Introduction to Predictive Modelling

Contents

- 1. Introduction to Predictive Modelling
- 2. Important Statistical Models
- 3. General Approach
- 4. Key Steps in Model Building

What is Predictive modelling?

Predictive analytics is used in financial services, insurance, telecommunications, retail, travel, healthcare, pharmaceuticals, sports and several other fields

Predictive modelling – Important Techniques

Predictive modelling – General Approach

Step 1 – Data Understanding and Pre-processing

Data Understanding and Pre Processing

- Data Understanding
 - Understanding data dimension, variable types, variable relationships
- Converting raw data to usable data

Data cleaning by checking for and handling:

- Missing values
- Inconsistencies
- Transforming variables
- Feature engineering
 - Using domain knowledge to create new features or variables which can be used in the model

Pre-Processing:

• Grouping / Factoring / Segmentation / Reduction

Step 2 – Exploratory Data Analysis

Exploratory Data Analysis

- Performing exploratory data analysis using:
 - Frequency tables
 - Cross tables
 - Descriptive statistics
 - Visualizations
 - Correlation matrix

Step 3 – Model Identification , Selection and Validation

Model Selection and Validation

- Model identification and selection is based on:
 - Study objective
 - Type of dependent variable
 - Checking different statistics / decision criteria based on models (Eg. p-value, R², AIC, etc.) i.e diagnostic checks
 - Automatic search procedures
- Cross Validation
 - Splitting data into training data and test data
 - Checking predictive ability of model on new data
 - Comparison of results with theoretical expectations, empirical results
 and simulation results

Step 4 – Model Implementation

Model Implementation

- Drawing inferences from the model results by :
 - Building equations using only the coefficients of significant variables
 - Mapping the model chosen with the existing system
- Fitting the model on new data and generating predictions
- Observing values of Predictors :
 - In a spreadsheet or
 - Web application or any other user interface or
 - Integrating the current systems

Get an Edge!

Any predictive model is developed on historical data. Sample size and data dimension are key determinants for a good model

- If sample size is too small, model may not give good insight about the relationship among the variables.
- Also, if the data has large number of variables (columns) but few observations (rows), we are essentially trying to learn too much from a small sample. Results from models developed using such data will be erratic. The rule of thumb for appropriate sample dimension is that observations should be 10 times the number of variables. For instance, if we wish to study the relationship of 8 variables, then we must have more than 80 observations.

Quick Recap

In this session, we gained knowledge on the concept of **predictive modelling**:

Predictive modelling

- Used to predict the outcome or the probability of an outcome
- Models developed using historical data or purposely collected data

Important Statistical models

- Regression Models- Linear and non-linear
- Time Series Models

General Approach in Predictive modelling

- Data understanding and pre-processing
- Exploratory data analysis
- Model selection and validation
- Model Implementation

Introduction to Multiple Linear Regression - I

Content

- 1. Introduction to MLR
- 2. Statistical Model of MLR
- 3. Case Study
- 4. Model Fitting
- 5. Parameter Estimation Ordinary Least Squares Method
- 6. Interpretation of Partial Regression Coefficients

Multiple Linear Regression

- Multiple linear regression is used to explain the relationship between one continuous dependent variable and two or more independent variables.
- The independent variables can be continuous or categorical.
- Multiple Linear Regression is used when we want to predict the value of a variable based on the values of two or more other variables.
- The variable we want to predict is called the dependent variable
- The variables used to predict the value of dependent variable are called independent variables (or explanatory variables/predictors).
- Multiple linear regression requires the model to be linear in the parameters.
- Example: The price house in USD can be a dependent variable and sze of house, location of house, air quality index in the area, distance from airport etc. can be independent variables.

Statistical Model

$$Y = b_0 + b_1 X_1 + b_2 X_2 + ... + b_p X_p + e$$

```
where,
Y : Dependent Variable

X<sub>1</sub>, X<sub>2</sub>,..., X<sub>p</sub> : Independent Variables
b<sub>0</sub>, b<sub>1</sub>,..., b<sub>p</sub> : Parameters of Model
e : Random Error Component
```

- Independent variables can either be Continuous or Categorical
- Multiple linear regression requires the model to be linear in the parameters
- Parameters of the model are estimated by Least Square Method.
- The least squares (LS) criterion states that the sum of the squares of errors (or residuals) is minimum.
- Mathematically, the following quantity is minimized to estimate parameters using the least square method.

• Error ss= Σ (Yi – Yi)2

Case Study – Modeling Job Performance Index

Background

 A company conducts different written tests before recruiting employees. The company wishes to see if the scores of these tests have any relation with post-recruitment performance of those employees.

Objective

• To predict employees' job performance index after a probationary period, based on test scores conducted at the time of recruitment

Available Information

- Sample size is 33
- Independent Variables: Test scores conducted before recruitment on the basis of four criteria – Aptitude, Test of Language, Technical Knowledge, General Information
- Dependent Variable: Job Performance Index, calculated after an employee finishes a probationary period (6 months)

Data Snapshot

Performance Index

Ь	3 30	.01 30.04 34.04	32.23		
	Columns	Description	Type	Measurement	Possible values
	empid	Employee ID	integer	-	-
	јрі	Job performance Index	numeric	-	positive values
	aptitude	Aptitude score	numeric	-	positive values
	tol	Test of Language	numeric	-	positive values
	technical	Technical Knowledge	numeric	-	positive values
	general	General Information	numeric	-	positive values

Observations

Graphical Representation of Data

- It is always recommended to have a general look at your data and behavior of all variables before moving to modelling.
- This helps you to make intuitive inferences about the data, which can be statistically validated by your final model.
- The simplest way of doing this is to create a scatter plot matrix, which will give bivariate relationships between variables.

#Importing the Data

```
import pandas as pd
perindex = pd.read_csv("Performance Index.csv")
```

#Graphical Representation of the Data

```
import seaborn as sns
sns.pairplot(perindex)
```

Scatter Plot Matrix

The pairplot() function in the **seaborn library** gives a scatter plot matrix and distribution of all variables using histograms.

Model for the Case Study

Parameter Estimation using Least Square Method

Parameters	Coefficients
Intercept	-54.2822
aptitude	0.3236
tol	0.0334
technical	1.0955
general	0.5368

E(jpi)= -54.2822 + 0.3236 (aptitude) + 0.0334 (tol) + 1.0955 (technical) + 0.5368 (general)

Parameter Estimation Using ols() function in Python

#Model Fit

#Output

Intercept	-54.282247				
tol	0.033372				
aptitude	0.323562				
technical	1.095467				
general	0.536834				
dtype: floa	t64				

Interpretation:

- jpimodel.params gives the model parameters.
- Signs of each parameter represent their relationship with the dependent variable.

Interpretation of Partial Regression Coefficients

• For every unit increase in the independent variable (X), the expected value of the dependent variable (Y) will change by the corresponding parameter estimate (b), keeping all other variables constant

Parameters	Coefficients		
Intercept	-54.2822		
aptitude	0.3236		
tol	0.0334		
technical	1.0955		
general	0.5368		

• From the parameter estimates table, we observe that the parameter estimate for Aptitude Test is 0.3236

We can infer that for one unit increase in aptitude test score, the expected value of job performance index will increase by 0.3236 units

Quick Recap

In this session we have covered the basics of multiple linear regression using Python. Follow these simple steps to carry out your first analysis:

Understand the Data

- Ensure the data is complete and consistent
- Identify dependent and independent variables

Data Visualization

• pairplot() function from seaborn library gives scatter plot matrix

Fit a Model

• ols() function from library statsmodels fits a linear regression model

Introduction to Multiple Linear Regression II

Content

- 1. Global Testing ANOVA
- 2. Individual Testing t Test
- 3. Measure of Goodness of Fit R Squared
- 4. Fitted values and Residuals
- 5. Predictions for New Dataset
- 6. Standardizing Coefficients

Partitioning Total Variance

- Total Variation in dependent variables Y can be split into two: Explained and Unexplained.
- Explained variation is summation of the squared difference between estimated values of Y and the mean value of Y. Whereas, the sum of the squared difference between the actual values of Y and estimated values is considered to be unexplained.

Total Variation

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

Explained Variation

$$\sum_{i=1}^{n} (\widehat{Y}_{i} - \overline{Y})^{2}$$

Unexplained Variation

$$\sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^{\frac{1}{2}}$$

Global Testing – Using F Test

Testing whether at least one variable is significant

Objective

To test the null hypothesis that all the parameters are simultaneously equal to zero

Null Hypothesis (
$$H_0$$
): $b_1 = b_2 = ... = b_p = 0$
Alternate Hypothesis (H_1): At least one coefficient is not zero

Test Statistic $F = \frac{\text{Mean Square of Regression}}{\text{Mean Square of Error}}$ $\frac{\text{Decision}}{\text{Criteria}}$ Reject the null hypothesis if p-value < 0.05

Individual Testing – Using t Test

Testing which variable is significant

Objective

To test the null hypothesis that parameters of individual variables are equal to zero

Null Hypothesis (H_0): $b_i = 0$ Alternate Hypothesis (H_1): $b_i \neq 0$ where i = 1,2,...,p

	$t = \frac{Estimated b_i}{Standard Error of Estimated b_i}$
Decision Criteria	Reject the null hypothesis if p-value < 0.05

Measure of Goodness of Fit – R Squared

• R² is the proportion of variation in a dependent variable which is explained by independent variables. Note that R² always increases if variable is added in the mode

$$R^2 = \frac{\text{Explained Variation}}{\text{Total Variation}} = \frac{\displaystyle\sum_{i=1}^n (\widehat{Y}_i - \overline{Y})^2}{\displaystyle\sum_{i=1}^n (Y_i - \overline{Y})^2}$$

The adjusted R-squared is a modified version of R-squared that has been adjusted for the number of predictors in the model

$$R_a^2 = 1 - \frac{n-1}{n-p-1} (1-R^2)$$

The adjusted R-squared is a modified version of R-squared that has been adjusted for the number of predictors in the model. Normally, \mathbf{R}^2 greater than 0.7 is considered as the benchmark for accepting the goodness of fit of a model.

Understanding Summary Output

#Model Summary

```
jpimodel.summary()
                  summary() generates a detailed description of the model.
                             OLS Regression Results
Dep. Variable:
                                         R-squared:
                                                                            0.877
Model:
                                   OLS
                                         Adj. R-squared:
                                                                            0.859
Method:
                         Least Squares
                                         F-statistic:
                                                                            49.81
                                         Prob (F-statistic):
Date:
                      Wed. 23 Oct 2019
                                                                         2.47e-12
Time:
                                                                          -85.916
                              14:01:20
                                         Log-Likelihood:
No. Observations:
                                    33
                                         AIC:
                                                                            181.8
Df Residuals:
                                         BIC:
                                    28
                                                                            189.3
Df Model:
                                     1
Covariance Type:
                             nonrobust
______
                                                   P> t
                  coef
                          std err
                                                               [0.025
                                                                           0.975]
             -54.2822
                                      -7.341
Intercept
                            7.395
                                                   0.000
                                                              -69.429
                                                                          -39.135
tol
               0.0334
                            0.071
                                       0.468
                                                               -0.113
                                                                            0.179
                                                   0.643
               0.3236
                                       4.774
aptitude
                            0.068
                                                   0.000
                                                                0.185
                                                                            0.462
technical
               1.0955
                            0.181
                                       6.039
                                                   0.000
                                                               0.724
                                                                            1.467
general
               0.5368
                            0.158
                                        3.389
                                                   0.002
                                                                0.212
                                                                            0.861
Omnibus:
                                 2.124
                                         Durbin-Watson:
                                                                            1.379
Prob(Omnibus):
                                 0.346
                                         Jarque-Bera (JB):
                                                                            1.944
Skew:
                                -0.544
                                         Prob(JB):
                                                                            0.378
Kurtosis:
                                 2.518
                                                                         1.25e+03
                                         Cond. No.
```

Interpretation:

- □ Reject Global Testing null hypothesis that no variables are significant as p-value is<0.05
- □ Intercept, aptitude, technical, general are significant variables (p-values<0.05)
- □ tol is not significant (p-value>0.05)

Summary of Findings

Significant variables

Aptitude Technical knowledge General information

Out of four dependent variables, three affect

job performance index positively

 $R^2 \longrightarrow 0.88$

88% of the variation in job performance index is explained by the model & 12% is unexplained variation

Fitted Values and Residuals

#Model Fitting after eliminating the insignificant variable

```
jpimodel_new=smf.ols('jpi ~ aptitude + technical +general',
data=perindex).fit()
jpimodel_new.params
```

The insignificant variable tol is not included in the new model

#Output

Intercept -54.406443 aptitude 0.333346 technical 1.116627 general 0.543157 dtype: float64

Estimated values of the model parameters using the new model

Fitted Values and Residuals

#Adding Fitted Values and Residuals to the Original Dataset

```
perindex=perindex.assign(pred=pd.Series(jpimodel_new.fittedvalues))
perindex=perindex.assign(res=pd.Series(jpimodel_new.resid))
perindex.head()
fittedvalues() and resid() fetch fitted values and residuals respectively.
```

#Output

	empid	jpi	aptitude	tol	technical	general	pred	res
0	1	45.52	43.83	55.92	51.82	43.58	41.738503	3.781497
1	2	40.10	32.71	32.56	51.49	51.03	41.709731	-1.609731
2	3	50.61	56.64	54.84	52.29	52.47	51.362151	-0.752151
3	4	38.97	51.53	59.69	47.48	47.69	41.691486	-2.721486
4	5	41.87	51.35	51.50	47.59	45.77	40.711451	1.158549

Interpretation:

- pred values are calculated based on the values of the model parameters
- res is the difference between the actual jpi values and the pred values.
- Lower the residuals, lesser is the difference between fitted and observed and better is the model.

Predictions for a New Dataset

- A new data set should have all the independent variables used in the model
- Column names of all common variables in the new and old datasets should be identical
- Note that missing values will be taken as 0 (which can be incorrect)

#Importing New Dataset

```
perindex_new=pd.read_csv("Performance Index new.csv")
perindex_new=perindex_new.assign(pred=pd.Series(jpimodel_new.predict(perindex_new)))
```

predict() returns predicted values. The fitted model is the first argument and new dataset object is the second argument. This ensures Python uses parameters from the fitted model for predictions on new data.

perindex_new.head()

	empid	jpi	tol	technical	general	aptitude	pred
0	34	66.35	59.20	57.18	54.98	66.74	61.552576
1	35	56.10	64.92	52.51	55.78	55.45	53.008978
2	36	48.95	63.59	57.76	52.08	51.73	55.621537
3	37	43.25	64.90	50.13	42.75	45.09	39.820600
4	38	41.20	51.50	47.89	45.77	50.85	40.879766

Predictions with Confidence Interval

#Predictions with Confidence Interval

```
result = jpimodel_new.get_prediction(perindex_new)
result.conf_int()

conf_int() generates 95% confidence intervals by default.
Left hand side values in array gives lower confidence interval values, right
gives upper.

#Output
```

Q. Why are confidence intervals needed for predictions?

A. The point estimate is the best guess of the true value of the parameter, while the interval estimate gives a measure of accuracy of that point estimate by providing an interval that contains plausible values.

Standardized Coefficients

How to determine relative importance of predictors?

One possible answer is standardized regression coefficient

Predictors can have very different types of units, which make comparing regression coefficients meaningless. One solution is to standardize all variables before performing regression analysis.

standardization refers to the process of subtracting the mean (μ) from each value and dividing by the standard deviation (σ).

$$Z = \frac{x - \mu}{\sigma}$$

	. ,			
	X1	X2	Standardized X1	Standardized X2
	32	1052	-0.20	-1.74
	37	1237	0.46	-1.06
	25	1672	-1.12	0.54
	39	1724	0.72	0.74
	23	1555	-1.38	0.11
	41	1423	0.99	-0.37
	43	1870	1.25	1.27
	28	1661	-0.72	0.50
Mean	33.5	1524.25		
SD	7.60	271.69		

Standardized Coefficient - Python code

Generation of standardized parameter estimate

```
import pandas as pd
import numpy as np
from scipy import stats
import statsmodels.formula.api as smf

# standardizing dataframe
df_z =
perindex.select_dtypes(include=[np.number]).dropna().apply(stats.zscore)

# fitting regression
formula = 'jpi ~ aptitude + technical + general'
std_coef = smf.ols(formula, data=df_z).fit()
std_coef.params
```

- □ stats.zscore standardizes the specified variables.
- □ .dropna(), Otherwise, stats.zscore will return all NaN for a column if it has any missing values.
- select_dtypes(include=[np.number]) selects the numeric columns from data frame
- params gives the standardized coefficients.

Standardized Coefficient - Python code

#Output

```
Intercept -9.072604e-16
aptitude 3.543742e-01
technical 5.880966e-01
general 3.236793e-01
dtype: float64
```

Interpretation:

technical has highest impact on job performance index followed by aptitude

Quick Recap

Till now, we learnt the **basics of multiple linear regression**. Follow these simple steps to carry out your first analysis:

Check Variable Significance

Undertake global and individual testing

Measure Goodness of Fit

- Check R-squared, Adjusted R-squared to see how much variation is explained by the model
- Generally, R-squared greater than 0.7 is considered to be a good indicator

Summary Output

• Summary of **ols()** output is exhaustive and gives t statistics, p-value, R² to draw fundamental conclusions about the model

Quick Recap

In this session, we learnt how to **perform basic multiple linear regression in R**:

Fitted Values and Errors

• fitted() and resid() are used to fetch fitted values and residuals respectively

Predictions

- predict() function predicts values for new data
- Predictions can be obtained as either point estimates or as confidence intervals

Standardizing Coefficients

- **stats.zscore** function in package **scipy** gives the standardized coefficients.
- It is used to compare the relative importance of independent variables when the variables are in different metric units

Multiple Linear Regression
Using Categorical Variables

Content

- 1. MLR using Categorical Independent Variables
- 2. Statistical Model Using Dummy Variables
- 3. MLR with Categorical Dummy Variables in Python
- 4. Changing the base category

Case Study – Predicting Restaurant Sales

Background

• A city-based association of restaurants and cafes records all sorts of transactions and descriptive data for the purpose of industry-level analysis. The association wishes to find out if this data can be used to determine sales of restaurants.

Objective

•To predict sales of restaurants

Available Information

- Sample size is 16
- Independent Variables: Location of the Restaurant Categorical Variable with 3 Categories – Mall, Street and Highway and Number of Households in the Area
- Dependent Variable: Sales of the Restaurant

Data Snapshot

Independent D Variables

Dependent Variable

RESTAURANT SALES DATA

RESTAURANT	NOH	LOCATION	SALES
1	155	highway	131.27
2	93	highway	68.14

Columns	Description	Description Type M		Possible values	
RESTAURANT	Restaurant Number	numeric	-	-	
NOH	Number of Households in the Vicinity of the Restaurant	numeric	-	positive values	
LOCATION	Whether the Restaurant is Situated in a Mall, on a Street or on a Highway	Categorical	highway, mall, street	3	
SALES	Annual Sales of the Restaurant	numeric	-	positive values	

MLR using Categorical Independent Variables

If there is a categorical independent variable with K categories we must define only K – 1 dummy variables

In the case study,

Dependent Variable	Sales of a Restaurant
Independent Variables	 Location of the Restaurant Number of Households in the Area

- Location is a categorical variable with 3 categories Mall, Street and Highway Therefore, there will be 3-1=2 dummy variables
- The category for which dummy variable is not defined is called 'Base Category'

Data Snapshot – With Dummy Variables

Y: Sales of a Restaurant

X1: No. of Households

X2 : 1 if location is 'Mall' and 0 otherwise

X3 : 1 if location is 'Street' and 0 otherwise

- The first six rows have 0 under MALL and STREET columns
- This clearly implies that the restaurant is located neither in mall nor on street
- It is located on HIGHWAY

RESTAURANT	NOH	LOCATION	SALES	MALL	STREET
1	155	highway	135.27	0	0
2	93	highway	72.74	0	0
3	128	highway	114.95	0	0
4	114	highway	102.93	0	0
5	158	highway	131.77	0	0
6	183	highway	160.91	0	0
7	178	mall	179.86	1	0
8	215	mall	220.14	1	0
9	172	mall	179.64	1	0
10	197	mall	185.92	1	0
11	207	mall	207.82	1	0
12	95	mall	113.51	1	0
13	224	street	203.98	0	1
14	199	street	174.48	0	1
15	240	street	220.43	0	1
16	100	street	93.19	0	1

Why Not K Dummy Variables?

Can there be as many dummy variables as categories?

- If k dummy variables are created for k categories, there will be perfect multicollinearity The Dummy Variable Trap
- In order to avoid falling into this trap, model with k categories and k dummy variables must have no intercept
- In such a model, coefficients will directly represent mean value of that variable

However, it is desirable to stick to the rule of k categories = k - 1Dummy Variables

Statistical Model Using Dummy Variables

Basic Multiple Linear Regression Model

$$Y = b_0 + b_1 X_1 + b_2 X_2 + ... + b_p X_p + e$$

where,

: Dependent Variable

X₁, X₂,..., X_p : Independent Variables b₀, b₁,..., b_p : Parameters of Model e : Random Error Component

Intercept Parameter Estimate for X₂ and X₃ $\rightarrow Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + e \leftarrow$ Restaurant Sales Random Error Parameter Estimate for X₁ No of Households Location Location Mall Street

Interpretation of Results

Regression Coefficients of categorical dummy variables are interpreted **relative to the base category**

- The positive beta coefficient of mall (b₂) implies that if the restaurant is located in a mall, the sale amount will be higher than sale amount of restaurant on highway by b₂. units.
- If the coefficient is negative b₂ then it implies that restaurant located in mall will have lower sales than restaurant on highway by b₂ units.
- The same applies to street v/s highway
- Remember, dummy variable inferences are useful only if the variable is significant

MLR with Categorical Dummy Variables in Python

#Importing the Data import pandas as pd restaurantsales = pd.read_csv("RESTAURANT SALES DATA.csv") restaurantsales.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 4 columns): RESTAURANT 16 non-null int64 16 non-null int64 NOH LOCATION 16 non-null object 16 non-null float64 SALES dtypes: float64(1), int64(2), object(1) memory usage: 640.0+ bytes restaurantsales['LOCATION']=restaurantsales['LOCATION'].astype('catego ry') restaurantsales['LOCATION'].cat.categories Index(['highway', 'mall', 'street'], dtype='object')

cat.categories() is used to check categorical variable's levels and their order.

info() shows class and levels of variables in the data.
.astype is used to convert object type into "category"

MLR with Categorical Dummy Variables in Python

#Fitting Multiple Linear Regression Model

MLR with Categorical Dummy Variables in Python

#Output

		coef	std er	r t	P> t	[0.025	0.975]
	In <mark>t</mark> ercept	2.1892	8.59	2 0.255	0.803	-16.531	20.910
Ĺ	OCATION[T.mall]	37.0524	5.814	4 6.373	0.000	24.385	49.720
I	OCATION[T.street]	7.1537	6.73	1 1.063	0.309	-7.513	21.820
N	NOH	0.8383	0.05	6 14.920	0.000	0.716	0.961
======================================			1.196 Durbin-Watson:			 2.71	:= .3
Prob(Omnibus):		0.550 Jarque-Bera (JB):			0.40	3	
Skew:			-0.387 Prob(JB):			0.81	.7
k	Kurtosis:		3.071	rtosis: 3.071 Cond. No.			' <mark>.</mark>

Interpretation:

- Python orders factor levels alphabetically and takes the first level as the base category by default
- D NOH and Mall are significant variables
- Beta coefficient for mall is 37.0524. This implies that if a restaurant is located in a mall, its sales will be more than the restaurant located on highway by 37.0524.
- Street too has a positive coefficient, implying that sales of restaurant located on street will be 7.1537 times higher than highway.

Changing the Base Category in Python

Changing the Base Category in Python

#Output

```
P> t
                                                                                     [0.025
                                                                                               0.9751
Intercept
                                              39.2416
                                                        10.502
                                                                  3.737
                                                                            0.003
                                                                                     16.360
                                                                                               62.124
C(LOCATION, Treatment(reference='mall'))[T.highway]
                                             -37.0524
                                                         5.814
                                                                  -6.373
                                                                            0.000
                                                                                    -49.720
                                                                                              -24.385
C(LOCATION, Treatment(reference='mall'))[T.street]
                                             -29.8987
                                                         6.123
                                                                  -4.883
                                                                            0.000
                                                                                    -43.239
                                                                                              -16.558
NOH
                                               0.8383
                                                         0.056
                                                                 14.920
                                                                            0.000
                                                                                      0.716
                                                                                                0.961
______
Omnibus:
                                 Durbin-Watson:
                                                             2.713
                           1.196
Prob(Omnibus):
                          0.550
                                 Jarque-Bera (JB):
                                                             0.403
Skew:
                          -0.387
                                 Prob(JB):
                                                             0.817
Kurtosis:
                                                              812.
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
                                   OLS Regression Results
Dep. Variable:
                                                   R-squared:
                                        SALES
                                                                                             0.970
Model:
                                           OLS
                                                  Adj. R-squared:
                                                                                            0.963
                              Least Squares
Method:
                                                  F-statistic:
                                                                                            130.0
Date:
                          Wed. 24 Feb 2021
                                                  Prob (F-statistic):
                                                                                         2.05e-09
```

Interpretation:

- Mall has now become the base category
- Coefficient of highway is just negative of coefficient of mall observed in previous model (Degree of association between mall and highway is the same, changed sign indicates that relativity has reversed)
- Note that street is also significant

Quick Recap

In this session, we learnt how to handle categorical variables in multiple linear regression by introducing Dummy Variables

Number of Dummy Variables

• The number of dummy variables must be one less than the number of levels in the categorical variable

Interpretation

• The coefficient attached to the dummy variables must always be interpreted in relation to the base or reference group.

Dummy Variables in Python

- Python automatically assigns dummies to categorical variables in ols()
- Use Treatment() to change the base category for modeling

Multiple Linear Regression Multicollinearity problem

Contents

- 1. Key Assumptions of Multiple Linear Regression
- 2. Understanding The Problem of Multicollinearity
- 3. Detecting Multicollinearity Variance Inflation Factor
- 4. Detecting Multicollinearity in Python
- 5. Multicollinearity Remedial Measures

Key Assumptions of Multiple Linear Regression

Multiple Linear Regression makes four key assumptions

Violations of these assumptions may result in biased variable relationships, over or under-estimation of parameters (i.e., biased standard errors), and unreliable confidence intervals and significance tests

Problem of Multicollinearity

Multicollinearity exists if there is strong linear relationship among the independent variables

Multicollinearity has two serious consequences:

1. Highly Unstable Model Parameters

As standard errors of their estimates are inflated

2. Model Fails to Accurately Predict for Out of Sample Data

Therefore, it is important to check for Multicollinearity in regression analysis

Detecting Multicollinearity Through VIF

VIF (Variance Inflation Factor) Method:

Dependent Variable : Y

Independent variables: X1, X2, X3, X4

Dependent Variable	Independent Variables	\mathbb{R}^2	$1 - R^2 =$ Tolerance	VIF = 1/(Tolerance)
X1	X2, X3, X4			
X2	X1, X3, X4			
X3	X1, X2, X4			
X4	X1, X2, X3			

Detecting Multicollinearity in Python

```
#Importing the Data, Fitting Linear Model
import pandas as pd
perindex=pd.read_csv("Performance Index.csv")
import statsmodels.formula.api as smf
jpimodel=smf.ols('jpi~aptitude+tol+technical+general',data=perindex).fit()
#Variance Inflation Factor
from patsy import dmatrices
from statsmodels.stats.outliers_influence import variance_inflation_factor
# Break data into left and right hand side; y and X
y, X = dmatrices('jpi ~ aptitude + tol + technical +general',
data=perindex, return type="dataframe")
```

- patsy is a library that helps in converting data frames into design matrices.
- dmatrices Construct two design matrices using specified formula. By convention, the first matrix is the "y" data, and the second is the "x" data.
- variance_inflation_factor() requires a design matrix as input to calculate vif.

Detecting Multicollinearity in Python

Calculating VIF & getting vif with their corresponding variable
name

```
vif = pd.Series([variance_inflation_factor(X.values, i)for i in
range(X.shape[1])],index=X.columns)

vif
variance_inflation_factor() calculates VIFs.
```

Output

```
Intercept 143.239081
aptitude 1.179906
tol 1.328205
technical 2.073907
general 2.024968
dtype: float64
```

Interpretation:

All VIFs are less than 5, Multicollinearity is not present.

Multicollinearity – Remedial Measures

The problem of Multicollinearity can be solved by different approaches:

Use Principal Component Regression in case of severe
Multicollinearity

Use Ridge Regression

Dropping a variable may not be a good idea if many VIFs are large.
Principal Component Method will be discussed in detail under Data Reduction and Segmentation

Case Study - Modelling Resale Price of Cars

Background

• A car garage has old cars for resale. They keep records for different models of cars and their specifications.

Objective

• To predict the resale price based on the information available about the engine size, horse power, weight and years of use of the cars

Available Information

- Records -26
- Independent Variables: engine size, horse power, weight and years
- Dependent Variable: resale price

Data Snapshot

			Depe	ndent varia		r da	ressio ta Indeper		variables	}		
		MOD	EL RESALE PRICE		ENGINE SIZE		HORSE POWER		WEIGHT	YEARS		
		Daihatsu		3870		46	32		650	2.9		
		Suzuki Swit		4163	993		39		790	2.9		
		Fiat Panda N		3490		99	29		730	3.1		
ion	C	Columns I		Description		T	Type Measurer		surement	Possible values		
Observation	4 MODEL		Model of the car		ar	character			-		-	
qo		RESALE PRICE Re		esale price		numeric		Euro		positive values		
	ENG	SINE SIZE	Size	Size of the engine		numeric		CC		positive values		
		iorse Ower	Power of the eng		gine	gine numeric		kW		positive values		
	W	EIGHT	Weight of the ca		ar	numeric		kg		positive values		
	YEARS		Numbe	Number of years in use		nuı	meric		-	positi	ve values	

Correlation Matrix

```
# Importing the Data
ridgedata=pd.read_csv("ridge regression data.csv")
# Graphical representation of data
# Install and load package "seaborn"
import seaborn as sns
import matplotlib.pyplot as plt
sns.pairplot(ridgedata[['MODEL', 'RESALE PRICE', 'ENGINE SIZE', 'HORSE
POWER', 'YEARS']]);plt.title('Fig.No. 2: ScatterPlot Matrix')
pairplot() in the package seaborn is used to plot the scatter plot matrix
```

Scatter Plot Matrix

Interpretation:

The independent variables have high positive correlation

among themselves.

Detecting Multicollinearity in Python

#Importing the Data, Fitting Linear Model

```
ridgedata.columns = [c.replace(' ', '_') for c in ridgedata.columns]
model = smf.ols('RESALE_PRICE~ENGINE_SIZE+ HORSE_POWER + WEIGHT + YEARS',
data = ridgedata).fit()

In pandas, the column names cannot contain spaces in
between. Hence, before applying ols() remove spaces from
column names wherever required.
```

#Variance Inflation Factor

```
y, X = dmatrices('RESALE_PRICE~ENGINE_SIZE+ HORSE_POWER + WEIGHT +
YEARS', data=ridgedata, return_type="dataframe")
vif = pd.Series([variance_inflation_factor(X.values, i)for i in
range(X.shape[1])],index=X.columns)
vif
```

Output

Intercept	26.193279		
ENGINE SIZE	15.759113		
HORSE POWER	12.046734		
WEIGHT	9.113045		
YEARS	13.978640		
dtype: float64			

Interpretation:

VIF values for all the variables are greater than 5, hence we can conclude that there exist Multicollinearity between the independent variables.

Quick Recap

This session explained the problem of Multicollinearity, along with its consequences and remedial measures:

•When independent variables have strong linear Multicollinearity Exists relationship Unstable model parameters Results in Inaccurate predictions for out of sample data High pairwise correlation **Indicators** • Significant F value but very few significant t values Variance Inflation Factor Checking in variance_inflation_factor() function in Python package statsmodel Drop variables Remedial •Use Principal Component Regression Measures Ridge regression 14

Normality and Homoscedasticity Assumptions Influential Observations

Contents

- 1. The Assumptions of Normality and Homoscedasticity
- 2. Residual v/s Predicted Plot in R
- 3. Q-Q plot of residuals
- 4. Shapiro Wilk test to assess Normality of Errors
- 5. Absence of Normality Remedial Measure
- 6. Box cox Transformation in R
- 7. Influential Observations

Normality and Homoscedasticity

- The errors in Multiple Linear Regression are assumed to follow Normal Distribution.
- If Normality of Errors is not true then statistical tests and associated P values based on F and t distribution are not reliable.
- Homoscedasticity describes a situation in which variance of error term is same across all values of the independent variables.
- In the absence of Homoscedasticity (Or presence of Heteroscedasticity) the standard errors of parameter estimates are incorrect.

Assumption of Homoscedasticity

• Variance of error term must be constant across the independent variables (defined by X values)

$$Vig(e_i/\chi_iig) = \sigma^2$$
 indicates homoscedasticity
$$Vig(e_i/\chi_iig) = \sigma_i^2 \ indicates \ heteroscedasticity$$

Homoscedastic Errors

Heteroscedastic Errors

Residual Analysis

Observed Value – Predicted value = Residual

Residual Analysis for Performance Index Data

Continuing with the "Performance Index " data,

- Model job performance index (jpi) based on aptitude score (aptitude), test
 of language (tol), technical knowledge (technical) and general information
 (general)
- Get fitted values and residuals.
- Analyse the distribution of residuals

Residual v/s Predicted Plot in Python

#Importing the Data, Fitting Linear Model and Calculating Fitted Values and Residuals

```
import pandas as pd
perindex= pd.read_csv("Performance Index.csv")

import statsmodels.formula.api as smf
jpimodel = smf.ols('jpi ~ tol + aptitude + technical +general',
data=perindex).fit()

perindex = perindex.assign(pred=pd.Series(jpimodel.fittedvalues))
perindex = perindex.assign(res=pd.Series(jpimodel.resid))
```

- ols() fits a linear regression.
- □ fittedvalues() and resid() fetch fitted values and residuals

```
#Residuals v/s Predicted Plot
```

```
perindex.plot.scatter(x='pred', y='res')

.plot.scatter() is used to obtain scatter plot of predicted values
against residuals.
```

Residual v/s Predicted Plot in Python

Output

Interpretation:

Residuals in our model are randomly distributed which indicates presence of Homoscedasticity

Residual v/s Independent variables Plot in Python

Interpretation:

Residuals in our model are randomly distributed which indicates presence of Homoscedasticity

QQ Plot

- The Quantile-Quantile (QQ) Plot is a powerful graphical tool for assessing normality.
- Quantiles are calculated using sample data and plotted against expected quantiles under Normal distribution.

High Correlation between Sample Quantiles and Theoretical Quantiles

Normalit

y

• If the data are truly sampled from a Gaussian (Normal) distribution, the QQ plot will be linear.

QQ Plot in Python

#QQ Plot

```
import statsmodels.api as sm
fig = sm.graphics.qqplot(perindex.res, line='45', fit=True)
```

- qqplot() produces a plot with theoretical quantiles on x axis against the sample quantiles on y axis. Column for which normality is being tested is specified in the first argument.
- □ line= is an argument that adds reference line to the qqplot. Here it adds a 45-degree line
- □ fit=True indicates, parameters are fit using the distribution's fit() method.

QQ Plot in Python

Interpretation:

Most of these points are close to the line except few values indicating no serious deviation from Normality.

Shapiro Wilk Test

Objective

To **correlate**, sample ordered values with expected Normal scores in order **to test normality of the sample**

Null Hypothesis (H_0): Sample is drawn from Normal Population Alternate Hypothesis (H_1): Not H_0

Test Statistic	
Decision Criteria	Reject the null hypothesis if p-value < 0.05

Shapiro Wilk Test in Python

```
# Shapiro Wilk Test

import scipy as sp
sp.stats.shapiro(perindex.res)

# Output

(0.9498621821403503, 0.1318102478981018)

Interpretation:
p-value>0.05, Do not reject H<sub>o</sub>. Normality can be assumed.
```

Absence of Normality – Remedial Measure

Mathematical Transformation of the dependent variable is used as a remedial measure in case of serious departure from Normality.

Typically Log Transformation is used. However, there is general transformation called as Box Cox Transformation given as:

Box Cox transformation

$$Y^* = rac{Y^{\lambda} - 1}{\lambda}$$
 $\lambda \neq 0$
= $\log Y$ $\lambda = 0$
Where Y is the response variable

• R can automatically detect the optimum λ using **boxcox()** in package MASS

Influential Observation

• An **influential observation** is an observation whose deletion from the dataset would noticeably change the result of the calculation.

• In particular, in regression analysis an influential point is one whose deletion has a large effect on the parameter estimates.

Cook's Distance Method

Cook's distance measures the effect of deleting a given observation.

Let Di be the Cook's distance for observation i.

$$D_{i} = \frac{\sum_{j=1}^{n} (\widehat{Y}_{j} - \widehat{Y}_{j(i)})^{2}}{p MSE}$$

 \widehat{Y}_{i} = prediction from the full regression model for observation j

 $\hat{Y}_{i(i)}$ = prediction of jth observation from a refitted model after removing ith observation

MSE =mean square error of the regression model

p = number of fitted parameters in the model

Cut off to indicate influential observation,

- Simple operational guideline D_i>1 Alternative D_i >4/n, where n is the number of observations

DFBETAS

Cut off to indicate influential observation,

- general cut off value recommended is 2
- size adjusted cut off is taken to be 2/√n

Finding Influential Observations in Python

#Importing the Data import pandas as pd perindex=pd.read_csv("Performance Index.csv") import statsmodels.formula.api as smf jpimodel=smf.ols('jpi ~ aptitude + tol + technical +general', data=perindex).fit() #Finding Influential Observations influence = jpimodel.get_influence() influence.summary frame() *Influence is an object calling the method get_influence() which in turn allows* us to call various measures of influence. summary_frame() calls a dataframe of 6 influence measures - Cook's Distance, Standardized residuals, dffits, dfbetas among others.

Finding Influential Observations in Python

Output

	d Clare Track a second	d Cl	J.Cl. 4-1	JCh to do d	d Cl			had diaa	100:4- into1		100:4-
	dfb_Intercept	dfb_aptitude	_	dfb_technical	dfb_general	_	standard_resid	_ 0	_	-	dffits
0	0.122740655	-0.148903135	0.12930015	0.111295503	-0.231928116	0.027053557	1.070156154	0.105636531	0.367787693	1.073046027	0.368780874
1	-0.06974523	0.116652494	0.133587819	0.02982789	-0.09548941	0.010912673	-0.364255404	0.291400351	-0.233588024	-0.358542217	-0.229924297
2	0.007297141	-0.008657864	0.004774056	0.014949118	-0.026376846	0.000463024	-0.206575027	0.051460374	-0.048115671	-0.203007405	-0.047284697
3	-0.156960588	0.094733386	-0.173852663	0.214043541	-0.081100685	0.018150707	-0.899495717	0.100854509	-0.301253273	-0.896332474	-0.30019386
4	0.053857876	-0.010940236	0.00867167	-0.040889003	0.003662146	0.001250165	0.323269275	0.056438877	0.079062145	0.31803818	0.077782773
5	0.244563668	-0.167648781	-0.058829828	0.006424002	-0.120351526	0.0247544	0.95727578	0.118994501	0.351812453	0.9557968	0.351268907
6	-0.02187633	-0.017309924	0.012271264	0.006428915	0.013869655	0.000302058	-0.06455514	0.266006198	-0.03886248	-0.063396607	-0.038165038
7	-0.168200899	0.013234244	0.04743142	0.175275244	-0.069100347	0.01545173	0.918453917	0.083902352	0.277954402	0.915804589	0.277152627
8	-0.00893895	0.000748261	0.010029123	-0.012775933	0.020594356	0.000259695	0.13315947	0.068233348	0.03603436	0.130801426	0.035396249
9	0.112048775	-0.224748965	0.240141498	-0.17548137	0.078322088	0.023475703	-0.842281862	0.141964282	-0.342605483	-0.837785996	-0.340776751
10	-0.180550626	0.079534465	0.074017536	0.120829488	-0.057492908	0.01106923	-0.644822905	0.117472155	-0.235257629	-0.63795804	-0.232753046
11	-0.340527019	0.322925945	-0.062977416	0.148776604	0.044546954	0.044366369	1.221464622	0.129438005	0.470990281	1.232747401	0.475340861
12	-0.002789222	0.152126452	0.050719785	-0.020241173	-0.060819239	0.009463569	0.461241654	0.181948526	0.217526652	0.454660862	0.214423078
13	0.035353405	-0.027136734	0.033243364	0.016690271	-0.055540496	0.001256856	0.156009829	0.20521207	0.079273454	0.153265238	0.077878842
14	-0.060996651	1.62E-05	-0.079422031	-0.034363374	0.147870676	0.008619132	0.603984002	0.105654499	0.207594942	0.597002274	0.205195257
15	-0.026013807	-0.056282646	0.145739562	-0.191264061	0.222520013	0.020491421	0.791281772	0.140624982	0.320089214	0.78585952	0.317895805
16	0.005763587	0.05225852	-0.223037193	-0.045632185	0.148853441	0.018578284	0.85294471	0.113226147	0.30478094	0.848673035	0.303254552
17	-0.470812698	0.716128082	-0.106108271	-0.101654484	0.324161247	0.172591001	1.78156995	0.213764291	0.928953715	1.8579384	0.968774074
18	-0.002557978	-0.004065261	0.008450592	0.005075285	-0.005409883	4.13E-05	0.044548271	0.094144224	0.014361446	0.043747084	0.01410316
19	-0.052126913	-0.182788497	0.123094282	7.18E-05	0.058590983	0.01661995	-0.969160992	0.081281261	-0.288270271	-0.968072934	-0.287946635
20	-0.097589025	0.108404591	-0.09966008	0.077516309	-0.005991789	0.004816919	-0.272865	0.244414631	-0.155192119	-0.268305076	-0.152598659

Interpretation

One can use the threshold of 4/n where n is sample size and check cases with Cook's distance greater than the threshold.

Finding Influential Observations in Python

#Influence Plot

```
from statsmodels.graphics.regressionplots import *
influence_plot(jpimodel, criterion = 'Cooks')
```

□influence_plot() creates a "bubble" plot of Studentized residuals by hat values, with the areas of the circles representing the observations proportional to criteria specified (in this case Cook's distance).

Influence Plot in Python

Output

Interpretation:

The data points 28,31 and 32 are detected as influential observations.

Quick Recap

Normality Assumption	•Error terms should be normally distributed
Homoscedasticity	•Errors should have constant variance across X values
Residual v/s Predicted Plot	· Ideally, residuals should be randomly distributed
Residual v/s Independent variables Plot	· Ideally,residuals should be randomly distributed
QQ Plot	Used to check if errors follow Normal distribution
Shapiro Wilk Test	•Test for Normality assessment of errors

Quick Recap

Box Cox Transformation

Transforming non normal response to normal

Influential Observations in Python

- **get_influence()** produces object giving influential observations by different measures
- Influence_plot() creates a "bubble" plot of Studentized residuals by hat values, with the areas of the circles representing the observations proportional to Cook's distances

Multiple Linear Regression Cross Validation - I

Contents

- 1. Cross Validation in Predictive Modelling
- 2. Model Fitting
- 3. Hold-out Cross Validation

Cross Validation in Predictive Modeling

Cross Validation is a

process of evaluating the model on 'Out of Sample' data

- Model performance measures such as R-squared or Root Mean Squared Error (RMSE) tend to be optimistic on 'In sample data'
- Model performance on out of sample data gives more realistic picture of model performance.

Cross validation is important because although a model is built on historical data, ultimately it is to be used on future data. However good the model, if it fails on out of sample data then it defeats the purpose of predictive modeling.

Cross Validation in Predictive Modeling

There are different approaches to cross validation. Five most important of them are:

Hold-Out Validation

K-Fold Cross Validation

Repeated K-Fold Cross Validation

Leave-One-Out Cross Validation (LOOCV)

Re-sampling Validation Method (Bootstrap Method)

Case Study – Modeling Motor Insurance Claims

Background

 A car insurance company collects range of information from their customers at the time of buying and claiming insurance. The company wishes to check if any of this information can be used to model and predict claim amount

Objective

 To model motor insurance claim amounts based on vehicle related information collected at the time of registering and claiming insurance

Available Information

- Sample size is 1000
- Independent Variables: Vehicle Information Vehicle Age, Engine Capacity, Length and Weight of the Vehicle
- Dependent Variable: Claim Amount

Data Snapshot

				Moto	r_C	Claim					
				Independent	v <mark>\$</mark> ri	ables	Dependent variable				
		vel	nage	1495		ength	Weight		72000 72000		
		8	4			4250 3495		1023			
			2					875			
		ě	2	1405		3675		980	50400		
S		3	7	1298	_	4090		930	10000000	960	
ion		74 1	2	1495		4250		1023	106800		
vat	\dashv	1 1	1	1086	- 3	3565		854	695	92.8	
Observations	Colun	nns	D	escription		Type		Measur	ement	Possik	ole values
O	V/2/14/04		_	e of the vehicle at he time of claim		integer		Years		positive values	
	CC Er		Eng	ngine capacity		numeric		CC		positive values	
	Length Le		Length of the vehicle		numeric		mm		positive values		
	Weight		Weight of the vehicle		numeric		kg		positive values		
	claima	imt	Claim amount			numeric		INR		positive values	

Data Visualization

```
#Importing the Data
import pandas as pd
motor=pd.read_csv('Motor_Claims.csv')

# Install package "seaborn" if not installed previously
# Obtain scatter plot matrix

import seaborn as sns
import matplotlib.pyplot as plt

sns.pairplot(motor);plt.title('ScatterPlot Matrix')
```

Using the pairplot function in the seaborn library to get a scatter plot of the variables in the data set

Scatter Plot

Output

Interpretation:
The scatter plot matrix gives an indication of multicollinearity.

Modeling Using ols Function

Linear regression model

```
import statsmodels.formula.api as smf
motormodel = smf.ols('claimamt~Length+CC+vehage+Weight', data=motor).fit()
motormodel.summary()
```

Output

			OLS R	egress	ion Re	sults		
Dep. Varia	ble:	claimamt			R-squ	uared:		0.738
Model:				OLS	Adj.	R-squared:		0.737
Method:		Leas	t Squ	ares	F-sta	tistic:		700.3
Date:		Fri, 25	Oct :	2019	Prob	(F-statisti	c):	1.83e-287
Time:		Access to the	16:3	8:15		ikelihood:	•	-10754.
No. Observ	ations:	1000			AIC:			2.152e+04
Df Residua	ls:			995	BIC:			2.154e+04
Df Model:				4				
Covariance	Type:		nonro	bust				
	coef	f std	err		t	P> t	[0.025	0.975]
Intercept	-5.477e+04	1 5569	.375	-9	.833	0.000	-6.57e+04	-4.38e+04
Length	35.4607	7 1	.990	17	.824	0.000	31.557	39.365
CC	15.413	3 2	.114	7	. 292	0.000	11.265	19.561
vehage	-6637.2134	1 154	.098	-43	.071	0.000	-6939.607	-6334.820
Weight	-16.2547	7 3	.678	-4	.420	0.000	-23.472	-9.038
Omnibus:	=======		7	.335	Durbi	in-Watson:	=======	2.094
Prob(Omnib	0.026			Jarqu	9.587			
Skew:			-0	.058	Prob(0.00828		
Kurtosis:			3	.466	Cond.	No.		6.33e+04

Interpretation:

All independent variables in the model are significant.

Detecting Multicollinearity

```
# Obtaining vif
```

Intercept	240.261728
Length	3.396171
CC	5.881428
vehage	1.038357
Weight	6.552811
dtype: float6	4

variance_inflation_factor in library statsmodels gives the VIFs of the independent variables in the regression model.

Interpretation:

□ *CC* and Weight have VIF >5

Re- Modeling

New model

```
motormodel1 = smf.ols('claimamt~Length+CC+vehage', data=motor).fit()
motormodel1.summary()
```

New model after removing weight to remove multicollinearity.

Output of the new model

		OLS Re	gression	Results		
Dep. Varia	ble:	claim	amt R-s	quared:		0.733
Model:			OLS Adj	. R-squared:		0.732
Method:		Least Squa	res F-s	tatistic:		910.3
Date:		Thu, 31 Oct 2	019 Pro	b (F-statist	ic):	8.79e-285
Time:		12:48	:57 Log	-Likelihood:		-10764.
No. Observ	ations:	1	000 AIC	:		2.154e+04
Df Residua	ls:		996 BIC	:		2.156e+04
Df Model:			3			
Covariance	Type:	nonrob	ust			
=======	coef	std err	 t	P> t	[0.025	0.975]
Intercept	-4.92e+04	5475.151	-8.985	0.000	-5.99e+04	-3.85e+04
Length	32.0652	1.852	17.312	0.000	28.431	35.700
CC	8.6886	1.481	5.867	0.000	5.783	11.595
vehage	-6638.0765	155.525	-42.682	0.000	-6943.270	-6332.883
Omnibus:		10.	======= 930 Dur	bin-Watson:		2.081
Prob(Omnib	us):	0.	004 Jar	que-Bera (JB	:):	15.892
Skew:		-0.	072 Pro	b(JB):		0.000354
Kurtosis:		3.	600 Con	d. No.		5.99e+04
	========					

Interpretation:

All independent variables in the model are significant.

Dropping one independent variable is one of the remedial measures to adjust for multicollinearity (when not many variables are multicollinear). As weight had the maximum VIF value, it is excluded from the model to adjust for multicollinearity.

VIF of New Model

VIF

VIFs of variables in the new model

```
Intercept 227.959103
Length 2.889718
CC 2.833931
vehage 1.038355
dtype: float64
```

Interpretation: All VIF s are <5.

RMSE of the Model

RMSE of the model

```
motor=motor.assign(res=pd.Series(motormodel1.resid))

from math import sqrt

RMSE = sqrt((motor['res']**2).mean())

RMSE
```

Output

11444.512861029943

Interpretation: RMSE for the model is 1144.51

Hold-Out Validation

In Hold-Out validation method, available data is split into two non-overlapped parts: 'Training Data' and 'Testing Data'

- The model is,
 - Developed using training data
 - Evaluated using testing data

Training data should have more sample size. Typically 70%-80% data is used for model development

Hold Out Validation in Python

Hold Out Validation in Python

RMSE of training data motor model=smf.ols('claimamt~vehage+CC+Length', data = motor train).fit() motor_train=motor_train.assign(res=pd.Series(motor_model.resid)) motor train.head() RMSEtrain=pd.Series(np.sqrt((motor train.res)**2).mean()) **RMSEtrain** # RMSE for testing data motor test=motor test.assign(pred=pd.Series(motor model.predict(motor test))) motor test=motor test.assign(res=pd.Series(motor test.claimamt motor test.pred)) RMSEtest=pd.Series(np.sqrt((motor test.res)**2).mean()) **RMSEtest**

Hold Out Validation in Python

Output

Interpretations:

Comparing RMSE of training and testing data shows not much difference between the two and also are in line with the RMSE of the original model. Thus we can say that the model is stable.

Quick Recap

Cross Validation - Meaning and Need

- Process of evaluating the model on 'Out of Sample' data
- •Important because although a model is built on historical data, ultimately it is to be used on future data

Hold Out Validation

• Data is split into training and testing. Model developed on training and validated on testing

Multiple Linear Regression Cross Validation - II

Contents

- 1. K-Fold Cross Validation
- 2. Repeated K-Fold Cross Validation
- 3. Leave One Out Cross Validation

K-Fold Cross Validation

- In k-fold cross-validation the data is first partitioned into k equally (or nearly equally) sized segments or folds
- training and testing are performed such that each time one fold is kept aside for testing and model is developed using k-1 folds
- Model performance measure is aggregate measure based on above iterations

K-Fold Cross Validation in Python

```
# Import necessary libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import cross_val_score
from sklearn import linear model
#Splitting data into X variables and Y variable
motor=pd.read_csv('Motor Claims.csv')
X=motor.drop(['claimamt'], axis = 1)
y=motor.claimamt
#Regression Model object is lm reg
lm reg = linear_model.LinearRegression()
```

K-Fold Cross Validation in Python

Perform K fold cross validation with K=4 and report R squared values

```
cv_r2_scores_lm = cross_val_score(lm_reg, X, y, cv=4,scoring='r2')
print(cv r2 scores lm)
[0.75432031 0.72743804 0.69157553 0.7365273 ]
print("Mean 4-Fold R Squared: {}".format(np.mean(cv_r2_scores_lm)))
Mean 4-Fold R Squared: 0.7274652945788245
                                                 R squared value
cv rmse scores= cross_val_score(lm reg, X, y, cv=4,
scoring='neg_mean_squared_error')
np.sqrt(-(np.mean(cv_rmse_scores)))
                                               RMSE value
11461.73251088066
   cross val score computes cross validation score
   cv=4 sets number of K-folds.
   scoring='r2' gives r squared value; 'neg_mean_squared_error' gives negative mean squared
   error
```

Interpretation:

- R^2 of the original model is 73.19%
- RMSE for the original is model is 11444.51
- Comparing the RMSE values, we can say that the model is stable

Repeated K-Fold Cross Validation

- As the name suggests, repeated k-fold cross validation technique undertakes cross validation and repeats the process m-number of times
- This ensures that more robust measure of model performance is generated
- K-fold is repeated m times with different randomization in each repetition

For instance,

- Five repeats of 10-fold cross validation will generate 50 total resamples.
- These results are again averaged to produce a single estimate
- This is not the same as 50-fold cross validation

Repeated K-Fold Cross Validation in Python

#Creating '5' Folds and '5' repeats

```
from sklearn.model_selection import RepeatedKFold
rkfold = RepeatedKFold(n_splits=5,n_repeats=5)
```

- ☐ RepeatedKFold() is used to prepare the cross-validation procedure for implementation of repeated k-fold cross-validation.
- \square $n_splits = specifies the number of folds.$
- \square *n_repeats= specifies the number of repeats.*

Finding R squared value & RMSE value

```
cv_r2_repeated = cross_val_score(lm_reg, X, y, cv=rkfold)
print("Mean 5-Fold R Squared: {}".format(np.mean(cv_r2_repeated)))

cv_rmse_repeated= cross_val_score(lm_reg, X, y, cv=rkfold,
scoring='neg_mean_squared_error')
np.sqrt(-(np.mean(cv_rmse_repeated)))
```

Repeated K-Fold Cross Validation in Python

Output

Mean 5-Fold R Squared: 0.7325797646609875

R squared value

11421.269030164527

RMSE value

Interpretation:

- \mathbb{Z} R² of the original model is 73.19%
- RMSE for the original is 11444.51
- RMSE values of the cross validated model indicates stability.
- ☐ As the observations are selected randomly, output may vary slightly.

Leave One Out Cross Validation (LOOCV)

- LOOCV is a special case of k-fold cross validation where k equals the sample size (n)
- Each time one observation is kept aside and the model is developed on the remaining data.
- The left out observation is predicted using the model.
- This process is repeated n times
- RMSE is computed based on these predicted residuals
 - Sample size is 10 and one observations (say 7) is chosen to be kept aside
 - The model is developed on the new sample with n=9 and observation 7 is predicted

Quick Recap

K-Fold Cross Validation

- Data is first partitioned into **k** equally (or nearly equally) sized segments or folds
- •Then k iterations of training and testing are performed such that each time one fold is kept aside for testing and model is developed using k-1 folds

Repeated K-Fold Cross Validation

•This is an extension of k-fold method wherein the process is repeated **m** number of times