

SONLU FARKLAR

- Matematik ve fizikteki problemlerin çoğu sürekli ve çok değişkenlidir
- Fonksiyonlar bir formül şeklinde verilebilir ve değişkenlerin belli değerleri için fonksiyonun değeri hızlıca bulunabilir
- Bazen bir fonksiyon sadece bir takım ayrık noktalarda belirlenmiş olabilir
- Bu taktirde sonlu farklar matematiği kullanılarak bilinmeyen noktada fonksiyonun değeri için tahmin yapılabilir

Sonlu Farkla ile ilgili Operatörler

Birbirini takip eden iki ayrık nokta arasındaki farka fark aralığı denir ve h ile gösterilir.

 $h = x_{k+1} - x_k$ olarak yazılır

Bir f(x) fonksiyonu ve adım uzunluğu h kullanılarak x noktası için sonlu fark operatörleri

a)
$$\Delta$$
 ileri fark operatörü $\Delta f(x) = f(x+h) - f(x)$ şeklinde hesaplanır

b)
$$\nabla$$
 geri fark operatörü $\nabla f(x) = f(x) - f(x-h)$ şeklinde hesaplanır

- c) δ Merkezi fark operatörü $\delta f(x) = f(x+h/2) f(x-h/2)$ olarak hesaplanır
- d) μ Ortalama operatörü $\mu f(x) = \frac{1}{2} [f(x+h/2) + f(x-h/2)]$ olarak hesaplanır

e) E Kaydırma operatörü

E f(x) = f(x+h) şeklindedir. Bu operatör f(x) fonksiyonunu kendinden sonra gelen ilk değere yükseltir.

E
$$f(x) = f(x+h) = f(x) + \Delta f(x)$$

E $f(x) = f(x) (1 + \Delta)$

 $E = (1 + \Delta)$ olarak bulunur

Bir f(x) fonksiyonuna iki defa kaydırma operatörü uygulanırsa;

$$E^2$$
 f(x) = E (E f(x)) = E f(x+h)
= f(x + 2h) olacaktır

Genelleştirirsek $E^nf(x) = f(x+nh)$

İki veya daha yüksek dereceden İleri, geri ve Merkezi Farklar ile aralarındaki ilişkiler;

Eşit aralıklarla verilen ayrık noktalar;

f(x) fonksiyonunun bu noktalardaki değerlerine de;

$$f(x_0) = f_0$$

 $f(x_1) = f_1$
.....
 $f(x_n) = f_n$ dersek,

herhangi bir xi noktasındaki

1. Derece ileri fark;

$$\Delta f_i = f_{i+1} - f_i$$

i=0,1,...,n şeklinde yazılır

2. Derece ileri fark;

$$\Delta^{2}f_{i} = \Delta(\Delta f_{i}) = \Delta(f_{i+1} - f_{i})$$
$$= \Delta f_{i+1} - \Delta f_{i}$$

$$\Delta f_{i+1} = f_{i+2} - f_{i+1}$$

 $\Delta f_i = f_{i+1} - f_i$

$$\Delta^2 f_i = f_{i+2} - f_{i+1} - f_{i+1} + f_i$$

$$\Delta^2 f_i = f_{i+2} - 2f_{i+1} + f_i$$

3. Derece ileri fark;

$$\Delta^3 f_i = \Delta(\Delta(\Delta f_i))$$

$$\Delta^{3}f_{i} = \Delta(\Delta(f_{i+1} - f_{i}))$$

$$= \Delta(\Delta f_{i+1} - \Delta f_{i})$$

$$= \Delta(f_{i+2} - f_{i+1} - f_{i+1} + f_{i})$$

$$= \Delta(f_{i+2} - 2f_{i+1} + f_{i})$$

$$= \Delta(f_{i+2} - 2\Delta f_{i+1} + \Delta f_{i})$$

$$= f_{i+3} - f_{i+2} - 2(f_{i+2} - f_{i+1}) + f_{i+1} - f_{i}$$

$$= f_{i+3} - 3f_{i+2} + 3f_{i+1} - f_{i}$$

$$\Delta^3 f_i = f_{i+3} - 3f_{i+2} + 3f_{i+1} - f_i$$

1. Derece geri fark;

$$\nabla f_i = f_i - f_{i-1}$$

i=0,1,...,n şeklinde yazılır

2. Derece geri fark;

$$\nabla^{2}f_{i} = \nabla(\nabla f_{i}) = \nabla(f_{i} - f_{i-1})
= \nabla f_{i} - \nabla f_{i-1}
= f_{i} - f_{i-1} - (f_{i-1} - f_{i-2})
= f_{i} - 2f_{i-1} + f_{i-2}$$

$$\nabla^2 f_i = f_i - 2f_{i-1} + f_{i-2}$$

3. Derece geri fark

$$\nabla^{3}f_{i} = \nabla(\nabla(\nabla f_{i}))$$

$$= \nabla(\nabla(f_{i} - f_{i-1}))$$

$$= \nabla(\nabla f_{i} - \nabla f_{i-1})$$

$$= \nabla(f_{i} - f_{i-1} - (f_{i-1} - f_{i-2}))$$

$$= \nabla(f_{i} - 2f_{i-1} + f_{i-2})$$

$$= \nabla f_{i} - 2\nabla f_{i-1} + \nabla f_{i-2}$$

$$= f_{i} - f_{i-1} - 2(f_{i-1} - f_{i-2}) + (f_{i-2} - f_{i-3})$$

$$= f_{i} - 3f_{i-1} + 3f_{i-2} - f_{i-3}$$

$$\nabla ^3 f_i = f_i - 3 f_{i-1} + 3 f_{i-2} - f_{i-3}$$

1. Derece merkezi fark;

$$\delta f_i = f_{i+1/2} - f_{i-1/2}$$

i=0,1,...,n şeklinde yazılır

2. Derece merkezi fark;

$$\delta^{2}f_{i} = \delta(\delta f_{i}) = \delta(f_{i+1/2} - f_{i-1/2})$$

$$= f_{i+1} - f_{i} - (f_{i} - f_{i-1})$$

$$= f_{i+1} - 2f_{i} + f_{i-1}$$

$$\delta^2 f_i = f_{i+1} - 2f_i + f_{i-1}$$

3. Derece merkezi fark

$$\begin{split} \delta^{3}f_{i} &= \delta(\delta(\delta f_{i}) \\ &= \delta(\delta(f_{i+1/2} - f_{i-1/2}) \\ &= \delta(\delta f_{i+1/2} - \delta f_{i-1/2}) \\ &= \delta(f_{i+1} - f_{i} - (f_{i} - f_{i-1})) \\ &= \delta(f_{i+1} - 2f_{i} + f_{i-1}) \\ &= f_{i+3/2} - f_{i+1/2} - 2(f_{i+1/2} - f_{i-1/2}) + (f_{i-1/2} - f_{i-3/2}) \\ &= f_{i+3/2} - 3f_{i+1/2} + 3f_{i-1/2} - f_{i-3/2} \end{split}$$

$$\delta^3 f_i = f_{i+3/2} - 3 f_{i+1/2} + 3 f_{i-1/2} - f_{i-3/2}$$

n. dereceden ileri fark formülü

$$\Delta^n f_i = \Delta^{n-1} f_{i+1} - \Delta^{n-1} f_i$$

Üç operatör arasındaki ilişkiler

$$\Delta f_i = \delta f_{i+1/2} = \nabla f_{i+1}$$

$$\Delta^2 f_i = \delta^2 f_{i+1} = \nabla^2 f_{i+2}$$

$$\Delta^r f_i = \delta^r f_{i+r/2} = \nabla^r f_{i+r}$$

$$\Delta^k f_k = \sum_{i=0}^k (-1)^i \binom{k}{i} f_{k-i}$$

Formülü ile istenilen derecede katsayılar hesaplanabilir.

$$\binom{k}{i}$$
 açılımı $\frac{k!}{i!(k-i)!}$ şeklindedir.

Örnek

k=5 için ileri fark formülünden 5.türevi alınız.

$$\Delta^{5} f_{5} = \sum_{i=0}^{5} (-1)^{i} {5 \choose i} f_{5-i}$$

i=0 (-1)⁰
$$\binom{5}{0} f_{5-0} = 1 * \frac{5!}{0!5!} f_5 = f_5$$

i=1
$$(-1)^1 {5 \choose 1} f_{5-1} = -1 * \frac{5!}{1!4!} f_4 = -5 f_4$$

i=2
$$(-1)^2 {5 \choose 2} f_{5-2} = 1 * \frac{5!}{2!3!} f_3 = 10 f_3$$

i=3
$$(-1)^3 {5 \choose 3} f_{5-3} = -1 * \frac{5!}{3!2!} f_2 = -10 f_2$$

i=4 (-1)⁴
$$\binom{5}{4} f_{5-4} = 1 * \frac{5!}{4!1!} f_1 = 5 f_1$$

i=5
$$(-1)^5 {5 \choose 4} f_{5-5} = -1 * \frac{5!}{5!0!} f_0 = -f_0$$

$$\Delta^5 f_5 = f_5 - 5f_4 + 10f_3 - 10f_2 + 5f_1 - f_0$$

Sonlu Fark Tabloları

İleri Fark Tablosu $\Delta f_i = f_{i+1} - f_i$

Geri Fark Tablosu $\nabla f_i = f_i - f_{i+1}$

Merkezi Fark Tablosu $\delta f_i = f_{i+1/2} - f_{i-1/2}$

Örnek

 $F(x) = x^3 - 3x$ fonksiyonu için h=1 ve [-3, 2] aralığında ileri fark tablosunu çıkarınız.

<u>X</u> <u>i</u>	$\underline{f(x_i)}$	$\Delta f(xi)$	$\Delta^2 f(xi)$	$\Delta^3 f(xi)$	$\Delta^4 f(xi)$
-3	-18				
-2	-2	16			
-1	2	4	-12		
0	0	-2	-6	6	
1	-2	-2	0	6	0
2	2	4	6	6	0

Genelde n.dereceden bir polinomun n.dereceden farkı sabit bir sayıya eşittir.

Genel bir polinom:

Pn(x) = $a_0x^n + a_1x^{n-1} + ... + a_{n-1}x + a_n$ şeklinde gösterirsek 3.dereceden bir polinom için üçüncü fark $\Delta^3 P_3(x) = 6a_0h^3$ dür.

h=1 ve a_0 =1 için $\Delta^3 f(x)$ = 6*1*1³ = 6 olup, fark tablosundan da aynı sonuca erişilmiştir.

Sonlu Fark Tablosunda Hatanın Yayılması

Ayrık değerleri verilen f(x) fonksiyonunda $f_3=f(x_3)$ değerinde ϵ gibi bir hata olduğunu varsayalım. Bunu fark tablosunda nasıl gösterebiliriz?