Deep Learning Lab 5: Regularization

Chia-Hung Yuan & DataLab

Department of Computer Science, National Tsing Hua University, Taiwan

Regularization

 Regularization refers to techniques that improve the generalizability of a trained model

Outline

- Scikit-learn
- Learning Theory
 - Error Curves and Model Complexity
 - Learning Curves and Sample Complexity
- Weight Decay
 - Ridge Regression
 - LASSO
- Validation
- Assignment

Scikit-learn

- Scikit-learn is a free software machine learning library for the Python programming language
- It features various classification, regression and clustering algorithms
 - including support vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy
- pip install scikit-learn / conda install scikit-learn

Learning Theory

- Learning theory provides a means to understand the generalizability of the model
- Model complexity plays a crucial role
 - Too simple: high bias and underfitting
 - Too complex: high variance and overfitting

Error Curves and Model Complexity

- It is relatively hard to observe the figures showed in the last slide, since normally we will never know the data distribution of ground truth
- Instead, we can get those information by observing the training and testing error

Error Curves and Model Complexity

 Although the error curve visualizes the impact of model complexity, the bias-variance tradeoff holds only when you have sufficient training examples

Learning Curves and Sample Complexity

 The bounding methods of learning theory tell us that a model is likely to overfit regardless of it complexity when the size of training set is small. The learning curves are a useful tool for understanding how much training examples are sufficient

Weight Decay

- A common regularization approach. The idea is to add a term in the cost function against complexity
 - Ridge Regression (L₂)

$$\arg\min_{\mathbf{w},b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|^2$$

LASSO (L₁)

$$\arg\min_{w,b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|_1$$

Ridge Regression

A small value α drastically reduces the testing error.
 Nevertheless, it's not a good idea to increase α forever, since it will over-shrink the coefficients of w and result in underfitting

$$\arg\min_{\mathbf{w},b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|^2$$

```
[Alpha = 0]
MSE train: 0.00, test: 19958.68

[Alpha = 1]
MSE train: 0.73, test: 23.05

[Alpha = 10]
MSE train: 1.66, test: 16.83

[Alpha = 100]
MSE train: 3.60, test: 15.16

[Alpha = 1000]
MSE train: 8.81, test: 19.22
```

LASSO

• An alternative weight decay approach that can lead to sparse w is the LASSO. Depending on the value of α, certain weights can become zero much faster than others

$$\arg\min_{\mathbf{w},b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|_1$$

```
[Alpha = 0.0000]
MSE train: 0.55, test: 61.02

[Alpha = 0.0010]
MSE train: 0.64, test: 29.11

[Alpha = 0.0100]
MSE train: 1.52, test: 19.51

[Alpha = 0.1000]
MSE train: 4.34, test: 15.52

[Alpha = 1.0000]
MSE train: 14.33, test: 22.42

[Alpha = 10.0000]
MSE train: 55.79, test: 53.42
```

Ridge vs LASSO

- Why is LASSO sparse?
 - Ridge Regression (L₂)

$$\arg\min_{\mathbf{w},b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|^2$$

• LASSO (L₁)

$$\arg\min_{\mathbf{w},b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|_1$$

Initial weights

Ridge Regression

[1, 0.5, 1, 0.5] \blacktriangleright [0.5, 0.5, 0.5, 0.5]

LASSO

[0.5, 0, 0.5, 0]

Ridge vs LASSO

Ridge vs LASSO

 LASSO can also be treated as a supervised feature selection technique when choosing a suitable regularization strength α to make only part of coefficients become exactly zeros

Validation

- Another useful regularization technique that helps us decide the proper value of hyperparameters
- The idea is to split your data into the training, validation, and testing sets and then select the best value based on validation performance
- NOTE: It is important that we should never peep testing data during training

Validation

```
[Degree = 1]
MSE train: 25.00, valid: 21.43, test: 32.09

[Degree = 2]
MSE train: 9.68, valid: 14.24, test: 20.24

[Degree = 3]
MSE train: 3.38, valid: 17.74, test: 18.63

[Degree = 4]
MSE train: 1.72, valid: 16.67, test: 30.98

[Degree = 5]
MSE train: 0.97, valid: 59.73, test: 57.02

[Degree = 6]
MSE train: 0.60, valid: 1444.08, test: 33189.41
```

Assignment

 In this assignment, we would like to predict the success of shots made by basketball players in the NBA

Assignment

- In this assignment, we would like to predict the success of shots made by basketball players in the NBA
 - y_test is hidden this time
 - Allow to use any model you have learned before to achieve the best accuracy
 - Select the best 3 features, and show the accuracy with only those

Hint

- Preprocess the data to help your training
- Since you don't have y_test this time, you may need to split a validation set for checking your performance
- It is possible to use regression model as a classifier, for example <u>RidgeClassifier</u>

Assignment

- Submit to iLMS with your ipynb (Lab05_{student_id}.ipynb) and y_pred.csv
- The notebook should contain
 - How you evaluate your model
 - All models you have tried and the result
 - Plot the error curve of your best model and tell if it is over-fit or not
 - The top-3 features you find and how you find it
 - A brief report what you do in this assignment
- Deadline: 2020-10-08(Thur) 23:59

Reference

- Stanford CS229 Machine Learning
- NBA shot logs

About Competition

- Students will group (2~4 people a group). This class requires each group of students to prepare a GPU card to perform the necessary computing. You can follow this link to decide which GPU card to go for. NO GPU CARD PROVIDED IN THE CLASS.
- Sign up here for your group before 10/13(Tue)

About Competition

Register

23 10mo

kaggle Q Search Competitions Datasets Notebooks Discussion Courses · · · Sign in InClass Prediction Competition **DataLabCup: Object Detection** Competition for CS565600 Deep Learning 69 teams · 10 months ago Notebooks Discussion Leaderboard Overview Data **Public Leaderboard Private Leaderboard** This leaderboard is calculated with approximately 50% of the test data. The final results will be based on the other 50%, so the final standings may be different. # Team Name Notebook **Team Members** Score @ Entries Last 1 0.07996 10mo 重填一次真的很麻煩 19 2 autoencoder 0.23086 28 10mo 3 labXXX 0.27655 10mo 55 4 acfun02 0.30113 7 10mo 5 0.33275

Encoder

About Competition

Overview	Data Notebooks Di	scussion <u>Leaderboard</u> Rules				
#	Team Name	Notebook	Team Members	Score 2	Entries	Last
1	重填一次真的很麻煩			0.07996	19	10mo
2	autoencoder		999	0.23086	28	10mo
3	labXXX			0.27655	55	10mo
4	acfun02			0.30113	7	10mo
5	Encoder			0.33275	23	10mo
6	藝術的狀態			0.33983	22	10mo
7	Dondon231			0.34905	30	10mo
Q	Benchmark-80			0.35104		
8	ChiHang			0.36078	8	10mo
9	QWQ		<u> </u>	0.36667	14	10mo
10	Benchmark_70			0.41273	15	10mo
11	Overfitting			0.42421	11	10mo
12	Human Predict			0.43141	33	10mo
Q	Benchmark-60			0.43770		
13	煎魚週			0.45608	7	10mo
14	华农兄弟			0.50766	34	10mo