1. Übungsblatt zum Ferienkurs Mathematik für Physiker 1

1. Matrizen und Vektoren

Aufgabe 1: Zeilenstufenform

(a) Bringe folgende Matrizen in $M_3(\mathbb{Q})$ auf Zeilenstufenform.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 6 & 5 \\ 7 & 2 & 4 \\ 8 & 9 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 & 9 \\ 4 & 3 & 8 \\ 5 & 6 & 7 \end{pmatrix}.$$

- (b) Bestimme den Rang der Matrizen A, B und C.
- (c) Ist das zu der Matrix M = A, B, C zugehörige homogene GLS Mx = 0 eindeutig lösbar?

Aufgabe 2: Matrix invertieren

Sind die Matrizen A und B invertierbar? Falls ja, bestimme die Inverse und prüfe dein Ergebnis anschließend mittels der Matrixmultiplikation $A^{-1}A = I_3$.

(a)
$$A = \begin{pmatrix} 3 & 2 & 6 \\ 1 & 1 & 3 \\ -3 & -2 & -5 \end{pmatrix}$$
, (b) $B = \begin{pmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 5 & 5 & 4 \end{pmatrix}$.

2. Lineare Gleichungssysteme

Aufgabe 3: Metall-Legierungen

Es seien Metall-Legierungen M_1, M_2, M_3 gegeben, die alle Kupfer, Silber und Gold enthalten, und zwar in folgenden Prozentsätzen:

	Kupfer	Silber	Gold	
M_1	20	60	20	
M_2	70	10	20	•
M_3	50	50	0	

Kann man diese Legierungen so mischen, dass eine Legierung entsteht, die 40% Kupfer, 50% Silber und 10% Gold enthält?

Aufgabe 4: Inhomogenes GLS

Bestimme die Lösungsmenge des folgenden inhomogenen Gleichungssystems:

$$-6x_1 + 6x_2 + 2x_3 - 2x_4 = 2,$$

$$-9x_1 + 8x_2 + 3x_3 - 2x_4 = 3,$$

$$-3x_1 + 2x_2 + x_3 = 1,$$

$$-15x_1 + 14x_2 + 5x_3 - 4x_4 = 5.$$

Aufgabe 5 (*): Eindeutige Lösbarkeit

Es seien $a, b \in \mathbb{R}$. Zeige, dass das lineare Gleichungssystem

$$x + ay + bz = 0,$$

$$bx + y + az = 0,$$

$$ax + by + z = 0,$$

genau dann eine von (0,0,0) verschiedene Lösung besitzt, wenn a=b=1 oder a+b+1=0 gilt. Bestimme in beiden Fällen die Lösungsmenge.

Hinweis: Für die Rückrichtung empfiehlt sich ein Beweis mittels Kontraposition.

Aufgabe 6: Schnitte von Ebenen

Im \mathbb{R}^3 seien drei affine Ebenen E_1, E_2, E_3 gegeben durch die Gleichungen

$$E_1: x_1 + x_2 + x_3 = 1,$$

 $E_2: x_1 - 2x_2 = 3,$
 $E_3: 3x_1 - 3x_2 + x_3 = 4.$

Bestimme alle paarweisen Schnitte der Ebenen. Was ist $E_1 \cap E_2 \cap E_3$? Fertige eine Skizze an.

3. Gruppen

Aufgabe 7: Sudokuregel

Sei $G = \{e, a, b\}$ eine Menge. Zeige, dass genau eine Verknüpfung $*: G \times G \to G$ existiert, mit der G zu einer dreielementigen Gruppe mit neutralem Element e wird.

Aufgabe 8: Rechnen in Gruppen

Sei G eine Gruppe mit neutralem Element e.

- (a) Es gelte $(ab)^2 = a^2b^2$ für alle $a, b \in G$. Zeige, dass G abelsch ist.
- (b) Es gelte $a^2 = e$ für alle $a \in G$. Zeige, dass G abelsch ist.

Aufgabe 9: Schnitte von Untergruppen

Sei (G,*) eine Gruppe und $H_1, H_2 \subseteq G$ Untergruppen von G. Zeige, dass $H_1 \cap H_2$ ebenfalls eine Untergruppe von G ist.

Aufgabe 10: Rechnen mit Permutationen

Berechne $\sigma\tau, \tau\sigma, \sigma^{-1}$ und τ^{-1} für folgende Permutationen $\sigma, \tau \in S_5$:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 1 & 5 \end{pmatrix}.$$

2

Stelle die Ergebnisse sowohl in Tupel- als auch Zykelschreibweise dar.

4. Vektorräume

Unterräume Aufgabe 11:

Welche der folgenden Teilmengen $M \subset \mathbb{R}^n$ bilden Unterräume?

- (a) Die Menge $M = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\} \subset \mathbb{R}^3,$ (b) Die Menge $M = \{(x, y) \in \mathbb{R}^2 | x^2 = y^2\} \subset \mathbb{R}^2,$
- (c) Die Menge $M = \{(x, y, z) \in \mathbb{R}^3 | z = 4x + 5y\} \subset \mathbb{R}^3$.

Aufgabe 12: Kurze Vektorraum-Beweise

Sei K ein Körper, V ein K-Vektorraum, $U \subset V$ ein Unterraum. Beweise folgende Aussagen:

- (a) Sei $v \in V$. Dann ist $v + U := \{v + w | w \in U\}$ ein Unterraum genau dann, wenn $v \in U$.
- (b) Der Lösungsraum eines inhomogenen linearen Gleichungssystems in K^n ist kein Unterraum.
- (c) Für Unterräume $U_1, U_2 \subseteq V$ ist $U_1 \cup U_2$ Unterraum genau dann, wenn $U_1 \subseteq U_2$ oder $U_2 \subseteq U_1$.

Aufgabe 13: Kurze Vektorraum-Beweise 2

Sei K ein Körper, V ein K-Vektorraum und $f,g:V\to V$ zwei lineare Abbildungen mit $f + g = id_V$. Beweise folgende Aussagen:

- (a) Es gilt V = Im(f) + Im(g),
- (b) Falls weiterhin gilt $\text{Im}(f) \cap \text{Im}(g) = \{0\}$, dann gilt auch

$$f \circ f = f$$
, $g \circ g = g$, $f \circ g = g \circ f = 0$.

Aufgabe 14: Erzeugnis

Betrachte \mathbb{R} als \mathbb{Q} -Vektorraum und bestimme $\langle \mathbb{N} \rangle \subset \mathbb{R}$.