Generalized full matching

Fredrik Sävje¹ Michael Higgins² Jasjeet Sekhon¹

¹Departments of Political Science and Statistics, UC Berkeley

²Department of Statistics, Kansas State University

July 31, 2016 JSM

Causal inference in large samples

- Massive data sets are great. We can, for example, investigate:
 - Very small, but relevant, treatment effects
 - Conditional effects at a fine-grained level

 However, "big data" does not solve the fundamental problem of causal inference

- Matching:
 - Covariate balance is not a function of the sample size
 - ⇒ We need matching methods in large samples
 - ⇒ Also needed for complicated designs: multiple treatment groups; heterogenous treatment effects by matched group
 - \Rightarrow Can be used for post-stratification because many pipelines do not allow for blocking

What is the problem?

Matching problems are NP-Hard in the general case

- Simplifications are often needed even in smallish samples:
 - Limit the scope to certain designs.
 - Impose simplifying constraints.
 - Use heuristic algorithms.

Fast methods ≠ good methods.

Can we break this trade-off?

Inspiration from two extremes

- Fast method: Greedy NN-matching without replacement.
 - Sequentially matches each treated unit to its nearest unmatched control to form pairs.

- Well-performing method: Optimal full matching.
 - Finds the **best** matching subject to **only** the design constraints.

What is generalized full matching (GFM)?

GFM extends full matching to a more general setting.

- In a study with two treatment conditions, a full matching satisfies:
 - 1 Each unit must be assigned to a matched group.
 - 2 Each group must contain at least one treated and one control.*
- In a study with k treatment conditions, a GFM satisfies:
 - 1 Each unit must be assigned to a matched group.
 - **2** Each group must contain at least τ_i units for each treatment $i \in \{1, \dots, k\}$.
 - **3** Each group must contain at least τ_A units in total.

The GFM algorithm

- Minimizes the maximum within-group dissimilarity subject to the design constraints.
- Builds on an idea from Higgins, Sävje & Sekhon (2016):
 - Simplify partitioning problems by pruning irrelevant information.
- An overview of the procedure:
 - 1 Construct a graph that **only** encodes the constraints and relevant similarities.
 - 2 Pick units that are evenly spaced in the graph ("seeds").
 - 3 Grow the matching from the seeds.

Simulation: Run time

7 / 12

Simulation: Memory

Generalized Full Matching

The method minimizes the pair-wise Maximum Within-Block Distance: λ

- Any valid distance metric (must satisfy the triangle inequality)
- Ensures good covariate balance by design
- Works for any number of treatments and any minimum number of observations per block
- It is fast: $O(n \log n)$ expected time
- It is memory efficient: O(n) storage
- Approximately optimal: $\leq 4 \times \lambda$
- Fast algorithm:
 - NNG plus $O(d^0kn)$ time and $O(d^0kn)$ space
 - K-d trees NN: $O(2^dkn \ {\rm log}n)$ expected time, $O(2^dkn^2)$ worst time, and O(kn) storage
 - · Compare with bipartite, network flow methods:
 - e.g., Derigs: $O(n^3 \log n + dn^2)$ worst time and $O(d^0n^2)$ space

Simulation: Performance

Table: Mean and maximum within-group distances.

	1,000	units	10,000	10,000 units		
	FM	GFM	FM	GFM		
Mean TC-distance	1.000	0.999	1.000	1.000		
Max distance	1.000	1.002	1.000	1.001		

Notes: Based on 2,500 simulation rounds.

- 1 Construct a constraint compatible nearest neighbor digraph.
 - The smallest graph so that each neighborhood satisfies the size constraints.
- 2 Pick a maximal set of vertices ("seeds") with non-overlapping neighborhoods.
- **3** Grow the matched groups from the seeds:
 - a Assign unique labels to the seeds.
 - **b** Assign each seed's label to its neighbors.
 - c Unassigned units are assigned a label in its neighborhood.

- 1 Construct a constraint compatible nearest neighbor digraph.
 - The smallest graph so that each neighborhood satisfies the size constraints.
- 2 Pick a maximal set of vertices ("seeds") with non-overlapping neighborhoods.
- 3 Grow the matched groups from the seeds:
 - a Assign unique labels to the seeds.
 - **b** Assign each seed's label to its neighbors.
 - c Unassigned units are assigned a label in its neighborhood.

- **1** Construct a constraint compatible nearest neighbor digraph.
 - The smallest graph so that each neighborhood satisfies the size constraints.
- 2 Pick a maximal set of vertices ("seeds") with non-overlapping neighborhoods.
- 3 Grow the matched groups from the seeds:
 - a Assign unique labels to the seeds.
 - **b** Assign each seed's label to its neighbors.
 - c Unassigned units are assigned a label in its neighborhood.

- 1 Construct a constraint compatible nearest neighbor digraph.
 - The smallest graph so that each neighborhood satisfies the size constraints.
- 2 Pick a maximal set of vertices ("seeds") with non-overlapping neighborhoods.
- 3 Grow the matched groups from the seeds:
 - a Assign unique labels to the seeds.
 - **b** Assign each seed's label to its neighbors.
 - c Unassigned units are assigned a label in its neighborhood.

- 1 Construct a constraint compatible nearest neighbor digraph.
 - The smallest graph so that each neighborhood satisfies the size constraints.
- 2 Pick a maximal set of vertices ("seeds") with non-overlapping neighborhoods.
- 3 Grow the matched groups from the seeds:
 - a Assign unique labels to the seeds.
 - **b** Assign each seed's label to its neighbors.
 - c Unassigned units are assigned a label in its neighborhood.

- 1 Construct a constraint compatible nearest neighbor digraph.
 - The smallest graph so that each neighborhood satisfies the size constraints.
- 2 Pick a maximal set of vertices ("seeds") with non-overlapping neighborhoods.
- 3 Grow the matched groups from the seeds:
 - a Assign unique labels to the seeds.
 - **b** Assign each seed's label to its neighbors.
 - c Unassigned units are assigned a label in its neighborhood.

- 1 Construct a constraint compatible nearest neighbor digraph.
 - The smallest graph so that each neighborhood satisfies the size constraints.
- 2 Pick a maximal set of vertices ("seeds") with non-overlapping neighborhoods.
- 3 Grow the matched groups from the seeds:
 - a Assign unique labels to the seeds.
 - **b** Assign each seed's label to its neighbors.
 - c Unassigned units are assigned a label in its neighborhood.

- 1 Construct a constraint compatible nearest neighbor digraph.
 - The smallest graph so that each neighborhood satisfies the size constraints.
- 2 Pick a maximal set of vertices ("seeds") with non-overlapping neighborhoods.
- 3 Grow the matched groups from the seeds:
 - a Assign unique labels to the seeds.
 - **b** Assign each seed's label to its neighbors.
 - c Unassigned units are assigned a label in its neighborhood.

- 1 Construct a constraint compatible nearest neighbor digraph.
 - The smallest graph so that each neighborhood satisfies the size constraints.
- 2 Pick a maximal set of vertices ("seeds") with non-overlapping neighborhoods.
- 3 Grow the matched groups from the seeds:
 - a Assign unique labels to the seeds.
 - **b** Assign each seed's label to its neighbors.
 - c Unassigned units are assigned a label in its neighborhood.

Take away

1 Data alone does not solve the causal inference problem.

2 Existing matching methods do not work well in large samples and with complicated designs

The GFM algorithm makes well-performing matchings possible in massive samples.

4 The key trick is not to optimize a loss function directly, but to solve a bottleneck subgraph problem and to prove that it bounds the loss function

Thanks!

Extensions

- · Simple, ordinary caliper.
- · Complex caliper.
 - E.g., use caliper c_1 to ensure constraints are satisfied, but use $c_2 < c_1$ to match remaining units.
- Allow certain units to be discarded (similar to with replacement matching).
 - · Cuts the optimality bound in half.
- Even more complicated design constraints:
 - Anything that can be encoded in a directed graph.
 - E.g., if $x_1 \ge 0$ match with two controls, if $x_1 < 0$ match with one.

Appendix: What is matching? •Back

- Matching is a non-parametric method that creates balanced samples:
 - Construct matched groups (MG) of similar units.
 - Re-weight units so that each treatment condition is equally "big" in each MG.
 - ⇒ As the MGs are approximately balanced, so will the re-weighted sample.

Appendix: Matching as optimization

Objective function

- Three properties of a good matching method:
 - Constructs matched groups with units that are similar to each other.
 - Groups conform to a desired structure (e.g., one unit of each treatment).
 - There is a way to construct the groups.

Algorithm

Constraints

Appendix: Hansen (2004) Pack

- Full matching does not optimally solve the variance/bias trade-off.
 - It sometimes leads to too much weight variation ⇒ high variance.
- Useful heuristic: bound the weights by limiting the treated/control-ratio.
 - Similar to increasing the size constraints in GFM.
- However:
 - Optimality depends on the DGP.
 - Global tuning, cannot be controlled locally.

Appendix: Hansen (2004) Pack

- Full matching does not optimally solve the variance/bias trade-off.
 - It sometimes leads to too much weight variation ⇒ high variance.
- Useful heuristic: bound the weights by limiting the treated/control-ratio.
 - Similar to increasing the size constraints in GFM.
- However:
 - Optimality depends on the DGP.
 - Global tuning, cannot be controlled locally.

Full matching with 1:3 ratio restriction

Without replacement

With replacement

1:k-matching

Full matching

Appendix: Simulation setting Runtime Memory

- 2D uniform covariates: $x_1, x_2 \sim \mathcal{U}(-1, 1)$. Euclidean distances.
- Propensity score: $\Pr(t = 1 | x_1, x_2) = \text{logistic } \left[\frac{(x_1 + 1)^2 + (x_2 + 1)^2 4}{2} \right].$
- Outcome: $y|x_1, x_2 \sim (x_1 1)^2 + (x_2 1)^2 + \{\text{standard normal}\}.$

: Propensity score

: Outcome CEF

Appendix: Runtime

Table: Runtime in minutes by sample size.

	1K	10K	20K	40K	100K	1M	10M	100M
FM	0.026	0.727	3.073	13.544				
GFM	0.002	0.002	0.002	0.003	0.007	0.075	1.023	14.113

Notes: Based on 100 simulation rounds. K = thousands, M = millions.

Appendix: Memory Pack

Table: Memory use in gigabytes by sample size.

	1K	10K	20K	40K	100K	1M	10M	100M
FM	0.094	2.932	11.685	46.588				
GFM	0.028	0.029	0.029	0.032	0.039	0.168	1.671	16.543

Notes: Based on 100 simulation rounds. K = thousands, M = millions.

Appendix: Other aggregated distances

Table: Mean and maximum within-group distances.

	1,000	units	10,000	10,000 units		
	FM	GFM	FM	GFM		
Mean TC-distance	1.000	0.999	1.000	1.000		
Mean distance	1.000	0.987	1.000	0.987		
Max TC-distance	1.000	1.013	1.000	1.009		
Max distance	1.000	1.002	1.000	1.001		

Notes: Based on 2,500 simulation rounds.

Appendix: Covariate balance

Table: Covariate balance for No Matching (NM), FM and GFM.

	1,000 units			10,000 units				
	NM	FM	GFM	NM	FM	GFM		
x_1	53.08	1.00	0.72	498.90	1.00	0.71		
x_2	52.56	1.00	0.72	495.90	1.00	0.70		
x_{1}^{2}	8.97	1.00	0.81	78.72	2 1.00	0.77		
x_{2}^{2}	8.51	1.00	0.81	79.74	1.00	0.76		
x_1x_2	8.02	1.00	0.89	60.08	3 1.00	0.91		

Notes: Based on 2,500 simulation rounds. Normalized by FM.

Appendix: Bias and SE PBack

Table: Bias and standard error for No Matching (NM), FM and GFM.

	1	1,000 units			10,000 units			
	NM	FM	GFM	-	NM	FM	GFM	
Normalized Bias	80.23	1.000	0.737		6296.50	1.000	1.268	
Normalized SE	1.48	1.000	1.027		1.43	1.000	1.041	
Bias / SE	8.83	0.163	0.117		28.68	0.006	0.008	

Notes: Based on 2,500 simulation rounds. First two rows are normalized by FM.

The Worst Case

The Worst Case

The Worst Case

The Worst Case

The Worst Case

 λ : optimal solution.

We can avoid the worst case by picking seeds more carefully.

The Worst Case

 λ : optimal solution.

We can avoid the worst case by picking seeds more carefully.