STAT 346/446 Lecture 8

Asymptotic evaluations of point estimators

Section 10.1

- Consistency
 - Consistency of MLEs

10,1,1

- Asmyptotic efficiency
- Asymptotic relative efficiency

Note: We skip Section 10.1.4 (Bootstrap)

Asymptotics

n = sample size

- CLT kicksin!
- What happens when $n \to \infty$?
- Why do we care?
 - Often calculations simplify so we can find approximate inference procedures for large sample sizes
 - Useful evaluation/comparison tools

Consistency

Definition: Consistency

A sequence of estimators $W_n = W_n(X_1, X_2, ..., X_n)$ is a **consistent** sequence of estimators of the parameter θ if for every $\epsilon > 0$ and every $\theta \in \Theta$ $\lim_{n \to \infty} P(|W_n - \theta| < \epsilon) = 1$

We also say that W_n is a consistent estimator

- That is, $W_n \xrightarrow{p} \theta$ for all θ converges in propability
- A consistent estimator will be arbitrarily close to the parameter with high probability as sample size increases.

• Let X_1, X_2, \dots, X_n be iid. $N(\theta, 1)$. Show that X_n is a consistent sequence of estimators for θ Actually,

sequence of estimators for
$$\theta$$

ghow $P(1\overline{X}_n - \theta | \angle \varepsilon)$ $\longrightarrow 1$ as $n - \infty$

$$P(1\overline{X}_n - \theta | \angle \varepsilon) = P(-\varepsilon \angle \overline{X}_n - \theta \angle \varepsilon)$$

$$= P(-\varepsilon \angle \overline{X}_n - \theta | \angle \varepsilon)$$

$$= P(-\varepsilon \angle \overline{X}_n - \theta | \angle \varepsilon)$$

$$= \frac{\overline{\Phi}(n^{\gamma} \varepsilon)}{\sqrt{n}} \angle \frac{\overline{X}_n - \theta}{\sqrt{n}} \angle \frac{\varepsilon}{\sqrt{n}}$$

$$= \frac{\overline{\Phi}(n^{\gamma} \varepsilon)}{\sqrt{n}} - \frac{\overline{\Phi}(-n^{\gamma} \varepsilon)}{\sqrt{n}} \angle \frac{\varepsilon}{\sqrt{n}}$$

$$= \frac{\overline{\Phi}(n^{\gamma} \varepsilon)}{\sqrt{n}} + \frac{\overline{\Phi}(-n^{\gamma} \varepsilon)}{\sqrt{n}}$$

where \$\overline{D}\$ is the standard normal 25

Note: The sample mean is always a consistent estimator of the population mean (by WLLN)

Consistent estimators

Theorem

If W_n is a sequence of estimators of a parameter θ satisfying

- (i) $\lim_{n\to\infty} Var(W_n) = 0$
- (ii) $\lim_{n\to\infty} \operatorname{bias}(W_n) = 0$

then W_n is a consistent sequence of estimators of θ

Proof: Chebychev

Recall: Chebychev:
$$P(g(X) > r) \leq \frac{E(g(X))}{r}$$
 $g(\cdot)$ is a non-acquitive function

Setting $g(x) = (x-\theta)^2$ gives

 $P(|X-\theta| > E) \leq \frac{E((X-\theta)^2)}{\epsilon^2}$

Proof: Show:
$$\lim_{n\to\infty} P(|W_n-\theta| > \epsilon) = 0 + \frac{1}{2}$$

By Chety chev:
$$P(|W_n-\theta| > \epsilon) \leq \frac{E((W_n-\theta)^2)}{\epsilon^2}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

$$= 2 \text{ If } \lim_{n\to\infty} E((W_n-\theta)^2) = 0 + \frac{1}{2} \text{ then } * \text{ is true}$$

if var(vu) -D 0

and bias(wh) -> 0

Consistency of sample mean

• When X_1, X_2, \dots, X_n are iid. $N(\mu, \sigma^2)$ then

$$Var(\overline{X_n}) = \frac{\sigma^2}{n} \to 0$$
 and $bias(\overline{X}_n) = 0$

so \overline{X}_n is a consistent estimator of μ

 In fact, by WLLN for any random sample with a finite variance we have

$$\overline{X}_n \stackrel{p}{\longrightarrow} E(X)$$

So \overline{X}_n is a consistent estimator of E(X)

- Let X_1, X_2, \dots, X_n be a random sample from Uniform $(0, \theta)$, $\theta > 0$.
- We found before (Lecture \S) that the MLE for θ is $X_{(n)}$. Is $X_{(n)}$ a consistent estimator of θ ?

MLEs are (generally) consistent

Theorem

Let X_1, X_2, \dots, X_n be a random sample from $f(x \mid \theta)$ and let $\hat{\theta}$ be the MLE of θ . Under some regularity assumptions on $f(x \mid \theta)$

- $\hat{\theta}$ is a consistent estimator of θ
- $\tau(\hat{\theta})$ is a consistent estimator of $\tau(\theta)$, if τ is a continuous function
- One of the conditions: The support of the distribution cannot depend on θ

en to mightern,

Asymptotic variance

- Need a different set-up to compare asymptotic behavior of estimators

Definition

Suppose that for an estimator T_n we have

$$k_n (T - \tau(\theta)) \stackrel{d}{\longrightarrow} N(0, \sigma^2)$$

Then σ^2 is called the **asymptotic variance** of the limit distribution of T_n

• Usually $k_n = \sqrt{n}$

Asymptotic variance - Example

- Let X_1, \ldots, X_n be a random sample from a pdf with mean μ and variance $\sigma^2 < \infty$
- We know that $Var(\overline{X}_n) = \sigma^2/n$
- We also know that

$$\sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\longrightarrow} N(0, \sigma^2)$$

So: σ^2 is the asymptotic variance of \overline{X}_n

Asymptotically efficient

Recall: Estimator is efficient if it reaches its CRLB

Definition

A sequence of estimators W_n is asymptotically efficient for a parameter $\tau(\theta)$ if

$$\sqrt{n} (W_n - \tau(\theta)) \stackrel{d}{\longrightarrow} N(0, v(\theta))$$

and

$$v(\theta) = \frac{\left[\tau'(\theta)\right]^2}{E\left(\left(\frac{\partial}{\partial \theta}\log(f(X\mid\theta))\right)^2\right)} = \frac{\left[\tau'(\theta)\right]^2}{I_1(\theta)}$$

• That is, the asymptotic variance of W_n achieves the Cramér-Rao lower bound (for n = 1)

MLEs are (generally) asymptotically efficient

Theorem

Let X_1, X_2, \ldots, X_n be a random sample from $f(x \mid \theta)$ and let $\hat{\theta}$ be the MLE of θ . Under some regularity conditions on $f(x \mid \theta)$

- ullet $\hat{\theta}$ is an asymptotically efficient estimator of θ
- $\tau(\hat{\theta})$ is an asymptotically efficient estimator of $\tau(\theta)$, if τ is a continuous function
- So the MLE method of finding estimators has some proven optimality characteristics.
- Asymptotically efficient = asymptotically best unbiased estimator of its expected value. That is, when n is large

$$E(W_n) \approx \tau(\theta)$$
 and $Var(W_n) \approx \frac{\left[\tau'(\theta)\right]^2}{nI_1(\theta)}$

More on MLEs

• Let $\hat{\theta}$ be the MLE of θ and let $\tau(\theta)$ be a continuous function. Theorem says: Under some regularity conditions

$$\sqrt{n} \left(\tau(\hat{\theta}) - \tau(\theta) \right) \stackrel{d}{\longrightarrow} N \left(0, \frac{\left[\tau'(\theta) \right]^2}{l_1(\theta)} \right)$$

 This can be used to find the approximate distribution for an MLE (for fixed n):

$$\tau(\hat{\theta}) \stackrel{\mathsf{approx}}{\sim} \mathcal{N}\left(\tau(\theta), \frac{\left[\tau'(\theta)\right]^2}{n l_1(\theta)}\right)$$

where

$$I_{1}(\theta) = E\left(\left(\frac{\partial}{\partial \theta}\log(f(X\mid\theta))\right)^{2}\right) = -E\left(\frac{\partial^{2}}{\partial \theta^{2}}\log(f(X\mid\theta))\right)$$

• Let X_1, X_2, \ldots, X_n be a random sample from $Gamma(1, 1/\theta)$

$$f(x \mid \theta) = \theta e^{-\theta x}$$
 $x > 0, \ \theta > 0$

• MLE for θ is $\hat{\theta} = \frac{1}{\overline{X}_n}$. What is the asymptotic variance of $\hat{\theta}$?

• Let X_1, X_2, \dots, X_n be a random sample from $Beta(\theta, 1)$

$$f(x \mid \theta) = \theta x^{\theta-1} I_{(0,1)}(x) \qquad \theta > 0$$

• MLE for θ is

$$\hat{\theta} = \frac{n}{-\sum_{i=1}^{n} \log(X_i)}$$

What is the asymptotic variance of $\hat{\theta}$?

Asymptotic relative efficiency

Definition

If two estimators W_n and V_n satisfy

$$\begin{split} \sqrt{n} \left(W_n - \tau(\theta) \right) & \stackrel{d}{\longrightarrow} \textit{N}(0, \sigma_W^2) \\ \text{and} \quad \sqrt{n} \left(\textit{V}_n - \tau(\theta) \right) & \stackrel{d}{\longrightarrow} \textit{N}(0, \sigma_V^2) \end{split}$$

then the **asymptotic relative efficiency (ARE)** of V_n with respect to W_n is defined as

$$ARE(V_n, W_n) = \frac{\sigma_W^2}{\sigma_V^2}$$

- If ARE(V_n, W_n) > 1 then V_n is preferred
- If ARE $(V_n, W_n) < 1$ then W_n is preferred

- Let X_1, X_2, \dots, X_n be a random sample from Poisson(λ).
- Want to estimate $\tau(\lambda) = e^{-\lambda} = P(X = 0)$
- Compare the MLE and a "naive" approach: proportion of observations that are equal to zero.

Lecture 8

ARE curve for example

