Project: Creditworthiness

By: Fairoza Amira Binti Hamzah

Step 1: Business and Data Understanding

Key Decisions:

Answer these questions

What decisions needs to be made?

Predict the list of creditworthiness of new loan applicants based on historical data of previous loan applicants' history, to approve the new applicants' loan.

- What data is needed to inform those decisions?
 - 1.Account-Balance
 - 2. Duration-of-Credit-Month
 - 3. Payment-Status-of-Previous-Credit
 - 4. Purpose
 - 5. Credit-Amount
 - 6. Value-Savings-Stocks
 - 7.Length-of-current-employment
 - 8.Instalment-per-cent
 - 9. Guarantors
 - 10. Duration-in-Current-address
 - 11. Most-valuable-available-asset
 - 12. Age-years
 - 13. Concurrent-Credits
 - 14. Type-of-apartment
 - 15. No-of-Credits-at-this-Bank
 - 16. Occupation
 - 17. No-of-dependents
 - 18. Telephone
 - 19. Foreign-Worker
- What kind of model (Continuous, Binary, Non-Binary, Time-Series) do we need to use to help make these decisions?

Binary – Creditworthy (approved) or non-creditworthy (rejected)

Step 2: Building the Training Set

Answer this question:

• In your cleanup process, which fields did you remove or impute? Please justify why you removed or imputed these fields. Visualizations are encouraged.

Credit-Application-Result	0
Account-Balance	0
Duration-of-Credit-Month	0
Payment-Status-of-Previous-Credit	0
Purpose	0
Credit-Amount	0
Value-Savings-Stocks	0
Length-of-current-employment	0
Instalment-per-cent	0
Guarantors	0
Duration-in-Current-address	344
Most-valuable-available-asset	0
Age-years	12
Concurrent-Credits	0
Type-of-apartment	0
No-of-Credits-at-this-Bank	0
Occupation	0
No-of-dependents	0
Telephone	0
Foreign-Worker	0

Impute the Age-years by using its median to 33 and *remove* the Duration-in-Current-a ddress as it has 344 null values.

Checking the number of unique values for each columns Credit-Application-Result 2

Credit-Application-Result	2
Account-Balance	2
Duration-of-Credit-Month	30
Payment-Status-of-Previous-Credit	3
Purpose	4
Credit-Amount	464
Value-Savings-Stocks	3
Length-of-current-employment	3
Instalment-per-cent	4
Guarantors	2
Duration-in-Current-address	4
Most-valuable-available-asset	4
Age-years	53
Concurrent-Credits	_1
Type-of-apartment	3

No-of-Credits-at-this-Bank	2	
Occupation	1	
No-of-dependents	2	
Telephone	2	
Foreign-Worker	2	

Removed the Concurrent-Credits and Occupation as it only has 1 value only.

Finding the correlation between all features to Credit-Application-Result.

Credit-Application-Result	1.000000
Account-Balance	0.316080
Duration-of-Credit-Month	0.202504
Credit-Amount	0.2019461
Most-valuable-available-asset	0.141332
Value-Savings-Stocks	0.133424
Payment-Status-of-Previous-Credit	0.096541
Purpose	0.090912
Length-of-current-employment	0.089383
Duration-in-Current-address	0.082826
Instalment-per-cent	0.062107
No-of-Credits-at-this-Bank	0.056549
Age-years	0.052914
Guarantors	0.044105
No-of-dependents	0.041048
Telephone	0.028971
Type-of-apartment	0.026516
Foreign-Worker	0.009186

Investigate the skewness of all columns.

Account-Balance	0.096400
Duration-of-Credit-Month	0.991000
Payment-Status-of-Previous-Credit	-0.687677
Purpose	1.257190
Credit-Amount	2.108522
Value-Savings-Stocks	0.983026
Length-of-current-employment	0.637223
Instalment-per-cent	-0.596533
Guarantors	2.962197
Duration-in-Current-address	1.566395
Most-valuable-available-asset	0.013780
Age-years	1.102038
Concurrent-Credits	0.000000
Type-of-apartment	-0.056348
No-of-Credits-at-this-Bank	0.585090
Occupation	0.000000
No-of-dependents	2.011101
Telephone	0.409478
Foreign-Worker	4.847285

Investigate the amount of data in each feature to further understand which features need to be removed.

Thus, below features are removed:

- Duration-in-Current-address
- Concurrent-Credits
- Occupation
- Telephone
- Foreign-Worker
- Guarantors
- No-of-dependents

Step 3: Train your Classification Models

Answer these questions for **each model** you created:

• Which predictor variables are significant or the most important? Please show the p-values or variable importance charts for all of your predictor variables.

=======================================					.=======		.========	====
Dep. Variable:	Credit-Applic	ation-I	Result	R-squared	uncentered):	0	.759
Model:			OLS	Adj. R-squa	red (uncen	tered):	0	.753
Method:	L	east So	quares	F-statistic	::		12	28.1
Date:	Mon,	21 Jur	n 2021	Prob (F-sta	tistic):		2.85e-	-142
Time:		15	:14:01	Log-Likelih	lood:		-270	0.10
No. Observations:			500	AIC:			5 (54.2
Df Residuals:			488	BIC:			63	L4.8
Df Model:			12					
Covariance Type:								
=======================================	========		coef	std err	t	P> t	[0.025	0.975]
Account-Balance			 1 2339	0.039	5 987	0 000	0 157	0.311
Duration-of-Credit				0.002				
Payment-Status-of-								
Purpose	ricvious crear			0.027			0.065	
Credit-Amount				9.31e-06			-3.83e-05	
Value-Savings-Stoch		(3.488		0.044	0.156
Length-of-current-		(0.0308	0.024	1.281	0.201	-0.016	0.078
Instalment-per-cent				0.018				0.023
Most-valuable-avail		-(0.0350	0.021	-1.695	0.091	-0.076	0.006
Age-years				0.002			0.001	0.008
Type-of-apartment		(0.0662	0.039	1.709	0.088	-0.010	0.142
No-of-Credits-at-th	his-Bank	(0.1393	0.044	3.185	0.002	0.053	0.225
Omnibus:		9.040	Durhi	======== n-Watson:		1.891		
Prob(Omnibus):		0.000		e-Bera (JB):				
Skew:		0.673				7.46e-10		
Kurtosis:		2.549	Cond.	•		1.09e+04		
Nulcosis.		2.543	COHO.			1.090704		

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 1.09e+04. This might indicate that there are strong multicollinearity or other numerical problems.

The predictor variables that are significant with P value <0.05 are:

- Account-Balance
- Payment-Status-of-Previous-Credit
- Purpose
- No-of-Credits-at-this-Bank
- Value-Savings-Stocks
- Credit-Amount
- Length-of-current-employment
- Most-valuable-available-asset
- Age-years
- Type-of-apartment
- Validate your model against the Validation set. What was the overall percent accuracy?
 Show the confusion matrix. Are there any bias seen in the model's predictions?

By using the variables with P value < 0.05, the results are as below. The data is divided to 7:3 ratio for training and validation data.

Method	Validation Accuracy
Logistic Regression	0.75
Decision Tree Classifier	0.62
Random Forest Classifier	0.76
AdaBoost Classifier	0.75
XGBoost	0.72

Below are the confusion matrix for each method: (0: Non-creditworthy, 1: creditworthy)

Yes, there are bias in the model as some of the data is not predicted correctly.

Step 4: Writeup

Answer these questions:

- Which model did you choose to use? Please justify your decision using all of the following techniques. Please only use these techniques to justify your decision:
 - Overall Accuracy against your Validation set
 - Accuracies within "Creditworthy" and "Non-Creditworthy" segments
 - ROC graph
 - Bias in the Confusion Matrices

The ROC graph for each model are as below.

Logistic Regression

Decision Tree Classifier

Random Forest Classifier

AdaBoost Classifier

XGBoost

The validation and test accuracy table for each model is as below.

Method	Validation Accuracy	Testing Accuracy
Logistic Regression	0.75	0.68
Decision Tree Classifier	0.70	0.59
Random Forest Classifier	0.74	0.66
AdaBoost Classifier	0.64	0.62
XGBoost	0.75	0.63

Confusion matrices for each model is as below.

Logistic Regression

Decision Tree Classifier

Random Forest Classifier

AdaBoost Classifier

XGBoost

From the results above, using Logistic Regression model can achieve higher accuracy and ROC.

How many individuals are creditworthy?
 448 people predicted to be creditworthy