

/ 2

Internationale Anmeldung veröffentlicht nach dem Vertrag über die Internationale Anmeldung veröffentlicht nach dem Vertrag über die Internationale Zusammenarbeit auf dem Gebiet des Patentwesens (PCT)

(51) Internationale Patentklassifikation 6

C09K 19/04, 19/40, 19/58, C07D 493/04, 309/10, 309/30

(11) Internationale Veröffentlichungsnummer:

WO 98/03610

A1

(43) Internationales
Veröffentlichungsdatum:

29. Januar 1998 (29.01.98)

(21) Internationales Aktenzeichen:

PCT:/EP97/03782

(22) Internationales Anmeldedatum:

15. Juli 1997 (15.07.97)

(30) Prioritätscaten:

196 28 700.6

17. Juli 1996 (17.07.96)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur fur US): SIEMENSMEYER, Karl [DE/DE]; Erich-Heckel-Strasse 1, D-67227 Frankenthal (DE). TAJBAKHSH, Alı, Reza [IR/GB]; Brook Hill, Shetfield S3F MF (GB). BRUCE, Duncan, Watson [GB/GB]; Socker Road, Exeter EX4 4QD (GB). WIEC-ZOREK, Euzebius [PL/DE]; Spliedtring 45, D-22119 Hamburg (DE). VILL, Volkmar [DE/DE]; Schopstrasse 2, D-20255 Hamburg (DE). SCHIMMEL, Ulrike [DE/DE]; Thiecking Reibe 8, D-20539 Hamburg (DE).
- (74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: AL, AM, AU, AZ, BG, BR, BY, CA, CN, CZ, GE, HU, IL, JP, KG, KR, KZ, LT, LV, MD, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, UA, US, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Anderungen der Anspruche zugelassenen Frist. Veröffentlichung wird wiederholt falls Anderungen eintreffen.

(54) Title: LIQUID CRYSTALLINE SACCHAROSE DERIVATIVES

(54) Bezeichnung: FLÜSSIGKRISTALLINE ZUCKERDERIVATE

(57) Abstract

The invention concerns compounds of general formula (I) Z-Y-A- $(Y-M)_n$ -Y¹-X-Y¹- $(M-Y)_n$ -A-Y-Z in which the groups A, independently of one another, are spacers, n is 1, 2 or 3, X is a group of formula (a), (b), (c), (d), (e), (f), (g) or (h), the groups Y1, independently of one another, designate O, OCO, OCOO, or a direct bond, the groups Y, independently of one another, designate O. S. CO. COO, OCO, OCOO, CONR, NRCO or a direct bond, R is hydrogen or a C1-C4 alkyl, the groups M, independently of one another, designate an aliphatic, aromatic, heteroaliphatic or heteroaromatic ring system optionally substituted by chlorine, bromine, fluorine, iodine, cyan or methyl, and the groups Z, independently of one another, designate hydrogen or a polymerizable group. These compounds are suitable for use in electro-optical display elements, as chiral doping substances for nematic or cholesteric liquid crysrife for producing coloured reflective layers of pig-

$$-- c_2 H_4 \longrightarrow 0 \qquad (a) \qquad -- c_2 H_4 \longrightarrow 0 \qquad (b)$$

(57) Zusammenfassung

Die Erfindung betrifft Verbindungen der allgemeinen Formel (1) Z Y A (Y M)_{n-}Y'-X-Y' (M Y)_n A Y Z, in der die Reste A unabhängig voneinander Spacer, n. 1, 2, oder 3, X ein Rest der Formel (a), (b), (c), (d), (e), (f), (g) oder (h), die Reste Y¹ unabhängig voneinander O, OCO, OCOO, OCOO, OCOO, CONR, NRCO oder eine direkte Bindung, die Reste Y unabhängig voneinander O, S, CO, COO, OCO, OCOO, CONR, NRCO oder eine direkte Bindung, R Wasserstoff oder C₁-C₄-Alkyl, die Reste M unabhängig voneinander ein gegebenenfalls durch Chlor, Brom, Fluor, Iod, Cyan oder Methyl substituiertes, aliphatisches, aromatisches, heteroaliphatisches oder heteroaromatisches R:ngsystem und die Reste Z unabhängig voneinander Wasserstoff oder eine polymerisierbare Gruppe sind. Die erfindungsgemäßen Verbindungen eignen sich zur Verwendung in elektro-optischen Anzeigeelementen, als chirale Dotierstoffe für nematisch oder cholesterische Flüssigkristalle zur Erzeugung farbig reflektierender Schichten oder zur Herstellung von flüssigkristallin cholesterisch geordneten Pigmenten.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Malı	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongoler	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigle Staalen vor
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	t'sbekistan
CG	k.ongo	KE	Kana	NI	Niederlande	1.	Victory

		÷	1 ** 1 k * 2*		· • • ·
	* _^ 2	N.	2. 154 N. A.	RT.	in Sim Aniem
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Efigeration
DF	Deutschland	Li	Liechtenstein	SD	Sudan
DK	Dänemark	UK	Sri Lanka	SE	Schweden
FF	Estland	1.8	Liberia	56	Singapur

WO 98/03610 PCT/EP9⁷/03782

Flussigkristalline Zuckerderivate

Beschreibung

5

Chirale, smektisch flussigkristalline Materialien, die beim Abkühlen aus der flüssigkristallinen Phase glasartig unter Ausbildung einer Schichtstruktur erstarren, werden bekanntermaßen auf elektrooptischem Gebiet für viele Zwecke eingesetzt.

- 10 In hennen sind hier beispielsweise optische Speichersysteme (DE-A-38 27 603 und DE-A-39 17 196), die Elektrophotografie (DE-A-39 30 667), flüssigkristalline Anzeigeelemente wie Displays (Mol. Cryst. Liq. Cryst., <u>114</u>, 151 (1990)) sowie bei gleichzeitig vorliegendem ferroelektrischem Verhalten elektrische Speicher-
- 15 systeme (Ferroelectrics, <u>104</u>, 241 (1990)).

In der Schichtstruktur ferrcelektrischer S_c^\star -Phasen sind die Moleküllängsachsen innerhalb der einzelnen Schicht gegenüber der Schichtnormalen z geneigt. Die Richtung dieser Neigung wird durch

20 den Direktor n angegeben, der Winkel zwischen z und n ist der sogenannte Tiltwinkel Θ . S_c^* -Phasen weisen zwei stabile Zustände mit unterschiedlicher Richtung von n auf, zwischen denen durch Anlegen eines elektrischen Feldes geschaltet werden kann (elektrooptischer Effekt).

25

 S_c^* -Phasen treten bei niedermolekularen, flüssigkristallinen Materialien, bei Oligomesogenen und bei polymer ferroelektrischen Materialien auf, wobei die wesentlichen Eigenschaften der S_c^* -Phasen übereinstimmen.

30

Die bislang hergestellten flüssigkristallinen Materialien weisen jedoch Nachteile auf, zum Beispiel geringe spontane Polarisation, geringe Phasenbreite, kein stabiles, getiltet smektisches Glas bei Raumtemperatur oder zu langsames Schalten.

35

Das Auftreten der flüssigkristallinen S_c^* -Phase wird durch alle Gruppen des Moleküls in erheblichem Ausmaß beeinflußt, so daß kleinste Änderungen der molekularen Struktur S_c^* -Phasen induzieren oder auch zum Verschwinden bringen können.

40

Speziell die chirale Gruppe ist durch ihre Struktur und spezielle Funktion für das Zustandekommen einer spontanen Polarisation von entscheidender Bedeutung.

Die Erfindung betrifft nun Werbindungen der alldemeinen Formel [

 $2 - Y - A - (Y - M)_{D} - Y^{2} - X - Y^{2} - (M - Y)_{D} - A - Y - 2$

5 in der die Reste

A unabhangig voneinander Spacer,

n 1, 2 oder 3,

10

X ein Rest der Formel

$$-c_2H_4 \longrightarrow -c_2H_4 \longrightarrow -c_2$$

$$-C = C \longrightarrow -C = C \longrightarrow -$$

30 NC NC NC Oder
$$\rightarrow$$
 O die Reste

Y¹ unabhängig voneinander O, OCO, OCOO oder eine direkte 35 Bindung, die Reste

Y unabhängig voneinander O, S, CO, COO, OCO, OCOC, CONR, NRCO oder eine direkte Bindung

40 R Wasserstoff oder $C_1 \cdot C_4 \cdot Alkyl$, die Reste

M unabhängig voneinander ein gegebenenfalls durch Chlor, Brom, Fluor, Iod, Cyan oder Methyl substituiertes, aliphatisches, archatisches, beternaliphatisches oder setzwar mit inches.

unaphängig voneinander Wasserstoff oder eine polymerisierbare Gruppe sind.

Von besonderer Bedeutung sind Verbindungen mit:

5

$$X \qquad - C_2H_4 - O \qquad$$

10

15

n 1 oder 2

M unabhängig voneinander ein aliphatisches oder aromatisches
 20 ein- oder mehrkerniges Ringsystem,

unabhängig voneinander Wasserstoff, Vinyl, Methylvinyl, Chlorvinyl, NCO, OCN oder — CH — CH_2 und

25

y einer direkten Bindung, O, COO, OCO oder OCOO.

Als Spacer A können alle für diesen Zweck bekannten Gruppen verwendet werden; üblicherweise sind die Spacer über Carbonat-,

30 Ester- oder Ethergruppen oder eine direkte Bindung mit M oder Z verknüpft, d.h. die Reste Y entsprechen vorzugsweise einer direkten Bindung, O,COO, OCO oder OCOO. Die Spacer enthalten in der Regel 2 bis 30, vorzugsweise 2 bis 12 C-Atome und können in der Kette z.B. durch O, S, NH oder NCH3 unterbrochen sein. Als Substituenten für die Spacerkette kommen dabei noch Fluor, Chlor, Brom, Cyan, Methyl oder Ethyl in Betracht.

Repräsentative Spacer sind beispielsweise:

40 $(CH_2)_p$, $(CH_2CH_2O)_qCH_2CH_2$, $CH_2CH_2SCH_2CH_2$, $CH_2CH_2NHCH_2CH_2$,

q 1 bis 3 und

p | 1 mis 10 sind.

Die Reste M sind in der Regel nicht aromatisch oder aromatisch carpocyclische oder heterocyclische, gegebenenfalls durch Fluor.

5 Chlor, Brom, Cyan, Hydroxy oder Nitro substituierte Ringsysteme, die c.B. folgenden Grundstrukturen entsprechen:

40 Besonders bevorzugt sind als Gruppen (M-Y)n z.B:

Die erfindungsgemäßen Einheiten $Z-Y-A-(Y-M)_{n}$, in denen Z, Y, A und M die oben angegebene Bedeutung haben, sind durch allgemein bekannte Syntheseverfahren, wie sie beispielsweise in der 30 DE-A 39 17 196 beschrieben sind, zugänglich.

Die erfindungsgemäßen Verbindungen eignen sich insbesondere zur Verwendung in elektro-optischen Anzeigeelementen, als chiraler Dotierstoff für nematische oder cholesterische Flüssigkristalle zur Erzeugung farbig reflektierender Schichten oder zur Herstellung von flüssigkristallin cholesterisch geordneten Pigmenten.

Beispiel 1

40 2-(4'''-Hexoxyphenylcarboxyphenylethin)-5-acetoxy-5,6-dihydro-2H-pyran

Zu einer Lösung von 120 mg (0,6 mmol) 3,4-Di-O-acetyl-D-xylal in 5 ml absolutem Dichlormethan werden 250 mg (0,63 mmol) 4'-Hexoxy-

Phase abgetrennt, mit Wasser ausgeschuttelt, über MgSC4 gerrocknet, filtriert und im Vakuum eingeengt. Das Produkt, wird saulenchromatographisch mit Petrolether/Ethylacetat = 3/1 abgetrennt.

Ausbeute: 260 mg (93 %)

Phasen und Umwandlungstemperaturen: K 104,2 S_{A} 99,51

15 2 H-NMR (400 MHz, CDCl₃): δ = 8,05 (s, 2H, H-2"·, H-6"·), 7,44 (d, 2H, H-2", H-6"), 7,12 (d, 2H, H-3", H-5"), 6,07 (dd, 1H, H-3), 5,94 (mc, 1H, H-4), 5,11 (dd, 1H, H-2), 501 (m, 1H, H-5), 4,20 (dd, 1H, H-6a), 3,98 (t, 2H, OCH₂), 3,87 (dd, 1H, H-6e), 2,02 (s, 3H, OAc), 1,76 (mc, 2H, OCH₂CH₂), 1,53-1,25 (m, 6H, 3CH₂), 0,85 20 (t, 3H, CH₃).

 $J_{2,3} = 3.6$, $J_{2,4} = 2.0$, $J_{3,4} = 10.2$ $J_{4,5} = 5.6$, $J_{5,6e} = 1.0$, $J_{5,6e} = 3.1$, $J_{6a,6e} = 12.2$ Hz.

25 Beispiel 2

2-(4'''-Hexoxyphenylcarboxyphenylethin)-5-acetoxytetrahydropyran

250 mg (0,53 mmol) der Verbindung aus Beispiel 1 werden in 5 ml 30 Methanol und 5 ml Ethylacetat gelöst und bei Raumtemperatur über Palladium/Kohle (10 %) hydriert. Das Produkt wird säulenchromatographisch mit Petrolether/Ethylacetat = 6/1 abgetrennt.

40

Ausbeute: 150 mg (59 %)

÷ 1...

Phasen und Umwandlungstemperaturen: K 85,2 Sh 121,5 I

בא בי במתם אנות אין אין בי מת בי מת בי מתם אנות או במתם ביא או במתם אנות אונות העקיבונו

0 15 m, 1H, H-3eq*, 0,00 (s. 3H, OAc), 1.83 (t. 2H, OCH2CH2), 1.79-1,30 (m. 11H, H-3ax, H-4ax, H-4eq, H-1a*, H 1b*, 3CH2 , 0,90 (t. 3H, CH3).

5 $G_{5,be} = 4.6$, $G_{5,ba} = 10.0$, $G_{ba,be} = 10.7$, $G_{2a^{\prime}}$, $g_{b^{\prime}} = 14.7$, $G_{1a^{\prime}}$, $G_{a^{\prime}} = 5.5$, $G_{1b^{\prime},2a^{\prime}} = 9.7$ Hb.

Beispiel 3

10 2-(4'''-Octoxybiphenylcarboxyphenylether)-5-acetoxy-5,6-dihydro-2H-pyran

2u einer Lösung von 0,14 mg (0,71 mmol) 3,4-Di-O-acetyl-D-xylal
in 4 ml absolutem 1,2-Dichlorethan werden 0,35 g (0,71 mmol)
15 4'-Octoxybiphenylsaure-4-trimethylsilylethinylphenolester und ein

15 4'-Octoxybiphenylsåure-4-trimethylsitylethinylphenorester und ein Tropfen Zinntetrachlorid gegeben. Nach einer Stunde wird festes Natriumcarbonat zur Neutralisation zugefügt, nach 30 min Rühren filtriert und im Vakuum eingeengt. Das Produkt wird säulenchromatographisch mit Toluol/Ethylacetat = 4/1 abgetrennt.

20

Ausbeute: 24 %

Phasen und Umwandlungstemperaturen: K 148 S_A218 N*218.3 I

- 30 1H-NMR (400 MHz, CDCl₃): 8,21 (d, 2H, H-3"', J = 8,14 Hz); 7,68 (d, 2H, H-2"', J = 8.14 Hz); 7,54-7,50 (m, 2H, H2'''); 7,21 (d, 2H, H2", J = 8,65 Hz); 7,12 (d, 2H, H3", J = 8,65 Hz); 7,00 (d, 2H, H3''', J = 8,64 Hz); 6,16-6,08 (m, 1H, H3); 5,99 (mc, 1H, H4); 5,18 (t, 1H, H2, J = 2,54); 5,06 (mc, 1H, H5); 4,07-4,03 (m, 1H,
- 35 H6a); 4,01 (t, 2H, -CH₂O, U = 6.61 Hz); 3.96-3.92 (m, 1H, H6b); 2.11 (s, 3H, Ac); 1.82 (mc, 2H, CH₂CH₂O); 1.50-1.27 (m, 10H, Alkyl); 0.90 (t, 3H, CH₃, U = 6.62 Hz).

Beispiel 4

40

2-(4'''-Octoxybiphenylcarboxyphenylether)-5-acetoxy-3,4,5,6-tetrahydro-2H-pyran

10 mmol der Verbindung aus Bsp. 3 werden in 3 ml Ethanol und 3 ml Ethylacetat gelöst. Bei Raumtemperatur wird mit 5 m. Palladium Kohle (10 %) hydriert. Das Produkt wird säulenchromatographisch mit Toluol Ethylacetat = 10 l apgetrennt.

5

3- (4'''''-0ctyloxybiphenylsarboxypnenylethyl(-5)-acetoxytetranydropyran (14)

- 15 Phasen und Umwandlungstemperaturen: K ? S_x85 S_c 138,8 S_a 174,3 I = H-NMR (400 MHz, CDCl₃): 8,22 (d, 2H, H3',J = 8,14 Hz); 7,68 (d, 2H, H2', J = 8.14 Hz); 7,59 (d, 2H, H2",J = 8,65 Hz); 7,23 (d, 2H, H4, J = 8,65 Hz); 7,13 (d, 2H, H5, J = 8,65 Hz); 7,00 (d, 2H, H3",J = 8,64 Hz); 4,78 (mc, 1H, H5); 4,07-4,04 (m, 1H, H6a);
- 20 4.02 (t, 2H, CH₂O, J = 6.61 Hz); 3,23 (mc, 1H, H6b); 2,73-2,65 (m, 1H, H4a); 2.14 (mc, 1H, H3a); 2.04 (s, 3H, Ac); 1.82 (t, 2H-CH₂CH₂O, J = 7.38 Hz); 1.73 (mc, 1H, H2'); 1.51-1.24 (m, 13H, H3b, H4b, H¹', Alkyl); 0.90 (t, 3H, -CH₃, J = 6.62 Hz).
- 25 Analog Bsp. 1 können hergestellt werden:

Bsp. 5

35 Bsp. 6

Bsp. 7

Bsp. 9 $CH_{3} - C - C - C_{3}H_{1}$ $= -C_{3}H_{1}$

3sp. 9

O $CH_3 - C - O$ $= C - C_0H_1$

20 Analog Beispiel 2 können auch die Verbindungen der Beispiele 10-14 hergestellt werden:

Bsp. 10

25 $C_{6}H_{13}$ $C_{-}O$ $C_{6}H_{13}$ $C_{-}O$ $C_{6}H_{13}$

30
Bsp. 11

C₆H₁₃— C O O O C C₆H₁₁

Bsp. 12
40

O

CH₃—C O

O

O

CH₄H₉

SEITEN 10-12

WERDEN IM INTERNATIONALEN VERFAHREN NICHT BERÜCKSICHTIGT

Patencanspruche

1. Verbindungen der allgemeinen Formel I

5

 $Z - Y - A - (Y - M)_n - Y^2 - X - Y^2 - (M - Y)_n - A - Y - Z$

in der die Reste

10 A unabhängig voneinander Spacer,

n 1, 3 oder 3,

X ein Rest der Formel

15

20

$$-C_2H_4$$
 C_2H_4 C_2H_4 C_2H_4

25

$$-c = c \longrightarrow -c = c \longrightarrow -c$$

30

35

- Yi unabhangig voneinander O, OCO, OCOO oder eine direkte Bindung, die Reste
- 40
- Y unabhāngig voneinander 0, S, CO, COO, OCO, OCOO, CONR, NRCO oder eine direkte Bindung
- R Wasserstoff oder C1-C4-Alkyl, die Reste

M unaphängig voneinander ein gegebenenfalls lurch Onlor Brom, Fluor, Iod, Cyan oder Methyl substituiertes, allphatisches, aromatisches, neteroaliphatisches oder hereroaromatisches Ringsystem und die Reste

5

- Unabhängig voneinander Wasserstoff oder eine polymerisierbare Gruppe sind.
- 2. Verbindungen gemäß Anspruch 1 bei denen

10

$$X \qquad -C_2H_4 \longrightarrow 0 \qquad -C_2H_4 \longrightarrow 0 \qquad 0 \longrightarrow 0$$

15

$$-c = c - \langle - \rangle \qquad oder \qquad -c = c - \langle - \rangle - \langle -$$

20

- n 1 oder 2
- M unabhängig voneinander ein aliphatisches oder aromatisches ein- oder mehrkerniges Ringsystem,
 - 2 unabhängig voneinander Wasserstoff, Vinyl, Methylvinyl, Chlorvinyl, NCO, OCN oder—CH— CH_2 und

30

- Y eine direkte Bindung, O, COO, OCO oder CCGO sind.
- 3. Verwendung der Verbindungen gemäß Anspruch 1 als chirale Dotierstoffe für elektrooptische Anzeigeelemente oder für nematische oder cholesterische Flüssigkristalle zur Erzeugung farbig reflektierender Schichten oder zur Herstellung von flüssigkristallin cholesterisch geordneten Pigmenten.

40

INTERNATIONAL SEARCH REPORT

onal Application No Inte PCT/EP 97/03782

A CLASSIFICATION OF SUBJECT MATTER IPC 6 C09K19/04 C09K19/40

C07D309/30

C09K19/58 C07D493/04 C07D309/10

According to international Patent Classification (IPC) or to both national classification and IPC

8. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 CO9K CO7D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	ENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	VILL V ET AL: "STRUCTURAL VARIATION OF LIQUID CRYSTALLINE TRIOXADECALINS" JOURNAL OF MATERIALS CHEMISTRY, vol. 6, no. 5, May 1996, pages 739-745, XP000626871 see page 743 - page 745; tables see compound no. 8	1 - 3
Α	DE 44 08 804 A (BASF AG) 21 September 1995 see the whole document	1-3
А	DE 42 00 819 A (MERCK PATENT GMBH) 22 July 1993 see the whole document	1-3
	-/	

Further documents are listed in the continuation of box C	Patent family members are listed in annex
Special categories of cited documents TAT document defining the general state of the lart which is not considered to be of particular relevance.	To later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory, underlying the invention.
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or	"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered, to involve an inventive step when the document is, taken alone.
which is cried to establish the publication date of another citation or other special reason (as 'specified)	"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive, step when the
O document referring to an oral disclosure, use, exhibition or other means	document is combined with one or more other such docu- ments, such combination being obvious to a person skilled
P document published pnor to the international fixing date but later than the priority date claimed	in the art "5" document member of the same patent family

Name and maining address of the $\mathcal{S}^{\mathbf{A}}$

.....

European Patent Office, P.B. 5818 Patentian 2. NL - 2280 HV Ryswidt. Te. (+31-70) 340-2040, Tx. 31 651 epoint. Fax. (+31-70) 340-3016

autringed officer

Puetz, C

Are the art of the other are the seek of a

INTERNATIONAL SEARCH REPORT

PCT/EP 97/03782

C (Continu	MION) DOCUMENTS CONSIDERED TO BE RELEVANT	PC1/EP 97/03782
	Citation of document, with indication, where appropriate, of the relevant passages	i Relevant to claim No
A	DATABASF WPI Section Ch, Week 9513 Derwent Publications Ltd., London, GB; Class E13, AN 95-093832 XP002046691 & JP 07 017 961 A (KASHIMA SEKIYU KK), 20 January 1995 see abstract	1-3
A	DE 41 32 006 A (MERCK PATENT GMBH) 1 April 1993 see claims see Schema 1	1
۹	EP 0 630 892 A (BASF AG) 28 December 1994 see the whole document	1-3
4	EP 0 714 904 A (BASF AG) 5 June 1996 see the whole document	1-3
4	PUDLO ET AL.: "Synthese und Eigenschaften kalamitischer Flüssigkristalle aus desoxygenierten Kohlenhydrat-Derivaten" CHEMISCHE BERICHTE, vol. 123, 1990, pages 1129-1135, XP002046690 see the whole document	

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte POT/EP 97/03782

Patent document cited in search report	Publication date	Patent family Publication member(s) date
DE 4408804	A 21-09-95	CN 1146212 A 26-03-97 WO 9525150 A 21-09-95 EP 0750656 A 02-01-97
DE 4200819	A 22-07-93	NONE
DE 4132006	A 01-04-93	NONE
EP 0630892 /	A 28-12-94	DE 4316826 A 24-11-94 DE 4408414 A 14-09-95 DE 4408413 A 14-09-95 JP 7025866 A 27-01-95
EP 0714904 A	05-06-96	DE 4442614 A 05-06-96 CN 1131673 A 25-09-96 JP 8225562 A 03-09-96

INTERNATIONALER RECHERCHENBERICHT

onales Aktenzeichen PCT/EP 97/03782 klassifizierung des anmeldungsgegenstandes PK 5 C09K19/04 C09K19/40 C09K19/58 CO7D493/04 CO7D309/10 0070309/30 Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprufstoff (Kiasaifkationssystem und Klassifikationssymbole) IPK 6 C09K C07D Recherchierte aber nicht zum Mindestprüfstoff gehorende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Wahrend der internationalen Recherche konsufflierte elektronische Datenbank (Name der Datenbank, und evtt. verwendete Suchbegnifte) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Kategone® Betr Anspruch Nr Χ VILL V ET AL: "STRUCTURAL VARIATION OF 1 - 3LIQUID CRYSTALLINE TRIOXADECALINS" JOURNAL OF MATERIALS CHEMISTRY. Bd. 6, Nr. 5, Mai 1996, Seiten 739-745, XP000626871 siehe Seite 743 - Seite 745; Tabellen siehe compound no. 8 DE 44 08 804 A (BASF AG) 21. September 1995 Α 1 - 3siehe das ganze Dokument Α DE 42 00 819 A (MERCK PATENT GMBH) 22.Juli 1 - 31993 siehe das ganze Dokument -/--Χ Wertere Veröffentlichungen sind der Fortsetzung von Feld C zu Х Siene Anhang Patentfamilie * Besondere Kategorien von angegebenen Veröffentlichungen "T" Spalere Veröffentlichung, die nach dem internationalen Anmeidedatum "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert,

- aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Phoritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden 🛶 soil oder die aus einem anderen bezonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung,
- eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Phoritätsdatum veröffentlicht worden ist
- oder dem Priorifatsidatum veröffentlicht worden ist und mit der Anmeidung nicht kollidiert, sondern nur zum. Verstandnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden. Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderisoner Tatigkart berühend betrachtet werden
- Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tatigkeit berühend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verömdung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist

a* 14 1 1 1 1 1

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Benharche

Absendedatum das internationalen Rechemnenbehöhrt

stanton filler internationale i wenterchannency so Europaisones Patentamt, P. B. 3913 Patentiaan 2 Estephinaties Palentam, P.E. 53.5 Palen NC - 2280 HV Rijawijk Tei (+31-70) 340-2040, Tx. 31.651 epoint Fax. (+31-70) 340-3016

Puetz, C

INTERNATIONALER RECHERCHENBERICHT

PCT/EP 97/03782

(Ategone)	Bezeichnung der Veröffantschung, soweit erfordenschlunter Angabe der in detrecht kommenden Teile	l Betri Ansprüch Ni
Ą	DATABASE WPI Section Ch, Week 9513 Derwent Publications Ltd., London, GB;	1-3
	Class E13, AN 95-093832 XP002046691 & JP 07 017 961 A (KASHIMA SEKIYU KK), 20.Januar 1995	
	siehe Zusammenfassung	
A	DE 41 32 006 A (MERCK PATENT GMBH) 1.April 1993 siehe Ansprüche siehe Schema 1	1
A	EP O 630 892 A (BASF AG) 28.Dezember 1994 siehe das ganze Dokument	1-3
А	EP 0 714 904 A (BASF AG) 5.Juni 1996 siehe das ganze Dokument	1-3
А	PUDLO ET AL.: "Synthese und Eigenschaften kalamitischer Flüssigkristalle aus desoxygenierten Kohlenhydrat-Derivaten" CHEMISCHE BERICHTE, Bd. 123, 1990, Seiten 1129-1135, XP002046690 siehe das ganze Dokument	1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur seiben Patentfamilie gehören

PCT/EP 97/03782

m Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veräffentlichung
DE 4408804 A	21-09-95	CN 1146212 A WO 9525150 A EP 0750656 A	26-03-97 21-09-95 02-01-97
DE 4200819 A	22-07-93	KEINE	
DE 4132006 A	01-04-93	KEINE	
EP 0630892 A	28-12-94	DE 4316826 A DE 4408414 A DE 4408413 A JP 7025866 A	24-11-94 14-09-95 14-09-95 27-01-95
EP 0714904 A	05-06-96	DE 4442614 A CN 1131673 A JP 8225562 A	05-06-96 25-09-96 03-09-96