Ammonia and Phosphate in Algonquin Park

Dhrumil Patel, Amy Peng, David Walji, Jenny Wu

Introduction 1

Experiments 2

Procedure

01 8 ammonia drops 5mL of into samples, mix water for for 5 minutes each sample

8 phosphate drops into samples, mix for 3 minutes

03

Compare sample colours to scale

04

Calibrations

Sources of Uncertainty

- Ammonia and phosphate dropper bottle
- > Data input

Data

4

Ammonia and Phosphate Observations

Substance/ppm	Mean	Standard Deviations	Median
Ammonia	1.797	1.33	1.44
Phosphate	2.503	2.949	1.33

- ➤ 6 stations
- Group 1: 3 stations, 2+ km
 - o Coon, Madawaska, Smoke
- Group 2: 3 stations, 2- km
 - Starling, Pog, Costello

Highway Relations

- Coon Lake
 South Madawaska River
 Smoke Lake
 Starling Lake
- Pog Lake
 Costello Lake

Group Mean Ammonia

Group 1 Mean NH₃ vs AP Year

Group 2 Mean NH₃ vs AP Year

Group Mean Phosphate

Group 1 Mean PO₄³⁻ vs AP Year

Group 2 Mean PO₄³⁻ vs AP

Trends

5

Ammonia

Weak positive correlation

Correlation: 0.06

Determination: 0.4%

Growth rate: 9.51*10⁻³ ppm

AP 14 - AP 16

AP 16 - AP 18

Mean NH₃ vs AP Year

Phosphate

Weak positive correlation

Correlation: 0.04

Determination: 0.2%

Outlier in AP 15

Growth rate: 9.78*10⁻³ ppm

Mean PO₄³⁻ vs AP Year

Group 1 Ammonia

Strong Positive Association

Correlation: 0.44

Determination: 19%

Growth rate: 0.09 ppm

Mean NH₃ vs AP Year

Group 1 Phosphate

Weak Negative Association

Correlation: - 0.04

Determination: 0.2%

Growth rate: - 0.03 ppm

Mean PO₄³⁻ vs AP Year

Group 2 Ammonia

Mean NH₃ vs AP Year

Moderate Positive Association

Correlation: 0.24

Determination: 5.9%

Growth Rate = 0.07 ppm

Group 2 Phosphate

Weak Negative Association

Correlation: - 0.06

Determination: 0.4%

Growth rate: - 0.04 ppm

Mean PO₄³⁻ vs AP Year

- ➤ Group 1
 - Mean NH₃: 1.51 ppm
 - NH₃ Growth Rate: 0.09 ppm
- ➤ Group 2
 - Mean NH₃: 1.68 ppm
 - NH₃ Growth Rate: 0.07 ppm

Highway Ammonia Associations

- Group 1
 - \circ Mean PO₄³-: 2.52 ppm
 - o PO₄ 3- Growth Rate: 0.03 ppm
- ➤ Group 2
 - \circ Mean PO₄³-: 3.02 ppm
 - PO₄³⁻ Growth Rate: 0.04 ppm

Highway Phosphate Associations

Implications

Algae and Eutrophication

- Correlated to +nutrient, +O
- ➤ DO levels rise by 0.55ppm
 - Habitability decrease
- ➤ Eutrophication → low dissolved oxygen contents
- Suggests strong positive correlation

- General decrease in DO in water
- Fish at top of food web thermally sensitive
- Increase in temperature area inhabitable
- Anoxic hypolimnion caused by low DO levels with limited sunlight

Anoxic Hypolimnion

Temperature levels in bodies of water

Ammonia

- Excess in ammonia levels
- Necessary nutrient
- Overabundance
 - Alteration in metabolism
 - An increase in body pH

Future Research

7

Future Research

- Lack of specificity of the correlation between ammonia and phosphate concentrations
- Simpson's Paradox
- Distance of a sample station from concentrated human activity

Questions?

Sources 8

Algonquin Science Expeditions. (May 2017). Marc Garneau Collegiate Institute, Henri M. van Bemmel [PDF File]. Retrieved May 25, 2019, from http://www.hmvb.org/AP18TM.pdf

Ammonia. (n.d.). Retrieved May 27, 2019, from

https://apps.sepa.org.uk/spripa/Pages/SubstanceInformation.aspx?pid=1

Ammonia Uses and Benefits | Chemical Safety Facts. (2019, January 02). Retrieved May 27, 2019, from https://www.chemicalsafetyfacts.org/ammonia/

Aquatic Life Criteria - Ammonia. (2019, March 13). Retrieved May 28, 2019, from https://www.epa.gov/wqc/aquatic-life-criteria-ammonia#how
Background Information for Interpreting Water Quality Monitoring Results. (n.d.). Delaware, Adopt-A-Wetland, [PDF File], Retrieved May 25, 2019, from http://www.dnrec.delaware.gov/fw/Education/Documents/AREC/Water%20auality%20interpretation%20auides.pdf

Eutrophication and Water Pollution. (2018, September 29). Retrieved May 28, 2019, from https://www.water-pollution.org.uk/eutrophication-and-water-pollution/

Louis, J. L. (2018, September). Overview of Phosphate's Role in the Body - Hormonal and Metabolic Disorders. Retrieved May 28, 2019, from https://www.merckmanuals.com/home/hormonal-and-metabolic-disorders/electrolyte-balance/overview-of-phosphate-s-role-in-the-body

Oram, B. (n.d.). Mr. Brian Oram, PG. Retrieved May 28, 2019, from https://water-research.net/index.php/ammonia-in-groundwater-runoff-and-streams

Oram, B. (n.d.). Mr. Brian Oram, PG. Retrieved May 26, 2019, from https://www.water-research.net/index.php/phosphate-in-water
Phosphate Facts. (n.d.). Retrieved May 24, 2019, from https://phosphatesfacts.org/what-are-phosphates/