Package 'fonfDNN'

June 24, 2025

Type Package			
Title Hybrid deep tensor netw	work for function-on-function regression with mixed predictors		
Version 1.0			
Depends R (>= 3.5.0), fda, ko	eras, tensorflow, fda.usc, plot3D		
Imports goffda			
LazyLoad yes			
ByteCompile TRUE			
Encoding UTF-8			
Maintainer Ufuk Beyaztas <ufukbeyaztas@gmail.com></ufukbeyaztas@gmail.com>			
Description Functions for im function regression with	plementing deep tensor network for function-on- n mixed predictors.		
License GPL-3			
Contents			
fonf_fit fonf_fnc			
dgp_mixed	Simulate Mixed Functional–Scalar Data for Function–on–Function Regression		

2 dgp_mixed

Description

Generates synthetic datasets that mimic the structure analysed in *Beyaztas, Bakicierler Sezer, Inan* (2025): a functional response observed on a dense grid, multiple functional predictors, and multiple scalar predictors. Two regimes are available:

- "linear": response driven solely by linear integral effects.
- "nonlinear": adds strong, smooth nonlinear interactions (functional × functional, functional × scalar, scalar × scalar) scaled to dominate the linear part.

Every dataset also includes Ornstein–Uhlenbeck (OU) process noise to emulate realistic autocorrelated measurement error.

Usage

Arguments

n	Number of subjects/curves.
j	Grid length M ; all functional objects are evaluated on seq(0, 1, length.out = j).
model	Character string choosing the data-generating mechanism; partial matching is supported.
n_func	Number P of functional predictors to simulate.
n_scl	Number d_z of scalar predictors.
seed	Optional integer for reproducibility (set.seed(seed)).

Details

Let $X_i^{(p)}(s)$ denote functional predictor $p=1,\ldots,P$ and $\mathbf{Z}_i\in\mathbb{R}^{d_z}$ the scalar predictor vector for subject $i\in\{1,\ldots,n\}$. The latent *signal* generating the functional response on grid points t_1,\ldots,t_M is

$$\eta_i(t) = \underbrace{\sum_{p=1}^P \int_0^1 X_i^{(p)}(s) \, \beta_p(s,t) \, ds}_{\text{linear functional effects}} + \underbrace{\mathbf{Z}_i^\top \gamma(t)}_{\text{scalar effects}} + \mathcal{N}L_i(t),$$

where P=3 "strong" functional predictors drive the linear component, β_p are pre-specified wavy B-spline surfaces (see code), and $\gamma(t)$ are smooth one-dimensional bases. If model == "linear" we set $\mathcal{N}L_i(t)\equiv 0$; otherwise $\mathcal{N}L_i(t)$ equals the *sum* of five carefully designed nonlinear terms (quadratic functional interactions, sinusoidal transforms, scalar–functional products, etc.) rescaled so that

$$SD\{\mathcal{N}L\} \approx 2 SD\{\text{linear signal}\}.$$

The *observed* response is

$$Y_i(t_m) = \eta_i(t_m) + \varepsilon_i(t_m), \qquad \varepsilon_i \sim \mathrm{OU}(0, \alpha = 3, \sigma = 0.7),$$

dgp_mixed 3

i.e. an Ornstein–Uhlenbeck process discretised on the same grid. Noise is scaled so that its empirical standard deviation equals 10% of the signal standard deviation.

Value

A named list:

```
y n 	imes j matrix of noisy responses Y_i(t_m).

yt n 	imes j matrix of true signals \eta_i(t_m).

x list of length P; each element is an n 	imes j matrix of functional predictors X_i^{(p)}(s_m).

x.scl n 	imes d_z numeric matrix of scalar predictors \mathbf{Z}_i.

meta List containing grids sx, sy, true beta surfaces (beta), and the model flag.
```

Note

Requires the suggested package goffda for OU noise generation.

Author(s)

Ufuk Beyaztas, Gizel Bakicierler Sezer, Deniz Inan

References

Kokoszka, P. and Reimherr, M.~(2017). *Introduction to Functional Data Analysis*. Chapman and Hall/CRC.

See Also

```
fonf_fit, r_ou
```

```
## Not run:
# Simulate a nonlinear training set and inspect its structure
# ------
# n <- 100
                           # sample size
# simdata <- dgp_mixed(n, 101, model = "nonlinear")</pre>
# у
      <- simdata$y
                           # noisy response curves
    <- simdata$yt
# yt
                           # true (noise-free) curves
     <- simdata$x
                          # list of functional predictors
# x
# xscl <- simdata$x.scl</pre>
                          # scalar predictors
## End(Not run)
```

4 fonf_fit

fonf_fit	Fit a Hybrid Deep Tensor Network for Function-on-Function Regres-
	sion with Mixed Predictors

Description

Trains the hybrid deep tensor network (HDTN) of *Beyaztas, Bakicierler Sezer, Inan (2025)* to predict a *functional response* from multiple functional and scalar covariates. The model combines a first-layer tensor-product B-spline representation (capturing linear functional effects) with fully-connected dense layers (capturing higher-order nonlinear interactions) and supplies finite-sample, distribution-free prediction bands via conformal inference.

Usage

```
fonf_fit(resp,
         func_cov,
                                = NULL,
         scalar_cov
                                = NULL,
         nbasis_y
         nbasis_x
                                = NULL,
         hidden_layers
                                = 2,
         hidden_layers = 2,
neurons_per_layer = c(32, 32),
         activations_in_layers = c("relu", "linear"),
                                = 100,
         epochs
                                = 32,
         batch\_size
                                = 0.1,
         val_split
         learning_rate
                                = 1e-3,
                                = 15,
         patience_param
                                = 0.1,
         dropout_rate
         12_lambda
                                = 1e-4,
         cal_prop
                                = 0.2,
                                = 0.2,
         alpha
                                = 1)
         verbose
```

Arguments

resp	$n \times M$ numeric matrix; row i stores the functional response $Y_i(t_m)$ evaluated on a common grid $t_1,\ldots,t_M \subset \mathcal{I}_y$.
func_cov	List of length P . Element p is an $n \times G_p$ matrix that holds the functional pre-
	dictor $X_i^{(p)}(s_{pj})$ on its own grid $s_{p1},\ldots,s_{pG_p}\subset\mathcal{I}_{x_p}$.
scalar_cov	Optional $n \times d_z$ numeric matrix of scalar covariates $\mathbf{Z}_i \in \mathbb{R}^{d_z}$.
nbasis_y	Number of B-spline basis functions for the response domain (K_y) ; chosen automatically when NULL.
nbasis_x	Integer vector of length P ; element p gives the number of input-domain basis functions $K_x^{(p)}$. Automatically selected when NULL.
hidden_layers	Number R of fully-connected hidden layers.
neurons_per_layer	
	Vector of length hidden_layers giving the width (D_r) of each dense layer.
activations_in_layers	
	Character vector of length hidden_layers with Keras activation names ("relu", "tanh", etc.).

fonf_fit 5

epochs Maximum training epochs.

batch_size Mini-batch size for stochastic optimisation.

val_split Proportion of the *training rows* (not subjects) held out for on-line validation

during training.

learning_rate Initial learning rate for the Adam optimiser (with cosine decay scheduler).

patience_param Early-stopping patience; training stops when validation loss fails to improve for

this many epochs.

dropout_rate Dropout probability applied after every dense hidden layer.

12_lambda ℓ_2 (ridge) penalty applied to dense-layer weights.

cal_prop Proportion of subjects set aside for the conformal *calibration* set.

alpha Mis-coverage level for conformal prediction bands (e.g. 0.2 yields 80% bands).

verbose Passed to keras; larger values give more console output.

Details

Let $Y_i(t) \in L^2(\mathcal{I}_y)$ be the response curve for subject $i, X_i^{(p)}(s) \in L^2(\mathcal{I}_{x_p}), p \in \{1, \dots, P\}$, the functional predictors, and $\mathbf{Z}_i \in \mathbb{R}^{d_z}$ scalar predictors. The HDTN targets the nonlinear FoFR model

$$Y_i(t) = g \left\{ \beta_0(t) + \sum_{p=1}^P \langle X_i^{(p)}, \beta_p(\cdot, t) \rangle_{L^2} + \mathbf{Z}_i^\top \theta(t) \right\} + \varepsilon_i(t), \quad t \in \mathcal{I}_y,$$

with identity link g(u) = u in the present implementation.

Tensor-product layer. Each bivariate coefficient surface is expanded

$$\beta_p(s,t) = \sum_{k=1}^{K_x^{(p)}} \sum_{\ell=1}^{K_y} w_{k\ell}^{(p)} \, \phi_k^{(p)}(s) \psi_\ell(t),$$

yielding first-layer weights $w_{k\ell}^{(p)}$ to be learned. Subject-specific functional features are $\tilde{\varphi}_{ik}^{(p)} = \langle X_i^{(p)}, \phi_k^{(p)} \rangle_{L^2}$ and $u_{i\ell}^{(p)} = \sum_k \tilde{\varphi}_{ik}^{(p)} w_{k\ell}^{(p)}$.

Dense layers. The concatenated feature vector $\mathbf{h}_i^{(0)} = \left(u_{i\cdot}^{(1)\top}, \dots, u_{i\cdot}^{(P)\top}, \mathbf{Z}_i^{\top}\right)^{\top}$ is propagated through R fully-connected layers $\mathbf{h}_i^{(r)} = \sigma_r (W^{(r)} \mathbf{h}_i^{(r-1)} + b^{(r)})$ with dropout and ridge penalty $\lambda \|W^{(r)}\|_F^2/2$. The final linear layer outputs $\hat{\eta}_i(t_m)$, giving $\hat{Y}_i(t_m) = \hat{\eta}_i(t_m)$ for identity link.

Loss and optimisation. Training minimises mean integrated squared error plus the ridge penalty, $\mathcal{L} = \frac{1}{nM} \sum_{i=1}^{n} \sum_{m=1}^{M} \left\{ Y_i(t_m) - \hat{Y}_i(t_m) \right\}^2 + \frac{\lambda}{2} \sum_{r=1}^{R} \|W^{(r)}\|_F^2, \text{ via Adam with cosine-decay learning rate.}$

Conformal prediction. A calibration subset C (size cal_prop * n subjects) yields residuals $e_{jm} = |Y_j(t_m) - \hat{Y}_j(t_m)|$. The empirical $1 - \alpha$ quantile $q_{1-\alpha}$ of length(C)*M pooled residuals provides a constant-width $(1 - \alpha)$ band $[\hat{Y}_i(t_m) - q_{1-\alpha}, \hat{Y}_i(t_m) + q_{1-\alpha}]$ for every new subject i and grid point t_m . Finite-sample marginal coverage is guaranteed (Lei, G'Sell, et al., 2018).

Value

An object of class "fonf_dl" to be consumed by fonf_predict:

model Trained Keras model.

center, scale Vectors used to standardise the design matrix.

6 fonf_fit

```
py Number of response grid points (M). nbasis_y, nbasis_x Basis dimensions actually used. 
q_hat Half-width q_{1-\alpha} of the conformal prediction band. 
alpha User-supplied mis-coverage level. 
history keras_training_history object returned by fit().
```

Note

Requires TensorFlow/Keras (tested with TensorFlow >= 2.16).

Author(s)

Ufuk Beyaztas, Gizel Bakicierler Sezer, Deniz Inan

References

Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. and Wasserman, L. (2018). *Distribution-Free Predictive Inference for Regression. Journal of the American Statistical Association*, 113(523), 1094-1111.

See Also

```
fonf_predict, keras_model_sequential
```

```
## Not run:
# 1. Simulate training data
# n <- 100
# simdata <- dgp_mixed(n, 101, model = "nonlinear")</pre>
      <- simdata$y
      <- simdata$yt  # (true curves, if needed)
<- simdata$x  # list of functional predictors
# yt <- simdata$yt
# x
# xscl <- simdata$x.scl</pre>
                           # scalar predictors
# 2. Fit the hybrid deep tensor network
# ------
# nfof_model <- fonf_fit(resp</pre>
                                = y,
                        func\_cov = x,
                        scalar_cov = xscl)
## End(Not run)
```

fonf_fnc 7

fonf_fnc

Extract and Visualise Estimated Coefficient Surfaces

Description

Given a fitted fonf_fit model, this helper recovers the bivariate coefficient surfaces $\widehat{\beta}_p(t,s)$ that link functional predictor $X^{(p)}(s)$ to the functional response Y(t), evaluates them on user-supplied grids, and—optionally—renders compact, printer-friendly 3-D perspective plots via **plot3D**.

Usage

```
fonf_fnc(model,
                      = NULL,
         y_grid
         x\_grid
                      = NULL,
         {\sf agg\_fun}
                     = mean,
         plot
                      = TRUE,
         grid_len
                     = 101,
         view_theta = 40,
         view_phi
                     = 2,
         surface_col = "royalblue",
         border_col = "black",
         shade_fac
                    = 0.5,
                    = c(2.8, 0.8, 0),
         title_mgp
         ...)
```

Arguments

model	Object of class "fonf_dl" returned by fonf_fit.
y_grid	Numeric vector of evaluation points t_1,\ldots,t_M in the interval $[0,1]$. Defaults to seq(0, 1, length.out = grid_len).
x_grid	List of length P ; element p is the grid s_{k1},\ldots,s_{kL_k} for predictor p . Defaults to a length-grid_len equi-spaced grid for every predictor.
agg_fun	Function used to collapse the first-layer tensor weights into a single set of B-spline coefficients. With the default mean: $\widehat{\beta}_p(t,s) = \tfrac{1}{D_1} \sum_{d=1}^{D_1} w_d^{(p)} \ B_y(t) \ B_x^{(p)}(s).$
plot	Logical; if TRUE (default) one 3-D plot is produced for each predictor.
grid_len	Length of the default equi-spaced grids when y_grid or an element of x_grid is NULL.
view_theta, view_phi	
	Viewing angles (in degrees) passed to persp3D.
surface_col, border_col, shade_fac	
	Graphical parameters for the surfaces.
title_mgp	Margin settings for titles (argument passed to par (mgp = \dots) inside each plot).
	Currently ignored, reserved for future extensions.

8 fonf_fnc

Details

Let $B_y(t)$ be the vector of K_y B-spline basis functions for t and let $B_x^{(p)}(s)$ be the vector of $K_x^{(p)}$ basis functions for s in predictor p. The first layer of the network stores a weight matrix $W^{(1)}$ whose rows correspond to the spline products $B_y(t)$ $B_x^{(p)}(s)$. For each predictor p we:

- 1. Extract the contiguous block of $K_y K_x^{(p)}$ weights.
- 2. Fold it into a $K_y \times K_x^{(p)}$ matrix C_k .
- 3. Evaluate $\widehat{\beta}_p(t,s) = B_y(t)^{\top} C_k B_x^{(p)}(s)$ on the requested grids.

If plot = TRUE every surface is drawn with persp3D; otherwise the numeric matrices are returned silently.

Value

Invisibly returns a list with components:

beta_hat	List of length P ; element p is a length(y_grid) by length(x_grid[[p]]) matrix containing $\widehat{\beta}_p(t,s)$.
	matrix containing $p_p(t,s)$.
y_grid	Evaluation grid for t .
x_grid	Evaluation grids for s.
plots	List of closure functions; calling $plots[[p]]()$ re-draws the p -th surface.

Note

Requires the suggested packages fda, keras, and plot3D. An error is thrown if any are missing.

Author(s)

Ufuk Beyaztas, Gizel Bakicierler Sezer, Deniz Inan

See Also

```
fonf_fit, persp3D, eval.basis
```

```
## Not run:
# ------
# Fit a small model and visualise its coefficient surfaces
# -------
# simdata <- dgp_mixed(100, 101, model = "nonlinear")
#
# y <- simdata$y
# x <- simdata$x
# xscl <- simdata$x.scl
#
# mdl <- fonf_fit(resp = y, func_cov = x, scalar_cov = xscl)
#
# Plot the 2-D functional weights
# surf_obj <- fonf_fnc(model = mdl)
## End(Not run)</pre>
```

fonf_param_grid 9

fonf_param_grid

Create a Parameter Grid Without Factors

Description

Generates a data frame from all combinations of input vectors, ensuring that character variables are not converted to factors. This is a convenient wrapper around expand.grid(..., stringsAsFactors = FALSE).

Usage

```
fonf_param_grid(...)
```

Arguments

... One or more vectors, factors, or lists to be combined into a data frame of parameter combinations.

Details

This function simplifies the creation of parameter grids for tuning models. Unlike the base R expand.grid, it ensures that character vectors remain as characters, which is often desirable when building machine learning or neural network models where hyperparameter names or tags are string-based.

Value

A data frame containing one row for each combination of the supplied vectors.

Note

This function is mainly used to build cross-product grids of model parameters when performing grid search for tuning.

Author(s)

Ufuk Beyaztas, Gizel Bakicierler Sezer, Deniz Inan

fonf_predict

Predict With a Trained Hybrid Deep Tensor Network

Description

Generates point predictions and, optionally, distribution-free conformal prediction bands for a fonf_fit model given new functional and scalar covariates.

Usage

10 fonf_predict

Arguments

object An object of class "fonf_dl" returned by fonf_fit.

func_cov_new List of length P; element p is an $n_{\text{new}} \times G_p$ matrix that stores the new subjects'

functional predictor $X_{\text{new},i}^{(p)}(s_{pj})$.

scalar_cov_new Optional $n_{\text{new}} \times d_z$ numeric matrix of scalar covariates $Z_{\text{new},i}$. If the original

model was fitted without scalar covariates, set this to NULL.

interval Type of prediction to return:

"none" Point estimates only.

"conformal" Point estimates plus lower/upper bands that achieve marginal coverage $1-\alpha$ (see Details).

Details

Let f_{hat} denote the trained network and let (x_i, z_i) be the design-matrix rows for a new subject, built with the same tensor-product bases used in training. fonf_predict:

- 1. Builds the design matrix with design_matrix_build.
- 2. Standardises it with the training means and scales stored in the fitted object.
- 3. Computes the predictions, then reshapes the vector into an $n_{\text{new}} \times M$ matrix, where M = object\$py.

Conformal bands: If interval == "conformal" the returned bands are $\hat{Y}_i(t_m) \pm q_{1-\alpha}$, where $q_{1-\alpha}$ is the $(1-\alpha)$ -quantile of the absolute residuals on the calibration set chosen during training. Split-conformal theory (Lei *et al.*, 2018) guarantees marginal coverage $1-\alpha$ at each grid point, without distributional assumptions beyond independent rows.

Value

interval = "none" A numeric matrix with $nrow = n_{new}$ and ncol = py containing point predictions.

interval = "conformal" A list with components mean, lower, and upper, each a matrix whose
 columns are named "t1", "t2", ..., "tM".

Note

The feature grids supplied here must match those used at training time, and the length of the prediction vector must be divisible by object\$py; otherwise an error is raised.

Author(s)

Ufuk Beyaztas, Gizel Bakicierler Sezer, Deniz Inan

References

Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. & Wasserman, L. (2018). Distribution-Free Predictive Inference for Regression. *Journal of the American Statistical Association*, 113(523), 1094–1111.

See Also

```
fonf_fit, dgp_mixed
```

fonf_tune 11

Examples

```
## Not run:
# 1. Train a model on simulated data
# simdata <- dgp_mixed(100, 101, model = "nonlinear")</pre>
# mdl <- fonf_fit(resp = simdata$y,</pre>
                func_cov = simdata$x,
                scalar_cov = simdata$x.scl)
# 2. Predict on new subjects with conformal bands
# ------
# test <- dgp_mixed(250, 101, model = "nonlinear")</pre>
# band <- fonf_predict(mdl,</pre>
                     func\_cov\_new = test$x,
                     scalar_cov_new = test$x.scl,
#
                     interval = "conformal")
# pred_mean <- band$mean</pre>
## End(Not run)
```

fonf_tune

 ${\it Simple Grid-Search \, Hyper-parameter \, Tuner \, for \, fonf_fit}$

Description

Evaluates every row of a user-supplied hyper-parameter grid via K-fold cross-validation (fonf_cv), reports the cross-validated mean-squared error (CV-MSE), and then refits the best combination on the full data set. The implementation is deliberately lightweight—single-core, base R only—so it runs on any system where **fonf** installs.

Usage

Arguments

grid	A data frame created by fonf_param_grid describing the hyper-parameter combinations to be tested. Each column corresponds to an argument of fonf_fit.
resp	Numeric matrix of size $n \times p_y;$ functional response curves sampled on a common grid.
func_cov	List of length P ; element p is an $n \times G_p$ matrix containing the p -th functional predictor.
scalar_cov	Optional $n\times q$ numeric matrix of scalar predictors. Omit or set to NULL if none.
nfolds	Number of folds used by fonf_cv (default 5).

12 fonf_tune

Details

How it works: For each row g = 1, ..., G of grid:

- 1. The row is coerced to a named list of arguments compatible with fonf_fit (vectors such as neurons_per_layer are replicated to the correct length).
- 2. fonf_cv performs K-fold CV and stores the average test MSE in cv_vec[g].

After all rows are processed the index of the minimum CV-MSE is selected, the corresponding parameter list is re-sanitised by sanitize_basis(), and a final model is fitted on the whole data via fonf_fit with verbose = TRUE.

Value

results Data frame combining the original grid and a new column CV_MSE (lower is better).

best_model Object of class "fonf_d1" fitted on the full data with best_params.

Note

- This function is single-threaded. For large grids consider a parallel wrapper (e.g. **future.apply**).
- Internal helpers flatten1() and sanitize_basis() are not exported but are documented in the source code.

Author(s)

Ufuk Beyaztas, Gizel Bakicierler Sezer, Deniz Inan

```
## Not run:
# 1. Simulate training data
# -----
# n <- 100
# simdata <- dgp_mixed(n, 101, model = "nonlinear")</pre>
# y
    <- simdata$y
# x
     <- simdata$x
# xscl <- simdata$x.scl</pre>
# 2. Construct a small hyper-parameter grid
# grid <- fonf_param_grid(</pre>
# hidden_layers = c(1, 2),
# neurons_per_layer = list(32, c(64, 32)),
  activations_in_layers = list("relu", c("relu", "linear")),
# learning_rate = c(1e-3, 5e-4),
                  = 25
#
  epochs
#)
# ------
# 3. Tune and refit
# -----
```

load_air_data 13

load_air_data

Download and Load the External Air Quality Dataset

Description

Downloads the large $air_data.RData$ file (47 MB) from a Dropbox URL and loads it into the global environment. This is a workaround to bypass GitHub's file size limit for storing large datasets within an R package.

Usage

```
load_air_data(destdir = tempdir(), verbose = TRUE)
```

Arguments

destdir A directory path where the downloaded air_data.RData file will be saved lo-

cally. Defaults to a temporary directory.

verbose Logical. If TRUE, status messages are printed during download and loading.

Details

This function is intended for use with the air_data dataset used in the HDTN (Hybrid Deep Tensor Network) model for function-on-function regression. The dataset includes:

- y: a matrix of functional response curves (daily mean PM_{2.5} levels),
- x: a list of 5 functional predictor matrices,
- xscl: a matrix of scalar covariates.

Due to the large size of the dataset, it is not bundled with the package and must be downloaded separately via this function.

Value

Loads the object air_data into the global environment. This object is a list with elements:

y A matrix of dimension $n \times M$ representing functional responses.

x A list of 5 $n \times M$ functional predictor matrices.

A matrix of dimension $n \times 3$ for scalar covariates.

14 load_air_data

Note

This function downloads a 47 MB file from Dropbox. A stable internet connection is required. The file is cached locally but may be removed between sessions unless a permanent directory is specified.

Author(s)

Ufuk Beyaztas, Gizel Bakicierler Sezer, Deniz Inan

References

Maranzano, M., and Algieri, C. (2024). ARPALData: An R package for retrieving and analyzing air quality and weather data from ARPA Lombardia (Italy). *Environmental and Ecological Statistics*, 31(2), 187–218.

```
# Download and load the dataset into the workspace
# load_air_data()
## NOTE: This example involves ultra high-dimensional functional data.
## Running the model may require a PC with at least 64 GB of RAM.
# y <- air_data$y
# x <- air_data$x
# xscl <- air_data$xscl</pre>
# ntot <- dim(y)[1]
# ntrain <- 1000
# ntest <- ntot - ntrain</pre>
# train_ind <- sample(1:ntot, ntrain, replace = FALSE)</pre>
# Training sample
# y_train <- y[train_ind, ]</pre>
# y_test <- y[-train_ind, ]</pre>
# xscl_train <- xscl[train_ind, ]</pre>
# xscl_test <- xscl[-train_ind, ]</pre>
# Test sample
# x_train <- x_test <- vector("list", length = 5)</pre>
# for (j in 1:5) {
   x_train[[j]] <- x[[j]][train_ind, ]</pre>
  x_test[[j]] <- x[[j]][-train_ind, ]</pre>
# }
# Train HDTN approach
# nfof_model <- fonf_fit(resp = y_train, func_cov = x_train, scalar_cov = xscl_train)</pre>
# Obtain predictions with conformal prediction intervals
# band <- fonf_predict(nfof_model,</pre>
#
                        func\_cov\_new = x\_test,
#
                        scalar_cov_new = xscl_test,
#
                        interval = "conformal")
```

Index

```
dgp_mixed, 1, 10
eval.basis, 8
fonf_fit, 3, 4, 7-12
fonf_fnc, 7
fonf_param_grid, 9
fonf_predict, 5, 6, 9
fonf_tune, 11
keras_model_sequential, 6
load_air_data, 13
persp3D, 7, 8
r_ou, 3
```