北京师范大学 2021~2022 学年第一学期期末考试试卷 (A卷)

课程名称:

数学分析 (1)

任课教师姓名:

卷面总分:

100分

考试时长:

120 分钟

考试类别:

闭卷

院(系):_____

专业:___

年级:____

姓 名:_____ 学号:__

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															151	总分	
题号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	10	76.74	1
成绩																	7

- 一、计算题(共50分,每题5分)
 - 1. 求极限 $\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}\right)$.
- 2. 求极限 $\lim_{n\to\infty} \int_0^1 (1-x^2)^n dx$.
- 3. 求不定积分 $\int \sqrt{2+x-x^2} \, \mathrm{d}x$.
- 4. 求定积分 $\int_0^1 x^2 \arctan x \, dx$.
- 5. 求反常积分 $\int_0^1 \ln x \, \mathrm{d}x$.
- 6. 讨论函数 $f(x,y) = \begin{cases} \frac{xy^2}{x^2+y^2}, & x^2+y^2 \neq 0, \\ 0, & x^2+y^2 = 0, \end{cases}$ 在原点 (0,0) 处的连续性、偏导数的存在性以及可微性.
- 7. 求曲面 $3x^2 + y^2 z^2 = 27$ 在点 $p_0 = (3, 1, 1)$ 的切平面方程.
- 8. 设 f 处处连续, 且满足 $\int_0^x f(t-x) dt = e^{2x} 1$, 求 f(x).

9. 求
$$J = \iint_D (x^3 \sin y + x^2 y^2) dx dy$$
, 其中 D 是由 $y = x^2$, $y = 4x^2$, $y = 1$ 围成的区域.

10. 设
$$f(x) = \int_{x}^{x^{2}} \left(1 + \frac{1}{2t}\right)^{t} \sin \frac{1}{\sqrt{t}} dt$$
, 求 $\lim_{n \to \infty} f(n) \sin \frac{1}{n}$.

- 二、证明题 (共 50 分, 每题 10 分)
 - 11. 设函数 f 在 [0,2a] 连续, 且 f(0) = f(2a). 证明: 存在 $x_0 \in [0,a]$ 使得 $f(x_0) = f(x_0 + a)$.
- 12. 设函数 f(x) 在 x = 0 连续, 且 $\lim_{x \to 0} \frac{f(2x) f(x)}{x} = a$. 求证: f'(0) 存在, 且 f'(0) = a.
- 13. 设 f(x) 在 [a, b] 连续可微. 证明: $\lim_{t \to +\infty} \int_a^b f(x) \sin tx \, dx = 0$.
- 14. 设二元函数 $z(x,y)=\mathrm{e}^y\varphi\big(y\mathrm{e}^{\frac{x^2}{2y^2}}\big)$, 其中函数 φ 可微. 证明: $(x^2-y^2)\frac{\partial z}{\partial x}+xy\frac{\partial z}{\partial y}=xyz$.
- 15. 设 f(x) 是 [0,1] 上的连续正函数. 证明: $\forall n \in \mathbb{N}^+, \exists \theta(n) \in (0,1)$, 使得

$$\frac{1}{n} \int_0^1 f(x) \, \mathrm{d}x = \int_0^{\theta(n)} f(x) \, \mathrm{d}x + \int_{1-\theta(n)}^1 f(x) \, \mathrm{d}x,$$

并求 $\lim_{n\to\infty} n\theta(n)$.