

Laboratório 9 – Redes Neurais Convolucionais Inteligência Artificial para Robótica Móvel – CT-213

Aluno: Caio Graça Gomes

Professor: Marcos Ricardo Omena de Albuquerque Maximo

Introdução:

Nesse laboratório, teve-se por objetivo implementar, treinar e testar a rede neural LeNet-5 usando o *dataset* MNIST. Este *dataset* consiste em imagens de algarismos manuscritos para avaliação pela rede neural de que número está escrito.

Metodologia e descrição em alto nível do algoritmo utilizado:

Para a construção da rede neural foi utilizada a *Framework* Keras do Python com *backend* do *Tensorflow*, que já apresenta funções para a construção da rede neural. Assim, a rede neural foi construída com a seguinte arquitetura:

# Camada	Tipo	Número de Filtros	Tamanho da Saída	Tamanho do Kernel	Stride	Activation Function
Entrada	Imagem	1	32x32	-	-	-
1	Conv2D	6	28x28	5x5	1	tanh
2	AverageP ooling2D	6	14x14	2x2	2	-
3	Conv2D	16	10x10	5x5	1	tanh
4	AverageP ooling2D	16	5x5	2x2	2	-

5	Conv2D	120	1x1	5x5	1	tanh
6	Dense (FC)	-	84	-	-	tanh
7	Dense (FC)	-	10	-	-	softmax

Tabela 1: arquitetura da LeNet-5.

Após montada, a rede LeNet-5 foi testada usando o *script* train_lenet5.py já implementado usando o MNIST. Durante o treino, algumas imagens foram separadas para *cross-validation*, para análise do funcionamento da rede. Ao fim, foi executado o script run tensorboard.py para verificar o treinamento da rede.

Para avaliação da rede usou-se o script evaluate_letnet5.py, que, além de exibir exemplos aleatórios, mostra alguns exemplos em que a rede errou a classificação.

Resultados da LeNet-5:

Ao final do teste da rede neural, obteve-se os seguintes resultados:

Figura 1: Acurácia da rede neural em função do passo teste.

Figura 2: Custo da rede em função do passo.

O evaluate da rede neural obteve os seguintes resultados:

Figura 3: Exemplo de acerto da rede neural.

Figura 4: Exemplo de erro da rede neural.

Example: 1951. Expected Label: 6. Predicted Label: 6. Example: 18. Expected Label: 3. Predicted Label: 8.

Assim, com os resultados obtidos, é possível concluir que a rede neural LeNet-5 é eficiente na interpretação dos manuscritos, dado que a avaliação errônea da rede se deu em caligrafias contestáveis e a rede teve uma acurácia de 98,54%.