

Ingeniería de Software I

Modelos de Proceso

Proceso

- Cuando proveemos un servicio o creamos un producto, siempre seguimos una secuencia de pasos para realizar un conjunto de tareas.
- Las tareas son realizadas usualmente en el mismo orden.
- □ Por ejemplo, no se puede cocinar una torta antes de que todos los ingredientes sean mezclados.
- ☐ Se puede pensar que un "conjunto ordenado de tareas" como un proceso.

Ingeniería de Software I 2023 Fuente: Pfleeger

¿Qué es un proceso de software?

☐ Es un conjunto de actividades y resultados asociados que producen un producto de software.

¿Qué es un proceso de software?

Actividades fundamentales de los procesos:

- ☐ Especificación del software
- ☐ Desarrollo del software
- ☐ Validación del software
- ☐ Evolución del software

☐ Especificación del software

Consiste en el proceso de comprender y defir sistema, asi como la identificación de las restidesarrollo del sistema.

Tambien llamada, Ingeniería de Requerimient

☐ Desarrollo del software

Corresponde al proceso de convertir una especificación del sistema en un sistema ejecutable.

Incluye los procesos de diseño y programación.

Se crea una descripción de la estructura del software que se va implementar, los modelos y estructuras de datos, las interface.

☐ Validación del software

Se realiza para mostrar que un sistema cumple tanto con sus especificaciones como con las expectativas del cliente.

La prueba del sistema con datos de prueba simulados, es una de las formas de validación.

Pero tambien incluye inspecciones y revisiones en distintas etapas.

☐ Evolución del software

El mantenimiento es una actividad a tener en cuenta en el proceso de desarrollo de software. Eso implica tambien cambios y mejoras

9

¿Qué es un modelo de proceso de software?

- ☐ Es una representación simplificada de un proceso de software que presenta una visión de ese proceso.
- □ Estos modelos pueden incluir actividades que son partes de los procesos y productos de software, y el papel de las personas involucradas.

¿Qué es un modelo de proceso de software?

Marco de referencia que contiene los procesos, las actividades y las tareas involucradas en el desarrollo, la explotación y el mantenimiento de un producto de software, abarcando la vida del sistema desde la definición de los requisitos hasta la finalización de su uso (norma ISO 12207-1) [ISO/IEC, 1995]

Ingeniería de Software I 2023 _______ Fuente: Sommerville – Capítulo 1

Características

- ☐ Establece todas las actividades.
- ☐ Utiliza recursos, está sujeto a restricciones y genera productos intermedios y finales.
- ☐ Puede estar compuesto por subprocesos.
- Cada actividad tiene entradas y salidas definidas.
- ☐ Las actividades se organizan en una secuencia.
- Existen principios que orientan sobre las metas de cada actividad.
- ☐ Las restricciones pueden aplicarse a una actividad, recurso o producto.

Ingeniería de Software I 2023 Fuente: Pfleeger

Ciclo de vida

Proceso que implica la construcción de un producto

Ciclo de vida del Software

Describe la vida del producto de software desde su concepción hasta su implementación, entrega, utilización y mantenimiento

Modelos de proceso de software

Es una representación abstracta de un proceso del software.

Modelo de proceso Paradigma de software Ciclo de vida del software

Términos Equivalentes

Ingeniería de Software I 2023

Fuente:

Pfleeger

Modelos prescriptivos

Prescriben un conjunto de elementos del proceso: actividades del marco de trabajo, acciones de la ingeniería del software, tareas, aseguramiento de la calidad y mecanismos de control.

Cada modelo de proceso prescribe también un "flujo de trabajo", es decir de qué forma los elementos del proceso se interrelacionan entre sí.

Modelos descriptivos

Descripción en la forma en que se realizan en la realidad

Ambos modelos deberían ser iguales

Ingeniería de Software I 2023

Modelos tradicionales

Formados por un conjunto de fases o actividades en las que e no tienen en cuenta la naturaleza evolutiva del software

- ☐ Clásico, lineal o en cascada
- Modelo en V
- Basado en prototipos

Modelos evolutivos

Son modelos que se adaptan a la evolución que sufren los requisitos del sistema en función del tiempo

- En espiral
- Evolutivo

Desarrollo por fases

Incremental

Procesos ágiles

<u>P</u>fleeger

Modelo en cascada

- Las etapas se representan cayendo en cascada
- Cada etapa de desarrollo se debe completar antes que comience la siguiente
- Útil para diagramar lo que se necesita hacer
- Su simplicidad hace que sea fácil explicarlo a los clientes

Modelo de la realidad en comparación con cascada

■ Modelo de la realidad (sin control entre las etapas)

Ingeniería de Software I 2023 Fuente: Pfleeger

Modelo en cascada

Dificultades:

- No existen resultados concretos hasta que todo este terminado.
- ☐ Las fallas más triviales se encuentran al comienzo del período de prueba y las más graves al final.
- □ La eliminación de fallas suele ser extremadamente difícil durante las últimas etapas de prueba del sistema.
- □ Deriva del mundo del hardware y presenta una visión de manufactura sobre el desarrollo de software.
- □ La necesidad de pruebas aumenta exponencialmente durante las etapas finales.
- ☐ "CONGELAR" una fase es poco realista.
- Existen errores, cambios de parecer, cambios en el ambiente.

Ingeniería de Software I 2023 Fuente: Pfleeger

Modelo en cascada con prototipo

Ingeniería de Software I 2023

Fuente: Pfleeger

Modelo

- Demuestra cómo
- ☐ Sugiere que la pi programa
- La vinculación er la verificación y v para solucionar e

lek

ırante te

Ingeniería de Software I 2023 Fuente: Pfleeger

Un prototipo es un producto parcialmente desarrollado que permite que clientes y desarrolladores examinen algunos aspectos del sistema propuesto, y decidan si éste es adecuado o correcto para el producto terminado.

Esta es una alternativa de especificación para tratar mejor la incertidumbre, la ambigüedad y la volubilidad de los proyectos reales.

Modelo de prototipos- Tipos

Evolutivos

El objetivo es obtener el sistema a entregar.

Permite que todo el sistema o alguna de sus partes se construyan rápidamente para comprender o aclarar aspectos y asegurar que el desarrollador, el usuario y el cliente tengan una comprensión unifica tanto de lo que se necesita como de lo que se propone como solució

Descartables

No tiene funcionalidad Se utilizan herramientas de modelado

geniería de Software I. 2023 Fuente: Pfleeger

	Descartable	Evolutivo
Enfoque de desarrollo	Rápido y sin rigor	Riguroso
Que construir	Solo las partes problemáticas	Primero las partes bien entendidas. Sobre una base sólida
Objetivo ultimo	Desecharlo	Lograr el sistema

eniería de Software I 2023 Fuente: Pfleeger

Proyectos candidatos

- Usuarios que no examinarán los modelos abstractos
- Usuarios que no determinarán sus requerimientos inicialmente
- Sistemas con énfasis en los formatos de E/S más que en los detalles algorítmicos
- ☐ Sistemas en los que haya que explorar aspectos técnicos
- Si el usuario tiene dificultad al tratar con los modelos gráficos para modelar los requerimientos y el comportamiento
- ☐ Si se enfatiza el aspecto de la interfaz humana

Para asegurar el éxito:

- Debe ser un sistema con el que se pueda experimentar
- □ Debe ser comparativamente barato (< 10%)</p>
- Debe desarrollarse rápidamente
- ☐ Énfasis en la interfaz de usuario
- Equipo de desarrollo reducido
- Herramientas y lenguajes adecuados

Modelo de desarrollo por fases

Se desarrolla el sistema de tal manera que puede ser entregado en piezas. Esto implica que existen dos sistemas funcionando en paralelo: el sistema operacional y el sistema en desarrollo.

Ingeniería de Software I 2023 Fuente: Pfleeger

Modelo de desarrollo por fases

Tipos de modelos de desarrollo por fases

Incremental

El sistema es particionado en subsistemas de acuerdo con su funcionalidad. Cada entrega agrega un subsistema.

Iterativo

Entrega un sistema completo desde el principio y luego aumenta la funcionalidad de cada subsistema con las nuevas versiones.

Pfleeger

Modelos de desarrollo por fases

Modelo en espiral (Boehm)

- Combina las actividades de desarrollo con la gestión del riesgo
- Trata de mejorar los ciclos de vida clásicos y prototipos.
- Incorpora objetivos de calidad
- Elimina errores y alternativas no atractivas al comienzo
- Permite iteraciones, vuelta atrás y finalizaciones rápidas
- Cada ciclo empieza identificando:
 - Los objetivos de la porción correspondiente
 - Las alternativas

Restricciones

Cada ciclo se completa con una revisión que incluye todo el ciclo anterior y el plan para el siguiente

Modelo en espiral (Boehm)

Cada ciclo en la espiral se divide en cuatro sectores:

- 1. Establecimiento de objetivos . Se identifican restricciones, se traza un plan de gestión, se identifican riesgos
- 2. Valoración y reducción del riesgo. Se analiza cada riesgo identificado y se determinan acciones.
- 3. Desarrollo y validación. Se determina modelo de desarrollo.
- 4. Planeación . El proyecto se revisa y se toma decisiones para la siguiente fase

Bibliografía

☐ Libros Utilizados en la Teoría

Sommerville, Capitulo 2, Ingeniería de Software, Pearson 2011 Pressman, Capítulo 2, Ingeniería de Software Un enfoque práctico, Mc Graw Hill 2021 Pfleeger, Capitulo 2 Software Enginnering. Theory and Practice. Prentice Hall 2010