PROBLEMARIO 1er. Departamental

Fecha de entrega límite: Día de exámen

Problema 1. Expresar las señales e^{-t} , t^2 y 2t como serie trigonométrica de Fourier en el intervalo (0,1).

Problema 2. Encontrar la serie trigonométrica de Fourier de cada una de las señales de la figura 1, en el intervalo de $-\pi$ a π .

Figura 1. Gráficas para el problema 2.

Problema 3. Determinar la serie trigonométrica de Fourier de cada una de las señales periódicas de la figura 2.

Figura 2. Gráficas para el problema 3.

Problema 4. Calcular la serie exponencial de Fourier de cada una de las señales periódicas que se ilustran en la figura 3 y graficar los espectros de magnitud y fase.

Figura 3. Gráficas para el problema 4.

Problema 5. Obtener la transformada de Fourier de cada una de las señales de la figura 4

Figura 4. Gráficas del problema 5.

Problema 6. Determinar cada una de las señales f(t) cuya transformada de Fourier se ilustra en la figura 5.

Figura 5. Gráficas del problema 6.

Problema 7. Por medio de la propiedad de muestreo de la función impulso, calcular las siguientes integrales.

a).
$$\int_{-\infty}^{\infty} \delta(t-5) sen 2t \ dt$$

b). $\int_{-\infty}^{\infty} \delta(2-t)(t^5-3) \ dt$
c). $\int_{1}^{x} e^{-x^2} \delta(x) \ dx$
d). $\int_{1}^{\infty} \delta(t-2) cos[\pi(t-3)] \ dt$

Problema 8. Considerando que f(t) y $F(\omega)$ forman un par de transformadas, USANDO LAS PROPIEDADES DE LA TRANSFORMADA, encontrar la transformada de Fourier de las siguientes expresiones.

a).
$$f(2-t)$$
 f). $(t-5)f(t)$
b). $f[(t-3)-3]$ g). $(t-3)f(-3t)$
c). $\left(\frac{df(t)}{dt}\right)(\sec t)$ h). $t\frac{df(t)}{dt}$
d). $\frac{d}{dt}[f(-2t)]$ i). $f(6-t)$
e). $tf(3t)$ j). $(2-t)f(8-t)$

Problema 9. Completa en tiempo o frecuencia el par de transformada solicitado, usando las propiedades de la transformada de Fourier.

a)
$$5\delta(t-1) \leftrightarrow ?$$

b) $? \leftrightarrow 8\delta(\omega+1) + 8\delta(\omega-1)$
c) $t \leftrightarrow ?$
d) $t^2 \leftrightarrow ?$
e) $2C_2(t)\cos 1000t \leftrightarrow ?$
f) $? \leftrightarrow \cos 1000\omega$
g) $? \leftrightarrow 5\omega$
h) $? \leftrightarrow \delta(\omega)e^{-j5\omega}$

Problema 10. A partir de los siguientes pares de transformadas

$$\delta(t) \leftrightarrow 1 \qquad ACd(t) \leftrightarrow AdSd\left(\frac{\omega d}{2}\right) \qquad u(t) \leftrightarrow \pi\delta(\omega) + \frac{1}{j\omega} \qquad \operatorname{sgn}(t) \leftrightarrow \frac{2}{j\omega}$$

Encuentre:

a) ?
$$\leftrightarrow$$
 3sgn(4 ω -2)

b)
$$C_2\left(\frac{2}{3}t\right) \leftrightarrow ?$$

c)
$$2C_2(t)\cos 250t \leftrightarrow ?$$

d)
$$u(10t-1)t \leftrightarrow ?$$

e)
$$e^{j7t}\delta(6t-1)t^3e^{j5t} \leftrightarrow ?$$

f) ?
$$\leftrightarrow \frac{4}{\pi}Sa(4\omega-2)$$

g) ?
$$\leftrightarrow \left(\pi\delta(\omega+\frac{3}{4})+\frac{1}{j(\omega+\frac{3}{4})}\right)(-\omega)e^{j1000\omega}$$

h)
$$C_{\frac{4}{3}}(t+6) \leftrightarrow ?$$

i)
$$(3\delta(t-1)-3\delta(t+1))\cdot\cos 18t \leftrightarrow ?$$

$$j$$
)? $\leftrightarrow 2\cos 500\omega$

$$k) t + t^2 + 1 \leftrightarrow ?$$

1)
$$j\frac{5}{t} \leftrightarrow ?$$

m)?
$$\leftrightarrow \frac{1}{\omega}$$

n)
$$? \leftrightarrow \frac{1}{\omega} e^{-j4\omega}$$

$$\tilde{n}$$
) $5e^{-j\frac{7}{8}(t-3)} \leftrightarrow ?$

Problema 11. Aplicando las propiedades de la transformada de Fourier, determinar $F(\omega)$ para cada una de las señales que se ilustran en la figura 6.

Figura 6. Gráficas para el problema 11

Problema 12. Aplicando el teorema de modulación encontrar la transformada de cada una de las señales moduladas que se muestran en la figura 7.

Figura 7. Gráficas para el problema 12.