01 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division 2073 Chaitra

Exam.	Reg	gular	+3
Level	BE	Full Marks	80
Programme	All (Except B.Arch.)	Pass Marks	32
Year / Part	1/1	Time	3 hrs.

Subject: - Engineering Mathematics I (SH401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ <u>All</u> questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. State Leibnitz theorem. If $y = e^{x^2}$, then show that $y_{n+1} 2xy_n 2ny_{n-1} = 0$.
- 2. Expand e^xlog_e(1+x) in ascending powers of x upto the term containing x⁴ in Maclaurin's series.
- 3. State L-hospital's rule. Evaluate,

$$x \xrightarrow{\lim} 0 \left(\frac{1}{x^2}\right)^{\tan x}$$

- 4. State the types of asymptotes to a curve. Find the asymptotes of the curve $(x^2 y^2)(x + 2y + 1) + x + y + 1 = 0$.
- 5. Find the chord of curvature through the pole for the curve $r = a (1 + \cos \theta)$.
- 6. Show that $\int_0^\infty \frac{\log(1+x^2)}{1+x^2} dx = \pi \log 2$
- 7. Apply the method of differentiation under integral sign to prove

$$\int_0^{\pi/2} \frac{dx}{(a^2 \sin^2 x + b^2 \cos^2 x)^2} = \frac{\pi (a^2 + b^2)}{4a^3 b^3}$$

8. Using Beta -Gamma Function, show that

$$\int_0^{\pi/4} \sin^4 x \cdot \cos^2 x \, dx = \frac{3\pi - 4}{192}$$

9. Find the area included between an arc of cycloid $x = a (\theta - \sin \theta)$, $y = a (1 - \cos \theta)$ and its base.

OR

Find the volume of the solid formed by the revolution of the cardoid $r = a (1+\cos\theta)$ about the initial base.

- 10. What does the equation $x^2 + 2\sqrt{3}xy y^2 = 2a^2$ become when the axes are turned through an angle 30° to the original axes?
- 11. Derive the equation of an ellipse in the standard form.

13

12. Find the eccentricity of the conic,

$$x^2 + 4xy + y^2 - 2x + 2y - 6 = 0$$

OR

Describe and sketch the conic

$$r = \frac{10 \csc\theta}{2 \csc\theta + 3}$$

13. Solve:
$$\frac{dy}{dx} = \frac{x + 2y - 3}{2x + y - 3}$$

14. Solve:
$$\frac{dy}{dx} + y \tan x = \sec x$$

15. Solve:
$$y = 2px+p^3y^2$$
; where $p = \frac{dy}{dx}$

16. Solve:
$$x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = \frac{1}{x}$$
