Discretizing Constraints at Multiple Scales

Nicholas Richardson

11 April 2025

MathematicsFaculty of Science

A Simple Question...

Given $x=(x_1,x_2,\ldots,x_I)\in\mathbb{R}^I$ with entry sum $S\in\mathbb{R}$

$$\sum_{i=1}^I x_i = S,$$

what does the subvector $\overline{x} = (x_1, x_3, \dots, x_{I-1}) \in \mathbb{R}^{I/2}$ sum to

$$\sum_{j=1}^{I/2} x_{2j-1} = \ ?$$

Answer

No trick here, the subvector could sum to anything.

But what if x comes from a discretization of a (Lipschitz) continuous function

$$x_i=f(t_i).$$

$$\sum_{i=1}^I x_i = S \implies \sum_{j=1}^{I/2} x_{2j-1} = ?$$

Where does this come from?

Optimize over smooth probability density functions

$$\min_{p \in C^1([a,b])} \ell(p) \quad ext{s.t.} \quad \int_a^b p(t) dt = 1 ext{ and } p(t) \geq 0$$

by discretizing

$$\min_{x \in \mathbb{R}^I} \ell(x) \quad ext{s.t.} \quad \|x\|_1 = 1 ext{ and } x \geq 0$$

where coordinates $x=(x_1,x_2,\ldots,x_I)$ are defined as

$$x_i = p(t_i)\Delta t.$$

Multi-scaled optimization

- Rather than optimize over all entries x_i
- optimize every other entry first
- then interpolate the result
- use the interpolate solution as a better initialization to the larger problem

```
1 f(t) = -84t^4 + 146.4t^3 - 74.4t^2 + 12t
2 I = 8
3 t = range(0, 1, length=I)
4 x = f.(t)
```



```
1 f(t) = -84t^4 + 146.4t^3 - 74.4t^2 + 12t
2 I = 8
3 t = range(0, 1, length=I)
4 x = f.(t)
```



```
1 f(t) = -84t^4 + 146.4t^3 - 74.4t^2 + 12t
2 I = 8
3 t = range(0, 1, length=I)
4 x = f.(t)
```



```
1 f(t) = -84t^4 + 146.4t^3 - 74.4t^2 + 12t
2 I = 8
3 t = range(0, 1, length=I)
4 x = f.(t)
```


Advantages

- Can start on a super coarse grid (as small as 2 points!)
- Spend most of the work solving smaller problems
- But if $||x||_1 = 1$, what constraint to use on smaller problems?

Back to the question

For any vector $x \in \mathbb{R}^I$, if $||x||_1 = S$, you don't know what the subvector \overline{x} sums to.

But if x comes from a uniform discretization of an L-Lipschitz function f, then \overline{x} sums to S/2 (at least close to it)!

$$\left| rac{S}{2} - \left\| \overline{x}
ight\|_1
ight| \leq rac{I}{I-1} rac{L(b-a)}{4}$$

Normalize $z=x/\|x\|_1$, then $\|\overline{z}\|_1 \approx 1/2$

$$\left|rac{1}{2}-\|ar{z}\|_1
ight|\leq rac{I}{I-1}rac{L(b-a)}{4S}$$

Numerical Example

Actual Sum: 0.50068

```
1 # Make grid
 2 T = 2^6
 3 t = range(0, 1, length=I)
   # Sample function and normalize
   f(t) = -84t^4 + 146.4t^3 - 74.4t^2 + 12t
 7 x = f.(t)
 8 S = sum(abs, x)
   x \cdot /= S \# normalize x
10 x_subsampled = @view x[begin:2:end]
11
12 theory_error = I/(I-1) * 33.6 * (1-0) / 4S
    actual\_error = abs(1/2 - sum(abs, x\_subsampled))
Number of points: 64
Expected Sum: 0.50000
                               Theoretical error: 0.13558
```

Observed error: 0.00068

Worst Case Example

Expected Sum: 0.50000

Actual Sum: 0.49206

```
1 # Make grid
 2 T = 2^6
 3 t = range(0, 1, length=I)
 5 # Sample function and normalize
 6 f(t) = t
 7 x = f.(t)
 8 S = sum(abs, x)
   x \cdot /= S \# normalize x
10 x_subsampled = @view x[begin:2:end]
11
12 theory_error = I/(I-1) * 1 * (1-0) / 4S
    actual_error = abs(1/2 - sum(abs, x_subsampled))
Number of points: 64
```

Theoretical error: 0.00794

Observed error: 0.00794

Extensions

- Linear constraints more generally $\langle a, x \rangle = b$?
 - lacktriangle can prove similar bounds for $\langle \overline{a}, \overline{x} \rangle pprox b/2$
- Other *p*-norms $||x||_p = 1$?
 - conjecture $\|\overline{x}\|_p \approx (1/2)^{1/p}$
- What's the best scheme for optimizing over many scales?