SEQUENCE LISTING

<110>	Lovelace Respiratory Research Institute Tesfaigzi, Yohannes Belinsky, Steven A.	
<120>	Metalloproteinase Gene Polymorphism in COPD	
<130>	41543-0302	
<150> <151>	US 60/494,631 2003-08-11	
<160>	17	
<170>	PatentIn version 3.3	
<210> <211> <212> <213>	22	
<220> <223>	Synthetic Probe for MMP-9 Gln279Arg SNP	
<400> ctctac	1 accc gggacggcaa tg	22
<210> <211> <212> <213>	24	
<220> <223>	Synthetic Probe for MMP-9 Gln279Arg SNP	
<400> actcta	2 cacc caggacggca atgc	24
<210> <211> <212> <213>	19	
<220> <223>	Synthetic sense primer for MMP-9 Gln279Arg SNP	
<400> tctccc	3 cctt tcccacatc	19
<210> <211> <212> <213>	4 19 DNA Artificial	

٠.

```
<220>
 <223> Synthetic antisense primer for MMP-9 Gln279Arg SNP
 <400> 4
 tgtgctgtct ccgccttct
                                                                        19
 <210> 5
 <211> 10
 <212> DNA
<213> Artificial
<220>
<223> Synthetic Probe for MMP-9 Gln279Arg SNP
<400> 5
tctacacccg
                                                                       10
<210> 6
<211> 10
<212> DNA
<213> Artificial
<223> Synthetic Probe for MMP-9 Gln279Arg SNP
<400> 6
gggacggcaa
                                                                       10
<210> 7
<211> 10
<212> DNA
<213> Artificial
<220>
<223> Synthetic Probe for MMP-9 Gln279Arg SNP
<400> 7
tctacaccca
                                                                       10
<210> 8
<211> 10
<212> DNA
<213> Artificial
<220>
<223> Synthetic Probe for MMP-9 Gln279Arg SNP
<400> 8
aggacggcaa
                                                                      10
<210> 9
```

<211> 707

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<222> (279)..(279)

<223> Xaa is Gln in the common variant and Arg in the rare variant

<400> 9

Met Ser Leu Trp Gln Pro Leu Val Leu Val Leu Leu Val Leu Gly Cys 1 5 10 15

Cys Phe Ala Ala Pro Arg Gln Arg Gln Ser Thr Leu Val Leu Phe Pro 20 25 30

Gly Asp Leu Arg Thr Asn Leu Thr Asp Arg Gln Leu Ala Glu Glu Tyr 35 40 45

Leu Tyr Arg Tyr Gly Tyr Thr Arg Val Ala Glu Met Arg Gly Glu Ser 50 55 60

Lys Ser Leu Gly Pro Ala Leu Leu Leu Leu Gln Lys Gln Leu Ser Leu 65 70 75 80

Pro Glu Thr Gly Glu Leu Asp Ser Ala Thr Leu Lys Ala Met Arg Thr 85 90 95

Pro Arg Cys Gly Val Pro Asp Leu Gly Arg Phe Gln Thr Phe Glu Gly
100 105 110

Asp Leu Lys Trp His His His Asn Ile Thr Tyr Trp Ile Gln Asn Tyr 115 120 125

Ser Glu Asp Leu Pro Arg Ala Val Ile Asp Asp Ala Phe Ala Arg Ala 130 135 140

Phe Ala Leu Trp Ser Ala Val Thr Pro Leu Thr Phe Thr Arg Val Tyr 145 150 155 160

Ser Arg Asp Ala Asp Ile Val Ile Gln Phe Gly Val Ala Glu His Gly 165 170 175

Asp Gly Tyr Pro Phe Asp Gly Lys Asp Gly Leu Leu Ala His Ala Phe

385

180

185

190

400

Pro Pro Gly Pro Gly Ile Gln Gly Asp Ala His Phe Asp Asp Glu 200 Leu Trp Ser Leu Gly Lys Gly Val Val Val Pro Thr Arg Phe Gly Asn 215 Ala Asp Gly Ala Ala Cys His Phe Pro Phe Ile Phe Glu Gly Arg Ser 230 Tyr Ser Ala Cys Thr Thr Asp Gly Arg Ser Asp Gly Leu Pro Trp Cys 245 Ser Thr Thr Ala Asn Tyr Asp Thr Asp Asp Arg Phe Gly Phe Cys Pro Ser Glu Arg Leu Tyr Thr Xaa Asp Gly Asn Ala Asp Gly Lys Pro Cys Gln Phe Pro Phe Ile Phe Gln Gly Gln Ser Tyr Ser Ala Cys Thr Thr 295 Asp Gly Arg Ser Asp Gly Tyr Arg Trp Cys Ala Thr Thr Ala Asn Tyr 310 320 Asp Arg Asp Lys Leu Phe Gly Phe Cys Pro Thr Arg Ala Asp Ser Thr 335 Val Met Gly Gly Asn Ser Ala Gly Glu Leu Cys Val Phe Pro Phe Thr 340 350 Phe Leu Gly Lys Glu Tyr Ser Thr Cys Thr Ser Glu Gly Arg Gly Asp 360 365 Gly Arg Leu Trp Cys Ala Thr Thr Ser Asn Phe Asp Ser Asp Lys Lys 375 380 Trp Gly Phe Cys Pro Asp Gln Gly Tyr Ser Leu Phe Leu Val Ala Ala

His Glu Phe Gly His Ala Leu Gly Leu Asp His Ser Ser Val Pro Glu

410

390

405

Ala Leu Met Tyr Pro Met Tyr Arg Phe Thr Glu Gly Pro Pro Leu His Lys Asp Asp Val Asn Gly Ile Arg His Leu Tyr Gly Pro Arg Pro Glu Pro Glu Pro Arg Pro Pro Thr Thr Thr Pro Gln Pro Thr Ala Pro Pro Thr Val Cys Pro Thr Gly Pro Pro Thr Val His Pro Ser Glu Arq Pro Thr Ala Gly Pro Thr Gly Pro Pro Ser Ala Gly Pro Thr Gly Pro Pro Thr Ala Gly Pro Ser Thr Ala Thr Thr Val Pro Leu Ser Pro Val Asp Asp Ala Cys Asn Val Asn Ile Phe Asp Ala Ile Ala Glu Ile Gly Asn Gln Leu Tyr Leu Phe Lys Asp Gly Lys Tyr Trp Arg Phe Ser Glu Gly Arg Gly Ser Arg Pro Gln Gly Pro Phe Leu Ile Ala Asp Lys Trp Pro Ala Leu Pro Arg Lys Leu Asp Ser Val Phe Glu Glu Pro Leu Ser Lys Lys Leu Phe Phe Phe Ser Gly Arg Gln Val Trp Val Tyr Thr Gly Ala Ser Val Leu Gly Pro Arg Arg Leu Asp Lys Leu Gly Leu Gly Ala Asp Val Ala Gln Val Thr Gly Ala Leu Arg Ser Gly Arg Gly Lys Met Leu Leu Phe Ser Gly Arg Arg Leu Trp Arg Phe Asp Val Lys Ala Gln

Met Val Asp Pro Arg Ser Ala Ser Glu Val Asp Arg Met Phe Pro Gly 645 650 Val Pro Leu Asp Thr His Asp Val Phe Gln Tyr Arg Glu Lys Ala Tyr 660 Phe Cys Gln Asp Arg Phe Tyr Trp Arg Val Ser Ser Arg Ser Glu Leu 680 Asn Gln Val Asp Gln Val Gly Tyr Val Thr Tyr Asp Ile Leu Gln Cys 695 Pro Glu Asp 705 <210> 10 <211> 7639 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (2665)..(2665) <223> n is a in the common variant and g in the rare variant <400> 10 tcaccatgag cctctggcag cccctggtcc tggtgctcct ggtgctgggc tgctgctttg 60 ctgccccag acagegecag tecaecettg tgctcttece tggagacetg agaaccaate 120 tcaccgacag gcagctggca gaggtgggca aacacctagt ctagagttgg ggagggctgt 180 ccgtgagggt gttgagtgtc ccagagggga tgcagggcct cagaggagat gctttagggg 240 tgtgttggtg gtgatgggcg tatctgaaga acagaggtgt ccagggttag gcagtggggg 300 gtcttgtgga ggctttgagc agtgatggcc agaaatgggc aatggggctt tcctaggtgg 360 gaaatgggaa atggtttggg gtgggggagg cattggaggg ttctggggta agcataggct 420 gggagtgaac aggggcaaac cttatgcagc tgtggggtag aaatgggcta gaggcatcca 480 ggggtgagaa ggagctgagg atgtctaagg aggggagatc cctgggtggt cagaaagcac 540 tggtgtctgg aaagcattta atgctttatt aaatgttagt ccctgctggg catgacggct 600 cacacttgta atcccagcac tttgggaggc tgaggtggta ggatcgctga agctcaggag 660 tttgagccca gcctaggcaa catagtaaga tcctgtctct acaaaaaaat taaagaaata 720

gccaggcaca	gtgatgtgca	cctgtagttc	: cagctatgca	gaaggctgag	atgggaggat	780
cgcttgagtc	caggaggtcc	aggctgcagt	gggctgatac	cgtctctccg	aaaaagaaaa	840
agaaaaaaga	ctccctccat	gagtgtctgg	agggagtcct	ttggccccag	ctgggcagag	900
aaaggggtca	gagatctggc	atgtgtgtgt	cccttcatcc	acaggaatac	ctgtaccgct	960
atggttacac	tcgggtggca	gagatgcgtg	gagagtcgaa	atctctgggg	cctgcgctgc	1020
tgcttctcca	gaagcaactg	tecetgeeeg	agaccggtga	gctggatagc	gccacgctga	1080
aggccatgcg	aaccccacgg	tgcggggtcc	cagacctggg	cagattccaa	acctttgagg	1140
gcgacctcaa	gtggcaccac	cacaacatca	cctattggtg	agccggggcc	gtgggggcag	1200
cggggtgggg	cggggaggcc	aggtctggct	cttgggccag	cggtgaacat	gtcctgtctt	1260
ggacgcgtcc	ctgggtttca	ctatttaatg	tgtggcccct	ggggagtgtc	cccacctctg	1320
agcctctgtt	tctccttcag	ggaaatggct	cttgcaatcc	aagtcctcct	gccagggcca	1380
ttgtgagggt	ctaagtagac	aaaaaaaaa	aaaaaaaaa	cagtctggaa	gcaatttata	1440
gatgagagcg	tggacggcag	agagcattgt	gtatgttgaa	gtctctgcga	tatggggtgt	1500
ccctgctgcc	ccgctccagc	ctttcacttc	tgacctcctt	·cctctggctc	ttacgctaca	1560
ggatccaaaa	ctactcggaa	gacttgccgc	gggcggtgat	tgacgacgcc	tttgcccgcg	1620
ccttcgcact	gtggagcgcg	gtgacgccgc	tcaccttcac	tcgcgtgtac	agccgggacg	1680
cagacatcgt	catccagttt	ggtgtcgcgg	gtgagaacgt	gaggagggaa	aatccaagag	1740
acctgggcgg	ggtcagggaa	gggaggacca	cggagagcgt	ggaggcagca	gtggccccgg	1800
cttcctcttg	cctgcccgcg	ctgccctggc	ttatacggcc	cctcctgcca	gacagtgcac	1860
agggccaggg	cgccaggctg	ggagagcttc	gcgcaggcgg	gatttcagcc	cgcacttatt	1920
tcggagccct	tgccttgggc	agcgcacaat	ctgcgcagca	gtactcggct	aaccctcttc	1980
ctctcgacct	gtttcttcag	agcacggaga	cgggtatccc	ttcgacggga	aggacgggct	2040
cctggcacac	gcctttcctc	ctggccccgg	cattcaggga	gacgcccatt	tcgacgatga	2100
cgagttgtgg	tccctgggca	agggcgtcgg	tgagattctg	agtcctcctg	gcccctgatt	2160
cccttcattc	tctcccactc	atcacccgcc	gccctaactc	cggtccccc	tcctcctgca	2220
gtggttccaa	ctcggtttgg	aaacgcagat	ggcgcggcct	gccacttccc	cttcatcttc	2280
gagggccgct	cctactctgc	ctgcaccacc	gacggtcgct	ccgacggctt	gccctggtgc	2340
agtaccacgg	ccaactacga	caccgacgac	cggtttggct	tctgccccag	cgagagtgag	2400
tgagggggct	cgccgagggc	tgggggcgcc	caccaccett	gatggtcctg	ggttctaatt	2460

ccagctctgc	cactagtgct	gtgtggcctg	caattcaccc	tecegeacte	: tgggcccaat	2520
tttctcatct	gagaaatgat	gagagatggg	, atgaactgca	gaccatccat	gggtcaaaga	2580
acaggacaca	cttgggggtt	ataatgtgct	gtctccgcct	tctccccctt	tcccacatcc	2640
tectegecec	: aggactctac	accenggacg	gcaatgctga	tgggaaaccc	: tgccagtttc	2700
cattcatctt	ccaaggccaa	tectactecg	cctgcaccac	ggacggtcgc	teegaegget	2760
accgctggtg	cgccaccacc	gccaactacg	accgggacaa	gctcttcggc	ttctgcccga	2820
cccgaggtac	ctccaccctg	tctaccaggt	tcagccccgc	cctctcatca	tgtattggcc	2880
cccaaaacgc	ggctcttccc	tcccatcagt	ttgtctttcc	actctcattg	gtcctcagga	2940
cgaccgtgac	teegeecace	tacaccacat	ttccaccact	atccctgact	tccaatggcc	3000
ccgccccagc	cactaaggtt	cggccttttc	tgcccagctg	gccgcctctt	ccttggtctg	3060
gtgtcccagg	caccgcccac	gggtctagcc	tcttctcagg	agtgctctac	agcgccccct	3120
aggccaccaa	gattgtttag	ctccctgtcg	ggtcggcccc	tgactcctta	ttggactcat	3180
ccatctggct	catccaaggc	cttgggtctc	tccagctgac	tcgacggtga	tggggggcaa	3240
ctcggcgggg	gagctgtgcg	tcttcccctt	cactttcctg	ggtaaggagt	actcgacctg	3300
taccagcgag	ggccgcggag	atgggcgcct	ctggtgcgct	accacctcga	actttgacag	3360
cgacaagaag	tggggcttct	gcccggacca	aggtaggcgt	ggtcccgcgg	ctccggggct	3420
ggggttcccg	gcagtggtgg	tggtggggtg	gccagggctg	ggggctcggc	ccggcgctca	3480
cgtctcaggc	tocctctccc	tccaggatac	agtttgttcc	tcgtggcggc	gcatgagttc	3540
ggccacgcgc	tgggcttaga	tcattcctca	gtgccggagg	cgctcatgta	ccctatgtac	3600
cgcttcactg	aggggccccc	cttgcataag	gacgacgtga	atggcatccg	gcacctctat	3660
ggtgaggcag	gggcagggat	gggaggagga	ggggaaaggg	cgtggctgtg	ccacagtacc	3720
aaagaattgg	gggttgggga	tcgggggagg	aacggggcgt	gcaggagagg	tgggacctca	3780
acgtctgtct	ggaagcagag	cctgggccca	gtcgctgcca	tgtcagtgct	tagaggtggt	3840
gataaagaga	ctctagagag	agataggtgt	gacttcaaaa	gccagtctac	tctgggcatg	3900
gtggctcacg	cctctaatcc	cagggctttg	ggagacccaa	ggcgggagga	ttgcttaagc	3960
ccaggagttc	cagaccagcc	tcggcaacat	agccagactc	ccatctctac	aaaaaataaa	4020
tgagcaaggc	gtgaaggcac	atgtctgtag	tcctagctac	tctggaggct	gaggtgggag	4080
gatctcttga	gcccaggagt	tcgaggctgt	agtgagctat	gattgcacca	ctgcattcca	4140

tcctgggcca	a tagaggatgt	cgcttaaaac	gaaaaagaag	g aagaagaaag	, tcctgtggtt	4200
tgggaaggga	ı ggctgagtga	ggaggggcct	gtgtgccaga	ggaggettea	ctgagaagct	4260
taggggagca	gatgttctag	gggtacagag	gtatgcagga	ataggaagag	tctcaccccg	4320
tgtctcttt	taggtcctcg	ccctgaacct	gagccacggc	ctccaaccac	: caccacaccg	4380
cagcccacgg	ctcccccgac	ggtctgccc	accggacccc	ccactgtcca	cccctcagag	4440
cgccccacag	ctggccccac	aggtccccc	tcagctggcc	ccacaggtcc	ccccactgct	4500
ggcccttcta	cggccactac	tgtgcctttg	agtccggtgg	acgatgcctg	caacgtgaac	4560
atcttcgacg	ccatcgcgga	gattgggaac	cagctgtatt	tgttcaagga	tgggtgagga	4620
ggcggggttg	tgtggatgcg	ggagggggct	ttgcggaggg	gctgcccgtc	ccttcccgcc	4680
cactggccct	gtgtccaagg	cttagagccc	gtcctttccc	tcctcgcttt	ctcaggaagt	4740
actggcgatt	ctctgagggc	agggggagcc	ggccgcaggg	ccccttcctt	atcgccgaca	4800
agtggcccgc	gctgccccgc	aagctggact	cggtctttga	ggagcggctc	tccaagaagc	4860
ttttcttctt	ctctggttag	ttacctactt	tecetecece	gcccggtcaa	tccccatcag	4920
tcaaggaggc	tcaagagacc	atcgataacc	cacgaaacgt	cttgtgcgtt	ttagaaaaat	4980
acgccccctg	gcggacgcag	tttagcaaac	gtaggggcgg	ctgagtttct	gccccctcct	5040
ctccacgccc	tegegteget	ctacccagcg	cctctgcccc	tgggttgcag	ggactgcggg	5100
cacgcgggct	aggaaaggcc	tcgccggaat	ctccctcctc	gcgttctagg	agtacgtgct	5160
ccctctgcgc	ccccaaaccg	acgtgaccct	cctcccctgc	agggcgccag	gtgtgggtgt	5220
acacaggcgc	gtcggtgctg	ggcccgaggc	gtctggacaa	gctgggcctg	ggagccgacg	5280
tggcccaggt	gaccggggcc	ctccggagtg	gcagggggaa	gatgctgctg	ttcagcgggc	5340
ggcgcctctg	gaggtgagcg	ccgccgcggc	cgccggcagg	gggagcccgg	gcgccgtcgg	5400
tccgtccgct	agccggctca	gcacctgtct	cctccgcgcc	tgcccgcagg	ttcgacgtga	5460
aggcgcagat	ggtggatccc	cggagcgcca	gcgaggtgga	ccggatgttc	cccggggtgc	5520
ctttggacac	gcacgacgtc	ttccagtacc	gaggtgaggg	ctgaggagga	tcccttcgtg	5580
agacaccaca	ctaagctcct	cttagtgagt	ggtcaaattc	tgagcgagga	agaaaaagcc	5640
cttggaaatg	gaaacaaatg	ccccagcaca	gacaagatcc	cagcagaggc	agaggccttc	5700
tccaggtcat	ttaggaagtc	agggatgcaa	ccaagaccag	gacccagatt	tcctgcctcc	5760
ccggctggaa	gctctttctc	cttcagtaca	ggacggcagg	tggtttgtat	ggaagctcag	5820
ttattagaca	acagtcatca	agtgccgata	atgtgccagg	cactgtgcta	cagggagaga	5880

taagacaatt	cacagetetg	tgactttggg	caagtcactg	cttctctact	cttcgagcct	5940
cagtttcccc	: atctgtaata	tggggactat	agctggaatt	acacttgact	tecetttett	6000
accagtcaca	tccaaacagt	tgacaaggtg	aacaagattt	cctgccacca	aaatctttt	6060
cgagtctgtc	atttttttg	ccatcttctt	tataaacacc	ccagcccaaa	ccatactggc	6120
tgtccaggac	ctttaacaaa	ttccatgaga	ttagagaggg	ggtaggagtg	aagggcaatg	6180
gtcttgggag	tgaccccaga	tgaattccaa	ggtcaaagaa	attaagagga	tctgacactc	6240
cacccccgtg	ttctcatctc	ttcccactcc	tcctgttatt	tactctgctc	cacccacact	6300
ggctgctctt	tgaacagatc	aaggtcattc	ctagcttaca	gcctttgtgc	cagttgttcc	6360
ctctgtctgg	aaagcttccc	ctccagattg	tcactgggcc	atcccactgt	cttccttcag	6420
gtttcagtgc	taaggccatt	gcttcaatga	ggccttcttt	gatgcttatt	atctatttac	6480
ttgttttat	tttctccata	gctttctata	ttttcttttt	ttttctttt	tcttttttt	6540
tttttttgag	atggagtctt	gctctgtcgc	ccaggctgga	gtgcagtggc	acgatctcag	6600
ctcactgcaa	cctccgcctc	ccgggttcaa	gcgattctcc	tgcctcagcc	tcccaagtag	6660
ctgggattac	aggtgcctgc	caccacgctt	ggctaatttt	ttgtattttt	tagtagagac	6720
ggggtttcac	catcttggcc	aggctggtct	tgaactcctg	acctcgtgat	ccacccgcct	6780
cagcctccca	aagtgctggg	attacaggca	tgagccaccg	cacccagccg	ctttctatat	6840
tttcaaaacc	aatctcattt	atttatgtgt	ttgcttaatt	gtctcttgcc	tcactagagt	6900
gtaagcacca	agataattga	gatcatgcct	gcatttttc	tgcttatccc	cagtatcttg	6960
aacaaagcac	atagtagatg	ctcagtaaat	gatgaatgaa	cagatttgtt	caatgaatga	7020
gcgttgaatg	aattgttctg	agcattaaga	tagttggtct	attcatttgt	taattcattc	7080
acaaaatgtg	tatggtgtac	ctactgtgtg	ctaggctctg	tggcagtgct	ttgggcactg	7140
aggtctgtgc	cctccagcat	ctcacagaac	ctcacagcat	ctcacaggtt	ggggggatgg	7200
aggtgatatg	tgaaaacctt	agaaagttct	agaaatggca	gaagagatgg	ttgtcaagat	7260
cttgttccta	tttctgtata	tgtgggagaa	ttagaatcac	tcctcttatg	cctgcctgtc	7320
tcctgcagag	aaagcctatt	tctgccagga	ccgcttctac	tggcgcgtga	gttcccggag	7380
tgagttgaac	caggtggacc	aagtgggcta	cgtgacctat	gacatcctgc	agtgccctga	7440
ggactagggc	tcccgtcctg	ctttggcagt	gccatgtaaa	tccccactgg	gaccaaccct	7500
ggggaaggag	ccagtttgcc	ggatacaaac	tggtattctg	ttctggagga	aagggaggag	7560

tggaggtggg ctgggccctc tcttctcacc tttgtttttt gttggagtgt ttctaataaa 7620 cttggattct ctaaccttt 7639 <210> 11 <211> 2373 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (841)..(841) <223> n is a in the common variant and g in the rare variant <400> 11 teaccatgag cetetggeag eccetggtee tggtgeteet ggtgetggge tgetgetttq 60 etgececcag acagegecag tecaceettg tgetettece tggagaectg agaaccaate 120 tcaccgacag gcagctggca gaggaatacc tgtaccgcta tggttacact cgggtggcag 180 agatgcgtgg agagtcgaaa tctctggggc ctgcgctgct gcttctccag aagcaactqt 240 ccctgcccga gaccggtgag ctggatagcg ccacgctgaa ggccatgcga accccacggt 300 gcggggtccc agacctgggc agattccaaa cctttgaggg cgacctcaag tggcaccacc 360 acaacatcac ctattggatc caaaactact cggaagactt gccgcgggcg gtgattgacg 420 acgeetttge eegegeette geactgtgga gegeggtgae geegeteace tteactegeg 480 tgtacagccg ggacgcagac atcgtcatcc agtttggtgt cgcggagcac ggagacgggt 540 atccettega egggaaggae gggeteetgg cacaegeett teeteetgge eeeggeatte 600 agggagacgc ccatttcgac gatgacgagt tgtggtccct gggcaagggc gtcgtggttc 660 caactoggtt tggaaacgca gatggogogg cotgocactt cocottoato ttogagggoo 720 gctcctactc tgcctgcacc accgacggtc gctccgacgg cttgccctgg tgcagtacca 780 eggecaacta egacacegae gaceggtttg gettetgece cagegagaga etetacacee 840 nggacggcaa tgctgatggg aaaccctgcc agtttccatt catcttccaa ggccaatcct 900 actocgcotg caccacggac ggtcgctccg acggctaccg ctggtgcgcc accaccgcca 960 actacgaccg ggacaagctc ttcggcttct gcccgacccg agctgactcg acggtgatgg 1020 ggggcaactc ggcgggggag ctgtgcgtct tccccttcac tttcctgggt aaggagtact 1080 cgacctgtac cagcgagggc cgcggagatg ggcgcctctg gtgcgctacc acctcgaact 1140 ttgacagcga caagaagtgg ggcttctgcc cggaccaagg atacagtttg ttcctcgtgg 1200

PCT/US2004/026035 WO 2005/017113

cggcgcatga	gttcggccac	gcgctgggct	tagatcattc	ctcagtgccg	gaggcgctca	1260
tgtaccctat	gtaccgcttc	actgaggggc	cccccttgca	taaggacgac	gtgaatggca	1320
tccggcacct	ctatggtcct	cgccctgaac	ctgagccacg	gcctccaacc	accaccacac	1380
cgcagcccac	ggctcccccg	acggtctgcc	ccaccggacc	ccccactgtc	cacccctcag	1440
agcgccccac	agetggeece	acaggtcccc	cctcagctgg	ccccacaggt	cccccactg	1500
ctggcccttc	tacggccact	actgtgcctt	tgagtccggt	ggacgatgcc	tgcaacgtga	1560
acatcttcga	cgccatcgcg	gagattggga	accagctgta	tttgttcaag	gatgggaagt	1620
actggcgatt	ctctgagggc	agggggagcc	ggccgcaggg	ccccttcctt	atcgccgaca	1680
agtggcccgc	gctgccccgc	aagctggact	cggtctttga	ggagccgctc	tccaagaagc	1740
ttttcttctt	ctctgggcgc	caggtgtggg	tgtacacagg	cgcgtcggtg	ctgggcccga	1800
ggcgtctgga	caagctgggc	ctgggagccg	acgtggccca	ggtgaccggg	gccctccgga	1860
gtggcagggg	gaagatgctg	ctgttcagcg	ggcggcgcct	ctggaggttc	gacgtgaagg	1920
cgcagatggt	ggatccccgg	agcgccagcg	aggtggaccg	gatgttcccc	ggggtgcctt	1980
tggacacgca	cgacgtcttc	cagtaccgag	agaaagccta	tttctgccag	gaccgcttct	2040
actggcgcgt	gagttcccgg	agtgagttga	accaggtgga	ccaagtgggc	tacgtgacct	2100
atgacatcct	gcagtgccct	gaggactagg	gctcccgtcc	tgctttggca	gtgccatgta	2160
aatccccact	gggaccaacc	ctggggaagg	agccagtttg	ccggatacaa	actggtattc	2220
tgttctggag	gaaagggagg	agtggaggtg	ggctgggccc	tctcttctca	cctttgtttt	2280
ttgttggagt	gtttctaata	aacttggatt	ctctaacctt	taaaaaaaaa	aaaaaaaaa	2340
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaa			2373

22

<210> 12

<211> 22 <212> DNA <213> Artificial

<220>

<223> Synthetic primer for CA repeat in MMP-9

<400> 12

aagccctttc tcatgctggt gc

<210> 13 <211> 22

<212> DNA <213> Artificial

<220> <223>	Synthetic primer for CA repeat in MMP-9	
<400> tgacago	13 gcaa gtgctgactc ag	22
<210> <211> <212> <213>	14 20 DNA Artificial	
<220> <223>	Synthetic sense primer for C/T-1562 polymorphism	
<400> gcctgg	14 caca tagtaggccc	20
<210> <211> <212> <213>	20 ;	
<220> <223>	Synthetic antisense primer for C/T-1562 polymorphism	
<400> cttccta	15 agcc agccggcatc	20
<210><211><211><212><213>	31	
<220> <223>	Primer for site directed mutagenesis	
<400> gagagad	16 ctct acacccagga cggcaatgct g	31
<210> <211> <212> <213>	17 30 DNA Artificial	
<220> <223>	Primer for site directed mutagenesis	
<400> cagcatt	17 tgcc gtcctgggtg agagtctctc	30