Number Theory

Thomas Mildorf

Black Lecture, June 14, 2011

Let \mathbb{Z}_m denote the ring $\mathbb{Z}/m\mathbb{Z}$, and let \mathbb{Z}_m^* denote its group of units (residues relatively prime to m).

- (Fermat) If p is a prime, then $x^p x = x(x-1)\cdots(x-(p-1))$ in $\mathbb{Z}_p[x]$.
- (Euler) Let $m \geq 2$ be an integer. Then $a^{\phi(m)} = 1$ for all $a \in \mathbb{Z}_m^*$.
- (Sun Tzu) Suppose $p_1^{k_1} \cdots p_n^{k_n}$ is the prime factorization of m. Then $\mathbb{Z}_m = \mathbb{Z}_{p_1^{k_1}} \times \cdots \times \mathbb{Z}_{p_n^{k_n}}$.
- (Primitive Root) Let p and k be an odd prime and a positive integer. Then the group $\mathbb{Z}_{p^k}^*$ is cyclic.
- (Quadratic Residues) When p is an odd prime number and a is an integer, the Legendre symbol $\left(\frac{a}{p}\right)$ is defined to be 0 if $p \mid a$, 1 if a is a square modulo p, and -1 otherwise. It has many properties:

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} \equiv a^{(p-1)/2} \pmod{p}, \quad \begin{pmatrix} \frac{ab}{p} \end{pmatrix} = \begin{pmatrix} \frac{a}{p} \end{pmatrix} \begin{pmatrix} \frac{b}{p} \end{pmatrix}$$
$$\begin{pmatrix} \frac{-1}{p} \end{pmatrix} = (-1)^{(p-1)/2}, \quad \begin{pmatrix} \frac{2}{p} \end{pmatrix} = (-1)^{(p^2-1)/8}$$
$$\begin{pmatrix} \frac{q}{p} \end{pmatrix} = (-1)^{(p-1)(q-1)/4} \begin{pmatrix} \frac{p}{q} \end{pmatrix} \qquad \text{(Quadratic Reciprocity)}$$

- (Pythagorean Triples) The primitive triples a, b, c of positive integers such that $a^2 + b^2 = c^2$ can be expressed as $m^2 n^2, 2mn, m^2 + n^2$ where m and n are positive integers.
- (Pell's Equation) Let D be positive integer that is not a perfect square. Then the equation $m^2 Dn^2 = 1$ has the following solutions (m, n) in nonnegative integers: the trivial solution (1, 0) and an infinite family $\{(m_i, n_i)\}_{i \geq 1}$ generated as

$$m_i + n_i \sqrt{D} = (m_1 + n_1 \sqrt{D})^i$$

where (m_1, n_1) is the fundamental solution, i.e. the one with the minimal positive n. The related equation $m^2 - Dn^2 = -1$ may not have nontrivial solutions; if it does, infinitely many (but not necessarily all) solutions can be generated in a similar fashion.

- (Dirichlet) An arithmetic progression of integers contains infinitely many primes, unless all of its terms share a common divisor greater than 1.
- (Lucas) $\binom{a}{b} \equiv \binom{a_k}{b_k} \cdots \binom{a_0}{b_0} \pmod{p}$, where $a_k a_{k-1} \cdots a_0$ and $b_k b_{k-1} \cdots b_0$ are the base p representations of a and b.
- (Wolstenholme) $\binom{ap}{bp} \equiv \binom{a}{b} \pmod{p^3}$ for any prime $p \ge 5$.

Suppose the positive integers are partitioned into k subsets N_1, \ldots, N_k .

- (Van der Waerden) There exist arbitrarily long arithmetic progressions in some subset N_i .
- (Folkman) There exist arbitrarily large sets S such that the sum of every nonempty subset of S belongs to some N_i .

Problems

All of the following problems are from 2000-2007 IMO short lists, so you should already know how to solve them.

1. Let $\tau(n)$ denote the number of positive divisors of the positive integer n. Prove that there exist infinitely many positive integers a such that the equation

$$\tau(an) = n$$

does not have a positive integer solution n.

2. Determine all positive integers $n \geq 2$ that satisfy the following condition: for all integers a, b relatively prime to n,

$$a \equiv b \pmod{n}$$
 if and only if $ab \equiv 1 \pmod{n}$.

3. Determine all pairs (x, y) of integers such that

$$1 + 2^x + 2^{2x+1} = y^2.$$

- 4. Determine all positive integers relatively prime to all terms of the infinite sequence $a_n = 2^n + 3^n + 6^n 1$ (n = 1, 2, 3, ...).
- 5. Find all pairs of natural numbers (a, b) satisfying $7^a 3^b$ divides $a^4 + b^2$.
- 6. Let b, n > 1 be integers. Suppose that for each k > 1 there exists an integer a_k such that $b a_k^n$ is divisible by k. Prove that $b = A^n$ for some integer A.
- 7. For $x \in (0,1)$ let $y \in (0,1)$ be the number whose n-th digit after the decimal point is the 2^n -th digit after the decimal point of x. Show that if x is rational, then so is y.
- 8. Let a_1, a_2, \ldots be a sequence of integers with infinitely many positive and negative terms. Suppose that for every positive integer M the numbers a_1, a_2, \ldots, a_M leave different remainders upon division by M. Prove that every integer occurs exactly once in the sequence a_1, a_2, \ldots
- 9. Let a, b, c, d, e and f be positive integers. Suppose that the sum S = a + b + c + d + e + f divides both abc + def and ab + bc + ca de ef fd. Prove that S is composite.
- 10. Does there exist a positive integer n such that n has exactly 2000 prime divisors and $2^n + 1$ is divisible by n?
- 11. Let X be a set of 10,000 integers, none of them divisible by 47. Prove that there exists a 2007-element subset Y of X such that a b + c d + e is not divisible by 47 for any $a, b, c, d, e \in Y$.
- 12. We define a sequence (a_1, a_2, a_3, \ldots) by setting

$$a_n = \frac{1}{n} \left(\left[\frac{n}{1} \right] + \left[\frac{n}{2} \right] + \dots + \left[\frac{n}{n} \right] \right)$$

for every positive integer n. By [x] we mean the integral part of x, the greatest integer which is less than or equal to x.

13. Determine all pairs of positive integers (a, b) such that

$$\frac{a^2}{2ab^2 - b^3 + 1}$$

is a positive integer.

14. Let k be a fixed integer greater than 1, and let $m = 4k^2 - 5$. Show that there exist positive integers a and b such that the sequence (x_n) defined by

$$x_0 = a$$
, $x_1 = b$, $x_{n+2} = x_{n+1} + x_n$ for $n = 0, 1, 2, \dots$

has all of its terms relatively prime to m.

15. For every integer $k \geq 2$, prove that 2^{3k} divides the number

$$\binom{2^{k+1}}{2^k} - \binom{2^k}{2^{k-1}}$$

but 2^{3k+1} does not.

- 16. Find all positive integers n > 1 for which there exists a unique integer a with $0 < a \le n!$ such that $a^n + 1$ is divisible by n!.
- 17. Let $p \ge 5$ be a prime number. Prove that there exists an integer a with $1 \le a \le p-2$ such that neither $a^{p-1}-1$ nor $(a+1)^{p-1}-1$ is divisible by p^2 .
- 18. Determine all triples of positive integers (a, m, n) such that $a^m + 1$ divides $(a + 1)^n$.
- 19. Let P(x) be a polynomial of degree n > 1 with integer coefficients and let k be a positive integer. Consider the polynomial $Q(x) = P(P(\ldots P(P(x))\ldots))$, where P is applied k times. Prove that there are at most n integers t such that Q(t) = t.
- 20. Find all pairs of integers (m, n) such that $m^7 1 = (m 1)(n^5 1)$.
- 21. We call a positive integer *alternative* if its decimal digits are alternately odd and even. Find all positive integers n such that n has an alternative multiple.
- 22. Let b be an integer greater than 5. For each positive integer n, consider the number

$$x_n = 11 \cdots 122 \cdots 25,$$

having n-1 1's and n 2's, written in base b. Prove that the following holds if and only if b=10: there exists a positive integer M such that for any integer n greater than M, the number x_n is a perfect square.

- 23. Find all surjective functions $f: \mathbb{N} \to \mathbb{N}$ such that for every $m, n \in \mathbb{N}$ and for every prime p, the number f(m+n) is divisible by p if and only if f(m)+f(n) is divisible by p.
- 24. Let a and b be positive integers such that $a^n + n$ divides $b^n + n$ for every positive integer n. Show that a = b.
- 25. Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^p p$ is not divisible by q.
- 26. Given an integer n > 1, denote by P_n the product of all positive integers x less than n and such that n divides $x^2 1$. For each n > 1, find the remainder of P_n on division by n.
- 27. Let a > b > c > d be positive integers and suppose

$$ac + bd = (b + d + a - c)(b + d - a + c).$$

Prove that ab + cd is not prime.

- 28. Let k be a positive integer. Prove that the number $(4k^2 1)^2$ has a positive divisor of the form 8kn 1 if and only if k is even.
- 29. Let n be a positive integer. Show that there exists a positive integer m such that n divides $2^m + m$.
- 30. Let n be an integer greater than 1 and suppose that $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$, where a_0, \ldots, a_n are integers with a_n positive. Prove that there exists a positive integer m such that P(m!) is a composite number.
- 31. Find all pairs of positive integers $m, n \geq 3$ for which there exist infinitely many positive integers a such that

$$\frac{a^m + n - 1}{a^n + a^2 - 1}$$

is a positive integer.

- 32. For a prime p and a given integer n let $\nu_p(n)$ denote the exponent of p in the prime factorization of n!. Given $d \in \mathbb{N}$ and $\{p_1, p_2, \ldots, p_k\}$ a set of k primes, show that there are infinitely many positive integers n such that $d|\nu_{p_i}(n)$ for all $1 \le i \le k$.
- 33. Let p be an odd prime and n a positive integer. In the coordinate plane, eight distinct points with integer coordinates lie on a circle with diameter of length p^n . Prove that there exists a triangle with vertices at three of the given points such that the squares of its side lengths are integers divisible by p^{n+1} .
- 34. Let p be a prime number and let A be a set of positive integers that satisfies the following conditions:
 - (i) the set of prime divisors of the elements in A consists of p-1 elements;
 - (ii) for any nonempty subset of A, the product of its elements is not a perfect pth power.

What is the largest possible number of elements in A?

Homework

- 1. Does there exist an infinite sequence of positive integers, containing every positive integer exactly once, such that the sum of the first n terms is divisible by n for every n?
- 2. (Russia 1995) Is it possible for the numbers 1, 2, ..., 100 to be the terms of 12 geometric progressions?
- 3. (USA 1998) Prove that, for each integer $n \ge 2$, there is a set S of n integers such that ab is divisible by $(a-b)^2$ for all distinct $a, b \in S$.
- 4. (Inspired by Greece 1996) Determine the smallest number N such that among N positive integers all of whose prime factors are in the set $\{2,3,5\}$, there must exist 4 numbers whose product is a perfect fourth power of an integer
- 5. Find all ordered triples of integers (a, b, c) such that $a^2 + b^2 = 2c^2$.
- 6. (Poland) Let p be a prime and let $S = \{1, 2, \dots, p\}$. Determine whether there exists a permutation $\sigma: S \to S$ such that the set

$$\left\{\prod_{i=1}^j \sigma(i) \,|\, j \in S\right\}$$

gives a complete residue class modulo p.

7. (ISL 1991) Find all pairs of positive integers (x, p) such that p is a prime, $x \le 2p$ and x^{p-1} is a divisor of $(p-1)^x + 1$.

- 8. (ISL 1992) Find all integer triples (p, q, r) such that 1 and <math>(p-1)(q-1)(r-1) is a divisor of (pqr-1).
- 9. (Korea) Suppose that a, b, c are positive integers such that no prime divides all three and such that $a^2 + b^2 + c^2 = 2(ab + bc + ca)$. Prove that a, b, c are perfect squares.
- 10. A set S of positive integers is called a *finite basis* if there exists some n such that every sufficiently large positive integer can be written as a sum of at most n elements of S. If the positive integers are partitioned into finitely many subsets, must one of them necessarily be a finite basis?
- 11. (MOP 2000) Find the number of 0's appearing at the end of

$$4^{5^6} + 6^{5^4}$$
.

- 12. The set of all integers is partitioned into finitely many arithmetic progressions. Prove that some two of them have the same common difference.
- 13. (Putnam 1997/B5) Define $a_1 = 2, a_n = 2^{a_{n-1}}$ for $n \ge 2$. Prove that $n \mid a_n a_{n-1}$.
- 14. (Putnam 1999/A6) Define the sequence $\{a_i\}_{i\geq 1}$ by

$$a_1 = 1$$
, $a_2 = 2$, $a_3 = 24$, $a_n = \frac{6a_{n-1}^2 a_{n-3} - 8a_{n-1}a_{n-2}^2}{a_{n-2}a_{n-3}}$.

Show that a_n is divisible by n for each n.

- 15. (MOP 95?) Suppose a positive integer n is square mod p for all primes p. Must n be a square?
- 16. (Russia 2001) Find all n such that if a and b are coprime divisors of n then a+b-1 is also a divisor of n.
- 17. (IMO 1990/3) Find all positive integers n such that n^2 divides $2^n + 1$.
- 18. (IMO 1995/6) Let p be an odd prime. Determine the number of p-element subsets of $\{1, 2, \ldots, 2p\}$ such that the sum of the elements is divisible by p.
- 19. (ISL 1992) Does there exist a set M of 1992 positive integers such that the sum of any nonempty subset of the elements is a perfect power $(m^k$, where $m, k \in \mathbb{Z}^+$ and $k \geq 2$)?
- 20. (CMO 2007) Show that if n is an integer greater than 1, then 2n-1 is prime if and only if for any n distinct positive integers a_1, a_2, \ldots, a_n there exist $i, j \in \{1, 2, \ldots, n\}$ such that

$$\frac{a_i + a_j}{(a_i, a_j)} \ge 2n - 1,$$

where (x, y) denotes the greatest common divisor of x and y.

- 21. Suppose that $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + 1$ is a polynomial with nonnegative integer coefficients such that $a_i = a_{n-i}$ for $i = 1, 2, \ldots, n-1$. Show that there exist infinitely many pairs a, b of positive integers such that a|p(b) and b|p(a).
- 22. (ISL 1991) Given any integer $n \geq 2$, assume that the integers a_1, a_2, \ldots, a_n are not divisible by n and, moreover, that n does not divide the sum $a_1 + a_2 + \ldots + a_n$. Prove that there exist at least n different sequences (e_1, e_2, \ldots, e_n) consisting of zeros and ones such that $e_1a_1 + e_2a_2 + \cdots + e_na_n$ is divisible by n.

- 23. (Putnam 1993) Let x_1, x_2, \ldots, x_{19} be positive integers less than or equal to 93. Let y_1, \ldots, y_{93} be positive integers less than or equal to 19. Prove that there exists a (nonempty) sum of some x_i equal to a sum of some y_i .
- 24. (Bulgaria 1996) Find all pairs of primes (p,q) such that $pq \mid (5^p 2^p)(5^q 2^q)$.
- 25. Find all solutions in integers to

$$x^4 + y^4 = z^2$$
.

- 26. (Romania 1996) Find all pairs of primes (p,q) such that $\alpha^{3pq} \equiv \alpha \pmod{3pq}$ for any integer α .
- 27. (Russia 1996) Suppose that p is an odd prime, n > 1 is an odd number, and x, y, k are positive integers such that $x^n + y^n = p^k$. Prove that n is a power of p.
- 28. (Russia 2000) Do there exist pairwise relatively prime integers a, b, c > 1 such that $a|2^b + 1, b|2^c + 1$, and $c|2^a + 1$?
- 29. (Erdős) Given 2n-1 integers, prove that some n of them have a sum that is divisible by n.
- 30. (USA TST 2003) Find all ordered triples of primes (p, q, r) such that

$$p|q^r + 1, q|r^p + 1, r|p^q + 1.$$

- 31. Let n be an integer greater than 1, and let a_1, a_2, \ldots, a_n be not all identical positive integers. Prove that there are infinitely many primes p such that p divides $a_1^k + a_2^k + \cdots + a_n^k$ for some positive integer k.
- 32. Show that for all but finitely many positive integers n we have the inequality

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \gcd(i,j) > 4n^{2}.$$

(Extra credit: show that 4 can be made arbitrarily large.)

- 33. Let a, b, and c be positive integers such that the product ab divides the product $c(c^2 c + 1)$ and the sum a + b is divisible by $c^2 + 1$. Prove that the sets $\{a, b\}$ and $\{c, c^2 c + 1\}$ coincide.
- 34. Find all integers n for which there exists an equiangular n-gon whose side-lengths are distinct rational numbers.