

"Konzeption und Implementierung eines LoRaWAN -basierten Sensornetzes für das Monitoring von Umweltdaten im Technologiepark Adlershof"

Kolloquium Masterarbeit - Maren Zaepernick (567852)

Agenda

- 1. Kontext & Ziele
- 2. Forschungsfragen
- 3. Hintergrund
- 4. Konzeption
- 5. Implementierung
- 6. Ergebnisse
- 7. Zusammenfassung & Ausblick
- 8. Diskussion

1. Kontext & Ziele

Ziel:

Nachhaltigkeit der Standortentwicklung unter Beachtung der Klimaschutzziele des Bundes und des Landes Berlin.

Quelle: Wista Management GmbH (2019)

1. Kontext & Ziele

- Einordnung und Übersicht relevanter Umweltparameter
- Erarbeitung eines Klassifizierungsschemas für Umweltsensoren
- Auswahl geeigneter Umweltsensoren für den Einsatz in Adlershof
- Erstellung eines Konzepts für die Erhebung von Umweltdaten
- Prototypische Implementierung des Konzepts an einem ausgewählten Standort in Adlershof
- Datenanalyse und –bewertung , insbesondere in Relation zu den Verkehrsdaten

2. Forschungsfragen

- 1. In welcher Hinsicht unterscheiden sich Umweltsensoren verschiedener Preissegmente und anhand welcher Kriterien lassen sich diese klassifizieren?
 - **a.** Welche relevanten Anforderungen an Umweltsensoren, die sich für den Einsatz im städtischen Raum eignen, existieren?
 - Welche LoRaWAN -kompatiblen Umweltsensoren gibt es?
- 2. Welcher Zusammenhang kann aus den Hauptverkehrszeiten und den Höhepunkten der Umweltmesswerte abgeleitet werden?

3. Hintergrund: Umwelt

- Eingrenzung des Umweltmonitorings auf Luftqualität
- Darstellung der relevanten Luftparameter
- Darstellung der meteorologischen Parameter
- Zertifizierte Umweltstationen im Land Berlin
- Kennzahlen und Grenzwerte
- Literaturquellen: WHO, EU -Richtlinien, Leit und Richtlinien des Bundes und vom Land Berlin, Fachbücher, wissenschaftliche Artikel ...

3. Hintergrund: Sensorik

- Kategorisierung in Preissegmente
 - > Sehr günstig,
 - günstig,
 - mittelteuer,
 - mittelteureKomplettlösungen

- Vergleichskriterien
 - > Trennschärfe,
 - LoRaWAN Kompatibilität,
 - Aufwand für die Implementierung,
 - Genauigkeit
- Quellen: Expertenbefragungen, Forschungsberichte, wissenschaftliche Artikel , Datenblätter

4. Konzeption

- Auswahl der Umweltparameter: CO, NO₂, O₃ und PM ₁₀
- > Auswahl der Sensoren
- Übertragungstechnik & Datenstrecke
- Visualisierung & Auswertung der Daten
- Auswahl der neuralgischen Punkte
- Verpackung und Montage der Sensoren

4. Konzeption: Auswahl der Sensoren

- Vorauswahl: die Kategorien mittelteure Komplettlösungen und sehr günstig fallen raus
- Nutzwertanalyse :
 - Kategorie günstig = 65,875%
 - Kategorie mittelteuer : Alphasense = 69,25%

Anforderung	Gewichtung	Kategorie	Kategorie
		günstig	mittelteuer:
			Alphasense
Hohe Genauigkeit der Messwerte	15,00 %	0,225	0,75
Größe des gesamten Sensorpaketes	7,50 %	1	1
Messfrequenz	7,50 %	1	1
Langfristige Einsatzzeit	10,00 %	1	1
Geringer Stromverbrauch	10,00 %	0,75	0,5
gering Wartungsaufwand (max. einmal jährlich)	12,50 %	1	1
Inkludiertes Gehäuse	5,00 %	0	0
Montage durch Anbieter	3,00 %	0	0
Integrierte Stromversorgung	7,50 %	0	0
Konfigurationsmöglichkeiten	10,00 %	0,5	1
Geringe Kosten	12,00 %	1	0,5
Summe:	100,00 %	0,65875	0,6925

4. Konzeption: Auswahl der Sensoren

Feldtest der Genauigkeit:

- 7 Tage Messung an einer Referenzstation (ähnliche Bedingungen wie am Zielstandort)
- Vergleich der Messwerte mit den Referenzwerten
 - > Trendverläufe
 - Absolute Abweichungen

5. Implementierung: Standort

DLR-Messbrücke am Ernst -Ruska-Ufer:

- Verkehrsknotenpunkt
- Nähe zu LoRaWAN-Gateway
- Stationäre Stromversorgung
- Erhebung von Verkehrsdaten vom DLR →Möglichkeit zum Vergleich mit den Umweltdaten

5. Implementierung: Gehäuse und Montage

Gehäuse:

- Schutz vor Witterung
- Luftdurchlässig an der Unterseite

Montage:

Am Brückengeländer in etwa 6m Höhe

5. Implementierung: Hardware & Software

- > Umsetzung durch das Team der Beuth Hochschule
- Hardware: Entwicklerboard, Sensoren, Analogue Front End
- Software: basiert auf Dokumentation von Alphasense Ltd.

- Device anlegen
- Driver implementieren und zuweisen
- Datentabelle erstellen
- Visualisierung

```
function decode(payload, port) {
    var response = new Object();
    var NO2 = (bytesToInteger([payload[2], payload[3]])) / 100;
    var 03 = (bytesToInteger([payload[4], payload[5]])) / 100;
    var CO = (bytesToInteger([payload[6], payload[7]])) / 100;
    response.Temperatur = (bytesToInteger([payload[0], payload[1]])) / 10 -20;
    response.NO2 = (NO2) * (12.187) * (46.0055) / (273.15 + 20)
    response.03 = (03) * (12.187) * (48) / (273.15 + 20)
    response.C0 = (C0) * (12.187) * (28.01) / (273.15 + 20)
    response.PM10 = (bytesToInteger([payload[8], payload[9]])) / 100;
   return response;
function bytesToInteger(array) {
    var value = 0;
    for (var i = 0; i < array.length; i++) {
       value *= 256;
        value += array[i];
    return value:
```

5. Implementierung: Visualisierung

6. Ergebnisse: CO

6. Ergebnisse: NO 2

6. Ergebnisse: O₃

6. Ergebnisse: PM ₁₀

7. Zusammenfassung & Ausblick

- ✓ Untersuchung und Klassifikation verschiedener Preissegmenten von Umweltsensoren
- ✓ Identifikation der passenden Umweltparameter und -sensoren für Wista Management GmbH
- Konzeptionierung eines Umweltmonitorings und prototypische Implementierung der Alphasense Sensoren in Adlershof
- ✓ Erste Auswertungen der Umweltmessungen in Bezug zu Verkehrsdaten
- Erforschung weiterer Einflussfaktoren , wie Wetter oder Industrieabfälle
- Optimierung der Datenanalyse durch Einbindung dieser Faktoren oder Weiterentwicklung der Sensorkalibrierung

Vielen Dank für Eure Aufmerksamkeit!

Kolloquium Masterarbeit - Maren Zaepernick (567852)

8. Diskussion

Kolloquium Masterarbeit - Maren Zaepernick (567852)

Quellen

Wista Management GmbH (2019) -2019_10_17_WISTA_Projekt_Wissensmanagement_KickOff