

Explosive synchronization in complex networks

Stefano Boccaletti

Institute for Complex Systems of the CNR, Florence, Italy Center of Biomedical Technology - Universidad Politecnica de Madrid The Italian Embassy in Israel

J. A. Almendral
I. Sendiña-Nadal
A. Navas

I. Leyva J. M. Buldú R. Sevilla

X. Zhang S. Guan Z. Liu H. Bi X. Hu

X. Wang

Y. Zou

Explosive

Synchronization

in

Complex Networks

Christiaan Huyghens (1629-1695) discover what he called "an odd kind of sympathy" between the clocks: regardless of their initial state, both adopted the same rhythm

Huygens correctly attributed the synchrony to tiny forces transmitted by the wooden beam from which they were suspended.

Synchrony happens to be the main mechanism for regulating the dynamics and transmit information in natural ensembles...

CSG

...and in social or artificial ones

Human behaviour

Power grids

• A periodic oscillator with an intrinsic (or natural) frequency ω_n .

• The evolution of each oscillator n is described only by its phase θ_{n} such that

$$\dot{\theta}_n = \omega_n$$

- We are interested in heterogeneous ensembles, so we assume the ω_n frequencies are different, randomly picked from an (usually known) distribution $g(\omega)$
- · A large ensemble of N oscillators

Kuramoto ensemble: all-to-all coupling

Sinusoidal all-to-all coupling.

$$\dot{\theta}_{_{n}}=\omega_{_{n}}$$

If d is high enougth, phases lock and oscillators frequency converge to the average $\langle \omega_n \rangle$

(N=1000)

Measuring synchronization: Kuramoto order parameter

Explosive

Synchronization

in

Complex Networks

Most of the systems where synchronization is important are complex networks

Internet

Brain

In order to study the effect of a network on the emergence of synchronization, we will maintain the simple phase dynamics, but will introduce a complex network in the problem

$$\dot{\theta}_n = \omega_n + d\sum_{m=1}^N A_{nm} \sin(\theta_m - \theta_n)$$

If m links to
$$n \leftrightarrow A_{nm} = 1$$
 (else $A_{nm} = 0$)

$$d_c = \frac{2}{\pi g(0)}$$

For a given number of nodes and connections, heterogeneous networks synchronizes easier

Stucture matters!

Complex dynamics in complex networks

Explosive

Synchronization

in

Complex Networks

Changes between different states of organization in a system

Second order PT

First order PT

Transitions to synchrony in complex networks

PHYSICAL REVIEW E 72, 046211 (2005)

Thermodynamic limit of the first-order phase transition in the Kuramoto model

Diego Pazó* Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany

Full Kuramoto model with equispaced frequencies

$$\omega_j = -\gamma + \frac{\gamma}{N}(2j - 1)$$

Case 2: SF + degree-frequency correlation

PHYSICAL REVIEW LETTERS

week ending 25 MARCH 2011

Explosive Synchronization Transitions in Scale-Free Networks

Jesús Gómez-Gardeñes, 1,2,* Sergio Gómez, Alex Arenas, 2,3 and Yamir Moreno 2,4

SF networks of **Kuramoto** oscillators where

Case 2: SF network + degree-frequency correlation

(What the coffe-breaks are useful for...)

Wouldn't be cool if this could be done

EXPERIMENTALLY?

The model: Rössler oscillator

Even more fun: Can it be done experimentally

$$\dot{x} = -\omega y - z$$

$$\dot{y} = \omega x + \alpha y$$

$$\dot{z} = b + z(x - c)$$

The actual model: piecewise Rössler oscillator

$$\dot{x}_{i} = -\alpha_{i} \left(\Gamma x_{i} + \beta y_{i} + \lambda z_{i} \right) + d \sum_{j=1}^{N} a_{ij} (x_{j} - x_{i})$$

$$\dot{y}_{i} = -\alpha_{i} \left(-x_{i} + \left(m - \frac{n}{R} \right) y_{i} \right)$$

$$\dot{z}_{i} = -\alpha_{i} \left(-g(x_{i}) + \lambda z_{i} \right)$$
piecewise

part

Frequency control in a very large range

$$\alpha_i = \alpha \left(1 + \Delta \alpha \frac{k_i - 1}{N} \right)$$

Dynamical state control

Simulation: explosive phase synchronization

SF network, N=1000, several values of ??

The experiment: star network

- N=5+1 with common R parameter \implies same dynamical state
 - Fast node N1 🗓 = 3333 Hz
 - Slow nodes N2....N6 2;= 2240 2200 Hz

First experimental evidence of first order synchronyzation

PRL 108, 168702 (2012)

Making you network to explode I: Gap method

- Distribute frequencies (valid for any g(w))
- Pick a random pair i,j

- Only if
$$|\omega_i - \omega_j| > \gamma \implies \alpha_{ij} = 1$$

- Continue up to construct target network (<k>?)

$$\frac{d\phi_i}{dt} = \omega_i + d\sum_{i=1}^N a_{ij} \sin(\phi_j - \phi_i),$$

Gap method: emergent k-12 correlation

Probability of node i of being linked depends on $\omega_i \longrightarrow g(\omega)$

Also works for weaker rules as neighbourhood averaged gap:

$$\begin{array}{c|c} |\omega_{i} - < \omega_{j} > | \rightarrow \gamma \\ & \rightarrow \alpha_{ij} = 1 \\ |\omega_{j} - < \omega_{i} > | \rightarrow \gamma \end{array}$$

Making your network to explode II: weighting method

Node strength
$$S_i = \sum_j \Omega_{ij}$$

ES and the heterogeneity paradox

Heterogeneous networks need a detunning/topology weighting:

$$\widetilde{\Omega}_{ij} = a_{ij} |\omega_i - \omega_j| \frac{\ell_{ij}^{\beta}}{\sum_{j \in \mathcal{N}_i} \ell_{ij}^{\beta}}$$

 ℓ_{ij} edge betweeness of $\mathfrak{a}_{\mathsf{i}\mathsf{j}}$

Explosive syncronization for 200

(maximum hysteresis width 2=0.5)

In the thermodynamic limit
$$\dot{\theta}_i = \omega_i + \frac{\sigma}{N} \sum_{j=1}^N \Omega_{ij} \sin(\theta_j - \theta_i),$$

Co-rotating frame phases
$$\omega = \sigma A_{\omega} \sin(\theta_{\omega} - \phi_{\omega}).$$

where
$$A_{\omega}\sin\phi_{\omega}=\int g(x)|w-x|\sin\theta(x)\,dx$$
 depends on $?$

Are correlations necessary? Answer is NO!

Explosive Synchronization in adaptive and multi-layer networks X. Zhang, S. Boccaletti, S. Guan, Z. Liu, Phys. Rev. Lett. 114, 038701 (2015)

$$\Theta'_{i} = \omega_{i} + \lambda \alpha_{i} \sum_{j=1}^{N} A_{ij} \sin(\theta_{j} - \theta_{i})$$

See.....pdf....

What after? The Bellerophon states

Coexistence of quantized, time dependent clusters in globally coupled oscillators

H. Bi, X. Hu, S. Boccaletti, X. Wang, Y. Zou, Z. Liu and S Guan, Phys. Rev. Lett. 117, 204101 (2016)

Reading about

CSG

Synchronization

- * L. Pecora, T. Carroll. Phys. Rev. Lett. 64, 821 (1990)
- * M. Rosenblum, A. Pikovsky, J. Kurths. Phys. Rev. Lett. 76, 1804-1807 (1996)
- *S Boccaletti, J Kurths, G Osipov, DL Valladares, CS Zhou. Phys. Reps 366, 1 (2002)

Complex networks

- *S Boccaletti, V Latora, Y Moreno, M Chavez, DU Hwang. "Coplex networks: structure and dynamics", Phys. Rep. 424, 175 (2006)
- *S.Boccaletti et al., "The structure and dynamics of multilayer networks", Phys. Rep. 544, 1 (2014).

Explosive synchronization in Complex Networks

- *J. Pazó. Phys. Rev. E 72, 046211 (2005).
- *J. Gomez-Gardeñes et. al. Phys. Rev. Lett. 106, 128701 (2011)
- *I. Leyva, et. al. Phys. Rev. Lett. 108, 168702 (2012)
- *I. Leyva, et. al. Nat. Sci. Reports 3: 1281 (2013)
- *I. Leyva, et. al. Phys. Rev E. 88, 042808 (2013)
- *X. Zhang, X. Hu, J. Kurths, Z. Liu. Phys. Rev. E 88, 010802(R) (2013)
- *X. Zhang, S. Boccaletti, S. Guan, Z. Liu, Phys. Rev. Lett. 114, 038701 (2015)
- *5. Boccaletti et al., "Explosive transitions in complex networks' structure and dynamics: Percolation and synchronization", Phys. Rep. **660**, 1 (2016)

Thank you

(for your patience)

and.....

submit, please, your best papers to CHAOS, SOLITONS & FRACTALS

EiC: Maurice Courbage and S.B.