Aufgabe 1

b)
$$= eps = \frac{1}{2}B^{1-n} = \frac{1}{2} \cdot 10^{1-16} = \frac{1}{2} \cdot 10^{-15} = \frac{5 \cdot 10^{-16}}{2}$$

c)
$$52$$
-stellig, Binar: $cps = \frac{1}{2} \cdot 2^{1-52} = 2 \cdot 2 \cdot 10^{-16}$
 14 -stellig, Hexadez: $cps = \frac{1}{2} \cdot 16^{1-14} = 1 \cdot 1 \cdot 10^{-16}$

14-stelliger Hexadezimalarithmetik hat ein kleineres eps und somit eine höhere Maschinengenauigkeit.