Optimal Filtering II: Linear Regression and Correlation Matrices ECE416 Adaptive Algorithms

Prof. Fred L. Fontaine

Department of Electrical Engineering
The Cooper Union

Spring 2022

ECE416 1 / 41

Let $\mathbf{X} = [X_1 \ X_2 \ \cdots \ X_M]^T$ denote a random vector, and Y a random variable. We seek a vector \mathbf{w} such that:

$$Y \approx \mathbf{w}^H \mathbf{X} = \sum_{m=1}^M w_m^* X_m$$

To be more precise:

$$\mathbf{w} = \arg\min E\left(\left|Y - \mathbf{w}^H X\right|^2\right)$$

ECE416 2 / 41

Via the orthogonality principle, if $e = Y - \mathbf{w}^H \mathbf{X}$ is the estimation error, we need $e \perp X_m$ for each $1 \leq m \leq M$, which we can write as:

$$E\left(\mathbf{X}e^{*}\right)=\mathbf{0}$$

There are M linear equations in the w_m 's, called the orthogonality conditions. Since e is a scalar, $e^* = e^H$:

$$E\left(\mathbf{X}\left(Y-\mathbf{w}^{H}\mathbf{X}\right)^{H}\right)=E\left(\mathbf{X}Y^{*}\right)-E\left(\mathbf{X}\mathbf{X}^{H}\right)\mathbf{w}=\mathbf{0}$$

ECE416 3 / 41

Let $R = E\left(\mathbf{X}\mathbf{X}^H\right)$ be the autocorrelation matrix of \mathbf{X} , and $\mathbf{p} = E\left(\mathbf{X}Y^*\right)$ be the cross-correlation vector between \mathbf{X} and Y (each component is $p_i = E\left(X_iY^*\right)$).

Then the optimal vector \mathbf{w}_0 satisfies $\mathbf{p} - R\mathbf{w}_0 = \mathbf{0}$ or:

$$\mathbf{R}\mathbf{w}_0 = \mathbf{p}$$

Thus:

$$\mathbf{w}_0 = \mathbf{R}^{-1} \mathbf{p}$$

ECE416 4 / 41

FUNDAMENTAL EQUATION

The entire course can be encapsulated in that one equation:

$$\mathbf{w}_0 = R^{-1}\mathbf{p}$$

.

ECE416 5 / 41

Define e_0 as the optimal error when we use \mathbf{w}_0 :

$$Y = \mathbf{w}_0^H \mathbf{X} + e_0 = \sum w_{0m}^* X_m + e_0$$

where $e_0 \perp X_m$ for all m. This is actually the definition of a linear regression model: the error term is orthogonal (uncorrelated) with the "model" representing Y, i.e., $\mathbf{w}_0^H \mathbf{X}$.

Here we are assuming all quantities are 0-mean so orthogonal = uncorrelated. In the Gaussian case, we get **independence** as well!

ECE416 6 / 41

In many cases, a linear regression model also contains a constant term, but that can be obtained by augmenting **X** with a constant. That is, let:

$$\mathbf{X}' = \begin{bmatrix} 1 \ X_1 \ \cdots X_M \end{bmatrix}^T$$

so the regression model takes the form:

$$Y = a_0 + w_1^* X_1 + \dots + w_M^* X_M + e$$

where a_0 is a deterministic constant, and e is 0-mean random error.

If say the X_m 's are all zero mean with correlation matrix R, then the correlation matrix of X' is:

$$R' = \left[egin{array}{cc} 1 & \mathbf{0}_M^T \ \mathbf{0}_M & \mathbf{R} \end{array}
ight]$$

where $\mathbf{0}_M$ is the $M \times 1$ zero vector, so R' is invertible if R is.

ECE416 7 / 41

Here we tried to find w to minimize the cost function:

$$J(\mathbf{w}) = E\left(\left|y - \mathbf{w}^H \mathbf{x}\right|^2\right)$$

Considering J as a function of \mathbf{w} is the *error performance surface*.

It is customary to assume **x**, *y* are 0-mean, so $E(|y|^2) = \sigma_y^2$. Expanding out gives:

$$J(\mathbf{w}) = E(|y|^2) - \mathbf{w}^H E(\mathbf{x} y^*) - E(y \mathbf{x}^H) \mathbf{w} + \mathbf{w}^H E(\mathbf{x} \mathbf{x}^H) \mathbf{w}$$
$$= \sigma_y^2 - \mathbf{w}^H \mathbf{p} - \mathbf{p}^H \mathbf{w} + \mathbf{w}^H R_x \mathbf{w}$$

ECE416 8 / 41

Rather than directly using the orthogonality principle, we can compute:

$$\nabla J = -2\mathbf{p} + 2R\mathbf{w} = \mathbf{0}$$

which again gives us the optimal solution:

$$\mathbf{w}_0 = R^{-1}\mathbf{p}$$

Note:

$$\mathbf{p} = R\mathbf{w}_0$$

9 / 41

Substituting this in gives $J_{\min} = J(\mathbf{w}_0)$ given by:

$$J_{\min} = \sigma_y^2 - \mathbf{p}^H R^{-1} \mathbf{p} - \mathbf{p}^H R^{-1} \mathbf{p} + \mathbf{p}^H R^{-1} R R^{-1} \mathbf{p}$$

$$= \sigma_y^2 - \mathbf{p}^H R^{-1} \mathbf{p}$$

$$= \sigma_y^2 - \mathbf{w}_0^H R \mathbf{w}_0$$

ECE416 10 / 41

Note that \mathbf{w}_0 reduces the variance of y, σ_y^2 , by the amount $\mathbf{w}_0^H R \mathbf{w}_0$.

We now want to go back to $J(\mathbf{w})$ and obtain a different expression. We could use the orthogonality principle but let us work directly in the vector form:

$$\mathbf{w}^{H}R\mathbf{w} = (\mathbf{w} - \mathbf{w}_{0})^{H}R(\mathbf{w} - \mathbf{w}_{0}) + \mathbf{w}_{0}^{H}R(\mathbf{w} - \mathbf{w}_{0}) + (\mathbf{w} - \mathbf{w}_{0})^{H}R\mathbf{w}_{0} + \mathbf{w}_{0}^{H}R\mathbf{w}_{0}$$

$$\mathbf{w}^{H}R\mathbf{w} = (\mathbf{w} - \mathbf{w}_{0})^{H}R(\mathbf{w} - \mathbf{w}_{0}) + \mathbf{p}^{H}(\mathbf{w} - \mathbf{w}_{0}) + (\mathbf{w} - \mathbf{w}_{0})^{H}\mathbf{p} + \mathbf{w}_{0}^{H}R\mathbf{w}_{0}$$

ECE416 11 / 41

$$\mathbf{w}^{H}\mathbf{p} + \mathbf{p}^{H}\mathbf{w} = \mathbf{w}_{0}^{H}\mathbf{p} + \mathbf{p}^{H}\mathbf{w}_{0} + (\mathbf{w} - \mathbf{w}_{0})^{H}\mathbf{p} + \mathbf{p}^{H}(\mathbf{w} - \mathbf{w}_{0})$$
$$= 2\mathbf{w}_{0}^{H}R\mathbf{w}_{0} + (\mathbf{w} - \mathbf{w}_{0})^{H}\mathbf{p} + \mathbf{p}^{H}(\mathbf{w} - \mathbf{w}_{0})$$

Subtracting this from $\mathbf{w}^H R \mathbf{w}$, adding σ_y^2 yields:

$$J(\mathbf{w}) = \sigma_y^2 - \mathbf{w}_0^H R \mathbf{w}_0 + (\mathbf{w} - \mathbf{w}_0)^H R (\mathbf{w} - \mathbf{w}_0)$$

ECE416 12 / 41

Our final expression is:

$$J(\mathbf{w}) = J_{\min} + (\mathbf{w} - \mathbf{w}_0)^H R(\mathbf{w} - \mathbf{w}_0)$$

Since R is pd, this has a *unique* global minimum at $\mathbf{w} = \mathbf{w}_0$. The surface has the shape of a *paraboloid*.

When $\mathbf{w} \neq \mathbf{w}_0$, we have an *excess error*:

$$J_{ex}\left(\mathbf{w}\right) = J\left(\mathbf{w}\right) - J_{\min} = \left(\mathbf{w} - \mathbf{w}_{0}\right)^{H} R\left(\mathbf{w} - \mathbf{w}_{0}\right)$$

ECE416 13 / 41

ECE416 14 / 4:

Error Performance Surface: Contour Plot

ECE416 15 / 41

Ellipsoidal Contours

If $\{\mathbf{q}_i\}$ are the orthonormal eigenvectors of R, we can decompose:

$$\varepsilon = \mathbf{w} - \mathbf{w}_0$$

into eigencomponents as:

$$\varepsilon = \sum \varepsilon_i \mathbf{q}_i$$

with $\varepsilon_i = \mathbf{q}_i^H \boldsymbol{\varepsilon}$.

ECE416 16 / 41

Ellipsoidal Contours

Note that, with $R = Q^H \Lambda Q$:

$$\varepsilon^{H}R\varepsilon = \varepsilon^{H}Q\Lambda Q^{H}\varepsilon = \sum \lambda_{i}\left|\varepsilon_{i}\right|^{2}$$

This means the contours of constant $J(\mathbf{w})$ are *ellipsoids* with axes in the eigenvector directions (lengths equal to $1/\sqrt{\lambda_i}$).

Remark: This has a stochastic interpretation: if $\mathbf{w} \sim \mathbf{N} (\mathbf{w}_0, R^{-1})$, i.e., the mean vector is \mathbf{w}_0 and the covariance matrix is R^{-1} , then these are *isoprobability* contours (the pdf $f(\vec{w})$ is constant on them).

ECE416 17 / 41

Numerical Issues

$$\mathbf{w}_0 = R^{-1}\mathbf{p}$$

There are two problems in practice, closely related.

- We do not know R and can only estimate it.
- ② Whether we know R exactly or only an estimate, computing R^{-1} can be problematic.

Note that in many cases, the data is first "centered" by subtracting off the (sample) mean, in which case we focus on the covariance matrix *C* instead of *R*. Nevertheless, the same issues hold.

ECE416 18 / 41

Numerical Issues

- *R* may be **huge**, with thousands, tens of thousands or even more entries.
- R may be close to singular. Usually with the presence of noise, R will be invertible, but it may have small eigenvalues close to 0. Recall the eigenvalues of R^{-1} are $1/\lambda(R)$ (here $\lambda(R)$ means eigenvalues of R).
- When we only have an estimate of R, estimation errors may be magnified greatly via the inversion process. Indeed, the smallest eigenvalues of R determine the largest eigenvalues of R^{-1} .

ECE416 19 / 41

Condition Number

The *condition number* of a square matrix $\chi(A)$ is often used as a measure of how difficult it is to work with A from a numerical perspective.

Use $\|A\|$ to denote the spectral norm of a matrix, i.e., $\|A\| = \max_{\mathbf{x} \neq \mathbf{0}} \frac{\|A\mathbf{x}\|}{\|\mathbf{x}\|}$: $\chi(A) = \|A\| \cdot \left\|A^{-1}\right\|$

ECE416 20 / 41

Condition Number

The condition number roughly represents the spread of magnitudes of the entries of A and A^{-1} . For example:

$$A = \begin{bmatrix} 10 & 0.8 \\ 0.3 & 0.025 \end{bmatrix} \longrightarrow A^{-1} = \begin{bmatrix} 2.5 & -80 \\ -30 & 1000 \end{bmatrix}$$

In this case $||A|| \approx 10.04$, $||A^{-1}|| \approx 1004$ so $\chi(A) \approx 10,007$.

ECE416 21 / 41

Condition Number

There is a property of spectral norm (does not just apply to square matrices):

$$||AB|| \le ||A|| \, ||B||$$

From this we get:

$$1 \le \chi(A) \le \infty$$

where again ∞ is if A^{-1} does not exist.

A large condition number means handling the matrix (not even necessarily trying to invert it) is sensitive to numerical errors.

When χ (A) is large, we say A is *ill-conditioned*.

ECE416 22 / 41

Error Analysis (Golub)

Let *d* be a vector, *A* a matrix, and:

$$Ad = w$$

Represent d, A to some precision yielding errors δd , δA . Let:

$$\epsilon = \max\left(\frac{|\delta d|}{|d|}, \frac{\|\delta A\|}{\|A\|}\right)$$

where $|\cdot|$ for a vector is Euclidean length, $||\cdot||$ for a matrix is spectral norm.

23 / 41

Error Analysis (Golub)

$$(A + \delta A)(d + \delta d) = w + \delta w \approx w$$

With small perturbations we get:

$$\frac{\left|\delta w\right|}{\left|w\right|} \le \epsilon \chi\left(A\right)$$

ECE416 24 / 41

Eigenvalue Spread

For a *Hermitian* matrix *A*:

$$\chi(A) = \frac{\left|\lambda\right|_{\text{max}}}{\left|\lambda\right|_{\text{min}}}$$

where $|\lambda|_{\text{max}}$, $|\lambda|_{\text{min}}$ denote the maximum and minimum absolute values of the eigenvalues (remember they are all real). This is called the *eigenvalue spread*.

The reason is that $\|A\| = |\lambda|_{\max}$, and $\lambda\left(A^{-1}\right) = 1/\lambda\left(A\right)$ (the eigenvalues of A^{-1} are the reciprocals of the eigenvalues of A), so $\|A^{-1}\| = 1/\left|\lambda\right|_{\min}$.

ECE416 25 / 41

Eigenvalue Spread

For a correlation matrix, we can drop the absolute values:

$$\chi(R) = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}$$

Going back to:

$$w_0 = R^{-1}p$$

we see that the eigenvalue spread of *R* plays a significant role in the numerical issues associated with estimation problems.

ECE416 26 / 41

Correlation Matrix for WSS Signals

Throughout much of this course we will work with u[n] WSS with correlation r[m], PSD $S(\omega)$. Define:

$$u_{M}[n] = \begin{bmatrix} u[n] \\ \vdots \\ u[n-M+1] \end{bmatrix}$$

With the index $1 \le i \le M$ as usual, we see that the i^{th} element is u [n-i+1]. With $R = E (u_M [n] u_M^H [n])$, the ij^{th} element is:

$$E(u[n-i+1]u^*[n-j+1]) = r[(n-i+1)-(n-j+1)] = r[j-i]$$

ECE416 27 / 41

Toeplitz

Let R_M denote the $M \times M$ correlation matrix of $u_M[n]$. Using $r_m = r[m]$, for example for M = 5 we get:

$$R_5 = \begin{bmatrix} r_0 & r_1 & r_2 & r_3 & r_4 \\ r_{-1} & r_0 & r_1 & r_2 & r_3 \\ r_{-2} & r_{-1} & r_0 & r_1 & r_2 \\ r_{-3} & r_{-2} & r_{-1} & r_0 & r_1 \\ r_{-4} & r_{-3} & r_{-2} & r_{-1} & r_0 \end{bmatrix}$$

The matrix has *Toeplitz symmetry*: it is constant on the diagonals. Since $r_m = r_{-m}^*$, it is Hermitian as well. It is also pd (unless there is a degeneracy).

ECE416 28 / 41

Toeplitz Correlation Matrices

The Toeplitz symmetry leads to interesting "embeddings." For example, R_4 can be seen inside R_5 .

Let us define the \mathbf{r}_M vector as:

$$\mathbf{r}_M = \left[egin{array}{c} r_{-1} \ r_{-2} \ dots \ r_{-M} \end{array}
ight] = \left[egin{array}{c} r_1^* \ r_2^* \ r_3^* \ r_4^* \end{array}
ight]$$

Also, for a column vector \mathbf{x} , define \mathbf{x}^B by flipping its components upside-down:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} \longrightarrow \mathbf{x}^B = \begin{bmatrix} x_N \\ \vdots \\ x_2 \\ x_1 \end{bmatrix}$$

Finally x^* means just conjugating the entries (no transpose).

ECE416 29 / 41

Toeplitz Correlation Matrices

$$R_{M+1} = \begin{bmatrix} R_M & \mathbf{r}_M^{B*} \\ \mathbf{r}_M^{BT} & r_0 \end{bmatrix} = \begin{bmatrix} r_0 & \mathbf{r}_M^H \\ \mathbf{r}_M & R_M \end{bmatrix}$$

ECE416 30 / 41

Given a vector $\mathbf{w} = [w_0 \ w_1 \ \cdots \ w_{M-1}]^T$, define:

$$W(\omega) = \sum_{m=0}^{M-1} w_m^* e^{-j\omega m}$$

Then:

$$\mathbf{w}^{H}R_{M}\mathbf{w} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |W(\omega)|^{2} S(\omega) d\omega$$

31 / 41

To verify this:

$$|W(\omega)|^{2} = \sum_{m=0}^{M-1} \sum_{n=0}^{M-1} w_{m}^{*} w_{n} e^{j\omega(n-m)}$$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |W(\omega)|^{2} S(\omega) d\omega = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} w_{m}^{*} w_{n} \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-m)} S(\omega) d\omega \right]$$

$$= \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} w_{m}^{*} w_{n} r[n-m]$$

$$= \mathbf{w}^{H} R_{M} \mathbf{w}$$

Note that the property $S(\omega) \ge 0$ is equivalent to the positive semi-definiteness of R_M . In fact, if R_M fails to be positive definite, then $S(\omega)$ must be 0 at all but a finite number of points.

ECE416 32 / 41

If
$$\|\mathbf{w}\|^2 = \sum |w_m|^2 = 1$$
, then:

$$\lambda_{\min}(R_M) \leq \mathbf{w}^H R_M \mathbf{w} \leq \lambda_{\max}(R_M)$$

with the equalities on either side attained when ${\bf w}$ is a corresponding eigenvector.

But by Parseval's theorem, $\frac{1}{2\pi} \int_{-\pi}^{\pi} |W(\omega)|^2 d\omega = 1$ as well.

Therefore, the integral is trapped between $\min S(\omega)$ and $\max S(\omega)$.

ECE416 33 / 41

Therefore, for all *M*:

$$\min S(\omega) \le \lambda_{\min}(R_M) \le \lambda_{\max}(R_M) \le \max S(\omega)$$

This bounds the condition number for all R_M :

$$\chi(R_M) \leq \frac{\max(S(\omega))}{\min(S(\omega))}$$

As $M \to \infty$, we can concentrate $|W(\omega)|^2$ more tightly at the points where $S(\omega)$ achieves its maximum, or minimum, so we expect $\chi(R_M)$ to converge to this bound.

ECE416 34 / 41

Szegö's Theorem

The relationship between R_M and $S(\omega)$, and in particular since each $\lambda(R_M)$ has the form $\mathbf{w}^H R_M \mathbf{w}$ when \mathbf{w} is a corresponding unit eigenvector, suggests intuitively the following result called *Szegö's Theorem*:

If $g(\lambda)$ is a "nice function" for $\{\lambda \geq 0\}$, and with $\{\lambda_m^{(M)}\}_{1 \leq m \leq M}$ the eigenvalues of R_M :

$$\lim_{M\to\infty}\frac{1}{M}\sum_{m=1}^{M}g\left(\lambda_{m}^{(M)}\right)=\frac{1}{2\pi}\int_{-\pi}^{\pi}g\left(S\left(\omega\right)\right)d\omega$$

ECE416 35 / 41

Entropy

Theorem:

$$\lim_{M\to\infty}\log\left(\det\left(R_{M}\right)\right)^{1/M}=\frac{1}{2\pi}\int_{-\pi}^{\pi}\ln S\left(\omega\right)d\omega$$

Proof:

$$(\det R_M)^{1/M} = \left(\prod_{m=1}^M \lambda_m^{(M)}\right)^{1/M}$$

is the geometric mean of the eigenvalues.

ECE416 36 / 41

Entropy

Taking log:

$$\log (\det (R_M))^{1/M} = \frac{1}{M} \sum_{m=1}^{M} \ln \lambda_m^{(M)}$$

and we then apply Szegö's theorem.

We shall use this later in the context of linear prediction.

ECE416 37 / 41

Random Mix of Deterministic Signals

Let us consider another model for a type of random signal. Let $\{\mathbf{s}_\ell\}_{1 \leq \ell \leq L} \subset \mathbb{C}^M$ be L deterministic M-dimensional vectors, and the following is thus $M \times L$:

$$S = [\mathbf{s}_1 \ \mathbf{s}_2 \ \cdots \ \mathbf{s}_L]$$

Let $\alpha = [\alpha_1 \cdots \alpha_L]^T$ be a random vector and:

$$\mathbf{x} = S\boldsymbol{\alpha} = \sum_{\ell=1}^{L} \alpha_{\ell}^* \mathbf{s}_{\ell}$$

In other words, \mathbf{x} is a random linear combination of deterministic signals. With R_{α} the correlation matrix of $\boldsymbol{\alpha}$ we get:

$$R_x = SR_\alpha S^H$$

ECE416 38 / 41

Random Mix of Deterministic Signals

As a special case, if α are 0-mean uncorrelated with $\sigma_{\ell}^2 = var(\alpha_{\ell})$:

$$R_{x} = \sum_{\ell=1}^{L} \sigma_{\ell}^{2} \mathbf{s}_{\ell} \mathbf{s}_{\ell}^{H}$$

If the \mathbf{s}_{ℓ} 's are linearly independent (this requires, in particular, $L \leq M$), then R_x has rank L. However, unless the \mathbf{s}_{ℓ} 's are orthogonal, they are *not* the eigenvectors of R_x , and σ_{ℓ}^2 are not the eigenvalues.

416 39 / 41

Random Mix of Sinewaves

A special case is a sinewave:

$$\mathbf{s}\left(\omega
ight) = \left[egin{array}{c} 1 \ e^{j\omega} \ dots \ e^{j(M-1)\omega} \end{array}
ight]$$

Theorem: Given any $\{\omega_\ell\}_{1\leq \ell\leq L}$ with $L\leq M$ and $|\omega_i-\omega_j|\neq \text{integer}$ multiple of 2π for any $i\neq j$, the collection $\{\mathbf{s}\ (\omega_\ell)\}_{1\leq \ell\leq L}$ are linearly independent.

ECE416 40 / 41

OPTIMAL FILTERING II: LINEAR REGRESSION AND CORRELATION MATRICES ECE416 ADAPTIVE ALGORITHMS

ECE416 41 / 41