2024-2025 学年第二学期高等代数与解析几何

第二次月考试题

回忆: 鸢喙

- 1. (15分)
- (a) 设 V 是数域 P 上的 3 维线性空间, ξ_1, ξ_2, ξ_3 是一组基. 设 A 是 V 上的线性变换, 且

$$\mathcal{A}(\xi_1, \xi_2, \xi_3) = (\xi_1, \xi_2, \xi_3) \begin{pmatrix} 1 & 2 & 4 \\ 2 & 3 & 5 \\ 3 & 4 & 6 \end{pmatrix}$$

求 A 在基 $(\alpha_1, \alpha_2, \alpha_3) = (\xi_1 + \xi_2, \xi_2, -\xi_3)$ 下的矩阵.

(b) 设
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
, 求可逆矩阵 P 使 $P^{-1}AP$ 为对角阵.

- 2. (15 分) 设 \mathcal{A} 是 \mathbb{R}^m 上的线性变换, \mathcal{B} 是 \mathbb{R}^n 上的线性变换. 定义 Cartesian 积 $\mathcal{A} \times \mathcal{B} : \mathbb{R}^{m+n} \to \mathbb{R}^{m+n}$ 满足 $\mathcal{A} \times \mathcal{B} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \mathcal{A}x \\ \mathcal{B}y \end{pmatrix}, \forall x \in \mathbb{R}^m, y \in \mathbb{R}^n$. 证明:
 - (a) *A* × *B* 是线性变换;
 - (b) 若 $A \times B$ 可对角化, 则 A 与 B 都可对角化.
- 3. (15 分) 设 F[x] 表示数域 F 上一元多项式的全体, $D: F[x] \to F[x]$ 是 F[x] 上的线性变换, 其满足:
 - (a) D(x) = 1;
 - (b) $\forall f, g \in F[x], D(f \cdot g) = D(f) \cdot g + f \cdot D(g)$.

求证: $D(f) = f' \in f$ 的微商.

- 4. (15 分) 设 $A \in \mathbb{C}^{n \times n}$, 线性子空间 $V = L(E, A, A^2, ...)$, 其中 $E \not\in n$ 阶单位阵. 求证:
 - (a) $\dim V \leq n$;

- (b) 若 dimV=n-1, 则 A 存在特征值 $\lambda\in\mathbb{C},$ 使得特征子空间 W_{λ} 满足 dim $W_{\lambda}=2.$
 - 5. (15 分) 求该矩阵的行列式因子、不变因子、Jordan 标准形:

$$\begin{pmatrix} 0 & 4 & 0 \\ -1 & 4 & 0 \\ -1 & 2 & 2 \end{pmatrix}.$$

6. (15 分) 求 A¹⁰⁰, 其中:

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 0 \\ -2 & -1 & -1 \end{pmatrix}.$$

7. n 阶方阵 A 的特征值全为 1 或 -1, 求证 A 与 A^{-1} 相似.