Unidad 4

Series de Potencias 2º CLASE

Cintia Perrone – PS 2023

4.4 Serie de Taylor

Toda función analítica se puede representar por una serie de potencias denominada serie de Taylor de la función.

Teorema 4.4.1. Teorema de Taylor

Sea f(z) analítica en z_0 . Sea $D = \{z \in \mathbb{C} : |z - z_0| < R\}$ el mayor disco abierto centrado en z_0 y de radio R donde f(z) es analítica.

Entonces existe una serie de potencias $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ que converge a f(z) en D.

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n \,\forall \, z : |z - z_0| < R \, \text{con } 0 < R \le \infty \, \text{donde } c_n = \frac{f^{(n)}(z_0)}{n!} \, n = 0,1,2 \dots$$

Esta serie de potencias se denomina: desarrollo en serie de Taylor de f(z) alrededor de z_0 .

Para el caso en que $z_0 = 0$, la serie de Taylor se denomina de serie de Maclaurin.

Un aspecto muy importante y útil de este teorema, es que permite, sin aplicar el criterio del cociente, determinar el radio de convergencia de la serie de Taylor de una función f(z): debemos pararnos en el punto z_0 donde queremos desarrollar la serie de f(z) y determinar la distancia al punto mas cercano donde la función deja de ser analítica.

(Ejemplos pizarrón 2.A y 2.B)

Teorema 4.4.4. Teorema de unicidad de Taylor.

Si
$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n \,\forall z: |z - z_0| < R \text{ con } 0 < R \le \infty$$
 entonces

$$c_n = \frac{f^{(n)}(z_0)}{n!}$$
 $n = 0,1,2,3...$

Demostración:

Sea
$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n \, \forall \, z : |z - z_0| < R \, \text{con } 0 < R \le \infty$$

Se tiene:

$$f(z) = c_0 + c_1(z - z_0) + c_2(z - z_0)^2 + c_3(z - z_0)^3 + \dots + c_n(z - z_0)^n + \dots$$

Si evaluamos en $z=z_0$ se obtiene $f(z_0)=c_0$, es decir, que para n=0

tenemos
$$c_0 = \frac{f^{(0)}(z_0)}{0!} = f(z_0)$$

Sea $f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n \quad \forall z: |z - z_0| < R \text{ con } 0 < R \le \infty$

Se tiene:

$$f(z) = c_0 + c_1(z - z_0) + c_2(z - z_0)^2 + c_3(z - z_0)^3 + \dots + c_n(z - z_0)^n + \dots$$

Si evaluamos en $z=z_0$ se obtiene $f(z_0)=c_0$, es decir, que para n=0

tenemos
$$c_0 = f(z_0) = \frac{f^{(0)}(z_0)}{0!}$$
.

Derivando f(z) se tiene:

$$f'(z) = c_1 + 2c_2(z - z_0) + 3c_3(z - z_0)^2 + \dots + nc_n(z - z_0)^{n-1} + \dots$$

$$\forall z: |z - z_0| < R$$

Nuevamente evaluamos en $z=z_0$ y obtenemos $f'(z_0)=c_1$, es decir,

que para
$$n = 1$$
 tenemos $c_1 = f'(z_0) = \frac{f^{(1)}(z_0)}{1!}$

Por ser una serie de potencias podemos volver a derivarla término a término, conservando el radio de convergencia:

$$f''(z) = 2c_2 + 2.3c_3(z - z_0) + \dots + (n - 1).nc_n(z - z_0)^{n-2} + \dots$$

 $\forall z: |z - z_0| < R$

Evaluamos en $z=z_0$ y obtenemos $f''(z_0)=2c_2$, es decir, que para n=2

tenemos
$$2c_2 = f''(z_0) \Rightarrow c_2 = \frac{f''(z_0)}{2} = \frac{f^{(2)}(z_0)}{2!}$$

Si volvemos a derivar:

$$f'''(z) = 6c_3 + \dots + (n-2)(n-1) \cdot nc_n(z-z_0)^{n-3} + \dots \quad \forall z: |z-z_0| < R$$

Evaluando en $z=z_0$ obtenemos $f'''(z_0)=6c_3$, es decir, que para n=3

tenemos
$$6c_3 = f'''(z_0) \Rightarrow c_2 = \frac{f'''(z_0)}{6} = \frac{f^{(3)}(z_0)}{3!}$$

Podemos ver que en general se tiene:

$$c_n = \frac{f^{(n)}(z_0)}{n!}$$
 $n = 0,1,2,3...$

Observaciones

1. Las derivadas de todo orden de una función analítica, son también funciones analíticas (Teorema de derivación de series de potencias).

2. Una función analítica en z_0 admite un único desarrollo en serie de **potencias** de $(z-z_0)$ convergente, que es su serie Taylor alrededor de z_0 (Teorema de unicidad de Taylor).

 π

3. Cuando se tiene una función f(z) representada por una serie de potencias de $(z-z_0)$, pero no se conoce la expresión de f(z), el teorema de unicidad de Taylor permite calcular sus derivadas de cualquier orden en z_0 :

$$c_n = \frac{f^{(n)}(z_0)}{n!} \Rightarrow f^{(n)}(z_0) = c_n n! \qquad n = 0,1,2,3 \dots$$

(Ejemplos pizarrón 2.C y 2.D)

Definición 4.5.1. Sea f(z) analítica en un dominio $D \subset \mathbb{C}$. Decimos que $z_0 \in D$ es un cero de f(z) si $f(z_0) = 0$.

Definición 4.5.3. Sea f(z) analítica en un dominio $D \subset \mathbb{C}$. Decimos que $z_0 \in D$ es un cero de orden $k \geq 1$ de f(z) si:

$$f(z_0) = f^{(1)}(z_0) = f^{(2)}(z_0) = \dots = f^{(k-1)}(z_0) = 0 \text{ y } f^{(k)}(z_0) \neq 0.$$

(Ejemplos pizarrón 2.E)

Teorema 4.5.5. Teorema de caracterización de ceros.

Sea f(z) analítica en un dominio $D \subset \mathbb{C}$.

 $z_0 \in D$ es un cero de orden k de $f(z) \Leftrightarrow f(z) = (z - z_0)^k g(z)$, donde g(z) es analítica en z_0 y $g(z_0) \neq 0$.

Demostración:

 \Rightarrow)

Como f(z) es analítica en z_0 , admite un desarrollo de Taylor convergente en un disco abierto $|z-z_0| < R \, {\rm con} \, 0 < R \leq \infty$.

Por ser z_0 un cero de orden k de f(z), se tiene que:

$$f(z_0) = f^{(1)}(z_0) = f^{(2)}(z_0) = \dots = f^{(k-1)}(z_0) = 0 \text{ y } f^{(k)}(z_0) \neq 0$$

Por lo cual, el desarrollo en serie de Taylor en z_0 tiene la forma:

$$\pi$$

$$f(z) = f(z_0) + \frac{f^{(1)}(z_0)}{1!}(z - z_0) + \frac{f^{(2)}(z_0)}{2!}(z - z_0)^2 + \dots + \frac{f^{(k)}(z_0)}{k!}(z - z_0)^k + \frac{f^{(k+1)}(z_0)}{(k+1)!}(z - z_0)^{k+1} + \dots$$

$$f(z) = \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k + \frac{f^{(k+1)}(z_0)}{(k+1)!} (z - z_0)^{k+1} + \dots =$$

$$f(z) = (z - z_0)^k \left[\frac{f^{(k)}(z_0)}{k!} + \frac{f^{(k+1)}(z_0)}{(k+1)!} (z - z_0) + \cdots \right] =$$

Si llamamos $g(z) = \frac{f^{(k)}(z_0)}{k!} + \frac{f^{(k+1)}(z_0)}{(k+1)!}(z-z_0) + \cdots$, podemos ver que g(z) es una función analítica en z_0 por estar representada por una serie de potencias convergente en el disco abierto $|z - z_0| < R$ con $0 < R \le \infty$ y $g(z_0) \ne 0$.

Con lo cual, f(z) queda expresada como $f(z) = (z - z_0)^k g(z)$ donde g(z) es analítica en $z_0 y g(z_0) \neq 0$.

 \Leftarrow)

Tenemos que $f(z)=(z-z_0)^kg(z)$, donde g(z) es analítica en z_0 y $g(z_0)\neq 0$.

Como g(z) es analítica en z_0 admite un desarrollo de Taylor alrededor de z_0 convergente en $|z-z_0| < R \, {\rm con} \, 0 < R \leq \infty$.

$$g(z) = \sum_{n=0}^{\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^n$$

Luego:

$$\mathcal{T} \qquad f(z) = (z - z_0)^k g(z) = (z - z_0)^k \sum_{n=0}^{\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^n$$

$$f(z) = \sum_{n=0}^{\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^{n+k}$$

$$f(z) = g(z_0)(z - z_0)^k + g^{(1)}(z_0)(z - z_0)^{k+1} + \frac{g^{(2)}(z_0)}{2!}(z - z_0)^{k+2} + \cdots$$

La menor potencia que aparece es k, por lo tanto:

$$f(z_0) = f^{(1)}(z_0) = f^{(2)}(z_0) = \dots = f^{(k-1)}(z_0) = 0 \text{ y } f^{(k)}(z_0) = g(z_0) \neq 0$$

Es decir, que z_0 es un cero de orden k de f(z).

(Ejemplos pizarrón 2.F)

Si z_0 es un cero de orden p de f(z) y un cero de orden q de g(z):

- a) z_0 es un cero de orden p + q de f(z)g(z)
- b) Si p < q, z_0 es un cero de orden p de $f(z) \pm g(z)$
- c) Si p=q, z_0 es un cero de orden mayor o igual que p de $f(z)\pm g(z)$ (Ejemplos pizarrón 2.G)

Demostración:

Como por hipótesis, z_0 es un cero de orden p de f(z) y un cero de orden q de g(z) por Teorema de caracterización de ceros, tenemos:

$$f(z)=(z-z_0)^pf_1(z)$$
 y $g(z)=(z-z_0)^qg_1(z)$ siendo $f_1(z)$ y $g_1(z)$ funciones analíticas en z_0 y $f_1(z_0)\neq 0$ y $g_1(z_0)\neq 0$.

a) z_0 es un cero de orden p + q de f(z)g(z)

$$f(z) = (z - z_0)^p f_1(z)$$

$$g(z) = (z - z_0)^q g_1(z)$$

de f(z)g(z).

$$f(z)g(z) = (z - z_0)^p f_1(z)(z - z_0)^q g_1(z) = (z - z_0)^{p+q} f_1(z)g_1(z)$$

Como $f_1(z)$ y $g_1(z)$ son funciones analíticas en z_0 y $f_1(z_0) \neq 0$ y $g_1(z_0) \neq 0$ entonces $f_1(z)g_1(z)$ es analítica en z_0 y $f_1(z_0)g_1(z_0) \neq 0$. Por teorema de caracterización de ceros, z_0 es un cero de orden p+q

b) Si p < q, z_0 es un cero de orden p de $f(z) \pm g(z)$

$$\mathcal{T} \qquad f(z) = (z - z_0)^p f_1(z)$$

$$g(z) = (z - z_0)^q g_1(z)$$

$$f(z) \pm g(z) = (z - z_0)^p f_1(z) \pm (z - z_0)^q g_1(z)$$

Si p < q:

$$f(z) \pm g(z) = (z - z_0)^p [f_1(z) \pm (z - z_0)^{q-p} g_1(z)]$$

Como $f_1(z)$ y $g_1(z)$ son funciones analíticas en z_0 y $f_1(z_0) \neq 0$ y $g_1(z_0) \neq 0$ entonces $f_1(z) \pm (z - z_0)^{q-p} g_1(z)$ es analítica en z_0 y $f_1(z_0) \pm (z_0 - z_0)^{q-p} g_1(z_0) \neq 0$ ya que $f_1(z_0) \neq 0$.

c) Si p = q, z_0 es un cero de orden mayor o igual que p de $f(z) \pm g(z)$

$$f(z) = (z - z_0)^p f_1(z)$$
 y $g(z) = (z - z_0)^q g_1(z)$

$$f(z) \pm g(z) = (z - z_0)^p f_1(z) \pm (z - z_0)^q g_1(z)$$

Si p = q:

$$f(z) \pm g(z) = (z - z_0)^p [f_1(z) \pm g_1(z)]$$

Puede ocurrir que $f_1(z) \pm g_1(z) = (z - z_0)^k h(z)$ con h(z) analítica en z_0 y $h(z_0) \neq 0$ en cuyo caso:

 $f(z) \pm g(z) = (z - z_0)^p (z - z_0)^k h(z) = (z - z_0)^{p+k} h(z)$, h(z) analítica en z_0 y $h(z_0) \neq 0$ y por el teorema de caracterización de ceros z_0 es un cero de orden p + k > p de $f(z) \pm g(z)$.

Si $f_1(z_0) \pm g_1(z_0) \neq 0$ y por $\operatorname{ser} f_1(z) \pm g_1(z)$ analítica en z_0 , por el teorema de caracterización de ceros, z_0 es un cero de orden p de $f(z) \pm g(z)$.