Теоретико-категорная семантика модальной теории типов, основанной на интуиционистской эпистемической логике

1 Модальное λ -исчисление, основанное на исчислении IEL $^-$

Определим натуральное исчисление для IEL⁻ :

Определение 1. Натуральное исчисление NIEL⁻ для интуиционистской эпистемической логики IEL⁻ - это расширение натурального исчисления для интуиционистской логики высказываний с добавлением следующих правил вывода для модальности:

$$\frac{\Gamma \vdash A}{\Gamma \vdash \mathbf{K}A} \mathbf{K}_{I} \qquad \frac{\Gamma \vdash \mathbf{K}A_{1}, \dots, \Gamma \vdash \mathbf{K}A_{n} \qquad A_{1}, \dots, A_{n} \vdash B}{\Gamma \vdash \mathbf{K}B}$$

Первое правило позволяет выводить ко-рефлексию. Второе модальное правило – это аналог для правила \square_I в натуральном исчислении для конструктивной K (see [?]) без \lozenge .

Мы будем обозначать $\Gamma \vdash \mathbf{K}A_1, \dots, \Gamma \vdash \mathbf{K}A_n$ и $A_1, \dots, A_n \vdash B$ соответственно как $\Gamma \vdash \mathbf{K}\vec{A}$ и $\vec{A} \vdash B$ для краткости.

Лемма 1.
$$\Gamma \vdash_{NIEL^{-}} A \Rightarrow IEL^{-} \vdash \bigwedge \Gamma \rightarrow A$$
.

Доказательство. Индукция по построению вывода. Рассмотрим модальные случаи.

- 2) Если $\Gamma \vdash_{\text{NIEL}^-} \mathbf{K} \vec{A}$ и $\vec{A} \vdash B$, то $\text{IEL}^- \vdash \bigwedge \Gamma \to \mathbf{K} B$.

(1)
$$\bigwedge \Gamma \to \bigwedge_{i=1}^{n} \mathbf{K} A_{i}$$
 предположение индукции
(2) $\bigwedge_{i=1}^{n} \mathbf{K} A_{i} \to \mathbf{K} \bigwedge_{i=1}^{n} A_{i}$ теорема IEL⁻
(3) $\bigwedge \Gamma \to \mathbf{K} \bigwedge_{i=1}^{n} A_{i}$ по (1), (2) и правилу силлогизма
(4) $\bigwedge_{i=1}^{n} A_{i} \to B$ предположение индукции
(5) $(\bigwedge_{i=1}^{n} A_{i} \to B) \to \mathbf{K} (\bigwedge_{i=1}^{n} A_{i} \to B)$ ко-рефлексия
(6) $\mathbf{K} (\bigwedge_{i=1}^{n} A_{i} \to B)$ из (4), (5) и MP
(7) $\mathbf{K} \bigwedge_{i=1}^{n} A_{i} \to \mathbf{K} B$ по (6) и по нормальности
(8) $\bigwedge \Gamma \to \mathbf{K} B$ по (3), (7) и правилу силлогизма

Лемма 2. $Ec_{A}u\ IEL^{-} \vdash A$, mo $NIEL^{-} \vdash A$.

Доказательство. Построение выводов для модальных аксиом в NIEL $^-$. Мы рассмотрим эти выводы ниже с использованием термов.

Далее мы построим типизированное λ -исчисление по фрагменту NIEL $^-$ с правилами для импликации, конъюнкции и модальности. Данный фрагмент экивалентен IEL $^-$ без аксиом для отрицания и дизъюнкции, что элементарно проверяется аналогично.

Определим термы и типы:

Определение 2. Множество термов:

 Π усть $\mathbb V$ счетное множество переменных. Термы $\Lambda_{\mathbf K}$ порождается следующей грамматикой:

$$\begin{array}{c} \Lambda_{\mathbf{K}} ::= \mathbb{V} \mid (\lambda \mathbb{V}.\Lambda_{\mathbf{K}}) \mid (\Lambda_{\mathbf{K}}\Lambda_{\mathbf{K}}) \mid (\Lambda_{\mathbf{K}},\Lambda_{\mathbf{K}}) \mid (\pi_{1}\Lambda_{\mathbf{K}}) \mid (\pi_{2}\Lambda_{\mathbf{K}}) \mid \\ (\mathbf{pure} \ \Lambda_{\mathbf{K}}) \mid (\mathbf{let} \ \mathbf{pure} \ \mathbb{V}^{*} = \Lambda_{\mathbf{K}}^{*} \ \mathbf{in} \ \Lambda_{\mathbf{K}}) \end{array}$$

Где \mathbb{V}^* и $\Lambda_{\mathbf{K}}^*$ обозначают множество всех конечных последовательностей переменных $\bigcup\limits_{i=0}^{\infty}\mathbb{V}^i$ и множество всех конечных последовательностей термов

 $\bigcup\limits_{i=0}^{\infty} \Lambda_{\mathbf{K}}{}^{i}.$ Последовательность переменных \vec{x} и последовательность термов

 \vec{M} в терме вида **let pure** должны иметь одинаковую длину. Иначе терм не будет правильно построенным.

Определение 3. Множество типов:

Пусть \mathbb{T} – это счетное множество атормарных типов. Типы $\mathbb{T}_{\mathbf{K}}$ с аппликативным функтором \mathbf{K} порождаются следующей грамматикой:

$$\mathbb{T}_{\mathbf{K}} ::= \mathbb{T} \mid (\mathbb{T}_{\mathbf{K}} \to \mathbb{T}_{\mathbf{K}}) \mid (\mathbb{T}_{\mathbf{K}} \times \mathbb{T}_{\mathbf{K}}) \mid (\mathbf{K} \mathbb{T}_{\mathbf{K}})$$
 (1)

Контекст, его домен и кодомен определены стандартно [?][?]. Наша система состоит из следующих правил типизации в стиле Карри:

Определение 4. Модальное λ -исчисление, основанное на исчислении IEL^- :

$$\overline{\Gamma, x : A \vdash x : A}$$
 ax

$$\frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x. M: A \to B} \to_{i} \qquad \frac{\Gamma \vdash M: A \to B \qquad \Gamma \vdash N: A}{\Gamma \vdash MN: B} \to_{e}$$

$$\frac{\Gamma \vdash M: A \qquad \Gamma \vdash N: B}{\Gamma \vdash \langle M, N \rangle : A \times B} \times_{i} \qquad \frac{\Gamma \vdash M: A_{1} \times A_{2}}{\Gamma \vdash \pi_{i} M: A_{i}} \times_{e}, \ i \in \{1, 2\}$$

$$\frac{\Gamma \vdash M: A}{\Gamma \vdash \mathbf{pure} \ M: \mathbf{K}A} \mathbf{K}_{I} \qquad \frac{\Gamma \vdash M: \mathbf{K}\vec{A} \qquad \vec{x}: \vec{A} \vdash N: B}{\Gamma \vdash \mathbf{let} \ \mathbf{pure} \ \vec{x} = \vec{M} \ \mathbf{in} \ N: \mathbf{K}B} \ let_{\mathbf{K}}$$

Правило типизации \mathbf{K}_I аналогично правилу \bigcirc_I в монадическом метаязыке [?].

 \mathbf{K}_I позволяет вкладывать объект типа A в текущиц вычислительный контекст. \mathbf{K}_I соответствует методу **pure** в классе *Applicative*. Играет ту же роль, что и метод **return** в монадах.

Правило типизации $\operatorname{let}_{\mathbf{K}}$ аналогично правилу \square -rule в модальном λ -исчислении для интуционистской минимальной нормальной модальной логики \mathbf{IK} , описанная здесь [?].

 $\Gamma \vdash \vec{M} : \mathbf{K}\vec{A}$ – это синтаксический сахар для $\Gamma \vdash M_1 : \mathbf{K}A_1, \ldots, \Gamma \vdash M_n : \mathbf{K}A_n$ и $\vec{x} : \vec{A} \vdash N : B$ – это краткая форма для $x_1 : A_1, \ldots, x_n : A_n \vdash N : B$. let pure $\vec{x} = \vec{M}$ in N – это мгновенное локальное связывание в терме N. Мы будем использовать такую краткую форму вместо let pure $x_1, \ldots, x_n = M_1, \ldots, M_n$ in N.

Примеры замкнутых термов:

$$\frac{x:A \vdash x:A}{x:A \vdash \mathbf{pure} \ x:\mathbf{K}A}$$
$$\vdash (\lambda x.\mathbf{pure} \ x):A \to \mathbf{K}A$$

$$\underbrace{ \begin{array}{c} f: \mathbf{K}(A \to B) \vdash f: \mathbf{K}(A \to B) & x: \mathbf{K}A \vdash x: \mathbf{K}A & \underbrace{ \begin{array}{c} g: A \to B \vdash g: A \to B \\ g: A \to B, y: A \vdash y: A \end{array} }_{} \rightarrow_{e} \\ \underbrace{ \begin{array}{c} f: \mathbf{K}(A \to B), x: \mathbf{K}A \vdash \mathbf{let \ pure} \ g, y = f, x \ \mathbf{in} \ gy: \mathbf{K}B \\ \hline f: \mathbf{K}(A \to B) \vdash \lambda x. \mathbf{let \ pure} \ g, y = f, x \ \mathbf{in} \ gy: \mathbf{K}A \to \mathbf{K}B \\ \hline \vdash \lambda f. \lambda x. \mathbf{let \ pure} \ g, y = f, x \ \mathbf{in} \ gy: \mathbf{K}A \to \mathbf{K}B \end{array} }_{}$$

Определим свободные переменные, подставновку, β -редукцию и η -редукцию. Многошаговая β -редукция и $\beta\eta$ -эквивалентность определены стандартно:

Определение 5. Множество свободных переменных FV(M) для произвольного терма M:

- 1) $FV(x) = \{x\};$
- 2) $FV(\lambda x.M) = FV(M) \setminus \{x\}$:

```
3) FV(MN) = FV(M) \cup FV(N);
```

4)
$$FV(\langle M, N \rangle) = FV(M) \cup FV(N);$$

5)
$$FV(\pi_i M) \subseteq FV(M), i \in \{1, 2\};$$

6)
$$FV(pure\ M) = FV(M);$$

7)
$$FV($$
let pure $\vec{x} = \vec{M}$ in $N) = \bigcup_{i=1}^{n} FV(M)$, where $n = |\vec{M}|$.

Определение 6. Подстановка:

1)
$$x[x := N] = N, x[y := N] = x;$$

2)
$$(MN)[x := N] = M[x := N]N[x := N];$$

3)
$$(\lambda x.M)[x := N] = \lambda x.M[y := N], y \in FV(M);$$

4)
$$(M, N)[x := P] = (M[x := P], N[x := P]);$$

5)
$$(\pi_i M)[x := P] = \pi_i (M[x := P]), i \in \{1, 2\};$$

6)
$$(\mathbf{pure} M)[x := P] = \mathbf{pure} (M[x := P]);$$

7) (let pure
$$\vec{x} = \vec{M}$$
 in N)[$y := P$] = let pure $\vec{x} = (\vec{M}[y := P])$ in N .

Определение 7. Подстановка типа

Подстанока типа C для типовой переменной B в типе A определена индуктивно:

1)
$$B[B := C] = B \ u \ D[B := C] = D, \ if \ B \neq D;$$

2)
$$(A_1 \alpha A_2)[B := C] = (A_1[B := C])\alpha(A_2[B := C]), \ \epsilon \partial e \ \alpha \in \{\to, \times\};$$

3)
$$(KA)[B := C] = K(A[B := C]);$$

4) Пусть
$$\Gamma$$
 – контекст, тогда $\Gamma[B:=C]=\{x: (A[B:=C]) \mid x:A\in \Gamma\}.$

Определение 8. Правила β -редукции и η -редукции:

1)
$$(\lambda x.M)N \rightarrow_{\beta} M[x := N];$$

2)
$$\pi_1\langle M, N \rangle \to_{\beta} M$$
;

3)
$$\pi_2\langle M, N \rangle \to_{\beta} N$$
;

let pure
$$\vec{x}, y, \vec{z} = \vec{M}$$
, let pure $\vec{w} = \vec{N}$ in Q, \vec{P} in $R \rightarrow_{\beta}$ let pure $\vec{x}, \vec{w}, \vec{z} = \vec{M}, \vec{N}, \vec{P}$ in $R[y := Q]$

5) let pure
$$\vec{x} = \text{pure } \vec{M} \text{ in } N \rightarrow_{\beta} \text{pure } N[\vec{x} := \vec{M}]$$

- 6) let pure $\underline{} = \underline{} \text{ in } M \rightarrow_{\beta} \text{ pure } M$, where $\underline{} \text{ is an empty sequence of } terms.$
 - 7) $\lambda x.fx \rightarrow_{\eta} f;$

8)
$$\langle \pi_1 P, \pi_2 P \rangle \rightarrow_{\eta} P;$$

9) let pure
$$x = M$$
 in $x \rightarrow_n M$;

По умолчанию мы используем стратегию вычисления с вызовом по имени.

Докажем стандартные леммы о контекстах 1 :

Лемма 3. Инверсия отношения типизации \mathbf{K}_I .

$$\Pi y cm b \Gamma \vdash \mathbf{pure} M : \mathbf{K} A, mor \partial a \Gamma \vdash M : A;$$

Доказательство. Очевидно

Лемма 4. Базовые леммы.

• $Ecnu \Gamma \vdash M : A \ u \ \Gamma \subseteq \Delta, \ mor \partial a \ \Delta \vdash M : A;$

 $^{^{-1}}$ Мы не будем рассматривать случаи для стандартных связок, так как они уже доказаны для просто типизированного λ -исчисления [?] [?]. Мы будем рассматривать только модальные случаи

- $Ecnu \Gamma \vdash M : A, mor \partial a \Delta \vdash M : A, r \partial e \Delta = \{x_i : A_i \mid (x_i : A_i) \in \Gamma \& x_i \in FV(M)\}$
- $Ecnu \ \Gamma, x : A \vdash M : B \ u \ \Gamma \vdash N : A, \ r\partial e \ \Gamma \vdash M[x := N] : B.$
- Если $\Gamma \vdash M : A$, тогда $\Gamma[B := C] \vdash M : (A[B := C])$.

Доказательство.

1) Пусть вывод заканчивается следующим правилом:

$$\frac{\Gamma \vdash \vec{M} : \mathbf{K}\vec{A} \qquad \vec{x} : \vec{A} \vdash N : B}{\Gamma \vdash \mathbf{let} \ \mathbf{pure} \ \vec{x} = \vec{M} \ \mathbf{in} \ N : \mathbf{K}B} \ \mathbf{let}_{\mathbf{K}}$$

По предположению индукции $\Delta \vdash \vec{M}: \mathbf{K}\vec{A}$, тогда $\Delta \vdash \mathbf{let}$ **pure** $\vec{x} = \vec{M}$ **in** $N: \mathbf{K}B$.

Случаи 2)-4) рассматриваются аналогично.

Теорема 1. Редукция субъекта

Eсли $\Gamma \vdash M : A$ и $M \twoheadrightarrow_{\beta\eta} N$, тогда $\Gamma \vdash N : A$

Доказательство. Индукция по выводу $\Gamma \vdash M : A$ и по порождению $\rightarrow_{\beta\eta}$. Случаи с функцией и парами рассмотрены здесь [?] [?].

- 1) Если $\Gamma \vdash \text{let pure } \vec{x}, y, \vec{z} = \vec{M}, \text{let pure } \vec{w} = \vec{N} \text{ in } Q, \vec{P} \text{ in } R : \mathbf{K}B,$ тогда $\Gamma \vdash \text{let pure } \vec{x}, \vec{w}, \vec{z} = \vec{M}, \vec{N}, \vec{P} \text{ in } R[y := Q] : \mathbf{K}B$ по правилу 4).
 - 2) Если $\Gamma \vdash \mathbf{let} \ \mathbf{pure} \ x = M \ \mathbf{in} \ x : \mathbf{K} A$, тогда $\Gamma \vdash M : \mathbf{K} A$ по правилу 9). Рассмотрено здесь [?].
 - 3) Пусть вывод заканчивается применением следующего правила

$$\frac{\Gamma \vdash \mathbf{pure} \, \vec{M} : \mathbf{K} \vec{A} \qquad \vec{x} : \vec{A} \vdash N : B}{\Gamma \vdash \mathbf{let} \, \mathbf{pure} \, \vec{x} = \mathbf{pure} \, \vec{M} \, \mathbf{in} \, N : \mathbf{K} B}$$

Тогда $\Gamma \vdash \vec{M} : \vec{A}$ по инверсии отношения типизации для \mathbf{K}_I и $\Gamma \vdash N[\vec{x} := \vec{M}] : B$ по лемме 4, часть 3.

Тогда мы можем преобразовать данный вывод в следующий:

$$\frac{\Gamma \vdash N[\vec{x} := \vec{M}] : B}{\Gamma \vdash \mathbf{pure} \, N[\vec{x} := \vec{M}] : \mathbf{K}B} \, \mathbf{K}_I$$

4) Пусть вывод заканчивается применением правила $let_{\mathbf{K}}$ для типового объявления, выводимого из пустого контекста:

Тогда, если $\vdash M : A$, тогда \vdash **pure** $M : \mathbf{K}A$.

Данное рассуждение действует также и в обратную сторону.

Теорема 2.

 $\twoheadrightarrow_{\beta}$ сильно нормализуемо;

Доказательство.

Мы модифицируем технику Тэйта с логическими отношениями для модальностей [?] [?].

Определение 9. Множества строго вычислимых термов:

- $SC_A = \{M : A \mid M \text{ сильно нормализуем } \} \text{ for } A \in \mathbb{T};$
- $SC_{A \to B} = \{M : A \to B \mid \forall N \in SC_A, MN \in SC_B\}, \partial \mathcal{A}, B \in \mathbb{T}_{\mathbf{K}} \ u$ $A, B \in \mathbb{T}_{\mathbf{K}}$;
- $SC_{\mathbf{K}A} = \{M : \mathbf{K}A \mid M \text{ сильно нормализуем } \}$ для $A \in \mathbb{T}$;
- $\forall i \in \{1, ..., n\}, \prod_{i=1}^{n} SC_{\mathbf{K}A_i} = \{\vec{M} = (M_1, ..., M_n) \mid \forall N \in SC_B, FV(N) = \{\vec{M} \in \{1, ..., n\}, \vec{M} \in \{1, ..., n\}\}$ $\{x_1,\ldots,x_n\}\ \&\ \forall i,x_i\in SC_{A_i}\Rightarrow \mathbf{let}\ \mathbf{pure}\ \vec{x}=\vec{M}\ \mathbf{in}\ N\in SC_{KB}\}$

Определение 10. Терм M называется нейтральным, если он имеет одну из следующих норм:

- *MN*;
- \bullet Если M нейтральный, то pure M нейтральный;
- $Ecnu \ \vec{M}$ $nocnedoвamenьность нейтральных термов <math>u \ N$ нейтрален, mo let pure $\vec{x} = \vec{M}$ in N нейтрален. \vec{x} – это последовательность свободных переменных терма N.

Лемма 5.

- Если $M \in SC_A$ и $A \in \mathbb{T}_{\mathbf{K}}$, то M сильно нормализуем;
- $Ecnu\ M \in SC_A$, $A \in \mathbb{T}_K\ u\ M \to_{\beta} N$, $mor\partial a\ N \in SC_A$:
- Пусть N нейтрален $u N \in SC_A$. Тогда, если $M \to_{\beta} N$, то $M \in SC_A$.

Доказательство.

Индукция по структуре типа A.

- 1) $A \equiv \mathbf{K}A$, где $A \in \mathbb{T}$. і-іі-ііі) Очевидно.

2)

і) Предположим $\vec{M}=(M_1,\ldots,M_n)\in\prod_{i=1}^nSC_{\mathbf{K}A_i}.$ Пусть $N\in SC_B$, такой что $FV(N)=\{x_1,\ldots,x_n\}$ и $\forall i,x_i\in SC_{A_i}.$

Тогда let pure $\vec{x} = \vec{M}$ in $N \in SC_{KB}$ по предположению индукции.

Тогда \vec{M} сильно нормализуем, откуда let pure $\vec{x} = \vec{M}$ in N сильно нормализуем.

іі) Пусть
$$\vec{M_1} \in \prod_{i=1}^n SC_{\mathbf{K}A_i}$$
 и $\vec{M_1} \to_{\beta} \vec{M_2}$. Пусть $N \in SC_B$, такой что, $FV(N) = \{x_1, \dots, x_n\}$ и $\forall i, x_i \in SC_{A_i}$.

Тогда let pure $\vec{x} = \vec{M_1}$ in $N \to_{\beta}$ let pure $\vec{x} = \vec{M_2}$ in N

и let pure $\vec{x} = \vec{M_2}$ in $N \in SC_{\mathbf{K}B}$ по предположению индукции.

Тогда
$$\vec{M_2} \in \prod_{i=1}^n SC_{\mathbf{K}A_i}$$
.

і
іі) Пусть M_2 нейтрален, $M_2\in\prod_{i=1}^nSC_{\mathbf{K}A_i}$ и $M_1\to_\beta M_2$.
 Пусть $N\in SC_B$, такой, что $FV(N)=\{x_1,\ldots,x_n\}$ и $\forall i,x_i\in SC_{A_i}$.

Tora let pure $\vec{x} = \vec{M_2}$ in $N \in SC_{\mathbf{K}B}$.

Откуда let pure $\vec{x} = \vec{M_1}$ in $N \rightarrow_{\beta}$ let pure $\vec{x} = \vec{M_2}$ in $\in N$.

Следовательно, let pure $\vec{x} = \vec{M_1}$ in $N \in SC_{\mathbf{K}B}$ по предположению индукции, тогда $\vec{M}_1 \in \prod\limits_{i=1}^n SC_{\mathbf{K}A_i}.$

Лемма 6.

Eсли $M \in SC_A$, u pure $M \in SC_{\mathbf{K}A}$

Доказательство. Индукция по структуре M.

Лемма 7.

Пусть $x_1:A_1,\ldots,x_n:A_n\vdash M:A$ и для любых $i,M_i\in SC_{A_i},$ тогда $M[x_1 := M_1, \dots, x_n := M_n] \in SC_A.$

Доказательство.

Индукция по построению $x_1: A_1, \ldots, x_n: A_n \vdash M: A$.

1) Пусть вывод заканчивается применением правила ${\bf K}_I$:

$$\frac{x_1:A_1,\ldots,x_n:A_n\vdash M:A}{x_1:A_1,\ldots,x_n:A_n\vdash \mathbf{pure}\,M:\mathbf{K}A}$$

По предположению индукции $M[x_1 := M_1, \dots, x_n := M_n] \in SC_A$, тогда **pure** $M[x_1 := M_1, \dots, x_n := M_n] \in SC_{\mathbf{K}A}$.

2) Пусть вывод заканчивается применением правила ${\rm let}_{\mathbf K}.$

$$\frac{x_1: A_1, \dots, x_n: A_n \vdash \vec{M}': \mathbf{K}\vec{A} \qquad \vec{x}: \vec{A} \vdash N: B}{x_1: A_1, \dots, x_n: A_n \vdash \mathbf{let pure } \vec{x} = \vec{M}' \mathbf{in } N: \mathbf{K}B}$$

По предположению индукции $i \in \{1, ..., \operatorname{length}(\vec{M'})\}, M'_i[x_1 := M_1, ..., x_n :=$ M_n] $\in SC_{\mathbf{K}A_i}$.

Тогда let pure $\vec{x} = \vec{M}'[x_1 := M_1, \dots, x_n := M_n]$ in $N \in SC_{\mathbf{K}B}$, иначе мы имели бесконечный путь редукций в терме $\vec{M}'[x_1 := M_1, \dots, x_n := M_n]$. \square

Следствие 1. Все термы строго вычислимы, следовательно, сильно нормализуемы.

Теорема 3. Свойство Черча-Россера

 $\twoheadrightarrow_{\beta}$ конфлюентно.

Доказательство. Мы модифицируем и применим технику Барендрегта с подчеркиванием термов. Для простоты мы будем работать с грамматикой подчеркнутых термов без конструктов и элиминаторов для пар.

Определение 11. Множество подчеркнутых термов.

- $x \in \mathbb{V} \Rightarrow x \in \Lambda$;
- $M \in \Lambda \Rightarrow (\lambda x.M) \in \Lambda$;
- $M, N \in \Lambda \Rightarrow (MN) \in \Lambda$;
- $M \in \underline{\Lambda} \Rightarrow (\mathbf{pure}\ M) \in \underline{\Lambda};$
- $\vec{x} \in \mathbb{V}, \vec{M}, N \in \underline{\Lambda} \Rightarrow \text{let pure } \vec{x} = \vec{M} \text{ in } N \in \underline{\Lambda};$
- $M, N \in \Lambda \Rightarrow (\lambda_i x.M)N \in \Lambda$, для любых $i \in \mathbb{N}$.

Определение 12. Подставновка для термов с индексированной λ : $((\lambda_i x.M)N)[y:=Z]=(\lambda_i x.M[y:=Z])(N[y:=Z])$

Определение 13. Стирание индексов

Определим стирающие отображение $|.|:\underline{\Lambda}\to \Lambda$ рекурсивно:

- |x| = x;
- $|\lambda x.M| = \lambda x.|M|$;
- |MN| = |M||N|;
- $|\mathbf{pure} M| = \mathbf{pure} |M|$;
- $|\text{let pure } \vec{x} = \vec{M} \text{ in } N| = \text{let pure } \vec{x} = |\vec{M}| \text{ in } |N|;$
- $|(\lambda_i x.M)N| = (\lambda x.|M|)|N|$

Определение 14. Правила редукции:

- $(\lambda x.M)N \rightarrow_{\beta} M[x := N];$
- let pure $\vec{x}, y, \vec{z} = \vec{M}$, let pure $\vec{w} = \vec{N}$ in Q, \vec{P} in $R \rightarrow_{\underline{\beta}}$ let pure $\vec{x}, \vec{w}, \vec{z} = \vec{M}, \vec{N}, \vec{P}$ in R[y := Q]
- $\bullet \ \ \mathbf{let} \ \mathbf{pure} \ \vec{x} = \mathbf{pure} \ \vec{M} \ \mathbf{in} \ N \to_{\underline{\beta}} \mathbf{pure} \ N[\vec{x} := \vec{M}];$
- let pure $\underline{} = \underline{}$ in $M \rightarrow_{\beta}$ pure M
- $(\lambda x_i.M)N \to_{\beta} M[x := N]$

 $woheadrightarrow_{eta}$ – это рефлексивно-транзитивное замыкание $o_{\underline{eta}}.$

Определение 15. Стирание индексированных редексов: Определим данное отображение $\phi: \underline{\Lambda} \to \Lambda$ рекурсивно:

- $\bullet \ \phi(x) = x;$
- $\phi(\lambda x.M) = \lambda x.\phi(M);$
- $\phi(MN) = \phi(M)\phi(N)$;
- $\phi(\mathbf{pure}\,M) = \mathbf{pure}\,\phi(M);$
- $\phi(\text{let pure } \vec{x} = \vec{M} \text{ in } N) = \text{let pure } \vec{x} = \phi(\vec{M}) \text{ in } \phi(N);$

• $\phi((\lambda_i x.M)N) = \phi(M)[x := \phi(N)]$

Лемма 8. $\forall \underline{M}, \underline{N} \in \underline{\Lambda} \ \forall M, N \in \Lambda, if \ |\underline{M}| = M, |\underline{N}| = N, then$

- $Ecnu\ M \rightarrow_{\beta} N$, $mo\ \underline{M} \rightarrow_{\beta} \underline{N}$;
- Наоборот.

Доказательство. Индукция по порождению \to_{β} и $\to_{\underline{\beta}}$ соответственно. Общее утверждение следует из транзитивности редукций обоих видов.

Лемма 9.
$$\phi(M[x := N]) = \phi(M)[x := \phi(N)].$$

Доказательство. Рассмотрим случаи с **pure** и **let**. Остальные случаи рассмотрены [?].

1) $\phi(\mathbf{pure}\ (M[x:=N])) =$ по определению ϕ **pure** $(\phi(M[x := N])) =$ по предположению индукции **pure** $(\phi(M)[x := \phi(N)]) =$ по определению подстановки $(\mathbf{pure}\ \phi(M))[x := \phi(N)]$ 2) $\phi((\mathbf{let}\ \mathbf{pure}\ \vec{x} = \vec{M}\ \mathbf{in}\ N)[y := P]) =$ по определению подстановки $\phi(\mathbf{let} \ \mathbf{pure} \ \vec{x} = (\vec{M}[y := P]) \ \mathbf{in} \ N) =$ по определению ϕ let pure $\vec{x} = \phi(\vec{M}[y := P])$ in $\phi(N) =$ по предположению индукции let pure $\vec{x} = (\phi(M)[y := \phi(P)])$ in $\phi(N) =$ по определению подстановки (let pure $\vec{x} = \phi(\vec{M})$ in $\phi(N)$)[$y := \phi(P)$]

Лемма 10.

- $Ecnu\ M \twoheadrightarrow_{\beta} N$, $mor\partial a\ \phi(M) \twoheadrightarrow_{\beta} \phi(N)$
- ullet Если |M|=N и $\phi(M)=P$, тогда $N woheadrightarrow_{eta} P$.

Доказательство.

і) Индукция по порождению $\twoheadrightarrow_{\beta}$ с использованием предыдущей леммы.

ii) Индукция по структуре M.

Лемма 11. Лемма о полосе.

Пусть $M \to_{\beta} N$ и $M \twoheadrightarrow_{\beta} P$. Тогда существует такой терм Q, что $N \twoheadrightarrow_{\beta} Q$ и $P \twoheadrightarrow_{\beta} Q$.

Доказательство. Доказательство аналогично доказательству леммы о полосе для бестипового λ -исчисления [?] [?]. Мы построим следующую диаграмму, которая коммутирует по леммам 8 и 10, что и доказывает данную лемму.

Следствие 2. Если $M \twoheadrightarrow_{\beta} N$ и $M \twoheadrightarrow_{\beta} P$. Тогда найдется такой терм Q, что $N \twoheadrightarrow_{\beta} Q$ и $P \twoheadrightarrow_{\beta} Q$.

 $\ensuremath{\mathcal{A}}$ оказательство. Раскрыть $M woheadrightarrow_{eta} N$ как последовательность одношаговых редукций и применить на каждом шаге лемму о полосе

Теорема 4.

Нормальная форма $\lambda_{\mathbf{K}}$ со стратегией вычисления с вызовом по имени обладает свойством подформульности: если M в нормальной форме, то всего его подтермы также в нормальной форме.

Доказательство. Индукция по структуре M. Случай **let pure** $\vec{x} = \vec{M}$ **in** N рассмотрен Какутани [?] [?].

Пусть **pure** M в нормальной форме, тогда M в нормальной форме и все его подтермы также в нормальной форме по предположению индукции.

Тогда, если **pure** M в нормальной форме, то и все его подтермы также в нормальной форме.

2 Приложение А. Глоссарий по теории категорий.

Определение 16. *Категория* C *состоит из:*

- Класса объектов $Ob_{\mathcal{C}}$;
- Для любых объекта $A, B \in Ob_{\mathcal{C}}$ определено множество стрелок (или морфизмов) из A в B $Hom_{\mathcal{C}}(A, B)$;
- $Ecnu \ f \in Hom_{\mathcal{C}}(A,B) \ u \ g \in Hom_{\mathcal{C}}(B,C), \ mo \ g \circ f \in Hom_{\mathcal{C}}(A,C);$
- Для любого объекта $A \in Ob_{\mathcal{C}}$, определен тождественный морфизм $id_A \in Hom_{\mathcal{C}}(A,A)$;
- Для любой стрелки $f \in Hom_{\mathcal{C}}(A,B)$, для любой стрелки $g \in Hom_{\mathcal{C}}(B,C)$ и для любой стрелки $h \in Hom_{\mathcal{C}}(C,D)$, $h \circ (g \circ f) = (h \circ g) \circ f$.

• Для любой стрелки $f \in Hom_{\mathcal{C}}(A,B)$, $f \circ id_A = f$ и $id_B \circ f = f$.

Определение 17. Функтор

Пусть \mathcal{C}, \mathcal{D} – категории. Функтором называется отображение $F: \mathcal{C} \to$ \mathcal{D} , такое, что:

- $F: A \mapsto FA$, $\epsilon \partial e A \in Ob_{\mathcal{C}}$;
- $F(g \circ f) = F(g) \circ F(f)$;
- $F(id_A) = id_{FA}$.

Определение 18. Естественное преобразование Пусть $\mathcal{F}, \mathcal{G}: \mathcal{C} \to \mathcal{D}$ – функторы. Естественным преобразованием $\alpha:\mathcal{F}\Rightarrow\mathcal{G}$ называется такое индексированное семейство стрелок $(\alpha_X)_{X \in Obc}$, что для любых $A, B \in Obc$, для любой стрелки $f \in Hom_{\mathcal{C}}(A, B)$, диаграмма коммутирует:

Определение 19. Моноидальная категория

Моноидальная категория – это категория \mathcal{C} с дополнительной структурой:

- Бифунктор $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$, который мы будем называть тензором;
- Единица 1;
- ullet Изоморфизм, который мы будем называть ассоциатором: $lpha_{A,B,C}$: $(A \otimes B) \otimes C \cong A \otimes (B \otimes C);$
- Изоморфизм $L_A : \mathbb{1} \otimes A \cong A;$
- Изоморфизм $R_A: A \otimes \mathbb{1} \cong A;$
- Первое условие когерентности (пятиугольник Маклейна) (данная диа-

• Второе условие когерентности (тождество треугольника):

• Моноидальная категория C называется симметрической, если для любых $A, B \in Ob_{\mathcal{C}}$, имеет место изоморфизм $\sigma_{A,B} : A \otimes B \cong B \otimes A$.

Определение 20. Декартово замкнутная категория

Декартово замкнутная категория – это категория с терминальным объектом, конечными произведениями и экспоненцированием.

Легко видеть, что декартово замкнутая категория – это частный случай (симметрической) моноидальной категории, в котором тензор – это произведения, а единица – это терминальный объект.

Определение 21. Нестрогий моноидальный функтор

 $\Pi ycmb \langle \mathcal{C}, \otimes_1, \mathbb{1}_{\mathcal{C}} \rangle \ u \langle \mathcal{D}, \otimes_2, \mathbb{1}_{\mathcal{D}} \rangle$ моноидальные категории.

Нестрогий моноидальный функтор $\mathcal{F}:\langle\mathcal{C},\otimes_1,\mathbb{1}\rangle\to\langle\mathcal{D},\otimes_2,\mathbb{1}'\rangle$ это функтор $\mathcal{F}:\mathcal{C}\to\mathcal{D}$ с дополнительными естественными преобразованиями:

- $u: \mathbb{1}_{\mathcal{D}} \to \mathcal{F}\mathbb{1}_{\mathcal{C}};$
- $*_{A,B}: \mathcal{F}A \otimes_{\mathcal{D}} \mathcal{F}B \to \mathcal{F}(A \otimes_{\mathcal{C}} B).$

и условиями когерентности:

• Ассоциативность:

$$(\mathcal{F}A \otimes_{\mathcal{D}} \mathcal{F}B) \otimes_{\mathcal{D}} \mathcal{F}C \xrightarrow{\alpha_{\mathcal{F}A,\mathcal{F}B,\mathcal{F}C}^{\mathcal{D}}} \mathcal{F}A \otimes_{\mathcal{D}} (\mathcal{F}B \otimes_{\mathcal{D}} \mathcal{F}C)$$

$$*_{A,B} \otimes_{\mathcal{D}} id_{\mathcal{F}B} \downarrow \qquad \qquad \downarrow id_{\mathcal{F}A} \otimes_{\mathcal{D}} *_{B,C}$$

$$\mathcal{F}(A \otimes_{\mathcal{C}} B) \otimes_{\mathcal{D}} \mathcal{C} \qquad \qquad \mathcal{F}A \otimes_{\mathcal{D}} \mathcal{F}(B \otimes_{\mathcal{C}} C)$$

$$*_{A \otimes_{\mathcal{C}} B,C} \downarrow \qquad \qquad \downarrow *_{A,B \otimes_{\mathcal{C}} C}$$

$$\mathcal{F}((A \otimes_{\mathcal{C}} B) \otimes_{\mathcal{C}} C) \xrightarrow{\qquad \qquad \mathcal{F}(\alpha_{A,B,C}^{\mathcal{C}})} \mathcal{F}(A \otimes_{\mathcal{C}} (B \otimes_{\mathcal{C}} C))$$

• Свойство левой единицы:

$$\mathbb{1}_{\mathcal{D}} \otimes_{\mathcal{D}} \mathcal{F} A \xrightarrow{u \otimes_{\mathcal{D}} id_{\mathcal{F}} A} \rightarrow \mathcal{F} \mathbb{1}_{\mathcal{C}} \otimes_{\mathcal{D}} \mathcal{F} A$$

$$\downarrow^{\mathcal{D}}_{\mathcal{F} A} \downarrow \qquad \qquad \downarrow^{*_{1_{\mathcal{C}}, A}}$$

$$\mathcal{F} A \longleftarrow \mathcal{F}(\mathbb{1}_{\mathcal{C}} \otimes_{\mathcal{C}} A)$$

• Свойство правой единицы:

$$\begin{array}{c|c}
\mathcal{F}A \otimes_{\mathcal{D}} \mathbb{1}_{\mathcal{D}} & \xrightarrow{id_{\mathcal{F}A} \otimes_{\mathcal{D}} u} > \mathcal{F}A \otimes_{\mathcal{D}} \mathcal{F}\mathbb{1}_{\mathcal{C}} \\
\downarrow^{R_{\mathcal{F}A}} & & \downarrow^{*_{A,\mathbb{1}_{\mathcal{C}}}} \\
\mathcal{F}A & \longleftarrow & \mathcal{F}(R_{A}^{\mathcal{C}}) & \mathcal{F}(A \otimes_{\mathcal{C}} \mathbb{1}_{\mathcal{C}})
\end{array}$$

Определение 22. Тензорно-сильный функтор – это эндофунктор над моноидальной категорией с дополнительным естественным преобразованием и условиями когерентности для него (ниже соответствующие коммутирующие диаграмы):

$$\tau_{A,B}: A \otimes \mathcal{K}B \to \mathcal{K}(A \otimes B)$$

$$(A \otimes B) \otimes \mathcal{K}C \xrightarrow{\tau_{A \otimes B,C}} \mathcal{K}((A \otimes B) \otimes C)$$

$$\downarrow^{\kappa_{A,B,\kappa C}} \downarrow$$

$$A \otimes (B \otimes \mathcal{K}C) \xrightarrow{id_{A} \otimes \tau_{B,C}} A \otimes \mathcal{K}(B \otimes C) \xrightarrow{\tau_{A,(B \otimes C)}} \mathcal{K}(A \otimes (B \otimes C))$$

$$1 \otimes \mathcal{K}A \xrightarrow{\mu_{1,A}} \mathcal{K}(1 \otimes A)$$

$$\downarrow^{\kappa_{K}(R_{A})} \downarrow^{\kappa_{K}(R_{A})}$$

Определение 23. Аппликативный функтор

Аппликативный функтор – это тройка $\langle \mathcal{C}, \mathcal{K}, \eta \rangle$, где \mathcal{C} – это моноидальная категория, \mathcal{K} - это тензорно-сильный нестрогий моноидальный эндофунктор и $\eta: Id_{\mathcal{C}} \Rightarrow \mathcal{K}$ – это естественное преобразование, такое, что:

- $u = \eta_1$;
- $*_{A,B} \circ (\eta_A \otimes \eta_B) = \eta_{A \otimes B}$, то есть диаграмма коммутирует:

$$A \otimes B \xrightarrow{\eta_A \otimes \eta_B} \mathcal{K}A \otimes \mathcal{K}B$$

$$\downarrow^{*_{A,B}}$$

$$\mathcal{K}(A \otimes B)$$

• $\tau_{A,B} = *_{A,B} \circ \eta_A \otimes id_{\mathcal{K}B}$.

По умолчанию мы будем рассматривать ниже аппликативный функтор над декартово замкнутой категорией.

3 Глоссарий по основным конструкциям функционального языка программирования Haskell: функторы, монады, аппликативные функторы

Определение 24. Класс типов

Классом типов в языке Haskell – это реализация некоторого общего интерфейса для совокупности типов.

Представителем (или наследников) класса типов называется реализация данного класса для конкретного типа.

Определение 25. Функтор

Функтор – это однопараметрический класс типов, позволяющий пронести действие функции через значения, полученные в результате применения к их типу одноместного типового оператора.

Определение в стандартной библиотеке выглядит следующим образом:

class Functor f where

```
fmap :: (a \rightarrow b) \rightarrow f a \rightarrow f b
```

Рассмотрим примеры:

Список (неограниченная в длине последовательность) является функтором: Определение в стандартной библиотеке выглядит следующим образом:

Данный пример достаточно прост: реализация функтора для списка — это функция высшего порядка, которая, принимая на входе одноместную функцию из типа a в тип b и список элементов типа a, возвращает список элементов типа b, который получен применением функции к каждому элементу списка, полученного на вход.

• Пара (тип декартова произведения типов) также функтор:

```
instance Functor (b,) where

fmap :: (a \rightarrow c) \rightarrow (b,a) \rightarrow (b,c)

fmap f (x,y) = (x, f y)
```

Конструктор пары является двухпараметрическим типовым оператором, но мы сделали из него однопараметрический оператор фиксацией первого параметра.

Данная реализация также довольно проста: на вход принимается функция из типа a в тип c и кортеж, в котором первая координата имеет тип b, а вторая — тип a. На выходе мы получаем кортеж типа (b,c), применяя полученную на вход функцию ко второй координате пары.

• Тип Maybe — это однопараметрический типовой оператор, для обработки неопределенных значений:

```
data Maybe a = Nothing | Just a
```

Реализация функтора для типа *Maybe*:

```
instance Functor Maybe where
  fmap :: (a -> b) -> Maybe a -> Maybe b
  fmap f Nothing = Nothing
  fmap f (Just x) = Just (f x)
```

Если второй аргумент является неопределенным значением (на вход передан Nothing), то и возвращается Nothing. Если же значение определено, то есть оно имеет вид $Just\ x$, тогда мы применяем функцию функцию к x, а результат вычисления оборачиваем в конструктор Just.