Algoritmos e Estrutura de Dados

Árvores

Baseado no material dos Profs: Carlos F. S. Costa Rodolfo M. Pereira Paulo R. de Oliveira

Prof. Nilton Luiz Queiroz Jr.

- Árvores são estruturas de dados que se caracterizam por uma relação de hierarquia entre os elementos que a compõem;
- São estruturas de dados de muita importância na computação;
- Algumas estruturas comuns no dia a dia podem ser vistas como arvores:
 - Árvore genealógica;
 - Capítulos e tópicos de um livro;
 - Hierarquia de diretórios no sistema operacional;

- Listas, filas e pilhas não possuem a propriedade de classificar elementos de maneira hierárquica;
- Muitas vezes é necessário o uso de estruturas mais complexas para resolver problemas;

- É interessante o uso de árvores pois:
 - Pode-se modelar inúmeros problemas com elas;
 - São eficientes quanto a maneira que tratam os elementos;
 - Em buscas;
 - Em organização dos elementos;
 - Permitem maior visualização dos elementos;
 - É possível saber quem são os próximos elementos da hierarquia;

- Devido a estrutura hierárquica, seus algoritmos são simples e eficientes;
 - Geralmente os algoritmos empregam recursão;
 - As operações mais comuns em árvores são:
 - Inserção;
 - Remoção;
 - Busca;

Definição

- Podemos definir uma árvore como:
 - Conjunto finito de um ou mais nós tais que:
 - i. Existe um nó denominado raiz;
 - ii. Os demais nós formam n (≥ 0) conjuntos disjuntos s₁, ..., s_n tais que cada um desses conjuntos também é uma árvore;
- A definição de uma árvore é recursiva;
 - A árvore é definida em termo de suas sub-árvores;
 - As sub árvores também são árvores;

Definição

- O nó raiz de uma árvore é único;
 - Não possui antecessor;
- Alguns outros nós que podem estar presentes em árvores são:
 - Nós folha;
 - Nós cujo todas sub-árvores são vazias;
 - Nós que possuem pais porém não possuem filhos;
 - Nós intermediários;
 - Nós cujo uma de suas sub-árvores não é vazia;

- Os nós que possuem filhos são também chamados de nós não-terminais;
- Os nós que possuem não possuem filhos são chamados de nós terminais;

- Para representar-se árvores podemos usar estruturas compostas por:
 - Nós;
 - Arestas de ligação;
- Cada nó é composto por:
 - Dados;
 - Número, palavras, registros, etc;
 - Informações sobre seus nós sucessores;
 - Ponteiros diretos para seus outros nós;
 - Ponteiro para uma lista de sucessores;

- Algumas aplicações para árvores:
 - Representação de expressões aritméticas: ((a+b) / (c-d)) * (e+f)

Organograma em empresas

Diretórios de arquivos

- Árvores de decisão
 - Inteligência artificial

Representação gráfica

- Existem diversas maneiras de se representar uma árvore graficamente;
 - o Representação por parênteses aninhados;
 - Representação por diagrama de inclusão
 - Representação hierárquica;

Representação por parênteses aninhados

Os níveis com menor hierarquia estão "mais fundos" nos parênteses;

```
(A(B)(C(D(G)(H))(E)(F(I))))
(A(B(D)(E))(C(F)))
```

Representação por diagrama de inclusão

Representação hierárquica

Sub-árvore

- As árvores internas são também chamadas de sub-árvores;
- Podemos representar as sub-árvores de maneira "simplificada";

Sub-árvore

- Seja a árvore T = {A, B, C, D, E, F, G, H, I}
- A árvore T possui duas subárvores:
 - o Tb e Tc, onde:
 - $\blacksquare \quad \mathsf{Tb} = \{\mathsf{B}\}$
 - \blacksquare Tc = {C, D, E, F, G, H, I}
 - A sub-árvore Tc possui 3 sub-árvores;
 - Td, Te e Tf, onde:
 - $Td = \{D, G, H\}$
 - Te = {E}
 - Tf = {F, I}
 - o Tb, Te, Tg, Th e Ti
 - Possuem apenas nó raiz.
 - Não possuem subárvores.

- Podemos adotar alguns nomes para as relações entre os nós:
 - o Nó Pai;
 - Nó antecessor imediato a outro nó;
 - Cada nó tem um único pai, exceto o nó raiz;
 - Nó filho;
 - Nó **sucessor** imediato de outro nó;
 - Nó ancestral;
 - Todos os nós antecessores a um dado nó até a raiz;
 - Nó descendente;
 - Todos os nós sucessores de um dado nó em direção aos nós folhas
 - Nós irmãos;
 - Nós filhos de um mesmo pai;

- A "linha" que liga dois nós de uma árvore é denominada aresta;
- Diz-se que existe um caminho entre dois nós, V e W, se a partir de V pode-se chegar a W por meio de arestas que ligam os nós intermediários entre V e W;
 - Quando existe caminho entre V e W, V é ancestral de W e W é descendente de V;
- Sempre existe um caminho entre a raiz e qualquer nó da arvore;

- Para todo nó em uma árvore pode-se obter qual seu nível;
 - o O nível de um nó é dado pela quantidade de arestas entre o nó e a raiz;
 - O nó raiz tem nível 0;

Qual o nível de cada nó da árvore a seguir?

Nó	Nível
Α	0
B, C	1
D, E, F	2
G, H, I	3

- A altura de um nó n é o número de nós do maior caminho de n até um de seus descendentes;
 - Distância do nó até seu descendente mais afastado
- As folhas têm altura 1;
- A altura da árvore é a altura do nó raiz;

• Qual a altura de cada nó da árvore a seguir?

ALTURAS EM RELAÇÃO AO NÓ FOLHA DE MAIOR NÍVEL					
h(A)	4				
h(B)	1				
h(C)	3				
h(D)	2				
h(E)	1				
h(F)	2				
h(G)	1				
h(H)	1				
h(l)	1				

- Os nós possuem uma propriedade chamada de grau de saída;
 - o Representa o número de filhos imediatos de um nó;
 - Os nós folhas tem grau de saída 0;
- O grau da árvore e dado pelo grau do nó de maior grau;

 Uma árvore é dita cheia quando todos seus nós tem o número máximo de filhos, exceto os nós folha, e todas folhas estão na mesma altura;

Árvore cheia de grau 2

Árvores n-árias

- Uma árvore é dita n-ária quando possui um conjunto de nós com a seguinte propriedade:
 - Para todo nó da árvore, o grau do nó está no intervalo [0,n];

Árvores n-árias

Árvores 2-árias (binárias)

Árvores n-árias

Árvores 3-árias (ternárias)

Florestas

- Uma floresta é um conjunto finito de árvores disjuntas;
- Por exemplo, se tivéssemos uma árvore T, e removessemos sua raiz, restaria uma floresta F = {Tb, Tc, Td e Te}

Floresta F

- Existem diversas maneiras de representar árvores em memória;
- Para árvores mais genéricas algumas alternativas são:
 - Usar uma lista para os filhos de um nó;
 - Cada nó da árvore possui sua informação e uma lista com todos seus filhos;
 - Ou cada nó da árvore possui sua informação, seu filho mais a esquerda e seu irmão direito;
 - Dois vetores:
 - Um que armazena o conteúdo dos nós;
 - Outro que armazena o nó pai;
 - Entre outras;
- Outras árvores, como árvores binárias, é possível representar com dois ponteiros e seu conteúdo;
 - Um para o filho esquerdo;
 - Outro para o filho direito;

• Dada a seguinte árvore:

• Ela seria com lista de filhos da seguinte maneira:

• Ela seria representada com ponteiros para o filho mais a esquerda e irmão direito da seguinte maneira:

 Ela seria representada com um vetor de pais e um vetor de nós da seguinte maneira

0	1	2	3	4	5	6	7	
А	В	С	D	Е	F	G	Н	Nós
								•
-1	0	0	1	1	1	2	2	Pais

Exercícios

1. Dada a árvore abaixo, identifique:

- a. O nó raiz da árvore?
- b. O grau de cada nó?
- c. Qual o grau da árvore?
- d. Quais os descendentes do nó D?
- e. Quais os nós irmãos do nó 6?
- f. Qual a altura da árvore?
- g. Qual o nível do nó F?
- h. Qual a altura do nó F?
- i. Qual o nível do nó B?
- j. Qual a altura do nó B?
- k. Quais os nós terminais?

Exercícios

- 2. Represente as seguintes expressões em estrutura de árvore:
 - a. a+b*c+d
 - b. a*b+c
 - c. (a + b) / (c + d) * (e f)
 - d. (a + b + c) * (e / f + d) + g
 - e. $(a + b * c * d) \{e + [f / (g + h)]\}$