

Informe Venta de Cursos online

Asignatura: Proyecto de Integración

Sección: IEI(1)-170-N6/D

Nombre del académico: Manuel Alfredo Sanchez Carcamo

Nombre de los integrantes del grupo: Víctor Jara, Nelson Slamanca, Esteban Reyes

Fecha de entrega

21-10-2025

Contenido

I.	Intro	oducción	3
II.	Obje	etivos	4
III.	Desa	arrollo	5
1	. E	specificación de Arquitectura	5
	a)	Diseño de la Topología de comunicación.	5
	b)	Diseño de la infraestructura.	6
	c)	Diseño de la arquitectura.	7
2	. D	escripción de las tecnologías.	8
	a)	Análisis comparativo cualitativo/cuantitativo.	8
	b)	Selección de las herramientas.	9
3	. Ir	ntegración de las tecnologías.	.11
	a)	Selección de los proveedores de tecnología	11
	b)	Descripción de la seguridad y calidad.	13
4	. In	nplementación de la solución.	.14
	a)	Selección de plataformas.	14
	b)	Construcción de prototipo de la solución.	15
5	. А	plicación de métodos, estándares y buenas prácticas	.15
	a)	Cumplimiento en los criterios de aceptación.	15
	b)	Cumplimiento de estándares normativos.	16
	c)	Cumplimiento de buenas prácticas.	16
	d)	Cumplimiento de rendimiento y eficiencia.	16
	e)	Cumplimiento de Seguridad.	17
6	. А	juste del Cronograma	.18
IV.	Con	clusiones	.19

Área Informática y Telecomunicaciones Ingeniería en Informática Proyecto de Integración -TIHI63

I. Introducción

El presente informe de desarrollo documenta la primera fase del proyecto "Plataforma de ventas de curso conecta saber", un sistema diseñado para la comercialización y entrega de contenido educativo en línea. Este documento se enfoca en la planificación técnica inicial, detallando la especificación de la arquitectura, la selección de las tecnologías más adecuadas y el esquema de integración de los diferentes componentes.

Se aborda el diseño de la arquitectura y la infraestructura, incluyendo la topología de comunicación que permite el flujo seguro de datos entre usuarios, servidores de aplicación y bases de datos. Posteriormente, se presenta un análisis comparativo que justifica la elección de herramientas y lenguajes clave, como Python con Django para el backend y React.js para el frontend, junto con PostgreSQL como sistema de gestión de bases de datos.

Finalmente, el informe establece los criterios para la implementación, seleccionando proveedores de servicios externos y plataformas de hosting. Se define un marco de seguridad integral, que incluye la protección de datos, la comunicación mediante HTTPS y la gestión segura de pagos. Este trabajo sienta las bases técnicas para la construcción de un prototipo de solución, asegurando el cumplimiento de estándares de calidad y rendimiento.

II. Objetivos

En este apartado se exponen los objetivos que guían el desarrollo y la documentación de la primera fase del proyecto de la plataforma de ventas de cursos.

Objetivo General

Documentar el diseño arquitectónico y justificar la selección tecnológica para la fase inicial de desarrollo del proyecto "Plataforma de ventas de curso conecta saber", asegurando la viabilidad técnica y operativa del prototipo.

Objetivos Específicos

- Especificar el diseño de la arquitectura de software, la topología de comunicación y la infraestructura en la nube del proyecto.
- Realizar un análisis comparativo para seleccionar las herramientas de desarrollo, la base de datos y los servicios externos (pagos, video y correo electrónico).
- Definir los proveedores tecnológicos y establecer un marco de seguridad y calidad del software para la protección de la información y la estabilidad del sistema.
- Seleccionar las plataformas finales para la implementación del prototipo, incluyendo frontend, backend, base de datos y hosting.

III. Desarrollo

Especificación de Arquitectura. 1.

Diseño de la Topología de comunicación.

b) Diseño de la infraestructura.

Inacap

c) Diseño de la arquitectura.

2. Descripción de las tecnologías.

a) Análisis comparativo cualitativo/cuantitativo.

Herramientas y lenguajes de desarrollo

Tipo	Elemento	Análisis Cualitativo	Análisis Cuantitativo
Lenguaje	Python	Permiten construir APIs robustas	Desarrollo del backend: ~30%
Backend	(Django) o	y seguras. Django facilita la	del esfuerzo total. Requiere al
	Node.js	autenticación, manejo de	menos 1 desarrollador
	(Express)	usuarios y administración.	backend con 3 meses de
		Node.js ofrece escalabilidad y	trabajo.
		buen rendimiento.	
Lenguaje	HTML5,	Tecnologías estándar para	Frontend: ~25% del esfuerzo
Frontend	CSS3,	interfaz web moderna y	total. Al menos 1 desarrollador
	JavaScript	responsive. React permite	frontend.
	(React o	componentes reutilizables y alto	
	Vue)	rendimiento.	
Base de	PostgreSQL	Sistemas relacionales confiables,	Licencia gratuita (open
datos	o MySQL	ideales para gestión de usuarios,	source).
		cursos, compras y progreso.	
Entorno	VS Code	IDEs populares y compatibles	Sin costo en versiones
de		con los lenguajes seleccionados.	Community. Instalación en
desarroll			todos los equipos de
0			desarrollo.

Componentes de hardware

Componente	Análisis Cualitativo	Análisis Cuantitativo
Servidor Web	Debe ser capaz de ejecutar servicios web	Recurso inicial: 2 CPU, 4 GB
/ Hosting	24/7, con soporte HTTPS y	RAM, 80 GB almacenamiento.
	almacenamiento de base de datos. Se	Costo mensual estimado: 30–
	recomienda usar AWS, Azure o Google	50 USD.
	Cloud.	
Equipos de	Computadoras para el equipo técnico	Mínimo: CPU i5, 8 GB RAM,
desarrollo	(programadores, diseñador, tester).	256 GB SSD. Costo aprox.
		600-800 USD por equipo.
Red /	Internet estable, necesaria para	Conexión ≥ 100 Mbps, costo
Conectividad	sincronización con repositorios y	promedio 40 USD/mes.
	despliegues en la nube.	

Servicio TI externos

Servicio	Análisis Cualitativo	Análisis Cuantitativo
Pasarela de pago	Permite procesar pagos automáticos,	Comisión por transacción:
(Stripe, PayPal,	simulados o reales. Integración vía	2.9% + 0.30 USD.
WebPay)	API.	
Correo electrónico	Para notificaciones automáticas de	100–500 correos gratuitos
(SendGrid, Mailgun o	registro, compra y certificados.	al mes; luego ~10 USD por
Gmail API)		cada 10.000.
Plataforma de video	Alojamiento externo para cursos	Uso gratuito o plan
(YouTube, Vimeo o	grabados o en vivo. Evita sobrecostos	premium desde 15
Zoom)	de almacenamiento.	USD/mes por instructor.

Herramientas de gestión y docuemntacion

Herramienta	Análisis Cualitativo	Análisis Cuantitativo
Trello / Jira /	Gestión ágil de tareas, backlog y control	Gratis o 10–15 USD/mes por
Notion	del avance del proyecto.	usuario (según plan).
Google	Comunicación y colaboración en línea	Desde 6 USD/mes por
Workspace /	(documentos, reuniones, etc.).	usuario.
Microsoft 365		

b) Selección de las herramientas. Lenguaje frontend.js con React.js

Selección:

Se selecciona React.js para la construcción del frontend interactivo. Justificación técnica:

- 1. Permite crear interfaces dinámicas y modulares, con componentes reutilizables.
- 2. Excelente integración con API REST (backend Django).
- 3. Facilita el desarrollo de una interfaz responsive compatible con dispositivos móviles.

Justificación económica:

1. Framework gratuito y open source.

2. Amplia documentación y disponibilidad de desarrolladores.

Base de datos: PostgreSQL

Selección:

Sistema de base de datos relacional PostgreSQL para almacenar usuarios, cursos, compras, progreso y certificados.

Justificación técnica:

- 1. Cumple con estándares ACID (Atomicidad, Consistencia, Aislamiento, Durabilidad).
- 2. Soporta consultas complejas, ideal para métricas de finalización o ventas.
- 3. Integración directa con Django ORM.

Justificación económica:

- 1. Licencia gratuita (open source).
- 2. Soporte en múltiples servicios cloud (AWS RDS, Azure Database, etc.).

Pasarela de pago: Stripe / PayPal / WebPay

Selección:

Uso de Stripe o WebPay (dependiendo del país) para procesar pagos en línea. Justificación técnica:

- 1. APIs seguras y bien documentadas.
- 2. Permite simular pagos en entorno de pruebas.
- 3. Facilita activación automática de cursos tras validación del pago.

Justificación económica:

1. Sin costos fijos; solo comisión por transacción (2.9% + 0.30 USD).

Plataforma de video embebido: YouTube / Vimeo / Zoom

Selección:

Integración de contenidos externos mediante videos embebidos o enlaces privados para cursos en vivo.

Justificación técnica:

1. Evita almacenamiento local de video (reduce carga del servidor).

2. Permite emitir clases en vivo o grabadas

Justificación económica:

1. Gratuito (YouTube) o bajo costo (Vimeo, Zoom desde 15 USD/mes).

Lenguaje de programación backend: Python con Django

Selección:

Se opta por Python (framework Django) para el desarrollo del backend, dado que ofrece un ecosistema maduro, seguro y con una amplia comunidad. Django incorpora autenticación, manejo de sesiones, ORM para base de datos y panel de administración nativo.

Justificación técnica:

- 1. Facilita la gestión de usuarios, pagos y accesos de forma estructurada.
- 2. Reduce los tiempos de desarrollo por su enfoque "batteries included".
- 3. Altamente compatible con PostgreSQL y servicios cloud (AWS, Azure, Heroku).

3. Integración de las tecnologías.

a) Selección de los proveedores de tecnología.

Infraestructura y hosting en la nube

Proveedor	Costo aproximado	Evaluación global	Desventajas
Amazon Web	EC2	Altamente escalable,	Configuración compleja,
Services	(servidores),	soporte global, gran	curva de aprendizaje
(AWS)	RDS (bases de	variedad de servicios,	alta.
	datos), S3	integración con Django.	
	(almacenamient		
	o), SES		
	(correo).		
Microsoft	Hosting, SQL	Integración fácil con	Ligeramente más
Azure	Database, App	entornos Windows, buena	costoso que AWS.
	Services,	documentación.	
	Storage, Mail.		

Google Cloud	Compute	Muy buena integración con	Límite de
Platform	Engine, Cloud	frontend (React/Firebase).	almacenamiento gratuito
(GCP)	SQL, Firebase		bajo.
	Hosting.		
Heroku	Despliegue	Ideal para MVPs,	Menor control de
(Salesforce)	rápido de apps	configuración simple,	infraestructura, limitado
	Django/Node.js.	despliegue automático.	para gran escala.

Pasarela de pago

Proveedor	Ventajas	Desventajas	Costos / Comisiones
Stripe	Fácil integración con	No disponible en todos	2.9% + 0.30 USD
	Django y React, soporte	los países	por transacción.
	global, panel de control	latinoamericanos.	
	intuitivo.		
PayPal	Reconocimiento mundial,	Integración más	3.5% + 0.30 USD.
	alta seguridad.	compleja, mayores	
		tarifas.	
WebPay	Local, adaptado al mercado	Documentación	2.5–3.0% por
(Transbank -	chileno, soporte a bancos	limitada, integración	transacción.
Chile)	nacionales.	más manual.	
MercadoPago	Muy usado en	Comisiones variables,	4–5% por
	Latinoamérica, fácil	retención de fondos en	transacción.
	integración.	algunos casos.	

Herramientas del desarrollo y gestión de proyectos

Provee	Herramienta	Ventajas	Costo
dor			
GitHub	Control de	Gratuito, integración con	Gratis o 4
	versiones y	CI/CD.	USD/usuario/mes.
	repositorios.		
Trello /	Gestión de tareas y	Visual, simple, adaptable	Gratis o 10
Notion	backlog.	a equipos pequeños.	USD/usuario/mes.
Slack /	Comunicación del	Eficiente y	Gratis (básico) o 6
Discor	equipo.	multiplataforma.	USD/usuario/mes.
d			

Plataforma de video y contenido multimedia

Proveedor	Ventajas	Desventajas	Costo
			estimado

YouTube	Gratuito, alta	Control limitado	Gratis.
(privado o	disponibilidad, sin límite de	sobre privacidad y	
no listado)	almacenamiento.	branding.	
Vimeo Pro	Control de acceso, alta	Costo mensual,	Desde 15
	calidad de video, sin	límites de	USD/mes.
	publicidad.	almacenamiento.	

b) Descripción de la seguridad y calidad.

Enfoque en la seguridad

El sistema está diseñado bajo un esquema de seguridad integral que abarca la protección de datos, el control de accesos y la comunicación segura entre los diferentes componentes:

Autenticación y control de acceso

Se implementa un sistema de autenticación basado en JSON Web Tokens (JWT), que permite identificar y controlar el acceso de cada usuario según su rol (administrador, instructor, estudiante o visitante). Esto garantiza que solo los usuarios autorizados puedan acceder a los cursos comprados o a los paneles de administración.

Cifrado y protección de contraseñas

Las credenciales de usuario se almacenan cifradas mediante algoritmos seguros como bcrypt o Argon2, evitando vulnerabilidades ante accesos no autorizados.

Comunicación segura (HTTPS)

Todo el tráfico entre el cliente (navegador) y el servidor se realiza bajo el protocolo SSL/TLS, protegiendo la confidencialidad de los datos financieros y personales durante las transacciones

Seguridad en pagos

Al integrarse con pasarelas de pago certificadas (WebPay o Stripe), se delega la gestión de datos sensibles a proveedores que cumplen con los estándares PCI DSS, garantizando la seguridad de las operaciones financieras.

Protección del contenido educativo

El acceso a los videos y materiales está controlado mediante enlaces embebidos privados (YouTube no listado o Vimeo privado), reduciendo el riesgo de distribución no autorizada.

Enfoque en la calidad del software

La calidad del sistema se aborda desde las fases de diseño y desarrollo, aplicando buenas prácticas de ingeniería y herramientas que aseguran la mantenibilidad y la estabilidad del producto final:

Arquitectura modular (Django + React)

La separación entre frontend y backend permite una mayor mantenibilidad, escalabilidad y facilidad de actualización sin afectar al sistema completo.

Pruebas automatizadas y control de versiones

El uso de GitHub y pruebas unitarias en Django permite detectar errores antes del despliegue y mantener la trazabilidad de los cambios.

Estandarización del código

Se siguen convenciones internacionales (PEP8 para Python, ESLint para JavaScript), lo que mejora la legibilidad y reduce defectos.

Gestión ágil y control de calidad continua

Herramientas como Trello o Jira facilitan la planificación, priorización de tareas y revisión periódica del avance, fomentando un ciclo de mejora continua.

4. Implementación de la solución.

a) Selección de plataformas.

Para implementar la solución se necesitarán variadas herramientas y plataformas que permitan el correcto desarrollo de aplicaciones web.

- FrontEnd: React.js
 Se utilizará react gracias a su capacidad para crear interfaces dinámicas, modulares y compatibles con múltiples dispositivos.
- Backend: Python con Django
 Es un framework seguro que facilita la gestión de usuarios, autenticación, administración y conexión con bases de datos relacionales.
- Base de datos: PostgreSQL
 Sistema de gestión de base de datos relacional con alta compatibilidad con
 Django. Permite almacenar información sobre los usuarios, pagos y certificados.
- Hosting: Heroku

Esta plataforma ofrece completo soporte para Django, con escalabilidad automática y respaldo en la nube.

- Pasarela de pago: Webpay (Transbank)
 Permite el procesamiento seguro de los pagos, con validación automática de transacciones y es configurable para la activación inmediata de los cursos.
- Plataforma de video: Youtube (video no listado)
 Es una solución gratuita para la publicación y reproducción segura del contenido educativo, evitando también sobrecarga en el servidor.
- Gestión del proyecto: Github
 Se utilizará para el control de versiones y seguimiento del progreso de desarrollo.
- b) Construcción de prototipo de la solución.

5. Aplicación de métodos, estándares y buenas prácticas.

a) Cumplimiento en los criterios de aceptación.

Pruebas de interfaz: El sistema les permite a los usuarios poder visualizar un catálogo de los respectivos cursos grabados y en vivo con sus respectivos descripción y el precio correspondiente.

Pruebas de Ingreso: Los usuarios pueden registrarse, iniciar sesión y poder acceder según su respectivo rol (visitantes, estudiantes, instructores o administradores).

Pruebas de autenticación: Solo los estudiantes que compraron el curso pueden acceder a su contenido.

Simulación de pago: El estudiante puede realizar una compra en línea y obtener el acceso inmediato al curso.

Pruebas de seguimiento: El estudiante puede marcar módulos como completados y pode visualizar el progreso.

Verificación de base de datos: Las contraseñas deben de almacenarse cifradas.

Pruebas de carga: La plataforma soporta al menos 100 usuarios de manera simultánea.

Comparación con proceso mensuales: Se reduce el tiempo de validación de pagos y entrega de accesos.

b) Cumplimiento de estándares normativos.

ISO/IEC 25010 (calidad de software): Define los atributos como funcionalidad, fiabilidad, seguridad, usabilidad, rendimiento y mantenimiento.

ISO/IEC 27001 (seguridad de la información): Se aplican los principios de confidencialidad, integridad y disponibilidad en el manejo de datos personales y pagos.

ISO/IEC 12027 (ciclo de vida del software): Estructura del proceso de análisis, diseño, implementación, pruebas y mantenimiento.

c) Cumplimiento de buenas prácticas.

Control de versiones con GitHub: se utiliza un repositorio centralizado para mantener trazabilidad de los cambios, control de ramas y revisión de código colaborativa.

Metodología ágil (Scrum): se organizan iteraciones semanales que permiten evaluar el progreso y priorizar tareas de acuerdo con los requerimientos del cliente.

Estandarización del código: se aplican normas como PEP8 (Python) y ESLint (JavaScript) para garantizar un estilo uniforme, mejorar la legibilidad y prevenir errores comunes.

Documentación técnica continua: se mantiene documentación actualizada de la arquitectura, los casos de uso y los diagramas de componentes, lo que facilita la futura escalabilidad.

Pruebas automatizadas y validación manual: antes de cada despliegue se realizan pruebas unitarias en Django y pruebas de integración con la API para garantizar la estabilidad.

d) Cumplimiento de rendimiento y eficiencia.

Optimización del backend Django: uso de consultas ORM optimizadas y almacenamiento en caché para reducir la carga del servidor.

Frontend eficiente con React.js: renderizado por componentes y carga dinámica (lazy loading) para mejorar la velocidad de respuesta.

Compresión de archivos y minificación: aplicación de técnicas de compresión GZIP y minificación de recursos CSS/JS para acelerar la carga del sitio.

Uso de CDN (Content Delivery Network): permite distribuir los recursos estáticos y videos de manera eficiente, reduciendo la latencia en distintos dispositivos.

Monitoreo de rendimiento: integración de herramientas como Heroku Metrics o Google Lighthouse para evaluar tiempo de carga, consumo de recursos y experiencia del usuario.

e) Cumplimiento de Seguridad.

Autenticación basada en JWT (JSON Web Token): cada usuario se valida mediante un token único, evitando accesos no autorizados.

Cifrado de contraseñas: uso de algoritmos seguros como bcrypt o Argon2 para el almacenamiento en la base de datos.

Comunicación cifrada: todo el tráfico entre cliente y servidor se realiza bajo el protocolo HTTPS (TLS/SSL).

Pagos seguros: integración con pasarelas certificadas (WebPay o Stripe) que cumplen con los estándares PCI DSS para el manejo de información financiera.

Control de roles y permisos: los usuarios solo pueden acceder a las funciones correspondientes a su rol (administrador, instructor o estudiante).

6. Ajuste del Cronograma.

Área Informática y Telecomunicaciones Ingeniería en Informática Proyecto de Integración -TIHI63

IV. Conclusiones

El trabajo desarrollado ha permitido establecer una base sólida y bien fundamentada para la construcción de la plataforma de ventas de cursos. La definición de la arquitectura de tres zonas (Seguridad DMZ, Aplicación y Datos) garantiza una estructura modular, escalable y con seguridad distribuida, facilitando el desarrollo y la mantenibilidad a largo plazo.

La selección de la pila tecnológica, basada en Python con Django y React.js, se justifica no solo por la robustez y seguridad que ofrece el framework de backend, sino también por la eficiencia y el alto rendimiento que permite la creación de interfaces dinámicas en el frontend. El uso de PostgreSQL y la integración de servicios externos como Stripe/WebPay y plataformas de video embebido, demuestran un enfoque en la reducción de costos operativos y la delegación de responsabilidades complejas (como la seguridad de pagos) a proveedores especializados.

Desde la perspectiva de seguridad y calidad, el diseño incorpora prácticas esenciales como la autenticación con JWT, el cifrado de contraseñas y el cumplimiento de estándares internacionales (ISO/IEC 25010, 27001), lo que asegura la protección de los datos de los usuarios y la fiabilidad del sistema.

Como aportes al proyecto, se ha establecido un conjunto claro de criterios de aceptación y se han definido las herramientas clave (Heroku para hosting y Webpay para pagos) que orientarán directamente la fase de construcción del prototipo. A futuro, sería beneficioso profundizar en el diseño detallado de los microservicios si el proyecto escalara a grandes volúmenes de usuarios, y evaluar una estrategia de migración multicloud, más allá de Heroku, para optimizar costos de infraestructura a largo plazo.

V. Referencias bibliográficas

ISO/IEC 27001 (Seguridad de la Información) International Organization for Standardization. (2022). ISO/IEC 27001: Information security, cybersecurity and privacy protection — Information security management systems — Requirements. ISO. Recuperado de https://www.iso.org/standard/81223.html

ISO/IEC 25010 (Calidad de Software) International Organization for Standardization. (2018). ISO/IEC 25010: Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — System and software quality models. ISO. Recuperado de https://www.iso.org/standard/69921.html

ISO/IEC 830 (Requisitos de Software) International Organization for Standardization. (1993). ISO/IEC 830: Information technology — Specification of software requirements. ISO. Recuperado de https://www.iso.org/standard/5225.html

ISO/IEC 12027 (Ciclo de Vida del Software) International Organization for Standardization. (1998). ISO/IEC TR 12027: Information technology — Guide for the application of the process assessment standard to the improvement of the software life cycle processes. ISO. Recuperado de https://www.iso.org/standard/20261.html

ProcessOn. (2025, febrero 19). ¿Qué es un diagrama de topología de red? Conceptos, tipos y herramientas de dibujo. https://www.processon.io/es/blog/network-topology-es

Visual Paradigm. (s.f.). Software de diagramas de red. https://online.visual-paradigm.com/es/diagrams/features/network-diagram-software/

MyMap.AI. (s.f.). Creador de diagramas de red gratuito. https://www.mymap.ai/es/network-diagram-maker

Vargas, B. (2024, febrero 13). Guía completa sobre la creación de APIs: Paso a paso para desarrollar tu propia interfaz de programación. https://www.byronvargas.com/web/como-se-crea-un-api/

Lucidchart. (s.f.). Crear web API paso a paso. https://www.lucidchart.com/blog/es/como-crear-una-api

Apidog. (2025, junio 23). Cómo crear una API: Guía ilustrada paso a paso. https://apidog.com/es/blog/how-to-build-an-api-a-step-by-step-illustrated-guide-es/

Wix.com.. (s.f.). Crear página web gratis. https://es.wix.com/

Canva. (s.f.). Crea páginas web gratis con Canva. https://www.canva.com/es es/constructor-sitios-web/

WebCreativa.cl. (s.f.). Diseño web para todo Chile. https://webcreativa.cl/

Área Informática y Telecomunicaciones Ingeniería en Informática Proyecto de Integración -TIHI63

