Odpovídejte celou větou (na každou otázku) a každé své tvrzení řádně zdůvodněte. Dodržujte a ve svém řešení vyznačte dělení jednotlivých úloh na podúlohy.

Část A (max. zisk 20 bodů) Odpovězte jen tabulkou s číslem otázky a písmenem označujícím Vaši odpověď. Každá otázka má pouze jednu správnou odpověď. Za správnou odpověď je +5 bodů, za nevyplněnou odpověď 0 bodů a za nesprávně vyplněnou odpověď -2 body. Pokud je celkový součet bodů v části A záporný, je tento součet přehodnocen na 0 bodů.

- 1. Matice **A** je typu 6×6 . Determinantem matice **A** je z definice součet jistých 6! = 720 členů. Kolik z nich je jistě nulových, pokud $a_{15} = 0$?
 - (a) 0.
 - (b) 120.
 - (c) 360.
 - (d) 720.
- 2. Vyberte pravdivé tvrzení.
 - (a) Součinem dvou nediagonálních matic je vždy matice nediagonální.
 - (b) Součinem dvou horních trojúhelníkových matic může být matice, která není horní trojúhelníkovou.
 - (c) Součinem dvou symetrických matic je vždy matice symetrická.
 - (d) Součinem dvou čtvercových matic může být matice nečtvercová.
- 3. Soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ má řešení pro libovolný vektor **b**. Pak je pravda:
 - (a) Zobrazení A je epimorfismus.
 - (b) $ker(\mathbf{A})$ obsahuje pouze nulový vektor.
 - (c) Matice A má hodnost nutně rovnou počtu svých sloupců.
 - (d) Sloupce matice A tvoří bázi prostoru im(A).
- 4. Matice **A** typu 3×3 má vlastní hodnoty $\lambda_1 = 3$, $\lambda_2 = 1$, $\lambda_3 = 0$, jim příslušné vlastní vektory jsou $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Pak nutně platí:
 - (a) $\det(\mathbf{A}) = 4$.
 - (b) Třetí sloupec matice A je nulový.
 - (c) Matice A není diagonalisovatelná.
 - (d) $\ker(\mathbf{A}) = \mathbb{R}^3$.

Část B (max. zisk 20 bodů) V odpovědi je třeba uvést definice uvedených pojmů a dále podrobnou a smysluplnou argumentaci, která objasňuje pravdivost uvedeného tvrzení. Za správně formulované definice je 10 bodů, za správně vedený důkaz je dalších 10 bodů.

Nechť $(\vec{v}_1, \vec{v}_2, \vec{v}_3)$ je lineárně nezávislý seznam vektorů v lineárním prostoru L nad \mathbb{R} a ať $\vec{b} = 1 \cdot \vec{v}_1 + 2 \cdot \vec{v}_2 + 3 \cdot \vec{v}_3$. Dokažte, že platí $\mathsf{span}(\vec{v}_1, \vec{b}, \vec{v}_3) \subseteq \mathsf{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3)$.

Část C (max. zisk 20 bodů) Kromě zřetelně označeného výsledku (tj., odpovědi celou větou) je nutné odevzdat všechny mezivýpočty a stručné zdůvodnění postupu. Postup musí být zapsán přehledně a srozumitelně. Za chybný postup není možné dostat body, ačkoli nějaké výpočty jsou odevzdány. Za numerickou chybu, ale jinak správný postup, se strhává 1 nebo 2 body. Za část výpočtu je udělen odpovídající poměrný počet bodů z dvaceti.

Spočtěte kolmou projekci vektoru $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ na rovinu $x+2\cdot y-5\cdot z=0$. (Kolmou projekcí se myslí kolmá projekce vzhledem ke standardnímu skalárnímu součinu v \mathbb{R}^3 .)

Závěrečnou odpověď zapište celou větou.