

(1)	1 (4)	2 (1)		2)		(2)		((2)		7 (2)	0 (2)	
(1) (1)nathongo	2. (4) 10. (3) athongo	3. (1) ///. mathongo	4. (mathongo		6. (2) mathongo		7. (2) mathongo	8. (3) mathongo	
(1)												
(1) mathongo	/// mathongo											
mark	Bithongo											
h	$\frac{\frac{h}{4}}{2}$											
mathonge	A Mounday											
Let at any tin	the t, h, r , and l be the	height, radius and s	slant he	ight of cone r	espec	ctively. Let V b	e the	volume of con	e the	n mathonao		
$\frac{dV}{dt} = -2$ Now, in ΔAC												
$\frac{r}{l} = \sin 45^{\circ}$	/// mathongo											
$\Rightarrow r = \frac{l}{\sqrt{2}}$ And,												
$\Rightarrow h = \frac{l}{\sqrt{2}}$ Now volume	of cone is											
Now, volume $V = \frac{1}{3}\pi r^2 h$	of cone is mathongo											
$\Rightarrow V = \frac{1}{3}\pi \Big($	- / (\2 /											
	$\frac{3}{m}$ mathongo ag both sides w.r.t. t , v											
$\Rightarrow \frac{dV}{dV} = \frac{\pi}{2}$	$-(3l^2)\frac{dl}{}$	-										
,	$(l^2) \frac{dl}{dt}$ mothongo											
$\Rightarrow \frac{dl}{dt} = \left(\frac{-4\sqrt{\pi}}{\pi}\right)$ $\Rightarrow \left(\frac{dl}{2}\right)$	$= \left(\frac{-4\sqrt{2}}{\pi}\right) \frac{1}{\left(4^2\right)}$											
	()											
$\Rightarrow \left(\frac{dl}{dt}\right)_{l=4} =$ (4) Given V	$V = \frac{1}{4\pi} \frac{1}{s}$ $V = \pi r^2 h^{\text{othongo}}$											
Differentiatin	g both sides, we get											
$\frac{\mathrm{dV}}{\mathrm{dt}} = \pi \left(r^2 \frac{\mathrm{dl}}{\mathrm{d}} \right)$ $\frac{\mathrm{dr}}{\mathrm{dt}} = \frac{1}{10} \text{ and}$	$\left(rac{d}{dt} + 2 r rac{dr}{dt} h ight) = \pi r \left(r rac{dl}{dt} ight)$	$\left(\frac{1}{t} + 2h\frac{dr}{dt}\right)$										
ut 10	$egin{array}{l} rac{1}{\mathrm{dt}} = -rac{1}{10} \ -rac{2}{10} ig) + 2\mathrm{h} \Big(rac{1}{10}\Big) \Big) = rac{\pi}{10} \ \end{array}$											
Thus, when r	= 2 and $h = 3.000$											
	$(-2+3) = \frac{2\pi}{5}$ = $t^3 + 2t^2 + t$											
	$= t^3 + 2t^2 + t \ = 3t^2 + 4t + 1$											
	particle after 1 sec											
$= 3 \times 1^2 + 4$	$\left(\frac{3}{t}\right)_{(t=1)}$ mathongo $1 \times 1 + 1 = 3 + 5 = 3$	8 cm/s										

Answer Keys and Solutions

Answer Keys and Solutions

Alls	wer Keys and Sc	nutions								J	IEE Main Crash	Cour	se
9.	(1) Thomso We have, $f(x)$	/// mathongo $=x\mathrm{e}^{x(1-x)}$											
		ing, we get $+ xe^{x(1-x)}(1-x)$	2x)										
	$\Rightarrow f'(x) = -\mathrm{e}^x$	(1-x)(2x+1)(x-1)(x-1)ethod sign of $f'(x)$											
	-1/2	+ i	-										
		$\lim_{x \to \infty} \inf \left[-\frac{1}{2}, 1 \right]$		× .									
10.		sing in $\left(-\infty, -\frac{1}{2}\right]$ mathongo	J	/									
	$\Rightarrow f(x) = \sin x$ For decreasing	$x-\cos x-kx+b$; function $f'(x)<\sin x-k<0$	$\Rightarrow f'(x)$	$x) = \cos x + \sin x$ mathongo	in <i>x</i> -	- k mathongo							
		value of $\cos x +$	$\sin x$	is $\sqrt{2}$. mathongo									