Operator SVD with Neural Networks via Nested Low-Rank Approximation

Jongha (Jon) Ryu¹, Xiangxiang Xu¹, H. S. Melihcan Erol¹,

¹Department of EECS, MIT ²Department of ECE, University of Florida

Yuheng Bu², Lizhong Zheng¹, Gregory W. Wornell¹

Various engineering / scientific problems can be reduced to "Eigenvalue Problem (EVP)"

A canonical example is the time-independent Schrodinger equation:

A standard approach quantizes the problem and solves a matrix EVP; NOT SCALABLE!

$$\mathcal{H}|\psi\rangle = \lambda|\psi\rangle$$

why parametric?

Criterion	Nonparametric (matrix)	Parametric (operator)
Training	computational complexity	optimization complexity
Testing	Nyström formula (computational complexity, storage complexity, statistical complexity)	neural networks (approximation error, optimization error)
For PDEs	discretization	mesh-free
<u> </u>	·	·

Most existing approaches are based on the Rayleigh quotient maximization $\lambda_1 = \max_{\hat{\psi}_1: \|\hat{\psi}_1\|_2 = 1} \langle \hat{\psi}_1 | \mathcal{T} \hat{\psi}_1 \rangle$ (for top-1 mode) and a variant of the trace maximization $\max_{\hat{\psi}_1,...,\hat{\psi}_L} \sum_{i=1}^{-} \langle \hat{\psi}_i | \mathcal{T} \hat{\psi}_i \rangle$ s.t. $\langle \hat{\psi}_i | \hat{\psi}_j \rangle = \delta_{ij}$ ----- hard to deal with!

Nicetadi a DA I NINI

Finding an ordered eigenbasis also requires an additional care

Our approach: Nested Low-rank Approximation

ingredient 1. low-rank approximation (LoRA)

Schmidt theorem (1907) (a.k.a. Eckart-Young theorem (1936)) If $f_1^\star,\ldots,f_L^\star\in \arg\min_{f_1,\ldots,f_L}\left\|\mathcal{T}-\sum_{\ell=1}^L|f_\ell\rangle\langle f_\ell|\right\|_{\mathsf{HS}}^2$, then $(f_1^{\star},\ldots,f_L^{\star})$ is a "scaled" top-L orthonormal eigenbasis up to a rotation

(or equivalently, $\sum_{\ell=1}^{L} |f_{\ell}^{\star}\rangle\langle f_{\ell}^{\star}| = \sum_{\ell=1}^{L} \lambda_{\ell} |\psi_{\ell}\rangle\langle\psi_{\ell}|$) $\Rightarrow \mathcal{L}(\mathbf{f}_{1:L}) \triangleq \left\|\mathcal{T} - \sum_{\ell=1}^{L} |f_{\ell}\rangle\langle f_{\ell}|\right\|_{\mathsf{HS}}^{2} - \|\mathcal{T}\|_{\mathsf{HS}}^{2} = -2\sum_{\ell=1}^{L} \langle f_{\ell}|\mathcal{T}f_{\ell}\rangle + \sum_{\ell=1}^{L} \sum_{\ell'=1}^{L} \langle f_{\ell}|f_{\ell'}\rangle^{2}$

Remark: an unconstrained optimization problem!

Intuition $|f_1^{\star}\rangle\langle f_1^{\star}| = \lambda_1 |\psi_1\rangle\langle\psi_1|$ $|f_1^{\star}\rangle\langle f_1^{\star}| + |f_2^{\star}\rangle\langle f_2^{\star}| = \lambda_1|\psi_1\rangle\langle\psi_1| + \lambda_2|\psi_2\rangle\langle\psi_2|$ $|f_1^{\star}\rangle\langle f_1^{\star}| + \ldots + |f_L^{\star}\rangle\langle f_L^{\star}| = \lambda_1|\psi_1\rangle\langle\psi_1| + \ldots + \lambda_L|\psi_L\rangle\langle\psi_L|$

ingredient 2. nesting

Idea: solve $\min_{\mathbf{f}_{1:\ell}} \mathcal{L}(\mathbf{f}_{1:\ell})$ for each $\ell = 1, \dots, L$

Theorem (joint nesting)

Define $\mathcal{L}_{\mathsf{nested}}(\mathbf{f}; \mathbf{w}) \triangleq \sum_{\ell} w_{\ell} \mathcal{L}(\mathbf{f}_{1:\ell})$ for any positive weights. If $\mathbf{f}_{1:L}^{\dagger} \in \arg\min_{\mathbf{f}_{1:L}} \mathcal{L}_{\mathsf{nested}}(\mathbf{f}; \mathbf{w})$, then $|f_{\ell}^{\dagger}\rangle = \sqrt{\lambda_{\ell}} |\psi_{\ell}\rangle$.

Remark 1: can recover the ordered orthogonal eigenbasis!

Remark 2: gradient can be estimated without bias

Comparison to existing methods

		=	= NestedLoRA + NI A
	SpIN	NeuralEF	NeuralSVD
Goal	EVD	EVD	SVD
Unbiased gradient estimates	✓	X	✓
To handle orthogonality constraints	(per-step) Cholesky decomposition	function normalization	-
To remove bias in gradient estimates	bi-level optimization	large batch size	-

Remarks and future directions

- Our approach can naturally perform SVD!
- There is yet another (better) version of nesting! (see full paper)
- Also applicable to (some) non-compact operators! (see full paper)
- Various other applications
 - other PDEs (see full paper)
 - machine learning: correlation analysis / embedding
 - canonical dependence kernel $k(x,y) = \frac{p(x,y)}{p(x)p(y)}$ (see full paper)
 - graph Laplacians
 - control: Koopman operators

Simple demonstration: 2D hydrogen atom

• Hamiltonian: $\mathcal{H} = -\nabla^2 - \frac{1}{\|\mathbf{x}\|_2}$

• Eigenenergies: $E_{n,l} = \frac{1}{4} \left(n + \frac{1}{2} \right)^2 \ (n = 0, 1, \dots, -n \le l \le n)$

iters / 1000

Eigenvalues (NeuralSVD)

https://bit.ly/490Rn3z