Machine Learning Based Control Algorithm for Active Vibration Suppression of a Mechanical Flexure Hinge

DANIEL LILIENTHAL, ZIV BRAND, ETAN FISHER

DEPARTMENT OF MECHANICAL ENGINEERING, SHAMOON COLLEGE OF ENGINEERING (SCE), BEER SHEVA, ISRAEL

- Background
- Our goal
- Results
- Conclusion
- Time for questions

Background – Applications of flexible structure (examples)

Aircraft

Manipulator mechanism

Satellite

X-Y micro-positioning stage

Background – Applications and problems

- Flexible mechanical structures form vital components in a wide range of engineering systems.
- Vibration suppression of a flexible mechanical structures is relevant to the design and operation of systems.
- The mechanical vibration may be a cause of various types of problems, such as
 - System dynamic instability
 - Fatigue damage
 - Fretting fatigue

Submarine, missiles and rockets

Flexural vibration of nuclear fuel rod bundles

Background – Research issues

- Active vibration control of flexible structures has become a popular research interest.
- In many vibration control problems, the goal is to suppress the effect of external disturbances under unknown parameters and time-variant parameters while keeping the structure in its equilibrium state.
- The optimal control method is based on the dynamic model, in linear cases also achieves the optimal control function.
- A machine learning method can replace optimal control by finding a solution close to optimal for cases where the dynamic model is unknown.

Our goal

The aim of this study is to investigate a machine learning control

method for active vibration suppression of a mechanical flexure hinge.

System Architecture – main components

EXPERIMENTAL EVALUATIONS – Test rig

System Model

Mechanical model

Newton's second law

$$m\ddot{x} = \Sigma F$$

$$m\ddot{x}(t) + c\dot{x}(t) + kx(t) = f_2(t) - f_1(t)$$

Electromagnet model

Biot-Savart law and Lorentz force

$$|f_{1/2}| = \frac{\mu_0 A_s (Ni)^2}{4x^2}$$

Dynamic model

- Non-linear system
- Unstable system

Linearization - Dynamic Model

$$m\ddot{x}(t) + c\dot{x}(t) + kx(t) = \frac{\mu_0 A_s N^2}{4} \frac{\mathbf{i}_2^2(t)}{\left(x_{eq} - x(t)\right)^2} - \frac{\mu_0 A_s N^2}{4} \frac{\mathbf{i}_1^2(t)}{\left(x_{eq} + x(t)\right)^2}$$

$$f\left(x_{1}, i_{c1}, i_{c2}\right) = f\left(x_{ep}, i_{b}\right) + \frac{\partial f}{\partial x_{1}} \bigg|_{\substack{x_{1} = x_{ep} = 0 \\ i_{1} = i_{2} = i_{b}}} \left(x_{1} - x_{ep}\right) + \frac{\partial f}{\partial i_{1}} \bigg|_{\substack{x_{1} = x_{ep} = 0 \\ i_{1} = i_{2} = i_{b}}} \left(i_{1} - i_{b}\right) + \frac{\partial f}{\partial i_{2}} \bigg|_{\substack{x_{1} = x_{ep} = 0 \\ i_{1} = i_{2} = i_{b}}} \left(i_{2} - i_{b}\right)$$

$$\ddot{x} = \left(-\frac{4CI_b^2}{mL_0^3} - \frac{k}{m} \right) x - \frac{c}{m} \dot{x} + \frac{4CI_b}{mL_0^2} I_c$$
 State space
$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -\frac{4CI_b^2}{mL_0^3} - \frac{k}{m} & -\frac{c}{m} \end{bmatrix} x + \begin{bmatrix} 0 \\ \frac{4CI_b}{mL_0^2} \end{bmatrix} I_c$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -\frac{4CI_b^2}{mL_0^3} - \frac{k}{m} & -\frac{c}{m} \end{bmatrix} x + \begin{bmatrix} 0 \\ 4CI_b \\ mL_0^2 \end{bmatrix} I_0$$

$$y = [1 \ 0]x$$

Optimal Control

$$J(u) = \int_0^\infty (x^T Q x + u^T R u) dt$$

the feedback control law that minimizes the value of the cost is: u = -Kx

where K is given by: $K = R^{-1}B^TP$

And P is found by solving algebraic Riccati equation: $A^TP + PA - PBR^{-1}B^TP + Q = 0$

Machine Learning Control Algorithm

Schematic of machine learning control wrapped around a complex system using noisy sensor-based feedback.

Control law

Sensors and constants

Individual function tree representation used in genetic programming.

Machine Learning Control Algorithm

Individual function tree representation used in genetic programming.

Genetic operations to advance one generation of parameters to the next in a genetic algorithm.

Machine Learning Control Algorithm

Model-free control design using GP for MLC.

Simulation Optimal Control VS MLC

Simulation results

Simulation results

Mlc main parameters:

Individuals: 1000

Functions: +,x

Max Depth: 15

After 20 Generations (about an hour of

calculations):

b
$$MLC = -3864* y(1) - 16.95* y(2)$$

$$b LQR = -3914*y(1) -18.94*y(2)$$

Simulation results

Mlc main parameters:

Individuals: 1000

Functions: +,x

Max Depth: 15

After 20 Generations (about an hour of

calculations):

b
$$MLC = -4711* y(1) - 21.37* y(2)$$

$$b LQR = -3914*y(1) -18.94*y(2)$$

Conclusion

• Machine-learning control results are similar to the optimal control method for the given mechanical system.

• There is potential for using machine learning control for nonlinear systems with uncertainty based on input/output data measurements.

What's Next

- Build a framework for running the algorithm on the physical system.
- Run the experiment on the physical system.
- Compare the results to the optimal control results.
- Dynamic observer based on MLC.

