Classical Mechanics

June - 2014

(1) Consider a particle of mass m in simple harmonic oscillation about the origin with spring constant k; then for the Lagrangian L and the Hamiltonian H of the system

(a)
$$L(x, \dot{x}) = \frac{1}{2} m \dot{x}^2 - \frac{1}{2} k x^2$$

(a) $L(x, \dot{x}) = \frac{1}{2} m \dot{x}^2 - \frac{1}{2} k x^2$ $H(x, \dot{x}) = \frac{p^2}{2m} + \frac{1}{2} k x^2, p$ is generalized momentum.

(b)
$$(x, \dot{x}) = \frac{1}{2}m \dot{x}^2 + \frac{1}{2}k x^2, \ p = m\dot{x}$$

(c)
$$L(x, \dot{x}) = \frac{1}{2}m \dot{x}^2 - \frac{1}{2}k x^2, p = m\dot{x}$$

(d)
$$L(x, \dot{x}) = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$$

$$H(x, \dot{x}) = \frac{m\dot{x}^2}{2} + \frac{1}{2}kx^2$$

Answer: (a), (c) and (d)

Solution: $K.E = T = \frac{1}{2}m \dot{x}^2$

$$F \propto x$$

$$F = -kx$$

$$F = -grad V = -\nabla V = -\frac{\partial V}{\partial x}$$

$$V = -\int F dx = \int kx dx = \frac{kx^2}{2}$$

$$\therefore L = T - V = \frac{1}{2}m \dot{x}^2 - \frac{1}{2}kx^2$$

$$H = T + V = \frac{1}{2}m \dot{x}^2 + \frac{1}{2}kx^2$$

$$P = \frac{\partial L}{\partial \dot{x}} = m \, \dot{x}$$

Also
$$H = \frac{1}{2}m \cdot \frac{p^2}{m^2} + \frac{1}{2}kx^2 = \frac{p^2}{2m} + \frac{1}{2}kx^2$$

So, the options (a), (c) and (d) are correct.

December – 2014

(1) Consider a body of unit mass falling freely from rest under gravity with velocity v. If the air resistance retards the acceleration by cv where c is a constant then

(a)
$$v = \frac{g}{c}(1 + e^{ct})$$

(b)
$$v = \frac{c}{c}(1 + e^{-ct})$$

(c)
$$v = \frac{g}{g} (1 - e^{-ct})$$

(c)
$$v = \frac{c}{g}(1 - e^{-ct})$$

(d) $v = \frac{g}{c}(1 - e^{ct})$

Answer: (c)

Solution: Equation of motion is

$$m \cdot \frac{dv}{dt} = mg - mc v$$

$$or, \frac{dv}{g\left(1 - \frac{c}{g}v\right)} = dt$$

Integrating, $\frac{\log(1-\frac{c}{g}v)}{g\times(-\frac{c}{g})} = t + A$ (A being arbitrary constant)

$$-\frac{1}{c}\log\left(1 - \frac{c}{g}v\right) = t + A$$
Initially, $t = 0$, $v = 0 \Rightarrow A = 0$

$$\therefore \log\left(1 - \frac{c}{g}v\right) = -ct$$

$$\therefore \log\left(1 - \frac{c}{g} v\right) = -ct$$

$$\Rightarrow 1 - \frac{c}{g}v = e^{-ct}$$

$$\Rightarrow v = \frac{g}{c}(1 - e^{-ct})$$

So, the option (c) is correct.

June-2015

- 1. Consider two weightless, inextensible roots AB and BC; Suspended at A and joined by a flexible joint at B. Then the degrees of freedom of the system is
- (a) 3
- (b) 4
- (c) 5
- (d) 6

Answer: (a)

Solution:

Degrees of freedom is $=\frac{2(2+1)}{3}=3$

So, the option (a) is correct.

- 2. A particle of mass m is constrained to move on the surface of a cylinder $x^2 + y^2 = a^2$ under the influence of a force directed towards the origin and proportional to the distance of the particle from the origin. Then
- (a) The angular momentum about z-axis is constant.
- (b) The angular momentum about z-axis is not constant.
- (c) The motion is simple harmonic in z-direction.
- (d) The motion is not simple harmonic in z-direction.

Answer: (a), (c)

Solution:

Here the motion is simple harmonic in z-direction and the angular momentum about z-axis is constant.

So, the options (a) and (c) are correct.

December-2015

1. A force $5\hat{i} - 2\hat{j} + 3\hat{k}$ acts on a particle with position vector $2\hat{i} + \hat{j} - 2\hat{k}$. The torque of the force about the origin is

(a)
$$\hat{\imath} + 16\hat{\jmath} + 9\hat{k}$$

(b)
$$-\hat{i} - 16\hat{j} - 9\hat{k}$$

(c)
$$\hat{i} + 16\hat{j} - 9\hat{k}$$

(d)
$$\hat{\imath} - 16\hat{\jmath} + 9\hat{k}$$

Answer: (b)

Solution:

Torque is
$$\vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -2 \\ 5 & -2 & 3 \end{vmatrix} = -\hat{i} - 16\hat{j} - 9\hat{k}$$

So, the option (b) is correct.

2. Consider a mass m moving in an inverse sequence central force with characteristic coefficient μ and described by the Lagrangian:

$$L(r,\dot{r},\theta,\dot{\theta}) = \frac{m}{2}(\dot{r}^2 + r^2\dot{\theta}^2) + \frac{\mu m}{r}$$
 then

- (a) The generalized momenta of the system are $p_r = m\dot{r}$ and $p_\theta = mr^2\dot{\theta}$
- (b) The Hamiltonian of the system is $H = \frac{1}{2m} \left[p_r^2 + \frac{p_\theta^2}{r^2} \right] \frac{1}{2} \frac{\mu m}{r}$
- (c) The Hamiltonian of the system is $H = \frac{1}{2m} \left[p_r^2 + \frac{p_\theta^2}{r^2} \right] \frac{\mu m}{r}$
- (d) The generalized momenta of the system are $p_r = m\dot{r}$ and $p_\theta = -mr^2\dot{\theta}$

Answer: (a), (c)

Solution:

$$\begin{split} p_r &= \frac{rL}{r\dot{r}} = m\dot{r}, \quad p_\theta = \frac{rL}{r\dot{\theta}} m r^2 \dot{\theta} \\ \text{Now, } \dot{r} &= \frac{p_r}{m} \text{ and } \dot{\theta} = \frac{p_\theta}{m r^2} \\ H &= \sum p_i q_i - L = p_r \cdot \dot{r} + p_\theta \cdot \dot{\theta} - L \\ &= p_r \cdot \dot{r} + p_\theta \cdot \dot{\theta} - \frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) - \frac{\mu m}{r} \\ &= p_r \cdot \frac{p_r}{m} + p_\theta \cdot \frac{p_\theta}{m r^2} - \frac{m}{2} \left(\frac{p_r^2}{m^2} + \frac{r^2 \cdot p_\theta^2}{m^2 r^4} \right) - \frac{\mu m}{r} \\ &= \frac{p_r^2}{m} + \frac{p_\theta^2}{m r^2} - \frac{p_r^2}{2m} - \frac{p_\theta^2}{2m r^2} - \frac{\mu m}{r} \\ &= \frac{1}{2m} \left[p_r^2 + \frac{p_\theta^2}{r^2} \right] - \frac{\mu m}{r} \end{split}$$

So, the options (a) and (c) are correct.

- **3.** Consider the Hamiltonian (H) and the Lagrangian (L) for a free particle of mass m and velocity v. Then
- (a) H and L are independent of each other.
- (b) H and L are related but have different dependence on v.
- (c) H and L are equal.
- (d) Both H and L are quadratic in v.

Answer: (d)

Solution:

For free particle potential energy V = 0

$$T = \frac{1}{2}mv^2$$

$$L = \overset{2}{T} - V, \ H = T + V$$

$$\Rightarrow H = L = \frac{1}{2}mv^2$$
 (quadratic in v)

So, the options (c) and (d) are correct.

June - 2016

(1) Consider the equations motion for a system

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) - \frac{\partial L}{\partial q_i} = 0, i = 1, 2, 3, \dots, n$$

Where L = T - V [Where $T(t, q_i, \dot{q}_i)$ as kinetic energy and $V(t, q_i)$ as potential energy] q_i be the generalized coordinates, \dot{q}_i be the generalized velocities. Then the equations of motion in the form as above are

- (a) Necessarily restricted to a conservative system but there is no unique choice of L.
- (b) Not necessarily restricted to a conservative system and there is a unique choice of L.
- (c) Necessarily restricted to a conservative system and there is a unique choice of L.
- (d) Not Necessarily restricted to a conservative system and there is no unique choice of L.

Answer: (a)

Solution: Option (a) is correct.

- (2) A particle of unit mass moves in the direction of x axis such that it has the Lagrangian $L = \frac{1}{12}\dot{x}^4 + \frac{1}{2}x\,\dot{x}^2 x^2$. Let $Q = \dot{x}^2\ddot{x}$ represent a force (not arising from a potential) acting on the particle in the x direction. If x(0) = 1 and $\dot{x}(0) = 1$, then the value of \dot{x} is
- (a) Some non-zero finite value at x = 0.
- (b) 1 at x = 1.
- (c) $\sqrt{5}$ at $x = \frac{1}{2}$.
- (d) $0 \text{ at } x = \sqrt{\frac{3}{2}}$.

Answer:

Solution:

December – 2016

(1) A bead slides without friction on a frictionless wire in the shape of a cycloid with equation $x = a(\theta - \sin \theta), y = a(1 + \cos \theta), 0 \le \theta \le 2\pi$.

The Lagrangian function is

(a)
$$ma^2(1 + \cos\theta)\dot{\theta}^2 - mga(1 + \cos\theta)$$

(b)
$$ma^{2}(1 - \cos \theta)\dot{\theta}^{2} - mga(1 + \cos \theta)$$

(c)
$$ma^2(1-\cos\theta)\dot{\theta}^2 + mga(1+\cos\theta)$$

(d)
$$ma^2(1 + \cos\theta)\dot{\theta}^2 - mga(1 - \cos\theta)$$

Answer: (b)

Solution:
$$L = T - V$$

Where $T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2)$
 $= \frac{1}{2}m \left[\left\{ a(\dot{\theta} - \cos\theta \,\dot{\theta}) \right\}^2 + \left\{ -a\sin\theta \,\dot{\theta} \right\}^2 \right]$
 $= \frac{1}{2}ma^2\dot{\theta}^2 [1 - 2\cos\theta + \cos^2\theta + \sin^2\theta]$
 $= \frac{1}{2}ma^2\dot{\theta}^2 \cdot 2(1 - \cos\theta)$
 $= ma^2(1 - \cos\theta)\dot{\theta}^2$
 $V = ma \, v = maa(1 + \cos\theta)$

$$V = mg \ y = mga(1 + \cos \theta)$$

$$\therefore L = ma^2(1 - \cos\theta)\dot{\theta}^2 - mga(1 + \cos\theta)$$

So, answer (b) is correct.

(2) Which of the following are canonical transformation? (where q, p represent generalized coordinate and generalized momentum respectively.

(a)
$$P = \log \sin p$$
, $Q = q \tan p$

(b)
$$P = qp^2$$
 , $Q = \frac{1}{p}$

(c)
$$P = q \cot p$$
, $Q = \log(\frac{1}{a}\sin p)$

(d)
$$P = q^2 \sin 2p$$
 , $Q = q^2 \cos 2p$

Answer: (a), (b), and (c)

Solution:

(i)
$$P = \log \sin p$$
, $Q = q \tan p$
Now, $p dq - P dQ$

$$= p dq - \log \sin p \cdot [q \sec^2 p dp + \tan p dq]$$

$$= (-q \log \sin p \cdot \sec^2 p) dp + (p - \log \sin p \cdot \tan p) dq$$

$$= d[q \cdot (p - \log \sin p \cdot \tan p)]$$

Which is exact.

(ii)
$$P=qp^2$$
, $Q=\frac{1}{p}$

Now,
$$p dq - P dQ$$

$$= p dq - qp^2 \cdot \left(-\frac{1}{p^2}\right) dp = p dq + q dp = d(pq) \text{ Which is exact.}$$

(iii)
$$P = q \cot p$$
, $Q = \log\left(\frac{1}{q}\sin p\right)$
Now, $p \, dq - P \, dQ$

$$= p \, dq - q \cot p \cdot \left(\frac{\frac{1}{q}\cos p \, dp + \sin p \cdot \left(-\frac{1}{q^2}\right)dq}{\frac{1}{q}\sin p}\right)$$

$$= p \, dq - q \cdot \cot p \left[\cot p \, dp - \frac{1}{q}dq\right]$$

$$= p \, dq - q \cot^2 p \, dp + \cot p \, dq$$

$$= -q \cot^2 p \, dp + (p + \cot p)dq$$

$$= q(1 - \csc^2 p)dp + (p + \cot p)dq$$

$$= d[q \cdot (p + \cot p)]$$
Which is exact.

(iv)
$$P = q^2 \sin 2p$$
, $Q = q^2 \cos 2p$
Now, $p \, dq - P \, dQ$
 $= p \, dq - q^2 \sin 2p \cdot (-q^2 \cdot 2 \sin 2p \, dp + 2q \cos 2p \, dq)$
 $= p \, dq + 2q^4 \cdot \sin^2 2p \, dp - 2q^3 \sin 2p \cos 2p \, dq$
 $= 2q^4 \sin^2 2p \, dp + (p - 2q^3 \sin 2p \cos 2p) dq$
 $= q^4 (1 - \cos 4p) dp + (p - 2q^3 \sin 4p) dq$
 $= M \, dp + N \, dq(say)$
 $\frac{\partial M}{\partial q} = 4q^3 (1 - \cos 4p), \frac{\partial N}{\partial p} = 1 - 4q^3 \cos p$
 $\therefore \frac{\partial M}{\partial q} \neq \frac{\partial N}{\partial p}$

So, it is not exact.

Hence the options (a), (b), and (c) are correct.

June - 2017

- (1) A rigid body having one point 0 fixed and no external torque about 0 has equal principal moments of inertia. Then the body must rotate with
- (a) Angular velocity of variable magnitude.
- (b) Angular velocity with constant magnitude.
- (c) Constant angular momentum but varying angular velocity.
- (d) Varying angular momentum with varying angular velocity.

Answer: (b)

Solution: Option (b) is correct

(2) Consider a spherical pendulum consisting of a particle of mass m which moves under gravity on a smooth sphere of radius a. In terms of spherical polar angles θ , ϕ , with θ measured up from the downward vertical, the Lagragian is given by

(a)
$$ma \left[\frac{a}{2} \left(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta \right) - g \cos \theta \right]$$

(b) $ma \left[\frac{a}{2} \left(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta \right) + g \cos \theta \right]$
(c) $ma \left[\frac{a}{2} \left(\dot{\theta}^2 + \dot{\phi}^2 \cos^2 \theta \right) + g \sin \theta \right]$
(d) $ma \left[\frac{a}{2} \left(\dot{\theta}^2 + \dot{\phi}^2 \cos^2 \theta \right) - g \sin \theta \right]$

Answer: (a)

```
Solution: x = a \sin \theta \cos \phi, y = a \sin \theta \sin \phi, z = a \cos \theta

Now L = T - V

= \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - mg z
\dot{x} = a[\cos \theta \cos \phi \dot{\theta} - \sin \theta \sin \phi \dot{\phi}]
\dot{y} = a[\cos \theta \sin \phi \dot{\theta} + \sin \theta \cos \phi \dot{\phi}]
\dot{z} = -a \sin \theta \dot{\theta}
\therefore L = \frac{1}{2}m \cdot a^2[\cos^2 \theta \cos^2 \phi \dot{\theta}^2 + \sin^2 \theta \sin^2 \phi \dot{\phi}^2 - 2 \sin \theta \cos \theta \cos \phi \sin \phi \dot{\theta} \dot{\phi} + \cos^2 \theta \sin^2 \phi \dot{\theta}^2 + \sin^2 \theta \cos^2 \phi \dot{\phi}^2 + 2 \cos \theta \sin \theta \sin \phi \cos \phi \dot{\theta} \dot{\phi} + \sin^2 \theta \dot{\theta}^2] - mga \cos \theta
= \frac{1}{2}ma^2[\cos^2 \theta \dot{\theta}^2 + \sin^2 \theta \dot{\phi}^2 + \sin^2 \theta \dot{\theta}^2] - mga \cos \theta
= \frac{1}{2}ma^2[\dot{\theta}^2 + \sin^2 \theta \dot{\phi}^2] - mga \cos \theta
= ma \left[\frac{a}{2}(\dot{\theta}^2 + \sin^2 \theta \dot{\phi}^2) - g \cos \theta\right]
So, the option (a) is correct.
```

(3) Let q_{α} and $p_{\alpha}(\alpha=1,2,\dots,n)$ be the generalized coordinates and the generalized momenta respectively. If H denotes the Hamiltonian and q_{α} (for some $\alpha=\alpha_0$) is an ignorable coordinate, then which of the following equations are satisfied?

(a) $\dot{p}_{\alpha}=-\frac{\partial H}{\partial q_{\alpha}}$, $\dot{q}_{\alpha}=\frac{\partial H}{\partial p_{\alpha}}$, \forall α

(a)
$$\dot{p}_{\alpha} = -\frac{\partial H}{\partial q_{\alpha}}$$
, $\dot{q}_{\alpha} = \frac{\partial H}{\partial p_{\alpha}}$, $\forall \alpha$
(b) $\dot{p}_{\alpha} = \frac{\partial H}{\partial q_{\alpha}}$, $\dot{q}_{\alpha} = -\frac{\partial H}{\partial p_{\alpha}}$ $\forall \alpha$
(c) $\dot{p}_{\alpha_0} = 0$, $\dot{q}_{\alpha_0} = \frac{\partial H}{\partial p_{\alpha_0}}$
(d) $\dot{p}_{\alpha_0} = \frac{-\partial H}{\partial q_{\alpha_0}}$, $\dot{q}_{\alpha_0} = 0$.

Answer: (a), (c)

Solution: q_{α_0} is ignorable $\Rightarrow \frac{\partial L}{\partial q_{\alpha_0}} = 0$

Lagrange's equation is

$$\begin{split} &\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{\alpha_0}} \right) - \frac{\partial L}{\partial q_{\alpha_0}} = 0 \Rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{\alpha_0}} \right) = 0 \\ & \therefore \frac{d}{dt} \left(\bar{p}_{\alpha_0} \right) = 0 \Rightarrow \dot{p}_{\alpha_0} = 0 \\ & \text{Also, } \dot{q}_{\alpha_0} = \frac{\partial H}{\partial p_{\alpha_0}} \end{split}$$

Hamilton's equations are

$$\dot{p}_{\alpha} = \frac{-\partial H}{\partial q_{\alpha}}$$
 and $\dot{q}_{\alpha} = \frac{\partial H}{\partial p_{\alpha}} \ \forall \ \alpha$.

So, the option (a) and (c) are correct.

(4) For a conservative system, the end configurations are fixed and the velocity in the varied motion is such that T+V=E. Here T,V and E represent, respectively the kinetic energy, the potential energy and the total energy. If $\delta(A)$ denotes the infinitesimal change in a variable A, and p_{α} and $q_{\alpha}(\alpha=1,2,\dots,n)$ represent the generalized momenta and generalized coordinates, respectively, then

(a)
$$\delta \int T dt = 0$$

(b)
$$\delta \int \sum_{\alpha=1}^{n} p_{\alpha} dq_{\alpha} = 0$$

(c)
$$\delta \int \sum_{\alpha=1}^{n} q_{\alpha} dp_{\alpha} = 0$$

(d)
$$\delta \int \sum_{\alpha=1}^{n} (p_{\alpha} dq_{\alpha} + q_{\alpha} dp_{\alpha}) = 0$$

Answer: (a), (b)

Solution: For conservative system,

$$\delta \int T dt = 0$$
Also, $\delta H = 0$

$$\delta (\sum_{\alpha=1}^{n} p_{\alpha} \dot{q}_{\alpha} - L) = 0$$

$$\Rightarrow \delta \int \sum_{\alpha=1}^{n} p_{\alpha} dq_{\alpha} = 0$$

So, the options (a) and (b) are correct.

December - 2017

- (1) Let I(m) denote the moment of inertia of a regular solid tetrahedron about an axis m passing through its centre of gravity. Which of the following is true?
- (a) If the axis l passes through a vertex and the axis l' does not pass through a vertex then I(l) > I(l').
- (b) If the axis l passes through the midpoint of an edge and l' is any other axis then I(l) < I(l').
- (c) I(l) is the same for all axes l.
- (d) If the axis l passes through a vertex and the axis l' does not pass through a vertex then I(l) < I(l').

Answer: (c)

Solution: Moment of inertia is same for all axes. So, the option (c) is correct.

June - 2018

(1) Given that the Lagraugian for the motion of a simple pendulum is

 $L = \frac{1}{2}me^2\dot{\theta}^2 + mgl\cos\theta$, where m is the mass of the pendulum bob suspended by a string of length l,g is the acceleration due to gravity and θ is the amplitude of the pendulum from the mean position, then a Hamiltonian corresponding to L is

(a)
$$H(p, \theta) = \frac{p^2}{2ml^2} + mgl\cos\theta$$

(b)
$$H(p, \theta) = \frac{p^2}{2ml^2} - mgl\cos\theta$$

(c)
$$H(p, \theta) = \frac{p^2}{ml^2} - mgl \cos \theta$$

(d)
$$H(p,\theta) = \frac{3p^2}{2ml^2} + mgl\cos\theta$$

Answer: (b)

Solution:
$$H(p,\theta) = p \cdot \dot{\theta} - L$$

Where $p = \frac{\partial L}{\partial \dot{\theta}} = ml^2 \dot{\theta}$
 $\therefore H(p,\theta) = ml^2 \dot{\theta}^2 - \frac{1}{2} ml^2 \dot{\theta}^2 - mgl \cos \theta$
 $= \frac{ml^2 \dot{\theta}^2}{2} - mgl \cos \theta = \frac{ml^2}{2} \cdot \frac{p^2}{m^2 l^4} - mgl \cos \theta \left[\because \dot{\theta} = \frac{p}{ml^2}\right] = \frac{p^2}{2ml^2} - mgl \cos \theta$
So, the option (b) is correct.

(2) The Hamiltonian for a simple harmonic oscillator is $H(p,q) = \frac{p^2}{2m} + \frac{k}{2}q^2$. Then a possible Lagrangian corresponding to H can be

(a)
$$L = \frac{1}{2}m \dot{q}^2 - \frac{\dot{k}}{2}q^2$$

(b)
$$L = \frac{1}{2} m \dot{q}^2 - \frac{k}{2} (q^2 + 3q^2 \dot{q})$$

(c)
$$L = \frac{1}{2}m \dot{q}^2 + \frac{k^2}{2}q^2$$

(d)
$$L = \frac{1}{2}m \dot{q}^2 + \frac{\ddot{k}}{2}(q^2 + 3q^2 + \dot{q})$$

Answer: (a)

Solution:
$$H = p \dot{q} - L$$

or, $L = p\dot{q} - \frac{p^2}{2m} - \frac{k}{2}q^2$ | $\dot{q} = \frac{\partial H}{\partial p} = \frac{p}{m}$
 $= m\dot{q}^2 - \frac{1}{2}m\dot{q}^2 - \frac{k}{2}q^2$ | or, $p = m\dot{q}$
 $= \frac{1}{2}m\dot{q}^2 - \frac{k}{2}q^2$
This is option (a)
For option (b) $L = \frac{1}{2}m\dot{q}^2 - \frac{k}{2}(q^2 + 3q^2\dot{q})$
 $p = \frac{\partial L}{\partial \dot{q}} = m\dot{q} - \frac{k}{2}3q^2$
or, $\dot{q} = \frac{1}{m}\left(p + \frac{3}{2}kq^2\right)$
Now, $H = p\dot{q} - L$
 $= \frac{p^2}{m} + \frac{3pkq^2}{2m} - \frac{1}{2}m \cdot \frac{1}{m^2}\left(p + \frac{3}{2}kq^2\right)^2 + \frac{k}{2}(q^2 + 3q^2\dot{q})$
 $= \frac{p^2}{m} + \frac{3pkq^2}{2m} - \frac{p^2}{2m} - \frac{3pkq^2}{2m} - \frac{9}{8}\frac{k^2q^4}{m} + \frac{k}{2}q^2 + \frac{3kq^2}{2m}\left(p + \frac{3}{2}kq^2\right)$
It is not true.

So, the option (a) is true.

December – 2018

(1) Consider the two-dimensional motion of a mass m attached to one end of a spring whose other end is fixed. Let k be the spring constant. The kinetic energy T and the potential energy V of the system are given by

 $T = \frac{1}{2}m(\dot{r}^2 + (r\dot{\theta})^2)$ and $V = \frac{1}{2}kr^2$ where $\dot{r} = \frac{dr}{dt}$ and $\dot{\theta} = \frac{d\theta}{dt}$ with t as time. Then which of the following statement is correct?

- (a) r is an ignorable coordinate.
- (b) θ is not an ignorable coordinate.
- (c) $r^2\dot{\theta}$ remains constant throughout the motion.
- (d) $r\dot{\theta}$ remains constant throughout the motion.

Answer:

Solution: *r* is not ignorable coordinate.

 θ is ignorable coordinate.

$$\begin{split} L &= T - V = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) - \frac{1}{2}kr^2 \\ \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) - \frac{\partial L}{\partial \theta} &= 0 \\ or, \frac{d}{dt}\left(mr^2\dot{\theta}\right) - 0 &= 0 \\ \Rightarrow mr^2\dot{\theta} &= constant \\ r^2\dot{\theta} &= constant \\ \text{So, the option (c) is correct.} \end{split}$$

(2) Consider a point mass of mass m which is attached to a massless rigid rod of length a'. The other end of the rod is made to move vertically such that its downward displacement from the origin at time t is given by $z = (t) = z_0 \cos(wt)$. The mass is moving in a fixed plane and its position vector at time t is given by $\vec{r}(t) = (a \sin \theta(t), z(t) + a \cos \theta(t))$. Then the equation of motion of the point mass is

(a)
$$a \frac{d^2 \theta}{dt^2} + (g + z_0 w^2 \cos(wt)) \sin \theta = 0$$

(b) $a \frac{d^2 \theta}{dt^2} + (g - z_0 w \cos(wt)) \sin \theta = 0$
(c) $a \frac{d^2 \theta}{dt^2} + (g + z_0^2 w^2 \cos(wt)) \cos \theta = 0$
(d) $a \frac{d^2 \theta}{dt^2} + (g - z_0 w^2 \cos(wt)) \cos \theta = 0$

Answer: (a)

Lagrange's equations are

Solution:
$$K.E = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2)$$

 $x = a \sin \theta,$
 $\dot{x} = a \cos \theta \dot{\theta}$
 $y = z(t) + a \cos \theta = z_0 \cos wt + a \cos \theta$
 $\dot{y} = -z_0 w \sin wt - a \sin \theta \dot{\theta}$
 $\therefore T = k.E = \frac{1}{2}m \begin{bmatrix} a^2 \cos^2 \theta \dot{\theta}^2 + z_0^2 w^2 \sin^2 wt + a^2 \sin^2 \theta \dot{\theta}^2 \\ +2z_0 w a \sin wt \sin \theta \dot{\theta} \end{bmatrix}$
 $= \frac{1}{2}m[a^2\dot{\theta}^2 + z_0^2w^2 \sin^2 wt + 2az_0 w \sin wt \sin \theta \dot{\theta}]$
 $V = P.E$ at the $pt A is = mg.0c$
 $= mg(oB - Bc)$
 $= mg(a - a \cos \theta)$
 $= mga(1 - \cos \theta)$
 $\therefore L = T - V$
 $= \frac{1}{2}m[a^2\dot{\theta}^2 + z_0^2w^2 \sin^2 wt + 2az_0 w \sin wt \sin \theta \dot{\theta}] - mga(1 - \cos \theta)$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) - \frac{\partial L}{\partial \theta} = 0$$

$$\frac{d}{dt}\left[\frac{1}{2}m(2a^2\dot{\theta} + 2a\ z_0\ w\sin wt\sin \theta)\right] - \left[\frac{1}{2}m(2a\ z_0\ w\sin wt\cos \theta\,\dot{\theta}) - mga\sin \theta\right] = 0$$

$$or, a\frac{d^2\theta}{dt^2} + z_0w^2\cos wt\cdot\sin \theta + z_0w\sin wt\cos \theta\,\dot{\theta} - z_0w\sin wt\cos \theta\,\dot{\theta} + g\sin \theta = 0$$

$$or, a\frac{d^2\theta}{dt^2} + (g + z_0w^2\cos wt)\sin \theta = 0$$
So, the option (a) is correct.