Sheaves and their cohomology

Date: 2023-08-22 3:00-5:00 PM Lecturer: Nithi Rungtanapirom Transcriber: Kittapat Ratanaphupha

Let $f: X \to Y$ be a continuous map.

Last session: \mathcal{F} (pre-)sheaf on X: direct image $f_*\mathcal{F}$ on Y.

Remark

• This gives rise to a functor $f_*: \mathrm{PSh}(X) \to \mathrm{PSh}(Y)$ (also with Sh, PAb, Ab.)

• If $g: Y \to Z$ is another continuous map, then $(g \circ f)_* = g_* \circ f_*$

Q: What about the inverse direction?

The problem is: $U \subseteq X \implies f(U) \subseteq Y$ in general!

Def Let $f: X \to Y$ be a continuous map, \mathcal{G} be a presheaf on Y. The *presheaf inverse image* $f^{\mathcal{P}}\mathcal{G}$ on X is defined by

$$f^{\mathcal{P}}\mathcal{G}(U) := \varinjlim_{f(U) \subseteq V \stackrel{\circ}{\subseteq} Y} \mathcal{G}(V)$$
 for each $U \stackrel{\circ}{\subseteq} X$.

The restriction morphisms $f^{\mathcal{P}}\mathcal{G}(U) \to f^{\mathcal{P}}\mathcal{G}(U')$.

For $U' \stackrel{\circ}{\subset} U \stackrel{\circ}{\subset} X$ are "given canonically."

The sheaf inverse image $f^{-1}\mathcal{G}$ is the sheaf associated to $f^{\mathcal{P}}\mathcal{G}$.

Remark:

- The easiest (?) case: $f: X \to Y$ is an open continuous map, then $f^{-1}\mathcal{G} = \mathcal{G}(f(U))$ for all $U \overset{\circ}{\subset} X$.
- This construction yields a functor

$$f^{\mathcal{P}}: \mathrm{PSh}(Y) \to \mathrm{PSh}(X)$$

(also in case of PAb.; $\mathcal{G} \to \mathcal{H}$ on $Y \colon \mathcal{G}(C) \to \mathcal{H}(V)$ for $V \subseteq Y$. $f^{\mathcal{P}} \mathcal{G} \to f^{\mathcal{P}} \mathcal{H}$.) Hence, also, $f^{-1} : PSh(Y) \to PSh(X)$.

- If $g: Y \to Z$ is another continuous map, then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ (as functors)
- $a \in Y$ and $X = \{a\}, i : \{a\} \hookrightarrow Y$ an inclusion map. \mathcal{F} is a presheaf on Y defined by $i^{-1}\mathcal{F} = \mathcal{F}_a$.
- Hence if \mathcal{G} is a pre-sheaf on Y and $a \in X$, $(f: X \to Y \text{ a continuous map})$, then $(f^{-1}\mathcal{G})_a = \mathcal{G}_{f(a)}$

(Stalk is appropriate to inverse one, section: direct one)

Example. let E be a set: sheaves E_X and E_Y of locally connected functions. (Constant sheaves.)

Claim: $f: X \to Y$ continuous map, then $f^{-1}E_Y = E_X$.

Prop. Let $f: X \to Y$ be a continuous map, \mathcal{F} be a presheaf on X, \mathcal{G} be a (pre-)sheaf on Y.

There is a natural (transformation) bijection.

$$\operatorname{Hom}_{\operatorname{Sh}(X)}(f^{-1}\mathcal{G},\mathcal{F}) \underset{\psi^{\sharp} \mapsto \psi}{\cong} \operatorname{Hom}_{\operatorname{PSh}(Y)}(\mathcal{G}, f_*\mathcal{F}).$$

 $(f^{-1}$ is a left adjoint of f_* .)

Proof. (sketch)

- $\varphi: f^{-1}\mathcal{G} \to \mathcal{F}$: define $\varphi^{\flat}: \mathcal{G} \to f_*\mathcal{F}$ by $(\varphi^{\flat})_V: \mathcal{G}(V) \to \varinjlim_{f(f^{-1}V) \subseteq W \subseteq Y} \mathcal{G}(W)$ $\to \bigoplus_{\text{maps from the sheafification}} f^{-1}\mathcal{G}(f^{-1}V) \xrightarrow{\varphi_V} \mathcal{F}(f^{-1}V).$
- $\psi: \mathcal{G} \to f_*\mathcal{F}$: define a morphism $\psi^{\mathcal{P}}: f^{\mathcal{P}}\mathcal{G} \to \mathcal{F}$ given by

$$(\psi^{\mathcal{P}})_U : f^{\mathcal{P}}\mathcal{G}(U) = \varinjlim_{f(U) \subseteq V \stackrel{\circ}{\subseteq} Y} \mathcal{G}(V) \stackrel{\lim \psi_V}{\longrightarrow}$$

$$\varinjlim_{f(U)\subseteq V\stackrel{\circ}{\subseteq} Y(U\subseteq f^{-1}V)} \to \mathcal{F}(U) \text{ (satisfies the universal property of } \varinjlim_{v} \rho_{f^{-1}V,U})$$

for $U \subseteq X$. Then apply the universal property of the sheafification to obtain a morphims $\psi^{\sharp} : \mathcal{F}^{-1}\mathcal{G} \to \mathcal{F}$

A routine work shows that both constructions are inverse to each other! \Box

Exercises (Wedhorn, Problems 3.6, 3.9)

Let X be a topological space, $i: A \hookrightarrow X$ be an inclusion of a closed subspace, \mathcal{F} be a sheaf of abelian groups on A.

Show that the morphism of sheaves $i^{-1}(i_*\mathcal{F}) \to \mathcal{F}$ corresponding to $\mathrm{id}_{i_*\mathcal{F}} : i_*\mathcal{F} \to i_*\mathcal{F}$ is an isomorphism!

Tangent spaces¹

3 equivalent definitions for C^{∞} -/ C^{ω} -/complex premanifolds

- 1. "geometric definition"
- 2. as a space of derivation on a local ring
- 3. as the dual space of the "algebraic cotangent space."

Convention:

- Premanifold = C^{α} - $(\alpha \in \hat{\mathbb{N}})$ or complex premanifold
- $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

Let M be a premanifold and $p \in M$.

Heuristic: a tangent vector at p should be c'(0) for some curve $c: I \to M$ such that $0 \in I \subseteq \mathbb{K}, c(0) = p$.

¹How to build a vector space on them

If $f \in \mathcal{O}_{M,p}$, the "chain rule" should imply that $(f \circ c)'(0) = Df|_p(c'(0)).^2$

Def Let M be an m-dimensional premanifold and $p \in M$. The (geometric) tangent space of M at p is

$$T_p^{\text{geo}}M = \{(I,c) \mid 0 \in I \subseteq K, c : I \to M \text{ morphism with } c(0) = p\}/\sim$$

where
$$(I_1, c_1) \sim (I_2, c_2) \iff \forall f \in O_{M,p} : (f \circ c_1)'(0) = (f \circ c_2)'(0).$$

The k-vector space structure $T_p^{\mathrm{geo}}(M)$ is defined as follows:

Let (U, x) be a chart at p $(p \in U \subseteq M, U \xrightarrow{\sim} B \subseteq \mathbb{K}^m)$.

Bijection (Check!) $T_p^{\text{geo}}M \to \mathbb{K}^m$ ([(I,c)] $\to (x \circ c|)'(0)$; is a map $C^{\alpha}(U) \to \mathbb{K}^m$)

Exercise. Verify that in fact, the inverse map is $\mathbb{K}^m \to T_p^{\text{geo}}M$, $v \mapsto (I, c_v)$ $(c_v(t) := x^{-1}(x(p) - tv))$

The \mathbb{K} -vector space structure on $T_p^{geo}M$ is inherited from the one on \mathbb{K}^m under $T_p(x)$. (This is independent of the choice of chart (U, x)!)

Remark. therefore, $\dim T_p^{\text{geo}} M = m$.

Def Let $F: M \to N$ be a morphism of premanifolds, $p \in M$. The derivative of F at p or the tangent map of F at p is $dF|_p = T_p(F): T_p^{\text{geo}}(M) \to T_p^{\text{geo}}(N)$, that maps $[(I,c)] \mapsto [(I,F \circ c)]$.

Why is it well-defined and linear?

Let (U, x) and (V, y) be charts at $p \in M$ and $F(p) \in N$ respectively, $m = \dim M$ and $n = \dim N$.

$$T_p^{\text{geo}}M \xrightarrow{T_p(F)} T_{f(p)}^{\text{geo}}N$$

$$\downarrow \cong T_p(x) \qquad \downarrow \cong T_{f(p)}(y)$$

$$\mathbb{K}^m \xrightarrow{D(y \circ F \circ x^{-1})} \mathbb{K}^n$$

Chain rule in K

$$[(I,c)] \in T_p^{\text{geo}} M \overset{T_p(x)}{\mapsto} (x \circ c|)'(0) \in \mathbb{K}^m$$

$$\overset{D(y \circ F \circ x^{-1})}{\mapsto} D(y \circ F \circ x^{-1})((x \circ c|)'(0)) = ((y \circ F \circ x^{-1}) \circ (x \circ c|))'(0) = (y \circ (F \circ c)|)'(0) = T_{F(p)}(y)([(I, F \circ c)])$$

The above diagram is commutative. Since $T_p(x)$, $D(y \circ F \circ x^{-1})$ and $T_{F(p)}(y)^{-1}$ are well-defined and linear, the same holds for $T_p(F)$.

Proposition. $F: M \to N, G: N \to Q$ morphisms of premanifolds, $p \in M \implies T_p(G \circ F) = T_{F(p)}(G) \circ T_p(F)$.

 $^{^{2}=(}f|_{p})_{*}(c'(0))$

In particular, there is a functor. $(C^{\alpha}\text{-PMfd}^{*}) \to (\mathbb{R}\text{-vect}) \ (\mathbb{C}\text{-PMfd}^{*}) \to (\mathbb{C}\text{-vect})$ from $(M,p) \mapsto T_{p}^{\text{geo}}(M)$

PMfd*: pair (M,p) with M premanifold, $p \in M$, morphism: $(M,p) \xrightarrow{F} (N,q) = \text{morphism}$ $F: M \to N$ sending $p \mapsto q$.

Exercise let $\phi: S^n \to \mathbb{R}$ be a smooth function. Show that there are at least two points $p, q \in S^n$ such that both $T_p(\phi)$ and $T_q(\phi)$ are zero maps.