

High Performance Computing

High Performance Computing

HPC refers to HW/SW infrastructures for particularly intensive workloads

High Performance Computing

HPC is (somewhat) distinct from cloud computing

- Cloud computing is mostly about running (and scaling) services
- ...HPC is all about performance

Typical applications: simulation, massive data analysis, training large ML models

HPC systems follow a batch computation paradigm

- Users send jobs to the systems (i.e. configuration for running a program)
- Jobs end in one of several queues
- A job scheduler draws from the queue
- ...And dispatches jobs to computational nodes for execution

High Performance Computing

HPC systems can be large and complex

E.g. Marconi-100 at CINECA, 21-th on the top 500 list on June 2022

```
21 Marconi-100 - IBM Power System AC922, IBM POWER9 347,776 21.64 29.35 1,476
16C 3GHz, Nvidia Volta V100, Dual-rail Mellanox EDR
Infiniband, IBM
CINECA
Italy
```

■ The system has 347,776 cores overall!

Configuring (and maintaining the configuration) of these systems

- ...Is of paramount importance, as it has an impact on the performance
- ...Is challenging, due to their scale and the presence of node heterogeneity

Hence the interest in detecting anomalous conditions

The Dataset

As an example, we will consider the DAVIDE system

Small scale, energy-aware architecture:

- Top of the line components (at the time), liquid cooled
- An advanced monitoring and control infrastructure (ExaMon)
- ...Developed together with UniBo

The system went out of production in January 2020

The monitoring system enables anomaly detection

- Data is collected from a number of samples with high-frequency
- Long term storage only for averages over 5 minute intervals
- Anomalies correspond to unwanted configurations of the frequency governor
- ...Which can throttle performance to save power or prevent overheating

Our dataset refers to the non-idle periods of a single node

```
In [2]: print(f'#examples: {hpc.shape[0]}, #columns: {hpc.shape[1]}')
          hpc.iloc[:3]
          #examples: 6667, #columns: 161
Out[2]:
                       ambient_temp cmbw_p0_0 cmbw_p0_1 cmbw_p0_10 cmbw_p0_11 cmbw_p0_12 cmbw_p0_13 cmbw_p0_14 cmbw_p0_2
             timestamp
             2018-03-
                       0.165639
                                    0.006408
                                                                     0.238444
                                                                                 0.230092
                                                                                                         0.227682
           0 05
                                               0.012176
                                                          0.166835
                                                                                             0.145691
                                                                                                                     0.000094
              22:45:00
             2018-03-
                       0.139291
                                                                     0.238485
                                                                                 0.230092
                                                                                                         0.227682
           1 05
                                    0.007772
                                               0.057400
                                                          0.166863
                                                                                             0.145691
                                                                                                                     0.176855
             22:50:00
             2018-03-
           2 05
                                    0.000097
                                               0.000000
                                                          0.166863
                                                                     0.238444
                                                                                 0.230092
                                                                                                         0.227682
                                                                                                                     0.252403
                        0.141048
                                                                                             0.145691
             22:55:00
           3 rows × 161 columns
```

■ This still a time series, but a multivariate one

How to display multivariate series? Approach #1: showing individual columns

■ The series contains significant gaps (i.e. the idle periods)

Approach #2: obtaining statistics

In [4]: |hpc[inputs].describe() Out[4]: ambient_temp cmbw_p0_0 cmbw_p0_1 cmbw_p0_10 cmbw_p0_13 cmbw_p0_14 cmbw_p0_2 **count** 6667.000000 6667.000000 6667.000000 6667.000000 6667.000000 6667.000000 6667.000000 6667.000000 6667.000000 0.357036 0.138162 0.060203 0.119616 0.160606 0.184970 0.118305 0.151434 0.143033 mean 0.090796 0.098597 0.166171 0.128474 0.128127 0.163190 0.104490 0.120793 0.125052 std 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 min 25% 0.227119 0.000073 0.000020 0.000000 0.000000 0.000000 0.000000 0.000000 0.000117 0.323729 0.136095 0.000082 0.166835 0.238444 0.230092 0.227682 0.174933 50% 0.145691 0.470254 0.261908 0.134976 0.166984 0.238566 0.230406 0.251910 0.145908 0.227779 75% 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 max 8 rows × 159 columns

■ No missing value, normalized data

Approach #3: standardize, then use a heatmap

```
In [5]: hpcsv = hpc.copy()
         hpcsv[inputs] = (hpcsv[inputs] - hpcsv[inputs].mean()) / hpcsv[inputs].std()
        util.plot dataframe(hpcsv[inputs], figsize=figsize)
          100
          120
          140
                           1000
                                          2000
                                                         3000
                                                                        4000
                                                                                       5000
                                                                                                       6000
```

■ White = mean, red = below mean, blue = above mean

Anomalies

There are three possible configurations of the frequency governor:

- Mode 0 or "normal": frequency proportional to the workload
- Mode 1 or "power saving": frequency always at the minimum value
- Mode 2 or "performance": frequency always at the maximum value

On this dataset, this information is known

- ...And it will serve as our ground truth
- We will focus on discriminating normal from non-normal behavior
- I.e. we will treat both "power saving" and "performance" cases as anomalous

Detecting them will be challenging

Since the signals vary so much when the running job changes

Anomalies

We can plot the location of the anomalies:

On the top, blue = normal, orange = anomaly

Let's try first a density estimation approach (once again using KDE)

First, we standardize the data again, based on training information alone

```
In [7]: tr_end, val_end = 3000, 4500

hpcs = hpc.copy()
tmp = hpcs.iloc[:tr_end]
hpcs[inputs] = (hpcs[inputs] - tmp[inputs].mean()) / tmp[inputs].std()
```

- This is needed so that we do not accidentally exploit test set information
- The training set separator was chosen so as not to include anomalies

Then we can separate training, validation, and test data:

```
In [8]: trdata = hpcs.iloc[:tr_end]
  valdata = hpcs.iloc[tr_end:val_end]
  tsdata = hpcs.iloc[val_end:]
```

Then we calibrate the bandwidth and generate the alarm signal

```
In [9]: %%time
    opt = GridSearchCV(KernelDensity(kernel='gaussian'), {'bandwidth': np.linspace(0.1, 1, 10)}, cv=
    opt.fit(trdata[inputs])
    print(f'Best parameters: {opt.best_params_}')

    ldens = opt.score_samples(hpcs[inputs])
    signal_kde = pd.Series(index=hpcs.index, data=-ldens)

Best parameters: {'bandwidth': 0.5}
    CPU times: user 26.6 s, sys: 16.8 ms, total: 26.6 s
Wall time: 26.7 s
```

Both operations are quite expensive: why?

There is a good match with the anomalies, but also some spurious peaks

■ This is mostly due to the large variations due to job changes

We then need to define the threshold, but for that we need a cost model

Our main goal is to detect anomalies, not anticipating them

- Misconfigurations in HPC are usually not critical
- ...And cause little issue, unless they stay unchecked for very long

We will use a simple cost model:

- $lacktriangleright c_{alarm}$ for false positive (erroneous detections)
- $lacktriangleright c_{missed}$ for false negatives (undetected anomalies)
- Detections are fine as long as they are within *tolerance* units from the anomaly

```
In [11]: c_alarm, c_missed, tolerance = 1, 5, 12
cmodel = util.HPCMetrics(c_alarm, c_missed, tolerance)
```

The implementation details can be found in the util utility module

We can now optimize the threshold over the validation set

- The opt_threshold function runs the usual line search process
- In this case the training and validation set are completely separated

KDE-based approaches work well, but have some issues

KDE-based approaches work well, but have some issues

First, KDE itself runs into trouble with high-dimensional data:

- With a larger dimensionality, prediction times grows...
- ...And more data is needed to obtain reliable results

KDE-based approaches work well, but have some issues

First, KDE itself runs into trouble with high-dimensional data:

- With a larger dimensionality, prediction times grows...
- ...And more data is needed to obtain reliable results

Second, KDE has trouble with large training sets

- The more the samples in the training set
- ...The more the terms to be summed to obtain a density

KDE-based approaches work well, but have some issues

First, KDE itself runs into trouble with high-dimensional data:

- With a larger dimensionality, prediction times grows...
- ...And more data is needed to obtain reliable results

Second, KDE has trouble with large training sets

- The more the samples in the training set
- ...The more the terms to be summed to obtain a density

Third, KDE gives you nothing more than an anomaly signal

- Determining the cause of the anomaly is up to a domain expert
- This is ok in low-dimensional spaces, but harder on high-dimensional ones