# IS61VPS102436A IS61LPS102436A IS61VPS204818A IS61LPS204818A



# 1Mb x 36, 2Mb x 18 36Mb SYNCHRONOUS PIPELINED, SINGLE CYCLE DESELECT STATIC RAM

**JUNE 2010** 

#### **FEATURES**

- · Internal self-timed write cycle
- Individual Byte Write Control and Global Write
- Clock controlled, registered address, data and control
- Burst sequence control using MODE input
- Three chip enable option for simple depth expansion and address pipelining
- · Common data inputs and data outputs
- Auto Power-down during deselect
- Single cycle deselect
- Snooze MODE for reduced-power standby
- Power Supply

LPS: VDD  $3.3V \pm 5\%$ , VDDQ  $3.3V/2.5V \pm 5\%$ VPS: VDD  $2.5V \pm 5\%$ , VDDQ  $2.5V \pm 5\%$ 

- JEDEC 100-Pin TQFP and 165-ball PBGA packages
- Lead-free available

#### **DESCRIPTION**

The *ISSI* IS61LPS/VPS102436A and IS61LPS/VPS 204818A are high-speed, low-power synchronous static RAMs designed to provide burstable, high-performance memory for communication and networking applications. The IS61LPS/VPS102436A is organized as 1,048,476 words by 36 bits. The IS61LPS/VPS204818A is organized as 2M-word by 18 bits. Fabricated with *ISSI*'s advanced CMOS technology, the device integrates a 2-bit burst counter, high-speed SRAM core, and high-drive capability outputs into a single monolithic circuit. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input.

Write cycles are internally self-timed and are initiated by the rising edge of the clock input. Write cycles can be one to four bytes wide as controlled by the write control inputs.

Separate byte enables allow individual bytes to be written. The byte write operation is performed by using the byte write enable ( $\overline{BWE}$ ) input combined with one or more individual byte write signals ( $\overline{BWx}$ ). In addition, Global Write ( $\overline{GW}$ ) is available for writing all bytes at one time, regardless of the byte write controls.

Bursts can be initiated with either ADSP (Address Status Processor) or ADSC (Address Status Cache Controller) input pins. Subsequent burst addresses can be generated internally and controlled by the ADV (burst address advance) input pin.

The mode pin is used to select the burst sequence order, Linear burst is achieved when this pin is tied LOW. Interleave burst is achieved when this pin is tied HIGH or left floating.

#### **FAST ACCESS TIME**

| Symbol | Parameter         | 200 | 166 | Units |
|--------|-------------------|-----|-----|-------|
| tkQ    | Clock Access Time | 3.1 | 3.5 | ns    |
| tĸc    | Cycle Time        | 5   | 6   | ns    |
|        | Frequency         | 200 | 166 | MHz   |

Copyright © 2010 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction. that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances



## **BLOCK DIAGRAM**







#### **165-PIN BGA**

165-Ball, 13x15 mm BGA 1mm Ball Pitch, 11x15 Ball Array



**BOTTOM VIEW** 





## 165 PBGA PACKAGE PIN CONFIGURATION

1M x 36 (TOP VIEW)

|   | 1    | 2   | 3    | 4               | 5   | 6   | 7   | 8               | 9    | 10  | 11   |
|---|------|-----|------|-----------------|-----|-----|-----|-----------------|------|-----|------|
| Α | NC   | Α   | CE   | BWc             | BWb | CE2 | BWE | ADSC            | ĀDV  | Α   | NC   |
| В | NC   | Α   | CE2  | BWd             | BWa | CLK | GW  | ŌĒ              | ADSP | Α   | NC   |
| С | DQPc | NC  | VDDQ | Vss             | Vss | Vss | Vss | Vss             | VDDQ | NC  | DQPb |
| D | DQc  | DQc | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | DQb | DQb  |
| E | DQc  | DQc | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | DQb | DQb  |
| F | DQc  | DQc | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | DQb | DQb  |
| G | DQc  | DQc | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | DQb | DQb  |
| Н | NC   | NC  | NC   | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | NC   | NC  | ZZ   |
| J | DQd  | DQd | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | DQa | DQa  |
| K | DQd  | DQd | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | DQa | DQa  |
| L | DQd  | DQd | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | DQa | DQa  |
| М | DQd  | DQd | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | DQa | DQa  |
| N | DQPd | NC  | VDDQ | Vss             | NC  | Α   | NC  | Vss             | VDDQ | NC  | DQPa |
| Р | NC   | NC  | Α    | Α               | NC  | A1* | NC  | Α               | Α    | Α   | Α    |
| R | MODE | Α   | Α    | Α               | NC  | A0* | NC  | Α               | Α    | Α   | Α    |

Note: \* Ao and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.

| Symbol          | Pin Name                             |
|-----------------|--------------------------------------|
| Α               | Address Inputs                       |
| A0, A1          | Synchronous Burst Address Inputs     |
| ADV             | Synchronous Burst Address<br>Advance |
| ADSP            | Address Status Processor             |
| ADSC            | Address Status Controller            |
| GW              | Global Write Enable                  |
| CLK             | Synchronous Clock                    |
| CE, CE2, CE2    | Synchronous Chip Select              |
| BWx (x=a,b,c,d) | Synchronous Byte Write Controls      |

| Symbol | Pin Name                               |
|--------|----------------------------------------|
| BWE    | Byte Write Enable                      |
| ŌĒ     | Output Enable                          |
| ZZ     | Power Sleep Mode                       |
| MODE   | Burst Sequence Selection               |
| NC     | No Connect                             |
| DQx    | Data Inputs/Outputs                    |
| DQPx   | Data Inputs/Outputs                    |
| VDD    | 3.3V/2.5V Power Supply                 |
| VDDQ   | Isolated Output Power Supply 3.3V/2.5V |
| Vss    | Ground                                 |





## 165 PBGA PACKAGE PIN CONFIGURATION

2M x 18 (TOP VIEW)

|   | 1    | 2   | 3    | 4               | 5   | 6   | 7   | 8               | 9    | 10  | 11   |
|---|------|-----|------|-----------------|-----|-----|-----|-----------------|------|-----|------|
| Α | NC   | Α   | CE   | BWb             | NC  | CE2 | BWE | ADSC            | ĀDV  | Α   | Α    |
| В | NC   | Α   | CE2  | NC              | BWa | CLK | GW  | ŌĒ              | ADSP | Α   | NC   |
| С | NC   | NC  | VDDQ | Vss             | Vss | Vss | Vss | Vss             | VDDQ | NC  | DQPa |
| D | NC   | DQb | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | NC  | DQa  |
| E | NC   | DQb | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | NC  | DQa  |
| F | NC   | DQb | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | NC  | DQa  |
| G | NC   | DQb | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | NC  | DQa  |
| Н | NC   | NC  | NC   | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | NC   | NC  | ZZ   |
| J | DQb  | NC  | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | DQa | NC   |
| K | DQb  | NC  | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | DQa | NC   |
| L | DQb  | NC  | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | DQa | NC   |
| М | DQb  | NC  | VDDQ | V <sub>DD</sub> | Vss | Vss | Vss | V <sub>DD</sub> | VDDQ | DQa | NC   |
| N | DQPb | NC  | VDDQ | Vss             | NC  | Α   | NC  | Vss             | VDDQ | NC  | NC   |
| Р | NC   | NC  | Α    | Α               | NC  | A1* | NC  | Α               | Α    | Α   | Α    |
| R | MODE | Α   | А    | Α               | NC  | A0* | NC  | А               | Α    | Α   | Α    |

Note: \* Ao and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.

| Symbol       | Pin Name                             |
|--------------|--------------------------------------|
| Α            | Address Inputs                       |
| A0, A1       | Synchronous Burst Address Inputs     |
| ADV          | Synchronous Burst Address<br>Advance |
| ADSP         | Address Status Processor             |
| ADSC         | Address Status Controller            |
| GW           | Global Write Enable                  |
| CLK          | Synchronous Clock                    |
| CE, CE2, CE2 | Synchronous Chip Select              |
| BWx (x=a,b)  | Synchronous Byte Write Controls      |

| Symbol | Pin Name                               |
|--------|----------------------------------------|
| BWE    | Byte Write Enable                      |
| ŌĒ     | Output Enable                          |
| ZZ     | Power Sleep Mode                       |
| MODE   | Burst Sequence Selection               |
| NC     | No Connect                             |
| DQx    | Data Inputs/Outputs                    |
| DQPx   | Data Inputs/Outputs                    |
| VDD    | 3.3V/2.5V Power Supply                 |
| VDDQ   | Isolated Output Power Supply 3.3V/2.5V |
| Vss    | Ground                                 |



#### **PIN CONFIGURATION**

#### 100-PIN TQFP



| A0, A1       | Synchronous Address Inputs. These pins must tied to the two LSBs of the address bus. |
|--------------|--------------------------------------------------------------------------------------|
| Α            | Synchronous Address Inputs                                                           |
| ADSC         | Synchronous Controller Address Status                                                |
| ADSP         | Synchronous Processor Address Status                                                 |
| ADV          | Synchronous Burst Address Advance                                                    |
| BWa-BWd      | Synchronous Byte Write Enable                                                        |
| BWE          | Synchronous Byte Write Enable                                                        |
| CE, CE2, CE2 | Synchronous Chip Enable                                                              |
| CLK          | Synchronous Clock                                                                    |

| DQa-DQd         | Synchronous Data Input/Output            |
|-----------------|------------------------------------------|
| DQPa-DQPd       | Parity Data Input/Output                 |
| GW              | Synchronous Global Write Enable          |
| MODE            | Burst Sequence Mode Selection            |
| ŌĒ              | Output Enable                            |
| V <sub>DD</sub> | 3.3V/2.5V Power Supply                   |
| VDDQ            | Isolated Output Buffer Supply: 3.3V/2.5V |
| Vss             | Ground                                   |
| ZZ              | Snooze Enable                            |
|                 |                                          |



## **PIN CONFIGURATION**

#### 100-PIN TQFP



| A0, A1                                                | Synchronous Address Inputs. These pins must tied to the two LSBs of the address bus. |
|-------------------------------------------------------|--------------------------------------------------------------------------------------|
| Α                                                     | Synchronous Address Inputs                                                           |
| ADSC                                                  | Synchronous Controller Address Status                                                |
| ADSP                                                  | Synchronous Processor Address Status                                                 |
| ADV                                                   | Synchronous Burst Address Advance                                                    |
| BWa-BWb                                               | Synchronous Byte Write Enable                                                        |
| BWE                                                   | Synchronous Byte Write Enable                                                        |
| $\overline{\text{CE}}$ , CE2, $\overline{\text{CE2}}$ | Synchronous Chip Enable                                                              |
| CLK                                                   | Synchronous Clock                                                                    |
| DQa-DQb                                               | Synchronous Data Input/Output                                                        |

| DQPa-DQPb       | Parity Data I/O; DQPa is parity for DQa1-8; DQPb is parity for DQb1-8 |
|-----------------|-----------------------------------------------------------------------|
| GW              | Synchronous Global Write Enable                                       |
| MODE            | Burst Sequence Mode Selection                                         |
| ŌĒ              | Output Enable                                                         |
| V <sub>DD</sub> | 3.3V/2.5V Power Supply                                                |
| VDDQ            | Isolated Output Buffer Supply: 3.3V/2.5V                              |
| Vss             | Ground                                                                |
| ZZ              | Snooze Enable                                                         |
|                 |                                                                       |





## **TRUTH TABLE**(1-8) (3CE option)

| OPERATION                   | ADDRESS  | CE | CE2 | CE2 | ZZ | ADSP | ADSC | ADV | WRITE | ŌĒ | CLK | DQ     |
|-----------------------------|----------|----|-----|-----|----|------|------|-----|-------|----|-----|--------|
| Deselect Cycle, Power-Down  | None     | Н  | Х   | Х   | L  | Χ    | L    | Χ   | Х     | Х  | L-H | High-Z |
| Deselect Cycle, Power-Down  | None     | L  | Χ   | L   | L  | L    | Χ    | Χ   | Χ     | Χ  | L-H | High-Z |
| Deselect Cycle, Power-Down  | None     | L  | Н   | Χ   | L  | L    | Χ    | Χ   | Χ     | Χ  | L-H | High-Z |
| Deselect Cycle, Power-Down  | None     | L  | Χ   | L   | L  | Н    | L    | Χ   | Χ     | Χ  | L-H | High-Z |
| Deselect Cycle, Power-Down  | None     | L  | Н   | Χ   | L  | Н    | L    | Χ   | Χ     | Χ  | L-H | High-Z |
| Snooze Mode, Power-Down     | None     | Χ  | Χ   | Χ   | Н  | Χ    | Χ    | Χ   | Χ     | Χ  | Χ   | High-Z |
| Read Cycle, Begin Burst     | External | L  | L   | Н   | L  | L    | Χ    | Χ   | Χ     | L  | L-H | Q      |
| Read Cycle, Begin Burst     | External | L  | L   | Н   | L  | L    | Χ    | Χ   | Χ     | Н  | L-H | High-Z |
| Write Cycle, Begin Burst    | External | L  | L   | Н   | L  | Н    | L    | Χ   | L     | Χ  | L-H | D      |
| Read Cycle, Begin Burst     | External | L  | L   | Н   | L  | Н    | L    | Χ   | Н     | L  | L-H | Q      |
| Read Cycle, Begin Burst     | External | L  | L   | Н   | L  | Н    | L    | Χ   | Н     | Н  | L-H | High-Z |
| Read Cycle, Continue Burst  | Next     | Χ  | Χ   | Χ   | L  | Н    | Н    | L   | Н     | L  | L-H | Q      |
| Read Cycle, Continue Burst  | Next     | Χ  | Χ   | Χ   | L  | Н    | Н    | L   | Н     | Н  | L-H | High-Z |
| Read Cycle, Continue Burst  | Next     | Н  | Χ   | Χ   | L  | Χ    | Н    | L   | Н     | L  | L-H | Q      |
| Read Cycle, Continue Burst  | Next     | Н  | Χ   | Χ   | L  | Χ    | Н    | L   | Н     | Н  | L-H | High-Z |
| Write Cycle, Continue Burst | Next     | Χ  | Χ   | Χ   | L  | Н    | Н    | L   | L     | Χ  | L-H | D      |
| Write Cycle, Continue Burst | Next     | Н  | Χ   | Χ   | L  | Χ    | Н    | L   | L     | Χ  | L-H | D      |
| Read Cycle, Suspend Burst   | Current  | Χ  | Χ   | Χ   | L  | Н    | Н    | Н   | Н     | L  | L-H | Q      |
| Read Cycle, Suspend Burst   | Current  | Χ  | Χ   | Χ   | L  | Н    | Н    | Н   | Н     | Н  | L-H | High-Z |
| Read Cycle, Suspend Burst   | Current  | Н  | Χ   | Χ   | L  | Χ    | Н    | Н   | Н     | L  | L-H | Q      |
| Read Cycle, Suspend Burst   | Current  | Н  | Χ   | Χ   | L  | Χ    | Н    | Н   | Н     | Н  | L-H | High-Z |
| Write Cycle, Suspend Burst  | Current  | Χ  | Χ   | Χ   | L  | Н    | Н    | Н   | L     | Χ  | L-H | D      |
| Write Cycle, Suspend Burst  | Current  | Н  | Χ   | Χ   | L  | Χ    | Н    | Н   | L     | Χ  | L-H | D      |

#### NOTE:

- 1. X means "Don't Care." H means logic HIGH. L means logic LOW.
- 2. For WRITE, L means one or more byte write enable signals (BWa-h) and BWE are LOW or GW is LOW. WRITE = H for all BWx, BWE, GW HIGH.
- 3. BWa enables WRITEs to DQa's and DQPa. BWb enables WRITEs to DQb's and DQPb. BWc enables WRITEs to DQc's and DQPc. BWd enables WRITEs to DQd's and DQPd. DQPa-DQPd are available on the x36 version.
- 4. All inputs except OE and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
- 5. Wait states are inserted by suspending burst.
- 6. For a WRITE operation following a READ operation,  $\overline{\text{OE}}$  must be HIGH before the input data setup time and held HIGH during the input data hold time.
- 7. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
- 8. ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals and BWE LOW or GW LOW for the subsequent L-H edge of CLK. See WRITE timing diagram for clarification.

## IS61VPS102436A, IS61LPS102436A, IS61VPS204818A, IS61LPS204818A



## TRUTH TABLE(1-8) (1CE option)

| NEXT CYCLE            | ADDRESS  | CE | ADSP | ADSC | ADV | WRITE | ŌĒ | DQ     |
|-----------------------|----------|----|------|------|-----|-------|----|--------|
| Deselected            | None     | Н  | Χ    | L    | Χ   | Х     | Х  | High-Z |
| Read, Begin Burst     | External | L  | L    | Χ    | Χ   | Χ     | L  | Q      |
| Read, Begin Burst     | External | L  | L    | Χ    | Χ   | Χ     | Н  | High-Z |
| Write, Begin Burst    | External | L  | Н    | L    | Χ   | L     | Χ  | D      |
| Read, Begin Burst     | External | L  | Н    | L    | Χ   | Н     | L  | Q      |
| Read, Begin Burst     | External | L  | Н    | L    | Χ   | Н     | Н  | High-Z |
| Read, Continue Burst  | Next     | Χ  | Н    | Н    | L   | Н     | L  | Q      |
| Read, Continue Burst  | Next     | Χ  | Н    | Н    | L   | Н     | Н  | High-Z |
| Read, Continue Burst  | Next     | Н  | Χ    | Н    | L   | Н     | L  | Q      |
| Read, Continue Burst  | Next     | Н  | Χ    | Н    | L   | Н     | Н  | High-Z |
| Write, Continue Burst | Next     | Χ  | Н    | Н    | L   | L     | Χ  | D      |
| Write, Continue Burst | Next     | Н  | Χ    | Н    | L   | L     | Χ  | D      |
| Read, Suspend Burst   | Current  | Χ  | Н    | Н    | Н   | Н     | L  | Q      |
| Read, Suspend Burst   | Current  | Χ  | Н    | Н    | Н   | Н     | Н  | High-Z |
| Read, Suspend Burst   | Current  | Н  | Χ    | Н    | Н   | Н     | L  | Q      |
| Read, Suspend Burst   | Current  | Н  | Х    | Н    | Н   | Н     | Н  | High-Z |
| Write, Suspend Burst  | Current  | Χ  | Н    | Н    | Н   | L     | Х  | D      |
| Write, Suspend Burst  | Current  | Н  | Х    | Н    | Н   | L     | Χ  | D      |

#### NOTE:

- 1. X means "Don't Care." H means logic HIGH. L means logic LOW.
- 2. For WRITE, L means one or more byte write enable signals (BWa-h) and BWE are LOW or GW is LOW. WRITE = H for all BWx, BWE, GW HIGH.
- 3. BWa enables WRITEs to DQa's and DQPa. BWb enables WRITEs to DQb's and DQPb. BWc enables WRITEs to DQc's and DQPc. BWd enables WRITEs to DQd's and DQPd. DQPa-DQPd are available on the x36 version.
- 4. All inputs except OE and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
- 5. Wait states are inserted by suspending burst.
- 6. For a WRITE operation following a READ operation,  $\overline{\text{OE}}$  must be HIGH before the input data setup time and held HIGH during the input data hold time.
- 7. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
- 8. ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals and BWE LOW or GW LOW for the subsequent L-H edge of CLK. See WRITE timing diagram for clarification.

#### PARTIAL TRUTH TABLE

| Function        | GW | BWE | BWa | BWb | BWc | BWd |
|-----------------|----|-----|-----|-----|-----|-----|
| Read            | Н  | Н   | Х   | Х   | Х   | Х   |
| Read            | Н  | L   | Н   | Н   | Н   | Н   |
| Write Byte 1    | Н  | L   | L   | Н   | Н   | Н   |
| Write All Bytes | Н  | L   | L   | L   | L   | L   |
| Write All Bytes | L  | Х   | Х   | Х   | Х   | Х   |



#### **INTERLEAVED BURST ADDRESS TABLE (MODE = VDD or No Connect)**

| External Address<br>A1 A0 | 1st Burst Address<br>A1 A0 | 2nd Burst Address<br>A1 A0 | 3rd Burst Address<br>A1 A0 |
|---------------------------|----------------------------|----------------------------|----------------------------|
| 00                        | 01                         | 10                         | 11                         |
| 01                        | 00                         | 11                         | 10                         |
| 10                        | 11                         | 00                         | 01                         |
| 11                        | 10                         | 01                         | 00                         |

## LINEAR BURST ADDRESS TABLE (MODE = VSS)



## **ABSOLUTE MAXIMUM RATINGS(1)**

| Symbol    | Parameter                                                  | Value                          | Unit |
|-----------|------------------------------------------------------------|--------------------------------|------|
| Тѕтс      | Storage Temperature                                        | -55 to +150                    | °C   |
| PD        | Power Dissipation                                          | 1.6                            | W    |
| Іоит      | Output Current (per I/O)                                   | 100                            | mA   |
| VIN, VOUT | Voltage Relative to Vss for I/O Pins                       | -0.5 to V <sub>DDQ</sub> + 0.5 | V    |
| VIN       | Voltage Relative to Vss for for Address and Control Inputs | -0.5 to V <sub>DD</sub> + 0.5  | V    |
| VDD       | Voltage on VDD Supply Relative to Vss                      | -0.5 to 4.6                    | V    |

#### Notes:

- Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. This device contains circuity to protect the inputs against damage due to high static voltages or electric fields; however, precautions may be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.
- 3. This device contains circuitry that will ensure the output devices are in High-Z at power up.





**OPERATING RANGE (IS61LPSXXXXX)** 

| Range      | Ambient Temperature | <b>V</b> DD      | VDDQ                    |
|------------|---------------------|------------------|-------------------------|
| Commercial | 0°C to +70°C        | 3.3V <u>+</u> 5% | 3.3V / 2.5V <u>+</u> 5% |
| Industrial | –40°C to +85°C      | 3.3V <u>+</u> 5% | 3.3V / 2.5V <u>+</u> 5% |

**OPERATING RANGE (IS61VPSXXXXX)** 

| Range      | Ambient Temperature | <b>V</b> DD      | <b>V</b> DDQ     |
|------------|---------------------|------------------|------------------|
| Commercial | 0°C to +70°C        | 2.5V <u>+</u> 5% | 2.5V <u>+</u> 5% |
| Industrial | –40°C to +85°C      | 2.5V <u>+</u> 5% | 2.5V <u>+</u> 5% |

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

|        |                        |                                                   | 3.3V |           | 2.5V |           |      |  |
|--------|------------------------|---------------------------------------------------|------|-----------|------|-----------|------|--|
| Symbol | Parameter              | <b>Test Conditions</b>                            | Min. | Max.      | Min. | Max.      | Unit |  |
| Vон    | Output HIGH Voltage    | IOH = -4.0  mA  (3.3V)<br>IOH = -1.0  mA  (2.5V)  | 2.4  | _         | 2.0  | _         | V    |  |
| Vol    | Output LOW Voltage     | IoL = 8.0 mA (3.3V)<br>IoL = 1.0 mA (2.5V)        | _    | 0.4       | _    | 0.4       | V    |  |
| VIH    | Input HIGH Voltage     |                                                   | 2.0  | VDD + 0.3 | 1.7  | VDD + 0.3 | V    |  |
| VIL    | Input LOW Voltage      |                                                   | -0.3 | 8.0       | -0.3 | 0.7       | V    |  |
| lu     | Input Leakage Current  | $Vss \leq V_{IN} \leq V_{DD}{}^{(1)}$             | -5   | 5         | -5   | 5         | μΑ   |  |
| ILO    | Output Leakage Current | $\frac{Vss \le V_{OUT} \le V_{DDQ}}{OE} = V_{IH}$ | -5   | 5         | -5   | 5         | μΑ   |  |

# POWER SUPPLY CHARACTERISTICS<sup>(1)</sup> (Over Operating Range)

|        |                 |                                                                                                                  |                     |     | 200<br>IAX | -1(<br>M <i>A</i> |        |      |
|--------|-----------------|------------------------------------------------------------------------------------------------------------------|---------------------|-----|------------|-------------------|--------|------|
| Symbol | Parameter       | Test Conditions                                                                                                  | Temp. range         | x18 | x36        | x18               | x36    | Unit |
| СС     | AC Operating    | Device Selected,                                                                                                 | Com.                | 450 | 450        | 400               | 400 mA |      |
|        | Supply Current  | $\overline{OE} = V_{IH}, ZZ \leq V_{IL},$                                                                        | Ind.                | 475 | 475        | 450               | 450    |      |
|        |                 | All Inputs $\leq 0.2 V$ or $\geq V_{DD} - 0.2 V$ ,<br>Cycle Time $\geq$ txc min.                                 | typ. <sup>(2)</sup> | 3   | 90         | 3                 | 40     |      |
| İsb    | Standby Current | Device Deselected,                                                                                               | Com.                | 150 | 150        | 140               | 140    | mA   |
|        | TTL Input       | $V_{DD} = Max.,$ All Inputs $\leq V_{IL}$ or $\geq V_{IH},$ $ZZ \leq V_{IL}, f = Max.$                           | Ind.                | 160 | 160        | 150               | 150    |      |
| İsbi   | Standby Current | Device Deselected,                                                                                               | Com.                | 110 | 110        | 110               | 110    | mA   |
| •      | CMOS Input      | $V_{DD} = Max.,$                                                                                                 | Ind.                | 140 | 140        | 140               | 140    |      |
|        | ·               | $\begin{aligned} &V\text{IN} \leq V\text{SS} + 0.2V \text{ or } \geq &V\text{DD} - 0.2V \\ &f = 0 \end{aligned}$ | typ. <sup>(2)</sup> | 7   | 5          | 7                 | 5      |      |

#### Note:

<sup>1.</sup> MODE pin has an internal pullup and should be tied to VDD or Vss. It exhibits ±100µA maximum leakage current when tied to ≤ Vss + 0.2V or  $\geq$  VDD - 0.2V.

<sup>2.</sup> Typical values are measured at Vcc = 3.3V, TA = 25°C and not 100% tested.



# CAPACITANCE(1,2)

| Symbol | Parameter                | Conditions | Max. | Unit |
|--------|--------------------------|------------|------|------|
| Cin    | Input Capacitance        | VIN = 0V   | 6    | pF   |
| Соит   | Input/Output Capacitance | Vout = 0V  | 8    | pF   |

#### Notes:

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions:  $T_A = 25^{\circ}C$ , f = 1 MHz,  $V_{DD} = 3.3V$ .

## 3.3V I/O ACTEST CONDITIONS

| Parameter                 | Unit                |
|---------------------------|---------------------|
| Input Pulse Level         | 0V to 3.0V          |
| Input Rise and Fall Times | 1.5 ns              |
| Input and Output Timing   | 1.5V                |
| and Reference Level       |                     |
| Output Load               | See Figures 1 and 2 |

## **ACTEST LOADS**





Figure 1 Figure 2



# 2.5V I/O ACTEST CONDITIONS

| Parameter                 | Unit                |
|---------------------------|---------------------|
| Input Pulse Level         | 0V to 2.5V          |
| Input Rise and Fall Times | 1.5 ns              |
| Input and Output Timing   | 1.25V               |
| and Reference Level       |                     |
| Output Load               | See Figures 3 and 4 |

# 2.5 I/O OUTPUT LOAD EQUIVALENT





Figure 3 Figure 4





# READ/WRITE CYCLE SWITCHING CHARACTERISTICS (Over Operating Range)

|                        |                                  | -20  | 00   | -166 | -166 |      |  |
|------------------------|----------------------------------|------|------|------|------|------|--|
| Symbol                 | Parameter                        | Min. | Max. | Min. | Max. | Unit |  |
| fmax                   | Clock Frequency                  | _    | 200  | _    | 166  | MHz  |  |
| tĸc                    | Cycle Time                       | 5    | _    | 6    | _    | ns   |  |
| tкн                    | Clock High Time                  | 2    | _    | 2.4  | _    | ns   |  |
| tĸL                    | Clock Low Time                   | 2    | _    | 2.4  | _    | ns   |  |
| tkQ                    | Clock Access Time                | _    | 3.1  | _    | 3.5  | ns   |  |
| tkqx <sup>(2)</sup>    | Clock High to Output Invalid     | 1.5  | _    | 1.5  | _    | ns   |  |
| tkqlz <sup>(2,3)</sup> | Clock High to Output Low-Z       | 1    | _    | 1    | _    | ns   |  |
| tkqhz <sup>(2,3)</sup> | Clock High to Output High-Z      | _    | 3.0  | _    | 3.4  | ns   |  |
| toeq                   | Output Enable to Output Valid    | _    | 3.1  | _    | 3.5  | ns   |  |
| toeqx(2)               | Output Disable to Output Invalid | 0    | _    | 0    | _    | ns   |  |
| toelz(2,3)             | Output Enable to Output Low-Z    | 0    | _    | 0    | _    | ns   |  |
| toehz <sup>(2,3)</sup> | Output Disable to Output High-Z  | _    | 3.0  | _    | 3.4  | ns   |  |
| tas                    | Address Setup Time               | 1.4  | _    | 1.5  | _    | ns   |  |
| tss                    | Address Status Setup Time        | 1.4  | _    | 1.5  | _    | ns   |  |
| tws                    | Read/Write Setup Time            | 1.4  | _    | 1.5  | _    | ns   |  |
| tces                   | Chip Enable Setup Time           | 1.4  | _    | 1.5  | _    | ns   |  |
| tavs                   | Address Advance Setup Time       | 1.4  | _    | 1.5  | _    | ns   |  |
| tos                    | Data Setup Time                  | 1.4  | _    | 1.5  | _    | ns   |  |
| tah                    | Address Hold Time                | 0.4  | _    | 0.5  | _    | ns   |  |
| tsн                    | Address Status Hold Time         | 0.4  | _    | 0.3  | _    | ns   |  |
| twн                    | Write Hold Time                  | 0.4  | _    | 0.5  | _    | ns   |  |
| tсен                   | Chip Enable Hold Time            | 0.4  | _    | 0.5  | _    | ns   |  |
| tavh                   | Address Advance Hold Time        | 0.4  | _    | 0.5  | _    | ns   |  |
| tон                    | Data Hold Time                   | 0.4  | _    | 0.5  | _    | ns   |  |
| tpds                   | ZZ High to Power Down            | _    | 2    | _    | 2    | сус  |  |
| tpus                   | ZZ Low to Power Down             | _    | 2    | _    | 2    | сус  |  |

#### Note:

<sup>1.</sup> Configuration signal MODE is static and must not change during normal operation.

<sup>2.</sup> Guaranteed but not 100% tested. This parameter is periodically sampled.

<sup>3.</sup> Tested with load in Figure 2.



#### **READ/WRITE CYCLE TIMING**





#### WRITE CYCLE TIMING





# **SNOOZE MODE ELECTRICAL CHARACTERISTICS**

| Symbol | Parameter                          | Temperature | Conditions   | Min. | Max. | Unit  |
|--------|------------------------------------|-------------|--------------|------|------|-------|
| ISB2   | Current during SNOOZE MODE         | Com.        | $ZZ \ge Vih$ | _    | 60   | mA    |
|        |                                    | Ind.        |              | _    | 90   |       |
| tpds   | ZZ active to input ignored         |             |              | _    | 2    | cycle |
| tpus   | ZZ inactive to input sampled       |             |              | 2    | _    | cycle |
| tzzı   | ZZ active to SNOOZE current        |             |              | _    | 2    | cycle |
| trzzi  | ZZ inactive to exit SNOOZE current |             |              | 0    | _    | ns    |

## **SNOOZE MODE TIMING**







# ORDERING INFORMATION (3.3V core/2.5V-3.3V I/O)

Commercial Range: 0°C to +70°C

| Configuration | Frequency | Order Part Number                             | Package                         |   |
|---------------|-----------|-----------------------------------------------|---------------------------------|---|
| 1Mx36         |           |                                               |                                 | _ |
|               | 166       | IS61LPS102436A-166TQ<br>IS61LPS102436A-166TQL | 100 TQFP<br>100 TQFP, Lead-free |   |
|               |           | IS61LPS102436A-166B3                          | 165 PBGA                        |   |
| 2Mx18         |           |                                               |                                 |   |
|               | 166       | IS61LPS204818A-166TQ<br>IS61LPS204818A-166TQL | 100 TQFP<br>100 TQFP, Lead-free |   |
|               |           | IS61LPS204818A-166B3                          | 165 PBGA                        |   |

# Industrial Range: -40°C to +85°C

| Configuration | Frequency | Order Part Number                               | Package                         |  |
|---------------|-----------|-------------------------------------------------|---------------------------------|--|
| 1Mx36         |           |                                                 |                                 |  |
|               | 166       | IS61LPS102436A-166TQI<br>IS61LPS102436A-166TQLI | 100 TQFP<br>100 TQFP, Lead-free |  |
|               |           | IS61LPS102436A-166B3I<br>IS61LPS102436A-166B3LI | 165 PBGA<br>165 PBGA, Lead-free |  |
| 2Mx18         |           |                                                 |                                 |  |
|               | 166       | IS61LPS204818A-166TQI                           | 100 TQFP                        |  |
|               |           | IS61LPS204818A-166B3I                           | 165 PBGA                        |  |





# ORDERING INFORMATION (2.5V core/2.5V I/O)

Commercial Range: 0°C to +70°C

| Configuration | Frequency | Order Part Number                             | Package                         |
|---------------|-----------|-----------------------------------------------|---------------------------------|
| 1Mx36         |           |                                               |                                 |
|               | 166       | IS61VPS102436A-166TQ<br>IS61VPS102436A-166TQL | 100 TQFP<br>100 TQFP, Lead-free |
|               |           | IS61VPS102436A-166B3                          | 165 PBGA                        |
| 2Mx18         |           |                                               |                                 |
|               | 166       | IS61VPS204818A-166TQ<br>IS61VPS204818A-166TQL | 100 TQFP<br>100 TQFP, Lead-free |
|               |           | IS61VPS204818A-166B3                          | 165 PBGA                        |

Industrial Range: -40°C to +85°C

| Configuration | Frequency | Order Part Number     | Package  |  |
|---------------|-----------|-----------------------|----------|--|
| 2Mx18         |           |                       |          |  |
|               | 166       | IS61VPS204818A-166TQI | 100 TQFP |  |
|               |           | IS61VPS204818A-166B3I | 165 PBGA |  |







