Home

EDA

Metrics

Prediction

Welcome to Home

Representative Maintenance Dashboard

Anticipating Failures Before They Happen

This project explores machine learning approaches for **predicting industrial machine failures** using a synthetic dataset. The goal is to:

- Predict if a machine will fail (binary classification)
- Identify the cause of failure (multiclass classification)

This can help reduce downtime, improve safety, and optimize maintenance schedules.

Dataset Overview

Click to view dataset structure and features

The dataset simulates real-world manufacturing conditions with 10,000 data points and 14 features. It includes sensor readings, operational settings, and failure indicators.

Features

Feature	Description
UID	Unique identifier (1 to 10,000).
Product ID	Product quality variant (L: low, 50%; M: medium, 30%; H: high, 20%) with serial number.
Air Temperature [K]	Random walk around 300 K (σ = 2 K).
Process Temperature [K]	Air temp + 10 K + small variation (σ = 1 K).
Rotational Speed [rpm]	Generated from power with noise.
Torque [Nm]	Normally distributed around 40 Nm (σ = 10), clipped to non-negative.
Tool Wear [min]	Indicates usage time; varies by quality level.
Machine Failure	Target label: 1 if any failure occurred, else 0.

▲ Failure Modes

Click to view failure conditions

A machine failure (label 1) occurs if **any** of the following independent conditions are met:

Failure Mode	Condition	Occurrences
Tool Wear Failure (TWF)	Tool wear exceeds 200–240 mins.	120
Heat Dissipation Failure (HDF)	Air-process temp difference < 8.6 K and speed < 1380 rpm.	115
Power Failure (PWF)	Power (Torque × Speed in rad/s) < 3500 W or > 9000 W.	95
Overstrain Failure (OSF)	Wear × Torque > threshold (varies by quality level).	98
Random Failure (RNF)	Random 0.1% probability.	5

Note: While the Machine Failure label is binary, the exact failure mode is also available as a multiclass label for root cause classification.

Q Use the sidebar to explore data, train models, and view metrics.