# **Control of Adjustable Speed Drives**

### **ECE 730**

#### **Babak Nahid**

PhD, HDR, Fellow IEEE ECE Department Faculty of Engineering McMaster University

### **Contact Info:**

Office: ITB A109

Email: babak.nahid@mcmaster.ca

#### **Office Hours:**

By appointment



# Topic 1





### Course Outline

- 1. Introduction to Adjustable Speed Drives (ASD)
- 2. Topic 1: Modeling of PMSM for Control Purposes
- 3. Topic 2: Average Modeling of Voltage-Source Inverters
- 4. Topic 3: Torque Control of PMSM
- 5. Topic 4: Torque Control of Other Electric Motors
- **6.** Topic 5: Speed Control of Electric Motors
- 7. Topic 6: Common Failures in ASD
- **8.** Topic 7: Modeling of ASD Under Fault Conditions
- 9. Topic 8: Fault-Tolerant Capability of ASD
- 10. Topic 9: Fault-Tolerant Control of ASD
- 11. Future Trends and Conclusion





### Course Outline

- 1. Introduction to Adjustable Speed Drives (ASD)
- 2. Topic 1: Modeling of PMSM for Control Purposes
- 3. Topic 2: Average Modeling of Voltage-Source Inverters
- 4. Topic 3: Torque Control of PMSM
- 5. Topic 4: Torque Control of Other Electric Motors
- 6. Topic 5: Speed Control of Electric Motors
- 7. Topic 6: Common Failures in ASD
- 8. Topic 7: Modeling of ASD Under Fault Conditions
- 9. Topic 8: Fault-Tolerant Capability of ASD
- 10. Topic 9: Fault-Tolerant Control of ASD
- 11. Future Trends and Conclusion





# **Modeling of PMSM for Control Purposes**

- 1. Circuit-based modeling of PMSM
- 2.  $\alpha\beta$  transformation
- 3. Park transformation
- 4. Motor torque
- 5. Mechanical model
- 6. Electric motor losses





# **Modeling of PMSM for Control Purposes**

- 1. Circuit-based modeling of PMSM
- 2.  $\alpha\beta$  transformation
- 3. Park transformation
- 4. Motor torque
- 5. Mechanical model
- 6. Electric motor losses





# Permanent-Magnet Synchronous Motors (PMSM)

### Three-Phase PM Motors:

**McMaster** 



(IPMSM or IPM)



# Permanent-Magnet Synchronous Motors (PMSM)

### Three-Phase PM Motors:

McMaster



Interior PMSM (IPMSM or IPM)



### Permanent-Magnet Synchronous Motors (PMSM)

### Three-Phase PM Motors:











### Three-Phase PM Motors:



### Modeling for control:

Stator: Y-connection

Rotor: Permanent-Magnet







### Modeling assumptions:

- Stator windings are balanced.
- Hysteresis phenomena and eddy currents are ignored.
- High frequency dynamics (beyond a few kHz) are not considered.
- Capacitive couplings between stator windings are neglected.







### Circuit model:

Using basic circuit laws and Faraday's law, we can write:

$$v_a = R_s \cdot i_a + \frac{d}{dt} \psi_a$$

where:

 $v_a$ : voltage across winding a

 $R_s \cdot i_a$ : ohmic voltage drop in winding a

 $\psi_a$ : total magnetic flux through winding a







### Circuit model:

Put together three phases, it yields:

$$\begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} = R_s \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \psi_a \\ \psi_b \\ \psi_c \end{bmatrix}$$

with magnetic flux:

$$\psi_a = \psi_a(i_a, i_b, i_c, \theta, \Psi_{PM})$$

$$\Psi_b = \Psi_b(i_a, i_b, i_c, \theta, \Psi_{PM})$$

$$\psi_c = \psi_c(i_a, i_b, i_c, \theta, \Psi_{PM})$$

where  $\psi_{abc}$  are

nonlinear memoryless functions!







# Zero-Sequence Current

### Three-phase PMSM with isolated neutral point:



 $\Delta$ -connected stator or Y-connected stator with isolated neutral point

$$i_a + i_b + i_c = 0$$

**Important note:** above equation holds whatever the phase currents shape (sinusoidal or any other waveform).







### **Electrical Variables Transformation**

### Three-phase PMSM with isolated neutral point:

$$i_a + i_b + i_c = 0$$

Only two independent currents:

three-phase → two-phase transformation

### <u>Alpha-beta (αβ) transformation:</u>

- Clarke transformation (current/voltage invariant):
  - Preserves current and voltage magnitudes
  - Does not preserve power magnitude
- Concordia transformation (power invariant):
  - Does not preserve current and voltage magnitudes
  - Preserves power magnitude





# **Modeling of PMSM for Control Purposes**

- 1. Circuit-based modeling of PMSM
- 2.  $\alpha\beta$  transformation
- 3. Park transformation
- 4. Motor torque
- 5. Mechanical model
- 6. Electric motor losses





<u>Concordia transformation</u>: three-phase → two-phase transformation

$$\begin{bmatrix} x_a \\ x_b \\ x_c \end{bmatrix} \triangleq \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} x_a \\ x_\beta \end{bmatrix}$$

$$= T_{32}$$

$$\begin{bmatrix} x_{\alpha} \\ x_{\beta} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \cdot \begin{bmatrix} 1 & \frac{-1}{2} & \frac{-1}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix} \cdot \begin{bmatrix} x_{\alpha} \\ x_{b} \\ x_{c} \end{bmatrix}$$

$$\Rightarrow = T_{32}^{-1} = T_{32}^{T}$$





<u>Clarke transformation</u>: three-phase  $\rightarrow$  two-phase transformation

$$\begin{bmatrix} x_a \\ x_b \\ x_c \end{bmatrix} \triangleq \begin{bmatrix} 1 & 0 \\ -1 & \sqrt{3} \\ 2 & 2 \\ -1 & -\sqrt{3} \\ 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} x_a \\ x_\beta \end{bmatrix}$$

$$\Rightarrow = C_{32}$$

$$\begin{bmatrix} x_{\alpha} \\ x_{\beta} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \cdot \begin{bmatrix} 1 & \frac{-1}{2} & \frac{-1}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix} \cdot \begin{bmatrix} x_{\alpha} \\ x_{b} \\ x_{c} \end{bmatrix}$$

$$\Rightarrow = C_{32}^{-1} = \frac{2}{3}C_{32}^{T}$$





#### Application to three-phase systems:

#### Clarke:

$$\begin{bmatrix} x_a \\ x_b \\ x_c \end{bmatrix} = C_{32} \cdot \begin{bmatrix} x_\alpha \\ x_\beta \end{bmatrix}$$

$$\begin{bmatrix} x_a \\ x_b \\ x_c \end{bmatrix} = \begin{bmatrix} X_m \cdot \sin(\theta) \\ X_m \cdot \sin(\theta - 2\pi/3) \\ X_m \cdot \sin(\theta + 2\pi/3) \end{bmatrix}$$
$$\begin{bmatrix} x_\alpha \\ x_\beta \end{bmatrix} = \begin{bmatrix} +X_m \cdot \sin(\theta) \\ -X_m \cdot \cos(\theta) \end{bmatrix}$$

#### Application to three-phase systems:

#### **Concordia:**

$$\begin{bmatrix} x_a \\ x_b \\ x_c \end{bmatrix} = T_{32} \cdot \begin{bmatrix} x_\alpha \\ x_\beta \end{bmatrix}$$

$$\begin{bmatrix} x_a \\ x_b \\ x_c \end{bmatrix} = \begin{bmatrix} X_m \cdot \sin(\theta) \\ X_m \cdot \sin(\theta - 2\pi/3) \\ X_m \cdot \sin(\theta + 2\pi/3) \end{bmatrix}$$
$$\begin{bmatrix} x_\alpha \\ x_\beta \end{bmatrix} = \sqrt{\frac{3}{2}} \begin{bmatrix} +X_m \cdot \sin(\theta) \\ -X_m \cdot \cos(\theta) \end{bmatrix}$$









 $\alpha\beta$ -frame

| <b>αβ</b> voltages | $\begin{cases} v_{\alpha}(t) \\ v_{\beta}(t) \end{cases}$ |
|--------------------|-----------------------------------------------------------|
| and                | $\begin{cases} i_{\alpha}(t) \\ i_{\beta}(t) \end{cases}$ |
| currents           | $i_{\beta}(t)$                                            |





#### Application to three-phase systems:

#### Clarke:

$$||x_{abc}|| = \sqrt{x_a^2 + x_b^2 + x_c^2} = \sqrt{\frac{3}{2}} X_m$$

$$||x_{\alpha\beta}|| = \sqrt{x_\alpha^2 + x_\beta^2} = X_m = \sqrt{\frac{2}{3}} ||x_{abc}||$$

$$\begin{bmatrix} x_a \\ x_b \\ x_c \end{bmatrix} = \begin{bmatrix} X_m \cdot \sin(\theta) \\ X_m \cdot \sin(\theta - 2\pi/3) \\ X_m \cdot \sin(\theta + 2\pi/3) \end{bmatrix}$$
$$\begin{bmatrix} x_\alpha \\ x_\beta \end{bmatrix} = \begin{bmatrix} +X_m \cdot \sin(\theta) \\ -X_m \cdot \cos(\theta) \end{bmatrix}$$

#### Application to three-phase systems:

#### **Concordia:**

$$||x_{abc}|| = \sqrt{x_a^2 + x_b^2 + x_c^2} = \sqrt{\frac{3}{2}} X_m$$
$$||x_{\alpha\beta}|| = \sqrt{x_\alpha^2 + x_\beta^2} = \sqrt{\frac{3}{2}} X_m = ||x_{abc}||$$

$$\begin{bmatrix} x_a \\ x_b \\ x_c \end{bmatrix} = \begin{bmatrix} X_m \cdot \sin(\theta) \\ X_m \cdot \sin(\theta - 2\pi/3) \\ X_m \cdot \sin(\theta + 2\pi/3) \end{bmatrix}$$
$$\begin{bmatrix} x_\alpha \\ x_\beta \end{bmatrix} = \sqrt{\frac{3}{2}} \begin{bmatrix} +X_m \cdot \sin(\theta) \\ -X_m \cdot \cos(\theta) \end{bmatrix}$$





#### **αβ** transformation properties:

$$C_{32}^{-1} \cdot C_{32} = \frac{2}{3}C_{32}^{T} \cdot C_{32} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$T_{32}^{-1} \cdot T_{32} = T_{32}^{T} \cdot T_{32} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$C_{32} \cdot C_{32}^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

$$T_{32} \cdot T_{32}^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

#### **Application to PMSM model:**

$$\begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} = T_{32} \cdot \begin{bmatrix} v_\alpha \\ v_\beta \end{bmatrix}, \quad \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} = T_{32} \cdot \begin{bmatrix} i_\alpha \\ i_\beta \end{bmatrix}, \quad \begin{bmatrix} \psi_a \\ \psi_b \\ \psi_c \end{bmatrix} = T_{32} \cdot \begin{bmatrix} \psi_\alpha \\ \psi_\beta \end{bmatrix}$$

electrical power:  $\begin{cases} \text{abc:} & p_e = [v]^T \cdot [i] \\ \alpha \beta\text{-concordia:} & p_e = [v]^T \cdot [i] \text{ power invariant} \\ \alpha \beta\text{-clarke:} & p_e = \frac{3}{2} \cdot [v]^T \cdot [i] \text{ vi invariant} \end{cases}$ 





### **Application to PMSM model:**

$$\begin{bmatrix} v_{a} \\ v_{b} \\ v_{c} \end{bmatrix} = R_{s} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \psi_{a} \\ \psi_{b} \\ \psi_{c} \end{bmatrix}$$

$$\Rightarrow T_{32} \cdot \begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = R_{s} \cdot T_{32} \cdot \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} + \frac{d}{dt} \left\{ T_{32} \cdot \begin{bmatrix} \psi_{\alpha} \\ \psi_{\beta} \end{bmatrix} \right\}$$

$$\Rightarrow T_{32} \cdot \begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = T_{32} \cdot R_{s} \cdot \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} + T_{32} \cdot \frac{d}{dt} \begin{bmatrix} \psi_{\alpha} \\ \psi_{\beta} \end{bmatrix}$$





#### **Application to PMSM model:**

$$\begin{bmatrix} v_{a} \\ v_{b} \\ v_{c} \end{bmatrix} = R_{s} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \Psi_{a} \\ \Psi_{b} \\ \Psi_{c} \end{bmatrix}$$

$$\Rightarrow T_{32} \cdot \begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = R_{s} \cdot T_{32} \cdot \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} + \frac{d}{dt} \left\{ T_{32} \cdot \begin{bmatrix} \Psi_{\alpha} \\ \Psi_{\beta} \end{bmatrix} \right\}$$

$$\Rightarrow T_{32} \cdot \begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = T_{32} \cdot R_{s} \cdot \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} + T_{32} \cdot \frac{d}{dt} \begin{bmatrix} \Psi_{\alpha} \\ \Psi_{\beta} \end{bmatrix}$$

Multiplying both sides by  $T_{32}^{-1}$ , it yields:

$$\Rightarrow \begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = R_{s} \cdot \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \Psi_{\alpha} \\ \Psi_{\beta} \end{bmatrix}$$





New circuit model:

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = R_{s} \cdot \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \Psi_{\alpha} \\ \Psi_{\beta} \end{bmatrix}$$

with:

$$\psi_{\alpha} = ?$$
 $\psi_{\beta} = ?$ 







New circuit model:

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = R_{s} \cdot \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \Psi_{\alpha} \\ \Psi_{\beta} \end{bmatrix}$$

with:

$$\psi_{\alpha} = \psi_{\alpha}(i_{\alpha}, i_{\beta}, \theta, \Psi_{PM})$$
  
$$\psi_{\beta} = \psi_{\beta}(i_{\alpha}, i_{\beta}, \theta, \Psi_{PM})$$



where  $\psi_{\alpha}$  and  $\psi_{\beta}$  depend on  $\theta$ !

 $\rightarrow$  trigonometric functions of  $\theta$  because  $\alpha\beta$  windings and permanent-magnets (rotor) move relative to each other.





# **Modeling of PMSM for Control Purposes**

- 1. Circuit-based modeling of PMSM
- 2.  $\alpha\beta$  transformation
- 3. Park transformation
- 4. Motor torque
- 5. Mechanical model
- 6. Electric motor losses





**Question:** is it possible to simplify the model in such a way that flux functions are (almost) independent from  $\theta$ ?



 $\psi_{\alpha}$  and  $\psi_{\beta}$  include trigonometric functions of  $\theta$  because  $\alpha\beta$  windings and permanent-magnets (rotor) move relative to each other.





**Question:** is it possible to simplify the model in such a way that flux functions are (almost) independent from  $\theta$ ?









**Note:** rotating  $\alpha\beta$  windings by  $\theta$  (counter-clockwise)  $\rightarrow dq$  windings

#### **Park transformation:**

$$\begin{bmatrix} x_{\alpha} \\ x_{\beta} \end{bmatrix} \triangleq \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x_{d} \\ x_{q} \end{bmatrix}$$

$$= P(\theta)$$

$$\begin{bmatrix} x_{d} \\ x_{q} \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x_{\alpha} \\ x_{\beta} \end{bmatrix}$$

$$= P^{-1}(\theta)$$





Park transformation properties:

$$P(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

$$P^{-1}(\theta) = P(-\theta)$$

$$P(\theta_1) \cdot P(\theta_2) = P(\theta_2) \cdot P(\theta_1) = P(\theta_1 + \theta_2)$$

$$P(\theta) \cdot P^{-1}(\theta) = P^{-1}(\theta) \cdot P(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\frac{d}{dt}\{P(\theta)\} = \frac{d}{dt}\theta \cdot \begin{bmatrix} -sin\theta & -cos\theta \\ cos\theta & -sin\theta \end{bmatrix} = \omega \cdot P\left(\theta + \frac{\pi}{2}\right)$$





#### Application to PMSM αβ variables:

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = P(\theta) \cdot \begin{bmatrix} v_{d} \\ v_{q} \end{bmatrix}, \quad \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} = P(\theta) \cdot \begin{bmatrix} i_{d} \\ i_{q} \end{bmatrix}, \quad \begin{bmatrix} \psi_{\alpha} \\ \psi_{\beta} \end{bmatrix} = P(\theta) \cdot \begin{bmatrix} \psi_{d} \\ \psi_{q} \end{bmatrix}$$

#### Application to PMSM αβ circuit model:

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = R_{s} \cdot \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \Psi_{\alpha} \\ \Psi_{\beta} \end{bmatrix}$$





#### Application to PMSM αβ variables:

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = P(\theta) \cdot \begin{bmatrix} v_{d} \\ v_{q} \end{bmatrix}, \quad \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} = P(\theta) \cdot \begin{bmatrix} i_{d} \\ i_{q} \end{bmatrix}, \quad \begin{bmatrix} \psi_{\alpha} \\ \psi_{\beta} \end{bmatrix} = P(\theta) \cdot \begin{bmatrix} \psi_{d} \\ \psi_{q} \end{bmatrix}$$

#### Application to PMSM αβ circuit model:

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = R_{s} \cdot \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \Psi_{\alpha} \\ \Psi_{\beta} \end{bmatrix}$$

$$\Rightarrow P(\theta) \cdot \begin{bmatrix} v_d \\ v_q \end{bmatrix} = R_s \cdot P(\theta) \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \frac{d}{dt} \left\{ P(\theta) \cdot \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} \right\}$$

$$\Rightarrow P(\theta) \cdot \begin{bmatrix} v_d \\ v_q \end{bmatrix} = P(\theta) \cdot R_s \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \frac{d}{dt} \{P(\theta)\} \cdot \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} + P(\theta) \cdot \frac{d}{dt} \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix}$$





$$P(\theta) \cdot \begin{bmatrix} v_d \\ v_q \end{bmatrix} = P(\theta) \cdot R_s \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \frac{d}{dt} \{P(\theta)\} \cdot \begin{bmatrix} \Psi_d \\ \Psi_q \end{bmatrix} + P(\theta) \cdot \frac{d}{dt} \begin{bmatrix} \Psi_d \\ \Psi_q \end{bmatrix}$$

Multiplying both sides by  $P^{-1}(\theta) = P(-\theta)$ , it yields:

$$\Rightarrow \begin{bmatrix} v_d \\ v_q \end{bmatrix} = R_s \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + P(-\theta) \cdot \frac{d}{dt} \{P(\theta)\} \cdot \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix}$$





Multiplying both sides by  $P^{-1}(\theta) = P(-\theta)$ , it yields:

$$\Rightarrow \begin{bmatrix} v_d \\ v_q \end{bmatrix} = R_S \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + P(-\theta) \cdot \frac{d}{dt} \{P(\theta)\} \cdot \begin{bmatrix} \Psi_d \\ \Psi_q \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \Psi_d \\ \Psi_q \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} v_d \\ v_q \end{bmatrix} = R_s \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + P(-\theta) \cdot \omega \cdot P\left(\theta + \frac{\pi}{2}\right) \cdot \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} v_d \\ v_q \end{bmatrix} = R_s \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \omega \cdot P\left(-\theta + \theta + \frac{\pi}{2}\right) \cdot \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} v_d \\ v_q \end{bmatrix} = R_s \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \omega \cdot P\left(\frac{\pi}{2}\right) \cdot \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} v_d \\ v_q \end{bmatrix} = R_s \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \omega \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix}$$





### New circuit model in Park dq-frame:

$$\begin{bmatrix} v_d \\ v_q \end{bmatrix} = R_s \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \Psi_d \\ \Psi_q \end{bmatrix}$$

$$+\omega \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \Psi_d \\ \Psi_q \end{bmatrix}$$
where:  $\omega = \frac{d}{dt}\theta = \dot{\theta} = P_p \cdot \Omega$ 
electrical speed of the rotor speed of the rotor







### New circuit model in Park dq-frame:

$$\begin{bmatrix} v_d \\ v_q \end{bmatrix} = R_s \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} + \omega \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix}$$
where: 
$$\omega = \frac{d}{dt} \theta = \dot{\theta} = P_p \cdot \Omega$$



### Reminder: modeling assumptions

- Stator windings are balanced.
- High frequency dynamics are not considered.
- Hysteresis phenomena and eddy currents are ignored.



- Capacitive couplings between stator windings are neglected.



## Circuit Modeling of PM Synchronous Motors

### Additional modeling assumptions:

- Distribution of magnetomotive forces is sinusoidal.
- Magnetic circuit of the machine is not saturated.
- Damping effect at the rotor is neglected.
- Air gap irregularities due to stator slots are ignored.
- Permanent-magnet flux linkage magnitude is constant.

Then,  $\psi_d$  and  $\psi_q$  are linear functions of stator dq-currents:

$$\begin{cases} \psi_d = L_d \cdot i_d & + M_{dq} \cdot i_q \\ \psi_q = L_q \cdot i_q & + M_{qd} \cdot i_d \end{cases} + \Psi_f \Rightarrow = \sqrt{\frac{3}{2}} \cdot \Psi_{PM} \quad \text{Concordía}$$
 regligible if no saturation





# **Modeling of PMSM for Control Purposes**

- 1. Circuit-based modeling of PMSM
- 2.  $\alpha\beta$  transformation
- 3. Park transformation
- 4. Motor torque
- 5. Mechanical model
- 6. Electric motor losses





#### Park model of PMSM:

$$\begin{bmatrix} v_d \\ v_q \end{bmatrix} = R_s \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} + \omega \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} \quad q$$

with: 
$$\begin{cases} \psi_d = L_d \cdot i_d + \Psi_f \\ \psi_q = L_q \cdot i_q \end{cases}$$



### **Motoring mode:**

electrical power = losses + mechanical power + electromagnetic power

concordía: 
$$p_e = [v]^T \cdot [i] = R_S \cdot \left(i_d^2 + i_q^2\right) + P_p \Omega \cdot \left(\psi_d i_q - \psi_q i_d\right) + \cdots$$

clarke: 
$$p_e = \frac{3}{2} \cdot [v]^T \cdot [i] = \cdots$$





#### Park model of PMSM:

$$\begin{bmatrix} v_d \\ v_q \end{bmatrix} = R_s \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} + \omega \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} \qquad frame$$

with: 
$$\begin{cases} \psi_d = L_d \cdot i_d + \Psi_f \\ \psi_q = L_q \cdot i_q \end{cases}$$



### **Motoring mode:**

mechanical power: 
$$p_m = P_p \Omega \cdot (\psi_d i_q - \psi_q i_d)$$
 (Concordía)

From Dynamics, we know:  $p_m = T_m \cdot \Omega$ motor torque  $\leftarrow$  mechanical speed





#### Park model of PMSM:

$$\begin{bmatrix} v_d \\ v_q \end{bmatrix} = R_s \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} + \omega \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix}$$

### **Motor torque (Concordia Transformation):**

$$T_m = P_p \cdot (\psi_d \cdot i_q - \psi_q \cdot i_d) = P_p \cdot (\Psi_f + (L_d - L_q) \cdot i_d) \cdot i_q$$

**Interaction Torque** 

Reluctance Torque

synchronous







#### Park model of PMSM:

with: 
$$\begin{cases} \psi_d = L_d \cdot i_d + \Psi_f \\ \psi_q = L_q \cdot i_q \end{cases} \qquad \Psi_{PM} \leftarrow$$



### **Motor torque (Clarke Transformation):**

$$T_m = \frac{3}{2}P_p \cdot \left(\psi_d \cdot i_q - \psi_q \cdot i_d\right) = \frac{3}{2}P_p \cdot \left[\Psi_f\right] \cdot \left(L_d - L_q\right) \cdot i_d \cdot i_q$$

**Interaction Torque** 

Reluctance Torque





## PMSM Model with Magnetic Circuit Saturation

#### Park model of PMSM:

$$\begin{bmatrix} v_d \\ v_q \end{bmatrix} = R_S \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} + \omega \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} \quad \begin{matrix} q \\ \end{matrix}$$

with: 
$$\begin{cases} \psi_d = \psi_d(i_d, i_q) \\ \psi_q = \psi_q(i_d, i_q) \end{cases} \stackrel{\text{\tiny 2}}{\Rightarrow}$$

### Note 1: In general:

$$\begin{cases} \psi_d = \psi_d(i_d, i_q, \theta, T^\circ) \\ \psi_q = \psi_q(i_d, i_q, \theta, T^\circ) \end{cases}$$

Note 2: Some authors consider  $\psi_d = L_d i_d + \Psi_f$  and  $\psi_q = L_q i_q$  with:  $L_d = L_d(i_d, i_q, \theta, T^\circ), L_q = L_q(i_d, i_q, \theta, T^\circ)$  and  $\Psi_f = \Psi_f(i_d, i_q, \theta, T^\circ)$ 





synchronous

frame



id [A]

## PMSM Model with Magnetic Circuit Saturation



## Effect of Magnetic Circuit Saturation



## Effect of Magnetic Circuit Saturation

#### Motor torque $(T_m)$ with saturation



### Motor torque $(T_m)$ without saturation





# **Modeling of PMSM for Control Purposes**

- 1. Circuit-based modeling of PMSM
- 2.  $\alpha\beta$  transformation
- 3. Park transformation
- 4. Motor torque
- 5. Mechanical model
- 6. Electric motor losses





### Mechanical Model

### Mechanical model for all rotating machines:

Dynamic of rotating systems:

$$J\frac{d}{dt}\Omega = \sum Torques$$



Mechanical model: 
$$J\frac{d}{dt}\Omega = T_m - T_l - \underbrace{friction\ torque}$$

 $T_f = f_0 \cdot sign(\Omega) + f_1 \cdot \Omega + f_2 \cdot |\Omega| \cdot \Omega + \cdots$ 





### Mechanical Model

$$J\frac{d}{dt}\Omega = T_m - T_l - \underbrace{friction torque}_{T_f = f_0 \cdot sign(\Omega) + f_1 \cdot \Omega + f_2 \cdot |\Omega| \cdot \Omega + \cdots}$$

*J*: inertia constant (moment of inertia) of all rotating parts  $[kg/m^2]$   $T_f$ : friction torque of all rotating parts [Nm]

Permanent-magnet motors:



Load torque  $(T_l)$ : external torque applied to the rotor shaft [Nm] in general:  $T_l = T_l(T_{l0}, \theta, \Omega, \dot{\Omega}, \ddot{\Omega}, ...)$ 

Cogging torque: an additional torque due to the interaction force between permanent magnets and stator teeth  $(T_{cog} = T_{cog}(\theta, \Psi_f))$ 



# **Modeling of PMSM for Control Purposes**

- 1. Circuit-based modeling of PMSM
- 2.  $\alpha\beta$  transformation
- 3. Park transformation
- 4. Motor torque
- 5. Mechanical model
- 6. Electric motor losses





### Main Losses in Electric Motors

Mechanical losses:  $Loss_{mec} = T_f \cdot \Omega$ 

 $T_f$  includes dry friction, viscous friction, and aerodynamic friction (drag) Windage losses due to relative motion of the fluid between rotor and stator

Copper (ohmic) losses:

$$Loss_{Cu} = \frac{3}{2} R_s \cdot (i_d^2 + i_q^2)$$
 (Clarke)  
 $Loss_{Cu} = \frac{3}{2} R_s \cdot (i_\alpha^2 + i_\beta^2) = R_s \cdot (i_\alpha^2 + i_b^2 + i_c^2)$ 

Core losses:

$$Loss_{core} \cong K_H B_m^n \cdot f_1 + K_E B_m^2 \cdot f_1^2 + K_O B_m^{3/2} \cdot f_1^{3/2} \qquad \text{fundamental}$$
 frequency

density

- Hysteresis losses (Steinmetz equation, 1.8 < n < 2.2)
- Eddy current losses
- Other (or excess Eddy current) losses

#### Magnet losses:

Due to eddy currents flowing in magnets; proportional to  $f_1^2$ 





## Course Outline

- 1. Introduction to Adjustable Speed Drives (ASD)
- 2. Topic 1: Modeling of PMSM for Control Purposes
- 3. Topic 2: Average Modeling of Voltage-Source Inverters
- 4. Topic 3: Torque Control of PMSM
- 5. Topic 4: Torque Control of Other Electric Motors
- **6.** Topic 5: Speed Control of Electric Motors
- 7. Topic 6: Common Failures in ASD
- **8.** Topic 7: Modeling of ASD Under Fault Conditions
- 9. Topic 8: Fault-Tolerant Capability of ASD
- 10. Topic 9: Fault-Tolerant Control of ASD
- 11. Future Trends and Conclusion





## ECE 730: Control of Adjustable Speed Drives

Course Website:

http://avenue.mcmaster.ca/

Please send your questions/appointment requests to:

babak.nahid@mcmaster.ca

with subject:

ECE730 question/appointment



