

Contents lists available at ScienceDirect

Sensors and Actuators: B. Chemical

journal homepage: www.elsevier.com/locate/snb

Insight into mechanism of temperature-dependent limit of NO_2 detection using monolayer MoS_2

Tri Khoa Nguyen a,b, Sangmin Jeong a, Jong-Sang Youn b, Seungbae Ahn d, Ki-Hun Nam e,f, Cheol-Min Park e,f, **, Ki-Joon Jeon a,g, *

- ^a Department of Environmental Engineering, Inha University, Incheon, 22212, Republic of Korea
- ^b NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ho Chi Minh City, Viet Nam
- ^c Department of Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro Bucheon-si, Gyeonggi-do, Republic of Korea
- ^d Department of Nanoengineering, Center for Memory and Recording Research, Calibaja Center for Resilient Materials and Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- e School of Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea
- f Department of Energy Engineering Convergence, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea
- g Program in Environmental and Polymer Engineering, Inha University, Incheon, 22212, Republic of Korea

ARTICLE INFO

Keywords: Monolayer MoS₂ Gas sensor Thermal treatment In-situ Raman spectroscopy Defect generation Detection limit

ABSTRACT

Recently, many literatures report on the excellent performance of MoS_2 -based NO_2 sensing, however, lacking the study on its thermal stability. Here, the insight mechanism in NO_2 sensor reactivity of monolayer MoS_2 at different temperatures from 25 to 200 °C was investigated. The relative effect of the morphological properties of the sensor and gas sensor reactivity at different temperatures was observed using in situ Raman mapping, optical microscope, and scanning electron microscope to demonstrate the mechanism of temperature-dependent limit of NO_2 detection in ppb. By increasing the temperature from 25 to 100 °C, the response of the sensor significantly improves (4.8 % vs. 54.4 %) at 200 ppb, and its limit of NO_2 detection strongly decreases (48.0 vs. 6.9 ppb). Interestingly, the sensor performance from 100 to 150 °C is likely equivalent to a limit of detection (LoD) that varies from 8.1 to 6.9 ppb, and the LoD slightly increases to 15.0 ppb at 200 °C. The line damages were found in monolayer MoS_2 basal plane by heating the sample up to 200 °C, that affect to the recovery of the NO_2 sensor. This study reveals an effective approach that may be useful in developing a gas sensor with a high response and limit of NO_2 detection in the ppb scale.

1. Introduction

The development of industrial processes, vehicles, and power plants is necessary in the era of modern industry; however, this leads to the increase in toxic gas emissions [1]. NO_2 is a typical toxic gas that strongly affects human respiratory systems and the environment [2]. Monitoring the air quality index is important for air pollution control. Therefore, the fabrication of NO_2 sensors with a low limit of detection, high selectivity, and fast response/recovery time is essential. In recent years, NO_2 sensors based on two-dimensional (2D) materials have been studied owing to their high surface to volume ratio, which results in their highly sensitive electrical response to their surface atmosphere

[3–8]. Among various 2D materials, graphene has exhibited excellent gas sensing performance with a high response [9–11]. However, the excellent sensing properties of graphene for many types of gases renders it a low-selectivity sensing material [12]. Monolayer MoS₂ has been considered as a promising alternative to graphene and conventional metal-oxide sensing materials because of its high selectivity for NO₂ and soft-heated operation [13–16]. The key factor in improving NO₂ sensing response is the enhancement of the number of generated surface free electrons on the MoS₂ basal plane, which react with the NO₂ gas. In recent years, studies on the photo-induced gas sensing performance of MoS₂ at room temperature have been widely published [13,17–19]. However, the developed MoS₂ devices require light emitting diodes or

E-mail addresses: cmpark@kumoh.ac.kr (C.-M. Park), kjjeon@inha.ac.kr (K.-J. Jeon).

^{*} Corresponding author at: Department of Environmental Engineering, Inha University, Incheon, 22212, Republic of Korea.

^{**} Corresponding author at: School of Materials Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea.