9 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the Flash memory density ranges between 256 and 512 Kbytes.

XL-density devices are STM32F101xx and STM32F103xx microcontrollers where the Flash memory density ranges between 768 Kbytes and 1 Mbyte.

Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.

This section applies to the whole STM32F10xxx family, unless otherwise specified.

9.1 GPIO functional description

Each of the general-purpose I/O ports has two 32-bit configuration registers (GPIOx_CRL, GPIOx_CRH), two 32-bit data registers (GPIOx_IDR, GPIOx_ODR), a 32-bit set/reset register (GPIOx_BSRR), a 16-bit reset register (GPIOx_BRR) and a 32-bit locking register (GPIOx_LCKR).

Subject to the specific hardware characteristics of each I/O port listed in the *datasheet*, each port bit of the General Purpose IO (GPIO) Ports, can be individually configured by software in several modes:

- Input floating
- Input pull-up
- Input-pull-down
- Analog
- Output open-drain
- Output push-pull
- Alternate function push-pull
- Alternate function open-drain

Each I/O port bit is freely programmable, however the I/O port registers have to be accessed as 32-bit words (half-word or byte accesses are not allowed). The purpose of the GPIOx_BSRR and GPIOx_BRR registers is to allow atomic read/modify accesses to any of the GPIO registers. This way, there is no risk that an IRQ occurs between the read and the modify access.

Figure 13 shows the basic structure of an I/O Port bit.

RM0008 Rev 21 159/1136

Figure 13. Basic structure of a standard I/O port bit

1. V_{DD_FT} is a potential specific to 5-Volt tolerant I/Os, and different from V_{DD} .

Configuration mode		CNF1	CNF0	MODE1	MODE0	PxODR register
General purpose	Push-pull	0	0	0	1	0 or 1
output	Open-drain	U	1	10 11 see <i>Table 21</i>		0 or 1
Alternate Function output	Push-pull	1	0			Don't care
	Open-drain		1			Don't care
	Analog	0	0			Don't care
Input	Input floating	U	1	00		Don't care
	Input pull-down	1	0	\neg	U	0
	Input pull-up		U			1

Table 20. Port bit configuration table

Table 21. Output MODE bits

MODE[1:0]	Meaning
00	Reserved
01	Maximum output speed 10 MHz
10	Maximum output speed 2 MHz
11	Maximum output speed 50 MHz

9.1.1 General-purpose I/O (GPIO)

During and just after reset, the alternate functions are not active and the I/O ports are configured in Input Floating mode (CNFx[1:0]=01b, MODEx[1:0]=00b).

The JTAG pins are in input PU/PD after reset:

PA15: JTDI in PU PA14: JTCK in PD PA13: JTMS in PU PB4: NJTRST in PU

When configured as output, the value written to the Output Data register (GPIOx_ODR) is output on the I/O pin. It is possible to use the output driver in Push-Pull mode or Open-Drain mode (only the N-MOS is activated when outputting 0).

The Input Data register (GPIOx_IDR) captures the data present on the I/O pin at every APB2 clock cycle.

All GPIO pins have an internal weak pull-up and weak pull-down that can be activated or not when configured as input.

9.1.2 Atomic bit set or reset

There is no need for the software to disable interrupts when programming the GPIOx_ODR at bit level: it is possible to modify only one or several bits in a single atomic APB2 write access. This is achieved by programming to '1' the Bit Set/Reset register (GPIOx_BSRR, or

RM0008 Rev 21 161/1136

for reset only GPIOx_BRR) to select the bits to modify. The unselected bits will not be modified.

9.1.3 External interrupt/wakeup lines

All ports have external interrupt capability. To use external interrupt lines, the port must be configured in input mode. For more information on external interrupts, refer to Section 10.2: External interrupt/event controller (EXTI) and Section 10.2.3: Wakeup event management.

9.1.4 Alternate functions (AF)

It is necessary to program the Port Bit Configuration register before using a default alternate function.

For alternate function inputs, the port must be configured in Input mode (floating, pull-up or pull-down) and the input pin must be driven externally.

Note:

It is also possible to emulate the AFI input pin by software by programming the GPIO controller. In this case, the port should be configured in Alternate Function Output mode. And obviously, the corresponding port should not be driven externally as it will be driven by the software using the GPIO controller.

- For alternate function outputs, the port must be configured in Alternate Function Output mode (Push-Pull or Open-Drain).
- For bidirectional Alternate Functions, the port bit must be configured in Alternate Function Output mode (Push-Pull or Open-Drain). In this case the input driver is configured in input floating mode

If a port bit is configured as Alternate Function Output, this disconnects the output register and connects the pin to the output signal of an on-chip peripheral.

If software configures a GPIO pin as Alternate Function Output, but peripheral is not activated, its output is not specified.

9.1.5 Software remapping of I/O alternate functions

To optimize the number of peripheral I/O functions for different device packages, it is possible to remap some alternate functions to some other pins. This is achieved by software, by programming the corresponding registers (refer to *AFIO registers*. In that case, the alternate functions are no longer mapped to their original assignations.

9.1.6 GPIO locking mechanism

The locking mechanism allows the IO configuration to be frozen. When the LOCK sequence has been applied on a port bit, it is no longer possible to modify the value of the port bit until the next reset.

9.1.7 Input configuration

When the I/O Port is programmed as Input:

- The Output Buffer is disabled
- The Schmitt Trigger Input is activated
- The weak pull-up and pull-down resistors are activated or not depending on input configuration (pull-up, pull-down or floating):
- The data present on the I/O pin is sampled into the Input Data register every APB2 clock cycle
- A read access to the Input Data register obtains the I/O State.

Figure 15 shows the Input Configuration of the I/O Port bit.

1. V_{DD_FT} is a potential specific to 5-Volt tolerant I/Os, and different from V_{DD} .

9.1.8 Output configuration

When the I/O Port is programmed as Output:

- The Output Buffer is enabled:
 - Open Drain Mode: A "0" in the Output register activates the N-MOS while a "1" in the Output register leaves the port in Hi-Z (the P-MOS is never activated)
 - Push-Pull Mode: A "0" in the Output register activates the N-MOS while a "1" in the Output register activates the P-MOS
- The Schmitt Trigger Input is activated.
- The weak pull-up and pull-down resistors are disabled.
- The data present on the I/O pin is sampled into the Input Data register every APB2 clock cycle
- A read access to the Input Data register gets the I/O state in open drain mode
- A read access to the Output Data register gets the last written value in Push-Pull mode

Figure 16 shows the Output configuration of the I/O Port bit.

RM0008 Rev 21 163/1136

Figure 16. Output configuration

 $V_{DD\ FT}$ is a potential specific to 5-Volt tolerant I/Os, and different from V_{DD} .

9.1.9 Alternate function configuration

When the I/O Port is programmed as Alternate Function:

- The Output Buffer is turned on in Open Drain or Push-Pull configuration
- The Output Buffer is driven by the signal coming from the peripheral (alternate function out)
- The Schmitt Trigger Input is activated
- The weak pull-up and pull-down resistors are disabled.
- The data present on the I/O pin is sampled into the Input Data register every APB2 clock cycle
- A read access to the Input Data register gets the I/O state in open drain mode
- A read access to the Output Data register gets the last written value in Push-Pull mode

Figure 17 shows the Alternate Function Configuration of the I/O Port bit. Also, refer to Section 9.4: AFIO registers for further information.

A set of Alternate Function I/O registers allows the user to remap some alternate functions to different pins. Refer to Section 9.3: Alternate function I/O and debug configuration (AFIO).

RM0008 Rev 21 164/1136

Figure 17. Alternate function configuration

1. $V_{DD\ FT}$ is a potential specific to 5-Volt tolerant I/Os, and different from V_{DD} .

9.1.10 Analog configuration

When the I/O Port is programmed as Analog configuration:

- The Output Buffer is disabled.
- The Schmitt Trigger Input is de-activated providing zero consumption for every analog value of the I/O pin. The output of the Schmitt Trigger is forced to a constant value (0).
- The weak pull-up and pull-down resistors are disabled.
- Read access to the Input Data register gets the value "0".

Figure 18 shows the high impedance-analog configuration of the I/O Port bit.

Figure 18. High impedance-analog configuration

9.1.11 GPIO configurations for device peripherals

Table 22 to Table 33 give the GPIO configurations of the device peripherals.

Table 22. Advanced timers TIM1 and TIM8

TIM1/8 pinout	Configuration	GPIO configuration
TIM1/8 CHx	Input capture channel x	Input floating
TIIVI1/6_CITX	Output compare channel x	Alternate function push-pull
TIM1/8_CHxN	Complementary output channel x	Alternate function push-pull
TIM1/8_BKIN	Break input	Input floating
TIM1/8_ETR	External trigger timer input	Input floating

Table 23. General-purpose timers TIM2/3/4/5

TIM2/3/4/5 pinout	Configuration	GPIO configuration
TIM2/3/4/5 CHx	Input capture channel x	Input floating
1 11V12/3/4/3_C1 1X	Output compare channel x	Alternate function push-pull
TIM2/3/4/5_ETR	External trigger timer input	Input floating

Table 24. USARTs

USART pinout	Configuration	GPIO configuration
USARTx TX ⁽¹⁾	Full duplex	Alternate function push-pull
USARIX_IX(")	Half duplex synchronous mode	Alternate function push-pull

Table 24. USARTs (continued	Table	24.	USARTs	(continued)
-----------------------------	--------------	-----	---------------	-------------

USART pinout	Configuration	GPIO configuration
USARTx RX	Full duplex	Input floating / Input pull-up
USAKTX_KX	Half duplex synchronous mode	Not used. Can be used as a general IO
USARTx_CK	Synchronous mode	Alternate function push-pull
USARTx_RTS	Hardware flow control	Alternate function push-pull
USARTx_CTS	Hardware flow control	Input floating/ Input pull-up

^{1.} The USART_TX pin can also be configured as alternate function open drain.

Table 25. SPI

SPI pinout	Configuration	GPIO configuration
SDIV SCK	Master	Alternate function push-pull
SPIx_SCK	Slave	Input floating
	Full duplex / master	Alternate function push-pull
SPIx_MOSI	Full duplex / slave	Input floating / Input pull-up
SFIX_IVIOSI	Simplex bidirectional data wire / master	Alternate function push-pull
	Simplex bidirectional data wire/ slave	Not used. Can be used as a GPIO
	Full duplex / master	Input floating / Input pull-up
	Full duplex / slave (point to point)	Alternate function push-pull
	Full duplex / slave (multi-slave)	Alternate function open drain
SPIx_MISO	Simplex bidirectional data wire / master	Not used. Can be used as a GPIO
	Simplex bidirectional data wire/ slave (point to point)	Alternate function push-pull
	Simplex bidirectional data wire/ slave (multi-slave)	Alternate function open drain
	Hardware master /slave	Input floating/ Input pull-up / Input pull-down
SPIx_NSS	Hardware master/ NSS output enabled	Alternate function push-pull
	Software	Not used. Can be used as a GPIO

Table 26. I2S

I2S pinout	Configuration	GPIO configuration
I2Sx WS	Master	Alternate function push-pull
123%_ W3	Slave	Input floating
I2Sx CK	Master	Alternate function push-pull
123X_CR	Slave	Input floating
I2Sx SD	Transmitter	Alternate function push-pull
1258_50	Receiver	Input floating/ Input pull-up/ Input pull-down

RM0008 Rev 21 167/1136

Table 26. I2S (continued)

I2S pinout	Configuration	GPIO configuration
135× MCK	Master	Alternate function push-pull
I2Sx_MCK	Slave	Not used. Can be used as a GPIO

Table 27. I2C

I2C pinout	Configuration	GPIO configuration
I2Cx_SCL	I2C clock	Alternate function open drain
I2Cx_SDA	I2C Data I/O	Alternate function open drain

Table 28. bxCAN

BxCAN pinout	GPIO configuration
CAN_TX (Transmit data line)	Alternate function push-pull
CAN_RX (Receive data line)	Input floating / Input pull-up

Table 29. USB⁽¹⁾

USB pinout	GPIO configuration
USB_DM / USB_DP	As soon as the USB is enabled, these pins are automatically connected to the USB internal transceiver.

^{1.} This table applies to low-, medium-, high and XL-density devices only.

Table 30. OTG_FS pin configuration⁽¹⁾

OTG_FS pinout	Configuration	GPIO configuration
	Host	AF push-pull, if used
OTG_FS_SOF	Device	AF push-pull, if used
	OTG	AF push-pull, if used
	Host	Input floating
OTG_FS_VBUS ⁽²⁾	Device	Input floating
	OTG	Input floating
	Host	No need if the Force host mode is selected by software (FHMOD set in the OTG_FS_GUSBCFG register)
OTG_FS_ID	Device	No need if the Force device mode is selected by software (FDMOD set in the OTG_FS_GUSBCFG register)
	OTG	Input pull-up
	Host	Controlled automatically by the USB power-down
OTG_FS_DM	Device	Controlled automatically by the USB power-down
	OTG	Controlled automatically by the USB power-down

Table 30. OTG	_FS pin	configuration ⁽¹⁾	(continued)
---------------	---------	------------------------------	------------	---

OTG_FS pinout	Configuration	GPIO configuration
	Host	Controlled automatically by the USB power-down
OTG_FS_DP	Device	Controlled automatically by the USB power-down
	OTG	Controlled automatically by the USB power-down

- 1. This table applies to connectivity line devices only.
- 2. For the OTG_FS_VBUS pin (PA9) to be used by another shared peripheral or as a general-purpose IO, the PHY Power-down mode has to be active (clear bit 16 in the OTG_FS_GCCFG register).

Table 31. SDIO

SDIO pinout	GPIO configuration
SDIO_CK	Alternate function push-pull
SDIO_CMD	Alternate function push-pull
SDIO[D7:D0]	Alternate function push-pull

The GPIO configuration of the ADC inputs should be analog.

Figure 19. ADC / DAC

ADC/DAC pin	GPIO configuration
ADC/DAC	Analog

Table 32. FSMC

FSMC pinout	GPIO configuration
FSMC_A[25:0] FSMC_D[15:0]	Alternate function push-pull
FSMC_CK	Alternate function push-pull
FSMC_NOE FSMC_NWE	Alternate function push-pull
FSMC_NE[4:1] FSMC_NCE[3:2] FSMC_NCE4_1 FSMC_NCE4_2	Alternate function push-pull
FSMC_NWAIT FSMC_CD	Input floating/ Input pull-up
FSMC_NIOS16, FSMC_INTR FSMC_INT[3:2]	Input floating
FSMC_NL FSMC_NBL[1:0]	Alternate function push-pull
FSMC_NIORD, FSMC_NIOWR FSMC_NREG	Alternate function push-pull

RM0008 Rev 21 169/1136

Table 33. Other IOs

Pins	Alternate function	GPIO configuration					
TAMPER-RTC pin	RTC output	Forced by hardware when configuring the					
IAWII EIX-IXTO PIII	Tamper event input	BKP_CR and BKP_RTCCR registers					
МСО	Clock output	Alternate function push-pull					
EXTI input lines	External input interrupts	Input floating / input pull-up / input pull-down					

9.2 GPIO registers

Refer to Section 2.2 on page 45 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

9.2.1 Port configuration register low (GPIOx_CRL) (x=A..G)

Address offset: 0x00

Reset value: 0x4444 4444

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
CNF	CNF7[1:0]		MODE7[1:0]		CNF6[1:0]		MODE6[1:0]		CNF5[1:0]		MODE5[1:0]		CNF4[1:0]		MODE4[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
CNF	CNF3[1:0]		MODE3[1:0]		CNF2[1:0]		MODE2[1:0]		CNF1[1:0]		MODE1[1:0]		CNF0[1:0]		MODE0[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

Bits 31:30, 27:26, **CNFy[1:0]:** Port x configuration bits (y= 0 .. 7)

23:22, 19:18, 15:14, These bits are written by software to configure the corresponding I/O port.

11:10, 7:6, 3:2 Refer to *Table 20: Port bit configuration table*.

In input mode (MODE[1:0]=00):

00: Analog mode

01: Floating input (reset state)

10: Input with pull-up / pull-down

11: Reserved

In output mode (MODE[1:0] \geq 00):

00: General purpose output push-pull

01: General purpose output Open-drain

10: Alternate function output Push-pull

11: Alternate function output Open-drain

Bits 29:28, 25:24, **MODEy[1:0]:** Port x mode bits (y= 0 .. 7)

21:20, 17:16, 13:12,

These bits are written by software to configure the corresponding I/O port.

9:8, 5:4, 1:0 Refer to *Table 20: Port bit configuration table*.

00: Input mode (reset state)

01: Output mode, max speed 10 MHz.

10: Output mode, max speed 2 MHz.

11: Output mode, max speed 50 MHz.

RM0008 Rev 21 171/1136

9.2.2 Port configuration register high (GPIOx_CRH) (x=A..G)

Address offset: 0x04

Reset value: 0x4444 4444

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
CNF1	5[1:0]	MODE	15[1:0]	CNF1	4[1:0]	MODE	14[1:0]	CNF1	3[1:0]	MODE	13[1:0]	CNF1	2[1:0]	MODE	E12[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
CNF1	CNF11[1:0] N		MODE11[1:0]		CNF10[1:0]		MODE10[1:0]		CNF9[1:0]		MODE9[1:0]		CNF8[1:0]		MODE8[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

Bits 31:30, 27:26, **CNFy[1:0]:** Port x configuration bits (y= 8 .. 15)

23:22, 19:18, 15:14, These bits are written by software to configure the corresponding I/O port.

11:10, 7:6, 3:2 Refer to *Table 20: Port bit configuration table*.

In input mode (MODE[1:0]=00):

00: Analog mode

01: Floating input (reset state)10: Input with pull-up / pull-down

11: Reserved

In output mode (MODE[1:0] \geq 00):

00: General purpose output push-pull

01: General purpose output Open-drain

10: Alternate function output Push-pull

11: Alternate function output Open-drain

Bits 29:28, 25:24, **MODEy[1:0]:** Port x mode bits (y= 8 .. 15)

21:20, 17:16, 13:12,

9:8, 5:4, 1:0

These bits are written by software to configure the corresponding I/O port.

Refer to Table 20: Port bit configuration table.

00: Input mode (reset state)

01: Output mode, max speed 10 MHz.10: Output mode, max speed 2 MHz.11: Output mode, max speed 50 MHz.

9.2.3 Port input data register (GPIOx_IDR) (x=A..G)

Address offset: 0x08h

Reset value: 0x0000 XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **IDRy:** Port input data (y= 0 .. 15)

These bits are read only and can be accessed in Word mode only. They contain the input value of the corresponding I/O port.

9.2.4 Port output data register (GPIOx_ODR) (x=A..G)

Address offset: 0x0C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **ODRy:** Port output data (y= 0 .. 15)

These bits can be read and written by software and can be accessed in Word mode only.

Note: For atomic bit set/reset, the ODR bits can be individually set and cleared by writing to the GPIOx_BSRR register (x = A .. G).

9.2.5 Port bit set/reset register (GPIOx_BSRR) (x=A..G)

Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 BS15	14 BS14	13 BS13	12 BS12	11 BS11	10 BS10	9 BS9	8 BS8	7 BS7	6 BS6	5 BS5	4 BS4	3 BS3	2 BS2	1 BS1	0 BS0

Bits 31:16 **BRy:** Port x Reset *bit y (y= 0 .. 15)*

These bits are write-only and can be accessed in Word mode only.

- 0: No action on the corresponding ODRx bit
- 1: Reset the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 **BSy:** Port x Set bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.

- 0: No action on the corresponding ODRx bit
- 1: Set the corresponding ODRx bit

RM0008 Rev 21 173/1136

9.2.6 Port bit reset register (GPIOx_BRR) (x=A..G)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	W	W	W	W	W	W	W	W	W	W	W	W	W	W	w

Bits 31:16 Reserved

Bits 15:0 **BRy:** Port x Reset bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Reset the corresponding ODRx bit

9.2.7 Port configuration lock register (GPIOx_LCKR) (x=A..G)

This register is used to lock the configuration of the port bits when a correct write sequence is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the LOCK sequence has been applied on a port bit it is no longer possible to modify the value of the port bit until the next reset.

Each lock bit freezes the corresponding 4 bits of the control register (CRL, CRH).

Address offset: 0x18

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	D												LCKK		
						r	Reserved								rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCK0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw