Comments

I also read through the part on recursions and I thought the recursive definitions of well-formed formulas as n-ary functions taking in n arguments (each of which may be a function applied to its arguments) made a lot of sense.

On the other hand, polish notation without parenthesizing the arguments felt more complicated than the infix notation we have been using thus far. I understand how it reduces ambiguity, but I found it more tasking to process and mentally parse the wffs written in polish notation.

Questions

In the section about 0-ary connectives, we say that \top and \bot can be thought of as the constants T and F having $\overline{v}(\bot) = F$ and $\overline{v}(\top) = T$ for every v. Wouldn't we get a contradiction if we have a function that negates v? For instance, if $w = \neg v$ for some function v, doesn't $\overline{w}(\bot) = \neg \overline{v}(\bot)$ imply that $\overline{w}(\bot) = T$?

Exercises

1. Let G be the following three-place Boolean function.

$$G(F,F,F)=T,$$
 $G(T,F,F)=T,$ $G(F,F,T)=T,$ $G(F,T,F)=T,$ $G(F,T,T)=F,$ $G(F,T,T)=F,$ $G(T,T,T)=F.$

(a) Find a wff using at most the connectives \land , \lor , and \neg , that realizes G.

 $G(\alpha, \beta, \gamma)$ always disagrees with the majority of α, β , and γ .

That is,

$$G(\alpha, \beta, \gamma) = \neg((\alpha \land \beta) \lor (\alpha \land \gamma) \lor (\beta \land \gamma))$$

(b) Then find such a wff in which connective symbols occur at not more than $5\ \mathrm{places}.$

$$G(\alpha, \beta, \gamma) = \neg(\#\alpha\beta\gamma)$$

Using only \land, \lor, \lnot :

$$G(\alpha,\beta,\gamma) = \neg (\ (\alpha \wedge (\beta \vee \gamma)) \ \vee \ (\beta \wedge \gamma))$$