Samenvatting

BASIS 1

ETEN EN GEGETEN WORDEN

- 6.1.1 Je kunt beschrijven dat bij fotosynthese energierijke stoffen worden gevormd uit energiearme stoffen, en hoe bij verbranding die energie weer vrijkomt.
 - Fotosynthese: koolstofdioxide en water worden omgezet in glucose en zuurstof.
 - Energiearme stoffen worden omgezet in energierijke stoffen.
 - De energie uit zonlicht wordt opgeslagen in de stof glucose.
 - De fotosynthese kun je zo opschrijven:

KOOLSTOFDIOXIDE + WATER + LICHTENERGIE \rightarrow GLUCOSE + ZUURSTOF

- Bij verbranding worden energierijke stoffen omgezet in energiearme stoffen.
 - Bij verbranding komt de opgeslagen energie weer vrij.
 - De verbranding van glucose kun je zo opschrijven:

$GLUCOSE + ZUURSTOF \rightarrow KOOLSTOFDIOXIDE + WATER + ENERGIE$

6.1.2 Je kunt de voedselrelaties tussen organismen beschrijven.

- Kringloop: in de natuur worden stoffen steeds opnieuw gebruikt.
- Voedselketen: een reeks soorten, waarbij elke soort wordt opgegeten door de volgende soort.
 - In de eerste schakel van een voedselketen komen alleen producenten voor.
- Voedselweb: alle voedselrelaties in een gebied, bijv. een sloot, een bos of een heidegebied.
 - Een voedselweb bestaat uit producenten en consumenten.
- Producenten maken energierijke stoffen uit energiearme stoffen.
 - Planten zijn producenten.
 - In de cellen met bladgroenkorrels vindt fotosynthese plaats.
- Consumenten halen energierijke stoffen uit het voedsel.
 - Dieren zijn consumenten.
 - Tot de consumenten behoren alleseters, planteneters en vleeseters.
 - Planteneters zijn consumenten van de eerste orde.
 - Vleeseters zijn consumenten van de tweede orde, van de derde orde, enz.
 - Alleseters zijn consumenten van de eerste orde, van de tweede orde, enz.
- Reducenten zetten energierijke stoffen uit (resten van) gestorven planten en dieren om in energiearme stoffen.
 - Schimmels en bacteriën zijn reducenten.
 - Planten kunnen de energiearme stoffen weer opnemen.

BEGRIPPEN

alleseters

Dieren die planten en dieren eten; vormen de tweede of hogere schakel van de voedselketen.

consumenten

Alleseters, planteneters en vleeseters; leven van de energierijke stoffen die planten maken.

energiearme stoffen

Stoffen die weinig energie bevatten, bijv. koolstofdioxide, mineralen, water en zuurstof.

energierijke stoffen

Stoffen die veel energie bevatten, bijv. glucose en andere koolhydraten, eiwitten en vetten.

fotosynthese

Proces waarin bladgroenkorrels koolstofdioxide en water omzetten in glucose en zuurstof met behulp van energie uit zonlicht.

kringloop

Zich herhalend proces waarin stoffen steeds opnieuw worden gebruikt.

mineraal (voedingszout)

Energiearme stof in de bodem die planten kunnen opnemen met hun wortels.

planteneters

Dieren die planten eten; vormen de tweede schakel van de voedselketen.

producenten

Organismen met bladgroen; zetten energiearme stoffen om in energierijke stoffen.

reducenten

Bacteriën en schimmels; breken energierijke stoffen uit dode organismen af tot energiearme stoffen.

stofwisseling

Alle omzettingen van de ene stof in de andere stof in een organisme.

vleeseters

Dieren die dieren eten; vormen de derde of hogere schakel van de voedselketen.

voedselketen

Reeks soorten, waarbij elke soort wordt opgegeten door de volgende soort in de reeks.

voedselweb

Alle voedselrelaties in een ecosysteem.

BASIS 2

PIRAMIDEN

6.2.1 Je kunt omschrijven wat piramiden van aantallen en van biomassa weergeven.

- Piramide van aantallen: geeft aan hoeveel individuen er in elke schakel van de voedselketen voorkomen.
 - In een voedselketen wordt het aantal individuen in elke volgende schakel meestal kleiner, maar soms is dat niet het geval. Dan heeft de piramide van aantallen geen piramidevorm.
- Piramide van biomassa: geeft aan hoe groot de biomassa in elke schakel van de voedselketen is.
 - Biomassa: het totale gewicht van alle energierijke stoffen.
 - In een voedselketen wordt de biomassa in elke volgende schakel kleiner.
 - De piramide van biomassa heeft altijd een piramidevorm.

6.2.2 Je kunt beschrijven op welke manieren energie uit de voedselketen verdwijnt.

- Energie: in elke schakel verdwijnt energie uit de voedselketen.
 - Sommige individuen sterven zonder dat ze worden opgegeten door individuen uit de volgende schakel.
 - Van het voedsel dat wordt gegeten, wordt een deel niet verteerd. Dit deel komt in de uitwerpselen terecht.
 - Een deel van de verteerde stoffen wordt gebruikt als brandstof. Bij de verbranding hiervan komt energie vrij, meestal in de vorm van warmte of beweging.
 - De stoffen die overblijven, worden meestal gebruikt als bouwstof. Deze stoffen kunnen als voedsel dienen voor de volgende schakel van de voedselketen.

BEGRIPPEN

biomassa

De hoeveelheid organische stoffen in een organisme.

piramide van aantallen

Schema dat laat zien hoeveel individuen in elke schakel van een voedselketen voorkomen.

piramide van biomassa

Schema dat laat zien wat het gewicht is van alle organische stoffen in elke schakel van een voedselketen.

BASIS 3

KOOLSTOFKRINGLOOP EN STIKSTOFKRINGLOOP

6.3.1 Je kunt de koolstofkringloop beschrijven.

- Koolstofkringloop:
 - Planten maken glucose met koolstof uit het koolstofdioxide uit de lucht.
 - Planten en dieren zetten glucose om in andere organische stoffen.
 - Planten en dieren gebruiken de energierijke stoffen als brandstof.
 - Reducenten gebruiken de energierijke stoffen uit dode resten van organismen en uitwerpselen als brandstof.
 - Bij verbranding komt koolstofdioxide vrij. Hierin zit de koolstof uit de energierijke stoffen.
 - Koolstofdioxide wordt afgegeven aan de lucht.

Afb. 1

6.3.2 Je kunt de stikstofkringloop beschrijven.

- Stikstofkringloop:
 - Planten nemen nitraat op uit de bodem.
 - Planten zetten nitraat en glucose om in plantaardige eiwitten.
 - Dieren zetten plantaardige eiwitten om in dierlijke eiwitten.
 - Rottingsbacteriën zetten de eiwitten uit dode resten van planten en dieren en uitwerpselen van dieren om. Hierbij ontstaan ammoniakgas (in de lucht) en ammonium (in de bodem).
 - Speciale bacteriën in de bodem zetten ammonium om in nitraat, een voedingszout.
 - Stikstofbindende bacteriën zetten stikstof uit de lucht om. Hierbij ontstaat o.a. nitraat.
 - Stikstofbindende bacteriën komen o.a. voor in wortelknolletjes van planten, zoals klaver en lupine.

Afb. 2

BEGRIPPEN

koolstofkringloop

De verschillende stoffen waarin koolstof kan voorkomen en van het ene organisme naar het andere gaat.

stikstofkringloop

De verschillende stoffen waarin stikstof kan voorkomen en van het ene organisme naar het andere gaat.

BASIS 4

BIOLOGISCH EVENWICHT

6.4.1 Je kunt de invloeden op organismen indelen in biotische en abiotische factoren.

- Biotische factoren: invloeden afkomstig uit de levende natuur. Bijv. soortgenoten, roofdieren, ziekteverwekkers.
- Abiotische factoren: invloeden afkomstig uit de levenloze natuur. Bijv. temperatuur, wind, regenval.

6.4.2 Je kunt de niveaus van de ecologie beschrijven.

- Individu: één enkel organisme.
- Populatie: een groep individuen van dezelfde soort in een bepaald gebied, die zich onderling voortplanten.
- Levensgemeenschap: alle populaties in een bepaald leefgebied.
- Ecosysteem: een gebied met alle abiotische factoren en populaties die er leven, bijv. een bos of een heidegebied.

6.4.3 Je kunt aangeven hoe de grootte van een populatie wordt beïnvloed door biotische en abiotische factoren.

- Optimale omstandigheden: alle biotische en abiotische factoren hebben de gunstigste waarde.
 - De groei- en voortplantingskansen van een populatie zijn nu het grootst.
- Biologisch evenwicht: een toestand waarin de grootte van elke populatie in een ecosysteem schommelt om een bepaalde waarde.
 - De grootte van een populatie hangt af van biotische en abiotische factoren.
- Optimumkromme: diagram dat voor één abiotische factor aangeeft wat de groei- en voortplantingskansen van een soort zijn.

BEGRIPPEN

abiotische factoren

Invloeden uit de levenloze natuur, bijv. temperatuur, neerslag.

biologisch evenwicht

Toestand waarin de grootte van elke populatie in een ecosysteem schommelt om een bepaalde waarde.

biotische factoren

Invloeden uit de levende natuur, bijv. voedsel, roofdieren.

ecosysteem

Gebied met alle abiotische factoren en populaties die er leven.

individu

Eén enkel organisme.

levensgemeenschap

Alle populaties in een bepaald leefgebied.

optimumkromme

Diagram dat voor een abiotische factor de minimale, de optimale en de maximale waarde van een soort laat zien.

populatie

Groep individuen van dezelfde soort in een bepaald gebied, die zich onderling voortplanten.

BASIS 5

AANPASSINGEN BIJ DIEREN

6.5.1 Je kunt uitleggen hoe dieren zijn aangepast aan hun leefomgeving.

- Aanpassingen bij waterdieren om de weerstand van het water zo klein mogelijk te maken:
 - Het lichaam is gestroomlijnd.
 - Bij vissen zijn de schubben van de huid bedekt met een laag slijm.
- Schutkleur: een kleur aan de buitenkant van een dier die overeenkomt met de omgeving, zodat het dier niet of minder opvalt.
- Aanpassingen bij landzoogdieren aan de ondergrond:
 - Zoolgangers lopen op de hele voetzool (bijv. beren). Zoolgangers zakken op een zachte bodem niet snel weg.
 - Teengangers lopen op de tenen (bijv. katten). Teengangers zijn snelle renners en goede springers.
 - Hoefgangers lopen op de toppen van de tenen (bijv. paarden).
 Hoefgangers kunnen hard rennen op een harde bodem.
- Aanpassingen bij steltlopers (bijv. wulpen, scholeksters):
 - lange poten om in ondiep water te lopen
 - priemsnavel om bodemdiertjes te vangen
- Aanpassingen bij roofvogels (bijv. buizerds, haviken) en uilen:
 - scherpe klauwen om de prooi te pakken
 - haaksnavel om de prooi te verscheuren
- Aanpassingen bij zangvogels (bijv. mezen, vinken):
 - drie tenen naar voren en één teen naar achteren voor houvast aan takken
 - kegelsnavel bij zangvogels die zaden eten
 - pincetsnavel bij zangvogels die insecten eten
- Aanpassingen bij watervogels (bijv. eenden, zwanen):
 - meestal: zwemvliezen tussen de tenen
 - waterafstotende veren
 - zeefsnavel om kleine dieren en planten uit het water te zeven

BEGRIPPEN

gestroomlijnd

Lichaamsvorm met weinig uitsteeksels om de weerstand (van water of lucht) zo klein mogelijk te maken.

haaksnavel

Korte, kromme snavel om een prooi in stukken te scheuren.

hoefgangers

Organismen die op de toppen van hun tenen lopen.

kegelsnavel

Korte snavel om zaden te kraken.

pincetsnavel

Rechte, spitse snavel om insecten te vangen.

priemsnavel

Lange, dunne snavel om voedsel te vangen in ondiep water of in een zanderige bodem.

schutkleur

Kleur die overeenkomt met de omgeving, waardoor een dier niet of minder opvalt.

teengangers

Organismen die op hun tenen lopen.

zeefsnavel

Brede snavel om voedsel uit het water te zeven.

zoolgangers

Organismen die op de hele voetzool lopen waardoor het steunoppervlak groot is.

BASIS 6

AANPASSINGEN BII PLANTEN

6.6.1 Je kunt uitleggen hoe planten zijn aangepast aan hun leefomgeving.

- Huidmondjes zijn kleine openingen in de opperhuid van een blad.
 - Via de huidmondjes neemt de plant koolstofdioxide op uit de lucht.
 - Via de huidmondjes geeft de plant zuurstof en water(damp) af aan de lucht.
- Aanpassingen bij planten die in een droog milieu leven:
 - weinig huidmondjes
 - huidmondjes aan de onderkant van de bladeren
 - diep verzonken huidmondjes
 - dikke waslaag op de bladeren
 - behaarde bladeren
 - kleine, dikke bladeren (bij cactussen stekels of harde haren, geen huidmondjes)
 - soms opslag van water in de stengel (bijv. bij cactussen)
 - sterk ontwikkeld wortelstelsel
- Aanpassingen bij planten die in een vochtig milieu leven:
 - veel huidmondjes
 - oppervlakkig gelegen huidmondjes
 - grote dunne bladeren
 - dunne waslaag op de bladeren
 - geen beharing op de bladeren
 - zwakker ontwikkeld wortelstelsel
- Aanpassingen bij water- en oeverplanten:
 - Bij drijvende bladeren zitten de huidmondjes alleen aan de bovenkant (bijv. waterlelie).
 - Bladeren onder water hebben geen huidmondjes (bijv. waterpest).
 - Het wortelstelsel is zwak ontwikkeld.
 - In de stengels kunnen luchtkanalen voorkomen.
- Aanpassingen aan de hoeveelheid licht:
 - Zonplanten: groeien het best bij veel licht (bijv. in het open veld).
 - Schaduwplanten: groeien het best bij weinig licht (bijv. op de bodem in een loofbos).
- Aanpassingen bij klimplanten:
 - hechtwortels (bijv. bij de klimop)
 - ranken (bijv. bij de wijnstok)
 - nemen soms voedingsstoffen op uit hun gastheer

BEGRIPPEN

huidmondje

Kleine opening in de opperhuid van bladeren waardoor de plant stoffen kan opnemen en afgeven aan de lucht.

klimplant

Plant met hechtwortels of ranken om zich vast te houden aan muren en andere planten.

luchtkanaal

Kanalen in de stengels van waterplanten om zuurstof naar de wortels te brengen.

schaduwplant

Plant die groeit op een plek waar veel schaduw is.

waslaagje

Laagje vetachtige stof op de bladeren van planten dat verdamping tegengaat.

waterplant

Plant die in het water leeft.

zonplant

Plant die groeit op een plek waar veel zonlicht is.

EXTRA 7

ECOSYSTEMEN IN NEDERLAND (VERDIEPING)

- Nederland kent verschillende ecosystemen, bijv. duinen, loofbos en heide.
- Ecosystemen kennen verschillende stadia:
 - pionierecosysteem: het eerste stadium bij de ontwikkeling van een ecosysteem
 - climaxecosysteem: het uiteindelijke ecosysteem dat niet meer verandert
- Pionierecosysteem:
 - Ecosysteem met weinig planten, de aanwezige planten heten pionierplanten.
 - Pionierplanten kunnen onder veel omstandigheden overleven.
 - Doordat er planten gaan groeien, ontstaan humus.
 - Als er humus is, kan het ecosysteem zich verder ontwikkelen.
- Successie: ontwikkeling waarbij het ene ecosysteem overgaat in het andere.
- Climaxecosysteem:
 - In dit ecosysteem zijn alle populaties in evenwicht.
 - Er komen geen populaties bij en er gaan geen populaties weg.

BEGRIPPEN

climaxecosysteem

Het laatste ecosysteem dat wordt gevormd.

humus

Mengsel van dode organismen en reducenten.

successie

Ontwikkeling waarbij het ene ecosysteem overgaat in het andere.

EXTRA 8

EXOTEN (VERBREDING)

6.8.1 Je kunt uitleggen wat exoten zijn en enkele voorbeelden in Nederland noemen.

- Inheemse soorten zijn de soorten die van nature in een gebied voorkomen (sinds langere tijd).
- Uitheemse soorten zijn soorten die niet van nature in een gebied voorkomen.
 - Uitheemse soorten kunnen per ongeluk in een ander gebied terechtkomen en zich daar vestigen.
 - Uitheemse soorten kunnen een bedreiging vormen voor inheemse soorten.
- Exoten zijn uitheemse soorten die door de mens in een gebied terecht zijn gekomen.
 - Dit kan per ongeluk of expres gebeuren, zoals met de Amerikaanse rivierkreeft of de groene halsbandparkiet.

BEGRIPPEN

exoot

Uitheemse soort die door de mens in een gebied terecht is gekomen.

inheemse soort

Soort die oorspronkelijk in een gebied voorkomt.

uitheemse soort

Soort die niet van nature in een gebied voorkomt.

ONDERZOEK

LEREN ONDERZOEKEN & PRACTICA

6.0.1 Je kunt een ecologisch onderzoek voorbereiden, uitvoeren en presenteren.

(1) Ga naar de Flitskaarten en de Diagnostische toets.