Asynchronous Fault Diagnosis of Discrete-Event Systems With Partially Observable Outputs

Deguang Wang, Xi Wang, Member, IEEE, Jing Yang, and Zhiwu Li, Fellow, IEEE

APPENDIX

The proofs of the following lemmas are omitted because they follow directly from the definitions of $\hat{\mathcal{D}}_{oc}$ and $\hat{\mathcal{D}}_{dc}$.

Lemma 1. For any path $p = \{(q_{-1}, l_0, q_0), (q_0, l_1, q_1), \ldots, (q_{k-1}, l_k, q_k), \ldots, (q_n, l_k, q_k)\}$ in $\hat{\mathcal{D}}_{oc}$ ending with a cycle, The following hold:

1) $\kappa(q_i) = \kappa(q_r)$ for any $j, r \in [k, n]$;

10

11

12

13

14

22

23

24

25

26

27

28

29

31

2) There exists a path $\bar{p} = \{(\bar{q}_0, \sigma_1, \bar{q}_1), (\bar{q}_1, \sigma_2, \bar{q}_2), \ldots, (\bar{q}_{b-1}, \sigma_b, \bar{q}_b), \ldots, (\bar{q}_c, \sigma_c, \bar{q}_b)\}$ in G such that $O(\lambda(\bar{q}_0\bar{q}_1\cdots\bar{q}_c\bar{q}_b^1)) = l_0l_1\cdots l_nl_k$ and $Q_p \subseteq Q_{\bar{p}}$, where Q_p and $Q_{\bar{p}}$ are the set of states composed of paths p and \bar{p} , respectively.

In a cycle, all states correspond to the same condition, which is either normal or F_i $(i \in [1,m])$, owing to the assumption that all failure modes are permanent. We know that $\hat{\mathcal{D}}_{oc}$ is defined on the basis of $\hat{\mathcal{D}}_{ds}$ and $\hat{\mathcal{D}}_{ds}$ derives from \mathbf{G} . Thus, there exists a transition path \bar{p} in \mathbf{G} corresponding to the indication path p in $\hat{\mathcal{D}}_{oc}$.

Lemma 2. For any path $p = \{((q_{-1}, q_{-1}), l_0, (q_0^1, q_0^2)), ((q_0^1, q_0^2), l_1, (q_1^1, q_1^2)), \ldots, ((q_{k-1}^1, q_{k-1}^2), l_k, (q_k^1, q_k^2)), \ldots, ((q_n^1, q_n^2), l_k, (q_k^1, q_k^2))\}$ (k < n) in $\hat{\mathcal{D}}_{dc}$ ending with a cycle, the following hold:

- 1) There exist a path p_{noc}^1 in $\hat{\mathcal{D}}_{noc}$ and a path p_{foc}^2 in $\hat{\mathcal{D}}_{foc}$ ending with cycles, namely $p_{noc}^1 = \{(q_{-1}, l_0, q_0^1), (q_0^1, l_1, q_1^1), \ldots, (q_{k-1}^1, l_k, q_k^1), \ldots, (q_n^1, l_k, q_k^1)\}$ and $p_{foc}^2 = \{(q_{-1}, l_0, q_0^2), (q_0^2, l_1, q_1^2), \ldots, (q_{k-1}^2, l_k, q_k^2), \ldots, (q_n^2, l_k, q_k^2)\};$
- 2) $\kappa(q_j^1)=\kappa(q_r^1)=0$ and $\kappa(q_j^2)=\kappa(q_r^2)$ for any $j,\ r\in [k,n].$

Based on Lemmas 1 and 2. the proof of Theorem 1 is shown as follows.

Proof. (only if): Suppose **G** is asynchronously diagnosable w.r.t. $l_0 \in \Lambda_o$, but there exists a cycle cl in $\hat{\mathcal{D}}_{dc}$, $cl = \{((q_k^1, q_k^2), \, l_{k+1}, \, (q_{k+1}^1, q_{k+1}^2)), \, \ldots, \, ((q_n^1, q_n^2), \, l_k, \, ((q_k^1, q_k^2))\}$ (k < n) such that $\kappa(q_j^2) = i \in [1, m] \ (j \in [k, n]).$

D. Wang is with the School of Electrical Engineering, Guizhou University, Guiyang 550025, China (e-mail: dgwang@gzu.edu.cn, wdeguang1991@163.com).

X. Wang is with the School of Electro-Mechanical Engineering, Xidian University, Xi'an 710071, China and also with the Lehrstuhl für Regelungstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 7, 91058 Erlangen, Germany. (e-mail: wangxi@xidian.edu.cn, xi.wang@fau.de).

J. Yang is with the School of Electrical Engineering, Guizhou University, Guiyang 550025, China (e-mail: jyang7@gzu.edu.cn).

Z. Li is with the Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau and also with the School of Electro-Mechanical Engineering, Xidian University, Xi'an 710071, China (e-mail: zhwli@xidian.edu.cn).

Since $\hat{\mathcal{D}}_{dc}$ is reachable, there exists a path p in $\hat{\mathcal{D}}_{dc}$ ending with the cycle cl, i.e., $p = \{((q_{-1},q_{-1}),\,l_0,\,(q_0^1,q_0^2)),\,((q_0^1,q_0^2),\,\,l_1,\,\,(q_1^1,q_1^2)),\,\,\ldots,\,\,((q_{k-1}^1,\,q_{k-1}^2),\,\,l_k,\,\,(q_k^1,q_k^2)),\,\,\ldots,\,\,((q_n^1,q_n^2),l_k,\,(q_k^1,q_k^2))\}.$ Based on Lemma 2, we know that there exist one path p_{noc}^1 in $\hat{\mathcal{D}}_{noc}$ and one path p_{foc}^2 in $\hat{\mathcal{D}}_{foc}$ ending with cycles, namely $p_{noc}^1 = \{(q_{-1},l_0,q_0^1),\,(q_0^1,l_1,q_1^1),\,\,\ldots,\,\,(q_{k-1}^1,l_k,q_k^1),\,\,\ldots,\,\,(q_n^1,l_k,q_k^1)\}$ and $p_{foc}^2 = \{(q_{-1},l_0,q_0^2),\,(q_0^2,l_1,q_1^2),\,\,\ldots,\,\,(q_{k-1}^2,l_k,q_k^2),\,\,\ldots,\,\,(q_n^2,l_k,q_k^2)\}$ and $\kappa(q_j^1) = \kappa(q_n^1) = 0$ and $\kappa(q_j^2) = \kappa(q_n^2) = i$ for any $j,\,\,r \in [k,n]$. Further from Lemma 1, we know that for the path p_{noc}^1 there exists a path $p_n^2 = \{(\bar{q}_0^2,\sigma_1^2,\bar{q}_1^2),\,\,(\bar{q}_1^2,\sigma_2^2,\bar{q}_2^2),\,\,\ldots,\,\,(\bar{q}_{b-1}^2,\sigma_b^2,\bar{q}_b^2),\,\,\ldots,\,\,(\bar{q}_c^2,\sigma_b,\bar{q}_b^2)\}$ in G such that $O(\lambda(\bar{q}_0^2\bar{q}_1^2\cdots\bar{q}_c^2\bar{q}_b^2)) = l_0l_1\cdots l_nl_k$ and $Q_{p_{foc}^2} \subseteq Q_{\bar{p}^2}$.

Let $\mathcal{Q}_e(q,n)$ denote the set of state estimations calculated after the occurrence of n events from state q. Suppose the state estimation $x_{0e} \in \mathcal{Q}_e(\bar{q}_s^2,0)$ $(s \in [1,b])$, where \bar{q}_s^2 $(\kappa(\bar{q}_s^2)=i)$ is the first fault state in the path \bar{p}^2 , is given. When the system evolves along the path \bar{p}^2 , there exists a state estimation $x_e^{n'} \in \mathcal{Q}_e(\bar{q}_s^2,n')$ $(n'=d+m_2*k_2,d=b-s,$ and $m_2=c-b+1$ is the length of $\bar{q}_b^1\cdots\bar{q}_c^1$) such that $q_k^1\in x_e^{n'}$ and $q_k^2\in x_e^{n'}$ for any nonnegative integer k_2 . Then $\mathbf{D}(x_e^{n'})=-1$. Since \mathbf{G} is asynchronously diagnosable w.r.t. l_0 , there exists an integer N_i such that for any $x_e^n\in \mathcal{Q}(q_s^2,n), x_e^n\subseteq \mathcal{Q}_{F_i}$ holds for $n\geq N_i$. We choose an integer k_2 such that $n'\geq N_i$. Then we have that $x_e^{n'}\subseteq \mathcal{Q}_{F_i}$, i.e., $\mathbf{D}(x_e^{n'})=i$, which leads to a contraction. So the necessity holds.

(if): Suppose for every cycle $cl=\{((q_k^1,q_k^2),\ l_{k+1},\ (q_{k+1}^1,q_{k+1}^2)),\ \ldots,\ ((q_n^1,q_n^2),\ l_k,\ ((q_k^1,q_k^2))\}\ (k< n) \text{ in } \hat{\mathcal{D}}_{dc},$ we have $\kappa(q_j^1)=\kappa(q_j^2)=0\ (j\in[k,n]).$ From the second clause of Lemma 2, we can infer that for any $q^d=(q^1,q^2)$ in $\hat{\mathcal{D}}_{dc},\ q^d$ is not contained in a loop if $\kappa(q^1)\neq\kappa(q^2),$ which further implies that for any state sequence $(q_1^d,q_2^d,\ldots,q_k^d)$ in $\hat{\mathcal{D}}_{dc}$ with $q_r^d=(q_r^1,q_r^2)\ (r\in[1,k])$ if $\kappa(q_r^1)\neq\kappa(q_r^2),$ then the length of this state sequence is finite, which is less than the number of states in $\hat{\mathcal{D}}_{dc}.$

Suppose the state estimation $x_{0e} \in \mathcal{Q}_e(q_{F_i},0)$ $(i \in [1,m])$ is given when the system first reach the fault state q_{F_i} $(\kappa(q_{F_i})=i)$. For any $x_e^n \in \mathcal{Q}_e(q_{F_i},n)$ with $n>|\hat{Q}_d| \times (|Q|-1)$, we claim that $\mathbf{D}(x_e^n)=i$. After n transforms from state q_{F_i} , we have the state sequence $s=q_{F_i}q_{F_i}^1\cdots q_{F_i}^n$ with the observed output sequence $O(\lambda(s))$ $(n'=|O(\lambda(s))|)$. From above, for any state $q^d \in \hat{Q}_d$ that can be reached from (q_{-1},q_{-1}) in $\hat{\mathcal{D}}_{dc}$, we have that for any state sequence starting from q^d , a state $\hat{q}^d=(\hat{q}^1,\hat{q}^2)\in \hat{Q}_d$ with $\kappa(\hat{q}^1)=\kappa(\hat{q}^2)$ can be reached within $|\hat{Q}_d|-1$ transitions. This implies that for any $n'>|\hat{Q}_d|-1$ and $x_e^{n'}\in \mathcal{Q}_e(q_{F_i},n')$, we have that $\mathcal{D}(x_e^{n'})=i$. From the assumption in Remark 1, each observed output can be followed by at most |Q|-1 unobserved outputs. It follows that for the above state sequence $s,n\leq (n'+1)\times (|Q|-1)$,

73

77

i.e., $n' \geq n/(|Q|-1)-1$. So if $n > |\hat{Q}_d| \times (|Q|-1)$, then $n' \geq n/(|Q|-1)-1 > |\hat{Q}_d|-1$, establishing our claim. Note that we have assumed implicitly that |Q|>1; otherwise if |Q|=1, then from the assumption of no path cycles, no transition labeled by a failure event exists, so that the system is trivially diagnosable. Based on Definition 9, we can conclude that **G** is diagnosable w.r,t, l_0 . So the sufficiency also holds.