

Ayudantía Inteligencia Computacional – PEP 3

Ayudante Gustavo Hurtado

Contenido incluido en la PEP 3

Capítulo VIII – Series temporales

Definiciones básicas: Señales

Señal: Variación de una cantidad mensurable que posee información relativa a un sistema o su entorno

Una señal se caracteriza por usar como parámetro el tiempo, pero es la representación de un fenómeno o sistema

Representación en el tiempo t

Representación en la frecuencia (Fourier)

Representación en densidad de probabilidad

Definiciones básicas: Complejidad

Un sistema complejo posee varias características de difícil tratamiento matemático

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial z} = f(x, y, z)$$

$$z^{2}y^{2}\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial z}\frac{\partial \phi}{\partial y} + x^{2}\frac{\partial \phi}{\partial z} = f(x, y, z)$$

$$z(t)^{2}\frac{\partial \phi}{\partial x} + t^{2}\frac{\partial \phi}{\partial z}\frac{\partial \phi}{\partial y} + x^{2}\frac{\partial \phi}{\partial z} + \frac{\partial \phi}{\partial t} = g(x, y, z, t)$$

Representaciones diferentes para sistemas complejos

Definiciones básicas: Sistemas discretos

- Dispositivo o algoritmo que desarrolla alguna operación sobre señales discretas
- Conjunto de operaciones aplicadas a una entrada x(n), que produce una salida y(n)

Efecto de un sistema discreto en X(n)

Definiciones básicas: Sistemas Discretos Lineales Invariantes (SDLI)

Existen dos formas de analizar un sistema o señal en el tiempo:

Resolver la ecuación diferencial

Muchas veces es difícil de hacer cuando se tienen sistemas complejos: **Es aburrido, buu.**

Analizar el comportamiento del sistema dada una entrada.

Es más intuitivo y funciona similar al concepto de caja negra:

So much fun!

Definiciones básicas: Teorema de Takens

• En 1980 Takens mostro que señal producida por un sistema dinámico multidimensional, puede ser representado por un conjunto de señales en el tiempo, que se despenden de la propia señal original.

Definiciones básicas: Teorema de Takens

- Con una señal en t, intentaremos representar el fenómeno. Por el teorema de Takens es posible probar que es posible realizar predicción de la señal, en tiempos futuros.
- El problema que se desea resolver ahora es determinar la complejidad de esta señal sin conocer todas las propiedades fenomenológicas de la señal, a pesar que esta señal esté contaminada con ruido.

Definiciones básicas: Señal periódica contínua

Definiciones básicas: Teorema del muestreo (Nyquist)

- Explica la relación entre la velocidad de muestreo y la frecuencia de la señal medida.
- Afirma que la velocidad de muestreo f_s debe ser mayor que el doble del componente de interés de frecuencia más alto en la señal medida.
- Esta frecuencia por lo general se conoce como la frecuencia Nyquist, f_N.
- Importante: Si se tiene más de 1 sin o cos dentro de la señal, para el muestreo se considera la máxima frecuencia.

$$F_s > 2 * f_N$$

Capítulo V – Series temporales

Definiciones básicas: Señal periódica discreta

$$x_a(n) = Acos(\frac{2\pi n F}{f_a} + \theta)$$

 θ [radianes] = Fase de la señal

F[ciclos/seg] = Frecuencia de muestreo

 $f_s[ciclos/seg] = Tasa de muestreo$

 $T_a[seg] = Período sinusoide$

$$-\frac{F_s}{2} <= F <= \frac{F_s}{2}$$
$$-\frac{\pi}{t} <= \Omega <= \frac{\pi}{t}$$

- La señal análoga x(t)=2sen(100πt)+0.8cos(178πt), en seg. Se muestrea con una frecuencia 13,5 veces mayor que la frecuencia de Nyquist.
 - Primero determine la frecuencia de Nyquist (F_N) y luego a 13.5xF_N:
 - Determine la expresión de la señal digital.

a)
$$x(t) = 2sen(50 * 2\pi * t) + 0.8cos(89 * 2\pi * t)$$

$$fs_{1} = 50 y fs_{2} = 89$$

$$fs_{max} = 89 [Hz]$$

$$Frecuencia de Nyquist => F_{n} = 2 * 89 = 178 [Hz]$$

$$13.5 veces frecuencia de Nyquist => 13.5 * 178 = 2403 [Hz]$$

- La señal análoga x(t)=2sen(100πt)+0.8cos(178πt), en seg. Se muestrea con una frecuencia 13,5 veces mayor que la frecuencia de Nyquist.
 - Primero determine la frecuencia de Nyquist (F_N) y luego a 13.5xF_N:
 - ii) Determine la expresión de la señal digital.

b)
$$x(t) = 2sen(50 * 2\pi * t) + 0.8cos(89 * 2\pi * t)$$

$$x(n) = 2sen(\frac{50*2\pi*n}{Fs}) + 0.8cos(\frac{89*2\pi*n}{Fs})$$

$$x(n) = 2sen(\frac{50*2\pi*n}{2403}) + 0.8cos(\frac{2\pi*n}{27})$$

$$x(n) = 2sen(2\pi * \frac{50}{2403} * n) + 0.8cos(2\pi * \frac{1}{27} * n)$$

Fs = 2403 [Hz]

- 4. El SDLI del diagrama, es excitado por la señal $x(n)=2^{-n}(u(n)-u(n-4))*\delta(n-2)$
 - i) Obtenga la secuencia de muestras de x(n) gráficamente.
 - ii) Calcule la respuesta al impulso al sistema.
 - iii) Sugiera el procedimiento para obtener la salida del sistema.

Definiciones básicas: Señales elementales

i) Impulso unitario

$$\delta(n) = \begin{cases} 1, \text{ para } n = 0 \\ 0, \text{ para } n \neq 0 \end{cases}$$

ii) Escalón unitario

$$u(n) = \begin{cases} 1, \text{ para } n \ge 0 \\ 0, \text{ para } n < 0 \end{cases}$$

iii) Rampa

$$r(n) = \begin{cases} n, \text{ para } n \ge 0 \\ 0, \text{ para } n < 0 \end{cases}$$

iv) Explonencial

$$f(n) = a^n \forall n$$

Determine gráficamente la respuesta al impulso del sistema equivalente, al interconectar en cascada, los sistemas que poseen la siguientes funciones de transferencia h₁(n)=u(n+1)-u(n-3) y h₂(n)=r(n)-u(n-4)r(n).

3. Determine si el siguiente sistemas cumple con las propiedades de linealidad, causalidad, estabilidad e invariancia temporal, $y(n) = x^2(n)sen(\varpi n)$. (1).

$$y(n) = x^2(n)sen(wn)$$

$$y(n) = f(y(n-k), x(n-m))$$

f = combinación lineal de constantes y variables

 Sistema es lineal si cumple con el principio de superposición (multiplicación escalar, aditividad)

Teo: un sistema es lineal sii

$$T[a_1x_1(n)+a_2x_2(n)]=a_1T[x_1(n)]+a_2T[x_2(n)]$$

nota: si las constantes a_i son cero y(n)=0

3. Determine si el siguiente sistemas cumple con las propiedades de linealidad, causalidad, estabilidad e invariancia temporal, $y(n) = x^2(n)sen(\varpi n)$. (1).

$$y(n) = x^2(n)sen(wn) => CAUSAL$$

$$y(n) = x(n+1) - 7y(n)$$

 $y(n) = x(n-1) + 8y(n+2)$

EJEMPLOS DE NO CAUSALES

Sistemas causales/no-causales

Teo: Sistema es causal si la salida depende solo de las entradas presentes y pasadas, pero no de las entradas futuras

$$y(n)=F[x(n),x(n-1),x(n-2),x(n-3),...]$$

Nota: los sistemas de tiempo real tienen que ser causales solo pueden existir sistemas no causales cuando la señal es almacenada (off-line)

3. Determine si el siguiente sistemas cumple con las propiedades de linealidad, causalidad, estabilidad e invariancia temporal, $y(n) = x^2(n)sen(\varpi n)$.

$$y(n) = x^2(n)sen(wn)$$

Los coeficientes de la ecuación no pueden depender de n (tiempo).

En este caso, no hay ningún n multiplicando a x^2 o a sen(wn).

Contra ejemplo: $y(n) = (n+1)x^2(n)nsen(wn)$

- Determine si los siguientes sistemas cumplen con las propiedades de linealidad, causalidad, estabilidad BIBO e invariancia temporal.
 - i) $y(n)=2x(n-n_0)$, con $n_0>0$.
 - ii) y(n)=n(n+3)x(n-3).
 - iii) $y(n)=5nx^2(n)$.
 - iv) $x(n) = \alpha + \sum_{k=-4}^{4} x(n-k)$

Sistemas estables/inestables

Teo: un sistema es estable sii para entradas acotadas produce salidas acotadas

Para una secuencia de entrada x(n) y para una secuencia de salida y(n) existen números finitos M_x y M_y tal que:

$$|x(n)| \le M_x < \infty \quad y \quad |y(n)| \le M_y < \infty \quad \forall n$$

Ej: sea el sistema
$$y(n)=by(n-1)+x(n)$$

 $con \quad x(n)=\delta(n-1) \quad y \quad y(0)=0$

La solución será : $y(n)=b^{n-1}$ no acotada $1 < b < \infty$

Consultas