2012 浙江工业大学高等数学(上)考试试卷 A

学院:			班级:			_ 姓名:			学号:		
任课教师											
	题	号	_	=	Ξ	四	五	六	总	分	
	得	分									
- 、选择填空题(每小题 3 分): 1. 下列极限中正确的是(A)。 (A) 1:											
(A) $\lim_{x \to \infty} x \sin \frac{1}{x} = 1;$ (B) $\lim_{x \to 0} x \sin \frac{1}{x} = 1;$ (C) $\lim_{x \to \infty} \frac{\sin x}{x} = 1;$ (D) $\lim_{x \to 0} \frac{\sin 2x}{x} = \frac{1}{2}.$											
	(C)	$\lim_{x\to 0}$	$\lim_{x \to \infty} \frac{\sin x}{x} =$	=1;	(D)]	$\lim_{x\to 0} \frac{\sin 2}{x}$	$\frac{x}{x} = \frac{1}{2}$.				
2. 设在					下列几个			确的是	(В)。
(A) $f'(1) > f'(0) > f(1) - f(0)$;											
(B) $f'(1) > f(1) - f(0) > f'(0)$;											
(C) $f(1) - f(0) > f'(1) > f'(0)$; (D) $f'(1) > f(0) - f(1) > f'(0)$.											
3. $\lim_{x\to a}$	$n(\frac{1}{x^2})$	$\frac{2}{(2)^2-1}$	$-\frac{1}{x-1}$) =		o	$-\frac{1}{2}$				
4.											
5. $d[\sin(1+3x^2)] =dx \cdot 6x\cos(1+3x^2)$											
6.											
7. 方程 $2x^3 + 3x^2 + 6x = 0$ 有个实根。1											
8. $\lim_{x \to \infty}$	$ \lim_{x \to 0} \frac{\int_0^x dx}{x} $	cos	$\frac{t^2dt}{c} = $			$-^{\circ} \frac{1}{2}$					
9. $\int_{-1}^{\frac{\pi}{2}}$	$\frac{\pi}{2}$ $\sqrt{1}$	-si	$\frac{1}{\ln 2x}dx =$	=		c	$2\sqrt{2}$				
10. 微:	分方	程($e^{x+y}-e^{x}$	(dx)	$e^{x+y}+e^y$	dy = 0	的通解是	皀。	$(e^x +$	$1)(e^{y}$	-1) = a
1.1 公4.	八子	护.	. " 1	1 6543番 67	目		a ain a		o n 1		

二、试解下列各题(每小题6分:

解:

$$y' = 2^{x} \ln x + \frac{(x^{2} + 1)\sec^{2} x - 2x \tan x}{(x^{2} + 1)^{2}}$$

2. 求函数 $y = x^3 - 5x^2 + 3x + 5$ 的拐点和凹凸区间。解:

$$y'' = 6x - 10, \quad x = \frac{5}{3}$$

($-\infty, \frac{5}{3}$) $y'' < 0$ 凸区间; $(\frac{5}{3}, +\infty)$ $y'' > 0$ 凹区间 拐点为 $(\frac{5}{3}, \frac{20}{27})$

3. 证明不等式: $1 + \frac{1}{2}x \ge \sqrt{1+x}$ $(x \ge 0)$ 。

解:

记
$$f(x) = 1 + \frac{1}{2}x - \sqrt{1+x}$$
,
$$f'(x) = \frac{1}{2} - \frac{1}{2\sqrt{1+x}} \ge 0, (x \ge 0)$$
 则 $f(x)$ 在 $(0, +\infty)$ 内单调增加, 所以 $f(x) \ge f(0) = 0$ 即 $1 + \frac{1}{2}x \ge \sqrt{1+x}$ $(x \ge 0)$

4. 证明不等式:
$$2e^{-\frac{1}{4}} \le \int_0^2 e^{x^2 - x} dx \le 2e^2$$

解:记
$$f(x) = e^{x^2 - x}$$
,则 $f'(x) = (2x - 1)e^{x^2 - x}$
令 $f'(x) = 0$ 得驻点 $x = \frac{1}{2}$
由 $f(0) = 1$; $f(\frac{1}{2}) = e^{-\frac{1}{4}}$; $f(2) = e^2$

知 f(x) 在区间[0,2]上最大(小)值,即有 $e^{-\frac{1}{4}} \le f(x) \le e^2$;

从而有
$$2e^{-\frac{1}{4}} \le \int_0^2 e^{x^2 - x} dx \le 2e^2$$

三、试解下列各题(每小题6分:

1. 求不定积分 $\int \frac{2x-1}{\sqrt{1-x^2}} dx$ 。

解:

$$\int \frac{2x-1}{\sqrt{1-x^2}} dx = \int \frac{2x}{\sqrt{1-x^2}} dx - \int \frac{1}{\sqrt{1-x^2}} dx$$
$$= -2\sqrt{1-x^2} - \arcsin x + c$$

2. 求定积分 $\int_{1}^{e} x \ln x dx$ 。

解:
$$\int_{1}^{e} x \ln x dx = \frac{1}{4}e^{2} + \frac{1}{4}$$

四、试解下列各题(每小题5分:

1. 设 f(x) 是连续函数,且满足方程 $f(x) - 2\int_0^x f(t)dt = x^2 + 1$,求: f(x)解:

方程两边求导得 f'(x)-2f(x)=2x 这是一阶线性微分方程,从而有

$$f(x) = e^{\int 2dx} \left(\int 2xe^{\int -2dx} dx + c \right) = ce^{2x} - x - \frac{1}{2}$$

由
$$f(0)=1$$
 得 $c=\frac{3}{2}$

从而得
$$f(x) = \frac{3}{2}e^{2x} - x - \frac{1}{2}$$

2. 设 f(x) 连续,且 $f(x) = \sqrt{\frac{3}{4\pi}} x - \sqrt[4]{1-x^2} \int_{-1}^{1} f^2(x) dx$,试求: $\int_{-1}^{1} f^2(x) dx$ 解:

记
$$A = \int_{-1}^{1} f^{2}(x) dx$$
,则 $f(x) = \sqrt{\frac{3}{4\pi}} x - \sqrt[4]{1 - x^{2}} A$
 $f^{2}(x) = \frac{3}{4\pi} x^{2} - 2A\sqrt{\frac{3}{4\pi}} x \sqrt[4]{1 - x^{2}} + \sqrt{1 - x^{2}} A^{2}$
从而有 $A = \int_{-1}^{1} \left(\frac{3}{4\pi} x^{2} - 2A\sqrt{\frac{3}{4\pi}} x \sqrt[4]{1 - x^{2}} + \sqrt{1 - x^{2}} A^{2}\right) dx$
 $= \frac{1}{2\pi} + 0 + \frac{\pi}{2} A^{2}$
解方程得 $A = \frac{1}{\pi}$,即 $\int_{-1}^{1} f^{2}(x) dx = \frac{1}{\pi}$

3. 设 f(x) 是 [a,b] 区间上的非负连续函数,证明在 [a,b] 区间上存在一点 c,使直线 x=c 将曲线 y=f(x) 与直线 x=a, x=b, y=0 所围的曲边梯形的面积二等分。

解: 记
$$g(x) = \int_a^x f(t)dt$$
,则 $g(b) = \int_a^b f(t)dt$ 是所围曲边梯形的面积,

再记
$$F(x) = g(x) - \frac{1}{2}g(b)$$

$$\pm F(a) = g(a) - \frac{1}{2}g(b) = -\frac{1}{2}g(b), \quad F(b) = g(b) - \frac{1}{2}g(b) = \frac{1}{2}g(b)$$

显然 F(a) , F(b) 异号,则由零点定理可知,在 [a,b] 区间上存在一点 c

使
$$F(c) = g(c) - \frac{1}{2}g(b) = 0$$
, 即 $\int_a^c f(t)dt = \frac{1}{2}\int_a^b f(t)dt$

即直线 x = c 将所围的曲边梯形面积二等分。

五、(8分) 已知
$$f(x) = \begin{cases} \frac{1}{x^2 + 2x + 2} & x \le 0 \\ \frac{1}{1 + e^x} & x > 0 \end{cases}$$
, $F(x) = \int_{-2}^x f(t) dt$

- (1) 求F(x)在[-2,2]上的解析表达式。
- (2) 讨论 F(x) 在 x = 0 点的可导性。

$$\text{#:} \qquad (1) \qquad F(x) = \begin{cases} \arctan(x+1) + \frac{\pi}{4} & -2 \le x \le 0 \\ x - \ln(1+e^x) + \frac{\pi}{2} + \ln 2 & 0 < x \le 2 \end{cases}$$

(2) 因为
$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} \frac{1}{x^2 + 2x + 2} = \frac{1}{2}$$
, $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{1}{1 + e^x} = \frac{1}{2}$ 则 $f(x)$ 在 $x = 0$ 处连续,

从而积分上限函数
$$F(x) = \int_{-2}^{x} f(t)dt$$
 在 $x = 0$ 点可导

六、(8分) 设曲线 $y = \sqrt{x-1}$,

- (1) 求此曲线在点(2,1)处的法线;
- (2) 求该曲线与在点(2,1)处的法线及直线x = 0, y = 0所围图形的面积;
- (3) 求上述所围图形绕 y 轴旋转所成立体的体积。

解:

(1) 曲线在点(2,1)处的法线方程 y=5-2x

(2) 面积
$$A = \int_0^1 (y^2 + 1) dy + \int_1^5 \frac{1}{2} (5 - y) dy = \frac{16}{3}$$

(3)
$$4\pi V = \pi \int_0^1 (y^2 + 1)^2 dy + \frac{\pi}{4} \int_1^5 (5 - y)^2 dy = \frac{28}{15} \pi + \frac{16}{3} \pi = \frac{36}{5} \pi$$