§ 1.2 极限的概念及其性质

10极限理论的重要地位

创立微积分:

牛顿 (1642 —— 1727)

莱布尼兹 (1646 —— 1716)

对极限给出了严格的定义:

柯西 (1789——1857)

维尔斯特拉斯 (1815 —— 1897)

2°数列与收敛数列

定义 数列是以自然数集N为定义域的函数,若记此函数关系为f,则

$$a_n = f(n)$$
, $n = 1, 2, \cdots$

就称为数列,记为 $\{a_n\}$,而 a_n 称为数列的通项

有界数列:对于数列 $\{a_n\}$,如果存在 M > 0,使对一切 n 有 $|a_n| \leq M$

则称数列 $\{a_n\}$ 为有界数列,否则称为无界数列

单调数列:

- (1) 若对一切n,有 $a_n \leq a_{n+1}$ 则称数列 $\{a_n\}$ 为单调增数列.
- (2) 若对一切n,有 $a_{n+1} \le a_n$ 则称数列 $\{a_n\}$ 为单调减数列

本段我们讨论数列 $\{a_n\}$ 的极限 $\lim_{n\to\infty} a_n$

定义 对任意的正数 ε>0, 存在 N>0, 当 n>N 时,

有
$$|a_n - A| < \varepsilon$$

则称当 $n \to \infty$ 时, a_n 以A为极限,记作

$$\lim_{n\to\infty}a_n=A$$

我们称有极限 $\lim_{n\to\infty} a_n = A$ 的数列 $\{a_n\}$ 为收敛数列,

而 $\lim_{n\to\infty} a_n$ 不存在的数列称为发散数列

数列极限的几何意义

$$A - \varepsilon < a_n < \varepsilon + A$$

例 对于数列 $\{r^n\}$,证明: 当 |r|<1 时为收敛数列

解 当 |r| < 1 时,我们证明: $\lim_{n \to \infty} r^n = 0$

如果
$$r=0$$
,则 $r^n=0$ $\Rightarrow \lim_{n\to\infty} r^n=0$

下设 0 < r < 1. 对任意的 $\varepsilon > 0$, 要使

$$\left| r^n - 0 \right| = \left| r^n \right| < \varepsilon$$

只需 $n \ln |r| < \ln \varepsilon \Rightarrow n > \frac{\ln \varepsilon}{\ln |r|}$,故取 $N = \left[\frac{\ln \varepsilon}{\ln |r|}\right]$

则当n > N时,就有

$$|r^n| < \varepsilon$$

说明: (1) 当 r = 1 时, $r^n = 1$,

 $\Rightarrow \{r^n\}$ 为收敛数列

(2) 当 r = -1 时, $r^n = (-1)^n$, 由于其轮番地

取-1或1,不接近于任何常数,故知

 $\{r^n\} = \{(-1)^n\}$ 为发散数列

定理(数列收敛的必要条件)

若 $\lim_{n\to\infty} a_n = A$, 则 $\{a_n\}$ 是有界数列,

即存在 M > 0,使对任意 n 都有 $|a_n| \leq M$

证明 由 $\lim_{n\to\infty} a_n = A$,则对 $\varepsilon = 1$,存在 N > 0,

使当n > N时,有 $|a_n - A| < \varepsilon = 1$,

于是有

$$|a_n| = |a_n - A + A| \le |a_n - A| + |A| < 1 + |A|$$

取
$$M = \max\{|a_1|, |a_2|, \dots, |a_N|, 1+|A|\}$$

则对任意的自然数n,有

$$|a_n| \leq M$$

定义 在已给数列 $\{a_n\}$ 中,任意取出无限多项排成一列 $a_{n_1}, a_{n_2}, \dots, a_{n_k}, \dots$

 $n_k \in \mathbb{N}$, $n_1 < n_2 < \dots < n_k < \dots$, 构成一数列 $\{a_{n_k}\}$,

我们称 $\{a_{n_k}\}$ 为 $\{a_n\}$ 的子数列

定理 $\lim_{n\to\infty} a_n = A \Leftrightarrow$ 对 $\{a_n\}$ 的任一子数列

$$\{a_{n_k}\} \ \hat{\mathbf{f}} \qquad \lim_{k \to \infty} a_{n_k} = A$$

说明: 对于数列 $a_n = (-1)^n$

取
$$n_k = 2k$$
 , 则 $\{a_{n_k}\} = 1 \to 1$ $\Rightarrow a_n = (-1)^n$ 取 $n_k = 2k - 1$,则 $\{a_{n_k}\} = -1 \to -1$ 发散

定理
$$\lim_{n\to\infty} a_n = A \Leftrightarrow \lim_{k\to\infty} a_{2k} = \lim_{k\to\infty} a_{2k+1} = A$$

证明 "⇒" 设
$$\lim_{n\to\infty} a_n = A$$
, 则对任意 $\varepsilon > 0$,

存在 N > 0, 使当 n > N 时,有

$$|a_n - A| < \varepsilon$$

由于 2N > N, 2N+1 > N, 故可取 K = N, 使当

k > K 时,就有 2k > 2K > N, 2k + 1 > N, 从而有

$$|a_{2k}-A|<\varepsilon$$
, $|a_{2k+1}-A|<\varepsilon$,

即
$$\lim_{k\to\infty}a_{2k}=A,\ \lim_{k\to\infty}a_{2k+1}=A$$

"
$$\Leftrightarrow$$
" 设 $\lim_{k\to\infty} a_{2k} = A$, $\lim_{k\to\infty} a_{2k+1} = A$

则对任意 $\varepsilon > 0$,分别存在 $K_1 > 0$, $K_2 > 0$,使当

$$k > K_1$$
 时,有 $|a_{2k} - A| < \varepsilon$,

当
$$k > K_2$$
时,有 $|a_{2k+1} - A| < \varepsilon$

取
$$N = max\{2K_1, 2K_2+1\}$$
, 则当 $n > N$ 时,必有

$$|a_n - A| < \varepsilon$$

即
$$\lim_{n\to\infty}a_n=A$$

30 自变量趋于有限值时函数的极限

定义: 设函数 f(x) 在 x_0 的某个邻域 $N(x_0)$ (点 x_0 可以除外) 内有 定义,A 是一常数,若 对任意给定的正数 $\epsilon > 0$,

总可找到一 $\delta > 0$,使当 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$

则称当 $x \to x_0$ 时, f(x) 以 A 为极限, 记作

$$\lim_{x \to x_0} f(x) = A$$

说明: (1) 为什么 x_0 可以除外?

- (2) ε为什么要任意给定而不是给定一个?
- (3) 存在一 $\delta > 0$ 的意义是什么? 是否唯一?

极限定义的几何解释:

当x在 x_0 的去心 δ 邻域时,函数y = f(x)图形 完全在以直线y = A为中心线,宽为 2ε 的带区域

显然, 在找到一个 δ 后,比其小的数都可 作为定义中的 δ

例 证明: $\lim_{x \to \frac{3}{2}} \frac{4x^2 - 9}{2x - 3} = 6$

证明: 因为当
$$x \neq \frac{3}{2}$$
 时, $f(x) = \frac{4x^2 - 9}{2x - 3} = 2x + 3$

任给 $\varepsilon > 0$, 要使 $|f(x) - 6| < \varepsilon$, 即

$$|2x+3-6| = |2x-3| = 2|x-\frac{3}{2}| < \varepsilon$$

只要取 $\delta < \frac{\varepsilon}{2}$ 的正数,此时当 $0 < |x - \frac{3}{2}| < \delta$ 时,

就有
$$\left| \frac{4x^2 - 9}{2x - 3} - 6 \right| = 2 \left| x - \frac{3}{2} \right| < 2\delta < \varepsilon$$

所以
$$\lim_{x \to \frac{3}{2}} \frac{4x^2 - 9}{2x - 3} = 6$$

例证明: $\lim_{x \to 2} x^2 = 4$

证明 由于 $x \to 2$,故只需在 x = 2 的邻近考虑问题 不妨设 $x \in (1,3)$ 任给 $\varepsilon > 0$,由于

$$|x^2 - 4| = |x - 2||x + 2| < 5|x - 2|, \forall x \in (1, 3)$$

为使 $|f(x)-4|=|x^2-4|<\varepsilon$, 只需让 $5|x-2|<\varepsilon$ 即可,

因此可取 $\delta = \min\{\frac{\varepsilon}{5},1\}$, 则当 $0 < |x-2| < \delta$ 时,

就有
$$|f(x)-4|=|x^2-4|<5|x-2|<5\delta \le 5\cdot \frac{\varepsilon}{5}=\varepsilon$$

所以证得 $\lim_{x \to 2} x^2 = 4$

例证明: $\lim_{x\to x_0}\cos x = \cos x_0$

证明 任给 $\varepsilon > 0$, 注意到

$$\left|\cos x - \cos x_0\right| = \left|2\sin\frac{x + x_0}{2}\sin\frac{x - x_0}{2}\right| \le 2\left|\sin\frac{x - x_0}{2}\right|$$

及 $\left|\sin x\right| \leq \left|x\right|, \quad x \in R,$

于是有
$$\left|\cos x - \cos x_0\right| \le 2 \left|\sin \frac{x - x_0}{2}\right| \le \left|x - x_0\right|$$

所以可取 $\delta = \varepsilon$,则当 $0 < |x - x_0| < \delta$ 时,就有

$$\left|\cos x - \cos x_0\right| < \varepsilon$$

由此证得 $\lim_{x \to x_0} \cos x = \cos x_0$

例证明:
$$\lim_{x\to 0} a^x = 1$$
, $(a > 1)$

证明 任给 $\varepsilon \in (0,1)$, 由于

$$|a^x - 1| < \varepsilon \iff 1 - \varepsilon < a^x < 1 + \varepsilon$$

$$\Leftrightarrow \log_a(1-\varepsilon) < x < \log_a(1+\varepsilon)$$

$$\Leftrightarrow -\log_a \frac{1}{1-\varepsilon} < x < \log_a (1+\varepsilon)$$

故取
$$\delta = \min\{\log_a \frac{1}{1-\varepsilon}, \log_a (1+\varepsilon)\},$$

则当
$$0<|x|<\delta$$
时,就有 $a^x-1|<\varepsilon$,

所以证得
$$\lim_{x\to 0} a^x = 1$$

例 设 $f(x) = \sin \frac{1}{x}$, 讨论 $\lim_{x \to 0} f(x)$.

证 我们证明 $\lim_{r\to 0} f(x)$ 不存在

对任意的 $\delta > 0$, $\hat{N}(0,\delta)$ 中总包含形式为

$$x_n = \frac{1}{2n\pi + \frac{\pi}{2}}, y_n = \frac{1}{(2n+1)\pi + \frac{\pi}{2}}$$

的点使 $f(x_n)=1$, $f(y_n)=-1$, 可知在 x=0 的邻近,

函数f(x)在-1与1之间无限震荡,不趋向于任何常数,

所以极限 $\lim_{x\to 0} f(x)$ 不存在

f(x)在x=0的邻近无限震荡引起极限不存在

例 设
$$f(x) = \frac{1}{x}$$
, 讨论 $\lim_{x\to 0} f(x)$.

证 我们先证:对任取的 $\delta > 0$, f(x) 在 $\hat{N}(0,\delta)$ 上无界

任给
$$M > 0$$
, 选取 $N > 0$, 使 $x_N = \frac{1}{N+M} \in \hat{N}(0,\delta)$,

$$\Rightarrow f(x_N) = N + M > M$$

$$\Rightarrow f(x)$$
在 $\hat{N}(0,\delta)$ 上无界

$$\Rightarrow \lim_{x \to 0} f(x)$$
不存在

f(x) 在 x = 0 的邻近无界引起极限不存在

30单侧极限

右极限: 如果保持 $x > x_0$,且 $x \to x_0$ (简记为

$$x \rightarrow x_0^+$$
 或 $x \rightarrow x_0 + 0$ 时,

$$f(x) \rightarrow A$$

则称A是x趋向于 x_0 时,f(x)在 x_0 处的右极限,记为 $f(x_0+0)$,即

$$f(x_0 + 0) = \lim_{x \to x_0^+} f(x) = A.$$

 $"\varepsilon - \delta$ "定义:

$$f(x_0 + 0) = \lim_{x \to x_0^+} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0,$$

使当
$$0 < x - x_0 < \delta$$
时,有 $|f(x) - A| < \varepsilon$.

左极限: 如果保持 $x < x_0$, 且 $x \to x_0$ (简记为

$$x \to x_0^-$$
 或 $x \to x_0^-$ 的 时,

$$f(x) \rightarrow A$$

则称A是x趋向于 x_0 时,f(x)在 x_0 处的左极限,记为 $f(x_0-0)$,即

$$f(x_0 - 0) = \lim_{x \to x_0^-} f(x) = A$$

" ε – δ "定义:

$$f(x_0 - 0) = \lim_{x \to x_0^-} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0,$$

使当
$$0 < x_0 - x < \delta$$
时,有 $|f(x) - A| < \varepsilon$

关于左极限、右极限与极限有以下的结论:

定理(左、右极限与极限的关系)

 $\lim_{x \to x_0} f(x) = A$ 充要条件是f(x) 在 x_0 处的左、右

极限存在,而且 $f(x_0-0)=f(x_0+0)=A$

证明 " \leftarrow " : $f(x_0+0)=A$,则 $\forall \varepsilon>0,\exists \delta_1>0$,

使当 $0 < x - x_0 < \delta_1$ 时,有

$$|f(x)-A|<\varepsilon$$

又因 $f(x_0-0)=A$,则 $\exists \delta_2 > 0$,使当 $0 < x_0 - x < \delta_2$ 时,

有

$$|f(x)-A|<\varepsilon$$

取
$$\delta = \min\{\delta_1, \delta_2\}$$
,当 $0 < |x - x_0| < \delta$ 时,就有
$$|f(x) - A| < \varepsilon$$

 $\lim_{x \to x_0} f(x) = A$ 由此证明了

设 $\lim f(x) = A$,则对任意的 $\varepsilon > 0$,

存在 $\delta > 0$,使当 $0 < |x - x_0| < \delta$ 时,有

$$|f(x)-A|<\varepsilon$$

于是当 $0 < x - x_0 < \delta$ 时,或 $0 < x_0 - x < \delta$ 时都有

$$|f(x)-A|<\varepsilon$$

 $f(x_0 - 0) = f(x_0 + 0) = A$

$$f(0+0) = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x-1) = -1$$

$$f(0-0) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x+1) = 1$$

由于
$$f(0-0) \neq f(0+0)$$

可知极限 $\lim_{x\to 0} f(x)$ 不存在

40 自变量趋向无穷大时函数的极限

问题: 当自变量 x 趋向无穷远处时,研究函数 y = f(x)的变化趋势

自变量 x 趋向无穷远处可分为以下三种情况:

$$(1) x \to \infty (\mathbb{R}|x| \to +\infty) ; \quad (2) x \to +\infty; \quad (3) x \to -\infty$$

 $x \to -\infty, y \to 0$

- (2) $\lim_{x \to +\infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists M > 0, \exists x > M$ 时,有 $|f(x) A| < \varepsilon$
- (3) $\lim_{x \to -\infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists M > 0, \exists x < -M$ 时,有 $|f(x) A| < \varepsilon$
- 说明: (1) 定义中的 M 不是唯一的,与ε有关, 重要的在于存在性
 - (2) 若 $\lim_{x\to\infty} f(x) = A$,则称y = A为曲线y = f(x)的水平渐近线

若
$$\lim_{x \to +\infty} f(x) = B$$
,则称 $y = B$ 为曲线 $y = f(x)$
在 $x \to +\infty$ 方向的水平渐近线

若 $\lim_{x\to\infty} f(x) = C$,则称 y = C为曲线 y = f(x)

在 $x \rightarrow -\infty$ 方向的水平渐近线

与单侧极限类似有以下定理

定理 $\lim_{x\to\infty} f(x) = A$ 的充要条件是

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = A$$

说明:

y = A 是曲线 y = f(x) 的水平渐近线的充要条件是 y = A 既是 $x \to +\infty$ 方向的又是 $x \to -\infty$ 方向的 水平渐近线

例证明:
$$\lim_{x \to \infty} \frac{x}{1-x} = -1$$

解 对任给的 ε > 0, 要使

$$\left|\frac{x}{1-x} - (-1)\right| = \left|\frac{x}{1-x} + 1\right| = \left|\frac{1}{1-x}\right| < \varepsilon, \quad \text{Right} \quad |1-x| > \frac{1}{\varepsilon}$$

又
$$|1-x|>|x|-1$$
,于是让 $|x|-1>\frac{1}{\varepsilon}$,即 $|x|>1+\frac{1}{\varepsilon}$

取
$$M=1+\frac{1}{\varepsilon}$$
, 则当 $|x|>M$ 时,就有

$$\left|\frac{x}{1-x}-(-1)\right| = \left|\frac{1}{1-x}\right| \le \frac{1}{|x|-1} \le \frac{1}{\frac{1}{\varepsilon}} < \varepsilon,$$

所以

$$\lim_{x \to \infty} \frac{x}{1 - x} = -1$$

50 极限的性质

定理(唯一性定理) 如果极限 $\lim_{x\to x_0} f(x)$ 存在,则此极限值是唯一的

证明 用反证法

设 $x \to x_0$ 时, 函数 f(x) 有两个不同的极限,

即 $\lim_{x \to x_0} f(x) = A$ 且 $\lim_{x \to x_0} f(x) = B$, $A \neq B$

不妨设 A < B (A > B) 的情形类似证明)

对于
$$\varepsilon = \frac{B-A}{2} > 0$$
,存在 $\delta_1 > 0$,使当 $0 < |x-x_0| < \delta_1$ 时,
$$|f(x)-A| < \frac{B-A}{2},$$

同样地,存在 $\delta_2 > 0$, 使当 $0 < |x - x_0| < \delta_2$ 时,

$$|f(x)-B|<\frac{B-A}{2}$$

取 $\delta = \min\{\delta_1, \delta_2\}$, 则当 $0 < |x - x_0| < \delta$ 时,

同时有不等式

$$|f(x)-A| < \frac{B-A}{2}, \quad |f(x)-B| < \frac{B-A}{2}$$

于是得
$$B-\frac{B-A}{2} < f(x) < A + \frac{B-A}{2}$$
,

$$\mathbb{P} \frac{A+B}{2} < f(x) < \frac{A+B}{2},$$

矛盾, 假设不成立, 证毕

定理(局部有界性定理)

若 $\lim_{x \to x_0} f(x) = A$,则 f(x)在 x_0 的某去心邻域内

有界,即存在常数 M>0 及 $\delta>0$,使当 $0<|x-x_0|<\delta$ 时,有 $|f(x)|\leq M$

证明 由 $\lim_{x\to x_0} f(x) = A$,根据极限的定义,

对于 $\varepsilon=1$, 存在 $\delta>0$, 使当 $0<|x-x_0|<\delta$ 时,有

$$|f(x)-A|<\varepsilon=1$$

于是

$$|f(x)| = |f(x) - A + A| \le |f(x) - A| + |A| \le 1 + |A|$$

结论成立

定理(局部保序性定理)

如果
$$\lim_{x\to x_0} f(x) = A$$
, $\lim_{x\to x_0} g(x) = B$, 且 $A > B$,

则存在 $\delta > 0$,使当 $0 < |x - x_0| < \delta$ 时,有

证明 由
$$\lim_{x\to x_0} f(x) = A$$
, 故对 $\varepsilon = \frac{A-B}{2} > 0$,

存在 $\delta_1 > 0$, 使当 $0 < |x - x_0| < \delta_1$ 时,有

$$|f(x)-A| < \varepsilon = \frac{A-B}{2}$$

可得
$$f(x) > A - \varepsilon = A - \frac{A - B}{2} = \frac{A + B}{2}$$

又由
$$\lim_{x\to x_0} g(x) = B$$
, 存在 $\mathcal{S}_2 > 0$,

使当 $0<|x-x_0|<\delta_2$ 时,有

$$|g(x)-B|<\varepsilon=\frac{A-B}{2}$$

即有
$$g(x) < B + \varepsilon = B + \frac{A - B}{2} = \frac{A + B}{2}$$

现取 $\delta = \min\{\delta_1, \delta_2\}$, 则当 $0 < |x - x_0| < \delta$ 时,

有
$$g(x) < \frac{A+B}{2} < f(x)$$

定理证毕

若定理中的g(x) = 0,则有以下的推论

推论(局部保号性定理) 若 $\lim_{x\to x_0} f(x) = A$,

且 A>0 (或 A<0),则存在 x_0 的某去心邻域使得 f(x)在此邻域内与 A 保持同号,即存在 $\delta>0$,使当 $0<|x-x_0|<\delta$ 时,有

f(x) > 0 ($\mathfrak{A} f(x) < 0$)

注意: 局部保号性的逆定理未必成立

反例
$$f(x) = x^2 > 0$$
, $x \neq 0$

但是
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} x^2 = 0$$

尽管如此,仍有以下结论

推论 如果 $\lim_{x\to x_0} f(x) = A$,且在 x_0 的某去心邻域内 恒有 $f(x) \ge 0$ (或 $f(x) \le 0$),则有

 $A \ge 0$ (或 $A \le 0$)

证明 利用反证法及局部保号性定理即可证得说明:

以上三个定理及推论对 x 的其他趋限过程:

$$x \rightarrow x_0^-$$
, $x \rightarrow x_0^+$, $x \rightarrow \infty$, $x \rightarrow +\infty$, $x \rightarrow -\infty$

及数列极限继续成立

