EE 207 (MBP): Question Set 1

1. For a semiconductor in equilibrium at 300 K, $E_q = 1.4 \,\mathrm{eV}$ and $E_F = E_c - 0.2 \,\mathrm{eV}$. What is the probability that an electron state with energy $E = E_c + 0.1 \, eV$ is occupied?

(A) 6.76×10^{-2} (B) 5.52×10^{-3} (C) 3.24×10^{-5} (D) 9.12×10^{-6}

2. For a semiconductor in equilibrium at 300 K, $E_g = 1.4 \, eV$ and $E_F = E_c - 0.2 \, eV$. What is the probability that an electron state with energy $E = E_v - 0.1 \, eV$ is occupied?

(C) 5.74×10^{-3} (D) 2.62×10^{-4} (B) 1.22×10^{-1} (A) 1

3. For a semiconductor in equilibrium at 300 K, $E_q = 1.1 \, eV$ and $E_F = E_v + 0.08 \, eV$. What is the probability that an electron state with energy $E = E_v - 0.1 \, eV$ is not occupied?

(B) 3.74×10^{-3} (C) 9.45×10^{-4} (D) 5.68×10^{-6} (A) 7.22×10^{-1}

4. Consider an *n*-type silicon sample in which $E_F = E_c - 0.15 \,\text{eV}$. Consider an electron state in the conduction band with energy E. What is E (with respect to E_c) for the probability of occupation of that state to be 10^{-3} ? (T = 300 K.)

(B) $16.4 \,\mathrm{meV}$ (C) $21.9 \,\mathrm{meV}$ (D) $28.5 \,\mathrm{meV}$ $(A) 8.8 \,\mathrm{meV}$

5. Consider a uniformly doped silicon sample at $T = 300 \,\mathrm{K}$ with the minority carrier concentration $p_0 = 6.8 \times 10^3 \,\mathrm{cm}^{-3}$. What is n_0 (the equilibrium electron concentration)? $(n_i = 1.5 \times 10^{10} \,\mathrm{cm}^{-3}, N_c = 2.8 \times 10^{19} \,\mathrm{cm}^{-3}, N_v = 1.04 \times 10^{19} \,\mathrm{cm}^{-3}.)$

(A) $3.3 \times 10^{16} \text{ cm}^{-3}$ (B) $1.9 \times 10^{17} \text{ cm}^{-3}$ (C) $2.2 \times 10^{15} \text{ cm}^{-3}$ (D) $1.5 \times 10^{18} \text{ cm}^{-3}$

6. For the conditions given in Q-5, what is the position of the Fermi level (with E_c taken as $0 \, \text{eV}$?

 $(n_i = 1.5 \times 10^{10} \,\mathrm{cm}^{-3}, N_c = 2.8 \times 10^{19} \,\mathrm{cm}^{-3}, N_v = 1.04 \times 10^{19} \,\mathrm{cm}^{-3}.)$

(A) $-0.085 \,\mathrm{eV}$ (B) $-0.112 \,\mathrm{eV}$ (C) $-0.174 \,\mathrm{eV}$ (D) $-0.198 \,\mathrm{eV}$

7. Consider a uniformly doped silicon sample at $T = 300 \,\mathrm{K}$. For $E_F = E_c - 0.3 \,\mathrm{eV}$, what are the equilibrium concentrations n_0 and p_0 ?

 $(n_i = 1.5 \times 10^{10} \,\mathrm{cm}^{-3}, N_c = 2.8 \times 10^{19} \,\mathrm{cm}^{-3}, N_v = 1.04 \times 10^{19} \,\mathrm{cm}^{-3}.)$

8. Consider a uniformly doped silicon sample at $T = 300 \,\mathrm{K}$. For $E_F = E_v + 0.25 \,\mathrm{eV}$, what are the equilibrium concentrations n_0 and p_0 ?

 $(n_i = 1.5 \times 10^{10} \,\mathrm{cm}^{-3}, N_c = 2.8 \times 10^{19} \,\mathrm{cm}^{-3}, N_v = 1.04 \times 10^{19} \,\mathrm{cm}^{-3}.)$

(A) $n_0 = 3.4 \times 10^5 \text{ cm}^{-3}$, $p_0 = 6.6 \times 10^{14} \text{ cm}^{-3}$

(B) $n_0 = 5.4 \times 10^6 \text{ cm}^{-3}$, $p_0 = 4.5 \times 10^{13} \text{ cm}^{-3}$ (C) $n_0 = 9.2 \times 10^5 \text{ cm}^{-3}$, $p_0 = 1.8 \times 10^{14} \text{ cm}^{-3}$

(D) $n_0 = 7.8 \times 10^6 \text{ cm}^{-3}$, $p_0 = 1.4 \times 10^{13} \text{ cm}^{-3}$

9. Consider a uniformly doped silicon sample at $T = 300 \,\mathrm{K}$. For $E_F = E_i + 0.28 \,\mathrm{eV}$, what are the equilibrium concentrations n_0 and p_0 ?

$$(n_i = 1.5 \times 10^{10} \,\mathrm{cm}^{-3}, N_c = 2.8 \times 10^{19} \,\mathrm{cm}^{-3}, N_v = 1.04 \times 10^{19} \,\mathrm{cm}^{-3}.)$$

- (A) $n_0 = 1.2 \times 10^{14} \text{ cm}^{-3}, \ p_0 = 8.9 \times 10^5 \text{ cm}^{-3}$

- (B) $n_0 = 5.6 \times 10^{13} \text{ cm}^{-3}$, $p_0 = 7.6 \times 10^6 \text{ cm}^{-3}$ (C) $n_0 = 8.8 \times 10^{15} \text{ cm}^{-3}$, $p_0 = 2.6 \times 10^4 \text{ cm}^{-3}$ (D) $n_0 = 7.6 \times 10^{14} \text{ cm}^{-3}$, $p_0 = 3.0 \times 10^5 \text{ cm}^{-3}$
- 10. Consider a uniformly doped silicon sample at $T = 300 \,\mathrm{K}$. For $E_F = E_i 0.35 \,\mathrm{eV}$, what are the equilibrium concentrations n_0 and p_0 ?

$$(n_i = 1.5 \times 10^{10} \,\mathrm{cm}^{-3}, N_c = 2.8 \times 10^{19} \,\mathrm{cm}^{-3}, N_v = 1.04 \times 10^{19} \,\mathrm{cm}^{-3}.)$$

- (A) $n_0 = 6.7 \times 10^5 \text{ cm}^{-3}$, $p_0 = 1.3 \times 10^{15} \text{ cm}^{-3}$
- (B) $n_0 = 2.0 \times 10^4 \text{ cm}^{-3}$, $p_0 = 1.1 \times 10^{16} \text{ cm}^{-3}$ (C) $n_0 = 8.4 \times 10^5 \text{ cm}^{-3}$, $p_0 = 2.3 \times 10^{14} \text{ cm}^{-3}$
- (D) $n_0 = 8.9 \times 10^4 \text{ cm}^{-3}$, $p_0 = 5.5 \times 10^{15} \text{ cm}^{-3}$
- 11. For a uniformly doped silicon sample at 300 K, $N_d = 5 \times 10^{16} \,\mathrm{cm}^{-3}$, $N_a = 0$. Assuming complete ionisation of donor and acceptor atoms, what is the location of the Fermi level?

$$(n_i = 1.5 \times 10^{10} \,\mathrm{cm}^{-3}, N_c = 2.8 \times 10^{19} \,\mathrm{cm}^{-3}, N_v = 1.04 \times 10^{19} \,\mathrm{cm}^{-3}.)$$

- (A) $E_c E_F = 0.254 \text{ eV}$
- (B) $E_c E_F = 0.206 \text{ eV}$
- (C) $E_c E_F = 0.164 \text{ eV}$
- (D) $E_c E_F = 0.086 \text{ eV}$
- 12. For a uniformly doped silicon sample at 300 K, $N_a = 3.5 \times 10^{15} \,\mathrm{cm}^{-3}$, $N_d = 0$. Assuming complete ionisation of donor and acceptor atoms, what is the location of the Fermi level?

$$(n_i = 1.5 \times 10^{10} \,\mathrm{cm}^{-3}, N_c = 2.8 \times 10^{19} \,\mathrm{cm}^{-3}, N_v = 1.04 \times 10^{19} \,\mathrm{cm}^{-3}.)$$

- (A) $E_F E_v = 0.083 \text{ eV}$
- (B) $E_F E_v = 0.125 \text{ eV}$
- (C) $E_F E_v = 0.176 \text{ eV}$
- (D) $E_F E_v = 0.206 \text{ eV}$
- 13. For a uniformly doped silicon sample at 300 K, $N_a = 5 \times 10^{15} \,\mathrm{cm}^{-3}$, $N_d = 3 \times 10^{15} \,\mathrm{cm}^{-3}$. Assuming complete ionisation of donor and acceptor atoms, what is the location of the Fermi level?

$$(n_i = 1.5 \times 10^{10} \,\mathrm{cm}^{-3}, N_c = 2.8 \times 10^{19} \,\mathrm{cm}^{-3}, N_v = 1.04 \times 10^{19} \,\mathrm{cm}^{-3}.)$$

- (A) $E_F E_v = 0.078 \text{ eV}$
- (B) $E_F E_v = 0.135 \text{ eV}$
- (C) $E_F E_v = 0.221 \text{ eV}$
- (D) $E_F E_v = 0.253 \text{ eV}$
- 14. A uniformly doped n-type silicon region with $N_d = 1.2 \times 10^{16} \, \mathrm{cm}^{-3}$ (and $N_a = 0$) is made p-type by doping it with $N_a > N_d$. Assume N_a to be uniform in this region. This

compensated region is found to have $n_0 = 1.25 \times 10^4 \,\mathrm{cm}^{-3}$. What is N_a ? $(n_i = 1.5 \times 10^{10} \,\mathrm{cm}^{-3})$.

- (A) $1.8 \times 10^{16} \text{ cm}^{-3}$
- (B) $2.2 \times 10^{16} \text{ cm}^{-3}$
- (C) $2.6 \times 10^{16} \text{ cm}^{-3}$
- (D) $3.0 \times 10^{16} \text{ cm}^{-3}$
- 15. The band diagram for a semiconductor region is shown in the figure. Assume that all quantities vary only in the x direction. Which of the following statements is true?

- (A) J_n^{diff} points in the negative x direction.
- (B) The hole concetration increases as x is increased.
- (C) J_n^{drift} and J_n^{diff} are equal and opposite for all values of x.
- (D) J_p^{diff} and J_n^{diff} are comparable in magnitude.
- 16. Consider a uniformly doped n-type silicon sample with $N_d = 5 \times 10^{17} \,\mathrm{cm}^{-3}$ at 300 K. Use the μ_n - N_d plot in the figure to estimate the low-field mobility. For an applied electric field of 100 V/cm, what is J_n^{drift} (magnitude)?

- (A) $3.2 \times 10^3 \text{ A/cm}^2$
- (B) $5.8 \times 10^2 \text{ A/cm}^2$
- (C) $6.5 \times 10^3 \text{ A/cm}^2$
- (D) $1.9 \times 10^4 \text{ A/cm}^2$

17. A rectangular bar of n-type silicon at 300 K with length 50 μ m and a cross-sectional area of $200 \,\mu\text{m}^2$ conducts a current of $20 \,\text{mA}$ when a voltage of 4 V is applied. Assume that the current is entirely due to J_n^{drift} . The dependence of μ_n on N_d is shown in the figure. What is N_d ?

- (A) $5.0 \times 10^{17} \text{ cm}^{-3}$
- (B) $7.0 \times 10^{16} \text{ cm}^{-3}$
- (C) 1.0 × 10¹⁷ cm⁻³
- (D) $3.5 \times 10^{16} \text{ cm}^{-3}$
- 18. For the conditions given in Q-17, What is the hole current? $(n_i = 1.5 \times 10^{10} \, \mathrm{cm}^{-3})$
 - (A) 6.9×10^{-10} A
 - (B) 4.2×10^{-12} A
 - (C) $1.5 \times 10^{-14} \text{ A}$
 - (D) $1.1 \times 10^{-16} \text{ A}$
- 19. The resistivity of a p-type silicon sample doped with boron atoms is 0.1Ω -cm at $300 \,\mathrm{K}$. The dependence of μ_p on N_a is shown in the figure. What is p_0 ?

- (A) $5.0 \times 10^{17} \text{ cm}^{-3}$
- (B) $5.8 \times 10^{16} \text{ cm}^{-3}$
- (C) 1.0 × 10¹⁷ cm⁻³
- (D) $3.5 \times 10^{16} \text{ cm}^{-3}$
- 20. The dependence of hole drift velocity on electric field can be modelled as

$$v_d = \frac{\mu_p \mathcal{E}}{1 + \frac{\mu_p \mathcal{E}}{v_s^p}}$$

For silicon at 300 K, $\mu_p = 210 \,\mathrm{cm^2/V}$ -s, $v_s^p = 1 \times 10^7 \,\mathrm{cm/s}$ for $N_a = 10^{17} \,\mathrm{cm^{-3}}$. Consider a rectangular bar of p-type silicon with length $5 \,\mu\mathrm{m}$, cross-sectional area of $100 \,\mu\mathrm{m^2}$, and $N_a = 10^{17} \,\mathrm{cm^{-3}}$. What is the current conducted by the sample at 300 K for an applied voltage of 5 V? (Assume the electric field to be constant throughout the sample.)

- (A) 6.5 mA (B) 13 mA (C) 19 mA (D) 28 mA
- 21. Consider a rectangular bar of intrinsic silicon at 300 K. We are interested in the variation of the resistivity of the bar with respect to temperature in a relatively small temperature range. Assume the carrier mobilities μ_n and μ_p to be constant. Treat the energy gap E_g to be constant (1.1 eV), but take into account the T-dependence of N_c and N_v . What is the temperature at which the resistivity of the sample is reduced by 25 % (compared to its value at 300 K)?
 - (A) $320 \,\mathrm{K}$ (B) $304 \,\mathrm{K}$ (C) $312 \,\mathrm{K}$ (D) $328 \,\mathrm{K}$
- 22. For an intrinsic semiconductor sample, the conductivity is found to be σ_0 and $1.5\sigma_0$ at $T=300\,\mathrm{K}$ and $T=309\,\mathrm{K}$, respectively. Ignore the dependence of μ_n , μ_p on temperature. What is the energy gap of the semiconductor?
 - (A) $0.64 \,\mathrm{eV}$ (B) $1.1 \,\mathrm{eV}$ (C) $1.42 \,\mathrm{eV}$ (D) $2.05 \,\mathrm{eV}$
- 23. Consider the "balls and bins" example discussed in class. Let the number of balls in bin k be N_k at time t. Assume that the movement of the balls is governed by the following rule: In each time step, $0.4 \times N_k$ balls from bin k remain in bin k, $0.3 \times N_k$ balls move to bin k+1, and $0.3 \times N_k$ balls move to bin k-1. Initially, we have 5000 balls in the central bin (called bin 0). What is the population in bin 1 after the first three time steps (rounded off to an integer)?
 - (A) 775 (B) 925 (C) 1125 (D) 1245
- 24. In a semiconductor, the electron diffusion current density at a certain location is $745 \,\mathrm{A/cm^2}$ at 300 K. The electron mobility is $1800 \,\mathrm{cm^2/V}$ -s at the same temperature. What is the concentration gradient dn/dx at this location?
 - (A) $3.4 \times 10^{17} \,\mathrm{cm}^{-4}$
 - (B) $6.8 \times 10^{18} \,\mathrm{cm}^{-4}$
 - (C) $4.4 \times 10^{19} \,\mathrm{cm}^{-4}$
 - (D) $1 \times 10^{20} \,\mathrm{cm}^{-4}$
- 25. The hole density in a semiconductor varies linearly from $p_1=10^{12}\,\mathrm{cm}^{-3}$ at x=0 to $p_2=8\times 10^{11}\,\mathrm{cm}^{-3}$ at $x=0.1\,\mu\mathrm{m}$. The electric field $\mathcal E$ is negligibly small. If the hole current density is $12.4\,\mathrm{mA/cm}^2$, what is μ_p ? $(T=300\,\mathrm{K.})$
 - (A) $110 \text{ cm}^2/\text{V-s}$
 - (B) $150 \text{ cm}^2/\text{V-s}$
 - (C) $245 \text{ cm}^2/\text{V-s}$
 - (D) 308 cm²/V-s
- 26. The doping density in an n-type silicon sample varies as

$$N_d(x) = N_0 \left(1 + a_1 x + a_2 x^2 \right),$$

where $N_0=10^{16}\,\mathrm{cm^{-3}}$. Assume $n(x)\approx N_d(x)$ and that the semiconductor is in equilibrium at 300 K. The conduction band edge E_c is $E_F+0.18\,\mathrm{eV}$ at $x=1\,\mu\mathrm{m}$ and $E_F+0.12\,\mathrm{eV}$ at $x=2\,\mu\mathrm{m}$. What is a_1 ?

$$(N_c = 2.8 \times 10^{19} \,\mathrm{cm}^{-3}, N_v = 1.04 \times 10^{19} \,\mathrm{cm}^{-3}.)$$

(A)
$$-1.5 / \mu \text{m}$$
 (B) $-6.8 / \mu \text{m}$ (C) $-9.7 / \mu \text{m}$ (D) $-12.3 / \mu \text{m}$

- 27. For the conditions given in Q-26, what is a_2 ?
 - (A) $11.35/(\mu \text{m})^2$ (B) $8.43/(\mu \text{m})^2$ (C) $13.44/(\mu \text{m})^2$ (D) $5.87/(\mu \text{m})^2$
- 28. Consider a p-type silicon sample with $p_0 = 10^{16} \, \mathrm{cm}^{-3}$, $n_i = 10^{10} \, \mathrm{cm}^{-3}$, $\tau_p = 0.1 \, \mu \mathrm{s}$, $\tau_n = 0.2 \, \mu \mathrm{s}$. Excess carriers are injected into this sample such that $\Delta n = \Delta p = 5 \times 10^{14} \, \mathrm{cm}^{-3}$. Let $n_1 = p_1 \approx n_i$ in the SRH equation. What is the net recombination rate?
 - (A) $5.5 \times 10^{20} \text{ cm}^{-3} \text{s}^{-1}$
 - (B) $2.6 \times 10^{20} \text{ cm}^{-3} \text{s}^{-1}$
 - (C) 5.0 × 10²¹ cm⁻³s⁻¹
 - (D) $2.4 \times 10^{21} \text{ cm}^{-3} \text{s}^{-1}$
- 29. Consider a uniformly doped n-type silicon sample with $N_d = 5 \times 10^{17}$ cm⁻³, $\tau_n = 1 \,\mu\text{s}$, $\tau_p = 0.5 \,\mu\text{s}$, $n_1 = p_1 \approx n_i = 10^{10}$ cm⁻³. In a certain region of this sample, both electrons and holes are removed by some means such that $n \ll n_i$ and $p \ll n_i$. What is the SRH rate of generation?
 - (A) $5.4 \times 10^{14} \text{ cm}^{-3} \text{s}^{-1}$
 - (B) $2.8 \times 10^{16} \text{ cm}^{-3} \text{s}^{-1}$
 - (C) 6.7 × 10¹⁵ cm⁻³s⁻¹
 - (D) $1.5 \times 10^{17} \text{ cm}^{-3} \text{s}^{-1}$
- 30. Light of a certain wavelength is incident on an n-type silicon sample, giving rise to an optical generation rate of $G_{\rm opt} = 6 \times 10^{20} \, / {\rm cm}^3$ -s throughout the sample. If $n_0 = 1.5 \times 10^{17} \, {\rm cm}^{-3}$, what is Δp in the steady state? ($\tau_p = 0.1 \, \mu {\rm s}$, $\tau_n = 0.2 \, \mu {\rm s}$.)
 - (A) $2.4 \times 10^{15} \text{ cm}^{-3}$
 - (B) $6.0 \times 10^{13} \text{ cm}^{-3}$
 - (C) $2.6 \times 10^{16} \text{ cm}^{-3}$
 - (D) $1.2 \times 10^{14} \text{ cm}^{-3}$
- 31. Consider the shaded rectangular volume of a semiconductor shown in the figure. An incident steady light produces carriers at the rate of $G_{\rm opt} = 5 \times 10^{19} \, / {\rm cm}^3$ -s in this volume. The rate of net thermal recombination is constant throughout the volume and is given by $R G = 2 \times 10^{19} \, / {\rm cm}^3$ -s. The hole current density at x_1 is $J_p(x_1) = 1 \, {\rm mA/cm}^2$. If $(x_2 x_1)$ is $1 \, \mu {\rm m}$, what is $J_p(x_2)$? (Assume that there are no variations and therefore no currents in the y and z directions.)

- (A) $1.48 \,\mathrm{mA/cm^2}$
- (B) $1.04 \,\mathrm{mA/cm^2}$
- (C) $0.52 \,\mathrm{mA/cm^2}$
- (D) $4.33 \,\mathrm{mA/cm^2}$
- 32. Consider a bar of p-type silicon with $N_a=10^{16}\,\mathrm{cm}^{-3}$, illuminated uniformly (see figure) such that the optical generation rate is G_{opt} , assumed constant throughout the sample. The cross-sectional area of the bar is $50\,\mu\mathrm{m}^2$, and the material parameters are $\mu_n=1000\,\mathrm{cm}^2/\mathrm{V}$ -s, $\mu_p=400\,\mathrm{cm}^2/\mathrm{V}$ -s, $\tau_n=0.1\,\mu\mathrm{s}$, $\tau_p=0.5\,\mu\mathrm{s}$, $n_i=1.5\times10^{10}\,\mathrm{cm}^{-3}$. For an applied voltage of $10\,\mathrm{V}$, what is the change in the current ΔI (due to light) for $G_{\mathrm{opt}}=10^{21}\,/\mathrm{cm}^3$ -s? (Assume that n and p do not vary with x.)

- (A) $40 \,\mu\text{A}$ (B) $56 \,\mu\text{A}$ (C) $80 \,\mu\text{A}$ (D) $112 \,\mu\text{A}$
- 33. A uniformly doped p-type silicon sample is subjected to a light pulse which produces a change in the excess minority carrier concentration as shown in the figure. Assuming the optical generation rate to be constant throughout the sample (for a given light intensity), what is G_{opt} in the interval $0 < t < t_0$?

(B)
$$9.3 \times 10^{19} \text{ cm}^{-3}\text{s}^{-1}$$

(C) $4.1 \times 10^{20} \text{ cm}^{-3}\text{s}^{-1}$
(D) $7.5 \times 10^{21} \text{ cm}^{-3}\text{s}^{-1}$

$$(C)$$
 4.1 × 10²⁰ cm⁻³s⁻¹

(D)
$$7.5 \times 10^{21} \text{ cm}^{-3} \text{s}^{-1}$$

34. For the conditions given in Q-33, what is $G_{\rm opt}$ in the interval $t > t_0$?

(A)
$$3.2 \times 10^{21} \text{ cm}^{-3} \text{s}^{-1}$$

(A)
$$3.2 \times 10^{21} \text{ cm}^{-3} \text{s}^{-1}$$

(B) $8.8 \times 10^{19} \text{ cm}^{-3} \text{s}^{-1}$
(C) $0.5 \times 10^{21} \text{ cm}^{-3} \text{s}^{-1}$
(D) $6.5 \times 10^{20} \text{ cm}^{-3} \text{s}^{-1}$

(C)
$$0.5 \times 10^{21} \text{ cm}^{-3} \text{s}^{-1}$$

(D)
$$6.5 \times 10^{20} \text{ cm}^{-3} \text{s}^{-1}$$