Problem 3 (6 credits)

HW2

Danny Moncada (monca016) February 22, 2020

```
suppressWarnings(suppressPackageStartupMessages({
   library(TSA)
   library(forecast)
   library(ggplot2)
   library(dplyr)
}))
```

Boston Crime Data Analysis

Question 1

Please pull out the crime frequency data we got from Homework 1 - Problem 3 - Question 4. You may re-plot the time series to refresh yourself about the pattern.

```
setwd("~/MSBA 2020 All Files/Spring 2020/MSBA 6430 - Advanced Issues in Business Analytics/HW2")
crime=read.table("crime.txt",header=T)

N=dim(crime)[1]
crime_aggr=aggregate(rep(1,N),list(year=crime[,1],month=crime[,2],day=crime[,3]),sum)
crime_aggr=crime_aggr[order(crime_aggr[,1],crime_aggr[,2],crime_aggr[,3]),]

Y = crime_aggr[,4]

ts.plot(Y, ylab = "Frequency", main = "Boston Crime From June 2015 to September 2018")
```

Boston Crime From June 2015 to September 2018

a) (1 credit)

First, let's fit an auto.arima() to find out a good ARIMA model for the data. Again, notice that, auto.arima() provides a "good" model but not necessarily the optimal. We will learn more concrete model selection techniques in Lecture 6.

Hints:

• use auto.arima() function

```
arima_fit <- auto.arima(Y)
arima_fit</pre>
```

```
## Series: Y
## ARIMA(1,0,3) with non-zero mean
##
##
   Coefficients:
##
            ar1
                               ma2
                                        ma3
                                                 mean
                      ma1
         0.9888
##
                           -0.2542
                                     0.0446
                                             270.6409
         0.0054
                   0.0298
                            0.0347
                                     0.0292
                                               5.5130
##
## sigma^2 estimated as 880.5: log likelihood=-5658.27
## AIC=11328.53
                  AICc=11328.61
                                   BIC=11358.96
```

b) (2 credits)

What's the model? For example

$$(Y_t - 10) = 0.4 \cdot (Y_{t-1} - 10) + e_t - 0.8 \cdot e_{t-1}$$

Hints:

- The mean value comes with every Y_t . In the example above, the mean value is 10.
- R assumes positive sign for MA models. In the example above, R would show -0.8, rather than +0.8 for the MA(1) coefficient

Please write down the model below:

$$Y_t = 0.99 \cdot (Y_{t-1} - 270.64) + e_t - 0.71 \cdot e_{t-1} - 0.25 \cdot e_{t-2} + 0.04 \cdot e_{t-3} + 270.64$$

c) (1 credit)

Are any of the coefficients significant?

Hints:

• A coefficient is significant if its magnitude is (roughly) at least twice as large as its standard error.

```
## ar1 ma1 ma2 ma3 mean

## 0.9888 -0.7142 -0.2542 0.0446 270.6409

##s.e. 0.0054 0.0298 0.0347 0.0292

"The first, second, and third coefficients are significant."
```

[1] "The first, second, and third coefficients are significant."

```
"The standard error*2 for ar1 is 0.0108, while the coefficient is 0.9888."
```

[1] "The standard error*2 for ar1 is 0.0108, while the coefficient is 0.9888."

```
"The standard error*2 for ma1 is 0.0596, while the coefficient is 0.7142."
```

[1] "The standard error*2 for mal is 0.0596, while the coefficient is 0.7142."

```
"The standard error*2 for ma2 is 0.0694, while the coefficient is 0.2542."
```

[1] "The standard error*2 for ma2 is 0.0694, while the coefficient is 0.2542."

d) (2 credits)

Please superimpose the fitted values on the original crime frequency time series. Does the model sufficiently explain the data?

Hints:

• The fitted values can be calculated by the original time series - arima_fit\$residuals

```
fitted_vals = Y - arima_fit$residuals

par(mfrow=c(1,1))
ts.plot(Y, ylab = "Frequency", main = "Boston Crime From June 2015 to September 2018")
lines(fitted_vals,col="red")
```

Boston Crime From June 2015 to September 2018

"The auto arima model DOES sufficiently explain the data - it generally follows the process laid out by

[1] "The auto arima model DOES sufficiently explain the data - it generally follows the process laid
"It doesn't capture the fringe points but not every model can be perfect."

[1] "It doesn't capture the fringe points but not every model can be perfect."