## Evaluation of Performance based on the Posegraph in g2o format

- Please run the file test\_graph\_performance\_with\_g2o\_dataset\_A before this file!
- Make sure that the inital working directory is "./sobot\_rimulator/script"

```
In [1]:
        import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         os.chdir('...'') # set the working directory as "./sobot_rimulator"
         os.getcwd()
```

Out[1]: '/home/yixing/code/project\_work/sobot-rimulator'

## Analysis of Time Cost

```
solver = "Cholesky" # cholesky or spsolve
In [2]:
         df = pd.read_csv("./scripts/result/time_cost_g2o_{0}.csv".format(solver.lower()))
         df["log_global_error"] = np.log(df["global_error"])
         df.head(15)
```

| Out[2]: |    | name  | iteration | linearization_time_cost | solve_time_cost | global_error | solver   | log_global_error |
|---------|----|-------|-----------|-------------------------|-----------------|--------------|----------|------------------|
| ,       | 0  | INTEL | 0         | 0.000000                | 0.000000        | 5.149721e+06 | cholesky | 15.454453        |
|         | 1  | INTEL | 1         | 0.305283                | 0.001590        | 1.511636e+08 | cholesky | 18.833873        |
|         | 2  | INTEL | 2         | 0.329507                | 0.001656        | 5.143087e+06 | cholesky | 15.453164        |
|         | 3  | INTEL | 3         | 0.364126                | 0.002427        | 3.266647e+04 | cholesky | 10.394104        |
|         | 4  | INTEL | 4         | 0.341682                | 0.001556        | 2.158643e+02 | cholesky | 5.374650         |
|         | 5  | INTEL | 5         | 0.289461                | 0.003079        | 2.158333e+02 | cholesky | 5.374506         |
|         | 6  | INTEL | 6         | 0.307643                | 0.001626        | 2.158333e+02 | cholesky | 5.374506         |
|         | 7  | INTEL | 7         | 0.272456                | 0.001597        | 2.158334e+02 | cholesky | 5.374507         |
|         | 8  | INTEL | 8         | 0.317468                | 0.001605        | 2.158335e+02 | cholesky | 5.374507         |
|         | 9  | INTEL | 9         | 0.265859                | 0.001582        | 2.158333e+02 | cholesky | 5.374507         |
|         | 10 | INTEL | 10        | 0.372645                | 0.001567        | 2.158333e+02 | cholesky | 5.374507         |
|         | 11 | MITB  | 0         | 0.000000                | 0.000000        | 4.414182e+09 | cholesky | 22.208088        |
|         | 12 | MITB  | 1         | 0.568163                | 0.000916        | 1.940530e+10 | cholesky | 23.688812        |
|         | 13 | MITB  | 2         | 0.276594                | 0.001060        | 4.232531e+08 | cholesky | 19.863481        |
|         | 14 | MITB  | 3         | 0.190530                | 0.001484        | 6.183813e+07 | cholesky | 17.940031        |

```
In [3]:
         linear_time = df.pivot(index = "iteration", columns = "name",
                      values="linearization_time_cost")
         linear_time = linear_time[linear_time.index != 0]
         linear_time = linear_time[["MITB", "INTEL", "M3500"]]
         linear_time = linear_time.mean()
         # colors=['black', 'dimgray', 'darkgray']
linear_time.plot(kind = "bar", rot = 0, color = "gray", edgecolor="k", figsize=(5,3))
         plt.xlabel("")
         plt.ylabel("Time per Iteration [s]")
         plt.title("Time per Iteration for Linearizing \nthe Constraints", size = 15)
         #plt.legend(loc='upper left', bbox_to_anchor=(1.0, 0.5),
                     fancybox=True, shadow=True)
         plt.savefig('./scripts/fig/{0}.eps'.format("Time_per_Iteration_for_Linearizing_the_Constraints"),
                      format='eps', bbox_inches='tight')
         linear_time
```

Out[3]: name 0.214191 MITB 0.316613 M3500 1.270573 dtype: float64 Time per Iteration for Linearizing

INTEL

0.001828



```
solve_time = df.pivot(index = "iteration", columns = "name", values="solve_time_cost")
         solve_time = solve_time[solve_time.index != 0]
         solve_time = solve_time[["MITB", "INTEL", "M3500"]]
         solve_time = solve_time.mean()
         # colors=['black', 'dimgray', 'darkgray']
         solve_time.plot(kind = "bar", rot = 0, color = "gray", edgecolor="k", figsize=(5,3))
         plt.xlabel("")
         plt.ylabel("Time per Iteration [s]")
         #plt.legend(loc='upper left', bbox_to_anchor=(1.0, 0.5),
                    fancybox=True, shadow=True)
         plt.title("Time per Iteration for Solving \nthe Sparse Linear System by {0}".format(solver), size = 15)
         plt.savefig('./scripts/fig/{0}.eps'.format("Time_per_Iteration_for_Solving_the_Sparse_Linear_System"),
                     format='eps', bbox_inches='tight')
         solve_time
Out[4]:
        name
        MITB
                 0.000969
```



```
In [5]:
         global_error = df.pivot(index = "iteration", columns = "name", values="log_global_error")
         plt.subplot(1,3,2)
         global_error["INTEL"].plot(color = "k", marker = "^", rot = 0, figsize=(12,3))
         plt.xlabel("Iteration")
         plt.ylabel("log-global-error")
         plt.title("INTEL")
         plt.subplot(1,3,3)
         global_error["M3500"].plot(color = "k", marker = "^{\text{"}}", rot = 0)
         plt.xlabel("Iteration")
         plt.ylabel("log-global-error")
         plt.title("M3500")
         plt.subplot(1,3,1)
         global_error["MITB"].plot(color = "k", marker = "^", rot = 0)
         plt.xlabel("Iteration")
         plt.ylabel("log-global-error")
         plt.title("MITB")
         plt.suptitle("Evolution of Log-Global-Error in 10 Iterations", size = 18)
         plt.tight_layout()
                             nts/fig/s03 enst format("Evolution of Global Error"), format='eps')
```

|        | global    | verig('./<br>_error | 301 1pt3/1 | 19/ (0) · c |
|--------|-----------|---------------------|------------|-------------|
| ut[5]: | name      | INTEL               | M3500      | MITB        |
|        | iteration |                     |            |             |
|        | 0         | 15.454453           | 14.758119  | 22.208088   |
|        | 1         | 18.833873           | 12.987964  | 23.688812   |
|        | 2         | 15.453164           | 9.910266   | 19.863481   |
|        | 3         | 10.394104           | 5.576181   | 17.940031   |
|        | 4         | 5.374650            | 4.926852   | 18.599890   |
|        | 5         | 5.374506            | 4.926623   | 15.444616   |
|        | 6         | 5.374506            | 4.926623   | 12.998432   |
|        | 7         | 5.374507            | 4.926623   | 7.518804    |
|        | 8         | 5.374507            | 4.926623   | 6.688553    |
|        | 9         | 5.374507            | 4.926623   | 6.649879    |
|        | 10        | 5.374507            | 4.926623   | 6.648735    |

## INTEL

Evolution of Log-Global-Error in 10 Iterations

