Chapter 1

Applications of Sylow Theorems

Some Examples on the Use of Sylows Theorems

Example. A group of order 40 must contain a normal subgroup of order 5.

Solution. Here $|G| = 40 = 2^3 \cdot 5$.

 s_5 divides 8 and has the form 1+5k. So, necessarily $s_5=1$.

Since there is only one subgroup of order 5, then this subgroup is normal in G.

Example. Show that no group of order 30 is simple.

Solution. To show: G has at least one non-trivial normal subgroup.

Here $|G| = 30 = 2 \cdot 3 \cdot 5$.

 s_5 , the number of Sylow 5-subgroups, divides 6 and has the form (1+5k). Should k=0. We are done (i.e., there exists unique subgroup of order 5 is then normal in G).

Should k = 1, the total number of Sylow 5-subgroups is then 6. Such subgroups can have only the identity element e in common; so they would account for $4 \times 6 = 24$ distinct elements of G, not counting e.

In this situation, s_3 (the number of Sylow 3-subgroups), being a divisor of 10 and of the form 1 + 3m, can only be = 1(m = 3 is ruled out by counting elements of G, since G would have then at least 25 + 20 = 45 elements). So, the Sylow 3-subgroup is a normal subgroup.

So, it is proved that either G has a unique Sylow 5-subgroup or it has a unique Sylow 3-subgroup.

!n either case, we get a non-trivial normal subgroup of G.