

Aprendizagem 2021

Lab 4: Linear Regression

Practical exercises

- 1. Consider the following training data:
 - Find the closed form solution for a linear regression minimizing the sum of squared errors
 - 2 1 χ_2 1 3
 - Predict the target value for $x_{new} = [2 \ 3]^T$ b)
 - Sketch the predicted three-dimensional hyperplane c)
 - Compute the MSE and MAE produced by the linear regression d)
 - Are there biases on the residuals against y1? And y2? e)
 - Compute the closed form solution considering Ridge regularization term with $\lambda = 0.2$. f)
 - Compare the hyperplanes obtained using ordinary least squares and Ridge regression. g)
 - h) Why is Lasso regression suggested for data spaces of higher dimensionality?
- 2. Consider the following training data where output is an ordinal variable
 - Find a linear regression using the closed form solution
 - Assuming the output threshold θ =0.5, use the regression to classify $x_{\text{new}} = [2 \ 2.5]^T$

	У1	У2	output
<i>x</i> ₁	1	1	1
χ_2	2	1	1
χ3	1	3	0
X4	3	3	0

-1

2

3

4

 x_1

 χ_2

output

0.5

2

2.5

output

2

1

3. [optional] Consider the following data to learn a model $z = w_1 y_1 + w_2 y_2 + \varepsilon$, where $\varepsilon \sim N(0, 0.1)$

a)
$$\mathbf{w} = [w_1 \ w_2]^T$$
 using the maximum likelihood approach

b)
$$w$$
 using the Bayesian approach, assuming $p(w) = N\left(w \mid u = [0 \ 0], \sigma = \begin{bmatrix} 0.2 & 0 \\ 0 & 0.2 \end{bmatrix}\right)$

4. Identify a transformation to aid the linearly modelling of the following data points.

Sketch the predicted surface.

	У1	У2	output		
<i>x</i> ₁	-0.95	0.62	0		
χ_2	0.63	0.31	0		
χ_3	-0.12	-0.21	1		
χ_{4}	-0.24	-0.5	0		
χ_{5}	0.07	-0.42	1		
<i>X</i> 6	0.03	0.91	0		
<i>X</i> 7	0.05	0.09	1		
X8	-0.83	0.22	0		

5. Consider logarithmic and quadratic transformations:

(0.1	$(x_1) = log(x_1), \qquad \varphi_2(x_1) = x_1^2$		ınput	output
$\varphi_1(x_1) = log(x_1), \qquad \varphi_2(x_1) = x_1^2$		<i>x</i> ₁	3	1.5
a)	a) Plot both of the closed form regressions.	χ_2	4	9.3
- /		χ_3	6	23.4
b)	Which one minimizes the sum of squared errors	X4	10	45.8
	on the original training data	<i>X</i> 5	12	60.1

- **6.** Select the criteria that promotes a *smoother* regression model:
 - Applying Lasso and Ridge regularization to linear regression models
 - Increasing the depth of a decision tree regressor
 - Increasing the *k* of a *k*NN regressor

Parameterizing a kNN regressor with uniform weights instead of distance-based weights

Programming quests

- 7. Consider the housing dataset available at https://web.ist.utl.pt/~rmch/dscience/data/housing.arff
 - Compare the determination coefficient of the non-regularized, Lasso and Ridge linear regression on the housing data

Resource: https://www.pluralsight.com/quides/linear-lasso-ridge-regression-scikit-learn

- b) Compare the MAE and RMSE of linear, kNN and decision tree regressors on housing
- **8.** Learn and interpret the logistic regression model for the Iris dataset

Resource: https://scikit-learn.org/stable/modules/generated/sklearn.linear-model.LogisticRegression.html