Cálculo Vetorial

Exercícios - Folha 10

- 1. Calcule o integral de linha $\int_{\gamma} x^2 dx + xy dy$ ao longo da curva $\gamma(t) = (t^2, t), t \in [-1, 1].$
- 2. Calcule o integral de linha $\int_{\gamma} x \, dx + y \, dy + z \, dz$ ao longo da hélice $\gamma(t) = (\cos t, \sin t, t)$, $t \in [0, 2\pi]$.
- 3. Seja $B = \{(x, y) \in \mathbb{R}^2 \mid \frac{x^2}{4} + y^2 \le 1\}.$
 - a) Mostre que

$$\operatorname{área}(B) = \frac{1}{2} \int_{\gamma} -y dx + x dy$$

onde $\gamma:[0,2\pi]\to\mathbb{R}^2$ é dada por $\gamma(t)=(2\cos t,\sin t)$ e calcule essa área.

- b) Calcule a área de $A=\{(x,y)\in\mathbb{R}^2\,|\,1\leq\frac{x^2}{4}+y^2\leq 4\}.$
- 4. Calcule os integrais de linha seguintes recorrendo eventualmente ao teorema de Green.
 - a) $\int_{\gamma} x \, dx + xy \, dy \text{ onde } \gamma(t) = (t, |t|), -1 \le t \le 1.$
 - b) $\int_{\gamma} -y \, dx + x \, dy$ onde γ é uma curva C^1 por partes, fechada, simples, positivamente orientada e cuja imagem é o triângulo de vértices (0,0), (1,0) e (1,1).
 - c) $\int_{\gamma} (x^4 y^3) dx + (x^3 + y^5) dy$ onde $\gamma(t) = (\cos t, \sin t), t \in [0, 2\pi].$
 - d) $\int_{\gamma} 4x^3y^3 dx + (3x^4y^2 + 5x) dy$ onde γ é uma curva C^1 por partes, fechada, simples, positivamente orientada e cuja imagem é a fronteira do quadrado de vértices $(-1,0),(0,-1),\ (1,0)$ e (0,1).
- 5. Recorrendo a integrais de linha, determine a área dos seguintes subconjuntos B de \mathbb{R}^2 :
 - a) Bé limitado pela curva dada por $\gamma(\theta)=(a\cos\theta,b\sin\theta)$ com $0\leq\theta\leq2\pi$ e a>0,b>0.
 - b) B é a região limitada pela elipse de equação $\frac{(x-1)^2}{4} + \frac{y^2}{9} = 1$.