

Chapter 4: Interest Rate Derivatives

4.2 Caps and Floors

Interest Rate Models

Damir Filipović

4.2 Caps and Floors

- Caps protect against high rates
- Floors protect against low rates
- Cap-Floor parity
- Pricing under forward measures
- Black's price formula
- Bachelier's price formula
- Cap/Floor quotes in terms of implied volatilities

Caplets

A caplet with reset date T_0 and settlement date $T_1 = T_0 + \delta$ pays the holder the difference between simple spot rate $L(T_0, T_1)$ and strike rate κ .

The cash flow at T_1 is

$$\delta(L(T_0,T_1)-\kappa)^+.$$

Protects against rising interest rates.

Price of Caplet

The time- T_0 value of the caplet is

$$P(T_0, T_1)\delta(L(T_0, T_1) - \kappa)^+$$

= $(1 + \delta\kappa)\left(\frac{1}{1 + \delta\kappa} - P(T_0, T_1)\right)^+$

 $(1 + \delta \kappa) \times \text{put option on } T_1\text{-bond with expiry date } T_0 \text{ and strike price } \frac{1}{1+\delta \kappa}$.

Time-t price of the caplet therefore is

$$Cpl(t, T_0, T_1) = (1 + \delta \kappa) \times p_{put}.$$

Caps

A cap is a strip of caplets, specified by

- reset/settlement dates $T_0 < \cdots < T_n$ (T_0 =first reset date, T_n =maturity)
- a cap rate κ
- for simplicity assume: $T_i T_{i-1} \equiv \delta$

The cap price at $t \leq T_0$ is

$$Cp(t) = \sum_{i=1}^{n} Cpl(t, T_{i-1}, T_i)$$

with price of *i*th caplet $CpI(t, T_{i-1}, T_i)$.

Floors

A floor

- is the converse to a cap,
- protects against low interest rates, is a strip of floorlets with T_i -cash flows

$$\delta(\kappa-L(T_{i-1},T_i))^+.$$

The floor price at $t \leq T_0$ is

$$FI(t) = \sum_{i=1}^{n} FII(t, T_{i-1}, T_i)$$

with price of *i*th floorlet $FII(t, T_{i-1}, T_i)$.

Caps, Floors and Swaps

The following parity relation holds:

$$Cp(t) - FI(t) = V_p(t)$$

where $V_p(t)$ is the time-t value of a payer swap with fixed rate κ , notional one, and the same tenor structure $T_0 < \cdots < T_n$ as the cap and floor.

The cap (floor) is said to be

- at-the-money (ATM) if $\kappa = R_{swap}(t) = \frac{P(t,T_0) P(t,T_n)}{\delta \sum_{i=1}^n P(t,T_i)}$
- in-the-money (ITM) if $\kappa < R_{swap}(t)$ (floor: $\kappa > R_{swap}(t)$)
- out-of-the-money (OTM) if $\kappa > R_{swap}(t)$ (floor: $\kappa < R_{swap}(t)$)

Black's Formula: Underlying Assumptions

Black's formula assumes that $L(T_{i-1}, T_i) = F(T_{i-1}, T_{i-1}, T_i)$ is log-normal with

$$dF(t, T_{i-1}, T_i) = F(t, T_{i-1}, T_i)\sigma dW^{T_i}(t)$$

with constant $\sigma > 0$ and Brownian motion $W^{T_i}(t)$ under the T_i -forward measure.

Time-t prices of ith caplet and floorlet are

$$Cpl(t, T_{i-1}, T_i) = P(t, T_i) \mathbb{E}_t^{\mathbb{Q}^{T_i}} \left[\delta(L(T_{i-1}, T_i) - \kappa)^+ \right]$$

$$FII(t, T_{i-1}, T_i) = P(t, T_i) \mathbb{E}_t^{\mathbb{Q}^{T_i}} \left[\delta(\kappa - L(T_{i-1}, T_i))^+ \right]$$

Black's Formula for Caplets and Floorlets

Black's formula for the ith caplet and floorlet price is

$$Cpl(t, T_{i-1}, T_i) = \delta P(t, T_i) (F(t, T_{i-1}, T_i) \Phi(d_1) - \kappa \Phi(d_2))$$

$$Fll(t, T_{i-1}, T_i) = \delta P(t, T_i) (\kappa \Phi(-d_2) - F(t, T_{i-1}, T_i) \Phi(-d_1))$$

where Φ is the standard normal cumulative distribution function and

$$d_{1,2} = \frac{\log\left[\frac{F(t;T_{i-1},T_i)}{\kappa}\right] \pm \frac{1}{2}\sigma^2(T_{i-1}-t)}{\sigma\sqrt{T_{i-1}-t}}.$$

 σ : Black (or relative) volatility (same for all caplets/floorlets of a cap/floor).

Bachelier's Formula: Underlying Assumptions

Bachelier's formula assumes that $L(T_{i-1}, T_i) = F(T_{i-1}, T_{i-1}, T_i)$ is normal with

$$dF(t, T_{i-1}, T_i) = \sigma dW^{T_i}(t)$$

with constant $\sigma > 0$ and Brownian motion $W^{T_i}(t)$ under the T_i -forward measure.

Time-t prices of ith caplet and floorlet are

$$Cpl(t, T_{i-1}, T_i) = P(t, T_i) \mathbb{E}_t^{\mathbb{Q}^{T_i}} \left[\delta(L(T_{i-1}, T_i) - \kappa)^+ \right]$$

$$FII(t, T_{i-1}, T_i) = P(t, T_i)\mathbb{E}_t^{\mathbb{Q}^{T_i}} \left[\delta(\kappa - L(T_{i-1}, T_i))^+\right]$$

Bachelier's Formula for Caplets and Floorlets

Bachelier's formula for the ith caplet and floorlet price is

$$Cpl(t, T_{i-1}, T_i) = \delta P(t, T_i) \sigma \sqrt{T_{i-1} - t} \left(D\Phi(D) + \phi(D) \right)$$

$$FII(t, T_{i-1}, T_i) = \delta P(t, T_i) \sigma \sqrt{T_{i-1} - t} \left(-D\Phi(-D) + \phi(-D) \right)$$

where Φ is the standard normal cumulative distribution function, $\phi = \Phi'$, and

$$D = \frac{F(t, T_{i-1}, T_i) - \kappa}{\sigma \sqrt{T_{i-1} - t}}.$$

 σ : normal (basis point, absolute) volatility (same for all caplets/floorlets of a cap/floor).

Cap and Floor Quotes

Cap/floor prices are quoted in terms of their Black or normal implied volatilities.

Typically: t = 0, $T_0 = \delta = T_i - T_{i-1}$ with

- $\delta =$ three months (US market)
- $\delta = \text{half a year (euro market)}$

Example of Cap Quotes

EUR ATM Cap Quotes, 30 August 2013:

Maturity (yrs)	Cap ATM Price (%)	Black ATM Vol (%)	Normal ATM Vol (bps)
1	0.08%	93.81%	33.23
2	0.35%	90.31%	46.94
3	0.84%	65.94%	60.15
4	1.61%	58.65%	70.25
5	2.54%	53.14%	77.76
6	3.60%	49.12%	83.54
7	4.60%	45.59%	85.60
8	5.62%	42.17%	86.46
9	6.65%	39.59%	86.94
10	7.67%	37.04%	86.52
15	12.38%	30.86%	84.08
20	16.15%	28.70%	79.81
30	22.35%	27.39%	73.01

It is a challenge for any interest rate model to match the given volatility curve.