- 1) gueures basice.
- 2) Implementation.
- 3) Problems.

Queues :-

- · Messaging Brenes.
- · CPU scheduling.
- · Innters.

* FIFO: First In, First Out.

7, 6, 12, 14,

7,6,12,14,

Queue fun' :-

- 1) enguene (2): insert & into the queue.
- 2) dequeue (): Lemove front element from the queue.
- 3) front (): returns the front element.
- 4) near (): returns the year element.
- 5) Sizel):
- 6) is Empty ():

Quiz eq137, eq147, eq1127, dq17, dq17, eq187, eq13)

Buiz eg(4), dq(), eg(a), eg(3), eg(+), eg(1), eg(20), dg()

Implementation:

→ Arrays → Linked List.

* 1, 2, 3, 4, dq(), dq(), 5, 6, 7, dq(), dq(), 8

* Implement Circular guene

$$\begin{array}{c} 4 \\ \rightarrow \boxed{3} \rightarrow \boxed{2} \rightarrow \boxed{1} \rightarrow N \\ & 1 \\ \downarrow \uparrow \\ \text{erguene}() \Rightarrow D(1) \\ & \text{dequene}() \Rightarrow D(N) \end{array}$$

- -> topis
- -> 812e()

eg(5), eg(4), eg(4), eg(10), eg(10), eg(10), eg(10)

5 479

tc: lengueure(): O(1) dequeure(): O(N)

Approach 2:-

eg(5), eq(4), eq(4), eq(4), dq(7), eq(10), eq(3), dq(7), d

S x x x x x 3

Void enquene (x) 1 81. fush (x) 3

⇒ TC: 0(1)

Void dequene () {

if (\$2. 18 Empty ()) {

while (\$1. \$ize() > 0) {

82. push (\$1. top())

\$1. pop()

\$

if (! \$2. is Empty ()) {

\$2. pop();

}

TC anlaysis: -

 L^{st} dequene() \Rightarrow N iterations. for nent (N-1) dequene \Rightarrow $L \times (N-1)$ iterations operations

N dequeners operations = 2N-1 $\approx O(N)$

Iterations for (1) exerctions = O(1)

Amortized

TC

Di Nth number using only digits 1,2083.

Queue ← X, 8, 8, 9, 1, 8, 7 ←

7,8,1,9,5,3,2

Void reverse (Quenc q) {

Stack (int > 5;

While (q. size () > 0) {

S. push (q. front())

q. dequence()

3

While (S. size () > 0) {

q. enquence (S. top());

3. pop();

TC: 0(N)

SC: 0(N)

* Explore now Queue is implemented in your language

=) C++ STL

=) Java Collections.

Donos

← 7 2 3 5 9 18