

HDS Tutorial 2 Week 4

Brittany Blankinship | 3 & 5 May 2022 |

Audio check

Can you hear the presenter talking?

Please type **yes** or **no** in the "Text chat area"

If you can't hear:

- Check your Audio/Visual settings in the Collaborate Panel
- Try signing out and signing back into the session
- Type into the chat box and a moderator will try to assist you

Supported by

Recording

This session will now be recorded. Any further information that you provide during a session is optional and in doing so you give us consent to process this information.

These sessions will be stored by the University of Edinburgh for one year and published for 30 days after the event. Schools or Services may use the recordings for up to a year on relevant websites.

By taking part in a session, you give us your consent to process any information you provide during it.

Supported by

HDS Tutorial 2 Week 4

Brittany Blankinship | 3 & 5 May 2022 |

Agenda

- Plots vs Tables
- ggplot2 for making plots in R
- gt for making tables in R
- Q&A

Are you using R on your own device, Noteable, or both?

Do you think figures or tables are more useful for data visualisation?

Why do graphs and tables matter?

Both graphs AND tables are tools for communication

Informative and wellpresented graphs &
tables ARE better
communication

When to use tables vs graphs?

Use Tables When

Use Graphs When

- The display will be used to look up individual values
- It will be used to compare individual values
- Precise values are required
- Quantitative values include more than one unit of measure
- Both detail and summary values are included

- The display will be used to reveal relationships among whole sets of values
- The message is contained in the shape of the values (e.g., patterns, trends, exceptions)

Adapted from:

Few, Stephen. (2012). Show Me the Numbers: Designing Tables and Graphs to Enlighten.(4)57

ggplot2

- Application of Leland Wilkinson's grammar of graphics for R
- A system for iteratively and declaratively creating graphics
- Just like grammar in a language constructs sentences, grammar of graphics constructs data visualisations

Buildingblocksofaggplot

Theme Coordinates **Statistics Facets** Geometries Aesthetics **Data**

Element	Description	Code
Data	The dataset being plotted	ggplot(data = ,
Aesthetics	The scales onto which we map our data	<pre>aes(x, y, fill, color))</pre>
Geometries	The visual elements used for our data	+ geom_()
Facets	Plotting small multiples	+ facet_()
Statistics	Representations of our data to aid understanding	+ stat_()
Coordinates	The space on which the data will be plotted	+ coord_()
Themes	All non-data ink, design elements	+ theme_()

aes (x = Year, y = TotalCancelled)) + use the X axis to show "Year" then the Y axis to show "Total Cancelled" AND aesthetics layer

aes (x = TotalCancelled, y = TotalOperations) + use the X axis to show "Total Cancelled" then the Y axis to show "Total Operations" AND aesthetics layer

aes (x = TotalCancelled, y = TotalOperations) + use the X axis to show "Total Cancelled" then the Y axis to show "Total Operations" AND aesthetics layer

Aesthetics: Inside, Outside, or both

• Within aes(): the argument changes based on the values of the variable

Outside aes(): the argument is given a single value and doesn't change based on the values of the variable

Aesthetics: Inside vs Outside

Aesthetics: Inside vs Outside

Aesthetics: Inside, Outside, or both

- To learn more about the different aesthetic specifications
- For a list of colors in R

Aesthetics: Inside, Outside, or both

- To learn more about the different aesthetic specifications
- For a list of colors in R

Geoms: decisions, decisions

height, age, weight)

ONE VARIABLE continuous

c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

c + geom_area(stat = "bin")

x, y, alpha, color, fill, linetype, size

c + geom_density(kernel = "gaussian")

x, y, alpha, color, fill, group, linetype, size, weight

c + geom_dotplot()

x, y, alpha, color, fill

c + geom_freqpoly()

x, y, alpha, color, group, linetype, size

c + geom_histogram(binwidth = 5)

x, y, alpha, color, fill, linetype, size, weight

c2 + geom_qq(aes(sample = hwy))

x, y, alpha, color, fill, linetype, size, weight

discrete

d <- ggplot(mpg, aes(fl))

d + geom_bar()

x, alpha, color, fill, linetype, size, weight

Onevariable geoms

Continuous/numeric X

- Histogram
- Density plot
- Dot plot
- Etc.

Discrete/Categorical X

Bar charts

When visualising 2 variables

2 variable geoms: numeric

Continuous/numeric X & Y

- Line chart
- Scatter plot
- Etc.

TWO VARIABLES both continuous

e <- ggplot(mpg, aes(cty, hwy))

e + geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1) - x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

e + geom_point()

x, y, alpha, color, fill, shape, size, stroke

e + geom_quantile()

x, y, alpha, color, group, linetype, size, weight

e + geom_rug(sides = "bl")

x, y, alpha, color, linetype, size

e + geom_smooth(method = lm)

x, y, alpha, color, fill, group, linetype, size, weight

e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1) - x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

continuous bivariate distribution

h <- ggplot(diamonds, aes(carat, price))

h + geom_bin2d(binwidth = c(0.25, 500)) x, y, alpha, color, fill, linetype, size, weight

h + geom_density_2d()

x, y, alpha, color, group, linetype, size

h + geom_hex()

x, y, alpha, color, fill, size

continuous function

i <- ggplot(economics, aes(date, unemploy))

i + geom_area()

x, y, alpha, color, fill, linetype, size

i + geom_line()

x, y, alpha, color, group, linetype, size

i + geom_step(direction = "hv")

x, y, alpha, color, group, linetype, size

i + geom_step(direction = "hv")
x, y, alpha, color, group, linetype, size

2 variable geoms: numeric & categorical

Continuous/numeric X & Discrete/Categorical Y

Bar chart

Discrete/Categorical X & Continuous/numeric Y

- Box plot
- Dot plot
- Violin chart

one discrete, one continuous

f <- ggplot(mpg, aes(class, hwy))

f + geom_col()

x, y, alpha, color, fill, group, linetype, size

f + geom_boxplot()

x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, size, weight

f + geom_dotplot(binaxis = "y", stackdir = "center")

x, y, alpha, color, fill, group

f + geom_violin(scale = "area")

x, y, alpha, color, fill, group, linetype, size, weight

f + geom_violin(scale = "area") x, y, alpha, color, fill, group, linetype, size, weight

2 variable geoms: categorical

Discrete/categorical X & Y

- Mosaic charts
- Counts

both discrete g <- ggplot(diamonds, aes(cut, color)) g + geom_count() x, y, alpha, color, fill, shape, size, stroke e + geom_jitter(height = 2, width = 2) x, y, alpha, color, fill, shape, size</pre>

x, y, alpha, color, fill, shape, size

When visualising 3 variables

Start with a 2-variable visualization, then add color, shape, or size:

When visualising 3+variables

Visualising 3+variables: Facets

Fundamentally 2 dimensional

+facet_grid(row ~
 column)

Makes a matrix of panels by row & column faceting variables

Fundamentally 1 dimensional

+facet_wrap(variable)

Makes a long ribbon of panels

Geoms: decisions, decisions


```
ggplot(cancelled, aes(TotalCancelled, TotalOperations)) +
   geom_point() +
   geom_density2d()
```

ggplot2 layers

- Stacked in order of code appearance
- Important to keep in mind as elements written later in your code may hide or overwrite previous elements

gt tables

- Grammar of tables
- Pipe wrangled data to %>% gt()

The Parts of a gt Table

gt covered in more detail in Week 6!

Modify Rows Create Table gt() Create a gt table object row_group_order() Modify the ordering of any row groups gt_preview() Preview a gt table object Add Rows Create/Modify Parts summary_rows() Add summary rows using aggregation functions tab_header() Add a table header **Export Table** tab_spanner() Add a spanner column label qtsave() Save a gt table as a file tab_row_group() Add a row group Add label text to the stubhead Get the HTML content of a gt table as_raw_html() tab_stubhead_label() tab_footnote() as_latex() Output a gt object as LaTeX Add a footnote as_rtf() Save a gt object as an RTF file tab_source_note() Add a source note citation Extract a summary list from a gt object Modify the table output options extract_summary() tab_options() tab_style() Add custom styles to one or more cells Shiny Format Data A gt table render function for use in Shiny render_gt() Set a column format with a formatter function gt_output() Create a gt table output element for Shiny fmt() Format numeric values fmt_number() Information fmt_scientific() Format values to scientific notation View a table with info on date styles info_date_style() fmt_percent() Format values as a percentage info_time_style() View a table with info on time styles fmt_currency() Format values as currencies info_paletteer() View a table with info on color palettes fmt_date() Format values as dates View a table with info on supported currencies info_currencies() Format values as times fmt_time() info_locales() View a table with info on supported locales fmt_datetime() Format values as date-times fmt_markdown() Format Markdown text Datasets fmt_missing() Format missing values Format by simply passing data through countrypops Yearly populations of countries from 1960 to 2017 fmt_passthrough() Perform targeted text transformation with a function * Twice hourly solar zenith angles by month & latitude text_transform() sza data_color() Set data cell colors using a palette or a color function gtcars Deluxe automobiles from the 2014-2017 period sp500 Ib Daily S&P 500 Index data from 1950 to 2015 **Modify Columns** A year of pizza sales from a pizza place pizzaplace cols_align() Set the alignment of columns exibble A toy example tibble for testing with gt: exibble cols_hide() Hide one or more columns **Location Helpers** cols_label() Relabel one or more columns Helpers for targeting multiple cells in different locations cols_merge() Merge two columns to a single column cells_title() Merge two columns to a value range column cols_merge_range() cells_column_labels() Merge two columns to a value & uncertainty column cols_merge_uncert() cols_move() Move one or more columns cells_group() cols_move_to_end() cells_stub() cells_data() cols_move_to_start() Move one or more columns to the start cells_summary() cols_split_delim() Create group names and column labels via delimited names

Credit: Daniel J Sjoberg

Further Resources

(free!) ggplot2 book

R Graph Gallery

Questions?