ASSIGNMENT 2

EE24BTECH11011 - PRANAY

- 27) Let $I = \int \frac{f(z)}{(z-1z-2)} dz$, where $f(x) = \sin \frac{\pi z}{2} + \cos \frac{\pi z}{2}$ and C is the curve |z| = 3 oriented anticlockwise. Then
 - a) $4\pi i$
 - b) 0
 - c) $-2\pi i$
 - d) $-4\pi i$
- 28) Let $\sum_{-\infty}^{\infty} b_n z^n$ be the Laurent series expansion of the function $\frac{1}{z \sinh z}$, $0 < |z| < \pi$. Then which one of the following is correct?
 - a) $b_{-2} = 1, b_0 = -\frac{1}{6}, b_2 = \frac{7}{260}$

c) $b_{-2} = 0, b_0 = -\frac{1}{6}, b_2 = \frac{7}{360}$

- b) $b_{-3} = 1, b_{-1} = -\frac{1}{6}, b_1 = \frac{7}{360}$
- d) $b_0 = 1, b_2 = -\frac{1}{6}, b_6 = \frac{7}{360}$
- 29) Under the transformation $w = \sqrt{\frac{1-iz}{z-i}}$, the region $D = \{z \in \mathbb{C} : |z| < 1\}$ is transformed to
 - a) $\{z \in \mathbb{C} : 0 < argz < \pi\}$
 - b) $\{z \in \mathbb{C}: -\pi < argz < 0\}$
 - c) $\left\{ z \in \mathbb{C} : 0 < argz < \frac{\pi}{2} \text{ or } \pi < argz < \frac{3\pi}{2} \right\}$
 - d) $\left\{z \in \mathbb{C} : \frac{\pi}{2} < argz < \pi \text{ or } \frac{3\pi}{2} < argz < 2\pi\right\}$
- 30) Let y(x) be the solution of the initial value problem

$$y''' - y'' + 4y' - 4y = 0 \quad , y(0) = y'(0) = 2 \quad , y''(0) = 0$$
 (1)

Then the value of $y\left(\frac{\pi}{2}\right)$

- a) $\frac{1}{5} \left(4e^{\frac{\pi}{2}} 6 \right)$ b) $\frac{1}{5} \left(6e^{\frac{\pi}{2}} 4 \right)$ c) $\frac{1}{5} \left(8e^{\frac{\pi}{2}} 2 \right)$ d) $\frac{1}{5} \left(8e^{\frac{\pi}{2}} + 2 \right)$
- 31) Let y(x) be the solution of the initial value problem

$$x^{2}y'' + xy' + y = x, \quad y(1) = y'(1) = 1$$
 (2)

Then the value of $y(e^{\frac{\pi}{2}})$ is

- a) $\frac{1}{2} \left(1 e^{\frac{\pi}{2}} \right)$ b) $\frac{1}{2} \left(1 + e^{\frac{\pi}{2}} \right)$ c) $\frac{1}{2} + \frac{\pi}{4}$ d) $\frac{1}{2} \frac{\pi}{4}$

- 32) Let $T: P_3[0,1] \to P_2[0,1]$ be defined by (Tp)(x) = p''(x) + p'(x). Then the matrix representation of T with respect to the bases $\{1, x, x^2, x^3\}$ and $\{1, x, x^2\}$ of $P_3[0, 1]$ and $P_2[0, 1]$ respectively is

 - a) $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ b) $\begin{pmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 3 \end{pmatrix}$ c) $\begin{pmatrix} 0 & 2 & 1 & 0 \\ 6 & 2 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{pmatrix}$ d) $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 2 \\ 2 & 6 & 0 \end{pmatrix}$

33)	Let	$T\colon \mathbb{R}^3$	\rightarrow	\mathbb{R}^3	be	a	linear	transformations	defined	by	T(x, y, z)	=	(x + y, y +	z, z +	x)	then	the
	orth	onorm	al ba	asis	for	th	e rang	e T is									

a)
$$\left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \right\}$$

b) $\left\{ \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0 \right) \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right) \right\}$

c)
$$\left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}} \right) \right\}$$

d) $\left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right) \right\}$

- 34) Consider the basis $\{u_1, u_2, u_3\}$ of \mathbb{R}^3 , where $u_1 = (1, 0, 0)$ $u_2(1, 1, 0)$, $u_3(1, 1, 1)$. Let $\{f_1, f_2, f_3\}$ be the dual basis of $\{u_1, u_2, u_3\}$ ad f be a linear functional defined by f(a, b, c) = a + b + c, $(a, b, c) \in \mathbb{R}^3$. If $f = \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 + f_3$, then $(\alpha_1, \alpha_2, \alpha_3)$ is
 - a) (1, 2, 3)
- b) (1,3,2)
- c) (2,3,1)
- d) (3, 2, 1)
- 35) The following table gives the cost matrix of a transportation problem The basic feasible solution

4	5	6
3	2	2
1	1	2

given by $x_{11} = 3$, $x_{13} = 1$, $x_{23} = 6$, $x_{31} = 2$, $x_{32} = 5$ is

- a) degenerate and optimal
- b) optimal but not degenerate
- c) degenerate but not optimal
- d) neither degenerate nor optimal
- 36) If z^* is the optimal value of the linear programming problem

Maximize
$$z = 5x_1 + 9x_2 + 4x_3$$
 (3)

subject to
$$x_1 + x_2 + x_3 = 5$$
 (4)

$$4x_1 + 3x_2 + 2x_3 = 12 (5)$$

$$x_1, x_2, x_3 \ge 0,$$
 (6)

then

- a) $0 \le z^* 10$
- b) $10 \le z^*20$
- c) $20 \le z^*30$
- d) $30 \le z^*40$
- 37) Let G_1 be an abelian group of order 6 and $G_2 = S_3$. For j = 1, 2, let P_j be the statement " G_j has an unique order of 2". Then
 - a) both P_1 ad P_2 holds
 - b) neither P_1 nor P_2 holds
 - c) P_1 holds but not P_2
 - d) P_2 holds but not P_1
- 38) Let G be group of all symmetries of the square . Then the number of conjugate classes in G is
 - a) 4

b) 5

c) 6

- d) 7
- 39) Consider the polynomial ring $\mathbf{Q}[x]$. The ideal of $\mathbf{Q}[x]$ generated by $x^2 3$ is

- a) maximal but not primeb) prime but not maximalc) both maximal and primed) neither maximal nor prime