RAJALAKSHMI ENGINEERING COLLEGE

RAJALAKSHMINAGAR, THANDALAM-602105

CS23331- DESIGNANDANALYSISOFALGORITHM

LABORATORYLABMANUAL

Name: M.Dilshad	
Year / Branch / Section : . 2nd Year / AIML	/A
Register No.: 231501041	
Semester : 3 rd Semester	
Academic Year : 2024-2025	

INDEX

REG.NO:231501041	
NAME: DILSHAD	

YEAR:IIYEAR BRANCH:AIML SEC:A

S. NO.	DATE	TITLE	PAGE NO.	TEACHER'S SIGNATURE / REMARKS
		WEEK01-BASICCPROGRAMS		
1.1		SWAPPINGOFTWONUMBERS		
1.2		ELIGIBILITYCRITERIA		
1.3		GROCERYITEMS		
1.4		BABA'SGIVINGPATTERN PUNCTUALITYINCENTIVE		
1.5		DIVISIBILITYFINDER		
1.6		QUOTIENTANDREMAINDER		
1.7		GREATESTOFALLNUMBERS		
1.8		EVENORODD		
1.9		FACTORIALOFANUMBER		
1.10		SUMOFNNATURALNUMBERS		
1.11		FIBONACCISERIES		
1.11		POWEROFINTEGERS		
1.12		PRIMEORNONPRIME		
1.13		REVERSEOFANINTEGER		
1.14				
		WEEK02-FINDINGTIMECOMPLEXITYOFALGO	ORITHMS	
2.1		COUNTERMETHOD-WHILELOOP		
2.2		COUNTERMETHOD-FORLOOP		
2.3		COUNTERMETHOD-FACTORS		
2.4		COUNTERMETHOD-FUNCTION		
2.5		COUNTERMETHOD-REVERSE		

	WEEK03-DIVIDEANDCONQUER	
3.1	NUMBEROFZEROSINANARRAY	
3.2	MAJORITYELEMENT	
3.3	FINDINGFLOORVALUE	
3.4	TWOELEMENTSSUMTOX	
3.5	IMPLEMENTATIONOFQUICKSORT	
	WEEK04-GREEDYALGORITHMS	
4.1	COIN PROBLEM	
4.2	COOKIESPROBLEM	
4.3	BURGERPROBLEM	
4.4	ARRAYSUMMAXPROBLEM	
4.5	PRODCUTOFARRAYELEMENTS-MIN	
	WEEK05-DYNAMICPROGRAMMING	
5.1	PLAYINGWITHNUMBERS	
5.2	PLAYINGWITHCHESSBOARD	
5.3	LONGESTCOMMONSUBSEQUENCE	
5.4	LONGESTNON-DECREASING	
	SUBSEQUENCE	
1	WEEK06-COMPETITIVEPROGRAMMING	G
6.1	FINDING DUPLICATES-O(N^2) TIME COMPLEXITY,O(1)SPACECOMPLEXITY	
6.2	FINDINGDUPLICATES-O(N)TIME COMPLEXITY,O(1)SPACECOMPLEXITY	
6.3	PRINT INTERSECTION OF 2 SORTED ARRAYS-O(M*N)TIMECOMPLEXITY,O(1) SPACE COMPLEXITY	
6.4	PRINT INTERSECTION OF 2 SORTED ARRAYS-O(M+N)TIMECOMPLEXITY,O(1) SPACE COMPLEXITY	
6.5	PAIRWITHDIFFERENCE-O(N^2)TIME COMPLEXITY,O(1)SPACECOMPLEXITY	
6.6	PAIR WITH DIFFERENCE -O(N) TIME COMPLEXITY,O(1)SPACECOMPLEXITY	

WEEK01-BASICC PROGRAMS

EXPERIMENTNO: 1.1 DATE:

SWAPPINGOFTWONUMBERS

GIVENTWONUMBERS, WRITEACPROGRAMTOSWAPTHENUMBERS.

FOREXAMPLE

Input	Result
10 20	20 10

PROGRAM

```
#include<stdio.h>in
t main()Input Expected Got
{
into, 10 20 20 10 20 10
int b;
int temp;
Passed all tests!
scanf("%d %d",&a,&b);
/*swappingthetwonumbers*/ temp=a;
a=orect
b=temp;or this submission: 1.00/1.00.
printf("%d %d",a,b);

OUTPUT
```

EXPERIMENTNO:1.2 DATE:

ELIGIBILITYCRITERIA

WRITEACPROGRAMTOFINDTHEELIGIBILITYOFADMISSIONFORAPROFESSIONAL COURSE BASED ON THE FOLLOWING CRITERIA:

MARKS IN MATHS >= 65

MARKS IN PHYSICS >= 55

MARKSINCHEMISTRY>=50 OR

TOTALINALLTHREESUBJECTS>=180

SAMPLETESTCASES:T

EST CASE 1:

INPUT

706080

OUTPUT

THECANDIDATEISELIGIBLE

TESTCASE2:

INPUT

508080

OUTPUT

THECANDIDATEISELIGIBLE

TESTCAS

E3INPUT

OUTPUT

THECANDIDATEISNOTELIGIBLE

PROGRAM

```
#include<stdio.h>in
     Input
                Expected
                                       Got
 t main()
     70
            80 The candidate is eligible The candidate is eligible
                54h649a8R1;
     intmark2;
Passed all tests!
     scanf("%d%d%d",&mark1,&mark2,&mark3);
     total=mark1+mark2+mark3;
     if(mark1>=65 &&mark2>=55 &&mark3>=50 &&total>=180)
         printf("The candidate is eligible");
     else if(total>=180)
         printf("The candidate is eligible");
     else{
         printf("The candidate is not eligible");
 }
```

EXPERIMENTNO:1.3 DATE: **GROCERYITEMS** MALINI GOES TO BESTSAVE HYPER MARKET TO BUY GROCERY ITEMS. BESTSAVE HYPERMARKETPROVIDES10%DISCOUNTONTHEBILLAMOUNTBWHENEVERTHE BILL AMOUNT B IS MORE THAN RS.2000. THEBILLAMOUNTBISPASSEDASTHEINPUTTOTHEPROGRAM.THEPROGRAM MUST PRINT THE FINAL AMOUNT A PAYABLE BY MALINI. **INPUTFORMAT**: THEFIRSTLINEDENOTESTHEVALUEOFB. **OUTPUTFORMAT**: THEFIRSTLINECONTAINSTHEVALUEOFTHEFINALPAYABLEAMOUNT A. **EXAMPLEINPUT/OUTPUTI:**I NPUT: 1900 **OUTPUT**: 1900 **EXAMPLEINPUT/OUTPUT2:1**

NPUT:

3000

PROGRAM

```
#inclinion to the pecified Got to main()

1900 1900 1900 1900 int b;

3000 2700 2700 int discount;

Scanf("%d",&b);

Passed all tests()

discount=b*0.10;

printf("%d",b-discount);
}
else
printf("%d",b);
}
```

EXPERIMENTNO:	1.4	DATE:

BABA'SGIVINGPATTERN

BABA IS VERY KIND TO BEGGARS AND EVERY DAY BABA DONATES HALF OF THE

AMOUNTHEHASWHENEVERABEGGARREQUESTSHIM.THEMONEYMLEFTINBABA'S HAND IS PASSED AS THE INPUT AND THE NUMBER OF BEGGARS B WHO RECEIVED THE

ALMSAREPASSEDASTHEINPUT.THEPROGRAMMUSTPRINTTHEMONEYBABAHADI N THE BEGINNING OF THE DAY.

INPUTFORMAT:

THE FIRST LINE DENOTES THE VALUE OF M.
THESECONDLINEDENOTESTHEVALUEOFB.

OUTPUTFORMAT:

THEFIRSTLINEDENOTESTHEVALUEOFMONEYWITHBABAINTHEBEGINNINGOFTH E DAY.

EXAMPLEINPUT/OUTPUT:

INPUT:

100

2

OUTPUT:

400

EXPLANATION:

Babadonatedtotwobeggars.Sowhenheencounteredsecondbeggarhehad100*2=Rs.200andwhenheencountered1sthehad200*2=Rs.400.

PROGRAM

```
#include stdie xpected Got
t main()

100 400 400 int, money; intbeggar; int amount; scanf("%d %d", &money, &beggar);
Passed all tests!

Correct
Warks for this submission: 1.00/1.00.
```

EXPERIMENTNO: 1.5 DATE:

PUNCTUALITYINCENTIVE

THECEOOFCOMPANYABCINCWANTEDTOENCOURAGETHEEMPLOYEESCOMING ON TIME TO THE OFFICE. SO HE ANNOUNCED THAT FOR EVERY CONSECUTIVE DAY AN EMPLOYEE COMES ON TIME IN A WEEK (STARTING FROM MONDAY TO SATURDAY), HE WILL BE AWARDED RS.200 MORE THAN THE PREVIOUS DAY AS "PUNCTUALITY INCENTIVE". THE INCENTIVE I FOR THE STARTING DAY (IE ON MONDAY) IS PASSED AS THE INPUT TO THE PROGRAM. THE NUMBER OF DAYS N AN EMPLOYEE CAME ON TIME CONSECUTIVELY STARTING FROM MONDAY IS ALSO PASSED AS THE INPUT. THE PROGRAM MUST CALCULATE AND PRINT THE "PUNCTUALITY INCENTIVE" P OF THE EMPLOYEE.

INPUTFORMAT:

THE FIRST LINE DENOTES THE VALUE OF I. THESECONDLINEDENOTESTHEVALUEOFN.

OUTPUTFORMAT:

THEFIRSTLINEDENOTESTHEVALUEOFP.

EXAMPLEINPUT/OUTPUT:

INPUT:

500

3

OUTPUT:

2100

EXPLANATION:

ONMONDAYTHEEMPLOYEERECEIVESRS.500,ONTUESDAYRS.700,ONWEDNESDAY RS.900

SOTOTAL=RS.2100

PROGRAM

```
Input Expected Got
#include<stdio.h>in
t main() 2100 2100

int a,b,sum=0;
scanf("%d",&a);
scanf("%d",&b);
for(int i=0;i<b;i++)
{
Passed alliests!
a=a+200;

Correct
Marks for this submission: 1.00/1.00.
printf("%d",sum);
}</pre>
```

DIVISIBILITYFINDER

TWONUMBERSMANDNAREPASSEDASTHEINPUT.ANUMBERXISALSOPASSEDAS THE INPUT. THE PROGRAM MUST PRINTTHENUMBERSDIVISIBLEBYXFROMNTOM (INCLUSIVE OF M AND N).

INPUTFORMAT:

THE FIRST LINE DENOTES THE VALUE OF M THESECONDLINEDENOTESTHEVALUEOFN THE THIRD LINE DENOTES THE VALUE OF X

OUTPUTFORMAT:

NUMBERSDIVISIBLEBYXFROMNTOM, WITHEACHNUMBERSEPARATEDBYA SPACE.

BOUNDARYCONDITIONS:

1<=M<=9999999 M < N <= 9999999 1 <= X <= 9999

EXAMPLEINPUT/OUTPUTI:

INPUT: 2 40

OUTPUT: 352821147

EXAMPLEINPUT/OUTPUT2:

INPUT:

66

121

11

OUTPUT:

12111099887766

PROGRAM

<u>OUTPUT</u>

EXPERIMENTNO: 1.7 DATE:

QUOTIENT&REMAINDER

WRITEACPROGRAMTOFINDTHEQUOTIENT&REMAINDEROFGIVEN INTEGERS

FOREXAMPLE

Input	Result
12	4
3	0

PROGRAM

EXPERIMENTNO: 1.8 DATE:

GREATESTOFALLNUMBERS

WRITEACPROGRAMTOFINDTHEGREATESTNUMBERSOF3INTEGERS.

FOREXAMPLE

In	out		Result
10	20	30	30

PROGRAM

```
#include<stdio.h>in
t main()
{
    inta; intb; int c; scanf("%d
    %d %d",&a,&b,&c);

    if(a>b &&a>c){
        printf("%d",a);
    }
    elseif(b>c&&b>a){ pr
        intf("%d",b);
    }
    else
    printf("%d",c);
}
```

	Input	Expected	Got	
~	10 20 30	30	30	~

EVENORODD

WRITEACPROGRAMTOFINDTHENUMBERISODDOREVEN?

FOREXAMPLE

PROGRAM

FACTORIALOFANUMBER

$\label{lem:writeaprogramtofindthefactorial of a number \\ \textbf{FOREXAMPLE}$

PROGRAM

```
#include<s td16.h>in

#include<s td16.h>in

t main()

intfactorial;

Passedfalltests!=2;
int n;

scanf("%d",&n);
for(inti=1;i<=n;i++)

{
factorial=factorial*i;
}
printf("%d",factorial);
}
```

Input	Result
5	120

EXPERIMENTNO: 1.11 DATE:

SUM OF N NATURAL

NUMBERSWRITEACPROGRAMTOFINDTHESUMOFNNATURALNUM

BERS FOR EXAMPLE

PROGRAM

Input	Result
3	6

EXPERIMENTNO: 1.12 DATE:

Input	Result
0	0
1	1
4	3

FIBONACCISERIES

WRITEACPROGRAMTOFINDTHENTHTERMOFFIBONACCISERIES

FOREXAMPLE

PROGRAM

```
#include<stdio.h>in
t main()
inta; intb; int
 c; intsum; b=0;
 c=1; sum=0;
scanf("%d",&a);
 for(inti=0;i<a-</pre>
    1;i++){ sum=b+c;
    b=c;
    c=sum;
 if(a==1){
    printf("1");
 }else{
    printf("%d",sum);
 }
 }
```

<u>OUTPUT</u>

EXPERIMENTNO: 1.13

POWEROFINTEGERS

DATE:

WRITEACPROGRAMTOFINDTHEPOWEROFINTEGERS.

INPUT:

AB

OUTPUT:

A^BVALUE

FOREXAMPLE

PROGRAM

```
#include(state)
include(math.h>int
                          Got
 main()<sub>5</sub>
              32
                          32
      inta;
Passed at tests! 🗸
      scanf("%d %d",&a,&b);
      int power;
      power=pow(a,b);
      printf("%d",power);
 }
 OUTPUT
  Input Result
  2 5
          32
```

EXPERIMENTNO: 1.14

PRIMEORNONPRIME

DATE:

WRITEACPROGRAMTOFINDWHETHERNUMBERISPRIMEORNOT?

FOREXAMPLE

PROGRAM

```
#include
impMirResult

// int Prime

scanf("%d", &number);

if(number%2==0){
    printf("No Prime");
    }
    else if(number%3==0){
        printf("No Prime");
    }
    elseif(number%number==0&&number/number==1){ pr
        intf("Prime");
    }
    else
    printf("Prime");
}
```

	Input	Expected	Got	
~	7	Prime	Prime	~
~	9	No Prime	No Prime	~

EXPERIMENTNO: 1.15 DATE:

<u>REVERSEOFANINTEGER</u>

WRITEACPROGRAMTOFINDTHEREVERSEOFANINTEGER.

PROGRAM

```
#include<stdio.h>in
t main() Expected
                           Got
  ✓ 123
int n;
               321
                            321
    scanf("%d",&n);
 Passed at letests !>
    reverse=0;
   int last;
Correct st=0;
Markswfcirlte (snsl.#@r)i{siba: 1.00/1.00.
    st=n%10;
    reverse=reverse*10+last;
    n/=10;
    }
    printf("%d",reverse);
}
```

WEEK 02 - FINDING TIME COMPLEXITYOFALGORITHMS

EXPERIMENTNO: 2.1 DATE:

COUNTERMETHOD-WHILELOOP

CONVERTTHEFOLLOWINGALGORITHMINTOAPROGRAMANDFINDITSTIME COMPLEXITY USING THE COUNTER METHOD.

 $\underline{\text{NOTE:}} \\ \text{NONEEDOFCOUNTERINCREMENTFORDECLARATIONSANDSCANF()} \\ \text{AND COUNT VARIABLE PRINTF() STATEMENTS.} \\$

INPUT:

APOSITIVEINTEGERN

OUTPUT:

PRINTTHEVALUEOFTHECOUNTERVARIABLE

FOREXAMPLE:

INPUT RESULT

```
#include<stdio.h>in
t main()put Expected Got
intcount=0;
                                      ~
int n;
                 12
                               12
scanf("%d",&n);
int i=1;
                               9
count++;
ints=1;
Passed all tests! ✔
count++;
while(s<=n){ count+</pre>
Marks for this submission: 1.00/1.00. count++;
s+=1;
count++;
}
count++;
printf("%d",count);
```

EXPERIMENTNO: 2.2 DATE:

<u>COUNTERMETHOD-FORLOOP</u>

CONVERTTHEFOLLOWINGALGORITHMINTOAPROGRAMANDFINDITSTIME COMPLEXITY USING THE COUNTER METHOD.

```
voidfunc(intn)
{
    if(n==1)
      printf("*");
    }
    else
    {
     for(inti=1;i<=n;i++)</pre>
        for(intj=1;j<=n;j++)</pre>
        {
           printf("*");
           printf("*");
           break;
       }
     }
   }
 }
```

NOTE:

NONEEDOFCOUNTERINCREMENTFORDECLARATIONSANDSCANF()ANDCOUNT VARIABLE PRINTF() STATEMENTS.

INPUT:

APOSITIVEINTEGERN

OUTPUT:

PRINTTHEVALUEOFTHECOUNTERVARIABLE

PROGRAM

```
#include<stdio.h>in
t main()
{
        int count=0;
        int n;
        scanf("%d",&n);
        if(n==1){
            count++;
            //printf("*");
        }
        //count++;
        else{
            count++;
            for(inti=1;i<=n;i++)</pre>
                 count++;
                 for(intj=1;j<=n;j++)</pre>
                     count++;
                     //printf("*");
                     count++;
                     //printf("*");
                     count++;
                     break;
                     count++;
                 }
                 count++;
            }count++;
        printf("%d",count);
    }
```

<u>OUTPUT</u>

	Input	Expected	Got	
~	2	12	12	~
~	1000	5002	5002	~
~	143	717	717	~

EXPERIMENTNO: 2.3 DATE:

COUNTERMETHOD-FACTORS

CONVERTTHEFOLLOWINGALGORITHMINTOAPROGRAMANDFINDITSTIME COMPLEXITY USING COUNTER METHOD.

```
Factor(num){
{
         for(i=1;i<=num;++i)
         {
            if(num%i==0)
               {
                printf("%d",i);
               }
            }
}</pre>
```

NOTE:

NONEEDOFCOUNTERINCREMENTFORDECLARATIONSANDSCANF()ANDCOUNTER VARIABLE PRINTF() STATEMENT.

INPUT:

APOSITIVEINTEGERN

OUTPUT:

PRINTTHEVALUEOFTHECOUNTERVARIABLE

```
Input Expected
#include<stdio.h>in
                           Got

    maip()
              31
                           31
       int numb,4
       scanf("%d",&num);
       int count=0;
int i;
for(i=1;i<=num;i++)
Passed{all tests!</pre>
            count++;
            if(num%i==0)
                count++;
                //printf("%d ",i);
                //count++;
           }count++;
       }count++;
       printf("%d",count);
  }
```

<u>OUTPUT</u>

EXPERIMENTNO: 2.4 DATE:

COUNTERMETHOD-FUNCTION

CONVERTTHEFOLLOWINGALGORITHMINTOAPROGRAMANDFINDITSTIME COMPLEXITY USING COUNTER METHOD.

```
voidfunction(intn)
{
  intc=0;
  for(int i=n/2; i<n; i++)

  for(intj=1;j<n;j=2*j)
    for(intk=1;k<n;k=k*2) c++;
}</pre>
```

NOTE:

NONEEDOFCOUNTERINCREMENTFORDECLARATIONSANDSCANF()ANDCOUNT VARIABLE PRINTF() STATEMENTS.

INPUT:

APOSITIVEINTEGERN

OUTPUT:

PRINTTHEVALUEOFTHECOUNTERVARIABLE

PROGRAM

```
#include<stdio.h>in
t mainuput Expected Got
     int n;
                           30
               30
    scanf("%d",&n);
int count=0;
                           212
     intc=0;
Passed all tests! 
for(inti=n/2;i<n;i++){ count++
          for(intj=1;j<n;j=2*j){ count++
               for(intk=1;k<n;k=k*2){ cou</pre>
                   nt++;
                   C++;
                   count++;
              count++;
         count++;
     count++;
     printf("%d",count);
}
```

EXPERIMENTNO: 2.5 DATE:

COUNTERMETHOD-REVERSE

CONVERTTHEFOLLOWINGALGORITHMINTOAPROGRAMANDFINDITSTIME COMPLEXITY USING COUNTER METHOD.

```
void reverse(int n)
{
  intrev=0,remainder;
  while (n!= 0)

{
    remainder = n % 10;
    rev=rev*10+remainder;
    n/= 10;
}
  print(rev);
}
```

NOTE:

NONEEDOFCOUNTERINCREMENTFORDECLARATIONSANDSCANF()ANDCOUNT VARIABLE PRINTF() STATEMENTS.

INPUT:

APOSITIVEINTEGERN

OUTPUT:

PRINTTHEVALUEOFTHECOUNTERVARIABLE

```
#include<stdio.h>in
t main()
    int n;
    scanf("%d",&n);
    int count=0;
    intc=0;
    count++;
    for(inti=n/2;i<n;i++){ count++</pre>
        for(intj=1;j<n;j=2*j){ cou</pre>
             nt++;
             for(intk=1;k<n;k=k*2){</pre>
                 count++;
                 C++;
                 count++;
             }
            count++;
        }
        count++;
    }
    count++;
    printf("%d",count);
}
```

OUTPUT

	Input	Expected	Got	
~	12	11	11	~
~	1234	19	19	~

Passed all tests! 🗸

WEEK03-DIVIDE AND CONQUER

EXPERIMENTNO: 3.1 DATE:

NUMBEROFZEROSINANARRAY

PROBLEMSTATEMENT

GIVENANARRAYOF1SANDOSTHISHASALL1SFIRSTFOLLOWEDBYALLOS.AIMIS TO FIND THE NUMBER OF OS. WRITE A PROGRAM USING DIVIDE AND CONQUER TO COUNT THE NUMBER OF ZEROES IN THE GIVEN ARRAY.

INPUTFORMAT

FIRSTLINECONTAINSINTEGERM-SIZEOFARRAY

NEXTMLINESCONTAINSMNUMBERS-ELEMENTSOFANARRAY

OUTPUTFORMAT

FIRSTLINECONTAINSINTEGER-NUMBEROFZEROESPRESENTINTHEGIVEN ARRAY.

```
#include<stdio.h>in
t main()
{
    int n;
    scanf("%d",&n);
    int arr[n];
    for(int
        i=0;i<n;i++){ scanf("%d",&arr[i]);
    }
    inti;
    int count=0;
    for(i=0;i<n;i++)</pre>
```


EXPERIMENTNO: 3.2 DATE:

Input	Result
3	3
3 2 3	
7	2

MAJORITYELEMENT

GVENANARRAYNUM\$OFSIZEN,RETURNTHEMAJORITYELEMENT.

THEMAJORITYELEMENTISTHEELEMENTTHATAPPEARSMORETHAN [N/2] TIMES. YOUMAYASSUMETHATTHEMAJORITYELEMENTALWAYSEXISTSINTHEARRAY.

EXAMPLE1:

INPUT:NUMS=[3,2,3]

OUTPUT:3

EXAMPLE2:

<u>INPUT:</u>NUMS=[2,2,1,1,1,2,2]

OUTPUT:2

CONSTRAINTS:

N==NUMS.LENGTH 1

<= N <= 5 * 104

-231<=NUMS[I]<=231-1

FOREXAMPLE:

```
#inclinplats Exipected Got
 t main(){
      1nt n; 3
      $canf("%d",&n);
      int a[n];
for(int
Passed all tests! in;i++){ scanf
         ("%d",&a[i]);
      for(inti=0;i<n;i++){ in</pre>
          t count=0;
          for(intj=0;j<n;j++){ if(a[i</pre>
               ]==a[j]){
                   count++;
               }
           }
          if(count>n/2){
               printf("%d",a[i]);
               break;
          }
     }
  }
```

<u>OUTPUT</u>

EXPERIMENTNO: 3.3 DATE:

FINDINGFLOORVALUE

PROBLEMSTATEMENT:

GIVEN A SORTED ARRAY AND A VALUE X, THE FLOOR OF X IS THE LARGEST ELEMENTINARRAYSMALLERTHANOREQUALTOX.WRITEDIVIDEANDCONQUER ALGORITHM TO FIND FLOOR OF X.

INPUTFORMAT

- FIRSTLINECONTAINSINTEGERN-SIZEOFARRAY
- NEXTNLINESCONTAINSNNUMBERS-ELEMENTSOFANARRAY
- LASTLINECONTAINSINTEGERX-VALUEFORX

OUTPUTFORMAT

FIRSTLINECONTAINSINTEGER-FLOORVALUEFOR X

```
#include<stdio.h>in
t main()
{
    int n;
    scanf("%d",&n);
    int arr[n];
    for(int i=0;i<n;i++)
    {
        scanf("%d",&arr[i]);
    }
    int key=0;
    scanf("%d",&key);
    int floor=arr[0];
    for(int j=1;j<n;j++)
    {
        if(arr[j]>floor &&arr[j]<key)</pre>
```

```
floor=arr[j];
}
printf("%d",floor);
}
```

<u>OUTPUT</u>

	Input	Expected	Got	
~	6 1 2 8 10 12 19 5	2	2	*
~	5 10 22 85 108 129 100	85	85	~
•	7 3 5 7 9 11 13 15	9	9	*

EXPERIMENTNO: 3.4 DATE:

TWOELEMENTSSUMTOX

PROBLEMSTATEMENT:

GIVEN A SORTED ARRAY OF INTEGERS SAY ARR[] AND A NUMBER X. WRITE A RECURSIVEPROGRAMUSINGDIVIDEANDCONQUERSTRATEGYTOCHECKIFTHERE EXIST TWO ELEMENTS IN THE ARRAY WHOSE SUM = X. IF THERE EXIST SUCH TWO ELEMENTS THEN RETURN THE NUMBERS, OTHERWISE PRINT AS "NO".

NOTE:WRITEADIVIDEANDCONQUERSOLUTION

INPUTFORMAT

- FIRSTLINECONTAINSINTEGERN-SIZEOFARRAY
- NEXTNLINESCONTAINSNNUMBERS-ELEMENTSOFANARRAY
- LASTLINECONTAINSINTEGERX-SUMVALUE

OUTPUTFORMAT

- FIRSTLINECONTAINSINTEGER-ELEMENT1
- SECONDLINECONTAINSINTEGER-ELEMENT2(ELEMENT1ANDELEMENTS2 TOGETHER SUMS TO VALUE "X")

```
#include<stdio.h>in
t main()
{
    int n;
    scanf("%d",&n);
    int arr[n];

    for(int
        i=0;i<n;i++){ scanf("%d",&arr[i]);
    }
    inti,j;</pre>
```

<u>OUTPUT</u>

	Input	Expected	Got	
/	4	4	4	~
	2	10	10	
	4			
	8			
	10			
	14			
/	5	No	No	~
	2			
	4			
	6			
	8			
	10			
	100			

EXPERIMENTNO: 3.5 DATE:

Input	Result	
5 67 34 12 98 78	12 34 67 78 98 IMPLE	MENTATIONOFQUICKSORT

WRITEAPROGRAMTOIMPLEMENTTHEQUICKSORTALGORITHM

INPUTFORMAT:

- THEFIRSTLINECONTAINSTHENOOFELEMENTSINTHELIST-N
- THENEXTNLINESCONTAINTHEELEMENTS.

OUTPUT:

SORTEDLISTOFELEMENTS

FOREXAMPLE:	

```
for(intj=0;j<n-i-1;j++)
{
        if(arr[j]>arr[j+1]){ int
            temp = arr[j]; arr[j]
            = arr[j+1]; arr[j+1]
            = temp;
        }
    }
}

for(inti=0;i<n;i++)
    printf("%d",arr[i]);
}

return0;
}</pre>
```

<u>OUTPUT</u>

	Input	Expected	Got	
~	5 67 34 12 98 78	12 34 67 78 98	12 34 67 78 98	~
~	10 1 56 78 90 32 56 11 10 90 114	1 10 11 32 56 56 78 90 90 114	1 10 11 32 56 56 78 90 90 114	~
~	12 9 8 7 6 5 4 3 2 1 10 11 90	1 2 3 4 5 6 7 8 9 10 11 90	1 2 3 4 5 6 7 8 9 10 11 90	~

Passed all tests! ✓

WEEK04-GREEDY ALGORITHMS

EXPERIMENTNO:	4.1	DATE:
	<u>COIN I</u>	PROBLEM
HAVE INFINITE SUPP I.E., WE HAVE INFINI	LY OF EACH OF TE SUPPLY OF IS THE MINIM	NDWEWANTTOMAKECHANGEFORVRS, AND WE THE DENOMINATIONS IN INDIAN CURRENCY, { 1, 2, 5, 10, 20, 50, 100, 500, 1000} VALUED UM NUMBER OF COINS AND/OR NOTES NEEDED
I <u>NPUTFORMAT:</u>		
TAKEANINTEGERFRO	MSTDIN.	
OUTPUTFORMAT: PRINTTHEINTEGERW	HICHISCHANG	EOFTHENUMBER.
EXAMPLEINPUT:		
64		
<u>OUTPUT:</u> 4		

WENEEDA50RSNOTEANDA10RSNOTEANDTWO2RUPEE COINS.

EXPLANATON:

PROGRAM

```
#inclinperts tExpected Got
 t main()
                       5
     49
 4
     int value;
Passed all tests! &value);
     int currency[]={1000,500,100,50,20,10,5,2,1};
     int totalcurrency;
     totalcurrency=sizeof(currency)/sizeof(currency[0]);
     int count=0;
     for(int i=0;i<totalcurrency;i++)</pre>
         if(value==0)
             break;
         count=count+(value/currency[i]);
         value=value%currency[i];
     printf("%d",count);
 }
```

OUTPUT

EXPERIMENTNO: 4.2 DATE:

COOKIESPROBLEM

ASSUMEYOUAREANAWESOMEPARENTANDWANTTOGIVEYOURCHILDRENSOME COOKIES. BUT, YOU SHOULD GIVE EACH CHILD AT MOST ONE COOKIE.

EACHCHILDIHASAGREEDFACTORG[I], WHICHISTHEMINIMUMSIZEOFACOOKIE THAT THE CHILD WILL BE CONTENT WITH; AND EACH COOKIE J HAS A SIZE S[J]. IF S[J]>=G[I], WECANASSIGNTHECOOKIEJTOTHECHILDI, AND THE CHILDIWILL BE CONTENT. YOURGOALISTOMAXIMIZETHENUMBEROFYOUR CONTENT CHILDREN AND OUTPUT THE MAXIMUM NUMBER.

EXAMPLE1:

INPUT:

3

123

2

11

OUTPUT:

1

EXPLANATION:

- YOUHAVE3CHILDRENAND2COOKIES.THEGREEDFACTORSOF3CHILDREN ARE 1, 2, 3.
- ANDEVENTHOUGHYOUHAVE2COOKIES, SINCETHEIRSIZEISBOTH1, YOU COULD ONLY MAKE THE CHILD WHOSE GREED FACTOR IS 1 CONTENT.
- YOUNEEDTOOUTPUT1.

CONSTRAINTS:

1<=G.LENGTH<=3*10^4

0<=S.LENGTH<=3*10^4

1<=G[I],S[J]<=2^31-1

```
#include<stdio.h>int
main() {
    int n;
    scanf("%d",&n);
    intgreedfactor[n];
    for (int i = 0; i <n; i++)</pre>
        { scanf("%d", &greedfactor[i]);
    intm; scanf("%d",
    &m);
    intcookiesize[m];
    for (int j = 0; j <m; j++)</pre>
        { scanf("%d",&cookiesize[j]);
    for(inti=0;i<n-1;i++){</pre>
        for(intj=0;j<n-i-1;j++){</pre>
             if(greedfactor[j]>greedfactor[j+1]){ int
                 temp = greedfactor[j]; greedfactor[j] =
                 greedfactor[j + 1]; greedfactor[j + 1]
                 = temp;
             }
        }
    for(inti=0;i<m-1;i++){</pre>
        for(intj=0;j<m-i-1;j++){</pre>
             if(cookiesize[j]>cookiesize[j+1]){ int
                 temp = cookiesize[j]; cookiesize[j]
                 = cookiesize[j + 1]; cookiesize[j +
                 1] = temp;
             }
    } inti=0; intj=0;
    intcontents=0;
    while(i<n&&j<m){</pre>
        if(cookiesize[j]>=greedfactor[i]){ contents++;
        }
        j++;
    printf("%d\n",contents);
    return 0;
}
OUTPUT
```

	Input	Expected	Got	
-	2	2	2	~
	1 2			
	3			
	1 2 3			

EXPERIMENTNO: 4.3 DATE:

Test	Input	Result
Test Case 1	3	18
100000000000000000000000000000000000000	1 3 2	

BURGERPROBLEM

APERSONNEEDSTOEATBURGERS.EACHBURGERCONTAINSACOUNTOFCALORIE.
AFTEREATINGTHEBURGER, THEPERSONNEEDSTORUNADISTANCETOBURNOUT HIS
CALORIES. IF HE HAS EATEN I BURGERS WITH C CALORIES EACH, THEN HE HAS
TORUNATLEAST3I*CKILOMETERSTOBURNOUTTHECALORIES.FOREXAMPLE, IF HE
ATE 3 BURGERS WITH THE COUNT OF CALORIE IN THE ORDER: [1, 3, 2], THE
KILOMETERS HE NEEDS TO RUN ARE (30 * 1) + (31 * 3) + (32 * 2) = 1 + 9 + 18 = 28.BUT
THISISNOTTHEMINIMUM, SONEEDTOTRYOUTOTHERORDERSOFCONSUMPTION AND
CHOOSE THE MINIMUM VALUE. DETERMINE THE MINIMUM DISTANCE.HE NEEDS TO
RUN. NOTE: HE CAN EAT BURGER IN ANY ORDER AND USE AN EFFICIENT SORTING
ALGORITHM.APPLY GREEDY APPROACH TO SOLVE THE PROBLEM.

INPUTFORMAT

- FIRSTLINECONTAINSTHENUMBEROFBURGERS
- SECONDLINECONTAINSCALORIESOFEACHBURGERWHICHISN SPACE-SEPARATE INTEGERS

OUTPUTFORMAT

 PRINT:MINIMUMNUMBEROFKILOMETERSNEEDEDTORUNTOBURNOUT THE CALORIES

SAMPLEINPUT

3

5107

SAMPLEOUTPUT

76

<u>FOREXAMPLE</u>

PROGRAM

```
#include<stdio.n>#
                          Expected Got
 include<math.haint
main(){
                          18
                                    18
                 1 3 2
      int n=0;
     Tesqanf("%d"_4&n);
                          389
                                    389
      int a[n]; 7 4 9 6
       for(int
     Test Ca=0;i<n;i++){ 36anf("%d"7,6&
           a[i]); 5 10 7
Passed all tests! for(intj=0;j<n-i-
           1;j++){
               if(a[j]>a[j+1]){ i
                   nttemp=a[j];
                   a[j]=a[j+1];
                   a[j+1]=temp;
               }
           }
       intj=n-1;
       intsum=0;
       for(int
           i=0;i<n;i++){ sum=sum+((po
           w(n,i))*a[j]); j--;
       printf("%d",sum);
  }
```

<u>OUTPUT</u>

ARRAYSUMMAXPROBLEM

GIVENANARRAYOFNINTEGER, WEHAVETOMAXIMIZETHESUMOFARR[I]*I, WHERE I IS THE INDEX OF THE ELEMENT (I = 0, 1, 2, ..., N). WRITE AN ALGORITHM BASED ON GREEDY TECHNIQUE WITH A COMPLEXITY O(NLOGN).

INPUTFORMAT:

- FIRSTLINESPECIFIESTHENUMBEROFELEMENTS-N
- THENEXTNLINESCONTAINTHEARRAYELEMENTS.

OUTPUTFORMAT:

MAXIMUMARRAYSUMTOBEPRINTED.

SAMPLEINPUT:

5

25340

SAMPLEOUTPUT:

40

```
#include<stdio.h>in
t main(){
    int n;
    scanf("%d",&n);
    int arr[n];
    for(int i=0;i<n;i++)</pre>
        scanf("%d ",&arr[i]);
    for(int i=0;i<n-1;i++)</pre>
```

<u>OUTPUT</u>

	Input	Expected	Got	
~	5	40	40	~
	2			
	5			
	3			
	4			
	0			
~	10	191	191	~
	2			
	2			
	2			
	4			
	4			
	3			
	3			
	5			
	5			
	5			
~	2	45	45	~
	45			
	3			

EXPERIMENTNO: 4.5 DATE:

Input	Result
3	28
1	

PRODCUTOFARRAYELEMENTS-MIN

GIVENTWOARRAYSARRAY_ONE[]ANDARRAY_TWO[]OFSAMESIZEN.WENEEDTO
FIRST REARRANGE THE ARRAYS SUCH THAT THE SUM OF THE PRODUCT OF PAIRS(1
ELEMENTFROMEACH)ISMINIMUM.THATISSUM(A[I]*B[I])FORALLIISMINIMUM.

FOREXAMPLE

```
#include
<stdio.h>#include<std
lib.h>int main() {
    int n; scanf("%d",&n);
    intarrayOne[n];
                          int
    arrayTwo[n]; for (int
    i=0;i<n;i++) {
        scanf("%d",&arrayOne[i]);
    for (int i=0;i<n;i++) {</pre>
        scanf("%d",&arrayTwo[i]);
    for (int i=0;i<n-1;i++) {</pre>
        for (int j=0;j<n-i-1;j++) {</pre>
             if(arrayOne[j]>arrayOne[j+1]){ int
                 temp = arrayOne[j];
                 arrayOne[j]=arrayOne[j+1];
                 arrayOne[j+1]=temp;
            }
    for (int i=0;i<n-1;i++) {</pre>
        for (int j=0;j<n-i-1;j++) {</pre>
            if (arrayTwo[j]<arrayTwo[j+1]) {</pre>
```

```
int temp=arrayTwo[j];
                arrayTwo[j]=arrayTwo[j+1];
                arrayTwo[j+1]=temp;
            }
        }
    }
    int minimumsum = 0;
    for (int i = 0; i <n; i++) {</pre>
        minimumsum=minimumsum+arrayOne[i]*arrayTwo[i];
    printf("%d\n", minimumsum);
}
OUTPUT
```

	Input	Expected	Got	
~	3 1 2 3 4 5	28	28	~
~	4 7 5 1 2 1 3 4	22	22	~
~	5 20 10 30 10 40 8 9 4 3	590	590	~

WEEK – 05 PLAYINGWITHNUMBERS

EXPERIMENTNO: 5.1 DATE:

PLAYINGWITHNUMBERS

PLAYINGWITHNUMBERS:

RAM AND SITA ARE PLAYING WITH NUMBERS BY GIVING PUZZLES TO EACH OTHER.NOWITWASRAMTERM, SOHEGAVESITAAPOSITIVEINTEGER 'N' AND TWONUMBERS 1 AND 3. HEASKEDHERTOFINDTHEPOSSIBLEWAYSBYWHICH THE NUMBER N CAN BE REPRESENTED USING 1 AND 3. WRITE ANY EFFICIENT ALGORITHM TO FIND THE POSSIBLE WAYS.

EXAMPLE1:

INPUT:

6

OUTPUT:
6

EXPLANATION:

THEREARE6WAYSTO6REPRESENTNUMBERWITH1AND3

1+1+1+1+1

1 3+3

1+1+1+3

1+1+3+1

1+3+1+1

3+1+1+1

INPUTFORMAT

FIRSTLINECONTAINSTHENUMBERN

OUTPUTFORMA

T PRINT:

THENUMBEROFPOSSIBLEWAYS'N'CANBEREPRESENTEDUSING1AND3

SAMPLEINPUT

6

SAMPLEOUTPUT

6

PROGRAM

OUTPUT

EXPERIMENTNO: 5.2 DATE:

PLAYINGWITHCHESSBOARDPL

AYING WITH CHESSBOARD:

RAM IS GIVEN WITH AN N*N CHESSBOARD WITH EACH CELL WITH A MONETARY VALUE. RAM STANDS AT THE (0,0), THAT THE POSITION OF THE TOP LEFT WHITE ROOK. HE IS BEEN GIVEN A TASK TO REACH THE BOTTOM RIGHT BLACK ROOK POSITION (N-1, N-1) CONSTRAINED THAT HE NEEDS TO REACH THE POSITION BY TRAVELINGTHEMAXIMUMMONETARYPATHUNDERTHECONDITIONTHATHECAN ONLY TRAVEL ONE STEP RIGHT OR ONE STEP DOWN THE BOARD. HELP RAM TO ACHIEVE IT BY PROVIDING AN EFFICIENT DP ALGORITHM.

EXAMPLE:

INPUT

3 124 234

871

OUTPUT:

19

EXPLANATION:

TOTALLYTHEREWILLBE6PATHSAMONGTHATTHEOPTIMALIS OPTIMAL

PATH VALUE:1+2+8+7+1=19

INPUTFORMAT

- FIRSTLINECONTAINSTHEINTEGERN
- THENEXTNLINESCONTAINTHEN*NCHESSBOARDVALUES

OUTPUTFORMAT

PRINTMAXIMUMMONETARYVALUEOFTHE PATH

```
#include<stdio.h>
intmaxMonetaryPath(intn,intboard[n][n])
    intdp[n][n];
    dp[0][0]=board[0][0];
    for(intj=1;j<n;j++){</pre>
        dp[0][j]=dp[0][j-1]+board[0][j];
    }
    for(inti=1;i<n;i++){</pre>
        dp[i][0]=dp[i-1][0]+board[i][0];
    }
    for(inti=1;i<n;i++){for(intj=1;j</pre>
        n;j++){
            dp[i][j]=board[i][j]+(dp[i-1][j]>dp[i][j-1]?dp[i-1][j] :
dp[i][j - 1]);
        }
    returndp[n-1][n-1];
}
intmain(){
int n;
scanf("%d",&n);
intboard[n][n];
    for(inti=0;i<n;i++){for(intj=0;j</pre>
        n;j++){
             scanf("%d",&board[i][j]);
        }
    }
    intmaxValue=maxMonetaryPath(n,board);
    printf("%d\n", maxValue);
    return0;
}
```

<u>OUTPUT</u>

	Input	Expected	Got	
~	3	19	19	~
	1 2 4			
	2 3 4			
	8 7 1			
~	3	12	12	~
	1 3 1			
	1 5 1			
	4 2 1			
~	4	28	28	~
	1 1 3 4			
	1 5 7 8			
	2 3 4 6			
	1 6 9 0			

DATE:

Input	Result
aab	2
azb	

LONGESTCOMMONSUBSEQUENCE

GIVENTWOSTRINGSFINDTHELENGTHOFTHECOMMONLONGEST SUBSEQUENCE(NEED NOT BE CONTIGUOUS) BETWEEN THE TWO.

EXAMPLE:

S1: GGTABE

S2:TGATASB

S1: A G G T A B

S2: G X T X A Y B

THELENGTHIS4

SOLVINGITUSINGDYNAMICPROGRAMMING

FOREXAMPLE:

```
#include
<stdio.h>#include<string.
intlongestCommonSubsequence(char*s1,char*s2){ int m
    = strlen(s1);
    int n = strlen(s2);
    intdp[m+1][n+1];
    for(inti=0;i<=m;i++){for(intj=0;j</pre>
        =n;j++){}
            if(i==0||j==0){dp[i][j]} =
            }elseif(s1[i-1]==s2[j-1]){
                dp[i][j]=dp[i-1][j-1]+1;
            }else{
                dp[i][j]=(dp[i-1][j]>dp[i][j-1])?dp[i-1][j]:
  dp[i][j-1];
        }
    }
    returndp[m][n];
}
intmain(){
    chars1[100],s2[100];
    fgets(s1,sizeof(s1),stdin);
    s1[strcspn(s1,"\n")]='\0';
    fgets(s2,sizeof(s2),stdin);
    s2[strcspn(s2,"\n")]='\0';
    intlength=longestCommonSubsequence(s1,s2);
    printf("%d\n", length);
    return0;
}
```

-	aab azb	2	2	~
~	ABCD ABCD	4	4	~

PROBLEMSTATEMENT:

FINDTHELENGTHOFTHELONGESTNON-DECREASINGSUBSEQUENCEINAGIVEN SEQUENCE.

LONGESTNON-DECREASINGSUBSEQUENCE

EXAMPLE:

<u>INPUT:</u>

9

SEQUENCE:[-1,3,4,5,2,2,2,2,3]

THESUBSEQUENCEIS[-1,2,2,2,2,3]

OUTPUT:

6

```
}
    int maximumlength=0;
    for(inti=0;i<n;i++){</pre>
        if(dp[i]>maximumlength){ maximum
            length=dp[i];
        }
    returnmaximumlength;
    intmain()
{
    int n;
    scanf("%d",&n);
    intarr[n];
    for(inti=0;i<n;i++)</pre>
        scanf("%d",&arr[i]);
    intlength=longseq(arr,n);
    printf("%d\n",length);
    return0;
}
```

OUTPUT

	Input	Expected	Got	
~	9 -1 3 4 5 2 2 2 2 3	6	6	~
~	7 1 2 2 4 5 7 6	6	6	~

EXPERIMENT NO: 6.1 DATE:

Inp	out	Result	
5			LICATES-O(N^2)TIMECOMPLEXITY,O(1)SPACECOMPLEXIT
1 1	1 2 3 4		

FINDDUPLICATEINARRAY.

• GIVENAREADONLYARRAYOFNINTEGERSBETWEEN1ANDN,FINDONE NUMBER THAT REPEATS.

INPUTFORMAT:

- FIRSTLINE-NUMBEROFELEMENTS
- NLINES-N ELEMENTS

OUTPUTFORMAT:

ELEMENTX-THATISREPEATED

FOREXAMPLE:

```
#include<stdio.h>in
t main()
{
   int n,i,count;
   scanf("%d",&n);
   int arr[n];
```

```
for(i=0;i<n;i++)</pre>
    {
        scanf("%d",&arr[i]);
    for(i=0;i<n;i++){ count=</pre>
        0;
        for(int
             j=0;j<n;j++){ if(ar
<u>OUTPUT</u>
             r[i]==arr[j]){
                 count=count+1;
                               Expected Got
       Input}
   √if(20unt>1){
                                          7
                                                ~
        18r1ntf(5%d\h"3, arf[1]);
       break;
                                          4
       1 2 3 4 4
                               1
                                          1
                                                ~
        1 1 2 3 4
 Passed all tests! 🗸
```

EXPERIMENTNO: 6.2 DATE:

FINDING DUPLICATES-O(N)TIMECOMPLEXITY,O(1)SPACECOMPL	Input R
	vDIÑ

FINDDUPLICATEINARRAY.

• GIVENAREADONLYARRAYOFNINTEGERSBETWEEN1ANDN,FINDONE NUMBER THAT REPEATS.

INPUTFORMAT:

- FIRSTLINE-NUMBEROFELEMENTS
- NLINES-N ELEMENTS

OUTPUTFORMAT:

• ELEMENTX-THATISREPEATED

FOREXAMPLE:

```
#include<stdio.h>in
t main()
{
    int n,i,count;
    scanf("%d",&n);
    int arr[n];
    for(i=0;i<n;i++)
    {
        scanf("%d",&arr[i]);
    }
}</pre>
```

OUTPUT

	Input	Expected	Got	
~	11 10 9 7 6 5 1 2 3 8 4 7	7	7	~
/	5 1 2 3 4 4	4	4	~
~	5 1 1 2 3 4	1	1	~

EXPERIMENTNO: 6.3 DATE:

PRINTINTERSECTIONOF2SORTEDARRAYSO(M*N)TIMECOMPLEXITY,O(1)SPACE COMPLEXITY

FINDTHEINTERSECTIONOFTWOSORTEDARRAYSORINOTHERWORDS,

• GIVEN2SORTEDARRAYS, FINDALLTHEELEMENTSWHICHOCCURINBOTH THE ARRAYS.

INPUTFORMAT

- THEFIRSTLINECONTAINST, THENUMBEROFTEST CASES. FOLLOWINGTLINES CONTAIN:
- 1. LINE1CONTAINSN1,FOLLOWEDBYN1INTEGERSOFTHEFIRSTARRAY
- 2. LINE2CONTAINSN2,FOLLOWEDBYN2INTEGERSOFTHESECONDARRAY

OUTPUTFORMAT

● THEINTERSECTIONOFTHEARRAYSINASINGLELINE

EXAMPLE

INPUT:

1

3101757

627101557246

OUTPUT:

1057

INPUT:

1

6123456

216

OUTPUT:

16

FOREXAMPLE:

```
Input
                Result
                               PROGRAM
                10 57
while(i<v1&&j<v2){if(arr1[i]=</pre>
       =arr2[j]){
           printf("%d",arr1[i]); i++;
           j++;
       }elseif(arr1[i]<arr2[j]){ i++;</pre>
       }else{
           j++;
   printf("\n");
intmain(){
int T;
scanf("%d",&T);
while(T--){
int v1;
scanf("%d",&v1);
int arr1[v1];
for(inti=0;i<v1;i++){ scanf("%</pre>
           d", &arr1[i]);
       }
       int v2;
       scanf("%d",&v2);
       int arr2[v2];
       for(inti=0;i<v2;i++){ scanf("%</pre>
           d", &arr2[i]);
       findIntersection(arr1,v1,arr2,v2);
   }
   return0;
}
OUTPUT
```

	Input	Expected	Got	
~	1	10 57	10 57	~
	3 10 17 57			
	6			
	2 7 10 15 57 246			
~	1	1 6	1 6	~
	6 1 2 3 4 5 6			
	2			
	1 6			

Passed all tests! 🗸

EXPERIMENTNO: 6.4 DATE:

PRINTINTERSECTIONOF2SORTEDARRAYS-O(M+N)TIMECOMPLEXITY,O(1)SPACE COMPLEXITY

FINDTHEINTERSECTIONOFTWOSORTEDARRAYSORINOTHERWORDS.

 GIVEN2SORTEDARRAYS, FINDALLTHEELEMENTSWHICHOCCURINBOTH THE ARRAYS.

INPUTFORMAT

- \cdot THEFIRSTLINECONTAINST,THENUMBEROFTESTCASES.FOLLOWINGTLINES CONTAIN:
- 1. LINE1CONTAINSN1,FOLLOWEDBYN1INTEGERSOFTHEFIRSTARRAY
- 2. LINE2CONTAINSN2,FOLLOWEDBYN2INTEGERSOFTHESECONDARRAY

OUTPUTFORMAT

THEINTERSECTIONOFTHEARRAYSINASINGLELINE

EXAMPLE

INPUT:

1

3101757

627101557246

OUTPUT:

1057

INPUT:

1

6123456

216

OUTPUT:

FOREXAMPLE:

Input	Result
1	10 57
3 10 17 57	
6	
2 7 10 15 57 246	

```
#include <stdio.h>
voidfindIntersection(intarr1[],intn1,intarr2[],intn2){ int i = 0,
    j = 0;
    while (i <n1 &&j <n2) {
        if (arr1[i] == arr2[j]) {
        printf("%d",arr1[i]); i++;
        j++;
        }elseif(arr1[i]<arr2[j]){ i++;</pre>
        } else {
        j++;
        }
    printf("\n");
int main() {
    int T;
    scanf("%d",&T);
    while (T--) {
        int n1;
        scanf("%d",&n1);
        int arr1[n1];
        for(inti=0;i<n1;i++){ scanf("%d",</pre>
            &arr1[i]);
        int n2;
        scanf("%d",&n2);
        int arr2[n2];
        for(inti=0;i<n2;i++){ scanf("%d",</pre>
            &arr2[i]);
        findIntersection(arr1, n1, arr2, n2);
    return 0;
OUTPUT
```

	Input	Expected	Got	
*	1 3 10 17 57 6 2 7 10 15 57 246	10 57	10 57	~
*	1 6 1 2 3 4 5 6 2 1 6	1 6	1 6	~

Passed all tests! 🗸

EXPER	IMENTNO:	6.5	DATE:
Input	Result		
3 PAIF 1 3 5	R₩ITHD <u>IFF</u>	ERENCE-O(N^2)T	IMECOMPLEXITY,O(1)SPACECOMPLEXITY
_			EGERS AND ANOTHER NON NEGATIVE DICESIANDJSUCHTHATA[J]-A[I]=K,I!= J.
11	NPUTFORN	ИАТ:	
	FIRSTLINEN	-NUMBEROFELEME	ENTSINANARRAY
	NEXTNLINES	S-NELEMENTSINTH	IEARRAY
	K-NON-NEG	ATIVEINTEGER	
<u>OUTPL</u>	JTFORMAT:		
	1-IFPAIREX	ISTS	

EXPLANATIONFORTHEGIVENSAMPLETESTCASE:

YESAS5-1=4 SORETURN1.

O-IFNOPAIREXISTS

FOREXAMPLE

```
#include<stdio.h>in
t main()
{
```

```
int n;
    scanf("%d",&n);
    int array[n];
    for(inti=0;i<n;i++)</pre>
        scanf("%d",&array[i]);
    }
    int d;
    scanf("%d",&d);
    int count=0;
    for(int
         i=0;i<n;i++){ for(intj</pre>
         =0;j<n;j++){
              if(i!=j){
                  if(array[j]-
                      array[i]==d){ count=count+1;
                  }
              }
        }
    }
    if(count==0){
        printf("0");
    }else
     printf("1");
}
```

OUTPUT

	Input	Expected	Got	
~	3 1 3 5 4	1	1	~
~	10 1 4 6 8 12 14 15 20 21 25 1	1	1	~
~	10 1 2 3 5 11 14 16 24 28 29 0	0	0	~
~	10 0 2 3 7 13 14 15 20 24 25 10	1	1	~

nput	Result	
DAII	D)\A/ITLI	 DIFFERENCE-O(N)TIMECOMPLEXITY,O(1)SPACECOMPLI

GIVENANARRAYAOFSORTEDINTEGERSANDANOTHERNONNEGATIVEINTEGERK, FIND IF THERE EXISTS 2 INDICES I AND J SUCH THAT A[J] - A[I] = K, I!= J.

INPUTFORMAT:

- FIRSTLINEN-NUMBEROFELEMENTSINANARRAY
- NEXTNLINES-NELEMENTSINTHEARRAY
- K-NON-NEGATIVEINTEGER

OUTPUTFORMAT

- 1-IFPAIREXISTS
- 0-IFNOPAIREXISTS

EXPLANATIONFORTHEGIVENSAMPLETESTCASE: YES

AS 5 - 1 = 4

SORETURN1.

FOREXAMPLE

```
#include<stdio.h>
int main()
{
    int n;
    scanf("%d",&n);
    int array[n];
    for(inti=0;i<n;i++)</pre>
        scanf("%d",&array[i]);
    int d;
    scanf("%d",&d);
    int count=0;
    for(int
         i=0;i<n;i++){ for(intj</pre>
         =0;j<n;j++){
             if(i!=j){
                  if(array[j]-array[i]==d){
                      count=count+1;
                  }
              }
        }
    }
    if(count==0)
{
       printf("0");
    }
      else
            printf("1");
}
```

<u>OUTPUT</u>

	Input	Expected	Got	
~	3 1 3 5 4	1	1	~
~	10 1 4 6 8 12 14 15 20 21 25 1	1	1	~
~	10 1 2 3 5 11 14 16 24 28 29 0	0	0	~
~	10 0 2 3 7 13 14 15 20 24 25 10	1	1	~