Conjectura de Goldbach: histórico e programação

Fillipe Rafael Bianek Pierin

12 de Dezembro de 2016

1 O que é uma conjectura?

Uma conjectura é uma proposição, que muitos matemáticos acham que ser verdadeira, mas que não foi provada. Porém, para que uma conjectura vire um teorema é preciso que alguém encontre uma prova que mostre a validade para um número infinito de valores.

2 Conjectura de Goldbach

2.1 Fato Histórico - Surgimento da Conjectura

Figura 1 – Matemático Christian Goldbach

Em 7 de junho de 1742, Christian Goldbach (1690-1754), em carta enviada a Leonhard Euler, levantou a hipótese de que todo número inteiro maior que 5 pode ser escrito como a soma de três números primos. Porém, Euler achando pouco, redefiniu-o ao que conhecemos como a conjectura de Goldbach. Goldbach também a conjectura de Goldbach fraca. Ambas foram formuladas em correspondência entre Goldbach e Euler.

A conjectura fraca de Goldbach recebe esse nome, pois se a conjectura forte de Goldbach fosse provada, consequentemente a fraca ficaria demonstrada. Por causa, que se cada número par maior do que 2 é a soma de dois primos, adicionando 3 (um primo) a ele obtém-se um número ímpar que pode ser decomposto na soma de três primos. Portanto, prova da conjectura forte de Goldbach implica na prova conjectura fraca de Goldbach, logo se a conjectura forte vale implica que a conjectura fraca vale.

2.2 As conjecturas

Conjectura 1 (forte de Goldbach ou de Goldbach) Todo número par n > 4 é soma de dois primos ímpares.

Conjectura 2 (fraca de Goldbach) Todo número impar maior ou igual a 7 é soma de três números primos impares.

2.3 Demonstração

Muitos matemáticos acham que ela deve ser verdadeira, mas não conseguiram provar. Muitos foram os avanços significativos na resolução do prolema.

Em 1923 Godfrey Harold Hardy e John Edensor Littlewood, usando a hipótese generalizada de Riemann, mostraram que a conjectura fraca de Goldbach é verdadeira para todos os números ímpares suficientemente grandes. Em 1937 o matemático Ivan Matvéyevich Vinogradov, eliminou a hipótese de generalizada de Riemann e mostrou diretamente que todos os números impares suficientemente grandes podem ser expressos como soma de três primos, porém não conseguiu determinar o quanto significava "suficientemente grande". Um dos alunos de Vinogradov, K. Borodzin, demonsrou que 314.348.907 é um cota superior para o conceito de "grande o bastante". Sessenta e cinco anos depois, em 2002, Liu Ming-Chit e Wang Tian-Ze conseguiram abaixar a cota para $n > e^{3100} \approx 2 \times 10^{1346}$.

Apesar de ainda não ser demonstrada, muitos matemáticos já verificaram vários números via computador, confirmando a conjectura. Em 1938, N. Pipping testou todos os números até 10^5 e Tomás Oliveira e Silva já testou todos os números até $4*10^{17}$. Computacionalmente é inviável testar a conjectura usando a cota superior de Borodzin, porque representa um número muito grande, mas precisamente com 6.846.169 dígitos, que depois Liu e Wang baixaram para 26.643 dígitos. Pesquisa mostram resultados com até 10^{18} dígitos.

Em 1997, Deshouillers, Effinger, Te Riele e Zinoviev mostraram que a hipótese generalizada de Riemann implica a conjectura fraca de Goldbach para todos os números. Este resultado combinou uma afirmação válida para números maiores que 10^{20} com uma extensiva pesquisa computacional de casos pequenos.

Também assumindo a hipótese de Riemman, Leszek Kaniecki mostrou, que todo número ímpar é a soma de no máximo cinco primos.

O melhor resultado é de Olivier Ramaré em 1995, a
onde ele mostra que todo número par é a soma de até 6 números primos.

O matemática peruano Harald Andrés Helfgott, em 2012/2013, nos seus trabalhos Major Arcs for Goldbach's theorem e The ternary Goldbach conjecture is true, alega ter provado incondicionalmente a conjectura fraca de Goldbach.

3 Programação da Conjectura de Goldbach

As conjecturas de Goldbach forte e fraca foram programadas na linguagem Julia, usando o a versão 0.5.0 do programa.

Foram programas duas funções a parte, que foram necessárias na programação das conjecturas de Goldbach, em que uma que verifica se um número é par e outra que mostra se o número é primo.

Numa segunda parte, se programou as conjecturas forte e fraca de Goldbach. A conjectura forte de Goldbach foi programada de duas formas e a conjectura fraca de Goldbach foi programa de uma forma. A forma 1 programada para a conjectura forte usa loop dentro da programação com "for" e a forma 2 primeiramente criamos uma matriz com todas as formas possíveis da soma do número em dois primos eliminado as formas de soma repetidas para depois verificar quais destas opções se adéqua a conjectura.

Dividiu-se a programação da conjectura em várias partes, para ajudar a entender e compreender melhor como foi programado a conjectura do começo ao fim.

4 Resultados

Para cada uma das conjecturas programadas, verificamos para alguns números o tempo que o programa leva para calcular todas as possíveis somas usando a função @time do Julia e o espaço ocupado para calcular e armazenar todas as opções de somas em cada conjectura. Veja nas tabelas 1, 2 os resultados para a conjectura forte de Goldbach e na tabela 3, 4 os resultados para a conjectura fraca de Goldbach.

Tabela 1 – Resultados da conjectura de forte Goldbach com relação ao tempo para calcular todas as opções de somas.

Número	Quantidade de Opções de Soma	Tempo para Calcular Forma 1	Tempo para Calcular Forma 2
12	01	0.115726s	5.667707s
50	04	0.005239s	0.001712s
10^{2}	06	0.009249s	0.068052s
$9*10^{2}$	48	0.074664s	0.227039s
10^{3}	28	0.221263s	$0.013267\mathrm{s}$
10^{4}	127	0.040307 s	0.166135s
10^{5}	810	1.260642s	28.382727s
10^{6}	5402	87.334461s	228.171405s

Tabela 2 – Resultados da conjectura de forte Goldbach com relação ao espaço em HD ocupada para calcular todas opções de soma.

Número	Tamanho do Espaço	Tamanho do Espaço
Numero	Ocupado - Forma 1	Ocupado - Forma 2
12	414.323 KB	8.924 KB
50	$2.098~\mathrm{KB}$	$14.809~\mathrm{KB}$
10^{2}	$3.160~\mathrm{KB}$	$21.512~\mathrm{KB}$
$9*10^{2}$	23.809 KB	$646.402~\mathrm{KB}$
10^{3}	$19.684~\mathrm{KB}$	184.059 KB
10^{4}	$152.504~\mathrm{KB}$	2.087 MB
10^{5}	$1.363~\mathrm{MB}$	114.306 MB
10^{6}	12.901 MB	$3.550~\mathrm{GB}$

Tabela 3 – Resultados da conjectura de fraca Goldbach com relação ao tempo para calcular todas as opções de somas.

Número	Quantidade de Opções de Soma	Tempo para Calcular
11	2	0.001298s
53	16	0.038308s
107	43	0.046772s
563	484	1.126491s
701	667	1.980703s
917	988	3.743845s
1001	1095	4.748699s
10001	42615	6164.623392s

Tabela 4 – Resultados da conjectura de fraca Goldbach com relação ao espaço em HD ocupada para calcular todas opções de soma.

Número	Tamanho do Espaço Ocupado
11	13.395 KB
53	219.930 MB
107	$1.374~\mathrm{MB}$
563	85.699 MB
701	257.458 MB
917	445.718 MB
1001	555.736 MB
10001	594.356 GB

5 Conclusão

Com a programação feita em Julia, consegui-se calcular a conjectura forte de Goldbach para números com até 10^6 dígitos e para a conjectura fraca de Goldbach

com números de até 10^4 dígitos. Comparado ao que já foi calculado por matemáticos computacionalmente parece pouco, pois já calcularam para todos os números com até $4*10^{17}$. Isso acontece porque a programação feita usa muito espaço de memória para calcular e exibir as opções de soma de primos em cada conjectura. Consequentemente deixa devagar o computador levando muito tempo para o calculo, podendo demorar até horas.

Portanto, com a programação feita, que pode ser melhorada, verificou-se as conjecturas fraca e forte de Goldbach para alguns números, mas não para grandes números (> que 10^6).

Referências

AMERICAN, S. Goldbach Variations. 2013. Disponível em: https://blogs.scientificamerican.com/roots-of-unity/goldbach-variations/.

MATEMATICA, L. por. A conjectura fraca de Goldbach. 2014. Disponível em: http://viciadosemmatematicas.blogspot.com.br/2014/09/a-conjectura-fraca-de-goldbach.html>.

UFC, S. Alguns Problemas Famosos de Matemática - A Conjectura de Goldbach. 2016. Disponível em: http://www.seara.ufc.br/especiais/matematica/problemasfamosos/matematica1.htm.

UFF. A Conjectura de Goldbach - Matemática: números e operações. 2009. Disponível em: http://www.uff.br/sintoniamatematica/grandestemaseproblemas-html/audio-goldbach-br.html.