ECE 5730 Memory Systems Spring 2009

Redundant Array of Inexpensive (Independent) Disks (RAID)

Announcements

- No office hours today
- Make-up class #2
 - Thursday, April 30, 6:00-7:15pm, PH 403
 - Pizza and soda
- Exam II
 - May 7, 7:00-10:00pm, Hollister 314
 - Covers material from 3/10-4/28 but excluding 4/22 (Lectures 14-21, 23-24)
- Final report (15-25 double-spaced pages)
 - Email Word or PDF to me by 11:59pm on May 1
 - 20 points off final project grade if late

Defective Sectors and Wasted Space

- answer from Spencer

 Since we waste space at the end of tracks, map that wasted space where the defects are found

- i.e. remap drive to consider the defects as "spare" secolor

- Theoretically doable but adds complexity
 - Unique formatting info would be required for every track on the drive
 - Amount of wasted space varies from track to track within a zone
 - Size of the defect must be determined
 - too annoying for industry

Storage Subsystems ("RAID")

 Multiple disk drives managed as a single unit to improve performance and reliability

a re-mapped

Appear as one or more logical drives to the user

[24.10]

Why Storage Subsystems ("RAID")?

Performance

(RHIOI

- Read performance improves by duplicating,
 alternating, or distributing reads among N drives
 - Writes must occur to duplicate drives and may become a bottleneck

Reliability

- Redundancy permits the system to remain operational upon drive failures (w/ degraded performance)
- Data can be copied from the redundant drive(s) to a replacement while the system remains operational

RAID Operating Modes

- Normal mode
 - All drives are operational
- Degraded mode
 - One (two in some RAIDs) drive is out of service
 - System is still operational
 - performence suffers
- Rebuild mode
 - Replacement disk is being populated with data
 - replaced failed disk, rebuilding from parity

Data Striping (RAID 0)

- User data is interleaved across a group of drives
- Improves performance by distributing the load among the drives
 - parallel access, more bandworth
- No protection against disk failures (misnomer)
 - silly to call it RAID

[24.1] Lecture 24: 7

Data Mirroring

 Two copies of the same data are kept on two different drives

```
- or more
```

Data still available in the case of a disk failure

Writes must be performed to both drives

```
- done in parellel
```

Reads can be performed to one or both drives

```
- parallelism
```

Mirroring Alternatives

· Basic mirroring (RAID 1) > straight duplication in down pairs

Chained docustor mirroring a gent by

Chained decluster mirroring > offeet by b

if dishe 2 joes down, dish I and 3 have the data, spreading out the data locations for reliability

[24.2,24.3]

Lecture 24: 9

Mirroring Alternatives

Interleaved decluster mirroring

Lecture 24: 10

Tif we lose disk 2, Bis distributed occapitall drus

How Do We Handle Reads?

Send reads to both drives

- whichever comes back first wins

Alternate reads between the two drives

-load balanery

- Send reads for 1/2 address space to one drive, and the other 1/2 to the other drive
 - Reduces average seek distance for cylinder format
 - May create load imbalance

- may have heavy access on 1/2 of the address space

 Maintain a single queue and schedule the next read based on which drive is available

- schedule accesses (more complexity (overhead)

Mirroring Performance

- Load balance in normal mode
 - Basic the worst, interleaved decluster the best

2 daves sorly

full distribution

- Degraded operation
 - Basic: one drive has to carry the load
 - Chained decluster: two drives carry the load, and controller can offset load even further
 - Interleaved decluster: N-1 drives to carry the load
- Rebuild
 - Similar to degraded

Mirroring Reliability

- Tolerates a single drive failure among N drives
- Mean time to data loss (MTTDL) depends on
 - Mean time to failure (MTTF) of each drive doesn't change
 - Mean time to repair (MTTR) a failed drive how long to
 - Type of mirroring

- replace/rebuil
- Basic MTTF calculations (assuming CFR)
 - MTTF of one drive = MTTF
 - MTTF of M drives = MTTF/M
 - Mean time to one failure in M drives, then another specific drive failing = (MTTF/M)×(MTTF/MTTR)

Mirroring Reliability

• Basic Mean time to data loss $MTTDL = \frac{MTTF^2}{M \times MTTR}$

Chained decluster

$$MTTDL = \frac{MTTF^2}{2M \times MTTR}$$

Interleaved decluster

$$MTTDL = \frac{MTTF^{2}}{M \times (M-1) \times MTTR}$$

Bit-Level Striping + ECC (RAID 2)

Each disk holds one of the data + ECC bits

- Example
 - (7,4) ECC code has 4 data bits + 3 ECC bits
 - 4 data drives and 3 redundant (ECC) drives
- ECC generated on writes, checked on reads

Dand correct

Provides online correction of single drive error

Not used due to lower cost alternatives

```
-proposed in a paper, never used
```

Byte-Level Striping + Parity (RAID 3)

- Striped data drives + 1 parity drive
- Parity generated on writes, checked on reads
- Since faulty drive is known, can correct error from parity information
 - Written info: P = A ⊕ B ⊕ C ⊕ D ⊕ E ← 5 data doves
 - If B bad, can recover: B = P ⊕ A ⊕ C ⊕ D ⊕ E
- Good for sequential, bad for random accesses

Block-Level Striping + Parity (RAID 4)

- Striping unit = one or more sectors
- Parity generated on writes, checked on reads
- Can perform writes to individual drives
 - Written info: P = A \oplus B \oplus C \oplus D \oplus E \oplus again can reconstruct
 - If only C is to be written: P' = P⊕ C⊕ C'

only have to read old values of P and C

Parity drive is a bottleneck

BL Striping + Dist Parity (RAID 5)

Parity is distributed evenly among the drives

Eliminates parity drive bottleneck

[24.6] - better performence

BL Striping + 2 Dist Parity (RAID 6)

Corrects two errors with a 2nd parity calculation

Guards against a 2nd error during rebuild

Normal Mode Performance

Reads

- Mirrored performs the best
- RAID 3 good for large sequential requests
- RAID 5/6 same as JBODs (Just a Bunch of Disks)

Writes

- Mirrored requires same data be written to both disks
- RAID 3 performs same as for reads
- RAID 5 requires 2 RMWs for small writes
- RAID 6 requires 3 RMWs for small writes

Read Mostry Wrik

I read 2 drus to get party why

then write

Normal Mode Performance

Assume random workload of R reads and W small writes with N data disks

	JBOD	Mirroring	RAID-3	RAID-5	RAID-6
Total number of disks	N	2N	N + 1	N + 1	N + 2
Workload per disk	(R + W)/N	(R + 2W)/2N	R + W	(R + 2RMW)/(N + 1)	(R + 3RMW)/(N + 2)

[24.1] Lecture 24: 21

Degraded Mode Performance

Reads from failed drive

- Mirroring: discussed earlier
- RAID 3: data reconstructed on the fly
- RAID 5: have to read every disk to reconstruct data
- RAID 6: have to read N+1 disks to reconstruct single error, N+2 disks for double

Writes to failed drive

- Mirroring: single write to good drive
- RAID 3: writes done as usual
- RAID 5/6: have to read every disk to create parity for every write

Rebuild Mode Performance

- Mirroring: data copied from disk(s)
- RAID 5/6: have to read entire content of all disks
 - Done in small chunks to allow servicing user requests

RAID 3/5/6 Reliability

RAID 3/5

$$MTTDL = \frac{MTTF^{2}}{(N+1) \times N \times MTTR}$$
 longer than for mirroring
$$MTTDL = \frac{MTTF^{3}}{(N+2) \times (N+1) \times N \times MTTR^{2}}$$
 number of data disks

RAID Reliability Comparison

Assume

- MTTF = 1 million hours
- $-MTTR_{mirror} = 1 hour$
- MTTR_{RAID 5/6} = 4 hours

	Basic Mirroring (RAID-1)	Chained Decluster Mirroring	Interleave Decluster Mirroring	RAID-4/5	2+en
Equal total number of disks = 8	1.25 × 10 ⁵	6.25 × 10 ⁴	1.79 × 10 ⁴	4.46 × 10 ³	1.86 × 10 ⁸
	(4 data	(4 data	(4 data	(7 data	(6 data
	disks)	disks)	disks)	disks)	disks)
Equal number of data disks = 4	1.25 × 10 ⁵	6.25 × 10 ⁴	1.79 × 10 ⁴	1.25 × 10 ⁴	5.21 × 10 ⁸
	(8 total	(8 total	(8 total	(5 total	(6 total
	disks)	disks)	disks)	disks)	disks)

BUT, a lot more overhead with mirroring

[24.2] Lecture 24: 25

Hierarchical RAID

Different RAID levels can be combined

Examples

RAID 01: striping on top of mirroring

RAID 10: mirroring on top of striping

RAID 15: mirroring on top of BL striping + dist parity

Next Time

Disk Case Study
Disk Power Management