BASICS OF ELECTRICAL ENGINEERING SCIENCE

DOOK S	September 2010				
CITATIONS					
0	9,325				
1 author	uthor:				
	Idongesit Effiong Sampson				
	Rivers State University of Science and Technology				
	46 PUBLICATIONS 8 CITATIONS				
	SEE PROFILE				
Some of	me of the authors of this publication are also working on these related projects:				
Project	PROCESS INFORMATION SYSTEM View project				
Project	Designing bioreactor for treatment of petroleum sludge View project				

SIA OmniScriptum Publishing Brivibas gatve 197, Riga, LV-1039 Latvia, European Union

> info@omniscriptum.com www.omniscriptum.com

> > 03.09.2018

To Whom It May Concern:

We are pleased to announce the publication of the book entitled "Basics of Electrical Engineering Science", authored by Idongesit Sampson. The book was released by LAP LAMBERT Academic Publishing in 2018 and bears ISBN 978-613-9-89736-0.

Being an imprint of SIA OmniScriptum Publishing, LAP LAMBERT Academic Publishing provides high-quality publications, with all the advantages of an intercontinental company in marketing, production and distribution. Books of LAP LAMBERT Academic Publishing are therefore available on the worldwide market via more than 80,000 bookstores and 3,000 online stores.

OmniScriptum Publishing is an associate member of the American Booksellers Association, the Booksellers Association of the UK, a member of the Börsenverein des Deutschen Buchhandels, and also a member of German PEN Center.

Please do not hesitate to contact us, should you need any further information.

Ieva Konstantinova

Director

ABSTRACT

The book "Basics of Electrical Engineering Science" elaborates in Nineteen chapters (460 pages)the Scientific principles and Applications of Basic Electricity. Basics of Electrical Engineering Science is the before professional pre-requisite required applying Laplace transformation, differential equations, matrices, complex numbers, etc. to design, model, simulate and analyse electrical process systems. Being a foundation course for Engineers, Technologists and Technicians in fields other than Electrical Engineering, the book could be useful to all Engineers, Technologists and Technicians working with electrically operated systems, equipment and components. Basic Electricity knowledge is necessary for troubleshooting of process and equipment, writing work requests and work permits for electrical maintenance of process and equipment. The book could be useful to all Engineering students and lecturers in Technical Colleges. Polytechnics and Universities. The test questions and answers embodied in Appendix 1 could aid quick revision of the Basics of Electrical Engineering Science.

TABLE OF CONTENTS

Conte	nt		Page
Title I	Page		i
Abstra	ıct		ii
Table	of Content		iii
List of	f Tables		xii
List of	f Figures		xiii
Nome	nclatures		xix
Abbre	viations		XX
CHAI	PTER 1: THE STRUCTURE OF MATTER		1
1.1.	Introduction		1
1.2.	Models of the Atom		2
1.3.	Molecules, Electrons and Atom		4
	PTER 2: ELECTRICITY AND CTRIC CURRENT		7
2.1.	Introduction	7	
2.2.	Electrical Currents		7
2.2.1.	Types of Electricity		8
2.2.2.	Effects of Electrical Currents		8
2.2.3.	The Flow of Electricity	9	
2.2.4.	Classifications of Electrical Materials into Insulators, Conductors & Semi-Conductor		10
2.3.	Potential Difference		17
2.3.	Resistance		17

CHAPTER 3: CHEMICAL SOURCE OF ELECTROMOTIVE FORCE 1			
3.1.	Introduction	19	
3.2.	Electromotive Force	20	
3.2.1.	Source of Electromotive Force	20	
3.2.1.1.	Batteries	21	
3.3.	The Hydrometer	23	
	R 4: ELECTRICAL WORK, Y AND POWER	24	
4.1.	Introduction	24	
4.2. Relationship between Electrical Power & Electrical Current			
CHAPTE DIFFERF	R 5: ELECTROMOTIVE FORCE ANI ENCE	POTENTIAL 29	
5.1. 5.2.	Introduction Electromotive Force (E.M.F)	29 29	
5.3.	Potential Difference (PD)	30	
5.4.	Electrical current (I)	31	
5.5.	Resistance	34	
_	R 6: PRIMARY CELLS AND SECONI IES: SERIES, PARALLEL AND SERII CTION		
6.1.	Introduction	36	
6.2.	Primary Cells	36	
6.3.	Secondary Cells	43	

6.3.1.	Charging an Accumulator		46
6.3.2.	Methods of Charging Battery		47
6.3.3.	Battery Capacity		48
6.3.4.	Maintenance of Lead Acid Battery		48
6.3.5.	Applications of Lead Acid Cell		48
6.3.6.	Testing Battery Condition		49
6.3.7.	I. E. E. Regulations		49
6.3.8.	External Resistance		50
6.4.	Internal Resistance and Battery Voltage		50
	7: RESISTORS, INDUCTORS		
ANDCAPA	CITORS		52
7.1.	Introduction		52
7.2.	Resistors: Series, Parallel and Series Parallel Connections		52
7.2.1.	Types of Resistors		53
7.3.	Inductors		55
7.3.1.	Inductors in Series		57
7.3.2. Induc	tors in Parallel	57	
7.3.3. Induc	etors in Series-Parallel	58	
7.4.	Capacitors: Series, Parallel and Series- Para	llel	
	Connections		58
7.4.1.	Types of Capacitors		61
7.4.2.	Capacitors in Series		64
7.4.3.	Capacitors in Parallel		64

CHAPTE CAPACI	ER 8: COLOUR CODING OF RESISTO TORS	ORS AND 66	
8.1.	Resistors Colour Codes	66	
8.2.	Capacitors Colour Codes	67	
8.2.1. Capacitors Voltage Reference			
СНАРТІ	ER 9: ELECTRICAL CIRCUIT	71	
9.1.	Introduction	71	
9.2. Pa	rallel Circuits	73	
9.3.	Series – Parallel Connection	75	
9.4.	Voltage Divider Circuit	76	
9.5.	Current Divider Circuit	76	
СНАРТЬ	ER 10: ELECTRICAL LAWS	77	
10.1.	Ohms Law	77	
10.2.	Kirchhoff's Law	78	
10.2.1.	Kirchhoff's Current Law	78	
10.2.2.	Kirchhoff's Voltage Law	78	
10.3.	Superposition Theorem	78	
СНАРТІ	ER 11: ELECTRICAL SIGNS AND SYN	MBOLS 80	
11.1.	Introduction	80	
11.2.	Lighting Installation	80	
11.3.	Power Installation	82	
11.4.	Electrical Abbreviation	90	

	12: ALTERNATING CURRENTS A FING CURRENT CIRCUITS (A.C)	ND S	SIMPLE 94
12.1.	Alternating Currents		94
12.2.	A Circuit Containing Resistor		96
12.3.	Circuit Containing a Capacitor		97
12.4.	Circuit Containing an Inductor		98
12.5.	Impedance		99
12.5.1.	Impedance for all the three Components (RLC) Circuit		99
12.5.2.	Impedance of a circuit containing a resistor and inductor (RL) circuit		100
12.5.3.	Impedance of a circuit containing a resistor and a capacitor (RC) circuit		100
12.6.	Phasor and Vector Diagrams		100
12.7.	Power and Power Factor		101
12.7.1.	Power Triangle		101
12.7.2.	Power Factor Correction		102
CHAPTER	13: CONDUCTORS AND CABLES		104
13.1.	Conductors		104
13.2.	Formation of Conductors		104
13.3.	Insulators		106
13.4.	Cables		107
13.4.1.	Construction of Cables		107
13.4.2.	Flexible Cables and Flexible Cords		109
13.4.3. Outdo	oor Cables	111	
13.4.4.	Cable Sizes: Use of I.E.E. Tables		112

	13.4.5.	Permissible Voltage Drop in Cable		113
	13.4.5.1.	Voltage Drop and the I.E.E. Tables		114
	13.5.	Current Density and Cable Size		114
	13.6.	Resistance of a Conductor		114
13.6	.1. Effec	t of Heat on a Conductor	116	
	13.6.2.	Outline of Regulations Relating to Conductors and Cables		118
	13.7.	Cable Termination Techniques		119
	13.7.1.	Cable Preparation		120
	13.8.	Electrical Cables Termination and Jointing Procedure		124
	13.8.1.	Vulcanised Rubber Insulated (V.R.I) and PolyVinyl Chloride (P.V.C) Cables		124
13.8	.2. Armo	oured Cable	131	
	13.8.3.	Mineral-insulated Metal-sheathed (M.I.M.S. Cable Copper Conductors	.)	134
	13.8.4.	Copper Insulated Displacement Connection (IDC) and Coaxial Cable Termination		136
	13.9.	Preparing Cable Ends For Jointing and Termination		140
	13.10.	Tools and Equipment used for Glanding and Termination		141
	13.11.	Tools used for with Twisted-Pair Cables		142
	13.12.	Cable Jointing Tools and Materials		143
	13.13.	Soldering		146
	10.10.	2010011116		

CHAPTE	R 14: SERIES RESONANT CIRCUITS	157
14.1.	Series Resonance	157
14.2.	Series RLC Circuit	158
14.3.	Inductive Reactance against Frequency	159
14.4.	Capacitance Reactance against Frequency	160
14.5.	Series Resonance Frequency	161
14.5.1.	Impedance in a Series Resonance Circuit	162
14.5.2.	Series RCL Circuits at Resonance	163
14.5.3.	Series Circuit Current at Resonance	164
14.5.4.	Phase Angles of a Series Resonance Circuit	165
14.6.	Bandwidth (BW) and Quality Factor (Q)	166
14.7.	Series Resonance Summary	170
CHAPTEI	R 15: ELECTRICAL POWER PLANT	173
15.1.	The Engine	173
15.1.1.	Internal Combustion Engine	173
15.1.1.1.	Classification of Internal Combustion Engine	176
15.1.1.2.	Types of Internal Combustion Engine	177
15.1.2.	External Combustion Engine	180
15.1.2.1.	Gas Turbine Power Plant	181
15.3.	Electromagnetic Induction	182
15.4.	The DC Generator	184
15.4.1.	Parts of a D.C Generator	185
15.4.2.	Types of D.C Generator	186
15.4.3.	Generators Classified Based on Type of Fuel	189
15.5.	The Gas Turbine	189
15.5.1.	Levels of Voltage at 50HZ Frequency	191

15.6.	The Steam Turbine	192
15.7.	Types of Electric Motors	194
CHAPT	ER 16: INDICATING INSTRUMENTS	195
16.1.	Introduction	195
16.2. C	lassification of Instruments According to their Functions	196
16.3.	The Moving Coil Measuring Instrument	197
16.4.	The Moving Iron Instrument	197
16.5.	The Moving Coil Ammeter	200
16.6.	Moving Coil Voltmeter	201
16.7.	Moving Coil Galvanometer	201
16.8.	The Ohmmeter	203
16.9.	The Multimeter	203
16.10.	The Wattmeter	204
CHAPT	ER 17: TRANSFORMERS	205
17.1.	Introduction	205
17.2.	Construction of Transformers	206
17.3.	The Step-Down Transformer	206
17.4.	Step- Up Transformer	207
17.5.	Turns Ratio	207
17.6.	Types of Transformer	208
17.7.	Efficiency of a Transformer (E)	208
17.8.	Transformer Losses	209
17.9.	Fire Prevention	209

17	7.10.	Functions of Transformer	209
17	7.11.	Levels of Voltages at 50 Hertz Frequency	210
\mathbf{C}	HAPTER	18: ELECTRICAL WIRING	212
18	3.1.	Wires	212
18	3.2.	Connection of One Point of Light Controlled by One Switch	212
18	3.3.	Connection of Two Point of Light in Parallel Controlled by One Switch	213
18	3.4.	Connection of Two Point of Lamps in Series Controlled by One Switch	213
18	3.5.	Connection of Two Point of Lamps through One Joint Box Controlled by Two Separate Switches	214
18	3.6.	Two Lamps Connected through Two Joint Boxes Controlled by their Individual Switch	214
18	3.7.	Wiring Three Point of Light Controlled by Two 2-Way Switches	216
18	3.8.	Wiring Three Point of Light Controlled by Two 2-Way Switches	216
18	3.9.	A Fluorescent Light Circuit Controlled by one Switch	217
18	3.10.	Installation of a Fan	217
18	3.11.	Wiring a circuit Breaker to the Distribution Fuse Board and then to the Appliance	218
18	3.12.	Stages in Electrical Wiring	219

18.13.	Some	Common	Terms

CHAPTER CIRCUITS	19:	LOGIC	CIRCUITS	AND	INTEGRATED
19.1.	Logic	System			222
19.1.1.	Logic	Function			222
19.1.2.	Logic	Diagram			222
19.1.3.	Logic	Symbol			222
19.1.4.	Flip F	lop			223
19.1.5.	Logic	Gates			224
19.1.6.	Truth	Table			224
19.2.	AND	Gate			224
19.3.	OR G	ate			225
19.4.	NANI	O Gate (Inv	erts and Gates)		226
19.5.	NOR	Gate (Inver	ts OR Gate)		227
19.6.	Invert	er			227
19.7.	Buffer	ſ			228
19.8.	Integr	ated Circuit	ts		228
REFERENC	CES				230
APPENDIX	1 Test	t Questions	and Answers		232
APPENDIX	11	Capacitor	Letter Code T	able	460

LIST OF TABLES

Table	Title	Page
2.1	Standard Prefixes, Multiplying Factors & Symbols	8
8.1	The Fourth Band	66
8.2	The Capacitor Colour Code Table	68
8.3	Capacitor Voltage Letter Code Table	69
8.4 13.1	CapacitorTolerance Letter Code Table Comparison of Aluminum and Copper as Conductors 70	105
13.2	Comparison of T.R.S. and P.V.C. Cable	109
13.4	Advantages and Disadvantages of M.I.M.S Cables	135
13.5	Soldering Guide	150
15.1	Difference between Internal Combustion Engines and External Combustion Engine	174
19.1	Truth Table	225
19.2	Truth Table	226
19.3	Truth Table	227
19.4	Truth Table	227
A2.1	Capacitor Letter Code Table	460

LIST OF FIGURES

Figure	Title	Page
1.1	Sir J.J. Thompson Model of the Atom	2
1.2	Alpha Scattering Experiment	2
1.3	Ernest Rutherford Model of the Atom	3
1.4	Bohr Model of the Atom	4
1.5	The Atom	4
2.1	Movement of Holes and Electrons	10
2.2	Energy Band Structure for Conductors	11
2.3	Energy Band Structures for Insulators	11
2.4	Energy Band Structures for Semi-Conductors	12
2.5	Energy Bands for P-type Extrinsic Semi-Conductor	14
2.6	Addition of Boron to a Trivalent Atom	15
2.7	Energy Bands for N-type Extrinsic Semi-Conductors	16
2.8	Adding a Pentravalent Atom to a Semi-Conductor e.g. Germanium	16
3.1	Lamps Connected in Series	19
3.2	Lamps Connected in Parallel	20
3.3	The Hydrometer	23
5.1a	Ammeters connected in series	32
5.1b	Ammeters connected in parallel	32
5.2	The Rheostat	33
5.3	External Resistance Connected to a Cell	35
6.1	Wet - Type Leclanche Cell	37
6.2	Dry Type Leclanche Cell	39

6.3	Cells Connected in Series	40
6.4	Cells Connected in Parallel	41
6.5	Series Parallel Connection	42
6.6	Cut-away of a standard lead acid battery cell	44
6.7	Lead acid cell on discharge	45
6.8	Lead Acid Cell on Charge	46
6.9	Internal Resistance of a circuit	51
7.1	Wire Wound Resistor	53
7.2	Rheostat	53
7.3	Transverse view of Rheostat	54
7.4	Carbon composition resistor	54
7.5	Resistance wire of known resistance	55
7.6	Resistance Bobbing	55
7.7	An Inductor	56
7.8	Inductors in Series	57
7.9	Inductors in Parallel	57
7.10	Inductors in Series-Parallel	58
7.11	A Charged Capacitor	58
7.12	Parallel plate capacitor with di-electric in between the plates	61
7.13	Rolled Foiled Paper Capacitor	61
7.14	Variable capacitor	63
7.15	Capacitors Connected in Series	64
7.16	Capacitors Connected in Parallel	69
8.1	Bands on a Resistor	69
8.2	Metalised & Polyester Capacitors	69
8.3	Disc & Ceramic Capacitors	69

9.1	Resistors Connected in Series		
9.2	Voltmeter Connected to Resistors Connected in Series	72	
9.3	Resistors Connected in Parallel	73	
9.4	Current Flow in Resistors Connected in Parallel	74	
9.5	Series – Parallel Connection	75	
12.1	Waveform of Current against Time	94	
12.1	Waveform of Voltage against Time	94	
12.3	Waveform Indicating Alternating Current Values	94	
12.4a	Waveform for a circuit containing a Resistor	97	
12.4b	Phasor Diagram for a Circuit Containing a Resistor	97	
12.5a	Waveform for a circuit containing a Capacitor	97	
12.5b	Phasor Diagram for a Circuit Containing a Capacitor	98	
12.6a	Waveform for a circuit containing a Inductor	98	
12.6b	Phasor Diagram for a Circuit Containing an Inductor	99	
12.7	Vector Diagrams	100	
13.1	Twisted Twin Flex Cable	109	
13.2	Asbestos-covered Cable	110	
13.3	Circular Flex, Rubber Sheathed	110	
13.4	Workshop (or Industrial) Flex	111	
13.5	P.B.J. (Paper Bituminized Jute) Cable	111	
13.6	H.S.O.S, (House Service Overhead System) Cable	112	

13.7	Stripping Cable	124
13.8	Section through Soldered Socket	128
13.9	Marred Joint Preparation and Jointing	129
13.10	Weak-backed Ferrule	130
13.11	Straight-through Joint using Weak-backed Ferrule	130
13.12	Tee Joint	131
13.13	Construction of P.I.L.C.S.W.A Cable	132
13.14	Typical Cross-section of P.V.C Armoured Cable	133
13.15	Mineral-insulated Metal Sheathed (M.I.M.S) Cable	135
13.16	Best Method for Removing Insulation	140
13.17	Using a Desoldering Pump (Solder Sucker)	156
14.1	Series RLC Circuit	158
14.2	A Graph illustration of Inductive Reactance against Frequency	159
14.3	A Graph illustration of Capacitance Reactance against Frequency	160
14.4	A Graph illustration of Series Resonance Frequency	161
14.5	A Graph illustration of Impedance in a Series Resonance Circuit	162
14.6	A Graph illustration of Series RCL Circuits at Resonance	163
14.7	A Graph illustration of Series Circuit Current at Resonance	164
14.8	An illustration of Phase Angles of a Series Resonance Circuit	165

14.9	An illustration of Bandwidth of a Series Resonance Circuit	168
14.10	An illustration of Bandwidth of a RLC Series Resonance Circuit	169
15.1	Flowchart of Engine	173
15.2	Gas Turbine Power Plant	181
15.3	Flemings Right Hand Rule	182
15.4	Flemings Left Hand Rule	183
15.5	The DC Generator	184
15.5	Amateur Reaction Field	186
15.6	Separately Exited Generator	187
15.7	Series Wound Generator	187
15.8	Shunt Wound Generator	187
15.9	A.C Generator uses Slip-ring	188
15.10a	D.C Generator uses Split-ring	188
15.11b	Power Generation and Distribution	190
15.12	Process Flow Line Diagram for Gas Turbine	191
15.13	The Steam Turbine	192
16.1	Diagram of Attraction Type; Moving Iron Instrument	198
16.2	The Repulsion Type Moving Iron Instrument	199
16.3	The Moving Coil Ammeter	200
16.4	Moving Coil Voltmeter	201
16.5	Moving Coil Galvanometer	202
16.6	Ohmmeter Scale	203
17 1	Sten – Down Transformer	206

17.2	Step-Up transformer	207
17.3	Transmission Network	211
18.1	Connection of One Point of Light Controlled by One Switch	212
18.2	Connection of Two Point of Lamps in Parallel Controlled by one Switch	13
18.3	Connection of Two Point of Lamps in Series Controlled by one Switch	13
18.4	Connection of Two Point of Lamps through or Box Controlled by Two Separate Switches	ne Joint 214
18.5	Two Lamps Connected through Two Joint Boxes Controlled by their Individual Switches	215
18.6	Wiring Three Point of Light Controlled by two 2-Way Switches	216
18.7	Wiring Three Point of Light Controlled by two 2-Way Switches	216
18.8	A Fluorescent Light Circuit Controlled by one Switch	217
18.9	Connection from the main distribution line of Controlling one Fan and Two Bulbs	one Switch 218
	Wiring a circuit Breaker to the Distribution Fundand Then to the Appliances 218	
18.11	Tapping from an Electric Pole to a Building	219
18.1	Installation of a Large Engineering Shop	220
18.13	Wiring between Two Poles	221

NOMENCLATURE

	Symbol	Definition	Unit
	η 1	Intrinsic Carrier Concentration	m^{-3}
	ω	Omega (Circular frequency)	rad/s
	L	Inductance	(H) Henrys
	Ι	Electrical Current	(A)Ampere
	e_{v}	Energy of a Photon	J
	C	Velocity of Light	$\mathrm{ms^{-1}}$
	r	Internal Resistance	(Ω) Ohms
A	ϵ_0	Permitivity of Free Space	$C^2N^{-1}m^{-2}$
В	K	Dielectric Constant	
В	σ	Electric Field	cm^{-2}
R	ρ	Resistivity	Ω m
E	Z	Impedance	Ω
\mathbf{V}	X_L	Inductive Reactance	Ω
I	X_{C}	Capacitive Reactance	Ω
A	Q	Quantity of Electricity	C
T	$\mathbf{E}_{\mathbf{f}}$	Fermi-Energy Level	
I	E_c	Conduction Band	
O	E_{v}	Valence Band	
N	I_0	Peak Current	Ampere
S	V_0	Peak Voltage	Volt
	U	Internal Energy	J/m ³
BS	S	British Standard	
E	MF	Electromotive Force	

DC Direct Current

AC Alternating Current

rms Root Mean Square

PD Potential Difference

RLC Resistor, Inductor and Capacitor

PF Power Factor

IEE Institution of Electrical Engineers

kwh Kilowatt hour

hp Horse Power

FSD Full Scale Deflection

IDC Insulation Displacement Connection

STA Steel Taped Armoured Cable

PILCSWA Lead-Covered Paper Insulated Steel Wire

MICC Mineral Insulated Copper Wire

PVC PolyVinyl Chloride

MIMS Mineral Insulated Metal Sheathed

VRI Vulcanised Rubber Insulated Cable

IEE Institute of Electrical Engineering

DC Direct Current

AC Alternating Current

TRS Tough Rubber Sheathed

PBJ Paper Butumized Jute

Please, I would be very grateful if you buy the following books from www.amazon.com or www.morebooks.shop and send review comments to: idongesit.sampson@ust.edu.ng

International Books					
S/N	Researchable Title	Publishers	Size	Date	
1.	Process Materials and	Lambert Academic	5 Chapters,	Aug.,	
	Energy Analysis for	Publishing, an imprint of	153 pages	2017	
	Anaerobic Sludge	OmniScriptum GmbH &			
	Bioreactor.	Co. KG, European			
	ISBN:978-620-2-00758-0	Union.			
	Available:		Single		
	www.amazon.com;		Author		
	www.morebooks.shop;				
	www.lap-publishing.com				
2.	Costing and Economic	Lambert Academic	5 Chapters,	Augus	
	Analysis for Anaerobic	Publishing, an imprint of	85 pages	t, 2017	
	Sludge Bioreactor	OmniScriptum GmbH &			
	Process.	Co. KG, European Union			
	ISBN:978-3-659-54995-3				
	Available:		Single		
	www.amazon.com;		Author		
	www.morebooks.shop;				
	www.lap-publishing.com				
3.	Advances in Fluid	Lambert Academic	5 Chapters,	Oct.,	
	Catalytic Cracking.	Publishing, an imprint of	109 pages	2017	
	ISBN:978-620-2-06090-5	OmniScriptum GmbH &			

	Available:	Co. KG, European Union		
	www.amazon.com;			
	www.morebooks.shop;		Single	
	www.lap-publishing.com		Author	
4.	Design of a Bioreactor for	Lambert Academic	5 Chapters,	March,
	the Treatment of Sludge.	Publishing, an imprint of	197 pages	2018
	ISBN:978-613-8-34654-8	OmniScriptum GmbH &		
	Available:	Co. KG, European Union		
	www.morebooks.shop;		Single	
	www.lap-publishing.com		Author	
5.	Principles of Industrial	Lambert Academic	10Chapters	April,
	Process Instrumentation.	Publishing, an imprint of	217 pages	2018
	ISBN:978-613-9-58433-8	OmniScriptum GmbH &		
	Available:	Co. KG, European Union	Single	
	www.amazon.com;		Author	
	www.morebooks.shop;			
	www.lap-publishing.com			
6.	Basics of Electrical	Lambert Academic	19Chapters	Aug.,
	Engineering Science.	Publishing, an imprint of	460 pages	2018
	ISBN:978-613-9-89736-0	OmniScriptum GmbH &		
	Available:	Co. KG, European Union		
	www.amazon.com;www.		Single	
	morebooks.shop;		Author	
	www.lap-publishing.com;			
	www.researchgate.net			