

Graphen 3:

Maximum Flow, Bipartite Matching

Ford-Fulkerson, Edmond-Karp, Max Flow, Min Cut, MCBM, Bipartite Graphen, Vertex Cover, König Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt | 13. Juni 2019

Beispielaufgabe

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

Beispielaufgabe

 Gegeben sei ein Netz mit Städten und Straßen mit einer Kapazität (Autos pro Stunde)

Beispielaufgabe

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

Beispielaufgabe

- Gegeben sei ein Netz mit Städten und Straßen mit einer Kapazität (Autos pro Stunde)
- Für gewisse Städte A und D sucht man die Anzahl Autos pro Stunde die von A nach D fahren können

Motivation

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Motivation

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Motivation

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Motivation

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Motivation

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

$$50 + 30$$

Motivation

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

$$50 + 30 + 15 = 95$$

Ford Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

Ford Fulkerson

■ *F* = 0

Ford Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und VO

- *F* = 0
- Solange ein steigender Pfad p ($s \rightarrow \cdots \rightarrow i \rightarrow j \rightarrow \cdots \rightarrow t$) von s nach t existiert:

Ford Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und V

- *F* = 0
- Solange ein steigender Pfad p ($s \rightarrow \cdots \rightarrow i \rightarrow j \rightarrow \cdots \rightarrow t$) von s nach t existiert:
 - 1. finde minimale Kante f auf dem Pfad

Ford Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und V

- *F* = 0
- Solange ein steigender Pfad p ($s \rightarrow \cdots \rightarrow i \rightarrow j \rightarrow \cdots \rightarrow t$) von s nach t existiert:
 - 1. finde minimale Kante f auf dem Pfad
 - 2. Kapazität aller Kanten in Pfadrichtung (z.B. $i \rightarrow j$) um f reduzieren

Ford Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und V

- *F* = 0
- Solange ein steigender Pfad p ($s \rightarrow \cdots \rightarrow i \rightarrow j \rightarrow \cdots \rightarrow t$) von s nach t existiert:
 - 1. finde minimale Kante f auf dem Pfad
 - 2. Kapazität aller Kanten in Pfadrichtung (z.B. $i \rightarrow j$) um f reduzieren
 - lacksquare 3. Kapazität aller Kanten gegen Pfadrichtung (z.B. j o i) um f erhöhen

Ford Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Grapher

IS und V

- *F* = 0
- Solange ein steigender Pfad p ($s \rightarrow \cdots \rightarrow i \rightarrow j \rightarrow \cdots \rightarrow t$) von s nach t existiert:
 - 1. finde minimale Kante f auf dem Pfad
 - 2. Kapazität aller Kanten in Pfadrichtung (z.B. $i \rightarrow j$) um f reduzieren
 - lacksquare 3. Kapazität aller Kanten gegen Pfadrichtung (z.B. j o i) um f erhöhen
 - F += f;

Rückkante

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Rückkante

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Rückkante

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Rückkante

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Rückkante

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Rückkante

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Laufzeit

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und VC

Laufzeit

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

- wobei F der Wert des maximalen Flusses ist

Laufzeit

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und V

- wobei F der Wert des maximalen Flusses ist
- lacksquare $\mathcal{O}(F)$ mal Tiefensuche, was in $\mathcal{O}(E)$ läuft, da $E \geq V-1$

Laufzeit

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Grapher

IS und V

- wobei F der Wert des maximalen Flusses ist
- lacksquare $\mathcal{O}(F)$ mal Tiefensuche, was in $\mathcal{O}(E)$ läuft, da $E \geq V-1$
- \Rightarrow kann sehr groß werden

Laufzeit Beispiel

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Laufzeit Beispiel

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Laufzeit Beispiel

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Laufzeit Beispiel

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Laufzeit Beispiel

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Edmond Karp

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

Unterschied zu Ford Fulkerson

Breitensuche statt Tiefensuche

Edmond Karp

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V(

Unterschied zu Ford Fulkerson

- Breitensuche statt Tiefensuche
- Laufzeit O(VE²)

Edmond Karp

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und V

Unterschied zu Ford Fulkerson

- Breitensuche statt Tiefensuche
- Laufzeit O(VE²)
- ullet $\mathcal{O}(\mathit{VE})$ mal Breitensuche, was in $\mathcal{O}(\mathit{E})$ läuft

Collector's Problem (UVa 10779)

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

UVa 10779 - Collector's Problem

Unterschiedliche Karten zum Sammeln

Collector's Problem (UVa 10779)

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Grapher

IS und VC

UVa 10779 - Collector's Problem

- Unterschiedliche Karten zum Sammeln
- Alle Karten sind gleich viel Wert, Tausch 1 zu 1

Collector's Problem (UVa 10779)

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Grapher

IS und V

UVa 10779 - Collector's Problem

- Unterschiedliche Karten zum Sammeln
- Alle Karten sind gleich viel Wert, Tausch 1 zu 1
- Andere Sammler tauschen nur eigene Duplikate gegen Karten, die sie noch nicht besitzen

Collector's Problem (UVa 10779)

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Grapher

IS und V

UVa 10779 - Collector's Problem

- Unterschiedliche Karten zum Sammeln
- Alle Karten sind gleich viel Wert, Tausch 1 zu 1
- Andere Sammler tauschen nur eigene Duplikate gegen Karten, die sie noch nicht besitzen
- Bob tauscht beliebig (auch Einzelstücke ein und gegen Karten, die er bereits besitzt)

Collector's Problem (UVa 10779)

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Grapher

IS und V

UVa 10779 - Collector's Problem

- Unterschiedliche Karten zum Sammeln
- Alle Karten sind gleich viel Wert, Tausch 1 zu 1
- Andere Sammler tauschen nur eigene Duplikate gegen Karten, die sie noch nicht besitzen
- Bob tauscht beliebig (auch Einzelstücke ein und gegen Karten, die er bereits besitzt)
- Wie viele unterschiedliche Karten kann Bob maximal besitzen?

Einmaliger "greedy" Tausch

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Einmaliger "greedy" Tausch

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Einmaliger "greedy" Tausch

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Einmaliger "greedy" Tausch

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Einmaliger "greedy" Tausch

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Einmaliger "greedy" Tausch

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Einmaliger "greedy" Tausch

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Einmaliger "greedy" Tausch

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Mehrfacher beliebiger Tausch

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Mehrfacher beliebiger Tausch

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Mehrfacher beliebiger Tausch

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Vereinfachung

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Vereinfachung

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Vereinfachung

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Vereinfachung

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Vereinfachung

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Vereinfachung

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Vereinfachung

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Vereinfachung

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Vereinfachung

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Vereinfachung

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Vereinfachung

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Multi-source & Multi-sink

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Multi-source & Multi-sink

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

s_0	 t_0
0	ŧ0

•

 s_i t_i

Multi-source & Multi-sink

SS

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

s₀ t₀

•

•

•

st

s_i ...

ti

Multi-source & Multi-sink

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Knoten Kapazität

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

$$\cdots \xrightarrow{w_2} \xrightarrow{3} \xrightarrow{w_4} \cdots$$

- •
- •
- •

Knoten Kapazität

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

$$\cdots \xrightarrow{w_1} a_{in} \xrightarrow{5} a_{out} \xrightarrow{w_3} \cdots$$

$$\cdots \xrightarrow{w_2} b_{in} \xrightarrow{3} b_{out} \xrightarrow{w_4} \cdots$$

- •
- •
- •

(Minimaler) Schnitt

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

Definition

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Hevdt

(Minimaler) Schnitt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

Definition

Ist $V = S \dot{\cup} T$ eine Partition von V mit $s \in S$, $t \in T$, so heißt C := (S, T) ein s-t cut (oder s-t Schnitt).

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

(Minimaler) Schnitt

Maximum Flow

Modellierung und Variationen

Bipartite Grapher

IS und V

Definition

Ist $V = S \dot{\cup} T$ eine Partition von V mit $s \in S$, $t \in T$, so heißt C := (S, T) ein s-t cut (oder s-t Schnitt).

Das zu C gehörige cut-set ist

$$X_C := \{(u, v) \in E \mid u \in S, v \in T\} = (S \times T) \cap E$$

(Minimaler) Schnitt

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Grapher

IS und V

Definition

Ist $V = S \dot{\cup} T$ eine Partition von V mit $s \in S$, $t \in T$, so heißt C := (S, T) ein s-t cut (oder s-t Schnitt).

Das zu C gehörige cut-set ist

$$X_C := \{(u, v) \in E \mid u \in S, v \in T\} = (S \times T) \cap E$$

Die **Kosten** des Schnittes sind definiert durch $c(S,T) \coloneqq \sum_{(u,v) \in X_C} c(u,v)$

(Minimaler) Schnitt

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Grapher

IS und V

Definition

Ist $V = S \dot{\cup} T$ eine Partition von V mit $s \in S$, $t \in T$, so heißt C := (S, T) ein s-t cut (oder s-t Schnitt).

Das zu C gehörige cut-set ist

$$X_C := \{(u, v) \in E \mid u \in S, v \in T\} = (S \times T) \cap E$$

Die **Kosten** des Schnittes sind definiert durch $c(S, T) := \sum_{(u,v) \in X_C} c(u,v)$ Ein **Min Cut** ist ein s-t cut C = (S, T) mit minimalen Kosten.

Berechnung Min Cut

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

Nebenprodukt von Max Flow

Berechnung Min Cut

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

- Nebenprodukt von Max Flow
- DFS/BFS von s ausführen (nur Kanten mit streng positiver restlicher Kapazität traversierbar)

Berechnung Min Cut

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

- Nebenprodukt von Max Flow
- DFS/BFS von s ausführen (nur Kanten mit streng positiver restlicher Kapazität traversierbar)
- Jeder gefundene Knoten ist in S

Berechnung Min Cut

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

- Nebenprodukt von Max Flow
- DFS/BFS von s ausführen (nur Kanten mit streng positiver restlicher Kapazität traversierbar)
- Jeder gefundene Knoten ist in S
- $T = V \setminus S$

Berechnung Min Cut

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

- Nebenprodukt von Max Flow
- DFS/BFS von s ausführen (nur Kanten mit streng positiver restlicher Kapazität traversierbar)
- Jeder gefundene Knoten ist in S
- $T = V \setminus S$
- Alle Kanten in X_C haben Restkapazität $0 \implies Min Cut = Max Flow$

Berechnung Min Cut

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

- Nebenprodukt von Max Flow
- DFS/BFS von s ausführen (nur Kanten mit streng positiver restlicher Kapazität traversierbar)
- Jeder gefundene Knoten ist in S
- $T = V \setminus S$
- Alle Kanten in X_C haben Restkapazität $0 \implies Min Cut = Max Flow$
- Max-Flow-Min-Cut Theorem

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

UVa 11506 - Angry Programmer

Gefeuerter Programmierer will sich r\u00e4chen und Netzwerk zerst\u00f6ren

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Grapher

IS und V

UVa 11506 - Angry Programmer

- Gefeuerter Programmierer will sich r\u00e4chen und Netzwerk zerst\u00f6ren
- Kann Computer und Kabel (verbinden je einen Computer mit einem Anderen) zerstören, jeweils mit bekannten Kosten

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Grapher

IS und V

UVa 11506 - Angry Programmer

- Gefeuerter Programmierer will sich rächen und Netzwerk zerstören
- Kann Computer und Kabel (verbinden je einen Computer mit einem Anderen) zerstören, jeweils mit bekannten Kosten
- Computer des Chefs und Server sind unzerstörbar und Verbindung soll getrennt werden

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Grapher

IS und V

UVa 11506 - Angry Programmer

- Gefeuerter Programmierer will sich r\u00e4chen und Netzwerk zerst\u00f6ren
- Kann Computer und Kabel (verbinden je einen Computer mit einem Anderen) zerstören, jeweils mit bekannten Kosten
- Computer des Chefs und Server sind unzerstörbar und Verbindung soll getrennt werden
- Was sind die minimalen Kosten um die Verbindung zu zerstören?

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

UVa 11506 - Angry Programmer - Lösung

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und VC

UVa 11506 - Angry Programmer - Lösung

Computer sind Knoten, Kabel sind Kanten

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

UVa 11506 - Angry Programmer - Lösung

- Computer sind Knoten, Kabel sind Kanten
- Aufteilen der Knoten mit Gewicht in in- & out-Knoten mit gewichteter Kante

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

UVa 11506 - Angry Programmer - Lösung

- Computer sind Knoten, Kabel sind Kanten
- Aufteilen der Knoten mit Gewicht in in- & out-Knoten mit gewichteter Kante
- Min Cut

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Aufgabe zu Min Cut & Vertex Capacities

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Bipartite Graphen

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Bipartite Graphen

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Bipartite Graphen

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

Matchings

Definition

Sei $G = (V, E), E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph.

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

Matchings

Definition

Sei $G = (V, E), E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph.

Eine Menge von Kanten $M \subseteq E$ heißt **Matching**

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung ur Variationen

Bipartite Graphen

IS und V

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1,e_2\in M:e_1\neq e_2\Rightarrow e_1\cap e_2=\varnothing.$$

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und V

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1, e_2 \in \mathit{M} : e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

 $M \in \mathcal{M} \coloneqq \{M \subseteq E \mid M \text{ ist Matching}\} \text{ heißt inklusionsmaximal}$

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1, e_2 \in M : e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

 $M \in \mathcal{M} \coloneqq \{M \subseteq E \mid M \text{ ist Matching}\}\ \text{heißt inklusionsmaximal}, falls$

$$\forall M' \in \mathcal{M} : M \subseteq M' \Rightarrow M = M'.$$

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung ur Variationen

Bipartite Graphen

IS und V

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1, e_2 \in M : e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

 $M \in \mathcal{M} \coloneqq \{M \subseteq E \mid M \text{ ist Matching}\}\ \text{heißt inklusionsmaximal}, falls$

$$\forall M' \in \mathcal{M} : M \subseteq M' \Rightarrow M = M'.$$

 $\mathit{M} \in \mathcal{M}$ heißt kardinalitätsmaximal

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und V

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1, e_2 \in M : e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

 $M \in \mathcal{M} \coloneqq \{M \subseteq E \mid M \text{ ist Matching}\}\ \text{heißt inklusionsmaximal}, falls$

$$\forall M' \in \mathcal{M} : M \subseteq M' \Rightarrow M = M'.$$

 $M \in \mathcal{M}$ heißt **kardinalitätsmaximal**, falls

$$\forall M' \in \mathcal{M} : |M| \ge |M'|$$

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und V

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**. falls

$$\forall e_1, e_2 \in M : e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

 $M \in \mathcal{M} \coloneqq \{M \subseteq E \mid M \text{ ist Matching}\}\ \text{heißt inklusionsmaximal}, falls$

$$\forall M' \in \mathcal{M} : M \subseteq M' \Rightarrow M = M'.$$

 $M \in \mathcal{M}$ heißt **kardinalitätsmaximal**, falls

$$\forall M' \in \mathcal{M} : |M| \ge |M'|$$

Für G bipartit: "Maximum Cardinality Bipartite Matching", kurz MCBM.

Matchings

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Matchings

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Matchings

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Kein Matching

Matchings

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Matchings

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

Matching, aber weder inklusions- noch kardinalitätsmaximal

Matchings

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Matchings

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

Inklusions-, aber nicht kardinalitäsmaximales Matching

Matchings

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

Matchings

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

Kardinalitätsmaximales Matching

MCBM mit Max-Flow

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Max-Flow

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Max-Flow

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Max-Flow

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Max-Flow

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Max-Flow

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

• Edmond-Karp: $\mathcal{O}(|V| \cdot |E|^2)$

MCBM mit Max-Flow

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

- Edmond-Karp: $\mathcal{O}(|V| \cdot |E|^2)$
- Ford-Fulkerson: $\mathcal{O}(f^* \cdot |E|)$

MCBM mit Max-Flow

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

- Edmond-Karp: $\mathcal{O}(|V| \cdot |E|^2)$
- Ford-Fulkerson: $\mathcal{O}(f^* \cdot |E|) = \mathcal{O}(|V| \cdot |E|)$

MCBM mit Ford-Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Ford-Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Ford-Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Ford-Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Ford-Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Ford-Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Ford-Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Ford-Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Ford-Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Ford-Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Ford-Fulkerson

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

MCBM mit Augmenting Paths

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und VC

Augmenting Paths

Sei G = (V, E), $V = V_1 \cup V_2$ bipartit und $M \subseteq E$ ein Matching. Ein Pfad $(v_1, ..., v_n)$ in G heißt **Augmenting Path** (in G bzgl. M)

MCBM mit Augmenting Paths

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und V

Augmenting Paths

Sei $G=(V,E),\ V=V_1\ \dot\cup\ V_2$ bipartit und $M\subseteq E$ ein Matching. Ein Pfad $(v_1,...,v_n)$ in G heißt **Augmenting Path** (in G bzgl. M), falls

• $v_1 \in V_1 \setminus \bigcup M$ (freier Knoten links)

MCBM mit Augmenting Paths

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

Augmenting Paths

Sei G = (V, E), $V = V_1 \cup V_2$ bipartit und $M \subseteq E$ ein Matching. Ein Pfad $(v_1, ..., v_n)$ in G heißt **Augmenting Path** (in G bzgl. M), falls

- $v_1 \in V_1 \setminus \bigcup M$ (freier Knoten links)
- $v_n \in V_2 \setminus \bigcup M$ (freier Knoten rechts)

MCBM mit Augmenting Paths

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und V

Augmenting Paths

Sei G = (V, E), $V = V_1 \cup V_2$ bipartit und $M \subseteq E$ ein Matching. Ein Pfad $(v_1, ..., v_n)$ in G heißt **Augmenting Path** (in G bzgl. M), falls

- $v_1 \in V_1 \setminus \bigcup M$ (freier Knoten links)
- $v_n \in V_2 \setminus \bigcup M$ (freier Knoten rechts)
- $\{v_i, v_{i+1}\}$ ist abwechselnd $\in E \setminus M$ (frei) und $\in M$ (gematcht)

MCBM mit Augmenting Paths

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Graphen

IS und V

Augmenting Path Algorithmus

Gegeben: bipartiter Graph G = (V, E).

MCBM mit Augmenting Paths

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und VC

Augmenting Path Algorithmus

Gegeben: bipartiter Graph G = (V, E).

(1) Initialisiere $M := \emptyset$.

MCBM mit Augmenting Paths

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung ur Variationen

Bipartite Graphen

IS und V

Augmenting Path Algorithmus

Gegeben: bipartiter Graph G = (V, E).

- (1) Initialisiere $M := \emptyset$.
- (2) Suche einen Augmenting Path. Gebe *M* aus, falls keinen gefunden.

MCBM mit Augmenting Paths

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und V

Augmenting Path Algorithmus

Gegeben: bipartiter Graph G = (V, E).

- (1) Initialisiere $M := \emptyset$.
- (2) Suche einen Augmenting Path. Gebe *M* aus, falls keinen gefunden.
- (3) Flippe die Kanten entlang des gefundenen Pfades. Gehe zu (2).

MCBM mit Augmenting Paths

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und V

Augmenting Path Algorithmus

Gegeben: bipartiter Graph G = (V, E).

- (1) Initialisiere $M := \emptyset$.
- (2) Suche einen Augmenting Path. Gebe *M* aus, falls keinen gefunden.
- (3) Flippe die Kanten entlang des gefundenen Pfades. Gehe zu (2).

Findet MCBM in Laufzeit $\mathcal{O}(|V| \cdot |E|)$.

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Grapher

IS und VC

Independent Set

Definition

Gegeben einen Graphen G. Ein Independent Set IS ist eine Menge von Knoten, sodass keine zwei Knoten in IS über eine Kante in G verbunden sind.

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung ur Variationen

Bipartite Grapher

IS und VC

Independent Set

Definition

Gegeben einen Graphen G. Ein Independent Set IS ist eine Menge von Knoten, sodass keine zwei Knoten in IS über eine Kante in G verbunden sind.

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Grapher

IS und VC

Independent Set

Definition

Gegeben einen Graphen G. Ein Independent Set IS ist eine Menge von Knoten, sodass keine zwei Knoten in IS über eine Kante in G verbunden sind.

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Grapher

IS und VC

Independent Set

Definition

Gegeben einen Graphen *G*. Ein Independent Set *IS* ist eine Menge von Knoten, sodass keine zwei Knoten in *IS* über eine Kante in *G* verbunden sind.

In der Regel wird nach einem möglichst großen Independent Set gesucht.

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Grapher

IS und VC

Vertex Cover

Definition

Gegeben einen Graphen *G*. Ein Vertex Cover *VC* ist eine Menge von Knoten, sodass jede Kante in *G* mit mindestens einem Knoten aus *VC* verbunden ist.

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Grapher

IS und VC

Vertex Cover

Definition

Gegeben einen Graphen *G*. Ein Vertex Cover *VC* ist eine Menge von Knoten, sodass jede Kante in *G* mit mindestens einem Knoten aus *VC* verbunden ist.

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Grapher

IS und VC

Vertex Cover

Definition

Gegeben einen Graphen *G*. Ein Vertex Cover *VC* ist eine Menge von Knoten, sodass jede Kante in *G* mit mindestens einem Knoten aus *VC* verbunden ist.

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Grapher

IS und VC

Vertex Cover

Definition

Gegeben einen Graphen *G*. Ein Vertex Cover *VC* ist eine Menge von Knoten, sodass jede Kante in *G* mit mindestens einem Knoten aus *VC* verbunden ist.

In der Regel wird nach einem möglichst kleinen Vertex Cover gesucht.

Zusammenhang zwischen IS und VC

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Grapher

IS und VC

Satz

Sei G = (V, E) eine Graph und $X \subseteq V$ eine Menge von Knoten. Dann gilt:

X ist ein **VC** von $G \iff V \setminus X$ ist ein **IS** von G

Zusammenhang zwischen IS und VC

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Grapher

IS und VC

Satz

Sei G = (V, E) eine Graph und $X \subseteq V$ eine Menge von Knoten. Dann gilt:

X ist ein **VC** von $G \iff V \setminus X$ ist ein **IS** von G

Beweis:

- Sei X ein beliebiges **VC**. Wir behaupten, dass $V \setminus X$ ein IS ist.
- Nehmen wir also das Gegenteil an und führen dies zum Widerspruch:

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Hevdt

Maximum Flow

Modellierung un Variationen

Bipartite Grapher

IS und VC

Zusammenhang zwischen IS und VC

Satz

Sei G = (V, E) eine Graph und $X \subseteq V$ eine Menge von Knoten. Dann gilt:

X ist ein **VC** von $G \iff V \setminus X$ ist ein **IS** von *G*

Beweis:

- Sei X ein beliebiges VC. Wir behaupten, dass $V \setminus X$ ein IS ist.
- Nehmen wir also das Gegenteil an und führen dies zum Widerspruch:
 - Angenommen es würde $\{u,v\} \subseteq V \setminus X, u \neq v$ existieren mit $(u,v) \in E$
 - Dann wäre aber $u, v \notin X$ und die Kante (u, v) wäre vom VC X nicht abgedeckt \Rightarrow Widerspruch!

Zusammenhang zwischen IS und VC

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Grapher

IS und VC

Satz

Sei G = (V, E) eine Graph und $X \subseteq V$ eine Menge von Knoten. Dann gilt:

X ist ein **VC** von $G \iff V \setminus X$ ist ein **IS** von G

Beweis:

- Sei X ein beliebiges VC. Wir behaupten, dass $V \setminus X$ ein IS ist.
- Nehmen wir also das Gegenteil an und führen dies zum Widerspruch:
 - Angenommen es würde $\{u,v\} \subseteq V \setminus X, u \neq v$ existieren mit $(u,v) \in E$
 - Dann wäre aber $u, v \notin X$ und die Kante (u, v) wäre vom VC X nicht abgedeckt \Rightarrow Widerspruch!
- Die andere Richtung folgt ähnlich

Größe von IS und VC

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung und Variationen

Bipartite Grapher

IS und VC

Definition

Ein **IS/VC** ist **inklusions maximal/minimal**, wenn kein Knoten hinzugefügt/entfernt werden kann ohne die Eigenschaft des **IS/VC** zu behalten. Ein **IS/VC** ist **kardinalitäts maximal/minimal**, wenn kein größeres/kleineres **IS/VC** existiert.

Größe von IS und VC

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Grapher

IS und VC

Definition

Ein **IS/VC** ist **inklusions maximal/minimal**, wenn kein Knoten hinzugefügt/entfernt werden kann ohne die Eigenschaft des **IS/VC** zu behalten. Ein **IS/VC** ist **kardinalitäts maximal/minimal**, wenn kein größeres/kleineres **IS/VC** existiert.

Bemerkung

Ein kardinalitätsmaximales **IS** oder ein kardinalitätsminimales **VC** auszurechnen is *NP*-schwer.

Satz von König

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Grapher

IS und VC

Satz (von Dénes König)

In einem bipartiten Graphen ist die Größe eines kardinalitätsminimalem Vertex Cover (**VC**) gleich der Größe eines Max Cardinality Bipartite Matching (**MCBM**).

Satz von König

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und VC

Satz (von Dénes König)

In einem bipartiten Graphen ist die Größe eines kardinalitätsminimalem Vertex Cover (**VC**) gleich der Größe eines Max Cardinality Bipartite Matching (**MCBM**).

Etwas informeller aufgeschrieben erhalten wir damit |VC| = |MCBM|. Und mit unserem Wissen aus dem vorangegangenen Satz folgt: |V| = |VC| + |IS| = |MCBM| + |IS|

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Grapher

IS und VC

Guardian of Decency

Aufgabe

Gegeben sind *N* Schüler, beschrieben durch Größe, Geschlecht und Musikgeschmack. Der Lehrer möchte wissen wie viele Schüler maximal auf Klassenfahrt kommen können, ohne dass die Gefahr besteht, dass zwei Schüler ein Paar werden.

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Hevdt

Maximum Flow

Modellierung un Variationen

Bipartite Grapher

IS und VC

Guardian of Decency

Aufgabe

Gegeben sind *N* Schüler, beschrieben durch Größe, Geschlecht und Musikgeschmack. Der Lehrer möchte wissen wie viele Schüler maximal auf Klassenfahrt kommen können, ohne dass die Gefahr besteht, dass zwei Schüler ein Paar werden.

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und VC

Guardian of Decency

Aufgabe

Gegeben sind *N* Schüler, beschrieben durch Größe, Geschlecht und Musikgeschmack. Der Lehrer möchte wissen wie viele Schüler maximal auf Klassenfahrt kommen können, ohne dass die Gefahr besteht, dass zwei Schüler ein Paar werden.

- Modelliere das Problem als Graphen mit den Schülern als Knoten
- Verbinde Schüler, wenn sie ein Paar werden könnten

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Graphen

IS und VC

Guardian of Decency

Aufgabe

Gegeben sind *N* Schüler, beschrieben durch Größe, Geschlecht und Musikgeschmack. Der Lehrer möchte wissen wie viele Schüler maximal auf Klassenfahrt kommen können, ohne dass die Gefahr besteht, dass zwei Schüler ein Paar werden.

- Modelliere das Problem als Graphen mit den Schülern als Knoten
- Verbinde Schüler, wenn sie ein Paar werden könnten.
- Suche nach einem maximalem IS

Robert Brede, Peter Koepernik, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

Modellierung un Variationen

Bipartite Grapher

IS und VC

Guardian of Decency

Aufgabe

Gegeben sind *N* Schüler, beschrieben durch Größe, Geschlecht und Musikgeschmack. Der Lehrer möchte wissen wie viele Schüler maximal auf Klassenfahrt kommen können, ohne dass die Gefahr besteht, dass zwei Schüler ein Paar werden.

- Modelliere das Problem als Graphen mit den Schülern als Knoten
- Verbinde Schüler, wenn sie ein Paar werden könnten.
- Suche nach einem maximalem IS
- nutze dafür aus, dass der Graph bipartit ist, indem Männchen und Weibchen voneinander getrennt werden
- Berechne mittels Flow |V| |MCBM| = |V| |VC| = |IS|