Permutation packing and Flag Algebras

Jakub Sliačan

The Open University

- ▶ *H*, *F*, *G* graphs/permutations
- ▶ *G* is *F*-free
- ▶ |H| = k, |G| = n

$$\mathbf{p}(\mathbf{H}, \mathbf{G}) = \frac{\text{\# induced copies of } H \text{ in } G}{\binom{n}{k}}$$

Maximize the density of H in an F-free G.

 ${\cal F}$ a family of forbidden permutations/graphs

$$p(H, n) = \max_{\substack{G \text{ is } \mathcal{F}\text{-free} \\ |G|=n}} p(H, G)$$

Packing density

$$p(H) = \lim_{n \to \infty} p(H, n)$$

Turán density

$$p(H,\mathcal{F}) = \lim_{n \to \infty} p(H,\mathcal{F},n)$$

Example I

Permutations

Maximize density of 12 in a 123-free P.

Answer: $\sim 1/2$.

Graphs

Maximize the density of \Box in a \triangle -free G.

Answer: $\sim 1/2$.

Example II

Permutations

Minimize the density of monotone subsequences of length 4.

Answer: $\binom{\lfloor n/3 \rfloor}{4} \binom{\lfloor n/3+1 \rfloor}{4} \binom{\lfloor n/3+2 \rfloor}{4}$ via Flag algebras [BHL+15].

Graphs

Minimize the density of $: + \Sigma$.

Notoriously hard. Minimizer is NOT $\mathbb{G}(n, 1/2)$ — can do better.

Still open!

Example III

Permutations

Maximize the density of 132 permutation.

Answer: $2\sqrt{3} - 3$ (Galvin-Kleitmann, Stromquist).

Digraphs

Maximize the density of \clubsuit .

Answer: $2\sqrt{3} - 3$ ([FRV13]).

Timeline

1992	Wilf @ SIAM	please look at packing densities	
1992	Galvin	packing densities exist	
1993	Galvin-Kleitmann,	132 packing density	
	Stromquist		
1998	Price	PhD thesis, layered patterns	
2002	Albert et al.	packing densities of layered patterns	
		(+ LBs for 1342, 2413)	
2002	Hästö	packing density of other layered per-	
		mutations	
2006	Barton	packing densities of patterns	
2008	Presutti	lower bounds for packing non-layered	
		patterns (weighs AAHHS templates)	
2010	Presutti-Stromquist	packing rates of measures, LB for	
		2413	
2015	Balogh et al.	Minimum number of monotone 4-	
		point sequences	

In particular...

Structural result (Stromquist, [AAH+02])

Layered (on top) permutations pack best into layered (on top) permutations.

Must mention:

- ▶ Price's algorithm
- Generalization to patterns
- ▶ Number of layers bdd or not
- Presutti-Stromquist permutation limits
- lacktriangle Packing densities of linear combinations with coeffs in $\mathbb N$

Non-layered (before FA):

- ▶ $0.1047... \le p(\blacksquare) \le 2/9$
- $0.1965... \le p(\mathbf{n}) \le 2/9$

Small permutations (overview)

3-point packing densities Done.

4-point packing densities

S	lower bound	ref LB	upper bound	ref UB
1234	1	trivial	1	trivial
1432	0.42357	[Pri97]	0.42357	[Pri97]
2143	3/8	trivial	3/8	[Pri97]
1243	3/8	trivial	3/8	[AAH ⁺ 02]
1324	≈ 0.244	[Pri97]	≈ 0.244	[Pri97]
1342	0.1965	[Bat]	2/9	[AAH ⁺ 02]
2413	0.104724	[PS10]	2/9	[AAH ⁺ 02]

Strategy

First bound

Maximize density of ↓ in a ♣-free graph.

$$p(\mathbf{l}, G) = p(\mathbf{l}, \bullet^{\bullet})p(\bullet^{\bullet}, G) + p(\mathbf{l}, \bullet^{\bullet})p(\bullet^{\bullet}, G) + p(\mathbf{l}, \wedge^{\bullet})p(\wedge^{\bullet}, G)$$

$$\leq \max\{p(\mathbf{l}, \bullet^{\bullet}), p(\mathbf{l}, \bullet^{\bullet}), p(\mathbf{l}, \wedge^{\bullet})\} = 2/3$$

Redistribute weight

$$\begin{split} p(\mathring{\boldsymbol{\zeta}},G) &= \sum_{H \in \mathcal{G}_k} p(\mathring{\boldsymbol{\zeta}},H) p(H,G) + \underbrace{\sum_{H \in \mathcal{G}_k} c_H p(H,G)}_{\geq 0} \\ &\leq \max_{H \in \mathcal{G}_k} p(\mathring{\boldsymbol{\zeta}},H) + c_H \quad // \text{ winning if the right } c_H \text{ negative} \end{split}$$

Magic (flag algebras)

- ▶ $\mathcal{G} = \bigcup_{n>0} \mathcal{G}_n$ set of all graphs.
- ▶ $A = \mathbb{R}G/K$, where K contains $H \sum_{H' \in G_k} p(H, H')H'$.
- $\vdash H_1 \cdot H_2 := \sum_H p(H_1, H_2; H)H$ (now \mathcal{A} is an algebra).
- ▶ $(G_n)_n$ convergent if $(p(H, G_n))_n$ converges for every H.
- ▶ Every $(G_n)_n$ has convergent subsequence (Tychonoff).
- ▶ Associate convergent $(G_n)_n$ with $\phi \in Hom^+(\mathcal{A}, \mathbb{R})$.
- Averaging: $H^{\sigma} \in \mathcal{A}^{\sigma}$, $\llbracket H^{\sigma} \rrbracket_{\sigma} = p_{H}^{\sigma} H$.
- ▶ For every $\phi \in \mathit{Hom}^+(\mathcal{A}, \mathbb{R})$ and every $h^{\sigma} \in \mathcal{A}^{\sigma}$,

$$\phi(\llbracket h^{\sigma} \rrbracket_{\sigma}) \geq 0.$$

Semi-definite programming, additional info comes from:

$$\phi\left(\left[\left[\mathbf{x}^{T}Q\mathbf{x}\right]\right]\right) \geq 0, \quad Q \succeq 0,$$

where $\mathbf{x}_i \in \mathcal{A}^{\sigma}$.

Permpack package

Sage package automating flag algebras for permutations.

```
https://github.com/jsliacan/permpack.git
```

Ingredients

- Razborov's Flag Algebras [Raz07]
- Sage-7.2 (SageMath.org)
- CSDP (COIN|OR project)

What to expect

- ▶ Maximize packing density for $\pi = \sum_{i=1}^{k} a_i P_i$, some k.
- lacktriangle Compute Turán density for finite ${\cal F}$ and π
- lacksquare Handle inequality constraints, i.e. $rac{1}{2} \geq 1/3$

Permpack example I

Listing 1: Packing 132

```
p = PermProblem(3, density_pattern="132")
p.solve_sdp(solver="csdp")
```

Listing 2: Output

```
Success: SDP solved
Primal objective value: -4.6410162e-01
Dual objective value: -4.6410162e-01
Relative primal infeasibility: 5.90e-14
Relative dual infeasibility: 1.67e-10
Real Relative Gap: 3.68e-10
XZ Relative Gap: 6.14e-10
```

Permpack example II

Listing 3: Packing 123 subject to $132 \ge 1/3$.

```
p = PermProblem(3, density_pattern="123")
p.add_assumption([("132",1)], 1/3)
p.solve_sdp(solver="csdp")
```

Listing 4: Output

```
Success: SDP solved
Primal objective value: -5.9221808e-01
Dual objective value: -5.9221809e-01
Relative primal infeasibility: 3.14e-15
Relative dual infeasibility: 2.48e-09
Real Relative Gap: -9.65e-10
XZ Relative Gap: 4.52e-09
```

After Flag Algebras

S	lower bound	ref LB	upper bound	ref UB
1234	1	trivial	1	trivial
1432	α	[Pri97]	α	[Pri97]
2143	3/8	trivial	3/8	[Pri97]
1243	3/8	trivial	3/8	[AAH ⁺ 02]
1324	0.244054321	construction Γ	0.244054549	Flagmatic 2.0
1342	β	[Bat]	0.1988373	[BHL ⁺ 15]
2413	≈ 0.104724	[PS10]	0.1047805	[BHL ⁺ 15]

All known upper bounds can be re-proved via FA.

The curious case of 1342

Batkeyev, [BHL+15]

$$0.1965... = p(\mathbf{M}, \Gamma) \le \mathbf{M} \le 0.1988....$$

Theorem

If
$$\blacksquare =$$
 0, then $\blacksquare \le 0.19658...$

Various non-layered densities

All bounds are matched from below by constructions on the left.

Things to think about

Do theorems about layered permutations extend to sums of sum-indecomposable blocks?

Is there a maximizer that does not contain with positive density?

Which sub-permutation densities force G to be pseudo-random?

. . .

Michael H. Albert, Mike D. Atkinson, Chris C. Handley, Derek A. Holton, and Walter Stromquist.

On packing densities of permutations. *Electron. J. Combin*, 9(1), 2002.

B. Batkeyev.

Extremal construction for 1342-packing. unpublished.

J. Balogh, P. Hu, B. Lidický, O. Pikhurko, B. Udvari, and J. Volec.

Minimum number of monotone subsequences of length 4 in permutations. Combinatorics, Probability and Computing, 24(04):658–679, 2015.

V. Falgas-Ravry and E. R. Vaughan.

Applications of the semi-definite method to the turán density problem for 3-graphs. Combinatorics, Probability and Computing, 22(01):21–54, 2013.

P. A. Hästö.

The packing density of other layered permutations.

A I Price

Packing densities of layered* patterns.

PhD thesis, University of Pennsylvania, 1997.

Permutation patterns, 376:287-316, 2010.

C. B. Presutti and W. Stromquist.

Packing rates of measures and a conjecture for the packing density of 2413.

A. A. Razborov.

Flag algebras.

The Journal of Symbolic Logic, 72(04):1239-1282, 2007.