

AI 통합지능형 컨테이너 오케스트레이션 방법론: IoT서비스 최적화 설계

<u>김창인</u>, 허유정, 이혜림, 박준서, 최준혁, 김현기 석사, 장수영 교수, 최창범 교수 (국립한밭대학교 컴퓨터공학과)

Introduction

연구배경

• 현대 사회의 급속한 디지털화와 IoT 기술의 발전은 다양한 산업에서 큰 변화를 이끌었지만, 이로 인한 <mark>데이터의 복잡성과 대규모 처리 요구는</mark> 기존의 IoT 서비스 성능 및 확장성에 도전을 제시함

연구 목적

• AI 기반 알고리즘과 엣지 컴퓨팅을 통합하여 IoT 서비스의 성능 확정성을 극대화 하는 지능형 컨테이너 오케스트레이션 방법론을 제안함

연구의 필요성

• IoT 디바이스의 다양한 데이터 처리 요구와 자원 사용 패턴을 효과적으로 관리하여, IoT 애플리케이션의 효율성을 높이고 네트워크 부하를 줄일 필요가 있음

Background

국내외 연구현황

 기존 연구들은 대부분 IoT 시스템에서의 데이터 처리와 자원에 초점을 맞추었으나, 이들은 주로 엣지 컴퓨팅 환경의 동적 리소스 관리에 집중하고 AI의 역할을 제한적으로 탐구함

문제점

 현 IoT 시스템에서의 복잡성과 대규모 데이터 처리 요구는 기존 방법론으로는 해결하기 어려운 새로운 문제들을 제시하고 있으며, 이는 성능 및 확장성 제한을 초래함

System Architecture

시스템 아키텍쳐

• 전체 시스템 구성도를 통해 엣지 컴퓨팅 노드, 중앙 데이터 처리 센터, 그리고 이들 간의 데이터 흐름 및 컨테이너화 된 서비스의 배치를 보여줌

엣지 컴퓨팅 네트워크

• 데이터 실시간 처리와 응답성 향상을 위한 네트워크 구조와 IoT 서비스의 성능을 자동으로 최적화하기 위한 AI 엔진을 결합하여 구성 컨테이너 오케스트레이션

• 시스템 안정성 보장을 위한 서비스의 배포, 업데이트, 모니터링을 자동화하기 위한 컨테이너 오케스트레이션 도구를 결합하여 구성

Proposed Method

데이터 수집 및 전처리

• IoT 디바이스로부터 수집된 다양한 형식의 데이터는 먼저 엣지 컴퓨팅 노드로 전송되고 초기 전처리 과정을 거침

엣지 컴퓨팅 환경에서의 데이터 처리

• 엣지 컴퓨팅 노드에서의 데이터 처리를 통해 중앙 서버의 부하 경감을 목적으로 하고 마이크로 서비스는 특정 데이터를 전담하며, 필요에 따라 동적으로 스케일링 됨

AI 기반 최적화 알고리즘

• AI 알고리즘은 엣지 및 중앙 처리 노드에서 수집된 데이터에 기반하여 동작하며 시스템 전반의 성능 최적화를 도모함

컨테이너 오케스트레이션을 통한 서비스 관리

• 컨테이너화된 서비스의 배포, 업데이트, 모니터링 및 자동 스케일링을 위한 컨테이너 오케스트레이션 서비스 관리를 방법을 적용하며, 작업을 자동화 하고 시스템의 안정성과 확장성을 보장함

Conclusion

- IoT 서비스의 성능 및 확정성을 극대화 하기 위해 AI와 엣지 컴퓨팅을 결합한 지능형 컨테이너 오케스트레이션 방법론을 제안하고 탐구함
- 기대 효과로 IoT 애플리케이션의 효율성을 증대시키고, 네트워크 부하를 감소시키며, 전체 시스템의 에너지 효율성을 개선 함
- 향후 연구로 다양한 IoT 환경에서의 적용성을 평가하고, 고도화된 AI 알고리즘 개발을 통해 IoT 서비스의 성능과 자원 관리를 더욱 향상시킬 예정임

Acknowledgement

"본 연구는 2024년 과학기술정보통신부 및 정보통신기획평가원의 SW중심대학사업의 연구결과로 수행되었음"(2022-0-01068)