

Sardar Patel Institute of Technology, Mumbai Department of Electronics and Telecommunication Engineering B.E. Sem-VII (2022-2023) Data Analytics

Experiment: Exploratory Data Analysis (EDA)

Name: Rahul Alshi UID: 2019110001 BE ETRX DA LAB 4

Aim: Perform Regression on a Dataset in Python

Dataset Overview

The dataset 'Weather Data in India from 1901 to 2017.csv' contains 13 columns with information on weather in India from 1901 to 2017 in 12 months of an year.:

Code:

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
       import statsmodels.api as sm
        from sklearn import metrics
        import warnings
        from sklearn.model selection import train test split
        from sklearn.linear_model import LinearRegression
        warnings.filterwarnings('ignore')
        %matplotlib inline
In [2]: df = pd.read_csv('Weather Data in India from 1901 to 2017.csv')
In [3]: df = df.drop(['JAN', 'FEB', 'MAR'], axis=1)
        df.dropna()
        df.reset_index(inplace=True, drop=True)
       df = df[df['APR']>0]
Out[3]:
             Unnamed: 0 YEAR APR MAY JUN JUL AUG SEP OCT NOV DEC
                    0 1901 26.41 28.28 28.60 27.49 26.98 26.26 25.08 21.73 18.95
                     1 1902 26.54 28.68 28.44 27.29 27.05 25.95 24.37 21.33 18.78
                   2 1903 26.03 27.93 28.41 28.04 26.63 26.34 24.57 20.96 18.29
                     3 1904 26.73 27.83 27.85 26.84 26.73 25.84 24.36 21.07 18.84
```

```
In [2]: df = pd.read_csv('Weather Data in India from 1901 to 2017.csv')
In [3]: df = df.drop(['JAN', 'FEB', 'MAR'], axis=1)
        df.dropna()
df.reset_index(inplace=True, drop=True)
         df = df[df['APR']>0]
Out[3]:
             Unnamed: 0 YEAR APR MAY JUN JUL AUG SEP OCT NOV DEC
           0 0 1901 26.41 28.28 28.60 27.49 26.98 26.26 25.08 21.73 18.95
                      1 1902 26.54 28.68 28.44 27.29 27.05 25.95 24.37 21.33 18.78
          2
                     2 1903 26.03 27.93 28.41 28.04 26.63 26.34 24.57 20.96 18.29
                      3 1904 26.73 27.83 27.85 26.84 26.73 25.84 24.36 21.07 18.84
                    4 1905 24.84 28.32 28.69 27.67 27.47 26.29 26.16 22.07 18.71
          4
                112 2013 26.97 29.06 28.24 27.50 27.22 26.87 25.63 22.18 19.69
         112
         113
                    113 2014 26.91 28.45 29.42 28.07 27.42 26.61 25.38 22.53 19.50
         114
                    114 2015 26.52 28.82 28.15 28.03 27.64 27.04 25.82 22.95 20.21
                    115 2016 29.56 30.41 29.70 28.18 28.17 27.72 26.81 23.90 21.89
         115
              116 2017 29.17 30.47 29.44 28.31 28.12 28.11 27.24 23.92 21.47
         117 rows × 11 columns
```

In [4]: df.describe() Out[4]: Unnamed: 0 YEAR APR MAY JUN JUL AUG SEP OCT NOV DEC count 117.000000 117.000000 117.000000 117.000000 117.000000 117.000000 117.000000 117.000000 117.000000 117.000000 117.000000 117.000000 117.000000 mean 58.00000 1959.00000 26.514103 28.388410 28.300940 27.369231 25.940085 26.342650 24.742051 21.765726 19.173333 std 33,919021 33,919021 0.750740 0.844878 0.480803 0.345920 0.348876 0.387789 0.563152 0.634183 0.635912 0.000000 1901.000000 24.840000 26.970000 27.330000 26.480000 26.210000 25.470000 23.520000 20.590000 17.980000 25% 29,00000 1930,00000 26,00000 27,95000 28,02000 27,15000 26,73000 26,11000 24,39000 21,32000 18,78000

In [6]: df.dropna()

Out[6]:

	Unnamed: 0	YEAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
0	0	1901	26.41	28.28	28.60	27.49	26.98	26.26	25.08	21.73	18.95
1	1	1902	26.54	28.68	28.44	27.29	27.05	25.95	24.37	21.33	18.78
2	2	1903	26.03	27.93	28.41	28.04	26.63	26.34	24.57	20.96	18.29
3	3	1904	26.73	27.83	27.85	26.84	26.73	25.84	24.36	21.07	18.84
4	4	1905	24.84	28.32	28.69	27.67	27.47	26.29	26.16	22.07	18.71
112	112	2013	26.97	29.06	28.24	27.50	27.22	26.87	25.63	22.18	19.69
113	113	2014	26.91	28.45	29.42	28.07	27.42	26.61	25.38	22.53	19.50
114	114	2015	26.52	28.82	28.15	28.03	27.64	27.04	25.82	22.95	20.21
115	115	2016	29.56	30.41	29.70	28.18	28.17	27.72	26.81	23.90	21.89
116	116	2017	29.17	30.47	29.44	28.31	28.12	28.11	27.24	23.92	21.47

117 rows × 11 columns

```
In [8]: x = df[df.columns[df.columns != 'MAY']]
y = df.MAY

# Statsmodels.OLS requires us to add a constant.
x = sm.add_constant(x)
model = sm.OLS(y,x)
results = model.fit()
print(results.summary())
```

```
In [9]: df = df.dropna()
```

```
In [11]:
    x.drop(columns = ['','JUN', 'JUL'],axis=1, inplace=True)
    model = sm.OLS(y,x)
    results = model.fit()
    print(results.summary())
```

```
In [12]: X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.25)
    regr = LinearRegression()
    regr.fit(X_train, y_train)
    print(regr.score(X_test, y_test))
    0.4541275652917467

In [13]: coefficients = pd.concat([pd.DataFrame(x.columns),pd.DataFrame(np.transpose(regr.coef_))], axis = 1)
    coefficients
```

Output:

OLS Regression Results

OLS REGICESSION RESULES								
Dep. Variab	le:	1	MAY R-squa	R-squared:				
Model:		(•				
Method:		Least Squar		F-statistic:				
Date:				Prob (F-statistic):				
Time:		22:10:						
No. Observa	tions:	1	17 AIC:			192.6		
Df Residual	s:	1	107 BIC:			220.2		
Df Model:			9					
Covariance	Type:	nonrobu	ıst					
	coef	std err	t	P> t	[0.025	0.975]		
const	2.919e-06	2.65e-06	1.103	0.272	-2.33e-06	8.16e-06		
Unnamed: 0	-0.0043	0.003	-1.608	0.111	-0.010	0.001		
YEAR	0.0012		0.435	0.664	-0.004			
APR	0.3499	0.079	4.418	0.000	0.193	0.507		
	0.0732		0.525	0.601	-0.203	0.350		
JUL	-0.0784	0.210	-0.374	0.709	-0.494	0.338		
AUG	0.5404	0.243	2.223	0.028	0.059	1.022		
SEP	-0.0366	0.221	-0.166	0.868	-0.474	0.401		
OCT	0.0184	0.161	0.115	0.909	-0.300	0.337		
NOV	0.0807	0.155	0.522	0.603	-0.226	0.387		
DEC	0.0659	0.130	0.507	0.613	-0.192	0.324		
			l13 Durbir			1.829		
Prob(Omnibus):			000 Jarque		:	53.091		
Skew:			746 Prob(3			2.96e-12		
Kurtosis:			943 Cond.	No.		8.17e+18		
========								

- Notes:
 [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 [2] The smallest eigenvalue is 6.74e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

OLS Regression Results

OLD Reg. COSTON RESULTS								
Dep. Variable			MAY R-	squared:		0.256		
Model:	•			i. R-squared	0.216			
Method:		Least Squ			6.313			
Date:				ob (F-statis	tic):	9.93e-06		
Time:				g-Likelihood		-96.839		
No. Observatio		22		_	•			
	ms:		117 AI			207.7		
Df Residuals:			110 BI	L:		227.0		
Df Model:			6					
Covariance Typ								
					[0.025	0.975]		
const 3.								
					-0.009			
	0.0018				-0.004			
	0.6677	0.238	2.80	6 0.006	0.196	1.139		
SEP	0.0434	0.230	0.18	9 0.851	-0.412	0.499		
OCT	0.0727	0.172	0.42	2 0.674	-0.269	0.414		
NOV	0.0428	0.161	0.26	6 0.791	-0.276	0.362		
DEC	0.1668	0.138	1.21	1 0.228	-0.106	0.440		
Omnibus:		26	.482 Du	rbin-Watson:		1.946		
Prob(Omnibus):		(0.000 Ja	rque-Bera (J	B):	66.606		
Skew:		(0.828 Pr	ob(JB):		3.44e-15		
Kurtosis:			.305 Co	nd. No.		8.15e+18		

- Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The smallest eigenvalue is 6.77e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Conclusion:

- 1. Performed Regression analysis in Python for house classifier dataset.
- 2. Regression analysis is a statistical method to model the relationship between a dependent (target) and independent (predictor) variables with one or more independent variables. Regression analysis helps us to understand how the value of the dependent variable is changing corresponding to an independent variable when other independent variables are held fixed
- 3. The regression coefficient for the month of august month in the data set is calculated out to be aroung 0.62 whereas for other attributes it is approximately close to 0.
- 4. Few insights we found from the dataset:
 - The regression score calculated for the data set is found out to be 0.45
 - The highest r squared value obtained from the regression analysis is highest for the MAY attribute with 0.379