Analog Electronics

Shishir Mallick
Lecturer
Dept. of CSE
Bangladesh University

Inverting Amplifier

$$I_{in} = \frac{\text{Voltage across } R_i}{R_i} = \frac{V_{in} - V_A}{R_i} = \frac{V_{in} - 0}{R_i} = \frac{V_{in}}{R_i}$$

$$I_f = \frac{\text{Voltage across } R_f}{R_f} = \frac{V_A - V_{out}}{R_f} = \frac{0 - V_{out}}{R_f} = \frac{-V_{out}}{R_f}$$
Since $I_f = I_{in}$, $-\frac{V_{out}}{R_f} = \frac{V_{in}}{R_i}$

$$Voltage gain, A_{CL} = \frac{V_{out}}{V_{in}} = -\frac{R_f}{R_i}$$

Determine the output voltage for the circuit of Fig. 25.50.

Determine the output voltage for the circuit of Fig. 25.50.

$$A_{CL} = -\frac{R_f}{R_i} = -\frac{200 \text{ k}\Omega}{2 \text{ k}\Omega} = -100$$

Output voltage, $v_{out} = A_{CL} \times v_{in} = (-100) \times (2.5 \text{ mV}) = -250 \text{ mV} = -0.25 \text{ V}$

Non-inverting Amplifier

Example 25.32. Calculate the output voltage from the noninverting amplifier circuit shown in Fig. 25.57 for an input of 120 μ V.

Example 25.32. Calculate the output voltage from the noninverting amplifier circuit shown in Fig. 25.57 for an input of 120 μ V.

Voltage gain,
$$A_{CL} = 1 + \frac{R_f}{R_i} = 1 + \frac{240 \text{ k}\Omega}{2.4 \text{ k}\Omega} = 1 + 100 = 101$$

Output voltage, $v_{out} = A_{CL} \times v_{in} = (101) \times (120 \text{ \muV}) = 12.12 \text{ mV}$

Summing Amplifier

$$I_{f} = I_{1} + I_{2} + I_{3}$$

$$V_{1} \stackrel{I_{1}}{\longrightarrow} R_{1}$$

$$V_{2} \stackrel{I_{2}}{\longrightarrow} R_{2}$$

$$V_{3} \stackrel{I_{3}}{\longrightarrow} R_{3}$$

$$V_{0}$$

$$V_{0}$$

Output voltage,
$$V_{out} = -I_f R_f = -R_f (I_1 + I_2 + I_3)$$

= $-R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$

$$V_{out} = -R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$

If $R_1 = R_2 = R_3 = R$, then, we have,

$$V_{out} = -\frac{R_f}{R}(V_1 + V_2 + V_3)$$

Determine the output voltage for the summing amplifier shown

Determine the output voltage for the summing amplifier shown

Solution. $R_f = 1 \text{ k}\Omega$ and $R_1 = R_2 = R_3 = R = 10 \text{ k}\Omega$. Therefore, gain of the amplifier $= -R_f/R = -1 \text{ k}\Omega/10 \text{ k}\Omega = -1/10$.

$$V_{out} = -\frac{R_f}{R}(V_1 + V_2 + V_3) = -\frac{1 \text{ k}\Omega}{10 \text{ k}\Omega}(10 + 8 + 7) = -2.5 \text{ V}$$

For the following op amp circuit, find the voltage gain (v_0/v_i) where R_1 = 10 K Ω , R_2 = 10 K Ω and R_3 = 100 K Ω .

OP-Amp Integrator

$$i = i_c$$
.

Now

$$i = \frac{v_i - 0}{R} = \frac{v_i}{R}$$

Also voltage across capacitor is $v_c = 0 - v_o = -v_o$

$$i_c = \frac{C \, dv_c}{dt} = -C \frac{dv_o}{dt}$$

From eqs. (i) and (ii),
$$\frac{v_i}{R} = -C \frac{dv_o}{dt}$$
or
$$\frac{dv_o}{dt} = -\frac{1}{RC} v_i$$

To find the output voltage, we integrate both sides of eq. (iii) to get,

$$v_o = -\frac{1}{RC} \int_0^t v_i \, dt$$

OP-Amp Differentiator

$$i_R = \frac{0 - v_o}{R} = -\frac{v_o}{R}$$
 and $v_c = v_i - 0 = v_i$

$$i_c = C \frac{dv_c}{dt} = C \frac{dv_i}{dt}$$

$$-\frac{v_o}{R} = C \frac{dv_i}{dt}$$

$$v_o = -RC \frac{dv_i}{dt}$$