MEU302 - Algèbre TD2

Exercice 3

Question 3.1

Soit $Z_1, Z_2, Z_3...Z_n$, des variables aléatoire independantes suivant une loi normale standard N(0,1).et posons $Y_n = \sum_{i=1}^{n} Z_i^2$. Calculons le moment de Y.

$$M_{Y_n}(t) = M_{Z_1^2}(t).M_{Z_2^2}(t).M_{Z_2^2}(t)...M_{Z_n^2}(t)$$

Chaque Z^2 suit la loi chi-deux de degrés 1 (ie χ^2_1). Cela doit être un resultat du cours?? sinon demande moi. Donc $M_{Z^2_1}(t)=(1-2t)^{-1/2}$ et

$$M_Y(t) = (1 - 2t)^{-n/2}$$

Ceci est le moment de la fonction $\Gamma(\frac{n}{2},2)$ qui est égale à la loi chi-deux avec n degrés de liberté.

Comme X_i est une variable aléatoire suit une loi normale d'espérance 5 et de variance σ^2 , posons $Z_i = \frac{X_i - 5}{\sigma}$ qui suit une loi normale standard d'espérance 0 et de variance 1. Donc comme $Y_n = \sum_{i=1}^{n} Z_i^2$ suit une loi chi-deux de n degrés de liberté,

$$Q_n = \sum_{1}^{n} \left(\frac{X_i - 5}{\sigma}\right)^2 = \sum_{1}^{n} Z_i^2 = Y_n$$

suit également une loi chi-deux de n degrés de liberté,

Question 3.2

$$V_n^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - 5)^2$$

Calculons $E(V_n^2)$.

$$E(V_n^2) = E(1/n\sum_{i=1}^n (X_i - 5)^2) = 1/nE(\sum_{i=1}^n n(X_i - 5)^2) = 1/n\sum_{i=1}^n E((X_i - 5)^2) = 1/n\sum_{i=1}^n \sigma^2 = 1/n.n\sigma^2 = \sigma^2.$$

Calculons son risque quadratique $E((V_n^2 - \sigma)^2) = Var(V_n)$ car V_n est un estimateur sans biais.