

CE-QUAL-W2 MODEL SETUP II CONTROL FILE

Isaac Mudge, MS

U.S. Army Corps of Engineers, New Orleans District

and

U.S. Army Engineer Research and Development Center, Environmental Laboratory

CE-QUAL-W2 Workshop

August 16 - 18, 2022

What is the control file?

- The control file is a central file that holds most model parameters.
- Information is separated into cards. (Punch cards were originally used to input data into computers.)

US Army Corps of Engineers • Engineer Research and Development Center

Cards: How they appear in the manual – 128 Cards

Title (TITLE C)
Heat Exchange (HEAT EXCH)
Transport Scheme (TRANSPORT)
,
Number of Structures (N STRUC)
Structure Interpolation (STR INT)
Structure Top Selective Withdrawal Limit (STR TOP)
Structure Bottom Selective Withdrawal Limit (STR BOT) Sink Type (SINK TYPE)
<i>x</i> · · · · · · · · · · · · · · · · · · ·

Structure Elevation (E STRUC)
Structure Width (W STRUC)
Pipes (PIPES)
Upstream Pipe (PIPE UP)
Downstream Pipe (PIPE DOWN)
Spillways (SPILLWAYS)
Upstream Spillways (SPILL UP)
Downstream Spillways (SPILL DOWN)
Spillway Dissolved Gas (SPILL GAS)
Gates (GATES)
Gate Weir (GATE WEIR)
Upstream Gate (GATE UP)
Downstream Gate (GATE DOWN)
Gate Dissolved Gas (GATE GAS)
Pumps 1 (PUMPS 1)
Pumps 2 (PUMPS 2)
Internal Weir Segment Location (WEIR SEG)
Internal Weir Top Layer (WEIR TOP)
Internal Weir Bottom Layer (WEIR BOT)
Withdrawal Interpolation (WD INT)
Withdrawal Segment (WD SEG)
Withdrawal Elevation (WD ELEV)
Withdrawal Top Layer (WD TOP)
Withdrawal Bottom Layer (WD BOT)
Tributary Inflow Placement (TRIB PLACE)
Tributary Interpolation (TRIB INT)
Tributary Segment (TRIB SEG)
Tributary Inflow Top Elevation (TRIB TOP)
Tributary Inflow Bottom Elevation (ELEV BOT)
Distributed Tributaries (DST TRIB)
Hydrodynamic Output Control (HYD PRINT)
Snapshot Print (SNP PRINT)
Snapshot Dates (SNP DATE)
Snapshot Frequency (SNP FREQ)
Snapshot Segments (SNP SEG)
Screen Print (SCR PRNT)
Screen Dates (SCR DATE)
Screen Frequency (SCR FREQ)
Profile Plot (PRF PLOT)
Profile Date (PRF DATE)
Profile Frequency (PRF FREQ)
Profile Segment (PRF SEG)
Spreadsheet Profile Plot (SPR PLOT)
Spreadsheet Profile Date (SPR DATE)
Spreadsheet Profile Frequency (SPR FRFO)

Spreadsheet Profile Segment (SPR SEG)

V2 Linkage File Output – (Vector Plot) (VPL PLOT)
/ector Plot Date (VPL DATE)
/ector Plot Frequency (VPL FREQ)
Contour Plot (CPL PLOT)
Contour Plot Dates (CPL DATE)
Contour Plot Frequency (CPL FREQ)
(inetic Flux Output (FLUXES)
(inetic Flux Date (KFL DATE)
(inetic Flux Frequency (FLX FREQ)
ime Series Plot (TSR PLOT)
ime Series Date (TSR DATE)
ime Series Frequency (TSR FREQ)
ime Series Segment (TSR SEG)
ime Series Elevation (TSR ELEV)
Vater Level Output (WL OUT)
low Balance Output (FB OUT)
and P Mass Balance Output (NPB OUT)
Vithdrawal Output (WITH OUT)
Vithdrawal Output Date (WDO DATE)
Vithdrawal Output Frequency (WDO FREQ)
Vithdrawal Output Segment (WITH SEG)
Restart (RESTART)
Restart Date (RSO DATE)
Restart Frequency (RSO FREQ)
Constituent Computations (CST COMP)
Atmospheric Deposition (ATMDEP)
Active Constituents (CST ACTIVE)
Derived Constituents (CST DERIVE)
Constituent Kinetic Fluxes (CST FLUX)
Constituent Initial Concentration (CST ICON)
Constituent Output (CST PRINT)
nflow Active Constituent Control (CIN CON)
ributary Active Constituent Control (CTR CON)
Distributed Trib Active Constituent (CDT CON)
Precipitation Active Constituent Control (CPR CON)
xtinction Coefficient (EX COEF)
lgal Extinction (ALG EX)
coplankton Extinction (ZOO EX)
Macrophyte Extinction (MAC EX)
Generic Constituent (GENERIC)
Suspended Solids (S SOLIDS)
Bacteria
128
720 2H4
// 17

e(II) and FeOOH	
n(II) and MnO2	S
gal Rates (ALGAL RATE)	S
gal Temperature Rate Coefficients (ALG TEMP)	Z
gal Stoichiometry (ALG STOICH)	_
phyte/Periphyton Control (EPIPHYTE)	R
piphyte/Periphyton Print (EPI PRINT)	R
piphyte/Periphyton Initial Density (EPI INI)	W
piphyte/Periphyton Rate (EPI RATE)	G
hiphyte/Periphyton Half-Saturation (EPI HALF)	_
piphyte/Periphyton Temperature Rate Coefficients (EPI TEMP)	N
piphyte/Periphyton Stoichiometry (EPI STOICH)	D
oplankton Rate (ZOOP RATE)	В
oplankton Algal Preference (ZOOP ALGP)	Ν
oplankton Zooplankton Preference (ZOOP ZOOP)	Li
oplankton Temperature Rate Coefficients (ZOOP TEMP)	_
oplankton Stoichiometry (ZOOP STOICH)	Α
acrophyte Control (MACROPHYT)	V
acrophyte Print (MAC PRINT)	b
acrophyte Initial Concentration (MAC INI)	В
acrophyte Rate (MAC RATE)	_
acrophyte Sediments (MAC SED)	В
acrophyte Distribution (MAC DIST)	В
acrophyte Drag (MAC DRAG)	В
acrophyte Temperature Rate Coefficients (MAC TEMP)	Τ
acrophyte Stoichiometry (MAC STOICH)	Т
ssolved Organic Matter (DOM)	
rticulate Organic Matter (POM)	T
ganic Matter Stoichiometry (OM STOICH)	D
ganic Matter Temperature Rate Multipliers (OM RATE)	D
rbidity and Secchi Disk (TURBSEC)	D
arbonaceous Biochemical Oxygen Demand (CBOD)	Р
BOD Stoichiometry (CBOD STOICH)	
organic Phosphorus (PHOSPHOR)	Ρ
nmonium (AMMONIUM)	Ρ
nmonium Temperature Rate Multipliers (NH4 RATE)	Ε
trate (NITRATE)	Е
trate Temperature Rate Multipliers (NO3 RATE)	
ica (SILICA)	E
diment Carbon Dioxide Release (SED CO2)	Ε
rygen Stoichiometry 1 (STOICH 1)	Ε
rygen Stoichiometry 2 (STOICH 2)	Ε
rygen Stoichiometry 3 (STOICH 3)	T
cygen Stoichiometry 4 (STOICH 4)	V
rygen Stoichiometry 5 (STOICH 5)	-
rygen Limit (O2 LIMIT)	S

What kind of stuff does the control file contain?

- 1. Physical dimensions (GRID Card)
 - NWB Number of waterbodies
 - NBR Number of branches
 - IMX Maximum number of segments
 - KMX Maximum number of vertical layers
- 2. Physical features (INFLOW/OUTFLOW card)
 - NTR Number of tributaries
 - NST Number of structures
 - NIW Number of internal weirs
 - NWD Number of withdrawals
 - NGT Number of gates
 - NSP Number of spillways
 - NPI Number of pipes
 - NPU Number of pumps
- 3. What we are modeling? (CONSTITUENTS card)
 - NGC Number of generic constituents
 - NSS Number of suspended solids groups
 - NAL Number of algal groups
 - NEP Number of epiphyton groups
 - NBOD Number of BOD groups
 - NMC Number of macrophyte groups
 - NZP Number of zooplankton groups

External References:

- 1. Include file names for input and output files
 - Meteorological input or timeseries output...
- 2. Have on/off switches for accessory modules
 - Fish habitat, sediment-diagenesis

Time Series Inputs

Boundary conditions, meteorological inputs, etc.

File names - global	FILE NAMES					
QWD FILE QWDFN - withdrawals	qwd.npt					
QGT FILE QGTFN - gate	qgt.npt					
WSC FILE WSCFN - wind sheltering	wsc.npt					
SHD FILE SHDFN - shading	shade.npt					
VPLFN - W2 post output, DSI W2Post output file	degray.w2l					
Waterbody Dependent File names	WB1	WB2				
BTHFN bathymetry file	bth1.csv					
METFN meteorological file	met.npt					
EXTFN light extinction	ext_1.npt					
ATMDEPFN atmospheric deposition file name	atm_deposition	n_wb1.csv				
VPRFN vertical profile	vpr.npt					
LPRFN longitudinal profile	lpr.npt					
SNPFN snapshot	snp.opt					
PRFFN profile output	prf.opt					
CPLFN contour plot output	cpl.opt					
SPRFN spreadsheet output	spr.csv					
FLXFN flux output	flx.opt					
Branch Dependent File Names	BR1	BR2				
QINFN branch inflow	qin_br1_equal	npt				
TINFN branch temp inflow	tin_br1.npt	tin_br1.npt				
CINFN branch conc inflow	cin_br1.csv					
QOTFN branch structure outflow	qot_br1_equal	npt				
QDTFN Distributed flow file	qin_br1.npt					
TDTFN Distributed temperature file	tdt_br1.npt					
CDTFN Distributed concentration file	cdt_br1.npt					
PREFN Precipitation flow file	pre_br1.npt					
TPRFN Precipitation temperature file	tpr_br1.npt					
CPRFN Precipitation concentration file	cpr_br1.npt					
EUHFN Upstream head file	euh_br1.npt					
TUHFN Upstream temperature file	tuh_br1.npt					
CUHFN Upstream concentration file	cuh_br1.npt					
EDHFN Downstream head file						
TDHFN Downstream temperature file	tdh_br1.npt	edh_br1.npt tdh_br1.npt				
CDHFN Downstream concentration file	cdh_br1.npt					
END OF FILE						

t > DeGray Reservoir with sediment diagen	0 🗸	Search DeGray Reservoi	ir with sediment dia
Name	Date modified	Туре	Size
atm_deposition_wb1.csv	7/26/2022 6:56 PM	Comma Separate	1 KB
bth1.csv	7/26/2022 6:56 PM	Comma Separate	15 KB
cin_br1.csv	7/26/2022 6:56 PM	Comma Separate	4 KB
con_converter.py	7/27/2022 10:20 AM	Python File	1 KB
dynpump1.npt	7/26/2022 6:56 PM	NPT File	1 KB
dynselective1.npt	7/26/2022 6:56 PM	NPT File	1 KB
<pre>el_stats.opt</pre>	7/26/2022 6:56 PM	OPT File	1 KB
met.npt	7/26/2022 6:56 PM	NPT File	144 KB
prf_dam.npt	7/26/2022 6:56 PM	NPT File	117 KB
qgt.npt	7/26/2022 6:56 PM	NPT File	1 KB
qin_br1.npt	7/26/2022 6:56 PM	NPT File	6 KB
qin_br1_equal.npt	7/26/2022 6:56 PM	NPT File	1 KB
<pre>qot_br1.npt</pre>	7/26/2022 6:56 PM	NPT File	7 KB
<pre>qot_br1_equal.npt</pre>	7/26/2022 6:56 PM	NPT File	1 KB
gwb.opt	7/26/2022 6:56 PM	OPT File	1 KB
shade.npt	7/26/2022 6:56 PM	NPT File	1 KB
in_br1.npt	7/26/2022 6:56 PM	NPT File	7 KB
vpr.npt	7/26/2022 6:56 PM	NPT File	2 KB
w2_aerate.npt	7/26/2022 6:56 PM	NPT File	1 KB
w2_Algae_Toxin.csv	7/26/2022 6:56 PM	Comma Separate	1 KB
w2_AlgaeMigration.csv	7/26/2022 6:56 PM	Comma Separate	7 KB
w2_con.csv	7/26/2022 6:56 PM	Comma Separate	110 KB
w2_con_DeGray4.5.xIsm	7/26/2022 6:56 PM	Microsoft Excel M	280 KB
w2_diagenesis.npt	7/26/2022 6:56 PM	NPT File	9 KB
w2_envirprf.npt	7/26/2022 6:56 PM	NPT File	3 KB
w2_habitat.npt	7/26/2022 6:56 PM	NPT File	1 KB
w2_lake_river_contour.csv	7/26/2022 6:56 PM	Comma Separate	1 KB
w2_multiple_WB.npt	7/26/2022 6:56 PM	NPT File	1 KB
w2_selective.npt	7/26/2022 6:56 PM	NPT File	2 KB
w2_systdg.npt	7/26/2022 6:56 PM	NPT File	2 KB
w2_TDGtarget.csv	7/26/2022 6:56 PM	Comma Separate	2 KB
w2_tecplotbr.csv	7/26/2022 6:56 PM	Comma Separate	1 KB
wsc.npt	7/26/2022 6:56 PM	NPT File	1 KB

US Army Corps of Engineers • Engineer Research and Development Center

Accessory Modules Controlled in w2_con

- <u>SELECTC</u> suggests outlet controls based on water temperature
- HABITATC calculates volume of fish habitat based on dissolved oxygen
- <u>ENVIRPC</u> calculates amount of time and volume that reservoir meets certain conditions (i.e., constituent within certain range)
- AERATEC allows user to add oxygen mass to simulate aerator
- INITUWL calculates an initial velocity and normal depth for any non-zero slope waterbody
- ORGCC controls whether carbon is used as the metric for organic matter constituents such as LDOM, RDOM, etc.
- <u>SED DIAG</u> controls flux of constituents and temperature between sediment and waterbody
- AVERTM turns algal vertical migration on/off
- <u>w2 Algae Toxin.csv</u> controlled by ON/OFF switch in ACTIVE CONSTITUENT card, ratio of toxin production for different algal types
- <u>atm_deposition_wb1.csv</u> controlled by ON/OFF switch in ACTIVE_CONSTITUENT_card, sets atmospheric mass input for various constituents
- <u>w2 tecplotbr.csv</u> controlled by ON/OFF switch in the CPL PLOT card, controls which branches to output

Accessory Modules Controlled by Presence in File Directory

- w2_constriction.csv specifies maximum width between segments, affects right-hand-side face manual part 3, page 316
- <u>w2_particle.csv</u> specifies parameters to compute particle transport manual part 3, page 456
- <u>w2_multiple_WB.npt</u> provides details for running simulations with multiple waterbodies manual part 3, page 467
- w2_systdg.npt sets parameters for setting up total dissolved gas modeling manual part 3, page 345
- <u>w2_TDGTarget.csv</u> sets spillway operation parameters that adjust based on TDG target manual part 3, page 349
- <u>w2_lake_river_contour.csv</u> sets parameters for contour plots that vary over time manual part 3, page 396

US Army Corps of Engineers • Engineer Research and Development Center

How does a control file look?

• CE-QUAL-W2 Versions 3.7, 4.0, 4.1, and 4.2 all use .npt input files (ASCII files):

US Army Corps of Engineers • Engineer Research and Development Center

.npt file version

• 8-character width per entry

										_
INIT CND	TEMPI	ICEI	WTYPEC	GRIDC						
WB 1 -:										
	1.0000	0.00000	TREST	NEC 1						
	1/06			200	=1.46					
CALCULAT										
WB 1	OFF	OFF	OFF	ON	OFF	OFF				
										l
DEAD SEA	WINDC	OINC	OOUTC	HEATC						l
			ON							
WD I	OIV	ON	ON	ON						l
INTERPOL										
BR1	ON	OFF	OFF							
HEAT EXCH	SLHTC	SROC	RHEVAP	METIC	FETCHC	AFW	BFW	CFW	WINDH	
			OFF							
WD I	LI	011	011	ON	011	9.20000	0.40000	2.00000	10.0000	
T.C.E. CO./E		C1 TCTC	41.5550		5765		T.C.T.V.			
ICE COVE										
WB 1	OFF	DETAIL	0.25000	10.0000	0.60000	0.07000	0.05000	3.00000		
TRANSPOR	SLTRC	THETA								
WB 1 UL										
	1111111	0.50000								
UVD COFF	۸٧	DV	CDUE	TCED		TCEDE	EDICC	70		
HYD COEF										
WB 1 1	.00000	1.00000	0.3	14.0000	0.00000	0.00000	CHEZY	0.001		
EDDY VISC	AZC	AZSLC	AZMAX	FBC	E	ARODI	STRCKLR	BOUNDFR	TKECAL	
WB 1										
				_						
N STRUC	NCTP									
BR1	1									
STR INT	STRIC	STRIC	STRIC							
BR 1	ON									
_										
STR TOP	VTCTD	VTCTD	VTCTD							
		KISIK	KISIK	KISIK	KISIK	KISIK	KISIK	KISIK	KISIK	
BR1	2									

Fixed-Width (*.npt) File Version

 Setting which WQ constituents are computed in the model

CST COMP	CCC ON	LIMC ON	CUF 3
CST ACTIVE	CAC		
TDS	ON		
Gen1	ON		
Gen2	ON		
Gen3	ON		
ISS1	ON		
P04	ON		
NH4	ON		
NO3	ON		
DSI	OFF		
PSI	OFF		
FE	ON		
LDOM	ON		
RDOM	ON		
LPOM	ON		
RPOM	OFF		
ALG1	ON		
DO	ON		
TIC	ON		
ALK	ON		
Z001	OFF		
LDOM_P	OFF		
RDOM_P	OFF		
LPOM_P	OFF		
RPOM_P	OFF		
LDOM_N	OFF		
RDOM_N	OFF		
LPOM_N	OFF		
RPOM_N	OFF		

US Army Corps of Engineers • Engineer Research and Development Center

The most up-to-date user interface is an <u>.xslm file</u> (m=macro). The macro converts the excel into an <u>.csv file</u> which is readable by the model.

Note COL A and B are not written out to w2_cor	w2_con.csv file format		CE-QUAL-W2	4.5							
		Control File ve	4.5								
Fixed length of file except when more than 5 alg	Title comments: next 10 lines										
5 macrophytes, 5 structures, 5 periphyton group	Any comment - this is written o	nly to the SNP fil	Bonneville D	am, Columbia	River"						
The # of rows though changes with the # of activ	ve water quality constituents.		"CRSO TRANS	TION MODEL 2	2011-2015"						
Do not change the file tab name for this sheet s	ince the output file name is tied	to the name of t	"NAVD88 -> N	GVD29+3.3"							
NWB: # of waterbodies			"GATE GAS G	ASGTC = ON, S	YSTDG is C	N"					
NBR: number of branches			"N2, DO> T[G"							
IMX: maximum number of segments including in	active segments	Export to CSV	1111								
KMX: maximum number of vertical layers includ	ing inactive layers (top and botte	file	""								
NPROC: # of processors (INACTIVE at this time)			HH								
CLOSEC: close dialog box after executing if =ON			"Zhong Zhang	"							
NTR: number of tributaries			"7/2021"								
NST: maximum # of structures in a branch											
NIW: # of internal weirs	GRID/NPROC/CLOSE DIALOG BO	OX	NWB	NBR	IMX	KMX	NPROC	CLOSEC			
NWD: # of withdrawals			1	1	77	56	1	ON			
NGT: # of gates											
NSP: # of spillways	IN/OUTFLOW		NTR	NST	NIW	NWD	NGT	NSP	NPI	NPU	
NPI: # of pipes			0	0	0	0	20	0	0	0	
NPU: # of pumps or water level control rules											
NGC: # of generic water quality constituents	CONSTITUENTS		NGC	NSS	NAL	NEP	NBOD	NMC	NZP		
Do not change bolded headers in COL C - these	are checked by the program		0	0	0	0	0	0	0	•	
NDAY:Maximum number of output dates or timestep re	elated changes										
SELECTC:Turn ON/OFF/USGS automatic port selection t	MISCELLANEOUS		NDAY	SELECTC	HABTATC	ENVIRPC	AERATEC	INITUWL	ORGCC	SED_DIAG	
HABITATC:Turn ON/OFF habitat analyses for fish and ed	utrophication variables		100	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
ENVIRPC:Turn ON/OFF environmental performance crit	teria										
AERATEC:Turn ON/OFF aeration to waterbody with diss	TIME CON		TMSTRT	TMEND	YEAR						
INITUWL:Turn ON/OFF initial water surface slope and v	40544.000	40909.000	1900								
ORGCC simulates the organic matter as C rather than organic matter											
Fill in these with real dates and the Julian dates DLT CON				DLTMIN	DLTINTER	}					
TMSTRT	Time step control parameters		1	1	OFF						
1/1/2011 0:00											

- *.xlsm control file interface for the .csv control file
- Orientation changed from .npt: Parameters now sorted by row; waterbody/branch by columns.

Both methods read the same .csv file, but notepad will show number of empty rows read in.

US Army Corps of Engineers • Engineer Research and Development Center

File explorer: where all external file inputs live for a model, including the control file:

Fortran code: assigns CON a file number, checks the name of variable CONFN, and then reads in file number 10 in specific patterns based on whether in .npt or .csv file format.

```
INTEGER :: CON=10,
```

```
IF(CONFN=='w2 con.npt')THEN
READ (CON, '(//(:8X,A8,2F8.0,2I8))') (PPUC(JP),
                                             ETPU(JP),
                                                        EBPU(JP),
                                                                   KTPU(JP),
READ (CON, '(//(:8X,9I8))')
                                  (IWR(JW),
                                              JW=1,NIW)
     (CON, '(//(:8X,9F8.0))')
                                  (EKTWR(JW),
                                              JW=1,NIW)
                                                                     ! SW 3/18/16
     (CON, '(//(:8X,9F8.0))')
                                  (EKBWR(JW),
                                              JW=1,NIW)
                                                                     ! SW 3/18/16
READ (CON, '(//(:8X,9F8.0))')
                                  (EWD(JW),
     (CON, '(//(:8X,9I8))')
                                  (KTWD(JW)
     (CON, '(//(:8X,9I8))')
                                                                    ' ! SW 9/27/13 INITIALIZATION SINCE ALLOCATION IS TO NTRT
                                  (KBWD(JW),
                                              JW=1,NWD);
READ (CON, '(//(:8X,9A8))')
                                  (TRC(JT),
                                              JT=1,NTR)
READ (CON, '(//(:8X,9A8))')
                                             JT=1,NTR)
          ! w2 con.csv file format
 READ (CON,*) (PPUC(JP),
                                 JP=1,NPU);PPUC=ADJUSTR(PPUC)
 READ (CON,*) (ETPU(JP),
                                 JP=1,NPU)
 READ (CON,*) (EBPU(JP),
                                 JP=1,NPU)
 READ (CON,*) (KTPU(JP),
                                 JP=1,NPU)
 READ (CON,*) (KBPU(JP),
                                 JP=1,NPU)
 READ (CON,*)
 READ (CON,*)
 READ (CON,*)
                           (IWR(JW),
                                            JW=1,NIW)
 READ (CON,*)
                          (EKTWR(JW),
                                            JW=1,NIW)
```

US Army Corps of Engineers • Engineer Research and Development Center

Cards: How they appear in the .xlsm - 80 Cards

₁ Grid Dimensions	21	Eddy Viscosity	41	Flow Balance Output	61	Algal Rates
Inflow/Outflow Dimensions	22	Structures For Each Branch	42	N and P Mass Balance Output	62	Epiphyton
Constituent Dimensions	23	Pipes	43	Iron Constituents Output	63	Epiphyton Rates
4 Miscellaneous	24	Spillways	44	Restart	64	Zooplankton Rates
5 Time Control	25	Gates	45	Constituent Computations	65	Macrophytes
6 Timestep Control	26	Pumps	46	Atmospheric Deposition	66	Macrophyte Rates
7 Timestep Date	27	Internal Weir	47	Concentration State Variables	67	Dissolved Organic Matter
Maximum Timestep	28	Withdrawal	48	Derived Concentration State Variables	68	Particulate Organic Matter
Timestep Fraction	29	Trib Placement	49	Concentration State Variables Flux	69	Organic Matter Stoichiometry
₁₀ Timestep Limitations	30	Distributed Trib	50	Extinction Coefficients	70	Turbidity
₁₁ Branch Grid	31	Hydraulic Print	51	Algal Extinction	71	CBOD
₁₂ Location	32	Snapshot Print	52	Zooplankton Extinction	72	Nutrients
13 Initial Conditions	33	Screen Print	53	Macrophyte Extinction	73	Sediment CO2
₁₄ Calculation	34	Profile Output	54	Generic Constituent	74	Oxygen Limit
₁₅ Dead Sea	35	Spreadsheet Output	55	Suspended Solids	75	SOD Rates
16 Interpolation	36	DSI W2Linkage	56	Bacteria	76	SOD Demand Zero Order
17 Heat Exchange	37	Contour Plot Output	57	Hydrogen Sulfide	77	Reaeration
18 Ice Cover	38	Fluxes	58	Methane	78	File Names – Global
₁₉ Transport Scheme	39	Timeseries Plot Output	59	Iron Constituents	79	Waterbody Dependent File Names
20 Hydraulic Coefficients	40	Water Level Output	60	Manganese Constituents	80	Branch Dependent File Names

US Army Corps of Engineers • Engineer Research and Development Center

US Army Corps of Engineers • Engineer Research and Development Center

	Eddy Viscosity				
	Structures For Each Branch				
	Pipes				
	Spillways				
	Gates				
	Pumps				
	Internal Weir				
	Withdrawal				
	Trib Placement				
	Distributed Trib				
	Hydraulic Print				
	Snapshot Print				
	Screen Print				
	Profile Output	3	NCPL	Integer	Number of contour plot dates
	Spreadsheet Output				
	DSI W2Linkage				
	Contour Plot Output		_		
	Fluxes				
	Timeseries Plot Output				
	Water Level Output				
l	JS Army Corps of Engineers • E	nainee	r Research	and Developn	nent Center

US Army Corps of Engineers • Engineer Research and Development Center

Flow Balance Output N and P Mass Balance Output Iron Constituents Output Restart Constituent Computations Atmospheric Deposition Concentration State Variables **Derived Concentration State Variables** Concentration State Variables Flux **Extinction Coefficients** Algal Extinction Zooplankton Extinction Macrophyte Extinction Generic Constituent Suspended Solids Bacteria Hydrogen Sulfide Methane Iron Constituents Manganese Constituents

3 NRSO Integer Number of restart dates

US Army Corps of Engineers • Engineer Research and Development Center

Algal Rates

Epiphyton

Epiphyton Rates

Zooplankton Rates

Macrophytes

Macrophyte Rates

Dissolved Organic Matter

Particulate Organic Matter

Organic Matter Stoichiometry

Turbidity

CBOD

Nutrients

Sediment CO2

Oxygen Limit

SOD Rates

SOD Demand Zero Order

Reaeration

File Names – Global

Waterbody Dependent File

Names

Branch Dependent File Names

MP

2

Real

0.005

Stoichiometric equivalent between macrophyte biomass and phosphorus

US Army Corps of Engineers • Engineer Research and Development Center

Grid Dimensions

Inflow/Outflow Dimensions

Constituent Dimensions

Miscellaneous

Time Control

Timestep Control ←

Timestep Date

Maximum Timestep

Timestep Fraction

Timestep Limitations

Branch Grid

Location

Initial Conditions

Calculation

Dead Sea

Interpolation

Heat Exchange

Ice Cover

Transport Scheme

Hydraulic Coefficients

2 NDT Integer Number of timestep intervals

US Army Corps of Engineers • Engineer Research and Development Center

US Army Corps of Engineers • Engineer Research and Development Center

Flow Balance Output N and P Mass Balance Output Iron Constituents Output Restart Constituent Computations Atmospheric Deposition Concentration State Variables Derived Concentration State Variables Concentration State Variables Flux **Extinction Coefficients** Algal Extinction Zooplankton Extinction Macrophyte Extinction Generic Constituent H2SR Sediment release rate of H2S, a fraction of SOD for Real the zero order SOD model only [-] Suspended Solids Bacteria Hydrogen Sulfide Methane Iron Constituents Manganese Constituents

US Army Corps of Engineers • Engineer Research and Development Center

Algal Rates Epiphyton **Epiphyton Rates** Zooplankton Rates Macrophytes Macrophyte Rates Dissolved Organic Matter Particulate Organic Matter Organic Matter Stoichiometry Turbidity CBOD Nutrients Sediment CO2 Oxygen Limit SOD Rates SOD Demand Zero Order Reaeration File Names – Global Waterbody Dependent File Names Branch Dependent File Names

2-10 PREFZ Real 0.0 Preference factor of zooplankton for zooplankton (dimensionless) from 0 to 1.

US Army Corps of Engineers • Engineer Research and Development Center

Grid Dimensions Inflow/Outflow Dimensions Constituent Dimensions Miscellaneous Time Control Timestep Control Timestep Date Maximum Timestep Timestep Fraction Timestep Limitations Branch Grid Location 2 VBC Character ON **Initial Conditions** Calculation Dead Sea Interpolation Heat Exchange Ice Cover Transport Scheme Hydraulic Coefficients

Volume balance calculation, ON or OFF

US Army Corps of Engineers • Engineer Research and Development Center

Eddy Vi	scosity					
Structures For Each Branch						
Pipes						
Spillway	/S					
Gates						
Pumps						
Internal	Weir					
Withdra	wal					
Trib Pla	cement					
Distribu	ted Trib					
Hydraul	ic Print	-				
Snapsh	ot Print					
Screen	Print					
Profile (Dutput					
Spread	sheet Output					
DSI W2	Linkage	2	FLXC	Character	OFF	Specifies if information is sent to the kinetic flux out- put file, ON or OFF
Contou	Plot Output					
Fluxes			_			
Timese	ries Plot Output					
Water L	evel Output					

US Army Corps of Engineers • Engineer Research and Development Center

Flow Balance Output N and P Mass Balance Output Iron Constituents Output Restart Constituent Computations Atmospheric Deposition CCC Concentration State Variables Derived Concentration State Variables Concentration State Variables Flux **Extinction Coefficients** Algal Extinction Zooplankton Extinction Macrophyte Extinction Generic Constituent Suspended Solids Bacteria Hydrogen Sulfide Methane Iron Constituents Manganese Constituents

CCC Character OFF Specifies if constituents are computed, ON or OFF

US Army Corps of Engineers • Engineer Research and Development Center

Algal Rates Epiphyton **Epiphyton Rates** Zooplankton Rates Macrophytes Macrophyte Rates Dissolved Organic Matter Particulate Organic Matter Organic Matter Stoichiometry Turbidity CBOD Nutrients Sediment CO2 Oxygen Limit SOD Rates SOD Demand Zero Order Reaeration File Names – Global Waterbody Dependent File Names Branch Dependent File Names

PO4R Real 0.001 Sediment release rate of phosphorus, fraction of SOD

US Army Corps of Engineers • Engineer Research and Development Center

Grid Dimensions Inflow/Outflow Dimensions Constituent Dimensions Miscellaneous Time Control Timestep Control Timestep Date Maximum Timestep Timestep Fraction Timestep Limitations Branch Grid Location **Initial Conditions** Calculation Dead Sea Interpolation Heat Exchange Ice Cover Transport Scheme Hydraulic Coefficients

8 FRICC Character CHEZY Bottom friction solution, MANN or CHEZY

US Army Corps of Engineers • Engineer Research and Development Center

Eddy Viscosity					
Structures For Each Branch	2	AZC	Character	TKE	Form of vertical turbulence closure algorithm, NICK, PARAB, RNG, W2, W2N, TKE, or TKE1
Pipes					
Spillways					
Gates					
Pumps					
Internal Weir					
Withdrawal					
Trib Placement					
Distributed Trib					
Hydraulic Print					
Snapshot Print					
Screen Print					
Profile Output					
Spreadsheet Output					
DSI W2Linkage					
Contour Plot Output					
Fluxes					
Timeseries Plot Output					
Water Level Output					
US Army Corps of Engineers • Engineer Research and Development Center					

US Army Corps of Engineers • Engineer Research and Development Center

Flow Balance Output N and P Mass Balance Output Iron Constituents Output Restart Constituent Computations Atmospheric Deposition Concentration State Variables Derived Concentration State Variables Concentration State Variables Flux **Extinction Coefficients** Algal Extinction **SEDRC** Real OFF Turns ON or OFF sediment resuspension Zooplankton Extinction Macrophyte Extinction Generic Constituent Suspended Solids Bacteria Hydrogen Sulfide Methane Iron Constituents Manganese Constituents

US Army Corps of Engineers • Engineer Research and Development Center

Algal Rates Epiphyton **Epiphyton Rates** Zooplankton Rates Macrophytes Macrophyte Rates Dissolved Organic Matter Particulate Organic Matter Organic Matter Stoichiometry Turbidity CBOD Nutrients Sediment CO2 Oxygen Limit SOD Rates SOD Demand Zero Order Reaeration File Names – Global Waterbody Dependent File Names

Branch Dependent File Names

MINKL Real 0.0 This is the minimum gas transfer coefficient in units of m/d for LAKES and units of day⁻¹ for RIVER/ESTUARY

US Army Corps of Engineers • Engineer Research and Development Center

9

Model Setup: Control File - Questions?

US Army Corps of Engineers • Engineer Research and Development Center