

MTP Phase-I: Hydrogen Storage Potential in Salt Caverns of Western Part of India

GUIDED BY:

Dr. Karuna Kalita

Professor

PRESENTED BY:

HARDIK DAVE

Roll No. 234103324

Outline

1. Introduction

- i. Why Hydrogen?
- ii. India's Hydrogen Demand and National Green Hydrogen Mission
- iii. Various methods of producing Hydrogen
- iv. Various Storage Methods of Hydrogen
- 2. Motivation of Study: Why UHS matters?
- 3. Literature Review
 - i. Why Salt Cavern?
 - ii. Salt Cavern vs Aquifers vs Depleted Reservoirs
 - iii. Worldwide operated UHS sites
 - iv. Potential Sites for Underground Hydrogen Storage in India
- 4. Research Gap & Problem Statement
- 5. Bikaner-Nagaur- Ganganagar Basin
- 6. Modelling studies in the field of UHS in Salt Cavern
- 7. Methodology
 - i. Governing Equations
 - ii. Input and Output Parameter of Volumetric Module
- 8. Results
- 9. Conclusion
- 10. Future Scope

Reference

1. Introduction

- □ The widespread use of fossil fuels causes carbon emissions, leading to global warming and climate change. We must transition to renewable energy to reduce carbon emissions and limit global temperature rises to 1.5°C.
- ☐ However, the intermittent nature of solar and wind power limits large-scale renewable energy use.

□ Converting renewable energy into hydrogen and storing it can address the intermittent nature of solar and

wind power, enabling large-scale use

Fig 1: Global energy consumption [1]

Fig 2: Global Carbon Emission [1]

i. Why Hydrogen?

Hydrogen is the richest in the energy per unit mass (LHV 120 MJ/kg).

Safer than other fuels, cleaner combustion product.

-Density: 0.08 kg/m³ at NTP, Diffusivity 0.63 cm²s⁻¹

	On Mas	On Volume basis	
	On LHV basis	On HHV basis	Volumetric Density
Hydrogen	120 MJ/kg	142 MJ/kg	1.8 MJ/L @ 200 bar (ρ = 15 kg/m³)
Methane	50 MJ/kg	55.6 MJ/kg	8.39 MJ/L @ 200 bar
LPG	46 MJ/kg	50 MJ/kg	26 MJ/L @ 5 bar
Gasoline	44 MJ/kg	47 MJ/kg	32 MJ/L @ NTP

Fig 3. Volumetric comparison of Hydrogen with respect to Gasoline

For Hydrogen inversion temperature T is 202K at room temperature, μ_i of hydrogen is negative

Cooling of gas is required during isenthalpic expansion

Because of low volumetric density, Large-scale Storage becomes economical to store hydrogen

ii. India's Hydrogen Demand and National Green Hydrogen Mission

- ☐ Currently, India's hydrogen demand is approximately 6 million tonnes (MT) per year
- ☐ Hydrogen demand in India is projected to increase nearly fivefold, reaching approximately 28 million tons (MT) annually by 2050
- ❖ Key objective of National Green Hydrogen Mission for UHS
- ☐ To undertake research activities on underground storage to validate the performance in different geologies, to identify better and more cost-effective methods and to encourage improved designs.
- ☐ Demonstrate large-scale underground storage across various media at a capital cost lower than INR 3000 /kg by 2030.

Fig 4 India's hydrogen demand projection in low carbon scenario and production cost projection[2]

iii. Various methods of producing Hydrogen

Fig 5. Various method of producing hydrogen [3].

iv. Various Storage Methods of Hydrogen

2. Motivation of Study

3. Literature Review

i. Why Salt Cavern?

Salt caverns are man-made artificial pits in thick underground salt deposits, mostly in cylindrical shape

- > Salt caverns are created within salt deposits through a process known as solution mining.
- > This method involves injecting fresh water into a well drilled into the salt rock.
- The water dissolves the salt, forming a brine solution, which is then extracted and pumped to the surface; this procedure is called leaching.
- > As the brine is removed, it leaves behind a hollow space, forming a salt cavern.
- ✓ Once the leaching is completed and a desired shape is achieved, the brine is replaced with a cushion gas which may be nitrogen or natural gas.
- ✓ The cushion gas provides the minimum internal pressure required to maintain the integrity of the cavern.

Fig 6. Solution mining process [4]

ii. Salt Cavern vs Aquifers vs Depleted Reservoirs

Parameters	Salt Caverns	Aquifers	Depleted Reservoirs
Geology rock type	Artificial pits in thick underground salt deposits, mostly cylindrical	Sandstones and conglomerates, Porous Media	Massive non-foliated metamorphic rocks, large sedimentary rocks
Availability	Particularly in Salt deposits	Found all over the world	Difficult
Depth range	Upto 2300 m	300-1800 m	300-2700 m
Storage capacity	Upto 10,00,000 m ³	upto 280 x 10 ⁸ m ³	upto $280 \times 10^8 \mathrm{m}^3$
Operating Pressure	35-270 bar	30–315 bar	15–285 bar
Cushion Gas Requirement	20-30%	50-60%	45-80%
Intial Cost	High	Average	Average
Operating Cost	Low	Average	Average
Gas Tightness	High	Low	High
Purity of Hydrogen	> 95%	Approx 50% reported in Czech Republic and France	Low
Usability purpose	Frequent	Seasonal	Seasonal

iii. Worldwide operated UHS sites

Country	Field	H ₂ (%)	Working Condition	Depth (m)	Volume (m³)	Status	
Salt Caverns							
United Kingdom	Teesside	95	45 bar	365-430	210,000	Operating	
USA	Clemens	95	70–137 bar	1000	580,000	Operating	
USA	Moss Bluff	_	55–152 bar	1200	566,000	Operating	
USA	Spindletop	95	68–202 bar	1340	906,000	Operating	
Aquifers	•						
Czech Republic	Lobodice	50	90 bar/34 °C	430	Not reported	Operating	
France	Beynes	50	Not reported	450	3.3×10^8	Operating with natural gas	
Depleted Rese	Depleted Reservoirs						
Argentina	Diadema	10	10 bar/50 °C	600	Not reported	Operating	
Austria	Underground Sun Storage	10	78 bar/40 °C	1000	Not reported	Operating	

iv. Potential Sites for Underground Hydrogen Storage in India

Region	Type of Storage	Location	Depth (m)	Thickness (m)	Key Features	References
Bikaner-Nagaur- Ganganagar Basin	Salt Caverns	Northwestern Rajasthan, near Bikaner	500–750	Up to 200	High-purity halite (95–98%), favourable geomechanical properties near solar energy hubs.	C. Kumar et.al [5]
Rann of Kutch	Salt Caverns	Gujarat	300–600	Moderate	Salt flats with stable halite formations, located near industrial hubs and ports for hydrogen export.	S. Kumar et al. [2]
Cambay Basin	Salt Caverns, Depleted Reservoirs	Central Gujarat	Variable	Variable	Includes bedded salt formations and depleted hydrocarbon reservoirs, close to industrial zones.	S. Kumar et al. [2]

iv. Potential Sites for Underground Hydrogen Storage in India

Region	Type of Storage	Location	Depth (m)	Thickness (m)	Key Features	References
South Tapti Gas Field	Depleted Hydrocarbon Reservoirs	Mumbai Offshore Basin	Variable	Stacked sandstone layers	First study on UHS in offshore Indian depleted gas fields Total gas reservoir volume: 110 BCF, potential hydrogen storage capacity of ~37 million kg.	R. Kiran et al.[6]
Krishna- Godavari Basin	Depleted Hydrocarbon Reservoirs	Andhra Pradesh, eastern coast	1,500–3,000	High porosity	First study on hydrogen storage in both saline aquifers and oil/gas reservoirs in southeastern India. Cauvery Basin: 43.6 MT of H2, KG Basin: 47.2 MT of H2 in saline aquifers, and ~725 MT in gas reservoirs.	P. Nikhil et al. [7]

4. Research Gap & Problem Statement

- ☐ First and Foremost study related to UHS in Salt Caverns in Indian Context
- ☐ Our research primarily focuses on answering three questions
- ✓ Determine the volumetric storage capacity of the salt cavern in the Bikaner-Nagaur Ganganagar basin.
- ✓ Determine the cyclic injection and extraction (IE) process of hydrogen in salt caverns, investigating Injection and withdrawal rates.

Fig 7. Geological map of Rajasthan with the outline of the Bikaner-Nagaur-Ganganagar basin in Western Rajasthan[6]

✓ Further research is required to explore integrating specific caverns into local or national energy grid systems.

Fig 8 Energy cycle for UHS in salt cavern (created by Hardik Dave)

5. Bikaner-Nagaur- Ganganagar Basin

- ☐ The Bikaner-Nagaur-Ganganagar Basin, located in northwestern Rajasthan, is a key region within the Hanseran Evaporite Group.
- □ A plan has been proposed to develop underground salt caverns near Bikaner, India, with a total anticipated storage capacity of approximately 3.75 million metric tons (MMT) or 4.4 million cubic meters (MMm³) of strategic crude oil reservoir.
- ☐ This initiative is part of Phase II of the storage program, as outlined in the Detailed Project Report (DPR) prepared by EIL in 2013.
- ☐ The site near Bikaner was chosen for its favorable geological conditions, including a bedded salt formation with suitable depth and thickness.
- ☐ Additionally, the presence of a shallow aquifer ensures an adequate yield of brackish groundwater, which is essential for the solution mining process.
- ☐ In 2023, this location is a prime focus for underground hydrogen storage under the National Green Hydrogen Mission.

5. Bikaner-Nagaur- Ganganagar Basin Salt Cavern Parameters

According to C. Kumar et al. findings [5].

- > These storage caverns do not have lining and are only confined by the rock salt formation itself.
- > The purity of its halite ranges from 95% to 98%.
- > Rock salt is considered intrinsically tight when subject to the overburden pressure of an overlying rock column of some hundreds of meters of thickness, Average Young Modulus is 17.6

GPa

- > Salt dome depth range: 500 m to 750 m
- > Operating Pressure range: 30 bar to 150 bar
- > Cavern Height: 150 m
- Cavern Diameter: 120 m
- **Edge Length L: 300 m**
- No. of caverns can be formed: 8

Fig 9 Schematic of Salt Dome (created by Hardik Dave)

6. Modelling studies in the field of UHS in Salt Cavern

Modeling Tool	Author(s)	Dimension	Acessibility	Key Objective	Key Findings
GeoH2 Tool	Maraggi et al.[9]	3D	Open Source	Volumetric and cyclic analysis of salt caverns	Provided accurate predictions for storage capacity and annual injection/withdrawal cycles in salt caverns.
Operate H2	M.L. Malki et al[10]	3D	Open Source	Optimize UHS performance using reduced-order models	Enabled rapid site screening and operational optimization with user-friendly GUI for hydrogen storage systems.
TOUGH+	Huang et al.[11]	2D and 3D	Open Source	Models hydrogen-brine interactions and capillary pressure, assessing H ₂ losses in reservoirs	Cushion gases (N ₂ , CO ₂) enhance H ₂ recovery; N ₂
CMG GEM	Ershadnia et al. [12]	3D	Commercial	Model gas injection and withdrawal cycles	Showed high withdrawal efficiency and minimized hydrogen purity degradation in salt caverns.
PetraSim TOUGH2	K. Luboń et al. [13]	3D	Commercial	Investigating the impact of capillary threshold pressure	Initial flow rates maintain high H ₂ saturation, minimal gas infiltration into surrounding rock

7. Methodology

The GeoH2 Salt Storage and Cycling App is a single-phase real gas thermodynamic web-based simulator designed to estimate hydrogen (H₂) storage capacities and the processes of injection and withdrawal in salt caverns.

Volumetric Module

Assumptions:

- 1. Single-phase single component gaseous H₂.
- 2. Perfect mixing: pressure and temperature are uniform within the cavern.
- 3. H₂ acts as cushion gas.
- 4. No presence of insolubles in the salt cavern

Fig 10. Schematic illustrating salt caverns in a salt dome: (a) lateral view and (b) top view. [9]

- 5. All caverns have the same shape and volume.
- 6. Safety factor (f_{safety}) safety factor for calculating maximum allowable working pressure (MAWP): 0.75-0.85.

i. Governing Equations

Total number of caverns, n

$$n(D, L) = \frac{\pi \left(\frac{D}{2} - \sqrt{1/2L}\right)^2}{L^2} \tag{1}$$

Effective number of caverns

$$n_{eff} = f_{bult} n (2)$$

Geometric volume of cylindrical caverns

$$V_{cavern} = \pi \left(\frac{d}{2}\right)^2 h \tag{3}$$

Total geometric volume of caverns

$$V_{total} = n_{eff} V_{cavern} \tag{4}$$

Working gas volume per cavern

$$V_{gas\ cavern} = \left[\frac{\rho(T, f_{safety}\ P_{overburden})}{\rho(T_{std}\ P_{std})}\right] (1 - f_{cushion}) V_{cavern}$$
 (5)

i. Governing Equations

Total working gas volume

$$V_{gas\ total} = n_{eff}\ V_{gas\ cavern}$$

(6)

Energy per cavern

The energy per cavern is the combustion energy of the working gas volume based on the lower heating value LHV per unit volume of H_2 (290 Btu/scf).

Reference conditions for the evaluation of the LHV are 77°F and 14.69 psi

$$E_{cavern} = V_{gas\ cavern} LHV \left[\frac{\rho(77^{\circ}F, P_{std})}{\rho(T_{std}\ P_{std})} \right]$$

(7)

Total energy

$$E_{total} = n_{eff} E_{cavern}$$

(8)

Mass per cavern

$$M_{cavern} = \rho(T_{std} P_{std}) V_{gas cavern}$$

(9)

Total mass

$$M_{total} = n_{eff} M_{cavern}$$

(10)

ii. Input and Output Parameter of Volumetric Module

Input Data taken from Simone et al., 2021 to validate GeoH2 Salt Storage and Cycling App

Production Module of GeoH2 app

Governing Equations

Mass Flow Rate
$$P_C = P\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}$$

where:

Pc is the critical pressure (Ma = 1).)

Pwf is the downstream, bottomhole flowing pressure.

P is the upstream (salt cavern pressure).

 γ is the isentropic coefficient, approximated by the heat capacity ratio cp/cv.

$$\dot{m} = \left\{ C_d A \sqrt{\left(\frac{2\gamma}{\gamma + 1}\right) P \rho \left(\frac{P_C}{P}\right)^{\frac{2}{\gamma}} \left[1 - \left(\frac{P_C}{P}\right)^{\frac{\gamma - 1}{\gamma}}\right]} \right\}$$

$$P_{wf} \leq P_c$$

$$\dot{m} = \left\{ C_d A \sqrt{\left(\frac{2\gamma}{\gamma + 1}\right) P \rho \left(\frac{P_{wf}}{P}\right)^{\frac{2}{\gamma}} \left[1 - \left(\frac{P_{wf}}{P}\right)^{\frac{\gamma - 1}{\gamma}}\right]} \right\}$$

$$P_{wf} > P_c$$

where

- ρ is the density of the gas at the upstream (salt cavern) conditions.
- *Cd* is the discharge coefficient of the pipe, reference value: 0.60.
- *A* is the cross-sectional area of the pipe.

Cyclic Module.

Input	Case 1	Case 2
Injection Temperature T_{inj} , [°F]	60	100
Initial Pressure P_i [psi]	4000	4000
Initial Temperature $T_{i,}$ [°F]	100	100
Maximum operating Pressure P_{final} [psi]	4000	4000
Diameter, $d[ft]$	100	100
Height, h [ft]	1000	1000
Fraction of cushion gas $f_{cushion}$	0.3	0.3
Tubing internal diameter, d_{tubing} [in]	3.46	3.46
Discharge coefficient, C_d	1	1

Process	Production	Injection	Production	Injection	Production	Injection	Production
Final Pressure [psi]		4000		4000		4000	
Injection rate [MMScf/h]		10		10		10	
Final Pressure [psi]	2000		2000		2000		2000
Bottom hole flowing pressure [psi]	1500		1500		1500		1500

8. Results

Input parameters of Salt cavern						
Parameters	In meters [m]	In feet [ft]				
Depth Range	500 -750	1640-2460				
Overburden Pressure	141 bar	2050 psi				
Diameter of salt dome	1908	6262				
Diameter of salt cavern	120	394				
Height of salt cavern	150	492				
Edge length, L	300	984				
Salt dome temperature	36.6°C	98°F				
Fraction of Caverns	0.5					
Fraction of cushion gas	0.3					
Safety factor for calculating MAWP	0.85					

Output for Bikaner-Nagaur-Ganganagar basin salt caverns				
Total number of caverns	19			
Effective number of caverns	9			
Geometric Volume of Cavern [BScf]	0.06			
Total Geometric Volume [BScf]	0.5399			
Working Gas Volume of Cavern [BScf]	4.5628			
Total Working Gas [BScf]	41.0649			
Energy per Cavern [GWh]	366.18			
Total Energy Stored [GWh]	3259.68			
Hydrogen Mass in Cavern [Ton]	10986.7			
Total Hydrogen Mass [Ton]	98880.3			

8. Results

Comparison of Bikaner-Nagaur-Ganganagar single Salt Cavern with others

Location	Depth [in m]	Height [in m]	Diameter [in m]	Storage Volume [in m³]	Storage [in GWh]	Reference
Teesside (UK)	430	304.8	30.5	2,10,000	14.66	[2]
Cheshire Basin (UK)	700	200	58	5,28,148	210	[14]
Bikaner-Nagaur- Ganganagar Basin (India)	750	150	120	16,95,600	366.18	-

9. Conclusion

- ➤ Based on the results, it can be concluded that the Bikaner-Nagaur-Ganganagar basin salt dome has immense potential for hydrogen storage.
- Each cavern can store approximately 336 GWh of energy, and since up to nine caverns can be created,
- > The total energy storage capacity could reach up to 3 TWh.

10. Future Scope

- * Evaluation of the injection and withdrawal rates of hydrogen.
- **& Grid Integration:** Further research should focus on integrating hydrogen storage systems with the national grid system.
- * Evaluation of the effects of cyclic loading and unloading on cavern integrity.
- **❖** Cost analysis of Cavern Construction and operating cost

- [1]. https://ourworldindata.org/energy-mix (Accessed on 19 November 2024)
- [2] S. Kumar, S. Regassa Jufar, S. Kumar, J. Foroozesh, S. Kumari, and A. Bera, "Underground hydrogen storage and its roadmap and feasibility in India toward Net-Zero target for global decarbonization," Oct. 15, 2023, *Elsevier Ltd*. doi: 10.1016/j.fuel.2023.128849.
- [3] S. O. Bade, K. Taiwo, U. F. Ndulue, O. S. Tomomewo, and B. Aisosa Oni, "A review of underground hydrogen storage systems: Current status, modeling approaches, challenges, and future prospective," Aug. 28, 2024, *Elsevier Ltd.* doi: 10.1016/j.ijhydene.2024.07.187.
- [4] A. Małachowska, N. Łukasik, J. Mioduska, and J. Gębicki, "Hydrogen Storage in Geological Formations—The Potential of Salt Caverns," *Energies (Basel)*, vol. 15, no. 14, p. 5038, Jul. 2022, doi: 10.3390/en15145038.
- [5] C. Kumar, "Geomechanical properties of Bikaner rock salt for solution mined caverns," 2016. [Online]. Available: https://www.researchgate.net/publication/315388269
- [6] R. Kiran, R. Upadhyay, V. K. Rajak, S. D. Gupta, and H. Pama, "Comprehensive study of the underground hydrogen storage potential in the depleted offshore Tapti-gas field," *Int J Hydrogen Energy*, vol. 48, no. 33, pp. 12396–12409, Apr. 2023, doi: 10.1016/j.ijhydene.2022.12.172.

References

- [7]. P. Nikhil, G. B. Prakash, K. Kavyasri, and P. Sivasankar, "Analysis on CO2 emissions, green hydrogen requirement and geostorage potential of hydrogen for decarbonization of industrial operations in southeastern coast of India," *Int J Hydrogen Energy*, vol. 52, pp. 1507–1521, Jan. 2024, doi: 10.1016/j.ijhydene.2023.08.235.
- [8] S. Kumar, S. Regassa Jufar, S. Kumar, J. Foroozesh, S. Kumari, and A. Bera, "Underground hydrogen storage and its roadmap and feasibility in India toward Net-Zero target for global decarbonization," Oct. 15, 2023, *Elsevier Ltd*. doi: 10.1016/j.fuel.2023.128849.
- [9] L. M. Ruiz Maraggi and L. G. Moscardelli, "Modeling hydrogen storage capacities, injection and withdrawal cycles in salt caverns: Introducing the GeoH2 salt storage and cycling app," *Int J Hydrogen Energy*, vol. 48, no. 69, pp. 26921–26936, Aug. 2023, doi: 10.1016/j.ijhydene.2023.03.293.
- [10] M. L. Malki, B. Chen, S. Mao, F. Chen, and M. Mehana, "OPERATE—H2: A tool for optimizing underground hydrogen storage," J Energy Storage, vol. 90, p. 111715, Jun. 2024, doi: 10.1016/j.est.2024.111715.
- [11] T. Huang, G. J. Moridis, T. A. Blasingame, A. M. Abdulkader, and B. Yan, "Compositional reservoir simulation of underground hydrogen storage in depleted gas reservoirs," *Int J Hydrogen Energy*, vol. 48, no. 92, pp. 36035–36050, Nov. 2023, doi: 10.1016/j.ijhydene.2023.05.355.

References

- [12] R. Ershadnia *et al.*, "Impact of geological and operational conditions on underground hydrogen storage," *Int J Hydrogen Energy*, vol. 48, no. 4, pp. 1450–1471, Jan. 2023, doi: 10.1016/j.ijhydene.2022.09.208.
- [13] K. Luboń and R. Tarkowski, "Numerical simulation of hydrogen injection and withdrawal to and from a deep aquifer in NW Poland," *Int J Hydrogen Energy*, vol. 45, no. 3, pp. 2068–2083, Jan. 2020, doi: 10.1016/j.ijhydene.2019.11.055.
- [14] D. G. Caglayan et al., "Technical potential of salt caverns for hydrogen storage in Europe," Int J Hydrogen Energy, vol. 45, no. 11, pp. 6793–6805, Feb. 2020, doi: 10.1016/j.ijhydene.2019.12.161.

THANK YOU

Questions?