

IN THE CLAIMS:

- 1 1. (Original) A system for synchronizing dependencies upon a set of persistent consistency point images (PCPIs) among a set of computers, the system comprising:
 - 2 means for identifying a dependency upon the set of PCPIs;
 - 3 means for creating a set of soft locks, each soft lock in the set of soft locks associated with each of the PCPIs in the set of PCPIs; and
 - 4 means for transmitting the set of soft locks to one or more of the set of computers.
- 1 2. (Original) The system of claim 1 wherein the set of computers comprises a set of storage appliances.
- 1 3. (Original) The system of claim 1 wherein each soft lock comprises a PCPI identifier field, a type field and a string field.
- 1 4. (Original) The system of claim 3 wherein the string field comprises user visible information.
- 1 5. (Original) The system of claim 3 wherein the string field identifies an application that depends upon the PCPI associated with the soft lock.
- 1 6. (Original) The system of claim 3 wherein the type field identifies a type of data in the string field.
- 1 7. (Original) The system of claim 6 wherein the type of data comprises an owner name.
- 1 8. (Original) The system of claim 6 wherein the type of data comprises a destination path.

1 9. (Original) The system of claim 6 wherein the type of data comprises a qtree
2 name.

1 10. (Original) The system of claim 1 wherein the means for transmitting the set
2 of soft locks to one or more of the set of computers further comprises:

3 means for transmitting the set of soft locks before an asynchronous mirroring
4 process; and

5 means for transmitting the set of soft locks after an asynchronous mirroring proc-
6 ess.

1 11. (Original) A method for synchronizing dependencies upon a set of persistent
2 consistency point images (PCPIs) among a set of computers, the method comprising the
3 steps of:

4 identifying a dependency upon the set of PCPIs;

5 creating a set of soft locks, each soft lock in the set of soft locks associated with
6 each of the PCPIs in the set of PCPIs; and

7 transmitting the set of soft locks to one or more of the set of computers.

1 12. (Original) The method of claim 1 wherein the set of computers comprises a
2 set of storage appliances.

1 13. (Original) The method of claim 1 wherein each soft lock comprises a PCPI
2 identifier field, a type field and a string field.

1 14. (Original) The method of claim 13 wherein the string field comprises user
2 visible information.

1 15. (Original) The method of claim 13 wherein the string field identifies an ap-
2 plication that depends upon the PCPI associated with the soft lock.

1 16. (Original) The method of claim 13 wherein the type field identifies a type of
2 data in the string field.

1 17. (Original) The method of claim 16 wherein the type of data comprises an
2 owner name.

1 18. (Original) The method of claim 16 wherein the type of data comprises a des-
2 tination path.

1 19. (Original) The method of claim 16 wherein the type of data comprises a qtree
2 name.

1 20. (Original) The method of claim 1 wherein the step of transmitting the set of
2 soft locks to one or more of the set of computers further comprises the steps of:
3 transmitting the set of soft locks before an asynchronous mirroring process; and
4 transmitting the set of soft locks after an asynchronous mirroring process.

1 21. (Original) A storage system for use in a storage system environment for
2 communicating dependencies upon a set of persistent consistency point images (PCPIs)
3 among a set of storage systems, the storage system comprising:

4 a storage operating system having a file system that implements PCPIs;
5 an application executing on the storage system, the application adapted to imple-
6 ment a soft lock to communicate a dependency with a specific PCPI; and
7 a network protocol module of the storage operating system, the network protocol
8 module operatively interconnected with the application and adapted to transfer the soft
9 lock to one or more storage systems in the set of storage systems.

1 22. (Original) The storage system of claim 21 wherein the application comprises
2 an asynchronous mirroring application.

1 23. The storage system of claim 21 wherein the soft lock comprises a PCPI identifier
2 field, a type field and a string field.

1 24. (Original) The storage system of claim 23 wherein the string field comprises
2 user visible information.

1 25. (Original) The method of claim 23 wherein the string field identifies an ap-
2 plication that depends upon the PCPI associated with the soft lock.

1 26. (Original) The method of claim 23 wherein the type field identifies a type of
2 data in the string field.

1 27. (Original) The method of claim 26 wherein the type of data comprises an
2 owner name.

1 28. (Original) The method of claim 26 wherein the type of data comprises a des-
2 tination path.

1 29. (Original) The method of claim 26 wherein the type of data comprises a qtree
2 name.

1 30. (Original) A method for propagating soft locks through a cascaded chain of
2 storage systems comprising at least a downstream storage system and an upstream stor-
3 age system, the method comprising the steps of:

4 identifying a set of persistent consistency point images on the upstream storage
5 system that require a soft lock to be set;

6 creating soft locks for the identified set of persistent consistency point images;
7 sending the created soft locks to the upstream storage system; and

8 performing an asynchronous mirroring process to mirror local data to the down-
9 stream storage system.

1 31. (Original) The method of claim 30 further comprising the steps of:
2 determining if a new persistent consistency point image exist on the downstream
3 storage system;
4 identifying, in response to a new persistent consistency image existing on the
5 storage system, a set of additional soft locks on the downstream storage system; and
6 sending the additional set of soft locks to the upstream storage system.

1 32. (Original) The method of claim 30 wherein the soft lock comprises a data
2 structure having an entry identifying a resource identifier and an identifier of a locking
3 data set.

1 33. (Original) The method of claim 32 wherein a resource identifier identifies a
2 persistent consistency point image that the soft lock protects.

1 34. (Original) The method of claim 32 wherein the identifier of a locking dataset
2 identifies a resource on a downstream system that requires the use of the persistent con-
3 sistency point image identified in the resource identifier.

1 35. (Original) The method of claim 30 wherein the step of identifying a set of
2 persistent consistency point images on the upstream storage system that requires a soft
3 lock to be set further comprises the steps of:
4 identifying a set of persistent consistency point images that are in common be-
5 tween the upstream storage system and the downstream storage system; and
6 identifying a set of persistent consistency point images that have a soft lock set
7 from one or more storage systems located downstream from the downstream storage sys-
8 tem.

1 36. (Original) The method of claim 30 wherein the downstream storage system
2 comprises a storage system to which mirrored data is transferred.

1 37. (Original) The method of claim 30 wherein the upstream storage system
2 comprises a storage system from which mirrored data is transferred.

1 38. (Original) A cascaded set of storage systems interconnected via one or more
2 networks, each of the storage systems comprising:

3 a storage operating system executing, the storage operating system including a
4 mirroring application adapted to create and maintain soft locks on the storage systems of
5 the cascaded set of storage systems.

1 39. (Original) The cascaded set of storage systems of claim 38 wherein the mir-
2 roring application implements a volume-based asynchronous mirroring process.

1 40. (Original) The cascaded set of storage systems of claim 38 wherein the mir-
2 roring application implements a qtree-based asynchronous mirroring process.

1 41. (Original) The cascaded set of storage systems of claim 38 wherein each of
2 the soft locks comprises a data structure having an entry defining a resource identifier and
3 an entry identifying a locking dataset.

1 42. (Original) The cascaded set of storage systems of claim 38 wherein the mir-
2 roring application is further adapted to propagate the soft locks to one or more of the
3 storage systems in the cascaded set of storage systems.

1 43. (Original) A storage system for use in a cascaded set of storage systems hav-
2 ing at least an upstream storage system, the storage system comprising:
3 means for identifying a set of persistent consistency point images on the upstream
4 storage system that require a soft lock to be set;

5 means for creating soft locks for the identified set of persistent consistency point
6 images; and

7 means for sending the created soft locks to the upstream storage system.

1 44. (Original) The storage system of claim 43 further comprising means for per-
2 forming an asynchronous mirroring process to mirror local data to a downstream storage
3 system.

1 45. (Original) The storage system of claim 44 wherein the storage system is
2 operatively interconnected with the downstream storage system via a network.

1 46. (Original) The storage system of claim 44 wherein the storage system is con-
2 nected to the upstream storage system and the downstream storage system via a network.

1 47. (Original) The storage system of claim 43 further comprising means for per-
2 forming an asynchronous mirroring process to mirror local data to the downstream stor-
3 age system.

1 48. (Original) A computer readable medium, including program instructions exe-
2 cuting on a storage system in a cascaded set of storage systems having at least an up-
3 stream storage system and a downstream storage system, the computer readable medium
4 including instructions for performing the steps of:

5 identifying a set of persistent consistency point images that are in common be-
6 tween the upstream storage system and the downstream storage system; and

7 identifying a set of persistent consistency point images that have a soft lock set
8 from one or more storage systems located downstream from the downstream storage sys-
9 tem;

10 creating soft locks for the identified set of persistent consistency point images;
11 sending the created soft locks to the upstream storage system; and

12 performing an asynchronous mirroring process to mirror local data to the down-
13 stream storage system.

1 49. (Original) The computer readable medium of claim 19 wherein local data
2 comprises data stored on storage devices associated with a storage system executing the
3 computer readable medium.

1 50. (Previously Presented) A method for synchronizing persistent consistency
2 point images among a plurality of computers, the method comprising the steps of:

3 identifying a set of persistent consistency point images on a first computer of the
4 plurality of computers;

5 creating soft locks for the identified set of persistent consistency point images; and
6 sending the created soft locks to the plurality of computers.

1 51. (Previously Presented) The method of claim 50 wherein, in the identifying
2 step, the set of persistent consistency point images is identified, in the identifying step, on
3 an upstream storage system of the plurality of computers.

1 52. (Previously Presented) The method of claim 50 wherein, in the sending
2 step, the created soft locks are sent, to an upstream storage system of the plurality of
3 computers.

1 53. (Previously Presented) The method of claim 50 wherein, in the identifying
2 step, persistent consistency point images that require a soft lock to be set are identified.

1 54. (Previously Presented) The method of claim 50 further comprising:

2 performing an asynchronous mirroring process to mirror local data to a selected
3 computer of the plurality of computers, the soft locks maintaining consistency of the data
4 on the plurality of computers.

1 55. (Previously Presented) The method of claim 54 wherein, in the mirroring
2 step, the local data is mirrored to a down stream storage system of the plurality of com-
3 puters.

1 56. (Previously Presented) A method of synchronizing dependencies upon a set
2 of persistent consistency point images, comprising:

3 identifying a set of persistent consistency point images that are in common be-
4 tween an upstream storage system and a downstream storage system; and

5 identifying a set of persistent consistency point images that have a soft lock set
6 from one or more storage systems located downstream from the downstream storage sys-
7 tem;

8 creating soft locks for the identified set of persistent consistency point images;
9 and

10 sending the created soft locks to the upstream storage system.

1 57. (Previously Presented) The method of claim 56 further comprising:
2 performing an asynchronous mirroring process to mirror local data to the down-
3 stream storage system.

1 58. (Previously Presented) A system for synchronizing dependencies upon a set of
2 persistent consistency point images, comprising:

3 means for identifying a set of persistent consistency point images that are in
4 common between an upstream storage system and a downstream storage system; and

5 means for identifying a set of persistent consistency point images that have a soft
6 lock set from one or more storage systems located downstream from the downstream
7 storage system;
8 means for creating soft locks for the identified set of persistent consistency point
9 images; and
10 means for sending the created soft locks to the upstream storage system.

1 59. (Previously Presented) The system according to claim 58 further comprising:
2 means for performing an asynchronous mirroring process to mirror local data to
3 the downstream storage system.