

Angewandte Stochastik

Prof. Dr. Evgeny Spodarev | Vorlesungskurs |

8. Thema

Heutiges Thema

Schätzer der Varianz

- Seien X_i , $i=1,\ldots,n$ unabhängig identisch verteilt, $X_i \stackrel{d}{=} X$, $\mathsf{E}_{\theta} X^2 < \infty \quad \forall \theta \in \Theta$, $\theta = (\theta_1,\ldots,\theta_m)^T$, $\theta_{j_0} = \sigma^2 = \mathsf{Var}_{\theta} X$ für ein $j_0 \in \{1,\ldots,m\}$.
- ▶ Die *Stichprobenvarianz*

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

ist dann ein Schätzer für σ^2 .

Voraussetzungen (Schätzer der Varianz)

Falls der Erwartungswert $\mu = \mathsf{E}_{\theta} X$ der Stichprobenvariablen explizit benannt ist, so kann ein Schätzer für σ^2 auch als

$$\tilde{S}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$

definiert werden.

▶ Wir werden nun die Eigenschaften von S_n^2 und \tilde{S}_n^2 untersuchen und sie miteinander vergleichen.

1. Die Stichprobenvarianz S_n^2 ist erwartungstreu für σ^2 :

$$\mathsf{E}_{\theta} \, \mathcal{S}_{n}^{2} = \sigma^{2} \,, \qquad \theta \in \Theta \,.$$

2. Wenn $E_{\theta} X^4 < \infty$, dann gilt

$$\operatorname{Var}_{\theta} S_n^2 = \frac{1}{n} \left(\mu_4' - \frac{n-3}{n-1} \sigma^4 \right) ,$$

wobei
$$\mu_4' = \mathsf{E}_\theta (X - \mu)^4$$
.

- 1. Der Schätzer \tilde{S}_{n}^{2} für σ^{2} ist erwartungstreu.
- 2. Es gilt Var $_{\theta} \tilde{S}_{n}^{2} = \frac{1}{n} (\mu_{4}' \sigma^{4}).$

Der Schätzer \tilde{S}_n^2 für σ^2 ist besser als S_n^2 , weil beide erwartungstreu sind und

$$\operatorname{Var}_{\theta} \tilde{S}_{n}^{2} = \frac{\mu_{4}' - \sigma^{4}}{n} < \frac{\mu_{4}' - \frac{n-3}{n-1}\sigma^{4}}{n} = \operatorname{Var}_{\theta} S_{n}^{2}.$$

Diese Eigenschaft von \tilde{S}_{n}^{2} im Vergleich zu S_{n}^{2} ist intuitiv klar, da man in \tilde{S}_{n}^{2} mehr Informationen über die Verteilung der Stichprobenvariablen X_i (nämlich den bekannten Erwartungswert μ) reingesteckt hat.

- 1. Die Schätzer S_n^2 bzw. \tilde{S}_n^2 sind stark konsistent für σ^2 .
- 2. Sie sind asymptotisch normalverteilt, d.h.

$$\begin{split} & \sqrt{n} \frac{S_n^2 - \sigma^2}{\sqrt{\mu_4' - \sigma^4}} \xrightarrow[n \to \infty]{d} Y \sim \textit{N}(0, 1) \,, \\ & \sqrt{n} \frac{\tilde{S}_n^2 - \sigma^2}{\sqrt{\mu_4' - \sigma^4}} \xrightarrow[n \to \infty]{d} Y \sim \textit{N}(0, 1) \,. \end{split}$$

Folgerung

Es gilt

1.
$$\sqrt{n}\frac{\bar{X}_n-\mu}{S_n}\stackrel{d}{\underset{n\to\infty}{\longrightarrow}}Y\sim N(0,1)$$

und somit

2.

$$P\left(\mu \in \left[\bar{X}_n - \frac{z_{1-\frac{\alpha}{2}}S_n}{\sqrt{n}}, \bar{X}_n + \frac{z_{1-\frac{\alpha}{2}}S_n}{\sqrt{n}}\right]\right) \xrightarrow[n \to \infty]{} 1 - \alpha \quad (1)$$

für ein $\alpha \in (0,1)$, wobei z_{α} das α -Quantil der N(0,1)-Verteilung ist, d.h. $z_{\alpha} = \Phi^{-1}(\alpha)$ mit $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-t^2}{2}} dt.$

Bemerkung

- 1. Das Intervall $I_n^{\alpha}=\left|\bar{X}_n-rac{z_{1-\frac{lpha}{2}}S_n}{\sqrt{n}}\,,\,\bar{X}_n+rac{z_{1-\frac{lpha}{2}}S_n}{\sqrt{n}}\right|$ heißt asymptotisches Konfidenz- bzw. Vertrauensintervall zum Konfidenzniveau 1 $-\alpha$. Typisch hierbei sind die Werte $\alpha \in \{0, 01; 0, 05; 0, 001\}.$
- 2. Für $n \to \infty$ gilt $|I_n^{\alpha}| = 2z_{1-\frac{\alpha}{2}} \frac{S_n}{\sqrt{n}} \xrightarrow{f.s.} 0$.
- 3. Der Gebrauch von I_n^{α} macht ab $n \approx 100$ Sinn.

Betrachten wir weiterhin den wichtigen Spezialfall der normalverteilten Stichprobenvariablen X_i , i = 1, ..., n, also $X \sim N(\mu, \sigma^2)$ und $\theta = (\mu, \sigma^2)$.

- 1. Seien Y_1, \ldots, Y_n u.i.v. N(0, 1)-Z.V. Dann wird die Verteilung von $Y = \sum_{i=1}^n Y_i^2$ als χ_n^2 -Verteilung mit n Freiheitsgraden bezeichnet.
- 2. Sei $Y \sim N(0,1)$ und $Z \sim \chi_n^2$ unabhängig. Dann wird die Verteilung von $T = \frac{Y}{\sqrt{\frac{Z}{n}}}$ als t_n Verteilung (Student t-Verteilung) mit n Freiheitsgraden bezeichnet.

Falls X_1, \ldots, X_n normal verteilt sind mit Parametern μ und σ^2 , dann gilt

1.
$$\frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2$$
,

$$\frac{\tilde{nS}_n^2}{\sigma^2} \sim \chi_n^2.$$

Falls $X \sim N(\mu, \sigma^2), X_1, \dots, X_n$ unabhängige identisch verteilte Zufallsvariablen sind, $X_i \stackrel{d}{=} X$, dann

- ightharpoonup sind \bar{X}_n und S_n^2 unabhängig, und
- es gilt

$$rac{\sqrt{n}(ar{X}_n - \mu)}{S_n} \sim t_{n-1}$$
 .

Seite 14

Folgerung

Mit Hilfe des letzten Satzes kann folgendes Konfidenzintervall für den Erwartungswert μ einer normalverteilten Stichprobe (X_1,\ldots,X_n) bei unbekannter Varianz σ^2 $(X_i \sim N(\mu, \sigma^2), \quad i = 1, ..., n)$ konstruiert werden:

$$P\left(\mu \in \left[\bar{X}_n - \frac{t_{n-1,1-\frac{\alpha}{2}}}{\sqrt{n}}S_n, \, \bar{X}_n + \frac{t_{n-1,1-\frac{\alpha}{2}}}{\sqrt{n}}S_n\right]\right) = 1 - \alpha$$

für $\alpha \in (0,1)$,

Folgerung

denn

$$P\left(\sqrt{n}\frac{\bar{X}_{n} - \mu}{S_{n}} \in \left[\underbrace{t_{n-1,\frac{\alpha}{2}}, t_{n-1,1-\frac{\alpha}{2}}}\right]\right) = -t_{n-1,1-\frac{\alpha}{2}} \text{ wg. Sym. } t\text{-Vert.}$$

$$= F_{t_{n-1}}(t_{n-1,1-\frac{\alpha}{2}}) - F_{t_{n-1}}(t_{n-1,\frac{\alpha}{2}})$$

$$= 1 - \frac{\alpha}{2} - \frac{\alpha}{2} = 1 - \alpha,$$
(2)

wobei $t_{n-1,\alpha}$ das α -Quantil der t_{n-1} -Verteilung darstellt. Der Rest folgt aus (2) durch das Auflösen bzgl. μ .