APÊNDIÇE A

O SISTEMA INTERNACIONAL DE UNIDADES (SI)*

1. AS UNIDADES FUNDAMENTAIS DO SI

GRANDEZA	Nome	Símbolo	Definição
comprimento	metro	m	" o comprimento do percurso coberto pela luz, no vácuo, em 1/299.792.458 de um segundo." (1983)
massa	quilograma	kg	" este protótipo (um certo cilindro de liga de platina-irídio) será considerado daqui por diante a unidade de massa." (1889)
tempo	segundo	s	" a duração de 9.192.631.770 vibrações da transição entre dois níveis hipertinos do estado fundamental do átomo de césio 133." (1967)
corrente elétrica	ampère	A	" a corrente constante que, mantida em dois condutores retilíneos, paralelos, de comprimento infinito, de seção circular desprezível e separados pela distância de I metro no vácuo, provoca entre esses condutores uma força igual a 2 × 10 ⁻⁷ newtons por metro de comprimento." (1946)
temperatura termodinâmica	kelvin	K	" a fração 1/273,16 da temperatura termodinâmica do ponto triplo da água." (1967)
quantidade de substância	mol	mol	" a quantidade de substância de um sistema que contém tantas entidades elementares quantos são os átomos em 0,012 quilogramas de carbono 12." (1971)
intensidade luminosa	candela	cd	" a intensidade luminosa, na direção perpendicular, de uma superfície de 1/600.000 metros quadrados, de um corpo negro na temperatura de solidificação da platina, sob a pressão de 101,325 newtons por metro quadrado." (1967)

^{*}Adaptado do "The International System of Units (\$1)," National Bureau of Standards Special Publication 330, edição de 1972, As definições acima foram adotadas pela Conferência Geral de Pesos e Medidas, organismo internacional, nas datas mencionadas. Neste fivro, não usamos a candela.

300 APÊNDICE A O SISTEMA INTERNACIONAL DE UNIDADES

2. ALGUMAS UNIDADES DERIVADAS DO SI

GRANDEZA	Nome da Unidade	Símbolo	
área	metro quadrado	m²	
volume	metro cúbico	m³	
freqüência	hertz	Hz	s^{-1}
massa específica (densidade)	quilograma por metro cúbico	kg/m³	
velocidade, velocidade escalar	metro por segundo	m/s	
velocidade angular	radiano por segundo	rad/s	
aceleração	metro por segundo por segundo	m/s²	
aceleração angular	radiano por segundo por segundo	rad/s²	
força	newton	N	kg·m/s
pressão	pascal	Pa	N/m^2
trabalho, energia, quantidade de calor	joule	J	N⋅m
potência	watt	W	J/s
quantidade de carga elétrica	coulomb	C	$A \cdot s$
diferença de potencial, força eletromotriz	volt	V	W/A
ntensidade do campo elétrico	volt por metro (ou newton por coulomb)	V/m	N/C
esistência elétrica	ohm	Ω	V/A
capacitância	farad	F	$A \cdot s/V$
fluxo magnético	weber	Wb	$\mathbf{V} \cdot \mathbf{s}$
ndutância	henry	Ħ	V·s/A
densidade de fluxo magnético	tesla	T	Wb/m ²
ntensidade do campo magnético	ampère por metro	A/m	
entropia	joule por kelvin	J/K	
calor específico	joule por quilograma kelvin	$J/(kg \cdot K)$	
condutividade térmica	watt por metro kelvin	$W/(m \cdot K)$	
ntensidade radiante	watt por esterradiano*	W/sr	

3. UNIDADES SUPLEMENTARES DO SI

GRANDEZA	Nome da unidade	Símbolo
ângulo plano	radiano	rad
ângulo sólido	esterradiano*	sr

^{*}Embora o termo seja bem conhecido como *estereorradiano*, inclusive assim dicionarizado, preferimos usar a grafía recomendada pela ABNT (Associação Brasileira de Normas Técnicas) e registrada nos *Cadernos IEL* (Volume 8 — Sistema Internacional de Unidades), (N. do T.)

APÊNDICE B

ALGUMAS CONSTANTES FUNDAMENTAIS DA FÍSICA*

		Var on nan	MELHOR VALOR (1986)		
Constante	Símbolo	VALOR PARA CÁLCULO	Valor"	INCERTEZA ²	
Velocidade da luz no vácuo	С	$3,00 \times 10^8 \text{m/s}$	2,99792458	exato	
Carga elementar	e	$1,60 \times 10^{-19} \mathrm{C}$	1,60217738	0,30	
Massa do elétron	m_e	$9,11 \times 10^{-31} \text{ kg}$	9,1093897	0,59	
Massa do próton	$m_{ m p}$	$1.67 \times 10^{-27} \mathrm{kg}$	1,6726230	0,59	
Razão entre a massa do	•	,		·	
próton e a massa do elétron	m_p/m_c	1.840	1.836,152701	0,020	
Massa de nêutron	$m_{\rm e}$	$1,68 \times 10^{-27} \mathrm{kg}$	1,6749286	0,59	
Massa do múon	m_a	$1.88 \times 10^{-28} \mathrm{kg}$	1,8835326	0,61	
Massa do elétron ^c	$m_{c}^{'}$	$5,49 \times 10^{-4} \mathrm{u}$	5,48579902	0,023	
Massa do próton ^c	$m_{_{\mathrm{p}}}$	1,0073 u	1,007276470	0,012	
Massa do nêutron ^c	$m_{\rm n}$	1,0087 u	1,008664704	0,014	
Massa do átomo de hidrogênio	m_{l_a}	1,0078 u	1,007825035	0,011	
Massa do átomo de deutério ^c	$m_{2_{\rm H}}$	2,0141 u	2,0141019	0,053	
Massa do átomo de hélio ^c	$m_{4_{He}}$	4,0026 u	4,0026032	0.067	
Razão entre a carga e a massa do elétron	e/m.	$1.76 \times 10^{11} \text{C/kg}$	1,75881961	0,30	
Permissividade elétrica do vácuo	€0	$8.85 \times 10^{-12} \text{F/m}$	8,85418781762	exato	
Permeabilidade magnética do vácuo	$\mu_0^{''}$	$1.26 \times 10^{-6} \text{H/m}$	1,25663706143	exato	
Constante de Planck	h "	$6.63 \times 10^{-34} \text{J} \cdot \text{s}$	6,6260754	0.60	
Comprimento de onda Compton do elétron	λ_{C}	$2.43 \times 10^{-12} \mathrm{m}$	2,42631058	0,089	
Constante universal dos gases	R	8,31 J/mol·K	8,314510	8,4	
Número de Avogadro	N_{A}	$6.02 \times 10^{23} \mathrm{mol^{-1}}$	6,0221367	0,59	
Constante de Boltzmann	k	$1.38 \times 10^{-23} \text{ J/K}$	1,380657	11	
Volume molar de um gás ideal em CNTP	V_{m}	$2.24 \times 10^{-2} \mathrm{m}^3/\mathrm{mol}$	2,241409	8,4	
Constante de Faraday	F	$9.65 \times 10^{4} \text{C/mol}$	9,6485309	0,30	
Constante de Stefan-Boltzmann	σ	$5.67 \times 10^{-8} \mathrm{W/m^2 \cdot K^4}$	5,67050	34	
Constante de Rydberg	R	$1,10 \times 10^7 \mathrm{m}^{-1}$	1,0973731534	0.0012	
Constante da gravitação universal	\boldsymbol{G}	$6.67 \times 10^{-11} \mathrm{m}^3/\mathrm{s}^2 \cdot \mathrm{kg}$	6,67260	100	
Raio de Bohr	r_{B}	$5,29 \times 10^{-11} \mathrm{m}$	5,29177249	0,045	
Momento magnético do elétron	μ,	$9.28 \times 10^{-24} \text{ J/T}$	9,2847700	0,34	
Momento magnético do próton	μ_{ρ}	$1.41 \times 10^{-26} \text{J/T}$	1,41060761	0,34	
Magnéton de Bohr	μ_{B}	$9.27 \times 10^{-24} \text{ J/T}$	9,2740154	0,34	
Magnéton nuclear	μ_{N}	$5,05 \times 10^{-27} \text{ J/T}$	5,0507865	0,34	

[&]quot;Os valores nesta coluna têm as mesmas unidades e as mesmas potências de 10 que os valores para cálculo.

Em partes por milhão.

Estas massas estão em unidades de massa atômica unificada (u), com $1 \text{ u} = 1,6605402 \times 10^{-10} \text{ kg}$.

de de la decentación de la defendada de la de

^{*}Os valores desta tabela foram escolhidos, em grande parte, de uma listagem maior em Symbols, Units and Nomenclature in Physics (FUPAP), preparada por E. Richard Cohen e Pierre Giacomo, 1986.

APÊNDICE C

ALGUNS DADOS ASTRONÔMICOS

ALGUMAS DISTÂNCIAS DA TERRA

Até a Lua*	3,82	×	10 ⁸ m
Até o Sol	1,50	X	10^{11}m
Até a estrela mais próxima			
(Proxima Centauri)	4,04	X	$10^{16} {\rm m}$
Até o centro da nossa galáxia	2,2	X	$10^{20} \mathrm{m}$
Até a galáxia de Andrômeda	2,1	X	10^{22} m
Até a fronteira do universo observável		~	10^{26} m

^{*}Distância média.

O SOL, A TERRA E A LUA

PROPRIEDADE	UNIDADE	SOL	TERRA	Lua
Massa	kg	1,99 × 10 ³⁰	$5,98 \times 10^{24}$	7.36×10^{22}
Rajo médio	m	6.96×10^{8}	6.37×10^{6}	$1,74 \times 10^{6}$
Densidade média	kg/m³	1.410	5.520	3.340
Aceleração da gravidade	· ·			
na superfície	m/s ²	274	9,81	1,67
Velocidade de escape	km/s	618	11,2	2.38
Período de rotação"		37 d nos pólos ^b	23 h 56 min	27,3 d
•		26 d no equador ^b		
Potência de radiação	W	$3,90 \times 10^{26}$		

[&]quot;Medido em relação às estrelas distantes.
"O Sol, uma bola de gás, não gira como um corpo rígido.

⁴A energia solar é recebida na fronteira da atmosfera, sob incidência normal, à taxa de 1,340 W/m².

304 APÉNDICE C ALGUNS DADOS ASTRONÔMICOS

ALGUMAS PROPRIEDADES DOS PLANETAS

	MERCÚRIO	VÊNUS	TERRA	MARTE	JÚPITER	SATURNO	URANO	NETUNO	PLUTÃO
Distância média ao Sol, 106 km	57,9	108	150	228	778	1.430	2,870	4.500	5.900
Período de revolução, anos	0,241	0,615	1,00	1,88	11,9	29,5	84,0	165	248
Período de rotação," días	58,7	-243 ^h	0,997	1,03	0,409	0,426	~0,451 ^h	0,658	6,39
Velocidade orbital, km/s	47,9	35,0	29,8	24.1	13,1	9,64	6,81	5,43	4.74
Inclinação do eixo do planeta na órbita	<28°	≈3°	23,4°	25,0°	3,08^	26,7°	97.9°	29,6°	57.5°
Inclinação da órbita em relação ao plano da órbita da Terra	7,00°	3,39°		1,85°	1,30°	2.49°	0,77°	1,77°	17,2*
Excentricidade da órbita	0,206	0,0068	0,0167	0,0934	0,0485	0,0556	0,0472	0,0086	0.250
Diâmetro equatorial, km	4.880	12.100	12.800	6.790	143.000	120.000	51.800	49.500	2.300
Massa (Terra = 1)	0,0558	0,815	1,000	0,107	318	95,1	14,5	17,2	0.002
Densidade (água = 1)	5,60	5,20	5,52	3,95	1,31	0,704	1,21	1,67	2,03
Valor de g na superfície, m/s ²	3,78	8,60	9,78	3,72	22,9	9,05	7.77	0,11	0,5
Velocidade de escape, km/s	4,3	10,3	11,2	5.0	59,5	35,6	21,2	23,6	1,1
Satélites conhecidos	0	0	1	2	16 + anel	18 + anéis	15 + anéis	8 + anéis	ı

[&]quot;Medido com relação às estrelas distantes.

^bVênos e Urano giram em sentido oposto ao seu movimento orbital.

^{&#}x27;Aceleração da gravidade medida no equador do planeta.

APÊNDICE **D**

PROPRIEDADES DOS ELEMENTOS

Todas as propriedades físicas referem-se à pressão de 1 atm, exceto quando há observação em contrário.

Elemento	Símbolo	Número Atômico, Z	Massa Molar, g/mol	Massa Específica (Densidade) g/cm² a 20°C	Ponto de Fusão, °C	PONTO DE EBULIÇÃO, °C	CALOR ESPECÍFICO J/(g.°C) A 25°C
Actínio	Ac	89	(227)	10,06	1.323	(3.473)	0,092
Alumínio	Al	13	26,9815	2,699	660	2.450	0,900
Amerício	Am	95	(243)	13,67	1.541	_	_
Antimônio	Sb	51	121,75	6,691	630,5	1.380	0,205
Argônio	Аг	18	39, 9 48	$1,6626 \times 10^{-3}$	-189.4	-185.8	0,523
Arsênio	As	33	74,9216	5,78	817 (28 atm)	613	0,331
Astatínio	At	85	(210)	_	(302)		
Bário	Ba	56	137,34	3,594	729	1.640	0,205
Berílio	Be	4	9,0122	1,848	1.287	2.770	1,83
Berquélio	Bk	97	(247)	14,79	_	_	
Bismuto	Bi	83	208,980	9,747	271,37	1.560	0,122
Boro	В	5	10,811	2,34	2.030	_	1,11
Bromo	Br	35	79,909	3,12 (líquido)	-7,2	58	0,293
Cádmio	Cd	48	112,40	8,65	321,03	765	0,226
Cálcio	Ca	20	40,08	1,55	838	1.440	0.624
Califórnio	Cf	98	(251)			_	
Carbono	Č	6	12,01115	2,26	3.727	4.830	0,691
Centésimo	~	•	1-,0		2	7.55	0,071
quarto	Unq	104	261	_	_	_	_
Centésimo	Ond	10,	201				
quinto	Unp	105	262	<u></u>	_	_	
Cério	Ce	58	140,12	6,768	804	3.470	0,188
Césio	Čs	55	132,905	1,873	28,40	690	0,163
Chumbo	Рb	82	207,19	11,35	327,45	1.725	0,129
Cloro	Cl	17	35,453	$3,214 \times 10^{-3} (0^{\circ}\text{C})$	-101	-34,7	0,486
Cobalto	Co	27	58,9332	8,85	1.495	2.900	0,400
Cobre	Cu	29	63,54	8,96	1.083,40	2.595	0,385
Criptônio	Kr	36	83,80	$3,488 \times 10^{-3}$	-157,37	- 152	0,363
•	Cr	24	51,996	7,19	1.857	2.665	
Cromo		96	(247)		1.037	2.003	0,448
Cúrio Dimensola	Cm			13,3	1.409	2.330	A 172
Disprósio	Dy E-	66 99	162,50	8,55	1.409	2.330	0,172
Einsteínio	Es S		(254)	2,07	119,0	444,6	0.707
Enxofre		16	32,064				0,707
Érbio	Er	68	167,26	9,15	1.522	2.630	0,167
Escândio	Sc	21	44,956	2.99	1.539	2.730	0,569
Estanho	Sn	50	118,69	7.2984	231,868	2.270	0.226
Estrôncio	Sr .	38	87,62	2,54	768	1.380	0,737
Európio	Eu	63	151,96	5,243	817	1.490	0.163
Férmio	Fm	100	(237)	_	_		
Ferro	Fe	26	55,847	7,874	1.536,5	3.000	0,447
Flúor	F	9	18,9984	1,696 × 10 ⁻³ (0°C)	-219,6	-188,2	0,753
Fóstoro	P	15	30,9738	1,83	44,25	280	0,741
Frâncio	Fr	87	(223)	7.00	(27)		
Gadolínio	Ğ٥	64	157,25	7,90	1.312	2.730	0,234
Gálio	Ga	31	69.72	5,907	29,75	2.237	0,377
Germânio	Ge	32	72,59	5,323	937,25	2.830	0,322
láfnio	Hf	72	178,49	13,31	2.227	5.400	0,144
Té lio	He	2	4,0026	0.1664×10^{-3}	-269,7	-268,9	5,23

ELEMENTO	Símbolo	Número Atômico, Z	Massa Molar, g/mol	Massa Específica (Densidade) g/cm³ a 20°C	Ponto de Fusão, °C	Ponto de Ebulição, °C	CALOR ESPECÍFICO, J/(g°C) A 25°C
Hidrogênio	Н	1	1,00797	0.08375×10^{-3}	-259,19	-252,7	14,4
Hólmio	'Ho	67	164,930	8,79	1.470	2.330	0,165
Índio	In	49	114,82	7,31	156,634	2.000	0,233
lodo	I	53	126,9044	4,93	113,7	183	0,218
Irídio	Ir	7 7	192,2	22,5	2.447	(5.300)	0,130
Itérb io	Yb	70	173,04	6,965	824	1.530	0,155
Ítrio	Y	39	88,905	4,469	1.526	3.030	0,297
Lantânio	La	57	138,91	6,189	920	3.470	0,195
Laurêncio	Lr	103	(257)	_	_		_
Lítio	Lì	3	6,939	0,534	180,55	1.300	3,58
Lutécio	Lu	71	174,97	9,849	1.663	1.930	0,155
Magnésio	Mg	12	24,312	1,738	650	1.107	1,03
Manganês	Mn	25	54,9380	7,44	1.244	2.150	0,481
Mendelévio	Md	101	(256)	<u> </u>	_	_	
Mercúrio	Hg	80	200,59	13,55	-38,87	357	0,138
Molibdênio	Mo	42	95,94	10,22	2.617	5.560	0,251
Neodímio	Nd	60	144,24	7,007	1.016	3.180	0,188
Neônio	Ne	10	20,183	0.8387×10^{-3}	-248,597	-246,0	1,03
Netúnio	Nρ	93	(237)	20,25	637	 '	1,26
Nióbio	Nb	41	92,906	8,57	2.468	4.927	0,264
Níquel	Ni	28	58,71	8,902	1.453	2.730	0,444
Nitrogênio	N	7	14,0067	$1,1649 \times 10^{-3}$	-210	-195,8	1,03
Nobélio	No	102	(255)	_	_	_	-
Ósmio	Os	76	190,2	22,59	3.027	5.500	0,130
Ouro	Au	79	196,967	19,32	1.064,43	2.970	0,131
Oxigênio	0	8	15,9994	$1,3318 \times 10^{-3}$	-218,80	-183,0	0,913
Paládio	Pd	46	106,4	12,02	1.552	3.980	0,243
Platina	Pt	78	195,09	21,45	1.769	4.530	0.134
Plutônio	Pu	94	(244)	19,8	640	3.235	0,130
Polônio	Po	84	(210)	9.32	254		_
Potássio	K	19	39,102	0,862	63,20	760	0,758
Praseodímio	Pr	59	140.907	6,773	931	3.020	0,197
Prata	Ag	47	107,870	10,49	960,8	2.210	0,234
Promécio	Pm	61	(145)	7,22	(1.027)	_	
Protactínio	Pa	91	(231)	15,37 (estimada)	(1.230)		
Rádio	Ra	88	(226)	5,0	700		_
Radônio	Rn	86	(222)	$9.96 \times 10^{-3} (0^{\circ}\text{C})$	(-71)	-61.8	0,092
Rênio	Re	75	186,2	21,02	3.180	5.900	0,134
Ródio	Rh	45	102,905	12,41	1.963	4.500	0,243
Rubídio	Rb	37	85,47	1,532	39,49	688	0,364
Rutênio	Ru	4 4	101,107	12,37	2.250	4.900	0,239
Samário	Sm	62 ·	150,35	7,52	1.072	1.630	0.197
Selênio	Se	34	78,96	4,79	221	685	0,318
Silício	Si	14	28,086	2,33	1.412	2.680	0.712
Sódio	Na	11	22,9898	0,9712	97,85	892	1,23
Tálio	TI	81	204,37	11,85	304	1.457	0,130
Fântalo	Ta	73	180,948	6,61	3.014	5.425	8.11,0
lecnécio	Tc	43	(99)	11,46	2.200	<u> </u>	0,209
Telúrio	Te	52	127,60	6,24	449,5	990	0.201
l'érbio	Тb	65	158,924	8,229	1.357	2.530	0,180
itânio	T i	22	47,90	4,54	1.670	3.260	0,523
'ότίο	Th	90	(232)	11,72	1.755	(3.850)	0,117
úlio	Tm	69	168,934	9,32	1.545	1.720	0,159
ungstênio	W	74	183,85	19,3	3.380	5.930	0,134
Jrânio	U	92	(238)	18,95	1.132	3.818	0,117
/anádio	v	23	50,942	6,11	1.902	3.400	0,490
(enônio	Xe	54	131,30	$5,495 \times 10^{-3}$	-111,79	-108	0,159
linco	Zn	30	65,37	7,133	419,58	906	0,389
ircônio	'Zr	40	91,22	6,506	1.852	3.580	0,276

Os valores entre parênteses, na coluna das massas molares, são os números de massa do isótopo de vida mais longa dos elementos radioativos. Os

pontos de fusão e de ebulição entre parênteses são incertos.
Os dados para os gases valem somente quando cada qual está no seu estado molecular ordinário, por exemplo, H₂, He, O₂, Ne etc. Os calores específicos dos gases são os valores a pressão constante.

Fonte: Adaptado de Wehr, Richards, Adair, Physics of the Atom, 4.* ed., Addison-Wesley, Reading, MA, 1984, e também de J. Emsley, The Elements, 2.* ed., Clarendon Press, Oxford, 1991.

APÊNDICE E

TABELA PERIÓDICA DOS ELEMENTOS

[‡]O nome do elemento curchatóvio (símbolo Ku) é uma homenagem ao cientista Igor V. Kurchatov. Também se utiliza a denominação ruterfórdio (símbolo Rf), em homenagem ao cientista Ernst R. Rutherford. A primazia do nome ainda está em debate. (N. do T.) §O nome do elemento é habnio. (N. do R.) **Elementos ainda não denominados.

APÊNDICE F

FATORES DE CONVERSÃO

Os fatores de conversão podem ser lidos diretamente nas tabelas seguintes. Por exemplo, 1 grau = $2,778 \times 10^{-3}$ revolução, e então $16.7^{\circ} = 16.7 \times 2.778 \times 10^{-3}$ rev. As unidades SI estão em maiúsculas. As tabelas foram adaptadas, em parte, de G. Shortley e D. Williams, Elements of Physics, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.

ÂNGULO PLANO

	4	,	**	RADIANO	rev
1 grau =	1	60	3.600	1.745×10^{-2}	$2,778 \times 10^{-3}$
l minuto =	$1,667 \times 10^{-2}$	1	60	$2,909 \times 10^{-4}$	4.630×10^{-3}
1 segundo =	$2,778 \times 10^{-4}$	1.667×10^{-2}	1	$4,848 \times 10^{-6}$	$7,716 \times 10^{-7}$
1 RADIANO =	57,30	3.438	$2,063 \times 10^{5}$	ì	0,1592
1 revolução (volta) =	360	2.16×10^{4}	$1,296 \times 10^{6}$	6,283	1

ÂNGULO SÓLIDO

I esfera = 4π esterradianos = 12,57 esterradianos

COMPRIMENTO

	cm	METRO	km	in <u>.</u>	ft	mi
l centímetro =	1	10-2	10-5	0,3937	3.281×10^{-2}	6.214×10^{-6}
I METRO =	001	I	10-1	39,37	3,281	$6,214 \times 10^{-4}$
1 quilômetro =	105	1.000	1	3.937×10^{4}	3.281	0,6214
l polegada =	2,540	$2,540 \times 10^{-2}$	$2,540 \times 10^{-5}$	1	$8,333 \times 10^{-2}$	1.578×10^{-5}
i pé =	30,48	0,3048	3.048×10^{-4}	12	1	$1,894 \times 10^{-3}$
I milha =	$1,609 \times 10^{5}$	1.609	1,609	$6,336 \times 10^{4}$	5.280	1

l angström = 10^{-10} 1 milha náutica = 1.852 m

 $1 \text{ fermi} = 10^{-15} \text{ m}$ $1 \text{ ano-luz} = 9,460 \times 10^{12} \text{ km}$ 1 braça = 6 pés l raio de Bohr = 5.292×10^{-11} m 1 vara = 16.5 pés 1 mil = 10⁻³ polegadas 1 nm = 10⁻⁹ m

= 1,151 milhas = 6.076 pés

1 parsec = 3.084×10^{13} km

1 jarda = 3 pés

ÁREA

	METRO ²	cm ²	ft²	in.²
METRO QUADRADO =	1	104	10,76	1.550
1 centímetro quadrado =	1014	1	1.076×10^{-3}	0.1550
1 pé quadrado =		929,0	1	144
i polegada quadrada =	$6,452 \times 10^{-4}$	6,452	6.944×10^{-3}	1

¹ milha quadrada = $2,788 \times 10^7 \text{ ft}^2$

^{= 640} acres

 $^{1 \}text{ barn} = 10^{-28} \text{ m}^2$

 $^{1 \}text{ acre} = 43,560 \text{ ft}^2$

¹ hectare = 10^4 m² = 2,471 acres

VOLUME

	METRO ³	cm³	1	ft³	in.3
I METRO CÚBICO =		106	1.000	35,31	6,102 × 10 ⁴
t centímetro cúbico =	10 * 6	1	$1,000 \times 10^{-3}$	$3,531 \times 10^{-5}$	$6,102 \times 10^{-2}$
	$1,000 \times 10^{-3}$	1.000	1	$3,531 \times 10^{-2}$	61,02
1 pé'cúbico =	$2,832 \times 10^{-2}$	$2,832 \times 10^{4}$	28,32	1	1.728
1 polegada cúbica =	$1,639 \times 10^{-5}$	16,39	$1,639 \times 10^{-2}$	$5,787 \times 10^{-4}$	1

¹ galão americano = 4 quartos americanos = 8 pints americanos = 128 onças americanas = 231 in.3

MASSA

As grandezas que estão na área escurecida não são unidades de massa, mas são usadas, muitas vezes, como se fossem. Quando escrevemos, por exemplo, 1 kg "=" 2,205 lb, isto significa que o quilograma é uma massa que pesa 2,205 libras num local onde g tem o valor padrão 9,80665m/s².

	8	QUILOGRAMA	slug	Ц	OZ	1b	ton
1 grama =		0,001	6.852×10^{-3}	$6,022 \times 10^{23}$	$3,527 \times 10^{-2}$	2.205×10^{-3}	1.102×10^{-6}
1 OUILOGRAMA=		1	6.852×10^{-2}			2,205	1.102×10^{-3}
1 slug =	1,459 × 10⁴	14,59	1	$8,786 \times 10^{27}$	514,8	32,17	$1,609 \times 10^{-2}$
l unidade de							•
massa atômica =	$1,661 \times 10^{-24}$	$1,661 \times 10^{-27}$	$1,138 \times 10^{-28}$	i	5.857×10^{-26}	$3,662 \times 10^{-27}$	$1,830 \times 10^{-30}$
1 onca ==	28,35	2.835×10^{-2}	$1,943 \times 10^{-3}$	$1,718 \times 10^{25}$	1	6.250×10^{-2}	3.125×10^{-5}
1 libra = •			$3,108 \times 10^{-2}$	$2,732 \times 10^{26}$	16	1	0,0005
1 ton (curta) =	9.072×10^{5}	907,2	62,16	$5,463 \times 10^{20}$	3.2×10^{4}	2.000	1

I tonelada métrica = 1.000 kg

MASSA ESPECÍFICA (DENSIDADE)

As grandezas na área escurecida são pesos específicos e, portanto, são dimensionalmente diferentes das massas específicas (densidades de massa). Ver a nota na tabela de massa.

slug/ft ³	QUILOGRAN METRO'	//A/ g/cm³	lb/ft³	1b/in.³
1 slug por pé ³ = 1 1 QUILOGRAMA	515,4	0,5154	32,17	1,862 × 10 ⁻²
por METRO ³ = $1,940 \times 10^{-3}$	1	0,001	$6,243 \times 10^{-2}$	$3,613 \times 10^{-5}$
1 grama por centímetro = $1,940$	1.000	1 602 × 10-2	62,43	$3,613 \times 10^{-2}$
1 libra por pé ³ = 3.108×10^{-2} 1 libra por polegada ³ = 53.71	$16,02$ $2,768 \times 10^4$	$1,602 \times 10^{-2}$ 27,68	1.728	5,787 × 10 ⁻⁴ 1

TEMPO

_ <u>a</u>		d	_ h	min	SEGUNDO
1 ano = 1	_	365,25	8,766 × 10 ³	5,259 × 10 ⁵	$3,156 \times 10^{7}$
I dia = 2,73	8×10^{-3}	l	24	1.440	$8,640 \times 10^{4}$
1 hora = 1.14	1×10^{-4}	$4,167 \times 10^{-2}$	1	60	3.600
1 minuto = 1,90	1×10^{-6}	6.944×10^{-4}	$1,667 \times 10^{-2}$]	60
1 SEGUNDO = 3,16	9×10^{-8}	1.157×10^{-5}	$2,778 \times 10^{-4}$	$1,667 \times 10^{-2}$	1

VELOCIDADE

ft/s	km/h	METRO/ SEGUNDO	mi/h	cm/s
1 pé por segundo = 1	1,097	0,3048	0,6818	30,48
1 quilômetro por hora = 0,9113	1	0,2778	0,6214	27,78
1 METRO por SEGUNDO = 3,281	3,6	1	2,237	100
I milha por hora = 1.467	1,609	0,4470	1	44,70
1 centímetro por segundo = 3.281×10^{-2}	$3,6 \times 10^{-2}$	10,0	$2,237 \times 10^{-2}$	1

I galão inglês = 277,4 in.3 = 1,201 galões americanos

FORÇA As unidades na área sombreada são cada vez menos usadas. Para esclarecer: 1 grama-força (= 1 gf) é a força da gravidade que atua sobre um corpo de massa igual a 1g num local onde g tem o valor padrão 9,80665 m/s².

di	na	NEWTON	lb	pdl	gf	kgf
1 dina =	1	10-5	$2,248 \times 10^{-6}$	$7,233 \times 10^{-5}$	$1,020 \times 10^{-3}$	$1,020 \times 10^{-6}$
1 NEWTON =		1	0,2248	7,233	102,0	0,1020
	$4,448 \times 10^{5}$	4,448	2 100 × 10-2	32,17	453,6	0,4536
I poundal (pdl) =		0,1383	$3,108 \times 10^{-2}$	I 7.002 × 10-2	14,10	$1,410 \times 10^{-2}$
1 grama-força = 9 1 quilograma-força = 9		9,807 × 10 ⁻³ 9,807	$2,205 \times 10^{-3}$ 2,205	$7,093 \times 10^{-2}$ $70,93$	1.000	0,001 1

PRESSÃO

	atm	dina/cm²	polegada de água	cm Hg	PASCAL	lb/īn.²	lb/ft²
1 atmosfera 1 dina por	= I	1,013 × 10 ⁶	406,8	76	1,013 × 10 ⁵	14,70	2,116
	$= 9.869 \times 10^{-7}$	1	$4,015 \times 10^{-4}$	$7,501 \times 10^{-5}$	0,1	$1,405 \times 10^{-5}$	$2,089 \times 10^{-3}$
I polegada de							
água"a 4°C	$= 2.458 \times 10^{-3}$	2.491	Ł	0,1868	249,1	$3,613 \times 10^{-2}$	5,202
1 centímetro							
de mercúrio							
a0°C	$= 1.316 \times 10^{-2}$	$1,333 \times 10^{4}$	5,353	1 .	1.333	0,1934	27,85
1 PASCAL	$= 9.869 \times 10^{-6}$	10	$4,015 \times 10^{-3}$	$7,501 \times 10^{-4}$	I	$1,450 \times 10^{-4}$	$2,089 \times 10^{-2}$
1 libra por							
	$= 6.805 \times 10^{-2}$	$6,895 \times 10^4$	27,68	5,171	$6,895 \times 10^{3}$	1	144
por pé ²	$=4.725\times10^{-4}$	478,8	0,1922	$3,591 \times 10^{-2}$	47,88	$6,944 \times 10^{-3}$	1

[&]quot;Num local onde a gravidade g tenha o valor padrão 9,80665 m/s².

 $1 \text{ bar} = 10^6 \text{ dina/cm}^2 = 0.1 \text{ MPa}$

I milibar = 10^3 dina/cm² = 10^2 Pa

1 torr = 1 mmHg

ENERGIA, TRABALHO, CALOR

As grandezas nas áreas sombreadas não são propriamente unidades de energia, mas aparecem no quadro por serem convenientes. Aparecem em virtude da fórmula relativística de equivalência entre massa e energia, $E = mc^2$, e representam a energia liberada se um quilograma de massa, ou se uma unidade unificada de massa atômica (u), for completamente transformado em energia (nas duas filas de baixo), ou a massa que sería completamente transformada em uma unidade de energia (nas duas colunas da direita),

	Btu	егд	ft · lb	hp · h	JOULE	cal	kW · h	eV	MeV	kg	u
I unidade térmica britânica (Btu) =		1,055 × 10 ¹⁰	777,9	3,929 × 10 ⁻⁴	1.055	252,0	2,930 × 10 ⁻⁴	6,585 × 10 ²¹	6,585 × 10 ¹⁵	1,174 × 10 ⁻¹⁴	7,070 × 10 ¹²
1 erg =	9,481 × 10 ⁻¹¹	ı	7,376 × 10 ⁻⁸	3,725 × 10⁻ ^ы	10-7	2,389 × 10 ^{-*}	2,778 × 10 ⁻¹⁴	6,242 ×10 ¹¹	6,242 × 10 ⁵	1,113 × 10 ⁻²⁴	670,2
1 pé-libra =	1,285 ×10 ⁻³	1,356 × 10 ⁷	1	5,051 ×10 ⁻⁷	1,356	0,3238	3,766 × 10 ⁻⁷	8,464 ×10 ¹⁸	8,464 × 10 ¹²	$1,509 \times 10^{-17}$	9,037 × 10°
I hp-hora =	2.545	2,685 ×10 ¹³	1,980 × 10°	1	2,685 ×10 ⁶	6,413 × 10 ⁵	0,7457	1,676 × 10 ²⁵	1,676 × 10 ¹⁹	2,988 × 10 ⁻¹¹	1,799 × 10 ¹⁶
1 JOULE =	9,481 × 10 ⁴	10'	0,7376	3,725 ×10 ⁻⁷	1	0,2389	2,778 ×10 ⁻⁷	6,242 × 10 ¹⁸	6,242 × 10 ¹²	1,113 × 10 ⁻¹⁷	6,702 × 10°
I caloria =	3,969 × 10 ⁻³	4,186 ×10 ⁷	3,088	1,560 × 10 ⁻⁶	4,186	1	1,163 × 10 ⁶	2,613 × 10 ¹⁹	2,613 × 10 ¹³	4,660 × 10 ⁻¹⁷	2,806 × 10 ¹⁰
1 quilowatt-hora =	3.413	3,600 × 10 ¹³	2.655 × 10°	1,341	3,600 × 10°	8,600 × 10 ⁵	ſ	$2,247 \times 10^{25}$	2,247 × 10 ¹⁹	4,007 × 10⁻¹¹	2,413 × 10 ¹⁶
l elétron-volt =	1,519 × 10 ⁻²²	1,602 × 10 ⁻¹²	1,182 × 10 ⁻¹⁹	5,967 ×10 ^{-3h}	1,602 × 10 ⁻¹⁹	3,827 × 10 ⁻²⁰	4,450 × 10 ⁻²⁶	1	10-6	1,783 × 10 ⁻³⁶	1,074 × 10 ⁻⁹
1 milhão de elétrons-volt =	1,519 × 10 ⁻¹⁶	1,602 × 10 ⁻⁶	1,182 × 10 ⁻¹³	5,967 × 10 ⁻²⁰	1,602 × 10 ⁻¹³	3,827 × 10 ⁻¹⁴	$^{4,450}_{\times 10^{-20}}$	106	1	1,783 × 10 ⁻³⁰	1,074 × 10 ⁻³
1 quilograma =	8,521 × 10 ¹³	8,987 × 10 ²³	6,629 × 10 ¹⁶	3,348 × 10 ¹⁰	8,987 × 10 ¹⁶	2,146 × 10 ¹⁶	2,497 × 10 ¹⁰	5,610 × 10 ³⁵	5,610 × 10 ²⁹	1	$6,022 \times 10^{26}$
l unidade unificada de massa	1,415	1,492	1,101	5,559	1,492	3,564	4,146	9,320		1,661	
atômica =	× 10 ⁻¹³	× 10 ⁻³	× 10-10	× 10 ⁻¹⁷	× 10 ⁻¹⁰	× 10-11	×10 ⁻¹⁷	×10 ⁸	932,0	$\times 10^{-27}$	1

312 APÊNDICE F FATORES DE CONVERSÃO

POTÊNCIA

	Btu/h	ft·lb/s	hp	cal/s	kW	WATT
l unidade térmica britânica por hora l pé-libra por	= 1	0,2161	3,929 × 10 ⁻⁴	6,998 × 10 ⁻²	2,930 × 10 ⁻⁴	0,2930
segundo 1 hp	= 4,628 = 2.545	1 550	1.818×10^{-3}	0,3239 178,1	1.356×10^{-3} 0.7457	1,356 745,7 -
t caloria por segundo 1 quilowatt 1 WATT		3,088 737,6 0,7376	5.615×10^{-3} 1.341 1.341×10^{-3}	1 238,9 0,2389	4,186 × 10 ⁻³ 1 0,001	4,186 1.000 l

FLUXO MAGNÉTICO

	maxwell	WEBER
maxwell	=	10 ⁻⁸
1 WEBER	$= 10^8$	1

CAMPO MAGNÉTICO

	gauss	TESLA	miligauss
1 gauss	= 1	10-4	1.000
1 TËSLA		1	107
1 miligauss	= 0.001	10. 7	I

I tesla = 1 weber/metro²

FÓRMULAS MATEMÁTICAS

GEOMETRIA

Círculo de raio r: circunferência = $2\pi r$; área = πr^2 .

Esfera de raio r: área = $4\pi r^2$; volume = $4\pi r^3/3$.

Cilindro circular reto com raio da base r e altura h: área = $2\pi r^2 + 2\pi rh$; volume = $\pi r^2 h$

Triângulo de base a e altura h: área = ah/2.

EQUAÇÃO DO SEGUNDO GRAU

Se
$$ax^2 + bx + c = 0$$
, então $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO θ

$$sen \theta = \frac{y}{r} \cos \theta = \frac{x}{r}$$

$$tan \theta = \frac{y}{x} \cot \theta = \frac{x}{y}$$

$$sec \theta = \frac{r}{x} \csc \theta = \frac{r}{y}$$

$$\frac{\theta}{x} = \frac{r}{x} \cot x$$

TEOREMA DE PITÁGORAS

Neste triângulo retângulo, $a^2 + b^2 = c^2$

TRIÅNGULOS

Os ângulos são A, B e C

Os lados opostos são a, b e c

A soma dos ângulos $A + B + C = 180^{\circ}$

$$\frac{\operatorname{sen} A}{a} = \frac{\operatorname{sen} B}{b} = \frac{\operatorname{sen} C}{c}$$

$$c^{2} = a^{2} + b^{2} + 2ab \cos C$$
O ângulo externo $D = A + C$

SINAIS E SÍMBOLOS MATEMÁTICOS

- = igual a
- ≈ aproximadamente igual a
- ~ da ordem de grandeza de
- ≠ diferente de
- ≡ idêntico a, definido como
- > maior que (≫ muito maior que)
- < menor que (

 muito menor que)
- ≥ maior que ou igual a (não menor que)
- ≤ menor que ou igual a (não maior que)
- ± mais ou menos
- proporcional a
- Σ soma de (somatório de)
- \bar{x} valor médio de x

IDENTIDADES TRIGONOMÉTRICAS

$$sen (90^\circ - \theta) = cos \theta$$

$$\cos (90^{\circ} - \theta) = \sin \theta$$

$$sen \theta/cos \theta = tan \theta$$

$$sen^2 \theta + cos^2 \theta = 1$$

$$\sec^2 \theta - \tan^2 \theta = 1$$

$$\csc^2 \theta - \cot^2 \theta = 1$$

$$sen 2\theta = 2 sen \theta cos \theta$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta - 1 = 1 - 2 \sin^2 \theta$$

 $sen(\alpha \pm \beta) = sen \alpha \cos \beta \pm cos \alpha sen \beta$ $cos(\alpha \pm \beta) = cos \alpha \cos \beta \mp sen \alpha sen \beta$ $tan(\alpha \pm \beta) = \frac{tan \alpha \pm tan \beta}{1 \mp tan \alpha tan \beta}$ $sen \alpha \pm sen \beta = 2 sen \frac{1}{2}(\alpha \pm \beta) cos \frac{1}{2}(\alpha \mp \beta)$ $cos \alpha + cos \beta = 2 cos \frac{1}{2}(\alpha + \beta) cos \frac{1}{2}(\alpha - \beta)$ $cos \alpha - cos \beta = -2 sen \frac{1}{2}(\alpha + \beta) sen \frac{1}{2}(\alpha - \beta)$

BINÔMIO DE NEWTON

$$(1 \pm x)^n = 1 \pm \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \cdots \qquad (x^2 < 1)$$
$$(1 \pm x)^{-n} = 1 \mp \frac{nx}{1!} + \frac{n(n+1)x^2}{2!} + \cdots \qquad (x^2 < 1)$$

EXPANSÃO DA EXPONENCIAL

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

EXPANSÃO DO LOGARITMO NEPERIANO

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \cdots$$
 (|x| < 1)

EXPANSÃO DAS FUNÇÕES TRIGONOMÉTRICAS (θ em radianos)

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots$$

$$\cos \theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots$$

$$\tan \theta = \theta + \frac{\theta^3}{3} + \frac{2\theta^5}{15} + \cdots$$

PRODUTOS DE VETORES

Sejam \mathbf{i} , \mathbf{j} e \mathbf{k} os vetores unitários nas direções x, y e z. Então

$$\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1, \quad \mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0,$$

 $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = 0,$
 $\mathbf{i} \times \mathbf{j} = \mathbf{k}, \ \mathbf{j} \times \mathbf{k} = \mathbf{i}, \quad \mathbf{k} \times \mathbf{i} = \mathbf{j}.$

Qualquer vetor a com as componentes a_x , a_y e a_z , sobre os eixos x, y e z, pode ser escrito como

$$\mathbf{a} = a_{x}\mathbf{i} + a_{y}\mathbf{j} + a_{z}\mathbf{k}.$$

Sejam **a**, **b** e **c** três vetores arbitrários com os módulos a, b e c. Então

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$$

(sa) $\times \mathbf{b} = \mathbf{a} \times (s\mathbf{b}) = s(\mathbf{a} \times \mathbf{b})$ (s = um escalar)

Seja θ o menor dos dois ângulos formados por \mathbf{a} e \mathbf{b} . Então

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = a_x b_y + a_z b_y + a_z b_z = ab \cos \theta$$

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_1 & b_3 \end{vmatrix}$$

$$= (a_y b_z - b_y a_z)\mathbf{i}$$

$$+ (a_z b_y - b_z a_y)\mathbf{j} + (a_x b_y - b_x a_y)\mathbf{k}$$

$$|\mathbf{a} \times \mathbf{b}| = ab \operatorname{sen} \theta$$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$$

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$

DERIVADAS E INTEGRAIS

Nas tabelas seguintes, u e v são funções quaisquer de x, e a e m são constantes. A cada integral indefinida deve ser adicionada uma constante de integração arbitrária.

Encontram-se tabelas muito mais extensas, em especial no *Handbook of Chemistry and Physics* (CRC Press Inc.).

1.
$$\frac{dx}{dx} = 1$$

$$2. \ \frac{d}{dx}(au) = a\frac{du}{dx}$$

3.
$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$$

$$4. \ \frac{d}{dx}x^m = mx^{m-1}$$

5.
$$\frac{d}{dx} \ln x = \frac{1}{x}$$

6.
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

7.
$$\frac{d}{dx}e^x = e^x$$

8.
$$\frac{d}{dx}$$
 sen $x = \cos x$

9.
$$\frac{d}{dx}\cos x = -\sin x$$

$$10. \ \frac{d}{dx} \tan x = \sec^2 x$$

11.
$$\frac{d}{dx}\cot x = -\csc^2 x$$

12.
$$\frac{d}{dx}\sec x = \tan x \sec x$$

13.
$$\frac{d}{dx}$$
 cosec $x = -\cot x$ cosec x

$$14. \ \frac{d}{dx}e^{u} = e^{u} \frac{du}{dx}$$

15.
$$\frac{d}{dx}$$
 sen $u = \cos u \frac{du}{dx}$

16.
$$\frac{d}{dx}\cos u = -\sin u \frac{du}{dx}$$

1.
$$\int dx = x$$

$$2. \int au \, dx = a \int u \, dx$$

$$3. \int (u+v) dx = \int u dx + \int v dx$$

4.
$$\int x^m dx = \frac{x^{m+1}}{m+1} \qquad (m \neq -1)$$

$$5. \int \frac{dx}{x} = \ln|x|$$

6.
$$\int u \frac{dv}{dx} dx = u v_1 - \int v_1 \frac{du}{dx} dx$$

$$7. \int e^x dx = e^x$$

8.
$$\int \sin x \, dx = -\cos x$$

$$9. \int \cos x \, dx = \sin x$$

10.
$$\int \tan x \, dx = \ln |\sec x|$$

11.
$$\int \sin^2 x \, dx = \frac{1}{2}x - \frac{1}{4}\sin 2x$$

12.
$$\int e^{-ax} dx = -\frac{1}{a}e^{-ax}$$

13.
$$\int xe^{-ax} dx = -\frac{1}{a^2}(ax+1)e^{-ax}$$

14.
$$\int x^2 e^{-ax} dx = -\frac{1}{a^3} (a^2 x^2 + 2ax + 2)e^{-ax}$$

15.
$$\int_0^\infty x^n e^{-ax} \ dx = \frac{n!}{a^{n+1}}$$

16.
$$\int_0^\infty x^{2n} e^{-ax^2} dx = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^{n+1} a^n} \sqrt{\frac{\pi}{a}}$$

17.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2})$$

Respostas dos Exercícios e **PROBLEMAS**

Capítulo 1

3. (a) 186 mi. (b) 3.0×10^8 mm. 5. (a) 10^9 .

(b) 10^{-4} . (c) 9.1×10^{4} . 7, 32,2 km. 9, 0,020 km³.

11. (a) 250 ft². (b) 23,3 m². (c) 3.060 ft³.

(d) 86.6 m^3 , $13.8 \times 10^2 \text{ km}$. $15. (a) 11 \text{ m}^2/\text{L}$.

(b) $1.13 \times 10^4 \,\mathrm{m}^{-1}$. (c) $2.17 \times 10^{-3} \,\mathrm{gal/ft^2}$.

17. (a) $d_{\text{Sol}}/d_{\text{Lua}} = 400$. (b) $V_{\text{Sol}}/V_{\text{Lua}} = 6.4 \times 10^7$.

(c) 3.5×10^3 km. 19. (a) 31 m. (b) 21 m.

(c) No lago Ontario. 21, 52,6 min; 5,2%. 23, 720 dias.

25. (a) Sim. (b) 8,6 s. 27. 0,12 UA/min. 29. 1,0 m.

31. 2 h. 33. 6.0×10^{26} . 35. 9.0×10^{49} .

37. (a) 10³ km/m³. (b) 158 kg/s. **39.** 0,260 kg.

Capítulo 2

1. (a) Lewis: 10,0 m/s; Rodgers: 5,41 m/s.

(b) 1 h 10 min. 3, 94 m. 5, 2 cm/a.

7. 6.71×10^8 mi/h, 9.84×10^8 ft/s, 1,00 al/a.

9. (a) 1,7 m/s. (b) 2,1 m/s.

11. (a) 45 mi/h (72 km/h). (b) 69 km/h.

(c) (71 km/h). (d) 0. 13. (a) 28,5 cm/s.

(b) 18,0 cm/s. (c) 40,5 cm/s. (d) 28,1 m/s.

(c) 30,3 cm/s. 15. (a) Matematicamente, um número

infinito. (b) 60 km. 17. (a) 4 s > t > 2 s.

(b) 3 s > t > 0. (c) 6 s > t > 3 s. (d) t = 3 s.

19. 100 m. 21. (a) 20 m/s2, no sentido oposto ao

da velocidade inicial. 23. (a) Os sinais de ν e a são: OA: +, 0: AB: +, -: BC: 0, 0: CD: -, +. (b) Não.

(c) Não. 27. (a) Não. (b) m²/s²; m/s².

29. (a) t = 1.2 s. (b) t = 0. (c) t > 0, t < 0.

31. (a) $\bar{v} = 14 \text{ m/s}$, $\bar{a} = 18 \text{ m/s}^2$.

(b) v(2) = 24 m/s, v(1) = 6 m/s, $a(2) = 24 \text{ m/s}^2$,

 $a(1) = 12 \text{ m/s}^2$. 33. (a) LT^2 , m/s²; LT^3 , m/s³.

(b) 2.0 s. (c) 7.2 m. (d) -4.8 m.

(e) 3, 0, -9, -7.2 m/s. (f) 0, -6, -12, -5.4 m/s².

35. (a) 1.6 m/s. (b) 18 m/s. **37.** (a) 3.1×10^6 s.

(b) 4.6×10^{13} m. **39.** (a) 0.10 m.

41. (a) 8.3 m/s²; 0.85 g. (b) 3.2 s; \approx 8T.

43. (a) 5,00 s. (b) 61,5 m. **45.** (a) 2,6 s.

47. (a) 5,0 m/s². (b) 4.0 s. (c) 6,0 s. (d) 90 m.

49. (a) 5,00 m/s. (b) 1,67 m/s². (c) 7,50 m.

51. (a) 0,74 s. (b) 6.5 m/s². **53.** (a) 32,9 m/s.

(b) 49.1 s. (c) 11,7 m/s. 55. (a) 10,4 m. (b) 41,6 s.

57. Sim. 59. (a) 29.4 m. (b) 2.45 s. 61. 183 m/s.

63. (a) 1,54 s. (b) 27.1 m/s. **67.** (a) 3,70 m/s.

(b) 1,74 m/s. (c) 0,154 m. 69, 4,0 m/s.

73. (a) $v = (v_0^2 + 2gh)^{1/2}$, para baixo.

(b) $t = \{(v_0^2 + 2gh)^{1/2} - v_0^2\}/g$, (c) mesmo; $t = [(v_0^2 + 2gh)^{1/2} - v_0]/g$, maior. 75. Quatro vezes mais alto. 77, 1.650 m/s², para cima, 79, (a) 38.1 m.

(b) 9.02 m/s. (c) 14.5 m/s, para cima. 81. 96g. 83. (a) 17 s.

(b) 290 m. 85. ≈ 0.3 s. 87. (a) 76 m acima do solo. (b) 4.1 s. 89. 2.34 m.

Capítulo 3

1. Os deslocamentos devem ser (a) paralelos,

(b) antiparalelos, (c) perpendiculares.

3. (a) 370 m, 36° ao norte do leste.

(b) Módulo do deslocamento: 370 m; distância percorrida: 425 m. 5, 81 km, 40° ao norte do leste.

7. (a) 38 unidades, 320°. (b) 130 unidades, 1,2°

(c) 62 unidades, 130°. 9, $a_1 = -2.5$; $a_2 = -6.9$.

11. $r_1 = 13 \text{ m}; r_1 = 7.5 \text{ m}.$

13. (a) 14 cm, a 45° à esquerda da vertical orientada para baixo.

(b) 20 cm, para cima. (c) zero. 15. 4,74 km.

17. 168 cm, 32,5° acima do piso. 19. (a) 7,1 m.

(b) Não; sim; sim. (c) 14i + 12j + 10k é uma das respostas possíveis.

(d) 8,6 m. 21. $r_v = 12$, $r_v = -5.8$, $r_v = -2.8$.

23. (a) 8i + 2j, 8,2, 14°

(b) 2i - 6j, 6.3, -72° em relação a i. 25. (a) 5.0, -37° .

(b) 10, 53°, (c) 11, 27°, (d) 11, 80°.

(e) 11, 260°. Os ângulos são em relação a + x. Os últimos dois vetores têm a mesma direção e sentidos opostos.

27. (a) r = 1,59, r = 12,1. (b) 12.2. (c) 82.5°.

29. 1.130 m, na horizontal.

31. (a) -2.83 m, -2.83 m; +5.00 m, 0 m; 3.00 m, 5.20 m.

(b) 5,17 m, 2,37 m. (c) 5,69 m, 24,6° ao norte do leste.

(d) 5,69 m, 24,6° ao sul de oeste. 35, (b) 11.200 km.

37. (a) 10 m, norte. (b) 7.5 m, sul. 39. Não.

43. (a) 30. (b) 52. **45.** (a) 0. (b) = 16. (c) = 9.

49. (a) 11i + 5j - 7k, (b) 120° , **51.** (a) 2k, (b) 26.

(c) 46. 53. (a) 2.97. (b) 1.51i + 2.67j - 1.36k.

(c) 48. 55. 70,5°, 57. (b) $a^2b \sec \phi$.

1. (a) $= (5.0 \text{ m})\mathbf{i} + (8.0 \text{ m})\mathbf{j}$. (b) 9.4 m, $122^{\circ} \text{ de} + x$.

3. (a) = $(7.0 \text{ m})\mathbf{i} + (12 \text{ m})\mathbf{j}$. (b) plano xy.

5. (a) 1.080 km, 63.4° sudeste. (b) 479 km/h, 63,4° sudeste; deve ser o mesmo ângulo do item (a).

(c) 644 km/h. 7, (a) 6,79 km/h. (b) 6,96°.

9. (a) $(3 \text{ m/s})\mathbf{i} = (8t \text{ m/s})\mathbf{j}$, (b) $(3 \text{ m/s})\mathbf{i} = (16 \text{ m/s})\mathbf{j}$.

(c) 16 m/s, -79° até +x. 11. (a) $8t\mathbf{j} + \mathbf{k}$. (b) $8\mathbf{j}$

13. $-(2,10 \text{ m/s}^2)\mathbf{i} + (2,81 \text{ m/s}^2)\mathbf{j}$.

15. (a) $= (1.5 \text{ m/s})\mathbf{j}$. (b) $(4.5 \text{ m})\mathbf{i} = (2.25 \text{ m})\mathbf{j}$.

17. (a) 18 cm. (b) 1.9 m. 19. (a) 5.4×10^{-13} m.

(b) Diminui. 21. (a) 0,50 s. (b) 3 m/s.

23. (a) 0,21 s; 0,21 s. (b) 20,6 cm. (c) 61 cm.

25. (a) 16,9 m; 8,21 m. (b) 27,6 m; 7,26 m.

(c) 40,2 m; 0, 27. (a) 1,15 s. (b) 12,0 m.

(c) 19,2 m/s; 4,80 m/s. (d) Não. 29. (b) 27°.

31. (a) 194 m/s. (b) 38°. **33.** 4.8 cm.

35. Não-acidental; velocidade de lançamento horizontal é cerca de 20% da marca mundial de velocidade de arrancada. 37. (a) 11 m. (b) 23 m.

(c) 17 m/s, 63° abaixo da horizontal. 39. (a) 22 m.

(b) 7,6°. (c) 1,0 s. 41. 7 m/s.

- 43. Aproximadamente 40 m.
- 45. 30 m acima do ponto de lançamento, 47. O terceiro.
- **49.** (a) 61 m/s. (b) 806 m. (c) 161 m/s; -171 m/s.
- 51. 78,5°. 53. 25 m.
- 55. Entre os ângulos 31º e 63º acima da horizontal.
- 57. (a) 310 s. (b) 105 km. (c) 139 km.
- 59. (a) 4.0 m/s². (b) Em direção ao centro do círculo.
- **61.** (a) 22 m. (b) 15 s. **63.** (a) 4.6×10^{12} m.
- (b) 2,8 d. 65. (a) 7,3 km. (b) menor que 80 km/h.
- 67. (a) 19 m/s. (b) 35 rev/min. 69. (a) 0.034 m/s².
- (b) 84 min. 71, (a) 4,2 m, 45°; 5,5 m, 68°; 6,0 m, 90°.
- (b) 4,2 m, 135°, (c) 0,85 m/s, 135°.
- (d) 0.94 m/s, 90°; 0.94 m/s, 180°. (c) 0.30 m/s², 180°;
- 0.30 m/s^2 , 270° . Ângulos medidos a partir de $\pm x$
- no sentido anti-horário. 73. (a) 5 km/h, rio acima.
- (b) 1 km/h, rio abaixo.
- 75. O vento sopra de oeste a 85,3 km/h. 77. 48 s.
- **79.** (a) $(80 \text{ km/h})\mathbf{i} = (60 \text{ km/h})\mathbf{j}$.
- (b) v ocorre ao longo da linha de visada.
- (c) As respostas não mudam. 81. (0,96 m/s)j.
- 83. 80 m/s. 85. 185 km/h, 22° sudeste.
- 87. 87º a partir da direção do movimento do carro.
- **89.** (a) 47° nordeste. (b) 6 min 35 s. **91.** 0,83c.

Capítulo 5

- 1. (a) $F_1 = 1.88 \text{ N}$, $F_2 = 0.684 \text{ N}$.
- (b) (1.88 N)i + (0.684 N)j.
- 3. (a) $-(6.26 \text{ N})\mathbf{i} (3.23 \text{ N})\mathbf{j}$.
- (b) 7,0 N, 207° em relação a +x.
- 5. $(3 \text{ N})\mathbf{i} + (-11 \text{ N})\mathbf{j} + (4 \text{ N})\mathbf{k}$.
- 7. (a) (-32 N)i + (-21 N)j. (b) 38 N, 213° a partir de $\pm x$.
- **9.** (a) $(0.86 \text{ m/s}^2)\mathbf{i} + (-0.16 \text{ m/s}^2)\mathbf{j}$.
- (b) 0.88 m/s^2 , -11° em relação a $\pm x$.
- 11. (a) Massa = 630 kg; peso = 636 kgf.
- (b) Massa = 421 kg; peso = 4.100 N, 13, (a) 740 N.
- (b) 290 N. (c) Zero. (d) 75 kg em cada local.
- 15. (a) 147 N, para baixo. (b) 147 N, para cima.
- (c) 147 N. 17. (a) 54 N. (b) 152 N. 19. 1.18×10^4 N.
- **21.** 1.2×10^5 N. **23.** 16 N. **25.** 8,0 cm/s².
- **27.** (a) A massa de 4 kg. (b) 6.5 m/s². (c) 13 N.
- 29. 1,2 × 10° N. 31. 307 N. 33. 1,5 mm.
- 35, 10 m/s², 37, (a) 489 N, para cima. (b) 489 N, para baixo.
- **39.** (a) 0.62 m/s^2 . (b) 0.13 m/s^2 . (c) 2.6 m.
- 41. (a) 0.74 m/s². (b) 7.3 m/s².
- **43.** (a) 5i + 4.3j, m/s. (b) 15i + 6.4j, m.
- 45, (a) 65 N. (b) 49 N. 47, (a) 220 kN. (b) 50 kN.
- **49.** (a) 0.970 m/s². (b) $T_1 = 11.6$ N, $T_2 = 34.9$ N.
- 51. (a) 31,24 kN. (b) 24,3 kN. 53. (a) 5,1 m/s.
- **55.** (a) 3.260 N. (b) 2.7×10^3 kg. (c) -1.2 m/s².
- **57.** (a) 1.23; 2,46; 3,69; 4.92, N. (b) 6,15 N. (c) 0,25 N.
- 59. (a) Fazendo com que a aceleração de descida tenha módulo ≥ 1,3 m/s². (b) 3,9 m/s ou mais.
- .61. (a) 7,3 kg. (b) 89 N. 63. (a) 4,9 m/s².
- (b) 2,0 m/s², para cima. (c) 120 N. **65.** (a) 120 m/s².
- (b) 12g. (c) 1.4×10^8 N. (d) 4.2 anos.
- 67. (a) 2,18 m/s², (b) 116 N. (c) 21,0 m/s²,
- 69. 4,6 m/s². (b) 2,6 m/s². 71. (a) 9,4 km.
- (b) 61 km. 73. (a) -466 N. (b) -527 N.
- (c) -931 N, -1.050 N.
- (d) Nos dois primeiros casos: =931 N. Terceiro caso: =1.860 N. Quarto caso: =1.980 N.

Capítulo 6

- 1. (a) 200 N. (b) 120 N. 3. (a) 110 N. (b) 130 N.
- (c) Não. (d) 46 N. (e) 17 N. 5. (a) (i) 245 N. 100 N.
- (ii) 195 N, 86,6 N, (iii) 158 N, 50.0 N,
- (b) (i) Permanece parada. (ii) Desliza. (iii) Permanece parada. 7. 9.3 m/s².
- 9. (a) 90 N. (b) 70 N. (c) 0.89 m/s³. 11. (a) Não.

- (b) (12 N)i + (5 N)j. 13. 20°. 15. (a) 0,13 N.
- (b) 0,12. **19.** (a) 56 N. (b) 59 N. (c) 1.100 N.
- **21.** (a) $v_0^2/(4g \operatorname{sen} \theta)$. (b) Não. **23.** 0.53.
- 25. (a) 11 N, em direção à direita. (b) 0,14 m/s².
- 27. (a) 2,0 m/s², descendo o plano. (b) 4.0 m.
- (c) Fica lá. 29. (a) 8,6 N. (b) 46 N. (c) 39 N.
- **31.** (a) Zero. (b) 3,9 m/s² para baixo.
- (c) 1,0 m/s² para baixo. 33. (a) 13 N.
- (b) 1,6 m/s². 35. (a) 1,05 N, tensionado.
- (b) 3,62 m/s² descendo o plano.
- (c) As respostas seriam as mesmas, exceto que o bastão estaria sob compressão.
- 37. (a) 6,1 m/s², para a direita. (b) 0,98 m/s², para a direita.
- **39.** $g (\sin \theta \sqrt{2} \mu_k \cos \theta)$. **41.** (a) 19° (b) 3.300 N.
- 43, 6,200 N, 45, 2,3, 47, 10 m/s, 49, 20,7 m.
- **51.** (a) 11°. (b) 0.19. **53.** (a) 0.96 m/s. (b) 0.021.
- 55. (a) 2.2×10^6 m/s.
- (b) 9.1×10^{22} m/s², apontando para o núcleo.
- (c) 8.3×10^{-8} N. 57. 178 km/h. 59. 0.12, 0.23.
- **61.** 874 N. **63.** \sqrt{gR} . **65.** 1,52 km.
- 67, (a) 5,1 m/s², radialmente para dentro. (b) 4,8 N. (c) 10 N.
- 69. (a) 0,0338 N. (b) 9,77 N. 71. (a) 5,8'. (b) Zero.
- (c) Zero.

Capítulo 7

- **1.** (a) 3.7×10^7 J. (b) 200 J. **3.** (a) 314 J.
- (b) = 155 J. (c) Zero. (d) 158 J. 5. (a) 230 N.
- (b) -400 J. (c) 400 J. (d) Zero. (e) Zero.
- 7. (a) c = 4 m. (b) $c \le 4$ m. (c) $c \ge 4$ m.
- **9.** (a) 215 N. (b) 10.100 J. (c) 48 m.
- (d) 10.300 J. 11. (a) 2.200 J. (b) = 1.500 J. 13. 25 J. 17. = 6 J. 19. 1.250 J. 21. 1.8 \times 10¹³ J.
- **23.** (a) 3.610 J. (b) 1.900 J. (c) 1.1×10^{10} J.
- 25. 47 keV. 27. 7.9 J. 29. (a) 48 km/h.
- (b) 9.0×10^4 J. 31. (a) 1×10^5 megatons de TNT.
- (b) 1×10^7 bombas. 33, 530 J. 35, (a) 1.2×10^4 J.
- (b) -1.1×10^4 J. (c) 1.100 J. (d) 5.4 m/s.
- 37. (a) 797 N. (b) Zero. (c) -1.550 J. (d) Zero.
- (e) 1.550 J. (f) Porque a força F não é constante.
- 39, 270 kW. 41, 235 kW. 43, 17 kW.
- **45.** (a) 2.6×10^5 J. (b) 0.58 hp.
- **47.** (a) 0,83; 2,5; 4.2 J. (b) 5,0 W. **49.** 90 hp.
- 51. (a) 79,37 keV. (b) 3,12 MeV. (c) 10,9 MeV.

Capítulo 8

- 1. 89 N/cm. 3. (a) 200 J. (b) 170 J. (c) 13 m/s.
- 5. (a) 4.0×10^4 J. (b) 4.0×10^4 J. 7. (a) $v_{\rm b}$
- (b) $\sqrt{v_0^2 + gh}$, (c) $\sqrt{v_0^2 + 2gh}$, (d) $(v_0^2/2g) + h$.
- 9, 56 m/s. 11, (a) 7,84 N/cm. (b) 62,7 J.
- (c) 80,0 cm. 13. (a) mgL. (b) $\sqrt{2gL}$. 15. (a) 2.8 m/s.
- (b) 2,7 m/s. 17. (a) 35 cm. (b) 1,7 m/s.
- 19. (a) 1,2 J. (b) 11 m/s. (c) Não. (d) Não.
- 21. (a) 25 kJ. (b) 7,8 kJ. (c) 160 m. 23. (a) 4,8 m/s.
- (b) 2,4 m/s. 25, 10 cm. 27, 1,25 cm. 29, (a) 19 J.
- (b) 6,4 m/s. (c) 11 J, 6.4 m/s.
- 31. Sim, mas por pouco.
- 33. (a) $2\sqrt{gL}$. (b) 5mg. (c) 71° . 35. mgL/32.
- **39.** (a) $1,12(A/B)^{1/6}$. (b) Repulsiva. (c) Atrativa.
- 41. (a) Um ponto de inversão à esquerda, nenhum à direita.
- (b) Pontos de inversão à esquerda e à direita.
- (c) = 1.2×10^{-19} J. (d) 2.2×10^{-19} J.
- (e) \approx 1 × 10⁻⁹ N, sobre o átomo de massa m na direção do átomo de massa M, bem como sobre o átomo de massa M, na direção do átomo de massa m.
- (f) r < 0.2 nm. (g) r > 0.2 nm. (h) r = 0.2 nm.
- **43.** (a) 7.9×10^{4} J. (b) 1.8 W. **45.** (a) 2.700 MJ.
- (b) 2.700 MW. (c) 240 M\$. 47. (a) =0.74 J.

(b) -0.53 J. 49. (a) 1.2 km. (b) 75 kW. 51. 690 W.

53, 5.5 \times 10° N, 55, 24 W, 57, (b) 3.4.

59. (a) -3.800 J. (b) $3.1 \times 10^4 \text{ N}$. **61.** 54%.

63. – 12 J. **65.** (a) 1.5 MJ. (b) 0.51 MJ. (c) 1.0 MJ.

(d) 63 m/s. 67. 0.191. 69. 44 m/s. (b) 0.036.

73. (a) 0.1 m. (b) 2.8 m/s. 75. (a) 560 J. (b) 150 J.

(e) 5,5 m/s. 77, 1,2 m.

81. No centro da parte plana. 83. (a) 7,3 m/s.

(b) 0.9 m. (c) 2,7 m. (d) 14,9 m. **85.** 180 W.

87. (a) 2.1×10^6 kg. (b) $\sqrt{100 + 1.5t}$ m/s.

(e) $[(1.5 \times 10^6)/\sqrt{100 + 1.5t}]$ N. (d) 6.7 km.

89. (a) 110 rev/min. (b) 19 W. 91. (a) 216 J.

(b) 1.180 N. (c) 432 J, o dobro da resposta do item (a).

93. (a) 1.1×10^{17} J. (b) 1.2 kg. **95.** 1.10 kg.

97. 270 vezes a circunferência equatorial da Terra.

99. 2×10^{5} kg. **101.** (a) 2.46×10^{15} s⁻¹. (b) Emitida.

Capítulo 9

1. (a) 4.700 km. (b) $0.72 R_T$.

3. (a) $x_{\rm em} = 1.1$ m; $y_{\rm em} = 1.3$ m.

(b) Ele se desloca na direção da partícula de cima.

5. $x_{cm} = -0.25 \text{ m}$; $y_{cm} = 0.$

7. Dentro do ferro, na metade da altura, na metade da largura a 2,7 cm da metade do comprimento.

9. $x_{\rm cm} = y_{\rm cm} = 20$ cm; $z_{\rm cm} = 16$ cm. **11.** 36.8 m.

13. 6,2 m. 15. (a) Para baixo; mv/(m + M).

(b) O balão ficará de novo estacionário. 17. (a) L. (b) Zero.

19. 58 kg. 21. (a) A 25 mm de cada saco.

(b) A 26 mm do saco mais leve. (c) Para baixo. (d) = 1.6×10^{-2} m/s².

23. 39.900 kg · m/s, na díreção do movimento.

25. (a) 52.0 km/h. (b) 28,8 km/h. 27. Um próton.

29. (a) 30° . (b) $(-0.572 \text{ kg} \cdot \text{m/s})$ **j. 31.** (a) 6.4 J.

(b) $P_r = 0.80 \text{ kg} \cdot \text{m/s}$, 30° acima da horizontal;

 $P_t = 0.80 \text{ kg} \cdot \text{m/s}$, 30° abaixo da horizontal.

33. 9.8×10^{-3} ft/s, para trás. 35. 4.400 km/h.

37. $wv_{rel}/(W+w)$.

39. 14 m/s, fazendo um ângulo de 135º com os outros fragmentos.

41. (a) 0,54 m/s. (b) 0 m/s. (c) 1,1 m/s.

43. (a) 721 m/s. (b) 937 m/s. **45.** (a) $0.200v_{\text{ref}}$

(b) $0.210 v_{\text{ref}}$ (c) $0.209 v_{\text{ref}}$ 47. (a) $8.0 \times 10^4 \text{ N}$

(b) 27 kg/s. 49, (a) 1.57×10^6 N. (b) 1.35×10^5 kg.

(c) 2,08 km/s, **51.** 2.2×10^{-3} , **55.** 6,1 s.

57. (a) 2.3×10^4 N. (b) 4.2×10^6 W.

59. 2.7 m/s. **61.** (a) -500 J. (b) 1.700 N.

Capítulo 10

1, $400 \text{ N} \cdot \text{s}$. 3, 2,5 m/s, 5, (a) $2mv/\Delta t$. (b) 570 N.

7. 6.400 lb (2.903,0 kgf), 9. 67 m/s.

11. (a) 2,3 N · s, no sentido inicial do vôo.

(b) 2,3 N · s, no sentido oposto ao sentido inicial do vôo.

(c) 1.400 N, no sentido inicial do vôo. (d) 58 J.

13. 10 m/s. **15.** 216. **17.** 29. **19.** 2μυ. **21.** 990 N.

23. (a) 1.8 N · s, para a esquerda. (b) 180 N, para a direita.

27. 8 m/s, 29. (a) 1.9 m/s, para a direita. (b) Sim.

(c) Não, a energia cinética total teria aumentado.

31. 9,22%. 33. (a) 99 g. (b) 1,9 m/s.

35. (a) 2,47 m/s. (b) 1,23 m/s. **37.** 100 g. **39.** $m_1/3$.

41. $\approx 2 \text{ mm/ano}$, 43. 1,81 m/s, 45. 310 m/s.

47. 2.7 m/s. (b) 1.400 m/s, **49.** 190 \times 10³ kgf. **51.** $m\vec{v}$ /6.

53. 13×10^3 kgf. 55. 25 cm. 57. (a) 62.5 km/h. (b) 0.75.

 $59. \sqrt{2E\frac{M+m}{mM}}$

61. (a) A 30° a partir do sendido do movimento do primeiro próton. (b)

250 m/s e 430 m/s. 63. (a) 41°. (b) 4,76 m/s.

(c) Não. **65.** v = V/4.

67. (a) A 117° a partir do sentido final de B. (b) Não.

69. 120°, **71.** (a) 1,9 m/s, a 30° com relação ao sentido inicial.

(b) Não. 73. (a) 3,4 m/s, defletida de 17º para a direita.

(b) 0.95 MJ. 75, (a) 117 MeV.

(b) Momentos lineares de módulos iguais e sentidos opostos, (c) π^- .

77. (a) 4.94 MeV. (b) Zero. (c) 4.85 MeV.

(d) 0.09 MeV.

Capítulo 11

1, (a) 1,50 rad, (b) 85,9°, (c) 1,49 m.

3. (a) 5.5×10^{15} s. (b) 26. 5. (a) 2 rad. (b) 0.

(c) 130 rad/s. (d) 32 rad/s². (e) Não.

7. (a) 0,105 rad/s. (b) 1.75×10^{-3} rad/s.

(c) 1.45×10^{-4} rad/s. 9. 11 rad/s. 11. (a) 30 s.

(b) 1.800 rad. 13. (a) 9.000 rev/min². (b) 420 rev.

15. (a) -1.25 rad/s². (b) 250 rad. (c) 39.8 rev.

17. (a) 140 rad, (b) 14 s. 19. 8.0 s. 21, (a) 340 s.

(b) $-4.5 \times 10^{-3} \text{ rad/s}^2$. (c) 98 s. 23. (a) 1.0 rev/s².

(b) 4,8 s. (c) 9,6 s. (d) 48 rev.

25. (b) $-2.3 \times 10^{-9} \text{ rad/s}^2$. (c) 2.600 a. (d) 24 ms.

27. (a) 3.5 rad/s. (b) 53.34 cm/s. (c) 25,4 cm/s.

29. (a) 20.9 rad/s, (b) 12.5 m/s. (c) 800 rev/min²,

(d) 600 rev. 31. (a) 2.0×10^{-7} rad/s. (b) 30 km/s.

(c) 5,9 mm/s², apontando para o Sol.

33. (a) 2.50×10^{-3} rad/s. (b) 20.2 m/s². (c) 0.

35. (a) 7.3×10^{-5} rad/s. (b) 350 m/s.

(c) 7.3×10^{-5} rad/s, 460 m/s. 37. (a) 40.2 cm/s².

(b) 2.36×10^3 m/s². (c) 83.2 m.

39. (a) 3.8×10^3 rad/s. (b) 190 m/s. **41.** 16 s.

43. (a) 73 cm/s². (b) 0,075. (c) 0,11. **45.** 12,3 kg · m².

47. Primeiro cilindro: 1.100 J; segundo cilindro: 9.700 J.

49. (a) $1.300 \text{ g} \cdot \text{cm}^2$, (b) $550 \text{ g} \cdot \text{cm}^2$. (c) $1.900 \text{ g} \cdot \text{cm}^2$.

(d) A + B. 51. (a) 5 $ml^2 + 8 \tilde{M}l^2/3$. (b) (5 m/2 $\pm {}^{2}4 \tilde{M}/3$) $l^2\omega^2$.

53. (a) 9.71×10^{37} kg - m². (b) 2.57×10^{29} J.

(c) 1.9×10^9 y, 57. 1/3 $M(a^2 + b^2)$, 59. (a) 49 MJ.

(b) 100 min. 61, 140 N · m.

63. (a) $r_1F_1 \sin \theta_1 = r_2F_2 \sin \theta_2$. (b) =3.8 N · m.

65. 1,28 kg · m². 67. 9,7 rad/s², anti-horário.

69. (a) 155 kg · m². (b) 64,4 kg. **71.** 130 N.

73. (a) 6,00 cm/s². (b) 4,87 N. (c) 4,54 N. (d) 1,20 rad/s². (e) 0,0138 kg · m². 75. (a) $2\theta/t^2$.

(b) $2R\theta/t^2$, (c) $T_1 = M(g - 2R\theta/t^2)$;

 $T_2 = Mg - (2\theta/t^2)(MR + I/R),$

77. (a) $3g(1 - \cos \theta)$. (b) 3 (g sen θ)/2. (c) 41.8°.

79. 292 ft · 1b (396 N · m). **81.** (a) $ml^2\omega^2/6$.

(b) $l^2 \omega^2 / 6g$, 83, $\sqrt{9g/4l}$. 85, (a) 4.8×10^5 N.

(b) $1.1 \times 10^{4} \,\mathrm{N} \cdot \mathrm{m}$. (c) $1.3 \times 10^{6} \,\mathrm{J}$.

87. (a) $=7,66 \text{ rad/s}^2$. (b) $=11,7 \text{ N} \cdot \text{m}$. (c) -4.60×10^4 J. (d) 624 rev.

(e) O trabalho realizado pelo atrito, -4.60×10^4 J.

Capítulo 12

1. 1.00. **3.** (a) 59.3 rad/s. (b) -9.31 rad/s^2 .

(c) 70.7 m. 5. (a) 990 J. (b) 3.000 J. (c) 1.1×10^5 J.

7. (a) 60,7 J. (b) 3,4 m. (c) Não.

9. (a) 0 m/s, 0 m/s^2 . (b) 22 m/s, 1.500 m/s².

(c) -22 m/s, 1.500 m/s². (d) Centro: 22 m/s, 0 m/s²;

topo: 44 m/s, 1.500 m/s²; base: 0 m/s, 1.500 m/s².

11. 48 m. **13.** (a) 2,7*R*. (b) (50/7) mg. **15.** (a) 1,13 s.

(b) 13,6 m. 17, 70 r.p.s./s.

21. (a) 10 N · m., paralelo ao plano vz. formando um ângulo de 53° com o fixo y positivo. (b) 22 N · m, -x.

23. (a) $(6.0 \text{ N} \cdot \text{m})\mathbf{i} = (3.0 \text{ N} \cdot \text{m})\mathbf{j} = (6.0 \text{ N} \cdot \text{m})\mathbf{k}$.

(b) $(26 \text{ N} \cdot \text{m})\mathbf{i} + (3.0 \text{ N} \cdot \text{m})\mathbf{j} = (18 \text{ N} \cdot \text{m})\mathbf{k}$.

(c) $(32 \text{ N} \cdot \text{m})i = (24 \text{ N} \cdot \text{m})k$, (d) 0.

25. (a) $(50 \text{ N} \cdot \text{m})$ **k**. (b) 90° . **27.** $9.8 \text{ kg} \cdot \text{m}^2$ /s.

31. 2.5×10^{11} kg · m²/s. 33. mvd. com relação a qualquer origem.

35. (a) 3.15×10^{43} kg·m²/s. (b) 0.616.

37. 4.5 N · m, paralelo ao plano xy formando um ângulo de -63° com o eixo x positivo.

39. (a) 0. (b) 0.

326 MECÂNICA

- (c) $30 t^3 \text{ kg} \cdot \text{m}^2/\text{s}$, $90 t^2 \text{ N} \cdot \text{m}$, ambos na direção -z.
- (d) $30 t^3 \text{ kg} \cdot \text{m}^2/\text{s}$, $90 t^2 \text{ N} \cdot \text{m}$, ambos na direção $\pm z$.
- **41.** (a) $(mgt^2v_0 \cos \theta_0)/2$. (b) $mgtv_0 \cos \theta_0$.
- (c) $mgtv_0 \cos \theta_0$. 43. (a) =1,47 N · m. (b) 20,4 rad.
- (c) -29.9 J. (d) 19.9 W. **45.** (a) 12.2 kg·m².
- (b) $308 \text{ kg} \cdot \text{m}^2/\text{s}$, para baixo. **49.** (a) 1,2 s. (b) 8,6 m.
- (c) 5,2 rev. (d) 6,1 m/s. (e) Não.
- 51. (a) 3,6 rev/s. (b) 3,0.
- (c) O trabalho realizado pelo homem ao aproximar os pesos do corpo.
- 53. (a) 267 r.p.m./min, (b) 2/3, 55. 3,0 min.
- 57. 12,7 rad/s, em sentido horário, visto de cima.
- **59.** (a) $7 ML^2/12$. (b) $7 ML^2\omega_0/12$ para baixo. (c) $14 \omega_0/5$.
- (d) 21 $mL^2\omega_0^2/40$. **61.** (a) $(mRv I\omega_0)/(I + mR^2)$.
- (b) Não. Um pouco de energia será transformada em energia interna da barata.
- 63. A duração do dia aumentaria cerca de 0,8 s.
- 65. (a) 0,148 rad/s. (b) 0,0123. (c) 181°.
- 67. 0,43 r.p.m.

Créditos das Fotos

Capítulo I

Abertura: Martin Bond/Science Photo Library/Photo Researchers. Pág. 4: (Fig. 1-1) CNRI/Science Photo Library/Photo Researchers; (Fig. 1-2) Cortesia do National Institute of Standards and Measures. Pág. 5: Steven Pitkin. Pág. 6: Cortesia do National Institute of Standards and Measures. Pág. 7: Cortesia do Bureau International des Poids et Mesures, França.

Capítulo 2

Abertura: Kevin Levine/Allsport, Pág. 19; Cortesia de U.S. Air Force, Pág. 23; James Sugar/Black Star, Pág. 25; Cortesia dos Drs. Mike Isaacson e M. Ohtsyki, Cornell University, Pág. 33; (Fig. 2-25) Bianca Lavies; (Fig. 2-26) Paul S. Sutton/Duomo. Pág. 34; The Boston Globe.

LEITURA COMPLEMENTAR 1

Pág. 36: Cortesia de Jearl Walker.

Capítulo 3

Abertura: Cortesia de David des Marais, copyright © 1976 Cave Research Foundation.

Capítulo 4

Abertura: Jerry Yulsman/Image Bank, Pág. 60: C. E. Miller/Massachusetts Institute of Technology, Pág. 61: Richard Megna/Fundamental Photographs, Pág. 62: (Fig. 4-12) Jamie Budge/Gamma-Liaison; (Fig. 4-13) C. E. Miller/Massachusetts Institute of Technology, Pág. 75: Tony Duffy/Allsport, Pág. 76: Cortesia de Boeing Corporation, Pág. 78: Steve Brown/Leo de Wys.

Capítulo 5

Abertura: AP/Wide World Photos. Pág. 88: Richard Hutchings/Photo Researchers. Pág. 89: David Madison/Bruce Coleman. Pág. 99: Cortesia da NASA. Pág. 100: Cortesia do National Archive. Págs. 103 e 104: Hartwell/Sygma.

Capítulo 6

Abertura: Agence Nature/NHPA. Pág. 111: Cortosia de U.S. Steel Corporation, Technical Center, Monroesville, Pennsylvania. Pág. 115: Mark Junak/Tony Stone Worldwide. Pág. 116 e 4. acapa do volume: F. Richard-Artdia/Agence Vandystadt/Photo Researchers. Pág. 118: Fotografia reproduzida com autorização do Ringling Brothers e Barnum & Bailey Circus, cortesia de Circus World Museum. Pág. 123: Jerry Schad/Photo Researchers. Pág. 125: Susan Copen Oken/DOT Pictures.

Canítulo 2

Abertura: Steven E. Sutton/Duomo. Pág. 132: Jack S. Grove/Profiles West. Pág. 142: Cortesia de Library of Congress. Pág. 144: Photri. Pág. 152: Foto de James Baker, cortesia de Dennis Milon.

Capítulo 8

Abertura: John Livzy/AllStock, Pág. 156: (à esquerda) copyright © Estate of Harold Edgerton, cortesia de Palm Press, Inc.; (à direita) Efrin Knight/Picture Cube. Pág. 168: (à esquerda) Helga Lade/Peter Arnold; (à direita) David Stoccklein/Stock Market, Pág. 171: Foto de Justo Alfonso, cortesia de Rocky Raisen. Shenandoah Junior High School. Pág. 180: Cortesia da NASA. Pág. 181: Cortesia de Cunard, a Trafalgar House Company. Pág. 185: Cortesia de Library of Congress.

Capítulo 9

Abertura: Lois Greenfield/Bruce Coleman. Pág. 188; Richard Megna/Fundamental Photographs. Pág. 191; Anthony Marshal/Woodfin Camp & Associates. Pág. 200; Cortesia da NASA, Pág. 207; Mauritius-W, Fisher/Photri.

Capítulo 10

Abertura: C. E. Miller, Massachusetts Institute of Technology, Pág. 214: (Fig. 10-1) Breck Kent/Earth Scenes; (Fig. 10-2a e b) Photo Rescarchers; (Fig. 10-2c) cortesia L. Hernquist, Princeton University, Pág. 2: (Fig. 10-4) Russ Kinne/Comstock; (Fig. 10-5) Ben Rose/Image Bank, Pág. 223: Cortesia de Mercedes-Benz of North America. Pág. 229: Craig Blouin/F/Stop Pictures. Pág. 230: Georg Lang/Sports Illustrated/copyright © Time, Ioc. Pág. 231: Superman #48, October 1990, copyright © DC Comics, Inc. Todos os direitos reservados. Reimpressa com autorização.

Capítulo 11

Abertura: Guido Alberto Rossi/Image Bank, Pág, 240: Rick Rickman/ Duomo, Pág, 245: Art Tilley/FPG International, Pág, 247: Roger Ressmeyer/Starlight, Pág, 260: Cortesia do Lick Observatory, Pág, 263: Cortesia do Lawrence Livermore Laboratory, Universidade da Califórnia.

Capítulo 12

Abertura: Cortesia de Ringling Brothers e Barnum & Bailey Circus, Pág. 268 (Fig. 12-1): Richard Megna/Fundamental Photographs; (Fig. 12-4) Cortesia de Alice Halliday, Pág. 280: Cortesia da NASA.

LEITURA COMPLEMENTAR 2

Pág. 294: (Fig. 1) Susan Cook; (à direita) cortesia de Kenneth Laws. Pág. 295 (Fig. 3): Susan Cook, Págs. 295-297 (Figs. 4, 5 e 6): Martha Swope.

ÍNDICE ALFABÉTICO

- - alvo estacionário, 217-218 - - de um sistema de partículas, 202-204 A - - de uma bola caindo, 157-158 - - massas iguais, 218 - - movimento do centro de massa, 218 - - do sistema massa-mola, 156-158 Aceleração, 19, 22, 57-60 - angular, 241, 244 - - projétil de grande massa, 218 - conservação, 167-168, 169 - em duas dimensões, 224-226 - conversão massa-energia, 170-171 - - instantanca, 242 - inclásticas, 221-224 - de figação, 172 - centrípeta, 65-66, 116 - série dc. 216-217 dissipação, 158, 167 - constante, 20-23 - simples, 214-216 - interna, reju energia térmica - de queda livro g. 23-25 Componente(s) - mecânica, 166 - devida à gravidade, 60, 61 - de vetores, 42-46 - - conservação, 156, 157, 158, 164, 167-168 - média, 19, 57-60 escalares de vetores, 44 - - de bola cáindo, 157 Acre-pé, 9 Comprimento, 3-5 - - dos sistemas bloco-mola, 157-159 Alcance, no movimento de um projetil, 60, 62 Condições increiais, 244 - níveis, 172 Algarismos significativos, 3, 17 Configuração de referência, para energia potencial, 158 potencial, 165 Alvos, 217-221 curvas de, 166 Ano-luz, 9 - da energía mecánica, 156-158, 164, 167-168 - da energía total, 167, 169-170 - da configuração de referência, 158 Antipartículas, 26 - - do sistema bloco-mola, 157 Aproximações, 145 - da massa-energia, 170 - - elástica, 155-160 Área de seção reta efetiva, 114 - do momento angular, 279-283 gravitacional, 155, 160-164. Arrasto, 164 do momento linear, 196-200, 217-219, 222, 226 quantização, 172 coeficiente do, 114 - térmica, 155 Constantets) Átomos, 26 - - gerada por atrito, 158, 167 Equações de movimento, 22, 23, 244 de Planck, 173, 285 - níveis de energia, 172 fundamentais, 301 Atrito, 88, 109-114 Conversão em cadeia, 2 Equilíbrio - cinético, 110, 111, 158 Cord. 9 - estável, 167 - como força não-conservativa, 164 Corpos rígidos - instável, 167 - de rolamento, 269 - centro de massa, 189 neutro, 166 - dissipação de energia no, 158, 167 - inércia rotacional dos, 248-251 Escala Richter, 185 - estático, 110, 111 - momento angular, 277 Escalares, 39 natureza atômica, 111 Criptônio-86, como metro padrão, 4 Escalas, 87 - trabalho da força de, 168-170 Escoamento do tráfego, 36-37 Automóveis, aceleração, 203-204 Espectrômetros, 8 D - de massa, 8 Estado(s) Dança, mecánica da, 294-297 - excitados, 172 Derivadas, 14, 18, 315 Balança(s), 87 - fundamental, 172 Desaceleração, 19, veja tumbém Aceleração - normal de uma mola, 138 - de mola, 87 Deslocamento, 14, 39, 55 Balé, mecânica do, 294-297 quânticos, 172 - angular, 241, 243 Bohr, Niels, 173 Estrela(s) Déuterons, 172 - colapso, 281 Bombas vulcânicas, 75 Diagrama do corpo livre, 85 de néutrons, 77 Braço da alavanca, 252 Dipolo elétrico, veja Dipolo Brancazio, Peter J., 115 Dirac, P.A.M., 63 Bureau Internacional de Pesos e Medidas, 3, 7 Dissipação de energia, 158, 167 C Falhas geológicas, 51 de frenagem, 32 Fatores de conversão, 2-3, 309-312 de reação, 32 Fermi-luz. 6 Carbono 12, como massa padrão, 8 Física, 25-27 Carros, aceleração, 203-204 E - clássica, 26 Centrífuga, aceleração numa, 66 Centro de massa, 187, 189-192 de partículas, 25-27, veja também Partículas específicas Einstein, Albert, 121, 170, 196, 197, veja também - - antipartículas, 26 - colisões elásticas, 219 Relatividade - quântica, 26 - colisões inelásticas, 219 Elementos, 26, 305-306 - - versus clássica, 26 - de corpos rígidos, 189 - tabela periódica, veja Tabela periódica - de sistema de partículas, 187-188 vencedores do Prémio Nobel, 317-321 Elétron-volt, 133 - em rolamento, 267 Fissão nuclear, 172 Elétrons, 26, 285 Ciclóides, 268 Fluidos, 114 Foguetes, 200-202 Cinemática, 13, 71 - níveis de energia, 172 Emissão de luz. 173 - a baixa velocidade, 13-14, 70 Força(s), 81-83 Empuxo aerodinâmico, 201 Circuito fechado, 164 centπípeta, 116-117 Encontro com efeito estilingue, 214 Cohre, 26 conservativa, 164-165 Energia, 155 - de ação, 90 Coeficiente - cinética, 140-143, 157 de atrito, veja Atrito de contacto, 117 - de atrito, 111 -- a alta velocidade, 145 - de viscosidade, 114

- - colisões elásticas, 217

- - de relamento, 268

- - de rotação, 247

- - colisões inelásticas, 221-224

- de reação, 90

- de viscosidade, 114, 164

elásticas, 156, 164

eletrofraca, 121

Colisões, 213-214, 224 - elásticas, 217-221

- - alvo de grande massa, 218

-- alvo em movimento, 219-221

- formas angulares, 252-254, 276

Segundo, 6

- para um sistema de partículas. 192-195, 202-204

Peso, 87, 120

- aparente, 87

- ausência de, 67

- grandezas invariantes, 146

- Sistema Internacional (SI), 2, 299-300

Medicões, E

330 ÍNDICE ALFABÉTICO

Shake, 10 Shortley, G., 309 Sistema(s) - bloco-mola, 157, 159 de coordenadas dextrógiro, 44 - de coordenadas, 44, 46 - de massa variáve), 200-202 - de partículas - - centro de massa, 187 - - fechado, 193 - - momento angular, 277 - - momento linear de um, 195 - - segunda lei de Newton para, 192-195, 202 - - variação da energia cinética, 202-204 - de referência, 146, veja também Relatividade - - em duas dimensões, 68-70 - - em uma dimensão, 67-68 -- inercial, 68, 82, 146 - fechado, 193, 200 - Global de Posicionamento, 10 - Internacional de Unidades, 2-3, 299-300 isolados, 200
métrico, 2, 299-300 - Тегта-Lua, 193 Snider, John, 110 Sódio, estado fundamental do, 172 Sol, 303 Solda a frio. 111 Soma vetorial - leis da, 41 método da adição das componentes, 45 - método gráfico, 40-42 Superficie e atrito, 110 sem atrito, 81 Superforça, 121

T Tabela periódica, 307 Тетро. 5-7 - universal coordenado, 5 Tensão, 88 Teorema - binomial, 145, 314 - do impulso e momento linear, 215 - dos eixos parálelos, 250 - trabalho-energia cinética, 140, 141, 146, 255 trabalho-energia, 158, 167, 169. **Teorias** - da grande unificação, 121 - de supercordas, 121 de supersimetria, 121 Terceira lei de Newton, 89-91, 94 Terra. 82, 303 Torque, 251-252 273-274

Torque, 251-252
- de uma partícula com relação a um ponto fixo, 273-274
- interno/externo, 277
- trabalho, 133, 158
- da força de atrito, 168
- de rotação, 254
- e conservação da energia, 167
- força constante, 131-137
- força variável, 137-140

por molas. 138
trajetória fechada, 164
Trajetória, movimento de projétil, 60, 62
Trigonometria e decomposição de vetores, 43
Turbulência, 114

U

Unidadets), 2-3, 299-300 - astronómica, 9 - de massa atómica, 8, 171 - derivadas, 2, 300 - \$1, 2, 299-300 Unificação das forças da natureza, 120-121

V

Velocidade, veju rambém Aceleração; Movimento; relatividade
- angular, 241
- escalar, 241
- instantânea, 241
- da luz, 5, 70
- escalar, 17
- angular, 241
- instantânea, 17, 56
- limite, 114-115
- média, 14-15, 56
Vencedores do Prêmio Nobel de Física, 317-32|
Vetores, 14, 39, 3|4
- componentes, 42-46
- decomposição, 42
- e leis físicas, 46
- posição, 55
- unitários uniformes, 44

W

Walker, Jearf, 36 Watt, 2, 144 Watt, James, 144 Williams, D., 309