Reliability Analysis Homework 3

110024516 邱繼賢

Problem 1.

(a)

(1) simple binomial method

$$\hat{F}_1(t) \; = \; \frac{1}{n} \sum_{i=1}^n I \, (t_i \; \leq \; t)$$

(2) Kaplan-Meier method

$$\hat{S}(t) \ = \ \prod_{t_i \leq t} \left(1 - \frac{d_i}{n_i}\right) \ \Rightarrow \ \hat{F}_2(t) \ = \ 1 - \hat{S}(t)$$

t	$\hat{F}_1(t)$	$\hat{F}_2(t)$
18	0.01	0.01
32	0.02	0.02
39	0.03	0.03
53	0.04	0.04
59	0.05	0.05
68	0.06	0.06
77	0.07	0.07
78	0.08	0.08
93	0.09	0.09
100	0.09	0.09

(b)

(c)

Weibull distribution

$$\begin{split} p &= F(t_p) \ = \ 1 - exp \left[- \left(\frac{t}{\eta} \right)^{\beta} \right] \\ \Rightarrow t_p &= \ \eta [-log(1-p)]^{\frac{1}{\beta}} \\ \Rightarrow log(t_p) &= \ log(\eta) \ + \ log(-log(1-p)) \frac{1}{\beta} \end{split}$$

plotting position

$$\left(\log\left(T_{(i)}\right) \ , \ \Phi_{sev}^{-1}\left(\frac{i-0.5}{n}\right)\right) \ \ , \ \ \Phi_{sev}^{-1}(p) \ = \ \log\left(-\log(1-p)\right)$$

and then relabel at

$$\left(T_{(i)}\ ,\ \frac{i-0.5}{n}\right)$$

Weibull prob. plot

可以看到資料點分佈在 Weibull probability plot 上大致呈現為一直線,將 $\Phi_{sev}^{-1}\left(\frac{i-0.5}{n}\right)$ 對 $log\left(T_{(i)}\right)$ 做回歸直線,其斜率估計值 1.75869 即為 shape parameter β 的估計值

```
(d)
##
## Call:
## lm(formula = log(-log(1 - Fi)) \sim log(ti), data = plotting_pos)
##
## Residuals:
##
                    1Q
                          Median
                                         3Q
                                                  Max
## -0.104603 -0.051506 -0.005223 0.038570 0.168538
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -10.28786
                             0.24516 -41.96 1.14e-09 ***
                                       28.53 1.67e-08 ***
## log(ti)
                 1.75869
                             0.06164
## ---
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 0.09118 on 7 degrees of freedom

Multiple R-squared: 0.9915, Adjusted R-squared: 0.9903

F-statistic: 814.1 on 1 and 7 DF, p-value: 1.67e-08

- 由 (c) 的圖形可以看出資料大致落在一直線上
- $\Phi_{sev}^{-1}\left(\frac{i-0.5}{n}\right)$ 對 $log\left(T_{(i)}\right)$ 的線性模型 $R^2=99.15\%$,由此可知此直線模型可以很好的解釋資料點的分佈

故可以推論出資料符合 Weibull distribution

(e)

藉由我們上面配飾的 linear model,可以推得 $\left(\hat{\eta}\;,\;\hat{\beta}\right)=\left(\exp\left(\frac{10.28786}{1.75869}\right),\;1.75869\right)=\left(347.1403\;,\;1.75869\right)$,因此 $t_{0.10}$ 可以估計為

$$\hat{t}_{0.10} \; = \; \hat{\eta} \left[-log(1-0.10) \right]^{1/\hat{\beta}} \; = \; 96.55944$$

但是目前的資料所估計出的 propotion failing 只介於 0 到 0.085 之間,我們只能說機率值落在此範圍的數據大致 服從 Weibull distribution,並不能保證在此範圍之外也依舊如此,而 $\hat{t}_{0.10}$ 就是一個外差估計值,其所估計出的 結果可能會有較為明顯的誤差。

Problem 2.

Exponential prob. plot

Weibull prob. plot

Log Normal prob. plot

- 三種分布的 probability plots 皆可以在其 simultaneous confidence bands 中劃出一條直線
- Exponential probability plot 中資料點分布最不接近一條直線
- Weibull 和 lognormal probability plot 中資料點大致都落在一直線上,其中又以 Weibull 的更為接近一直線

故 Weibull distribution 比較適合用來配適此筆資料的模型。

Problem 3.

(a)

The FREC distribution cdf

$$p \; = \; F \left(t_p \right) \; = \; \Phi_{lev} \left\lceil \frac{log(t_p) - \mu}{\sigma} \right\rceil \; \Rightarrow \; log(t_p) \; = \; \mu \; + \; \sigma \; \Phi_{lev}^{-1}(p)$$

plotting position

$$\left(log \left(t_p \right) \; , \; \Phi_{lev}^{-1}(p) \right) \; \; , \; \; \Phi_{lev}^{-1}(p) \; = \; -log(-log(p))$$

(b)

relabel at $\left(t_{p}\ ,\ p\right)$

FREC prob. plot

(c)

$$\log \left(t_{p^*} \right) \; = \; \log \left(e^{\mu} \right) \; = \; \mu \; + \; \sigma \; \Phi_{lev}^{-1}(p^*) \; \Rightarrow \; \Phi_{lev}^{-1}(p^*) \; = \; 0 \; \Rightarrow \; p^* \; = \; \Phi_{lev}(0) \; = \; 0.37$$

the 0.37 quantile of the distribution corresponds to the scale paremeter e^{μ}

Problem 4.

(a)

$$\begin{split} p &= F(t_p) \ = \ 1 - \left[1 + \left(\frac{\log(t_p) - \mu}{\sigma}\right)\right]^{-1} \\ \Rightarrow \log(t_p) &= \mu \ + \ \sigma\left(\frac{p}{1-p}\right) \\ \Rightarrow t_p &= \exp\left[\mu \ + \ \sigma\left(\frac{p}{1-p}\right)\right] \end{split}$$

(b)

plotting position

$$\left(log(t_p) \ , \ \left(\frac{p}{1-p} \right) \right)$$

which will linearize all the cdfs with slope $=\frac{1}{\sigma}$, and x-intercept $=\mu$

(c)

By inverse CDF method to generate the sample :

(1) draw the sample $\left\{U_i\right\}_{i=1}^{20} \overset{iid}{\sim} \ U(0,1)$

$$(2) \ F^{-1}(U_i) \ = \ T_i \ \stackrel{iid}{\sim} \ F, \ \text{where} \ F^{-1}(p \ ; \ \mu, \sigma) \ = \ exp \left[\mu \ + \ \sigma \left(\frac{p}{1-p} \right) \right]$$

 $\left\{T_i\right\}_{i=1}^{20} \text{ are the samples what we want.}$ Taking $\left(\log\left(T_{(i)}\right) \ , \ \frac{i-0.5}{20}/\left(1-\frac{i-0.5}{20}\right)\right)$ as plotting position, and then relabeling at $\left(T_{(i)} \ , \ \frac{i-0.5}{20}\right)$

(d)

 μ (or e^{μ} in relabeling) is the x-intercept and $\frac{1}{\sigma}$ is the slope in the probability plot