Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/000292

International filing date: 13 January 2005 (13.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-350023

Filing date: 02 December 2004 (02.12.2004)

Date of receipt at the International Bureau: 17 March 2005 (17.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 28.1.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application: 2004年12月 2日

出 願 番 号 Application Number: 特願2004-350023

[ST. 10/C]:

[JP2004-350023]

出願人

本田技研工業株式会社

Applicant(s):

特許庁長官 Commissioner, Japan Patent Office 2005年 3月 4日

1) 1

特許願 【書類名】 H104004902 【整理番号】 平成16年12月 2日 【提出日】 特許庁長官殿 【あて先】 F01L 13/00 【国際特許分類】 【発明者】 埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内 【住所又は居所】 藤井 徳明 【氏名】 【発明者】 埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内 【住所又は居所】 吉田 恵子 【氏名】 【発明者】 埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内 【住所又は居所】 中村 勝則 【氏名】 【発明者】 株式会社本田技術研究所内 埼玉県和光市中央1丁目4番1号 【住所又は居所】 藤本 智也 【氏名】 【発明者】 埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内 【住所又は居所】 米川 明之 【氏名】 【特許出願人】 000005326 【識別番号】 本田技研工業株式会社 【氏名又は名称】 【代理人】 100071870 【識別番号】 【弁理士】 【氏名又は名称】 落合 健 【選任した代理人】 100097618 【識別番号】 【弁理士】 仁木 一明 【氏名又は名称】 【先の出願に基づく優先権主張】 特願2004- 9396 【出願番号】 平成16年 1月16日 【出願日】 【手数料の表示】 【予納台帳番号】 003001 16.000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】

【包括委任状番号】

9713028

【書類名】特許請求の範囲

【請求項1】

動弁カム(69)に当接するカム当接部(65)を有するとともに機関弁(19)に連 動、連結されるロッカアーム(63)と、該ロッカアーム(63)に一端部が回動可能に 連結されるとともに他端部がエンジン本体(10)の固定位置に回動可能に支承される第 1リンクアーム(61)と、前記ロッカアーム(63)に一端部が回動可能に連結される とともに他端部が変位可能な可動軸(68a)で回動可能に支承される第2リンクアーム (62) と、機関弁(19)のリフト量を連続的に変化させるべく前記可動軸(68a) の位置を変位させることを可能として可動軸(68a)に連結される駆動手段(72)と を備え、一対の機関弁(19)にそれぞれ当接するタペットねじ(70)がその進退位置 を調節可能として螺合される弁連結部(63a)と、第1および第2リンクアーム(61 62) の一端部を回動可能に連結する第1および第2支持部(63b,63c)とを有 する前記ロッカアーム(63)が、前記動弁カム(69)の回転軸線に沿う方向での前記 弁連結部(63a)の幅を他の部分の幅よりも大きくして形成されることを特徴とするエ ンジンの動弁装置。

【請求項2】

前記第1リンクアーム (61) の他端部が、該第1リンクアーム (61) の他端部の両 側に配置されるようにして前記エンジン本体(10)に設けられる支持壁(44a)に支 軸(67)を介して回動可能に支承され、第1リンクアーム(61)の他端部および前記 両支持壁 (4 4 a) 間に、介在物 (5 4) がそれぞれ介装されることを特徴とする請求項 1記載のエンジンの動弁装置。

【請求項3】

前記介在物(54)が、前記カム当接部(65)を前記動弁カム(69)に当接させる 側に前記ロッカアーム(63)を付勢するようにして、エンジン本体(10)および前記 ロッカアーム (63) 間に設けられるねじりばねであることを特徴とする請求項2記載の エンジンの動弁装置。

【請求項4】

前記第1支持部(63b)は、前記カム当接部であるローラ(65)を両側から挟むよ うにして略U字状に形成され、前記ローラ(65)が第1支持部(63b)で回転可能に 支承されることを特徴とする請求項1~3のいずれかに記載のエンジンの動弁装置。

【請求項5】

第1リンクアーム (61) の一端部には、前記ロッカアーム (63) の第1支持部 (6 3b)を両側から挟む一対の連結部 (61a) が設けられ、両連結部 (61a) が連結軸 (64)を介して第1支持部(63b)に回動可能に連結され、前記ローラ(65)が前 記連結軸(64)を介して前記第1支持部(63b)に軸支されることを特徴とする請求 項4記載のエンジンの動弁装置。

【請求項6】

前記ロッカアーム(63)は、第1および第2支持部(63b,63c)の幅を同一と して形成されることを特徴とする請求項1~5のいずれかに記載のエンジンの動弁装置。

【請求項7】

第1および第2支持部(63b,63c)には、第1および第2リンクアーム(61, 62)の一端部をそれぞれ回動可能に連結するための連結軸(64,66)を挿通せしめ る連結孔(49,50)が、前記両機関弁(19)の開閉作動方向に並ぶようにして設け られ、前記両機関弁(19)側で両連結孔(49,50)の外縁に接する接線(L)に対 して前記両機関弁(19)とは反対側に少なくとも一部が配置される連結壁(63d)で 、第1および第2支持部(63b,63c)間が連結されることを特徴とする請求項1~ 6のいずれかに記載のエンジンの動弁装置。

【請求項8】

第2リンクアーム(62)の他端部がロッカアーム(63)側に最も近づいた状態で前 記第2リンクアーム (62) の他端部に対向する位置で、前記連結壁 (63 d) に凹部 (

ページ: 2/E

51) が形成されることを特徴とする請求項7記載のエンジンの動弁装置。 【請求項9】

前記連結壁 (63d) に、肉抜き部 (52) が形成されることを特徴とする請求項7または8記載のエンジンの動弁装置。

【書類名】明細書

【発明の名称】エンジンの動弁装置

【技術分野】

[0001]

本発明は、吸気弁もしくは排気弁である機関弁のリフト量を連続的に変化させるリフト可変機構を備えたエンジンの動弁装置に関する。

【背景技術】

[0002]

機関弁のリフト量を無段階に変化させるために、機関弁に当接する弁当接部を一端側に有するロッカアームの他端部に、プッシュロッドの一端が嵌合され、プッシュロッドの他端および動弁カム間にリンク機構が設けられた動弁装置が、特許文献1で既に知られている。

【特許文献1】特開平8-74534号公報

【発明の開示】

【発明が解決しようとする課題】

[0003]

ところが、上記特許文献1で開示されたエンジンの動弁装置では、リンク機構およびプッシュロッドを配置するための比較的大きなスペースを動弁カムおよびロッカアーム間に確保する必要があり、動弁装置が大型化する。しかも動弁カムからの駆動力がリンク機構およびプッシュロッドを介してロッカアームに伝達されるので、動弁カムに対するロッカアームの追従性すなわち機関弁の開閉作動追従性が優れているとは言い難い。

[0004]

そこで本出願人は、ロッカアームに第1および第2リンクアームの一端部が回動可能に連結され、第1リンクアームの他端部がエンジン本体に回動可能に支承され、第2リンクアームの他端部を、駆動手段によって変位させるようにしたエンジンの動弁装置を、特願2002-196872で既に提案しており、この動弁装置によれば、動弁装置のコンパクト化が可能となるとともに、動弁カムからの動力をロッカアームに直接伝達するようにして動弁カムに対する優れた追従性を確保することが可能である。

[0005]

ところで、動弁装置のコンパクト化を図る上では、ロッカアームの回動軸線に沿う幅も極力小さく設定することが重要であるが、単一のロッカアームで一対の機関弁を開弁駆動する場合、両機関弁間の距離は、燃焼室の形状、寸法によってほぼ定まるものであり、両機関弁に連結されるべくロッカアームに設けられる弁連結部の幅も両機関弁間の距離に応じて定まってしまうので、ロッカアームの前記幅を極力小さくするためには、前記弁連結部の幅を最大としてロッカアームを構成することが望ましい。

[0006]

本発明は、かかる事情に鑑みてなされたものであり、機関弁のリフト量を連続的に変化させるようにした上で、関開閉作動の追従性を確保しつつコンパクト化を図り得るようにしたエンジンの動弁装置を提供することを目的とする。

【課題を解決するための手段】

[0007]

上記目的を達成するために、請求項1記載の発明は、動弁カムに当接するカム当接部を有するとともに機関弁に連動、連結されるロッカアームと、該ロッカアームに一端部が回動可能に連結されるとともに他端部がエンジン本体の固定位置に回動可能に支承される第1リンクアームと、前記ロッカアームに一端部が回動可能に連結されるとともに他端部が変位可能な可動軸で回動可能に支承される第2リンクアームと、機関弁のリフト量を連続的に変化させるべく前記可動軸の位置を変位させることを可能として可動軸に連結される駆動手段とを備え、一対の機関弁にそれぞれ当接するタペットねじがその進退位置を調節可能として螺合される弁連結部と、第1および第2リンクアームの一端部を回動可能に連結する第1および第2支持部とを有する前記ロッカアームが、前記動弁カムの回転軸線に

沿う方向での前記弁連結部の幅を他の部分の幅よりも大きくして形成されることを特徴と する。

[0008]

また請求項2記載の発明は、請求項1記載の発明の構成に加えて、前記第1リンクアー ムの他端部が、該第1リンクアームの他端部の両側に配置されるようにして前記エンジン 本体に設けられる支持壁に支軸を介して回動可能に支承され、第1リンクアームの他端部 および前記両支持壁間に、介在物がそれぞれ介装されることを特徴とする。

[0009]

請求項3記載の発明は、請求項2記載の発明の構成に加えて、前記介在物が、前記カム 当接部を前記動弁カムに当接させる側に前記ロッカアームを付勢するようにして、エンジ ン本体および前記ロッカアーム間に設けられるねじりばねであることを特徴とする。

[0010]

請求項4記載の発明は、請求項1~3のいずれかに記載の発明の構成に加えて、前記第 1支持部は、前記カム当接部であるローラを両側から挟むようにして略U字状に形成され 、前記ローラが第1支持部で回転可能に支承されることを特徴とする。

[0011]

請求項5記載の発明は、請求項4記載の発明の構成に加えて、第1リンクアームの一端 部には、前記ロッカアームの第1支持部を両側から挟む一対の連結部が設けられ、両連結 部が連結軸を介して第1支持部に回動可能に連結され、前記ローラが前記連結軸を介して 前記第1支持部に軸支されることを特徴とする。

[0012]

請求項6記載の発明は、請求項1~5のいずれかに記載の発明の構成に加えて、前記ロ ッカアームは、第1および第2支持部の幅を同一として形成されることを特徴とする。

[0 0 1 3]

請求項7記載の発明は、請求項1~6のいずれかに記載の発明の構成に加えて、第1お よび第2支持部には、第1および第2リンクアームの一端部をそれぞれ回動可能に連結す るための連結軸を挿通せしめる連結孔が、前記両機関弁の開閉作動方向に並ぶようにして 設けられ、前記両機関弁側で両連結孔の外縁に接する接線に対して前記両機関弁とは反対 側に少なくとも一部が配置される連結壁で、第1および第2支持部間が連結されることを 特徴とする。

[0014]

請求項8記載の発明は、請求項7記載の発明の構成に加えて、前記第2リンクアームの 他端部がロッカアーム側に最も近づいた状態で前記第2リンクアームの他端部に対向する 位置で、前記連結壁に凹部が形成されることを特徴とする。

請求項9記載の発明は、請求項7または8記載の発明の構成に加えて、前記連結壁に肉 抜き部が形成されることを特徴とする。

【発明の効果】

[0016]

請求項1記載の発明によれば、可動軸を無段階に変位させることで機関弁のリフト量を 無段階に変化させることが可能であり、また第1および第2リンクアームの一端部がロッ カアームに回動可能として直接連結されており、両リンクアームを配置するスペースを少 なくして動弁装置のコンパクト化を図ることができ、動弁カムからの動力がロッカアーム のカム当接部に直接伝達されるので動弁カムに対する優れた追従性を確保することができ る。しかもロッカアームは、一対の機関弁を開弁駆動するものであり、両機関弁にそれぞ れ当接するタペットねじがその進退位置を調節可能として螺合される弁連結部と、第1お よび第2リンクアームの一端部を回動可能に連結する第1および第2支持部とをロッカア ームが有するのであるが、該ロッカアームは、動弁カムの回転軸線に沿う方向での弁連結 部の幅を他の部分の幅よりも大きくして形成されるので、動弁カムの回転軸線に沿う方向 でのロッカアームの幅を極力小さくすることを可能とし、これによっても動弁装置のコン

[0017]

また請求項2記載の発明によれば、第1リンクアームの他端部と、第1リンクアームの 他端部の両側に配置されるようにしてエンジン本体に設けられる支持壁との間に介在物が 介装されるので、介在物を選択することにより、第1リンクアームおよび両支持壁間の寸 法公差を介在物で吸収するようにして第1リンクアームの位置決めが容易となる。

[0018]

請求項3記載の発明によれば、カム当接部が動弁カムに当接する方向にロッカアームを付勢するねじりばねを前記介在物とすることにより、前記寸法公差を吸収することが容易となり、しかもカム当接部を動弁カムに確実に当接させて弁リフト量の制御精度を高くすることができる。

[0019]

請求項4記載の発明によれば、略U字状に形成される第1支持部でローラを回転可能に 支承するようにして、ローラを含むロッカアーム全体をコンパクトに構成することができ る。

[0020]

請求項5記載の発明によれば、第1リンクアームの一端部の第1支持部への回動可能な連結、ならびに前記ローラの第1支持部への軸支を共通の連結軸で達成するようにして、 部品点数の低減化を図るとともに動弁装置をよりコンパクト化することができる。

[0021]

請求項6記載の発明によれば、第1および第2支持部の幅が同一であるので、ロッカアームを、その形状の単純化を図りつつコンパクト化することができる。

[0022]

請求項7記載の発明によれば、ロッカアームの第1および第2支持部が、両支持部に設けられた一対の連結孔の機関弁側の外縁に接する接線に対して機関弁とは反対側に少なくとも一部が配置される連結壁で連結されるので、第1および第2支持部の剛性を高めることができる。

[0023]

請求項8記載の発明によれば、第2リンクアームの他端部をロッカアーム側に極力近接 した位置まで変位させることが可能であり、それにより動弁装置のコンパクト化を可能と しつつ機関弁の最大リフト量を極力大きく設定することが可能となる。

[0024]

さらに請求項9記載の発明によれば、連結壁による剛性増大を可能としつつロッカアームの重量増大を抑えることができる。

【発明を実施するための最良の形態】

[0025]

以下、本発明の実施の形態を、添付の図面に示した本発明の一実施例に基づいて説明する。

[0026]

図1〜図11は本発明の一実施例を示すものであり、図1はエンジンの部分縦断面図であって図2の1-1線断面図、図2は図1の2-2線断面図、図3は図2の3-3線矢視図、図4はリフト可変機構の側面図、図5はリフト可変機構の分解斜視図、図6は図4の6-6線断面図、図7は図3の7矢視図、図8はリフト可変機構の作用説明図、図9は機関弁のリフト曲線を示す図、図10は図3の要部拡大図、図11はコントロールアームの回転角とセンサアームの回転角との関係を示すグラフである。

[0027]

先ず図1において、直列多気筒であるエンジンEのエンジン本体10は、内部にシリンダボア11…が設けられたシリンダブロック12と、シリンダブロック12の頂面に結合されたシリンダヘッド14と、シリンダヘッド14の頂面に結合されるヘッドカバー16とを備え、各シリンダボア11…にはピストン13…が摺動自在に嵌合され、各ピストン

13…の頂部を臨ませる燃焼室15…がシリンダブロック12およびシリンダヘッド14間に形成される。

[0028]

シリンダヘッド14には、各燃焼室15…に通じ得る吸気ポート17…および排気ポート18…が設けられており、各吸気ポート17…が一対の機関弁である吸気弁19…でそれぞれ開閉され、各排気ポート18が一対の排気弁20…でそれぞれ開閉される。吸気弁19のステム19aはシリンダヘッド14に設けられたガイド筒21に摺動自在に嵌合され、ステム19aの上端部に設けられるばねシート22ならびにシリンダヘッド14に当接されるばねシート23間に設けられる弁ばね24によって各吸気弁19…は閉弁方向に付勢される。また排気弁20のステム20aはシリンダヘッド14に設けられるガイド筒25に摺動自在に嵌合され、ステム20aの上端部に設けられるばねシート26ならびにシリンダヘッド14に当接されるばねシート27間に設けられる弁ばね28によって各排気弁20…は閉弁方向に付勢される。

[0029]

図2を併せて参照して、シリンダヘッド14には、各気筒の両側に配置される支持壁44a…を有するホルダ44が一体に設けられており、各支持壁44a…には、吸気カムホルダ46…および排気カムホルダ48…を協働して構成するキャップ45…,47…が結合される。而して吸気カムホルダ46…には吸気カムシャフト31が回転自在に支承され、排気カムホルダ48…には排気カムシャフト32が回転自在に支承され、吸気弁19…は吸気カムシャフト31によってリフト可変機構33を介して駆動され、排気弁20…は排気カムシャフト32によってリフト・タイミング可変機構34を介して駆動される。

[0030]

排気弁20…を駆動するリフト・タイミング可変機構34は周知のものであり、ここではその概略を説明する。排気カムホルダ48…における支持壁44a…で支持された排気ロッカシャフト35には、一対の低速用ロッカアーム36,36の一端部と、単一の高速用ロッカアーム37の一端部とが枢支されており、低速用ロッカアーム36,36の中間部に軸支されたローラ38,38に排気カムシャフト32に設けられた2個の低速用カム39,39が当接し、高速用ロッカアーム37の中間部に軸支されたローラ40に排気カムシャフト32に設けられた高速用カム41が当接する。また低速用ロッカアーム36,36の他端には、排気弁20…のステム20a…の上端に当接するタペットねじ42…が進退位置を調節可能として螺合される。

[0031]

しかも両低速用ロッカアーム36,36および高速用ロッカアーム37は、油圧の制御によって連結および連結解除を切換可能であり、エンジンEの低速運転時に、低速用ロッカアーム36,36および高速用ロッカアーム37の連結を解除すると、低速用ロッカアーム36,36は対応する低速用カム39,39により駆動され、排気弁20…は低リフト・低開角で開閉される。またエンジンEの高速運転時に、低速用ロッカアーム36,36および高速用ロッカアーム37は対応する高速用カム41により駆動され、高速用ロッカアーム37に結合された低速用ロッカアーム36,36により、排気弁20…は高リフト・高開角で開閉される。このように、リフト・タイミング可変機構34により、排気弁20…のリフトおよびタイミングが2段階に制御される。

[0032]

次に図3~図7を併せて参照しつつリフト可変機構33の構造を説明すると、該リフト可変機構33は、吸気カムシャフト31に設けられる動弁カム69に当接するカム当接部としてのローラ65を有するロッカアーム63と、該ロッカアーム63に一端部が回動可能に連結されるとともに他端部がエンジン本体10の固定位置に回動可能に支承される第1リンクアーム61と、前記ロッカアーム63に一端部が回動可能に連結されるとともに他端部が変位可能な可動軸68aで回動可能に支承される第2リンクアーム62とを備える。

[0033]

ロッカアーム63の一端部には、一対の吸気弁19…におけるステム19a…の上端に 上方から当接するタペットねじ70、70が進退位置を調節可能として螺合される弁連結 部63 aが設けられる。またロッカアーム63の他端部は吸気弁19…とは反対側に開く ようにして略U字状に形成されており、第1リンクアーム61の一端部を回動可能に連結 するための第1支持部63bと、第2リンクアーム61の一端部を回動可能に連結する第 2支持部63cとが、第1支持部63bの下方に第2支持部63cが配置されるようにし てロッカアーム63の他端部に設けられる。しかも吸気カムシャフト31の動弁カム69 に転がり接触するローラ65は略U字状である第1支持部63bに挟まれるように配置さ れるものであり、第1リンクアーム61の一端連結部と同軸にして第1支持部63bに軸 支される。

[0034]

またロッカアーム63は、動弁カム69の回転軸線に沿う方向での前記弁連結部63a の幅を他の部分の幅よりも大きくして形成されるものであり、第1および第2支持部63 b. 63 c の幅は同一に形成される。

[0035]

第1リンクアーム61は、ロッカアーム63を両側から挟む一対の第1連結部61a, 6 1 a と、円筒状の固定支持部 6 1 b と、両第 1 連結部 6 1 a , 6 1 a および固定支持部 61b間を結ぶ一対の腕部61c,61cとを有して略U字状に形成される。

[0036]

第1リンクアーム61の一端部の第1連結部61a, 61aは、ロッカアーム63の第 1支持部63bに設けられた第1連結孔49に挿通、固定された円筒状の第1連結軸64 を介して前記ロッカアーム63の他端部の第1支持部63bに回動可能に連結されており 、前記ローラ65も第1連結軸64を介して第1支持部63bに軸支される。また第1支 持部63bのうち前記吸気カムシャフト31に対向する部分の外側面ならびに第1リンク アーム 6 1 における第 1 連結部 6 1 a, 6 1 の外側面は、側面視では重なるようにして第 1連結軸64の軸線を中心とする円弧状に形成される。

[0037]

第1リンクアーム61の下方に配置される第2リンクアーム62は、その一端部に第1 連結部62aを有するとともに他端部に可動支持部62bを有するものであり、第2連結 部62aは、略U字状に形成されている第2支持部63bに挟まれるように配置される。 第2支持部63cには、第1支持部63bの第1連結孔49とともに前記両吸気弁19… の開閉作動方向すなわち上下方向に並ぶ第2連結孔50が設けられており、第2連結部6 2aは、第2連結孔50に挿通、固定される第2連結軸66を介して第2支持部63cに 回動可能に連結される。

[0038]

すなわち動弁カム69に当接する前記ローラ65を他端側上部に有するロッカアーム6 3の一端部が一対の吸気弁19…に連動、連結され、上方の第1リンクアーム61がその 一端部に有する第1連結部61a,61aと、第1リンクアーム61の下方に配置される 第2リンクアーム62がその一端部に有する第2連結部62aとが、ロッカアーム63の 他端部に上下に並列して相対回動可能に連結されることになる。

[0039]

ところで前記ロッカアーム63には、略U字状である第1および第2支持部63b、6 3c間を結ぶ一対の連結壁63d…が一体に設けられる。しかも連結壁63d…は、前記 両吸気弁19…側で第1および第2連結孔49,50の外縁に接する接線Lに対して前記 両吸気弁19…とは反対側に少なくとも一部が配置されるようにして、第1および第2支 持部63b、63c間を連結するように形成される。

[0040]

また連結壁63 d…には、第2リンクアーム62の他端部の可動支持部62 bがロッカ アーム63側に最も近づいた状態で可動軸68aに対向する位置に配置されるようにして 凹部51…が形成される。さらに前記連結壁63d…には、たとえば外側面から内方側に 凹むようにして、肉抜き部52…が形成される。

[0041]

第1リンクアーム 61の他端部の固定支持部 61 bは、エンジン本体 10 に設けられる 吸気カムホルダ 46…の下部を構成するようにして前記固定支持部 61 bの両側に配置される支持壁 44 a…に、固定支軸 67を介して回動可能に支承されるものであり、固定支軸 67は前記両支持壁 44 a…に固定的に支持される。

[0042]

図6に特に注目して、前記支持壁44a…には、第1リンクアーム61の固定支持部61b側に突出するようにして一対の支持ボス53,53が一体に突設される。これらの支持ボス53…には、前記固定支持部61bの両端面に摺接し得る小径軸部53a…と、小径軸部53a…の基端部を囲むようにして固定支持部61bの両端面に間隔をあけて対向する段部53b…とが設けられ、固定支軸67は、小径軸部53a…を同軸に貫通するようにして支持ボス53…で固定的に支持される。

[0043]

ところで、両吸気弁19…は弁ばね24…で閉弁方向にばね付勢されるものであり、閉弁方向にばね付勢されている両吸気弁19…をロッカアーム63で開弁方向に駆動しているときにロッカアーム63のローラ65は、弁ばね24…の働きによって動弁カム69に当接しているのであるが、吸気弁19…の閉弁状態では、弁ばね24…のばね力はロッカアーム63に作用することはなく、ローラ65が動弁カム69から離れてしまい、吸気弁19…の微小閉弁時における弁リフト量の制御精度が低下してしまう可能性がある。そこで、第1リンクアーム61の他端部の固定支持部61bの両面と、固定支持部61bの両側に配置される支持壁44a…に突設された支持ボス53…との間に介装される介在物であるねじりばね54…が、弁ばね24…とは別に設けられ、このねじりばね54…によりロッカアーム63は、前記ローラ65を動弁カム69に当接させる方向に付勢される。

[0044]

前記ねじりばね 54 …は、前記支持ボス 53 …における小径軸部 53a …を介して前記固定支軸 67 を囲繞するように配置され、エンジン本体 10 およびロッカアーム 63 間に設けられる。すなわち前記小径軸部 53a …を囲繞するねじりばね 54 …の一端は、前記支持ボス 53 …の段部 53b …に植設された係止ピン 55 …に係合され、ねじりばね 54 …の他端は、ロッカアーム 63b —体に作動する中空の第 1 連結軸 64 内に挿入、係合される。

[0045]

ところで、第1リンクアーム 61の他端部の固定支持部 61 bは、コイル状に巻かれている前記ねじりばね 54 \cdots の外周よりも側面視では内方に外周が配置されるようにして円筒状に形成されるものであり、固定支持部 61 bの軸方向両端部には、ねじりばね 54 \cdots が固定支持部 61 b側に倒れるのを阻止する複数たとえば一対の突部 56, 57 が、周方向に間隔をあけてそれぞれ突設され、それらの突部 56, 57 は、第2リンクアーム 62 の作動範囲を避けて配置される。

[0046]

エンジン本体10には、ロッカアーム63の他端部に第1および第2リンクアーム61,62の一端部の第1連結部61a…および第2連結部62aを連結するようにして上下に並ぶ位置に配置される第1および第2連結軸64,66のうち上方の連結軸に向けてオイルを供給するオイル供給手段としてのオイルジェット58…が固定配置されるものであり、この実施例では、第1および第2連結軸64,66のうち上方の連結軸である第1連結軸64に向けてオイルを供給するオイルジェット58…が、エンジン本体10に設けられた吸気カムホルダ46…におけるキャップ45…に固定的に取付けられる。

[0047]

しかもロッカアーム63の他端側上部には、ローラ65を両側から挟むようにして略U字状に形成される第1支持部63bが設けられ、第1リンクアーム61の一端部の第1連

結部61a…が、前記ローラ65を軸支する第1連結軸64を介して第1支持部63bに 回動可能に連結されており、前記オイルジェット58…は、第1リンクアーム61の第1 連結部 6 1 a …および第 1 支持部 6 3 b の合わせ面に向けてオイルを供給するようにして 前記キャップ45…に配設される。

[0048]

第2リンクアーム62がその他端部に有する可動支持部62bを回動可能に支承する可 動軸68aは、クランク部材68に設けられる。このクランク部材68は、第2リンクア ーム62の作動平面と平行な平面に配置される連結板68bの両端に、前記可動軸68a および支軸68cが相互に反対方向に突出するようにして直角に設けられて成るものであ り、前記支軸68cは、エンジン本体10におけるヘッドカバー16に設けられる支持孔 16 a に回転自在に支持される。

[0049]

而してロッカアーム63が図4に示す上昇位置にあるとき、すなわち吸気弁19…が閉 弁状態にあるときに、ロッカアーム63の下部を枢支する第2連結軸66の軸線C上にク ランク部材68の支軸68cが同軸に配置される(図5参照)ものであり、したがってク ランク部材 6 8 が支軸 6 8 c の軸線まわりに揺動すると、可動軸 6 8 a は支軸 6 8 c を中 心とする円弧A(図4参照)上を移動することになる。

[0050]

前記クランク部材68の支軸68cは、ヘッドカバー16の支持孔16aから突出する ものであり、この支軸68cの先端にコントロールアーム71が固定され、該コントロー ルアーム71がシリンダヘッド14の外壁に取付けられた駆動手段としてのアクチュエー タモータ72によって駆動される。すなわちアクチュエータモータ72により回転するね じ軸73にナット部材74が噛み合っており、ナット部材74にピン75で一端を枢支さ れた連結リンク76の他端が、ピン77、77を介してコントロールアーム71に連結さ れる。したがってアクチュエータモータ72を作動せしめると、回転するねじ軸73に沿 ってナット部材74が移動し、ナット部材74に連結リンク76を介して連結されたコン トロールアーム71によって支軸68cまわりにクランク部材68が揺動することで、可 動軸68aが図8(A)の位置と図8(B)の位置との間を移動する。

[0051]

ヘッドカバー16の外壁面に、例えばロータリエンコーダのような回転角センサ80が 設けられており、そのセンサ軸80aの先端にセンサアーム81の一端が固定される。コ ントロールアーム71には、その長手方向に沿って直線状に延びるガイド溝82が形成さ れており、そのガイド溝82にセンサアーム81の他端に設けた連結軸83が摺動自在に 嵌合する。

[0052]

ねじ軸73、ナット部材74、ピン75、連結リンク76、ピン77、77、コントロ ールアーム71、回転角センサ80、センサアーム81および連結軸83は、シリンダブ ロック14およびヘッドカバー16の側面から突出する壁部14a,16bの内側に収納 され、壁部14a.16bの端面を覆うカバー78がボルト79…で壁部14a,16b に固定される。

[0053]

前記リフト可変機構33において、アクチュエータモータ72でコントロールアーム7 1が図3の実線位置から反時計方向に回動すると、コントロールアーム71に連結された クランク部材 6 8 (図 5 参照)が反時計方向に回動し、図 8 (A)に示すようにクランク 部材68の可動軸68aが上昇する。この状態で吸気カムシャフト31の動弁カム69で ローラ 6 5 が押圧されると、固定支軸 6 7 、第 1 連結軸 6 4 、第 2 連結軸 6 8 および可動 軸68aを結ぶ四節リンクが変形してロッカアーム63が鎖線位置から実線位置へと下方 に揺動し、タペットねじ70、70が吸気弁19のステム19a…を押圧し、吸気弁19 …を高リフトで開弁する。

[0054]

アクチュエータモータ72でコントロールアーム71が図3の実線位置に回動すると、コントロールアーム71に連結されたクランク部材68が時計方向に回動し、図8(B)に示すようにクランク部材68の可動軸68aが下降する。この状態で吸気カムシャフト31の動弁カム69でローラ65が押圧されると、前記四節リンクが変形してロッカアーム63が鎖線位置から実線位置へと下方に揺動し、タペットねじ70,70が吸気弁19…のステム19aを押圧し、吸気弁19…が低リフトで開弁する。

[0055]

図9は吸気19のリフト曲線を示しており、図8(A)に対応する高リフト時の開角と、図8(B)に対応する低リフト時の開角とは同一であり、リフト量だけが変化している。このように、リフト可変機構33を設けたことにより、吸気弁19…の開角を変更せずに、リフト量だけを任意に変更することができる。

[0056]

ところで、アクチュエータモータ72でクランク部材68を揺動させて吸気弁19…のリフトを変更する際に、リフトの大きさ、つまりクランク部材68の支軸68cの回動角を検出してアクチュエータモータ72の制御にフィードバックする必要がある。そのために、クランク部材68の支軸68cの回動角を回転角センサ80で検出するようになっている。クランク部材68の支軸68cの回動角を単に検出するだけなら、前記支軸68cに回転角センサを直結すれば良いが、低リフトの領域ではリフト量が僅かに変化しただけで吸気効率が大きく変化するため、クランク部材68の支軸68cの回動角を精度良く検出してアクチュエータモータ72の制御にフィードバックする必要がある。それに対して、高リフトの領域ではリフト量が多少変化しても吸気効率が大きく変化しないため、前記回転角の検出にそれほど高い精度は要求されない。

[0057]

図10に実線で示すコントロールアーム71の位置は低リフトの領域に対応し、そこから反時計方向に揺動した鎖線で示すコントロールアーム71の位置は高リフトの領域に対応している。低リフトの領域では、回転角センサ80のセンサ軸80aに固定したセンサアーム81の連結軸83がコントロールアーム71のガイド溝82の先端側(軸線Cから遠い側)に係合しているため、コントロールアーム71が僅かに揺動しただけでセンサアーム81は大きく揺動する。すなわちクランク部材68の回動角に対するセンサ軸80aの回動角の比率が大きくなり、回転角センサ80の分解能が高まってクランク部材68の回動角を高精度で検出することができる。

[0058]

一方、コントロールアーム 7 1 が鎖線で示す位置に揺動した高リフトの領域では、回転角センサ80のセンサ軸80 aに固定したセンサアーム81の連結軸83がコントロールアーム 7 1 のガイド溝82 の基端側(軸線Cに近い側)に係合しているため、コントロールアーム 7 1 が大きく揺動してもセンサアーム81は僅かしか揺動しない。すなわちクランク部材68の回動角に対するセンサ軸80 aの回動角の比率が小さくなり、クランク部材68の回動角の検出精度は低リフト時に比べて低くなる。

[0059]

図11のグラフから明らかなように、コントロールアーム71の回転角が低リフト状態から高リフト状態に向かって増加してゆくと、最初はセンサアーム81の角度の増加率が高いために検出精度が高くなるが、次第に前記増加率が低くなって検出精度が低くなることが分かる。

[0060]

このように、高価で検出精度の高い回転角センサを用いずとも、回転角センサ80のセンサアーム81をコントロールアーム71のガイド溝82に係合させることで、高い検出精度を必要とする低リフト状態における検出精度を確保し、コストダウンに寄与することができる。

[0061]

このとき、コントロールアーム 7 1 の一端側(支軸 6 8 c に近い側)とセンサアーム 8 出証特 2 0 0 5 - 3 0 1 8 3 0 7 1の一端側(回転角センサ80に近い側)とを接近させて配置し、コントロールアーム71の一端側にガイド溝82を形成したので、センサアーム81の長さを短くしてコンパクト化することができる。またコントロールアーム71の一端側にガイド溝82を形成すると、軸線Cからの距離が小さくなってガイド溝82の円周方向の移動量も小さくなるが、センサアーム81の長さも短くなるため、センサアーム81の回動角を充分に確保して回転センサ80の検出精度を確保することができる。

[0062]

次にこの実施例の作用について説明すると、吸気弁19…の開弁リフト量を連続的に変化させるためのリフト可変機構33において、第1および第2リンクアーム61,62がその一端部に有する第1および第2連結部61a,61a;62aは、一対の吸気弁19…に連動、連結される弁連結部63aを一端部に有するロッカアーム63の他端部に並列して相対回動可能に連結され、第1リンクアーム61の他端部の固定支持部61bはエンジン本体10に支持される固定支軸67に回動可能に支承され、第2リンクアーム62の他端部の可動支持部62bは変位可能な可動軸68aで回動可能に支承されている。

[0063]

したがって可動軸 6.8a を無段階に変位させることで吸気弁 1.9 …のリフト量を無段階に変化させることが可能であり、しかも第1 および第2 リンクアーム 6.1 ,6.2 の一端部がロッカアーム 6.3 に回動可能として直接連結されており、両リンクアーム 6.1 ,6.2 を配置するスペースを少なくして動弁装置のコンパクト化を図ることができ、動弁カム 6.9 からの動力がロッカアーム 6.3 のローラ 6.5 に直接伝達されるので動弁カム 6.9 に対する優れた追従性を確保することができる。また吸気カムシャフト 3.1 の軸線に沿う方向でのロッカアーム 6.3 、第1 および第2 リンクアーム 6.1 ,6.2 の位置をほぼ同一位置に配置することができ、吸気カムシャフト 3.1 の軸線に沿う方向での動弁装置のコンパクト化を図ることができる。

[0064]

しかも一対の吸気弁19…にそれぞれ当接するタペットねじ70…がその進退位置を調節可能として螺合される弁連結部73aと、第1および第2リンクアーム61,62の一端部を回動可能に連結する第1および第2支持部63b,63cとを有するロッカアーム63が、動弁カム69の回転軸線に沿う方向での弁連結部63aの幅を他の部分の幅よりも大きくして形成されているので、動弁カム69の回転軸線に沿う方向でのロッカアーム63の幅を極力小さくすることを可能とし、これによっても動弁装置のコンパクト化を図ることができる。それに加えて、ロッカアーム63は、第1および第2支持部63b,63cの幅を同一として形成されるので、ロッカアーム63を、その形状の単純化を図りつコンパクト化することができる。

[0065]

またロッカアーム 6 3 に設けられる第1支持部 6 3 bは、ローラ 6 5 を両側から挟むようにして略U字状に形成されており、ローラ 6 5 が第1支持部 6 3 bで回転可能に支承されるので、ローラ 6 5 を含むロッカアーム 6 3 全体をコンパクトに構成することができる。しかも第1リンクアーム 6 1 の一端部には、第1支持部 6 3 bを両側から挟む一対の第1連結部 6 1 a …が設けられ、両第1連結部 6 1 a …が第1連結軸 6 4 を介して第1支持部 6 3 bに回動可能に連結され、ローラ 6 5 が第1連結軸 6 4 を介して第1支持部 6 3 bに軸支されるので、第1リンクアーム 6 1 の一端部の第1支持部 6 3 bへの回動可能な連結、ならびに前記ローラ 6 5 の第1支持部 6 3 bへの軸支を共通の第1連結軸 6 4 で達成するようにして、部品点数の低減化を図るとともに動弁装置をよりコンパクト化することができる。

[0066]

ロッカアーム63の第1および第2支持部63b,63cには、第1および第2リンクアーム61,62の一端部をそれぞれ回動可能に連結するための第1および第2連結軸64,66を挿通せしめる第1および第2連結孔49,50が、両吸気弁19…の開閉作動方向に並ぶようにして設けられており、両吸気弁19…側で第1および第2連結孔49.

50の外縁に接する接線Lに対して両吸気弁19…とは反対側に少なくとも一部が配置される連結壁63d…で、第1および第2支持部63b, 63c間が連結されるので、第1および第2支持部63b, 63cの剛性を高めることができる。。

[0067]

. [0068]

さらに連結壁 6 3 d…に肉抜き部 5 2…が形成されるので、連結壁 6 3 d…による剛性 増大を可能としつつロッカアーム 6 3 の重量増大を抑えることができる。

[0069]

第1および第2リンクアーム61,62の一端部をロッカアーム63に連結する第1および第2連結軸64,66のうち上方の第1連結軸64側に向けてオイルを供給するオイルジェット58…がエンジン本体10に固定配置されており、第1および第2リンクアーム61,62のうち上方の第1リンクアーム61およびロッカアーム63間を潤滑したオイルが下方に流下して下方の第2リンクアーム62およびロッカアーム63間を潤滑することになる。したがって簡単かつ部品点数を少なくした潤滑構造で、ロッカアーム63と、第1および第2リンクアーム61,62との連結部をともに潤滑して円滑な動弁作動を保証することができる。

[0070]

しかもローラ65を両側から挟むようにして略U字状に形成される第1支持部63bが前記ロッカアーム63に設けられ、第1リンクアーム61の一端部の第1連結部61a…が、ローラ65を軸支する第1連結軸64を介して第1支持部63bに回動可能に連結され、前記オイルジェット58…が、第1リンクアーム61および第1支持部63bの合わせ面に向けてオイルを供給するようにしてエンジン本体10に配設されるので、ローラ65の軸支部をも潤滑することができる。

[0071]

さらに動弁カム69が設けられる吸気カムシャフト31を回転自在に支承するようにしてエンジン本体10に設けられる吸気カムホルダ46…のキャップ45…に、オイルジェット58…が配設されるので、吸気カムシャフト31および吸気カムホルダ46…間を潤滑するための油路を利用して、充分に高圧かつ充分な量のオイルをオイルジェット58…から供給することができる。

[0072]

ところで吸気弁19…は弁ばね24…で閉弁方向に付勢されるのであるが、ロッカアーム63は、弁ばね24…とは別のねじりばね54…により、ローラ65を動弁カム69に当接させる方向に付勢されており、吸気弁19…の閉弁状態でもロッカアーム63のローラ65が動弁カム69から離れることはなく、吸気弁19…の微小開弁時における弁リフト量の制御精度を高くすることができる。

[0073]

またねじりばね54…が固定支軸67を囲繞するコイル状のねじりばねであり、ねじりばね58…の設置スペースを小さくし、動弁装置のコンパクト化を図ることができる。

[0074]

しかも固定支軸 6 7を支持する一対の支持ボス53,53が、第1リンクアーム61の他端部を両側から挟むようにしてエンジン本体10の吸気カムホルダ46…における支持壁44a…に設けられ、ねじりばね54…が、両支持ボス53,53を囲繞してエンジン本体10の支持壁44a…および第1リンクアーム61の他端部間に介装されているので、第1リンクアーム61および両支持壁44a…間の寸法公差をねじりばね54…で吸収するようにして第1リンクアーム61の位置決めが容易となり、しかも一対の支持ボス5

3,53で第1リンクアーム61の他端部における固定支持部61bの移動を規制しつつ、ねじりばね54…の収縮による影響が固定支軸67に及ぶことを回避するようにして、ねじりばね54…のコンパクトな配置が可能となる。

[0075]

第1リンクアーム61の他端部には、側面視ではねじりばね54…の外周よりも内方に外周が配置されるようにした円筒状の固定支持部61bが設けられ、その固定支持部61bが固定支軸67で回動可能に支承されるのであるが、固定支持部61bの軸方向両端部には、前記ねじりばね54…が固定支持部61b側に倒れるのを阻止する複数の突部56,57…が、周方向に間隔をあけてそれぞれ突設されている。したがって固定支持部61bの大型化を抑制しつつねじりばね54…の前記倒れを防止し、固定支持部61bの支持剛性を高めることができる。

[0076]

しかも前記突部56,57…が第2リンクアーム62の作動範囲を避けて配置されるので、突部56,57…が固定支持部61bに設けられるにもかかわらず、第2リンクアーム62の作動範囲を充分に確保することができる。

[0077]

さらにリフト可変機構33は、連結板68bの両端に、可動軸68aと、該可動軸68aと平行な軸線を有する支軸68cとが突設されて成るクランク部材68を備えており、支軸68cがエンジン本体10のヘッドカバー16に回動可能に支承されるので、クランク部材68を支軸68cの軸線まわりに回動せしめることで可動軸68aを容易に変位させることができ、アクチュエータモータ72によって可動軸68aを変位させる機構の単純化を図ることができる。

[0078]

以上、本発明の実施例を説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行うことが可能である。

【図面の簡単な説明】

[0079]

- 【図1】エンジンの部分縦断面図であって図2の1-1線断面図である。
- 【図2】図1の2-2線断面図である。
- 【図3】図2の3-3線矢視図である。
- 【図4】リフト可変機構の側面図である。
- 【図5】リフト可変機構の分解斜視図である。
- 【図6】図4の6-6線拡大断面図である。
- 【図7】図3の7矢視図である。
- 【図8】リフト可変機構の作用説明図である。
- 【図9】機関弁のリフト曲線を示す図である。
- 【図10】図3の要部拡大図である。
- 【図11】 コントロールアームの回転角とセンサアームの回転角との関係を示すグラフである。

【符号の説明】

[0080]

- 10・・・エンジン本体
- 19・・・機関弁としての吸気弁
- 44a···支持壁
- 49,50 · · · 連結孔
- 5 1 ・・・凹部
- 52・・・肉抜き部
- 54・・・介在物であるねじりばね
- 61・・・第1リンクアーム

特願2004-350023

ページ: 12/E

- 61a···連結部
- 62・・・第2リンクアーム
- 6.3・・・ロッカアーム
- 63a·・・弁連結部
- 63b···第1支持部
- 63c···第2支持部
- 63d·・・連結壁
- 64,66 · · · 連結軸
- 65・・・カム当接部としてのローラ
- 67・・・支軸
- 68a···可動軸
- 69・・・動弁カム
- 70・・・タペットねじ
- 72・・・駆動手段としてのアクチュエータモータ
- E・・・エンジン
- L・・・接線

【図5】

【図6】

【図7】

【図9】

【図10】

【図11】

ページ: 1/E

【書類名】要約書

【要約】

【課題】機関弁のリフト量を連続的に変化させるようにした上で、関開閉作動の追従性を確保しつつコンパクト化を図る。

【解決手段】一対の機関弁19にそれぞれ当接するタペットねじ70がその進退位置を調節可能として螺合される弁連結部63aが設けられるとともに、動弁カム69に当接するカム当接部65を有して機関弁19に連動、連結されるロッカアーム63に、エンジン本体の固定位置に回動可能に支承される第1リンクアーム61の一端部と、変位可能な可動軸68aで回動可能に支承される第2リンクアーム62の一端部とが回動可能に連結され、前記ロッカアーム63は、動弁カム69の回転軸線に沿う方向での弁連結部63aの幅を他の部分の幅よりも大きくして形成される。

【選択図】 図5

特願2004-350023

ページ: 1/E

認定・付加情報

特許出願の番号

特願2004-350023

受付番号:

50402063334

書類名

特許願

担当官

第三担当上席

0092

作成日

平成16年12月 7日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000005326

【住所又は居所】

東京都港区南青山二丁目1番1号

【氏名又は名称】

本田技研工業株式会社

【代理人】

申請人

【識別番号】

100071870

【住所又は居所】

東京都台東区台東2丁目6番3号 TOビル 落

合特許事務所

【氏名又は名称】

落合 健

【選任した代理人】

【識別番号】

100097618

【住所又は居所】

東京都台東区台東2丁目6番3号 TOビル 落

合特許事務所

【氏名又は名称】

仁木 一明

【書類名】 【整理番号】 【提出日】 - 【あで先】 【事件の表示】 【出願番号】 【補正をする者】 【識別番号】 【氏名又は名称】 【代理人】 【識別番号】 【弁理士】 【氏名又は名称】 【手続補正1】 【補正対象書類名】 【補正対象項目名】 【補正方法】 【補正の内容】 【発明者】 【住所又は居所】 【氏名】 【発明者】 【住所又は居所】 【氏名】 【発明者】 【住所又は居所】 【氏名】 【その他】

手続補正書 H104004902 平成17年 1月19日 特許庁長官殿 特願2004-350023 000005326 本田技研工業株式会社 100071870 落合 健 特許明者 変更

埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内藤井 徳明

埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内中村 勝則

埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内 米川 明之

「発明者削除の理由書」 本願の願書を代理人事務所において作成するに当り、過誤により、本願発明の真正な発明者ではない「吉田 恵子」と「藤本 智也」の名前を願書の発明者の欄に記載してしまいました。 そこで本日提出の手続補正書により、本願の願書の発明者の欄の記載を訂正して、上記「吉田 恵子」と「藤本 智也」を発明者中より削除しました。 尚、この補正に関して、発明者相互の宣誓書を本日提出の手続補足書により発送しました。 以上

特願2004-350023

ページ: 1/E

認定・付加情報

特許出願の番号

特願2004-350023

受付番号

50500091064

書類名

手続補正書

担当官

小野塚 芳雄

6590

作成日

平成17年 2月23日

<認定情報・付加情報>

【補正をする者】

【識別番号】

000005326

【住所又は居所】

東京都港区南青山二丁目1番1号

【氏名又は名称】

本田技研工業株式会社

【代理人】

申請人

【識別番号】

100071870

【住所又は居所】

東京都台東区台東2丁目6番3号 TOビル 落

合特許事務所

【氏名又は名称】

落合 健

1/E ページ:

特願2004-350023

出願人履歴情報

[000005326]

1. 変更年月日

1990年 9月 6日 新規登録 東京都港区南青山二丁目1番1号 本田技研工業株式会社

[変更理由] 住 所 氏 名