Estadística Inferencial

Capítulo VIII - Ejercicio 06

Aaric Llerena Medina

Una empresa comercializadora de café sabe que el consumo mensual (en Kgr) de café por casa está normalmente distribuida con una media desconocida μ y una desviación estándar de 0.30. Si se toma una muestra aleatoria de 36 casas y se registra su consumo de café durante un mes, ¿cuál es la probabilidad de que la media de la muestra esté entre los valores $\mu - 0.1$ y $\mu + 0.1$?

Solución:

La variable aleatoria X que representa el consumo por mes de café por casa, está distribuida normalmente con media μ y desviación estándar $\sigma=0.30$. La media muestral \bar{X} de una muestra de tamaño n=36 también estará distribuida normalmente con:

• Media: $\mu_X = \mu$

■ Desviación estándar:
$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{0.30}{\sqrt{36}} = \frac{0.30}{6} = 0.05$$

Asimismo, se calcula la probabilidad de que la media muestral \bar{X} esté entre $\mu - 0.1$ y $\mu + 0.1$, es decir: $P(\mu - 0.1 \le \bar{X} \le \mu + 0.1)$.

Para estandarizar esta expresión, se debe estandarizar la expresión haciendo uso la variable normal estándar Z.

■ Para
$$\bar{X} = \mu - 0.1$$
:
$$Z = \frac{(\mu - 0.1) - \mu}{0.05} = \frac{-0.1}{0.05} = -2$$

$$Z = \frac{(\mu + 0.1) - \mu}{0.05} = \frac{0.1}{0.05} = 2$$

Por lo tanto, la probabilidad que se busca es: $P(-2 \le Z \le 2)$. Haciendo uso de la tabla de distribución normal estándar:

*Nota: Se está trabajando con 4 decimales.

Por lo tanto, la probabilidad es:

$$P(-2 \le Z \ge 2) = P(Z \le 2) - P(Z \le -2)$$

= 0.9772 - 0.0228 = 0.9544

.:. La probabilidad de que la media de la muestra esté entre $\mu-0.1$ y $\mu+0.1$ es 0.9544.