

Oscilador de Van der Pol

Yeison Gomez

Juan Jose Ruiz

Santiago Ruiz

Un oscilador especial

 Balthasar van der Pol mientras trabajaba en Philips

• 1927 (Nature)

para determinadas frecuencias aparecía un ruido irregular cerca de las frecuencias de acoplamiento.

como ciclos límite, en circuitos que usaban válvulas

Motivación Física

$$rac{d^2x}{dt^2}-\mu(1-x^2)rac{dx}{dt}+x=0$$

- amortiguamiento no lineal
- ecuación diferencial de segundo orden

modelo de Fitz Hugh-Nagumo

- modelo para los potenciales de acción de las neuronas.
- modelan las dos placas en una falla geológica.

- Fonación: los osciladores de las cuerdas vocales.
- Medicina: Se modela los latidos del corazón, donde se intentan representar oscilaciones autoexcitadas no lineales.

Derivación

En su forma más general

$$y'' + F(y') + y = 0$$

Una forma más específica

$$y'' - \mu(1 - y^2)y' + y = 0$$

Se deriva de la ecuación diferencial de Rayleigh

$$y'' - \mu(1 + \frac{1}{3}y'^2)y' + y = 0$$

Expandiendo los paréntesis y derivando el resultado obtenemos:

$$\frac{d}{dy}(y'' - \mu y' - \mu \frac{1}{3}y'^3 + y) = 0$$

Hacemos que tome la forma de Van der pol

$$y''' - \mu(y'' - y'^2y'') + y' = 0$$

$$y''' - \mu(1 - y'^2)y'' + y' = 0$$

Ahora haciendo y' = y

Obtenemos finalmente

$$y'' - \mu(1 - y^2)y' + y = 0$$

¿Qué función cumple con esta propiedad?

$$y = Ae^x$$

donde A es cualquier constante. Por lo tanto, las propiedades logarítmicas y exponenciales también se utilizan en la definición de estas oscilaciones de Van der Pol.

Método de solución

Un problema no lineal no se puede expresar como una combinación lineal de soluciones para dos problemas de valor inicial.

$$y'' = f(x, y, y'), \text{ para } a \le x \le b, \text{ con } y(a) = \alpha \ y \ y'(a) = t.$$
 (11.7)

Lo hacemos al seleccionar los parámetros $t = t_k$ de forma que se garantiza

$$\lim_{k\to\infty} y(b, t_k) = y(b) = \beta,$$

donde $y(x, t_k)$ denota la solución del problema de valor inicial (11.7)

- El problema de valor en la frontera se reemplaza por medio de una sucesión de soluciones de problemas de valor inicial que implican un parámetro t
- el objetivo es llegar a $-\bullet(b,\beta)$

$$t_1, t_2,$$

• criterio de parada

$$y(b, t) - \beta = 0.$$

$$y'' = f(x, y, y')$$
, para $a \le x \le b$, $con y(a) = \alpha$ y $y'(a) = t_0$.

Algoritmo de solución

Nonlinear Shooting with Newton's Method

To approximate the solution of the nonlinear boundary-value problem

$$y'' = f(x, y, y')$$
, for $a \le x \le b$, with $y(a) = \alpha$ and $y(b) = \beta$:

(Note: Equations (11.10) and (11.12) are written as first-order systems and solved.)

INPUT endpoints a, b; boundary conditions α, β ; number of subintervals $N \ge 2$; tolerance *TOL*; maximum number of iterations M.

OUTPUT approximations $w_{1,i}$ to $y(x_i)$; $w_{2,i}$ to $y'(x_i)$ for each i = 0, 1, ..., N or a message that the maximum number of iterations was exceeded.

Step 1 Set
$$h = (b-a)/N$$
;
 $k = 1$;
 $TK = (\beta - \alpha)/(b-a)$. (Note: TK could also be input.)

Step 2 While $(k \le M)$ do Steps 3–10.

Step 3 Set
$$w_{1,0} = \alpha$$
;
 $w_{2,0} = TK$;
 $u_1 = 0$;
 $u_2 = 1$.

Step 4 For i = 1, ..., N do Steps 5 and 6. (The Runge-Kutta method for systems is used in Steps 5 and 6.)

Step 5 Set
$$x = a + (i - 1)h$$
.
Step 6 Set $k_{1,1} = hw_{2,i-1}$;
 $k_{1,2} = hf(x, w_{1,i-1}w_{2,i-1})$;
 $k_{2,1} = h\left(w_{2,i-1} + \frac{1}{2}k_{1,2}\right)$;
 $k_{2,2} = hf\left(x + h/2, w_{1,i-1} + \frac{1}{2}k_{1,1}, w_{2,i-1} + \frac{1}{2}k_{1,2}\right)$;
 $k_{3,1} = h\left(w_{2,i-1} + \frac{1}{2}k_{2,2}\right)$;

$$k_{3,2} = hf \left(x + h/2, w_{1,i-1} + \frac{1}{2}k_{2,1}, w_{2,i-1} + \frac{1}{2}k_{2,2} \right);$$

$$k_{4,1} = h(w_{2,i-1} + k_{3,2});$$

$$k_{4,2} = hf \left(x + h, w_{1,i-1} + k_{3,1}, w_{2,i-1} + k_{3,2} \right);$$

$$w_{1,i} = w_{1,i-1} + (k_{1,1} + 2k_{2,1} + 2k_{3,1} + k_{4,1})/6;$$

$$w_{2,i} = w_{2,i-1} + (k_{1,2} + 2k_{2,2} + 2k_{3,2} + k_{4,2})/6;$$

$$k'_{1,1} = hu_{2};$$

$$k'_{1,2} = h[f_{y}(x, w_{1,i-1}, w_{2,i-1})u_{1} + f_{y'}(x, w_{1,i-1}, w_{2,i-1})u_{2}];$$

$$k'_{2,1} = h\left[u_{2} + \frac{1}{2}k'_{1,2}\right];$$

$$k'_{2,2} = h\left[f_{y}(x + h/2, w_{1,i-1}, w_{2,i-1})\left(u_{1} + \frac{1}{2}k'_{1,1}\right) + f_{y'}(x + h/2, w_{1,i-1}, w_{2,i-1})\left(u_{2} + \frac{1}{2}k'_{1,2}\right)\right];$$

$$k'_{3,1} = h\left(u_{2} + \frac{1}{2}k'_{2,2}\right);$$

$$k'_{3,2} = h\left[f_{y}(x + h/2, w_{1,i-1}, w_{2,i-1})\left(u_{1} + \frac{1}{2}k'_{2,1}\right) + f_{y'}(x + h/2, w_{1,i-1}, w_{2,i-1})\left(u_{2} + \frac{1}{2}k'_{2,2}\right)\right];$$

$$k'_{4,1} = h(u_{2} + k'_{3,2});$$

$$k'_{4,2} = h\left[f_{y}(x + h, w_{1,i-1}, w_{2,i-1})\left(u_{1} + k'_{3,1}\right) + f_{y'}(x + h, w_{1,i-1}, w_{2,i-1})\left(u_{2} + k'_{3,2}\right)\right];$$

$$u_{1} = u_{1} + \frac{1}{6}[k'_{1,1} + 2k'_{2,1} + 2k'_{3,1} + k'_{4,1}];$$

$$u_{2} = u_{2} + \frac{1}{6}[k'_{1,1} + 2k'_{2,1} + 2k'_{3,2} + k'_{4,2}].$$

Step 7 If
$$|w_{1,N} - \beta| \le TOL$$
 then do Steps 8 and 9.

Step 8 For
$$i = 0, 1, ..., N$$

set $x = a + ih$;
OUTPUT $(x, w_{1,i}, w_{2,i})$.

Step 9 (The procedure is complete.) STOP.

Step 10 Set
$$TK = TK - \frac{w_{1,N} - \beta}{u_1}$$
;

(Newton's method is used to compute TK.)

k = k + 1.

Step 11 OUTPUT ('Maximum number of iterations exceeded'); (The procedure was unsuccessful.) STOP.

Resultados

Posición vs tiempo

tomamos μ =0 y μ =0.2 para obtener el oscilador armónico con las siguientes condiciones (0, 10, 0, 1, 50, 10e-2, 10000, 0);

disparo(a, b, alpha, beta, N, TOL, M, mu)

Posición vs tiempo

Variamos μ de 0 a 10 con las siguientes condiciones

1, 2, 0, 1, 50, 10e-2, 10000, 0);

Posición vs tiempo

Variamos μ de 0 a 4 con las siguientes condiciones (0, 2, 0, 1, 50, 10e-2, 10000, 0);

Oscilador Forzado

UNIVERSIDAD DE ANTIOQUIA

Posición vs tiempo

Variamos μ de 0 a 4 forzando el oscilador de forma $F=A\sin(\omega t)$; A=1 y $\omega=5$ con las siguientes condiciones

(0, 2, 0, 1, 50, 10e-2, 10000, 0)

Posición vs tiempo

Variamos μ de 0 a 4 forzando el oscilador de forma $F=A\sin(\omega t)$; A=10 y $\omega=15$.con las siguientes condiciones

(0, 2, 0, 1, 50, 10e-2, 10000, 0);

Posición vs Velocidad de oscilador forzado

Oscilador de Duffing

$$\ddot{x} + \delta \dot{x} + \alpha x + \beta x^3 = \gamma \cos(\omega t)$$

Posición vs Tiempo

Conclusiones

- El método de Newton para resolver la ecuación diferencial solo es localmente convergente, el algoritmo es óptimo si se quieren analizar zonas específicas.
- El algoritmo es altamente susceptible a las condiciones iniciales.
- El aumento de μ hace diverger el algoritmo.
- Debido a las múltiples aplicaciones en medicina, ingeniería eléctrica y geología el estudio de este oscilador es importante.

Referencias

- Análisis numérico, 10 a. Ed. Richard L. Burden, J. Douglas Faires y Annette M. Burden.
- Van der Pol Equation: Overview, Derivation, and Examination of Solutions .Nick McMullen, December 6, 2016.
- Estudio de singularidades en la ecuación de Van der Pol. Víctor Hernandez Suarez, Universidad de Las Palmas de G.C.
- Wesley, Cao. Van der Pol Oscillator, Celestial Mechanics.

Muchas gracias