Felix Bragman

+44 (0) 7738226693 felixbragman@gmail.com google.scholar/felixbragman

Research scientist with expertise in deep learning and computer vision. Interested in researching novel methods across representation learning, multi-task learning, modular neural networks and generative modelling.

Work Experience

Babylon Health 2019 - ongoing

Research Scientist

Probabilistic Graphical Models team

- Developing tools to learn patient representations from health records for dynamic risk stratification
- Researching novel methods across fair representation learning and modularity in neural networks
- Developed libraries in PyTorch to accelerate computer vision research for rapid internal prototyping of products with MLFlow for experimentation and reproducibility
- Contributing scientific insight towards long-term strategic product vision

University College London

2017-2019

Research Associate in Machine Learning and Medical Image Computing

Supervisor: Dr. M. Jorge Cardoso

- Researched and developed fundamental methods for multi-task learning applied to computer vision and medical image computing
- Applied algorithms to a range of applications from 3D image synthesis to image classification
- Work published at MICCAI 2018 (oral) and ICCV 2019 (oral)
- Contributed to NiftyNet: an open-source TensorFlow library for deep learning in medical image analysis

Education

University College London

2012-2017

Ph.D. in Biomedical and Medical Imaging

Quantitative lung CT analysis for the study & diagnosis of COPD

Supervisors: Prof. David Hawkes and Prof. John Hurst

- Developed automated quantitative tools using machine learning and image processing for the analysis
 of lung disease from Computed Tomography
- Published at top technical venues (MICCAI and IEEE Transactions on Medical Imaging) and high ranking medical journals (American Journal of Respiratory & Critical Care Medicine, 11% acceptance rate)

University of Oxford 2011-2012

M.Sc. with distinction in Biomedical Engineering (ranked 1st in class)

University College London

2007-2011

B.Eng. first class honours in Mechanical Engineering

Skills

Experienced Knowledgeable

Python (PyTorch, Tensorflow, Keras) and MATLAB C++, Bash, Git and Docker

Activities

Reviewer

CVPR, ICML, ICLR, MICCAI, MIDL, IEEE Transactions on Medical Imaging

Program Committee

UNSURE workshop on Uncertainty and Safety in Medical Imaging at MICCAI 2019, 2020 DART workshop on Domain Adaptation and Representation Transfer at MICCAI 2019

Selected Publications

ICCV - 2019 (oral) - top 4.3% of 4,303 submissions

Stochastic filter groups for multi-task CNNs: learning specialist and generalist convolution kernels https://arxiv.org/abs/1908.09597

- Novel method that learns task-specific and shared representations in multi-task learning
- Developed Stochastic Filter Groups modules; a probabilistic grouping of kernels that help learn the CNN architecture
- Method optimised through variational inference by extending Bernoulli dropout to Categorical distributions

MICCAI - 2018 (spotlight oral) - top 5% of submissions

Uncertainty in multitask learning: joint representations for probabilistic MR-only radiotherapy planning https://arxiv.org/abs/1806.06595

- Developed a multi-task learning method that learns to dynamically weight the loss function using heteroscedastic uncertainty
- · Method is based on Bayesian deep-learning to estimate uncertainty in the neural network
- Applied method to simultaneous image synthesis and organ segmentation

IEEE Transactions on Medical Imaging - 2017

Pulmonary lobe segmentation with probabilistic segmentation of the fissures and a groupwise fissure prior https://ieeexplore.ieee.org/document/7903649

- Lung segmentation from three-dimensional Computed Tomography (CT) scans
- Developed an unsupervised lung fissure segmentation method based on Gaussian Mixture Modelling and Markov Random Field regularisation
- Lobe segmentation was performed using the fissure segmentation and a population model of the fissures

MICCAI - 2017

Manifold Learning of COPD

https://discovery.ucl.ac.uk/id/eprint/10042862/1/paper332.pdf

Awarded for achieving a degree average of at least 75%

- Developed a novel method to analyse disease progression of COPD from CT scans
- Created of a novel descriptor of disease severity to quantify patterns of tissue classification
- Performed manifold fusion of separate manifolds of COPD phenotypes learnt using Isomap
- Kernel regression to identify trajectories of disease progression to improve disease monitoring

Selected Awards

MIDL Honorable Mention Reviewer Award Medical Imaging with Deep Learning conference Awarded to the top 25 reviewers at the conference	2020
MICCAI Reviewer Award Medical Image Computing and Computer Assisted Interventions conference Awarded to top reviewers at the conference	2019
MICCAI Travel Award Medical Image Computing and Computer Assisted Interventions conference Awarded to 50 researchers	2018
British Lung Foundation Travel Award European Respiratory Society conference Awarded to early-career clinical/non-clinical researchers in the respiratory field	2014
The Professor Sir Michael Brady Prize University of Oxford, Department of Engineering Science Awarded for overall best performance in the M.Sc. in Biomedical Engineering	2012
University College London Dean's List University College London	2011