Com S 321 Spring 2018

Activity 2

1. Suppose you have a load/store computer with the following instruction mix:

Operation	Frequency	No. of Clock cycles
ALU ops	40%	1
Loads	20%	3
Stores	15%	3
Branches	25%	4

- (a) Compute the CPI for the above data. Show ALL your work.
- (b) We observe that 30% of the ALU ops are paired with a load (i.e., they occur together), and we propose to replace these ALU ops and their loads with a new instruction. The new instruction takes 1 clock cycle. With the new instruction added, branches take 6 clock cycles. Compute the CPI for the new version. Show ALL your work.
- (c) If the old clock is 20% faster than the new one, which version is faster and by what percent? Justify your answer quantitatively by showing ALL your work.
- 2. Suppose you have a load-store computer with the following instruction mix:

Operation	Frequency	Number of clock cycles
ALU ops	45 %	1
Loads	20 %	4
Stores	15 %	4
Branches	20 %	7

- (a) Compute the CPI. Show all your work.
- (b) We observe that 25% of the ALU ops are paired with a load (i.e., they occur together), and we propose to replace these ALU ops and their loads with a new instruction. Assume that this new instruction takes 3 clock cycles. However, with the new instruction added, branches will take 10 clock cycles instead of 7. Compute the CPI for the new version. Show all your work.
- (c) If the clock rate for the new version is 25% faster than the old version, which version is faster and by what percent? Justify your answer quantitatively. Show all your work.