

Full Name: MD MAFUJUL HASAN Email: mdtonmoy13.mt@gmail.com Test Name: **Mock Test** Taken On: 15 May 2023 13:26:20 IST Time Taken: 46 min 44 sec/ 90 min Invited by: Ankush 15 May 2023 13:26:00 IST Invited on: Skills Score: Tags Score: Algorithms 290/290

Arrays 95/95

Core CS 290/290

Data Structures 215/215

Easy 95/95

Medium 75/75

Queues 120/120

Search 75/75

Sorting 95/95

Strings 95/95

Strings 95/95 problem-solving 170/170

100%

scored in **Mock Test** in 46 min 44 sec on 15 May 2023 13:26:20 IST

Recruiter/Team Comments:

No Comments.

Plagiarism flagged

We have marked questions with suspected plagiarism below. Please review.

	Question Description	Time Taken	Score	Status
Q1	Truck Tour > Coding	2 min 52 sec	120/ 120	(!)
Q2	Pairs > Coding	33 min 50 sec	75/ 75	⊘
Q3	Big Sorting > Coding	1 min 30 sec	95/ 95	⊘

QUESTION 1 Truck Tour > Coding Algorithms Data Structures Queues Core CS

Score 120

QUESTION DESCRIPTION

Suppose there is a circle. There are N petrol pumps on that circle. Petrol pumps are numbered 0 to (N-1) (both inclusive). You have two pieces of information corresponding to each of the petrol pump: (1) the amount of petrol that particular petrol pump will give, and (2) the distance from that petrol pump to the next petrol pump.

Initially, you have a tank of infinite capacity carrying no petrol. You can start the tour at any of the petrol pumps. Calculate the first point from where the truck will be able to complete the circle. Consider that the truck will stop at each of the petrol pumps. The truck will move one kilometer for each litre of the petrol.

Input Format

The first line will contain the value of N.

The next N lines will contain a pair of integers each, i.e. the amount of petrol that petrol pump will give and the distance between that petrol pump and the next petrol pump.

Constraints:

```
1 < N < 10^5
```

 $1 \le \text{amount of petrol, distance} \le 10^9$

Output Format

An integer which will be the smallest index of the petrol pump from which we can start the tour.

Sample Input

```
3
1 5
10 3
3 4
```

Sample Output

1

Explanation

We can start the tour from the second petrol pump.

CANDIDATE ANSWER

Language used: Python 3

```
1 #
2 # Complete the 'truckTour' function below.
4 # The function is expected to return an INTEGER.
5 # The function accepts 2D INTEGER ARRAY petrolpumps as parameter.
6 #
8 def truckTour(petrolpumps):
9 # Write your code here
    N = len(petrolpumps)
    for i in range(N):
        j = 0
         tank cap = 0
         valid_tour = True
        while j < N:
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Testcase 1	Easy	Sample case	Success	0	0.081 sec	9.28 KB
Testcase 2	Easy	Hidden case	Success	10	0.0666 sec	9.53 KB
Testcase 3	Easy	Hidden case	Success	10	0.0654 sec	9.5 KB
Testcase 4	Easy	Hidden case	Success	10	0.1018 sec	9.61 KB
Testcase 5	Easy	Hidden case	Success	10	1.5097 sec	28.9 KB
Testcase 6	Easy	Hidden case	Success	10	2.3125 sec	29 KB
Testcase 7	Easy	Hidden case	Success	10	2.1229 sec	28.9 KB
Testcase 8	Easy	Hidden case	Success	10	1.4257 sec	29 KB
Testcase 9	Easy	Hidden case	Success	10	0.5841 sec	29 KB
Testcase 10	Easy	Hidden case	Success	10	0.8373 sec	29 KB
Testcase 11	Easy	Hidden case	Success	10	1.0559 sec	28.9 KB
Testcase 12	Easy	Hidden case	Success	10	2.9945 sec	28.8 KB
Testcase 13	Easy	Hidden case	Success	10	1.0524 sec	28.9 KB

No Comments

Score 75

QUESTION DESCRIPTION

Pairs > Coding | Search

Given an array of integers and a target value, determine the number of pairs of array elements that have a difference equal to the target value.

problem-solving

Core CS

Medium

Example

k = 1

arr = [1, 2, 3, 4]

There are three values that differ by k=1: 2-1=1, 3-2=1, and 4-3=1. Return 3.

Function Description

Complete the pairs function below.

pairs has the following parameter(s):

- int k: an integer, the target difference
- int arr[n]: an array of integers

Returns

• int: the number of pairs that satisfy the criterion

Algorithms

Input Format

The first line contains two space-separated integers $m{n}$ and $m{k}$, the size of $m{arr}$ and the target value.

The second line contains n space-separated integers of the array arr.

Constraints

- $2 \le n \le 10^5$
- $0 < k < 10^9$
- $0 < arr[i] < 2^{31} 1$
- ullet each integer arr[i] will be unique

Sample Input

```
STDIN Function
----
5 2 arr[] size n = 5, k =2
1 5 3 4 2 arr = [1, 5, 3, 4, 2]
```

Sample Output

3

Explanation

There are 3 pairs of integers in the set with a difference of 2: [5,3], [4,2] and [3,1]. .

CANDIDATE ANSWER

Language used: Python 3

```
2 #
3 # Complete the 'pairs' function below.
4 #
5 # The function is expected to return an INTEGER.
6 # The function accepts following parameters:
7 # 1. INTEGER k
8 # 2. INTEGER ARRAY arr
9 #
11 def pairs(k, arr):
     # Write your code here
      s = set(arr)
     r = 0
14
     for i in sorted(arr):
         if i + k in s:
              r += 1
     return r
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Testcase 1	Easy	Hidden case	Success	5	0.0511 sec	9.3 KB
Testcase 2	Easy	Hidden case	Success	5	0.0902 sec	9.39 KB
Testcase 3	Easy	Hidden case	Success	5	0.0529 sec	9.2 KB
Testcase 4	Easy	Hidden case	Success	5	0.0983 sec	9.37 KB
Testcase 5	Easy	Hidden case	Success	5	0.0959 sec	9.48 KB
Testcase 6	Easy	Hidden case	Success	5	0.0983 sec	10.4 KB

	Testcase 7	Easy	Hidden case	Success	5	0.0861 sec	10.4 KB	
	Testcase 8	Easy	Hidden case	Success	5	0.0961 sec	9.74 KB	
	Testcase 9	Easy	Hidden case	Success	5	0.0555 sec	10.1 KB	
	Testcase 10	Easy	Hidden case	Success	5	0.0593 sec	11 KB	
	Testcase 11	Easy	Hidden case	Success	5	0.1409 sec	21.3 KB	
	Testcase 12	Easy	Hidden case	Success	5	0.1399 sec	21.4 KB	
	Testcase 13	Easy	Hidden case	Success	5	0.182 sec	21.2 KB	
	Testcase 14	Easy	Hidden case	Success	5	0.1822 sec	21.2 KB	
	Testcase 15	Easy	Hidden case	Success	5	0.1089 sec	21.2 KB	
	Testcase 16	Easy	Sample case	Success	0	0.1103 sec	9.34 KB	
	Testcase 17	Easy	Sample case	Success	0	0.0505 sec	9.34 KB	
	Testcase 18	Easy	Sample case	Success	0	0.0927 sec	9.23 KB	
N	No Comments							

Score 95

QUESTION DESCRIPTION

Consider an array of numeric strings where each string is a positive number with anywhere from 1 to 10^6 digits. Sort the array's elements in *non-decreasing*, or ascending order of their integer values and return the sorted array.

Example

unsorted = ['1', '200', '150', '3']

Return the array ['1', '3', '150', '200'].

Function Description

Complete the bigSorting function in the editor below.

bigSorting has the following parameter(s):

• string unsorted[n]: an unsorted array of integers as strings

Returns

• string[n]: the array sorted in numerical order

Input Format

The first line contains an integer, n, the number of strings in unsorted. Each of the n subsequent lines contains an integer string, unsorted[i].

Constraints

- $1 \le n \le 2 \times 10^5$
- Each string is guaranteed to represent a positive integer.
- There will be no leading zeros.
- ullet The total number of digits across all strings in unsorted is between 1 and 10^6 (inclusive).

Sample Input 0

```
6
31415926535897932384626433832795
1
```

```
3
10
3
5
```

Sample Output 0

```
1
3
3
5
10
31415926535897932384626433832795
```

Explanation 0

The initial array of strings is

unsorted = [31415926535897932384626433832795, 1, 3, 10, 3, 5]. When we order each string by the real-world integer value it represents, we get:

$$1 \leq 3 \leq 3 \leq 5 \leq 10 \leq 31415926535897932384626433832795$$

We then print each value on a new line, from smallest to largest.

Sample Input 1

```
8
1
2
100
12303479849857341718340192371
3084193741082937
3084193741082938
111
200
```

Sample Output 1

```
1
2
100
111
200
3084193741082937
3084193741082938
12303479849857341718340192371
```

CANDIDATE ANSWER

Language used: Python 3

```
1
2 #
3 # Complete the 'bigSorting' function below.
4 #
5 # The function is expected to return a STRING_ARRAY.
6 # The function accepts STRING_ARRAY unsorted as parameter.
7 #
8
9 def bigSorting(unsorted):
10 # Write your code here
11 result = []
```

```
result.append(i)
14
        return result
   TESTCASE
                DIFFICULTY
                                TYPE
                                             STATUS
                                                         SCORE
                                                                  TIME TAKEN
                                                                                 MEMORY USED
  Testcase 1
                   Easy
                              Sample case
                                           Success
                                                           0
                                                                   0.0465 sec
                                                                                    9.26 KB
  Testcase 2
                  Medium
                              Hidden case
                                           Success
                                                           10
                                                                   0.0643 sec
                                                                                    9.37 KB
  Testcase 3
                  Medium
                              Hidden case
                                           Success
                                                           10
                                                                   0.0567 sec
                                                                                    10.9 KB
  Testcase 4
                   Hard
                                           Success
                                                                   4.5623 sec
                                                                                    13.1 KB
                              Hidden case
                                                           15
  Testcase 5
                   Hard
                              Hidden case
                                           Success
                                                                   4.2163 sec
                                                                                    13.5 KB
                                                           15
                                                                                    12.8 KB
  Testcase 6
                   Hard
                              Hidden case
                                           Success
                                                           15
                                                                   3.7587 sec
  Testcase 7
                   Hard
                              Hidden case
                                                                                    14.1 KB
                                           Success
                                                           15
                                                                   2.2412 sec
  Testcase 8
                   Hard
                              Hidden case

    ✓ Success

                                                           15
                                                                   0.2728 sec
                                                                                    35.7 KB
                              Sample case
                                           Success
                                                                   0.0874 sec
                                                                                    9.35 KB
  Testcase 9
                   Easy
                                                           0
No Comments
```

PDF generated at: 15 May 2023 08:45:11 UTC

for i in sorted(unsorted, key=lambda i: int(i)):