

Description

The VSM100N20 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =200V, I_{D} =100A $R_{DS(ON)}$ <18m Ω @ V_{GS} =10V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM100N20-T7	VSM100N20	TO-247	-	-	-

Absolute Maximum Ratings (T_c=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	200	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	100	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	70.7	А	
Pulsed Drain Current	I _{DM}	400	А	
Maximum Power Dissipation	P _D	400	W	
Derating factor		2.67	W/℃	
Single pulse avalanche energy (Note 5)	Eas	1369	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{eJC}	0.38	°C/W
---	------------------	------	------

Shenzhen VSEEI Semiconductor Co., Ltd

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	•		•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	200	220	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =200V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =50A	-	13.5	18	mΩ
Forward Transconductance	g _{FS}	V _{DS} =5V,I _D =50A	50	-	-	S
Dynamic Characteristics (Note4)	•					
Input Capacitance	C _{lss}	\/ -50\/\/ -0\/	-	9382	-	PF
Output Capacitance	Coss	V_{DS} =50V, V_{GS} =0V, F=1.0MHz	-	529	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.0IVID2	-	206	-	PF
Switching Characteristics (Note 4)	•		•			
Turn-on Delay Time	t _{d(on)}		-	35	-	nS
Turn-on Rise Time	t _r	V_{DD} =100V, R_L =15 Ω	-	30	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =2.5 Ω	-	55	-	nS
Turn-Off Fall Time	t _f		-	25	-	nS
Total Gate Charge	Qg	V 400V/I 50A	-	150.9		nC
Gate-Source Charge	Q _{gs}	V _{DS} =100V,I _D =50A,	-	36.8		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	52.5		nC
Drain-Source Diode Characteristics	•		•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =50A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	100	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 50A	-	52		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	80		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. E_{AS} condition: V_{DD} =50V, V_{G} =10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance