Mining Data for Rules Underlying User Behavior

Swetha Kolalapudi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Understand what association rules are

Mine transaction data for association rules using the apriori algorithm

Implement the apriori algorithm on a bakery sales dataset

Recommendation Algorithms

Content Based Filtering

Find products with "similar" attributes

Collaborative Filtering

Find products liked by "similar" users

Association Rules Learning

Find "complementary" products

What items are bought together in a transaction?

What items are bought by a user in a short period of time?

Market basket analysis

Conditional Probabilities

Does a person buying increase the likelihood of buying?

Association rule

Mining for Association Rules

Transactions

Rules

Measuring the Strength of a Rule

What proportion of all transactions contain both items?

Support

Out of all transactions with how many include ?

$$P(4) = 5\%$$

Confidence

$$P(\sqrt{b}/[]) = \frac{P(\sqrt{b},])}{P(]}$$
Confidence

How much does the likelihood of buying increase when bought?

Lift

How much does the likelihood of buying increase when bought?

$$P(\frac{1}{10}) = 3\%$$
 $P(\frac{1}{10}) = 5\%$
Lift($\frac{1}{10} \Rightarrow \frac{1}{10}$) = $\frac{5\%}{3\%} = 1.67$

How much does the likelihood of buying increase when bought?

Support

Likelihood of all items in the rule being in a single transaction

Confidence

Likelihood of second item being bought once the first is bought

Lift

Change in likelihood of second item being bought once the first is bought

Mining for Rules Using the Apriori Algorithm

Mining for Association Rules

Brute Force

:

Find all possible N item sets x N

Catalog

Mining for Association Rules

Catalog

Apriori Algorithm

Prune the number of items in each stage

Use metrics to check how important an item set is

Support

Confidence

Find 1 item sets

Keep only those with a minimum support

Generate 2 item rules

Keep only those with a minimum confidence

Generate 3 item rules

Keep only those with a minimum confidence

Find 2 item sets

Use only the items left from previous step

Keep only item sets with minimum support

Find 3 item sets

Use only the items left from previous step

Keep only item sets with minimum support

Find 1 item sets

Keep only those with a minimum support

Find all possible 1 item sets

Compute the support of each set

2/5	1/5	1/5	1/5	2/5	3/5	4/5

Find all possible 1 item sets

Compute the support of each set

Drop item sets with support below a minimum threshold

Find 1 item sets

Keep only those with a minimum support

Find 2 item sets

Use only the items left from previous step

Keep only item sets with minimum support

Find all possible 2 item sets

Compute the support of each set

0/5 1/5 2/5 2/5 0/5 2/5

Find all possible 2 item sets

Compute the support of each set

Drop item sets with support below a minimum threshold

Find 1 item sets

Keep only those with a minimum support

Generate 2 item rules

Keep only those with a minimum confidence

Find 2 item sets

Use only the items left from previous step

Keep only item sets with minimum support

Find all possible 2 item sets

Compute the support of each set

Drop item sets with support below a minimum threshold

Drop item sets with support below a minimum threshold

From each item set, generate rules

Keep rules with a minimum confidence

2/2

Drop item sets with support below a minimum threshold

From each item set, generate rules

Keep rules with a minimum confidence

2/2

2/3

Drop item sets with support below a minimum threshold

Keep rules with a minimum confidence

Find 1 item sets

Keep only those with a minimum support

Generate 2 item rules

Keep only those with a minimum confidence

Find 2 item sets

Use only the items left from previous step

Keep only item sets with minimum support

Find 3 item sets

Use only the items left from previous step

Keep only item sets with minimum support

Find all possible 3 item sets

Compute the support of each set

0/5 1/5 0/5

Find all possible 3 item sets

Compute the support of each set

0/5 1/5 0/5

Drop item sets with support below a minimum threshold

Algorithm stops

Find 1 item sets

Keep only those with a minimum support

Generate 2 item rules

Keep only those with a minimum confidence

Generate 3 item rules

Keep only those with a minimum confidence

Find 2 item sets

Use only the items left from previous step

Keep only item sets with minimum support

Find 3 item sets

Use only the items left from previous step

Keep only item sets with minimum support

Demo

Find association rules in a bakery dataset

Association Rules for Bakery Items

Set up the data

Receipts and item meta data

Implement the Apriori Algorithm

Compute the support

Set up a function to compute support for any items

Summary

Understand what association rules are

Mine transaction data for association rules using the apriori algorithm

Implement the apriori algorithm on a bakery sales dataset