MA 224 (Real Analysis)

Hints/Solutions of Quiz-1 Problems

- 1. Let $\mathbf{u} = (1,0)$, $\mathbf{v} = (0,1)$ and let $f(\mathbf{x}) = \mathbf{v} + \frac{3}{2}(\mathbf{x} \mathbf{u}) = (\frac{3x}{2} \frac{3}{2}, 1 + \frac{3y}{2})$ for all $\mathbf{x} = (x,y) \in \Omega_1$. If $\mathbf{x} \in \Omega_1$, then $||f(\mathbf{x}) \mathbf{v}||_2 = \frac{3}{2}||\mathbf{x} \mathbf{u}||_2 < 3$ and so $f(\mathbf{x}) \in \Omega_2$. Thus f maps Ω_1 to Ω_2 and clearly f is continuous (since both the component functions of f are continuous). Again, if $\mathbf{y} \in \Omega_2$, then $\mathbf{x} = \mathbf{u} + \frac{2}{3}(\mathbf{y} \mathbf{v}) \in \mathbb{R}^2$ and $||\mathbf{x} \mathbf{u}||_2 = \frac{2}{3}||\mathbf{y} \mathbf{v}||_2 < 2$, i.e. $\mathbf{x} \in \Omega_1$, and also $f(\mathbf{x}) = \mathbf{y}$. Thus $f: \Omega_1 \to \Omega_2$ is onto. Therefore there exists a continuous function from Ω_1 onto Ω_2 .
- 2. Let $f(x,y) = \frac{x^3 + y^2}{x^2 + y}$ for all $(x,y) \in \mathbb{R}^2$ with $x^2 + y \neq 0$. We have $(\frac{1}{n},0) \to (0,0)$, $(\frac{1}{n},\frac{1}{n^3} \frac{1}{n^2}) \to (0,0)$ as $n \to \infty$ and $f(\frac{1}{n},0) = \frac{1}{n} \to 0$, $f(\frac{1}{n},\frac{1}{n^3} \frac{1}{n^2}) = 1 + \frac{1}{n}(\frac{1}{n} 1)^2 \to 1$ as $n \to \infty$. Consequently $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist (in \mathbb{R}).
- 3. Since L is linear, $L(\mathbf{0}) = \mathbf{0}$. Let $\mathbf{x}(\neq \mathbf{0}) \in \mathbb{R}^n$. Then $\mathbf{x}_0 + \frac{r\mathbf{x}}{2\|\mathbf{x}\|_2} \in \mathbb{R}^n$ and $\|\mathbf{x}_0 + \frac{r\mathbf{x}}{2\|\mathbf{x}\|_2} \mathbf{x}_0\|_2 = \frac{r}{2} < r$. By hypothesis, $L(\mathbf{x}_0 + \frac{r\mathbf{x}}{2\|\mathbf{x}\|_2}) = \mathbf{0} \Rightarrow L(\mathbf{x}_0) + \frac{r}{2\|\mathbf{x}\|_2}L(\mathbf{x}) = \mathbf{0} \Rightarrow L(\mathbf{x}) = \mathbf{0}$ (since $L(\mathbf{x}_0) = \mathbf{0}$). Therefore $L(\mathbf{x}) = \mathbf{0}$ for all $\mathbf{x} \in \mathbb{R}^n$.
- 4. Let $\Omega_1 = \{(x,y) \in \mathbb{R}^2 : xy > 0\}$ and $\Omega_2 = \{(x,y) \in \mathbb{R}^2 : xy < 0\}$. Then f(x,y) = xy for all $(x,y) \in \Omega_1$ and f(x,y) = -xy for all $(x,y) \in \Omega_2$. Since $f_x(x,y) = y$ and $f_y(x,y) = x$ for all $(x,y) \in \Omega_1$, we find that both $f_x : \Omega_1 \to \mathbb{R}$ and $f_y : \Omega_1 \to \mathbb{R}$ are continuous. Hence f is differentiable at every point of Ω_1 . By a similar argument, we can show that f is differentiable at every point of Ω_2 . If $\alpha(\neq 0) \in \mathbb{R}$, then $f_y(\alpha,0) = \lim_{t\to 0} \frac{f(\alpha,t)-f(\alpha,0)}{t} = \lim_{t\to 0} \frac{|\alpha||t|}{t}$ does not exist (in \mathbb{R}) and similarly $f_x(0,\alpha)$ does not exist (in \mathbb{R}). Hence f is not differentiable at any point $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ for which xy = 0. Again, $f_x(0,0) = \lim_{t\to 0} \frac{f(t,0)-f(0,0)}{t} = 0$, $f_y(0,0) = \lim_{t\to 0} \frac{f(0,t)-f(0,0)}{t} = 0$ and $\lim_{(h,k)\to(0,0)} \frac{|f(h,k)-f(0,0)-hf_x(0,0)-kf_y(0,0)|}{\sqrt{h^2+k^2}} = \lim_{(h,k)\to(0,0)} \frac{|h||k|}{\sqrt{h^2+k^2}} = 0$ (since $|h||k| \le h^2 + k^2$ for all $(h,k) \in \mathbb{R}^2$). Hence f is differentiable at (0,0). Therefore the set of all points of \mathbb{R}^2 at which f is differentiable is $\{(x,y) \in \mathbb{R}^2 : xy \neq 0\} \cup \{(0,0)\}$.