

COR-IS1702: COMPUTATIONAL THINKING WEEK 3: COMPLEXITY

Solutions to In-Class Ex

In-Class Exercises: What is the Big O?

f(n)	Big O
$3n^3 - 27n^2 + 9n + 10$	O(n ³)
n ² - log n + 9n	O(n ²)
n log n + 9n	O(n log n)
$2^{n} + n^{2}$	O(2 ⁿ)

In-Class Exercises

What is the Big O complexity?

Given an array a of n numbers, where n > 10, find out which of the first 10 numbers is the largest.

```
def findMaxTen(a)
    max = a[0]:
    for i in range(1,10):
        if max < a[i]:
        max = a[i]
    return max
end</pre>
```

 Number of 'comparison' operations is 9 Complexity is O(1)

In-Class Exercises

What is the Big O complexity?

Given an array a of n numbers, find the smallest difference between any two numbers in the array a.

```
def findMinDiff(a)
    mindiff = (a[0]-a[1]).abs
    for i in 0 .. (a.length-2)
        for j in (i+1) .. (a.length-1)
            diff = (a[i]-a[j]).abs
            if mindiff > diff
                 mindiff = diff
            end
        end
        end
        end
        end
        end
        end
        end
```

- Number of 'comparison' operations is n(n-1)/2
- Number of 'assignment' operations is at most n(n-1) + 1
- Number of 'subtraction' operations is n(n-1)/2 + 1
- Total number of operations is at most 2n(n-1) + 2
- Complexity is O(n²)

In-Class Exercises

What is the Big O complexity?

There are n students in the class. Find 3 students with different last names.

- ◆ For the brute force approach, in the worst case, we have to inspect all possible groups of 3 students.
- → There are ⁿC₃ possible groups of 3 students.

$${}^{n}C_{3} = \frac{n \times (n-1) \times (n-2)}{1 \times 2 \times 3} = \frac{n^{3} - 3n^{2} + 3n}{6}$$

- → The order of complexity is O(n³).
 - ❖ The complexity is <u>cubic</u> with respect to n.

