PHASM426 / PHASG426 Advanced Quantum Theory Problem Sheet 4

Deadline: Tuesday 9th January 2018 at 13:00 pm

Please bring the work to me in my office (B12) on Tuesday 9th January 2018 between 12:00 and 13:00, leave it in my pigeon hole (at your own risk) or scan your work and email it to me as a single PDF file that does not exceed 5 MB. In any case, please make sure your completed work is clearly labelled with your name and college, and stapled if you are handing in a paper version.

- 1. Consider H is the total Hamiltonian describing a quantum system interacting with an environment. The total state of the system and environment $\rho(t)$ is given by the unitary evolution U(t) associated to the total H and at time t=0 we have $\rho(t=0)=\rho_s(0)\otimes\rho_B(0)$, where the inital state of the environment is $\rho_B(0)=|B_0\rangle\langle B_0|$. Here the basis set $\{B_k\}$ spans the environment states.
 - (a) Show that the reduced density matrix operator for the system $\rho_s(t)$ takes the form

$$\rho_s(t) = \sum_k S_k \rho_s(0) S_k^{\dagger}$$

where $S_k = \langle B_k | U(t) | B_0 \rangle$. [5]

- (b) Discuss whether S_k is an operator acting on the system or on the environment, or wether it is an expected value. [2]
- (c) Show that $\sum_k S_k^\dagger S_k = \mathbb{1}$ and discuss the physical meaning of this result.

[3]

- 2. Consider a two-level atom with excited state $|e\rangle$ and ground state $|g\rangle$ such that its Hamiltonian is $H = \hbar\omega |e\rangle\langle e|$. The action of the environment interacting with the atom is described by the jump operators $L_1 = \Gamma |e\rangle\langle g|$ and $L_2 = \gamma |g\rangle\langle e|$.
 - (a) Assuming that at t=0 the state of the atom is $\rho(0)=|g\rangle\langle g|$, show that the probability of finding the atom in the excited state at time t, $\rho_{ee}(t)=\langle e|\rho(t)|e\rangle$, is given by

$$\rho_{ee}(t) = \frac{|\Gamma|^2}{|\gamma|^2 + |\Gamma|^2} \Big(1 - e^{-(|\gamma|^2 + |\Gamma|^2)t} \Big).$$

You may use the fact that a linear differential equation of the form $\frac{dy}{dx} + ay = b$ with a and b real numbers, has the general solution

$$y(x) = e^{-ax} \left(\frac{b}{a} e^{ax} + \kappa \right),$$

where κ is to be determined by initial conditions.

(b) Find a relation between Γ and γ such that in the long-time limit $\rho_{ee}(\infty)$ equals the probability of finding the atom in its excited state when it is in thermal equilibrium at temperature T. Recall that in thermal equilibrium, a system with Hamiltonian H is described by the density matrix operator $\rho_{eq} = \frac{\exp(-H/k_BT)}{\text{Tr}[\exp(-H/k_BT)]}$. Express your answer as

$$|\Gamma|^2 = C|\gamma|^2$$

and specify the value of C as a function of ω and k_BT where k_B is the Boltzman constant. [5]