Eyal Shukrun

November 1, 2020

1 שאלה 1

- א ־ נכון •
- ב־לא נכון •
- ג לא נכון •
- ד־לא נכון
 - ה־ נכון
- ו־לא נכון
 - ג־נכון •
 - ח בנכון •

2 שאלה 2

3 שאלה

א 3.1

□ 3.2

בשני הוכחות: $A^c \Delta B = A \Delta C$ מתוך ההנחה ש־ $A^c \Delta B = A \Delta C$ מתוך ההנחה מחוד מוכיח שנובע

- $A\Delta U=A^c$:38 שאלה
- . הפרש סימטרי הפרש הפעולה אל הפעולה $A\Delta B = A\Delta C \implies B\Delta C$:32 שאלה •

```
A^c\Delta B=(A\Delta U)\Delta B :38 לפי שאלה
לפי שאלה 32 (A\Delta U)\Delta B=A\Delta (U\Delta B) :32 לפי שאלה
שוב לפי 38 A\Delta (U\Delta B)=A\Delta B^c
```

. הגענו לשוויון: $\Delta \Delta B^c = A\Delta C$ שזה מה שהיה צריך להוכיח. נובע כי 32 נובע לפי שאלה לכן לפי שאלה לכן לפי שאלה 32 נובע לשוויון:

λ 3.3

מתוך הנחה שC- מתוך הנחה אוכי $x\in (A\cap B)\setminus (A\cap B)$ וכי $x\notin C$ וכי $x\in (A\cap B)\setminus (A\cap B)$, נובע כי $x\in (A\cap B)\setminus (A\cap B)$ וכי $x\notin A\Delta B$ בהכרח בהכרח $x\in (A\cap B)\setminus (A\cap B)$ בהכרח $x\notin A\Delta B$ שרי $x\notin A\Delta C$ ושרי $x\notin A\Delta B\Delta C$ מהנתון, $x\notin C$ אין צורך לבדוק ש $x\in (A\cap B)\setminus C$ בהכחנו שרי $x\notin A\Delta B\Delta C$

4 שאלה 4

א 4.1

. $\forall n\in N(A_0^c\subseteq A_n^c)$ לכן מ־n. לכן האבעיים המפערים המספרים לכן כל המספרים האיחוד: כל המספרים האיחוד: $\bigcup_{n=0}^\infty A_n^c=A_0^c=N\setminus\{0\}$

ュ 4.2

משמעות הקבוצה פה לא השתנה, אך הפעולה היא חיתוך ולא איחוד. לכן רק איבר שנמצא בכל הקבוצות יהיה בחיתוך. אך לכל $x \not\in A_x^c$ קיים קבוצה A_x^c שמשמעותה $a \in N \mid a > x$ ולכן $a \in N \mid a > x$ שמשמעותה $a \in N \mid a > x$ ולכן רק איבר שנמצא בכל הקבוצות יהיה בחיתוך. אך לכל $a \in N \mid a > x$ מזה נובע ש־ $a \in N \mid a > x$ ולכן $a \in N \mid a > x$ ולכן רק איבר שנמצא בכל הקבוצות יהיה בחיתוך. אך לכל $a \in N \mid a > x$ מזה נובע ש־ $a \in N \mid a > x$ ולכן רק איבר איחוד.

۵ 4.3

משמעות ($A_{2n}\setminus A_n$) היא: כל האיברים מ"ח ל"2n, בלשון אחר: $A_{2n}\setminus A_n$, אפס הוא מיוחד מכוון ש"0 $n\in N$ היא: כל האיברים מ"ח ל"1 אפשר למצוא $n\in N$ היא קבוצה ריקה. לכל n פרט ל"1 אפשר למצוא $n\in N$ היא קבוצה ריקה. לכל n פרט ל"1 אפשר למצוא n כך ש"n

.1- מכילה את הטבעיים הטבעיים מ־1. מכילה את מכילה מכילה מכילה מכילה מכילה מכילה מכילה מכילה מכילה את מכילה מכילה את מכי

 $\overset{\circ}{\cup}_{n=0}^\infty(A_{2n}\setminus A_n)=N\setminus\{0,1\}$ בלשון אחר: $N\setminus\{0\}$, $N\setminus\{0\}$, N מהקבוצות מהקבולת

7 4.4

כפי שכבר ראינו, A_n^c היא קבוצה של כל המספרים הטבעיים הגדולים מ־n, כלומר A_n^c היא קבוצה של כל המספרים הטבעיים מ־n+1 עלומר A_{n+1} היא כל המספרים הטבעיים מ־n+1 על על כל A_{n+1} היא כל המספרים הטבעיים מ־n+1 על כן לכל $A_{n+1}\cap A_n^c$ ($A_{n+1}\cap A_n^c$) בער האיחוד הזה היא קבוצה של כל המספריים הטבעיים הגדולים מ־n+1 בער כלומר: $\int_{n=0}^{\infty} A_n = N \setminus \{0\}$