Formal Languages & Automata Theory $$\operatorname{Quiz} 2$$

March 25, 2019

Name:	
Given the following grammar G_1 :	
$E \longrightarrow$	$E+T\mid T$
$T \longrightarrow$	$T \times F \mid F$
$F \longrightarrow$	\cdot $(E) \mid a$
1. Give the parse tree for \mathcal{G}_1 for:	
	a + a
2. Give the parse tree for \mathcal{G}_1 for:	
	((a))

3. Given grammar G_2

$$\begin{split} R &\longrightarrow XRX \mid S \\ S &\longrightarrow aTb \mid bTa \\ T &\longrightarrow XTX \mid X \mid \varepsilon \\ X &\longrightarrow a \mid b \end{split}$$

- a. What are the variables of G_2 ?
- b. What are the terminals of G_2 ?
- c. What is the start variable of G_2 ?
- d. Give three strings in G_2 .
- 4. Give one leftmost derivation of G_2 .
- 5. Choose the letter which sorts the classes of languages from the smallest to the largest class:
- a. Regular Languages, Context-Free Languages, Decidable Languages, Turing-Recognizable Languages
- b. Regular Languages, Context-Free Languages, Turing-Recognizable Languages, Decidable Languages
- c. Context-Free Languages, Regular Languages, Turing-Recognizable Languages, Decidable Languages
- d. Context-Free Languages, Regular Languages, Decidable Languages, Turing-Recognizable Languages
- e. Decidable Languages, Turing-Recognizable Languages, Context-Free Languages, Regular Languages

- 6. Which statement about the recognition power of various Turing Machine variants is true? Read all answers before choosing.
- a. the standard Turing Machine recognizes more languages than the other variants
- b. a multi-tape Turing Machine recognizes more languages than the other variants
- c. a non-deterministic Turing Machine recognizes more languages than the other variants $\,$
- d. multi-tape Turing machines **and** deterministic recognize more languages than the standard Turing Machine
- e. All of the above Turing Machine variants recognize the same class of languages
- 7. (2 pts) Draw the state diagram for a PDA that recognizes the following language:

$$A = \{ww^R | w \in \{0, 1\}^*\}$$

8. (2 Points) Given the following Turing Machine:

Figure 1: Turing Machine \mathcal{T}_1

If the machine has a configuration of:

 $q_101\#01$

List the next four configurations of $\mathcal{T}_1\colon$