

Surface Area and volume of A Right Circular cone Ex 20.1 Q1 Answer:

The formula of the curved surface area of a cone with base radius 'r' and slant height 'l' is given as Curved Surface Area = πrl

Substituting the values of r = 21 cm and l = 60 cm in the above equation and using $\pi = \frac{22}{7}$

Curved Surface Area = $\frac{(22)\cdot(21)\cdot(60)}{7}$

- = 66.(60)
- = 3960

Therefore the Curved Surface Area of the cone with the specified dimensions is 3960 cm²

Surface Area and volume of A Right Circular cone Ex 20.1 Q2 Answer:

The formula of the curved surface area of a cone with base radius 'r' and slant height 'l' is given as Curved Surface Area = πrl

But, here we're given only that the base radius r = 5 cm and vertical height h = 12 cm.

To find the slant height T to be used in the formula for Curved Surface Area we use the following relation

Slant height, $l = \sqrt{r^2 + h^2}$

- $=\sqrt{5^2+12^2}$
- $=\sqrt{25+144}$
- $=\sqrt{169}$

Now, substituting the values of r = 5 cm and slant height l = 13 cm and using $\pi = \frac{22}{7}$ in the formula of C.S.A,

We get Curved Surface Area = $\frac{(22).(5).(13)}{7}$

- $=204\frac{2}{7}$

Therefore the Curved Surface Area of the cone with the specified dimensions is $204\frac{2}{3}$ cm²

Surface Area and volume of A Right Circular cone Ex 20.1 Q3 Answer:

It is given that the curved surface area (C.S.A) of the cone is 176 cm² and that the base radius is 7 cm. The formula of the curved surface area of a cone with base radius 'r' and slant height 'l' is given as

Curved Surface Area = πrl

Hence, slant height, $l = \frac{(C.S.A)}{l}$

Substituting the values of C.S.A and the base radius and using $\pi = \frac{22}{7}$ in the above equation,

Slant height, $l = \frac{(7).(176)}{(22).(7)}$

= 8

Hence the slant height of the cone with the mentioned dimensions is $8\ cm$

********* FND *******