An Energy-Aware Method for the Joint Recognition of Activities and Gestures Using Wearable Sensors

Joseph Korpela¹ • Kazuyuki Takase¹ • Takahiro Hirashima¹ • Takuya Maekawa¹ Julien Eberle² • Dipanjan Chakraborty³ • Karl Aberer²

¹Osaka University, Graduate School of Information Science and Technology ²École Polytechnique Fédérale de Lausanne ³IBM Research India

Activity/Gesture Recognition

Activity Recognition

¹Var: Variance ²RMS: Root Mean Square ³ZC: Zero Crossing

Feature Extraction and Recognition are Both *Inexpensive*

Gesture Recognition

Energy-Aware Recognition

- Energy-Aware Activity Recognition
 - Reducing sampling rates of sensors/shutting down sensors
 - Assumes many consecutive data segments of same activity

if recognition_result == "run":
 sleep(3)

- Energy-Aware Gesture Recognition
 - Assumes most data segments don't have target actions

ax, ay, az = sample_accelerometer() if
$$\sqrt{ax^2 + ay^2 + az^2} - G > 0.15$$
G: gx, gy, gz = sample_gyroscope() if $\sqrt{gx^2 + gy^2 + gz^2} > 25$: transmit_data()[1]

Previous research has focused on activity recognition or gesture recognition, not both

- Our research: joint recognition of activities and gestures
 - Must recognize all data segments

1. Park, T., Lee, J., Hwang, I., Yoo, C., Nachman, L., and Song, J. E-gesture: a collaborative architecture for energy-efficient gesture recognition with hand-worn sensor and mobile devices. In SenSys 2011 (2011), 260-273.

Research Goal

Naïve approach

Proposed approach

Using an adaptive pipeline:

Feature extraction/raw data transmission based on input data segment
 Pipeline constructed automatically using the training data

Method Overview

- Activity/Gesture Recognition using Wrist-worn Device Coupled with a Smartphone
- Reduce Energy Cost while Maintaining High Accuracy
 - Reduce raw data transmission (reduces cost to wearable device)
 - Reduce DTW use (reduces cost to smartphone)

Smartwatch /

Smartphone Setup

Energy Costs

Feature Extraction				
	Cost (mJ)			
	Device ¹	Smartphone ²		
Mean	0.000329	0.000359		
Var	0.000575	0.001034		
ZC	0.000530	0.000291		
RMS	0.000497	0.000312		
Energy	0.001951	0.006345		
DTW-12.5*		0.101000		
DTW-25*		0.276000		
DTW-50*		0.823000		
DTW-100*		2.940000		

mJ: milliJoules Var: variance ZC: Zero crossing RMS: Root mean square Energy: FFT-based energy DTW: Dynamic time warping ¹Calculated using wearable device built for this study ²Calculated using Google Nexus 5 smartphone

Data Transmission				
	Cost (mJ)			
	Device ¹	Smartphone ²		
Label	0.109	8.485		
Data-12.5*	0.148	8.564		
Data-25*	0.186	8.642		
Data-50*	0.264	8.8		
Data-100*	0.418	9.115		

Label: Transmit recognition results only

Data: Transmit raw data

^{*}Refers to % of raw data used, with reduced data sizes attained by averaging adjacent data points in the data stream

Tree Structured Classifier

- Two types of nodes
 - Simple features (activity recognition)
 - DTW (gesture recognition)
- Generating trees with C4.5 algorithm
 - Constructed to maximize accuracy
 - More useful features at shallower nodes
 - Fig. 1: In our case: More useful = DTW
- Only extract features on the path used in the tree
 - Fig. 2: Not very useful if all paths have DTW
 - Fig. 3: ZC-X → Mean-Y → RMS-Z/Var-X no longer require DTW

Need to find a tree that gives a good balance of cost to accuracy

Generating Energy Aware Trees

- Use an approach based on random forests algorithm
- Step 1. Generate several trees
 - Varying balances of cost to accuracy

Choosing an Optimal Tree

▶ Step 2. Pick a single tree with a good balance of cost to accuracy

¹Quinlan, J. Improved use of continuous attributes in c4.5. J. Artif. Intell. Res. 4 (1996), 77–90.

Partitioning the Tree Across Devices

Evaluation Methodology

- 50 sessions of data
 - ▶ 5 Participants each performing 10 sessions
 - Each session contains each of the activities/gestures in Table 1
 - Leave-one-session-out cross-validation
- Accuracy calculated using:
 - Macro-averaged F-measure
- Costs calculated using:
 - Google Nexus 5 smartphone (Fig. 1)
 - Wearable device (Fig. 2)

Fig. 1: Google
Nexus 5

Table 1: Activities/gestures used in this study

Activity	Gesture	
Run	Left to Right	
Draw on Whiteboard	Right to Left	
Wash Dishes	Clockwise	
Write in Notebook	Counter-Clockwise	
Brush Teeth	Down to Up	
None		

Fig. 2: Wearable device used in this study

Methods

- Baseline Methods:
 - ACT C4.5 Decision Tree using activity recognition features (no DTW)
 - ▶ Represents a classifier specialized to activity recognition
 - DTW DTW-based kNN classifier (no C4.5 tree/no activity recognition features)
 - Represents a classifier specialized to gesture recognition
 - Tree C4.5 decision tree that combines activity recognition features with DTW-based kNN classifiers
 - ▶ Represents a classifier specialized to high accuracy joint recognition (not energy aware)
- Proposed Method:
 - Decision tree created using our random forests algorithm approach that combines activity recognition features with DTW-based kNN classifiers
 - Proposed (threshold): Refers to the proposed method using the given threshold

Overall Results

Transition in the accuracy and cost for the wearable device when the cost threshold is varied for the proposed method.

Cost and accuracy for each method						
	cost (mJ)		avg. F-Measure		ure	
Method (Threshold)	device	smartphone	overall	activities	gestures	
ACT	0.119	8.485	0.914	0.949	0.845	
DTW	0.418	17.935	0.935	0.935	0.934	
Tree	0.345	11.168	0.956	0.974	0.936	
Proposed (11 mJ)	0.237	9.741	0.956	0.969	0.941	
Proposed (9.05 mJ)	0.151	8.768	0.951	0.969	0.929	
Proposed (8.75 mJ)	0.127	8.575	0.943	0.964	0.918	

ACT: Activity recognition features / No DTW

DTW: DTW / No activity recognition features

Tree: Activity recognition features and DTW / Not energy aware

Proposed (threshold): Proposed method (with cost threshold used)

Reductions in Energy Use

Battery life estimates are based on continuous recognition with no other processes run on either device

	Estimated Battery Life (days)		
	Device	Nexus 5	
ACT	17.0	9.1	
Tree	15.1	8.0	
DTW	14.6	6.2	
Proposed (8.75 mJ)	16.9	9.0	

Energy Use for Activities vs. Gestures

Conclusions

Energy Aware Framework for Recognizing Activities and Gestures

- Combines features commonly used in activity recognition with DTW-based kNN classifiers
- Performs lightweight feature extraction and recognition on wearable device
- Reduces energy used for raw data transmission
- Reduces energy used to run DTW