```
In [1]: #Load Libraries
        import pandas as pd
        import matplotlib.pyplot as plt
        import squarify
        import numpy as np
        import matplotlib.ticker as plticker # for plot ticks
In [2]: #import data as dataframe
        data = pd.read_csv('expenditures.txt',names=['Year','Category','Expenditure','Sex
        data2 = pd.read csv('unemployement-rate-1948-2010.csv')
In [3]: #data.info()
In [4]: #data.head()
In [5]: #data2.head()
In [6]: #create date column for unemployment df
        data2['Month'] = pd.to_numeric(data2['Period'].str[-2:])
        data2['Day'] = 1
        data2['Date'] = pd.to datetime(data2[['Year', 'Month', 'Day']])
In [7]: data2.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 746 entries, 0 to 745
        Data columns (total 7 columns):
             Column
         #
                        Non-Null Count Dtype
             -----
                         _____
                                         _ _ _ _
             Series id 746 non-null
                                        object
         0
         1
             Year
                        746 non-null
                                         int64
         2
             Period
                        746 non-null
                                        object
         3
                        746 non-null
                                        float64
             Value
         4
                        746 non-null
                                         int64
             Month
                                        int64
         5
                        746 non-null
             Day
         6
             Date
                        746 non-null
                                         datetime64[ns]
        dtypes: datetime64[ns](1), float64(1), int64(3), object(2)
        memory usage: 40.9+ KB
```

Treemap

Resources: https://www.analyticsvidhya.com/blog/2021/06/build-treemaps-in-python-using-squarify/)

https://jingwen-z.github.io/data-viz-with-matplotlib-series5-treemap/ (https://jingwen-z.github.io/data-viz-with-matplotlib-series5-treemap/)

```
In [8]: # get filtered data
         #selecting rows based year column
         treemapdata = data[((data['Year'] >= 1999) & (data['Category'] == "Alcoholic Beve
 In [9]: treemapdata.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 10 entries, 1 to 127
         Data columns (total 4 columns):
                           Non-Null Count
              Column
                                            Dtype
          0
              Year
                            10 non-null
                                            int64
          1
              Category
                           10 non-null
                                            object
          2
              Expenditure 10 non-null
                                            int64
          3
              Sex
                           10 non-null
                                            int64
         dtypes: int64(3), object(1)
         memory usage: 400.0+ bytes
In [10]: def get_cmap(n, name='hsv'):
              '''Returns a function that maps each index in 0, 1, ..., n-1 to a distinct
             RGB color; the keyword argument name must be a standard mpl colormap name.'''
             return plt.cm.get cmap(name, n)
In [11]: | squarify.plot(sizes=treemapdata['Expenditure'],
                       label=treemapdata['Year'],
                       color=np.random.rand(len(treemapdata['Year']),3), #creates a random
                       alpha=0.7)
         #plt.xlabel("not used") # X-axis label
         #plt.ylabel("not used") # Y-axis label
         plt.axis('off') # turns axis off
         plt.title("Python - Treemap: Alcoholic Beverages Expenditures 1999-2008") # titl
```

Out[11]: Text(0.5, 1.0, 'Python - Treemap: Alcoholic Beverages Expenditures 1999-2008')

_.. [.5].

Out[43]:

	Year	Category	Expenditure	Sex
2	2008	Housing	17109	1
4	2008	Transportation	8604	1
0	2008	Food	6443	1
13	2008	Personal Insurance	5605	1
5	2008	Healthcare	2976	1
6	2008	Entertainment	2835	1
3	2008	Apparel	1801	1
12	2008	Cash Contributions	1737	1
9	2008	Education	1046	1
11	2008	Miscellaneous	840	1
7	2008	Personal Care	616	1
1	2008	Alcoholic Beverages	444	1
10	2008	Tobacco Products	317	1
8	2008	Reading	116	1

Out[54]: Text(0.5, 1.0, 'Python - Treemap: 2008 Expenditures by Category')

Area Chart

References

https://jingwen-z.github.io/data-viz-with-matplotlib-series7-area-chart/ (https://jingwen-z.github.io/data-viz-with-matplotlib-series7-area-chart/)

```
In [12]: # area chart data
areadata = data2[((data2['Year'] == 2001) | (data2['Year'] == 2008))]

#areadata=areadata.set_index('Date')
#Year2001 = data2(data2['Year'] == 2001)
#Year2001 = data2[(data2['Year'] == 2001)]
#Year2008 = data2[(data2['Year'] == 2008)]
In [13]: pivareadata=areadata.pivot(index='Month',columns='Year',values='Value')
```

pivareadata.columns = ['2001','2008']

In [15]: pivareadata

Out[15]:

	2001	2008
Month		
1	4.2	5.0
2	4.2	4.8
3	4.3	5.1
4	4.4	5.0
5	4.3	5.4
6	4.5	5.5
7	4.6	5.8
8	4.9	6.1
9	5.0	6.2
10	5.3	6.6
11	5.5	6.9
12	5.7	7.4

```
In [16]: plt.fill_between(np.arange(12), pivareadata['2001'], color="lightpink", alpha=0.5
plt.fill_between(np.arange(12), pivareadata['2008'], color="skyblue", alpha=0.5,

plt.xlabel("Month") # X-axis Label
plt.ylabel("% Unemployment") # Y-axis Label
plt.title("Python - Area Chart: % Unemployment by Month") # title

plt.legend()
plt.show()
```



```
In [17]: pivareadata.plot(kind='area',stacked=False)

plt.xlabel("Month") # X-axis LabeL
plt.ylabel("% Unemployment") # Y-axis LabeL
plt.title("Python - Area Chart: % Unemployment by Month") # title

plt.show(block=True)
```


Stacked Area Chart

plt.stackplot(pivareadata.index, [pivareadata['2001'], pivareadata['2008']], labels=['2001', '2008'], alpha=0.8)

plt.xlabel("Month") # X-axis label plt.ylabel("% Unemployment") # Y-axis label plt.title("Python -Stacked Area Chart: % Unemployment by Month") # title

plt.legend(loc=2, fontsize='large') plt.show()

In [18]: data

Out[18]:

	Year	Category	Expenditure	Sex
0	2008	Food	6443	1
1	2008	Alcoholic Beverages	444	1
2	2008	Housing	17109	1
3	2008	Apparel	1801	1
4	2008	Transportation	8604	1
345	1984	Education	303	1
346	1984	Tobacco Products	228	1
347	1984	Miscellaneous	451	1
348	1984	Cash Contributions	706	1
349	1984	Personal Insurance	1897	1

350 rows × 4 columns

```
In [19]: newdf=data.pivot(index='Year',columns='Category',values='Expenditure')
```

In [20]: #newdf

```
In [21]: newdf.plot.area()

plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
plt.xlabel("Year") # X-axis Label
plt.ylabel("Expenditure") # Y-axis Label
plt.title("Python - Stacked Area Chart: Expenditure by Year and Category") # tit
plt.show()
```


In []: