Universidade Federal de Santa Catarina

Prof. Rafael Heleno Campos

rafaelcampos.fsc@gmail.com - tinyurl.com/profrafaelcampos FSC5101 - Lista de exercícios 2 - Vetores, Cinemática 2D+ (v0.3)

Parte 1 - Vetores

- 1. Calcule o módulo, a direção e o sentido dos seguintes vetores: (Dica quente: faça o gráfico!)
 - (a) $\vec{v} = 3\hat{i} + 4\hat{j}$
 - (b) $\vec{v} = 2\hat{i} \sqrt{2}\hat{j}$
 - (c) $\vec{v} = 5\hat{j}$
 - (d) $\vec{v} = -4\hat{i} 3\hat{j}$
- 2. Faça a soma gráfica e algébrica para os seguintes vetores:
 - (a) $\vec{a} = 3\hat{i} + 2\hat{j} \ e \ \vec{b} = -\hat{i} + 2\hat{j}$
 - (b) $\vec{a} = 2\hat{i} + 3\hat{j}$ e $\vec{b} = 4\hat{i} 5\hat{j}$ Subtração gráfica e algébrica:
 - (c) $\vec{a} = \hat{i} + 3\hat{j} \in \vec{b} = 3\hat{i} 2\hat{j}$
 - (d) $\vec{a} = 4\hat{i} 2\hat{j} \ e \ \vec{b} = 5\hat{i} + \hat{j}$
- 3. Calcule θ_{ab} e então o produto escalar entre \vec{a} e \vec{b} utilizando: $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot \left| \vec{b} \right| \cdot \cos(\theta_{ab})$
 - (a) $\vec{a} = 3\hat{i} + 3\hat{j} \in \vec{b} = 2\hat{i} 2\hat{j}$
 - (b) $\vec{a} = 3\hat{i} + 3\hat{j} \in \vec{b} = -2\hat{i} + 2\hat{j}$
 - (c) $\vec{a} = \hat{i} + 2\hat{j} \in \vec{b} = 2\hat{i} + \hat{j}$
- 4. Calcule o produto escalar e o produto vetorial para os seguintes vetores tridimensionais:
 - (a) $\vec{a} = 3\hat{i} + 2\hat{j} + \hat{k} \in \vec{b} = -\hat{i} + 3\hat{j} 4\hat{k}$
 - (b) $\vec{a} = 6\hat{i} + 2\hat{j} 3\hat{k} \ e \ \vec{b} = -4\hat{i} + 2\hat{j} + \hat{k}$
 - (c) $\vec{a} = \frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{k} \in \vec{b} = \frac{1}{\sqrt{2}}\hat{j} \frac{1}{\sqrt{2}}\hat{k}$
- 5. Calcule o módulo dos vetores resultantes (no produto vetorial) no exercício anterior.
- 6. Um vetor \vec{a} tem módulo de 10,0 unidades e sentido de Oeste para Leste. Um vetor \vec{b} tem módulo de 20,0 unidades e sentido de Sul para Norte. Determine o módulo dos seguintes vetores:
 - (a) $\vec{a} + \vec{b}$
 - (b) $\vec{a} \vec{b}$
 - (c) $\vec{a} + 2.\vec{b}$
 - (d) $-3.\vec{a} + 2.\vec{b}$
- 7. Dados dois vetores $\vec{a} = 2, 0\hat{i} 1, 0\hat{j}$ e $\vec{b} = 1, 0\hat{i} + 2, 0\hat{j}$, determine o módulo e a direção de:
 - (a) \vec{a}
 - (b) \vec{b}
 - (c) $\vec{a} + \vec{b}$
 - (d) $\vec{a} \vec{b}$
 - (e) $\vec{a} + 2\vec{b}$
- 8. A resultante de uma soma vetorial de dois vetores possui módulo igual a 4,0m. O módulo de um dos vetores componentes é igual a 2,0m e o ângulo entre os dois vetores componentes é igual a 60° . Calcule o módulo do outro vetor componente. (Dica quente: lei dos cossenos.)

Respostas

Parte 1

- 1. (a) $|\vec{v}| = 5$, o vetor \vec{v} faz um ângulo de 53^o acima do eixo x, sentido p/direita
 - (b) $|\vec{v}| = 2,45$, o vetor \vec{v} faz um ângulo de 35^o abaixo do eixo x, sentido p/direita
 - (c) $|\vec{v}| = 5$, o vetor \vec{v} tem a direção do eixo y, sentido p/cima
 - (d) $|\vec{v}| = 5$, o vetor \vec{v} faz um ângulo de 37^o abaixo do eixo -x, sentido p/esquerda
- 2. (a) $\vec{a} + \vec{b} = 2\hat{i} + 4\hat{j}$
 - (b) $\vec{a} + \vec{b} = 6\hat{i} 2\hat{j}$
 - (c) $\vec{a} \vec{b} = -2\hat{i} + 5\hat{j}$
 - (d) $\vec{a} \vec{b} = -\hat{i} 3\hat{j}$
- 3. (a) $\theta_{ab} = 90^{\circ}, \ \vec{a} \cdot \vec{b} = 0$
 - (b) $\theta_{ab} = 90^{\circ}, \ \vec{a} \cdot \vec{b} = 0$
 - (c) $\theta_{ab} = 36, 7^o, \vec{a} \cdot \vec{b} = 4$
- 4. (a) $\vec{a} \cdot \vec{b} = -1$, $\vec{a} \times \vec{b} = -11\hat{i} + 11\hat{j} + 11\hat{k}$
 - (b) $\vec{a} \cdot \vec{b} = -23$, $\vec{a} \times \vec{b} = 8\hat{i} + 6\hat{j} + 20\hat{k}$
 - (c) $\vec{a} \cdot \vec{b} = 1/2$, $\vec{a} \times \vec{b} = -1/2\hat{i} + 1/2\hat{j} + 1/2\hat{k}$

- 5. (a) $|\vec{v}| = 19$
 - (b) $|\vec{v}| = 22$
 - (c) $|\vec{v}| = 0.86 = \sqrt{3}/2$
- 6. (a) 22,4 unidades
 - (b) 22,4 unidades
 - (c) 41,2 unidades
 - (d) 50,0 unidades
- 7. (a) $|\vec{a}| = 2, 2$, o vetor \vec{a} faz um ângulo de 27^o com o eixo x e 63^o com o eixo -y.
 - (b) $|\vec{b}| = 2, 2$, o vetor \vec{a} faz um ângulo de 63° com o eixo $x \in 27^{\circ}$ com o eixo y.
 - (c) $|\vec{a} + \vec{b}| = 3, 2$, o vetor $(\vec{a} + \vec{b})$ faz um ângulo de 72^o com o eixo x e 18^o com o eixo y.
 - (d) $|\vec{a} \vec{b}| = 3, 2$, o vetor $(\vec{a} \vec{b})$ faz um ângulo de 18^o com o eixo x e 72^o com o eixo -y.
 - (e) $|\vec{a} + 2\vec{b}| = 5, 0$, o vetor $(\vec{a} + 2\vec{b})$ faz um ângulo de 37^o com o eixo x e 53^o com o eixo y.
- 8. 2,6m

Referências

- 1. HALLIDAY D., RESNICK R. e WALKER J. Fundamentos de Física, (9a. edição), Rio de Janeiro: Livros Técnicos e Científicos, 2014. Volume I
- 2. CHAVES A. Física Básica, Rio de Janeiro, Livros Técnicos e Científicos, 2007. Volume I