

## ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

3<sup>η</sup> Σειρά Γραπτών Ασκήσεων ΣΤΟ ΜΑΘΗΜΑ "**Τεχνητή Νοημοσύνη**"

Στρατάκης Μιχαήλ

A.M:03117503

## Άσκηση 1

1)

| Εποχή                                               | X <sub>k</sub> | $\frac{3}{2}$                            | $y_{(k)}-f(x_k)$ | $\beta*(y_{(k)}-f(x_k))*x_{(k)}$          | Βάρη                                                      |  |  |  |
|-----------------------------------------------------|----------------|------------------------------------------|------------------|-------------------------------------------|-----------------------------------------------------------|--|--|--|
|                                                     |                | $\sum_{i=0} \mathbf{w_i} * \mathbf{x_i}$ |                  |                                           | $w_{(k+1)} = w_{(k)} + \beta*(y_{(k)} - f(x_k)) *x_{(k)}$ |  |  |  |
|                                                     |                |                                          |                  |                                           | Αρχικά: (1, 1, -1, -1)                                    |  |  |  |
| 1                                                   | (1, 0, -1, 4)  | -2                                       | 1 - 0 = 1        | 0.2*(1, 0, -1, 4) = (0.2, 0, -0.2, 0.8)   | $W_{(1)} = (1.2, 1, -1.2, -0.2)$                          |  |  |  |
| 1                                                   | (1, 4, 0, -1)  | 5.4                                      | 0 - 1 = -1       | -0.2*(1, 4, 0, -1) = (-0.2, -0.8, 0, 0.2) | $w_{(2)} = (1, 0.2, -1.2, 0)$                             |  |  |  |
| 1                                                   | (1, 2, 2, -1)  | -1                                       | 1 - 0 = 1        | 0.2*(1, 2, 2, -1) = (0.2, 0.4, 0.4, -0.2) | w <sub>(3)</sub> = (1.2, 0.6, -0.8, -0.2)                 |  |  |  |
| 1                                                   | (1, 3, -1, 0)  | 3.8                                      | 0 - 1 = -1       | -0.2*(1, 3, -1, 0) = (-0.2, -0.6, 0.2, 0) | $W_{(4)} = (1, 0, -0.6, -0.2)$                            |  |  |  |
| 1                                                   | (1, -2, 1, -3) | 1                                        | 1 - 1 = 0        | 0                                         | $W_{(5)} = (1, 0, -0.6, -0.2)$                            |  |  |  |
| 1                                                   | (1, 0, -2, -1) | 2.4                                      | 0 - 1 = -1       | -0.2*(1, 0, -2, -1) = (-0.2, 0, 0.4, 0.2) | $W_{(6)} = (0.8, 0, -0.2, 0)$                             |  |  |  |
| 2                                                   | (1, 0, -1, 4)  | 1                                        | 1 - 1 = 0        | 0                                         | $W_{(7)} = (0.8, 0, -0.2, 0)$                             |  |  |  |
| 2                                                   | (1, 4, 0, -1)  | 0.8                                      | 0 - 1 = -1       | -0.2*(1, 4, 0, -1) = (-0.2, -0.8, 0, 0.2) | $w_{(8)} = (0.6, -0.8, -0.2, 0.2)$                        |  |  |  |
| 2                                                   | (1, 2, 2, -1)  | -1.6                                     | 1 - 0 = 1        | 0.2*(1, 2, 2, -1) = (0.2, 0.4, 0.4, -0.2) | $W_{(9)} = (0.8, -0.4, 0.2, 0)$                           |  |  |  |
| 2                                                   | (1, 3, -1, 0)  | -0.6                                     | 0 - 0 = 0        | 0                                         | $W_{(10)} = (0.8, -0.4, 0.2, 0)$                          |  |  |  |
| 2                                                   | (1, -2, 1, -3) | 1.8                                      | 1 - 1 = 0        | 0                                         | $W_{(11)} = (0.8, -0.4, 0.2, 0)$                          |  |  |  |
| 2                                                   | (1, 0, -2, -1) | 0.4                                      | 0 - 1 = -1       | -0.2*(1, 0, -2, -1) = (-0.2, 0, 0.4, 0.2) | $W_{(12)} = (0.6, -0.4, 0.6, 0.2)$                        |  |  |  |
| 3                                                   | (1, 0, -1, 4)  | 0.8                                      | 1 - 1 = 0        | 0                                         | $W_{(13)} = (0.6, -0.4, 0.6, 0.2)$                        |  |  |  |
| 3                                                   | (1, 4, 0, -1)  | -1.2                                     | 0 - 0 = 0        | 0                                         | $W_{(14)} = (0.6, -0.4, 0.6, 0.2)$                        |  |  |  |
| 3                                                   | (1, 2, 2, -1)  | 0.8                                      | 1 - 1 = 0        | 0                                         | $W_{(15)} = (0.6, -0.4, 0.6, 0.2)$                        |  |  |  |
| 3                                                   | (1, 3, -1, 0)  | -1.2                                     | 0 - 0 = 0        | 0                                         | $W_{(16)} = (0.6, -0.4, 0.6, 0.2)$                        |  |  |  |
| 3                                                   | (1, -2, 1, -3) | 1.4                                      | 1-1=0            | 0                                         | $W_{(17)} = (0.6, -0.4, 0.6, 0.2)$                        |  |  |  |
| 3                                                   | (1, 0, -2, -1) | -0.8                                     | 0 - 0 =0         | 0                                         | $W_{(18)} = (0.6, -0.4, 0.6, 0.2)$                        |  |  |  |
| Τελικό διάνυσμα βαρών: <b>(0.6, -0.4, 0.6, 0.2)</b> |                |                                          |                  |                                           |                                                           |  |  |  |

Παρατηρούμε πως χρειάστηκαν 3 εποχές για να καταλήξουμε στο τελικό διάνυσμα βαρών, καθώς στην 3<sup>η</sup> εποχή δεν είχαμε καμία αλλαγή βαρών. Το παρών το δοκιμάσαμε και σε περιβάλλον colab σε γλώσσα python από το οποίο έχουμε το παρακάτω στιγμιότυπο, στο οποίο παρατηρούμε πως στην 3<sup>η</sup> εποχή η λίστα New\_Weights δεν μεταβάλλεται.

```
epoch3 and Vector is X1
.
current_sum = 0.8
y(k)- f(xk) = 0
β*( y(k)- f(xk)) *x(k) = [0, 0, 0, 0]
New_Weights = [0.6, -0.4, 0.6, 0.2]
epoch3 and Vector is X2
current sum = -1.2
y(k) - \overline{f}(xk) = 0
y(x)= 1(xx) = 0
β*( y(k)= f(xk)) *x(k) = [0, 0, 0, 0]
New_Weights = [0.6, -0.4, 0.6, 0.2]
current_sum = 0.799999999999998
y(k) - f(xk) = 0
y(k) - 1(λk) - 0
β*( y(k)- f(xk)) *x(k) = [0, 0, 0, 0]
New_Weights = [0.6, -0.4, 0.6, 0.2]
epoch3 and Vector is X4
current_sum = -1.2
y(k) - f(xk) = 0

\beta^*(y(k) - f(xk))^*x(k) = [0, 0, 0, 0]
New_Weights = [0.6, -0.4, 0.6, 0.2]
epoch3 and Vector is X5
current sum = 1.4
y(k)- f(xk) = 0
β*( y(k)- f(xk)) *x(k) = [0, 0, 0, 0]
New_Weights = [0.6, -0.4, 0.6, 0.2]
epoch3 and Vector is X6
current_sum = -0.8
y(k) - f(xk) = 0
\beta^*(y(k)-f(xk))^*x(k) = [0, 0, 0, 0]
  w_Weights = [0.6, -0.4, 0.6, 0.2]
```

**2)** Για το διάνυσμα (-1, 2, 2) έχουμε:

$$\sum_{i=0}^{3} \mathbf{w_i} * \mathbf{x_i} = \mathbf{0}.6 + (-1*-0.4) + 2*0.6 + 2*0.2 = 2.6 > 0, \text{ ara} f(x) = 1$$

Άρα θα ταξινομηθεί στην κλάση Β.

Άσκηση 2

| Διάνυσμα    | Ευκλείδια Απόσταση Από (-1, 2, 2) | Κλάση | kNN 1 | kNN 3 |
|-------------|-----------------------------------|-------|-------|-------|
| (0, -1, 4)  | $\sqrt{14}$                       | В     | В     | В     |
| (4, 0, -1)  | $\sqrt{30}$                       | Α     | -     | -     |
| (2, 2, -1)  | $\sqrt{18}$                       | В     | -     | В     |
| (3, -1, 0)  | $\sqrt{29}$                       | Α     | -     | -     |
| (-2, 1, -3) | $\sqrt{27}$                       | В     | -     | -     |
| (0, -2, -1) | $\sqrt{26}$                       | Α     | -     | Α     |
| Αποτέλεσμα  |                                   | -     | В     | В     |

Βρίσκουμε πως και οι δύο ταξινομητές ταξινομούν το διάνυσμα (-1, 2, 2) στην κλάση Β. Συγκεκριμένα με τον ταξινομητή ενός πλησιέστερου γείτονα έχουμε μικρότερη απόσταση την  $\sqrt{14}$  η οποία ανήκει στην κλάση Β, συνεπώς το σημείο κατατάσσεται στην κλάση Β. Με τον ταξινομητή 3 πλησιέστερων γειτόνων προκύπτουν 2 αποστάσεις που ανήκουν στην κλάσση Β και 1 απόσταση που ανήκει στην κλάσση Α, συνεπώς το σημείο κατατάσσεται στην κλάση Β.

## Άσκηση 3

1)

$$P(άνδρας) = 0.51$$

**2)** 
$$P(ανδρας | καπνιστής) = \frac{P(καπνιστής | ανδρας)*P(ανδρας)}{P(καπνιστής)} =$$

$$\frac{{}^{P}(\kappa\alpha\pi\nu\iota\sigma\tau\dot{\eta}\varsigma|\dot{\alpha}\nu\delta\rho\alpha\varsigma)*{}^{P}(\dot{\alpha}\nu\delta\rho\alpha\varsigma)}{{}^{P}(\kappa\alpha\pi\nu\iota\sigma\tau\dot{\eta}\varsigma|\dot{\alpha}\nu\delta\rho\alpha\varsigma)*{}^{P}(\dot{\alpha}\nu\delta\rho\alpha\varsigma)*{}^{P}(\kappa\alpha\pi\nu\iota\sigma\tau\dot{\eta}\varsigma|\dot{\gamma}\upsilon\nu\alpha\dot{\iota}\kappa\alpha)*{}^{P}(\gamma\upsilon\nu\alpha\dot{\iota}\kappa\alpha)}=$$

$$\frac{0.095*0.51}{0.095*0.51+0.017*0.49} \approx 0.85$$

## Άσκηση 4

Έχουμε τα ασαφή σύνολα:

$$A_1 = 0.2/x_1 + 1/x_2 + 0.8/x_3$$

$$A_2 = 1/y_1 + 0.09/y_2$$

$$B = 0.7/z_1 + 1/z_2$$

Δίνεται ο ασαφής κανόνας:

Αν X είναι  $A_1$  και Y είναι σχετικά  $A_2$  τότε η Z είναι B.

Η πρόταση ερμηνεύεται ως εξής:

το 
$$\langle X, Y, Z \rangle$$
 είναι R, όπου R(x, y, z) = J(i(A<sub>1</sub>(x), h(A<sub>2</sub>(x))), B(z))

$$K\alpha\iota h(A_2(x)) = \sqrt{A2} = 1/y_1 + 0.3/y_2$$

$$i(A_1(x), h(A_2(x))) = \min(A_1(x), h(A_2(x))) = 0.2/x_1, y_1 + 0.2/x_1, y_2 + 1/x_2, y_1 + 0.3/x_2, y_2 + 0.8/x_3, y_1 + 0.3/x_3, y_2$$

Από συνεπαγωγή Mamdani έχουμε:

$$J(i(A_1(x), h(A_2(x))), B(z)) = min(A_1(x), h(A_2(x)), B(z)) =$$

$$0.2/x_1,y_1,z_1 + 0.2/x_1,y_1,z_2 + 0.2/x_1,y_2,z_1 + 0.2/x_1,y_2,z_2 + 0.7/x_2,y_1,z_1 + 1/x_2,y_1,z_2 +$$

$$0.3/x_2,y_2,z_1 + 0.3/x_2,y_2,z_2 + 0.7/x_3,y_1,z_1 + 0.8/x_3,y_1,z_2 + 0.3/x_3,y_2,z_1 + 0.3/x_3,y_2,z_2$$

Αν  $X=x_2$  και  $Y=y_1$  τότε έχω έξοδο:  $0.7/z_1$  και  $1/z_2$