Derivative Crusher Algorithm

by Ratindranath Akhoury

EVAN CARPENTER

Winter 2022

Idea: A partial derivative with thermodynamically significant variables $\left(\frac{\partial x}{\partial y}\right)_z$ where $\{x,y,z\}$ can be any of $\{S,T,P,V,E,F,G,H\}$ can be expressed in terms of in terms of first and second derivatives of fundamental relations. This re-arranging of expressions is very useful in thermodynamics and statistical mechanics, as it allows us to find simple relations between physical quantities in a thermodynamical system. The Derivative Crusher Algorithm is an algorithm that "crushes" a thermodynamically significant partial derivative into useful and easily measureable quantities. Developed and taught by Professor Ratindranath Akhoury.

1 Background

Variable	Easy to keep fixed?	Easy to measure change?
S	Yes, Adiabatic processes	No, change in S depends on change in Q, which is hard to measure
T	Yes, with a heat bath or feedback system	Yes, by using a thermometer
V	No, not easily, thermal expansion of the container is a byproduct of the container being thermally conduc- tive, the volume changes with heat	Yes
P	Yes, keeping equilibrium with atmosphere	Yes, barometer

Table 1: T, P are the easiest quantities to measure and control, making G(T, P) the easiest fundamental relationship to work with.

Looking at G(T, P) = E - TS - PV more closely:

$$\begin{split} \left(\frac{\partial G}{\partial T}\right)_P &= -S & \left(\frac{\partial G}{\partial P}\right)_T &= V \\ \left(\frac{\partial^2 G}{\partial T^2}\right)_P &= -\left(\frac{\partial S}{\partial T}\right)_P \equiv \frac{C_P}{T} & \left(\frac{\partial^2 G}{\partial P^2}\right)_T &= \left(\frac{\partial V}{\partial P}\right)_T \equiv \kappa V \\ &\left[\frac{\partial}{\partial T}\left(\frac{\partial G}{\partial P}\right)_T\right] &= \left[\frac{\partial}{\partial P}\left(\frac{\partial G}{\partial T}\right)_P\right]_T &= \alpha V \end{split}$$

 C_p is specific heat at constant pressure.

 κ is isothermal compressibility.

 α is volume coefficient of expansion.

Physics 406 Evan Carpenter

1.1 Background

The derivative crusher algorithm is made of three partial derivative operations:

1. Bringing y to the numerator:

$$\left(\frac{\partial x}{\partial y}\right)_z = \frac{1}{\left(\frac{\partial y}{\partial x}\right)_z}$$

2. Bringing z to the numerator:

$$\left(\frac{\partial x}{\partial y}\right)_z = -\frac{\left(\frac{\partial z}{\partial y}\right)_x}{\left(\frac{\partial z}{\partial x}\right)_y}$$

3. Introduce new variable w:

$$\left(\frac{\partial x}{\partial y}\right)_z = \frac{\left(\frac{\partial x}{\partial w}\right)_z}{\left(\frac{\partial y}{\partial w}\right)_z}$$

2 Steps

1. Bring potentials E, F, G, H to the numerator and eliminate them using:

$$dE = TdS - PdV$$

$$dF = -SdT - PdV$$

$$dG = -SdT + VdP$$

$$dH = TdS + VdP$$

2. Bring S to numerator using Maxwell Relations depending on what z is in $\left(\frac{\partial x}{\partial y}\right)_z$

$$z = T \qquad \boxed{ \left(\frac{\partial S}{\partial V} \right)_T = \left(\frac{\partial P}{\partial T} \right)_V \quad , \quad \left(\frac{\partial S}{\partial P} \right)_T = - \left(\frac{\partial V}{\partial T} \right)_P }$$

$$z = P, V \quad \boxed{\left(\frac{\partial S}{\partial T}\right)_P = \frac{C_P}{T} \quad , \quad \left(\frac{\partial S}{\partial T}\right)_V = \frac{C_v}{T}}$$

- 3. Bring V to numerator in order to get α or κ .
- 4. Eliminate C_v in favor of C_p, α, κ