FYS-4411: Computational Physics II Project 2

Gullik Vetvik Killie Håkon Sebastian Bakke Mørk Jose Emilio Ruiz Navarro

May 13, 2015

1

1

Contents

1 Introduction

Theory

3

4

1

2

Results Discussion		2		
		2		
Introduction				
	Theory			
1.	(a)	brute force Metropolis Sampling/simple wavefunction		
	(b)	Closed form expression Helium Simple, Cusp conditions		
	(c)	Introduce importance sampling and blocking		
	(d)	Onebody density, with and without Jastrow		
	(e)	Vary energy using conjugate gradient method, or similar method to find best Replace hydrogen-like single particle wave function with 3-21G basis	β.	
2.	(a)	Function to calculate Slater Determinant, spin and derivatives of Jastrow factor		
	(b)	Compute one-body stuff		
3.	(a)	Compute the expectation value of $\left\langle \hat{H} \right\rangle$ vary R and β		
	(b)	Using optimal R and β calculate average r_{12}		
	(c)	Try the wavefunction with subtraction instead		
	(d)	Estimate binding energy for He_2 and Be_2		

3 Results

- 1. (a) brute force Metropolis Sampling/simple wavefunction
 - i. Energy Minimum
 - ii. Mean r_{12}
 - iii. Variance vs cycles
 - (b) Closed form expression Helium Simple
 - i. Compare CPU time vs non-closed form
 - (c) Introduce importance sampling and blocking
 - i. Study dependence on δt compare with results without importance sampling
 - ii. blocking as statistical analysis
 - (d) Onebody density, with and without Jastrow
 - i. One body density with and without Jastrow, compare with pure hydrogenic wave functions
 - (e) Vary energy using conjugate gradient method, or similar method to find best β . Replace hydrogen-like single particle wave function with 3-21G basis
 - i. Study dependence on δt compare with results without importance sampling
 - ii. blocking as statistical analysis
- 2. (a) Compute ground state energy for Neon and Beryllium: Include Parallized code, blocking, importance sampling, energy minimization using gradient conjugate method, 3-12G basis set
 - (b) Compute one body densities
- 3. (a) Plot $E_m in$ as a function of **R**
 - (b) Compute $\langle r_{12} \rangle$
 - (c) Repeat two previous with subtracting the wavefunctions

4 Discussion

- 1. (a) brute force Metropolis Sampling/simple wavefunction
 - i. Physical interpretation of α
 - (b) Closed form expression Helium Simple
 - (c) Introduce importance sampling
 - i. Study dependence on δt compare with results without importance sampling
 - (d) Onebody density, with and without Jastrow
 - i. Discuss with regards to pure hydrogenic wave functions, importance of correlations introduced by Jastrow factor
 - (e) Vary energy using conjugate gradient method, or similar method to find best β . Replace hydrogen-like single particle wave function with 3-21G basis
 - i. Study dependence on δt compare with results without importance sampling

- ii. blocking as statistical analysis
- $2. \ \ \, (a)$ Discuss the same as 1c for neon and beryllium
 - (b) Discuss the same as 1d for neon and beryllium
- 3. (a) Comment on $\langle r_{12} \rangle$
 - (b) Comment on subtracting the wavefunctions

References