Deep Learning Model For Plant Disease Detection And Diagnosis
1. INTRODUCTION

1.1 BACKGROUND

Modern technologies have given human society the ability to produce enough food to meet the demand of more than 7 billion people. However, food security remains threatened by a number of factors including climate change, the decline in pollinators, plant diseases (Strange and_Scott,2005), and others. Plant diseases are not only a threat to food security at the global scale, but can also have disastrous consequences for smallholder farmers whose livelihoods depend on healthy crops. In the developing world, more than 80 percent of the agricultural production is generated by smallholder farmers (UNEP, 2013), and reports of yield loss of more than 50% due to pests and diseases are common. Furthermore, the largest fraction of hungry people (50%) live in smallholder farming households (Sanchez and Swaminathan, 2005), making smallholder farmers a group that's particularly vulnerable to pathogen-derived disruptions in food supply.

It is crucial to prevent unnecessary waste of financial and other resources, thus achieving healthier production in this changing environment, appropriate and timely disease identification including early prevention has never been more important[1]. Various efforts have been developed to prevent crop loss due to diseases. Historical approaches of widespread application of pesticides have in the past decade increasingly been supplemented by integrated pest management (IPM) approaches. Independent of the approach, identifying a disease correctly when it first appears is a crucial step for efficient disease management. Historically, disease identification has been supported by agricultural extension organizations or other institutions, such as local plant clinics. In more recent times, such efforts have additionally been supported by providing information for disease diagnosis online, leveraging the increasing Internet penetration worldwide. Even more recently, tools based on mobile phones have proliferated, taking advantage of the historically unparalleled rapid uptake of mobile phone technology in all parts of the world.

Smartphones in particular offer very novel approaches to help identify diseases because of their computing power, high-resolution displays, and extensive built-in sets of accessories, such as advanced HD cameras. It is widely estimated that there will be between 5 and 6 billion smartphones on the globe by 2020. The combined factors of widespread smartphone

penetration, HD cameras, and high performance processors in mobile devices lead to a situation where disease diagnosis based on automated image recognition, if technically feasible, can be made available at an unprecedented scale. Here, we demonstrate the technical feasibility using a deep learning approach utilizing 16,012 images of Tomato species with 9 diseases (or healthy) made openly available through the project PlantVillage (Hughes and Salathé, 2015).

1.2 PROBLEM DEFINITION

Crop diseases are a major threat to food security, but their rapid identification remains difficult in many parts of the world due to the lack of the necessary infrastructure. The combination of increasing global smartphone penetration and recent advances in computer vision made possible by deep learning has paved the way for smartphone-assisted disease diagnosis.

1.3 OBJETIVES

- 1. Developing a model that can be used by developer to create smartphones application to detect plant diseases.
- 2. Accurate and instant diagnosis of particular disease.
- 3. To provide remedy for disease that is detected.

1.4 SUMMARY

India is a cultivated country and about 70% of the population depends on agriculture. Farmers have large range of diversity for selecting various suitable crops and finding the suitable pesticides for plant. Disease on plant leads to the significant reduction in both the quality and quantity of agricultural products. The studies of plant disease refer to the studies of visually observable patterns on the plants. Monitoring of health and disease on plant plays an important role in successful cultivation of crops in the farm. In early days, the monitoring and analysis of plant diseases were done manually by the expertise person in that field. This requires tremendous amount of work and also requires excessive processing time. The image processing techniques can be used in the plant disease detection. In most of the cases disease symptoms are seen on the leaves, stem and fruit. The plant leaf for the detection of disease is considered which shows the disease symptoms. This project gives the introduction to image processing technique used for plant disease detection.

Deep Learning Model For Plant Disease Detection And Diagnosis
2. LITERATURE SURVEY

2.1 INTRODUCTION

- Plant disease cause periodic outbreak of diseases which leads to large scale death and famine. In India no estimation has been made but it is more than USA because the preventive steps taken to protect our crops are not even one-tenth of that in USA.
- Losses in million dollars due to epidemics, control becomes difficult due to spreading, threat to food security.
- Eg. epidemics of rice plant in Georgia, Coffee rust epidemic, Banana plat epidemic, Grape powdery epidemic.
- Farmers in rural India have minimal access to agricultural experts, who can inspect crop images and render advice. Delayed expert responses to queries often reach farmers too late.

Ref	Title	Technology	Details	Limitation/Future
No.		/Algorithm		Scope
1	A Fungus	Convolution	In this project they used convolutional neural	This project require
	Spores Dataset	1 neural	network(CNN)approach. convolutional neural	proper image
	and a	network,	network (CNN) provided state of the art results	acquisition setup for
	Convolutional	deep	in many other applications of object detection	capturing images.
	Neural	learning	and classification. Optical sensor system was	So it is not flexible
	Networks		utilized to obtain images. As a result, 40,800	for everyone.
	based		labeled images were used to develop fungus	We can developed
	Approach for		dataset to aid in precise fungus detection and	this project by using
	Fungus		classification. The other main objective of this	web based
	Detection		research was to develop a CNN based approach	application or
			for the detection of fungus and distinguish	mobile application.
			different types of fungus. A CNN architecture	
			was designed and it showed the promising	
			results with an accuracy of 94.8%.	
2	Identification	Deep	In this project they used the two different model	These research
	of Maize Leaf	learning,	of convolutional neural network i.e GoogLeNet	processing steps are
	Diseases Using	convolution	and Cifar10.To improve the identification	more complex and
	Improved	al neural	accuracy of maize leaf diseases and reduce the	will introduce
	Deep	networks,im	number of network parameters, the improved	unnecessary
	Convolutional	age	GoogLeNet and Cifar10 models based on deep	interference at each
	Neural	processing,	learning are proposed for leaf disease	step. The method
	Networks		recognition in this paper. Two improved models	proposed in this
			that are used to train and test nine kinds of maize	paper can directly
			leaf images are obtained by adjusting the	take the image of the
			parameters, changing the pooling combinations,	dataset as the input
			adding dropout operations and rectified linear	of the convolutional
			unit functions, and reducing the number of	neural networks and
			classiffers. In addition, the number of parameters	let it learn and adjust
			of the improved models is significantly smaller	itself to achieve an

top - 1 average identi_cation accuracy of 98.9%, and the Cifar10 model achieves an average accuracy of 98.8%. The improved methods are possibly improved the accuracy of maize leaf disease, and reduced the convergence iterations, which can effectively improve the model training and recognition efficiency. Meanwhile, in orde to enab agricultural producers to make quick and reasonability judgments about crop disease information, trained model can	del achieves a racy of 98.9%, es an average d methods are of maize leaf ence iterations,		
top - 1 average identi_cation accuracy of 98.9%, and the Cifar10 model achieves an average accuracy of 98.8%. The improved methods are possibly improved the accuracy of maize leaf disease, and reduced the convergence iterations, which can effectively improve the model training and recognition efficiency. Meanwhile, in orde to enab agricultural producers to make quick and reasonability judgments about crop disease information, trained model can	racy of 98.9%, es an average d methods are of maize leaf ence iterations,		effect. The
and the Cifar10 model achieves an average accuracy of 98.8%. The improved methods are possibly improved the accuracy of maize leaf disease, and reduced the convergence iterations, which can effectively improve the model training and recognition efficiency. Meanwhile, in orde to enab agricultural producers to make quick and reasonability judgments about crop disease information, trained model can	as an average d methods are of maize leaf ence iterations,		recognition accuracy
accuracy of 98.8%. The improved methods are possibly improved the accuracy of maize leaf disease, and reduced the convergence iterations, which can effectively improve the model training and recognition efficiency. Meanwhile, in orde to enab agricultural producers to make quick and reasonability judgments about crop disease information, to trained model can	d methods are of maize leaf ence iterations,		and loss are also in a
possibly improved the accuracy of maize leaf disease, and reduced the convergence iterations, which can effectively improve the model training and recognition efficiency. Meanwhile, in orde to enab agricultural producers to make quick and reasonab judgments abo crop diseas information, trained model can	of maize leaf ence iterations,		more satisfactory
disease, and reduced the convergence iterations, which can effectively improve the model training and recognition efficiency. Meanwhile, in orde to enab agricultural producers to make quick and reasonab judgments abo crop diseat information, trained model can	ence iterations,		range, and the
which can effectively improve the model training and recognition efficiency. Meanwhile, in orde to enab agricultural producers to make quick and reasonab judgments abo crop disease information, trained model can			training and
training and recognition efficiency. improved. Meanwhile, in orde to enab agricultural producers to make quick and reasonab judgments abo crop disea- information, t trained model can			recognition
Meanwhile, in orde to enab agricultural producers to make quick and reasonab judgments abo crop disea information, t trained model can	the model		efficiency has been
to enab agricultural producers to make quick and reasonab judgments abo crop disease information, to trained model can			improved.
agricultural producers to make quick and reasonab judgments abo crop disea information, t trained model can			Meanwhile, in order
producers to make quick and reasonable judgments about crop disease information, the trained model can			to enable
quick and reasonable judgments about crop disease information, to trained model can			agricultural
judgments about crop disease information, to trained model can			producers to make
crop disease information, to trained model can			quick and reasonable
information, t trained model can			judgments about
trained model can			crop disease
			information, the
combined wi			trained model can be
Combined			combined with
mobile devices in			mobile devices in a
flexible manner.			flexible manner.
3 Diagnosis of Principle In this paper the main emphasis is given to find It was found the	s given to find	3 Diagnosis of	It was found that
Diseases on Component out mostly occurring diseases on the cotton similar patter		Diseases on	similar pattern
Cotton Leaves Analysis leaves. Occurrence of diseases on the cotton diseases are having	on the cotton	Cotton Leaves	diseases are having
Using (PCA), plant is reflected mainly by its leaves.By using more cosing		Using	more cosines
Principal Nearest green channel information of RGB image for distances during	n the cotton	Principal	distances during
Component Neighbourh extracting features because cotton leaves show KNN classification	n the cotton eaves.By using	Component	KNN classification
Analysis ood early symptom of diseases. By choosing due to which the	n the cotton eaves.By using GB image for	1	due to which there
Classifier Classifier appropriate classifier technique like PCA will will be chance	the cotton eaves.By using GB image for the leaves show	Analysis	will be chance of
(KNN) provide best results to detect the various diseases misclassification	the cotton eaves.By using GB image for a leaves show By choosing		. 1

			on leaves of cotton in early stages. The main	some diseases are
			goal of PCA is to extract the important features,	having similarities in
			which may vary accordingly with respect to	their color patterns
			diseases. These features are considered as a set	due to which disease
			of orthogonal variables i.e. principal	patterns are not well
			components. The PCA therefore includes (i)	recognized.
			extraction of the most significant features from	In future, they will
			database; (ii) compress the size of the data set by	design more robust
			keeping only this significant information; (iii)	Classifier
			simplify the description of the data set. Principal	considering features
			components are expressed as linear	like texture, leaf
			combinations of the original variables.	shape.
			The frequency of detected diseases on cotton	
			leaves are 28%.	
4	Classification	Neural	This paper mainly discussed the process to	In order to improve
	of Watermelon	Network	classify Anthracnose and Downey Mildew,	the effectiveness of
	Leaf Diseases	Pattern	watermelon leaf diseases using neural network	this classification
	Using	Recognition,	analysis. A few of infected leaf samples were	system for the
	Neural	Statistical	collected and they were captured using a digital	watermelon leaf
	Network	Package for	camera with specific calibration procedure under	diseases, it is
	Analysis	the Social	controlled environment. The classification on the	recommended to use
		Sciences	watermelon's leaf diseases is based on color	a high pixel of
		(SPSS)	feature extraction from RGB color model where	digital camera to get
			the RGB pixel color indices have been extracted	the best images.
			from the identified Regions of Interest (ROI).	Also recommended
			The proposed automated classification model	to increase the
			involved the process of diseases classification	number of
			using Statistical Package for the Social	data for the training
			Sciences(SPSS) and Neural Network Pattern	and testing to get the
			Recognition Toolbox in MATLAB.	best result. In
			Determinations in this work have shown that the	addition, the lighting
			type of leaf diseases achieved 75.9% of accuracy	setup must be in

			based on its RGB mean color component.	proper position
				because it also can
				affect the image
				captured. Besides
				that,
				the other color
				model can be used
				as the input in order
				to increase the
				efficiency such as
				Cyan, Magenta,
				Yellow (CMY), Hue
				Saturation Value
				(HSV)and Hue
				Saturation Lightness
				(HSL).
5	Classification	Artificial	This paper presents about classification of rubber	In order to increase
	of Rubber Tree	neural	leaf diseases through automation and utilizing	the effectiveness of
	Leaf Diseases	network(AN	primary RGB	this classification
	Using	N),	color model. Several rubber tree leaf diseases are	system, it is
	Multilayer	Principal	been studied for digital RGB color extraction	recommended to use
	Perceptron	component	where three sets of rubber tree leaf diseases	a high pixel of
	Neural	analysis(image are digitally captured under standard and	digital camera for
	Network	PCA)	control environment. The identified regions of	higher accuracy of
			interest (ROI) these diseases images are then	capturing color
			processed to quantify the normalized indices	images and
			from the RGB color distribution. This system	providing better
			involved the process of image classification by	processor and
			using artificial neural network where 600	computer
			samples were used as training while another 200	specification since
			samples were for testing. The optimized ANN	color resolution and
			model in this work has two method which based	processing time

			only on the dominant pixel RGB (mean) and	totally relies on
			applying principle component analysis (PCA) on	processor used. In
			the pixel gradation values of each image.	addition other
				models can be
				considered at input
				for better efficiency.
6	Leaf Disease	Artificial	This paper proposes an approach for leaf disease	Accuracy is
	Detection and	Neural	detection and classification on plants using	improved by the use
	Classification	Network,	image processing. The algorithm presented has	of different image
	using Neural	Back	three basic steps: Image Pre-processing and	processing
	Networks	Propagation	analysis, Feature Extraction and Recognition of	techniques such as
		Neural	plant disease. The plant disease diagnosis is	image analysis, pre-
		Network,	restricted by person's visual capabilities as it is	processing, feature
		Support	microscopic in nature. Due to optical nature of	extraction and
		Vector	plant monitoring task, computer visualization	classification. Speed
		Machine.	methods are adopted in plant disease	and accuracy are the
			recognition. The aim is to detect the symptoms	two main
			of the disease occurred in leaves in an accurate	characteristics of
			way. Once the captured image is pre-processed,	plant disease
			the various properties of the plant leaf such as	detection using
			intensity, color and size are extracted and sent to	machine learning
			SVM classifier with Back propagation Neural	method that must be
			Network for classification. For classification	achieved Using the
			between the affected leaves, classifiers depend	proposed method,
			upon the Bayes' theorem and SVM were used	the accuracy up to
			for classification and differences between the	92% can be
			affected leaves The experimental results	achieved. In future
			obtained using 169 images have shown that the	accuracy of
			classification accuracy by ANN ranges between	detection can be
			88% and 92%.	increased when
				using SVM classifier
				with more number of

				features.
7	Plant Disease	CNN	The proposed system helps in identification of	The proposed
	Detection		plant disease and provides remedies that can be	system is
	using CNN &		used as a	based on python and
	Remedy		defense mechanism against the disease. We use	gives an accuracy of
			Convolution Neural Network(CNN) which	around 78%. The
			comprises of different layers which are used for	accuracy and the
			prediction. A prototype drone model is also	speed can be
			designed which can be used for live coverage of	increased by use of
			large agricultural fields to which a high	Googles GPU for
			resolution camera is attached and will capture	processing . The
			images of the plants which will act as input for	system can be
			the software, based of which the software will	installed on Drones
			tell us whether the plant is healthy or not. With	so that aerial
			our code and training model we have achieved	survaillances of crop
			an accuracy level of 78% .Our software gives us	fields can be done.
			the name of the plant species with its confidence	
			level and also the remedy that can be taken as a	
			cure.	
8	Deep Neural	CNN	The latest generation of convolutional neural	The main goal for
	Networks		networks (CNNs) has achieved impressive	the future work will
	Based		results in the field of image classification. This	be developing a
	Recognition of		paper is concerned with a new approach to the	complete system
	Plant Diseases		development of plant disease recognition model,	consisting of server
	by Leaf Image		based on leaf image classification, by the use of	side components
	Classification		deep convolutional networks. Novel way of	containing a trained
			training and themethodology used facilitate a	model and an
			quick and easy	application for smart
			system implementation in practice.The	mobile devices with
			developed model is able to recognize 13	features such as
			different types of plant diseases out of healthy	displaying
			leaves, with the ability to distinguish plant leaves	recognized diseases

			from their surroundings.	in fruits, vegetables,
			Caffe, a deep learning framework developed by	and other plants,
			Berkley Vision and Learning Centre, was used to	based on leaf images
			perform the deep CNN training.	captured by the
			The experimental results on the developed model	mobile phone
			achieved precision between 91% and 98%, for	camera. This
			separate class tests, on average 96.3%.	application will
				serve as an aid to
				farmers (regardless
				of the level of
				experience),
				enabling fast and
				efficient recognition
				of plant diseases and
				facilitating the
				decision-making
				process when it
				comes to the use of
				chemical pesticides.
9	Using Deep	Machine	This paper proposes an approach for leaf disease	There are a number
	Learning for	learning	detection and classification on plants using	of
	Image Based	,Deep	image processing.	limitations.First,whe
	Plant Disease	learning,	Using a public dataset of 54,306 images of	n tested on a set of
	Detection	CNN.	diseased and healthy plant leaves collected under	images taken under
			controlled conditions, we train a deep	conditions different
			convolutional neural network to identify 14	from the images
			crops pecies and 26 diseases. The trained model	used for training, the
			achieves an accuracy of 99.35% on a held-out	model's accuracy is
			testset ,demonst rating the feasibility of this	reduced
			approach. Overall, the approach of training deep	substantially, to just
			learning model son increasingly large and	above 31%.
				The second

	publicly available image datasets presents a clear	limitation is that we
	path toward smartphone-assisted crop disease	are currently
	diagnosis on a massive global scale.	constrained to the
		classification of
		single leaves, facing
		up, on a
		homogeneous
		background.While
		these are
		straightforward
		conditions, a real
		world application
		should be able to
		classify images of a
		disease as it presents
		itself directly on the
		plant. Indeed, many
		diseases don't
		present themselves
		on the upper side of
		leaves only (or at
		all), but on many
		different parts of the
		plant. Thus, new
		image collection
		efforts should try to
		obtain images from
		many different
		perspectives, and
		ideally from settings
		that are as realistic
		as possible.
		as possible.

10	Plant Leaf	CNN,	This paper is concerned with a new approach to	The main goal for
	Disease	Deep	the development of plant disease recognition	the future work will
	Detection	learning,	model, based on leaf image classification, by the	be developing a
	using Deep	Image	use of deep convolutional networks.	complete system
	Learning and	processing	All essential steps required for implementing this	consisting of server
	Convolutional		disease recognition model are fully described	side components
	Neural		throughout the paper, starting from gathering	containing a trained
	Network		images in order to create a database, assessed by	model and an
			agricultural experts, a deep learning framework	application for smart
			to perform the deep CNN training. This method	mobile devices with
			paper is a new approach in detecting plant	features such as
			diseases using the deep convolutional neural	displaying
			network trained and fine-tuned to fit accurately	recognized diseases
			to the database of a plant's leaves that was	in fruits, vegetables,
			gathered independently for diverse plant	and other plants,
			diseases. The advance and novelty of the	based on leaf images
			developed model lie in its simplicity; healthy	captured by the
			leaves and background images are in line with	mobile phone
			other classes, enabling the model to distinguish	camera. This
			between diseased leaves and healthy ones or	application will
			from the environment by using deep CNN.	serve as an aid to
				farmers (regardless
				of the level of
				experience),
				enabling fast and
				efficient recognition
				of plant diseases and
				facilitating the
				decision-making
				process when it
				comes to the use of
				chemical pesticides.

	Furthermore, future
	work will involve
	spreading the usage
	of the model by
	training it for plant
	disease recognition
	on wider land areas,
	combining aerial
	photos of orchards
	and vineyards
	captured by drones
	and convolution
	neural networks for
	object detection.

Deep Learning Model For Plant Disease Detection And Diagnosis
3. DESIGN AND DRAWING
3. DESIGN AND DRAWING
SKNCOE, DEPT. OF ELECTRONICS & TELECOMMUNICATION ENGINEERING

3.1 FLOW DIAGRAM

FIG 3.1 FLOW DIAGRAM

3.2 BLOCK DIAGRAM

3.3 BLOCK DIAGRAM DESCRIPTION

- Dataset collection: we have collected dataset from plantvillage. We analyze 16,012 images of tomato leaves. Each class label is a crop-disease pair, and we make an attempt to predict the crop-disease pair given just the image of the plant leaf. In all the approaches described in this report, we resize the images to 256 × 256 pixels, and we perform both the model optimization and predictions on these downscaled images.
- We start with the PlantVillage dataset as it is, in color; then we experiment with a gray-scaled version of the PlantVillage dataset, and the image goes through number of processing steps like preprocessing, feature extraction, selection of feature.
- In preprocessing, noise and distortion is removed. finally we run all the experiments on a version of the PlantVillage dataset where the leaves were segmented, hence removing all the extra background information which might have the potential to introduce some inherent bias in the dataset due to the regularized process of data collection in case of PlantVillage dataset. Segmentation was automated by the means of a script tuned to perform well on our particular dataset. We chose a technique based on a set of masks generated by analysis of the color, lightness and saturation components of different parts of the images in several color spaces (Lab and HSB). One of the steps of that processing also allowed us to easily fix color casts, which happened to be very strong in some of the subsets of the dataset, thus removing another potential bias.
- The model is properly trained using CNN and classification take placed. CNN algorithm contains steps such as convolution, pooling, ReLU, fully connected layer.
- The comparison of test image and trained model takes place. This set of experiments
 was designed to understand if the neural network actually learns the "notion" of plant
 diseases, or if it is just learning the inherent biases in the dataset, followed by display
 of the result.
- If there is detect or disease in the plant software display disease along with remedy.

3.4 METHODS

Fig 3.2 Vision algorithm pipeline

Image Pre-Processing: Pre-processing is a common name for operations with images at the lowest level of abstraction -- both input and output are intensity images. The aim of pre-processing is noise reduction, an improvement of the image data that suppresses unwanted distortions or enhances some image features important for further processing. Some of the point processing techniques include: contrast stretching, global thresholding, histogram

equalisation, log transformations and power law transformations. Some mask processing techniques include averaging filters, sharpening filters, local thresholding etc.

ROI Selection: It is sometimes of interest to process a single subregion of an image, leaving other regions unchanged. This is commonly referred to as region-of-interest (ROI) processing. Image sub regions may be conveniently specified by using Mathematica Graphics primitives, such as Point, Line, Circle, Polygon, or simply as a list of vertex positions. A region of interest (ROI) is a portion of an image that you want to filter or perform some other operation on. You define an ROI by creating a binary mask, which is a binary image that is the same size as the image you want to process with pixels that define the ROI set to 1 and all other pixels set to 0. More than one ROI in an image can be defined. The regions can be geographic in nature, such as polygons that encompass contiguous pixels, or they can be defined by a range of intensities. In the latter case, the pixels are not necessarily contiguous. Image segmentation technique is used to partition an image into meaningful parts having similar features and properties. The main aim of segmentation is simplification i.e. representing an image into meaningful and easily analyzable way. Image segmentation is necessary first step in image analysis. Divide an image into several parts/segments having similar features or attributes.

Modeling of ROI:

Object detection and object recognition are similar techniques for identifying objects, but they vary in their execution. Object detection is the process of finding instances of objects in images. In the case of deep learning, object detection is a subset of object recognition, where the object is not only identified but also located in an image. This allows for multiple objects to be identified and located within the same image.

Decision Making: Decision making becomes more insightful and accurate because of Deep Learning technology. There is less need for manual data aggregation and document reviewing, and more time can be spent on processing, analyzing, and acting upon the data.

3.5 Convolutional Neural Network (CNN)

FIG 3.3 CNN ARCHITECTURE

A neural network is a system of interconnected artificial "neurons" that exchange messages between each other. The connections have numeric weights that are tuned during the training process, so that a properly trained network will respond correctly when presented with an image or pattern to recognize. The network consists of multiple layers of feature-detecting "neurons". Each layer has many neurons that respond to different combinations of inputs from the previous layers. As shown in Figure 3.4 the layers are built up so that the first layer detects a set of primitive patterns in the input, the second layer detects patterns of patterns, the third layer detects patterns of those patterns, and so on. Typical CNNs use 5 to 25 distinct layers of pattern recognition. A CNN consists of an input and an output layer, as well as multiple hidden layers. The hidden layers of a CNN typically consist of convolutional layers, pooling layers, ReLU, fully connected layers and normalization layers.

- Convolutional: Convolutional layers apply a convolution operation to the input, passing the result to the next layer. The convolution emulates the response of an individual neuron to visual stimuli. Each convolutional neuron processes data only for its receptive field. Although fully connected feed forward neural networks can be used to learn features as well as classify data, it is not practical to apply this architecture to images. A very high number of neurons would be necessary, even in shallow (opposite of deep) architecture, due to the very large input sizes associated with images, where each pixel is a relevant variable. For instance, a fully connected layer for a (small) image of size 100 x 100 has 10000 weights for each neuron in the second layer. The convolution operation brings a solution to this problem as it reduces the number of free parameters, allowing the network to be deeper with fewer parameters. For instance, regardless of image size, tiling regions of size 5 x 5, each with the same shared weights, requires only 25 learnable parameters. In this way, it resolves the vanishing or exploding gradients problem in training traditional multilayer neural networks with many layers by using back propagation.
- Pooling: Convolutional networks may include local or global pooling layers, which combine the outputs of neuron clusters at one layer into a single neuron in the next layer. For example, max pooling uses the maximum value from each of a cluster of neurons at the prior layer. Another example is average pooling, which uses the average value from each of a cluster of neurons at the prior layer.

- Non-linear layers: Neural networks in general and CNNs in particular rely on a non-linear "trigger" function to signal distinct identification of likely features on each hidden layer. CNNs may use a variety of specific functions—such as rectified linear units (ReLUs) and continuous trigger (non-linear) functions—to efficiently implement this non-linear triggering.
- **ReLU:** A ReLU implements the function y = max(x,0), so the input and output sizes of this layer are the same. It increases the nonlinear properties of the decision function and of the overall network without affecting the receptive fields of the convolution layer. In comparison to the other non-linear functions used in CNNs (e.g., hyperbolic tangent, absolute of hyperbolic tangent, and sigmoid), the advantage of a ReLU is that the network trains many times faster. ReLU functionality, with its transfer function plotted above the arrow.
- Fully Connected: Fully connected layers connect every neuron in one layer to every neuron in another layer. It is in principle the same as the traditional multi-layer perceptron neural network (MLP). Fully connected layers are often used as the final layers of a CNN. These layers mathematically sum a weighting of the previous layer of features, indicating the precise mix of "ingredients" to determine a specific target output result. In case of a fully connected layer, all the elements of all the features of the previous layer get used in the calculation of each element of each output feature.

	Deep Learning Model For Plant Disease Detection And Diagnosis	
1	SOFTWARE REQUIREMENT SPECIFICATION	
٦	SOFT WARE REQUIREMENT SI ECIFICATION	

4.1 PURPOSE

The purpose of this document is to collect and analyse all associated ideas that come up to

design the system. Also we will predict how this can be used to prepare the outline of the

project which can be later developed and we document the ideas that can be later consider or

may be discarded when project being developed. In short SRS provides the detail view of our

software product. The SRS the project target audience and its user interface, hardware and

software requirement. It defines product and its functionality. It also assists developer during

SDLC.

4.2 FUNCTIONAL REQUIREMENT

1. Performance: The system should perform efficiently and effectively.

2. Re-usability: The system should work properly when used as a standalone system or

integrated with other system.

3. Maintainability: The system should be maintainable. The architecture and design should

be flexible for change and well documented.

4. Scalability: The system should be able to handle huge amount of records.

5. Consistency: The system should provide accurate results to the user.

4.3 NON FUNCTIONAL REQUIREMENTS

1. Interface Requirements

2. Performance Requirements the project has the following performance requirements:

-The prime requirement is that no error condition causes a project to exit

abruptly

-Any error occurred in any process should return an understandable error

message.

SKNCOE, DEPT. OF ELECTRONICS & TELECOMMUNICATION ENGINEERING 2019-20

-The response should be fairly fast, the action participants should not be confused at any point of time about action that is happening.

-The system performance is adequate.

Software quality attributes the difference between an amateur product and a carrier grade product is not much in functionality; it is in Quality. For any serious business to depend on a piece of software to continue to function and evolve as needed, along list of quality attributes or abilities' are required. The list seems to be long, but each ability is vital. If you get stuck with something that doesn't have any one of the required abilities.

4.4 INTERFACES

4.4.1 Software Requirement

1. Android Studio 3.2.1

Android Studio is the official integrated development environment (IDE) for Google's Android operating system, built on JetBrains' IntelliJ IDEA software and designed specifically for Android development.

Features

- Gradle-based build support
- Android-specific refactoring and quick fixes
- Lint tools to catch performance, usability, version compatibility and other problems
- ProGuard integration and app-signing capabilities
- Template-based wizards to create common Android designs and components
- A rich layout editor that allows users to drag-and-drop UI components, option to preview layouts on multiple screen configurations

- Support for building Android Wear apps
- Built-in support for Google Cloud Platform, enabling integration with Firebase Cloud Messaging (Earlier 'Google Cloud Messaging') and Google App Engine
- Android Virtual Device (Emulator) to run and debug apps in the Android studio.

2. Python Programming Language

Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. Its high-level built in data structures, combined with dynamic typing and dynamic binding, make it very attractive for Rapid Application Development, as well as for use as a scripting or glue language to connect existing components together. Python's simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program maintenance. Python supports modules and packages, which encourages program modularity and code reuse. The Python interpreter and the extensive standard library are available in source or binary form without charge for all major platforms, and can be freely distributed.

Debugging Python programs is easy: a bug or bad input will never cause a segmentation fault. Instead, when the interpreter discovers an error, it raises an exception. When the program doesn't catch the exception, the interpreter prints a stack trace. A source level debugger allows inspection of local and global variables, evaluation of arbitrary expressions, setting breakpoints, stepping through the code a line at a time, and so on. The debugger is written in Python itself, testifying to Python's introspective power. On the other hand, often the quickest way to debug a program is to add a few print statements to the source: the fast edit-test-debug cycle makes this simple approach very effective.

Python programs generally are smaller than other programming languages like Java. Programmers have to type relatively less and indentation requirement of the language, makes them readable all the time.

Python language is being used by almost all tech-giant companies like – Google, Amazon, Facebook, Instagram, Dropbox, Uber... etc.

The biggest strength of the Python is large library which can be used for the following

- Machine Learning
- GUI Applications (like Kivy, Tkinter, PyQt etc.)
- Web frameworks like Django (used by YouTube, Instagram, Dropbox)
- Image processing (like OpenCV, Pillow)
- Web scraping (like Scrapy, BeautifulSoup, Selenium)
- Test frameworks
- Multimedia
- Scientific computing
- Text processing

Version Python 3.5.9 - Nov. 2, 2019

Anaconda Navigator

Anaconda Navigator is a desktop graphical user interface (GUI) included in Anaconda distribution that allows you to launch applications and easily manage conda packages, environments, and channels without using command-line commands. Navigator can search for packages on Anaconda Cloud or in a local Anaconda Repository. It is available for Windows, macOS, and Linux.

Use of Navigator

In order to run, many scientific packages depend on specific versions of other packages. Data scientists often use multiple versions of many packages and use multiple environments to separate these different versions.

The command-line program conda is both a package manager and an environment manager. This helps data scientists ensure that each version of each package has all the dependencies it requires and works correctly.

Navigator is an easy, point-and-click way to work with packages and environments without needing to type conda commands in a terminal window. You can use it to find the packages you want, install them in an environment, run the packages, and update them – all inside Navigator.

The following applications are available by default in Navigator:

- JupyterLab
- Jupyter Notebook
- Spyder
- VSCode
- Glueviz
- Orange 3 App
- RStudio

Run Code On Navigator

The simplest way is with Spyder. From the Navigator Home tab, click Spyder, and write and execute your code.

You can also use Jupyter Notebooks the same way. Jupyter Notebooks are an increasingly popular system that combine your code, descriptive text, output, images, and interactive interfaces into a single notebook file that is edited, viewed, and used in a web browser.

Conda

Package, dependency and environment management for any language—Python, R, Ruby, Lua, Scala, Java, JavaScript, C/C++, FORTRAN, and more.

Conda is an open source package management system and environment management system that runs on Windows, macOS and Linux. Conda quickly installs, runs and updates packages and their dependencies. Conda easily creates, saves, loads and switches between environments on your local computer. It was created for Python programs, but it can package and distribute software for any language.

Conda as a package manager helps you find and install packages. If you need a package that requires a different version of Python, you do not need to switch to a different environment manager, because conda is also an environment manager. With just a few commands, you can set up a totally separate environment to run that different version of Python, while continuing to run your usual version of Python in your normal environment.

Anaconda Cloud

Anaconda Cloud is a package management service by Anaconda. Cloud makes it easy to find, access, store and share public notebooks, environments, and conda and PyPI packages. Cloud also makes it easy to stay current with updates made to the packages and environments you are using. Cloud hosts hundreds of useful Python packages, notebooks and environments for a wide variety of applications. You do not need to log in, or even to have a Cloud account, to search for public packages, download and install them. You can build new packages using the Anaconda Client command line interface (CLI), then manually or automatically upload the packages to Cloud to quickly share with others or access yourself from anywhere.

3. Xampp server 7.3.6

XAMPP stands for Cross-Platform (X), Apache (A), MariaDB (M), PHP (P) and Perl (P).

Version 7.3.12

Letter	Meaning	
X	as an ideographic letter referring to cross-platform ^[5]	
A	Apache ^[6] or its expanded form, Apache HTTP Server ^[5]	
M	MariaDB ^[7] (formerly: MySQL ^{[5][7]})	
P	PHP ^{[6][5]}	
P	PERL ^{[6][5]}	

Deep Learning Model For Plant Disease Detection And Diagnosis

XAMPP is a free and open-source cross-platform web server solution stack package

developed by Apache Friends, consisting mainly of the Apache HTTP Server, MariaDB

database, and interpreters for scripts written in the PHP and Perl programming

languages. Since most actual web server deployments use the same components as

XAMPP, it makes transitioning from a local test server to a live server possible. Since

XAMPP is simple, lightweight Apache distribution it is extremely easy for developers to

create a local web server for testing and deployment purposes. Everything you needed is

to set up a web server - server application (Apache), database (MariaDB), and scripting

language (PHP). XAMPP works equally well on Linux, Mac, and Windows.

Officially, XAMPP's designers intended it for use only as a development tool, to allow

website designers and programmers to test their work on their own computers without any

access to the Internet. To make this as easy as possible, many important security features

are disabled by default. XAMPP has the ability to serve web pages on the World Wide

Web. A special tool is provided to password-protect the most important parts of the

package.XAMPP also provides support for creating and manipulating databases

MariaDB and SQLite among others.

Once XAMPP is installed, it is possible to treat a localhost like a remote host by

connecting using an FTP client. Using a program like FileZilla has many advantages when

installing a content management system (CMS) like Joomla or WordPress[further

explanation needed]. It is also possible to connect to localhost via FTP with an HTML

editor.

4.4.2 Hardware Requirement

1. Processor: Intel Core i3

2. Speed: 1.1 GHz or Higher

3. RAM: 2 GB or Higher

4 .Hard Disk: 100 GB or Higher

SKNCOE, DEPT. OF ELECTRONICS & TELECOMMUNICATION ENGINEERING 2019-20

Page 32

Deep Learning Model For Plant Disease Detection And Diagnosis
5. PROJECT IMPLEMENTATION
SKNCOE, DEPT. OF ELECTRONICS & TELECOMMUNICATION ENGINEERING

5.1 Model

We experimented with two types of images to see how the model work and what exactly it learns, first we take the image as it is with 3 color channels, and then we experimented with 1 color channel images (Gray-Scale). And as expected the model learns different patterns in each approach.

Our model takes raw images as an input, so we used Convolutional Neural Networks (CNNs) to extract features, in result the model would consist of two parts:

- The first part of the model (features extraction), which was the same for full-color approach and gray-scale approach, it consist of 4 Convolutional layers with Relu activation function, each followed by Max Pooling layer.
- The second part after the flatten layer contains two dense layers for both approaches, but in full-color the first has 256 hidden units which makes the total number of network trainable parameters 3,601,478, in the other hand gray-scale approach has 128 hidden units in the first dense layer and 1,994,374 as total trainable parameters, we shrank the size of the gray-scale network to avoid overfitting, for the last layer for both has Softmax as activation and 6 outputs representing the 6 classes.
- We have selected 4000 tomato leaves images for training purpose and 2000 images for testing purpose.

FIG 5.1 TOMATO LEAF DATASET

5.1.1 Server Side Program Flow

FIG 5.2 SERVER RUN CONFIGURATION

FIG 5.1 SERVER'S REPLY

Deep Learning Model For Plant	Disease Detection And Diagnosis	
(DECI	T TP	
6. RESU	LI	

6.1 OUTCOME

We have selected 4000 tomato leaves images for training purpose and 2000 images for testing purpose. In image classification, CNNs outperform traditional image processing methods in several applications. According to the results, the recognition rate of our system was above 94% when using the CNN, even when 30% of the leaf was damaged. Our system therefore improves upon previous studies, which achieved a recognition rate of approximately 90%

6.2 SCREENSHOTS

FIG 6.1 FRONT PAGE OF LEAFDETECTION

FIG 6.2 SELECTION OF LANGUAGE

In our Android application anyone can click the picture of leaf using device's camera or may use already existing tomato leaves images in the device.

FIG 6.3 LEAF SELECTION

6.3 LEAF DISEASE DETECTION & SUGGESTION OF PESTICIDES

FIG 6.4 DISEASE DETECTION(MARATHI)

FIG 6.5 DISEASE DETECTION(ENGLIS H)

Deep Learning Model For Plant Disease Detection And Diagnosis
7. FUTURE SCOPE

In automation or computer vision many methods are available for plant infection recognition and categorization process, but still, this research field needs attention. There is lack in commercial explanation as well as solutions in the marketplace, apart from those handling with plants species recognition based on the leaves images.

- Very few method available for disease identification during early stages of crops using deep learning methods
- For Multisperal/Hyperspectral processing, Satellite images are to be used and the main constrain is availability of hyper zoomed images for specific crop or plant.
- Multisperal/Hyperspectral data consist of a massive quantity of narrow and nearby spectral bands. Initial working is necessary on these spectral bands for spectral data analysis and modeling. Which may poses as a challenge

Deep Learning Model For Plant Disease Detection And Diagnosis
8. CONCLUSION
SKNCOE, DEPT. OF ELECTRONICS & TELECOMMUNICATION ENGINEERING

CONCLUSION

Image processing technique based approach is proposed and useful for plant disease detection. Recognizing the disease is mainly the purpose of the proposed approach that can recognize the leaf diseases with little computational effort. This proposed approach consists of 4 phases. Accuracy is improved by the use of different image processing techniques such as image analysis, pre-processing, feature extraction and classification. Speed and accuracy are the two main characteristics of plant disease detection using machine-learning methods that must be achieved.

In future research we will attempt to recognize leaves attached to branches, in order to develop a visual system that can replicate the method used by humans to identify plant types.

REFERENCES

- 1) A Fungus Spores Dataset and a Convolutional Neural Networks based Approach for Fungus Detection, Muhammad Waseem Tahir, Nayyer Abbas Zaidi, Adeel Akhtar Rao, Roland Blank, Michael J. Vellekoop and Walter Lang IEEE Transaction On Nanobioscience, Vol. Xx, No. Xx, May 2018
- 2) Identification of Maize Leaf Diseases Using Improved Deep Convolutional Neural Networks Xihai Zhang, (Member, Ieee), Yue Qiao, Fanfeng Meng, Chengguo Fan, And Mingming Zhang, School of Electronic Engineering and Information, Northeast Agricultural University, Harbin 150030, China
- 3) Diagnosis of Diseases on Cotton Leaves Using Principal Component Analysis Classifier, Viraj A. Gulhan ,Maheshkumar H. Kolekar,2014 Annual IEEE India Conference (INDICON)
- 4) Classification of Watermelon Leaf Diseases Using Neural Network Analysis Suhaili Beeran Kutty, Noor Ezan Abdullah, Dr. Hadzli Hashim, A'zraa Afhzan Ab Rahim, Aida Sulinda Kusim, Tuan Norjihan Tuan Yaakub, Puteri Nor Ashikin Megat Yunus, Mohd Fauzi Abd Rahman Faculty of Electrical Engineering, Universiti Teknologi Mara, Shah Alam, Selangor
- 5) Classification of Rubber Tree Leaf Diseases Using Multilayer Perceptron Neural Network, Noor Ezan Abdullah, Athirah A. Rahim, Hadzli Hashim and Mahanijah Md Kamal, The 5tn Student Conference on Research and Development -SCOReD 2007,11-12 December 2007, Malaysia
- **6)** Leaf Disease Detection and Classification using Neural Networks, V. Ramya1, M. Anthuvan Lydia2 Assistant Professor, Department of ECE, Saranathan College of Engineering, Trichy, India1,2,ISO 3297:2007 Certified Vol. 5, Issue 11, November 2016
- 7) Plant Disease Detection using CNN & Remedy, Adnan Mushtaq Ali Karol1, Drushti Gulhane2, Tejal Chandiwade3, B.E. Student, Dept. of EXTC, Rajiv Gandhi Institute of Technology, Mumbai, India1, B.E. Student, Dept. of EXTC, Rajiv Gandhi Institute of Technology, Mumbai, India2, B.E. Student, Dept. of EXTC, Rajiv Gandhi Institute of Technology, Mumbai, India3
- **8**) Deep Neural Networks Based Recognition of, Plant Diseases by Leaf Image Classification Srdjan Sladojevic, 1 Marko Arsenovic, 1 Andras Anderla, 1, Dubravko Culibrk, 2 and Darko

Stefanovic1, Department of Industrial Engineering and Management, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000Novi Sad, Serbia, Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy

- 9)UsingDeepLearningforImage-BasedPlantDiseaseDetection Sharada P.Mohanty1, 2,3, DavidP.Hughes4, 5,6 and MarcelSalathé 1, 2,3* 1 Digital EpidemiologyLab,EPFL,Geneva,Switzerland.
- **10**) Plant Leaf Disease Detection using Deep Learning and Convolutional Neural Network Anandhakrishnan MG Joel Hanson1, Annette Joy2, Jerin Francis3, Department of Computer Science Engineering, SCET, India