10. Általános polinomiális módszer szabályozók tervezésére

- 1. Írja fel az általános polinomiális módszer tervezési célját megfogalmazó karakterisztikus egyenletet!
- 2. Mutassa meg, hogy ha a tervezési célt reprezentáló DIOPHANTOS-i egyenletnek van egy megoldása, akkor végtelen számú megoldása van!
- 3. A gyakorlati eseteket illetően írjon fel egy tipikus fokszám-hármast a deg $\{\mathcal{R}\}$, deg $\{\mathcal{Y}\}$, deg $\{\mathcal{X}\}$ fokszámokra, ahol \mathcal{R} a karakterisztikus polinom, $C = \frac{\mathcal{Y}}{\mathcal{X}}$ pedig a soros szabályozó!
- 4. Milyen módon faktorizáljuk a *P* folyamatot az általános polinomiális módszer szerinti tervezéskor?
- 5. $P = P_+ P_- = \frac{\mathcal{B}_+ \mathcal{B}_-}{\mathcal{A}_+ \mathcal{A}_-}$, $\mathcal{X}_d \neq 1$ és $\mathcal{Y}_d \neq 1$ esetén írja fel az általános polinomiális módszer szerinti tervezés karakterisztikus egyenletét!
- 6. $P = P_+ P_- = \frac{\mathcal{B}_+ \mathcal{B}_-}{\mathcal{A}_+ \mathcal{A}_-}$, $\mathcal{X}_d \neq 1$ és $\mathcal{Y}_d \neq 1$ esetén írja fel az általános polinomiális módszer szerinti tervezéssel kialakított C soros szabályozó alakját!
- 7. $P = P_+ P_- = \frac{\mathcal{B}_+ \mathcal{B}_-}{\mathcal{A}_+ \mathcal{A}_-}$, $\mathcal{X}_d \neq 1$ és $\mathcal{Y}_d \neq 1$ esetén írja fel az általános polinomiális módszer szerinti tervezéssel kialakított zárt rendszer S érzékenységi függvényét és T_r kiegészítő érzékenységi függvényét: $y = T_r y_r + S y_n$!
- 8. Elemezze az általános polinomiális módszer szerinti tervezéssel kialakított zárt rendszer szervo és zajelhárítási tulajdonságait!