Claims

1. A compound of the formula (I)

R3
$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

in which

5

10

15

20

25

A is an aromatic heteromonocyclic, or an aromatic or partially aromatic heterobicyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of N, O and S, and up to 2 oxo groups, where not more than one of the heteroatoms is an oxygen atom,

and A may be substituted by radicals R¹¹, R¹² and/or R¹³,

where

 R^{11} , R^{12} and R^{13} at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

R³ and R⁴ are selected independently of one another from the group consisting of

hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂, or

5 R³ and R⁴ are connected to give -CH=CH-CH=CH₋, -(CH₂)₄- or -(CH₂)₃-,

R⁵ is a radical (W)-(X)-(Y)-Z, where

10

15

20

25

W is selected from the group consisting of C_1 - C_4 -alkylen, C_2 - C_4 -alkenylen, C_2 - C_4 -alkynylen, C_4 -alkylen, C_5 - C_4 -alkylen), C_5 - C_4 -alkylen) and a bond,

X is selected from the group consisting of CO, CO-O, SO₂, NR⁵⁴, NR⁵⁴-CO, NR⁵⁴-SO₂, CO-NR⁵⁸ and a bond,

Y is C₁-C₆-alkylen, C₂-C₆-alkenylen, C₂-C₆-alkynylen, or a bond,

Z is selected from the group consisting of hydrogen, E, O-R⁵², NR⁵¹R⁵², S-R⁵², where

E is an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, said ring may comprise up to two oxo groups, and may be substituted by radicals R⁵⁵, R⁵⁶, R⁵⁷, and/or up to three radicals R⁵³,

 R^{51} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylenphenyl, where the phenyl ring may be substituted by up to two radicals R^{53} ,

R⁵² at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, E and C_1 - C_4 -alkylen-E,

30 R⁵³ at each occurrence is independently selected from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

10

15

20

25

30

 R^{54} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylenphenyl, where the phenyl ring may be substituted by up to two radicals R^{59} ,

at each occurrence is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, phenyl, C₁-C₄-alkylen-phenyl, where the ring may be substituted by up to two radicals R⁶⁰, and OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

R⁵⁶ is a group Q¹-Q²-Q³, where

 Q^2 is selected from the group consisting of C_1 - C_4 -alkylen, C_2 - C_4 -alkynylen, and a bond,

Q³ is a hydrogen or an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which may comprise up to two oxo groups and may be substituted by the radicals R⁶³, R⁶⁴ and/or R⁶⁵,

R⁵⁷ at each occurrence is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, phenyl, C₁-C₄-alkylen-phenyl, COOH, CO-O-C₁-C₄-alkyl, CONH₂, CO-NH-C₁-C₄-alkyl, CO-N(C₁-C₄-alkyl)₂, CO-C₁-C₄-alkyl, CH₂-NH₂, CH₂-NH-C₁-C₄-alkyl and CH₂-N(C₁-C₄-alkyl)₂,

- R^{58} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylenphenyl, where the phenyl ring may be substituted by up to two radicals R^{62} ,
- R⁵⁹, R⁶⁰ and R⁶² at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,
- R⁶³, R⁶⁴ and R⁶⁵ at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

15

20

25

30

 R^6 and R^7 are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

and their tautomeric forms, enantiomeric and diastereomeric forms, and prodrugs thereof.

- 2. The compound of claim 1, wherein A is selected from the group consisting of aromatic heteromonocyclic and aromatic heterobicyclic systems comprising 1 or 2 heteroatoms, where one of the 2 heteroatoms is nitrogen.
 - 3. The compound of claim 1, wherein A is selected from the group consisting of benzothiazole, pyrimidine, pyridine, pyridazine, pyrazine, isoquinoline, quinoline, thiazole, benzimidazole, imidazole, benzoxazole, benzothiophene, thiophene, benzofuran and furan.

129

4. A compound of the formula (II)

in which

5

B is selected from the group consisting of thiophene, furan, pyrrole, pyridine, quinoline, tetrahydroquinoline, isoquinoline, tetrahydroisoquinoline, benzothiophene, benzofuran, dihydrobenzofuran, indole, dihydroisoindole,

an aromatic heteromonocyclic and an aromatic or partially aromatic heterobicyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise 2 to 4 heteroatoms selected from the group consisting of N, O and S, and up to 2 oxo groups, and

15

B may be substituted by the radicals R²¹, R²² and/or R²³,

20

 R^{21} , R^{22} and R^{23} at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF_3 , OCF_3 , NO_2 , OH, $O-C_1-C_4$ -alkyl, O-phenyl, $O-C_1-C_4$ -alkylen-phenyl, phenyl, C_1-C_6 -alkyl, C_2-C_6 -alkenyl, C_2-C_6 -alkynyl, NH_2 , $NH(C_1-C_4$ -alkyl) and $N(C_1-C_4$ -alkyl)₂, morpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, 4-piperazin-1-yl, 4- $(C_1-C_4$ -alkyl)-piperazin-1-yl,

25

R³ and R⁴ are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl,

O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂, or

 R^3 and R^4 are connected to give -CH=CH-CH=CH-, -(CH₂)₄- or -(CH₂)₃-,

5

10

R⁵ is a radical (W)-(X)-(Y)-Z, where

W is selected from the group consisting of C_1 - C_4 -alkylen, C_2 - C_4 -alkenylen, C_2 - C_4 -alkylen, C_4 -alkylen, C_5 - C_4 -alkylen), C_5 - C_4 -alkylen), C_5 - C_4 -alkylen) and a bond,

X is selected from the group consisting of CO, CO-O, SO₂, NR⁵⁴, NR⁵⁴-CO, NR⁵⁴-SO₂, CO-NR⁵⁸ and a bond,

Y is C₁-C₆-alkylen, C₂-C₆-alkenylen, C₂-C₆-alkynylen, or a bond,

Z is selected from the group consisting of hydrogen, E, O-R⁵², NR⁵¹R⁵², S-R⁵², where

15

E is an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, said ring may comprise up to two oxo groups, and may be substituted by radicals R⁵⁵, R⁵⁶, R⁵⁷ and/or up to three radicals R⁵³ and,

20

 R^{51} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylenphenyl, where the phenyl ring may be substituted by up to two radicals R^{53} ,

25

 R^{52} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, E and C_1 - C_4 -alkylen-E,

30

at each occurrence is independently selected from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

 R^{54} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylenphenyl, where the phenyl ring may be substituted by up to two radicals R^{59} ,

5

 R^{55} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl, C_1 - C_4 -alkylen-phenyl, where the ring may be substituted by up to two radicals R^{60} , and OH, O- C_1 - C_4 -alkyl, O-phenyl, O- C_1 - C_4 -alkylen-phenyl, NH₂, NH(C_1 - C_4 -alkyl) and N(C_1 - C_4 -alkyl)₂,

10

R⁵⁶ is a group Q¹-Q²-Q³, where

15

20

 Q^2 is selected from the group consisting of C_1 - C_4 -alkylen, C_2 - C_4 -alkynylen, and a bond,

25

Q³ is a hydrogen or an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which may comprise up to two oxo groups and may be substituted by the radicals R⁶³, R⁶⁴ and/or R⁶⁵,

30

R⁵⁷ at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, phenyl, C_1 - C_4 -alkylen-phenyl, COOH, CO-O- C_1 - C_4 -alkyl, CONH₂, CO-NH-C₁-C₄-alkyl, CO-N(C₁-C₄-alkyl)₂, CO-C₁-C₄-alkyl, CH₂-NH₂, CH₂-NH-C₁-C₄-alkyl and CH₂-N(C₁-C₄-alkyl)₂,

 R^{58} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylenphenyl, where the phenyl ring may be substituted by up to two radicals R^{62} ,

 R^{59} , R^{60} and R^{62} at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF_3 , OCF_3 , NO_2 , OH, $O-C_1-C_4$ -alkyl, C_1-C_6 -alkyl, C_2-C_6 -alkenyl, C_2-C_6 -alkynyl, NH_2 , $NH(C_1-C_4$ -alkyl) and $N(C_1-C_4$ -alkyl)₂,

10 R⁶³, R⁶⁴ and R⁶⁵ at each occurrence are independently selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

 R^6 and R^7 at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkylyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

and their tautomeric forms, enantiomeric and diastereomeric forms, and prodrugs thereof.

- 5. The compound of claim 4, wherein B is selected from the group consisting of thiophene, furan, pyrrole, pyrazole, isoxazole, pyridine, pyrimidine, quinoline, isoquinoline, tetrahydroisoquinoline, benzothiophene, benzofuran, indole, imidazole, thiazole, imidazothiazole, benzooxazine and quinoxaline.
- 6. A compound of the formula (III),

15

20

25

in which

10

15

20

25

D is an aromatic heteromonocyclic, or an aromatic or partially aromatic heterobicyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of N, O and S, and up to 2 oxo groups,

and D may be substituted by radicals R²¹, R²² and/or R²³,

G is an aromatic heteromonocyclic, aromatic or partially aromatic heterobicyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of N, O and S, and up to 2 oxo groups and

G may be substituted by radicals R⁷¹, R⁷² and/or R⁷³,

 R^{21} , R^{22} , R^{23} , R^{71} , R^{72} and R^{73} at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF_3 , OCF_3 , NO_2 , OH, $O-C_1-C_4$ -alkyl, O-phenyl, $O-C_1-C_4$ -alkylenphenyl, phenyl, C_1-C_6 -alkyl, C_2-C_6 -alkenyl, C_2-C_6 -alkynyl, NH_2 , $NH(C_1-C_4$ -alkyl) and $N(C_1-C_4$ -alkyl)₂, morpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, 4-piperazin-1-yl, $4-(C_1-C_4$ -alkyl)-piperazin-1-yl,

 R^3 and R^4 at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂, or

5

R3 and R4 are connected to give -CH=CH-CH=CH-, -(CH2)4- or -(CH2)3-,

R⁵ is a radical (W)-(X)-(Y)-Z, where

10

W is selected from the group consisting of C_1 - C_4 -alkylen, C_2 - C_4 -alkylen, C_3 - C_4 -alkylen, C_4 -alkylen, C_4 -alkylen, C_4 -alkylen, C_4 -alkylen, C_4 -alkylen) and a bond,

X is selected from the group consisting of CO, CO-O, SO₂, NR⁵⁴, NR⁵⁴-CO, NR⁵⁴-SO₂, CO-NR⁵⁸ and a bond,

15

Y is C_1 - C_6 -alkylen, C_2 - C_6 -alkenylen, C_2 - C_6 -alkynylen, or a bond, Z is selected from the group consisting of hydrogen, E, O- R^{52} , $NR^{51}R^{52}$, S- R^{52} , where

20

E is an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which may comprise up to two oxo groups, and E may be substituted by radicals R⁵⁵, R⁵⁶, R⁵⁷ and/or up to three radicals R⁵³,

25

 R^{51} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylenphenyl, where the phenyl ring may be substituted by up to two radicals R^{53} ,

30

 R^{52} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, E and C_1 - C_4 -alkylen-E,

 R^{53} at each occurrence is independently selected from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

 R^{54} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylenphenyl, where the phenyl ring may be substituted by up to two radicals R^{59} .

5

R⁵⁵ at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl, C_1 - C_4 -alkylen-phenyl, where the ring may be substituted by up to two radicals R⁶⁰, and OH, O- C_1 - C_4 -alkyl, O-phenyl, O- C_1 - C_4 -alkylen-phenyl, NH₂, NH(C_1 - C_4 -alkyl) and N(C_1 - C_4 -alkyl)₂,

10

R⁵⁶ is a group Q¹-Q²-Q³, where

15

20

 Q^2 is selected from the group consisting of C_1 - C_4 -alkylen, C_2 - C_4 -alkenylen, C_2 - C_4 -alkynylen, and a bond,

25

Q³ is a hydrogen or an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which may comprise up to two oxo groups and may be substituted by the radicals R⁶³, R⁶⁴ and/or R⁶⁵,

30

R⁵⁷ at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, phenyl, C_1 - C_4 -alkylen-phenyl, COOH, CO-O- C_1 - C_4 -alkyl, CONH₂, CO-NH-C₁-C₄-alkyl, CO-N(C₁-C₄-alkyl)₂, CO-C₁-C₄-alkyl, CH₂-NH₂, CH₂-NH-C₁-C₄-alkyl and CH₂-N(C₁-C₄-alkyl)₂,

 R^{58} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_4 -alkylenphenyl, where the phenyl ring may be substituted by up to two radicals R^{62} ,

5

 R^{59} , R^{60} and R^{62} at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF_3 , OCF_3 , NO_2 , OH, $O-C_1-C_4$ -alkyl, C_1-C_6 -alkyl, C_2-C_6 -alkenyl, C_2-C_6 -alkynyl, NH_2 , $NH(C_1-C_4$ -alkyl) and $N(C_1-C_4$ -alkyl)₂,

10

 R^{63} , R^{64} and R^{65} at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF_3 , OCF_3 , NO_2 , OH, $O-C_1-C_4$ -alkyl, O-phenyl, $O-C_1-C_4$ -alkylen-phenyl, phenyl, C_1-C_6 -alkyl, C_2-C_6 -alkenyl, C_2-C_6 -alkynyl, NH_2 , $NH(C_1-C_4$ -alkyl) and $N(C_1-C_4$ -alkyl)₂,

15

and their tautomeric forms, enantiomeric and diastereomeric forms, and prodrugs thereof.

- 20
- 7. The compound of claim 6, wherein D is selected from the group consisting of aromatic heteromonocyclic and aromatic heterobicyclic systems comprising 1 or 2 heteroatoms, where one of the 2 heteroatoms is nitrogen.
- 8. 25 benzo
 - benzothiazole, pyrimidine, pyridine, pyridazine, pyrazine, isoquinoline, quinoline, thiazole, benzimidazole, imidazole, benzoxazole, benzothiophene, thiophene,

The compound of claim 6, wherein D is selected from the group consisting of

- benzofuran and furan.
- 30 c
- 9. The compound of any of claims 6 to 8, wherein G is selected from the group consisting of thiophene, furan, pyrrole, pyrazole, isoxazole, pyridine, pyrimidine, quinoline, isoquinoline, tetrahydroisoquinoline, benzothiophene, benzofuran, indole, imidazole, imidazole, imidazole, benzooxazine and quinoxaline.
 - 10. A medicament comprising a compound as claimed in any of claims 1 to 9.

- 11. The use of a compound as claimed in any of claims 1 to 9 for the control and/or prophylaxis of various vasopressin-dependent or oxytocin-dependent diseases.
- 5 12. A method for the therapeutic and/or prophylactic treatment of a mammal requiring a treatment by administering a compound as claimed in any of claims 1 to 9 for the treatment of diseases.
- 13. The use of a compound as claimed in any of claims 1 to 9 for the treatment of depressions and/or bipolar disorders such as, for example, dysthymic disorders, subsyndromal depression, seasonal affected disorders, premenstrual dysphoric disorders and/or psychotic disorders.
- 14. The use of a compound as claimed in any of claims 1 to 9 for the treatment of anxiety and/or stress-related disorders such as, for example, general anxiety disorders, panic disorders, obsessive-compulsive disorders, post-traumatic disorders, acute stress disorders and/or social phobia.
- 15. The use of a compound as claimed in any of claims 1 to 9 for the treatment of memory disorders and/or Alzheimer's disease.
 - 16. The use of a compound as claimed in any of claims 1 to 9 for the treatment of psychoses and/or psychotic disorders.
- 25 17. The use of a compound as claimed in any of claims 1 to 9 for the treatment of Cushing's syndrome.