

Introduction course

SUSIE JENTOFT, ASLAUG FOSS

DAY 1: 14. DECEMBER 2020

Goals: Part 1

- Gain an understanding for R and RStudio
- Open RStudio og run calculations
- Read in and manipulate data
- Create tables and summary statsistics
- Create figures
- Edit and impute data

Agenda: Part 1

	Monday 14 th December	Tuesday 16 th December	Wednesday 17 th December
12:00	IntroductionGithubBasic calculationsObjects	ReviewData manipulation	ReviewSamplingOutlier detection
12:45	Exercise 1 Break	Exercise 3 Break	Exercise 5 Break
13:30	Logical statementsRead in data	Merging datasetsPlotting	• Imputation
14:15	Exercise 2	Exercise 4	Exercise 6
14:50 – 15:00			Summary Statistisk sent

Statistics Norway

Part 2 (January)

- Generelle programming
- Functions and packages
- Creating documents and visualisation
- Testing and sharing code

Course format and guidelines

- Use chat for asking questions
- Ask questions if something is unclear (raise hand)
- **Exercises:** Write or ask questions to us and eachother.
- Code for course is on GitHub
- Mute microphone when you are not speaking
- **Turn on video** so we can see eachother (off when you are on a break)

Susie Jentoft

Aslaug Foss

What is ?

- Programming language and environment for statistics
- Developed by Ross Ihaka & Robert Gentleman (1993)
- Base + Packages
- RStudio:
 - IDE/development environment
 - Open source + commercial licenses

Why learn ?

- Open source and free
- Large society and support
- Good graphics
- Developed specifically for statistics
- Used within many statistical bureaus:
 - https://github.com/SNStatComp/awesome-official-statistics-software

R Studio

Statistisk sentralbyrå
Statistics Norway

Working with code files

Create a new file

• File > New File > R script

or

Open an existing file

• File > Open File ...

or

Save file

- File > Save

Running code

- Write code in source/code files
- Run code by clicking on

- This will run the line your mouse is on
- Highlight an area to run a segment or several lines
- Also possible to run whole code with

- Lines that start with # are for comments (not run)
- Use 4x# to create headings (#### Heading ####)

Basic operations

• Can be used as a calculator

Base functions

All functions in R have help files:

Git and GitHub

- Git: version control for code
- Distribute code and manage projects with several contributors
- Git is well integrated in RStudio

Clone a repository

- Github: https://github.com/statisticsnorway/R_introduction_Ukraine
 - Click on

- Copy HTTPS address (URL)
- In **RStudio**:
 - File > New project > Version control > Git
 - Paste in address under «Repository URL»
 - Click Create Project
 - Save files you change (for example exercises) with a new name

Example code for today

Example code for today is called: Rcode_day1.R

Strings

```
"Hello, world!"
```

- Single (' ') or double quotes (" ") be consistent!
- CASE SENSITIVE
- Combine two or more with paste()
- Take out part of a string:

substr(string, start, stopp)

Run to print or use

print()

Objects

- Creating an objects gives a name to a value/or string
- We use <- to allocate (give a name to) an object

• To see what is stored in the object, write and run the name

Objects

- CASE SENSITIVE
- Must start with a letter
- No spaces (use _)
- Different contents: number, string
- Can be written over/replaced

Oblast # oblast

Object type

Find out type with

Put object name inside brackets

Common object types:

Object type	Description
chr	Character/string
num	Number
Date	Date
Factor	Categorical variable (fixed levels)
data.frame	Dataset

Vectors

- Objects which hold several values
- Use c() to create vector (combine)
- Use comma to separate elements
- Must be same object type

```
c(1, 7, 10)
c("Kongsvinger", "Oslo")
```


Vectors as objects

Give vectors a name with

• Find the length of a vector with

Determine the object type with

Exercise 1

- Clone repository for the course
- Open file Exercises_day1.R and do exercise 1

Logical statements/tests

- Compare objects
 - TRUE/FALSE

Code i R	Description
==	Compare if the same
!=	Compare if they are different
>	Greater than
>=	Greater than or equal
<	Less than
<=	Less than or equal
%in%	Is in/contains

- Can be used for single values or vectors
- Combine with & (and), | (or)

ifelse

Compare and then do something

ifelse()

Create a dataset

data.frame()

- Objects can also be a dataset (with rows and columns)
- Combine different types of data (numbers and strings)

```
data.frame(object1, object2)
```

```
data.frame(column_name1 = c(1, 2), column_name2 = c("Industry", "Agriculture"))
```


Look at the dataset

- Write dataset name
- Click on dataset name under Environment
- Or View()

R Packages

- Collection of code and functions
- CRAN (<u>www.r-project.org</u>)
- Install package one time

install.packages("package_name")

• Load package each time RStudio starts

Read in dataset: .csv file

```
library(tidyverse)
read_csv()
                               separator = , decimal = .
     Path to dataset & name
library(tidyverse)
read_csv2()
                                separator = ; decimal = ,
      Path to dataset & name
```


Read in dataset: stata file

• We can read in stata datsets direct to R using

```
library(haven)
read_dta()

Path to dataset & name
```


Look at the data

Exercise 2:

• Exercise 2 is in the file : **Exercises_day1.R**

