Objetivo

- Asignar procesos al procesador
- Rendimiento / Productividad
- Optimizar algún aspecto del comportamiento del sistema

Ciclo de Ráfagas

- $CPU \rightarrow E/S \rightarrow CPU \rightarrow ...$
- Limitados por CPU (CPU Bound)
- Limitados por E/S (IO Bound)

(b) With two suspend states

(b) With two suspend states

(b) With two suspend states

- Decide cuál es el próximo proceso que se debe ejecutar
- Decide dónde ubicar el PCB del proceso que estaba ejecutando

Criterios de Planificación

	Prestaciones (cuantitativos)	Otros (cualitativos)
Orientados al usuario/ proceso	 Tiempo de ejecución (o turnaround time) Tiempo de respuesta Tiempo de espera 	 Previsibilidad
Orientados al sistema	 Tasa de procesamiento (rendimiento o throughput) Utilización de CPU [%] 	 Equidad Imposición de prioridades Equilibrado de recursos

Criterios de Planificación

T.Espera de A = o

T.Espera de B = 2

T.Espera de C = 4

T.Espera de A = 12

T.Espera de B = o

T.Espera de C = 2

Algoritmos de Planificación

- A cada proceso se le asigna una prioridad.
- La prioridad de un proceso puede variar en cada decisión.
- El planificador selecciona el proceso de prioridad más alta.

Decisión del próximo proceso para ejecutar

Algoritmos de Planificación

First Come First Served (FCFS/FIFO)

	LL	CPU	ES	CPU
P1	0	4	2	1
P ₂	1	2	2	3
P3	2	1	3	2

CPU: CPU E/S: E/S

Algoritmos de Planificación

Short Job First (SJF sin desalojo o SPN)

	LL	CPU	ES	CPU
P1	0	4	2	1
P ₂	1	2	2	3
P3	2	1	1	2

CPU: CPU E/S: E/S

Inanición (Starvation)

Situación en la que a un proceso se le niega la posibilidad de utilizar un recurso (en este caso el procesador) por la constante aparición de otros procesos de mayor prioridad.

SJF	LL	CPU
P1	0	2
P ₂	1	6
Р3	2	2
P4	3	2
P5	4	2
P6	5	2

Estimación de ráfaga

- Estadísticas
- Fórmula del promedio exponencial

$$EST_{n+1} = \alpha * TE_n + (1 - \alpha) * EST_n$$

 TE_n = Tiempo de ejecución de la ráfaga actual EST_n = Tiempo estimado para la ráfaga actual EST_{n+1} = Tiempo estimado para la próxima ráfaga α = Constante entre o y 1

Estimación de ráfaga

EST_{n+1} =
$$\alpha * TE_n + (1 - \alpha) * EST_n$$

0 <= $\alpha <= 1$

 TE_n = Tiempo de ejecución de la ráfaga actual EST_n = Tiempo estimado para la ráfaga actual EST_{n+1} = Tiempo estimado para la próxima ráfaga α = Constante entre o y 1

$$EST_{n+1} = \alpha * TE_n + (1 - \alpha) * EST_n$$

$$EST_{n+1} = \alpha * TE_n + (1 - \alpha) * EST_n$$

$$EST_{n+1} = \alpha * TE_n + (1 - \alpha) * EST_n$$

$$EST_{n+1} = \alpha * TE_n + (1 - \alpha) * EST_n$$

Algoritmos de Planificación

Categorías de Algoritmos

Sin desalojo (sin expulsión o nonpreemptive)

Con desalojo o con expulsión (con expulsión o preemptive)

E/S:

Algoritmos de Planificación

SJF con desalojo (SRT)

	LL	CPU	ES	CPU
P1	0	4	2	1
P ₂	1	2	2	3
P3	2	1	3	1

Round Robin

- Con desalojo
- Cuanto o rodaja de tiempo (quantum)
- Cola de procesos listos es FIFO

Algoritmos de Planificación

Round Robin (q = 3)

	LL	CPU	ES	CPU
P1	0	4	2	4
P ₂	1	4	2	3
P3	2	3	2	3

Round Robin (q = 1)

Algoritmos de Planificación: Round Robin (q = 4 ó más)

Virtual Round Robin (VRR)

- Con desalojo
- Quantum de tiempo
- Interrupción de reloj
- Dos colas de procesos listos para ejecutar
- Mejora rendimiento para procesos I/O Bound ante los CPU Bound

Simultaneidad de eventos en Ready

Higuest Ratio Response Next (HRRN): Primero el de mayor tasa de respuesta

- Sin desalojo
- Aging (Envejecimiento)

$$R = \frac{W+S}{S}$$

w = Tiempo esperando en readys = Tiempo de CPU esperadoR = Tasa de respuesta

Algoritmos de Planificación

HRRN

	LL	CPU	ES	CPU
P1	0	3	2	4
P ₂	1	4	2	3
P3	2	3	1	1

T=3

$$R_2 = (2+4)/4 = 1,5$$

 $R_3 = (1+3)/3 = 1,33$
T=7
 $R_1 = (2+4)/4 = 1,5$
 $R_3 = (5+3)/3 = 2,66$

T=10 T=14

$$R_1=(5+4)/4=2,25$$
 $R_2=(5+3)/3=2,66$
 $R_2=(1+3)/3=1,33$ $R_3=(3+1)/1=4$

Colas Multinivel

Se clasifican los procesos por tipos

Cada cola usa su propio algoritmo de planificación

Algoritmos de Planificación

Colas Multinivel Realimentado (Feedback Multinivel)

Si hay desalojo por interrupción de reloj baja su prioridad

Colas de Listos

Cada cola usa su propio algoritmo de planificación

Colas Multinivel Realimentado (Feedback Multinivel)

