**Monolithic Linear IC** 

# Multi Voltage Regulator IC for Car Audio Systems



http://onsemi.com

#### Overview

The LV56831P has 4 system regulator,  $V_{DD}$  5V(3.3V), AUDIO(8.5V), AMP remote(12V) and REG(3.3V/5V select). About protection circuits, it has Over-current-protection, Over-voltage-protection and Thermal-shut-down. AMP remote and REG supply is independent terminal from  $V_{CC}$ ,

#### **Features**

• 4 system regulator

VDD(LCD micon) : VOUT 5.0V(3.3V), IO max 300mA, reverse current prevention.

 $\begin{array}{lll} \text{Audio} & : \text{V}_{\mbox{OUT}} \ 8.5 \mbox{V, I}_{\mbox{O}} \mbox{max } 400 \mbox{mA} \\ \text{AMP remote} & : \text{V}_{\mbox{OUT}} \ 12 \mbox{V, I}_{\mbox{O}} \mbox{max } 500 \mbox{mA} \\ \text{REG3.3/5V} & : \text{V}_{\mbox{OUT}} \ 3.3 \mbox{V(5V), I}_{\mbox{O}} \mbox{max } 500 \mbox{mA} \end{array}$ 

Over-current-protectionThermal-shut-down Typ 175°C

• Over-voltage-protection: Typ 21V(except V<sub>DD</sub>)

Applied Pch-LDMOS for output stages.

(Warning)The protector functions only improve the IC's tolerance and they do not guarantee the safety of the IC if used under the conditions out of safety range or ratings. Use of the IC such as use under overcurrent protection range or thermal shut down state may degrade the IC's reliability and eventually damage the IC.

### **Specifications**

#### **Absolute Maximum Ratings** at Ta = 25°C

|                               | •                    |                                |             |      |
|-------------------------------|----------------------|--------------------------------|-------------|------|
| Parameter                     | Conditions           | Conditions                     | Ratings     | Unit |
| Supply voltage                | V <sub>CC</sub> max  |                                | 36          | V    |
| Allowable Power dissipation   | Pd max               | IC unit                        | 1.3         | W    |
|                               | (*Ta ≤ 25°C)         | With AI heatsink(50×50×1.5mm³) | 5.3         | W    |
|                               |                      | Infinite heat rediation        | 26          | W    |
| Peak supply voltage           | V <sub>CC</sub> peak | See below pulse wave.          | 50          | V    |
| Operating ambient temperature | Topr                 |                                | -40 to +85  | °C   |
| Storage temperature           | Tstg                 |                                | -55 to +150 | °C   |
| Junction temperature          | Tj max               |                                | 150         | °C   |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

## Peak voltage testing pulse wave



## Recommended Operating condition at $Ta = 25^{\circ}C$

| Parameter                     | Conditions                                             | Ratings  | Unit |
|-------------------------------|--------------------------------------------------------|----------|------|
| Power supply voltage rating 1 | V <sub>DD</sub> output(5V/3.3V)                        | 7 to 16  | V    |
| Power supply voltage rating 2 | REG output(5V3.3V): V <sub>CC</sub> =V <sub>CC</sub> 1 | 7 to 16  | V    |
| Power supply voltage rating 3 | AUDIO output                                           | 11 to 16 | V    |
| Power supply voltage rating 4 | AMP remote output: V <sub>CC</sub> =V <sub>CC</sub> 1  | 13 to 16 | V    |

# Electrical Characteristics $\underline{at\ Ta}=25^{\circ}C,\ V_{CC}=V_{CC}1$ =14.4V (\*1)

| Danamatan                              | Courselle al          | Symbol Conditions                                                  | Ratings |        |      | Linit |  |
|----------------------------------------|-----------------------|--------------------------------------------------------------------|---------|--------|------|-------|--|
| Parameter Sym                          |                       | Conditions                                                         | min     | typ    | max  | Unit  |  |
| Quiescent current                      | Icc                   | V <sub>DD</sub> no load, ALL EN terminal = L                       |         | 50     | 100  | μΑ    |  |
| AUDIO_EN Input                         |                       |                                                                    |         |        |      |       |  |
| Low input voltage                      | V <sub>IL</sub> 1     |                                                                    | 0       |        | 0.5  | V     |  |
| High input voltage                     | V <sub>IH</sub> 1     |                                                                    | 2.0     |        | 5.5  | V     |  |
| Input impedance                        | R <sub>IH</sub> 1     |                                                                    | 280     | 400    | 520  | kΩ    |  |
| AMP_EN Input                           |                       |                                                                    |         |        |      |       |  |
| Low input voltage                      | V <sub>IL</sub> 2     |                                                                    | 0       |        | 0.5  | V     |  |
| High input voltage                     | V <sub>IH</sub> 2     |                                                                    | 2.0     |        | 5.5  | V     |  |
| Input impedance                        | R <sub>IH</sub> 2     |                                                                    | 280     | 400    | 520  | kΩ    |  |
| REG_EN input                           |                       |                                                                    |         |        |      |       |  |
| Low input voltage                      | V <sub>IL</sub> 3     |                                                                    | 0       |        | 0.5  | V     |  |
| High input voltage                     | V <sub>IH</sub> 3     |                                                                    | 2.0     |        | 5.5  | V     |  |
| Input impedance                        | R <sub>IH</sub> 3     |                                                                    | 280     | 400    | 520  | kΩ    |  |
| V <sub>DD</sub> (5V/3.3V)output(revers | se current prevention | on diode implemented)                                              |         |        |      |       |  |
| V <sub>DD</sub> output voltage 1       | V <sub>O</sub> 11     | I <sub>O</sub> 11 = 200mA, IKV <sub>DD</sub> is connected to 5PIN. | 4.75    | 5.0    | 5.25 | V     |  |
| V <sub>DD</sub> output current 1       | I <sub>O</sub> 11     | V <sub>O</sub> 11 ≥ 4.7V                                           | 300     |        |      | mA    |  |
| V <sub>DD</sub> output voltage 2       | V <sub>O</sub> 12     | I <sub>O</sub> 12 = 200mA, IKV <sub>DD</sub> =GND                  | 3.13    | 3.3    | 3.47 | V     |  |
| V <sub>DD</sub> output current 2       | I <sub>O</sub> 12     | V <sub>O</sub> 12 ≥ 3.1V                                           | 300     |        |      | mA    |  |
| Line regulation                        | ∆V <sub>OLN</sub> 1   | 7V < V <sub>CC</sub> < 16V, I <sub>O</sub> 1 = 200mA               |         | 50     | 100  | mV    |  |
| Load regulation                        | ∆V <sub>OLD</sub> 1   | 1mA < I <sub>O</sub> 11, I <sub>O</sub> 12 < 200mA                 |         | 80     | 150  | mV    |  |
| Dropout voltage 1                      | V <sub>DROP</sub> 1   | I <sub>O</sub> 1 = 200mA (implemented diode)                       |         | 1.5    | 2.5  | V     |  |
| V <sub>CC</sub> ripple rejection       | R <sub>REJ</sub> 1    | f=120Hz, I <sub>O</sub> 1=200mA                                    | 40(*2)  | 50(*2) |      | dB    |  |
| V <sub>DD</sub> reverse current        | I <sub>REV</sub>      | V <sub>O</sub> 11=5.0V, V <sub>CC</sub> =0V                        |         | 10     | 100  | μΑ    |  |
| AMP remote output ; AMP_               | EN = High             |                                                                    |         |        |      |       |  |
| USB output voltage 1                   | V <sub>O</sub> 2      | I <sub>O</sub> 2 = 400mA                                           | 11.4    | 12     | 12.6 | V     |  |
| USB output current 1                   | I <sub>O</sub> 2      | V <sub>O</sub> 2 ≥ 11.3V                                           | 500     |        |      | mA    |  |
| Line regulation                        | ΔV <sub>OLN</sub> 2   | 13V < V <sub>CC</sub> 1 < 16V, I <sub>O</sub> 2 = 400mA            |         | 50     | 100  | mV    |  |
| Load regulation                        | ΔV <sub>OLD</sub> 2   | 10mA < I <sub>O</sub> 2 < 400mA                                    |         | 80     | 160  | mV    |  |
| Dropout voltage 1                      | V <sub>DROP</sub> 2   | I <sub>O</sub> 2 = 400mA                                           |         | 0.4    | 0.8  | V     |  |
| V <sub>CC</sub> 1 ripple rejection     | R <sub>REJ</sub> 2    | f=120Hz, I <sub>O</sub> 2=400mA                                    | 40(*2)  | 50(*2) |      | dB    |  |

Continued on next page.

Continued from preceding page.

| Doromotor                          | Cumbal              | Condition -                                             | Ratings |        |      | 11.2 |
|------------------------------------|---------------------|---------------------------------------------------------|---------|--------|------|------|
| Parameter                          | Symbol              | Conditions                                              | min     | typ    | max  | Unit |
| AUDIO output ; AUDIO_EN            | = High              |                                                         |         |        |      |      |
| AUDIO output voltage               | V <sub>O</sub> 3    | I <sub>O</sub> 3 = 300mA                                | 8.1     | 8.5    | 8.9  | V    |
| AUDIO output current               | I <sub>O</sub> 3    | V <sub>O</sub> 3 ≥ 8V                                   | 400     |        |      | mA   |
| Line regulation                    | ΔV <sub>OLN</sub> 3 | 10V < V <sub>CC</sub> < 16V, I <sub>O</sub> 3 = 300mA   |         | 30     | 100  | mV   |
| Load regulation                    | ΔV <sub>OLD</sub> 3 | 1mA < I <sub>O</sub> 3 < 300mA                          |         | 70     | 140  | mV   |
| Dropout voltage                    | V <sub>DROP</sub> 3 | I <sub>O</sub> 3 = 300mA                                |         | 0.6    | 1.05 | V    |
| V <sub>CC</sub> ripple rejection   | R <sub>REJ</sub> 3  | f = 120Hz, I <sub>O</sub> 3=300mA                       | 40(*2)  | 50(*2) |      | dB   |
| REG (3.3V/5V) Output ; REG         | G_EN = High         |                                                         |         | •      |      |      |
| REG output voltage 1               | V <sub>O</sub> 41   | I <sub>O</sub> 41 = 400mA, IKREG is connected to 10PIN. | 4.75    | 5      | 5.25 | V    |
| REG output current 1               | I <sub>O</sub> 41   | V <sub>O</sub> 41 ≥ 4.7V                                | 500     |        |      | mA   |
| REG output voltage 2               | V <sub>O</sub> 42   | I <sub>O</sub> 42 = 400mA, IKREG=GND                    | 3.13    | 3.3    | 3.47 | V    |
| REG output current 2               | I <sub>O</sub> 42   | V <sub>O</sub> 42 ≥ 3.1V 50                             |         |        |      | mA   |
| Line regulation                    | ΔV <sub>OLN</sub> 4 | 7V < V <sub>CC</sub> 1 < 16V, I <sub>O</sub> 4 = 400mA  |         | 30     | 100  | mV   |
| Load regulation                    | ΔV <sub>OLD</sub> 4 | 1mA < I <sub>O</sub> 4 < 400mA                          |         | 80     | 150  | mV   |
| Dropout voltage                    | V <sub>DROP</sub> 4 | I <sub>O</sub> 4 = 400mA 1.0                            |         | 1.5    | V    |      |
| V <sub>CC</sub> 1 ripple rejection | R <sub>REJ</sub> 4  | f = 120Hz, I <sub>O</sub> 4=400mA 40(*2)                |         | 50(*2) |      | dB   |

<sup>\*1:</sup> The entire specification has been defined based on the tests performed under the conditions where Tj and Ta(=25°C) are almost equal. There tests were performed with pulse load to minimize the increase of junction temperature(Tj).

## **Package Dimensions**

unit: mm (typ)

3336



## Pin assignment



<sup>\*2 :</sup> design certification

## Allowable power dissipation derating curve



- (a) IC unit(HZIP15)
- (b) With Al heatsink(50×50×1.5mm³)
  Al heatsink mounting conditions
  Tightening torque: 39N·cm, using silicone grease

## **Block Diagram**



## **Pin Function**

|         | inction           |                                                                                                |                                 |
|---------|-------------------|------------------------------------------------------------------------------------------------|---------------------------------|
| Pin No. | Pin name<br>N.C.  | Description -                                                                                  | Equivalent Circuit              |
| 2       | AUDIO_EN          | AUDIO output CTRL                                                                              | 8                               |
|         |                   |                                                                                                | 2 10kΩ 270kΩ 4 120kΩ GND        |
| 3       | AUDIO             | AUDIO output when AUDIO_EN = High, ON                                                          |                                 |
|         | , resid           | 8.5V/0.4A                                                                                      | 8 VCC 3 263kΩ 3 HP HHX 45kΩ GND |
| 4       | N.C.              | -                                                                                              | -                               |
| 5       | VDD               | V <sub>DD</sub> output<br>5.0V, 3.3V/0.3A                                                      | 8<br>5<br>140kΩ GND             |
| 6       | IKV <sub>DD</sub> | V <sub>DD</sub> output voltage select OPEN: V <sub>DD</sub> = 5.0V GND: V <sub>DD</sub> = 3.3V | 8 0.25μA 0.25μA (10kΩ) GND      |
| 7       | N.C.              | -                                                                                              | -                               |
| 8       | Vcc               | Vcc                                                                                            | 8                               |
| 9       | V <sub>CC</sub> 1 | Vcc1                                                                                           | GND GND                         |
|         | <u> </u>          | l                                                                                              | Continued on part page          |

Continued on next page.

| Pin No. | rom preceding pa<br>Pin name | Description                                                | Equivalent Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10      | REG_EN                       | REG output CTRL                                            | 9 Vcc1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                              |                                                            | 10 10kΩ<br>270kΩ<br>120kΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                              |                                                            | 14 GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11      | IKREG                        | REG output voltage select OPEN: REG = 3.3V GND: REG = 5.0V | 9 Vcc1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                              |                                                            | (11) W 10kΩ GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12      | AMP_EN                       | AMP output CTRL                                            | 9 Vcc1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                              |                                                            | 10κΩ 2770κΩ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                              |                                                            | 14 \$\frac{1}{8}120kΩ\$ GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13      | AMP                          | AMP output when AMP_EN = High, ON 12V, 0.5A                | 9 Vcc1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                              |                                                            | 13 → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                              |                                                            | 45kΩ SOND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14      | GND                          | GND                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15      | REG                          | REG output when REG_EN = High, ON 5.0V, 3.3V/0.5A          | 9 V <sub>CC</sub> 1 |



#### HZIP15 Heat sink attachment

Heat sinks are used to lower the semiconductor device junction temperature by leading the head generated by the device to the outer environment and dissipating that heat.

a. Unless otherwise specified, for power ICs with tabs and power ICs with attached heat sinks, solder must not be applied to the heat sink or tabs.

#### b. Heat sink attachment

- · Use flat-head screws to attach heat sinks.
- · Use also washer to protect the package.
- · Use tightening torques in the ranges 39-59Ncm(4-6kgcm) .
- · If tapping screws are used, do not use screws with a diameter larger than the holes in the semiconductor device itself.
- · Do not make gap, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
- · Take care a position of via hole.
- · Do not allow dirt, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
- · Verify that there are no press burrs or screw-hole burrs on the heat sink.
- · Warping in heat sinks and printed circuit boards must be no more than 0.05 mm between screw holes, for either concave or convex warping.
- · Twisting must be limited to under 0.05 mm.
- · Heat sink and semiconductor device are mounted in parallel. Take care of electric or compressed air drivers
- · The speed of these torque wrenches should never exceed 700 rpm, and should typically be about 400 rpm.





#### c. Silicone grease

- · Spread the silicone grease evenly when mounting heat sinks.
- · Our company recommends YG-6260 (Momentive Performance Materials Japan LLC)

#### d. Mount

- · First mount the heat sink on the semiconductor device, and then mount that assembly on the printed circuit board.
- · When attaching a heat sink after mounting a semiconductor device into the printed circuit board, when tightening up a heat sink with the screw, the mechanical stress which is impossible to the semiconductor device and the pin doesn't hang.
- e. When mounting the semiconductor device to the heat sink using jigs, etc.,
  - · Take care not to allow the device to ride onto the jig or positioning dowel.
  - $\cdot$  Design the jig so that no unreasonable mechanical stress is not applied to the semiconductor device.

#### f. Heat sink screw holes

- · Be sure that chamfering and shear drop of heat sinks must not be larger than the diameter of screw head used.
- · When using nuts, do not make the heat sink hole diameters larger than the diameter of the head of the screws used. A hole diameter about 15% larger than the diameter of the screw is desirable.
- · When tap screws are used, be sure that the diameter of the holes in the heat sink are not too small. A diameter about 15% smaller than the diameter of the screw is desirable.
- g. There is a method to mount the semiconductor device to the heat sink by using a spring band. But this method is not recommended because of possible displacement due to fluctuation of the spring force with time or vibration.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: