Nome: Olavo Alberto Wilke Filho
Data: 15/08/2021
Orientação a objetos
1) Em relação ao conceito de orientação a objetos, a afirmativa de que o estado de um objeto não
deve ser acessado diretamente, mas sim por intermédio de métodos de acesso (ou propriedades)
está diretamente relacionada ao conceito de:
() Herança
() Interface
() Classe
() Polimorfismo
(x) Encapsulamento
2) É o princípio pelo qual duas ou mais classes derivadas de uma mesma superclasse podem
invocar métodos que têm a mesma identificação (assinatura) mas comportamentos distintos
especializados para cada classe derivada, usando para tanto uma referência a um objeto do tipo da
superclasse.
() Classe
() Herança
(x) Polimorfismo
() Encapsulamento
3) No contexto da Orientação a Objetos, A definição das características (estado) e do
comportamento de um objeto é conhecido por:
(x)Classe
() Herança

() Polimorfismo

() Encapsulamento

4) Considere o código abaixo:

```
( ) i = 0, j = 1

( ) i = 0, j = 2

( ) i = 1, j = 1

( x) i = 1, j = 2

( ) i = 2, j = 1

( ) i = 2, j = 2
```

5) Que situação o código abaixo indica?

```
class Carro{
02.
        String cor = "branco";
03.
         void mudaCor(String cor){
04.
           this.cor = cor;
05.
06. }
07.
08.
    class Pessoa{
09.
         final Carro carro = new Carro();
10.
         void mudaCorDoCarro(String cor){
11.
            carro.mudaCor(cor);
12.
13.
```

- () Que uma pessoa pode trocar de carro, mas um carro não pode trocar de cor.
- () Que uma pessoa não pode trocar de carro e não pode trocar a cor do carro.
- () Que uma pessoa pode trocar de carro e pode trocar a cor do carro.
- (x) Que uma pessoa não pode trocar de carro, mas pode trocar a cor do carro.

06) Quatro cientistas sentam-se a jantar. Os nomes são Shelly, Frank, Corbin e Mel. Os quatro colocam cartas na mesa com apenas os seus sobrenomes: Infinito, Radiano, Tissue, e Ósmio.

Será capaz de descobrir os nomes completos dos cientistas, sabendo apenas que:

- Nenhum cientista tem um sobrenome em que apareça a inicial do primeiro nome;
- O sobrenome de Corbin é também um elemento;
- O primeiro nome de Radiano contém um R;

Shelly Infinito, Frank Radiano, Corbin Ósmio, Mel Tissue

7) Determine o próximo número da sequência: 5,11,19,29,41,
Resposta: 55
08) Para qual tarefa será mais apropriado usar o comando DISTINCT?
() identificar linhas duplicadas na tabela
() identificar quais colunas possuem dados únicos
() eliminar colunas duplicadas na tabela
(x) eliminar linhas duplicadas no resultado
09) Considerando a consulta abaixo,o que é mostrado na coluna SALARY quando um valor NULL é
retornado?
SELECT name, NVL(salary, o) FROM employee WHERE salary IS NULL ORDER BY name;
(x) 0
() NULL
() Spaces
() nothing
10) Para qual tarefa você precisará usar o operador BETWEEN?
() Consulta de tabelas com valores desconhecidos.
(x) Consulta de tabelas para uma faixa de valores
() Consulta de tabelas para um tipo de caracter
() Consulta de tabelas para valores específicos de uma lista

11. Vida útil da bateria do laptop para jogos

Você comprou um novo laptop para jogos e gosta de jogar nele o dia todo. Requer carregamento frequente devido ao alto uso de gráficos. Você quer saber quanta bateria será deixada após vários eventos de reprodução e carregamento.

Escreva uma função que receba n registros do consumo de bateria do laptop e eventos de carregamento . Um valor de eventos [i] representa o número de minutos gastos carregando o laptop (valor positivo) ou jogando um jogo – consumo (valor negativo). A cada minuto, o laptop consome 1% de bateria. A carga da bateria não pode exceder 100% . Retorne a porcentagem de cobrança final do laptop, pois a carga inicial é de 50% .

Exemplo

```
n = 4
eventos = [10, -20, 61, -15]
```

Inicialmente, o laptop é carregado com 50%. Ele está conectado a *eventos* [0] = 10 minutos a carga final é 50 + 10 = 60. Um jogo é jogado por 20 *minutos em eventos* [1] = -20 levando a carga para 40. O *carregamento* por outros 61 minutos faz com que a bateria atinge 100 e, em seguida, 15 minutos de jogo resultam em uma carga final de 85.

Descrição da função

Complete a função *getBattery*. A função deve retornar um número inteiro.

getBattery possui o seguinte parâmetro:

eventos [eventos [0],... eventos [n-1]]: uma matriz de números inteiros

```
public int getBattery(List<Integer> eventos) {
    int sum = 50;
    for (int i = 0; i < eventos.size(); i++) {
        sum += eventos.get(i);
        if (sum > 100) {
            sum = 100;
        }
        if (sum < 0) {
            sum = 0;
        }
    }
    return sum;
}</pre>
```

12. Para A = V, B = V e C = F, qual o resultado da avaliação das seguintes expressões:

a) (A e B) **ou** (A **xou** B)

$$(A e B) = V$$

$$(A \times B) = F$$

$$V ou F = V$$

$$(A ou B) = V$$

$$(A \in C) = F$$

$$VeF=F$$

$$CeB=F$$

$$A ou (C e B) = V$$

$$(A \ ou \ (C \ e \ B)) \ xou \ (A \ e \ (n\~{a}o \ B)) = V$$