#### LIMITING DISTRIBUTION AND CONVERGENCE THEOREM

# 3.1 Converge in Distribution

Consider a sequence of random variables

$$Y_1, Y_2, \ldots, Y_n, \ldots$$

with a corresponding sequence of CDF's

$$G_1(y) = \mathbb{P}\{Y_1 \leq y\}, G_2(y) = \mathbb{P}\{Y_2 \leq y\}, \dots, G_n(y) = \mathbb{P}\{Y_n \leq y\}, \dots$$

and let a random variable

Υ

has CDF

$$G(y) = \mathbb{P}\{Y \le y\}$$

Definition 3.1.1. (Converge in distribution). If

$$\lim_{n\to\infty} G_n(y) = G(y)$$

for all y at which G(y) is continuous, we say  $Y_n$  is converge in distribution to Y, denoted by

$$Y_n \stackrel{d}{\to} Y$$
 as  $n \to \infty$ 

and G(y) is called the limiting distribution of  $Y_n$ .

Theorem 3.1.1. (Central limit theorem (CLT)). Let  $X_1, X_2, ..., X_n, ...$  be i.i.d. with mean  $\mathbb{E}(X_i) = \mu$  and variance  $\mathbb{V}ar(X_i) = \sigma^2$ . Then

$$\frac{\sqrt{n}\left(\overline{X}-\mu\right)}{\sigma} \stackrel{d}{\to} Z \sim \mathcal{N}(0,1)$$

as  $n \to \infty$ .

Lemma 3.1.1. (General lemma). If  $a_n$  is a real sequence such that

$$\lim_{n\to\infty}a_n=a$$

Then

$$\lim_{n\to\infty} (1 + \frac{a_n}{n})^n = e^a$$

*Proof.* Sufficient to show

$$\lim_{n\to\infty} n\ln(1+\frac{a_n}{n}) = a$$

Because  $n \ln(1 + \frac{a_n}{n}) = a_n \frac{\ln(1 + \frac{a_n}{n})}{a_n/n}$ 

$$\lim_{n\to\infty} n \ln(1+\frac{a_n}{n}) = \lim_{n\to\infty} a_n \lim_{n\to\infty} \frac{\ln(1+\frac{a_n}{n})}{a_n/n} = a \lim_{n\to\infty} \frac{\ln(1+\frac{a_n}{n})}{a_n/n}$$

So sufficient to show

$$\lim_{n\to\infty}\frac{\ln(1+\frac{a_n}{n})}{a_n/n}=1$$

Let sequence  $x_n = a_n/n \rightarrow 0$ , by L'Hopital's rule

$$\lim_{n \to \infty} \frac{\ln(1 + \frac{a_n}{n})}{a_n / n} = \lim_{n \to \infty} \frac{\ln(1 + x_n)}{x_n} = \lim_{n \to \infty} \frac{\frac{d}{dx_n} \ln(1 + x_n)}{\frac{d}{dx_n} x_n} = \lim_{n \to \infty} \frac{1}{1 + x_n} = 1$$

*Example 3.1.1.* (**Exponential distribution**). Suppose we have a complex system which break down into n parts. The failure of any of the parts will make the whole system fail. Let  $T_i$ , i = 1, 2, ..., n be the time to failure of each of the parts

ans suppose  $T_i \sim Unif(0, n\theta)$ ,  $i = 1, 2, ..., n^1$  and are independent. let  $Y_n$  be the time to failure of the whole system. What is the limiting distribution of  $Y_n$ ?

The time to failure of the whole system can be expressed as

$$Y_n = \min_{1 \le i \le n} T_i$$

Then

$$\mathbb{P}\{Y_n \le t\} = \mathbb{P}\{\min_{1 \le i \le n} T_i \le t\} = 1 - \mathbb{P}\{\min_{1 \le i \le n} T_i > t\}$$

$$= 1 - \mathbb{P}\{T_1 > t, T_2 > t, \dots, T_n > t\} \stackrel{i.i.d.}{=} 1 - (\mathbb{P}\{T_1 > t\})^n$$

$$= 1 - \left(1 - \frac{t}{n\theta}\right)^n$$

which requires  $0 \le t \le n\theta$ . Now take limit on both sides and apply the general lemma 3.1.1

$$\lim_{n\to\infty} \mathbb{P}\{Y_n \le t\} = 1 - \lim_{n\to\infty} \left(1 - \frac{t}{n\theta}\right)^n = 1 - e^{-t/\theta}$$

with  $0 \le t \le \infty$ , which is an exponential distribution<sup>2</sup>. Therefore,

$$Y_n \stackrel{d}{\to} Y \sim \mathcal{E}xp(\theta)$$
 as  $n \to \infty$ 

### 3.2 Converge Stochastically

Definition 3.2.1. (**Degenerate distribution**). The function G(y) is the CDF of a degenerate distribution at the value y = c if

<sup>&</sup>lt;sup>1</sup>Recall the CDF of uniform distribution  $Unif(0, n\theta) : \mathbb{P}\{T_i \le t\} = \begin{cases} 0, & t < 0 \\ t/(n\theta), & 0 \le t \le n\theta \\ 1, & t > n\theta \end{cases}$ 

<sup>&</sup>lt;sup>2</sup>Recall the CDF of exponential distribution  $\mathcal{E}xp(\theta)$  is  $1 - e^{-x/\theta}$ 



Definition 3.2.2. (Converge stochastically). A sequence of random variables  $Y_1, Y_2, ...$  is said to converge stochastically to a constant c if  $Y_n \stackrel{d}{\to} Y$  as  $n \to \infty$  where Y has CDF G which is degenerate at c.

## 3.3 Converge in Probability

Definition 3.3.1. (Converge in Probability). The sequence of random variables  $Y, Y_1, Y_2, ...$  is said to converge in probability to Y, written  $Y_n \stackrel{P}{\to} Y$  as  $n \to \infty$ , if for every  $\varepsilon > 0$ ,

$$\lim_{n\to\infty} \mathbb{P}\{|Y_n - Y| > \varepsilon\} = 0$$

or equivalently,

$$\lim_{n\to\infty} \mathbb{P}\{|Y_n - Y| \le \varepsilon\} = 1$$

Theorem 3.3.1. (Converge stochastically and converge in Probability).  $Y_n$  converges stochastically to c if and only if  $Y_n \stackrel{P}{\to} c$  as  $n \to \infty$ .

*Proof.* Suppose  $Y_n$  converge stochastically to c. Then

$$\mathbb{P}\{Y_n \le y\} = G_n(y) \to \begin{cases} 0, & y < c \\ 1, & y \ge c \end{cases}$$

as 
$$n \to \infty$$
. For any  $\varepsilon > 0$ 

$$\mathbb{P}\left\{|Y_n - c| > \varepsilon\right\} = \mathbb{P}\left\{Y_n > c + \varepsilon, Y_n < c - \varepsilon\right\}$$

$$\stackrel{1}{\leq} \mathbb{P}\left\{Y_n > c + \varepsilon\right\} + \mathbb{P}\left\{Y_n < c - \varepsilon\right\}$$

$$= 1 - \underbrace{G_n(c + \varepsilon)}_{\to 1} + \underbrace{G_n(c - \varepsilon)}_{\to 0} \to {}^20$$

as  $n \to \infty$ , which implies  $Y_n \stackrel{P}{\to} c$  as  $n \to \infty$ .

Now suppose  $Y_n \xrightarrow{\overline{P}} c$  as  $n \to \infty$ , or for every  $\varepsilon > 0$ 

$$\lim_{n\to\infty} \mathbb{P}\{|Y_n - c| > \varepsilon\} = 0 \quad \text{or} \quad \lim_{n\to\infty} \mathbb{P}\{|Y_n - c| \le \varepsilon\} = 1$$

Let y > c

$$G_n(y) = \mathbb{P} \{ Y_n \le y \} = \mathbb{P} \{ Y_n - c \le y - c \} \stackrel{3}{\ge} \mathbb{P} \{ -(y - c) \le Y_n - c \le y - c \}$$

$$= \mathbb{P}\left\{ |Y_n - c| \le \underbrace{y - c}_{\text{some } \varepsilon > 0} \right\} \to 1$$

as  $n \to \infty$ . Next let y < c

$$G_n(y) = \mathbb{P}\left\{Y_n \le y\right\} = \mathbb{P}\left\{c - Y_n \ge c - y\right\}$$

$$\stackrel{4}{\leq} \mathbb{P} \left\{ |c - Y_n| \geq \underbrace{c - y}_{\text{some } \varepsilon > 0} \right\}$$

<sup>&</sup>lt;sup>1</sup>Recall  $\mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cup B)$ , which implies  $\mathbb{P}(A \cap B) \leq \mathbb{P}(A) + \mathbb{P}(B)$ 

<sup>&</sup>lt;sup>2</sup>Note that  $\lim_{n\to\infty} x_n = x$  is equivalent to  $x_n \to x$  as  $n \to \infty$ 

 $<sup>^{3}</sup>$ Recall  $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B|A) \leq \mathbb{P}(A)$  or  $\mathbb{P}(A \cap B) = \mathbb{P}(B)\mathbb{P}(A|B) \leq \mathbb{P}(B)$ 

<sup>&</sup>lt;sup>4</sup>Recall  $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \ge \mathbb{P}(A)$ , since  $\mathbb{P}(A \cap B) \le \mathbb{P}(B)$ . Or  $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \ge \mathbb{P}(B)$ , since  $\mathbb{P}(A \cap B) \le \mathbb{P}(A)$ 

$$\stackrel{1}{\leq} \mathbb{P} \left\{ |Y_n - c| > \underbrace{\frac{c - y}{2}}_{\text{some } \varepsilon > 0} \right\} \to 0$$

as  $n \to \infty$ . Hence,

$$G_n(y) \rightarrow \left\{ \begin{array}{ll} 0, & y < c \\ 1, & y \ge c \end{array} \right.$$

as  $n \to \infty$ . So  $Y_n$  converge stochastically to c.

Theorem 3.3.2. (Law of large numbers). Let  $X_1, X_2,...$  be i.i.d. with  $\mathbb{E}X_i = \mu$ ,  $\mathbb{V}arX_i = \sigma^2$ , and  $\overline{X}_n = \frac{1}{n}\sum_{i=1}^n X_i$ . Then  $\overline{X}_n$  converges stochastically to  $\mu$ . I.e.,  $\forall \varepsilon > 0$ 

$$\lim_{n\to\infty} \mathbb{P}\{|\overline{X}_n - \mu| > \varepsilon\} = 0$$

or  $\overline{X}_n \stackrel{P}{\to} \mu$  as  $n \to \infty$ .

Proof.

$$\mathbb{V}ar\overline{X}_n = \mathbb{V}ar\frac{1}{n}\sum_{i=1}^n X_i \stackrel{i.i.d.}{=} \frac{1}{n^2}\sum_{i=1}^n \mathbb{V}arX_i = \frac{1}{n^2}\sum_{i=1}^n \sigma^2 = \frac{\sigma^2}{n}$$

$$\mathbb{E}\overline{X}_n = \mathbb{E}\frac{1}{n}\sum_{i=1}^n X_i = \frac{1}{n}\sum_{i=1}^n \mathbb{E}X_i = \mu$$

Apply Chebychev's inequality

$$\mathbb{P}\{|\overline{X}_n - \mu| > \varepsilon\} \le \frac{1}{\varepsilon^2} \frac{\sigma^2}{n} \to 0$$

as 
$$n \to \infty$$
.

¹Recall if  $A \subset B$ , then  $\mathbb{P}(A) \leq \mathbb{P}(B)$ , since A and  $A^c \cap B$  are disjoint, and  $\mathbb{P}(B) = \mathbb{P}(A \cup (A^c \cap B)) = \mathbb{P}(A) + \mathbb{P}(A^c \cap B) \geq \mathbb{P}(A)$ 

<sup>&</sup>lt;sup>2</sup>Recall Chebychev's inequality  $\mathbb{P}(|X - \mathbb{E}X| \ge a) \le \frac{\mathbb{V}arX}{a^2}$ , a > 0

Theorem 3.3.3. (Property of converge in probability). Let  $g : \mathbb{R}^2 \to \mathbb{R}$ , continuous at the point (c,d), and suppose  $X_n \stackrel{P}{\to} c$  and  $Y_n \stackrel{P}{\to} d$ . Then

$$g(X_n, Y_n) \stackrel{P}{\to} g(c, d)$$

as  $n \to \infty$ .

*Proof.* g continuous at (c,d) means that given  $\varepsilon > 0$ ,  $\exists \delta > 0$  such that  $|x - c| \le \delta$  and  $|y - d| \le \delta$  imply  $|g(x,y) - g(c,d)| \le \varepsilon$ . So

$$\mathbb{P}\left\{|g(X_n, Y_n) - g(c, d)| \le \varepsilon\right\} \ge \mathbb{P}\left\{|X_n - c| \le \delta, |Y_n - d| \le \delta\right\}$$

$$\stackrel{2}{=} 1 - \mathbb{P} \left\{ \{ |X_n - c| > \delta \} \cup \{ |Y_n - d| > \delta \} \right\}$$

$$\stackrel{3}{\geq} 1 - \underbrace{\mathbb{P}\left\{|X_n - c| > \delta\right\}}_{\rightarrow 0} - \underbrace{\mathbb{P}\left\{|Y_n - d| > \delta\right\}}_{\rightarrow 0}$$

as  $n \to \infty$ . Therefore

$$\lim_{n\to\infty} \mathbb{P}\left\{ |g(X_n, Y_n) - g(c, d)| \le \varepsilon \right\} \ge 1$$

which implies

$$\lim_{n\to\infty} \mathbb{P}\left\{ |g(X_n, Y_n) - g(c, d)| \le \varepsilon \right\} = 1$$

Corollary 3.3.1. (Properties of converge in probability). Suppose  $X_n \stackrel{P}{\to} c$  and  $Y_n \stackrel{P}{\to} d$ 

(i) 
$$aX_n + bY_n \xrightarrow{P} ac + bd$$

<sup>&</sup>lt;sup>1</sup>Recall if  $A \implies B$ , then  $A \subset B$ , then  $\mathbb{P}(A) \leq \mathbb{P}(B)$ 

 $<sup>{}^{2}</sup>$ Recall  $\overline{A \cap B} = \overline{A} \cup \overline{B}$ 

 $<sup>^{3}</sup>$ Recall  $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \le \mathbb{P}(A) + \mathbb{P}(B)$ 

(ii) 
$$X_n Y_n \stackrel{P}{\rightarrow} cd$$

(iii) 
$$X_n/c \stackrel{P}{\rightarrow} 1$$
, if  $c \neq 0$ 

(iv) 
$$1/X_n \stackrel{P}{\rightarrow} 1/c$$
, if  $c \neq 0$ ,  $\mathbb{P}\{X_n \neq 0\} = 1$ 

(v) 
$$\sqrt{X_n} \stackrel{P}{\to} \sqrt{c}$$
, if  $c > 0$ ,  $\mathbb{P}\{X_n \ge 0\} = 1$ 

*Proof.* Apply Theorem 3.3.3 by 
$$g(x,y) = ax + by$$
,  $g(x,y) = xy$ ,  $g(x,y) = x/c$ ,  $g(x,y) = 1/x$ ,  $g(x,y) = \sqrt{x}$ .

# 3.4 Advanced Probability: Converge in Distribution and Converge in Probability

Theorem 3.4.1. (Converge in probability implies converge in distribution). If  $Y_n \stackrel{P}{\to} Y$ , as  $n \to \infty$  then  $Y_n \stackrel{d}{\to} Y$  as  $n \to \infty$ .

*Proof.*  $\forall \varepsilon > 0$ 

$$F_{Y_n}(y) = \mathbb{P} \{Y_n \le y\} = \mathbb{P} \{Y_n \le y, Y \le y + \varepsilon\} + \mathbb{P} \{Y_n \le y, Y > y + \varepsilon\}$$

$$= \mathbb{P} \{Y_n \le y | Y \le y + \varepsilon\} \mathbb{P} \{Y \le y + \varepsilon\} + \mathbb{P} \{Y_n \le y, Y > y + \varepsilon\}$$

$$\stackrel{1}{\le} \mathbb{P} \{Y \le y + \varepsilon\} + \mathbb{P} \{Y_n < Y - \varepsilon\}$$

$$\stackrel{2}{\le} F_Y(y + \varepsilon) + \mathbb{P} \{|Y_n - Y| > \varepsilon\}$$

Similarly

$$F_{Y}(y - \varepsilon) = \mathbb{P} \left\{ Y \le y - \varepsilon, Y_{n} \le y \right\} + \mathbb{P} \left\{ Y \le y - \varepsilon, Y_{n} > y \right\}$$

$$= \mathbb{P} \left\{ Y \le y - \varepsilon | Y_{n} \le y \right\} \mathbb{P} \left\{ Y_{n} \le y \right\} + \mathbb{P} \left\{ Y \le y - \varepsilon, Y_{n} > y \right\}$$

$$\leq \mathbb{P} \left\{ Y_{n} \le y \right\} + \mathbb{P} \left\{ Y < Y_{n} - \varepsilon \right\} \leq F_{Y_{n}}(y) + \mathbb{P} \left\{ | Y_{n} - Y | > \varepsilon \right\}$$

<sup>&</sup>lt;sup>1</sup>Recall if  $A \implies B$ , then  $A \subset B$ , then  $\mathbb{P}(A) \leq \mathbb{P}(B)$  and recall  $\mathbb{P}(A)\mathbb{P}(B) \leq \mathbb{P}(A)$ 

 $<sup>^{2}</sup>$ Recall  $\mathbb{P}(A \cup B) \geq \mathbb{P}(A)$ 

Thus

$$F_{Y}(y-\varepsilon) - \underbrace{\mathbb{P}\left\{|Y_{n}-Y| > \varepsilon\right\}}_{\to 0} \leq F_{Y_{n}}(y) \leq F_{Y}(y+\varepsilon) + \underbrace{\mathbb{P}\left\{|Y_{n}-Y| > \varepsilon\right\}}_{\to 0}$$

Taking now  $n \to \infty$ 

$$F_Y(y-\varepsilon) \le \liminf_{n\to\infty} F_{Y_n}(y) \le \limsup_{n\to\infty} F_{Y_n}(y) \le F_Y(y+\varepsilon)$$

Since this holds for any  $\varepsilon > 0$ ,  $\lim_{\varepsilon \to 0} F_Y(y - \varepsilon) = \lim_{\varepsilon \to 0} F_Y(y + \varepsilon) = F_Y(y)$ 

$$\lim_{n\to\infty} F_{Y_n}(y) = F_Y(y)$$

Theorem 3.4.2. (Continuous mapping theorem). Suppose  $Y_n \stackrel{d}{\to} Y$  and  $X_n \stackrel{P}{\to} c$ . Let  $g : \mathbb{R}^2 \to \mathbb{R}$  be a continuous function everywhere except at possibly a countable set of points in  $\mathbb{R}^2$ . Then if  $\mathbb{P}\{g \text{ is continuous at } (c, Y)\} = 1$ ,

$$g(X_n, Y_n) \stackrel{d}{\rightarrow} g(c, Y)$$

as  $n \to \infty$ .

Corollary 3.4.1. Suppose  $Y_n \stackrel{d}{\rightarrow} Y$  and  $X_n \stackrel{P}{\rightarrow} c$ 

- (i)  $X_n + Y_n \stackrel{d}{\rightarrow} c + Y$
- (ii)  $X_n Y_n \stackrel{d}{\rightarrow} c Y$
- (iii)  $Y_n/X_n \stackrel{d}{\rightarrow} Y/c \text{ if } c \neq 0$

*Proof.* Apply the continuous mapping theorem 3.4.2 and let g(x,y) = x + y g(x,y) = xy, g(x,y) = y/x (continuous at  $(x,y) \neq (0,y)$ ).

Remark 3.4.1. (Approaches to find limiting distributions).

(i) Use CDF:  $G_n(y) \to G(y)$ 

- (ii) Use MGF:  $\mathbb{M}_{Y_n} \to \mathbb{M}_Y$
- (iii) Use combination of (i) (ii), and Theorem 3.3.3 and the continuous mapping theorem 3.4.2 (and their corollaries)

*Example 3.4.1.* Let  $Z \sim \mathcal{N}(0,1)$ ,  $V_n \sim \chi^2(n)$  (not necessarily independent!). Find the limiting distribution of  $T_n = \frac{Z}{\sqrt{V_n/n}}$ .

 $V_n$  has MGF

$$M_{V_n}(t) = (1-2t)^{-n/2}$$

for  $t < \frac{1}{2}$ . Then

$$\mathbb{M}'_{V_n}(t) = n (1 - 2t)^{-n/2 - 1}, \quad \mathbb{E}V_n = \mathbb{M}'_{V_n}(0) = n$$

$$\mathbb{M}_{V_n}^{"}(t) = n(n+2) (1-2t)^{-n/2-2}, \quad \mathbb{E}V_n^2 = \mathbb{M}_{V_n}^{"}(0) = n(n+2)$$

So

$$\mathbb{V}arV_n = n(n+2) - n^2 = 2n$$

Then  $\forall \varepsilon > 0$ , apply Chebychev's inequality

$$\mathbb{P}\{|V_n/n-1|>\varepsilon\} \leq \frac{1}{\varepsilon^2} \mathbb{V}ar \frac{V_n}{n} = \frac{1}{\varepsilon^2} \frac{2n}{n^2} = \frac{2}{n\varepsilon^2} \to 0$$

as  $n \to \infty$ . So  $\frac{V_n}{n} \stackrel{P}{\to} 1$  as  $n \to \infty$ . Apply Corollary 3.3.1 (v) and (iv) (or Theorem 3.3.3)

$$\frac{1}{\sqrt{V_n/n}} \stackrel{P}{\to} 1 \quad \text{as } n \to \infty$$

Then apply corollary 3.4.1 (ii) of the continuous mapping theorem with  $Y_n = Z$  and  $X_n = \frac{1}{\sqrt{V_n/n}}$  in (ii)

$$T_n = \frac{Z}{\sqrt{V_n/n}} \xrightarrow{d} Z \sim \mathcal{N}(0,1)$$
 as  $n \to \infty$ 

Example 3.4.2. Let  $X_1, X_2, \ldots$  be i.i.d.  $Unif(0, \theta)$  and  $X_{n:n} = \max\{X_1, X_2, \ldots, X_n\}$ ,  $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ . Find the limiting distribution of  $W_n = \frac{n(\theta - X_{n:n})}{2\overline{X}_n}$ .

Use the result in Theorem 3.3.2,  $\overline{X}_n \stackrel{P}{\to} \mathbb{E} X_i = \frac{\theta}{2}$  as  $n \to \infty$ . Apply Corollary 3.3.1 (i), (iv),  $\frac{1}{2\overline{X}_n} \stackrel{P}{\to} \frac{1}{\theta}$  as  $n \to \infty$ .

$$\mathbb{P}\{n(\theta - X_{n:n}) \le y\} = \mathbb{P}\{X_{n:n} \ge \theta - y/n\}$$

$$= 1 - \mathbb{P}\{X_1 \le \theta - y/n, X_2 \le \theta - y/n, \dots, X_n \le \theta - y/n\}$$

$$\stackrel{i.i.d.}{=} 1 - \left(\frac{\theta - y/n}{\theta}\right)^n = 1 - \left(1 - \frac{y}{\theta n}\right)^n$$

Apply Lemma 3.1.1

$$1 - \left(1 - \frac{y}{\theta n}\right)^n \to 1 - e^{-y/\theta}$$

as  $n \to \infty$ , which is the CDF of an exponential variable. So  $n(\theta - X_{n:n}) \stackrel{d}{\to} Y \sim \mathcal{E}xp(\theta)$ . Then apply corollary 3.4.1 of the continuous mapping theorem,

$$W_n = \frac{n(\theta - X_{n:n})}{2\overline{X}_n} \xrightarrow{d} \frac{Y}{\theta}$$

as  $n \to \infty$ . But

$$\mathbb{P}\{\frac{Y}{\theta} \le y\} = \mathbb{P}\{Y \le \theta y\} = 1 - e^{-\theta y/\theta} = 1 - e^{-y}$$

Hence,

$$W_n = \frac{n(\theta - X_{n:n})}{2\overline{X}_n} \stackrel{d}{\to} \frac{Y}{\theta} \sim \mathcal{E}xp(1)$$
 as  $n \to \infty$ 

### 3.5 Delta Rule

Theorem 3.5.1. (Delta rule: for asymptotic normality). If

$$\sqrt{n}(Y_n - m) \stackrel{d}{\to} Y \sim \mathcal{N}(0, c^2)$$

as  $n \to \infty$  and if g(y) is differentiable at y = m with  $g'(m) \ne 0$ . Then

$$\frac{\sqrt{n}\left(g\left(Y_{n}\right)-g\left(m\right)\right)}{cg'(m)} \stackrel{d}{\to} Z \sim \mathcal{N}(0,1) \quad \text{as } n \to \infty$$

or

$$\sqrt{n}\left(g\left(Y_{n}\right)-g(m)\right)\stackrel{d}{\rightarrow}g'(m)Y \quad \text{where } Y \sim \mathcal{N}\left(0,c^{2}\right) \quad \text{as } n \rightarrow \infty$$

or

$$\sqrt{n}\left(g\left(Y_{n}\right)-g(m)\right)\stackrel{d}{\to}W\sim\mathcal{N}\left(0,\left(g'(m)c\right)^{2}\right)\quad\text{as }n\to\infty$$

or

$$g(Y_n) \stackrel{d}{\approx} V \sim \mathcal{N}\left(g(m), \frac{(g'(m)c)^2}{n}\right)$$
 for n very large

*Proof.* Suppose  $\sqrt{n}(Y_n - m) \stackrel{d}{\to} Y \sim \mathcal{N}(0, c^2)$ , then by corollary 3.4.1 (ii) of the continuous mapping theorem

$$Y_n - m = \underbrace{\frac{1}{\sqrt{n}}}_{\stackrel{P}{\to}0^1} \underbrace{\sqrt{n} (Y_n - m)}_{\stackrel{d}{\to}Y} \stackrel{d}{\to} 0$$

as  $n \to \infty$ . By Theorem 3.3.1

$$Y_n - m \stackrel{P}{\rightarrow} 0$$

as  $n \to \infty$ . Expand g in Taylor series for y near m

$$g(y) = g(m) + g'(m)(y - m) + R(y)$$

where  $\frac{R(y)}{y-m} \to 0$  as  $y \to m$ . Put  $y = Y_n$  and multiply by  $\sqrt{n}$ 

$$\sqrt{n}\left(g\left(Y_{n}\right)-g\left(m\right)\right)=g'(m)\sqrt{n}(Y_{n}-m)+\sqrt{n}R(Y_{n})$$

<sup>&</sup>lt;sup>1</sup>Recall the definition of converge in probability  $\forall \varepsilon > 0$ ,  $\lim_{n \to \infty} \mathbb{P}\{|\frac{1}{\sqrt{n}}| \le \varepsilon\} = \mathbb{P}\{0 \le \varepsilon\} = 1$ 

and by corollary 3.4.1

$$\sqrt{n}R(Y_n) = \underbrace{\sqrt{n}(Y_n - m)}_{\stackrel{d}{\to}Y} \underbrace{\frac{R(Y_n)}{(Y_n - m)}}_{\stackrel{P}{\to}0^1} \stackrel{d}{\to} 0$$

as  $n \to \infty$ . By Theorem 3.3.1

$$\sqrt{n}R(Y_n) \stackrel{P}{\to} 0$$

as  $n \to \infty$ . So

$$\sqrt{n}\left(g\left(Y_{n}\right)-g\left(m\right)\right)=\underbrace{g'(m)\sqrt{n}(Y_{n}-m)}_{\overset{d}{\to}g'(m)Y}+\underbrace{\sqrt{n}R(Y_{n})}_{\overset{P}{\to}0}$$

and by corollary 3.4.1 again

$$\sqrt{n}\left(g\left(Y_{n}\right)-g\left(m\right)\right)\overset{d}{\rightarrow}g'(m)Y$$

as  $n \to \infty$ .

*Example 3.5.1.* Let  $X_1, X_2, \ldots$  be i.i.d.  $\mathcal{P}ois(\mu)$  with PMF  $\mathbb{P}\{X_i = k\} = \frac{\mu^k e^{-\mu}}{k!}$  for

$$\mathbb{E}(X_i) = \mu \qquad \mathbb{V}ar(X_i) = \mu$$

By CLT

$$\frac{\sqrt{n}\left(\overline{X}_n - \mu\right)}{\sqrt{\mu}} \stackrel{d}{\to} Z \sim \mathcal{N}(0, 1)$$

as  $n \to \infty$ , i.e.

$$\sqrt{n}\left(\overline{X}_n-\mu\right)\stackrel{d}{\to}W\sim\mathcal{N}(0,\mu)$$

as  $n \to \infty$ . Consider  $g(x) = 2\sqrt{x}$ ,  $g'(x) = 1/\sqrt{x}$  and  $g'(\mu) = 1/\sqrt{\mu}$ . By the Delta rule

$$\sqrt{n}\left(g\left(\overline{X}_{n}\right)-g\left(\mu\right)\right)=\sqrt{n}\left(2\sqrt{\overline{X}_{n}}-2\sqrt{\mu}\right)\stackrel{d}{\to}Z\sim\mathcal{N}\left(0,\mu\left(1/\sqrt{\mu}\right)^{2}\right)=\mathcal{N}\left(0,1\right)$$

<sup>&</sup>lt;sup>1</sup>Apply Theorem 3.3.3, since  $Y_n \stackrel{P}{\to} m$ ,  $\frac{R(Y_n)}{(Y_n - m)} \stackrel{P}{\to} \frac{R(m)}{(m - m)} = \lim_{y \to m} \frac{R(y)}{(y - m)} = 0$