 0.587\ \mathrm{R} + 0.299\ \mathrm{G} + 0.114\ \mathrm{B}$		
D) $Y = 0.587 R + 0.114 G + 0.299 B$		
2 C Sean a y b dos niveles de gris, con $a < b$, los cuales definen un contraste (contrast stretching). Para ello se quiere obtener los nu valores de gris para un punto p se calcularían como:		
A) $I'(p) = [I(p) - c] \frac{d-c}{b-a} + a$		
B) $I'(p) = [I(p) - a] \frac{b-a}{d-c} + c$		
C) $I'(p) = [I(p) - a] \frac{d-c}{b-a} + c$		
D) $I'(p) = [I(p) - c] \frac{b-a}{d-c} + a$		
$3 \fbox{A}$ El detector de esquinas Harris está basado en los eigenvalores de derivadas de la imagen, suavizada con una ventana gaussiana. ¿		
A) Los eigenvalores tienen que ser grandes y de similar magnit	tud	
B) Los eigenvalores tienen que ser pequeños y de similar magni	nitud	
C) Los eigenvalores tienen que ser de magnitudes diferentes: unos grandes y otros pequeños		
D) Su productos tiene que ser inferior a $\alpha(\lambda_1 + \lambda_2)^2$, con $\alpha = 0$	0,04	
4 C Dada una imagen de 32x32 píxels de tres canales (RGB), se propo de 3x3. En cuanto a número de multiplicaciones, supondría realiz		
A) 442.368		
B) 43.200		
C) 388.800		
D) 27.648		
$5 \boxed{\mathrm{D}}$ En el mismo caso anterior, el mapa de salida tendría las siguient	tes dimensiones:	
A) 16@32x32		

B) 1@30x30C) 1@32x32D) 16@30x30

- 6 A En la fase de backpropagation en una red convolucional. Cuál de los siguientes operadores en general proporcionaría un Delta más disperso (con más ceros)?
 - A) Max-pooling
 - B) Average-pooling
 - C) Convolución + activación lineal
 - D) Todos generarían la misma cantidad de ceros en el Delta retropropagado
- $7\, \boxed{\mathrm{D}}$ Con respecto a las Dense Net, la principal diferencia con la Residual
 Net es:
 - A) No tienen conexiones que "salten" hacia adelante
 - B) En general para la misma tasa de error tienen más parámetros
 - C) La versión stochastic-depth reduce considerablemente el número de parámetros
 - D) Los mapas de salida son concatenados en lugar de sumados
- B Dada una imagen con un objeto cuyo ground-truth bounding-box va desde el pixel (1,1) hasta el pixel (100,100). Dado un detector que detecta dicho objeto pero con el bounding-box en (51,51)-(90,90). Cuál sería el valor del Intersection Over Union (IOU)?
 - A) IOU=0,08
 - B) IOU=0,16
 - C) IOU=0,138
 - D) IOU=0,32
- 9 B Con respecto a Region-CNN y al anterior estado del arte en detección (no basado en deep learning), podemos decir que R-CNN:
 - A) Sustituye la parte de Region Proposal por una detector basado en CNN
 - B) Sustituye la parte de extractor de características por una CNN
 - C) Sustituye la parte del clasificador SVM por un CNN
 - D) Emplea Anchor Boxes para obtener mejor precisión en la localización
- 10 D Con respecto a Yolo. Siendo $S \times S$ el tamaño del grid en el que subdividimos la imagen, B el número de cajas (Boxes) a predecir en cada celda del grid, y C el número de clases. Yolo plantea el problema de detección como un regresor a un target-tensor de:
 - A) $S \times S \times B \times C$
 - B) $S \times S \times (B+C)$
 - C) $S \times S \times 5 \times (B+C)$
 - D) $S \times S \times (B \times 5 + C)$

Examen de Computer Vision

Máster MIARFID, Universitat Politècnica de València, Recuperación Mayo 2019

Apellidos:	Nombre: $[$	
30 minutos, sin apuntes		
1 B Dada una imagen en niveles de gris (sin color) de 32x32 píxels, s stride=1) con 32 filtros de 5x5. En cuanto a número de multiplicación		, =
A) 19.600		
B) 627.200		
C) 25.088		
D) 819.200		
$2\overline{\rm A}$ En el mismo caso anterior, si empleáramos stride=2, el mapa de sali	da tendría las sigu	uientes dimensiones:
A) 32@14x14		
B) 32@15x15		
C) 32@13x13		
D) 1@13x13		
$3\boxed{\mathrm{C}}$ En cuanto a la convolución traspuesta. Es una operación que		
A) Computacionalmente, el forward y el backward son iguales que	para la convoució	n normal
B) Computacionalmente, sólo el forward es igual que el forward de	e la convolución no	ormal
C) Computacionalmente, el forward es igual que el backward de la	convolución norm	nal
D) Computacionalmente, sólo el backward es igual que el backward	d de la convolución	n normal
4 A En una red bilineal, los mapas a los que se les aplica el producto e vector bilineal que se obtiene tiene el siguiente tamaño:	xterno son de 32 ©	25x5 y 64@5x5. Por lo tanto el
A) 2.048		
B) 25		
C) 1.204		
D) No se puede realizar este producto externo		
5 B En la fase de backpropagation en una red convolucional. Cuál de los un Delta más denso (con menos ceros)?	s siguientes operac	dores en general proporcionaría
A) Max-pooling		
B) Average-pooling		
C) ReLu		
D) Todos generarían la misma cantidad de ceros en el Delta retropropagado		

- 6 C Con respecto a Region-CNN, Fast-RCNN aporta:
 - A) Sustituye la parte de Region Proposal por una detector basado en CNN, la Region Proposal Network (RPN)
 - B) Sustituye la parte de extractor de características por una CNN
 - C) Realiza un único forward a la red y extrae las regiones de interés del mapa obtenido
 - D) Emplea Anchor Boxes para obtener mejor precisión en la localización
- 7 A Dada una imagen con un objeto cuyo ground-truth bounding-box va desde el pixel (11,11) hasta el pixel (90,90). Dado un detector que detecta dicho objeto pero con el bounding-box en (51,51)-(90,90). Cuál sería el valor del Intersection Over Union (IOU)?
 - A) IOU=0,25
 - B) IOU=0,5
 - C) IOU=0,125
 - D) IOU=0,2
- 8 D En esencia una U-Net es:
 - A) Una red FCN (fully convolutional network) sin downsampling ni upsampling
 - B) Una red convolucional con Fully Connected al final conectada a la función de pérdida
 - C) Un GAN convolucional
 - D) Una FCN (fully convolutional network) con topología encoder-decoder, downsampling y upsampling
- 9 C Una diferencia importante de SSD con respecto a Yolo v1 es:
 - A) En SSD una red neuronal previa es la que propone las regiones de interés. Es la Region Proposal Network
 - B) En SSD se emplea un k-means sobre el groundtruth para definir los anchor boxes a emplear
 - C) En SSD más de un mapa convolucional produce directamente un conjunto de detecciones. Por lo que están conectados directamente con la función de pérdida.
 - D) En SSD se emplea una AlexNet en lugar de una VGG-16
- 10 B En un problema de "image super-resolution" se suelen emplear topologías:
 - A) FC, Fully Connected
 - B) FCN, Fully Convolutional Networks
 - C) Encoder (Convolutional) Decoder (ConvolutionalT)
 - D) DCGan, DeConvolutional GAN.