

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Semester Thesis

Inferring Human Body Parts and Correlations from Images, Pointclouds and Meshes

Anatomical Body Model

3D Parametric Model

Applications

Introduction

Human body models have been crucial in the last decade for inference and synthesizing tasks. They find applications everywhere. A human body shape or pose is used in health monitoring, virtual cloth fitting, virtual avatars for virtual and augmented reality and medicine. Since a full body consists of its parts, in order to learn more expressive transformations, modelling of each part separately becomes a necessity. While there have been works applied to faces and hands, the upper torso has received little attention. Here, we focus on **inference**, **modelling** and **mapping** of the **the upper torso**, with applications in medicine.

Task Description

The semester thesis consists of the following steps:

- Get acquainted with the relevant literature in the field of body shape (upper torso) modelling/fitting and 3D reconstruction as well as with the code of a pervious student that consists of:
 - Retrieving pointclouds of various body parts from sprites utilizing SfM
 - Creating upper torso mesh and fit it to the retrieved pointclouds
 - o Learning a parametric (PCA) model from the created dataset of fitted meshes
 - o Fit model to new pointclouds
- Cluster the meshes based on characteristics/labels extracted during image extraction
- Learn mapping (between models) before and after procedure applied to the mesh
 - In mesh or/and image space (corresponding to a certain mesh)
- Manually annotate landmarks of captured real images (men/women) and fit meshes
 - o From PCA model or Make human model

Remarks

A written report and an oral presentation conclude the thesis. The thesis will be overseen by Prof. Markus Gross and supervised by Endri Dibra (ETH).

Start:

27th of November 2017

End:

27th of May 2018