# An Introduction to Over-Penalized Weak Galerkin Methods

Lunji Song

Lanzhou University
Joint work with
Kaifang Liu, Wenya Qi and Shan Zhao

## Outline

- Introduction
- 2 Several variants of weak Galerkin methods (p = 2)
- 3 Over-Penalized Weak Galerkin (OPWG) method
- Introduction to Relaxed Weak Galerkin (RWG) Method  $(p \in (1,2])$

## SARS-CoV-2 virus

Electrostatic binding between S-protein of the SARS-CoV-2 and ACE2 receptor on the surface of host cells.

- Identify strong binding sites between S-protein and ACE2
- Correlate binding affinity with COVID-19 variants
- Infectivity prediction
- Vaccine breakthrough
- Drug and antibody resistance



# Classical (sharp interface) PB model

The Poisson-Boltzmann (PB) model is a mean field approach for calculating **electrostatic force and energy**. In the dimensionless form

$$\begin{cases} -\nabla \cdot (\epsilon \nabla u) + \chi_{\Omega_s} \kappa^2 \sinh u = \rho & \text{in} \quad \Omega; \\ u = u_b & \text{on} \quad \partial \Omega. \end{cases}$$



where u is the electrostatic potential,  $\kappa$  is the Debye-Hückel parameter, and  $\rho$  represents singular charge sources.

- $\Omega_m = \Omega^-$ : inner solute (molecular) region;
- $\Omega_s = \Omega^+$ : outer solvent region;
- $\Gamma = \partial \Omega_m \cap \partial \Omega_s$  : solute-solvent interface or molecular surface.
- Two-dielectric PB model: Using dielectric constants  $\epsilon_m$  and  $\epsilon_s$ , respectively, for the molecule and water, the dielectric function is

$$\epsilon = \epsilon_m \chi_{\Omega_m} + \epsilon_s \chi_{\Omega_s}.$$

## Challenge: Singular partial charges of protein

ullet Each protein atom carries a point charge  $q_j$  located at the atom center  ${f r_j}$ . This gives rise to the singular source term of the PB model

$$\rho(\textbf{r}) = 4\pi \frac{e_c^2}{k_B T} \sum_{j=1}^{N_m} q_j \delta(\textbf{r} - \textbf{r}_j), \quad \text{in } \Omega, \label{eq:rho}$$





- Traditional numerical approaches: ( very inaccurate! )
- 1. Trilinear interpolation of charge to grid nodes in finite difference;
- 2. Evaluate through the trial function in Galerkin formulation.

$$\int C \sum_j q_j \delta(\mathbf{r} - \mathbf{r_j}) \mathbf{v}(\mathbf{r}) = \mathbf{C} \sum_j \mathbf{q_j} \mathbf{v}(\mathbf{r_j}).$$

#### Poisson-Boltzmann models





 $\label{eq:membrane Channel Charge Transport: Poisson-Nernst-Planck (PNP)+ Poisson-Boltzmann-Kohn-Sham (PBKS) models; Nonlinear Poisson-Boltzmann equation+interface conditions$ 

The potential is decomposed into a singular part, a harmonic part, and a regular part.

• 
$$\nabla \cdot \epsilon(r) \nabla \phi(r) - k \phi(r) = -4\pi \rho(r)$$
, (Linearization)

Interface problems: The boundaries (complex surface) between regions of low and high dielectric are sharp.

#### **Difficulties**

- (1) Low regularity: when a domain has reentrant corners/edges /interface corners, solution is usually not in  $H^2(\Omega_i)$  (i=1,2), instead, it is in a much larger spaces  $H^{1+s}(\Omega_i)$  for some 0 < s < 1; when the right-hand side is in  $L^p(\Omega)$ , the solution has a regularity estimate (see Book of Monique Dauge, 1988) in  $W^{2,p}(\Omega_i)$  for some  $p \in (1,2)$ .
- (2)  $V_h$ : a finite element space consisting of discontinuous polynomials, i.e.  $V_h \nsubseteq H_0^1(\Omega)$  and  $\nabla v_h$  is not well defined for  $v_h \in V_h$  in weak forms. Existing solutions using discontinuous functions: IPDG; LDG; WG etc.

## The existing numerical methods

- Delphi(Rocchia, Alexov, Honig, 01), CHARMM(Im, Beglov, Roux, 98), AMBER(Luo, David, Gilson, 02), APBS(Baker, Sept, Joseph, Holst, 01)
- LeVeque, Li (Immesed Interface Method, 94)
- Wei, Zhao, Geng (04, 09-15,22) (ADI, MIB, DG for NPB, diffuse interface, super Gaussian regularization)
- Cheng, Holst, Xu (FEM for NPB, 07)
- . . . . .

#### Pioneer works on DG, WG

- Lions(68) (elliptic very rough Dirichlet boundary data)
- Babuška(73), Nitsche(71), Douglas & Dupont(76) and Baker(77) (the jump in the normal derivative is penalized)
- Wheeler(78) (IP collocation-FEM), Arnold(79), Douglas et al.(79)
- Oden, Babuška, and Baumann(1998); Rivière and Wheeler(00)
- Houston, Schwab, and  $S\ddot{u}li(00)$ ; Epshteyn, Rivière(06)
- WG: Wang JP, Ye X, Mu L, Zhang SY, Zhang R, Zhai QL, Zhang ZM, Wang CM, Xie XP, Gao FZ, Cheng JR, Wang XS etc.
- NPB: Cheng YD, Shu CW(09, 11, 17); Peng, Huang YQ, Liu HL(iterative DG for PB, 14, 18); Xu, Zhao(DG for NPB, 15)
- Kwon, Kwak(Discontinuous bubble immersed FEM for PB 19; PBNB 21)

#### References

- Maccamy, Suri, A time-dependent interface problem for two-dimensional eddy currents, Quart Appl Math (87)
- Jianguo Huang, Jun Zou, Some new a priori estimates for second-order elliptic and parabolic interface problems, JDE (02)
- Khan, Upadhyay, Gerritsma, Spectral element methods for parabolic interface problems, CMAME (18)
- Derrick Johns, Xu Zhang, High order immersed FEM for parabolic interface problems with time variable in 1D, ITM conference (19)
- Ruchi Guo, backward Euler+IFE, Parabolic moving interface problems with dynamical immersed spaces on unfitted meshes, SINUM (20).
- Ajerid, Babuska, Guo, Lin, (higher degree IFE for elliptic interface problem), An enriched immersed FEM for interface problems with nonhomogeneous jumps conditions, CMAME (23)
- . . .



- Introduction
- 2 Several variants of weak Galerkin methods (p = 2)
- 3 Over-Penalized Weak Galerkin (OPWG) method
- 4 Introduction to Relaxed Weak Galerkin (RWG) Method  $(p \in (1,2])$

## WG finite element method for elliptic equations

PDE weak form: find  $u \in H_0^1(\Omega)$  satisfying

$$(a\nabla u, \nabla v) = (f, v), \quad , \forall v \in H_0^1(\Omega).$$

The WG method: element  $(P_k(T), P_j(e), [P_s(T)]^d)$  find  $u_h \in V_h$  such that

$$(a\nabla_{w}u_{h}, \nabla_{w}v_{h}) + s(u_{h}, v_{h}) = (f, v_{h}), \quad , \forall v_{h} \in V_{h},$$

$$s(u_{h}, v) = \sum_{T} h^{j} \langle u_{0} - u_{b}, v_{0} - v_{b} \rangle_{\partial T}, \quad j = -1, 0, 1, \infty, \leq -1 (relaxed)$$

$$V_{h} = \{v = v_{0}, v_{h} : v_{0}|_{T} \in P_{k}(T), v_{h}|_{e} \in P_{i}(e), e \subset \partial T, \forall T \in T\}$$

For  $v = \{v_0, v_b\} \in V_h$ ,  $\nabla_w v|_T \in [P_s(T)]^d$  satisfies

$$(\nabla_{w} \mathbf{v}, \tau) = -(\mathbf{v}_{0}, \nabla \cdot \tau)_{T} + \langle \mathbf{v}_{b}, \tau \cdot \mathbf{n} \rangle_{\partial T}, \quad \forall \tau \in [P_{s}(T)]^{d},$$

[1] J. Wang, X. Ye, S. Zhang, Numerical investigation on weak Galerkin finite elements. Int. J. Numer. Anal. Model. 17 (2020), no. 4, 517-531.

Open problem: superconvergence/optimal convergence on element  $(P_k(T), P_k(e), RT_k(T)]^d$ ) on triangular mesh,

j = -1, 0, 1, has not been proved. (see [1] Table 4.4)



## WG method and Stabilizer-Free WG (SFWG)

WG finite element:  $(P_k(T), P_{k-1}(e), [P_{k-1}]^d)$ 

**The WG method:** find  $u_h \in V_h$  such that for any  $v_h \in V_h$ 

$$(a\nabla_w u_h, \nabla_w v_h) + s(u_h, v_h) = (f, v_h),$$

**The SFWG method:** find  $u_h \in V_h$  such that for any  $v_h \in V_h$ 

$$(a\nabla_w u_h, \nabla_w v_h) = (f, v_h),$$

SFWG finite element:  $(P_k(T), P_k(e), [P_{k+n-1}]^d)$ , n : #sides

[2] X.Ye, S. Zhang, A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl. Math., 372(2020), 112699.

Open problem: Is k + n - 1 optimal? Sufficient but not necessary condition.

## Modified Weak Galerkin (MWG)

Idea: replace  $v_b$  by  $\{v\}$ , only involving the interior function v.

Set  $V_h = \{ v \in L^2(\Omega) : v | \tau \in P_k(T), \forall T \in \mathcal{T}_h \}.$ 

The MWG method: find  $u_h \in V_h$  such that for any  $v_h \in V_h$ 

$$(a\nabla_w u_h, \nabla_w v_h) + s(u_h, v_h) = (f, v_h),$$

For  $v \in V_h, \ \nabla_w v|_T \in [P_{k-1}(T)]^d)$  satisfies

$$(\nabla_{\mathbf{w}}\mathbf{v},\tau) = -(\mathbf{v},\nabla\cdot\tau)_{T} + \langle \{\mathbf{v}\},\tau\cdot\mathbf{n}\rangle_{\partial T}, \quad \forall \tau \in [P_{k-1}(T)]^{d},$$

MWG element:  $\{P_k(T), [P_{k-1}]^2\}$ 

[3] X. Wang, N. Malluwawadu, F. Gao and T. McMillan, A modified weak Galerkin finite element method, J. Comput. Appl. Math., 217 (2014), 319-327.

## Modified Weak Galerkin (MWG)

The MWG method

$$(a\nabla_w u_h, \nabla_w v_h) + s(u_h, v_h) = (f, v_h),$$

$$(\nabla_{w}v,\tau)=-(v,\nabla\cdot\tau)_{T}+\langle\{v\},\tau\cdot\mathbf{n}\rangle_{\partial T},\quad,\forall\tau\in[P_{k-1}(T)]^{d},$$

[3] X. Wang, N. Malluwawadu, F. Gao and T. McMillan, A modified weak Galerkin finite element method, J. Comput. Appl. Math., 217 (2014), 319-327.

Note that there are many different ways to replace  $v_b$  besides  $v_b = \{v\}$ . Recall the LDG method: find  $\mathbf{q}_b \in \mathbf{V}_b$ ,  $u_b \in W_b$  such that

$$(a^{-1}\mathbf{q}_h, \mathbf{v}) + (\nabla \cdot \mathbf{v}, u_h)_{\mathcal{T}_h} - \langle \hat{\mathbf{u}}_h, \mathbf{v} \cdot \mathbf{n} \rangle_{\partial \mathcal{T}_h} = 0, \quad \forall \mathbf{v} \in \mathbf{V}_h$$
$$(\mathbf{q}_h, \nabla w)_{\mathcal{T}_h} - \langle \hat{\mathbf{q}}_h \cdot \mathbf{n}, w \rangle_{\partial \mathcal{T}_h} = (f, w), \quad \forall w \in W_h$$

where 
$$\hat{u}_h = \{u_h\} - eta \cdot [u_h]$$
 and  $\hat{\mathbf{q}}_h = \{\mathbf{q}_h\} + eta[\mathbf{q}_h] - lpha[u_h]$ .

#### HDG finite element method

Recall the HDG method: find  $(\mathbf{q}_h, u_h, \hat{u}_h) \in \mathbf{V}_h \times W_h \times M_h$  such that

$$\begin{split} (\boldsymbol{a}^{-1}\mathbf{q}_{h},\mathbf{v}) - (\boldsymbol{u}_{h},\nabla\cdot\mathbf{v})_{\mathcal{T}_{h}} + \langle \hat{\mathbf{u}}_{h},\mathbf{v}\cdot\mathbf{n}\rangle_{\partial\mathcal{T}_{h}} &= 0, \quad \forall \mathbf{v} \in \mathbf{V}_{h} \\ - (\mathbf{q}_{h},\nabla\boldsymbol{w})_{\mathcal{T}_{h}} + \langle \hat{\mathbf{q}}_{h}\cdot\mathbf{n},\boldsymbol{w}\rangle_{\partial\mathcal{T}_{h}} &= (f,\boldsymbol{w}), \quad \forall \boldsymbol{w} \in \mathcal{W}_{h} \\ \langle \hat{\mathbf{q}}_{h}\cdot\mathbf{n},\boldsymbol{\mu}\rangle_{\partial\mathcal{T}_{h}n\partial\Omega} &= 0, \quad \forall \boldsymbol{\mu} \in \mathcal{M}_{h}, \\ \langle \hat{\mathbf{u}}_{h},\boldsymbol{\mu}\rangle_{\partial\Omega} &= 0, \quad \forall \boldsymbol{\mu} \in \mathcal{M}_{h}, \\ \hat{\mathbf{q}}_{h}\cdot\mathbf{n} &= \mathbf{q}_{h}\cdot\mathbf{n} + \tau(\boldsymbol{u}_{h}-\hat{\boldsymbol{u}}_{h}). \end{split}$$

To solve a function  $\hat{u}_h$  in HDG is analogous to find an alternative of  $\{v\}$  in the MWG method.

- Introduction
- 2 Several variants of weak Galerkin methods (p = 2)
- 3 Over-Penalized Weak Galerkin (OPWG) method
- 4 Introduction to Relaxed Weak Galerkin (RWG) Method  $(p \in (1,2])$

Approximation spaces  $(P_k, [P_{k-1}(e)]^2, [P_{k-1}(K)]^d)$ 

$$V_{h} := \{ (v_{0}, v_{b}) : v_{0} \mid_{K} \in P_{k}(K), K \in \mathcal{T}_{h}; v_{b} \mid_{e} \in [P_{k-1}(e)]^{2}, e \in \mathcal{E}_{I}; \\ v_{b} \mid_{e} \in P_{k-1}(e), e \in \partial\Omega \cup \Gamma, k \geq 1 \}, \\ V_{h}^{0} := \{ v \in V_{h}, v_{b} = 0 \text{ on } \partial\Omega \setminus \Gamma \}.$$



Figure: L: single-valued; R: double-valued

The discrete weak gradient space:  $RT_k(K)$ ,  $k \ge 0$ , The weak Galerkin finite element space

$$V_h = \{ (v_0, v_b) : v_{0|K} \in \mathbb{P}_k(K), K \in \mathcal{T}_h; \\ v_{b|e} \in \mathbb{P}_k(e) \times \mathbb{P}_k(e), \forall e \in \mathcal{E}_h^I; v_{b|e} \in \mathbb{P}_k(e), \forall e \in \mathcal{E}_h^B \},$$

Element  $(\mathbb{P}_k, [\mathbb{P}_k]^2, RT_k)$ :

$$a_{opwg}(w,v) := (A\nabla_w w, \nabla_w v) + \sum_{e \in \mathcal{E}_T} |e|^{-\beta_0} \langle \llbracket w_b \rrbracket, \llbracket v_b \rrbracket \rangle_e.$$

#### A New Over-Penalized WG method

part I. Liu, Song, Zhao, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2411-2428 part II. Song, Qi, Liu, Gu, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2581-2598

$$\begin{split} V_h &= \{ (v_0, \ v_b) : v_0 |_K \in \mathbb{P}_k(K), \ K \in \mathcal{T}_h, \\ v_b |_e &\in \mathbb{P}_j(e) \times \mathbb{P}_j(e), e \in \mathcal{E}_{\mathcal{I}}; \ v_b |_e \in \mathbb{P}_j(e), e \in \partial \Omega \}, \quad j = k, \ k - 1, \\ V_h^0 &= \{ (v_0, \ v_b) : v \in V_h, \ v_b = 0 \text{ on } \partial \Omega \}, \end{split}$$

Element 
$$(\mathbb{P}_k(K), [\mathbb{P}_j(e)]^2, [\mathbb{P}_{k-1}(K)]^2)$$
: To find  $u_h = (u_0, u_b) \in V_h$  s.t.

$$a_{opwg}(u_h, v) = (f, v_0), \quad \forall v = (v_0, v_b) \in V_h,$$
 (1)

where

$$egin{aligned} a_{opwg}(w,v) := & (A 
abla_w w, 
abla_w v) + s(w,v) + \sum_{e \in \mathcal{E}_{\mathcal{I}}} |e|^{-eta_0} \langle \llbracket w_b 
rbracket, \llbracket v_b 
rbracket 
angle_e, \ & s(w,v) := \sum_{K \in \mathcal{T}_b} h_K^{-1} \langle Q_b w_0 - w_b, Q_b v_0 - v_b 
angle_{\partial K}. \end{aligned}$$

## The parabolic interface problem

Let  $\Omega\subset\mathbb{R}^d,\ d=2,3$  be a convex polygon or polyhedral domain,  $\Omega_1\subset\Omega$  be an open domain with Lipschitz continuous boundary  $\Gamma=\partial\Omega_1\subset\Omega$ , and  $\Omega_2=\Omega\setminus\overline\Omega_1$ .

$$\begin{cases} u_{t} - \nabla \cdot (A\nabla u) = f(x, t) & \text{in } \Omega \times (0, T], \\ u(x, 0) = \varphi(x) & \text{in } \Omega, \\ u = g(x, t) & \text{on } \partial\Omega \setminus \Gamma \times (0, T], \\ [\![u]\!]_{\Gamma} = \psi(x, t) & \text{on } \Gamma \times (0, T], \\ [\![A\nabla u \cdot \mathbf{n}]\!]_{\Gamma} = \phi(x, t) & \text{on } \Gamma \times (0, T], \end{cases}$$
(2)

A := A(x, t) s.p.d. matrix-valued function or a piecewise positive function.

$$[\![u]\!]_{\Gamma} := u|_{\partial\Omega_1 \cap \Gamma} - u|_{\partial\Omega_2 \cap \Gamma} [\![A\nabla u \cdot \mathbf{n}]\!]_{\Gamma} := A\nabla u|_{\Omega_1} \cdot \mathbf{n}_1 + A\nabla u|_{\Omega_2} \cdot \mathbf{n}_2.$$

## Meshes in Example 1



Figure: Meshes used in Example 1: (left) h=2/5, (right) h=1/5

## Convergence rates (h) in Example 1





Figure: Example 1. Convergence w.r.t h: (Left) k = 1, (Right) k = 2

## Convergence rates $(\tau)$ in Example 1





Figure: Example 1. Convergence w.r.t  $\tau$ : (Left) k=1, (Right) k=2

## Meshes in Example 2



Figure: Meshes used in Example 2: (left) h=2/5, (right) h=1/5

## Convergence rates (h) in Example 2





Figure: Example 2. Convergence w.r.t h: (Left) k = 1, (Right) k = 2

## Convergence rates $(\tau)$ in Example 2





Figure: Example 2. Convergence w.r.t  $\tau$ : (Left) k=1, (Right) k=2

• Stationary convection diffusion reaction problem

$$-\nabla \cdot (A\nabla u) + \mathbf{b} \cdot \nabla u + cu = f, \text{ in } \Omega,$$
  
 
$$u = 0, \text{ on } \partial \Omega.$$

$$A:=(a_{ij}(\mathbf{x}))\in [L^{\infty}(\Omega)]^{d imes d}$$
 s.p.d matrix-valued function;  $\mathbf{b}=(b_i(\mathbf{x}))_{d imes 1}\in [W^{1,\infty}(\Omega)]^d$  and  $c=c(\mathbf{x})\in L^{\infty}(\Omega);$   $c_0(x):=c(\mathbf{x})-rac{1}{2}
abla\cdot\mathbf{b}(\mathbf{x})\geq 0, \quad orall \mathbf{x}\in\Omega.$ 

Discrete approximation space:  $(\mathbb{P}_k(T), \mathbb{P}_k^2(e), \mathbb{P}_{k-1}(T)^d)$ Def.  $(\mathbf{b} \cdot \nabla_w) v_h \in \mathbb{P}_k(T), \forall \phi_h \in \mathbb{P}_k(T),$   $((\mathbf{b} \cdot \nabla_w) v_h, \phi_h)_T = -(\mathbf{b} \cdot \nabla \phi_h, v_0)_T - ((\nabla \cdot \mathbf{b}) \phi_h, v_0)_T + \langle \phi_h v_b, \mathbf{b} \cdot \mathbf{n} \rangle_{\partial T}$   $(A\nabla_w v, \nabla_w w) + \frac{1}{2}((\mathbf{b} \cdot \nabla_w) v, w_0) - \frac{1}{2}((\mathbf{b} \cdot \nabla_w) w, v_0) + (c_0 v_0, w_0)$  $+ s(v, w) + J(v, w) = (f, v), \qquad \forall v \in V_h^0,$ 

$$J(v,w) := \sum_{e \in \mathcal{E}_{\mathcal{I}}} |e|^{-\beta_0} \langle \llbracket v_b \rrbracket, \llbracket w_b \rrbracket \rangle_e.$$

 $s(v, w) := \sum h_T^{-1} \langle v_0 - v_b, w_0 - w_b \rangle_{\partial T},$ 

When  $\beta_0 \ge 2k + 1$ , the error estimates in the energy and  $L^2$  norms are optimal with the convergence rates k and k + 1, respectively.



Convection diffusion reaction problem with variable coefficients

$$(\mathbb{P}_k(T), [\mathbb{P}_k(e)]^2, [\mathbb{P}_{k-1}(T)]^2), k = 1, 2;$$
  
(1) L-shaped domain. Let  $\Omega = (-1, 1)^2 \setminus (0, 1) \times (-1, 0)$ , and set  $u(x, y) = \sin(\pi x)\sin(\pi y)$  and  $A = \text{diag}([2, 3]), \quad \mathbf{b} = [1, -1]^T, \quad c = \sin(xy).$ 

Table: L-shaped domain.

|               | h     | $   e_h   $  | rates  | $  e_0  $  | rates  |
|---------------|-------|--------------|--------|------------|--------|
|               | 1/8   | 6.1262e+00   | -      | 1.0837e+00 | -      |
| k = 1         | 1/16  | 3.1637e + 00 | 0.9533 | 2.8710e-01 | 1.9163 |
| $\beta_0 = 3$ | 1/32  | 1.6016e + 00 | 0.9820 | 7.3398e-02 | 1.9677 |
|               | 1/64  | 8.0463e-01   | 0.9931 | 1.8508e-02 | 1.9875 |
|               | 1/128 | 4.0310e-01   | 0.9971 | 4.6435e-03 | 1.9948 |
|               | 1/8   | 1.5931e+00   | -      | 1.0745e-01 | -      |
| k = 2         | 1/16  | 4.0802e-01   | 1.9163 | 1.2024e-02 | 3.1596 |
| $\beta_0 = 5$ | 1/32  | 1.0273e-01   | 1.9677 | 1.4513e-03 | 3.0504 |
|               | 1/64  | 2.5764e-02   | 1.9875 | 1.7971e-04 | 3.0136 |
|               | 1/128 | 6.4507e-03   | 1.9948 | 2.2406e-05 | 3.0037 |

Convection diffusion reaction problem with variable coefficients

$$(\mathbb{P}_k(T), [\mathbb{P}_k(e)]^2, [\mathbb{P}_{k-1}(T)]^2), k = 1, 2;$$

(2) Interior layer. R Lin, X Ye, S Zhang and P Zhu, WG for Singularly Perturbed

Convection-Diffusion-Reaction Problems, SINUM, 2018.

Let 
$$\Omega = (0,1)^2$$
, and set  $u(x,y) = 0.5x(1-x)y(1-y)(1-\tanh(\frac{\eta-x}{\gamma}))$  and  $A = \text{Id}/10$ ,  $\mathbf{b} = [1,0]^{\text{T}}$ ,  $c = 1$ .



Figure: WG solution (Left) Vs. exact solution (Right).

## Completed work and applications on OPWG

- (1) elliptic, elliptic interface, parabolic, parabolic interface problems as well as spatiotemporal diffusion coeffcients of variation;
- (2) stationery convection-diffusion equations with variable coefficients;
- (3) and stationery Navier-Stokes equation;
- (4) propose an Immersed and Over-Penalized Weak Galerkin (IOPWG) for elliptic interface problem.

#### References

- Wang, Song, Liu, A New Over-Penalized Weak Galerkin Method. Part III Convection-Diffusion-Reaction Problems, DCDS-B, 29(4),1652-1669, 2024.
- Qi, Song An over-penalized weak Galerkin method for parabolic interface problems with time-dependent coefficients, J. Comput. Appl. Math. 422 (2023), 114883.
- K Liu, L Song, W Qi, A new over-penalized weak galerkin method. Part I Second-order elliptic problems, DCDS-B, 26(5), 2021, 2411-2428.
- Song, Qi, Liu, Gu, A new over-penalized weak galerkin finite element method. Part II Elliptic interface problems, DCDS-B, 26(5), 2021, 2581-2598.

#### References

- Song, Zhao, Liu, A relaxed weak Galerkin method for elliptic interface problems with low regularity, Appl. Numer. Math. 128 (2018), 65-80.
- Song, Zhao, Symmetric interior penalty Galerkin approaches for two-dimensional parabolic interface problems with low regularity solutions, J. Comput. Appl. Math. 330 (2018), 356-379.
- Liu, Song, Zhou, An Over-Penalized Weak Galerkin Method for Second-Order Elliptic Problems, Journal of Computational Mathematics, 36(6), 2018, 866-880.
- Song, Liu, Zhao, A weak Galerkin method with an over-Relaxed stabilization for low regularity elliptic problems, Journal of Scientific Computing, 71 (2017), no. 1, 195-218.
- Song, Yang, Convergence of a second-order linearized BDF-IPDG for nonlinear parabolic equations with discontinuous coefficients, Journal of Scientific Computing, 70 (2017), no. 2, 662-685.

- Introduction
- 2 Several variants of weak Galerkin methods (p = 2)
- 3 Over-Penalized Weak Galerkin (OPWG) method
- Introduction to Relaxed Weak Galerkin (RWG) Method  $(p \in (1,2])$

#### Problem:

Given  $f\in L^p$  , find  $u\in W^{2,p}\cap H^1_0(\Omega)$ ,  $p\in (1,2)$  such that

$$(a\nabla u, \nabla v) = (f, v), \quad \forall v \in H_0^1(\Omega).$$

[Wihler & Rivière, J Sci Comput,2011], convergence rates of SIPG and NIPG schemes deteriorate when p is close to 1, even for the WG method with a stabilizer

$$S(u_h, v_h) = \sum_{e \in \mathcal{E}_h} h^{-1} \langle u_0 - u_b, v_0 - v_b \rangle_e.$$

Motivation: How to solve the low regularity problem well?

### Elliptic interface problems

To find u satisfying

$$-\nabla \cdot A_1 \nabla u = f_1, \qquad \text{in } \Omega_1, \qquad (3)$$

$$-\nabla \cdot A_2 \nabla v = f_2, \qquad \text{in } \Omega_2, \qquad (4)$$

$$u = g_1,$$
 on  $\partial \Omega_1 \setminus \Gamma$ , (5)

$$v = g_2,$$
 on  $\partial \Omega_2 \setminus \Gamma$ , (6)

$$u\big|_{\Omega_1} - v\big|_{\Omega_2} = \phi,$$
 on  $\Gamma$ , (7)

$$A_1 \nabla u|_{\Omega_1} \cdot \mathbf{n_1} + A_2 \nabla v|_{\Omega_2} \cdot \mathbf{n_2} = \psi,$$
 on  $\Gamma$ , (8)

where subdomains  $\Omega_1$ ,  $\Omega_2$ : open bounded polygonal domain in  $\mathbb{R}^2$ ; coefficients  $A_i$  (i=1,2) are positive in  $\Omega_i$ ;  $\Gamma=\overline{\Omega}_1\cap\overline{\Omega}_2$ ;  $\mathbf{n}_i$  are unit normals exterior to  $\Omega_i$ ;  $g_i\in H^{\frac{1}{2}}(\Omega)$ ;  $\phi\in L^2(\Gamma)$ ;  $\psi\in L^2(\Gamma)$ ; and  $f_i\in L^p(\Omega_i)$  (i=1,2) are given scalar-valued functions for some p in  $(1,\infty]$ .

#### Discrete weak gradient

Define  $\nabla_w v \in [\mathbb{P}_{k-1}(T)]^2$   $(k \geq 1)$  for any function  $v \in V_h$  satisfying

$$(\nabla_w v, q)_T = -(v_0, \nabla \cdot q)_T + \langle v_b, q \cdot \boldsymbol{n} \rangle_{\partial T}, \quad \forall \ q \in [\mathbb{P}_{k-1}(T)]^2.$$

Weak Galerkin element:  $(\mathbb{P}_k(T), \mathbb{P}_k(e), [\mathbb{P}_{k-1}(T)]^2)$ .

A natural finite element formulation for discontinuous elements should have the forms

$$a_i(u_h, v_h) := (A_i \nabla_w u_h, \nabla_w v_h) + S_i(u_h, v_h) = (f_i, v_h),$$
 (9)

where the stabilizers

$$S_i(u_h, v_h) = \sum_{e \in \mathcal{E}_h^i} \frac{1}{h^{\beta}} \langle u_0 - u_b, v_0 - v_b \rangle_e, \ i = 1, 2,$$

where  $\beta$  is to be defined. Question: Does it depend on p?

#### The relaxed weak Galerkin (RWG) method

A numerical approximation with Lagrange multipliers for (3)-(8) can be obtained by seeking  $u_h = (u_0, u_b) \in U_h$  satisfying  $u_b = Q_b g_1$  on  $\partial \Omega_1 \setminus \Gamma$ ,  $v_h = (v_0, v_b) \in W_h$  satisfying  $v_b = Q_b g_2$  on  $\partial \Omega_2 \setminus \Gamma$  and  $\lambda_h \in \Lambda_h$  such that

$$a_1(u_h,\omega)-\langle \lambda_h,\omega_b\rangle_{\Gamma}=(f_1,\omega_0), \quad \forall \ \omega\in U_h^0,$$
 (10)

$$a_2(v_h, \rho) + \langle \lambda_h, \rho_b \rangle_{\Gamma} = (f_2, \rho_0) + \langle \psi, \rho_b \rangle_{\Gamma}, \quad \forall \ \rho \in W_h^0, \tag{11}$$

$$\langle u_b - v_b, \mu \rangle_{\Gamma} = \langle \phi, \mu \rangle_{\Gamma}, \quad \forall \ \mu \in \Lambda_h.$$
 (12)

[7] Song, Qi, Liu, Gu, Applied Numerical Mathematics, 128(2018) 65-80.

### Numerical settings

RWG: piecewise linear elements  $(\mathbb{P}_1(T), \mathbb{P}_1(e), [\mathbb{P}_0(T)]^2)$ 

$$\begin{split} & L^2\text{-norm}: \ \|e_h\|^2 = \|e_0^1\|_{L^2(\mathcal{T}_h^1)}^2 + \|e_0^2\|_{L^2(\mathcal{T}_h^2)}^2, \\ & \mathcal{H}^1\text{-norm}: \|\nabla_w e_h\|^2 = \|\nabla_w e_h^1\|_{L^2(\mathcal{T}_h^1)}^2 + \|\nabla_w e_h^2\|_{L^2(\mathcal{T}_h^2)}^2, \\ & L^\infty\text{-norm}: \ \|e_h\|_{L^\infty} = \max \left\{ \|e_h^1\|_{L^\infty(\mathcal{T}_h^1)}, \|e_h^2\|_{L^\infty(\mathcal{T}_h^2)} \right\}, \\ & \text{Energy norm:} \ \|\|e_h\|\|^2 = \left(A\nabla_w e_h, \nabla_w e_h\right)_{\mathcal{T}_h^1 \cup \mathcal{T}_h^2} + \sum_{e \in \mathcal{E}_h} \frac{1}{h^\beta} \|Q_0 e_0 - e_b\|_e^2. \end{split}$$

### Numerical results for low regularity elliptic problems

RWG: element  $(\mathbb{P}_1(T), \mathbb{P}_1(e), [\mathbb{P}_0(T)]^2)$ 

Example 0. [Wihler & Rivière, J Sci Comput, 2011],

$$\Omega = (0,1)^2, \quad A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

and the exact solution

$$u(x,y) = x(x-1)y(y-1)r^{-2+\alpha},$$

 $\alpha \in (0,1]$  is a constant, and  $r = \sqrt{x^2 + y^2}$ . Here

$$u \in H^1_0(\Omega) \cap W^{2,p}(\Omega), \quad p \in (1, \frac{2}{2-\alpha}) \subseteq (1,2).$$

Song, Liu, Zhao, J. Sci. Comput. 71 (2017), no. 1, 195-218.

# WG solutions with low regularity



Figure:  $\alpha = 1$ 

Figure:  $\alpha = 2^{-2}$ 



Figure:  $\alpha = 2^{-5}$ 

## Comparisons

Table: Convergence rates of  $|||e_h|||$  with different methods.

| $\alpha$ | SIPG   | NIPG   | FEM    | $\frac{WG}{\beta=1}$ | $\frac{WG}{\beta=2}$ | $\frac{WG}{\beta=3}$ |
|----------|--------|--------|--------|----------------------|----------------------|----------------------|
| 1        | 0.905  | 0.918  | 0.924  | 0.8909               | 1.1872               | 1.4420               |
| $2^{-1}$ | 0.491  | 0.494  | 0.500  | 0.4889               | 0.8998               | 0.9642               |
| $2^{-2}$ | 0.245  | 0.247  | 0.249  | 0.2424               | 0.7039               | 0.8104               |
| $2^{-3}$ | 0.121  | 0.122  | 0.124  | 0.1175               | 0.5917               | 0.7439               |
| $2^{-4}$ | 0.0587 | 0.0602 | 0.0618 | 0.0550               | 0.5326               | 0.7119               |

A strategy to reduce the ill-conditioned effect

ILU preconditioning+restarted GMRES

#### Example 1. Elliptic interface problem

In the domain  $\Omega=(-1,1)^2$  with a circular interface  $r^2:=x^2+y^2=0.25$ ;  $A_1=b$  and  $A_2=2$ , respectively, on each subdomain satisfying r>0.5 and  $r\leq0.5$ . The analytical solution is

$$\begin{cases} u(x,y) = -\frac{1}{b} \left[ \frac{1}{4} \left( 1 - \frac{1}{8b} - \frac{1}{b} \right) + \left( \frac{r^4}{2} + r^2 \right) \right], & r > 0.5, \\ v(x,y) = -(x^2 + y^2 - 1), & r \le 0.5, \end{cases}$$

where b=10. The corresponding force term can be derived, i.e.,  $f=8r^2+4$  as r>0.5, and f=8 as  $r\leq0.5$ . On the interface boundary, the corresponding functions  $\psi=4r^2(r^2-1)$  and  $\phi$  along the interface are derived.



Figure: Numerical solu. (left) and  $\|\nabla_w e_h\|_{L^2}$  (right) for  $\beta = 0.5, 1, 2$ .

# Convergence rates and errors

Table: Example 1 with  $\beta = 1, 2$ .

|             |                | $\beta = 1$        |                |                | $\beta = 2$        |                |
|-------------|----------------|--------------------|----------------|----------------|--------------------|----------------|
| $\max\{h\}$ | e <sub>h</sub> | $\ \nabla_w e_h\ $ | e <sub>h</sub> | e <sub>h</sub> | $\ \nabla_w e_h\ $ | e <sub>h</sub> |
| 0.1018      | 9.4660e-1      | 1.0269e-2          | 2.1495e-2      | 3.0703e-1      | 8.6956e-3          | 2.6167e-3      |
| 0.0509      | 4.7285e-1      | 5.4263e-3          | 5.3688e-3      | 9.5458e-2      | 4.6587e-3          | 2.8571e-4      |
| 0.0255      | 2.3634e-1      | 2.7763e-3          | 1.3400e-3      | 3.0803e-2      | 3.1209e-3          | 3.1964e-5      |
| 0.0128      | 1.1815e-1      | 1.4031e-3          | 3.3523e-4      | 1.7835e-2      | 2.1707e-3          | 6.6414e-6      |
| Rate        | 1.0038         | 0.9612             | 2.0073         | 1.3990         | 0.6605             | 2.9115         |

### Example 2. Elliptic interface problem

In the domain  $\Omega=(0,1)^2$  with a circular interface  $r^2=(x-0.5)^2+(y-0.5)^2=0.25^2$ , the coefficient A is defined to be  $A_1=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$  and  $A_2=2$ , respectively on each subdomain, for r>0.25 and r<0.25. The analytical solution is

$$\begin{cases} u(x,y) = x(x-1)y(y-1)r^{-2+\alpha}, & r > 0.25, \\ v(x,y) = 1 - (2x-1)^2 - (2y-1)^2, & r \le 0.25, \end{cases}$$

where  $\alpha \in (0,1]$  is a constant, and  $r=\sqrt{x^2+y^2}$  denotes the distance to the origin. Here

$$u \in H_0^1(\Omega) \cap W^{2,p}(\Omega)$$
 for  $p \in (1, \frac{2}{2-\alpha}) \subseteq (1,2)$ .

# Convergence rates and errors

Table: Convergence rates and errors for example 2 with  $\beta=1,\,1.5,\,$  and  $\alpha=2^{-4}$  taken.

| -           | $\beta =$   | = 1       | $\beta = 1.5$ |           |  |
|-------------|-------------|-----------|---------------|-----------|--|
| $\max\{h\}$ | $   e_h   $ | $\ e_h\ $ | $   e_h   $   | $\ e_h\ $ |  |
| 0.0509      | 6.0075e+0   | 6.2693e-2 | 2.7505e+0     | 1.4089e-2 |  |
| 0.0255      | 5.7696e + 0 | 3.0076e-2 | 2.0746e + 0   | 4.3410e-3 |  |
| 0.0128      | 5.5343e + 0 | 1.4414e-2 | 1.5214e+0     | 1.3648e-3 |  |
| 0.0064      | 5.3046e + 0 | 6.9078e-3 | 1.0880e + 0   | 4.7494e-4 |  |
| Rate        | 0.0601      | 1.0640    | 0.4476        | 1.6392    |  |



Figure: Numerical solu.  $\alpha=2^{-4}$  (left) and numerical solu. with  $\alpha=2^{-6}$  (right).



Figure: In the case  $\alpha=2^{-4}$ , convergence rates of  $|||e_h|||$  (left) and  $||e_h||$  (right) with  $\beta=0.5,\,1,\,1.5$  taken.

#### Example 3. Elliptic interface problem

We consider a classical elliptic interface problem in the domain  $\Omega=(-1,1)^2$  with both concave and convex curve segments appeared in (see [Zhou, Wei 2006]). The interface is parametrized with the polar angle  $\theta$  by

$$r=\frac{1}{2}+\frac{1}{7}\sin(5\theta).$$

The coefficients  $A_1=10$  and  $A_2=1$  are chosen for the subdomains outside  $\Gamma$  and inside  $\Gamma$ , respectively. The analytic solution is given as

$$\begin{cases} u(x,y) = \frac{1}{10}(x^2 + y^2)^2 - \frac{1}{100}\ln(\sqrt{2(x^2 + y^2)}), & \text{in } \Omega_1, \\ v(x,y) = \exp(x^2 + y^2), & \text{in } \Omega_2, \end{cases}$$

#### Refined meshes with a curved interface





Figure: Numerical solutions on mesh level 1 (left) and on mesh level 4 (right).



Figure: Convergence rates of  $||e_h||$  (left) and  $|||e_h|||$  (right) for  $\beta=1,\,1.5$  in Example 3.

## Example 4

Let  $\Omega = [0,1] \times [0,1]$ , the coefficient

$$A(x/\epsilon) = \frac{1}{4 + P(\sin(2\pi x/\epsilon) + \sin(2\pi y/\epsilon))},$$

where P is a controlling parameter of the magnitude for the oscillation. We apply P=1.8. The exact solution is given

$$u = \frac{\sqrt{4 - P^2}}{2}(x^2 + y^2).$$

Example 4 [Mu, Wang, Ye, A weak Galerkin generalized multiscale FEM, JCAM, (305)2016, 68-81]



Figure: Multiscale coefficients,  $\epsilon = 0.1$ .

# Convergence rates for Example 4 ( $\epsilon=0.1$ )



Figure: Numerical solution (left) and error (right).

# Convergence rates for Example 4 ( $\epsilon = 0.1$ )



Figure: Convergence rates of  $||e_h||$  (left) and  $||e_h||$  (right).

#### Conclusions

- 1. Several variants of WG finite element methods have been summerized.
- 2. In the case p = 2, the OPWG methods are introduced.
- 3. The relaxed weak Galerkin method is suitable for solving low regularity elliptic problem and elliptic interface problem ( $p \in (1,2]$ ).