MATHEMATICAL TOOLS IN CS - PROBLEM SET 1

Due Sunday, November 20th, 20:00.

Random Variables. In the following, all random variables are assumed to have finite mean and variance. All graphs are finite. \mathbb{P} denotes probability and \mathbb{E} denotes expectation.

As a public service, here are Markov and Chebychev's respective inequalities:

Proposition. Let X be a non-negative random variable with $\mathbb{E}[X] > 0$, and let c>0. Then $\mathbb{P}\left[X\geq c\mathbb{E}\left[X\right]\right]\leq \frac{1}{c}$.

Proposition. Let X be a random variable with Var[X] > 0, and let c > 0. Then $\mathbb{P}\left[\left|X - \mathbb{E}\left[X\right]\right| \ge c\sqrt{Var\left[X\right]}\right] \le \frac{1}{c^2}.$

Problem 1.

- (1) Let X, Y be independent random variables. Show that $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$.
- (2) Show that the converse need not hold: There exist random variables X, Ys.t. $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ but X and Y aren't independent.
- (3) Let X_1, \ldots, X_n be pairwise independent random variables (that is, for $1 \le n$ $i < j \le n, X_i$ and X_j are independent). Prove that $Var\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n Var\left[X_i\right]$.

 (4) Give an example of random variables X, Y, Z that are pairwise independent
- but not independent.

Reminder: Random variables X_1, X_2, \ldots, X_n are called *independent* if for all $x_1, x_2, ..., x_n$:

$$\mathbb{P}[X_1 = x_1, X_2 = x_2, \dots, X_3 = x_3] = \mathbb{P}[X_1 = x_1] \cdot \mathbb{P}[X_2 = x_2] \cdot \dots \cdot \mathbb{P}[X_n = x_n]$$

Problem 2.

(1) Show that the Markov and Chebychev bounds are optimal. To do this, define random variables X and Y s.t. there exist a, b > 0 s.t:

$$\begin{split} \mathbb{P}\left[X \geq a \mathbb{E}\left[X\right]\right] &= \frac{1}{a} \\ \mathbb{P}\left[\left|Y - \mathbb{E}\left[Y\right]\right| \geq b \sqrt{Var\left[Y\right]}\right] &= \frac{1}{b^2} \end{split}$$

(2) Show that the Markov and Chebychev bounds are not necessarily tight: Define random variables X and Y s.t. there exist $a \ge 1, b > 0$ s.t:

$$\begin{split} \mathbb{P}\left[X \geq a \mathbb{E}\left[X\right]\right] < \frac{1}{a} \\ \mathbb{P}\left[\left|Y - \mathbb{E}\left[Y\right]\right| \geq b \sqrt{Var\left[Y\right]}\right] < \frac{1}{b^2} \end{split}$$

Note that here you're asked to find a > 1. Would your have changed your answer if the requirement was just a > 0?

1

Problem 3.

- (1) Let $p \in (0,1)$ and let $X_n \sim Bin(n,p)$. Let $0 \le \alpha . Prove:$ $\lim_{n \to \infty} \mathbb{P}\left[X_n \le \alpha n\right] = \lim_{n \to \infty} \mathbb{P}\left[X_n \ge \beta n\right] = 0$
- (2) Set $n=100, p=\frac{1}{2}, \alpha=\frac{1}{4}$. Bound $\mathbb{P}\left[X_{100}\leq\frac{1}{4}\cdot 100\right]$ in a way analogous to what you did in part 1.
- (3) Calculate $\mathbb{P}\left[X_{100} \leq \frac{1}{4} \cdot 100\right]$ to two decimal digits of precision (for this you might want to use a computer). How close is the result to what you got in part 2? If the results aren't close, why do you think this is the case?
- (4) Fix $p \in [0,1]$ and $\varepsilon > 0$. For every n, let A_n be the random variable denoting the number of edges in the G(n, p) model of random graphs. What is $\mathbb{E}[A_n]$? Show that:

$$\lim_{n \to \infty} \mathbb{P}\left[(1 - \varepsilon) \, \mathbb{E}\left[A_n \right] \le A_n \le (1 + \varepsilon) \, \mathbb{E}\left[A_n \right] \right] = 1$$

Problem 4. A triangle in a graph G = (V, E) is a set $\{a, b, c\} \subseteq V$ of cardinality 3 s.t. $ab, ac, bc \in E$. For a graph G, let T(G) be the number of triangles in G. A graph is called triangle-free if T(G) = 0. If G_n is sampled from $G(n, \frac{1}{n})$, then $T(G_n)$ is a sequence of random variables. Let A_n be the number of edges in G_n .

- (1) Show that $\mathbb{P}\left[T\left(G_n\right)=0\right] > \frac{5}{6}$.
- (2) Show that $\mathbb{P}\left[A_n \leq \frac{n}{2} \sqrt{n}\right]^0 \leq \frac{5}{6}$. (3) Conclude that there exist triangle-free graphs with n vertices, and at least $\frac{n}{2} - \sqrt{n}$ edges.
- (4) Can you give an example of a triangle-free graph with at least $\frac{n^2}{4} 1$ edges?