Semaine 2 - Complexes et applications

Valentin De Bortoli email : valentin.debortoli@gmail.com

1 Quelques autres cosinus et sinus remarquables

- 1 Donner les solutions de $z^5 1 = 0$ sous forme trigonométrique.
- 2 Soit Q le polynôme tel que $z^5-1=(z-1)Q(z)$. À partir du changement de variable $\omega=z+\frac{1}{z}$ exprimer par radicaux les racines de Q.
 - **3** En déduire $\cos(\frac{2\pi}{5})$ et $\sin(\frac{2\pi}{5})$.

2 Inverse de la somme, somme des inverses

1 Résoudre dans \mathbb{C}^{*2} : $\frac{1}{a+b} = \frac{1}{a} + \frac{1}{b}$.

3 Recherche d'une factorisation

- 1 Résoudre dans \mathbb{C} : $z^8 + z^4 + 1 = 0$.
- **2** En déduire une factorisation de $z^8 + z^4 + 1 = 0$ en produit de polynômes de degré 2 à coefficients réels.

4 Produit de sinus

- 1 Résoudre dans \mathbb{C} l'équation $(z+1)^n = \exp(2i\alpha n)$ pour $n \in \mathbb{N}$.
- **2** Donner la valeur de $\prod_{k=0}^{n-1} \sin(\alpha + \frac{k\pi}{n})$.

5 Un peu de géométrie (1)

Soit $z \in \mathbb{C}$.

- 1 Donner des conditions sur z pour que le triangle (z, z^2, z^3) soit isocèle respectivement en z, z^2, z^3 .
- **2** En déduire une condition sur z pour que le triangle (z, z^2, z^3) soit équilatéral.

6 Un peu de géométrie (2)

Soit $z \in \mathbb{C}$.

1 Donner des conditions sur z pour que 1, z et z^3 soient alignés.

7 Un peu de géométrie (3)

Soit $z \in \mathbb{C}^*$.

1 Donner des conditions sur z pour que z, $\frac{1}{z}$ et z-1 soient situés sur un même cercle de centre O (où O est le centre du repère).

8 Une équation dans les complexes

Soit $n \in \mathbb{N}^*$ et $a \in]-\frac{\pi}{2}, \frac{\pi}{2}[\setminus \{\frac{\pi}{4}\}.$

1 Résoudre en
$$z: \left(\frac{1+iz}{1-iz}\right)^n = \frac{1+i\tan(a)}{1-i\tan(a)}$$
.

9 Théorème de Cantor-Bernstein

Soit A et B deux ensembles. Le but de cet exercice est de montrer que si il existe une injection (f_1) de A dans B et une injection (f_2) de B dans A alors il existe une bijection entre A et B. L'exercice se déroule en deux parties. Premièrement on va montrer que si C est une partie de A et f une injection de A dans C, alors A et C sont en bijection. Ensuite on montrera le théorème. On pose :

$$\begin{cases} D_0 = {}^c C \\ D_{n+1} = f(D_n) \text{ pour } n \in \mathbb{N}^* \end{cases}$$
$$D = \bigcup_{n=0}^{+\infty} D_n$$

- **1** Montrer que $f(D) \subset C \cap D$.
- 2 On pose g de A dans C telle que :

$$\begin{cases} g(x) = f(x) \text{ si } x \in D\\ g(x) = x \text{ si } x \in {}^{c}D \end{cases}$$

Montrer que g est injective.

- 3 Montrer que g est bijective et conclure pour la première partie.
- 4 En considérant $f_1 \circ f_2$, montrer le théorème de Cantor-Bernstein.

10 Composition, injectivité et surjectivité

Soit f une fonction de \mathbb{R} dans \mathbb{R} qui vérifie $\forall x \in \mathbb{R}$, f(f(f(x))) = f(x).

- 1 Montrer que on a f injective $\Leftrightarrow f$ surjective $\Leftrightarrow f$ bijective.
- **2** Exprimer alors f^{-1} en fonction de f.