Семинарский лист 5

Александр Богданов	Алиса Вернигор Telegram	Анастасия Григорьева	Василий Шныпко
Telegram		Telegram	Telegram
Данил Казанцев	Денис Козлов	Елизавета Орешонок	Иван Пешехонов
Telegram	Telegram	Telegram	Telegram
Иван Добросовестнов	Hастя Городило	ова Никита Насонков	Сергей Лоптев
Telegram	Telegram	Telegram	Telegram

Версия от 10.10.2020 03:46

Найдите множества абсолютной и условной сходимости функционального ряда.

Пользуясь необходимым условием равномерной сходимости, покажите, что ряд сходится на множестве D неравномерно.

Пользуясь локализацией особенности, покажите, что ряд сходится на множестве D неравномерно.

Задача 11

$$\sum_{n=1}^{\infty} \frac{\sqrt[n]{x}}{1+x^n}, \quad D = (1, +\infty)$$

В качестве последовательности x_n возьмём $1+\frac{1}{n}$. Тогда

$$\sup_{x \in D} \left| \frac{\sqrt[n]{x}}{1+x^n} - 0 \right| \geqslant \left| \frac{(1+\frac{1}{n})^{\frac{1}{n}}}{1+(1+\frac{1}{n})^n} - 0 \right| = \left| \frac{((1+\frac{1}{n})^n)^{\frac{1}{n^2}}}{1+(1+\frac{1}{n})^n} \right| \rightarrow \frac{e^{\frac{1}{n^2}}}{1+e} \rightarrow \frac{1}{1+e} \neq 0 \implies$$
 нарушено необходимое условие

равномерной сходимости \implies ряд не является равномерно сходящимся.

Пользуясь критерием Коши, покажите, что ряд сходится на множестве ${\cal D}$ неравномерно.

Задача 15

$$\sum_{n=1}^{\infty} \frac{1}{1 + n^3 x^3}, \quad D = [0, 1]$$

Возьмём $x_n=\frac{1}{n},\;m_n=2n.$ Тогда

$$\sum_{k=n}^{2n} \frac{\frac{1}{n}}{1 + (\frac{k}{n})^3} \geqslant \frac{1}{9} = \varepsilon$$

Таким образом, по отрицанию критерия Коши, ряд не является сходящимся равномерно.

Пользуясь признаком Вейрштрасса, покажите, что ряд сходится на множестве ${\cal D}$ равномерно.

Задача 19

$$\sum_{n=1}^{\infty} \frac{1}{x^2 + nx + n^2}, \quad D = (0, +\infty)$$

 $\left| \frac{1}{x^2 + nx + n^2} \right| \leqslant \frac{1}{n^2}$ — сходится как канонический ряд \implies исходный ряд сходится по признаку Вейерштрасса.

Пользуясь признаком Лейбница, покажите, что знакочередующийся ряд сходится на множестве D равномерно.

Задача 23

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+x^4}, \quad D = \mathbb{R}$$

$$\sup_{x\in D}\left|\frac{1}{x^4+n}\right|=\left|\frac{1}{n}\right|\to 0\implies \frac{1}{x^4+n}\stackrel{D}{\rightrightarrows} 0\right|\implies \text{сходится равномерно по Лейбницу}.$$

Пользуясь признаком Дирихле или Абеля, покажите, что ряд сходится на множестве D равномерно.

Задача 25

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot \ln n}{n+x}, \quad D = [1, +\infty)$$

$$\begin{cases} |x| \leqslant 1 \implies x^{2n} \text{ монотонна (либо константно 1, либо монотонно убывает к 0)} \\ \frac{(-1)^n}{2n-1} - \text{ сходится по Лейбницу} \end{cases} \implies \text{сходится равномерно по Абелю.}$$

Задача 26

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot x^{2n}}{2n-1}, \quad D = [-1,1]$$

$$\begin{cases} \frac{\ln n}{n+x} \downarrow_{(n)} 0 \\ \left| \sum_{n=1}^{\infty} (-1)^n \right| \leqslant 1 \end{cases} \quad \bigg| \implies \text{сходится равномерно по Дирихле.}$$