1- Calculate the voltage gain, input resistance and output resistance of the following circuit.

2- In the circuit shown below, determine the voltage gain.

3- The following structure is known to be the "Darlington pair" configuration and is used in order to increase the β of a single transistor. This configuration can be modeled as a single NPN transistor. Determine its equivalent r_{π} , g_m and β .

4- The following configuration is called the "Sziklai Pair" or the "Complementary Darlington pair". This configuration can be used to construct a PNP transistor with a large β . For the following circuit, determine the voltage gain and the input resistance.

5- Determine to voltage gain and the output resistance of the following structure.

- 6- a) Specify R_1 and R_2 so that the bias current of M1 will be equal to 1 mA.
 - b) Calculate the voltage gain and the output resistance.

7- Calculate the voltage gain of the structure depicted in the following figure. The transistors are in the saturation region.

8- Calculate the voltage gain in the following circuit.

Good Luck- M.R. Ashraf