

For Today

 \circ Interactivity

 \circ Other types of boundary conditions

Working with polar/spherical coordinates

Manipulate

The Manipulate command lets you interactively explore what happens when you vary parameters in real time:

 $ln[1]:= Manipulate[Plot[Sin[fx], {x, -3, 3}, Filling \rightarrow Axis], {f, 1, 5}]$

 $\label{eq:manipulate} $$ Manipulate[Plot[Sin[f*x+p], \{x, -3, 3\}, Filling \to fill, PlotStyle \to color], $$ \{f, 1, 5\}, \{p, 3, 9\}, \{fill, \{Bottom, Top, Axis\}\}, \{color, Red\}] $$$

Manipulate boundaries of PDE

```
Manipulate[
```

```
sol = NDSolveValue[{-Laplacian[u[x, y], {x, y}] == 1, DirichletCondition[u[x, y] == 0., True]}, u,
{x, y} ∈ RegionDifference[Rectangle[{0, 0}, {1, 1}], Rectangle[p1, p2]]];
```

ContourPlot[sol[x, y], $\{x, y\} \in sol["ElementMesh"]$, ColorFunction \rightarrow "TemperatureMap"]

, {{p1, {0.3, 0.2}}, Locator}, {{p2, {0.5, 0.4}}, Locator}]|

$\{u, u_{min}, u_{max}\}$	manipulator (slider, animator, etc.)
$\{u, u_{min}, u_{max}, du\}$	discrete manipulator with step du
$\{u, \{x_{min}, y_{min}\}, \{x_{max}, y_{max}\}\}$	2D slider
{u, Locator}	a locator in a graphic
$\{u, \{u_1, u_2, \ldots\}\}$	setter bar for few elements; popup menu for more
$\{u, \{u_1 \rightarrow lbl_1, u_2 \rightarrow lbl_2, \ldots\}\}$	setter bar or popup menu with labels for elements
{u,{True, False}}	checkbox
{u, color}	color slider
{u}	blank input field
{u, FormObject []}	form with specified fields
{u, func}	create an arbitrary control from a function
$\{\{u, u_{init}\}, \ldots\}$	control with initial value u_{init}
$\{\{u, u_{init}, u_{lbl}\},\}$	control with label u_{lbl}
$\{\{u,\},, opts\}$	control with particular options
Control[]	general control object
Delimiter	horizontal delimiter
string, view, cell expression, etc.	explicit text, view, cell, etc. annotations

Periodic Boundary Conditions

 \circ Necessary for cyclic coordinates, e.g., ϕ in polar of spherical coordinates

• Useful for representing infinitely large systems

Specifying a Periodic Boundary

PeriodicBoundaryCondition [$u[x_1, ...], pred, f$]

represents a periodic boundary condition = $u(x_{target}) = u(f(x_{target}))$ for all x_{target} on the boundary of the region given to NDSolve where pred is True.

PeriodicBoundaryCondition [$a+bu[x_1,...]$, pred, f]

represents a generalized periodic boundary condition $a + b u(x_{target}) = u(f(x_{target}))$.

PeriodicBoundaryCondition is used together with differential equations to describe boundary conditions in functions such as NDSolve.

In NDSolve [eqns, { u_1 , u_2 , ...}, { x_1 , x_2 , ...} $\in \Omega$], x_i are the independent variables, u_j are the dependent variables, and Ω is the region with boundary $\partial \Omega$.

pred ~ defines part of the boundary which will be given from boundary conditions (" x_{target} ") f ~ the function which defines how $u(x_{target})$ relates to some other part of the boundary $u(x_{target}) = u(f(x_{target}))$

Cartesian Example (1D)

$$x=0$$
 $x=L$

For u(x) periodic in x:

pred
$$\rightarrow$$
 x==0 (sets x_{target} at left boundary)
 $f(x_{-}) := x+L$ (defines value $u(x_{target}) = u(f(x_{target}))$
 $u(0) = u(L)$

Alternately,

pred
$$\rightarrow$$
 x==L (sets x_{target} at right boundary)
 $f(x_{-}) := x-L$ (defines value $u(x_{target}) = u(f(x_{target}))$
 $u(L) = u(0)$

Free particle in 1-D with periodic boundary

Kronig-Penny Model

PeriodicBoundaryCondition [$a+bu[x_1,...]$, pred,f] represents a generalized periodic boundary condition $a+bu(x_{target})=u(f(x_{target}))$.

Bloch theorem:

$$T(\psi(x)) = e^{ika}\psi(x)$$

$$\Rightarrow \psi(x) = u(x)e^{ikx}$$

Formation of Energy Bands in solids

```
b = .3; a = 1.0; \\ k = Pi/2; \\ V2 = 0.0; \\ V[x] := If[x > b, V2, 0]; \\ vals = \\ Table[ \\ NDEigenvalues[\{-psi''[x] + V[x] * psi[x], \\ PeriodicBoundaryCondition[psi[x] * Exp[-I k a], x = 0, TranslationTransform[\{1\}]]\}, \\ psi[x], \{x, 0, 1\}, 5], \{k, -Pi/a, Pi/a, .05\}]; \\ ListPlot[Transpose[vals], Joined <math>\rightarrow True, PlotRange \rightarrow \{0, 100\}] V2 = 0
```

100

2D Example

Alternately you could put,
TranslationTransform[{4,0}]

periodic in x, dirichlet in y

leqn = Laplacian[u[x, y], {x, y}] == $-4\pi\rho[x, y]$; bcondx = PeriodicBoundaryCondition[u[x, y], x == -2, Function[r, r + {4, 0}]]; bcondy = DirichletCondition[u[x, y] == 0, (-2 < x < 2) && (y == -1 | | y == 1)]; sol = NDSolveValue[{leqn, bcondx, bcondy}, u, {x, y} \in myregion]; ContourPlot[sol[x, y], {x, y} \in myregion, AspectRatio \rightarrow Automatic]

I ran into trouble with periodic in x and y, simultaneously.

periodicity in x:

$$pred \rightarrow x == 0$$

 $f(x_{-}) \coloneqq x + L_{x}$

Uniform charge density on disk

2D Example

Alternately you could put,
TranslationTransform[{4,0}]

periodic in x, dirichlet in y

```
leqn = Laplacian[u[x, y], {x, y}] == -4\pi\rho[x, y];
bcondx = PeriodicBoundaryCondition[u[x, y], x == -2, Function[r, r + {4, 0}]];
bcondy = DirichletCondition[u[x, y] == 0, (-2 < x < 2) && (y == -1 | | y == 1)];
sol = NDSolveValue[{leqn, bcondx, bcondy}, u, {x, y} \in myregion];
ContourPlot[sol[x, y], {x, y} \in myregion, AspectRatio \rightarrow Automatic, PlotPoints \rightarrow 100]
```


I ran into trouble with periodic in x and y, simultaneously.

periodicity in x:

$$pred \rightarrow x == 0$$

 $f(x_{-}) \coloneqq x + L_{x}$

Uniform charge density on disk

Coordinate systems

Cartesian — Cartesian coordinate system

Cylindrical — cylindrical coordinate system

Spherical — spherical coordinate system

Paraboloidal ParabolicCylindrical EllipticCylindrical ProlateSpheroidal OblateSpheroidal

Bipolar — bipolar coordinate system

Bispherical — bispherical coordinate system

Toroidal — toroidal coordinate system

Conical - ConfocalEllipsoidal - ConfocalParaboloidal

$$\begin{split} & \text{Laplacian[f[r,\theta,z], \{r,\theta,z\}, "Cylindrical"] // Expand} \\ & \text{f}^{(\theta,\theta,2)}\left[r,\theta,z\right] + \frac{\text{f}^{(\theta,2,\theta)}\left[r,\theta,z\right]}{r^2} + \frac{\text{f}^{(1,\theta,\theta)}\left[r,\theta,z\right]}{r} + \text{f}^{(2,\theta,\theta)}\left[r,\theta,z\right] \end{split}$$

Grad[f[r,
$$\theta$$
, ϕ], {r, θ , ϕ }, "Spherical"]
$$\left\{f^{(1,\theta,\theta)}[r, \theta, \phi], \frac{f^{(\theta,1,\theta)}[r, \theta, \phi]}{r}, \frac{\operatorname{Csc}[\theta] f^{(\theta,\theta,1)}[r, \theta, \phi]}{r}\right\}$$

Solving a PDE in different coordinate systems

Cylindrical:

Cartesian:

```
avals = DEigenvalues[ \{-\text{Laplacian}[u[x, y], \{x, y\}], \text{DirichletCondition}[u[x, y] == 0, \text{True}]\}, u[x, y], \{x, y\} \in \text{Disk}[], 3] {BesselJZero[0, 1]<sup>2</sup>, BesselJZero[1, 1]<sup>2</sup>, BesselJZero[1, 1]<sup>2</sup>}
```

```
pvals - avals
```

 $\{6.9951 \times 10^{-6}, 0.00207181, 0.00207181\}$

changing coordinate systems

```
cSpherical[t_{-}] := {1, t, 1+2t+3t^{2}} cCartesian[t_{-}] = CoordinateTransform["Spherical" \rightarrow "Cartesian", cSpherical[t_{-}]] Show[Graphics3D[{Opacity[.25], Sphere[]}], ParametricPlot3D[cCartesian[t_{-}], {t, 0, 3}, ColorFunction \rightarrow (Hue[.8 #4] &)]] \left\{ \cos \left[ 1+2t+3t^{2} \right] \sin \left[ t_{-} \right] \sin \left[ 1+2t+3t^{2} \right] \right\}
```


transforming points

CoordinateTransform["Cartesian" \rightarrow "Spherical", {x, y, z}] $\left\{ \sqrt{x^2 + y^2 + z^2} \right\}, ArcTan[z, \sqrt{x^2 + y^2}], ArcTan[x, y]$

Simplify[CoordinateTransform[{"Cartesian" \rightarrow {"Toroidal", a}}, {x, y, z}]] $\left\{ \frac{1}{2} Log \left[\frac{\left(a + \sqrt{x^2 + y^2}\right)^2 + z^2}{\left(a - \sqrt{x^2 + y^2}\right)^2 + z^2} \right], ArcTan \left[-a^2 + x^2 + y^2 + z^2, 2 a z\right], ArcTan [x, y] \right\}$

transforming fields

TransformedField["Cartesian" \rightarrow "Spherical", {x, y, z}, {x, y, z} \rightarrow {r, θ , φ }] // Simplify {r, θ , θ }

TransformedField[{"Cartesian" \rightarrow {"Toroidal", 1}}, {x, y, z}, {x, y, z} \rightarrow {\sigma, \tau, \varphi}] // Simplify $\left\{ \frac{\cos[\tau] \, Sinh[\sigma]}{\cos[\tau] - Cosh[\sigma]}, \frac{Cosh[\sigma] \, Sin[\tau]}{\cos[\tau] - Cosh[\sigma]}, \emptyset \right\}$