Avito BI contest

Василий Рубцов

25 февраля 2017

Метрика f1score

	1	0
	predicted	predicted
1 actual	TP	FN
0 actual	FP	TN

Таблица Confusion matrix

${\it Meтрикa\ f1score}$

	1	0
	predicted	predicted
1 actual	TP	FN
0 actual	FP	TN

Таблица Confusion matrix

$$\mathrm{precision} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}, \quad \mathrm{recall} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$$

Метрика f1score

	1	0
	predicted	predicted
1 actual	TP	FN
0 actual	FP	TN

Таблица Confusion matrix

$$\begin{split} & \operatorname{precision} = \frac{TP}{TP + FP}, \quad \operatorname{recall} = \frac{TP}{TP + FN} \\ & F_1 = \frac{2}{\frac{1}{\operatorname{recall}} + \frac{1}{\operatorname{precision}}} = \frac{2TP}{2TP + FN + FP} \end{split}$$

Метрика f1score

	1	0
	predicted	predicted
1 actual	TP	FN
0 actual	FP	TN

Таблица Confusion matrix

Пусть TP, TN, FP, FN будут обозначать соответсвующие доли от всей выборки.

$$\begin{split} & \operatorname{precision} = \frac{TP}{TP + FP}, \quad \operatorname{recall} = \frac{TP}{TP + FN} \\ & F_1 = \frac{2}{\frac{1}{\operatorname{recall}} + \frac{1}{\operatorname{precision}}} = \frac{2TP}{2TP + FN + FP} \end{split}$$

Метрика f1score

	1	0
	predicted	predicted
1 actual	TP	FN
0 actual	FP	TN

Таблица Confusion matrix

$$\begin{split} & \operatorname{precision} = \frac{TP}{TP + FP}, \quad \operatorname{recall} = \frac{TP}{TP + FN} \\ & F_1 = \frac{2}{\frac{1}{\operatorname{recall}} + \frac{1}{\operatorname{precision}}} = \frac{2TP}{2TP + FN + FP} \end{split}$$

Пусть TP, TN, FP, FN будут обозначать соответсвующие доли от всей выборки. Если пометить все объекты единицей:

$$F_1 = \frac{2TP}{2TP + FN + 0}, \quad TP + FP = 1$$

Метрика f1score

	1	0
	predicted	predicted
1 actual	TP	FN
0 actual	FP	TN

Таблица Confusion matrix

$$\begin{split} & \operatorname{precision} = \frac{TP}{TP + FP}, \quad \operatorname{recall} = \frac{TP}{TP + FN} \\ & F_1 = \frac{2}{\frac{1}{\operatorname{recall}} + \frac{1}{\operatorname{precision}}} = \frac{2TP}{2TP + FN + FP} \end{split}$$

Пусть TP, TN, FP, FN будут обозначать соответсвующие доли от всей выборки. Если пометить все объекты единицей:

$$F_1 = \frac{2TP}{2TP + FN + 0}, \quad TP + FP = 1$$

Узнали долю единиц. Обозначим ее за x.

Метрика f1score

	1	0
	predicted	predicted
1 actual	TP	FN
0 actual	FP	TN

Таблица Confusion matrix

$$\begin{split} & \operatorname{precision} = \frac{TP}{TP + FP}, \quad \operatorname{recall} = \frac{TP}{TP + FN} \\ & F_1 = \frac{2}{\frac{1}{\operatorname{recall}} + \frac{1}{\operatorname{precision}}} = \frac{2TP}{2TP + FN + FP} \end{split}$$

Пусть TP, TN, FP, FN будут обозначать соответсвующие доли от всей выборки. Если пометить все объекты единицей:

$$F_1 = \frac{2TP}{2TP + FN + 0}, \quad TP + FP = 1$$

Узнали долю единиц. Обозначим ее за х. За у обозначим долю единиц в сабмите. Тогда:

$$\begin{cases} TP + TN + FP + FN = 1 \\ TP + FN = x \\ TP + FP = y \\ \frac{2TP}{2TP + FN + FP} = F_1 \end{cases}$$

Данные и метрика

Предсказание количества просмотров объявлений

$$\mathrm{RMSLE} = \sqrt{\frac{\sum_{i=1}^{n} (\log \left(y_i+1\right) - \log \left(\hat{y}_i+1\right))^2}{n}}$$

Василий Рубцов Avito BI contest 25 февраля 2017 3 / 6

Данные и метрика

Предсказание количества просмотров объявлений

$$\mathrm{RMSLE} = \sqrt{\frac{\sum_{i=1}^{n} (\log \left(y_i+1\right) - \log \left(\hat{y}_i+1\right))^2}{n}}$$

	start_time	title	price	owner_type	category	subcategory	param1	param2	param3	region	item_views
o	2016-12- 27 10:38:04	Сандали фирмы Crocs	800	Private	Личные вещи	Детская одежда и обувь	Для мальчиков	Обувь	> 36	Москва	27
1	2016-12- 27 15:23:55	Бутсы футбольные Reebok	2000	Private	Личные вещи	Детская одежда и обувь	Для мальчиков	Обувь	> 36	Омская область	9
2	2016-12- 28 19:34:15	Nike hypervenom Бутсы	600	Private	Личные вещи	Детская одежда и обувь	Для мальчиков	Обувь	> 36	Санкт- Петербург	105
3	2016-12- 26 10:26:02	Сапоги	150	Private	Личные вещи	Детская одежда и обувь	Для мальчиков	Обувь	> 36	Тульская область	28

Рис. Обучающая выборка

Обработка признаков

- 1) start time \rightarrow количество секунд от начала дня
- 2) title \to нормализация слов (pymorphy2) \to one-hot 5000 самых популярных слов (sklearn.feature_extraction.text.CountVectorizer)
- 3) price
- 4) Label encoding категориальных признаков

4 / 6

Обработка признаков

- 1) start time \rightarrow количество секунд от начала дня
- 2) title \to нормализация слов (pymorphy2) \to one-hot 5000 самых популярных слов (sklearn.feature_extraction.text.CountVectorizer)
- 3) price
- 4) Label encoding категориальных признаков
- 5) Частотность категориальных признаков

Обработка признаков

- 1) start time \rightarrow количество секунд от начала дня
- 2) title \to нормализация слов (pymorphy2) \to one-hot 5000 самых популярных слов (sklearn.feature_extraction.text.CountVectorizer)
- 3) price
- 4) Label encoding категориальных признаков
- 5) Частотность категориальных признаков
- 6) Среднее значение ключевого признака внутри каждой категории для param1

Фильтрация шумовых объектов

```
\begin{aligned} & \text{for train, valid in cv:} \\ & \text{model.fit}(X[\text{train}], \, y[\text{train}]) \\ & p = \text{model.predict}(X[\text{valid}]) \\ & \text{error}[\text{valid}] = \text{abs}(p - y[\text{valid}]) \\ & X = X[\text{error} < \text{threshold}] \\ & y = y[\text{error} < \text{threshold}] \end{aligned}
```

Фильтрация шумовых объектов

```
 \begin{aligned} & \text{for train, valid in cv:} \\ & \text{model.fit}(X[\text{train}], \, y[\text{train}]) \\ & \text{p} = \text{model.predict}(X[\text{valid}]) \\ & \text{error}[\text{valid}] = \text{abs}(\text{p} \cdot \text{y[valid]}) \\ & X = X[\text{error} < \text{threshold}] \\ & y = y[\text{error} < \text{threshold}] \end{aligned}
```


Рис. Распределение ошибок

Модель

- Несколько xgboost с разной глубиной (10, 12, 20) 0.54561
- Блендинг 0.54385

6 / 6