The group G is isomorphic to the projective special unitary group PSU(3,3). Ordinary character table of $G \cong PSU(3,3)$:

	1 <i>a</i>	2a	3a	3b	4a	4b	4c	6a	7a	7b	8a	8b	12a	12b
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	6	-2	-3	0	-2	-2	2	1	-1	-1	0	0	1	1
χ_3	7	-1	-2	1	3	3	-1	2	0	0	-1	-1	0	0
χ_4	7	3	-2	1	-1 + 2 * E(4)	-1 - 2 * E(4)	1	0	0	0	E(4)	-E(4)	-1 + E(4)	-1 - E(4)
χ_5	7	3	-2	1	-1 - 2 * E(4)	-1 + 2 * E(4)	1	0	0	0	-E(4)	E(4)	-1 - E(4)	-1 + E(4)
χ_6	14	-2	5	-1	2	2	2	1	0	0	0	0	-1	-1
χ_7	21	5	3	0	1	1	1	-1	0	0	-1	-1	1	1
χ_8	21	1	3	0	-3 + 2 * E(4)	-3 - 2 * E(4)	-1	1	0	0	-E(4)	E(4)	E(4)	-E(4)
χ_9	21	1	3	0	-3 - 2 * E(4)	-3 + 2 * E(4)	-1	1	0	0	E(4)	-E(4)	-E(4)	E(4)
χ_{10}	27	3	0	0	3	3	-1	0	-1	-1	1	1	0	0
χ_{11}	28	-4	1	1	4 * E(4)	-4 * E(4)	0	-1	0	0	0	0	-E(4)	E(4)
χ_{12}	28	-4	1	1	-4 * E(4)	4 * E(4)	0	-1	0	0	0	0	E(4)	-E(4)
χ_{13}	32	0	-4	-1	0	0	0	0	$-E(7)^3 - E(7)^5 - E(7)^6$	$-E(7) - E(7)^2 - E(7)^4$	0	0	0	0
χ_{14}	32	0	-4	-1	0	0	0	0	$-E(7) - E(7)^2 - E(7)^4$	$-E(7)^{} 3 - E(7)^{} 5 - E(7)^{} 6$	0	0	0	0

Trivial source character table of $G \cong PSU(3,3)$ at p = 3

Trivial source character table of $G \cong PSU(3,3)$ at $p=3$																						
$Normalisers N_i$				N_1							N_2			N_3	N_4				N_5			
$p-subgroups\ of\ G\ up\ to\ conjugacy\ in\ G$				P_1							P_2			P_3	P_4				P_5			
Representatives $n_j \in N_i$	1a 2e	a 4 a	4b	4c $7a$	7b	8a	8b	1a $2a$	4b	4a $8l$	8a	8b	8a	1a 2a	1a 2a	$a \mid 1a \mid 2a$	4b	$\overline{4a}$	8b	8a	8b	8a
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 2 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{4}$ 135 1	5 3	3	7 2	2	-1	-1	0 0	0	0 0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0
	$_{4} \mid 108 - 1$	12 0	0	4 $E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$	0	0	0 0	0	0 0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0
	$_{4} \mid 108 - 1$	12 0	0	4 $E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$	0	0	0 0	0	0 0	0	0	0	0 0	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0 0	0	0	0	0	0	0
	4 81 9	-3	-3	1 $-E(7)^3 - E(7)^5 - E(7)^6$	$-E(7) - E(7)^2 - E(7)^4$	-1 - 2 * E(4)	-1 + 2 * E(4)	0 0	0	0 0	0	0	0	0 0	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0 0	0	0	0	0	0	0
	4 81 9	-3	-3	1 $-E(7) - E(7)^2 - E(7)^4$	$-E(7)^{} 3 - E(7)^{} 5 - E(7)^{} 6$	-1 + 2 * E(4)	-1 - 2 * E(4)	0 0	0	0 0	0	0	0	0 0	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0 0	0	0	0	0	0	0
		6 6	6	2 1	1	-2	-2	0 0	0	0 0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0
						-E(4)	E(4)	0 0	0	0 0	0	0	0	0 0	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0 0	0	0	0	0	0	0
	4 81 -	3 -3 - 6 * E(4)	-3 + 6 * E(4)	$-1 -E(7) - E(7)^2 - E(7)^4$	$-E(7)^{} 3 - E(7)^{} 5 - E(7)^{} 6$	E(4)	-E(4)	0 0	0	0 0	0	0	0	0 0	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0 0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_1$		3	3 -	-1 —1	-1	1	1	0 0	0	0 0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_1$	4 36 4	4	4	4 1	1	0	0	9 1	1	1 1	1	1	1	0 0	0 0	0 0	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_1 $	4 63 7	-5	-5	-1 0	0	-1	-1	9 1	1	1 -	-1	-1	-1	0 0	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0 0	0	0	0	0	0	0
	4 63 -	5 -1 + 6 * E(4)	-1 - 6 * E(4)	1 0	0	-E(4)	E(4)	9 1	-1	-1 $E(\cdot)$	1) $-E(4)$	E(4)	-E(4)	0 0	0 0	0 0	0	0	0	0	0	0
	4 63 -	5 -1 - 6 * E(4)	-1 + 6 * E(4)	1 0	0	E(4)	-E(4)	9 1	-1	-1 $-E$	(4) $E(4)$	()	E(4)	0 0	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0 0	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_1 $	4 144 -	4 2*E(4)	-2 * E(4)	$2 - E(7)^3 - E(7)^5 - E(7)^6$		-1 - E(4)	-1 + E(4)	9 -1	E(4) -	-E(4) $E(8)$	$^{}3 \qquad E(8)$	$-E(8)^{} 3$	(/	1		0 0	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_1 $	$_{4}$ 144 $-$	-2*E(4)	2 * E(4)	$2 -E(7) - E(7)^2 - E(7)^4$		` '	-1 - E(4)	9 -1	()	()	$E(8)^{}$	3 - E(8)	$-E(8)^{} 3$	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0 0	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_1 $	$_{4}$ 144 $-$	-2*E(4)	2 * E(4)		$-E(7)^{} 3 - E(7)^{} 5 - E(7)^{} 6$	()	-1 - E(4)	1	` '	` '	2(0)	- (0)	$E(8)^{} 3$	0 0	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0 0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_1$	4 144 -	4 $2*E(4)$	-2 * E(4)	$2 - E(7)^3 - E(7)^5 - E(7)^6$	$-E(7) - E(7)^2 - E(7)^4$	-1 - E(4)	-1 + E(4)	9 -1	E(4) -	-E(4) $-E(8)$	-E(8)	$E(8)^3$	E(8)	0 0	0 0	0 0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_1$	4 36 15	2 0	0	4 1	1	0	0	0 0	0	0 0	0	0	0	3 3	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0 0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_1$	$_{4}$ 63 $-$	9 3	3 -	-1 0	0	-1	-1	0 0	0	0 0	0	0	0	3 -3	0 0	0 0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 2 \cdot \chi_7 + 2 \cdot \chi_8 + 2 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_1$!		-6	2 2	2	-2	-2	12 4	0	0 0	0	0	0	3 1	3 1	0 0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 2 \cdot \chi_{11} + 2 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_1$		13 3	3	3 0	0	-1	-1	12 -4	0	0 0	0	0	0	3 -1	3 –	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_1$!	1	1	1 1	1	1	1	1 1	1	1 1	1	1	1	1 1	1 1	1 1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_1$!	4	4	0 0	0	-2	-2	1 1	1	1 -	-1	-1	-1	1 1	1 1	1 1	1	1	-1	-1	-1	-1
	4 28 -	4 4 * E(4)	-4 * E(4)	0 0	0	0	0	1	-E(4)	E(4) $-E$	$(8) -E(8)^{}$	3 2(0)	$E(8)^{} 3$	1 -1	1 -	1 1 -1	-E(4)	E(4)	-E(8)	$-E(8)^{} 3$	E(8)	$E(8)^{}3$
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_1 $	4 28 -	4 -4 * E(4)	4 * E(4)	0 0	0	0	0	1 -1	\ /	-E(4) $-E(8)$	-E(8)	$E(8)^3$	(/	1 -1	1 -	1 1 -1	E(4)	-E(4) -	$-E(8)^{} 3$	-E(8)	$E(8)^{} 3$	E(8)
	4 28 -	4 -4 * E(4)	4 * E(4)	0 0	0	0	0	1	E(4) -	` ' ' ' '	$^{}3 \qquad E(8)$	$-E(8)^{} 3$	()			$1 \mid 1 - 1$	()	-E(4) E	$E(8)^{} 3$	E(8)	$-E(8)^{} 3$	-E(8)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_1$	I	4 4*E(4)	-4 * E(4)	0 0	0	0	0	1 -1	-E(4)	E(4) $E(3)$	$E(8)^{}$	()	$-E(8)^{} 3$	$3 \mid 1 -1$	1 -	$1 \mid 1 - 1$	-E(4)	E(4)	E(8)	$E(8)^{} 3$	-E(8)	$-E(8)^{} 3$
	1	-4	-4	0 0	0	2 * E(4)	-2 * E(4)	1 1	-1	-1 $-E$	(4) $E(4)$	-E(4)	E(4)	1 1	1 1	1 1	-1	-1	-E(4)	E(4)	-E(4)	E(4)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_1$	4 28 4	4 -4	-4	0 0	0	-2 * E(4)	2 * E(4)	1 1	-1	-1 $E(\cdot)$	-E(4)	E(4)	-E(4)	1 1	1 1	1 1	-1	-1	E(4)	-E(4)	E(4)	-E(4)
	· · · · · · · · · · · · · · · · · · ·			·	·								· ·						· ·			

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(2,18,16)(3,23,20)(4,12,15)(5,27,28)(6,14,10)(7,22,9)(8,24,25)(11,17,13)(19,26,21)]) \cong \mathbf{C3}$

 $P_3 = Group([(2, 26, 3)(4, 7, 24)(5, 13, 10)(6, 27, 11)(8, 15, 9)(12, 22, 25)(14, 28, 17)(16, 19, 20)(18, 21, 23)]) \cong \mathbf{C3}$

 $P_4 = Group([(2,27,4)(3,14,8)(5,15,16)(6,25,20)(7,19,17)(9,21,11)(10,24,23)(12,18,28)(13,22,26),(2,18,16)(3,23,20)(4,12,15)(5,27,28)(6,14,10)(7,22,9)(8,24,25)(11,17,13)(19,26,21)]) \cong \mathbf{C3} \times \mathbf{C3}$

 $N_2 = Group([(3,26)(4,27)(5,15)(6,7)(8,13)(9,10)(11,24)(12,28)(4,27)(5,15)(6,7)(8,13)(9,10)(11,24)(12,28)(4,27)(13,28)(4,27)(13,28)(4,27)(13,28)(4,27)(13,28)(14,$

 $N_3 = Group([(3,20)(4,27)(5,15)(6,7)(8,13)(9,10)(11,24)(12,28)(14,22)(17,25)(19,20)(21,23), (2,26,3)(4,7,24)(5,13,10)(6,27,11)(8,15,9)(12,22,25)(14,28,17)(16,19,20)(18,21,23), (2,26,3)(4,17,24)(17,25)(19,20)(19,21,23), (2,26,3)(4,17,24)(19,21,26)(19,20)(19,21,23), (2,26,3)(4,17,24)(19,21,26)(19,20)(19,21,23), (2,26,3)(4,17,24)(19,21,26)(19,20)(19,21,23), (2,26,3)(4,17,24)(19,21,26)(19,20)(19,21,23), (2,26,3)(4,17,24)(19,21,26)(19,20)(19,21,23), (2,26,3)(4,17,24)(19,21,26)(19,20)(19,21,23), (2,26,3)(4,17,24)(19,21,26)(19,20)(19,20)(19,21,26)(19,20)(1$

 $N_4 = Group([(3,26)(4,27)(5,15)(6,7)(8,13)(9,10)(11,24)(12,28)(14,22)(17,25)(19,20)(21,23), (2,27,4)(3,14,8)(5,15,16)(6,25,20)(7,19,17)(9,21,11)(10,24,23)(12,18,28)(13,22,26), (2,26)(4,11)(5,9)(6,24)(7,27)(8,10)(12,17)(13,15)(14,25)(16,19)(18,21)(22,28), (2,18,16)(3,23,20)(4,12,15)(5,27,28)(6,14,10)(7,22,9)(8,24,25)(11,17,13)(19,26,21)]) \\ \cong ((C3 \times C3) : C4) : C$

 $N_5 = Group([(3,26)(4,27)(5,15)(6,7)(8,13)(9,10)(11,24)(12,28)(14,22)(17,25)(19,20)(21,23), (2,6,3)(4,7,24)(5,13,10)(6,27,11)(8,15,9)(12,22,25)(14,28,17)(16,19,20)(12,23,13)(19,28,25)(21,27,24), (3,17,26,25)(4,9,27,10)(5,14,15,22)(6,12,7,28)(8,23,13,21)(11,19,24,20), (3,27,25,9,26,4,17,10)(5,8,22,21,15,13,14,23)(6,20,28,24,7,19,12,11)(16,18)]) \\ \cong ((C3 \times C3) : C3) : C3) : C3) : C4) + (C3 \times C3) : C4) + (C4 \times C3) : C4) + ($