Outline of the lecture

- The set of real numbers
- Sequences of real numbers
 - Convergence
 - Subsequences
 - Monotone convergence theorem
 - Bolzano-Weierstrass theorem
 - Cauchy sequences
 - The extended real line
 - Limit points
- Sequences of functions
- Remarkable inequalities

The set of real numbers

What is \mathbb{R} ?

Definition

A set of real numbers is a Dedekind-complete ordered field, i.e. a quadruplet $(\mathbb{R},+,\cdot,\leq)$ where \mathbb{R} is a set with at least two elements, + (addition) and \cdot (multiplication) are two algebraic operations on \mathbb{R} and \leq is a relation (total order) on \mathbb{R} such that:

$$(\mathbb{F}_1) \ x + (y+z) = (x+y) + z, \ \forall x, y, z \in \mathbb{R};$$

$$(F_2) \exists 0 \in \mathbb{R}, \ \forall x \in \mathbb{R} : x + 0 = 0 + x = x;$$

(F₃)
$$\forall x \in \mathbb{R}, \ \exists (-x) \in \mathbb{R} : x + (-x) = (-x) + x = 0;$$

$$(F_4)$$
 $x + y = y + x$, $\forall x, y \in \mathbb{R}$;

$$(F_5)$$
 $(x \cdot y) \cdot z = x \cdot (y \cdot z), \forall x, y, z \in \mathbb{R};$

$$(\mathbb{F}_6) \exists 1 \in R, \ \forall x \in \mathbb{R} : x \cdot 1 = 1 \cdot x = x;$$

$$(F_7) \ \forall x \in \mathbb{R}^*, \ \exists x^{-1} \in \mathbb{R} : x \cdot x^{-1} = x^{-1} \cdot x = 1;$$

(F₈)
$$x \cdot y = y \cdot x$$
, $\forall x, y \in \mathbb{R}$;

(F₉)
$$x \cdot (y+z) = x \cdot y + x \cdot z$$
, $\forall x, y, z \in \mathbb{R}$;

Definition (continuation)

- (0_1) $x \leq x$, $\forall x \in \mathbb{R}$;
- $(0_2) \ (x \le y) \land (y \le x) \Rightarrow x = y, \ \forall x, y \in \mathbb{R}$
- (0_3) $(x \le y) \land (y \le z) \Rightarrow x \le z, \forall x, y, z \in \mathbb{R}$
- $(0_4) \ (x \le y) \lor (y \le x), \ \forall x, y \in \mathbb{R}$
- (0_5) $x \le y \Rightarrow x + z \le y + z$, $\forall x, y, z \in \mathbb{R}$;
- (0_6) $(x \le y) \land (0 \le z) \Rightarrow x \cdot z \le y \cdot z, \ \forall x, y, z \in \mathbb{R};$
 - (C) the ordered set (\mathbb{R}, \leq) is *Dedekind-complete*, i.e. every non-empty and *upper bounded* set $A \subseteq \mathbb{R}$ admits a sup.

For $x, y \in \mathbb{R}$, we can define two auxiliary operations:

- substraction: $x y := x + (-y), x, y \in \mathbb{R};$
- division: $\frac{x}{y} = x/y := x \cdot (y^{-1}), x \in \mathbb{R}, y \in \mathbb{R}^*.$

4 D > 4 P > 4 E > 4 E > E 9 Q Q

Absolute value

Also, the absolute value of a number x is defined as

$$|x| := \left\{ \begin{array}{ll} x, & x \ge 0; \\ -x, & x < 0. \end{array} \right.$$

Proposition

We have:

- *i*) $|x| \geq 0$, $\forall x \in \mathbb{R}$;
- $|x| = 0 \Leftrightarrow x = 0, \ \forall x \in \mathbb{R};$
- iii) $|xy| = |x| \cdot |y|$, $\forall x, y \in \mathbb{R}$;
- $|x + y| \le |x| + |y|, \ \forall x, y \in \mathbb{R}.$

Other sets of numbers

There exists a unique (up to a homeomorphism of ordered fields) set of real numbers, so we will call $\mathbb R$ the set of real numbers.

In fact, one can construct $\mathbb R$ starting with $\mathbb N$, then continuing with $\mathbb Z$, $\mathbb Q$. Reciprocally, if we already have set $\mathbb R$, we can define

$$\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}$$

as follows:

- $\mathbb{N} := \bigcap \{ N \in \mathscr{P}(\mathbb{R}) \mid 0 \in N, \ n \in N \Rightarrow n+1 \in N, \ \forall n \in N \}$ = $\{0, 1, 1+1, (1+1)+1, \dots \} = \{0, 1, 2, 3, \dots \};$
- $\bullet \ \mathbb{Z} := \mathbb{N} \cup \{-n \mid n \in \mathbb{N}\};$
- $\bullet \ \mathbb{Q} := \{ m/n \mid m \in \mathbb{Z}, \ n \in \mathbb{N}^* \}.$

Supremum and infimum

Concerning the *least upper bound* (\sup) and *greatest lower bound* (\inf) of a non-empty subset of \mathbb{R} , they can be characterized as follows:

Proposition

Let A be a non-empty subset of \mathbb{R} .

- **1** An element $\alpha \in \mathbb{R}$ is the supremum of A if and only if:
 - i) $x \leq \alpha$, $\forall x \in A$;
 - *ii*) $\forall \varepsilon > 0$, $\exists x_{\varepsilon} \in A : \alpha \varepsilon < x_{\varepsilon}$.
- **2** An element $\beta \in \mathbb{R}$ is the infimum of A if and only if:
 - i) $x \geq \beta$, $\forall x \in A$;
 - ii) $\forall \varepsilon > 0$, $\exists x_{\varepsilon} \in A : \beta + \varepsilon > x_{\varepsilon}$.

It is now easy to check that, for $a, b \in \mathbb{R}$ with a < b,

- $\inf[a, b] = \inf[a, b] = \inf(a, b] = \inf(a, b) = a$;
- $\sup[a, b] = \sup[a, b] = \sup(a, b] = \sup(a, b) = b$.

◆□ > ◆□ > ◆□ > ◆□ > ◆□

Sequences of real numbers

- A sequence of real numbers is a function $x : \mathbb{N} \to \mathbb{R}$.
- We denote x_n instead of x(n), for $n \in \mathbb{N}$.
- We denote $(x_n)_{n\in\mathbb{N}}$, $(x_n)_{n\geq 0}$ or (x_n) instead of the function x.
- Sometimes, we denote $(x_n)_{n\geq p}$ for a function $x:\{n\in\mathbb{N}\mid n\geq p\}\to\mathbb{R}$ or $(x_{m+p})_{m\geq 0}.$
- By $\{x_n\}_{n\in\mathbb{N}}$ we denote the set $\{x_n\mid n\in\mathbb{N}\}$.
- If $A \subseteq \mathbb{R}$, $(x_n)_{n \in \mathbb{N}} \subseteq A$ means (abuse of language) $\{x_n\}_{n \in \mathbb{N}} \subseteq A$, i.e.

$$x_n \in A, \ \forall n \in \mathbb{N}.$$

A. Zălinescu (lași)

Definition

We say that a sequence $(x_n)_{n\in\mathbb{N}}$ is:

• upper bounded if $\{x_n\}_{n\in\mathbb{N}}$ is upper bounded, i.e.

$$\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N} : x_n \leq M;$$

• lower bounded if $\{x_n\}_{n\in\mathbb{N}}$ is lower bounded, i.e.

$$\exists m \in \mathbb{R}, \ \forall n \in \mathbb{N} : x_n \geq m;$$

• bounded if $\{x_n\}_{n\in\mathbb{N}}$ is bounded, i.e.

$$\exists m, M \in \mathbb{R}, \ \forall n \in \mathbb{N} : m \leq x_n \leq M;$$

• *unbounded* if $\{x_n\}_{n\in\mathbb{N}}$ is not bounded.

Examples:

- $((-1)^n)_{n\geq 1}$ is bounded (since $\{(-1)^n\}_{n\geq 1}=\{-1,1\}$);
- $(2^n)_{n\in\mathbb{N}}$ is not bounded (it is lower bounded, but not upper bounded).

Definition

We say that a sequence $(x_n)_{n\in\mathbb{N}}$ is:

- increasing if $x_n \leq x_{n+1}$, $\forall n \in \mathbb{N}$;
- decreasing if $x_n \ge x_{n+1}$, $\forall n \in \mathbb{N}$;
- monotone if it is increasing or decreasing;
- strictly increasing if $x_n < x_{n+1}$, $\forall n \in \mathbb{N}$;
- strictly decreasing if $x_n > x_{n+1}$, $\forall n \in \mathbb{N}$;
- strictly monotone if it is strictly increasing or strictly decreasing.

Examples:

- $((-1)^n)_{n>1}$ is not monotone;
- $(2^n)_{n\in\mathbb{N}}$ is strictly increasing;
- $\left(\frac{1}{n}\right)_{n\geq 1}$ is strictly decreasing;
- The constant sequence $(c)_{n\in\mathbb{N}}$ (for $c\in\mathbb{R}$) is increasing and decreasing in the same time.

Convergence

Definition

We say that a sequence $(x_n)_{n\in\mathbb{N}}$ is:

• convergent, if there exists an element $x \in \mathbb{R}$, called a *limit* of the sequence $(x_n)_{n \in \mathbb{N}}$, such that:

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}, \ \forall n \geq n_{\varepsilon} : |x_n - x| < \varepsilon;$$

• divergent, if it is not convergent.

Terminology: If $(x_n)_{n\in\mathbb{N}}$ is convergent and $x\in\mathbb{R}$ is a limit of $(x_n)_{n\in\mathbb{N}}$, we say that $(x_n)_{n\in\mathbb{N}}$ converges to x and we write this

$$x_n \xrightarrow[n \to \infty]{} x \quad (x_n \to x)$$

or

$$\lim_{n\to\infty} x_n = x.$$

Properties of convergent sequences

Proposition

The limit of a sequence of real numbers is unique.

Proposition

Any convergent sequence is bounded.

Therefore, any unbounded sequence does not converge (example: $(a^n)_{n\geq 1}$ with |a|>1).

Examples.

We have

$$\lim_{n\to\infty}\frac{1}{n}=0.$$

- The constant sequence $(c)_{n\in\mathbb{N}}$ (for $c\in\mathbb{R}$) is convergent to c.
- The sequence $(a^n)_{n\geq 1}$ is convergent for $a\in (-1,1]$ and divergent for $a\in \mathbb{R}\setminus (-1,1]$; we have

$$\lim_{n \to \infty} a^n = \begin{cases} 0, & -1 < a < 1; \\ 1, & a = 1. \end{cases}$$

Another well known limit is

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e,$$

where e is Euler's number.

40 × 40 × 45 × 45 × 5 × 00 0

Subsequences

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. A *subsequence* of $(x_n)_{n\in\mathbb{N}}$ is a sequence $(x_{n_k})_{k\in\mathbb{N}}$ where $(n_k)_{k\in\mathbb{N}}\subseteq\mathbb{N}$ is a strictly increasing sequence of natural numbers.

Proposition

A subsequence of a convergent sequence is also convergent and it converges to the same limit.

To prove that a sequence $(x_n)_{n\in\mathbb{N}}$ does *not* converge: find $(x_{n_k})_{k\in\mathbb{N}}$ and $(x_{m_k})_{k\in\mathbb{N}}$ converging to different limits.

Example. $((-1)^n)_{n\geq 1}$ is not convergent, because the subsequence $((-1)^{2k})_{k\geq 1}$ is the constant sequence converging to 1, while the subsequence $((-1)^{2k+1})_{k\geq 0}$ is the constant sequence converging to -1.

Operations with sequences

Proposition

Let $x_n \to x \in \mathbb{R}$ and $y_n \to y \in \mathbb{R}$. Then:

- i) $\lim_{n\to\infty}(x_n+y_n)=x+y$;
- ii) $\lim_{n\to\infty}(x_ny_n)=xy$;
- iii) $\lim_{n\to\infty}(x_n-y_n)=x-y;$
- iv) if $y \neq 0$, $\lim_{n \to \infty} \left(\frac{x_n}{y_n} \right) = \frac{x}{y}$;
- v) if $x_n \leq y_n$, $\forall n \in \mathbb{N}$, then $x \leq y$;
- vi) (squeeze theorem) if the sequence (z_n) is such that $x_n \le z_n \le y_n$, $\forall n \in \mathbb{N}$ and x = y, then (z_n) is convergent and $\lim_{n \to \infty} z_n = x$.

Criterium of convergence: Let $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$, $(\alpha_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}_+$ such that $\alpha_n\to 0$ and $x\in\mathbb{R}$. If

$$|x_n-x|\leq \alpha_n, \ \forall n\in\mathbb{N},$$

then $x_n \to x$.

Monotone convergence theorem

Theorem (Weierstrass)

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers.

- **1** If (x_n) is increasing and upper bounded, then it converges to $\sup \{x_n\}_{n\in\mathbb{N}}$.
- **a** If (x_n) is decreasing and lower bounded, then it converges to $\inf \{x_n\}_{n\in\mathbb{N}}$.

Bolzano-Weierstrass theorem

Theorem (Bolzano-Weierstrass)

Any bounded sequence of real numbers possesses a convergent subsequence.

For the proof of this theorem, we need the following result:

Lemma

Any sequence of real numbers has a monotone subsequence.

Cauchy sequences

Definition

We say that a sequence $(x_n)_{n\in\mathbb{N}}$ is Cauchy (or fundamental) if:

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}, \ \forall n, m \geq n_{\varepsilon} : |x_n - x_m| < \varepsilon.$$

Theorem

A sequence of real numbers is convergent if and only if it is Cauchy.

This means that \mathbb{R} is a *complete space*.

A. Zălinescu (lași)

The extended real line

If we want that a variant of Weierstrass theorem to hold without the boundedness restriction, we should add the "infimum" and the "supremum" of \mathbb{R} . For that, we consider the *extended real line*,

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\},$$

where $+\infty$ and $-\infty$ are two distinct points, $-\infty$, $+\infty \notin \mathbb{R}$.

The natural order on $\overline{\mathbb{R}}$ extends \leq in the following manner:

- $-\infty < +\infty$;
- $-\infty \le x$, $x \le +\infty$, $\forall x \in \mathbb{R}$.

Therefore, every $A \subseteq \mathbb{R}$ has a supremum and an infimum:

- $\sup A = +\infty$ if and only if A is not upper bounded;
- $\inf A = -\infty$ if and only if A is not lower bounded;
- $\sup A = -\infty \Leftrightarrow \inf A = +\infty \Leftrightarrow A = \emptyset$.

Infinite limits

For a sequence $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$, we write:

• $\lim_{n\to\infty} x_n = +\infty$ or $x_n \to +\infty$ if

$$\forall a, \exists n_a \in \mathbb{N}, \forall n \geq n_a, x_n > a;$$

• $\lim_{n\to\infty} x_n = -\infty$ or $x_n \to -\infty$ if

$$\forall a, \exists n_a \in \mathbb{N}, \forall n \geq n_a, x_n < a.$$

Proposition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers.

- If $(x_n)_{n\in\mathbb{N}}$ is increasing and unbounded, then $\lim_{n\to\infty} x_n = +\infty$.
- **3** If $(x_n)_{n\in\mathbb{N}}$ is decreasing and unbounded, then $\lim_{n\to\infty} x_n = -\infty$.

Therefore, any monotone sequence in $\mathbb R$ has a limit in $\overline{\mathbb R}$.

Operations on the extended real line

We introduce:

- $(-\infty) + a = a + (-\infty) := -\infty$, for $-\infty \le a < +\infty$; $(+\infty) + a = a + (+\infty) := +\infty$, for $-\infty < a \le +\infty$;
- $(-\infty) \cdot a = a \cdot (-\infty) := -\infty$, $(+\infty) \cdot a = a \cdot (+\infty) := +\infty$, for $0 < a \le +\infty$; $(-\infty) \cdot a = a \cdot (-\infty) := +\infty$, $(+\infty) \cdot a = a \cdot (+\infty) := -\infty$, for $-\infty < a < 0$;
- $-(-\infty) := +\infty$, $-(+\infty) := -\infty$, $1/(-\infty) = 1/(+\infty) = 0$.

The operations $(-\infty) + (+\infty)$, $(+\infty) + (-\infty)$, $(-\infty) - (+\infty)$, $(+\infty) - (-\infty)$, $0 \cdot (-\infty)$, $0 \cdot (+\infty)$, $\frac{\pm \infty}{+\infty}$, $\frac{\pm \infty}{0}$ (partially) remain not defined.

If \odot is an operation (among +, \cdot , -, /), (x_n) , $(y_n) \subseteq \mathbb{R}$ and $x, y \in \overline{\mathbb{R}}$ such that $x_n \to x$, $y_n \to y$ and $x \odot y$ is defined, then

$$x_n \odot y_n \to x \odot y$$
.

A. Zălinescu (lași)

Limit points

Definition

Let $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$.

- We call $x \in \overline{\mathbb{R}}$ a *limit point* of the sequence $(x_n)_{n \in \mathbb{N}}$ if there exists a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ such that $x_{n_k} \to x$.
- The set of the limit points of the sequence $(x_n)_{n\in\mathbb{N}}$ is denoted $L_{(x_n)}$.

For any sequence $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$, we have $\underline{L}_{(x_n)}\neq\emptyset$.

Definition

Let $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$.

• We call the *inferior limit* of $(x_n)_{n\in\mathbb{N}}$ the number (in $\overline{\mathbb{R}}$):

$$\underset{n\to\infty}{\lim\inf} x_n = \underset{n\to\infty}{\underline{\lim}} x_n := \inf L_{(x_n)}.$$

• We call the *superior limit* of $(x_n)_{n\in\mathbb{N}}$ the number (in $\overline{\mathbb{R}}$):

$$\limsup_{n \to \infty} x_n = \overline{\lim_{n \to \infty}} x_n := \sup_{L(x_n)} L_{(x_n)}.$$
Lecture 2

A. Zălinescu (lași)

For instance, $\varliminf_{n\to\infty} (-1)^n = -1$ and $\varlimsup_{n\to\infty} (-1)^n = 1$.

Remarks. Let $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$.

We have

$$\liminf_{n\to\infty} x_n \leqslant \limsup_{n\to\infty} x_n.$$

• If $x \in \overline{\mathbb{R}}$, then $\lim_{n \to \infty} x_n = x$ if and only if $L_{(x_n)} = \{x\}$, *i.e.*

$$\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n = x.$$

• It can be shown that there exist two monotone subsequences of $(x_n)_{n\in\mathbb{N}}$ which have the limit $\varinjlim_{n\to\infty} x_n$, respectively $\varlimsup_{n\to\infty} x_n$.

4□ > 4同 > 4 至 > 4 至 > 至 900

October 9, 2017

Sequences of functions

Let $E \subseteq \mathbb{R}$ and $f_n : E \to \mathbb{R}$, $n \in \mathbb{N}$ be functions. We call $(f_n)_{n \in \mathbb{N}}$ a sequence of functions.

In fact, we deal with sequence of functions when we have a sequence of real numbers which depend on a *parameter* from E.

Example: The sequence

$$\left(\left(1+\frac{x}{n}\right)^n\right)_{n\geq 1}$$

depends on the parameter $x \in \mathbb{R}$. Then we can consider the sequence of functions $(f_n)_{n \geq 1}$, where $f_n : \mathbb{R} \to \mathbb{R}$ are defined by

$$f_n(x) := \left(1 + \frac{x}{n}\right)^n, \ x \in \mathbb{R}.$$

We have $\lim_{n\to\infty} f_n(x) = e^x$, $\forall x \in \mathbb{R}$.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ ②

Uniform convergence

Definition

Let $f_n: E \to \mathbb{R}$, $n \in \mathbb{N}$ and $f: E \to \mathbb{R}$. We say that:

- $(f_n)_{n\in\mathbb{N}}$ converges pointwise to f if $f_n(x)\to f(x)$, $\forall x\in E$ (we note $f_n\xrightarrow{p} f$ or $f_n\xrightarrow{p} f$);
- $(f_n)_{n\in\mathbb{N}}$ converges uniformly to f if for any $\varepsilon>0$ there exists $n_\varepsilon\in\mathbb{N}$ such that:

$$|f_n(x) - f(x)| < \varepsilon, \ \forall n \ge n_{\varepsilon}, \ \forall x \in E.$$

(we note $f_n \stackrel{\mathrm{u}}{\to} f$ or $f_n \stackrel{\mathrm{u}}{\longrightarrow} f$).

Of course, if $(f_n)_{n\in\mathbb{N}}$ converges uniformly to f, it will also converge pointwise to f. Also, $f_n \stackrel{\mathrm{u}}{\to} f$ if and only if $\sup_{x\in E} |f_n(x)-f(x)|\in \mathbb{R}$ for n sufficiently large and

$$\lim_{n\to\infty} \sup_{x\in E} |f_n(x) - f(x)| = 0.$$

4 D > 4 D > 4 E > 4 E > E 990

Example. Let $f_n:[0,1]\to\mathbb{R}$ be defined as $f_n(x):=x^n$, for $n\geq 1$. It is clear that

$$\lim_{n\to\infty} x^n = \begin{cases} 0, & x \in [0,1); \\ 1, & x = 1. \end{cases}$$

Therefore, $(f_n)_{n\in\mathbb{N}}$ converges pointwise to f, where $f:[0,1]\to\mathbb{R}$ is defined as

$$f(x) := \begin{cases} 0, & x \in [0, 1); \\ 1, & x = 1. \end{cases}$$

Is $(f_n)_{n\in\mathbb{N}}$ converging uniformly to f?

 f_n for n = 1, 2, 3, 5, 10, 20 and 30

The answer is no:

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1)} |x^n| = 1.$$

Proposition

Let $f_n: E \to \mathbb{R}$, $n \in \mathbb{N}$ and $f: E \to \mathbb{R}$. If there exists a sequence $(\alpha_n)_{n \in \mathbb{N}}$ converging to 0 such that

$$|f_n(x) - f(x)| \le \alpha_n, \ \forall n \in \mathbb{N}, \ \forall x \in E$$

then (f_n) converges uniformly to f.

Theorem

Let $f_n: E \to \mathbb{R}$, $n \in \mathbb{N}$. Then there exists a function $f: E \to \mathbb{R}$ such that $f_n \overset{\mathrm{u}}{\to} f$ if and only if $(f_n)_{n \in \mathbb{N}}$ is a uniform Cauchy sequence, i.e. for any $\varepsilon > 0$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that:

$$|f_m(x) - f_n(x)| < \varepsilon, \ \forall m, n \ge n_{\varepsilon}, \ \forall x \in E.$$

As we will see later, uniform convergence is closed to (keeps) properties as boundedness, continuity or integrability.

 4 □ >

Remarkable inequalities

Hölder inequality

Let $n \in \mathbb{N}^*$, a_1, \ldots, a_n , $b_1, \ldots, b_n \in \mathbb{R}_+$ and $p, q \in \mathbb{R}_+^*$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Then:

$$\sum_{i=1}^n a_i b_i \leq \left(\sum_{i=0}^n a_i^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=0}^n b_i^q\right)^{\frac{1}{q}}.$$

It is easy to prove a variant of this inequality, the weighted Hölder inequality:

$$\sum_{i=1}^n \lambda_i a_i b_i \leq \left(\sum_{i=1}^n \lambda_i a_i^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^n \lambda_i b_i^q\right)^{\frac{1}{q}},$$

where $n \in \mathbb{N}^*$, $\lambda_1, \ldots, \lambda_n$, a_1, \ldots, a_n , $b_1, \ldots, b_n \in \mathbb{R}_+$ and $p, q \in \mathbb{R}_+^*$ such that $\frac{1}{p} + \frac{1}{q} = 1$.

- (ロ) (団) (注) (注) 注 り(()

In the case p = q = 2 we obtain the Cauchy-Buniakowski-Schwarz inequality:

$$\sum_{i=1}^{n} a_i b_i \leq \left(\sum_{i=1}^{n} a_i^2\right)^{\frac{1}{2}} \cdot \left(\sum_{i=1}^{n} b_i^2\right)^{\frac{1}{2}}.$$

The equality holds if and only if there exist $u, v \in \mathbb{R}$ with $u^2 + v^2 \neq 0$, such that $ua_i + vb_i = 0, \forall i \in \{1, 2, ...n\}$.

Minkowski inequality

Let $n \in \mathbb{N}^*$, $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}_+^*$ and $p \in \mathbb{R}_+^*$.

• If $p \geq 1$, then

$$\left(\sum_{i=1}^{n}(a_{i}+b_{i})^{p}\right)^{\frac{1}{p}}\leq\left(\sum_{i=1}^{n}a_{i}^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}b_{i}^{p}\right)^{\frac{1}{p}}.$$

2 If 0 , then

$$\left(\sum_{i=1}^{n}(a_{i}+b_{i})^{p}\right)^{\frac{1}{p}}\geq\left(\sum_{i=1}^{n}a_{i}^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}b_{i}^{p}\right)^{\frac{1}{p}}.$$

In both cases, if $p \neq 1$, the equality holds if the *n*-tuples (a_0, a_1, \ldots, a_n) and (b_0, b_1, \ldots, b_n) are proportional.

October 9, 2017

A. Zălinescu (lași)

Lecture 2

Carleman inequality

For any $n \in \mathbb{N}^*$ and $a_1, a_2, \ldots, a_n \in \mathbb{R}_+$ it holds

$$\sum_{k=1}^{n} (a_1 a_2 \dots a_k)^{\frac{1}{k}} \le e \sum_{k=1}^{n} a_k.$$

The equality holds if and only if $a_1 = a_2 = \ldots = a_n = 0$.

A. Zălinescu (lași)