Raport - testowanie hipotez statystycznych

Kamila Grząka

20 czerwca 2023

1 Zadanie 1

Badanie polega na przetestowaniu hipotezy zerowej H_0 : $\mu=1.5$ na poziomie istotności $\alpha=0.05$ przeciwko hipotezom alternatywnym:

- H_1 : $\mu \neq 1.5$
- H_1 : $\mu > 1.5$
- H_1 : $\mu < 1.5$

Dane pochodzą z populacji o rozkładzie normalnym $(\mu, 0.2)$. W celu uzyskania oczekiwanych rezultatów przeprowadza się proces wyznaczania wartości testowej Z, identyfikacji i zaznaczania obszarów krytycznych, a także obliczania wartości p.

W tym zadaniu korzystamy ze wzoru na statystykę testową pod warunkiem, że znamy σ rozkładu testowanych zmiennych:

$$Z = \frac{\bar{X} - \mu_0}{\sigma} \cdot \sqrt{n}$$

gdzie:

- \bullet \bar{X} średnia próby
- μ_0 wartość hipotezy zerowej
- σ odchylenie standardowe próby
- n liczność próby

Dla wykorzystywanych danych Z=-7.041450899607091. Do policzenia obszarów krytycznych korzystamy ze wzorów:

$$\mu \neq \mu_0 \quad C_1 = \{x : x \notin (-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}})\}$$

$$\mu > \mu_0 \quad C_2 = \{x : x \geqslant z_{1-\alpha}\}$$

$$\mu < \mu_0 \quad C_3 = \{x : x \leqslant -z_{1-\alpha}\}$$

gdzie z_{α} to kwantyle rzędu α z rozkładu normalnego $\mathcal{N}(0,1)$.

Zatem:

$$\mu \neq \mu_0$$
 $C_1 = (-\infty, -1.959963984540054] \cup [1.959963984540054, \infty)$
 $\mu > \mu_0$ $C_2 = [1.6448536269514722, \infty)$
 $\mu < \mu_0$ $C_3 = (-\infty, -1.6448536269514722]$

Powtarzamy te czynności dla $\alpha \in \{0.01, 0.1\}$ Obszary krytyczne dla $\alpha = 0.01$:

$$\mu \neq \mu_0$$
 $C_1 = (-\infty, -2.5758293035489004] \cup [2.5758293035489004, \infty)$
 $\mu > \mu_0$ $C_2 = [2.3263478740408408, \infty)$
 $\mu < \mu_0$ $C_3 = (-\infty, -2.3263478740408408]$

Obszary krytyczne dla $\alpha=0.1$:

$$\mu \neq \mu_0$$
 $C_1 = (-\infty, -1.6448536269514722] \cup [1.6448536269514722, \infty)$
 $\mu > \mu_0$ $C_2 = [1.2815515655446004, \infty)$
 $\mu < \mu_0$ $C_3 = (-\infty, -1.2815515655446004]$

Aby wyznaczyć p-wartości, korzystamy ze wzorów (są one niezależne od α):

$$\begin{split} \mu \neq \mu_0 & \quad p\text{-wartoś\'c} = 2P(Z > |z|) \\ \mu > \mu_0 & \quad p\text{-warto\'s\'c} = P(Z > z) \\ \mu < \mu_0 & \quad p\text{-warto\'s\'c} = P(Z < z) \end{split}$$

Dla wykorzystywanych danych:

$$\mu \neq \mu_0$$
 p -wartość = 1.9024781749976682 · 10⁻¹²
 $\mu > \mu_0$ p -wartość = 0.99999999999488
 $\mu < \mu_0$ p -wartość = 9.51241291241344 · 10⁻¹³

Poniżej przedstawiamy wykresy obszarów krytycznych dla poszczególnych hipotez i wartości α .

• dla $\alpha = 0.05$

(a) Wykres obszaru krytycznego $\mu \neq \mu_0, \alpha = 0.05$

(c) Wykres obszaru krytycznego $\mu < \mu_0, \alpha = 0.05$

Rysunek 1: Wykresy dla poszczególnych hipotez dla $\alpha=0.05$

(a) Wykres obszaru krytycznego $\mu \neq \mu_0, \alpha = 0.01$

(b) Wykres obszaru krytycznego $\mu>\mu_0, \alpha=0.01$

(c) Wykres obszaru krytycznego $\mu < \mu_0, \alpha = 0.01$

Rysunek 2: Wykresy dla poszczególnych hipotez dla $\alpha=0.01$

(a) Wykres obszaru krytycznego $\mu \neq \mu_0, \alpha = 0.1$

(b) Wykres obszaru krytycznego $\mu>\mu_0,\alpha=0.1$

(c) Wykres obszaru krytycznego $\mu < \mu_0, \alpha = 0.1$

Rysunek 3: Wykresy dla poszczególnych hipotez dla $\alpha=0.1$

1.1 Wnioski

Jak możemy odczytać z powyższych wykresów dla $\alpha=0.05$ hipoteza zerowa $H_0:\mu_0=1.5$ zostanie zaakceptowana dla $\mu>\mu_0$. W reszcie przypadków odrzucamy H_0 i akceptujemy hipotezy alternatywne. Dla $\alpha=0.01$, $\alpha=0.1$ również tylko dla $\mu>\mu_0$ zostaje zaakceptowana hipoteza zerowa. Im większa alpha tym większę stają się obszary krytyczne.

2 Zadanie 2

Badanie polega na przetestowaniu hipotezy zerowej H_0 : $\sigma^2=1.5$ na poziomie istotności $\alpha=0.05$ przeciwko hipotezom alternatywnym:

- $H_1: \sigma^2 \neq 1.5$
- H_1 : $\sigma^2 > 1.5$
- H_1 : $\sigma^2 < 1.5$

Dane pochodzą z populacji o rozkładzie normalnym ($\mu = 0.2, \sigma^2$). W celu uzyskania oczekiwanych rezultatów przeprowadza się proces wyznaczania wartości testowej χ^2 , identyfikacji i zaznaczania obszarów krytycznych, a także obliczania wartości p. W tym zadaniu korzystamy ze wzoru na statystykę testową:

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

gdzie:

- S^2 wariancja z danych
- σ_0^2 wartość hipotezy zerowej
- \bullet n liczność próby

Dla wykorzystywanych danych $\chi^2=1110.968448901507.$ Do policzenia obszarów krytycznych korzystamy ze wzorów:

$$\sigma^{2} \neq \sigma_{0}^{2} \quad C_{1} = \{\chi^{2} : \chi^{2} \notin (\chi_{\alpha/2, n-1}^{2}, \chi_{1-\alpha/2, n-1}^{2})\}$$

$$\sigma^{2} > \sigma_{0}^{2} \quad C_{2} = \{\chi^{2} : \chi^{2} \geqslant \chi_{1-\alpha, n-1}^{2}\}$$

$$\sigma^{2} < \sigma_{0}^{2} \quad C_{3} = \{\chi^{2} : \chi^{2} \leqslant \chi_{\alpha, n-1}^{2}\}$$

gdzie $\chi^2_{\alpha,n-1}$ to kwantyle rzędu α z rozkładu χ^2 z n-1 stopniami swobody.

Zatem dla $\alpha = 0.05$ obszary krytyczne wynoszą:

$$\sigma^2 \neq \sigma_0^2$$
 $C_1 = (-\infty, 913.3009983021134] \cup [1088.4870677259353, \infty)$
 $\sigma^2 > \sigma_0^2$ $C_2 = [1073.6426506574246, \infty)$
 $\sigma^2 < \sigma_0^2$ $C_3 = (-\infty, 926.6311609204329]$

Dla $\alpha = 0.01$ obszary krytyczne wynoszą odowiednio:

$$\sigma^2 \neq \sigma_0^2 \quad C_1 = (-\infty, 887.6211352175186] \cup [1117.890452678641, \infty)$$

$$\sigma^2 > \sigma_0^2 \quad C_2 = [1105.9169575045823, \infty)$$

$$\sigma^2 < \sigma_0^2 \quad C_3 = (-\infty, 897.9644826908501]$$

Dla $\alpha = 0.1$ obszary krytyczne wynoszą odowiednio:

$$\sigma^2 \neq \sigma_0^2 \quad C_1 = (-\infty, 926.6311609204329] \cup [1073.6426506574246, \infty)$$

$$\sigma^2 > \sigma_0^2 \quad C_2 = [1056.6952292962342, \infty)$$

$$\sigma^2 < \sigma_0^2 \quad C_3 = (-\infty, 942.1612343926897]$$

Aby wyznaczyć p-wartości, korzystam ze wzorów:

$$\begin{split} \sigma^2 \neq \sigma_0^2 \quad \text{p-wartość} &= 1 - \left| 1 - 2P(X \not\in \chi^2) \right| = 2 \min\{P(X \not\in \chi^2), P(X \in \chi^2)\} \\ \sigma^2 &> \sigma_0^2 \quad \text{p-wartość} &= P(X \in \chi^2) \\ \sigma^2 &< \sigma_0^2 \quad \text{p-wartość} &= P(X \not\in \chi^2) \end{split}$$

Dla wykorzystywanych danych:

$$\begin{split} \sigma^2 \neq \sigma_0^2 & \text{ p-wartość} = 0.015023252487834649 \\ \sigma^2 > \sigma_0^2 & \text{ p-wartość} = 0.007511626243917324 \\ \sigma^2 < \sigma_0^2 & \text{ p-wartość} = 0.9924883737560827 \end{split}$$

Poniżej przedstawiamy wykresy obszarów krytycznych dla poszczególnych hipotez i wartości α .

• dla $\alpha = 0.05$

- (a) Wykres obszaru krytycznego $\sigma^2 \neq \sigma_0^2$ dla $\alpha = 0.05$
- (b) Wykres obszaru krytycznego $\sigma^2 > \sigma_0^2$ dla $\alpha = 0.05$

(c) Wykres obszaru krytycznego $\sigma^2 < \sigma_0^2$ dla $\alpha = 0.05$

Rysunek 4: Wykresy dla poszczególnych hipotez dla $\alpha=0.05$

- (a) Wykres obszaru krytycznego $\sigma^2 \neq \sigma_0^2$ dla $\alpha = 0.01$
- (b) Wykres obszaru krytycznego $\sigma^2 > \sigma_0^2$ dla $\alpha = 0.01$

(c) Wykres obszaru krytycznego $\sigma^2 < \sigma_0^2$ dla $\alpha = 0.01$

Rysunek 5: Wykresy dla poszczególnych hipotez dla $\alpha=0.01$

(a) Wykres obszaru krytycznego $\sigma^2 \neq \sigma_0^2$ dla $\alpha = 0.1$

(b) Wykres obszaru krytycznego $\sigma^2 > \sigma_0^2$ dla $\alpha = 0.1$

(c) Wykres obszaru krytycznego $\sigma^2 < \sigma_0^2$ dla $\alpha = 0.1$

Rysunek 6: Wykresy dla poszczególnych hipotez dla $\alpha=0.1$

2.1 Wnioski

Jak możemy odczytać z powyższych wykresów dla $\alpha=0.05$ hipoteza zerowa $H_0:\sigma_0^2=1.5$ zostanie zaakceptowana dla $\sigma^2<\sigma_0^2$. W reszcie przypadków odrzucamy H_0 i akceptujemy hipotezy alternatywne. Dzieje się tak również dla $\alpha=0.1$. Natomiast dla $\alpha=0.01$ obszary krytyczne zmniejszają się w porównaniu do poprzednich α i hipoteza zerowa zostanie zaakceptowana dla $\sigma^2<\sigma_0^2$ oraz $\sigma^2\neq\sigma_0^2$.

3 Zadanie 3

W tym zadaniu symulacyjnie wyznaczamy błędy I i II rodzaju oraz moc testu. Błąd I rodzaju polega na odrzuceniu hipotezy zerowej, która w rzeczywistości jest prawdziwa. Wartość teoretyczna tego błędu równa jest poziomowi istotności α . Natomiastem błędem II rodzaju jest nieodrzucenie hipotezy zerowej, gdy w rzeczywistości jest ona fałszywa. To sytuacja, w której błędnie nie odrzucamy hipotezy zerowej i tym samym nie przyjmujemy hipotezy alternatywnej. Błąd drugiego rodzaju jest bezpośrednio związany z mocą testu, która wynosi 1- błąd II rodzaju.

3.1 Błąd I rodzaju

Aby otrzymać błąd I rodzaju, generujemy prostą próbę losową z rozkładu normalnego o parametrach zgodnych z H_0 i sprawdzamy ile razy odrzucamy hipotezę zerową. Wyniki postanowiłyśmy przedstawić na wykresach pudełkowych dla $\alpha \in \{0.01, 0.05, 0.1\}$.

• dla $\alpha = 0.01$

$$\mu \neq \mu_0$$
 $C_1 = (-\infty, -2.5758293035489004] \cup [2.5758293035489004, \infty)$
 $\mu > \mu_0$ $C_2 = [2.3263478740408408, \infty)$
 $\mu < \mu_0$ $C_3 = (-\infty, -2.3263478740408408]$

Rysunek 7: Wykresy pudełkowe dla hipotez z zadania 1. dla $\alpha=0.01$

$$\sigma^2 \neq \sigma_0^2 \quad C_1 = (-\infty, 887.6211352175186] \cup [1117.890452678641, \infty)$$

$$\sigma^2 > \sigma_0^2 \quad C_2 = [1105.9169575045823, \infty)$$

$$\sigma^2 < \sigma_0^2 \quad C_3 = (-\infty, 897.9644826908501]$$

Rysunek 8: Wykresy pudełkowe dla hipotez z zadania 2. dla $\alpha=0.01$

• dla $\alpha = 0.05$

$$\mu \neq \mu_0$$
 $C_1 = (-\infty, -1.959963984540054] \cup [1.959963984540054, \infty)$
 $\mu > \mu_0$ $C_2 = [1.6448536269514722, \infty)$
 $\mu < \mu_0$ $C_3 = (-\infty, -1.6448536269514722]$

Rysunek 9: Wykresy pudełkowe dla hipotez z zadania 1. dla $\alpha=0.05$

$$\sigma^2 \neq \sigma_0^2 \quad C_1 = (-\infty, 913.3009983021134] \cup [1088.4870677259353, \infty)$$

$$\sigma^2 > \sigma_0^2 \quad C_2 = [1073.6426506574246, \infty)$$

$$\sigma^2 < \sigma_0^2 \quad C_3 = (-\infty, 926.6311609204329]$$

Rysunek 10: Wykresy pudełkowe dla hipotez z zadania 2. dla $\alpha=0.05$

• dla $\alpha = 0.1$

$$\mu \neq \mu_0$$
 $C_1 = (-\infty, -1.6448536269514722] \cup [1.6448536269514722, \infty)$
 $\mu > \mu_0$ $C_2 = [1.2815515655446004, \infty)$
 $\mu < \mu_0$ $C_3 = (-\infty, -1.2815515655446004]$

Rysunek 11: Wykresy pudełkowe dla hipotez z zadania 1. dla $\alpha=0.1$

$$\sigma^2 \neq \sigma_0^2 \quad C_1 = (-\infty, 926.6311609204329] \cup [1073.6426506574246, \infty)$$

$$\sigma^2 > \sigma_0^2 \quad C_2 = [1056.6952292962342, \infty)$$

$$\sigma^2 < \sigma_0^2 \quad C_3 = (-\infty, 942.1612343926897]$$

Rysunek 12: Wykresy pudełkowe dla hipotez z zadania 2. dla $\alpha=0.1$

3.2 Błąd II rodzaju

Aby otrzymać błąd II rodzaju, generujemy prostą próbę losową z rozkładu normalnego o parametrach zgodnych z H_1 i sprawdzamy ile razy przyjmujemy hipotezę zerową. Wyniki postanowiłyśmy przedstawić na wykresach dla μ z przedziału [1.4, 1.6] z krokiem 100 oraz σ^2 z przedziału [1, 2] z krokiem 100.

• dla $\mu \in [1.4, 1.6]$ z krokiem 100, $\alpha = 0.05$

$$\mu \neq \mu_0$$
 $C_1 = (-\infty, -1.959963984540054] \cup [1.959963984540054, \infty)$
 $\mu > \mu_0$ $C_2 = [1.6448536269514722, \infty)$
 $\mu < \mu_0$ $C_3 = (-\infty, -1.6448536269514722]$

Rysunek 13: Wykresy dla hipotez z zadania 1. dla $\alpha=0.05$

• dla $\sigma^2 \in [1, 2]$ z krokiem 100, $\alpha = 0.05$

$$\sigma^2 \neq \sigma_0^2 \quad C_1 = (-\infty, 913.3009983021134] \cup [1088.4870677259353, \infty)$$

$$\sigma^2 > \sigma_0^2 \quad C_2 = [1073.6426506574246, \infty)$$

$$\sigma^2 < \sigma_0^2 \quad C_3 = (-\infty, 926.6311609204329]$$

Rysunek 14: Wykresy dla hipotez z zadania 2. dla $\alpha=0.05$

3.3 Moc testu

Moc testu to odrzucenie fałszywej hipotezy zerowej i przyjęcie prawdziwej hipotezy alternatywnej. Otrzymujemy ją ze wzoru 1- błąd II rodzaju.

• dla $\mu \in [1.4, 1.6], \quad \alpha = 0.05$

Rysunek 15: Wykresy dla hipotez z zadania 1. dla $\alpha=0.05$

• dla $\sigma^2 \in [1, 2], \quad \alpha = 0.05$

Rysunek 16: Wykresy dla hipotez z zadania 2. dla $\alpha=0.05$

3.4 Wnioski

Wyznaczone wartości błędów I i II rodzaju są zbliżone do oczekiwanych wartości, co potwierdza poprawność obliczeń. Możemy zaobserwować, że wartości błędów I rodzaju są porównywalne do poziomu istotności α . W przypadku błędów II rodzaju oraz mocy testów możemy zauważyć, że im bierzemy wartość bliższą teoretycznej wartości hipotezy zerowej, tym większy jest błąd i tym mniejsza moc testu.