Agrégation Interne. Le 20/06/2012 Groupes et topologie

Quelques rappels

Soient (G, \cdot) un groupe et H un sous-groupe de G. La relation \mathcal{R} définie sur G par :

$$g_1 \mathcal{R} g_2 \Leftrightarrow g_1^{-1} g_2 \in H$$

est une relation d'équivalence et pour tout $g \in G$, on note :

$$\overline{g} = gH = \{gh \mid h \in H\}$$

la classe d'équivalence de g modulo \mathcal{R} .

L'ensemble G/H de ces classes deux à deux distinctes forme une partition de G.

Dans le cas où G est fini d'ordre $n \geq 2$, on a card $(gH) = \operatorname{card}(H)$ pour tout $g \in G$ et :

$$\operatorname{card}(G) = \operatorname{card}(G/)\operatorname{card}(H)$$

donc le cardinal de H divise celui de G (théorème de Lagrange).

L'ordre d'un élément g de G est l'élément $\theta\left(g\right)\in\mathbb{N}^{*}\cup\left\{ +\infty\right\}$ défini par :

$$\theta(g) = \operatorname{card}(\langle g \rangle)$$

où $\langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}$ est le sous-groupe de G engendré par g.

Si $\theta(g)$ est dans \mathbb{N}^* , on dit alors que g est d'ordre fini, sinon on dit qu'il est d'ordre infini. On a :

$$(\theta(g) = n) \Leftrightarrow (\langle g \rangle = \{g^r \mid 0 \le r \le n - 1\})$$

$$\Leftrightarrow (k \in \mathbb{Z} \text{ et } g^k = 1 \text{ \'equivaut \`a } k \equiv 0 \mod(n))$$

$$\Leftrightarrow (n \text{ est le plus petit entier naturel non nul tel que } g^n = 1)$$

Soit X une partie non vide de \mathbb{R} .

Un réel m est une borne inférieure de X si m est un minorant de X et si :

$$\forall \varepsilon > 0, \ \exists x \in X \mid m \le x \le m + \varepsilon$$

(m est le plus grand des minorants de X).

Un réel M est une borne supérieure de X si M est un majorant de X et si :

$$\forall \varepsilon > 0, \ \exists x \in X \mid M - \varepsilon < x \le M$$

(M est le plus petit des majorants de X).

Si X admet une borne inférieure [resp. supérieure] cette dernière est unique.

Toute partie non vide minorée [resp. majorée] dans \mathbb{R} admet une borne inférieure [resp. supérieure].

- I - Sous-groupes additifs de $\mathbb R$

On dit qu'un sous-ensemble X de \mathbb{R} est discret si son intersection avec toute partie bornée de \mathbb{R} est finie (éventuellement vide), ce qui revient à dire que pour tous réel R > 0, l'ensemble $X \cap [-R, R]$ est fini.

1. Soit H un sous-groupe additif de \mathbb{R} . Montrer que H est discret si, et seulement si, il existe un réel α tel que :

$$H = \mathbb{Z}\alpha = \{p\alpha \mid p \in \mathbb{Z}\}\$$

(H est monogène).

- 2. Montrer qu'un sous-groupe discret de $\mathbb R$ est fermé.
- 3. Montrer que les sous-groupes additifs de \mathbb{R} sont denses ou discrets.
- 4. Montrer la densité de l'ensemble \mathbb{D} des nombres décimaux et de l'ensemble \mathbb{Q} des nombres rationnels dans \mathbb{R} en utilisant la question précédente.
- 5. Soient a, b deux réels non nuls. Montrer que le groupe additif engendré par a et b:

$$\mathbb{Z}a + \mathbb{Z}b = \{pa + qb \mid (p, q) \in \mathbb{Z}^2\}$$

est discret [resp. dense dans \mathbb{R}] si, et seulement si, $\frac{a}{b}$ est rationnel [resp. irrationnel].

Pour
$$\frac{a}{b} = \frac{p}{q}$$
 rationnel avec $(p,q) \in \mathbb{Z} \times \mathbb{Z}^*$, on a $\mathbb{Z}a + \mathbb{Z}b = \mathbb{Z}\frac{b}{q} = \mathbb{Z}\frac{a}{p}$.

- 6. Soient a, b deux réels non nuls. Montrer que le groupe $\mathbb{Z}a + \mathbb{Z}b$ est fermé si, et seulement si, $\frac{a}{b}$ est rationnel (pour $\frac{a}{b}$ irrationnel, cela nous donne un exemple de situation où la somme de deux fermés n'est pas un fermé).
- 7. Soient a,b deux réels non nuls. Montrer que $\frac{a}{b}$ est rationnel [resp. irrationnel] si, et seulement si $\mathbb{Z}a \cap \mathbb{Z}b \neq \{0\}$ [resp. $\mathbb{Z}a \cap \mathbb{Z}b = \{0\}$]. Pour $\frac{a}{b} = \frac{p}{q}$ rationnel avec $(p,q) \in \mathbb{Z} \times \mathbb{Z}^*$, on a $\mathbb{Z}a \cap \mathbb{Z}b = \mathbb{Z}qa = \mathbb{Z}pb$.
- 8. Soient a_1, \dots, a_n une suite de $n \ge 2$ réels non nuls. Donner une condition nécessaire et suffisante pour que le groupe engendré par les a_k :

$$\sum_{k=1}^{n} \mathbb{Z}a_k = \left\{ \sum_{k=1}^{n} p_k a_k \mid (p_1, \dots, p_n) \in \mathbb{Z}^n \right\}$$

soit dense dans \mathbb{R} .

9. Soient a, b deux réels non nuls tels que $\frac{a}{b}$ soit irrationnel. On se propose de montrer que l'ensemble :

$$\mathbb{N}a + \mathbb{Z}b = \{pa + qb \mid (p, q) \in \mathbb{N} \times \mathbb{Z}\}\$$

est dense dans \mathbb{R} .

On se donne deux réels x < y.

(a) Justifier l'existence de $(p,q) \in \mathbb{Z}^2$ tel que :

$$0 < pa + qb < y - x$$

- (b) On suppose que $p \in \mathbb{N}$. Justifier l'existence de $(k,n) \in \mathbb{N} \times \mathbb{Z}$ tel que $k(pa+qb)+nb \in]x,y[$.
- (c) On suppose que p < 0. Justifier l'existence de $(k, n) \in \mathbb{N} \times \mathbb{Z}$ tel que $nb k(pa + qb) \in [x, y]$.
- (d) Conclure.
- 10. Soit θ un réel non nul tel que $\frac{\pi}{\theta}$ soit irrationnel.
 - (a) Montrer que les ensembles $\{\cos\left(n\theta\right)\mid n\in\mathbb{N}\}$ et $\{\sin\left(n\theta\right)\mid n\in\mathbb{N}\}$ sont denses dans [-1,1], ce qui signifie que l'ensemble des valeurs d'adhérence de la suite $(\cos\left(n\theta\right))_{n\in\mathbb{N}}$ [resp. $(\sin\left(n\theta\right))_{n\in\mathbb{N}}$] est [-1,1].
 - (b) Déterminer l'ensemble des valeurs d'adhérence de la suite $(\tan(n\theta))_{n\in\mathbb{N}}$.
- 11. On se donne une fonction $f:[1,+\infty[\to\mathbb{R},\text{ de classe }\mathcal{C}^1\text{ telle que}:$

$$\lim_{x \to +\infty} f(x) = +\infty, \ \lim_{x \to +\infty} f'(x) = 0$$

$$\forall x \in [1, +\infty[, f'(x) > 0]$$

et on s'intéresse aux valeurs d'adhérences de la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n = \cos(f(n))$ pour tout $n \geq 1$.

- (a) Justifier le fait que f réalise un \mathcal{C}^1 -difféomorphisme de $[1, +\infty[$ sur $[f(1), +\infty[$. Soient $x \in [-1, 1]$ et $t = \arccos(x) \in [0, \pi]$.
- (b) Montrer qu'il existe un entier $n_0 \in \mathbb{N}$ tel que pour tout entier $n \geq n_0$, il existe un entier naturel $\varphi(n)$ tel que :

$$f(\varphi(n)) \le t + 2n\pi < f(\varphi(n) + 1) \tag{1}$$

- (c) Montrer qu'il existe un entier $n_1 \ge n_0$ tel que la suite d'entiers $(\varphi(n))_{n \ge n_1}$ soit strictement croissante.
- (d) Montrer que $\lim_{n\to+\infty} (t+2n\pi-f(\varphi(n)))=0.$
- (e) Montrer que $\lim_{n\to+\infty} (u_{\varphi(n)}) = x$.
- (f) En déduire que l'ensemble des valeurs d'adhérence de la suite $(u_n)_{n\in\mathbb{N}^*}$ est [-1,1]. Prenant $f(x) = x^{\alpha}$ avec $0 < \alpha < 1$ ou $f(x) = \ln(x)$, on en déduit que que l'ensemble des valeurs d'adhérence des suites $(\cos(n^{\alpha}))_{n\in\mathbb{N}^*}$ et $(\cos(\ln(n)))_{n\in\mathbb{N}^*}$ est [-1,1].
- 12. Soient a, b deux réels non nuls.

Montrer que le réel $\frac{a}{b}$ est irrationnel si, et seulement si, il existe deux suites $(p_n)_{n\in\mathbb{N}}$ et $(q_n)_{n\in\mathbb{N}}$ d'entiers relatifs telles que :

$$\forall n \in \mathbb{N}, \ p_n a + q_n b \neq 0 \tag{2}$$

$$\lim_{n \to +\infty} (p_n a + q_n b) = 0 \tag{3}$$

On en déduit qu'un réel θ est irrationnel si, et seulement si, il existe deux suites $(p_n)_{n\in\mathbb{N}}$ et $(q_n)_{n\in\mathbb{N}}$ d'entiers relatifs telles que :

$$\forall n \in \mathbb{N}, \ p_n \theta - q_n \neq 0 \tag{4}$$

$$\lim_{n \to +\infty} (p_n \theta - q_n) = 0 \tag{5}$$

- 13. On utilise le résultat précédent pour montrer l'irrationalité de certains réels.
- 1. Cette question n'est pas tout à fait dans le sujet, mais le résultat est joli

- (a) Montrer que $e = \sum_{n=0}^{+\infty} \frac{1}{n!}$ est irrationnel.
- (b) Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'entiers naturels non nuls telle que :
 - i. pour tous $n \in \mathbb{N}$, u_n divise u_{n+1} ;
 - ii. la série de terme général $\frac{1}{u_n}$ est convergente;
 - iii. le reste d'ordre n, $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{u_k}$, est négligeable devant $\frac{1}{u_n}$.

Montrer que, dans ces conditions, le réel $\theta = \sum_{n=0}^{+\infty} \frac{1}{u_n}$ est irrationnel.

- (c) Montrer que la série de terme général $\frac{1}{2^{2^n}-1}$ est convergente et que sa somme est irrationnelle.
- (d) Montrer que la série de terme général $\frac{1}{2^{2^n}+1}$ (nombres de Fermat) est convergente et que sa somme est irrationnelle.

- II - Fonctions périodiques

Si f est une fonction de \mathbb{R} dans \mathbb{R} , on dit que $T \in \mathbb{R}$ est une période de f si f(x+T) = f(x) pour tout réel x.

L'ensemble $\mathcal{P}(f)$ de toutes les périodes de f est un sous-groupe additif de $(\mathbb{R}, +)$. Une fonction f de \mathbb{R} dans \mathbb{R} est dite périodique si $\mathcal{P}(f)$ n'est pas réduit à $\{0\}$.

- 1. Montrer que $f: \mathbb{R} \to \mathbb{R}$ est constante si, et seulement si, $\mathcal{P}(f) = \mathbb{R}$.
- 2. Soit G un sous-groupe de \mathbb{R} et f la fonction caractéristique de G. Montrer que $\mathcal{P}\left(f\right)=G$.
- 3. Montrer que si $f: \mathbb{R} \to \mathbb{R}$ est continue, le groupe $\mathcal{P}(f)$ des périodes de f est alors fermé dans \mathbb{R} .
- 4. Montrer que si f est une fonction continue, périodique, non constante de \mathbb{R} dans \mathbb{R} , il existe alors un unique réel T > 0 tel que $\mathcal{P}(f) = \mathbb{Z}T$ ($\mathcal{P}(f)$ est discret et T est la plus petite période strictement positive de f).
- 5. Soient T_1, T_2 deux réels non nuls et f une fonction continue de $\mathbb R$ dans $\mathbb R$, telle que :

$$\forall x \in \mathbb{R}, \ f(x+T_1) = f(x+T_2) = f(x)$$

Montrer que si $\frac{T_1}{T_2}$ est irrationnel, la fonction f est alors constante.

- 6. Montrer que si f, g sont deux fonctions continues périodiques non constantes de \mathbb{R} dans \mathbb{R} de plus petites périodes respectives $T_1 > 0$ et $T_2 > 0$ avec $\frac{T_1}{T_2}$ irrationnel, la fonction f + g n'est alors pas périodique.
- 7. Soit H une partie dense de \mathbb{R} . Montrer que pour tout réel x, il existe une suite $(x_n)_{n\in\mathbb{N}}$ strictement croissante [resp. strictement décroissante] qui converge vers x.
- 8. Soient T_1, T_2 deux réels non nuls et f une fonction de \mathbb{R} dans \mathbb{R} admettant une limite à gauche [resp. à droite] en un point a et telle que :

$$\forall x \in \mathbb{R}, \ f(x+T_1) = f(x+T_2) = f(x)$$

Montrer que si $\frac{T_1}{T_2}$ est irrationnel, la fonction f est alors constante.

- 9. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction périodique non constante admettant une limite à gauche [resp. à droite] en un point a. Montrer que $\mathcal{P}(f)$ est discret (soit $\mathcal{P}(f) = \mathbb{Z}T$ avec T > 0).
- 10. Montrer que si f, g sont deux fonctions de \mathbb{R} dans \mathbb{R} telles que $\mathcal{P}(f) \cap \mathcal{P}(g) \neq \{0\}$, la fonction f + g est alors périodique.
- 11. Montrer que si f est une fonction continue de \mathbb{R} dans \mathbb{R} de plus petite période strictement positive T, une primitive F de f est T-périodique si, et seulement si, $\int_0^T f(t) dt = 0$.
- 12. Montrer que si f est une fonction périodique de classe \mathcal{C}^1 de \mathbb{R} dans \mathbb{R} , on a alors $\mathcal{P}(f) = \mathcal{P}(f')$.
- 13. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction pour laquelle il existe une fonction polynomiale P de degré au plus égal à $n \in \mathbb{N}$ et un réel T > 0 tels que :

$$\forall x \in \mathbb{R}, \ f(x+T) = f(x) + P(x)$$

Montrer qu'il existe une fonction g périodique de période T et une fonction polynomiale Q de degré au plus égal à $n \in \mathbb{N}$ telles que :

$$\forall x \in \mathbb{R}, \ f(x) = g(x) + xQ(x)$$

- III - Sous-groupes de \mathbb{R}^n

On désigne par n un entier naturel non nul, E l'espace euclidien \mathbb{R}^n muni de son produit scalaire canonique noté $\langle \cdot | \cdot \rangle$. La norme associée à ce produit scalaire est notée $\| \cdot \|$.

Pour tout a dans E et tout réel R > 0 on note B(a, R) [resp. $\overline{B}(a, R)$] la boule ouverte [resp. fermée] de centre a et de rayon R dans E.

Une partie X de E est dite discrète si son intersection avec toute partie bornée de E est finie (éventuellement vide), ce qui revient à dire que pour tout réel R > 0, l'ensemble $X \cap \overline{B}(0,R)$ est fini.

On dit qu'un élément x d'une partie non vide X de E est isolé dans X, s'il existe un ouvert \mathcal{V} de E tel que $X \cap \mathcal{V} = \{x\}$.

- 1. Soit G un sous-groupe additif de $E = \mathbb{R}^n$. Montrer que les propriétés suivantes sont équivalentes :
 - (a) G est discret;
 - (b) 0 est isolé dans G;
 - (c) tous les éléments de G sont isolés dans G.
- 2. Montrer qu'un sous-groupe discret de E est fermé dans E.
- 3. Soit:

$$G = \left\{ \left(p + q\sqrt{2}, q\sqrt{2} \right) \mid (p, q) \in \mathbb{Z}^2 \right\}$$

- (a) Montrer que est un sous-groupe discret de \mathbb{R}^2 .
- (b) On désigne par π_1 la projection $(x,y) \in \mathbb{R}^2 \mapsto x$. Que dire du groupe $\pi_1(G)$?
- 4. On se propose ici de montrer que si G est un sous-groupe discret de E non réduit à $\{0\}$, il existe alors un entier r compris entre 1 et n et une famille libre $(e_i)_{1 \le i \le r}$ dans G telle que :

$$G = \left\{ \sum_{i=1}^{r} k_i e_i \mid (k_1, \dots, k_r) \in \mathbb{Z}^r \right\}$$

ce que l'on note :

$$G = \bigoplus_{i=1}^{r} \mathbb{Z}e_i$$

On se donne un sous-groupe discret G de E non réduit à $\{0\}$ et $r \in \{1, \dots, n\}$ est la dimension du sous-espace vectoriel F de E engendré par G.

- (a) Justifier l'existence d'une famille $(g_i)_{1 \leq i \leq r}$ d'éléments G formant une base de F.
- (b) Traiter le cas r = 1.
- (c) On suppose que $r\in\{2,\cdots,n\}$ et on note :

$$K = \left\{ \sum_{i=1}^{r} x_i g_i \mid (x_1, \dots, x_{r-1}, x_r) \in [0, 1]^{r-1} \times [0, 1] \right\}$$

i. Montrer que $P=K\cap G$ est fini non vide et qu'on peut poser :

$$\alpha_r = \min \left\{ x_r \in]0,1] \mid \exists (x_1, \dots, x_{r-1}) \in [0,1[^{r-1}]; \sum_{i=1}^r x_i g_i \in P \right\}$$

On désigne par $e_r = \sum_{i=1}^{r-1} \alpha_i g_i + \alpha_r g_r$ un élément de P de r-ème composante minimale.

- ii. Montrer que, pour tout $g \in G$, il existe un entier k_r tel que $g-k_re_r \in \text{Vect}\{g_1, \cdots, g_{r-1}\}$.
- (d) Montrer qu'il existe une famille libre $(e_i)_{1 \leq i \leq r}$ d'éléments de G telle que $G = \bigoplus_{i=1}^r \mathbb{Z}e_i$.