

例1. 当 I 为 $\triangle ABC$ 内心时,下证 M、N、I 共线.

$$\angle NIC = \angle ABI = \frac{1}{2} \angle ABC$$
, $\angle MIB = \angle ACI = \frac{1}{2} \angle ACB$
 $\angle BIC = 90^{\circ} + \frac{1}{2} \angle BAC$

$$\therefore \angle MIN = \angle NIC + \angle BIC + \angle MIB = 180^{\circ}$$

当 M、N、I 共线. 共线时,下证 I 为 $\triangle ABC$ 内心.

设
$$\angle MBI = \angle NIC = \alpha, \angle MIB = \angle NCI = \beta$$

$$\angle BMI = \angle BIC = \angle CNI = 180^{\circ} - \alpha - \beta$$

解一:
$$\angle AMN = \angle ANM = \frac{180^{\circ} - \angle BAC}{2} = 90^{\circ} - \frac{1}{2} \angle BAC$$

 $\therefore \angle BIC = 180^{\circ} - \left(90^{\circ} - \frac{1}{2} \angle BAC\right) = 90^{\circ} + \frac{1}{2} \angle BAC$

解二:
$$1, AB = AC$$

$$2, AB \neq AC$$
,不妨设 $AB > AC$,线段 AB 上取 C' 使得 $AC' = AC$.

则由对称性可知 MN // C'C.

$$\therefore \angle BC'C = \angle BMI = \angle BIC$$

$$:: B \setminus C \setminus I \setminus c'$$
 四点共圆.

又::
$$C'I = CI :: BI$$
 平分 $\angle C'BC :: I$ 为 $\triangle ABC$ 内心时.

思路三:证
$$\triangle BMI \hookrightarrow \triangle BIC$$

首先
$$\triangle BMI \hookrightarrow \triangle INC$$
, $\triangle ANM$ 为等腰三角形, 由三线合一知 $MI = NI$

$$\frac{BI}{IC} = \frac{BM}{IN} = \frac{BM}{IM}$$
 , 从而 $\triangle BMI \hookrightarrow \triangle BIC$.

解二:取T为角平分线与PQ的交点,在证明它在中位线上.

先证
$$\angle BTC = 90^{\circ}$$
.

作出内心I,则有

$$\angle PTB = 180^{\circ} - \angle PBT - \angle BPT = 180^{\circ} - \frac{1}{2} \angle ABC - \left(90^{\circ} + \frac{1}{2} \angle BAC\right)$$

= $\frac{1}{2} \angle ACB = \angle ACI$ 所以 I 、 T 、 Q 、 C 四点共圆.

$$\therefore \angle BTC = \angle IQC = 90^{\circ} \therefore \angle BTR = \angle TBR = \angle ABI$$
.

所以 CI 为 $\angle ECF$ 平分线. 下面证明 AI = AE = AF

$$\therefore \angle DOB = \frac{1}{2} \angle AOB = \angle ACB$$

:. DO // AC, 又因为 AD // OI, 所以 ADOI 为平行四边形,

所以AI = AE = AF, 从而I为内心.

例4. 过 E作 DE 的垂线交 AB、AC与 M、N.

作 $\triangle ABC$ 的 $\angle A$ 所对的旁切圆圆P.

则 $\triangle AMN$ +圆I与 $\triangle ABC$ +圆P关于点A位似,

从而 $E \setminus F$ 为对应点. $A \setminus E \setminus F$ 三点共线.

最后由旁切圆性质计算长度得到 $BF = CD = \frac{a+b-c}{2}$.

$$\overrightarrow{\text{m}} ID = r$$
, $MN = 2R$, $MB = MI$

$$Rt\triangle MBN \sim Rt\triangle IDA$$
, $therefore \frac{AI}{2R} = \frac{r}{MB}$.

整理后即可得 $d^2 = R^2 - 2Rr$.

 $R^2 - 2Rr = d^2 \ge 0$ 从而 $R^2 \ge 2rR$, 约掉 R , 即可得 $R \ge 2r$.

$$2S_{\triangle ABC} \leq \frac{1}{2} (a+b+c) R \not \boxtimes 2S_{\triangle ABC} = (a+b+c) r , \quad \text{ if } R \geq 2r .$$

例6. 解一: 延长 AI 交外接圆于 M,

若 BCPO 四点共圆,则圆心必为M点,由此可知

本题只需要证明: MB = MC = MP = MQ = MI.

利用 MI = MB = MC 和托勒密定理可得

 $BM \cdot AC + MC \cdot AB = BC \cdot AM$

将 AB + AC = 3BC 代入可得:

AM = 3BC继而可得 AI = 2MI.

作 $MN \perp IP$ 可得 $\frac{IN}{ID} = \frac{IM}{IA} = \frac{1}{2}$,于是 IN = NP, MP = MI

B、C、P、Q 共圆.

解二: 由 AB + AC = 3BC 可得 AD = AE = BC

延长 CP 交 AB 于 M, 延长 BQ 交 AC 于 N

利用例 4 结论可得 BM = AD = BC, CN = AE = BC

于是 $\angle BCP = 90^{\circ} - \frac{B}{2}$,

由对称性知弧 PQ=弧 DE,所以

$$\angle EQP = 90^{\circ} - \angle QEP = 90^{\circ} - \angle DPE = 90^{\circ} - \angle AIE = \frac{A}{2}$$

$$\angle EQP = 90^{\circ} - \angle QEP = 90^{\circ} - \angle DPE = 90^{\circ} - \angle AIE = \frac{A}{2}$$

 $\angle BQP = \angle BQE - \angle PQE = \angle BNC + 90^{\circ} - \frac{A}{2} = 90^{\circ} - \frac{A}{2} = 90^{\circ} - \frac{A}{2} = 90^{\circ} + \frac{B}{2}$

故 $\angle BCP + \angle BQP = 180^{\circ}$.

B、C、P、Q 共圆.

