

数据手册

Datasheet

APM32F030x6/x8

基于 Arm® Cortex®-M0+ 内核的 32 位微控制器

版本: V1.1

1 产品特性

- 系统与架构
- 32 位 Arm® Cortex®-M0+内核
- 最高 48MHz 工作频率
- 存储器
- 闪存: 32~64KB
- SRAM: 4~8KB
- 时钟、复位与电源管理
- 外部供电电压:V_{DD}=2.0~3.6V
- 模拟供电电压:VDDA=VDD~3.6V
- 上电/掉电复位 (POR/PDR)
- 4~32MHz 晶体振荡器
- 带校准的 32KHz RTC 振荡器
- 内部 40 KHz RC 振荡器
- 低功耗模式
- 睡眠、停机、待机
- 高达 55 个快速 I/O 引脚
- 支持所有可映射的外部中断向量
- 几乎所有 I/O 引脚可兼容 5V 输入
- 5 通道 DMA 控制器
- 12 位 ADC
- 最多支持 16 个外部通道

- 转换范围:0~3.6V
- 独立模拟电源:2.4~3.6V
- 实时时钟 RTC
- 支持日历功能
- 在停机待机模式下可用于警报和 周期唤醒
- 10 个定时器
- 1 个可提供 7 通道 PWM 输出的 16 位的高级控制定时器
- 多达 5 个通用 16 位定时器
- 1 个 16 位基本定时器
- 独立看门狗和系统窗口看门狗定 时器
- 系统滴答定时器
- 通信接口
- 最多 2 个 I2C 接口
- 最多 2 个 USART 接口
- 最多 2 个 SPI 接口
- CRC 计算单元
- 串行线调试(SWD)
- 96 位唯一 UID

目 录

1	产品特性	1
2	简介	5
3	功能描述	6
3.1	系统框图	7
3.2	内核	8
3.3	存储器	8
3.4	地址映射	9
3.5	电源管理1	.0
3.5.1	供电方案1	.0
3.5.2	电压调压器	.0
3.5.3	供电监控器	.0
3.6	时钟树1	.2
3.7	时钟和启动1	.3
3.8	实时时钟(RTC)1	.3
3.9	启动模式1	.3
3.10	CRC 计算单元1	.3
3.11	中断控制器	.4
3.11.1	嵌套向量中断控制器(NVIC)1	.4
3.11.2	外部中断/事件控制器 (EINT)1	.4
3.12	DMA	.4
3.13	定时器	_4
3.14	系统滴答定时器	.6
3.15	通信接口1	.6
3.15.1	I2C 总线	.6
3.15.2	通用同步/异步收发器(USART)1	.7
3.15.3	串行外设接口(SPI)	.7
3.16	通用输入输出接口(GPIO)1	.8
3.17	ADC(模拟/数字转换器)1	.8
3.17.1	温度传感器	.8
3.17.2	内部参考电压 (VREFINT)	.9
3.17.3	串行线调试端口(SW-DP)	.9
4	引脚特性2	20

4.1	引脚定义	. 20
4.2	引脚功能描述	. 22
5	电气特性	. 29
5.1	测试条件	. 29
5.1.1	最大值和最小值	. 29
5.1.2	典型值	. 29
5.1.3	典型曲线	. 29
5.1.4	负载电容	. 29
5.2	绝对最大额定值	. 30
5.2.1	最大额定电压特性	. 30
5.2.2	最大静电特性	. 31
5.2.3	静态栓锁	. 31
5.2.4	最大温度特性	. 31
5.3	通用工作条件下的测试	. 31
5.3.1	内嵌复位和电源控制模块特性测试	. 32
5.3.2	内置参考电压特性测试	. 32
5.3.3	功耗	. 33
5.3.4	外部时钟源特性	. 35
5.3.5	内部时钟源特性	. 36
5.3.6	低功耗模式唤醒时间	. 37
5.3.7	PLL 特性	. 37
5.3.8	存储器特性	. 37
5.3.9	I/O 端口特性	. 38
5.3.10	NRST 引脚特性	. 40
5.3.11	通信接口	. 40
5.3.12	12 位 ADC 特性	. 43
6	封装信息	. 44
6.1	LQFP64 封装信息	. 44
6.2	LQFP48 封装信息	. 47
6.3	LQFP32 封装信息	. 50
6.4	QFN32 封装信息	. 52
7	订货信息	. 55
8	包装信息	. 57
8.1	带装包装	. 57

8.2	托盘包装	58
9	常用功能模块命名	60
10	修订历史	61

2 简介

APM32F030x6/x8 系列芯片是基于 Arm® Cortex®-M0+内核的 32 位高性能微控制器,工作频率可达 48MHz。内置高速存储器(高达 64K 字节的闪存和 8K 字节的SRAM),芯片管脚复用了大量增强的外设和 I/O。所有芯片都提供标准的通信接口:I2C 接口、SPI 接口、USART 接口。

APM32F030x6/x8 微控制器工作时的环境温度范围为: -40℃~+105℃, 电压范围为: 2.0~3.6V, 多个省电模式保证了低功耗应用的要求。

APM32F030x6/x8 微控制器包括从 32、48、64 个引脚的多种不同封装形式,不同的封装形式使得器件中的外设配置也不尽相同。

有关 Arm® Cortex®-M0+内核的相关信息,请参考 Arm® Cortex®-M0+技术参考手册,该手册可以在 ARM 公司的网站下载。

3 功能描述

具体 APM32F030x6/x8 产品功能和外设配置请参阅下表。

表1 APM32F030x6/x8 系列芯片功能和外设

	产品			APM:	32F030		
型号		K6U6	K6T6	K8T6	C6T6	C8T6	R8T6
封装		QFN32	LQFP32	LQFP32	LQFP48	LQFP48	LQFP64
闪]存(KB)	32 64 32		32	64		
SR	RAM(KB)		4	8	4	8	3
	16 位通用		4	1 ⁽¹⁾		į	5
	16 位高级				1		
定时器	16 位基本			-			1
是 的 船	系统滴答定时器				1		
	看门狗	2					
	实时时钟	1					
	USART	1 ⁽²⁾			2		
通信接口	SPI	1 ⁽³⁾		2	2		
	I2C	1 ⁽⁴⁾			2		
	単元	1					
12 位 ADC	外部通道	10			16		
内部通道		2					
GPIOs		26 39 55			55		
最大 CPU 频率		M0+@48MHz					
工作温度		环境温度:-40℃至 85℃/-40℃至 105℃ 结温度:-40℃至 105℃/-40℃至 125℃					
工作电压		作电压 2.0~3.6V					

注:

- (1) TMR15 不存在。
- (2) USART2 不存在。
- (3) SPI2 不存在。
- (4) I2C2 不存在。

3.1系统框图

图1 系统框图

3.2内核

Arm® Cortex®-M0+内核是最新一代的嵌入式 ARM 内核。它是一个低成本的平台,APM32 基于该平台开发,针对于系统功耗做出了大量的优化,同时 APM32 提供了优良的计算性能和先进的系统中断响应。

APM32F0xx 系列基于嵌入式 ARM 内核,因此兼容所有 ARM 工具和软件。

APM32F030x6/x8 系列产品系统功能框图如图 1。

3.3存储器

存储器详情请参见下表:

表2 存储器说明

存储器	最大字节	功能
主存储器	64KB	用于存放程序和数据
SRAM 8KB		用于存储临时数据
选项字节 16bytes		可用于写保护主存储器

3.4地址映射

图2 APM32F030x6/x8 内存映射

3.5电源管理

3.5.1 供电方案

表3 供电方案

名称	电压范围	说明				
V _{DD}	2.0~3.6V	V _{DD} 直接给 IO 口供电,另外 V _{DD} 经电压调压器为核心电路供电				
\/·	\/ 2.6\/	VDDA 为 ADC、复位模块、RC 振荡器和 PLL 供电。VDDA 电压电平必须始				
V _{DDA}	V _{DD} ~3.6V	终大于或等于 VDD 电压电平,并且优先提供				

注: 有关如何连接电源引脚的更多详细信息参见图 9 (电源方案)

3.5.2 电压调压器

电压调压器主要有三种模式,通过电压调压器可调节 MCU 的工作模式,从而减少功耗。三种模式详情请参见下表。

表4 电压调节器的工作模式

名称	说明				
主模式(MR)	用于正常工作模式。				
低功耗模式(LPR) 在电力需求减少时,可用于停止模式。					
关断模式	用于电源待机模式,稳压器输出高阻抗,内核电路的供电切断,稳压器处于零消耗状态,且寄存器和 SRAM 的数据会全部丢失。				

注: 调压器在复位后始终处于工作状态,在关断模式下高阻输出。

3.5.3 供电监控器

产品内部集成了上电复位(POR)和掉电复位(PDR)两种电路。这两种电路始终处于工作状态。当掉电复位电路监测到电源电压低于规定的阈值 VPOR/PDR 时,系统进入复位状态,因此其不需要使用外部复位电路。

关于 VPOR/PDR 的细节请参考 5 测试条件, 低功耗模式。

APM32F0xx 系列支持以下三种低功耗模式,用户可以通过配置这三种模式,从 而达到最佳的应用需求。

表5 低功耗模式

模式类型	说明					
睡眠模式	在睡眠模式下,CPU 停止工作,所有外设处于工作状态,中断/事件可唤醒 CPU 工作。					
停机模式	停机模式在保证 SRAM 和寄存器数据不丢失的情况下,可以达到最低的电能消耗的模式。此时,内部 1.5V 供电部分停止导致 HXT、HIRC、PLL 时钟关闭,调压器被置于普通模式或低功耗模式。 配置成 EINT 的中断、事件唤醒可将 CPU 从停机模式唤醒。EINT 信号包括 16 个外部 I/O 口其中一个、RTC 闹钟或 USB 的唤醒信号。					
待机模式	特机模式是芯片使用的最低电能消耗模式。此时,内部的电压调压器被关闭而引起内部 1.5V 部分的供电被切断,HXT、HIRC、PLL 时钟关闭; SRAM 和寄存器的数据也将消失。但后备寄存器的内容仍然保留,待机电路仍工作。 NRST 上的外部复位信号、IWDT 复位、WKUP 引脚上的一个上升边沿或 RTC 的闹钟到时都会终止芯片待机模式。					

注:在停机或待机模式下,RTC、IWDT 和对应的时钟仍正常工作。

3.6时钟树

图3 APM32F030x6/x8 的时钟树

3.7时钟和启动

用户通过配置可以使用具有"失效监控"功能的 4~32MHz 的外部高速时钟。当系统时钟未检测到外部时钟被配置时,系统将自动地切换到内部的 RC 振荡器。

3.8实时时钟(RTC)

RTC 是一个独立的 BCD 定时器/计数器,不仅可以支持日历功能,还具有闹钟中断和阶段性中断功能,日历功能除了亚秒、秒、分钟、小时(12 或 24 小时格式)、星期、日期、月、年,以 BCD(二进制编码的十进制)格式存在的日历时钟外,还具有自动调整一个月为 28、29(闰年)天、30 和 31 天的功能。

用户可从 1 到 32767 动态调整 RTC 时钟脉冲。通过调整 RTC 时钟脉冲来同步 RTC 和主时钟,它可补偿石英晶体的不准确度,其数字校准电路的分辨率为 1ppm。RTC 具有两个可编程滤波器防篡改检测引脚,当此引脚检测到篡改事件时,可以唤醒处于停机和待机模式中的 MCU。除此之外,RTC 还具有时间标记功能,可用于保存日历内容。RTC 的时间标记功能可以由引脚上的事件或篡改事件触发。在检测时间事件时,MCU 可以从停机和待机模式中唤醒。其参考时钟检测可以用更精确的第二源时钟(50 或 60Hz)来提高日历的精度。它的时钟源可以选择外部 32.768kHz 的外部晶振、谐振器或振荡器、内部低功耗 RC 振荡器(典型频率为 40KHz)或 32 分频的高速外部时钟。

3.9启动模式

在启动时,用户可以通过设置 Boot 引脚的高低电平从而选择下列三种启动模式中的一种:

- 从用户 Flash 启动
- 从系统存储器启动
- 从内嵌 SRAM 启动

若从系统存储器中启动,用户可以使用 USART 重新编程用户 Flash (ISP)。

3.10 **CRC** 计算单元

CRC(循环冗余校验)计算单元通过一个发生器多项式算法来获取一个 CRC 码。

3.11 中断控制器

3.11.1 嵌套向量中断控制器(NVIC)

APM32F030x6/x8 产品内置 1 个嵌套向量中断控制器,NVIC 能够处理多达 32 个可屏蔽中断通道(不包括 16 个 Cortex®-M0+的中断线)和 4 个优先级。

嵌套向量式中断控制器(NVIC)有紧耦合的 NVIC 接口,它直接向内核传递中断向量入口地址,从而达到低延迟的中断响应处理。此外它还能优先处理晚到的较高优先级中断。

3.11.2 外部中断/事件控制器 (EINT)

外部中断/事件控制器由 32 个产生事件/中断请求的边沿检测器组成。其触发事件 (上升沿或下降沿或双边沿)可以独立地配置或屏蔽;有一个寄存器保持着所有中断请求的状态。多达 55 个通用 I/O 可连接到 16 个外部中断线。EINT 可以检测宽度比内部时钟周期小的脉冲。

3.12 **DMA**

5 路灵活的通用 DMA 可以进行存储器到存储器、外设到存储器和存储器到外设的数据传输。 DMA 控制器支持环形缓冲区的管理,当控制器到达缓冲区末端时,不再需要用户代码干预。

每个通道都有专门的硬件 DMA 请求逻辑,且每个通道都可由软件触发,地址和目标地址也都能通过软件单独设置。

DMA 可以用于主要的外设: SPI、I2S、I2C、USART、所有的 TMRx 定时器 (除了 TMR14) 和 ADC。

3.13 定时器

APM32F030x6/x8 产品包括多达五个通用定时器、一个基本定时器和一个高级控制定时器。

表6 高级控制定时器

定时器类型	高级控制定时器
定时器	TMR1
计数器分辨率	16 位
计数器类型	向上,向下,向上/向下
预分频器系数	1 到 65536 之间的任意整数

定时器类型	高级控制定时器
DMA 请求生成	有
捕获/比较通道	4
互补输出	有
功能说明	具有带死区插入的互补 PWM 输出,还可以被当成完整的通用定时器。 配置为 16 位标准定时器时,它与 TMRx 定时器具有相同的功能。 配置为 16 位 PWM 发生器时,它具有全调制能力(0~100%)。 在调试模式下,定时器可以被冻结。 提供同步或事件链接功能。

表7 基本定时器

定时器类型	基本定时器
定时器	TMR6
计数器分辨率	16 位
计数器类型	向上
预分频器系数	1 到 65536 之间的任意整数
DMA 请求生成	有
捕获/比较通道	0
互补输出	-
功能说明	可以用作通用的 16 位时基时钟

表8 通用定时器

定时器类型 通用定时器					
定时器	TMR3	TMR14	TMR15	TMR16	TMR17
计数器分辨率	16 位	16 位	16 位	16	位
计数器类型	向上,向下, 向上,向下	向上	向上	向	上
预分频器	1到 65536 之间的任意整数	1 到 65536 之 间的任意整数	1 到 65536 之间的任意 整数		36 之间的
DMA 请求生成	DMA 请求生成 有		有	有	
捕获/比较频道	4	1	2		1
功能说明	具有 4 个独立的通道,每个通道用于输入捕获/输出比较、PWM或单脉冲模式输出。 在最大的封装配置中可提供最多 12 个输入捕获、输出比较或 PWM 通道。 具有一个独立的 DMA 请求生成。	用于输入捕获/ 输出比较的单 通道,PWM 或单脉冲模式 输出功能。	具有带死区生成和独立 DMA 请求的生成互补的输出功能。这三个定时器可一起工作,TMR15 通过链接功能与 TMR1一起操作,能实现同步或事件链接功能。TMR15 有两个独立的通道,而TMR16 和 TMR17 同步。TMR15 可以与 TMR16 和 TMR17 同步。		

表9.独立看门狗和窗口看门狗对比

名称	计数器 分辨率	计数器 类型	预分频系 数	功能说明
独立看门狗 (IWDT)	12 位	向下	1~256 之 间的 任意整数	由内部独立的 40KHz 的 RC 振荡器提供时钟,与主时钟独立,所以它可运行于停机和待机模式。 在发生问题时可复位整个系统。 可以为应用程序提供超时管理。 可以配置成是软件或硬件启动看门狗。 在调试模式下,为了方便调试可暂停计数器。
窗口看门狗 (WWDT)	7 位	向下	-	可以设置成自由运行。 在发生问题时可复位整个系统。 由主时钟驱动,具有早期中断警告功能。 在调试模式下的定时器可以被冻结。

3.14 系统滴答定时器

系统滴答定时器专用于实时操作系统,是一个标准的 24 位的向下计数器,具有自动重加载功能,当计数器为 0 时能产生一个可屏蔽系统中断,并且可以编程时钟源(HCLK 或 HCLK/8)。

3.15 通信接口

3.15.1 I2C 总线

I2C1/2 均可工作于主模式和从模式,并支持 7 位和 10 位寻址模式。I2C1/2 均支持标准模式(最高 100kbit/s)或快速模式(最高 400kbit/s)。此外,I2C1 内置了可编程的模拟和数字噪声滤波器,还支持超快速模式(最高 1 Mbit/s)。

此外,I2C1 还为 SMBUS 2.0 和 PMBUS 1.1 提供了硬件支持: ARP 功能、主机通知协议、硬件 CRC(PEC)生成/验证、超时验证和警报协议管理。

I2C 支持 DMA 功能。

I2C1 与 I2C2 的差异见表 10。

表10 APM32F030x6/x8I2C 功能

I2C 功能	I2C1	I2C2 ⁽²⁾
7 位寻址模式	√ ⁽¹⁾	~
10 位寻址模式	√	√
标准模式(最高达 100kbit/s)	√	~
快速模式(最高达 400kbit/s)	√	~
超快速模式(最高达 1Mbit/s),I/O 口支持 20mA 输出电流驱动	√	-
独立时钟	√	-
SM 总线	√	-

I2C 功能	I2C1	I2C2 ⁽²⁾
从停止唤醒	-	-

注:

- (1) √=支持
- (2) 仅在 APM32F030x8 芯片上可用。

3.15.2 通用同步/异步收发器(USART)

该芯片内置多达 2 个通用同步/异步收发器,通信速率最高可达 6Mbit/s,所有 USART 接口可以由 DMA 控制器提供,USART 接口能实现的功能如下表。

表11 APM32F0x6/8 USART 功能

LIO A D.T. lett - A (T.L. Ab)	APM32F030x6	APM32F030x8		
USART 模式/功能	USART1	USART1	USART2	
调制解调器的硬件流控制	\checkmark	~	√	
使用 DMA 的连续通信	\checkmark	√	√	
多处理器通信	√	√	√	
同步模式	\checkmark	√	√	
智能卡模式	-	-	-	
单线半双工通信	√	√	√	
IrDA SIR 编码解码器模块	-	-	-	
LIN 模式	-	-	-	
双时钟域和从停止模式唤醒	-	-	-	
接收器超时中断	\checkmark	√	-	
MODBUS 通信	-	-	-	
自动波特率检测(支持的模式)	2	2	-	
USART 数据长度	{	3位和9位		

注: √=支持。

3.15.3 串行外设接口(SPI)

APM32F0xx 系列内嵌 2 个 SPI 接口,支持芯片与外部设备以半/全双工的串行方式通信。该接口可配置为主模式或从模式,可以由 3 位的预分频器产生 8 种主模式频率,每帧 4~16 位,通信速率可达 18Mbit/s。

SPI1 和 SPI2 的功能相似,详情参见下表。

表12 APM32F030x6/x8 SPI 功能

· · · · · · · · · · · · · · · · · · ·	, , , , , _	
SPI 功能	SPI	SPI2 ⁽²⁾
硬件循环冗余校验计算	√ ⁽¹⁾	√
接收/发送先进先出	√	√

SPI 功能	SPI	SPI2 ⁽²⁾
NSS 脉冲模式	√	√
TI模式	√	√

注:

- (1) √=支持。
- (2) 仅在 APM32F030x8 芯片上可用。

3.16 通用输入输出接口(GPIO)

每个 GPIO 引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上下拉)或复用的外设功能端口。多数 GPIO 引脚都能与数字或模拟的复用外设共用。

I/O 引脚的外设功能可以通过一个特定的操作顺序锁定,以避免意外的写入 I/O 寄存器。

3.17 **ADC**(模拟/数字转换器)

12 位模拟/数字转换器有多达 16 个外部通道和 2 个内部通道(温度传感器、电压基准),可进行单次或扫描转换。

模拟看门狗功能可非常精准地监视多路通道,当被监视的信号出现超出阈值时,将产生中断。

ADC 支持 DMA 功能。

3.17.1 温度传感器

ADC1_IN16 连接到内置温度传感器,它可以将传感器的温度转换为数字值。该传感器具有良好的线性度,但它必须进行校准,以获得良好的整体精度的温度测量。由于温度传感器的偏移量随芯片的工艺变化而变化,未校准的内部温度传感器只适用于检测温度变化的应用。

表13 温度传感器校准值

校准值名称	描述	存储地址
TS_CAL1	TS ADC 在 30℃(±5℃), VDDA=3.3V	0x1FFF F7B8 - 0x1FFF F7B9
	(±10mV)下采集的原始数据	

3.17.2 内部参考电压 (VREFINT)

内部参考电压(VREFINT)为 ADC 提供稳定的(带隙)电压输出。VREFINT 内部连接到 ADC_IN17 输入通道。

表14 内部参考电压校准值

校准值名称	描述	存储地址
VREFINT_CAL	在 30℃(± 5 ℃) 温度,	0x1FFF F7BA - 0x1FFF F7BB
	V _{DDA} =3.3V(±10mV)下采集的原始数据	

3.17.3 串行线调试端口(SW-DP)

产品提供了 ARM SW-DP 接口,可通过该接口使用串行线调试工具连接 MCU。

4 引脚特性

4.1引脚定义

图4 APM32F030x6/x8 系列 LQFP64 引脚定义图

图5 APM32F030x6/x8 系列 LQFP48 引脚配置图

图6 APM32F030x6/x8 系列 LQFP32 引脚配置图

图7 APM32F030x6/x8 系列 QFN32 引脚配置图

4.2引脚功能描述

表15 输出引脚表中使用的图例/缩写

		秋 1○ TINU							
名	称	缩写	定义						
引脚	名称	除非引脚名	称下方的括号中另有规定,否则复位期间和复位后的引脚功能与实际引脚						
			名称相同 						
		S	电源引脚						
引脚	类型	I	仅输入引脚						
		I/O	I/O 引脚						
		FT 5V 容限 I/O							
		FTf	5 V 容限 I/O,FM+功能						
	/-1-1-1-	TTa	3.3 V 容限 I/O 直接连接到 ADC						
I/O \$	结构	TC	标准 3.3VI/O						
		В	专用 BOOT0 引脚						
		RST	内置弱上拉电阻的双向复位引脚						
注	意	除非治	主释另有规定,否则复位期间和复位后,所有 I/O 都设置为浮动输入						
引脚	复用 功能	通过 GPIOx_AFR 寄存器选择的功能							
功能	附加 功能		通过外设寄存器直接选择/启用的功能						

表16 APM32F030x6/x8 引脚功能描述

引脚名称		引脚	编码		引脚	I/O		引脚。	功能
(复位后的功能)	LQFP 64	LQFP 48	LQFP 32	QFN 32	类型	结构	注释	复用功能	附加功能
V _{DD}	1	1	1	-	S	-	-	互补	电源
PC13	2	2	-	-	I/O	TC	(1)	-	RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2
PC14-OSC32_IN (PC14)	3	3	ı	1	I/O	TC	(1)	-	OSC32_IN
PC15- OSC32_OUT (PC15)	4	4	-	-	I/O	тс	(1)	-	OSC32_OUT
PF0-OSC_IN (PF0)	5	5	2	2	I/O	FT	-		OSC_IN
PF1-OSC_OUT (PF1)	6	6	3	3	I/O	FT	-	-	OSC_OUT
NRST	7	7	4	4	I/O	RST	1	芯片复位输入/ (低电平	
PC0	8	-	1	-	I/O	TTa	-	EVENTOUT	ADC_IN10
PC1	9	-	-	-	I/O	TTa	-	EVENTOUT,	ADC_IN11
PC2	10	-	-	-	I/O	TTa	-	EVENTOUT	ADC_IN12
PC3	11	-	-	-	I/O	TTa	-	EVENTOUT	ADC_IN13
Vssa	12	8	-	0	S	-	-	模扎	人 地
V_{DDA}	13	9	5	5	S	-	-	模拟	电源
PA0	14	10	6	6	I/O	TTa	-	USART2_CTS	ADC_IN0, RTC_TAMP2, WKUP1
PA1	15	11	7	7	I/O	TTa	-	USART2_RTS, EVENTOUT	ADC_IN1
PA2	16	12	8	8	I/O	ТТа	-	USART2_TX, TMR15_CH1	ADC_IN2
PA3	17	13	9	9	I/O	TTa	-	USART2_RX, TMR15_CH2	ADC_IN3
PF4	18	-	-	-	I/O	FT	-	EVENTOUT	-
PF5	19	-	ı	-	I/O	FT	-	EVENTOUT	-
PA4	20	14	10	10	I/O	TTa	-	SPI1_NSS, USART2_CK, TMR14_CH1	ADC_IN4
PA5	21	15	11	11	I/O	TTa	-	SPI1_SCK	ADC_IN5

	引脚紅布 引脚编码					TI HER		引脚功能		
引脚名称 (复位后的功能)	LQFP		LQFP	QFN	引脚 类型	I/O 结构	注释			
(交应// 113/3/16)	64	48	32	32	入主	2113		复用功能	附加功能	
								SPI1_MISO,		
								TMR3_CH1,		
PA6	22	16	12	12	I/O	TTa	-	TMR1_BKIN,	ADC_IN6	
								TMR16_CH1,		
								EVENTOUT		
								SPI1_MOSI,		
								TMR3_CH2,		
PA7	23	17	13	13	I/O	TTa	-	TMR14_CH1,	ADC_IN7	
								TMR1_CH1N,		
								TMR17_CH1, EVENTOUT		
PC4	24	_	_	_	I/O	TTa	_	EVENTOUT	ADC_IN14	
PC5	25	_		_	1/0	TTa	_	EVENTOOT	ADC_IN14 ADC_IN15	
1 03	20	_		_	1/0	1 Ia	_	TMR3 CH3,	ADC_IN13	
PB0	26	18	14	14	I/O	TTa	_	TMR1_CH2N,	ADC_IN8	
1 50	20	10	14	14	1/0	i iu		EVENTOUT	71BO_1110	
								TMR3 CH4,		
PB1	27	19	15	15	I/O	TTa	_	TMR14_CH1,	ADC_IN9	
								TMR1_CH3N	_	
PB2	28	20	1	16	I/O	FT	-	-	-	
PB10	29	21	-	-	I/O	FT	-	I2C2_SCL	-	
DD44	20	20			1/0	ГТ		I2C2_SDA,		
PB11	30	22	-	-	I/O	FT	-	EVENTOUT	-	
Vss	31	23	16	0	S	-	-	坩	<u>b</u>	
V_{DD}	32	24	17	17	S	-	-	数字	电源	
								SPI2_NSS,		
PB12	33	25	-	-	I/O	FT	-	TMR1_BKIN,	-	
								EVENTOUT		
PB13	34	26	_	_	I/O	FT	_	SPI2_SCK,	_	
								TMR1_CH1N		
								SPI2_MISO,		
PB14	35	27	-	-	I/O	FT	-	TMR1_CH2N,	-	
								TMR15_CH1		
								SPI2_MOSI,		
PB15	36	28	-	_	I/O	FT	-	TMR1_CH3N, TMR15_CH1N,	RTC_REFIN	
								TMR15_CH1N,		
PC6	37	_	_	_	I/O	FT	_	TMR3_CH1	-	
PC7	38	_	_	_	1/0	FT	_	TMR3_CH2	-	
PC8	39	-		_	1/0	FT	_	TMR3_CH3		
			-						-	
PC9	40	-	-	-	I/O	FT	-	TMR3_CH4	-	

→1 Him & ~L.		引脚	 编码		→1 nto			引脚功能		
引脚名称 (复位后的功能)		LQFP	LQFP	QFN	引脚 类型	I/O 结构	注释	复用功能	附加功能	
,	64	48	32	32					M1 74 40	
								USART1_CK,		
PA8	41	29	18	18	I/O	FT	_	TMR1_CH1,	-	
								EVENTOUT,		
								MCO		
								USART1_TX,		
PA9	42	30	19	19	I/O	FT	-	TMR1_CH2,	-	
								TMR15_BKIN		
								USART1_RX,		
PA10	43	31	20	20	I/O	FT	-	TMR1_CH3,	-	
								TMR17_BKIN		
								USART1_CTS,		
PA11	44	32	21	21	I/O	FT	-	TMR1_CH4,	-	
								EVENTOUT		
								USART1_RTS,		
PA12	45	33	22	22	I/O	FT	-	TMR1_ETR,	-	
5.40								EVENTOUT		
PA13 (SWDIO)	46	34	23	23	I/O	FT	(2)	IR_OUT,SWDIO	-	
PF6	47	35	-	-	I/O	FT	-	I2C2_SCL	1	
PF7	48	36	-	-	I/O	FT	-	I2C2_SDA	-	
PA14	40	0.7	0.4	0.4	1/0		(0)	USART2_TX,		
(SWCLK)	49	37	24	24	I/O	FT	(2)	SWCLK	-	
								SPI1_NSS,		
PA15	50	38	25	25	I/O	FT	-	USART2_RX,	-	
								EVENTOUT		
PC10	51	-	-	-	I/O	FT	-	-	-	
PC11	52	-	-	-	I/O	FT	-	-	-	
PC12	53	-	-	-	I/O	FT	_	-	-	
PD2	54	_	_	_	I/O	FT	_	TMR3_ETR	-	
					., 0			SPI1_SCK,		
PB3	55	39	26	26	I/O	FT	-	EVENTOUT	-	
								SPI1_MISO,		
PB4	56	40	27	27	I/O	FT	_	TMR3 CH1,	_	
		.5			", 0			EVENTOUT		
								SPI1_MOSI,		
								I2C1_SMBA,		
PB5	57	41	28	28	I/O	FT	-	TMR16_BKIN,		
								TMR3_CH2		
								I2C1_SCL,		
PB6	58	42	29	29	I/O	FT	_	USART1_TX,	-	
								TMR16_CH1N		

引脚名称		引朋	编码		引脚	引脚 I/O		引脚功能		
(复位后的功能)	LQFP 64	LQFP 48	LQFP 32	QFN 32	类型 结构		注释	复用功能	附加功能	
PB7	59	43	30	30	I/O	FT	1	I2C1_SDA, USART1_RX, TMR17_CH1N	-	
воото	60	44	31	31	I	В	-	启动选择		
PB8	61	45	-	32	I/O	FTf	-	I2C1_SCL, TMR16_CH1	-	
PB9	62	46	-	-	I/O	FTf	-	I2C1_SDA, IR_OUT, TMR17_CH1, EVENTOUT	-	
Vss	63	47	32	0	S	-	-	地		
V _{DD}	64	48	1	1	S	-	-	数字	电源	

注:

- (1) PC13、PC14 和 PC15 通过电源开关供电。由于开关仅吸收有限的电流(3 毫安),因此在输出模式下 GPIO 的 PC13 至 PC15 的使用受到限制:大负载为 30 pF 时,速度不应超过 2MHz;不用作电流源 (例如驱动发光二极管)。
- (2) 复位后,这些引脚配置为 SWDIO 和 SWCLK 复用功能, SWDIO 引脚的内部上拉和 SWCLK 引脚的内部下拉被激活。

表17 端口 A 复用功能配置

引脚名称	AF0	AF1	AF2	AF3	AF4	AF5	AF6
PA0	-	USART2_CTS	-	-		-	-
PA1	EVENTOUT	USART2_RTS	1	-			-
PA2	TMR15_CH1	USART2_TX	-	-	-	-	-
PA3	TMR15_CH2	USART2_RX	-	-	-	-	-
PA4	SPI1_NSS	USART2_CK	-	-	TMR14_CH1	-	-
PA5	SPI1_SCK	1	1	-	1	-	-
PA6	SPI1_MISO	TMR3_CH1	TMR1_BKIN	-	1	TMR16_CH1	EVENTOUT
PA7	SPI1_MOSI	TMR3_CH2	TMR1_CH1N	-	TMR14_CH1	TMR17_CH1	EVENTOUT
PA8	MCO	USART1_CK	TMR1_CH1	EVENTOUT	-	-	-
PA9	TMR15_BKIN	USART1_TX	TMR1_CH2	-			-
PA10	TMR17_BKIN	USART1_RX	TMR1_CH3	-		-	-
PA11	EVENTOUT	USART1_CTS	TMR1_CH4	-	-	SCL	-
PA12	EVENTOUT	USART1_RTS	TMR1_ETR	-	1	SDA	-
PA13	SWDIO	IR_OUT	-	-	-	-	-
PA14	SWCLK	USART2_TX	-	-	-	-	-
PA15	SPI1_NSS	USART2_RX	-	EVENTOUT	-	-	-

表18 端口**B**复用功能配置

	THE STANFALL							
引脚名称	AF0	AF1	AF2	AF3	AF4	AF5		
PB0	EVENTOUT	TMR3_CH3	TMR1_CH2N	-	-	-		
PB1	TMR14_CH1	TMR3_CH4	TMR1_CH3N	•	1	-		
PB2	-	-	-	-	-	-		
PB3	SPI1_SCK	EVENTOUT	-	-	-	-		
PB4	SPI1_MISO	TMR3_CH1	EVENTOUT	-	-	-		
PB5	SPI1_MOSI	TMR3_CH2	TMR16_BKIN	I2C1_SMBA	-	-		
PB6	USART1_TX	I2C1_SCL	TMR16_CH1N	-	-	-		
PB7	USART1_RX	I2C1_SDA	TMR17_CH1N	-	-	-		
PB8	-	I2C1_SCL	TMR16_CH1	-	-	-		
PB9	IR_OUT	I2C1_SDA	TMR17_CH1	EVENTOUT	-	-		
PB10	-	I2C2_SCL	-	-	-	-		
PB11	EVENTOUT	I2C2_SDA	-	-	-	-		
PB12	SPI2_NSS	EVENTOUT	TMR1_BKIN	-	-	-		
PB13	SPI2_SCK	-	TMR1_CH1N	-	-	-		
PB14	SPI2_MISO	TMR15_CH1	TMR1_CH2N	-	-	-		
PB15	SPI2_MOSI	TMR15_CH2	TMR1_CH3N	TMR15_CH1N	-	-		

表19 端口 C 复用功能配置

引脚名称	AF0
PC0	EVENTOUT
PC1	EVENTOUT
PC2	EVENTOUT
PC3	EVENTOUT
PC4	EVENTOUT
PC5	-
PC6	TMR3_CH1
PC7	TMR3_CH2
PC8	TMR3_CH3
PC9	TMR3_CH4
PC10	-
PC11	-
PC12	-
PC13	-
PC14	-
PC15	-

表20 端口 D 复用功能配置

引脚名称	AF0
PD2	TMR3_ETR

表21 端口 F 复用功能配置

- V- I	
引脚名称	AF0
PF0	-
PF1	-

5 电气特性

5.1测试条件

所有电压参数(特殊说明外)都以 Vss 为参照。

5.1.1 最大值和最小值

除非特别说明,所有产品是在 T_A=25℃下在生产线上进行测试的。其最大和最小值可支持所定最恶劣的环境温度、供电电压和时钟频率。

在每个表格下方的注解中说明是通过综合评估、设计仿真或工艺特性得到的数据,没有在生产线上进行测试;在综合评估的基础上,通过样本测试后,取其平均值再加减三倍的标准差(平均±3∑)得到最大和最小数值。

5.1.2 典型值

除非特别说明,典型数据是基于 Ta=25℃和 VDD= VDDA=3.3V; 这些数据仅用于设计指导。

5.1.3 典型曲线

除非特别说明,典型曲线不会在生产线上进行测试,仅用于设计指导。

5.1.4 负载电容

图8 测量引脚参数时的负载条件

图9 引脚输入电压测量方案

图10 电流消耗测量方案

5.2绝对最大额定值

器件上的载荷如果超过绝对最大额定值,可能会导致器件永久性的损坏。这里只是给出能承受的最大载荷,不保证在此条件下器件的功能运行正常。

5.2.1 最大额定电压特性

表22 最大额定电压特性

符号	描述	最小值	最大值	单位
V _{DD} -V _{SS}	外部主供电电压(V _{DD}) ⁽¹⁾	-0.3	4.0	\ /
	外部模拟电源电压(VDDA)	-0.3	4.0	V

符号	描述	最小值	最大值	单位
V _{DD} -V _{DDA}	VDD>VDDA 允许的电压差	-	0.4	
	FT 和 FTf 引脚上的输入电压 ⁽²⁾	V _{SS} -0.3	V _{DD} +4.0	
V (2)	TTa 引脚上的输入电压 ⁽²⁾		4.0	
V _{IN} ⁽²⁾	воото	0	V _{DD} +4.0	
	任何其他引脚上的输入电压	Vss-0.3	4.0	
$ \Delta V_{DDx} $	不同供电引脚之间的电压差	-	50	
Vssx-Vss	不同接地引脚之间的电压差	-	50	mV

注:

- (1) 所有的电源(VDD, VDDA)和地(VSS, VSSA)引脚必须始终连接到外部限定范围内的供电电源上。
- (2) 如果 V_{IN} 在最大值范围内,I_{INJ(PIN)}不会超过它的极限。如果 V_{IN} 超过最大值,必须通过外部限制 I_{INJ(PIN)}的值,确保不超过其最大值。正向注入电流在当 V_{IN} 大于 V_{DD} 时出现,而反向注入电流在 V_{IN} 小于 V_{SS} 时出现。

5.2.2 最大静电特性

表23 静电放电(ESD)

符号	参数	条件	最大值	单位
V _{ESD(HBM)}	静电放电电压(人体模型)	T _A =+25°C	4500	
V _{ESD(CDM)}	静电放电电压(充电设备模型)	T _A =+25℃	2000	V

注: 样品由第三方测试机构测得,不在生产中测试。

5.2.3 静态栓锁

表24 静态栓锁

符号	参数	条件	类型	
LU	静态栓锁类	T _A =+25°C/105°C	class II A	

5.2.4 最大温度特性

表25 温度特性

符号	描述	数值	单位
T _{STG}	储存温度范围	−65~ +150	$^{\circ}\!\mathbb{C}$
TJ	最大结温度	150	$^{\circ}$

5.3通用工作条件下的测试

表26 通用工作条件

	7 1							
符号	参数	条件	最小值	最大值	单位			
FHCLK	内部 AHB 时钟频率	-	0	48				
fpclk	内部 APB 时钟频率	-	0	48	MHz			

符号	参数	条件	最小值	最大值	单位
V _{DD}	标准工作电压	-	2	3.6	V
V_{DDA}	模拟部分工作电压	V _{DDA} 不得小于 V _{DD}	2.4	3.6	>
	I/O 输入电压	Tc和 RSTI/O	-0.3	V _{DD} +0.3	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		TTa I/O	-0.3	V _{DDA} +0.3	\ /
V _{IN}		FT 和 FTf I/O	-0.3	5.5	V
		воото	0	5.5	

5.3.1 内嵌复位和电源控制模块特性测试

表 27 中给出的参数来自于表 26 通用工作条件总结的环境温度和电源电压条件下的测试结果。

符号 参数 最小值 典型值 最大值 单位 条件 下降沿(2) 1.87 V $V_{POR/PDR}{}^{(1)} \\$ 上电/掉电复位阈值 上升沿 1.92 V_{PDRhyst}(3) PDR 迟滞 50 mV $\mathsf{T}_{\mathsf{RSTTEMPO}^{(3)}}$ 复位持续时间 1.70 2.51 3.32 ms

表27 内嵌复位和电源控制模块特性

注:

- (1) PDR 检测器监控 V_{DD} 和 V_{DDA}(如果在选项字节中保持启用), POR 检测器仅监控 V_{DD}。
- (2) 产品特性由设计保证至最小 VPOR/PDR 值
- (3) 由设计保证,不在生产中测试。

5.3.2 内置参考电压特性测试

表 28 中给出的参数来自于表 26 通用工作条件总结的环境温度和电源电压条件下的测试结果。

表28 内置的参照电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{REFINT}	内置参照电压	-40°C < T _A < +105°C	1.19	1.20	1.23	V
t start	ADC_IN17 缓冲 器启动时间	-	-	-	10	μs
T _{S_vrefint}	当读出内部参照电 压时,ADC 的采 样时间	-	4	-	-	μs
ΔV _{REFINT}	内置参考电压扩展 到温度范围	V _{DDA} =3.3V	-	-	10	mV

5.3.3 功耗

功耗测试环境:

- (1) 执行 Dhrystone2.1,编译环境为 KeilV5 以及编译优化等级为 L0 条件下测试。
- (2) 所有的 I/O 引脚配配置成模拟输入,都连接到一个静态电平上 V_{DD}或 Vss(无负载)。
- (3) 除非特别说明,所有的外设都关闭。
- (4) Flash 等待周期的设置和 fhclk 的关系: 0~24MHz—0 个等待周期, 24~48MHz—1 个等待周期。
- (5) 大于 24MHz 时指令预取功能开启(提示:这位的设置必须在时钟设置和总线分频之前进行)。
- (6) 当外设开启时: fpclk=fhclk。

表29 程序在 Flash 执行,运行模式功耗

		f _{HCLK}	典型	直(1)	最大	值 ⁽¹⁾
参数	条件		$T_A=25^{\circ}C$, $V_{DD}=3.3V$		T _A =105℃,V _{DD} =3.6	
			I _{DDA} (µA)	I _{DD} (mA)	Idda(µA)	I _{DD} (mA)
		48MHz	105.69	10.0	125.76	10.39
	外部时钟(2),使能所有外设	24MHz	59.64	5.67	74.78	5.88
		8MHz	1.44	2.31	7.7	2.43
	外部时钟 ⁽²⁾ ,关闭所有外设	48MHz	105.73	6.94	125.99	7.18
		24MHz	59.7	4.17	75.09	4.29
\=.4=.4# \		8MHz	1.45	1.80	7.15	1.90
运行模式	内部时钟,使能所有外设	48MHz	161.22	9.6	187.84	10.04
		24MHz	115.39	5.24	137.09	5.45
		8MHz	57.97	1.88	72.8	1.97
	内部时钟,关闭所有外设	48MHz	161.54	6.51	187.58	6.82
		24MHz	115.50	3.66	136.98	3.85
		8MHz	58.0	1.33	72.45	1.40

注:

- (1) 基于综合评估的数据,除非另有说明,否则不在生产中测试。
- (2) 外部时钟为 8MHz, 当 fhclk>8MHz 时, 开启 PLL。

表30 程序在 SRAM 中执行,运行模式功耗

			典型	值(1)	最大值 ⁽¹⁾		
参数	条件	f _{HCLK}	T _A =25℃,	T_A =25°C, V_{DD} =3.3 V		V _{DD} =3.6V	
			I _{DDA} (µA)	I _{DD} (mA)	I _{DDA} (µA)	I _{DD} (mA)	
		48MHz	105.73	7.48	125.63	7.75	
	外部时钟(2),使能所有外设	24MHz	59.67	4.08	74.76	4.30	
		8MHz	1.44	1.8	7.20	1.88	
	外部时钟 ⁽²⁾ ,关闭所有外设	48MHz	105.78	4.40	125.98	4.60	
		24MHz	59.71	2.54	74.96	2.69	
上 仁 # -P		8MHz	1.45	1.27	7.11	1.35	
运行模式	内部时钟,使能所有外设	48MHz	161.43	7.06	187.25	7.39	
		24MHz	115.40	3.65	136.83	3.85	
		8MHz	57.99	1.37	72.45	1.43	
	内部时钟,关闭所有外设	48MHz	161.62	3.94	187.61	4.14	
		24MHz	115.49	2.07	137.02	2.23	
		8MHz	58.04	0.79	72.4	0.86	

注:

- (1) 由综合评估得出,不在生产中测试。
- (2) 外部时钟为 8MHz, 当 fHCLK>8MHz 时, 开启 PLL。

表31 程序在 SRAM 或 Flash 中执行,睡眠模式下功耗

		f _{HCLK}	典型	值(1)	最大值 ⁽¹⁾		
参数	条件		T _A =25℃,	T_A =25°C, V_{DD} =3.3 V		V _{DD} =3.6V	
			I _{DDA} (µA)	I _{DD} (mA)	I _{DDA} (µA)	I _{DD} (mA)	
		48MHz	105.77	5.41	125.88	5.54	
	外部时钟 ⁽²⁾ ,使能所有外设	24MHz	59.70	3.03	74.91	3.16	
		8MHz	1.45	1.42	7.12	1.50	
	外部时钟 ⁽²⁾ ,关闭所有外设	48MHz	105.86	2.0	125.9	2.13	
		24MHz	59.8	1.35	75.08	1.47	
吨吧提 +		8MHz	1.44	0.84	7.14	0.94	
睡眠模式	内部时钟,使能所有外设	48MHz	161.55	4.93	187.25	5.14	
		24MHz	115.48	2.60	136.87	2.72	
		8MHz	58.0	0.99	72.41	1.05	
	内部时钟,关闭所有外设	48MHz	161.71	1.52	187.85	1.69	
		24MHz	115.54	0.86	137.13	0.99	
		8MHz	58.0	0.37	72.35	0.46	

注:

- (1) 由综合评估得出,不在生产中测试。
- (2) 外部时钟为 8MHz, 当 f_{HCLK}>8MHz 时, 开启 PLL。

表32 停机、待机模式功耗

	条件		典型值 (T _A =25℃)				最大值 ^⑴ (T _A =105℃)	
参 数			V _{DD} =2.4 V		V _{DD} = 3.3V		V _{DD} =3.6 V	
			I _{DDA} (μ A)	I _{DD} (μΑ)	I _{DDA} (µA)	I _{DD} (μ A)	I _{DDA} (μ A)	I _{DD} (μ A)
停机		调压器处于运行模式,低速和 高速内部 RC 振荡器和高速振 荡器处于关闭状态	2.43	21.1	2.98	21.9	7.0	62.6
模式	V _{DDA} monitoring ON	调压器处于低功耗模式,低速 和高速内部 RC 振荡器和高速 振荡器处于关闭状态	2.43	6.47	2.98	7.42	7.0	44.9
待机		低速内部 RC 振荡器和独立看 门狗处于开启状态	2.62	2.42	3.33	3.72	6.63	22.2
模式		低速内部 RC 振荡器和独立看 门狗处于关闭状态	2.28	1.96	2.83	3.08	6.11	21.5
停机模式	V _{DDA} monitoring OFF	调压器处于低功耗模式,低速 和高速内部 RC 振荡器和高速 振荡器处于关闭状态	1.25	6.33	1.45	7.38	5.13	44.9
待机		低速内部 RC 振荡器和独立看 门狗处于开启状态	1.45	2.36	1.80	3.7	4.98	22.2
模式		低速内部 RC 振荡器和独立看 门狗处于关闭状态	1.10	1.93	1.31	3.05	4.44	21.5

注: 由综合评估得出,不在生产中测试。

5.3.4 外部时钟源特性

晶体谐振器产生的高速外部时钟(HXT osc)

有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

表33 HXT 4~32MHz 振荡器特性(1)

\$4.0.0 - 1.0.1 - 0.0.1 - 4/44/24 BB 14 1						
符号	参数	条件	最小值	典型值	最大值	单位
fosc_in	振荡器频率	-	4	8	32	MHz
R _F	反馈电阻	-	-	200	-	kΩ
ldd	HXT 电流消耗	$V_{DD} = 3.3 \ V,$ $R_m = 45 \ \Omega ,$ $C_L = 10 \ pF@8 \ MHz$	-	660	-	μ А
tsu(HXT)	启动时间	V _{DD} 是稳定的		1.7		ms

注:由设计保证,未经生产测试。

晶体谐振器产生的高速外部时钟(LXT osc)

有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

表34 LXT 振荡器特性(fLxT=32.768KHz)⁽¹⁾

符号	参数	条件	最小值	典型值	最大值	单位
I _{DD}	LXT 电流消耗	高驱动能力		1.5		μА
t _{SU(LXT)} (2)	启动时间	VDDIOx 稳定	1	2	1	S

注:

- (1) 由设计保证,不在生产中测试。
- (2) tsu(HXT)是启动时间,是从软件使能 LXT 开始测量,直至得到稳定的 32.768KHz 振荡这段时间。这个数值是使用一个标准的晶体谐振器测量得到的,它可能因晶体制造商的不同而变化较大。

5.3.5 内部时钟源特性

高速内部 (HIRC) RC 振荡器测试

表35 HIRC 振荡器特性

符号	参数	条件		最小值	典型值	最大值	单位
f _{HIRC}	频率	-		1	8	1	MHz
	Acchirc HIRC 振荡器的精度	I	V _{DD} =3.3V T _A =-25℃	-1	-	1	%
Acchirc		校准	V _{DD} =2-3.6V T _A =- 40~105°C	-5	-	5	%
tsu(HIRC)	HIRC 振荡器启动时间	V _{DD} =3.3V T _A =-40~105°C		-	-	2	μs
I _{DDA(HIRC)}	HIRC 振荡器功耗		-	-	60	-	μA

注:由综合评估得出,不在生产中测试。

表36 HIRC14 振荡器特性

符号	参数	条件		最小值	典型值	最大值	单位
f _{HIRC14}	频率	-		1	14	1	MHz
	Acchirc14 HIRC14 振荡器的精度	Н 1	V _{DD} =3.3V T _A =-25°C	-1	-	1	%
Acchirc14		校准	V _{DD} =2-3.6V T _A =- 40~105°C	-5	-	5	%
tsu(HIRC14)	HIRC14 振荡器启动时 间	V _{DD} =3.3V T _A =-40~105℃		-	-	2	μs
I _{DDA(HIRC14)}	HIRC14 振荡器功耗		-	-	72	-	μΑ

注: 由综合评估得出,不在生产中测试。

低速内部(LIRC) RC 振荡器测试

表37 LIRC 振荡器特性

符号	参数	最小值	典型值	最大值	单位
fLIRC	频率(V _{DD} =2-3.6V,T _A =-40~105℃)	30	40	50	KHz
tsu(LIRC)	LIRC 振荡器启动时间 (V _{DD} =3.3V,T _A =-40~105℃)	-	30	-	μs
I _{DD(LIRC)}	LIRC 振荡器功耗	-	0.5	-	μΑ

注:由综合评估得出,不在生产中测试。

5.3.6 低功耗模式唤醒时间

表38 唤醒时钟源参数

符号	参数	典型值	单位
twusleep0	从睡眠模式唤醒	4 SYSCLK cycles	
twustop0	从停机模式唤醒	3.1	μs
twustdby0	从待机模式唤醒	40	

注:唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

5.3.7 PLL 特性

表39 PLL 特性

<i>#</i> # P	خ بلاد	数值(1)			* *	
符号	参数	最小值	典型值	最大值	単位	
t	PLL 输入时钟	1	8	24	MHz	
f _{PLL_IN}	PLL 输入时钟占空比	40	-	60	%	
f _{PLL_OUT}	PLL 倍频输出时钟 (V _{DD} =3.3V,T _A =-40~105℃)	16	-	48	MHz	
t _{LOCK}	PLL 锁相时间	-	-	90	μs	

注: 由综合评估得出,不在生产中测试。

5.3.8 存储器特性

FLASH 存储器

表40 FLASH 存储器特性

	10		1.111.111.111			
符号	参数	条件	最小值	典型值	最大值	単位
t _{prog} 16 位编程时间	T _A =-40~105°C		17.9		11.6	
	10 1立细作工门门	V _{DD} =2.0~3.6V	-	17.9	-	μ S
*	五(4//内)按於时间	T _A =-40~105°C		1 56		m. 0
terase	页(1KB)擦除时间	V _{DD} =2.0~3.6V	-	1.56	-	ms
t _{ME}	整片擦除时间	T _A =25°C	-	6.4	-	ms

符号	参数	条件	最小值	典型值	最大值	单位
		V _{DD} =3.3V				
V_{prog}	编程电压	T _A =-40~105°C	2.0	3.3	3.6	V
t _{RET}	数据保存时间	T _A =55°C	20	-	-	years
N _{RW}	擦写周期	T _A =25°C	10K	-	-	cycles

注: 由综合评估得出,不在生产中测试。

5.3.9 I/O 端口特性

表41 **直流特性(T_A= -40℃-105℃,V_{DD}=2~3.6V)**

符号	参数	条件	最小值	典型值	最大值	单位
		TC 和 TTa I/O	-	-	0.3V _{DD} +0.1	
VIL	输入低电 平电压	FT 和 FTf I/O	-	-	0.476V _{DD} - 0.4	V
	1 电压	除 BOOT0 引脚外的所有 I/O 引脚	-	ı	0.3V _{DD}	
		TC 和 TTa I/O	0.447V _{DD} +0.402	-	-	
\/	输入高电	FT 和 FTf I/O	0.5V _{DD} +0.2	-	-	V
VIH	平电压	除 BOOT0 引脚外的所有 I/O 引脚	0.7V _{DD}	-	-	V
	施密特触	TC 和 TTa I/O	TC 和 TTa I/O			
V _{hys}	发器迟滞	FT和 FTf I/O		300		mV
		数字模式下 TC,FT 和 FTf I/O TTa V _{SS} ≪V _{IN} ≪V _{DDIOx}	-	-	±0.1	
I _{Ikg}	输入漏电	数字模式下 TTa V _{DDIOX} ≪V _{IN} ≪V _{DDA}	-	-	1	μА
	流	模拟模式下 TTa Vss≲Vin≤V _{DDA}	-	-	±0.1	
		FT和FTfI/O ⁽¹⁾ V _{DDIOx} ≪V _{IN} ≪5V	-	1	10	
R _{PU}	弱上拉等 效电阻	V _{IN} =V _{SS}	30	40	50	kΩ
R _{PD}	弱下拉等 效电阻	$V_{IN} = V_{DDIOx}$	30	40	50	kΩ

表42 交流特性(T_A=25℃)

		ALTA COMPANIA	1(1A-23 C)			
MODEx[1:0] 的配置	符号	参数	条件	最小值	最大值	单位
40 (00411-)	f _{max(IO)out}	最大频率	C _L =50 pF, V _{DD} =2.4~3.6V	-	2	MHz
10 (2MHz)	t _{f(IO)out}	输出高至低电平的 下降时间	C _L =50 pF, V _{DD} =2.4~3.6V	-	125	ns

		T	1			
MODEx[1:0] 的配置	符号	参数	条件	最小值	最大值	单位
	t _r (IO)out	输出低至高电平的 上升时间		-	125	
	f _{max(IO)out}	最大频率	C _L =50 pF, V _{DD} =2.4~3.6V	-	10	MHz
01 (10MHz)	$t_{f(IO)out}$	输出高至低电平的 下降时间	C _L =50 pF,	-	25	
	t _{r (IO)out}	输出低至高电平的 上升时间	V _{DD} =2.4~3.6V	-	25	ns
	f _{max(IO)out}	最大频率	C _L =30 pF, V _{DD} =2.7~3.6V	-	50	MHz
11 (50MHz)	t _{f(IO)out}	输出高至低电平的 下降时间	C _L =30 pF,	-	5	
	t _{r (IO)out}	输出低至高电平的 上升时间	V _{DD} =2.7~3.6V	-	5	ns
	f _{max(IO)out}	最大频率(3)	C _L =50pF,	-	2	MHz
FM+ 配置	t _{f(IO)out}	输出下降时间	V _{DDIOx}	-	34	
	$t_{r(IO)out}$	输出上升时间	=2.4~3.6V	-	34	ns

图11 输入输出交流特性定义

表43 输出驱动电流特性(T_A=25℃)

符号	参数	条件	最小值	最大值	单位
V _{OL}	I/O 引脚输出低电平电压	lliol-8 mA	-	0.4	
V _{OH}	I/O 引脚输出高电平电压	I _{IO} =8 mA V _{DDIOx} ≥2.7V	V _{DDIOx} -	-	V
V _{OL}	I/O 引脚输出低电平电压	I _{IO} =20 mA	1	1.3	
Vон	I/O 引脚输出高电平电压	V _{DDIOx} ≥2.7V	V _{DDIOx} -	-	V

5.3.10 NRST 引脚特性

NRST 引脚输入驱动采用 CMOS 工艺,它连接了一个永久性上拉电阻 R_{PU}。

表44 NRST 引脚特性(T_A= -40~105℃,V_{CC}=2~3.6V)

符号	参数	条件	最小值	典型 值	最大值	单 位
V _{IL(NRST)}	NRST 输入低电平电压	-	-	1	0.31V _{DD} +0.065	
V _{IH(NRST)}	NRST 输入高电平电压	-	0.446V _{DD} +0.405			V
V _{hys(NRST)}	NRST 施密特触发器电 压迟滞	-	-	300	-	mV
R _{PU}	弱上拉等效电阻	V _{IN} =V _{SS}	30	40	50	kΩ

5.3.11 通信接口

I2C 接口特性

● 标准模式 (Sm): 比特率高达 100kbit/s

● 快速模式 (Fm): 比特率高达 400 kbit/s

● 超快速模式 (Fm+): 比特率高达 1Mbit/s

表45 **I2C 接口特性(T_A=25℃,V_{DD}=3.3V)**

		标准I	2C	快速	I2C	超快证	東 I2C	
符号	参数	最小值	最 大 值	最小 值	最大 值	最小 值	最大 值	单 位
tw(SCLL)	SCL 时钟低时间	4.84	-	1.21	-	0.52	-	
$t_{w(\text{SCLH})}$	SCL 时钟高时间	5.09	-	1.14	-	0.46	-	μs
t _{su(SDA)}	SDA 建立时间	4460	-	860	1	321	-	
th(SDA)	SDA 数据保持时间	103	181	0	252	0	145	
$t_{r(SDA)}$ $t_{r(SCL)}$	SDA 和 SCL 上升时间	-	500	-	300	-	120	ns
t _{f(SDA)}	SDA 和 SCL 下降时间	-	9.86	1	8.12	-	4	
t _{h(STA)}	开始条件保持时间	4.96	-	1		0.33	-	
t _{su(STA)}	重复的开始条件建立时间	5.16	-	1.21	1	0.64	-	μs
t _{su(STO)}	停止条件建立时间	4.50	-	1.21	1	0.54	-	μs
tw(STO:STA)	停止条件至开始条件的时间 (总线空闲)	4.67	-	1.37	-	0.77	-	μs

图12 总线交流波形和测量电路

注: 测量点设置于 CMOS 电平: 0.3V_{DD} 和 0.7V_{DD}。

SPI 接口特性

表46 SPI 特性(T_A=25℃,V_{DD}=3.3V)

符号	参数	条件	最小值	最大值	单位
f _{SCK}	CDIH-协概交	主模式	-	18	N41.1-
1/t _{c(SCK)}	SPI 时钟频率	从模式	-	18	MHz
$t_{r(\text{SCK})}$ $t_{f(\text{SCK})}$	SPI时钟上升和下降时间	负载电容: C = 15pF	1	6	ns
t _{su(NSS)}	NSS 建立时间	从模式	223		ns
t _{h(NSS)}	NSS 保持时间	从模式	65		ns
t _{w(SCKH)}	SCK 高和低的时间	主模式,f _{PCLK} = 36MHz, 预分频系数=4	54	57	ns
t _{su(MI)}	**************************************	主模式	12		
t _{su(SI)}	数据输入建立时间	从模式	20		ns
t _{h(MI)}	**************************************	主模式	34		
th(SI)	数据输入保持时间	从模式	22		ns
t _{a(SO)}	数据输出访问时间	从模式,f _{PCLK} = 20MHz		17	ns
t _{dis(SO)}	数据输出禁止时间	从模式		18	ns
t _{v(SO)}	数据输出有效时间	从模式(使能边沿之后)		16	ns
$t_{v(MO)}$	数据输出有效时间	主模式(使能边沿之后)		6	ns
th(SO)	数据输出保持时间	从模式(使能边沿之后)	11.5		ns

符号	参数	条件	最小值	最大值	单位
t _{h(MO)}		主模式(使能边沿之后)	2		

图13 SPI 时序图 — 从模式和 CPHA=0

图14 SPI 时序图 — 从模式和 CPHA=1

注: 测量点设置于 CMOS 电平: 0.3V_{DD} 和 0.7V_{DD}。

图15 SPI 时序图 — 主模式

注:测量点设置于 CMOS 电平: 0.3V_{DD} 和 0.7V_{DD}。

5.3.12 12 位 ADC 特性

表47 **12-bit ADC 特性**

农47 12-bit ADC 衍注						
符号	参数	条件	最小值	典型值	最大值	单位
V_{DDA}	供电电压	-	2.4	-	3.6	V
fadc	ADC 频率	-	0.6	1	14	MHz
C _{ADC}	内部采样 和保持电容	-	-	8	-	pF
Radc	采样电阻	-	-	1	1000	Ω
ts	采样时间	f _{ADC} = 14 MHz	0.107	1	17.1	μs
TCONV	采样和转换 时间	f _{ADC} = 14 MHz, 12-bit 转换	1	-	18	μs

表48 **12-bit ADC 精度**

公司							
符号	参数	条件	典型值	最大值	单位		
E _T	综合误差	f _{PCLK} =48M,	3.4	4.0			
Eo	偏移误差	f _{ADC} =14M,	2.1	3			
[E _G]	增益误差	V _{DDA} =2.4V-3.6V	0.6	1.3	LSB		
E _D	微分线性误差	T _A =-40°C~105°C	0.65	1.3			
E _L	积分线性误差		1.32	1.65			

6 封装信息

6.1**LQFP64** 封装信息

图16 LQFP64 封装图

注:图不是按比例绘制。

表49 **LQFP64** 封装数据

S/N	SYM	DIMENSIONS	REMARKS
1	А	MAX.1.600	OVERALL HEIGHT
2	A2	1.400±0.050	PKG THICKNESS
3	D	12.000±0.200	LEAD TIP TO TIP
4	D1	10.000±0.100	PKG LENGTH
5	E	12.000±0.200	LEAD TIP TO TIP
6	E1	10.000±0.100	PKG WIDTH
7	L	0.600±0.150	FOOT LENGTH
8	L1	1.000 REF.	LEAD LENGTH
9	е	0.500 BASE	LEAD PITCH
10	H(REF.)	(7.500)	GUM.LEAD PITCH
11	b	0.220±0.050	LEAD WIDTH

注: 以英寸为单位的值从 mm 转换为 4 位小数。

图17 LQFP64 焊接 Layout 建议

注:尺寸单位为毫米。

图18 LQFP64 打码规范

6.2**LQFP48** 封装信息

图19 LQFP48 封装图

注:图不是按比例绘制。

表50 **LQFP48** 封装数据

S/N	SYM	DIMENSIONS	REMARKS
1	А	MAX.1.60	OVERALL HEIGHT
2	A2	1.40±0.05	PKG THICKNESS
3	D	9.00±0.20	LEAD TIP TO TIP
4	D1	7.00±0.10	PKG LENGTH
5	E	9.00±0.20	LEAD TIP TO TIP
6	E1	7.00±0.10	PKG WIDTH
7	L	0.60±0.15	FOOT LENGTH
8	L1	1.00 REF.	LEAD LENGTH
9	е	0.50 BASE	LEAD PITCH
10	H(REF.)	(5.50)	GUM.LEAD PITCH
11	b	0.22±0.050	LEAD WIDTH

注: 以英寸为单位的值从 mm 转换为 4 位小数。

图20 LQFP48 焊接 Layout 建议

注:尺寸单位为毫米。

图21 LQFP48 打码规范

6.3**LQFP32** 封装信息

图22 LQFP32 封装图

注:图不是按比例绘制。

表51 **LQFP32** 封装数据

S/N	SYM	DIMENSIONS	REMARKS
1	А	MAX.1.6	OVERALL HEIGHT
2	A2	1.40±0.05	PKG THICKNESS
3	D	9.00±0.20	LEAD TIP TO TIP
4	D1	7.00±0.10	PKG LENGTH
5	E	9.00±0.20	LEAD TIP TO TIP
6	E1	7.00±0.10	PKG WIDTH
7	L	0.60±0.15	FOOT LENGTH
8	L1	1.00 REF.	LEAD LENGTH
9	е	0.80 BASE	LEAD PITCH
10	H(REF.)	(5.60)	GUM.LEAD PITCH
11	b	0.370±0.080/0.070	LEAD WIDTH

注: 以英寸为单位的值从 mm 转换为 4 位小数。

图23 LQFP32 焊接 Layout 建议

注:尺寸单位为毫米。

图24 LQFP32 打码规范

6.4 QFN32 封装信息

图25 QFN32 封装图

表52 **QFN32** 封装数据

	V				
SYMBOL	MILLIMETER				
	MIN	NOM	MAX		
Α	0.5	0.55	0.6		

SYMBOL	MILLIMETER				
A1	0	0 0.02 0.05			
b	0.19	0.24	0.29		
D	4.9	4.9 5 5.			
D2	3.4 3.5 3.6				
е	0.50BSC				
Nd		3.50BSC			
E	4.9	5	5.1		
E2	3.4 3.5 3.6				
Ne	3.50BSC				
L	0.35 0.4 0.45				

图26 LQFP32 焊接 Layout 建议

图27 QFN32 打码规范

7 订货信息

空白=托盘式包装

表53 订货信息列表

订货信息列表						
订货编码	FLASH(KB)	SRAM(KB)	封装	SPQ	温度范围	
APM32F030K6U6-R	32	4	QFN32	5000	工业级 -40℃~85℃	
APM32F030K6U6	32	4	QFN32	4900	工业级 -40℃~85℃	
APM32F030K6T6-R	32	4	LQFP32	2000	工业级 -40℃~85℃	
APM32F030K6T6	32	4	LQFP32	2500	工业级 -40℃~85℃	
APM32F030K8T6-R	64	8	LQFP32	2000	工业级 -40℃~85℃	
APM32F030K8T6	64	8	LQFP32	2500	工业级 -40℃~85℃	
APM32F030C6T6-R	32	4	LQFP48	2000	工业级 -40℃~85℃	
APM32F030C6T6	32	4	LQFP48	2500	工业级 -40℃~85℃	
APM32F030C8T6-R	64	8	LQFP48	2000	工业级 -40℃~85℃	
APM32F030C8T6	64	8	LQFP48	2500	工业级 -40℃~85℃	
APM32F030R8T6-R	64	8	LQFP64	1000	工业级 -40℃~85℃	
APM32F030R8T6	64	8	LQFP64	1600	工业级 -40℃~85℃	

注:SPQ=最小包装数量

8 包装信息

8.1带装包装

图28 带状包装规格图

Quadrant Assignments for PIN1 Orientation in Tape

表54 带状包装参数规格表

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	A0 (mm)	B0 (mm)	K0 (mm)	W (mm)	Pin1 Quadrant
APM32F030R8T6	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32F030C6T6	LQFP	48	2000	330	9.3	9.3	2.2	16	Q1
APM32F030C8T6	LQFP	48	2000	330	9.3	9.3	2.2	16	Q1
APM32F030K6T6	LQFP	32	2000	330	9.3	9.3	2.2	16	Q1
APM32F030K8T6	LQFP	32	2000	330	9.3	9.3	2.2	16	Q1
APM32F030K6U6	QFN	32	5000	330	5.3	5.3	0.8	12	Q1

8.2托盘包装

图29 托盘包装示意图

Tray Dimensions

表55 托盘包装参数规格表

Device	Packag e Type	Pins	SPQ	X- Dimension (mm)	Y- Dimension (mm)	X- Pitch (mm)	Y- Pitch (mm)	Tray Lengt h (mm)	Tray Width (mm)
APM32F030R8T6	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32F030C6T6	LQFP	48	2500	9.7	9.7	12.2	12.6	322.6	135.9
APM32F030C8T6	LQFP	48	2500	9.7	9.7	12.2	12.6	322.6	135.9
APM32F030K6T6	LQFP	32	2500	9.7	9.7	12.2	12.6	322.6	135.9
APM32F030K8T6	LQFP	32	2500	9.7	9.7	12.2	12.6	322.6	135.9
APM32F030K6U6	QFN	32	4900	5.2	5.2	8.7	9.0	322.6	135.9

9 常用功能模块命名

表56 常用功能模块命名

常用功能模块命名					
中文描述	简称				
复位管理单元	RMU				
时钟管理单元	CMU				
复位和时钟管理单元	RCM				
外部中断	EINT				
通用 IO	GPIO				
复用 IO	AFIO				
唤醒控制器	WUPT				
蜂鸣器	BUZZER				
独立看门狗定时器	IWDT				
窗口看门狗定时器	WWDT				
定时器	TMR				
CRC 控制器	CRC				
电源管理单元	PMU				
DMA 控制器	DMA				
模拟数字转换器	ADC				
实时时钟	RTC				
外部存储控制器	EMMC				
控制器局域网络	CAN				
I2C 接口	I2C				
串行外设接口	SPI				
通用异步收发器	UART				
通用异步同步收发器	USART				
闪存接口控制单元	FMC				

10 修订历史

表58 文件修订历史

日期	修订	变化
2020.07.1	V1.0.0	新建
2020.07.06	V1.0.1	修改了封面格式,目录格式
2020.9.9	V1.1	(1) 修改字体 (2) 修改"订货信息"*(第7章)中的"订货信息命名规则",在"订货信息列表"表格中修改"订货编码"、增加"最小包装数" (3) 修改"APM32F030x6/x8 引脚功能描述"表格中的错误 (4) 修改"封装信息"(第6章)中的打码规范