Exercice 1.

On considère l'équation :

$$(E): 1 - 5x = 2x^2 \ln x$$

- 1. Soit φ définie sur $]0, +\infty[$ par $\varphi(x) = \frac{1}{x^2} \frac{5}{x} 2 \ln x.$
 - (a) Déterminer la limite φ en 0^+ .
 - (b) En étudiant la fonction φ , montrer que l'équation (E) admet et une seule solution α sur \mathbb{R}_+^* et justifier le fait que $\alpha \in]0, \frac{1}{2}[$.
- 2. Soit f définie sur \mathbb{R}_+^* par :

$$f(x) = \frac{1 - x - 2x^2 \ln x}{4}$$

- (a) Montrer que f est continue et dérivable sur $]0, +\infty[$. Préciser f'(x).
- (b) Montrer que l'on peut prolonger f en une fonction continue et dérivable sur $[0, +\infty[$. Préciser alors f(0), f'(0) et la tangente en x = 0.
- (c) La fonction f ainsi prolongée est-elle deux fois dérivable en 0 ?
- (d) Étudier les variations de f' et de f sur [0,1] et prouver que :

$$\forall x \in [0, 1] , f(x) \in [0, 1] \text{ et } |f'(x)| \le \frac{3}{4}$$

$$(indication : e^{\frac{3}{2}} = e\sqrt{e} \approx 4,48)$$

3. Recherche d'une valeur approchée de α :

On définit la suite
$$(u_n)$$
 par $u_0=\frac{1}{5}$ et , pour tout $n\in\mathbb{N}, u_{n+1}=f(u_n).$

- (a) Justifier le fait que , $\forall n \in \mathbb{N}, u_n \in [0, 1]$.
- (b) Monter que α (l'unique solution de (E) sur \mathbb{R}_+^*), est un point fixe pour f.
- (c) Justifier le fait que $\forall n \in \mathbb{N}, \mid u_{n+1} \alpha \mid \leqslant \frac{3}{4} \mid u_n \alpha \mid.$
- (d) En déduire que la suite (u_n) converge .
- (e) Comment faire pour obtenir alors une valeur approchée à 10^{-5} près de α ?

Exercice 2 (points).

On considère une fonction $f:\mathbb{R}_+ \to \mathbb{R}$ vérifiant les quatre points suivants :

fest bornée sur R+ fest strictement positive sur \mathbb{R}_+ fest deux fois dérivable sur \mathbb{R}_+ Il existe une constante $\alpha>0$ telle que , pour tout $x\in\mathbb{R}_+$, $\alpha f(x)\leqslant f''(x)$

- 1. Etude de la monotonie de f :
 - (a) justifier que f' admet une limite (finie ou infinie) en $+\infty$.
 - (b) Montrer que , pour tout x>0 , il existe $c_x\in]\frac{x}{2},x[$ tel que $f'(c_x)=\frac{2}{x}(f(x)-f(\frac{x}{2})).$
 - (c) En déduire que $\lim_{x\to +\infty} f'(x) = 0$.
 - (d) Conclure que la fonction f est décroissante sur \mathbb{R}_+ .
- 2. Détermination de la limite de f en $+\infty$:
 - (a) Justifier que f admet nécessairement une limite finie en $+\infty$. On notera l cette limite.
 - (b) Montrer que pour tout $x \geqslant 0, \alpha l \leqslant f''(x)$.
 - (c) En déduire que , pour tout $x\geqslant 0,\ f'(0)+\alpha lx\leqslant f'(x).$
 - (d) Montrer que l = 0.