# Mobile Banking Fraud Detection

Junyuan Zheng, Ke Cao, Miaochao Wang, Tuo Han Instructor: Professor Ricardo Collado



Business Intelligence & Analytics

#### Introduction

- The intrinsically private nature of financial transactions leads to few publicly available datasets, specially in the emerging mobile money transactions domain.
- The main challenge of fraud prediction is the highly imbalanced distribution between and negative classes.





#### Procedure

Data cleaning and feature engineering

Resampling imbalanced training data

Modeling and model selection

# **Exploratory Data Analysis (EDA)**

Results interpretation

- Dataset: 6,362,620 mobile money transactions generated by a simulator PaySim<sup>[1]</sup>.
- Highly imbalanced (fraud proportion = 0.12%).

|   | step | type     | amount   | nameOrig    | oldBalanceOrig | newBalanceOrig | nameDest    | oldBalanceDest | newBalanceDest | isFraud | isFlaggedFraud |
|---|------|----------|----------|-------------|----------------|----------------|-------------|----------------|----------------|---------|----------------|
| 0 | 1    | PAYMENT  | 9839.64  | C1231006815 | 170136.0       | 160296.36      | M1979787155 | 0.0            | 0.0            | 0       | 0              |
| 1 | 1    | PAYMENT  | 1864.28  | C1666544295 | 21249.0        | 19384.72       | M2044282225 | 0.0            | 0.0            | 0       | 0              |
| 2 | 1    | TRANSFER | 181.00   | C1305486145 | 181.0          | 0.00           | C553264065  | 0.0            | 0.0            | 1       | 0              |
| 3 | 1    | CASH_OUT | 181.00   | C840083671  | 181.0          | 0.00           | C38997010   | 21182.0        | 0.0            | 1       | 0              |
| 4 | 1    | PAYMENT  | 11668.14 | C2048537720 | 41554.0        | 29885.86       | M1230701703 | 0.0            | 0.0            | 0       | 0              |

- Fraud only in types of "CASH\_OUT" and "TRANSFER"

  → Drop other types and binary encoding feature *type*.
- Account names are not correctly labeled as described ("M" for Merchants, "C" for Customer).
  - $\rightarrow$  Drop *nameOrig* and *nameDest*.
- In some transactions, *newBalanceDest* and *oldBalanceDest* are both 0, while the *amount* is positive and this transaction may not be a fraud. Same situations happen in *newBalanceOrig* and *oldBalanceOrig*.
  - → These 0s could be representations of missing values. Replace them by -1.
- After data cleaning and feature engineering, all features become numeric without missing values. The correlation heat map is plotted below.



#### Modeling

- Baseline model: Logistic Regression
- Performance measure: Average Precision (AP)





- 300 base models by randomly undersampling negative class.
- Apply PCA to predicted results and build a stacking model.
  - → Time consuming but limited performance increase



• Synthetic Minority Over-sampling Technique (SMOTE)



## Feature importance & tree visualization

• XGBoost is used for the model interpretation





#### Conclusions

- Imbalanced data decrease the performance of typical machine learning algorithms.
- Ensemble models appear less affected by imbalance.
- SMOTE enhance detection performance by increasing recall.
- Stacking model benefits from diversity of base models.

### References

- [1] https://www.kaggle.com/ntnu-testimon/paysim1
- [2] Arjun Joshua, Predicting Fraud in Financial Payment Services <a href="https://www.kaggle.com/arjunjoshua/predicting-fraud-in-financial-payment-services/comments">https://www.kaggle.com/arjunjoshua/predicting-fraud-in-financial-payment-services/comments</a>
- [3] Ben Gorman, A Kaggle's Guide to Model Stacking in Practice <a href="http://blog.kaggle.com/2016/12/27/a-kagglers-guide-to-model-stacking-in-practice/">http://blog.kaggle.com/2016/12/27/a-kagglers-guide-to-model-stacking-in-practice/</a>