Parseo y Generación de Código – 2^{do} semestre 2019 Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Primer parcial

Nota: este parcial es a libro abierto. Se permite tener cualquier material manuscrito o impreso, pero no se permite el uso de dispositivos electrónicos. El parcial se califica con una nota numérica de 1 a 10. Se requiere ≥ 4 en ambos parciales para aprobar la materia. Para promocionar se requiere nota ≥ 6 en ambos parciales y promedio ≥ 7 .

Ejercicio 1. En el alfabeto que incluye los bits "0" y "1", los corchetes ("[", "]") y la coma ",", consideremos el lenguaje de las listas de números binarios, por ejemplo:

[] [1011] [001,010,100] [1000,111,110,101,100,11,10,1,0]

Más precisamente, un número binario es una secuencia no vacía de bits. Una lista de números binarios empieza y termina con corchetes, y puede incluir cero, uno, o más números. Los números se separan por comas. Se pide:

- a. Proponer una gramática G_1 independiente del contexto que genere todas las listas de números binarios.
- b. ¿La gramática G_1 es LL(1)?
- c. Si G_1 no es LL(1) proponer una gramática G_2 que genere el mismo lenguaje pero que sea LL(1).

Ejercicio 2. Eliminar la recursión a izquierda de la gramática $G = (\{F, A, B\}, \{\text{true}, \text{false}, \text{and}, \text{or}, (,)\}, \mathcal{P}, F)$:

$$F o A \mid B$$
 $A o F$ or $F \mid \mathtt{false}$ $B o F$ and $F \mid \mathtt{true}$

Ejercicio 3. Considerar la siguiente gramática $G = (\{S, T, U\}, \{a, b\}, \mathcal{P}, S)$:

$$S \rightarrow T a T$$
 $T \rightarrow U b U$ $U \rightarrow \epsilon \mid a U \mid b U$

- a. Demostrar que G es ambigua.
- b. Dar un autómata finito determinístico que reconozca el lenguaje generado por G.

Ejercicio 4. Sean L_1, L_2 lenguajes en el alfabeto $\{a, b\}$. Determinar si las siguientes afirmaciones son verdaderas o falsas y justificar:

- a. Si L_1 es regular y L_2 no es regular, entonces $L_1 \cup L_2$ es regular.
- b. Si L_1 es regular y L_2 no es regular, entonces $L_1 \cup L_2$ no es regular.
- c. Si L_1 es regular y L_2 no es regular, entonces L_1L_2 no es regular.

Ejercicio 5. Dada la siguiente gramática $G = (\{A, B\}, \{a, b, c\}, \mathcal{P}, A)$:

$$A \rightarrow a B \mid A b$$
 $B \rightarrow \epsilon \mid c B c$

- a. Armar el autómata LR(0), partiendo de la gramática extendida con una producción $S \to A$ \$.
- b. Decidir si la gramática es LR(0) y/ó SLR, señalando los conflictos si corresponde. (No es necesario escribir explícitamente la tabla).
- c. Mostrar el progreso del estado de la pila y la entrada si se intentara analizar la cadena accb.

Justificar todas las respuestas.