

PRECHOD SIP CEZ NAT A FIREWALL (SIP TRAVERSAL OVER NAT)

Pavel Segeč Pavel.Segec@fri.uniza.sk Katedra informačných sietí FRI ŽU

Prečo vznikol NAT - Problém IPv4 adresného priestoru

- Vďaka flexibilnosti IP technológie nárast používania → každé IP zariadenie musí mať IP adresu
- Verejný adresný priestor
 - Problém → riadený a prideľovaný
 - V Európe prideľuje RIPE (Réseaux IP Européens)
 - Zákazník prenajíma od ISP

Public Internet addresses are regulated by five Regional Internet Registries (RIRs):

- ARIN
- RIPE NCC
- APNIC
- LACNIC
- AfriNIC

Problém → Nedostatok voľných, prideliteľných verejných IP adries

Riešenie - NAT

- Potreba nových metód riadenia adresných rozsahov v snahe riešenia adresnej krízy
- Network Address Translation (NAT)
 - Princíp:
 - Vo vnútri siete použitie neriadeného <u>privátneho adresného priestoru</u> na adresáciu IP zariadení
 - Pri prechode paketu cez okraj do verejného Internetu → preklad zdrojovej privátnej IP do verejného adresného IP priestoru
 - NAT musí byť stavový, kde si vedie zoznam prebiehajúcich komunikácií a použitých mapovaní
 - Avšak stále je potrebný verejný IP adresný priestor
 - Minimálne jedna adresa
- Preklad adries a portov NAPT
- NAT ide proti end-to-end princípom Internetu
 - Nevkladať do vnútra siete zariadenia zaoberajúce sa stavom end-toend spojenia (RFC1958)

Zariadenia

NAT princíp

- Border gateway router
- Pracuje typicky na hranici tzv. stub siete

Stub net = jeden vstup a výstup z/do siete

Inside (private) network (Corporate net; Vnútorná privátna sieť):

- ■Používa privátne adresovanie
- Pri komunikácii mimo cez BG je objektom prekladu (NAT-ovania)
- Pri vnútornej komunikácii sa IP adresy neprekladajú

NAT

NAPT

Vyčlenené privátne adresy pre NAT

Privátne IP adresy pre privátne siete

- Vyčlenené podľa RFC 1918
- Môže použiť hocikto
 - Neriadený priestor
- Routre nesmú smerovať vo verejnej IP sieti privátne adresy z dôvodu nedodržania jedinečnosti identifikácie (adresovania) IP uzla
 - ACL, Route policy a pod.

Class	RFC 1918 Internal Address Range	CIDR Prefix
Α	10.0.0.0 - 10.255.255.255	10.0.0.0 / 8
В	172.16.0.0 - 172.31.255.255	172.16.0.0 /12
С	192.168.0.0 - 192.168.255.255	192.168.0.0 /16

Problémy ohľadne NAT

Z pohľadu end-to-end konektivity:

- NAT ohrozuje všeobecný princíp konektivity hostov na internete.
 - Host na Internete sa nemôže zvyčajne spojiť a komunikovať s hostom v privátnej sieti
- Situácia je ešte komplikovanejšia ak sú oba hosty v privátnych sieťach a potrebujú spolu komunikovať
- NAT mapovanie je udržované len na určitý čas

Adresovanie v aplikačných správach

- Pri používaní apl. protokolov a aplikácii, ktoré nesú v aplikačnej správe IP adresu prechodom cez NAT vznikajú problémy
- Niektoré NAT zariadenia skúmajú dátovú časť aplikačných správ a pri niektorých typoch protokolov prepisujú adresnú informáciu podľa existujúceho NAT mapovania.

Výkonnosť

- Modifikácia parametrov IP hlavičky = rekalkulácia CRC v IP hlavičke
- Modifikácia transportného portu = rekalkulácia CRC v hlavičke transportného protokolu

Definície NAT (RFC2663)

- RFC 2663 IP Network Address Translator (NAT) Terminology and Considerations
- Traditional NAT
 - Basic NAT
 - NAPT
- Bi-directional NAT or Two way NAT
- Twice NAT
- Multi-Home NAT

Tradičný NAT (unidirectional or outbound)

- Umožňuje hostom v privátnej sieti transparentne pristupovať k hostom na externej sieti.
- Spojenie je **jednosmerné**, v **odchodzom** smere z privátnej siete □
- IP adresy externých hostov sú jedinečné v externej aj privátnej sieti.
- IP adresy privátnych hostov sú jedinečné len v privátnej sieti.
 - NAT nerozširuje info o adresných rozsahoch privátnej siete
 - Naopak však môže (externé rozsahy do privátnej siete)
- Ľubovoľná daná IP adresa je buď externá alebo privátna, ale nie aj aj
- NAT router umožňuje založiť spojenie z Host A na Host X ale nie naopak!!
- N-Ext je smerovateľné v N-Pri ale nie naopak!!

Basic NAT

- V Basic NAT variácií je zadefinovaný blok externých adries za účelom prekladu adries hostov z privátnej siete
 - Keď začnú spojenie smerom do externej siete.
 - N-Pri \rightarrow Addr_i ∈ (N-ext)
- Pre pakety z privátnej siete idúce von sa prekladá
 - Zdrojová IP addresa, IP, TCP, UDP a ICMP checksum.
- Pre vstupujúce pakety sa prekladá cieľová IP adresa a dané checksums

Network Address Port Translation (NAPT)

- Rozšírenie NAT o identifikátor transportného protokolu (PORT) alebo typ ICMP dotazu (query)
- Umožňuje prekladať viaceré privátne identifikátory na jeden externý
 - A tým zdieľať viac privátnym hostom jednu externú adresu.
- Používa sa aj v kombinácii s Basic NAT
 - Na preklad používa pool externých IP spolu s prekladom portov.
- Pre pakety z privátnej siete idúce von sa prekladá
 - Zdrojová IP addresa, zdrojový port, IP, TCP, UDP a ICMP checksum.
- Pre vstupujúce pakety sa prekladá cieľová IP adresa, cieľový port a dané checksums

Bi-directional NAT or Two way NAT

- Spojenie môže byť iniciované z privátnej siete do externej ako aj naopak
 - Z Host A na host X
 - Z host X na host A
- Privátna adresa je napevno (staticky alebo dynamicky) spojená s globálne jedinečnou IP adresou.
 - Na NAT musí byť spravené mapovanie inside global adresy na inside local
- Na prístup z externých hostov na privátne sa odporúča použiť DNS (DNS ALG – rozšírenie DNS k NAT)
 - Ktoré vie korektné mapovanie podľa zdroja dotazu (N-ext or N-pri) a vie uviesť externé mapovanie k internému alebo naopak.
- N-Ext je smerovateľné v/z N-Pri, ale nie naopak!!

Twice NAT

- Sofistikovaný typ NAT, kedy sa prekladá aj zdrojová aj cieľová IP adresa naraz
 - Termín Once NAT-ed neexistuje
 - Umožňuje definovať v jednom pravidle preklad zdrojovej aj cieľovej adresy (cisco)
 - Alebo preklad podľa cieľa
 - Ak do X prelož ako ...
 - Ak do Y prelož ako ...
- Úzko využíva DNS (resp. DNS ALG)
- Nasadenie:
 - ak vnútorný uzol používa verejnú adresu niekoho iného (inej organizácie)
 - Napr. pri chybách, migráciach medzi ISP a pod.
 - Alebo ak je spojenie private to private network s tym istým rozsahom
 - Zlučovanie sietí

Multihomed NAT

- Typické nasadenie NAT je pre STUB siete
 - Tok pôjde dnu aj von cez to isté zariadenie (NAT si udržuje stavovú info o toku)
 - Centrálny bod chyby → problém s redundanciou pripojenia, ktorá je žiaduca.
- Multihomed NAT je riešenie umožňujúce viacnásobné NAT pripojenie
 - A tým napr. zálohovanie primárneho NAT routra záložným (-mi).
 - Ak primárny NAT zlyhá preberie jeho rolu záložný.
 - Aj s NAT-ovanými tokmi
 - Riešenie vyžaduje výmenu NAT stavových informácii.

Základné variácie implementácií NAT (RFC 3489)

- Pre UDP traversal
 - Full cone NAT
 - Address restricted cone NAT
 - Port restricted cone NAT
 - Symmetric NAT

Full-cone NAT

- Typ, kde všetky požiadavky z tej istej zdrojovej IP a portu sú mapované na tú istú externú IP adresu a port.
- Vytvorený NAT záznam môže použiť ľubovoľný externý host pre komunikáciu s interným hostom
 - Ak vie externú IP a port na NAT
- Najmenej reštriktívna forma NAT

(Address) Restricted-cone NAT

- Typ NAT, kde všetky požiadavky z internej IP adresy a portu sú mapované na rovnakú externú IP adresu a port.
- Na rozdiel od Full Cone NAT len externý host, ktorý prijal paket od interného hosta môže komunikovať späť
 - Port externého hosta nie je podstatný

Port-restricted-cone NAT

- Ako restricted cone NAT, ale obmedzenia zahŕňajú aj číslo portu
 - Všetky požiadavky z internej IP adresy a portu sú mapované na rovnakú externú IP adresu a port.
- Externý host môže poslať paket, len ak predtým prijal paket od interného hosta
 - a musí ho poslať z čísla portu na ktorom predtým paket prijal

Symmetric NAT

- Riešene, kde každá požiadavka z tej istej zdrojovej adresy a portu na špecifickú cieľovú adresu a port je mapovaná na tú istú externú adresu a port
- Ak ten istý interný host pošle paket s tou istou zdrojovou adresou a portom, ale inému cieľu, je použité nové mapovanie.
- Iba externý host, ktorý dostane paket z interného hosta môže poslať paket späť.
- Najreštriktívnejšia forma NAT

PROBLÉM SIP CEZ NAT

Zariadenia NAT a FW

- NATs (Network Address Translators)
 - "light" security device
 - Používané na topology hiding
 - Jednoduché firewall funkcionality
 - Počet NAT zariadení rastie
 - Znižuje potrebu po viac IPv4 adresách
 - Pri IPv6 nebude potreba NAT
 - Jedine ako jednoduchý bezpečnostný mechanizmus
- FWs (Firewalls)
 - Bezpečnostné zariadenie
 - Počet FW zariadení rastie
 - Pravidlá sú reštriktívnejšie

Problém SIP cez NAT/FW

- SIP svojim dizajnom porušuje odporúčania pre návrh protokolov priateľských voči NAT
 - Network Address Translator (NAT)-Friendly Application Design Guidelines (RFC3235)
 - V aplikačných správach nevkladať IP adresy

Okruhy problémov

- Pri prechode SIP cez NAT/FW sú dva okruhy problémov
 - So SIP signalizáciou
 - S RTP médiami
- SIP signalizácia prebieha medzi peermi (peer-to-peer)
- Media porty sú dohadované per hovor

Problém pri volaniach z privátnej siete

```
INVITE sip:UserB@there.com SIP/2.0
Via: SIP/2.0/UDP
10.1.2.3:5060;branch=z9hG4bKhjh
From: TheBigGuy
<sip:A@customer.com>;tag=343kdw2
To: TheLittleGuy <sip:UserB@there.com>
Max-Forwards: 70
Call-ID: 123456349fijoewr
CSeq: 1 INVITE
Subject: Wow! It Works...
Contact: <sip:A@10.1.2.3>
Content-Type: application/sdp
Content-Length: ...
0 = 77
o=UserA 2890844526 2890844526 IN IP4
UserA.customer.com
c=IN IP4 10.1.2.3
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000
```


 Smerovanie do privátnej siete nie je možné na základe Via hlavičky (via header)

Čiastkové riešenia

- Riešenie problému 1 pomocou SIP
 - Najmä pri UDP, nie TCP ako transporte
 - SIP proxy kontroluje Source IP paketu s IP adresou uvedenou vo Via hlavičke
 - Ak je rozdiel (pri NAT áno), uvedenie v param. Received aktuálnu IP adresu za NAT
 - Received= parameter vo Via hlavičke

Problém pri volaniach z privátnej siete

- 2. Nesprávna IP v Contact hlavičke
- 3. RTP stream pôjde len jednosmerne
- 4. Nie je možné smerovať ďalšie správy v rámci dialógu
- 5. Port čísla pre SIP a RTP sa tiež mohli zmeniť prechodom cez NAT

Čiastkové riešenia

- Riešenie problému 2
 - Trvalo otvorené TCP spojenie namiesto UDP,
 potom sa Contact hlavička nepoužíva
- Riešenie ďalších
 - Nie je triviálne

Problém pri volaniach na hosta v privátnej sieti

- Po registrácii server vie verejnú IP adresu hosta, ktorá bola pridelené NAT-ovaním
- NAT binding je však dynamicky udržované
 - Po dobe neaktvitity je vymazané
- Po čase teda SIP server stratí kontakt na klienta vo vnútri privátnej siete

A ešte jeden možný scenár

Riešenia prechodu cez NAT – strana UA

STUN

- Simple Traversal of User Datagram
 Protocol (UDP) Through Network
 Address Translators (NATs)
- Session Traversal Utilities for NAT

TURN

- Traversal Using Relay NAT
- Po novom STUN Relay

• ICE

Interactive Connectivity
 Establishment (STUN + TURN)

Riešenia prechodu cez NAT – strana siete

- B2BUA
 - Back To Back User Agent
- RTP Relay
 - Media relaying
- ALG
 - Application Layer Gateway
 - Session Border Controller
- UPnP
 - Universal Plug and Play
- Statická konfigurácia
- Tunelovanie
 - Napr. VPN
- IPv6

STUN

- STUN Simple Traversal of User Datagram
 Protocol through Network Address
 Translators.
- Pôvodne definovaný v RFC 3489 pre UDP protokoly
- "Po novom" sa volá Session Traversal Utilities for NAT (RFC5389)

Čo STUN robí

- SIP UA použije STUN na zistenie, či leží za NAT/FW
 - A následne na "objavenie" svojej verejnej IP adresy ako aj portového čísla pridelených v procese NAT-ovania
- STUN je "elegantné riešenie", ktoré nevyžaduje žiadnu sieťovú konfiguráciu na strane SIP UA a NAT/FW
 - Funguje pomerne dobre
 - "objavený problém" pri viacerých rozhraniach PC so SIP UA
 - http://nil.uniza.sk/sip/openser/openser-voip-sip-sosluzbami-prepojenim-na-cisco-call-managera#stun

STUN vlastnosti

- STUN je klient/server
- STUN server
 - Je entita, ktorá odpovedá na STUN správy generované klientmi
 - Je umiestnený vo verejnom internete
 - V Linuxe STUN balíček (vyžaduje dve verejné IP adresy)
 - V internete je mnoho verejných STUN serverov
 - Zvyčajne má dve IP adresy
- STUN klient
 - Je entita ktorá generuje STUN správy
 - je zvyčajne zakomponovaná v SIP UA
 - Z odpovede servera si klient určí, či je v sieti NAT a akého je typu

STUN - princíp

- Klient pošle serveru Binding Request (BReq)
- Server odpovie Binding Response (BResp)
 - Pričom zdrojovú IP adresu z IP hlavičky uloží do tela odpovede
- Klient porovná svoju IP a IP v BResp a zistí typ NAT (ak sa adresa po ceste prekladá) a "svoju" verejnú IP adresu
 - Na základe získanej info "upraví" odpovedajúce SIP a SDP hlavičky s IP adresami
- BReq a BResp sa posielajú ako UDP datagramy
- Pred úvodnou fázou môže ešte prebehnúť fáza TLS negociácie za účelom overenia dôvernosti STUN servera

Využitie STUN

STUN žiadosti - detailnejšie

- Server prijíma BReq na dvoch adresách a dvoch portoch (jeden z nich 3478)
- BReq obsahuje atribúty RESPONSE-ADDRESS a CHANGE-REQUEST
 - RESPONSE-ADDRESS
 - server odosiela odpoveď na túto adresu
 - CHANGE-REQUEST
 - klient môže vyžiadať od servera odpoveď z inej IP adresy/portu, ako z tej, na ktorú posielal BReq

STUN odpovede - detailnejšie

- BResp obsahuje SOURCE-ADDRESS, CHANGED-ADDRESS, a MAPPED-ADDRESS
 - do SOURCE-ADDRESS sa dosadí IP adresa/port, z ktorej sa BResp odosiela.
 - CHANGED-ADDRESS je adresa/port, na ktorú neprišla požiadavka (ak je pomocou CHANGE-ADDRESS vyžiadaná zmena IP aj portu, potom sa rovná SOURCE-ADDRESS)
 - t.j. druhá IP adresa STUN servera.
 - MAPPED-ADDRESS do tohto atribútu sa dosadí zdrojová adresa IP paketu a číslo portu zo STUN BReq, .t.j. verejná IP adresa a port po NAT-ovaní.

STUN testy

 Vykonané klientom za účelom zistenia, či je UA za NAT a ak áno akého typu

NAT discovery (test 1)

- To determine if a NAT router/firewall is present, send a STUN request to the server. Wait for a response and analyze it.
- If the IP address and port number in the MAPPED-ADDRESS attribute of the payload in the STUN response equal the local IP address and port number that it bound to when sending the request:
 - Then the client is NOT behind a NAT router.
 - Otherwise, it is behind a NAT router.

NAT discovery – Full Cone (test 2)

- Full Cone NAT router The client sets the IP address and port number flags in the CHANGE-REQUEST of the STUN request. This causes the server to send the response from the alternate IP and port number.
 - If the client receives the STUN response, then the client is behind a full cone router.
 - Otherwise, it is behind one of the other three NAT routers.

NAT discovery – Symmetric (test 3)

- Symmetric NAT The client sends two STUN requests.
 One request is sent to a server at IP address X and port P, and another to a server at IP address Y and port P.
 - If the IP addresses and ports from the MAPPED-ADDRESS attributes in the two responses do not match, then it is behind a Symmetric NAT router.
 - If they do match, then it is behind one of the remaining two NAT routers.

NAT discovery – Restricted (test 4)

- Restricted NAT The port flag in the CHANGE-REQUEST attribute of the request is set. This instructs the server to send a response from a different port.
 - If the response is received, it is behind a restricted NAT router.
 - If no response is received, it is behind a port restricted
 NAT router.

STUN flowchart

- I BReq bez CHANGE-REQUEST a RESPONSE-ADDRESS
 - Som vôbec za NAT?
- II BReq s vyžiadanou zmenou portu aj adresy v CHANGE-REQUEST
 - Som za Full cone NAT?
- III BReq s vyžiadanou zmenou len portu v CHANGE-REQUEST
 - Za akým NAT teda som?

STUN na debiane

apt-get install stun

```
Edituj súbor /etc/default/stun
# Defaults for stun initscript
# sourced by /etc/init.d/stun
# installed at /etc/default/stun by the maintainer scripts
# This is a POSIX shell fragment
#uncommment the next line to allow the init.d script to start the stun daemon
START DAEMON=true
# Additional options that are passed to the Daemon.
DAEMON OPTS=""
PRIMARY IP="158.193.152.1"
SECONDARY IP="158.193.152.2"
PRIMARY PORT=3478
SECONDARY PORT=3479
# whom the daemons should run as
DAEMON USER=nobody
```

Obmedzenia STUN

- Rieši hlavne príjem SIP volaní pre klientov za NAT
- Nepracuje s TCP
 - Riešenie cez <u>STUNT</u> (TCP NAT Traversal)
- Neumožňuje prechod prichádzajúcich spojení cez symetrický NAT
 - STUN nerieši všetky problémy s NAT dané NAT topológiami
- Takisto je problém s rôznymi implementáciami NAT
- Nepracuje ak sú oba konce za tým istým NAT
- Vyžaduje umiestnenie STUN servera na verejnej IP
- V prípade UDP spojení musia riešenia obsahovať nejaký KeepAlive mechanizmus!!

Traversal Using Relay around NAT

- TURN je špecifikované v RFC5766
- Umožňuje klientom za NAT/FW prijať TCP or UDP spojenie
 - Dobre pracuje aj so symetrickým NAT
- Využíva medziľahlého hosta, ktorý slúži ako relay komunikačných spojení
 - TURN protokol umožňuje SIP UA získať IP adresu a port tohto relay hosta (TURN servera), od ktorého bude potom prijímať RTP média tok
 - Tým pádom sa nastaví v NAT (aj symetrickom) adekvátne mapovanie, vytvorené komunikáciou medzi SIP UA a TURN serverom
 - Celá RTP komunikácia na daného hosta, aj od viacerých peerov, ide cez TURN server (relay)
 - TURN protokol umožňuje kontrolu TURN relay servera klientom
- Navrhnutý ako súčasť väčšej ICE architektúry
 - A ako rozšírenie STUN

TURN vlastnosti

- TURN je klient/server
 - Komunikácia medzi klientom a serverom je enkapsulovaná v TURN správach
- TURN server (relay)
 - Slúži ako sprostredkovateľ
 - Umiestnený na verejnom Internet
- TURN klient
 - Je entita ktorá generuje TURN správy, ktorými žiada TURN server aby hral úlohu relay agenta
 - je zvyčajne zakomponovaná v SIP UA

TURN klient

- Žiada o pridelenie IP adresy a portu TURN servera
 - Volanú Relayed transport address
- Ak SIP peer pošle správu na Relayed transport address, relay agent je prepošle na dané SIP UA, ktoré ju ma zarezervovanú
- Ak SIP klient pošle odpoveď na peera, TURN relay server použije Relayed transport address ako identifikátor zdroja
- Ako sa peer dozvie Relayed transport address TURN nedefinuje
 - Riešenia ako mail alebo cez tzv. Rendezvouz protocol (RFC5128)
 - Môže ním byť SIP samotný
- Klient sa adresu servera musí nejako dozvedieť
- Klient udržuje svoje spojenie na server otvorené
 - keep alive mechanizmus

TURN - adresy

TURN adresy

- Server
 - Má pridelenú tzv. TURN Server Transport Address (IP adresa + port)
 - Klient sa ju musí nejako dozvedieť
 - DNS
 - Konfigurácia
- Klient
 - Má svoju Host Transport address
 - Privátna IP adresa
 - SERVER-REFLEXIVE transport address
 - Získaná natovaním ako ju vidí server pre žiadosti klienta
 - RELAYED TRANSPORT ADDRESS
 - Alokovaná TURN serverom pre relay

- 1) SIP A založí spojenie na TURN server
 - UDP or TCP (TLS)
- SIP A príjme od TURN servera Relay Transport address, ktorú mu alokoval TURN server
- 3) SIP A musí nejakým spôsobom dať vedieť SIP B o získanej Transport relay addrese (SIP?)
- 4) SIP B založí spojenie na ponúkanú adresu (t.j. na TURN server) a ten spraví relay na SIP A

TURN server = STUN with relay capability

TURN Flow diagram

TURN

- 1. Na vyžiadanie TURN server vráti TURN klientovi globálnu IP adresu a port
 - 1. Relayed Transport Address (RTA)
- 2. SIP správa je modifikovaná s ohľadom na RTA a je odoslaná SIP Proxy
- 3. SIP je smerovaná na SIP UA2
 - 1. Musí byť otvorené a platné mapovanie v NAT
- 4. RTP je smerované cez TURN server

TURN záver

- Malo by to byť 100% riešenie na SIP NAT traversal
- Avšak
 - Je centrálnym prvkom
 - Problém s redundanciou a škálovateľnosťou
 - Ostáva v komunikačnej ceste
 - Riešiť zdroje
 - výkonnosť, šírku pásma
 - Implementácie nie sú veľmi rozšírené
 - Ani serverovské
 - Ani podpora v SIP UA
- Primárne je TURN pre UDP komunikáciu
- Pracuje sa na riešení TURN pre TCP

TURN riešenia

- Numb
 - http://numb.viagenie.ca/
- TurnServer
 - opensource
 - http://turnserver.sourceforge.net/
- Office SIP TURN server
 - Freeware
 - http://www.officesip.com/
- reTurn
 - Opensource
 - http://www.resiprocate.org/ReTurn_Overview
- Eyeball AnyFirewall

Odporúčanie

- Kde sa dá použi STUN
 - Ak STUN nepracuje
- Použi TURN

Riešenie známe ako ICE

INTERACTIVE CONNECTIVITY ESTABLISHMENT (ICE)

Interactive Connectivity Establishment (ICE)

- RFC 5245 Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols
- Konceptuálne jednoduché riešenie
- Spája súčasné riešenie STUN a TURN
 - Umožňuje nájsť vhodné riešenie komunikácie cez NAT/FW
- Pracuje so všetkými typmi NAT
- Umožňuje SIP peerom (ICE agentom) zistiť typ NAT a svoje možnosti komunikácie
 - Resp. vzájomnej dosažiteľnosti.
- Začína byť masívnejšie podporované výrobcami SIP UA
- Existuje rozšírenie SIP-u za účelom indikácie jeho využitia pri volaní na SIP UA
 - RFC 5768 ICE Support

ICE call flow

- 1. UA 1 pomocou STUN servera zistí NAT a jeho typ
 - Plus akú verejnú IP a port NAT použil (Kandidát komunikácie 1)
- 2. Ako záložný plán si vyžiada od TURN servera relay transportnú adresu
 - (kandidát komunikácie 2)
- SIP UA 1 pošle INVITE so zoznamom kandidátov komunikácie ako spôsobov jeho kontaktovania s preferovaným poradím
- 4. SIP UA 2 použije tento zoznam na kontaktovanie UA 1
 - Spôsob Pokus omyl
 - A v správe 183 pošle zoznam svojich kandidátov komunikácie
- 5. Ak obaja majú vymenené svoje zoznamy vytvoria z nich kombináciami komunikačné páry a začnú si ich testovať
- 6. Testovanie je vykonávané posielaním STUN správ na komunikačného kandidáta suseda
- 7. Ak sa nájde cesta je poslaná 180 Ringing atď.

Kandidát komunikácie

- HOST CANDIDATE
 - A transport address on a directly attached network interface
- SERVER REFLEXIVE CANDIDATES
 - A translated transport address on the public side of a NAT (a "server reflexive" address)
 - Získané STUN
- RELAYED CANDIDATES
 - A transport address allocated from a TURN server (a "relayed address").

RTP (MEDIA) RELAY

Riešenie Media relay

- Slúži ako prostredník pre RTP/RTCP a UDP prúdy dát
 - Vyžaduje podporu Symetrického RTP
 - Odosielanie aj príjem RTP médií z toho istého/na ten istý port
 - Vyžaduje zásah do konfigurácie SIP Proxy
 - Súčasné riešenia vhodné pre SER, OpenSER, Kamailio, OpenSIPS, SIP router, SIPPY B2BUA
- Zvýšená náročnosť na výkon
 - Nakoľko všetky RTP toky idú cez jeho prostriedky
 - Otázka škálovateľnosti

Súčasné známe opensource riešenia

- Riešenie Sippy RTP Proxy
 - Sippy RTPproxy (známy aj ako NATHelper)
 - http://www.rtpproxy.org/
 - V repozitároch pre debian/ubuntu
- Media Proxy
 - http://mediaproxy-ng.org

Media Relay

BACK 2 BACK USER AGENT

Back 2 Back User Agent

- Slúži ako (v spolupráci s) SIP gw pre signalizáciu a media proxy pre RTP
- Umiestnený na verejnom segmente
- Správa sa ako Man in the Middle
 - Bezpečnostná hrozba
 - Upravuje SIP signalizáciu aby ostal v ceste

B2BUA

- 1. UA pošle SIP INVITE na svoj Outbound Proxy (ktorý je aj B2BUA)
- 2. B2BUA modifikuje prechádzajúcu signalizáciu takým spôsobom aby ostal súčasťou tejto komunikácie (niečo ako Man in the Middle)
- 3. Modifikovaná SIP INVITE správa ide na SIP UA2 (musí byť v NAT/FW udržovaná alebo otvorená "diera")
 - 2000K ide späť cez B2BUA a ten ju modifikuje aby ostal v media ceste pre RTP od UA1
- 4. RTP ide medzi UAs cez B2BUA
 - 1. NAT je otvorený prvým RTP paketom

APPLICATION LAYER GATEWAY (ALG)

ALG

- Firewall, ktorý rozumie aplikačným protokolom
 - T.j. SIP signalizácii a SDP
 - Otvára "diery" na požiadanie
 - Prechodom SIP cez FW plynule prepisuje odpovedajúce hlavičky správ podľa NAT mapovaní
 - Udržuje mapovanie (spojenie) otvorené.

Universal Plug and Play

Čo je UPnP (www.upnp.org)

- Poskytuje prostriedky pre zjednodušené sieťové prostredie SOHO
 - domácnosti a malé firmy (Small Office / Home Office)
- Poskytuje framework pre auto konfiguráciu a auto popisovanie zariadení
 - Využíva existujúce internetové technológie
 - HTTP, XML
 - Umožňuje dynamické peer to peer prostredie
- Riešenie pre prepojenú, zosieťovanú domácnosť
 - Používateľský mainstream
 - Žiadne potrebné expertné zručnosti
- UPnP je zahrnuté v DLNA
 - Digital Living Network Alliance

UPnP

- Použitím UPnP požadujem od NAT aby "otvoril dieru" pre komunikáciu a vrátil späť verejnú IP a port, ktorý bude pridelený
- Nasadenie v SOHO prostredí spolu s ATA (Analog Telephone Adapter)
- UPnP zariadenie očakáva, že aplikácia bude "hovoriť" jazykom UPnP

UPnP

UPnP

UPnP klient

Final Solution

IPv6