Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

ОТЧЁТ по ознакомительной практике

Выполнил: Н. А. Гринь

Студент группы 221702

Проверил: А. Г. Загорский

СОДЕРЖАНИЕ

Bı	ведение	3
1	Комплексная библиотека многократно используемых семантически	
	совместимых компонентов ostis-систем	4
2	Формальная семантическая спецификация библиографических ис-	
	точников	7
3	аключение	8
\mathbf{C}	писок использованных источников	8

ВВЕДЕНИЕ

Цель:

Закрепить практические навыки формализации информации в интеллектуальных системах с использованием семантических сетей.

Задачи:

- Построение формализованных фрагментов теории интеллектуальных компьтерных систем и технологий их разработки;
- Построение формальной семантической спецификации библиографических источников, соответствующих указанным выше фрагментам;

1 КОМПЛЕКСНАЯ БИБЛИОТЕКА МНОГОКРАТНО ИСПОЛЬЗУЕМЫХ СЕМАНТИЧЕСКИ СОВМЕСТИМЫХ КОМПОНЕНТОВ OSTIS-СИСТЕМ

Библиотека многократно используемых компонентов баз знаний

- := [База знаний (БЗ) представляет собой систематизированную совокупность всех знаний, представленных на формальном языке, необходимых для функционирования соответствующей интеллектуальной системы. Следовательно, качество интеллектуальной системы во многом определяется качеством ее базы знаний.]
- \Rightarrow включает*:
 - **{ ●** сами компоненты
 - := [Каждый многократно используемый компонент баз знаний с формальной точки зрения представляет собой структуру. Структура это множество, элементами которого являются все sc-элементы, входящие в состав обозначаемого данной структурой фрагмента базы знаний]
 - ⇒ К основным семантическим классам многократно используемых компонентов баз знаний относятся*:
 - **{●** спецификации различных сущностей
 - онтологии различных предметных областей
 - базы знаний типовых подсистем, интегрируемых в состав разрабатываемых интеллектуальных систем
 - средства их спецификации
 - средства автоматизации их поиска на основе указанных спецификаций
- → структурируемая библиотека
 - \Rightarrow noschehue*:

[Без мощных, хорошо структурированных библиотек типовых совместимых технических решений (многократно используемых компонентов) проектируемых систем невозможно добиться:

- □ Существенного сокращения сроков проектирования
 - := [Невозможно вписаться в разумные сроки, если не использовать человеческий опыт аналогичных разработок]
- □ Повышения качества проектирования
 - := [В каждой разрабатываемой системе всегда есть компоненты, имеющие хорошо сделанные аналоги в других разработках, превзойти которые в разумные сроки невозможно]

Ядро баз знаний

]

- := [Важнейшим компонентом библиотеки является Ядро баз знаний. Оно входит в состав каждой базы знаний]
- \Rightarrow cocmoum*:
 - из онтологии верхнего уровня
 - из онтология представления

Модель гибридных баз знаний

- := [Модель гибридных баз знаний задается следующим образом: MKB = (S, Ssd, Sont, ONTr, ONThl, Mstr1, Mstr2, ...Mstrn)]
- \Rightarrow разбиение*:
 - $\{ \bullet \quad S$
 - := [Множество явно вводимых структур, хранимых в базе знаний]
 - Ssd
 - := [множество явно вводимых предметных областей, Ssd \subset S]
 - Sont
 - := [множество онтологий, соответствующих предметным областям из Ssd]
 - ONTr
 - := [Онтология внутренних знаков (sc-элементов), являющаяся онтологией представления в рамках предлагаемого подхода]
 - ONThl
 - := [ONThl = ONTstr, ONTk, ONTsn , ONTsd, ONTo набор онтологий верхнего уровня]
 - $\Rightarrow \quad \imath \partial e^*$:
 - **{●** *ONTstr*
 - := [Онтология Предметной области структур]
 - ONTk
 - := [Онтология Предметной области знаний]
 - ONTsn
 - := [Онтология Предметной области семантических окрестностей]
 - ONTsd
 - := [Онтология Предметной области предметных областей]
 - ONTo
 - := [Онтология Предметной области онтологий, включающая классы онтологий различного типа]

комплексный проект OSTIS

 \Rightarrow включает*:

}

}

- **{ ●** Проект IMS.OSTIS
 - := [Проект IMS.OSTIS, направленный на создание техногологии OSTIS в форме интеллектуальной метасистемы IMS.OSTIS]
 - \Rightarrow codep π :
 - комплекс моделей, методов и средств, осуществляющих комплексную поддержку проектирования интеллектуальных систем
 - семейство библиотек многократно используемых компонентов интеллектуальных систем (типовых технических решений)
 - Неограниченное семейство прикладных проектов
 - \Rightarrow направлено*:
 - **{ ●** разработка интеллектуальных систем
 - пополнение библиотек многократно используемых компонентов (выделяемых из разрабатываемых систем)
 - тестирование используемой технологии проектирования интеллектуальных систем

} } Библиотека компонентов многократно используемых интеллектуальных систем, проектируемых по Texнологии OSTIS [многократно используемый компонент интеллектуальных систем проектируемых по Texнологии OSTIS] Библиотека sc-моделей многократно используемых компонентов баз знаний разбиение*: Библиотека sc-моделей онтологий Библиотека описаний используемых языков Библиотека различных базовых знаний Базовые знания о множествах и отношениях \ni Базовые знания о графовых структурах € Базовые знания о числах и числовых моделях Базовые знания о пространстве и пространственных формах \ni Базовые знания о времени, динамических системах, ситуациях, событиях Базовые знания об информационных целях, задачах и \ni способах их решения Базовые знания о целенаправленной деятельности \ni различных субъектов Библиотека sc-моделей многократно используемых неатомарных и \supset атомарных агентов обработки знаний Библиотека sc-моделей многократно используемых компонентов интерфейсов интеллектуальных систем

Библиотека sc-моделей типовых подсистем интеллектуальных систем Библиотека различных вариантов технических реализаций sc-памяти Библиотека различных вариантов технических реализаций scp-машины

обработки знаний

Библиотека платформенно ориентированных вариантов реализации агентов

2 ФОРМАЛЬНАЯ СЕМАНТИЧЕСКАЯ СПЕЦИФИКАЦИЯ БИБЛИОГРАФИЧЕСКИХ ИСТОЧНИКОВ

Спецификация библиографического источника может включать:

- указание автора (-ов);
- оглавление;
- аннотацию;
- перечень ключевых знаков (основных понятий);
- тип источника (книга, статья, электронный ресурс и т.д.);
- шитаты:
 - определения каких-либо понятий;
 - пояснения к каким-либо понятиям;
 - сравнение каких-либо сущностей;
 - сравнительный анализ каких-либо подходов или идей;
 - отличия каких-либо сущностей;
 - принципы, лежащие в основе каких-либо подходов.

Модели, методика и средства разработки гибридных баз знаний на основе семантической совместимости многократно используемых компонентов.

:= стандартное библиографическое описание*:

[Давыденко И. Т. Модели, методика и средства разработки гибридных баз знаний на основе семантической совместимости многократно используемых компонентов, pages 1-16, 2018]

библиографическая ссылка*:

ЗАКЛЮЧЕНИЕ

В результате выполнения ознакомительной практики, я проанализировал научный текст и выделил его основные позиции, также были изучены принципы формализации библеографичексих источников с помощью SCn-кода.

Установлено экспериментально, что процент заимствованной из библиотеки части базы знаний в среднем составляет 49 процентов. Библиотека совместимых многократно используемых компонентов баз знаний существенно сократит сроки разработки баз знаний, за счет использования ранее разработанных компонентов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

[1] Давыденко, И. Т. Модели, методика и средства разработки гибридных баз знаний на основе семантической совместимости многократно используемых компонентов / И. Т. Давыденко. — БГУИР, 2018. — Р. 17.