CSE 585:Advanced Scalable Systems for GenAl

Mosharaf Chowdhury

Today's Agenda

- Administrivia
- Topics
- Projects

About Mosharaf

ViNEYard

virtual network embedding (2008-2012)

in-memory computing (2009-2014)

data-parallel communication (2010-2016)

Coflow

Infiniswap

software memory disaggregation (2016-2022)

Salus

GPU resource management (2017-2022)

systems for federated learning (2019-)

Al energy optimization (2021-)

Associate Professor of CSE

- http://www.mosharaf.com/
- https://symbioticlab.org/
- Office hours:
 - Appointment-only

About Insu Jang (GSI)

 4th-year PhD student at SymbioticLab

- Office hours from next week
 - 4828 BBB, I230PM-I30PM Fridays
 - No office hours this week
 - insujang@umich.edu

Status

- As of today: ~60 registered or w/ override
- If you are not planning to take the class, drop ASAP
 - Existing overrides that have not converted will be revoked

Course Schedule

- Webpage: https://github.com/mosharaf/cse585
- Meetings
 - 10:30 AM 12PM (T/Th for lectures and seminars)
 - 1:30 PM 2:30 PM (**Fri** for makeups and projects)
- Pay attention to the online announcements and schedule
 - On average, two meetings per week
 - Friday makeups will be added on a need-to-add basis

Prerequisites

- EECS 482 / 484 / 489 / 491
 - Equivalent courses are acceptable as well
- Good programming skills
 - Build substantial systems for course project

Course Requirements

Paper Summary	15%
Paper Presentation	15%
Participation	10%
Project Report	40%
Project Presentations	20%

Topics (#Lectures)

- GenAl Basics (3)
- Pre-Training (4)
- Post-Training (I)
- Inference (6)
- Grounding (I)
- GenAl (for) Systems (1)
- Power and Energy (I)
- Ethical Considerations (I)

Group-Based Work

- ALL activities will be done in groups except for participation
 - Paper presentation
 - Paper summary
 - Research projects

Form Groups ASAP

- Submit at https://forms.gle/iHkfmPvBtz5gXjTb7
 - By September 5 the latest, but **right now** is better
 - We need a group to pickup duties for Sep 5!!!
 - Use piazza to find group members
 - Group size should be 3 to 4

Readings

• 40 papers/articles across

- Primarily from systems venues like SOSP, OSDI, NSDI, EuroSys, and MLSys
- Some from traditional AI/ML venues but still with systems-y flavor

Paper Presentation

This is a seminar-style course

- Each group must present at least one lecture (required papers and the rest)
- Paper presentation account for 15% of the total grade

• The entire class will be dedicated to the assigned paper(s)

- Aim for 40-minute presentation without interruption
- But there will be intermittent discussions

Lead the discussion

- Go through the paper in details, along with its strengths and weaknesses
- Include companion papers and other related papers

Paper Presentation

- Share your slides to cse585-staff@umich.edu 24 hours before the class
 - Use Google Sheets so we can provide in-place comments/feedback
- Prepare early
- Practice a lot
- Also, read
 - How to Give a Bad Talk, by David A. Patterson

Paper Summaries

- This is a paper-reading course
 - Paper summaries account for 15% of the total grade
- Roughly I-2 summary per-group (assigned)
- Each summary must follow the template and address the following
 - What is the problem and why is it important?
 - What is the hypothesis of the work?
 - What is the proposed solution, and what key insight guides their solution?
 - What is one (or more) drawback or limitation of the proposal, and how will you improve it?
- Summary must include the gist of class discussion

Paper Summaries

- Reviews must be shared to cse585-staff@umich.edu within 24 hours of class presentation
 - Use Google docs so we can provide in-place comments/feedback
- Delayed submission will receive NO CREDIT
 - There will be NO extensions

Panel Discussion

The Authors

Groups that present and write summary

The Reviewers

- Each group will be assigned to at least one of these slots
- Will have their own questions to ask to the authors
- Will receive questions raised by the class (described below) from the GSI before the lecture

Rest of the Class

- <u>Submit</u> one insightful question for each presented papers by 3PM the day before
- Ask questions directly too

In general,

- No extensions
- Everyone must come to class after reading the required papers of the day

What Do We Talk About When We Talk About "Advanced Scalable Systems for GenAl"

Resource-Centric View

What's in a (Simplified) Server?

Interconnected compute and storage resources

Different bandwidth and latency constraints

Simplified diagram

• Doesn't include faster networks such as RDMA, dedicated GPU interconnects such as NVIink, etc...

Typical Memory/Storage Hierarchy

Fundamental Goals of (SW/HW) System Design

- Minimize time to access data
- Maximize compute utilization
- Balanced System

Maruf et al, SIGMETRICS 2023

What's in a Modern Al Server?

NVIDIA GH200 Grace Hopper Superchip

https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper

Scale Out: Warehouse-Scale Computer (WSC)

Single organization

Homogeneity (to some extent)

Cost efficiency at scale

- Multiplexing across applications and services
- Rent it out!

Many concerns

- Infrastructure
- Networking
- Storage
- Software
- Power/Energy
- Failure/Recovery

• ...

WSC/Datacenter Architecture DDR5 PCle v5 **SATA** Ethernet NVMe

8/27/24

Example: Scaling Out Using NVIDIA GH200

Datacenter Needs an Operating System

Datacenter is a collection of

- Compute
- Memory
- All connected by an interconnect

Not unlike a computer

Some differences

- I. VERY high level of parallelism
- 2. VERY large scale
- 3. Diversity of workloads
- 4. Resource heterogeneity
- 5. Failure is the norm

Three Categories of Software

I. Platform-level

• Software firmware that are present in every machine

2. Cluster-level

Distributed systems to enable everything

3. Application-level

• User-facing applications built on top

Common "Systems" Techniques

Technique	Performance/Efficiency	Availability/Resilience
Replication & Erasure coding	X	X
Sharding/partitioning	X	X
Scheduling & Load balancing	X	
Health & Integrity checks		×
Compression & Quantization	X	
Centralized controller	X	
Canaries		X
Speculation & Redundant execution	X	

Break!

Workload-Centric View

The Llama 3 Herd of Models

Three key levers in the development of high-quality foundation models

I. Data

- Both quality and quantity matters
- Both pre-processing and post-processing matters
- Llama 3 was pre-trained on a corpus of about 15T multilingual tokens.

2. Scale:

- Compute-optimal training for the biggest and overtraining for smaller ones
- Pre-trained using 3.8*10²⁵ FLOPs

3. Managing complexity:

• Simplicity for scale

Pre-Training

- I. Curation and filtering of a large-scale training corpus
- 2. Development of a model architecture and corresponding scaling laws for determining model size
- 3. Development of techniques for efficient pre-training at large scale
- 4. Development of a pre-training recipe

Scaling Laws

Figure 2 Scaling law IsoFLOPs curves between 6×10^{18} and 10^{22} FLOPs. The loss is the negative log-likelihood on a held-out validation set. We approximate measurements at each compute scale using a second degree polynomial.

Figure 3 Number of training tokens in identified computeoptimal models as a function of pre-training compute budget. We include the fitted scaling-law prediction as well. The compute-optimal models correspond to the parabola minimums in Figure 2.

Training Infrastructure

Compute

- Up to 16K H100 GPUs, each running at 700W TDP with 80GB HBM3
- Each server is equipped with eight GPUs and two CPUs. Within a server, the eight GPUs are connected via NVLink

Storage

- Tectonic: 240 PB of storage out of 7,500 servers equipped with SSDs, and supports a sustainable throughput of 2 TB/s and a peak throughput of 7 TB/s
- Major challenge: highly bursty checkpoint writes that saturate the storage fabric for short durations
 - Ranging from I MB to 4 GB per GPU, for recovery and debugging
 - Minimize GPU pause time during checkpointing and increase checkpoint frequency to reduce the amount of lost work after a recovery

Network Infrastructure

400 Gbps interconnects between GPUs

- Llama 3 405B used RDMA over Converged Ethernet (RoCE) fabric
- Smaller models were trained using Nvidia Quantum2 InfiniBand fabric

Network Topology

- RoCE-based cluster has 24K GPUs connected by a three-layer Clos network
- 16 GPUs/rack x 192 racks/pod x 8 pods
- Full BB within each pod and 1:7 oversubscription across pods
- Cluster software are topology-aware

Load balancing and CC

See paper

4D Parallelism

- Tensor, Pipeline, Context, and Data parallelism
 - See Figure 5
- GPU utilization
 - Careful configuration of the parallelism configuration, hardware, and software
- Network-aware parallelism configuration

Reliability and Operational Challenges

Component	Category	Interruption Count	% of Interruptions
Faulty GPU	GPU	148	30.1%
GPU HBM3 Memory	GPU	72	17.2%
Software Bug	Dependency	54	12.9%
Network Switch/Cable	Network	35	8.4%
Host Maintenance	Unplanned	32	7.6%
CDII CD AM Marsaura	Maintenance GPU	10	1 E 07
GPU SRAM Memory		19	4.5%
GPU System Processor	GPU	17	4.1%
NIC	Host	7	1.7%
NCCL Watchdog Timeouts	Unknown	7	1.7%
Silent Data Corruption	GPU	6	1.4%
${ m GPU\ Thermal\ Interface} + { m Sensor}$	GPU	6	1.4%
SSD	Host	3	0.7%
Power Supply	Host	3	0.7%
Server Chassis	Host	2	0.5%
IO Expansion Board	Host	2	0.5%
Dependency	Dependency	2	0.5%
CPU	Host	2	0.5%
System Memory	Host	2	0.5%

Table 5 Root-cause categorization of unexpected interruptions during a 54-day period of Llama 3 405B pre-training. About 78% of unexpected interruptions were attributed to confirmed or suspected hardware issues.

Projects

Research-Oriented Course!

- The final project accounts for 60% of total grades
- What can and cannot be a project?
 - Just surveys are not allowed
 - Measurements of new environments or of existing solutions on new environments are acceptable
 - Reproducing results from existing solutions is also acceptable
- An ideal project should answer the questions you asked during paper reviews and points you cared about for presentations

How to Approach it?

- I. Find a problem and motivate why this is worth solving
- 2. Quickly survey background and related work
 - Might require you to go back to the first step
- 3. Form/update your hypothesis
- 4. Test your hypothesis
 - Go back to 3 until you are happy
- 5. Present your findings on poster and in writing
 - Discuss known limitations

Milestones

Date	Milestone	Details
09/05/24	Form Group	Find like-minded students
09/19/24	Submit Proposal	Send your proposal by email to receive feedback either via email or in-person or both
10/22/24 10/24/24	Mid-Semester Presentations	Define and motivate a problem, overview related work, and form initial hypothesis and idea
12/03/24 12/05/24	In-Class or Poster Presentations	Present your findings
12/16/24	Research paper	Submit a report like the papers you read

Draft Proposal (Sep 19)

- Two pages including references that must include
 - What is the problem?
 - Why is it important to solve?
 - Any initial thoughts on what you want to do?
 - How would you evaluate your solution?
- Include team members
 - Meaning, form a group ASAP
- Approved by the instructor and agreed upon by you
 - Forms the basis of expectation

Mid-Semester Checkpoint (Oct 22,24)

• In-class short presentation over two days

• This is to make sure you are making progress

Must include

- What is the problem?
- Why is it important?
- What are the most related work?
- What's your hypothesis so far?
- How are/will you evaluate it?

Presentation & Paper (Dec 3, 5, 16)

Research paper

- The key part
- Should be written like the papers you've read
- As if you'd submit it to a workshop with ~3 more months of work or to a conference after ~6 more months of work
- How to Write a Great Research Paper by Simon Peyton Jones
- Extended from the mid-semester checkpoint

Project Ideas

Some project suggestions

 https://docs.google.com/document/d/Isxhnw_443IYerYXBo0LmkgcQusAjnpQfs BRhMBW53a0/edit#heading=h.wlyqsjqv97gf

You can propose your own projects too!

Next Class...

Read the required readings

Form groups of 3-4 and fill out https://forms.gle/iHkfmPvBtz5gXjTb7 by Sep 5

- Decide if you'll drop, before you fill it
- If you are to drop, drop immediately

Sign up for Sep 5 presentation slot for extra benefits!