```
In [1]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import warnings

warnings.filterwarnings("ignore")

In [2]: data=pd.read_csv("C:\\Users\\Dell\\OneDrive\\Desktop\\excel books\\EV-data\\Electri

In [3]: data
```

Out[3]:

|  |        | VIN (1-10) | County    | City             | State | Postal<br>Code | Model<br>Year | Make       | Model            | El∉<br>V€                  |
|--|--------|------------|-----------|------------------|-------|----------------|---------------|------------|------------------|----------------------------|
|  | 0      | 5YJYGDEE1L | King      | Seattle          | WA    | 98122.0        | 2020          | TESLA      | MODEL<br>Y       | Bi<br>El<br>Vi             |
|  | 1      | 7SAYGDEE9P | Snohomish | Bothell          | WA    | 98021.0        | 2023          | TESLA      | MODEL<br>Y       | B<br>El<br>V               |
|  | 2      | 5YJSA1E4XK | King      | Seattle          | WA    | 98109.0        | 2019          | TESLA      | MODEL<br>S       | Bi<br>El<br>Vi             |
|  | 3      | 5YJSA1E27G | King      | Issaquah         | WA    | 98027.0        | 2016          | TESLA      | MODEL<br>S       | B<br>El<br>V               |
|  | 4      | 5YJYGDEE5M | Kitsap    | Suquamish        | WA    | 98392.0        | 2021          | TESLA      | MODEL<br>Y       | Bi<br>El<br>Vi             |
|  | •••    |            |           | •••              |       |                |               |            | •••              |                            |
|  | 177861 | 7SAYGDEE3N | Pierce    | Bonney<br>Lake   | WA    | 98391.0        | 2022          | TESLA      | MODEL<br>Y       | B <sub>i</sub><br>El<br>Vi |
|  | 177862 | KM8K23AG1P | Mason     | Shelton          | WA    | 98584.0        | 2023          | HYUNDAI    | KONA<br>ELECTRIC | Bi<br>El<br>Vi             |
|  | 177863 | 5YJYGDEE6M | Grant     | Quincy           | WA    | 98848.0        | 2021          | TESLA      | MODEL<br>Y       | Bi<br>El<br>Vi             |
|  | 177864 | WVGKMPE27M | King      | Black<br>Diamond | WA    | 98010.0        | 2021          | VOLKSWAGEN | ID.4             | B<br>El<br>V               |
|  | 177865 | 5YJ3E1EA8M | Pierce    | Tacoma           | WA    | 98422.0        | 2021          | TESLA      | MODEL<br>3       | Bi<br>El<br>Vi             |

|         |       | VIN        | l (1-10)  | County    | City  | State          | Postal<br>Code | Model<br>Year |            | Make                                    | Model                                   | El∉<br>V€                               |
|---------|-------|------------|-----------|-----------|-------|----------------|----------------|---------------|------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
|         | 4 -7- | 7000       | 1         |           |       |                |                |               |            |                                         |                                         |                                         |
| In [4]: | da    | ta.head(5) |           |           |       |                |                |               |            |                                         |                                         |                                         |
| Out[4]: |       | VIN (1-10) | County    | City      | State | Postal<br>Code | Model<br>Year  | Make          | Model      | Electric<br>Vehicle<br>Type             | Alterna<br>Veh                          | Fue<br>hick<br>AFV                      |
|         | 0     | 5YJYGDEE1L | King      | Seattle   | WA    | 98122.0        | 2020           | TESLA         | MODEL<br>Y | Battery<br>Electric<br>Vehicle<br>(BEV) | Alterna<br>Vel                          | Clear<br>ative<br>Fue<br>hicle<br>gible |
|         | 1     | 7SAYGDEE9P | Snohomish | Bothell   | WA    | 98021.0        | 2023           | TESLA         | MODEL<br>Y | Battery<br>Electric<br>Vehicle<br>(BEV) | Eligik<br>unkn<br>as bat<br>range<br>no | owr<br>tter                             |
|         | 2     | 5YJSA1E4XK | King      | Seattle   | WA    | 98109.0        | 2019           | TESLA         | MODEL<br>S | Battery<br>Electric<br>Vehicle<br>(BEV) | Alterna<br>Vel                          | Clear<br>ative<br>Fue<br>hicle<br>gible |
|         | 3     | 5YJSA1E27G | King      | Issaquah  | WA    | 98027.0        | 2016           | TESLA         | MODEL<br>S | Battery<br>Electric<br>Vehicle<br>(BEV) | Alterna<br>Vel                          | Clear<br>ative<br>Fue<br>hicle<br>gible |
|         | 4     | 5YJYGDEE5M | Kitsap    | Suquamish | WA    | 98392.0        | 2021           | TESLA         | MODEL<br>Y | Battery<br>Electric<br>Vehicle<br>(BEV) | Eligik<br>unkn<br>as bat<br>range<br>no | owr<br>tter                             |
|         |       |            |           |           |       |                |                |               |            |                                         |                                         | •                                       |

localhost:8888/nbconvert/html/EV vehicle market Analysis.ipynb?download=false

data.info()

In [5]:

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 177866 entries, 0 to 177865
        Data columns (total 17 columns):
         #
            Column
                                                                Non-Null Count
                                                                                 Dtype
        ---
            _____
                                                                -----
                                                                                 ----
             VIN (1-10)
         0
                                                                177866 non-null object
                                                                177861 non-null object
         1
             County
         2
                                                                177861 non-null object
             City
         3
             State
                                                                177866 non-null object
             Postal Code
                                                                177861 non-null float64
         5
             Model Year
                                                                177866 non-null int64
         6
             Make
                                                                177866 non-null object
         7
             Model
                                                                177866 non-null object
         8
             Electric Vehicle Type
                                                                177866 non-null object
             Clean Alternative Fuel Vehicle (CAFV) Eligibility 177866 non-null object
         10 Electric Range
                                                                177866 non-null int64
         11 Base MSRP
                                                                177866 non-null int64
                                                                177477 non-null float64
         12 Legislative District
         13 DOL Vehicle ID
                                                                177866 non-null int64
         14 Vehicle Location
                                                                177857 non-null object
         15 Electric Utility
                                                                177861 non-null object
         16 2020 Census Tract
                                                                177861 non-null float64
        dtypes: float64(3), int64(4), object(10)
        memory usage: 23.1+ MB
In [5]: data.isnull().sum()
        VIN (1-10)
                                                               0
Out[5]:
                                                               5
        County
        City
                                                               5
        State
                                                               0
        Postal Code
                                                               5
        Model Year
                                                               0
        Make
                                                               0
        Model
                                                               0
        Electric Vehicle Type
        Clean Alternative Fuel Vehicle (CAFV) Eligibility
                                                               0
        Electric Range
                                                               0
        Base MSRP
                                                               0
                                                             389
        Legislative District
        DOL Vehicle ID
                                                               0
                                                               9
        Vehicle Location
        Electric Utility
                                                               5
                                                               5
        2020 Census Tract
        dtype: int64
        data = data.dropna()
In [6]:
        data.isnull().sum()
In [7]:
```

```
VIN (1-10)
Out[7]:
                                                                 0
         County
         City
                                                                 0
         State
                                                                 0
         Postal Code
                                                                 0
         Model Year
                                                                 0
         Make
                                                                 a
         Model
                                                                 0
         Electric Vehicle Type
         Clean Alternative Fuel Vehicle (CAFV) Eligibility
         Electric Range
                                                                 0
         Base MSRP
                                                                 0
         Legislative District
                                                                 0
         DOL Vehicle ID
                                                                 0
         Vehicle Location
                                                                 0
         Electric Utility
                                                                 0
         2020 Census Tract
                                                                 0
         dtype: int64
```

#### **EV Adoption Over Time**

```
In [8]:
         import seaborn as sns
          ev_adoption_by_year = data['Model Year'].value_counts().sort_index()
In [11]:
          ev_adoption_by_year
         1997
                      1
Out[11]:
         1998
                      1
         1999
                      5
         2000
                      7
                      2
         2002
          2003
                      1
          2008
                     19
         2010
                     23
         2011
                    775
         2012
                   1614
         2013
                   4399
         2014
                   3496
         2015
                   4826
         2016
                   5469
         2017
                  8534
         2018
                  14286
         2019
                  10913
          2020
                  11740
         2021
                  19063
         2022
                  27708
         2023
                  57519
         2024
                   7072
         Name: Model Year, dtype: int64
In [12]: plt.figure(figsize=(12, 6))
          sns.barplot(x=ev_adoption_by_year.index, y=ev_adoption_by_year.values, palette="vir")
          plt.title('EV Adoption Over Time')
          plt.xlabel('Model Year')
          plt.ylabel('Number of Vehicles Registered')
          plt.xticks(rotation=45)
          plt.tight_layout()
          plt.show()
```



# **Geographical Distribution**

| In [43]: | data.he                                                                     | ead(2)   |            |         |         |                |               |         |            |                                         |                                                                  |   |
|----------|-----------------------------------------------------------------------------|----------|------------|---------|---------|----------------|---------------|---------|------------|-----------------------------------------|------------------------------------------------------------------|---|
| Out[43]: | VIN                                                                         | l (1-10) | County     | City    | State   | Postal<br>Code | Model<br>Year | Make    | Model      | Electric<br>Vehicle<br>Type             | Clean<br>Alternative<br>Fuel<br>Vehicle<br>(CAFV)<br>Eligibility | E |
|          | <b>0</b> 5YJY                                                               | GDEE1L   | King       | Seattle | WA      | 98122.0        | 2020          | TESLA   | MODEL<br>Y | Battery<br>Electric<br>Vehicle<br>(BEV) | Clean<br>Alternative<br>Fuel<br>Vehicle<br>Eligible              |   |
|          | <b>1</b> 7SAY                                                               | GDEE9P   | Snohomish  | Bothell | WA      | 98021.0        | 2023          | TESLA   | MODEL<br>Y | Battery<br>Electric<br>Vehicle<br>(BEV) | Eligibility<br>unknown<br>as battery<br>range has<br>not b       |   |
| 4        |                                                                             |          |            |         |         |                |               |         |            |                                         |                                                                  | • |
| In [14]: | ev_cour                                                                     | nty_dis  | tribution  | = data[ | 'Coun   | ty'].val       | ue_cour       | nts()   |            |                                         |                                                                  |   |
| In [15]: | ev_cour                                                                     | nty_dis  | tribution= | ev_cour | nty_dis | stributi       | on . head     | d(3)    |            |                                         |                                                                  |   |
| In [16]: | <pre>top_counties = ev_county_distribution.head(3).index top_counties</pre> |          |            |         |         |                |               |         |            |                                         |                                                                  |   |
| Out[16]: | <pre>Index(['King', 'Snohomish', 'Pierce'], dtype='object')</pre>           |          |            |         |         |                |               |         |            |                                         |                                                                  |   |
| In [17]: | top_cou                                                                     | unties_  | data = dat | a[data[ | 'Coun   | ty'].isi       | n(top_d       | countie | es)]       |                                         |                                                                  |   |
| In [18]: | top_cou                                                                     | unties_  | data       |         |         |                |               |         |            |                                         |                                                                  |   |

Out[18]:

|        | VIN (1-10)   | County    | City             | State | Postal<br>Code | Model<br>Year | Make       | Model      | Ele<br>Vel                   |
|--------|--------------|-----------|------------------|-------|----------------|---------------|------------|------------|------------------------------|
| 0      | 5YJYGDEE1L   | King      | Seattle          | WA    | 98122.0        | 2020          | TESLA      | MODEL<br>Y | Ba<br>Ele<br>Ve<br>(         |
| 1      | 7SAYGDEE9P   | Snohomish | Bothell          | WA    | 98021.0        | 2023          | TESLA      | MODEL<br>Y | Ba<br>Ele<br>Ve<br>(         |
| 2      | 5YJSA1E4XK   | King      | Seattle          | WA    | 98109.0        | 2019          | TESLA      | MODEL<br>S | Ba<br>Ele<br>Ve<br>(         |
| 3      | 5YJSA1E27G   | King      | Issaquah         | WA    | 98027.0        | 2016          | TESLA      | MODEL<br>S | Ba<br>Ele<br>Ve<br>(         |
| 7      | ' KNAGV4LD9J | Snohomish | Bothell          | WA    | 98012.0        | 2018          | KIA        | OPTIMA     | Plu<br>Hy<br>Ele<br>Ve<br>(P |
| •••    | ·            |           |                  |       |                |               |            |            |                              |
| 177858 | 5 SYJ3E1EB8N | Snohomish | Snohomish        | WA    | 98296.0        | 2022          | TESLA      | MODEL<br>3 | Ba<br>Ele<br>Ve<br>(         |
| 177859 | 1N4BZ1DV7M   | King      | Redmond          | WA    | 98053.0        | 2021          | NISSAN     | LEAF       | Ba<br>Ele<br>Ve<br>(         |
| 177861 | 7SAYGDEE3N   | Pierce    | Bonney<br>Lake   | WA    | 98391.0        | 2022          | TESLA      | MODEL<br>Y | Ba<br>Ele<br>Ve<br>(         |
| 177864 | WVGKMPE27M   | King      | Black<br>Diamond | WA    | 98010.0        | 2021          | VOLKSWAGEN | ID.4       | Ba<br>El€<br>Ve<br>(         |
| 177865 | 5YJ3E1EA8M   | Pierce    | Tacoma           | WA    | 98422.0        | 2021          | TESLA      | MODEL<br>3 | Ba<br>El€<br>Ve<br>(         |

VIN (1-10) County City State Postal Model Make Model Vel

407500 47 1

| Out[19]: |     | County    | City            | Number of Vehicles |
|----------|-----|-----------|-----------------|--------------------|
|          | 0   | King      | Seattle         | 29447              |
|          | 1   | King      | Bellevue        | 8930               |
|          | 2   | King      | Redmond         | 6478               |
|          | 3   | King      | Kirkland        | 5362               |
|          | 4   | King      | Sammamish       | 5280               |
|          | ••• |           |                 |                    |
|          | 108 | Snohomish | Alderwood Manor | 1                  |
|          | 109 | Snohomish | Startup         | 1                  |
|          | 110 | King      | Gold Bar        | 1                  |
|          | 111 | Pierce    | Kapowsin        | 1                  |
|          | 112 | Pierce    | Prairie Ridge   | 1                  |

113 rows × 3 columns



## types of electric vehicles

```
ev_type_distribution = data['Electric Vehicle Type'].value_counts()
In [25]:
         ev_type_distribution
         Battery Electric Vehicle (BEV)
                                                    138947
Out[25]:
         Plug-in Hybrid Electric Vehicle (PHEV)
                                                     38526
         Name: Electric Vehicle Type, dtype: int64
         plt.figure(figsize=(10, 6))
In [27]:
         sns.barplot(x=ev_type_distribution.values, y=ev_type_distribution.index, palette="r
         plt.title('Distribution of Electric Vehicle Types')
         plt.xlabel('Number of Vehicles Registered')
         plt.ylabel('Electric Vehicle Type')
         plt.tight_layout()
         plt.show()
```



#### most popular manufacturers

```
In [31]:
         ev_make_distribution = data['Make'].value_counts().head(10)
         ev_make_distribution
         TESLA
                        79471
Out[31]:
         NISSAN
                        13984
         CHEVROLET
                        13651
         FORD
                         9177
         BMW
                         7556
                         7423
         KIA
         TOYOTA
                         6254
         VOLKSWAGEN
                         4993
                         4468
         JEEP
         HYUNDAI
                         4398
         Name: Make, dtype: int64
In [32]:
         plt.figure(figsize=(12, 6))
          sns.barplot(x=ev_make_distribution.values, y=ev_make_distribution.index, palette="c
          plt.title('Top 10 Popular EV Makes')
         plt.xlabel('Number of Vehicles Registered')
         plt.ylabel('Manufactuters')
          plt.tight_layout()
          plt.show()
```

Top 10 Popular EV Makes



```
In [34]: top_3_makes = ev_make_distribution.head(3).index
    top_makes_data = data[data['Make'].isin(top_3_makes)]
    ev_model_distribution_top_makes = top_makes_data.groupby(['Make', 'Model']).size().
    top_models = ev_model_distribution_top_makes.head(10)
    top_models
```

| Out[34]: |   | Make      | Model    | Number of Vehicles |
|----------|---|-----------|----------|--------------------|
|          | 0 | TESLA     | MODEL Y  | 35921              |
|          | 1 | TESLA     | MODEL 3  | 30009              |
|          | 2 | NISSAN    | LEAF     | 13352              |
|          | 3 | TESLA     | MODEL S  | 7711               |
|          | 4 | CHEVROLET | BOLT EV  | 6811               |
|          | 5 | TESLA     | MODEL X  | 5784               |
|          | 6 | CHEVROLET | VOLT     | 4782               |
|          | 7 | CHEVROLET | BOLT EUV | 1770               |
|          | 8 | NISSAN    | ARIYA    | 632                |
|          | 9 | CHEVROLET | SPARK    | 240                |

```
In [42]: plt.figure(figsize=(12, 8))
    sns.barplot(x='Number of Vehicles', y='Model', hue='Make', data=top_models, palette
    plt.title('Top Models in Top 3 Makes by EV Registrations')
    plt.xlabel('Number of Vehicles Registered')
    plt.ylabel('Model')
    plt.legend(title='Make', loc='center right')
    plt.tight_layout()
    plt.show()
```



### Distribution of electric range

```
In [92]: plt.figure(figsize=(12, 6))
    sns.histplot(data['Electric Range'], bins=30, kde=True, color='royalblue')
    plt.title('Distribution of Electric Vehicle Ranges')
    plt.xlabel('Electric Range (miles)')
    plt.ylabel('Number of Vehicles')
    plt.axvline(data['Electric Range'].mean(), color='red', linestyle='--', label=f'Mea
    plt.legend()
    plt.show()
```



# Electric range by model year

```
In [47]: average_range_by_year = data.groupby('Model Year')['Electric Range'].mean().reset_i
average_range_by_year
```

| Out[47]: |    | Model Year | Electric Range |
|----------|----|------------|----------------|
|          | 0  | 1997       | 39.000000      |
|          | 1  | 1998       | 58.000000      |
|          | 2  | 1999       | 74.000000      |
|          | 3  | 2000       | 58.000000      |
|          | 4  | 2002       | 95.000000      |
|          | 5  | 2003       | 95.000000      |
|          | 6  | 2008       | 220.000000     |
|          | 7  | 2010       | 226.086957     |
|          | 8  | 2011       | 70.891613      |
|          | 9  | 2012       | 61.172243      |
|          | 10 | 2013       | 79.822232      |
|          | 11 | 2014       | 80.798341      |
|          | 12 | 2015       | 98.254869      |
|          | 13 | 2016       | 101.197111     |
|          | 14 | 2017       | 114.162292     |
|          | 15 | 2018       | 156.165967     |
|          | 16 | 2019       | 176.918904     |
|          | 17 | 2020       | 238.748978     |
|          | 18 | 2021       | 11.402665      |
|          | 19 | 2022       | 4.518045       |
|          | 20 | 2023       | 3.729168       |

21

2024

16.791431

```
In [49]: plt.figure(figsize=(12, 6))
    sns.lineplot(x='Model Year', y='Electric Range', data=average_range_by_year, marker
    plt.title('Average Electric Range by Model Year')
    plt.xlabel('Model Year')
    plt.ylabel('Average Electric Range (miles)')
    plt.grid(True)
    plt.show()
```



```
In [51]: average_range_by_model = top_makes_data.groupby(['Make', 'Model'])['Electric Range'
    top_range_models = average_range_by_model.head(10)
    top_range_models
```

| Out[51]: |   | Make      | Model       | Electric Range |
|----------|---|-----------|-------------|----------------|
|          | 0 | TESLA     | ROADSTER    | 234.673913     |
|          | 1 | TESLA     | MODEL S     | 176.794449     |
|          | 2 | CHEVROLET | BOLT EV     | 154.857143     |
|          | 3 | TESLA     | MODEL X     | 137.192600     |
|          | 4 | TESLA     | MODEL 3     | 109.463028     |
|          | 5 | NISSAN    | LEAF        | 84.148742      |
|          | 6 | CHEVROLET | SPARK       | 82.000000      |
|          | 7 | CHEVROLET | VOLT        | 45.365119      |
|          | 8 | CHEVROLET | S-10 PICKUP | 39.000000      |
|          | 9 | TESLA     | MODEL Y     | 19.191531      |



#### **Estimation of market Size**

```
In [59]:
          ev_registration_counts = data['Model Year'].value_counts().sort_index()
          ev_registration_counts
          1997
                       1
Out[59]:
          1998
                       1
          1999
                       5
          2000
                       7
                       2
          2002
          2003
                       1
          2008
                      19
          2010
                      23
          2011
                     775
          2012
                    1614
          2013
                    4399
          2014
                    3496
          2015
                    4826
          2016
                    5469
          2017
                   8534
          2018
                  14286
          2019
                  10913
          2020
                  11740
          2021
                  19063
          2022
                  27708
          2023
                  57519
          2024
                   7072
          Name: Model Year, dtype: int64
          from scipy.optimize import curve fit
In [60]:
          filtered_years = ev_registration_counts[ev_registration_counts.index <= 2023]</pre>
In [61]:
          filtered_years
In [62]:
```

```
1997
                      1
Out[62]:
          1998
                      1
         1999
                      5
         2000
                      7
                      2
         2002
         2003
                      1
          2008
                     19
         2010
                     23
         2011
                    775
         2012
                   1614
         2013
                   4399
          2014
                   3496
         2015
                   4826
         2016
                   5469
         2017
                  8534
         2018
                  14286
         2019
                  10913
         2020
                  11740
         2021
                  19063
         2022
                  27708
         2023
                  57519
         Name: Model Year, dtype: int64
In [63]: def exp_growth(x, a, b):
              return a * np.exp(b * x)
In [67]:
          x_data = filtered_years.index - filtered_years.index.min()
          x data
         Int64Index([0, 1, 2, 3, 5, 6, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
Out[67]:
                      24, 25, 26],
                     dtype='int64')
         y_data = filtered_years.values
In [68]:
In [69]:
         y_data
         array([
                                           7,
                                                  2,
                                                         1,
                                                               19,
                                                                       23,
Out[69]:
                  1614, 4399, 3496, 4826, 5469, 8534, 14286, 10913, 11740,
                 19063, 27708, 57519], dtype=int64)
          params, covariance = curve_fit(exp_growth, x_data, y_data)
In [70]:
```

# the curve\_fit function finds the optimal values of a and b that minimize the difference between the actual data and the model.

{2024: 79079.20808938889, 2025: 119653.96274428742, 2026: 181047.22020265696, 202 7: 273940.74706208805, 2028: 414497.01805382164, 2029: 627171.3128407666, 2030: 94 8966.6716959006}

```
In [82]: years = np.arange(filtered_years.index.min(), 2030)
    actual_years = filtered_years.index
    forecast_years_full = np.arange(2024, 2030)
```

```
In [83]: actual_values = filtered_years.values
    forecasted_values_full = [forecasted_evs[year] for year in forecast_years_full]

plt.figure(figsize=(12, 8))
    plt.plot(actual_years, actual_values, 'bo-', label='Actual Registrations')
    plt.plot(forecast_years_full, forecasted_values_full, 'ro--', label='Forecasted Reg

plt.title('Current & Estimated EV Market')
    plt.xlabel('Year')
    plt.ylabel('Number of EV Registrations')
    plt.legend()
    plt.grid(True)
```



In [ ]: