3° de Secundaria

Total

100

Puntuación:

3

Pregunta

Obtenidos

10 15 10 10 15 20 20

Puntos

Preparación para el Examen de la Unidad 3

Nombre del alumno: . . Fecha:

Aprendizajes:

- Argumenta acerca de posibles cambios químicos en un sistema con base en evidencias experimentales.
- Reconoce y valora el uso de reacciones químicas para sintetizar nuevas sustancias útiles o eliminar sustancias indeseadas.
- Reconoce la utilidad de las reacciones químicas en el mundo actual.
- Explica, predice y representa cambios químicos con base en la separación y unión de átomos o iones, y se recombinan para formar nuevas sustancias.

Ejemplo 1

El peso molecular de la sacarosa, $C_{12}H_{22}O_{11}$, es 342.3 g/mol. ¿Cuál es la masa en gramos de 0.287 moles de sacarosa? Expresa la respuesta con 3 cifras significativas.

Solución:

Podemos encontrar los gramos de sacarosa multiplicando los moles de sacarosa por el peso molecular. Las unidades de moles se cancelan, lo que significa que la respuesta estará en gramos.

$$m = 0.287 \text{ mol} \times \frac{342.3 \text{ g}}{1 \text{ mol}} = 98.3 \text{ g}$$

				-
E	ıer	CI	c1 c)

de 10 puntos

El peso molecular del agua, H_2O , es de 18 g/mol. ¿Cuántos moles de agua hay en 243 g de agua? Expresa la respuesta con 3 cifras significativas.

Ejemplo 2

Balancea la siguiente ecuación química:

$$\mathrm{HgO} \longrightarrow \mathrm{Hg} + \mathrm{O}_2$$

Solución:

Hay 2 O en los productos y 1 en los reactivos, por lo que hay que multiplicar por 2 al HgO.

$$2 \, \mathrm{HgO} \longrightarrow \mathrm{Hg} + \mathrm{O}_2$$

Ahora, hay 2 Hg en los reactivos y 1 en los productos, por lo que hay que multiplicar por 2 al Hg. Y la ecuación balanceada es:

$$2\,\mathrm{HgO} \longrightarrow 2\,\mathrm{Hg} + \mathrm{O}_2$$

Ejercicio 2

de 15 puntos

Balancea la siguiente ecuación química:

$$Fe + H_2O \longrightarrow Fe_3O_4 + H_2$$

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 \text{ Na} + \text{ZnI}_2 \longrightarrow 2 \text{ NaI} + \text{Zn}$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $C_8HO_{18} + calor \uparrow \longrightarrow C_6H_{14} + C_2H_4$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- $\operatorname{\mathbf{C}} \operatorname{Zn}(s) + 2\operatorname{HCl}(ac) \longrightarrow \operatorname{ZnCl}_2(ac) + \operatorname{H}_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - Doble desplazamiento
- d $2C(s) + O_2(g) \longrightarrow 2CO(g)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- $e 2 Na + H_2O \longrightarrow 2 NaOH + H_2$
 - (A) Descomposición
 - B Combinación
 - (C) Desplazamiento
 - Doble desplazamiento

- f $2 \operatorname{Al}(s) + 3 \operatorname{S}(s) \longrightarrow \operatorname{Al}_2 \operatorname{S}_3(s)$
 - A Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - Doble desplazamiento
- - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - Doble desplazamiento
- h Al + H₂SO₄ \longrightarrow Al₂(SO₄)₃ + H₂
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- i $2 \operatorname{NaCl}(s) \longrightarrow 2 \operatorname{Na}(s) + \operatorname{Cl}_2(g)$
 - A Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- $\textbf{j} \quad SO_2(g) + H_2O(l) \longrightarrow H_2SO_3(ac)$
 - (A) Descomposición
 - B Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

Ejercicio 3

de 10 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 H_2 O(1) \longrightarrow 2 H_2(g) + O_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $CuSO_4 + calor \uparrow \longrightarrow CuO + SO_3O$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

- - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- d $4 \text{ Al(s)} + 3 \text{ O}_2(\text{g}) \longrightarrow 2 \text{ Al}_2 \text{O}_3(\text{s})$
 - (A) Descomposición
 - B Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

Ejercicio 4 ____ de 10 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $2 \operatorname{NaCl}(s) \longrightarrow 2 \operatorname{Na}(s) + \operatorname{Cl}_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento

- $C SO_2(g) + H_2O(l) \longrightarrow H_2SO_3(ac)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- d $2P_2 + 5O_2 \longrightarrow 2P_2O_5 + \text{luz} \uparrow$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento

En un recipiente se introducen 15 g de dióxido de carbono, ${\rm CO}_2.$

Calcula:

a Los moles de sustancia introducidos.

Solución:

Calculamos la masa molecular del dióxido de carbono, CO₂:

$$m_m(\text{CO}_2) = m(\text{C}) + 2 \times m(\text{O}) = 12 + 16 + 16 = 44 \text{ UMA}$$

Entonces, la masa molar es:

$$M(\mathrm{CO}_2) = 44 \mathrm{g mol}^{-1}$$

El número de moles de CO_2 se calcula con la ecuación (??), de la siguiente forma:

$$n(\text{CO}_2) = \frac{m(\text{CO}_2)}{M(\text{CO}_2)} = \frac{15 \text{ g}}{44 \text{ g mol}^{-1}} = 0.34 \text{ mol}$$

b ¿Cuántas moléculas de CO₂ y átomos de carbono y de oxígeno hay en el recipiente?

Solución:

Del inciso anterior, sabemos que hay 0.34 moles de CO_2 . Entonces, el número de moléculas de CO_2 es:

$$0.34~\mathrm{mol}\times6.023\times10^{23}~\mathrm{mol\acute{e}culas}=2.05\times10^{23}~\mathrm{mol\acute{e}culas}$$

Ejercicio 5	de 15 punto	วร

Halla la masa de ozono ${\rm O}_3,$ que contiene 1×10^{25} átomos de oxígeno.

Con base en la información de la tabla 1, ¿cuál de los siguientes compuestos contiene el menor porcentaje de potasio por masa?

- \bigcirc KNO₃
- ® KF
- © KClO
- (D) KBr

Tabla 1: Compuestos que contienen potasio

Compuesto	$\begin{array}{c} {\rm Masa\ \ molar} \\ {\rm (g/mol)} \end{array}$	Porcentaje de potasio (%)		
KNO_3	101.1	38.67%		
KF	58.1	67.3%		
KClO	90.6	43.1%		
KBr	119.0	33.1%		

Solución:

Ya que el peso atómico del potasio es 39.1, el porcentaje de potasio en cada compuesto se puede calcular como:

$$100\% \times \frac{K}{KNO_3} = 100\% \times \frac{39.1}{101.1} = 38.67\%$$
$$100\% \times \frac{K}{KF} = 100\% \times \frac{39.1}{58.1} = 67.3\%$$

$$100\% \times \frac{K}{KClO} = 100\% \times \frac{39.1}{90.6} = 43.1\%$$

$$100\,\% \times \frac{\mathrm{K}}{\mathrm{KBr}} = 100\,\% \times \frac{39.1}{119.0} = 33.1\,\%$$

Ejercicio 6 ____ de 20 puntos

Con base en la información de la tabla 2, ¿cuál de los siguientes compuestos contiene el menor porcentaje de carbono por masa?

 \bigcirc CH₄ \bigcirc CH₂O \bigcirc CO₂ \bigcirc CO

Tabla 2: Compuestos que contienen carbono

Compuesto	$egin{array}{ll} { m Masa \ molar} \ { m (g/mol)} \end{array}$	Porcentaje de carbono (%)
CH_4	16	
$\mathrm{CH_{2}O}$	30	
CO	28	
CO_2	44	

Una tableta de vitamina C de 2.70 g contiene 0.0109 mol de ácido ascórbico ($C_6H_8O_6$). La masa molar de $C_6H_8O_6$ es 176.12 g/mol. ¿Cuál es el porcentaje de masa de $C_6H_8O_6$ en la tableta?

Unidad 3

Solución:

El porcentaje de masa de una sustancia en una mezcla se puede determinar por la comparación de la masa de la sustancia en la mezcla contra la masa total de la mezcla. Primero, calculemos la masa de $C_6H_8O_6$ en la tableta. Utilizando la masa molar del $C_6H_8O_6$, podemos convertir moles de $C_6H_8O_6$ a gramos de $C_6H_8O_6$:

$$0.0109 mol~ C_6 H_8 O_6 \times \frac{176.12 g~ C_6 H_8 O_6}{1 mol~ C_6 H_8 O_6} = 1.92 g~ C_6 H_8 O_6$$

Posteriormente, utilizando la masa calculada de $C_6H_8O_6$ y la masa total de la tableta, podemos calcular el porcentaje de masa de $C_6H_8O_6$ en la tableta:

$$1.92g~C_6H_8O_6 \times \frac{100\,\%}{2.70g~tableta} = 71\,\%$$

El porcentaje de masa de $C_6H_8O_6$ en la tableta es 71 %.

_	
	Ejercicio 7 de 20 puntos
	Se encuentra que una tableta de vitamina B3 de 1.90 g contiene 0.0122 mol de nicotinamida ($C_6H_6N_2O$). (La masa molar de $C_6H_6N_2O$ es 122.13 g/mol.) ¿Cuál es el porcentaje de masa de $C_6H_6N_2O$ en la tableta? Escribe tu respuesta usando tres cifras significativas.

18 VIIIA	$\overset{\text{2}}{H}\overset{\text{4.0025}}{\text{Helio}}$	$\overset{10}{N}\overset{20.180}{\text{Neón}}$	$\overset{18}{A}\overset{39.948}{r}$	$\frac{36}{K} \frac{83.8}{\Gamma}$ Kriptón	$\sum_{\text{Xenón}}^{54}$	$\mathop{Rh}\limits^{86}_{\text{Padón}}$		$\overset{71}{\text{Luterio}}$	$\frac{103}{\text{L}}$ 262	
	17 VIIA	9 18.998 Fluor	17 35.453 Cloro	$\overset{35}{\mathrm{Bromo}}$	53 126.9 T Yodo	$\overset{85}{\mathbf{At}}_{\overset{210}{Astato}}$	\prod_{Teneso}^{292}	$\sum_{\text{Yterbio}}^{70}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	$\overset{16}{\mathbf{S}}\overset{32.065}{\mathbf{S}}$	${\overset{34}{\mathrm{Se}}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{Po}^{209}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	$\prod_{\text{Tulio}}^{69}$	$\underset{\text{Mendelevio}}{\text{101}} \overset{258}{\text{d}}$	
	15 VA	$\sum_{\text{Nitrógeno}}^{7}$	$\sum_{Fósforo}^{15\ 30.974}$	33 74.922 AS Arsénico	$\overset{51}{S}\overset{121.76}{b}$ Antimonio	$\overset{83}{\text{Bismuto}}_{\text{1}}^{208.98}$	${\overset{115}{ M }}^{288}_{C}$	$\frac{68}{\text{Erbio}}$	100 257 Fm	
	14 IVA	$\overset{6}{\overset{12.011}{\text{Carbono}}}$	$\overset{14}{\mathrm{Si}}\overset{28.086}{\mathrm{Si}}$	${\overset{32}{G}}^{72.64}$	$\mathop{\mathrm{Sn}}_{\mathrm{Estaño}}^{118.71}$	$\overset{82}{P}\overset{207.2}{b}$	114 289 Flerovio	$\overset{\textbf{67}}{H}\overset{164.93}{\text{OIM}}$	99 252 Einsteinio	
	13 IIIA	5 10.811 Boro	$\overset{13}{A}\overset{26.982}{\text{Aluminio}}$	$\overset{31}{G}\overset{69.723}{a}$	\prod_{Indo}^{49}	81 204.38 Talio	113 284 Nihonio	$\bigcup_{Disprosio}^{66}$	$\overset{98}{\text{Cf}}$	
			12 IIB	$\overset{30}{\mathrm{Zn}}\overset{65.39}{\mathrm{Zinc}}$	$\overset{48}{\text{Cadmio}}_{\text{Cadmio}}$	$\overset{80}{H}\overset{200.59}{S}$	—	$\prod_{\text{Terbio}}^{65-158.93}$	$\underset{Berkelio}{\mathbf{BK}}$	
			11 IB	$\overset{29}{\mathbf{Cobre}}$	47 $^{107.87}$ Ag	$\overset{79}{\mathbf{Au}}_{\mathrm{Oro}}^{196.97}$	$\underset{\text{Roentgenio}}{Rg}$	$\overset{64}{\text{Gadolinio}}$	96 247 Curio	
			10 VIIIB	$\sum_{\text{Niquel}}^{28} \sum_{\text{58.693}}^{58.693}$	$\Pr_{\text{Paladio}}^{46 \ 106.42}$	$\Pr_{Platino}^{78}$	110 281 DS	$\dot{\mathbf{E}}_{\mathbf{u}}^{\mathbf{a}}$	95 243 Am	
			9 VIIIB	$\overset{27}{\overset{58.933}{\overset{60}{\mathbf{60$	$\mathop{Rh}\limits^{45~102.91}_{\text{Rodio}}$	$\prod_{\rm lridio}^{77}$	$\underset{\text{Meitnerio}}{109}$	$\overset{62}{Sm}_{arrio}^{150.36}$	Plutonio	
			8 VIIIB	$\overset{26}{F}\overset{55.845}{e}$	$\mathop{Rut}\limits^{44}$ 101.07	$\overset{76}{\text{Osmio}}$	108 277 Hassio	$\overset{\text{61}}{P}\overset{\text{145}}{m}$	93 237 Neptunio	
	gía:	Negro: Naturales Gris: Sintéticos	7 VIIB	$\overset{25}{\mathbf{Manganeso}}$	$\prod_{ m Tecnecio}^{43}$	$\mathop{Re}_{\text{Renio}}^{75~186.21}$	$\overset{107}{Bh}\overset{264}{b}$	$\sum_{\text{Neodimio}}^{60} 144.24$	$\bigcup_{Uranio}^{92-238.03}$	
	Simbología:	Negro: I Gris: Si	6 VIB	$\overset{24}{\overset{51.996}{\text{Cromo}}}$	$\overset{ extbf{42}}{ extbf{MO}}$	$\bigvee_{\text{Lungstenio}}^{74} 183.84$	106 266 Seaborgio	$\Pr^{\mathbf{59-140.91}}_{\mathbf{r}}$ Praseodymio	$\Pr_{\text{Protactinio}}^{231.04}$	
	Sim	$\mathbf{S}_{\mathbf{Simbolo}}^{\mathbf{Z}}$	5 VB	$ \overset{23}{\text{Vanadio}} $	$\sum_{\text{Niobio}}^{41}$	$\overset{73}{ ext{Ta}}\overset{180.95}{ ext{Tantalo}}$	105 262 Dubnio	$\mathbf{\overset{58}{C}}_{Cerio}^{140.12}$	$\prod_{Torio}^{90-232.04}$	
			4 IVB	$\prod_{\text{Titanio}}^{22}$	$\overset{40}{Z}\overset{91.224}{r}$ Circonio	72 178.49 Hafinio	$\overset{104}{Rt}^{261}$	$\overset{57}{La}_{ ext{lantánido}}^{ ext{138.91}}$	$\overset{89}{Ac}^{227}$	
			3 IIIA	$\overset{21}{S}^{44.956}_{C}$ Escandio	39 88.906 Yellon	57-71		erreos		nidos
	2 IIA	$\overset{4}{B}\overset{9.0122}{e}$	$\overline{\mathrm{Mg}}^{24.305}$	$\overset{20}{\mathbf{C}}\overset{40.078}{\mathbf{a}}$	$\overset{38}{\mathrm{ST}}\overset{87.62}{\mathrm{F}}$ Stroncio	$\overset{56}{B}_{\mathbf{a}rio}^{137.33}$	$\mathop{Radio}_{\text{Radio}}$	Metales Alcalinos Metales Alcalino-terreos Metal	le	Gases Nobles Lantánidos/Actínidos
1 IA	1 1.0079 Hidrógeno	3 6.941 Litio	$\overset{11}{\overset{22.990}{\text{Na}}}$	$\sum_{Potasio}^{19}$	$\mathop{Rubidio}\limits^{37\ 85.468}$	\sum_{Cesio}^{55}	$\frac{87}{Fr}$	Metales . Metales . Metal	Metaloide No metal Halógeno	Gases Nobles Lantánidos/A
	\leftarrow	7	ĸ	4	Ŋ	9	7			