

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일: 2021-11-09
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

단원 ISSUE

이 단원에서는 삼각비의 뜻에 대한 문제, 특수한 각의 삼각비의 **값에 대한 문제, 임의의 예각의 삼각비의 값에 대한 문제** 등이 자 주 출제되며 삼각비의 뜻을 정확하게 알고, 정사각형과 정삼각형 을 이용하여 특수한 각의 삼각비의 값을 구하는 과정을 이해하도 록 합니다. 또한 삼각비의 값의 대소 관계에 대한 문제는 틀리기 쉬우므로 반복학습이 필요합니다.

평가문제

[중단원 학습 점검]

다음 직각삼각형 ABC 에서 $\dfrac{\mathrm{tan}\,C}{\mathrm{sin}\,A}$ 의 값은?

③ 1

[중단원 학습 점검]

- **2.** $\angle B = 90$ ° 인 직각삼각형 ABC에서 $\tan A = 2\sqrt{2}$ 일 때, $\cos A \times \cos C$ 의 값은?
- $3 \frac{2\sqrt{2}}{9}$

[단원 마무리]

다음 직각삼각형 ABC에 대하여 다음 중에서 옳 은 것의 개수는?

<보기>

$$\neg. \sin B = \frac{\sqrt{15}}{5}$$

$$L. \cos B = \frac{\sqrt{10}}{5}$$

$$\sqsubset$$
. $\cos C = \frac{\sqrt{15}}{5}$

$$=$$
. $\tan C = \frac{\sqrt{6}}{3}$

1 0

2 1

- 3 2
- (4) 3

(5) 4

[단원 마무리]

다음 직각삼각형 ABC에서 $(\sin x + \sin y) \tan y$ 의 값은?

- ① $\frac{5+2\sqrt{5}}{15}$
- $3 \frac{5+4\sqrt{5}}{15}$
- $4 \frac{10+4\sqrt{5}}{15}$

[중단원 학습 점검]

5. 다음 직각삼각형 ABC에서 x^2-y^2 의 값은?

- ① 26
- 2 27
- ③ 28
- 4) 29
- **⑤** 30

[중단원 학습 점검]

6. 다음 그림과 같이 반지름의 길이가 1인 사분원을 이용하여 구한 $(\sin 54\degree + \cos 54\degree) \div \tan 54\degree$ 의 값은? (단, 소수점 아래 셋째 자리에서 반올림한다.)

- ① 1.01
- ② 1.02
- ③ 1.03
- **4** 1.04
- (5) 1.05

- [단원 마무리]
- **7.** (1+sin 60°)(1-sin 60°)×cos30°의 값은?
 - 1 0

- ② $\frac{1}{4}$
- $4) \frac{1}{8}$

- [단원 마무리]
- 8. 다음 그림과 같은 직각삼각형 ABC와 BCD에서 $\overline{\rm BD} = 3\sqrt{2} \ {\rm cm}$ 일 때, $\triangle {\rm ABC}$ 의 넓이는?

- ① $\frac{3}{2}$ cm²
- $3\sqrt{3} \text{ cm}^2$
- $4 \frac{3\sqrt{3}}{2} \text{ cm}^2$
- \odot 3 cm²

[단원 마무리]

9. 다음 그림과 같이 반지름의 길이가 1인 사분원에 대하여 다음 보기 중에서 옳은 것의 개수는?

< <u>보</u> フ

$$\neg . \sin x = \overline{BC}$$

$$\vdash$$
. $\tan x = \overline{DE}$

$$\subseteq$$
 sin $y = \overline{AB}$

$$= \cos y = \overline{BC}$$

$$\Box$$
. $\cos z = \overline{BC}$

ਖ.
$$\tan z = \overline{DE}$$

- 1 1
- 2 2

3 3

(4) 4

(5) 5

- [단원 마무리]
- **10.** 다음 직각삼각형 ABC에서 $\overline{BD} = 2\sqrt{3}$ 일 때, $\tan 15^{\circ}$ 의 값은?

- ① $2-\sqrt{3}$
- ② $2+\sqrt{3}$
- $34-2\sqrt{3}$
- $4+2\sqrt{3}$
- (5) $6-3\sqrt{3}$

[단원 마무리]

11. 다음 그림과 같이 절벽 위의 나무에 로프를 묶고 절벽을 타고 내려오고 있다. $\overline{AB} = 19 \text{ m}$, $\overline{\mathrm{BD}} = 38 \mathrm{m}$ $\angle BEA = 90^{\circ}$, $\angle BAE = 50^{\circ}$, $\angle BCD = 90^{\circ}$, $\angle CBD = 25^{\circ}$ **2** W, \overline{BC} **2 20** ___ BE**의 길이의** 차는? (단, $\sin 50^{\circ} = 0.77$, $\cos 25° = 0.91$ 로 계산한다.)

- ① 19.91 m
- ② 19.92 m
- ③ 19.93 m
- ④ 19.94 m
- ⑤ 19.95 m

[중단원 학습 점검]

12. 다음 <보기>의 식 중에서 옳은 것을 있는 대로 고른 것은?

- \neg . $\sin 30^{\circ} (\cos 30^{\circ} + \tan 60^{\circ}) = \frac{3\sqrt{3}}{4}$
- \vdash . $\sin 60^{\circ} \times \tan 30^{\circ} \cos 60^{\circ} = 0$
- \vdash . $\cos 0^{\circ} \div \sin 90^{\circ} + \sin 30^{\circ} \times \cos 60^{\circ} = \frac{1}{4}$
- ② L
- ③ ¬, ∟
- ④ ∟, ⊏
- ⑤ 7. ㄴ. ㄸ

실전문제

13. 직각삼각형 ABC에서 $\overline{AB} = 2$, $\overline{AC} = 6$ 일 때, sin A+tan C의 값은?

- $3 \frac{4\sqrt{2}}{3}$
- $4) \frac{11\sqrt{2}}{12}$

14. 그림은 $\angle B = 90^{\circ}$ 인 직각삼각형 ABC이다.

그림에 대한 설명으로 옳은 것만을 <보기>에서 있는 대 로 고른 것은?

$$\neg . \overline{AC} = 3$$

$$L. 3 = \sqrt{5} \sin C$$

$$\Box . \cos C - \frac{2}{3} = 0$$

$$\Box$$
. $\cos C - \frac{2}{3} = 0$ \Box . $\frac{\overline{AB}}{\overline{BC}} \tan A = 1$

- ① ¬, ⊏
- ② 7, 2
- ③ 7, ⊏, ≥
- ④ ∟, ⊏, ≥
- ⑤ 7, ∟, ⊏, ≥

15. $\angle B = 90\,^{\circ}$ 인 직각삼각형 ABC에서 $\sin A \times \tan C$

16. 직각삼각형 ABC 에서 $\overline{AB}=5$, $\overline{BC}=4$ 일 때, sin A-cos A 의 값은?

- ① $-\frac{\sqrt{41}}{41}$
- $\Im \frac{9\sqrt{41}}{41}$

(5) 0

17. 그림과 같이 반지름의 길이가 4인 사분원에서 $\angle COD = 60$ °이고 $\overline{OB} \perp \overline{CD}$ 일 때, 색칠한 부분의 넓이는?

- $3 \frac{8\pi 6\sqrt{3}}{3}$
- $48\pi 2\sqrt{3}$
- ⑤ $\frac{8\pi 4\sqrt{3}}{2}$

 $oldsymbol{18}$. 그림의 직각삼각형 x-y의 값을 삼각비의 표를 이용하여 구하면?

각도	사인(sinx)	코사인(cosx)	탄젠트(tanx)
36 °	0.5878	0.8090	0.7265

- $\bigcirc -0.2212$
- \bigcirc -2.212
- ③ 0.2212
- ② 2.212
- ⑤ 2.417

19. 삼각비에 대한 설명으로 옳은 것을 <보기>에서 있는 대로 고른 것은?

$$\neg. \tan 30^{\circ} = \frac{1}{\tan 60^{\circ}}$$

$$L. \sin 30^{\circ} + \sin 60^{\circ} = \sin 90^{\circ}$$

$$\sqsubset$$
. $\cos 30^{\circ} \times \tan 30^{\circ} = \sin 30^{\circ}$

$$\exists$$
. $\sin 60^{\circ} \div \cos 60^{\circ} = \tan 60^{\circ}$

$$\Box . \ \left(\frac{1}{2} - \sin 60^{\circ} \right) \! \left(\frac{1}{2} + \sin 60^{\circ} \right) \! = \! -\frac{1}{2}$$

20. 계산 결과가 나머지 넷과 <u>다른</u> 것은?

- ① $\sin 30^{\circ} + \cos 60^{\circ}$
- ② $\tan 30\,^{\circ} \times \tan 60\,^{\circ}$
- $3 \sin 45^{\circ} \times \cos 45^{\circ}$
- $4 2 \tan 45^{\circ} \times \cos 60^{\circ}$
- \circ $\sin 60^{\circ} \div \cos 30^{\circ}$

P

정답 및 해설

1) [정답] ⑤

[해설]
$$\overline{BC}=\sqrt{6^2-5^2}=\sqrt{11}$$
 이므로
$$\sin A=\frac{\sqrt{11}}{6},\ \tan C=\frac{5}{\sqrt{11}}$$
 따라서 $\frac{\tan C}{\sin A}=\frac{30}{11}$

2) [정답] ③

[해설]
$$\tan A = 2\sqrt{2} = \frac{\overline{BC}}{\overline{AB}}$$
가 되는 직각삼각형 ABC 를 그리면 다음 그림과 같이 $\overline{AB} = a$, $\overline{BC} = 2\sqrt{2}\,a$ 이다. (단, $a > 0$) $\overline{CA} = \sqrt{a^2 + (2\sqrt{2}\,a)^2} = 3a$ 이므로 $\cos A = \frac{a}{3a} = \frac{1}{3}$, $\cos C = \frac{2\sqrt{2}\,a}{3a} = \frac{2\sqrt{2}}{3}$ 따라서 $\cos A \times \cos C = \frac{2\sqrt{2}}{9}$

3) [정답] ⑤

[해설] $\overline{BC} = \sqrt{\sqrt{6}^2 + 3^2} = \sqrt{15}$ 이므로 $\angle B$ 와 $\angle C$ 의 삼각비의 값은 각각 다음과 같다.

$$\neg . \sin B = \frac{3}{\sqrt{15}} = \frac{\sqrt{15}}{5}$$

$$L. \cos B = \frac{\sqrt{6}}{\sqrt{15}} = \frac{\sqrt{10}}{5}$$

$$\Box \cdot \cos C = \frac{3}{\sqrt{15}} = \frac{\sqrt{15}}{5}$$

$$=$$
. $\tan C = \frac{\sqrt{6}}{3}$

따라서 옳은 것의 개수는 4이다.

4) [정답] ④

[해설] 직각삼각형 ABC에서

$$\overline{AB} = \sqrt{6^2 - 4^2} = \sqrt{20} = 2\sqrt{5}$$

이때
$$\angle x + \angle y = 90$$
 ° 이고.

$$\angle x + \angle A = 90^{\circ}$$
, $\angle y + \angle C = 90^{\circ}$

이므로
$$\angle A = \angle y$$
, $\angle C = \angle x$

따라서 $(\sin x + \sin y)\tan y = (\sin C + \sin A)\tan A$

$$= \left(\frac{2\sqrt{5}}{6} + \frac{4}{6}\right) \frac{4}{2\sqrt{5}} = \frac{10 + 4\sqrt{5}}{15}$$

5) [정답] ②

[해설]
$$x = 3\sqrt{6}\cos 30^\circ = 3\sqrt{6} \times \frac{\sqrt{3}}{2} = \frac{9\sqrt{2}}{2}$$

 $y = 3\sqrt{6}\sin 30^\circ = 3\sqrt{6} \times \frac{1}{2} = \frac{3\sqrt{6}}{2}$
따라서 $x^2 - y^2 = 27$

6) [정답] ①

(sin 54° = 0.81, cos 54° = 0.59, tan 54° = 1.38이므로 (sin 54° + cos 54°) ÷ tan 54° = (0.81 + 0.59) ÷ 1.38 =
$$\frac{70}{69}$$
 = 1.014492 ... 이 값을 소수점 아래 셋째 자리에서 반올림하면 1.01이다.

7) [정답] ⑤

[해설]
$$(1+\sin 60^\circ)(1-\sin 60^\circ) \times \cos 30^\circ$$

$$= \left(1+\frac{\sqrt{3}}{2}\right)\left(1-\frac{\sqrt{3}}{2}\right) \times \frac{\sqrt{3}}{2}$$

$$= \left(1-\frac{3}{4}\right) \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{8}$$

8) [정답] ④

[해설] 직각삼각형 BCD에서

$$\overline{BC} = 3\sqrt{2} \sin 45^{\circ} = 3\sqrt{2} \times \frac{\sqrt{2}}{2} = 3 \text{ (cm)}$$

직각삼각형 ABC에서 $\overline{AB} = \frac{\overline{BC}}{\tan 60^{\circ}} = \frac{3}{\sqrt{3}} = \sqrt{3} \text{ (cm)}$

따라서 구하는 넓이는
$$\frac{1}{2} \times \sqrt{3} \times 3 = \frac{3\sqrt{3}}{2} \text{ (cm}^2)$$

9) [정답] ⑤

[해설] ㄱ.
$$\sin x = \frac{\overline{BC}}{\overline{AC}} = \overline{BC}$$

$$\sqsubset$$
. $\sin y = \frac{\overline{AB}}{\overline{AC}} = \overline{AB}$

$$= . \cos y = \frac{\overline{BC}}{\overline{AC}} = \overline{BC}$$

$$\Box$$
. $\cos z = \cos y = \overline{BC}$

ਖ.
$$\tan z = \frac{\overline{AD}}{\overline{DE}} = \frac{1}{\overline{DE}}$$

따라서 옳은 것은 ㄱ, ㄴ, ㄷ, ㄹ, ㅁ의 5개다.

10) [정답] ①

[해설] △ABD에서

$$\angle ABD = 30^{\circ} - 15^{\circ} = 15^{\circ}$$

즉, ΔABD는 이등변삼각형이므로

$$\overline{AD} = \overline{BD} = 2\sqrt{3}$$

이때 직각삼각형 ADC에서

$$\overline{AC} = 2\sqrt{3} \sin 30^{\circ} = 2\sqrt{3} \times \frac{1}{2} = \sqrt{3}$$

$$\overline{DC} = 2\sqrt{3} \cos 30^{\circ} = 2\sqrt{3} \times \frac{\sqrt{3}}{2} = 3$$

따라서 직각삼각형 ABC에서

$$\tan 15^{\circ} = \frac{\overline{AC}}{\overline{BC}} = \frac{\overline{AC}}{\overline{BD} + \overline{DC}}$$
$$= \frac{\sqrt{3}}{2\sqrt{3} + 3} = 2 - \sqrt{3}$$

11) [정답] ⑤

[해설] 직각삼각형 ABE에서

$$\overline{BC} - \overline{EB} = 34.58 - 14.63 = 19.95 \text{ (m)}$$

12) [정답] ③

[해설]
$$\neg$$
. $\sin 30°(\cos 30° + \tan 60°)$

$$=\frac{1}{2}\biggl(\frac{\sqrt{3}}{2}+\sqrt{3}\biggr)=\frac{3\sqrt{3}}{4}\ ({\rm \tilde{A}})$$

$$\,$$
 L. \sin 60 $^{\circ}$ \times tan 30 $^{\circ}$ \cos 60 $^{\circ}$

$$=\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{3} - \frac{1}{2} = 0$$
 (참)

$$\sqsubset$$
. \cos 0 $^{\circ}$ \div \sin 90 $^{\circ}$ $+$ \sin 30 $^{\circ}$ \times \cos 60 $^{\circ}$

$$=1 \div 1 + \frac{1}{2} \times \frac{1}{2} = \frac{5}{4}$$
 (거짓)

따라서 옳은 것은 ㄱ, ㄴ이다.

13) [정답] ④

[해설]
$$\triangle$$
ABC에서 피타고라스 정리에 의해

$$\overline{AB}^2 + \overline{BC}^2 = \overline{AC}^2$$
에서 $2^2 + \overline{BC}^2 = 6^2$
 $\overline{BC}^2 = 32$ $\therefore \overline{BC} = 4\sqrt{2}$
따라서

$$\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{4\sqrt{2}}{6} = \frac{2\sqrt{2}}{3},$$

$$\tan C = \frac{\overline{AB}}{\overline{BC}} = \frac{2}{4\sqrt{2}} = \frac{\sqrt{2}}{4}$$

이므로

$$\sin A + \tan C = \frac{2\sqrt{2}}{3} + \frac{\sqrt{2}}{4} = \frac{11\sqrt{2}}{12}$$

14) [정답] ③

[해설] ㄱ.
$$\overline{AC} = \sqrt{(\sqrt{5})^2 + 2^2} = 3$$

L.
$$\sin C = \frac{\sqrt{5}}{3}$$
이므로 $\sqrt{5} = 3\sin C$

$$\sqsubset$$
. $\cos C = \frac{2}{3}$ 이므로 $\cos C - \frac{2}{3} = 0$

ㄹ.
$$\tan A = \frac{\overline{BC}}{\overline{AB}}$$
이므로
$$\frac{\overline{AB}}{\overline{BC}} \times \tan A = \frac{\overline{AB}}{\overline{BC}} \times \frac{\overline{BC}}{\overline{AB}} = 1$$

$$BC$$
 BC AB

15) [정답] ①

[해설]
$$\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{4}{5}$$
, $\tan C = \frac{\overline{AB}}{\overline{BC}} = \frac{3}{4}$ 이므로 $\sin A \times \tan C = \frac{4}{5} \times \frac{3}{4} = \frac{3}{5}$

16) [정답] ①

[해설]
$$\triangle ABC$$
에서 $\overline{AC} = \sqrt{5^2 + 4^2} = \sqrt{41}$

따라서
$$\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{4}{\sqrt{41}},$$

$$\cos A = \frac{\overline{AB}}{\overline{AC}} = \frac{5}{\sqrt{41}}$$
이므로
$$\sin A - \cos A = \frac{4}{\sqrt{41}} - \frac{5}{\sqrt{41}} = -\frac{1}{\sqrt{41}} = -\frac{\sqrt{41}}{41}$$

17) [정답] ③

[해설]
$$\triangle OCD$$
에서 $\overline{CD}=4\sin 60^{\circ}=4 imes\frac{\sqrt{3}}{2}=2\sqrt{3}$,

$$\overline{OD} = 4\cos 60^{\circ} = 4 \times \frac{1}{2} = 2$$

따라서 색칠한 부분의 넓이는

(부채꼴
$$OBC$$
의 넓이) $-\Delta OCD$

$$=\pi \times 4^2 \times \frac{60^{\circ}}{360^{\circ}} - \frac{1}{2} \times 2 \times 2\sqrt{3}$$

$$=\frac{8}{3}\pi-2\sqrt{3}$$

18) [정답] ④

[해설] 주어진 직각삼각형에서

$$x = 10_{\text{COS}}36^{\circ} = 10 \times 0.8090 = 8.090$$

$$y = 10\sin 36^{\circ} = 10 \times 0.5878 = 5.878$$

$$\therefore x - y = 2.212$$

19) [정답] ⑤

[해설] 기.
$$\tan 30^{\circ} = \frac{1}{\sqrt{3}}$$
, $\frac{1}{\tan 60^{\circ}} = \frac{1}{\sqrt{3}}$ 이므로

$$\tan 30^{\circ} = \frac{1}{\tan 60^{\circ}}$$

$$-1.8 \sin 30^{\circ} + \sin 60^{\circ} = \frac{1+\sqrt{3}}{2}, \sin 90^{\circ} = 10$$

로
$$\sin 30^{\circ} + \sin 60^{\circ} \neq \sin 90^{\circ}$$

$$\Box \cdot \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}} = \frac{1}{2} = \sin 30^{\circ}$$

$$= . \sin 60^{\circ} \div \cos 60^{\circ} = \frac{\sqrt{3}}{2} \times 2 = \sqrt{3}$$
,

$$\tan 60\,^{\circ}=\sqrt{3}$$
이므로 $\sin 60\,^{\circ}\div\cos 60\,^{\circ}=\tan 60\,^{\circ}$

$$\Box \cdot \left(\frac{1}{2} - \sin 60^{\circ}\right) \left(\frac{1}{2} + \sin 60^{\circ}\right)$$

$$\begin{split} &= \left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right) \!\! \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right) \!\! = \! \left(\frac{1}{2}\right)^2 - \! \left(\frac{\sqrt{3}}{2}\right)^2 \\ &= \frac{1}{4} - \frac{3}{4} \! = \! -\frac{1}{2} \end{split}$$

20) [정답] ③

[해설] ①
$$\sin 30^{\circ} + \cos 60^{\circ} = \frac{1}{2} + \frac{1}{2} = 1$$

②
$$\tan 30^{\circ} \times \tan 60^{\circ} = \frac{1}{\sqrt{3}} \times \sqrt{3} = 1$$

$$3 \sin 45^{\circ} \times \cos 45^{\circ} = \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} = \frac{1}{2}$$

$$4 2 \tan 45^{\circ} \times \cos 60^{\circ} = 2 \times 1 \times \frac{1}{2} = 1$$

(5)
$$\sin 60^{\circ} \div \cos 30^{\circ} = \frac{\sqrt{3}}{2} \div \frac{\sqrt{3}}{2} = 1$$