

Disdrometro acustico

Cancelliere Francesco
Basile Alfio
Basile Alfio

Indice

- Introduzione
- Raindrop size distribution
- Strumentazione utilizzata
- Procedimento
- Misure sperimentali
- Possibili applicazioni
- Conclusioni

Introduzione

- Le nubi rappresentano un elemento importante dell'atmosfera, per cui è impossibile sviluppare un modello climatico senza esso.
- Le nubi si possono classificare in:
 - Nubi fredde: sono caratterizzate da un top a temperatura minore di 0 °C che comprende delle idrometeore in fase solida.
 - Nubi calde: sono caratterizzate da un top a temperatura superiore a 0 °C che comprende delle idrometeore in fase liquida.

Introduzione

- Esistono pure delle nubi miste che sono composte dallo strato superiore da nubi fredde e dallo strato inferiore da nubi calde, in mezzo ad esse è presente lo strato detto Melting Layer, lo strato in cui avviene la fusione, per cui si hanno le precipitazioni.
- Il processo di formazione delle gocce di pioggia si svolge principalmente in due modi:
 - accumulo di piccole gocce su altre gocce preesistenti
 - collisione tra accumuli di vapore di diverse dimensioni

Raindrop size distribution

- Con il termine "granulometria della pioggia" si intende la distribuzione statistica del numero di gocce di pioggia in base al loro diametro (DSD: Diameter size distribution).
- La conoscenza della distribuzione delle gocce di pioggia in una nuvola può essere utilizzata per collegare ciò che viene registrato da un radar meteorologico a ciò che viene ottenuto sul terreno come quantità di precipitazioni,si può esprimere il Rainrate tramite l'integrale:

$$R = \int_{0}^{D_{MAX}} N(D)v(D)\tau(D) dD$$

Raindrop size distribution

In generale, la distribuzione delle dimensioni della goccia è rappresentata come una funzione gamma troncata per il diametro zero alla dimensione massima possibile delle gocce di pioggia. Tale distribuzione viene quindi definita come

$$N(D) = N_0 D^{\mu} e^{-\lambda D}$$

Strumentazione utilizzata

 Il metodo proposto per la rilevazione dell'intensità della pioggia si basa sulla raccolta dei dati sperimentali tramite

un sistema digitale, composto da:

- Raspberry PI
- Batteria mobile
- Microfono
- Unità removibile
- ☐ Clock digitale RTC
- **□** LED

Procedimento

Il dispositivo ha uno schema di funzionamento basato sulla rilevazione dell'evento (singola goccia che cade nell'area di rilevazione) e sulla successiva classificazione dell'intensità del fenomeno (pioggia) in base alla frequenza con cui questo si verifica.

- Fase 1: il dispositivo rileva una singola goccia caduta sulla superficie del contenitore e registra l'intensità del suono prodotto da tale goccia, associandolo all'istante in cui avviene l'evento. La rilevazione viene comparata con una soglia definita dal programmatore
- Fase 2: nel caso in cui la rilevazione supera la soglia (sta piovendo), bisogna classificare l'intensità con cui sta piovendo. La classificazione è stata implementata non rispetto all'intensità con cui piove, ma in base alla frequenza con cui le gocce cadono sul dispositivo. In questo modo l'intensità della singola goccia può assumere, una volta superata la soglia minima, qualunque livello di ampiezza, mentre viene stabilita la quantità di pioggia caduta in base a quanto frequentemente le gocce vengono rilevate.

Misure sperimentali

I dati da noi rilevati sono stati raccolti a Tremestieri Etneo (CT), giorno 16 maggio 2019, nella fascia oraria a partire dalle 6:55 AM.

Il precedente grafico è stato costruito con riferimento ai primi cinque minuti di pioggia rilevati durante la misurazione. Si nota che nei cinque minuti di pioggia più intensa, la quantità di gocce che sono cadute è ben 12 volte superiore a quella dei primi 5 minuti. Da questo grafico possiamo ricostruire che l'evento si sia quasi estinto in circa 40 min. Secondo i dati ricavati nei primi 5 minuti è stata misurata una intensità di pioggia media di 0.5

mm/hr.

Misure sperimentali

UTC	MSLP	TEMP	RELH	WIND	VIS	SKY	SIGWX
Giovedi, 16 Maggio 2019							
23:20	1010	10	100	WNW 6	Buona	Sereno	
22:20	1010	10	100	W 5	Buona	Sereno	
21:50	1010	10	100	VAR 3	Buona	Sereno	
21:20	1010	10	94	SW 4	Buona	Sereno	
20:20	1010	11	94	SSW 3	Buona	Sereno	
19:20	1009	13	88	SSW 7	Buona	Sereno	
18:50	1009	13	94	SSW 6	Buona	Poco nuvoloso	
18:20	1008	14	94	SSW 7	Buona	Poco nuvoloso	
17:20	1007	15	88	VAR 2	Buona	Nubi sparse	
16:20	1007	14	88	WNW 7	Buona	Nuvoloso	
15:20	1007	12	100	W 6	Buona	Nuvoloso	
14:20	1007	12	88	N 8	Discreta	Nuvoloso	Temporale
13:50	1006	13	82	NNW 13	Discreta	Nuvoloso	Temporale
12:50	1006	13	82	NNW 10	Discreta	Nuvoloso	Temporale
11:50	1005	16	82	NE 13	Discreta	Nuvoloso	Pioggia moderata
10:50	1005	17	72	ENE 16	Buona	Nuvoloso	
10:20	1005	17	77	ENE 13	Buona	Nuvoloso	
09:20	1005	16	82	NE 10	Buona	Nubi sparse	
08:20	1006	14	94	NE 10	Buona	Nuvoloso	
07:50	1007	14	100	NNE 8	Buona	Nuvoloso	Pioggia moderata
06:50	1006	13	100	VAR 5	Discreta	Nuvoloso	Temporale
06:20	1006	13	100	N 13	Scarsa	Molto nuvoloso	Temporale
05:20	1006	14	100	ENE 10	Discreta	Nuvoloso	Temporale
04:50	1007	13	100	N 4	Discreta	Nuvoloso	Pioggia
04:20	1007	13	100	N 4	Discreta	Nuvoloso	Pioggia
03:20	1007	12	100	SW 5	Buona	Sereno	
02:20	1007	13	94	WSW 4	Buona	Nubi sparse	
01:50	1008	12	100	WSW 6	Buona	Sereno	
00:50	1008	12	100	W 5	Buona	Sereno	

Una volta raccolti ed analizzati i dati, abbiamo provveduto a controllare che fossero coerenti questi con misurazioni degli enti professionali di competenza, ed abbiamo constatato soddisfazione che queste con informazioni sono in linea con quelli che si possono reperire da fonti attendibili, quali il sito web della Protezione Civile italiana. Dai dati reali di giorno 16\05\19 si evince che la pioggia si è estinta dopo circa 55 minuti da quando abbiamo iniziato la rilevazione.

Possibili applicazioni

- Prevenzione in caso di eventi climatici avversi , migliorando giorno per giorno un modello climatico, che rileva anomalie locali in modo da poter agire prevenendo disastri idrogeologici.
- L'uso in ambito agricolo per la previsione delle precipitazioni e quindi una migliore gestione delle risorse idriche.

Conclusioni

- Stiamo presentando un dispositivo a basso costo che può essere utilizzato facilmente e prodotto in larga scala per la distribuzione sul territorio.
- Punti di forza del prodotto:
 - Dispositivo a basso costo
 - User friendly

alfio.basile.xsf8@alice.it alfio.97@hotmail.it fracance@gmail.com

GRAZIE PER L'ATTENZIONE