15.094J: Robust Modeling, Optimization, Computation

Lecture 6: Robust Convex Optimization

Outline

- Motivation
- Robust Conic Optimization
- 3 Exact and Relaxed Robustness
- Tractability
- Probabilistic Guarantees
- 6 Conclusions

Motivation

- In earlier proposals (Ben-Tal and Nemirovski):
- (a) RLOs become SOCPs
- (b) Robust SOCPs become Semi-definite optimization problems (SDPs)
- (c) Robust SDPs become NP-hard.
 - In Lecture 4, we have shown that RLO becomes LO.
 - In this lecture (Bertsimas and Sim), we show that :

Robust SOCPs stay SOCPs

Robust SDPs stays SDPs

- RC inherits the complexity of the underlying deterministic problem.
- RC allows the user to control the tradeoff between robustness and optimality.
- RC is computationally tractable both practically and theoretically.

Nominal vs Robust

Nominal

max
$$f_0(\mathbf{x}, \tilde{\mathbf{D}}_0)$$

s.t. $f_i(\mathbf{x}, \tilde{\mathbf{D}}_i) \ge 0, \quad i \in I$
 $\mathbf{x} \in X$

Exact Robust

$$\max \min_{\mathbf{D_0} \in \mathcal{U}_0} f_0(\mathbf{x}, \mathbf{D_0})$$
s.t.
$$\min_{\mathbf{D}_i \in \mathcal{U}_i} f_i(\mathbf{x}, \mathbf{D}_i) \ge 0, i \in I$$

$$\mathbf{x} \in X$$
(1)

Uncertainty

Data uncertainty

$$ilde{m{D}} = m{D}^0 + \sum_{j \in N} m{\Delta} m{D}^j ilde{z}_j$$

Uncertainty sets

$$\mathcal{U} = \left\{ oldsymbol{D} \mid \exists oldsymbol{u} \in \Re^{|N|} : oldsymbol{D} = oldsymbol{D}^0 + \sum_{j \in N} oldsymbol{\Delta} oldsymbol{D}^j u_j, \|oldsymbol{u}\| \leq
ho
ight\}$$

Modeling power

Туре	Constraint	D	f(x, D)
LO	$a'x \geq b$	(a,b)	a'x - b
QCQO	$\ \mathbf{A}\mathbf{x}\ _2^2 + \mathbf{b}'\mathbf{x} + c \le 0$	$(\mathbf{A}, \mathbf{b}, c, d)$ $d^0 = 1/2, \Delta d^j = 0$	$-\sqrt{\ \mathbf{A}x\ _{2}^{2} + \left(\frac{d+b'x+c}{2}\right)^{2}}$
SOCO(1)	$\ \mathbf{A}\mathbf{x}+\mathbf{b}\ _2 \leq \mathbf{c}'\mathbf{x}+\mathbf{d}$	$(\mathbf{A}, \mathbf{b}, \mathbf{c}, d)$ $\Delta \mathbf{c}^j = 0, \Delta d^j = 0$	$c'x + d - \ \mathbf{A}x + \mathbf{b}\ _2$
SOCO(2)	$\ \mathbf{A}\mathbf{x}+\mathbf{b}\ _2 \leq \mathbf{c}'\mathbf{x}+d$	$(\boldsymbol{A}, \boldsymbol{b}, \boldsymbol{c}, d)$	$c'x+d-\ \mathbf{A}x+\mathbf{b}\ _2$
SDO	$\sum_{i=1}^n \mathbf{A}_i x_i - \mathbf{B} \in \mathbf{S}_+^m$	$(\boldsymbol{A}_1,,\boldsymbol{A}_n,\boldsymbol{B})$	$\lambda_{min}(\sum_{j=1}^{n} \mathbf{A}_{i} x_{i} - \mathbf{B})$

Lectures 6: RCO 15.094J-RO 6 / 23

Exact and Relaxed Robustness

• Exact Robustness (ER)

$$f\left(\boldsymbol{x}, \boldsymbol{D}^{0} + \sum_{j \in N} \Delta \boldsymbol{D}^{j} u_{j}\right) \geq 0 \quad \forall \|\boldsymbol{u}\| \leq \rho.$$

Relaxed Robustness (RR)

$$f(\boldsymbol{x}, \boldsymbol{D}^{0}) + \sum_{j \in N} \left\{ f(\boldsymbol{x}, \Delta \boldsymbol{D}^{j}) v_{j} + f(\boldsymbol{x}, -\Delta \boldsymbol{D}^{j}) w_{j} \right\} \geq 0$$

$$\forall (\boldsymbol{v}, \boldsymbol{w}) \in \Re_{+}^{|N| \times |N|} \| \boldsymbol{v} + \boldsymbol{w} \| \leq \rho.$$

Theorem

- Assumption 1: Norms satisfy $\|\boldsymbol{u}\| = \|\boldsymbol{u}^+\|$, $u_j^+ = |u_j|$. Examples L_p -norms.
- Assumption 2: f satisfies: f(x, D) is concave in D for all $x \in \mathbb{R}^n$, f(x, kD) = kf(x, D), for all $k \ge 0$, D, $x \in \mathbb{R}^n$,
- (a) Under Assumption 1 and f(x, A + B) = f(x, A) + f(x, B), ER and RR are equivalent.
- (b) Under Assumptions 1 and 2, if x^* satisfies RR, it satisfies ER also.

Proof of part (a)

• Under linearity, RR becomes

$$f\left(\mathbf{x}, \mathbf{D}^0 + \sum_{j \in N} \Delta \mathbf{D}^j (v_j - w_j)\right) \ge 0 \quad \forall \|\mathbf{v} + \mathbf{w}\| \le \rho, \quad \mathbf{v}, \mathbf{w} \ge \mathbf{0},$$

ER becomes

$$f\left(\mathbf{x}, \mathbf{D}^0 + \sum_{j \in N} \Delta \mathbf{D}^j r_j\right) \geq 0 \quad \forall \|\mathbf{r}\| \leq \rho.$$

• If \boldsymbol{x} violates ER, there exists $\boldsymbol{r}, \|\boldsymbol{r}\| \leq \rho$ such that

$$f\left(\mathbf{x},\mathbf{D}^{0}+\sum_{j\in\mathbf{N}}\mathbf{\Delta}\mathbf{D}^{j}\mathbf{r}_{j}\right)<0.$$

- Let $v_i = \max\{r_i, 0\}$ and $w_i = -\min\{r_i, 0\}$.
- Clearly, $\mathbf{r} = \mathbf{v} \mathbf{w}$ and since $v_i + w_i = |r_i|$, $||\mathbf{v} + \mathbf{w}|| = ||\mathbf{r}|| \le \rho$.
- x violates RR.

Proof of part (a), continued

• If x violates RR, then there exist $v, w \ge 0$ and $||v + w|| \le \rho$ such that

$$f\left(\mathbf{x},\mathbf{D}^0+\sum_{j\in\mathcal{N}}\Delta\mathbf{D}^j(v_j-w_j)\right)<0.$$

- Let $r_j = v_j w_j$ and we observe that $|r_j| \le v_j + w_j$.
- For norms satisfying $\|\boldsymbol{u}\| = \|\boldsymbol{u}^+\|$, $u_j^+ = |u_j|$,

$$\|\mathbf{r}\| = \|\mathbf{r}^+\| \le \|\mathbf{v} + \mathbf{w}\| \le \rho,$$

and hence, x is violates ER.

Proof of part (b)

If x satisfies RR

$$f(\boldsymbol{x}, \boldsymbol{D}^{0}) + \sum_{j \in N} \left\{ f(\boldsymbol{x}, \Delta \boldsymbol{D}^{j}) v_{j} + f(\boldsymbol{x}, -\Delta \boldsymbol{D}^{j}) w_{j} \right\} \geq 0, \ \forall \|\boldsymbol{v} + \boldsymbol{w}\| \leq \rho, \ \boldsymbol{v}, \boldsymbol{w} \geq \boldsymbol{0}.$$

From concavity and homogeneity

$$f(x, A + B) \ge \frac{1}{2}f(x, 2A) + \frac{1}{2}f(x, 2B) = f(x, A) + f(x, B).$$

Then

$$0 \le f(\boldsymbol{x}, \boldsymbol{D}^{0}) + \sum_{j \in N} \left\{ f(\boldsymbol{x}, \Delta \boldsymbol{D}^{j}) v_{j} + f(\boldsymbol{x}, -\Delta \boldsymbol{D}^{j}) w_{j} \right\} \le$$

$$f(\boldsymbol{x}, \boldsymbol{D}^{0} + \sum_{i \in N} \Delta \boldsymbol{D}^{j} (v_{j} - w_{j}))$$

for all $\|\mathbf{v} + \mathbf{w}\| \le \rho$, $\mathbf{v}, \mathbf{w} \ge \mathbf{0}$.

11 / 23

Lectures 6: RCO 15.094J-RO

Proof of part (b), continued

• In part (a) we established that

$$f(\boldsymbol{x}, \boldsymbol{D}^0 + \sum_{j \in N} \Delta \boldsymbol{D}^j r_j) \ge 0 \qquad \forall \|\boldsymbol{r}\| \le \rho$$

is equivalent to

$$f(\mathbf{x}, \mathbf{D}^0 + \sum_{j \in N} \Delta \mathbf{D}^j (v_j - w_j)) \ge 0 \qquad \forall \|\mathbf{v} + \mathbf{w}\| \le \rho, \quad \mathbf{v}, \mathbf{w} \ge \mathbf{0},$$

and thus x satisfies ER.

Tractability

RR is equivalent to

$$f(\mathbf{x}, \mathbf{D}^{0}) \ge \rho \mathbf{y}$$

$$f(\mathbf{x}, \Delta \mathbf{D}^{j}) + t_{j} \ge 0 \quad \forall j \in \mathbf{N}$$

$$f(\mathbf{x}, -\Delta \mathbf{D}^{j}) + t_{j} \ge 0 \quad \forall j \in \mathbf{N}$$

$$\|\mathbf{t}\|^{*} \le \mathbf{y}$$

$$\mathbf{y} \in \Re, \ \mathbf{t} \in \Re^{|\mathbf{N}|}.$$

Dual norm: $\|\mathbf{s}\|^* = \max_{\|\mathbf{x}\| \le 1} \mathbf{s}' \mathbf{x}$.

Tractability, continued

(a) Under Assumption 1 and 2, RR is equivalent to RR'

$$f(\boldsymbol{x}, \boldsymbol{D}^0) \ge \rho \|\boldsymbol{s}\|^*,$$

where

$$s_i = \max\{-f(\boldsymbol{x}, \Delta \boldsymbol{D}^j), -f(\boldsymbol{x}, -\Delta \boldsymbol{D}^j)\}, \ \forall j \in N.$$

(b) $f(\mathbf{x}, \mathbf{D}^0) \ge \rho \|\mathbf{s}\|^*$, can be written as:

$$f(\mathbf{x}, \mathbf{D}^{0}) \ge \rho \mathbf{y}$$

$$f(\mathbf{x}, \Delta \mathbf{D}^{j}) + t_{j} \ge 0 \quad \forall j \in \mathbf{N}$$

$$f(\mathbf{x}, -\Delta \mathbf{D}^{j}) + t_{j} \ge 0 \quad \forall j \in \mathbf{N}$$

$$\|\mathbf{t}\|^{*} \le \mathbf{y}$$

$$\mathbf{v} \in \Re, \ \mathbf{t} \in \Re^{|\mathbf{N}|}.$$

Proof, part (a)

We introduce the following problems:

$$z_1 = \max \quad \mathbf{a'v + b'w}$$
 s.t. $\|\mathbf{v + w}\| \le \rho$ $\mathbf{v}, \mathbf{w} \ge \mathbf{0},$ $z_2 = \max \quad \sum_{j \in N} \max\{a_j, b_j, 0\} r_j$ s.t. $\|\mathbf{r}\| \le \rho,$

and show that $z_1 = z_2$.

• Suppose r^* is an optimal solution to z_2 . For all $j \in N$, let

$$\begin{split} v_j &= w_j = 0 & \text{if } \max\{a_j, b_j\} \leq 0 \\ v_j &= |r_j^*|, w_j = 0 & \text{if } a_j \geq b_j, a_j > 0 \\ w_j &= |r_j^*|, v_j = 0 & \text{if } b_j > a_j, b_j > 0. \end{split}$$

Proof part (a), continued

- Observe that $a_j v_j + b_j w_j \ge \max\{a_j, b_j, 0\} r_i^*$ and $w_j + v_j \le |r_i^*| \ \forall j \in N$.
- If $\mathbf{v}^+ \leq \mathbf{w}^+$, $\|\mathbf{v}\| \leq \|\mathbf{w}\|$.
- Then $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{r}^*\| \le \rho$, and thus \mathbf{v}, \mathbf{w} are feasible in z_1 leading to

$$z_1 \ge \sum_{j \in N} (a_j v_j + b_j w_j) \ge \sum_{j \in N} \max\{a_j, b_j, 0\} r_j^* = z_2.$$

- Conversely, let \mathbf{v}^* , \mathbf{w}^* be an optimal solution to z_1 .
- Let $\mathbf{r} = \mathbf{v}^* + \mathbf{w}^*$. Clearly $\|\mathbf{r}\| \leq \rho$ and observe that

$$r_j \max\{a_j,b_j,0\} \geq a_j v_j^* + b_j w_j^* \ \forall j \in \textit{N}.$$

• Therefore, we have

$$z_2 \ge \sum_{j \in N} \max\{a_j, b_j, 0\} r_j \ge \sum_{j \in N} (a_j v_j^* + b_j w_j^*) = z_1,$$

leading to $z_1 = z_2$.

Proof part (a), continued

- $V = \{ (\mathbf{v}, \mathbf{w}) \in \Re_{+}^{|N| \times |N|} \| \mathbf{v} + \mathbf{w} \| \le \rho \}.$
- Then,

$$\begin{aligned} & \min_{(\boldsymbol{v}, \boldsymbol{w}) \in \mathcal{V}} \sum_{j \in N} \left\{ f(\boldsymbol{x}, \Delta \boldsymbol{D}^{j}) v_{j} + f(\boldsymbol{x}, -\Delta \boldsymbol{D}^{j}) w_{j} \right\} \\ &= & - \max_{(\boldsymbol{v}, \boldsymbol{w}) \in \mathcal{V}} \sum_{j \in N} \left\{ -f(\boldsymbol{x}, \Delta \boldsymbol{D}^{j}) v_{j} - f(\boldsymbol{x}, -\Delta \boldsymbol{D}^{j}) w_{j} \right\} \\ &= & - \max_{\left\{ \|\boldsymbol{r}\| \le \rho \right\}} \sum_{j \in N} \left\{ \max\{-f(\boldsymbol{x}, \Delta \boldsymbol{D}^{j}), -f(\boldsymbol{x}, -\Delta \boldsymbol{D}^{j}), 0\} r_{j} \right\} \end{aligned}$$

- Since $\|\boldsymbol{s}\|^* = \max_{\|\boldsymbol{x}\| \leq 1} \boldsymbol{s}' \boldsymbol{x}$, we obtain $\rho \|\boldsymbol{s}\|^* = \max_{\|\boldsymbol{x}\| \leq \rho} \boldsymbol{s}' \boldsymbol{x}$, i.e., RR' follows.
- Note that $s_j = \max\{-f(\boldsymbol{x}, \Delta \boldsymbol{D}^j), -f(\boldsymbol{x}, -\Delta \boldsymbol{D}^j)\} \geq 0$, since otherwise there exists an \boldsymbol{x} such that $s_j < 0$, i.e., $f(\boldsymbol{x}, \Delta \boldsymbol{D}^j) > 0$ and $f(\boldsymbol{x}, -\Delta \boldsymbol{D}^j) > 0$. From Assumption 2 $f(\boldsymbol{x}, \boldsymbol{0}) = 0$, contradicting the concavity of $f(\boldsymbol{x}, \boldsymbol{D})$.

17 / 23

Proof, part (b)

- Suppose that x is feasible in RR'.
- Let $\mathbf{t} = \mathbf{s}$ and $\mathbf{y} = \|\mathbf{s}\|^*$,
- We can easily check that (x, t, y) are feasible in RR".
- Conversely, suppose, x is infeasible in RR', that is,

$$f(\boldsymbol{x}, \boldsymbol{D}^0) < \rho \|\boldsymbol{s}\|^*.$$

- Since, $t_j \ge s_j = \max\{-f(\boldsymbol{x}, \Delta \boldsymbol{D}^j), -f(\boldsymbol{x}, -\Delta \boldsymbol{D}^j)\} \ge 0$
- We have $\mathbf{v}^+ \leq \mathbf{w}^+, \|\mathbf{v}\|^* \leq \|\mathbf{w}\|^*.$
- Thus, $\|\boldsymbol{t}\|^* \geq \|\boldsymbol{s}\|^*$, leading to

$$f(x, D^0) < \rho ||s||^* \le \rho ||t||^* \le \rho y,$$

i.e., x is infeasible in RR".

Dual norm

Norms	$\ u\ $	$\ \boldsymbol{t}\ ^* \leq y$
L ₂	$\ \boldsymbol{u}\ _2$	$\ \mathbf{t}\ _2 \leq y$
L_1	$\ oldsymbol{u}\ _1$	$t_j \leq y, orall j \in N$
L_{∞}	$\ oldsymbol{u}\ _{\infty}$	$\sum_{j\in N} t_j \leq y$
Lp	$\ oldsymbol{u}\ _p$	$\left(\sum_{j\in N} t_j^{\frac{q}{q-1}}\right)^{\frac{q-1}{q}} \le y$
$L_2 \cap L_\infty$	$\max\{\ \boldsymbol{u}\ _2,\rho\ \boldsymbol{u}\ _{\infty}\}$	$\ \mathbf{s} - \mathbf{t}\ _2 +$
		$\frac{1}{ ho}\sum_{j\in N} s_j \leq y, \ oldsymbol{s}\in \Re_+^{ N }$
$L_1 \cap L_\infty$	$\max\{rac{1}{\Gamma}\ oldsymbol{u}\ _1,\ oldsymbol{u}\ _\infty\}$	$ \Gamma p + \sum_{j \in N} s_j \le y s_j + p \ge t_j, \ p \in \Re_+, \mathbf{s} \in \Re_+^{ N } $

19 / 23

Lectures 6: RCO 15.094J-RO

Size

- Independent Pertubations
- Example

$$\left(\begin{array}{cc} a_1 & a_2 \\ a_2 & a_3 \end{array}\right) x_1 + \left(\begin{array}{cc} a_4 & a_5 \\ a_5 & a_6 \end{array}\right) x_2 \succeq \left(\begin{array}{cc} a_7 & a_8 \\ a_8 & a_9 \end{array}\right),$$

 $\tilde{a}_i = a_i^0 + \Delta a_i \tilde{z}_i.$

• $f(x, \Delta d^1) + t_1 \ge 0$ becomes

$$\lambda_{min}\left(\left(\begin{array}{cc}\Delta a_1 & 0\\ 0 & 0\end{array}\right)x_1+\left(\begin{array}{cc}0 & 0\\ 0 & 0\end{array}\right)x_2-\left(\begin{array}{cc}0 & 0\\ 0 & 0\end{array}\right)\right)+t_1\geq 0,$$

as $t_1 \ge -\min\{\Delta a_1x_1,0\}$ or equivalently as linear constraints $t_1 \ge -\Delta a_1x_1, t_1 \ge 0$.

Tractability

	L_{∞}	L_1	L_2	$L_2 \cap L_\infty$
Num. Vars.	n+1	1	1	2 N +1
Num. linear Const.	2n + 1	2n + 1	0	3 <i>N</i>
Num SOC Const.	0	0	1	1
LO	LO	LO	SOCO	SOCO
QCQO	SOCO	SOCO	SOCO	SOCO
SOCO(1)	SOCO	SOCO	SOCO	SOCO
SOCO(2)	SOCO	SOCO	SOCO	SOCO
SDO	SDO	SDO	SDO	SDO

Probabilistic Guarantees

If $\tilde{\boldsymbol{z}} \sim \mathcal{N}(0, \boldsymbol{I})$, under the L_2 norm:

$$P(f(\boldsymbol{x}, \tilde{\boldsymbol{D}}) < 0) \leq \frac{\sqrt{e}\rho}{\alpha} e^{\left(-\frac{\rho^2}{2\alpha^2}\right)}$$

Problem	α	ρ
LO	1	$O(\log(1/\epsilon))$
SOCO(1)	1	$O(\log(1/\epsilon))$
SOCO(2)	$\sqrt{2}$	$O(\log(1/\epsilon))$
QCQO	$\sqrt{2}$	$O(\log(1/\epsilon))$
SDO	$\sqrt{\log m}$	$O(\sqrt{\log m log(1/\epsilon)})$

Conclusions

- Given a conic optimization problem, we proposed a robust counterpart of the same character as original, thus preserving computational tractability.
- Size of the proposed problem is very similar to original; depends on the norm we use; best results for L_2 norm.
- Probabilistic guarantee allows to select parameter controlling robustness and optimality.