Задача 1. (теорема Фробениуса) Пусть A – конечномерная ассоциативная алгебра с делением размерности n. Назовём её элемент I чисто мнимым, если I^2 – неположительное вещественное число, и мнимой $e \partial u u u u e \ddot{u}$, если $I^2 = -1$. а) Докажите, что в A нет $d e n u m e n e \ddot{u}$ нуля, то есть если ab = 0, то либо a = 0, либо b = 0. б) Докажите, что для любого невещественного $x \in A$ существуют такие $a, b \in \mathbb{R}$, что a + bx – мнимая единица. (указание: так как алгебра конечномерна, то элементы $1, x, x^2, x^3, \ldots, x^n$ линейно зависимы). в) Докажите, что множество чисто мнимых элементов A образует векторное подпространство размерности n - 1. г) Докажите, что не существует трёхмерной ассоциативной алгебры с делением. д) Докажите, что если A либо одномерна, либо двумерна, и в A есть мнимая единица, либо A четырёхмерна, и в A есть три линейно независимых мнимых единицы I, J, K, которые умножаются как кватернионы. Говоря проще, \mathbb{R} , \mathbb{C} , \mathbb{H} — единственные ассоциативные алгебры с делением.

Имеет место обобщение теоремы Фробениуса, согласно которому алгебры с делением существуют только в размерностях 1, 2, 4 и 8. Единственное известное доказательство этого факта существенно опирается на алгебраическую топологию.

Определение 1. Пусть $s \in \mathbb{H}, s \neq 0$. Операция *сопряжения с помощью s* определяется по формуле $q \mapsto {}^s q = sqs^{-1}$.

Задача 2. Проверьте, что $s(q_1+q_2)=sq_1+sq_2,\ s(q_1q_2)=sq_1sq_2,\ sq^{-1}=(sq)^{-1},\ \overline{sq}=\overline{s}^{-1}\overline{q}.$

Задача 3. Пусть $s = \alpha + t$, где $\alpha \in \mathbb{R}$, а t – чисто мнимый. Докажите, что операция сопряжения с помощью s оставляет на месте пространство чисто мнимых кватернионов, и что если q – чисто мнимый, то sq – это результат поворота вектора q вокруг оси вектора t на угол 2 $\arctan \frac{|t|}{|c|}$.

Задача 4. Отождествим трёхмерное пространство с пространством чисто мнимых кватернионов. Докажите, что любое вращение трёхмерного пространства, сохраняющее начало координат, и сохраняющее ориентацию, имеет вид $q\mapsto {}^sq$ для некоторого s, по модулю равного единице, причём s определён однозначно с точностью до знака.

Задача 5. Проверьте, что в условиях предыдущей задачи сопряжения с помощью элементов групп **a)** T^* , **b)** O^* , **b)** I^* задают в точности группу симметрий тетраэдра, октаэдра и икосаэдра, соответственно. **r)** Почему в нашем списке нет бинарной группы куба и бинарной группы додекаэдра?

Задача 6. Пусть π — плоскость в пространстве чисто мнимых кватернионов, и пусть s — единичный вектор нормали к π . Запишите формулу для отражения относительно плоскости π .

Задача 7. Пусть q_1, q_2, q_3 — чисто мнимые кватернионы. Запишите формулу для площади прямоугольника, натянутого на q_1 и q_2 и объёма параллелепипеда, натянутого на q_1, q_2 и q_3 .

Задача 8. (расслоение Хопфа) Будем рассматривать множество кватернионов x+yi+zj+wk как единичную сферу в четырёхмерном пространстве, заданную уравнением $x^2+y^2+z^2+w^2=1$. Обозначим его через S^3 . а) Докажите, что $s\in S^3: {}^sk=k-$ это окружность, то есть пересечение S^3 с двумерной плоскостью в \mathbb{R}^4 . б) Пусть q- чисто мнимый кватернион, по модулю равный единице. Докажите, что множества $S_q=\{s\in S^3: {}^sk=q\}-$ попарно непересекающиеся окружности, на которые разбивается (или, как ещё говорят, расслаивается) трёхмерная сфера. Стереографическая проекция $S^3\to\mathbb{R}^3$ определяется так: вложим \mathbb{R}^3 в \mathbb{R}^4 как гиперплоскость, заданную уравнением w=0, соединим точку $s\in S^3$ с северным полюсом (0,0,0,1), и продлим полученную прямую до пересечения с \mathbb{R}^3 . в) Напишите формулу для стереографической проекции. г) Докажите, что окружности, не проходящие через северный полюс, при стереографической проекции переходят в окружности, а проходящие через северный полюс — в прямые. Нарисуйте несколько окружностей из расслоения Хопфа после стереографической проекции и проверьте, что они зацеплены, то есть круг, ограничивающийся одной из окружностей, пересекает все другие, причём ровно в одной точке.

С помощью восьмимерной алгебры \mathbb{O} можно построить аналог расслоения Хопфа, разбив семимерную сферу на зацепленные трёхмерные сферы. Несуществование расслоений такого типа для $n \neq 1, 3, 7$ и позволяет доказать теорему о размерностях алгебр с делением.

1 a	<u>1</u> б	1 в	1 Г	1 Д	2	3	4	5 a	5 6	5 в	5 г	6	7	8 a	8 6	8 B	8 Г