# Computational Statistics 732A90

Lab 5

Albin Västerlund albva223

Eric Herwin Erihe068

## Contents

| Assigme                     | nt 1         | L: | Н | уĮ | ю | tŀ | ıe | $\mathbf{si}$ | s | te | $\mathbf{st}$ | in | $\mathbf{g}$ |  |  |      |  |  |  |  |  |  |  |  |  |  |      |      |  |  |  |
|-----------------------------|--------------|----|---|----|---|----|----|---------------|---|----|---------------|----|--------------|--|--|------|--|--|--|--|--|--|--|--|--|--|------|------|--|--|--|
| 1                           |              |    |   |    |   |    |    |               |   |    |               |    |              |  |  | <br> |  |  |  |  |  |  |  |  |  |  | <br> |      |  |  |  |
| 2                           |              |    |   |    |   |    |    |               |   |    |               |    |              |  |  | <br> |  |  |  |  |  |  |  |  |  |  | <br> |      |  |  |  |
| 3                           |              |    |   |    |   |    |    |               |   |    |               |    |              |  |  | <br> |  |  |  |  |  |  |  |  |  |  | <br> | <br> |  |  |  |
| 4                           |              |    |   |    |   |    |    |               |   |    |               |    |              |  |  | <br> |  |  |  |  |  |  |  |  |  |  | <br> |      |  |  |  |
| 5                           |              |    |   |    |   |    |    |               |   |    |               |    |              |  |  | <br> |  |  |  |  |  |  |  |  |  |  |      |      |  |  |  |
| a                           | .)           |    |   |    |   |    |    |               |   |    |               |    |              |  |  | <br> |  |  |  |  |  |  |  |  |  |  |      |      |  |  |  |
| b                           | ·) .         |    |   |    |   |    |    |               |   |    |               |    |              |  |  | <br> |  |  |  |  |  |  |  |  |  |  | <br> |      |  |  |  |
| c                           | )            |    |   |    |   |    |    |               |   |    |               |    |              |  |  | <br> |  |  |  |  |  |  |  |  |  |  |      |      |  |  |  |
| $\mathbf{A}\mathbf{ssigme}$ |              |    |   |    |   |    |    |               |   |    |               |    |              |  |  |      |  |  |  |  |  |  |  |  |  |  |      |      |  |  |  |
| 1                           |              |    |   |    |   |    |    |               |   |    |               |    |              |  |  |      |  |  |  |  |  |  |  |  |  |  |      |      |  |  |  |
| $2 \dots$                   |              |    |   |    |   |    |    |               |   |    |               |    |              |  |  |      |  |  |  |  |  |  |  |  |  |  | <br> |      |  |  |  |
| 3                           |              |    |   |    |   |    |    |               |   |    |               |    |              |  |  | <br> |  |  |  |  |  |  |  |  |  |  |      |      |  |  |  |
| 4                           |              |    |   |    |   |    |    |               |   |    |               |    |              |  |  | <br> |  |  |  |  |  |  |  |  |  |  | <br> |      |  |  |  |
| <b>A</b> ppendi             | $\mathbf{x}$ |    |   |    |   |    |    |               |   |    |               |    |              |  |  |      |  |  |  |  |  |  |  |  |  |  |      |      |  |  |  |
| R-code                      |              |    |   |    |   |    |    |               |   |    |               |    |              |  |  |      |  |  |  |  |  |  |  |  |  |  |      |      |  |  |  |

## Assignment 1: Hypothesis testing

1

In this task we will make a scatterplot of Y=Draft\_No versus X=Day\_of\_year.

```
ggplot(lottery,aes(y=Draft_No,x=Day_of_year))+
  geom_point()+
  theme_bw()+
  ggtitle("Is lottery random?")+
  theme(plot.title = element_text(hjust = 0.5))
```

## Is lottery random?



From looking at the plot we do only see randomness in the data.

 $\mathbf{2}$ 

In this task we will compute an estimate  $\hat{Y}$  of the expected response as a function of X by using a loess smoother. We will plot the result of the loess() against the original data.

```
ggplot(lottery,aes(y=Draft_No,x=Day_of_year))+
  geom_point()+
  theme_bw()+
```

```
ggtitle("Draft numbers vs day of year, with loess model")+
theme(plot.title = element_text(hjust = 0.5))+
geom_smooth(method = "loess")
```





We can see that the loess() estimation finds a visible trend that might indicate that the lottery is not random.

3

In this task we will use this test statistics:

$$T = \frac{\hat{Y}(X_b) - \hat{Y}(X_a)}{X_b - X_a}, \quad where \ X_b = argmax_x Y(X), \ X_a = argmin_y Y(X)$$

If the test statistic is very large its indicates on a positive trend while if its very small its indicats on a negative trend.

We will test the hypothesis:

$$H_0: T \ge 0$$
 (i.e not a negative trend)  
 $H_1: T < 0$  (i.e a negative trend)

We are investigating in the right side of the distribution. Which means that we calculate the p-value in this way:

$$p-value = \frac{count(T_i \ge T)}{B} = 1 - \frac{count(T_i < T)}{B}$$

And in this case is T=0 and  $T_i$  is the observed test-statistics from for example a bootstrap.

So we will perform a non-parametric bootstrap with B = 2000.

First we do a function that we will put into the boot() function.

```
my_bot_fun <- function(data, index) {
  new_data <- data[index, c(4, 5)]
  modelen <- loess(Draft_No ~ Day_of_year, new_data)

Xa_pos <- which.min(new_data$Draft_No) #Which min on Y
Xb_pos <- which.max(new_data$Draft_No) #Which max on Y

Xa <- new_data$Day_of_year[Xa_pos] #The X value that gives the min Y
Xb <- new_data$Day_of_year[Xb_pos] #The X value that gives the max Y

Y_Xa <- modelen$fitted[Xa_pos]
Y_Xb <- modelen$fitted[Xb_pos]

T_value <- (Y_Xb - Y_Xa) / (Xb - Xa) #The test statistic

return(T_value)
}</pre>
```

When we have the function we can perform a bootstrap and extract the p-value. We will also plot whats happens in a histogram.

## Estimated distribution of the test-statistic with bootstrap



We can see that the p-value is 6.2%. The p-value is low big which indicats that we have a negative trend in or data.

#### 4

In this task will implement a function depending on data and B that tests if the lottery is random or not. The hypothesis:

$$H_0: T = 0 \ (Lottery \ is \ random)$$
  
 $H_1: T \neq 0 \ (Lottery \ is \ not \ random)$ 

We can see by looking at the hypothesis thats its a two-sided test (one side for positive trend and one for negativ trend).

We are investigating in the both side of the distribution. Which means that we calculate the p-value in this way:



These hyposesis will be tested with a permutation test with statistics T. This test will be performed with B = 2000.

We will start do the function.

```
tst <- function(data, B){
  tmp_data <- data #make a temporary data set</pre>
  samp_val <- c() #We will save the test statistic in this variable</pre>
  # Get the distribution of T when X is "garbage" ####
  for(i in 1:B){
    ind <- sample(1:nrow(data), nrow(data))</pre>
                                                #Suffle around the X
    tmp_data$X <- data$X[ind]</pre>
                                                 #Suffle around the X
    modl <- loess(Y ~ X, tmp_data)</pre>
                                                #Make a model when X is "garbage"
    x b <- data$X[which.max(data$Y)]</pre>
                                                #Make the test statistic
    x_a <- data$X[which.min(data$Y)]</pre>
                                                #Make the test statistic
    y_x_b <- predict(modl, x_b)</pre>
                                                #Make the test statistic
    y_x_a <- predict(modl, x_a)</pre>
                                                #Make the test statistic
    samp_val[i] \leftarrow (y_x_b - y_x_a)/(x_b - x_a) #Save the test statistic
  }
  # Calc test statistc
  all_data_model <- loess(Y ~ X, data)</pre>
                                             #Model when X is not "garbage"
  x_b <- data$X[which.max(data$Y)]</pre>
                                             #Make the test statistic
  x_a <- data$X[which.min(data$Y)]</pre>
                                             #Make the test statistic
  y_x_b <- predict(all_data_model, x_b) #Make the test statistic</pre>
  y_x_a <- predict(all_data_model, x_a)</pre>
                                            #Make the test statistic
  T_test_statistic <- (y_x_b - y_x_a)/(x_b- x_a) #Save our obtain test-statistic
 #This formula works if the disturbution is symmetric
 #Like for example in t-distribution and normal-distribution
 #So it dont work in our case
 #p_value <- (sum(samp_val < T_test_statistic) / B) * 2 #Get the p-value.)</pre>
                                                             #We multiply it with 2
                                                            #because its a two-sided hypothesis.
 #The new way to calculate the p-value
 p_value <- (sum(abs(samp_val) > abs(T_test_statistic)) / B)
  ######## Down from here its just to make a histogram of the data. #######
  nr1_text<-paste("Number of values \n thats over |",</pre>
                   round(T_test_statistic,2),"| is ",
                   sum(abs(samp_val)>abs(T_test_statistic)),sep="")
```

```
nr2_text<-paste("P-value= \n (",</pre>
                                        sum(abs(samp val)>abs(T test statistic)),"/",B,")=",
                                       p_value,sep="")
ggplot_return<-ggplot()+</pre>
     geom_histogram(aes(x=samp_val),col="grey0",fill="grey70",bins=20)+
     \#geom\_vline(xintercept = T\_test\_statistic, linetype="dashed", size=1, y=0) + (a) = (a) =
     geom segment(aes(x=T test statistic,y=0,xend=T test statistic,yend=150),linetype=8,size=1)+
     geom_segment(aes(x=-T_test_statistic,y=0,xend=-T_test_statistic,yend=150),linetype=8,size=1)+
     labs(x="T distribution",y="",title="Permutation test")+
    theme bw()+
    theme(plot.title = element_text(hjust = 0.5))+
     annotate("text", T test statistic ,-10, label=paste("T =", round(T test statistic, 2)))+
     annotate("text",-T_test_statistic,-10,label=paste("T =",-round(T_test_statistic,2)))+
    annotate("text",0.30,300,label=nr1_text)+
     annotate("text",0.30,200,label=nr2_text)+
     geom_line(aes(x=c(T_test_statistic-0.2,T_test_statistic),y=40),
                         arrow = arrow(length=unit(0.30, "cm"),
                                                            ends="first", type = "closed"))+
     geom_line(aes(x=c(-T_test_statistic+0.2,-T_test_statistic),y=40),
                         arrow = arrow(length=unit(0.30, "cm"),
                                                            ends="last", type = "closed"))+
     annotate("text",T_test_statistic=0.1,60,label="Count")+
     annotate("text",-T test statistic+0.1,60,label="Count")
###########################
svar <- list(p_value, ggplot_return, samp_val, T_test_statistic) #Save a list that the
return(svar)
                                     #function return
```

When we have a function that can make the permutation test we appley it on our data.

```
lottery2 <- data.frame(Y = lottery$Draft_No, X = lottery$Day_of_year) #Make a data.frame
Permutation_tests <- tst(lottery2, 2000)
Permutation_tests_1.4<-Permutation_tests #save for assignment 1.5 power test
```

The p-value and histogram:

```
Permutation_tests[[2]] #Histogram
```



We can see that the p-value is 5.9%. If we had a significance level 10% we would reject  $H_0$  and say that the data is not random. Which indicats that draft number is depending on the day of the year. In our case if its a day in the end of the year the draft number will decrease.

5

**a**)

Here we will use the same data X as before and and simulate new Y values:

$$Y(x) = max(0, min(\alpha x + \beta, n)), \quad n = 366, \ \alpha = 0.1, \ \beta \sim N(183, sd = 10)$$

Code for simulate the new Y values

```
X <- lottery$Day_of_year</pre>
                                         #Or X values
beta <- rnorm(1, 183, 10)
                                         #Beta value
alpha <- 0.1
                                         #Alpha value
alpha_beta_value <- alpha * X + beta</pre>
                                         #inner, inner values
Y_x <- NULL
                                             #We save our Y(x) in this variable
for (i in seq_along(alpha_beta_value)) {
                                            #For i in inner, inner values
  a <-min(alpha_beta_value[i],366)
                                             #Get the inner values
 Y_x[i] < - max(0, a)
                                             #Get the values=Y
```

```
ggplot(mapping = aes(x=X,y=Y_x))+ #Plot the obtain data
geom_point()+
theme_bw()+
geom_smooth(method = "loess")
```



Here is the new simulated Y values vs the old X values.

### b)

We will now perform the permutation test with B=200 and see if the test statistic get rejected or not (trend or not in the data).

We will do this with a function called tst2(). Very simular to the function tst() in assignment 1.4. See appendix for code.



As we saw in the graph in 1.5a there was a clear positive trend in the data and therefore gets a large T-statistic, which gives us a small p-value. This indicats that Y(x) is depended on x (which is quite clear).

0.04

T distribution

T = 0.1

0.08

**c**)

In this step we will repeat steps 5a-5b with

0.00

$$\alpha = 0.2, 0.3, ..., 10$$

# Fix parameters diffrent\_alpha <- seq(0.2, 10, 0.1) #diffrent alpha X <- lottery\$Day\_of\_year</pre> #set our X values Y\_x2 <- list()</pre>  $\#Save\ our\ Y(x)\ with\ diffrent\ alphas$ # Calc the Y-values for (j in seq\_along(diffrent\_alpha)) { #Loop over all alphas (its 99 diffrent alphas) alpha <- diffrent\_alpha[j]</pre> #Set the current alpha beta <- rnorm(1, 183, 10) #Sample a beta alpha\_beta\_value <- alpha \* X + beta #inner, inner values</pre> temp\_y\_x <- NULL #tempurary save Y(x) given a alpha in this variable for (i in seq\_along(alpha\_beta\_value)) { #Loop over all inner,inner values

```
a <- min(alpha_beta_value[i], 366) #Get the inner values
    temp_y_x[i] \leftarrow max(0, a)
                                             \#Get\ Y(x)\ values
  Y_x2[[j]] \leftarrow temp_y_x
                            #Save the current Y(x) in a list
diffrent_alpha_factor<-as.factor(diffrent_alpha)</pre>
ggplot(mapping = aes(x=X))+
  geom_point(aes(y=Y_x2[[1]],col=diffrent_alpha_factor[1]),col="red")+
  geom_point(aes(y=Y_x2[[40]],col=diffrent_alpha_factor[40]))+
  geom_point(aes(y=Y_x2[[99]],col=diffrent_alpha_factor[99]))+
  geom_smooth(method = "loess", se=FALSE,
              mapping = aes(y=Y_x2[[1]],
                             col=diffrent_alpha_factor[1]))+
  geom_smooth(method = "loess", se=FALSE,
              mapping = aes(y=Y_x2[[40]]),
                             col=diffrent_alpha_factor[40]))+
  geom_smooth(method = "loess", se=FALSE,
              mapping = aes(y=Y_x2[[99]]),
                             col=diffrent_alpha_factor[99]))+
  theme_bw()+
  theme(plot.title = element_text(hjust = 0.5))+
  labs(title="X vs Y with diffrent alphas and loess model")
```

#### X vs Y with diffrent alphas and loess model



Here is three sets of Y with diffrent alphas ( $\alpha = 0.2, 4.1, 10$ ). We can see that in all cases that there is a positive trend in the data. When we have a large alpha there is a lot of Y values that is set to 366. We can expect that we will get really low p-values in all permutation test and probably reject all  $H_0$  as well.

```
p_values_ass_1.5 <- c() #variable to save p-values</pre>
test_statistic_1.5<-c() #variable to save T-statistic
for (i in 1:length(Y_x2)) {
                                     #Loop for every Y(x) (its 99 of them)
 data <- data.frame(Y = Y_x2[[i]], X = X)</pre>
                                    #Put the current values in a data.frame
 perm_test<-tst2(data, 200)</pre>
                                     #Make a permutation test. (It return a list)
 p_values_ass_1.5[i] <- perm_test[[1]]</pre>
                                     #Save the p-value
 test_statistic_1.5[i] <- perm_test[[3]]</pre>
                                     #Save the T-statistic
p_values_ass_1.5
test_statistic_dep_alpha<-ggplot(mapping = aes(x=diffrent_alpha,y=test_statistic_1.5))+
 geom_point()+
 theme_bw()+
 labs(x="Alpha",y="T-statistic",title="T-statistic depending on alpha")+
 theme(plot.title = element_text(hjust = 0.5))
test_statistic_dep_alpha
```

## T-statistic depending on alpha



In all cases the p-value is set to 0. The test statistic start to increase up to around  $\alpha = 3$ . After that the T-value start to decrease again.

A bigger T-value does not necessarily mean a smaller p-value because the distribution of T-statistic is diffrent. But still, it indicates on a smaller p-value.

```
We calculate the power through Power=1-type II error.

#Significns level
alpha<-0.1

#numer of type 2 errors

type2_error<-sum((p_values_ass_1.5>alpha))
```

```
#proportion of type
type2_error<-type2_error/length(p_values_ass_1.5)

# The power
1-type2_error

## [1] 1

Se can see that the power is 1.</pre>
```

## Assigment 2: Bootstrap, jackknife and confidence intervals

1

Here we will plot histogram of Price and compute the mean of the Price.

```
plot2_1 <- ggplot(mapping = aes(x = price$Price)) +
  geom_histogram(col = "grey0", fill = "grey70", bins = 20) +
  theme_bw() +
  ggtitle("Histogram of Price") +
  theme(plot.title = element_text(hjust = 0.5))
plot2_1</pre>
```

## Histogram of Price



```
men <- mean(price$Price)
men</pre>
```

## [1] 1080

The distibution reminds a bit about a gamma distribution, but in the same time it is skewed.

#### 2

In this task we will compute a 95% confidence interval using bootstrap percentile, bootstrap BCa, and first-order normal approximation. We will also determine the bootstrap bias-correction and the variance of the mean price.

```
set.seed(12345)
#Make a function for the bootstrap
stat1 <- function(data, vn){
   data <- as.data.frame(data[vn,])

   return(mean(data$Price))
}
B <- 200
boot_2 <- boot(price, stat1, R = B) #bootstrap
boot_data <- boot_2$t #Ectract the means from the bootstrap</pre>
```

The histogram of the bootstrap:

```
ggplot(mapping = aes(x=boot_data))+
geom_histogram(col="grey0",fill="grey70",bins=20)+
theme_bw()+
ggtitle("Bootstrap estimated distribution of price")+
theme(plot.title = element_text(hjust = 0.5))
```

## Bootstrap estimated distribution of price



The bias correction and boot variance:

```
#Calculate the bias of the mean
bias_estimator<-mean(price$Price)-(2*mean(price$Price)-sum(boot_data)/B)
bias_estimator</pre>
```

```
## [1] 3.83
```

#The mean bias correction
mean(price\$Price)-bias\_estimator

#### ## [1] 1077

#Same formula as above (formula from slide 18 L5)

2\*mean(price\$Price)-(sum(boot\_data)/B)

#### ## [1] 1077

```
# Extract the bootstrap vaiance
boot_variance<-c(var(boot_data)) #boot variance
```

```
boot_variance
## [1] 1178
#Here we can compare with the results above
boot_2
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = price, statistic = stat1, R = B)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1*
          1080
                  3.83
                              34.32
The intervals:
perc<-boot.ci(boot_2,type = "perc") #bootstrap percentile</pre>
bca<-boot.ci(boot_2,type = "bca") #bca (adjusted bootstrap percentile)</pre>
norm<-boot.ci(boot_2,type = "norm") #Normal approx</pre>
boot.ci(boot_2,type=c("perc","bca","norm"))
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 200 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boot_2, type = c("perc", "bca", "norm"))
##
## Intervals :
## Level
              Normal
                                 Percentile
                                                        BCa
## 95%
       (1009, 1144)
                        (1007, 1146) (1002, 1142)
## Calculations and Intervals on Original Scale
## Some percentile intervals may be unstable
## Some BCa intervals may be unstable
```

#### 3

In this task we will estimate the variance of the mean price using the jackknife and compare it with the bootstrap estimate.

```
store_2 <- c()
dat_tmp <- price$Price
n <- length(dat_tmp)
B <- n</pre>
```

```
for(i in 1:B){
   store_2[i] <- mean(dat_tmp[-i]) #exclude i in each itteration
}

J_T <- mean(store_2)
T_D <- mean(price$Price)

T_star <- n*T_D - (n - 1)*store_2

var_jack <- (1/(n*(n-1))) * sum((T_star- J_T)^2) #variance</pre>
```

The mean and variance for jackknife and bootstrap:

```
#Var
paste("Jack variance:", var_jack) #Jack variance

## [1] "Jack variance: 1320.91104405187"

paste("Boot variance:", boot_variance) #Boot variance

## [1] "Boot variance: 1177.69574782798"

# Mean
paste("Jack mean", mean(store_2)) #Jack mean

## [1] "Jack mean 1080.47272727273"

paste("Boot mean", mean(boot_data)) #Boot mean
```

## [1] "Boot mean 1084.30313636364"

We can see that variance for the bootstrap is smaller then the jackknife. The means are quite simmilar, but the jackknife has a lower mean then the bootstrap. The jackknife mean are closer to the mean from the sample.

#### 4

In this task we will compare the confidence intervals obtained.

```
under <- c()
over <- c()
length_int <- c()
middle_of_intervall <- c()
namn <- c("perc", "bca", "norm")

#perc
under[1] <- perc$percent[, 4]; over[1] <- perc$percent[, 5]
length_int[1] <- over[1] - under[1]
middle_of_intervall[1] <- mean(c(over[1], under[1]))</pre>
```

```
#bca
under[2] <- bca$bca[, 4]; over[2] <- bca$bca[, 5]
length_int[2] <- over[2] - under[2]
middle_of_intervall[2] <- mean(c(over[2], under[2]))

#norm
under[3] <- norm$normal[, 2]; over[3] <- norm$normal[, 3]
length_int[3] <- over[3] - under[3]
middle_of_intervall[3] <- mean(c(over[3], under[3]))

# print the values
knitr::kable(
    data.frame(
    "Type" = namn,
    "Under" = under,
    "Middle" = middle_of_intervall,
    "Over" = over,
    "Length of intervall" = length_int
    ))</pre>
```

| Type        | Under        | Middle       | Over         | Length.of.intervall |
|-------------|--------------|--------------|--------------|---------------------|
| perc<br>bca | 1007<br>1002 | 1077<br>1072 | 1146<br>1142 | 138.6<br>139.6      |
| norm        | 1002         | 1077         | 1144         | 134.5               |

We can see from this output that the interval that is shortest are the first-order normal approximation and has the middle point closest to the sample mean: 1080.473. Also from the output we can see that the broader the interval, the more the middle of the interval is off from the true mean.

## **Appendix**

#### R-code

```
# Library ####
library(boot)
library(tidyverse)
options(digits = 4)

# Library ####
library(boot)
library(tidyverse)
options(digits = 4)

lottery <- read.csv2("lottery.csv")
ggplot(lottery,aes(y=Draft_No,x=Day_of_year))+
    geom_point()+
    theme_bw()+
    ggtitle("Is lottery random?")+
    theme(plot.title = element_text(hjust = 0.5))</pre>
```

```
ggplot(lottery,aes(y=Draft_No,x=Day_of_year))+
  geom_point()+
  theme_bw()+
  ggtitle("Draft numbers vs day of year, with loess model")+
  theme(plot.title = element_text(hjust = 0.5))+
  geom smooth(method = "loess")
my_bot_fun <- function(data, index) {</pre>
  new data <- data[index, c(4, 5)]</pre>
  modelen <- loess(Draft_No ~ Day_of_year, new_data)</pre>
  Xa_pos <- which.min(new_data$Draft_No) #Which min on Y</pre>
  Xb_pos <- which.max(new_data$Draft_No) #Which max on Y</pre>
  Xa <- new_data$Day_of_year[Xa_pos] #The X value that gives the min Y</pre>
  Xb <- new_data$Day_of_year[Xb_pos] #The X value that gives the max Y
  Y_Xa <- modelen$fitted[Xa_pos]</pre>
  Y_Xb <- modelen$fitted[Xb_pos]
  T_value <- (Y_Xb - Y_Xa) / (Xb - Xa) #The test statistic
  return(T_value)
}
B=2000
my_boot_strap <- boot(data = lottery, statistic = my_bot_fun, R = B) #Do the bootsprat
T x < -0
p_value <- sum (my_boot_strap$t>=T_x)/B #get the p-value. Now its right
\#1-sum(my\_boot\_strap\$t < T\_x)/B \ \#We \ dident \ mix \ up \ p-value \ and \ power
                               #We mixed it up with this formula which gives the same results
text_nr1<-paste("Number of values \n thats over 0 is",sum(my_boot_strap$t>T_x))
text_nr2<-paste("P-value=",sum(my_boot_strap$t>T_x),"/",B,"=\n",sum(my_boot_strap$t>T_x)/B)
ggplot(mapping = aes(x=my_boot_strap$t))+
  geom_histogram(col="grey0",fill="grey70",bins=20)+
  theme bw()+
  ggtitle("Estimated distribution of the test-statistic with bootstrap")+
  theme(plot.title = element_text(hjust = 0.5))+
  geom_vline(xintercept = 0,linetype="dashed",size=1)+
  annotate("text",0.3,350,label=text_nr1)+
  annotate("text", 0.3, 250, label=text nr2)+
  geom_vline(xintercept = T_x,linetype="dashed",size=1)+
  geom_line(aes(x=c((T_x+0.7),T_x),y=40),
            arrow = arrow(length=unit(0.30, "cm"),
                           ends="last", type = "closed"))+
  annotate("text",T_x+0.35,60,label="Count")
tst <- function(data, B){</pre>
  tmp_data <- data #make a temporary data set</pre>
  samp_val <- c() #We will save the test statistic in this variable</pre>
```

```
# Get the distribution of T when X is "garbage" ####
for(i in 1:B){
  ind <- sample(1:nrow(data), nrow(data)) #Suffle around the X
  tmp_data$X <- data$X[ind]</pre>
                                              #Suffle around the X
  modl <- loess(Y ~ X, tmp_data)</pre>
                                              #Make a model when X is "garbage"
  x_b <- data$X[which.max(data$Y)]</pre>
                                             #Make the test statistic
  x_a <- data$X[which.min(data$Y)]</pre>
                                             #Make the test statistic
                                              #Make the test statistic
  y_x_b <- predict(modl, x_b)</pre>
  y_x_a <- predict(modl, x_a)</pre>
                                              #Make the test statistic
  samp_val[i] \leftarrow (y_x_b - y_x_a)/(x_b - x_a) #Save the test statistic
# Calc test statistc
all_data_model <- loess(Y ~ X, data)</pre>
                                           #Model when X is not "garbage"
x_b <- data$X[which.max(data$Y)]</pre>
                                           #Make the test statistic
x_a <- data$X[which.min(data$Y)]</pre>
                                          #Make the test statistic
y_x_b <- predict(all_data_model, x_b) #Make the test statistic</pre>
y_x_a <- predict(all_data_model, x_a) #Make the test statistic</pre>
T_{test\_statistic} \leftarrow (y_x_b - y_x_a)/(x_b - x_a) #Save our obtain test-statistic
#This formula works if the disturbution is symmetric
#Like for example in t-distribution and normal-distribution
#So it dont work in our case
#p_value <- (sum(samp_val < T_test_statistic) / B) * 2 #Get the p-value.</pre>
                                                         #We multiply it with 2
                                                          #because its a two-sided hypothesis.
#The new way to calculate the p-value
p_value <- (sum(abs(samp_val) > abs(T_test_statistic)) / B)
######### Down from here its just to make a histogram of the data. #######
nr1_text<-paste("Number of values \n thats over |",
                round(T test statistic,2)," is ",
                sum(abs(samp_val)>abs(T_test_statistic)),sep="")
nr2_text<-paste("P-value= \n (",
                sum(abs(samp_val)>abs(T_test_statistic)),"/",B,")=",
                p_value,sep="")
ggplot_return<-ggplot()+</pre>
  geom_histogram(aes(x=samp_val),col="grey0",fill="grey70",bins=20)+
  \#qeom\_vline(xintercept = T\_test\_statistic, linetype="dashed", size=1, y=0) +
  geom_segment(aes(x=T_test_statistic,y=0,xend=T_test_statistic,yend=150),linetype=8,size=1)+
  geom_segment(aes(x=-T_test_statistic,y=0,xend=-T_test_statistic,yend=150),linetype=8,size=1)+
  labs(x="T distribution",y="",title="Permutation test")+
  theme(plot.title = element_text(hjust = 0.5))+
  annotate("text",T_test_statistic ,-10,label=paste("T =",round(T_test_statistic,2)))+
  annotate("text",-T_test_statistic,-10,label=paste("T =",-round(T_test_statistic,2)))+
```

```
annotate("text",0.30,300,label=nr1 text)+
    annotate("text",0.30,200,label=nr2_text)+
    geom_line(aes(x=c(T_test_statistic-0.2,T_test_statistic),y=40),
             arrow = arrow(length=unit(0.30, "cm"),
                            ends="first", type = "closed"))+
    geom_line(aes(x=c(-T_test_statistic+0.2,-T_test_statistic),y=40),
             arrow = arrow(length=unit(0.30, "cm"),
                            ends="last", type = "closed"))+
    annotate("text",T test statistic-0.1,60,label="Count")+
    annotate("text",-T_test_statistic+0.1,60,label="Count")
  ############################
  svar <- list(p_value, ggplot_return, samp_val, T_test_statistic) #Save a list that the
  return(svar) #function return
}
lottery2 <- data.frame(Y = lottery$Draft_No, X = lottery$Day_of_year) #Make a data.frame</pre>
Permutation_tests <- tst(lottery2, 2000)</pre>
Permutation_tests_1.4<-Permutation_tests #save for assignment 1.5 power test
Permutation tests[[2]] #Histogram
tst2 <- function(data, B){
  tmp_data <- data
  samp_val <- c()</pre>
  # Get the distribution of T ####
  for(i in 1:B){
    ind <- sample(1:nrow(data), nrow(data))</pre>
    tmp_data$X <- data$X[ind]</pre>
    modl <- loess(Y ~ X, tmp_data)</pre>
    x_b <- data$X[which.max(data$Y)]</pre>
    x_a <- data$X[which.min(data$Y)]</pre>
    y x b <- predict(mod1, x b)
    y_x_a <- predict(modl, x_a)</pre>
    samp_val[i] \leftarrow (y_x_b - y_x_a)/(x_b - x_a)
  }
  # Calc test statistc
  all_data_model <- loess(Y ~ X, data)</pre>
                                              #model with true data
  x_b <- data$X[which.max(data$Y)]</pre>
                                              #X value there Y is biggest
  x_a <- data$X[which.min(data$Y)]</pre>
                                              #X value there Y is samllest
  y_x_b <- predict(all_data_model, x_b) #pred Y on biggest X</pre>
  y_x_a <- predict(all_data_model, x_a)</pre>
                                              #pred Y on samllest X
  T_{\text{test\_statistic}} \leftarrow (y_x_b - y_x_a)/(x_b - x_a)
```

```
p_value <- (sum(samp_val > T_test_statistic) / B) * 2
  nr1_text<-paste("Number of values \n thats over",
                  round(T_test_statistic,2),"is",
                  sum(samp_val>T_test_statistic))
  nr2_text<-paste("P-value= \n",</pre>
                  "2*(",sum(samp_val>T_test_statistic),
                  "/",B,")=",
                  p value,sep="")
  ggplot_return<-ggplot()+</pre>
    geom_histogram(aes(x=samp_val),col="grey0",fill="grey70",bins=30)+
    geom_segment(aes(x=round(T_test_statistic,2),y=0,
                     xend=round(T_test_statistic,2),yend=50),
                 linetype=8,size=1) +
    labs(x="T distribution",y="",title="Permutation test")+
    theme_bw()+
    theme(plot.title = element_text(hjust = 0.5))+
    annotate("text",round(T_test_statistic,2),-5,label=paste("T =",round(T_test_statistic,2)))+
    annotate("text", 0.06, 45, label=nr1_text)+
    annotate("text",0.06,25,label=nr2_text)
  svar <- list(p value, ggplot return, T test statistic)</pre>
  return(svar)
}
X <- lottery$Day_of_year</pre>
                                        #Or X values
                                       #Beta value
beta <- rnorm(1, 183, 10)
alpha <- 0.1
                                        #Alpha value
alpha_beta_value <- alpha * X + beta #inner, inner values</pre>
Y_x <- NULL
                                           #We save our Y(x) in this variable
for (i in seq_along(alpha_beta_value)) { #For i in inner, inner values
  a<-min(alpha_beta_value[i],366)
                                           #Get the inner values
                                           #Get the values=Y
  Y_x[i] <- max(0, a)
}
ggplot(mapping = aes(x=X,y=Y_x))+ #Plot the obtain data
  geom_point()+
 theme_bw()+
  geom smooth(method = "loess")
# Make the Permutation tests ####
data <- data.frame(Y = Y_x, X = X)</pre>
                                      #set the data in a data.frame
Permutation_tests <- tst2(data, 200) #Do permutation tests, look in appendix for
                                      #code for tst2 (simular to tst)
Permutation_tests[[2]] #histogram
# Fix parameters
```

```
diffrent_alpha <- seq(0.2, 10, 0.1) #diffrent alpha
X <- lottery$Day_of_year</pre>
                                     #set our X values
Y_x2 <- list()
                                     #Save our Y(x) with diffrent alphas
# Calc the Y-values
for (j in seq_along(diffrent_alpha)) { #Loop over all alphas (its 99 diffrent alphas)
  alpha <- diffrent_alpha[j]</pre>
                                        #Set the current alpha
  beta <- rnorm(1, 183, 10)
                                        #Sample a beta
  alpha_beta_value <- alpha * X + beta #inner, inner values
 temp_y_x <- NULL
                                        #tempurary save Y(x) given a alpha in this variable
  for (i in seq_along(alpha_beta_value)) { #Loop over all inner, inner values
    a <- min(alpha_beta_value[i], 366)
                                           #Get the inner values
    temp_y_x[i] \leftarrow max(0, a)
                                            #Get Y(x) values
  Y_x2[[j]] \leftarrow temp_y_x
                           #Save the current Y(x) in a list
diffrent_alpha_factor<-as.factor(diffrent_alpha)</pre>
ggplot(mapping = aes(x=X))+
  geom_point(aes(y=Y_x2[[1]],col=diffrent_alpha_factor[1]),col="red")+
  geom_point(aes(y=Y_x2[[40]],col=diffrent_alpha_factor[40]))+
  geom_point(aes(y=Y_x2[[99]],col=diffrent_alpha_factor[99]))+
  geom_smooth(method = "loess", se=FALSE,
              mapping = aes(y=Y_x2[[1]],
                             col=diffrent_alpha_factor[1]))+
  geom_smooth(method = "loess", se=FALSE,
              mapping = aes(y=Y_x2[[40]]),
                             col=diffrent_alpha_factor[40]))+
  geom_smooth(method = "loess", se=FALSE,
              mapping = aes(y=Y_x2[[99]]),
                             col=diffrent_alpha_factor[99]))+
  theme_bw()+
  theme(plot.title = element_text(hjust = 0.5))+
  labs(title="X vs Y with diffrent alphas and loess model")
p_values_ass_1.5 <- c() #variable to save p-values</pre>
test_statistic_1.5<-c() #variable to save T-statistic
                                                #Loop for every Y(x) (its 99 of them)
for (i in 1:length(Y_x2)) {
  data <- data.frame(Y = Y_x2[[i]], X = X)</pre>
                                               #Put the current values in a data.frame
  perm_test<-tst2(data, 200)
                                               #Make a permutation test. (It return a list)
  p_values_ass_1.5[i] <- perm_test[[1]]</pre>
                                               #Save the p-value
                                               #Save the T-statistic
  test_statistic_1.5[i] <- perm_test[[3]]</pre>
p_values_ass_1.5
test_statistic_dep_alpha < -ggplot(mapping = aes(x=diffrent_alpha,y=test_statistic_1.5))+
```

```
geom_point()+
  theme_bw()+
  labs(x="Alpha",y="T-statistic",title="T-statistic depending on alpha")+
  theme(plot.title = element_text(hjust = 0.5))
test_statistic_dep_alpha
#Significns level
alpha < -0.1
#numer of type 2 errors
type2_error<-sum((p_values_ass_1.5>alpha))
#proportion of type
type2_error<-type2_error/length(p_values_ass_1.5)</pre>
# The power
1-type2_error
price <- read.csv2("prices1.csv")</pre>
plot2_1 <- ggplot(mapping = aes(x = price$Price)) +</pre>
  geom_histogram(col = "grey0", fill = "grey70", bins = 20) +
  theme_bw() +
  ggtitle("Histogram of Price") +
  theme(plot.title = element_text(hjust = 0.5))
plot2_1
men <- mean(price$Price)</pre>
men
#Make a function for the bootstrap
stat1 <- function(data, vn){</pre>
 data <- as.data.frame(data[vn,])</pre>
 return(mean(data$Price))
}
B <- 200
boot_2 <- boot(price, stat1, R = B) #bootstrap</pre>
boot_data <- boot_2$t</pre>
                                      #Ectract the means from the bootstrap
ggplot(mapping = aes(x=boot_data))+
  geom_histogram(col="grey0",fill="grey70",bins=20)+
  theme bw()+
  ggtitle("Bootstrap estimated distribution of price")+
  theme(plot.title = element_text(hjust = 0.5))
bias_estimator<-mean(price$Price)-(2*mean(price$Price)-sum(boot_data)/B) #Calculate the bias estimator
boot_variance<-c(var(boot_data)) #boot variance</pre>
bias_estimator
boot_variance
perc<-boot.ci(boot_2,type = "perc") #bootstrap percentile</pre>
bca<-boot.ci(boot_2,type = "bca")</pre>
                                     #bca (adjusted bootstrap percentile)
norm<-boot.ci(boot_2,type = "norm") #Normal approx</pre>
boot.ci(boot_2,type=c("perc","bca","norm"))
```

```
store_2 <- c()
dat_tmp <- price$Price</pre>
n <- length(dat_tmp)</pre>
B <- n
for(i in 1:B){
  store_2[i] <- mean(dat_tmp[-i]) #exclude i in each itteration</pre>
J_T <- mean(store_2)</pre>
T_D <- mean(price$Price)</pre>
T_star \leftarrow n*T_D - (n - 1)*store_2
var_{jack} \leftarrow (1/(n*(n-1))) * sum((T_star- J_T)^2) #variance
#Var
paste("Jack variance:", var_jack)
                                           #Jack variance
paste("Boot variance:", boot_variance) #Boot variance
paste("Jack mean", mean(store_2)) #Jack mean
paste("Boot mean", mean(boot_data)) #Boot mean
under <- c()
over <- c()
length int <- c()</pre>
middle_of_intervall <- c()</pre>
namn <- c("perc", "bca", "norm")</pre>
#perc
under[1] <- perc$percent[, 4]; over[1] <- perc$percent[, 5]</pre>
length_int[1] <- over[1] - under[1]</pre>
middle_of_intervall[1] <- mean(c(over[1], under[1]))</pre>
#bca
under[2] <- bca$bca[, 4]; over[2] <- bca$bca[, 5]
length_int[2] <- over[2] - under[2]</pre>
middle_of_intervall[2] <- mean(c(over[2], under[2]))</pre>
under[3] <- norm$normal[, 2]; over[3] <- norm$normal[, 3]</pre>
length_int[3] <- over[3] - under[3]</pre>
middle_of_intervall[3] <- mean(c(over[3], under[3]))</pre>
# print the values
knitr::kable(
  data.frame(
  "Type" = namn,
  "Under" = under,
  "Middle" = middle_of_intervall,
  "Over" = over,
  "Length of intervall" = length_int
  ))
```

```
##
## # code=readLines(knitr::purl('Lab 5 albin eric.Rmd', documentation = 0)), eval = FALSE
## # knitr::purl('Lab 5 albin eric.Rmd', documentation = 0)
##
```