COL351: Analysis and Design of Algorithms

Tutorial Sheet - 6

September 17, 2022

Hashing

Question 1 Let U = [1, M] be a universe, and $S \subsetneq U$ be a fixed set of size n. Present a construction of a random hash function $H: U \to [0, n-1]$ such that

- (i) For each $i \in [0, n-1]$, the expected size of T[i] is O(1).
- (ii) For each $x \in U$, the time to check membership of x in S is $\Omega(n)$.

Question 2 Let U = [1, M] be a universe, and let $S = \{s_1, \ldots, s_n\}$ be a subset of U of size n such that each s_i is a uniformly random element of U independent of other s_j 's. Let H be a hash function such that $H(x) = x \mod n$.

- (i) Show that the expected size of $(\max_{i=0}^{n-1} T[i])$ is $O(\log n)$.
- (ii) Argue that the expected value of maximum time taken to verify the membership of elements of U in S is $O(\log n)$.
- (iii) If we redefine H(x) as $x \pmod{n^2}$, then prove that with probability at least 1/2, there will be no collisions under H.

Hint: Use Markov's inequality.

Quiz 2

Question 1 Let $X, Y, Z \in \{0, 1\}^n$ be three *n*-length strings. Describe an $O(n^2)$ time algorithm to compute largest k such that there exists a k-length string that is substring of X, Y, and Z.

Question 2 Let G = (V, E) be a weighted digraph with no cycle of negative weight, and let $S \subseteq V$ be a set of size k. A path P is said to be an S-path if the internal vertices of P lie in S.

Describe an $O(kn^2)$ time algorithm to compute a binary matrix B such that B[i,j]=1 if and only if there exists an S-path of negative weight from vertex i to vertex j in G.

Quiz 1

Question 1 Compute the optimal prefix free encoding for a character set consisting of 5 letters $\{a,b,c,d,e\}$ with frequencies as: $a:1,\ b:1,\ c:2,\ d:3,\ e:5.$

Question 2 Prove or disprove the following statement: "Any n vertex graph with n-1 bridges has a unique MST".

Question 3 Let G = (V, E) be a DAG and let $s \in V$ be a vertex in G. Design an optimal algorithm to verify that there is a unique path between all pairs in $\{s\} \times V$, and analyse its time complexity.