Result: B = ATA A = \(\Sigma \, u \, v \) \(\Sigma \, BK = I o 2k v v v T & o 2k v v T

Sparse Matrix ~ * of non-zero elts

If A is a sparse matrix, ATA need not to be sparse matrix

Theorem. Anxa, X is a unit vector in Rd. <x,v,> > 5>0

 $V = spon \{ v_1, v_n \}$ $\sigma_m > (1-\varepsilon) \sigma_r$ for some $\varepsilon > 0$.

Let W be the unit vector after k-iterations (k > ...

Power Method

W= (ATA) X Then ||WIVI & E 11 (ATA) KXII

most of the comps of W lie on that space. Where singular values are

k > In (E8)

Proof: A = \sum o; u; v; T $\|x\| = 1 \cdot \sum_{i=1}^{d} G_i v_i$

(ATA) × = ∑ 5; 2k civ; 1 cil = (x, v, > > 8

 $\sigma_1, \sigma_2, \ldots \sigma_m \geqslant (1-\varepsilon) \sigma_1$ σ_{m+1}, ... σ_d > (1-ε) σ,

=> | (ATA) K x | 2 = 2 = 4 = 2 > -> > 5, 4k c, 2 > 5, 4k 52

$$(1-\varepsilon)^{2k} = (1-\varepsilon)^{2k}$$

$$\frac{(1-\varepsilon)^{2k}}{\sigma_1^{2k}} = \frac{(1-\varepsilon)^{2k}}{s} \leq \frac{-2k\varepsilon}{s} = \varepsilon$$

clustering. In points { A (1) ! A (m)} in a d-dimensional space.

Need to find "k" = P = {P(1), ... P(k)} \in Rd;

min d, (P) = min = d (A (i), P)2

$$P(j)$$
 $j=1,...,k$ $S_{j}=j=1...k$ $US_{j}=A$

$$Sj = \left\{ A_{j,1} \right\}$$

$$j-th = \left\{ A_{j,1} \right\}$$

Defn: Let be given a prob. distr. P(.) in \mathbb{R}^d then the best fit line for P(.) in the direction $v: v = \operatorname{argmax} E[\langle v, x \rangle^2]$ $\|v\| = 1$ $\|v\| = 1$

Result The best-fit 1-D subspace (line) for a Gaussian with (µ, r) in Rd is given by v=µ.

Proof: choose XNP(.) Let v: ||v|| = 1

$$E_{\times P(\cdot)}[\langle x, y \rangle^{2}] = E[\langle (x-\mu), y \rangle + \langle \mu, y \rangle]$$

$$= E[\langle (x-\mu), y \rangle^{2}] + E[\langle \mu, y \rangle^{2}] = \sigma^{2} + \langle \mu, y \rangle^{2}$$

Define then k-dim best-fit subspace V_k is $V_k = \underset{V}{\operatorname{argmax}} E_{XVP(\cdot)} [[|X \perp V|^2]] \quad \dim(V) = k$

Result: Any k-dim subspace Vk > pl is a best-fit subspace for Gaussians.

Proof Suppose $\mu = 0$ then ok. Suppose $\mu \neq 0$, the best fit line. $v = \mu$. Proceed as in SVD

Result. Suppose P(·) ~ d-dim Gaussian ($\mu_i \sigma^2$) then P(·) $\perp V_k$ is

also Gaussian with σ^2 .

K is

optimal

SVD Subspace.

Follow the approach of SVD.

* 1. Rotate the coordinates so that
$$V = span \{e_1, \dots, e_k\}$$
 (spherically symmetric)

- 2. The gaussian remains spherical (σ^2) but coordinates of μ changes ($\mu = (\mu', \mu'')$)
- 3. $x = (x_1, \dots, x_d)$: $x' \equiv (x_1, x_2, \dots x_k)$ $x'' \equiv (x_{k+1}, \dots x_d)$ 4. $\left[P(\circ) \perp V \right]$ at $(x_1, \dots x_k)$ is $e^{-\frac{\|x' \mu'\|^2}{2\sigma^2}} = 1$ $= \frac{\|x \mu\|^2}{\sqrt{2\sigma^2}}$ $= \frac{\|x \mu\|^2}{\sqrt{2\sigma^2}}$ $= \frac{\|x \mu\|^2}{\sqrt{2\sigma^2}}$

 $\frac{1}{\sqrt{2\pi^2}} = \frac{\|x - \mu\|^2}{\sqrt{2\pi^2}} = \frac{\|x - \mu\|^2}$

Theorem: The k-dim SVD subspace for a mixture of me Gaussian with sport \mu_1,..., mn3 = Vm

 \Rightarrow For a mixture of m Gaussians V_m contains the centers. In particular, if $(c_1\mu_1+c_2\mu_2+\ldots+c_u\mu_u=0)\Rightarrow c_1=c_2=\ldots=c_m=0$ then, span $\{\mu_1,\mu_2,\ldots,\mu_n\}$ is the best fit.

P(.) ~ \(\sum_{i=1}^{m} \ \omega_i \ P_i(.) \) \(\sum_{i=1}^{m} \ \omega_i \ P_i(.) \)