PREDICTING CANCER DIAGNOSIS

Presented By: Lauren Henry, Cathy Matthee, Zahra Razook, Yingyi (Aria) Li & Jiuyuan (Jess) Zhang

Data Analytics Bootcamp | 2024

INTRODUCTION

• Purpose:

 To assist with breast cancer survial research through early intervention

• Aim:

 To create an application that utilises machine learning for researchers to input visual charactertistics of a cancer and predict whether it is Benign or Malignant.

• Data:

 Breast Cancer Wisconsin (Diagnostic) Data Set https://www.kaggle.com/datasets/erdemtaha/cancerdata/data

ETHICAL CONSIDERATIONS

Licensing

This Data has a CC BY-NC-SA 4.0 License which allows for the following:

- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material

Ethics

Personally Identifiable Information (PII):

• This dataset includes an ID number that is anonymized to protect the privacy of individuals.

Misuse:

- A disclaimer has been included in the readme and when the diagnosis is presented on the app.
 - Aims to prevent misuse of app and remind users it does not replace a professional medical diagnosis.

DATA FETCHING & INTEGRATION

TensorFlow

DATA PREPROCESSING

Breast cancer dataset

Exploratory Data Analysis

32 columns, 569 rows

Data Cleaning and Preprocessing

Drop 'Unnamed: 32' and 'id' columns Label Encoding Outliers capped at the 1st and 99th percentiles.

Treating skewness of features.

target variable:

diagnosis

(malignant or benign)

Class imbalance

some features are highly correlated

Split data
Feature selection
scale data

LOGISTIC REGRESSION

Preprocessed data

Correlation-based feature selection

Recursive Feature Elimination (RFE)

Model with reduced features:

Test Accuracy after RFE: 0.96

initialisation of Model Logistic Regression

LogisticRegression

LogisticRegression(class_weight='balanced', max_iter=200, random_state=1)

Hyperparameter Tuning

GridSearchCV

Model with all features:

Test accuracy base model: 0.97 Test accuracy tunned model .98

Model Evaluation

classes	Test Accuracy	Precision	Recall	f1-score	Confusion Matrix	Confusion Matrix	ROC-AUC	Log Loss	Cross-Validatio	on Accu
ACC	Accuracy			FP	FN					
0	0.98	0.98	0.99	0.98	1	2	0.9964	0.0007	0.9788 ± 0.01	100
1		0.98	0.96	0.97	l		0.9904	0.0997	0.9700 ± 0.01	100

features

RANDOM FOREST

- Reduces the risk of overfitting
- Versatility and Accuracy: Random Forest can handle both continuous and categorical features, and its ensemble nature often leads to higher predictive accuracy compared to individual models like decision trees or logistic regression.

• Feature Importance: provides insights into which features are most important for prediction

Handling Complexity: well-suited for

handling complex datasets with many

 Managing Imbalanced Data: This method is effective in handling class imbalance, which is common in medical datasets where malignant cases are typically fewer than benign ones.

RANDOM FOREST

optimized the model using a hyperparameter tuning method-Gridsearch

- -Perform RFE with Cross-Validation
- -Select the feature count with the highest cross-validation score.

```
rf2_model = RandomForestClassifier(n_estimators=100, random_state=42)
scores = []
for i in range(5, X.shape[1] + 1, 5):
    # Check in increments of 5 features
        rfe = RFE(estimator=rf2_model, n_features_to_select=i)
        score = cross_val_score(rfe, X, y, cv=5, scoring='accuracy').mean()
        scores.append((i, score))
# Find the best number of features
best_n_features = max(scores, key=lambda x: x[1])[0]
print(f"Best number of features: {best_n_features}")
```

Best number of features: 15

EVALUATION

support	f1-score	recall	precision	
90	0.97	0.99	0.95	0
52	0.94	0.90	0.98	1
142	0.96			accuracy
142	0.95	0.95	0.96	macro avg
142	0.96	0.96	0.96	eighted avg

Feature importance ranking

	precision	recall	f1-score	support
0 1	0.94 0.96	0.98 0.88	0.96 0.92	90 52
accuracy macro avg veighted avg	0.95 0.94	0.93 0.94	0.94 0.94 0.94	142 142 142

Rfe optimized model

	precision	recall	f1-score	support
0	0.94	0.99	0.96	90
1	0.98	0.88	0.93	52
accuracy			0.95	142
macro avg	0.96	0.94	0.95	142
weighted avg	0.95	0.95	0.95	142

Accuracy:95.77%

Accuracy:94.37%

Accuracy:95.07%

The increase in false negatives indicates that some of the removed features were essential for correctly identifying malignant cases. Their exclusion led to a decrease in the model's ability to detect these critical instances.

DEEP NEURAL NETWORK (KERAS TUNER)

Inital Model (Trial & Error)

Accuracy = 0.9859

	precision	recall	f1-score	support
0 1	0.98 1.00	1.00 0.96	0.99 0.98	90 52
accuracy macro avg weighted avg	0.99 0.99	0.98 0.99	0.99 0.98 0.99	142 142 142

Final Model (Hyperparameter Search)

Accuracy = 0.97887

	precision	recall	f1-score	support
0	0.98	0.99	0.98	90
1	0.98	0.96	0.97	52
accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98	142 142 142

DEEP NEURAL NETWORK (KERAS TUNER)

Observations

- Re-running the keras tuner resulted in accuracy fluctuations within 2% for both models
- The two models appeared to perform similarly as when re-running the models, the first model sometimes performed better than the second.
 - This is considered normal and is likely due to the random nature of neural network training.
 - e.g. Initial weights of the neural network are set randomly at the beginning of a training run.

SVM

SVC ▼ SVC(C=1, class_weight='balanced', kernel='linear', random_state=42)

	precision	recall	f1-score	support
1 0	0.97 0.96	0.98 0.94	0.97 0.95	90 52
accuracy macro avg weighted avg	0.96 0.96	0.96 0.96	0.96 0.96 0.96	142 142 142

Perform grid search for tuning

	precision	recall	f1-score	support
0 1	0.97 0.98	0.99 0.94	0.98 0.96	90 52
accuracy macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97 0.97	142 142 142

Tuned Model Accuracy

THE RFE SELECTOR

'CONCAVE POINTS_MEAN' 'RADIUS_WORST' 'SYMMETRY_WORST' 'TEXTURE_WORST' 'RADIUS_SE'

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	com				
567	20.60	29.33	140.1000	1265.000	0.11780					
568	7.76	24.54	53.8276	215.664	0.05263					
2 rows	x 30 columns									
X_uns	seen.shape									
(2, 3	30)									
			sform(X_unseen) cransform(X_unse	en_scaled)						
	tunned_mode t(pre)	el.predict(X_u	unseen_selected)							
[1 0]									
y_unseen										
567 1 568 0 Name: diagnosis, dtype: int64										

Yeah!! The prediction is same as the true label!!

Classificatio	feature: f1-score	support		
0 1	0.97 0.98	0.99 0.94	0.98 0.96	90 52
accuracy macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97 0.97	142 142 142

ENSEMBLE APPROACH

Max Count

- Majority Rules
- SVM resolves the tie

	precision	recall	f1-score	support
9	0.97	1.00	0.98	90
1	1.00	0.94	0.97	52
accuracy			0.98	142
macro avg	0.98	0.97	0.98	142
weighted avg	0.98	0.98	0.98	142

CONCLUSION

Home	Predictor App	Result	API	README.md	
	Р	redict	tion	Results	

Keras Tuner Class Prediction: 1 = Malignant
Logistic Regression Class Prediction: 1 = Malignant
Random Forest Class Prediction: 0 = Benign
SVM Class Prediction: 0 = Benign

Cancer Predictor App

Ensemble Method Class Prediction: 0 = Benign

Home Return to Predictor App

Disclaimer: This machine learning model is designed for educational and research purposes only. It is not intended to diagnose, treat, cure or prevent any disease. Always consult a healthcare professional for medical advice, diagnosis or treatment.

Car	ncer Predictor	Арр		
ID:	and distant			
Enter ID (not used for p	prediction)			
Demo Data:	on fill fields			
Unseen test data to	pre-fill fields	·		
Area Mean:	Fractal Dimens Mean:	Symmetry SE:		
Area Worst:	Fractal Dimens Worst:	Symmetry Worst:		
Area Worst	Fractal Dimens Worst	Symmetry Worst:		
Compactness Mean:	Perimeter Mean:	Texture Mean:		
Compactness SE:	Perimeter Worst:	Texture SE:		
Compactness Worst:	Radius Mean:	Texture Worst:		
Concave Points Mean:	Radius Worst:	Area SE:		
	Nadius Worst	Area Sc.	•	•
Concave Points SE:	Smoothness Mean:	Concavity SE:		
Concave Points Worst:	Smoothness SE:	Perimeter SE:		
Concavity Mean:	Smoothness Worst:	Radius SE:		
Concavity Worst:	Symmetry Mean:	Fractal Dimension SE:		
Concerny troiss	Symmetry mean	Tractal difficultion of		
	Click to Predict			
	CHEK TO FrEME			
	Clear Fields Hom	e		

Disclaimer: This machine learning model is designed strictly for educational and research purposes. It is not intended to diagnose, treat, cure, or prevent any disease. Always consult a healthcare professional for medical advice, diagnosis, or treatment.

LIMITATIONS & FUTURE EXPLORATION

- Data Quantity
- Lack of Medical Knowledge
- Include different data types (e.g. imaging, clinical)
- Varied Data Sources (different countries/cities)

APP DEMONSTRATION

THANKYOU