Введение в Data Science Занятие 2. Линейные модели

Николай Анохин Михаил Фирулик

10 марта 2014 г.

TEXHOCOEPA @mail.ru

Где мы находимся (глобально)

Где мы находимся (локально)

М Выдвигаем гипотезу насчет **модели** - семейства параметрических функций вида

$$Y = \{y(x, \theta) : X \times \Theta \to T\},\$$

которая могла бы решить нашу задачу (model selection)

L Выбираем наилучшие параметры модели θ^* , используя алгоритм обучения

$$A(\mathbf{X},\mathbf{T}):(X,T)^N\to Y$$

(learning/inference)

D Используя полученную модель $y^*(x) = y(x, \theta^*)$, классифицируем неизвестные объекты (decision making)

Как выбрать параметры модели?

Решить задачу оптимизации, чтобы получить значения θ^*

Варианты подходов

- θ фиксировано, но неизвестно: ищем θ , согласующееся с обучающей выборкой
- θ случайная величина, распределенная по известному закону: ищем параметры распределения

Обобщенные линейные модели

Метод максимального правдоподобия

Байесовский вывод

8 марта (is coming)

Задача

Определить вид ириса на основании длины чашелистика, ширины чашелистика, длины лепестка и ширины лепестка.

Ирисы Фишера

Линейные модели

Рассматривается случай 2 классов

Функция принятия решения

$$y(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + w_0$$

Регионы принятия решения

$$R_1 = \{ \mathbf{x} : y(\mathbf{x}) > 0 \}$$

$$R_2 = \{ \mathbf{x} : y(\mathbf{x}) < 0 \}$$

Задача найти параметры модели \mathbf{w} , w_0

Линейные модели: наблюдения

Разделяющая поверхность

$$\mathcal{D} = \{ \boldsymbol{x} \, : \, \boldsymbol{w}^{\top} \boldsymbol{x} + w_0 = 0 \}$$

- 1. **w** нормаль к \mathcal{D}
- 2. $d = \frac{w_0}{\|\mathbf{w}\|}$ расстояние от центра координат до $\mathcal D$
- 3. $r(\mathbf{x}) = \frac{y(\mathbf{x})}{\|\mathbf{w}\|}$ расстояние от \mathcal{D} до \mathbf{x}

Положим $x_0 \equiv 1$, получим модель

$$y(\tilde{\mathbf{x}}) = \tilde{\mathbf{w}}^{\top} \tilde{\mathbf{x}}$$

Обобщенные линейные модели

Линейная модель

$$y(\mathbf{x}) = w_0 + \sum w_i x_i$$

Квадратичная модель

$$y(\mathbf{x}) = w_0 + \sum w_i x_i + \sum \sum w_{ij} x_i x_j$$

Обобщенная линейная модель

$$g(\mathbf{x}) = \sum a_i \phi_i(\mathbf{x}) = \mathbf{a}^{\top} \mathbf{y}$$

Случай линейно разделимых классов

Обобщенная линейная модель

$$g(\mathbf{x}) = \sum a_i \phi_i(\mathbf{x}) = \mathbf{a}^{\top} \mathbf{y}$$

Дана обучающая выборка $\mathbf{Y} = \{\mathbf{y}_1, \dots, \mathbf{y}_N\}$

Идея

Преобразовать объекты второго класса в обратные им и решать задачу оптимизации в области $a^T\mathbf{y}_i>0,\ \forall i$

Задача оптимизации

Задача

Минимизируем критерий J(a) при условиях $a^T \mathbf{y}_i > 0, \ \forall i$

Пусть \mathcal{Y} – множество неправильно проклассифицированных объектов

$$ightharpoonup J_e(a) = \sum_{\mathbf{y} \in \mathcal{Y}} 1$$

$$J_q(a) = \sum_{\mathbf{y} \in \mathcal{Y}} (a^\top \mathbf{y})^2$$

Улучшение: добавить отступы

Градиентный спуск

```
1. initialise a, J(a), \eta(k), \epsilon, k=0
2. do k \leftarrow k+1
3. a \leftarrow a - \eta(k) \nabla J(a)
4. until \eta(k) \nabla J(a) < \epsilon
5. return a
5. end
```

Инкрементальный алгоритм

Рассматриваем
$$J_r(a) = \sum_{y \in \mathcal{Y}} \frac{(a^\top y)^2 - b}{\|y\|}$$

- 1. initialise a, $\eta(k)$, k=0
- 2. do $k \leftarrow k+1$
- 3. if \mathbf{y}_k is misclassified $a \leftarrow a \eta(k) \frac{(a^\top \mathbf{y}_k)^2 b}{\|\mathbf{y}_k\|^2} \mathbf{y}_k$
- 4. until no errors left
- 5. return a
- 6. end

Случай линейно неразделимых классов

- lacktriangle Использовать $\eta(k) o 0$ при $k o \infty$
- ▶ От системы неравенств перейти к системе линейных уравнений
- ▶ Линейное программирование

Снова переобучение

Оптимизируем критерий с регуляризацией

$$J_1(a) = J(a) + \lambda J_R(a)$$

 λ — коэффициент регуляризации

$$J_R(a) = \sum |a_j|^q$$

Перцептрон: результаты

Метод максимального правдоподобия

Задача

Дана обучающая выборка **X**. Предполагая, что распределение $p(\mathbf{x}|\theta)$ известно, найти значения параметров θ .

Интуиция: найти такие θ , которые максимизируют вероятность $P(\mathbf{X}|\theta).$

При предположении, что обучающие образцы независимы, имеем

$$P(\mathbf{X}|\theta) = \prod p(\mathbf{x}_i|\theta)$$

Функция правдоподобия

$$I(\theta) = \log P(\mathbf{X}|\theta) = \sum \log p(\mathbf{x}_i|\theta)$$

Требуется найти

$$\theta = \arg \max_{\theta} I(\theta)$$

Нормальное распределение

$$p(x|\mu) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Задача

Дана выборка **X** объектов x, распределенных согласно одномерному нормальному закону $N(\mu,\sigma^2)$. Используя принцип максимального правдоподобия, оценить значение μ при известном значении σ .

Вероятностная линейная модель

Рассматриваем 2 класса

$$p(C_1|x) = \frac{p(x|C_1)p(C_1)}{p(x|C_1)p(C_1) + p(x|C_2)p(C_2)} = \frac{1}{1 + e^{-a}} = \sigma(a)$$

$$a = \ln \frac{p(x|C_1)p(C_1)}{p(x|C_2)p(C_2)}$$

$$\sigma(a)$$
 – сигмоид-функция, $a=\ln(\sigma/(1-\sigma))$

Упражнение: $p(\mathbf{x}|C_k) = \mathcal{N}(\mu_k, \mathbf{\Sigma})$. Проверить, что $p(C_k|\mathbf{x}) = \sigma(\mathbf{w}^{\top}\mathbf{x} + w_0)$

(Еще более) обобщенная линеная модель

Базисные функции $\phi_n(\mathbf{x})$

$$\phi_n(\mathbf{x}) = \exp\left[-\frac{(x-\mu_n)^2}{2s^2}\right]$$

Функция активации f(a)

$$f(a) = \sigma(a)$$

(Совсем) обобщенная линейная модель

$$y(\mathbf{x}, \mathbf{w}) = f(\mathbf{w}^{\top} \phi(\mathbf{x}))$$

техносфера @mail.ru"

Логистическая регрессия

дано

$$\{\phi_n = \phi(\mathbf{x}_n), t_n\}, t_n \in \{0, 1\}, n = 1 \dots N$$

модель

$$p(C_1|\phi) = y(\phi) = \sigma(\mathbf{w}^{\top}\phi)$$

функция правдоподобия

$$I(\mathbf{w}) = \log \left[\prod_{n=1}^{N} p^{t_n} (C_1 | \phi_n) (1 - p(C_1 | \phi_n))^{1-t_n} \right] = 0$$

$$= \sum_{n=1}^{N} t_n \log p(C_1|\phi_n) + (1-t_n) \log(1-p(C_1|\phi_n)) = -J_e(\mathbf{w})$$

градиент

$$\nabla J_{e}(\mathbf{w}) = \sum_{n=1}^{N} (p(C_{1}|\phi_{n}) - t_{n})\phi_{n} \rightarrow min_{\mathbf{w}}$$

Логистическая регрессия: результаты

Байесовский вывод

Дано

- ▶ плотность вероятности $p(\mathbf{x}|\theta)$
- ▶ априорная плотность $p(\theta)$
- **>** выборка $\mathbf{X} = \{x_1, \dots, x_N\}$

Найти апостериорную плотность $p(\theta|\mathbf{X})$

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta$$

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

$$p(\mathbf{X}|\theta) = \prod p(x_n|\theta)$$

Мультиклассовая классификация

Задача

Использовать бинарный линейный классификатор для мультиклассовой классификации Ирисов. Какие идеи?

Интерфейс классификатора clf

- ▶ Использовать выборку \mathbf{x} , \mathbf{y} для обучения clf.fit(\mathbf{x} , \mathbf{y})
- ▶ Предсказать класс объектов в x y = clf.predict(x)
- Предсказать вероятности классов для х y = clf.predict_proba(x)
- Вычислить значение функции решения в x d = clf.decision_function(x)

Домашнее задание 1

Линейные модели

Реализовать на выбор

- ▶ Линейная классификация методом градиентного спуска
- Линейная регрессия методом градиентного спуска
- ▶ Линейная классификация инкрементальным методом
- Линейная регрессия инкрементальным методом

Ключевые даты

- ▶ До 2014/03/14 23.59 выбрать задачу и ответственного в группе
- До 2014/03/21 00.00 предоставить решение задания

Спасибо!

Обратная связь