```
In [1]: from gerrychain import Graph

In [2]: # Read Alabama county graph from the json file "AL_county.json"
    filepath = 'C:\\Users\\black | rom the json file "AL_county.json"
    filename = 'ALL_county.json'

# GerryChain has a built-in function for reading graphs of this type:
    G = Graph.from_json( filepath + filename )

In [3]: # For each node, print the node #, county name, population, and lat-Long coordinates
    for node in G.nodes:
        name = G.nodes[node]["NAME20"]
        population = G.nodes[node]["P0010001"]
        G.nodes[node]['TOTPOP'] = population

# query lat and long coordinates
        G.nodes[node]['C_X'] = G.nodes[node]['INTPTLON20'] #longitude of county's center
        G.nodes[node]['C_Y'] = G.nodes[node]['INTPTLAT20'] #latitude of county's center

print("Node",node,"is",name,"County, which has population",population,"and is centered at (",G.nodes[node]['C_X'],",",G.nodes
```

Node 0 is Shelby County, which has population 223024 and is centered at (-086.6780894, +33.2630428) Node 1 is Dallas County, which has population 38462 and is centered at (-087.1143600, +32.3335263) Node 2 is Pickens County, which has population 19123 and is centered at (-088.0968644, +33.2968003) Node 3 is Lauderdale County, which has population 93564 and is centered at (-087.6509966, +34.9041221) Node 4 is Cleburne County, which has population 15056 and is centered at (-085.5161261, +33.6719637) Node 5 is Barbour County, which has population 25223 and is centered at (-085.4051035, +31.8702531) Node 6 is Geneva County, which has population 26659 and is centered at (-085.8210224, +31.0923822) Node 7 is Dale County, which has population 49326 and is centered at (-085.6094760, +31.4306536) Node 8 is Tallapoosa County, which has population 41311 and is centered at (-085.7996176, +32.8633076) Node 9 is Clarke County, which has population 23087 and is centered at (-087.8186244, +31.6855211) Node 10 is Houston County, which has population 107202 and is centered at (-085.2964111, +31.1581831) Node 11 is Washington County, which has population 15388 and is centered at (-088.2124041, +31.4085035) Node 12 is Madison County, which has population 388153 and is centered at (-086.5510802, +34.7642377) Node 13 is Crenshaw County, which has population 13194 and is centered at (-086.3200384, +31.7303106) Node 14 is Calhoun County, which has population 116441 and is centered at (-085.8279089, +33.7705162) Node 15 is Lawrence County, which has population 33073 and is centered at (-087.3218651, +34.5297760) Node 16 is Morgan County, which has population 123421 and is centered at (-086.8464021 , +34.4544844) Node 17 is Lamar County, which has population 13972 and is centered at (-088.0874309, +33.7870852) Node 18 is Russell County, which has population 59183 and is centered at (-085.1869798, +32.2898113) Node 19 is Franklin County, which has population 32113 and is centered at (-087.8428144, +34.4419892) Node 20 is Conecuh County, which has population 11597 and is centered at (-086.9887221, +31.4309257) Node 21 is Elmore County, which has population 87977 and is centered at (-086.1427347, +32.5972290) Node 22 is Jefferson County, which has population 674721 and is centered at (-086.8965359, +33.5534439) Node 23 is Walker County, which has population 65342 and is centered at (-087.3010936, +33.7915581) Node 24 is Randolph County, which has population 21967 and is centered at (-085.4640637, +33.2964614) Node 25 is Montgomery County, which has population 228954 and is centered at (-086.2044615 , +32.2028812) Node 26 is Bibb County, which has population 22293 and is centered at (-087.1271475, +33.0158929) Node 27 is Etowah County, which has population 103436 and is centered at (-086.0342629 , +34.0476407) Node 28 is Chilton County, which has population 45014 and is centered at (-086.7266071 , +32.8540514) Node 29 is Coffee County, which has population 53465 and is centered at (-085.9896022, +31.4022580) Node 30 is Covington County, which has population 37570 and is centered at (-086.4487206, +31.2439873) Node 31 is Henry County, which has population 17146 and is centered at (-085.2399712 , +31.5169779) Node 32 is Clay County, which has population 14236 and is centered at (-085.8635254, +33.2703999) Node 33 is Marengo County, which has population 19323 and is centered at (-087.7910910, +32.2475911) Node 34 is DeKalb County, which has population 71608 and is centered at (-085.8040207, +34.4609148) Node 35 is Cherokee County, which has population 24971 and is centered at (-085.6542417 , +34.0695153) Node 36 is Hale County, which has population 14785 and is centered at (-087.6230608, +32.7527958) Node 37 is Perry County, which has population 8511 and is centered at (-087.2938269, +32.6390053) Node 38 is Colbert County, which has population 57227 and is centered at (-087.8014569 , +34.7031120) Node 39 is Greene County, which has population 7730 and is centered at (-087.9642005, +32.8444965) Node 40 is Butler County, which has population 19051 and is centered at (-086.6819689, +31.7516670) Node 41 is Lee County, which has population 174241 and is centered at (-085.3530477 , +32.6040644)

```
Node 42 is Mobile County, which has population 414809 and is centered at (-088.1965682, +30.6845725)
        Node 43 is Fayette County, which has population 16321 and is centered at (-087.7642923, +33.7161568)
        Node 44 is Chambers County, which has population 34772 and is centered at (-085.3940321, +32.9155039)
        Node 45 is Tuscaloosa County, which has population 227036 and is centered at ( -087.5227834 , +33.2902197 )
        Node 46 is Wilcox County, which has population 10600 and is centered at (-087.3049349, +31.9900824)
        Node 47 is Marshall County, which has population 97612 and is centered at (-086.3216681, +34.3095637)
        Node 48 is Escambia County, which has population 36757 and is centered at (-087.1684097, +31.1222867)
        Node 49 is Limestone County, which has population 103570 and is centered at (-086.9813995, +34.8102387)
        Node 50 is Blount County, which has population 59134 and is centered at (-086.5664400, +33.9773575)
        Node 51 is Monroe County, which has population 19772 and is centered at ( -087.3832656 , +31.5803324 )
        Node 52 is Marion County, which has population 29341 and is centered at (-087.8815510, +34.1382194)
        Node 53 is Lowndes County, which has population 10311 and is centered at (-086.6505859, +32.1478880)
        Node 54 is Coosa County, which has population 10387 and is centered at (-086.2434818, +32.9314453)
        Node 55 is Pike County, which has population 33009 and is centered at (-085.9416076, +31.7986533)
        Node 56 is Sumter County, which has population 12345 and is centered at (-088.2000571, +32.5974811)
        Node 57 is Winston County, which has population 23540 and is centered at (-087.3653458, +34.1545665)
        Node 58 is Talladega County, which has population 82149 and is centered at (-086.1759302, +33.3693135)
        Node 59 is Jackson County, which has population 52579 and is centered at (-085.9800556, +34.7641140)
        Node 60 is Baldwin County, which has population 231767 and is centered at (-087.7460666, +30.6592183)
        Node 61 is Bullock County, which has population 10357 and is centered at (-085.7172613, +32.1017589)
        Node 62 is Autauga County, which has population 58805 and is centered at (-086.6464395, +32.5322367)
        Node 63 is Macon County, which has population 19532 and is centered at (-085.6928870, +32.3870267)
        Node 64 is St. Clair County, which has population 91103 and is centered at (-086.3113273, +33.7194907)
        Node 65 is Choctaw County, which has population 12665 and is centered at (-088.2488894, +31.9909539)
        Node 66 is Cullman County, which has population 87866 and is centered at (-086.8692666, +34.1319229)
In [4]: pip install geopy
        Requirement already satisfied: geopy in c:\users\blrod\anaconda3\lib\site-packages (2.2.0)Note: you may need to restart the kern
        el to use updated packages.
        Requirement already satisfied: geographiclib<2,>=1.49 in c:\users\blrod\anaconda3\lib\site-packages (from geopy) (1.52)
In [5]: from geopy.distance import geodesic
        # create distance dictionary
        dist = { (i,j) : 0 for i in G.nodes for j in G.nodes }
```

for i in G.nodes:

for j in G.nodes:

loc_i = (G.nodes[i]['C_Y'],G.nodes[i]['C_X'])
loc_j = (G.nodes[j]['C_Y'],G.nodes[j]['C_X'])
dist[i,j] = geodesic(loc i,loc j).miles

```
In [6]: # Let's impose a 1% population deviation (+/-0.5\%)
        deviation = 0.01
        import math
        k = 7
                       # number of districts
        total population = sum(G.nodes[node]['TOTPOP'] for node in G.nodes)
        L = math.ceil((1-deviation/2)*total population/k)
        U = math.floor((1+deviation/2)*total population/k)
        print("Using L =",L,"and U =",U,"and k =",k)
        Using L = 714166 and U = 721342 and k = 7
In [7]: import gurobipy as gp
        from gurobipy import GRB
        # create model
        m =gp.Model()
        # create x[i,j] variable which equals one when county i
            is assigned to (the district centered at) county i
        x =m.addVars( G.nodes, G.nodes, vtype=GRB.BINARY)
        Set parameter Username
        Academic license - for non-commercial use only - expires 2022-06-09
In [8]: # objective is to minimize the moment of inertia: sum (d^2 * p * x \text{ over all } i \text{ and } j)
        m.setObjective(gp.quicksum(dist[i,j] * dist[i,j] *G.nodes[i]['TOTPOP'] * x[i,j] for i in G.nodes for j in G.nodes ), GRB.MINIMI
In [9]: # add constraints saying that each county i is assigned to one district
        m.addConstrs(gp.quicksum(x[i,j] for j in G.nodes) == 1 for i in G.nodes)
        # add constraint saying there should be k district centers
        m.addConstr(gp.quicksum(x[j,j] for j in G.nodes) == k)
        # add constraints that say: if j roots a district, then its population is between L and U.
        m.addConstrs( gp.quicksum( G.nodes[i]['TOTPOP'] * x[i,j] for i in G.nodes ) >= L * x[j,j] for j in G.nodes )
        m.addConstrs( gp.quicksum( G.nodes[i]['TOTPOP'] * x[i,j] for i in G.nodes ) <= U * x[j,j] for j in G.nodes )</pre>
        # add coupling constraints saying that if i is assigned to j, then j is a center.
        m.addConstrs(x[i,j] \le x[j,j] for i in G.nodes for j in G.nodes)
```

m.update()

In [10]: # add contiguity constraints
import networkx as nx
DG = nx.DiGraph(G)

add flow variables
f = m.addVars(DG.edges, G.nodes) # f[i,j,v] = flow across arc (i,j) that is sent from source/root v

add constraints saying that if node i is assigned to node j
then node i must consume one unit of node j's flow
m.addConstrs(gp.quicksum(f[u,i,j] - f[i,u,j] for u in G.neighbors(i)) == x[i,j] for i in G.nodes for j in G.nodes if i != j)

add constraints saying that node i can recieve flow of type j
noly if node i is assigned to node j
M = G.number_of_nodes() - 1
m.addConstrs(gp.quicksum(f[u,i,j] for u in G.neighbors(i)) <= M * x[i,j] for i in G.nodes for j in G.nodes if i != j)

add constraints saying that j cannot recieve flow of its own type
m.addConstrs(gp.quicksum(f[u,j,j] for u in G.neighbors(j)) == 0 for j in G.nodes)</pre>

OR Code

```
Out[10]: {0: <gurobi.Constr *Awaiting Model Update*>,
          1: <gurobi.Constr *Awaiting Model Update*>,
          2: <gurobi.Constr *Awaiting Model Update*>,
          3: <gurobi.Constr *Awaiting Model Update*>,
          4: <gurobi.Constr *Awaiting Model Update*>,
          5: <gurobi.Constr *Awaiting Model Update*>,
          6: <gurobi.Constr *Awaiting Model Update*>,
          7: <gurobi.Constr *Awaiting Model Update*>,
          8: <gurobi.Constr *Awaiting Model Update*>,
          9: <gurobi.Constr *Awaiting Model Update*>,
          10: <gurobi.Constr *Awaiting Model Update*>,
          11: <gurobi.Constr *Awaiting Model Update*>,
          12: <gurobi.Constr *Awaiting Model Update*>,
          13: <gurobi.Constr *Awaiting Model Update*>,
          14: <gurobi.Constr *Awaiting Model Update*>,
          15: <gurobi.Constr *Awaiting Model Update*>,
          16: <gurobi.Constr *Awaiting Model Update*>,
          17: <gurobi.Constr *Awaiting Model Update*>,
          18: <gurobi.Constr *Awaiting Model Update*>,
          19: <gurobi.Constr *Awaiting Model Update*>,
          20: <gurobi.Constr *Awaiting Model Update*>,
          21: <gurobi.Constr *Awaiting Model Update*>,
          22: <gurobi.Constr *Awaiting Model Update*>,
          23: <gurobi.Constr *Awaiting Model Update*>,
          24: <gurobi.Constr *Awaiting Model Update*>,
          25: <gurobi.Constr *Awaiting Model Update*>,
          26: <gurobi.Constr *Awaiting Model Update*>,
          27: <gurobi.Constr *Awaiting Model Update*>,
          28: <gurobi.Constr *Awaiting Model Update*>,
          29: <gurobi.Constr *Awaiting Model Update*>,
          30: <gurobi.Constr *Awaiting Model Update*>,
          31: <gurobi.Constr *Awaiting Model Update*>,
          32: <gurobi.Constr *Awaiting Model Update*>,
          33: <gurobi.Constr *Awaiting Model Update*>,
          34: <gurobi.Constr *Awaiting Model Update*>,
          35: <gurobi.Constr *Awaiting Model Update*>,
          36: <gurobi.Constr *Awaiting Model Update*>,
          37: <gurobi.Constr *Awaiting Model Update*>,
          38: <gurobi.Constr *Awaiting Model Update*>,
          39: <gurobi.Constr *Awaiting Model Update*>,
          40: <gurobi.Constr *Awaiting Model Update*>,
```

```
41: <gurobi.Constr *Awaiting Model Update*>,
          42: <gurobi.Constr *Awaiting Model Update*>,
          43: <gurobi.Constr *Awaiting Model Update*>,
          44: <gurobi.Constr *Awaiting Model Update*>,
          45: <gurobi.Constr *Awaiting Model Update*>,
          46: <gurobi.Constr *Awaiting Model Update*>,
          47: <gurobi.Constr *Awaiting Model Update*>,
          48: <gurobi.Constr *Awaiting Model Update*>,
          49: <gurobi.Constr *Awaiting Model Update*>,
          50: <gurobi.Constr *Awaiting Model Update*>,
          51: <gurobi.Constr *Awaiting Model Update*>,
          52: <gurobi.Constr *Awaiting Model Update*>,
          53: <gurobi.Constr *Awaiting Model Update*>,
          54: <gurobi.Constr *Awaiting Model Update*>,
          55: <gurobi.Constr *Awaiting Model Update*>,
          56: <gurobi.Constr *Awaiting Model Update*>,
          57: <gurobi.Constr *Awaiting Model Update*>,
          58: <gurobi.Constr *Awaiting Model Update*>,
          59: <gurobi.Constr *Awaiting Model Update*>,
          60: <gurobi.Constr *Awaiting Model Update*>,
          61: <gurobi.Constr *Awaiting Model Update*>,
          62: <gurobi.Constr *Awaiting Model Update*>,
          63: <gurobi.Constr *Awaiting Model Update*>,
          64: <gurobi.Constr *Awaiting Model Update*>,
          65: <gurobi.Constr *Awaiting Model Update*>,
          66: <gurobi.Constr *Awaiting Model Update*>}
In [11]: # solve, making sure to set a 0.00% MIP gap tolerance(!)
         m.Params.MIPGap = 0.0
         m.optimize()
```

Set parameter MIPGap to value 0

Gurobi Optimizer version 9.5.0 build v9.5.0rc5 (win64)

Thread count: 2 physical cores, 4 logical processors, using up to 4 threads

Optimize a model with 13602 rows, 27403 columns and 99280 nonzeros

Model fingerprint: 0xf2194a25

Variable types: 22914 continuous, 4489 integer (4489 binary)

Coefficient statistics:

Matrix range [1e+00, 7e+05] Objective range [3e+06, 4e+10] Bounds range [1e+00, 1e+00] RHS range [1e+00, 7e+00]

Warning: Model contains large objective coefficients

Consider reformulating model or setting NumericFocus parameter

to avoid numerical issues.

Presolve removed 575 rows and 1552 columns

Presolve time: 1.62s

Presolved: 13027 rows, 25851 columns, 95568 nonzeros

Variable types: 21445 continuous, 4406 integer (4406 binary)

Root relaxation: objective 5.572088e+09, 1832 iterations, 0.65 seconds (0.25 work units)

Nodes		Current Node					Objective Bounds			Work			rk
Expl Unex	кр1	0)bj	Dept	h In	tInf	Incumbe	nt	BestBd	Gap)	It/Nod	e Time
0	0	5.57	'21e-	+09	0	191		-	5.5721e+09		-	-	3s
0	0	5.68	869e-	+09	0	235		-	5.6869e+09		-	-	5s
0	0	5.73	72e-	+09	0	241		-	5.7372e+09		-	-	5s
0	0	5.73	73e-	+09	0	241		-	5.7373e+09		-	-	5s
0	0	5.78	36e-	+09	0	262		-	5.7836e+09		-	-	6s
0	0	5.79	71e-	+09	0	252		-	5.7971e+09		-	-	7s
0	0	5.80	01e-	+09	0	249		-	5.8001e+09		-	-	7s
0	0	5.80	13e-	+09	0	254		-	5.8013e+09		-	-	7s
0	0	5.80)14e-	+09	0	254		-	5.8014e+09		-	-	7s
0	0	5.80	14e-	+09	0	254		-	5.8014e+09		-	-	7s
0	0	5.88	329e-	+09	0	248		-	5.8829e+09		-	-	8s
0	0	5.91	.59e-	+09	0	265		-	5.9159e+09		-	-	9s
0	0	5.91	.77e-	+09	0	250		-	5.9177e+09		-	-	9s
0	0	5.91	.77e-	+09	0	250		-	5.9177e+09		-	-	9s
0	0	5.95	13e-	+09	0	285		-	5.9513e+09		-	-	10s
0	0	5.97	'02e-	+09	0	278		-	5.9702e+09		-	-	11s
0	0	5.97	'07e-	+09	0	287		-	5.9707e+09		-	-	11s
0	0	5.97	'08e-	+09	0	288		-	5.9708e+09		-	-	11s

0	0	5.9709e+09	0	283	- 5.9709e+09	-	-	11 s	
0	0	5.9709e+09	0	288	- 5.9709e+09	-	-	11s	
0	0	5.9788e+09	0	298	- 5.9788e+09	-	-	12s	
0	0	5.9792e+09	0	319	- 5.9792e+09	-	-	12s	
0	0	5.9792e+09	0	319	- 5.9792e+09	-	-	12s	
0	0	5.9900e+09	0	310	- 5.9900e+09	-	-	13s	
0	0	5.9912e+09	0	308	- 5.9912e+09	-	-	13s	
0	0	5.9912e+09	0	308	- 5.9912e+09	-	-	13s	
0	0	5.9990e+09	0	303	- 5.9990e+09	-	-	14s	
0	0	5.9998e+09	0	305	- 5.9998e+09	-	-	14s	
0	0	6.0001e+09	0	303	- 6.0001e+09	-	-	14s	
0	0	6.0002e+09	0	306	- 6.0002e+09	-	-	14s	
0	0	6.0002e+09	0	305	- 6.0002e+09	-	-	14s	
0	0	6.0017e+09	0	304	- 6.0017e+09	-	-	15s	
0	0	6.0019e+09	0	316	- 6.0019e+09	-	-	15s	
0	0	6.0020e+09	0	306	- 6.0020e+09	-	-	15s	
0	0	6.0028e+09	0	311	- 6.0028e+09	-	-	16s	
0	0	6.0028e+09	0	311	- 6.0028e+09	-	-	16s	
0	0	6.0032e+09	0	318	- 6.0032e+09	-	-	17s	
0	0	6.0032e+09	0	307	- 6.0032e+09	-	-	17s	
0	0	6.0036e+09	0	318	- 6.0036e+09	-	-	17s	
0	0	6.0036e+09	0	318	- 6.0036e+09	-	-	17s	
0	2	6.0036e+09	0	318	- 6.0036e+09	-	-	24s	
3	6	6.0329e+09	2	263	- 6.0182e+09	-	235	25s	
70	73	9.8600e+09	31	48	- 6.0182e+09	-	177	30s	
185	172	7.5032e+09	40	47	- 6.0250e+09	-	140	35s	
321	252	7.6037e+09	21	50	- 6.0331e+09	-	126	40s	
420	328	8.8213e+09	21	79	- 6.0632e+09	-	129	45s	
557	454	6.8133e+09	21	20	- 6.0882e+09	-	128	50s	
678	538	6.1615e+09	7	217	- 6.0897e+09	-	128	61s	
710	545	6.3491e+09	11	94	- 6.0897e+09	-	149	71s	
759	573	6.4377e+09	13	318	- 6.0897e+09	-	169	78s	
761	574	1.9902e+10	57	189	- 6.0897e+09	-	168	82s	
763		7.2703e+09	35	275	- 6.0897e+09	-	168	85s	
772	582	7.3059e+09	26	318	- 6.0897e+09	-	166	90s	
773	582	6.5776e+09	16	309	- 6.1022e+09	-	165	98s	
776	584	7.3281e+09	28	317	- 6.1255e+09	-	165	101s	
781	588	7.0491e+09	8	318	- 6.1374e+09	-	164	105s	
785		7.1643e+09	31	348	- 6.1463e+09	-	163	110s	
791	594	7.8185e+09	14	331	- 6.1547e+09	-	162	116s	
797	598	1.0393e+10	23	328	- 6.1689e+09	-	160	121s	
801	601	7.8684e+09	25	348	- 6.1711e+09	-	160	135s	

803	602 7.3217e+09	28	348	- 6.1711e+09	-	159	149s
804	606 6.2006e+09	10	338	- 6.1712e+09	-	15.3	171s
806	607 6.2056e+09	11	300	- 6.1907e+09	-	15.9	184s
808	609 6.4718e+09	11	260	- 6.2084e+09	-	17.6	192s
812	611 6.3851e+09	12	267	- 6.2124e+09	-	20.1	196s
821	618 6.5045e+09	14	123	- 6.2228e+09	-	24.3	200s
845	638 6.6751e+09	20	144	- 6.2228e+09	-	30.7	205s
866	653 7.8057e+09	23	111	- 6.2228e+09	-	36.2	210s
907	674 7.1317e+09	28	163	- 6.2228e+09	-	40.5	215s
970	721 7.5499e+09	42	17	- 6.2228e+09	-	47.5	220s
1017	728 6.2518e+09	15	205	- 6.2500e+09	-	52.1	225s
1063	752 6.9282e+09	24	52	- 6.2500e+09	-	57.8	230s
1115	804 7.1756e+09	40	37	- 6.2500e+09	-	59.7	237s
1182	821 infeasible	73		- 6.2531e+09	-	62.7	240s
1245	832 6.8354e+09	23	30	- 6.2531e+09	-	67.6	246s
1256	838 6.7366e+09	29	64	- 6.2531e+09	-	68.9	284s
1266	841 6.7880e+09	34	23	- 6.2531e+09	-	94.1	288s
1272	850 6.7900e+09	36	18	- 6.2531e+09	-	94.1	294s
1287	860 6.8711e+09	39	12	- 6.2531e+09	-	97.9	296s
1342	912 8.8464e+09	50	22	- 6.2531e+09	-	102	304s
1400	915 infeasible	62		- 6.2675e+09	-	105	307s
1442	925 6.8032e+09	19	51	- 6.2676e+09	-	104	310s
1555	983 6.9731e+09	24	88	- 6.2676e+09	-	105	316s
1631	998 7.1914e+09	27	90	- 6.2676e+09	-	104	320s
1678	994 7.4123e+09	29	61	- 6.2676e+09	-	106	325s
1751	1043 7.0509e+09	37	95	- 6.2676e+09	-	109	333s
1791	1060 7.4551e+09	43	83	- 6.2676e+09	-	110	338s
1821	1089 8.5233e+09	47	18	- 6.2676e+09	-	111	343s
1882	1082 7.9693e+09	65	37	- 6.2774e+09	-	111	349s
1915	1109 6.3833e+09	17	118	- 6.2776e+09	-	117	353s
1959	1128 6.9336e+09	29	78	- 6.2777e+09	-	119	358s
2024	1161 6.3501e+09	18	216	- 6.2797e+09	-	120	363s
2081	1195 6.4456e+09	29	20	- 6.2797e+09	-	122	369s
2147	1168 8.7221e+09	41	122	- 6.2797e+09	-	127	377s
2160	1200 infeasible	44		- 6.2826e+09	-	131	384s
2198	1220 7.4779e+09	33	48	- 6.2831e+09	-	132	391s
2246	1244 infeasible	40		- 6.2861e+09	-	135	400s
2309	1324 6.7577e+09	24	38	- 6.2865e+09	-	135	407s
2412	1403 8.8706e+09	58	33	- 6.2944e+09	-	135	416s
2580	1416 7.4201e+09	50	34	- 6.2950e+09	-	131	424s
2667	1431 6.6756e+09	26	12	- 6.2962e+09	-	132	431s
2712	1543 6.6127e+09	18	49	- 6.3040e+09	-	133	441s

```
2853 1595 7.2020e+09
                         37
                              22
                                           - 6.3100e+09
                                                                133
                                                                     449s
  2938 1616 9.2449e+09
                         52
                              30
                                          - 6.3100e+09
                                                                137
                                                                     458s
  2971 1632 1.0090e+10
                                          - 6.3100e+09
                                                                141
                                                                     466s
                         57
                              31
  3024 1691 infeasible
                         86
                                           - 6.3221e+09
                                                                141
                                                                     476s
  3128 1768 6.4237e+09
                         16
                              75
                                          - 6.3273e+09
                                                                142
                                                                     485s
  3237 1898 7.5197e+09
                              74
                                          - 6.3313e+09
                                                                143
                                                                     494s
                         26
  3393 2019 8.0203e+09
                              18
                                          - 6.3359e+09
                                                                142
                                                                     503s
                         60
  3578 2223 7.8604e+09
                                                                     513s
                         40
                              37
                                          - 6.3369e+09
                                                                141
  3840 2307 6.7115e+09
                                                                139
                                                                     525s
                         29
                               6
                                           - 6.3419e+09
  3960 2450 7.5401e+09
                         47
                               8
                                           - 6.3434e+09
                                                                140
                                                                     537s
                                                                     548s
H 4153 1475
                               7.653903e+09 6.3462e+09 17.1%
                                                                140
                                                                     558s
H 4241 1330
                               7.437156e+09 6.3462e+09 14.7%
                                                                139
H 4241
                                                        6.95%
                                                                     558s
         656
                               6.820025e+09 6.3462e+09
                                                                139
  4452
         654
                 cutoff
                         40
                                 6.8200e+09 6.3563e+09
                                                        6.80%
                                                                137
                                                                     568s
H 4616
         496
                               6.696134e+09 6.3778e+09
                                                       4.75%
                                                                134
                                                                     568s
  4744
                                 6.6961e+09 6.3782e+09 4.75%
                                                                     578s
         496
                 cutoff
                         19
                                                                132
  4967
         525 infeasible
                                                                     588s
                         21
                                 6.6961e+09 6.3974e+09 4.46%
                                                                131
                                                                     598s
H 5200
         343
                               6.593085e+09 6.4154e+09 2.70%
                                                                129
                                                                     606s
  5535
         259 6.4608e+09
                         24 166 6.5931e+09 6.4358e+09 2.39%
                                                                126
  5802
        156
                 cutoff
                         24
                                 6.5931e+09 6.4783e+09 1.74%
                                                                124
                                                                     611s
```

Cutting planes:

Cover: 91

Implied bound: 1

MIR: 24 StrongCG: 20 Flow cover: 174 GUB cover: 12 Zero half: 5 Network: 12

Explored 6144 nodes (872292 simplex iterations) in 614.72 seconds (206.29 work units) Thread count was 4 (of 4 available processors)

Solution count 5: 6.59309e+09 6.69613e+09 6.82003e+09 ... 7.6539e+09

Optimal solution found (tolerance 0.00e+00)
Best objective 6.593085384641e+09, best bound 6.593085384641e+09, gap 0.0000%

In [12]: # print the objective value
print(m.objVal)

```
# retrieve the districts and their populations
           but first get the district "centers"
         centers = \begin{bmatrix} i & for \\ i & in \\ G. & nodes \\ if & x \\ i,i \\ .x > 0.5 \end{bmatrix}
         districts = [ [i for i in G.nodes if x[i,j].x > 0.5] for j in centers]
         district counties = [ [ G.nodes[i]["NAME20"] for i in districts[j] ] for j in range(k)]
         district populations = [ sum(G.nodes[i]["TOTPOP"] for i in districts[i]) for j in range(k) ]
         # print district info
         for j in range(k):
             print("District",j,"has population",district populations[j],"and contains counties",district counties[j])
             print("")
         6593085384,640669
         District 0 has population 714963 and contains counties ['Cleburne', 'Tallapoosa', 'Crenshaw', 'Calhoun', 'Elmore', 'Randolph',
         'Clay', 'Cherokee', 'Lee', 'Chambers', 'Lowndes', 'Talladega', 'Autauga', 'Macon']
         District 1 has population 720310 and contains counties ['Jefferson', 'Bibb', 'Hale', 'Perry']
         District 2 has population 717488 and contains counties ['Clarke', 'Washington', 'Mobile', 'Monroe', 'Baldwin', 'Choctaw']
         District 3 has population 718247 and contains counties ['Shelby', 'Dallas', 'Pickens', 'Walker', 'Chilton', 'Marengo', 'Greene',
         'Fayette', 'Tuscaloosa', 'Wilcox', 'Coosa', 'Sumter', 'Winston']
         District 4 has population 719832 and contains counties ['Lawrence', 'Morgan', 'Etowah', 'DeKalb', 'Marshall', 'Blount', 'Jackso
         n', 'St. Clair', 'Cullman']
         District 5 has population 717940 and contains counties ['Lauderdale', 'Madison', 'Lamar', 'Franklin', 'Colbert', 'Limestone', 'M
         arion'l
         District 6 has population 715499 and contains counties ['Barbour', 'Geneva', 'Dale', 'Houston', 'Russell', 'Conecuh', 'Montgomer
         y', 'Coffee', 'Covington', 'Henry', 'Butler', 'Escambia', 'Pike', 'Bullock']
In [13]: # Let's draw it on a map
         import geopandas as gpd
In [14]: # Read Alabama county shapefile from "AL county.shp"
         filepath = 'C:\\Users\\blrod\\Downloads\\districting-data-2020-county\\'
         filename = 'AL county.shp'
```

```
# Read geopandas dataframe from file
         df = gpd.read file( filepath + filename )
In [15]: # Which district is each county assigned to?
         assignment = [ -1 for i in G.nodes ]
         labeling = { i : -1 for i in G.nodes }
         for j in range(k):
             district = districts[j]
             for i in district:
                 labeling[i] = j
         # Now add the assignments to a column of the dataframe and map it
         node_with_this_geoid = {G.nodes[i]['GEOID20'] : i for i in G.nodes}
         #pick a position u in the dataframe
         for u in range(G.number of nodes()):
             geoid = df['GEOID20'][u]
             # what node in G has thus geoid?
             i = node with this geoid[geoid]
             # position u in the dataframe should be given
             # the same district # that county i has in 'labeling'
             assignment[u] = labeling[i]
         #now add the assignments to a column of our dataframe and then map it
         df['assignment'] = assignment
         my fig = df.plot(column='assignment').get figure()
```


In []: