- \_\_\_\_ 실시간 스트리밍
  - 1) 특징

Event-driven 아키텍처로 구현됨

실시간이란 상대적인 개념으로 요건에 따라 실시간의 범위가 정의될 수 있음

낮은 수준의 지연 시간(Low Latency)

일정한 응답 속도의 보장과 예측 가능한 성공 제공

② 이벤트 기반 아키텍처

사람의 감각 기관 및 반응 구조와 유사함





# 1 실시간 스트리밍

|        | 배치 처리                              | 스트림 처리                                                |  |
|--------|------------------------------------|-------------------------------------------------------|--|
| 데이터 범위 | 데이터 세트의 모든 또는<br>대부분 데이터를 쿼리하거나 처리 | 롤링 타임 윈도우 내 데이터 또는<br>가장 최신 데이터 레코드의 데이터를<br>쿼리하거나 처리 |  |
| 데이터 크기 | 대규모 데이터 배치                         | 일부 레코드로 구성된 마이크로 배치 또는<br>개별 레코드                      |  |
| 성능     | 지연 시간이 몇 분에서 몇 시간                  | 몇 초 또는 몇 밀리초의 지연 시간이 필요                               |  |
| 분석     | 복잡한 분석                             | 간단한 응답 가능, 수집 및 롤링 지표                                 |  |

### 배치 처리와 스트리밍 처리 비교

3 사례

주식 트레이딩

쇼핑몰 사용자 클릭 스트림 기반의 개인화 추천

실시간 분석, 추천, 광고

제조 공정 관리

지난 30분간 주문 상품 Top 10

실시간 금융 사기 방지

실시간 모니터링

보안 관제



### 스파크 스트리밍

#### **RDD**

• 스파크의 기본 데이터 셋 추상화 객체

#### **Dstream**(Discretized Stream)

- 불연속화 스트림
- 스파크 스트리밍의 데이터셋 추상화 객체



정의된 시간 간격 동안 이벤트 일괄 처리를 우선 수집하여 데이터를 마이크로 단위로 일괄로 처리

| input data |                    | batches of |                 | batches of     |
|------------|--------------------|------------|-----------------|----------------|
| stream     | Spark<br>Streaming | input data | Spark<br>Engine | processed data |



### 스파크 스트리밍

각 RDD는 일괄 처리 간격 동안 수집된 이벤트를 나타냄

RDD의 연속 집합은 DStream으로 수집됨

RDD@ time 1 RDD@ time 2 RDD@ time 3 RDD@ time 4

DStream -- lines from time 0 to 1 lines from time 1 to 2 lines from time 2 to 3 lines from time 3 to 4

### 마이크로 배치 (Micro-batch)

데이터 스트림을 개별 세그먼트로 나눈 후 각 세그먼트의 데이터를 스파크 엔진으로 처리

에이터를 초 단위의 타임 윈도우로 나눈 후 스파크 엔진을 실행함



## 스파크 스트리밍





마이크로 배치와 작은 배치의 연속