

STUDY

Partner Name Clovis Oncology
Partner Study ID CO-338-063

FMI Study ID F1S-BPA-PRO-16-468

TEST

FMI Test Order # ORD-0957975-01

Test Type FoundationOne

Report Date 04 Dec 2020

PATIENT

Subject ID 63-28043-022

Site ID 28043

Sex Male

Date of Birth 1955

Diagnosis Prostate acinar adenocarcinoma

Physician Name Not Provided

SPECIMEN

Specimen ID **11103033-A33**

Sample Type Slide Deck

Site Prostate

Collection Date 14JUL2020 Received Date 21NOV2020 Visit Type Pre-Screening

About the Test

FoundationOne is a next-generation sequencing (NGS) based assay that identifies genomic alterations within hundreds of cancer-related genes.

GENOMIC FINDINGS

NOTE: This is a comprehensive list of cancer-related alterations detected in this patient's sample.

GENE	ALTERATION
MYC	amplification - equivocal
PTEN	loss
TERC	amplification - equivocal
TMPRSS2	TMPRSS2-ERG fusion
TP53	C242F
SLIT2	Y1312fs*4

GENOMIC SIGNATURES

NOTE: This section includes information for genomic signatures reported in this test.

Biomarker	Result			
Tumor Mutational Burden	0.88 mutations-per-megabase			
Microsatellite Instability	MS-Stable			

VARIANTS OF UNKNOWN SIGNIFICANCE

Note: These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes significance unclear. FMI VUS are included here, in the event that they become clinically meaningful in the future.

GENE	ALTERATION
NBN	amplification
RUNX1T1	amplification
JUN	E166K
KRAS	G179S
FANCI	Q625*

APPENDIX

Gene List

FoundationOne[®] is designed to include genes known to be somatically altered in human solid tumors and validated targets for therapy, either approved or in clinical trials, and/or unambiguous drivers of oncogenesis based on current knowledge. The current assay interrogates 315 genes as well as introns of 28 genes involved in rearrangements. The assay will be updated periodically to reflect new knowledge about cancer biology.

DNA GENE LIST: ENTIRE CODING SEQUENCE FOR DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY NUMBER ALTERATIONS

ABL1	ABL2	ACVR1B	AKT1	AKT2	AKT3	ALK	AMER1 (FAM123B)	APC	AR
ARAF	ARFRP1	ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA
AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2	BCL6	BCOR
BCORL1	BLM	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTK	C11orf30 (EMSY)
CARD11	CBFB	CBL	CCND1	CCND2	CCND3	CCNE1	CD274	CD79A	CD79B
CDC73	CDH1	CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B
CDKN2C	CEBPA	CHD2	CHD4	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2
CSF1R	CTCF	CTNNA1	CTNNB1	CUL3	CYLD	DAXX	DDR2	DICER1	DNMT3A
DOT1L	EGFR	EP300	ЕРНАЗ	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4
ERG	ERRFI1	ESR1	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE	FANCF
FANCG	FANCL	FAS	FAT1	FBXW7	FGF10	FGF14	FGF19	FGF23	FGF3
FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3
FLT4	FOXL2	FOXP1	FRS2	FUBP1	GABRA6	GATA1	GATA2	GATA3	GATA4
GATA6	GID4 (C17orf39)	GLI1	GNA11	GNA13	GNAQ	GNAS	GPR124	GRIN2A	GRM3
GSK3B	H3F3A	HGF	HNF1A	HRAS	HSD3B1	HSP90AA1	IDH1	IDH2	IGF1R
IGF2	IKBKE	IKZF1	IL7R	INHBA	INPP4B	IRF2	IRF4	IRS2	JAK1
JAK2	JAK3	JUN	KAT6A (MYST3)	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KEL
KIT	KLHL6	KMT2A (MLL)	KMT2C (MLL3)	KMT2D (MLL2)	KRAS	LMO1	LRP1B	LYN	LZTR1
MAGI2	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MCL1	MDM2	MDM4	MED12	MEF2B
MEN1	MET	MITF	MLH1	MPL	MRE11A	MSH2	MSH6	MTOR	MUTYH
MYC	MYCL (MYCL1)	MYCN	MYD88	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1
NOTCH2	NOTCH3	NPM1	NRAS	NSD1	NTRK1	NTRK2	NTRK3	NUP93	PAK3
PALB2	PARK2	PAX5	PBRM1	PDCD1LG2	PDGFRA	PDGFRB	PDK1	PIK3C2B	PIK3CA
РІКЗСВ	PIK3CG	PIK3R1	PIK3R2	PLCG2	PMS2	POLD1	POLE	PPP2R1A	PRDM1
PREX2	PRKAR1A	PRKCI	PRKDC	PRSS8	PTCH1	PTEN	PTPN11	QKI	RAC1
RAD50	RAD51	RAF1	RANBP2	RARA	RB1	RBM10	RET	RICTOR	RNF43
ROS1	RPTOR	RUNX1	RUNX1T1	SDHA	SDHB	SDHC	SDHD	SETD2	SF3B1
SLIT2	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SNCAIP	SOCS1	SOX10
SOX2	SOX9	SPEN	SPOP	SPTA1	SRC	STAG2	STAT3	STAT4	STK11
SUFU	SYK	TAF1	ТВХЗ	TERC	TERT (promoter only)	TET2	TGFBR2	TNFAIP3	TNFRSF14
TOP1	TOP2A	TP53	TSC1	TSC2	TSHR	U2AF1	VEGFA	VHL	WISP3
WT1	XPO1	ZBTB2	ZNF217	ZNF703					
DNA GER	NE LIST: FOR THI	E DETECTION	OE SEI FCT REA	DDANGEMENT'					
ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	BRD4	EGFR	ETV1	ETV4
ETV5	ETV6	FGFR1	FGFR2	FGFR3	KIT	MSH2	MYB	MYC	NOTCH2
	NTRK2	PDGFRA	RAF1	RARA	RET	ROS1	TMPRSS2		
			_						

ADDITIONAL GENOMIC SIGNATURES

Microsatellite status

Tumor Mutational Burden

Performance Specifications

FOUNDATIONONE PERFORMANCE SPECIFICATIONS

ACCURACY				
Canaliticitus Daga Cubatitustiana	At Mutant Allele Frequency ≥10%	>99.9% (CI* 99.6%-100%)		
Sensitivity: Base Substitutions	At mutant Allele Frequency 5-10%	99.3% (CI* 98.3%-99.8%)		
	At Mutant Allele Frequency ≥20%	97.9% (CI* 92.5%-99.7%)		
Sensitivity: Insertions/Deletions (1-40 bp)	At mutant Allele Frequency 10-20%	97.3% (CI* 90.5%-99.7%)		
Sensitivity: Copy Number Alterations-Amplifications	At ≥30% tumor nuclei	>99.0% (CI* 93.6%-100%)		
(ploidy <4, Amplification with Copy Number ≥8)	At 20% tumor nuclei	92.6% (CI* 66.1%-99.8%)		
Sensitivity: Copy Number Alterations-Deletions (ploidy <4, Homozygous Deletions)	At ≥30% tumor nuclei	97.2% (CI* 85.5%-99.9%)		
	At 20% tumor nuclei	88.9% (CI* 51.8%-99.7%)		
Sensitivity: Rearrangements (selected rearrangements in specime nuclei)**	ns with ≥20% tumor	>90.0% ¹ >99.0% for ALK fusion ² (CI* 89.1%-100%)		
Sensitivity: Microsatellite status	At ≥20% tumor nuclei	97.0% (CI* 89.6%-99.6%)		
Specificity: all variant types	Positive Predictive Value (PPV)	>99.0%		
Specificity: Microsatellite status	Positive Predictive Value (PPV)	>95.0%		
Accuracy: Tumor Mutational Burden	At ≥20% tumor nuclei	>90.0%		
REPRODUCIBILITY (average concordance between replicates)		96.4% inter-batch precision 98.9% intra-batch precision 95.8% microsatellite status precision 96.4% tumor mutational burden precision		

^{*95%} Confidence Interval

Based on analytic validation of ROS1 gene coverage in the FoundationOne assay, the sensitivity of ROS1 rearrangement detection is estimated to be approximately 90%

Assay specifications were determined for typical median exon coverage of approximately 500X. For additional information regarding the validation FoundationOne, please refer to the article, Frampton, GM. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing, Nat Biotechnol (2013 Oct. 20).

Microsatellite status, which is a measure of microsatellite instability (MSI), is determined by assessing indel characteristics at 114 homopolymer repeat loci in or near the targeted gene regions of the FoundationOne test. Microsatellite status is assayed for all FoundationOne samples and may be reported as "MSI-High", "MSI-Intermediate", "MS-Stable", or "Cannot Be Determined". Microsatellite status is reported as "Cannot Be Determined" if the sample is not of sufficient quality to be confidently determined.

Tumor Mutational Burden (TMB) is determined by measuring the number of somatic mutations occurring in sequenced genes on the FoundationOne and FoundationOne Heme tests and extrapolating to the genome as a whole. TMB is assayed for all FoundationOne and FoundationOne Heme samples and may be reported as "MSI-High", "MSI- Intermediate", "TMB-Low", or "Cannot Be Determined". TMB results, wich are rounded to the nearest integer, are determined as follows: TMB-High corresponds to greater than or equal to 20 mutations per megabase

^{**}Performance for gene fusions within targeted introns only. Sensitivity for gene fusions occurring outside targeted introns or in highly repetitive intronic sequence contexts is reduced.

¹Based on analysis of coverage and rearrangements structure in the COSMIC database for the solid tumor fusion genes where alteration prevalence could be stablished, complemented by detection of exemplar rearrangements in cell line tiration experiments.

²Based on ALK rearrangement concordance analysis vs. a standard clinical FISH assay described in: Yelensky, R. et al. Analytical validation of solid tumor fusion gene detection in a comprehensive NGS-based clinical cancer genomic test, In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; 2014. Abstract nr 4699

(Muts/Mb); TMB-Intermediate corresponds to 6-19 Muts/Mb; TMB-Low corresponds to fewer than or equal to 5 Muts/Mb. Tumor Mutational Burden is reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine Tumor Mutational Burden

Reference Sequence Info: Sequence data is mapped to the human genome (hg19).

Test Principle

FoundationOne[®] was developed and performance characteristics determined by Foundation Medicine, Inc. FoundationOne uses the T7 bait set to detect substitutions, insertion and deletion alterations (indels) and copy number alterations (CNAs) in 315 genes, and select gene rearrangements, as well as genomic signatures including microsatellite instability (MSI) and tumor mutational burden (TMB) using DNA isolated from formalin-fixed paraffin-embedded (FFPE) tumor tissue specimens.

FoundationOne has not been cleared or approved by the U.S Food and Drug Administration. FoundationOne may be used for clinical purposes and should not be regarded as purely investigational or for research use only. Foundation Medicine's clinical reference laboratory is certified under the Clinical Laboratory Improved Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing.

Qualified Alteration Calls (Equivocal and Subclonal)

All equivocal calls, regardless of alteration type, imply that there is adequate evidence to call the alteration with confidence. However, the repeatability of equivocal calls may be lower than non-equivocal calls. The threshold used in FoundationOne[®] for identifying a copy number amplification is four (4) for ERBB2 and six (6) for all other genes. An alteration denoted as "subclonal" is one that the FoundationOne[®] analytical methodology has identified as being present in <10% of the assayed tumor DNA.

Warnings and Precautions

- 1. Alterations reported may include somatic (not inherited) or germline (inherited) alterations; however, the test does not distinguish between germline and somatic alterations. The test does not provide information about susceptibility.
- 2. Biopsy may pose a risk to the patient when archival tissue is not available for use with the assay. The patient's physician should determine whether the patient is a candidate for biopsy.

Treatment Decisions are the Responsibility of Physician

The information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning

FMI Test Order # ORD-0957975-01

Report Date
04 Dec 2020

the patient's condition such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report.