Combinatorial logic

Circuits whose output relies fully on it's current inputs.

1-bit Half Adder

Adds two bits, outputing a sum and a carry.

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

1-bit Full Adder

Adds three bits, outputing a sum and carry - can be chained together.

A	В	C_{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	1
	0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1	0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1

n-bit Full Adder

1-bit full adders chained together, to add together two n-bit numbers, A and B. If C_{out} is high, there has been an overflow.

n-bit Full Adder-Subtractor

Addition to n-bit Full Adder which allows subtraction.

When Z is high, B is effectively turned into negative in two's compliment - bits are inverted, and 1 is added via C_{in} .

Z	Function
0	A+B
1	A-B

Sequential logic

Logic circuits encorporating a "memory" element, and whose output depends on the prior state.

D-type latch (flip-flop)

When E is low, the current state is retained. The input at D is "saved" in the latch as the circuit is enabled i.e. when E transitions from 0 to 1. This makes it edge-triggered.

Enable	D	Q	$\neg Q$
0	0	Q	$\neg Q$
0	1	Q	$\neg Q$
1	0	0	1
1	1	1	0

Parallel Load Register

Register requiring a data line for each bit.

On clock enable, the value on A is "saved" to the relevant D-type.

n-bit Shift Register

Alternative register requiring only 1 data line.

On clock enable, A is saved to D_{n-1} , D_{n-1} is shifted to D_{n-2} , D_{n-2} is shifted to D_{n-3} , etc.

n-bit Counter

Effectively counts up 1 every clock cycle.

NB. Circles on D-type enable input denote triggered by falling edge i.e. by transition from high to low.

Clock $\#$	Q_0	Q_1	Q_2
1	0	0	0
2	1	0	0
3	0	1	0
4	1	1	0
5	0	0	1
6	1	0	1
7	0	1	1
8	1	1	1

