			NS NLO quadratic		NS LO quadratic
Class	Coefficients	Fitted	Fixed	Fitted	Fixed
	c_{tarphi}	√		√	
	c_{tG}	✓		√	
	c_{barphi}	√		√	
	c_{carphi}	✓		✓	
	$c_{ auarphi}$	√		√	
	c_{tW}	√		✓	
	c_{tZ}	✓		√	
	$c_{\varphi l_1}$		$= -0.250 c_{\varphi D}$		$= -0.250 c_{\varphi D}$
	$c_{\varphi l_1}^3$		$= -0.842 c_{\varphi D} - 1.835 c_{\varphi WB}$		$= -0.842 c_{\varphi D} - 1.835 c_{\varphi WB}$
	$c_{\varphi l_2}$		$= -0.250 c_{\varphi D}$		$= -0.250 c_{\varphi D}$
	$c_{\varphi l_2}^3$		$= -0.842 c_{\varphi D} - 1.835 c_{\varphi WB}$		$= -0.842 c_{\varphi D} - 1.835 c_{\varphi WB}$
2FB	$c_{\varphi l_3}$		$= -0.250 c_{\varphi D}$		$= -0.250 c_{\varphi D}$
	$c_{\varphi l_3}^3$		$= -0.842 c_{\varphi D} - 1.835 c_{\varphi WB}$		$= -0.842 c_{\varphi D} - 1.835 c_{\varphi WB}$
	$c_{arphi e}$		$= -0.500 c_{\varphi D}$		$= -0.500 c_{\varphi D}$
	$c_{arphi\mu}$		$= -0.500 c_{\varphi D}$		$= -0.500 c_{\varphi D}$
	$c_{\varphi\tau}$		$= -0.500 c_{\varphi D}$		$= -0.500 c_{\varphi D}$
	$c_{arphi au}$ $c_{arphi q}^3$ $c_{arphi Q}^3$ $c_{arphi Q}^0$ $c_{arphi q}^{(-)}$		$= -0.842 c_{\varphi D} - 1.835 c_{\varphi WB}$		$= -0.842 c_{\varphi D} - 1.835 c_{\varphi WB}$
	c_{φ_Q}	✓		√	
	$c_{arphi q}^{\prime}$		$= + 0.925 c_{\varphi D} + 1.835 c_{\varphi WB}$		$= + 0.925 c_{\varphi D} + 1.835 c_{\varphi WB}$
	$c_{arphi Q}^{(-)}$	\checkmark		✓	
	$c_{arphi u}$		$= + 0.333 c_{\varphi D}$		$= + 0.333 c_{\varphi D}$
	$c_{arphi d}$		$= -0.167 c_{\varphi D}$		$= -0.167 c_{\varphi D}$
	$c_{arphi t}$	√		√	
	c_{ll}		= + 0.0		= + 0.0
	$c_{qq}^{1,8} \ c_{qq}^{1,1} \ c_{qq}^{8,3} \ c_{qq}^{1,3} \ c_{qt}^{4}$	√		√	
	$c_{qq}^{1,1}$	✓		√	
	$c_{qq}^{8,3}$	✓		√	
	$c_{qq}^{1,3}$	√		√	
	c_{qt}°	√		√	
	c_{qt}^1 c_{ut}^8	√		√	
2Q2q	c_{ut}°	√		√	
	c_{ut}^1	√		√	
	c_{qu}^8	√		√	
	c_{qu}^1	√		√	
	c_{dt}^8	√		√ √	
	c_{dt}^{8}	∨ ✓		∨ ✓	
	$\frac{c_{qd}}{c^1}$	√		V ✓	
	c_{qd}^1	∨ ✓		∨ ✓	
	$c_{QQ}^1 \ c_{QQ}^0$	∨		∨ ✓	
4Q	c_{QQ}	√		√	
40	c_{Qt}^8 c_{Qt}^8 c_{tt}^1	√		√	
	c_{Qt}			· ·	
		√ √		√ √	
	$c_{\varphi G}$	√		✓ ✓	
	$c_{arphi B}$	√		√	
В	$c_{\varphi W}$	√		√	
ש	$c_{\varphi WB}$	√		∨ ✓	
	$c_{arphi\square} \ c_{arphi D}$	∨ ✓		∨ ✓	
	$c_{\varphi D} = c_{\psi WW}$	√		V ✓	
	Number fitted coefficients			36	
	number inted coemcients	36		90	

Table 1: Coefficient comparison

Type	Datasets	NS NLO quadratic	NS LO quadratic
	CMS_ttbb_13TeV	√	√
	CMS_ttbb_13TeV_2016	√	√
4H	ATLAS_ttbb_13TeV_2016	✓	✓
411	CMS_tttt_13TeV	√	✓
	CMS_tttt_13TeV_run2	√	✓
	ATLAS_tttt_13TeV_run2	√	√
AC	ATLAS_CMS_tt_AC_8TeV	✓	√
AC	ATLAS_tt_AC_13TeV	√	√
	ATLAS_ggF_ZZ_13TeV	√	√
	CMS_ggF_aa_13TeV	√	√
** 11.00	ATLAS_H_13TeV_2015_pTH	√	√
Hdiff	CMS_H_13TeV_2015_pTH	√	√
	ATLAS_WH_Hbb_13TeV	√	
	ATLAS_ZH_Hbb_13TeV	· √	√
HrunI	ATLAS_CMS_SSinc_RunI	√	√
	ATLAS_SSinc_RunII	· · · · · · · · · · · · · · · · · · ·	· ·
HrunII	CMS_SSinc_RunII	,	→
	LEP_eeWW_182GeV	√	√
	LEP_eeWW_189GeV	V √	V ✓
LEP	LEP_eeWW_198GeV	∨ ✓	∨ ✓
	LEP_eeWW_196GeV LEP_eeWW_206GeV	√	√
	ATLAS_WW_13TeV_2016_memu	√	· .
VV	ATLAS_WW_13TeV_2016_memu ATLAS_WZ_13TeV_2016_mTWZ	✓ ✓	√
v v	CMS_WZ_13TeV_2016_mT WZ	✓ ✓	· ·
	ATLAS_WhelF_8TeV	· .	√
WhelF		√	√
	CMS_WhelF_8TeV	√	√
	CMS_t_tch_13TeV_inc	√	√
t13	CMS_t_tch_13TeV_diff_Yt	√	√
	CMS_t_tch_13TeV_2016_diff_Yt	√	√
	ATLAS_t_tch_13TeV	√	√
	CMS_t_tch_8TeV_inc	√	√
_	CMS_t_tch_8TeV_diff_Yt	√	√
t8	CMS_t_sch_8TeV	√	√
	ATLAS_t_tch_8TeV	√	√
	ATLAS_t_sch_8TeV	✓	√
	ATLAS_tW_8TeV_inc	✓	√
	ATLAS_tW_slep_8TeV_inc	✓	√
$^{\mathrm{tW}}$	CMS_tW_8TeV_inc	✓	√
	ATLAS_tW_13TeV_inc	✓	√
	CMS_tW_13TeV_inc	✓	√
	ATLAS_tZ_13TeV_inc	✓	√
tZ	ATLAS_tZ_13TeV_run2_inc	√	√
ιZ	CMS_tZ_13TeV_inc	√	✓
	CMS_tZ_13TeV_2016_inc	✓	✓
	CMS_tt_13TeV_ljets_2015_Mtt	√	√
	CMS_tt_13TeV_dilep_2015_Mtt	√	√
tt13	CMS_tt_13TeV_ljets_2016_Mtt	√	√
	CMS_tt_13TeV_dilep_2016_Mtt	√	√
	ATLAS_tt_13TeV_ljets_2016_Mtt	√	√
	ATLAS_tt_8TeV_ljets_Mtt	√	√
	ATLAS_tt_8TeV_dilep_Mtt	·	·
tt8	CMS_tt_8TeV_ljets_Ytt	→	→
	CMS_tt2D_8TeV_dilep_MttYtt	·	·
	ATLAS_ttW_8TeV	·	·
	ATLAS_ttW_13TeV	V ✓	V ✓
ttW	ATLAS_ttW_13TeV_2016	V ✓	√
00 * *	CMS_ttW_8TeV	V ✓	V ✓
	CMS_ttW_13TeV	V ✓	∨ ✓
	ATLAS_ttZ_8TeV	√	√
	ATLAS_ttZ_13TeV	∨	∨ ✓
	ATLAS_ttZ_13TeV ATLAS_ttZ_13TeV_2016	√	√
ttZ	CMS_ttZ_8TeV	✓ ✓	✓ ✓
	CMS_ttZ_81eV CMS_ttZ_13TeV	·	
		√	√
	CMS_ttZ_13TeV_pTZ	√	✓

Table 1: Dataset comparison

 χ^2 table. Blue color text represents a value that is lower than the SM χ^2 by more than one standard deviation of the χ^2 distribution. Similarly, red color text represents values that are higher than the SM χ^2 by more than one standard deviation. In parenthesis is the total SM χ^2 for the dataset included in the fit.

		SM	NS NLO quadratic	NS LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}
CMS_ttbb_13TeV	1	4.959	6.653	6.939
CMS_ttbb_13TeV_2016	1	1.754	3.086	3.328
ATLAS_ttbb_13TeV_2016	1	0.906	0.561	0.585
CMS_tttt_13TeV	1	0.055	0.082	0.083
CMS_tttt_13TeV_run2	1	0.051	1.992	2.012
ATLAS_tttt_13TeV_run2	1	2.352	0.316	0.310
Total			2.115 (1.679)	2.209 (1.679)

Table 1: χ^2 table for 4H data

		SM	NS NLO quadratic	NS LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}
ATLAS_CMS_tt_AC_8TeV	6	0.861	0.857	0.823
ATLAS_tt_AC_13TeV	5	0.275	0.255	0.277
Total		·	0.583 (0.595)	$0.575 \ (0.595)$

Table 2: χ^2 table for AC data

		SM	NS NLO quadratic	NS LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}
ATLAS_ggF_ZZ_13TeV	6	0.958	0.807	0.726
CMS_ggF_aa_13TeV	6	1.049	0.988	0.940
ATLAS_H_13TeV_2015_pTH	9	1.11	1.101	1.069
$CMS_H_13TeV_2015_pTH$	9	0.8	0.781	0.736
ATLAS_WH_Hbb_13TeV	2	0.1	0.193	0.116
ATLAS_ZH_Hbb_13TeV	3	0.496	0.305	0.312
Total			0.829 (0.883)	0.783 (0.883)

Table 3: χ^2 table for Hdiff data

		SM	NS NLO quadratic	NS LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}
ATLAS_CMS_SSinc_RunI	22	0.859	0.877	0.971
Total			0.877 (0.859)	0.971 (0.859)

Table 4: χ^2 table for HrunI data

		SM	NS NLO quadratic	NS LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}
ATLAS_SSinc_RunII	16	0.542	0.534	0.521
CMS_SSinc_RunII	24	0.771	0.724	0.766
Total			0.648 (0.679)	$0.668 \; (0.679)$

Table 5: χ^2 table for HrunII data

		SM	NS NLO quadratic	NS LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}
LEP_eeWW_182GeV	10	1.38	1.379	1.379
LEP_eeWW_189GeV	10	0.885	0.886	0.885
LEP_eeWW_198GeV	10	1.609	1.609	1.609
LEP_eeWW_206GeV	10	1.085	1.082	1.084
Total			1.239 (1.240)	1.239 (1.240)

Table 6: χ^2 table for LEP data

		SM	NS NLO quadratic	NS LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}
ATLAS_WW_13TeV_2016_memu	13	1.651	1.673	1.710
ATLAS_WZ_13TeV_2016_mTWZ	6	0.861	0.816	0.853
$CMS_WZ_13TeV_2016_pTZ$	11	1.423	1.391	1.417
Total			1.398 (1.410)	1.431 (1.410)

Table 7: χ^2 table for VV data

		SM	NS NLO quadratic	NS LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}
ATLAS_WhelF_8TeV	3	1.967	1.368	1.337
CMS_WhelF_8TeV	3	0.296	0.591	0.614
Total			0.979 (1.131)	0.975(1.131)

Table 8: χ^2 table for WhelF data

		SM	NS NLO quadratic	NS LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}
CMS_t_tch_13TeV_inc	2	0.345	0.352	0.302
CMS_t_tch_13TeV_diff_Yt	4	0.476	0.487	0.484
CMS_t_tch_13TeV_2016_diff_Yt	5	0.58	0.580	0.576
ATLAS_t_tch_13TeV	2	0.011	0.018	0.019
Total			0.430 (0.424)	0.420 (0.424)

Table 9: χ^2 table for t13 data

		SM	NS NLO quadratic	NS LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}
CMS_t_tch_8TeV_inc	2	0.293	0.174	0.160
CMS_t_tch_8TeV_diff_Yt	6	0.11	0.146	0.200
CMS_t_sch_8TeV	1	1.265	1.171	0.903
ATLAS_t_tch_8TeV	4	0.89	0.707	0.644
ATLAS_t_sch_8TeV	1	0.085	0.209	1.092
Total			0.388 (0.440)	0.435 (0.440)

Table 10: χ^2 table for t8 data

		SM	NS NLO quadratic	NS LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}
ATLAS_tW_8TeV_inc	1	0.026	0.033	0.011
ATLAS_tW_slep_8TeV_inc	1	0.134	0.103	0.147
CMS_tW_8TeV_inc	1	0.0	0.004	0.000
ATLAS_tW_13TeV_inc	1	0.549	0.492	0.570
CMS_tW_13TeV_inc	1	3.855	4.489	3.663
Total			1.024 (0.913)	0.878 (0.913)

Table 11: χ^2 table for tW data

		SM	NS NLO quadratic	NS LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}
ATLAS_tZ_13TeV_inc	1	0.0	0.003	0.036
ATLAS_tZ_13TeV_run2_inc	1	0.048	0.007	0.052
CMS_tZ_13TeV_inc	1	0.678	0.662	0.635
CMS_tZ_13TeV_2016_inc	1	1.23	1.178	1.086
Total			0.463 (0.489)	0.452 (0.489)

Table 12: χ^2 table for tZ data

		SM	NS NLO quadratic	NS LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}
CMS_tt_13TeV_ljets_2015_Mtt	8	0.939	0.963	0.819
CMS_tt_13TeV_dilep_2015_Mtt	6	1.299	1.522	1.267
CMS_tt_13TeV_ljets_2016_Mtt	10	1.992	2.212	1.739
CMS_tt_13TeV_dilep_2016_Mtt	7	2.282	2.515	2.224
ATLAS_tt_13TeV_ljets_2016_Mtt	7	0.986	1.034	1.219
Total			1.679 (1.529)	1.464 (1.529)

Table 13: χ^2 table for tt13 data

		SM	NS NLO quadratic	NS LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}
ATLAS_tt_8TeV_ljets_Mtt	7	2.953	2.720	2.903
ATLAS_tt_8TeV_dilep_Mtt	6	0.086	0.121	0.050
CMS_tt_8TeV_ljets_Ytt	10	0.906	1.047	0.926
CMS_tt2D_8TeV_dilep_MttYtt	16	1.628	1.113	1.465
Total			1.232 (1.443)	1.367 (1.443)

Table 14: χ^2 table for tt8 data

		SM	NS NLO quadratic	NS LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}
ATLAS_ttW_8TeV	1	1.334	1.213	0.552
ATLAS_ttW_13TeV	1	0.828	0.812	0.729
ATLAS_ttW_13TeV_2016	1	0.225	0.003	0.059
CMS_ttW_8TeV	1	1.781	1.645	0.963
CMS_ttW_13TeV 1		0.028	0.169	0.030
Total			$0.768 \; (0.839)$	0.467 (0.839)

Table 15: χ^2 table for ttW data

		SM	NS NLO quadratic	NS LO quadratic	
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	χ^2/N_{data}	χ^2/N_{data}	
ATLAS_ttZ_8TeV	1	1.314	1.325	1.362	
ATLAS_ttZ_13TeV	1	0.007	0.060	0.060	
ATLAS_ttZ_13TeV_2016	1	0.001	0.123	0.125	
CMS_ttZ_8TeV	1	0.042	0.040	0.034	
CMS_ttZ_13TeV	1	1.011	0.434	0.430	
CMS_ttZ_13TeV_pTZ	4	0.732	0.825	0.705	
Total			$0.587 \; (0.589)$	$0.537 \ (0.589)$	

Table 16: χ^2 table for ttZ data

	NS N	LO quadratic	NS I	LO quadratic
Process	$N_{ m data}$	$\chi^2/N_{\rm data}$	$N_{ m data}$	$\chi^2/N_{\rm data}$
tt8	39.0	1.232 (1.443)	39.0	1.367 (1.443)
tt13	38.0	1.679 (1.529)	38.0	1.464 (1.529)
WhelF	6.0	0.979 (1.131)	6.0	0.975 (1.131)
AC	11.0	$0.583 \ (0.595)$	11.0	0.575 (0.595)
4H	6.0	2.115 (1.679)	6.0	2.209 (1.679)
ttZ	9.0	0.587 (0.589)	9.0	0.537 (0.589)
ttW	5.0	$0.768 \ (0.839)$	5.0	0.467 (0.839)
t8	14.0	0.388 (0.440)	14.0	0.435 (0.440)
t13	13.0	0.430 (0.424)	13.0	0.420 (0.424)
tW	5.0	1.024 (0.913)	5.0	0.878 (0.913)
tZ	4.0	$0.463 \ (0.489)$	4.0	0.452 (0.489)
HrunI	22.0	0.877 (0.859)	22.0	0.971 (0.859)
HrunII	40.0	$0.648 \; (0.679)$	40.0	0.668 (0.679)
Hdiff	35.0	0.829 (0.883)	35.0	0.783 (0.883)
VV	30.0	1.398 (1.410)	30.0	1.431 (1.410)
LEP	40.0	1.239 (1.240)	40.0	1.239 (1.240)
Total	317.0	1.040 (1.055)	317.0	1.033 (1.055)

Table 17: χ^2 table for grouped data. In parenthesis is the total SM χ^2 for the dataset included in the fit. The SM column refers to all the datasets available in the group

			NS NLO quad	lratic	NS LO quadratic				
Class	Coefficients	best	68% CL Bounds	95% CL Bounds	best	68% CL Bounds	95% CL Bounds		
	c_{tarphi}	0.1087	[-1.4317,1.647]	[-2.8853,3.3168]	1.2276	[-0.5057,3.0038]	[-2.1241,4.4216]		
	c_{tG}	0.1545	[0.1079, 0.2004]	[0.061, 0.2479]	0.1685	[0.1121, 0.2262]	[0.0539,0.281]		
	c_{barphi}	0.0031	[-0.018,0.0245]	[-0.0398,0.0448]	0.0173	[-0.0059,0.0409]	[-0.0331,0.0639]		
	,	-0.3593	[-0.3795,-0.3251]	[-0.3926,-0.3201]	-0.3711	[-0.3917,-0.3508]	[-0.4118,-0.3277]		
	$c_{c\varphi}$	0.1324	[-0.0225,0.3098]	[-0.0921,0.4079]	0.1661	[0.0225, 0.3089]	[-0.0706,0.4055]		
	$c_{ auarphi}$	0.0073	[-0.0068,0.0213]	[-0.0211,0.0366]	0.0094	[-0.0056,0.0242]	[-0.0197,0.0415]		
		0.4312	[0.4091, 0.4536]	[0.3851, 0.4754]	0.4337	[0.4071, 0.4605]	[0.3816, 0.4863]		
	c_{tW}	-0.0794	[-0.163,0.0049]	[-0.2448,0.0911]	-0.0841	[-0.1681,0.0002]	[-0.2486,0.0836]		
	c_{tZ}	-0.0326	[-0.4503,0.377]	[-0.7813,0.7281]	-0.1771	[-0.6105,0.251]	[-0.9338,0.6197]		
	$c_{\varphi l_1}$	-0.013	[-0.0673,0.042]	[-0.1096,0.0911]	-0.0017	[-0.0488,0.047]	[-0.0836,0.0929]		
	$c_{\varphi l_1}^3$	-0.0552	[-0.1366,0.0182]	[-0.201,0.0578]	-0.0126	[-0.0504,0.0255]	[-0.1261,0.0481]		
2FB	$c_{\varphi l_2}$	-0.013	[-0.0673,0.042]	[-0.1096,0.0911]	-0.0017	[-0.0488,0.047]	[-0.0836,0.0929]		
	$c_{\varphi l_2}^3$	-0.0552	[-0.1366,0.0182]	[-0.201,0.0578]	-0.0126	[-0.0504,0.0255]	[-0.1261,0.0481]		
	$c_{\varphi l_3}$	-0.013	[-0.0673,0.042]	[-0.1096,0.0911]	-0.0017	[-0.0488,0.047]	[-0.0836,0.0929]		
	$c_{\varphi l_3}^3$	-0.0552	[-0.1366,0.0182]	[-0.201,0.0578]	-0.0126	[-0.0504,0.0255]	[-0.1261,0.0481]		
	$c_{\varphi e}$	-0.0261	[-0.1346,0.0839]	[-0.2193,0.1822]	-0.0035	[-0.0976,0.0939]	[-0.1673,0.1857]		
	$c_{\varphi\mu}$	-0.0261	[-0.1346,0.0839]	[-0.2193,0.1822]	-0.0035	[-0.0976,0.0939]	[-0.1673,0.1857]		
	$c_{\varphi\tau}$	-0.0261	[-0.1346,0.0839]	[-0.2193,0.1822]	-0.0035	[-0.0976,0.0939]	[-0.1673,0.1857]		
	$c_{\varphi\tau}$ $c_{\varphi q}^3$ $c_{\varphi Q}^3$	-0.0552	[-0.1366,0.0182]	[-0.201,0.0578]	-0.0126	[-0.0504,0.0255]	[-0.1261,0.0481]		
	7.3	-0.0293	[-0.3091,0.2473]	[-0.6358,0.4714]	-0.2208	[-0.5222,0.0785]	[-0.8131,0.3767]		
	$c_{\varphi q}$	0.0595	[-0.0213,0.1488]	[-0.067,0.217]	0.0132	[-0.0311,0.058]	[-0.0599,0.135]		
	$c_{\varphi Q}^{(-)}$	-0.0536	[-1.5228,1.5331]	[-2.3754, 2.5761]	-0.6529	[-1.9291, 0.7061]	[-2.7846, 2.1089]		
	$c_{\varphi u}$	0.0174	[-0.056,0.0897]	[-0.1214,0.1462]	0.0023	[-0.0626,0.0651]	[-0.1238,0.1115]		
	$c_{\varphi d}$	-0.0087	[-0.0449,0.028]	[-0.0731, 0.0607]	-0.0012	[-0.0326,0.0313]	[-0.0558,0.0619]		
	$c_{\varphi t}$	-2.2533	[-7.7508,2.235]	[-13.5252, 3.7977]	-13.0184	[-17.1459,-7.5216]	[-18.802,-0.4853]		
	$\begin{array}{c} c_{qq}^{1,8} \\ c_{qq}^{1,1} \\ c_{1,1}^{1} \\ c_{qq}^{2} \\ c_{qq}^{8,3} \\ c_{qq}^{1,3} \\ c_{qt}^{3} \end{array}$	-0.1087	[-0.3142,0.0978]	[-0.5772, 0.2495]	-0.2422	[-0.4563, -0.0291]	[-0.6737,0.1671]		
	$c_{qq}^{1,1}$	-0.0316	[-0.1935,0.1313]	[-0.332, 0.2659]	0.0003	[-0.1162,0.1161]	[-0.2225, 0.2155]		
	$c_{qq}^{8,3}$	0.006	[-0.3289,0.3414]	[-0.4689,0.5042]	-0.7209	[-0.913,-0.5315]	[-1.046,-0.2287]		
	$c_{qq}^{1,3}$	0.0188	[-0.0783,0.1147]	[-0.1861, 0.1925]	0.0004	[-0.0913,0.0911]	[-0.1809,0.1819]		
		-0.2204	[-0.4484,0.0123]	[-0.6989,0.1943]	-0.5384	[-0.8039,-0.2718]	[-1.07,-0.0632]		
	c_{qt}^1	0.0189	[-0.0945,0.1357]	[-0.2057,0.247]	-0.006	[-0.1495,0.1404]	[-0.2683,0.2601]		
2Q2q	c_{ut}^8	-0.4446	[-0.8143,-0.0792]	[-1.1713,0.2395]	-0.4643	[-0.7367,-0.1907]	[-1.0033,0.0581]		
	c_{ut}^1	0.0055	[-0.1805,0.1877]	[-0.3626,0.3399]	0.0012	[-0.1368,0.1403]	[-0.2643,0.2673]		
	c_{qu}^8	-0.3327	[-0.6834,0.019]	[-1.0377,0.3406]	-0.4042	[-0.7142,-0.0983]	[-1.0033,0.1541]		
	c_{qu}^{1}	0.0985	[-0.04,0.2396]	[-0.1878,0.3634]	-0.0028	[-0.1732,0.166]	[-0.318,0.3116]		
	c_{dt}^8	-0.3637	[-0.8739,0.1662]	[-1.3467,0.6697]	-0.9257	[-1.343,-0.5049]	[-1.7204,-0.0414]		
	c_{dt}^1	-0.0551	[-0.2827,0.1716]	[-0.4944,0.3583]	-0.0035	[-0.1986,0.1927]	[-0.3871,0.3774]		
	c_{qd}^8	-0.2675	[-0.7841,0.2469]	[-1.3051,0.693]	-1.2363	[-1.7524,-0.7149]	[-2.1496,-0.1679]		
	c_{qd}^1	0.0191	[-0.1777,0.2155]	[-0.3617,0.4009]	-0.0015	[-0.2325,0.2257]	[-0.4319,0.4268]		
	c_{QQ}^1 c_{QQ}^8	0.3504	[-1.4339,2.1345]	[-3.1501,3.778]	0.3754	[-1.2508,1.9873]	[-2.7266,3.5042]		
40	c_{QQ}°	-1.3411	[-6.5552,3.8227]	[-11.2609,8.7364]	-1.6071	[-6.326,3.1243]	[-10.5864,7.4043]		
4Q	c_{Qt}^1	-0.0432	[-0.7605,0.6881]	[-1.3618,1.2609]	-0.0505	[-0.9246,0.8292]	[-1.6372,1.5369]		
	c_{Qt}^{8}	-0.487	[-1.9572,0.978]	[-3.0912,2.1657]	-0.5409	[-2.2911,1.2356]	[-3.6436,2.6697]		
	c_{tt}	-0.0392	[-0.4701,0.3902]	[-0.8026,0.7404]	-0.0387	[-0.5535,0.4715]	[-0.9561,0.8757]		
	$c_{\varphi G}$	-0.008	[-0.0138,-0.0022]	[-0.0195,0.0037]	-0.0035	[-0.0089,0.0021]	[-0.0144,0.0069]		
	$c_{\varphi B}$	0.0043	[-0.0494,0.059]	[-0.0933,0.1064]	0.001	[-0.0463,0.0506]	[-0.0823,0.0997]		
	$c_{\varphi W}$	0.013	[-0.0317,0.0593]	[-0.0824,0.1226]	0.0222	[-0.0295,0.0786]	[-0.0889,0.1586]		
В	$c_{\varphi WB}$	0.0062	[-0.0893,0.1046]	[-0.1675,0.187]	0.0037	[-0.0805,0.0906]	[-0.1423,0.176]		
	$c_{\varphi\Box}$	-0.1325	[-0.9392,0.658]	[-1.731,1.586]	0.0611	[-0.8214,0.9671]	[-1.6166,1.8028]		
	$c_{\varphi D}$	0.0522	[-0.1679, 0.2692]	[-0.3643,0.4386]	0.0069	[-0.1879,0.1953]	[-0.3715,0.3345]		
	c_{WWW}	0.0237	[-0.0852,0.1335]	[-0.1779,0.234]	-0.007	[-0.0679,0.0544]	[-0.1183,0.1093]		

Table 1: Coefficient comparison

Correlation: NS NLO quadratic

Correlation: NS LO quadratic

```
 \frac{\textbf{PC00} \  \, (\textbf{5.36e+05}) :}{+0.013c_{\tau\varphi}} - 0.655c_{\varphi B} + 0.621c_{\varphi G} + 0.365c_{\varphi WB} - 0.199c_{\varphi W} + 0.087c_{b\varphi} - 0.039c_{tW} + 0.036c_{tG} + 0.035c_{tZ} + 0.028c_{e\varphi} + 0.013c_{\tau\varphi} \\ \frac{\textbf{PC01} \  \, (\textbf{1.90e+05}) :}{+0.013c_{\tau\varphi}} - 0.776c_{\varphi G} - 0.531c_{\varphi B} + 0.289c_{\varphi WB} - 0.162c_{\varphi W} - 0.044c_{b\varphi} - 0.042c_{tG} - 0.032c_{tW} + 0.029c_{tZ} - 0.014c_{e\varphi} + 0.020c_{tW} + 0.029c_{tZ} - 0.014c_{e\varphi} + 0.020c_{e\varphi} + 0.046c_{\varphi G} + 0.012c_{tW} + 0.011c_{tZ} - 0.010c_{tW} \\ \frac{\textbf{PC03} \  \, (\textbf{2.33e+03}) :}{-0.721c_{b\varphi}} - 0.556c_{\tau\varphi} - 0.279c_{\varphi WB} - 0.194c_{\varphi B} - 0.186c_{\varphi D} - 0.127c_{e\varphi} + 0.073c_{\varphi G} - 0.014c_{\varphi W} + 0.011c_{tZ} - 0.010c_{tW} + 0
```

PC08 (8.30e+01): $-0.996c_{tW}$ $-0.061c_{gg}^{1,3}$ $+0.052c_{\varphi B}$ $+0.023c_{gg}^{1,8}$ $-0.023c_{c\varphi}$ $-0.022c_{tG}$ $+0.013c_{ut}^{8}$

 $\underline{\textbf{PC14 (2.46e+00):}} -0.973c_{WWW} -0.162c_{\varphi D} +0.108c_{\varphi W} +0.090c_{\varphi WB} -0.045c_{\varphi Q}^{(-)} +0.037c_{\varphi \Box} +0.029c_{qu}^8 +0.024c_{\varphi t} -0.023c_{qq}^{1,8} +0.024c_{\varphi t} +0.024$

```
+0.021c_{qq}^{8,3} +0.019c_{qq}^{1,1} +0.017c_{qu}^{1} +0.016c_{\varphi B} +0.014c_{qt}^{1} \\ -0.014c_{c\varphi} +0.013c_{qd}^{8} -0.013c_{\varphi Q}^{8} +0.010c_{ut}^{1} \\
```

 $\frac{\textbf{PC20 (2.47e-01):}}{-0.093c_{qu}^8 - 0.085c_{QQ}^1 + 0.078c_{\varphi D} + 0.428c_{qq}^{1,1} + 0.403c_{\varphi \Box} - 0.347c_{qq}^{8,3} + 0.271c_{ut}^1 - 0.172c_{tt}^1 - 0.123c_{qu}^1 + 0.123c_{dt}^1 - 0.101c_{qq}^{1,8} - 0.098c_{Qt}^8}{-0.093c_{qu}^8 - 0.085c_{QQ}^1 + 0.078c_{\varphi D} + 0.073c_{\varphi t}^2 - 0.073c_{ut}^8 - 0.056c_{qt}^8 + 0.055c_{dt}^8 - 0.049c_{\varphi Q}^{(-)} - 0.049c_{\varphi W} + 0.036c_{\varphi Q}^3 - 0.036c_{\varphi WB}}{-0.029c_{QQ}^8 + 0.028c_{qd}^8 - 0.025c_{qd}^1 + 0.015c_{tG} - 0.014c_{tZ}}$

 $\underline{\mathbf{PC29} \ (\mathbf{1.09e-02}):} + 0.601c_{dt}^{1} - 0.408c_{qd}^{8} - 0.355c_{ut}^{1} + 0.317c_{qu}^{8} - 0.245c_{\varphi t} - 0.229c_{qd}^{1} - 0.171c_{\varphi Q}^{(-)} - 0.149c_{dt}^{8} - 0.147c_{qq}^{8,3} + 0.133c_{qq}^{1,1} \\ - 0.131c_{qt}^{8} + 0.115c_{qu}^{1} + 0.072c_{qq}^{1,8} - 0.058c_{qt}^{1} - 0.036c_{t\varphi} - 0.024c_{tt}^{1} + 0.024c_{tZ} + 0.017c_{\varphi Q}^{3} + 0.016c_{QQ}^{8} - 0.012c_{QQ}^{1} + 0.011c_{ut}^{8}$

PC33 (3.46e-11): $-0.744c_{Qt}^1 + 0.547c_{QQ}^1 + 0.264c_{QQ}^8 - 0.228c_{tt}^1 - 0.161c_{Qt}^8$

 $\underline{\textbf{PC34 (3.46e-11):}} \ -0.720c_{QQ}^{1} \ -0.568c_{Qt}^{1} \ +0.360c_{tt}^{1} \ +0.158c_{QQ}^{8} \ -0.066c_{Qt}^{8}$

<u>PC35 (3.46e-11):</u> $-0.657c_{Qt}^8 + 0.629c_{QQ}^8 + 0.333c_{Qt}^1 + 0.242c_{tt}^1 + 0.057c_{QQ}^1$

Principal Components Analysis: NS LO quadratic

```
+0.012c_{\tau\varphi}
  \frac{\text{PC01 (2.07e+05):}}{(2.07e+05):} + 0.709c_{\varphi G} + 0.594c_{\varphi B} - 0.327c_{\varphi WB} + 0.181c_{\varphi W} + 0.036c_{tW} + 0.033c_{b\varphi} - 0.032c_{tZ} + 0.029c_{tG} + 0.011c_{c\varphi} + 0.011c_{e\varphi} 
 \mathbf{PC02} \ (\mathbf{4.25e} + \mathbf{03}) \colon +0.879 c_{\tau\varphi} - 0.360 c_{b\varphi} - 0.233 c_{\varphi WB} - 0.136 c_{\varphi D} - 0.127 c_{\varphi B} - 0.087 c_{c\varphi} + 0.030 c_{\varphi G} - 0.017 c_{\varphi W} + 0.013 c_{tG} 
 \mathbf{PC04} \ (\mathbf{1.88e + 03}) \colon -0.871 c_{b\varphi} \ -0.378 c_{\tau\varphi} \ -0.290 c_{c\varphi} \ +0.079 c_{\varphi G} \ +0.072 c_{tG} \ +0.051 c_{\varphi WB} \ -0.016 c_{\varphi B} \ -0.013 c_{\varphi W} 
  \mathbf{PC05} \ (\mathbf{2.86e+02}) : -0.989c_{tG} - 0.067c_{qq}^{1,8} - 0.064c_{qt}^{8} - 0.058c_{b\varphi} + 0.045c_{\varphi G} - 0.042c_{c\varphi} - 0.035c_{qu}^{8} - 0.034c_{ut}^{8} - 0.023c_{qd}^{8} - 0.022c_{dt}^{8} + 0.025c_{dt}^{8} - 0.022c_{dt}^{8} + 0.025c_{dt}^{8} - 0.004c_{dt}^{8} - 0.004c_{dt}^{
 -0.021c_{qq}^{1,3} + 0.020c_{tW} - 0.017c_{\varphi\Box} + 0.016c_{t\varphi} - 0.015c_{\tau\varphi} + 0.013c_{\varphi\Box}^{(-)}
PC06 (2.18e+02): -0.950c_{qq}^{1,3} + 0.300c_{\varphi Q}^{3} + 0.082c_{tW} + 0.023c_{tG} + 0.014c_{c\varphi}
  \frac{\text{PC07 (1.02e+02):}}{\text{-0.868}c_{c\varphi}} - 0.372c_{\varphi W} + 0.286c_{b\varphi} + 0.100c_{tW} + 0.072c_{\varphi B} - 0.070c_{\varphi \Box} - 0.065c_{\varphi WB} - 0.026c_{\varphi D} + 0.021c_{tG} + 0.000c_{tW} + 0.000c_
+0.013c_{\tau\varphi} +0.013c_{t\varphi}
PC08 (8.28e+01): -0.989c_{tW} -0.088c_{c\varphi} -0.084c_{qq}^{1,3} +0.060c_{\varphi B} +0.026c_{b\varphi} -0.024c_{\varphi W} -0.019c_{tG} +0.017c_{qq}^{1,8} +0.012c_{\varphi Q}^{3}
-0.011c_{\varphi WB} +0.011c_{ut}^{8}
PC09 (5.20e+01): +0.568c_{qt}^{8} -0.514c_{qq}^{1,8} +0.405c_{qu}^{8} -0.372c_{ut}^{8} -0.247c_{qq}^{8,3} +0.163c_{qd}^{8} -0.147c_{dt}^{8}
+0.126c_{ad}^{8} -0.090c_{tG} -0.080c_{b\varphi} -0.060c_{gg}^{8,3} +0.049c_{\varphi WB} -0.038c_{\varphi Q}^{(-)} +0.024c_{\varphi t} -0.018c_{\varphi Q}^{3} +0.018c_{tW} -0.012c_{t\varphi}
-0.115c_{qd}^{8} - 0.071c_{b\varphi} + 0.064c_{qq}^{8,3} + 0.063c_{tG} + 0.056c_{\varphi WB} + 0.038c_{\varphi Q}^{(-)} - 0.026c_{\varphi t} - 0.021c_{t\varphi} + 0.016c_{\varphi Q}^{3} - 0.014c_{tW} + 0.013c_{\varphi \Box}
PC12 (4.19e+00): +0.950c_{\varphi Q}^{3} +0.299c_{qq}^{1,3} +0.064c_{\varphi D} -0.028c_{\varphi WB} -0.024c_{\varphi W} +0.024c_{qq}^{1,8} -0.018c_{qq}^{8,3} -0.016c_{\varphi \Box} +0.014c_{qt}^{8}
+0.014c_{\varphi t} -0.013c_{tW} -0.011c_{\varphi Q}^{(-)}
PC13 (2.76e+00): +0.836c_{\varphi D} - 0.390c_{\varphi WB} - 0.286c_{\varphi W} - 0.151c_{\varphi \Box} - 0.130c_{\varphi B} + 0.112c_{c\varphi} - 0.070c_{\varphi Q}^{3} + 0.055c_{WWW} - 0.047c_{b\varphi}
+0.044c_{\varphi Q}^{(-)} -0.028c_{t\varphi} +0.027c_{qq}^{8,3} -0.022c_{qq}^{1,3} -0.016c_{\varphi t} -0.016c_{tZ} -0.016c_{qq}^{1,8}
 \textbf{PC14} \ (\textbf{1.83e} + \textbf{00}) : +0.741c_{\varphi Q}^{(-)} -0.483c_{\varphi t} + 0.287c_{ut}^8 + 0.221c_{qu}^8 -0.178c_{qq}^{1,8} + 0.156c_{qq}^{8,3} + 0.127c_{dt}^8 + 0.068c_{qd}^8 -0.051c_{t\varphi} + 0.047c_{\varphi \Box}
```

 $\frac{\textbf{PC00 (5.90e+05):}}{\textbf{+0.699}} + 0.699c_{\varphi G} - 0.597c_{\varphi B} + 0.334c_{\varphi WB} - 0.182c_{\varphi W} + 0.085c_{b\varphi} - 0.036c_{tW} + 0.032c_{tZ} + 0.028c_{c\varphi} + 0.026c_{tG} + 0.028c_{e\varphi} + 0.026c_{tG} + 0.028c_{e\varphi} + 0.026c_{tG} + 0.028c_{e\varphi} +$

 $-0.047c_{qt}^{8} -0.034c_{\varphi D} +0.026c_{\varphi Q}^{3} +0.017c_{\varphi WB} +0.016c_{tZ} -0.016c_{WWW} -0.016c_{c\varphi} +0.015c_{\varphi W} +0.011c_{qq}^{1,3}$

 $\underline{\mathbf{PC17} \ (\mathbf{3.77e} - \mathbf{01}):} \ -0.729 c_{WWW} \ +0.377 c_{qq}^{8,3} \ -0.297 c_{ut}^{8} \ +0.293 c_{qt}^{8} \ -0.231 c_{qu}^{8} \ +0.181 c_{qq}^{1,8} \ -0.153 c_{dt}^{8} \ +0.139 c_{\varphi Q}^{(-)} \ -0.120 c_{qd}^{8} \ -0.073 c_{\varphi t} \ -0.045 c_{t\varphi} \ +0.025 c_{\varphi D} \ -0.012 c_{\varphi WB} \ +0.012 c_{tt}^{1}$

 $\frac{\textbf{PC19 (1.94e-01):}}{-0.015c_{\varphi Q}^{(-)} + 0.014c_{ut}^8 - 0.012c_{qu}^8 - 0.0116c_{qq}^{8,3} - 0.073c_{\varphi D} + 0.049c_{\varphi W} - 0.037c_{tZ} + 0.033c_{\varphi WB} - 0.026c_{qt}^8 - 0.020c_{WWW}}{-0.015c_{\varphi Q}^{(-)} + 0.014c_{ut}^8 - 0.012c_{qu}^8 - 0.011c_{qd}^8}$

 $\underline{\mathbf{PC23}\ (\textbf{7.57e-03}):}\ +0.566c_{ut}^{8}\ -0.533c_{qu}^{8}\ +0.413c_{qt}^{8}\ -0.404c_{qq}^{1,8}\ +0.232c_{\varphi t}\ -0.083c_{qd}^{8}\ +0.036c_{tZ}\ +0.025c_{\varphi Q}^{(-)}$

 $\frac{\textbf{PC27 (1.06e-10):}}{+0.012c_{qq}^{1,1} + 0.255c_{Qt}^{8} + 0.215c_{QQ}^{8} + 0.215c_{QQ}^{8} + 0.135c_{qt}^{1} - 0.116c_{ut}^{1} + 0.087c_{qu}^{1} + 0.084c_{tt}^{1} - 0.067c_{dt}^{1} + 0.051c_{qd}^{1} + 0.044c_{QQ}^{1} + 0.028c_{Qt}^{1}} + 0.028c_{Qt}^{1}$

 $\underline{\mathbf{PC28}\ (\mathbf{5.27e-11}):} + 0.986c_{dt}^{1} + 0.107c_{Qt}^{8} + 0.097c_{QQ}^{8} - 0.049c_{ut}^{1} + 0.040c_{qu}^{1} + 0.033c_{qt}^{1} + 0.031c_{qd}^{1} + 0.020c_{tt}^{1} + 0.013c_{Qt}^{1} + 0.011c_{QQ}^{1} +$

 $\underline{\textbf{PC29 (5.27e-11):}} -0.843c_{qt}^{1} -0.297c_{tt}^{1} +0.297c_{QQ}^{8} +0.189c_{Qt}^{8} +0.184c_{qu}^{1} -0.143c_{QQ}^{1} -0.136c_{ut}^{1} +0.052c_{Qt}^{1} -0.040c_{qd}^{1} -0.028c_{dt}^{1} +0.084c_{qd}^{1} -0.018c_{qd}^{1} +0.084c_{qd}^{1} -0.018c_{qd}^{1} +0.084c_{qd}^{1} +0.084c_{qd}^{1} -0.084c_{qd}^{1} -0.084c_{qd}^{1} +0.084c_{qd}^{1} -0.084c_{qd}^{1} +0.084c_{qd}^{1} -0.084c_{qd}^{1} +0.084c_{qd}^{1} -0.084c_{qd}^{1} +0.084c_{qd}^{1} -0.084c_{qd}^{1} +0.084c_{qd}^{1} +0.084c_{qd}^{1$

 $\underline{\textbf{PC30 (5.27e-11):}} \ -0.969c_{qd}^{1} \ +0.193c_{qu}^{1} \ +0.132c_{qt}^{1} \ +0.050c_{QQ}^{8} \ -0.040c_{tt}^{1} \ +0.037c_{Qt}^{8} \ -0.022c_{QQ}^{1} \ +0.010c_{dt}^{1} \ +0.01$

 $\underline{\textbf{PC31 (5.27e-11):}} + 0.892c_{qu}^{1} - 0.282c_{QQ}^{8} + 0.235c_{tt}^{1} - 0.187c_{Qt}^{8} + 0.137c_{qd}^{1} + 0.094c_{QQ}^{1} - 0.063c_{ut}^{1} - 0.044c_{qt}^{1} - 0.040c_{Qt}^{1}$

 $\underline{\textbf{PC32 (5.27e-11):}} + 0.923c_{ut}^1 + 0.273c_{Qt}^8 - 0.159c_{QQ}^1 + 0.141c_{qu}^1 + 0.107c_{QQ}^8 + 0.100c_{tt}^1 + 0.059c_{Qt}^1 + 0.043c_{qd}^1 - 0.026c_{qt}^1 + 0.043c_{qd}^1 + 0.0$

 $\underline{\textbf{PC33 (5.27e-11):}} + 0.799c_{QQ}^1 + 0.383c_{QQ}^8 - 0.281c_{Qt}^8 - 0.253c_{tt}^1 + 0.206c_{ut}^1 - 0.166c_{Qt}^1 + 0.050c_{qu}^1$

 $\underline{\textbf{PC34 (5.27e-11):}} \ -0.847c_{Qt}^{1} \ -0.326c_{QQ}^{1} \ +0.313c_{QQ}^{8} \ +0.206c_{tt}^{1} \ -0.188c_{Qt}^{8}$

 $\underline{\textbf{PC35 (5.27e-11):}} \ -0.564c_{Qt}^8 \ +0.515c_{QQ}^8 \ +0.490c_{Qt}^1 \ +0.351c_{tt}^1 \ -0.232c_{QQ}^1 \ +0.490c_{Qt}^2 \ +0.490c_{Qt}^$

			Processes												
Class	Coefficient	4H	AC	Hdiff	HrunI	HrunII	LEP	VV	WhelF	t13	t8	tW	tZ	tt13	
	$c_{\omega Q}^3$	0.00(0.00)	0.00(0.00)	5.52(5.99)	0.51(0.63)	2.64(3.37)	0.00(0.00)	0.00(0.00)	0.51(0.51)	15.14(14.91)	47.03(46.31)	11.69(11.61)	16.96(16.67)	0.00(0.00)	П
	$c_{b\varphi}$	0.00(0.00)	0.00(0.00)	24.25(26.56)	14.89(13.96)	56.68(55.60)	0.00(0.00)	0.00(0.00)	4.17(3.88)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	П
	$c_{c\varphi}$	0.00(0.00)	0.00(0.00)	24.56(25.36)	9.97(9.78)	61.28(60.65)	0.00(0.00)	0.00(0.00)	4.19(4.22)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	
	$c_{\varphi Q}^{(-)}$	0.00(0.00)	0.00(0.00)	12.11(12.25)	3.27(3.31)	16.80(17.04)	0.00(0.00)	0.00(0.00)	3.26(3.25)	0.00(0.00)	0.00(0.00)	0.51(0.51)	2.41(2.43)	0.00(0.00)	
2FB	$c_{\varphi t}$	0.00(0.00)	0.00(0.00)	6.17(6.18)	1.70(1.71)	8.57(8.58)	0.00(0.00)	0.00(0.00)	1.66(1.66)	0.00(0.00)	0.00(0.00)	0.12(0.12)	0.58(0.58)	0.00(0.00)	
	c_{tG}	1.99(4.80)	0.91(3.42)	27.98(66.35)	7.54(15.30)	26.65(44.05)	0.00(0.00)	0.00(-0.00)	2.42(6.25)	0.00(0.00)	1.03(-1.00)	0.05(-0.07)	0.00(0.00)	8.06(-20.94)	
	c_{tW}	0.00(0.00)	0.00(0.00)	31.67(34.97)	9.07(9.85)	44.44(48.95)	0.00(0.00)	0.72(-0.40)	13.55(7.03)	0.03(-0.01)	0.26(-0.17)	0.12(-0.09)	0.14(-0.13)	0.00(0.00)	
	c_{tZ}	0.00(0.00)	0.00(0.00)	33.70(33.63)	9.66(9.75)	47.36(47.39)	0.00(0.00)	0.00(0.00)	9.27(9.23)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	
	$c_{ au arphi}$	0.00(0.00)	0.00(0.00)	1.30(1.53)	36.25(40.10)	62.23(58.13)	0.00(0.00)	0.00(0.00)	0.22(0.24)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	┺
	$c_{t\varphi}$	2.29(2.29)	1.58(1.58)	41.59(41.59)	11.58(11.59)	40.84(40.84)	0.00(0.00)	0.00(0.00)	2.13(2.13)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	╙
	$c_{qq}^{1,1}$	0.56(0.35)	52.88(33.70)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.18(0.11)	0.00(0.00)	0.00(0.00)	39.11(60.70)	
	$c_{qq}^{1,3}$	0.00(0.02)	0.04(1.43)	0.00(0.00)	0.00(0.00)	0.00(0.01)	0.00(0.00)	0.00(0.00)	0.00(0.00)	15.18(12.96)	54.00(44.93)	3.66(2.41)	27.08(18.19)	0.02(18.37)	
	c_{dt}^1	0.47(0.36)	34.88(26.78)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.77(0.59)	0.00(0.00)	0.00(0.00)	54.78(65.08)	
	c_{qd}^1	0.25(0.23)	38.02(35.66)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.02(0.01)	0.00(0.00)	0.00(0.00)	55.66(58.37)	
	c_{at}^1	0.28(0.21)	60.31(43.65)	0.00(0.00)	0.01(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.01(0.01)	0.00(0.00)	0.00(0.00)	35.27(52.92)	
	c_{au}^1	0.15(0.09)	40.78(24.86)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.01(0.01)	0.00(0.00)	0.00(0.00)	55.15(72.50)	\vdash
2Q2q	c_{ut}^1	0.56(0.50)	62.49(56.26)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.07(0.07)	0.00(0.00)	0.00(0.00)	31.81(38.41)	\vdash
	$c_{qq}^{1,8}$	0.15(0.11)	23.18(16.53)	0.01(0.00)	0.07(0.05)	0.52(0.32)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.17(0.12)	0.00(0.00)	0.00(0.00)	37.52(56.19)	T
	$c_{aa}^{8,3}$	0.16(0.13)	35.41(27.72)	0.01(0.01)	0.06(0.05)	0.33(0.25)	0.00(0.00)	0.00(0.00)	0.00(0.00)	3.37(2.65)	13.73(10.78)	0.00(0.00)	1.35(1.06)	8.18(27.97)	\top
	c_{dt}^{8}	0.27(0.24)	33.56(30.18)	0.01(0.01)	0.12(0.11)	1.13(1.01)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.07(0.07)	0.00(0.00)	0.00(0.00)	53.90(58.55)	\vdash
	c_{ad}^{8}	0.81(0.78)	35.56(34.43)	0.03(0.03)	0.26(0.25)	2.48(2.40)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.23(0.22)	0.00(0.00)	0.00(0.00)	26.00(28.30)	T
	c_{at}^8	0.35(0.26)	18.00(13.35)	0.01(0.01)	0.10(0.08)	0.85(0.65)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.29(0.21)	0.00(0.00)	0.00(0.00)	26.01(44.92)	T
	c_{au}^{gv}	1.03(0.97)	58.27(54.68)	0.03(0.03)	0.30(0.28)	2.23(2.09)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.13(0.12)	0.00(0.00)	0.00(0.00)	17.42(22.50)	T
	c_{ut}^8	0.25(0.22)	41.62(37.84)	0.01(0.01)	0.10(0.09)	0.74(0.66)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.03(0.03)	0.00(0.00)	0.00(0.00)	51.08(55.57)	\vdash
	c_{QQ}^1	100.00(100.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	
	c_{QQ}^{8}	93.37(93.42)	1.65(1.64)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	Т
4Q	c_{Ot}^1	82.92(82.93)	4.26(4.26)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	T
	c_{Ot}^{8}	99.19(99.19)	0.20(0.20)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	T
	c_{tt}^{1}	100.00(100.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	\vdash
	c_{WWW}	0.03(0.03)	0.00(0.00)	0.30(0.30)	0.00(0.00)	0.22(0.22)	4.56(4.54)	94.89(94.92)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	T
	$c_{\varphi B}$	0.00(0.00)	0.00(0.00)	33.71(33.13)	9.66(10.08)	47.37(49.02)	0.00(0.00)	0.00(0.00)	9.27(7.76)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	\top
	$c_{\varphi D}$	0.01(0.00)	0.01(0.00)	66.89(92.18)	6.13(0.88)	17.89(3.51)	0.03(0.00)	8.74(3.38)	0.31(0.03)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	\Box
В	$c_{\varphi G}$	1.98(1.74)	1.37(1.20)	43.02(42.47)	11.60(11.30)	38.53(40.34)	0.00(0.00)	0.00(0.00)	3.51(2.96)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	
	$c_{\varphi W}$	0.00(-0.00)	0.00(-0.00)	33.68(32.56)	9.88(10.69)	47.17(50.48)	0.00(0.00)	0.00(0.00)	9.26(6.26)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	
	$c_{\varphi WB}$	0.00(-0.00)	0.00(-0.00)	34.14(34.20)	9.84(10.13)	46.78(47.98)	0.00(0.00)	0.12(0.05)	9.12(7.63)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	
	c_{φ}	2.47(2.42)	1.69(1.65)	39.39(39.27)	10.56(10.80)	45.58(45.54)	0.00(0.00)	0.00(0.00)	0.31(0.31)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	

Table 1: Fisher information

Linear Quadratic

L	
Г	

		Processes												
Class	Coefficient	4H	AC	Hdiff	HrunI	HrunII	LEP	VV	WhelF	t13	t8	tW	tZ	tt13
	$c_{\varphi Q}^3$	0.00(0.00)	0.00(0.00)	4.95(7.37)	0.68(0.77)	3.54(4.12)	0.00(0.00)	0.00(0.00)	0.69(0.62)	16.44(15.94)	55.96(54.25)	6.25(6.08)	11.48(10.84)	0.00(0.00)
	c_{barphi}	0.00(0.00)	0.00(0.00)	25.49(24.98)	12.77(15.71)	57.39(58.11)	0.00(0.00)	0.00(0.00)	4.35(1.20)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
	$c_{c\varphi}$	0.00(0.00)	0.00(0.00)	24.56(24.40)	9.97(10.36)	61.28(61.57)	0.00(0.00)	0.00(0.00)	4.19(3.67)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
	$c_{\varphi Q}^{(-)}$	0.00(0.00)	0.00(0.00)	13.85(14.17)	3.79(3.85)	19.36(19.73)	0.00(0.00)	0.00(0.00)	3.79(3.77)	0.00(0.00)	0.00(0.00)	0.16(0.17)	1.56(1.65)	0.00(0.00)
2FB	$c_{\varphi t}$	0.00(0.00)	0.00(0.00)	6.84(6.80)	1.96(1.95)	9.60(9.56)	0.00(0.00)	0.00(0.00)	1.88(1.87)	0.00(0.00)	0.00(0.00)	0.04(0.04)	0.39(0.39)	0.00(0.00)
	c_{tG}	3.27(3.69)	1.46(2.78)	36.47(60.73)	12.50(18.23)	12.30(17.56)	0.00(0.00)	0.00(0.00)	3.86(2.71)	0.00(0.00)	0.72(-0.69)	0.04(-0.05)	0.00(0.00)	8.79(-4.86)
	c_{tW}	0.00(0.00)	0.00(0.00)	31.67(35.81)	9.08(9.74)	44.48(46.10)	0.00(0.00)	0.74(-0.19)	13.71(8.59)	0.02(-0.00)	0.16(-0.02)	0.06(-0.01)	0.07(-0.01)	0.00(0.00)
	c_{tZ}	0.00(0.00)	0.00(0.00)	33.70(31.76)	9.67(9.65)	47.37(49.91)	0.00(0.00)	0.00(0.00)	9.27(8.68)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
	$c_{\tau\varphi}$	0.00(0.00)	0.00(0.00)	1.30(1.03)	36.25(37.12)	62.23(61.75)	0.00(0.00)	0.00(0.00)	0.22(0.10)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
	$c_{t\varphi}$	2.37(2.39)	1.63(1.65)	42.13(42.28)	13.36(13.41)	38.32(38.10)	0.00(0.00)	0.00(0.00)	2.20(2.17)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
	$c_{qq}^{1,1}$	95.79(94.38)	0.73(1.89)	0.00(0.00)	0.00(0.00)	0.00(0.01)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.24)
	$c_{qq}^{1,3}$	0.00(0.02)	0.00(2.45)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	16.79(20.71)	61.93(75.59)	1.31(-0.61)	19.97(0.47)	0.00(1.27)
	c_{dt}^1	95.00(94.95)	0.87(0.87)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.05)
	c_{qd}^1	94.47(94.41)	0.96(0.96)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.06)
	c_{at}^1	94.91(94.84)	0.89(0.89)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.05)
	c_{qu}^1	94.83(94.77)	0.90(0.90)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.06)
2Q2q	c_{ut}^1	96.13(96.06)	0.67(0.68)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.05)
	$c_{aa}^{1,8}$	0.11(0.10)	55.28(53.19)	0.01(0.01)	0.08(0.08)	0.59(0.51)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.11(0.12)	0.00(0.00)	0.00(0.00)	25.51(26.96)
	$c_{qq}^{8,3}$	0.08(0.06)	72.38(60.80)	0.01(0.00)	0.05(0.05)	0.25(0.21)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.01(0.00)	0.15(0.13)	0.00(0.00)	0.00(0.00)	15.99(29.35)
	c_{dt}^{8}	0.15(0.15)	53.18(51.87)	0.01(0.01)	0.11(0.11)	0.96(0.92)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.06(0.06)	0.00(0.00)	0.00(0.00)	36.34(38.02)
	c_{ad}^{8}	0.21(0.20)	51.83(50.43)	0.01(0.01)	0.10(0.10)	0.93(0.89)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.06(0.06)	0.00(0.00)	0.00(0.00)	35.70(37.60)
	c_{at}^8	0.16(0.14)	56.61(54.44)	0.01(0.01)	0.08(0.07)	0.59(0.51)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.11(0.10)	0.00(0.00)	0.00(0.00)	26.85(31.16)
	$c_{qu}^{\overline{s}}$	0.16(0.15)	66.49(67.22)	0.01(0.01)	0.08(0.08)	0.52(0.49)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.02(0.02)	0.00(0.00)	0.00(0.00)	26.68(26.31)
	c_{ut}^{qu}	0.11(0.11)	67.66(68.29)	0.01(0.01)	0.08(0.08)	0.55(0.51)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.02(0.02)	0.00(0.00)	0.00(0.00)	25.89(25.50)
	c_{QQ}^1	100.00(100.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
	c _{OO}	88.22(88.26)	2.05(2.04)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
4Q	c_{Qt}^1	80.31(80.32)	3.42(3.42)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
	c_{Ot}^{8}	97.95(97.95)	0.36(0.36)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
	c_{tt}^{1}	100.00(100.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
	c_{WWW}	0.19(0.19)	0.00(0.00)	1.10(1.10)	0.00(0.00)	2.93(2.93)	29.45(29.45)	66.33(66.34)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
	$c_{\varphi B}$	0.00(0.00)	0.00(0.00)	33.71(32.07)	9.66(10.29)	47.37(51.30)	0.00(0.00)	0.00(0.00)	9.27(6.34)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
	$c_{\varphi D}$	0.01(0.00)	0.01(0.00)	78.03(93.39)	4.03(0.30)	13.25(1.71)	0.02(0.00)	4.31(4.55)	0.34(0.04)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
В	$c_{\varphi G}$	1.63(2.47)	1.13(1.70)	38.77(51.63)	11.51(17.87)	44.07(20.02)	0.00(0.00)	0.00(0.00)	2.90(6.30)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
	$c_{\varphi W}$	0.00(0.00)	0.00(0.00)	33.69(29.95)	9.89(10.60)	47.16(54.30)	0.00(0.00)	0.00(0.00)	9.26(5.15)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
	$c_{\varphi WB}$	0.00(0.00)	0.00(0.00)	34.72(35.57)	9.77(9.98)	46.37(48.23)	0.00(0.00)	0.10(0.28)	9.04(5.94)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)
	c_{φ}	2.46(2.41)	1.68(1.65)	39.52(39.36)	10.50(10.88)	45.47(45.30)	0.00(0.00)	0.00(0.00)	0.37(0.40)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)	0.00(0.00)

Table 1: Fisher information

Linear Quadratic