

Geometria Plana

Lista de Exercícios: P2

- 1 Retas Paralelas.
 - 2 Polígonos
- 3 Quadriláteros

1 Retas Paralelas

Exercício 1 A soma dos ângulos agudos formados por duas paralelas e uma transversal é igual à 121°. Calcular um dos ângulos obtusos.

Exercício 2 Duas paralelas cortadas por uma transversal formam ângulos colaterais internos, cujas medidas, em graus, são representadas por x + 20 e 5x + 60, respectivamente. Calcular o valor de um dos ângulos agudos da figura.

Exercício 3 Os ângulos colaterais externos formados por duas paralelas e uma secante são tais que um excede o outro de 20°30′. Calcule esses ângulos.

Obs: Estude as relações entre as medidas de ângulos em graus, minutos e segundos.

Exercício 4 Duas paralelas cortadas por uma transversal formam dois ângulos correspondentes cujas medidas, em graus, são respectivamente iguais à 4x - 20 e x + 70. Encontre a soma dos ângulos obtusos formados pelas retas acima.

Exercício 5 Num triângulo isósceles, o ângulo do vértice mede 30°42′. Calcule um dos ângulos da base.

Exercício 6 Num triângulo isósceles ABC, o ângulo \hat{A} (do vértice) mede 41°20′. Calcule a medida dos ângulos formados pela bissetriz do ângulo \hat{B} com o lado \overline{AC} .

Exercício 7 Demonstre o Corolário do Teorema 12.

Exercício 8 Demonstre o Corolário do Teorema 14.

Exercício 9 Num triângulo isósceles ABC, o ângulo do vértice \hat{A} é 1/5 do ângulo $B\hat{M}C$, formado pelas bissetrizes dos ângulos \hat{B} e \hat{C} . Calcular os ângulos desse triângulo.

Exercício 10 Num triângulo ABC, a bissetriz externa de \hat{C} forma com a bissetriz interna de \hat{B} um ângulo de 10° . A altura \overline{AH} forma, com a bissetriz interna \overline{AS} , um ângulo de 30° . Calcular os ângulos desse triângulo.

Exercício 11 Na figura abaixo, tem-se AB = AC = CD. Qual a relação entre α e β , sendo β um ângulo externo do $\triangle ABD$?

Exercício 12 Num triângulo ABC, o ortocentro H (ponto de interseção das três alturas) está situado no interior do triângulo e em torno dele se formam ângulos $A\hat{H}C = 130^{\circ}$ e $A\hat{H}B = 110^{\circ}$. Calcular os ângulos do triângulo.

Exercício 13 No $\triangle ABC$, tem-se $\hat{C}=90^{\circ}$ e M é um ponto da hipotenusa tal que AM=CM. Demonstrar que M equidista de A, B e C.

Exercício 14 O ângulo obtuso formado por duas bissetrizes internas de um triângulo é igual a um ângulo reto aumentado da metade do terceiro ângulo. Provar.

Gabarito

- 1. 149°45′
- $2. 36^{\circ}40'$
- 3. $79^{\circ}45' \text{ e } 100^{\circ}15'$
- 4.400°
- 5. 74°39′
- 6. 76° e 104°
- 7.
- 8.
- 9. 20° , 80° e 80°
- 10. 20° , 50° e 110°
- 11. $\beta = 3\alpha$
- 12. 60° , 50° e 70°

2 Polígonos

Exercício 15 Calcule o número de lados de um polígono cuja soma dos ângulos internos vale 1440°.

Exercício 16 Quantos lados tem um polígono regular cujo ângulo externo vale 36°?

Exercício 17 Um polígono tem 5 lados a mais que outro e a diferença entre os números de diagonais distintas de cada um deles é de 80. Calcular o número de lados de cada polígono.

Gabarito

- 15. 10
- 16. 10
- 17. 15 e 20.

3 Quadriláteros

Exercício 18 Demonstre o Teorema 4.

Exercício 19 Demonstre o Corolário 1 do Teorema 5.

Exercício 20 Demonstre o Corolário 2 do Teorema 5.

Exercício 21 Num quadrilátero ABCD, o ângulo \hat{A} vale 160°. Calcular o ângulo \hat{C} , sabendose que os vértices B, C e D são equidistantes do vértice A.

Exercício 22 Num paralelogramo ABCD, tem-se:

- a) o perímetro (soma dos comprimentos de todos os lados) vale 42;
- b) o ângulo \hat{A} mede 120° ;
- c) a bissetriz do ângulo D passa pelo ponto médio M do lado \overline{AB} .

Calcule o lado maior do paralelogramo dado e os ângulos do triângulo CMD.

Exercício 23 Dado um quadrado ABCD, considere o triângulo equilátero ABM, interno ao quadrado. Unindo-se o ponto M ao vértice C, calcule o ângulo BMC.

Exercício 24 Seja P um ponto da base de um triângulo isósceles, distinto de seus extremos. De P, traçam-se retas paralelas aos lados congruentes. Prove que o perímetro do paralelogramo formado é igual à soma das medidas dos lados congruentes do triângulo.

Gabarito

- $21. 100^{\circ}$
- 22. Comprimento do Maior Lado: 14. Ângulos: 30°, 60° e 90°.
- 23. 75° .