Teoria dei Segnali - Esercitazione 6 Funzioni di correlazione e spettri.

Esercizio 1

E' dato un segnale x(t) ad energia finita. Indicare quale delle seguenti $R_x(\tau)$ non può rappresentare la sua funzione di autocorrelazione:

- a) $R_x(\tau) = \operatorname{sinc}(\tau/T)$
- **b)** $R_x(\tau) = e^{-|\tau|}$
- c) $R_x(\tau) = 1 \frac{|\tau|}{T} \text{ per } |\tau| < T$
- **d)** $R_x(\tau) = \cos(2\pi\tau/T)p_{T/2}(\tau)$

Esercizio 2

Dato il segnale:

$$x(t) = \frac{1}{K_1} e^{-\left|\frac{t-t_0}{K_2}\right|}$$

- 1. Calcolare lo spettro di energia $S_x(f)$.
- 2. Calcolare la banda a -10dB del segnale x(t), definita come quella frequenza B_{10dB} tale per cui $S_x(B_{10dB}) = \frac{1}{10}S_{max}^x$, dove S_x^{max} è il valore massimo assunto da $S_x(f)$.

Esercizio 3

Dato il segnale ad energia finita x(t), di cui si conosca la funzione di autocorrelazione $R_x(\tau)$, determinare la funzione di autocorrelazione del segnale y(t) che si ottiene trasformando x(t) come indicato in figura 1, dove il blocco etichettato con T è un ritardatore ideale, e l'altro blocco è un derivatore.

Figura 1: Esercizio 3.

Teoria dei Segnali - Esercitazione 6 Funzioni di correlazione e spettri.

Esercizio 4

Un impulso ideale è applicato in ingresso al sistema della figura 2:

- 1. Dire se il sistema racchiuso nel riquadro tratteggiato è lineare e/o invariante.
- 2. Calcolare la potenza media e l'energia di $y_1(t)$ e $y_2(t)$.
- 3. Calcolare gli spettri di energia o di potenza coerentemente con il tipo di segnale di $y_1(t)$ e $y_2(t)$.

Figura 2: Esercizio 4.

Esercizio 5

Si consideri il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} r(t - 2kT) \quad \text{con} \quad r(t) = e^{-|t|}$$

Il segnale x(t) viene filtrato dal seguente sistema lineare:

dove
$$h_1(t) = \frac{\sin\left(\frac{\pi t}{T}\right)}{\pi t}\cos\left(\frac{3\pi t}{2T}\right)$$
 $h_2(t) = 2\frac{\sin\left(\frac{3\pi t}{2T}\right)}{\pi t}$.

Si calcolino:

- 1. l'espressione del segnale y(t).
- 2. lo spettro di potenza $G_y(f)$ e la potenza P_y del segnale y(t).