

Circuit Characterization and Performance Estimation

Outline

- Resistance Estimation
- Electromigration
- Capacitance Estimation
- Switching Characteristics
- CMOS Gate Transistor Sizing
- Power Dissipation

Resistance Estimation

Rectangular shape Resistance (interconnection)

Wire Resistance

Material	ρ (Ω-m)
Silver (Ag)	1.6×10^{-8}
Copper (Cu)	1.7×10^{-8}
Gold (Au)	2.2×10^{-8}
Aluminum (Al)	2.7×10^{-8}
Tungsten (W)	5.5×10^{-8}

Resistance Estimation

> Typical sheet resistances for conductors

Material	Sheet Resistance OHM/SQ.					
	Min. Typical M		Max.			
Metal(AI)	0.03	0.05	0.08			
Silicides	2	3	6			
Diffusion	10	25	50			
(n ⁺ and p ⁺)	10	25	50			
Polysilicon	15	50	100			

Resistance Estimation

➤ MOS transistors:

- Although the I-V characteristic of an MOS transistor is generally nonlinear, it is sometimes useful to approximate its behavior in term of a "channel resistance" to estimate performance.
- Channel resistance in linear region

R_{on} of MOS Transistors

- ➤ MOS structure resistance R_{on}
- Source and drain resistance
- Contact (via) resistance
- Wiring resistance

Source and Drain Resistance of MOS Transistors

Resistance Estimation

- > Resistance of non-rectangular regions
 - One method of calculating the resistance of nonrectangular regions is to break the shape in question into simple regions.
- ➤ Ref:1. M Horowitz,R.W Dutton "Resistance Extraction from Mask Layout "IEEE Tran. CAD,Vol-CAD-2,No.3 P.P 145~150,1983.
 - 2. E.R.Girczyc, A.R.Boothroyd, "A 1-dimension DC model for nonrectangular IGFET "IEEE JSSC PP.778~784, DEC, 1983.

Resistance Estimation

TABLE 4.2 Resistance of Non-Rectangular Shapes

SHAPE	RATIO	RESISTANCE		
A	1	1		
Α	5	5		
В	1	2.5		
В	1.5	2.55		
В	2	2.6		
В	3	2.75		
C	1.5	2.1		
C	2	2.25		
C	3	2.5		
C	4	2.65		
D	1	2.2		
D	1.5	2.3		
D	2	2.3		
D	3	2.6		
E	1.5	1.45		
E	2	1.8		
E	3	2.3		
E	4	2.65		

Resistance Estimation

- Contact and Via resistance
 - Contact and via resistance associated with the contacted materials and the area of contact
 - Typical values are from .25 $\Omega(Via)$ to a few tens of Ωs
 - For low resistance interlayer connections, multiple contacts are used.

Contact Resistance

Source & Drain Contacts:

- surrounded by p+ region in the n-well
- surrounded by n+ region in the p-substrate

N-well Contacts:

- surrounded by n+ region in the n-well
- connect n-well to VDD

Substrate Contacts:

- surrounded by p+ region in the p-substrate
- connect p-substrate to GND

Many substrate & well contacts are needed to avoid latch-up problem, sometimes form a guard-ring

Source: Prof. syhuang's note

Electromigration

- Electromigration set limit in determining the conductor size.
- ➤ The term electronmigration refers to the transfer of mass in metals under the influence of current .It occurs by the transfer of momentum from the electrons to the positive mental ions.
- > This can result in deformation of conductors.
 - a. cause wire to _____
 - b. cause wire ____

Wire Open-circuit

Electromigration

➤ The mean time to failure(MTF) of a conductor due to electromigration is

Electromigration

- ➤ For IC using AI as the connection, J must less than 1 mA/um²
 - For Example:a 0.5um thick AI, J must be less than 0.5 mA/um² of metal width, for a AI connection line carriers width 10mA current, the metal width must be large than 20um.

Electromigration

According to the scaling ...

MTF
$$\propto \frac{WT}{J^2} \propto (WT)^3 \quad (:: J \propto (WT)^{-1})$$

$$\therefore$$
 WT $\downarrow \Rightarrow$ MTF \downarrow

> Set a serious problem as device scaled down.

Electromigration

- Thin metal at the peripheral edge } open failure
 - A set of small contacts can provide much current than a single long narrow contact.

Capacitance Estimation

- Gate Capacitance
- ➤ (Source/Drain) Junction Capacitance
- Routing Capacitance (Interconnection)
- Distributed RC effects

Sources of Capacitance

- > intrinsic MOS transistor capacitances
- > extrinsic MOS transistor (fanout) capacitances
- wiring (interconnect) capacitance

Gate Capacitance

Gate to Bulk Capacitance

FIGURE 4.3. MOS capacitance (a) physical structure and (b) variation as a function of V_{gs}

$$C_o = \left(\frac{\varepsilon_{SiO_2}\varepsilon_o}{t_{ox}}\right) \cdot A, \qquad \qquad \textbf{(4.5)} \qquad \qquad C_{dep} = \left(\frac{\varepsilon_o\varepsilon_{Si}}{d}\right) \cdot A,$$
 where
$$A = \text{area of gate} \qquad \qquad d = \text{depletion layer depth}$$

$$\varepsilon_{SiO_2} = \text{dielectric constant (or relative permittivity of } SiO_2 \qquad \qquad \varepsilon_{Si} = \text{dielectric constant of silicon}$$
 taken as 3.9).

Gate Capacitance

Total Gate Capacitance C_g

Cgs,Cgd: gate to channel capacitance,which are lumped at source and drain regions of channel, respectively.

Csb,Cdb: source and drain diffusion capacitance to bulk (or substrate).

Cgb: gate to bulk capacitance.

$$Cg = Cgb + Cgs + Cgd$$

Approximation of intrinsic MOS gate capacitance

PARAMETER	CAPACITANCE			
PARAMETER	Off	Linear	Saturation	
C_gb				
C_gs				
C_gd				
$C_{g} = C_{gb} + C_{gs} + C_{gd}$				

Note: $\mathcal{E} = \mathcal{E}_0 \cdot \mathcal{E}_{SiO_2}$

where $C_0 = \frac{\varepsilon A}{t}$

 \triangleright We can conservatively approximate $C_q = C_0$

Approximation of intrinsic MOS gate capacitance

Example

(a)
$$\lambda = 2 \text{um}$$
, $t_{OX} = 1000 \text{ Å}$ find C_g

(b)
$$\lambda = 0.5 \text{um}, t_{OX} = 150 \text{ Å}$$
 find C_{g}

Sol:(a)
$$C_{OX} = \frac{4 \times 8.85 \times 10^{-14}}{1000 \times 10^{-8}} = 3.5 \times 10^{-4} \text{ pF/um}^2$$

$$C_g = 3.5 \times 10^{-4} \times 8\lambda^2 pF = 11.2 fF$$

(b)
$$C_{OX} = \frac{4 \times 8.85 \times 10^{-14}}{150 \times 10^{-8}} = 25.5 \times 10^{-4} \text{ pF/um}^2$$

$$C_g = 25.5 \times 10^{-4} \times 8\lambda^2 pF = 5.1 fF$$

S/D Junction Capacitance

➤ The S/D junction capacitance C_d is proportional to the total diffusion-to-substrate junction area and the area of "sidewalk" peripheral.

Total C_d can be represented by

$$C_d = C_{ia} * (ab) + C_{ip} * (2a + 2b),$$

 C_{ja} = junction capacitance per sq. μm

 C_{jp} = periphery capacitance per μm

a =width of diffusion region

b =extent of diffusion region.

S/D Junction Capacitance

(b) CAPACITANCE REPRESENTATION

(c) CAPACITANCE MODEL

	n-DEVICE(OR WIRE)	p-DEVICE(OR WIRE)		
C _{ja}	1×10 ⁻⁴ pF/um ²	1×10 ⁻⁴ pF/um ²		
C _{jp}	9×10 ⁻⁴ pF/um	8×10 ⁻⁴ pF/um		

Typical diffusion capacitance value

S/D Junction Capacitance

Example

> Find C_d for a n-device with a=10um, b=8um

$$C_d = 1 \times 10^{-4} \times (10 \times 8) + 9 \times 10^{-4} \times (20 + 16)$$

= $40 \times 10^{-3} pF$
= 40 fF

* C_d has the same as C_s value

Interconnect

- > Wires are not ideal interconnections
- They may have non-negligible capacitance, resistance, inductance
- Can dominate performance of chip
- Using approximate models
- Detailed post-layout verification also necessary

Coupling Capacitance

- It creates noise issues
 - a' changing will cause noise on 'b'
- If 'a' and 'b' transition at the same time in same direction
 - ∆V across the cap will be zero, and it won't affect the delay
- If 'a' and 'b' transition at the same time in opposite direction
 - \(\Delta V \) across the cap will be ____, and it will look like a grounded cap of ____

Reduced Capacitive Crosstalk

- ➤ Avoid parallel wires
- **>**Shielding

Parallel Plate Wiring Capacitance

Interconnect capacitances

Parallel Plate Model

$$C = (\varepsilon/h) \times A$$

where A: area of the parallel plate

ε: dielectric constant of the insulator material

h: the insulator thickness.

- ➤ This approximation ignores fringing fields.
- The effect of fringing fields is to increase the effective area of the plate.
- Routing capacitances between metal and poly layers and the substrate can be approximated using the parallel plate model.

Interwire capacitances

Wiring Capacitances (0.25 µm CMOS)

	Field	Active	Poly	Al1	Al2	Al3	Al4
	88						
Poly	54				nn	in aF/μm²	
	30	41	57				
Al1	40	47	54		frir	nge in aF/μι	m
	13	15	17	36			
Al2	25	27	29	45			
	8.9	9.4	10	15	41		
Al3	18	19	20	27	49		
	6.5	6.8	7	8.9	15	35	
Al4	14	15	15	18	27	45	
	5.2	5.4	5.4	6.6	9.1	14	38
Al5	12	12	12	14	19	27	52

	Poly	Al1	Al2	Al3	Al4	Al5
Interwire Cap	40	95	85	85	85	115

per unit wire length in aF/µm for minimally-spaced wires

Dealing with Capacitance

- Low capacitance (low-k) dielectrics (insulators) such as polymide or even air instead of SiO₂
 - family of materials that are low-k dielectrics
- Copper interconnect allows wires to be thinner without increasing their resistance, thereby decreasing interwire capacitance
- SOI (silicon on insulator) to reduce junction capacitance

Distributed RC effects

- ➤ For very long wires propagation delays caused by distributed R-C in the wiring layer tend to dominate
- ➤ A long wire can be represented in terms of several RC section.

Distributed RC effects

- > Equivalent circuit: Distributed RC Network
- Diffusion equation

$$C\frac{dV_{j}}{dt} = (I_{j-1} - I_{j}) = \frac{(V_{j-1} - V_{j})}{R} - \frac{(V_{j} - V_{j+1})}{R}$$
 x=distance from input
$$rc\frac{dV}{dt} = \frac{d^{2}V}{dx^{2}}$$
 r=resistance per unit le c=capacitance per unit

r=resistance per unit length c=capacitance per unit length

Distributed RC effects

> Solution:

➤ V(0,t)=Vs ; Voltage source at input

> V(x,0)=0 ; initial condition

$$\Rightarrow V(x,t) = V_S \cdot erfc \cdot \frac{x}{2\sqrt{RCt}}$$

 $\Rightarrow V(x,t) = V_S \cdot erfc \cdot \frac{x}{2\sqrt{RCt}}$ For Example, the time t₁ required for a wire with length I to reach a voltage V(I,t₁)=kV_s is

$$\frac{V(l, t_1)}{V_S} = \text{erfc} \cdot \frac{1}{2\sqrt{RCt_1}} = \text{constant}$$

$$\Rightarrow \frac{1}{2\sqrt{RCt_1}} = constant \Rightarrow t_1 \propto RC1^2$$

The time required for a transient to propagate a distance I is proportional to x^2

Distributed RC effects

Define R-C delay

$$\begin{split} T_d &= \Sigma_{j=1}^N C_j \Sigma_{i=1}^j R_i & \text{for } R_i = R, C_j = C \text{ for all } i, j \\ T_d &= RC \cdot \frac{N(N+1)}{2} \\ \text{As } N \to \infty \ T_d &= \frac{R_L C_L}{2} & \text{where } R_L : \text{total line resistance} \\ C_L : \text{total line capacitance} \end{split}$$

Distributed RC effects

➤ In order to optimize speed in a long poly line, one possible strategy is to segment the line into several sections and insert buffers within theses sections.

Reduction RC effects

Switching Characteristics

Measures time quality of digital circuit .

Switching Characteristics

Switching Characteristics

- RISE and FALL times tr and tf: The ____ and ___ points of the total voltage transition at the input.
- ➤ High-low and low-high transition time at the output t_{HI}, t_{I H}: between the ____ and ___ points.
- Propagation delay times from input to output t_{PHL},t_{PLH}: between the points of the input and output pulse waveforms.
- Cycle time t_{CYC}: the time between identical points of successive cycle in the signal waveform.

CMOS Inverter: Steady State Response

$$V_{in} = 0$$

$$V_{in} = V_{DD}$$

CMOS Properties

- Full rail-to-rail swing ⇒ high noise margins
 - Logic levels not dependent upon the relative device sizes ⇒ transistors can be minimum size ⇒
- Always a path to V_{dd} or GND in steady state \Rightarrow low output impedance (output resistance in kΩ range) \Rightarrow large fan-out (albeit with degraded performance)
- Extremely high input resistance (gate of MOS transistor is near perfect insulator) ⇒ _____
- No direct path steady-state between power and ground => _____
- Propagation delay function of load capacitance and resistance of transistors

NMOS I-V Characteristic

PMOS I-V Characteristic

Transforming PMOS I-V Lines

➤ Want common coordinate set V_{in}, V_{out}, and I_{Dn}

CMOS Inverter Transform Curve

CMOS Inverter VTC

CMOS Inverter: Switch Model of Dynamic Behavior

 $V_{in} = 0$

$$V_{in} = V_{DD}$$

• Gate response time is determined by the time to charge C_L through R_p (discharge C_L through R_n)

Impact of Process Variation on VTC Curve

Scaling the Supply Voltage

Device threshold voltages are kept (virtually) constant

Device threshold voltages are kept (virtually) constant

Analytic Delay Models

- \rightarrow (A) Fall Time($V_{IN} = V_{DD} = V_{GSN}$)
- Saturation

$$I_{DN} = \beta_n (V_{GS} - V_{TN})^2$$
$$= \beta_n (V_{DD} - V_{TN})^2$$

Linear

$$I_{DN} = \beta_{n} (V_{gs} - V_{TN} - V_{DS}/2) V_{DS}$$
$$= \beta_{n} (V_{gs} - V_{TN} - V_{O}/2) V_{O}$$

Analytic Delay Models

➤ the Fall Time $t_{f1}+t_{f2}$ t_{f1} :Vo drops from 0.9*Vdd to $(V_{DD}-V_{TN})$ t_{f2} :Vo drops from $(V_{DD}-V_{TN})$ to 0.1*V_{DD}

$$C_{L} * \frac{dV_{O}}{dt} = I_{DN}$$

$$\Rightarrow \frac{C_{L}}{I_{DN}} dV_{O} = dt \Rightarrow \int dt = \int \frac{C_{L}}{I_{DN}} dV_{O}$$

Analytic Delay Models

t_{f1}: NMOS in saturation

$$t_{fl} = \int dt = \int_{V_{DD}-V_{TN}}^{0.9V_{DD}} \frac{C_L}{I_{DN}} dV_0 = \frac{2C_L}{\beta_n (V_{DD} - V_{TN})^2} \int_{V_{DD}-V_{TN}}^{0.9V_{DD}} dV_0$$

$$= \frac{2C_L (Vth - 0.1V_{DD})}{\beta n (V_{DD} - V_{TN})^2}$$

t_{f2}: NMOS in linear

$$t_{f2} = \int_{0.1V_{DD}}^{V_{DD}-V_{TN}} \frac{C_L}{I_{DN}} dV_0 = \frac{C_L}{\beta_n V_{DD} (1-n)} ln(19-20n)$$
where $n = V_{TN}/V_{DD}$

Analytic Delay Models

$$\begin{aligned} &t_{\mathrm{f}} = t_{\mathrm{fl}} + t_{\mathrm{f2}} = 2 \frac{C_{\mathrm{L}}}{\beta_{\mathrm{n}} V_{\mathrm{DD}} (1 - \mathrm{n})} \left[\frac{(\mathrm{n} - 0.1)}{1 - \mathrm{n}} + \frac{1}{2} \ln(19 - 20 \mathrm{n}) \right] \\ &\approx K \times \frac{C_{\mathrm{L}}}{\beta_{\mathrm{n}} V_{\mathrm{DD}}} \qquad K \approx 3 \text{ to } 4 \qquad \text{for } V_{\mathrm{DD}} = 3 \text{ to } 5 \text{ volts} \\ &t_{\mathrm{f}} \propto C_{\mathrm{L}}; t_{\mathrm{f}} \propto \frac{1}{V_{\mathrm{DD}}} \qquad ; t_{\mathrm{f}} \propto \beta_{\mathrm{n}}^{-1} \propto \left(\frac{W}{\mathrm{L}} \right)^{-1} = \left(\frac{\mathrm{L}}{W} \right) \end{aligned}$$

> t_f can be effective decreased by

• _____

Analytic Delay Models

➤ (B) Rise Time(V_{IN}=0)
Similar as the t_f, we can find the Rise Time t_r of the CMOS inverter

Analytic Delay Models

$$t_r = 2 \frac{C_L}{\beta_p V_{DD} (1-p)} \left[\frac{(p-0.1)}{1-p} + \frac{1}{2} \ln(19-20n) \right]$$

$$\approx 3 \rightarrow 4 \frac{C_L}{\beta_p V_{DD}}$$
 where $p = \frac{|V_{TP}|}{V_{DD}}$

**
$$If$$
 we want to $t_r = t_f$

Analytic Delay Models

(C) Delay Time
The average gate delay for rising and falling transitions is

$$t_{av} = \frac{t_{df} + t_{dr}}{2} \qquad \text{where } \begin{cases} t_{df} = \frac{t_f}{2} \\ t_{dr} = \frac{t_r}{2} \end{cases}$$

$$\therefore \text{ if } t_r = t_f \implies t_{av} = \frac{t_r}{2} = \frac{t_f}{2}$$

Gate Delays

- ➤ The delay of simple gate may be approximated by constructing an "equivalent" inverter.
- For Example, in the 3-input NAND

Example (3-input NAND)

$$\beta_{neff} = \frac{1}{\frac{1}{\beta_{n1}} + \frac{1}{\beta_{n2}} + \frac{1}{\beta_{n3}}} \qquad For \beta_{n1} = \beta_{n2} = \beta_{n3} = \beta_{n}$$

$$\beta_{neff} = \frac{\beta_{n}}{\beta_{n1}} = \beta_{n2} = \beta_{n3} = \beta_{n}$$

$$\beta_{neff} = \frac{\beta_{n}}{\beta_{n2}} = \beta_{series}$$

For
$$\beta_{n1} = \beta_{n2} = \beta_{n3} = \beta_{n3}$$

$$\beta_{neff} = \frac{\beta_{n}}{3} = \beta_{series}$$

(Summation of series conductance) : $\tau_{\text{series}} = K \frac{C_L}{\frac{\beta_n}{3} V_{DD}} = 3K \times \frac{C_L}{\beta_n V_{DD}}$

Assume
$$\mu_p = \frac{1}{2} \mu_n$$
, want $t_r = t_f$ as an inverter.

Design the W_p and W_n of the 3-input NAND.

$$\Rightarrow$$
 3 - input NAND

$$L_p = L_n = L_{min}$$
, $W_n = 3W_{min}$, $W_p = 2W_{min}$

"equilvalen t" inverter

$$L_p = L_n = L_{min}$$
 , $W_n = W_{min}$, $W_p = 2W_{min}$

CMOS – Gate Transistor Sizing

- Want to determine the CMOS channel width
 - Minimum-Sized Inverter and "Equivalent" Simple Gate
 - Tapered Buffer Stage Ratio

Minimum-Sized Inverter and "Equivalent" Simple Gate

Set
$$t_r = t_f$$
, we have $\beta_n = \beta_p$

• A minimum size inverter is

$$L = L_p = L_n = L_{\min}$$

$$W_p = 3W_{min}$$

$$W_n = W_{min} (Assume \mu_n = 3\mu_p)$$

• m - input NAND

$$L = L_{min}$$

$$W_p = 3W_{min}$$

$$W_n =$$

$$L = L_{min}$$

$$W_p =$$

$$W_n = W_{min}$$

$$\begin{array}{c|c} & O/P \\ \hline & W_n = m \times W_{min} \\ \hline & W_n = m \times W_{min} \\ \hline & Mm \end{array}$$

- In static CMOS Logic design, NAND using fewer MOS gate area than NOR gate
- > => NAND gate constructing faster logic operation.

Tapered Buffer Stage Ratio

- How to drive large capacitive load?
 - Eq. (1)output Buffer and output pad ~20pf
 - (2)internal data bus ~5pf
 - (3)Clock drivers ~10pf ~50pf
 - ---Dynamic Logic & Memory

Tapered Buffer Stage Ratio

C_L: load capacitance

C_q: cap. of a minimum inverter

td: the average delay of a minsized inverter driving another min-sized inverter.

(1) Using a minimum inverter to drive the C₁.

Total delay =R \times td = 100 td (R=(C_L/C_q))

(2) Multi Stage Tapered Buffer.

Tapered Buffer Stage Ratio

- Consider a cascade of enlarged inverter, each scaled by aⁱ relative to the minimum inverter.
- Using n cascade inverter let aⁿ = R
 =>In R =n In a =>n=In(R) /In(a)
 total delay =

Tapered Buffer Stage Ratio

Want to optimize total delay (min delay)

$$\frac{\partial (\text{Total delay})}{\partial a} = (\ln R)td \left[\frac{1}{\ln a} + a \frac{\partial}{\partial a} \left(\frac{1}{\ln a} \right) \right]$$

$$= (\ln R)td \left[\frac{1}{\ln a} + a \left(-\frac{1}{(\ln a)^2} \right) \frac{1}{a} \right]$$

$$= \frac{\ln R}{\ln a} \cdot td \left[1 - \frac{1}{\ln a} \right] = 0 \implies \ln (a_{\min}) = 1$$

In practical a ≒ ____ for area consideration

Power Dissipation

- There are two components of power dissipation in a CMOS gate.
- 1. _____due to leakage current or other current drawn continuously from the power supply.
- 2._____due to
 - switching transient current
 - charge & discharge of load cap

Power Dissipation

A. Static Power Dissipation

Ps=

where

Ps = total static power dissipation

n = number of devices

Power Dissipation

- B. Dynamic Power Dissipation
- Charging and discharging of load capacitance
- As P and N alternately switch ON and OFF, C_L is charged to V_{DD} and the discharged to GND.

• Charge:

Power Dissipation

$$E_{C} = \int i_{p}(t) [V_{DD} - Vo(t)] dt$$

$$= V_{DD} \int i_{p}(t) dt - \int i_{p}(t) Vo(t) dt$$

$$= C_{L} V_{DD} \int_{0}^{V_{DD}} dv - C_{L} \int_{0}^{V_{DD}} V dv$$

$$= C_{L} V_{DD}^{2} - \frac{1}{2} C_{L} V_{DD}^{2}$$

$$= \frac{1}{2} C_{L} V_{DD}^{2}$$

• Discharge:

$$E_{D} = \int i_{n}(t)V(t)dt$$
$$= -\int_{V_{DD}}^{0} C_{L}Vodv$$
$$= \frac{1}{2}C_{L}V_{DD}^{2}$$

Power Dissipation

C. Short – Circuit Dissipation

Power Dissipation

$$P_{SC} = I_{mean} \times V_{DD}$$

$$I_{\text{mean}} = 2 \times \left[\frac{1}{T} \int_{t1}^{t2} I(t) dt + \frac{1}{T} \int_{t2}^{t3} I(t) dt \right]$$

Assume
$$V_{TN} = -V_{TP}$$
, $\beta_n = \beta_p = \beta$, $t_r = t_f$, $Vin(t) = \frac{V_{DD}}{t_r} \times t$

We have
$$P_{SC} = \frac{\beta}{12} (V_{DD} - 2V_t)^3 \left(\frac{t_{rf}}{t_p} \right)$$

where t_p : the period of the input waveform.

$$P_{SC} \propto \frac{t_{rf}}{t_{p}} \Rightarrow small t_{rf} \Rightarrow small P_{SC}$$

* Slow rise times can result in significant short - circuit dissipation.

Power Dissipation

D. Total Power Dissipation

$$P_{total} = P_s + P_d + P_{sc}$$

P_s: Static dissipation

P_d , P_{sc}: Dynamic dissipation

As frequency increased, dynamic power dissipation is dominated.

Packaging Cross-Section

- A sample processor cross-section is shown below
 - May or may not have a heat spreader
 - May have die side capacitors as well as land side
 - Package may have 4-14 layers depending on number of signals and cost structure of market (low-end desktop to high-end server)
 - May have an additional layer of package (interposer) for space transformation and for housing additional components
- Power must penetrate through the socket and package

奈米技術將創造自我冷卻晶片

- ▶美國普渡大學(Purdue University)
- ▶桶式(bucket brigade)、 類似電荷耦合的元件,它 可以將熱量從處理電子訊 號的晶片中排出
- ▶離子風:當離子向前運動時,它們與中性的分子發生重覆碰撞,因而形成離子風。

Source:電子工程專輯

Reference

- Douglas A Pucknell, Kamran Eshraghian ,Basic VLSI Design 3rd Ed, Prentice Hall .
- M Michael Vai, VLSI Design, CRC Press, 2000
- D.A.Pucknell, K.Eshraghian, Basic VLSI Design, 3rd Ed, Prentice Hall, 1994
- Weste and Eshraghian, Principles of VLSI Design--A Systems Perspective, Addision-Wesley, 2nd, 1993
- C.Y. Chang and S.M. Sze, ULSI DEVICES, John Wiely & Sons, 2002
- ▶ 國家晶片系統設計中心, Dracula Training Manual, 2002.07
- 中央大學電機工程學系,鄭國興老師
- Irwin&Vijay, PSU
- Digital Integrated Circuits^{2nd}
- ▶ 南台科技大學電子系,楊博惠老師
- Maitham Shams (CANADA)
- paulo moreira Switzerland
- ➤ Kenneth R. Laker, University of Pennsylvania
- Prentice Hall 1995

回本節首頁