CSE 120 Principles of Operating Systems

Fall 2014

Midterm Review

Geoffrey M. Voelker

Overview

- The midterm
- Architectural support for OSes
- OS modules, interfaces, and structures
- Processes
- Threads
- Synchronization
- Scheduling

Midterm

- Covers material through scheduling
- Based upon lecture material, homeworks, and project
- One 8.5"x11" double-sided sheet of notes
- Obligatory: Please, do not cheat
 - Do not copy from your neighbor
 - No one involved will be happy, particularly the teaching staff

3

Arch Support for OSes

- Types of architecture support
 - Manipulating privileged machine state
 - Generating and handling events

Privileged Instructions

- What are privileged instructions?
 - Who gets to execute them?
 - How does the CPU know whether they can be executed?
 - Difference between user and kernel mode
- Why do they need to be privileged?
- What do they manipulate?
 - Protected control registers
 - Memory management
 - I/O devices

5

Events

- Events
 - Synchronous: fault (exceptions), system calls
 - Asynchronous: interrupts, software interrupt
- What are faults, and how are they handled?
- What are system calls, and how are they handled?
- What are interrupts, and how are they handled?
 - How do I/O devices use interrupts?
- What is the difference between exceptions and interrupts?

OS Modules and Interfaces

- Modules
 - OS services and abstractions
- Interfaces
 - Operations supported by components

7

Modules

- Processes
- Memory
- I/O
- Secondary storage
- Files
- Protection
- Account
- Command interpreter (shell)

Processes

- What is a process?
- What resource does it virtualize?
- What is the difference between a process and a program?
- What is contained in a process?

Process Data Structures

- Process Control Blocks (PCBs)
 - What information does it contain?
 - How is it used in a context switch?
- State queues
 - What are process states?
 - What is the process state graph?
 - When does a process change state?
 - How does the OS use queues to keep track of processes?

Process Manipulation

- What does CreateProcess on NT do?
- What does fork() on Unix do?
 - What does it mean for it to "return twice"?
- What does exec() on Unix do?
 - How is it different from fork?
- How are fork and exec used to implement shells?

Threads

- What is a thread?
 - What is the difference between a thread and a process?
 - How are they related?
- Why are threads useful?
- What is the difference between user-level and kernellevel threads?
 - What are the advantages/disadvantages of one over another?

Thread Implementation

- How are threads managed by the run-time system?
 - Thread control blocks, thread queues
 - How is this different from process management?
- What operations do threads support?
 - Fork, yield, sleep, etc.
 - What does thread yield do?
- What is a context switch?
- What is the difference between non-preemptive scheduling and preemptive thread scheduling?
 - Voluntary and involuntary context switches

Synchronization

- Why do we need synchronization?
 - Coordinate access to shared data structures
 - Coordinate thread/process execution
- What can happen to shared data structures if synchronization is not used?
 - Race condition
 - Corruption
 - Bank account example
- When are resources shared?
 - Global variables, static objects
 - Heap objects

Mutual Exclusion

- What is mutual exclusion?
- What is a critical section?
 - What guarantees do critical sections provide?
 - What are the requirements of critical sections?
 - » Mutual exclusion (safety)
 - » Progress (liveness)
 - » Bounded waiting (no starvation: liveness)
 - » Performance
- How does mutual exclusion relate to critical sections?
- What are the mechanisms for building critical sections?
 - Locks, semaphores, monitors, condition variables

Locks

- What does Acquire do?
- What does Release do?
- What does it mean for Acquire/Release to be atomic?
- How can locks be implemented?
 - Spinlocks
 - Disable/enable interrupts
 - Blocking (Nachos)
- How does test-and-set work?
 - What kind of lock does it implement?
- What are the limitations of using spinlocks, interrupts?
 - Inefficient, interrupts turned off too long

Semaphores

- What is a semaphore?
 - What does Wait/P/Decrement do?
 - What does Signal/V/Increment do?
 - How does a semaphore differ from a lock?
 - What is the difference between a binary semaphore and a counting semaphore?
- When do threads block on semaphores?
- When are they woken up again?
- Using semaphores to solve synchronization problems
 - Readers/Writers problem
 - Bounded Buffers problem

Monitors

- What is a monitor?
 - Shared data
 - Procedures
 - Synchronization
- In what way does a monitor provide mutual exclusion?
 - To what extent is it provided?
- How does a monitor differ from a semaphore?
- How does a monitor differ from a lock?
- What kind of support do monitors require?
 - Language, run-time support

Condition Variables

- What is a condition variable used for?
 - Coordinating the execution of threads
 - Not mutual exclusion
- Operations
 - What are the semantics of Wait?
 - What are the semantics of Signal?
 - What are the semantics of Broadcast?
- How are condition variables different from semaphores?

Always While on Wait?

```
Class Barrier {
...
void Done (int n) {
...
if (...) {
    cv->Wait(lock);
    } else {
...
}
```

```
Class Barrier {
...
void Done (int n) {
...
while (...) {
cv->Wait(lock);
} else {
...
}
```

Implementing Monitors

- What does the implementation of a monitor look like?
 - Shared data
 - Procedures
 - A lock for mutual exclusion to procedures (w/ a queue)
 - Queues for the condition variables
- What is the difference between Hoare and Mesa monitors?
 - Semantics of signal (whether the woken up waiter gets to run immediately or not)
 - What are their tradeoffs?
 - What does Java provide?
 - (Actually, don't worry about this for the midterm)

Locks and Condition Vars

- In Nachos, we don't have monitors
- But we want to be able to use condition variables
- So we isolate condition variables and make them independent (not associated with a monitor)
- Instead, we have to associate them with a lock (mutex)
- Now, to use a condition variable...
 - Threads must first acquire the lock (mutex)
 - CV::Wait releases the lock before blocking, acquires it after waking up

Scheduling

- What kinds of scheduling is there?
 - Long-term scheduling
 - Short-term scheduling
- Components
 - Scheduler (dispatcher)
- When does scheduling happen?
 - Job changes state (e.g., waiting to running)
 - Interrupt, exception
 - Job creation, termination

Scheduling Goals

Goals

- Maximize CPU utilization
- Maximize job throughput
- Minimize turnaround time
- Minimize waiting time
- Minimize response time
- What is the goal of a batch system?
- What is the goal of an interactive system?

Starvation

- Starvation
 - Indefinite denial of a resource (CPU, lock)
- Causes
 - Side effect of scheduling
 - Side effect of synchronization
- Operating systems try to prevent starvation

Scheduling Algorithms

- What are the properties, advantages and disadvantages of the following scheduling algorithms?
 - First Come First Serve (FCFS)/First In First Out (FIFO)
 - Shortest Job First (SJF)
 - Priority
 - Round Robin
 - Multilevel feedback queues
- What scheduling algorithm does Unix use? Why?

Deadlock

- Deadlock happens when processes are waiting on each other and cannot make progress
- What are the conditions for deadlock?
 - Mutual exclusion
 - Hold and wait
 - No preemption
 - Circular wait
- How to visualize, represent abstractly?
 - Resource allocation graph (RAG)
 - Waits for graph (WFG)

Deadlock Approaches

- Dealing with deadlock
 - Ignore it
 - Prevent it (prevent one of the four conditions)
 - Avoid it (have tight control over resource allocation)
 - Detect and recover from it
- What is the Banker's algorithm?
 - Which of the four approaches above does it implement?
 - (Actually, don't worry about it for the midterm, suffered enough on the homework)

Race Conditions

```
int x = 0;
int i, j;

void AddToX() {
  for (i = 0; i < 100; i++) x++;
}

void SubFromX() {
  for (j = 0; j < 100; j++) x--;
}</pre>
```

What is the range of possible values for x? Why?

Synchronization

```
Class Event {
...
void Signal () {
...
}
void Wait () {
...
}
```

- Event synchronization (e.g., Win32)
- Event::Wait blocks if and only if Event is unsignaled
- Event::Signal makes Event signaled, wakes up blocked threads
- Once signalled, an Event remains signaled until deleted
- Use locks and condition variables (e.g., as in Nachos)