

Pontificia Universidad Católica de Chile Departamento de Estadística Facultad de Matemática

Profesor: Jorge Gonzalez Ayudante: Daniel Acuña León

${\bf Ayudantía~4} \\ {\bf EYP2305/230I - Análisis~de~Regresi\'on} \\ {\bf 11~de~Abril} \\$

1. Considere el modelo $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, para i = 1, ..., 21 y con $\epsilon_1, ..., \epsilon_{21} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, para el que se obtuvo el siguiente ajuste usando R.

Coefficients:

	Value	Std. Error	t-value	Pr(> t)
(Intercept)	6.387	0.402	15.888	0.000
x	-2.099	0.138	-15.258	0.000

Residual standard error: 0.954 on 19 degrees of freedom. Multiple R-Squared: 0.925 $\,$ F-statistic: 233 on 1 and 19 degrees of freedom, the p-value is 4.08e-012

Correlation of Coefficients:

(Intercept)

x - 0.855

- a) Obtenga intervalos de 95 % de confianza para β_0 y β_1 . $(t_{(0.975,19)}=2{,}093)$
- b) Calcule la matriz de varianzas-covarianzas estimadas de $(\hat{\beta}_0, \hat{\beta}_1)^t$.