DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

DEMANDE DE BREVET D'INVENTION

N° 80 02528

- Procédé de fabrication d'un carton thermoformable à base de fibres inorganiques, produit et pièces fabriquées suivant ce procédé.
- (51) Classification internationale (Int. Cl. 7). B 28 B 1/00; C 04 B 43/02; F 27 D 1/00 // B 22 C 9/08.
- 3 3 3 91 Priorité revendiquée :

 - Déposent : Société dite : CARTONNERIES REUNIES VOISIN ET PASCAL, société anonyme, résidant en France.
 - (72) Invention de : Pierre Gasnier et Claude Catalan.
 - (73) Titulaire : Idem (71)
 - Mandataire : Jean Maisonnier, Ingénieur-conseil, 28, rue Servient, 69003 Lyon.

La présente invention concerne un procédé pour la fabrication d'un carton thermoformable à base de fibree inorganiques, et elle concerne également les produits et les pièces fabriqués par la mise en œuvre dudit procédé.

L'invention concerne plus précisément la fabrication d'un carton thermoformable à sec par compression, permettant d'obtenir des pièces en formes pouvant tenir en service à des températures de 150°C à 160°C.

On sait fabriquer des cartons thermoformables à partir de ma-10 tières fibreuses organiques, mais on obtient alors des pièces syant des tenues en température limitées. L'originalité de la présente invention réside notamment dans le fait qu'on puisse obtenir des pièces finies contenant peu ou pas de matières organiques, ce qui augmente beaucoup les possibilités de tenue en température.

5 L'invention se caractérise par l'utilisation d'un procédé de fabrication papetier en phase aqueuse pour produire une feuille thermoformable comportant:

 comme base principale, des fibres inorganiques résistantes à la température, c'est-à-dire du type réfractaires ou semi-réfractai-20 res;

- comme liant, des matières thermoplastiques sous forme de fibres, de poudres, ou de dispersions ;

- comme produits annexes actifs, des matières permettant de donner des liaisons entre les fibres inorga-

25 nioues :

- comme produits annexes divers, des matières facilitant le tirage sur machine à carton et des charges permettant d'abaieser le prix des matières.

La feuille obtenne, chauffée jusqu'au point de ramollissement 30 des liants thermoplastiques, est comprimée dans un moule, ce qui donne une pièce à la forme désirée.

Suivant une caractéristique supplémentaire de l'invention, la pièce ainsi formée est rendue thermostable per un traitement ultérieur agissant sur des produits réticulables tenant à chaud intro-55 duits soit au cours de la fabrication de la feuille, soit par impréenation ou pulvérisation de la pièce.

Suivant une caractéristique supplémentaire de l'invention, ce traitement consiste à chauffer la pièce soit à la température de réticulation des liants résistants à la chaleur, soit à une températu-

2476070A1 | 2

re supérieure à 400°C permettant la combustion de toutes les matières organiques. Par fibres résistantes à la température, on entend les fibres pouvant résister de façon permanente à 400°C au moins. Il s'agit par exemple des fibres suivantes :

- fibres céramiques de silico aluminate ;
 - fibres de laine de roche ;
 - fibres de verre ;
 - fibres de carbone ;
 - fibres d'amiante ;
- 10 fibres aramides ;
 - mélange de ces fibres.

Pour pouvoir être traitées dans un circuit papetier normal, ces fibres doivent avoir une longueur inférieure à 10 millimètres,

ces fibres doivent avoir une longueur inférieure à 10 millimètres, avec des largeurs comprises entre 20 et 300 microns.

- 15 Cependant, les fibres minérales pouvant être coupées facilement dans un circuit papetier peuvent avoir plusieurs centimètres.
 Par liant thermoplastique, on entend, sous forme de fibres :
 - les fibres de polyéthylène ;
 - les fibres de polypropylène ;
- 20 les fibres de polyester ;
 - les fibres acryliques; et sous forme de pondre ou de dispersion :
 - les polyoléfines ;
 - les hot melts ;
- 25 le polystyrène ;
 - les styrènes acryliques ;
 - les acétates de vinyle ;
 - les éthylènes vinyl acétate.

Par produits annexes actifs, on entend :

- 30 les liants organiques thermodurdissables, du type des urées formol, mélamines formol, phénols formol, résorcines formol;
 - les liants minéraux du type de la silice coffordate, de la bentonite, de l'alumine, du phosphate d'alumine.

Cette liste n'est pas limitative.

Par produits sineres divers, on entend :

- des produits destinés à facilitér le tirage sur une machine à carton, tels que la cellulose sous ses différentes formes fibreuses, l'amidon et les manno galactane;
 - des charges comme le carbonate de calcium, les kaoling, les

35

barvtes, les talcs.

Le precédé suivant l'invention est caractérisé par les étapes suivantes :

- Mise en feuille par un circuit de fabrication type papetier.
- On mélange les fibres et les produits divers dans un pulper.

Le mélange comporte de 50 à 90% de fibres inorganiques, de 10 à 50% de fibres thermoplastiques ou de poudre ou de dispersion (comptée en matière sèche).

- A ce mélange de base, on ajoute les produits annexes :
- 10 de 0 à 50% en poids de fibres cellulosiques ;
 - de 0 à 30% en poids de liants minéraux ;
 - de 0 à 15% de liants amylacés ou manno galactane ;
 - de 0 à 50% de charges.

Les pourcentages sont comptés par rapport à la somme de fibres 15 inorganiques et des liants thermoplastiques.

Le mélange étant bien assuré, on obtient une pâte qui est envoyée sur une machine à papier ou à carton classique, type Foudrinier, ou à forme ronde. On peut aussi utiliser une machine multiformes, multitables, ou mixte, avec formes et tables. On peut utiliser 20 une machine à deux toiles ou plusieurs de ces machines en série.

On peut enfin utiliser une machine à enrouleuse, qu'elle soit à table ou à formes. Dans certains cas, les feuilles peuvent être obtenues par aspiration sous des tamis.

Certains des produits auxiliaires peuvent être introduits en 25 tête de machine. On peut ainsi obtenir des feuilles de 100 à 8000 grammes par mètre carré.

- Thermoformage.

On préchauffe une ou plusieurs (dans le cas où le liant thermoplastique permet la soudure des feuilles entre elles au cours de 30 la compression) feuilles obtenues par le procédé précédent jusqu'au point de ramollissement du liant thermoplastique et de préférence quelques dizaines de degrés centigrades au-delà.

La ou les feuilles préchauffées sont introduites dans un moule et pressées. La pression est variable selon la densité que l'on veut 35 obtenir, de 0,5 à 100 kg/cm².

La pièce refroidie en dessous du point de ramollissement du liant est manipulable : on la laisse refroidir hors du moule. - Post traitement.

Les pièces ainsi obtenues sont sensibles à la température de

deux façons :

- par ramollissement du liant pour les températures supérieures à leur point de ramollissement ;
- par combustion des liants pour les températures supérieures
 5 à leur point de décomposition. Selon le cas, on opère ainsi :
- a) pour les températures comprises entre le point de ramollissement et le point de décomposition des liants thermoplastiques, on utilise:
- les résines thermodurcissables urées formol, mélamines, for-10 mol, phénol formol ou résorcine formol introduits dans la masse que nous avons désignés sous le nom de produits annexes actifs;
 - les mêmes résines ou d'autres ne pouvant être utilisées dans la fabrication de la feuille : polyester ou époxydes employées par imprégnation ou pulvérisation.
- 15 Dans les deux cas, les résines sont polymérisées par un traitement thermique à moins que des entalyseurs ne permettent une polymérisation à froid.
 - b) Pour les températures élevées, on utilise :
- les produits minéraux, silice colloïdale, bentonite, em-20 ployés dans la masse que nous avons désigné par produits annexes actifs.
 - Les nêmes ou d'autres inutilisables par introduction dans la masse et qui sont apportés par imprégnation ou pulvérisation de la pièce, comme les phosphates d'aluminium, les silicates alcalins.
- 25 Dans les deux cas, on peut traiter les pièces dans un four pour brâler toutes les natières organiques.

On obtient ainsi des pièces sans aucune matière organique. Les exemples suivants, donnés à titre non limitatif, permettront de mieux comprendre les caractéristiques de l'invention.

Dans un pulper contenant 2 mètres cubes d'eau, on ajoute :

85 kg

- fibres de polyéthylène 15 kg On ajoute comme natières annexes :

55 - Bentonite 5 kg
- Silice collordale 5 kg
- Amidon 8 kg

- fibres de silico aluminate

La pâte ainsi obtenue est envoyée sur une machine enrouleuse permettant de produire une feuille de 1000 g/m² d'une épaisseur d'

30 Exemple 1

environ 2 mm.

Cette feuille, chauffée à 200°C, est pressée à 10kg/om² dans un moule froid. On obtient ainsi une plèce d'environ 1,2mm d'épaisseur. La plèce obtenue est passée dans un four à 800°C, jusqu'à la 5 combustion complète des mattères organiques.

La pièce conserve sa forme et la tenue en température des fibres de silico aluminate. La pièce peut servir d'élément de protection des moules de fonderie, ou d'isolant dans des appareils ménagers ne devant pas dégager d'odeurs.

10 Exemple 2

15

Dans un pulper contenant 2m3 d'eau,	on ajoute
- fibres de verre	85 kg
- fibres de polypropylène	15 kg
On ajoute comme matière annexe :	
- poudre phénolique	15 kg
- amidon	5 kg

La pâte est envoyée sur une machine enrouleuse à forme ronde. On introduit en tête de machine un polyacrylamide en solution pour améliorer la rétention de la poudre phénolique. On obtient ainsi une

20 feuille de 2000 g/m². Cette feuille, chauffée à 200°c, est portée dans un moule froid et pressée à 15 kg/cm², ce qui donne une pièce d'environ 2mm d'épaisseur. Le préchauffage est suffisant pour polymériser la poudre phénolique. La pièce conserve une résistance à plus de 150°C et est utilisée sans post-traitement, comme isolant 25 électrique. Bar exemple.

Exemple 3

	Dans un pulper contenant 2m3 d'eau, on ajout	. 1
	- laine de roche 84 kg	5
	- latex (à 40% sec) de butadiène	
30	styrène à 80% de styrène 40 kg	
	On ajoute comme matières annexes :	
	- cellulose 20 kg	5
	- sulfate d'alumine 10 kg	

La pête est envoyée sur une machine Foudrinier. On ajoute une 35 solution de polyéthylénimine en / de la tête de machine, pour bien précipiter le latex.

La machine sortira une feuille de 500 g/m^2 , d'environ 1,2 mm d'épaisseur.

Cette feuille chauffée à 125°C sera portée dans un moule froid

et pressée à 0,5 kg/cm², ce qui donnera une pièce d'environ ; mm d'épaisseur.

La pièce est imprégnée d'un mélange de phosphate d'aluminium acide et de sels d'ammonium ignifugeant. Un post-traitement à 200°C 5 donne à la pièce une tenue à chaud et une ininflemmabilité. Exemple 4

Dans un pulper contenant 2m3 d'eau. on aignte :

	- fibres de silico aluminate	30 kg	
	- fibres de laine de roche	30 kg	
10	- fibres de polyéthylène	40 kg	
	On ajoute comme matière annexe :		
	- Fibres de cellulose	40, kg	
	- amidon	8 kg	

Le pâte ainsi obtenue est envoyée sur une machine enrouleuse 15 permettant de produire une feuille de 1000 g/m² d'une épaisseur de 2 mm.

Cette feuille chauffée à 170°C est pressée à 2 kg/cm² dans un moule froid.

Le pièce obtenue sans autre traitement peut être utilisée dans 20 le moulage des métaux pour la protection des moules et neyaux de fonderie, dans les procédée de coulée en coquille.

Exemple 5

25

Dans un pulper contenant 2m3 d'eau, on ajoute :

- fibres de silico aluminate	85 kg
- émulsion de styrène acrylique à 40%	40 ka
On ajoute en produitsanneres:	
- bentonite	15 kg
- sulfate d'alumine à 16% de Al203	10 kg

Le pâte ainsi obtenue est envoyée sur une machine à carton à 30 enrouleuse permettant de produire une feuille de 1500 g/m² d'envirom 3 mm d'épaisseur. Cette feuille chauffée à 150°C est pressée dans un moule froid à 10 kg/cm², ce qui donne une pièce de 1,5 mm d'épaisseur.

La pièce est imprégnée de phosphate acide d'aluminium, puis 35 portée dans un four à 800°C, où la matière organique est brûlée. On obtient ainsi une pièce pouvant servir d'isolant pour des fours industriels.

7

REVENDICATIONS

- Procédé caractérisé par la fabrication selon la technique papetière en milieu aqueux d'une feuille thermoformable à sec à base de fibres réfractaires ou semi-réfrac-5 taires et de liants thermoplastiques.
- Procédé suivant la revendication 1, caractérisé en ce qu'on utilise pour fabriquer la feuille une machine continue appartenant au groupe formé par les machines à
- table plate, à forme ronde, à double toile, et à combinai-10 son de ces systèmes.
 - 3. Procédé suivant les revendications 1 et 2, caractérisé en ce qu'on utilise une machine à carton à l'enrouleuse pour fabriquer la feuille.
- 4. Procédé suivant la revendication 1, caractérisé 15 en ce qu'on utilise un simple tamis en tant que machine de fabrication de la feuille.
- 5. Procédé suivant l'une quelconque des revendications précédentes, caractérisé par l'emploi, à titre de fibres minérales, des fibres appartenant au groupe formé par 20 les fibres de silico aluminate, de verre, de laine, de roche,
- 20 les fibres de silico aluminate, de verre, de laine, de roche, d'amiante, de carbone, aramides, ou d'un mélange des précédentes.
 - 6. Procédé suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'on emploie les
- 25 liants thermoplastiques sous forme de fibres de polycléfines chargées ou non.
- 7. Procédé suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'on utilise des liants thermoplastiques sous forme de poudre ou de dispersion 3º aqueuse, seuls, en mélange entre eux, ou avec les liants fibreux.
 - 8. Procédé suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'on ajoute des résines thermodurcissables sous forme de solution, dispersion
- 35 ou poudre dans la pâte servant à la fabrication de la feuille.
 - 9. Procédé suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'on ajoute à la pâte des liants minéraux tels que la bentonite et la silice

collofdale dans le but d'assurer la liaison des fibres minérales après combustion des composés organiques.

- 10. Feuilles obtenues par la mise en ocuvre du procédé suivant l'une quelconque des revendications précédentes, et plèces formées obtenues à partir desdites feuilles, caractérisées en ce qu'on peut les utiliser comme isolant thermique en fonderie, pour la construction de fours, d'appareils ménagers, de systèmes anti-pollution des moteurs, et comme isolant électrique à haute température.
- 11. Procédé suivant l'une quelconque des revendications 1 à 9, caractérisé par le fait que, lors du thermo-formage, on constitue un empilage de feuilles unitaires qui se soudent entre elles sous l'effet de la température et de la pression.
- 15 12. Procédé suivant 1'une quelconque des revendications 1 à 9 et 11, caractérisé en ce qu'il permet la réalisation de pièces composites, c'est-à-dire composées de matériaux différents, en faisant appel aux propriétés de soudabilité à chaud des matériaux faisant l'objet de la mise en oeuvre 20 du procédé.

BNSDCCID: <FR _____2475970A1_L>