AutoML CI/CD/CT Capstone Project Final Report

Sepehr Heydarian, Archer Liu, Elshaday Yoseph, Tien Nguyen

Table of contents

1	Executive Summary		
2	Intr	oduction	2
3	Dat	a - Pipeline Input	3
4	Dat	a Science Methods and Product	3
	4.1	Automated Labeling and Matching (Outline)	3
	4.2	Human-in-the-loop (Outline)	4
	4.3	Augmentation (Outline)	
	4.4	Training (Outline)	
	4.5	Knowledge Distillation (Outline)	
	4.6	Quantization (Outline)	
5	Con	clusions and Recommendations	9
	5.1	Problem Recap	9
	5.2	What We Delivered	
	5.3	Limitations & Recommendations	
6	Ref	Prences	10

1 Executive Summary

2 Introduction

Motivation

- Wildfires are a growing environmental threat with devastating consequences.
- According to Defence Research and Development Canada (DRDC), early detection is critical to minimizing damage and preventing spread.

• Partner Context

- Our capstone partner, Bayes Studio, uses specialized cameras for environmental monitoring and wildfire detection.
- These cameras act as edge devices carrying a lightweight model for wildfire detection

• Problem Statement

- The partner currently faces a manual and time-consuming workflow:
 - * Labeling incoming environmental imagery
 - * Fine-tuning a base detection model
 - * Compressing models for edge deployment
- This bottleneck limits their ability to rapidly adapt models to changing data.

• Technical Requirements

- For effective deployment on edge devices, the model must:
 - 1. Be trained on high-quality labeled data
 - 2. Be fine-tuned to current wildfire imagery
 - 3. Undergo distillation and quantization to compress the model to meet hardware constraints

• Our Solution

- We developed an automated, continuous, and dynamic machine learning pipeline that:
 - * Performs semi-automated labeling to create high-quality data (images)
 - * Fine-tunes a YOLOv8 object detection model on newly labeled data
 - * Applies model compression techniques (distillation and quantization)
 - * Outputs edge-deployable models for real-time wildfire detection

3 Data - Pipeline Input

• Data Format

- The input to our pipeline consists of:
 - * Images in standard formats (e.g., .jpg)
 - * Corresponding YOLO-formatted .txt label files
 - · Each line in a label file includes: class ID, normalized bounding box coordinates (x_center, y_center, width, height)
 - · Example: 1 0.757593 0.34663 0.06101 0.3655

• Object Categories

- The detection task focuses on five classes:
 - 1. Fire
 - 2. Smoke
 - 3. Lightning
 - 4. Vehicle
 - 5. Person

• Data Volume

- Partner expects approximately 500 new images per month

• Role in Pipeline

- This incoming data serves as the foundation for the pipeline's three core stages:
 - 1. Labeling via dual-model process and human in the loop
 - 2. Data augmentation for increase diversity
 - 3. Base model re-training

4 Data Science Methods and Product

4.1 Automated Labeling and Matching (Outline)

1. Motivation

- Manual annotation is time-consuming and error-prone.
- Our dual-model strategy leverages the strengths of both YOLOv8 and Grounding DINO for pre-labeling.
- The goal is to automatically generate reliable labels with minimal human input.

2. Input

• Unlabeled images placed in mock_io/data/raw/images/

- Pre-trained detection models:
 - YOLOv8 trained specifically on our five target categories (Fire, Smoke, Lightning, Human, Vehicle)
 - **Grounding DINO** accurate grounding with text prompts like "fire", "smoke", etc.

- Step 1: YOLOv8 runs on the images and outputs predicted bounding boxes and class labels.
- Step 2: Grounding DINO runs with category prompts to generate alternative object proposals.
- Step 3: A custom matching script compares both outputs using IOU thresholds to identify:
 - Agreed labels → moved to mock_io/data/labeled/
 - Disagreements or missing detections → moved to mock_io/data/mismatched/pending/ for review
- Step 4: All matched results are saved in YOLO-style JSON files for downstream training and augmentation.

4. Output

- Automatically labeled dataset stored in mock_io/data/labeled/
- Uncertain or mismatched files routed to the human-in-the-loop review process
- Each label includes bounding box, class, and confidence score

5. Impact

- Significantly accelerates the annotation process
- Boosts label consistency and enables scalable dataset expansion

4.2 Human-in-the-loop (Outline)

1. Motivation

- A high-performing model requires a high-quality labeled dataset
- We aim to enrich this dataset by correcting mismatches rather than discarding them
- To boost data quality with minimal human effort, we introduce a human-in-theloop workflow that streamlines the correction of labeling errors and avoids manual JSON editing.

- JSON files with incorrect or uncertain predictions from YOLO
- Corresponding image files referenced in those predictions

- Step 1: Place prediction files in mock_io/data/mismatched/pending/
- Step 2: Run the script to convert them into Label Studio tasks using images from mock_io/data/raw/images/
- Step 3: Review and fix labels visually in the intuitive Label Studio interface
- Step 4: Export the reviewed results to mock_io/data/mismatched/reviewed_results/
- Step 5: The script automatically updates the review status of each file for progress tracking

4. Output

- Corrected label files (JSON), ready for training
- Results are versioned automatically for easy tracking

5. Impact

• Enrich good-quality training dataset with minimal manual effort

4.3 Augmentation (Outline)

1. Motivation

- A single image can appear in many different forms under varying conditions (e.g., lighting, weather, occlusion, angle of camera).
- Augmentation increases dataset diversity and robustness, helping the model generalize better to unseen scenarios.
- Our partner specifically requested augmentations to be done before training, as intraining augmentation could be too computationally expensive and time-consuming.

2. Input

- Labeled images and their corresponding YOLO-formatted annotation files
- Images sourced from the matched outputs of the pre-labeling pipeline saved in labeled folder.
- Augmentation parameters specified in pipeline_config.json (e.g., number of augmentations, probabilities, blur limits)

3. Workflow Steps

- Step 1: Load each image and its corresponding annotation
- Step 2: For each image, generate a fixed number of augmented versions (e.g., 3)
- Step 3: Apply image transformations using the **Albumentations** library, including:
 - Horizontal flips
 - Brightness and contrast adjustment
 - Hue and saturation shifts

- Gaussian blur (with a configurable limit)
- Gaussian noise
- Rotation
- Color adjustment to grayscale
- Step 4: Update the bounding boxes to reflect each transformation handled by Albumentations library automatically.
- Note that images that do not contain objects of interest will not undergo augmentation.
- Step 5: Save the augmented images and updated labels.

4. Output

- A significantly larger and more diverse labeled dataset ready for training including:
- Augmented images and annotations in json files
- Non-augmented images saved in no_prediction_images folder as they do not contain any of the object of interest.

5. Impact

- Reduces overfitting and improves model generalization across lighting conditions and camera angles
- Provides more training samples without requiring manual data collection or annotation

4.4 Training (Outline)

1. Motivation

- Once high-quality labeled and augmented data is available, the model must be re-trained to incorporate new information.
- Continuous re-training allows the detection model to adapt to changing wildfire patterns and newly collected data.
- Our goal is to automate the fine-tuning of a base YOLOv8 model using the most recent dataset, with minimal manual intervention.

- Augmented labeled images and corresponding annotation files. The non-augmented images with no labels are also used as true negative.
- A pre-trained YOLOv8 base model, typically selected from:
 - The latest updated model in the model registry, or path to any compatible model (YOLO model) the user chooses
 - Or a fallback initial base model (e.g., nano_trained_model.pt)
- Training hyperparameters (e.g., epochs, learning rate, image size) are configured in train_config.json

 Any training argument compatible with YOLOv8 settings can be defined in the train_config.json

3. Workflow Steps

- Step 1: Load training configuration and locate the most recent base model
- Step 2: Organize input data into train/val/test splits
- Step 3: Fine-tune the base YOLOv8 model using the prepared data and configuration
 - Training is performed using the Ultralytics training API
 - Includes logging of model performance
- Step 4: Save the updated model using a timestamped filename in the model registry folder
- Step 5: Store metadata (e.g., training date, config, performance) in the model registry folder with same name as the updated model.

4. Output

- A fine-tuned YOLOv8 model that incorporates the latest training data
- Model file saved with a naming pattern like: [YYYY-MM-DD]_[HH_MM]_updated_yolo.pt
- Corresponding metadata and training outputs stored alongside the model for tracking and reproducibility

5. Impact

- Enables fine-tuning as new data becomes available monthly
- Ensures the detection model stays current and improves over time
- Modular structure allows partners to adjust hyperparameters or retrain older models as needed

4.5 Knowledge Distillation (Outline)

1. Motivation

- Large models are computationally expensive for real-time wildfire detection
- Knowledge distillation transfers expertise from a larger teacher model to a smaller student model
- Enables faster inference while maintaining detection accuracy

- Teacher model: Pre-trained YOLOv8 model with proven wildfire detection capabilities
- Student model: Smaller YOLOv8n architecture initialized with pretrained weights from COCO 80 classes.

- Training dataset with 5 classes (FireBSI, LightningBSI, PersonBSI, SmokeBSI, VehicleBSI)
- Configuration file specifying distillation parameters and hyperparameters

- Step 1: Load and prepare both teacher and student models
- Step 2: Freeze first 10 layers of student model (backbone) for stable feature extraction
- Step 3: Train student model using combined loss function:
 - Detection loss ($_$ detection = 1.0) for direct supervision
 - Distillation loss (distillation = 2.0) for knowledge transfer:
 - * Bounding box distillation (_dist_ciou = 1.0)
 - * Classification distillation ($_{\text{dist_kl}} = 2.0$)
- Step 4: Regular checkpointing and model state preservation
- Step 5: Save final distilled model for downstream tasks.

4. Output

- Distilled YOLOv8n model with reduced size and complexity
- Training logs and metrics for performance analysis
- Checkpoint files for training resumption
- Final model saved in mock_io/model_registry/distilled/latest/

5. Impact

- Reduced model size and computational requirements
- Faster inference times suitable for edge deployment
- Maintained detection accuracy through knowledge transfer
- Enables efficient deployment on resource-constrained devices

4.6 Quantization (Outline)

1. Motivation

- Even after model distillation, inference on edge devices (e.g., drones or cameras) can still be too slow or resource-intensive
- Quantization reduces model size and speeds up inference by reducing the precision of model weights

- The distilled YOLO model from the previous distillation step of the pipeline
- Optional: labeled images and JSON annotations for calibration (required for IMX quantization)

- Step 1: Set quantization method in quantize_config.json ("FP16", "ONNX", or "IMX")
- Step 2: Based on method:
 - FP16: Converts weights to float16, fast and accurate, saved as _fp16.pt
 - ONNX: Converts to ONNX and applies dynamic quantization, saved as _onnx_quantized.onnx
 - IMX: Uses Ultralytics export with calibration data to create IMX-ready format (Linux only), saved as _imx.onnx
- Step 3: Quantized model is saved in mock_io/model_outputs/quantized/

4. Output

- A smaller, faster model ready for deployment:
 - ~50% size reduction with FP16, minimal accuracy drop
 - $-\sim75\%$ size reduction with ONNX, slight accuracy tradeoff
 - IMX-ready model for Sony Raspberry Pi AI Camera

5. Impact

• The quantized model can run directly on edge devices, enabling real-time fire alerts in the field

5 Conclusions and Recommendations

5.1 Problem Recap

- Bayes Studio needed a continuous pipeline to keep ML models accurate and up to date
- Manual labeling, training, and deployment slowed down real-time wildfire detection and response

5.2 What We Delivered

- An **automated**, **continuous**, **dynamic**, and **efficient** pipeline that streamlines prelabeling, human-in-the-loop review, model training, optimization, and deployment:
 - Automated: From labeling to training and compression, everything flows with minimal manual effort
 - Continuous: Updated models help label data in future runs, improving over time
 - **Dynamic**: Easy to plug in new models or modules as requirements change
 - Efficient: Greatly reduces model update time from weeks to just hours

5.3 Limitations & Recommendations

Limitation	Recommendation
Local-only pipeline Scattered data and model files No monitoring interface	Add cloud storage and remote triggering for better scalability Integrate a lightweight database to centralize images, labels, and model metadata Build a simple dashboard to track pipeline runs and model performance in real time

References