ONE MORE EQUIVALENT STATEMENT; MORE ON EIGENVALUES

THEOREM

Let A be an $n \times n$ matrix. The following statements are equivalent.

1) A is invertible

- 6) Rows of A forms a basis for \mathbb{R}^n
- 2) Ax = 0 has only trivial solution
- 3) RREF of A is I 7) Columns of A forms a basis for \mathbb{R}^n
- 4) A can be written as produce of elementary matrices
- 5) $det(A) \neq 0$

- 8) $\operatorname{rank}(A) = n$
- 9) 0 is not an eigenvalue of A

THEOREM

Proof: We will show "0 is not an eigenvalue of A" is equivalent to "det(A) \neq 0".

0 is not an eigenvalue of $A \Leftrightarrow \det(0I - A) \neq 0$

$$\Leftrightarrow \det(-A) \neq 0$$

$$\Leftrightarrow$$
 $(-1)^n \det(A) \neq 0$

$$\Leftrightarrow \det(A) \neq 0$$

EXAMPLE

$$A = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix}$$

The eigenvalues of \boldsymbol{A} are 1 and 0.95.

A is invertible

$$\boldsymbol{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

The eigenvalues of \boldsymbol{B} are 0 and 3.

B is singular

$$\boldsymbol{C} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$

The eigenvalues of C are 1, $\sqrt{2}$ and $-\sqrt{2}$.

C is invertible

THEOREM (EIGENVALUES OF TRIANGULAR MATRICES)

If A is a triangular matrix, the eigenvalues of A are the

diagonal entries of A.

Proof: Suppose A is a triangular matrix.

Then $(\lambda I - A)$ is also a triangular matrix.

THEOREM (EIGENVALUES OF TRIANGULAR MATRICES)

If A is a triangular matrix, the eigenvalues of A are the

diagonal entries of A.

So the eigenvalues of A are:

Proof: Suppose A is a triangular matrix.

$$a_{11}, a_{22}, ..., a_{nn}$$

Then $(\lambda I - A)$ is also a triangular matrix.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & & a_{nn} \end{pmatrix} \quad \lambda I - A = \begin{pmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ & \lambda - a_{22} & \cdots & -a_{2n} \\ & & \ddots & \vdots \\ 0 & & & \lambda - a_{nn} \end{pmatrix}$$

$$\det(\lambda \mathbf{I} - \mathbf{A}) = (\lambda - a_{11})(\lambda - a_{22})...(\lambda - a_{nn})$$

EXAMPLE

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 The eigenvalues of A are: 1,-2,3

$$\boldsymbol{B} = \begin{pmatrix} 2 & 0 & 0 & 0 \\ -4 & 0 & 0 & 0 \\ 3 & 1 & 2 & 0 \\ 0 & -3 & 0 & 6 \end{pmatrix}$$

The eigenvalues of \boldsymbol{B} are: 0,2,6

WHAT MANY OF YOU WILL ASK

ELEMENTARY ROW OPERATIONS AND EIGENVALUES

$$\boldsymbol{A} = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$$

The eigenvalues of A are: 1,4

$$R_1 \leftrightarrow R_2$$

$$\mathbf{B} = \begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix}$$

$$\boldsymbol{B} = \begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix} \qquad \det(\lambda \boldsymbol{I} - \boldsymbol{B}) = \begin{vmatrix} \lambda & -4 \\ -1 & \lambda \end{vmatrix} = \lambda^2 - 4 \\ = (\lambda - 2)(\lambda + 2)$$

The eigenvalues of \boldsymbol{B} are: 2,–2

ELEMENTARY ROW OPERATIONS AND EIGENVALUES

$$A = \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix} \quad \det(\lambda I - A) = \begin{vmatrix} \lambda - 2 & 2 \\ 1 & \lambda - 3 \end{vmatrix} = \lambda^2 - 5\lambda + 4$$
$$= (\lambda - 1)(\lambda - 4)$$
$$R_1 \leftrightarrow R_2 \quad \text{The eigenvalues of } A \text{ are: } 1, 4$$

$$\boldsymbol{B} = \begin{pmatrix} -1 & 3 \\ 2 & -2 \end{pmatrix} \quad \det(\lambda \boldsymbol{I} - \boldsymbol{B}) = \begin{vmatrix} \lambda + 1 & -3 \\ -2 & \lambda + 2 \end{vmatrix} = \lambda^2 + 3\lambda - 4$$
$$= (\lambda - 1)(\lambda + 4)$$

The eigenvalues of \boldsymbol{B} are: 1,–4

SUMMARY

- 1) One more equivalent statement to "A is invertible".
- 2) Eigenvalues of triangular matrices.