

Linux Systems and Open Source Software

Networking

Outline

- Basis of Networking
 - Overview
 - Computer Network Models
 - TCP/IP Model Layers
 - Gateway/Router
- Networking in Linux
 - Connect to Network
 - Management
 - Remote Login

Overview

Computer Network Models

TCP/IP Model Layers

Gateway/Router

NETWORKING BASIS

November 15, 2022

Networking

- A networking subsystem
 - relating to the *computer network*
 - is essential to a computer system
- A computer network is a group of computers
 - Using a set of common communication protocols over digital interconnections for the purpose of sharing resources among the network nodes
 - Network nodes are identified by hostnames and network addresses
- A computer network may be *classified* by many means
 - E.g., Local Area Network (LAN) as categorized by spatial scope is a network
 - connecting computers and devices in a limited geographical area such as a home, school, office building

Structure of the Linux kernel

Computer network types categorized by spatial scope

Digital Interconnections (Network Topology)

- Network topology is the layout, pattern, or organizational hierarchy of the *interconnection* of network hosts
 - in contrast to their physical or geographic location
 - The network topology can affect throughput, but reliability is often more critical

Computer network topologies

Overlay network

- An overlay network is *a virtual network* that is built on top of another network (e.g., formed by digital interconnections)
- Nodes in the overlay network are connected by virtual or logical links
 - Each link corresponds to a path, perhaps through many physical links, in the underlying network
- The topology of the overlay network may (and often does) differ from that of the underlying one

An example overlay network

Gray lines are physical links among the machines, whereas the black lines are the logical links to form the overlay network on top of the physical network

Network Links

- The *transmission media* (or physical medium) used to *link* devices to form a computer network, including
 - wired trans. technology: electrical cable, optical fiber
 - wireless trans. technology:
 - using radio or other electromagnetic means of communication
 - E.g., free space optical comm., for instance, Li-Fi uses light to transmit data between devices)

Optical fiber cables

An example of light data transmission system

Flicking an LED on and off at extreme speeds on be used to write and transmit things in binary code

Data Exchanges between Two Devices

- Data exchanges over the network links/topology
 - exercise the software and hardware for sending and receiving data from one device to another
- A simple transmission of data consists of several steps across various layers of computer network
 - which are defined in a computer network model

The state of the s

Software Stack Related to Network Subsystem

Data Exchanges between Two Devices (Cont'd)

Example

Simple network topology

 of two hosts (A and B) connected by a link between their respective routers

Conceptual data flow across network layers

- The application on each host executes read and write operations as if the processes were directly connected to each other by some kind of data pipe
- After establishment of this pipe, most details of the communication are hidden from each process, as the underlying principles of communication are implemented in the lower protocol layers
- In analogy, at the transport layer the communication appears as host-to-host, without knowledge of the application data structures
- the connecting routers, while at the internetworking layer, individual network boundaries are traversed at each router

Network Topology

Data Flow

NOTE: Hosts and Routers handle the data at the different layers

Overview

Computer Network Models

TCP/IP Model Layers

Gateway/Router

NETWORKING BASIS

Two Major Computer Network Models

1. OSI Model

- Stand for Open System Interconnection Model
- A seven-layered model that defines how a data can be transferred between different systems
- I.e., Application layer, presentation Layer, session layer, transport layer, network Layer, data link layer, physical layer
- Was introduced by International Organisation for Standardisation (ISO) in 1984

2. TCP/IP Model

- Was designed and developed by Department of Defense (DoD) in 1960s
- A four-layered model: application layer, transport layer, network Layer, and data link layer & physical layer

10

OSI Model

- OSI model is a conceptual model
 - Characterize and standardize the communication functions of a computing system
- Simple descriptions of data across layers
 - A transport layer converts the data into segments,
 - network layer converts the segments into packets and
 - data link layer converts the packets into frames (sent by physical layer)
 - A *frame* is nothing but a sequence of bits such as 1001011
 - Physical layer converts these binary sequences into signals and
 - transfer it through a transmission media, such as cables
 - You may like to which the layer does hub/switch/router work on!

Data Layouts across seven layers

Data Layout of a physical layer

Transmission Media

Beginnersbook.com

- Data link layer uses a **Media Access Controller** (**MAC**) to generate the frames that will be transmitted
- The wireless transmission media used for Wi-Fi (or 802.11) has different requirements from the wired transmission media used for Ethernet (or 802.3), and therefore needs a different MAC and PHY

Courtesy of http://linux.vbird.org/linux_server/0110network_basic.php#whatisnetwork_osi; OSI Model in Computer Network; TCP/IP Data Link Layer (Layer 2)

TCP/IP Model

- Application Layer (presentation and session layers)
 - Is used for interaction between user and application
 - Use several protocols for user interaction, e.g., HTTP, SNMP, SMTP, DNS, TELNET, and FTP

Transport Layer

 Represented by three protocols: Transmission control protocol (TCP), User data gram protocol (UDP) and Stream Control Transmission Protocol (SCTP)

Network Layer

- Support internetworking protocol (IP)
- IP uses four protocols internally: ARP, RARP, ICMP & IGMP

Physical and Data Link Layer

- Does not define any protocols
- Support all the standard protocols
- They are combined known as host-tonetwork layer
- A network in TCP/IP internetwork can be LAN or WAN

TCP/IP Protocol Stack

Examples of OSI and TCP/IP Protocol Stacks

		-	
OSI Ref. Layer No.	OSI Layer Equivalent	TCP/IP Layer	TCP/IP Protocol Examples
5,6,7	Application, session, presentation	Application	NFS, NIS, DNS, LDAP, telnet, ftp, rlogin, rsh, rcp, RIP, RDISC, SNMP, and others
4	Transport	Transport	TCP, UDP, SCTP
3	Network	Internet	IPv4, IPv6, ARP, ICMP
2 1	Data link Physical	Data link Physical network	PPP, IEEE 802.2 Ethernet (IEEE 802.3), Wi-Fi (IEEE 802.11) Token Ring, RS-232, FDDI, and others

Overview

Computer Network Models

TCP/IP Model Layers

Gateway/Router

NETWORKING BASIS

November 15, 2022

Application Layer

- An abstraction layer
 - Specify the shared *communications protocols and interface methods* used by hosts in a computer network
- A summary of **popular protocols** at the application layer
 - Hyper Text Transfer Protocol (HTTP)
 - It is the underlying protocol for world wide web. It defines how hypermedia messages are formatted and transmitted
 - File Transfer Protocol (FTP)
 - It is a client-server based protocol for transfer of files between client and server over the network
 - Secure Shell (SSH)
 - It provides a secure channel over an unsecured network by using a client– server architecture, connecting an SSH client application with an SSH server
 - SSH File Transfer Protocol (SFTP)
 - It is a network protocol that provides file access, file transfer, and file management over any reliable data stream
 - Simple Mail Transfer Protocol (SMTP)
 - It lays down the rules and semantics for sending and receiving electronic mails (e-mails)
 - Domain Name System (DNS)
 - It is a naming system for devices in networks. It provides services for translating domain names to IP addresses
 - Simple Network Management Protocol (SNMP)
 - It is for managing, monitoring the network and for organizing information about the networked devices

Logging into the FTP server (192.168.4.25)

```
dave@howtogeek:~$ ftp 192.168.4.25
Connected to 192.168.4.25.
220-Welcome to the Pandemonia ftp server
220-No anonymous access
220-Authernticated access only
220 +++++++
Name (192.168.4.25:dave):
331 Password required for dave
Password:
230 Logged on
Remote system type is UNIX.
ftp>
```

List and download files from the FTP server

```
200 Port command successful
150 Opening data channel for directory listing of "/*.c"
rw-r--r-- 1 ftp ftp
                             115693 Apr 27 10:56 gc.c
rw-r--r-- 1 ftp ftp
                             14289 Apr 27 10:57 gtk_functions.c
rw-r--r-- 1 ftp ftp
                               902 Apr 27 10:57 map sources.c
rw-r--r-- 1 ftp ftp
                             21701 Apr 27 10:57 olc.c
                              2993 Apr 27 10:57 os_coord_ordinance_su
rw-r--r-- 1 ftp ftp
rw-r--r-- 1 ftp ftp
                              7519 Apr 27 10:57 os coord transform.c
226 Successfully transferred "/*.c"
ftp> get gc.c
local: gc.c remote: gc.c
200 Port command successful
150 Opening data channel for file download from server of "/gc.c"
226 Successfully transferred "/gc.c"
115693 bytes received in 0.01 secs (17.5355 MB/s)
```


Transport Layer (TCP vs. UDP)

- TCP: Transmission Control Protocol
 - Provide *reliable data delivery* w/ *connections* btw hosts communicating via an Internet Protocol (IP) network
- The most famous mechanism in TCP is
 - three-way handshake establishing a stable connection
 - **1. SYN**: Client sending a SYN to the server.
 - **2. SYN-ACK**: In response, the server replies with a SYN-ACK
 - **3. ACK**: Finally, the client sends an ACK back to the server

*UDP: User Datagram Protocol

- A *connectionless* communication protocol
- A very thin protocol over an IP network

TCP connection handshake flow

	, 14	戶端 速線要求	主機站接收與回		
A	1. 隨機取 > 1024 的 port 2. 發送的 TCP 表頭: a. SYN=1, Seq: 10001	SYN	*********	1. 有監聽的 port 2. 發送的 TCP 表頭:	_
C	發送的 TCP 表頭: a. ACK=1, ack=20002	SYN/AC		a. ACK=1, ack=10002 b. SYN=1, seq=20001	В
		ACK-		根據收到的 TCP 封包表頭 確認所有封包接收無誤, 可以準備開始接受、傅途	D

Features comparison between TCP and UDP

Feature	TCP	UDP	
Reliability	Yes	No	
Data loss	No	Yes	
Data transfer speed	Slow	Fast	
Header size	20 bytes	8 bytes	
Error checking	Yes	Yes	
Error recovery	Yes	No	
Flow control : 私房菜	Yes	No	

Internet Layer

- A group of **internetworking methods**, **protocols**, **and specifications** in the Internet protocol suite
 - that are used to transport network packets from the originating host across network boundaries; if necessary, to the destination host specified by an IP address
- The internet layer has **three basic functions**:
 - 1. For outgoing packets, select the next-hop host (gateway) and transmit the packet to this host by passing it to the appropriate link layer implementation (for protocol stack walk)
 - 2. For incoming packets, capture packets and pass the packet payload up to the appropriate transport layer protocol, if appropriate
 - 3. Provide error detection and diagnostic capability
- Internet protocol suite
 - The conceptual model and set of communications protocols used in the Internet and similar computer networks
 - The principal communication protocol in the suite is **Internet Protocol** (IP) for relaying datagrams across network boundaries; its routing function enables internetworking

November 15, 2022

- It is commonly known as TCP/IP, which is the fundamental protocols in the suite
- The communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet

Internet Layer (IPv4 and IPv6)

- IPv4 (Internet Protocol version 4) is the fourth version of IP
 - It is one of the core protocols of standards-based internetworking methods in the **Internet** and other packet-switched networks
 - Designed for delivering packets from the source host to the destination based on the IP addresses in the packet headers
- IPv4 uses 32-bit addresses
 - which limits the address space to 4,294,967,296 (2³²) addresses
 - They are most often written in dot-decimal notation, which consists of four octets of the address expressed individually in decimal numbers and separated by periods, as shown below

IPv4 address in dotted-decimal notation

- IPv6 (Internet Protocol version 6) is the most recent version of IP
 - IPv6 is intended to replace IPv4
- IPv6 uses 128-bit addresses
 - theoretically allowing 2¹²⁸, or approximately 3.4×10³⁸ addresses
- An IPv6 address is represented in 8 groups of 16 bits each
 - 2001:0db8:0000:0000:0000:ff00:0042:8329
- Address space consists of network and interface identifiers similar to IPv4
 - Network identifier is the most-significant 64 bits, used as the routing prefix
 - Interface identifier is the following 64 bits for the host portion of address within a local area subnet

IPv6 address (128 bits)

More about IPv4

- The range of a 32-bit IP address
 - 0.0.0.0 \sim 255.255.255.255
 - An IP address is comprised of the **network identifier** and the host identifier
 - Allow uniquely identify a host
- A classful network address architecture is used to establish sufficient networks
 - by introducing different bit lengths for network identification for creating five different network classes

```
The bit-length of network identifier in different network clases
|--net---|------host------
|-----host-----|
|----|---host--
五種分級在十進位的表示:
Class A: O.xx.xx.xx ~ 127.xx.xx.xx
Class B: 128.xx.xx.xx ~ 191.xx.xx.xx
Class C: 192.xx.xx.xx ~ 223.xx.xx.xx
Class D: 224.xx.xx.xx ~ 239.xx.xx.xx
Class E: 240.xx.xx.xx ~ 255.xx.xx.xx
```


- Create subnets with *netmask*
 - The subset (192.168.0.0 192.168.0.255) within the Class C domain
 - The netmask expression: 192.168.0.0/24 means the IPs from 192.168.0.0 – 192.168.0.255 (as shown in the image below)
 - The /24 means the netmask has 24 bit 1s for network identifier
 - Usable IPs: 192.168.0.1~192.168.0.254
 - The network segment is represented by: 192.168.0.0
 - The broadcast address: 192.168.0.255

```
A subnet within Class C
11000000.10101000.00000000.00000000 IP: 192.168.0.0
11000000.10101000.00000000.1111111 IP: 192.168.0.255
1111111.1111111.1111111.00000000 Netmask: 255.255.255.0
                         <==第一個 IP
Network:
          192.168.0.0
Broadcast: 192.168.0.255
                         <==最後一個 IP
可用以設定成為主機的 IP 數:
192.168.0.1 ~ 192.168.0.254
```


Internet Layer IPv4 Private Networks

- IPv4 reserves special address blocks for **private networks**
 - Approximately four billion addresses in total defined in IPv4
 - About 18 million addresses in three ranges are reserved for use in private networks
 - Class A: 10.0.0.0 10.255.255.255
 - Class B: 172.16.0.0 172.31.255.255
 - Class C: 192.168.0.0 192.168.255.255 (most common one; used in your home)
- Packets addresses in these *private* ranges are not routable in the public Internet
 - they are ignored by all public routers
 - Therefore, private hosts cannot **directly communicate with** public networks,
 - but require network address translation at a routing gateway for this purpose

Physical Layer (Ethernet Cables and Wi-Fi Networks)

Ethernet cables (IEEE 802.3)

- This standard specifies what happens at the level of the layer of wired networks
- Check <u>this page</u> for the complete list of 802.3 standards
 - defining the physical layer and data link layer's MAC of wired Ethernet

Standard	Year	Performance	Frequency	Bandwidth	
802.3	1983	10Mb/s	10Base5 coaxial cable Topology in bus with 100 connections spaced by 2m50 Maximum 500m		
802.3e	1987	1Mb/s	Ethernet cable 1Base5 Connection with cable category 3 Unshielded twisted pairs Maximum 200 m	Coine Paire torouse	
802.3x	1997	200 Mb/s	Full Duplex * and Flow Control		
802.3z	1998	1000 Mb/s	Gigabit Ethernet Connection Ethernet 1000 BASE-X (optical fiber)	A Property of the Parks	
802.3an	2006	10Gb/s	-10GBASE-T -Twisted pair copper cable -Maximum distance 100m -Full duplex mode operations (") -Standard for copper cables ISO IEC 11801; 2002 -Physical Link Category 6e -FTP -6a UTP or 7 Shielded -Connectors: RI45 and GG45	RJ45	

Wi-Fi Networks (IEEE 802.11)

- This standard specifies what happens at the level of the layer of wireless networks
- The latest standard 802.11ax (Wi-Fi 6) is announced in 2019
 - Check <u>this page</u> for the list of Wi-Fi generations

Standard		Year	Performance	Fre	quency	Bandwidth
802.11a	1999	Between 1.5 et 54 Mb/s	5GHz	20 MHz	Interface and router	
802.11b	1999	Maximum 11 Mb/s	2.4GHz Problems interfering with other equipment (radio, microwave, Bluetooth)	22MHz	Interface, router	
802.11g	2003	54 Mb/s	2.4	20 - 40 MHz	Wi-fi interface	
802.11n	2009	from 7.2 to 150Mb/s Depending or the processing of errors and the use of frequency.	GHz	Between 20 et 40 MHz		
802.11ad	2012	7 Gb/s	60GHz		WiGig	Wig

Overview

Computer Network Models

TCP/IP Model Layers

Gateway/Router

NETWORKING BASIS

November 15, 2022

Router and Gateway

- A **router** is a networking device that forwards data packets between different computer networks (e.g., different network segments)
 - There is a *route table* on each router to assist the routing decision
- A default gateway
 - is the node in a computer network using the internet protocol suite that
 - serves as the forwarding host (router) to other networks when no other route specification matches the destination IP address of a packet
- A packet is forwarded from one router to another router
 - through the networks that constitute an internetwork (e.g., the Internet) until it reaches its destination node (by examining the packet's target IP address)
- An illustration of sending data from PC01 to Server Bingo

Packet Delivery

- Routing different networks
 - Interior router: A router in a local area network (LAN) of a single organization
 - Exterior router: A router that is operated in the Internet backbone
 - Gateway router (border router): A router connects a LAN with the Internet or a wide area network (WAN)
- Example: sending data from <u>PC01 in Network A</u> to PC11 in Network B
 - Source IP: 192.168.0.1; dest IP: 192.168.1.1
 - The IPs 192.168.0.0/24 and the IPs 192.168.1.0/24 are in different network segments
 - Packets are processed in the following steps:
 - 1. PC01 check its routing table for the matching rule for dest IP address: 192.168.1.1
 - 2. As dest IP is not within the same segment with PC01 and there is no matching routing rule, the data packets are sent to the default gateway (Server A: 192.168.0.254)
 - 3. The gateway receives the packets and check for its routing table
 - 4. As the gateway happens to link Network A and Network B, it is able to forward the received packets from PC01 to PC11 in Network B

Example of routing data from Network A to Network B.

Destination

Network B

- Usually, a gateway server has several NICs connecting with different networks, which is how they can do routing
- E.g., Server A is in Network A and B at the same time

Connection

Management

Remote Login

NETWORKING IN LINUX

November 15, 2022 24

Acquire an IP

- Several ways to obtain an IP to get online
 - 1. Issued by **your academic department** (e.g., Taiwan Academic Network, TANet)
 - 2. Obtained from **Internet Service Provider** (ISP) (e.g., Chunghwa Telecom ADSL)
 - 3. Use dynamic host configuration protocol (DHCP) to get a random IP from ISP (the most common way)
 - 4. ...
- With a static IP address for your computer,
 - you will need to manually set up network configurations to surf Internet
 - A static IP address could be either public or private address

Configure Static IP in Ubuntu 18.04

- You can set up the static IP in ubuntu 18.04 w/ GUI
 - 1. Ubuntu18.04 Settings \rightarrow Network \rightarrow IPv4
 - 2. Address (static IP), Netmask, and Gateway (Your router IP)
 - Example: Static IP: : 140.116.xxx.xxx, Netmask: 255.255.255.0 (a common setting), Gateway: 140.116.xxx.254 (the last valid IP address in the segment)
 - 3. DNS (IP for Domain Name System Service)
 - E.g., 8.8.8.8 (Google) or 163.28.113.1 (NCKU)

November 15, 2022 26

Configure Static IP in Ubuntu 18.04 (Cont'd)

- You can set up the static IP in ubuntu 18.04 w/ *netplan* package in command line
 - /etc/netplan/50-cloud-init.yaml file keeps the configuration for every network interfaces (cards) in Ubuntu 18.04; use the commands in the following pages to change the setting

```
[root@study ~]# cat /etc/netplan/50-cloud-init.yaml
# The network interface for Linux 2020
network:
  ethernets:
                                   網卡代號
    ens192:
       addresses: [192.168.32.231/24]
                                   your static IP + mask
                                   your router IP
      gateway4: 192.168.32.1
       nameservers:
                                   你選用的 DNS 服務, 此處是 Google
        addresses: [8.8.8.8,8.8.4.4]
                                   是否啟用 dhcp
       dhcp4: no
version: 2
[root@study ~]# sudo netplan try
```

dhclient - Dynamic Host Configuration Protocol Client

```
[root@www ~]# dhclient {interface}
[root@www ~]# dhclient eth0 //Use DHCP to configure the NIC: eth0
```

- Sometimes, you need to restart the NIC for your changes to apply
- Check the following pages for the NIC management commands

Connection

Management

Remote Login

NETWORKING IN LINUX

November 15, 2022

Networking Management Commands

• **ifconfig** - configure a network interface

```
[root@www ~]# ifconfig {interface} {upldown} <== 觀察與啟動介面
選項與參數: interface:網路卡介面代號,包括 ethO, eth1, pppO 等等
#範例1:觀察所有的網路介面(直接輸入 ifconfig)
[root@www ~]# ifconfig
etho Link encap:Ethernet HWaddr 08:00:27:71:85:BD
                                                         HWaddr硬體地址MAC
    inet addr:192.168.1.100 Bcast:192.168.1.255 Mask:255.255.255.0 Pv4地址
   inet6 addr: fe80::a00:27ff:fe71:85bd/64 Scope:Link
                                                      IPv6地址
   UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
   RX packets:2555 errors:0 dropped:0 overruns:0 frame:0
                                                         接收封包情形
                                                        傳輸封包情形
    TX packets:70 errors:0 dropped:0 overruns:0 carrier:0
                                              封包碰撞情形
   collisions:0 txqueuelen:1000
   RX bytes:239892 (234.2 KiB) TX bytes:11153 (10.8 KiB)
#範例2: Use ifconfig to set ethO IP address
[root@www ~]# ifconfig ethO 192.168.1.99
```

- **ifup** bring a network interface up
- ifdown take a network interface down

```
[root@www ~]# ifup {interface}
[root@www ~]# ifdown {interface}

#啟動 ethO 網卡
[root@www ~]# ifup ethO
```


Networking Management Commands (Cont'd)

- route show and manipulate the IP routing table
 - **Destination** the destination network or destination host
 - Genmask the netmask for the destination net
 The destination network segment: Destination/Genmask
 - Flags States, e.g., **U** (route is up), **G** (use gateway)
 - **Metric** The *distance* to the target (usually counted in hops)
 - **Iface** Interface to which packets for this route will be sent
- NOTE: usually, there is a routing table for a NIC

```
[root@www ~]# route [-nee]
               -n:不要使用通訊協定或主機名稱,直接使用 IP 或 port number;
               -ee:使用更詳細的資訊來顯示
               # 範例一:單純的觀察路由狀態
               [root@www ~]# route -n
               Kernel IP routing table
Dest. HOST Name Destination Gateway
                                         Genmask
                                                      Flags Metric Ref Use Iface
               192.168.1.0 0.0.0.0
                                         255.255.255.0 U
                                                                           eth0
                                         255.255.0.0
       link-local 169.254.0.0 0.0.0.0
                                                             1002
                                                                           eth0
               0.0.0.0
                           192.168.1.254 0.0.0.0
                                                                           eth0
       default
```


Networking Management Commands for Wireless Network

- **iwconfig** configure a wireless network interface
- **iwlist** get more detailed wireless information from a wireless interface
 - scan Scan and give the list of Access Points and Ad-Hoc cells in range

```
#電腦必須裝入無線網卡並安裝驅動
[root@www ~]# iwconfig
         no wireless extensions.
         no wireless extensions.
eth0
         Ralink STA 通常會以 wlono 做為無線網卡的代號
ra0
[root@www ~]# iwlist [interface] scanning
[root@www ~]# iwlist raO scan
raO Scan completed:
  Cell 01 - Address: 74:EA:3A:C9:EE:1A
               Protocol:802.11b/g/n 無線分享器使用的協定
               ESSID: "vbird tsai"
               Mode: Managed Frequency: 2.437 GHz (Channel 6)
               Quality=100/100 Signal level=-45 dBm Noise level=-92 dBm
               Encryption key:on
               Bit Rates:54 Mb/s
               IE: WPA Version 1
                  Group Cipher : CCMP
                  Pairwise Ciphers (1): CCMP
                  Authentication Suites (1) : PSK
               IE: IEEE 802.11i/WPA2 Version 1 該無線網路使用的加密機制
                  Group Cipher : CCMP
                  Pairwise Ciphers (1) : CCMP
                  Authentication Suites (1): PSK
```


Test the Connection of Your PC

- **ping** send ICMP (ICMP6) ECHO_REQUEST packets to network hosts
 - The ping lets you know how long the network took to transmit that data and get a response

```
[root@www~]# ping [撰項與參數] IP
-c 數值:後面接的是執行 ping 的次數,例如 -c 5;
-s 數值:發送出去的 ICMP 封包大小,預設為 56bytes;
-W 數值:等待回應對方主機的秒數。
# 範例一: 偵測 168.95.1.1 這部 DNS 主機是否存在?
[root@www ~]# ping -c 3 168.95.1.1
PING 168.95.1.1 (168.95.1.1) 56(84) bytes of data.
64 bytes from 168.95.1.1: icmp seq=1 ttl=245 time=15.4 ms
64 bytes from 168.95.1.1: icmp seq=2 ttl=245 time=10.0 ms
64 bytes from 168.95.1.1: icmp seq=3 ttl=245 time=10.2 ms
封包大小
                           第幾次偵測
                                  (255-經過節點數量)
--- 168.95.1.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2047ms
rtt min/avg/max/mdev = 10.056/11.910/15.453/2.506 ms
```


Trace Packets Route

- traceroute print the trace of route packets to network host at IP
 - Use different methods to do the test: -U (default), -I, -T

```
[root@www ~]# traceroute [撰項與參數] IP
  :不解析主機的名稱,單純用 IP,速度較快。
-U:使用 UDP 的 port 33434 來進行偵測,這是預設的偵測協定;
-I:使用 ICMP 的方式來進行偵測;
   使用 TCP 來進行偵測,一般使用 port 80 測試
-w:若對方主機在幾秒鐘內沒有回應就不理會,預設是 5 秒
-p 埠號:若不想使用預設埠號來偵測,可在此改變埠號。
# 範例一:偵測本機到 yahoo 去的各節點連線狀態
[root@www ~]# traceroute -n tw.yahoo.com
traceroute to tw.yahoo.com (119.160.246.241), 30 hops max, 40 byte packets
1 192.168.1.254 0.279 ms 0.156 ms 0.169 ms
2 172.20.168.254 0.430 ms 0.513 ms 0.409 ms
3 10.40.1.1 0.996 ms 0.890 ms 1.042 ms
   220.128.3.149 8.062 ms 8.058 ms 7.990 ms
   119.160.240.1 10.688 ms 10.590 ms 119.160.240.3 10.047 ms
   * * * <==可能有防火牆裝置等情況發生所致
由資料可知該主機連線自 tw.yahoo.com 需要經過 7 個節點
```


Check Network Status

- netstat print network status on the computer
 - I.e., network connections, routing tables, interface statistics, masquerade connections, and multicast memberships

```
[root@www ~]# netstat -[antulpc]
-a:列出所有的連線狀態,包括tcp/udp/unix socket等;
   僅列出 TCP 封包的連線;-u:僅列出 UDP 封包的連線;
   僅列出有在 Listen (監聽) 的服務之網路狀態;
-p:列出 PID 與 Program 的檔名;
-c:可以設定幾秒鐘後自動更新一次,例如 -c 5 每五秒更新一次網路狀態的顯示;
# 範例:列出已啟動的網路服務
[root@www ~]# netstat -tulnp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address
                                                   State
                                                          PID/Program name
                 0 0.0.0.0:34796 0.0.0.0:*
                                                   LISTEN 987/rpc.statd
tcp
                 0 0.0.0.0:111
                                 0.0.0.0:*
                                                   LISTEN 969/rpcbind
tcp
                 0 127.0.0.1:25
                                                   LISTEN 1231/master
tcp
                                 0.0.0.0:*
                 0 :::22
                                                   LISTEN 1155/sshd
tcp
                                  :::*
                 0 0.0.0.0:111
udp
                                 0.0.0.0:*
                                                          969/rpcbind
#範例二:列出目前的所有網路連線狀態,使用 IP 與 port number
[root@www ~]# netstat -an
Active Internet connections (servers and established)
                                    Foreign Address
Proto Recv-Q Send-Q Local Address
                                                        State
....(中間省略)....
                 0 127.0.0.1:25
                                    0.0.0.0:*
                                                        LISTEN
tcp
                52 192.168.1.100:22 192.168.1.101:1937
tcp
                                                       ESTABLISHED
                 0 :::22
                                    :::*
tcp
                                                        LISTEN
```


Connection

Management

Remote Login

NETWORKING IN LINUX

November 15, 2022

Secure File Transfer Program

- sftp secure file transfer program
 - Has interactive commands to transfer files

```
[root@www ~]# sftp {account}@{IP}
sftp 可支援 cd, ls, pwd 指令,代表在遠端進行操作;
在這些指令前加上 I (Local) 如,lcd, lls, lpwd,代表在本地端操作。
取得及放入檔案: get {file} 及 put {file}
# 範例:連線至 192.168.91.8 (範例用內網)
[root@www ~]# sftp linux2020@192.168.91.8
linux2020@192.168.91.8's password:
Connected to 192.168.91.8.
sftp>
#範例:利用 pwd 及 lpwd 分別列出遠端及本地端的位置
sftp> pwd
Remote working directory: /home/linux2020/
stfp> lpwd
Local working directory: /home/root/
#範例:取得遠端的 remote file1 及放入本地端的 local file1 (範例用內網)
sftp> get remote file1
Fetching /home/linux2020/remote_file1 to remote_file1
/home/linux2020/remote_file1
                                                                  1KB 1.3MB/s 00:00
                                                           100%
sftp> put local file1
Uploading local file1 to /home/linux2020/local file1
local file1
                                                           100%
                                                                  1KB 1.3MB/s 00:00
```


Remote Login w/ Textual and Graphical Interfaces

- ssh OpenSSH SSH client for logging into a remote machine and for executing commands on a remote machine
 - The remote machine should install and run the SSH service/daemon
- The workflow of remote processing is illustrated below
 - For Windows users, you can use <u>PieTTY</u> as SSH client

- Run the remote programs as if on the local machine using GUI
 - A client and server software pairs for remote accesses
 - Many solutions are available:
 - VNC
 - AnyDesk
 - NoMachine (Installation)
 - <u>TeamViewer</u> (Installation)
 - ...

THANK YOU!

November 15, 2022