What is claimed is:

1	 A work-management method comprising:
2	determining a probability of availability at a future point in time
3	of each of a plurality of resources;
4	combining the probabilities to obtain a number; and
5	using the number to schedule new tasks for the resources for
6	the future point in time.
1	2. The method of claim 1 wherein:
2	using comprises
3	scheduling for the future point in time no more than the number
4	of the new tasks to become available for servicing by the plurality of the
5	resources.
	·
1	3. The method of claim 1 wherein:
2	combining comprises
3	summing the probabilities to obtain the number.
4	4. The method of claim 1 wherein
1	
2	determining comprises
3	for each of the resources, determining an amount of time t that
4	the resource has been servicing a task by now;
5	for each of the resources, determining a probability $F(t+h)$ of
6	the resource servicing its task to completion within a total amount of time
7	<i>t+h</i> ;
8	for each of the resources, determining a probability $F(t)$ of the
9	resource completing servicing its task by now; and
10	for each of the resources, determining a probability P that the
11	resource will complete servicing its task at the future point in time an

12 amount of time h from now as $\frac{F(t+h)-F(t)}{1-F(t)}$.

5. The method of claim 1 in a call center wherein: 1 2 tasks comprise calls; and 3 scheduling comprises in response to P, determining whether or not to initiate or 4 5 cancel an outbound call. 1 6. A work-management method comprising: determining an amount of time t that a resource has been 2 servicing a task by now; 3 determining a probability F(t+h) of the resource servicing the 4 task to completion within a total amount of time t+h; 5 6 determining a probability F(t) of the resource completing 7 servicing the task by now; determining a probability P that the resource will complete 8 servicing the task within an amount of time h from now as $\frac{F(t+h)-F(t)}{1-F(t)}$; 9 and 10 11 in response to P, scheduling another task for servicing. 7. The method of claim 6 wherein: 1 2 scheduling comprises 3 in response to P, determining whether or not to initiate said another task. 4 8. The method of claim 6 in a call center wherein: 1 tasks comprise calls; and 2 3 scheduling comprises in response to P, determining whether or not to initiate an 4

and

5

1

5	outbound call.
1	9. The method of claim 6 further comprising:
2	performing the determining steps for a plurality of resources,
3	and
4	determining a number of the resources that will likely have
5	completed servicing their respective tasks within the amount of time h
6	from now as a sum of the probabilities P determined for individual ones of
7	the plurality of resources; wherein
8	scheduling comprises
9	in response to determining the number of the resources,
10	scheduling new tasks for servicing.
1	10. The method of claim 9 wherein:
2	scheduling tasks for servicing comprises scheduling no more
3	than the number of the tasks for servicing.
1	11. The method of claim 6 wherein:
2	determining a probability $F(t+h)$ comprises
3	obtaining historical task-completion statistics, and
4	from the obtained statistics determining the probability $F(t+h)$;

- 6 determining a probability F(t) comprises
- 7 from the obtained statistics determining the probability F(t).
- 1 12. The method of claim 11 wherein:
- obtaining historical task-completion statistics comprises
 obtaining a mean and a variance of time historically spent by
- 4 resources on servicing tasks to completion.
 - 13. The method of claim 6 wherein:

2	determining a probability <i>F(t+h)</i> comprises
3	obtaining historical task-completion statistics,
4	fitting the task-completion statistics into a lifetime closed-form
5	cumulative-probability distribution to determine parameters of the
6	distribution, and
7	evaluating the distribution with the determined parameters and
8	the total amount of time $t+h$ to obtain $F(t+h)$; and
9	determining a probability $F(t)$ comprises
10	evaluating the distribution with the determined parameters and
1	the amount of time t to obtain $F(t)$.
1	14. The method of claim 13 wherein:
2	obtaining historical task-completion statistics comprises
3	obtaining a mean and a variance of time historically spent by
4	resources on servicing tasks to completion;
5	the cumulative-probability distribution F comprises a Weibull
6	distribution; and
7	the parameters comprise a dispersion parameter and a
8	parameter of central tendency.
1	15. The method of claim 6 wherein:
2	determining an amount of time t comprises
3	determining the amount of time t that the resource has been
4	servicing a task of one of a plurality of different types of tasks; and
5	determining historical task-completion statistics comprises
6	determining the historical task-completion statistics for the one
7	type of tasks.
1	16. The method of claim 6 wherein:
2	scheduling another task comprises

3	In response to P initiating preparation of a task that may require
4	servicing by an agent at a later time.
1	17. The method of claim 6 wherein:
2	determining a probability $F(t+h)$ comprises
3	obtaining a historical histogram for task completion, and
4	evaluating a cumulative said probability with the obtained
5	histogram for the total amount of time $t+h$ to obtain $F(t+h)$; and
6	determining a probability $F(t)$ comprises
7	evaluating the cumulative probability with the obtained
8	histogram for the amount of time t to obtain $F(t)$.
1	18. The method of claim 6 wherein:
2	scheduling comprises
3	in response to P , canceling preparation of a task that could
4	require servicing by a resource.
1	19. An apparatus that effects the method of one of claims 1-18.
1	20. A computer-readable medium containing instructions
2	which, when executed in a computer, cause the computer to perform the
3	method of one of claims 1-18.
1	21. A work-management apparatus comprising:
2	means for determining a probability of availability at a future
3	point in time of each of a plurality of resources;
4	means cooperative with the determining means for combining
5	the probabilities to obtain a number; and
6	means cooperative with the combining means for scheduling
7	for the future point in time no more than the number of new tasks for
8	servicing by the plurality of the resources.

1	22. A work-management apparatus comprising:
2	means for determining an amount of time t that a resource has
3	been servicing a task by now;
4	means cooperative with the time-determining means for
5	determining a probability $F(t+h)$ of the resource servicing the task to
6	completion within a total amount of time t+h;
7	means cooperative with the time-determining means for
8	determining a probability $F(t)$ of the resource completing servicing the task
9	by now;
10	means cooperative with both of the probability-determining
11	means for determining a probability P that the resource will complete
12	servicing the task within an amount of time h from now as $\frac{F(t+h)-F(t)}{1-F(t)}$;
13	and
14	means cooperative with the P-determining means and
15	responsive to P for scheduling another task for servicing.