Network and Information Security Lecture 11

B.Tech. Computer Engineering Sem. VI.

Prof. Mrudang T. Mehta
Associate Professor
Computer Engineering Department
Faculty of Technology,
Dharmsinh Desai University, Nadiad

Hill Cipher

- Polyalphabetic cipher
- Invented by Lester S. Hill
- The plain text is divided into equal-size blocks.
- The blocks are encrypted one at a time in such a way that each character in the block contributes to the encryption of other characters in the block.
- For this reason, the Hill cipher belongs to a category of ciphers called block ciphers.

- In a Hill cipher, the key is a square matrix of size m x m in which m is the size of the block.
- If we call the key matrix K, each element of the matrix is K_{i.i}

$$K = \begin{pmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{pmatrix}$$

- How one block of the ciphertext is encrypted.
- If we call the m characters in the plaintext block P_1, P_2, P_m, the corresponding characters in the cipher text block are C_1 , C_2 , C_m .

$$C_1 = P_1 K_{11} + P_2 K_{21} + ..+ P_m K_{m1}$$

 $C_2 = P_1 K_{12} + P_2 K_{22} + ..+ P_m K_{m2}$
 $C_m = P_1 K_{1m} + P_2 K_{2m} + ..+ P_m K_{mm}$

- Note- Not all square matrices have multiplicative inverse in Z_{26}
- Bob will not be able to decrypt the cipher text sent by Alice if the matrix does not have a multiplicative inverse.

Example

Plain text: code is ready

Matrix representation of plain text cam make 3 x 4 matrix when adding extra bogus character z to the last block and removing the spaces.

```
      code
      02 14 03 04

      isre
      08 18 17 04

      adyz
      00 03 24 25
```

```
02 14 03 04 09
                      07 11
                  04 07 05 06
 08 18 17 04
00 03 24 25
                   02 21 14
                             09
                          21
                              08
                       23
                   03
C 08
05
        07
07
08
                         13
                   10
                 06
                       07
                 18
                         18
```

$$C_1 = P_1 K_{11} + P_2 K_{21} + P_3 K_{31} + P_4 K_{41}$$
 $C_1 = (2)(9) + (14)(4) + (3)(2) + (4)(3)$
 $= 18 + 56 + 6 + 12$
 $= 92 \mod 26$
 $= 14$

C_1	2*9 + 14*4 + 3*2 + 4*3 = 92 % 26 = 14
C ₂	2*7 + 14*7+ 3*21 + 4*23 = 267 % 26 = 7
C ₃	2 * 11 + 14*5 + 3*14+4*21 = 10
C ₄	2*13 + 14*6 + 3*9 + 4*8 = 13
C ₅	8*9 + 18*4 + 17*2 + 4*3 = 8
C ₆	8*7+18*7+17*21 + 4*23=7
C ₇	8*11+ 18*5 + 17*14 + 4*21 = 6
C ₈	8*13 + 18*6 + 17*9 + 4*8 = 7
C ₉	0*9 + 3*4 + 24*2 + 25*3 = 5
C ₁₀	0*7 + 3*7 + 24 *21 + 25*23=8
C ₁₁	0*11+3*5+24*14+25*21=18
C ₁₂	0*13+3*6+24*9+25*8=18

Decryption

$$\begin{pmatrix}
02 & 14 & 03 & 04 \\
08 & 18 & 17 & 04 \\
00 & 03 & 24 & 25
\end{pmatrix} = \begin{pmatrix}
14 & 07 & 10 & 13 \\
08 & 07 & 06 & 07 \\
05 & 08 & 18 & 18
\end{pmatrix}
\begin{pmatrix}
02 & 15 & 22 & 03 \\
15 & 00 & 19 & 03 \\
09 & 09 & 03 & 11 \\
03 & 23 & 21 & 08
\end{pmatrix}$$

P C K-1

• $A^{-1} = 1/|A| * adj(A)$

Example

$$\bullet \quad K = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad 2x2$$

- $Det(K) = 2 \times 2 1 \times 1 = 4 1 = 3$
- $K^{-1} = 1/Det(K) adj(K)$
- = $(3)^{-1}$ adj(K)
- (3)⁻¹ mod 26

q	r1	r2	r	t1	t2	t
8	26	3	2	0	1	-8
1	3	2	1	1	-8	9
2	2	1	0	-8	9	-26
	1	0		9	-26	

$$(3)^{-1} \mod 26 = 9$$

$$K^{-1} = 9 * adj(K)$$

- Cofactor matrix
- Cofactor of $K_{11}[2] = (-1)^{1+1} \times 2 = 2$
- Cofactor of $K_{12}[1] = (-1)^{1+2} \times 1 = -1$
- Cofactor of $K_{21}[1] = (-1)^{2+1} \times 1 = -1$
- Cofactor of $K_{22}[2] = (-1)^{2+2} \times 2 = 2$

• Cofactor matrix =
$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Adjoint = transpose of cofactor matrix

• Adj (K) =
$$\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

• K⁻¹= 9 * adj(K) = $\begin{pmatrix} 18 & -9 \\ -9 & 18 \end{pmatrix}$ mod 26

•
$$K^{-1} = \begin{bmatrix} 18 & 17 \\ 17 & 18 \end{bmatrix}$$

- Encryption
- $C = (P \times K) \mod 26$
- Plain text = abcd Plain text block = $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$

Decryption

•
$$P = (C \times K^{-1}) \mod 26$$

$$= \begin{pmatrix} 1 & 2 & & 18 & 17 \\ 7 & 8 & & x & 17 & 18 \end{pmatrix} \mod 26$$

$$= \begin{pmatrix} 52 & 53 & & \\ 262 & 263 & & \mod 26 \end{pmatrix}$$

$$= \left(\begin{array}{cc} 0 & 1 \\ 2 & 3 \end{array}\right)$$

$$= P = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Cryptanalysis

- Bruteforce is not possible
- Each entry in the matrix can have one of the possible 26 values
- (at first glance)
- Number of keys = $26^{m*m} = 26^{m2}$
- Not all of the matrices have multiplicative inverses (Smaller key domain but huge)
- Statistical attack is not possible as one Cipher Text depends on many plain text characters

- Possible attacks
 - Known plain text attack
 - Chosen plain text attack
- $K = (C \times P^{-1}) \mod 26$
- Eve can choose Invertible P and can obtain C using chosen plain text attack
- Using received C and P⁻¹, Eve can guess the key.
- Difficulty: Value of m not known
- Chosen plain text attack is difficult to launch

One Time Pad Cipher

- Goal of Cryptography is perfect secrecy.
- Shannon It can be achieved if each plaintext symbol is encrypted with a key randomly chosen from a key domain
- Additive cipher can become a perfect cipher if the key that is used to encrypt each character is chosen randomly from the key domain i.e. { 0,1,2,.....25}
- If the first character is encrypted with key 4, the second character is encrypted with key 2, the third character is encrypted with key 21.

- Invented by Vernam
- The key has the same length as the plain text and is chosen completely in random.
- Difficulty:
- It is a perfect cipher but it is impossible to implement commercially.
- If the key must be newly generated each time, how can Alice tell the new key each time she has a message to send?