

## **Examen Final**

Curso: Álgebra lineal 2 Ciclo: 2016.1

A lo largo de este examen, E, F y G denotarán e.p.i.'s reales de dimensión finita y  $\operatorname{End}(E) := \mathcal{L}(E,E)$ .

- 1. [4 pts.] Sea E subespacio vectorial de F y sea  $A \in \mathcal{L}(E, F)$  ortogonal. Pruebe que existe un endomorfismo ortogonal sobre F que extiende a A.
- 2. [4 pts.] Sean  $A \in \mathcal{L}(E, F)$  y  $B \in \mathcal{L}(E, G)$  invertibles. Pruebe que existe  $C \in \mathcal{L}(F, G)$  ortogonal e invertible con B = CA sii |Av| = |Bv| para todo  $v \in E$ .
- 3. [4 pts.] Sean  $A, B \in \text{End}(E)$  con |Av| = |Bv| para todo  $v \in E$ . Pruebe que existe  $C \in \text{End}(E)$  ortogonal con B = CA. (Sugerencia: Observe que  $\ker(A) = \ker(B)$  y considere  $F := \ker(A)^{\perp}$ . Luego, considere los isomorfismos  $A_0 : F \to \text{im}(A)$  y  $B_0 : F \to \text{im}(B)$  obtenidos de restringir  $A \setminus B$ , respectivamente.)
- 4. [4 pts.] Sean  $A, B \in \text{End}(E)$  autoadjuntos. Pruebe que A y B conmutan sii E posee una base ortonormal formada por autovectores comunes a A y a B.
- 5. [4 pts.] Si un subespacio  $F \subset E$  es invariante por el operador normal  $A \in \text{End}(E)$ . Pruebe que
  - (a) F también es invariante por  $A^*$  y que
  - (b)  $F^{\perp}$  es invariante por  $A \vee A^*$ .