Metoda wektorów podpierających

Systemy uczące się - laboratorium

Mateusz Lango

Zakład Inteligentnych Systemów Wspomagania Decyzji Wydział Informatyki i Telekomunikacji Politechnika Poznańska

"Akademia Innowacyjnych Zastosowań Technologii Cyfrowych (Al Tech)", projekt finansowany ze środków Programu Operacyjnego Polska Cyfrowa POPC.03.02.00-00-0001/20

Problem wyboru granicy

Zasada maksymalnego marginesu

Plan:

- Formalne zdefiniowanie problemu wyboru granicy jako problem optymalizacyjny
- Rozluźnienie problemu do sytuacji nieseparowalnej
- Problem dualny i trik jądrowy
- SVM dla dużych danych (oraz czym różni się SVM od regresji logistycznej)

Zadanie

Problem

Naszkicuj na wykresie hiperpłaszczyznę separującą określoną wzorem $x_1 + 2x_2 - 3 = 0$. Dorysuj również hiperpłaszczyzny określone wzorem: $x_1 + 2x_2 - 3 = 1$ oraz $x_1 + 2x_2 - 3 = -2$. Zaznacz na wykresie punkty dla których $x_1 + 2x_2 - 3 > 0$.

Zadanie

Problem

Naszkicuj poniższe obserwacje na płaszczyźnie, a następnie:

- zaznacz hiperpłaszczyznę separującą klasy o największym marginesie,
- podaj wzór na tę hiperpłaszczyznę,
- nanieś na wykres kierunek wektora wag.

x_1	<i>x</i> ₂	у
1	1	+1
3	2	+1
1	4	+1
2	4	-1
5	1	-1
6	3	-1
5	5	-1
5	4	-1

Zadanie

Problem

W zależności od liczby wymiarów d, jaka jest minimalna liczba obserwacji w zbiorze danych, aby można było określić unikalną hiperpłaszczyznę o maksymalnym marginesie?

Hiperpłaszczyzna separująca

- Jak zdefiniować hiperpłaszczyznę separującą dwie klasy?
- Jak obliczyć odległość pomiędzy hiperpłaszczyzną separującą a obserwacją?

Problem

Oblicz odległość poniższej obserwacji z klasy
$$-\frac{x_1}{2} \frac{x_2}{3} \frac{y}{-1}$$
 do hiperpłaszczyzny określonej przez $w = [-4,3]$ i $b = -2$,

• Jak obliczyć margines?

$$\max_{w,b} \min_{i} \gamma_i = \frac{|f(x_i)|}{||w||}$$

Przy ograniczeniach:

$$f(x_i) \ge 0$$
 dla każdego przykładu z $y_i = 1$

$$f(x_i) \leq 0$$
 dla każdego przykładu z $y_i = -1$

Problem

Zdefiniuj problem optymalizacyjny dla następującego zbioru uczącego: -1 2

	x_1	x_2	y
٠.	-1	7	+1
o <i>:</i>	2	3	-1
	4	2	+1

$$\max_{w,b} \min_{i} \gamma_{i} = \frac{|f(x_{i})|}{||w||}$$

Przy ograniczeniach:

$$f(x_i) \ge 0$$
 dla każdego przykładu z $y_i = 1$

$$f(x_i) \leq 0$$
 dla każdego przykładu z $y_i = -1$

Wyeliminujmy skomplikowaną funkcję celu $\min_i \gamma_i = \frac{|f(x_i)|}{||w|||}$, która wybiera najbliższy do płaszczyzny punkt poprzez zastąpienie jej (sztuczną) zmienną γ^* oznaczającą odległość do najbliższego (ew. najbliższych) przykładu od płaszczyzny.

$$\max_{w,b} \min_{i} \gamma_i = \frac{|f(x_i)|}{||w||}$$

Przy ograniczeniach:

$$f(x_i) \ge 0$$
 dla każdego przykładu z $y_i = 1$

$$f(x_i) \leq 0$$
 dla każdego przykładu z $y_i = -1$

Wyeliminujmy skomplikowaną funkcję celu $\min_i \gamma_i = \frac{|f(x_i)|}{||w|||}$, która wybiera najbliższy do płaszczyzny punkt poprzez zastąpienie jej (sztuczną) zmienną γ^* oznaczającą odległość do najbliższego (ew. najbliższych) przykładu od płaszczyzny.

$$\max_{w,b,\gamma^*} \gamma^*$$
 $f(x_i) \geq 0$ jeśli $y_i = 1$ $f(x_i) \leq 0$ jeśli $y_i = -1$ $\gamma^* \leq \gamma_i = rac{|f(x_i)|}{||w||}$ dla każdego i

$$\gamma^* \le \frac{|f(x_i)|}{||w||} \quad \Rightarrow \quad ||w||\gamma^* \le |f(x_i)|$$

Ponieważ nie ma żadnych ograniczeń¹ co do ||w|| to możemy je sobie wybrać w arbitralny sposób! W szczególności:

$$||w|| = \frac{1}{\gamma^*} \Rightarrow \gamma^* = \frac{1}{||w||}$$

Płaszczyzna $w^Tx + b = 0$ z ||w|| oraz $cw^Tx + cb = 0$ z |c|||w|| jest taka sama (jedyne co to inne ||w|| wymaga innego b)

$$\max_{w,b,\gamma^*} \gamma^*$$
 $f(x_i) \geq 0$ jeśli $y_i = 1$ $f(x_i) \leq 0$ jeśli $y_i = -1$ $\gamma^* \leq \gamma_i = rac{|f(x_i)|}{||w||}$ dla każdego i

$$\gamma^* \leq \frac{|f(x_i)|}{||w||} \quad \Rightarrow \quad ||w||\gamma^* \leq |f(x_i)|$$

Ponieważ nie ma żadnych ograniczeń¹ co do ||w|| to możemy je sobie wybrać w arbitralny sposób! W szczególności:

$$||w|| = \frac{1}{\gamma^*} \Rightarrow \gamma^* = \frac{1}{||w||}$$

Płaszczyzna $w^Tx + b = 0$ z ||w|| oraz $cw^Tx + cb = 0$ z |c|||w|| jest taka sama (jedyne co to inne ||w||

$$\max_{w,b,\gamma^*} \gamma^*$$
 $f(x_i) \geq 0$ jeśli $y_i = 1$ $f(x_i) \leq 0$ jeśli $y_i = -1$ $\gamma^* \leq \gamma_i = rac{|f(x_i)|}{||w||}$ dla każdego i

$$\gamma^* \leq \frac{|f(x_i)|}{||w||} \quad \Rightarrow \quad ||w||\gamma^* \leq |f(x_i)|$$

Ponieważ nie ma żadnych ograniczeń 1 co do ||w|| to możemy je sobie wybrać w arbitralny sposób! W szczególności:

$$||w|| = \frac{1}{\gamma^*} \Rightarrow \gamma^* = \frac{1}{||w||}$$

wymaga innego b)

¹Płaszczyzna $w^T x + b = 0$ z ||w|| oraz $cw^T x + cb = 0$ z |c|||w|| jest taka sama (jedyne co to inne ||w||

$$\max_{w,b,\gamma^*} \gamma^*$$
 $f(x_i) \geq 0$ jeśli $y_i = 1$ $f(x_i) \leq 0$ jeśli $y_i = -1$ $\gamma^* \leq \gamma_i = rac{|f(x_i)|}{||w||}$ dla każdego i

$$\gamma^* \leq \frac{|f(x_i)|}{||w||} \quad \Rightarrow \quad ||w||\gamma^* \leq |f(x_i)|$$

Ponieważ nie ma żadnych ograniczeń 1 co do ||w|| to możemy je sobie wybrać w arbitralny sposób! W szczególności:

$$||w|| = \frac{1}{\gamma^*} \Rightarrow \gamma^* = \frac{1}{||w||}$$

Płaszczyzna $w^Tx + b = 0$ z ||w|| oraz $cw^Tx + cb = 0$ z |c|||w|| jest taka sama (jedyne co to inne ||w|| wymaga innego b)

$$\max_{w,b} \frac{1}{||w||}$$

$$f(x_i) \geq 0$$
 jeśli $y_i = 1$ $f(x_i) \leq 0$ jeśli $y_i = -1$

$$rac{1}{||w||} \leq rac{|f(x_i)|}{||w||}$$
 dla każdego i

$$\max_{w,b} \frac{1}{||w||}$$

$$f(x_i) \geq 0$$
 jeśli $y_i = 1$ $f(x_i) \leq 0$ jeśli $y_i = -1$ $1 \leq |f(x_i)|$ dla każdego i

$$\max_{w,b} \frac{1}{||w||} \Rightarrow \min_{w,b} ||w||$$

$$f(x_i) \geq 0$$
 jeśli $y_i = 1$ $f(x_i) \leq 0$ jeśli $y_i = -1$

$$1 \leq |f(x_i)|$$
 dla każdego i

$$\min_{w,b} ||w||$$

$$f(x_i) \geq 0$$
 jeśli $y_i = 1$ $f(x_i) \leq 0$ jeśli $y_i = -1$

$$1 \le |f(x_i)|$$
 dla każdego i

$$\min_{w,b} ||w||$$

$$f(x_i) \ge 1$$
 jeśli $y_i = 1$ $f(x_i) \le -1$ jeśli $y_i = -1$

$$\min_{w,b} ||w||$$

Przy ograniczeniach:

$$f(x_i) \ge 1$$
 jeśli $y_i = 1$ $f(x_i) \le -1$ jeśli $y_i = -1$

Problem

Zdefiniuj problem optymalizacyjny dla następującego zbioru uczącego: 2

	x_1	x_2	y
	-1	7	+1
•	2	3	-1
	4	2	+1

Wektory podpierające

- Wektory podpierające to wektory, których odległość od indukowanej płaszczyzny jest równa marginesowi.
- Są to wektory, które "podpierają" płaszczyznę i uniemożliwiają jej zmianę położenia - od nich zależy granica decyzji.
- Można odrzucić wszystkie inne wektory, a wynik optymalizacji będzie ten sam!
- Można zmieniać położenie wszystkich inne wektorów (bez przekraczania przerywanej linii marginesu), a wynik optymalizacji będzie ten sam!
- Liczba wektorów podpierających jest miarą złożoności hipotezy.

Uogólnianie wiedzy przez SVM

Theorem (Vapnik)

Jeśli zbiór uczący zawiera n przykładów rozdzielonych hiperpłaszczyzną o maksymalnym marginesie, wtedy oczekiwane (po zbiorach uczących) prawdopodobieństwo popełnienia błędu na zbiorze testowym jest ograniczone poprzez:

$$\mathbb{E} P(\hat{y} \neq y) \leq \mathbb{E} \left[\frac{m}{n} \right]$$

gdzie m to liczba wektorów podpierających.

Kilka analogicznych twierdzeń m.in. $\mathbb{E} P(\hat{y} \neq y) \leq \mathbb{E} \left[\frac{d}{n} \right]$ (d liczba wymiarów), które klasycznie były udowadniane dla innych metod. Tutaj: uogólnianie NIE zależy od liczby wymiarów (klątwa wymiarowości!).

W praktyce często liczba wektorów podpierających jest duża... ;(

Co jeśli zbiór nie jest liniowo separowalny?

Co jeśli zbiór nie jest liniowo separowalny?

Dwa możliwe rozwiązania:

- Zmodyfikować definicję SVM, tak aby sobie z tym radziła
- Rozszerzyć przestrzeń cech, tak aby przestrzeń stała się liniowo separowalna

Soft-SVM – pomysł

- Pomysł: pozwólmy (niektórym) przykładom uczącym być w środku marginesu albo nawet po złej stronie hiperpłaszczyzny separującej
- Dlaczego?
 - Zbiór może być nieliniowy
 - Nawet jak jest liniowo separowalny: poprzednia definicja SVM gwarantuje nam 100% trafność! Jeden przykład z błędną etykietą mocno zmienia wynik!

Jeśli jeden przykład mocno zmienia wynik – jesteśmy podatni na przeuczenie!

$$\min_{w,b} ||w||$$

$$f(x_i) \geq 1$$
 jeśli $y_i = 1$ $f(x_i) \leq -1$ jeśli $y_i = -1$

$$\min_{w,b} ||w||$$

$$f(x_i) \geq 1 - \xi_i$$
 jeśli $y_i = 1$ $f(x_i) \leq -1 + \xi_i$ jeśli $y_i = -1$ $\xi_i \geq 0$

$$\min_{w,b,\xi} ||w|| + C \sum_{i=1}^n \xi_i$$

$$f(x_i) \geq 1 - \xi_i$$
 jeśli $y_i = 1$ $f(x_i) \leq -1 + \xi_i$ jeśli $y_i = -1$ $\xi_i \geq 0$

$$\min_{w,b,\xi}||w||+C\sum_{i=1}^n\xi_i$$

Przy ograniczeniach:

$$f(x_i) \geq 1 - \xi_i$$
 jeśli $y_i = 1$ $f(x_i) \leq -1 + \xi_i$ jeśli $y_i = -1$ $\xi_i > 0$

Funkcja celu przyjmuje znaną w uczeniu maszynowym postać:

maksymalizuj prostotę modelu + minimalizuj błąd

Błąd zawiasowy

Przekształcając wzór dalej otrzymujemy:

$$\min_{w,b} \sum_{i=1}^{n} max(0, 1 - y_i g(x_i)) \underbrace{+\lambda||w||}_{\text{regularyzacja}}$$

przy czym $y_i \in \{-1, 1\}$.

- Błąd tej postaci nazywamy błędem zawiasowym (ang. hinge loss).
- Zauważ, że formulacja jest ogólna i za g(x) można wstawić inny model wiedzy niż wyrażenie liniowe, uzyskując inny algorytm wykorzystujący tę funkcję błędu.

Uwaga terminologiczna

Wektory wspierające nie leżą już tylko "na marginesie" ale także "w środku marginesu" i po błędnej stronie granicy decyzji – wszystkie te wektory wpływają na wynik.

W niektórych pracach rozróżnia się pomiędzy:

- klasyfikatorem maksymalnego marginesu (ang. maximal margin classifier, MMC)
 ⇒ nasza pierwsza formulacja problemu
- klasyfikatorem wektorów wspierających (ang. support vector classifier, SVC)
 wersja dla problemów nieliniowo separowalnych, "soft-SVM"
- maszyną wektorów wspierających (ang. support vector machine, SVM)
 - ⇒ wersja z jądrami przyszły tydzień ;)

Widzimy się za tydzień!

Rzeczpospolita Polska **Unia Europejska**Europejski Fundusz
Rozwoju Regionalnego

