RESOLUTION PROOF METHOD =

Exercise 1

Uring general resolution prove that the following formulas were theorems.

RESOLUTION - A REFUTATION PROOF METHOD

Theorem

A propositional formula U is a **theorem** (tautology) if and only if the empty clause can be derived from the conjunctive normal form of $\neg U$, using the resolution algorithm.

U is a theorem (tautology) if and only if $CNF(\neg U) \vdash_{Res} \Box$.

RESOLUTION PROOF METHOD =

Exercise 1

Using general resolution prove that the following formulas were theorems.

We will opply the NORMALIZATION ALGORITHM in order to get the equivalent CNF of 7U7.

Normalization algorithm

Aim: to transform a formula into another logically equivalent formula, having a certain character of "normal" or "canonical" form.

Transformations which preserve the logical equivalence are applied:

Step 1: The formulas of " $X \to Y$ " type are replaced by the equivalent form $\neg X \vee Y$. The formulas of " $X \leftrightarrow Y$ " type are replaced by the equivalent form $(\neg X \vee Y) \wedge (\neg Y \vee X)$.

Step2: De Morgan laws are applied \Longrightarrow push negations in until they apply only to propositional variables

Multiple negations are eliminated by the reduction rule: $\neg\neg X \equiv X$.

Step3: The distribution laws are applied.

$$7 U_7 = 7 \left(\left(A \xrightarrow{1} B \right) \xrightarrow{2} \left(\left(7 A \xrightarrow{3} C \right) \xrightarrow{4} \left(7 B \xrightarrow{5} C \right) \right) \right)$$

TU7 = 7 ((A -> B) -> ((7A -> C) -> (7B -> C)))

(replace -> from the inside formulas, denoted by

1, 3, and 5)

$$7U_7 = 7((A \rightarrow B) \rightarrow ((7A \rightarrow C) \rightarrow (7B \rightarrow C)))$$

(replace \rightarrow from the inside formulas, denoted by
 $1, 3, \text{ and } 5)$
 $= 7((7A \vee B) \rightarrow ((A \vee C) \rightarrow (B \vee C)))$

 $7U_{7} = 7\left(\left(A \xrightarrow{1} B\right) \xrightarrow{2} \left(\left(7A \xrightarrow{3} C\right) \xrightarrow{4} \left(7B \xrightarrow{5} C\right)\right)\right)$

(replace -> from the inside formulas, denoted by 1, 3, and 5)

= 7 ((7AVB) -> ((AVC) -> (BVC)))

(replace - from the inside formula, denoted by 4)

$$7U_7 = 7\left(\left(A \xrightarrow{1} B\right) \xrightarrow{2} \left(\left(7A \xrightarrow{3} C\right) \xrightarrow{4} \left(7B \xrightarrow{5} C\right)\right)\right)$$
(replace \rightarrow from the invide -12

(replace - from the inside formula, denoted by 4)

$$7U_7 = 7\left(\left(A \xrightarrow{1} B\right) \xrightarrow{2} \left(\left(7A \xrightarrow{3} C\right) \xrightarrow{4} \left(7B \xrightarrow{5} C\right)\right)\right)$$

(replace - from the inside formula, denoted by 4)

(replace - from the inside formula, denoted by 4)

(replace the main connective -, denoted by 2)

$$7U_7 = 7\left(\left(A \xrightarrow{1} B\right) \xrightarrow{2} \left(\left(7A \xrightarrow{3} C\right) \xrightarrow{4} \left(7B \xrightarrow{5} C\right)\right)\right)$$

$$\equiv \neg ((\neg A \lor B) \rightarrow ((A \lor C) \rightarrow (B \lor C)))$$

(replace - from the inside formula, denoted by 4)

(replace the main connective -s, denoted by 2)

$$7U_{7} = 7\left(\left(A \xrightarrow{1} B\right) \xrightarrow{2} \left(\left(7A \xrightarrow{3} C\right) \xrightarrow{4} \left(7B \xrightarrow{5} C\right)\right)\right)$$

$$\equiv \neg ((\neg A \lor B) \rightarrow ((A \lor C) \rightarrow (B \lor C)))$$

(replace - from the inside formula, denoted by 4)

=7((7AVB)->((7ANC)V(BVC))) (opplied DeMorgan's law)

(replace the main connective -, denoted by 2)

=7((AA7B)V(7AA7C)VBVC) (applied DeMorgan's law; removed perantheres)

= 7 (A N 1 B) N 7 (7 A N 7 C) N (7 B) N (7 C)

= (7A VB) N (A VC) N (7B) N(C) (opplied DeMorgan's law)

We have

CNF(7U+)=(7A VB) N (AVC) N (7B) N (7C)

We have

CNF(7U+)=(7A VB) N (AVC) N (7B) N (7C)

We build the set of clauses S:

S={TAVB, AVC, TB, TCJ

C1=7AVB; C2=AVC; C5=7B; C4=7C

Using the resolution method we will prove that the set S of clauses is inconsistent.

We will use this

resolution rule

RESOLUTION METHOD

- FORMAL SYSTEM FOR PROPOSITIONAL LOGIC -

Res = $(\Sigma_{Res}, F_{Res}, A_{Res}, R_{Res})$, where:

- $\Sigma_{\text{Re}s} = \Sigma_P \{\rightarrow, \leftrightarrow, \land\}$ the alphabet;
- $F_{\text{Res}} \cup \{\Box\}$
 - F_{Res} the set of all clauses built using the alphabet Σ_{Res} ;
 - is the empty clause, does not contain any literal,
 it symbolizes inconsistency;
- $A_{\text{Re }s} = \emptyset$ is the set of axioms;
- R_{Res} is the set of inference rules containing the resolution rule (res):

 $f \lor l, g \lor \neg l \vdash_{res} f \lor g$, where l is a literal and $f, g \in F_{Res}$.

DEFINITIONS

Let I be a literal and $f, g \in F_{Res}$.

- the clauses $C_1 = f \lor l$ and $C_2 = g \lor \neg l$ are called *clashing* clauses and they resolve upon the literal l.
- notation: $C = \text{Res}_{l}(C_1, C_2) = f \vee g$, where C is called the *resolvent* of the *parent clauses* C_1 and C_2 .
- if $C_1 = l$ and $C_2 = \neg l$, then $\text{Res}_l(C_1, C_2) = \square$ (empty clause) which is inconsistent.

Graphical representation:

We will use this graphical repersentation

C1=7AVB; C2=AVC; C3=7B; C4=7C

C1=7AVB; C2=AVC; C3=7B; C4=7C

$$C_1 = 7A \vee B$$

$$C_3 = 7B$$

$$C_5 = Res_B(C_1, C_3) = 7A$$

$$C_1 = 7A \vee B$$

$$C_3 = 7B$$

$$C_5 = Res_B(C_1, C_3) = 7A$$

$$C_2 = AvC$$

$$C_4 = 7C$$

$$C_1 = 7A \vee B$$

$$C_3 = 7B$$

$$C_5 = Res_B(C_1, C_3) = 7A$$

$$C_2 = A \vee C$$

$$C_4 = 7 C$$

$$C_6 = \text{Resc}(C_2, C_1) = A$$

$$C_{1} = 7A \vee B; \qquad C_{2} = A \vee C; \qquad C_{3} = 7B; \qquad C_{4} = 7C$$

$$C_{1} = 7A \vee B \qquad C_{2} = A \vee C \qquad C_{4} = 7C$$

$$C_{5} = Res_{B}(C_{1}, C_{3}) = 7A$$

$$C_{6} = Res_{C}(C_{2}, C_{1}) = A$$

$$C_{7} = Res_{A}(C_{5}, C_{6}) = \square$$

$$C_{1} = 7A \vee B; \qquad C_{2} = A \vee C; \qquad C_{3} = 7B; \qquad C_{4} = 7C$$

$$C_{1} = 7A \vee B \qquad C_{3} = 7B \qquad C_{2} = A \vee C \qquad C_{4} = 7C$$

$$C_{5} = Res_{B}(C_{1}, C_{3}) = 7A$$

$$C_{6} = Res_{C}(C_{2}, C_{4}) = A$$

$$C_{7} = Res_{A}(C_{5}, C_{6}) = \Box$$

C4 = 7 C

We derived the empty clause from CNF(-UI) using the resolution algorithm => The propositional formula U7 is a theorem.