Misclassification rate

Jiaxin Hu

June 24, 2021

This is a correction of Note 0228. We consider the model and optimization

$$\min_{\Theta_r} \sum_{k=1}^{K} \langle S_k, \Omega_k \rangle - \log \det(\Omega_k) + \lambda \sum_{r=1}^{R} |I_r| \|\Theta_r\|_1$$
s.t.
$$\Omega_k = \sum_{r=1}^{R} u_{kr} \Theta_r,$$

where $U = \llbracket u_{kr} \rrbracket \in \mathbb{R}^{K \times R}$ is a membership matrix with only one positive element in each row and others remain 0, and $I_r = \{k \in [K] : u_{kr} > 0\}$. Let $\Theta_r^*, U^*, u_{kr}^*$ denote the true parameters, and $\Sigma_r^* = (\Theta_r^*)^{-1}$ denote the "slopes" of the true covariance matrices. For sample covariance matrix S_k with $k \in I_r^*$, the corresponding precision matrix

$$\mathbb{E}[S_k] = \Sigma_k = (u_{kr}^* \Theta_r^*)^{-1} = 1/u_{kr}^* \Sigma_r^*.$$

Notations.

1. D_{ar} : the number of categories in true group a and estimated group r, i.e.,

$$D_{ar} = \sum_{k \in [K]} \mathbf{1} \{ u_{ka}^*, u_{kr} \neq 0 \}.$$

Correspondingly, the MCR is defined as $MCR(U, U^*) = \max_{r \in [R], a \neq a' \in [R]} \min\{D_{ar}, D_{a'r}\}$ and $I_{ar} = \{k \in [K] : u_{ka}^*, u_{kr} \neq 0\}.$

2. $\ell(\Theta_r, U)$: the population-based loss function, where

$$\ell(\Theta_r, U) = \sum_{r=1}^{R} \sum_{k \in I_r} \langle \Sigma_k, u_{kr} \Theta_r \rangle - \log \det(u_{kr} \Theta_r) + \|\Theta_r\|_1.$$

3. $\tilde{\Theta}_r(U)$: optimizer of $\ell(\Theta, U)$ with given membership U, where

$$\tilde{\Theta}_r(U) = \underset{\Theta}{\operatorname{arg\,min}} \sum_{k \in I_r} \langle \Sigma_k, u_{kr} \Theta_r \rangle - \log \det(u_{kr} \Theta_r) + \|\Theta_r\|_1. \tag{1}$$

Note that $\tilde{\Theta}_r(U)$ is a function of the given membership U. For simplicity, we use $\tilde{\Theta}_r$ denote the $\tilde{\Theta}_r(U)$, and $\tilde{\Theta}_r^*$ denote the optimizer of $\ell(\Theta, U^*)$ with given true membership U^* .

4. G(U): population-based objective function for the membership, where

$$G(U) = \ell(\tilde{\Theta}_r, U).$$

1 Without intercept case

Lemma 1. Suppose $MCR(U, U^*) \geq \epsilon$ and the minimal gap between $\{\Theta_r\}$ is $\delta > 0$. For $\lambda \leq \min_{k \in [K], a, r \in [R]} C \frac{\|\Delta_{k, ar}\|_F}{\sqrt{p}\tau^2}$ with $\Delta_{k, ar} = \frac{u_{kr}}{u_{ka}^*} \tilde{\Theta}_r - \Theta_a^*$, we have

$$G(U^*) - G(U) \le \epsilon \delta \left\{ -\frac{1}{8\tau^2} \delta + \left(\frac{1}{2\tau^2} e + \lambda \sqrt{p} \right) \right\},$$
 (2)

where $e = \max_{k \in I_{ar} \cup I_{a'r}} \left\| \left(1 - \frac{u_{kr}}{u_{ka}^*} \right) \tilde{\Theta}_r \right\|_F$ and δ is the minimal gap between different precision matrices. For $e \leq \frac{1}{4}\delta$, and

$$\lambda \leq \min \left\{ \frac{1}{\sqrt{p}} \left[\frac{1}{8\tau^2} \delta - \frac{1}{2\tau^2} e \right], \min_{k \in [K], a, r \in [R]} C \frac{\|\Delta_{k, ar}\|_F}{\sqrt{p}\tau^2} \right\},$$

the right hand side of inequality (2) is negative.

Remark 1. The Lemma 1 implies that when the membership U leads to a good estimation that $\max_{k \in I_{ar}, r \in [R]} 1 - \frac{u_{kr}}{u_{ka}^*}$ is small enough with a small λ , the true membership U^* is the minimizer of the population based objective function.

Proof. By the definition of $\ell(\Theta, U)$, we have

$$G(U) = \sum_{r=1}^{R} \left[\sum_{a=1}^{R} \sum_{k \in I_{ar}} \langle \Sigma_{k}, u_{kr} \tilde{\Theta}_{r} \rangle - \log \det(\tilde{\Theta}_{r}) + \lambda \left\| \tilde{\Theta}_{r} \right\|_{1} - \log(u_{kr}) \right],$$

$$= \sum_{r=1}^{R} \left[\sum_{a=1}^{R} \sum_{k \in I_{ar}} \langle \Sigma_{a}^{*}, \frac{u_{kr}}{u_{ka}^{*}} \tilde{\Theta}_{r} \rangle - \log \det\left(\frac{u_{kr}}{u_{ka}^{*}} \tilde{\Theta}_{r}\right) + \lambda \left\| \frac{u_{kr}}{u_{ka}^{*}} \tilde{\Theta}_{r} \right\|_{1} - \log(u_{ka}^{*}) + \lambda \left(1 - \frac{u_{kr}}{u_{ka}^{*}}\right) \left\| \tilde{\Theta}_{r} \right\|_{1} \right]$$

$$G(U^*) = \sum_{r=1}^R \left[\sum_{a=1}^R \sum_{k \in I_{ar}} \langle \Sigma_k, u_{ka}^* \tilde{\Theta}_a \rangle - \log \det(\tilde{\Theta}_a^*) + \lambda \left\| \tilde{\Theta}_a^* \right\|_1 - \log(u_{ka}^*) \right]$$
$$= \sum_{r=1}^R \left[\sum_{a=1}^R \sum_{k \in I_{ar}} \langle \Sigma_a^*, \tilde{\Theta}_a^* \rangle - \log \det(\tilde{\Theta}_a^*) + \lambda \left\| \tilde{\Theta}_a^* \right\|_1 - \log(u_{ka}^*) \right]$$

Consider the function

$$h_a(\Theta) = \langle \Sigma_a^*, \Theta \rangle - \log \det(\Theta) + \lambda \|\Theta\|_1$$
.

By the definition (1), we know that

$$\tilde{\Theta}_a^* = \operatorname*{arg\,min}_{\Theta} h_a(\Theta),$$

which follows by the fact that u_{kr}^* are given and f(x), f(x) + c share the same optimizer for any function f and constant c. Then, we have

$$G(U^{*}) - G(U) = \sum_{r=1}^{R} \left[\sum_{a=1}^{R} \sum_{k \in I_{ar}} \left(h_{a}(\tilde{\Theta}_{a}^{*}) - h_{a} \left(\frac{u_{kr}}{u_{ka}^{*}} \tilde{\Theta}_{r} \right) \right) - \lambda \left(1 - \frac{u_{kr}}{u_{ka}^{*}} \right) \|\tilde{\Theta}_{r}\|_{1} \right]$$

$$\leq \sum_{r=1}^{R} \left[\sum_{a=1}^{R} \sum_{k \in I_{ar}} \left(h_{a}(\Theta_{a}^{*}) - h_{a} \left(\frac{u_{kr}}{u_{ka}^{*}} \tilde{\Theta}_{r} \right) \right) - \lambda \left(1 - \frac{u_{kr}}{u_{ka}^{*}} \right) \|\tilde{\Theta}_{r}\|_{1} \right],$$

where the inequality follows by the fact that $h_a(\Theta_a^*) \ge h_a(\tilde{\Theta}_a^*)$ since Θ_a^* is the minimizer. By Taylor Expansion, we have

$$-\log \det(\Theta_a^* + \Delta) + \log \det(\Theta_a^*) \ge \frac{1}{4\tau^2} \|\Delta\|_F^2 - \langle \Sigma_a^*, \Delta \rangle,$$

where τ^2 is the largest singular value of Θ_a^* . Then, let $\Delta_{k,ar} = \frac{u_{kr}}{u_{ka}^*} \tilde{\Theta}_r - \Theta_a^*$. We have

$$\begin{split} h_{a}(\Theta_{a}^{*}) - h_{a}\left(\frac{u_{kr}}{u_{ka}^{*}}\tilde{\Theta}_{r}\right) - \lambda\left(1 - \frac{u_{kr}}{u_{ka}^{*}}\right) \left\|\tilde{\Theta}_{r}\right\|_{1} &\leq -\frac{1}{4\tau^{2}} \left\|\Delta_{k,ar}\right\|_{F}^{2} + \lambda\left(\left\|\Theta_{a}^{*}\right\|_{1} - \left\|\tilde{\Theta}_{r}\right\|_{1}\right) \\ &\leq -\frac{1}{4\tau^{2}} \left\|\Delta_{k,ar}\right\|_{F}^{2} + \lambda\sqrt{p} \left\|\Delta_{k,ar}\right\|_{F}. \end{split}$$

Let

$$\lambda \le \min_{k \in [K], a, r \in [R]} C \frac{\|\Delta_{k, ar}\|_F}{\sqrt{p}\tau^2},\tag{3}$$

for some constant C small enough. Then for all combination of k, a, r, we have

$$h_a(\Theta_a^*) - h_a\left(\frac{u_{kr}}{u_{ka}^*}\tilde{\Theta}_r\right) - \lambda\left(1 - \frac{u_{kr}}{u_{ka}^*}\right) \left\|\tilde{\Theta}_r\right\|_1 \le 0,$$

and thus

$$G(U^*) - G(U) \le 0.$$

Next, we derive a negative upper bound of $G(U^*) - G(U)$ related to the MCR.

By the definition of MCR, there exists a group r and corresponding a, a' such that $D_{ar}, D_{a'r} \ge \epsilon$. In the following proof, we consider only specific difference in the objective function in combinations (a, r) and (a', r). For the other combinations, the difference in objective is negative given λ in (3). Then, we rewrite the difference

$$G(U^*) - G(U) \le \sum_{k \in I_{ar}} \left[-\frac{1}{4\tau^2} \|\Delta_{k,ar}\|_F^2 + \lambda \sqrt{p} \|\Delta_{k,ar}\|_F \right] + \sum_{k \in I_{a'r}} \left[-\frac{1}{4\tau^2} \|\Delta_{k,a'r}\|_F^2 + \lambda \sqrt{p} \|\Delta_{k,a'r}\|_F \right].$$

Note that

$$\left\|\Delta_{k,ar}\right\|_{F} = \left\|\tilde{\Theta}_{r} - \Theta_{a}^{*} + \left(1 - \frac{u_{kr}}{u_{ka}^{*}}\right)\tilde{\Theta}_{r}\right\|_{F} \ge \left\|\Delta_{a}\right\|_{F} - \left\|\left(1 - \frac{u_{kr}}{u_{ka}^{*}}\right)\tilde{\Theta}_{r}\right\|_{F},$$

where $\Delta_a = \tilde{\Theta}_r - \Theta_a^*$, and then

$$-\frac{1}{4\tau^{2}} \|\Delta_{k,ar}\|_{F}^{2} + \lambda \sqrt{p} \|\Delta_{k,ar}\|_{F} \leq -\frac{1}{4\tau^{2}} \|\Delta_{a}\|_{F}^{2} + \left[\frac{1}{2\tau^{2}} \left\| \left(1 - \frac{u_{kr}}{u_{ka}^{*}}\right) \tilde{\Theta}_{r} \right\|_{F} + \lambda \sqrt{p} \right] \|\Delta_{a}\|_{F}.$$

Thus, we have

$$G(U^*) - G(U) \le \epsilon \left\{ -\frac{1}{4\tau^2} \left[\|\Delta_a\|_F^2 + \|\Delta_{a'}\|_F^2 \right] + \left(\frac{1}{2\tau^2} e + \lambda \sqrt{p} \right) \left[\|\Delta_a\|_F + \|\Delta_{a'}\|_F \right] \right\}$$

$$\le \epsilon \left\{ -\frac{1}{8\tau^2} \left[\|\Delta_a\|_F + \|\Delta_{a'}\|_F \right]^2 + \left(\frac{1}{2\tau^2} e + \lambda \sqrt{p} \right) \left[\|\Delta_a\|_F + \|\Delta_{a'}\|_F \right] \right\}$$

where $e = \max_{k \in I_{ar} \cup I_{a'r}} \left\| \left(1 - \frac{u_{kr}}{u_{ka}^*} \right) \tilde{\Theta}_r \right\|_F$, and the last inequality follows by the fact that $(x+y)^2 \le 2(x^2+y^2)$. Note that

$$\|\Delta_a\|_F + \|\Delta_{a'}\|_F \ge \|\Delta_a - \Delta_{a'}\|_F = \|\Theta_a^* - \Theta_{a'}^*\|_F \ge \delta,$$

where δ is the minimal gap between the true precision matrices. Hence, we have

$$G(U^*) - G(U) \le \epsilon \delta \left\{ -\frac{1}{8\tau^2} \delta + \left(\frac{1}{2\tau^2} e + \lambda \sqrt{p} \right) \right\}. \tag{4}$$

When $e \leq \frac{1}{4}\delta$ and

$$\lambda \leq \min \left\{ \frac{1}{\sqrt{p}} \left[\frac{1}{8\tau^2} \delta - \frac{1}{2\tau^2} e \right], \min_{k \in [K], a, r \in [R]} C \frac{\|\Delta_{k, ar}\|_F}{\sqrt{p}\tau^2} \right\},$$

the right hand side of inequality (4) is negative.

References