Stochastik 1 Hausaufgaben Blatt 11

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: January 29, 2025)

Problem 1. In einer Meinungsumfrage soll die Zustimmung oder Ablehnung eines generellen Tempolimits in der Bevölkerung geschätzt werden. Dazu werden n zufällig ausgewählte Personen befragt. Dabei wird S_n/n , die relative Anzahl der Befürworter unter den befragten Personen, als Schätzung für die Zustimmungsrate p verwendet.

- (a) Begründen Sie, weshalb S_n näherungsweise als binomialverteilt, $S_n \sim \text{Bin}(n,p)$, angenommen werden kann.
- (b) Verwenden Sie den Satz von de Moivre-Laplace, um folgende Approximation herzuleiten:

$$\mathbb{P}\left(\left|\frac{S_n}{n}-p\right|>\varepsilon\right)\approx 2\left(1-\Phi\left(\frac{\sqrt{n}\varepsilon}{\sqrt{p(1-p)}}\right)\right),$$

wobei Φ die Verteilungsfunktion der Standard-Normalverteilung bezeichnet.

- (c) Wie viele Personen sollte ein Meinungsforschungsinstitut befragen, um sicherzustellen, dass mit einer Wahrscheinlichkeit von mindestens $\alpha \in (0,1)$ die relative Anzahl der Befürworter nicht mehr als 5% von der wahren Zustimmungsrate p abweicht?
- **Problem 2.** (a) Seien X_1, \ldots, X_n identisch verteilte, reellwertige Zufallsvariablen (nicht notwendigerweise unabhängig) mit $\mathbb{E}[X_1^2] < \infty$. Angenommen, es existiert ein festes $h \geq 1$, so dass $\operatorname{Cov}(X_j, X_k) = 0$ für $|j k| \geq h$. Zeigen Sie unter dieser Annahme für $S_n = \sum_{i=1}^n X_i$ die Abschätzung

$$Var(S_n) \leq 2nh Var(X_1).$$

(b) Folgern Sie, unter Verwendung von (a), dass auch unter diesen Annahmen ein schwaches Gesetz der großen Zahlen erfüllt ist.

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de