

"There is nothing more practical than a good theory"

Lewin (1952)

Linear Algebra
Preliminaries

Vectors

- $\mathbf{x} = (x_1, x_2, ..., x_d) \in \mathbb{R}^d$ (each x_i is a component)
 - A point in d-dimensional space
- Norm or magnitude $\|\mathbf{x}\| = (x^Tx)^{1/2} = (x_1^2 + x_2^2 + ... + x_d^2)^{\frac{1}{2}}$
 - Length of the vector (Pythagorean theorem)
- Zero vector (norm zero), unit vector (norm one)
- Inner product $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + ... x_d y_d$
 - · Result is a scalar
 - $\|\mathbf{x}\| = (\langle \mathbf{x}, \mathbf{x} \rangle)^{1/2}$
 - $\langle x, y \rangle = 0$ implies $x \perp y$

Span and basis

- A set of vectors is said to span a vector space if one can write any vector in the vector space as a linear combination of the set
- $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$ span the space $\{\sum a_i \mathbf{x}_i \mid a_i \in \mathbb{R}\}$
- This set is called the basis set
- Examples
 - The vectors {(0,1), (1,0)} span R²
 - {(1, 1)} spans x=y which is a subspace of R²
 - The vector {(0,1), (0,1), (1,1)} also span R²

Vector spaces

- Space where vectors live
- Formally, a collection of vectors which is closed under linear combination
 - If $\{x, y\}$ are in the space, so is ax+by for any scalars $a, b \in R$
 - Should always contain zero vector
- Examples: $\{0\}$, R^d , the line x = 3y in R^2

Linear independence and orthonormality

- Linear independence a notion to remove redundancy in the basis
 - $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$ are linearly independent iff the only solution to $\sum a_i \mathbf{x}_i = 0$ is $a_1 = a_2$ = ... = a_n = 0. 齐次方程只有0解;任意元素不能是其他向量的线性组合表示 • Cannot express any vector **x**_i as a linear combination of the others
- Dimensionality of a vector space is the maximum number of linearly independent basis vectors 维度,最大线性无关组向量数量
- Orthonormal basis 标准正交基
 - $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$ is orthonormal basis if $\langle \mathbf{x}_i, \mathbf{x}_i \rangle = 1$ if i=j and 0 otherwise
 - Coordinate axes for the vector space
- Example: The basis {(0, 1), (1,1)} for R² is linear independent but not orthonormal.

Matrices

- Operator which transforms vectors from one vector space to another
 v = Av
- The operator is linear, that is

2011777

A (ax + by) = a(Ax) + b (Ay)

- The result of applying the operator is a linear combination of the column vectors
 - Thus, Ax = b has an exact solution iff b is in the column space of A 列空间(值域空间)
- Eigen vectors of A are the special vectors are the special vectors **x** which satisfy

 $Ax = \lambda x$ for some λ

- λ is called the eigen value and x is the eigen vector
- How do we visualize the transformation geometrically?

General case – Singular Value Decomposition

- We have a rectangular matrix A ∈ R^{m × n}
- It can be decomposed as

 $A = UDV^T$

- U and V are orthonormal, i.e., U^TU = V^TV = I and D is a diagonal matrix containing singular values
 - Number of non-zero diagonal elements in D = rank of A
- Provides a nice way to understand the operator A
 - Rotation in n-dimensional space, scaling, rotation in m-dimensional space
- Can be computed in O(min{mn², m²n}) time (or better using fast matrix multiplication)

Visualizing the matrix operator – special cases

- Identity matrix
 - Square matrix with diagonal elements 1 and non-diagonal elements 0
 - The transformed vector Ax is same x
- Diagonal matrix
 - Square matrix with non-diagonal elements 0
 - ith component in Ax is a scaled version of x_i (scaling = A_{ii})
- Orthonormal (or rotation) matrix 标准正交矩阵(旋转矩阵)
 - Matrix whose columns {a₁, a₂, ..., a_n} are such that < a_i, a_j>= 1 if i=j and 0 otherwise. That is, A^TA = I
 - Rotates the vector
 - Preserves norms ||Ax|| = ||x|| (why?)

Example problem

• If singular values of A \in R^{nxn} all lie in [a, b], prove that $a\|\mathbf{x}\| \le \|\mathbf{A}\mathbf{x}\| \le \mathbf{b}\|\mathbf{x}\|$

Solution:

- Let $A = UDV^T$
- $\bullet \|\mathbf{A}\mathbf{x}\| = \|\mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}\mathbf{x}\|$
- Let $y = V^T x$. (note: ||y|| = ||x||)
- We can do this because we prove this for every x
- ||Ax|| = ||UDy|| = ||Dy||
- As singular values lie in [a, b], $a||y|| \le ||Dy|| \le b||y||$

Linear Regression

Sketching

Massive data sets 海量数据集

- Examples
 - Internet traffic logs
 - Financial data
 - etc.
- Algorithms
 - Want nearly linear time or less
 - Usually at the cost of a randomized approximation

Why linear time – big-data:

- O(N²) algorithms are ~intractable N=1B
- N² seconds = 31B years (>2x age of universe)

Why linear time – big-data:

 O(N²) algorithms are ~intractable -N=1B

- N^2 seconds = 31B years
- 1,000 machines

Why linear time – big-data: • O(N²) algorithms are ~intractable - N=1B And parallelism might not help • N² seconds = 31B years • 10B machines ~ \$10Trillion

Regression analysis

- Regression analysis
 - Statistical method to study dependencies between variables in the presence of noise.

统计方法研究有噪声变量之间的相关性。

Regression analysis

- Linear Regression
 - Statistical method to study linear dependencies between variables in the presence of noise.
- Example
 - Ohm's law V = R ⋅ I

Regression analysis

- Linear Regression
 - Statistical method to study linear dependencies between variables in the presence of noise.
- Example
 - Ohm's law V = R ⋅ I
 - Find linear function that best fits the data

Regression analysis

- Linear Regression
 - Statistical method to study linear dependencies between variables in the presence of noise.
- Standard Setting
 - One measured variable b
 - A set of predictor variables a₁,..., a_d
 - Assumption:

$$b = x_0 + a_1 x_1 + ... + a_d x_d + \varepsilon$$

- ε is assumed to be noise and the x_i are model parameters we want to learn
- Can assume $x_0 = 0$
- Now consider n observations of b

Regression analysis

Matrix form

Input: n×d-matrix A and a vector b=(b₁,..., b_n) n is the number of observations; d is the number of predictor variables

Output: x* so that Ax* and b are close

- $\,\blacksquare\,$ Consider the over-constrained case, when $n\gg d$
- Can assume that A has full column rank

Regression analysis

- Least Squares Method
 - Find x* that minimizes $|Ax-b|_2^2 = \sum (b_i \langle A_{i*}, x \rangle)^2$
 - A_{i*} is i-th row of A
 - Certain desirable statistical properties

Time Complexity

- Solving least squares regression via the normal equations
 - Need to compute x = A⁻b
 - Moore-Penrose Pseudoinverse A⁻ = $V\Sigma^{-1}U^T$
 - Naively this takes nd² time
 - □ Can do nd¹.376 using fast matrix multiplication
 - But we want much better running time!

Regression analysis

- Geometry of regression
 - We want to find an x that minimizes |Ax-b|₂
 - The product Ax can be written as

$$A_{*1}x_1 + A_{*2}x_2 + ... + A_{*d}x_d$$

where A*i is the i-th column of A

- This is a linear d-dimensional subspace
- The problem is equivalent to computing the point of the column space of A nearest to b in I₂-norm

Sketching to solve least squares regression

- How to find an approximate solution x to min_x |Ax-b|₂?
- Goal: output x' for which |Ax'-b|₂ ≤ (1+ε) min_x |Ax-b|₂ with high probability
- Draw S from a k x n random family of matrices, for a value k << n
- Compute S*A and S*b
- Output the solution x' to min_{x'} |(SA)x-(Sb)|₂
 - x' = (SA)-Sb

How to choose the right sketching matrix S?

- Recall: output the solution x' to min_{x'} |(SA)x-(Sb)|₂
- Lots of matrices work
- S is d/ε² x n matrix of i.i.d. Normal random variables
- S is a subspace embedding

For all x, $|SAx|_2 = (1\pm\epsilon)|Ax|_2$

* poof skipped

ref: David P. Woodruff, Sketching as a Tool for Numerical Linear Algebra, Foundations and Trends in Theoretical Computer Science, vol 10, issue 1-2, pp. 1-157 (ref to 10-40)

Subspace Embeddings for Regression

- Want x so that $|Ax-b|_2 \le (1+\varepsilon) \min_{v} |Ay-b|_2$
- Consider subspace L spanned by columns of A together with b
- Then for all y in L, $|Sy|_2 = (1 \pm \varepsilon) |y|_2$
- Hence, $|S(Ax-b)|_2 = (1 \pm \varepsilon) |Ax-b|_2$ for all x
- Solve argmin_v |(SA)y (Sb)|₂
- Given SA, Sb, can solve in poly(d/ε) time

Only problem is computing SA takes O(nd²) time

Faster Subspace Embeddings S

- CountSketch matrix
- Define k x n matrix S, for $k = O(d^2/\epsilon^2)$
- S is really sparse: single randomly chosen nonzero entry per column 按列随机选──个位置,随机化+-1

0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 1 0 -1 0 0-1 0 0 0 0 0 1

nnz(A) is number of non-zero entries of A

High Probability and Complexity

- Theorem 2.5. ([27]) For S a sparse embedding matrix with $r = \frac{O(d^2/\varepsilon^2 \text{poly}(\log(d/\varepsilon))) \text{ rows}}{\log d}$, for any fixed $n \times d$ matrix A, with probability .99, S is a $(1 \pm \varepsilon)$ ℓ_2 -subspace embedding for A. Further, S · A can be computed in $O(\text{nnz}(\mathbf{A}))$ time.
- **Theorem 2.14.** The ℓ_2 -Regression Problem can be solved with probability .99 in $O(\operatorname{nnz}(A)) + \operatorname{poly}(d/\varepsilon)$ time.