EI-801

RGPVONLINE.COM B.E. VIII Semester

Examination June, 2013

Optical Instruments & Sensors

Time: Three Hours

M	laxin	num Marks : 100 Minimum Pa	ss Marks :35
Ν	ote:	Attempt any one question from each unit. A carry equal marks.	ll questions
		Unit - I	
1.	a)	Explain transmission of light ray is an optical	al fiber. 10
`	b)	Explain the theory of optical image formation OR	
2.	a)	Derive the relation between acceptance	angle and
		numerical aperture.	10
	b)	Explain the following terms:	10
		i) Aberration ii) Comma	
		iii) Acclamation iv) Osages	
		Unit - II	
3.	a)/	Explain in detail signal degradation in single	mode fiber
	J	due to dispertion. RGPVONLINE.COM	10
	b)	Describe the structures of different types of o	ptical fibers
		with ray paths. What is the approximate dia	meter of an
		optical fiber in each case?	10
		OR	
4.	a)	Discuss model analysis of step index fiber.	10
	b)	An optical signal at a specific wavelength	has lost 55
		percent of its power after traversing 3.5 km of	fiber. What
		is the attenuation in dB/km of this fiber.	10

		Unit - HI		
5.	a)	Discuss methods used for measurement of losses in an		
		optical fiber.		
	b)			
	-	pressure sensors. Compare its utility with conventional		
		sensors. 10		
		OR		
6.	a)	Explain modulation techniques for sensor fibers. 10		
	b)	Briefly outline the principle behind the calorimetric		
		methods used for the measurement of absorption less in		
		optical fibers.		
		Unit - IV		
7.	a)			
	/	the measurement of the signal attenuation is an optical		
		fiber by cutback technique. 10		
	b)	Explain optical switching. 10		
*		OR		
8.	a)	Describe the experimental setup used in optical Time		
		Domain Reflectometer (OTDR) technique. How is the		
		attenuation measured by this technique. 10		
	b)	Outline major design criteria of an optical fiber meter		
		for use in the field. RGPVONLINE.COM 10		
		Unit - V RGF VONEINE.COM		
9.	a)	A photodiode has a quantum efficiency of 65% when		
		photons of energy 1.5x10 ⁻¹⁹ J are incident upon it.		
		i) At what wavelength is the photodiode operating?		
		ii) Calculate the incident optical power required to obtain		
		a photocurrent of 2.5 "A when the photodiode is		
		operating as described above. 10		
	b)	Explain single - mode Lasers. 10		
		OR		
0.	a)	Explain the working of PIN diode with diagram. Compare		
		its performance with other types of photo detectors. 10		
	b)	Explain Integrated optical devices.		
		RGPVONLINE.COM		

E1-801