

A SUZUKI-TYPE FIXED POINT THEOREM FOR NONLINEAR CONTRACTIONS

MORTAZA ABTAHI

ABSTRACT. We introduce the notion of admissible functions and show that the family of L-functions introduced by Lim in [Nonlinear Anal. 46(2001), 113–120] and the family of test functions introduced by Geraghty in [Proc. Amer. Math. Soc., 40(1973), 604–608] are admissible. Then we prove that if ϕ is an admissible function, (X, d) is a complete metric space, and T is a mapping on X such that, for $\alpha(s) = \phi(s)/s$, the condition $(1 + \alpha(d(x, Tx)))^{-1}d(x, Tx) < d(x, y)$ implies $d(Tx, Ty) < \phi(d(x, y))$, for all $x, y \in X$, then T has a unique fixed point. We also show that our fixed point theorem characterizes the metric completeness of X .

1. INTRODUCTION

Throughout this paper, we denote by \mathbb{N} the set of positive integers, by \mathbb{Z}^+ the set of nonnegative integers, and by \mathbb{R}^+ the set of nonnegative real numbers. Given a set X and a mapping $T : X \rightarrow X$, the n th iterate of T is denoted by T^n so that $T^2x = T(Tx)$, $T^3x = T(T^2x)$ and so on. A point $x \in X$ is called a *fixed point* of T if $Tx = x$.

Let (X, d) be a metric space. A mapping $T : X \rightarrow X$ is called a *contraction* if there is $r \in [0, 1)$ such that $d(Tx, Ty) \leq rd(x, y)$, for all $x, y \in X$. The following famous theorem is referred to as the Banach contraction principle.

Theorem 1.1 (Banach [2]). *If (X, d) is a complete metric space, then every contraction T on X has a unique fixed point.*

The Banach fixed point theorem is very simple and powerful. It became a classical tool in nonlinear analysis with many generalizations; see [3, 4, 5, 8, 13, 15, 16, 21, 22, 23, 24, 26, 27]. For instance, the following result due to Boyd and Wong [3] is a great generalization of Theorem 1.1.

Theorem 1.2 (Boyd and Wong [3]). *Let (X, d) be a complete metric space, and let T be a mapping on X . Assume there exists a function $\phi : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ which is upper semi-continuous from the right, $\phi(s) < s$ for $s > 0$, and*

$$(1.1) \quad \forall x, y \in X, \quad d(Tx, Ty) \leq \phi(d(x, y)).$$

Then T has a unique fixed point.

Another interesting generalization of Banach contraction principle was given by Meir and Keeler [15] as follows.

Date: November 29, 2012.

1991 *Mathematics Subject Classification.* Primary 54H25; Secondary 54E50.

Key words and phrases. Banach contraction principle, Contractive mappings, Fixed points, Metric completeness.

Theorem 1.3 (Meir and Keeler [15]). *Let (X, d) be a complete metric space and let T be a Meir-Keeler contraction on X , i.e., for every $\varepsilon > 0$, there exists $\delta > 0$ such that*

$$(1.2) \quad \forall x, y \in X \ (\varepsilon \leq d(x, y) < \varepsilon + \delta \implies d(Tx, Ty) < \varepsilon).$$

Then T has a unique fixed point.

Lim [14] introduced the notion of L-functions and proved a characterization of Meir-Keeler contractions that shows how much more general is Meir-Keeler's result than Boyd-Wong's. A function $\phi : [0, \infty) \rightarrow [0, \infty)$ is called an *L-function* if $\phi(0) = 0$, $\phi(s) > 0$ for $s > 0$, and for every $s > 0$ there exists $\delta > 0$ such that $\phi(t) \leq s$ for all $t \in [s, s + \delta]$.

Theorem 1.4 (Lim [14], see also [25]). *Let (X, d) be a metric space and let T be a mapping on X . Then T is a Meir-Keeler contraction if and only if there exists an L-function ϕ such that*

$$\forall x, y \in X, \quad d(Tx, Ty) < \phi(d(x, y)).$$

There is an example of an incomplete metric space X on which every contraction has a fixed point, [6]. This means that Theorem 1.1 cannot characterize the metric completeness of X . Recently, Suzuki in [26] proved the following remarkable generalization of the classical Banach contraction principle that characterizes the metric completeness of X .

Theorem 1.5 (Suzuki [26]). *Define a function $\theta : [0, 1] \rightarrow (1/2, 1]$ by*

$$(1.3) \quad \theta(r) = \begin{cases} 1, & \text{if } 0 \leq r \leq (\sqrt{5} - 1)/2; \\ (1 - r)r^{-2}, & \text{if } (\sqrt{5} - 1)/2 \leq r \leq 1/\sqrt{2}; \\ (1 + r)^{-1}, & \text{if } 1/\sqrt{2} \leq r < 1. \end{cases}$$

Let (X, d) be a metric space. Then X is complete if and only if every mapping T on X satisfying the following has a fixed point:

- There exists $r \in [0, 1)$ such that

$$(1.4) \quad \forall x, y \in X \ (\theta(r)d(x, Tx) \leq d(x, y) \implies d(Tx, Ty) \leq rd(x, y)).$$

The above Suzuki's generalized version of Theorem 1.1 initiated a lot of work in this direction and led to some important contribution in metric fixed point theory. Several authors obtained variations and refinements of Suzuki's result; see [9, 11, 12, 17, 19, 20].

A mapping T on a metric space X is called *contractive* if $d(Tx, Ty) < d(x, y)$, for all $x, y \in X$ with $x \neq y$. Edelstein in [7] proved that, on compact spaces, every contractive mapping possesses a unique fixed point theorem. Then in [27] Suzuki generalized Edelstein's result as follows.

Theorem 1.6 (Suzuki [27]). *Let (X, d) be a compact metric space and let T be a mapping on X . Assume that*

$$(1.5) \quad \forall x, y \in X \left(\frac{1}{2}d(x, Tx) < d(x, y) \implies d(Tx, Ty) < d(x, y) \right).$$

Then T has a unique fixed point.

It is interesting to note that, although the above Suzuki's theorem generalizes Edelstein's theorem in [7], these two theorems are not of the same type [27].

Recently, the author proved the following fixed point theorem for contractive mapping which is a Susuki-type generalization of [10, Theorem 1.1] and characterizes metric completeness.

Theorem 1.7 (Abtahi [1]). *A metric space (X, d) is complete if and only if every mapping $T : X \rightarrow X$ satisfying the following two conditions has a fixed point;*

- (i) $(1/2)d(x, Tx) < d(x, y)$ implies $d(Tx, Ty) < d(x, y)$, for all $x, y \in X$.
- (ii) There exists a point $x \in X$ such that, for any two subsequences $\{x_{p_n}\}$ and $\{x_{q_n}\}$ of the iterations $x_n = T^n x$, $n \in \mathbb{N}$, if $d(x_{p_n}, Tx_{p_n}) \leq d(x_{p_n}, x_{q_n})$ for all n , and $\Delta_n \rightarrow 1$, then $\delta_n \rightarrow 0$, where

$$\delta_n = d(x_{p_n}, x_{q_n}), \quad \Delta_n = d(Tx_{p_n}, Tx_{q_n})/\delta_n.$$

Remark 1.8. In part (i) of the above theorem, $1/2$ is the best constant.

2. EXISTENCE OF FIXED POINTS FOR NONLINEAR CONTRACTIONS

Definition 2.1. Let $\phi : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ be a function. Given a metric space (X, d) , a mapping $T : X \rightarrow X$ is called a *generalized ϕ -contraction* if

$$(2.1) \quad \forall x, y \in X \left(x \neq y, d(x, Tx) \leq d(x, y) \implies d(Tx, Ty) < \phi(d(x, y)) \right).$$

We call ϕ *admissible* if, for every metric space X , for every generalized ϕ -contraction T on X , and for every choice of initial point $x \in X$, the iterations $x_n = T^n x$, $n \in \mathbb{N}$, form a Cauchy sequence.

Theorem 2.2. *Every L-function is admissible.*

Proof. Let ϕ be an L-function and let T be a generalized ϕ -contraction on a metric space X . Fix $x \in X$ and let $x_n = T^n x$, $n \in \mathbb{N}$. If $d(x_m, x_{m+1}) = 0$, for some m , then $x_n = x_m$ for $n \geq m$ and there is nothing to prove. Assume that $d(x_n, x_{n+1}) > 0$ for all n . Since $d(x_n, Tx_n) \leq d(x_n, x_{n+1})$ and $x_n \neq x_{n+1}$, condition (2.1) implies that, for every $n \in \mathbb{N}$,

$$d(x_{n+1}, x_{n+2}) < \phi(d(x_n, x_{n+1})) \leq d(x_n, x_{n+1}).$$

This shows that the sequence $\{d(x_n, x_{n+1})\}$ is strictly decreasing and thus it converges to some point $s \geq 0$. If $s > 0$, since ϕ is an L-function, there is $\delta > 0$ such that $\phi(t) \leq s$ for $s \leq t \leq s + \delta$. Take $n \in \mathbb{N}$ large enough so that $s \leq d(x_n, x_{n+1}) \leq s + \delta$. Then

$$d(x_{n+1}, x_{n+2}) < \phi(d(x_n, x_{n+1})) \leq s,$$

which is a contradiction. Hence $d(x_n, x_{n+1}) \rightarrow 0$.

Next, we show that $\{x_n\}$ is a Cauchy sequence. To this end we adopt the same method used by Suzuki in [25]. Fix $\varepsilon > 0$ and let $s = \varepsilon/2$. Since ϕ is an L-function, there exists $\delta \in (0, s)$ such that $\phi(t) \leq s$ for $s \leq t \leq s + \delta$. Since $d(x_n, x_{n+1}) \rightarrow 0$, there is $N \in \mathbb{N}$ such that $d(x_n, x_{n+1}) < \delta$ for $n \geq N$. We show that

$$(2.2) \quad d(x_n, x_{n+m}) < \delta + s \leq \varepsilon, \quad (n \geq N, m \in \mathbb{N}).$$

For every $n \geq N$, we prove (2.2) by induction on m . It is obvious that (2.2) holds for $m = 1$. Assume that (2.2) holds for some $m \in \mathbb{N}$. Then $\phi(d(x_n, x_{n+m})) \leq$

s . Now, if $d(x_n, Tx_n) \leq d(x_n, x_{n+m})$ then (2.1) shows that $d(x_{n+1}, x_{n+m+1}) < \phi(d(x_n, x_{n+m}))$ and thus

$$d(x_n, x_{n+m+1}) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+m+1}) < \delta + s \leq \varepsilon.$$

If $d(x_n, x_{n+m}) < d(x_n, Tx_n)$ then $d(x_n, x_{n+m}) < \delta$ and thus

$$d(x_n, x_{n+m+1}) \leq d(x_n, x_{n+m}) + d(x_{n+m}, x_{n+m+1}) < \delta + \delta \leq \delta + s \leq \varepsilon.$$

Therefore (2.2) is verified and $\{x_n\}$ is a Cauchy sequence. \square

As in [10], we define \mathbf{S} to be the class of all functions $\alpha : \mathbb{R}^+ \rightarrow [0, 1]$ such that, for any sequence $\{s_n\}$ of positive numbers, if $\alpha(s_n) \rightarrow 1$ then $s_n \rightarrow 0$.

Theorem 2.3. *If $\alpha \in \mathbf{S}$, the function $\phi(s) = \alpha(s)s$ is admissible.*

Proof. Let $\alpha \in \mathbf{S}$ and define $\phi(s) = \alpha(s)s$. Let T be a generalized ϕ -contraction on a metric space X , let $x \in X$ and let $x_n = T^n x$, $n \in \mathbb{N}$. Let $s_n = d(x_n, x_{n+1})$. As in the proof of Theorem 2.2, we assume that $s_n > 0$ for all n . Then $s_{n+1} < \alpha(s_n)s_n$ and thus $s_n \rightarrow s$ for some point $s \geq 0$. If $s > 0$ then $s_{n+1}/s_n \rightarrow 1$ and thus $\alpha(s_n) \rightarrow 1$. Since $\alpha \in \mathbf{S}$, we must have $s = 0$ which is a contradiction. Hence $s = 0$ and $d(x_n, x_{n+1}) \rightarrow 0$.

For every $n \in \mathbb{N}$, choose $k_n \in \mathbb{N}$ such that $d(x_m, x_{m+1}) < 1/n$ for $m \geq k_n$. If $\{x_n\}$ is not a Cauchy sequence, there exist $\varepsilon > 0$ and sequences $\{p_n\}$ and $\{q_n\}$ of positive integers such that $q_n > p_n \geq k_n$ and $d(x_{p_n}, x_{q_n}) \geq \varepsilon$. We also assume that q_n is the least such integer so that $d(x_{p_n}, x_{q_n-1}) < \varepsilon$. Therefore,

$$\varepsilon \leq d(x_{p_n}, x_{q_n}) \leq d(x_{p_n}, x_{q_n-1}) + d(x_{q_n-1}, x_{q_n}) < \varepsilon + 1/n.$$

This shows that $s_n \rightarrow \varepsilon$. Since we have, for every $n \in \mathbb{N}$,

$$d(x_{p_n}, Tx_{p_n}) \leq d(x_{p_n}, x_{q_n}) < d(x_{p_n}, x_{q_n}),$$

condition (2.1) shows that $d(x_{p_n+1}, x_{q_n+1}) < \alpha(s_n)s_n$. Hence we have

$$\begin{aligned} s_n &= d(x_{p_n}, x_{q_n}) \leq d(x_{p_n}, x_{p_n+1}) + d(x_{p_n+1}, x_{q_n+1}) + d(x_{q_n+1}, x_{q_n}) \\ &< 2/n + \alpha(s_n)s_n. \end{aligned}$$

Dividing the above inequality by s_n , since $\alpha(s_n) \leq 1$, we get $\alpha(s_n) \rightarrow 1$ and thus $s_n \rightarrow 0$ which is a contradiction. Therefore, $\{x_n\}$ is a Cauchy sequence. \square

Definition 2.4. A function $\alpha : \mathbb{R}^+ \rightarrow (0, 1]$ is said to be of class Ψ , written $\alpha \in \Psi$, if the function $\phi(s) = \alpha(s)s$ is admissible and, moreover, there exists $\delta > 0$ such that

$$(2.3) \quad 0 < t < \delta, \quad 0 < s < \alpha(t)t \implies \alpha(t) \leq \alpha(s).$$

Given two points x and y in a metric space (X, d) , by $\alpha(x, y)$ we always mean $\alpha(d(x, y))$.

Example. Every decreasing function $\alpha : \mathbb{R}^+ \rightarrow (0, 1]$ is of class Ψ . For example, if $\alpha(s) = (1 + s)^{-1}$, then $\alpha \in \Psi$.

Theorem 2.5. *Let (X, d) be a complete metric space and let T be a mapping on X . Assume that there is a function $\alpha \in \Psi$ such that*

$$(2.4) \quad (1 + \alpha(x, Tx))^{-1}d(x, Tx) < d(x, y) \implies d(Tx, Ty) < \alpha(x, y)d(x, y),$$

holds for every $x, y \in X$. Then T has a unique fixed point.

Proof. First, let us prove the uniqueness part of the theorem. If $z \in X$ is a fixed point of T and $y \neq z$ then

$$(1 + \alpha(z, Tz))^{-1}d(z, Tz) < d(z, y),$$

and thus by (2.4) we have $d(Tz, Ty) < d(z, y)$. Since $Tz = z$, we must have $Ty \neq y$, i.e., y is not a fixed point of T .

Now, we prove the existence of the fixed point. Take two points $x, y \in X$ with $x \neq y$. If $d(x, Tx) \leq d(x, y)$ then $(1 + \alpha(x, Tx))^{-1}d(x, Tx) < d(x, y)$, because $\alpha(x, Tx) > 0$ and $d(x, y) > 0$. Hence T satisfies condition (2.1) with $\phi(s) = \alpha(s)s$. Fix $x \in X$ and define $x_n = T^n x$, $n \in \mathbb{N}$. Since the function $\phi(s) = \alpha(s)s$ is admissible, the sequence $\{x_n\}$ is Cauchy. Since X is complete, there is $z \in X$ such that $x_n \rightarrow z$. Next, we show that $Tz = z$.

If $x_m = Tx_m$ for some m , the $x_n = z$ for $n \geq m$ and $Tz = z$. We assume that $x_n \neq Tx_n$ for all n . Since $\alpha \in \Psi$, condition (2.3) holds for some $\delta > 0$. Take a positive number N such that $d(x_n, Tx_n) < \delta$ for $n \geq N$. Then

$$0 < d(Tx_n, T^2x_n) < \alpha(x_n, Tx_n)d(x_n, Tx_n), \quad (n \geq N),$$

and condition (2.3) shows that $\alpha(x_n, Tx_n) \leq \alpha(Tx_n, T^2x_n)$, for $n \geq N$, so that

$$(2.5) \quad \frac{1}{1 + \alpha(x_n, Tx_n)} + \frac{\alpha(x_n, Tx_n)}{1 + \alpha(Tx_n, T^2x_n)} \leq 1.$$

We claim that

$$(2.6) \quad \forall n \geq N, \quad \begin{cases} (1 + \alpha(x_n, Tx_n))^{-1}d(x_n, Tx_n) < d(x_n, z), \\ \text{or} \\ (1 + \alpha(Tx_n, T^2x_n))^{-1}d(Tx_n, T^2x_n) < d(x_{n+1}, z). \end{cases}$$

If (2.6) fails to hold, then, for some $n \geq N$, we have

$$\begin{aligned} d(x_n, z) &\leq (1 + \alpha(x_n, Tx_n))^{-1}d(x_n, Tx_n), \\ d(x_{n+1}, z) &\leq (1 + \alpha(Tx_n, T^2x_n))^{-1}d(Tx_n, T^2x_n). \end{aligned}$$

Using (2.5), we have

$$\begin{aligned} d(x_n, Tx_n) &\leq d(x_n, z) + d(Tx_n, z) \\ &\leq (1 + \alpha(x_n, Tx_n))^{-1}d(x_n, Tx_n) + (1 + \alpha(Tx_n, T^2x_n))^{-1}d(Tx_n, T^2x_n) \\ &< [(1 + \alpha(x_n, Tx_n))^{-1} + (1 + \alpha(Tx_n, T^2x_n))^{-1}\alpha(x_n, Tx_n)]d(x_n, Tx_n) \\ &\leq d(x_n, Tx_n). \end{aligned}$$

This is absurd and thus (2.6) must hold. Now condition (2.4) together with (2.6) imply that

$$(2.7) \quad \forall n \geq N, \quad d(x_{n+1}, Tz) < \phi(d(x_n, z)) \text{ or } d(x_{n+2}, Tz) < \phi(d(x_{n+1}, z)).$$

Since $x_n \rightarrow z$ and $\phi(s) \leq s$, condition (2.7) implies the existence of a subsequence of $\{x_n\}$ that converges to Tz . This shows that $Tz = z$. \square

The following theorem states that, for a certain family of functions $\alpha \in \Psi$, the coefficient $1/(1 + \alpha)$ in Theorem 2.5 is the best.

Theorem 2.6. *Let the function $\alpha \in \Psi$ satisfy the following condition;*

$$(2.8) \quad \alpha_0 = \liminf_{s \rightarrow 0^+} \alpha(s) > 1/\sqrt{2}.$$

Then, for every constant η with $\eta > 1/(1 + \alpha_0)$, there exist a complete metric space (X, d) and a mapping $T : X \rightarrow X$ such that T does not have a fixed point and

$$\forall x, y \in X, (\eta d(x, Tx) < d(x, y) \implies d(Tx, Ty) < \alpha(x, y)d(x, y)).$$

Proof. Take a number $r \in (1/\sqrt{2}, \alpha_0)$ such that $(1+r)^{-1} < \eta$. The proof of Theorem 3 in [26] shows that there exist a closed and bounded subset X of \mathbb{R} and a mapping $T : X \rightarrow X$ such that T does not have a fixed point and

$$(2.9) \quad \forall x, y \in X \left((1+r)^{-1}|x - Tx| < |x - y| \implies |Tx - Ty| \leq r|x - y| \right).$$

Since $r < \liminf_{s \rightarrow 0^+} \alpha(s)$, there exists $\delta > 0$ such that $r < \alpha(s)$ for $s \in (0, \delta)$. Since X is bounded, there is a constant M such that $|x - y| < M\delta$, for all $x, y \in X$. Now, define a metric d on X by

$$d(x, y) = \frac{1}{M}|x - y|, \quad (x, y \in X).$$

For $x, y \in X$, if $\eta d(x, Tx) < d(x, y)$ then $(1+r)^{-1}d(x, Tx) < d(x, y)$. Now, condition (2.9) and the fact that $d(x, y) < \delta$ shows that

$$d(Tx, Ty) \leq rd(x, y) < \alpha(d(x, y))d(x, y).$$

□

Example. For the function $\alpha(s) = (1+s)^{-1}$, we have $\alpha_0 = 1$. Hence α satisfies the condition in Theorem 2.6.

3. METRIC COMPLETION

In this section, we discuss the metric completeness. Let X be a nonempty set. We say that two metrics d and ρ on X are equivalent if they generate the same topology and the same Cauchy sequences. Given a metric ρ on X , we denote the family of all metrics d on X equivalent to ρ by \mathcal{E}_ρ . It is obvious that (X, ρ) is complete if and only if (X, d) , for some $d \in \mathcal{E}_\rho$, is complete if and only if (X, d) , for all $d \in \mathcal{E}_\rho$, is complete. For a function $\alpha \in \Psi$, we define

$$\alpha_0 = \liminf_{s \rightarrow 0^+} \alpha(s),$$

and we denote by Ψ^+ the family of those functions $\alpha \in \Psi$ with $\alpha_0 > 0$.

Theorem 3.1. *For a metric space (X, ρ) the following are equivalent:*

- (1) *The space (X, ρ) is complete.*
- (2) *For every $\alpha \in \Psi$ and $d \in \mathcal{E}_\rho$, every mapping T satisfying (2.4) has a fixed point.*
- (3) *For some $\alpha \in \Psi^+$ and $\eta \in (0, 1/2]$, and for all $d \in \mathcal{E}_\rho$, every mapping T satisfying the following condition has a fixed point;*

$$(3.1) \quad \forall x, y \in X, (\eta d(x, Tx) < d(x, y) \implies d(Tx, Ty) < \alpha(x, y)d(x, y)).$$

Proof. The implication (1) \Rightarrow (2) follows from Theorem 2.5. The implication (2) \Rightarrow (3) is clear because, for $\eta \leq 1/2$, condition (3.1) implies condition (2.4).

To prove (3) \Rightarrow (1), towards a contradiction, assume that the metric space (X, ρ) is not complete. Take a number $r \in (0, \alpha_0)$ and let δ be a positive number such that $r < \alpha(s)$ for all $s \in (0, \delta)$. Define a metric d on X as follows:

$$d(x, y) = \delta \frac{\rho(x, y)}{1 + \rho(x, y)}, \quad (x, y \in X).$$

Then $d \in \mathcal{E}_\rho$ and thus (X, d) is not complete. The proof of Theorem 4 in [26] shows that there exists a mapping $T : X \rightarrow X$ with no fixed point such that

$$\forall x, y \in X, (\eta d(x, Tx) < d(x, y) \implies d(Tx, Ty) \leq rd(x, y)).$$

Since $d(x, y) < \delta$, we have $rd(x, y) < \alpha(x, y)d(x, y)$ and thus T satisfies (3.1). This is a contradiction. \square

REFERENCES

- [1] M. Abtahi, *A fixed point theorem for contractive mappings that characterizes metric completeness*, Submitted to J. Math. Anal. Appl. [arXiv:1207.6207v1](#) [math.GN]
- [2] S. Banach, *Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales*, Fund. Math., **3** (1922), 133–181.
- [3] D. W. Boyd and J. S. Wong, *On nonlinear contractions*, Proc. Amer. Math. Soc. **20** (1969), 458–469.
- [4] J. Caristi, *Fixed point theorems for mappings satisfying inwardness conditions*, Trans. Amer. Math. Soc., **215** (1976), 241–251.
- [5] Lj. B. Čirić, *A generalization of Banach's contraction principle*, Proc. Amer. Math. Soc., **45** (1974), 267–273.
- [6] E. H. Connell, *Properties of fixed point spaces*, Proc. Amer. Math. Soc., **10** (1959), 974–979.
- [7] M. Edelstein, *On fixed and periodic points under contractive mappings*, J. London Math. Soc. **37** (1962), 74–79.
- [8] I. Ekeland, *On the variational principle*, J. Math. Anal. Appl., **47** (1974), 324–353.
- [9] Y. Enjouji, M. Nakanishi, T. Suzuki, *A generalization of Kannan's fixed point theorem*, Fixed Point Theory Appl. (2009) Article ID 192872, 10 pages.
- [10] M.A. Geraghty, *On contractive mappings*, Proc. Amer. Math. Soc., **40** (1973), 604–608.
- [11] M. Kikkawa, T. Suzuki, *Some similarity between contractions and Kannan mappings*, Fixed Point Theory Appl. (2008) Article ID 649749, 8 pages.
- [12] M. Kikkawa, T. Suzuki, *Three fixed point theorems for generalized contractions with constants in complete metric spaces*, Nonlinear Anal. **69** (2008) 2942–2949.
- [13] W. A. Kirk, *Fixed points of asymptotic contractions*, J. Math. Anal. Appl., **277** (2003), 645–650.
- [14] T.C. Lim, *On characterizations of Meir-Keeler contractive maps*, Nonlinear Anal. **46** (2001), 113–120.
- [15] A. Meir and E. Keeler, *A theorem on contraction mappings*, J. Math. Anal. Appl., **28** (1969), 326–329.
- [16] S. B. Nadler, Jr., *Multi-valued contraction mappings*, Pacific J. Math., **30** (1969), 475–488.
- [17] O. Popescu, *Two fixed point theorems for generalized contractions with constants in complete metric spaces*, Cent. Eur. J. Math. **7** (2009) 529–538.
- [18] E. Rakotch, *A note on contractive mappings*, Proc. Amer. Math. Soc., **13** (1962), 459–465.
- [19] S.L. Singh, S.N. Mishra, *Remarks on recent fixed point theorems*, Fixed Point Theory Appl. (2010) Article ID 452905, 18 pages.
- [20] S.L. Singh, H.K. Pathak, S.N. Mishra, *On a Suzuki type general fixed point theorem with applications*, Fixed Point Theory Appl. (2010) Article ID 234717, 15 pages.
- [21] P. V. Subrahmanyam, *Remarks on some fixed point theorems related to Banach's contraction principle*, J. Math. Phys. Sci., **8** (1974), 445–457.
- [22] T. Suzuki, *Generalized distance and existence theorems in complete metric spaces*, J. Math. Anal. Appl., **253** (2001), 440–458.

- [23] T. Suzuki, *Several fixed point theorems concerning τ -distance*, Fixed Point Theory Appl., **2004** (2004), 195–209.
- [24] T. Suzuki, *Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense*, Comment. Math. Prace Mat., **45** (2005), 45–58.
- [25] T. Suzuki, *Fixed-point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces*. Nonlinear Anal. **64** (2006), 971–978.
- [26] T. Suzuki, *A generalized banach contraction principle that characterizes metric completeness*, Proc. Amer. Math. Soc. **136** (2008), 1861–1869.
- [27] T. Suzuki, *A new type of fixed point theorem in metric spaces*, Nonlinear Anal. **71** (2009) 5313–5317.

SCHOOL OF MATHEMATICS AND COMPUTER SCIENCES, DAMghan UNIVERSITY, DAMghan,, P.O.BOX 36715-364, IRAN
E-mail address: abtahi@du.ac.ir