Tianyu ZHANG

Engineering Building A&B Oxford Rd, Manchester M13 9PL +44(0)7568758847 (mobile) tianyu.zhang-10@postgrad.manchester.ac.uk https://github.com/zhangty019

Education

University of Manchester (UoM)

Manchester, UK

PhD of Mechanical Engineering

Jan. 2021 - Feb. 2024

- Thesis: Geometric Computing Based Enabler for Multi-axis Additive Manufacturing
- Research Field: Multi-axis 3D Printing, Computational Geometry, Robotics, CNC

The Chinese University of Hong Kong (CUHK)

Hong Kong, CN

PhD student of Mechanical Engineering

Aug. 2019 - Dec. 2020

Xi'an Jiaotong University (XJTU)

Xi'an, CN

 $Master\ of\ Engineering\ in\ Mechanical\ Manufacturing\ \ \&\ Automation$

Sep. 2015 - Jul. 2018

- Thesis: Control Strategy for Mechanical Spindle with a Long Transmission Chain under High Acceleration Starts and Stops
- Recommended to XJTU Graduate School with the exemption of entrance exam

University of Electronic Science and Technology of China (UESTC)

Chengdu, CN

Bachelor of Engineering in Mechanical Design, Manufacturing and Automation Sep. 2011 - Jul. 2015

- Thesis: Control Strategy for Mechanical Spindle with a Long Transmission Chain under High Acceleration Starts and Stops
- Overall GPA: 3.67/4.0

Research Experience

Toolpath algorithms for 5XCAM hybrid manufacturing

Manchester, UK

Main Developer

Aug 2021 - Jan 2023

- Joint project with 5AXISWORKS Co., Ltd.
- Innovate UK Smart Grants
- Developed a new CAM software program called "5XCAM" that supports the toolpath generation for machining and curved-layer 3D printing. Website: https://5axismaker.co.uk/5xcam?rq=5XCAM
- 5XCAM is the first and only automated CAM software platform of its kind.
- An extension of the curved slicing kernel and a nice experience of academic-industry collaboration.

Specification for Long Transmission Chain Mechanical Spindle

Xi'an, CN

Main Developer & Project Manager

Oct 2016 - May 2018

- Advisor: Chang-Jiang (Cheung Kong) Scholar Professor Wanhua Zhao
- A sub-project of National Funding Project-2015ZX04001002
- Eliminated the vibration of spindle structure by a designed model filter and instruction shaping.
- Built rapid control prototyping platform based on dSPACE and did experimental verification.

Design of 3-RPS Parallel Robot Control Algorithm

Chengdu, CN

Software Developer & Project Manager

Oct 2014 - Jun 2015

- Conducted parallel robot's structure and inverse kinematics analysis, and built parallel robot
 SimMechanics model to simulate the actual parallel robot.
- Used PID and adaptive inverse controller to realize the control of the parallel robot.
- Used xPC Target toolkit to build a rapid control prototyping platform.

Work Experience

Vector-field guided tool-path planning for 3D printing with CCF

Main Developer

Manchester, UK Oct 2023 - Mar 2024

- Joint project with Broetje-Automation GmbH (German)
- UKRI Impact Acceleration Account (IAA) Fund
- Determined optimal fibre placement following stress field and fabrication constraints.
- Filled the model material into the carbon fibre gaps caused by the constraints of fabrication.
- Combined toolpath commands of fibre and model material and the fabrication auxiliary information.

Shenzhen Inovance Technology Co., Ltd.

Suzhou, CN

Software Developer

Jul 2018 - Jun 2019

- Responsible for coding and testing based on customer requirements for electric vehicle applications.
- Did investigation on the current situation of active safety development, completed mechanism analysis of wheel-slip on various occasions, and programmed for skid-resistance module.

Publications

- Zhang, T., Huang, Y., Kukulski P., Dutta, N., Fang, G., Wang, C.C., 2023. Support Generation for Robot-Assisted 3D Printing with Curved Layers. IEEE International Conference on Robotics and Automation (ICRA), pp.12338-12344. [Open-Sourced]
- **Zhang**, T., Fang, G., Huang, Y., Dutta, N., Lefebvre, S., Kilic, Z.M. and Wang, C.C., 2022. S³-slicer: A general slicing framework for multi-axis 3D printing. ACM Transactions on Graphics (TOG), 41(6), pp.1-15. [Open-Sourced], [Best Paper Award]
- Zhang, T., Chen, X., Fang, G., Tian, Y. and Wang, C.C., 2021. Singularity-aware motion planning for multi-axis additive manufacturing. IEEE Robotics and Automation Letters (RAL), 6(4), pp.6172-6179. [Open-Sourced] [Finalist of Best Student Paper Award]
- Dutta, N., Zhang, T., Fang, G., Yigit, I.E. and Wang, C.C., 2023. Vector field based volume peeling for multi-axis machining. Journal of Computing and Information Science in Engineering (JCISE), pp.1-13. [Best Paper Award]
- Fang, G., **Zhang, T.,** Huang, Y., Zhang, Z., Masania, K. and Wang, C.C., 2024. Exceptional mechanical performance by spatial printing with continuous fiber: Curved slicing, toolpath generation and physical verification. Additive Manufacturing (ADDMA), p.104048.
- Fang, G., **Zhang, T.,** Zhong, S., Chen, X., Zhong, Z. and Wang, C.C., 2020. Reinforced FDM: Multi-axis filament alignment with controlled anisotropic strength. ACM Transactions on Graphics (TOG), 39(6), pp.1-15.
- Huang, Y., Fang, G., **Zhang, T.**, and Wang, C.C., 2023. Turning-angle optimized printing path of continuous carbon fiber for cellular structures. Additive Manufacturing (ADDMA), 68, p.103501.
- Ren, M., Lu, W., Shao, Q., Han, F., Ouyang, W., **Zhang, T.,** Wang, C.C. and Chen, S.C., 2021. Aberration-free large-area stitch-free 3D nano-printing based on binary holography. Optics Express (OE), 29(26), pp.44250-44263.

Honors and awards

- Best Paper Award ASME 43rd Computers and Information in Engineering Conference (CIE), 2023
- Best Paper Award Technical Papers, ACM SIGGRAPH Asia, 2022
- Finalist of Best Student Paper Award IEEE International Conference on Automation Science and Engineering, 2021
- Postgraduate Awards 2nd Class of National Scholarship, 2016 & 2015; Professional Master Scholarship, 2015; Outstanding Member of XJTU Graduate Student Union, 2017
- Undergraduate Awards 1st Class of People's Scholarship, 2014 & 2012; 2nd Class of People's Scholarship, 2013; Advanced Individual of Study, 2014