Fiche d'exercices $n^{\circ}2$: sommes et produits

Prenez l'habitude de vérifier systématiquement vos résultats, par exemple avec www.wolframalpha.com.

Exercice 1. Calculer les sommes et les produits suivants.

a)
$$\sum_{k=1}^{3} k$$
 b) $\sum_{k=1}^{3} (2k-1)$ c) $\sum_{k=1}^{3} k^2$ d) $\sum_{k=0}^{2} (2k+1)$ e) $\sum_{k=0}^{2} 2^k$ f) $\prod_{k=1}^{3} k$ g) $\sum_{k=0}^{3} k$ h) $\prod_{k=0}^{3} k$ i) $\sum_{k=0}^{3} 5$ j) $\prod_{k=0}^{3} 2$

Exercice 2. Écrire les sommes et les produits suivants en utilisant les symboles \sum et \prod .

a)
$$1+2+3+4+5+6+7+8+9+10$$
 b) $4+5+6+7+8+9$
c) $0+1+2+3+4+5$ d) $3+3+3+3+3+3$
e) $2\times 3\times 4\times 5\times 6\times 7$ f) $1\times \frac{1}{2}\times \frac{1}{3}\times \frac{1}{4}\times \frac{1}{5}$
g) $7\times 7\times 7\times 7\times 7\times 7$ h) $\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}$
i) $2+4+6+8+10+12+14+16+18+20$ j) $3+5+7+9+11+13+15+17+19+21$

k) 1+3+5+7+9+11+13+15 l) $2+4+6+8+10+\cdots+98+100$ **Exercice 3.** Simplifier les expressions suivantes, pour les écrire de façon plus concise :

a)
$$a_1 + \sum_{k=2}^{n} a_k$$
 b) $a_0 + \sum_{k=1}^{n+2} a_k$ c) $\sum_{k=0}^{3} a_k + \sum_{k=4}^{n} a_k$ d) $\sum_{k=n+1}^{2n} a_k + \sum_{k=1}^{n} a_k$ e) $\frac{1}{3} \prod_{k=3}^{7} k$ f) $\frac{\prod_{k=1}^{2n+1} 3^k}{\prod_{k=1}^{n} 3^k}$ g) $\frac{\prod_{k=1}^{2n} 2^k}{\prod_{k=1}^{3} 2^k}$ h) $\frac{\prod_{k=1}^{2n} 3^k}{\prod_{k=7}^{2n} 3^k}$ i) $\frac{1}{10} \prod_{k=1}^{10} k$ j) $\sum_{k=1}^{n} 2^k - \sum_{k=1}^{4} 2^k$ k) $\sum_{k=1}^{n+4} k - \sum_{k=1}^{n-1} k$ l) $\sum_{k=1}^{2n} k - \sum_{k=1}^{n-1} k$

Exercice 4. Calculer les sommes et les produits suivants :

a)
$$\sum_{k=1}^{n} 5$$
 b) $\sum_{k=1}^{n+2} 7$ c) $\prod_{k=2}^{n} 6$ d) $\sum_{k=0}^{n} 4$ e) $\prod_{k=0}^{n+3} 5$ f) $\sum_{k=n}^{2n+1} 8$ g) $\prod_{k=1}^{5} i$

Exercice 5. Simplifier les produits suivants :

$$a) \qquad \prod_{k=1}^{n+2} k \qquad b) \quad \prod_{k=3}^{n} k \qquad c) \quad \prod_{k=1}^{n} 3k^2 \qquad d) \quad \prod_{k=2}^{n} (k-1) \qquad e) \quad \prod_{k=1}^{n} \frac{k+1}{3}$$

$$f) \quad \prod_{k=2}^{n} \frac{(k-1)(k+2)}{2} \qquad g) \quad \prod_{k=2}^{n} \frac{k}{k-1} \qquad h) \quad \prod_{k=2}^{n} \frac{k(k+1)}{k-1} \qquad i) \quad \prod_{k=1}^{n} (2k+1) \qquad j) \quad \sum_{k=1}^{n} \ln(k+1)$$

Exercice 6. Calculer les sommes suivantes :

$$a) \quad \sum_{k=2}^{n} \ln(2k^3)$$

a)
$$\sum_{k=0}^{n} \ln(2k^3)$$
 b) $\sum_{k=0}^{n} (2 \ln k + \ln(k+1))$ c) $\sum_{k=0}^{n} (\ln 3 + 3 \ln k)$

c)
$$\sum_{k=1}^{n} (\ln 3 + 3 \ln k)$$

Exercice 7. Calculer les sommes suivantes :

$$a$$
) $\sum_{k=0}^{n} 3^k$

$$b) \quad \sum_{k=0}^{n+2} 7^k$$

$$c$$
) $\sum_{k=1}^{n} 2^k$

$$d) \quad \sum_{k=2}^{n} 5^{k}$$

a)
$$\sum_{k=0}^{n} 3^k$$
 b) $\sum_{k=0}^{n+2} 7^k$ c) $\sum_{k=0}^{n} 2^k$ d) $\sum_{k=0}^{n} 5^k$ e) $\sum_{k=0}^{n} (-2)^k$ f) $\sum_{k=0}^{n} 2^{3k+2}$

$$f$$
) $\sum_{k=0}^{n} 2^{3k+2}$

$$g) \quad \sum^{n+1} 7^{2k+1}$$

$$h) \sum_{k=0}^{n+2} \frac{1}{2^k}$$

$$i) \sum_{k=0}^{n} \frac{2^{k+1}}{3^{k+2}}$$

$$j) \sum_{k=0}^{2n-1} 3^{k/2}$$

$$g) \sum_{k=1}^{n+1} 7^{2k+1} \qquad h) \sum_{k=1}^{n+2} \frac{1}{2^k} \qquad i) \sum_{k=1}^{n} \frac{2^{k+1}}{3^{k+2}} \qquad j) \sum_{k=1}^{n-1} 3^{k/2} \qquad k) \sum_{k=1}^{n+1} 3^k 5^{2-k} \qquad l) \sum_{k=1}^{n-1} e^{\frac{2i\pi k}{n}}$$

$$\sum_{k=0}^{n-1} e^{\frac{2i\pi k}{n}}$$

Exercice 8. Calculer les sommes suivantes :

$$a)$$
 $\sum_{k=1}^{n} 4k$

a)
$$\sum_{k=0}^{n} 4k$$
 b) $\sum_{k=0}^{n} (2k+5)$ c) $\sum_{k=0}^{n+2} 3k$ d) $\sum_{k=0}^{n} (k+4)$ e) $\sum_{k=0}^{n} (k-2)$ f) $\sum_{k=0}^{n} \frac{k}{2}$

c)
$$\sum_{k=0}^{n+2} 3k$$

$$d) \sum_{k=2}^{n} (k+4)$$

$$e) \sum_{k=0}^{n} (k-2)$$

$$f) \quad \sum_{k=2}^{2n} \frac{k}{2}$$

Exercice 9. Mettre sous forme algébrique les nombres complexes suivants :

a)
$$\sum_{i=1}^{n} (1+2ik)$$
 b) $\sum_{i=1}^{10} (2+ik)$ c) $\sum_{i=1}^{n} \frac{5k}{2+i}$ d) $\sum_{i=1}^{n} \frac{k+i}{1+i}$

b)
$$\sum_{k=1}^{10} (2+ik)$$

$$c) \quad \sum_{k=1}^{n} \frac{5k}{2+i}$$

$$d) \quad \sum_{k=1}^{n} \frac{k+i}{1+i}$$

Exercice 10. Calculer les sommes suivantes :

a)
$$\sum_{k=0}^{n} \binom{n}{k} 2^k 3^{n-k}$$

$$b) \quad \sum_{k=0}^{n} \binom{n}{k} 2^k \left(\frac{1}{2}\right)^{n-1}$$

c)
$$\sum_{k=0}^{n} \binom{n}{k} 3^{k+1} 5^{n-k}$$

a)
$$\sum_{k=0}^{n} \binom{n}{k} 2^k 3^{n-k}$$
 b) $\sum_{k=0}^{n} \binom{n}{k} 2^k \left(\frac{1}{2}\right)^{n-k}$ c) $\sum_{k=0}^{n} \binom{n}{k} 3^{k+1} 5^{n-k}$ d) $\sum_{k=0}^{n} \binom{n}{k} 2^{k+1} 3^{2n-k}$

$$e$$
) $\sum_{k=0}^{n} \binom{n}{k} 2^k$

$$f) \qquad \sum_{k=0}^{n} \binom{n}{k} 4^k 3^{-k}$$

$$g) \qquad \sum_{k=0}^{n} \binom{n}{k} \frac{5^k}{2^{n-k}}$$

$$e) \qquad \sum_{k=0}^{n} \binom{n}{k} 2^{k} \qquad f) \qquad \sum_{k=0}^{n} \binom{n}{k} 4^{k} 3^{-k} \qquad g) \qquad \sum_{k=0}^{n} \binom{n}{k} \frac{5^{k}}{2^{n-k}} \qquad h) \qquad \sum_{k=0}^{n} \binom{n}{k} 3^{2k-n}$$

$$i) \quad \sum_{k=1}^{n} \binom{n}{k} 5^k 3^{n-k}$$

i)
$$\sum_{k=1}^{n} \binom{n}{k} 5^k 3^{n-k}$$
 j) $\sum_{k=0}^{n-1} \binom{n}{k} 3^k 4^{n-k}$

Exercice 11. Simplifier les expressions suivantes :

a)
$$\prod_{k=1}^{20} e^{ik\pi/3}$$
 b)
$$\prod_{k=1}^{\ell} 2e^{ik\pi/8}$$
 c)
$$\prod_{k=1}^{6} (1+i)^k$$

$$b) \qquad \prod_{i=1}^{7} 2e^{ik\pi/8}$$

c)
$$\prod_{k=1}^{6} (1+i)^k$$

d)
$$\sum_{k=0}^{7} \left(-2 + \sqrt{2}e^{i\pi/4}\right)^k = e$$
) $\sum_{k=0}^{7} \left(\sqrt{2}e^{i\pi/4}\right)^k = f$) $\sum_{k=0}^{12} (-1 + e^{i\pi/3})^k$

$$e) \quad \sum_{k=0}^{7} \left(\sqrt{2}e^{i\pi/4}\right)^k$$

$$f$$
) $\sum_{k=0}^{12} (-1 + e^{i\pi/3})^k$

Soit $a \in \mathbb{R}$. Calculer les coefficients α et β tels que $\frac{1}{k(k+a)} = \frac{\alpha}{k} + \frac{\beta}{k+a}$. En déduire les valeurs des sommes suivantes :

a)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$

a)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$
 b) $\sum_{k=1}^{n} \frac{1}{k(k+2)}$ c) $\sum_{k=2}^{n} \frac{1}{k^2 - 1}$

c)
$$\sum_{k=2}^{n} \frac{1}{k^2 - 1}$$

Pour vous entrainer...

Exercice 13. Simplifier les expressions suivantes, pour les écrire de façon plus concise :

a)
$$\sum_{k=1}^{3n+2} k - \sum_{k=2n}^{3n+2} k$$

$$b) \quad \sum_{k=1}^{n+4} k - \sum_{k=1}^{n-1} k$$

a)
$$\sum_{k=1}^{3n+2} k - \sum_{k=2n}^{3n+2} k$$
 b) $\sum_{k=1}^{n+4} k - \sum_{k=1}^{n-1} k$ c) $\sum_{k=1}^{2n-1} k - \sum_{k=n-1}^{2n-1} k$ d) $\frac{\prod_{k=1}^{2^k} 2^k}{\prod_{k=1}^{2^k} 2^k}$

$$d) \quad \frac{\prod_{k=1}^{m} 2^k}{\prod_{k=1}^{2} 2^k}$$

$$e) \quad \frac{\prod\limits_{k=1}^{2n+1} 3^k}{\prod\limits_{k=1}^{n} 3^k}$$

f)
$$\sum_{k=n+1}^{2n} a_k + \sum_{k=1}^{n} a_k$$
 g) $\prod_{k=0}^{n-1} (k+1)^2$ h) $\sum_{k=3}^{n+2} (k-2)$

$$g) \prod_{k=0}^{n-1} (k+1)^2$$

$$h) \quad \sum_{k=3}^{n+2} (k-2)$$

Exercice 14. Calculer les sommes et les produits suivants :

$$a) \quad \sum_{k=0}^{n-1}$$

$$b) \prod_{k=3}^{n+1} 2k$$

$$c) \quad \sum_{k=m}^{n} c$$

$$d) \quad \prod_{k=3}^{n+1} 2^{k}$$

$$e) \prod_{k=n+1}^{3n+5} 7$$

a)
$$\sum_{k=0}^{n-1} 3$$
 b) $\prod_{k=3}^{n+1} 2$ c) $\sum_{k=m}^{n} a$ d) $\prod_{k=3}^{n+1} 2$ e) $\prod_{k=n+1}^{3n+5} 7$ f) $\sum_{k=n-2}^{2n+2} 8$

Exercice 15. Simplifier les produits suivants :

$$a) \quad \prod_{k=2}^{n+1} (5k)$$

$$b) \quad \prod_{k=1}^{n+2} (k+3)$$

$$c) \quad \prod_{k=1}^{n} \frac{2}{k+1}$$

a)
$$\prod_{k=2}^{n+1} (5k)$$
 b) $\prod_{k=1}^{n+2} (k+3)$ c) $\prod_{k=1}^{n} \frac{2}{k+1}$ d) $\prod_{k=2}^{n} (k-1)(k+1)$ e) $\prod_{k=2}^{n} k(k+1)$
f) $\prod_{k=1}^{n} \frac{k+2}{k}$ g) $\prod_{k=2}^{n} \frac{k}{k^2-1}$ h) $\prod_{k=2}^{n} (3k^2)$ i) $\sum_{k=2}^{n} \ln \frac{1}{k}$ j) $\prod_{k=1}^{n} (k+2)$

$$e)$$
 $\prod_{k=2}^{n} k(k+1)$

$$f) \quad \prod_{k=1}^{n} \frac{k+2}{k}$$

$$g) \quad \prod_{k=2}^{n} \frac{k}{k^2 - 1}$$

$$h) \quad \prod_{k=2}^{n} (3k^2)$$

$$\sum_{k=2}^{n} \ln \frac{1}{k}$$

$$j$$
) $\prod_{k=1}^{n+3} (k+2)$

Exercice 16. Calculer les sommes suivantes :

$$a) \quad \sum_{k=2}^{n} \ln(5k^2)$$

a)
$$\sum_{k=2}^{n} \ln(5k^2)$$
 b) $\sum_{k=1}^{n} (2\ln k - \ln(k+1))$ c) $\sum_{k=2}^{n} \left(\ln \frac{k+1}{3} + \ln \frac{2}{k}\right)$

$$c) \quad \sum_{k=2}^{n} \left(\ln \frac{k+1}{3} + \ln \frac{2}{k} \right)$$

Exercice 17. Calculer les sommes suivantes :

$$a) \quad \sum_{k=1}^{n} 3^{3k-1}$$

$$b) \quad \sum_{k=0}^{n+2} \frac{1}{3^{k-2}}$$

a)
$$\sum_{k=1}^{n} 3^{3k-1}$$
 b) $\sum_{k=0}^{n+2} \frac{1}{3^{k-2}}$ c) $\sum_{k=0}^{n} 2^{1+3k} 3^{-2(k+1)}$ d) $\sum_{k=2}^{n+2} (-3)^k$ e) $\sum_{k=0}^{n-1} e^{\frac{i\pi k}{n}}$ f) $\sum_{k=0}^{n} \frac{2^k 3^{k+2}}{7^{k+1}}$

$$d) \sum_{k=2}^{n+2} (-3)^k$$

$$e) \sum_{k=0}^{n-1} e^{\frac{i\pi k}{n}}$$

$$f) \sum_{k=0}^{n} \frac{2^k 3^{k+2}}{7^{k+1}}$$

Exercice 18. Calculer les sommes suivantes :

a)
$$\sum_{k=1}^{3n} (2k-1)^k$$

$$b) \quad \sum_{k=1}^{n} \frac{1-k}{3}$$

$$c) \quad \sum_{k=1}^{n} (ak+b)$$

a)
$$\sum_{k=1}^{3n} (2k-1)$$
 b) $\sum_{k=1}^{n} \frac{1-k}{3}$ c) $\sum_{k=1}^{n} (ak+b)$ d) $\sum_{k=1}^{2n} 3(k+1)$ e) $\sum_{k=2}^{3n} \frac{2-k}{3}$

$$e) \sum_{k=2}^{3n} \frac{2-k}{3}$$

Exercice 19. Calculer les sommes suivantes :

$$a) \quad \sum_{k=0}^{n} \binom{n}{k} \frac{1}{3^k}$$

$$b) \quad \sum_{k=0}^{n} \binom{n}{k} 5^{k-n}$$

c)
$$\sum_{k=0}^{n} \binom{n}{k} 2^k 3^{2n-k}$$

a)
$$\sum_{k=0}^{n} \binom{n}{k} \frac{1}{3^k}$$
 b) $\sum_{k=0}^{n} \binom{n}{k} 5^{k-n}$ c) $\sum_{k=0}^{n} \binom{n}{k} 2^k 3^{2n-k}$ d) $\sum_{k=0}^{n} \binom{n}{k} 2^{k+1} 3^{2-k}$

$$e)$$
 $\sum_{k=0}^{n} \binom{n}{k} \frac{5^k}{2^{2k}}$

$$f$$
) $\sum_{k=1}^{n} \binom{n}{k} (3^k)^2$

$$e) \quad \sum_{k=0}^{n} \binom{n}{k} \frac{5^k}{2^{2k}} \qquad f) \quad \sum_{k=1}^{n} \binom{n}{k} (3^k)^2 \qquad g) \quad \sum_{k=1}^{n} \binom{n}{k} 5^k 3^{n+k}$$

Exercice 20. Calculer les expressions suivantes :

$$a) \qquad \sum_{k=1}^{n} \frac{1-2k}{5}$$

$$b) \qquad \sum_{k=0}^{n} 3^{k-2} 2^{3-k}$$

$$c) \quad \prod_{k=1}^{n} \frac{k+3}{k+1}$$

$$\sum_{k=1}^{n} \frac{1-2k}{5} \qquad b) \qquad \sum_{k=0}^{n} 3^{k-2} 2^{3-k} \qquad c) \quad \prod_{k=1}^{n} \frac{k+3}{k+1} \qquad d) \quad \sum_{k=0}^{n} \binom{n}{k} \frac{3^k 2^{n-k}}{5^k}$$

$$e) \qquad \prod_{k=1}^{n} \left(\sum_{j=1}^{k} j \right)$$

$$\prod_{k=1}^{n} \left(\sum_{j=1}^{k} j \right) \qquad f) \quad \sum_{k=0}^{n} \binom{n}{k} 3^{2k} 2^{2n-k} \qquad g) \quad \sum_{k=1}^{2n} (k+2) \qquad h) \qquad \sum_{k=2}^{n} 2^{2-k}$$

$$g) \sum_{k=1}^{2n} (k+2)$$

$$h) \qquad \sum_{k=2}^{n} 2^{2-k}$$

i)
$$\sum_{k=1}^{n} \binom{n}{k} 2^{2n+k} 5^{2n-k}$$

$$\sum_{k=1}^{n} \binom{n}{k} 2^{2n+k} 5^{2n-k} \qquad j) \quad \prod_{k=2}^{n} \frac{(k-1)(k+1)}{k^2}$$

Pour aller plus loin...

Simplifier les expressions : $\prod_{k=1}^{393} i$; $\prod_{k=1}^{4n+3} i$; $\prod_{k=1}^{8n+5} (1+i)$; $\prod_{k=3}^{200} e^{i\pi/3}$ Exercice 21.

Calculer les produits : $\left(\prod_{k=1}^{n}(2k)\right)\left(\prod_{k=1}^{n}(2k+1)\right)$; $\prod_{k=1}^{n}(2k)$; $\prod_{k=1}^{n}(2k+1)$ Exercice 22.

Exercice 23. On démontre par récurrence que $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ et $\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$

A l'aide de ces formules, calculer les sommes suivantes :

a)
$$\sum_{k=1}^{n} k(k+1)$$
 b) $\sum_{k=0}^{n} (k^2+1)$ c) $\sum_{k=1}^{n} (2k+2)(3k-2)$ d) $\sum_{k=1}^{n} k(k-1)(k+1)$

Calculer les sommes : $\sum_{k=1}^{n} {n+1 \choose k} 2^k 3^{n-k}$ et $\sum_{k=1}^{n} {n+1 \choose k+1} 2^k 3^{n-k}$ Exercice 24.

Calculer le module du nombre complexe : $\prod_{i=1}^{n} \frac{ki}{(\sqrt{k}+i)^2}$ Exercice 25.

Calculer les sommes : $\sum_{k=1}^{n} \frac{k}{(k+1)!}$ et $\sum_{k=1}^{n} \frac{2^{k}(k-1)}{(k+1)!}$ Exercice 26.

Exercice 27. Exprimer en fonction de x et n les sommes suivantes :

a)
$$\sum_{k=1}^{n} \sin(xk)$$
 b) $\sum_{k=1}^{n} \sin(x(2k+1))$ c) $\sum_{k=1}^{n} k \cos(kx)$

Exercice 28. On considére une expérience ayant deux issues possibles, que l'on appelle issue positive et issue négative. Soit $p \in]0,1[$ la probabilité d'avoir une issue positive. On répète plusieurs fois cette expérience dans les mêmes conditions et de façon indépendante.

- 1. Calculer la probabilité p_k pour que la première expérience positive soit la k-ième.
- 2. Soit q_1 la probabilité que au moins une expérience parmi les 100 premières soit positive. Exprimer q_1 en fonction de p_1, \ldots, p_{100} et donc en fonction de p.
- 3. Soit q_0 la probabilité que les 100 premières expériences soient toutes négatives. Exprimer q_0 en fonction de p.
- 4. Les événements "Au moins une expérience parmi les 100 premières est positive" et "Les 100 premières expériences sont toutes négatives" sont complémentaires. On devrait donc avoir $q_0 + q_1 = 1$. Est-ce bien ce que vous avez obtenu?