

SOUTHEASTERN MASSACHUSETTS **UNIVERSITY**

SMU RESEARCH FOUNDATION

PHISP COUTH PASSACHUSETTS UNIV OF PHISP COUTH PASSACHUSETTS Univ OF PHISP (South Pastern Massachusetts Univ OF PHISP (South Phisp (South Phisp (South Phis

NONLINGAP ANALYSIS OF

Unclas 15929

N7n-138#3

Technical Report EE-73-6 Grant NASA/GSFC NGR 22-031-002 October 2, 1973

NONLINEAR ANALYSIS OF PHASE-LOCKED LOOPS WITH RAPIDLY VARYING PHASE

by

CHI-HAU CHEN, Senior Member, TEEE
and
MAISIE FAN, Student Member, IEEE
Southeastern Massachusetts University
North Dartmouth, Massachusetts 02747

Abstract

The performance of command and telemetry systems, useful in deep-space communications, is frequently affected by the radio-frequency phase error which is introduced at the point of reception by means of the carrier tracking loop. In low data rate communications, this phase error which is highly unpredictable may vary rapidly over the duration of the signaling interval. In this paper such phase variation is characterized by a sinusoidal input phase, k $\sin(\omega_0 t + \pi/6)$, which models a typical phase variation in communication over turbulent media. Conditions for synchronization stability and the acquisition behavior are examined by detailed computer study of the phase-plane trajectories for the second and third-order loops with perfect integrator. For k = 0.001, it is determined that $f_0/AK \le 1/4$ for system stability. Here AK is the loop gain. For given f_0 , the condition for stability is $kf_0 \le 4$, except for very small f_0 . Thus the loop is still useful under most fading conditions in deep space missions.

It is demonstrated that for the phase variation considered the third-order loop has no real advantage over the second-order loop. Finally, it is shown that nonzero initial conditions may result in large steady-state phase error.

Nonlinear Analysis of Phase-Locked Loops With Rapidly Varying Phase

C.H. Chen and M. Fan

I. Introduction

The performance of command and telemetry systems, useful in deep-space communications, is frequently affected by the radio-frequency phase error which is introduced at the point of reception by means of the carrier tracking loop. In low data rate communications, this phase error may vary rapidly over the duration of the signaling interval. Causes of this type of behavior in planetary entry are turbulence, dispersion, attenuation and residual doppler. The phase variations cannot be tracked by a phase-locked loop of lower bandwidth, while the signal-to-noise ratio in this minimum loop bandwidth is too low.

When the ratio of the system data rate to carrier tracking loop bandwidth is less than one, the problem of power allocation between the carrier and the data has been considered by Hayes and Lindsey [1], Thomas [2], Sergo and Hayes [3]. For channels with time-varying phase, Heller [4] examined the performance of a sequential decoding system. An excellent treatment of the nonlinear analysis of the phase-locked loops is given by Viterbi [5] and Lindsey [6].

In this paper the phase variation is characterized by a sinusoidal input phase, $k \sin(\omega_0 t + \pi/6)$, which models a typical phase variation in communication over turbulent media. Nonlinear analysis of the loop in the absence of noise is performed by extensive computer study of the phase-plane trajectories. Conditions for synchronization stability and the acquisition behvaior can be examined from the phase-plane analysis. Both the second-order loop and the third-order loop with perfect integrators are considered with zero as well as nonzero initial conditions. Comparison is also made between the second-and the third-order loops with rapidly varying phase. Some preliminary computer results were reported by Chen [7] and Fan [8].

II. The Loop Equations

Following the notations of Viterbi ([5], Chapter 3), we consider first the differential equation of a second-order loop with perfect integrator.

$$\frac{d^2\phi}{dt^2} + AK \cos\phi \frac{d\phi}{dt} + aAK \sin\phi = \frac{d^2\theta}{dt^2}$$
 (1)

where $\phi(t)$ is the phase error, AK is the loop gain, $\theta_1(t)$ is the phase of the input signal, and the transfer function of the loop filter is

$$F(s) = 1 + \frac{a}{s} \tag{2}$$

The loop can track the frequency ramp with zero steady state error. Now we consider the important case that $\theta_1(t)$ is varying several cycles over a bit interval of, say, I second which is typical in low data rate communications. The variation is normally caused by the time-varying channel. Let

$$\theta_1(t) = k \sin(\omega) t + \frac{\pi}{6}$$
 (3)

By normalizing the variables with

$$a' = \frac{a}{AK}$$
, $\tau = AKt$, $\phi' = \frac{d\phi}{d\tau}$, $\phi'' = \frac{d^2\phi}{d\tau^2}$ (4)

Eq. (1) becomes

which in turn can be written in the state equation form as

$$\dot{x}_{1} = x_{2} \\ \dot{x}_{2} = -x_{2} \cos x_{1} - a' \sin x_{1} - \frac{k\omega_{0}^{2}}{(AK)^{2}} \sin \left(\frac{\omega_{0}^{\tau}}{AK} + \frac{\pi}{6}\right)$$
 (6)

where $x_1 = \phi(t)$. It is noted from Eq. (5) that the larger the loop gain, or the loop bandwidth, the smaller the frequency of the forcing function given by Eq. (3). The frequency f_0 is reduced by a factor of AK, and the amplitude $k\omega_0^2$ is reduced by $(AK)^2$. In other words, the large loop gain reduces the effect of the time varying input phase $\phi_1(t)$.

For a third order loop with loop-filter transfer function

$$F(s) = 1 + \frac{s}{s} + \frac{b}{s^2}$$
 (7)

the differential equation (Viterbi [5], p. 64) is

$$\frac{d^2\phi}{dt^2} + (AK\frac{d}{dt} + aAK)\sin\phi(t) + bAK\int_0^t \sin\phi(u)du = \frac{d^2\theta_1}{dt^2}$$
 (8)

which, using Eqs. (4) and (3), can be reduced to

$$\phi + \phi \cos \phi + a' \sin \phi + b' \int \sin \phi \, d\tau = -\frac{k\omega_0}{(AK)^2} \sin \left(\frac{\omega_0 \tau}{AK} + \frac{\pi}{6}\right) \tag{9}$$

which in the state equation form becomes

$$\dot{x}_{1} = x_{2}
\dot{x}_{2} = -x_{2} \cos x_{1} - a' \sin x_{1} - b' \int \sin x_{1} d\tau - \frac{k\omega_{0}^{2}}{(AK)^{2}} \sin \left(\frac{\omega_{0}^{\tau}}{AK} + \frac{\pi}{6}\right) (10)$$

whe re

$$b' = \frac{b}{(AK)^2} \text{ and } x_1 = \phi(t).$$

Phase-plane analysis of Eqs. (6) and (10) is performed by using the second-order Runge-Kutta method (see, e.g. [9]). The computer results are reported in the following sections.

III. Nonlinear Analysis of the Second-Order Loop

Consider first k = 0.001. The loop behavior depends on the ratio f_o/AK .

Let a' = 1/2 and AK = 32, the phase-plane plots of the loop are shown in Figs. 1(a), (b) and (c) with $f_o = 6.4$, 8.0 and 16.0 respectively. $f_o = 8.0$ appears to be the threshold value above which the loop would not be able to track the input phase. For $f_o/AK \le 1/4$ the loop would settle with a stable "limit cycle." It is noted that the steady state error cannot be reduced to zero because of the continuous input phase variation. Thus $f_o/Ak \le 1/4$ is the condition for stability. By increasing the number of points to 3000, Fig. 1(d) shows that the steady state trajectory drifts only slowly. The loop reaches the stable trajectory after less than two cycles of change in phase.

Next we examine the threshold value of k for specified f_0 . Figs. 2,3,4,5,6 are the phase-plane plots for $f_0 = 1.1$, 1.0, 0.8, 0.5, 0.25 respectively. The

threshold here is not a critical value but it may be concluded that $kf_0 \le 4$ is the required condition for stability with AK = 16, a = 8. When f_0 becomes small the allowable product kf_0 rises rapidly. In the limit $f_0 = 0$, kf_0 can be any positive value. If the phase error varies one full cycle in one second, the above condition states that the maximum allowable phase error is 4 radians. This indicates that the loop can function properly under most fading conditions in deep space missions.

For example, based on the updated knowledge of the effect of turbulence in the Venus atmosphere on radio propagation [10], we anticipate that the phase-locked loop with proper bandwidth can maintain a continuous communication between the atmospheric probe and the Earth.

IV. Nonlinear Analysis of the Third-Order Loop

Consider the case k = 0.001, AK = 16, a = 8, b' = 1/32. Figs. 7(a), (b), (c) are the phase-plane plots of $\dot{\phi}$ vs ϕ for f_0 = 3.2, 4.0 and '.0 respectively. For the same ratios of f_0/AK , the trajectories of the third-order loop drift faster. $f_{o}/AK \le 1/4$ also appears to be the threshold condition for stability. The increase of b' to b' = 1/16 as shown in Figs. 8(a), (b), (c) only causes the trajectories to drift more. The effect of increasing k is clearly illustrated in Figs. 9(a)-(d). The threshold value for k is in the region 0.1 < k < 1.0. The condition for stability is kf < 4 which is consistent with the second-order loop results. A careful comparison is made between the second-order and the third-order loops by using exactly the same loop parameters AK = 8, a = 4, k = 0.001, f_0 = 1.0 with printout of 1000 points. Both loops are stable and take the same amount of time (50 seconds) to cover 6 cycles of trajectories. The results are shown in Fig. 10(a) for the second-order loop and Figs. 10(b) and (c) for the third-order loop with b' = 1/32 and 1/8 respectively. It is noted that the third-order loop has larger phase error which increases with b'. Based on the above study, we may conclude that for the sinusoidal phase variation considered in this paper, the third-order loop has no real advantage over the second-order loop.

V. Effects of Nonzero Initial Conditions

To study the loop behaviors under different initial conditions, we consider both the second-order and third-order loops with AK = 8, a = 4, k = 0.001 for the initial conditions $(\dot{\phi}, \dot{\phi}) = (-3.14, 6)$, (-3.14, 4), (-3.14, 2), (-3.14, 0). The results are shown in Fig. 11 for the second-order and Fig. 12 for the third-order loops with b' = 1/32. The trajectories in the lower half plane are the mirror image of those in the upper half plane with respect to the $\dot{\phi} = 0$ axis. It is interesting to note that, in all initial conditions considered, the loops reach a steady-state of $\dot{\phi} = 0$ and $\phi = \text{constant}$ in spite of the sinusoidal input phase. The steady-state phase errors may be too large, however, from practical viewpoint. Thus the nonzero initial conditions should be avoided if the large steady-state phase error is not tolerable.

VI. Concluding Remarks

We have examined the critical parameter values of the second and the thirdorder loops with rapidly varying phase which is modelled by a sinusoidal input
phase variation. The nonlinear analysis is performed by studying the phase-plane
trajectories. Although the third-order loop does not have the advantages as it
normally has in tracking phase errors, some modification of the loop structure
appears necessary to obtain a more efficient tracking system. Methods of signal
acquisition aids, as suggested by Lindsey [6], especially the computer-aided
acquisition for low signal-to-noise ratios should also be examined.

References

- 1. J.F. Hayes and W.C. Lindsey, "Power allocation Rapidly varying phase error", IEEE Trans. on Communication Technology, pp. 323-326, April 1969.
- 2. C.M. Thomas, "Carrier reference power allocation for PSK at low data rates", International Communications Conference, June 1970.
- 3. J.R. Sergo, Jr. and J.F. Hayes, "Power allocation in a two way coherent communication systems", UMR M.J. Kelly Communications Conference, paper no. 22-2-1, Rolla, Mo., October 1970.
- 4. J.A. Heller, "Sequential decoding for channels with time-varying phase", Ph.D. thesis, M.I.T., Cambridge, Mass. September 1967.
- 5. A.J. Viterbi, "Principles of Coherent Communication", McGraw-Hill Book Co., 1966.
- 6. W.C. Lindsey, "Synchronization Systems in Communication and Control", Prentice-Hall, Inc., 1972.
- 7. C.H. Chen, "Phase-plane analysis of phase-locked loops with rapidly varying phase", TR EE-73-4, SMU, N. Dartmouth, Mass., July 1973.
- 8. M. Fan, "Computer study of phase-locked loop behaviors with rapidly varying phase error", TR EE-73-5, SMU, N. Dartmouth, Mass., September 1973.
- 9. D.D. McCracken and W.S. Dorn, "Numerical Methods and Fortran Programming", Viley, New York 1964.
- 10. J.W. Strohbehn, "The effect of turb ulence in the Venus atmosphere on radio propagation", paper preprint, August 1973, to be published.

Fig. 1(6)

1 (0)) ~~	1	
6422E-02 "	•. *		-		
E-02	*		4		
E-02 -		•			
E-02		-			:
22E-02	•		• • • • •		•
ç	•	~		•	**
Ÿ		T. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· * * * * * * * * * * * * * * * * * * *		
0		•	-		
Ö.		•		-	*
20E103 E	-		7 7.	χ = χ	*
ò	* *****				*
Ö	· -	*	- % 00 % - = %	0'Sin X, - * Sin/Wal	· I (I)
E-03 1 .	****	-	•	(AR) 'AK	
o	~~	- :	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6	•
ç		- •	S. 1711. 1	. = 2.0 , K == 10 .	•
Ö	769837759 4 862888888	+			
o,		-	AK = 32 , C	************************************	
o.		*		A A	•
Ò	-		(This als han 200	(This at a bear good and a wish distriction	(77
o.	•	_·	Cinis piec nas suc	Delate with default 13036	* (smax)
ပ္	~	-		-	
Ò	_	*	~-	•	*
ě,			•••	Starting point	,
Ċ	-	-	-	*	•
Ö	-	•	-	_	
o		+	·++===================================	*******************	
o	_	-	-	•	•
ç	•	-	_	-	
ŧ		- * •		-	*
1		_	-	-	
· 30	-		•		•
ç			*	-	***
O		•	#		, ,
	•	-	,		4
			•		•
2 5					
ָ עני עני	-	-		-	•
י טוו		***		_	
֝֞֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֡֓			•		•
ī L	-	*		• '	- H.
3E-02	•	•		-	• :
Ī	-	_	***	•	
Ē	<u>:</u>	#	_ · *·*-	*	::*.
ī	**-		* :**	-	•••
Ī	-		*		•
	-		***	******	

Fig. 1(d)

S.M.U. SYSTEM SUBROUTINE - PLOTIT

Fig. 2 (a)

Fig. 2(b)

Fig. 4 (b)

S.M.L. SYSTEM SLARCLTINE - FLCTIT

Fig. 5 (a)

Fig. 5 (b)

Fig. 6(6)

0.10877E-C2 0.10877E-C2 0.58970E-C3 0.58970E-C3 $\dot{\lambda}_2 = -\lambda_2 \cos \chi_1 - \alpha' \sin \chi_1 - b' \int \sin \chi_1 d\gamma$ -- 1002 Sin (W.Z + 7) 0.917C0E-04 0.917COE-04 $f_0 = 3.2$ 0.8 Starting poin ********** AK = 16, $k = 10^{-3}$ χ<u>=</u>χ -0.4C630E-C3 -0.4063CE-03 -0.9043CE-03 -C.5C43CE-C3 -0.14023E-02 -0.14023E-02 0.31120E-03 0.258430E-03 0.20540E-03 0.15250E-03 0.59600E-04 0.14221E-02 0.13692E-02 0.13163E-02 0.12634E-02 0.12105E-02 0.11547E-02 0.115418E-02 0.59890E-03 -0.641CCE-03 -0.65390E-03 -0.74680E-03 0.734406-03 0.681508-03 0.681605-03 C.84C20E-03 -0.16490E-03 0-89310E-03 C.94¢C0E-03 0.8757CE-03 0.527805-03 0-417505-03 0.364105-03 -0.52CC0E-05 -0.39100E-04 -0.112COE-03 -0-101561-03 -0-524405-03 -0.111715-02 -0.117C0E-02 -0.12229E-02 0-465905-0 0.467C0E-04 -0.27C7CF-03 -0.48230E-03 -0.53520E-03 -0.58P10E-33 -0.85250E-03 -C.905432-0--0-101136-02 -0.1C642E-02 -0.12? 60E-C -0-305926-0--0-42940E-0

S.M.U. SYSTEM SUBROUTINE - PLOTIT

S.M.U. SYSTEM SUBROUTINE - PLOTIT

Fig. 7(6)

 $k = 10^{-3}$

S.F.U. SYSTEM SUBROUTINE - PLCTII

0.12097E-C2 0.12097E-02 0.6897CE-03 0.. 857CE-C3 $\dot{x}_{i} = -x_{cos}x_{i} - \alpha'\sin x_{i} - b'\int\sin x_{i}d\tau$ ----------- $-\frac{k\omega_s^2}{(AK)^2}\sin(\frac{\omega_1^2}{AK}+\frac{\pi}{E})$ 0.16970E-03 0.16970E-03 f.=3.2 a= %, Starting point 16, $k = 10^{-3}$ ¥ -0-30E05E-0--0.35030E-03 -C. 8703CE-C3 -0.8703CE-03 -0.13303F-02 -0.13903E-02 0.14721E-02 0.14175E-02 0.13629E-02 0.12537E-02 0.11591E-02 0.11689E-02 0.10353E-02 0.48530E-03 0.43470E-03 0.32450E-03 0.32450E-03 0.27450E-03 0.16170E-03 0.10710E-03 0.92610E-03 0.87150E-03 0.91690E-03 0.76230E-03 0.65310E-03 0.59450E-03 -0.21CCCE-05 -0-32570F-03 -0.56700E-04 -0-11130E-03 -0.165906-03 -0.22C50E-C3 -0.27510E-03 -0.384305-03 -0.434905-03 -0-49350E-03 -C. 16450E-03 -0.87570F-03 £0-30£3£5-03 -C.98490E-03 -c-10395E-02 **-0.54**810E-63 -0.6C270E-03 -0.65730c-03 -0-306111-0--C-42110E-C3 -0.105415-02 -C.11487t-C

Fig. 8(a)

Fig. 8(b)

, ·							
· •	•	•	•	-			
•	•	*	•••		** ** **		•
•	 ·	:	- •	***		•	
•		•	***	- *********		•	
•	• •	٠.					
******					• • • • • • • • • • • • • • • • • • • •		- •
*		•		•	-		
• .	The artic	- *			- *		
,	· ·	*		· -	•	•	·-·
•			****	• ~			
	-					•	
			***	- 4		* *	
	, , , , , , , , , , , , , , , , , , , ,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	****************		-		
					_	•	•
			***				••
	*		***			•	•
	-		***	and farmed to	<u></u>	•	•
	•		* - * *				••
				· ·		*	•
	- 4		# # # # # # # # # # # # # # # # # # #	# () () () () () () () () () (-	***	# · · · · · · · · · · · · · · · · · · ·
	-		**				:-
	* ²					* *	
			*	• •			
•		+ -	*	•	-		 •
•		. *			•	*	•
•	-	•	*	-	-		
# i	-		*		***		(
•	-		•	* * * * * * *		*	-
•			* ;			* .	
•	-		· _				
•			-		*		
	 .·		*			だ…" プ	
	- -	•	•			× ×	
***************************************						19/2015(9-12015)-120037-1-2	ーなどでなー
1E-02	-0.2C411E-02	-0.111	71E-02 -	-0.19310E-03	0.7309	- KW Sin (WI + Z)	十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十
			Fia 8(c)			AK-16, a	十一卷, 0, 8-

Fig. 9(a)

S.P.U. SYSTEP SUBRCUTINE - PLCTIT

Fig. 9(b)

Fig. 9(c)

26110 26			**********			*****		
$\frac{\dot{\gamma}_{1} - \dot{\gamma}_{1}}{4\pi^{2}} = \frac{\dot{\gamma}_{1} - \dot{\gamma}_{1}}{4\pi^{2}} + \int_{0.01}^{1} \dot{\gamma}_{1} - \int_{0.01}^{1} \dot{\gamma}_{1} + \int_{0.01}^{$.0553		• •	· >				_
$ \frac{\dot{x}_1 - x_1 \cos x_1 - d \sin x_1 - b \int \sin x_1 d r}{d d r} \frac{\dot{x}_2}{d r} - \frac{x_1 \cos x_2}{d r} - \frac{d \sin x_1 d r}{d r} - \frac{d \sin x_2}{d r} + \frac{d r}{d r} \\ -\frac{d \cos x_1}{d r} - \frac{d \cos x_2}{d r} - \frac{d \cos x_1}{d r} - \frac{d \cos x_2}{d r} - d \cos $.4031	•	•	シャーケ			_	
$\frac{\zeta_{n-1}^{2}\cos \chi_{n} - \zeta_{n}\chi_{n} - \beta_{n}\chi_{n}^{2} + \beta_{n}\chi_{n}^{2}}{-4k_{0}\sin \chi_{n} - \beta_{n}\chi_{n}^{2} + \beta_{n}\chi_{n}^{2}}$ $\frac{-k_{0}}{1}\sin (\frac{k_{0}\chi_{n}}{4} + \frac{1}{k})$ $\frac{1}{1}\sin (\frac{k_{0}\chi_{n}}{4} + \frac{1}{k})$.2451	•	•	· •/			• •	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.9613	•	•	Z, = - Z, Cos 7	, -a'Sinx, -b	1Sin X.dr	•	
$AK = (6, 0, 1, -4, 0, 6, -\frac{1}{3K}, -\frac{1}{4K})$ $AK = (6, 0, 1, -4, 0, 6, -\frac{1}{3K}, -\frac{1}{4K}, -$. 5535	•	•	, •	-		•	
$AK = I6 \alpha - 8 \alpha' - \frac{\alpha}{4K} - \frac{1}{2}$ $K = I0.0 f - 4.0 b - \frac{\alpha}{3K}$ V_{1210} V_{121	.2057	•	•	A Weight	5. /w.? T.		•	
## =	. 8579	•	•	747	(2 + 12) uic		•	_
## # # # # # # # # # # # # # # # # # #	.5161	•	•	AIO :: }	, YU,	,	•	_
### ### ### ### ### ### ### ### ### ##	.1623	•	•	AK = 16	0 8 0	4	•	_
###	6119	*********				AK - 2	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•
7710 772	.4667	•	•	★ ■ 10.0	-40 4-7	_ _	•	_
24.210 25.20 2	7211•	•	•			32	•	_
27370 27	1111	•	•		•	•	*	
21750 21	.4233	•	•		•	•.	-	
37570 08320 08	.0155	-	•.	•	*	•	•	
25.100 (2.20) (2	. 7277	•	•.	*	•	<u>*</u>	-	
0.03210 1.0321	9376.	<u>*</u>	•	•	•	=		
19450 19	.0321	-	=	•		=) (
1316.0 14.30 14.30 14.30 15.20 16.20 1	6843	•	- =	•	. =	-		
26.26 26.26 26.26 26.26 29.26	3365	- 1 - 1						
25.50 25	9887	-	-				•	
99310 94570 95670 95670 95603 95603 95604 95700 97	777				• 1	-	•	_
1930 1930	A		•		•	-		
94520 91070 10280 10290 1020 10	1647			•	_	-	•	_
9975C 9619C 9619C 9619C 9619C 9629C 96	.9453	-	_	•	-	-	•	_
9C19C 9C19C 95402 96612 96729 11529 17176 17176 17176 17176 17176 17176 17176 17176 17176 17176 17176 17177 17	. 5975	• •	-	•	•	<u>.</u>	•	_
96196 26403 1028 1030 1040 10710	.2457	•	-	•	•	-	•	_
15640 15640 15640 15670 16720 16	9019	* -	-	•	•	•	•	
20650 ** 10209 ** 10209 ** 10209 ** 10209 ** 10209 ** 10209 ** 10209 ** 10200	.5540	-	•	•		-		
51070 51070 61529	2063		_	•		•		
51070 15.28 46.72	8564		1-1-0	•••••••	**********		* *	
16289 46329 46452 77170	5107	-	-	•	•	_	•	
46729 46729 46729 47389 67610 67	1628	•	•	•	•	-	•	
46729 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.7	915C	•	•	•	•	-	•	
11949 77170 42389 77170	4672	•		•				
77170 42389 18649 03270 68469 94169 94589 94	1154	•					,	
42389 07610 12879 68469 68469 69419 69419 69459 69	7117	• -	• •	•	•		•	
07610 12879 38649 68469 64149 64	4238		•	•	•	-	•	
3876 03270 04469 33710 98929 944149 25269 56810 56810 56810 56810 56810 56810 56810 56810 56810 56810 56810 56810 56810 56810 56810 66840 66	0741	•	•	•	4			_
38C49 03270 68469 33710 98929 64149 54569 54569 55029 -C.28300E 03 -C.2264CE C3 -C.1658CE C3 -C.1658CE C3 -C.1658CE C3 -C.1658CE C3 -C.1658CE C3	1282		• ;		, '		•	
03270 68469 33710 98929 64149 64149 54569 -6.28300E 03 -6.22640E C3 -6.11320E 03 -0.56604E C2	3966				•			
98929 94149 64149 64169 94569 94569 -C.28300E 03 -C.2264CE C3 -C.1658CE C3 -C.11320E 03	7227	-			-	-		_
3371C 98929 64149	2767	•	•	•	•		• •	
98929 64149 54569 54569 55629 -6.28300E 03 -6.2264CE C3 -6.11320E 03 -0.56604E C2	2000		•	• 1	• •		•	
64149	1100		•	•	•	•	•	_
29369	7686	•	•		•	•	•	
25269	7 1 4 9	•	•	•	•	- •	•	
94589 ******	2536	•	=	•••	:	_ •		_
5581C	9458	-	_ :	**-*	-	_		
25629	. 5581	-	_ •	• • •	-	_	-	_
-C.28300E 03 -C.2264CE C3 -C.1658CE C3 -C.11320E 03 -0.56604E C2	25C2	-	-	•	-	-	••••	
$\Box \qquad \Box \qquad$	96256 +	١				•		,
	- £0 300£ 03	د	119797					:0E-C
				i				
				[a				
(2)				[D] [G]				
				[D] [D]				
	25529	į u		9, 9		•		

Fig. 10 (a)

S.P.L. SYSTEP SUBRCUTINE - PLOTIT

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	99999						
				•••			
	PPP						
	ပု					•	
			•				•
	56E-0	****	↑			***	•
	52E-0		₹ I ₹				*
	3-38 t	-			٠,,٠	_	
	0		Ħ	$\lambda_{cos}\chi_{c} - \alpha_{cin}\chi_{c}$	- b Sin X, d?	-	* *****
	ü				!		
	9	***	į	ξω2 - / LI 7 #		-	
	12F-C	-		++45 Juse 2/1V	~		
	ZAF-C		•		,	-	
	24F-G		AKIN	a = 4	7 - 8	-	•
	205-0			1 - H	AK I Z	-	
	, c	•					
	,	-	2/1 ~	a '0'1-'1'	- 43		
	2				<u>.</u>	-	•
	٠	-				-	
	P	-	_		-	_	**-
	+ 60-	************				*******	
	F0-	_			_	-	
	Ċ					•	
	0 1 20 2	_ •			~.	-	• 1
	80E-C4 .	_				_	-
	40E-04	_		Starting point	_	_	::
		-		-, ->		-	•
	• •	• •		• 4			
		_			→ ·	-	•
	• • • • • • • • • • • • • • • • • • • •	-	_	•	_	-	
	• 50-			•	_	-	
	1 10-				-	-	

	**** F01U0F						
	44E-C3 **	-		•	_		•••
	48E-03 - ***	_		•	_	_	•
	52F-03 **			• •		_	
		-				-	
			•	• .			
			•			-	
	Ö	-	•			_	•
			•				:
	ċ				_	_	•
	9	***			. =	-	•
	•						
	ن ز	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				, - 	
						-	•
	-388	•••			_	<u>-</u>	
	ç					-	- (
	•	4				***	•
							,
	ו טונו						
200	L	-			-	- :	
2E-C	1		••••			-	
6E-0	-	-				-	
105-0	ָ ער נו						
	105-0	-		•••••			

Fig. 10(6)

1000

Fig. 10 (c)

Fig. 11(a)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\ddot{x}_1 = x_2$ $\ddot{x}_2 = -x_2 \cos x_1 - d' \sin x_1$ $\omega_2 = 2\pi f_1, f_2 = I_2 0$	_
$\dot{x}_i = x_s$ $\dot{x}_s = -x_s \cos x_i - \alpha' \sin x_i$ $\omega_s = 2\pi f_s, f_s = l, 0,$ $AK = 8, \alpha = 4, \alpha$ Initial Confision (-3.14.)	$\ddot{\chi}_1 = \chi_2$ $\ddot{\chi}_2 = -\chi_2 \cos \chi_1 - d' \sin \chi_2$ $\omega_2 = 2\pi f_1, f_2 = I_2 O_2$	
$ \dot{x}_{i} = x_{i} $ $ \dot{x}_{i} = x_{i} $ $ \dot{x}_{i} = -x_{i}\cos x_{i} - a'\sin x_{i} $ $ \dot{x}_{i} = -x_{i}\cos x_{i} - a'\sin x_{i} $ $ \dot{x}_{i} = x_{i} $ $ \dot{x}_{i}$	$\ddot{x}_i = x_i$ $\ddot{x}_i = -x_i \cos x_i - d \sin x_i$ $\omega_i = 2\pi f_i, f_i = 1.0$	
$\ddot{\chi}_i = \chi_i$ $\ddot{\chi}_i = -\chi_i$ $\ddot{\chi}_i = -\chi_i \cos \chi_i - \alpha' \sin \chi_i$ $\omega_i = 2\pi f_i, f_i = 1.0, AK = 8, \alpha = 4, \alpha$ Initial Codition (-3.14)	$\dot{x}_i = x_i$ $\dot{x}_i = -x_i$ $\dot{x}_i = -x_i \cos x_i - a' \sin x_i$ $\omega_i = 2\pi f_i, f_i = 1.0$	
$\ddot{\chi}_i = \chi_i$ $\ddot{\chi}_i = -\chi_i$ $\ddot{\chi}_i = -\chi_i \cos \chi_i - \alpha' \sin \chi_i$ $\omega_i = 2\pi f_i, f_i = 1.0, AK = 8, \alpha = 4, \alpha$ Initial Codition (-3.14)	$\dot{x}_i = x_i$ $\dot{x}_i = x_i$ $\dot{x}_i = -x_i \cos x_i - a' \sin x_i$ $\omega_i = 2\pi f_i, f_i = 1.0$	
$\dot{x}_i = x_2$ $\dot{x}_2 = -x_2 \cos x_1 - \alpha' \sin x_1$ $\omega_1 = 2\pi f_1, f_2 = I_10, AK = 8, \alpha = 4, \alpha$ Initial Confison (-3.14.	$\ddot{x}_1 = \chi_2$ $\ddot{x}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_2$ $\omega_2 = 2\pi f_1, f_2 = 1.0$	
$\dot{x}_i = x_s$ $\dot{x}_s = -x_2 \cos x_i - \alpha' \sin x_i$ $\omega_s = 2\pi f_s, f_s = l, 0,$ $AK = 8, \alpha = 4, \alpha$ Initial Cadition (-3.14.	$\ddot{x}_i = x_i$ $\ddot{x}_i = -x_2\cos x_i - a'\sin x_i$ $\omega_i = 2\pi f_i, f_i = 1.0$	_
$\dot{\chi}_i = \chi_s$ $\dot{\chi}_s = -\chi_s \cos \chi_i - \alpha' \sin \chi_s$ $\omega_s = 2\pi f_s, f_s = l.0,$ $AK = 8, \alpha = 4, \alpha'$ Initial Cadition (-3.14.	$\dot{x}_i = x_i$ $\dot{x}_i = -x_i$ $\dot{x}_2 = -x_2 \cos x_i - d \sin x_i$ $\omega_i = 2\pi f_i, f_i = 1.0$	
$\ddot{\chi}_i = \chi_i$ $\ddot{\chi}_i = -\chi_i$ $\ddot{\chi}_i = -\chi_i \cos \chi_i - \alpha' \sin \chi_i$ $\omega_i = 2\pi f_i, f_i = 1.0,$ $AK = 8, \alpha = 4, \alpha$ Initial Confison (-3.14)	$\ddot{x}_i = x_i$ $\ddot{x}_i = -x_i \cos x_i - 4 \sin x_i$ $\omega_i = 2\pi f_i, f_i = 1.0$. —
$\dot{x}_i = x_2$ $\dot{x}_2 = -x_2 \cos x_1 - \alpha' \sin x_1$ $\omega_1 = 2\pi f_1, f_2 = I_10,$ $AK = 8, \alpha = 4, \alpha$ Initial Condition (-3.14.	$\ddot{x}_1 = \chi_2$ $\ddot{x}_2 = -\chi_2 \cos \chi_1 - d' \sin \chi_1$ $\omega_2 = 2\pi f_1, f_2 = 1.0$	
$\dot{\chi}_i = \chi_s$ $\dot{\chi}_s = -\chi_s \cos \chi_i - \alpha' \sin \chi_s$ $\omega_s = 2\pi f_s , f_s = l, 0 ,$ $AK = 8, \alpha = 4, \alpha$ Initial Condition (-3.14.	$\ddot{x}_i = x_i$ $\ddot{x}_i = -x_2\cos x_i - a'\sin x_i$ $\omega_i = 2\pi f_i, f_i = 1.0$	
$\ddot{\chi}_i = \chi_i$ $\ddot{\chi}_i = -\chi_i$ $\ddot{\chi}_i = -\chi_i \cos \chi_i - \alpha' \sin \chi_i$ $\omega_i = 2\pi f_i, f_i = 1.0,$ $AK = 8, \alpha = 4, \alpha'$ Initial Codition (-3.14.	$\dot{x}_i = x_i$ $\dot{x}_i = -x_i$ $\dot{x}_i = -x_i\cos x_i - a'\sin x_i$ $\omega_i = 2\pi f_i, f_i = 1.0$	
$\ddot{\chi}_i = \chi_i$ $\ddot{\chi}_i = -\chi_i \cos \chi_i - \alpha' \sin \chi_i$ $\omega_i = 2\pi f_i, f_i = 1.0,$ $AK = 8, \alpha = 4, \alpha$ Initial Confison (-3.14.	$\dot{x}_i = x_s$ $\dot{x}_s = -x_s \cos x_i - 4 \sin x_s$ $\omega_s = 2\pi f_s, f_s = 1.0$	
$\dot{x}_i = x_2$ $\dot{x}_2 = -x_2 \cos x_1 - a' \sin x_1$ $\omega_1 = 2\pi f_1, f_2 = I_10, AK = 8, \alpha = 4, \alpha$ Initial Condition (-3.14.	$\ddot{x}_1 = x_2$ $\ddot{x}_2 = -x_2 \cos x_1 - a' \sin x_1$ $\omega_2 = 2\pi f_1, f_2 = 1.0$	_ - •
$\dot{\chi}_i = \chi_z$ $\dot{\chi}_z = -\chi_z \cos \chi_i - \alpha' \sin \chi_i$ $\omega_z = 2\pi f_z , f_z = l.0 ,$ $AK = 8, \alpha = 4, \alpha'$ Initial Cadition (-3.14.	$\ddot{\chi}_{i} = \chi_{i}$ $\ddot{\chi}_{i} = -\chi_{i}$ $\ddot{\chi}_{i} = -\chi_{i}\cos\chi_{i} - d'\sin\chi_{i}$ $\omega_{i} = 2\pi f_{i}, f_{i} = 1.0$	
$\ddot{\chi}_i = \chi_i$ $\ddot{\chi}_2 = -\chi_2 \cos \chi_i - \alpha' \sin \chi_i$ $\omega_i = 2\pi f_i, f_i = 1.0$ $AK = 8, \alpha = 4, \alpha$ Initial Condition (-3.14.	$\dot{x}_i = x_2$ $\dot{x}_2 = -x_2 \cos x_1 - a' \sin x_1$ $\omega_2 = 2\pi f_2, f_2 = 1.0$	-
$\ddot{\chi}_i = \chi_i$ $\ddot{\chi}_i = -\chi_i$ $\ddot{\chi}_2 = -\chi_i \cos \chi_i - \alpha' \sin \chi_i$ $\omega_i = 2\pi f_i, f_i = 1.0,$ $AK = 8, \alpha = 4, \alpha$ Initial Condition (-3.14.	$\dot{x}_i = x_s$ $\dot{x}_s = -x_s \cos x_i - 4' \sin x_i$ $\omega_s = 2\pi f_s, f_s = 1.0$	***
$\dot{x}_i = x_2$ $\dot{x}_2 = -x_2 \cos x_1 - \alpha' \sin x_1$ $\omega_i = 2\pi f_i, f_i = l, 0,$ $AK = 8, \alpha = 4, \alpha$ Initial Condition (-3.14.	$\ddot{\chi}_1 = \chi_2$ $\ddot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_2 = 2\pi f_1, f_2 = 1.0$	
$\dot{\chi}_i = \chi_z$ $\dot{\chi}_z = -\chi_z \cos \chi_i - \alpha' \sin \chi_i$ $\omega_z = 2\pi f_z , f_z = l, 0 ,$ $AK = 8, \alpha = 4, \alpha'$ Initial Caulifion (-3.14.)	$\ddot{\chi}_{i} = \chi_{i}$ $\ddot{\chi}_{i} = -\chi_{i}$ $\ddot{\chi}_{i} = -\chi_{i}\cos\chi_{i} - d'\sin\chi_{i}$ $\omega_{i} = 2\pi f_{i}, f_{i} = 1.0$	
$\ddot{\chi}_i = \chi_i$ $\ddot{\chi}_2 = -\chi_2 \cos \chi_i - \alpha' \sin \chi_i$ $\omega_i = 2\pi f_i, f_i = 1.0$ $AK = 8, \alpha = 4, \alpha'$ Initial Condition (-3.14.	$\dot{x}_i = x_2$ $\dot{x}_2 = -x_2 \cos x_1 - 4 \sin x_1$ $\omega_2 = 2\pi f_2, f_2 = 1.0$	_ ·
$\dot{\chi}_i = \chi_2$ $\dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_2 = 2\pi f_2, f_2 = 1.0,$ $AK = 8, \alpha = 4, \alpha$ Initial Condition (-3.14.	$\dot{x}_i = x_i$ $\dot{x}_2 = -x_2 \cos x_i - a' \sin x_i$ $\omega_i = 2\pi f_i, f_i = 1.0$	_ · * * · · · _ * * · ·
$\dot{\chi}_i = \chi_z$ $\dot{\chi}_z = -\chi_z \cos \chi_i - \alpha' \sin \chi_i$ $\omega_z = 2\pi f_z , f_z = l, 0 ,$ $AK = 8, \alpha = 4, \alpha'$ Initial Caulifion (-3.14.	$\dot{\chi}_1 = \chi_2$ $\dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_2 = -2\pi f, f_2 = 1.0$	* * * * * * * * * * * * * * * * * * * *
$\dot{\chi}_i = \chi_i$ $\dot{\chi}_2 = -\chi_2 \cos \chi_i - \alpha' \sin \chi_i$ $\omega_i = 2\pi f_i, f_i = 1.0$ $AK = 8, \alpha = 4, \alpha'$ Initial Condition (-3.14.	$\dot{x}_i = x_2$ $\dot{x}_2 = -x_2 \cos x_i - a' \sin x_i$ $\omega_2 = 2\pi f_2, f_2 = 1.0$	
$\dot{\chi}_i = \chi_z$ $\dot{\chi}_z = -\chi_z \cos \chi_i - \alpha' \sin \chi_i$ $\omega_z = 2\pi f_z, f_z = 1.0$ $AK = 8, \alpha = 4, \alpha$ Initial Condition (-3.14.	$\dot{x}_i = x_i$ $\dot{x}_2 = -x_2 \cos x_i - a' \sin x_i$ $\omega_i = 2\pi f_i, f_i = 1.0$	
$\dot{\chi}_{i} = \chi_{z}$ $\dot{\chi}_{z} = -\chi_{z} \cos \chi_{i} - \alpha' \sin \chi_{i}$ $\omega_{z} = 2\pi f_{z}, f_{z} = 1.0,$ $AK = 8, \alpha = 4, \alpha'$ Initial Condition (-3.14.	$\dot{x}_1 = x_2$ $\dot{x}_2 = -x_2 \cos x_1 - a' \sin x_1$ $\omega_2 = 2\pi f_2, f_2 = 1.0$	
$\dot{\chi}_i = \chi_i$ $\dot{\chi}_2 = -\chi_2 \cos \chi_i - \alpha' \sin \chi_i$ $\omega_s = 2\pi f_s, f_s = l.0,$ $AK = 8, \alpha = 4, \alpha'$ Initial Condition (-3.14.)	$\dot{x}_i = x_2$ $\dot{x}_2 = -x_2 \cos x_1 - a' \sin x_1$ $\omega_2 = 2\pi f_2, f_2 = 1.0$	
$\dot{\chi}_i = \chi_z$ $\dot{\chi}_z = -\chi_z \cos \chi_i - \alpha' \sin \chi_i$ $\omega_z = 2\pi f_z, f_z = 1.0$ $AK = 8, \alpha = 4, \alpha$ Initial Condition (-3.14.	$\dot{x}_i = x_i$ $\dot{x}_2 = -x_2 \cos x_i - a' \sin x_i$ $\omega_s = 2\pi f_s, f_s = l, 0$	** * *
$\dot{\chi}_i = \chi_2$ $\dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_2 = 2\pi f_2, f_2 = I_20,$ $AK = 8, \alpha = 4, \alpha'$ Initial Condition (-3.14.	$\dot{\chi}_{i} = \chi_{i}$ $\dot{\chi}_{i} = -\chi_{i}$ $\dot{\chi}_{i} = -\chi_{i}\cos\chi_{i} - \alpha'\sin\chi_{i}$ $\omega_{i} = -2\pi f_{i}, f_{i} = 1.0$	
$\dot{\chi}_i = \chi_i$ $\dot{\chi}_i = -\chi_i \cos \chi_i - \alpha' \sin \chi_i$ $\omega_i = -2\pi f_i, f_i = 1.0$ $AK = 8, \alpha = 4, \alpha'$ Initial Condition (-3.14.	$\dot{\chi}_1 = \chi_2$ $\dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_2 = 2\pi f_2, f_2 = 1.0$	
$\dot{\chi}_i = \chi_z$ $\dot{\chi}_z = -\chi_z \cos \chi_i - \alpha' \sin \chi_i$ $\omega_z = 2\pi f_z, f_z = 1.0$ $AK = 8, \alpha = 4, \alpha'$ Initial Condition (-3.14.	$\dot{x}_i = x_i$ $\dot{x}_i = -x_i \cos x_i - \alpha' \sin x_i$ $\omega_i = 2\pi f_i, f_i = 1.0$	
$\dot{\chi}_i = \chi_2$ $\dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_2 = 2\pi f_c, f_o = 1.0, AK = 8, \alpha = 4, \alpha'$ Initial Condition (-3.14.)	$\dot{x}_i = x_i$ $\dot{x}_2 = -x_2 \cos x_i - a' \sin x_i$ $\omega_s = 2\pi f_s, f_s = l.0$	
$\dot{\chi}_1 = \chi_2$ $\dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_2 = 2\pi f_2, f_2 = l, 0,$ $AK = 8, \alpha = 4, \alpha'$ Initial Caulifion (-3.14.)	$\dot{\chi}_1 = \chi_2$ $\dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_2 = 2\pi f_2, f_2 = 1.0$	* · * * * * * .
$\dot{\chi}_1 = \chi_2$ $\dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_s = 2\pi f_s , f_s = 1.0 ,$ $AK = 8, \alpha = 4, \alpha'$ Initial Condition (-3.14.)	$\dot{\chi}_{i} = \chi_{i}$ $\dot{\chi}_{i} = \chi_{i}$ $\dot{\chi}_{i} = -\chi_{i} \cos \chi_{i} - \alpha' \sin \chi_{i}$ $\omega_{i} = 2\pi f_{i}, f_{i} = 1.0$	
$\dot{\chi}_i = \chi_2$ $\dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_s = 2\pi f_s , f_s = 1.0 ,$ $AK = 8, \alpha = 4, \alpha'$ Initial Condition (-3.14.)	$\dot{\chi}_{i} = \chi_{i}$ $\dot{\chi}_{i} = -\chi_{i}$ $\dot{\chi}_{i} = -\chi_{i} \cos \chi_{i} - \alpha' \sin \chi_{i}$ $\omega_{i} = -2\pi f_{i}, f_{i} = 1.0$	
$\dot{\chi}_1 = \chi_2$ $\dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_2 = 2\pi f_2, f_0 = 1.0, AK = 8, \alpha = 4, \alpha'$ Initial Condition (-3.14.)	$\dot{x}_i = x_i$ $\dot{x}_i = -x_i \cos x_i - \alpha' \sin x_i$ $\omega_i = 2\pi f_i, f_i = 1.0$	
$\dot{\chi}_1 = \chi_2$ $\dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_2 = 2\pi f_2$, $f_2 = 1.0$, AK = 8, $\alpha = 4$, α Initial Condition (-3.14.	$\dot{\chi}_1 = \chi_2$ $\dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_2 = 2\pi f_2, f_2 = 1.0$	
$\dot{x}_1 = x_2$ $\dot{x}_2 = -x_2 \cos x_1 - \alpha' \sin x_1$ $\omega_a = 2\pi f_a$, $f_a = 1.0$, AK = 8, $\alpha = 4$, α Initial Condition (-3.14.)	$\dot{\chi}_{1} = \chi_{2}$ $\dot{\chi}_{2} = -\chi_{2}\cos\chi_{1} - G'\sin\chi_{1}$ $\omega_{2} = 2\pi f_{2}$, $f_{2} = 1.0$,	
	$\dot{\chi}_{i} = \chi_{2}$ $\dot{\chi}_{i} = \chi_{2}$ $\dot{\chi}_{2} = -\chi_{2} \cos \chi_{i} - \alpha' \sin \chi_{i}$ $\omega_{*} = -2\pi f_{*}$, $f_{*} = 1.0$,	
$ \dot{\chi}_1 = \chi_2 $ $ \dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1 $ $ \omega_2 = 2\pi f_2, f_0 = 1.0, AK = 8, \alpha = 4, \alpha' $ Initial Condition (-3.14.)	$\dot{x}_1 = x_2$ $\dot{x}_2 = -x_2 \cos x_1 - a' \sin x_1$ $\omega_2 = 2\pi f_2$, $f_2 = 1.0$	
$ \dot{\chi}_1 = \chi_2 $ $ \dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1 $ $ \omega_0 = 2\pi f_0, f_0 = 1.0, $ AK = 8, $\alpha = 4, \alpha'$ Initial Condition (-3.14.	$\dot{\chi}_1 = \chi_2$ $\dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_2 = 2\pi f_2, f_2 = 1.0$	· · · · · · · · · · ·
$\dot{x}_1 = x_2$ $\dot{x}_2 = -x_2 \cos x_1 - a' \sin x_1$ $\omega_s = 2\pi f_s$, $f_s = 1.0$, AK = 8, $a = 4$, a' Initial Condition (-3.14.)	$\dot{\chi}_i = \chi_i$ $\dot{\chi}_2 = -\chi_2 \cos \chi_i - \alpha' \sin \chi_i$ $\omega_o = 2\pi f_o, f_o = 1.0$	** * ** ** * * * * * * * * * * * * * * *
$\dot{\chi}_1 = \chi_2$ $\dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_2 = 2\pi f_2$, $f_2 = 1.0$, $AK = 8$, $\alpha = 4$, α' Initial Condition (-3.14.)	$\dot{x}_1 = x_2$ $\dot{x}_2 = -x_2 \cos x_1 - a' \sin x_1$ $\omega_0 = 2\pi f_0$, $f_0 = 1.0$	
$ \lambda_1 = \lambda_2 $ $ \lambda_2 = -\lambda_2 \cos \lambda_1 - \alpha' \sin \lambda_1 $ $ \omega_4 = 2\pi f_4, f_6 = 1.0 $ AK = 8, $\alpha = 4$, α' Initial Condition (-3.14.)	$ \dot{\chi}_{1} = \lambda_{2} $ $ \dot{\chi}_{2} = -\chi_{2}\cos\chi_{1} - \alpha'\sin\chi_{1} $ $ \omega_{*} = 2\pi f_{*}, f_{*} = 1.0 $	
$ \dot{\chi}_{z} = -\chi_{z} \cos \chi_{t} - \alpha' \sin \chi_{t} $ $ \omega_{s} = 2\pi f_{s}, f_{s} = 1.0 $ AK = 8, $\alpha = 4$, α' Initial Condition (-3.14.)	$\dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_2 = 2\pi f_2, f_2 = 1.0$	
$ \dot{\chi}_2 = -\chi_2 \cos \chi_1 - \alpha' \sin \chi_1 $ $ \omega_2 = 2\pi f_2 $, $f_2 = 1.0 $, AK = 8, $\alpha = 4$, α' Initial Condition (-3.14.)	$\dot{\lambda}_2 = -\lambda_2 \cos \chi_1 - \alpha' \sin \chi_1$ $\omega_0 = 2\pi f_0, f_0 = 1.0$	· · · · · · · ·
$\Delta_2 = -42\cos Z_1 - 43\ln Z_1$ $\omega_2 = 2\pi f_2$, $f_2 = 1.0$, $AK = 8$, $\alpha = 4$, α Initial Condition (-3.14.)	ω, -2πf., f. =1.0,	
$\omega_{\bullet} = 2\pi f_{\bullet}$, $f_{\bullet} = 1.0$, $AK = 8$, $\alpha = 4$, α' Initial Condition (-3.14.)	ω, -2πf., f. =1.0,	**************************************
$\omega_{\bullet} = 2\pi f_{\bullet}$, $f_{\bullet} = 1.0$, $AK = 8$, $\alpha = 4$, α ' Initial Condition (-3.14.)	ω, =2πf., f.=1.0,	-
$\omega_{\bullet} = 2\pi f_{\bullet}$, $f_{\bullet} = 1.0$, $AK = 8$, $\alpha = 4$, α' Initial Condition (-3.14.)	$\omega_{\bullet} = 2\pi f_{\bullet}$, $f_{\bullet} = 1.0$,	
$\omega_{\bullet} = 2\pi f_{\bullet}$, $f_{\bullet} = 1.0$, $AK = 8$, $\alpha = 4$, α' Initial Condition (-3.14.)	$\omega_{0} = 2\pi f_{0}$, $f_{0} = 1.0$	
AK=8, Q = 4, Q' Initial Condition (-3.14.		-
AK=8, Q=4, Initial Condition (-3.)		-
Initial Condition (-3.)	7 0 0 40	_
Initial Condition (-3,	(+ v > 'a - \cdot	
Thirties Continue		
	Justical Conditions (-3)	

S.P.U. SYSTEM SUBROUTINE - PLOTIT

$= \frac{7}{2}$ $= \frac{7}{2}$ $= \frac{2\pi}{4}$ $= \frac{8}{4}$ Initial (0.1315)					0.45335E C2 0.61425E C2 C.77515E C2
*:• 'M' 'M' 'S		•	= 7 cos 2; - 4'5;	Sandition	t

S.P.U. SYSTEM SUBROUTINE - PLOTIT

$\begin{aligned} \ddot{z}_{i} &= \chi_{2} \\ \ddot{z}_{e} &= -\chi_{e} \cos \chi_{1} - \alpha' \sin \chi_{1} - b' \int \sin \chi_{1} d\gamma \\ &- \frac{\alpha \omega_{1}}{A K^{3}} \sin \left(\frac{\omega_{n} \chi}{A K} + \frac{\eta}{L} \right) \\ A K &= 8, \ \alpha = 4, \ \alpha' &= \frac{\eta}{2}, \ k = 10^{-3} \\ f_{o} &= l, 0, \ b' &= \frac{\eta}{32}, \ \text{ Little Continuous } (-314, \ 6) \end{aligned}$	
(as 1, -a's (b) 317.	=
(AR) Sin (E) 32.	
(cos 1, -α's (w)	
cos 1, -α's (Δκ) sin (Ψ) 32.	
Cos 1, -a's AND Sin (E) A - 4, A - 4.	****
2 cos 1 - a's ARM 5 in (E, 32) A - 4 - 4	
(AR) Sin (E) 32.	•
(AR) Sin (W)	**
(AR) Sin (W) 32.	
cos 1, -a's (AR) sin (W) 32.	
2003 - a's REGISTANO (W. ARIO) 1, a = 4.	
2003 1 - a's REGISTAN (W. AK) 7 a = 4.	
2051, -a's (AK) 5in (W) 32.	
2 cos 1, -α's (AK) sin (\(\frac{\(\mu_1\)}{\(\mu_1\)}\) (\(\alpha\) \(\alpha\) \(\alpha\) \(\frac{\(\mu_1\)}{\(\mu_1\)}\)	
$\frac{a\omega_{1}}{AK^{2}}\sin(\frac{\omega_{2}}{A})$	
$\frac{1}{2}\cos x_1 - a^2 s$	
$\frac{a_{0}}{AK^{2}} \sin(\frac{\omega}{A})$	
$\frac{a_{0}}{AK^{2}}\sin(\frac{w_{0}}{AK})$	*
$\frac{a_{0}}{AR^{2}} \sin(\frac{\omega}{A})$	
$\frac{1}{2}\cos x_1 - a's$ $\frac{a\omega_1}{AR^2}\sin(\frac{\omega_2}{AR^2})$ $\frac{a}{3}$	
2003 1 - a's Real sin (W. 7AR) 7, a = 4.	
$\frac{1}{2}\cos x_1 - a's$	
2005 1, -a's REGISTAN (W. AK) AND SIN (W. AK) A - 4.	
$\frac{4\omega_{1}}{4K^{2}}\sin(\frac{\omega_{1}}{4K})$	***
$\chi_2 \cos \chi_1 - \alpha' S$ $\frac{\kappa_{GM_2}}{(AR)^2} \sin \left(\frac{\omega_2}{AR} \right)$ $S, \alpha = 4$ $S, \alpha = 4$	•
(AR) Sin (W. 78)	
$= 8, \alpha = 4.$	
=8, \a=4.	
= 8, \alpha = 4.	
=1.0, 6"= 32.	~~ ~
. XX	
~	~
	-

S.P.U. SYSTEM SUBROUTINE - PLCTIT

S.P.U. SYSTEM SUBROUTINE - PLCTIT

Fig. 12 (c)

Fig. 12(d)