Balanced BSTs: AVL Trees

Overview

- Review: Binary Search Trees
- Importance of being balanced
- Balanced BSTs
 - AVL trees
 - definition
 - rotations, insertion

Review: Binary Search Trees

BST

- Each node x has:
 - key[x]
 - Pointers: left[x], right[x], p[x]
- Property: for any node x:
 - For all nodes y in the left subtree of x:

$$key[y] \leq key[x]$$

• For all nodes y in the right subtree of x:

The importance of being balanced

The importance of being balanced

Perfectly Balanced

 $h = \Theta(\log n)$

Path

$$h = \Theta(n)$$

Balanced BSTs

Balanced BST strategy

- Augment every node with some property
- Define a local invariant on property
- Show (prove) that invariant guarantees $\Theta(\log n)$ height
- Design algorithms to maintain property and the invariant

AVL Trees: Definition

- **Property**: for every node, store its height ("augmentation")
 - Leaves have height 0
 - NIL(empty tree) has "height" -1
 - Node have height max(children's height) + 1
- Invariant: for every node x, the heights of its left child and right child differ by at most 1

AVL trees have height $\Theta(\log n)$

- Let n_h be the minimum number of nodes of an AVL
- tree of height h, i.e., $n_h \ge n_h$


```
n_h \ge \underline{n}_h \ge 1 + \underline{n}_{h-1} + \underline{n}_{h-2} % there is a h-2 subtree
                                                 % since \underline{n}_{h-1} > \underline{n}_{h-2}
     > 2n_{h-2}
     > 2 \times 2 n_{h-4}
                                               % since n_{h-2} > 2 n_{h-4}
     > 2^{\frac{h}{2}}
                                                                 Why h = \Omega(\log n_h)?
\Rightarrow 2\log n_h > h
                                                               n_h \le 2^0 + 2^1 + \dots + 2^h = 2^{h+1} - 1 < 2^{h+1}
\Rightarrow h = O(\log n_h)
                                                                 \Rightarrow \log n_h < h + 1 \Rightarrow h > \log n_h - 1
```

Tree acrobatics! - Rotations

Rotations maintain the in-order ordering of keys:

$$\forall a \in A, b \in B, c \in C \rightarrow a \le y < b \le x < c$$

Rotations can reduce the height!

Left-Rotate(1)

Insertions/Deletions

- Insert new node u as in the simple BST
 - Can create imbalance
- Work your way up the tree, restoring the balance
- Similar issue/solution when deleting a node

Balancing

- Let x be the lowest "violating" node
 - → we will try to correct that and move up the tree
- Assume that x is "right-heavy"
 - \rightarrow we analyze more the right subtree of x
 - y is the right child of x
- Scenarios:
 - Case 1: y is right-heavy
 - Case 2: y is balanced
 - Case 3: y is left-heavy

The right child of x has +2 height than the left child of x

Case 1: y is right-heavy

Case 2: y is balanced

Same as Case 1

Case 3: y is left-heavy

Need to do more ...

Case 3: y is left-heavy

Case 3: y is left-heavy

Conclusions

- In balanced BSTs all operations take $O(\log n)$ time.
- Can maintain balanced BSTs using $O(\log n)$ time per deletion.
- Insertion needs to restore imbalance at most once. But for deletion, imbalance may propagate upward so that many rotations may be needed.

Example 1

- Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree.
- Then delete 53, 11, 8

Example 1

- Insert 14, 17, 11, 7, 53, 4, 13, 12, 8 into an empty AVL tree.
- Then delete 53, 11, 8

- Insert 14, 17, 11, 7, 53, 4, 13, 12, 8 into an empty AVL tree
- •Now insert 4

• Now the AVL tree is balanced.

• Now insert 12

• Now the AVL tree is balanced.

• Now insert 8

• Now the AVL tree is balanced.

• Now delete 53

• Now delete 53, unbalanced

• Now the AVL tree is balanced.

• Now delete 11, replace it with the largest in its left branch

• Now delete 8, unbalanced 14 13

• Balanced!!

Example 2

- AVL tree insertion and deletion exercise
- LeetCode P1382 Balance a BST

https://leetcode.cn/problems/balance-a-binary-search-tree/