Towards Closing the Gap between the Theory and Practice of SVRG

Othmane Sebbouh, Nidham Gazagnadou^a, Samy Jelassi, Francis Bach, Robert M. Gower

• Finite Sum Minimization problem

$$x^* = \underset{x \in \mathbb{R}^d}{\operatorname{arg\,min}} \left[f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right] \tag{\mathcal{P}}$$

- f is L-smooth and μ -strongly convex
- each f_i is L_{max} -smooth

¹Johnson, Zhang, NIPS, 2013

• Finite Sum Minimization problem

$$x^* = \underset{x \in \mathbb{R}^d}{\min} \left[f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right]$$
 (P)

- f is L-smooth and μ -strongly convex
- each f_i is L_{max} -smooth
- **SVRG**¹ update of the iterates x_s^t

$$\mathbf{x}_{s}^{t+1} = \mathbf{x}_{s}^{t} - \alpha \left(\nabla f_{i}(\mathbf{x}_{s}^{t}) - \nabla f_{i}(\mathbf{w}_{s-1}) + \nabla f(\mathbf{w}_{s-1}) \right) ,$$

where w_{s-1} is a reference point (or snapshot) and i an index randomly sampled in $[n] := \{1, \dots, n\}$.

¹Johnson, Zhang, NIPS, 2013

²https://contrib.scikit-learn.org/lightning/

• Finite Sum Minimization problem

$$x^* = \underset{x \in \mathbb{R}^d}{\min} \left[f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right]$$
 (P)

- f is L-smooth and μ -strongly convex
- each f_i is L_{max} -smooth
- SVRG¹ update of the iterates x_s^t

$$\mathbf{x}_{s}^{t+1} = \mathbf{x}_{s}^{t} - \alpha \left(\nabla f_{i}(\mathbf{x}_{s}^{t}) - \nabla f_{i}(\mathbf{w}_{s-1}) + \nabla f(\mathbf{w}_{s-1}) \right) ,$$

where w_{s-1} is a reference point (or snapshot) and i an index randomly sampled in $[n] := \{1, \dots, n\}$.

First variance-reduced stochastic method
 Faster convergence for ERM due to better gradient estimate

¹Johnson, Zhang, NIPS, 2013

²https://contrib.scikit-learn.org/lightning/

• Finite Sum Minimization problem

$$x^* = \underset{x \in \mathbb{R}^d}{\min} \left[f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right]$$
 (P)

- f is L-smooth and μ -strongly convex
- each f_i is L_{max} -smooth
- **SVRG**¹ update of the iterates x_s^t

$$x_s^{t+1} = x_s^t - \alpha \left(\nabla f_i(x_s^t) - \nabla f_i(w_{s-1}) + \nabla f(w_{s-1}) \right) ,$$

where w_{s-1} is a reference point (or snapshot) and i an index randomly sampled in $[n] := \{1, ..., n\}$.

- First variance-reduced stochastic method
 Faster convergence for ERM due to better gradient estimate
- Used a lot in practice

 e.g., adaptations in RL for policy evaluation, implemented in some packages like lightning²

¹Johnson, Zhang, NIPS, 2013

²https://contrib.scikit-learn.org/lightning/

• Finite Sum Minimization problem

$$x^* = \underset{x \in \mathbb{R}^d}{\min} \left[f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right]$$
 (P)

- f is L-smooth and μ -strongly convex
- each f_i is L_{max} -smooth
- **SVRG**¹ update of the iterates x_s^t

$$\mathbf{x}_{s}^{t+1} = \mathbf{x}_{s}^{t} - \alpha \left(\nabla f_{i}(\mathbf{x}_{s}^{t}) - \nabla f_{i}(\mathbf{w}_{s-1}) + \nabla f(\mathbf{w}_{s-1}) \right) ,$$

where w_{s-1} is a reference point (or snapshot) and i an index randomly sampled in $[n] := \{1, ..., n\}$.

- First variance-reduced stochastic method
 Faster convergence for ERM due to better gradient estimate
- Used a lot in practice

 e.g., adaptations in RL for policy evaluation, implemented in some packages like lightning²
 - ightarrow In practice, implementations differ from the theory

²https://contrib.scikit-learn.org/lightning/

¹Johnson, Zhang, NIPS, 2013

A Closer Look at SVRG

Algorithm 1 SVRG (Johnson, Zhang 2013) & (Bubeck, 2015)

```
Parameters: m \gtrsim \frac{L_{\text{max}}}{v},
                                                                    step size \alpha, p_t := \frac{1}{m}
Initialization: w_0 = x_0^m \in \mathbb{R}^d
for s = 1, 2, ... do
    x_{\rm s}^0 = w_{\rm s-1}
                                                 ▶ resetting the inner iterates to an average
    for t = 0, 1, ..., m - 1 do
         Sample i_t uniformly at random in \{1, \ldots, n\}
         g_s^t = \nabla f_{i_t}(x_s^t) - \nabla f_{i_t}(w_{s-1}) + \nabla f(w_{s-1}) \triangleright what about mini-batching?
         x_s^{t+1} = x_s^t - \alpha g_s^t
    end for
    w_s = \sum_{t=0}^{m-1} p_t x_s^t
end for
```

A Closer Look at SVRG

Algorithm 1 SVRG (Johnson, Zhang 2013) & (Bubeck, 2015)

```
Parameters: m \gtrsim \frac{L_{\text{max}}}{u},
                                                                    step size \alpha, p_t := \frac{1}{m}
Initialization: w_0 = x_0^m \in \mathbb{R}^d
for s = 1, 2, ... do
    x_{\rm s}^0 = w_{\rm s-1}
                                                 ▶ resetting the inner iterates to an average
    for t = 0, 1, ..., m - 1 do
         Sample i_t uniformly at random in \{1, \ldots, n\}
         g_s^t = \nabla f_{i_t}(x_s^t) - \nabla f_{i_t}(w_{s-1}) + \nabla f(w_{s-1}) \triangleright what about mini-batching?
         x_s^{t+1} = x_s^t - \alpha g_s^t
    end for
    w_s = \sum_{t=0}^{m-1} p_t x_s^t
end for
```

Several differences with what is done in practice

- Inner loop size often set to m = n
- Inner iterates are **continuously updated**: $x_s^0 = x_{s-1}^m$
- Mini-batching common practice, yet not clearly explained by theory

A Closer Look at SVRG

Algorithm 1 SVRG (Johnson, Zhang 2013) & (Bubeck, 2015)

```
Parameters: m \gtrsim \frac{L_{\text{max}}}{u},
                                                                    step size \alpha, p_t := \frac{1}{m}
Initialization: w_0 = x_0^m \in \mathbb{R}^d
for s = 1, 2, ... do
    x_{\rm s}^0 = w_{\rm s-1}
                                                 ▶ resetting the inner iterates to an average
    for t = 0, 1, ..., m - 1 do
         Sample i_t uniformly at random in \{1, \ldots, n\}
         g_s^t = \nabla f_{i_t}(x_s^t) - \nabla f_{i_t}(w_{s-1}) + \nabla f(w_{s-1}) \triangleright what about mini-batching?
         x_s^{t+1} = x_s^t - \alpha g_s^t
    end for
    w_s = \sum_{t=0}^{m-1} p_t x_s^t
end for
```

Several differences with what is done in practice

- Inner loop size often set to m = n
- Inner iterates are **continuously updated**: $x_s^0 = x_{s-1}^m$
- Mini-batching common practice, yet not clearly explained by theory
 - → Fill the gap between theory and practice of SVRG

Goals

ullet "Free" the inner loop size ${\it m}$

Goals

- "Free" the inner loop size m
- ullet Continuously update the inner iterates x_s^m

Goals

- "Free" the inner loop size m
- ullet Continuously update the inner iterates x_s^m
- Capture benefits from mini-batching

Goals

- "Free" the inner loop size m
- Continuously update the inner iterates x_s^m
- Capture benefits from mini-batching

Contributions

We designed and analyzed two algorithms closer to practice:

Free-SVRG and L-SVRG-D

Goals

- "Free" the inner loop size m
- Continuously update the inner iterates x_s^m
- Capture benefits from mini-batching

Contributions

- We designed and analyzed two algorithms closer to practice:
 Free-SVRG and L-SVRG-D
- Our convergence analysis led to optimal inner loop m* and mini-batch sizes b*

Goals

- "Free" the inner loop size m
- Continuously update the inner iterates x_s^m
- Capture benefits from mini-batching

Contributions

- We designed and analyzed two algorithms closer to practice:
 Free-SVRG and L-SVRG-D
- Our convergence analysis led to optimal inner loop m* and mini-batch sizes b*
- Experiments on real data comparing performance of theoretical settings

Talk Overview

Problem reformulation and preliminary results

Free-SVRG

L-SVRG-D

Numerical experiments

Conclusion

Problem reformulation and preliminary results

Stochastic Reformulation of the ERM

• ERM reformulation

$$\begin{aligned} & \text{find } x^* \in \operatorname*{arg\,min}_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(x) \\ & \iff \text{find } x^* \in \operatorname*{arg\,min}_{x \in \mathbb{R}^d} \mathbb{E}_{\mathcal{D}} \left[\frac{1}{n} \sum_{i=1}^n \mathbf{v}_i f_i(x) \right] = \mathbb{E}_{\mathcal{D}} \left[f_{\mathbf{v}}(x) \right] \end{aligned}$$

where v is a **sampling vector** s.t. $\mathbb{E}_{v \sim \mathcal{D}}[v] = \mathbb{1}_n$.

Stochastic Reformulation of the ERM

• ERM reformulation

$$\begin{aligned} & \text{find } x^* \in \arg\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(x) \\ & \iff \text{find } x^* \in \arg\min_{x \in \mathbb{R}^d} \mathbb{E}_{\mathcal{D}} \left[\frac{1}{n} \sum_{i=1}^n \mathbf{v}_i f_i(x) \right] = \mathbb{E}_{\mathcal{D}} \left[f_{\mathbf{v}}(x) \right] \end{aligned}$$

where v is a **sampling vector** s.t. $\mathbb{E}_{v \sim \mathcal{D}}[v] = \mathbb{1}_n$.

• General SVRG update of the iterates x_s^t

$$x_s^{t+1} = x_s^t - \alpha \left(\nabla f_{\mathbf{v}}(x_s^t) - \nabla f_{\mathbf{v}}(w_{s-1}) + \nabla f(w_{s-1}) \right) ,$$

Stochastic Reformulation of the ERM

ERM reformulation

$$\begin{aligned} & \text{find } x^* \in \mathop{\arg\min}_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(x) \\ & \iff \text{find } x^* \in \mathop{\arg\min}_{x \in \mathbb{R}^d} \mathbb{E}_{\mathcal{D}} \left[\frac{1}{n} \sum_{i=1}^n \mathbf{v}_i f_i(x) \right] = \mathbb{E}_{\mathcal{D}} \left[f_{\mathbf{v}}(x) \right] \end{aligned}$$

where v is a **sampling vector** s.t. $\mathbb{E}_{v \sim \mathcal{D}}[v] = \mathbb{1}_n$.

• General SVRG update of the iterates x_s^t

$$x_s^{t+1} = x_s^t - \alpha \left(\nabla f_{\mathbf{v}}(x_s^t) - \nabla f_{\mathbf{v}}(w_{s-1}) + \nabla f(w_{s-1}) \right) ,$$

• Arbitrary sampling includes all types of sampling e.g., mini-batching without replacement. Let $S \subset \{1, \ldots, n\}$ be a random set s.t. $\mathbb{P}[S = B] = 1/\binom{n}{b}$ for all $B \subset \{1, \ldots, n\}, |B| = b$.

Let
$$v_i = \begin{cases} n/b & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

Then,
$$f_{\mathbf{v}}(x) = \frac{1}{b} \sum_{i \in S} f_i(x)$$
 and $\nabla f_{\mathbf{v}}(x) = \frac{1}{b} \sum_{i \in S} \nabla f_i(x)$.

Key constant: Expected Smoothness

Recalling that $\nabla f_{v}(x) = \frac{1}{n} \sum_{i=1}^{n} v_{i} \nabla f_{i}(x)$

Lemma (Expected Smoothness) Let $v \sim \mathcal{D}$ be a sampling vector. There exists $\mathcal{L} \geq 0$ such that for all $x \in \mathbb{R}^d$.

$$\mathbb{E}_{v \sim \mathcal{D}} \left[\left\| \nabla f_v(x) - \nabla f_v(x^*) \right\|_2^2 \right] \leq 2 \mathcal{L} \left(f(x) - f(x^*) \right) .$$

³Gower, Loizou, Qian, Sailanbayev, Shulgin, Richtárik (2019), ICML

⁴Gazagnadou, Gower, Salmon (2019), ICML

Key constant: Expected Smoothness

Recalling that $\nabla f_{v}(x) = \frac{1}{n} \sum_{i=1}^{n} v_{i} \nabla f_{i}(x)$

Lemma (Expected Smoothness) Let $v \sim \mathcal{D}$ be a sampling vector. There exists $\mathcal{L} \geq 0$ such that for all $x \in \mathbb{R}^d$.

$$\mathbb{E}_{v \sim \mathcal{D}}\left[\left\|\nabla f_v(x) - \nabla f_v(x^*)\right\|_2^2\right] \leq 2\mathcal{L}\left(f(x) - f(x^*)\right) .$$

Example: mini-batching without replacement

$$\mathcal{L} = \mathcal{L}(\boldsymbol{b}) = \frac{1}{\boldsymbol{b}} \frac{n - \boldsymbol{b}}{n - 1} L_{\text{max}} + \frac{n}{\boldsymbol{b}} \frac{\boldsymbol{b} - 1}{n - 1} L.$$

In particular, $\mathcal{L}(\mathbf{1}) = L_{\text{max}}$ and $\mathcal{L}(\mathbf{n}) = L$.

³Gower, Loizou, Qian, Sailanbayev, Shulgin, Richtárik (2019), ICML

⁴Gazagnadou, Gower, Salmon (2019), ICML

Key constant: Expected Smoothness

Recalling that $\nabla f_{v}(x) = \frac{1}{n} \sum_{i=1}^{n} v_{i} \nabla f_{i}(x)$

Lemma (Expected Smoothness) Let $v \sim \mathcal{D}$ be a sampling vector. There exists $\mathcal{L} \geq 0$ such that for all $x \in \mathbb{R}^d$.

$$\mathbb{E}_{v \sim \mathcal{D}} \left[\left\| \nabla f_v(x) - \nabla f_v(x^*) \right\|_2^2 \right] \leq 2 \boldsymbol{\mathcal{L}} \left(f(x) - f(x^*) \right) .$$

Example: mini-batching without replacement

$$\mathcal{L} = \mathcal{L}(\boldsymbol{b}) = \frac{1}{\boldsymbol{b}} \frac{n - \boldsymbol{b}}{n - 1} L_{\text{max}} + \frac{n}{\boldsymbol{b}} \frac{\boldsymbol{b} - 1}{n - 1} L.$$

In particular, $\mathcal{L}(\mathbf{1}) = L_{\text{max}}$ and $\mathcal{L}(\mathbf{n}) = L$.

 \mathcal{L} embodies the complexity of many stochastic algorithms^{3,4}

³Gower, Loizou, Qian, Sailanbayev, Shulgin, Richtárik (2019), ICML

⁴Gazagnadou, Gower, Salmon (2019), ICML

Talk Overview

Problem reformulation and preliminary results

Free-SVRG

L-SVRG-D

Numerical experiments

Conclusion

Free-SVRG

Our First Variant: Free-SVRG

Algorithm 2 Free-SVRG (or 1-SVRG in Raj and Stich, 2018) ▷ inner loop length freely chosen by the user Parameters: m. step size lpha, weights $p_t := (1-lpha\mu)^{m-1-t} \Big/ \sum_{t=0}^{m-1} (1-lpha\mu)^{m-1-t}$ Initialization: $w_0 = x_0^m \in \mathbb{R}^d$ for s = 1, 2, ... do $x_s^0 = x_{s-1}^m$ > continuous update of the iterates for t = 0, 1, ..., m - 1 do Sample $v_t \sim \mathcal{D}$ $g_s^t = \nabla f_{v_s}(x_s^t) - \nabla f_{v_t}(w_{s-1}) + \nabla f(w_{s-1})$ $x_s^{t+1} = x_s^t - \alpha g_s^t$ end for $w_{s} = \sum_{t=0}^{m-1} p_{t} x_{s}^{t}$ end for

Our First Variant: Free-SVRG

Algorithm 2 Free-SVRG (or 1-SVRG in Raj and Stich, 2018)

```
▷ inner loop length freely chosen by the user
Parameters: m.
step size \alpha, weights p_t := (1 - \alpha \mu)^{m-1-t} / \sum_{i=1}^{m-1} (1 - \alpha \mu)^{m-1-i}
Initialization: w_0 = x_0^m \in \mathbb{R}^d
for s = 1, 2, ... do
     x_s^0 = x_{s-1}^m

    ▷ continuous update of the iterates

     for t = 0, 1, ..., m - 1 do
          Sample v_t \sim \mathcal{D}
          g_s^t = \nabla f_{v_s}(x_s^t) - \nabla f_{v_s}(w_{s-1}) + \nabla f(w_{s-1})
          x_s^{t+1} = x_s^t - \alpha g_s^t
     end for
     W_s = \sum_{t=0}^{m-1} p_t x_s^t
end for
```

Solves several issues with SVRG

- Free choice of m the inner loop size
- Inner iterates x_s^t continuously updated (no resetting)
- Analysis capturing independently influence of m and b

Convergence Theorem

Theorem (Convergence of Free-SVRG)Consider the setting of and the following Lyapunov function

$$\phi_s := \|x_s^m - x^*\|_2^2 + 8\alpha^2 \mathcal{L} S_m(f(w_s) - f(x^*)),$$

where
$$S_m = \sum_{i=0}^{m-1} (1 - \alpha \mu)^{m-1-i}$$
.

If $\alpha \leq \frac{1}{6C}$, then the iterates of Free-SVRG converge with

$$\mathbb{E}\left[\phi_{s}\right] \leq \beta^{s}\phi_{0} ,$$

where
$$\beta := \max\left\{(1 - \alpha \mu)^m, \frac{1}{2}\right\}$$
.

Optimal Inner Loop Size

• Total complexity for mini-batching For mini-batching without replacement, the total complexity of getting an $\epsilon > 0$ approximate solution s.t. $\mathbb{E}\left[\|x_s^m - x^*\|_2^2\right] \le \epsilon \,\phi_0$ is

$$C_m(\boldsymbol{b}) \ := \ 2\left(\frac{n}{m} + 2\boldsymbol{b}\right) \max\left\{\frac{3}{\boldsymbol{b}}\frac{n-\boldsymbol{b}}{n-1}\frac{L_{\max}}{\mu} + \frac{3n}{\boldsymbol{b}}\frac{\boldsymbol{b}-1}{n-1}\frac{L}{\mu}, m\right\} \log\left(\frac{1}{\epsilon}\right)$$

Optimal Inner Loop Size

Total complexity for mini-batching

For mini-batching without replacement, the total complexity of getting an $\epsilon>0$ approximate solution s.t. $\mathbb{E}\left[\|x_s^m-x^*\|_2^2\right]\leq\epsilon\,\phi_0$ is

$$C_m(\boldsymbol{b}) \; := \; 2\left(\frac{n}{m} + 2\boldsymbol{b}\right) \max\left\{\frac{3}{\boldsymbol{b}}\frac{n-\boldsymbol{b}}{n-1}\frac{L_{\max}}{\mu} + \frac{3n}{\boldsymbol{b}}\frac{\boldsymbol{b}-1}{n-1}\frac{L}{\mu}, m\right\} \log\left(\frac{1}{\epsilon}\right)$$

Optimal inner loop size

Let us minimize the total complexity w.r.t. m. If $m \in \left[\min\left(n, \frac{L_{\max}}{\mu}\right), \max\left(n, \frac{L_{\max}}{\mu}\right)\right]$, then

$$C_m(1) = O\left(\left(\mathbf{n} + \frac{\mathbf{L}_{\max}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right)\right)$$

Optimal Inner Loop Size

Total complexity for mini-batching

For mini-batching without replacement, the total complexity of getting an $\epsilon>0$ approximate solution s.t. $\mathbb{E}\left[\|x_s^m-x^*\|_2^2\right]\leq\epsilon\,\phi_0$ is

$$C_m(\boldsymbol{b}) \; := \; 2\left(\frac{n}{m} + 2\boldsymbol{b}\right) \max\left\{\frac{3}{\boldsymbol{b}}\frac{n-\boldsymbol{b}}{n-1}\frac{L_{\max}}{\mu} + \frac{3n}{\boldsymbol{b}}\frac{\boldsymbol{b}-1}{n-1}\frac{L}{\mu}, m\right\} \log\left(\frac{1}{\epsilon}\right)$$

• Optimal inner loop size

Let us minimize the total complexity w.r.t. m. If $m \in \left[\min\left(n, \frac{L_{\max}}{\mu}\right), \max\left(n, \frac{L_{\max}}{\mu}\right)\right]$, then

$$C_m(1) = O\left(\left(\mathbf{n} + \frac{\mathbf{L}_{\max}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right)\right)$$

 \rightarrow Includes the practical choice m = n

Optimal Mini-Batch Size

- ullet For any fixed inner loop size m
 - the total complexity is a convex function of b
 - the $\mbox{step size}$ is an $\mbox{increasing function}$ of b

Optimal Mini-Batch Size

- For any fixed inner loop size *m*
 - the total complexity is a convex function of b
 - the ${\bf step\ size}$ is an ${\bf increasing\ function}$ of b

Figure 1: Total complexity (left) and step size (right) as *b* increases.

Optimal Mini-Batch Size

- For any fixed inner loop size *m*
 - the **total complexity** is a **convex function** of *b*
 - the **step size** is an **increasing function** of b

Figure 1: Total complexity (left) and step size (right) as b increases.

• Optimal mini-batch size for the usual choice m = n

$$b^* = \begin{cases} 1 & \text{if } n \geq \frac{3L_{\max}}{\mu} \\ \left\lfloor \min(\tilde{b}, \hat{b}) \right\rfloor & \text{if } \frac{3L}{\mu} < n < \frac{3L_{\max}}{\mu} \end{cases} & \hat{b} := \sqrt{\frac{n}{2} \frac{L_{\max} - L}{nL - L_{\max}}} \\ \left| \hat{b} \right| & \text{otherwise, if } n \leq \frac{3L}{\mu} \end{cases} & \tilde{b} := \frac{3n(L_{\max} - L)}{n(n-1)\mu - 3(nL - L_{\max})}$$

An Issue with Free-SVRG

Algorithm 2 Free-SVRG

```
Parameters: m, step size \alpha,
weights p_t := (1 - \alpha \mu)^{m-1-t} / \sum_{i=0}^{m-1} (1 - \alpha \mu)^{m-1-i} \triangleright need to compute \mu first
Initialization: w_0 = x_0^m \in \mathbb{R}^d
for s = 1, 2, ... do
     x_{2}^{0} = x_{2}^{m}
     for t = 0, 1, ..., m - 1 do
           Sample v_t \sim \mathcal{D}
          g_s^t = \nabla f_{v_t}(x_s^t) - \nabla f_{v_t}(w_{s-1}) + \nabla f(w_{s-1})
          x_s^{t+1} = x_s^t - \alpha g_s^t
     end for
     w_s = \sum_{t=0}^{m-1} p_t x_s^t
end for
```

An Issue with Free-SVRG

Algorithm 2 Free-SVRG

```
Parameters: m, step size \alpha,
weights p_t := (1 - \alpha \mu)^{m-1-t} / \sum_{i=0}^{m-1} (1 - \alpha \mu)^{m-1-i} \triangleright need to compute \mu first
Initialization: w_0 = x_0^m \in \mathbb{R}^d
for s = 1, 2, ... do
     x_{2}^{0} = x_{2}^{m}
     for t = 0, 1, ..., m - 1 do
           Sample v_t \sim \mathcal{D}
          g_s^t = \nabla f_{v_t}(x_s^t) - \nabla f_{v_t}(w_{s-1}) + \nabla f(w_{s-1})
          x_s^{t+1} = x_s^t - \alpha g_s^t
     end for
     w_s = \sum_{t=0}^{m-1} p_t x_s^t
end for
```

Only issue

ullet Free-SVRG requires the strong convexity μ often had to estimate

An Issue with Free-SVRG

Algorithm 2 Free-SVRG

```
Parameters: m, step size \alpha,
weights p_t := (1 - \alpha \mu)^{m-1-t} / \sum_{i=0}^{m-1} (1 - \alpha \mu)^{m-1-i} \triangleright need to compute \mu first
Initialization: w_0 = x_0^m \in \mathbb{R}^d
for s = 1, 2, ... do
     x_{2}^{0} = x_{2}^{m}
     for t = 0, 1, ..., m - 1 do
           Sample v_t \sim \mathcal{D}
          g_s^t = \nabla f_{v_t}(x_s^t) - \nabla f_{v_t}(w_{s-1}) + \nabla f(w_{s-1})
          x_s^{t+1} = x_s^t - \alpha g_s^t
     end for
     w_s = \sum_{t=0}^{m-1} p_t x_s^t
end for
```

Only issue

ullet Free-SVRG requires the strong convexity μ often had to estimate

Talk Overview

Problem reformulation and preliminary results

Free-SVRG

L-SVRG-D

Numerical experiments

L-SVRG-D

Our Second Variant: Loopless-SVRG-Decrease

Algorithm 3 L-SVRG-D

Parameters: step size
$$\alpha$$
, $p \in (0,1]$
Initialization: $w^0 = x^0 \in \mathbb{R}^d$, $\alpha_0 = \alpha$
for $k = 0, 1, 2, \ldots$ do
Sample $v_k \sim \mathcal{D}$
 $g^k = \nabla f_{v_k}(x^k) - \nabla f_{v_k}(w^k) + \nabla f(w^k)$
 $x^{k+1} = x^k - \alpha_k g^k$
 $(w^{k+1}, \alpha_{k+1}) = \begin{cases} (x^k, \alpha) & \text{with prob. } p \\ (w^k, \sqrt{1-p} \alpha_k) & \text{with prob. } 1-p \end{cases}$
end for

Our Second Variant: Loopless-SVRG-Decrease

Algorithm 3 L-SVRG-D

Parameters: step size
$$\alpha$$
, $p \in (0,1]$
Initialization: $w^0 = x^0 \in \mathbb{R}^d$, $\alpha_0 = \alpha$
for $k = 0, 1, 2, \dots$ do
Sample $v_k \sim \mathcal{D}$
 $g^k = \nabla f_{v_k}(x^k) - \nabla f_{v_k}(w^k) + \nabla f(w^k)$
 $x^{k+1} = x^k - \alpha_k g^k$
 $(w^{k+1}, \alpha_{k+1}) = \begin{cases} (x^k, \alpha) & \text{with prob. } p \\ (w^k, \sqrt{1-p} \alpha_k) & \text{with prob. } 1-p \end{cases}$
end for

Benefits

- Bigger step size for the first iterations of the loop, when the variance is low
- Smaller step size for the last iterations of the loop, when the variance is high

Our Second Variant: Loopless-SVRG-Decrease

Algorithm 3 *L-SVRG-D*

```
Parameters: step size \alpha, p \in (0,1]

Initialization: w^0 = x^0 \in \mathbb{R}^d, \alpha_0 = \alpha

for k = 0, 1, 2, \dots do

Sample v_k \sim \mathcal{D}

g^k = \nabla f_{v_k}(x^k) - \nabla f_{v_k}(w^k) + \nabla f(w^k)

x^{k+1} = x^k - \alpha_k g^k

(w^{k+1}, \alpha_{k+1}) = \begin{cases} (x^k, \alpha) & \text{with prob. } p \\ (w^k, \sqrt{1-p} \alpha_k) & \text{with prob. } 1-p \end{cases}
```

end for

Benefits

- Bigger step size for the first iterations of the loop, when the variance is low
- Smaller step size for the last iterations of the loop, when the variance is high
 - → Same total complexity and optimal parameter settings as Free-SVRG (up to constants)

Talk Overview

Problem reformulation and preliminary results

Free-SVRG

L-SVRG-D

Numerical experiments

Numerical experiments

Performance of Theoretical Settings of SVRG Variants

- Data: from LIBSVM and UCI repositories
- Problems: ridge regression and regularized logistic regression, $\lambda \in \{10^{-3}, 10^{-1}\}$

Figure 2: Theoretical settings for SVRG, *Free*-SVRG and *L*-SVRG-D. Left: l_2 -regularized logistic regression on *ijcnn1*. Right: l_2 -regularized ridge regression on *YearPredictionMSD*.

Optimality of our Mini-Batch Size

Figure 3: Different mini-batch sizes for *Free-SVRG* for a l_2 -regularized ridge regression problem on the *slice* data set.

Optimality of our Inner Loop Size

Figure 4: Different inner loop sizes for Free-SVRG for a l_2 -regularized logistic regression problem on the ijcnn1 data set.

Talk Overview

Problem reformulation and preliminary results

Free-SVRG

L-SVRG-D

Numerical experiments

 Two variants of SVRG designed to get closer to practical implementations: Free-SVRG & L-SVRG-D

⁵LIBSVM and UCI repositories

- Two variants of SVRG designed to get closer to practical implementations: Free-SVRG & L-SVRG-D
- Optimal parameters: inner loop size m^* and mini-batch size b^*

⁵LIBSVM and UCI repositories

- Two variants of SVRG designed to get closer to practical implementations: Free-SVRG & L-SVRG-D
- Optimal parameters: inner loop size m^* and mini-batch size b^*
- Convincing numerics verifying the performance of our theoretical settings on real data sets⁵

Julia code available at
https://github.com/gowerrobert/StochOpt.jl/

⁵LIBSVM and UCI repositories

- Two variants of SVRG designed to get closer to practical implementations: Free-SVRG & L-SVRG-D
- Optimal parameters: inner loop size m^* and mini-batch size b^*
- Convincing numerics verifying the performance of our theoretical settings on real data sets⁵

Julia code available at
https://github.com/gowerrobert/StochOpt.jl/

More details in Sebbouh, Gazagnadou, Jelassi, Bach, Gower (2019), NeurIPS "Towards closing the gap between the theory and practice of SVRG"

⁵LIBSVM and UCI repositories

References

- Chang and Lin (2011), ACM TIST "LIBSVM: A library for support vector machines"
- Gazagnadou, Gower and Salmon (2019), ICML
 "Optimal mini-batch and step sizes for SAGA"
- Gower, Loizou, Qian, Sailanbayev, Shulgin, Richtárik (2019), ICML
 "SGD: General Analysis and Improved Rates"
- Gower, Richtárik and Bach (2018), preprint online
 "Stochastic Quasi-Gradient Methods: Variance Reduction via Jacobian Sketching"
- Hofmann, Lucchi, Lacoste-Julien, McWilliams (2015), NIPS
 "Variance Reduced Stochastic Gradient Descent with Neighbors"
- Johnson and Zhang (2013), NIPS "Accelerating Stochastic Gradient Descent using Predictive Variance Reduction"
- Raj and Stich (2018), preprint online
 "k-SVRG: Variance Reduction for Large Scale Optimization"
- Sebbouh, Gazagnadou, Jelassi, Bach, Gower (2019), NeurlPS
 "Towards closing the gap between the theory and practice of SVRG"

Thank You!

Questions?