PSC4375: Summarizing bivariate relationships: cross-tabs, scatterplots, and correlation

Week 4: Lecture 8

Prof. Weldzius

Villanova University

Slides Updated: 2025-02-10

Effect of assasination attempts

Effect of assasination attempts

```
library(tidyverse)
data(leaders, package = "qss")
head(leaders[,1:7])
##
            country leadername age politybefore
    vear
## 1 1929 Afghanistan Habibullah Ghazi
                                    39
## 2 1933 Afghanistan Nadir Shah 53
                                                -6
## 3 1934 Afghanistan Hashim Khan 50
                                                -6
## 4 1924 Albania
                               Zogu 29
                               Zogu 36
## 5 1931 Albania
                                                -9
                        Boumedienne
                                    41
                                                -9
## 6 1968
        Algeria
    polityafter interwarbefore
##
## 1 -6.000000
## 2 -7.333333
## 3 -8.000000
## 4 -9.000000
## 5 -9.000000
## 6 -9.000000
```

• With two categorical variables, we can create contingency tables

- With two categorical variables, we can create **contingency tables**
 - Also known as cross-tabs

- With two categorical variables, we can create contingency tables
 - Also known as cross-tabs
 - Rows are the values of one variable, columns the other

- With two categorical variables, we can create contingency tables
 - Also known as cross-tabs
 - Rows are the values of one variable, columns the other

```
leaders %>%
  group_by(civilwarbefore,civilwarafter) %>%
  count() %>%
  spread(civilwarafter, n)
```

• Quick summary how the two variables "go together"

Cross-tabs with proportions

```
leaders %>%
 group by(civilwarbefore,civilwarafter) %>%
  count() %>%
 ungroup() %>%
 mutate(prop = n/ sum(n)) %>%
 select(-n) %>%
 spread(civilwarafter, prop, drop = T)
## # A tibble: 2 x 3
    civilwarbefore '0' '1'
##
```

<int> <dbl> <dbl>

0 0.708 0.076

1 0.108 0.108

4 / 15

##

1

2

- Each point on the scatterplot (x_i, y_i)
- Use geom_point() function in ggplot

```
leaders[1, c("politybefore", "polityafter")]
```

```
## politybefore polityafter
## 1 -6 -6
```



```
leaders[2, c("politybefore","polityafter")]
```



```
leaders[3, c("politybefore", "polityafter")]
```



```
leaders[3, c("politybefore", "polityafter")]
```

```
##
     politybefore polityafter
   3
                             -8
```


How big is big?

- Would be nice to have a standard summary of how similar variable are
 - Problem: variables on different scales!
 - Needs a way to put any variable on common units
- z-score to the rescue!

z-score of
$$x_i = \frac{x_i - \text{mean of } x}{\text{standard deviation of } x}$$

Crucial property: z-scores don't depend on units

z-score of
$$(ax_i + b) = z$$
-score of x_i

Correlation

- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: when x_i is big, y_i is also big
 - Negative correlation: when x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line
- The technical definition of the correlation coefficient:

$$\frac{1}{n-1}\sum_{i=1}^{n}\left[\left(\text{z-score for }x_{i}\right)\times\left(\text{z-score for }y_{i}\right)\right]$$

Correlation intuition:

- Large values of X tend to occur with large values of Y
 - (z-score for x_i) \times (z-score for y_1) = (pos. num.) \times (pos. num.) = +
- Small values of X tend to occur with small values of Y
 - (z-score for x_i) \times (z-score for y_1) = (neg. num.) \times (neg. num.) = +
- If these dominate → positive correlation

Properties of correlation coefficient

- Correlation measures linear association.
- Interpretation:
 - Correlation is between -1 and 1
 - Correlation of 0 means no linear association
 - Positive correlations → positive associations
 - Negative correlations → negative associations
 - Closer to -1 or 1 means stronger association
- Order doesn't matter: cor(x,y) = cor(y,x)
- Not affected by changes of scale:
 - cor(x,y) = cor(ax+b, cy+d)
 - Celsius vs. Fahrenheit; dollars vs. pesos; cm vs. in.

Correlation in R

- Use the cor() function
- Missing values: set UPDATE!!! -Very highly correlated!