Préparation Oral 2024

Mines - Ponts - MP- MPI

Algèbre

- 1. Soient p un nombre premier et C_p l'ensemble des $z\in\mathbb{C}$ tels qu'il existe $n\in\mathbb{N}$ vérifiant $z^{p^n}=1$.
 - (a) Montrer que C_p est un sous-groupe infini de \mathbb{C}^* .
 - (b) Déterminer les sous-groupes de C_p .
- 2. Déterminer tous les couples $(m,n) \in \mathbb{N}^2$ vérifiant : $3^m = 8 + n^2$.
- 3. Soit $A = \{n \in \mathbb{N}, 2^n + 1 \equiv 0 [n]\}.$
 - (a) Montrer que 3 est l'unique nombre premier appartenant à A.
 - (b) Montrer que A contient toutes les puissances entières de 3.
- 4. On écrit $n \in \mathbb{N}$ en base $p \in \mathcal{P}$: $n = \sum_{k=0}^{+\infty} \alpha_k p^k$ et l'on pose $S_p(n) = \sum_{k=0}^{+\infty} \alpha_k$.
 - (a) Soit $k \in [\![0,n]\!]$. Montrer que : $v_p \binom{n}{k} = \frac{S_p(k) + S_p(n-k) S_p(n)}{p-1}$.
 - (b) Exprimer $v_p \binom{n}{k}$ en fonction des retenues dans l'addition de n-k et k en base p.
 - (c) Est-ce que 7 divise $\binom{1000}{500}$?
 - (d) Montrer que 2 divise $\binom{2n}{n}$. Étudier la divisibilité par 4 pour $n \geq 2$
- 5. Soit G un groupe cyclique d'ordre n.

Soit H un sous-groupe de G. Montrer que H est cyclique d'ordre divisant n.

Soit d un diviseur de n. Montrer qu'il existe un unique sous-groupe de G d'ordre d.

6. On pose $\mathbb{Z}[i] = \{a + ib, (a, b) \in \mathbb{Z}^2\}.$

Montrer que $\mathbb{Z}[i]$ est un anneau intègre et déterminer ses inversibles.

- 7. en Soit A un anneau commutatif. Si I est un idéal de A, on note $R(I) = \{x \in A ; \exists n \in \mathbb{N}, x^n \in I\}$.
 - (a) Montrer que R(I) est un idéal de A contenant I.
 - (b) Soient I et J deux idéaux de A. Montrer :

$$R(I \cap J) = R(I) \cap R(J); \quad R(I) + R(J) \subset R(I+J).$$

- (c) Pour cette question, $A = \mathbb{Z}$. Montrer que l'ensemble des entiers naturels non nuls tels que $R(n\mathbb{Z}) = n\mathbb{Z}$ est l'ensemble des entiers naturels non nuls dont la décomposition primaire ne comporte aucun facteur premier d'exposant au moins égal à 2.
- 8. Montrer qu'il existe une unique suite (P_n) de polynômes à coefficients dans \mathbb{Z} vérifiant : $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}^*, P_n\left(x + \frac{1}{x}\right) = x^n + \frac{1}{x^n}$.

1

Soit $a \in \mathbb{Q}$ tel que $\cos(a\pi) \in \mathbb{Q}$. Montrer que : $2\cos(a\pi) \in \mathbb{Z}$.

9. (a) Montrer que, pour tout $n \in \mathbb{N}$, il existe $P_n \in \mathbb{R}[X]$ tel que

$$\forall \theta \in \left] 0, \frac{\pi}{2} \right[, \frac{\sin((2n+1)\theta)}{\sin^{2n+1}(\theta)} = P_n(\cot^2\theta).$$

- (b) Déterminer les racines de P_n et calculer leur somme.
- (c) Montrer que, pour $\theta \in \left]0, \frac{\pi}{2}\right[, \cot^2 \theta < \frac{1}{\theta^2} < \cot^2 \theta + 1.$

- (d) Déduire de ce qui précède la valeur de $\sum_{n=0}^{+\infty} \frac{1}{n^2}$.
- 10. Soient $n \in \mathbb{N}^*$ et $k \in \{0, n-1\}$. Soit $P = a_n X^n + \cdots + a_1 X + a_0 \in \mathbb{C}[X]$ polynôme de degré n tel que $(X-1)^k | P$. On note $\mu(P)$ le nombre de coefficients non nuls de P. On veut montrer que $\mu(P) \ge k+1$. On raisonne par l'absurde et on pose $A = \{i \in \{0, n\}, \ a_i \neq 0\}.$
 - (a) On pose $P_0=1$ et $P_s=\prod_{j=0}^{s-1}(X-j)$ pour $s\in\mathbb{N}^*$. Montrer que $\forall s\in\{0,k-1\},\;P^{(s)}(1)=\sum_{i\in A}a_iP_s(i)$.

- (b) En déduire que $\forall i \in A, a_i = 0$, et conclure.
- (c) L'inégalité démontrée est-elle optimale?
- 11. Soit $P \in \mathbb{R}[X]$ simplement scindé sur \mathbb{R} et non constant. Montrer que, si $\lambda \in \mathbb{R}$, $P' \lambda P$ est simplement scindé sur \mathbb{R} .
- 12. Soit P un polynôme irréductible dans $\mathbb{Q}[X]$. Montrer que les racines complexes de P sont simples Soient $k \in \mathbb{N}^*$, $P \in \mathbb{Q}[X]$ non constant avec $\deg(P) \leq 2k-1$, $\alpha \in \mathbb{C}$ une racine de P de multiplicité k. Montrer que α est
- 13. Soit $P = \sum_{k=0}^{n} a_k X^k$ avec : $a_0 \ge a_1 \ge \dots \ge a_n > 0$.

Montrer que les racines complexes de P sont de module supérieur ou égal à 1.

$$\text{Soit } z \in \mathbb{C} \text{ tel que } P(z) = 0. \text{ Montrer } \min_{k \in \llbracket 0, n-1 \rrbracket} \frac{a_k}{a_{k+1}} \leq |z| \leq \max_{k \in \llbracket 0, n-1 \rrbracket} \frac{a_k}{a_{k+1}} \cdot \sum_{k \in \llbracket 0, n-1 \rrbracket} \frac{a_k}{a_k} \cdot \sum_{k \in \llbracket$$

- 14. Soit $\mathbb{K}=\mathbb{Q}+\sqrt{2}\mathbb{Q}+\sqrt{3}\mathbb{Q}+\sqrt{6}\mathbb{Q}$. Montrer que \mathbb{K} est un \mathbb{Q} -sous-espace vectoriel de \mathbb{R} et que $(1,\sqrt{2},\sqrt{3},\sqrt{6})$ est une base de
- 15. Soit $A \in \mathcal{M}_n(\mathbb{K})$ dont on note C_1, \ldots, C_n les colonnes. Soit B la matrice dont les colonnes sont C'_1, \ldots, C'_n avec : $C'_j = \sum_{i \in I} C_i$. Déterminer $\det B$ en fonction de $\det A$.
- 16. Soient E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$.
 - (a) Montrer l'équivalence entre les trois propriétés suivantes :
 - (i) $\operatorname{Im}(u) = \operatorname{Im}(u^2)$ (ii) $\operatorname{Ker}(u) = \operatorname{Ker}(u^2)$ (iii) $E = \operatorname{Im}(u) \oplus \operatorname{Ker}(u)$.
 - (b) Donner des exemples d'endomorphismes vérifiant ces propriétés.
 - (c) L'équivalence est-elle vraie en dimension infinie? Montrer que (i) et (ii) équivaut à (iii).
- 17. Soient K_1, \dots, K_n des segments non triviaux disjoints.
 - (a) Montrer que, si $P \in \mathbb{R}_{n-1}[X]$ vérifie $\int_{K} P = 0$ pour tout $j \in \{1, ..., n\}$, alors P = 0.
 - (b) Montrer qu'il existe $P \in \mathbb{R}_n[X]$ non nul tel que $\int_{K_n} P = 0$ pour tout $j \in \{1,...,n\}$.
- (a) Déterminer le rang de Com(A) en fonction du rang de A.
 - (b) Calculer Com (Com(A)) lorsque $A \in \mathcal{GL}_n(\mathbb{R})$.
 - (c) Montrer que si X est un vecteur propre de A associé à une valeur propre non nulle, alors X est un vecteur propre $de (Com(A))^T$.
- 19. Trouver les solutions dans $\mathcal{M}_2(\mathbb{R})$ de $X^2 + X = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
- 20. Soit $f:\mathcal{M}_n(\mathbb{K})\to\mathbb{K}$ non constante telle que $:\forall A,B\in\mathcal{M}_n(\mathbb{K}),\,f(AB)=f(A)f(B).$ Montrer que $A\in\mathcal{GL}_n(\mathbb{K})\Longleftrightarrow$ $f(A) \neq 0$.
- 21. Soit $A \in \mathcal{M}_n(\mathbb{C})$ nilpotente.
 - (a) Calculer $\det(A + I_n)$.
 - (b) Montrer que pour toute matrice M qui commute avec A on a l'égalité : $\det(A+M) = \det(M)$.
- 22. Soit G un sous-groupe fini de $\mathcal{GL}_n(\mathbb{C})$. Montrer que $\sum_{M \in G} \operatorname{Tr}(M)$ est un entier divisible par le cardinal de G.
- 23. Pour tout $x \in \mathbb{R}$, on pose $A_x = \begin{pmatrix} 0 & x \\ x & 0 \end{pmatrix}$. Déterminer la structure de l'ensemble : $\{\exp(A_x), x \in \mathbb{R}\}$ et expliciter $\exp(A_x)$ pour tout $x \in \mathbb{R}$.

24. Soit $M \in \mathcal{M}_n(\mathbb{C})$ admettant n valeurs propres distinctes. Montrer que l'ensemble des matrices qui commutent avec M est $\text{Vect}(I_n, M, \dots, M^{n-1})$.

25. Soient
$$a_1 < \dots < a_n$$
 des réels et $M = \begin{pmatrix} a_1 + 1 & 1 & \dots & 1 \\ 1 & a_2 + 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & a_n + 1 \end{pmatrix}$.

Montrer que ${\cal M}$ est diagonalisable et que ses espaces propres sont des droites.

26. Soient
$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & & \vdots \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & \cdots & \cdots & 0 & 1 \\ 1 & \ddots & & & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$ dans $\mathcal{M}_n(\mathbb{R})$.

Montrer que A et B sont inversibles et préciser le sous-groupe G de $GL_n(\mathbb{R})$ engendré par ces matrices.

Dans le cas n=3, préciser les matrices de G qui sont diagonalisables.

27. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ non nulles et $f : M \in \mathcal{M}_n(\mathbb{R}) \mapsto M + \operatorname{tr}(AM)B$.

Déterminer un polynôme de degré 2 annulateur de f.

Étudier la diagonalisabilité de f.

- 28. Soient $n \geq 2$, $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que AB BA = B.
 - (a) Montrer que, pour $m \in \mathbb{N}^*$, $AB^m B^m A = mB^m$.
 - (b) En déduire que B est nilpotente.
- 29. Soit E un \mathbb{C} -espace vectoriel de dimension finie.
 - (a) Montrer que deux endomorphismes u et v de E qui commutent ont un vecteur propre en commun.
 - (b) Montrer qu'une famille finie F d'endomorphismes de E qui commutent admet une base de trigonalisation commune à ses éléments.
- 30. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que A est diagonalisable si et seulement si $\forall P \in \mathbb{C}[X], \ P(A) \ \text{nilpotent} \ \Rightarrow P(A) = 0.$
- 31. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ avec B diagonalisable. On suppose que $AB^3 = B^3A$. Montrer que A et B commutent. Généraliser.
- 32. Déterminer les entiers $n \geq 1$ tels qu'il existe $f \in \mathcal{L}(\mathbb{R}^n)$ vérifiant $f^3 + f^2 \mathbf{Id} = 0$ et $\operatorname{tr} f \in \mathbb{Q}$.
- 33. Soit $A \in \mathcal{M}_n(\mathbb{C})$. On pose $f_A : M \in \mathcal{M}_n(\mathbb{C}) \mapsto AMA^T \in \mathcal{M}_n(\mathbb{C})$.
 - (a) Soit $(X_1, \dots, X_n, Y_1, \dots, Y_n) \in (\mathbb{C}^n)^{2n}$. Montrer que (X_1, \dots, X_n) et (Y_1, \dots, Y_n) sont des bases de \mathbb{C}^n si et seulement si $(X_iY_j^T)_{1 \le i, i \le n}$ est une base de $\mathcal{M}_n(\mathbb{C})$.
 - (b) Montrer que A est inversible si et seulement si f_A est inversible.
 - (c) On suppose A diagonalisable. Montrer que f_A est diagonalisable.
 - (d) Soit $\lambda \in \mathbb{C}^*$ une valeur propre de A et Y un vecteur propre associé. Montrer que le sous-espace vectoriel $F = \{XY^T, X \in \mathbb{C}^n\}$ est stable par f_A .
 - (e) Montrer que si f_A est diagonalisable, alors A est diagonalisable.
- 34. Soit $A \in \mathcal{M}_2(\mathbb{R})$ telle qu'il existe $n \in \mathbb{N}^*$ tel que $A^{2^n} = I_2$.

Montrer que $A^2 = I_2$ ou qu'il existe $k \in \mathbb{N}^*$ tel que $A^{2^k} = -I_2$.

35. Soit $A \in \mathrm{GL}_n(\mathbb{C})$.

Montrer que A est triangulaire supérieure si et seulement si, pour tout $k \ge 2$, A^k est triangulaire supérieure. Donner un contre-exemple si A est une matrice non inversible.

36. Soient E un \mathbb{C} -espace vectoriel de dimension finie, $u \in \mathcal{L}(E)$. Montrer que u est diagonalisable si et seulement s'il existe $n \in \mathbb{N}^*$,

$$\alpha_1, \ldots, \alpha_n \in \mathbb{C}, v_1, \ldots, v_n \in \mathcal{L}(E)$$
 tels que $\forall k \in [0, n], u^k = \sum_{i=1}^n \alpha_i^k v_i$.

- 37. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer l'équivalence entre :
 - i) l'unique valeur propre de A est 1,

ii)
$$\operatorname{tr}(A) = \operatorname{tr}(A^2) = \dots = \operatorname{tr}(A^n) = n$$
.

38. Soit $D \in \mathcal{M}_n(\mathbb{C})$. Déterminer l'inverse de $\begin{pmatrix} I_n & D \\ 0 & I_n \end{pmatrix}$.

Soit A, B, C des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$ telles que $sp(A) \cap sp(B =)\emptyset$. Montrer que $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ et $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ sont semblables.

- 39. Déterminer les $A \in \mathcal{M}_n(\mathbb{C})$ telles que toute matrice de $\mathcal{M}_n(\mathbb{C})$ commutant à A soit diagonalisable.
- 40. Pour quels $\lambda \in \mathbb{C}$ existe-t-il $(A, B) \in \mathrm{GL}_n(\mathbb{C})^2$ tel que $AB = \lambda BA$?

Pour quels $\lambda \in \mathbb{C}$ est-il vrai que, pour tout $(A, B) \in GL_n(\mathbb{C})^2$ tel que $AB = \lambda BA$, les matrices A et B sont diagonalisables?

- 41. Soient E un espace euclidien, A une partie de E et $B = \{\langle x, y \rangle ; (x, y) \in A^2\}$. Montrer que A est finie si et seulement si B est fini.
- 42. (a) Énoncer le théorème de réduction pour une matrice de $SO_3(\mathbb{R})$.
 - (b) Montrer que deux rotations de $SO_3(\mathbb{R})$ qui ont même axe commutent.
 - (c) Montrer que deux demi-tours de $SO_3(\mathbb{R})$ d'axes orthogonaux commutent.
 - (d) Montrer que si deux rotations de $SO_3(\mathbb{R})$ commutent, alors on est dans l'un des deux cas précédents.
- 43. Soient $a, b, c \in \mathbb{R}$ et $A(a, b, c) = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$.
 - (a) Montrer que A(a,b,c) est dans $SO_3(\mathbb{R})$ si et seulement si a,b,c sont les racines d'un polynôme de la forme X^3-X^2+t ou le réel t appartient à un intervalle I que l'on déterminera.
 - (b) Si $A(a, b, c) \in SO_3(\mathbb{R})$, caractériser l'endomorphisme canoniquement associé.
- 44. On travaille dans l'espace $E = \mathbb{R}[X]$. Pour P et Q dans E, on pose

$$\Phi(P,Q) = \int_0^{+\infty} P(t) Q(t) e^{-t} dt.$$

- (a) Montrer que Φ est correctement définie et munit l'espace E d'un produit scalaire.
- (b) Calculer $\Phi(X^p, X^q)$ pour $p, q \in \mathbb{N}$.
- (c) Calculer l'orthonormalisée de Gram-Schmidt de la famille $(1, X, X^2)$.
- (d) Calculer la distance de X^3 à $\mathbb{R}_2[X]$.
- (e) Soit $n \in \mathbb{N}^*$. Montrer que : $\forall P \in \mathbb{R}_{n-1}[X], \int_0^{+\infty} e^{-x} (P(x) + x^n)^2 dx \ge (n!)^2$.
- 45. Calculer le minimum de la fonction $f:(x,y)\in\mathbb{R}^2\mapsto\int_0^1(t\ln(t)-xt-y)^2dt$.
- 46. Soient E le \mathbb{R} -espace vectoriel des suites réelles et $D: u \in E \longmapsto (u_{n+1} u_n)_{n \in \mathbb{N}}$.
 - (a) Vérifier que D est un endomorphisme de E. Est-il injectif? Surjectif?
 - (b) Donner les éléments propres de l'endomorphisme D.
 - (c) Soit F l'espace des suites réelles de carré sommable. Montrer que F est stable par l'endomorphisme D.
 - (d) On munit F de son produit scalaire \langle , \rangle usuel.

$$\text{D\'{e}crire l'ensemble } H = \left\{ \frac{\langle u, D(u) \rangle}{\|u\|^2}, \ u \in F \setminus \{(0)_{n \in \mathbb{N}}\} \right\}.$$

- 47. Soient (E, \langle , \rangle) , $p, q \in \mathcal{L}(E)$ des projecteurs orthogonaux.
 - (a) Vérifier que $\operatorname{Im} p$ est stable par pq et que l'endomorphisme induit est symétrique.
 - (b) Montrer que $\ker(pq) = \ker q \oplus (\operatorname{Im}(q) \cap \ker(p))$.
 - (c) Montrer que E est somme directe orthogonale de $(\operatorname{Im} p + \ker q)$ et de $(\ker p \cap \operatorname{Im} q)$.
 - (d) En déduire que pq est diagonalisable.
 - (e) Montrer que le spectre de pq est inclus dans [0, 1].
- 48. Soit E un espace euclidien de dimension 4. Trouver les endomorphismes $f \neq 0$ de E tels que $\operatorname{tr}(f) = 0$, $f + f^4 = 0$ et $f^* = -f^2$.
- 49. Soit $A \in \mathcal{A}_n(\mathbb{R})$. Montrer que A est semblable à une matrice diagonale par blocs, de blocs diagonaux antisymétriques de taille au plus 2×2 .

- 50. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 = AA^T$. Montrer que $A \in \mathcal{S}_n(\mathbb{R})$.
- 51. Soit $M \in \mathcal{M}_n(\mathbb{R})$ nilpotente telle que : $M^TM = MM^T$. Déterminer M^TM puis M.
- 52. Soit $A \in \mathcal{S}_n(\mathbb{R})$. Montrer que $\left(\sum_{i=1}^n a_{i,i}\right)^2 \leq \operatorname{rg}(A) \sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2$.
- 53. Soit $S \in \mathcal{S}_n^+(\mathbb{R})$. Calculer $\max\{\operatorname{tr}(OS) \; ; \; O \in \mathcal{O}_n(\mathbb{R})\}$.
- 54. Soient $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $B \in \mathcal{S}_n^+(\mathbb{R})$.
 - (a) Montrer qu'il existe $C \in \mathcal{S}_n^{++}(\mathbb{R})$ telle que $C^2 = A^{-1}$.
 - (b) On pose D = CBC. Montrer que $\det(I_n + D)^{1/n} \ge 1 + \det(D)^{1/n}$.
 - (c) En déduire que $\det(A+B)^{1/n} \ge \det(A)^{1/n} + \det(B)^{1/n}$.
 - (d) Est-ce encore vrai si $A, B \in \mathcal{S}_n^+(\mathbb{R})$?

Analyse

- 55. (a) Soient f une fonction continue de \mathbb{R}^n dans \mathbb{R} et N une norme sur \mathbb{R}^n . Montrer l'équivalence entre :
 - (i) $|f(x)| \to +\infty$ lorsque $N(x) \to +\infty$;
 - (ii) l'image réciproque de tout compact par f est un compact.
 - (b) Soit f une fonction continue de \mathbb{R}^n dans \mathbb{R}^n . On suppose que l'image réciproque de tout compact par f est un compact. Montrer que l'image directe de tout fermé par f est un fermé. La réciproque du résultat précédent est-elle vraie?
- 56. On munit $E = \mathcal{C}^0([0,1], \mathbb{R})$ de la norme $\| \cdot \|_{\infty}$.

Si
$$f \in E$$
, on pose $u(f) = \sum_{k=1}^{+\infty} \left(-\frac{1}{2}\right)^k f\left(\frac{1}{k}\right) \in \mathbb{R}$.

- (a) Montrer que u est bien définie sur E.
- (b) Montrer que u est continue sur E et déterminer sa norme subordonnée.
- 57. Soient $L^1(\mathbb{R})$ l'espace vectoriel des suites sommables et $N: x \mapsto \sum_{n=0}^{+\infty} |x_n|$.
 - (a) Montrer que N est une norme.
 - (b) Soit A l'ensemble des suites de $L^1(\mathbb{R})$ nulle à partir d'un certain rang. Donner l'adhérence et l'intérieur de A. Ind. Remarquer que A est dense dans $L^1(\mathbb{R})$.
- 58. Soient $n \ge 2$, K un compact de \mathbb{R}^n et $\varepsilon > 0$. Une partie $A \subset K$ est ε -séparée si, pour tous $x, y \in A$ tel que $||x y|| < \varepsilon$, on a x = y.
 - (a) Montrer qu'il existe un entier $M(\varepsilon)$ tel que toute partie ε -séparée de K est de cardinal inférieur à $M(\varepsilon)$ et il existe une partie ε -séparée de K de cardinal $M(\varepsilon)$.
 - (b) Soit $f: K \to K$. On suppose que, pour tous $x, y \in K$, ||f(x) f(y)|| = ||x y||. Montrer que f est surjective.
- 59. Soient $n \ge 2$ et $r \in \{1, \dots, n-1\}$. L'ensemble \mathcal{E} des matrices carrées de taille n et de rang r est-il ouvert? fermé? Déterminer l'intérieur et l'adhérence de \mathcal{E} .
- 60. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que A est diagonalisable si et seulement si l'ensemble $\{PAP^{-1}, P \in GL_n(\mathbb{C})\}$ est fermé.
- 61. Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Montrer que l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{K})$ est connexe par arcs.
- 62. Déterminer la limite de la suite de terme général $u_n = \sum_{k=0}^{n-1} \left(\frac{n-k}{n}\right)^n$.
- 63. Soit $f:[0,2]\to\mathbb{R}$ une fonction C^1 . On pose

$$u_n = \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n} + \frac{k}{n^2})$$
 pour $n \ge 1$. Etudier la convergence de la suite $(u_n)_{n>0}$

- 64. Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in]0,\pi/2]$ et $\forall n\in\mathbb{N},\ u_{n+1}=\sin(u_n)$. Étudier la convergence de (u_n) . Déterminer un équivalent de u_n .
- 65. Pour $n \ge 2$, on considère l'équation $\sin(x) = \frac{x}{n}$.
 - (a) Montrer que cette équation admet une unique solution sur $]0,\pi[$ qu'on notera x_n .

- (b) Montrer que la suite $(x_n)_{n\geq 2}$ converge. Quelle est sa limite?
- (c) Donner un développement asymptotique de x_n à la précision $o\left(\frac{1}{n^3}\right)$.
- 66. Pour tout $n \in \mathbb{N}^*$, on pose $P_n = \prod_{i=0}^n (X-i)$.

Montrer que : $\forall n \in \mathbb{N}^*, \exists ! r_n \in]0, 1[, P'_n(r_n) = 0.$ et déterminer un équivalent simple de r_n .

- 67. Soit (u_n) la suite définie par $u_0 \ge 0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{n + u_n}$
 - (a) Montrer que $u_n \to +\infty$.
 - (b) Donner un développement asymptotique à trois termes de u_n .
- 68. Soit $x \in \left[0, \frac{\pi}{2}\right[$. Convergence et somme de $\sum_{n \geq 0} \frac{1}{2^n} \tan\left(\frac{x}{2^n}\right)$.

Ind. Montrer que $\tan(x) = \frac{\cos(x)}{\sin(x)} - 2\frac{\cos(2x)}{\sin(2x)}$

- 69. Soit (u_n) une suite réelle telle que $n(u_{n+1}-u_n)\to 1$. Quelle est la nature de la série $\sum u_n$?
- 70. Déterminer la convergence et la somme de la série de terme général $u_n = \frac{(-1)^n}{n + (-1)^n}$.
- 71. Nature de la série de terme général $\frac{(-1)^n}{\sum_{k=1}^n \frac{1}{\sqrt{k}} (-1)^n}$?
- 72. Soit $\alpha > 0$ fixé. Nature de la série de terme général $\sum \frac{\left\lfloor \sqrt{n+1} \right\rfloor \left\lfloor \sqrt{n} \right\rfloor}{n^{\alpha}}$?
- 73. Soit $(u_n)_{n\geq 0}$ une suite décroissante de réels positifs. On pose, pour $n\in\mathbb{N},$ $v_n=\frac{1}{1+n^2u_n}$. Montrer que si $\sum v_n$ converge, alors $\sum u_n$ diverge.
- 74. Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \int_n^{n+1} \frac{\cos(\ln(t))}{t} dt$ et $v_n = \frac{\cos\ln(n)}{n}$.
 - (a) Déterminer la nature de la série $\sum u_n$.
 - (b) Soit $n \in \mathbb{N}^*$. Montrer que $u_n v_n = \int_{r}^{n+1} (t n 1) \frac{\cos \ln(t) + \sin \ln(t)}{t^2} dt$.
 - (c) En déduire la nature de la série $\sum v_n$.
- 75. (a) Soit $\sum u_n$ une série à termes positifs. On pose $S_n = \sum_{k=0}^n u_k$. Montrer que si $\sum u_n$ diverge, alors $\sum \frac{u_n}{S_n}$ diverge aussi.
 - (b) Soit $\sum y_n$ une série à termes complexes telle que, pour toute suite (x_n) qui tend vers 0, la série $\sum x_n y_n$ converge. Montrer que $\sum |y_n|$ converge.
- 76. Soit $\sum u_n$ une série convergente à termes strictement positifs.
 - (a) Montrer que $\sum_{k=1}^{n} k u_k = o(n)$.
 - (b) Montrer que $\frac{1}{n(n+1)}\sum_{k=1}^n ku_k$ est le terme général d'une série convergente.
 - (c) Montrer que la série de terme général $\frac{1}{n+1}\left(n!\prod_{k=1}^n u_k\right)^{1/n}$ est convergente et que :

$$\sum_{n=1}^{+\infty} \frac{1}{n+1} \left(n! \prod_{k=1}^{n} u_k \right)^{1/n} \le \sum_{k=1}^{+\infty} u_k.$$

- 77. Trouver les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues en 0 telles que f(0) = 1 et, pour tout $x \in \mathbb{R}$, $f(2x) = f(x)\cos(x)$.
- 78. Soient $f: \mathbb{R}^+ \to \mathbb{R}^+$ de classe \mathcal{C}^1 , $\ell \in \mathbb{R}^{+*}$ et $P = \sum_{k=0}^n a_k X^k \in \mathbb{R}[X]$ avec $n \in \mathbb{N}^*$ et $a_n \neq 0$. On suppose que $f'(x) P(f(x)) \underset{x \to +\infty}{\longrightarrow} \ell$. Déterminer un équivalent de f en $+\infty$.

- 79. Soient $E = C^0([0,1], \mathbb{R})$ et u l'application définie par : $\forall f \in E, \forall x \in [0,1], u(f)(x) = \int_0^1 \min(x,t)f(t) \, dt$. Vérifier que u est un endomorphisme de E. Déterminer ses éléments propres.
- 80. Etudier la fonction $f: x \mapsto \int_x^{x^2} \frac{dt}{t\sqrt{1-t}}$
- 81. Étudier la convergence de l'intégrale $\int_0^{+\infty} t |\cos t|^{t^5} dt$
- 82. Soit $\alpha>0$. Étudier la convergence de l'intégrale : $\int_0^{+\infty} \left(\exp\left(\frac{\sin^2x}{x^\alpha}\right)-1\right)\,dx$.
- 83. Soit a>0. Montrer que l'intégrale : $\int_0^{+\infty} \frac{\arctan(ax)+\arctan(x/a)}{1+x^2}\,dx$ converge et calculer sa valeur.
- 84. Soit f une fonction continue par morceaux et de carré intégrable de \mathbb{R}^+ dans \mathbb{R} . Pour $x \in \mathbb{R}^{+*}$, soit $g(x) = \frac{1}{\sqrt{x}} \int_0^x f$. Déterminer la limite de g en 0 et en $+\infty$.
- 85. Donner un équivalent, quand $x \to +\infty$, de $\int_1^x t^t dt$?
- 86. Trouver une valeur approchée rationnelle à 10^{-3} près de $\int_0^1 e^{-t} \ln(t) dt$.
- 87. Soit, pour $n \in \mathbb{N}$, $f_n : x \in \mathbb{R}^+ \mapsto x^n (1 \sqrt{x})$.
 - (a) Déterminer le domaine de convergence D de la série de fonctions $\sum f_n$.
 - (b) Y a-t-il convergence normale sur D?
 - (c) Calculer $\sum_{n=0}^{+\infty} \frac{1}{(n+1)(2n+3)}$.
- 88. Soit $f: x \mapsto \sum_{n \ge 1} \frac{x}{n(1+nx^2)}$. Domaine de définition, continuité, étude de la dérivabilité, équivalents en 0 et $+\infty$.
- 89. Pour tout $n \in \mathbb{N}^*$ et $x \in \mathbb{R}^+$, on pose $f_n(x) = \frac{x}{\sqrt{n(n+x)}}$.
 - (a) Montrer la convergence simple de $\sum f_n$ sur \mathbb{R}^+ . On note $f = \sum_{n=1}^{+\infty} f_n$.
 - (b) Montrer que la série $\sum f_n$ converge normalement sur les segments de la forme [0, M] avec M > 0. Y a-t-il convergence normale sur \mathbb{R}^+ ?
 - (c) Étudier la continuité de f. Montrer que f est de classe C^1 sur $]0,+\infty[$.
 - $\text{(d) Soient } n \geq 1 \text{ et } x_0 \geq n. \text{ Montrer} : f(x_0) \geq \sum_{k=1}^n \frac{1}{2\sqrt{k}} \cdot \text{En d\'eduire} : f(x) \underset{x \to +\infty}{\longrightarrow} +\infty.$
 - (e) Montrer que f(x) = o(x).
- 90. Rayon de convergence et somme de $f: x \mapsto \sum_{n=1}^{+\infty} \frac{x^n}{4n^2 5n + 1}$.
- 91. Déterminer le rayon de convergence et la somme de la série entière $\sum z^{n+(-1)^n}$.
- 92. Soit u qui à $P \in \mathbb{C}[X]$ associe $u(P): z \mapsto e^{-z} \sum_{n=0}^{+\infty} \frac{P(n)}{n!} z^n$. Montrer que u est bien définie, et que c'est un automorphisme de $\mathbb{C}[X]$. Déterminer ses éléments propres.
- 93. Soient $q \in]-1,1[$ et $f: x \mapsto \sum_{n=0}^{+\infty} \sin(q^n x)$.

Montrer que f est définie sur $\mathbb R$ et de classe $\mathcal C^\infty$ et développable en série entière

- 94. Montrer qu'au voisinage de 0, la fonction $f: x \mapsto \int_0^{+\infty} \ln(1+xe^{-t}) dt$ est développable en série entière et en donner les coefficients.
- 95. Expliciter le développement en série entière de $\ln(x^2 x\sqrt{2} + 1)$ au voisinage de 0.

- 96. Déterminer le développement en série entière en 0 de $f: x \mapsto \sin\left(\frac{1}{3}\arcsin(x)\right)$.
- 97. On définit la suite (a_n) par : $a_0 = a_1 = 1$ et $\forall n \in \mathbb{N}^*, a_{n+1} = a_n + \frac{2}{n+1}a_{n-1}$.
 - (a) Montrer que : $\forall n \in \mathbb{N}^*, 1 \leq a_n \leq n^2$ et en déduire le rayon de convergence R de la série entière $\sum a_n x^n$. On pose $f: x \in]-R, R[\mapsto \sum_{n=0}^{+\infty} a_n x^n$.
 - (b) Montrer que f est solution de (1-x)y' (1+2x)y = 0.
 - (c) Expliciter f à l'aide des fonctions usuelles.
- 98. On pose $f: x \mapsto \sum_{n=0}^{+\infty} e^{-n+in^2x}$.

Montrer que f est bien définie et de classe \mathcal{C}^{∞} , mais que f n'est pas développable en série entière (on minorera $f^{(n)}(0)$).

- 99. On pose, pour tout $n \in \mathbb{N}^*$, $u_n = \int_1^{+\infty} \exp(-x^n) dx$. Justifier l'existence de (u_n) . Étudier la convergence de la suite (u_n) et de la série $\sum u_n$.
- 100. Soit $\alpha > 1$. Pour $n \in \mathbb{N}^*$, on pose $I_n(\alpha) = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^{\alpha})^n}$.
 - (a) Justifier la convergence de $I_n(\alpha)$.
 - (b) Établir une relation entre $I_{n+1}(\alpha)$ et $I_n(\alpha)$. En déduire une expression de $I_n(\alpha)$ en fonction de $I_1(\alpha)$ et de α .
 - (c) Déterminer la limite de la suite $(I_n(\alpha))_{n \in \mathbb{N}}$.
 - (d) Montrer l'existence d'un réel $K(\alpha)$ tel que $I_n(\alpha) \sim \frac{K(\alpha)}{n^{1/\alpha}}$ quand $n \to +\infty$.
- 101. Soit $f \in C^0(\mathbb{R}^+, \mathbb{R})$. On considère la fonction $F: x \mapsto \int_0^{+\infty} e^{-xt} f(t) dt$.
 - (a) On suppose f bornée. Montrer que F est définie et de classe C^{∞} sur \mathbb{R}^{+*} .
 - (b) On suppose que f admet une limite finie non nulle ℓ en $+\infty$. Donner un équivalent de F en 0^+ .
 - (c) On suppose f développable en série entière sur \mathbb{R}^+ : $f(x) = \sum_{n=0}^{+\infty} a_n x^n$, et que la série $\sum n! a_n$ converge. Étudier le comportement de F(1/x) au voisinage de 0 et de $+\infty$.
 - (d) Donner des exemples de fonctions f telles que le domaine de définition de F soit $]0, +\infty[$, $]1, +\infty[$ ou \emptyset .
- 102. Soient a et b deux fonctions continues de \mathbb{R}^+ dans \mathbb{R}^+ et S l'ensemble des solutions de y'=ay+b. Montrer l'équivalence entre : i) tous les éléments de S sont bornés, ii) a et b sont intégrables.
- 103. Déterminer les fonctions y de $\mathbb R$ dans $\mathbb R$ dérivables et telles que $y'(x)=y(\pi-x)$.
- 104. Soient $n \in \mathbb{N}^*$ et $\omega \in \mathbb{C}$ tel que $\omega^n = 1$. Trouver les fonctions $y \in C^n(\mathbb{R}, \mathbb{C})$ solutions de $\sum_{k=0}^n y^{(k)} \omega^{n-k} = 0$.
- 105. Résoudre le système différentiel $\left\{ \begin{array}{l} x'=2x+3y+3z+te^t\\ y'=3x+2y+3z+e^t\\ z'=3x+3y+2z+t^2e^t \end{array} \right.$
- 106. (a) Résoudre l'équation : $(1+t^2)y'' + 4ty' + 2y = 0$ sur \mathbb{R} en cherchant des solutions développables en série entière.
 - (b) Résoudre: $(1+t^2)y'' + 4ty' + 2y = \frac{1}{1+t^2}$
- 107. Soient $T \in \mathbb{R}^{+*}$, A une application continue et T-périodique de \mathbb{R} dans $\mathcal{M}_n(\mathbb{C})$. Montrer qu'il existe une application X de classe C^1 de \mathbb{R} dans \mathbb{C}^n et $\lambda \in \mathbb{C}^*$ tels que $\forall t \in \mathbb{R}, \ X(t+T) = \lambda X(t)$.
- 108. Étudier la différentiabilité de la fonction f définie sur $\mathbb{R} \times \mathbb{R}$ par $f(x,y) = \frac{xy^2}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0.
- 109. On note T le triangle plein défini par les points (0,0), (1,0) et (0,1). Déterminer le minimum sur T de la fonction $f:(x,y)\mapsto x^2+y^2+\frac{1}{2}(1-x-y)$.
- 110. Soit $f:(\mathbb{R}^+)^2\to\mathbb{R}$ définie par f(0,0)=0 et $f(x,y)=\frac{xy}{(x+1)(y+1)(x+y)}$ sinon.

- (a) Montrer que f est continue.
- (b) Étudier les extrema de f
- 111. Soient E un espace vectoriel normé de dimension finie, f une forme linéaire sur E.

Montrer que l'application $g:x\in E\mapsto f(x)\,e^{-\|x\|^2}$ admet un minimum et un maximum, puis déterminer ce maximum et ce minimum.

112. Résoudre
$$\frac{\partial^2 f}{\partial x^2} - 3 \frac{\partial^2 f}{\partial x \partial y} + 2 \frac{\partial^2 f}{\partial y^2} = 0.$$

Ind. Utiliser le changement de variable (u, v) = (x + y, 2x + y).

113. (a) Soit $f \in C^1(\mathbb{R}^n, \mathbb{R})$.

Montrer que :
$$\forall x \in \mathbb{R}^n$$
, $f(x) = f(0) + \sum_{i=1}^n x_i \int_0^1 \frac{\partial f}{\partial x_i}(tx) dt$.

On pose
$$E = C^{\infty}(\mathbb{R}^n, \mathbb{R})$$
 et

$$D = \left\{ \phi \in \mathcal{L}(E, \mathbb{R}) ; \forall (f, g) \in E^2, \phi(fg) = f(0)\phi(g) + g(0)\phi(f) \right\}.$$

- (b) Montrer que la famille $(\phi_i)_{1 \leq i \leq n}$ est libre, avec : $\phi_i : f \mapsto \frac{\partial f}{\partial x_i}(0)$.
- (c) Montrer que D est de dimension finie.
- 114. Soient $A \in S_n^{++}(\mathbb{R})$ et $B \in \mathbb{R}^n$. On pose : $f : X \in \mathbb{R}^n \mapsto X^T A X 2B^T X$.

Montrer que f admet un minimum global et le déterminer.

115. Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ différentiable telle que : i) pour tout $x \in \mathbb{R}^n$, f(x) est injective; ii) $||f(x)|| \underset{||x|| \to +\infty}{\longrightarrow} +\infty$.

Soient $a \in \mathbb{R}^n$ et $g : x \in \mathbb{R}^n \mapsto ||f(x) - a||^2$.

- (a) Calculer g.
- (b) Montrer que g admet un minimum.
- (c) En déduire que f est surjective.

Probabilités

- 116. On tire au hasard un élément A de $P(\llbracket 1, n \rrbracket)$. Calculer la probabilité que CardA soit un entier pair.
- 117. On lance une pièce jusqu'à obtenir deux piles de plus que de faces ou deux faces de plus que de piles. On note $p \in]0,1[$ la probabilité que la pièce donne pile. On note X la variable aléatoire associée au nombre de lancers. Déterminer la loi de X et montrer que X est presque sûrement finie. La variable aléatoire X est-elle d'espérance finie?
- 118. On considère une urne remplie avec des boules numérotées de 1 à 2n. On procède à une suite de tirages sans remise.
 - (a) Calculer la probabilité que les boules impaires soient tirées exactement dans l'ordre $1, 3, \ldots, 2n-1$.
 - (b) Soit X la variable correspondant au nombre de tirages nécessaires pour obtenir toutes les boules impaires. Déterminer la loi et l'espérance de X.
- 119. On suppose que lorsqu'un enfant naît, il a une chance sur deux d'être un garçon. Dans une famille donnée, le nombre d'enfants est la variable aléatoire Z et le nombre de filles est X.
 - (a) Montrer que : $\forall t \in [0,1], G_X(t) = G_Z\left(\frac{1+t}{2}\right)$
 - (b) Expliciter la loi de X si Z suit une loi de Poisson de paramètre λ .
- 120. Soient $n \in \mathbb{N}^*$, σ une variable aléatoire suivant la loi uniforme sur S_n . Pour $m \in [\![1,n]\!]$, on note $X_m = \min \{k \in [\![1,n]\!], \ \sigma(k) \ge m\}$ et $Y_m = \max \{k \in [\![1,n]\!], \ \sigma(k) \ge m\}$. Calculer la loi de X_m et Y_m , et leur espérance.
- 121. Soient $\lambda > 0$ et X une variable aléatoire qui suit la loi de Poisson de paramètre λ . Soient $b \in \mathbb{N}^*$ et Y le reste de la division euclidienne de X par b. Déterminer la loi de Y.
- 122. Soit $p \in]0,1[$. Soit $(X_k)_{k \in \mathbb{N}^*}$ une suite de variables aléatoires i.i.d. vérifiant :

$$\mathbf{P}(X_k=1)=p$$
 et $\mathbf{P}(X_k=-1)=1-p$. Pour tout $n\in\mathbb{N}^*$, on pose $S_n=\sum_{k=1}^n X_k$. Montrer que $p=\frac{1}{2}$ si et seulement si : $\forall n\in\mathbb{N}^*, \max_{k\in\mathbb{Z}}\mathbf{P}(S_{2n}=k)=\mathbf{P}(S_{2n}=0)$.

- 123. Soient A, B, C des variables aléatoires indépendantes telles que A suive la loi de Rademacher, et B et C la loi géométrique de paramètre $p \in]0,1[$.
 - (a) Calculer la probabilité que le trinôme $AX^2 + BX + C^2$ admette deux racines réelles distinctes.

- (b) Calculer la probabilité que le trinôme $AX^2 + BX + C^2$ admette une unique racine réelle.
- (c) Calculer la probabilité que le trinôme $AX^2 + BX + C^2$ n'admette aucune racine réelle.
- (d) Cette dernière probabilité peut-être égale à $\frac{1}{2}$? Dans ce cas, donner une valeur approchée de p à 10^{-1} près.
- 124. Soit X une variable aléatoire à valeurs dans [a, b], d'espérance $\mathbf{E}(X) = m$.
 - (a) Montrer que $V(X) \le (m-a)(b-m)$.
 - (b) Montrer que cette inégalité est optimale.
- 125. Caractériser les couples (X, a) avec X variable aléatoire discrète complexe et $a \in \mathbb{C}$ tels que $X \sim aX$.
- 126. Soit $\alpha > 1$. On munit \mathbb{N}^* de la loi de probabilité \mathbf{P}_{α} définie par $\mathbf{P}_{\alpha}(\{n\}) = \frac{1}{\zeta(\alpha)n^{\alpha}}$ pour $n \geq 1$.
 - (a) Calculer $\mathbf{P}_{\alpha}(m\mathbb{N}^*)$ pour $m \geq 1$.
 - (b) On note $(p_k)_{k\geq 1}$ la suite strictement croissante des nombres premiers. Montrer que les $p_k\mathbb{N}^*$ sont mutuellement indépendants.
 - (c) En déduire la formule d'Euler $\zeta(\alpha) = \prod_{k=1}^{+\infty} \left(1 \frac{1}{p_k^{\alpha}}\right)^{-1}$.
- 127. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires i.i.d. suivant la loi géométrique de paramètre $p\in]0,1[$.

On pose : $Y_n = \min(X_1, \dots, X_n)$, $\alpha_n = \mathbf{E}(Y_n)$ et $Z_n = \max(X_1, \dots, X_n)$, $\beta_n = \mathbf{E}(Z_n)$.

- (a) Étudier la monotonie des suites (α_n) et (β_n) .
- (b) Exprimer α_n en fonction de n.
- (c) Déterminer la limite de (β_n) puis un équivalent simple.
- 128. Soient $p, q \in]0, 1[$. On considère deux variables aléatoires X et Y, indépendantes, suivant les lois géométriques de paramètres respectifs p et q. Soit $M = \begin{pmatrix} X & 1 \\ 0 & Y \end{pmatrix}$. Quelle est la probabilité que M soit diagonalisable ?
- 129. Soit X une variable aléatoire discrète à valeurs dans \mathbb{R}^{+*} telle que $\mathbf{E}\left(\frac{1}{X}\right)<+\infty$. Pour tout $t\in\mathbb{R}^{+}$, on pose : $F_X(t)=\mathbf{E}(e^{-tX})$.
 - (a) Montrer que F_X est bien définie (à valeurs réelles) et continue.
 - (b) Montrer la convergence et calculer $\int_0^{+\infty} F_X(t) dt$.
 - (c) Soient X et Y deux variables aléatoires indépendantes suivant la loi géométrique de paramètre $p \in]0,1[$. Calculer $\mathbf{E}\left(\frac{1}{X+Y}\right)$.
 - (d) Généraliser à m variables i.i.d. suivant la loi géométrique de paramètre p.
- 130. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires i.i.d. suivant la loi uniforme sur $\{-1,2\}$. On pose $S_0=0$ et, pour $n\in\mathbb{N}^*$, $S_n=X_1+\cdots+X_n$.

Pour $n \in \mathbb{Z}$, soit $A_n = (\exists k \ge 0, \ S_k = -n)$ et $p_n = \mathbf{P}(A_n)$.

- (a) Exprimer $P(\exists k > 0, S_k = 0)$ en fonction de p_{-1} et de p_2 .
- (b) Trouver une relation entre p_{n+2} , p_n et p_{n-1} .
- (c) En déduire la valeur de p_n .
- 131. Soit X une variable aléatoire à valeurs dans \mathbb{R}^+ .
 - (a) Montrer que $\mathbf{P}(X \ge x) \xrightarrow[x \to +\infty]{} 0$.
 - (b) On suppose que $\mathbf{E}(X) < +\infty$. Montrer que $\mathbf{P}(X \ge x) = o\left(\frac{1}{x}\right)$.
 - (c) Soit $(X_n)_{n\geq 1}$ une suite i.i.d. de variables aléatoires. On pose, pour $n\in\mathbb{N}^*$, $R_n=|\{X_1,\ldots,X_n\}|$.
 - (d) Donner un équivalent de $\mathbf{E}(R_n)$ lorsque les X_i suivent la loi géométrique de paramètre $p \in]0,1[$.
 - (e) Dans le cas général, montrer que $\mathbf{E}(R_n) = o(n)$.
- 132. (a) Soit (X_1, \dots, X_n) une famille i.i.d. de variables aléatoires de Rademacher, $S = \sum_{k=1}^n X_k$. Montrer que, si $t \in \mathbb{R}^+$, $\mathbb{E}(e^{tS}) \le \exp\left(-\frac{nt^2}{2}\right)$. En déduire que, si $a \in \mathbb{R}^{+*}$, $\mathbf{P}(|S| \ge a) \le 2e^{-\frac{a^2}{2n}}$.

- (b) Généraliser en supposant cette fois (X_1, \ldots, X_n) une famille i.i.d. de variables aléatoires discrètes à valeurs dans [-1, 1]
- 133. Soit $(X_i)_{i\in\mathbb{N}^*}$ une suite de variables aléatoires i.i.d. possédant un moment d'ordre 4. On pose : $m=\mathbf{E}(X_i)$ et $V_4=\mathbf{E}((X_i-m)^4)$.
 - (a) Justifier la bonne définition (dans \mathbb{R}) de m et V_4 .

Pour
$$\epsilon > 0$$
, on pose : $A_n^{\epsilon} = \left(\left| \frac{1}{n} \sum_{i=1}^n (X_i - m) \right| \ge \epsilon \right)$.

- (b) Montrer que $\mathbf{P}(A_n^{\epsilon}) \leq \frac{3V_4}{n^2 \epsilon^4} \cdot$
- (c) Montrer que $\mathbf{P}\left(\bigcap_{n=1}^{+\infty}\bigcup_{p=n}^{+\infty}A_{p}^{\epsilon}\right)=0.$
- (d) Montrer que $\mathbf{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\underset{n\to+\infty}{\longrightarrow}m\right)=1.$

Centrale - MP-MPI

Algèbre

- 134. On considère, pour $n \in \mathbb{N}$, $C_n = \frac{1}{n+1} \binom{2n}{n}$.
 - (a) Montrer que, pour tout $n \in \mathbb{N}$, $C_n \in \mathbb{N}^*$.
 - (b) Calculer $\sum_{k=0}^{n} C_k C_{n-k}$.
 - (c) Donner tous les entiers tels que C_n soit pair. En déduire tous les entiers tels que C_n soit impair.
- 135. Pour $n \in \mathbb{N}^*$, on note $\mathcal{P}(n)$ l'ensemble des nombres premiers inférieurs ou égaux à n et $P_n = \prod_{p \in \mathcal{P}(n)} p$.
 - (a) Montrer que $\forall n \geq 2, \, \frac{4^n}{2\sqrt{n}} < \binom{2n}{n} < 4^n.$
 - (b) Montrer que $\forall n \geq 1, \binom{2n+1}{n} < 4^n$.
 - (c) Montrer que $\forall n \in \mathbb{N}, P_{2n+1} < 4^n P_{n+1}$.
- 136. Soit (G, \cdot) un groupe fini commutatif tel que le nombre d'automorphismes de G est 3.
 - (a) Donner la définition d'un automorphisme. Montrer que $\varphi : x \mapsto x^{-1}$ est un automorphisme de G.
 - (b) Montrer que, pour tout $x \in G$, $x^2 = e$.
 - (c) Montrer que G possède un sous-groupe V d'ordre 4 et préciser les automorphismes de V.
- 137. Soient p un nombre premier tel que $p \equiv 3$ [4] et $C = \{x \in \mathbb{Z}/p\mathbb{Z}, \exists y \in \mathbb{Z}/p\mathbb{Z}, x = y^2\}$.
 - (a) Rappeler l'énoncé du petit théorème de Fermat. Montrer que $-1 \notin C$.

On pose
$$\pi_x = \prod_{y \in C \setminus \{x\}} (x+y)$$
 pour $x \in C \setminus \{0\}$ et $\pi = \prod_{x \neq y \in C} (x+y)$.

- (b) Déterminer le cardinal de C.
- (c) Montrer que $\forall x \in C \setminus \{0\}, \pi_x = \pi_1$.
- (d) Calculer π .
- 138. Soit A un anneau commutatif. On dit que A est noethérien lorsque tous ses idéaux sont engendrés par une partie finie de A.
 - (a) Les anneaux \mathbb{Z} et $\mathbb{R}[X]$ sont-ils noethériens?
 - (b) Montrer que A est noethérien si et seulement si toute suite croissante d'idéaux est stationnaire.
 - (c) Soit A un anneau non commutatif. On dit que \mathcal{I} est un idéal à gauche de A lorsque $\mathcal{I}A \subset \mathcal{I}$ (définition similaire pour un idéal à droite). Soit A noethérien, c'est-à-dire que tous les idéaux, à droite ou à gauche, de A sont de type fini. Montrer que l'inversibilité à gauche équivaut à l'inversibilité à droite, i.e. $\forall a \in A, \left(\exists b \in A, \ ab = 1 \Longleftrightarrow \exists b \in A, \ ba = 1\right)$.
 - *Ind.* Considérer $\varphi: x \mapsto ax$.
- 139. (a) Soit G un groupe commutatif fini. Si a et b sont deux éléments de G d'ordre premiers entre eux, quel est l'ordre de ab?
 - (b) Soit G un groupe commutatif fini. Montrer qu'il existe un élément de G dont l'ordre est le ppcm des ordres des éléments de G.

- (c) Soit p un nombre premier. Montrer que le groupe \mathbb{F}_p^* est cyclique.
- 140. Soit $(T_n)_{n\in\mathbb{N}}$ la suite de polynômes réels définie par $T_0(X)=1,\ T_1(X)=X$ et pour $n\in\mathbb{N}, T_{n+2}(X)=2XT_{n+1}(X)-T_n(X)$.
 - (a) Montrer que, pour $n \in \mathbb{N}$, $\forall \theta \in \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$.
 - (b) Montrer que $T_n \circ T_m = T_m \circ T_n$ pour $(m, n) \in \mathbb{N}^2$.
 - (c) Montrer que, pour $n \ge m$, $2T_nT_m = T_{n+m} + T_{n-m}$. On considère l'équation différentielle $(E): (1-x^2)P'^2 = n^2(1-P^2)$.
 - (d) Montrer que, pour $n \in \mathbb{N}$, T_n et $-T_n$ sont solutions de (E) sur \mathbb{R} .
 - (e) Montrer que tout polynôme solution de (E) est de degré n, puis déterminer les polynômes solution de (E) sur \mathbb{R} .
- 141. Soient $a_1 < a_2 < \dots < a_p$ et $b_1 < b_2 \dots < b_p$ des réels et $M = (e^{a_i b_j})_{1 \le i,j \le p}$.
 - (a) Montrer que pour des réels c_1, \ldots, c_p non tous nuls la fonction $x \mapsto \sum_{i=1}^p c_i e^{a_i x}$ s'annule au plus p-1 fois sur \mathbb{R} .
 - (b) Calculer $\det M$ lorsque $b_k = k 1$ pour tout k.
 - (c) Montrer que M est inversible, puis que $\det M > 0$.
- 142. (a) Rappeler la formule de développement d'un déterminant par rapport à une ligne ou une colonne. En déduire, pour $A \in \mathcal{M}_n(\mathbb{R})$, une relation entre $\operatorname{Com} A$, A et $\det A$.
 - (b) Soit $A=(a_{i,j})_{1\leq i,j\leq n}$ la matrice de $\mathcal{M}_n(\mathbb{R})$ définie par : $a_{i,i}=2,\,a_{i,j}=-1$ si |i-j|=1 et $a_{i,j}=0$ dans tout autre cas. Calculer le déterminant de A.
 - (c) Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice dont les coefficients diagonaux sont strictement positifs, dont les autres coefficients sont négatifs et telle que $\sum_{i=1}^n a_{i,j} > 0$ pour tout i. Montrer que A est inversible.
 - (d) Montrer que les coefficients de A^{-1} sont positifs.
- 143. (a) Énoncer et démontrer la caractérisation du rang par les matrices extraites.
 - (b) Soit $\Omega_n(\mathbb{K})$ l'ensemble des matrices $M=(M_{i,j})_{1\leq i,j\leq n}$ de $\mathcal{M}_n(K)$ telles que, pour tout $k\in [\![1,n]\!]$, la matrice $M_k:=(M_{i,j})_{1\leq i,j\leq k}$ soit inversible. Si $\mathbb{K}=\mathbb{R}$ ou \mathbb{C} , montrer que Ω_n est un ouvert de $\mathcal{M}_n(\mathbb{K})$.
 - (c) Montrer qu'une matrice M de $\mathcal{M}_n(\mathbb{K})$ appartient à $\Omega_n(\mathbb{K})$ si et seulement si M=LU avec U triangulaire supérieure inversible et L triangulaire inférieure inversible.

144. Soit
$$A = \begin{pmatrix} 0 & \cdots & 0 & a_1 \\ \vdots & & \ddots & \vdots \\ \vdots & \ddots & & \vdots \\ a_n & 0 & \cdots & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

- (a) Donner la définition du polynôme minimal π_A . Donner une condition nécessaire et suffisante pour que A soit diagonalisable.
- (b) Calculer $\det(A)$ et A^2 .
- (c) Montrer que A est diagonalisable si et seulement si $\ker(A) = \ker(A^2)$. Donner une condition sur les a_1, \ldots, a_n pour que A soit diagonalisable.
- 145. Soient E un espace vectoriel de dimension finie et f un endomorphisme de E diagonalisable. On note E_i ses sous-espaces propres et $n_i = \dim E_i$.

12

- (a) Montrer que $E = \bigoplus_{i=1}^{r} E_i$.
- (b) Soit g un endomorphisme de E. Montrer que les propositions suivantes sont équivalentes :
 - i) g commute avec f, ii) pour tout $i \in [1, r]$, $g(E_i) \subset E_i$.

En déduire que la dimension du commutant de f est $\sum_{i=1}^{n} n_i^2$.

- (c) Soit $A \in \mathcal{M}_n(\mathbb{C})$, montrer que la dimension du commutant de A est supérieure ou égale à n.
- 146. Soit $A \in \mathcal{M}_d(\mathbb{C})$. On note $\rho(A) = \max_{\lambda \in \operatorname{Sp}(A)} |\lambda|$. On pose, pour $n \in \mathbb{N}$, $u_n = \sqrt[n]{|\operatorname{tr}(A^n)|}$.
 - (a) Si $\mathrm{Sp}(A)$ est un singleton, montrer que (u_n) converge vers $\rho(A)$.
 - (b) Donner un exemple de matrice dans $\mathcal{M}_2(\mathbb{C})$ telle que (u_n) ne converge pas. On suppose maintenant que A a au moins deux valeurs propres distinctes.

- (c) Soit $z \in \mathbb{C}$ tel que |z| = 1. Montrer que 1 est valeur d'adhérence de (z^n) . Montrer que $\rho(A)$ est valeur d'adhérence de u_n .
- 147. Soit E un espace euclidien. Soit $s \in \mathcal{L}(E)$.
 - (a) Rappeler l'identité du parallélogramme et les identités de polarisation.
 - (b) Montrer l'équivalence suivante :
 - i) $\exists c \in \mathbb{R}, \ \forall (x,y) \in E^2, \ \langle s(x), s(y) \rangle = c \langle x, y \rangle,$
 - ii) $\forall (x,y) \in E^2, \langle x,y \rangle = 0 \implies \langle s(x), s(y) \rangle = 0$
- 148. (a) Montrer que $(P,Q)\mapsto \int_0^1 PQ$ définit un produit scalaire sur $\mathbb{R}_{n-1}[X]$. En déduire qu'il existe un unique $P\in\mathbb{R}_{n-1}[X]$ tel que $\int_0^1 x^k P(x)\,\dot{\mathbf{x}}=1$ pour $0\leq k\leq n-1$. On pose $P=a_0+a_1X+\cdots+a_{n-1}X^{n-1}$.
 - (b) Soit $f:[0,1]\to\mathbb{R}$ continue telle que $\int_0^1 x^k f(x)\,dx=1$ pour $0\le k\le n-1$. Montrer que $\int_0^1 f^2\ge \sum_{i=0}^{n-1} a_i$, puis que $\int_0^1 f^2\ge n^2$.
- 149. Soient $n \in \mathbb{N}$ et $\alpha > 0$. On note $S_{\alpha} = \{M \in \mathcal{S}_n^+(\mathbb{R}), \ \det M \ge \alpha\}$. Le but de cet exercice est de s'intéresser, pour $A \in \mathcal{S}_n^+(\mathbb{R})$, à la quantité $m_{\alpha}(A) = \inf_{M \in S_{\alpha}} \operatorname{tr}(AM)$.
 - (a) Montrer que les valeurs propres d'une matrice symétrique réelle sont réelles. Rappeler le théorème spectral. Justifier l'existence de $m_{\alpha}(I_n)$ puis la calculer.
 - (b) Soit $A \in \mathcal{S}_n^+(\mathbb{R})$. Justifier l'existence de $R \in \mathcal{S}_n^+(\mathbb{R})$ telle que $A = R^2$. Prouver l'unicité puis calculer $m_\alpha(A)$.
 - (c) Que se passe-t-il lorsque $\alpha = 0$?
- 150. Soient $d \in \mathbb{N}^*$, $A \in \mathcal{S}_n(\mathbb{R})$ à coefficients dans $\{0,1\}$ et de trace nulle.

On suppose que $A2 + A - (d-1)I_n = J_n$, J_n étant la matrice dont tous les coefficients valent 1.

- (a) Montrer que chaque ligne de A contient d coefficients égaux à 1.
- (b) Montrer que le vecteur $U = (1, \dots, 1)^T$ est propore pour la valeur propre d. En déduire que $n = d^2 + 1$.
- (c) Montrer que la multiplicité de d est égale à 1.
- (d) Montrer que les autres valeurs propres de M sont racines de $X^2 + X d + 1 = 0$.
- (e) Montrer qu'il existe deux entiers naturels m_1, m_2 tels que $m_1 + m_2 = n 1$ et $m_1r_1 + m_2r_2 = d = 0$ avec r_1 et r_2 sont les solutions de l'équation précédente.
- (f) Montrer que si $m_1 = m_2$ alors d = 2. On suppose d > 2 dans la suite.
- (g) Montrer qu'il existe un entier k tel que $4d-3=(2k+1)^2$ puis que $k^4\equiv 1$ [2k+1].
- (h) Montrer que, pour tout entier $k \in \mathbb{N}$, on a $16k^4 \equiv 1$ [2k+1]. En déduire qu'on a forcément $d \in \{2,3,7,57\}$.
- 151. Soit $A = \begin{pmatrix} A_1 & B \\ B^T & A_2 \end{pmatrix}$ une matrice symétrique définie positive avec $A_1 \in \mathcal{S}_p(\mathbb{R})$ et $A_2 \in \mathcal{S}_q(\mathbb{R})$.
 - (a) Montrer que A_1 et A_2 sont définies positives.
 - (b) Montrer qu'il existe R_1 et R_2 symétriques définies positives telles que $R_1^2 = A_1$ et $R_2^2 = A_2$.
 - (c) Montrer que $det(A) \leq det(A_1) det(A_2)$.
- 152. On considère la relation binaire pour $(A, B) \in (\mathcal{S}_n(\mathbb{R}))^2 A \leq B \Leftrightarrow B A \in \mathcal{S}_n^+(\mathbb{R})$.
 - (a) Montrer que l'on définit ainsi une relation d'ordre sur $S_n(\mathbb{R})$.
 - (b) Montrer qu'une partie de $S_n(\mathbb{R})$ est bornée si et seulement si elle est majorée et minorée pour \leq .
 - (c) Montrer que toute suite croissante majorée pour ≤ converge.
 - (d) Soient A et B dans $S_n^{++}(\mathbb{R})$. Montrer que $A \leq B \implies B^{-1} \leq A^{-1}$.

Analyse

- 153. Soient $(E, \| \|)$ un espace normé, F un sous-espace vectoriel fermé strict de E et $\delta \in]0,1[$. Montrer qu'il existe un vecteur unitaire u de E tel que $d(u,F) \geq \delta$.
- 154. Soient (E, N) et (E', N') deux espaces vectoriels normés.

Soit
$$d \in \mathbb{N}$$
. Pour $P(X) = p_0 + p_1 X + \dots + p_d X^d \in \mathbb{R}_d[X]$ on pose $||P|| = \max(|p_0|, \dots, |p_d|)$.

(a) Vérifier que l'application $\| \|$ est une norme sur $\mathbb{R}_d[X]$.

- (b) Soit $(y_n)_{n\in\mathbb{N}}$ une suite d'éléments de E, convergeant vers $\ell\in E$. Montrer que l'ensemble $Y = \{y_n, n \in \mathbb{N}\} \cup \{\ell\}$ est compact. Soit $f: E \to E'$ continue telle que, pour tout compact K de E', $f^{-1}(K)$ est un compact de E. Montrer que, si F est un fermé de E, alors f(F) est un fermé de E'.
- (c) Soit $P \in \mathbb{R}_d[X]$ un polynôme unitaire. Montrer que, si $x \in \mathbb{R}$ est une racine de P telle que |x| > 1, alors $|x| \le |P| + 1$. En déduire que l'ensemble des polynômes unitaires et scindés de $\mathbb{R}_d[X]$ est fermé dans $\mathbb{R}_d[X]$.
- 155. Soit (E, || ||) un espace vectoriel normé. Pour $A \subset E$ non vide et $x \in E$, on note $d(x, A) = \inf\{||x a||, a \in A\}$.
 - (a) On suppose A fermé. Soit $x \in E$. Montrer que d(x, A) = 0 si et seulement si $x \in A$.
 - (b) Soient $F \subsetneq E$ un sous-espace vectoriel fermé de E et $\delta \in]0,1[$. Montrer qu'il existe $x \in E$ unitaire vérifiant $d(x,F) \geq \delta$.
 - (c) On suppose E de dimension infinie et on admet que les sous-espaces vectoriels de dimension finie sont fermés. Montrer que la sphère unité n'est pas un compact de E.
- 156. Soient $(E, \| \|)$, $(E', \| \|)$ deux espaces vectoriels normés de dimension finie, A un fermé non vide de E, B une partie non vide de E'. Soit $f:A \to B$ continue bijective telle que l'image réciproque par f de toute partie bornée de B est bornée. Montrer que f^{-1} est continue.
- 157. Un espace normé réel est dit séparable lorsqu'il contient une partie dénombrable dense.
 - (a) L'espace \mathbb{R} est-il séparable?
 - (b) Montrer qu'un espace normé de dimension finie est séparable.
 - (c) Soit E un espace préhilbertien réel de dimension infinie. Montrer que E est séparable si et seulement s'il existe une suite orthonormée $(e_n)_{n\geq 0}$ telle que $\text{Vect }(e_n)_{n\geq 0}$ soit dense dans E.
- 158. Soit E l'espace des fonctions polynomiales de $\mathbb R$ dans $\mathbb R$. Pour tout $f \in E$, on note $\varphi(f)$ la primitive de f d'intégrale nulle sur l'intervalle [0, 1].
 - (a) Justifier la définition de φ puis établir qu'il s'agit d'une application linéaire sur E.

On munit E de la norme $\| \|_{\infty}$ sur [0,1].

On munit
$$E$$
 de la norme $\| \|_{\infty}$ sur $[0,1]$.

On note $\|\varphi\|_{\mathrm{op}} = \sup \left\{ \frac{\|\varphi(f)\|_{\infty,[0,1]}}{\|f\|_{\infty,[0,1]}}, \ f \in E \setminus \{0_E\} \right\}$.

- (b) Montrer que $\|\varphi\|_{op}$ est correctement définie et en trouver un majorant.
- (c) Soient $f \in E$ et G la primitive de $F = \varphi(f)$ nulle en 0. Établir que, pour tout x > 0, $G(x) = xF(x) \int_0^x tf(t)dt = \int_0^x tf(t)dt$ $(x-1)F(x) - \int_{-\infty}^{1} (1-t)f(t)dt.$
- (d) Déterminer la norme $\|\varphi\|_{op}$.
- 159. Soient (a_n) une suite à termes réels positifs et (b_n) une suite à termes complexes. On suppose que la série $\sum a_n$ diverge et que $b_n \sim a_n$. On note $S_n = \sum_{k=0}^n a_k$.
 - (a) Montrer que la série $\sum b_n$ diverge et que les sommes partielles des deux séries sont équivalentes.
 - (b) On suppose qu'il existe $\lambda \in \mathbb{R}^{+*}$ tel que $\frac{S_n}{na_n} \xrightarrow[n \to +\infty]{} \lambda$. Déterminer la limite de $\frac{1}{n^2a_n} \sum_{k=0}^{n} ka_k$.
- 160. (a) Rappeler la règle de d'Alembert pour une série numérique à termes positifs.
 - (b) On considère une suite croissante $(q_n)_{n>1}$ d'entiers ≥ 2 .
 - (c) Quel est le rayon de convergence de la série entière $\sum \frac{z^n}{a_n a_n}$?
 - (d) Montrer que si la suite (q_n) est stationnaire alors le réel $x = \sum_{n=1}^{+\infty} \frac{1}{q_1...q_n}$ appartient à $\mathbb{Q} \cap]0,1]$.
 - (e) On admet réciproquement que si (q_n) tend vers $+\infty$ alors $x \notin \mathbb{Q}$. Montrer que les réels e, $\operatorname{ch}(\sqrt{2})$ et $e^{\sqrt{2}}$ sont irrationnels.
 - (f) difficile. Montrer la réciproque admise ci-dessus.
- 161. Soit $I =]-1, +\infty[$. On dit que $f \in \mathcal{C}^0(I, \mathbb{R})$ vérifie (*) si et seulement si :

$$\forall x, y \in I, f(x) + f(y) = f(x + y + xy).$$

On pose, pour
$$n \in \mathbb{N}$$
, $x_n = \frac{1}{(n+2)(2n+1)}$ et $y_n = \frac{n}{n+1}$. Soit $f \in \mathcal{C}^0(I, \mathbb{R})$.

- (a) Simplifier $x_n + y_n + x_n y_n$. Montrer que la série de terme général $f(x_n)$ converge et exprimer $\sum_{n=0}^{+\infty} f(x_n)$ en fonction de f(1).
- (b) Montrer que f est dérivable.
- (c) Trouver toutes les fonctions continues vérifiant (*).
- 162. (a) Soit $g:[a,b] \to \mathbb{R}$ continue et injective. Montrer que g est strictement monotone. On cherche les fonctions g continues sur \mathbb{R} telles que, pour tout $x \in \mathbb{R}$, $g^2(x) = 2g(x) x$.
 - (b) Montrer qu'une telle fonction est bijective et strictement croissante.
 - (c) Exprimer g^n pour tout $n \in \mathbb{N}$ puis conclure.
- 163. (a) Rappeler la définition d'une fonction lipschitzienne. Montrer qu'une fonction lipschitzienne est continue. Soient $\alpha \in]0,1]$ et

$$H_{\alpha} = \{ f : [0,1] \to \mathbb{R} \mid \exists L > 0, \, \forall (x,y) \in [0,1], \, |f(x) - f(y)| \le L|x - y|^{\alpha} \}.$$

- (b) Montrer H_{α} est un \mathbb{R} -espace vectoriel, que si $0 < \alpha \le \beta \le 1$, alors $H_{\beta} \subset H_{\alpha}$. Vérifier que $x \mapsto x^{\alpha} \in H_{\alpha}$.
- (c) Montrer que, pour $0 < \alpha < \beta \le 1$, H_{β} est strictement inclus dans H_{α} .
- (d) Montrer que $C^1([0,1],\mathbb{R}) \subset H_\alpha \subset C^0([0,1],\mathbb{R})$ et que ces inclusions sont strictes.
- 164. (a) Soient a,b dans $\bar{\mathbb{R}}$ avec a < b et $f:]a,b[\to \mathbb{R}$ dérivable. On suppose que f admet la même limite finie ℓ en a et en b. Montrer qu'il existe $c \in [a,b[$ tel que f'(c)=0.
 - (b) Soit $f: x \in]-1,1[\mapsto e^{\frac{1}{x^2-1}}$. Montrer que f est de classe \mathcal{C}^{∞} sur]-1,1[et que, pour tout $n \in \mathbb{N}$, il existe un polynôme P_n tel que $f^{(n)}(x) = \frac{P_n(x)}{(x^2-1)^{2n}} f(x)$. Quel est le degré de P_n ?
 - (c) Combien $f^{(n)}$ a-t-elle de zéros?
- 165. (a) Donner la définition de la multiplicité d'une racine d'un polynôme puis sa caractérisation à l'aide des dérivées successives du polynôme.
 - (b) Soit $P \in \mathbb{C}[X]$ non nul. Exprimer P'/P à l'aide des racines de P.
 - (c) Soit r > 0. On suppose que P ne s'annule pas sur le cercle C(0,r) du plan complexe. On pose $N_r(P) = \frac{1}{2\pi} \int_0^{2\pi} \frac{P'(re^{it})}{P(re^{it})} re^{it} dt$. Montrer que $N_r(P)$ est égal au nombre de racines de P (comptées avec multiplicité) dans le disque D(0,r).
- 166. Soit E l'ensemble des fonctions $f \in C^0(\mathbb{R}^+, \mathbb{R})$ telles que $\int_0^{+\infty} f^2 < \infty$. Soit $f \in E$. On pose $||f|| = \left(\int_0^{+\infty} f^2\right)^{1/2}$ et on définit l'application Tf par : Tf(0) = f(0) et, pour tout x > 0, $Tf(x) = \frac{1}{x} \int_0^x f$.
 - (a) Rappeler le théorème concernant la dérivabilité des fonctions $x \mapsto \int_a^x f$.
 - (b) Montrer que Tf est continue.
 - (c) Montrer que, pour tout x > 0, on a $Tf(x)^2 \le \frac{1}{x} \int_0^x f(t)^2 dt$.
 - (d) Soit A>0. Montrer que $\int_0^A Tf(x)^2 \,\mathrm{d}x \leq 2\int_0^A \frac{f(x)}{x} \left(\int_0^x f\right) \,\mathrm{d}x$. En déduire que $Tf\in E$ et que $\|Tf\|\leq 2\|f\|$ (*).
 - (e) Montrer que la constante 2 est optimale dans l'inégalité (*). On pourra considérer les fonctions $f_a: t \mapsto t^{-a}$.
- 167. Soit $f \in C^1(\mathbb{R}^+, \mathbb{R}^{+*})$ croissante telle que $\frac{f'(x)}{f(x)} \underset{x \to +\infty}{\sim} \frac{a}{x}$ avec a > 0.
 - (a) Citer le théorème d'intégration des relations de comparaison, puis trouver un équivalent de $\ln(f(x))$ quand $x \to +\infty$.
 - (b) Donner le domaine de définition de $u: x \mapsto \sum_{n=0}^{+\infty} f(n) e^{-nx}$. Déterminer les limites de u aux bornes de son domaine de définition.
 - (c) (difficile) Montrer qu'il existe $C \in \mathbb{R}$ tel que $u(x) \sim \frac{C}{x} f\left(\frac{1}{x}\right)$ lorsque $x \to 0^+$.
- $168. \ \, \text{Soient} \,\, \alpha \in \mathbb{N} \,\, \text{avec} \,\, \alpha \geq 2 \,\, \text{et} \,\, \beta \in]1, +\infty[. \,\, \text{Soit} \,\, f: t \mapsto \sum_{n \geq 0} \frac{\cos(2\pi\alpha^n t)}{\beta^n}.$

- (a) Montrer que f est définie et continue. Si $\alpha < \beta$, montrer que f est dérivable sur \mathbb{R} .
- (b) On suppose $\alpha \geq \beta$. Montrer que f n'est pas dérivable en 0.
- 169. On considère la série entière $S(x) = \sum_{n=0}^{+\infty} a_n x^n$ avec $a_n = \frac{1}{n!} \int_0^1 \prod_{k=0}^{n-1} (t-k) dt$ et $a_0 = 1$.
 - (a) Montrer que le rayon de convergence R est ≥ 1 .
 - (b) Calculer S(x) pour |x| < 1 puis montrer que R = 1.
 - (c) Déterminer un équivalent de a_n .
- 170. Soient $(a_n)_{n\geq 1}$ une suite de carré sommable et $f:t\mapsto \sum_{n=1}^{+\infty}\frac{a_n}{n-t}$.
 - (a) Préciser le domaine de définition de f.
 - (b) Montrer que f est développable en série entière autour de 0.
 - (c) Montrer que si f est identiquement nulle sur [-1/2, 1/2] alors la suite (a_n) est nulle.
- 171. (a) a Rappeler la définition d'une fonction f développable en série entière en 0 et préciser une expression de $f^{(k)}(0)$ en fonction des coefficients pour $k \in \mathbb{N}$.
 - (b) b Soit f une fonction de classe C^{∞} au voisinage de 0 pour laquelle il existe $\alpha > 0$, M > 0 et a > 0 tels que $\forall x \in]-\alpha, \alpha[, \forall k \in \mathbb{N}, |f^{(k)}(x)| \leq Ma^kk!$.

Montrer que f est développable en série entière en 0.

- (c) c Soit f une fonction développable en série entière en 0. Montrer l'existence de $\alpha>0, M>0$ et a>0 tels que $\forall x\in]-\alpha,\alpha[,\ \forall k\in \mathbb{N},\ |f^{(k)}(x)|\leq Ma^kk!.$
- 172. Soient E un \mathbb{C} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Montrer qu'il existe r > 0 tel que, pour tout $t \in]-r,r[$, $\det(\mathbf{Id}-tu) = \exp\Big(-\sum_{k=1}^{+\infty}\frac{t^k\operatorname{tr}(u^k)}{k}\Big).$
- 173. (a) Montrer le théorème d'intégration des séries uniformément convergentes sur un segment.
 - $\text{(b) Pour } a,b \in \mathbb{R} \text{ avec } a < b,\gamma: [a,b] \to \mathbb{C} \text{ de classe } C^1 \text{ et } f: \mathbb{C} \to \mathbb{C} \text{ continue, on pose } \int_{\gamma} f(z) \, \mathrm{d}z = \int_a^b f(\gamma(t)) \gamma'(t) \, \mathrm{d}t.$

Même définition lorsque f est à valeurs dans $\mathcal{M}_n(\mathbb{C})$.

On note, pour r > 0, $\gamma_r : t \in [0, 2\pi] \mapsto re^{it}$.

Soit $F:\mathbb{C}\to\mathbb{C}$ la somme d'une série entière de rayon de convergence infini. Soient $a\in\mathbb{C}$ et r>|a|. Montrer que $f(a)=\frac{1}{2i\pi}\int_{\gamma_r}\frac{f(z)}{z-a}\,\mathrm{d}z$.

- (c) En déduire, pour toute matrice $M \in \mathcal{M}_n(\mathbb{C})$ et pour r assez grand (à préciser), l'égalité $\exp(M) = \frac{1}{2i\pi} \int_{\gamma_r} e^z (zI_n M)^{-1} dz$.
- 174. (a) Soient E un espace euclidien, U un ouvert de E, et $f:U\to\mathbb{R}$ une application de classe \mathcal{C}^1 . Rappeler la définition de la différentielle $\mathrm{d}f(a)$ de f en $a\in U$ et du gradient $\nabla f(a)$, ainsi que l'expression de $\nabla f(a)$ en base orthonormale.
 - (b) On munit $\mathcal{M}_n(\mathbb{R})$ de sa structure euclidienne canonique. Montrer que $\nabla(\det)(A) = \operatorname{Com}(A)$.
 - (c) Quel est le coefficient de X dans χ_A ?
 - (d) Déterminer l'espace tangent à $\mathbb{SL}_n(\mathbb{R})$ en I_n .
- 175. Soient $A \in \mathcal{S}_n^{++}(\mathbb{R}), b \in \mathbb{R}^n$ et $J: x \mapsto \frac{1}{2} \langle Ax, x \rangle \langle b, x \rangle$.
 - (a) Montrer que J est strictement convexe.
 - (b) Montrer que $J(x) \to +\infty$ quand $||x|| \to +\infty$.
 - (c) En déduire que J admet un minimum.
 - (d) Calculer ∇J et conclure quant au minimum de J.
- 176. Soient (E, \langle , \rangle) un espace préhilbertien réel et F un sous-espace vectoriel de dimension finie de E.
 - (a) Pour tout $x \in E$, exprimer la projection orthogonale de x sur F à l'aide d'une base orthonormale de F. Justifier la formule.
 - (b) On définit la fonction $d_F: E \setminus F \to \mathbb{R}, x \mapsto d(x, F)$. Montrer que d_F est différentiable, et calculer sa différentiable.

Probabilités

177. On note d_n le nombre de dérangements de n objets, c'est-à-dire le nombre de permutations $\sigma \in \mathcal{S}_n$ sans point fixe.

(a) Soit
$$n \in \mathbb{N}$$
. Montrer $\sum_{k=0}^{n} \binom{n}{k} d_{n-k} = n!$.

- (b) Montrer que la série entière $\sum \frac{d_n}{n!} t^n$ a un rayon de convergence supérieur ou égal à 1. On note D(t) la somme de cette série.
- (c) Calculer $e^t D(t)$.
- (d) En déduire que $d_n=n!\sum_{k=0}^n \frac{(-1)^k}{k!}$.
- (e) Calculer la limite lorsque n tend vers $+\infty$ de la probabilité p_n qu'un élément de \mathcal{S}_n soit un dérangement.
- 178. Pour $A_1, ..., A_n$ parties finies d'un ensemble E, on admet que

$$\left| \bigcup_{i=1}^n A_i \right| = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |A_{i_1} \cap \dots \cap A_{i_k}|.$$

- (a) Expliciter la formule précédente pour n=2 et n=3. La démontrer pour n=2.
- (b) On définit une fonction μ sur \mathbb{N}^* par $\mu(1)=1$, $\mu(n)=(-1)^k$ si l'entier $n\geq 2$ s'écrit $n=p_1...p_k$ où p_1,\ldots,p_k sont k nombres premiers distincts et $\mu(n)=0$ sinon.

Calculer la probabilité que deux entiers choisis aléatoirement dans l'ensemble $\{1,2,...,n\}$ soient premiers entre eux à l'aide de la fonction μ .

179. (a) Rappeler les formules des probabilités totales et composées.

On fixe $d \in \mathbb{N}^*$ et $(U_n)_{n \geq 1}$ une suite de variables aléatoires indépendantes uniformément distribuées sur [1, d]. Soit $N_d = \inf\{n \geq 2, \ U_n \in \{U_1, \dots, U_{n-1}\}\}$.

- (b) Quelles sont les valeurs prises par N_d ?
- (c) Montrer que $\mathbf{P}(N_d>k)=rac{d!}{d^k(d-k)!}$ pour tout $k\in \llbracket 0,d
 rbracket$
- (d) Pour tout réel x > 0, calculer $\lim_{d \to +\infty} \mathbf{P}\left(\frac{N_d}{\sqrt{d}} > x\right)$.
- 180. (a) Soient x>0 et X_x une variable de Poisson de paramètre x. Calculer l'espérance de X_x . Montrer que $\mathbf{P}(|X_x-\mathbf{E}(X_x)|\geqslant \varepsilon x)=O\left(\frac{1}{x}\right)$ quand $x\to+\infty$.

Soient
$$\alpha \in \mathbb{R}$$
 et $u_{\alpha} : x \mapsto \sum_{n=1}^{+\infty} \frac{n^{\alpha}}{n!} x^{n}$.

- (b) Déterminer le domaine de définition de u_{α} .
- (c) Déterminer u_1 et u_2 .
- (d) Montrer que, pour tout $\alpha < 0$, $u_{\alpha}(x) = o(e^x)$ quand $x \to +\infty$.
- (e) Montrer que, si $\alpha \in]-1,0[$, $u_{\alpha}(x) \sim x^{\alpha}e^{x}$ quand $x \to +\infty$.

CCINP-Petites Mines-Ecoles militaires

Algèbre

- 181. [CCINP]
 - (a) Soient $a, b, c \in \mathbb{Z}^*$ avec $a \wedge b = 1$. Montrer que, si a divise c et b divise c alors ab divise c.
 - (b) Trouver une solution de (*): $x \equiv 6$ [17] et $x \equiv 4$ [15].
 - (c) Trouver toutes les solutions de (*).
- 182. [IMT] Soit S l'ensemble des couples $(P,Q) \in \mathbb{R}[X]^2$ tels que $(X-1)^n Q(X) + X^n P(X) = 1$.
 - (a) Montrer l'existence et l'unicité d'un couple $(P_0, Q_0) \in \mathbb{R}_{n-1}[X]^2$ dans S.
 - (b) Déterminer S.
- 183. [St Cyr] Soit $P \in \mathbb{C}[X]$ un polynôme unitaire de degré 3 dont les racines z_1, z_2, z_3 sont les affixes de points M_1, M_2, M_3 d'un plan affine euclidien. Montrer que P' a une racine double si et seulement si le triangle $M_1M_2M_3$ est équilatéral.
- 184. [CCINP] Soit $P \in \mathbb{R}[X]$ un polynôme unitaire de degré $n \in \mathbb{N}^*$, à coefficients dans $\{-1,0,1\}$. On suppose que $P(0) \neq 0$ et que P est scindé sur \mathbb{R} , et on note x_1,\ldots,x_n ses racines. On note également $\sigma_1 = \sum_{i=1}^n x_i, \, \sigma_2 = \sum_{1 \leqslant i < j \leqslant n} x_i x_j$ et $\sigma_n = \prod_{i=1}^n x_i$.
 - $\text{(a) Montrer que } \ln \left(\frac{1}{n}\sum_{i=1}^n x_i^2\right) \geqslant \frac{1}{n}\sum_{i=1}^n \ln(x_i^2), \text{ puis que } \left(\prod_{i=1}^n x_i^2\right)^{1/n} \leqslant \frac{1}{n}\sum_{i=1}^n x_i^2.$
 - (b) Quelles sont les valeurs possibles de σ_1 , σ_2 , σ_n ?
 - (c) Montrer que $\sum_{i=1}^{n} x_i^2 \leq 3$.
 - (d) Déterminer tous les polynômes $P \in \mathbb{R}[X]$ scindés sur \mathbb{R} et à coefficients dans $\{-1,0,1\}$.
- 185. [CCINP] On note S l'espace vectoriel des suites complexes. On considère l'endomorphisme (de décalage) de S défini par $L((u_n)_{n\in\mathbb{N}})=(u_{n+1})_{n\in\mathbb{N}}$.
 - (a) Soit $\lambda \in \mathbb{C}$. Trouver le noyau de $L \lambda \mathbf{Id}$ et celui de $(L \lambda \mathbf{Id})^2$.
 - (b) On note F le sous-espace vectoriel de S des suites (u_n) vérifiant :

$$\forall n \in \mathbb{N}, u_{n+4} = \frac{1}{2}u_{n+3} + 3u_{n+2} - \frac{7}{2}u_{n+1} + u_n.$$

- (c) Montrer que $F = \ker (2L \mathbf{Id}) \oplus \ker (L + 2\mathbf{Id}) \oplus \ker (L \mathbf{Id})^2$.
- (d) Déterminer la dimension de F et une base de F.
- 186. [CCINP] Soient $A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 2 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$.
 - (a) Quel est le rang de A? Donner une base de l'image de A.
 - (b) Donner une équation de l'image de A. Le vecteur B appartient-il à l'image de A?

- 188. [IMT] La matrice $A = \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ est-elle inversible? Déterminer A^n pour tout $n \in \mathbb{Z}$.
- 189. [St Cyr] (avec Python)

Soit
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$
.

- (a) Montrer que, pour tout $n \in \mathbb{N}^*$, il existe $\alpha_n, \beta_n \in \mathbb{R}$ tels que $A^n = \alpha_n A + \beta_n A^2$.
- (b) Programmer une fonction Python puissance(n) renvoyant A^n .

- (c) Déterminer α_n et β_n grâce à cette fonction.
- (d) Tracer $n \mapsto \frac{\alpha_n}{\beta_n}$. Conjecture?
- (e) Prouver cette conjecture.
- 190. [IMT] Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. On suppose que A est inversible, que B est nilpotente et que A et B commutent.
 - (a) Montrer que A B et A + B sont inversibles.
 - (b) Si A et B ne commutent pas, montrer qu'alors A+B n'est pas forcément inversible.
- 191. [IMT] Soit $f \in \mathcal{L}(\mathbb{R}^4)$ telle que $f \circ f = 0$. Montrer que $\operatorname{rg}(f) \leq 2$.
- 192. [IMT] Soient P le plan de \mathbb{R}^3 d'équation x+y+z=0 et D la droite d'équation $x=\frac{y}{2}=\frac{z}{3}$. Écrire la matrice dans la base canonique du projecteur sur P parallèlement à D.
- 193. [IMT] Soient E un espace vectoriel et u un endomorphisme nilpotent de E. Soit $x \in E$ et $k \in \mathbb{N}$ tels que $u^k(x) \neq 0$. Montrer que $(x, u(x), \dots, u^k(x))$ est libre.
- 194. [IMT]
 - (a) Soient $n \in \mathbb{N}^*$, u et v deux endomorphismes nilpotents non nuls de \mathbb{R}^n tels que $u \circ v = v \circ u$. Montrer que $\operatorname{rg}(u \circ v) < \operatorname{rg}(v)$.
 - (b) Montrer que la composée de n endomorphismes nilpotents de \mathbb{R}^n qui commutent deux à deux est nulle.
- 195. [Navale] Soient E un espace vectoriel de dimension $n \ge 1$ et p_1, \ldots, p_n des endomorphismes non nuls vérifiant $\forall i, j \in [\![1, n]\!], p_i \circ p_j = \delta_{i,j} p_i, \delta$ désignant le symbole de Kronecker.
 - (a) Montrer que les sous-espaces vectoriels $\text{Im}(p_i)$, avec $1 \le i \le n$, sont en somme directe.
 - (b) Montrer que les p_i sont de rang 1.
- 196. [IMT] Soient E un espace vectoriel de dimension finie et f un endomorphisme de E. Montrer que $rg(f) + rg(f^3) \ge 2rg(f^2)$.

 Ind. Utiliser le théorème du rang pour les restrictions de f à Im(f) puis $Im(f^2)$.
- 197. [IMT] Soit $A \in \mathcal{M}_{3,2}(\mathbb{R})$ et $B \in \mathcal{M}_{2,3}(\mathbb{R})$. On suppose que AB est semblable à la matrice diagonale $\operatorname{diag}(0,9,9)$. Calculer le rang de BA et déterminer BA.
- 198. [CCINP] Soit $u \in \mathcal{L}(\mathbb{R}^3)$ non nul tel que $u^3 + u = 0$.
 - (a) Montrer que $E = \ker(u) \oplus \operatorname{Im}(u)$ et que $\operatorname{Im}(u) = \ker(u^2 + \operatorname{Id})$.
 - (b) Montrer que u n'est pas injective, puis que rg(u) = 2.
 - (c) Montrer qu'il existe une base de E dans laquelle la matrice de u est $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.
- 199. [IMT] Soient $a,b,c \in \mathbb{R}^{+*}$ et $M = \begin{pmatrix} 1 & \frac{b}{a} & \frac{c}{a} \\ \frac{a}{b} & 1 & \frac{c}{b} \\ \frac{a}{c} & \frac{b}{c} & 1 \end{pmatrix}$. Déterminer les valeurs propres et les espaces propres de M.
- $\mbox{200. [IMT] Soient } A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \mbox{ et } C = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$
 - (a) La matrice A est-elle diagonalisable?
 - (b) On veut montrer qu'il n'existe pas de matrice B telle que $B^2 = A$. On suppose l'existence d'une telle matrice. Trouver un polynôme annulateur simple de B. Conclure.
 - (c) Montrer que A est semblable à C.
- 201. [CCINP] Soient $a, b \in \mathbb{R}$ distincts, $n \in \mathbb{N}$ et $u : P \in \mathbb{C}_n[X] \mapsto (X a)(X b)P' nXP$.
 - (a) Montrer que $u \in (\mathbb{C}_n[X])$.
 - (b) Pour $P \in \mathbb{C}_n[X]$, donner la décomposition en éléments simples de P'/P.
 - (c) c Montrer que u est diagonalisable et donner ses vecteurs propres.
- 202. [IMT] Soit $(A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$.
 - (a) Montrer qu'il existe $p \in \mathbb{N}$ tel que $\forall k \geq p, A + \frac{1}{k}I_n \in \mathcal{GL}_n(\mathbb{C})$.
 - (b) Montrer que $\chi_{AB} = \chi_{BA}$.
- 203. [IMT] Soient E un \mathbb{C} -espace vectoriel, $u \in \mathcal{L}(E)$ diagonalisable, $e = (e_1, ..., e_n)$ une base de vecteur propre.
 - (a) Montrer que $\chi_u(u) = 0$ sans utiliser le théorème de Cayley-Hamilton.

(b) On écrit $x = \sum_{i=1}^{n} x_i e_i$. Calculer $\det_e(x, u(x), ..., u^{n-1}(x))$.

204. [IMT]

(a) Soit $A \in \mathcal{M}_n(\mathbb{K})$. La matrice A admet-elle toujours une valeur propre?

(b) Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $A^2 + A + I_n = 0$. Que dire du spectre réel de A? du spectre complexe?

205. [CCINP]

(a) Localiser les racines réelles de $X^3 - X - 1$.

(b) Soit $A \in \mathcal{M}_n(\mathbb{R})$. Déterminer $\chi_A(0)$, $\lim_{n \to \infty} \chi_A$ et $\lim_{n \to \infty} \chi_A$.

(c) Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $A^3 = A + I_n$. Montrer que $\det(A) > 0$.

206. [IMT] Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $4A^3 + 4A^2 + A = 0$.

(a) Étudier la convergence et la limite éventuelle de la suite $(A^k)_{k \in \mathbb{N}}$.

(b) Qu'en déduire sur la matrice A?

207. [IMT] Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $B = A^3 + A + I_n$.

(a) On suppose que A est diagonalisable, à valeurs propres réelles. Montrer que A est un polynôme en B.

(b) Est-ce encore vrai si les valeurs propres de A sont complexes?

208. [IMT]

(a) Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 + A + I_n = 0$. Montrer que n est pair.

(b) Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 + A^2 + A = 0$. Montrer que $\operatorname{rg}(A)$ est pair.

209. [CCINP] Soit $A \in \mathcal{M}_n(\mathbb{C})$ vérifiant $A^2 + A^T = I_n$.

(a) Justifier que, pour tout $M \in \mathcal{M}_n(\mathbb{C})$, $\operatorname{Sp} M = \operatorname{Sp} M^T$.

(b) Montrer que A est inversible si et seulement si $1 \notin \operatorname{Sp} A$.

(c) Montrer que le polynôme $X^4 - 2X^2 + X$ est annulateur de A. La matrice A est-elle diagonalisable?

210. [CCINP] Soient $n \in \mathbb{N}^*$, $(\lambda, \mu) \in \mathbb{C}^{*2}$, $(M, A, B) \in \mathcal{M}_n(\mathbb{C})^3$ telles que $A + B = I_n$, $M = \lambda A + \mu B$, $M^2 = \lambda^2 A + \mu^2 B$.

(a) Déterminer $M^2 - (\lambda + \mu)M + 2\lambda\mu I_n$.

(b) Montrer que M est inversible et calculer M^{-1} .

(c) Montrer que A et B sont des matrices de projecteurs.

(d) La matrice M est-elle diagonalisable? Déterminer son spectre.

211. [IMT] Soient E un \mathbb{K} -espace vectoriel de dimension finie, $u \in \mathcal{L}(E)$.

On pose $\Phi_u : v \in \mathcal{L}(E) \mapsto u \circ v \in \mathcal{L}(E)$.

(a) Quels sont les éléments propres de ϕ_u ?

(b) Montrer que ϕ_u est diagonalisable si et seulement si u est diagonalisable.

212. [IMT] (difficile)

Soit $M \in \mathcal{M}_2(\mathbb{Z})$ pour laquelle qu'il existe $n \geq 1$ telle que $M^n = I_2$. Montrer que $M^{12} = I_2$.

213. [CCINP] Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$.

(a) Montrer que, pour $P \in \mathbb{R}[X]$, $P(B) = \begin{pmatrix} P(A) & AP'(A) \\ 0 & P(A) \end{pmatrix}$.

(b) Donner une condition nécessaire et suffisante sur A pour que B soit diagonalisable.

214. [St Cyr] avec python

Soit $n \in \mathbb{N}$, avec $n \geqslant 3$. On note U l'application qui à un polygone P constitué de n points M_1, \ldots, M_n du plan complexe associe le polygone :

 $\frac{M_1+M_2}{2},\ldots,\frac{M_{n-1}+M_n}{2},\frac{M_n+M_1}{2}.$

(a) Écrire une fonction Python calculant U(P).

- (b) L'application U est visiblement linéaire. Donner sa matrice dans la base canonique. C'est une matrice stochastique que l'on notera M.
- (c) Montrer que les valeurs propres de M sont de module au plus égal à 1.
- (d) Montrer que 1 est la seule valeur propre de M de module 1.
- 215. [IMT] Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ et (E) l'équation AM = MB.
 - (a) On suppose que (E) admet une solution $M \neq 0$. Montrer que $\forall P \in \mathbb{C}[X], P(A)M = MP(B)$. Montrer que A et B admettent une valeur propre commune.
 - (b) Établir la réciproque.

216. [IMT]

(a) Soient E un \mathbb{R} -espace vectoriel de dimension finie et u un endomorphisme de E. On note $\lambda_1,\ldots,\lambda_p$ ses valeurs propres distinctes et $P=\prod_{k=1}^p (X-\lambda_i)$.

Donner une condition nécessaire et suffisante portant sur P pour que u soit diagonalisable et la démontrer.

- (b) Soit $f \in \mathcal{L}(\mathbb{R}^7)$. Est-il possible d'avoir simultanément $Q = (X 1)(X^2 + 1)$ annulateur de f et Tr(f) = 0?
- (c) Soit $g \in \mathcal{L}(\mathbb{R}^7)$ tel que Q(g) = 0. Calculer $\det(g)$.

217. [CCINP]

Soit
$$\phi: M \in \mathcal{M}_n(\mathbb{R}) \mapsto M + \operatorname{tr}(M)I_n$$
.

- (a) Montrer que ϕ est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- (b) Cet endomorphisme est-il diagonalisable?
- (c) Trouver une base des sous-espaces propres de ϕ .
- (d) Déterminer $\operatorname{tr} \phi$ et $\det \phi$.
- (e) L'endomorphisme ϕ est-il inversible? Si oui, déterminer ϕ^{-1} .

St Cyr Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $\phi : M \in \mathcal{M}_n(\mathbb{C}) \mapsto AM$.

- (a) Donner une condition nécessaire et suffisante portant sur A pour que ϕ soit diagonalisable.
- (b) Décrire les éléments propres de ϕ .
- 218. [CCINP] Soient $a \in \mathbb{R}^*$, $U = (a^{j-i})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$ et $u \in \mathcal{L}(\mathbb{R}^n)$ canoniquement associé à U.
 - (a) Déterminer le rang de u et son déterminant.
 - (b) Déterminer la dimension du noyau de u ainsi qu'une équation de ce noyau.
 - (c) Déterminer la dimension de l'image de u et une base de cette image.
 - (d) Étudier la diagonalisabilité de u.
 - (e) Pour $k \in \mathbb{N}^*$, exprimer U^k en fonction de U.
 - (f) Déterminer le polynôme minimal de u et retrouver le résultat de la question précédente.

219. [IMT] On pose
$$A=\left(\begin{array}{cc} -1 & 1 \\ 0 & -1 \end{array}\right)$$
 . Soit $M\in\mathcal{M}_2(\mathbb{C})$ vérifiant $\exp(M)=A$.

- (a) Montrer que M admet une unique valeur propre de la forme $ik\pi$. Préciser k.
- (b) Montrer que M est triangulaire supérieure.
- (c) Déterminer les $M \in \mathcal{M}_2(\mathbb{C})$ telles que $\exp(M) = A$.
- 220. [IMT] Soit $A \in \mathbb{R}_n[X] \setminus \{0\}$.
 - (a) Montrer que l'application $f: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ qui à tout polynôme P associe le reste de la division euclidienne de P par A est un projecteur. Donner son noyau et son image.
 - (b) On munit $\mathbb{R}_n[X]$ du produit scalaire : $\langle P, Q \rangle = \int_0^1 PQ$. Donner une condition nécessaire et suffisante pour que f soit un projecteur orthogonal.
- 221. [IMT] Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{+\infty} t^n e^{-t} dt$.
 - (a) Montrer l'existence et calculer I_n .

Pour
$$(P,Q)\in (\mathbb{R}[X])^2$$
, on pose $\langle P,Q\rangle=\int_0^{+\infty}P(t)Q(t)e^{-t}\mathrm{d}t.$

- (b) Montrer que $\langle \ , \ \rangle$ définit un produit scalaire sur $\mathbb{R}[X]$. Pour $n \in \mathbb{N}$ et x > 0, on pose $L_n(x) = \frac{e^x}{n!} \cdot \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^n e^{-x})$ (polynôme de Laguerre).
- (c) Montrer que L_n est un polynôme de coefficient dominant $\frac{(-1)^n}{n!}$.
- (d) d Montrer que $(L_n)_{n\in\mathbb{N}}$ est une suite de polynômes orthogonaux pour le produit scalaire défini en
- (e) b

222. [IMT] On pose
$$E = \mathcal{C}^1([0,1],\mathbb{R})$$
. Pour $(f,g) \in E^2$, on pose $\langle f,g \rangle = \int_0^1 (fg + f'g')$.

- (a) Montrer que $\langle \ , \ \rangle$ est un produit scalaire. Soient $V=\{f\in E,\ f(0)=f(1)=0\}$ et $W=\{f\in E,\ f''=f\}.$
- (b) Montrer que V et W sont des sous-espaces vectoriels puis que $\{t \mapsto e^t, t \mapsto e^{-t}\}$ est une base de W.
- (c) Montrer que V et W sont orthogonaux.
- (d) Calculer $p_W(f)$ le projeté orthogonal de $f \in E$ sur W.
- (e) Montrer que V et W sont supplémentaires.
- 223. [CCINP] Soient (E, \langle , \rangle) un espace euclidien, $v \in \mathcal{L}(E)$ tel que $\forall x \in E, ||v(x)|| \le ||x||$.
 - (a) Montrer que $\ker(v \mathbf{Id}) \oplus \operatorname{Im}(v \mathbf{Id}) = E$. Ind. Considérer l'application $t \mapsto \|x + ty\|^2 - \|v(x + ty)\|^2$.
 - (b) Soit, pour $x \in E$ et $p \in \mathbb{N}, w_p(x) = \frac{1}{p+1} \sum_{k=0}^p v^k(x)$.

Montrer que, pour tout $x \in E$, la suite $(w_p(x))$ converge. Déterminer sa limite.

- 224. [CCINP] On note $E = \mathbb{R}[X]$.
 - (a) Montrer que l'on définit un produit scalaire sur E en posant $\langle P,Q\rangle=\int_0^1 P(t)\,Q(t)\,\mathrm{d}t.$
 - (b) Trouver a et b dans \mathbb{R} tels que $\int_0^1 (t^2 at b)^2 dt$ soit minimal :
 - en construisant une base orthonormée de $\mathbb{R}_1[X]$;
 - en recherchant a et b tels que X^2-aX-b soit orthogonal à $\mathbb{R}_1[X]$.
- 225. [IMT] Calculer $\inf_{(a,b)\in\mathbb{R}^2}\int_0^{+\infty}e^{-t}(t^2-at-b)^2\,\mathrm{d}t.$
- 226. [CCINP] On définit trois fonctions sur le segment $[0,1]:f_0:t\mapsto 1,\,f_1:t\mapsto t$ et $f_2:t\mapsto \mathrm{e}^t$, et on note $E=\mathrm{Vect}_{\mathbb{R}}(f_0,f_1,f_2)$.
 - (a) Montrer que $(f,g) \mapsto \int_0^1 f(t)g(t) dt$ est un produit scalaire sur E.
 - (b) Trouver une base orthonormée de $F = Vect(f_0, f_1)$.
 - (c) Trouver a et b tels que la distance de f_2 à $t\mapsto at+b$ soit minimale.
- 227. [St Cyr] Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$. On munit E du produit scalaire $\langle \ , \ \rangle$ défini par $\langle f,g \rangle = \int_0^1 f(t) \, g(t) \, \mathrm{d}t$. Soit $K:[0,1]^2 \to \mathbb{R}$ une fonction continue et symétrique c'est-à-dire telle que $\forall (x,t) \in [0,1]^2, K(x,t) = K(t,x)$. Soit u l'application qui à $f \in E$ associe la fonction $u(f): x \in [0,1] \mapsto \int_0^1 K(x,t) \, f(t) \, \mathrm{d}t$.

On admet le théorème de Fubini :

$$\forall \phi \in \mathcal{C}^0([0,1]^2,\mathbb{R}), \int_0^1 \left(\int_0^1 \phi(x,t) \, \mathrm{d}t \right) \, \mathrm{d}x = \int_0^1 \left(\int_0^1 \phi(x,t) \, \mathrm{d}t \right) \, \mathrm{d}t.$$

- (a) Montrer que u est un endomorphisme de E.
- (b) Montrer que u est autoadjoint : $\forall f, g \in E, \langle f, u(g) \rangle = \langle u(f), g \rangle$.
- (c) Montrer que u est continu.
- 228. [St Cyr] Pour $t \in \mathbb{R}$, on note $M_t = \begin{pmatrix} \operatorname{ch}(t) & \operatorname{sh}(t) \\ \operatorname{sh}(t) & \operatorname{ch}(t) \end{pmatrix}$.
 - (a) Montrer que les matrices M_t sont diagonalisables et trouver une base de vecteurs propres indépendante de t.

- (b) Montrer que l'application $\theta : \mathbb{R} \to \mathcal{M}_2(\mathbb{C})$ définie par $\theta(t) = M_t$ est injective. Montrer que $\theta(t+t') = \theta(t)\theta(t')$.
- (c) Soient $J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $E = \mathbb{R}^2$, \mathfrak{b} sa base canonique, $f \in \mathcal{L}(E)$ et $q : (x,y) \in \mathbb{R}^2 \mapsto x^2 y^2$. Montrer que, si $q \circ f = q$, alors $M = \operatorname{Mat}_{\mathfrak{b}}(f)$ vérifie $(*) : M^T J M = J$. Montrer que les matrice M_t , avec $t \in \mathbb{R}$, vérifient (*) et trouver toutes les matrices vérifiant (*).

229. [St Cyr]

- (a) Rappeler l'algorithme de Gram-Schmidt.
- (b) On note $T_n^+(\mathbb{R})$ l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ triangulaires supérieures, à coefficients diagonaux strictement positifs. Soit $A \in \mathcal{GL}_n(\mathbb{R})$. Montrer qu'il existe un unique couple $(O,T) \in \mathcal{O}_n(\mathbb{R}) \times T_n^+(\mathbb{R})$ tel que A = OT.
- 230. [CCINP] Soient E un espace euclidien, a et b deux vecteurs linéairement indépendants. Soit $u: x \mapsto \langle a, x \rangle a + \langle b, x \rangle b$.
 - (a) Montrer que u est un endomorphisme symétrique.
 - (b) Déterminer son noyau.
 - (c) Déterminer les éléments propres de u.
- 231. [CCINP]

Soit
$$A = \frac{1}{7} \begin{pmatrix} -1 & 4 & 4 & 4 \\ 4 & 5 & -2 & -2 \\ 4 & -2 & 5 & -2 \\ 4 & -2 & -2 & 5 \end{pmatrix}$$
.

- (a) Calculer $A^T A$.
- (b) Sans utiliser χ_A , trouver les valeurs propres de A et les multiplicités associées.
- (c) Calculer π_A et χ_A .
- (d) Trouver $P \in \mathcal{O}_4(\mathbb{R})$ telle que P^TAP soit diagonale.
- (e) Trouver le commutant de A.
- 232. [IMT] Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $AA^T + 2A^T + I_n = 0$. Déterminer A.
- 233. [IMT] Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 = -A$.
 - (a) Montrer que rg(A) est pair.
 - (b) Que dire si $A = A^T$?
- 234. [IMT] Soit $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$. Trouver une base orthonormale de diagonalisation de A.
- 235. [CCINP] Soit $A=(a_{i,j})_{1\leq i,j\leq n}\in\mathcal{M}_n(\mathbb{R})$, avec $a_{1,i}=a_{i,1}=1$ pour $1\leq i\leq n$, les autres coefficients étant nuls. On note f l'endomorphisme canoniquement associé à A.
 - (a) Quel est le rang de A?
 - (b) Trouver les valeurs propres et sous-espaces propres de A.
 - (c) Donner la matrice de la projection orthogonale de \mathbb{R}^n sur l'image de f pour la structure euclidienne canonique.
- 236. [CCINP] Soient u et v deux endomorphismes autoadjoints d'un espace euclidien (E, \langle , \rangle) .
 - (a) Montrer que u et v commutent si et seulement si $u \circ v$ est autoadjoint.
 - (b) Montrer que u et v commutent si et seulement s'il existe une base orthonormée de vecteurs propres communs à u et v.
 - (c) Soit s la symétrie orthogonale par rapport au plan x+y+z=0. Caractériser les symétries orthogonales de \mathbb{R}^3 qui commutent avec s.

237. [IMT]

- (a) Soit $q \in \mathbb{N}$. On pose $I_q = \int_0^{+\infty} t^q e^{-t} dt$. Montrer que I_q est bien définie et que $I_q = q!$.
- $\text{(b) Pour } P,Q \in \mathbb{R}[X] \text{, on pose } \langle P,Q \rangle = \int_0^{+\infty} P(t)Q(t)e^{-t} \, \mathrm{d}t \text{. Montrer que } \langle \; , \; \rangle \text{ est un produit scalaire.}$
- (c) Pour $P \in \mathbb{R}_n[X]$, on définit $\phi(P) = XP'' + (1-X)P'$. Montrer que ϕ est un endomorphisme de $\mathbb{R}_n[X]$.
- (d) Soient $P,Q \in \mathbb{R}[X]$. Montrer que $\langle \phi(P),Q \rangle = -\int_0^{+\infty} tP'(t)Q'(t)e^{-t} dt$. Montrer que ϕ est un endomorphisme symétrique.

- 238. [CCINP] Soit u un endomorphisme d'un espace euclidien E.
 - (a) On suppose que $\forall x \in E, \langle u(x), x \rangle = 0$. L'endomorphisme u est-il nécessairement nul?
 - (b) Montrer que les assertions suivantes sont équivalentes : i) $u \circ u^* = u^* \circ u$,
 - ii) $\forall x, y \in E$, $\langle u(x), u(y) \rangle = \langle u^*(x), u^*(y) \rangle$, iii) $\forall x \in E$, $||u(x)|| = ||u^*(x)||$.
- 239. [IMT] Soit $A=(a_{i,j})_{1\leq i,j\leq n}\in\mathcal{S}_n(\mathbb{R})$, telle que $A^{2022}=A^{2024}$. Montrer l'égalité $\sum_{1\leq i,j\leq n}a_{i,j}{}^2=\operatorname{rg}(A)$.
- 240. [St Cyr] Soient (E, \langle , \rangle) un espace euclidien et x_1, \ldots, x_n des éléments de E. On note $G = (\langle x_i, x_j \rangle)_{1 \le i,j \le n}$
 - (a) Montrer que $G \in \mathcal{S}_n^+(\mathbb{R})$.
 - (b) Montrer l'existence d'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ telle que $G = A^T A$.
 - (c) En déduire que le rang de G et égal à celui de la famille (x_1, \ldots, x_n) .
- 241. [IMT] Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 + A^T = I_n$.
 - (a) Trouver $P \in \mathbb{R}_4[X]$ tel que P(A) = 0. Que dire sur A et $\mathrm{Sp}(A)$?
 - (b) On suppose, pour cette question seulement, que $0 \notin \operatorname{Sp}(A)$. Montrer que $A I_n \in \mathcal{GL}_n(\mathbb{R})$ et que $A \in \mathcal{S}_n(\mathbb{R})$.
 - (c) On prend n=3. Montrer que $tr(A) \neq 0$.
- 242. [CCINP] Soient E un espace euclidien et $u \in \mathcal{L}(E)$ tel que $u^* \circ u = u \circ u^*$.
 - (a) Soient $\lambda \in sp(u)$ et x un vecteur propre associé. Montrer que $\|u^*(x)\|^2 = \lambda^2 \|x\|^2$. Montrer que u et u^* ont les mêmes espaces propres.
 - (b) Montrer que u et u^* ont les mêmes espaces propres.
 - (c) Montrer que les espaces propres de u sont orthogonaux.
 - (d) Montrer que, si u est diagonalisable, alors u est symérique.
- 243. [CCINP] Soient (E, \langle , \rangle) un espace euclidien de dimension $n \geqslant 2$, f un endomorphisme autoadjoint de E, a sa plus petite valeur propre et b sa plus grande valeur propre.
 - (a) Montrer que, pour tout $x \in E$, $a||x||^2 \le \langle x, f(x) \rangle \le b||x||^2$.
 - (b) Soient $k \in \mathbb{R}$ et $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$ avec $a_{i,j} = k$ si $i = j, a_{i,j} = 1$ si |i j| = 1, les autres coefficients étant nuls.

Montrer que la plus grande valeur propre b de A vérifie $k + 2 \ge b$.

Analyse

- 244. [St Cyr] Soit F un sous-espace vectoriel de $\mathcal{C}^1([0,1],\mathbb{R})$ non restreint à la fonction nulle. On note I l'ensemble des rapports $\frac{\|f\|_\infty}{\|f\|_2} \text{ quand } f \text{ décrit } F \text{ priv\'e de la fonction nulle, avec usuellement } \|f\|_\infty = \sup_{[0,1]} |f| \text{ et } \|f\|_2 = \sqrt{\int_0^1 f^2}.$
 - (a) Que dire de I si F est de dimension 1?
 - (b) Dans le cas général, montrer que I est un intervalle inclus dans $[1, +\infty[$.
 - (c) On suppose F de dimension finie. Montrer que I est fermé.
- 245. [IMT] On note E l'ensemble des fonctions $f \in \mathcal{C}^1([0,1],\mathbb{R})$ telles que f(0)=0. Pour $f \in E$, on pose $N(f)=\|f+f'\|_{\infty}$ et $N'(f)=\|f\|_{\infty}+\|f'\|_{\infty}$.
 - (a) Montrer que N et N' sont des normes sur E.
 - (b) Montrer que N et N' sont équivalentes. Ind. Exprimer f en fonction de g = f + f'.
- 246. [IMT] Soit E un \mathbb{R} -espace vectoriel normé de dimension finie. Soit $(u_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ une suite telle que, pour tout vecteur $x\in E$, la suite $(\|x-u_n\|)_{n\in\mathbb{N}}$ converge.
 - (a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ a une valeur d'adhérence.
 - (b) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge.
- 247. [IMT] Soit E le plan euclidien.
 - (a) L'ensemble $\mathcal{H} = \{(x,y) \in \mathbb{R}^2, \ y^2 x^2 = 1\}$ est-il un fermé de E?
 - (b) Donner la définition d'une partie connexe par arcs.
 - (c) Montrer que le cercle de centre 0 et de rayon 1 est une partie connexe par arcs de \mathbb{R}^2 .
 - (d) Soit $f: E \to \mathbb{R}$ continue. Montrer que l'image par f d'une partie connexe par arcs, fermée et bornée est un segment.

248. [IMT] Soit N définie sur $\mathbb{R}[X]$ par $N\Big(\sum_{i=0}^n a_i X^i\Big) = \max_{0 \le i \le n} |a_i|$

- (a) Montrer que N est une norme.
- (b) Soient $a \in \mathbb{R}$ et $\phi : P \in \mathbb{R}[X] \mapsto P(a)$. Pour quelles valeur de a, l'application ϕ est-elle continue pour la norme N?

249. [CCINP] On note $E = \mathbb{C}[X]$. Pour $P \in E$ d'écriture développée $P = \sum_{k>0} a_k X^k$, on pose $\|P\| = \sup_k |a_k|$.

- (a) Montrer que l'on définit ainsi une norme de E.
- (b) Soit $b \in \mathbb{C}$, on souhaite étudier la continuité de l'application $f: P \in E \mapsto P(b) \in \mathbb{C}$.
- (c) Montrer que, si |b| < 1, alors f est continue.
- (d) Étudier la continuité de f si |b|=1 en utilisant la suite de polynôme $(P_n)_{n\geq 0}$, avec, pour $n\in\mathbb{N}$, $P_n=\sum_{k=0}^n \bar{b}^k X^k$.
- (e) Montrer que, si |b| > 1, alors f n'est pas continue.
- 250. [IMT] Soit $(a,b) \in \mathbb{R}^2$. Déterminer $\lim_{n \to +\infty} \begin{pmatrix} \cos\left(\frac{a}{n}\right) & \sin\left(\frac{b}{n}\right) \\ \sin\left(\frac{b}{n}\right) & \cos\left(\frac{a}{n}\right) \end{pmatrix}^n$.
- 251. [IMT] Soient E un espace euclidien et K l'ensemble des projecteurs orthogonaux de E. Soit p un projecteur.
 - (a) Montrer que : $p \in \mathcal{K} \Leftrightarrow \forall x \in E, ||p(x)|| \le ||x||$.
 - (b) Montrer que K est un compact.
- 252. [IMT] Montrer la convergence des suites (x_n) , (y_n) , (z_n) définies par leurs premiers termes respectifs x_0 , y_0 , z_0 et les relations, pour tout $n \in \mathbb{N}$,

$$x_{n+1} = \frac{x_n}{2} + \frac{y_n}{4} + \frac{z_n}{4}, \ y_{n+1} = \frac{x_n}{4} + \frac{y_n}{2} + \frac{z_n}{4}, \ z_{n+1} = \frac{x_n}{4} + \frac{y_n}{4} + \frac{z_n}{2}.$$

253. [St Cyr] (avec python)

Pour $n \in \mathbb{N}^*$, soit l'équation $(E_n): x^n + x - 1 = 0$.

- (a) Montrer que (E_n) a une solution unique dans $]0, +\infty[$. On la note x_n .
- (b) Montrer que la suite (x_n) est croissante et majorée.
- (c) (Python) Ecrire un programme qui renvoie une valeur approchée de x_n à ϵ près obtenue par dichotomie.
- (d) (Python) Afficher les 100 premières valeurs de x_n et conjecturer la limite de la suite.
- (e) Démontrer la conjecture.
- 254. [St Cyr] avec python Pour $n \in \mathbb{N}^*$, on note $P_n = X^n + X^{n-1} + \cdots + X 1$.
 - (a) Montrer que, pour tout $n \in \mathbb{N}^*$, P_n a une unique racine réelle positive que l'on notera a_n .
 - (b) Écrire une fonction Python qui renvoie une valeur approchée de a_n .
 - (c) Afficher un graphe représentant les 20 premières valeurs de la suite (a_n) . Conjecturer la nature de (a_n) .
 - (d) Montrer la convergence de (a_n) et déterminer sa limite.
- 255. [IMT] On définit, pour *x* réel, $f(x) = |x| + (x |x|)^2$.
 - (a) Discuter la continuité de f.
 - (b) Tracer le graphe de f.
 - (c) On définit la suite (x_n) par $x_0 \in \mathbb{R}$ et, pour tout $n \in \mathbb{N}$, $x_{n+1} = f(x_n)$. Etudier la monotonie et la convergence de (x_n) .
- 256. [Ecoles militaires]
 - (a) Pour m > 1, montrer qu'il existe un unique $x_m \in]-1, -2[$ tel que $m \ln \left(1 + \frac{x_m}{m+1}\right) = x_m.$
 - (b) Étudier la suite $(x_m)_{m>1}$.
- 257. [IMT] Étudier la convergence de $\sum \frac{(-1)^n}{\sqrt{n^{2\alpha}+(-1)^n}}$
- 258. [IMT] Nature de la série $\sum \cos \left(\pi \sqrt{n^2 + n + 1}\right)$?
- 259. [IMT] Nature de la série $\sum \cos \left(n^2 \pi \ln \left(\frac{n-1}{n}\right)\right)$?

- 260. [IMT] On définit la suite (u_n) par $u_0 \in \left]0, \frac{\pi}{2}\right]$ et $\forall n \in \mathbb{N}, u_{n+1} = \sin(u_n)$.
 - (a) Montrer que (u_n) converge vers 0.
 - (b) Déterminer $\alpha \in \mathbb{R}$ tel que $(u_{n+1}^{\alpha} u_n^{\alpha})$ converge vers une limite non nulle.
 - (c) Déterminer un équivalent de u_n . Quelle est la nature de $\sum u_n$?
- 261. [IMT] On pose, pour tout $n \in \mathbb{N}^*$, $u_n = \prod_{k=1}^n \left(1 + \frac{(-1)^{k-1}}{\sqrt{k}}\right)$. Donner un équivalent de u_n lorsque n tend vers $+\infty$. Quelle est la nature de la série $\sum u_n$?
- 262. [St Cyr] Pour un entier n, on note r_n le reste de la division euclidienne de n par 5.
 - (a) Montrer que la série de terme général $\frac{r_n}{n(n+1)}$ converge.
 - (b) On note $S_n = \sum_{k=1}^n \frac{r_k}{k(k+1)}$. Déterminer S_{5n} en fonction de termes de la suite (H_p) , lorsque $H_p = \sum_{k=1}^p \frac{1}{k}$.
 - (c) En déduire la valeur de $\sum_{n=1}^{+\infty} \frac{r_n}{n(n+1)}$.
- 263. [IMT] On pose $u_n = \int_{n\pi}^{(n+1)\pi} \frac{\sin(t)}{t} dt$, $v_n = (-1)^n u_n$, $w_n = \int_{n\pi}^{(n+1)\pi} \left(\frac{\sin(t)}{t}\right)^2 dt$, pour tout $n \in \mathbb{N}$.
 - (a) Justifier l'existence de u_0 et w_0 .
 - (b) Déterminer les limites de (u_n) et de (w_n) .
 - (c) Nature de $\sum u_n$, $\sum v_n$ et $\sum w_n$?
- 264. [St Cyr] Soient $\alpha \in \mathbb{R}^{+*}$ et $f : \mathbb{R}^+ \to \mathbb{R}^+$ une fonction deux fois dérivable et majorée. On suppose que $\forall t \in \mathbb{R}^+, f''(t) \geqslant \alpha^2 f(t)$.
 - (a) Montrer que f est convexe.
 - (b) Montrer que f' est négative.
 - (c) Montrer que f admet une limite finie en $+\infty$, déterminer sa valeur.
 - (d) Montrer que f' admet une limite finie en $+\infty$, déterminer sa valeur.
 - (e) Montrer que $\alpha^2 f^2 f'^2$ est négative.
 - (f) En déduire que $\forall t \in \mathbb{R}^+, f(t) \leqslant f(0) e^{-\alpha t}$.
- 265. [IMT] Pour $x \in \mathbb{R}$, on pose $f(x) = \int_x^{4x} \frac{\mathrm{d}t}{(1+t^4)^2}$.
 - (a) Étudier les variations de f et tracer son graphe.
 - (b) Donner un équivalent de f en 0.
- 266. [IMT] Soit $f: x \in [-1/3, +\infty[\mapsto \int_x^{3x} \frac{\mathrm{d}t}{\sqrt{1+t^3}}]$. Etudier f et donner son graphe.
- 267. [IMT] Soit $f: x \mapsto \int_0^{x^2} \frac{\ln(1+t)}{t} dt$.
 - (a) Montrer que f est dérivable sur [0,1[et exprimer sa dérivée.
 - (b) Montrer que f est continue sur [0,1] et dérivable sur [0,1]. Est-elle est dérivable en 1? Pourquoi?
 - (c) Donner un développement limité à l'ordre 2 de f en 0.
- 268. [IMT] Pour $x \in \mathbb{R}$, on pose $\phi(x) = \int_0^x \frac{\mathrm{d} u}{3 + \cos^2 u}$. Calculer $\phi(x)$.

Ind. Utiliser le changement de variable $v = \tan u$.

- 269. [St Cyr] Soit $f:[0,1] \to \mathbb{R}$ une fonction continue et concave.
 - (a) Montrer que $\forall x \in [0,1], \ x f(x) \leqslant \int_0^x f(t) dt x.$
 - (b) En déduire $\int_0^1 x f(x) dx \leqslant \frac{2}{3} \int_0^1 f(x) dx$.
- 270. [IMT] On considère la suite $(u_n)_{n\geq 0}$ de fonctions définies sur \mathbb{R} par $u_0=\operatorname{Id}$ et, pour $n\in\mathbb{N}$, $u_{n+1}=\sin\circ u_n+u_n$.

- (a) Etudier la convergence simple de (u_n) .
- (b) La convergence est-elle uniforme?
- 271. [St Cyr] Soit $f:[0,1] \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . On définit une suite de fonctions (f_n) sur [0,1] par $f_n(x) = f\left(x + \frac{x(1-x)}{n}\right)$ pour $n \ge 1$ et $f_0(x) = 0$.
 - (a) Étudier la convergence simple et la convergence uniforme de (f_n) .
 - (b) Montrer que les résultats restent valides pour une fonction f seulement lipschitzienne.
- 272. [CCINP] On pose, pour tous $n \in \mathbb{N}^*$ et $t \in [0,1]$, $g_n(t) = e^t \left(1 \frac{t}{n}\right)^n$.
 - (a) Montrer que : $\forall (t,n) \in [0,1] \times \mathbb{N}^*, |g_n'(t)| \leq \frac{e^t}{n}$.
 - $\text{(b) Montrer que}: \forall (t,n) \in [0,1] \times \mathbb{N}^*, \left| e^{-t} \left(1 \frac{t}{n}\right)^n \right| \leq \frac{t}{n}.$
 - (c) Étudier la convergence simple et uniforme sur [0,1] de la suite de fonctions $(G_n)_{n\in\mathbb{N}^*}$ définie par $G_n:x\in[0,1]\mapsto\int_0^xg_n(t)\,\mathrm{t}.$
- 273. [CCINP] Pour $n \in \mathbb{N}$, on pose $f_n : x \in [0, \pi/2] \mapsto n \cos^n(x) \sin(x)$.
 - (a) Etudier la convergence simple de (f_n) .
 - (b) La suite converge-t-elle uniformément sur $[0, \pi/2]$?

 Indication Considérer $\int_0^{\pi/2} f_n(t) dt$.
 - (c) Soit $0<\alpha<\frac{\pi}{2}$. La suite converge-t-elle uniformément sur $[\alpha,\pi/2]$?
 - (d) Soit $g \in \mathcal{C}^0([0,\pi/2],\mathbb{R})$. Montrer que $\lim_{n\to+\infty} \int_0^{\pi/2} f_n(t)g(t) dt = g(0)$. Ind. Utiliser $\left| \int_0^{\pi/2} \left[f_n(t)g(t) f_n(t)g(0) + f_n(t)g(0) \right] dt g(0) \right|$.
- 274. [IMT] Soit $f: x \in \mathbb{R}^{+*} \mapsto \frac{\sin(x^3)}{x\sqrt{x}}$.
 - (a) Montrer que f admet un prolongement \mathcal{C}^1 sur \mathbb{R}^+ .
 - (b) Pour $n \in \mathbb{N}$, on pose $f_n : x \in \mathbb{R}^{+*} \mapsto f\left(\frac{n}{x}\right) f(xn)$. Montrer que $\sum f_n$ converge normalement sur \mathbb{R}^{+*} .
- 275. [IMT] Soit $f: x \mapsto \sum_{n=0}^{+\infty} \frac{e^{-nx}}{1+n^2}$.
 - (a) Montrer que f est définie sur \mathbb{R}^+ et de classe C^{∞} sur \mathbb{R}^{+*} .
 - (b) Montrer que : $\forall x \in [0, 1], 1 e^{-x} \ge \left(1 \frac{1}{e}\right) x$.
 - (c) La fonction f est-elle dérivable en 0? Quelle est sa limite en $+\infty$?
 - (d) Dresser le tableau de variation de f.
- 276. [CCINP] Soit $(a_n)_{n\geq 0}$ une suite décroissante de réels positifs qui converge vers 0. Pour tout $t\in [0,1]$, on pose $u_n(t)=a_n(1-t)t^n$
 - (a) Montrer que la série de fonctions $\sum u_n$ converge simplement sur [0,1].
 - (b) Trouver une condition nécessaire et suffisante pour que cette série converge normalement.
 - (c) Montrer que la série $\sum u_n$ converge uniformément sur [0,1].
- St Cyr Étudier la convergence simple et la convergence uniforme des séries de fonctions $\sum u_n$ et $\sum u'_n$ définies sur \mathbb{R}^+ par $u_n(x) = \frac{x}{(1+n^2x)^2}$.
- St Cyr Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}^+$, on pose $f_n(x) = \frac{x}{n(1+n^2x^2)}$.

- (a) Étudier la convergence simple de $\sum f_n$.
- (b) Étudier la continuité de la somme $f = \sum_{n=1}^{+\infty} f_n$.
- (c) Donner un équivalent de f en 0^+ .

277. [CCINP] Soit
$$S: x \mapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(x+n)}$$
.

- (a) Montrer que S est définie sur $]0,+\infty[$. Calculer S(1) et en déduire $xS(x)=\frac{1}{e}+S(x+1)$.
- (b) Montrer que $S(x) \sim \frac{1}{x}$ quand $x \to 0$.
- (c) Montrer S est de classe \mathcal{C}^{∞} .
- 278. [IMT] Déterminer le rayon de convergence de la série entière $\sum_{n=0}^{+\infty} n^{(-1)^n} x^n$ et calculer sa somme.

279. [CCINP] On pose, pour
$$n \in \mathbb{N}$$
, $I_n = \int_0^{\frac{\pi}{4}} \tan^n(t) dt$.

- (a) Montrer que, pour $n \in \mathbb{N}$, $0 \le I_n \le \frac{\pi}{4}$. En déduire que le rayon de convergence de $\sum I_n x^n$ est ≥ 1 .
- (b) Montrer, pour $n \in \mathbb{N}$, que $I_{n+2} + I_n = \frac{1}{n+1}$.
- (c) Donner un équivalent simple de I_n .
- (d) Déterminer le rayon de convergence R de $\sum I_n x^n$. Calculer $\sum_{n=0}^{+\infty} I_n x^n$ pour $x \in]-R, R[$.

280. [CCINP]

- (a) Etudier la convergence simple de la série entière $\sum_{n\geq 1} \sin\left(\frac{1}{\sqrt{n}}\right) x^n$. On note D l'ensemble de convergence et S(x) la somme sur D. L'application S est-elle continue sur D?
- (b) Montrer que $\sum_{n\geq 1} \left(\sin\frac{1}{\sqrt{n}} \sin\frac{1}{\sqrt{n-1}}\right) x^n$ converge normalement sur [-1,1].
- (c) En déduire la valeur de $\lim_{x\to 1^-} (1-x)S(x)$.
- 281. [CCINP] Soit $f: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$ une série entière de rayon $+\infty$.
 - (a) Soient $n \in \mathbb{N}$ et $r \in \mathbb{R}^+$. Montrer que $a_n r^n = \frac{1}{2\pi} \int_0^{2\pi} f\left(re^{it}\right) e^{-int} \mathrm{d}t$.
 - (b) Montrer que si f est bornée alors f est constante.

282. [IMT] On pose
$$I_n = \int_0^{+\infty} \frac{\sin(nt)}{1 + n^4 t^3} dt$$
 pour $n \ge 1$.

- (a) Montrer que I_n est bien définie.
- (b) Déterminer $\lim_{n\to+\infty} I_n$.
- (c) Nature de la série $\sum I_n$?

283. [CCINP] Pour
$$n \in \mathbb{N}^*$$
, on pose $I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^3)^n}$.

- (a) Justifier que I_n est bien définie pour tout $n \ge 1$.
- (b) Montrer que $I_{n+1} = \left(1 \frac{1}{3n}\right)I_n$.
- (c) On pose $u_n = n^{1/3} I_n$. Étudier la convergence de la suite (u_n) . Ind. Poser $v_n = \ln(u_n)$.
- (d) Étudier la convergence de la série $\sum I_n$.

- 284. [IMT] On pose, pour $n \in \mathbb{N}$, $I_n = \int_0^{\frac{\pi}{4}} \tan^{2n}(x) dx$
 - (a) Montrer que, pour tout $n \in \mathbb{N}$, $I_{n+1} + I_n = \frac{1}{2n+1}$.
 - (b) Donner un équivalent simple de I_n
 - (c) Nature et somme éventuelle de $\sum_{n>0} \frac{(-1)^n}{2n+1}$?
- 285. [IMT] Calculer, pour $x \in \mathbb{R}$, $\phi(x) = \int_0^{+\infty} e^{-t^2} \cos(tx) dt$ par deux méthodes :
 - (a) à l'aide d'un développement en série entière de la fonction cosinus
 - (b) à l'aide d'une équation différentielle d'ordre 1.
- 286. [IMT] Soit $F: t \mapsto \int_0^{+\infty} \frac{\arctan(xt)}{x(1+x^2)} dx$. Montrer que F est continue sur \mathbb{R} , puis de classe \mathcal{C}^1 . En déduire F.
- 287. [CCINP] Soit $f: x \mapsto \int_0^{+\infty} \frac{\arctan(xt) \arctan(t)}{t} dt$.
 - (a) Montrer que f est bien définie sur \mathbb{R}^{+*} .
 - (b) Montrer que f est continue sur \mathbb{R}^{+*} , puis que f est de classe \mathcal{C}^1 sur \mathbb{R}^{+*} . En déduire l'expression de f' puis de f.
 - (c) Calculer $\int_0^{+\infty} \frac{\arctan(at) \arctan(bt)}{t} dt$ pour $(a, b) \in (\mathbb{R}^{+*})^2$.
- 288. [CCINP] On pose $G: x \mapsto \int_0^{+\infty} \frac{t \lfloor t \rfloor}{t(x+t)} dt$.
 - (a) Montrer que G est bien définie pour x > 0.
 - (b) Soit $n \in \mathbb{N}^*$. Montrer que $\int_0^y \frac{t \lfloor t \rfloor}{t(n+t)} dt = \frac{1}{n} \Big(\int_0^n \frac{t \lfloor t \rfloor}{t} dt \int_y^{y+n} \frac{t \lfloor t \rfloor}{t} dt \Big)$.
 - (c) On pose H(n) = nG(n). Montrer que la série de terme général $H(n+1) H(n) \frac{1}{2n}$ converge. En déduire un équivalent de G(n).
- 289. [Ecoles militaires] Soit la fonction G définie sur \mathbb{R} par $G(x) = \int_0^1 \frac{\mathrm{e}^{-x^2(1+t^2)}}{1+t^2} \mathrm{d}t$
 - (a) Exprimer G(x) en fonction en fonction de $F: x \mapsto \int_0^x \mathrm{e}^{-u^2} \, \mathrm{d}u$.
 - (b) En déduire la valeur de $\int_0^{+\infty} e^{-u^2} du$.
- 290. [IMT] Soit $F: x \mapsto \int_0^{+\infty} \frac{e^t e^{-2t}}{t} \cos(xt) dt$.
 - (a) Donner le domaine de définition de F.
 - (b) Montrer que F est de classe C^1 .
 - (c) Exprimer F à l'aide de fonctions usuelles.
- 291. [CCINP]
 - (a) Soient a, b > 0. Donner les primitives sur \mathbb{R} de $u \mapsto \frac{1}{au^2 + b}$
 - (b) Exprimer $\cos(t)$ en fonction de $u=\tan\left(\frac{t}{2}\right)$ lorsque $\cos\left(\frac{t}{2}\right)\neq 0$.
 - (c) Soit $x: x \in]1, +\infty[\mapsto \int_0^\pi \ln(\cos(t) + x) dt$. Montrer que f est de classe \mathcal{C}^1 , puis exprimer f' sans intégrale.
 - (d) En déduire une expression de f.
- 292. [IMT] On considère $f: x \mapsto \int_0^{+\infty} \frac{1 \cos(tx)}{t^2} e^{-t} dt$.
 - (a) Donner le domaine de définition de f.
 - (b) Montrer que f est de classe \mathcal{C}^2 sur \mathbb{R} .

- (c) Exprimer f''.
- (d) En déduire des expressions de f' et f avec des fonctions usuelles.
- 293. [IMT] Soit $F: x \mapsto \int_0^{\frac{\pi}{2}} \sin(t)^x dt$.
 - (a) a Montrer que F est de classe C^{∞} sur $]-1,+\infty[$.
 - (b) b Montrer que $F(n+2) = \frac{n+1}{n+2}F(n)$. Calculer (n+1)F(n)F(n+1).
 - (c) c Donner un équivalent de F(x) quand x tend vers $+\infty$.
- 294. [IMT] Montrer que $\int_0^1 \frac{\mathrm{d}u}{1+u^4} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{1+4k}$.
- 295. [IMT] Soit, pour $n \in \mathbb{N}$, $u_n = (-1)^n \int_0^{\frac{\pi}{2}} \cos(x)^n dx$. Étudier la convergence de $\sum u_n$. Calculer sa somme.
- 296. [IMT] Soit $I = \int_0^1 \frac{\arctan(t^2)}{t} dt$
 - (a) Montrer que I est bien définie.
 - (b) Montrer que $I=-2\int_0^1\! rac{t\ln(t)}{1+t^4}\mathrm{d}t$
 - (c) Calculer $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}.$
- 297. [IMT] Montrer l'existence de $\int_0^{+\infty} \sum_{n=1}^{+\infty} \frac{(-1)^n}{1+n^2t^2} dt$ et en donner la valeur.
- 298. [CCINP] Pour $n \in \mathbb{N}^*$, soit $f_n : x \in]0, +\infty[\mapsto \frac{2\operatorname{sh}(x)}{\mathrm{e}^{nx}-1}$ et sous réserve d'existence, on pose $I_n = \int_0^{+\infty} f_n(x) \,\mathrm{d}x$.
 - (a) Montrer que I_n existe.
 - (b) Montrer que $I_n = 2 \sum_{k=1}^{+\infty} \int_0^{+\infty} \operatorname{sh}(x) e^{-knx} dx$.
 - (c) En déduire la valeur de $\sum_{k=1}^{+\infty} \frac{1}{4k^2 1}$.
- 299. [IMT] On recherche les fonctions continues $f: \mathbb{R} \to \mathbb{R}$ vérifiant (1):

$$\forall x \in \mathbb{R}, f(x) + \int_0^x (x - t)f(t) dt = 1 + x.$$

- (a) Trouver toutes les solutions de (1) développables en série entière au voisinage de 0.
- (b) Montrer que, si f vérifie (1), alors elle est de classe C^2 et vérifie (E): y'' + y = 0.
- (c) Résoudre (E).
- (d) À l'aide du théorème de Cauchy, trouver toutes les solutions de (1).
- 300. [St Cyr] On note (E) l'équation différentielle $t^2y'' 2y = 3t^2$.
 - (a) Déterminer les solutions de l'équation homogène associée à (E) de la forme $t \mapsto t^{\alpha}$ (avec $\alpha \in \mathbb{R}$) sur \mathbb{R}^{+*} . En déduire une base de l'espace des solutions de l'équation homogène sur \mathbb{R}^{+*} .
 - (b) Résoudre (E) sur \mathbb{R}^{+*} .
- 301. [IMT] Soit (1) l'équation différentielle $xy' + y = e^x$.
 - (a) Trouver les solutions de (1) développables en série entière au voisinage de 0.
 - (b) Les solutions de (1) sur $]0, +\infty[$ sont-elles toutes développables en série entière au voisinage de 0?
 - (c) Résoudre (1) sur un intervalle I de \mathbb{R} . Discuter suivant I.
 - (d) On ajoute à l'équation (1) la condition $y(x_0) = y_0$ (avec $x_0, y_0 \in \mathbb{R}$) pour obtenir un problème numéroté (2). Que dit le théorème de Cauchy à propos du problème (2) si on travaille sur $]0, +\infty[$? Résoudre (2).
 - (e) Représenter graphiquement la ou les solutions développables en série entière.

302. [CCINP] On recherche les fonctions
$$x,y,z,u:\mathbb{R}\to\mathbb{R}$$
 de classe \mathcal{C}^1 vérifiant le système
$$\begin{cases} x' &= x+2y-2z\\ y' &= x-y+u\\ z' &= x-z+u\\ u' &= 2y-2z+u \end{cases}$$
. On note

$$A=\left(\begin{array}{cccc}1&2&-2&0\\1&-1&0&1\\1&0&-1&1\\0&2&-2&1\end{array}\right) \text{ et } f \text{ l'endomorphisme de } \mathbb{R}^4 \text{ canoniquement associ\'e à } A.$$

- (a) Déterminer le polynôme caractéristique et le polynôme minimal de f.
- (b) Justifier avec un minimum de calcul que f n'est pas diagonalisable.
- (c) Déterminer une base de \mathbb{R}^4 dans laquelle la matrice de f vaut $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$.
- (d) Résoudre le système différentiel.

303. [CCINP]

- (a) Déterminer les extrema de $f:(u,v)\in[0,1]^2\mapsto uv(1-u-v)$.
- (b) Soit (A,B,C) un triangle d'aire égale à 1. Soit M un point dans le triangle. Maximiser le produit des distances de M aux côtés du triangle.
- 304. [CCINP] Soient $n \in \mathbb{N}^*$ et $f : A \in \mathcal{M}_n(\mathbb{R}) \mapsto A^T A$.
 - (a) Justifier que F est de classe \mathcal{C}^1 . Montrer que, pour $H \in \mathcal{M}_n(\mathbb{R})$, $\mathrm{d} f_{I_n}(H) = H^T + H$.
 - (b) Déterminer $\ker(\mathrm{d}f_{I_n})$.
 - (c) En déduire que l'espace tangent à $\mathcal{O}_n(\mathbb{R})$ en I_n est $\mathcal{A}_n(\mathbb{R})$.

Probabilités

- 305. [St Cyr] On considère une urne contenant N_1 boules blanches et N_2 boules rouges. On tire simultanément dans l'urne n boules, avec $1 \le n \le N_1 + N_2$. On note X le nombre de boules blanches tirées.
 - (a) Déterminer la loi de X.
 - (b) Retrouver l'identité de Vandermonde : $\sum_{k=0}^{n} \binom{N_1}{k} \binom{N_2}{n-k} = \binom{N_1+N_2}{n}.$
 - (c) (Python) Définir une fonction $\operatorname{Hypergeom}(N_1, N_2, n)$ qui reproduit l'expérience et renvoie une valeur de X.
 - (d) Exprimer l'espérance de X en fonction de N_1 , N_2 et n.
 - (e) (Python) Définir une fonction $Moyenne(N_1, N_2, n, k)$ qui reproduit k expériences et renvoie la moyenne des valeurs de X obtenues.
 - (f) On choisit $N_1 = 10$, $N_2 = 13$, n = 5, et k = 100. Comparer la moyenne empirique et l'espérance théorique.
- 306. [IMT] Soit X une variable aléatoire suivant la loi binomiale de paramètres n et p. Calculer l'espérance de X de trois manières différentes :
 - (a) directement à partir de la loi de X;
 - (b) en utilisant la fonction génératrice de X;
 - (c) sans calcul, en interprétant la loi de X.
- 307. [CCINP] Une personne sur une échelle est en train de peindre un bâtiment. La probabilité qu'un passant reçoive une goutte de peinture est $p \in]0,1[$. On note X (resp. Y) le nombre de passants ayant reçu une goutte de peinture (resp. n'ayant pas reçu de goutte.)
 - (a) On suppose que n personnes sont passées. Donner les lois de X et de Y. Sont-elles indépendantes ?
 - (b) On note à présent N le nombre de passants dans la journée. On suppose que N suit une loi de Poisson de paramètre λ . Donner la loi de X et de Y. Donner l'espérance et la variance de X.
 - (c) Montrer que X et Y sont indépendantes. Calculer Cov(X, Y).
- 308. [IMT] Soient I un intervalle de \mathbb{R} , $f: I \to \mathbb{R}$ une fonction continue et convexe. Soit X une variable aléatoire à valeurs dans I admettant une espérance. On suppose que f(X) admet une espérance. Montrer que l'on a $f(\mathbf{E}(X)) < \mathbf{E}(f(X))$.
- 309. [IMT] Soient X et Y deux variables aléatoires indépendantes. On pose S = X + Y.

- (a) Donner G_S en fonction de G_X et de G_Y .
- (b) On suppose que $X \sim \mathcal{B}(n, p)$ et $Y \sim \mathcal{B}(m, p)$. Loi de S?
- (c) On suppose que $X \sim \mathcal{P}(\lambda_1)$ et $Y \sim \mathcal{P}(\lambda_2)$. Loi de S?
- 310. [IMT] Soient X et Y deux variables aléatoires indépendantes telles que $X \sim \mathcal{G}\left(\frac{1}{3}\right)$ et $Y \sim \mathcal{G}\left(\frac{2}{3}\right)$. Loi de Z = X + Y?
- 311. [CCINP] Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires suivant la loi de Bernoulli de paramètre $p\in]0,1[$. En posant $\min\emptyset=+\infty,$ on définit $T_1=\min\{n\in\mathbb{N}^*,X_n=1\}$ et $T_2=\min\{n>T_1,X_n=1\}.$
 - (a) Que représente T_1 ? Préciser sa loi, son espérance et sa variance.
 - (b) Que représente T_2 ? Calculer $\mathbf{P}(T_2 T_1 = k, T_1 = n)$.
 - (c) Vérifier que $T_2 T_1$ et T_1 sont indépendantes. En déduire la loi de T_2 .
- 312. [CCINP] Soient $p \in]0,1[,X_1,...,X_n$ des variables aléatoires i.i.d. suivant la loi géométrique de paramètre p.
 - (a) Calculer, pour tout $m \in \mathbb{N}$, $\mathbf{P}(X_1 \ge m)$ et $\mathbf{P}(X_1 \le m)$.
 - (b) Posons $Y = \min(X_1, \dots, X_n)$. Calculer, pour tout $m \in \mathbb{N}$, $\mathbf{P}(Y \ge m)$ et $\mathbf{P}(Y \le m)$. Reconnaître la loi de Y et déterminer $\mathbf{E}(Y)$.
- 313. [IMT] Soient X et Y deux variables aléatoires indépendantes suivant des lois géométriques de paramètres respectifs p et q. On note $Z = \frac{X}{V}$.
 - (a) Montrer que $Z \leq X$. Montrer que Z admet une espérance et une variance. Calculer $\mathbf{E}(Z)$
 - (b) Donner la loi de Z.
- 314. [CCINP] Soit (X,Y) un couple de variables aléatoires à valeurs dans \mathbb{N}^2 tel qu'il existe $\alpha \in \mathbb{R}$ vérifiant, $\forall (k,\ell) \in \mathbb{N}^2$, $\mathbf{P}(X=k,Y=\ell)=\frac{\alpha}{2^{k+\ell}}$.
 - (a) Trouver α . Les variables X et Y sont-elles indépendantes ?
 - (b) Calculer $G_X(t)$, $\mathbf{E}(X)$, V(X) et cov(X, Y).
 - (c) Calculer $P(X \ge k)$ pour tout $k \in \mathbb{N}$ et retrouver E(X).
 - (d) On pose $Z = \min(X, Y)$. Déterminer la loi de Z.
 - (e) Calculer $P(X \ge Y)$.
- 315. [Ecoles militaires] On considère une suite $(X_n)_{n\geqslant 1}$ i.i.d. suivant la loi de Bernoulli de paramètre $p\in]0,1[$. On note q=1-p. On note $L_1=\sup\{n\in \mathbb{N}^*,\, X_1=X_2=\cdots=X_n\}$ la longueur de la première séquence et $L_2=\sup\{n\in \mathbb{N}^*,\, X_{L_1+1}=\cdots=X_{L_1+n}\}$ la longueur de la seconde séquence. Montrer que $\mathrm{Cov}(L_1,L_2)=-\frac{(p-q)^2}{pq}$.
- 316. [Ecoles militaires] Soient X_1, \ldots, X_n des variables aléatoires i.i.d. ayant une variance. On pose, pour $i \in [\![1,n]\!], Y_i = X_1 + \cdots + X_i$. On note $M = (\text{Cov}(Y_i,Y_j))_{1 \le i,j \le n}$.
 - (a) Relier M à la matrice A^TA , avec $A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix}$.
 - (b) Encadrer les valeurs propres de M.
- 317. [St Cyr] Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires i.i.d. à valeurs dans \mathbb{N} . On note $C_n=\operatorname{card}\{X_1,\ldots,X_n\}$.
 - (a) Soit $n \in \mathbb{N}^*$. Montrer que, pour tout $k \in \mathbb{N}$, $\mathbf{E}(C_n) \leqslant k + n\mathbf{P}(X_1 \geqslant k)$.
 - (b) En déduire que $\mathbf{E}(C_n) = o(n)$ quand $n \to +\infty$. Dans la suite, on suppose que les X_k sont d'espérance finie.
 - (c) Montrer que $\mathbf{P}(X_1 \geqslant k) = o\left(\frac{1}{k}\right)$ quand $k \to +\infty$.
 - (d) En déduire que $\mathbf{E}(C_n) = o(\sqrt{n})$ quand $n \to +\infty$.