Two-Stage Classification Model for Imbalanced Data

R26121065 吳思蒨

Dataset Description

- Features: Contains multiple features related to demographic, clinical, or behavioral data (e.g., age, cholesterol, blood pressure).
- Target Variable: cardio: Binary label indicating the presence (1) or absence (0) of cardiovascular disease.

Imbalanced Data Problem

- Total sample size : 70,000
- Final sample size : 38523 (after sampling)
- Class 0 (Negative): 35021
- Class 1 (Positive): 3502

Cost Asymmetry

 The cost of a False Negative (FN) is ten times higher than that of a False Positive (FP).

Combine the prediction of two models

data

Logistic regression

XG Boost

Final predict

p≤0.2 : Directly classified as 0 (Low Risk). p>0.2: Passed to XGBoost for further

refinement.

Results

Stage1 (logistic regression) Stage2 (weighted XGBoost)

	0	1
0	1418	4439
1	31	533

	0	1
0	3324	1115
1	175	358

0 1 0 4742 1115 1 206 358

Final prediction

Precision: 0.11 Recall: 0.95 Precision: 0.24 Recall: 0.67 Precision: 0.24 Recall: 0.63

Threshold=0.5

Comparison

Normal XGBoost

	0	1
0	5762	95
1	512	52

Precision: 0.35

Recall: 0.09

Weighted XGBoost

	0	1
0	4900	957
1	258	306

Precision: 0.24

Recall: 0.54

Two-Stage Model

	0	1
0	5094	763
1	261	303

Precision: 0.28

Recall: 0.54

Threshold=0.6

ROC curve

5

Key Achievements

- Proposed a Two-Stage Classification Model combining Logistic Regression and Weighted XGBoost.
- Improved recall for minority class (Class 1) to 0.54, while balancing precision.

Future Directions

Further optimization of loss weights to improve precision.

Thanks for your attention.