UNIVERSIDADE DO OESTE DE SANTA CATARINA – UNOESC

ALEX BEVILAQUA

BRUNO CESCA

MATEUS CALZA

UNIDADE LÓGICA ARITMÉTICA COM FPGA

DESCRIÇÃO DE HARDWARE

JOAÇABA

2020

Objetivo

Utilizar a linguagem de descrição de hardware VHDL para desenvolver um circuito que implemente uma unidade lógica aritmética - ULA, com as operações de adição, subtração, AND e XOR.

Codificação

```
PACKAGE const IS

CONSTANT n : INTEGER := 8; -- bits

CONSTANT m : INTEGER := 2 ** n; -- total de combinacoes

CONSTANT p : INTEGER := n + 1; -- bits com sinalizacao

CONSTANT q : INTEGER := 2 ** p; -- total de combinacoes com sinalizacao

END const;
```

```
LIBRARY ieee;
USE work.const.ALL;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;
USE ieee.numeric_std.ALL;
```

```
ENTITY alu IS
   PORT (
    a : IN std_logic_vector(n - 1 DOWNTO 0);
    b : IN std_logic_vector(n - 1 DOWNTO 0);

   mode : IN INTEGER RANGE 0 TO 3; -- 0 (add), 1 (sub), 2 (and), 3 (xor)

   result : OUT std_logic_vector(n - 1 DOWNTO 0);
   carryBorrow : OUT BIT
   );
END alu;
```

```
ARCHITECTURE vhdl OF alu IS
  SIGNAL signedBits : std_logic_vector (p DOWNTO 0);
BEGIN
  PROCESS (a, b, mode)
   VARIABLE intResult : INTEGER;
   VARIABLE intA : INTEGER;
    VARIABLE intB : INTEGER;
  BEGIN
    IF mode = 0 THEN
      intA := to_integer(unsigned(a));
      intB := to_integer(unsigned(b));
      intResult := intA + intB;
     IF intResult < m THEN</pre>
        carryBorrow ≤ '0';
        result ≤ a + b;
     ELSE
       carryBorrow ≤ '1';
       result < "000000000";
      END IF;
      -- result ≤ a - b;
    ELSIF mode = 1 THEN
      intA := to_integer(unsigned(a));
      intB := to_integer(unsigned(b));
      intResult := intA - intB;
     IF intResult ≥ 0 THEN
       carryBorrow ≤ '0';
        result ≤ a - b;
     ELSE
        carryborrow ≤ '1';
        result < "00000000";
     END IF;
    ELSIF mode = 2 THEN
      result ≤ a AND b;
      carryBorrow ≤ '0';
    ELSIF mode = 3 THEN
      result ≤ a XOR b;
      carryBorrow ≤ '0';
    ELSE
      result < "00000000";
      carryBorrow ≤ '0';
    END IF;
  END PROCESS;
END vhdl;
```

Teste de mesa programado

```
LIBRARY ieee;
USE work.const.ALL;
USE ieee.std_logic_1164.ALL;
END alu_testbench;
ARCHITECTURE vhdl OF alu_testbench IS
     PORT (
      a : IN std_logic_vector(n - 1 DOWNTO 0);
b : IN std_logic_vector(n - 1 DOWNTO 0);
mode : IN INTEGER RANGE 0 TO 3;
        result : OUT std_logic_vector(n - 1 DOWNTO 0);
carryBorrow : OUT BIT
   END COMPONENT;
  FOR alu_0 : alu USE ENTITY work.alu;
  SIGNAL a : std_logic_vector(n - 1 DOWNTO 0);
  SIGNAL b : std_logic_vector(n - 1 DOWNTO 0);
SIGNAL mode : INTEGER RANGE 0 TO 3;
SIGNAL result : std_logic_vector(n - 1 DOWNTO 0);
   SIGNAL carryBorrow : BIT;
 alu_0 : alu PORT MAP(a \Rightarrow a, b \Rightarrow b, mode \Rightarrow mode, result \Rightarrow result, carryBorrow
⇒ carryBorrow);
  PROCESS
     TYPE pattern_type IS RECORD
      ivre partern_type IS RECORD

a : std_logic_vector(n - 1 DOWNTO 0);
b : std_logic_vector(n - 1 DOWNTO 0);
mode : INTEGER RANGE 0 TO 3;
result : std_logic_vector(n - 1 DOWNTO 0);
        carryBorrow : BIT;
     END RECORD:
      TYPE pattern_array IS ARRAY (NATURAL RANGE ⋄) OF pattern_type;
     CONSTANT patterns : pattern_array :=
     ("80811011", "80900111", 0, "80100018", '8'),
("8080111", "80900011", 1, "80900108", '8'),
("8080011", "80901011", 2, "80900011", '8'),
("80800001", "80900111", 3, "80900118", '8'),
("108000008", "10900000", 0, "809000008", '1')
     FOR i IN patterns'RANGE LOOP
        a ≤ patterns(i).a;
b ≤ patterns(i).b;
        mode ≤ patterns(i).mode;
WAIT FOR 1 ns;
         ASSERT result = patterns(i).result AND carryBorrow = patterns(i).carryBorrow
         REPORT "Ocorreu um problema! Onde A =
           & to_hstring(a)
           & to_hstring(b)
           & INTEGER'image(mode) SEVERITY error;
         ASSERT result = patterns(i).result
        REPORT "Resultado errado =
  & to_hstring(result)
           & ". resultado esperado = '
           & to_hstring(patterns(i).result) SEVERITY error;
         ASSERT carryBorrow = patterns(i).carryBorrow
        REPORT "Carry/borrow errado = & BIT'image(carryBorrow)
           & ", carry/borrow esperado = "
& BIT'image(patterns(i).carryBorrow) SEVERITY error;
     END LOOP
     ASSERT false REPORT "Fim do teste" SEVERITY note;
   END PROCESS:
```

Todos os códigos versionados podem ser encontrados em:

https://github.com/mateuscalza/fpga-alu

Pinout

Top View - Wire Bond Cyclone IV E - EP4CE115F29C7

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate	Differential Pa
_ a[7]	Input	PIN_Y23	5	B5_N2	PIN_N8	2.5 V (default)		8mA (default)		
_ a[6]	Input	PIN_Y24	5	B5_N2	PIN_L4	2.5 V (default)		8mA (default)		
a[5]	Input	PIN_AA22	5	B5_N2	PIN_R7	2.5 V (default)		8mA (default)		
a[4]	Input	PIN_AA23	5	B5_N2	PIN_K7	2.5 V (default)		8mA (default)		
_ a[3]	Input	PIN_AA24	5	B5_N2	PIN_L8	2.5 V (default)		8mA (default)		
_ a[2]	Input	PIN_AB23	5	B5_N2	PIN_R1	2.5 V (default)		8mA (default)		
a[1]	Input	PIN_AB24	5	B5_N2	PIN_L6	2.5 V (default)		8mA (default)		
_ a[0]	Input	PIN_AC24	5	B5_N2	PIN_P1	2.5 V (default)		8mA (default)		
b[7]	Input	PIN_AB26	5	B5_N1	PIN_L7	2.5 V (default)		8mA (default)		
b[6]	Input	PIN_AD26	5	B5_N2	PIN_P2	2.5 V (default)		8mA (default)		
_ b[5]	Input	PIN_AC26	5	B5_N2	PIN_M5	2.5 V (default)		8mA (default)		
_ b[4]	Input	PIN_AB27	5	B5_N1	PIN_J7	2.5 V (default)		8mA (default)		
_ b[3]	Input	PIN_AD27	5	85_N2	PIN_M3	2.5 V (default)		8mA (default)		
_ b[2]	Input	PIN_AC27	5	B5 N2	PIN J6	2.5 V (default)		8mA (default)		
_ b[1]	Input	PIN_AC28	5	B5_N2	PIN_L3	2.5 V (default)		8mA (default)		
b[0]	Input	PIN_AB28	5	85 N1	PIN_R2	2.5 V (default)		8mA (default)		
carryBorrow	Output	PIN_F19	7	87_N0	PIN_L2	2.5 V (default)		8mA (default)	2 (default)	
_ mode[1]	Input	PIN AB25	5	B5_N1	PIN_K8	2.5 V (default)		8mA (default)		
mode[0]	Input	PIN_AC25	5	85 N2	PIN_U3	2.5 V (default)		8mA (default)		
result[7]	Output	PIN_G21	7	87_N1	PIN_L1	2.5 V (default)		8mA (default)	2 (default)	
result[6]	Output	PIN_G22	7	B7_N2	PIN_J5	2.5 V (default)		8mA (default)	2 (default)	
result[5]	Output	PIN G20	7	87_N1	PIN_M1	2.5 V (default)		8mA (default)	2 (default)	
result[4]	Output	PIN_H21	7	87_N2	PIN_M7	2.5 V (default)		8mA (default)	2 (default)	
result[3]	Output	PIN_E24	7	87_N1	PIN_N3	2.5 V (default)		8mA (default)	2 (default)	
result[2]	Output	PIN_E25	7	87_N1	PIN_M8	2.5 V (default)		8mA (default)	2 (default)	
result[1]	Output	PIN_E22	7	87_N0	PIN_N4	2.5 V (default)		8mA (default)	2 (default)	
result[0]	Output	PIN_E21	7	87_N0	PIN_M2	2.5 V (default)		8mA (default)	2 (default)	

Simulações

		Value at	0 ps	160.0 ns		320.0 ns		- 4	480.0 ns		640.0 ns		800.0 ns				960.0 ns		
	Name	0 ps	0 ps																
9	v a	B 00000111								00000111			III						
in	a[7]	во																	
is.	a[6]	В 0					Ш		Ш			Ш			Ш				
in	a[5]	В 0																	
13	a[4]	80					Ш		Ш			Ш							
in	a[3]	80																1 18	
13	a[2]	B 1						Ш			Ħ	Ш	Ш		П	П	H		Т
in	a[1]	B 1				H	Ш	Ш			Ħ	Ш	Ш		П	11	T		T
is_	a[0]	B 1									Ħ	Ш	П			П			T
13	Y b	B 00011011							111	00011011									
is.	b[7]	B 0					Ш					Ш	Ш						
in	b[6]	В 0						Ш	Ш			Ш	Ш		Ш		11		
is.	b[5]	B 0					Ш					Ш	Ш			Ш			
in	b[4]	B 1		TIT	TITI		Ш	Ш			11	Ш	Ш	H	П	H	П		T
19	b[3]	B 1					Ш	Ш	Ш		Ħ	Ш	Ш		П	Ħ	T	П	Т
in.	b[2]	B 0						Ш											
19	b[1]	B 1						Ш			Ħ	Ш	Ш		H	11	11		Ť
in	b[0]	B 1		111			Ш				11	Ш	П			H	T		Т
out	carry8or	B 0		Ш			Ш		Ш			Ш							
9	∨ mode	B 10								1D				++-				11	
13	mod	B 1		Ш			П	Ш			Ħ	Ш	Ш		П	H		П	Т
in	mod	B 0																	
94	> result	B 00000011					Ш			00000011	11	Ш	111		H	Ħ	11		

Teste de mesa manual

A	A binário	В	B binário	Modo	Resultado	Resultado binário	Carry
27	11011	7	111	0 - ADD	34	100010	0
7	111	3	11	1 - SUB	4	100	0
7	111	27	11011	2 - AND	3	11	0
1	1	7	111	3 - XOR	6	110	0
128	10000000	128	10000000	0 - ADD	256	00000000	1

Arquivo com o RTL completo disponível em:

 $\underline{https://raw.githubusercontent.com/mateuscalza/fpga-alu/master/rtl.pdf}$