Klasszikus fizika laboratórium

10. mérés

Fényelhajlási jelenségek vizsgálata

Kedd délelőtti csoport

Mérés dátuma: 2020. február 25. Leadás dátuma: 2020. március 3.

1. A mérés célja:

A fény hullámtermészetének vizsgálata a Fraunhofer-elhajlás elvén egyrés, kettős rés és hajszál esetén, valamint a Fresnel féle elhajlás szerint féltér esetén. Az intenzitást egy léptető motorral mozgatott detektoron mértem számítógép segítségével.

2. Mérőeszközök:

- He-Ne lézer
- Detektor
- Léptető motor
- Számítógép
- Mérőszalag
- Optikai pad
- Tárgyasztal
- Akadályok: egyrés, kettős rés, hajszál, penge

3. A mérés menete:

A mérés az akadályok szerint négy részre osztható. Minden esetben a mérést megelőzte a tárgyasztal és a céltárgy beállítása, hogy ideálisan tudjuk mérni az intenzitás-eloszlást. Számítógép segítségével rögzítettük az adatokat, amely az adott program használatával azonnal ki is rajzolta ezeket grafikonon, így össze tudtuk hasonlítani az elméleti ábrával. Szükség esetén többször is megismételtük a mérést. Ezen felül megmértük még a rés és a detektor közti távolságot, ami fontos a későbbi számolások elvégzéséhez.

4. A mérés elmélete:

4.1. Egyrés

A Huygens-Fresnel-elv alapján a fény terjedése úgy is felfogható, hogy a hullámfelület minden pontjából gömbhullámok indulnak ki és ezek interferenciája határozza meg az intenzitást. A Fraunhofer-elhajlás esetén a párhuzamos nyalábok interferenciájáz tekintjük. Ezek alapján a főmaximumtól mért távolság az n-edik maximum esetén:

$$x_n = \frac{\lambda L}{a}$$

Ahol L a rés és a detektor/ernyő távolsága, a a rés szélessége és λ a hullámhossz. Ebből az $x_n(n)$ grafikonjának meredekségét ismerve kifejezhető a rés szélessége.

4.2. Kettős rés

Kettős rés esetén hasonló az elv, de itt a réseken átjutó nyalábok egymással is interferálhatnak. A kapott elhajlási kép burkológörbéje megegyezik az egyrésen létrejövővel, míg ezen belül megjelennek másodosztályú minimumok és maximumok. Az elsőosztályú minimumok segítségével megkapható a rés szélessége, a másodosztályúakkal pedig a két rés távolsága:

$$d = \frac{k}{x_k} L\lambda$$

Ahol $k = \frac{1}{2} \cdot n$, n egész.

4.3. Hajszál

A hajszál esetén hasonló mintát kapunk, mint az egyrés esetén, mivel a Babinet-elv alapján egy rés és annak komplementere hasonló elhajlási képpel rendelkezik. Ezt a képet azonban megzavarja a bizonyos helyekre közvetlenül eső fény. A hajszál vastagsága az egyszeres rés szélességéhez hasonlóan számolható.

4.4. Féltér (egyenes él)

A pengén Fresnel-féle elhajlás jön létre, ez jóval bonyolultabb, mert a pontszerűre szűkített fényforrást gömbhullámokkal kell leírni.

5. Mérési adatok:

Az összes mérés során az akadály és a detektor távolsága: $L=1812\pm0,5mm.//$ A használt He-Ne lézer hullámhossza: $\lambda=632,8\pm0,1nm.$ Az alábbiakban az adatsorok minimumhelyei találhatóak.

5.1. Egyrés (B)

A főmaximum helye: 116,3368 mm.

n	-8	-7	-6	-5	-4	-3	-2	-1
x [mm]	82.2705	86.4781	90.7782	94.9124	99.1663	103.4663	107.7664	111.9065
п								
\parallel n	1	2	3	4	5	6	7	8

5.2. Kettős rés

A főmaximum helye: 117,0822 mm.

Elsőrendű						
n	n -3 -2 -1 1 2 3					
x [mm]	88.6851	98.2309	107.6263	126.6917	136.3877	144.6557

Másodrendű								
n -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5								
x [mm]	110.3142	112.2772	114.1824	116.1041	118.0805	119.935	121.8361	123.8126

5.3. Hajszál

A főmaximum helye: 116,7408 mm.

n	-6	-5	-4	-3	-2	-1
x [mm]	46.5442	58.1882	70.1649	81.8088	93.4528	105.0968
n	1	2	3	4	5	
x [mm]	128.0521	139.6961	152.0055	162.9841	174.3732	

6. Kiértékelés:

6.1. Egyrés (B)

A mért intenzitáseloszlást a laborgépen található program segítségével ábrázoltam, megkerestem a minimumok helyét és görbét illesztettem a pontokra. Ebből az illesztésből megkaptam a rés szélességét: a=0,2685mm.

A minimumhelyek ismeretében más módszerrel is megkapható a résszélesség: ábrázoljuk ezeket és illesszünk egyenest rájuk, az egyenes meredekségéből számolható a rés szélessége.

Az illesztett egyenes meredeksége m=4,2774, amiből a rés szélessége:

$$a=\lambda \frac{L}{m}=632, 8\frac{1812}{4,2774}nm=0, 2681mm$$

6.2. Kettős rés

A kettős rés esetében is hasonlóképpen jártam el. Az elsőrendű csúcsokra görbét illesztve megkapjuk a burkolót és ebből egy rés szélességét, a másodrendű csúcsokra illesztve megkapjuk a rácsállandót. Ezek rendre:

$$a = 0,1230mm$$

$$d = 0,6050mm$$

Az első és másodrendű minimumok helyének ismeretében az egyrés esetéhez hasonlóan kiszámolhatók ezek egyenes illsztéssel is.

Az elsőrendű minimumokra illesztve:

Ennek a meredeksége m=9,4032, amiből egy rés szélessége:

$$a = 0,1219mm$$

A másodrendű minimumokra illesztve:

Ennek a meredeksége m=1,9228, amiből a rácsállandó:

$$d=\lambda \frac{L}{m}=632, 8\frac{1812}{1,9228}nm=0,5963mm$$

6.3. Hajszál

A hajszálnál hasonlóan jártam el, mint az egyrésnél, mivel ez a komplementere. A program által meghatározott hajszálvastagság:

$$a = 0,0990mm$$

Itt is elvégeztem az egyenes illesztését:

Az egyenes meredeksége m = 11,6323, amiből a hajvastagság:

$$a = 0.0985mm$$

6.4. Féltér

Ebben az esetben is a laborgép segítségével felvettük az adatokat és rájuk illesztettük az elméleti görbét. Látszik, hogy nem teljesen pontos az illesztés, de elfogadható.

7. Hibaszámítás:

A résszélességnek, a rések távolságának és a hajszál vastagságának a hibáját is a hibaterjedés módszerével számolhatjuk hasonló képletek alapján:

$$\Delta a = a(\frac{\Delta \lambda}{\lambda} + \frac{\Delta L}{L} + \frac{\Delta m}{m})$$

$$\Delta d = d(\frac{\Delta \lambda}{\lambda} + \frac{\Delta L}{L} + \frac{\Delta m}{m})$$

Ahol a hullámhossz és a rés-detektor távolság bizonytalansága adott, az egyenes meredekségének hibája pedig meghatározható az illesztés során a Python 3 Scipy csomagjának curve-fit függvényét használva.

8. Diszkusszió:

A laborgépen található programmal meghatározott és az illesztés során kapott értékek hibával együtt összefoglalva:

	Programmal kapott érték [mm]	Illesztésből számolt érték [mm]
Egyrés szélessége	0,2685	$0,2681 \pm 5,055 \cdot 10^{-4}$
Kettős rés résszélessége	0,1230	$0,1219 \pm 1,097 \cdot 10^{-3}$
Kettős rés rácsállandója	0,6050	$0.5963 \pm 1.7099 \cdot 10^{-3}$
Hajszál vastagsága	0,0990	$0,0985 \pm 2,3522 \cdot 10^{-4}$

Mindent összevetve úgy gondolom, hogy jó eredményeket kaptam. Bár a programmal és az illesztéssel kapott értékek egymáshoz képest nincsenek hibahatáron belül, ez érthető, hiszen a programmal kapott eredmények során ránézésre illesztettük az elméleti függvényeket, ezért abból nagyobb pontatlanság származik.

Hivatkozások

• Az ELTE Természettudományi Kar Oktatói: Fizikai Mérések (Összevont Laboratóriumi Tananyag I.) Szerkesztette: Havancsák Károly, Lektorálta: Kemény Tamás, ELTE Eötvös Kiadó, Budapest, 2013.