RCHN:

methods like R-CNN, YOLO. with transformer based approach. Conditional DETR: Improved version of DETR.

@ refining query embeddings

6 faster convergence © better detection accuracy. Deformable DETR:

Used to handle high resolution inages.

Uses deformable attention mechanisms. focusing only on the relevant post of the image.

Especially for small or sparse object DETA:

Detection transformer with Anchor

Deta modifies DETR by re-introducing Anchor based queries into bearsformer

Framework Anchor based initialisation of queries

improves performance. Faster convergence & higher occuracy.

TATR: A table some dure recognition model that entends DETR-like-bransformers for tabular data estraction.

Pdfs & & canned forms. > Document analysis. Model **Key Feature Use Case** Strengths

DETR	End-to-end object detection with Transformers	Object detection and segmentation	Simplicity, no handcrafted components
Conditional DETR	Conditional queries for faster training	Faster training with DETR architecture	Speed and improved accuracy
Deformabl e DETR	Deformable attention for efficiency	High-resolution object detection	Handles small objects efficiently
DETA	Anchor-based query initialization	Faster convergence with Transformer	Best of both anchor-based and Transformer
Table Transforme r	Extract table structures from images	Table recognition in scanned documents	Tailored for tabular data extraction
YOLOS	Transformer-only architecture	Purely Transformer-based object detection	Simplified architecture, experimental

Origin of Transformers. 1982, John Hopfield -> 2NN

RNN evolved to form LSTM Each state Sn-Captures the

of 8n-1

 $S_1 = h(S_{-1}) - + S_n = h(S_{-1})$ In 1980; Yann Le Curn designed

CNN (Convolutional Neural Helwort) Late 2017, Transformers with attention head sublayers & more.

Attention layer manages the relationships between words in a segne by performing poin-wise analyses.

Transformers have a quadratic time complexity $O(n^2)$ because they analyze all relationships between words at once, leveraging parallel processing, aiming to understand the entire "book"—or data sequence—more thoroughly and quickly.

A generative model can be summed up t = f(n)transformer works at token level

(a piece of word) This makes the off dynamic based on the unputs.

Features of RNN: Oprocess input in sequence one at a time

The same weight across the network

LSTM:

Positional

Encoding

Input Embedding

Inputs

1

(3) Retains the memory of prevous right):

Output

Probabilities

Output

Embedding

Outputs

(shifted right)

Positional

Encoding

Softmax Linear The encoder Stack Add & Norm Feedforward Add & Norm Add & Norm Multi-Head Feedforward Attention Nx Add & Norm Add & Norm Masked Multi-Head Multi-Head Attention Attention

There is no recurrence network used here.

the cat cat sat sat on on the the mat ///// mat Attention will run dot product

between the word & all other words, including itself. Encoder mainly consists of

1) Mutti-breaded Attention Mechanism (2) Fully connected Feed forwal

network.