CE 631: Simulation and IT Applications in Construction Semester 1 - 2024

Test
Time: 1 Week

Question #1: Take Home

Date: November 18, 2024 at 11:30 am

(3 pages including cover sheet)

<u>Include this questions booklet to your answer booklet and submit</u>
them online on or before Monday, November 25, 2024, at 8:30am

Name:			
ID #.			
ID #:			

Test: Q1 (November 18, 2024) at 11:30 am

Problem No. 1: (Assume any missing information) Name:

Conduct a simulation of the precast concrete element plant modeled as attached. Assume that each batch results in the production of 2 concrete elements. Assume that the use of each form costs \$1,000/day. Assume that the daily (8-hour shift) cost of each additional crew is \$800. In the range of 2 to 5 crews and for 2, 4, 6, and 8 forms, using sensitivity analysis, determine which system will produce the optimum cost/element (i.e., minimum cost/unit). Data are given in the following tables.

Table 1: System Time Attributes

Table 1. System Time Attributes								
Element Number	Distribution	Set Number	Mean	Lower Bound	Upper Bound	Standard Deviation		
2	Normal	2	40	30	60	8		
4	Constant	3	150	-	-	-		
6	Constant	4	30	-	ı	-		
8	Normal	5	35	18	52	7		
10	Constant	6	400	-	ı	-		
12	Normal	5	25	14	42	5		
14	Normal	7	45	20	64	8.5		
19	Normal	8	65	37	83	20		
21	Normal	9	38	19	57	8		

Table 2: Ingredience-Constrained Work Tasks

	Activities						
Ingredient	2	6	8	12	19		
	Mix and	Pull Forms	Load in	Unload form	Clean Form		
	pour		Curing Tunnel	Tunnel			
1	Crew at 15	Batch and	Batch at 7	Batch at 11	Crew at 15		
		form at 5					
2	Batch at 22	Crew at 15	Cure position at	Truck at 17	Form at 16		
			18				
3	Set position at		Crane at 25	Crane at 25			
	23						
4	Form at 24			_			

Questions:

- a) Develop EzStrobe and AnyLogic models to simulate the attached precast concrete model.
- b) Run the models to determine the average precast concrete element's production.
- c) Generate complete sets of reports from both programs.
- d) Select the best alternative.

