

Dyspersja w światłowodach

Dodatki: standaryzacja

Dyspersja (między)modowa

skokowy:
$$\Delta t_{MOD} \approx \frac{z}{2n_1c} (NA)^2$$
 $NA = \sqrt{(n_1^2 - n_2^2)}$

$$NA = \sqrt{\left(n_1^2 - n_2^2\right)}$$

gradientowy:
$$\Delta t_{MOD} \approx \frac{z}{8n_1^3 c} (NA)^4$$

$$D_{MOD} = \Delta t_{MOD} / z \qquad \begin{array}{c} \sim 50 \text{ ns/km skokowy (prehistoria)} \\ \sim 0.5 \text{ ns/km gradientowy} \end{array}$$

można też specyfikować pasmo:

~ 5 MHz•km skokowy

> 500 MHz•km gradientowy

Współczesne (gradientowe) światłowody wielomodowe klasyfikuje się pod względem dyspersji modowej na kategorie OM (optical multimode); OM1, OM2, OM3, OM4

Np. przy 10Gb/s: OM1 \rightarrow 33 m, OM4 \rightarrow 400 m

Optical Specifications

Bandwidth	High Performance EMB* (MHz.km)	Legacy Performance EMB** (MHz.km)	
Corning Optical Fiber	850 nm only	850 nm	1300 nm
ClearCurve® OM4 fiber	4700	3500	500
ClearCurve® OM3 fiber	2000	1500	500
ClearCurve® OM2 fiber	950	700	500

^{*}Ensured via minEMBc, per TIA/EIA 455-220A and IEC 60793-1-49, for high performance laser-based systems (up to 100 Gb/s).

Uwaga! Światłowód wielomodowy ma też dyspersję chromatyczną!!!

^{**}OFL BW, per TIA/EIA 455-204 and IEC 60793-1-41, for legacy and LED-based systems (typically up to 100 Mb/s).

AGH Ph

Dyspersja chromatyczna materiałowa – podst. zależności

stała propagacji
$$E(z) = E_0 \sin(\omega t - \beta z)$$

$$\frac{1}{v_f} = \frac{\beta}{\omega} \qquad ; \qquad \beta = \frac{2\pi}{\lambda} n \quad (1), \qquad \lambda = \frac{2\pi}{\omega} c \quad (2)$$

uwzgl. (1) i (2):
$$v_f = \frac{c}{n}$$

$$\frac{1}{v_g} = \frac{d\beta}{d\omega} \quad ; \text{ uwzgl. (1) i (2):} \quad v_g = \frac{c}{n - \lambda \frac{dn}{d\lambda}} = \frac{c}{n_g}$$

 $\frac{c}{s}$

zatem interesuje nas n_g - **grupowy** wsp. załamania

Dyspersja chromatyczna materiałowa

opóźnienie grupowe
$$t_g = \frac{z}{v_g} = \frac{zn_g}{c}$$

dyspersja op. grupowego
$$\Delta t_g \approx \frac{dt_g}{d\lambda} \Delta \lambda = z \frac{d\left(\frac{t_g}{z}\right)}{d\lambda} \Delta \lambda$$

$$\Delta t_g \approx z D_{MAT} \Delta \lambda$$

Zależność współczynnika załamania od długości fali dla SiO₂

Zależność jednostkowego opóźnienia grupowego od długości fali dla SiO₂

Dyspersja chromatyczna falowodowa

$$n_E = n_2 + b(\lambda)(n_1 - n_2)$$

Dyspersja falowodowa występuje praktycznie tylko w światłowodach jednomodowych (dlaczego?)

Całkowita dyspersja chromatyczna w światłowodzie

$$t_g = \frac{z}{v_g} = \frac{zn_g}{c} \qquad \longrightarrow \qquad t_g = \frac{z}{v_g} = \frac{zn_{Eg}}{c}$$

$$n_{g} = n - \lambda \frac{dn}{d\lambda} \qquad \longrightarrow \qquad n_{Eg} = n_{E} - \lambda \frac{dn_{E}}{d\lambda}$$

$$D_{CHR} = D_{MAT} + D_{FAL}$$

$$\Delta t_{CHR} \approx z D_{CHR} \Delta \lambda$$

$$\Delta t_{CHR} \approx z D_{CHR} \Delta \lambda$$

$$D_{\mathit{CHR}}$$
 wyrażamy w $\left[rac{\mathrm{ps}}{\mathrm{nm}\cdot\mathrm{km}}
ight]$

Zależność wsp. dyspersji chromatycznej od długości fali w standardowym światłowodzie jednomodowym (ITU G.652)

Przykłady światłowodów o modyfikowanej dyspersji

Po co modyfikujemy dyspersję?

Jak modyfikujemy dyspersję?

Jak modyfikujemy dyspersję?

...poprzez "inżynierię" profilu współczynnika załamania

Pytania:

 - jak będzie wyglądać "rozmycie" impulsów, gdy źródłem sygnału będzie laser wielomodowy FP?

 czy stosując idealnie monochromatyczny laser spodziewamy się rozmycia przesyłanych impulsów?

$$\Delta t_{CHR} = zD_{CHR}\Delta\lambda$$

Wpływ dyspersji na transmitowane impulsy

łączny wpływ dyspersji międzymodowej i chromatycznej: $\Delta t \approx \sqrt{\Delta t_{MOD}^2 + \Delta t_{CHR}^2}$

poszerzenie transmitowanych impulsów:
$$t_{WY} \approx \sqrt{t_{WE}^2 + \Delta t^2}$$

pasmo modulacyjne światłowodu:
$$B_{3dB} \approx \frac{0.44}{\Delta t}$$
 $B_{1.5dB} \approx \frac{0.31}{\Delta t}$

Wpływ dyspersji na transmitowane impulsy

Co trzeba będzie dopowiedzieć?

- dyspersja polaryzacyjna (PMD)
- zjawiska nieliniowe w światłowodach
- wzmacniacze światłowodowe
- światłowody "specjalne"
- -technologia wytwarzania światłowodów

Standaryzacja światłowodów – rekomendacje ITU

- rekomendacje nie są normami, do których producent musi się stosować; chodzi o to, by światłowody zgodne z daną rekomendacją mogły być stosowane zamiennie, a także skutecznie łączone (spawane)
- określają parametry użytkowe w (pozornym) oderwaniu od technologii
- są rozwijane w miarę postępu technologii i aplikacji

Rekomendacje dla standardowego światłowodu jednomodowego G.652

Współistnieją cztery warianty (kategorie); G.652.A ... G.652.D

G.652.A:

Mode field diameter	Wavelength 1310 nm	
	Range of nominal values	8.6-9.5 μm
	Tolerance	±0.6 μm
Cladding diameter	Nominal	125.0 μm
	Tolerance	±1 μm
Core concentricity error	Maximum	0.6 μm
Cladding noncircularity	Maximum	1.0%

Dlaczego nie ma określenia średnicy rdzenia?!

G.652.A, c.d.:

Cable cut-off wavelength	Maximum	1260 nm
Macrobend loss	Radius	30 mm
	Number of turns	100
	Maximum at 1550 nm	0.1 dB
Proof stress	Minimum	0.69 GPa

Jak "działa" ten światłowód dla 1200 nm?

G.652.A, c.d.:

Chromatic dispersion coefficient	$\lambda_{0 ext{min}}$	1300 nm
	$\lambda_{0 ext{max}}$	1324 nm
	$S_{0 m max}$	$0.092 \text{ ps/nm}^2 \times \text{km}$

$$\frac{\lambda S_{0 \max}}{4} \left[1 - \left(\frac{\lambda_{0 \max}}{\lambda} \right)^4 \right] \le D(\lambda) \le \frac{\lambda S_{0 \max}}{4} \left[1 - \left(\frac{\lambda_{0 \min}}{\lambda} \right)^4 \right]$$

G.652.A, c.d.:

Attenuation coefficient	Maximum at 1310 nm	0.5 dB/km
(Note 1)	Maximum at 1550 nm	0.4 dB/km
PMD coefficient	M	20 cables
(Note 2)	Q	0.01%
	Maximum PMD _Q	$0.5 \text{ ps/}\sqrt{\text{km}}$

Dane producenta (Corning):

Optical	Speci	ficati	ions
----------------	-------	--------	------

Fiber Attenuation			
Maximum Attenuation			
Wavelength	Maximum Value*		
(nm)	(dB/km)		
1310	0.33 - 0.35		
1383**	0.31 - 0.35		
1550	0.19 - 0.20		
1625	0.20 - 0.23		

Fragment G.652.D:

Attenuation coefficient (Note 1)	Maximum from 1310 nm to 1625 nm (Note 2)	0.4 dB/km
	Maximum at 1383 nm ±3 nm (Note 3)	0.4 dB/km
	Maximum at 1550 nm	0.3 dB/km

Inne istotne rekomendacje:

- G.655; światłowód jednomodowy z niezerową, przesuniętą dyspersją (NZ-DSF)
- G.657; światłowód jednomodowy "bend insensitive"

G.657 A (G.652 compliant)

A1 fibre A2 fibre 10 mm bending radius7.5 mm bending radius

G.657 B (not G.652 compliant) B2 fibre

B3 fibre

7.5 mm bending radius
5 mm bending radius

	Specified loss in dB for 1 turn at 1550 nm for radius:			
Bending Radius	15 mm	10 mm	7.5 mm	5 mm
G. 657A1	<0.025	<0.75	-	-
G. 657A2 / B2		<0.1	<0.5	•
G. 657B3		<0.03	<0.08	<0.15

Jak można zrobić światłowód bend insensitive?

Wielki bałagan, czyli jak nazywamy typowe światłowody jednomodowe

- standardowy: SSMF, SMF-28, G.652, NDSF
- z przesuniętą (niezerową) dyspersją: G.655, DSF, NZ-DSF, (+D) NZDSF