Stat 571B Experimental Design

Topic 1: Introduction to Experimental Design

Prof. Lingling An University of Arizona

Outline

- Syllabus
 - Goals
 - Class policies
 - Software & D2L
- Introduction to experimental design
 - Why do experiments?
 - Strategy
 - Issues in experimental design

Goals

- Learn how to plan, design and conduct experiments efficiently and effectively, and analyze the resulting data to obtain objective conclusions.
- Both design and statistical analysis issues will be discussed.
- Students will be expected to utilize standard statistical software packages for computational purposes.

Class policies

- Homework Assignments
 - generally one every two weeks
 - statistics is something you do
 - this should be individual work
 - late work policy
 - online students: dropbox in D2L
 - On-campus student: hardcopy
- Exams: one in-class midterm exam and one final exam.
 - online students: find a proctor at your place

Class policies

One project:

- each team consists of 2 students.
- the report will be due the last day of class
- presentation (15~20 min) will be scheduled the last week of class
- online students: recording w/ follow-up calls or skype presentation individually

Class policies

Grades

- 25% Midterm Exam
- 25% Final Exam
- 35% Homework
- 15% Project

A: 90 - 100

B: 80 -89

C: 70 -79

D: 60 -69

E: 0 - 59

Software

- SAS -what course is designed around
 - CDs for PC available from UA Bookstore
 - Free version:

http://www.sas.com/en_us/software/university-edition.html

- Computer labs:
 - ECE229, Shantz 338
 - http://www.oscr.arizona.edu/locations/computing_labs

D2L class site

- Syllabus
 - Contact information
 - Useful websites for the software
 - Textbook: Design and Analysis of Experiment (8th edition, by Montgomery)
- Lecture notes
- Homework assignments & Exam materials
- Data sets & SAS files
- Announcement, e.g., lab time

Are you ready for this class?

- Background: a good introductory course on Statistics that covers
 - probability distributions
 - sampling distributions
 - hypothesis testing/confidence interval
 - ANOVA
 - linear regression

Topics to cover

- Overview and Basic Principles (Chaps 1-2)
- Simple Designs and Analysis of Variance (Chap 3)
- Block Designs, Latin Squares and Related Designs (Chap 4)
- Full Factorial Designs (Chap 5)
- 2-level Full Factorial and Fractional Factorial Designs (Chaps 6-8)
- Response surface methods and designs (an overview, part of Chap 11)
- Designs with Random Factors, Nested Designs, and split-plot Designs (Chaps 13-14)

Experimental Design

- Experimental design is the part of statistics that happens before you carry out an experiment
- Proper planning can save many headaches
- You should design your experiments with a particular statistical test in mind

Why do experiments?

- Contrast: observational study vs. experiments
- Example:
 - Observational studies show a positive association between ice cream sales and levels of violent crime
 - What does this mean?

Alternative explanation

Why do experiments? -2

- Observational studies are prone to confounding variables:
 - Variables that mask or distort the association between measured variables in a study
 - Example: hot weather
- In an experiment, you can use random assignments of treatments to individuals to avoid confounding variables

Why do experiments? -3

- To determine the cause(s) of variation in the response
- To find conditions under which the optimal (maximum or minimum) response is achieved
- To compare responses at different levels of controllable variables
- To develop a model for predicting responses

History of Design of Experiments

- The agricultural origins, 1908 1940s
 - W.S. Gossett and the *t*-test (1908)
 - R. A. Fisher & his co-workers
 - Profound impact on agricultural science
 - Factorial designs, ANOVA
- The first industrial era, 1951 late 1970s
 - Box & Wilson, response surfaces
 - Process modeling and optimization
 - Applications in the chemical & process industries
- The second industrial era, late 1970s 1990
 - Quality improvement and variation deduction initiatives in many companies
 - Taguchi and robust parameter design, process robustness

R. A. Fisher (1890 – 1962)

George E. P. Box

History -2

- The modern era, beginning circa 1990
 - Popular outside statistics, and an indispensable tool in many scientific/engineering endeavors
 - New challenges:
 - Large and complex experiments, e.g. screening design in pharmaceutical industry, experimental design in biotechnology
 - Computer experiments: efficient ways to model complex systems based on computer simulation

• ..

A Systematic Approach to Experimentation

- 1. State objectives.
- 2. Choose responses.
 - What to measure? How to measure? How good is the measurement system?
- 3. Choose factors and levels
 - Flow chart and cause-and-effect diagram.
 - Factor experimental range is crucial for success
- 4. Choose experimental plan.

A Systematic Approach to Experimentation -2

- 5. Conduct the experiment.
- 6. Analyze the data
- 7. Conclusion and recommendation.
 - iterative procedure
 - confirmation experiments/follow-up experiments

Issues in Experimental Design

- Eliminate bias
 - Use a simultaneous control group
 - 2. (Randomization)
 - 3. Blinding

Three principles

- Reduce sampling error
- 1. (Replication
- 2. Balance
- 3. Blocking
- Calculate sample size

Issues in Experimental Design

- Eliminate bias
 - 1. Use a simultaneous control group
 - 2. Randomization
 - 3. Blinding
- Reduce sampling error
 - 1. Replication
 - 2. Balance
 - 3. Blocking
- Calculate sample size

Control Group

 A control group is a group of subjects left untreated for the treatment of interest but otherwise experiencing the same conditions as the treated subjects

Example: one group of patients is given an placebo

The Placebo Effect

- Patients treated with placebos, including sugar pills, often report improvement
 - Example: up to 40% of patients with chronic back pain report improvement when treated with a placebo
 - Even "sham surgeries" can have a positive effect
- This is why you need a control group!

Randomization

 Randomization is the random assignment of treatments to units in an experimental study

 Breaks the association between potential confounding variables and the explanatory variables

Experimental units

Treatments

Without randomization, the confounding variable **differs** among treatments

Treatments

With randomization, the confounding variable does not differ among treatments

Blinding

- Blinding is the concealment of information from the participants and/or researchers about which subjects are receiving which treatments
 - Single blind: subjects are unaware of treatments
 - Double blind: subjects and researchers are unaware of treatments

Blinding -2

- Example: testing heart medication
 - Two treatments: drug and placebo
- Single blind: the patients don't know which group they are in, but the doctors do
- Double blind: neither the patients nor the doctors administering the drug know which group the patients are in
 - The key that identifies the subjects and which group they belonged to is kept by a third party and not given to the doctors until the study is over.

Issues in Experimental Design

- Eliminate bias
 - 1. Use a simultaneous control group
 - 2. Randomization
 - 3. Blinding
- Reduce sampling error
 - 1. Replication
 - 2. Balance
 - 3. Blocking
- Calculate sample size

Replication

 Experimental unit: the individual unit to which treatments are assigned

2 Exprt. **Units** Pseudoreplication 2 Exprt. **Units** Tank 2 Tank 1 8 Exprt. **Units** All separate tanks

Experiment 1

Experiment 2

Experiment 3

Why is pseudoreplication bad?

Experiment 2

- problem with confounding and replication!
- Imagine that something strange happened, by chance, to tank 2 but not to tank 1
- Example: light burns out
- All four lizards in tank 2 would be smaller
- You might then think that the difference was due to the treatment, but it's actually just random chance

Replication vs. repeated measurements

- Replication is the repetition of an experimental condition so that the variability associated with the phenomenon can be estimated
 - Imagine you flip a coin and it comes up heads.
 - You ask a colleague to look at it and call out the result. Then another colleague is asked to observe the coin and state which side came up. This is a repeated measure.
 - A true replication is accomplished only by reflipping the coin.

Why is replication good?

Consider the formula for standard error of the mean:

$$SE_{\bar{Y}} = \frac{S}{\sqrt{n}}$$

Larger $n \longrightarrow Smaller SE$

Balance

 In a balanced experimental design, all treatments have equal sample size

Balance -2

- In a balanced experimental design, all treatments have equal sample size
- This maximizes power
- Also makes tests more robust to violating assumptions

Blocking

- Blocking is the grouping of experimental units that have similar properties
- Within each block, treatments are randomly assigned to experimental units
- Randomized block design

Randomized Block Design

Randomized Block Design

Example: cattle tanks in a field

What good is blocking?

- Blocking allows you to remove extraneous variation from the data
- Like replicating the whole experiment multiple times, once in each block

When need consider blocking, when need consider randomization?

- Nuisance factors are not our interest but they do affect the response
- For the nuisance factors
 - Block what you can control
 - Randomize what you cannot control

Issues in Experimental Design

- Eliminate bias
 - 1. Use a simultaneous control group
 - 2. Randomization
 - 3. Blinding
- Reduce sampling error
 - 1. Replication
 - 2. Balance
 - 3. Blocking
- Calculate sample size

Sample size calculation

- Before carrying out an experiment you must choose a sample size
- Too small: no chance to detect treatment effect
- Too large: too expensive

Sample size calculation – plan for precision

Example:

- Assume that the standard deviation of exam scores for a class is 10. We want to compare scores between two lab sections.
- How many exams do we need to mark to obtain a confidence limit for the difference in mean exam scores between two sections that has a width (precision) of 5?

Using confidence interval approach

Sample size calculation - plan for power

Example:

- Assume that the standard deviation of exam scores for a class is 10. We want to compare scores between two lab sections.
- How many exams do we need to mark to have sufficient power (80%) to detect a mean difference of 10 points between the sections?

Using power approach => type II error

Illustration of Types of error

Last slide

• Read Sections 1.1 - 1.6

