Modelos Lineares I

Regressão Linear Múltipla (RLM):

Heterocedasticidade

(32^a, 33^a e 34^a Aulas)

Professor: Dr. José Rodrigo de Moraes Universidade Federal Fluminense (UFF) Departamento de Estatística (GET)

Modelo de Regressão Linear:

Introdução:

Heterocedasticidade:

Representa uma das violações básicas do modelo que se pode detectar por meio da análise gráfica dos resíduos ou de outros métodos formais.

Heterocedasticidade → variância dos erros não é constante.

Conseqüências:

- Os estimadores de MQO continuam não viciados, mas não são mais os melhores estimadores lineares não viciados;
- As variâncias dos estimadores de MQO são incorretos, invalidando as inferências.

Modelo de Regressão Linear:

Introdução:

Fontes de Heterocedasticidade:

- Uso de dados de médias;
- Diferentes observadores;
- Valores discrepantes;
- Natureza das variáveis.

Modelo de Regressão Linear: Introdução:

<u>Idéia</u>: Pesquisa para estudar o salários em função dos anos de estudo, isto é, Salário = f(anos de estudo)

Se você tivesse que estimar os salários para "pessoas com baixa escolaridade" e para "pessoas com alta escolaridade". Pergunta: Para que "grupo" você acha que seria mais fácil de estimar (ou para que "grupo" seria mais fácil fazer suposições sobre os seus salários) ?

Comentários:

- Média: relação crescente entre os "anos de estudo" e "salário";
- Variância: Pessoas menos escolarizadas $\to \ \sigma_{_Y}^2 \downarrow$ Pessoas mais escolarizadas $\to \ \sigma_{_Y}^2 \uparrow$

1 C330d3 IIIdi3 C3C0ldi12dda3 —

Outro exempo: Poupança = f(renda)

Exemplo 1: Modelo de Regressão Linear

Os dados apresentados na tabela a seguir se referem a um estudo sobre os salários (em UM) e a escolaridade (em anos de estudo) para uma amostra de n=20 trabalhadores de uma indústria. Pede-se:

- a) Faça o gráfico de dispersão entre X e Y.
- b) Ajuste o modelo completo e verifique a existência ou não de heterocedasticidade, utilizando a análise gráfica dos resíduos estudentizados.

6

Banco de Dados:	Modelo de Ri	LS (n=20 trabalh	adores):
Trabali	hador Anos de	estudo Salái	rio
1		410,0	00
2	! 2	508,9	90
3	;	857,	70
4		2 551,	30
5	;	3 789,2	20
6	;	935,	50
7		7 1.529	,30
8		3 1.497	,50
9) (2.317	,70
10) 1	1 2.169	,50
11	1 1	1 2.596	,80
12	2 1	3 2.844	,60
13	3 1	3 3.391	,00
14	4 1	4 2.671	,20
15	5 1	6 2.653	,80
16	3 1	6 2.939	,10
17	7 1	7 3.437	,00
18	3 1	8 4.583	,30
19	9 1	9 3.559	,30 7
20) 1	9 4.896	

I) Teste de White - Homocedasticidade:

A hipótese de homocedasticidade também pode ser avaliada pelo "*Teste de White*".

Ilustração: No caso do modelo de RLM com p-1=2 variáveis independentes:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

 É feita uma regressão auxiliar em que a variável dependente é o resíduo bruto ao quadrado da regressão original:

$$e_{i}^{2} = \gamma_{0} + \gamma_{1}X_{i1} + \gamma_{2}X_{i2} + \gamma_{3}X_{i1}^{2} + \gamma_{4}X_{i2}^{2} + \gamma_{5}X_{i1}X_{i2} + u_{i}$$

$$_{13}^{2}$$

I) Teste de White - Homocedasticidade:

1) Hipóteses a serem testadas:

∫ H₀ : Homocedasticidade H₁ : Heterocedasticidade

2) Estatística de Teste:

$$W = nR^2 \sim \chi_{gl}^2$$
 ; onde :

 $gl \rightarrow n^{o}$ de variáveis independentes na regressão auxiliar

14

I) Teste de White - Homocedasticidade:

3) Região crítica:

$$RC = \left\{ W \rightleftharpoons R / w \ge \chi_{\alpha, gl} \right\}$$

15

I) Teste de White - Homocedasticidade:

4) Tomada de Decisão:

- Se $w_{\rm obs}$ ∈RC rejeita-se a hipótese nula "H $_0$: homocedasticidade" ao nível de significância α .
- Se w_{obs}∉RC não há evidências para rejeitar a hipótese nula "H₀: homocedasticidade" ao nível de significância α.

OBS: Pode utilizar a abordagem do p-valor !!!

16

☐ Exemplo 1: Anos de estudo vs Salário (n=20 trabs).

Usando os dados sobre os anos de estudo e salários dos n=20 trabalhadores de uma indústria, aplique o "Teste de White" para verificar a existência de violação da hipótese básica do modelo (heterocedasticidade). Qual a sua conclusão?

Modelo original:

 $Y_i = \beta_0 + \beta_1 X_{i1} + \varepsilon_i$

Pergunta: Qual a regressão auxiliar neste caso ?

17

Exemplo 1: Teste de White - Modelo original

Coefficients^a

	Unstandardized Coefficients		Standardized Coefficients		
Model	B Std. Error		Beta	t	Sig.
1 (Constant)	38435,605	101913,265		,377	,711
anos_escol	-19713,094	24903,833	-,547	-,792	,440
anos_escol_quad	2252,934	1216,132	1,281	1,853	,081

bendent variable. Res_bluto_quad

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,758ª	,575	,525	1,54773E5

a. Predictors: (Constant), anos_escol_quad, anos_escol

b. Dependent Variable: Res_bruto_quad

 $w_{obs} = nR^2 = 20.0,575 = 11,5 > \chi^2_{0.05,2} = 5,991 \rightarrow$

→ Rejeita-se a hipótese de homocedasticidade

Modelo de Regressão Linear:

Correção de Heterocedasticidade (proporcional):

- ☐ Qual o padrão/causa da heterocedasticidade?
- ☐ Em fenômenos sociais, econômicos e biológicos, em geral, a variância (ou desvio-padrão) dos erros são supostamente proporcionais a X, isto é:

$$VAR(\varepsilon_i) = \sigma_i^2 = \sigma^2 \cdot X_i^2 \rightarrow DP(\varepsilon_i) = \sigma \cdot X_i$$

19

Modelo de Regressão Linear

Correção de Heterocedasticidade (proporcional):

☐ Transformar uma variável (Y) cuja variância é $VAR(\varepsilon_i) = \sigma^2 X_i^2$ em outra variável (Y*) cuja variância é σ^2 .

Demonstração:

$$\begin{aligned} Y_i &= \beta_0 + \beta_1 X_i + \varepsilon_i \\ \frac{Y_i}{X_i} &= \beta_0 \frac{1}{X_i} + \beta_1 + \frac{\varepsilon_i}{X_i} \\ Y_i^* &= \beta_1 + \beta_0 \ X_i^* + \varepsilon_i^* \end{aligned} \qquad \begin{aligned} &\text{Modelo transformado:} \\ &\textit{VAR}(\varepsilon_i^*) = \sigma^2 \end{aligned}$$

Exemplo 2 (Continuação do Exemplo 1):

Considerando ainda os dados sobre os salários (em UM) e a escolaridade (em anos de estudo) de n=20 trabalhadores de uma indústria:

- a)Reajuste o modelo corrigindo o problema de heterocedasticidade.
- b) Escreva a equação do modelo, e interprete as estimativas dos parâmetros do modelo.
- c) Avalie também a hipótese de normalidade para este modelo.
- d) Refaça o teste de White para o modelo transformado, a fim de checar se o problema de heterocedasticidade foi resolvido.

21

Exemplo 2 - a) Resultados do ajuste do modelo transformado

Model Summary									
R	R Square	Adjusted R Square	Std. Error of the Estimate						
9228	(601)	674	20.70106						

- a. Predictors: (Constant), anos_escol_transf
- b. Dependent Variable: Salário_transf

ANOVA

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	38025,775	1	38025,775	40,343	(,000a)
	Residual	16965,988	18	942,555		
	Total	54991,762	19			

- $a.\,Predictors\colon (Constant),\, anos_escol_transf$
- b. Dependent Variable: Salário_transf

22

Exemplo 2 - a) Resultados do ajuste do modelo transformado

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig
1	(Constant)	198,869	9,126		21,791	(,000)
	anos_escol_transf	188,745	29,716	,832	6,352	,000

a. Dependent Variable: Salário_transf

Modelo transformado:

$$\hat{Y}_{i}^{*} = 198,869 + 188,745 X_{i}^{*}$$
; $i = 1,2,...,20$

23

Exemplo 2 – b) Anos de estudo $(X^*=1/X)$ versus Salário $(Y^*=Y/X)$.

 $\mbox{Modelo transformado}: \quad \hat{Y}_{i}^{*} = \mbox{198,869} + \mbox{188,745} \ X_{i}^{*} \quad \ ; \quad i = \mbox{1,2,...,20}$

Em termos das variáveis originais:

$$\begin{split} \frac{\hat{Y}_{i}}{X_{i}} &= 198,869 + 188,745 \frac{1}{X_{i}} \rightarrow \hat{Y}_{i} = 198,869 X_{i} + 188,745 \rightarrow \\ \hat{Y}_{i} &= 188,745 + 198,869 X_{i} \quad ; \quad i = 1,2,...,20 \end{split}$$

24

Variáveis originais	Estimativa pontual dos parâmetros	Medida de Precisão (DP)	Estatística de teste (T)	P-valor
Constante	188,745	29,716	6,352	<0,001
Anos de estudo (X)	198,869	9,126	21,791	<0,001
arios de estudo (A)	190,009	9,120	21,791	<u> </u>

Aula prática / Sala - Exercício 1 (" <i>Saídas</i> "):
A associação industrial de um determinada cidade tem
como objetivo verificar se existe relação entre o "número
de trabalhadores (X)" e o número de supervisores dos estabelecimentos associados (Y)".
A Tabela 1 fornece essas informações para uma amostra de 27 estabelecimentos.

Tabela 1: Dados sobre n=20 estabelecimentos									
Estab. Nº de trab. (X)		N° de superv. (Y)	Estab.	Nº de trab. (X)	Nº de superv. (Y)				
1	294	30	15	615	100				
2	247	32	16	999	109				
3	267	37	17	1022	114				
4	358	44	18	1015	117				
5	423	47	19	700	106				
6	311	49	20	850	128				
7	450	56	21	980	130				
8	534	62	22	1025	160				
9	438	68	23	1021	97				
10	697	78	24	1200	180				
11	688	80	25	1250	112				
12	630	84	26	1500	210				
13	709	88	27	1650	135				
14	627	97		1					

□ Aula prática - Exercício 1 (continuação):

 a) Ajuste o modelo e avalie a existência ou não de violação da hipótese básica do modelo (heterocedasticidade). Para tanto use análises gráficas (inclusive usando os resíduos estudentizados e o teste de White (Defina as Hipóteses a serem testadas, Estatística de teste, Região Crítica e Tomada de decisão). Qual a conclusão obtida?
 b) Caso necessário, corrija a heterocedasticidade, e analise as estimativas dos parâmetros do modelo.
 c) Avalie as hipótese básicas do modelo.

Prof.: José Rodrigo de Moraes: Estatístico (ENCE), Mestre em Estatística Social (ENCE) e Doutor em Saúde Coletiva (IESC/UFRJ)

28

Exercício 1 – b): Resultados do ajuste do modelo (transformado) explicativo do nº de supervisores (Y*=Y/X), em função do nº de trabalhadores									
				(X*=	1/X).				
			Mod	el Sum	ımary	d			
	Model R R Square Adjusted R Std. Error of Square the Estimate								
	1 ,164 ^a ,027 -,012 ,022664789								
		lictors: (Co endent Var	, .	_	 v_Y_tr				
l				ANU	VA-				
Model		Sun Squa		d	f	Mean So	uare	F	Sig.
1	Regression		,000		1		,000	,693	,413ª
	Residual		,013		25		,001		
	Total		,013		26				
	dictors: (Cor pendent Vari								36

Exercício 1 - b):

Resultados do ajuste do modelo (transformado) explicativo do nº de supervisores (Y*=Y/X), em função do nº de trabalhadores (X*=1/X).

Coefficients

		Unstandardize	Unstandardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	,121	,009		13,445	,000
	N_trab_X_transf	3,803	4,570	,164	,832	,413

a. Dependent Variable: N_superv_Y_transf

Exercício 1 – b) Preencha a tabela abaixo a partir dos resultados obtidos com							
o modelo trans	sformado:	-					
Variáveis originais	Estimativa pontual dos parâmetros	Medida de Precisão (DP)	Estatística de teste (T)	P-valor			
Constante							
Nº de trab. (X)							
				38			

Exercício 1 – c): Hipóteses básicas do modelo

Figura 3: Gráfico de dispersão entre o nº de trabalhadores (X*=1/X) e os resíduos estudentizados (rS*) do modelo

Aula prática - Exercício 2: Voltando a um dos exemplos de aplicação: Modelo de RLM com p-1=2 variáveis explicativas

A tabela 1 a seguir fornece o valor dos salários (em 100 UM), a idade e o tempo de serviço de n=25 funcionários de uma pequena empresa.

O objetivo do estudo é estudar a relação entre Y e as seguintes variáveis explicativas:

✓ *Idade* (X_1) , em anos.

✓ Tempo de serviço (X₂), em anos.

Tabela 1: Dados sobre n=25 funcionários de uma empresa

				continua	ção		
Func.	Salário	Idade	Tempo de serviço	Func.	Salário	Idade	Tempo de serviço
1	35	48	15	16	17	21	1
2	25	25	2	17	29	45	21
3	22	23	1	18	27	40	17
4	39	55	20	19	35	43	20
5	23	40	8	20	19	23	5
6	30	42	10	21	25	30	10
7	26	24	4	22	29	31	13
8	30	38	6	23	32	35	17
9	38	49	19	24	28	34	15
10	40	52	22	25	19	21	3
11	45	57	25				
12	37	47	17				
13	43	48	25				
14	22	22	1				
15	27	48	7				42

□ Aula prática - Exercício 2 (continuação):

Ajuste o modelo e verifique a existência de heterocedasticidade usando:

- a) a análise gráfica dos resíduos brutos e estudentizados.
- b) o teste de White (Hipóteses a serem testadas, Estatística de teste, Região Crítica e Tomada de decisão).

Qual a conclusão obtida?

Analise as estimativas dos parâmetros do modelo (sem heterocedasticidade) e calcule e interprete o coeficiente de determinação do modelo.

Resp.: $w_{\text{obs}} = 4,975 (gl = 5)$

43

Aula prática - Exercício 3:

Os dados apresentados na tabela 2 a seguir se referem a um estudo sobre o *consumo de energia elétrica* (kwh/mês) para uma amostra de 17 cidades.

O objetivo do estudo é estudar a relação o consumo de energia (Y) e as seguintes variáveis explicativas:

- ✓ Tarifa (X_1) , em UM/kwh.
- ✓ Renda mensal familiar (X_2) , em $UM/m\hat{e}s$

44

Tabela 2: Dados sobre n=17 cidades						
Cidade	Consumo (Y)	Tarifa (X ₁)	Renda (X ₂)			
1	355,70	1,50	600			
2	393,80	1,80	400			
3	429,10	2,00	700			
4	250,50	1,20	300			
5	484,90	1,30	600			
6	377,10	1,60	700			
7	194,30	3,00	500			
8	328,20	2,50	600			
9	498,60	2,20	850			
10	444,50	1,90	550			
11	217,10	0,90	300			
12	279,80	1,10	700			
13	300,90	1,50	800			
14	199,80	1,40	650			
15	798,20	1,30	900			
16	483,40	1,80	500			
17	518,90	2,40	400			

- □ Aula prática Exercício 3 (continuação): Consumo de energia elétrica em n=17 cidades.
 - a) Ajuste o modelo completo usando o *programa RStudio* (com as duas variáveis explicativas) e avalie a significância dos parâmetros do modelo (e o sentido das associações), fixando o nível de significância de 10%.
 - b) Avalie se existe violação da hipótese de homocedasticidade para o modelo ajustado na letra a), usando a análise gráfica dos resíduos estudentizados e o teste de White. Qual a sua conclusão ?
 - c) Exclua a variável com efeito não significativo ao nível de 10%, e ajuste um novo modelo. Avalie se o problema de heterocedasticidade permanece ou não neste modelo. 46
- □ Aula prática Exercício 3 (continuação): Consumo de energia elétrica em n=17 cidades.
 - d) Escreva a equação do modelo ajustado na letra c), e interprete as estimativas do parâmetro do modelo e o coeficiente de determinação do modelo.
 - e) Construa o QQ Plot para os resíduos estudentizados.
 - f) O modelo é apropriado?

OBS: Use o programa R e/ou SPSS.

Resp.:b) $w_{\text{obs}} = 13,498 (gl = 5)$

c) $w_{\text{obs}} = 3,927 (gl = 2)$

Avisos:

✓ Fazer a 4ª Lista de Exercícios da disciplina Modelos Lineares I ("Análise de Regressão") proposta pelo Prof. Dr. José Rodrigo de Moraes (GET/UFF).

48