Chapter 3

Determinants

Section 3.1

Introduction to Determinants

Orientation

Recall: This course is about learning to:

- Solve the matrix equation Ax = b
 We've said most of what we'll say about this topic now.
- ▶ Solve the matrix equation $Ax = \lambda x$ (eigenvalue problem) We are now aiming at this.
- Almost solve the equation Ax = b This will happen later.

The next topic is *determinants*.

Dan Margalit has written some notes which, in my opinion, explain the topic in a much better way than Lay does. (Both cover the same material.)

Prof. Margalit's notes are the primary reference for Chapter 3.

The Idea of Determinants

Let A be an $n \times n$ matrix. Determinants are only for square matrices.

The columns v_1, v_2, \ldots, v_n give you n vectors in \mathbb{R}^n . These determine a parallelepiped P.

Observation: the volume of P is zero \iff the columns are *linearly dependent* $(P \text{ is "flat"}) \iff$ the matrix A is not invertible.

The **determinant** of A will be a number $\det(A)$ whose absolute value is the volume of P. In particular, $\det(A) \neq 0 \iff A$ is invertible.

We already have a formula in the 2×2 case:

$$\det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

What does this have to do with volumes?

$$v_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

The area of the parallelogram is

$$\mathsf{base} \times \mathsf{height} = 2 \cdot 3 = \left| \mathsf{det} \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} \right|.$$

The area of the parallelogram is always |ad - bc|. If v_1 is not on the x-axis: it's a fun geometry problem!

Note: this shows $det(A) \neq 0 \iff A$ is invertible in this case. (The volume is zero if and only if the columns are collinear.)

Question: What does the sign of the determinant mean?

Here's the formula:

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \frac{a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}}{-a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}}$$

How on earth do you remember this? Draw a bigger matrix, repeating the first two columns to the right:

$$+ \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix} - \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix}$$

Then add the products of the downward diagonals, and subtract the product of the upward diagonals. For example,

$$\det\begin{pmatrix}5&1&0\\-1&3&2\\4&0&-1\end{pmatrix}=\begin{vmatrix}5&1&0&5\\-1&3&2&1\\4&0&4&0\end{vmatrix}=-15+8+0-0-0-1=-8$$

What does this have to do with volumes? Next time.

A Formula for the Determinant

When $n \ge 4$, the determinant isn't just a sum of products of diagonals. The formula is *recursive*: you compute a larger determinant in terms of smaller ones.

First some notation. Let A be an $n \times n$ matrix.

$$A_{ij} = ij$$
th minor of A

$$= (n-1) \times (n-1) \text{ matrix you get by deleting the } i \text{th row and } j \text{th column}$$
 $C_{ij} = (-1)^{i+j} \det A_{ij}$

$$= ij \text{th cofactor of } A$$

The signs of the cofactors follow a checkerboard pattern:

$$\begin{pmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{pmatrix}$$
 \pm in the ij entry is the sign of C_{ij}

Definition

The **determinant** of an $n \times n$ matrix A is

$$\det(A) = \sum_{i=1}^{n} a_{1j} C_{1j} = a_{11} C_{11} + a_{12} C_{12} + \cdots + a_{1n} C_{1n}.$$

This formula is called cofactor expansion along the first row.

A Formula for the Determinant 1×1 Matrices

This is the beginning of the recursion.

$$\det(a_{11}) = a_{11}.$$

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

The minors are:

$$A_{11} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = (a_{22}) \qquad A_{12} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = (a_{21})$$

$$A_{21} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = (a_{12}) \qquad A_{22} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = (a_{11})$$

The cofactors are

$$C_{11} = + \det A_{11} = a_{22}$$
 $C_{12} = - \det A_{12} = -a_{21}$ $C_{21} = - \det A_{21} = -a_{12}$ $C_{22} = + \det A_{22} = a_{11}$

The determinant is

$$\det A = a_{11}C_{11} + a_{12}C_{12} = a_{11}a_{22} - a_{12}a_{21}.$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

The top row minors and cofactors are:

The determinant is the same formula as before (as it turns out):

$$\det A = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$

$$= a_{11} \det \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} - a_{12} \det \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} + a_{13} \det \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$$

A Formula for the Determinant

Example

$$\det\begin{pmatrix} 5 & 1 & 0 \\ -1 & 3 & 2 \\ 4 & 0 & -1 \end{pmatrix} = 5 \cdot \det\begin{pmatrix} & & & & & & & \\ -1 & -3 & 2 \\ 4 & 0 & -1 \end{pmatrix} - 1 \cdot \det\begin{pmatrix} & & & & \\ -1 & 3 & 2 \\ 4 & 0 & -1 \end{pmatrix} + 0 \cdot \det\begin{pmatrix} & & & & \\ -1 & 3 & 2 \\ 4 & 0 & -1 \end{pmatrix}$$

$$= 5 \cdot \det\begin{pmatrix} 3 & 2 \\ 0 & -1 \end{pmatrix} - 1 \cdot \det\begin{pmatrix} -1 & 2 \\ 4 & -1 \end{pmatrix} + 0 \cdot \det\begin{pmatrix} -1 & 3 \\ 4 & 0 \end{pmatrix}$$

$$= 5 \cdot (-3 - 0) - 1 \cdot (1 - 8)$$

$$= -15 + 7 = -8$$

Recall: the formula

$$\det(A) = \sum_{j=1}^n a_{1j} C_{1j} = a_{11} C_{11} + a_{12} C_{12} + \cdots + a_{1n} C_{1n}.$$

is called **cofactor expansion along the first row.** Actually, you can expand cofactors along any row or column you like!

$$\det A = \sum_{j=1}^{n} a_{ij} C_{ij} \quad \text{for any fixed } i$$

$$\det A = \sum_{i=1}^{n} a_{ij} C_{ij} \quad \text{for any fixed } j$$

Try this with a row or a column with a lot of zeros.

Cofactor Expansion

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 5 & 9 & 1 \end{pmatrix}$$

It looks easiest to expand along the third column:

$$\det A = 0 \cdot \det \begin{pmatrix} \mathsf{don't} \\ \mathsf{care} \end{pmatrix} - 0 \cdot \det \begin{pmatrix} \mathsf{don't} \\ \mathsf{care} \end{pmatrix} + 1 \cdot \det \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ \hline 5 \end{pmatrix}$$
$$= \det \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = 2 - 1 = 1$$

$$\det\begin{pmatrix} 1 & 7 & -5 & 14 & 3 & 22 \\ 0 & -2 & -3 & 13 & 11 & 1 \\ 0 & 0 & -1 & -9 & 7 & 18 \\ 0 & 0 & 0 & 3 & 6 & -8 \\ 0 & 0 & 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix} = ?$$

$$A. -6 \quad B. -3 \quad C. -2 \quad D. -1 \quad E. 1 \quad F. 2 \quad G. 3 \quad H. 6$$

If you expand repeatedly along the first column, you get

$$1 \cdot \det \begin{pmatrix} -2 & -3 & 13 & 11 & 1 \\ 0 & -1 & -9 & 7 & 18 \\ 0 & 0 & 3 & 6 & -8 \\ 0 & 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix} = 1 \cdot (-2) \cdot \det \begin{pmatrix} -1 & -9 & 7 & -18 \\ 0 & 3 & 6 & -8 \\ 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$= 1 \cdot (-2) \cdot (-1) \cdot \det \begin{pmatrix} 3 & 6 & -8 \\ 0 & 1 & -11 \\ 0 & 0 & -1 \end{pmatrix} = 1 \cdot (-2) \cdot (-1) \cdot 3 \cdot \det \begin{pmatrix} 1 & -11 \\ 0 & -1 \end{pmatrix}$$
$$= 1 \cdot (-2) \cdot (-1) \cdot 3 \cdot 1 \cdot (-1) = -6$$

The Determinant of an Upper-Triangular Matrix

The computation in the poll works for any matrix that is *upper-triangular* (all entries below the main diagonal are zero).

Theorem

The determinant of an upper-triangular matrix is the product of the diagonal entries:

$$\det\begin{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix} = a_{11} a_{22} a_{33} \cdots a_{nn}.$$

The same is true for lower-triangular matrices. (Repeatedly expand along the first row.)

For 2×2 matrices we had a nice formula for the inverse:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} C_{11} & C_{21} \\ C_{12} & C_{22} \end{pmatrix}.$$

Theorem

This last formula works for any $n \times n$ invertible matrix A:

$$(3,1) \text{ entry} \begin{pmatrix} C_{11} & C_{21} & C_{31} & \cdots & C_{n1} \\ C_{12} & C_{22} & C_{32} & \cdots & C_{n2} \\ C_{13} & C_{23} & C_{33} & \cdots & C_{n3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & C_{3n} & \cdots & C_{nn} \end{pmatrix} = \frac{1}{\det A} (C_{ij})^T$$

Note that the cofactors are "transposed": the (i,j) entry of the matrix is C_{ji} .

The proof uses Cramer's rule. See Dan Margalit's notes on the website for a nice explanation.

A Formula for the Inverse

Compute
$$A^{-1}$$
, where $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

The minors are:

$$A_{11} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \qquad A_{12} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad A_{13} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$A_{21} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad A_{22} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \qquad A_{23} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$A_{31} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \qquad A_{32} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad A_{33} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

The cofactors are (don't forget to multiply by $(-1)^{i+j}$):

$$egin{array}{llll} C_{11} = -1 & C_{12} = 1 & C_{13} = -1 \ C_{21} = 1 & C_{22} = -1 & C_{23} = -1 \ C_{31} = -1 & C_{32} = -1 & C_{33} = 1 \ \end{array}$$

The determinant is (expanding along the first row):

$$\det A = 1 \cdot C_{11} + 0 \cdot C_{12} + 1 \cdot C_{13} = -2$$

A Formula for the Inverse

Example, continued

Compute
$$A^{-1}$$
, where $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

The inverse is

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & -1 \\ -1 & -1 & 1 \end{pmatrix}.$$

Check:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \cdot -\frac{1}{2} \begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & -1 \\ -1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

